

CAMBRIA STEEL

FUELLIOTO Science 2/3

Science 2/3

CAMBRIA STEEL COMPANY'S WORKS JOHNSTOWN, PA.

CAMBRIA PLANT

AXLE SHOP ROLL SHOP BLAST FURNACES 1-4

PAINT, CAR REPAIR AND PATTERN SHOP

E SHOF RAIL AND SHAPE MILLS GOAL STORAGE

BLOOMING, BILLET AND BEAM MILLS
3ESSEMER STEEL WORKS
O. H. STEEL WORKS

BLAST FURNACES 5 AND

GAUTIER PLANT

PLATE MILLS BAR MILL COLD ROLL SHOP 9" MILL

RAKE SHOP

MACHINE SHOP

10" MILL ROLL SHOP 14" MILL B" MILL UNIVERSAL PLATE MILL DISC SHOP

FRANKLIN PLANT

BLOOMING MILLS SLABBING MILL

BLAST FURNACES 7 AND 8 COKE PLANT CAR PAINT SHOP

O. H. STEEL WORKS 134" PLATE MILL

CAR SHOP FORGE SHOP BOLT SHOP

POWER PLANT

STRUCTURAL SHOP BEAM YARD

CAMBRIA STEEL

A HANDBOOK OF INFORMATION RELATING TO

STRUCTURAL STEEL

MANUFACTURED BY THE

CAMBRIA STEEL COMPANY

CONTAINING USEFUL TABLES, RULES, DATA, AND FORMULÆ FOR THE USE OF

ENGINEERS, ARCHITECTS, BUILDERS AND MECHANICS

PREPARED AND COMPILED BY

GEORGE E. THACKRAY, C. E.

SPECIAL ENGINEER, CAMBRIA STEEL CO.

GENERAL OFFICES: PHILADELPHIA, PA.
WORKS AT JOHNSTOWN, PA.
U. S. A.

1919

STRUCTURAL STEEL

Copyright, 1919, by Cambria Steel Company

Price, \$1.50

PREFACE TO TWELFTH EDITION.

This edition introduces much new matter thought useful, and revises, to a considerable extent, the data of the prior edition, to conform to current practice and a wider range of structural products.

The table of steel ingots is greatly amplified by the addition of more sizes and styles.

Cuts and properties of many new sections are introduced, among which are bulb angles, top-guard bulb angles, 3-inch and 4-inch channels for cars, 12-inch ship channels, and some seventeen T-bars of considerable range in dimensions.

Three sizes of rolled steel car stakes are also included.

Drawings and tabulations of standard ship sections including ship channels, bulb angles and one Z-bar hatch section, together with the equal leg and unequal leg angles selected as standards for ship building, which were adopted on November 20, 1918, are now given.

Rolled safety floor plates and buckle plates are newly listed in most convenient sizes.

In view of well-recognized practice, the standard connection angles formerly shown have been superseded by new standards and all tables relating thereto are correspondingly modified.

Additional new tables believed of value have been incorporated. These refer to Flat and Corrugated Steel Sheeting; Roof Truss Dimensions and Stresses; Moments of Inertia of Rectangles; Sizes of Wrought Spikes and Wood Screws; Wire Gauges shown in Combined Table; Decimal Equivalents of Non-Binary Fractions; Square Roots and Cube Roots of Fractions; Weights of Circular Steel Plates; Trigonometrical Formulæ; Squares and Cubes of Numbers and Fractional Intervals; Combinations and Factors of π ; Relations in Circular Segments; Volumes and Surfaces of Solids; Minutes and Seconds expressed in Decimals of a Degree and vice versa; Metric and Customary Measure Conversions, etc.

The tables of weights for various substances and materials have been considerably augmented.

Specifications for Structural and Boiler Steel have undergone slight revision to bring these up to date.

CONTENTS.

	PAGE
General Information	VI-X
Continue of I December 1 Channels	
Sections of I-Beams and Channels	2-16
" Angles, Bulb Angles and Top Guard Angles	17-23
Trattir L-Dar and Car Side Stakes	23
" T-Bars, Crane Rail and Door Spreader	24-26
Method of Increasing Sectional Areas	26
Proportions of Standard Beams and Channels	27
Diagram for Minimum Standard Beams and Channels	28, 29
Pressed Steel Car Parts and Car Forgings	30, 31
Sizes of Ingots	32
Sizes of Ingots	
Sizes of Squares, Rounds and Flats	33
Sizes of Billets, Blooms and Slabs	34, 35
Square Billets and Sheet and Tin Bars	36
Sizes of Plates and Thin Sheared Sheets	37-39
Weight and Daniel of I Daniel of Change	
Weights and Dimensions of I-Beams and Channels	40-45
Bulb Angles, Top Guard	
Angles and Car Side Stakes	45, 46
Angles and Car Side Stakes	
Weights and Dimensions of T-Bars and Angles	47-51
References to Beam Tables, Beams as Girders, Connection	
References to Beam Tables, Beams as Offices, Connection	80
Angles and Live Loads for Floors	52
Standard Construction Details	53-67
Standard Constitution Decarding Times of Division of D	
Materials and Construction for Fireproof Floors	68-77
Notes on Lateral Strength of Beams	78-83
Approximate Weights of Various Roof Coverings	84
Approximate Weights of Various Roof Coverings	
Weights, Dimensions and Data for Steel Sheeting	85
Formulae for Dimensions and Stresses of Roof Trusses	86 89
Buckle Plates and Safety Floor Plates	90
Reinforced Concrete Floor Slabs	91~93
Limiting Constant Marinum Loads of Booms and Champala	94-97
Limiting Spans and Maximum Loads of Beams and Channels	
Coefficients of Deflection of Beams	98, 99
Explanation of Tables of Safe Loads	100-105
Explanation of Tables of Safe Loads	
Tables of Safe Loads for I-Beams and Channels	106-123
Spacing of I-Beams	124-135
Waxinium bending Woments for 1-Beams and Chan-	
nels	136, 137
Safe Loads for Angles	138-159
General Formulae for Flexure and Bending Moments	160-165
Formulae for Moments of Inertia of Standard Sections	166, 167
Properties of Various Sections	168-175
Explanation of Tables of Properties	176-181
	182-191
	195-191
" Bulb Angles, Car Side Stakes and	
Door Spreader Bar	192-195
Door opicauci Dai	
	196-209
" T-Bars and Angles	
	210-213
Moments of Inertia of Rectangles	
Moments of Inertia of Rectangles	214
Moments of Inertia of Rectangles	214 215 217
Moments of Inertia of Rectangles	214 215 217
Moments of Inertia of Rectangles	214 215 217 218-221
Moments of Inertia of Rectangles	214 215 217

	PA	GE
Explanations of Tables Relating to Steel Columns	222,	
Dimensions and Properties of Plate and Angle Columns	224-	-228
Spacing of Channels for Equal Moments of Inertia		229
Dimensions and Properties of Latticed Channel Columns	230,	231
Dimensions and Properties of Plate and Channel Columns.	232-	-242
Typical Details of Plate Girders, Column Bases, and Steel		
Columns		243
Safe Loads for I-Beam Columns	244	-247
Safe Loads for Plate and Angle Columns	248-	267
Safe Loads for Latticed Channel Columns	265-	271
Lattice Bars and Stay Plates for Latticed Channel Columns	272.	273
Safe Loads for Channel and Plate Columns	274-	
Cast Iron Columns	302-	
Explanations of Safe Leads for Beam Box Girders and Plate		
Girders		305
Safe Loads for Beam Box Girders	306-	
Safe Loads for Plate Girders	317-	
Grillage Beams		327
Allowable Unit Stresses and Loads in Accordance with		
Building Laws of Various Cities	328-	349
Tables and Information Pertaining to Rivets and Pins	350	
Weights and Dimensions of Bolts and Nuts	362-	
Upset Screw Ends, Eve Bars and Turn Buckles	372-	378
Right and Left Nuts and Clevises	379.	380
Dimensions of Rivet Heads After Driving		380
Weights, Dimensions and Safe Loads of Chains		381
Bridge Pins, Nuts and Pilot Nuts, and Lateral Pins	382,	383
Counter and Lateral Rods	383-	
Nails and Spikes	386	389
Dimensions, Weights and Properties of Standard Pipe	390-	392
Standard Specifications	393-	402
Notes and Tables on Wooden Beams and Columns	403-	423
Specific Gravity and Weight of Various Substances	424-	433
Standard Gauges and Weights of Sheets and Plates of		
Various Metals	434-	443
Equare Roots and Cube Roots of Fractions		444
Decimal Equivalents of Non-Binary Fractions	444,	445
Decimal Parts of Foot and Inch	446-	450
Weights and Areas of Square and Round Bars	451-	463
Weights of Circular Plates	464-	467
Areas of Flat Rolled Steel Bars	468-	473
Weights of Flat Rolled Strips and Bars	474-	486
Areas and Circumierences of Circles	4×7-	509
Logarithms of Numbers	510,	511
Trigonometrical Functions and Formulae	512-	522
Squares, Cubes, Reciprocals, Square and Cube Roots	523-	547
Values for Combinations of π	548,	549
Mensuration	550-	5.56
Relations Between Decimals of a Degree and Minutes and		
Seconds		557
Weights and Measures.	555	561
Metric Conversion Tables	562-	590

GENERAL INFORMATION.

Our products are principally steel, made by the Bessemer or Open Hearth process, as required, and of all qualities from the softest rivet stock to high carbon special spring material.

Our Beams and Channels are made to conform to the American Standards, adopted January, 1896, in which the flanges have a uniform slope of one to six, and the dimensions, proportions and weights are determined by a regular schedule, as shown on the diagrams on pages 28 and 29. The standard proportions of

beams and channels are further shown on page 27.

The principal structural angles now made are limited in number to conform to the American Standards, as revised May 21, 1910, and include eight base, or a total of fifty-four sizes for equal leg angles, and nine base, or a total of fifty-seven sizes of unequal leg angles, all varying in thickness by one-sixteenth inch, as shown on pages 17 and 18 and tables herein. It is believed that these standard angles include a sufficient range of sizes to meet all usual structural requirements, but, at the same time, we will continue the manufacture of angles of special sizes and proportions for those who require them, as shown on page 19.

The weights of angles, now given, are those adopted as Amer-

ican Standards in May, 1910.

The standard ship sections adopted November 20, 1918, comprising ship channels, bulb angles and one Z-bar hatch section are now shown and tabulated herein for the first time, and these standards also include certain equal leg and unequal leg angles, which were adopted on the same date, as standards for ship building, all of which are shown and indicated herein by a dagger. Although the drawings of standard structural sections herein show the minimum sizes, the drawings of standard bulb angles and ship channels are made to indicate the sizes of the British standard sections, which form the basis of these ship section standards.

During the time when rolls are being prepared for the new ship channels and bulb angles, our older sections of these shapes shown herein will be furnished, but as the new rolls become ready, the standard sections will be supplied and the prior shapes will be obsolete.

The method of increasing the sectional area of shapes from the minimum or base sizes to intermediate and maximum sizes, is shown approximately on page 26. For beams and channels the increase from the minimum adds equally to the web thickness and flange width, the weight of the increase being equal to that of a plate of the same depth as the section, and of a thickness equal to the increase of the dimensions stated.

The method of increasing the thickness of angles from the minimum has the effect of adding to the length of the legs, as shown on page 26, so that for intermediate and maximum sizesthe legs will be somewhat longer than the minimum or nominal dimensions, except in the cases for which we have finishing grooves. The plates of drawings of sections, pages 2 to 26 inclusive, show the minimum or base sizes of the various shapes, except in cases of standard ship channels and bulb angles as heretoiore noted. Sections shown on the plates or lists for which more than one weight is stated can be rolled of different thicknesses to produce the stated weights. Others for which only one weight is given cannot be varied. Each section shown herein is numbered, both in the plates and tables, for convenience in reference and ordering.

I-Beams and Channels should be ordered of weights shown in the tables. Orders and inquiries concerning 12 in. 40 lb., 15 in. 60 lb., and 15 in. 80 lb. I-Beams should also specify these by

Section Number.

Orders for angles and plates should specify either the thickness or the weight, but not both.

Orders for universal or edged plates should specify the width and thickness in inches and the length in feet and inches, whereas orders for sheared plates should give all the dimensions in inches.

All weights are stated in pounds per lineal foot of section, except in the table of rails on page 214, in which the weights are given in pounds per yard, as is customary. Weights of rolled sections are calculated on the basis of 489.6 pounds per cubic foot of steel, and 3.4 times the sectional area in square inches equals the weight in pounds per lineal foot. In calculating the weights, areas, and properties of I-Beams, Channels, and Angles for the lists and tables herewith, the fillets and smaller rounded corners were not considered.

The dimensions of all steel material herein are theoretical, as

they are subject to customary rolling variations.

Structural Angles, I-Beams and Channels, unless otherwise ordered, will be cut to length with variation not to exceed $\frac{2}{3}$ inch more or less than that specified. For cutting to exact lengths, or with less variation than $\frac{3}{3}$ inch, an extra price will be charged.

All sections shown herein are steel.

OFFICES FOR SALE OF CAMBRIA STEEL COMPANY PRODUCTS.

GENERAL OFFICES: WIDENER BUILDING, PHILADELPHIA, PA., U. S. A.

ATLANTA......Candler Building, 129 Peachtree Street.

Boston.....Scollay Building, 40 Court Street.

CHICAGO......McCormick Building, Corner of Michigan
Avenue and Van Buren Street.

CINCINNATI...... Union Trust Building, Corner of Fourth and Walnut Streets.

CLEVELAND......Swetland Building, 1010 and 1012 Euclid Avenue.

Detroit......Penobscot Building, 45 Fort Street, West.

NEW YORK......City Investing Building, 165 Broadway.

PHILADELPHIA......Widener Building, Chestnut and Juniper
Streets.

PITTSBURGH......Oliver Building, Smithfield Street.

St. Louis......Chemical Building, Corner of Eighth and Olive Streets.

SALT LAKE CITY.... Newhouse Building, Corner of Main Street and Exchange Place.

SAN FRANCISCO..... Monadnock Building, 681 Market Street.

SEATTLE......Colman Building, Corner of First Avenue and Marion Street.

Washington, D. C. Woodward Building, Corner of Fifteenth and H Streets, N. W.

WORKS AT JOHNSTOWN, PA.

U. S. A.

CAMBRIA STEEL COMPANY PRODUCTS.

STRUCTURAL STEEL WORK.

Finished Steel Work for Buildings, including Beams, Girders, Columns, Roof Trusses, etc., fitted complete and ready for erection.

STEEL CARS.

Gondola, Hopper-Gondola, Hopper, Flat, Tank, Mine, etc., Underframes and Trucks. Freight, Passenger, Electric and Industrial Car Wheels. Draft Gears, Forged and Pressed Steel Car Parts.

STEEL RAILS.

Steel T-Rails, 12 lbs. to 150 lbs. per yard. Angle, Plain and Special Type Splice Bars. Standard and Special Track Bolts and Nuts. For detailed information, see Rail and Splice Catalogue.

STEEL AXLES.

Passenger Car, Freight Car, Tender Truck, Engine Truck, Driving, Electric Car, Street Car, Mine Car, etc.

CRANK PINS, PISTON RODS, BRIDGE PINS.

Made to any requirement.

MACHINE BOLTS, NUTS, RIVETS, AND PIPE OR TANK BANDS WITH BOLLED THREADS.

FORGINGS.

Axles, Crank Pins, Piston Rods and Forgings in general furnished of carbon steel, annealed, or treated by our Coffin toughening process (patented) as specified. Crank Pins and Piston Rods also furnished oil-tempered and annealed; other small Forgings will be, if desired. For small car forgings and pressed steel parts, see list on pages 30 and 31 herein.

ANNULAR ROLLED SECTIONS.

Car Wheels, Crane Track Wheels, Blanks for Cylindrical Wheels, Gears, Sprockets, Band Wheel Flanges, Pipe Flanges, Bevel Rollers, and Automobile Fly Wheels, etc.

MERCHANT BAR STEEL.

Including Tire, Toe Calk, Machinery, Automobile Spring, Carriage Spring, Baby Carriage Spring, Railroad Spring, Hoe, Rake, Fork, Forging, Bolt, Rivet, etc. Special Sections.

Automobile and Motor Truck Rim Sections.

STEEL SPECIALTIES.

Mine Ties, Fence Posts, Reinforcing Bars, etc.

AGRICULTURAL STEEL AND SHAPES.

Finger Bars, Knife Backs, Rake Teeth, Bundle Carrier Teeth, Tedder Forks and Springs, Spring Harrow Teeth, Harrow (Drag) Teeth, Seat Springs, etc.

PLOW STEEL.

Bars and Slabs (Pen and Pernot), Flat Plow Shapes, Digger Blades, Hammered Lay, Rolled Lay, etc.

COLD ROLLED AND COLD DRAWN STEEL.

Rounds, Squares, Hexagons, Flats, Shafting and Special Shapes.

STEEL DISCS WITH ROLLED BEVEL.

10" to 20" diameter dished for Harrows, Drills, Cultivators, etc.

23" to 28½" diameter dished for Plows. 8" to 26" diameter flat for Rolling Coulters.

PRESSED STEEL SEATS FOR AGRICULTURAL IMPLEMENTS.

WIRE RODS, WIRE AND WIRE PRODUCTS.

Wire Rods. Bolt, Screw and Rivet Wire.
Bright and Annealed Wire.
Galvanized Coiled Steel Spring Wire.
Barbed Wire, Galvanized or Painted.
Wire Nails, Bright or Galvanized.
Cement Coated Nails.
Fence Wire and Wire Fence. Fence and Poultry Netting

Staples.
Bale Ties—Single Loop.

NON-STEEL PRODUCTS.

Cinder, Slag and Coal Derivatives. Limestone Ballast and Screenings.

FOR PRODUCTS NOT LISTED HEREIN, SEE SPECIAL CATALOGUES.

SECTIONS

OF

STRUCTURAL STEEL SHAPES

MANUFACTURED BY

CAMBRIA STEEL COMPANY

STANDARD BEAMS.

-2.00"-

BEAMS.

SPECIAL 12"BEAM.

SPECIAL BEAMS.

STANDARD BEAMS.

BEAMS.

STANDARD BEAMS.

SPECIAL BEAMS.

STANDARD CHANNELS.

STANDARD CHANNELS.

CHANNELS.

SPECIAL AND SHIP CHANNELS.

SHIP CHANNELS.

STANDARD SHIP CHANNELS.

STANDARD SHIP CHANNELS.

STANDARD ANGLES WITH EQUAL LEGS.

STANDARD ANGLES WITH UNEQUAL LEGS.

BULB ANGLES. TOP GUARD ANGLES.

BULB ANGLES.

STANDARD BULB ANGLES.

STANDARD BULB ANGLES.

Z-BAR HATCH SECTION. STANDARD SHIP SECTION.

CAR SIDE STAKE SECTIONS.

T-BARS WITH EQUAL LEGS.

T. 5 WT. .89 LBS.

T. 181 WT. 1.37 LBS.

T. 183 WT. 1,51 LBS.

T. 187 WT. 1.60 LBS.

T. 188

T. 191 WT. 194 LBS.

T. 193 WT. 2.47 LBS.

T. 194

T. 37 WT. 3.56 LBS.

T-BARS WITH EQUAL LEGS.

T-BARS WITH UNEQUAL LEGS.

M-16

DOOR-SPREADER.

METHOD OF INCREASING SECTIONAL AREA.

STANDARD BEAMS AND CHANNELS.

The following data are common to all Standard I-Beams and Channels, with the exceptions stated:

 $\mathbf{c} = \frac{6}{10}$ Minimum Web.

 $C = Minimum Web + \frac{1}{10} inch.$

8 = Minimum Thickness of Web = t Minimum for all Channels and Beams, except 20" I and 24" I.

For 20" Standard I, s = .55", t Minimum = .50".

For 24" Standard I, s = .60", t Minimum = .50".

The Slope of Flange of all Standard Beams and Channels is 163%

$$= 9^{\circ} - 27' - 44'' = 2''$$
 per foot.

STANDARD BEAMS.

Weight per foot = Area \times 3.4. Area = td + 2s (b-t) + $\frac{(b-t)^2}{12}$. Section Modulus = s = $\frac{21}{d}$.

Slope of Flange = $g = \frac{h-1}{b-t} = \frac{1}{6}$ for Standard Beams.

I = Moment of Inertia, Neutral Axis (1-1) parallel to flange. $I = \frac{1}{12} \left[bd^3 - \frac{1}{4g} \left(h^{4-1} !^{3} \right) \text{ or } \frac{bd^3}{12} - \frac{1}{8} \left(h^{4-1} !^{4} \right) \text{ for Standard Beams.} \right]$

20% 20% 48" 18" 41" FLANGE SCALE DEPTH SCALE

4.88"

4.00" 4.33" 4

(3.33" | 3.86"

50,

DIAGRAM FOR MINIMUM STANDARD BEAMS.

,31" 10"

.39" 1181 .37"

.25" .33" .21"

STANDARD CHANNELS

The following Formulas and Diagram relate to the Properties of Channels:

Slope of Flange = $g = \frac{h-1}{2(b-1)}$, or $\frac{1}{6}$ for Standard Channels. = Moment of Inertia, Neutral Axis (1-1) parallel to flange.

 $I = \frac{1}{12} [bd^3 - \frac{1}{8g} (h \leftarrow l^4)] \text{ or } \frac{bd^3}{12} - \frac{h^4 - l^4}{16} \text{ for Standard Channels.}$

DIAGRAM FOR MINIMUM STANDARD CHANNELS.

PRESSED STEEL OR FLANGED CAR PARTS.

Truck Bolsters.

Side Sills.

Center Sills.

End Sills.

Draft Sills.

Draft Lugs.

Sub-Side Sills.

Side Stakes.

End Stakes.

Corner Stakes. Outside Hopper Plates.

Inside Hopper Plates.

Side Plates.

End Plates. Floor Plates.

Longitudinal Ridge Plates.

Cross-Ridge Plates.

End-Plate Stiffeners.

Hopper Doors.

Drop Doors.

Longitudinal Ridge Stiffeners.

Cross Ridge Supports.

Cross Body Ties.

Diagonal Braces.

Door Spreaders.

Air Reservoir Supports.

Push Pole Pockets.

Body Corner Caps.

Door Hinge Butts.

Bolster Diaphragms.

Wheel Diaphragms.

Cross Bearer Diaphragms.

Hopper Diaphragms.

Door Diaphragms.

Center Diaphragms.

Center Sill Diaphragms.

Bolster Center Diaphragms.

FORGINGS FOR CAR WORK.

Air Cylinder Push Rod.

Air Reservoir Release Rod.

Arch Bars.

Bottom Follower Guide. Bottom Side Bearing.

Bracket for Brake Shaft.

Brake Beam Hanger.

Brake Beam Hanger Carrier.

Brake Connection Rod Carrier.

Brake Levers.

Brake Mast.

Brake Mast Yoke.

Brake Pins.

Brake Rods with Clevises.

Brake Step Bracket.

Chain Hook.

Chain Link Corner Bands

Column Bolt Nut Lock.

Coupler Yokes.

Coupling Links.

Coupling Pins.

Cylinder Lever Connecting Rod.

Cylinder Lever Fulcrum.

Door Chain U-Bolt.

Door Hinge.

Door Hinge Pins.

Door Operating Lever.

FORGINGS FOR CAR WORK (CONTINUED).

Door Safety Chain Support.

Door Shaft Pawl.

Door Tumbling Link.

Draft Cylinder Support.

Draw Bar Carrier.
Draw Bar Liner.

Draw Bar Yoke.

Draw Bar Yoke

Door Clevises.

Door Tumbling Lever.

End Sill Pipe Clamp.

Eye-Bolts.

Floating Lever.

Floating Lever Carrier.

Floating Lever Connecting

Rod.

Floating Lever Fulcrum.

Grab Irons.

Hand Brake Lever Carrier.

Hand Brake Lever Fulcrum.

Hand Brake Lever Guide.

Hand Brake Rod.

Hand Brake Rod Guide.

Hand Brake Rod Stop.

Hand Brake Rod with Threaded
Connection for Malleable

Stop.

Hook Bolts.

Inside Body Step.

Journal Bearing Wedges.

King Bolt.

King Pin Support.

Lever Guides.

Live Truck Lever Guide.

Main Follower Sprocket Wheel Shaft.

Silait.

Operating Shaft.
Operating Shaft Cam.

Operating Shaft Cam Stops.

Operating Ratchet Pawl.

Operating Ratchet Pawl Guard.

Pipe Clamp.

Pipe Clamp and Support.

Pushrod Carrier.

Ratchet Wrench Dog.

Roping Staple.

Sheave and Link Pin.

Side Stake Pockets.

Sill Step Suspension Spring.

Suspension Spring.

Suspension Spring Hanger.
Tie Bars with Upset Ends or

Plain.

Top Body Tie Angle.

Top Side Bearing.

Truck and Body Center Plates.

Truck Bolster Tie Bar.

Truck Door Stop, Chain

Clamp Hooks.
Truck Levers.

Truck Side Bearing.

U-Bolt Clamp for Angle Valve.

Uncoupling Lever.

A large variety of small forgings not listed above can be furnished to order.

STEEL INGOTS.

Style of	м	old Dimensions		Approximate	
Mold	Bottom	Тор	Height	Ingot Weight	Grade
(See Foot-note)	Inches	Inches	FtIns.	Pounds	
O,X. O,F. B,F. I,F,S. O,F. I,F,S. O,F. O,F. I,F,S. O,X. O,X. O,X. O,X. O,F. I,V. O,F. I,V. O,F. C,G. C,G. C,G. C,G. C,G. C,G. C,G. C,G	20\frac{1}{8} \times 23\frac{3}{8} 21 \times 22\frac{1}{2} \times 20\frac{1}{4} \times 36 \times 25\frac{1}{2} \times 36 \times 25\frac{1}{4} \times 36 \times 22\frac{1}{4} \times 30\frac{1}{4} \times 30\frac{1}{4} \times 25\frac{1}{4} \times 26 \times 26 \times 26\frac{1}{4} \times 26\frac{1}{4} \times 26 \times 26\frac{1}{4} \times 36\frac{1}{4} \times 36\fra	18½ x 20½ 19 x 19 19 x 19 25 x 25 18 x 20½ 20½ x 23½ 20½ x 28½ 20½ x 28½ 30 x 30 23 x 35 22½ x 38½ 23½ x 38½ 23½ x 36½ 23½ x 36½ 23½ x 51½ 23½ x 51½ 23½ x 54½ 23½ x 54½ 23½ x 36½ 24½ x 36½ 25 x 25 30 x 30 20 diam. 23½ " 16 x 28 20 x 36 19 {short diam.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7300 7300 7300 7300 7300 7300 7800 7800	Open Hearth or Bessemer Open Hearth "" "" "" "" "" "" "" "" ""

B = Bottle-Necked; C = Circular; F = Ingot Sides Flat; G = Corrugated; I = Inverted; K = Octagonal; O = Open Top; R = Rectangular or Slab Style; V = Ingot Sides Concave; X = Ingot Sides Rounded or Convex; S = With Sinkhead; * = Irregular Taper.

Sizes of Hot and Cold Ingots will vary slightly from above

dimensions.

STEEL SQUARES.

All sizes from $\frac{2}{16}$ " to $2\frac{1}{16}$ " increasing by $\frac{1}{64}$ " All sizes from $2\frac{1}{16}$ " to $3\frac{3}{8}$ " increasing by $\frac{1}{32}$ " All sizes from $3\frac{1}{2}$ " to $5\frac{1}{2}$ " increasing by $\frac{1}{8}$ " Planished squares from $\frac{7}{32}$ " to $2\frac{1}{2}$ "

STEEL HAND ROUNDS.

All sizes from $1\frac{1}{8}$ " to $2\frac{7}{8}$ " increasing by $\frac{1}{64}$ " All sizes from $2\frac{7}{8}$ " to $3\frac{7}{16}$ " increasing by $\frac{1}{16}$ " All sizes from $3\frac{1}{4}$ " to $7\frac{1}{4}$ " increasing by $\frac{1}{8}$ " All sizes from $7\frac{1}{4}$ " to 8" increasing by $\frac{1}{4}$ ".

STEEL GUIDE ROUNDS.

All sizes from $\frac{1}{4}$ " to $2\frac{5}{16}$ " increasing by $\frac{1}{64}$ "

LARGE STEEL ROUNDS.

DIAMETER Inches	MINIMUM LENGTHS Sheared with Rough Ends. Inches	MAXIMUM LENGTH Feet
11	6 to 36	25
15	6 to 36	10½
16	6 to 36	9½

Other lengths shorter than maximum can only be furnished by special arrangement.

REGULAR FLATS.

WIDTH	THICKNESS. Inches	WIDTH	THICKNESS
Inches		Inches	Inches
$\begin{array}{c} \frac{1}{4} \text{ to } 1 \\ 1 \text{ to } 1\frac{1}{8} \\ 1\frac{1}{8} \text{ to } 1\frac{1}{2} \\ 1\frac{1}{2} \text{ to } 2\frac{1}{4} \end{array}.$	· 13 to 9 16 to 3 16 to 3 16 to 7 16 to 14	$\begin{array}{c} 2\frac{1}{4} \text{ to } 3\\ 3 \text{ to } 4\\ 4 \text{ to } 4\frac{1}{2}\\ 4\frac{1}{2} \text{ to } 6 \end{array}$	$\begin{array}{c} \frac{3}{16} \text{ to } 2\frac{1}{4} \\ \frac{3}{16} \text{ to } 2\frac{3}{4} \\ \frac{3}{16} \text{ to } 1\frac{15}{16} \\ \frac{3}{16} \text{ to } 2\frac{3}{16} \end{array}$

Variation for intermediate widths less than $1'' = \frac{1}{64}i''$. Variation for intermediate widths over $1'' = \frac{1}{16}i''$, or less by special arrangement.

THIN FLATS OR LIGHT BANDS.

WIDTH	THICKNESS
$\frac{3}{8}$ " to $\frac{1}{2}$ " increasing by $\frac{1}{16}$ " $\frac{1}{2}$ " to 12" increasing by $\frac{1}{16}$ "	$\frac{1}{16}$ " (.125") to $\frac{5}{32}$ " (.156") $\frac{1}{16}$ " (.063") to $\frac{5}{32}$ " (.156")

MAXIMUM LENGTHS OF

			_	_																	
								WI	DT:	H I	N I	INC	HE	S.							
Thickness in Inches.	4 1/2	5	5 1 2	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
								LI	ENC	}TE	I	N F	EE	т.,							
2					10	30	30	00	00	00											
$2\frac{1}{2}$				10	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
3				30		30				30						-					30
3 1/2				30		30				30			1				1			30	30
4	30				30	30				30									30	30	
$4\frac{1}{2}$	30	30	30	30	30	30	30			30				-		30			30	1	30
5		30	1	30	30	30				30						30				30	
5 1			30			30				30				30	30			30		30	30
6				30	30	30				30				30	_	30		1	30	-	30
7					30	30		-	30		30	-		30		30		30		0.0	
8						30	30	-	30	30	30	-	_	30	30		30	28	27	26	25
9							30	30			30		30	-		30		25	24	23	22
10							-	30	30		30		30	30	30		30	23			20
11									30				30			29				19	
12										30	30					27		-	18	- 1	16
13											30	30		28		25	23		16	16	15
14												30	28	26	24		22	16	-	14	
15													26	24		21		15			13
16														22	21.				13		12
17															20	19		15		12	12
18																18		12		11	11
19																	16		12		11
20																		11		10	
21																			10	10	9
22																				9	9
_				-			-				_		-	-		_	-				

Minimum Length for sizes included by heavy lines = $1\frac{1}{2}$ feet. Minimum Length other sizes = 3 feet.

Under certain conditions other sizes than those listed

WIDTH IN INCHES.

BILLETS, BLOOMS AND SLABS.

24	25	26	27	28	29	30	31	32	33	34	35	36	37	45	46	47	48	49	50	51	Thickness in Inches.
							LE	NO	}TI	1	N F	EE	т.								
										H											2
																					21/2
30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	3
30	30	30	30	30	30	30	30	29	29	30	29	28	27	30	30	29	28	27	27	30	$3\frac{1}{2}$
30	30	30	30	30	28	27	27	26	25	30	25	24	24	30	30	25	25	24	24	28	4
30	30	30	30	30	25	24	24	23	22	30	22	22	21	30	30	22	22	21	21	25	41
30	30	30	30	30	23	22	21	20	20	30	20	19	19	30	30	20	19	19	19	22	5
30	30	30	30	29	21	20	19	19	18	30	18	18	17	28	28	18	18	17	17	20	$5\frac{1}{2}$
30	30	29	28	27	19	18	18	17	16	27	17	16	16	26	25	16	16	16	16	18.	6
27	26	25	24	23	16	15	15	14	14	23	14	14	13	22	21	14	14	13	13	16	7
24	23	22	21	20	14	13	13	13	12	20	12	12	12	19	19	12	12	12	12	14	8
21	20	19	19	18	12	12	11	11	11	18	11	11	10	17	17	11	11	10	10	12	9
19	18	17	17	16	11	11	10	10	10	16	10	9	9	15	15	10	10	9	9	11	10
17	16	16	15	15	10	10	9	9	9	14	9	9	8	14	14	9	9	8	8	10	11
15	15	14	14	13	9	9	9	8	8	13	8	8	8	13	12	8	8	8	8	9	12
14	13	13	13	12	8	8	8	8	7	12	7	7	7	12	11	7	7	7	7	8	13
13		12			8	8	7	7	7	11	7	7	6	11	11	7	7	6	6	8	14
13	12	11	11	11	7	7	7	7	6	11	6	6	6	10	- 1	6	6	6	6	7	15
12	11	11	- 9	-	7	7	6	6	6	- 1	6	6	6.	10	9	6	6	6	6	7	16
11	11	-		1	7	6	6	6	6	9	6	6	5	9	11	6	6	5	5	6	17
10	10	9	9	9	6	6	6	6	5	9	5	5	5	é	8	5	5	5	5	6	18
10	10	9	8	8																	19
9	9	8	8	8								-									20
9	9	8		8																	21
8	8	8	7	7																	22
-							-						-				-	-	-	-	

Minimum Length = 3 feet.

herein might be furnished by special arrangement.

SQUARE BILLETS. WITH ROUND CORNERS.

Sizə.	Maximum Length.	Minimum Length.
Inches.	Feet.	Feet.
$\begin{array}{c} 1\frac{3}{4} \times 1\frac{3}{4} \\ 2 \times 2 \\ 2\frac{1}{4} \times 2\frac{1}{4} \\ 3 \times 3 \\ 4 \times 4 \\ 4\frac{1}{2} \times 4\frac{1}{2} \\ 5 \times 5 \\ 5\frac{1}{2} \times 5\frac{1}{2} \\ 6 \times 6 \end{array}$	30 30 30 30 16 16 16 16	24 24 24 24 24 11 11 11

SHEET AND TIN BARS.

Width.	Weight per Foot Length.	Maximum Length,	Minimum Length.
Inches.	Pounds.	Feet.	Feet.
20 00 00 20 20 20 20 20 20 20 20 20 20 2	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	30 30 30 30 30 30 30 30 30 30 30 30 30 3	25 25 25 20 \frac{1}{2} 20 \frac{1}{2} 20 \frac{1}{2} 16 \frac{1}{2} 16 \frac{1}{2} 13 13 13 13 13 13 13 13

	ED	GED	PT.A	TES.
--	----	-----	------	------

	EDGED I DATES.														
		THICKNESS IN INCHES.													
Width in Inches.	3 16	14	5 16	3/8	$\frac{7}{16}$	1 2	$\frac{9}{16}$	58	34	7 8	1	1.1	1 1 2	1 3	2
					h	MIZAI	UM L	ENGTI	I IN	FEET.					
6½-25 26-27 28 29 30 31 32 33 34 35	85 60 60 60 60	85 85 85 60 60 60 60 60	8555555 88885555 88885555	855555555555555	85 85 85 85 85 85 85 85 85 85 85 85 85 8	85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	888888888888888888888888888888888888888	85 85 85 85 85 85 85 85 85 85 85 85 85 8	85 85 85 85 85 85 85 85 85 85 85 85 85 8	85 85 85 85 85 84 81 79 76 74	85 85 85 78 75 73 71 69 67	68 68 67 64 62 60 58 57 55 53	56 56 56 54 52 50 49 47 46 44 43	48 48 46 44 43 42 40 39 38 37	42 42 42 40 39 37 36 35 34 33 32

THIN SHEARED PLATES.

			THIC	eness in	GAUGE	AUGE AND INCHES.						
Width in Inches.	No. 16	No. 15	No. 14 .083	No. 13	No. 12	No. 11 .120	No. 10	No. 9	No. 8			
			1	IAXIMUM	LENGTH	IN FEE	T.					
8 9 10 11 12 13, 14 15 16 17, 18 19 20 21 22 23 24 25 26, 27 28	12 10 10 10 10 10 10 10 10	12 12 12 12 12 13 11 11 11	14 14 14 14 13 13 12 12	16 16 15 15 15 14 14 13 13 13 12	20 20 19 19 18 17 16 15 15 14 14 13	20 20 20 20 19 19 18 18 18 17 16 15 14	20 20 20 20 20 20 20 20 20 20 20 20 20 18 18	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2			

SHEARED PLATES.

		THICKNESS IN INCHES											
Width in Inches.	3 16	1/4	5 16	3.8	7 16	1/2	9 16	58	11 16				
		MAXIMUM LENGTH IN INCHES											
24	400	525	575	600	600	600	600	600					
25- 30	375	525	500	600	600	625	625	625					
31- 36 -	375	475	. 525	550	550	575	575	575	575				
37- 42	450	525	550	575	610	600	600	600	575				
43- 48	450	525	575	600	600	600	600	600	600				
49- 54	450	525	550	600	600	625	625	625	600				
55- 60	400	525	550	600	600	625	625	625	600				
61- 66	350	475	500	575	575	600	600	600	600				
67- 72	325	450	500	540	550	575	575	575	575				
73- 78		425	475	440	540	540	540	540	540				
79-84		400	475	440	540	540	540	540	540				
85- 90		350	375	400	450	450	450	450	450				
91- 96		300	325	350	400	400	400	400	400				
97-102		275	300	325	375	375	375	375	375				
103-108		250	275	300	350	350	350	350	350				
109-114		175	200	225	275	275	275	300	300				
115-120			175	200	250	250	250	250	250				
121-126				180	180	180	180	180	180				
Maximum Diam. of Heads.	72	115	124	127	127	127	127	127	127				

Minimum Diameter of Heads (Circular Plates) = 30 inches.

SHEARED PLATES.

	THICKNESS IN INCIDES.												
34	13 16	7 8	15 16	1	118	11	1 ½	1 3/4	2	Width in Inches.			
	MAXIMUM LENGTH IN INCHES												
										24			
										25- 30			
550	525	500	475	475	450	425	400	375	350	31- 36			
575	525	500	500	500	475	425	400	375	350	37- 42			
575	550	550	525	525	500	450	400	375	350	43- 48			
575	550	550	525	525	500	450	400	375	350	49- 54			
575	550	550	525	525	475	425	400	375	325	55- 60			
575	550	550	525	525	475	425	375	350	325	61- 66			
575	550	525	500	500	475	425	375	350	300	67- 72			
525	500	475	450	450	425	375	325	300	280	73- 78			
500	450	450	425	425	375	350	325	300	280	79- 84			
425	400	400	375	375	350	325	280	270	260	85- 90			
400	375	375	350	325	300	275	260	260	250	91- 96			
375	350	350	325	300	275	250	250	240	240	97-102			
350	325	325	300	275	250	250	180	175	160	103-108			
300	275	275	250	250	225	200	175	160	150	109-114			
275	250	250	225	225	200	200	175	160	150	115-120			
180	200	200	175	175	160	160	150	144	144	121-126			
127	126	126	126	126	126	125	125	125	125	Maximum Diam of Heads			

Larger sizes up to 4 inch thickness, finished weight not exceeding 12,000 pounds, will be considered.

WEIGHTS AND DIMENSIONS OF STANDARD I-BEAMS.

Section Number,	Depth of Beam,	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Page Number of
Number,	Inches.	Pounds.	Sq. In.	Inch.	Inches.	Section.
B 5 "	3 "	5.5 6.5 7.5	1.63 1.91 2.21	.17 .26 .36	2.33 2.42 2.52	2 "
B 9 "	4 "	7.5 8.5 9.5 10.5	2.21 2.50 2.79 3.09	.19 .26 .34 .41	2.66 2.73 2.81 2.88	2 " " " " " " " " " " " " " " " " " " "
B 13	5 "	9.75 12.25 14.75	2.87 3.60 4.34	.21 .36 .50	3.00 3.15 3.29	2 "
B 17 "	6	12.25 14.75 17.25	3.61 4.34 5.07	.23 .35 .47	3.33 3.45 3.57	2 "
B 21	7	15.0 17.5 20.0	4.42 5.15 5.88	.25 .35 .46	3.66 3.76 3.87	2 "
B 25 "	8 " " " "	18.0 20.25 22.75 25.25	5.33 5.96 6.69 7.43	.27 .35 .44 .53	4.00 4.08 4.17 4.26	3 "
B 29 "	 	21.0 25.0 30.0 35.0	6.31 7.35 8.82 10.29	.29 .41 .57 .73	4.33 4.45 4.61 4.77	3
B 33 "	10 "	25.0 30.0 35.0 40.0	7.37 8.82 10.29 11.76	.31 .45 .60 .75	4.66 4.80 4.95 5.10	3
B 41 "	12 "	31.5 35.0 40.0	9.26 10.29 11.76	.35 .44 .56	5.00 5.09 5.21	3 "
B 53 " "	15	42.0 45.0 50.0 55.0 60.0	12.48 13.24 14.71 16.18 17.65	.41 .46 .56 .66	5.50 5.55 5.65 5.75 5.84	4 4 4 4 4

Orders and inquiries concerning 12 in. 40 lb., 15 in. 60 lb., and 15 in. 80 lb. I-Beams should also specify by Section Number.

WEIGHTS AND DIMENSIONS OF STANDARD I-BEAMS.

Section Number.	Depth of Beam. Inches.	Weight per Foot.	Area of Section. Sq. In.	Thickness of Web.	Width of Flange. Inches.	Page Number of Section.
B 65	18 "	55.0 60.0 65.0 70.0	15.93 17.65 19.12 20.59	.46 .56 .64 .72	6.00 6.10 6.18 6.26	6
B 73	20 "	65.0 70.0 75.0	19.08 20.59 22.06	.50 .58 .65	6.25 6.33 6.40	7
B 89	24 "	80.0 85.0 90.0 95.0	23.32 25.00 26.47 27.94	.50 .57 .63	7.00 7.07 7.13 7.19	8 " "
и	"	100.0	29.41	.75	7.25	"

WEIGHTS AND DIMENSIONS OF SPECIAL I-BEAMS.

Section Number.	Depth of Beam. Inches.	Weight per Foot. Pounds.	Area of Section. Sq. In.	Thickness of Web.	Width of Flange. Inches.	Page Number of Section.
B 105 " " " " " " " " " " " " " " " " " "	12 " " " " " " " " " " " " " "	40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0	11.84 13.24 14.71 16.18 17.67 19.12 20.59 22.06 23.53	.46 .58 .70 .82 .59 .69 .78 .88	5.25 5.37 5.49 5.61 6.00 6.10 6.19 6.29 6.39	4
B 113 " " " " " " " " " " " " " " " " " "	15 " " " " 20 " " " " " " " " " " " " " "	80.0 85.0 90.0 95.0 100.0 85.0 90.0 95.0 100.0 110.0 115.0	23.57 25.00 26.47 27.94 29.41 23.73 25.00 26.47 27.94 29.41 30.98 32.48 33.98	.80 .90 .99 1.09 1.19 .60 .66 .74 .81 .88	6.40 6.50 6.59 6.69 6.79 7.00 7.14 7.21 7.28 7.88 7.94	5

Orders and inquiries concerning 12 in, 40 lb., 15 in, 60 lb., and 15 in, 80 lb. I-Beams should also specify by Section Number.

WEIGHTS AND DIMENSIONS OF STANDARD CHANNELS.

Section Number.	Depth of Channel.	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Page Number of
Number.	Inches.	Pounds.	Sq. In.	Inch.	Inches.	Section.
C 5	3 "	4.0 5.0 6.0	1.19 1.47 1.76	.17 .26 .36	1.41 1.50 1.60	10
C 9	4 "	5.25 6.25 7.25	1.55 1.84 2.13	.18 .25 .33	1.58 1.65 1.73	10
C 13	5 "	6.50 9.00 11.50	1.95 2.65 3.38	.19 .33 .48	1.75 1.89 2.04	10
C 17	6	8.00 10.50 13.00 15.50	2.38 3.09 3.82 4.56	.20 .32 .44 .56	1.92 2.04 2.16 2.28	10
C 21	7 	9.75 12.25 14.75 17.25 19.75	2.85 3.60 4.34 5.07 5.81	.21 .32 .42 .53 .63	2.09 2.20 2.30 2.41 2.51	10
C 25 " "	8 	11.25 13.75 16.25 18.75 21.25	3.35 4.04 4.78 5.51 6.25	.22 .31 .40 .49 .58	2.26 2.35 2.44 2.53 2.62	10
C 29	9 "	13.25 15.00 20.00 25.00	3.89 4.41 5.88 7.35	.23 .29 .45 .61	2.43 2.49 2.65 2.81	11
C 33	10 "	15.0 20.0 25.0 30.0 35.0	4.46 5.88 7.35 8.82 10.29	.24 .38 .53 .68	2.60 2.74 2.89 3.04 3.18	11
C 41	12 " " " " " " " " " " " " " " " " " " "	20.5 25.0 30.0 35.0 40.0	6.03 7.35 8.82 10.29 11.76	.28 .39 .51 .64 .76	2.94 3.05 3.17 3.30 3.42	11

WEIGHTS AND DIMENSIONS OF STANDARD CHANNELS.

Section	Depth of Channel.	Weight per !	Area of Section.	Thickness of Web.	Width of Flange.	Page Number of
Number.	Inches.	Pounds.	Sq. Ins.	Inch.	Inches.	Section.
C 53	15	33 †	9.90	.40	3.40	12
44	- 4	35 †	10.29	.43	3.43	66
"	66	40 †	11.76	.52	3.52	и
66	66	45 †	13.24	.62	3.62	"
"	66	50 †	14.71	.72	3.72	44
ш	"	55 1	16.18	.82	3.82	"

WEIGHTS AND DIMENSIONS OF SHIP AND SPECIAL CHANNELS.

Section Number	Depth of Channel.	Weight per Poot.	Area of Section.	Thickness of Web.	Width of Flange.	Increase in Web and Flange for each Found Increase of Weight.	Page Number of Section.
	Inches.	Pounds.	Sq. In.	Inch.	Inches.	Inch.	
C 269	3	7.1	2.07	.306	115	.098	13
C 72	4	10.1	2.95	.394	2.09	.074	13
C 86	6	15.3† 17.7	4.47 5.19	.34	3.50 3.62	.049	13
C 88	6	19.0 21.6 23.4	5.58 6.36 6.87	.41 .54 .63	3.56 3.69 3.78	.049	13 "
C 89	7 "	20.9 23.8	6.15 6.99	.45	3.45 3.57	.042	13
C 101	8 "	21.5 24.8	6.30 7.26	.40	3.50 3.62	.037	14
C 103	8 "	23.8 27.1	7.00 7.96	.50	3.50 3.62	.037	14
C 90 "	10 "	21.9 26.0 27.4 31.5	6.44 7.64 8.04 9.24	.38 .50 .54 .66	3.38 3.50 3.54 3.66	.029	14
C 105	12 " " " " " " " " " " " " " " " " " " "	35.0 40.0 44.3 46.3 48.4	10.30 11.76 13.02 13.62 14.22	.47 .60 .70 .75	3.77 3.90 4.00 4.05 4.10	.0245	14 " " " " " " " " " " " " " " " " " " "
и	4	1 50.0	14.70 Standar	.84 rd Ship S	4.14 Section		

WEIGHTS AND DIMENSIONS OF STANDARD SHIP CHANNELS.

Dimensions of standard 6-inch, 15.3 lb. ship channel on page 43.

Section Number.	Depth of Channel,	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange.	Increase in Web and Flange for each Pound increase of Weight.	Page Number of Section.
	Inches.	Pounds.	Sq. Ins.	Inch.	Inches.	Inch.	
	,						
C 55	6	16.8	4.92	.325	3.45	.049	15
" (BSC 8)	66	17.8	5.22	.375	3.50	"	"
66	44	19.8	5.82	.475	3.60	u	66
C 57	7	18.9	5.55	.350	3.45	.042	15
" (BSC 10)	"	20.1	5.90	.400	3.50	44	66
«	"	22.5	6.60	.500	3.60	"	66
C 59	8	21.2	6.23	.375	3.45	.037	15
" (BSC 13)	ш	22.6	6.63	.425	3.50	66	"
"	"	25.3	7.43	.525	3.60	"	ш
C 60	9	23.7	6.96	.400	3.45	.033	16
" (BSC 17)	ш	25.2	7.41	.450	3.50	"	ш
ш	"	28.3	8.31	.550	3.60	"	"
ш	"	31.3	9.21	.650	3.70	66	ш
C 61	10	24.6	7.23	.375	3.40	.029	16
66	"	26.3	7.73	.425	3.45	"	"
« (BSC 20)	66	28.0	8.23	.475	3.50	"	46
46	66	31.4	9.23	.575	3.60	"	66
ec .	46	34.8	10.23	.675	3.70	4	"
C 63	12	30.6	9.00	.450	3.45	.0245	16
" (BSC 25)	46	32.7	9.60	.500	3.50	"	"
"	"	36.8	10.80	.600	3.60	"	61
44	"	40.8	12.00	.700	3.70	u	46

General slope of flange, 2° = .035.

WEIGHTS AND DIMENSIONS OF SHIP AND SPECIAL CHANNELS.—Continued.

Section Number.	Depth of Channel. Inches.	Weight per Foot.	Area of Section.	Thickness of Web.	Width of Flange. Inches.	Increase in Web and Flange for each Pound increase of Weight.	Page Number of Section.
C 95	13	32	9.30	.38	4.00	.023	11
44	"	35	10.29	.45	4.08	"	66
44	4	37 40	10.88 11.76	.50	4.12 4.19	"	"
"	44	45	13.24	.68	4.19	66	44
66	4	50	14.71	.79	4.42	46	"
ш	ш	55	16.18	.90	4.53	ш	66
C 65	18	45	13.25	.47	3.77	.016	12
u	"	50 55	14.71 16.18	.55	3.85	46	66
	и	60	17.65	.72	4.02	"	"

WEIGHTS AND DIMENSIONS OF BULB ANGLES.

Section	Size	Weight per Foot	Area of Section	Thickness Plain Leg	Thickness Bulb Leg	Length of Bulb	Width of Bulb	Page Number
Number	Inches	Pounds	Sq. Ins.	Inches	Inches	Inches	Inches	of Section
A174	$4 \times 3\frac{1}{2}$	11.7	3.42	38	3 8	5 7 6 4	11/2	20
A176	$5 \times 4\frac{1}{2}$	19.2	5.64	$\frac{7}{16}$	$\frac{7}{16}$	$1\frac{9}{32}$	21	66
A171	5 x 2½	10.2	3.00	$\frac{9}{32} - \frac{13}{32}$	19 64	78	11	66
A177	6 x 3	11.8	3.47	.34	<u>5</u> 16	1.21	1.08	"
44	66	13.5	3.95	.39	5 16 3 8 7 16	"	1.14	46
		15.0	4.41	.43		66	1.20	66
A178	6 x 3½	12.5	3.66	.37	5 16	1.16	1.01	66
4	ш	14.1	4.13	.41	8	66	1.08	66
4	4	15.7	4.60	.45	TS	66	1.14	66
ш	и	17.3	5.07	.49	2	66	1.20	66
4	ш	18.9 20.5	5.53 6.02	.58	5)16 318 57 50 + (2.9)16 518 318 57 6 + (2.3)18 57	66	1.26 1.33	"
A179	$7 \times 3\frac{1}{2}$	15.7	4.61	.43	3	1.25	1.10	21
4	4	17.5	5.13	.46	.7 ₃	"	1.16	"
66	и	19.1	5.60	.48	$\frac{1}{2}^{5}$	66	1.23	и
A181	8 x 3½	17.4	5.09	.42	3	1.35	1.18	"
66	ш	19.3	5.64	.44	7.	"	1.24	"
ш	46	21.5	6.30	.50	$\frac{1}{2}$	"	1.30	"
A183	9 x 3½	20.3	5.96	.44	13	1.48	1.29	"
"	44	22.6	6.62	.48	$\frac{13}{32}$ $\frac{15}{32}$ $\frac{17}{32}$	66	1.35	66
"	ш	24.8	7.27	.52		66	1.41	"
A185	10 x 3½	23.6	6.91	.47	76	1.61	1.40	"
"	ш	26.1	7.64	.51	1	46	1.46	"
и	"	28.5	8.35	.55	2 9 16	"	1.53	"

WEIGHTS AND DIMENSIONS OF STANDARD BULB ANGLES.

Section Number.	Size.	Weight per Foot. Lbs.	Area of Section. Sq. In.		Thickness Bulb Leg. Ins.	Width of Bulb.	Page Number of Section.
A 187 " (BSBA 4,	6 x 3	12.2 12.8 14.1 15.6	3.58 3.76 4.14 4.58	.375	.350 .375 .425 .475	1.025 1.050 1.100 1.150	22
A 188 " (BSB1 8) "	7 x 3 1 " " "	15.3 16.8 18.6 20.0	4.50 4.94 5.46 5.90	.425	.375 .425 .475 .525	1.125 1.175 1.225 1.275	22 "
A 189 "(BSBA 12	8 x 3½ "	18.0 19.6 21.6 23.2	5.29 5.78 6.34 6.83	.450	.400 .450 .500 .550	1.225 1.275 1.325 1.375	22 "
A 190 "(BSEA 16) "	9 x 3½ ""	20.9 22.7 24.8 26.6 28.6	6.14 6.68 7.29 7.82 8.41	.475	.425 .475 .525 .575 .625	1.325 1.375 1.425 1.475 1.525	22 " " " " " " " " " " " " " " " " " "
A 191 "(ESBA 18) " " " "	10 x 81 " " " " "	24.9 26.9 29.1 31.1 33.2 35.2	7.32 7.90 8.55 9.14 9.77 10.35	.525	.475 .525 .575 .625 .675 .725	1.450 1.500 1.550 1.600 1.650 1.700	66

WEIGHTS AND DIMENSIONS OF CAR SIDE STAKES.

Section Number.	Extreme Width.	Depth.	Weight per Foot.	Area of Section.	B.se Thickness	Apex Thickness.	Groove Wigth.	Page Number of
Number.	Ins.	Ins.	Lbs.	Sq. In.	Ins.	Ins.	Ins.	Section.
L 2	7	93 213 213 216 915 216	7.2 8.7 11.7	2.10 2.54 3.42	3 16 1 4 3 8	3 8 7 16 9	25 4	23

WEIGHTS AND DIMENSIONS OF REGULAR T-BARS. EQUAL LEGS.

Section Number.	Width of Plange.	Depth of Bar. Inches.	Thickness of Flange. Inch.	Thickness of Stem.	Weight per Foot. Pounds.	Area of Section. Sq. Ins.	Page Number of Section.
T 5	1	1	$\frac{1}{8}$ to $\frac{5}{32}$	$\frac{1}{8}$ to $\frac{5}{32}$.89	.26	24
T 181	11/8	115	8 4 <u>7</u> 16 32	5 4 7 32	1.37	.40	"
T 183	1 3 1 6	$1\frac{3}{16}$	3 4 1	5 4 7 32	1.51	.44	«
T 187	11/4	11	3 4 1	5 " 7 32 " 7 32	1.60	.47	"
T 188	11/4	11/4	3 4 <u>7</u>	3 " 9 16 32	1.70	.50	66
T 191	11/2	112	3 4 7 16 32	3 4 7 3 2	1.94	.57	"
T 193	11/2	11/2	1 4 9 32	1 4 9 32	2.47	.73	"
T 194	134	13/4	1 4 5 16	1 " 5 4 16	3.09	.91	"
T 37	2	2	1 4 <u>5</u> 16	1 4 5 4 16	3.56	1.05	"
T 39	2	2	5 " <u>3</u> 16 8	5 4 3 1 5 8	4.3	1.26	25
T 41	21/4	21/4	1 4 5 16	1 " 5 4 18	4.1	1.19	"
T 42	21/4	21/4	5 4 3 16 8	5 4 <u>3</u> 8	4.9	1.43	ш
T 47	21/2	21/2	1 4 5 16	1 " 5 16	4.6	1.33	66
T 49	2 ½	2 ½	5 4 <u>3</u>	5 " 3 15 8	5.5	1.60	"

WEIGHTS AND DIMENSIONS OF REGULAR T-BARS. UNEQUAL LEGS.

	tion mber.	Width of Flange.	Depth of Bar.	Thickness of Flange.	Thickness of Stem. Inch.	Weight per Foot. Pounds.	Area of Section. Sq. Ins.	Page Number of Section.
Т	16	11/4	116	$\frac{3}{16}$ to $\frac{1}{4}$	$\frac{5}{32}$ to $\frac{7}{32}$	1.48	.43	25
T	18	11/4	11/8	$\frac{3}{16}$ " $\frac{7}{32}$	3 4 <u>1</u>	1.56	.46	"
T	20	11/2	11/4	½ 4 <u>5</u> 32	1 4 5 32	1.25	.37	66

WEIGHTS AND DIMENSIONS OF STANDARD ANGLES. EOUAL LEGS.

Sizes not specially marked were adopted as standard, May 21, 1910, by the Association of American Steel Manufacturers, for bridge, car, ship and general building construction. Sizes marked * are of special thickness and are not A. A. S. M. Standard.

Section Num- ber.	Dimensions.	Thick- ness.	Weight per Foot.	Area of Section.	Section Num- ber.	Dimensions.	Thick- ness.	Weight per Foot.	Area of Section.
	Inches.	Inch.	Pounds.	Sq. Ins.		Inches.	Inch.	Pounds.	Sq. Ins.
A 11 " " " " " " " " " " " " " " " " " "	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	-(82)16.4.45.16.38.16.38.16.45.16.38.714.45.	1.23 1.80 2.34 2.86 3.35 1.65 2.44 3.19 3.92 4.7 5.3 6.0 2.08 3.07 4.1 5.0 5.9	.36 .53 .69 .84 .98 .48 .72 .94 1.15 1.36 1.56 1.75 .61 .90 1.17	A 29	4 x 4 4 x 4 6 x 6 6 x 6 6 x 6 6 x 6 6 x 6	5-16-38-7-16-18-39-16-38-4-31-7-18-5-38-7-16-38-11-38-4-31-7-18-5-38-7-16-38-11-38-4-31-7-18-5-38-7-16-38-11-38-4-31-7-18-5-38-7-16-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-7-18-5-38-11-38-4-31-7-18-5-38-11-3	8.2 9.8 11.3 12.8 14.3 15.7 17.1 18.5 19.9 21.2 14.9 17.2 19.6 21.9 24.2	2.40 2.86 3.31 3.75 4.18 4.61 5.03 5.44 5.84 6.23 4.36 5.06 5.75 6.43 7.11
* " A 19 " " "	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 16 12 14 5 16 38 7 16 12	6.8 7.7 4.9 6.1 7.2 8.3 9.4	2.00 2.25 1.44 1.78 2.11 2.43 2.75	66 66 66 66	6 x 6 6 x 6 6 x 6 6 x 6 6 x 6	13 13 13 16 7 8 15 16	26.5 28.7 31.0 33.1 35.3 37.4	7.78 8.44 9.09 9.73 10.37 11.00
* "A 21 "" "" "" "" "" "" "" "" "" "" "" "" ""	3 X 3 12 12 12 12 12 12 12 12 12 12 12 12 12	9 16 14 5 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	10.4 5.8 7.2 8.5 9.8 11.1 12.4 13.6 14.8 16.0 17.1 18.3	3.06 1.69 2.09 2.48 2.87 3.25 3.62 3.98 4.34 4.69 5.03 5.36	A 35 " " " " " " " " " " " " " " " " " "	8 x8 8 x8 8 x8 8 x8 8 x8 8 x8 8 x8 8 x8	$\begin{array}{c} \frac{1}{2} \frac{2}{9} \\ \overline{16} \\ 5 \\ 8 \\ 1 \\ \overline{16} \\ 3 \\ \overline{4} \\ \overline{16} \\ 1 \\ 8 \\ \end{array}$	26.4 29.6 32.7 35.8 38.9 42.0 45.0 48.1 51.0 54.0 56.9	7.75 8.68 9.61 10.53 11.44 12.34 13.23 14.12 15.00 15.87 16.73

Standard Angles vary only by 16 inch. Sections shown on page 17. †Standard Ship Section.

WEIGHTS AND DIMENSIONS OF STANDARD ANGLES. UNEOUAL LEGS.

Sizes not specially marked were adopted as standard, May 21, 1910, by the Association of American Steel Manufacturers, for bridge, car, ship and general building construction. Sizes marked * are of special thickness and are not A. A. S. M. standard.

Section Num-	Dimensions.	Thick- ness.	Weight per Foot.	Area of Section.	Section Num-	Dimensions.	Thick- ness.	Weight per Foot.	Area of Section.
ber.	Inches.	Inch.	Pounds.	Sq. Ins.	ber.	Inches.	Inch.	Pounds.	Sq. Ins.
A 91 " " " " " " " " " " "	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 16 14 5 16 38 7 16 12	2.75 3.62 4.5 5.3 6.1 6.8	.81 1.06 1.31 1.55 1.78 2.00	A 99	4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3	56 + 166 + 166 34 116 7 15	7.2 8.5 9.8 11.1 12.4 13.6 14.8	2.09 2.48 2.87 3.25 3.62 3.98 4.34
A 93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 † 5 † 5 † 7 6 † 7 6 † 7 6 †	4.5 5.6 6.6 7.6	1.31 1.62 1.92	* "	4 x 3 4 x 3 4 x 3	13 16 7	16.0 17.1 18.3	4.69 5.03 5.36
* "	$3 \times 2\frac{1}{2}$	1 6 1 2 9 1 6	8.5 9.5	2.22 2.50 2.78	A101 "	5 x 3 5 x 3 5 x 3 5 x 3	5 16 3 8 7 16 1	8.2 9.8 11.3 12.8	2.40 2.86 3.31 3.75
A 95 " " " " " "	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5 16 3 8 7 16 1 2 9	4.9 6.1 7.2 8.3 9.4 10.4	1.44 1.78 2.11 2.43 2.75 3.06	* " * "	5 x 3 5 x 3 5 x 3 5 x 3 5 x 3 5 x 3	5 1 3 8 7 16 12 9 16 18 1 16 3 4 13 16 7 II	12.8 14.3 15.7 17.1 18.5 19.9 21.2	5.75 4.18 4.61 5.03 5.44 5.84 6.23
*A 97 "" "" "" "" "" "" "" "" "" "" "" "" ""	3 12 X 3 3 3 3 2 12 X 3 3 3 2 12 X 3 3 3 2 12 X X 3 3 3 3 2 12 X X 3 3 3 3 2 12 X X 3 3 3 3 2 12 X X 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11 16 3 4 13 16	5.4 6.6 7.9 9.1 10.2 11.4 12.5 13.6 14.7 15.8 16.8	1.56 1.93 2.30 2.65 3.00 3.34 3.67 4.00 4.31 4.62 4.92	A103	5 X 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.7 10.4 12.0 13.6 15.2 16.8 18.3 19.8 21.3 22.7 24.2	2.56 3.05 3.53 4.00 4.47 4.92 5.37 5.81 6.25 6.67 7.09

Standard Angles vary only by 1/8 inch. Sections shown on page 18, † Standard Ship Section.

WEIGHTS AND DIMENSIONS OF STANDARD ANGLES. UNEQUAL LEGS.—CONTINUED.

Sizes not specially marked were adopted as standard, May 21, 1910, by the Association of American Steel Manufacturers, for bridge, car, ship and general building construction. Sizes marked * are of special thickness and are not A. A. S. M. standard.

Section Num- ber.	Dimensions.	Thick- ness.	Weight per Foot. Pounds.	Area of Section.	Section Num- ber.	Dimensions.	Thick- ness.	Weight per Foot. Pounds.	Area of Section. Sq. Ins.
A105 "" "" "" "" "" "" "" "" "" "" "" "" ""	6 x 3½ 6 x 3 6	387716414 12916414 116678 116678 116616	11.7 13.5 15.3 17.1 18.9 20.6 22.4 24.0 25.7 27.3 28.9	3.42 3.97 4.50 5.03 5.55 6.06 6.56 7.06 7.55 8.03 8.50	A107	6 x 4 6 x 4	$\begin{array}{c} \frac{3}{8} \\ 7 \\ 16 \\ \frac{1}{2} \\ 29 \\ 16 \\ \frac{3}{8} \\ 116 \\ \frac{3}{4} \\ \frac{13}{116} \\ \frac{7}{8} \\ \frac{15}{11} \\ 16 \\ 1 \\ 16 \\ 1 \\ 16 \\ 1 \\ 16 \\ 1 \\ 1$	12.3 14.3 16.2 18.1 20.0 21.8 23.6 25.4 27.2 28.9 30.6	3.61 4.18 4.75 5.31 5.86 6.40 6.94 7.47 7.98 8.50 9.00

WEIGHTS AND DIMENSIONS OF SPECIAL ANGLES. EQUAL LEGS.

Section Num- ber.	Dimensions.	Thick- ne.s.	Weight per Foot.	Area of Section.	Section Num- ber.		Num- Dimensions. ness.		Weight per Foot.	Area of Section.
	Inches.	Inch.	Pounds.	Sq. Ins.		Inches.	Inch.	Pounds.	Sq. Ins.	
A 36	$\frac{3}{4}$ X $\frac{3}{4}$	1 8 3 16	.59 .84	.17	A 41	$\begin{array}{c} 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 2\frac{1}{4} \end{array}$	3 16 1 4 5	2.75 3.62 4.5	.81 1.06 1.31	
A 38	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 316 14 18 33 16	.80 1.16 1.49 1.01	.23 .34 .44	A 43	$\begin{array}{c} 2\frac{3}{4} \times 2\frac{3}{4} \\ 2\frac{3}{4} \times 2\frac{3}{4} \\ 2\frac{3}{4} \times 2\frac{3}{4} \end{array}$	1 4 5 1 6 3 8	4.5 5.6 6.6	1.31 1.62 1.92	
" A_40	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 14 8 16	1.48 1.92 1.44 2.12	.43 .56 .42 .62	A 47	5 x 5 5 x 5 5 x 5 5 x 5	387 + 10 + 10 + 10 +	12.3 14.3 16.2 18.1	3.61 4.18 4.75 5.31	
«« ««	1	16 1 4 5 16 3	2.12 2.77 3.39 3.99	.81 1.00 1.17	"	5 x 5 5 x 5 5 x 5	16 † 5 † 16 †	20.0 21.8 23.6	5.86 6.40 6.94	

Standard Angles vary only by 16 inch. Sections shown on pages 18 and 19. † Standard Ship Section.

WEIGHTS AND DIMENSIONS OF SPECIAL ANGLES. UNEQUAL LEGS.

Section Num- ber	Dim	ensions	ness per Foot Section Section		Section Num-	Dim	iensions	Thick- ness	Weight per Foot	Area of Section	
	L	nches	Inch	Pounds	Sq. Ins.		I	nches	Inch	Pounds	Sq. Ins.
A129	3	x 2	3 16	3.07	.90	A109	7	x 3½	716	15.0	4.40
ш	3	x 2	· 1	4.1	1.19	ш	7	$x 3\frac{1}{2}$	$\frac{1}{2}$	17.0	5.00
и	3	x 2	5 16	5.0	1.47	и	7	$x 3^{1}_{2}$	9 16	19.1	5.59
и	3	x 2	38	5.9	1.73	и	7	$x 3\frac{1}{2}$	58	21.0	6.17
ш	3	x 2	7 16	6.8	2.00	66	7	$x 3\frac{1}{2}$	11	23.0	6.75
44	3	x 2	$\frac{1}{2}$	7.7	2.25	и	7	$x 3\frac{1}{2}$	34	24.9	7.31
						и	7	$x 3\frac{1}{2}$	13 16	26.8	7.87
A131	4	x 3½	<u>5</u> 16	7.7	2.25	ш	7	x 3 ¹ ₂	7 8	28.7	8.42
и	4	$x 3\frac{1}{2}$	3 8	9.1	2.67	ш	7	$x 3\frac{1}{2}$	15 16	30.5	8.97
и	4	x 3½	7 16	10.6	3.09	ш	7	$x 3\frac{1}{2}$	1	32.3	9.50
"	4	$x 3\frac{1}{2}$	$\frac{1}{2}$	11.9	3.50						
и	4	$x 3\frac{1}{2}$	9 16	13.3	3.90	A112	8	x 6	1/2	23.0	6.75
и	4	$x 3\frac{1}{2}$	5/8	14.7	4.30	u u	8	x 6	9 16	25.7	7.56
ш	4	$x 3\frac{1}{2}$	11 16	16.0	4.68	и	8	x 6	16 5	28.5	8.36
A135	5	x 4	3	11.0	3.23	ш	8	x 6		31.2	9.15
A135			3.8				8		11 16		
4	5	x 4	7 16	12.8	3.75	4		x 6	3	33.8	9.94
	5	x 4	1/2	14.5	4.25	"	8	x 6	13	36.5	10.72
ш	5	x 4	9 16	16.2	4.75		8	x 6	7 8	39.1	11.48
ш	5	x 4	58	17.8	5.23	ш	8	x 6	15	41.7	12.25
ш	5	x 4	11	19.5	5.72	ш	8	x 6	1	44.2	13.00
					1				1		

Sections shown on page 19.

BEAM TABLES.

Tables of safe loads for beams and channels and spacings of I-Beams for floors are given with explanatory notes on pages 100 to 135.

BEAMS AS GIRDERS.

In some cases two or more beams may be bolted together side by side to form a girder, in which case cast iron separators with bolts should be used to hold the various members together. Separators should be placed at each end of the girder, at points of concentrated loading, and for uniform loading should be located at distances apart not greater than twenty times the width of the smallest beam flange, in order to laterally support the upper flanges which are in compression and prevent their failure by buckling. The separators should preferably fit closely between the beam flanges so as to unite the beams forming the girder and thereby cause them to act together in resisting the load. Tables of Standard and Special Separators are given on pages 66 and 67.

CONNECTION ANGLES.

When beams are coped or fitted together at right angles, connection angles are generally used, standards for which, covering usual cases, are shown on pages 53, 54 and 55. Explanations and tables of limiting spans for which these standards may be used are given on pages 56 to 59. Beams may be fitted together thus with flush tops or bottoms or in intermediate positions, as required in cases where the girder or trimmer beam is the larger. In cases where the girder or trimmer beam is the smaller, special stirrups or other connections are required.

LIVE LOADS FOR FLOORS.

The following loads per square foot, exclusive of weight of floor materials, show the range assumed in usual practice:

Dwellings 70 lbs. per sq. ft.

Offices 70 to 100 lbs. per sq. ft.

Buildings for public assembly . 120 to 150 lbs. per sq. ft.

Stores, warehouses, etc..... 150 to 250 lbs. and upwards per sq.ft.

On page 328 are given in detail the safe loads for which floors should be designed in accordance with the building laws of various cities.

STANDARD CONNECTION ANGLES FOR I-BEAMS AND CHANNELS.

FOR 12"

All rivets and bolts to be 3/4" diameter; all open holes 1/3" diameter.

LOCATION OF CONNECTION ANGLES FOR STANDARD BEAMS OF THE SAME OR DIF-FERENT SIZES FRAMING OPPOSITE, BOTTOMS OR TOPS FLUSH.

Depth o	f Beams	M	0	A	В	C	D	E	
Inc	hes	717							
Main Beam	Opposite Beam	Inches	Inches	Inches	Inches	Inches	Inches	Inches	
8	3	1½	11/2	1½	1½	1½			
4	3 4	21/2	1½ 2	11/2	21/2	21/2			
5	4 5	21/8 21/2	2½ 2½	2½ 2½	27/8 21/2	1 7/8 2 1/2			
6 6	4 5 6	·2¾ ·2½ 3	23/8 21/2 3	23/8 21/2 3	358 31/2 3	15/8 21/2 3			
7777	4 5 6 7	23/8 21/2 21/2 31/2	23/8 21/2 21/2 31/2	23/8 21/2 21/2 31/2	45/8 41/2 41/2 31/2	15/8 21/2 31/2 31/2			
888888	4 5 6 7 8	35% 4 4 4 4	21/2 21/2 21/2 4	21/8 21/2 21/2 21/2 21/2 21/2	27/4 21/2 21/2 21/2 21/2	17/8 21/2 31/2 41/2 21/2	11/8	1/2 1/2	
999999	5 5 7 8 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	21/2 21/2 21/2 4 41/2	21/2 21/2 21/2 21/2 3	3½ 3½ 3½ 3½ 3½	21/2 31/2 41/2 21/2 3	1/2	11/2	
10 10 10 10 10 10	5 6 7 8 9	4 4 4 4 5	21/2 21/2 21/2 4 4 5	21/2 21/2 21/2 21/2 21/2 21/2 3	41/2 41/2 41/2 31/3	21/2 31/2 41/2 2012 31/2 31/2	1/2	11/2	

LOCATION OF CONNECTION ANGLES FOR STANDARD BEAMS OF THE SAME OR DIF-FERENT SIZES FRAMING OPPOSITE, BOTTOMS OR TOPS FLUSH.

Depth o	of Beams	M	0	A	В	С	D	E
In	ches	147		A				
Main Beam	Opposite Beam	Inches	Inches	Inches	Inches	Inches	Inches	Inches
12 12 12 12	8* 9* 10 12	5 ³ / ₄ 5 ³ / ₄ 5 ³ / ₄ 6	4½ 4¼ 4¼ 6	23/4 23/4 23/4 34	3½ 3½ 3¼ 3¼ 3	2½ 3½ 4½ 3	3/4	1 1 1 4
15 15 15 15 15	8* 9* 10 12* 15	7¼ 7¼ 7¼ 7½ 7½	4½ 4¼ 4¼ 6 7½	23/4 23/4 23/4 23/4 33/4	31/4 31/4 31/4 33/4 33	21/4 31/4 41/4 3	234 134 0	14
18 18 18 18 18	8* 9* 10 12* 15 18	7¼ 7¼ 7¼ 7½ 7½ 9	41/4 41/4 41/4 6 71/2 9	23/4 23/4 23/4 3 41/2	614 614 614 6 6 41/2	2½ 3½ 3¼ 3¼ 3¼ 3 4½	2 ³ / ₄ 1 ³ / ₄ 0	11/4
20 20 20 20 20 20 20	8* 9* 10* 12* 15 18	7 ³ / ₈ 7 ¹ / ₂ 8 7 ¹ / ₂ 7 ¹ / ₂ 9 10	43/8 41/2 5 6 71/2 9	27/8 31/2 3 41/2 51/2	81/8 871/2 861/2 51/2	2½ 3½ 3½ 3 4½ 5½	0 2½ 0	0 1/2 0
24 24 24 24 24 24 24 24	8* 9* 10* 12* 15* 18 20 24	10 ³ / ₈ 10 ¹ / ₂ 11 10 ¹ / ₂ 10 ¹ / ₂ 12 13 ¹ / ₂ 12	4 ³ / ₈ 4 ¹ / ₂ 5 6 7 ¹ / ₂ 9 10 ¹ / ₂ 12	27/8 33 1/2 33 41/2 6 41/2	61/8 6 1/2 6 1/2 6 1/2 41/2 41/2	2½ 31½ 31½ 31 4½ 54½	7/8 0 21/2 0 0 11/2 1	0 0 0 0 1½ 2

^{*}Opposite beam must be set back one inch to clear rivet heads.

STANDARD CONNECTION ANGLES FOR L-BEAMS AND CHANNELS

Standard connection angles for all sizes of beams and channels are shown on page 53. These are of sufficient strength for all usual connections of the various sizes shown, figured on the basis of 34 inch rivets or bolts and the following allowable unit stresses in pounds per square inch.

Stress.	Shop Rivets.	Field Rivets or Turned Bolts.	Field Rough Bolts.
Single Shear	12000	10000	8000
Bearing—One Side	24000	20000	16000
—Enclosed	30000	20000	16000

In cases where beams frame opposite, the web between outstanding legs of standard connection angles should not be less than % inch thick.

When beams of very short spans are loaded to their full capacity, the end shear or reaction which has to be transmitted through the connections becomes so great that stronger connections than the standard should be used.

The following tables give the limits of length below which the standard connections do not apply and for which special designs should be made. For all lengths greater than those given in the tables the standard connections are sufficiently strong.

MINIMUM SPANS OF CHANNELS FOR LIMITING VALUES OF STANDARD CONNECTION ANGLES.

	Channe	1	Web Connec-	Outstanding Legs Connection.					
		tion.	Field R.	ivets.	Field E	Bolts.			
Section Number.	per reet.		Enclosed Bearing Shop Rivets.	Single Shear Rivets or Turned Bolts.	Minimum Span.	Single Shear Rough Bolts	Minimum Span.		
			Pounds. Pounds.		Pounds. Feet.		Feet		
C 5 "	3 "	4.0 5.0 6.0	7650 11700 16200	8840	.8	7070	.9 1.0 1.1		
C 9 "	4 "	5.25 6.25 7.25	8100 11250 14850	8840	1.3 1.3 1.4	7070	1.5 1.6 1.8		
C 13	5 "	6.5 9.0 11.5	3550 14850 21600	8840	1.9 2.2 2.6	7070	2.3 2.7 3.2		

MINIMUM SPANS OF CHANNELS FOR LIMITING VALUES OF STANDARD CONNECTION ANGLES.

-	hannel		Web Connec-	Outsta	nding L	egs Conne	ction.
			tion.	Field R	ivets.	Field I	Bolts.
Section Number.	Depth.	Weight per Foot.	Enclosed Bearing Shop Rivers.	Single Shear Rivets or Turned Bolts.	Minimum Span.	Single Shear Rough Bolts.	Minimum Span.
	Inches.	Pounds.	Pounds.	Pounds.	Feet.	Pounds.	Feet.
C 17	6 " " " " " " " " " " " " " " " " " " "	8.0 10.5 13.0 15.5	9000 14400 19800 25200	8840	2.7 3.1 3.5 4.0	7070	3.3 3.8 4.4 5.0
C 21	7 u u	9.75 12.25 14.75 17.25 19.75	9450 14400 18900 23850 28350	8840	3.7 4.2 4.7 5.2 5.8	7070	4.6 5.3 5.9 6.5 7.2
C 25	8 " "	11.25 13.75 16.25 18.75 21.25	19800 27900 36000 44100 52200	17670	2.5 2.8 3.1 3.4 3.6	14140	3.1 3.4 3.8 4.2 4.5
C 29	9 " " " " " " " " " " " " " " " " " " "	13.25 15.00 20.00 25.00	20700 26100 40500 54900	17670	3.2 3.5 4.1 4.8	14140	4.0 4.3 5.1 6.0
C 33 " "	10 " " " " " " " " " " " " " " " " " " "	15.0 20.0 25.0 30.0 35.0	21600 34200 47700 61200 73800	17670	4.1 4.8 5.5 6.3 7.0	14140	5.1 6.0 6.9 7.8 8.8
C 41	12 "	20.5 25.0 30.0 35.0 40.0	18900 26320 34420 43200 51300	26510	6.1 4.9 5.5 6.0 6.6	21210	6.1 6.1 6.8 7.6 8.3
C 53 " " "	15	33.0 35.0 40.0 45.0 50.0 55.0	36000 38700 46800 55800 64800 73800	35340 « « « «	6.3 6.5 7.0 7.6 8.1 8.7	28280	7.9 8.1 8.8 9.5 10.2 10.9

MINIMUM SPANS OF I-BEAMS FOR LIMITING VALUES OF STANDARD CONNECTION ANGLES.

	I-Beam		Web	Outsta	nding L	egs Conne	ction.
	1-Beam	•	Connec- tion.	Field R	ivets.	Field 1	Bolts.
Section Number	Depth.	Weight per Foot.	Enclosed Bearing Shop Rivets.	Single Shear Rivets or Turned Bolts.	Minimum Span.	Single Shear Rough Bolts.	Minimum Span.
	Inches.	Pounds.	Pounds.	Pounds.	Feet.	Pounds.	Feet.
B 5 "	3 "	5.5 6.5 7.5	7650 11700 16200	8840	1.2 1.1 1.2	7070	1.3 1.4 1.5
В 9 "	4 " " " " " " " " " " " " " " " " " " "	7.5 8.5 9.5 10.5	8550 11700 15300 18450	8840	1.8 2.0 2.1 2.2	7070	2.3 2.4 2.6 2.7
B 13	5 "	9.75 12.25 14.75	9450 16200 22500	8840	3.0 3.3 3.7	7070	3.7 4.2 4.6
B 17	6 "	12.25 14.75 17.25	10350 15750 21150	8840	4.4 4.9 5.3	7070	5.5 6.1 6.6
B 21 "	7 "	15.00 17.50 20.00	11250 15750 20700	8840	6.3 6.8 7.3	7070	7.9 8.5 9.1
B 25	8 "	18.00 20.25 22.75 25.25	24300 31500 39600 47700	17670	4.3 4.6 4.9 5.2	14140	5.4 5.7 6.1 6.5
B 29 "	9 " " " " " " " " " " " " " " " " " " "	21.0 25.0 30.0 35.0	26100 36900 51300 65700	17670	5.7 6.2 6.9 7.5	14140	7.2 7.8 8.6 9.4
B 33 " "	10 "	25.0 30.0 35.0 40.0	27900 40500 54000 67500	17670	7.4 8.1 8.9 9.6	14140	9.3 10.2 11.1 12.0
B 41	12	31.5 35.0 40.0	23625 29700 37800	26510	8.2 7.7 8.3	21210	9.1 9.6 10.4
B 105	12	40.0 45.0 50.0 55.0	31050 39150 47250 48600	26510	9.1 9.6 10.2 10.8	21210	11.3 12.0 12.8 13.5

MINIMUM SPANS OF I-BEAMS FOR LIMITING VALUES OF STANDARD CONNECTION ANGLES.

	T 72-0-1		Web	Outstanding Legs Connection.					
	I-Beam		Connec-	Field R	ivets.	Field E	Bolts.		
Section Number.	Depth.	Weight per Foot.	Enclosed Bearing Shop Rivets.	Single Shear Rivets or Turned Bolts.	Minimum Span.	Single Shear Rough Bolts.	Minimum Span.		
	Inches.	Pounds.	Pounds.	Pounds.	Feet.	Pounds.	Feet.		
B 153	15 " "	42.0 45.0 50.0 55.0 60.0	36900 41400 50400 59400 67500	35340 " " "	8.9 9.2 9.8 10.3 10.9	28280	11.2 11.5 12.2 12.9 13.6		
B 109	15 " "	60.0 65.0 70.0 75.0 80.0	53100 62100 70200 79200 88200	35340	12.3 12.8 13.4 14.0 14.5	28280	15.4 16.0 16.7 17.4 18.1		
B 113	*15	80.0 85.0 90.0 95.0 100.0	72000 81000 89100 98100 107100	35340	15.9 16.5 17.0 17.6 18.1	28280	19.9 20.6 21.3 22.0 22.6		
B 65	18 "	55.0 60.0 65.0 70.0	41400 50400 57600 64800	35340	13.4 14.2 14.8 15.5	28280	16.7 17.7 18.5 19.4		
B 73	20	65.0 70.0 75.0	45000 52200 58500	35340	17.7 18.5 19.2	28280	22.1 23.0 24.0		
B 121	20 " " " " " "	80.0 85.0 90.0 95.0 100.0	54000 59400 66600 72900 79200	35340	22.2 22.8 23.6 24.3 25.0	28280	27.7 28.5 29.4 30.3 31.3		
B 89	24 " " " " " " " " " " " " " " " " " " "	80.0 85.0 90.0 95.0 100.0	67500 76950 85050 93150 101250	53020	17.6 18.2 18.8 19.4 20.0	42410	21.9 22.8 23.5 24.2 25.0		
B 127	24	105.0 110.0 115.0	85050 93150 101250	53020	23.6 24.2 24.8	42410	29.5 30.3 31.0		

^{*}Interior web edges of standard connection angles must be chamfered to avoid interference with beam web fillets.

STANDARD SPACING OF RIVET AND BOLT HOLES
THROUGH FLANGES AND CONNECTION ANGLES
OF I-BEAMS, AND TANGENT DISTANCES BETWEEN FILLETS MEASURED ALONG THE WEB.

STANDARD SPACING OF RIVET AND BOLT HOLES IN FLANGES AND CONNECTION ANGLES OF CHANNELS, AND TANGENT DISTANCES BE-TWEEN FILLETS MEASURED ALONG THE WEB.

Depth of Channel	Wt. per Ft.	m	g	ď	т	Depth of Channel	Wt. per Ft.	m	g	q	т
Ins.	Lbs.	Ins.	Ins.	In.	Ins.	Ins.	Lbs.	Ins.	Ins.	In.	Ins.
3 "	4.0 5.0 6.0 5.25 6.25 7.25	15 16 4	2 ²¹ / ₃₂ 2 ⁵ / ₈ 2 ⁹ / ₁₆	1/4 4 9 32 5 16 4	1 13 16 " " 2 11 16 "	10 " " "	15.0 20.0 25.0 30.0 35.0	11/2	25/8 2 \frac{9}{16} 2 \frac{1}{2} 2 \frac{13}{32} 2 \frac{11}{11}	7 16 4 4	8 3 16 u
4	7.25 6.5 9.0 11.5	1 1 1 1 1 4	$ \begin{array}{c} 25 \\ 2 \\ 32 \\ 32 \end{array} $ $ \begin{array}{c} 2^{\frac{19}{32}} \\ 2^{\frac{19}{32}} \\ 2^{\frac{19}{32}} \end{array} $	5 16 4	35/8 "	# # # #	20.5 25.0 30.0 35.0 40.0	134	$\begin{array}{c c} 2^{5/8} & 2^{\frac{9}{16}} \\ 2^{1/2} & 2^{\frac{7}{16}} \\ 2^{3/8} & \end{array}$	1/2 u u	9 15 16 u
и и и	8.0 10.5 13.0 15.5	1½8 1¾8	$2\frac{\frac{2}{32}}{2\frac{19}{32}}$ $2\frac{\frac{19}{32}}{2\frac{17}{32}}$ $2\frac{\frac{15}{32}}{2\frac{15}{32}}$	3/8	41/2	13	32.0 35.0 37.0 40.0	23/4	$2\frac{\frac{9}{16}}{2\frac{17}{32}}$ $2\frac{1}{2}$ $2\frac{15}{32}$	9 16 4	103/8
7	9.75 12.25 14.75 17.25 19.75	1½4 " 1½2	25/8 2 ¹⁹ / ₃₂ 2 ¹⁷ / ₃₂ 2 ¹ / ₂	3/8	5 7 16 4 4	u u	45.0 50.0 55.0	2 	2 \frac{13}{32} \\ 2 \frac{11}{32} \\ 2 \frac{9}{32} \\	ш	ш
8 u u u u	19.75 11.25 13.75 16.25 18.75 21.25	1 1/4 1 1/2 u	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{7}{16} \\ 2\frac{5}{8} \\ 2\frac{19}{32} \\ 2\frac{9}{16} \\ 2\frac{1}{2} \\ 2\frac{15}{32} \end{array} $	3/3	6 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15 " " "	33.0 35.0 40.0 45.0 50.0 55.0	17/8 " 21/4 "	$\begin{array}{c} 2 \frac{9}{16} \\ 2 \frac{17}{32} \\ 2 \frac{7}{16} \\ 2 \frac{7}{16} \\ 2 \frac{3}{8} \\ 2 \frac{11}{32} \end{array}$	u u	1238
и п	13.25 15.00 20.00 25.00	13/8 13/4		7 16 4	714	18	45.0 50.0 55.0 60.0	21/4	$\begin{bmatrix} 2\frac{17}{32} \\ 2\frac{15}{32} \\ 2\frac{7}{16} \\ 2\frac{3}{8} \end{bmatrix}$	7/3 " "	15 " "

MAXIMUM SIZE OF RIVETS IN FLANGES OF BEAMS AND CHANNELS.

		CHANNELS.						
Depth of Beam.	Weight,	Diameter of Rivets.	Depth of Beam.	Weight.	Diameter of Rivets.	Depth of Channel.	Weight.	Diameter of Rivets.
Inches.	Lbs. per Ft.	Inch.	Inches.	Lbs.perFt.	Inch.	Inches.	Lbs. per Ft.	Inch.
34 55 66 77 89 10 12 12	5.50 7.50 9.75 12.25 15.00 18.00 21.00 25.00 31.50 40.00	3/8 1/2 44 5/8 44 44 44 44	15 15 15 18 20 20 24 24	42.0 60.0 80.0 55.0 65.0 80.0 80.0 105.0	3/4 66 7/8 66 66 66	3 4 5 6 7 8 9 10 12 15	4.00 5.25 6.50 8.00 9.75 11.25 13.25 15.00 20.50 33.00	1/2 66 5/8 61 8/4 66 7/8 64

STANDARD SPACING OF RIVET AND BOLT HOLES IN ANGLES, WITH MAXIMUM

RIVETS IN SIZE OF RIVETS TO BE USED. CLEARANCE CRIMPED ANGLES

ANGLES.

Length of Leg.	m	Diam. of Rivet.	Length of Leg.	m	Diam. of Rivet.	Length of Leg.	m	n	0	Diam. of Rivet.
Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.
3/4 1 11/4 13/8 11/2 13/4	1/2 5/8 3/4 7/8	1/4 *** *** *** *** *** ***	21/4 21/2 23/4 31/2	11/8 11/4 13/8 15/8 13/4	58344	4 4 5 6 7 8	21/2 3 31/2 4 41/2	21/2	114 134 214 3	78 "1 1 118

BEARING PLATES FOR SHAPES USED AS BEAWS.

Shapes used as beams resting on masonry walls or piers will generally require bearing plates of steel or their equivalents, set in or upon the masonry to properly distribute the load thereon with due regard to the allowable safe pressures

for the class of stonework or brickwork in question.

A table of bearing plates is given on page 65, which gives the bearing values in pounds for plates of various sizes based on the safe unit pressure allowable for different classes of masonry. As the strength of masonry varies largely according to the qualities of the material used, the workmanship and age, it is impossible to give absolute figures for safe unit pressures for all classes of work, but the values given on page 64 are believed to fairly represent these for the usual kinds of ordinary architectural masonry. The strength of ordinary masonry generally depends upon the crushing value of the mortar or cement used and does not bear any fixed relation to the ultimate strength of the brick or stone entering into the construction.

The table of bearing plates gives the bearing values of various sizes of plates when used with different classes of masonry, but the thickness of the plate

should be computed for each case.

For a plate of given length and breadth the thickness depends upon the allowable load and unit stress, and the width of the flange of the beam or channel resting upon it.

The thickness may be determined by the following formula

$$t = .866 (1 - b) \sqrt{\frac{R}{pb'l}}$$

t = thickness of plate in inches.

1 = length of plate in inches, in a direction perpendicular to the axis of the beam or channel.

b = width of flange of beam or channel in inches.

R = reaction at point of support in pounds.

For uniformly distributed loads, R = one-half of the load given in Tables of Safe Loads, pages 106 to 123 inclusive.

= allowable stress in pounds per square inch on extreme fibre of plate. b' = width of plate in the direction of the axis of the beam or channel; i. e., bearing on wall in inches.

If p = 16 000 lbs, for steel we have

$$t = .00685 (1 - b) \sqrt{\frac{R}{b'1}}$$

EXAMPLE.

What is the proper size of steel bearing plate to be used in a wall of brick laid in cement mortar to support the end of a 10-inch standard I-Beam, weighing 40 pounds per foot, of 10 foot span, subjected to its safe load uniformly distributed?

On page 100 in the Table of Safe Loads Uniformly Distributed for Cambria I-Beams, the total load is found to be 33 850 pounds, and half of this, or 16 925

pounds, will be the reaction at each end.
On referring to the Table of Bearing Plates, on page 65, the proper size for this load on the class of masonry in question is found to be 6" x 10". The width of flange of a 10-inch 40 lb. standard beam is 5.10 inches.

Substituting these values in the formula for thickness gives

$$\mathbf{t} = .00685 (10 - 5.10) \sqrt{\frac{16925}{6 \times 10}} = .562$$

The nearest commercial size above this is \$\frac{9}{16}\$ inch, which is the thickness required.

If a shorter plate would suit the location better it may be seen from the table that a plate 8" x 8" will give the necessary bearing value and the thickness of this would be

$$t = .00685 (8 - 5.10) \sqrt{\frac{16925}{8 \times 8}} = .323$$

and the nearest commercial size above this is 3/4", which is the thickness required.

STANDARD BEARINGS AND BEARING PLATES.

Size		Bearing Plate.						
of Beams and Channels.	Bearing.	Dimensions.	Weight.	Area.				
Inches.	Inches.	Inches.	Pounds.	Sq. Inches				
3	6	6 x 6 x 3	3.9	36				
4	6	6 x 6 x \frac{3}{8}	ш	36				
5	6	6 x 6 x 3/8	и	36				
6	6	6 x 6 x 3	ш	36				
7	8	$8 \times 8 \times \frac{1}{2}$	9.1	64				
8	8	8 x 8 x ½	"	64				
9	8	8 x 8 x ½	"	64				
10	12	12 x 12 x 3	30.6	144				
12	12	12 x 12 x 3	"	144				
15	12	$12 \times 15 \times \frac{3}{4}$	38.3	180				
18	15	15 x 15 x 7/8	55.8	225				
20	15	15 x 18 x 1	76.5	270				
24	15	15 x 18 x 1	"	270				

SAFE BEARING VALUES OF WALL PLATES FOR VARIOUS STYLES OF MASONRY.

Material.	Pounds per Sq. In.	Tons per Sq. Pt.
Rubble Masonry in Cement Mortar Brickwork """ First Class Sandstone (Dimension Stone) ""Limestone ""Granite	250 300 400 500 600	18.0 21.6 28.8 36.0 43.2
Portland Cement Concrete 1:2:4	600	43.2
" " 1:2:5	500	36.0

BEARING PLATES FOR I-BEAMS AND CHANNELS.

		Saf	e Bearin	ng Valu	e of Pla	te in 10	000 Pour	nds.
Bearing on Wall.	Size of Plate.	Mortar.	Brick in Cement Mortar.	Stone.	Lime- stone.	Granite.	Concrete. 1:2:4.	Concrete.
Ins.	Ins.	250 lbs. per sq. in.	300 lbs. per sq. in.	400 lbs. per sq. in.	500 lbs. per sq. in.	600 lbs. per sq. in	600 lbs. per sq. in	500 lbs. per sq. in.
4 4 4	4 x 4	4.0	4.8	6.4	8.0	9.6	9.6	8.0
	4 x 6	6.0	7.2	9.6	12.0	14.4	14.4	12.0
	4 x 8	8.0	9.6	12.8	16.0	19.2	19.2	16.0
6 6	6 x 6	9.0	10.8	14.4	18.0	21.6	21.6	18.0
	6 x 8	12.0	14.4	19.2	24.0	28.8	28.8	24.0
	6 x 10	15.0	18.0	24.0	30.0	36.0	36.0	30.0
8 8	8 x 8	16.0	19.2	25.6	32.0	38.4	38.4	32.0
	8 x 10	20.0	24.0	32.0	40.0	48.0	48.0	40.0
	8 x 12	24.0	28.8	38.4	48.0	57.6	57.6	48.0
10	10 x 10	25.0	30.0	40.0	50.0	60.0	60.0	50.0
10	10 x 12	30.0	36.0	48.0	60.0	72.0	72.0	60.0
10	10 x 14	35.0	42.0	56.0	70.0	84.0	84.0	70.0
12	12 x 12	36.0	43.2	57.6	72.0	86.4	86.4	72.0
12	12 x 14	42.0	50.4	67.2	84.0	100.8	100.8	84.0
12	12 x 15	45.0	54.0	72.0	90.0	108.0	108.0	90.0
12	12 x 16	48.0	57.6	76.8	96.0	115.2	115.2	96.0
12	12 x 18	54.0	64.8	86.4	108.0	129.6	129.6	108.0
14	14 x 14	49.0	58.8	78.4	98.0	117.6	117.6	98.0
14	14 x 16	56.0	67.2	89.6	112.0	134.4	134.4	112.0
14	14 x 18	63.0	75.6	100.8	126.0	151.2	151.2	126.0
14	14 x 20	70.0	84.0	112.0	140.0	168.0	168.0	140.0
15	15 x 15	56.2	67.5	90.0	112.5	125.0	135.0	112.5
15	15 x 18	67.5	81.0		135.0	162.0	162.0	135.0
16	16 x 16	64.0	76.8	102.4	128.0	153.6	153.6	128.0
16	16 x 18	72.0	86.4	115.2	144.0	172.8	172.8	144.0
16	16 x 20	80.0	96.0	127.0	160.0	192.0	192.0	160.0
16	16 x 22	88.0	105.6	139.8	176.0	211.2	211.2	176.0
18	18 x 18	81.0	97.2	129.6	162.0	194.4	194.4	162.0
18	18 x 20	90.0	108.0	144.0	180.0	216.0	216.0	180.0
18	18 x 22	99.0	118.8	158.4	198.0	237.6	237.6	198.0
18	18 x 24	108.0	129.6	172.8	216.0	259.2	259.2	216.0
20	20 x 20	100.0	120.0	160.0	200.0	240.0	240.0	200.0
20	20 x 22	110.0	132.0	175.0	220.0	264.0	264.0	220.0
20	20 x 24	120.0	144.0	192.0	240.0	288.0	288.0	240.0
20	20 x 26	130.0	156.0	208.0	260.0	312.0	312.0	260.0

Safe Bearing Value of Plate = Area of Plate (in square inches) \times Allowable Safe Bearing Value (per square inch) on the Masonry.

Reams

12

40.0

B 105

111

SEPARATORS

STANDARD CAST IRON SEPARATORS FOR I-BEAMS.

Bolts, Square Heads

66

1.38

BOLTS.

			реаш			131	-harac	OLS.	and Hex. Nuts.				
Section Num- ber.		P. Dopth.	Weight per Foot.	Out to Out of Flanges of Beams.	OOTTOOL	Thickness.	Weight.	Increase of Weight for each inch additional spread of beams.	Diameter.	Conter to Cen-	Fa Length.	Weight of Bolts and Nuts.	Increase of Weight of Bolts for each in, addi- tional spread of Beams.
		Ins.	Pounds.	Inches.	Inches.	In.	Pounds.	Pounds.	In.	Ins.	Ins.	Pounds.	Pound.
			ा हा	PARA'	TODO	4 77	TTTTT	OBTE	2 TO	BOL	rgri		
			OL	PARA.	LUR) N	/ITH	ONE	5 E	TO	1.		
В	5	3	5.5	5 5	3		1.0	.17		OL	4	.95	.123
B B	5 9	3 4	,	5 5	3 31	3 8 4			34 ((OL	$\frac{4}{4\frac{1}{2}}$.95	66
	9	1	5.5	$\begin{array}{c} 5\frac{5}{16} \\ 5\frac{7}{8} \\ 6\frac{2}{2} \end{array}$	3 31		1.0	.17	3 4 4 4	OL	$\frac{4}{4\frac{1}{2}}$ $\frac{43}{4}$	1.01	"
В	9	4	5.5 7.5	$\begin{array}{r} 5\frac{5}{16} \\ 5\frac{7}{8} \\ 6\frac{5}{2} \\ 7\frac{5}{16} \end{array}$	3 3 ¹ / ₂ 4	3 8 4	1.0	.17	3446	OL	$\frac{4}{4\frac{1}{2}}$ $\frac{43}{4}$	1.01	"
B B	9	5	5.5 7.5 9.75	$\begin{array}{r} 5\frac{5}{16} \\ 5\frac{7}{8} \\ 6\frac{5}{2} \\ 7\frac{5}{16} \end{array}$	3 3 ¹ / ₂ 4	3 8 4	1.0 1.3 1.8	.17 .26 .36	3 4 4 4	OL	$\frac{4}{4\frac{1}{2}}$	1.01	« « «
B B	9 13 17	4 5 6	5.5 7.5 9.75 12.25	$\begin{array}{r} 5\frac{5}{16} \\ 5\frac{7}{8} \\ 6\frac{5}{2} \\ 7\frac{5}{16} \end{array}$	3 3 ¹ / ₂ 4	3 8 4	1.0 1.3 1.8 3.0	.17 .26 .36 .59	3 4 4 4 4 4	OL	4 4 1 2 3 4 1 1 5 1 5	1.01 1.04 1.11	"
B B B	9 13 17 21	4 5 6 7	5.5 7.5 9.75 12.25 15.0	5 \frac{5}{16} \frac{5}{16} \frac{5}{16} \frac{5}{16} \frac{5}{17} \fr	3 3 ¹ / ₂ 4	38844	1.0 1.3 1.8 3.0 3.3	.17 .26 .36 .59 .65	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	OL	4 4 ¹ / ₂ 4 ³ / ₄ 5 ¹ / ₄	1.01 1.04 1.11 1.14	« « «
B B B B	9 13 17 21 25	4 5 6 7 8	5.5 7.5 9.75 12.25 15.0 18.0	$\begin{array}{c} 5\frac{5}{16} \\ 5\frac{7}{8} \\ 6\frac{1}{2} \\ 7\frac{5}{16} \\ 7\frac{8}{12} \\ \end{array}$	$\begin{array}{c} 3 \\ 3\frac{1}{4} \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{4} \\ 4\frac{1}{2} \\ 5 \end{array}$	3 8 4 4 1 2 4 4	1.0 1.3 1.8 3.0 3.3 3.8	.17 .26 .36 .59 .65	3 4 4 4 4 4 4	OL	4 4 4 1 2 3 4 1 5 5 5 5	1.01 1.04 1.11 1.14 1.17	« « «
B B B B B	9 13 17 21 25 29	4 5 6 7 8 9	5.5 7.5 9.75 12.25 15.0 18.0 21.0	$\begin{array}{c} 5\frac{5}{16} \\ 5\frac{7}{8} \\ 6\frac{2}{2} \\ 7\frac{1}{16} \\ 7\frac{7}{8} \\ 8\frac{1}{2} \\ 9\frac{5}{16} \end{array}$	3 3 ¹ / ₂ 4	3 8 4 4 1 2 4 4	1.0 1.3 1.8 3.0 3.3 3.8 5.0	.17 .26 .36 .59 .65 .72 .85	3 4 4 4 4 4 4 4	OL	4 4 4 4 5 5 5 6 4 6 1	1.01 1.04 1.11 1.14 1.17 1.23	« « « «

53 1266 61 B 12 31.5 103 7.8 1.20 2.64 .246 41 4 66 66 71 12 113 6 7.8 2.76 B 105 40.0 1.20 66 66 15 61 2.82 B 53 42.0 11.5 1.50 121 66 4 B 109 15 60.0 61 11.5 1.50 46 2.95 66 " B 113 15 80.0 13 63 66 11.5 1.50 9 3.13 B 18 123 63 16.5 9 81 2.95 65

WITH

7.5

1.14

TWO

7 В 73 20 17.5 2.60 3.01 65.0 71 66 20 46 3.19 121 1.41 17.5 12 91 66 66 25.5 3.19 B 89 24 80.0 3.26 24 B 127

Lengths and weights of separator bolts in above table are for girders composed of two beams of minimum section as shown. Lengths of bolts for intermediate and maximum sizes of beams may be obtained by adding twice the increase of web thickness to the lengths given.

SPECIAL CAST IRON SEPARATORS FOR I-BEAMS.

	Beams.					eparat	ors.	Б			are He	
Section Num- ber.	p Dopth.	Weight per Foot.	Out to Out of Flanges of Beams.	Center to Cen- ter of Beams.	Thickness.	Weight.	Increase of Weight for each inch additional spread of Boams.	Diameter.	Center to Cen- ter of Bults.	Length.	Weight of Bolts and Nuts.	Increase of Weight of Bolts for each in. addi- tional spread of Beams.
	Ins.	Pounds.	Inches.	Inches.	In.	Pounds.	Pounds.	In.	Ins.	Ins.	Pounds.	Pound

SEPARATORS WITH ONE BOLT.

В	5	3	5.5	$5\frac{5}{16}$ $5\frac{7}{8}$	3	3	1.1	.29	346	4	.95	.123
В	9	4	7.5	$5\frac{7}{8}$	$3\frac{1}{4}$	66	1.6	.38	û	$4\frac{1}{2}$	1.01	"
В	13	5	9.75	$6\frac{1}{2}$	$3\frac{1}{2}$	66	2.0	.49	66	43	1.04	66
В	17	6	12.25	$7\frac{5}{16}$	4	1/2	3.3	.78	46	51	1.11	46
В	21	7	15.0	$7\frac{7}{8}$	41/4	"	3.9	.92	66	$ 5^{\hat{1}}_{2} $	1.14	46
В	25	8	18.0	$7\frac{7}{8}$ $8\frac{1}{2}$	$4\frac{1}{2}$	66	4.7	1.06	66	5 ¹ / ₂ 5 ³ / ₄	1.17	66
В	29	9	21.0	9 5	5	44	5.9	1.20	"	$6\frac{1}{4}$	1.23	66
В	33	10	25.0	$ 9\frac{5}{16} 9\frac{7}{8} 10\frac{3}{4} $	$5\frac{1}{4}$	46	6.8	1.33	66	61	1.26	66
В	41	12	31.5	$10\frac{3}{4}$	534	66	8.8	1.61	66	7	1.32	66
В	105	12	40.0	$11\frac{1}{4}$	6	"	8.9	1.58	"	$7\frac{1}{2}$	1.38	66

SEPARATORS WITH TWO BOLTS.

B 41	12	31.5	103	53	1/2	9.5	1.61	3,4	61	7	2.64	.246
B 105	12	40.0	111	6	- 66	9.5	1.58		66	71	2.76	"
B 53	15	42.0	$11\frac{3}{4}$	61	66	12.5	2.02	- 46	7	$7\frac{3}{4}$	2.82	46
B 109	15	60.0	123	63	66	13.0	1.97	66	44	81	2.95	66
B 113	15	80.0	135	$7\frac{1}{4}$	66	13.2	1.91	66	66	9	3.13	"
B 65	18	55.0	123	$6\frac{3}{4}$ $7\frac{1}{4}$ $6\frac{3}{4}$	5	19.8	2.41	66	9	81	2.95	"
B 73	20	65.0	131	7	a	22.9	3.37	46	10	81	3.01	"
B 121	20	80.0	143	73	66	24.6	3.34	66	46	91	3.19	66
B 89	24	80.0	143	$7\frac{3}{4}$ $7\frac{3}{4}$		30.3	4.07	44	12	91	3.19	66
B 127	24	105.0	$16\frac{1}{2}$	85	"	32.5	4.07	"	66	91	3.26	"

Lengths and weights of separator bolts in above table are for girders composed of two beams of minimum section as shown. Lengths of bolts for intermediate and maximum sizes of beams may be obtained by adding twice the increase of web thickness to the lengths given.

FIREPROOF CONSTRUCTION.

Buildings of fireproof construction consist essentially of a steel frame or skeleton to support the floors, and in the case of high buildings, the outside walls also are carried by the steel framing. All parts of the steel work are enclosed and protected by some fire-resisting material, which should be of such quality and arrangement as not to disintegrate or fall away when heated to high temperatures and at the same time exposed to a stream of cold water. The fireproofing for the floors, in addition to its ability to afford a fireproof protection to the steel beams, must be capable of supporting the load and distributing it to the floor beams, which in turn transmit it to the columns and thence to the foundations.

One of the earlier forms of floors consists of brick arches built between and supported by the bottom flanges and lower portions of the web of iron or steel I-Beams, but this style has considerable dead weight and, as ordinarily constructed, does not provide fire-proof protection for the bottom flanges of the beams. Another of the earlier forms of floor is composed of sheets of corrugated iron arched between the beams, on which a concrete filling is placed, and this also, as ordinarily constructed, does not provide protection for the bottom flanges of the beams, besides, it is quite heavy.

A later style of floor is the hollow tile system, which is composed of flat or segmental arches constructed of moulded blocks of hard burned clay, specially shaped, and of various depths to suit different loads and the sizes of the I-Beams supporting them. In the hollow tile system, the blocks may also be of porous terracotta which is lighter than hard clay.

Various other systems of fireproofing are now in use, the most usual forms of which consist of cement, concrete or other material used alone or deposited or arranged about a strengthening or supporting framework of steel shapes, bars, rods, wire, wire-cloth, etc.

Column or girder fireproofing may be accomplished by the use of hard clay or porous terra-cotta blocks shaped to fit and enclose the steel work, or the steel may be wrapped with wire, wire-cloth, metal lath, etc., and a concrete or plastered coating applied to it.

Fireproof partitions may be constructed of hollow tile composed of hard clay or porous terra-cotta to which the plaster finish may be directly applied, or they may be composed of suitable metal studding on which is secured the wire-cloth or metal lath that serves to support the concrete or other fireproofing, the surface then being plastered in the usual manner.

The dead weights of fireproof floors vary between wide limits dependent upon the system employed, the load to be carried and the distance between the supporting beams.

WEIGHTS OF HOLLOW TILE FLOOR ARCHES AND FIREPROOF MATERIALS.

END CONSTRUCTION, FLAT ARCH.

Width of Span between Beams.	Depth of Arch.	Weight per Square Foot.		
5 feet to 6 feet.	8 inches.	27 pounds.		
6 " 7 "	9 "	29 " "		
7 " 8 "	10 "	33 "		
8 " 9 "	12 "	38 "		

HOLLOW BRICK FOR FLAT ARCHES.

(SIDE CONSTRUCTION.)

_		7	Vidth of Sp	an bet	we	een Be	3.M	s.	Dep	th of Arch.	Weight	per Square Foot.	
3	feet	6	inches	to 4	1	feet	0	inches.	6	inches.	27 pounds.		
4	66	0	"	4	1	66	6	46	7	46	29	- "	
4	66	6	ш	1	5	"	0	"	8	66	32	44	
5	66	6	66	(3	44	0	66	9	66	36	66	
6	45	0	66	(3	66	6	66	10	"	39	66	
6	44	6	. "	7	7	"	0	"	12	"	44	66	

PARTITIONS.

				Thi	ckness.	Weight p	er Square Foot
Hollow	Brick	(Clay)	Partitions.	2 i	nches.	11 r	ounds.
"	66	"	66	3	44	14	46
"	66	"	"	4	46	15	46
44	66	"	66	5	46	19	46
"	"	"	"	6	66	20	66
44	66	66	66	8	46	27	66
Porous	Terra-	Cotta	Partitions.	3	46	16	66
"	"	"	"	4	66	19	46
44	66	"	46	5	66	22	ш
66	"	44	46	6	"	23	46
66	66	44	"	8	"	33	"

FURRING, ROOFING AND CEILING.

				Thi	ckness.	Weight p	er Square Foot
Porous	Terra	-Cott	a Furring.	2 i	nches.	8 p	ounds.
66	66	66	Roofing.	2	66	12	44
6	66	66	"	3	66	14	"
66	66	"	"	4	66	18	"
66	"	"	Ceiling.	2	44	11	n
44	66	"	4	3	"	14	46
44	"	66	66	4	"	18	"

6-inch Segmental Arches, $26\frac{1}{2}$ pounds per square foot.

^{2- &}quot;Porous Terra-Cotta Partition, 8 pounds per square foot. 8" x 3\frac{3}{4}" x 2\frac{1}{4}" Hollow Brick, 3000 lbs. per 1000.

TABLES OF SAFE LOADS—TERRA COTTA FLOOR ARCHES.

The Table of Safe Loads for Flat Arches, page 71, is applicable to all shapes of blocks. The areas given are obtained by passing a plane through the blocks at right angles to all the webs and are the areas for 1-foot width of arch. Generally speaking, end construction blocks of various shapes, but of the same depth and cross sectional area, have equal strength. The weight of the arch has not been deducted in Table of Safe Loads for Flat Arches. Therefore, this and other dead loads must be deducted to obtain the net safe live load for any arch and span.

EXAMPLE.—What load will an 8-inch arch carry (using a Factor of Safety of 5), for a span of 5 feet 6 inches, the blocks having a sectional area parallel to the beams, of 44.25 square inches?

Area of 8-inch block in Table = 37 sq. ins.

44.25 ÷ 37 = 1.19, Ratio of Actual Area to Tabular Area. Safe Load in Table = 228, × 1.19 = 271 pounds = Safe Load for Actual Area.

Weight of Arch = $44.25 \times 12 = 531$ cu. in. $\times .06 = 32$ lbs. per sq. ft.

271 - 32 = 239 lbs. = Safe Load in lbs. per sq. ft. for S. F. of 7.

 $271 \times 7 \div 5 = 379$, -32 = 347 lbs., Safe Load for S. F. of 5.

Tables of Safe Loads for Segmental Arches in spans up to 10 feet are given on pages 72 and 73. The areas of the blocks for which the safe loads are given are the areas per foot of arch parallel with beams. The weight of the arch blocks has been deducted in the Table, so that only the dead load of concrete fill, plastering, etc., must be deducted to obtain net live load.

Segmental arch construction is cheaper than flat arch construction, and is the stronger of the two. Where for any reason a flat arch is not deemed necessary, this is an admirable floor construction to use.

Even with this type of construction, the flat ceiling may be secured by suspending a metal lath ceiling below the arch from the bottom of the beams. To do this, however, adds so much to the cost that it is generally cheaper to use the Flat Arch.

Segmental Arches can also be built with a raised skew. This flattens the arch and reduces the amount and consequently the expense of the cinder concrete fill, but it also reduces the strength of the arch.

In Segmental Arches, the thrust on the beams (particularly at the bottom of beams) is very great, and where there is any doubt of the beams' sustaining the thrust, it is desirable to use steel tie rods. These tie rods may be fireproofed or left unprotected, the best practice being to protect them.

SAFE LOADS FOR FLAT FLOOR ARCHES OF SEMI-POROUS TERRA COTTA.

As given by manufacturers of this material.

Safety Factor 7.

ARCHES.	6 ins.	7 ins.	8 ins.	9 ins.	10 ins.	12 ins.	15 ins.				
ARRAS.			Squ	are Inc	hes.						
ARBAS.	31	34	37	40	43	49	58				
SPANS.	Pounds per Square Foot.										
1 Ft. 6 In.	1928	2468	3069	3783	4459	6097	9022				
2 4 6 4	1085 694	1388 888	1726 1104	2100 1344	2508 1605	3430 2195	5075 3248				
3 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4	482 410 354 308	617 525 453 394	767 650 563 491	933 795 685 597	1114 950 819 713	1524 1209 1120 975	2255 1992 1657 1443				
4 4 3 4 4 4 4 9 4	271 240 214 192	347 307 274 246	431 382 341 306	525 465 414 372	627 555 495 444	857 759 677 608	1268 1124 1002 900				
5 " 0 " 5 " 6 " 5 " 9 "	173 157 143 131	222 201 183 168	276 250 228 208	336 304 277 254	401 364 331 303	548 497 453 415	812 786 671 614				
6 4 6 4 6 4 6 4 6 4 6 4	120 111	154 142 131 121	191 176 163 151	233 215 198 184	278 256 237 220	381 351 324 301	563 519 480 445				
7 " 0 "		113	140 122	171 149	204 178	280 243	414 360				
8 " 0 "			107	131 116	156 138	214 190	317 281				
9 " 0 "				103	123 111	169 152	250 225				
10 " 0 "					100	137 124	203				
11 " 0 " 11 " 6 "						113 103	167 153				
12 " 0 "						95	141				

Above Safe Loads include weight of arch blocks and other dead load. Average weight of arch blocks (lbs. per sq. ft. of arch) = Sectional Area \times 12 \times .06. Below heavy lines, spans should be used for ceiling arches only.

SAFE LOADS FOR TERRA COTTA SEGMENTAL FLOOR ARCHES.

As given by manufacturers of this material.

Weight of Arch Blocks not included.

Factor of Safety 7.

ARC	HES.	4 ins.	6 ins.	8 ins.	10 ins.
			Square	Inches.	
ARE	AS.	28	36	43	47
SPANS.	RISE.		Pounds per S	augra Foot	
Ftins.	Inches.		z ounds per c	quate 2000.	
4-0	3/4 1 11/4 11/2 13/4 2	702 920 1155 1353 1545 1736	902 1148 1485 1740 1986 2233	1078 1414 1774 2079 2373 2667	1178 1545 1939 2272 2593 2915
4-6	3/4 1 11/4 11/2 13/4 2	616 812 1020 1196 1381 1536	792 1044 1313 1539 1775 1975	946 1247 1568 1838 2121 2359	1034 1363 1713 2009 2318 2578
5-0	3/4 1. 11/4 11/2 13/4 2	551 744 911 1072 1238 1379	709 951 1172 1379 1592 1773	847 1143 1400 1647 1902 2118	926 1249 1530 1800 2078 2315
5-6	1 1 1 ¹ / ₄ 1 ¹ / ₂ 1 ³ / ₄	499 672 826 984 1119 1258	641 864 1062 1266 1439 1619	766 1032 1269 1512 1719 1933	837 1128 1387 1652 1879 2113
6-0	1 1 11/4 11/5 13/4 2	455 612 753 898 1022 1148	585 788 969 1154 1315 1476	699 941 1157 1379 1570 1763	764 1028 1265 1507 1716 1927
6-6	1 114 112 134 2	428 562 701 823 947 1055	551 724 902 1058 1218 1358	658 864 1077 1264 1455 1622	719 944 1177 1382 1590 1772
7-0	1 1 1 1 1 1 1 1	394 520 648	508 669 834	606 799 996	662 873 1089

SAFE LOADS FOR TERRA COTTA SEGMENTAL FLOOR ARCHES.

As given by manufacturers of this material.

Weight of Arch Blocks not included.

Factor of Safety 7.

ARC	HES.	4 ins.	6 ins.	8 ins.	10 ins.					
100	210		Square	Inches.						
ARI	EAS.	28	36	43	47					
SPANS.	RISE.		Dounds non	Saucea Poot						
Ftins.	Inches.	Pounds per Square Foot.								
7-0 13/4 2		762 876 983	981 1127 1264	1171 1346 1510	1280 1471 1650					
7-6	3/4 1 11/4 11/2 13/4	366 482 602 715 815 915	471 621 774 920 1049 1176	563 741 925 1099 1253 1405	615 810 1011 1201 1369 1536					
8-0	1 1 1 1 1 1 1 2 1 3 4	341 457 562 668 767 854	439 588 724 859 987 1099	525 703 864 1026 1179 1312	578 768 944 1122 1288 1434					
8-6	1 1 1 1 1 1 1 1 2 2	319 428 527 626 719 807	411 551 678 806 926 1037	491 658 810 963 1106 1239	536 719 885 1052 1208 1354					
9-0	1 11/4 11/2 13/4	300 403 501 590 677 759	386 518 645 758 871 977	461 619 770 906 1041 1167	504 677 842 990 1137 1275					
9-6	1 1 1 1 1 1 1 2 2	283 380 472 561 639 717	364 489 608 721 823 923	435 584 726 862 983 1102	475 638 793 942 1074 1204					
10-0	1 1 1½ 1½ 1½ 134	267 359 447 531 610 683	344 462 576 683 784 879	411 552 688 816 937	449 603 751 892 1024 1147					

TESTS OF FLOOR ARCHES.

A summary of the principal data and results of tests which were the subject of a paper entitled "Tests of Fire-proof Flooring Material." published in the Transactions of the American Society of Civil Engineers, Vols. xxxiv and xxxv, is given in the following table:

BREAKING LOAD OF HOLLOW TILE ARCHES.

Depth of Arch.	Rise.	Span.	Length.	Total Load.	Load per Sq. Foot.	Total Hori- zontal Thrust.	Hori- zontal Thrust per Ft. of	Style.	Material, Syson	Character of Load,	Manner of Laying Joints.
Ins.	Ins.	Ins.	Ins.	Lbs.	Lbs.	Lbs.	Arch.	St	Ä		oomo,
6.	3.5	60	48.	13750	688	29474	7369	E	Hard	Dis.	Port.
7.5	5.	46	11.5	9000	2452	10367	10818	"	"	"	N.M.
7.5	5.	60	35.2	11250		33750		66	"	Cen.	Port.
7.5	5.	60	36.5	13000			12822	"	Porous	66	66
8.	7.	60		14500		31071	9747	"	"	66	"
8.	7.	60	38.25	15750			10588	"	Hard	66	"
12.	10.	60	41.	16400		24600	7200	"	"	66	"
12.	8.75	60	10.	3100		5314	6377	66	66	"	N.M.
12.	9.	60	10.	5000			10000	66 .	66	п	"
12.	9.	60	10.	15100	3630		15100	66	"	Dis.	"
12.	9.5	60	10.	2500		3947	4736	"	66	Cen.	
8.	5.5	46	11.5	2500	681	2614	2727	S	"	Dis.	N.M.
8.	5.	45	11.5	1300	362	1463	1526	"	66	46	"
8.	6.	60	36.	10000		25000	8333	"	66	Cen.	Port.
8.	5.	60	36.	5700		8550		"	"	Dis.	66
8.	5.	60	12.	3500	700	5250	5250	"	66	"	N.M.
8.	5.5	60	12.	10000	2000	13636	13636	66	"	66	66
8.	5.5	60	12.	2500		6818	6818	66	66	Cen.	"
8.	5.5	60	24.	9950	995	13568	6784	N/	66	Dis.	"
8.	5.5	60	24.	2500		6818	3209	"	"	Cen.	"
10.	7.5	60	36.	13500	900	13500	4500	66	66	Dis.	Port.
10.	8.	60	37.	14500	940	13594	4408	66	"	44	

Note.—In the above table the following abbreviations are used: "E," End Construction; "S," Side Construction; "Hard," Hard Clay; "Porous," Porous Terra-Cotta; "Dis.," Distributed Load; "Cen.," Concentrated Load at Center; "Port.," Portland Cement, and "N. M.," No Mortar.

The Loads per Sq. Foot in the above table were obtained in all cases by dividing the Total Load by the superficial area of the arch in square feet. The Horizontal Thrust for Distributed and Central Loads was obtained in the contraction of the contractio

by formulæ similar to those given therefor on the following page, and for Central Loads this is double that for a Distributed Load of the same weight.

THRUST OF ARCHES.

The horizontal thrust of segmental floor arches, on the assumption of uniform loading, may be found by the following formula:

$$T = \frac{3WL^2}{2R}$$

in which

T = pressure or thrust in pounds per lineal foot of arch.

W = load on arch in pounds per square foot, uniformly distributed.

L = span of arch in feet.

R = rise of segmental arch in inches.

For a concentrated load at the center, of weight P, the thrust

$$T = \frac{3PL}{R}$$

For arches with flat tops and bottoms, such as are used in floors, the voussoir joints on each side of the central key are usually laid out on parallel lines, and in these cases the thrust may be determined approximately by using for R, in the above formula, the effective depth of the arch, which is somewhat less than the nominal depth, as indicated on page 77.

For segmental arches the rise R is the vertical distance from the highest part of the intrados to the plane of the springing line. If the radius of the intrados for segmental arches is r, the rise may be obtained from the following formula:

$$R=r-\sqrt{r^2-\frac{L^2}{4}}$$
 conversely,
$$r=\frac{R}{2}+\frac{L^2}{8R}$$

TIE RODS.

Although in the completed structure the horizontal thrusts of adjoining arches may counterbalance each other, the tie rods should be so proportioned and spaced as to withstand the entire thrust of the arches, thus tying the structure together and facilitating the construction.

SPACING OF TIE RODS FOR TILE ARCHES.

The table on the next page was computed from the following formula, which was obtained from that giving the thrust of arches on page 75.

$$B = \frac{A \times R \times 10\ 000}{WL^2}$$

in which

B = spacing of tie rods in feet.

A = net area of rod in square inches.

R = rise of arch in inches.

W = load in pounds per square foot of the arch.

L = span of arch in feet.

The above formula gives the spacing of tie rods corresponding to a tensile stress in the rods of 15 000 pounds per square inch, without considering the flexure of the beams.

In spacing tie rods, the lateral strength of beams, for flexure due to the thrust of the arches, should be taken into consideration, explanations for which are given on pages 78 to 81 inclusive.

Spacings for other loads than that of the table may be found by proportion, thus:

Required spacing =

100 + weight of arch in pounds per square foot

New load in lbs. per sq. ft. + weight of arch in lbs. per sq. ft. × spacing from table.

Weights of tile arches per square foot are given on page 69.

As noted under the heading "Lateral Strength of Beams," on pages 82 and 83, care should be taken that the spacing of tie rods is not greater than twenty times the least flange width, otherwise the safe loads should be reduced to compensate for the strains produced by flexure of the upper flange considered as a column in compression.

SPACING OF TIE RODS FOR TILE ARCHES IN FEET.

For a uniform load of 100 lbs. per square foot in addition to the weight of the arch.

		Nominal Depth of Arch. Inches.								
Span of Arch.	Diameter of Tie Rods.	в	7	8	9	10	12			
			Effecti		h or Ris	e of Arc	h.			
Foet.	Inch.	3.6	4.6	5.6	6.6	7.6	9.6			
3	55 00 75 487-100	6.4 9.5 13.2	8.0 12.0 16.6	9.5 14.2 19.8	10.9 16.3 22.6	12.3 18.3 25.5	15.0 22.4 31.1			
4	<u>II</u> 8 53.44 7.18	3.6 5.4 7.4	4.5 6.7 9.4	5.4 8.0 11.1	6.1 9.2 12.7	6.9 10.3 14.3	8.4 12.6 17.5			
5 "	5)(8) 47/8	2.3 3.4 4.8	2.9 4.3 6.0	3.4 5.1 7.1	3.9 5.9 8.1	4.4 6.6 9.2	5.4 8.0 11.2			
. 6 	5](03)47-100		2.0 3.0 4.2	2.4 3.6 4.9	2.7 4.1 5.7	3.1 4.6 6.4	3.7 5.6 7.8			
7 "	5)000 47 00				2.0 3.0 4.2	2.3 3.4 4.7	2.8 4.1 5.7			
8 "	52/00/03/417-100					1.7 2.6 3.6	2.1 3.1 4.4			

Spacings below heavy lines apply to greater spans than are recommended for that depth of arch.

LATERAL STRENGTH OF BEAMS TO RESIST FLEXURE DUE TO THRUST OF ARCHES, ETC.

In special cases where the thrust of a floor arch is exerted against a beam, channel, angle or other shape without other lateral support than the tie rods, or braces, this will produce lateral flexure and stresses in addition to those caused by the vertical loading. Throughout the body of the floor the thrusts of the adjoining arches, when completed, will usually counterbalance each other, but in the outer beams around shafts or elsewhere, if unsupported sideways, the stresses due to the lateral forces should be considered.

The total allowable stress per square inch for the extreme fibres of beams has been placed at 16 000 pounds per square inch, and in order that this may not be exceeded owing to lateral stresses, the stress due to vertical loading should be correspondingly reduced so that the resultant intensity shall not exceed the allowable limit. This may be calculated by considering the beam as continuous and laterally supported at intervals by the tie rods, the spans being equal to the spacing of the rods.

In this case the fibre stress due to the lateral forces is:

$$p' = \frac{wx_1B^2}{I'} \tag{1}$$

in which

p' = fibre stress in pounds per square inch due to lateral forces.

w = lateral load or thrust in pounds per lineal foot of section used as a beam.

 x_1 = distance of the extreme fibre from the neutral axis in inches.

B = distance between tie rods or lateral supports in feet.

I' = moment of inertia about the vertical axis of the section or that one at right angles to the line of application of the lateral forces.

For I-Beams with the web placed vertically, as usual, x_1 becomes equal to $\frac{b}{2}$, where b is the width of the flange in inches.

In this case the above formula for intensity of unit stress due to lateral load becomes:

$$p' = \frac{wbB^2}{2I'}$$
 (2)

In order that the total resultant intensity of unit stress shall not exceed the allowable limit of 16 000 pounds per square inch, the stress due to vertical loading must be reduced by the amount of the intensity of stress due to the horizontal thrust of the arch, as determined by formula (2).

If p' represents the intensity of unit stress due to the horizontal thrust of the arch, and p the corresponding allowable intensity of unit stress due to the vertical loading, then

$$p = 16000 - p'$$

Having thus obtained the reduced vertical stress p, the safe vertical load of the tables corresponding to this stress should accordingly be reduced by multiplying it by the ratio $\frac{P}{16\,000}$ and

similarly for other stresses and corresponding loads, thus making proper allowance for the additional stresses produced by the lateral forces.

If the reduction of the safe loads on this account is a considerable proportion of the original amount due to vertical loading only, it would be more economical to provide lateral braces or tie rods at shorter intervals, thus avoiding the use of an excessive amount of material in the beam.

As the stresses due to vertical forces for usual cases of loading are a maximum at the center of the span it will ordinarily be sufficient to space the tie rods or braces at shorter intervals near the center in order to allow for the combined stresses due to vertical loading and horizontal thrusts.

The above method of calculation is not exact when considering the lateral thrust of arches, or loads from similar materials which do not exert a uniform pressure throughout their surfaces of contact with the sustaining beam on account of the friction and bond of their component parts, but this analysis of the stresses may serve as a guide in designing.

The above formulæ should be used in connection with the tables and formula given on pages 82 and 83 relating to the lateral strength of beams, due to compression of the upper flange figured as a column between points of lateral support.

* This method of treatment gives approximate results which are on the side of safety.

The correct determination can be secured by the use of the section modulus polygon. (See Transactions of the American Society of Civil Engineers, Vol. LVI. 1996, page 169, et sea.)

EXAMPLE.

What is the proper size of I-Beam without other lateral support than the usual tie rods, corresponding to a total fibre stress of 16 000 pounds per square inch under the following conditions? The beam is 18 feet between end supports and carries a tile arch on one side having a nominal depth of 9 inches, effective depth of 6.6 inches, a span of 5 feet, designed to carry a superimposed load of 75 pounds per square foot in addition to the weight of the arch and other floor materials. The hollow tile arch weighs 36 pounds per square foot and the other materials, including plastering, weigh 14 pounds, making a total load, exclusive of the weight of the beam, equal to 125 pounds per square foot.

For tie rods of ^{3"}/_{4"} diameter the spacing between them would be 5.9 feet, as shown by the table of Spacing of Tie Rods on page 77 in which the safe stresses in the rods only are considered.

Substituting the proper values in the formula for lateral thrust of arches, given on page 75, this will be

$$T = \frac{3 \times 125 \times 5^2}{2 \times 6.6} = 710 \text{ lbs. per lineal foot.}$$

Substituting this value for w in formula (2) page 78 and assuming a 10" beam 25 lbs. per foot, the moment of inertia of which is 6.89, as given in the Tables of Properties of I-Beams, page 182, we have

$$p' = \frac{710 \times 4.66 \times 5.9^2}{2 \times 6.89} = 8358$$
 lbs. per sq. in.

Therefore p = 16000 - 8358 = 7642 lbs. per sq. in.

Hence the safe load as determined by the consideration of vertical loads only, should be reduced to $\frac{7 \text{ } 642}{16 \text{ } 000}$, or approximately

.48 of the amount given by the Tables of Safe Loads in case the spacing of the tie rods is not changed.

The safe vertical load for a 10" beam, weighing 25 lbs. per foot, 18 feet long between supports, for fibre stress of 16 000 lbs. per square inch, is 14 470 lbs. uniformly distributed, including the weight of the beam as given in the Tables of Safe Loads, on page 109, or 14 020 exclusive of the weight of the beam, and .48 of this is 6 730 lbs., which is the vertical load it can safely carry in order that the total stress due to it and the lateral thrust shall not exceed 16 000 lbs. per square inch.

The actual vertical load on the beam under consideration is as follows:

$$\frac{5}{2} \times 18 \times 125 = 5625$$
 lbs.,

which is less than the allowable amount, 6 730 lbs., as figured above, so that a smaller beam may suffice.

Therefore, assume a 9-inch beam, weighing 21 lbs. per foot, the moment of inertia of which about an axis coincident with center line of web is found in the Table of Properties, on p. 182, to be 5.16.

In this case

$$p' = \frac{710 \times 4.33 \times 5.9^2}{2 \times 5.16} = 10370$$
 lbs. per sq. in.

Substituting this in the formula for p we have

$$p = 16\ 000 - 10\ 370 = 5\ 630$$
 lbs. per sq. in.

Therefore the safe vertical load will be $\frac{5630}{16000}$, or approximately

The safe vertical load for a 9" 21 lb. beam, 18 feet long, for a fibre stress of 16 000 lbs. per square inch is 11 180 lbs., as given in the Table of Safe Loads, on page 109, and 35 of this, after deducting weight of the beam, is 3 781 lbs., which is less than the actual amount, 5 625 lbs., as calculated above, so that the 9" 21 lb. beam will not suffice.

If the spacing of the tie rods at the center be reduced from 5.9 feet to 3.25 feet, it may be found, in a manner similar to that used in the above calculations, that the safe vertical load for an 8" I-Beam, weighing 18.0 lbs. per foot, is reduced to .74 of its tabular value of 8 430 lbs., or 6 328 lbs., and as this amount is greater than the actual load as above, namely, 5 625 lbs., the 8" beam would answer the purpose, under the changed conditions as to spacing of tie rods. As this beam might deflect beyond the limit for plastered ceilings, it should be examined in accordance with the rule or formula given for obtaining safe deflections in the explanation of the Tables of Safe Loads, and elsewhere herein.

Calculating this by the rule given on page 102, the safe load for the allowable limit of deflection is

$$W = \frac{9.480 \times 16^2}{18^2} = 7.491 \text{ lbs.},$$

which is greater than the actual amount, 5 625 lbs., so that the 8" beam is sufficient and proper if the spacing of central tie rods be changed to 3.25 feet, as assumed in the last case.

LATERAL STRENGTH OF BEAMS,

The Tables of Safe Loads for Cambria I-Beams and Channels and Tables of Spacing of Cambria I-Beams, on pages 106 to 135, are calculated on the assumption that proper provision is made for preventing lateral deflection by means of tie rods or other braces. In order to prevent undue strains in the compression flange, considered as a column, the beams should be supported laterally at distances not exceeding twenty times the flange width, this ratio being determined by the following formula, which gives the safe load for solid columns of soft steel:

$$p = \frac{18000}{1 + \frac{l^2}{3000b^2}}$$

in which

p = allowable stress in pounds per square inch.

1 = length between lateral supports in inches.

b = width of flange in inches.

Substituting 16 000 for p in the above formula, which is the allowable unit stress of the safe load tables, it is found that the ratio $\frac{1}{b} = 19.37$, from which it may be seen that the compression flange should be supported laterally at distances not exceeding twenty times the flange width as stated above.

Beams which are not thus supported laterally should not be loaded to their full transverse capacity. The allowable fibre stresses and proportions of their full loads which they can safely carry when laterally supported at various distances is given in the following table:

REDUCTION IN VALUES OF ALLOWABLE FIBRE STRESS AND SAFE LOADS FOR SHAPES USED AS BEAMS DUE TO LATERAL FLEXURE.

Ratio of Span or Distance between Lateral Supports to Flange Width.	Allowable Unit Stress for Direct Flexure in Extreme Fibre.	Proportion of Tabular Safe Load	Ratio of Span or Distance between Lateral Supports to Flange Width.		Proportion of Tabular Safe Load
1 b	р	to be Used.	1 b	D	to be Used.
19.37 20 25 30 35	16000 15882 14897 13846 12781	1.0 .99 .93 .87	65 70 75 80 85	7474 6835 6261 5745 5281	.47 .43 .39 .36
40 45 50 55 60	11739 10746 9818 8963 8182	.73 .67 .61 .56	90 95 100 105 110	4865 4491 4154 3850 3576	.30 .28 .26 .24 .22

The above table should be used in connection with the Tables of Safe Loads Uniformly Distributed for Cambria I-Beams and Channels, on pages 106 to 123 inclusive, and limits the values found therein under the conditions given above.

EXAMPLE.

Required the safe load for a 15-inch standard I-Beam weighing 42 pounds per foot for a span of 30 feet without lateral supports:

From the data the ratio
$$\frac{1}{b} = \frac{30 \times 12}{5.5} = 65$$
.

From the above table the proportion of the safe load which the beam can safely support under these conditions is .47. From the Table of Safe Loads for I-Beams, page 111, the safe load for this beam when properly supported laterally is 20 940 pounds, which multiplied by .47 gives 9 842 pounds as the safe load uniformly distributed under the conditions given, including the weight of the beam, or 8 582 pounds superimposed load.

APPROXIMATE WEIGHTS OF VARIOUS ROOF COVERINGS.

In Pounds per Square Foot.

Copper Sheeting, B. W. G. No. 22. 1½ Corrugated Iron, B. W. G. Nos. 26 to 16. 1-3½ Felt, two Layers. ½ Felt and Asphalt. 2½
Felt and Gravel, % inch thick 6½ Galvanized Iron, B. W. G. Nos. 26 to 16 1-3 Lath and Plaster Ceiling, Ordinary 6-8 Sheathing 1 inch thick Hemlock 2
White Pine or Spruce. 2½. Yellow Pine. 4 Shingles, 16 inch, laid $5\frac{1}{2}$ inch to weather. 2 Skylight Glass, $\frac{3}{16}$ to $\frac{1}{2}$ inch thick. $\frac{21}{2}$ 7
Slates, \(\frac{1}{6} \) inch thick, 3 inch double lap.
APPROXIMATE WEIGHT OF ROOFS INCLUDING FRAMING:
Corrugated Sheets 8-10 Shingle 6-10 Slate 12-15
Tar and Gravel
Tar and Gravel

WIND PRESSURE ON ROOFS.

Based on 20 Lbs. per Sq. Ft. on a Vertical Plane.

 $1.84 \cos a - 1$.

FORMULA.-Normal Pressure per sq. ft. = P sin a

Pitch of	Angle of Slope (a) with Horizontal.	Rise of Roof per Foot.	Normal Wind Pressure.
Roof.	Degrees. Minutes.	Inches.	Pounds per Sq. Ft.
1 6 1	18 - 25 26 - 33	4 6	8.4 11.9
133123	$ \begin{array}{r} 33 - 41 \\ 45 - 0 \end{array} $	8 12	14.6 18.1
হাত্ত তা	53 - 7 $ 56 - 20 $ $ 63 - 27$	16 18 24	19.4 19.7 20.0

STEEL SHEETING.

Weights given (U. S. Standard) are based on 480 lbs. per cu. ft.

Gange	Thickness		Weight-L	Spacing of Supports			
Number	THICKHESS	1	Flat		rated	Roof	Sides
U. S. Std.	Inch	Black	Galvanized	BlackPainted	Galvanized	Not Over Ft.—Ins.	Not Over Ft.—Ins.
16 28	.0625 .05 .0375	2.50 2.00 1.50	2.66 2.16 1.66	2.75 2.20 1.65	2.81 2.36 1.82	5 - 9 5 - 9	7 - 8
20 22 24	.03125	1.25 1.00	1.41	1.38	1.54 1.27	4 - 9 3 - 9	6 - 8 5 - 8
26 28	.015625	.75 .63	.91	.84	.99	2 - 9	3 - 10

Standard Flat and Corrugated Sheets furnished in lengths 48, 60, 72, 84, 96, 108 and 120 inches.

Standard Flat Sheets in widths 24, 26, 28, 30 and 32 inches.

For	Width Width of Sheet Flat Corrugate		Width of Corrugation	Depth of Corrugation	Corrugation	Edges Laid			
	Ins.	Ins.	Ins.	Ins.	Lap	Up	Down		
Roofing Roofing	30 28 28	27½ 26 26	21/2	5, 8 u	1 ½ 2 1 •	1	1 2 2		

Sheets should preferably be ordered in even ft. lengths to span 2 purlin spaces. End Lap:

6 inches for Roofing, roof pitch 6 inches.

8 inches for Roofing, roof pitch 4 inches. 8 inches for Roofing, roof pitch less than 4 inches, when laid with slater's cement.

4 inches for Roofs in snowless climates and for Siding.

Ridge Roll:-No. 24 Gauge; 96-inch lengths; 3-inch end lap, standard diameter 21/2 inches; apron 6 inches.

Flashing:-No. 24 Gauge; 30-inch lengths; 3-inch end lap.

Corner Capping: -15-inch lengths; 4-inch end lap.

FASTENINGS.

Straps:—No. 18 U. S. Gauge Steel 34-inch wide: 1 strap and 2 rivets or bolts for each lineal foot of purlin or girts; I bundle (400 lin. ft.) straps weighs 50 pounds: 1000 rivets weigh 6 pounds.

Clinch Rivets:-Should clinch at least 1 inch; 2 rivets to each lineal foot of purlin or girt.

2 inches; 2½ to 3 inches: 3½ inches; 4 to 4½ inches. 4 inches: 5 inches: 6 inches; 7 inches. Purlin leg Length Number per pound 48 38

Clips and Bolts:-For fastening sheeting to purlins other than angle purlins when asbestos lining is used under specing. No. 16 steel slightly crimped. 2 clips and 2 bolts for each lineal foot of purlin or girt; 500 clips in one box. Hole for bolt $\frac{2}{16}$ " x 1". Closing Rivets: $\frac{1}{16}$ -inch diameter; $\frac{1}{16}$, $\frac{1}{16}$ and $\frac{1}{16}$ -inch lengths; $\frac{1}{1000} = 6$ lbs.

For side laps, I rivet for each lineal foot. For fastening flashing, etc., to

sheeting, 2 for each lineal foot.

Nails: - For fastening sheeting to wooden purlins: 10d. clinch nails for roofing, one for each lineal foot (for b) thend and side haps (5) - 1 pound. 8d. clinch nails for siding, one for each line of foot (for both end and side laps), 70 = 1 pound. For sheeting on wooden sheathing in end laps and in the body of the sheets in rows about 3 or 4 feet apart, same as if purlins or girts occurred at these lines. For fastening flashing, etc., to wood use tinner's nails, 2 per foot. For fastening flashing, etc., to brick wall use 8d. nails, 2 per foot.

ROOF TRUSSES (PRATT.)

 $\mathbf{n} = \mathbf{S} \div \mathbf{H} = 2 \cot \alpha$ $\mathbf{P} = \mathbf{P}$ and \mathbf{L} coad.

Heavy lines in diagrams indicate Compression Members.

I-4 Panels.

Member	Length	Stress=P	n =							
		X X	3	$\frac{24}{7}$	2 cot 30°	4	$\frac{24}{5}$	5	6	
AB, BD AC CE BC CD	S sec $\alpha \div 4$ S ÷ 4 S ÷ 2 H ÷ 2 $\sqrt{S^2 + 16 H^2} \div 4$	14 n 1/2 n 1	2.25 1.50 1.00	2.57 1.71 1.00	2.60 1.73 1.00	3.00 2.00 1.00	3.90 3.60 2.40 1.00 1.56	3.75 2.50 1.00	4.50 3.00	

II-6 Panels.

		Stress = P	n ==								
Member	Length	x	3	24 7	2 cot 30°	4	24 5	5	6		
AB, BD	S sec α ÷ 6	$5/4\sqrt{n^2+4}$	4.51	1.96	5.00	5.59	6.50	6.73	7.91		
DF	S sec $\alpha \div 6$	$\sqrt{n^2+4}$	3.61	3.97	4.00	4.47	5.20	5.39	6.32		
AC	S ÷ 6	5/4 n	3.75	4.29	4.33	5.00	6.00	6.25	7.50		
CE	S ÷ 6	n	3.00	3.43	3.46	4.00	4.80	5.00	6.00		
EG	$S \div 3$	34 n	2.25	2.57	2.60	3.00	3.60	3.75	4.50		
BC	H ÷ 3	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
DE	2H ÷ 3	3/2	1.50	1.50	1.50	1.50	1.50	1.50	1.50		
CD	$\sqrt{S^2 + 16 H^2 \div 6}$	$\frac{1}{4}\sqrt{n^2+16}$	1.25	1.32	1.32	1.41	1.56	1.60	1.80		
EF	$\sqrt{S^2 + 36 H^2 \div 6}$	$\frac{1}{4}\sqrt{n^2+36}$	1.68	1.73	1.73	1.80	1.92	1.95	2.12		

COEFFICIENTS FOR CALCULATING TRUSS MEMBERS.

n							
α	33°41.4	30°15.4′	30°	26°33.9′	22°37.2′	21°48.1′	18°26.1′
Sec α	1.2018	1.1577	1.1547	1.1180	1.0833	1.0770	1.0541
Sec2 a	1.4444	1.3103	1.3333	1.2500	1.1736	1.1600	1.1111
Sec a tan a	.8012	.6753	.6667	.5590	.4514	.4308	.3514
Sec $\alpha \sqrt{9 \sec^2 \alpha - 8}$	2.6874	2.3334	2.3094	2.0156	1.7342	1.6824	1.4907

ROOF TRUSSES (PRATT).

 $n=S \div H = 2 \cot \alpha$. P=Panel Load.

Heavy lines in diagrams indicate compression members.

III-8 Panels.

		Stress = P				n ==			
Member	Length	X X	3	7	2 cot 30°	4	24 5	5	6
AB, BD	S sec α÷8	$7.1\sqrt{n^2+4}$	6.31	6.95	7.00	7.83	9.10	9.40	11.07
DF	S sec $\alpha \div 8$	$3/2 \sqrt{n^2 + 4}$	5.41	5.95	6.00	6.71	7.80	8.08	9.49
FJ	S sec α÷8	$5/4 \sqrt{n^3 + 4}$	4.51	4.96	5.00	5.59	6.50	6.73	7.91
AC	S÷8	7/4 n	5.25	6.00	6.06	7.00	8.40	8.75	10.50
CE	S÷8	3/2 n	4.50	5.14	5.20	6.00	7.20	7.50	9.00
EG	S÷8	5, 4 n	3.75	4.29	4.33	5.00	6.00	6.25	7.50
GI	S÷4	n	3.00	3.43	3.46	4.00	4.80	5.00	6.00
BC	H÷4	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DE	H÷2	3/2	1.50	1.50	1.50	1.50	1.50	1.50	1.50
FG	3H÷4	2	2.00	2.00	2.00	2.00	2.00	2.00	2.00
CD	$\sqrt{S^2 + 16 \text{ H}^2 \div 8}$		1.25	1.32	1.32	1.41	1.56	1.60	1.80
EF	$\sqrt{S^2 + 36 \text{ H}^2 \div 8}$		1.68		1.73	1.80	1.92	1.95	2.12
GJ	$\sqrt{S^2 + 64 \text{ H}^2 \div 8}$	$\frac{1}{4} \sqrt{n^2 + 61}$	2.14	2.18	2.18	2.24.	2.33	2.36	2.50

IV-10 Panels.

	1	Stress = P				n =			
Member	Length	X	3	24 7	2 cot 30°	4	$\frac{24}{5}$	5	6
AB, BD	S sec $\alpha \div 10$	$9/4\sqrt{n^2+4}$	8.11				11.70		
DF	S sec α÷10	$2 \sqrt{n^2 + 4}$	7.21				10.40		
FL	S sec $\alpha \div 10$	$7/4 \sqrt{n^2 + 4}$	6.31	1			9.10		
LJ	S sec α÷10	$32\sqrt{n^2+4}$	5.41	1			7.80	8.08	9.49
AC	S÷10	9/4 n	6.75	7.71	7.79	9.00	10.80	11.25	13.50
CE	S÷10	2 n	6.00	6.86	6.93	8.00	9.60	10.00	12.00
EG	S÷10	7/4 n	5.25	6.00	6.06	7.00	8.40	8.75	10.50
GI	S÷10	3/2 n	4.50	5.14	5.20	6.00	7.20	7.50	9.00
IK	S ÷ 5	5/4 n	3.75	4.29	4.33	5.00	6.00	6.25	7.50
BC	H÷5	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
DE	2H÷5	3/2	1.50	1.50	1.50	1.50	1.50	1.50	1.50
FG	3H÷5	2	2.00	2.00	2.00	2.00	2.00	2.00	2.00
LI	4H ÷ 5	5/2	2.50	2.50	2.50	2.50	2.50	2.50	2.50
CD	$\sqrt{S^2+16 H^2+10}$	$\sqrt{1/4} \sqrt{n^2 + 16}$	1.25	1.32	1.32	1.41	1.56	1.60	1.80
EF	$\sqrt{S^2+36 H^2+10}$	$\sqrt{n^2 + 36}$	1.68	1.73	1.73	1.80	1.92	1.95	2.12
GL	$\sqrt{S^2+64 H^2+10}$	$14\sqrt{n^2+64}$	2.14	2.18	2.18	2.24	2.33	2.36	2.50
IJ	$\sqrt{S^2+100H^2+10}$	$\frac{1}{4}\sqrt{n^2+100}$	2.61	2.64	2.65	2.69	2.77	2.80	2.92

ROOF TRUSSES

 $\mathbf{n} = \mathbf{S} \div \mathbf{H} = 2 \cot \alpha$ $\mathbf{P} = \mathbf{P}$ anel Load.

Heavy lines in diagrams indicate compression members.

V-Simple.

		Stress = P	n=								
Member	Length	X X	3	7	2 cot 30	4	5	5	6		
AB	S sec $\alpha \div 4$	$\sqrt[3]{\sqrt{n^2+4}}$	2.70	2.98	3.00	3.35	3.90	4.04	4.74		
BD	S sec $\alpha \div 4$	$\frac{3 \text{ n}^2 + 4}{4 \sqrt{\text{n}^2 + 4}}$	2.15	2.47	2.50	2.91	3.52	3.67	4.43		
AC	$S \sec^2 \alpha \div 4$	34 n	2.25	2.57	2.60	3.00	3.60	3.75	4.50		
CE	$S(1-\frac{1}{2}\sec^2\alpha)$	1 2 n	1.50	1.71	1.73	2.00	2.40	2.50	3.00		
ВС	S $\sec \alpha \tan \alpha \div 4$	$\frac{n}{\sqrt{n^2+4}}$	0.83	0.86	0.87	0.89	0.92	0.93	0.95		
CD	S $\sec^2 \alpha \div 4$	1/4 n	0.75	0.86	0.87	1.00	1.20	1.25	1.50		

VI-Compound.

Member	Length	Stress = P	n =						
			3		2 cot 30°	4	24 5	5	6
AB	S sec α ÷ 8	$7/4\sqrt{n^3+4}$	6.31	6.95	7.00	7.83	9.10	9.42	11.07
BD	S sec α ÷ 8	$\frac{7 n^2 + 20}{4 \sqrt{n^2 + 4}}$	5.76	6.44	6.50	7.38	8.72	9.05	10.75
DF	S $\sec \alpha \div 8$	$\frac{7 \text{ n}^2 + 12}{4 \sqrt{\text{n}^2 + 4}}$	5.20	5.94	6.00	6.93	8.33	8.68	10.44
FJ	S sec α ÷ 8	$\frac{7 n^2 + 4}{4 \sqrt{n^2 + 4}}$	4.65	5.43	5.50	6.48	7.95	8.31	10.12
AC	S sec² α ÷ 8	7/4 n	5.25	6.00	6.06	7.00	8.40	8.75	10.50
CE	$S \sec^2 \alpha \div 8$	3/2 n	1.50	5.14	5.20	6.00	7.20	7.50	9.00
EI	S (1 — ½ sec² α)	n	3.00	3.43	3.46	4.00	4.80	5.00	6.00
BC, FG	S $\sec \alpha \tan \alpha \div 8$	$\frac{n}{\sqrt{n^2+4}}$	0.83	0.86	0.87	0.89	0.92	0.93	0.95
DE	S $\sec \alpha \tan \alpha \div 4$	$\frac{2 n}{\sqrt{n^2 + 4}}$	1.66	1.73	1.73	1.79	1.85	1.86	1.90
CD, DG	$S \sec^2 \alpha \div 8$	r ₄ n	0.75	0.86	0.87	1.00	1.20	1.25	1.50
	S sec² α ÷ 8	1 2 n	1.50	1.71	1.73	2.00	2.40	2.50	3.00
GJ	$S \sec^2 \alpha \div 8$	3/4 n	2.25	2.57	2.60	3.00	3.60	3.75	4.50

ROOF TRUSSES

 $\mathbf{n} = \mathbf{S} \div \mathbf{H} = 2 \cot \alpha$. $\mathbf{P} = \text{Panel Load}$.

Heavy lines in diagrams indicate compression members.

VII—Simple.

		Stress=P		n =						
Member	Length	X	7	2 cot 30°	4	5	5	6		
AB	S sec α÷6	$5/4\sqrt{n^2+4}$	4.51	4.96	5.00	5.59	6.50	6.73	7.91	
BD	S sec α÷6	$\frac{13 (n^2 + 36)}{12 \sqrt{n^2 + 4}}$	3.54	3.96	4.00	4.55	5.38	5.59	6.64	
DE	S sec α÷6	$\frac{5 \text{ n}^2 + 4}{4 \sqrt{n^2 + 4}}$	3.40	3.95	4.00	4.70	5.73	5.99	7.27	
AC CF		5/4 n	$\frac{3.75}{2.25}$	$\frac{4.29}{2.57}$		5.00 3.00		6.25		
BC, CD	Ssec a√9 sec2 a-8	n√n2+36÷	0.93	1.00	1.00	1.08	1.18	1.21	1.34	
CE	$S \sec^2 \alpha \div 4 [\div 12]$	$\frac{1}{2}$ n $[6\sqrt{n^2+4}]$	1.50	1.71	1.73	2.00	2.40	2.50	3.00	

VIII-Compound.

		Stress = P	n =						
Member	Length	X	3	7	2 cot 30°	4	24 5	5	6
AB	S sec α÷12	$11/4\sqrt{n^2+4}$	9.92	10.92	11.00	12.30	14.30	14.81	17.39
BD	S sec α÷12	$\frac{31 \text{ n}^2 + 108}{12 \sqrt{\overline{n}^2 + 4}}$	8.95	9.92	10.00	11.26	13.18	13.66	16.13
DE	S sec α÷12	$\frac{11 \text{ n}^2 + 28}{4 \sqrt{\text{n}^2 + 4}}$	8.81	9.91	10.00	11.40	13.53	14.07	16.76
EL	S sec α÷12	$\frac{11 n^2 + 20}{4 \sqrt{n^2 + 4}}$	8.25	9.40	9.50	10.96	13.15	13.70	16.44
LI	S sec α÷12	$\frac{31 \text{ n}^2 + 36}{12 \sqrt{\text{n}^2 + 4}}$	7.28	8.41	8.50	9.91	12.02	12.55	15.18
IJ	S sec α÷12	$\frac{11 \text{ n}^2 + 4}{4 \sqrt{\text{n}^2 + 4}}$	7.14	8.40	8.50	10.06	12.38	12.95	15.81
AC CF FK	S $\sec^2 \alpha \div 8$ S $\sec^2 \alpha \div 8$ S $(1 - \frac{1}{2} \sec^2 \alpha)$	11/4 n 9/4 n 3 2 n	6.75	9.43 7.71 5.14	7.79	11.00 9.00 6.00	10.80	11.25	13.50
BC,CD) GL, GI	S sec $\alpha \sqrt{9} \sec^2 \alpha - 8$ [÷24	$n\sqrt{n^2+36} \div [6\sqrt{n^2+4}]$	0.93	1.00	1.00	1.08	1.18	1.21	1.34
EF	S sec \alpha tan \alpha \div 4	$\frac{3 \text{ n}}{\sqrt{n^2 + 4}}$	2.50	2.59	2 60	2.68	2.77	2.79	2.85
CE, EG FG GJ	S $\sec^2 \alpha \div 8$ S $\sec^2 \alpha \div 8$ S $\sec^2 \alpha \div 8$	1/2 n 1/4 n 15/4 n	2.25	1.71 2.57 4.29	2.60	3.00	3.60	3.75	4.50

CAMBRIA STANDARD BUCKLE PLATES.

No.		BUCKLES. Side (W).	RISE OF BUCKLE (H).	PLATE THICKNESS.	NUMBER OF BUCKLES PER PLATE.	7
	Ft. Ins.	Ft. Ins.	Ins.	Ins.	1210 1 1111	
1 2 3 4 5 6 7 8 9 10 11	3-1 3-9 4-0 4-6 3-11 3-6	2-8 3-8 2-8 3-2 3-1 3-9 3-1 4-0 3-11 4-6 5-6 3-6	22 22 23 33 33 33 34 34 34 34 34 34 34 34 34 34	14, 16 OF 3 &	1 to 10 1 " 10 1 " 8 1 " 9 1 " 9 1 " 8 1 " 7 1 " 6 1 " 7 1 " 2 1 " 2	END Pr from wide gles plate SIDE Pr from Best FILL From Best

WIDTH OF FLANGES AND FILLETS.

END FLANGES (E)
Preferably made alike, from 2 to 18 ins. wide. If wider than 18 ins., use angles riveted across the plates for stiffeners.

SIDE FLANGES (S)

Preferably made alike, from 2 to 6 ins. wide. Best not to exceed 4 ins.

FILLETS (F)

From 2 to 6 ins. wide. Best not to exceed 4 ins.

ROLLED STEEL SAFETY FLOOR PLATES.

WIDTH (W).	THICKNESS (T).	MAXIMUM LENGTH.
Inches.	Inches.	Feet.
18 to 25 25 " 36	18 to 3 (50 50

FIREPROOFING-REINFORCED CONCRETE.

The actual fire tests of reinforced concrete have been limited, but experience, together with the results of tests so far made. indicates that concrete may be safely used for fireproofing purposes. It is in itself incombustible and proof against ordinary fire when composed of the best materials properly mixed, applied and anchored in place. For a fireproof filling or deadening layer in floors, these same materials without reinforcement may be used or clean hard burned cinders may be substituted for this purpose. The low rate of heat conductivity is one reason of its value for fireproofing and the concrete actually affected by fire, remains in position and affords protection to the concrete beneath it. The thickness of protective coating required, depends upon the probable duration of a fire, which is likely to occur in the structure. However, for ordinary conditions, it is recommended, as a general rule, that the metal in girders and columns be protected by a minimum of 2 inches, beams 13 inches, and floor slabs, the different minimum values, as indicated in the accompanying table.

A properly designed combination of protected steel framework with reinforced concrete floor slabs, if well executed is particularly safe and effective in fireproof building construction, and the use of concrete and steel in the floor slab is especially advan-

tageous, affording both strength and rigidity.

In reinforced concrete design, the following assumptions are recommended and considered by almost all authorities, and are, therefore, used as the basis for the formulæ and tables of pages 92 and 93, but it must be noted that all these ideal conditions cannot be had in practice and if possible allowance should be made accordingly.

- (1) Calculations should be made with reference to working stresses and safe loads, rather than to ultimate strengths and ultimate loads.
 - (2) A section, plane before bending remains plane after bending.
- (3) The modulus of concrete in compression within the usual limits of working stresses is constant. The distribution of compressive forces in slabs is therefore rectilinear.
- (4) The tensile stresses in the concrete shall be neglected in calculating the reinforced slab resistance.
- (5) Perfect adhesion between concrete and reinforcement is assumed.
- (6) Initial stresses in the reinforcement due to contraction or expansion in the concrete may be neglected.

These above assumptions, while not entirely borne out by experimental data, are recommended and used by various authorities on this subject in the interest of simplicity and uniformity.

REINFORCED CONCRETE FLOOR SLABS.

NOTATION.

- w = Total weight in lbs. per sq. ft. including slab weight.
- L = Span in feet c. to c. of beam supports.
- M = Bending Moment for 12" width of slab (inch pounds).
- Ec = Modulus of Elasticity for concrete.
- Fig = " " " steel.
 - r = Ratio, $Es \div Ec$.
 - C = Extreme fibre stress of concrete in compression.
 - S = " " " steel in tension.
 - K = Constant for a given steel and concrete.
 - d = Effective depth of slab in inches.
 - p = Ratio of steel area to effective slab area.
 - x = Distance, Top of slab to Neutral Axis ÷ d.
 - j = " between centers of stress ÷ d.
 - V = Maximum Shear, 12" width of slab.
- v = Unit shear.
- u = Unit bond stress.
- Σ o = Sum of perimeters of bars (in 12" width of slab).

FORMULÆ.

 $M = 1.5 \text{ wL}^2$ —for slabs freely supported.

= 1.2 wL²— " continuous over supports.

$$p = \frac{C^2 r}{2 \text{ S (Cr + S)}} \qquad x = rp \left(\sqrt{1 + \frac{2}{rp}} - 1\right)$$

$$K = \frac{Sp}{3} \left(\frac{2Cr + 3S}{Cr + S}\right) \qquad j = 1 - \frac{x}{2}$$

$$d = \sqrt{\frac{M}{12 \text{ K}}}$$
 Steel Area (12" width of slab) = 12 dp

 $\mathbf{v} = \frac{\mathbf{V}}{12 \text{ jd}}$ (not to exceed 60 lbs. for stone or 25 lbs. for cinder concrete).

 $u = \frac{V}{\mathrm{jd} \, \Sigma \mathrm{o}}$ (not to exceed 60 lbs. for stone or 30 lbs. for cinder concrete).

For Square and Round Bars, refer to pages 451-457.

NOTE.—Best practice indicates that Spans of Floor Slabs should not exceed seven feet between steel beams or steel girders. Generally speaking, the span should in no case exceed 10 feet for ordinary work.

REINFORCED CONCRETE FLOOR SLABS.

Values deduced from formulæ, page 92, using unit stresses based on modern safe practice.

Concrete.	Weight per cu. ft. Pounds.	c	S	r= E _s ÷E _c	p	K	I	j
Stone. 1:2:4.	150	500	16000	15	.0050	71.5	.320	.893
Cinder. 1:2:4.	110	185	16000	30	.0015	21.8	.258	.914

THICKNESS OF CONCRETE BELOW STEEL.

Depth of Slab "d" (inches).	2½ to 4	4½ to 8½	9 to 12	13 to 18	19 to 20	Above 20
Thickness of Concrete below Lower Surface of Steel Rods (inches).	11/4	1	114	1½	13/4	2

SPACING OF REINFORCING BARS.

The lateral spacing of parallel bars should not be less than two and one-half diameters, center to center, nor greater than $2\frac{1}{2} \times$ thickness of slab; nor should the distance from edge of slab to center of nearest bar be less than one and one-half diameters. The clear spacing between two layers of bars should not be less than one-half inch.

Cross reinforcement of steel rods of small diameter (14") laid parallel to the principal beams upon which the slab rests, should be used to prevent shrinkage and temperature cracks and to give added strength. They should be spaced about two feet, center to center.

DISTRIBUTION OF LOAD FOR SLABS OF FOUR SIDES SUPPORT.

Where length of slab exceeds 1.5 width, the entire load should be carried by transverse reinforcement. Slabs of smaller ratio of dimension may well be reinforced in both directions. Distribution of the load may be determined by use of the formula

$$r = \frac{1^4}{1^4 + b^4}$$

in which r = proportion of load carried by transverse reinforcement, l = length and b = breadth of slab.

Using values thus determined, each set of reinforcement is to be calculated as in slabs having two supports only.

Note.—In all cases of two-way reinforcement, intersections of rods should be securely tied with heavy wire.

LIMITING SPANS AND MAXIMUM LOADS OF I-BEAMS AND CHANNELS DUE TO CRIPPLING OF THE WEB.

I-Beams and Channels, when used as beams for very short spans in which the ratio of length of span to depth of beam is small, should be examined for safe strength of the web considered as a column, subjected to crippling due to the shearing strains.

The Tables of Safe Loads of Beams and Channels are computed with regard to the safe unit stresses due to flexure, and, with one or two exceptions, as indicated by dotted lines and accompanying foot-notes, the lengths of spans tabulated are such that the limitation due to web crippling does not appear. The shearing stresses acting in the web of a beam may be considered to consist of two stresses of equal intensity acting at right angles to each other, and at angles of 45 degrees with the neutral axis. The intensity of each of these stresses is equal to the intensity of the vertical shear, which is a maximum at the points of support for uniform loading, and uniform throughout from the point of loading to the supports for a superimposed concentrated load at the center.

The vertical shears for different systems of loading may be obtained by the use of moments in the usual way, and these are given for various cases on pages 162 to 165 inclusive.

The shearing stresses which act at angles of 45 degrees with the neutral axis are equivalent to compressive and tensile forces, and the former will tend to buckle the web, which should therefore be figured as composed of a series of columns of a length equal to its diagonal depth. If c is the vertical depth of the web in the clear between the fillets which connect it with the flanges, the square of the length of the column to be considered will be 2c².

Substituting this value for l2 in the formula for long columns

$$\mathbf{p} = \frac{12000}{1 + \frac{l^2}{3000 \ t^2}}$$

we have

$$\mathbf{p} = \frac{12000}{1 + \frac{c^2}{1500 \, t^2}}$$

in which

p = intensity of vertical shear, in pounds per square inch =

Total shear in pounds dt.

c = depth of web in clear between fillets in inches.

t = thickness of web in inches.

d = depth of beam in inches.

This formula is also applicable for computing the safe shearing stress in the webs of plate girders, in which case the length, l, is the vertical distance between centers of upper and lower rows of rivet holes connecting the webs and flanges.

The webs of plate girders should be reinforced by stiffening angles at points of support and concentrated loading, and in cases where the intensity of shear exceeds that given by the above formula the web should be provided with stiffeners.

The following tables have been prepared based upon the above formula for safe unit shearing stress in the webs of beams and channels.

MAXIMUM SAFE LOADS FOR I-BEAMS OF ANY LENGTH AND CORRESPONDING MINIMUM SAFE SPANS BASED UPON CRIPPLING OF THE WEB.

For loads in pounds uniformly distributed including weight of beam.

Section Num- ber.	Depth of Beam.	Weight per Foot.	Maximum Safe Load.	Mini- mum Span.	Section Num- ber.	Depth of Beam.	Weight per Foot.	Maximum Safe Load.	Mini- mum Span.
Der.	Inches.	Pounds.	Pounds.	Fact.	Der.	Inches.	Pounds.	Pounds.	Feet.
В 5	3	5.5 6.5 7.5	10900 17790 25230	1.7 1.1 .9	В 53	15	42 45 50 55	86530 106100 146260 186740	7.3 6.2 4.8 4.0
В 9	4	7.5 8.5 9.5 10.5	15330 22670 30820 37820	2.1 1.6 1.2 1.1	B109	15	60 60 65	222970 160940 201330	3.6 5.5 4.6
В 13	5	9.75 12.25 14.75	20050 39730 57400	2.6 1.5 1.2			70 75 80	237380 276990 316160	4.1 3.7 3.4
В 17	6	12.25 14.75 17.25	25130 44320 62890	3.1 2.0 1.6	B113	15	80 85 90 95	247900 287290 322350 361780	4.6 4.2 3.9 3.6
В 21	7	15 17.5 20	30510 49320 69540	3.7 2.5 1.9	В 65	18	100 55 60	399220 109040 155580	3.4 8.8 6.6
B 25	8	18 20.25 22.75	36310 53560 72760	4.2 3.1 2.4			65 70	194040 232870	5.5 4.9
В 29	9	25.25 21 25	91590 42450 71530	2.1 4.8 3.1	В 73	20	65 70 75	129150 169980 206910	9.6 7.3 6.7
		30 35	109620 146670	2.3 1.9	B121	20	80 85 90	182710 214600 257610	8.7 7.7 6.6
В 33	10	25 30 35 40	48960 86630 126460 165320	5.4 3.4 2.6 2.2	B 89	24	95 100 80	295400 333150 127540	6.0 5.5
B 41	12	31.5 35 40	62890 91730 130540	6.2 4.5 3.5	1000		85 90 95 100	166820 202450 239330 277070	11.8 10.1 8.8 7.9
B105	12	40 45 50 55	99380 138110 176250 213760	4.9 3.8 3.2 2.8	B127	24	105 110 115	203800 243290 281900	12.3 10.6 9.4

MAXIMUM SAFE LOADS FOR STANDARD CHAN-NELS OF ANY LENGTH AND CORRESPOND-ING MINIMUM SAFE SPANS BASED UPON CRIPPLING OF THE WEB.

For loads in pounds uniformly distributed including weight of channel.

Section Num-	Depth of Channel	Weight per Foot.	Maximum Safe Load.	Mini- mum Span,	Section Num-	Depth of Channel	Weight per Foot.	Maximum Safe Load,	Mini- mum Span.
ber.	Inches.	Pounds.	Pounds.	Feet.	ber.	Inches.	Pounds.	Pounds.	Feet.
C 5	3	4 5 6	10970 17830 25260	1.1 0.8 .6	C 25	8	18.75 21.25	83150 101800	1.5 1.3
C 9	4	5.25 6.25 7.25	14300 21660 29830	1.4 1.1 .9	C 29	9	13.25 15 20 25	28120 42250 80980 118810	4.0 2.9 1.8 1.4
C 13	5	6.5 9 11.5	17390 35900 54920	1.6 1.1 .9	C 33	10	15 20 25 30	30570 67420 107670 147010	4.7 2.6 1.9 1.6
C 17	6	8 10.5 13	20280 39580 58300	2.3 1.4 1.1	C 41	12	35 20.5	182940 41390	1.4
C 21	7	9.75 12.25 14.75	76540 22950 43660 62200	1.0 2.8 1.7 1.4			25 30 35 40	75440 114230 156000 193920	3.5 2.6 2.1 1.9
		17.25 19.75	82110 99880	1.2	C 53	15	33 35 40	83430 95070 130940	5.4 4.9 4.3
C 25	8	11.25 13.75 16.25	25560 44800 64140	3.4 2.2 1.7			45 50 55	171400 211750 251710	3.2 2.8 2.5

COEFFICIENTS FOR DEFLECTION IN INCHES FOR CAMBRIA SHAPES, USED AS BEAMS SUBJECTED TO SAFE LOADS UNIFORMLY DISTRIBUTED.

Distance between Supports in Feet.	Coefficient for Fibre Stress of 16 000 lbs. per Square Inch.	Coefficient for Fibre Stress of 12 500 lbs. per Square Inch.	Distance between Supports in Feet.	Coefficient for Fibre Stress of 16 000 lbs. per Square Inch.	Coefficient for Fibre Stress of 12 500 lbs. per Square Inch.
L	H	H'	L	H	H'
4	.265	.207	23	8.756	6.841
4 5 6	.414	.323	24	9.534	7.448
	.596	.466	25	10.345	8.082
7	.811	.634	26	11.189	8.741
8	1.059	.828	27	12.066	9.427
9	1.341	1.047	28	12.977	10.138
10	1.655	1.293	29	13.920	10.875
11	2.003	1.565	30	14.897	11.638
12	2.383	1.862	31	15.906	12.427
13	2.797	2.185	32	16.949	13.241
14	3.244	2.534	33	18.025	14.082
15	3.724	2.909	34	19.134	14.948
16	4.237	3.310	35	20.276	15.841
17	4.783	3.737	36	21.451	16.759
18	5.363	4.190	37	22.659	17.703
19	5.975	4.668	38	23.901	18.672
20	6.621	5.172	39	25.175	19.668
21	7.299	5.703	40	26.483	20.690
22	8.011	6.259			

The above coefficients are for use in obtaining the deflection of steel shapes subjected to transverse strain, under their uniformly distributed safe loads for extreme fibre stresses of 16 000 pounds and 12 500 pounds per square inch; the modulus of elasticity being 29 000 000.

To find the deflection of any shape that is symmetrical about its neutral axis under the above conditions of loading when used as a beam, such as I-Beams, Channels, etc., divide the coefficient in the table corresponding to the given span and fibre stress, by the depth of the beam in inches.

To find the deflection of any shape that is unsymmetrical about its neutral axis when used as a beam, under the above conditions of loading, such as Angles, etc., divide the coefficient in the table corresponding to the given span and fibre stress by twice the distance of the most remote fibre from the neutral axis, expressed in inches.

If, in construction, the beam is placed in position in the usual manner upon its end supports without special scaffolding or falsework between them, it will deflect somewhat by reason of its own weight, and upon the addition of external loading a further deflection will occur.

The deflections obtained as above described are the total deflections due to the weight of the beam itself and the superimposed safe load uniformly distributed.

Thus, to find, from the preceding table, the deflection in inches for Cambria shapes used as Beams under their safe loads uniformly distributed including the weight of the beam:

Let D = deflection in inches.

L = length between supports in feet.

H = coefficient for deflection from table for fibre stress of 16 000 pounds per square inch.

H' = coefficient for deflection from table for fibre stress of 12 500 pounds per square inch,

d = depth of beam in inches for symmetrical sections.

x₁ = distances in inches from neutral axis to most remote fibre for unsymmetrical sections.

FOR SYMMETRICAL SECTIONS.

For fibre stress of 16 000 pounds per square inch D = $\frac{H}{d}$

For fibre stress of 12 500 pounds per square inch $D = \frac{H'}{d}$

FOR UNSYMMETRICAL SECTIONS.

For fibre stress of 16 000 pounds per square inch $D = \frac{H}{2x_1}$

For fibre stress of 12 500 pounds per square inch D = $\frac{H'}{2x_1}$

EXAMPLES.

Case I.—To find the deflection of a 9" I-Beam weighing 30 pounds per foot, for a span of 15 feet and a maximum fibre stress of 16 000 pounds per square inch, under its safe load uniformly distributed.

From the above table the deflection coefficient for this case is found to be 3.724 which divided by 9, the depth of the beam in inches, gives

.414, which is the required deflection in inches.

The safe load for this beam under the conditions named is 16 100 pounds including the weight of the beam itself as stated in the Tables

of Safe Loads for Cambria I-Beams on page 109.

Case II.—To find the deflection of a $6^{\prime\prime} \times 4^{\prime\prime} \times \frac{1}{2}^{\prime\prime}$ angle, supported at the ends on its short leg as a horizontal base, for a span of 9 feet and a maximum fibre stress of 16 000 pounds per square inch under

its safe load uniformly distributed including its own weight.

From the table of "Properties of Angles" on page 207 the distance x' from the neutral axis to the back of the shorter leg is found to be 1.99 inches, which subtracted from the length of long leg. 6 inches, gives 4.01 as the distance x₁ from the neutral axis to the most remote fibre. From the above table the deflection coefficient for this case is found to be 1.341, which divided by 8.02, twice x₁, gives .167, which is the required deflection in inches.

NOTE.—For deflections of Beams and Channels due to any central or uniform load see coefficients of deflection N and N' in the Tables of Properties relating to these sections and the accompanying explanations.

For deflections of any symmetrical beams due to various systems of loading,

see general formulæ and diagrams on pages 160 to 165 inclusive.

TABLES OF SAFE LOADS FOR CAMBRIA SEC-TIONS USED AS BEAMS, AND SPACING FOR CAMBRIA I-BEAMS.

Pages 106 to 159 inclusive.

TABLES OF SAFE LOADS AND SPACINGS.

The Tables of Safe Loads for Cambria I-Beams, Channels, and Angles, give the safe loads in pounds uniformly distributed for all usual spans based upon extreme fibre stresses of 16 000 pounds per square inch.

These loads include the weight of the steel shape itself, which should be deducted in order to obtain the external load that it will safely carry. In case the shape is used to support a floor, the weight of the steel, together with that of the other portions of the floor construction, must be deducted in order to obtain the net live load which can be safely sustained. Weights of hollow tile floor arches and fireproofing material are given on page 69. to which should be added the weight of plastering, filling on top of arches and the weight of the material forming the surface of the floor, in order to obtain the dead load of materials in figuring fireproof floors, in addition to the weight of the steel.

A table of superimposed loads per square foot, exclusive of the weights of materials, in accordance with the usual practice for different classes of buildings, is given on p. 52.

The Tables of Safe Loads for Cambria sections used as beams and the Tables for Spacing of Cambria I-Beams are calculated on the assumption that proper provision has been made for preventing lateral deflection by means of tie-rods or other braces spaced at suitable distances apart; which for beams and channels should not exceed twenty times the flange width. In cases where intermediate lateral support is not provided, the safe loads shown in the tables must be reduced, and for beams and channels the

amount of this reduction can de determined by reference to the explanations and tables therefor on pages 82 and 83.

The thrust of floor arches, which is considerable, particularly in the case of long spans or distances between tie-rods, should be taken into account where it tends to produce lateral flexure of the floor beams.

Explanations of this and a formula for reducing the unit stresses from vertical loading, on account of the additional stresses caused by horizontal forces, are given on pages 78 to 81 inclusive.

In some instances the allowable deflection will govern the design rather than the transverse strength, as in the case of beams carrying plastered ceilings, in which the deflection should be limited to $\frac{1}{30}$ inch per foot of span, or $\frac{1}{350}$ of the distance between supports in order to avoid cracking the plaster.

This limit of deflection is indicated in the tables by full horizontal lines, the figures below which correspond to loads or spacings for the given spans that will produce greater deflections than the allowable limit for plastered ceilings.

The deflection limits of the Tables of Safe Loads have been calculated for the total loads, including the weight of the section used as a beam. The superimposed live load will not produce all of this deflection, and therefore the deflection limit of the tables includes an element of safety for the reason that the beams will be deflected, after being put in place, by their own weight and that of the floor materials before the plastering is applied.

In cases where the deflection limits the use of the beam for the safe loads corresponding to the fibre stresses of the tables, the beam may be used with a less load such as to produce only the allowable deflection. The lesser load corresponding to the limit of deflection may be obtained for any span from the Table of Safe Loads as follows:

$$W = \frac{W_8 \times L_2}{L_1^2}$$

in which

- W = safe load in pounds for the limit of deflection for plastered ceilings = $\frac{1}{3}\frac{1}{60}$ of the span.
- W_s = safe load of tables next above the line giving the limit of deflection.
- L = length of span in feet corresponding to W_s from the table
- L_1 = length of span for the case under consideration.

This may also be expressed by the following—

RULE.

Multiply the safe load next above the heavy line of the tables by the square of the corresponding span in feet and divide the product by the square of the required span. The result will be the required load corresponding to the limit of allowable deflection for plastered ceilings.

A Table of Deflections for Cambria shapes used as beams, subjected to their safe loads uniformly distributed, and accompanying explanations with examples, are given on pages 98 and 99.

TABLES OF SAFE LOADS FOR I-BEAMS AND CHANNELS.

Tables of Safe Loads for all sizes and weights of Cambria I-Beams and channels for the usual spans, expressed in feet, are given on pages 106 to 123 inclusive.

TABLES FOR SPACING OF CAMBRIA I-BEAMS.

Tables for Spacing of Cambria I-Beams for a total load of 100 pounds per square foot including the weight of the beam, corresponding to spans from 4 to 48 feet, are given on pages 124 to 135 inclusive.

For any given size of beam the spacing or distances from centers to centers for different intensities of loading varies inversely as the load, so that the spacing for any intensity of loading may be found from the tabular spacing by proportion as stated in the notes at the foot of the tables.

TABLES OF SAFE LOADS FOR ANGLES.

Tables of uniformly distributed safe loads for the usual sizes of angles, are given on pages 138 to 159. In these tables the safe loads for equal leg angles are given on the assumption that one of the legs of the angle is horizontal and the other leg vertical. In the case of angles with unequal legs the safe loads are given for both positions, that is, with the long leg vertical and with the short leg vertical.

EXAMPLES OF APPLICATION OF TABLES OF SAFE LOADS AND TABLES OF SPACING.

EXAMPLE I.

What is the proper size of beam with a clear span of 24 feet to carry a superimposed load of 30 000 pounds uniformly distributed, the deflection to be such as not to crack a plastered ceiling?

From the Tables of Safe Loads for Cambria I-Beams, page 111, it is found that a 15-inch standard beam of this length, weighing 60 pounds per foot, will carry a gross load of 31 910 pounds, and the weight of the beam itself is $60 \times 24 = 1440$ pounds. Thus the net load may be 30 470 pounds, so that this is the proper size for the conditions named, as its deflection is within the allowable limit, which is shown to be at a span of 30 feet as indicated by the horizontal line on the table.

Similarly it may be found from page 112, that a 15-inch special beam, of 60 pounds per foot, will more than suffice, but as this section is not regularly kept in stock the standard 15-inch 60-pound beam should be ordered if prompt delivery is wanted.

It may also be found from page 114, that an 18-inch 55-pound beam will amply suffice, and as this is both stiffer and lighter than the 15-inch 60-pound beams, it could be used with economy if otherwise suitable for the location.

EXAMPLE II.

What is the safe load for an 8-inch standard I-Beam weighing 18.0 pounds per foot for a span of 20 feet, the deflection to be such as not to crack a plastered ceiling?

From the Tables of Safe Loads, page 108, it is found that the safe load for the beam in question is 7 580 pounds, but this value is below the line which indicates the span corresponding to the allowable limit of deflection.

Substituting the proper values in the formula for obtaining the reduced load corresponding to the allowable deflection, as given on page 101, we have

$$W = \frac{W_s \times L^2}{L_1^2} = \frac{9.480 \times 16^2}{20^2} = 6.067$$
 pounds.

which is the safe load required.

EXAMPLE III.

Required the best arrangement of beams for the floor system of a building 40 feet wide x 88 feet deep to safely support a live load of 100 pounds per square foot, using 10-inch tile arches resting on 12-inch I-Beams.

The weight of the floor materials will be about 50 pounds per square foot, allowing 39 pounds for the arch and 11 pounds for the other materials, or a total load of 150 pounds per square foot to be carried by the beams.

From the Table of Spacing for I-Beams for a uniform load of 100 pounds per square foot, page 128, it is seen that 12" standard I-Beams weighing 31½ pounds per foot and spaced 9.6 feet apart from center to center can be used with a span of 20 feet, and for a load of 150 pounds per square foot the spacing will be

$$\frac{9.6 \times 100}{150} = 6.4$$
 feet.

This will require one row of interior columns lengthwise of building.

To support the beams at the center of the building will require a line of girder beams resting on the columns. Assume the columns 22 feet apart, thus dividing the building into 8 bays, four on each side of the center.

The load on each girder will be

$$\frac{40}{2} \times 22 \times 150 = 66\,000$$
 pounds.

From the Table of Safe Loads, page 111, it is found that this will require two 15-inch standard I-Beams, each weighing 60 pounds per foot.

On account of the advisability of spacing the floor beams equally, the arrangement outlined above would reduce their distances to

 $\frac{22}{4}$ = 5.5 feet center to center, so that 10-inch I-Beams, weighing

40 pounds per foot, might be used for the body of the floor, as may be determined by referring to the Table of Spacings of Cambria I-Beams, page 127, and calculating as before, with the result that the allowable spacing for these conditions is found to be 5.7 feet. The 10-inch 40-pound beam under these conditions, will, however, deflect almost to the allowable limit for plastered ceilings, besides, they are heavier than the 12-inch 31.5-pound beams first considered, so that the latter will be the stiffer and more economical.

Although the load on the girder is not uniformly distributed, but concentrated at three points between the supports, the bending moment in this case will be the same as if the load were figured to be distributed uniformly, and for similar cases with different spacings the moments would be very nearly identical.

TABLES OF MAXIMUM BENDING MOMENTS.

The Tables of Maximum Bending Moments for beams and channels given on pages 136 and 137 are useful in determining the proper section required to support one or more irregularly located concentrated loads or various arrangements of loads to which the tables of safe loads uniformly distributed will not apply.

The method used consists in computing the maximum bending moment in foot pounds resulting from the specified loading, the proper section corresponding to a fibre stress of 16 000 or 12 500 lbs. per square inch, being taken directly from the tables without further computation.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance	STANDARD I-BEAMS.										
between supports	3 In	ch No.	В 5.	4	4 Inch l	No. B 9					
in feet.	5.5	6.5	7.5	7.5	8.5	9.5	10.5				
	lbs.	lbs.	lbs.	lbs.	lbs.	!bs.	lbs.				
. 4 5	4410	4780	5180	7950	8470	9000	9520				
	3530	3830	4140	6360	6780	7200	7610				
6	2940	3190	3450	5300	5650	6000	6350				
7	2520	2730	2960	4540	4840	5140	5440				
8	2210	2390	2590	3980	4240	4500	4760				
9	1960	2130	2300	3530	3770	4000	4230				
10	1770	1910	2070	3180	3390	3600	3810				
11	1600	1740	1880	2890	3080	3270	3460				
12	1470	1590	1730	2650	2820	3000	3170				
13	1360	1470	1590	2450	2610	2770	2930				
14	1260	1370	1480	2270	2420	2570	2720				
15	1180	1280	1380	2120	2260	2400	2540				
16	1100	1200	1290	1990	2120	2250	2380				
17	1040	1130	1220	1870	1990	2120	2240				
18	980	1060	1150	1770	1880	2000	2120				
19	930	1010	1090	1670	1780	1890	2000				
20	880	960	1040	1590	1690	1800	1900				
21	840	910	990	1510	1610	1710	1810				

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}\frac{1}{60}$ span.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance		STANDARD I-BEAMS.									
between supports	5 In	ch No. I	3 13.	6 In	6 Inch No. B 17.						
in feet.	9.75	12.25	14.75	12.25	14.75	17.25					
	lbs.	lbs.	Ibs.	lbs.	lbs.	lbs.					
4 5	12900	14520	16160	19370	21320	23280					
	10320	11620	12930	•15490	• 17050	18620					
6 7 8 9	8600 7370 6450 5730 5160	9680 8300 7260 6460 5810	10770 9230 8080 7180 6460	12910 11070 9680 8610 7750	14210 12180 10660 9470 8530	•15520 13300 11640 10350 9310					
11	4690	5280	5880	7040	7750	8460					
12	4500	4840	5390	6460	7110	7760					
13	3970	4470	4970	5960	6560	7160					
14	3680	4150	4620	5530	6090	6650					
15	3440	3870	4310	5160	5680	6210					
16	3220	3630	4040	4840	5330	5820					
17	3030	3420	3800	4560	5020	5480					
18	2870	3230	3590	4300	4740	5170					
19	2720	3060	3400	4080	4490	4900					
20	2580	2900	3230	3870	4260	4660					
21	2460	2770	3080	3690	4060	4430					
22	2340	2640	2940	3520	3880	4230					
23	2240	2530	2810	3370	3710	4050					
24	2150	2420	2690	3230	3550	3880					
25	2060	2320	2590	3100	3410	3720					
26 27 28	1980 1910	2230 2150	2490 2390	2980 2870 2770	3280 3160 3050	3580 3450 3330					

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3} \frac{1}{4} \frac{1}{3}$ span.

Above single dot, safe loads are too great for standard con-

nections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance	STANDARD I-BEAMS.									
between	7 In	ch No.	B 21.	8 Inch No. B 25.						
supports	15	17.5	20	18.00	20.25	22.75 lbs.	25.25			
in feet.	lbs.	lbs.	lbs.	lbs.	lbs.		lbs.			
4 5	27600 22080	29850 23880	32140 25710	30330	32100	34190	36290			
6	18400	19900	21430	25280	26750	28500	*30240			
7	15770	17060	18370	21670	22930	24420	25920			
8	13800	14930	•16070	18960	20060	21370	22680			
9	12270	13270	14280	16850	17830	19000	20160			
10	11040	11940	12860	15170	16050	17100	18140			
11 12 13 14 15	10040 9200 8490 7890	10860 9950 9190 8530 7960	11690 10710 9890 9180 8570	13790 12640 11670 10830 10110	14590 13380 12350 11470 10700	15540 14250 13150 12210 11400	16490 15120 13960 12960 12100			
16	6900	7460	8030	9480	10030	10690	11340			
17	6490	7020	7560	8920	9440	10060	10670			
18	6130	6630	7140	8430	8920	9500	10080			
19	5810	6280	6770	7980	8450	9000	9550			
20	5520	5970	6430	7580	8030	8550	9070			
21	5260	5690	6120	7220	7640	8140	8640			
22	5020	5430	5840	6890	7300	7770	8250			
23	4800	5190	5590	6590	6980	7430	7890			
24	4600	4980	5360	6320	6690	7120	7560			
25	4420	4780	5140	6070	6420	6840	7260			
26	4250	4590	4940	5830	6170	6580	6980			
27	4090	4420	4760	5620	5940	6330	6720			
28	3940	4260	4590	5420	5730	6110	6480			
29	3810	4120	4430	5230	5530	5900	6260			

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{10}$ span. Above single dot, safe loads are too great for standard con-

nections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance			STAN	DARD	I-BE	AMS.				
between supports	9	Inch N	To. B 2	9.	10	10 Inch No. B 33.				
in feet.	21	25	30	35	25	30	35	40		
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.		
8 9 10	25160 22370 20130	27240 24210 21790	30180 26830 24150	33120 29440 26500	26050	28620	31240	33850		
11	18300	19810	21950	24090	23680	26020	28400	30780		
12	16770	18160	20120	22080	21710	23850	26030	28210		
13	15480	16760	18570	20380	20040	22020	24030	26040		
14	14380	15570	17250	18930	18610	20450	22310	24180		
15	13420	14530	16100	17670	17360	19080	20830	22570		
16	12580	13620	15090	16560	16280	17890	19520	21160		
17	11840	12820	14200	15590	15320	16840	18380	19910		
18	11180	12110	13410	14720	14470	15900	17350	18810		
19	10590	11470	12710	13950	13710	15070	16440	17820		
20	10064	10900	12070	13250	13020	14310	15620	16930		
21	9590	10380	11500	12620	12400	13630	14880	16120		
22	9150	9910	10980	12050	11840	13010	14200	15390		
23	8750	9480	10500	11520	11320	12450	13580	14720		
24	8390	9080	10060	11040	10850	11930	13020	14110		
25	8050	8720	9660	10600	10420	11450	12500	13540		
26	7740	8380	9290	10190	10020	11010	12020	13020		
27	7460	8070	8940	9810	9650	10600	11570	12540		
28	7190	7780	8620	9460	9300	10220	11160	12090		
29	6940	7510	8330	9140	8980	9870	10770	11670		
30	6710	7260	8050	8830	8680	9540	10410	11280		
31 32 33	6490	7030	7790	8550	8400 8140 7890	9230 8950 8670	10080 9760 9470	10920 10580 10260		

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3\sqrt{3}}$ span.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance between		'ANDAI BEAM		SPECIAL I-BEAMS.					
supports	12 In	ch No.	B 41.	12 Inch No. B 105.					
in feet.	31.5 lbs.	35 lbs.	40 lbs.	40 lbs.	45 lbs.	50 lbs.	55 lbs.		
10	38370	40580	43720	47810	50790	53930	57070		
11 12 13 14 15	34880 31970 29510 27400 25580	36890 33820 31220 28990 27050	39740 36430 33630 31230 29140	43470 39840 36780 34150 31880	46180 42330 39070 36280 33860	•49030 44940 41480 38520 35950	• 51880 47560 43900 40760 38040		
16 17 18 19 20	23980 22570 21310 20190 19180	25360 23870 22540 21360 20290	27320 25720 24290 23010 21860	29880 28130 26560 25160 23910	31750 29880 28220 26730 25400	33710 31720 29960 28380 26960	35670 33570 31700 30040 28530		
21 22 23 24 25	18270 17440 16680 15990	19320 18450 17640 16910 16230	20820 19870 19010 18220 17490	22770 21730 20790 19920 19130	24190 23090 22080 21160 20320	25680 24510 23450 22470 21570	27170 25940 24810 23780 22830		
26 27 28 29 30	14760 14210 13700 13230 12790	15610 15030 14490 13990 13530	16810 16190 15610 15070 14570	18390 17710 17080 16490 15940	19540 18810 18140 17510 16930	20740 19970 19260 18600 17980	21950 21140 20380 19680 19020		
31 32 33 34 35	12380 11990 11630 11280 10960	13090 12680 12300 11940 11590	14100 13660 13250 12860 12490	15420 14940 14490 14060 13660	16380 15870 15390 14940 14510	17400 16850 16340 15860 15410	18410 17830 17290 16780 16300		

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = 360 span. Above single dot, safe loads are too great for standard con-

nections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

		STAN	DARD I-	BEAM.	
Distance between supports		15 I	nch No.	B 53.	
in feet.	42 lbs.	45 lbs.	50 lbs.	55 lbs.	60 lbs.
10	62830	64830	68750	72670	76600
11	57120	58940	62500	•66070	•69630
12	52360	54030	57290	60560	63830
13	48330	49870	52890	55900	58920
14	44880	46310	49110	51910	54710
15	41880	43220	45840	48450	51060
16	39270	40520	42970	45420	47870
17	36960	38140	40440	42750	45060
18	34900	36020	38200	40370	42550
19	33070	34120	36190	38250	40310
20	31410	32420	34380	36340	38300
21	29920	30870	32740	34610	36470
22	28530	29470	31250	33030	34820
23	27320	28190	29890	31600	33300
24	26130	27010	28650	30280	31910
25	25130	25930	27500	29070	30640
26	24160	24940	26440	27950	29460
27	23270	24010	25460	26920	28370
28	22440	23150	24550	25960	27360
29	21660	22360	23710	25060	26410
30	20940	21610	22920	24220	25530
31	20270	20910	22180	23440	24710
32	19630	26260	21490	22710	23940
33	10140	19650	20830	22020	23210
34	18480	19070	20220	21370	22530
35	17950	18520	19640	20760	21580

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = 3 to span. Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

	SPECIAL I-BEAM.								
Distance between supports in feet.	15 Inch No. B 109.								
	60 lbs.	65 lbs.	70 lbs.	75 lbs.	80 lbs.				
10	86610	90470	94390	98310	102230				
11 12	78740 72180	82240 75390	85810 78660	89370 81920	92940 85190				
13 14 15	•66630 61870 57740	•69590 64620 60310	72610 • 67420 62920	75620 • 70220 65540	78640 73020 68150				
16	54130	56540	58990	61440	63890				
17 18	50950 48120 45590	53220 50260 47610	55520 52440 49680	57830 54620 51740	60140 56790 53810				
19 20	43310	45230	47190	49150	51120				
21 22	41240 39370	43080 41120	44950 42900	46810 44690 42740	48680 46470 44450				
23 24 25	37660 36090 34650	39330 37690 36190	41040 39330 37750	40960 39320	42600 40890				
26 27	33310 32080	34790 33510	36300 34960	37810 36410	39320 37860				
28 29 30	30930 29870 28870	32310 31200 30160	33710 32550 31460	35110 33900 32770	36510 35250 34080				
31	27940	29180	30450	31710	32980				
32 33 34	27070 26250 25470	28270 27410 26610	29500 28600 27760	30720 29790 28910	31950 30980 30070				
35	24750	25850	26970	28090	29210				

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = 300 span. Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

		SPEC	IAL I-B	EAM.	
Distance between supports		15 In	nch No. E	113.	
in feet.	80	B5	90	95	100
	lbs.	lbs.	lbs.	lbs.	lbs.
10	112230	116030	119960	123880	127800
11	102030	105490	109050	112620	116180
12	93520	96700	99960	103230	106500
13	86330	89260	92270	95290	98310
14	80160	82880	85680	88480	91280
15	74820	77360	79970	82580	85200
16	• 70140	72520	74970	77420	79870
17	66020	• 68260	•70560	72870	75180
18	62350	64460	66640	•68820	71000
19	59070	61070	63130	65200	• 67260
20	56110	58020	59980	61940	63900
21	53440	55250	57120	58990	60860
22	51010	52740	54530	56310	58090
23	48800	50450	52150	53860	55560
24	46760	48350	49980	51620	53250
25	44890	46410	47980	49550	51120
26	43170	44630	46140	47650	49150
27	41570	42980	44430	45880	47330
28	40080	41440	42840	44240	45640
29	38700	40010	41360	42720	44070
30	37410	38680	39990	41290	42600
31	36200	37430	38700	39960	41230
32	35070	36260	37490	38710	39940
33	34010	35160	36350	37540	38730
34	33010	34130	35280	36430	37590
35	32070	33150	34270	35390	36510

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}\frac{1}{6}$ span. Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance	STANDARD I-BEAMS.									
between supports	1	8 Inch	No. B 6	5.	20 Ir	nch No.	B 73.			
in feet.	55	60	65	70	65	70	75			
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.			
14	67350	71260	74620	77990	89110	92940	96670			
15	62860	•66510	•69650	72790	83170	86740	90230			
16	58930	62360	65300	68240	77970	81320	84590			
17	55460	58650	61460	64220	73380	76540	79610			
18	52380	55430	58040	60660	69310	72280	75190			
19	49630	52510	54990	57460	65660	•68480	71230			
20	47140	49880	52240	54590	62370	65060	•67670			
21	44900	47510	49750	51990	59400	61960	64450			
22	42860	45350	47490	49360	56700	59140	61520			
23	40990	43380	45420	47470	54240	56570	58840			
24	39290	41570	43530	45490	51980	54210	56390			
25	37720	39910	41790	43670	49900	52040	54140			
26 27 28 29	36260 34920 33670 32510 31430	38370 36950 35630 34400 33260	40180 38690 37310 36030 34820	41990 40440 38990 37650 36390	47980 46200 44550 43020 41580	50040 48190 46470 44870 43370	52050 50130 48340 46670 45110			
31	30420	32180	33700	35220	40240	41970	43660			
33	29460	31200	32650	34120	38980	40660	42290			
33	28570	30230	31660	33080	37800	39430	41010			
34	27730	29340	30730	32110	36690	38270	39810			
35	26940	28510	29850	31190	35640	37170	38670			
36	26190	$\begin{array}{c} 27710 \\ \hline 26960 \\ 26250 \\ 25580 \\ 24940 \\ \end{array}$	29020	30330	34650	36140	37590			
37	25480		28240	29510	33720	35160	36580			
38	24810		27490	28730	32830	34240	35620			
39	24180		26790	27990	31990	33360	34700			
40	23570		26120	27290	31190	32530	33830			

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = \$\frac{1}{8}\frac{1}{6}\text{ span}\$.

Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

	SPECIAL I-BEAM. 20 Inch No. B 121.								
Distance between supports in feet.									
	80 lbs.	85 lbs.	90 lbs.	95 lbe.	100 lbs.				
16	97750	100570	103840	107100	110370				
17	92000	94650	97730	100800	103880				
18	86890	89390	92300	95200	98110				
19	82320	84690	87440	90190	92950				
20	78200	80460	83070	85680	88300				
21	74480	76620	79110	81600	84090				
22	71090	73140	75520	77890	80270				
23	• 68000	•69960	72230	74510	76780				
24	65170	67050	•69220	71400	73580				
25	62560	64360	66460	• 68550	•70640				
26	60160	61890	63900	65910	67920				
27	57930	59600	61530	63470	65410				
28	55860	57470	59340	61200	63070				
29	53330	55490	57290	59090	60990				
30	52140	53640	55380	57120	58870				
31	50450	51910	53590	55280	56970				
32	48880	50230	51920	53550	55190				
33	47400	48760	50350	51930	53510				
34	48000	47330	48860	50400	51940				
35	44690	45970	47470	48960	50460				
36	43450	44700	46150	47600	49050				
37	42270	43490	44900	46320	47730				
38	41160	42340	43720	45100	46470				
39	40100	41260	42600	43940	45280				
40	39100	40230	41530	42840	44150				

Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance	STANDARD I-BEAM.								
between supports		24 I	nch No. 1	B 89.					
in feet.	80	85	90	95	100				
	lbs	lbs.	lbs.	lbs.	lbs.				
18	103070	107050	110540	114020	117510				
19	97650	•101420	•104720	108020	111330				
20	92770	96350	99480	•102620	•105760				
21	88350	91760	94750	97740	100720				
22	84330	87590	90440	93290	96140				
23	80670	83780	86510	89240	91960				
24	77300	80290	82900	85520	88130				
25	74210	77080	79590	82100	86410				
26	71360	74110	76530	78940	81350				
27	68720	71370	73690	76020	78340				
28	66260	68820	71060	73300	75540				
29	63980	66450	68610	70770	72940				
30	61840	64230	66320	68410	70510				
31	59850	62160	64180	66210	68230				
32	57980	60220	62180	64140	66100				
33	56220	58390	60290	62200	64100				
34	54570	56680	58520	60370	62210				
35	53010	55060	56850	58640	60430				
36	51540	53530	55270	57010	58760				
37	50140	52080	53780	55470	57170				
38	48820	50710	52360	54010	55660				
39	47570	49410	51020	52630	54240				
40	46380	48170	49740	51310	52880				
41	45280	47000	48530	50060	51590				
42	44170	45880	47370	48870	50360				
43	43150	44810	46270	47730	49190				
44	42170	43790	45220	46650	48070				
45	41230	42820	44220	45610	47000				
46	40330	41890	43250	44620	45980				
47	39470	41000	42330	43670	45000				
48	38650	40140	41450	42760	44070				

Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of beam.

Distance	SPECIAL I-BEAM.						
between supports	2	Inch No. B 1	27.				
in feet.	105	110	115				
	lbs.	lbs.	lbs.				
18	138840	142390	145950				
19	131530	134890	138270				
20	124950	128150	131350				
21	119000	122050	125100				
22	113590	116500	119410				
23	108660	111440	114220				
24	104130	106790	109460				
25	99960	102530	105080				
26	96120	98580	101040				
27	92560	94930	97300				
28	89250	91540	93830				
29	86170	88380	90590				
30	83300	85440	87570				
31	80620	82680	84740				
32	78100	80100	82100				
33	75730	77670	79610				
34	73500	75380	77270				
35	71400	73230	75060				
36	69420	71200	72970				
37	67540	69270	71000				
38	65770	67450	69130				
39	64080	65720	67360				
40	62480	64080	65680				
41	60950	62510	64080				
42	59500	61030	62550				
43	58120	59610	61090				
44	56800	58250	59710				
45	55530	56960	58380				
46	54330	55720	57110				
47	53170	54530	55890				
48	52060	53400	54730				

Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of channel.

	STANDARD CHANNELS.										
Distance between	3Inc	h No	. C 5.	4 In	ch No.	C 9.	5 Inc	h No.	C 13.		
supports in feet.	4	5	6	5.25	6.25	7.25	6.5	9	11.5		
III 100 s.	Ibs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	Ibs.	lbs.		
4 5	2910 2330	3290 2630	3680 2940	5060 4050	5570 4450	6090 4870	7910 6330	9460 7570	11100 8880		
6	1940	2190	2450	3370	3710	4060	5270	6310	7400		
7	1660	1880	2100	2890	3180	3480	4520-	5410	6340		
8	1450 1290	1640 1460	1840 1630	$\frac{2530}{2250}$	2780	$\frac{3050}{2710}$	3960 3520	4730 4210	5550 4930		
10	1160	1310	1470	2020	2230	2440	3160	3790	4440		
11 12 13 14 15	1060 970 890 830 780	1190 1100 1010 940 880	1340 1230 1130 1050 980	1840 1690 1560 1440 1350	2020 1860 1710 1590 1480	2210 2030 1870 1740 1620	2880 2640 2430 2260 2110	3440 3150 2910 2700 2520	4040 3700 3410 3170 2960		
16 17 18 19 20	730 680 650 610 580	820 770 730 690 660	920 870 820 770 740	1260 1190 1120 1060 1010	1390 1310 1240 1170 1110	1520 1430 1350 1280 1220	1980 1860 1760 1670 1580	2370 2230 2100 1990 1890	2770 2610 2470 2340 2220		
21 22 23 24 25	550 530 510 480 470	630 600 570 550 530	700 670 640 610 590	960 920 880 840 810	1060 1010 970 930 890	1160 1110 1060 1020 970	1510 1440 1380 1320 1270	1800 1720 1650 1580 1510	2110 2020 1930 1850 1780		

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{360}$ span.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of channel.

			ST	ANDA	RD (HANN	TELS.		
Distance between	6 I	6 Inch No. C 17.				7 Inc	h No.	C 21.	
in feet.	B	10.5	13	15.5	9.75	12.25	14.75	17.25	19.75
	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	lbs.	fbs.	lbs.	lbs.
4 5	11550	13440	15400	17360	16070	18410	20700	22990	25280
	9240	10750	12320	13890	12850	•14730	*16560	18390	20220
6 7 8 9	7700 6600 5780 5130 4620	8960 7680 6720 5970 5380	10270 8800 7700 6840 6160	11570 9920 8680 7720 6940	10710 9180 8030 7140 6430	12280 10520 9210 2180 7370	13800 11830 10350 9200 8280	•15330 13140 11490 10220 9200	•16850 14440 12640 11230 10110
11 12 13 14 15	4200 3850 3550 3300 3080	4890 4480 4130 3840 3580	5600 5130 4740 4400 4110	6310 5790 5340 4960 4630	5840 5360 4940 4590 4280	6700 6140 5670 5260 4910	7530 6900 6370 5910	8360 7660 7070 6570 6130	9190 8430 7780 7220 6740
16	2890	3360	3850	4340	4020	4600	5180	5750	6320
17	2720	3160	3620	4080	3780	4330	4870	5410	5950
18	2570	2990	3420	3860	3570	4090	4600	5110	5620
19	2430	2830	3240	3650	3380	3880	4360	4840	5320
20	2510	2690	3080	3470	3210	3680	4140	4600	5060
21	2200	2560	2930	3310	3060	3510	3940	4380	4810
22	2100	2440	2800	3160	2920	3350	3760	4180	4600
23	2010	2340	2680	3020	2790	3200	3600	4000	4400
24	1930	2240	2570	2890	2680	3070	3450	3830	4210
25	1850	2150	2460	2780	2570	2950	3310	3680	4040

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = 360 span. Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of channel.

7:1	STANDARD CHANNELS.											
Distance between		8 In	ch No.	h No. C 25.			9 Inch No. C 29.					
supports in feet.	11.25	13.75	16.25	18.75	21.25	13.25	15	20	25			
	lbs.	lbs.	lbs.	lbs.	Ibs.	Ibs.	lbs.	Ibs.	Ibs.			
4 5	21530 17230	24000 19200	26610 21290	29230 23380	31840 25470	28040 22430	30130 24110	36020 28810	41900 33520			
7 8 9	14360 12310 10770 9570 8610	16000 13710 12000 10670 9600	17740 15210 13310 11830 10650	19480 16700 14610 12990 11690	21230 18200 15920 14150 12740	14020 12460	20090 17220 15070 13390 12050	24010 20580 18010 16010 14410	27930 23940 20950 18620 16760			
11 12 13 14 15	7830 7180 6630 6150 5740	8730 8000 7380 6860 6400	9680 8870 8190 7600 7100	10630 9740 8990 8350 7790	11580 10610 9800 9100 8490	10200 9350 8630 8010 7480	10960 10040 9270 8610 8040	13100 12010 11080 10290 9600	15240 13970 12890 11970 11170			
16 17 18 19 20	5380 5070 4790 4530 4310	5650 5330 5050 4800	6650 6260 5910 5600 5320	7310 6880 6490 6150 5850	7960 7490 7080 6700 6370	7010 6600 6230 5900 5610	7530 7090 6700 6340 6030	9000 8470 8000 7580 7200	10470 9860 9310 8820 8380			
21 22 23 24 25	4100 3920 3750 3590 3450	4570 4360 4170 4000 3840	5070 4840 4630 4440 4260	5570 5310 5080 4870 4680	6070 5790 5540 5310 5090	5340 5100 4880 4670 4490	5740 5480 5240 5020 4820	6860 6550 6260 6000 5760	7980 7620 7290 6980 6700			

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = 3 to span. Above single dot, safe loads are too great for standard connections.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of channel.

	STANDARD CHANNEL. 10 Inch No. C 33.							
Distance between supports								
in feet.	15	20 lbs.	25 lbs.	30 lbs.	35			
	lbs.	108.	IDS.	108.	108.			
10	14270	16790	19410	22020	24640			
11 12 13 14 15	12970 11890 10980 10190 9510	15270 14000 12920 12000 11200	17640 16170 14930 •13860 12940	20020 18350 16940 15730 14680	22400 20530 18950 17600 16430			
16 17 18 19 20	8920 8390 7930 7510 7130	10500 9880 9330 8840 8400	12130 11420 10780 10220 9700	13760 12950 12240 11590 11010	15400 14490 13690 12970 12320			
21 22 23 24 25	6790 6490 6290 5940 5710	8000 7630 7300 7000 6720	9240 8820 8440 8090 7760	10490 10010 9580 9180 8810	11730 11200 10710 10270 9860			
26 27 28 29 30	5490 5280 5100 4920 4760	6460 6220 6000 5790 5600	7460 7190 6930 6690 6470	8470 8160 7870 7590 7340	9480 9130 8800 8500 8210			

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}$, span.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of channel.

	STANDARD CHANNEL. 12 Inch No. C 41.								
Distance between supports									
in feet.	20.5	25	30	35	40				
	lbs.	lbs.	lbs.	lbs.	lbs.				
10	22780	25600	28740	31870	35010				
11	20700	23270	26120	28980	31830				
12	18980	21330	23950	26560	29180				
13	17520	19690	22110	24520	26930				
14	16270	18290	20530	22770	25010				
15	15180	17070	19160	21250	23340				
16	14230	16000	17960	19920	21880				
17	13400	15060	16900	18750	20600				
18	12650	14220	15970	17710	19450				
19	11990	13470	15120	16780	18430				
20	11390	12800	14370	15940	17510				
21	10850	12190	13680	15180	16670				
22	10350	11640	13060	14490	15910				
23	9900	11130	12490	13860	15220				
24	9490	10670	11970	13280	14590				
25 26 27 28 29 30	9110 8760 8440 8130 7850 7590	9850 9480 9140 8830 8530	11490 11050 10640 10260 9910 9580	12750 12260 11810 11380 10990 10620	14000 13470 12970 12500 12070 11670				

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{360}$ span.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of channel.

Distance	STANDARD CHANNEL.										
between supports		15 Inch No. C 53.									
in feet.	33	35	40	45	50	55					
	lbs.	lbs.	lbs.	Ibs.	Ibs.	Ibe.					
10	44450	45500	49420	53350	57270	61190					
11	40410	41370	44930	48500	52060	55630					
12	37040	37920	41190	44460	47720	50990					
13	34190	35000	38020	41040	44050	47070					
14	31750	32500	35300	38100	40910	43710					
15	29630	30340	32950	35560	38180	40790					
16	27780	28440	30890	33340	35790	38240					
17	26150	26770	29070	31380	33690	35990					
18	24700	25280	27460	29640	31820	33990					
19	23400	23950	26010	28080	30140	32210					
20	22230	22750	24710	26670	28630	30590					
21	21170	21670	23540	25400	27270	29140					
22	20210	20680	22470	24250	26030	27810					
23	19330	19780	21490	23190	24900	26600					
24	18520	18960	20590	22230	23860	25500					
25	17780	18200	19770	21340	22910	24480					
26	17100	17500	19010	20520	22030	23530					
27	16460	16850	18310	19760	21210	22660					
28	15880	16250	17650	19050	20450	21850					
29	15330	15690	17040	18400	19750	21100					
30	14820	15170	16470	17780	19090	20400					

SPACING OF CAMBRIA I-BEAMS FOR UNI-FORM LOAD OF 100 LBS. PER SOUARE FOOT.

Proper distance in feet, center to center of Beams.

Maximum fibre stréss 16 000 pounds per square inch.

Distance	STANDARD I-BEAMS.									
between	3 In	ch No.	В 5.	4	4 Inch l	No. B 9.				
in feet.	5.5 lbs.	6.5 lbs.	7.5 lbs.	7.5 lbs.	8.5 lbs.	9.5 lbs.	10.5 lbs.			
4 5	11.0 7.1	12.0 7.7	12.9 8.3	19.9 12.7	21.2 13.6	22.5 14.4	23.8 15.2			
6	4.9	5.3	5.8	8.8	9.4	10.0	10.6			
7 8	3.6 2.8	3.9 3.0	$\frac{4.2}{3.2}$	6.5 5.0	6.9 5.3	7.3 5.6	7.8 5.9			
9 10	2.2 1.8	2.4 1.9	$2.6 \\ 2.1$	3.9 3.2	4.2 3.4	4.4 3.6	4.7 3.8			
11 12 13 14 15	1.5 1.2 1.0	1.6 1.3 1.1 1.0	1.7 1.4 1.2 1.1	2.6 2.2 1.9 1.6 1.4	2.8 2.4 2.0 1.7 1.5	3.0 2.5 2.1 1.8 1.6	3.1 2.6 2.3 1.9 1.7			
16 17 18 19 20				1.2 1.1 1.0	1.3 1.2 1.0	1.4 1.2 1.1 1.0	1.5 1.3 1.2 1.1 1.0			

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{\pi^2 \sigma}$ span.

Spacings for other intensities of loading may be obtained from those in tables as follows:

Required spacing = \frac{\text{Intensity of loading from table}}{\text{New intensity of loading}} \times \text{Computed spacing from table.}

SPACING OF CAMBRIA I-BEAMS FOR UNI-FORM LOAD OF 100 LBS. PER SOUARE FOOT.

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance	STANDARD I-BEAMS.								
between	5 In	ch No. I	3 13.	6 Inch No. B 17.					
supports	9.75	12.25	14.75	12.25	14.75	17.25			
in feet.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.			
4 5	32.2	36.3	40.4	48.4	53.3	58.2			
	20.6	23.2	25.9	•31.0	•34.1	37.2			
6	14.3	16.1	18.0	21.5	23.7	•25.9			
7	10.5	11.9	13.2	15.8	17.4	19.0			
8	8.1	9.1	10.1	12.1	13.3	14.5			
9	6.4	7.2	8.0	9.6	10.5	11.5			
10	5.2	5.8	6.5	7.7	8.5	9.3			
11	4.3	4.8	5.3	6.4	7.0	7.7			
12	3.6	4.0	4.5	5.4	5.9	6.5			
13	3.1	3.4	3.8	4.6	5.0	5.5			
14	2.6	3.0	3.3	4.0	4.4	4.8			
15	2.3	2.6	2.9	3.4	3.8	4.1			
16	2.0	2.3	2.5	3.0	3.3	3.6			
17	1.8	2.0	2.2	2.7	3.0	3.2			
18	1.6	1.8	2.0	2.4	2.6	2.9			
19	1.4	1.6	1.8	2.1	2.4	2.6			
20	1.3	1.5	1.6	1.9	2.1	2.3			
21 22 23 24 25	1.2 1.1 1.0	1.3 1.2 1.1 1.0	1.5 1.3 1.2 1.1 1.0	1.8 1.6 1.5 1.3 1.2	1.9 1.8 1.6 1.5 1.4	2.1 1.9 1.8 1.6 1.5			
26 27 28			1.0	1.1 1.1 1.0	1.3 1.2 1.1	1.4 1.3 1.2			

For spacings above single dot the safe loads are too great for standard connections.

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{36\pi}$ span. Spacings for other intensities of loading may be obtained from those in tables

as follows:

Required spacing = Intensity of loading from table.

New intensity of loading X Computed spacing from table.

SPACING OF CAMBRIA I-BEAMS FOR UNI-FORM LOAD OF 100 LBS. PER SQUARE FOOT.

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance	STANDARD I-BEAMS.							
between	7 Inch No. B 21.			8 Inch No. B 25.				
supports in feet.	15 lbs.	17.5 lbs.	20 lbs.	18.00 lbs.	20.25 lbs.	22.75 lbs.	25.25 lbs.	
4 5	69.0 44.2	74.6 47.8	80.3 51.4	60.7	64.2	68.4	72.6	
6 7 8 9	30.7 •22.5 17.3 13.6 11.0	33.2 •24.4 18.7 14.7 11.9	35.7 26.2 •20.1 15.9 12.9	42.1 31.0 23.7 18.7 15.2	44.6 32.8 25.1 19.8 16.1	47.5 34.9 26.7 21.1 17.1	•50.4 37.0 28.3 22.4 18.1	
11 12 13 14	9.1 7.7 6.5 5.6 4.9	9.9 8.3 7.1 6.1	10.6 8.9 7.6 6.6 5.7	12.5 10.5 9.0 7.7 6.7	13.3 11.1 9.5 8.2 7.1	14.1 11.9 10.1 8.7 7.6	15.0 12.6 10.7 9.3 8.1	
16 17 18 19 20	4.3 3.8 3.4 3.1 2.8	4.7 4.1 3.7 3.3 3.0	5.0 4.4 4.0 3.6 3.2	5.9 5.2 4.7 4.2 3.8	6.3 5.6 5.0 4.4 4.0	6.7 5.9 5.3 4.7 4.3	7.1 6.3 5.6 5.0 4.5	
21 22 23 24 25	2.5 2.3 2.1 1.9 1.8	2.7 2.5 2.3 2.1 1.9	2.9 2.7 2.4 2.2 2.1	3.4 3.1 2.9 2.6 2.4	3.6 3.3 3.0 2.8 2.6	3.9 3.5 3.2 3.0 2.7	4.1 3.7 3.4 3.1 2.9	
26 27 28	1.6 1.5 1.4	1.8 1.6 1.5	1.9 1.8 1.6	2.2 2.1 1.9	2.4 2.2 2.0	2.5 2.3 2.2	2.7 2.5 2.3	

For spacings above single dot the safe loads are too great for standard

For spacing above the dotted line the safe load for bending is greater than the safe load for web crippling, as explained and shown on pages 82 to 84 inclusive. For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings $= \frac{1}{10} \, \mathrm{span}$. Spacings for other intensities of loading may be obtained from those in tables

as follows:

Intensity of loading from table. Required spacing=

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance	STANDARD I-BEAMS.										
between supports	9	Inch I	No. B 2	9.	10 Inch No. B 33.						
in feet.	21	25	30	35	25	30	35	40			
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.			
8 9 10	31.5 24.9 20.1	34.1 26.9 21.8	37.7 29.8 24.1	41.4 32.7 26.5	26.0	28.6	31.2	33.9			
11	16.6	18.0	20.0	21.9	21.5	23.7	25.8	28.0			
12	14.0	15.1	16.8	18.4	18.1	19.9	21.7	23.5			
13	11.9	12.9	14.3	15.7	15.4	16.9	18.5	20.0			
14	10.3	11.1	12.3	13.5	13.3	14.6	15.9	17.3			
15	8.9	9.7	10.7	11.8	11.6	12.7	13.9	15.0			
16	7.9	8.5	9.4	10.4	10.2	11.2	12.2	13.2			
17	7.0	7.5	8.4	9.2	9.0	9.9	10.8	11.7			
18	6.2	6.7	7.5	8.2	8.0	8.8	9.6	10.4			
19	5.6	6.0	6.7	7.3	7.2	7.9	8.7	9.4			
20	5.0	5.4	6.0	6.6	6.5	7.2	7.8	8.5			
21	4.6	4.9	5.5	6.0	5.9	6.5	7.1	7.7			
22	4.2	4.5	5.0	5.5	5.4	5.9	6.5	7.0			
23	3.8	4.1	4.6	5.0	4.9	5.4	5.9	6.4			
24	3.5	3.8	4.2	4.6	4.5	5.0	5.4	5.9			
25	3.2	3.5	3.9	4.2	4.2	4.6	5.0	5.4			
26	3.0	3.2	3.6	3.9	3.9	4.2	4.6	5.0			
27	2.8	3.0	3.3	3.6	3.6	3.9	4.3	4.6			
28	2.6	2.8	3.1	3.4	3.3	3.7	4.0	4.3			
29	2.4	2.6	2.9	3.2	3.1	3.4	3.7	4.0			
30	2.2	2.4	2.7	2.9	2.9	3.2	3.5	3.8			
31 32 33	2.1	2.3	2.5	2.8	2.7 2.5 2.4	3.0 2.8 2.6	3.3 3.1 2.9	3.5 3.3 3.1			

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = 440 span.

Spacings for other intensities of loading may be obtained from those in tables

as follows:

Intensity of loading from table New intensity of loading Computed spacing from table. Required spacing=

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance		ANDA		SPECIAL I-BEAM.				
between supports	12 In	ch No.	B 41.	12 Inch No. B 105.				
in feet.	31.5 lbs.	35 lbs.	40 lbs.	40 lbs.	45 lbs.	50 lbs.	55 lbs.	
10	38.4	40.6	43.7	47.8	50.8	53.9	57.1	
11	31.7	33.5	36.1	39.5	42.0	•44.6	•47.2	
12	26.6	28.2	30.4	33.2	35.3	37.5	39.6	
13	22.7	24.0	25.9	28.3	30.1	31.9	33.8	
14	19.6	20.7	22.3	24.4	25.9	27.5	29.1	
15	17.1	18.0	19.4	21.3	22.6	24.0	25.4	
16	15.0	15.9	17.1	18.7	19.8	21.1	22.3	
17	13.3	14.0	15.1	16.5	17.6	18.7	19.7	
18	11.8	12.5	13.5	14.8	15.7	16.6	17.6	
19	10.6	11.2	12.1	13.2	14.1	14.9	15.8	
20	9.6	10.1	10.9	12.0	12.7	13.5	14.3	
21	8.7	9.2	9.9	10.8	11.5	12.2	12.9	
22	7.9	8.4	9.0	9.9	10.5	11.1	11.8	
23	7.3	7.7	8.3	9.0	9.6	10.2	10.8	
24	6.7	7.0	7.6	8.3	8.8	9.4	9.9	
25	6.1	6.5	7.0	7.7	8.1	8.6	9.1	
26	5.7	6.0	6.5	7.1	7.5	8.0	8.4	
27	5.3	5.6	6.0	6.6	7.0	7.4	7.8	
28	4.9	5.2	5.6	6.1	6.5	6.9	7.3	
29	4.6	4.8	5.2	5.7	6.0	6.4	6.8	
30	4.3	4.5	4.9	5.3	5.6	6.0	6.3	
31	4.0	4.2	4.5	5.0	5.3	5.6	5.9	
32	3.7	4.0	4.3	4.7	5.0	5.3	5.6	
33	3.5	3.7	4.0	4.4	4.7	5.0	5.2	
34	3.3	3.5	3.8	4.1	4.4	4.7	4.9	
35	3.1	3.3	3.6	3.9	4.1	4.4	4.7	

For spacings above single dot the safe loads are too great for standard connections.

as follows:

Required spacing=\frac{\text{Intensity of loading from table}}{\text{New intensity of loading}} \times \text{Computed spacing from table.}

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{180}$ span.

Spacings for other intensities of loading may be obtained from those in tables

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distante	STANDARD I-BEAM.									
between supports		15 I	nch No. I	3 53.						
in feet.	42	45	50	55	60					
	lbs.	lbs.	lbs.	lbs.	lbs.					
10	62.8	64.8	68.8	72.7	76.6					
11	51.9	53.6	56.8	•60.1	•63.3					
12	43.6	45.0	47.7	50.5	53.2					
13	37.2	38.4	40.7	43.0	45.3					
14	32.0	33.1	35.1	37.1	39.1					
15	27.9	28.8	30.6	32.3	34.0					
16	24.5	25.3	26.9	28.4	29.9					
17	21.7	22.4	23.8	25.1	26.5					
18	19.4	20.0	21.2	22.4	23.6					
19	17.4	18.0	19.0	20.1	21.2					
20	15.7	16.2	17.2	18.2	19.1					
21	14.2	14.7	15.6	16.5	17.4					
22	13.0	13.4	14.2	15.0	15.8					
23	11.9	12.3	13.0	13.7	14.5					
24	10.9	11.3	11.9	12.6	13.3					
25	10.1	10.4	11.0	11.6	12.3					
26	9.3	9.6	10.2	10.8	11.3					
27	8.6	8.9	9.4	10.0	10.5					
28	8.0	8.3	8.8	9.3	9.8					
29	7.5	7.7	8.2	8.6	9.1					
30	7.0	7.2	7.6	8.1	8.5					
31	6.5	6.7	7.2	7.6	8.0					
32	6.1	6.3	6.7	7.1	7.5					
33	5.8	6.0	6.3	6.7	7.0					
34	5.4	5.6	5.9	6.3	6.6					
35	5.1	5.3	5.6	5.9	6.3					

For spacings above single dot the safe loads are too great for standard on somess.

For spacings below the heavy lines the deflections will be greater than the

allowable limit for plastered ceilings = 360 span.

Spanings for other intensities of loading may be obtained from those in tables as follows:

Required spacing = Intensity of leading from table.

New intensity of leading X Computed spacing from table.

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance between	SPECIAL I-BEAM. 15 Inch No. B 109.									
supports		1	1	1						
in feet.	60 lbs.	65 lbs.	70 lbs.	75 lbs.	80 lbs.					
10	86.6	90.5	94.4	98.3	102.2					
11	71.6	74.8	78.0	81.2	84.5					
12	60.1	62.8	65.5	68.3	71.0					
13	651.3	€53.5	55.9	58.2	60.5					
$\begin{array}{c} 14 \\ 15 \end{array}$	44.2 38.5	46.2 40.2	448.2 41.9	•50.2 43.7	52.2 •45.4					
19	90.9	40.2	41.9	40.7	45.4					
16	33.8	35.3	36.9	38.4	39.9					
17	30.0	31.3	32.7	34.0	35.4					
18	26.7	27.9 25.1	29.1	30.3 27.2	31.6					
19 20	24.0 21.7	22.6	26.1 23.6	24.6	28.3 25.6					
21	19.6	20.5	21.4	22.3	23.2					
22	17.9	18.7	19.5	20.3	21.1					
$\begin{array}{c} 23 \\ 24 \end{array}$	16.4 15.0	17.1 15.7	17.8 16.4	18.6 17.1	19.3 17.7					
25	13.9	14.5	15.1	15.7	16.4					
*										
26	12.8	13.4	14.0	14.5	15.1					
27 28	11.9 11.0	12.4 11.5	12.9 12.0	13.5 12.5	14.0 13.0					
29	10.3	10.8	11.2	11.7	12.2					
30	9.6	10.1	10.5	10.9	11.4					
31	9.0	9.4	9.8	10.2	10.6					
32	8.5	8.8	9.2	9.6	10.0					
$\begin{array}{c} 33 \\ 34 \end{array}$	8.0 7.5	8.3 7.8	8.7 8.2	9.0 8.5	9.4 8.8					
35	7.1	7.4	7.7	8.0	8.3					
30	7.2	7	7	3.0	0.0					

For spacings above single dot the safe loads are too great for standard connections.

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{360}$ span.

Spacings for other intensities of loading may be obtained from those in tables as follows:

Required spacing = \frac{\text{Intensity of loading from table}}{\text{New intensity of loading}} \times \text{Computed spacing from table.}

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Dictance	SPECIAL I-BEAM.									
between supports		15 II	nch No. B	113.						
in feet.	80	85	90	95	100					
	lbs.	lbs.	lbs.	lbs.	lbs.					
10	112.2	116.0	120.0	123.9	127.8					
11	92.8	95.9	99.1	102.4	105.6					
12	77.9	80.6	83.3	86.0	88.7					
13	66.4	68.7	71.0	73.3	75.6					
14	57.3	59.2	61.2	63.2	65.2					
15	49.9	51.6	53.3	55.1	56.8					
16	•43.8	45.3	46.9	48.4	49.9					
17	38.8	•40.2	•41.5	42.9	44.2					
18	34.6	35.8	37.0	• 38.2	39.4					
19	31.1	32.1	33.2	34.3	•35.4					
20	28.1	29.0	30.0	31.0	31.9					
21	25.4	26.3	27.2	28.1	29.0					
22	23.2	24.0	24.8	25.6	26.4					
23	21.2	21.9	22.7	23.4	24.2					
24	19.5	20.1	20.8	21.5	22.2					
25	18.0	18.6	19.2	19.8	20.4					
26	16.6	17.2	17.7	18.3	18.9					
27	15.4	15.9	16.5	17.0	17.5					
28	14.3	14.8	15.3	15.8	16.3					
29	13.3	13.8	14.3	14.7	15.2					
30	12.5	12.9	13.3	13.8	14.2					
31	11.7	12.1	12.5	12.9	13.3					
32	11.0	11.3	11.7	12.1	12.5					
33	10.3	10.7	11.0	11.4	11.7					
34	9.7	10.0	10.4	10.7	11.1					
35	9.2	9.5	9.8	10.1	10.4					

For spacings above single dot the safe loads are too great for standard connections.

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{380}$ span.

Spacings for other intensities of loading may be obtained from those in tables as follows:

Required spacing = Intensity of loading from table X Computed spacing from table.

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance		ST	ANDA	RD I	BEA	MS.			
between	1	3 Inch	No. B 6	5.	20 Inch No. B 73.				
supports	55	60	65	70	65	70	75		
in feet.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.		
14	48.1	50.9	53.3	55.7	63.6	66.4	69.1		
15	41.9	44.3	•46.4	48.5	55.4	57.8	60.2		
16 17 18 19 20	36.8 32.6 29.1 26.1 23.6	39.0 34.5 30.8 27.6 24.9	40.8 36.2 32.2 28.9 26.1	•42.6 37.8 33.7 30.2 27.3	48.7 43.2 •38.5 34.6 31.2	50.8 45.0 40.2 •36.0 32.5	52.9 46.8 41.8 37.5		
21	21.4	22.6	23.7	24.8	28.3	29.5	30.7		
22	19.5	20.6	21.6	22.6	25.8	26.9	28.0		
23	17.8	18.9	19.7	20.6	23.6	24.6	25.6		
24	16.5	17.3	18.1	19.0	21.7	22.6	23.5		
25	15.1	16.0	16.7	17.5	20.0	20.8	21.7		
26	13.9	14.8	15.5	16.2	18.5	19.2	20.0		
27	12.9	13.7	14.3	15.0	17.1	17.8	18.6		
28	12.0	12.7	13.3	13.9	15.9	16.6	17.3		
29	11.2	11.9	12.4	13.0	14.8	15.5	16.1		
30	10.5	11.1	11.6	12.1	13.9	14.5	15.0		
31	9.8	10.4	10.9	11.4	13.0	13.5	14.1		
32	9.2	9.7	10.2	10.7	12.2	12.7	13.2		
33	8.7	9.2	9.6	10.0	11.5	11.9	12.4		
34	8.2	8.6	9.0	9.4	10.8	11.3	11.7		
35	7.7	8.1	8.5	8.9	10.2	10.6	11.0		
36	7.3	7.7	8.1	8.4	9.6	10.0	10.4		
37	6.9	7.3	7.6	8.0	9.1	9.5	9.9		
38	6.5	6.9	7.2	7.6	8.6	9.0	9.4		
39	6.2	6.5	6.8	7.2	8.2	8.5	8.9		
40	5.9	6.2	6.5	6.8	7.8	8.1	8.4		

For spacings above single dot the safe loads are too great for standard connections.

For spacings below the heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{360}$ span.

Spacings for other intensities of loading may be obtained from those in tables as follows:

Required spacing = \frac{\text{Intensity of loading from table}}{\text{New intensity of loading}} \times \text{Computed spacing from table.}

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square incl..

Distance	SPECIAL I-BEAM.									
between supports	1	20 1	inch No.	B 121.						
in feet.	80	85	90	95	100					
	lbs.	lbs.	lbs.	lbs.	lbs.					
16	61.1	62.9	64.9	66.9	69.0					
17	54.1	55.7	57.5	59.3	61.1					
18	48.3	49.7	51.3	52.9	54.5					
19	43.3	44.6	46.0	47.5	48.9					
20	39.1	40.2	41.5	42.8	44.1					
21	35.5	36.5	37.7	38.9	40.0					
22	32.3	33.2	34.3	35.4	36.5					
23	•29.6	30.4	31.4	32.4	33.4					
24	27.2	27.9	•28.8	29.8	30.7					
25	25.0	25.7	26.6	•27.4	28.3					
26	23.1	23.8	24.6	25.4	•26.1					
27	21.5	22.1	22.8	23.5	24.2					
28	19.9	20.5	21.2	21.9	22.5					
29	18.6	19.1	19.8	20.4	21.0					
30	17.4	17.9	18.5	19.0	19.6					
31	16.3	16.7	17.3	17.8	18.4					
32	15.3	15.7	16.2	16.7	17.2					
33	14.4	14.8	15.3	15.7	16.2					
34	13.5	13.9	14.4	14.8	15.3					
35	12.8	13.1	13.6	14.0	14.4					
36	12.1	12.4	12.8	13.2	13.6					
37	11.4	11.8	12.1	12.5	12.9					
38	10.8	11.1	11.5	11.9	12.1					
39	10.3	10.6	10.9	11.2	11.6					
40	9.8	10.0	10.4	10.7	11.0					

For spacings above single dot the safe loads are too great for standard connections.

Spacings for other intensities of loading may be obtained from those in tables as follows:

Required spacing = Intensity of loading from table.

New intensity of loading

Computed spacing from table.

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance	STANDARD I-BEAM.										
between		24 Inch No. B 89.									
supports	80	85	90	95	100						
in feet.	lbs.	lbs.	lbs.	lbs.	lbs.						
18	57.3	59.5	61.4	63.3	65.3						
19	51.4	•53.4	•55.1	56.9	58.6						
20	46.4	48.2	49.7	•51.3	•52.9						
21	42.1	43.7	45.1	46.5	48.0						
22	38.3	39.8	41.1	42.4	43.7						
23	35.1	36.4	37.6	38.8	40.0						
24	32.2	33.5	34.5	35.6	36.7						
25	29.7	30.8	31.8	32.8	33.8						
26	27.4	28.5	29.4	30.4	31.3						
27	25.5	26.4	27.3	28.2	29.0						
28	23.7	24.6	25.4	26.2	27.0						
29	22.1	22.9	23.7	24.4	25.2						
30	20.6	21.4	22.1	22.8	23.5						
31	19.3	20.1	20.7	21.4	22.0						
32	13.1	18.8	19.4	20.0	20.7						
33	17.0	17.7	18.3	18.8	19.4						
34	16.0	16.7	17.2	17.8	18.3						
35	15.1	15.7	16.2	16.8	17.3						
36	14.3	14.9	15.4	15.8	16.3						
37	13.5	14.1	14.5	15.0	15.4						
38	12.8	13.3	13.7	14.2	14.6						
39	12.2	12.6	13.1	13.5	13.9						
40	11.6	12.0	12.4	12.8	13.2						
41	11.0	11.5	11.8	12.2	12.6						
42	10.5	10.9	11.3	11.6	12.0						
43	10.0	10.4	10.8	11.1	11.4						
44	9.6	9.9	10.3	10.6	10.9						
45	9.2	9.5	9.8	10.1	10.4						
46	8.7	9.1	9.4	9.7	10.0						
47	8.4	8.7	9.0	9.3	9.6						
48	8.0	8.3	8.6	8.9	9.2						

For spacings above single dot, the safe loads are too great for standard connections.

Spacings for other intensities of loading may be obtained from those in tables as follows:

as follows: $\text{Required spacing} = \frac{\text{Intensity of loading from table}}{\text{New intensity of loading}} \times \text{Computed spacing from table},$

Proper distance in feet, center to center of Beams. Maximum fibre stress 16 000 pounds per square inch.

Distance	SPECIAL I-BEAM.							
between	24	Inch No. B	127.					
supports	105	110	115					
in feet.	lbs.	lbs.	lbs.					
18	77.1	79.1	81.1					
19	69.2	71.0	72.8					
20	62.5	64.1	65.7					
21	56.7	58.1	59.6					
22	51.6	53.0	54.3					
23	47.2	48.4	49.6					
24	• 43.4	44.5	45.6					
25	40.0	• 41.0	• 42.0					
26	37.0	37.9	38.8					
27	34.3	35.1	36.0					
28	31.9	32.7	33.5					
29	29.7	30.5	31.2					
30	27.8	28.5	29.2					
31	26.0	26.7	27.3					
32	24.4	25.0	25.6					
33	22.9	23.5	24.1					
34	21.6	22.2	22.7					
35	20.4	20.9	21.4					
36	19.3	19.8	20.3					
37	18.3	18.7	19.2					
38	17.3	17.7	18.2					
39	16.4	16.8	17.2					
40	15.6	16.0	16.4					
41	14.9	15.2	15.6					
42	14.2	14.5	14.9					
43	13.5	13.8	14.2					
44	12.9	13.2	13.6					
45	12.3	12.6	13.0					
46	11.8	12.1	12.4					
47	11.3	11.6	11.9					
48	10.8	11.1	11.4					

For spacings above single dot the safe loads are too great for standard connections.

Spacings for other intensities of loading may be obtained from those in tables as follows:

Required spacing =
\[
\text{Intensity of loading from table} \times \text{Computed spacing from table.} \]

MAXIMUM BENDING MOMENTS IN FOOT POUNDS FOR CAMBRIA I-BEAMS.

Continu	Depth	Weight		ent.	Santian	Depth	Weight	Mon	Bending nent.
Section Num-	of	per	Foot P		Section Num-	of	per		ounds.
ber,	Beam.	Foot.	Fibre Stress	Fibre	ber,	Beam.	Foot.	Fibre Stress	Fibre Stress
	Tuebee	D 1 -	16 000 lbs.			T	D J.	16 000 lbs.	
-	Inches.	Pounds.	per Sq. In.	per Sq. In.		Inches.	Pounds.	per Sq. In.	per sq. In.
B 5	3	5.5	2270	1770	B 53	15	42	78530	61350
46	66	6.5	2400	1880	66	46	45	81070	63330
46	66	7.5	2530	1980	"	66	50	86000	67190
B 9	4	7.5	4000	3130	66	"	55 60	90800 95730	70940 74790
66	"	8.5	4270	3330			00	90700	14/90
46	"	9.5	4530	3540	B109	15	60	108270	84580
4	46	10.5	4800	3750	**	66	65	113070	88330
B 13	5	9.75	6400	5000	"	"	70	118000	92190
46	"	12.25	7200	5630	"	"	75 80	122930 127730	96040 99790
46	44	14.75	8130	6350			00	121100	99190
B 17	6	12.25	9730	7600	B113	15	80	140270	109580
"	46	14.75	10670	8330	"		85	145070	113330
46	46	17.25	11600	9060	"	"	90	150000	117190
B 21	7	15	13870	10830	"	44	95 100	154800 159730	120940 124790
D 21	46	17.5	14930	11670			100		
ш	44	20	16130	12600	B 65	18	55	117870	92080
T) 05	0	40	40000	4.4700	"	"	60	124670	97400
B 25	8	18 20.25	18930 20000	14790 15630	"	"	65 70	130530 136530	101980 106670
"	"	22.75	21330	16670			70	190990	100070
44	66	25.25	22670	17710	B 73	20	65	156000	121880
					"	- 66	70	162670	
B 29	9 "	21	25200	19690	66	- 66	75	169200	132190
"	"	25 30	27200 30130	21250 23540	D404		00	405 450	4 50540
66		35	33070	25830	B121	20	80 85	195470 201200	152710 157190
					"	"	90	207730	162290
В 33	10	25	32530	25420	ш	"	95	214270	167400
"	1 66	30 35	35730 39070	27920 30520	44	66	100	220800	172500
"	"	40	42270	33020					10115
			30010	00000	B 89	24	80	231870	181150
B 41	12	31.5	48000	37500	"	66	85 90	240930	188230 194270
u	46	35	50670	39580	"	"	90 95	248670	
		40	54670	42710	ш	"	100	264400	
B105	12	40	59730	46670				302200	
ш	"	45	63470	49580	B127	24	105	312380	
u	"	50	67470	52710	46	ш	110	320380	250300
		55	71330	55730	"		115	328380	256550

MAXIMUM BENDING MOMENTS IN FOOT POUNDS FOR CAMBRIA CHANNELS.

Section	of		Marituan Benling		Section	Depth of	Weight	Maximum Beading Moment.	
Num- ber.	Chan- nel	per F.s.t.	Flot E	onis.	Num- ter.	Chan- nel.	per Foot.	Foot Po	unds.
	A 7.50		Finde Stress 16 to 11to	12 11				Fibre Stress 16 000 lbs. :	
	Inches.	Pounds.	per Sq. In.	per Sq. In.		Inches.	Pounds.	per Sq. In.	per Sq. In.
C 5	3	4	1470	1150	C29	9	13.25	14000	10940
66	44	5	1600	1250	66	34	15	15070	11770
и	- 66	6	1870	1460	66	44	20	18000	14060
					66	G	25	20930	16350
C 9	4	5.25	2530	1980					
44		6.25	2800	2190	C33	10	15	17870	13960
4	66 .	7.25	3070	2400	66	ш	20	20930	16350
					66	66	25	24270	18960
C13	5	6.5	4000	3130	ш	66	30	27470	21460
66	66	9	4670	3650	66	66	35	30800	24060
66	66	11.5	5600	4380					
					C41	12	20.5	28530	22290
C17	6	8	5730	4480	44	66	25	32000	25000
4	66	10.5	6670	5210	"	44	30	35870	28020
66	4	13	7730	6040	66	66	35	39870	31150
44	4	15.5	8670	6770	66	ш	40	43730	34170
C21	7	9.75	8000	6250	C53	15	33	55600	43440
u	44	12.25	6200	7190	44	66	35	56930	44480
66	66	14.75	10400	8130	66	44	40	61730	48230
66	44	17.25	11470	8960	"	66	45	66670	52080
44	"	19.75	12670	9900	66	66	50	71600	55940
					64	- 66	55	76530	59790
C25	8	11.25	10800	8440					
66	G	13.75	12000	9380	C65	18	45	86530	67600
4	"	16.25	13330	1(420)	66	66	50	92310	72130
66	66	18.75	11571	11460	ш	66	55	98070	76620
66	64	21.25	15870	12400	66	66	60	104190	81410

EQUAL LEGS.

NEUTRAL AXIS PARALLEL TO EITHER LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

Distance	Section No. A 11.									
oetween		$1\frac{1}{2}'' \times 1\frac{1}{2}''$								
ports	1//8	3//	1//	5//	3//					
feet.	1.23 lbs. per ft.	1.80 lbs. per ft.	2.34 lbs. per ft.	2.86 lbs. per ft.	3.35 lbs. per ft.					
2 3 4	390 260 190	560 370 280	720 480 360	860 580 430	1010 670 500					
5	150	220	290	350	400					
6 7 8 9	130 110 100	190 160 140	240 200 180	290 250 220	340 290 250					
9	1 90	120	160	190	220					

Distance	Section No. A 40.									
between	$1\frac{3}{4}'' \times 1\frac{3}{4}''$									
supports	8 1 / /	3 1/	1//	5 // 16	3//					
in feet.	1.44 lbs. per ft.	2.12 lbs. per ft.	2.77 lbs. per ft.	3.39 lbs. per ft.	3.99 lbs. per ft.					
2 3 4 5	530 350 260 210	770 510 380 310	990 660 500 400	1200 800 600 480	1400 940 700 560					
6 7 8 9	170 150 130 110	260 220 190 170 150	330 280 250 220 200	400 340 300 270 240	470 400 350 310 280					

Distance		Section No. A 15.										
between		2" x 2"										
supports	1/8	$\frac{1}{8}''$ $\frac{3}{16}''$ $\frac{1}{4}''$ $\frac{5}{16}''$ $\frac{3}{8}''$ $\frac{7}{16}''$ $\frac{1}{2}''$										
in feet.	1.65 lbs. per ft.	2.44 lbs. per ft.	3.19 lbs. per ft.	3.92 lbs. per ft.	4.7 lbs. per ft.	5.3 lbs. per ft.	6.0 lbs. per ft.					
2 3 4 5	690 460 340 270	1020 680 510 410	1320 880 660 530	1600 1070 800 640	1870 1250 940 750	2130 1420 1070 850	2380 1590 1190 950					
6 7 8 9 10	230 190 170 150 130	340 290 250 230 200	440 380 330 290 260	530 460 400 360 320	620 540 470 420 370	710 610 530 470 430	790 680 600 530 480					

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}$ span.

EQUAL LEGS.

NEUTRAL AXIS PARALLEL TO EITHER LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

Distance		Section No. A 41	
between		2½" x 2½"	
supports	3 16	1//	5 // 16
in feet.	2.75 lbs. per ft.	3.62 lbs. per ft.	4.5 lbs. per ft.
2 3 4 5	1300 870 650 520	1690 1120 840 670	2060 1370 1030 820
7 8 9	430 370 320 290 260	560 480 420 380 340	590 510 460 410
11 12	240 220	310 280	370 340

Distance	Section No. A 17.											
between	2^{1}_{2} '' x 2^{1}_{2} ''											
supports	1''	3//	1//	5/16	3//	7 16	1//					
in feet.	2.08 lbs. per ft.	3.07 lbs. per ft.	4.1 lbs. per ft.	5.0 lbs. per ft.	5.9 lbs. per ft.	6.81bs. per ft.	7.7lbs. per ft.					
2 8 4 5	1090 710 530 420	1610 1080 810 650	2100 1400 1050 840	2570 1710 1290 1030	3020 2010 1510 1210	3450 2300 1720 1380	3860 2580 1930 1550					
8 9 10 11	350 300 260 230 210 190 170	540 460 400 360 320 290 270	700 600 530 470 420 380 350	860 730 640 570 510 470 430	1010 860 760 670 600 550 500	1150 990 860 770 690 630 580	1290 1100 970 860 770 700 640					

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{340}$ span.

EQUAL LEGS.

NEUTRAL AXIS PARALLEL TO EITHER LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

	2	Section No. A 43.								
Distance between supports in		$2\frac{3}{4}'' \times 2\frac{3}{4}''$								
feet.	4.5 lbs. per ft.	5.6 lbs. per ft.	6.6 lbs. per ft.							
2	2570	3140	3700							
3	1710	2090	2460							
4	1280	1570	1850							
5	1030	1260	1480							
6	860	1050	1230							
7	730	900	1060							
8	640	790	920							
9	570	700	820							
10	510	630	740							
11	470	570	670							
12	430	520	620							

Distance		2	Section :	No. A 19).						
between		. 3" x 3"									
supports	1//	5 11	3//	7 //	1//	9//					
in feet.	4.9 lbs. per ft.	6.1 lbs. per ft.	7.2 lbs. per ft.	8.3 lbs. per ft.	9.4 lbs. per ft.	10.4 lbs per ft.					
2 8 4 5	3080	3770	4440	5090	5720	6320					
	2050	2510	2960	3390	3810	4210					
	1540	1890	2220	2540	2860	3160					
	1230	1510	1780	2040	2290	2530					
6	1030	1260	1480	1700	1910	2110					
7	880	1080	1270	1450	1630	1810					
8	770	940	1110	1270	1430	1580					
9	680	840	990	1130	1270	1410					
10	620	750	890	1020	1140	1260					
11	560	690	810	930	1040	1150					
12	510	630	740	850	950	1050					

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{380}$ span.

EQUAL LEGS.

NEUTRAL AXIS PARALLEL TO EITHER LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

-		Section No. A 21.											
Distance		$3\frac{1}{2}'' \times 3\frac{1}{2}''$											
between	1//	16	3"	7/16	1/1	9 // 16	5//	11//	3 //	18"	₹"		
supports	5.8	7.2	8.5	9.8	11.1	12.4 lns.	13.6	14.8 lbs.	16.0 lbs.	17.1 lbs.	18.3 lbs.		
in feet.	lbs. per ft.	lts. per ft.	lis.	per ft.	per ft.		per ft.			per ft.	per ft.		
2	4210	52(4)	6140	7050	7940	\$ <00	9630	10440	11230	12010	12760		
2345	2810 2110	3470 2600	4100 3070	4700 3530	5290 3970	5860 4400	6420 4810	5220	7490	6000	\$510 6380		
5	1680	2080	2460	2820	3180	3520	3550	4180	4450	4800	5110		
6	1400	1730	2050	2350	2650	2930	3210	3480	3740	4000	4250		
7 8	1200	1499 1300	1760 1540	2020 1760	2270 1980	2510 2200	2750 2410	2980 2610	3210 2810	3430 (300a)	3650 3190		
8 9	940	1160	1370	1579	1760	1950	2140	2320	2500	2670	2840		
10	018	1040	1230	1410	1590	1760	1930	2090	2250	2400	2550		
11	770	950	1120	1280	1440	1600	1750	1900	2040	2180	2320 2130		
12 13 14	700	870	1020 950	1180 1090	1320 1220	1470 1350	1600	1740 1610	1870 1730	2000 1850	1960		
14 15	600	740 600	820	1010 940	1130 1960	1260 1170	1380 1280	1490 1390	1610 1500	1720	1820 1700		
	560												
16	530	650	770	880	990	1100	1200	1310	1400	1500	1600		

	1			Sect	tion l	No. A	23.					
Distance	,	4" x 4"										
supports. in feet.	8.2 lbs. per ft.	9.8 lbs. per ft.	11.3 lbs. per ft.	lbs.	lbs.	5'' 15.7 lbs. per ft.	lbs.	18.5 lbs. per ft.	13'' 19.9 lbs. per ft.	21.2 lbs. per ft.		
2 8 4 5	6870 4580 3430 2750	8120 5420 4060 3250	9340 6230 4670 3740	10530 7020 5270 4210	11690 7790 5840 4670	12810 8540 6410 5130		14980 9990 7490 5990	16030 10690 8020 6410	17060 11370 8530 6820		
6 7 8 9 10	2290 1967 1720 1530 1370	2710 2320 2030 1810 1620	3120 2670 2340 2050 1570	3519 3519 2530 2340 2110	3900 3340 2920 2000 2340	4270 3660 3200 2850 2560	4640 3970 3480 3090 2780	4990 4280 3740 3330 3000	5340 4580 4010 3560 3210	5690 4870 4260 3790 3410		
11 12 13 14 15	1250 1140 1060 980 920	1480 1350 1250 1160 1080	1700 1560 1440 1340 1250	1916 1760 1620 1509 1400	2130 1950 1800 1670 1560	2330 2140 1970 1880 1710	2530 2320 2140 1990 1860	2720 2500 2300 2140 2000	2910 2670 2470 2290 2140	3100 2840 2620 2440 2270		
16	860	1020	1170	1320	1460	1600	1740	1870	2000	2130		

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}\frac{1}{10}$ span.

EQUAL LEGS.

NEUTRAL AXIS PARALLEL TO EITHER LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

Distance			Section	on No. A	A 47.							
between	5" x 5"											
supports	311	7/1	1/1	9//	5//	116"	3//					
in feet.	12.3 lbs. per ft.	14.3 lbs. per ft.	16.2 lbs. per ft.	18.1 lbs. per ft.	20.0 lbs. per ft.	21.8 lbs. per ft.	23.6 lbs.					
2	12910	14900	16830	18720	20570	22380	24160					
23456789	8610	9930	11220	12480	13710	14920	16110					
4	6460	7450	8410	9360	10280	11190	12080					
6	5170 4310	5960 4960	6730 5610	7490 6240	8230 6860	8950 7460	9660 8050					
7	3690	4260	4810	5350	5880	6390	6900					
8	3230	3720	4210	4680	5140	5600	6040					
10	2870 2580	3310 2980	3740 3370	4160 3740	4570 4110	4970 4480	5370					
11	2350	2710	3060	3400	3740	4070	4830 4390					
12	2150	2480	2800	3120	3430	3730	4030					
13	1990	2290	2590	2880	3160	3440	3720					
14	1850	2130	2400	2670	2940	3200	3450					
15 16	1720 1610	1990 1860	2240 2100	2500 2340	2740 2570	2980 2800	3220 3020					
17	1520	1750	1980	2200	2420	2630	2810					
18	1440	1660	1870	2080	2290	2490	2680					

•				S	ectio	n No	. A 2	7.			
Distance between					6	3" x 6	"				
Sup-	3//	76"	1/1	9//	5//	11/1	3"	13"	7''	15"	1''
ports	14.9	17.2	19.6	21.9	24.2	26.5	28.7	31.0	33.1	35.3	37.4
in feet.	lbs.										
	per ft.										
2	18820	21720	24610	27420	30170	32880	35540	38150	40720	43240	45720
84 5 6 7	12550	14480	16400	18280	20120	21920	23690	25430	27150	28830	30480
4	9410	10860	12300	13710	15090	16440	17770	19080	20360	21620	22860
5	7530	8690	9840	10970	12070	13150	14220	15260	16290	17300	18290
6	6270	7240	8200	9140	10060	10960	11850	12720	13570	14410	15240
7	5380	6210	7030	7830	8620	9390	10150	10900	11630	12360	13060
8 9 10	4700	5430	6150	6850	7540	8220	8890	9540	10180	10810	11430
10	4180 3760	4830 4340	5470 4920	6090	6710 6030	7310	7900 7110	8480 7630	9050	9610 8650	10160 9140
11	3420	3950	4470	5480 4990	5490	6580 5980	6460	6940	8140 7400	7860	8310
10	3140	3620	4100	4570	5030	5480	5920	6360	6790	7210	7620
12 13 14	2900	3340	3790	4220	4640	5060	5470	5870	6260	6650	7930
14	2690	3100	3520	3920	4310	4700	5080	5450	5820	6180	6530
15	2510	2900	3280	3660	4020	4380	4740	5090	5430	5770	6100
16	2350	2720	3080	3430	3770	4110	4440	4770	5090	5410	5720
17	2210	2560	2900	3230	3550	3870	4180	4490	4790	5090	5380
18	2090	2410	2730	3050	3350	3650	3950	4240	4520	4810	5080
19	1980	2290	2590	2890	3180	3460	3740	4020	4290	4550	4810
20	1880	2170	2460	2740	3020	3290	3550	3820	4070	4320	4570
21	1790	2070	2340	2610	2870	3130	3390	3630	3880	4120	4350
22	1710	1970	2240	2490	2740	2990	3230	3470	3700	3930	4160

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3\delta \sigma}$ span.

EQUAL LEGS.

NEUTRAL AXIS PARALLEL TO EITHER LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

•		Section No. A 35.												
Distance between		8" x 8"												
sup- perts	1/1	9"	5"	11/1	3"	13'' 16''	7''	15"	1"	116"	11/8"			
in feet.	26.4 lbs. per ft.	lbs.	32.7 lbs. per ft.	35.8 lbs. per ft.	38.9 lbs. per ft.	42.0 lbs. per ft.	lbs.	lbs.	lbs.	54.0 lbs. per ft.	56.9 lbs. per ft.			
4 5	22310	24910	27470	30000	32490	34950	37370	39760	42120	44450	46750			
	17850	19920	21980	24000	25990	27960	29900	31810	33700	35560	37400			
6 7 8 9	14880 12750 11160 9920 8930	16600 14230 12450 11070 9960	18310 15700 13740 12210 10990	20000 17140 15000 13330 12000	21660 18570 16250 14440 13000	23300 19970 17480 15530 13980	24920 21360 18690 16610 14950	26510 22720 19880 17670 15910	28080 24070 21060 18720 16850	29630 25400 22220 19760 17780	31160 26710 23370 20780 18700			
11	8110	9060	9990	10910	11820	12710	13590	14460	15320	16160	17000			
12	7440	8300	9160	10000	10830	11650	12460	13250	14040	14820	15580			
13	6870	7660	8450	9230	10900	10750	11500	12240	12960	13680	14380			
14	6380	7120	7850	8570	9280	9990	10680	11360	12030	12700	13360			
15	5950	6640	7330	8000	8660	9320	9970	10600	11230	11850	12470			
16	5580	6230	6870	7500	8120	8740	9340	9940	10530	11110	11690			
17	5250	5860	6460	7060	7650	8220	8790	9360	9910	10460	11000			
18	4960	5530	6100	6670	7220	7770	8310	8840	9360	9880	10390			
19	4700	5240	5780	6320	6840	7360	7870	8370	8870	9360	9840			
20	4460	4980	5490	6000	6500	6990	7470	7950	8420	8890	9350			
21	4250	4740	5230	5710	6190	6660	7120	7570	8020	8470	8900			
22	4060	4530	4990	5450	5910	6350	6800	7230	7660	8080	8500			
23	3880	4330	4780	5220	5650	6080	6500	6920	7330	7730	8130			
24	3720	4150	4580	5000	5420	5830	6230	6630	7020	7410	7790			
25	3570	3980	4400	4500	5200	5590	5950	6360	6740	7110	7480			
26	3430	3830	4230	4620	5000	5380	5750	6120	6480	6840	7190			
27	3310	3690	4070	4140	4810	5180	5540	5890	6240	6590	6930			
28	3190	3560	3920	4290	4640	4990	5340	5680	6020	6350	6680			
29	3080	3440	3790	4140	4480	4820	5160	5480	5810	6130	6450			
30	2980	3320	3660	4000	4330	4660	4980	5300	5620	5930	6230			

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{240}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

-		Sect	ion :	No.	A 91.		Section No. A 129.							
Distance			$2\frac{1}{2}^{\prime\prime}$	x 2"			3" x 2"							
between	16	1//	5 // 16	3 //	16	1//	3 //	1//	5 //	3//	7/1	1//		
supports		3.62 lbs.	4.5	5.3 lbs.	6.1 lbs.	6.8	3.07 lbs.	4.1 lbs.	5.0 lbs.	5.9 lbs.	6.8 lbs.	7.7 lbs.		
in feet.	lbs. per foot.	per foot.	lbs. per foot.	per foot.	per	lbs. per foot.	per foot.	per foot.	per foot.	per foot.	per foot.	per foot.		
2345	1050 709 520 420	1360 900 680 540	1650 1100 830 660	1930 1290 970 770	2200 1470 1100 880	2460 1640 1230 990	1070 710 530 430	1390 920 690 550	1690 1120 840 670	1980 1320 990 790	2260 1510 1130 900	2530 1690 1260 1010		
6 7 8 9	350 300 260 230 210	450 390 340 200 260	550 470 410 360 330	640 550 480 420 380	730 630 550 480 430	820 700 620 540 490	360 310 270 240 210	460 400 350 310 280	560 480 420 370 340	660 570 500 440 400	750 650 560 500 450	840 720 630 560 510		
11 12	190 170	240 220	300 270	340 320	390 360	440 400	190 180	250 230	310 280	360 330	410 380	460 420		

Distance		Section No. A 93.										
between			3" x	$2\frac{1}{2}''$								
supports	1//	5 ''	3//	7 16	1//	9//						
in feet.	4.5 lbs. per ft.	5.6 lbs. per ft.	6.6 lbs. per ft.	7.6 lbs. per ft.	8.5 lbs. per ft.	9.5 lbs. per ft.						
2 3 4 5	2160 1440 1080 860	2640 1760 1320 1050	3100 2060 1550 1240	3540 2360 1770 1420	3970 2650 1980 1590	4380 2920 2190 1750						
6 7 8 9	720 620 540 480 430	880 750 660 590 530	1030 880 770 690 620	1180 1010 890 790 710	1320 1130 990 880 790	1460 1250 1100 970 880						
11 12	390 360	480 440	560 520	640 590	720 660	800 730						

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{360}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

Distance	Section No. A 95.											
between	$3\frac{1}{2}'' \times 2\frac{1}{2}''$											
supports	. 1''	1 5 11	3 ''	16	1 ''	16						
in feet.	4.9 lbs. per ft.	6.1 lbs.	7.2 lbs. per ft.	8.3 lbs. per ft.	9.4 lbs. per ft.	lbs. per ft.						
2	2200	2690	3160	3610	4050	4450						
3	1469	1790	2110	2410	2700	2990						
4	1100	1340	1580	1810	2030	2240						
5	880	1050	1260	1450	1620	1790						
6 7	730	909	1050	1200	1350	1490						
	630	770	900	1939	1160	1280						
8	550	670	790	909	1010	1129						
9	490	600	700	800	900	1000						
10	440	540	630	720	810	900						
11	400	490	570	660	740	810						
12	370	450	530	600	680	750						

Distance		Section No. A 97.											
					5	$3\frac{1}{2}^{\prime\prime}$ X	3"						
between	1 '/	16	3//	15"	2"	16	5"	11''	1 3"	13"	7//		
in feet	5.4 lbs per ft.	6.6 lbs. per ft.	7.9 lbs. per ft.	9.1 lbs. per ft.	10.2 lbs. per ft.	11.4 lbs. per ft.	12.5 lbs. per ft.	13.6 lbs. per ft.	14.7 lbs. per ft.	15.8 lbs. per ft.	16.8 lbs. per ft.		
2 3 4 5	4100 1770 1770 1000	2550 2570 111.1 1540	4530 3 x 3 2 x 0 1520	5200 3470 2600 2080	5840 3 (P) 2 (2) 2340	6400 43 m 32 m 25 m	7070 4710 552) 2530	7060 51:) 3830 3060	8230 5490 4120 3290	8790 5860 4400 3520	9350 6230 4670 3740		
6 7 8 9	1390 1190 1040 9_0 830	1290 1100 900 500 770	1510 1300 1130 1016 910	1730 1440 1540 1140 1140 1040	1959 1 (1) 14(0) 14(0) 1170	2150 1570 1520 1440 1290	2900 2020 1770 1570 1410	25.50 21.0 1910 1710 1530	2710 2350 2 · · · · · · · · · · · · · · · · · · ·	2930 2510 2200 1950 1760	3120 2670 2340 2080 1870		
11 12 13 14	750 690 640 590	700 640 590 550	\$30 760 770 650	950 870 800 740	1000 970 900 830	11-0 1-1-0 990 920	1299 11 9 1119 1010	1200 1200 1100 1000	1570 1370 1270 1180	1609 1470 1350 1260	1700 1560 1440 1340		

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}\frac{1}{2}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

				Sec	tion 1	No. A	99.			
Distance					4" 2	x 3''				
between	5 '' 16	3//	7//	1/1	9//	5//	11/1	3//	13'' 16	7''
in feet.	7.2 lbs. per ft.	8.5 lbs. per ft.	9.8 lbs. per ft.	11.1 lbs. per ft.	12.4 lbs. per ft.	13.6 lbs. per ft.	14.8 lbs. per ft.	16.0 lbs. per ft.	17.1 lbs. per ft.	18.3 lbs. per ft.
2 8 4 5	3920 2610 1960 1570	4620 3080 2310 1850	5290 3530 2650 2120	5950 3960 2970 2380	6580 4390 3290 2630	7200 4800 3600 2880	7810 5200 3900 3120	8400 5600 4200 3360	8980 5980 4490 3590	9550 6360 4770 3820
6 7 8 9	1310 1120 980 870	1540 1320 1150 1030 920	1760 1510 1320 1180 1060	1980 1700 1490 1320 1190	2190 1880 1650 1460 1320	2400 2060 1800 1600 1440	2600 2230 1950 1730 1560	2800 2400 2100 1870 1680	2990 2560 2240 1990 1800	3180 2730 2390 2120 1910
11 12 13 14	710 650 600 560	840 770 710 660	960 880 810 760	1080 990 910 850	1200 1100 1010 940	1310 1200 1110 1030	1420 1300 1200 1120	1530 1400 1290 1200	1630 1500 1380 1280	1740 1590 1470 1360

		Section No. A 131.											
Distance between			4	$4'' \times 3\frac{1}{2}''$,								
supports	16"	3''	16"	1"	9/1	5"	11''						
in feet.	7.7 lbs. per ft.	9.1 lbs. per ft.	10.6 lbs. per ft.	11.9 lbs. per ft.	13.3 lbs. per ft.	14.7 lbs. per ft.	16.0 lbs. per ft.						
2 8 4 5	5300 3530 2650 2120	6260 4170 3130 2500	7190 4790 3590 2870	8090 5390 4040 3240	8970 5980 4480 3590	9760 6510 4880 3900	10650 7100 5320 4260						
6 7 8 9	1770 1510 1320 1180 1060	2090 1790 1560 1390 1250	2400 2050 1800 1600 1440	2700 2310 2020 1800 1620	2990 2560 2240 1990 1790	3250 2790 2440 2170 1950	3550 3040 2660 2370 2130						
11 12 13 14	960 880 820 760	1140 1040 960 890	1310 1200 1110 1030	1470 1350 1240 1160	1630 1490 1380 1280	1770 1630 1500 1390	1940 1770 1640 1520						

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $3\frac{1}{9}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

		Section No. A 101.												
Distance					5"	x 3''								
between	16	3"	16"	1/1	16	8"	16"	3"	13"	7/1				
in feet.	8.2 lbs. per ft.	9.8 lhs. per ft.	11.3 lbs. per ft.	12.8 lbs. per ft.	14.3 lbs. per ft.	15.7 lbs. per ft.	17.1 lbs. per ft.	18.5 lbs. per ft.	19.9 lbs. per ft.	21.2 lbs. per ft.				
2 3 4 5	4020 2680 2010 1610	4740 3160 2370 1900	5430 3620 2720 2170	6110 4070 3060 2440	6770 4510 3380 2710	7410 4940 3710 2960	8040 5360 4020 3220	8660 5770 4330 3460	9270 6180 4630 3710	9870 6580 4940 3950				
6 7 8	1340 1150 1000	1580 1350 1180	1810 1550 1360	2040 1750 1530	2260 1930 1690	2470 2120 1850	2680 2300 2010	2890 2470 2160	3090 2650 2320	3290 2820 2470				
9	890	1050	1210	1360	1500	1650	1790	1920	2060	2190				
10	800	950	1090	1220	1350	1480	1610	1730	1850	1970				
11 12 18 14	730 670 620 570	860 790 730 680	990 910 840 780	1110 1020 940 870	1230 1130 1040 970	1350 1240 1140 1060	1460 1340 1240 1150	1570 1440 1330 1240	1690 1540 1430 1320	1790 1650 1520 1410				

Distance				Se	ection	n No.	A 10	3.			
between					5	$^{\prime\prime} \times 3\frac{1}{2}$	//				
sup-	5 "	3''	7 '' 1€	1/1	9 "	5//	11/1	3/1	13''	7//	15"
ports in feet.	8.7 lbs. per ft.	10.4 lbs. per ft.	12.0 lbs. per ft.	13.6 lbs. per ft.	lbs.	16.8 lbs. per ft.	lbs.	lbs.	lbs.	lbs.	lbs.
2 8 4 5	5450 3630 2720 2180	6430 4290 3220 2570	7400 4930 3700 2960	8320 5550 4160 3330	9230 6150 4610 3690	10110 6740 5060 4050	10980 7320 5490 4390	11820 7880 5910 4730	12650 8430 6330 5060	13450 8970 6730 5380	14270 9510 7130 5710
6 7 8 9	1820 1560 1360 1210 1090	2140 1840 1610 1430 1290	2470 2110 1850 1640 1480	2770 2380 2080 1850 1660	3080 2640 2310 2050 1850	3370 2890 2530 2250 2020	3660 3140 2740 2440 2200	3940 3380 2960 2630 2360	4220 3610 3160 2810 2530	4490 3850 3370 2990 2690	4760 4080 3570 3170 2850
11 12 13 14	990 910 840 780	1170 1070 990 920	1340 1230 1140 1060	1510 1390 1280 1190	1680 1540 1420 1320	1840 1690 1560 1440	2000 1830 1690 1570	2150 1970 1820 1690	2300 2110 1950 1810	2450 2240 2070 1920	2590 2380 2190 2040

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3k0}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

		S	ection 1	To. A 13	5.	
Distance between			5":	x 4"		
supports in feet.	38'' 11.0 lbs. per ft.	12.8 lbs. per ft.	14.5 lbs. per ft.	16.2 lbs. per ft.	17.8 lbs. per ft.	116" 19.5 lbs. per ft.
2 3 4 5	8370 5580 4180 3350	9630 6420 4810 3850	10860 7240 5430 4340	12050 8030 6030 4820	13220 8810 6610 5290	14360 9570 7180 5740
6 7 8 9 10	2790 2390 2090 1860 1670	3210 2750 2410 2140 1930	3620 3100 2710 2410 2170	4020 3440 3010 2680 2410	4410 3780 3300 2940 2640	4790 4100 3590 3190 2870
11 12 13 14 15	1520 1390 1290 1200 1120	1750 1600 1480 1380 1280	1970 1810 1670 1550 1450	2190 2010 1850 1720 1610	2400 2200 2030 1890 1760	2610 2390 2210 2050 1910
16	1050	1200	1360	1510	1650	1790

Distance				S	ection	n No.	A 10	5.			
between					∂′	$' \times 3\frac{1}{2}$	//				
sup-	3/1	7 11	1"	16"	5 11	11//	3//	13"	7//	15"	1''
ports in feet.	11.7 lbs. per ft.	13.5 lbs. per ft.	15.3 lbs. per ft.	lbs.	18.9 lbs. per ft.	lbs.	lbs.	lbs.	lbs.	lbs.	28.9 lbs. per ft.
2 3 4 5	6570 4380 3280 2630	7550 5030 3770 3020	8500 5670 4250 3400	9430 6290 4720 3770	10340 6890 5170 4140	11230 7480 5610 4490	12100 8070 6050 4840	12960 8640 6480 5180	13800 9200 6900 5520	14640 9760 7320 5850	15470 10310 7730 6190
8 9 10	2190 1880 1640 1460 1310	2520 2160 1890 1680 1510	2830 2430 2120 1890 1700	3140 2690 2360 2100 1890	3450 2950 2580 2300 2070	3740 3210 2810 2490 2250	4030 3460 3020 2690 2420	4320 3700 3240 2880 2590	4600 3940 3450 3070 2760	4880 4180 3660 3250 2930	5160 4420 3870 3440 3090
11 12 13 14	1190 1090 1010 940	1370 1260 1160 1080	1550 1420 1310 1210	1710 1570 1450 1350	1880 1720 1590 1480	2040 1870 1730 1600	2200 2020 1860 1730	2360 2160 1990 1850	2510 2300 2120 1970	2660 2440 2250 2090	2810 2580 2380 2210

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{340}$ span.

UNEQUAL LEGS. NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

per oqu	tar C III	LAN CHAIN	MACAMO	C MCIB	ar or a	128100					
Distance				Se			A 10	7.			
between						" x 4					
sup-	3"	7 //	1 ''	16	511	11''	3//	13//	7//	1577	1''
ports in feet.	12.8 lbs. per ft.	14.3 lbs. per ft.	16.2 lls. per ft.	18.1 lbs.	20.0 lbs. per ft.	lbs.	23.6 lbs. per ft.	los.	lbs.	28.9 lbs. per ft.	30.6 lbs. per ft.
2 4 5	8550 5700 4280 3420	9840 6560 4920 3940	11100 7400 5550 4440	12320 8220 6160 4930	13520 9020 6760 5410	14690 9800 7350 5880	15840 10560 7920 6340	16970 11310 8480 6790	18070 12050 9040 7230	19160 12770 9580 7660	20230 13490 10120 8090
6 7 8 9	2850 2440 2140 1900 1710	3280 2810 2460 2190 1970	3700 3170 2770 2470 2220	4110 3520 3080 2740 2460	4510 3860 3380 3010 2700	4900 4200 3670 3270 2940	5280 4530 3960 3520 3170	5660 4850 4240 3770 3390	6020 5760 4520 4020 3610	6390 5470 4790 4260 3830	6740 5780 5060 4500 4050
11	1550	1790	2020	2240	2460	2670	2880	3080	3290	3480	3680
12 13 14 15	1430 1320 1220 1140	1640 1510 1410 1310	1850 1710 1590 1480	2050 1900 1760 1640	2250 2080 1930 1800	2450 2260 2100 1960	2640 2440 2260 2110	2830 2610 2420 2260	3010 2780 2580 2410	3190 2950 2740 2550	3370 3110 2890 2700
16	1070	1230	1390	1540	1690	1840	1980	2120	2260	2400	2530
-					Sect	ion l	Vo. A	109.			
Dist	ance					7" x	31/				
betv		7/1	111	9 //	5"	11//	311	13//	7//	15"	1"
supp in i	eet.	15.0 lbs.	17.0 lbs.	19.1 lbs.	21.0 lbs.	23.0 lbs.	24.9 lbs. per ft.	26.8 lbs.	28.7 lbs.	30.5 Ibs.	lbs.
	234	7670 5110 3840 3070	8640 5760 4320 3460	9590 6390 4790 3840	10520 7010 5260 4210	11430 7620 5710 4570	12320 8220 6160 4930	13210 8510 6600 5280	14090 9390 7040 5630	14950 9960 7470 5980	15810 10540 7900 6320
	67 80 0	2560 2190 1920 1700 1530	2550 2470 2160 1920 1730	3200 2740 2400 2130 1920	3510 3010 27,70 2340 2100	3810 3270 2540 2540 2290	4110 3520 3080 2740 2460	4460 3770 3300 2940 2640	4700 4020 3520 3130 2820	4980 4270 3740 3320 2990	5270 4520 3950 3510 3160
1 1 1 1 1 1	2 3 4	1390 1280 1180 11(*) 1020	1570 1440 1380 1230 1150	1740 1800 1450 1370 1280	1910 1750 1620 1500 1400	2080 1900 1700 1630 1520	2240 2050 1900 1760 1610	2400 2200 2030 1890 1760	2560 2350 2170 2010 1880	2720 2490 2300 2140 1990	2870 2630 2430 2260 2110
1	6	960	1089	1200	1320	1430	1540	1650	1760	1570	1980

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = 100 span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO LONG LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

	Section No. A 112.													
Distance between					8" x 6"	,								
supports in feet.	1''	9//	5"	11/1	3/1	13"	7''	15"	1"					
	23.0 lbs. per ft.	25.7 lbs. per ft.	28.5 lbs. per ft.	31.2 lbs. per ft.	33.8 lbs. per ft.	36.5 lbs. per ft.	39.1 lbs. per ft.	41.7 lbs. per ft.	dd.2 lbs. per ft.					
4 5	12770 10210	14230 11380	15670 12530	17080 13660	18460 14770	19830 15860	21170 16930	22490 17990	23790 19030					
6 7 8 9	8510 7290 6380 5670 5100	9480 8130 7110 6320 5690	10140 8950 7830 6960 6260	11380 9750 8540 7590 6830	12310 10550 9230 8200 7380	13220 11336 9910 8810 7930	14110 12090 10580 9400 8460	14990 12850 11240 9990 8990	15860 13590 11390 10570 9510					
11 12 13 14 15	4640 4250 3920 3640 3400	5170 4740 4370 4060 3790	5690 5220 4820 4470 4170	6210 5690 5250 4880 4550	6710 6150 5680 5270 4920	7210 6610 6100 5660 5280	7690 7050 6519 6040 5640	8170 7490 6920 6420 5990	8650 7930 7320 6790 6340					
16 17 18 19	3190 3000 2830 2680	3550 3340 3160 2990	3910 3680 3480 3290	4270 4010 3790 3590	4610 4340 4100 3880	4950 4660 4400 4170	5290 4980 4700 4450	5620 5290 4990 4730	5940 5590 5280 5000					
20 21 22 23 24	2550 2430 2320 2220 2120	2840 2710 2580 2470 2370	2980 2840 2720 2610	3410 3250 3100 2970 2840	3690 3510 3350 3210 3070	3960 3770 3600 3440 3300	4230 4030 3840 3680 3520	4280 4090 3910 3740	4750 4530 4320 4130 3960					

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{380}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

		S	ection 1	No. A 91		
Distance between			21/1/2	k 2"		
supports in	3 '' 1 o	1 ''	5 // 1 0	3 ′′	76''	1//
feet.	2.75 lbs. per ft.	3.62 lbs. per ft.	4.5 lbs. per ft.	5.3 lbs. per ft.	6.1 lbs. per ft.	6.8 lbs. per ft.
234 5	1560 1040 780 620	2030 13(r) 1020 810	2490 1960 1240 990	2920 1940 1460 1170	3330 2220 1660 1330	3730 2480 1860 1490
8	520	680	830	970	1110	1240
7	450	550	710	830	950	1070
8 9 10	390 350 310	510 450 410	620 550 500	730 650 550	830 740 670	930 830 750
11 12	250 260	370 340	450 410	530 490	610 560	680 620

		S	ection I	To. A 12	∂.	
Distance between			.3"	x 2"		
supports in	3 "	1//	5 // 16	3"	7 16	1/1
feet.	3.07 lbs. per ft.	4.1 lbs. per ft.	5.0 lbs. per ft.	5.9 lbs. per ft.	6.8 lbs. per ft.	7.7 lbs. per ft.
2 3 4 5	2210 1470 1110 880	2500 1930 1440 1160	3540 2360 1770 1420	4170 2780 20-0 1670	4770 31*0 23*0 1910	5350 3570 2670 2140
6 7	740 630	980 830	1180 1010	1390 11(4)	1590 1369	1780 1530
8	550	720	890	1040	1190	1340
10	490 440	640 550	790 710	930 830	1060 959	1190 1070
11 12	400 370	530 4×)	640 5 a)	760 690	870 800	970 890

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}$ 0.5 span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

		S	ection :	No. A 93		
Distance between			3":	$x \frac{2^{\frac{1}{2}''}}{2}$		
supports in	1//	5//	3//	7/16	1/1	9//
feet.	4.5 lbs.	5.6 lbs.	6.6 lbs.	7.6 lbs.	8.5 lbs.	9.5 lbs.
	per ft.	per ft.	per ft.	per ft.	per ft.	per ft.
2345	2990	3670	4320	4950	5560	6140
	2000	2450	2880	3300	3700	4090
	1500	1840	2160	2470	2780	3070
	1200	1470	1730	1980	2220	2460
6	1000	1220	1440	1650	1850	2050
7	860	1050	1230	1410	1590	1760
8	750	920	1080	1240	1390	1540
9	670	820	960	1100	1230	1360
10	600	730	860	990	1110	1230
11	540	670	790	900	1010	1120
12	500	610	720	820	930	1020
13	460	560	660	760	850	940
14	430	520	620	710	790	880

701		\$	Section	No. A 9	5.	
Distance between			31/1	x 2½"		
supports in feet	1/4" 4.9 lbs. per ft.	5 '' 6.1 lbs. per ft.	3'' 7.2 lbs. per ft.	8.3 lbs. per ft.	1'' 9.4 lbs. per ft.	9 '' 10.4 lbs. per ft.
2 3 4 5	4020 2680 2010 1610	4940 3300 2470 1980	5830 3890 2920 2330	6690 4460 3350 2680	7530 5020 3760 3010	8330 5560 4170 3330
6 7 8 9 10	1340 1150 1010 890 800	1650 1410 1240 1100 990	1940 1670 1460 1300 1170	2230 1910 1670 1490 1340	2510 2150 1880 1670 1510	2780 2380 2080 1850
11 12 13 14 15	730 670 620 570 540	900 820 760 710 660	1060 970 900 830 780	1220 1120 1030 960 890	1370 1250 1160 1080 1000	1520 1390 1280 1190 1110
16	500	620	730	840	940	1040

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{380}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for filtre stress of 16 000 pounds per square inch and include weight of angle.

				S	Sectio	n No	. A 9	7.			
Distance					3	1" 11	3"				
between	1 ''	15"	3"	7. "	1 11	16	5"	11''	311	15"	7/1
supports in feet	5.4 lbs. per ft.	6.6 les.	7.9	9.1	10.2 i per ft.	11.4 lis.	12.5 les.	13.6 las.	14.7 Tis. per ft.	15.8 lbs. per ft.	16.8 lbs.
2 3 4 5	3090 2060 1550 1340	5 (₹) 3) () 25 ± 0 2040	661.0 444.0 844.0 2460	6 × ·0 4 · · · · · · · · · · · · · · · · · · ·	7750 5170 3880 3190	\$5+) 5730 42%) 3440	9400 6270 4750 3760	1 (190) 671.0 50(a) 4920	1.060 73(4) 5480 4380	11710 7800 5850 4600	12449 82%) 6220 49%)
6 7 8 9	1030 850 770 690	1700 1450 1270 1130	2000 1720 1500 1330	2300 1970 1720 1530	2580 2220 1940 1720	2860 2450 2150 1910	3130 25 () 2340 2660	3400 2910 2550 2200	3650 3130 2740 2430	3900 3340 2930 2600	4150 3550 3110 2760
10	620	1020	1200	1380	1550	1720	1880	2040	2190	2340	2490
11 12 13 14 15	560 520 480 440 410	920 850 780 730 680	1000 1000 920 860 800	1250 1150 1060 980 920	1419 1290 1190 1110 1030	1560 1430 1320 1230 1150	1710 1570 1450 1340 1250	1350 1700 1570 1460 1360	1990 1830 1690 1570 1460	2130 1950 1800 1670 1560	2260 2070 1910 1780 1660
_16	390	640	750	860	970	1670	1180	1270	1370	1460	1550
					Sect	tion 1	No. A	99.			
Dista							x 3''				
betw- suppo		5 "	3''	76	3"	16	\$11	11/1	3//	13"	₹"
in fe		7.2 lbs. per ft.	8.5 lbs. per ft.	9.8 lbs. per ft.	11.1 lbs. per ft.	12.4 lbs. per ft.	13.6 lbs. per ft.	14.8 lbs. per ft.	16.0 lbs. per ft.	17.1 lbs. per ft.	18.3 lbs. per ft.
2		6580 4390 3290 2630	7780 5180 3890 3110	8940 5960 4470 3590	10070 6719 5949 4939	11170 7450 5590 4470	12240 8160 6120 4909	13280 8×60 6640 5310	14300 9530 7150 5720	15290 10190 7650 6120	16260 10840 8130 6500
10	3	2190 1550 1640 1460 1320	2599 2220 1940 1730 1560	2980 2550 2240 1970 1790	3360 2530 2530 2240 2010	3720 31 (0) 2790 248 (223)	4080 3500 3080 2720 2450	4430 3800 3320 2050 2660	4770 4090 3580 3180 2860	5100 4370 3820 3400 3660	5420 4650 4060 3610 3250

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}$ span.

1830

1650

1440

1340

1260

2030 2230

1860 2040

1600

1490

1400 1530

1 km

2420 2600

2210 2380 2550

2049 2200

1900 2040

1660

1790 1910

2780 2960

2180

1910 2040

2710

2500

2320

2170

2030

11

12

13 14

15

16

1200

1010

940

880 1040 1190

820 970 1120

1410 1630

1300 1400

1200

12×0

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

		Section No. A 131.									
Distance between			4	$4'' \times 3\frac{1}{2}''$							
supports in	5//	3//	7/16	1/1	9 "	5/1	11''				
feet.	7.7 lbs. per ft.	9.1 lbs. per ft.	10.6 lbs. per ft.	lbs. per ft.	13.3 lbs. per ft.	14.7 lbs. per ft.	16.0 lbs. per ft.				
2 3 4 5	6740 4490 3370 2690	7970 5310 3980 3190	9160 6110 4580 3660	10320 6880 5160 4130	11450 7640 5730 4580	12550 8370 6280 5020	13630 9080 6810 5450				
6 7 8 9 10	2250 1920 1680 1500 1350	2660 2280 1990 1770 1590	3050 2620 2290 2040 1830	3440 2950 2580 2290 2060	3820 3270 2860 2550 2290	4180 3590 3140 2790 2510	4540 3890 3410 3030 2730				
11 12 13 14 15	1220 1120 1040 960 990	1330 1230 1140 1060	1670 1530 1410 1310 1220	1880 1720 1590 1470 1380	2080 1910 1760 1640 1530	2280 2090 1930 1790 1670	2480 2270 2100 1950 1820				
16	840	1000	1150	1290	1430	1570	1700				

	1	Section No. A 101.								
Distance					5" 2					
between supports in feet.	5'' 16' 8.2 lbs. per ft.	9.8 lbs. per ft.	11.3 lbs. per ft.	12.8 lbs. per ft.	$\frac{\frac{9}{16}''}{14.3}$ lbs. per ft.	5/8 15.7 lbs. per ft.	17.1 lbs. per ft.	3/' 18.5 lbs. per ft.	13.7 19.9 lbs. per ft.	21.2 bs. per ft.
2 3 4 5	10060 6710 5030 4020	11920 7950 5960 4770	13740 9160 6870 5500	15510 10340 7760 6210	17240 11490 8620 6900	18930 12629 9470 7570	20580 13720 10290 8230	22190 14790 11100 8880	23770 15850 11880 9510	25310 16870 12660 10120
6 7 8 9 10	3350 2870 2520 2240 2010	3970 3410 2980 2650 2380	4580 3930 3440 3050 2750	5170 4430 3880 3450 3100	5750 4930 4310 3830 3450	6310 5410 4730 4210 3790	6860 5880 5140 4570 4120	7400 6340 5550 4930 4440	7920 6790 5940 5280 4750	8440 7230 6330 5620 5060
11 12 13 14 15	1830 1689 1550 1440 1340	2170 1990 1830 1700 1590	2500 2290 2110 1960 1830	2820 2590 2390 2220 2070	3130 2870 2650 2460 2300	3440 3160 2910 2700 2520	3740 3436 3170 2940 2740	4030 3700 3410 3170 2960	4320 3960 3660 3400 3170	4600 4220 3890 3620 3370
16 17 18	1260 1180 1120	1490 1400 1330	1720 1620 1530	1940 1830 1720	2160 2030	2370 2230 2100	2570 2420 2290	2770 2610 2470	2970 2800 2640	3160 2980 2810

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{340}$ span.

SAFE LOADS IN POUNDS UNIFORMLY DISTRIBUTED FOR CAMBRIA ANGLES. UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

	ı	
	ı	
	ī	
	9	
-	_	

Distance				Se	ction	ı No.	A 10	3.			
between					5'	′ x 3½	11				
sup-	16	3/1	16"	1//	9//	5/1	11/1	3//	13"	7//	15"
ports	8.7		12.0			16.8	18.3	19.8	21.3	22.7	24.2
in feet.	per ft.	lbs.	per ft.	per ft.	lbs. per ft.	lbs. per ft.	lbs.	lbs.		lbs. per ft.	lbs. per ft.
2	10320	12240	14100	15930	17710		21150	22810	-	26030	27590
8	6850	8160	9400 .	10620	11810			15210	16290	17350	18400
5	5160 4130	6120	7050 5640	7960 6370	8850 7080	9720 7780	10570 8460	11410 9120	12220	13020 10410	13800 11040
6	3440	4050	4700	5310	5900	6480	7050	7600	8150	8680	9200
7	2950	3500	4030	4550	5060	5560	6040	6520 5700	6980 6110	7440 6510	7880 6900
8 9	2580 2290	3060 2720	3530 3130	3980 3540	4430 3940	4860 4320	5290 4700	5070	5430	5780	6130
10	2060	2450	2820	3190	3540	3890	4230	4560	4890	5210	5520
11	1880	2220	2560	2900	3220	3540	3850	4150	4440	4730	5020
12	1720	2040	2350	2650	2950	3240	3520	3800	4070	4340	4600
13	1590	1980	2170	2450	2720	2990	3250	3510	3760	4000	4240
14 15	1470 1380	1750 1630	2010 1880	2280 2120	2530 2360	2780 2590	3020	3260 3040	3490 3260	3720	3940 3680
16	1290	1530	1760	1990	2210	2430	2640	2850	3050	3250	3450
17	1210	1440	1660	1870	2080	2290	2490	2680	2880	3060	3250
18	1150	1360	1570	1770	1970	2160	2350	2530	2720	2890	3070

Section No. A 135.

Distance between			5"	x 4"		
supports in	3"	16"	1/2	9/1	5/1	11/1
feet.	11.0 lbs.	12.8 lbs.	14.5 lbs.	16.2 lbs.	17.8 lbs.	19.5 lbs.
	per ft.					
2	12500	14410	16280	18100	19880	21620
8	8330	9610	10850	12070	13250	14420
4	6250	7200	8140	9050	9940	10810
5	5000	5760	6510	7240	7950	8650
6 7 8 9	4170 3570 3120 2780 2500	4800 4120 3600 3200 2880	5430 4650 4070 3620 3260	6030 5170 4520 4020 3620	6630 5680 4970 4420 3980	7210 6180 5410 4810 4320
11	2270	2620	2960	3290	3610	3930
12	2080	2400	2710	3020	3310	3600
13	1920	2220	2500	2780	3060	3330
14	1790	2060	2330	2590	2840	3090
15	1670	1920	2170	2410	2650	2880
16	1560	1500	2030	2260	2490	2700
17	1470	1700	1910	2130	2340	2540
18	1390	1600	1810	2010	2210	2400

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings $= \frac{1}{3} \frac{1}{10}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

			Section No. A 105.									
Dista			6" x 3½"									
su	p-	3//	7/16	1"	9//	5/1	11'' 16''	3"	13" 16"	7''	15" 16"	1"
in f		11.7	13.5	15.3	17.1	18.9	20.6	22.4	24.0	25.7	27.3	28.9
		lbs. per ft.	lbs. per ft.	lbs. per ft.	lbs. per ft.	lbs. per ft.	lbs. per ft.					
	2845	17300 11540 8650 6920	19980 13320 9990 7990	22600 15060 11300 9040	25160 16770 12580 10060	27670 18450 13840 11070	30130 20090 15070 12050	32550 21700 16270 13020	34910 23270 17460 13960	37230 24820 18620 14890	39510 26340 19760 15800	41630 27750 20810 16650
1	6 7 8 9	5770 4940 4330 3850 3460	6660 5710 4990 4440 4000	7530 6460 5650 5020 4520	8390 7190 6290 5590 5030	9220 7910 6920 6150 5530	10040 8610 7530 6700 6030	10850 9300 8140 7230 6510	11640 9970 8730 7760 6980	12410 10640 9310 8270 7450	13170 11290 9880 8780 7900	13880 11890 10410 9250 8330
1:	2 3 4	3150 2880 2660 2470 2310	3630 3330 3070 2850 2660	4110 3770 3480 3230 3010	4570 4190 3870 3590 3350	5030 4610 4260 3950 3690	5480 5020 4640 4300 4020	5920 5420 5010 4650 4340	6350 5820 5370 4990 4650	6770 6210 5730 5320 4960	7180 6590 6080 5640 5270	7570 6940 6400 5950 5550
111111111111111111111111111111111111111	8	2160 2040 1920 1820 1730	2500 2350 2220 2100 2000	2820 2660 2510 2380 2260	3150 2960 2800 2650 2520	3460 3260 3070 2910 2770	3770 3550 3350 3170 3010	4070 3830 3620 3430 3250	4360 4110 3880 3680 3490	4650 4380 4140 3920 3720	4940 4650 4390 4160 3950	5200 4900 4630 4380 4160
2	1 2	1650 1570	1900 1810	2150 2050	2400 2290	2640 2520	2870 2740	3100 2960	3320 3170	3550 3380	3760 3590	3960 3780

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{340}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

		Section No. A 107.										
Distance between		•			6	5" x 4	"					
sup- ports	3/1	7/16	12"	9 "	5"	11 "	3"	13''	7/1	15" 16"	1"	
in feet.	12.3 lbs. per ft.	14.3 lbs. per ft.	16.2 lbs. per ft.	18.1 lbs. per ft.	lbs.	lbs.	lbs.	25.4 lbs. per ft.	lbs.	28.9 lbs. per ft.	30.6 lbs. per ft.	
2845	17700	20430	23120	25750	28320	30850	33330	35760	38140	40480	42780	
	11500	13620	15410	17160	18880	20570	22220	23840	25430	26990	28520	
	8850	10230	11560	12870	14160	15420	16660	17880	19070	20240	21390	
	7080	8170	9250	10300	11330	12340	13330	14300	15260	16190	17110	
6	5900	6810	7710	8580	9440	10280	11110	11920	12710	13490	14260	
7	5060	5840	6600	7360	8080	8810	9520	10220	10900	11570	12220	
8	4420	5110	5780	6440	7080	7710	8330	8940	9540	10120	10700	
9	3930	4540	5140	5720	6290	6860	7410	7950	8480	9000	9510	
10	3540	4090	4620	5150	5660	6170	6670	7150	7630	8100	8560	
11	3220	3720	4200	4680	5150	5610	6060	6500	6930	7360	7780	
12	2950	3410	3850	4290	4720	5140	5550	5960	6360	6750	7130	
13	2720	3140	3560	3960	4360	4750	5130	5500	5870	6230	6580	
14	2530	2920	3300	3680	4050	4410	4760	5110	5450	5780	6110	
15	2360	2720	3080	3430	3780	4110	4440	4770	5090	5400	5700	
16	2210	2550	2890	3220	3540	3860	4170	4470	4770	5060	5350	
17	2080	2400	2720	3030	3330	3630	3920	4210	4490	4760	5030	
18	1970	2270	2570	2860	3150	3430	3700	3970	4240	4500	4750	
19	1860	2150	2430	2710	2980	3250	3510	3760	4020	4260	4500	
20	1770	2040	2310	2570	2830	3080	3330	3580	3810	4050	4280	
21	1690	1950	2200	2450	2700	2940	3170	3400	3630	3860	4070	
22	1610	1860	2100	2340	2570	2800	3030	3250	3470	3680	3890	

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}\frac{1}{6}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

Distance between supports in feet.	$7'' \ge 3\frac{1}{2}''$										
	7/16	1/1/2	9//	5/1	111"	3''	13"	7"	15"	1'	
	15.0 lbs. per ft.	lbs. per ft.	19.1 lbs. per ft.	21.0 lbs. per ft.	lbs.	lbs.	26.8 lbs. per ft.	lbs.	lbs.	32. lbs per	
4	13360	15140	16900	18570	20260	21910	23530	25110	26670	282	
5	10690	12120	13520	14850	16210	17530	18830	20090	21340	225	
6	8910	10100	11270	12380	13510	14600	15690	16740	17780	1880	
7	7640	8650	9660	10610	11580	12520	13450	14350	15240	1613	
8	6680	7570	8450	9280	10130	10950	11770	12560	13340	1410	
9	5940	6730	7510	8250	9010	9740	10460	11160	11850	1254	
10	5340	6060	6760	7430	8100	8760	9410	10050	10670	1128	
11	4860	5510	6150	6750	7370	7970	8560	9130	9700	1026	
12	4450	5050	5630	6190	6750	7390	7840	8370	8890	946	
13	4110	4660	5200	5710	6230	6740	7240	7730	8210	868	
14	3820	4330	4830	5310	5790	6260	6720	7180	7620	806	
15	3560	4040	4510	4950	5400	5840	6280	6700	7110	753	
16	3340	3790	4230	4640	5070	5480	5880	5280	6670	708	
17	3140	3560	3980	4370	4770	5150	5540	5910	6280	666	
18	2970	3370	3760	4130	4500	4870	5230	5580	5930	627	
19	2810	3190	3560	3910	4270	4610	4950	5290	5620	594	
20	2670	3030	3380	3710	4050	4380	4710	5020	5330	564	
21	2550	2880	3220	3540	3860	4170	4480	4780	5080	53°	
22	2430	2750	3070	3380	3680	3980	4280	4570	4850	51°	
28	2320	2630	2940	3230	3520	3810	4090	4370	4640	49°	
24	2230	2520	2820	3090	3380	3650	3920	4190	4450	47°	

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{380}$ span.

UNEQUAL LEGS.

NEUTRAL AXIS PARALLEL TO SHORT LEG.

Safe loads below are figured for fibre stress of 16 000 pounds per square inch and include weight of angle.

Distance between supports in feet.	Section No. A 112.											
	8" x 6"											
	23.0 lbs. per ft.	25.7 lbs. per ft.	28.5 lbs. per ft.	31.2 lbs. per ft.	33.8 lbs. per ft.	36.5 lbs. per ft.	39.1 lbs. per ft.	15" 16" 41.7 lbs. per ft.	1" 44.2 lbs. per ft.			
										4 5	21370	23860
	17090	19090	21050	22980	24890	26760	28610	30430	32230			
8 7 8 9	14250 12210 10680 9500 8550	15900 13630 11930 10600 9540	17540 15040 13150 11690 10520	19150 16410 14360 12770 11490	20740 17770 15550 13820 12440	22300 19110 16720 14860 13380	23840 20440 17880 15890 14300	25360 21740 19020 16900 15210	26860 23020 20140 17900 16110			
11	7770	8670	9570	10440	11310	12160	13000	13830	14650			
12	7120	7950	8770	9570	10370	11150	11920	12680	13430			
13	6570	7340	8090	8840	9570	10290	11000	11700	12390			
14	6100	6810	7510	8200	8880	9550	10220	10870	11510			
15	5700	6360	7010	7660	8290	8920	9540	10140	10740			
16	5340	5960	6570	7180	7770	8360	8940	9510	10070			
17	5020	5610	6190	6760	7320	7870	8410	8950	9480			
18	4750	5300	5840	6380	6910	7430	7950	8450	8950			
19	4500	5020	5540	6040	6550	7040	7530	8010	8480			
20	4270	4770	5260	5740	6220	6690	7150	7600	8050			
21	4070	4540	5010	5470	5920	6370	6810	7240	7670			
22	3880	4330	4780	5220	5650	6080	6500	6910	7320			
23	3710	4150	4570	4990	5410	5910	6220	6610	7000			
24	3560	3970	4380	4780	5180	5570	5960	6340	6710			
25	3420	3810	4210	4590	4970	5350	5720	6080	6440			
26	3280	3670	4040	4420	4780	5140	5500	5850	6190			
27	3160	3530	3890	4250	4600	4950	5300	5630	5960			
28	3050	3410	3760	4100	4440	4780	5110	5430	5750			

For safe loads below heavy lines the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}\frac{1}{6}0$ span.

GENERAL FORMULÆ FOR FLEXURE OF BEAMS. NOTATION.

A = Area of Section in square inches.

a Depth of Cross Section in inches.
 l = Length of Span in inches.
 L = Length of Span in feet.

p = Stress in extreme fibre of section in pounds per square inch. $X_1 = Distance$ of Center of Gravity of Section from extreme fibre in inches. W = Total Load, in pounds, Uniformly Distributed, including the Weight of

W1 = Total Superimposed or Live Load, in pounds, Uniformly Distributed.

W₂ = Total Weight of Beam, in pounds, Uniformly Distributed.

W₈ = Total Safe Load, in pounds, Uniformly Distributed.

 Load, in pounds, concentrated at any point.
 Coefficient of Strength of the Tables of Properties = Safe Load, in pounds, for a fibre stress of 16 000 pounds per square inch for a span of one foot.

F' = Coefficient of Strength of the Tables of Properties = Safe Load, in pounds,

for a fibre stress of 12 500 pounds per square inch for a span of one foot.

D = Total Deflection of Beam, in inches, due to weight W.

Dw1 and Dp = Deflections of Beams, in inches, due to the weights W1 and P

respectively.

N = Coefficient of Deflection of the Tables of Properties = Deflection, in inches, due to a total load of 1 000 pounds uniformly distributed for a span of one foot.

N' = Coefficient of Deflection of the Tables of Properties = Deflection, in inches, due to a superimposed load of 1 000 pounds, concentrated at the middle of a Beam with a span of one foot.

H = Coefficient of Deflection, in inches, for fibre stress of 16 000 pounds per square inch, for any section used as a Beam subjected to its safe load

Uniformly Distributed. (See table, page 98.)

H' = Coefficient of Deflection, in inches, for fibre stress of 12 500 pounds per square inch for any section used as a Beam subjected to its safe load Uniformly Distributed. (See table, page 98.)

M = Total Bending Moment, in inch pounds, due to the Weight of Beam and

Superimposed Load.

Moment of Inertia, in inches⁴, Axis through Center of Gravity.

Moment of Inertia, in inches⁴, Axis parallel to above but not through Center of Gravity.

Distance, in inches, between these Axes.

Section Modulus in inches³.

r = Radius of Gyration in inches. E = Modulus of Elasticity, in pounds, per square inch (Steel = 29 000 000).

GENERAL FORMULÆ.

$$S = \frac{I}{X_1} \qquad I_1 = I + Av^2 \qquad r = \sqrt{\frac{I}{A}}$$

$$M = \frac{pI}{X_1} = p S \therefore p = \frac{MX_1}{I} = \frac{M}{S} \quad \text{Or for Symmetrical Section } M = \frac{2pI}{d}$$
For Beam supported at both ends and Uniformly Loaded:
$$M = \frac{WI}{8} = \frac{(W_1 + W_2)}{8} \quad \therefore \quad W = (W_1 + W_2) = \frac{8M}{1} = \frac{8pI}{IX_1} = \frac{8pS}{I}$$
SAFE LOADS.

SAFE LOADS.

$$F = \frac{8pS}{l}$$
 where $p = 16\,000$ pounds and $l = 12''$ therefore $F = \frac{2}{3}$ 16 000 S

$$F' = \frac{8pS}{1}$$
 where p = 12500 pounds and 1 = 12" therefore $F' = \frac{2}{3}$ 12500 S

To obtain the Safe Load for any span in feet, for fibre stress of 16 000 pounds per square inch:

Safe Load =
$$W_s = \frac{2}{3} \frac{16000 \text{ S}}{L} = \frac{F}{L}$$

 $Safe\ Load\ =\ W_s = \frac{2}{3}\,\frac{16\,000\ S}{L} = \frac{F}{L}$ To obtain the Safe Load for any span in feet, for fibre stress of 12 500 pounds per square inch:

Safe Load =
$$W_s = \frac{2}{3} \frac{12500 \text{ S}}{L} = \frac{F'}{L}$$

GENERAL FORMULÆ FOR FLEXURE OF BEAMS.

(CONTINUED.)

DEFLECTIONS.

(1) Beam supported at both ends and Uniformly Loaded:

Deflection for Total Load = D =
$$\frac{5}{384} \frac{\text{Wl}^3}{\text{EI}} = \frac{5}{384} \frac{(\text{W}_1 + \text{W}_2)}{\text{EI}}$$

Deflection for Superimposed Load = $Dw_1 = \frac{3}{384} \frac{w_1}{EI}$

(2) Beam supported at both ends with load concentrated at the middle:

Deflection for Total Load = D =
$$\frac{Pl^3}{48EI} + \frac{5}{384} \frac{W_2l^3}{EI}$$

Deflection for Superimposed Load = $D_p = \frac{Pl^3}{48EI}$

(3) Beam fixed at one end, unsupported at the other, and Uniformly Loaded:

Deflection for Total Load = D =
$$\frac{Wl^3}{8EI}$$
 = $\frac{(W_1 + W_2) l^3}{8EI}$

Deflection for Superimposed Load = $Dw_1 = \frac{W_1 l^3}{8EI}$

(4) Beam fixed at one end, and unsupported at the other, with load concentrated at the unsupported end:

Deflection for Superimposed Load = $D_p = \frac{Pl^3}{3EI}$

 $N = \frac{5}{384} \frac{Wl^3}{EI} = \frac{5}{384} \frac{(W_1 + W_2)}{EI}$, where $W = (W_1 + W_2) = 1000$ pounds and l = 12''

$$N' = \frac{Pl^3}{48 \text{ EI'}}$$
 where $P = 1000$ pounds and $l = 12''$

Total Deflection, in inches, due to a Beam Uniformly Loaded for any span in feet = $D = \frac{NWL^3}{1000} = \frac{N(WL + W2)L^3}{1000}$.

Total Deflection, in inches, due to a Superimposed Load P and the Weight of Beam W_2 for any span in feet = D = $\frac{N^2PL^3}{1\,000} + \frac{NW_2L^3}{1\,000}$

$$H = \frac{12}{725} L^2$$
 $H' = \frac{3}{232} I$

FOR SYMMETRICAL SECTIONS.

Total Deflection, in inches, for a fibre stress of 16 000 lbs. per square inch = $D = \frac{H}{a}$

Total Deflection, in inches, for a fibre stress of 12 500 lbs. per square inch $\mathbf{E} = \mathbf{E} = \mathbf{E} \mathbf{E}$

FOR UNSYMMETRICAL SECTIONS.

Total Deflection, in inches, for a fibre stress of 16 000 pounds per square inch = $D = \frac{H}{R}$

Total Deflection, in inches, for a fibre stress of 12 500 pounds per square inch = D = $\frac{H'}{2X_1}$

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

W = Total Load, in lbs., uniformly distributed. ncluding the weight of beam.

W1 = Total Superimposed or Live Load, in lbs., uniformly distributed, W₂ = Total Weight of Beam or Dead Load, in lbs., uniformly distributed.

 P_1 , P_2 , P_3 = Loads, in lbs., con-

centrated at any points.

M = Total Bending Moment, in inch-lbs. M_{wl}, M_p= Bending Moments, in inch-lbs., due to Weights W₁ and P respectively. I = Moment of Inertia, in inches⁴.

l=Length of Span, in inches. E=Modulus of Elasticity, in lbs. per square inch = 29 000 000 for steel.

 $W_{\rm s} = {
m Total \ Safe \ Load, \ in \ lbs., \ uniformly \ distributed, \ including \ weight \ of \ beam = {
m Total \ Safe \ Load \ of \ Tables.}$

The ordinates in diagrams give the bending moments for corresponding points For superimposed load only, make W2 in formulæ equal to zero.

(1) Beam Supported at both ends and Uniformly Loaded.

Diagram for Total Load:-Draw parabola having M =

Safe Superimposed Load, in lbs., uniformly distributed, W', = W, -W2.

Maximum Bending Moment at middle of beam = $M = \frac{Wl}{Q} = \frac{(W_1 + W_2)l}{Q}$.

Maximum Shear at points of support $=\frac{W}{2}=\frac{W_1+W_2}{2}$

Maximum deflection = $\frac{5}{384} \frac{\text{Wl}^3}{\text{EI}} =$ $5 (W_1 + W_2) 1^3$ 384

(2) Beam Supported at both ends with Load Concentrated at the Middle.

Diagram for Superimposed Load: Draw triangle having $M_p = \frac{Pl}{r}$ Diagram, Dead Load, similar to Case(1) Safe Superimposed Load, in lbs., concentrated, $P_s = \frac{W_s - W_2}{2}$.

Maximum Bending Moment at middle of beam = $M = \frac{Pl}{4} + \frac{W_2l}{8}$

Maximum Shear at points of support = $P + W_2$

Max. Deflection = $\frac{Pl^3}{48EI} + \frac{5}{384} \frac{W_2l^3}{EI}$

(3) Beam fixed at one end, Unsupported at the other and Uniformly Loaded. M

Diagram for Total Load... Draw Parabola having $M = \frac{Wl}{2}$ Safe Superimposed Load, in lbs., uniformly distributed, $W'_{s} = \frac{W_{s}}{4} - W_{2}$.

Maximum Bending Moment at point of support = $\frac{Wl}{2} = \frac{(W_1 + W_2) l}{2}$.

Maximum Shear at point of support =

Max. Deflection = $\frac{Wl^3}{8EI} = \frac{(W_1 + W_2)l^3}{8EI}$

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

W = Total Load, in lbs., uniformly distributed, including the weight of beam.

W1 = Total Superimposed or Live Load, in lbs., uniformly distributed. W2 = Total Weight of Beam or Dead Load, in lbs., uniformly dis-

tributed. $P, P_1, P_2, P_3 = Loads$, in lbs., con-

centrated at any points.

I = Moment of Interta, in Inches,
I = Length of Span, in inches,
E = Modulus of Elasticity, in lbs. per
square inch = 29 000 000 for steel,
W_s = Total Safe Load, in lbs., uniformly distributed, including weight of
beam = Total Safe Load of Tables. The ordinates in diagrams give the bending moments for corresponding points on beam. For superimposed load only, make W2 in formulæ equal to zero.

(4) Beam fixed at one end, and Safe Superimposed Load, in lbs., concentrated, $P_s = \frac{W_s - 4W_2}{g}$. Unsupported at other, with Load Concentrated at the free end.

Maximum Bending Moment at point of support = $Pl + \frac{W_{2}l}{C}$

> Maximum Shear at point of support = $P + W_2$

M = Total Bending Moment, in inch-lbs.

Mwl, Mp = Bending Moments, in inch-lbs... due to Weights W₁ and P respectively.

I = Moment of Inertia, in inches⁴.

Maximum Deflection = $\frac{Pl^3}{3EI} + \frac{W_2l^3}{8EI}$.

Safe Superimposed Load, in lbs., concentrated, $P_B = \frac{W_a l^2 - 4a W_2 (l - a)}{co.b}$.

8ab Maximum Bending Moment under load $a (2 Pb + W_2l - W_2a)$

Max. Shear at Sup. near $a = \frac{Pb}{1} + \frac{W_2}{2}$.

Max. Shear at Sup. near $b = \frac{Pa}{1} + \frac{W_2}{2}$ Deflection at distance x from left sup-

 $port = \frac{1}{3EII} \left[\frac{2ai - a^2}{3} \right]^{\frac{3}{2}}$ $\left[Pb + \frac{W_2}{8} \left(\sqrt{\frac{2al - a^2}{3} + \frac{3l^3}{2al - a^2} - 2l} \right) \right]$

 $x = \sqrt{\frac{2al - a^2}{3}}$ = Distance, from left

support, of point of maximum deflection for superimposed load.

Safe Superimposed Load, in lbs., concentrated, each, $P_g = \frac{W_s l - W_2 l}{g_o}$.

Maximum Bending Moment at center of beam = Pa + $\frac{W_2 l}{8}$

Maximum Shear at points of support = $_{2}P + W_{2}$

Maximum Deflection =

Diagram for Superimposed Load:-Draw triangle having Mp = Pl. Diagram, Dead Load, similar to Case(3)

(5) Beam Supported at both ends with Load Concentrated at any point.

Diagram for Superimposed Load:-Draw triangle having $M_p = \frac{Pab}{1}$.

Diagram, Dead Load, similar to Case(1)

(6) Beam Supported at both ends with two Symmetrical Loads.

Diagram for Superimposed Load:-Draw trapezoid having $M_p = Pa$.
Diagram, Dead Load, similar to Case(1) $\frac{Pa}{24 \text{ EI}} \left(3l^2 - 4a^2 \right) + \frac{5}{384} \frac{W_2 l^3}{EI}$

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

W = Total Load, in lbs., uniformly distributed, including the weight of beam.

W₁ = Total Superimposed or Live Load, in lbs., uniformly distributed.

W₂ = Total Weight of Beam or Dead Load, in lbs., uniformly distributed.

 $P. P_1. P_2. P_3 = Loads$, in lbs., con-

centrated at any points.

M = Total Bending Moment, in inch-lbs. M_{wl}, M_p = Bending Moments, in inch-lbs., due to Weights W₁ and P respectively.

I = Moment of Inertia, in inches.

1 = Length of Span, in inches.

E = Modulus of Elasticity, in lbs., per square inch = 29000000 for steel.

Wa = Total Safe Load, in lbs., uniformly distributed, including the weight of beam = Total Safe Load of Tables.

The ordinates in diagrams give the bending moments for corresponding points on beam. For superimposed load only, make W2 in formulæ equal to zero.

(7) Beam Supported at both ends with Loads Concentrated at various Points.

The total bending moment at any point produced by all the weights is equal to the sum of the moments at that point produced by each of the weights separately.

Diagram for Dead Load similar to Case (1).

The Maximum Bending Moment occursat the point where the vertical shear equals zero and will be at one of the loads P. Pr. or Pr depending upon their amounts and spacing if Wo is neglected.

Let R = Reaction at Left Support.

Bending Moment at P = $M_p = Ra - \frac{W_2 a^2}{a^2}.$

Bending Moment at P1 =

$$M_{pl} = Ra_1 - \left[\frac{W_2 a_1^2}{2l} + P (a_1 - a) \right]$$

Bending Moment at P2 = Mp2 = Ra2 - $\left[\frac{W_2 a_2^2}{2!} + P_1 (a_2 - a_1) + P (a_2 - a)\right]$.

Shear or Reaction at Left Support = $P_2 b_2 + P_1 b_1 + Pb + \frac{W_2}{2}$

Shear or Reaction at Right Support = $P_2 a_2 + P_1 a_1 + P_2 + \frac{W_2}{2}$

Diagram for Superimposed Load:-Draw as in Case (5) the Ordinates FC, GD and HE representing the bending moments due to loads P. P. and P. re. spectively. Produce FC to P, making PC = FC + IC + JC; GD to Q, making QD = GD + KD + LD; and HE to R, making RE = HE + ME + NE, Join the points A, P, Q, R and B, then the ordinates between A B and polygon A P ORB will represent the bending moments for corresponding points on beam,

BENDING MOMENTS AND DEFLECTIONS FOR BEAMS OF UNIFORM SECTION.

W = Total Load, in lbs., uniformly distributed, including the weight of

W1 = Total Superimposed or Live Load, in lbs., uniformly distributed, W2 = Total Weight of Beam or Dead Load, in lbs., uniformly distributed.

P. P., P., P. = Loads, in lbs., con-

centrated at any points.

M = Total Bending Moment in inch-lbs. $M_{w1}, M_p = Bending Moments, in inch-lbs.,$ due to Weights W₁ and P respectively. I = Moment of Inertia, in inches.

I = Length of Span, in inches,

E = Modulus of Elasticity, in lbs., per square inch = 29000000 for steel.

W, = Total Safe Load, in lbs., uniformly distributed, including the weight of beam = Total Safe Load of Tables.

The ordinates in diagrams give the bending moments for corresponding points on beam. For superingosed load only, make W2 in formulæ equal to zero.

(8) Beam Fixed at both ends and Uniformly Loaded.

Diagram for Total Load:-Draw Wl Also A A parabola having M = parallel to base and at a distance The Vertical distances between the parabola and line A A' are the moments for corresponding points on beam.

(9) Beam Fixed at both ends with Load Concentrated at the Middle.

Diagram for Superimposed Load:-Draw triangle having $M = \frac{Pl}{r}$. Also A A' parallel to base and at a distance $M' = \frac{Pl}{8}$. The Vertical distances between the triangle and line A A' are the moments for corresponding points on beam.

Diagram for Dead Load similar to Case (8).

Safe Superimposed Load, in lbs., uniformly distributed, W', = 3 W, - W2,

Distance of points of contra-flexure from supports = .21131.

Maximum Bending Moment at points $W1 = (W_1 + W_2) 1$ of support =

Bending Moment at middle of beam = $\underline{\mathbf{W}}_{1} = (\mathbf{W}_{1} + \mathbf{W}_{2}) \mathbf{1}$ 21 24

Maximum Shear at points of support = $W_1 + W_2$

W13 Maximum Deflection = 384EI (11,1 + 11,5) 13 .384EI

Safe Superimposed Load, in lbs., concentrated, $P_s = W_s - \frac{2}{3}W_2$.

Distance of points of contra-flexure from supports = $\frac{1}{2}$ l.

Maximum Bending Moment at points of support = $\frac{\text{Pl}}{8} + \frac{\text{W2l}}{12}$.

Bending Moment at middle of beam = $\frac{Pl}{8} + \frac{W_2l}{24}$

Maximum Shear at points of support = P + W2

Pla Maximum Deflection = 192EI 11,13 384EI

OF MOMENTS OF INERTIA FOR STAND-ARD AND CAMBRIA SECTIONS.

$$A = td + 2s (b-t) + \frac{(b-t)^2}{12}$$

1, Axis
$$1-1 = \frac{bd^3}{12} - \frac{h^4-1^4}{8}$$

I', Axis
$$2-2 = \frac{b^3s}{6} + \frac{1t^3}{12} + \frac{b^4-t^4}{288}$$

Slope of flange = $g = \frac{h-1}{h-1} = \frac{1}{6}$ for standard sections.

$$h = d - 2s$$
. $l = h - g(b-t)$.

$$A = td + 2s (b-t) + \frac{(b-t)^2}{6}.$$

$$x = \left[b^2s + \frac{ht^2}{2} + \frac{(b-t)^2}{18} (b+2t)\right] \div A.$$

$$I, Axis 1 - 1 = \frac{bd^3}{12} - \frac{h^4 - l^4}{16}.$$

I', Axis
$$2-2=\frac{1}{3}\left[2sb^3+1t^3+\frac{b^4-t^4}{12}\right]-Ax^2$$
.

Slope of flange = $g = \frac{h-1}{2(b-t)} = \frac{1}{6}$ for standard sections. h = d - 2s.l = h - 2g(b - t).

$$A = t (2a - t).$$

$$x = \frac{a^2 + at - t^2}{2(2a - t)}.$$

I, Axis
$$1 - 1 = \frac{t(a-x)^3 + ax^3 - (a-t)(x-t)^3}{3}$$

I", Axis
$$2-2=\frac{2x^4-2(x-t)^4+t\left[a-\left(2x-\frac{t}{2}\right)\right]^3}{3}$$

$$A = t (a + b - t).$$

$$\mathbf{x} = \frac{\mathbf{t} (2\mathbf{a}' + \mathbf{b}) + \mathbf{a}'^2}{2(\mathbf{a}' + \mathbf{b})} \cdot \mathbf{x}' = \frac{\mathbf{t} (2\mathbf{b}' + \mathbf{a}) + \mathbf{b}'^2}{2(\mathbf{b}' + \mathbf{a})}$$

$$x = \frac{t (2a'+b) + a'^2}{2(a'+b)}, \quad x' = \frac{t (2b'+a) + b'^2}{2(b'+a)}.$$

$$Tan. 2a = + \frac{[(2x-t)b(b-2x') + (2x'-t)(a-t)(a+t-2x)]t}{2(1'-1)}.$$

$$I, Axis 1 - 1 = \frac{t(a-x)^3 + bx^3 - (b-t)(x-t)^3}{3}.$$

Axis
$$1 - 1 = \frac{t(a-x)^3 + bx^3 - (b-t)(x-t)^3}{3}$$

I', Axis
$$2 - 2 = \frac{t(b-x')^3 + ax'^3 - (a-t)(x'-t)^3}{3}$$

I", Axis
$$3-3=\frac{I\cos^2 a-I'\sin^2 a}{\cos^2 a}$$
.

VALUES OF MOMENTS OF INERTIA FOR STAND-ARD AND CAMBRIA SECTIONS.

$$A = [b + 2 (a - t)] t$$
.

Tan.
$$2a = + \frac{(bt - t^2)(a^2 - at)}{1 - 1'}$$

I, Axis
$$1-1=\frac{ab^3-a'(b-2t)^3}{12}$$
.

I', Axis
$$2-2 = \frac{b(a+a')^3 - 2a'^3b' - 6a'a^2b'}{12}$$

I" Minimum, Axis
$$3-3=\frac{I'\cos^2a-I\sin^2a}{\cos 2a}$$

$$A = \frac{1(t + t_1)}{2} + n' t_1 + b' (s + n').$$

$$\mathbf{x} = \frac{3s^2(\mathbf{b} - \mathbf{t_1}) + 2b's'(s' + 3s) + 3\mathbf{t_1}d^2 - 1(\mathbf{t_1} - \mathbf{t})(3d - 1)}{6\Delta}.$$

I, Axis
$$1 - 1 = \frac{l^3(3t+t_1)+4bn'^3-2b's'^3}{12} - A(x-n')^2$$

$$\begin{split} I', Axis 2 - \dot{2} &= \frac{sb^3 + s't_1^3 + lt^3}{12} + \frac{s'b'[2b'^2 + (2b' + 3t_1)^2]}{36} \\ &+ \frac{l(t_1 - t)[(t_1 - t)^2 + 2(t_1 + 2t)^2]}{144}. \end{split}$$

e = Area of head.

$$A = e + t (d - k) + (b - t) (s + \frac{s'}{2}).$$

$$\mathbf{x} = \frac{e(2d - \mathbf{k}) + t(d - \mathbf{k})^2 + (b - t)\left(s^2 + ss' + \frac{s'^2}{3}\right)}{2A}$$

I, Axis
$$1 - 1 = e \left[\frac{k^2}{16} + \left(d - \frac{2s + k}{2} \right)^2 \right] + \frac{t \cdot (1 + s')^3}{3} + \frac{b' \cdot s'^3 + 2bs^3}{6} - A \cdot (x - s)^2.$$

$$I', Axis 2 - 2 = \frac{ek^2}{16} + \frac{t^2(1+s') + sb^3}{12} + \frac{s'b'[2b'^2 + (2b' + 3t)^2]}{36}$$

Sections.	Area of Section.	Distance from Neutral Axis to Extremities of Section.
		x and x ₁
*a	a^2	$x_1 = \frac{a}{2}$
8 X₁ <a→< td=""><td>a^2</td><td>*x1 = a</td></a→<>	a^2	*x1 = a
	$a^2 - a_1^2$	$x_1 = \frac{a}{2}$
2 1 1	a [‡]	$x_1 = \frac{a}{\sqrt{2}} = .707a$
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	bd	$x_1 = \frac{d}{2}$
d ×1	bd	$*x_1 = d$
	$\mathrm{bd}-\mathrm{b_{i}d_{i}}$	$x_1 = \frac{d}{2}$
9. 3/X,	bd	$x_1 = \frac{b d}{\sqrt{b^2 + d^4}}$ *Not the neutral axis.

Moment of Inertia.	Section Modulus. $S = \frac{I}{x_1}.$	Radius of Gyration. $r = \sqrt{\frac{I}{A}}.$
a4 12	$\frac{a^3}{6}$	$\frac{a}{\sqrt{12}} = .289a$
a4/3	$\frac{a^s}{3}$	$\frac{a}{\sqrt{3}} = .577a$
$\frac{a^4-a_1^4}{12}$	$\frac{a^4 - a_1^4}{6a}$	$\sqrt{\frac{a^2+a_1^2}{12}}$
a 4 12	$\frac{a^3}{6 \sqrt{2}} = .118a^3$	$\frac{a}{\sqrt{12}} = .289a$
$\frac{\mathrm{bd^3}}{12}$	bd ² 6	$\frac{\mathrm{d}}{\sqrt{12}} = .289\mathrm{d}$
bd³ 3	$\frac{bd^2}{3}$	$\frac{d}{\sqrt{3}} = .577d$
bd³ — bɪd₁³ 12	bd³ — bıdı³ 6d	$\sqrt{\frac{bd^3 - b_1d_1^3}{12(bd - b_1d_1)}}$
$\frac{b^{a}d^{a}}{6(b^{2}+d^{2})}$	$\frac{b^2d^2}{\sqrt{b^2+d^2}}$	$\frac{bd}{\sqrt{6(b^2+d^2)}}$

Sections.	Area of Section.	Distance from Neutral Axis to Extremities of Section. x and x1			
a Day	bd	$x_1 = \frac{d\cos\alpha + b\sin\alpha}{2}$			
X ₁ d d	$\frac{\mathrm{bd}}{2}$	$\mathbf{x} = \frac{\mathbf{d}}{3}$ $\mathbf{x}_1 = \frac{2\mathbf{d}}{3}$			
x, d	<u>bd</u> 2	* x1 = d			
X, d	$\frac{\pi \mathrm{d}^2}{4} = .785 \mathrm{d}^2$	$\mathbf{x}_1 = \frac{\mathrm{d}}{2}$			
	$\frac{\pi (d^2 - d_1^2)}{4} = .785 (d^2 - d_1^2)$	$\mathbf{x}_1 = \frac{\mathrm{d}}{2}$			
x, x	$\frac{\pi \mathrm{d}^2}{8} = .393 \mathrm{d}^2$	$\mathbf{x} = \frac{2d}{3\pi} = .212d$ $\mathbf{x}_1 = \frac{(3\pi - 4) d}{6\pi} = .288d$			
d X	$\frac{\mathbf{b}+\mathbf{b_1}}{2}\cdot\mathbf{d}$	$\mathbf{x} = \frac{\mathbf{b} + 2\mathbf{b}_1}{\mathbf{b} + \mathbf{b}_1} \cdot \frac{\mathbf{d}}{3}$ $\mathbf{x}_1 = \frac{\mathbf{b}_1 + 2\mathbf{b}}{\mathbf{b} + \mathbf{b}_1} \cdot \frac{\mathbf{d}}{3}$ *Not the neutral axis.			

Moment of Inertia.	Section Modulus. $S = \frac{I}{x_1}$	Radius of Gyration. $r = \sqrt{\frac{I}{A}}$		
$\frac{bd}{12} (d^2 \cos^2 a + b^2 \sin^2 a)$	$\frac{\mathrm{d}b}{6} \left(\frac{\mathrm{d}^2 \! \! \cos^2 \! \! a + b^2 \! \! \sin^2 \! \! a}{\mathrm{d} \cos \! \! a + b \sin \! \! a} \right)$	$\sqrt{\frac{d^2\cos^2\alpha + b^2\sin^2\alpha}{12}}$		
bd ⁸ 36	bd ³ 24	$\frac{d}{v/18} = .236d$		
Axis through base; $\frac{bd^3}{12}$ Axis through apex; $\frac{bd^3}{4}$;	$\begin{array}{c} bd^2 \\ 12 \\ \underline{bd^2} \\ 4 \end{array}$	$\frac{d}{\sqrt[4]{6}} = .408d$ $\frac{d}{\sqrt{2}} = .707d$		
$\frac{\pi d^4}{64} = .049 d^4$	$\frac{\pi d^3}{32} = .098d^3$	<u>ā</u>		
$\frac{\pi(d^4-d_1^4)}{64} = .049 (d^4-d_1^4)$	$\frac{\pi}{32} \frac{(d^4 - d_1^4)}{d} = .098 \frac{(d^4 - d_1^4)}{d}$	$\frac{\sqrt{d^2 + d_1^2}}{4}$		
$\frac{9\pi^2 - 64}{1152\pi} \cdot d^4 = .007d^4$	$\frac{9\pi^3 - 64}{192(3\pi - 4)} \cdot d^3 = .024d^3$	$\frac{\sqrt{9\pi^2 - 64}}{12\pi} \cdot d = .132d$		
$\frac{b^2 + 4bb_1 + b_1^2}{36(b + b_1)}, d^3$	$\frac{b^2 + 4bb_1 + b_1^2}{12(b_1 + 2b)} \cdot d^2$	$\frac{d}{6(b+b_1)}\sqrt{\frac{2(b^2+4bb_1+b_1^2)}{2(b^2+4bb_1+b_1^2)}}$		

Sections.	Area of Section.	Distance from Neutral Axis to Extremities of Section. x and x ₁			
	$\frac{3}{2} d^2 \tan 30^\circ = .866 d^2$	$\mathbf{x}_1 = \frac{\mathbf{d}}{2}$			
ð ***	$\frac{3}{2}$ d² tan. 30° = ,866d²	$x_1 = \frac{d}{2\cos 30^{\circ}} = .577d$			
d x,	2d² tan. 22½° = .828 d²	$x_1 = \frac{d}{2}$			
d x,	$\frac{\pi \mathrm{bd}}{4} = .785 \mathrm{bd}$	$x_1 = \frac{d}{2}$			
n' NB t	td + 2b' (s + n')	$x_1 = \frac{d}{2}$			
$\begin{array}{c} \rightarrow S \leftarrow \rightarrow D' \leftarrow \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	td + 2b' (s + n')	$x_1 = \frac{b}{2}$			
	td + b' (s + n')	$x_1 = \frac{d}{2}$			
x b -1 b	td + b' (s + n')	$x = [b^{2}s + \frac{ht^{2}}{2} + \frac{g}{3}(b-t)^{2}]$ $(b+2t)] \div A$ $x_{1} = b - x$			

Moment of Inertia.	Section Modulus. $S = \frac{I}{x_1}$	Radius of Gyration. $r = \sqrt{\frac{I}{A}}$		
$\frac{A}{12} \left[\frac{d^2 (1 \dotplus 2 \cos^2 30^\circ)}{4 \cos^2 30^\circ} \right] = .06d^4$	$\frac{A}{6} \left[\frac{d(1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right] = .12d^3$	$\frac{d}{4\cos 30^{\circ}} \sqrt{\frac{1+2\cos^{2}30^{\circ}}{3}}$ = .264d		
$\frac{A}{12} \left[\frac{d^2 (1 + 2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right] = .06d^4$	$\frac{A}{6} \left[\frac{d (1 + 2 \cos^2 30^\circ)}{4 \cos 30^\circ} \right]$ = .104d ³	$\frac{d}{4\cos 30^{\circ}} \sqrt{\frac{1+2\cos^2 30^{\circ}}{3}} = .264d$		
$\frac{A}{12} \left[\frac{d^2 (1 + 2 \cos^2 22 \frac{1}{2}^\circ)}{4 \cos^2 22 \frac{1}{2}^\circ} \right] = .055 d^4$	$\frac{A}{6} \left[\frac{d (1 + 2 \cos^2 22 \frac{1}{2}^{\circ})}{4 \cos 22 \frac{1}{2}^{\circ}} \right]$ = .109d ³	$\frac{d}{4\cos 22\frac{1}{2}} \sqrt{\frac{1 + 2\cos^{2}22\frac{1}{2}}{3}}$ = .257d		
$\frac{\pi bd^3}{64} = .049 bd^3$	$\frac{\pi \mathrm{bd}^2}{32} = .098 \mathrm{bd}^2$	$\frac{\mathrm{d}}{4}$		
$\frac{1}{1} \left[e^{\frac{1}{2}t} - \frac{1}{4g} (h^4 - l^4) \right]$ where $g = \frac{h - l}{b - t}$	2 <u>I</u>	$r = \sqrt{\frac{I}{A}}$		
$ \frac{1}{1-} \left[b^{3} (d-h) + lt^{3} + \frac{g}{4} (b^{4}-t^{4}) \right] $ where $g = \frac{h-1}{b-t}$	2 <u>I</u> b	$r = \sqrt{\frac{I}{A}}$		
$\frac{1}{1} \left[b4^3 - \frac{1}{8g} (h^2 - 1^4) \right]$ where $g = \frac{h-1}{2(b-t)}$	2 <u>1</u> d	$r = \sqrt{\frac{I}{A}}$		
$\begin{split} \frac{1}{3} \left[2sb^3 + lt^3 + \frac{g}{2} \left(b^4 - t^4 \right) \right] \\ - \frac{Ax^2}{h-1} \\ \text{where } g = \frac{h-1}{2(b-t)} \end{split}$	$\frac{I}{b-x}$	$r = \sqrt{\frac{I}{A}}$		

Sections.	Area of Section.	Distance from Neutral Axis to Extremities of Section. x and x1
$ \begin{array}{c} $	bd - h (b - t)	$\mathbf{x}_1 = \frac{\mathbf{d}}{2}$
t t t	bd h (b t)	$x_1 = \frac{b}{2}$
	bd - h (b - t)	$x_1 = \frac{d}{2}$
X D D D D D D D D D D D D D D D D D D D	bd - h (b - t)	$x = \frac{2b^2s + ht^3}{2A}$ $x_1 = b - x$
t d	td + s (b - t)	$\mathbf{x}_1 = \frac{\mathrm{d}}{2}$
x	bs + ht	$x = \frac{d^2t + s^2 (b - t)}{2A}$ $x_1 = d - x$
X b h h i h	bs + ht + b ₁ s	$x = \frac{td^{2}+s^{2}(b-t)+s(b_{1}-t)(2d-s)}{2A}$ $x_{1} = d-x$
X D T S S	$bs + \frac{h(t+t_1)}{2}$	$x = 3bs^2 + 3th (d + s) + h(t_1 - t) (h + 3s)$ $6A$ $x_1 = d - x$

Moment of Inertia.	Section Modulus. $S = \frac{I}{x_1}$	Radius of Gyration. $r = \sqrt{\frac{1}{\Delta}}$
-	X1	\ A
$\frac{bd^3 - h^3 (b - t)}{12}$	$\frac{\mathrm{bd}^{3}-\mathrm{n}^{3}\left(\mathrm{b}-\mathfrak{t}\right)}{6\mathrm{d}}$	$\sqrt{\frac{bd^3 - h^3(b-t)}{12[bd-h(b-t)]}}$
2sb ³ + ht ³ 12	$\frac{2\mathrm{sb^3} + \mathrm{ht^3}}{6\mathrm{b}}$	$\sqrt{\frac{2\mathrm{sb}^3+\mathrm{ht}^3}{12\left[\mathrm{bd}-\mathrm{h}\left(\mathrm{b}-\mathrm{t}\right)\right]}}$
$\frac{\mathrm{bd}^{3}-\mathrm{h}^{3}\left(\mathrm{b}-\mathrm{t}\right)}{12}$	$\frac{bd^3 - h^3 (b - t)}{6d}$	$\sqrt{\frac{bd^{\mathfrak{g}}-h^{\mathfrak{g}}\left(b-t\right)}{12\left[bd-h\left(b-t\right)\right]}}$
$\frac{2\mathrm{sb}^3 + \mathrm{ht}^3}{3} - \mathrm{A}\mathbf{x}^3$	$\frac{I}{b-x}$	$\sqrt{\frac{1}{A}}$
$\frac{\operatorname{td}^{3} + \operatorname{s}^{3} \left(\operatorname{b} - \operatorname{t} \right)}{12}$	$\frac{\operatorname{td}^3 + \operatorname{s}^3 \left(\operatorname{b} - \operatorname{t} \right)}{6\operatorname{d}}$	$\sqrt{\frac{td^3 + s^3 (b - t)}{12[td + s (b - t)]}}$
$\frac{tx_1^3 + bx^3 - (b - t)(x - s)^3}{3}$	<u>I</u>	$\sqrt{\frac{tx_1^3 + bx^3 - (b - t) (x - s)^3}{3 (bs + ht)}}$
$\frac{bx^{5}+b_{1}x_{1}^{5}-(b-t)(x-s)^{3}}{3}$ $-\frac{(b_{1}-t)(x_{1}-s)^{3}}{3}$	$\frac{\mathrm{I}}{\mathrm{d}-\mathrm{x}}$	$\begin{bmatrix} bx^3 + b_1x_1^3 - (b-t) & (x-s)^3 \\ 3 & (bs + ht + b_1s) \\ -\frac{(b_1-t) & (x_1-s)^3}{3(bs + ht + b_1s)} \end{bmatrix}^{\frac{1}{2}}$
$\frac{4bs^3+h^3(3t+t_1)}{12}-A(x-s)^2$	1 d-x	$\sqrt{rac{\mathrm{I}}{\mathrm{A}}}$

EXPLANATIONS OF THE TABLES OF PROPERTIES OF STANDARD AND SPECIAL I-BEAMS, STANDARD AND AND SPECIAL CHANNELS, AND STANDARD AND SPECIAL ANGLES WITH EQUAL AND UNEQUAL LEGS.

PROPERTIES OF I-BEAMS.

PAGES 182 TO 185 INCLUSIVE.

The figures or values in the various columns give the section numbers, dimensions, weights, areas and properties of the sections as noted in the different headings.

The columns which require special explanation are as follows:

SECTION MODULUS-Column 8.

This is obtained from the moment of inertia in column 7 by dividing it by the distance from the neutral axis to the most remote fibre, which in this case is one-half the depth of the beam.

COEFFICIENTS OF STRENGTH-Columns 13 and 14.

The coefficients of strength F and F' have been computed for fibre stresses of 16 000 and 12 500 pounds per square inch respectively, as stated in the headings of the columns, and are the safe loads in pounds uniformly distributed, including its own weight, for a beam one foot long. Thus the safe load for any span may be obtained by dividing the proper coefficient by the length of the span in feet.

The coefficients of strength were obtained from the following formulæ:

 $F = \frac{2}{3} \times 16\,000 \times S$ $F' = \frac{2}{3} \times 12\,500 \times S$

in which S is the section modulus.

COEFFICIENTS OF DEFLECTION-Columns 15 and 16.

The Coefficients of Deflection N and N' for uniform and center loads, respectively, were obtained from the following formulæ:

$$N = \frac{Wl^3}{76.8EI} \qquad \qquad N' = \frac{Pl^3}{48EI}$$

in which

P and W = 1000 pounds.

1 = 12 inches.

 $E = 29\ 000\ 000.$

I = moment of inertia about axis 1-1.

These coefficients are, therefore, the deflections in inches of a beam one foot long with a load of 1 000 pounds, hence, the deflection of a beam for any load and span may be obtained by multiplying the proper coefficient by the cube of the span in feet, and by the number of 1 000-pound units in the given load.

PROPERTIES OF STANDARD AND SPECIAL CHANNELS.

PAGES 186 TO 191 INCLUSIVE.

The various columns in the Tables of Properties of Standard Channels are similar to those in the Tables of Properties of I-Beams, as explained above, with the addition of column 11, which gives the Section Modulus about an axis through the center of gravity parallel to the web, and column 13, which gives the distance of the center of gravity from the outside of the web.

In this case the Section Modulus $S' = \frac{I'}{b-x}$ the notation being as given at the heads of the columns.

PROPERTIES OF ANGLES.

The values in the Tables of Properties of Standard and Special Angles, with Equal Legs, pages 198 to 203, are those stated in the headings, and those in the Tables of Properties of Standard and Special Angles, with Unequal Legs, on pages 204 to 209, are similar, but with the addition of values for I", S" and r" about the inclined axis 3-3, the position of which, in order to give the minimum value, was determined by the formula on page 166 or the value of the tangent of 2a. After determining the position of the inclined axis, the properties corresponding thereto were obtained by the formula on page 166.

MOMENTS OF INERTIA OF RECTANGLES.

Tables of Moments of Inertia of Rectangles, about a transverse axis through the center of gravity, are added on pages 210 to 213 for convenience in calculating the Moments of Inertia, Section Moduli, and Radii of Gyration for compound shapes in which plates are used.

Table I is more convenient when depth of rectangle is expressed without fraction, and is directly applicable to rectangles of various widths, $\frac{1}{1}$ to 1 inch, varying by $\frac{1}{16}$ ths. Table II gives values for 1 inch widths of rectangle only, but for all depths from $\frac{1}{16}$ to $50\frac{15}{16}$ inches, varying by $\frac{1}{16}$ ths. Value for any other width may be obtained from Table II by direct multiplication of tabular value by that other width.

GENERAL FORMULÆ FOR PROPERTIES AND FLEXURE.

Formulæ for obtaining the Properties of Standard Sections are given on pages 166 and 167, and for various usual sections on pages 168 to 175 inclusive.

General formulæ for Flexure of Beams, Bending Moments, and Deflections for various cases of loading are given on pages 160 to 165 inclusive.

EXAMPLES OF APPLICATION OF THE TABLES OF PROPERTIES.

EXAMPLE I.

What is the proper size of I-Beam to carry a load of 35 000 pounds concentrated at the center of a span of 25 feet, the fibre stress not to exceed 16 000 pounds per square 'ach?

In the Tables of Properties of Standard I-Beams, the column headed F gives the coefficient of strength for a uniform load corresponding to a fibre stress of 16 000 pounds per square inch.

The coefficient of strength for a concentrated load at the center is twice that for the same load uniformly distributed, hence the coefficient necessary to meet the conditions is $35\,000\times25\times2$ = 1.750 000. From the Table of Properties of Standard I-Beams, page 185, column 13, the coefficient F for a 24-inch 80-pound beam is found to be 1.855 310. The weight of the beam itself is $80\times25=2000$ pounds, which corresponds to a coefficient of $2000\times25=50\,000$, which deducted from 1.855 310 gives a net coefficient of 1.805 310. A 24-inch beam weighing 80 pounds per foot is, therefore, the proper size.

EXAMPLE II.

What is the deflection of the beam in the preceding example under the given load?

In the Table of Properties of Standard I-Beams, pages 182 to 185 inclusive, the coefficient of deflection for beams with center loads is given in column 16. To obtain the required deflection it is only necessary to multiply the coefficient by the cube of the span and the number of 1 000 pounds units contained in the load.

Thus for the given example the deflection in inches =

 $.0000006 \times 25^3 \times \frac{35000}{1000} = .328$ inch.

EXAMPLE III.

What is the safe load uniformly distributed that can be placed on an 8-inch standard channel weighing 11.25 pounds per foot, with a clear span of 15 feet for a maximum fibre stress of 12 500 pounds per square inch, the web to be placed vertically?

From the table of Properties of Standard Channels, page 187, column 16, the coefficient of strength F' for the given channel under the conditions named, is found to be 67 300. Hence, the total load may be $67\,300 \div 15 = 4487$ pounds, and, as the channel itself weighs 169 pounds, the net superimposed load which is can safely carry under the given conditions is 4318 pounds.

EXAMPLE IV.

What is the fibre stress in a 5" x 3" angle weighing 8.2 pounds per foot if loaded at the center with a weight of 1500 pounds, used as a beam with a span of 6 feet, the 5-inch leg to be placed vertically?

The bending moment at the center will be

$$\frac{W_1 l}{4} + \frac{W_2 l}{8} = \frac{1500 \times 72}{4} + \frac{8.2 \times 6 \times 72}{8} = 27443$$
 inch pounds.

Referring to the Table of Properties of Standard Angles, Unequal Legs, on page 207, the Section Modulus for this angle, corresponding to the axis 2—2, is found to be 1.89.

The maximum fibre stress is obtained by dividing the bending moment by the section modulus, thus: $\frac{27443}{1.89} = 14520$, which is

the maximum fibre stress in pounds per square inch at the point most remote from the neutral axis, which in this case is the extremity of the longer leg of the angle.

The second term in the above expression for the bending moment is that due to the weight of the angle itself and is inconsiderable, so that in practice it might be neglected for short spans, but should be taken into consideration for the longer ones.

PROPERTIES OF COMPOUND SHAPES.

The moments of inertia, section moduli, and radii of gyration of compound sections used as beams or columns, composed of plates and angles, channels, beams, or any combination of these, may be obtained with the aid of the Tables of Properties as follows:

The first step is to find the center of gravity of the proposed section, which in the case of symmetrical sections is at the center of the figure

For unsymmetrical sections the position of the center of gravity may be determined by multiplying the areas of the component parts by the distances of their centers of gravity from any convenient line, taken as an axis, and dividing the sum of these products by the sum of the areas, which will give the distance of the center of gravity of the compound section from the assumed axis.

The position of the center of gravity for all sizes of angles and channels, is given in the Tables of Properties for these shapes, and is given for various geometrical sections on pages 168 to 175 inclusive, in connection with their other properties.

After determining the position of the center of gravity of a compound section, as explained above, the moment of inertia about an axis through its center of gravity may be found by taking the sum of the moments of inertia of each component part about an axis through its own center of gravity, parallel to the axis of the compound section, and adding thereto the sum of products obtained by multiplying the area of each component part by the square of the distance of its center of gravity from the axis of the compound section.

Having thus obtained the moment of inertia of the compound section, the section modulus may be obtained by dividing this moment of inertia by the distance from the neutral axis to the most remote extremity of the section.

The square of the radius of gyration for the compound section may be obtained by dividing the moment of inertia by the total area.

The moment of inertia of a compound section about any axis other than that through its center of gravity may be found in a manner similar to that above described.

1	2	3	4	5	6	7	8	9	10	11
Section	Depth of Beam,	Weight per Foot.	Area of Section.	Thick- ness of Web.	Width of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyration Axis 1-1.	Moment of Inertia Axis 2-2.	Radius of Gyration Axis 2-2.
	Inches,	Damada	A C. Inc				S Inches	Toolso		-
B, 5	3	5.50 6.50 7.50	1.63 1.91 2.21	.17 .26 .36	2.33 2.42 2.52	2.5 2.7 2.9	1.7 1.8 1.9	1.23 1.19 1.15	.46 .53 .60	.53 .52 .52
B,9	4 "	7.50 8.50 9.50 10.50	2.21 2.50 2.79 3.09	.19 .26 .34 .41	2.66 2.73 2.81 2.88	6.0 6.4 6.7 7.1	3.0 3.2 3.4 3.6	1.64 1.59 1.54 1.52	.77 .85 .93 1.01	.59 .58 .58
B13	5	9.75 12.25 14.75	2.87 3.60 4.34	.21 .36 .50	3.00 3.15 3.29	12.1 13.6 15.1	4.8 5.4 6.1	2.05 1.94 1.87	1.23 1.45 1.70	.65 .63 .63
B17	6	12.25 14.75 17.25	3.61 4.34 5.07	.23 .35 .47	3.33 3.45 3.57	21.8 24.0 26.2	7.3 8.0 8.7	2.46 2.35 2.27	1.85 2.09 2.36	.72 .69 .68
B21	7	15.00 17.50 20.00	4.42 5.15 5.88	.25 .35 .46	3.66 3.76 3.87	36.2 39.2 42.2	10.4 11.2 12.1	2.86 2.76 2.68	2.67 2.94 3.24	.78 .76 .74
B25	8	18.00 20.25 22.75 25.25	5.33 5.96 6.69 7.43	.27 .35 .44 .53	4.00 4.08 4.17 4.26	56.9 60.2 64.1 68.0	14.2 15.0 16.0 17.0	3.27 3.18 3.10 3.03	3.78 4.04 4.36 4.71	.84 .82 .81 .80
B29	9 "	21.00 25.00 30.00 35.00	6.31 7.35 8.82 10.29	.29 .41 .57 .78	4.33 4.45 4.61 4.77	84.9 91.9 101.9 111.8	18.9 20.4 22.6 24.8	3.67 3.54 3.40 3.30	5.16 5.65 6.42 7.31	.90 .88 .85 .84
B33	10	25.00 30.00 35.00 40.00	7.37 8.82 10.29 11.76	.31 .45 .60 .75	4.66 4.80 4.95 5.10	122.1 134.2 146.4 158.7	24.4 26.8 29.3 31.7	4.07 3.90 3.77 3.67	6.89 7.65 8.52 9.50	.97 .93 .91 .90
B41	12	31.50 35.00 40.00	9.26 10.29 11.76	.35 .44 .56	5.00 5.09 5.21	215.8 228.3 245.9	36.0 38.0 41.0	4.83 4.71 4.57	9.50 10.07 10.95	1.01 .99 .96
B53	15	45.00 50.00 55.00	12.48 13.24 14.71 16.18 17.65	.41 .46 .56 .66	5.50 5.55 5.65 5.75 5.84	441.8 455.8 483.4 511.0 538.6	58.9 60.8 64.5 68.1 71.8	5.62	14.62 15.09 16.04 17.06 18.17	1.08

12	13	14	15 16			
Increase of	Coefficient	of Strength.	Coefficient o	ent of Deflection.		
Thickness of Web for each Pound Increase in Weight.	For Fibre Stress of 16 000 Pounds per Square Inch for Buildings.	For Pibre Stress of 12500 Pounds per Square Inch for Bridges.	Uniform Load.	Center Load.	Section Number.	
f	P	E1/	N	N'		
.098	17650 19140 20710	13790 14950 16180	.00031253 .00028827 .00026644	.00050006 .00046124 .00042630	B.5	
.074	31810 33890 35980 38070	24850 26480 28110 29750	.00013009 .00012209 .00011500 .00010868	$\begin{array}{c} .00020815 \\ .00019535 \\ .00018400 \\ .00017389 \end{array}$	B,9	
.059	51590 58100 64630	40300 45390 50490	.00006417 .00005698 .00005122	.00010267 .00009117 .00008195	B13	
.049	77460 85270 93110	60520 66610 72740	.00003561 .00003235 .00002963	.00005698 .00005177 .00004741	B17	
.042	110410 119400 128560	86260 93290 100430	.00002142 .00001980 .00001839	.00003427 .00003168 .00002943	B21	
.037	151660 160510 170970 181430	118490 125400 133570 141740	.00001364 .00001289 .00001210 .00001140	.00002183 .00002062 .00001936 .00001825	B25	
.083	201300 217930 241460 264990	157260 170260 188640 207020	.00000914 .00000844 .00000762 .00000694	.00001462 .00001350 .00001219 .00001110	B29	
.029	260470 286250 312390 338530	203500 223630 244050 264480	.00000635 .00000578 .00000530 .00000489	.00001017 .00000925 .00000848 .00000782	B33	
.025	383670 405800 437170	299740 317030 341540	.00000360 .00000340 .00000316	.000005 75 .000005 44 .00000505	B41	
.020	628270 648310 687530 726740 765960	490840 506490 537130 567770 598410	.00000176 .00000170 .00000161 .00000152 .00000144	.00000281 .00000272 .00000257 .00000243	B53	

1	2	3	4	5	6	7	8	9	10	11
Section Number.	Depth of Beam.	Weight per Foot.	Area of Section.	Thick- ness of Web.	Width of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyra- tion Axis 1-1.	Moment of Inertia Axis 2-2.	Radius of Gyration Axis 2-2.
	d		A	t	b	I	B	r	I'	T'
	Inches.	Pounds.	Sq. Ins.	Inch.	Inches.	Inches.4	Inches.3	Inches.	Inches.4	Inch.
B 65	18	60.0 65.0	15.93 17.65 19.12 20.59	.46 .56 .64 .72	6.00 6.10 6.18 6.26	795.6 841.8 881.5 921.2	88.4 93.5 97.9 102.4	6.91	21.19 22.38 23.47 24.62	1.13
B .73	20	70.0	19.08 20.59 22.06	.50 .58 .65	6.25 6.33 6.40	1169.5 1219.8 1268.8	122.0	7.70	27.86 29.04 30.25	1.19
B 89	24	85.0 90.0 95.0	23.32 25.00 26.47 27.94 29.41	.57	7.00 7.07 7.13 7.19 7.25	2087.2 2167.8 2238.4 2309.0 2379.6	180.7 186.5 192.4	9.31 9.20 9.09	42.86 44.35 45.70 47.10 48.55	1.38 1.31 1.30

PROPERTIES OF SPECIAL I-BEAMS.

B 105	12	45.0 50.0	11.84 13.24 14.71 16.18	.46 .58 .70 .82	5.25 5.37 5.49 5.61	268.9 285.7 303.4 321.0	44.8 47.6 50.6 53.5	$\frac{4.65}{4.54}$	13.81 14.89 16.12 17.46	$\frac{1.06}{1.05}$
B 109 " " "	15	65.0 70.0 75.0	17.67 19.12 20.59 22.06 23.53	.59 .69 .78 .88	6.00 6.10 6.19 6.29 6.39	609.0 636.1 663.7 691.2 718.8	81.2 84.8 88.5 92.2 95.8	5.77 5.68 5.60	25.96 27.42 29.00 30.68 32.46	1.20 1.19 1.18
B113	15	85.0 90.0 95.0	23.57 25.00 26.47 27.94 29.41	.90 .99 1.09	6.40 6.50 6.59 6.69 6.79	789.1 815.9 843.4 871.0 898.6	112.5	5.71 5.64 5.58	41.31 43.46 45.79 48.25 50.84	1.32 1.32 1.31
B 121	20	85.0 90.0 95.0	23.73 25.00 26.47 27.94 29.41	.60 .66 .74 .81	7.00 7.06 7.14 7.21 7.28	1466.3 1508.5 1557.5 1606.6 1655.6	160.7	7.77 7.67 7.58	45.81 47.25 48.98 50.78 52.65	1.37 1.36 1.35
B 127	24	110.0	30.98 32.48 33.98	.69	7.88 7.94 8.00	2811.5 2883.5 2955.5	234.3 240.3 246.3	9.42	78.90 81.04 83.23	1.58

12	13	14	15	16	1
Increase of	Coefficient	of Strength.	Coefficient	f Deflection.	
Thickness of Web for each Pound Increase in Weight.	For Fibre Stress of 16 000 Pounds per Square Inch for Buildings.	For Fibre Stress of 12500 Pounds per Square Inch for Bridges.	Uniform Load.	Center Load.	Section Number.
t	F	F'	N	N'	
.016	942880 997680 1044740 1091800	736620 779440 816200 852970	.00000098 .00000092 .00000088 .00000084	.00000156 .00000148 .00000141 .00000135	B 65
.015	1247490 1301110 1353400	974600 1016490 1057340	.00000066 .00000064 .00000061	.00000106 .00000102 .00000098	B 73
.0123	1855310 1926950 1989700 2052440 2115190	1449460 1505430 1554450 1603470 1652490	.00000037 .00000036 .00000035 .00000034 .00000033	.00000060 .00000057 .00000056 .00000054 .00000052	B 89

PROPERTIES OF SPECIAL I-BEAMS.

.025	478130 507930 539300 570670	373540 396820 421320 445830	.00000288 .00000272 .00000256 .00000242	.00000462 .00000435 .00000409 .00000387	B 105
.020	866130 904660 943870 983090 1022300	676670 706770 737400 768040 798670	.00000127 .00000122 .00000117 .00000112 .00000108	.00000204 .00000195 .00000187 .00000180 .00000173	B 109
.020	1122290 1160340 1199550 1238770 1277980	876790 906520 937150 967790 998420	.00000098 .00000095 .00000092 .00000089 .00000086	.00000157 .00000152 .00000147 .00000143 .00000138	B 113
.015	1564060 1609100 1661390 1713670 1765960	1221920 1257110 1297960 1338810 1379660	.00000053 .00000051 .00000050 .00000048 .00000047	.00000085 .00000082 .00000080 .00000077	B 121
.0123	2499090 2563090 2627090	1952420 2002420 2052420	.00000028 .00000027 .00000026	.00000044 .00000043 .00000042	B 127

PROPERTIES OF STANDARD CHANNELS.

1	2	3	4	5	6	7	8	9	10	11	12
Section Num-	Depth of Chan- nel.	Weight per Foot.	Area of Section.	Thick- ness of Web.	Width of Flange.	Moment of Inertia Axis 1-1.	Section Mod- ulus Axis 1-1.	Radius of Gyra- tion Axis 1-1.	Moment of Inertia Axis 2-2.	Mod- ulus Axis 2-2.	Radius of Gyration Axis 2-2.
ber.	d		A	t	b	I	S	r	I'	S'	r'
	Inches.	Pounds.	Sq. Ins.	Inch.	Inches.	Inches.4	Ins.3	Inches.	Inches.4	Ins.3	Inch.
C.5	3	4.00 5.00 6.00	1.19 1.47 1.76	.17 .26 .36	1.41 1.50 1.60	1.6 1.8 2.1	1.1 1.2 1.4	1.17 1.12 1.08	.20 .25 .31	.21 .24 .27	.41 .41 .42
C 9	4	5.25 6.25 7.25	1.55 1.84 2.13	.18 .25 .33	1.58 1.65 1.73	3.8 4.2 4.6	1.9 2.1 2.3	1.56 1.51 1.46	.32 .38 .44	.29 .32 .35	.45 .45 .46
C13	5 "	6.50 9.00 11.50	1.95 2.65 3.38	.19 .33 .48	1.75 1.89 2.04	7.4 8.9 10.4	3.0 3.5 4.2	1.95 1.83 1.75	.48 .64 .82	.38 .45 .54	.50 .49 .49
C17	6	8.00 10.50 13.00 15.50	2.38 3.09 3.82 4.56	.20 .32 .44 .56	1.92 2.04 2.16 2.28	13.0 15.1 17.3 19.5	4.3 5.0 5.8 6.5	2.34 2.21 2.13 2.07	.70 .88 1.07 1.28	.50 .57 .65	.54 .53 .53
C21	7	9.75 12.25 14.75 17.25 19.75	2.85 3.60 4.34 5.07 5.81	.21 .32 .42 .53	2.09 2.20 2.30 2.41 2.51	21.1 24.2 27.2 30.2 33.2	6.0 6.9 7.8 8.6 9.5	2.72 2.59 2.50 2.44 2.39	.98 1.19 1.40 1.62 1.85	.63 .71 .79 .87	.59 .57 .57 .56
C25	8	11.25 13.75 16.25 18.75 21.25	3.35 4.04 4.78 5.51 6.25	.22 .31 .40 .49	2.26 2.35	32.3 36.0 39.9 43.8 47.8	8.1 9.0 10.0 11.0 11.9	3.10 2.98 2.89 2.82 2.76	1.33 1.55 1.78 2.01 2.25	.79 .87	.63 .62 .61 .60
C29	9	13.25 15.00 20.00 25.00	3.89 4.41 5.88 7.35	.23 .29 .45 .61	2.43 2.49 2.65 2.81	47.3 50.9 60.8 70.7	10.5 11.3 13.5 15.7	3.49 3.40 3.21 3.10	1.77 1.95 2.45 2.98	.97 1.03 1.19 1.36	.67 .66 .65
C38	10	15.00 20.00 25.00 30.00 35.00	4.46 5.88 7.35 8.82 10.29	.68	2.60 2.74 2.89 3.04 3.18	66.9 78.7 91.0 103.2 115.5	13.4 15.7 18.2 20.6 23.1	3.66	2.30 2.85 3.40 3.99 4.66	1.17 1.34 1.50 1.67 1.87	.68 .67
C41	12	20.50 25.00 30.00 35.00 40.00	6.03 7.35 8.82 10.29	.39 .51 .64	2.94 3.05 3.17 3.30 3.42	161.6 179.3	21.4 24.0 26.9 29.9 32.8	4.43 4.28 4.17	5.21 5.90	1.75 1.91 2.09 2.27 2.46	.81 .78 .77 .76 .75
C58	15	33.00 35.00 40.00 45.00 50.00		.40 .43 .52 .62 .72	3.40 3.43 3.52 3.62 3.72	312.6 319.9 347.5	41.7 42.7 46.3 50.0 53.7	5.62 5.57 5.44	8.23	3.16 3.22 3.43 3.63 3.85 4.07	.91 .91 .89

PROPERTIES OF STANDARD CHANNELS.

Outside of Increase in Weight. F F' N N' N'	mber.
Fibre Stress Gentler	mber.
Table Tabl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "9
.46 22270 17400 .0001858 .0002978 .46 24360 19030 .0001698 .0002717 .49 .059 31640 24720 .0001046 .0001674 0	6.6
.51 44390 34680 .0000746 .0001193	13
.52	17
.55	21
	25
	29
.64 .029 142680 111470 .0000116 .0000186 C .61 157940 131210 .0000099 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .00000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000186 .0000000186 .00000186 .0000186 .00000186 .00000186 .00000186 .00000186	33
	41
	53

PROPERTIES OF SHIP AND SPECIAL CHANNELS.

1	2	3	4	5	6	7	8	9	10	11	12	13
Section Number	Depth of Channel	W'ght per Feet.	Area of Section.	ness of	Width of Flange	Thickness of Flange.	Slope of Flange.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.	Radius of Gyra- tion Axis 1-1.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.
	d		A	t	b	S		1	2	r	I'	S'
	Ins.	Lbs.	Sq. Ins.	Inch.	Ins.	In.	匿	Ins.4	Ins.3	Ins.	Ins.4	Ins.3
C 269	3	7.1	2.07	.306	1.94	.26	.12	2.72	1.81	1.15	.66	.52
C 72	4	10.1	2.95	.394	2.09	.38	.004	6.54		1.49	1.12	.79
C _86	6	$\frac{15.3}{17.7}$	4.47 5.19		3.50	.33	.035	25.3 27.5	8.4 9.2	2.38 2.30		2.13 2.31
C _88	6 "	19.0 21.6 23.4	5.58 6.36 6.87	.41 .54 .63	3.56 3.69 3.78	.46	.02	31.1 33.4 34.9	11.1	2.29	6.79 7.85 8.53	3.10
C 89	7	20.9 23.8	6.15	.45	$\frac{3.45}{3.57}$. 4 8	.02	44.6 48.0	12.7	2.69	6.74	2.81
C 101	8	21.5	6.30	.40	3.50 3.62	.48	.02	60.7 65.8	15.2	3.07	7.20 8.25	2.94
C 108	8	23.8 27.1	7.00 7.96	.50	3.50 3.62	.48	.02	63.6 68.7	15.7	3.01	7.42 8.41	2.96
C "90	10	21.9 26.0	6.44	.38	3.38 3.50	.41	.02	92.0 102.0	18.4	3.78	6.29	2.51
u	ш	27.4 31.5	8.04 9.24	.54	$\frac{3.54}{3.66}$	44	"	$105.4 \\ 115.4$	23.1	3.54	7.45 8.30	2.94
C 105	12	$35.0 \\ 40.0$	10.30 11.76	.60	3.77	.65	66	215.7	38.9	4.45	14.61	5.13
44	ш	46.3	13.02 13.62 14.22	.75	$\frac{4.00}{4.05}$ $\frac{4.10}{4.10}$	"	44	$248.4 \\ 255.6 \\ 262.8$	42.6	4.33	16.64	5.55
и	и	50.0	14.70	.84	4.14	ш	44	268.6	44.8	4.27	17.84	5.79
и	13	32.0 35.0	9.30 10.29	.45	$\frac{4.00}{4.08}$.34	44	237.5 251.5	38.7	494	12.54	4.06
"	"	37.0	10.88	.56	4.12 4.19	и	44	259.8 272.2	41.9	4.81	13.10 13.94 15.32	4.33
"	"	50.0	13.24 14.71 16.18	.79	4.30 4.42 4.53	и	ш	292.9 313.7 334.4	48.3	4.62	16.71	4.86
C _65	18	45.0	13.25 14.71	.47	3.77 3.85	.45	.17	584.3	64.9	6.64	12.89	4.40
44	"	55.0	16.18 17.65	.63	$\frac{3.93}{4.02}$	41	44	662.0 703.3	73.6	6.40	14.93	4.82

PROPERTIES OF SHIP AND SPECIAL CHANNELS.

14	15	16	17	18	19	20	1
Radius	Distance	Increase of	Coef. of S	trength.	Coef. of D	efiection.	
of Gyration Axis 2-2.		Thickness of Web for each Lb. Increase in Weight.	Fibre Stress 16 000 Lbs. per Sq. Inch. for Buildings.	Fibre Stress 12 500 Lbs. per Sq. Inch. for Bridges.	Uniform Load.	Center Load.	Section
r'	x	Í					
Inch.	Inch.	Inch.	F	F'	N	N'	
.50	.65	.098	19310	15090	.0002857	.0004571	C 269
.62	.67	.074	34880		.0001186	.0001898	
1.07	1.08	.049	89160 97680	69660 76310	.0000307	.0000491 $.0000452$	C _86
1.10 1.11 1.11	1.18 1.16 1.15	.049	110450 118770 124270	86290 92790 97080	.0000250 .0000232 .0000222	.0000400 .0000372 .0000356	4
1.05	1.05	.042	135950 146350	106210 114330	.0000174	.0000278	C _89
1.07	1.05	.037	161930 174930	126510 136670	.0000128	.0000204	C 101
1.03	.99	.037	167470 183470	130830	.0000122	.0000195	C 103
.99 .97 .96 .95	.87 .84 .84	.029	196310 217650 224760 246100	153360 170030	.0000085 .0000077 .0000074 .0000068	.0000135 .0000128 .0000118 .0000108	C _90
1.12 1.11 1.11 1.11 1.10 1.10	1.07 1.05 1.05 1.05 1.05 1.05	.0245	383550 414790 441670 454470 467270 477510	299650 324060 345060 355060 369750	.0000036 .0000033 .0000031 .0000030 .0000030	.0000058 .0000053 .0000050 .0000049 .0000047	C 105
1.11 1.10 1.10 1.09 1.08 1.07	1.01 .99 .98 .97 .97 .98 1.00	.023	389710 412750 426340 446740 480720 514710 548700	322460 333080 349010 375560 402120	.0000033 .0000031 .0000030 .0000029 .0000027	.0000052 .0000049 .0000048 .0000046 .0000042 .0000040	C 95
.99 .97 .96 .95	.84 .83 .83 .85	.016	692270 738520 784600 833560	576970	.0000014 .0000012 .0000012 .0000011	.0000022 .0000020 .0000019 .0000018	4

PROPERTIES OF STANDARD SHIP CHANNELS.

General slope of flange=2° or .035.

1	2	3	4	5	6	7	8	9	10	11	12
Section Number.	Depth of Channel.	Wight per Foot.	Area of Section.	Thick- ness of Web.	Width of Flange.	Thick- ness at Mid Flange.	Moment of Inertia Axis 1-1.	Section Mod- ulus Axis 1-1.	Radius of Gyra- tion Axis 1-1.	Moment of Inertia Axis 2-2.	Section Mod- ulus Axis 2-2.
	d	T2	A	t	b	- T)	Ins.4	S	Ins.	I' Ins.4	S' Ins.3
	Ins.	Lbs.	Sq. Ins.	Inch.	Ins.	Inch.	1BS.*	Ins.3	IRS.	Ins.*	Ins. 5
C 55 "(BSC8)	6 "	16.8 17.8 19.8	5.22	.325 .375 .475		.475	28.5 29.4 31.2		2.41 2.38 2.32	5.69 6.09 6.86	2.58
C 57 "(BSC10)	7 "	18.9 20.1 22.5	5.90	.400	3.45 3.50 3.60	.500	42.8 44.2 47.1		2.74		2.69 2.78 2.98
C 59 "(BSC13)	8 "	21.2 22.6 25.3	6.68	.425	3.45 3.50 3.60	44	63.3	15.8 15.8 16.9	3.09	7.36	2.89 2.98 3.18
C 60 "(BSC17)	9 "	23.7 25.2 28.3 31.3		.450	3.45 3.50 3.60 3.70	.550	87.3 93.4			7.97	3.08 3.17 3.38 3.57
C 61 "(BSC20)	44	24.6 26.3 28.0 31.4 34.8	7.73 8.23 9.23	.425 .475	3.60	64	108.6 112.7 116.9 125.2 133.6	22.5 23.4 25.0	3.82 3.77 3.69	8.10	3.15 3.25 3.37 3.60 3.80
C 63 "(BSC25)				.500	3.45 3.50 3.60 3.70	60	203.4	31.5	4.44	8.89 9.37 10.31 11.26	3.58

PROPERTIES OF Z-BAR HATCH SECTION.

STANDARD SHIP SECTION.

Section	Size	Weight	Area		THICEN		Moment of Inertia	Section
Number.	$\mathbf{a} \times \mathbf{b} \times \mathbf{c}$.	Foot.	Section.	Web.	Plain Leg.	Rounded Leg.	Axis 1-1	
	Inches.	Lbs.	Sq. Ins.	Ins.	Ins.	Ins.	Ins.4	Ins. 3
Z 101	2 12 x3 x2 34	13.6	3.98	12	7 16	34	3.57	2.52

.97 .89

PROPERTIES OF Z-BAR HATCH SECTION.

387290 302570

.0000036

.0000057

STANDARD SHIP SECTION.

kadius of Gration Axis 1-1.	Distance Center of Gravity	Moment of Inertia Axis 2-2.	Section Model as Axis 2-2.	Radius of Gyration Aits 2 2	Distance Center of Granity	Tangent of Angle	Least Radius of Gyration. Axis 3-3.	Section Number.
Ins.	Ins.	Ins 4	Ins 3	Ins.	Ins.		Ins.	
.95	1.42	6.98	2.39	1.33	2.93	1.560	.55	Z-101

PROPERTIES OF BULB ANGLES.

1	2	3	4	5	6	7	8
Section	Size.	Weight per Foot.	Area of Section.	Thickness of Bulb Leg.	Thickness of Plain Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
Number.	axb		A	t	t'	ı	8
	Inches.	Lbs.	Sq. Ins.	Ins.	Ins.	Ins.4	Ins.3
* A174	4 x 31/2	11.7	3.42	3/8	3/8	7.7	3.25
* A176	5 x 4 ½	19.2	5.64	7 16	7 16	20.7	7.89
A 171	5 x 2 ½	10.2	3.00	19 64	$\frac{9}{32}$ to $\frac{13}{32}$	10.4	4.05
A 177	6 x 3	11.8 13.5 15.0	3.47 3.95 4.41	5 16 3/8 7 16	.34 .39 .43	16.8 18.5 20.1	5.10 5.56 6.02
A 178	8 6 x 31/2	12.5 14.1 15.7 17.3 18.9 20.5	3.66 4.13 4.60 5.07 5.53 6.02	3/8 7/16 1/2 9/16	.37 .41 .45 .49 .53	18.0 19.6 21.3 22.8 24.4 25.9	5.16 5.62 6.11 6.53 6.97 7.42
A 179	7 x 31/2	15.7 17.5 19.1	4.61 5.13 5.60	3/8 1/2	.43 .46 .48	29.3 31.6 33.7	7.21 7.79 8.36
A 181	8 x 3 ½	17.4 19.3 21.5	5.09 5.64 6.30	3/8 1/2	.42 .44 .50	42.8 45.3 50.1	9.54 10.15 11.14
A 188	9 x 3 3 4	20.3 22.6 24.8	5.96 6.62 7.27	13 32 15 32 17 32	.44 .48 .52	62.6 68.0 72.7	12.78 13.81 14.75
A 188	10 x 3 ½	23.6 26.1 28.5	6.91 7.64 8.35	16 1/2 16	.47 .51 .55	88.6 95.6 102.2	16.62 17.81 19.00

*Top Guard Angle.

PROPERTIES OF BULB ANGLES.

9	10	11	12	13	14	15	16	1
Radius of Gyration Axis 1-1.	Distance Center of Gravity from back of Plain Leg.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.	Distance Center of Gravity from back of Bulb Leg.	Tangent of Angle.	Least Radius of Gyration Axis 3-3.	Section
r	x	I'	S'	r'	x'	α	r"	Number.
Ins.	Ins.	Ins.4	Ins.3	Ins.	Ins.		Ins.	
1.50	1.73	3.07	1.19	.95	.94	.398	.81	A174*
1.92	2.38	7.96	2.41	1.19	1.19	.385	1.01	A176*
1.86	2.43	3.47	1.81	1.08	59	.198	1.03	A171
2.20 2.16 2.14	2.70 2.67 2.66	1.88 2.11 2.33	.79 .90 1.00	.74 .73 .73	.63 .65 .67	.161 .161 .159	.65 .65	A177
2.22 2.18 2.15 2.12 2.10 2.08	2.51 2.50 2.52 2.50 2.51 2.50	3.27 3.60 3.92 4.21 4.50 4.85	1.21 1.33 1.46 1.57 1.69 1.84	.95 .93 .92 .91 .90	.80 .81 .82 .84 .86	.250 .247 .244 .239 .238 .236	.79 .79 .78 .78 .77	A178
2.52 2.48 2.45	2.94 2.94 2.97	3.70 3.99 4.16	1.35 1.46 1.52	.90 .88 .86	.75 .76 .76	.193 .190 .183	.77 .76 .75	A179
2.90 2.83 2.82	3.52 3.54 3.50	3.73 3.95 4.41	1.33 1.42 1.59	.86 .84 .83	.70 .71 .73	.143 .138 .136	.76 .75 .75	A181
3.24 3.20 3.16	4.10 4.08 4.07	4.00 4.37 4.71	1.42 1.56 1.69	.82 .81 .80	.68 .70 .71	.110 .109 .108	.73 .73 .73	A183
3.58 3.54 3.50	4.67 4.63 4.61	4.34 4.73 5.09	1.53 1.68 1.82	.79 .79 .78	.67 .68 .70	.087 .087 .086	.73 .73 .72	A185

*Top Guard Angle.

PROPERTIES OF STANDARD BULB ANGLES.

1	2	3	4	5	6	7	8
Section Number.	Size.	Weight per Foot.	Area of Section.	Thickness of Bulb Leg.	Thickness of Plain Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
	axb		A	t	t'	1	S.
	Inches.	Lbs.	Sq. Ins.	Ins.	Ins.	Ins.4	Ins.3
A 187 "(BSBA 4)	6x3	12.2 12.8 14.1 15.6	3.58 3.76 4.14 4.58	.350 .375 .425 .475	.375	16.6 17.4 18.8 20.2	4.9 5.1 5.5 5.9
A 188 "(BSBA 8)	7x 3 ½	15.3 16.8 18.6 20.0	4.50 4.94 5.46 5.90	.875 .425 .475 .525	.425	28.6 30.9 33.2 35.5	7.2 7.7 8.8 8.8
A 189 "(BSBA 12)	8x 3 ½	18.0 19.6 21.6 23.2	5.29 5.78 6.34 6.83	.400 .450 .500 .550	.450	43.8 47.1 50.4 53.7	9.8 10.6 11.2 11.9
A 190 "(BSBA 16)	9x 3 ½	20.9 22.7 24.8 26.6 28.6	6.14 6.68 7.29 7.82 8.41	.425 .475 .525 .575 .625	.475	63.8 68.4 73.1 77.6 81.8	13.1 13.9 14.8 15.6 16.4
A 191 "(BSBA 18)	10x 3 ½	24.9 26.9 29.1 31.1 33.2 35.2	7.32 7.90 8.55 9.14 9.77 10.35	.475 .525 .575 .625 .675 .725	.525	92.1 98.2 104.3 110.4 115.9 122.0	17.2 18.3 19.2 20.3 21.2 22.3

PROPERTIES OF CAR SIDE STAKE AND

Section Number.	bxd	per Foot.	Section.	Base t	Top t'	Sides t"	Axis 1-1.
I dan or	Ins.	Lbs.	Sq. In.	Ins.	Ins.	Ins.	Ins.4
L ₂ ² C 250	7 x2 3/4 7 x213/16 7 x215/16 7/2x4	7.2 8.7 11.7 19.8	2.10 2.54 3.41 5.81	3/16 3/8 1/2	3/8 7/16 9/16 .483	.210 .254 .320	1.99 2.90 4.55 11.78

PROPERTIES OF STANDARD BULB ANGLES.

9	10	11	12	13	14	15	16	1
Radius of Gyration Axis 1-1.	Distance Center of Gravity from back of Plain Leg.	Moment of Inertia Alis 2-2.	Section Modulus Axis 2-2.	Radius of Gyra- tion Axis 2-2.	Distance Center of Gravity from back of Bulb Leg.	Tangent of Angle.	Least Radius of Gyra- tion Axis 3-3.	Section Number.
r	x	I'	S'	r'	x'	α	I"	
Ins.	Ins.	Ins.4	Ins.3	Ins.	ILS.		Ins.	
2.16 2.15 2.13 2.10	2.59 2.60 2.60 2.55	1.9 2.1 2.3 2.5	.83 .87 .96 1.1	.74 .74 .75 .74	.63 .64 .66 .67	.173 .174 .176 .178	.65 .65 .65	A 187 (BSBA 4)
2.52 2.50 2.47 2.45	2.99 3.00 2.94 2.95	3.4 3.7 4.1 4.5	1.2 1.4 1.5 1.6	.87 .87 .88	.72 .74 .75	.177 .178 .180 .182	.75 .76 .76	A 188 "(BSBA 8)
2.88 2.85 2.82 2.81	3.54 3.54 3.48 3.49	3.7 4.0 4.4 4.8	1.3 1.4 1.6 1.7	.83 .84 .83 .84	.70 .71 .73 .75	.136 .136 .138 .139	.74 .75 .75	A 189 " (BSBA 12)
3.22 3.20 3.17 3.15 3.12	4.10 4.10 4.03 4.03 3.98	3.9 4.3 4.7 5.1 5.4	1.4 1.5 1.7 1.8 2.0	.80 .81 .80 .81	.68 .70 .71 .73 .74	.105 .106 .107 .108 .110	.73 .74 .74 .75 .75	A 190 " (BSBA 16) "
3.55 3.53 3.49 3.48 3.44 3.43	4.63 4.62 4.56 4.56 4.52 4.53	4.4 4.8 5.1 5.6 5.8 6.3	1.6 1.7 1.9 2.0 2.1 2.3	.78 .78 .77 .78 .77 .78	.68 .69 .70 .72 .74 .76	.085 .085 .086 .087 .089	.72 .72 .73 .74 .74 .75	A 191 (BSBA 18)

PROPERTIES OF CAR SIDE STAKE AND

Modulas	Gyration	Center of	Inertia	Mailes	Gyration	Section
Axis 1-1.	Axis 1-1.	Gravity X.	Axis 2-2.	Axis 2-2.	Axis 2-2	Number.
Ins. 3	Ins.	Ins.	Ins.4	Ins.3	Ins.	
1.16	.97	1.04	5.45	1.56	1.61	L 2
1.53	1.07	.91	7.23	2.07	1.69	
2.12	1.15	.79	10.81	3.09	1.78	
5.77	1.42	2.04	26.2	7.00	2.12	C 250

PROPERTIES OF T-BARS.

EQUAL LEGS.

1	2	3	4	Б	6	7	8	9
		Di	mensions				Distance of Center of	Moment
Section Number	Width of Flange	Depth of Bar	Thickness of Flange	Thickness of Stem	Weight per Foot	Area of Section	Gravity from Out- side of Flange	of Inertia Axis 1-1
	b	d	s to n'	t to t'		A	x	I
	Inches	Inches	Inch	Inch	Pounds	Sq. Ins.	Inch	Inches4
T 5	1	1	$\frac{1}{8}$ to $\frac{5}{32}$	$\frac{1}{8}$ to $\frac{5}{32}$.89	.26	.29	.02
T181	11/8	11/8	3 4 7 16 32	5 " 7 32	1.37	.40	.33	.04
T183	1 3 1 6	$1\frac{3}{16}$	3 6 1	5 4 7 32 32	1.51	.44	.34	.05
T187	11/4	11/4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.60	.47	.36	.06
T188	11/4	11/4	3 " 7 16 32	3 " 9 16 32	1.70	.50	.40	.07
T191	11/2	11/2	3 6 7 32	3 " 7 16 32 1 " S	1.94	.57	.44	.11
T193	1 1/2	11/2	$\frac{1}{4}$ " $\frac{9}{32}$	$\frac{1}{4}$ " $\frac{9}{32}$	2.47	.73	.47	.15
T194	13/4	134	1 " 5 1 " 5	1 " 5 1 " 5	3.09	.91	.54	.23
T 37	2	2	1 1 1 5 5 4 3	4 16	3.56	1.05	.59	.37
T 39	2	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	4.3	1.26	.61	.44
T 41	21/4	21/4	1 4 5 16 5 4 3	$\frac{1}{4}$ " $\frac{5}{16}$ " $\frac{3}{2}$	4.1	1.19	.65	.52
T 42	21/4	21/4	16 8 8	16 8 8	4.9	1.43	.68	.65
T 47	21/2	21/2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.6	1.33	.71	.74
T 49	21/2	21/2	5 4 3 16 8	5 " <u>3</u>	5.5	1.60	./4	.00

UNEQUAL LEGS.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.43	.30	.04
	.46	.34	.05
	.37	.33	.05

PROPERTIES OF T-BARS.

EQUAL LEGS.

10	11	12	13	14	15	16	1
					Coef. of		
Modulus Axis 1-1	Radius of Gyration Axis 1-1	Moment of Inertia Axis 2-2	Section Modulus Axis 2-2	Radius of Gyration Axis 2-2	For Fibre Stress of 15 (4) Lbs. per Synare Inch.	For Fibre Stress of 12 500 Lbs. per Square Inch	Section
5	r	I'	S'	r'			Kumber
Inches ³	Inch	Inches4	In-Les3	Inch	F	F'	
.03	.30	.01	.02	.21	320	250	T 5
.05	.31	.02	.04	.24	530	410	T181
.06	.33	.03	.05	.26	610	480	T183
.06	.35	.03	.05	.27	680	530	T187
.08	.37	.03	.05	.26	820	640	T188
.11	.45	.06	.08	.32	1170	910	T191
.14	.45	.08	.10	.32	1490	1160	T193
.19	.51	.12	.14	.37	2020	1580	T194
.26	.59	.18	.18	.42	2770	2160	T 37
.31	.59	.23	.23	.43	3300	2580	T 39
.32	.66	.25	.22	.46	3410	2660	T 41
.41	.67	.33	.29	.48	4370	3410	T 42
.42	.75	.34	.27	.51	4420	3450	T 47
.50	.74	.44	.35	.52	5330	4160	T 49

UNEQUAL LEGS.

.05	.29	.03	.05	.28	500	390	T	16
.06	.32	.03	.05	.27	640	500	T :	18
.05	.37	.04	.05	.32	530	410	T :	20

PROPERTIES OF STANDARD ANGLES. EQUAL LEGS.

1	2	3	4	5	6	7	8
Section	Dimensions.	Thickness.	Weight per Foot.	Area of Section.	Distance of Center of Gravity from Back of Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
Number.	axa	t		A	x	I	S
	Inches.	Inch.	Pounds.	Sq. Ins.	Inch.	Inches.4	Inches.3
A11	1½x 1½	1/8	1.23	.36	.42	.08	.072
a	"	3 16	1.80	.53	.44	.11	.104
g	a	1/4	2.34	.69	.47	.14	.134
4	4	5 16	2.86	.84	.49	.16	.162
~		3/8	3.35	.98	.51	.19	.188
A15	2 x 2	1/8	1.65	.48	.55	.19	.13
44	44	3 16	2.44	.72	.57	.27	.19
66	α	1/4	3.19	.94	.59	.35	.25
ec.	Œ	5 16	3.92	1.15	.61	.42	.30
4	α	3/8	4.7	1.36	.64	.48	.35
ш	<i>a</i>	7 16	5.3	1.56	.66	.54	.40
4	4	1/2	6.0	1.75	.68	.59	.45
A17	2½x 2½	1/8	2.08	.61	.67	.38	.20
4	ш	3 16	3.07	.90	.69	.55	.30
æ	41	14	4.1	1.19	.72	.70	.39
æ	α	3 6	5.0	1.47	.74	.85	.48
65	44	3/8	5.9	1.73	.76	.98	.57
66	46	7 16	6.8	2.00	.78	1.11	.65
#	ш	1/2	7.7	2.25	.81	1.23	.72
A19	3 x 3	34	4.9	1.44	.84	1.24	.58
4	64	<u>5</u> 16	6.1	1.78	.87	1.51	.71
æ	ш	3/8	7.2	2.11	.89	1.76	.83
æ	44	7 16	8.3	2.43	.91	1.99	.95
a	#	12	9.4	2.75	.93	2.22	1.07
æ	4	16	10.4	3.06	.95	2.43	1.19

PROPERTIES OF STANDARD ANGLES. E Q U A L L E G S.

Radius of	h: 1 0			1	
	Distance of Center of Gravity from External Apex.	Least Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Least Radius of Gyration Axis 2-2.	Section Number.
r	x "	I"	S"	r"	Number.
Insh.	Inches.	Inches.4	Inches.3	Inch.	
.47	.60	.031	.053	.30	A11
.46	.63	.045	.072	.29	æ
.45	.66	.058	.088	.29	an an
.44	.69	.070	.101	.29	Œ
.44	.72	.082	.114	.29	44
.63	.78	.08	.10	.40	A15
.62	.80	.11	.14	.39	«
.61	.84	.14	.17	.39	4
.60	.87	.17	.20	.39	Œ
.59	.90	.20	.22	.39	44
.59	.93	.23	.25	.38	a
.58	.96	.26	.27	.38	4
.79	.95	.15	.16	.50	A17
.78	.98	.22	.22	.49	46
.77	1.01	.29	.28	.49	45
.76	1.05	.35	.33	.49	4
.75	1.08	.41	.38	.48	66
.75	1.11	.46	.42	.48	46
.74	1 14	.52	.46	.48	æ
.93	1.19	.50	.42	.59	A19
.92	1.22	.61	.50	.59	66
.91	1.26	.72	.57	.58	ш
.91	1.29	.82	.64	.58	ш
.90	1.32	.92	.70	.58	48
.89	1.35	1.02	.76	.58	«

PROPERTIES OF STANDARD ANGLES.

EQUAL LEGS.

1	2	8	4	5	6	7	8
Section	Dimensions,	Thickness.	Weight per Foot,	Area of Section.	Distance of Center of Gravity from Back of Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
	axa	t		A	x	1	8
	Inches.	Inch.	Pounds.	Sq. Ins.	Inches.	Inches.4	Inches.3
A21	3½ x 3½	1/4 8/6/87 16/8 16/87 16/87 16/87 16/87 16/87 16/87 16/87 16/8 16/8 16/8 16/8 16/8 16/8 16/8 16/8	5.8 7.2 8.5 9.8 11.1 12.4 13.6 14.8 16.0 17.1 18.3	1.69 2.09 2.48 2.87 3.25 3.62 3.98 4.34 4.69 5.03 5.36	.97 .99 1.01 1.04 1.06 1.10 1.12 1.15 1.17	2.01 2.45 2.87 3.26 3.64 8.99 4.33 4.65 4.96 5.25 5.53	.79 .98 1.15 1.32 1.49 1.65 1.81 1.96 2.11 2.25 2.39
A23	4 ×4	5 6 8 7 8 1 8 7 8 1 8 7 8 1 8 7 8 7 8 7 8 7	8.2 9.8 11.3 12.8 14.3 15.7 17.1 18.5 19.9 21.2	2.40 2.86 3.31 3.75 4.18 4.61 5.03 5.44 5.84 6.23	1.12 1.14 1.16 1.18 1.21 1.23 1.25 1.27 1.29 1.31	3.71 4.36 4.97 5.56 6.12 6.66 7.17 7.66 8.14 8.59	1.29 1.52 1.75 1.97 2.19 2.40 2.61 2.81 3.01 3.20
A2'7	6 x 6	3/8 7/6 11/2 9/6 15/5 1-2 9/6 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2	14.9 17.2 19.6 21.9 24.2 26.5 28.7 31.0 33.1 35.3 37.4	4.36 5.06 5.75 6.43 7.11 7.78 8.44 9.09 9.73 10.37 11.00	1.64 1.66 1.68 1.71 1.73 1.75 1.78 1.80 1.82 1.84 1.86	15.39 17.68 19.91 22.07 24.16 26.19 28.15 30.06 31.92 33.72 35.46	3.53 4.07 4.61 5.14 5.66 6.17 6.66 7.15 7.63 8.57
46	8 x8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.4 29.6 32.7 35.8 38.9 42.0 45.0 54.0 56.9	7.75 8.68 9.61 10.53 11.44 12.34 13.23 14.12 15.00 15.87 16.73	2.19 2.21 2.23 2.25 2.25 2.30 2.32 2.34 2.37 2.39 2.41	48.65 54.09 59.48 64.64 69.74 74.72 79.58 84.34 88.98 93.53 97.97	8.37 9.34 10.30 11.25 13.11 14.02 14.91 15.80 16.67 17.58

PROPERTIES OF STANDARD ANGLES.

EQUAL LEGS.

9	9 10 11		12	13	1	
Radius of Gyration Axis 1-1.	Distance of Center of Gravity from External Apex.	Least Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Least Radius of Gyration Axis 2-2.	Section Number.	
r	x"	I"	8"	T"		
Inches.	Inches.	Inches.4	Inches.3	Inch.		
1.08 1.08 1.07 1.07 1.06 1.05 1.04 1.03 1.02	1.37 1.40 1.43 1.46 1.50 1.58 1.59 1.62 1.65 1.68	.80 .99 1.16 1.33 1.50 1.66 1.82 1.97 2.13 2.28 2.43	.59 .71 .81 .91 1.00 1.09 1.17 1.24 1.31 1.38 1.45	.69 .69 .68 .68 .68 .68 .67 .67	A21	
1.24 1.23 1.23 1.22 1.21 1.20 1.19 1.18 1.17	1.58 1.61 1.64 1.67 1.71 1.74 1.77 1.80 1.83 1.86	1.50 1.77 2.02 2.28 2.52 2.76 3.00 8.23 3.46 3.69	.95 1.10 1.23 1.36 1.48 1.59 1.70 1.80 1.89	.79 .79 .78 .78 .77 .77 .77 .77	44	
1.88 1.87 1.86 1.85 1.83 1.83 1.82 1.81 1.80	2.32 2.34 2.38 2.41 2.45 2.51 2.54 2.57 2.60 2.64	6.19 7.13 8.04 8.94 9.81 10.67 11.52 12.35 13.17 13.98 14.78	2.67 3.04 3.37 3.70 4.01 4.31 4.59 4.86 5.12 5.37 5.61	1.19 1.18 1.18 1.17 1.17 1.17 1.17 1.16 1.16	427	
2.51 2.50 2.49 2.48 2.47 2.46 2.45 2.44 2.43 2.42	3.09 3.12 3.16 3.19 3.22 3.25 5.28 3.35 3.35 3.38 3.41	19.56 21.79 23.97 26.13 28.24 30.33 32.38 34.40 36.40 38.38 40.33	6.33 6.98 7.60 8.20 8.77 9.86 10.38 10.88 11.36 11.83	1.5888 1.5577 1.5566 1.5566 1.556	485	

PROPERTIES OF SPECIAL ANGLES. EQUAL LEGS.

1	2	3	4	5	6	7	8
Section Number.	Dimensions.	Thickness	Weight per Foot.	Area of Section.	Distance of Center of Gravity from Back of Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
Rumbor.	8. X &	t		A	x	1	S
	Inches.	Inch.	Pounds.	Sq. Ins.	Inch.	Inches.4	Inches.3
A36	3/4 x 3/4	1/8 3 16	.59 .84	.17	.23 .25	.009	.017 .024
A37	1 x 1	1/8 3 16 1/4	.80 1.16 1.49	.23 .34 .44	.30 .32 .34	.022 .030 .037	.031 .044 .056
A38 "	11/4×11/4	1/8 3 16 1/4	1.01 1.48 1.92	.30 .43 .56	.36 .38 .40	.044 .061 .077	.049 .071 .091
A40 « « «	13/4×13/4	1/8 3 16 1/4 5 16 3/8	1.44 2.12 2.77 3.39 3.99	.42 .62 .81 1.00 1.17	.48 .51 .53 .55	.13 .18 .23 .27 .31	.10 .14 .19 .23 .26
A41	2¼x2¼	3 16 14 5 16	2.75 3.62 4.5	.81 1.06 1.31	.63 .65 .68	.39 .50 .61	.24 .32 .39
A43	2¾x2¾	1/4 5 16 3/8	4.5 5.6 6.6	1.31 1.62 1.92	.78 .80 .82	.95 1.15 1.33	.48 .59 .69
A47	5 * 5	3/8	12.3 14.3 16.2 18.1 20.0 21.8 23.6	3.61 4.18 4.75 5.31 5.86 6.40 6.94	1.39 1.41 1.43 1.46 1.48 1.50 1.52	8.74 10.02 11.25 12.44 13.58 14.68 15.74	2.42 2.79 3.16 3.51 8.86 4.20 4.52

PROPERTIES OF SPECIAL ANGLES. E Q U A L L E G S.

9	10	11	12	13	1
Radius of Gyration Axis 1-1	Distance of Center of Gravity from External Apex.	Least Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Least Radius of Gyration Axis 2-2.	Section Number
r	x "	1"	S"	r"	
Inch.	Inch.	Inches.4	Inches.3	Inch.	
.22 .22	.33	.004 .005	.011 .014	.14	A36
.30 .30 .29	.42 .45 .48	.009 .013 .016	.021 .028 .034	.19 .19 .19	A37
.38 .38 .37	.51 .54 .57	.018 .025 .033	.035 .047 .057	.24 .24 .24	A38
.55 .54 .53 .52 .51	.68 .72 .75 .78 .81	.051 .073 .094 .113 .133	.076 .10 .13 .15	.35 .34 .34 .34	A40
.70 .69 .68	.89 .92 .96	.16 .21 .25	.18 .22 .26	.44 .44 .44	A41
.85 .84 .83	1.10 1.13 1.17	.38 .47 .55	.35 .41 .47	.54 .54 .53	A43
1.56 1.55 1.54 1.53 1.52 1.51	1.96 2.00 2.03 2.06 2.09 2.12 2.15	3.53 4.05 4.56 5.06 5.55 6.03 6.53	1.79 2.03 2.25 2.46 2.66 2.84 3.04	.99 .98 .98 .98 .97 .97	A47 "" " " " " "

1	2	3	4	5	6	7	8
Section Number.	Dimensions.	Thickness	Weight per Foot.	Area of Section.	Distance of Center of Gravity from Back of Longer Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
	bxa	t		A	x	I	S
	Inches.	Inch.	Pounds.	Sq. Ins.	Inch.	Inches.4	Inches.3
A91	2½ x 2 « « «	3 16 1/4 5 18 3/8 7 16 1/2	2.75 3.62 4.5 5.3 6.1 6.8	.81 1.06 1.31 1.55 1.78 2.00	.51 .54 .56 .58 .60 .63	.29 .37 .45 .51 .58 .64	.20 .25 .31 .36 .41 .46
A93	3 x 2½	1/4 5 16 3/8 7 16 1/2 9	4.5 5.6 6.6 7.6 8.5 9.5	1.31 1.62 1.92 2.22 2.50 2.78	.66 .68 .71 .73 .75	.74 .90 1.04 1.18 1.30 1.42	.40 .49 .58 .66 .74
A95	31/2 x 21/2	1/4 5 16 3/8 16 1/2 9	4.9 6.1 7.2 8.3 9.4 10.4	1.44 1.78 2.11 2.43 2.75 3.06	.61 .64 .66 .68 .70	.78 .94 1.09 1.23 1.36 1.49	.41 .50 .59 .68 .76 .84
A97 " " " " " " " " " " " " "	31/2 x 3	1/4 15 16 17 16 17 17 17 17 17	5.4 6.6 7.9 9.1 10.2 11.4 12.5 13.6 14.7 15.8 16.8	1.56 1.93 2.30 2.65 3.00 3.34 3.67 4.00 4.31 4.62 4.92	.79 .81 .83 .85 .88 .90 .92 .94 .96 .98	1.30 1.58 1.85 2.09 2.33 2.55 2.76 2.96 3.15 3.33 3.50	.58 .72 .85 .98 1.10 1.21 1.33 1.44 1.54 1.65 1.75
499 <i>u u u u u u u u u u</i>	4 x 3	5 16 / 5 / 7 16 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6	7.2 8.5 9.8 11.1 12.4 13.6 14.8 16.0 17.1 18.3	2.09 2.48 2.87 3.25 3.62 3.98 4.34 4.69 5.03 5.36	.76 .78 .80 .83 .85 .87 .89 .92 .94	1.65 1.92 2.18 2.42 2.66 2.87 3.08 3.28 3.47 5.66	.73 .87 .99 1.12 1.23 1.35 1.46 1.57 1.68 1.79

9	10	11	12	13	14	15	1
Radius of Gyration Axis 1-1.	Distance of Center of Gravity from back of Shorter Leg.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Alls 2-2	Tangent of Angle.	Least Radius of Gyration Axis, 3-3.	Section Number.
Inch.	Inch.	I'	S' Inches.3	Inches.	α	Inch.	
.60 .59 .58 .58 .57 .56	.76 .79 .81 .83 .85 .85	.51 .65 .79 .91 1.03 1.14	.29 .38 .47 .55 .62 .70	.79 .78 .78 .77 .76	.632 .626 .620 .614 .607	.43 .42 .42 .42 .42 .42	A91
.75 .74 .74 .73 .72 .72	.91 .93 .96 .98 1.00 1.02	1.17 1.42 1.66 1.88 2.08 2.28	.56 .69 .81 .93 1.04 1.15	.95 .94 .93 .92 .91	.684 .680 .676 .672 .666	5555555	493
.74 .73 .72 .71 .70 .70	1.11 1.14 1.16 1.18 1.20 1.23	1.80 2.19 2.56 2.91 3.24 3.55	.75 .93 1.09 1.26 1.41 1.56	1.12 1.11 1.10 1.09 1.09 1.08	.506 .501 .496 .491 .486 .480	.54 .54 .54 .53 .53	A95
.91 .90 .90 .89 .87 .87 .86 .85 .84	1.04 1.06 1.08 1.10 1.13 1.15 1.17 1.19 1.21 1.23	1.91 2.33 2.72 3.10 3.45 3.79 4.11 4.41 4.70 4.98 5.24	.78 .95 1.13 1.29 1.45 1.61 1.76 1.91 2.05 2.20 2.33	1.11 1.10 1.09 1.08 1.07 1.07 1.06 1.05 1.04 1.04 1.03	.727 .724 .721 .718 .714 .707 .703 .698 .694 .689	63 633 663 663 663 663 663 663	A97
\$88766 \$888 \$888 \$888 \$888 \$888 \$888 \$88	1.26 1.28 1.30 1.33 1.35 1.37 1.89 1.42 1.44 1.46	3.38 3.96 4.52 5.05 5.55 6.03 6.49 6.93 7.35 7.76	1.23 1.46 1.68 1.89 2.09 2.30 2.49 2.68 2.87 3.05	1.27 1.26 1.25 1.24 1.23 1.22 1.22 1.21 1.20	.554 .5547 .543 .538 .5384 .529 .524 .512	.65 .64 .64 .64 .64 .64 .64 .64	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

1	2	3	4	15	6	7	8
Section Number.	Dimensions.	Thickness.	Weight per Foot.	Area of Section.	Distance of Center of Gravity from Back of Longer Leg.	Moment of Inertia Axis 1-1,	Section Modulus Axis 1-1.
aumber.	bxa	t		A	I	I	S
	Inches.	Inch.	Pounds.	Sq. Ins.	Inch.	Inches.4	Inches.3
A101	5 x8	See (20 per See (20 per See) (20 per See (8.2 9.8 11.3 12.8 14.3 15.7 17.1 18.5 19.9 21.2	2.40 2.86 3.31 3.75 4.18 4.61 5.03 5.44 6.23	.68 .70 .73 .75 .77 .80 .82 .84 .86 .88	1.75 2.04 2.32 2.58 2.68 3.06 3.29 3.51 3.71 3.91	.75 .89 1.02 1.15 1.27 1.39 1.51 1.62 1.74 1.85
A108	5 x 3½	66/20-18/20-	8.7 10.4 12.0 13.6 15.2 16.8 19.8 21.3 22.7 24.2	2.56 3.05 3.53 4.00 4.47 4.92 5.37 5.81 6.25 6.67 7.09	.84 .86 .88 .91 .93 .95 .97 1.00 1.02 1.04 1.06	2.72 3.18 3.63 4.05 4.45 4.83 5.20 5.55 6.21 6.52	1.02 1.21 1.39 1.56 1.73 1.90 2.06 2.22 2.37 2.52 2.67
A105	6 x 8½		11.7 13.5 15.3 17.1 18.9 20.6 22.4 24.0 25.7 27.3 28.9	3.42 3.97 4.50 5.03 5.55 6.06 7.06 7.55 8.03 8.50	.79 .81 .83 .86 .88 .90 .93 .95 .97	3.34 3.81 4.25 4.67 5.47 5.84 6.20 6.55 6.88 7.21	1.23 1.41 1.59 1.77 1.94 2.11 2.27 2.43 2.59 2.74 2.90
A107	6 x4	8/9 15/22 15/25/25/25/25/25/25/25/25/25/25/25/25/25	12.3 14.3 16.2 18.1 20.0 21.8 23.6 25.4 27.2 28.9 30.6	3.61 4.18 4.75 5.31 5.86 6.40 6.94 7.47 7.98 8.50 9.00	.94 .96 .99 1.01 1.03 1.06 1.08 1.10 1.12 1.14	4.90 5.60 6.27 6.91 7.52 8.11 8.68 9.23 9.75 10.26 10.76	1.60 1.85 2.08 2.31 2.54 2.76 2.97 3.18 3.39 8.59 3.79

9	10	11	12	13	14	15	1
Radius of Gyration Axis 1-1	Distance of Center of Gravity from Back of Shorter Leg.	Moment of Inertia Aris 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.	Tangent of Angle.	Lest Radius of Gration Axis 3-3.	Section Number.
r	X'	I'	3'	r'	α	r"	number.
Inch.	Inches.	Inches.4	Inches.3	Inch.		Inch.	
.85 .84 .84 .83 .82 .82 .81 .80 .80	1.68 1.70 1.73 1.75 1.77 1.80 1.82 1.84 1.86	6.26 7.37 8.43 9.45 10.43 11.37 12.28 13.15 13.98 14.78	1.89 2.24 2.58 2.91 3.23 3.55 3.86 4.46 4.75	1.61 1.61 1.60 1.59 1.58 1.57 1.56 1.55 1.55	368 364 361 357 353 349 345 340 336	.66 .65 .65 .65 .65 .64 .64 .64	A101
1.03 1.02 1.01 1.01 1.00 .99 .98 .98 .97 .96 .96	1.59 1.61 1.63 1.66 1.68 1.70 1.75 1.75 1.77 1.79	6.60 7.78 8.90 9.99 11.03 12.03 12.99 13.92 14.81 15.67 16.49	1.94 2.29 2.64 2.99 3.32 3.65 4.28 4.58 4.58 5.17	1.61 1.59 1.58 1.57 1.56 1.56 1.54 1.53 1.53	.489 .485 .482 .479 .476 .472 .468 .464 .460 .455 .451	.77 .76 .76 .75 .75 .75 .75 .75 .75 .75	▲103 "" " " " " "
99 97 99 99 99 99 99 99 99 99	2.04 2.06 2.08 2.11 2.13 2.15 2.18 2.20 2.22 2.24 2.26	12.86 14.76 16.59 18.37 20.08 21.74 23.34 24.89 26.39 27.84 29.15	3.24 3.75 4.24 4.72 5.19 5.65 6.10 6.55 6.98 7.41 7.80	1.94 1.93 1.92 1.91 1.90 1.89 1.88 1.87 1.86 1.85	\$50 \$47 \$44 \$344 \$38 \$334 \$331 \$27 \$28 \$320 \$417	.776 .766 .755 .755 .755 .755 .755 .755	A105
1.17 1.16 1.15 1.14 1.13 1.13 1.12 1.11 1.11 1.10 1.09	1.94 1.96 1.99 2.01 2.08 2.06 2.10 2.12 2.14 2.17	13.47 15.46 17.40 19.26 21.07 22.82 24.51 26.15 27.73 29.26 30.75	3.32 3.83 4.83 4.83 5.78 6.25 6.70 7.15 7.59 8.02	1.93 1.92 1.91 1.90 1.89 1.88 1.87 1.86 1.86	.446 .443 .440 .438 .431 .428 .425 .421 .418 .414	\$87 \$87 \$87 \$86 \$86 \$86 \$86 \$86	A107

PROPERTIES OF SPECIAL ANGLES. UNEQUAL LEGS.

1	2	3	4	5	6	7	8
Section Number.	Dimensions.	Thickness.	Weight per Foot.	Area of Section.	Distance of Center of Gravity from Back of Longer Leg.	Moment of Inertia Axis 1-1.	Section Modulus Axis 1-1.
Mumber.	bxa	t		A	X	I	S
	Inches.	Inch.	Pounds.	Sq. Ins.	Inch.	Inches.4	Inches.3
A129	3 x2	3 16 14 5 16 8 8 8 7 16 1/2	3.07 4.1 5.0 5.9 6.8 7.7	.90 1.19 1.47 1.73 2.00 2.25	.47 .49 .51 .54 .56	.31 .39 .47 .54 .61	.20 .26 .32 .37 .42 .47
A131	4 x 3½	\$ 16 38 76 16 112 9 16 58 11 6	7.7 9.1 10.6 11.9 13.3 14.7 16.0	2.25 2.67 3.09 3.50 3.90 4.30 4.68	.93 .96 .98 1.00 1.02 1.04 1.07	2.55 2.99 3.40 3.79 4.17 4.49 4.86	.99 1.17 1.35 1.52 1.68 1.83 2.00
A135	5 x 4	3/8 7/6 1/2 9/16 5/8 1/6	11.0 12.8 14.5 16.2 17.8 19.5	3.23 3.75 4.25 4.75 5.23 5.72	1.03 1.05 1.07 1.10 1.12 1.14	4.66 5.32 5.96 6.56 7.14 7.70	1.57 1.81 2.04 2.26 2.48 2.69
A109	7 x 3½	7 6 /2 e 6 /2 1 6 /4 3 6 / 7 / 3 5 6 / 3 6 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3	15.0 17.0 19.1 21.0 23.0 24.9 26.8 28.7 30.5 32.3	4.40 5.59 6.17 6.75 7.31 7.87 8.42 8.97 9.50	.75 .78 .80 .82 .87 .89 .94 .96	3.95 4.41 4.86 5.69 5.69 6.46 6.83 7.18 7.53	1.44 1.62 1.80 1.97 2.14 2.31 2.48 2.64 2.80 2.96
A112	8 x6	1/20 10 / 20 1/0 / 40 / 10 / 20 / 20 / 20 / 20 / 20 / 20 / 2	23.0 25.7 28.5 31.2 33.8 36.5 39.1 41.7 44.2	6.75 7.56 8.36 9.15 9.94 10.72 11.48 12.25 13.00	1.47 1.50 1.52 1.54 1.56 1.59 1.61 1.63	21.68 24.04 26.33 28.56 30.72 32.82 34.86 36.85 38.78	4.79 5.34 5.88 6.40 6.92 7.44 7.94 8.43 8.92

PROPERTIES OF SPECIAL ANGLES. UNEQUAL LEGS.

9	10	11	12	13	14	15	1
Radius of Gyration Axis 1-1.	Distance of Center of Gravity from Back of Shorter Leg.	Moment of Inertia Axis 2-2.	Section Modulus Axis 2-2.	Radius of Gyration Axis 2-2.	Tangent of Angle.	Radius of Gyration Axis 3-3.	Section
Inch.	Inches.	I'	S' Inches.3	r' Inches.	α	Inch.	Number.
.58 .57 .56 .55 .55	.97 .99 1.02 1.04 1.06 1.08	.84 1.09 1.32 1.53 1.73 1.92	.41 .54 .66 .78 .89	.97 .96 .95 .94 .93	.446 .440 .434 .428 .421 .414	.44 .43 .43 .43 .43 .43	A129
1.07 1.06 1.05 1.04 1.03 1.02 1.02	1.18 1.21 1.23 1.25 1.27 1.29 1.32	3.56 4.18 4.76 5.32 5.86 6.37 6.86	1.26 1.49 1.72 1.94 2.15 2.35 2.56	1.26 1.25 1.24 1.23 1.23 1.22 1.21	.757 .755 .753 .750 .747 .742 .742	.73 .73 .72 .72 .72 .72 .72	A131
1.20 1.19 1.18 1.18 1.17 1.16	1.53 1.55 1.57 1.60 1.62 1.64	8.14 9.32 10.46 11.55 12.61 13.62	2.34 2.70 3.05 3.39 3.73 4.05	1.59 1.58 1.57 1.56 1.55 1.54	.631 .629 .626 .623 .620 .617	.85 .85 .85 .84 .84	A135
.95 .94 .93 .93 .92 .91 .91 .90 .89	2.50 2.53 2.55 2.57 2.60 2.62 2.64 2.69 2.71	22.56 25.41 28.18 30.86 33.47 35.99 38.45 40.82 43.13 45.37	5.01 5.68 6.34 6.96 7.60 8.22 8.83 9.42 10.00 10.58	2.26 2.25 2.25 2.24 2.23 2.22 2.21 2.20 2.19 2.19	.267 .264 .262 .259 .257 .253 .247 .244 .241	.76 .75 .75 .74 .74 .74 .74 .74	A109
1.79 1.78 1.77 1.77 1.76 1.75 1.74 1.73	2.47 2.50 2.52 2.54 2.56 2.59 2.61 2.63 2.65	44.31 49.26 54.10 58.82 63.42 67.92 72.32 76.59 80.78	8.02 8.95 9.87 10.77 11.67 12.55 13.41 14.27 15.11	2.56 2.55 2.54 2.53 2.53 2.52 2.51 2.50 2.49	.558 .554 .554 .553 .549 .546 .548	1.30 1.30 1.29 1.29 1.28 1.28 1.28 1.28	A112

MOMENTS OF INERTIA OF RECTANGLES. I

Neutral Axis

Depths 2 to 60 inches; widths \(\frac{1}{4} \) to 1 inch, varying by \(\frac{1}{16} \) inch.

Depth		Wi	dth of R	ectangle	in Inch	es.	
in Inches.	1/4	<u>5</u> 16	3/8	$\frac{7}{16}$	1/2	$\frac{9}{16}$	<u>5</u> 8
2	.17	.21	.25	.29	.33	.38	.42
3	.56	.70	.84	.98	1.13	1.27	1.41
4	1.33	1.67	2.00	2.33	2.67	3.00	3.33
5	2.60	3.26	3.91	4.56	5.21	5.86	6.51
6	4.50	5.63	6.75	7.88	9.00	10.13	11.25
7	7.15	8.93	10.72	12.51	14.29	16.08	17.86
8	10.67	13.33	16.00	18.67	21.33	24.00	26.67
9	15.19	18.98	22.78	26.58	30.38	34.17	37.97
10	20.83	26.04	31.25	36.46	41.67	46.87	52.08
11	27.73	34.66	41.59	48.53	55.46	62.39	69.32
12	36.00	45.00	54.00	63.00	72.00	81.00	90.00
13	45.77	57.21	68.66	80.10	91.54	102.98	114.43
14	57.17	71.46	85.75	100.04	114.33	128.63	142.92
15	70.31	87.89	105.47	123.05	140.63	158.20	175.78
16	85.33	106.67	128.00	149.33	170.67	192.00	213.33
17	102.35	127.94	153.53	179.12	204.71	230.30	255.89
18	121.50	151.88	182.25	212.63	243.00	273.38	303.75
19	142.90	178.62	214.34	250.07	285.79	321.52	357.24
20	166.67	208.33	250.00	291.67	333.33	375.00	416.67
21	192.94	241.17	289.41	337.64	385.88	434.11	482.34
22	221.83	277.29	332.75	388.21	443.67	499.13	554.58
23	253.48	316.85	380.22	443.59	506.96	570.33	633.70
24	288.00	360.00	432.00	504.00	576.00	648.00	720.00
` 25	325.52	406.90	488.28	569.66	651.04	732.42	813.80
26	366.17	457.71	549.25	640.79	732.33	823.88	915.42
27	410.06	512.58	615.09	717.61	820.13	922.64	1025.16
28	457.33	571.67	686.00	800.33	914.67	1029.00	1143.33
29	508.10	635.13	762.16	889.18	1016.21	1143.23	1270.26
30	562.50	703.13	843.75	984.38	1125.00	1265.63	1406.25
32	682.67	853.33	1024.00	1194.67	1365.33	1536.00	1706.67
34	818.83	1023.54	1228.25	1432.96	1637.67	1842.38	2047.08
56	972.00	1215.00	1458.00	1701.00	1944.00	2187.00	2430.00
38	1143.17	1428.96	1714.75	2000.54	2286.33	2572.13	2857.92
40	1333.33	1686.67	2000.00	2333.33	2666.67	3000.00	3333.33
42	1543.50	1929.38	2315.25	2701.13	3087.00	3472.88	3858.75
44	1774.67	2218.33	2662.00	3105.67	3549.33	3993.00	4436.67
46	2027.83	2534.79	3041.75	3548.71	4055.67	4562.63	5069.58
48	2304.00	2880.00	34 56.00	4032.00	4608.00	5184.00	5760.00
50	2604.17	3255.21	3906.25	4557.29	5208.33	5859.38	6510.42
52	2929.33	3661.67	4394.00	5126.33	5858.67	6591.00	7323.33
54	3280.50	4100.63	4920.75	5740.88	6561.00	7381.13	8201.25
56	3658.67	4573.33	5488.00	6402.67	7317.33	8232.00	9146.67
58	4064.83	5081.04	6097.25	7113.46	8129.67	9145.87	10162.08
60	4500.00	5625.00	6750.00	7875.00	9000.00	10125.00	11250.00

MOMENTS OF INERTIA OF RECTANGLES. I

Neutral Axis

Depths 2 to 60 inches; widths 14 to 1 inch, varying by 16 inch.

	Width	of Rectar	gle in In	ches.		Depth
11	3 4	13 16	7/8	15	1	in Inches.
.46	.50	.54	.58	.63	.67	2
1.55	1.69	1.83	1.97	2.11	2.25	3
3.67	4.00	4. 33	4.67	5.11	5.33	4
7.16	7.81	8.46	9.11	9.77	10.42	5
12.38	13.50	14.63	15.75	16.83	18.00	6
19.65	21.44	23.22	25.01	26.80	28.58	7
29.33	32.00	34.67	37.33	40.00	42.67	8
41.77	45.56	49.36	53.16	56.95	60.75	9
57.29	62.50	67.71	72.92	78.13	83.33	10
76.26	83.19	90.12	97.05	103.98	110.92	11
99.00	108.00	117.00	126.00	135.00	144.00	12
125.87	137.31	148.75	160.20	171.64	183.08	13
157.21	171.50	185.79	200.08	214.38	228.67	14
193.36	210.94	228.52	246.09	263.67	281.25	15
234.67	256.00	277.33	298.67	320.00	341.33	16
281.47	307.06	332.65	358.24	383.83	409.42	17
334.13	364.50	394.88	425.25	455.63	486.00	18
392.96	428.69	464.41	500.14	535.86	571.58	19
458.33	500.00	541.67	583.33	·625.00	666.67	20
530.58	578.81	627.05	675.28	723.52	771.75	21
610.04	665.50	720.96	776.42	831.87	887.33	22
697.97	760.44	823.81	887.18	950.55	1013.92	23
792.00	864.00	936.00	1008.00	1080.00	1152.00	24
895.18	976.56	1057.94	1139.32	1220.70	1302.08	25 -
1006.96	1098.50	1190.04	1281.58	1373.13	1464.67	26 -
1127.67	1230.19	1332.70	1435.22	1537.73	1640.25	27 -
1257.67	1372.00	1486.33	1600.67	1715.00	1829.33	28 -
1397.29	1524.31	1651.34	1778.36	1905.39	2032.42	29
1546.88	1687.50	1828.13	1968.75	2109,38	2250.00	30
1877.33	2048.00	2218.67	2389.33	2560.00	2730.67	32
2251.79	2456.50	2661.21	2865.92	3070.63	3275.33	34
2673.00	2916.00	3159.00	3402.00	3645.00	3588.00	36
3143.71	3429.50	3715.29	4001.08	4256.85	4572.67	38
3666.67	4000.00	4333.33	4666.67	5000.00	5333.33	40
4244.63	4630.50	5016.38	5402.25	5788.13	6174.00	42
4880.33	5324.00	5767.67	6211.33	6655.00	7098.67	44
5576.54	6983.50	6590.46	7097.42	76 + 58	8111.33	46
6336.00	6912.00	7488.00	8064.00	8610.00	9216.00	48
7161.46	7812.50	8463.54	9114.58	9765.63	10416.67	50
8055.67	8788.00	9520.33	10252.67	10945.60	11717.33	52
9021.38	9541.50	10661.63	11481.75	12301.88	13122.00	54
10061.33	10976.00	11890.67	12805.33	1372.00	14631.67	56
11178.29	12194.50	13210.71	14226.92	15243.12	16259.33	58
12375.00	13500.00	14625.00	15750.00	16375.00	18000.00	60

MOMENTS OF INERTIA OF RECTANGLES. II ONE INCH WIDE.

NEUTRAL AXIS

Value for any width may be obtained from tabular value by direct multiplication.

		Addi	tional T	epth in	Fraction	ns of an	Inch	
Depth	0	Addi	1	3	1	5	3	7
Inches.	0	16	8	16	4	16	8	16
0 1 2 3 4	.08333 .66667 2.2500 5.3333	.00002 .09995 .73114 2.3936 5.5873	.00016 .11865 .79964 2.5431 5.8491	.00055 .13955 .87229 2.6988 6.1190	.00130 .16276 .94922 2.8607 6.3971	.00254 .18842 1.0305 3.0289 6.6002	.00439 .21663 1.1164 3.2036 6.9783	.00698 .24754 1.2068 3.3849 7.2817
5	10.417	10.812	11.218	11.633	12.059	12.494	12.941	13.397
6	18.000	18.568	19.149	19.741	20.345	20.961	21.590	22.232
7	28.583	29.356	30.142	30.942	31.757	32.585	33.428	34.285
8	42.667	43.674	44.698	45.737	46.793	47.864	48.952	50.056
9	60.750	62.024	63.317	64.626	65.954	67.300	68.665	70.047
10	83.333	84.906	86.498	88.109	89.741	91.392	93.064	94.756
11	110.92	112.82	114.74	116.69	118.65	120.64	122.65	124.68
12	144.00	146.26	148.55	150.86	153.19	155.55	157.93	160.33
13	183.08	185.74	188.42	191.12	193.85	196.61	199.39	202.20
14	228.67	231.74	234.85	237.98	241.14	244.32	247.54	250.78
15	281.25	284.78	288.34	291.93	295.55	299.20	302.87	306.58
16	341.33	345.35	349.40	353.47	357.58	361.73	365.90	370.11
17	409.42	413.95	418.52	423.11	427.75	432.41	437.11	441.85
18	486.00	491.41	496.20	501.35	506.53	511.75	517.01	522.31
19	571.58	577.24	582.94	588.67	594.44	600.25	606.10	611.98
20	666.67	672.94	679.24	685.59	691.84	698.41	704.87	711.38
21	771.75	778.66	785.61	792.61	799.65	806.72	813.84	821.00
22	887.33	894.92	902.54	910.21	917.93	925.68	933.49	941.33
23	1013.9	1022.2	1030.5	1038.9	1047.3	1055.8	1064.3	1072.9
24	1152.0	1161.0	1170.1	1178.4	1188.4	1197.6	1206.8	1216.2
25	1302.1	1311.9	1321.7	1331.6	1341.5	1351.5	1361.6	1371.6
26	1464.7	1475.3	1485.9	1496.6	1507.3	1518.1	1529.0	1539.9
27	1640.2	1651.7	1663.1	1674.7	1686.2	1697.9	1709.5	1721.3
28	1829.3	1841.6	1853.9	1866.3	1878.8	1891.3	1903.8	1916.4
29	2032.4	2045.6	2058.8	2072.1	2085.4	2098.8	2112.3	2125.8
30	2250.0	2264.1	2278.2	2292.4	2306.7	2321.0	2335.4	2349.9
31	2482.6	2497.6	2512.7	2527.9	2543.1	2558.4	2573.8	2589.2
32	2730.7	2746.7	2762.8	2778.9	2795.2	2811.4	2827.8	2844.2
33	2994.7	3011.8	3028.9	3046.1	3063.3	3080.4	3098.0	3115.4
34	3275.3	3293.4	3311.6	3329.8	3348.1	3366.5	3384.9	3403.4
35	3572.9	3592.0	3611.3	3630.6	3650.0	3669.5	3689.0	3708.6
36	3888.0	3908.3	3928.6	3949.1	3969.6	3990.1	4010.8	4031.5
37	4221.1	4242.5	4264.0	4285.6	4307.3	4328.9	4350.7	4372.6
38	4572.7	4595.3	4617.9	4640.7	4663.5	4686.4	4719.4	4732.4
39	4943.3	4967.0	4990.9	5014.9	5038.9	5063.0	5087.2	5111.5
40	5333.3	5358.4	5383.5	5408.7	5433.9	5459.3	5484.7	5510.2
41	5743.4	5769.7	5796.1	5822.6	5849.1	5875.7	5902.5	5929.2
42	6174.0	6201.6	6229.3	6257.1	6284.9	6312.8	6340.9	6368.9
43	6625.6	6654.5	6683.5	6703.5	6741.8	6771.1	6800.4	6829.9
44	7098.7	7129.0	7159.3	7189.0	7220.3	7251.0	7281.7	7312.5
45	7593.8	7625.4	7657.2	7689.1	7721.0	7753.0	7785.2	7817.4
46	8111.3	8144.7	8177.6	8210.9	8244.3	8277.8	8311.3	8345.0
47	8651.9	8686.5	8721.1	8755.9	8790.7	8825.6	8860.7	8895.8
48	9216.0	9252.0	9288.2	9324.4	9360.7	9397.2	9433.7	9470.3
49	9804.1	9841.6	9879.3	9833.7	9954.9	9992.9	10031	10071
50	10417	10456	10495	10534	10574	10613	10653	10692

MOMENTS OF INERTIA OF RECTANGLES. II ONE INCH WIDE.

NEUTRAL AXIS

Value for any width may be obtained from tabular value by direct multiplication.

	Addi	tional D	epth in	Fraction	s of an	Inch.		Depth
1 2	16	5,3	1 1 6	3.	$\begin{array}{c} 1 & 3 \\ \hline 1 & 6 \end{array}$		1 5 1 6	Inches.
.01041	.01483	.02034	.02708	.03516	.04469	.05583	.06866	0 1 2 3 4
.28125	.31789	.35758	.40045	.44661	.49620	.54932	.60610	
1.3021	1.4022	1.5073	1.6176	1.7331	1.8539	1.9803	2.1123	
3.5729	3.7678	3.9696	4.1754	4.3945	4.6179	4.8488	5.0872	
7.5937	7.9146	8.1443	8.5831	8.9310	9.2882	9.6548	10.031	
13.865	14.343	14.832	15.331	15.843	16.365	16.898	17.443	5
22.885	23.552	24.231	21.924	25.629	26.347	27.079	27.825	6
35.156	36.043	36.944	37.859	38.790	39.736	40.698	41.674	7
51.177	52.314	53.468	54.639	55.827	57.032	58.254	59.493	8
71.448	72.867	74.305	75.762	77.238	78.733	80.247	81.780	9
96.469	98.202	99.955	101.73	103.52	105.34	107.18	109.04	10
126.74	128.82	130.92	133.04	135.19	137.35	139.55	141.76	11
162.76	165.21	167.69	170.19	172.72	175.28	177.85	180.46	12
205.03	207.89	210.78	213.69	216.63	219.60	222.60	225.62	13
254.05	257.35	260.68	264.04	267.42	270.83	274.28	277.75	14
310.32	314.09	317.89	321.72	325.58	329.47	333.40	337.35	15
374.34	378.61	382.92	387.25	391.62	396.02	400.45	404.92	16
446.61	451.42	456.25	461.12	466.03	470.97	475.94	480.95	17
527.63	533.00	538.40	543.84	549.32	554.83	560.38	565.96	18
617.91	023.57	629.87	635.90	641.98	648.09	654.24	660.44	19
717.93	724.51	731.14	737.81	744.51	751.26	758.05	764.88	20
828.20	835.44	842.73	850.05	857.43	864.84	872.29	879.79	21
949.22	957.15	965.13	973.15	981.21	989.32	997.47	1005.7	22
1081.5	1000.1	1098.8	1107.6	1116.4	1225.2	1134.1	1143.0	23
1225.5	1234.9	1244.4	1253.9	1263.4	1273.0	1282.6	1292.3	24
1381.8	1392.0	1402.2	1412.5	1422.8	1433.2	1443.6	1454.1	25
15.50.8	1561.8	1572.8	1554.0	1595.1	1606.3	1617.6	1628.9	26
1733.1	1744.9	1756.8	1768.8	1780.8	1792.8	1804.9	1817.1	27
1929.1	1941.8	1954.6	1967.4	1980.3	1993.2	2006.2	2019.3	28
2139.4	2153.0	2166.7	2180.4	2194.2	2208.1	2222.0	2236.0	29
2364.4	2378.9	2393.6	2408.3	2423.0	2437.8	2452.7	2467.6	30
2664.7	2620.2	2635.8	2651.4	2667.2	2682.9	2698.8	2714.7	31
2860.7	2577.2	2893.5	2910.5	2927.2	2944.0	2960.8	2977.8	32
3132.9	3150.5	3168.1	3185.8	3203.6	3221.4	3239.3	3257.3	33
3422.0	3440.6	3459.3	3478.1	3496.9	3515.8	3534.8	3553.8	34
3728.2	3748.0	3767.8	3787.6	3807.6	3827.6	3847.6	3867.8	35
4072.3	4073.1	4994.9	4115.0	4136.1	4157.2	4178.4	4199.7	36
4394.5	4416.5	44.55.6	4460.8	4483.0	4505.3	4527.7	4550.1	37
4755.5	4778.7	4500	4-25.4	4545.5	4872.3	4895.9	4919.5	38
5135.8	5160.2	5154.7	5209.3	5239.6	5285.3	5283.5	5308.4	39
5535.8	5561.5	5587.3	5613.1	5639.0	5665.0	5691.0	5717.2	40
5956.1	5 4 3 1	6010.1	6037.0	6064.4	6091.7	6119.0	6146.5	41
6397.1	6425.4	6453.7	6482.2	6510.7	6539.3	6568.0	6596.7	42
6867.7	6559 0	6418.7	6045.5	6978.3	7005.3	7038.3	7068.5	43
7343.4	7374.4	7405.5	7436.6	7467.9	7499.2	7530.6	7562.1	44
7849.7	7882.1	7914.6	7 (47.1	7979.8	8012.5	8045.4	8078.3	45
837 × 7	8412.5	-100.5	8480.5	8514.6	*548.8	8583.1	8617.4	46
8931.0	8966.3	9001.7	96.17.2	9972.7	9108.4	9144.2	9180.0	47
9507.0	9544.1	95-9.7	9617.7	99,54.5	9592.0	9729.2	9766.6	45
10107	10146	10184	10223	10261	10300	10339	10378	49
10732	10772	10812	10852	10892	10933	10973	11014	, 50

PROPERTIES AND PRINCIPAL DIMENSIONS OF STANDARD T-RAILS.

Stand-		Weight						N	eutral Axis	1-1.
(See Foot	Section Number.	per Yard.	Area.	b	d	k	t	x	Moment of Inertia.	Section Modulus.
Note.)		Pounds.	Sq. Ins.	Inches.	Inches.	Inches.	Inch.	Inches,	1	8
	580 579 578 577 576	12 16 20 25 30	1.17 1.56 1.98 2.40 3.02	23/8 23/8 25/8 23/4 31/8	2338 2338 2538 2334 334	1 164 132 112 112 116	3 16 7 32 14 19 6.1	.96 1.14 1.25 1.33 1.52	.67 1.23 1.93 2.50 4.10	.64 .99 1.41 1.76 2.55
0000	575 545 549 542 537	35 40 45 50 55	3.42 3.94 4.40 4.87 5.38	316 312 314 316 375 416	316 3112 3116 3175 416	134 178 2 213 214	25 64 25 64 7 16 15 37	1.54 1.69 1.76 1.86 1.98	5.14 6.52 8.09 9.82 12.03	2.90 3.60 4.19 4.86 5.78
A C B C A	568 533 571 534 567	60 60 65 70	5.86 5.93 5.87 6.33 6.82	414 414 414	41/2 41/4 41/6 43/4	214 222 233 233 233 233 233 233 233 233 23	15 32 31 64 31 64 1/2	2.13 2.06 1.95 2.15 2.20	15.41 14.56 13.30 16.72 21.05	6.50 6.65 5.94 7.30 8.26
C A C	532 570 529 566 530	70 70 75 80 80	6.81 6.89 7.33 7.86 7.86	45 445 5	45 6 6 6 6 5 5 5 5 5 5	$2^{\frac{7}{16}}$ $2^{\frac{3}{8}}$ $2^{\frac{3}{2}}$ $2^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	334 335 132 35 133 5 36 36 36 36 36	2.22 2.16 2.29 2.31 2.41	20.06 18.60 23.11 28.80 26.35	8.32 7.78 9.17 10.21 10.17
B C A C B	569 531 563 535 561	80 85 90 90 90	7.91 8.33 8.82 8.83 8.87	416 516 516 533 401	415 516 516 517 517 517 517	27-6 20-6 20-6 20-6 20-6 20-6	35 64 9 16 9 16	2.27 2.47 2.54 2.57 2.45	25.10 30.34 38.70 34.43 32.30	9.40 11.15 12.52 12.25 11.45
C C B M	550 565 536 564 572	95 100 100 100 110	9.28 9.84 9.84 9.85 10.75	5 1/2 5 3/4 5 1/2 5 1/2 5 1/2	516 6 534 544 6	211 234 234 232 213 213	9 16 9 16 9 16 9 16 16 32	2.67 2.75 2.73 2.63 2.80	38.58 48.94 43.42 41.30 56.00	13.35 15.07 14.38 13.72 17.50
M	573 574 539	120 130 150	11.76 12.76 14.71	5 ³ 4 6 6	614 612 6	27/8 21/8 41/4	5/8 1	2.89 3.00 3.00	60.04 71.02 69.30	17.87 20.29 23.10

For detail dimensions of Section No. 539, see page 26.

A; B:—Type A; Type B; American Railway Association Standard. C:—American Society of Civil Engineers Standard. M:—Manufacturers Standard.

RADII OF GYRATION FOR TWO ANGLES PLACED BACK TO BACK. ANGLES WITH EQUAL LEGS.

Radii of gyration correspond to directions indicated by arrowheads.

Section	Dimensions.	Thickness.	Area of Two Angles.			Radii of	Gyration	D	
Rumber.	Inches.	Inch.	Sq. Ins.	r ₀	\mathbf{r}_1	r ₂	r ₃	r4	r ₅
A11	11 x 112	*3 5	1.68	0.64 0.44 0.44	0.66	0.78 0.76 0.77	0.78 0.81 0.82	10.86	0.94 0.97 0.99
*A40	1°4× 1°4	1 / 5 1 / 6 3 / 5	1.24	$\begin{array}{c} 0.55 \\ 0.54 \\ 0.51 \end{array}$	0.74	0.82 0.83 0.86		0.91 0.93 0.97	1.02 1.03 1.07
A15	2 x 2	*1 '5 16 T6 16	2.30	0.63 0.62 0.60 0.59	0.84	$0.93 \\ 0.95$	0.97 0.98 1.00 1.03	1.02 1.03 1.05 1.08	
*A41	214 214	3 15 5 16	1.62 2.62	0.70	0.94	1.03 1.05	1.08	1.12	
A17	212x 212	*1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	2.38 3.46	0.75	1.05		1.17 1.19 1.21 1.24	1.21 1.24 1.26 1.29	1.34
* A43	214 214	1 /4 5 16 3	2.62 3.24 3.84	0.85	1.15 1.16 1.17	1.24 1.25 1.26	1.29 1.30 1.31	1.34 1.35 1.35	1.43
A19	3 * 3	1 4 1 6 9 1 6	4.86		1.26 1.28 1.30	1.34 1.37 1.39	1.39 1.42 1.44	1.43 1.47 1.49	1.57
A21	312x 316	14		1.09 1.04 1.02	1.52	1.54 1.61 1.65	1.59 1.66 1.70	1.64 1.71 1.75	1.81
A23	4 * 4	5 16 16		1.24 1.21 1.18	1.71	1.76 1.80 1.85	1.80 1.85 1.89	1.85 1.89 1.94	1.99
* A47	5 = 5	3 / 5 1 2 3 2 4		1.56 1.54 1.50	2.10	2.17 2.19 2.25	2.22 2.24 2.27	2.26 2.28 2.32	2.38
A27	6 x 6	16 5 7 7 8 7 8	10.12 14.22 19.46	1.84	2.50 2.53 2.57	2.58 2.62 2.66	2.63 2.66 2.70		2.76 2.80 2.85
A35	8 x 8	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15.50 19.22 22.88 26.46 30.00 33.46	2.49 2.47 2.45 2.44	3.32 3.34 3.36 3.38 3.40 3.42	3.41 3.43 3.44 3.46 3.48 3.51	3.45 3.47 3.49 3.51 3.53 3.55	3.51 3.53 3.55 3.57	3.58 3.60 3.62 3.64 3.67 3.69

Angles marked * are special sections.

RADII OF GYRATION FOR TWO ANGLES PLACED BACK TO BACK. ANGLES WITH UNEQUAL LEGS.

Radii of gyration correspond to directions indicated by arrowheads.

Section	Dimensions.	Thickness	Area of Two		I	Radii of	Gyration	L,	
Number.	Inches.	Inch.	Angles, Sq. Ins.	r ₀	rı	r ₂	r ₃	\mathbf{r}_4	r ₆
A91	2½ x 2	16 3/8 1/2	1.62 3.10 4.00	0.79 0.77 0.75	0.79 0.82 0.84	0.88 0.91 0.94	0.92 0.96 0.99	0.97 1.01 1.04	1.07 1.12 1.15
*A129	8 ×2	16 5 16 7	1.80 2.94 4.00	0.97 0.95 0.93	0.75 0.76 0.79	0.83 0.85 0.88	0.88 0.90 0.93	0.93 0.95 0.98	1.03 1.05 1.09
A93	3 x 2½	1/4 3/8 2 16	2.62 3.84 5.56	$0.95 \\ 0.93 \\ 0.91$	1.00 1.02 1.05	1.09 1.11 1.15	1.13 1.16 1.20	1.18 1.21 1.25	1.28 1.31 1.35
A95	3½ x 2½	1/4 1/2 1/6	2.88 5.50 6.12	1.12 1.09 1.08	0.96 1.00 1.01	1.04 1.09 1.10	1.09 1.14 1.15	1.13 1.19 1.20	1.23 1.29 1.31
A97	3½x3	14	3.12 6.68 9.24	1.11 1.07 1.04	1.20 1.25 1.30	1.29 1.84 1.40	1.34 1.39 1.45	1.44	1.48 1.54 1.60
A99	4 x3	16 9 16 13 16	4.18 7.24 10.06	1.27 1.24 1.21	1.17 1.21 1.25	1.25 1.30 1.35	1.30 1.34 1.40	1.34 1.39 1.45	1.44 1.49 1.55
*A131	4 x3½	5 16 1/2 5/8	4.50 7.00 8.60	1.26 1.23 1.22	1.42 1.44 1.46	1.50 1.53 1.55	1.55 1.58 1.60	1.69 1.63 1.65	1.69 1.72 1.75
A101	5 ×3	5 16 9 16 13 16	4.80 8.36 11.68	1.61 1.58 1.55	1.09 1.13 1.17	1.17 1.22 1.27	1.22 1.26 1.32	1.26 1.31 1.37	1.36 1.41 1.47
A103	5 x 3½	3/8 5/8 7/8	6.10 9.84 13.34	1.60 1.56 1.53	1.34 1.37 1.42	1.42 1.46 1.51	1.46 1.51 1.56	1.51 1.56 1.61	1.60 1.66 1.71
*A135	5 ×4	3/8 1/2 5/8	6.46 8.50 10.46	1.59 1.57 1.55	1.58 1.60 1.62	1.66 1.68 1.71	1.71 1.73 1.75	1.75 1.78 1.80	1.85 1.87 1.90
A105	6 x 3½	3/8 5/8 7/8	6.84 11.10 15.10	1.94 1.90 1.87	1.26 1.30 1.34	1.34 1.39 1.44	1.39 1.43 1.49	1.43 1.48 1.53	1.53 1.58 1.64
A107	6 x4	8/8 5/8 7/8	7.22 11.72 15.96	1.93 1.90 1.86	1.50 1.53 1.58	1.58 1.62 1.67	1.62 1.67 1.71	1.67 1.71 1.76	1.76 1.81 1.86
*A109	7 x 3½	7 16 1/2 5/8 13	8.80 10.00 12.34 15.74	2.26 2.25 2.24 2.21	1.16 1.22 1.24 1.27	1.29 1.30 1.32 1.36	1.33 1.35 1.37 1.41	1.38 1.39 1.42 1.46	1.47 1.48 1.51 1.56
4.6	66	1	19.00	2.19	1.31	1.40	1.45	1.50	1.60

Angles marked * are special sections.

RADII OF GYRATION FOR TWO ANGLES PLACED BACK TO BACK. ANGLES WITH UNEQUAL LEGS.

Radii of gyration correspond to directions indicated by arrowheads.

Section	Dimensions.	Thickness.	Area of Two		I	Radii of	Gyration	ì.	
Number.	Inches.	Inch.	Angles.	r ₀	r_1	r ₂	r ₃	r4	r ₅
A91	21/212	3 16 3/8 1/2	1.62 3.10 4.00	0.60 0.58 0.56	1.10 1.13 1.15	1.19 1.23 1.25	1.24 1.28 1.80	1.29 1.33 1.35	1.39 1.43 1.46
*A129	3 12	3 16 5 16 7 16	1.80 2.94 4.00	0.58 0.57 0.55	1.37 1.39 1.41	1.46 1.48 1.51	1.51 1.53 1.56	1.56 1.58 1.61	1.66 1.68 1.71
898	3 121/2	1/4 3/3 18	2.62 3.84 5.56	0.75 0.74 0.72	1.31 1.33 1.37	1.40 1.42 1.46	1.45 1.47 1.51	1.50 1.52 1.56	1.60
A95	3½ x 2½	1/4	2.88 5.50 6.12	0.74 0.70 0.70	1.58 1.62 1.64	1.67 1.72 1.73	1.72 1.77 1.78	1.76 1.81 1.83	
A97	3½×3	1/4 9 16 13 16	3.12 6.68 9.24	0.91 0.87 0.85	1.52 1.57 1.61	1.61 1.66 1.71	1.66 1.71 1.76	1.70 1.76 1.81	1.80 1.86 1.91
A99	4 x3	5 16 16 13 16	4.18 7.24 10.06	0.89 0.86 0.83	1.79 1.83 1.88	1.88 1.93 1.97	1.93 1.97 2.02	1.97 2.02 2.08	2.07 2.12 2.18
*A131	4 131/2	5 16 1/2 5/8	4.50 7.00 8.60	1.07 1.04 1.02	1.78 1.76 1.78	1.81 1.85 1.87	1.86 1.89 1.92	1.91 1.94 1.97	2.00 2.04 2.07
A101	5 18	5 16 9 16 13 18	4.80 8.86 11.68	0.85 0.82 0.80	2.33 2.37 2.42	2.42 2.47 2.52	2.47 2.52 2.57	2.52 2.57 2.62	2.61 2.67 2.72
A108	5 x 8½	3/8 5/8 7/8	6.10 9.84 13.34	1.02 0.99 0.96		2.36 2.40 2.45	2.41 2.45 2.50	2.45 2.50 2.55	2.55 2.60 2.65
*A135	5 ×4	3/8 1/2 5/8	6.46 8.50 10.46	1.20 1.18 1.17	2.20 2.22 2.24	2.29 2.31 2.33	2.34 2.36 2.38	2.38 2.41 2.43	2.48 2.50 2.53
A105	6 x 3½	3/8 5/8 7/8	6.84 11.10 15.10	0.99 0.96 0.93	2.81 2.86 2.90	2.90 2.95 3.00	2.95 3.00 3.05	3.00 3.05 3.10	3.09 3.15 3.20
A107	6 x4	3/8 5/3 7/8	7.22 11.72 15.96	1.17 1.13 1.11	2.74 2.78 2.82	2.83 2.87 2.92	2.87 2.92 2.97	2.92 2.97 3.02	3.02 3.06 3.12
*A109	7 x 3½	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.80 10.00 12.34 15.74 19.00	0.95 0.94 0.93 0.91 0.89	3.37 3.39 3.40 3.45 3.48	3.47 3.48 3.50 3.54 3.58	3.52 3.53 3.55 3.59 3.63	3.56 3.58 3.60 3.64 3.68	3.66 3.67 3.70 3.74 3.78

Angles marked * are special sections.

For various values of $\frac{L}{r}$ in which L = length in feet and r = radius of gyration in inches.

P = ultimate strength in lbs. per square inch.

FOR SOFT STEEL.

$$P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}} Pin and square bearing P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{24\ 000\ r^2}} P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{18\ 000\ r^2}}$$

To obtain safe unit stress:

L	-	Strengt Square I		L r	1	Ultimate Strength in lbs. per Square Inch.					
r	Square.	Pin and Square.	Pin.	r	Square.	Pin and Square.	Pin.				
3.0 3.2 3.4	43437 43230 43011	42694 42395 42081	41978 41593 41190	7.6 7.8	36554 36193	33419 32966	30779 30268				
3.6 3.8	42782 42543	41754 41412	40773 40340	8.0 8.2 8.4	35828 35462 35095	32514 32064 31615	29762 29260 28763				
4.0 4.2 4.4	42294 42035 41765	41058 40693 40317	39893 39435 38966	8.6 8.8	34727 34358	31169 30724	28272 27787				
4.6 4.8	41488 41203	39930 39534	38485 37998	9.0 9.2 9.4	33988 33611 33249	30282 29844 29408	27306 26832 26364				
5.0 5.2 5.4	40910 40608 40299	39130 38807 38300	37500 36997 36488	9.6 9.8	32880 32511	28977 28549	25903 25448				
5.6 5.8	39984 39663	37874 37443	35975 35457	10.0 10.2 10.4	32143 31776 31411	28125 27706 27290	25000 24559 24125				
6.0 6.2 6.4	39335 39003 38665	37006 36566 36122	34938 34416 33894	10.6 10.8	31054 30684	26879 26474	23698 23279				
6.6 6.8	38323 37976	35676 35219	33371 32849	11.0 11.2 11.4	30324 29965 29608	26072 25675 25285	22866 22460 22063				
7.0 7.2 7.4	37616 37272 36914	34776 34324 33872	32328 31809 31292	11.6 11.8	29247 28903	24899 24517	21671 21288				

For various values of $\frac{L}{r}$ in which L = length in feet and r = radius of gyration in inches.

P = ultimate strength in lbs. per square inch.

FOR SOFT STEEL.

$$P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}} Pin \ \text{and square bearing} Pin \ \text{bearing} P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{24\ 000\ r^2}} P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{18\ 000\ r^2}} P = \frac{45\ 000}{1 + \frac{(12\ L)^2}{18\ 000\ r^2}}$$

To obtain safe unit stress:

L		Strengt Square I		L		Ultimate Strength in lbs. per Square Inch.					
r	Square.	Pin and Square.	Pin.	r	Square.	Pin and Square.	Pin.				
12.0 12.2 12.4	28553 28207 27863	24142 23771 23406	20911 20542 20179	16.6 16.8	21406 21137	16960 16708	14043 13812				
12.6 12.8	27522 27185	23046 22693	19823 19474	17.0 17.2 17.4	20872 20611 20353	16459 16216 15977	13584 13366 13150				
13.0 13.2 13.4	26850 26524 26189	22343 22005 21662	19133 18797 18469	17.6 17.8	20098 19847	15742 15512	12938 12731				
13.6 13.8	25864 25543	21329 21002	18148 17833	18.0 18.2 18.4	19599 19351 19114	15286 15063 14845	12528 12329 12135				
14.0 14.2 14.4	25224 24909 24598	20680 20363 20052	17523 17221 16925	18.6 18.8	18878 18644	14630 14420	11944 11757				
14.6 14.8	24290 23985	19746 19445	16634 16350	19.0 19.2 19.4	18418 18185 17961	14218 14010 13811	11579 11394 11219				
15.0 15.2 15.4	23684 23387 23093	19148 18858 18572	16071 15799 15532	19.6 19.8	17740 17519	13616	11048				
15.6 15.8	22803 22516 22234	18288 18015	15270 15105	20.0 20.2 20.4 20.6	17308 17096 16888	13235 13050 12868	10715 10553 10434				
16.0 16.2 16.4	21954 21978	17744 17478 17216	14764 14518 14279	20.8	16682 16480	12690 12515	10249 10087				

For various values of $\frac{L}{r}$ in which L = length in feet and r = radius of gyration in inches.

P = ultimate strength in lbs. per square inch.

FOR MEDIUM STEEL.

$$P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}} \ Pin and square bearing} P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{24\ 000\ r^2}} \ P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{24\ 000\ r^2}} \ P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{18\ 000\ r^2}}$$

To obtain safe unit stress:

L r		Strengt Square I		L		Ultimate Strength in lbs. per Square Inch.					
r	Square.	Pin and Square.	Pin.	r	Square.	Pin and Square.	Pin.				
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8	48263 48033 47790 47536 47270 46993 46705 46406 46098 45781 45455 45120	47438 47106 46757 46393 46013 45620 45214 44797 44367 43927 43478 43020	46642 46214 45767 45303 44822 44325 43817 43295 42761 42220 41667 41108	7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8	40616 40214 39809 39402 38994 38585 38175 37764 37354 36943 36533 36123	37132 36629 36127 35627 35128 34632 34138 33647 33160 32676 32197 31721	34199 33631 33069 32511 31959 31413 30874 30874 30340 29813 29293 29293 28781 28275				
5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4	44777 44427 44070 43706 43337 42961 42581 42196 41806 41413 41016	42555 42082 41603 41118 40629 40136 39640 39141 38640 38138 37635	40542 39972 39397 38820 38240 37660 37079 36499 35920 35343 34769	10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8	35714 35307 34901 34496 34093 33693 33294 32898 32505 32114	31250 30784 30322 29866 29415 28969 28528 28094 27665 27241	27778 27288 26806 26331 25865 25407 24956 24514 24079 23653				

For various values of $\frac{L}{r}$ in which L = length in feet and r = radius of gyration in inches.

P = ultimate strength in lbs. per square inch.

FOR MEDIUM STEEL.

$$P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}. Pin and square bearing Pin bearing Pin bearing P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{24\ 000\ r^2}}. P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{18\ 000\ r^2}}. P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{18\ 000\ r^2}}.$$

To obtain safe unit stress:

L		e Strengt Square I	h in lbs.	E		Ultimate Strength in lbs. per Square Inch.					
r	Square.	Pin and Square.	Pin.	r	Square.	Pin and Square.	Pin.				
12.0 12.2 12.4	31726 31341 30959	26824 26412 26007	23234 22824 22421	16.6 16.8	23784 23486	18844 18564	15603 15347				
12.6 12.8	30580 30205	25607 25214	22026 21638	17.0 17.2 17.4	23191 22901 22614	18288 18018 17752	15097 14851 14611				
13.0 13.2 13.4	29833 29464 29099	24826 24445 24069	21259 20886 20521	17.6 17.8	22331 22052	17491 17235	14376 14145				
13.6 13.8	28738	23699 23336	20164 19814	18.0 18.2 18.4	21777 21506 21238	16984 16737 16494	13920 13699 13483				
14.0 14.2 14.4	28027 27677 27331	22978 22626 22280	19470 19134 18805	18.6 18.8	20975 20715	16256 16022	13271 13063				
14.6 14.8	26989 26650	21940 21605	18482 18167	19.0 19.2 19.4	20458 20206 19957	15793 15567 15346	12860 12661 12466				
15.0 15.2 15.4	26316 25985 25659	21276 20953 20636	17857 17554 17258	19.6 19.8	19711 19466	15129 14913	12275 12086				
15.6 15.8	25337 25018	20320 20017	16967 16683	20.0 20.2 20.4	19231 18996 18764	14706 14500 14298	11905 11725 11549				
16.0 16.2 16.4	24704 24393 24087	19716 19420 19129	16404 16131 15865	20.6 20.8	18536 18311	14100 13905	11377 11208				

EXAMPLE OF THE USE OF THE TABLES OF RADII OF GYRATION FOR TWO ANGLES PLACED BACK TO BACK AND THE TABLES OF STRENGTH OF STEEL COLUMNS OR STRUTS.

PAGES 215 TO 221 INCLUSIVE

What is the size of truss member required to safely sustain 50 000 pounds in compression, the safety factor being 4, the unsupported length 8 feet, the gusset plates at each end being \(^2\gamma''\) thick?

Assume for trial two $4'' \times 3'' \times 5''_6$ angles with the long legs together. Referring to page 216, the least Radius of Gyration, comparing values in columns r_0 and r_3 is found to be 1.27. The ratio of the length of the column in feet to the Least Radius of Gyration in inches, $\frac{L}{r}$ is, there-

fore, $\frac{8}{1.27} = 6.3$.

Referring to the table of Strength of Steel Columns or Struts for medium steel, page 220, the ultimate strength of a column in which

 $\frac{L}{r}$ = 6.3 is found by interpolation between the values for 6.2 and 6.4

to be 43 149 pounds per square inch, which, divided by the safety factor 4, gives 10 787 pounds as the safe unit stress per square inch. Multiplying the safe unit stress per square inch, 10 787 pounds, by 4.18, the area of the two angles in square inches, gives 45 090 pounds as the total safe load. This is slightly less than the specified load of 50 000 pounds, and, therefore, it will be necessary to increase the assumed section. Assume the angles to be 4'' $3'' \times \frac{8}{8}''$, for which the Least Radius of Gyration is found by interpolation to be 1.26, and, by

the same process used above, $\frac{L}{r}$ is found to be 6.35, which corre-

sponds to an ultimate strength of 43 055 pounds per square inch, or a safe unit stress of 10 764 pounds per square inch, which, if multiplied by the area of the two angles, 4.96 square inches, gives a safe total load of 53 389 pounds, which is ample to meet the conditions stated.

EXPLANATION OF TABLES RELATING TO DIMEN-SIONS AND SAFE LOADS OF STEEL COLUMNS OF VARIOUS SECTIONS.

PAGES 224 TO 301 INCLUSIVE

Tables of Dimensions for Plate and Angle Columns are given on pages 224 and 225, the Moments of Inertia and Section Moduli about two rectangular axes are given on pages 226 to 228 and the Safe Loads for various lengths, calculated for the Radius of Gyration about each of the two rectangular axes, are given on pages 248 to 267 inclusive.

Tables of Dimensions for Latticed Channel Columns are given on pages 230, the Moments of Inertia and Section Moduli about two rectangular axes are given on page 231, the Safe Loads for various lengths

based upon the Least Radius of Gyration, are given on pages 268 to 271, and data relating to the proper sizes of lattice bars and stay-plates to be used with these columns are given on pages 272 and 273.

On pages 232 and 233 are given the Principal Dimensions of Plate and Channel Columns with comparatively narrow plates called, for convenience of reference, Series A, and on pages 234 and 235 for Series B, which differs from Series A, in having wider plates. Moments of Inertia and Section Moduli about two rectangular axes are given for Series A and B on pages 236 to 242 inclusive, and the Safe Loads for different lengths, based upon the Least Radius of Gyration, are given on pages 274 to 301 inclusive.

Safe Loads for I-Beams used as Columns or Struts are given on pages 244 to 247, and the dimensions of these sections can be obtained from the tables on pages 186 to 189 inclusive.

The Plate and Channel Columns given in Series A are particularly useful in buildings or locations in which it is distred to keep the extreme dimensions of the cross section as small as possible for this style of column, although in this series the Radius of Gyration about the central axis parallel to the channel webs is somewhat smaller than the Radius of Gyration about the axis perpendicular to the channel webs. This makes the narrower columns of Series A somewhat less economical of material than the wider columns of Series B, which, however, is small in amount for columns of ordinary story length of 10 feet to 14 feet, such as are used in skeleton buildings.

In Series B of Plate and Channel Columns with wider plates, the Radii of Gyration about the two axes are practically equal for the intermediate thicknesses and these columns are slightly more economical of material than those of Series A, although they require somewhat more space on account of their wider sections.

The Safe Loads for columns of various kinds, as given on pages 244 to 301 inclusive, are expressed in thousands of pounds, and have been figured by the use of Gordon's formula, as stated at the heads of the various tables, using the safety factor 4, which relates to static or quiescent loads such as occur in ordinary buildings.

On page 220 is given a table showing the Distances Back to Back for Spacing Two Channels of the same size in order to produce equal Moments of Inertia about the two rectangular axes. This table will be found to be useful in designing compression members of trusses, etc.

The Safe Loads of the tables are assumed to be centrally applied, and for convenience in computing the proper sizes required to support eccentric loads the tables of Moments of Inertia and Section Moduli for the different sections of columns are given.

The Safe Loads in the various tables are figured for extreme ratios from 30 to 150 for $\frac{1}{r}$, in which l is the length of the column and r the Least Radius of Gyration, both expressed in inches.

The weights of columns stated in the tables are per lineal foot of shaft, and do not include any allowances for bases, brackets or other connections, as these depend upon the particular details and requirements of each case.

Loads for other safety factors can be figured from the tables by inverse proportion, thus:

New safety factor: 4:: load from tables: new loads.

Drawings of typical details of steel columns are given on page 243.

DIMENSIONS FOR PLATE AND ANGLE COLUMNS.

		ize of gles.				Si 0	f	3.		eig of lun		Co	lu	of mn ion.		Б		3	m		m′	k	н
	In	ches.			I	ncl	101	3,	Lbs	.pe	r Ft.	Sq	. I	ns.	In	ches.	Inc	hes.	Inch	es.	Inches.	Inches.	Inches.
3	x	2 ½	X	1/4 1/2		6	X	$\frac{1}{4}$ $\frac{1}{2}$	68.4	23	.1			74 00	3	1/8	12	7/8	13/	8	13/4	31/2	8 13 9
3	x	21/2	X	$\frac{1}{4}$ $\frac{1}{2}$		8	x	1/4 1/2	66.4		.8			24 00	4	1/8	12	1/8	18	8	13/4	51/2	$\frac{10^{3/8}}{10^{1/2}}$
3	x	21/2	X	1/4 1/2	1	o u	X	$\frac{1}{4}$ $\frac{1}{2}$.5			74 00	5	1/8	12	7/8	13/	8	13/4	71/2	12 121/8
3	X	21/2	X	1/4 1/2	1	2	X	1/4 1/2	2	28 54	.2			24 00	6	1/8	12	7/8	13	8	13/4	91/2	13¾ 13¾
31	2 X	21/2	X	1/4 9 18		7	X	1/4 3/4	2	25	.6			51 49	3	5/8	2	8/8	13	8	21/4	41/2	10¼ 10½
31	2 X	2½	X	1/4 9 16		8	X	1/4 3/4			.4	18	7. 3.	76 24	4	1/8	2	8 8	13	8	21/4	51/2	$\frac{11}{11\frac{5}{16}}$
31	2 X	21/2	X	1/4 9 16	1	0	X	1/4 3/4	2	28	.1	18	3.	26 74	5	1/8	2	8/8	13	8	21/4	71/2	12 % 12 18
33	2 X	21/2	X	1/4 9 16	1	2	x	1/4 3/4	130	29	.8			76 24	6	1/8	2	8/8	13	8	21/4	91/2	141/4 141/2
4	x	3	x	5 16 7/8		8	X	8 16 7/8	000	37	.3			86 44	4	1/8	2	7 16 11 16	13/	4	21/4	43/4	1111 121/8
4	X	3	X	5 16 7/8	1	0	X	5 16 7/8			.4			49 19	5	1/8	2	7 1 6 1 1 1 6	13/	4	21/4	634	$13\frac{3}{16} \\ 13\frac{9}{16}$
4	x	3	X	5 16 7/8	1	2	X	5 16 7/8	10		.6			11	6	1/8	22	7 1 6 1 1 1 6	13	1	21/4	834	14!} 15!8
4	x	3	X	16 7/8	1	4	X	5 16 7 8	1		.7			74 69	7	1/8	2	7 16 11	13	4	214	1034	16½ 16⅓

Dimensions m' and c may be varied to suit requirements.

DIMENSIONS FOR PLATE AND ANGLE COLUMNS.

Size of Angles.	Size of Plates.	Weight of Column.	Area of Column Section.	ь	10	m	m'	k	н
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
5 x 3½ x 5	10 x 1/8	45.4 128.7	13.37 87.74	5,1/8	2 1/6 2 3/4	21/4	21/4	53/4	14% 15
5 x 8½ x 1	12 x 16 16	47.6 135.1	13.99 39.61	61/8	2 ⁷ / ₁₆ 2 ⁸ / ₄	21/4	21/4	73/4	16 16 ⁷ / ₁₆
5181/21 1	14 x 16 18	49.7 141.5	14.62 41.49	71/8	2 ⁷ / ₁₆ 2 ³ / ₄	21/4	21/4	934	17 ² / ₁₅ 17 ¹⁵ / ₁₆
5 181/2 1 1	16 x 10 15 16	51.8 147.8	15.24 43.36	81/8	2 1 1 2 3 4	21/4	21/4	113/4	19¼ 19╬
6 x 8 ½ x ½	12 x 3/8	62.1 156.4	18.18 46.00	61/8	216 23/4	21/4	21/4	73/4	17½ 17½
8 x 3½ x 1/2	14 x 3/8	64.7 163.2	18.93 48.00	71/8	2 1 6 2 3 4	21/4	21/4	984	181/8 19 1/8
6 x 3 ½ x ¾	16 x 3/8	67.2 170.0	19.68 50.00	81/8	2 18 2 34	21/4	21/4	113/4	2018 2018
6 x 3½ x 1/9	18 x 3/8	69.8 176.8	20.43 52.00	91/8	27 234	21/4	21/4	1834	22 16 22 16
7 = 31/2 = 1	14 x 7 1 1	80.8 176.8	23.73 52.00	71/8	2½ 2¾	21/4	21/4	93/4	20# 20#
7 181/2 1 1	16 x 1/6	83.8 183.6	24.60 54.00	81/8	21/2 28/4	21/4	21/4	113/4	21¾ 22⅓
7 1 3 1/2 1 1	18 x 1/6	86.8 190.4	25.48 56.00	91/8	2½ 2¾	21/4	21/4	1334	23½ 23%
7, 3 1/2 x 1/2	20 x 1	89.8 197.2	26.35 58.00	101/8	2½ 2¾	21/4	21/4	1534	24½ 25±

Dimensions m' and c may be varied to suit requirements.

MOMENTS OF INERTIA AND SECTION MODULI FOR PLATE AND ANGLE COLUMNS.

		Axis 1-1.		Axis	2-2.		Axis 1-1.		Axis 2-2.	
Size of Angles.	of Plate.	Moment of Inertia.	Section Modulus.	Moment of Inertia.	Section Modulus.	of Plate.	Moment of Inertia.	Section Modulus,	Moment of Inertia.	Section Modulus.
Inches.	Inches.	Ins.4	Ins.3	Ins.4	Ins.3	Inches.	Ins.4	Ins.3	Ins.4	Ins.3
3 x 2½ x ½ x ½ 4 4 5 5 6 8 3 % 8 1½ 2 4 ½ 2 4 ½ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 x 1/4	10.3 13.4 16.7 20.2 24.0 28.1	3.3 4.3 5.2 6.3 7.4 8.6	39.4 47.9 55.9 63.5 70.6 77.3	12.6 15.3 17.9 20.3 22.6 24.8	8 x 1/4	10.3 13.4 16.7 20.3 24.0 28.1	3.3 4.3 5.3 6.3 7.4 8.6	76.7 93.7 110.1 125.6 140.5 154.6	18.6 22.7 26.7 30.5 34.1 37.5
3 x 2½ x ½ 4 516 6 86 4 7 16 4 12 4 12 4 16	1.0 x 1/4 4 5/6 4 3/8 4 7/18 4 1/2 4 9/16	10.3 13.4 16.7 20.3 24.1 28.1	3.3 4.3 5.3 6.3 7.4 8.6	128.4 157.5 185.6 212.5 238.3 263.1	25.1 30.7 36.2 41.5 46.5 51.3	12 x 1/4 " 56 " 3/8 " 7 " 116 " 1/2 " 16	10.3 13.4 16.7 20.3 24.1 28.2	3.3 4.3 5.3 6.3 7.4 8.6	195.7 240.5 284.0 325.8 366.1 405.1	32.0 39.3 46.4 53.2 59.8 66.1
3½ x 2½ x ¼ " " " " " " " " " " " " " " " " " " "	7 x 1/4	16.0 20.7 25.6 30.8 36.3 42.1	4.4 5.7 6.9 8.3 9.7 11.1	62.4 76.2 89.3 101.7 113.6 124.8	17.2 21.0 24.6 28.1 31.3 34.4	8 x 1/4	16.0 20.7 25.6 30.8 36.3 42.1	4.4 5.7 6.9 8.3 9.7 11.1	84.7 103.6 121.7 138.9 155.5 171.2	20.5 25.1 29.5 33.7 37.7 41.5
3½ x 2½ x ¼ 4 36 8 76 4 1/2 4 1/2 4 1/2	10 x 1/4 5 1 6 3/8 4 7 16 1 /2 4 9 16	16.0 20.7 25.6 30.8 36.3 42.2	4.4 5.7 6.9 8.3 9.7 11.2	140.9 173.0 203.9 233.5 262.1 289.4	27.5 33.8 39.8 45.6 51.1 56.5	12 x 1/4 5 16 8 8 7 16 1/2 4 9 10	16.0 20.7 25.6 30.8 36.4 42.2	4.4 5.7 7.0 8.3 9.7 11.2	213.7 262.9 310.5 356.2 400.7 443.4	34.9 42.9 50.7 58.2 65.4 72.4

MOMENTS OF INERTIA AND SECTION MODULI FOR PLATE AND ANGLE COLUMNS.

		Axis	1-1.	Axis 2-2. Axis 1-1.		1-1.	Axis 2-2.			
of Angles.	Size of Plate,	Moment of Inertia.	Section Modulus.	Moment of Inertia.	Section Medulus.	Size of Plate,	Moment of Inertia.	Section Modulus.	Moment of Inertia,	Section Modulus.
Inches.	Inches.	Ins.4	Ins,3	Ins.4	Ins 3	Inches.	Ins.4	Ins.3	Ins.4	Ins.3
4 1 8 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 16 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 6 1 16 6 1 16 6 1 16	30.3 37.4 44.8 52.6 60.8 69.5 78.6 88.1 98.1 108.5	7.3 8.9 10.6 12.4 14.2 16.1 18.1 20.1 22.3 24.4	114.6 134.8 154.0 172.4 190.0 206.9 223.0 238.3 253.0 267.0	27.8 32.7 37.3 41.8 46.1 50.2 54.1 57.8 61.3 64.7	10x 5 15 15 15 15 15 15 15 15 15 15 15 15 1	30.3 37.4 44.8 52.6 60.9 69.5 78.6 88.2 98.2 108.6	7.3 8.9 10.6 12.4 14.2 16.1 18.1 20.2 22.3 24.5	192.0 226.4 259.5 291.5 322.2 352.0 380.5 408.0 434.4 459.8	37.5 44.2 50.6 56.9 62.9 68.7 74.2 79.6 84.7 89.7
4 x 8 x 4 x 3/6 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	12x 18 18 18 18 18 18 18 18 18 18 18 18 18	30.3 37.4 44.8 52.6 60.9 69.6 78.7 88.2 98.2 108.7	7.3 8.9 10.6 12.4 14.2 16.1 18.1 20.2 22.3 24.5	292.3 345.5 396.7 446.6 494.7 541.5 586.5 630.1 672.2 713.1	47.7 56.4 64.8 72.9 80.8 88.4 95.8 102.9 109.8 116.4	14x 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30.3 37.4 44.8 52.7 60.9 69.6 78.7 88.3 98.3 108.8	7.3 8.9 10.6 12.4 14.2 16.1 18.1 20.2 22.3 24.5	416.8 493.4 567.4 639.7 709.6 777.8 843.7 907.7 969.8 1030.1	58.5 69.3 79.6 89.8 99.6 109.2 113.4 127.4 136.1 144.6
5 x 3½ x 10 10 10 10 10 10 10 10 10 10 10 10 10	10x 5c 1c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	57.6 70.6 84.1 98.2 112.9 128.2 144.1 160.6 177.8 195.7 214.2 57.6	11.2 13.6 16.1 18.7 21.4 24.1 27.0 29.9 32.9 36.0 39.2 11.2	225.0 265.7 304.8 342.6 379.1 414.4 448.2 481.1 512.6 543.1 572.5 486.8	43.9 51.8 59.5 66.9 74.0 80.9 87.5 93.9 100.0 106.0 111.7 68.3	12x 5 8 8 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	57.6 70.6 84.1 98.2 112.9 128.2 144.1 160.7 177.9 195.8 214.3	11.2 13.6 16.1 18.7 21.4 24.1 27.0 29.9 32.9 36.0 39.2 11.2	341.9 404.6 465.2 524.0 581.0 636.4 689.8 741.8 792.1 841.0 888.2 660.8	55.8 66.1 75.9 85.5 94.9 103.9 112.6 121.1 129.3 137.3 145.0 81.3
5 x 8½ x 4.	64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70.6 84.1 98.2 112.9 128.3 144.2 160.8 178.0 195.9 214.4	13.6 16.1 18.7 21.4 24.1 27.0 29.9 32.9 36.0 39.2	576.9 664.2 749.3 832.1 912.7 990.8 1067.1 1141.0 1213.2 1283.1	81.0 93.2 105.2 116.8 128.1 139.1 149.8 160.1 170.3 180.1	64 15 16 16 16 16 16 16 16 16 16 16 16 16 16	70.6 84.1 98.3 113.0 128.3 144.2 160.8 178.1 196.0 214.6	13.6 16.1 18.7 21.4 24.2 27.0 29.9 32.9 36.0 39.2	784.0 903.8 1020.6 1134.7 1245.9 1354.0 1459.8 1562.6 1663.3 1761.0	96.5 111.2 125.6 139.7 153.3 166.6 179.7 192.3 204.7 216.7

MOMENTS OF INERTIA AND SECTION MODULI FOR PLATE AND ANGLE COLUMNS.

		Axis 1-1.		Axis	2-2.		Axis	is 1-1. Axis 2-		2-2.
Size of Angles.	Size of Plate.	Moment of Inertia.	Section Modulus.	Moment of Inertia.	Section Modulus.	Size of Plate.	Moment of Inertia.	Section	Moment of Inertia.	Section Modulus.
Inches.	Inches.	Ins.4	Ins.3	Ins.4	Ins.3	Inches.	Ins.4	lns.3	Ins.4	Ins.3
6 x 8½ x % 15 15 15 15 15 15 15 15 15 15 15 15 15	12x3/8 44 76 44 16 92 44 16 84 44 16 16 44 16 16 44 16 16 44 16 16 44 16 16 44 16 16 44 16 16 44 16 16	119.2 141.5 164.5 188.3 212.9 238.3 264.5 291.5 319.5 348.2 377.5	19.3 22.8 26.3 30.0 33.7 37.6 41.5 45.5 49.6 53.8 58.1	457.5 526.2 593.0 657.9 720.9 781.8 841.2 898.5 954.4 1008.4 1060.8	74.7 85.9 96.8 107.4 117.7 127.6 137.3 146.7 155.8 164.6 173.2	14x3/8	119.2 141.5 164.5 188.3 212.9 238.3 264.6 291.6 319.6 348.4 377.7	19.3 22.8 26.3 30.0 33.7 37.6 41.5 45.5 49.6 53.9 58.1	649.1 747.7 843.9 937.6 1028.8 1117.3 1203.9 1287.9 1370.0 1449.5 1526.9	91.1 104.9 118.4 131.6 144.4 156.8 169.0 180.8 192.3 203.4 214.3
6 x 8½ x % 10 10 10 10 10 10 10 10 10 10 10 10 10	16x3/8	119.2 141.5 164.5 188.4 213.0 238.4 264.6 291.7 319.7 348.5 377.8	19.3 22.8 26.3 30.0 33.7 37.6 41.5 45.5 49.7 53.9 58.1	878.6 1013.2 1144.7 1273.2 1398.6 1520.6 1640.2 1756.4 1870.4 1981.1 2089.1	108.1 124.7 140.9 156.7 172.1 187.2 201.9 216.2 230.2 243.8 257.1	18x 3/8 16 16 16 16 16 16 16 16 16 16 16 16 16	119.3 141.5 164.6 188.4 213.0 238.4 264.7 291.8 319.8 348.6 378.0	19.3 22.8 26.3 30.0 33.7 37.6 41.5 45.5 49.7 53.9 58.2	1147.4 1324.4 1497.5 1667.1 1832.8 1994.3 2152.9 2307.4 2459.2 2606.8 2751.3	125.7 145.1 164.1 182.7 200.9 218.6 235.9 252.9 269.5 285.7 301.5
7 x 8½ x 76 1/2 x 16	14x 7 16 1/2 16 16 16 16 1	220.8 255.8 292.7 328.5 367.3 406.6 447.2 488.3 530.8 574.3	30.6 35.3 40.2 44.9 50.0 55.1 60.4 65.7 71.1 76.6	831.2 938.4 1043.0 1144.6 1243.9 1340.7 1434.8 1526.7 1615.9 1702.8	116.7 131.7 146.4 160.7 174.6 188.2 201.4 214.3 226.8 239.0	16x 716 126 16 16 16 16 16 16 16 16 16 16 16 16 16	328.5 367.4 406.7 447.3 488.4 530.9 574.5	30.6 35.3 40.2 44.9 50.0 55.1 60.4 65.7 71.1 76.6	1122.6 1268.8 1411.6 1550.9 1687.2 1820.5 1950.3 2077.4 2201.1 2322.0	138.2 156.2 173.7 190.9 207.7 224.0 240.0 255.7 270.9 285.8
7 x 31/2 x 10/2	18x 75 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	220.8 255.9 292.8 328.6 367.4 406.7 447.4 488.5 531.0 574.7	30.6 35.3 40.2 44.9 50.0 55.2 60.4 65.7 71.1 76.6	1463.2 1655.1 1843.0 2026.6 2206.4 2382.7 2554.7 2723.5 2888.1 3049.1	160.4 181.4 202.0 222.1 241.8 261.1 280.0 298.5 316.5 334.2	20x 78 12 2 4 12 4 12 4 12 4 12 4 12 4 12 4 1	220.8 255.9 292.8 328.6 367.5 406.8 447.5 488.6 531.2 574.8	30.6 35.3 40.2 44.9 50.0 55.2 60.4 65.7 71.1 76.6	1854.8 2099.4 2339.4 2574.2 2804.4 3030.5 3251.4 3468.5 3680.5 3888.3	183.2 207.4 231.1 254.2 277.0 299.3 321.1 342.6 363.5 384.0

SPACING OF CHANNELS FOR EQUAL MOMENTS OF INERTIA ABOUT THE TWO RECT-ANGULAR AXES 1-1 AND 2-2.

Section Num-	Depth of Chan- nel.	Weight per foot of one Chan- nel.	Area of Section of one Chan- nel.	A	Е	Section Num- ber.	Depth of Chan- nel.	Weight per foot of one Chan- nel.	Area of Section of one Chan- nel.	A	E
	Inches.	Pounds.	Sq.Ins.	Inches.	Inches.		Inches.	Pounds.	Sq. Ins.	Inches.	Inches.
C5	8 4	5.00	1.47	1.29 1.17 1.10	2.93	C33	10	15.00 20.00 25.00 30.00	4.46 5.88 7.35 8.82	6.33 5.96 5.66 5.41	8.89 8.40 8.14 8.01
C9	4 "	6.25	1.84	2.08 1.96 1.88	3.80	" C41	12	35.00 20.50	10.29	5.18 7.68	7.94
C13	5 "	6.50	1.95	2.79 2.57	4.75 4.49	a a	4 4	25.00 30.00 35.00 40.00	7.35 8.82	7.35 7.06 6.83 6.60	10.48 10.07 9.78 9.59 9.48
C17	B a a a	8.00 10.50 13.00 15.50	3.09	3.08	5.29 5.16	C95	13	32.00 35.00 37.00 40.00	10.29	7.84 7.66 7.56 7.44	11.62 11.48
C21	7	12.25 14.75 17.25	3.60 4.34 5.07	3.82	6.12 5.94 5.85	ш	u	45.00 50.00 55.00	13.24 14.71 16.18	7.22 7.02 6.84	11.10 10.94 10.84
C25	8 4 4	19.75 11.25 13.75 16.25 18.75 21.25	3.35 4.04 4.78 5.51	4.92 4.72 4.53 4.37	7.24 6.96 6.77 6.65	C53	15	33.00 35.00 40.00 45.00 50.00 55.00		9.51 9.42 9.16 8.92 8.72 8.53	12.58 12.28 12.08 11.92
C29	8 4 4	13.25 15.00 20.00 25.00	4.41 5.88	$5.48 \\ 5.14$	7.84	4	18	50.00	16.18	11.48 11.20 10.98 10.78	14.52 14.30

DIMENSIONS FOR LATTICED CHANNEL COLUMNS.

Depth of Channel and Section	Weight per Foot.	t	ъ	a	H	c	E	A	723
Number.	Pounds.	Inch.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
6″ C17	8.00 10.50 13.00 15.50	.20 .32 .44 .56	83/4	8,,	9,16	27/8	118 118 118 118	2, "	1 16 1 16 1 16 1 16 1 17
7″ C21	9.75 12.25 14.75 17.25 19.75	.21 .32 .42 .53 .63	41/4	3½ "	11	33/8	216 216 116 178 134	23/8	1 16 1 16 1 16 1 1/2 1 1/2 1 5/8
8″ 025	11.25 13.75 16.25 18.75 21.25	.22 .31 .40 .49 .58	418	4	12½	83/4	2½ 2½ 2½ 2½ 2½ 2½ 2½	23/4	11/4 1 5/8 18/8 11/2 1 9/16
9″ C29	13.25 15.00 20.00 25.00	.23 .29 .45 .61	5,16	41/2	1334	41/8	28/4 211 216 28/8	8	18/8 1 7/16 1 9/16 18/4
10" C83	15.00 20.00 25.00 30.00 85.00	.24 .38 .53 .68 .82	53/4	5, 	151/4	45/8	31/8 8 21/8 21/8 21/8	3%	1½ 15/8 13/4 115 216
12" C41	20.50 25.00 30.00 35.00 40.00	.28 .39 .51 .64 .76	613	6	181/8	55/8	37/8 38/4 35/8 31/2 38/8	41/8	134 178 2 21/8 21/4
15″ C53	33.00 35.00 40.00 45.00 50.00 55.00	.40 .43 .52 .62 .72 .82	81/8	71/2	221/8	65/8	4% 4% 4% 4% 4% 4%	51/8	11/8 11/4 21/8 21/4 21/4

PROPERTIES OF LATTICED CHANNEL COLUMNS.

	Weight	Axis	1-1.	Axis	2-2.
Depth of Channel and Section Number.	per Foot.	Moment of Inertia.	Section Modulus.	Moment of Inertia.	Section Modulus.
	Pounds.	Inches.4	Inches.3	Inches.4	Inches.3
6″ C17	8.00 10.50 13.00 15.50	26.0 30.2 34.6 39.0	8.7 10.1 11.5 13.0	27.0 31.1 35.2 38.7	7.8 8.4 9.5 10.4
7″ C21	9.75 12.25 14.75 17.25 19.75	42.2 48.4 54.4 60.4 66.4	12.1 13.8 15.5 17.3 19.0	44.0 50.5 56.4 61.4 66.5	10.8 11.9 13.3 14.4 15.6
8* C25	11.25 18.75 16.25 18.75 21.25	64.6 72.0 79.8 87.7 95.6	16.2 18.0 20.0 21.9 23.9	67.5 75.8 84.5 92.3 99.7	14.0 15.8 17.6 19.3 20.8
029 9″	18.25 15.00 20.00 25.00	94.6 101.8 121.6 141.4	21.0 22.6 27.0 31.4	92.4 100.0 120.1 139.1	17.8 19.2 28.1 26.8
10° C83	15.00 20.00 25.00 30.00 35.00	133.8 157.4 182.0 206.4 231.0	26.8 31.5 36.4 41.3 46.2	181.7 158.5 183.3 205.4 226.0	23.0 27.6 32.0 35.8 39.4
12° C41	20.50 25.00 30.00 85.00 40.00	256.2 288.0 323.2 358.6 393.8	42.7 48.0 53.9 59.8 65.6	256.9 295.6 335.8 370.5 405.7	37.9 43.6 49.5 54.6 59. 8
15" C63	33.00 35.00 40.00 45.00 50.00 55.00	625.2 639.8 695.0 750.2 805.4 860.4	83.4 85.3 92.7 100.0 107.4 114.7	618.7 636.1 700.8 763.0 819.5 874.3	76.1 78.3 86.5 93.9 100.9 107.6

DIMENSIONS FOR PLATE AND CHANNEL COLUMNS.

SERIES A.

Depth	FT	Size of	Plates.								
Of Channel and Section	Weight per Foot.	Width.	Thick- ness t'	t	b	d	H	ю	E	A	m
No.	Pounds.	Inches.	Inch.	Inch.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
	8.0	8	1/4 5/8	.20	4,,	3½ 3½ 35/8	$\begin{array}{c} 10\frac{5}{15} \\ 10\frac{13}{16} \end{array}$	27/8	1,13	2,,	1,16
6"	10.5	66	5/8	.32	44	31/4 35/8	10 16 10 18	44	1,18	46	1,16
C17	13.0	66	1/4	.44	66	31/4	$10\frac{5}{16} \\ 10\frac{13}{4}$	66	1,0	66	1,5
	15,5	66	1/4 5/8 1/4 5/8 1/4 5/8 1/4 5/8	.56	46	35/8 35/8 35/8 35/8 35/8 35/8 35/8 35/8	10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 16	66	1,76	66	1,7
	9.75	9	1/4	.21	41/2	33/4 41/8 33/4	11%	31/4	2,16	21/4	1,3
	12,25	66	1/4	.32	46	33/4 41/8	1134	4 E	115	66	1,5
7″ C21	14.75	66	1/4 5/	.42	66	93/	1184	## ##	1,13	66	1,76
ONI	17.25	66	1/4	.53	66	334	1134	66	13/4	66	11/2
	19,75	44	14/8/4/8/4/8/4/8	.63	66	33/4 41/8 33/4 41/8 41/8	1134 1236 1134 1236 1134 1236 1134 1236 1134 1236	46	15/8	6.6	15/8
	11,25	10	1/4	.22	5,,	4½ 4½ 45/8	131/8	35%	23/8	25/8	11/4
	13.75	66	1/4	.31	46	41/4 45/8	131/8	66	2,5	44	1,5
8″ C25	16,25	6.6	1/4	.40	66	4½ 4½ 45%	13 ¹ / ₈ 13 ⁵ / ₈ 13 ¹ / ₈ 13 ⁵ / ₈ 13 ¹ / ₈ 13 ⁵ / ₈ 13 ⁵ / ₈	46	21/4	64	13/8
020	18,75	66	78 1/4 5/	.49	64	41/4 45/8	13 ¹ / ₈	66	21/8	66	11/2
	21,25	66	1/4 5/8 1/4 5/8 1/4 5/8 1/4 5/8 1/4 5/8	.58	66	4½ 4½ 45/8	13½ 13½ 13½	66	2,16	6.6	1,16
	13.25	11	1/4 5/8	.23	51/2	434	141/2	41/8	23/4	3,,	13/8
9"	15.00	66	1/4	.29	66	51/8	15 16 14 1/2 15 16 14 1/2	66	2118	6.6	1,76
C29	20.00	66	5/9	.45	66	51/8	141/2	66	216	66	1,76
	25.00	66	5/8	.61	66	51/8 43/4 51/8	15 14 1/2 15 16	64	21/8	4.4 4.6	13/4

DIMENSIONS FOR PLATE AND CHANNEL COLUMNS.

SERIES A.

Depth		Size of	Plates.							1	
Channel and Section	Weight per Foot.	Width.	Thick- ness t'	t	b	đ	н	С	E	A	m
No.	Pounds.	Inches.	Inch.	Inch.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
	15.0	12	1/4	24	6,	51/4	15 ls	41/2	3,,	31/4	11/2
	20.0	66	1/4	-38	66	5 1/4 5 1/4	1518	66	27/8	66	15/8
10°	25.0	66	1/4	-53	66	5 1/4 5 1/4	15点	66	23/4	66	13/4
000	0.08	66	78 1/4 5/	.68	66	5 1/4 5 1/4	15 16	66	2,16	44	1,15
	35.0	66	14/8/4/8/4/8/4/8	-8,2	66	55% 51/4 55%	15 15 15 15 15 15 15 15 15 15 15 15 15 1	66	2,7	66	2,16
	20.5	14	1/4	-28	7,,	61/4	18%	55/8	37/8	41/8	13/4
	25.0	66	14	.39	66	65/8 61/4 65/8	1834	66	3%	88	17/8
12" C41	80.0	66	14	-51	66	614	18%	66	35/8	4.6	2,,
011	35.0	66	1/4	.64	66	61/4	18%	66	31/2	66	21/8
	40.0	6.6	5/8/4/8/4/8/4/8/4/8	.76	44	61/4	18% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19	66	33/8	66	21/4
	38.0	17	3/3	.40	81/2	776	231	83/4	47/8	51/4	17/8
	35.0	66	3/8	43	66	77/8	23	66	413	66	1,15
15" C53	40.0	66	3/3	-52	66	0787	2315	66	43/4	66	2,,
000	45.0	6.6	200/4/00/4/00/4/00/4	.62	6.6	714	COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC	66	45/8	66	21/8
	50.0	6.6	3/3	.72	6.6	7 %	231	66	42	6.6	21/4
	55.0	66	3/8	-82	66	71/8	231	66	47	11 £	2,5

DIMENSIONS FOR PLATE AND CHANNEL COLUMNS.

SERIES B.

Depth	Wataka	Size of	Plates.								
Of Channel and Section	Weight per Foot.	Width.	Thick- ness t'	t	b	đ	H	С	E	A	m
No.	Pounds.	Inches.	Inch.	Inch.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
6″ C17	8.0 10.5 13.0 15.5	80 60 60 60 60 60	1488148814881488	.20 .32 .44 .56	41/2	00000000000000000000000000000000000000	11½ 11½ 11½ 11½ 11½ 11½ 11½	33/8	2 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21/2	1,16 1,16 1,16 1,16 1,76
7″ C21	9.75 12.25 14.75 17.25 19.75	11	14/8/4/8/4/8/4/8	.21 .32 .42 .53 .63	51/2	34 34 34 34 34 34 34 34 34 34 34 34 34 3	13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 16 16 16 16 16 16 16 16 16 16 16 16	41/4	8,16 2,15 2,15 2,13 2,13 2,13 2,13 2,13 2,14	81/4	1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8″ C25	11,25 13,75 16,25 18,75 21,25	12	14/8/4/8/4/8/4/8/4/8	.22 .31 .40 .49	6	414 458 4158 4158 4158 4158 4158 4158	1411 1512 1411 1512 1411 1512 1411 1512 1411 1512	45/8 66 66 66 66 66 66	8,16 8,16 8,1/4 8,1/8 8,1/8	85/8 44 44 44 44 44	11/4 11/6 13/6 11/2 11/6
9″ C29	18.25 15.00 20.00 25.00	13	14 58 14 8 14 8 14 8 14 8	.23 .29 .45 .61	61/2	43/4 51/8 43/4 54/3 43/4 51/8 43/4 51/8	161/8 161/8 161/8 161/8 161/8 161/8 161/8	51/8	33/4 3118 3118 3118 3118	46 46 46	13% 13% 13% 13%

DIMENSIONS FOR PLATE AND CHANNEL COLUMNS.

SERIES B.

Depth		Size of	Plates.								
Channel and Section	Weight per Poot.	Width.	Thick- ness. t'	t	ь	đ	H	С	E	A	m
No.	Pounds.	Inches.	Inch.	Inch.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
10″ C83	15.0 20.0 25.0 30.0 35.0	15	14/8/4/8/4/8/4/8	.24 .38 .53 .68 .82	71/2 44 44 44 44 44 44 44 44 44 44 44 44 44	5584486551488555555555555555555555555555	185/4 186/5/4 186/5/4 186/5/4 186/5/4 188/4 188/4 188/4 188/4 188/4 188/4	66	4½ 4¾ 4¼ 4¼ 4¼ 3½ 3½	43/4	1½ 1½ 1¾ 1¾ 1¼ 1¼ 2¼
12″ C41	20.5 25.0 30.0 35.0 40.0	16	14/8/14/8/14/8	.28 .39 .51 .64 .76	8::	61/4 65/8 61/4 65/8 61/4 65/8 61/4 65/8 61/4 65/8	$\begin{array}{c} 20\frac{5}{16} \\ 20\frac{3}{4} \\ 20\frac{5}{16} \\ 20\frac{3}{4} \\ 20\frac{5}{16} \\ 20\frac{3}{4} \\ 20\frac{3}{16} \\ 20\frac{3}{4} \\ 20\frac{3}{4} \\ 20\frac{3}{4} \end{array}$	65/8	47/8 43/4 45/8 41/2 43/8	51/8 44 44 44 44 44	13/4 11/8 2, 21/8 21/4
15" C53	38.0 35.0 40.0 45.0 50.0	20	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.40 .43 .52 .62 .72 .82	10	77/8 87/4/8 78/4/8 78/4/8 78/4/8 78/4/8 78/4/8 78/4/8 78/4/8 78/4/8	255555555555555555555555555555555555555	81/4 66 66 66 66 66 66 66 66 66 6	6% 6% 6% 6% 6% 6%	63/4	11/8 11/8 2. 21/8 21/4 21/4

				SEI	RIE	S A.				SE	RIE	S B.	
Depth of Chan-	Weight per Foot.	late.	Plate.	Axis	1-1.	Axis	2-2.	late.	Plate.	Axis	1-1.	Azis	2-2.
nel and Section Num- ber.	Foot.	Width of Plate.	Thickness of	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.	Width of Plate.	Thickness of Plate.	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.
	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3	In.	In.	Ins.4	Ins.3	Ins.4	Ing.3
6" C 17	8.00	8 u u u u u u u	1/4 5 16 3/8 7 16 1/2 9 16 5/8	65.1 75.9 87.0 98.6 110.7 123.1 136.1	20.0 22.9 25.8 28.7 31.6 34.6 37.5	49.4 53.7 59.0 64.4 69.7 75.0 80.4	12.1 13.4 14.8 16.1 17.4 18.8 20.1	0 4 4 4	1/4 516 3/8 716 11/2 11/2 11/6/8	70.0 82.1 94.7 107.8 121.3 135.3 149.8	21.5 24.8 28.1 31.4 34.6 38.0 41.3	69.6 77.2 84.8 92.4 100.0 107.6 115.2	15.5 17.2 18.9 20.5 22.2 23.9 25.6
6" C 17	10.50	8 4 4 4	1/4 5/6 3/8 7/6 1/2 9/6 1/8	69.3 80.1 91.2 102.8 114.9 127.3 140.3	21.3 24.2 27.0 29.9 32.8 35.7 38.7	52.5 57.8 63.1 68.5 73.8 79.1 84.5	13.1 14.5 15.8 17.1 18.5 19.8 21.1	9 " "	1/4 5 16 3/8 7 16 1/2 9 18 5/8	74.2 86.3 98.9 112.0 125.5 139.5 154.0	22.8 26.1 29.3 32.6 35.8 39.2 42.5	76.5 84.1 91.7 99.3 106.9 114.5 122.1	17.0 18.7 20.4 22.1 23.8 25.4 27.1
6" C 17	13.00	8 4 4 4 4	1/4 5/6 3/8 7/6 1 2 9/6 15/8	73.7 84.5 95.6 107.2 119.3 131.7 144.7	22.7 25.5 28.3 31.2 34.1 37.0 39.9	56.5 61.9 67.2 72.5 77.9 83.2 88.5	14.1 15.5 16.8 18.1 19.5 20.8 22.1	n n n	1/4 5 16 3/8 1/2 16 5/8	78.6 90.7 103.3 116.4 129.9 143.9 158.4	24.2 27.4 30.6 33.9 37.1 40.4 43.7	83.4 91.0 98.6 106.2 113.7 121.3 128.9	18.5 20.2 21.9 23.6 25.3 27.0 28.7
6″ C 17	15.50	8 u u u	1/4 16 3 7 16 1 2 1 5 8	78.1 88.9 100.0 111.6 123.7 136.1 149.1	24.0 26.8 29.6 32.5 35.3 38.2 41.1	60.0 65.4 70.7 76.0 81.4 86.7 92.0	15.0 16.3 17.7 19.0 20.3 21.7 23.0	m m m	1/4 5 16 3 6 16 15/8	83.0 95.1 107.7 120.8 134.3 148.3 162.8	25.5 28.7 31.9 35.1 38.4 41.6 44.9	89.5 97.1 104.7 112.3 119.9 127.4 135.0	19.9 21.6 23.3 25.0 26.6 28.3 30.0

Depth				SEI	RIE	S A.				SEI	RIE	S B.	
Ol Chan-	Weight	ate.	Plate.	Axis	1-1.	Axis	2-2.	ate	ato.	Axis	3 1-1.	Azis	2-2.
nel and Section Num- ber,	Poot.	Width of Plate.	Thickness P	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.	Width of Plate	ThicknessPlate	Mo- ment of Inertia	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.
Det.	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3
7" C 21	9.75	9	14 16 8 10 10 10 10 10 10 10 10 10 10 10 10 10	101.4 117.4 134.1 151.3 169.0 187.2 206.2 225.6 245.5	27.0 30.8 34.6 38.4 42.2 46.1 50.0 53.9 57.8	70.6 78.1 85.8 93.4 101.0 108.5 116.1 123.8 131.3	15.7 17.4 19.1 20.8 22.4 24.1 25.8 27.5 29.2	11 4 4 4 4 4 4 4 4 4 4	1/4 5 6 3/8 7 10/2 9 10/8 11 8/4	114.5 134.2 154.5 175.5 197.1 219.5 242.5 266.3 290.7	30.5 35.2 39.9 44.6 49.3 54.0 58.8 63.6 68.4	130.9 144.7 158.6 172.5 186.3 200.2 214.1 227.9 241.8	23.8 26.3 28.8 31.4 33.9 36.4 38.9 41.4 44.0
7″ C 21	12.25		1/4 18 18 16 18 16 18 16 18 16 18 16 18 16 18 16 18 16 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18	107.6 123.6 140.3 157.5 175.2 193.4 212.4 231.8 251.7	28.7 32.4 36.2 40.0 43.8 47.6 51.5 55.4 59.2	76.3 83.9 91.5 99.1 106.7 114.3 121.9 129.5 137.1	17.0 18.6 20.3 22.0 23.7 25.4 27.1 28.8 30.5	11 4 4 4 4 4 4 4 4 4 4	14 5 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	120.7 140.4 160.7 181.7 203.3 225.7 248.7 272.5 296.9	32.2 36.8 41.5 46.1 50.8 55.6 60.3 65.1 69.9	144.0 157.9 171.8 185.6 199.5 213.4 227.2 241.1 255.0	26.2 28.7 31.2 33.8 36.3 38.8 41.3 43.8 46.4
7″ C 21	14.75	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 5 5 8 7 5 7 5 7 5 8 4	113.6 129.6 146.3 163.5 181.2 199.4 218.4 237.8 257.7	30.3 34.0 37.7 41.5 45.3 49.1 53.0 56.8 60.6	81.5 89.1 96.7 104.3 111.9 119.5 127.1 134.7 142.3	18.1 19.8 21.5 23.2 24.9 26.5 28.2 29.9 31.6	11	1/4 5/6 8/8 7/6 1/2 9/6 /8/16 4	126.7 146.4 166.7 187.7 209.3 231.7 254.7 278.5 302.9	33.8 38.4 43.0 47.7 52.3 57.0 61.8 66.5 71.3	156.3 170.1 184.0 197.8 211.7 225.6 239.4 253.3 267.2	28.4 30.9 33.5 36.0 38.5 41.0 43.5 46.1 48.6
7″ C 21	17.25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1/4 = 16 B 1/2 B 1 B 4 B	119.6 135.6 152.3 169.5 187.2 205.4 224.4 243.8 263.7	31.9 35.6 39.3 43.1 46.8 50.6 54.4 58.2 62.1	85.9 93.4 101.1 108.7 116.2 123.8 131.4 139.1 146.6	19.1 20.8 22.5 24.2 25.8 27.5 29.2 30.9 32.6	11 4 4 4 4 4 4 4 4 4	14 60 00 7 0 12 0 10 0 10 14	132.7 152.4 172.7 193.7 215.3 237.7 260.7 284.5 308.9	35.4 40.0 44.6 49.2 53.8 58.5 63.2 67.9 72.7	167.1 181.0 194.9 208.7 222.6 236.5 250.3 264.2 278.1	30.4 32.9 35.4 38.0 40.5 43.0 45.5 45.0 50.6
7″ C 21	19.75	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 1/2 2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	125.6 141.6 158.3 175.5 193.2 211.4 230.4 249.8 269.7	33.5 37.1 40.8 44.6 48.3 52.0 55.9 59.7 63.5	90.3 97.9 105.5 113.1 120.7 128.3 135.9 143.5 151.1	20.1 21.8 23.4 25.1 26.8 28.5 30.2 31.9 33.6	11	1/2	138.7 155.4 178.7 199.7 221.3 243.7 266.7 290.5 314.9	37.0 41.5 46.1 50.7 55.3 60.0 64.7 69.4 74.1	178.2 192.0 205.9 219.7 233.6 247.5 261.8 275.2 289.1	32.4 31.9 37.4 40.0 42.5 45.0 47.5 50.0 52.6

Depth				SEF	RIE	S A.				SEF	RIE	S B.	
of Chan-	Weight	late.	late.	Axis	1-1.	Axis	2-2.	late.	late.	Axis	1-1.	Axis	2-2.
nel and Section Num- ber.	per Foot.	Width of Plate.	ThicknessPlate.	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.	Width of Plate.	Thickness Plate.	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.
Der.	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3	In.	In.	Ins.4	Ing.3	Ins.4	Ins.3
8" C 25	11.25	10 " " " " " " " " " " " " " " " " " " "	1/4 5 16 8/8 7 16 1/2 16 5/8 118 3/4	149.7 172.6 196.2 220.5 245.4 271.1 297.5 324.6 352.4	35.2 40.0 44.9 49.7 54.5 59.4 64.3 69.2 74.2	104.0 114.4 124.9 135.3 145.7 156.1 166.5 176.9 187.4	20.8 22.9 25.0 27.1 29.1 31.2 33.3 35.4 37.5	12 " " " " " " " " " " " " " " " " " " "	1/4 5 16 3/8 7 16 1/2 9 16 8/1 1/8 1/8 1/8 1/8 1/8 1/8 1/8	166.7 194.2 222.5 251.7 281.6 312.4 344.1 376.6 410.0	39.2 45.0 50.9 56.7 62.6 68.5 74.4 80.3 86.3	181.1 199.1 217.1 235.1 253.1 271.1 289.1 307.1 325.1	30.2 33.2 36.2 39.2 42.2 45.2 48.2 51.2 54.2
8″ C 25	13.75	10	1/4 516/8 716/2 15/8 118/4	157.1 180.0 203.6 227.9 252.8 278.5 304.9 332 0 359.8	37.0 41.7 46.5 51.4 56.2 61.0 65.9 70.8 75.8	111.6 122.0 132.4 142.8 153.2 163.6 174.1 184.5 194.9	22.3 24.4 26.5 28.6 30.6 32.7 34.8 36.9 39.0	12	1/4 618 3/8 116 1/2 916 15/8 118/4	174.1 201.6 229.9 259.1 289.0 319.8 351.5 384.0 417.4	41.0 46.8 52.6 58.4 64.2 70.1 76.0 81.9 87.9	196.4 214.4 232.4 250.4 268.4 286.4 304.4 322.4 340.4	32.7 35.7 38.7 41.7 44.7 47.7 50.7 53.7 56.7
8″ C 25	16.25	10 « « « « «	1/4 5 16 8/3 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	164.9 187.8 211.4 235.7 260.6 286.3 312.7 339.8 367.6	38.8 43.6 48.3 53.1 57.9 62.8 67.6 72.5 77.4	119.4 129.8 140.2 150.6 161.0 171.5 181.9 192.3 202.7	23.9 26.0 28.0 30.1 32.2 34.3 36.4 38.5 40.5	12 4 4 4 4 4 4 4	1/4 5 16 3/8 10 1/2 16 5/8 11 3/4	181.9 209.4 237.7 266.9 296.8 327.6 359.3 391.8 425.2	42.8 48.6 54.3 60.1 66.0 71.8 77.7 83.6 89.5	212.5 230.5 248.5 266.5 284.5 302.5 320.5 338.5 356.5	35.4 38.4 41.4 44.4 47.4 50.4 53.4 56.4 59.4
8″ C 25	18.75	10 " " " " " " " " " " " " " " " " " " "	1/4 16 8/8 716 1/2 16 5/8 116 8/4	172.7 195.6 219.2 243.5 268.4 294.1 320.5 347.6 375.4	40.6 45.4 50.1 54.9 59.7 64.5 69.3 74.2 79.0	126.3 136.7 147.2 157.6 168.0 178.4 188.8 199.2 209.7	25.3 27.4 29.4 31.5 33.6 35.7 37.8 39.9 41.9	12 " " " " " " " " " " " " " " " " " " "	1/4 5 16 3/8 7 16 1/2 9 16 5/8 118 8/4	189.7 217.2 245.5 274.7 304.6 335.4 367.1 399.6 433.0	44.6 50.4 56.1 61.9 67.7 73.5 79.4 85.2 91.2	227.3 245.3 263.3 281.3 299.3 317.3 335.3 353.3 371.3	37.9 40.9 43.9 46.9 49.9 52.9 55.9 58.9 61.9
8" C 25	21.25	10	1/4 16 8/8 1/2 1/2 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	180.7 203.6 227.2 251.5 276.4 302.1 328.5 355.6 383.4	42.5 47.2 51.9 56.7 61.4 66.2 71.0 75.9 80.7	133.0 143.4 153.8 164.2 174.6 185.0 195.5 205.9 216.3	26.6 28.7 30.8 32.8 34.9 37.0 39.1 41.2 43.3	12 " " " " " " " " " " " " " " " " " " "	1/4 5 16 8/8 17 1/2 1/2 1/3 8/8 14 8/8	197.7 225.2 253.5 282.7 312.6 343.4 375.1 407.6 441.0	46.5 52.2 58.0 63.7 69.5 75.3 81.1 87.0 92.8	241.7 259.7 277.7 295.7 313.7 331.7 349.7 367.7 385.7	40.3 43.3 46.3 49.3 52.3 55.3 58.3 61.3 64.3

Depth				SEI	RIE	S A.				SEI	RIE	S B.	
Depth of Chan-	Weight	of Plate.	Plate.	Axis	1-1.	Azis	2-2.	late.	of Plate.	Axis	1-1.	Axis	2-2.
nel and Section Num- ber.	Foot.	Width of P	Thickness of	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.	Width of Plate.	Thickness of	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.
	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3	In.	In.	Ins.4	Ins.s	Ins.4	Ins.8
9″ C 29	13.25	11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 5 16 3/8 1/2 16 5/8 116 16 16 16 16 16 16 16 16 16 16 16 16	212.3 243.8 276.0 309.0 343.0 377.9 413.5 449.9 487.5	44.7 50.7 56.6 62.6 68.6 74.7 80.7 86.7 92.9	147.9 161.8 175.6 189.4 203.3 217.3 231.1 244.9 258.8	26.9 29.4 31.9 34.4 37.0 39.5 42.0 44.5 47.1	13 " " " " " " " " " " " " " " " " " " "	1/1 16 16 3/8 7 16 16 5/8 16 5/8 16 5/8 16 5/8	233.7 270.8 308.9 348.1 388.2 429.3 471.5 514.7 558.9	49.2 56.3 63.4 70.5 77.6 84.8 92.0 99.2 106.5	244.3 267.2 290.1 313.0 335.9 358.8 381.6 404.5 427.4	37.6 41.1 44.6 48.2 51.7 55.2 58.7 62.2 65.8
9″ C 29	15.00 a a a a a a a a a a a a a a a a a a	11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 5/6 /8 / 16 /2 / 16 /8 / 16 / 16 / 16 / 16 / 16 / 16 /	219.5 251.0 283.2 316.2 350.2 385.1 420.7 457.1 494.7	46.2 52.2 58.1 64.0 70.0 76.1 82.1 88.1 94.2	155.4 169.3 183.1 197.0 210.9 224.8 238.6 252.4 266.3	28.3 30.8 33.3 35.8 38.3 40.9 43.4 45.9 48.4	13	1456876729681684	240.9 278.0 316.1 355.3 395.4 436.5 478.7 521.9 566.1	50.7 57.8 64.9 72.0 79.1 86.2 93.4 100.6 107.8	258.5 281.4 304.3 327.2 350.1 373.0 395.8 418.7 441.6	39.8 43.3 46.8 50.3 53.9 57.4 60.9 64.4 67.9
9" C 29	20.00	11	1/4 516 8/8 716 11/2 11/2 11/2 11/2 11/2 11/2 11/2 11	239.3 270.8 303.0 336.0 370.0 404.9 440.5 476.9 514.5	50.4 56.3 62.2 68.0 74.0 80.0 86.0 91.9 98.0	175.6 189.5 203.3 217.1 231.0 244.9 258.8 272.6 286.5	31.9 34.5 37.0 39.5 42.0 44.5 47.1 49.6 52.1	13	1/4 5 16 3/8 7 16 17 9 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	260.7 297.8 335.9 375.1 415.2 456.3 498.5 541.7 585.9	54.9 61.9 68.9 76.0 83.0 90.1 97.3 104.4 111.6	297.0 319.9 342.8 365.7 388.6 411.5 434.3 457.2 480.1	45.7 49.2 52.7 56.3 59.8 63.3 66.8 70.3 73.9
9″ C 29	25.00	11	1/4 016 8 716 /2 016 /8 18 /4	259.1 290.6 322.8 355.8 389.8 424.7 460.3 496.7 534.3	54.5 60.4 66.2 72.1 78.0 83.9 89.8 95.8 101.8	194.6 208.5 222.3 236.1 250.1 264.0 277.8 291.6 305.5	35.4 37.9 40.4 42.9 45.5 48.0 50.5 53.0 55.6	13	1/4 516 3/8 716 1/2 916 5/8 116 8/4	280.5 317.6 355.7 394.9 435.0 476.1 518.3 561.5 605.7	59.1 66.0 73.0 80.0 87.0 94.1 101.1 108.2 115.4	333.9 356.8 379.7 402.5 425.4 448.3 471.2 494.1 517.0	51.4 54.9 58.4 61.9 65.5 69.0 72.5 76.0 79.5

Depth				SEF	RIE	S A.				SEF	RIE	S B.	
of Chan-	Weight	late.	late.	Axis	1-1.	Axis	2-2.	late.	late.	Axis	1-1.	Axis	2-2.
nel	Per Foot.	Width of Plate.	Thickness Plate.	Мо-	Section	Мо-	Section	Width of Plate.	Thickness Plate.	Mo-	Section	Mo-	Section
Section	2000.	dth	okn	ment	Mod-	ment	Mod-	dth	ckn	ment	Mod-	ment	Mod-
Num- ber.		·		Inertia.	ulus.	Inertia.	uius.	W	Thi	Inertia.	ulus.	Inertia.	ulus.
DOI.	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3	In.	In.	Ins.4	Ins.8	Ins.4	Ins.3
	15.0	12	1/4 5/6 8/8 7/6 1/2 9/6 5/8	291.4 333.3	55.5 62.7	195.4 213.4	32.6 35.6	15	1/4 5/16/8 7/16/2 9/16/8	330.8 383.3	63.0 72.1	381.8 417.0	50.9 55.6
	66	ш	16	376.1	70.0	231.4	38.6	ш	16	436.7	81.2	452.1	60.3
10" C 88	4	66 86	16	419.9	77.2	249.4	41.6	44	16	491.6	90.4	487.3	65.0
C 33	a	a	2	464.8 510.7	84.5 91.8	267.4 285.4	44.6 47.6	4	2	547.6 605.1	99.6 108.8	522.4 557.6	69.7 74.3
	e e	64	5/8	557.6	99.1	303.4	50.6	66	5/8	663.6	118.0	592.7	79.0
	46	4	11 16 8/4	605.6	106.5 113.9	321.4 339.4	53.6 56.6	44	11 18 3/4	723.7 784.9	127.3 136.5	627.9 663.1	83.7 88.4
	20.0	12	1/4	315.0	60.0	220.1	36.7	15	1/4	354.4	67.5	438.0	58.4
	66	4	1/4 5 16 8/8	356.9	67.2	238.1	39.7	u	16	406.9	76.6	473.1	63.1
	es m	#	3/8	399.7 443.5	74.4 81.6	256.1 274.1	42.7 45.7	4	3/8	460.3 515.2	85.6 94.8	508.3 543.4	67.8 72.5
10" C 33	4	ш	16	488.4	88.8	292.1	48.7	66	16 1/2	571.2	103.9	578.6	77.2
000	44	ш	16 1/2 16 5/8 16 8/4	534.3	96.1 103.3	310.1 328.1	51.7 54.7	4	9 16 5/8 11 3/4	628.7	113.0	613.8	81.8 86.5
	46	ш	11	581.2 629.2	110.6	346.1	57.7	4	11	687.2 747.3	122.2 131.4	648.9	91.2
	ш	"		678.3	118.0	364.1	60.7	"		808.5	140.6	719.2	95.9
	25.0	12	1/4	339.6	64.7	242.8 260.8	40.5 43.5	15	1/4	379.0	72.2 81.2	491.8 526.9	65.6 70.3
	66	æ	16	381.5 424.3	71.8 78.9	278.8	46.5	4	16	431.5 484.9	90.2	562.1	75.0
10" C 33	4	4	16	468.1	86.1	296.8	49.5	44	16	539.8	99.3	597.3	79.6
C 33	44	"	1/4 5 16 1/2 18 5/8 11 11 11 11 11 11 11 11 11 1	513.0 558.9	93.3	314.8 332.8	52.5 55.5	"	5 16 8/8 7 16 1/2 16 5/8 11	595.8 653.3	108.3 117.4	632.4	84.3 89.0
	4	4	5/8	605.8	107.7	350.8	58.5	44	5/8	711.8	126.5	702.7	93.7
	a	4	16 8/4	653.8 702.9	115.0 122.2	368.8 386.8	61.5 64.5	4	118 8/4	771.9 833.1	135.7 144.9	737.9	98.4 103.1
	30.0	12	1/4	364.0	69.3	262.9	43.8	15		403.4	76.8	541.6	72.2
	a	iii cc	16	405.9	76.4	280.9	46.8	ш	1/4 5 16 /8 7 10 /21 0 10 5/8	455.9	85.8	576.8	76.9
10"	4	4	3/8	448.7	83.5 90.6	298.9 316.9	49.8 52.8	4	3/8	509.3 564.2	94.8 103.8	611.9	81.6 86.3
10" C 33	4	4	5 16 3/8 16 1/2 16 5/8 118 3/4	537.4	97.7	334.9	55.8	æ	1/2	620.2	112.8	682.2	91.0
	66	ш	16	583.3 630.2	104.9 112.0	352.9 370.9	58.8 61.8	4	16	677.7 736.2	121.8 130.9	717.4 752.5	95.7 100.3
	44	4	78 11 16	678.2	119.3	388.9	64.8	4	11	796.3	140.0	787.7	105.0
	- 64	æ		727.3	126.5	406.9	67.8	*	118	857.5	149.1	822.9	109.7
	35.0	12	1/4 5 16	388.6 430.5	74.0 81.0	281.7 299.7	46.9	15	1/4	428.0 480.5	81.5 90.4	589.2 624.4	78.6 83.3
	46	ш	8/8	473.3	88.1	317.7	52.9	44	16	533.9	99.3	659.5	87.9
10"	44	44	8/8 16 1/2	517.1 562.0	95.1 102.2	335.7 353.7	55.9 58.9	44	10 1/2	588.8	108.3	694.7	92.6 97.3
C 33	66	ш	72	607.9	102.2	371.7	61.9	4	2	644.8 702.3	117.2 126.3	765.0	102.0
	44	44	18	654.8	116.4	389.7	64.9	#	16	760.8	135.3	800.2	106.7
	-	a	14	702.8 751.9	123.6 130.8	407.7	67.9		14	820.9 882.1	144.3 153.4	835.3	111.4
			-				. 5.0		76				

Depth		1		SEE	RIE	S A.				SEI	RIE	S B.	
Ol Chan-	Weight	ate.	In the	Axis	1-1.	Axis	2-2.	18 78	ate.	Axis	1-1.	Axis	2-2.
nel and Section Num- ber.	Foot.	Width of Plate.	Thickness Plate.	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.	Width of Plats.	Thickness Plate.	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia	Section Mod- ulus.
per.	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ing.8	In.	In.	Ins.4	Ins.3	Ing.4	Ing.3
12" C 41	20.5	14	大大地方 大大大大	518.9 587.9 658.3 730.1 803.4 878.0 954.1 1031.6 1110.6	83.0 93.1 103.3 113.4 123.6 133.8 144.0 154.3 164.5	371.3 399.9 428.4 457.0 485.6 514.2 542.8 571.4 599.9	53.0 57.1 61.2 65.3 69.4 73.5 77.5 81.6 85.7	16	1/4 = 8 1 2 6 5 8 4	556.4 635.3 715.8 797.8 881.5 966.9 1053.8 1142.4 1232.7	89.0 100.6 112.3 123.9 135.6 147.3 159.1 170.8 182.6	549.3 592.0 634.6 677.3 720.0 762.6 805.3 848.0 890.6	68.7 74.0 79.3 84.7 90.0 95.3 100.7 106.0 111.3
12" C 41	25.0	14	光古場古場古場社が	550.7 619.7 690.1 761.9 835.2 909.8 985.9 1063.4 1142.4	88.1 98.2 108.3 118.4 128.5 138.6 148.8 159.0 169.3	409.9 438.5 467.1 495.7 524.3 552.9 581.4 610.0 638.6	58.6 62.7 66.7 70.8 74.9 79.0 83.1 87.2 91.2	16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 18/8 18/8 11/2 18/5/8 118/3/4	588.2 667.1 747.6 829.6 913.3 998.7 1085.6 1174.2 1264.5	94.1 105.7 117.3 128.9 140.5 152.2 163.9 175.6 187.3	610.8 653.4 696.1 738.8 781.4 824.1 866.8 909.4 952.1	76.4 81.7 87.0 92.4 97.7 103.0 108.4 113.7 119.0
12" C 41	30.0 « « « « « « « « « « « « «	14	1/4 10 1/2 10 1/	585.9 654.9 725.3 797.1 870.4 945.0 1021.1 1098.6 1177.6	93.7 103.7 113.8 123.8 133.9 144.0 154.1 164.3 174.5	450.2 478.8 507.3 535.9 564.5 593.1 621.7 650.3 678.8	64.3 68.4 72.5 76.6 80.6 84.7 88.8 92.9 97.0	16	1/4 5 8 8 7 8 1/2 18 5/8 11 8/4	623.4 702.3 782.8 864.8 984.5 1033.9 1120.8 1209.4 1299.7	99.7 111.3 122.8 134.3 145.9 157.5 169.2 180.9 192.6	675.7 718.3 761.0 803.7 846.3 889.0 931.6 974.3 1017.0	84.5 89.8 95.1 100.5 105.8 111.1 116.5 121.8 127.1
12" C 41	35.0 a a a a a	14 a a a a a a	1/4 10 8/8 10 1/2 10 5/8 10 8/4	621.3 690.3 760.7 832.5 905.8 980.4 1056.5 1134.0 1213.0	99.4 109.4 119.3 129.3 139.4 149.4 159.5 169.6 179.7	484.9 513.4 542.0 570.6 599.2 627.8 656.4 684.9 713.5	69.3 73.4 77.4 81.5 85.6 89.7 93.8 97.9 101.9	16	1/4 5 16 8/8 7 16 1/2 9 16 5/8 118 8/4	658.8 737.7 818.2 900.2 983.9 1069.3 1156.2 1244.8 1335.1	105.4 116.9 128.3 139.8 151.4 162.9 174.5 186.1 197.8	733.6 776.3 818.9 861.6 904.3 946.9 989.6 1032.3 1074.9	91.7 97.0 102.4 107.7 113.0 118.4 123.7 129.0 134.4
12" C 41	40.0	14	1/4-18/8/19/2018/81	656.5 725.5 795.9 867.7 941.0 1015.6 1091.7 1169.2 1243.2	105.0 114.9 124.9 134.8 144.8 154.8 164.8 174.8 184.9	520.1 548.7 577.2 605.8 634.4 663.0 691.6 720.2 748.7	74.3 78.4 82.5 86.6 90.6 94.7 98.8 102.9 107.0	16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 10/8 70 15/8 11/8	694.0 772.9 853.4 935.4 1019.1 1104.5 1191.4 1280.0 1370.3	111.0 122.4 133.9 145.3 156.8 168.3 179.8 191.4	792.1 834.8 877.4 920.1 962.8 1005.4 1048.1 1090.8 1133.4	99.0 104.3 109.7 115.0 120.3 125.7 131.0 136.3 141.7

				SEI	RIE	S A.				SEI	RIE	S B.	
Depth			ate.	Axis	3 1-1.	Axis	2-2.	3	Plate.	Axis	1-1.	Axis	2-2.
Chan- nel and Section Num- ber.	Weight per Foot.	Width of Plate.	Thickness of Plate.	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.	Width of Plate.	Thickness of Pla	Mo- ment of Inertia.	Section Mod- ulus.	Mo- ment of Inertia.	Section Mod- ulus.
	Lbs.	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3	In.	In.	Ins.4	Ins.3	Ins.4	Ins.3
15" C 53	33.0	17	8/8 716 1/2 16 5/8 116 8/4	1378.9 1512.0 1646.6 1783.4 1922.9 2064.6 2207.8	175.1 190.5 205.8 221.2 236.7 252.2 267.6	953.4 1004.7 1055.7 1106.8 1158.1 1209.4 1260.4	112.2 118.2 124.2 130.2 136.2 142.3 148.3	20	3/8 716 1/2 916 5/8 116 3/4	1511.8 1668.1 1826.9 1988.1 2151.9 2318.2 2487.1	192.0 210.2 228.4 246.6 264.9 283.1 301.5	1525.9 1609.2 1692.5 1775.9 1859.2 1942.5 2025.9	152.6 160.9 169.3 177.6 185.9 194.3 202.6
15" C 53	35.0	17	3/8 7 16 1/2 9 16 5/8 116 3/4	1393.5 1526.6 1661.2 1798.0 1937.5 2079.2 2222.4	177.0 192.3 207.7 223.0 238.5 254.0 269.4	971.7 1023.0 1074.1 1125.1 1176.4 1227.7 1278.8	114.3 120.4 126.4 132.4 138.4 144.4 150.4	20	3/8 716 1/2 916 5/8 118 3/4	1526.4 1682.7 1841.5 2002.7 2166.5 2332.8 2501.7	193.8 212.0 230.2 248.4 266.6 284.9 303.2	1557.3 1640.7 1724.0 1807.3 1890.7 1974.0 2057.3	155.7 164.1 172.4 180.7 189.1 197.4 205.7
15" C 53	40.0	17	3/8 7/6 1/2 9/6 5/8 1/8 4	1448.7 1581.8 1716.4 1853.2 1992.7 2134.4 2277.6	184.0 199.3 214.6 229.9 245.3 260.7 276.1	1039.9 1091.2 1142.3 1193.3 1244.6 1295.9 1347.0	122.3 128.4 134.4 140.4 146.4 152.5 158.5	20	3/8 716 1/2 16 5/8 116 3/4	1581.6 1737.9 1896.7 2057.9 2221.7 2388.0 2556.9	200.8 219.0 237.1 255.3 273.4 291.7 309.9	1674.6 1757.9 1841.2 1924.6 2007.9 2091.2 2174.6	167.5 175.8 184.1 192.5 200.8 209.1 217.5
15" C 53	45.0	17 "" "" "" "" "" "" "" "" ""	3/8 716 1/2 916 5/8 116 3/4	1503.9 1637.0 1771.6 1908.4 2047.9 2189.6 2332.8	191.0 206.2 221.5 236.7 252.0 267.4 282.8	1105.4 1156.8 1207.9 1258.9 1310.2 1361.5 1412.6	130.1 136.1 142.1 148.1 154.2 160.2 166.2	20 " " " " " " " " " " " " " " " " " " "	3/8 716 1/2 916 5/8 116 3/4	1636.8 1793.1 1951.9 2113.1 2276.9 2443.2 2612.1	207.9 225.9 244.0 262.1 280.2 298.4 316.6	1788.6 1871.9 1955.3 2038.6 2121.9 2205.3 2288.6	178.9 187.2 195.5 203.9 212.2 220.5 228.9
15" C 58	50.0	17	3/8 7/6 1/2 9/6 5/8 1/6 8/4	1559.1 1692.2 1826.8 1963.6 2103.1 2244.8 2388.0	198.0 213.2 228.4 243.5 258.8 274.2 289.5	1165.3 1216.6 1267.7 1318.7 1370.0 1421.3 1472.4	137.1 143.1 149.1 155.1 161.2 167.2 173.2	20 " " " " " " " " " " " " " " " " " " "	3/8/16/16/8/16/8/16/8/16/8/16/8/16/8/16/	1692.0 1848.3 2007.1 2168.3 2332.1 2498.4 2667.3	214.9 232.9 250.9 268.9 287.0 305.2 323.3	1894.9 1978.2 2061.5 2144.9 2228.2 2311.5 2394.9	189.5 197.8 206.2 214.5 222.8 231.2 239.5
15" C 53	55.0	17 " " " " " " " " " " " " " " " " " " "	3/8 7/6 1/2 1/6 5/8 1/6	1614.1 1747.2 1881.8 2018.6 2158.1 2299.8 2443.0	205.0 220.1 235.2 250.4 265.6 280.9 296.1	1223.4 1274.7 1325.7 1376.8 1428.1 1479.4 1530.4	143.9 150.0 156.0 162.0 168.0 174.0 180.1	20	8/8 16 1/2 16 5/8	1747.0 1903.3 2062.1 2223.3 2387.1 2553.4 2722.3	221.9 239.8 257.8 275.8 293.8 311.9	1998.8 2082.1 2165.5 2248.8 2332.1 2415.5 2498.8	199.9 208.2 216.6 224.9 233.2 241.6 249.9

TYPICAL DETAILS OF PLATE GIRDERS, COLUMN BASES AND STEEL COLUMNS.

244

CAMBRIA STEEL.

SAFE LOADS IN THOUSANDS OF POUNDS FOR I-BEAMS USED AS COLUMNS WITH SQUARE ENDS.

Based on Gordon's Formula, $P = \frac{\left(\frac{1}{50000}\right)_{50000}}{1 + \frac{(12 \text{ L})^2}{36000 \text{ r}^2}}$ Safety factor 4.

Depth of Beam and Section	Weight per Foot.	area of Section.	Least Radius of Gyration.			Leng	th in !	Feet.		
Number.	Pounds.	Sq. Ins.	Inch.	2	3	4	5	6	7	8
8″ B 5	5.5 6.5 7.5	1.63 1.91 2.21	.53 .52 .52	19 23 26	18 21 24	17 19 22	15 17 20	13 16 18	12 14 16	11 12 14
4" B9	7.5 8.5 9.5 10.5	2.21 2.50 2.79 3.09	.59 .58 .58	26 30 33 37	25 28 31 35	23 26 29 32	21 24 27 29	20 22 24 27	18 20 22 24	16 18 20 22
Б″ В 18	9.75 12.25 14.75	2.87 3.60 4.34	.65 .63 .63	35 43 52	33 41 50	31 39 47	29 36 43	27 33 40	24 30 36	22 27 33
6" B 17	12.25 14.75 17.25	3.61 4.34 5.07	.72 .69 .68	44 52 61	42 51 59	40 48 56	38 45 52	35 42 48	33 39 44	30 35 41
7" B 21	15.0 17.5 20.0	4.42 5.15 5.88	.78 .76 .74	54 63 71	52 61 69	50 58 66	47 55 62	45 52 58	42 48 54	39 45 50
8″ B 25	18.00 20.25 22.75 25.25	5.33 5.96 6.69 7.43	.84 .82 .81 .80	65 73 82 91	63 71 79 88	61 68 76 84	58 65 72 80	55 61 69 76	52 58 65 71	49 54 80 66
9″ B 29	21.0 25.0 30.0 35.0	6.31 7.35 8.82 10.29	.90 .88 .85 .84	77 90 108 126	76 88 105 122	73 85 101 118	70 81 97 112	67 78 92 107	73 87 101	60 69 81 95
10" B 33	25.0 30.0 35.0 40.0	7.37 8.82 10.29 11.76	.97 .93 .91 .90	91 108 126 144	106 123 141	86 103 119 136	83 99 115 131	94 110 125	76 90 104 118	73 85 98 112
12" B 41	31.5 35.0 40.0	9.26 10.29 11.76	1.01 .99 .96	114 127 144	112 124 142	109 121 137	105 117 133	102 112 127	97 107 121	93 102 115
12" B 105	40.0 45.0 50.0 56.0	11.84 13.24 14.71 16.18	1.08 1.06 1.05 1.04	146 163 181 199	144 160 178 196	140 156 174 191	136 152 168 185	132 146 163 178	127 141 156 171	121 135 149 163

SAFE LOADS IN THOUSANDS OF POUNDS FOR I-BEAMS USED AS COLUMNS WITH SQUARE ENDS.

Based en Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

			Leng	th in	Feet.			1	Weight per Poot.	Depth of Beam and Section
9	10	11	12	13	14	15	16	17	Pounds.	Number.
9 11 13									5.5 6.5 7.5	3″ B 5
14 16 18 19	13 14 16 17								7.5 8.5 9.5 10.5	4" B9.
20 25 30	18 22 27	17 20 24				· · · · · · · · · · · · · · · · · · ·			9.75 12.25 14.75	5" B 13
28 32 37	25 29 34	23 27 31	21 25 28			! , 			12.25 14.75 17.25	6" B 17
36 41 46	33 38 43	31 35 39	28 32 36	26 30 33	 				15.0 17.5 20.0	7" B 21
46 50 56 61	43 47 52 57	40 43 48 53	37 40 45 49	34 37 41 45	31 34 38 42				18.00 20.25 22.75 25.25	8″ B 25
56 65 76 58	53 60 71 82	49 57 66 76	46 53 61 71	43 49 57 66	40 46 53 61	37 43 49 56			21.0 25.0 30.0 35.0	9" B 29
68 80 92 105	65 75 87 98	61 71 81 92	57 68 76 86	54 62 71 80	50 58 66 74	47 54 62 69	44 50 57 65		25.0 30.0 35.0 40.0	10" B 33
88 97 109	83 91 103	78 86 96	74 81	69 76 85	65 72 79	61 67 74	58 63 69	54 59 65	31.5 35.0 40.0	12" B 41
116 128 142 155	110 122 135 148	105 116 128 140	99 110 121 132	94 103 114 124	88 98 108 117	83 92 101 111	79 87 96 104	75 82 90 98	40.0 45.0 50.0 55.0	12" B 105

SAFE LOADS IN THOUSANDS OF POUNDS FOR I-BEAMS USED AS COLUMNS WITH SQUARE ENDS.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

Depth of Beam and	Weight per Foot.	of Section.	Least Radius of Gyra- tion.			L	ength	in Fe	et.		
Section Number.	Pounds.	Sq. Ins.	Inches.	2	3	4	5	6	7	8	9
15" B 53	42.0 45.0 50.0 55.0 60.0	12.48 13.24 14.71 16.18 17.65	1.08 1.07 1.04 1.03 1.01	154 163 181 199 217	151 160 178 196 213	148 157 174 191 207	144 152 168 185 201	139 147 162 178 194	133 142 156 171 185	128 135 149 163 177	122 129 141 155 167
15″ B 109	60.0 65.0 70.0 75.0 80.0	17.67 19.12 20.59 22.06 23.53	1.21 1.20 1.19 1.18 1.17	218 236 254 273 291	215 233 251 269 286	212 229 246 264 281	207 223 240 258 274	201 217 234 250 266	195 211 226 242 257	188 203 218 233 248	181 195 209 224 238
15" B113	80.0 85.0 90.0 95.0 100.0	23.57 25.00 26.47 27.94 29.41	1.32 1.32 1.32 1.31 1.31	292 309 328 346 364	289 306 324 342 360	284 302 319 336 354	279 295 313 330 348	273 289 306 322 339	265 281 297 314 330	256 272 288 304 320	249 264 279 293 309
18" B 65	55.0 60.0 65.0 70.0	15.93 17.65 19.12 20.59	1.15 1.13 1.11 1.09	197 218 236 254	194 214 232 250	190 210 227 244	185 205 221 237	180 198 214 230	173 191 206 221	166 184 198 212	160 176 189 202
20" B 73	65.0 70.0 75.0	19.08 20.59 22.06	1.21 1.19 1.17	236 254 273	233 251 268	229 246 264	223 240 257	217 234 250	210 226 241	203 218 233	196 209 223
20" B 121	80.0 85.0 90.0 95.0 100.0	23.73 25.00 26.47 27.94 29.41	1.39 1.37 1.36 1.35 1.34	294 309 328 346 364	291 307 325 343 361	287 302 320 337 355	282 297 314 331 349	276 290 307 324 340	270 283 300 315 332	261 275 290 307 321	254 266 282 296 312
24" B 89	80.0 85.0 90.0 95.0 100.0	23.32 25.00 26.47 27.94 29.41	1.36 1.33 1.31 1.30 1.28	289 309 328 346 364	286 306 324 342 360	282 302 319 336 354	276 295 313 330 347	271 289 305 322 338	264 281 297 313 328	256 273 288 303 317	248 264 278 293 307
24" B 127	105.0 110.0 115.0	30.98 32.48 33.98	1.60 1.58 1.57	385 403 422	382 400 419	378 396 414	373 390 408	367 384 401	360 376 393	352 368 385	344 359 375

SAFE LOADS IN THOUSANDS OF POUNDS FOR I-BEAMS USED AS COLUMNS WITH SQUARE ENDS.

Based on Gordon's Formula, $P = \frac{50000}{1 + \frac{(12 \text{ L})^2}{36000 \text{ r}^2}}$. Safety factor 4.

				Weight per Foot.	Depth of Beam and Section.						
10	11	12	13	14	15	16	17	18	19	Pounds.	Number.
116 123 134 147 158	110 116 127 139 150	105 110 120 131 141	99 104 113 124 132	93 98 106 116 124	88 93 101 109 117	83 87 94 103 110	79 82 89 97 104	74 78 84 91 97		42.0 45.0 50.0 55.0 60.0	15" B 53
173 187 201 214 228	166 179 192 205 217	159 171 183 195 206	152 163 174 186 197	144 154 165 176 187	137 147 157 168 178	130 140 150 158 168	124 132 142 151 160	117 126 135 142 151	111 120 127 135 143	60.0 65.0 70.0 75.0 80.0	15" B 109
239 254 269 284 299	231 245 259 272 287	221 235 249 261 275	213 226 239 251 264	203 216 228 240 252	194 206 218 228 240	186 197 209 219 230	177 188 199 208 219	169 180 190 199 210	161 171 181 190 200	80.0 85.0 90.0 95.0 100.0	15" B 113
153 168 181 192	145 160 172 183	139 152 163 173	132 144 154 164	125 137 146 155	119 129 138 146	112 122 131 138	106 116 123 130	100 110 117 123	95 104 110 116	55.0 60.0 65.0 70.0	18" 8 65
187 201 214	179 192 204	171 183 194	164 174 185	155 165 175	148 157 167	141 150 158	134 142 150	126 135 142	120 127 135	65.0 70.0 75.0	20" B 73
246 258 271 286 300	237 249 262 277 290	229 239 253 265 278	219 230 241 255 267	211 221 232 244 257	202 212 223 234 245	194 202 213 223 235	186 194 204 214 223	177 185 195 205 214	169 176 185 195 203	80.0 85.0 90.0 95.0 100.0	20" B 121
239 255 269 282 296	231 245 258 271 284	223 236 247 261 272	213 226 235 249 260	205 217 227 239 249	196 207 216 228 238	187 198 207 218 226	179 189 197 207 215	172 181 189 198 205	163 172 180 188 196	80.0 85.0 90.0 95.0 100.0	24" B 89
335 350 365	326 340 355	316 330 344	306 319 333	296 309 322	286 298 311	277 288 300	266 278 289	257 267 278	247 257 268	105.0 110.0 115.0	24" B 127

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula, $P = \frac{50000}{4000}$ Safety factor 4.

 $1 + \frac{(12 \text{ L})^2}{36\ 000\ r^2}$

Area Least											
Size of Angles.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius Gyration. Axis 2-2.	I	engtl n Feet	à.			
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	2	4	6			
3 x 2 ½ x ¼ 4 4 5 4 5 15 4 5 15 4 5 15 4 7 15 4 8 15	6 x 1/4	23.1 28.8 34.1 39.3 44.2 49.5	6.74 8.36 9.93 11.51 13.00 14.50	1.24 1.27 1.30 1.33 1.36 1.39	2.41 2.39 2.37 2.35 2.33 2.31	84 103 123 142 161 180	81 100 120 139 157 175	77 96 114 183 151 169			
3½ x 2½ x ½ a 4 38 a 4 16 a 4 16 a 4 16	2 X 1/4	25.6 31.8 37.7 43.6 49.5 55.0	7.51 9.31 11.07 12.78 14.50 16.18	1.46 1.49 1.52 1.55 1.58 1.61	2.88 2.86 2.84 2.82 2.80 2.78	93 115 137 159 180 201	91 113 135 156 177 197	88 109 130 151 171 192			
4 x 3 x 1 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2	8 x 1 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37.3 44.2 51.1 58.0 64.9 71.4 77.9 84.4 90.5 97.0	10.86 12.92 14.98 17.00 18.98 20.92 22.86 24.76 26.62 28.44	1.67 1.70 1.73 1.76 1.79 1.82 1.85 1.89 1.92	3.25 3.23 3.21 3.18 3.16 3.14 3.12 3.10 3.08 3.06		133 158 183 208 233 257 281 304 327 350	129 154 179 203 227 251 274 297 320 343			
5 x 31/2 x 3/6 x 4 x 4 x 5/8 x 4 x 4 x 5/8 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x	10 x	45.4 54.4 62.9 71.4 79.9 88.5 96.6 104.7 112.8 120.6 128.7	13.37 15.95 18.50 21.00 23.51 25.93 28.36 30.74 33.13 35.43 37.74	2.08 2.10 2.13 2.16 2.19 2.22 2.25 2.29 2.32 2.35 2.38	4.10 4.08 4.06 4.04 4.02 4.00 3.98 3.96 3.93 3.91 3.89		165 196 228 259 290 320 350 380 409 438 466	162 193 224 255 285 315 345 374 403 432 460			
8 x 3½ x ½ x ½ x ½ x ½ x ½ x ½ x ½ x ½ x	12 x 3/2 x 1/2 x 1	62.1 71.9 81.6 91.4 101.1 110.5 120.2 129.2 138.5 147.5 156.4	18.18 21.13 24.00 26.87 29.70 32.49 35.24 37.99 40.70 43.37 46.00	2.56 2.59 2.62 2.65 2.68 2.71 2.74 2.77 2.80 2.83 2.86	5.01 4.99 4.97 4.95 4.93 4.91 4.88 4.86 4.81 4.82 4.80		225 261 297 333 368 402 437 471 505 538 571	222 258 294 329 364 398 432 466 499 532 565			

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula,
$$P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$$

8	10	12	14	16	18	20	22	24	26	28	30	32	34
72 90 108 125 143 160	67 84 100 117 134 150	61 77 93 108 124 140	56 70 85 99 114 129	51 64 77 91 105 119			· · · · · · · · · · · · · · · · · · ·						
84 104 125 145 164 184	79 99 118 137 156 175	74 92 111 129 147 166	69 86 103 121 138 155	80 96 112 129 145	58 73 89 104 119 135	54 68 82 96 111 125							
124 149 172 196 220 243 266 289 311 333	119 142 165 188 211 234 256 278 300 322	113 135 157 179 201 223 245 266 288 309	106 127 148 170 191 212 233 254 274 295	119 139 160 180 200 220 240 260 280	93 112 131 150 169 188 208 227 246 265	86 104 122 140 158 177 195 213 232 250	80 97 114 131 148 165 183 200 218 236	74 90 106 122 138 155 171 188 205 222					
158 188 219 249 279 308 337 366 395 423 451	153 183 212 242 271 300 329 357 385 413 441	147 176 205 234 262 290 318 346 374 401 428	141 169 197 225 252 280 307 334 361 388 414	135 162 189 215 242 269 295 321 348 374 400	128 154 180 206 231 257 282 308 333 359 384	122 146 171 196 220 245 270 294 319 343 368	115 139 162 186 209 233 257 280 304 328 352	109 131 153 176 198 221 244 267 290 313 336	103 124 145 166 188 210 231 253 275 297 320	97 117 137 157 178 198 219 240 261 283 304			
219 254 289 324 358 392 425 459 493 515 558	214 249 283 318 352 385 418 451 484 516 548	209 243 277 310 344 376 409 442 474 506 537	203 236 269 302 335 367 399 431 462 494 525	197 229 261 293 325 356 388 419 450 481	190 221 252 283 314 345 376 406 437 467 497	183 213 243 273 303 333 363 393 423 452 481	176 205 234 263 292 321 350 379 403 437 465	168 196 225 253 281 309 337 365 393 421 449	161 188 215 242 269 297 324 351 378 405 432	154 180 206 232 258 284 311 337 363 390 416	147 172 197 222 247 272 298 323 349 374 400	140 164 188 212 236 261 285 310 334 359 384	133 156 179 202 226 249 273 296 320 344 368

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula, $\mathbf{P} = \frac{50\ 000}{1 + \frac{(12\ \mathrm{L})^2}{36\ 000\ \mathrm{r}^2}}.$

							EJ.	
Size of Angles.	Size of Plate.	Weight of Column.	of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2		Lengtl	
Inches.	Inches.	Lbs.per Pt.	Sq. Ins.	Inches.	Inches.	2	4	6
3 x 21/2 x 1/4	8 x 1/4	24.8 30.9 36.6 42.3 47.6 53.3	7.24 8.98 10.68 12.38 14.00 15.62	1.19 1.22 1.25 1.28 1.31 1.34	3.25 3.23 3.21 3.19 3.17 3.15	90 111 132 153 173 193	87 108 128 149 169 188	82 102 122 142 161 181
3½ x 2½ x ½ 4 4 5 4 4 7 4 4 7 4 4 7 4 4 7 4 4 7 6 7 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	8 x 1/4 4	26.4 32.9 39.0 45.1 51.2 56.9	7.76 9.62 11.44 13.22 15.00 16.74	1.44 1.47 1.50 1.53 1.56 1.59	3.31 3.28 3.26 3.24 3.22 3.20	96 119 142 164 186 208	94 117 139 161 183 204	91 113 134 156 177 198
4 x 8 x 5 a a a a a a a a a a a a a a a a a a	10 x 18 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	39.4 46.8 54.1 61.4 68.7 75.7 82.6 89.5 96.0 103.0	11.49 13.67 15.86 18.00 20.11 22.17 24.24 26.26 28.25 30.19	1.62 1.65 1.68 1.71 1.74 1.77 1.80 1.83 1.86 1.90	4.09 4.07 4.04 4.02 4.00 3.98 3.96 3.94 3.92 3.90		140 167 194 220 246 272 297 322 347 371	136 163 189 214 240 265 290 315 339 363
5 x 31/2 x 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 x s s s s s s s s s s s s s s s s s s	47.6 56.9 65.9 74.8 83.8 92.7 101.3 109.8 118.4 126.5 135.1	13.99 16.70 19.37 22.00 24.63 27.18 29.73 32.24 34.75 37.18 39.61	2.03 2.06 2.08 2.11 2.14 2.17 2.20 2.23 2.26 2.29 2.33	4.95 4.92 4.90 4.88 4.86 4.84 4.82 4.80 4.78 4.76		172 206 238 271 303 335 367 398 429 459 489	169 202 234 266 298 330 361 392 422 452 482
8 x 3½ x 3	14 x 3/8 a 1/2 a 1	64.7 74.8 85.0 95.2 105.3 115.1 125.3 134.7 144.5 153.8	18.93 22.01 25.00 28.00 30.95 33.87 36.74 39.62 42.45 45.25 48.00	2.51 2.54 2.57 2.59 2.62 2.65 2.68 2.71 2.74 2.77 2.81	5.85 5.83 5.81 5.79 5.77 5.74 5.72 5.70 5.68 5.66 5.64		234 272 309 347 383 419 455 491 526 561 595	231 269 306 343 379 415 450 486 521 555 589

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula, P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$ Safety factor 4.

В	10	12	14	16	18	20	22	24	26	28	30	32	34
77 96 115 134 152 171	71 89 106 124 142 160	65 81 98 114 131 148	58 74 89 105 120 136	53 67 81 95 110 124	1			l 					
86 107 128 149 170 190	81 101 121 141 161 180	76 95 114 133 151 170	70 88 106 124 142 159	65 81 98 115 132 149	60 75 91 106 122 138	55 69 83 98 113 128							
131 156 152 207 232 256 251 305 329 352	125 149 174 198 222 246 270 293 317 340	118 141 165 188 211 234 257 280 303 325	111 133 155 177 200 222 244 266 255 310	103 124 145 167 188 209 230 251 273 294	96 116 136 156 176 196 216 237 257 277	108 127 145 164 184 203 222 242 261	83 100 118 135 153 171 190 208 227 245	77 93 109 126 143 160 177 195 212 230					
165 197 229 260 291 322 353 383 413 443 473	159 191 222 252 283 313 343 373 403 432 461	153 184 214 244 273 303 332 361 390 419 447	147 176 205 234 263 291 320 348 376 405 432	140 168 196 224 251 279 307 334 362 389 416	133 160 186 213 240 267 293 320 346 373 399	126 151 177 202 228 254 279 305 331 357 382	119 143 167 192 216 241 266 290 315 340 365	112 135 158 181 205 228 252 276 299 323 347	105 127 149 171 194 216 239 261 284 307 330	99 120 141 162 183 204 226 247 269 291 313			
228 264 301 337 373 408 444 478 513 547 581	223 259 295 330 366 400 435 470 504 538 571	217 252 287 322 357 391 425 459 493 526 559	211 245 279 313 347 381 414 447 480 513 546	204 237 270 304 337 369 402 435 467 499 531	196 229 261 293 325 357 389 421 453 484 515	199 220 251 253 314 345 376 407 438 468 499	181 211 241 272 302 332 362 392 422 452 482	173 202 231 261 290 319 348 377 406 435 464	166 194 221 250 278 306 334 362 390 419 447	158 185 212 239 266 293 320 347 375 402 429	151 176 202 228 254 280 306 333 359 385 412	143 168 193 217 242 268 293 318 344 369 395	136 160 184 207 231 255 280 304 329 353 378

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula, P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}.$

Size of Angles.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.	in Feet.		
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	2	4	6
3 x 2 1/2 x 1/4 a a a a a a a a a a a a a a a a a a a	10 x 1/4 8 16 4 8 8 4 7 16 4 1/2 8 76	26.5 33.0 39.2 45.3 51.0 57.1	7.74 9.61 11.43 13.26 15.00 16.75	1.16 1.18 1.21 1.24 1.27 1.30	4.07 4.05 4.03 4.01 3.99 3.96	96 119 141 164 186 207	92 115 137 159 180 202	87 109 130 151 172 193
3½ x 2½ x ½ 4	10 x 1/4 5 18 8 8 4 7 16 4 1/2 2 16	28.1 35.0 41.6 48.1 54.6 60.7	8.26 10.25 12.19 14.10 16.00 17.87	1.39 1.42 1.45 1.48 1.51 1.54	4.13 4.11 4.09 4.07 4.05 4.03	102 127 151 175 199 222	100 124 148 171 195 217	96 119 143 165 188 210
4 x 8 x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 x 1/8 8 4 4 4 1/8 4 4 1/8 4 4 4 1/8 4 4 4 1/8 4 4 4 1/8 4 4 1/8 4 4 4 1/8 4 4 1/8	41.6 49.3 57.1 64.8 72.6 79.9 87.3 94.6 101.6 108.9	12.11 14.42 16.73 19.00 21.23 23.42 25.61 27.76 29.87 31.94	1.58 1.61 1.64 1.66 1.69 1.72 1.75 1.78 1.81	4.91 4.89 4.87 4.85 4.83 4.81 4.79 4.77 4.74		148 176 204 232 260 287 314 340 366 392	143 171 198 226 253 279 306 332 358 383
5 x 31/2 x 5 6 4 4 4 15 6 4 4 15 6 4 4 15 6 4 4 15 6 4 4 15 6 4 4 15 6 4 4 4 15 6 4 4 4 4 4 15 6 4 4 4 4 15 6 4 4 4 4 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 x 18/5	49.7 59.5 68.8 78.2 87.6 96.9 105.9 114.9 123.9 132.5 141.4	14.62 17.45 20.25 23.00 25.76 28.43 31.11 33.74 36.38 38.93 41.49	1.98 2.01 2.04 2.07 2.09 2.12 2.15 2.18 2.21 2.24 2.27	5.77 5.75 5.73 5.71 5.69 5.67 5.64 5.62 5.60 5.58 5.56		180 215 249 283 317 351 384 416 449 481 512	176 211 245 278 312 345 377 410 442 473 505
8 x 3½ x 3	16 x 2 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	67.2 77.8 88.4 99.0 109.6 119.8 130.4 140.2 150.4 160.2	19.68 22.88 26.00 29.12 32.20 35.24 38.24 41.24 44.20 47.12 50.00	2.46 2.49 2.52 2.54 2.57 2.60 2.63 2.66 2.69 2.72 2.75	6.68 6.66 6.64 6.61 6.59 6.57 6.55 6.53 6.51 6.48		244 283 322 360 399 436 474 511 548 584 620	240 279 318 356 394 431 468 505 542 578 613

CALCULATED FOR LEAST RADIUS OF GYRATION, AXIS 1-1.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$.

В	10	12	14	16	18	20	22	24	26	28	30	32	34
81 102 122 142 162 182	75 93 112 131 150 169	68 85 103 120 138 156	61 77 93 109 126 143	55 69 84 99 114 130									
91 114 136 158 180 201	86 107 128 149 170 191	100 120 140 160 179	73 92 111 130 149 168	68 85 102 120 138 156	62 78 94 111 127 144	57 71 86 102 117 133							
137 164 191 217 244 270 296 321 346 371	131 156 182 208 233 258 283 308 333 357	123 148 172 197 221 245 270 294 318 341	115 139 162 185 208 232 255 278 301 324	107 129 151 173 196 218 240 262 285 307	100 120 141 162 183 204 225 246 268 289	92 112 131 151 170 190 210 231 251 272	85 103 121 140 158 177 196 216 235 254	79 95 112 130 147 165 183 201 220 238					
171 205 238 271 304 336 369 400 432 453 494	166 198 231 263 295 327 358 389 420 451 481	159 191 222 253 284 315 346 376 407 437 467	152 183 213 243 273 303 333 362 392 421 450	145 174 203 232 261 290 319 347 376 404 433	137 165 193 221 248 276 304 332 359 387 415	130 156 183 209 236 262 289 316 343 369 396	122 147 173 198 223 249 274 300 326 351 377	115 139 163 187 211 235 260 284 309 334 359	108 131 153 176 199 222 246 269 293 317 340	102 123 144 166 188 210 232 254 277 300 323			
274 312 350 387 424 461 497 533 569 605	231 268 306 343 379 416 452 488 523 559	225 261 298 334 370 406 441 477 512 546 581	218 254 289 325 360 395 429 464 498 532 566	211 245 280 314 348 382 416 450 484 517 550	203 236 270 303 336 370 403 436 468 501 534	195 227 259 292 324 356 388 420 452 484 516	187 218 249 280 311 342 374 405 436 467 498	178 208 238 268 398 329 359 359 419 449	170 199 228 257 286 315 344 373 402 431 460	162 190 217 245 273 301 329 357 385 414 442	154 181 207 234 261 287 314 342 369 396	147 172 197 223 249 274 300 326 353 379	140 164 188 212 237 262 287 312 337 362 388

CALCULATED FOR LEAST RADIUS OF GYRATION, AXIS 1-1.

Based on Gordon's Formula, P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}.$ Safety factor 4.

Size of Angles.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.	I	engtl n Feet	h t.	
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	2	4	6	
8 x 21/2 x 1/4 u u 3/6 u u 1/6 u u 1/6 u u 1/6 u u 1/2 u u 1/2	12 x 1/4 4 5 1 5 1 5 8 8 7 8 8 1 7 8 8 1 1 9 2 8 9 1 6	28.2 35.2 41.7 48.3 54.4 61.0	8.24 10.23 12.18 14.13 16.00 17.87	1.12 1.15 1.17 1.20 1.23 1.26	4.87 4.85 4.83 4.81 4.78 4.76	102 126 151 174 198 221	98 122 146 169 192 215	92 115 138 160 183 205	
3½ x 2½ x ½ u u 15 u u 17 u	12 x 1/4	29.8 37.2 44.1 51.1 58.0 64.6	8.76 10.87 12.94 14.97 17.00 18.99	1.35 1.38 1.41 1.43 1.46 1.49	4.94 4.92 4.90 4.88 4.85 4.83	108 135 160 186 211 236	106 131 157 182 206 231	101 126 151 175 199 223	
4 x 3 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5	14 x 5 8 8 1 1 8 8 1 1 8 8 8 1 1 8 8 8 1 1 8 8 8 1 1 8 8 8 1 8 8 8 1 1 8	43.7 51.9 60.0 68.2 76.4 84.1 91.9 99.7 107.1 114.9	12.74 15.17 17.61 20.00 22.36 24.67 26.99 29.26 31.50 33.69	1.54 1.57 1.60 1.62 1.65 1.68 1.71 1.74 1.77	5.72 5.70 5.68 5.66 5.63 5.61 5.59 5.57 5.55 5.53		155 185 215 244 273 302 330 358 386 413	150 179 208 237 265 294 322 349 376 403	
5 x 31/2 x 5 16 2 2 4 4 4 16 16 16 16 16 16 16 16 16 16 16 16 16	16 x 5 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	51.8 62.0 71.8 81.6 91.4 101.2 110.6 120.0 129.4 138.4 147.8	15.24 18.20 21.12 24.00 26.88 29.68 32.48 35.24 38.00 40.68 43.36	1.94 1.97 2.00 2.02 2.05 2.08 2.11 2.14 2.17 2.19 2.22	6.59 6.57 6.54 6.52 6.50 6.48 6.46 6.44 6.41 6.39 6.37		187 224 260 295 331 366 400 435 468 502 535	183 219 255 290 325 359 393 427 461 494 527	
6 x 3½ x 3% a 1	18 x 8/9 = 1/2 = 1	69.8 80.8 91.8 102.8 113.9 124.5 135.5 145.7 156.4 166.6 176.8	20.43 23.76 27.00 30.25 33.45 36.62 39.74 42.87 45.95 49.00 52.00	2.42 2.44 2.47 2.50 2.52 2.55 2.58 2.61 2.64 2.67 2.70	7.49 7.47 7.45 7.42 7.40 7.38 7.36 7.34 7.32 7.29 7.27		253 294 334 374 414 453 492 531 569 607 644	249 290 330 369 409 448 486 525 563 600 637	

CALCULATED FOR LEAST RADIUS OF GYRATION, AXIS 1-1.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$

8	10	12	14	16	18	20	22	24	26	28	30	32	34
86 107 128 150 171 192	78 98 118 138 158 178	71 89 107 126 145 164	63 80 97 114 131 149	57 72 87 103 119 135									
96 120 143 167 190 213	112 135 157 179 201	104 125 146 167 188	77 96 116 136 156 175	70 88 107 125 144 162	64 81 98 115 132 150	58 74 89 105 122 138							
144 172 200 228 255 283 310 337 364 390	136 163 190 217 244 270 297 323 349 375	128 154 180 205 231 256 282 307 332 357	120 144 168 193 217 241 266 290 315 339	111 134 157 180 203 226 250 273 296 320	103 124 146 168 189 211 234 256 278 301	95 115 135 156 176 197 218 239 260 282	58 106 125 144 163 183 203 223 243 263	81 98 116 133 151 170 188 207 226 246					
178 213 248 282 316 350 851 417 450 483 515	172 206 240 273 307 340 372 405 437 470 501	165 198 231 263 295 327 359 391 423 454 485	158 189 220 252 283 314 345 376 407 437 468	150 180 210 240 270 300 330 360 390 419 449	142 170 199 228 257 286 314 343 372 401 430	134 161 188 216 243 271 298 326 354 382 410	126 152 178 204 230 256 283 309 336 363 390	118 143 167 192 217 242 267 293 318 344 370	111 134 157 181 204 228 252 277 301 326 350	104 126 148 170 192 215 238 261 284 308 332			
245 285 324 363 402 440 478 516 554 591 628	239 278 317 355 393 431 469 506 543 580 616	233 271 308 346 383 429 457 494 530 567 602	225 262 299 336 372 408 445 480 516 552 587	217 253 289 325 360 395 431 466 501 535 570	209 244 278 313 347 382 416 450 484 518 552	201 234 267 301 334 367 401 434 467 500 533	192 224 256 288 321 353 385 417 449 481 513	183 214 245 276 307 338 369 400 431 463 494	175 204 234 264 293 323 353 383 414 444 474	166 194 223 251 280 309 338 367 396 425 454	158 185 212 240 267 295 323 350 378 407 435	150 176 202 228 254 281 308 334 362 389 416	143 167 192 217 242 268 293 319 345 371 397

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula, P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$ Safety factor 4.

Size of Angles.	Size of Plata	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.	Leng	th in	Feet.
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	6	8	10
7 x 3½ x ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼	14 x 7 16 16 16 16 16 16 16 16 16 16 16 16 16	80.8 91.8 103.2 113.7 124.7 135.3 145.9 156.5 166.6 176.8	23.73 27.00 30.24 33.43 36.63 39.74 42.86 45.93 49.01 52.00	3.05 3.08 3.11 3.13 3.17 3.20 3.23 3.26 3.29 3.32	5.92 5.90 5.87 5.85 5.83 5.81 5.79 5.76 5.74	292 332 372 412 451 490 528 567 604 642	289 329 368 407 446 485 523 561 598	285 324 363 402 440 478 516 553 591 627
7 x 81/2 x 1/2 x 1/4	16 x 7 16 16 16 16 16 16 16 16 16 16 16 16 16	83.8 95.2 107.0 118.0 129.4 140.4 151.4 162.4 173.0 183.6	24.60 28.00 31.36 34.68 38.00 41.24 44.48 47.68 50.88 54.00	3.00 3.02 3.06 3.08 3.11 3.14 3.17 3.20 3.23 3.26	6.75 6.73 6.71 6.69 6.67 6.64 6.62 6.60 6.58 6.56	303 345 380 427 468 508 548 588 627 666	299 340 382 422 463 503 542 582 621 659	294 335 376 416 456 496 535 574 612 651
7 x3½x 1 1/2 x	18 x 16 44 1	86.8 98.6 110.8 122.3 134.1 145.5 156.9 168.4 179.4 190.4	25.48 29.00 32.49 35.93 39.38 42.74 46.11 49.43 52.76 56.00	2.94 2.97 3.00 3.02 3.06 3.08 3.11 3.14 3.17 3.20	7.58 7.55 7.53 7.51 7.49 7.47 7.44 7.42 7.40 7.38	313 357 400 442 485 526 568 609 650 690	309 352 395 437 479 520 562 602 643 683	305 347 389 430 472 513 554 594 634 674
7 x 8½ x ½ ½ " " 55 " " 14 " " 14 " " 14 " " 14 " " 14	20 x 17 10 10 10 10 10 10 10 10 10 10 10 10 10	89.8 102.0 114.7 126.5 138.7 150.6 162.5 174.3 185.8 197.2	26.35 30.00 33.61 37.18 40.75 44.24 47.73 51.18 54.63 58.00	2.89 2.92 2.95 2.97 3.00 3.03 3.06 3.09 3.12 3.15	8.39 8.37 8.34 8.32 8.30 8.28 8.25 8.21 8.19	324 369 413 437 501 545 588 630 673 715	320 364 408 452 495 538 581 623 665 707	314 358 402 445 488 530 572 614 656 697

CALCULATED FOR LEAST RADIUS OF GYRA-TION, AXIS 1-1.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$

	1	1		1	1	1			1					
12	14	16	18	30	22	24	26	28	80	82	34	36	38	40
279 318 357 395 433 470 508 545 581 618	274	267	260	253	246	238	230	222	214	206	198	191	183	176
	312	305	297	289	280	271	263	254	245	236	227	218	210	201
	350	342	333	324	315	305	295	286	276	266	256	246	237	228
	387	379	369	359	349	339	328	317	306	295	284	274	263	253
	424	415	405	395	384	372	360	349	337	325	313	302	290	279
	462	452	441	430	418	406	393	380	368	355	342	330	318	306
	498	488	477	465	452	439	425	412	398	385	371	358	345	332
	535	524	512	499	486	472	458	443	429	415	400	386	372	358
	571	559	547	534	520	505	490	475	460	444	429	414	399	385
	607	595	582	568	553	538	522	506	490	474	458	442	427	412
289	283	276	269	261	253	245	236	228	220	211	203	195	187	180
329	322	315	307	298	289	280	270	261	251	242	232	223	214	206
369	362	353	344	335	325	314	304	293	283	272	262	252	242	233
409	400	391	381	371	360	349	337	326	314	303	291	280	269	259
448	439	429	419	407	396	383	371	359	346	334	321	309	297	286
487	478	467	456	444	431	418	405	391	378	364	351	338	325	313
526	516	505	493	480	466	452	438	424	409	395	381	367	353	340
564	554	542	529	516	501	487	472	456	441	426	411	396	381	367
603	591	579	566	551	536	521	505	489	473	457	441	425	409	394
640	629	616	602	587	571	555	538	521	504	487	471	454	437	421
299	292	285	277	269	260	252	243	234	255	216	208	199	191	
340	333	325	316	307	297	287	277	267	257	248	238	228	219	
382	374	365	355	345	334	323	312	301	290	279	268	258	247	
423	414	404	393	382	371	359	347	335	322	310	298	287	275	
463	454	443	432	420	407	335	382	368	355	342	329	316	304	
504	494	483	470	457	444	430	416	402	388	374	360	346	333	
544	533	521	508	495	481	466	451	436	420	405	390	376	361	
584	573	560	546	532	517	501	485	469	453	437	421	405	390	
624	612	598	584	569	553	536	520	503	486	469	452	435	419	
663	650	636	622	606	589	572	554	536	518	500	483	465	448	
308	301	294	285	277	268	259	249	240	230	221	212	204	195	
351	343	335	326	316	306	295	285	274	264	253	243	233	224	
394	385	376	366	355	344	332	321	309	297	286	274	263	253	
436	427	417	405	394	381	369	356	343	330	318	305	293	281	
479	468	457	445	432	419	406	392	378	364	350	337	323	310	
521	510	498	485	471	457	442	427	412	397	383	368	354	340	
562	551	538	524	510	495	479	463	447	431	415	400	384	369	
503	591	578	563	548	532	515	499	482	465	448	431	415	399	
644	632	618	602	586	569	552	534	516	498	480	463	445	428	
685	672	657	641	624	607	588	570	551	532	513	494	476	458	

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $\mathbf{P} = \frac{50\ 000}{1 + \frac{(12\ \mathrm{L})^2}{36\ 000\ \mathrm{r}^2}}$.

								20	
	Size of Angles. Inches.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.	l i	Length n Feet	1 5.
	Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches	Inches.	4	6	8
3	x 2 1/2 x 1/4 a 3/8 a 1/8 a 1/2 a 1/2 a 1/2 a 1/2	6 x 1/4	23.1 28.8 34.1 39.3 44.2 49.5	6.74 8.36 9.93 11.51 13.00 14.50	1.24 1.27 1.30 1.33 1.36 1.39	2.41 2.39 2.37 2.35 2.33 2.31	83 103 123 142 161 179	82 102 121 140 158 176	81 100 119 137 155 173
31/4	2 x 2 1/2 x 1/4 4 3/8 4 7/16 4 1/2 4 1/2 4 1/2	7 x 1/4	25.6 31.8 37.7 43.6 49.5 55.0	7.51 9.31 11.07 12.78 14.50 16.18	1.46 1.49 1.52 1.55 1.58 1.61	2.88 2.86 2.84 2.82 2.80 2.78	93 115 137 159 180 200	92 114 136 157 178 198	91 113 134 155 176 196
4 4 4 4 4 4 4 4 4	X X 15/8 / 16 / 2	8 X 16 1/2 2 2 16 1/2 2 2 16 2 1/2 2 2 1/2 2 2 1/2 2 2 1/2 2 2 1/2 2 2 1/2 2 2 2	37.3 44.2 51.1 58.0 64.9 71.4 77.9 84.4 90.5 97.0	10.86 12.92 14.98 17.00 18.98 20.92 22.86 24.76 26.62 28.44	1.67 1.70 1.73 1.76 1.79 1.82 1.85 1.89 1.92 1.95	3.25 3.23 3.21 3.18 3.16 3.14 3.12 3.10 3.08 3.06		134 160 185 210 234 258 282 305 328 350	133 158 183 207 231 255 278 301 324 346
6 4 4 4 4 4 4 4 4 4 4	X 31/2 X 3/8 2 3/8	10 x 5 1 3 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 1 5 6 8 2 1 5	45.4 54.4 62.9 71.4 79.9 88.5 96.6 104.7 112.8 120.6 128.7	13.37 15.95 18.50 21.00 23.51 25.93 28.36 30.74 33.13 35.43 37.74	2.08 2.10 2.13 2.16 2.19 2.22 2.25 2.29 2.32 2.35 2.38	4.10 4.08 4.06 4.04 4.02 4.00 3.98 3.96 3.93 3.91 3.89		166 198 229 260 291 321 351 381 410 439 467	165 196 228 258 289 319 349 378 407 436 464
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	x 31/2 x 3/8 a 11/6 a 16/6 a 11/6 a 16/6 a 11/6 a 1	12 x 3/8 a 11/2 a a 11	62.1 71.9 81.6 91.4 101.1 110.5 120.2 129.2 138.5 147.5	18.18 21.13 24.00 26.87 29.70 32.49 35.24 37.99 40.70 43.37 46.00	2.56 2.59 2.62 2.65 2.68 2.71 2.74 2.77 2.80 2.83 2.86	5.01 4.99 4.97 4.95 4.93 4.91 4.88 4.86 4.84 4.82 4.80			225 261 297 332 367 402 436 470 503 536 569

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$.

10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
79 98 116 134 151 169	77 95 113 130 147 163	74 92 109 126 142 158	72 89 105 121 137 152	69 85 101 116 131 146	66 82 97 111 126 139	63 78 92 106 120 133	60 75 88 101 114 127	58 71 84 96 108 120	55 68 80 92 103 114	52 64 76 87 98 108					
89 111 132 152 172 192	88 109 129 149 169 188	86 106 126 146 165 183	83 103 123 142 160 178	81 100 119 137 156 173	79 97 115 133 151 167	76 94 112 129 145 162	73 91 108 124 140 156	71 87 104 119 135 150	68 84 100 115 129 144	65 81 96 110 124 138	63 77 92 106 119 132	60 74 88 101 114 126	58 71 84 97 109 121		
131 156 180 204 229 252 274 297 319 341	129 153 177 201 224 247 270 292 314 335	126 150 174 197 220 243 264 286 307 328	124 147 170 193 215 237 259 280 300 321	121 144 166 188 210 231 252 273 293 312	118 140 162 184 205 225 245 265 285 304	115 136 158 178 199 219 238 258 276 295	111 132 153 173 193 212 - 231 250 268 285	108 128 148 168 187 206 224 242 259 276	105 124 143 162 181 199 216 233 250 266	101 120 139 157 175 192 209 225 241 257	98 116 134 151 168 185 201 217 232 248	94 112 129 146 162 178 194 209 224 238	91 108 124 141 156 172 187 201 215 229	88 104 120 135 150 165 179 193 207 220	85 100 115 130 145 159 173 186 199 211
163 195 226 256 287 316 346 375 403 432 460	161 193 223 254 284 313 342 371 399 427 454	160 190 221 250 280 309 338 366 394 421 449	157 188 218 247 276 305 333 361 388 415 442	155 185 214 243 272 300 328 355 382 408 435	153 182 211 239 267 295 322 349 375 401 427	150 179 207 235 262 289 316 342 368 393 418	147 175 203 230 257 283 309 335 360 385 410	144 171 199 225 251 277 303 328 352 377 400	141 168 194 220 246 271 296 320 344 368 391	138 164 190 215 240 265 289 312 336 359 381	134 160 185 210 234 258 282 305 327 350 371	131 156 181 205 228 251 274 297 319 340 362	128 152 176 199 222 245 267 289 310 331 352	124 148 171 194 216 238 260 281 301 322 342	121 144 166 189 210 232 252 273 293 313 332
224 260 295 330 365 399 433 467 500 533 565	222 258 293 328 363 397 430 463 496 529 561	221 256 291 325 360 393 427 460 492 524 556	218 253 288 322 356 389 422 455 487 519	216 251 285 319 352 385 418 450 482 513 544	214 248 282 315 348 381 413 445 476 507 538	211 245 278 311 344 376 408 439 470 500 530	208 242 274 307 339 371 402 433 463 493	205 238 270 302 334 365 396 426 456 486 515	202 234 266 298 329 359 389 419 449 478 506	199 231 262 293 323 353 383 412 441 469 497	196 227 257 288 318 347 376 405 433 461 488	192 223 253 282 312 341 369 397 425 452 479	189 218 248 277 306 334 362 389 417 443 469	185 214 243 272 300 327 355 382 408 434 460	181 210 238 266 294 321 347 374 400 425 450

Area Least

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^3}{36\ 000\ r^2}}$.

	Size of Angles	Size of Plate.	Weight of Column.	of Column Section.	Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2–2.		Lengt n Fee	
	Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	4	6	8
3	X 2 1/2 X 1/4	8 x 1/4	24.8 30.9 36.6 42.3 47.6 53.3	7.24 8.98 10.68 12.38 14.00 15.62	1.19 1.22 1.25 1.28 1.31 1.34	3.25 3.23 3.21 3.19 3.17 3.15	90 112 133 154 174 194	89 111 132 152 173 192	88 110 130 151 171 190
31,	2 x 2 1/2 x 1/4 u 5/16 u 5/8 u 1/2 u 1/2 u 1/2	8 x 1/4	26.4 32.9 39.0 45.1 51.2 56.9	7.76 9.62 11.44 13.22 15.00 16.74	1.44 1.47 1.50 1.53 1.56 1.59	3.31 3.28 3.26 3.24 3.22 3.20		96 119 141 163 185 206	95 117 140 161 183 204
4 4 4 4 4 4 4 4 4	X u x 15 (8 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 x 18 2 3/8 4 118 4 5/8 4 118 4 3/4 4 13 4 7/8	39.4 46.8 54.1 61.4 68.7 75.7 82.6 89.5 96.0 103.0	11.49 13.67 15.86 18.00 20.11 22.17 24.24 26.26 28.25 30.19	1.62 1.65 1.68 1.71 1.74 1.77 1.80 1.83 1.86 1.90	4.09 4.07 4.04 4.02 4.00 3.98 3.96 3.94 3.92 3.90		142 170 197 223 249 275 300 325 350 374	141 169 195 222 247 273 298 323 347 371
5	X 31/2 X 18 18 18 18 18 18 18 18 18 18 18 18 18	12 x 5 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 2	47.6 56.9 65.9 74.8 83.8 92.7 101.3 109.8 118.4 126.5 135.1	13.99 16.70 19.37 22.00 24.63 27.18 29.73 32.24 34.75 37.18 39.61	2.03 2.06 2.08 2.11 2.14 2.17 2.20 2.23 2.26 2.29 2.33	4.95 4.92 4.90 4.88 4.86 4.84 4.82 4.80 4.78 4.76 4.74			173 206 239 272 304 336 368 399 429 460 490
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X X 7.6 (2) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 x x x x x x x x x x x x x x x x x x x	64.7 74.8 85.0 95.2 105.3 115.1 125.3 134.7 144.5 153.8 163.2	18.93 22.01 25.00 28.00 30.95 33.87 36.74 39.62 42.45 45.25 48.00	2.51 2.54 2.57 2.59 2.62 2.65 2.68 2.71 2.74 2.77 2.81	5.85 5.83 5.81 5.79 5.77 5.74 5.72 5.70 5.68 5.66 5.64			

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, P = $\frac{50\ 000}{1 + \frac{(12\ \text{L})^2}{36\ 000\ \text{r}^2}}.$ Safety factor 4.

10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
87	86	84	83	81	79	77	74	72	70	68	65	63	61	59	56
108	106	104	102	100	97	95	92	89	86	83	81	78	75	72	70
129	127	124	122	119	116	112	109	106	102	99	96	92	89	86	82
149	146	143	140	137	133	130	126	122	118	114	110	106	102	99	95
168	166	162	159	155	151	147	142	138	133	129	124	120	115	111	107
188	184	181	177	173	168	163	158	153	148	143	138	133	128	123	119
93	92	90	89	87	85	82	80	78	75	73	70	68	66	63	61
116	114	112	110	108	105	102	99	96	93	90	87	84	81	78	75
138	136	133	130	127	124	121	118	114	110	107	103	100	96	93	89
159	157	154	151	147	144	140	136	132	127	123	119	115	111	107	103
181	178	174	171	167	162	158	153	149	144	139	134	130	125	120	116
201	198	194	190	186	181	176	171	165	160	155	149	144	139	134	129
140	139	137	135	133	131	129	126	124	121	118	115	112	110	107	104
167	165	163	161	159	156	153	150	147	144	141	137	134	130	127	123
194	192	189	187	184	181	177	174	170	166	162	159	155	151	147	143
220	217	215	212	208	205	201	197	193	189	184	180	175	170	166	161
245	243	240	236	233	229	224	220	215	210	205	200	195	190	185	180
271	268	264	261	256	252	247	242	237	232	226	220	215	209	203	198
295	292	289	284	280	275	270	264	258	253	246	240	234	228	222	215
320	316	312	308	303	298	292	286	280	273	266	260	253	246	239	232
344	340	336	331	326	320	314	307	300	293	286	279	271	264	257	249
368	364	359	354	348	342	335	328	320	313	305	297	289	282	274	266
172	171	169	168	166	164	162	160	157	155	152	150	147	144	141	139
205	204	202	200	198	196	193	191	188	185	182	178	175	172	168	165
238	236	234	232	230	227	224	221	218	214	210	207	203	199	195	191
270	269	266	264	261	258	254	251	247	243	239	235	230	226	221	217
303	300	298	295	292	258	284	280	276	272	267	262	257	252	247	242
334	332	329	326	322	318	314	309	305	300	295	289	284	278	273	267
365	363	359	356	352	348	343	338	333	327	322	316	310	304	298	291
396	393	390	386	382	377	372	366	361	355	349	342	336	329	322	315
427	423	420	415	411	406	400	394	388	382	375	368	361	354	346	339
457	453	449	445	440	434	428	422	415	408	401	394	386	378	370	362
486	483	478	474	468	462	456	449	442	434	427	419	410	402	394	385
234	233	231	230	228	226	224	222	219	217	214	211	209	206	203	199
272	270	269	267	265	263	260	257	255	252	249	245	242	239	235	231
309	307	305	303	301	298	296	293	289	286	282	279	275	271	267	263
346	344	342	340	337	334	331	327	324	320	316	312	307	303	298	294
382	380	378	375	372	369	365	362	358	353	349	344	340	335	330	324
418	416	413	411	407	404	400	396	391	387	382	377	371	366	360	355
454	451	449	445	442	438	434	429	424	419	414	408	403	397	391	384
489	487	483	480	476	472	467	462	457	452	446	440	433	427	420	414
524	521	518	514	510	505	500	495	490	484	477	471	464	457	450	443
559	556	552	548	544	539	533	528	521	515	508	501	494	487	479	471
593	589	586	581	577	571	566	559	553	546	539	532	524	516	508	500

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$ Safety factor 4.

	Size of Angles.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.	i	Lengtl n Feet	ì.
	Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	6	8	10
3 " " " " " " " " " " " " " " " " " " "	x 21/2 x 1/4 a 1/6 a 3/8 a 1/6 a 1/2 a 1/2 a 1/2	10 x 1/4 4 5 4 3/8 4 1/2 4 1/2 4 16	26.5 33.0 39.2 45.3 51.0 57.1	7.74 9.61 11.43 13.26 15.00 16.75	1.16 1.18 1.21 1.24 1.27 1.30	4.07 4.05 4.03 4.01 3.99 3.96	96 119 142 164 186 207	118 141 163 185 206	117 140 161 183 204
31,	2 x 2 1/2 x 1/4 4 3/8 4 1/2 4 1/2 4 1/2 4 1/2	10 x \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \\ \frac{1}{16} \\ \frac{1}{16	28.1 35.0 41.6 48.1 54.6 60.7	8.26 10.25 12.19 14.10 16.00 17.87	1.39 1.42 1.45 1.48 1.51 1.54	4.13 4.11 4.09 4.07 4.05 4.03	102 127 151 175 198 221	102 126 150 174 197 220	101 125 149 172 195 218
4 4 4 4 4 4 4 4	X X X X X X X X X X X X X X X X X X X	12 x 5 8 2 8 1 8 1 1 2 2 8 1 1 2 2 8 1 1 1 2 1 2	41.6 49.3 57.1 64.8 72.6 79.9 87.3 94.6 101.6 108.9	12.11 14.42 16.73 19.00 21.23 23.42 25.61 27.76 29.87 31.94	1.58 1.61 1.64 1.66 1.69 1.72 1.75 1.78 1.81	4.91 4.89 4.87 4.85 4.83 4.81 4.79 4.77 4.74		150 179 207 235 262 290 317 343 369 395	149 178 206 234 261 288 315 341 367 392
5	X 2 X X X X X X X X X X X X X X X X X X	11 X X X X X X X X X X X X X X X X X X	49.7 59.5 68.8 78.2 87.6 96.9 105.9 114.9 123.9 132.5 141.4	14.62 17.45 20.25 23.00 25.76 28.43 31.11 33.74 36.38 38.93 41.49	1.98 2.01 2.04 2.07 2.09 2.12 2.15 2.18 2.21 2.24 2.27	5.77 5.75 5.73 5.71 5.69 5.67 5.64 5.62 5.60 5.58 5.56			180 215 250 284 318 351 384 417 449 481 512
# # # # # # # # # # # # # # # # # # #	1/2 x 116 \ 0.46	16 x	67.2 77.8 88.4 99.0 109.6 119.8 130.4 140.2 150.4 160.2 170.0	19.68 22.88 26.00 29.12 32.20 35.24 38.24 41.24 44.20 47.12 50.00	2.46 2.49 2.52 2.54 2.57 2.60 2.63 2.66 2.69 2.72 2.75	6.68 6.66 6.64 6.61 6.59 6.57 6.55 6.53 6.51 6.48 6.46			

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$

12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
94 116 138 160 181 202	92 115 136 158 179 199	91 113 135 156 176 196	111 132 153 173 193	88 109 130 150 170 190	87 107 128 148 167 186	85 105 125 145 164 183	83 103 123 142 160 179	81 101 120 138 157 174	80 98 117 135 153 170	78 96 114 132 149 166	76 94 111 128 145 162	74 91 108 125 141 157	72 89 105 122 138 153	70 86 103 118 134 149
100 124 147 170 193 216	122 146 168 191 213	97 121 144 166 188 210	96 119 141 164 185 207	94 117 139 161 182 203	93 115 137 158 179 199	91 113 134 155 175 195	89 110 131 152 172 191	87 108 128 148 168 187	85 106 125 145 164 183	83 103 122 141 160 178	81 101 119 138 156 174	79 98 116 134 152 169	77 95 113 131 148 165	75 93 110 127 144 160
148 176 204 232 259 286 312 338 364 389	147 175 202 230 257 283 310 335 361 386	145 173 200 228 254 281 306 332 357 382	144 171 198 225 251 277 303 328 353 277	142 169 196 222 248 274 299 324 348 373	140 167 193 219 245 270 295 320 344 367	138 165 191 216 242 266 291 315 339 362	136 162 188 213 238 262 286 310 333 356	134 160 185 210 234 258 282 305 328 350	132 157 182 206 230 254 277 299 322 344	129 154 178 202 226 249 272 294 316 337	127 151 175 198 221 244 266 288 310 331	125 148 172 195 217 239 261 282 303 324	122 145 168 191 213 234 256 277 297 317	120 142 165 187 208 229 250 271 291 310
180 214 249 283 316 349 382 414 446 478	178 213 247 281 314 347 380 412 443 475 506	177 211 245 279 312 345 377 409 440 471 502	176 210 243 277 309 342 374 405 436 467 498	174 208 241 274 307 339 370 402 432 463 493	173 206 239 271 304 335 367 398 428 458 488	171 204 236 269 300 332 363 393 423 453 483	169 202 234 265 297 328 358 389 418 448 477	167 199 231 262 293 324 354 413 442 471	165 197 228 259 290 320 349 379 408 436 465	163 194 225 255 286 315 345 373 402 430 458	160 191 222 252 281 311 340 368 396 424 451	158 188 218 248 277 306 334 362 390 417 444	156 186 215 244 273 301 329 357 384 411 437	153 183 212 240 269 296 324 351 378 404 430
243 282 321 359 397 435 472 509 545 581 617	242 281 319 357 395 433 470 506 542 578 613	241 279 318 356 393 430 467 503 539 575 610	239 278 316 353 391 428 464 500 536 571 606	238 276 314 351 388 425 461 497 532 567	236 274 311 348 385 421 457 493 528 563 597	234 272 309 346 382 418 454 489 524 558 592	232 269 306 343 379 414 450 485 519 553 587	230 267 303 340 375 411 446 480 514 548	228 264 300 336 272 406 441 475 509 542 575	225 262 297 333 368 402 436 470 504 537 569	223 259 294 329 364 398 432 465 498 531 563	221 256 291 325 359 393 427 459 492 524 556	218 253 287 321 355 388 421 454 486 518 549	215 250 284 317 351 384 416 448 480 511 542

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$ Safety factor 4.

Size of Angles.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.	I	ength n Feet	ì.
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	6	8	10
3 x 2 ½ x ¼ u u 15 u u 17 17 17 17 18 18 18 18 18 18	12 x 1/4	28.2 35.2 41.7 48.3 54.4 61.0	8.24 10.23 12.18 14.13 16.00 17.87	1.12 1.15 1.17 1.20 1.23 1.26	4.87 4.85 4.83 4.81 4.78 4.76	103 127 151 175 199 222	102 126 151 174 198 221	101 126 150 173 197 219
3½ x 2½ x ½ " " 15 " " " 16 " " " 17 " " " 17 " " " 17 " " " 17 " " " 17	12 x 1/4 " 5 " 16 " 3/8 " 17 " 18 " 1/2 " 18	29.8 37.2 44.1 51.1 58.0 64.6	8.76 10.87 12.94 14.97 17.00 18.99	1.35 1.38 1.41 1.43 1.46 1.49	4.94 4.92 4.90 4.88 4.85 4.83		108 134 160 185 210 235	108 134 159 184 209 233
4 . 3 x 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	14 x x x x x x x x x x x x x x x x x x x	43.7 51.9 60.0 68.2 76.4 84.1 91.9 99.7 107.1 114.9	12.74 15.17 17.61 20.00 22.36 24.67 26.99 29.26 31.50 33.69	1.54 1.57 1.60 1.62 1.65 1.68 1.71 1.74 1.77	5.72 5.70 5.68 5.66 5.63 5.61 5.59 5.57 5.55 5.53		158 188 218 248 277 306 335 363 390 418	157 188 217 247 276 305 333 361 389 416
5 x 31/2 x 5 6 8 4 4 4 4 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 x 388 x 1 x 388 x 1 x 1 x 2 x 1 x 1 x 2 x 1 x 1 x 2 x 1 x 1	51.8 62.0 71.8 81.6 91.4 101.2 110.6 120.0 129.4 138.4 147.8	15.24 18.20 21.12 24.00 26.88 29.68 32.48 35.24 38.00 40.68 43.36	1.94 1.97 2.00 2.02 2.05 2.08 2.11 2.14 2.17 2.19 2.22	6.59 6.57 6.54 6.52 6.50 6.48 6.44 6.41 6.39 6.37			189 225 261 297 333 368 402 436 470 504 537
6 x 81/2 x 2/8 u u u 1/8 u u u u u u u u u u u u u u u u u u u	18 x 3 8 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1	69.8 80.8 91.8 102.8 113.9 124.5 135.5 145.7 156.4 166.6 176.8	20.43 23.76 27.00 30.25 33.45 36.62 39.74 42.87 45.95 49.00 52.00	2.42 2.44 2.47 2.50 2.52 2.55 2.58 2.61 2.64 2.67 2.70	7.49 7.47 7.45 7.42 7.40 7.38 7.36 7.34 7.32 7.29			

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$

12	14	16	18	20	22	24	26	28	30	32	34	86	38	40
101	100	99	98	97	95	94	93	91	90	88	86	85	83	81
125	124	123	121	120	118	116	115	113	111	109	107	105	103	101
149	147	146	144	143	141	139	137	134	132	130	127	125	122	120
172	171	169	167	165	163	160	158	155	153	150	147	144	141	138
195	193	191	189	187	184	182	179	176	173	170	166	163	160	156
218	216	214	211	209	206	203	199	196	193	189	185	182	178	174
107	106	105	104	103	101	100	98	97	95	94	92	90	88	87
133	131	130	129	127	126	124	122	120	118	116	114	112	110	107
158	157	155	153	152	150	148	145	143	141	138	136	133	130	128
183	181	150	178	175	173	171	168	165	163	160	157	154	151	148
207	206	204	201	199	196	194	191	188	184	181	178	174	171	167
232	230	227	225	222	219	216	213	209	206	202	198	194	190	186
156	156	154	153	152	150	149	147	145	143	142	140	137	135	133
187	185	154	183	181	179	177	175	173	171	169	166	164	161	159
216	215	213	212	210	208	205	203	201	198	195	193	190	187	184
246	244	242	240	238	236	233	231	228	225	222	218	215	212	208
275	273	271	269	266	263	261	258	254	251	248	244	240	236	233
303	301	299	296	294	291	288	284	281	277	273	269	265	261	257
331	329	327	324	321	318	314	311	307	303	298	294	289	285	280
359	357	354	351	348	344	340	336	332	328	323	318	313	308	303
386	384	381	378	374	370	366	362	357	352	347	342	337	331	326
413	411	407	404	400	396	392	387	382	377	371	366	360	354	348
188	187	186	185	184	182	181	179	178	176	174	172	170	168	166
224	223	222	221	219	218	216	214	212	210	208	205	203	201	198
260	259	258	256	254	252	250	248	246	243	241	238	235	233	230
296	295	293	291	289	287	285	282	279	277	274	271	267	264	261
331	330	328	326	324	321	318	316	313	309	306	303	299	295	292
366	364	362	360	357	355	352	349	345	342	338	334	330	326	322
400	399	396	394	391	388	385	381	378	374	370	365	361	357	352
435	432	430	427	424	421	417	414	410	405	401	396	392	387	352
468	466	463	460	457	453	450	445	441	437	432	427	422	416	411
502	499	496	493	489	486	481	477	472	467	462	457	451	446	440
534	532	529	525	521	517	513	508	503	498	492	487	481	475	468
253	252	251	250	248	247	245	244	242	240	238	236	234	232	229
294	293	291	250	288	287	285	253	281	279	276	274	272	269	263
334	333	331	330	328	326	324	322	319	317	314	312	309	306	303
374	373	371	369	367	365	363	360	358	355	352	349	346	342	339
414	412	410	408	406	404	401	398	395	392	389	385	382	378	374
453	451	449	447	445	442	439	436	433	429	426	422	418	414	410
492	490	488	485	483	480	477	473	470	466	462	458	453	449	444
530	528	526	523	520	517	514	510	506	502	498	493	489	484	479
583	566	563	561	558	554	551	547	542	538	533	529	524	518	513
606	693	601	598	595	591	587	583	578	574	569	563	558	552	547
643	641	638	634	631	627	623	618	614	609	603	598	592	586	580

CALCULATED FOR RADIUS OF GYBATION, AXIS 2-2.

Based on Gordon's Formula, $\mathbf{P} = \frac{50\ 000}{1 + \frac{(12\ \mathrm{L})^2}{36\ 000\ r^2}}$ Safety factor 4.

Size of Angles.	Size of Plate.	Weight of Column.	Area of Column Section.	Least Radius of Gyration Axis 1-1.	Radius of Gyration Axis 2-2.		gth ?eet.
Inches.	Inches.	Lbs.per Ft.	Sq. Ins.	Inches.	Inches.	10	12
7 x 8 ½ x 10	14 x 16 1/2 1/2 16 16 16 16 16 16 16 16 16 16 16 16 16	80.8 91.8 103.2 113.7 124.7 135.3 145.9 156.5 166.6 176.8	23.73 27.00 30.24 33.43 36.63 39.74 42.86 45.93 49.01 52.00	3.05 3.08 3.11 3.13 3.17 3.20 3.23 3.26 3.29 3.32	5.92 5.90 5.87 5.85 5.83 5.81 5.79 5.76 5.74 5.72	293 334 374 413 452 491 529 567 605 642	292 332 372 411 450 489 527 564 602 539
7 x 3½ x 14	16 x 7 16 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	83.8 95.2 107.0 118.0 129.4 140.4 151.4 162.4 173.0 183.6	24.60 28.00 31.36 34.68 38.00 41.24 44.48 47.68 50.88 54.00	3.00 3.02 3.06 3.08 3.11 3.14 3.17 3.20 3.23 3.26	6.75 6.73 6.71 6.69 6.67 6.64 6.62 6.60 6.58 6.56		304 346 387 428 469 509 549 588 627
7 x 3½ x 1/4 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	18 x 7 16 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	86.8 98.6 110.8 122.3 134.1 145.5 156.9 168.4 179.4 190.4	25.48 29.00 32.49 35.93 39.38 42.74 46.11 49.43 52.76 56.00	2.94 2.97 3.00 3.02 3.06 3.08 3.11 3.14 3.17 3.20	7.58 7.55 7.53 7.51 7.49 7.47 7.44 7.42 7.40 7.38		315 359 402 445 487 529 570 612 652 693
7 x 3½ x 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	20 x 14 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	89.8 102.0 114.7 126.5 138.7 150.6 162.5 174.3 185.8 197.2	26.35 30.00 33.61 37.18 40.75 44.24 47.73 51.18 54.63 58.00	2.89 2.92 2.95 2.97 3.00 3.03 3.06 3.09 3.12 3.15	8.39 8.37 8.34 8.32 8.30 8.28 8.25 8.23 8.21 8.19		

CALCULATED FOR RADIUS OF GYRATION, AXIS 2-2.

Based on Gordon's Formula, $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$.

14	16	18	20	22	24	26	28	30	32	34	36	38	40
290 330 370 409 447 486 523 561 598 635	288 328 367 405 444 482 520 557 594 630	286 325 364 403 441 478 516 553 589 625	284 323 361 399 437 474 511 548 584 620	281 320 358 396 433 470 506 543 578 614	278 317 354 392 429 465 501 537 572 607	275 313 351 387 424 460 496 531 566 600	272 310 347 383 419 455 490 525 559 593	269 306 342 378 414 449 484 518 552 586	266 302 338 373 408 443 477 511 545 578	262 298 323 368 403 437 471 504 537 570	258 294 329 363 397 431 464 497 529 561	255 289 324 358 391 424 457 489 521 553	251 285 319 352 385 418 450 482 513 544
302 344 385 426 467 507 546 586 624 563	301 342 383 424 464 504 543 582 621 659	299 340 381 421 461 501 540 579 617 655	297 338 379 419 458 498 536 575 613 651	295 336 376 416 455 494 532 571 609 646	293 333 373 412 451 490 528 566 604 641	290 330 370 409 448 486 524 561 598 635	288 327 366 405 443 481 519 556 593 629	285 324 363 401 439 477 514 551 587 623	282 321 359 397 435 472 509 545 581 616	279 318 355 393 430 467 503 539 574 609	276 314 352 389 425 461 497 533 568 602	273 310 347 384 420 456 491 526 561 595	270 307 343 379 415 450 485 520 554 588
314 358 401 443 485 527 568 609 650 690	313 356 399 441 483 525 566 607 647 687	312 354 397 439 481 522 563 604 644 684	310 353 395 437 478 519 560 601 641 680	308 351 393 434 476 516 557 597 637 676	306 348 390 432 473 513 553 593 633 672	304 346 388 429 469 510 550 589 628 667	302 344 385 426 466 506 546 585 624 662	300 341 382 422 462 502 541 580 619 657	297 338 379 419 459 498 537 575 613 651	295 335 376 415 455 493 532 570 608 645	292 332 372 411 450 489 527 565 602 639	290 329 369 408 446 484 522 559 633	287 326 365 403 442 479 517 554 590 626
326 371 415 460 503 547 590 633 675 717	325 370 414 458 502 545 588 630 672 714	324 368 412 456 500 543 585 628 670 711	322 367 411 454 498 541 583 625 667 708	321 365 409 452 495 538 580 622 664 705	319 363 407 450 493 535 577 619 660 701	317 361 404 447 490 532 574 615 656 697	315 359 402 445 487 529 570 612 652 693	313 357 399 442 484 526 567 608 648 688	311 354 397 439 481 522 563 603 644 683	309 352 394 436 477 518 559 599 639 678	307 349 391 432 473 514 554 594 634 673	305 346 388 429 470 510 550 629 667	302 344 385 426 466 506 545 585 623 662

SAFE LOADS IN THOUSANDS OF POUNDS FOR LATTICED CHANNEL COLUMNS. SOUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

Depth of Channel.	Weight of each Channel.	Area of Column Section.	Least Radius of Gyration.	Length in Feet.							
Inches.	Lbs. per Foot.	Sq. Ins.	Inches.	4	6	8	10	12	14		
6	8.0 10.5 13.0 15.5	4.76 6.18 7.64 9.12	2.34 2.21 2.13 2.06	59 76 94 112	58 75 93 110	57 73 90 107	55 71 88 104	54 69 85 100	52 67 81 96		
7	9.75 12.25 14.75 17.25 19.75	5.70 7.20 8.68 10.14 11.62	2.72 2.59 2.50 2.44 2.39	71 89 107 125 144	70 88 106 124 142	69 87 104 121 139	68 85 102 119 136	83 99 116 132	65 81 96 112 128		
8	11.25 13.75 16.25 18.75 21.25	6.70 8.08 9.56 11.02 12.50	3.11 2.99 2.89 2.82 2.77	83 100 119 137 155	83 99 117 135 153	82 98 116 134 151	97 114 131 149	79 95 112 128 145	77 93 109 125 142		
9 "	13.25 15.00 20.00 25.00	7.78 8.82 11.76 14.70	3.45 3.37 3.20 3.08		96 109 145 181	95 108 143 179	94 107 142 177	93 105 139 173	91 103 137 170		
10	15.0 20.0 25.0 30.0 35.0	8.92 11.76 14.70 17.64 20.58	3.84 3.66 3.52 3.41 3.31		110 146 182 218 254	110 144 180 216 251	109 143 178 213 248	107 141 176 210 245	108 139 173 207 240		
12	20.5 25.0 30.0 35.0 40.0	12.06 14.70 17.64 20.58 23.52	4.61 4.43 4.28 4.17 4.09			149 181 217 254 289	148 180 216 251 287	147 179 214 249 284	146 177 211 246 281		
15	33.0 35.0 40.0 45.0 50.0 55.0	19.80 20.58 23.52 26.48 29.42 32.36	5.59 5.56 5.44 5.32 5.23 5.16			246 255 291 328 364 400	244 254 290 326 363 399	243 252 288 324 360 396	241 251 286 322 357 393		

For detail dimensions see page 230

SAFE LOADS IN THOUSANDS OF POUNDS FOR LATTICED CHANNEL COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

		Le	ngth		Weight of cach Channel.	Depth of Channels.			
16	18	20	22	24	26	28	80	Lbs. per Foot.	Inches.
64 78 92	48 61 74 88	46 58 71 83	44 55 67 78	42 52 63 74				8.0 10.5 13.0 15.5	66 66 66
63 78 93 108 123	61 76 50 104 119	58 73 86 100 113	56 70 83 96 108	54 67 79 92 104	52 64 76 87 98			9.75 12.25 14.75 17.25 19.75	66 66 66
76 90 107 122 138	74 88 104 118 134	72 86 100 115 129	70 83 97 111 124	68 80 94 107 120	65 78 90 103 115	63 75 87 99 111	61 72 83 95 106	11.25 13.75 16.25 18.75 21.25	8
90 101 134 165	88 99 131 162	97 127 157	84 94 124 153	82 92 120 149	80 90 116 143	77 87 113 139	75 84 109 134	13.25 15.00 20.00 25.00	9
104 136 170 203 236	102 134 166 198 230	101 131 163 194 225	99 128 159 189 219	97 125 155 185 213	95 122 151 179 207	93 119 146 174 201	90 116 143 168 194	15.0 20.0 25.0 30.0 35.0	10
144 175 209 243 277	142 172 206 240 273	140 170 203 236 268	138 167 200 231 263	136 165 198 227 258	134 161 192 223 253	131 159 187 218 248	129 155 184 213 243	20.5 25.0 30.0 35.0 40.0	12
240 249 284 319 854 300	238 247 282 316 352 386	235 245 279 313 348 381	233 242 276 310 344 377	230 240 273 306 339 372	228 236 269 302 334 368	225 234 266 298 329 362	222 230 262 294 325 357	33.0 35.0 40.0 45.0 50.0 55.0	15

For detail dimensions see page 230

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

Depth of Channels.	Weight of each Channel,	Area of Column Section.	Least Radius of Gyration.		Leng	th in 1	Feet.	
Inches.	Lbs. per Foot.	Sq. Ins.	Inches.	32	34	36	38	40
5 	13.25 15.00 20.00 25.00	7.78 8.82 11.76 14.70	3.45 3.37 3.20 3.08	73 81 106 129	71 79 101 124			
10	15.0 20.0 25.0 30.0 35.0	8.92 11.76 14.70 17.64 20.58	3.84 3.66 3.52 3.41 3.31	87 113 138 163 188	85 109 134 158 183	83 106 130 153 176		
12	20.5 25.0 30.0 35.0 40.0	12.06 14.70 17.64 20.58 23.52	4.61 4.43 4.28 4.17 4.09	127 152 180 208 236	124 149 176 203 231	121 146 172 199 224	119 142 167 193 218	116 139 164 188 212
15	33.0 35.0 40.0 45.0 50.0 55.0	19.80 20.58 23.52 26.48 29.42 32.36	5.59 5.56 5.44 5.32 5.23 5.16	219 228 258 289 320 351	215 224 254 284 315 344	213 220 250 279 309 338	209 217 246 275 303 332	206 213 241 270 299 325

For detail dimensions see page 230.

SAFE LOADS IN THOUSANDS OF POUNDS FOR LATTICED CHANNEL COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

		Leng		Weight of each Channel.	Depth of Channels.			
42	44	46	48	50 52		54	Lbs. per Foot.	Inches.
							13.25 15.00 20.00 25.00	9 44 44
							15.0 20.0 25.0 30.0 35.0	10
113 135 159 183 206	111 132 155 178 200	108 128 151 173 196					20.5 25.0 30.0 35.0 40.0	12
202 210 238 265 293 319	199 206 233 260 287 314	195 203 228 255 281 307	192 199 224 250 275 301	188 194 220 245 269 294	184 191 215 239 264 287	181 187 211 234 258 281	33.0 35.0 40.0 45.0 50.0 55.0	15

SIZE OF SINGLE LATTICE BARS TO BE USED WITH LATTICED CHANNEL COLUMNS.

Depth		ns of Lattice ars.	Weight of Lattice Bars	Center of Hole to End of Bar.	Distance Cen		
Channels.	W	Thickness.	per Foot.	(a)	Maximum.	Minimam.	
Inches.	Inches.	Inch.	Pounds.	Inch.	Inches.	Inches.	
6 7 8 9	$ \begin{array}{c} 1^{3/4} \\ 2 \\ 2 \\ 2^{1/4} \end{array} $	1 / 4 1 / 5 1 6 5 1 6 6	1.49 1.70 2.12 2.39	1½8 1¼ 1¼ 1¼ 1¼	$ \begin{array}{c} 10 \\ 10 \\ 12^{1/2} \\ 12^{1/2} \end{array} $	65 % 75 % 8116 913	
10 12 15	2 ¹ / ₄ 2 ¹ / ₄ 2 ¹ / ₂	3 8 3 8 7 16	2.87 2.87 2.87 3.72	$ \begin{array}{c c} 1/4 \\ 1/4 \\ 1/4 \\ 1/2 \end{array} $	15 15 17½	1011 13 155	

MAXIMUM LENGTHS OF LATTICE BARS BETWEEN FLANGE RIVET CENTERS FOR DIFFERENT BAR THICKNESSES.

6/11	Thickness	Maximum	Length (C)	6/ /
ABOUT 60*	of Lattice Bar.	Single Lattice.	Double Lattice.	
₹	Inch.	Inches.	Inches.	
	14	10	15	
	15	121/2	1834	6,00
E	3 8	15	2215	1000
	7 16	171/2	26.4	
	1 2	20	30	8
	16	2212	8334	
	5 8	25	371/2	

Latticing should be so proportioned to resist a shearing stress, 2% of direct stress.

Inclination of lattice bars to axis of member should not be less than 45 degrees there distance between lines of flange rivets exceeds 15 inches, if single rivet bars be used, lattice should be double.

Pitch of lattice rivets along flange divided by least radius of gyration of the member between connections should be less than corresponding ratio of the member as a whole.

SIZE OF STAY PLATES TO BE USED WITH LATTICED CHANNEL COLUMNS.

	imum size of to at Ends of Col		Weight of	Diameter	
Б	Thickness.	1	Stay Plate.	Rivets.	
Inches.			Pounds.	Inch.	
71/2	1 1/4	534	3.06 4.07	5 5 3 5	
95 s 103 s	14	812	5.12 6.07	5 3, 3 4	
135 k 16) 4	1 1 5 1 6	11: ₄ 13: ₄	7.54 10.86 19.07	5/8, 3/4	

DISTANCES TO BE ADDED TO LENGTHS OF LATTICE BARS BETWEEN FLANGE RIVET CENTERS TO GIVE FULL LENGTHS.

	Add to Length c										
Width	1	or Pmish	ed Length :	For Ordered Length o.							
Bar.		Rivet I	iameter.	,	Rivet Di	ameter.					
₩	1	5	3.4	-78	1 2	5.8	3	78			
Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins			
11 2 11 4 2 2: 4 2: 4 3: 4 3	2	2 ¹ / ₄ 2: - 2: - 2: - 2: - 2: - 2: - 2: - 2: -	21 2 21 2 3 3 31/2	3 3 31/2	2½	234	3 31/2 31/2 4	31 31 4			

Length of end stay plates should be not less than distance between lines of flange rivets.

Length of intermediate stay plates should be not less than one-half same distance.

Thickness of stay plates should be not less than 1/50 same distance.

SAFE LOADS IN THOUSANDS OF POUNDS FOR 6" CHANNEL AND PLATE COLUMNS. SOUARE ENDS.

Based on Gordon's Formula $P = \frac{50000}{1 + \frac{(12 \text{ L})^2}{36000 \text{ r}^4}}$. Safety factor 4.

SERIES A.

Weight of each Channel.	Thickness of Plates.	Weight of Column.	Area of Column Section.	Radius of Gyration.	1	Length	in Peet	
Lbs. per Foot.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	4	6	8	10
8 44 44 44 44 44	1/4 5 16 8/8 16 1/2 9 16 5/8	29.6 33.0 36.4 39.8 43.2 46.6 50.0	8.76 9.76 10.76 11.76 12.76 13.76 14.76	2.35 2.35 2.34 2.34 2.34 2.34 2.33	108 121 133 145 158 170 182	107 119 131 143 155 167 180	105 117 129 141 152 164 176	102 114 125 137 149 160 172
10.5	1/4 56 8/8 76 1/2 96 5/8	34.6 38.0 41.4 44.8 48.2 51.6 55.0	10.18 11.18 12.18 13.18 14.18 15.18 16.18	2.27 2.27 2.28 2.28 2.28 2.28 2.28 2.28	126 138 150 163 175 187 200	124 136 148 160 173 185 197	121 133 145 157 169 181 193	118 130 141 153 165 176 188
13	1/4 5 16 8/8 16 2/2 16 6/8	39.6 43.0 46.4 49.8 53.2 56.6 60.0	11.64 12.64 13.64 14.64 15.64 16.64 17.64	2.20 2.21 2.22 2.23 2.23 2.24 2.24	144 156 168 181 193 205 218	141 154 166 178 190 202 214	138 150 162 174 186 198 210	135 146 158 189 181 192 204
15.5	1/4 6 76 8/8 76 1/2 98 5/8	44.6 48.0 51.4 54.8 58.2 61.6 65.0	13.12 14.12 15.12 16.12 17.12 18.12 19.12	2.14 2.15 2.16 2.17 2.18 2.19 2.19	162 174 186 199 211 224 236	159 171 183 195 207 220 232	155 167 179 191 203 215 227	151 162 174 186 197 209 220

SAFE LOADS IN THOUSANDS OF POUNDS FOR 6" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

		Len	gth in I	Peet.			Thickness of Plates.	Weight of each Channel.
12	14	16	18	20	22	24	Inch.	Lbs. per Foot.
111 122 133 144 156 166	96 107 118 128 139 150 161	92 103 114 124 135 145 155	89 99 109 119 129 139 149	85 95 104 114 124 133 142	81 90 90 109 118 127 136	77 86 94 103 112 121 130	1/4 5 6 8/8 7/6 1/2 9 6/8	8
114 126 137 148 159 171 182	110 121 133 143 154 165 176	106 117 127 138 148 159 169	102 112 122 132 142 152 162	97 107 116 126 135 144 154	92 102 111 120 130 139 148	88 96 106 114 123 132 140	1/4 16 3/8 16 1/2 16 5/8	10.5
130 141 153 164 175 186 197	125 136 147 158 169 179 190	120 131 141 152 162 173 183	115 125 135 145 155 166 176	109 119 129 138 148 158 167	104 113 122 131 140 150 159	99 107 116 125 133 143 151	1/4 5 18 8 8 7 1 1/2 8 1 1/2 8 1 1 1/2	13
146 157 170 180 191 202 213	140 151 162 172 184 195 205	134 145 155 165 176 187 197	128 138 148 158 168 178 188	122 131 140 150 160 170 180	115 125 133 143 152 162 171	109 118 127 135 144 153 161	1/4 5 16 8/8 7 16 1/2 16 5/8	15.5

SAFE LOADS IN THOUSANDS OF POUNDS FOR 7" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

Weight of each Channel.	Thickness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.	1	Length	in Feet	
Lbs. per Foot.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	4	6	8	10
9.75	1/4 5 18 8/8 16 1/2 9/8 16 5/8	34.8 38.6 42.5 46.3 50.1 53.9 57.8	10.20 11.32 12.45 13.58 14.70 15.82 16.95	2.63 2.63 2.62 2.62 2.62 2.62 2.62 2.62	126 140 154 168 182 196 210	125 139 152 166 180 194 207	123 137 150 163 177 190 204	121 134 147 160 174 187 200
12.25	1/4 5 16 3/8 76 16/8	39.8 43.6 47.5 51.3 55.1 58.9 62.8	11.70 12.82 13.95 15.08 16.20 17.32 18.45	2.55 2.56 2.56 2.56 2.57 2.57 2.57	145 159 173 187 200 214 228	143 157 171 185 198 212 226	141 154 168 182 195 208 222	138 151 164 178 191 204 217
14.75	1/4 8 1 e 3/8 7 1 e 1/2 1 e 5/8	44.8 48.6 52.5 56.3 60.1 63.9 67.8	13.18 14.30 15.43 16.56 17.68 18.80 19.93	2.49 2.50 2.50 2.51 2.52 2.52 2.52 2.53	163 177 191 205 219 233 247	161 175 189 202 216 230 244	158 172 185 199 212 226 239	155 168 181 195 208 221 234
17.25	1/4 5 16 8/8 7 16 1/2 9 16 5/8	49.8 53.6 57.5 61.3 65.1 68.9 72.8	14.64 15.76 16.89 18.02 19.14 20.26 21.39	2.42 2.43 2.45 2.46 2.46 2.47 2.48	. 181 195 209 223 237 251 265	178 192 206 220 234 248 261	175 189 202 216 229 243 257	171 185 198 211 224 238 251
19.75	1/4 5 16 8/8 1/2 9-6 5/8	54.8 58.6 62.5 66.3 70.1 73.9 77.8	16.12 17.24 18.37 19.50 20.62 21.74 22.87	2.37 2.38 2.40 2.41 2.42 2.43 2.44	199 213 227 241 255 269 283	197 210 224 238 251 265 279	193 206 220 234 247 260 274	188 201 214 228 242 255 268

SAFE LOADS IN THOUSANDS OF POUNDS FOR 7" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

		1	Length	in Fee	t.			Thickness of Plates.	Weight of each Channel.
12	14	16	18	20	22	24	26	Inch.	Lbs.per Ft.
118 130 143 156 169 182 195	115 127 140 153 165 178 190	111 123 135 148 160 172 184	108 119 131 143 154 166 178	104 115 126 138 149 161 172	99 110 121 132 143 154 165	96 106 116 127 137 148 158	92 102 112 122 132 142 152	1/4 5 6 8 8 8 1 6 1 7 2 1 6 6 8 8 8 8 8 1 6 1 7 2 1 6 6 8 8 8 8 8 1 6 1 7 2 1 6 6 1 7 2 1 6 1 6 1 7 2 1 7 2 1 6 1 7 2	9.75
134 147 160 173 186 199 212	130 143 156 168 181 194 207	126 139 151 163 176 188 200	122 134 146 158 169 181 193	118 129 140 152 163 174 185	113 124 135 145 156 167 178	108 118 129 139 150 161 171	103 113 123 133 144 154 164	1/4 5 10 3/8 1 1/2 9 10 5/8	12.25
151 164 177 190 202 215 229	146 159 171 184 196 209 222	142 154 166 178 191 203 215	136 148 160 171 184 196 207	131 142 154 165 177 188 199	126 136 147 158 170 180 191	120 131 141 151 162 173 183	115 125 135 144 155 165 175	1/4 3/6 8/8 7/8 11/2 8/8 8/8	14.75
166 150 193 206 218 231 245	161 174 187 199 212 224 238	156 168 181 193 205 217 229	150 162 174 186 197 209 220	143 155 166 178 190 201 212	137 148 159 171 182 192 203	131 142 153 163 173 184 194	126 135 146 155 165 176 186	1/4 8 8 8 8 8 1/2 1 1/2 8 1 1/2 8 1 1 5/8	17.25
183 196 209 222 234 248 261	177 189 202 215 227 240 253	170 183 195 208 220 231 243	164 175 187 199 211 223 235	157 168 180 191 202 214 225	150 161 172 183 194 204 216	143 153 164 174 185 195 207	136 146 157 166 177 186 196	13 8 7 16 1 / 2 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19.75

SAFE LOADS IN THOUSANDS OF POUNDS FOR 8" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

Weight of each Channel	of	Weight of Column.	Area of Column Section.	Least Radius of Gyration.	Length in Feet.					
Lbs. per F	oot. Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	4	В	8	10	12	
11.25	14 16 27 16 17 17 17 17 17 17 18 17 18 18 18 18 18 18 18 18 18 18	39.5 43.7 48.0 52.3 56.5 60.8 65.0	11.70 12.95 14.20 15.45 16.70 17.95 19.20	2.98 2.97 2.97 2.96 2.95 2.95 2.95	145 161 176 192 207 223 238	144 159 175 190 205 221 236	142 157 172 188 203 219 233	140 155 170 185 200 214	137 152 167 181 196 210 225	
13.75	1/4 00 100 00 00 100 1/2 00 100 100 100 100 100 100 100 100 100	44.5 48.7 53.0 57.3 61.5 65.8 70.0	13.08 14.33 15.58 16.83 18.08 19.33 20.58	2.92 2.92 2.92 2.91 2.91 2.91 2.91	162 178 193 209 224 240 255	161 176 191 207 222 237 253	159 174 189 204 220 235 250	156 171 186 201 216 231 246	153 168 182 197 212 226 241	
16.25	1/4 86 166 2/8 7 17 17 18 8/8	49.5 53.7 58.0 62.3 66.5 70.8 75.0	14.56 15.81 17.06 18.31 19.56 20.81 22.06	2.86 2.87 2.87 2.87 2.87 2.87 2.87 2.87	181 196 212 227 243 258 274	179 194 210 225 240 256 271	176 192 207 222 237 252 267	173 188 203 218 233 248 263	170 185 199 214 228 243 258	
18.75	14 18 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10	54.5 58.7 63.0 67.3 71.5 75.8 80.0	16.02 17.27 18.52 19.77 21.02 22.27 23.52	2.81 2.81 2.82 2.82 2.83 2.83 2.83	199 214 230 245 261 276 292	197 212 227 243 258 274 289	194 209 224 240 255 270 285	190 205 221 236 250 265 280	186 201 216 230 245 260 275	
21.25	5 1/4 5 18 8 8 17 18 1/2 18 8 18 8	59.5 63.7 68.0 72.3 76.5 80.8 85.0	17.50 18.75 20.00 21.25 22.50 23.75 25.00	2.76 2.77 2.77 2.78 2.79 2.79 2.80	217 233 248 264 279 295 310	215 230 245 261 276 291 307	212 227 242 257 272 287 302	208 223 238 253 267 282 297	204 218 233 247 262 276 291	

SAFE LOADS IN THOUSANDS OF POUNDS FOR 8" CHANNEL AND PLATE COLUMNS, SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

			Leng	th in	Feet.				Thickness of Plates.	Weight of each Channel.
14	16	18	20	22	24	26	28	80	Inch.	Lbs. per Foot
134 149 163 177 192 206 221	131 145 159 173 187 201 215	128 141 154 168 182 195 209	124 137 150 163 176 189 203	120 133 146 158 170 183 196	116 128 141 153 165 178 190	112 124 136 147 159 171 183	108 120 131 142 153 165 177	104 115 126 137 147 158 169	1/4 5 c c c c c c c c c c c c c c c c c c c	11.25
150 164 178 193 207 221 236	146 160 174 188 202 216 229	142 155 169 182 196 209 223	138 151 164 177 190 203 216	133 146 159 171 184 196 209	129 141 153 166 178 190 203	124 136 148 160 172 183 195	119 131 142 153 164 176 187	115 126 137 148 159 170 181	1/4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.75
166 180 195 209 223 237 252	162 176 189 203 217 231 245	157 171 184 198 211 224 238	152 165 178 191 204 217 231	147 160 172 185 198 210 223	142 154 166 178 191 203 215	137 148 160 172 184 195 207	131 143 154 165 177 188 199	126 137 148 159 170 181 191	1/4 1/6 3/3 1/6 1/2 1/2 1/8	16.25
182 196 210 225 240 254 268	177 191 205 219 233 246 260	172 185 199 212 226 239 253	167 180 193 206 219 232 245	161 174 156 199 211 224 236	155 167 180 192 204 216 228	149 160 173 185 196 208 220	143 154 166 178 189 200 211	137 148 160 171 181 192 203	1/4 8 8/8 1/2 1/4 1/2 1/8	18.75
198 212 226 241 256 270 284	193 207 220 234 249 263 277	187 200 214 227 241 254 268	181 194 207 220 233 246 260	174 187 200 213 225 238 250	168 180 192 205 217 229 241	162 173 185 196 209 221 232	155 166 178 189 201 212 223	148 159 170 181 192 202 21 4	1/4 5 5 5 8/8 7 6 1/2 8 5 8 8	21.25

SAFE LOADS IN THOUSANDS OF POUNDS FOR 9" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{86\ 000\ r^2}}$. Safety factor 4.

SERIES A.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.		Le	ngth	in Fe	et.	
Lbs. par Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	6	8	10	12	14	16
13.25	1/4 5 16 3/8 7 16 1/2 9 16 5/8	45.2 49.9 54.6 59.2 63.9 68.5 73.3	13.28 14.66 16.03 17.40 18.78 20.16 21.53	3.34 3.32 3.31 3.30 3.29 3.28 3.28	164 181 198 215 232 249 266	162 179 196 213 229 246 263	160 177 193 210 227 243 260	158 174 191 207 223 239 255	155 171 187 203 219 235 251	152 168 183 199 214 230 246
15	1/4 5 16 3/3 716 1/2 916 5/8	48.7 53.4 58.1 62.7 67.4 72.0 76.8	14.32 15.70 17.07 18.44 19.82 21.20 22.57	3.29 3.28 3.28 3.27 3.26 3.26 3.25	177 194 211 228 245 262 279	175 192 209 225 242 259 275	173 189 206 222 239 255 272	170 186 202 219 235 251 267	167 183 199 215 231 247 263	163 179 195 210 226 242 257
20	1/4 5 16 3/8 7 16 1/2 9 16 5/8	58.7 63.4 68.1 72.7 77.4 82.0 86.8	17.26 18.64 20.01 21.38 22.76 24.14 25.51	3.19 3.19 3.19 3.19 3.19 3.19 3.19	213 230 247 263 280 297 314	210 227 244 261 278 294 311	208 224 241 257 274 291 307	204 220 236 253 269 285 301	200 216 232 248 264 280 296	196 212 227 243 259 274 290
25	1/4 13×2 16×22 16×22 16×22 16×20 16×	68.7 73.4 78.1 82.7 87.4 92.0 96.8	20.20 21.58 22.95 24.32 25.70 27.08 28.45	3.10 3.11 3.11 3.12 3.12 3.12 3.12	249 266 283 300 317 334 351	246 263 279 296 313 330 346	243 259 276 292 309 325 342	238 254 270 287 304 320 336	234 250 265 281 297 313 329	228 244 260 275 291 307 322

SAFE LOADS IN THOUSANDS OF POUNDS FOR 9" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P =
$$\frac{50\ 000}{1+\frac{(12\ L)^2}{36\ 000\ r^2}}$$
. Safety factor 4.

SERIES A.

			Leng	th in	Feet.				Thickness of Plates.	Weight of each Channel.
18	20	22	24	26	28	30	32	34	Inch.	Lbs. per Feet.
149 164 179 194 209 225 240	145 160 175 189 204 219 234	141 156 171 184 109 214 228	137 152 165 179 194 208 222	134 147 160 174 188 202 215	129 143 155 169 182 195 209	125 135 150 163 176 189 202	121 134 146 158 171 182 194	117 129 141 153 165 176 188	1/4 5 16 2/5 16 1/2 16 1/2 16 5/8	13.25
160 175 190 296 221 236 252	156 171 186 201 216 231 245	152 166 181 195 210 225 238	148 162 176 190 203 217 231	143 157 171 184 197 211 225	139 152 166 178 191 204 218	134 147 160 172 185 198 211	130 142 154 167 179 191 204	126 137 149 161 173 185 196	1/4 Se 6 3/3 7 6 1/2 6 6 5/8	15
192 207 222 237 253 268 282	186 201 216 231 246 260 275	181 196 210 224 239 253 268	176 190 204 218 232 246 260	170 184 197 211 224 238 251	165 178 191 204 217 230 243	159 172 185 197 210 223 236	154 166 179 191 203 216 226	148 160 172 183 195 207 219	10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (20
223 238 253 268 283 298 313	216 232 246 261 276 291 306	210 224 239 253 267 282 296	204 218 232 246 260 274 287	197 210 224 238 252 265 279	191 204 217 230 243 256 269	183 197 210 222 235 247 260	177 189 201 213 226 238 250	170 183 194 206 218 229 241	1/4 5 16 3/5 7 16 1/2 9 16 5/3	25

SAFE LOADS IN THOUSANDS OF POUNDS FOR 10" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.		Le	ngth	in Fee	t.	
Lbs. per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	6	8	10	12	14	16
15	1/4 5 16 8/8 7 16 1/2 9 16 5/8	50.4 55.5 60.6 65.7 70.8 75.9 81.0	14.92 16.42 17.92 19.42 20.92 22.42 23.92	3.62 3.61 3.59 3.58 3.58 3.57 3.56	184 203 221 240 259 277 296	183 201 220 238 257 275 293	181 199 217 235 254 272 290	179 197 215 232 250 268 286	176 193 211 229 247 264 282	173 191 207 225 242 259 277
20	1/4 5 16 8/8 7 16 1/2 9 16 5/8	60.4 65.5 70.6 75.7 80.8 85.9 91.0	17.76 19.26 20.76 22.26 23.76 25.26 26.76	3.52 3.52 3.51 3.51 3.51 3.50 3.50	219 238 257 275 294 312 331	217 236 254 272 291 309 328	215 233 252 270 288 805 324	212 230 248 266 284 302 320	209 226 244 262 279 297 314	205 223 239 257 274 291 808
25	1/4 5 16 3/8 7 16 1/2 16 5/8	70.4 75.5 80.6 85.7 90.8 95.9 101.0	20.70 22.20 23.70 25.20 26.70 28.20 29.70	3.42 3.43 3.43 3.43 3.43 3.44 3.44	255 274 293 311 330 348 367	253 272 290 308 327 345 364	250 268 287 305 323 341 359	247 265 282 300 318 336 355	242 260 278 295 313 330 348	238 255 272 289 307 324 341
80	1/4 5 6 8 7 8 1/2 9 6 8 5 8	80.4 85.5 90.6 95.7 100.8 105.9 111.0	23.64 25.14 26.64 28.14 29.64 31.14 32.64	3.33 3.34 3.35 3.36 3.36 3.37	292 310 329 347 366 384 403	289 307 325 344 362 380 399	285 303 321 340 358 376 394	281 299 317 334 352 370 388	276 294 311 329 346 364 381	271 288 305 322 339 358 375
85 " " "	1/4 5 0 2/8 1/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90.4 95.5 100.6 105.7 110.8 115.9 121.0	26.58 28.08 29.58 31.08 32.58 34.08 35.58	3.26 3.27 3.28 3.29 3.29 3.30 3.31	328 347 365 384 402 421 439	324 343 361 380 398 416 435	320 338 357 375 393 411 429	315 333 351 369 387 405 423	309 327 344 362 379 398 415	303 320 337 354 372 500 407

SAFE LOADS IN THOUSANDS OF POUNDS FOR 10" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P =
$$\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$$
. Safety factor 4.

SERIES A.

				Thick- ness of Plates.	Weight of each Channel.						
18	20						Lbs.per Ft.				
170 187 204 221 238 255 271	166 183 199 216 232 249 266	162 179 195 211 228 243 259	159 175 190 206 222 238 253	154 170 186 200 216 231 246	151 165 180 195 210 225 239	146 161 175 189 204 219 233	142 156 170 184 199 212 226	138 152 165 178 192 206 218	134 147 160 172 186 199 212	1/4 1 1 6 8/3 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	15
201 218 235 252 269 286 303	196 213 230 246 263 279 296	192 208 224 240 256 272 289	187 203 219 235 251 265 281	182 197 213 228 244 259 274	177 192 207 222 236 251 266	172 187 201 216 230 244 258	167 181 195 209 223 237 251	161 175 189 202 216 229 243	157 170 182 195 209 222 235	14 18 8 8 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20
233 250 267 284 301 318 335	228 245 261 278 294 311 327	222 238 255 271 287 303 319	216 232 248 263 279 295 310	210 225 241 256 271 286 302	204 219 233 248 263 279 294	198 213 227 242 256 271 285	191 206 220 234 248 262 276	186 199 213 226 240 253 267	180 193 206 219 232 245 258	1/4 16 8/3 16 1/2 16 1/2 16 5/8	25
265 281 298 315 332 350 357	258 275 291 307 324 342 358	252 268 254 301 317 333 349	245 260 276 293 308 324 339	238 253 268 284 299 315 330	230 245 260 276 290 305 320	223 237 252 267 281 296 310	216 230 243 258 272 286 300	209 222 237 250 263 276 290	201 214 228 241 254 267 280	1/4 18 8/8 7 18 1/2 1/2 18 5/8	80
296 313 330 347 363 380 398	289 306 322 338 354 371 389	282 298 313 329 345 361 379	273 289 305 320 336 351 367	265 279 296 311 326 341 356	256 271 257 301 316 330 345	248 262 278 292 306 320 334	240 254 267 252 296 310 323	232 245 258 273 286 299 312	224 237 249 263 276 289 301	1/4 \$ 16 8/8 116 1/2 1/2 1/6 6/8	35

SAFE LOADS IN THOUSANDS OF POUNDS FOR 12" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration			Ler	ngth	in Fe	et.		
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	8	10	12	14	16	18	20	22
20.5	1/4 5 16 3/8 7 16 1/2 9 16 5/8	64.8 70.8 76.7 82.7 88.6 94.6 100.5	19.06 20.81 22.56 24.31 26.06 27.81 29.56	4.41 4.38 4.36 4.34 4.32 4.30 4.28	235 257 278 300 321 343 364	233 255 276 298 319 340 362	232 253 273 295 316 337 358	229 250 271 292 313 333 354	227 247 267 288 309 330 350	223 214 264 285 304 325 345	220 240 260 280 300 319 339	217 236 256 275 295 315 335
25	1/4 5/18/3/8 1/2 1/2 1/6 5/8	73.8 79.8 85.7 91.7 97.6 103.6 109.5	21.70 23.45 25.20 26.95 28.70 30.45 32.20	4.35 4.32 4.31 4.29 4.27 4.26 4.25	268 289 311 332 354 375 397	266 287 308 330 351 373 393	263 284 305 327 348 369 390	261 282 303 323 344 365 386	257 278 299 319 340 360 381	254 274 294 315 335 356 376	250 270 290 310 330 350 370	246 266 285 305 324 343 363
30 " "	1/4 5 16 3/8 7 16 1/2 9 16 5/8	83.8 89.8 95.7 101.7 107.6 113.6 119.5	24.64 26.39 28.14 29.89 31.64 33.39 35.14	4.27 4.26 4.25 4.23 4.22 4.21 4.21	304 325 347 368 390 411 433	302 323 344 365 387 408 429	299 320 341 362 383 404 425	295 316 337 358 379 400 421	292 312 333 353 374 395 415	288 308 329 348 368 389 409	283 303 323 343 363 382 402	278 298 317 337 357 377 396
35 	1/4 5 1/6 3/8 7 1/6 1/2 9 1/6 5/8	93.8 99.8 105.7 111.7 117.6 123.6 129.5	27.58 29.33 31.08 32.83 34.58 36.33 38.08	4.19 4.18 4.18 4.17 4.16 4.16 4.15	340 361 383 405 426 448 469	337 358 380 401 422 444 465	334 355 376 397 418 439 461	330 351 372 392 413 434 455	326 347 367 388 409 429 449	321 341 362 382 402 423 443	316 336 356 376. 396 416 436	310 330 349 369 389 408 428
40	1/4 5 16 3/8 7 18 1/2 9 18 5/8	103.8 109.8 115.7 121.7 127.6 133.6 139.5	30.52 32.27 34.02 35.77 37.52 39.27 41.02	4.13 4.12 4.12 4.12 4.11 4.11 4.11	376 398 419 441 462 484 505	373 394 416 437 458 480 501	369 390 411 433 454 475 496	365 386 406 427 448 469 490	360 380 401 421 442 463 483	354 374 395 415 435 456 476	349 368 388 408 428 448 468	343 363 382 402 420 440 459

SAFE LOADS IN THOUSANDS OF POUNDS FOR 12" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{50\ 000}{1+\frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

			I		Thick- ness of Plates.	Weight of each Channel.						
24	26	28	30	32	34	36	38	40	42	44	Inch.	Lbs. per Ft.
213 232 252 271 289 309 328	209 228 246 266 285 304 322	206 223 242 260 279 297 316	201 220 237 255 274 291 309	196 214 232 249 267 255 302	193 209 227 244 261 278 296	188 205 221 238 255 271 288	184 200 216 232 249 265 281	179 195 211 227 242 258 274	175 190 206 223 237 251 267	170 186 200 216 230 245 259	1 / 4 / 5 5 6 8 / 8 7 1 6 6 6 6 6 6 6 6 6	20.5
242 260 280 299 319 338 358	237 256 275 293 312 331 350	233 251 269 288 306 324 343	228 246 263 282 300 318 335	223 240 258 275 293 311 329	218 235 252 270 286 303 320	213 230 246 263 280 295 312	208 224 241 256 272 289 306	203 218 234 250 265 281 297	197 213 229 243 259 273 289	193 207 222 237 252 267 281	1/4 5 16 8/8 71 1/2 9 16 5/8	25
274 293 313 331 350 369 389	268 287 306 325 343 362 381	262 281 300 318 337 354 372	257 276 293 311 329 347 365	251 269 287 304 321 339 357	245 263 280 297 313 331 348	240 256 273 290 307 322 339	234 250 267 282 299 315 332	228 244 260 275 291 307 323	223 237 253 268 282 298 314	216 232 246 261 276 290 305	1/4 5 16 3/8 7 16 1/2 9 16 5/8	30 44 44 44 44 44
305 324 344 362 381 400 420	299 318 337 356 375 394 411	292 311 329 348 366 385 464	286 304 322 340 358 376 394	280 296 314 332 349 367 385	273 290 308 323 341 358 375	266 283 300 317 332 349 365	259 275 292 308 325 341 356	253 268 284 300 316 332 348	246 262 277 291 307 323 338	239 254 270 283 298 313 328	1/4 5 8 8 8 7 1 8 1 1/2 1 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35
336 356 375 394 413 433 452	329 348 367 386 405 424 442	322 340 359 377 396 412 433	314 333 351 369 387 405 423	308 324 342 360 377 395 412	301 316 333 351 368 385 402	293 310 326 343 358 375 391	285 301 318 334 350 367 383	277 293 309 325 341 357 373	269 285 300 316 331 347 362	262 277 292 307 322 337 352	1/4 5/6 8/8 7/16 1/22 9/16 5/8	40

SAFE LOADS IN THOUSANDS OF POUNDS FOR 15" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES A.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.			L	engt	h in	Fee	t.		_
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	12	14	16	18	20	22	24	26	28
33	\$ 8 16 1/2 16 1/2 16 16 18 18	109.4 116.6	32.55 34.68	5 41 5.38	399 425	396 422	393 418	390 415	386 411	381 406	378 401	373	367 391
44	1/2	123.8	36.80	5.36	451	448	444	440	436	431	426	420	415
66	16	131.0 138.2	38.92 41.05	5.33 5.31	476 502	474 500	470 495	465	460 485	456 481	450 475	444	437
66	118	145.4	43.18	5.29	529	526	521	516	510	504	499	492	485
		152.7	45.30	5.24	555 409	550 406	545 402	541 399	535 395	529 390	522 387	515 381	509 376
85	7 1 5	113.4 120.6	33.33 35.46	5.40 5.37	435	432	428	424	420	415	410	406	400
66	1/2	127.8 135.0	37.58 39.70	5.35 5.32	461 486	457 483	453 479	449 474	445 469	440 465	435 459	429 453	424 446
66	5/8	142.2	41.83	5.30	512	509	505	500	494	488	484	477	470
66	3/8/10/22/16/81/8/4	149.4 156.7	43.96 46.08	5.28 5.27	538 564	534 560	530 556	525 551	520 545	513 538	508 531	501 525	494 518
40		123.4	36.27	5.35	445	441	438	433	430	425	419	414	409
66	8/7/16/2 11/2 15/11/8/1	130.6	38.40	5.33	470	467	463	459	454	450	444	438	432
4.6	2 2 2 8	137.8 145.0	40.52 42.64	5.31 5.29	496 522	493 519	489 514	484 509	479 504	475 498	469 493	462 486	455 479
64	5/8	152.2	44.77	5.27	548 574	544 570	540	535 560	529 554	523	516	511	503
6.6	18	159.4 166.7	46.90 49.02	5.26 5.24	600	595	566 590	586	579	548 572	540 565	535 557	527 551
45		133.4	39.23	5.31	480	477	473	469	464	459	454	447	441
64	3/8 7/6 1/2 9/16 5/8 1/8	140.6 147.8	41.36 43.48	5.29 5.27	506 532	503 528	499 525	494 519	489 514	483 508	478 501	472	465
64	16	155.0	45.60	5.25	558	554	550	545	539	532	525	518	512
64	% 11	162.2 169.4	47.73 49.86	5.24 5.23	584 610	580 606	575 600	570 596	564 589	557 582	550 575	542	536 558
4.6	3/4	176.7	51.98	5.21	636	631	626	619	614	607	599	591	582
50	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	143.4 150.6	42.17 44.30	5.26 5.24	516 542	512 538	509 533	504 529	498 524	492 517	486 511	481 503	474
66	1/2	157.8	46.42	5.23	568	564	559	555	549	542	535	528	520
66	16	165.0 172.2	48.54 50.67	5.21 5.20	594 620	590 615	584 610	578 604	574 599	567 592	559 584	552 576	543 567
44	118	179.4	52.80	5.19	646	641	636	629	622	616	608	600	591
	8/4	186.7	54.92	5.18	672	667	661	654	647	641	633	624	615
55	78	153.4 160.6	45.11 47.24	5.21 5.19	552 578	548 574	543 569	538 563	533 557	527 552	520 544	513 537	505 529
66	1/2	167.8	49.36	5.18	604	600	594	588	582	576	569	561	553
66	5/8	175.0 182.2	51.48 53.61	5.17 5.16	630 656	625 651	620 645	613	607 632	599 624	593 616	585 609	576 600
44	3/8 118 1/2 106 106 118 3/4	189.4 196.7	55.74	5.15	682	677	671	664	657	649	640 665	633	624 648
	/4	190.7	57.86	5.14	708	703	696	089	082	0/3	000	000	040

SAFE LOADS IN THOUSANDS OF POUNDS FOR 15" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula
$$P = \frac{50\ 000}{1 + \frac{(12\ \text{L})^2}{36\ 000\ \text{r}^2}}$$
. Safety factor 4.

SERIES A.

				Lei	ngth	in F	eet.					Thick- ness of Plates.	Weight of each Channel.
30	32	34	36	38	40	42	44	46	48	50	52	Inch.	Lbs.per Ft.
363 385 409 432 456 478 501	357 381 402 425 449 472 493	351 374 397 418 441 464 484	345 368 390 411 433 456 476	340 361 383 405 425 447 467	334 356 376 397 419 438 460	327 349 370 389 411 432 451	322 342 362 381 402 423 442	316 335 355 375 394 414 432	309 329 347 367 388 405 423	304 322 342 359 379 397 416	297 315 334 351 371 390 407	3/8 716 1/2 9-1-6 1-6 5/8 1-6 8/4	33 " " " " " "
370 394 417 441 463 486 510	366 387 411 434 457 478 501	360 383 404 426 449 472 493	353 376 398 419 441 464 486	348 369 391 413 433 455 477	342 364 383 405 427 446 468	335 357 376 397 418 437 459	330 349 370 389 410 431 452	323 342 362 383 401 422 442	316 337 355 375 393 413 433	310 329 349 367 386 404 423	304 322 341 359 378 397 414	8/8 76 1/2 15/8 16/8 16/8	35
403 427 450 472 495 519 542	396 420 443 466 487 510 533	390 412 435 458 479 502 524	384 405 427 450 472 495 515	377 399 420 441 464 486 505	370 392 413 433 455 476 498	363 384 405 427 446 467 488	357 376 397 418 439 457 478	350 370 389 409 430 450 468	342 363 383 400 420 440 458	337 355 374 392 411 431 450	329 347 366 385 402 421 440	3/8 7/6 1/22 9/6 1/6 8/4	40
436 458 481 504 528 552 573	429 452 473 496 519 542 566	421 444 465 488 510 533 556	414 436 459 479 501 523 546	406 428 450 472 492 514 536	400 420 441 463 485 506 525	392 414 433 454 475 496 515	384 405 426 445 465 486 507	376 397 417 435 456 476 496	370 388 408 428 446 465 485	362 380 399 419 438 455 475	354 374 390 409 429 448 464	8/8 7 16 1/2 16 5/8 118 8/4	45
466 490 513 535 558 582 605	459 482 505 528 549 572 595	451 474 496 519 542 562 585	445 465 487 510 532 554 574	437 456 478 500 522 544 566	428 450 471 490 512 533 555	420 441 462 481 502 523 544	411 432 453 473 491 512 533	405 423 443 463 484 501 521	396 414 433 459 473 493 510	387 407 424 443 463 482 499	379 398 417 433 452 471 490	8/8 7/6 1/2 1/6 5/8 1/8 1/8	50
497 520 544 567 591 614 638	491 512 535 558 581 604 627	482 503 525 548 571 593 616	474 496 516 538 560 582 605	465 487 509 528 550 572 593	456 477 499 520 539 560 582	447 468 489 510 531 549 570	440 458 479 499 520 541 558	431 448 469 489 509 529 549	421 441 458 478 498 518 537	412 431 448 468 487 506 525	403 422 441 457 476 495 514	8 76 1/2 1 5/6 1 6 /4	55

SAFE LOADS IN THOUSANDS OF POUNDS FOR 6" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P =
$$\frac{50\ 000}{1+\frac{(12\ L)^2}{36\ 000\ r^2}}$$
 Safety factor 4.

SERIES B.

Weight of each Channel.	Thickness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.		Length in F			
Lbs. per Foot.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	4	6	8	10	12
8 	1/4 5 16 3/8 16 1/2 16 5/8	31.3 35.1 39.0 42.8 46.6 50.4 54.3	9.26 10.39 11.51 12.64 13.76 14.89 16.01	2.74 2.73 2.71 2.70 2.70 2.69 2.68	115 129 142 156 170 184 198	114 127 141 155 169 183 196	112 126 139 153 166 180 193	110 123 136 150 163 176 190	107 121 134 147 160 172 185
10.5	1/4 56 3/8 7 16 1/2 9 16 5/8	36.3 40.1 44.0 47.8 51.6 55.4 59.3	10.68 11.81 12.93 14.06 15.18 16.31 17.43	2.68 2.67 2.66 2.66 2.65 2.65 2.65	132 146 160 174 188 202 216	131 145 158 172 186 200 213	129 142 156 170 183 197 210	126 140 153 166 179 193 206	123 137 150 163 176 189 202
13 " " "	1/4 5/8 3/8 7-16 1/2 1/6 5/8	41.3 45.1 49.0 52.8 56.6 60.4 64.3	12.14 13.27 14.39 15.52 16.64 17.77 18.89	2.54 2.62 2.62 2.62 2.61 2.61 2.61	150 164 178 192 206 220 234	148 162 176 190 204 218 231	146 160 173 187 200 214 227	143 157 170 183 197 210 223	139 153 164 179 192 203 218
15.5 " " "	1/4 516 3/8 716 1/2 96 6/8	46.3 50.1 54.0 57.8 61.6 65.4 69.3	13.62 14.75 15.87 17.00 18.12 19.25 20.37	2.47 2.54 2.57 2.57 2.57 2.57 2.57	169 183 196 210 224 238 252	166 180 194 208 222 236 249	164 178 191 205 218 232 245	160 174 187 200 214 227 240	155 169 182 195 208 221 234

SAFE LOADS IN THOUSANDS OF POUNDS FOR 6" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

		1	Length	in Feet	t.			Thickness of Plates.	Weight of each Channel.
14	16	18	20	22	24	26	28	Inch.	Lbs.per Ft.
105 118 130 143 155 168 181	102 114 126 139 151 163 175	99 111 123 134 146 158 170	95 107 118 130 141 153 163	92 103 114 125 136 147 158	88 99 109 120 131 141 151	85 95 105 115 126 135 145	82 91 101 110 120 130 140	1/4 5/6 1/6 3/8 1/6 1/2 1/2 1/6 5/8	8
120 133 145 158 171 183 196	116 129 141 154 166 178 190	113 125 136 148 160 172 184	108 121 132 143 155 166 178	105 116 127 138 149 160 171	100 111 122 133 143 153 164	96 107 117 127 137 147 157	92 102 112 122 131 141 151	14 5 16 8 8 7 16 1/2 9 16 5/8	10.5
135 149 162 174 186 199 211	131 144 157 169 181 193 206	126 139 151 163 175 187 198	121 135 146 158 168 180 191	116 129 134 151 162 173 184	112 124 134 145 155 166 176	107 119 129 139 149 159 169	102 114 123 133 143 152 162	1/4 56 3/8 716 11/2 9 16 5/8	13
151 164 178 190 203 215 228	146 159 172 184 196 209 221	140 153 166 178 189 201 213	135 148 160 171 182 194 205	129 142 153 164 175 186 196	124 136 147 158 168 179 189	118 130 141 151 161 171 181	113 124 134 144 154 163 173	1/4 8 6 8 8/8 7 16 1/2 1 6 1/2 2 16 6/8	15.5

SAFE LOADS IN THOUSANDS OF POUNDS FOR 7" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Radius of		1	ength	in Fe	et.	
Lbs. per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	6	8	10	12	14	16
9.75	1/4 5-6 3/8 7-6 16/8 16/8	38.2 42.9 47.6 52.2 56.9 61.5 66.3	11.20 12.58 13.95 15.32 16.70 18.08 19.45	3.20 3.27 3.33 3.35 3.34 3.33 3.33 3.32	138 155 172 189 206 223 240	137 154 170 187 204 221 238	135 151 168 185 202 218 235	132 149 166 182 198 215 231	130 146 163 179 195 211 227	127 143 160 175 191 207 223
12.25	1/4 5 16 3/8 7 16 1/2 9 16 5/8	43.2 47.9 52.6 57.2 61.9 66.5 71.3	12.70 14.08 15.45 16.82 18.20 19.58 20.95	3.08 3.16 3.22 3.29 3.31 3.30 3.29	156 173 190 208 225 242 259	155 172 188 206 222 239 256	153 169 186 203 220 236 253	150 166 183 200 216 233 249	147 163 180 196 213 229 244	143 159 176 192 208 224 239
14.75	1/4 5 16 3/8 7 16 1/2 9 16 5/8	48.2 52.9 57.6 62.2 66.9 71.5 76.3	14.18 15.56 16.93 18.30 19.68 21.06 22.43	2.99 3.07 3.14 3.20 3.26 3.27 3.27	174 191 209 225 243 260 277	172 189 206 223 240 257 274	170 186 203 220 237 253 270	167 183 200 216 233 250 266	163 179 196 212 229 245 261	159 176 192 208 224 240 256
17.25	1/4 8 16 8 76 1/2 9 16 5 8	53.2 57.9 62.6 67.2 71.9 76.5 81.3	15.64 17.02 18.39 19.76 21.14 22.52 23.89	2.91 2.99 3.06 3.13 3.19 3.24 3.24	192 209 226 213 260 277 294	190 207 224 240 258 275 291	187 204 220 237 254 271 288	183 200 217 234 250 267 283	179 195 212 228 245 262 278	174 191 207 224 240 257 272
19.75	1/4 5 16 8 8 7 16 1/2 9 16 5/8	58.2 62.9 67.6 72.2 76.9 81.5 86.3	17.12 18.50 19.87 21.24 22.62 24.00 25.37	2.85 2.98 3.00 3.07 3.13 3.19 3.21	210 228 244 261 279 296 313	207 225 241 259 275 293 309	204 221 238 254 272 289 305	200 217 233 250 267 284 301	195 212 228 245 262 278 294	190 206 223 240 256 273 288

SAFE LOADS IN THOUSANDS OF POUNDS FOR 7" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

			Leng		Thickness of Plates.	Weight of each Channel.				
18	20	22	24	26	28	30	32	34	Inch.	Lbs. per Ft.
124 140 156 171 187 202 218	121 137 152 167 182 198 213	118 133 148 163 178 192 207	114 130 144 159 173 187 201	111 125 140 154 168 182 196	107 121 136 149 163 175 190	103 117 132 145 158 171 184	100 114 127 140 153 165 178	97 110 123 136 147 160 172	1/4 5 6 8 7 1 6 1 1 1 2 9 6 6 1 1 5 8	9.75
140 156 172 188 204 218 234	136 152 167 183 199 213 228	132 147 163 178 194 207 222	128 143 158 173 188 202 216	124 139 153 168 182 196 210	119 134 148 163 176 190 203	115 129 143 158 171 184 197	111 125 139 153 165 178 190	107 120 133 148 160 172 184	1/4 5 E E B B B B B B B B B B B B B B B B B	12.25
155 171 187 203 219 235 250	150 166 182 198 214 229 244	145 161 177 192 209 223 238	141 156 172 187 202 217 231	136 151 166 181 196 210 223	131 146 161 175 190 203 216	127 141 155 169 184 197 209	122 136 149 163 178 190 203	117 130 144 158 172 184 196	1/4 \$ 18 3/9 7 18 11/2 9 18 6/8	14.75
169 186 202 218 235 250 265	164 180 197 212 228 244 259	159 175 190 206 222 238 252	154 169 185 200 216 231 245	148 163 178 194 208 224 238	143 157 172 188 202 217 230	137 152 166 180 195 209 222	132 146 160 174 189 202 215	128 140 154 167 181 195 207	1/4 56 8/8 71 11/2 9 18 8/8	17.25
185 201 217 233 249 267 282	179 195 211 227 243 259 275	173 189 205 220 236 252 266	167 182 198 214 229 245 259	161 176 191 206 222 236 251	155 169 185 199 215 229 243	149 163 177 192 207 222 236	143 157 170 185 200 214 227	137 150 154 178 192 206 219	5 8 7 1 6 1 7 1 6 1 7 2 1 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	19.75

SAFE LOADS IN THOUSANDS OF POUNDS FOR 8" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.		1	engt	h in	Feet		
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	6	8	10	12	14	16	18
11.25	1/4 5/6 3/8 7/16 1/2 9/16 5/8	42.9 48.0 53.1 58.2 63.3 68.4 73.5	12.70 14.20 15.70 17.20 18.70 20.20 21.70	3.62 3.70 3.72 3.70 3.68 3.66 3.65	157 176 194 213 231 250 268	156 174 193 211 229 248 266	154 172 191 209 227 245 264	152 171 189 207 224 242 260	150 168 186 203 221 239 256	147 165 183 200 218 234 252	144 162 180 196 213 230 247
13.75	1/4 5 16 3/8 7 16 1/2 2 16 5/8	47.9 53.0 58.1 63.2 68.3 73.4 78.5	14.08 15.58 17.08 18.58 20.08 21.58 23.08	3.52 3.60 3.67 3.67 3.66 3.64 3.63	174 193 211 230 248 267 285	172 191 209 228 246 265 283	171 189 207 226 244 262 280	168 187 205 223 241 258 276	165 184 202 220 237 255 272	163 181 198 216 233 250 268	159 177 195 212 229 246 262
16.25	1/4 516 3/8 7/16 11/2 20 11/6 5/8	52.9 58.0 63.1 68.2 73.3 78.4 83.5	15.56 17.06 18.56 20.06 21.56 23.06 24.56	3.42 3.50 3.58 3.64 3.63 3.62 3.61	192 211 229 248 266 285 303	190 209 228 246 264 283 301	188 206 225 244 261 279 298	185 204 222 240 258 276 294	182 200 219 237 254 272 289	179 197 215 233 250 268 285	175 193 211 229 245 262 279
18.75	1/4 66 3/8 7 16 1/2 9 16 5/8	57.9 63.0 68.1 73.2 78.3 83.4 88.5	17.02 18.52 20.02 21.52 23.02 24.52 26.02	3.34 3.42 3.50 3.57 3.61 3.60 3.59	210 229 247 266 284 303 322	208 227 245 264 282 301 319	205 224 242 261 279 297 315	202 221 239 257 276 294 312	199 217 235 254 271 289 307	195 213 231 249 267 284 301	191 208 227 245 262 279 296
21.25	1/4 16 3/8 16 1/2 16 1/2 16 1/8	62.9 68.0 73.1 78.2 83.3 88.4 93.5	18.50 20.00 21.50 23.00 24.50 26.00 27.50	3.27 3.36 3.43 3.51 3.57 3.57 3.57	228 247 266 284 303 321 340	226 244 263 282 300 319 337	223 241 260 279 297 315 333	219 238 256 275 293 311 329	215 234 252 270 289 306 324	211 229 247 265 283 301 318	206 224 243 260 278 295 313

SAFE LOADS IN THOUSANDS OF POUNDS FOR 8" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}} \cdot \ \text{Safety factor 4.}$

SERIES B.

		,	L	ength	in Fe	et.				Thick- ness of Plates.	Weight of each Channel.
20	22	24	26	28	30	32	34	36	38	Inch.	Lbs.per Ft.
142 159 176 193 209 225 242	138 156 172 189 204 221 237	135 152 168 184 200 215 231	131 148 164 180 194 210 226	128 144 160 175 190 204 219	124 141 155 170 184 199 214	121 137 151 166 179 194 207	117 133 147 161 175 188 202	114 129 143 156 169 182 195	110 125 139 151 164 176 189	1/4 5 16 3/8 7 16 1/2 9 16 5/8	11.25
156 173 191 208 224 241 257	152 170 187 203 219 236 251	149 165 183 199 214 230 246	144 161 178 193 209 224 239	140 157 173 187 203 218 233	137 153 168 183 198 213 226	132 148 164 178 193 206 220	128 144 159 173 186 200 213	124 139 154 168 181 194 207	120 134 149 162 175 188 200	1/4 5 16 3/8 7 16 1/2 16 5/8	13.75
171 189 206 224 240 257 274	167 184 202 219 235 251 267	163 179 197 214 230 245 261	158 175 191 209 223 239 254	153 170 187 203 218 233 247	149 165 181 198 211 226 241	144 160 176 191 206 220 233	140 155 170 186 199 213 227	135 150 165 180 194 207 219	130 145 160 175 187 200 213	1/4 5 16 3/8 7 16 1/2 9 16 5/8	16.25
186 204 221 239 257 272 289	181 199 216 233 250 267 283	176 194 210 228 245 260 276	171 188 205 222 238 254 269	166 182 199 216 231 247 262	161 177 193 210 226 240 254	155 171 188 203 219 233 247	150 166 182 198 213 226 239	145 161 176 191 206 219 232	140 155 170 186 200 212 224	1/4 5 16 3/8 7 16 1/2 9 16 5/8	18.75
201 219 237 254 272 280 305	196 214 231 248 265 282 298	191 208 225 243 260 276 291	184 202 218 236 252 268 283	178 196 212 229 246 261 276	173 190 206 223 239 253 268	167 184 200 216 231 245 260	161 178 193 209 225 239 253	156 172 187 202 218 231 244	150 165 180 196 211 224 237	1/4 5 166 3/8 7 16 1/2 9 16 5/8	21.25

SAFE LOADS IN THOUSANDS OF POUNDS FOR 9" CHANNEL AND PLATE COLUMNS, SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

Weight	Thick-	Weight	Area of	Least						٠		
of each	ness of	of	Column	Radius of			Len	gth :	in F	et.		
Channel.	Plates.	Golumn.	Section.	Gyration.								
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	6	8	10	12	14	16	18	20
13.25	1/4 5 16 3/8 7 6 1/2 9 6 6/8	48.6 54.1 59.7 65.2 70.7 76.2 81.7	14.28 15.90 17.53 19.16 20.78 22.40 24.03	4.05 4.10 4.07 4.04 4.02 4.00 3.99	177 197 217 237 257 277 297	176 196 216 236 256 276 296	174 194 214 234 253 273 293	172 192 212 231 251 270 290	170 190 209 228 248 267 286	168 187 207 225 244 263 282	166 184 203 222 240 259 278	163 181 200 218 236 255 273
15.0	1/4 5 16 3/8 7/6 1/2 9 16 5/8	52.1 57.6 63.2 68.7 74.2 79.7 85.2	15.32 16.94 18.57 20.20 21.82 23.44 25.07	3.97 4.05 4.05 4.03 4.01 3.99 3.97	190 210 230 250 270 290 310	188 208 228 249 268 288 308	187 207 226 246 266 286 306	185 204 224 244 263 283 302	183 202 221 241 260 279 299	180 199 218 237 256 275 295	177 197 215 234 252 271 290	174 193 212 230 248 266 285
20.0	1/4 5 16 3/8 7 1/6 1/2 9 16 5/8	62.1 67.6 73.2 78.7 84.2 89.7 95.2	18.26 19.88 21.51 23.14 24.76 26.39 28.01	3.78 3.87 3.95 3.98 3.96 3.95 3.94	226 246 266 286 306 327 347	224 244 264 285 305 325 345	222 242 262 282 302 322 342	219 239 260 279 299 318 338	216 236 256 276 295 314 333	213 233 252 272 291 309 328	209 228 248 268 286 304 323	205 224 244 263 280 299 317
25.0	1/4 5 18 3/8 716 1/2 9 116 5/8	72.1 77.6 83.2 88.7 94.2 99.7 105.2	21.20 22.82 24.45 26.08 27.70 29.32 30.95	3.64 3.73 3.81 3.89 3.92 3.91 3.90	262 282 303 323 343 363 383	260 280 300 320 341 361 380	257 277 298 317 337 357 377	254 274 294 314 333 353 373	251 270 290 310 329 348 368	246 266 285 305 324 343 362	242 261 281 301 319 338 357	236 255 276 295 314 332 350

SAFE LOADS IN THOUSANDS OF POUNDS FOR 9" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $\mathbf{P} = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

			1	Leng	th in	Fee	t.				Thickness of Plates.	Weight of each Channel.
22	24	26	28	30	32	34	36	38	40	42	Inch.	Lbs. per Ft.
160	157	153	150	146	143	139	136	132	128	125	1/4	13.25
178	174	172	168	164	160	156	152	148	144	140	15-1-8	
196	192	188	184	180	175	171	167	163	158	154	18/8	
214	210	206	201	196	192	187	182	177	172	167	77-8	
232	227	222	217	212	207	202	196	191	186	181	11/2	
250	245	240	234	229	223	217	211	206	200	194	9-1-8	
268	263	257	251	245	239	233	227	221	215	208	15/8	
171	167	164	159	156	152	148	144	140	136	132	1/4	15.0
190	186	182	178	174	169	165	161	156	152	148	5	
208	204	199	195	190	186	181	176	172	167	162	8/8	
225	221	216	212	207	202	197	192	187	181	176	76	
243	238	233	228	223	217	212	206	200	195	189	1/2	
261	256	251	245	239	233	227	221	215	209	203	95	
280	274	268	261	255	248	242	235	229	223	216	5/8	
201 220 239 258 275 293 311	197 215 234 253 269 287 305	192 211 229 247 264 281 298	187 206 224 242 258 274 291	183 200 218 236 251 268 284	177 195 213 230 245 261 277	172 190 207 224 239 255 270	168 185 202 218 232 248 263	162 180 196 213 226 241 256	158 174 191 205 220 234 247	153 168 186 200 214 228 240	1/4 5-6 8/8 7-6 1/2 1/2 1-6 5/8	20.0
232	226	221	214	209	202	197	190	185	179	173	1/4	25.0
250	245	238	233	227	220	214	207	201	196	189	566	
269	264	258	252	245	238	232	226	218	212	206	8/8	
288	283	276	270	264	257	250	242	236	229	222	716	
308	301	295	288	280	273	266	259	252	245	238	1/2	
326	319	312	304	296	289	281	274	266	260	251	1/6	
344	335	328	320	313	309	297	289	281	273	264	5/8	

SAFE LOADS IN THOUSANDS OF POUNDS FOR 10" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Section.	Least Radius of Gyration.				engt	h in	Fee	t.		
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	8_	10	12	14	16	18	20	22	24
15	1/4 5/8 3/8 7/16 1/2 9/16 5/8	55.5 61.9 68.3 74.6 81.0 87.4 93.8	16.42 18.30 20.17 22.05 23.92 25.80 27.67	4.49 4.58 4.65 4.70 4.67 4.63	203 226 249 272 296 319 342	201 224 247 271 294 316 339	199 223 245 268 291 314 337	198 220 243 266 289 311 334	195 218 241 263 286 308 330	193 216 238 261 282 304 326	190 212 235 257 278 300 322	187 209 232 253 275 296 317	185 206 228 250 271 291 312
20	1/4 5 16 3/8 7 16 1/2 9 16 5/8	65.5 71.9 78.3 84.6 91.0 97.4 103.8	19.26 21.14 23.01 24.89 26.76 28.64 30.51	4.29 4.39 4.47 4.55 4.62 4.63 4.61	237 261 284 307 331 354 377	236 259 282 305 328 351 374	233 257 279 303 326 349 371	231 254 277 300 323 346 368	228 251 273 297 319 341 364	225 248 270 292 315 337 359	221 244 266 289 311 333 355	218 240 262 285 306 328 349	214 236 258 280 302 323 344
25	1/4 5/16 3/8 7/16 1/2 9/16 5/8	75.5 81.9 88.3 94.6 101.0 107.4 113.8	22,20 24,08 25,95 27,83 29,70 31,58 33,45	4.13 4.23 4.32 4.40 4.48 4.55 4.58	274 297 320 343 367 390 413	271 294 318 341 364 387 410	268 292 315 333 361 384 407	265 288 312 334 357 380 403	262 285 308 331 353 376 399	258 280 303 326 349 371 394	254 277 299 322 343 366 388	249 272 294 316 339 361 383	245 266 288 310 332 355 377
30	1/4 5/8 3/8 7/16/2 16/8 5/8	85.5 91.9 98.3 104.6 111.0 117.4 123.8	25.14 27.02 28.89 30.77 32.64 34.52 36.39	4.01 4.11 4.20 4.28 4.36 4.43 4.50	309 333 356 379 403 426 449	307 330 353 377 400 423 416	303 327 349 373 396 419 442	300 323 346 369 392 415 438	295 318 341 365 387 410 432	291 313 336 359 382 404 428	286 308 331 353 376 399 422	280 302 326 348 371 392 415	275 298 320 342 364 386 409
35	1/4 -56 -3/8 -7 -16 -16/5 -9 -16 -5/8	95.5 101.9 108.3 114.6 121.0 127.4 133.8	28.08 29.96 31.83 33.71 35.58 37.46 39.33	3.90 4.00 4.10 4.18 4.26 4.33 4.40	345 369 392 415 438 462 485	342 365 389 412 436 459 481	338 361 385 408 431 454 478	334 357 380 404 426 450 472	329 352 375 398 420 444 467	324 346 369 392 415 437 461	318 340 363 386 409 432 455	312 334 356 379 401 424 447	304 327 349 373 395 418 439

SAFE LOADS IN THOUSANDS OF POUNDS FOR 10" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{50\ 000}{1+\frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

				Lei	ngth	in F	eet.					Thick- ness of Plates.	Weight of each Channel.
26	28	30	32	34	36	38	40	42	44	46	48	Inch.	Lbs.per Ft.
181 202 224 246 266 287 307	178 199 220 241 261 282 302	174 195 216 237 257 276 296	171 191 212 233 251 271 291	167 188 208 228 246 266 285	163 183 204 223 242 261 278	159 179 199 218 237 254 273	156 176 195 214 231 249 267	152 171 190 209 226 244 260	148 167 185 204 221 237 254	145 163 181 199 215 232 248	141 159 177 195 210 226 241	1/4 5 116 3/8 7 116 1/2 9 116 5/8	15
210 232 254 275 297 318 339	206 227 248 270 291 313 332	201 223 244 265 286 306 326	197 218 238 260 281 301 320	193 214 234 254 274 295 313	188 208 228 249 269 288 307	183 203 223 243 264 282 301	179 198 218 238 257 276 293	174 193 213 232 251 269 286	169 189 208 226 246 263 280	165 183 202 221 239 257 272	160 179 197 216 233 250 266	1/4 5 16 3/8 7 16 1/2 9 16 5/8	20
239 262 284 305 327 349 370	234 256 277 299 322 342 364	229 250 272 294 315 336 356	224 245 266 287 309 330 350	219 240 260 281 302 322 343	213 234 254 274 296 316 335	207 227 248 268 288 308 328	202 221 241 261 282 301 321	196 216 236 256 274 295 312	190 210 229 248 268 287 305	186 204 223 241 261 280 299	180 199 217 236 255 274 290	1/4 5 16 3/8 7 16 1/2 9 16 5/8	25
269 291 313 335 357 379 401	263 285 306 329 351 372 394	257 278 300 322 342 364. 386	250 272 293 314 336 357 378	244 265 286 308 328 349 370	237 258 279 300 320 342 362	231 252 273 292 313 333 355	224 245 265 286 305 326 345	218 239 258 278 298 317 338	212 232 251 270 290 310 329	205 225 243 264 282 301 321	199 218 238 256 275 294 312	1/4 5 1 e 3/8 7 1 e 1/2 9 1 6 5/8	30
298 320 343 365 387 409 432	291 313 336 357 379 401 422	284 306 328 349 372 393 415	277 298 320 340 363 384 405	269 291 312 334 354 375 397	262 283 304 325 345 367 387	255 275 296 317 338 358 379	248 267 287 309 329 350 369	239 260 281 301 320 340 361	232 252 273 202 312 331 351	225 245 265 284 303 323 341	219 238 257 276 294 314 333	1 4 5 6 3 × 7 6 1 2 9 6 5 8	35

SAFE LOADS IN THOUSANDS OF POUNDS FOR 12" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

Weight of each Channel.	Thick- ness of Plates.	Weight of Column.	Area of Column Section.	Least Radius of Gyration.			L	engt	h in	Fee	t.		
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	8	10	12	14	16	18	20	22	24
20.5	1/4 66 16 3/8 76 1/2 9 16 5/8	68.2 75.0 81.8 88.6 95.4 102.2 109.0	20.06 22.06 24.06 26.06 28.06 30.06 32.06	5.23 5.18 5.14 5.10 5.07 5.04 5.01	248 273 298 322 347 372 397	247 272 296 321 345 370 394	246 270 295 318 343 367 392	244 268 292 317 340 364 389	241 266 290 314 337 361 385	240 263 287 311 333 357 381	237 260 283 307 331 354 377	234 258 280 303 327 349 372	231 254 276 299 322 344 367
25	1/4 5 8 8 7 16 1/2 9 16 8	77.2 84.0 90.8 97.6 104.4 111.2 118.0	22.70 24.70 26.70 28.70 30.70 32.70 34.70	5.09 5.14 5.11 5.07 5.05 5.02 5.00	281 306 330 355 380 405 429	279 304 328 353 378 402 427	277 302 326 351 375 400 424	275 300 324 348 372 396 421	273 297 321 345 369 393 417	270 294 318 341 365 389 412	267 291 315 338 361 384 408	264 287 311 334 356 379 403	261 284 307 330 351 374 397
80 " " "	1/4 5 18 3/8 7 16 1/2 16 5/8	87.2 94.0 100.8 107.6 114.4 121.2 128.0	25.64 27.64 29.64 31.64 33.64 35.64 37.64	4.93 5.04 5.07 5.04 5.02 4.99 4.98	317 342 367 391 416 441 466	315 340 365 389 414 438 463	313 338 362 387 411 435 460	311 335 359 383 408 432 456	308 332 356 380 404 428 452	304 328 352 376 400 424 447	300 326 349 373 395 419 442	296 321 345 367 390 413 437	292 316 340 362 385 408 431
35	1/4 5 18 3/8 7 16 1/2 9 16 5/8	97.2 104.0 110.8 117.6 124.4 131.2 138.0	28.58 30.58 32.58 34.58 36.58 38.58 40.58	4.80 4.91 5.01 4.99 4.97 4.95 4.94	353 378 403 428 453 477 502	351 376 401 425 450 475 499	349 374 398 422 447 471 496	346 370 395 419 443 468 492	342 366 391 415 439 463 487	338 362 387 411 435 458 482	334 358 383 406 430 453 477	329 354 378 401 424 448 469	325 349 373 396 419 442 463
40	1/4 8 16 3/8 7 16 16 5/8	107.2 114.0 120.8 127.6 134.4 141.2 148.0	31.52 33.52 35.52 37.52 39.52 41.52 43.52	4.69 4.80 4.90 4.95 4.94 4.92 4.91	389 414 439 464 489 514 538	387 412 437 462 486 511 535	384 409 434 458 483 507 532	380 405 430 455 479 503 526	377 402 425 451 474 497 521	373 396 421 446 470 492 516	367 391 416 441 464 486 510	362 386 411 435 457 480 503	357 381 405 429 451 473 496

SAFE LOADS IN THOUSANDS OF POUNDS FOR 12" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$ Safety factor 4.

SERIES B.

				Lei	ngth	in F	eet.					Thick- ness of Plates.	Weight of each Channel.
26	28	30	32	34	36	38	40	42	44	46	48	Inch.	Lbs.per Ft.
228 251 272 295 318 339 362	225 247 269 291 313 334 356	222 243 265 286 308 328 350	218 239 261 281 303 324 344	215 235 256 276 297 319 338	211 231 251 271 292 313 332	207 227 247 266 286 307 326	204 223 242 262 281 301 319	200 218 237 257 275 295 313	196 214 232 251 269 288 306	191 209 228 246 263 282 299	187 205 223 241 258 276 293	1/4 5 16 3 8 16 1/2 16 5/8	20.5
257 280 302 325 348 369 391	253 276 298 320 342 363 385	249 272 293 315 337 357 379	245 268 288 310 331 351 373	241 263 283 304 325 345 366	236 258 279 299 319 339 359	232 253 274 293 313 332 352	227 248 268 287 307 325 345	222 243 263 281 301 319 338	219 238 258 275 295 312 331	214 234 252 269 288 305 324	210 229 247 264 282 299 317	1/4 5/6 3/8 7/16 1/2 1/6 5/8	25
288 312 336 357 379 402 425	284 307 330 351 374 396 418	279 302 325 346 368 389 411	274 298 320 341 361 353 404	269 293 314 335 355 376 397	264 287 308 329 348 369 390	259 282 302 323 342 362 382	254 276 296 316 335 355 375	249 271 290 310 328 347 367	243 265 284 304 321 340 359	238 260 278 297 314 333 351	233 254 272 291 307 326 344	1/4 5 3/8 7 16 1/2 1/2 1/6 5/8	30
320 344 365 390 413 434 456	315 338 362 384 406 427 449	310 333 356 378 400 420 442	303 327 350 371 393 413 434	297 321 344 365 386 405 426	292 315 337 358 379 398 418	286 309 331 351 371 390 410	280 303 324 344 364 382 402	273 295 318 337 355 374 394	267 289 311 330 347 366 355	261 282 304 323 340 358 377	255 276 298 316 332 350 369	1/4 5 16 3/8 7 16 17 16 16 5/8	35
351 375 399 422 444 466 459	344 369 393 415 437 459 481	339 363 386 408 430 452 473	333 355 350 401 423 444 465	326 349 373 394 415 436 457	318 342 366 387 407 428 448	312 335 357 379 399 420 440	306 328 350 372 391 411 431	298 320 343 361 383 403 420	291 313 335 356 375 394 411	285 306 328 348 367 386 402	278 299 321 341 359 375 393	1/4 5/8 7/6 1/2 1/2	40

SAFE LOADS IN THOUSANDS OF POUNDS FOR 15" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $P = \frac{50\ 000}{1 + \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

SERIES B.

	-0	C)-											
Weight	Thick-	Weight	Area of	Least									
of each	ness of	of		Radius of			Le	ngt	h in	Fee	t.		
Channel.	Plates.	Column.	Section.	Gyration.									
Lbs.per Ft.	Inch.	Lbs.per Ft.	Sq. Ins.	Inches.	12	14	16	18	20	22	24	26	28
33	3/8	117.0	34.80	6.59	429	427	425	423	420	417	414	410	406
66	3/8 7 16	125.5	37.30	6.57	460	458	456	453	450	447	442	438	434
44	1/2	134.0	39.80	6.52	491	489	485	482	479	476	472	468	463
44	9 16	142.5	42.30	6.48	521	519	516	513	509	505	501	497	492
66	1/2 9 16 5/8 11 16 3/4	151.0	44.80	6.44	552	549	546	543	539	535	531	526	521
66	16	159.5	47.30	6.41	583	580	577	573	569	565	561	554	549
	3/4	168.0	49.80	6.38	614	611	607	604	599	595	589	583	578
35	3/8	121.0	35.58	6.55	439	437	435	432	428	425	422	418	414
6.6	7	129.5	38.08	6.56	470	468	465	463	459	455	451	447	443
44	3/8 7-16 1/2 9-16 15/8 1-16 3/4	138.0	40.58	6.52	501	498	495	492	488	485	481	477	472
66	16	146.5	43.08	6.48	531	528	525	522	519	515	511	506	501
44	5/8	155.0	45.58	6.44	562	559	556	552	549	545	540	535	531
44	16	163.5	48.08	6.41	592	590	586	583	579	574	570	563	558
		172.0	50.58	6.38	623	620	617	613	609	604	598	592	587
40	3/8 -7- 16- 1/2 -9- 16- 5/8 -16- 16- 16- 16- 16- 16- 16- 16- 16- 16	131.0	38.52	6.41	475	472	470	467	464	460	457	451	447
66	16	139.5	41.02	6.51	506	503	500	497	494	490	486	482	477
44	1/2	148.0	43.52	6.50	537	534	531	527	524	520	516	511	507
4.6	16	156.5	46.02	6.47	567	564	561	558	554	550	545	541	536
4.6	118	165.0 173.5	48.52	6.43	598	595 626	592 622	588 618	584 614	580 610	575	570	563 592
4.6	16 3/4	182.0	51.02 53.52	6.40	629 659	656	653	649	644	638	603	598 627	621
45									498				480
45	3/8	141.0 149.5	41.48	6.28	511 542	509 539	506 536	502 533	529	494 525	490	486 515	510
6.6	16	158.0	43.98 46.48	6.39	573	570	567	563	559	555	520 551	546	541
4.4	72	166.5	48.98	6.45	604	601	597	594	590	585	580	575	570
6.6	5 6	175.0	51.48	6.42	634	631	628	624	620	615	610	603	597
6.6	113	183.5	53.98	6.39	665	662	658	654	650	645	638	632	626
4.6	1/2 9 16 5/8 11 16 3/4	192.0	56.48	6.37	696	693	689	685	680	673	667	661	655
50	3/8	151.0	44.42	6.17	547	544	541	537	533	528	523	519	514
6.6	7	159.5	46.92	6.28	578	575	572	567	563	559	555	550	543
4.6	1,5	168.0	49.42	6.37	609	606	603	599	595	589	584	579	573
4.6	9 16 5/8	176.5	51.92	6.43	640	636	633	629	625	620	615	610	602
6.6	5/8	185.0	54.42	6.40	671	667	664	660	655	650	643	637	631
6.6	11	193.5	56.92	6.37	701	698	694	690	685	678	673	667	660
4.6	3/4	202.0	59.42	6.35	732	729	725	720	715	708	702	696	689
55	3/8	161.0	47.36	6.07	583	580	576	571	567	563	556	551	546
66	16 1/2	169.5	49.86	6.18	614	610	607	603	599	593	588	582	577
44	1/2	178.0	52.36	6.28	645	642	639	633	629	624	619	613	605
6:	36	186.5	54.86	6.37	676	673	669	665	660	654	648	643	636
66	58	195.0	57.36	6.38	707	703	700	695	690	685	678	672	665
6.6	16	203.5	59.86	6.35	738	734	730	726	721	713	707	701	694
	74	212.0	62.36	6.33	768	764	760	756	751	743	737	730	724

SAFE LOADS IN THOUSANDS OF POUNDS FOR 15" CHANNEL AND PLATE COLUMNS. SQUARE ENDS.

Based on Gordon's Formula $\mathbf{P} = \frac{50\ 000}{1 \div \frac{(12\ L)^2}{36\ 000\ r^2}}$. Safety factor 4.

20"->

SERIES B.

				Lei	ngth	in F	eet.					Thick- ness of Plates.	Weight of each Channel.
30	32	34	36	38	40	42	44	46	48	50	52	Inch.	Lbs.per Ft.
401 430 459 487 515 543 572	397 425 454 482 509 538 566	393 421 449 477 503 532 560	388 416 444 470 498 525 553	383 411 439 464 492 519 544	379 406 433 458 485 512 537	374 401 427 452 479 504 530	369 395 422 446 473 497 523	364 390 414 440 466 490 516	359 384 408 434 457 483 508	353 379 402 427 450 476 501	348 373 396 421 444 468 491	3/8/16/2	33
410 439 468 496 523 552 581	406 434 463 491 518 546 575	401 430 358 486 512 540 568	397 425 452 478 506 534 562	392 420 447 473 500 528 553	387 414 412 467 494 521 546	382 409 436 461 487 512 538	377 404 430 454 481 505 531	372 398 422 448 474 498 524	367 392 416 442 465 491 516	361 387 410 435 458 483 509	356 381 404 429 451 476 498	3/8 1/2 16 1/2 16 5/8 116 3/4	35
442 473 502 530 557 586 615	438 468 496 525 551 580 608	433 463 491 517 545 573 601	428 457 485 511 539 567 592	423 452 450 505 532 560 585	417 446 471 499 526 553 577	410 439 465 492 519 543 570	404 433 459 485 512 536 562	399 427 453 479 502 528 554	393 421 446 472 495 521 546	387 414 440 465 488 513 538	381 408 433 458 480 505 527	3/8 1/2 1/2 1/6 1/2 1/6 1/6 1/3/4	40
475 505 536 563 591 620 649	470 500 530 557 585 613 642	464 494 524 550 578 607 635	459 488 516 544 572 600 625	451 483 510 537 565 592 617	445 474 504 531 558 582 609	440 468 497 524 550 575 601	433 462 490 517 540 567 593	427 455 483 509 533 559 585	421 449 477 502 525 551 576	413 442 470 492 518 543 568	407 435 463 485 510 535 556	3/8 116 1/2 9 16 5/8 16 3/4	45
507 537 568 596 625 654 682	501 531 562 590 618 647 675	495 525 555 583 612 640 665	489 519 547 577 604 630 657	481 510 540 570 597 622 649	475 504 533 563 590 614 641	469 497 526 555 579 606 632	462 493 519 548 571 598 623	453 483 512 538 563 5×9 615	447 476 504 530 555 581 603	440 467 497 522 547 572 594	433 460 487 514 539 561 585	3/8 1-6 1/2 1-6/8 1-6/3/4	50
540 569 599 650 659 687 716	532 562 593 623 652 680 706	526 556 586 616 645 670 698	520 549 579 607 637 662 690	511 542 570 599 627 654 681	504 533 562 592 619 646 673	497 526 555 584 611 637 664	490 519 547 576 602 628 652	481 511 540 568 594 620 643	474 501 532 560 585 608 633	466 494 521 552 577 599 624	457 486 513 540 565 590 614	3/8	55

SAFE LOADS IN THOUSANDS OF POUNDS FOR HOLLOW ROUND CAST IRON COLUMNS. SOUARE ENDS.

Based on Gordon's Formula $P = \frac{10000}{10000}$ 1+800 d²

P = safe load in pounds per square inch.
l = length of column in inches.

d = outside diameter of column in inches.

Ultimate compressive strength=80 000 pounds per square inch. Safety factor 8. Safe loads for other safety factors than that of the tables may be obtained as

follows:—New safe load = Safe load from table X New factor

Outside Diam- eter in	Thick- ness in		L	eng	th of	Col	lumi	n in	Feet	t.		Area of Metal in	Weight per Foot
Inches.	Inches.	6	8	10	12	14	16	18	20	22	24	Sq. Ins.	Pounds.
6	3/4	105	94	82	72	62	54	47	41	36	32	12 4	38.7
	7/8	119	107	94	82	71	62	54	47	41	36	14.1	44.0
7	3/4	130	119	108	96	86	76	67	60	53	47	14.7	46.0
	7/8	149	136	123	110	98	87	77	68	61	54	16.8	52.6
8	3/4	155	145	133	122	110	99	89	80	72	65	17.1	53.4
	7/8	178	166	153	139	126	114	104	92	83	75	19.6	61.2
	I	200	186	172	158	142	128	115	103	93	84	22.0	68.7
9	1 1 ¹ / ₈	207 233 258	196 220 244	183 206 228	169 190 211	156 175 194	142 160 177	130 146 162	118 133 147	108 121 134	98 110 122	22.3 25.1 27.8	69.8 78.5 87.0
10	7/8	235	225	212	199	185	172	158	146	134	123	25.1	78.4
	1	265	254	240	224	209	194	178	164	151	139	28.3	88.4
	11/8	294	281	266	249	232	215	198	182	168	154	31.4	98.0
	11/4	323	308	291	273	254	235	217	200	184	169	34.4	107.4
11	1 1½ 1¼ 1¾ 1¾ 13/8	298 330 363 395	287 319 350 380	273 304 333 361	259 287 315 342	243 270 296 322	227 253 277 301	212 235 258 280	197 219 240 261	183 203 223 242	169 188 206 224	31.4 34.9 38.3 41.6	98.2 109.1 119.7 129.9
12	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	368 404 439 473	356 391 425 458	342 375 408 440	326 358 389 419	309 339 369 397	291 320 348 375	274 300 327 352	256 281 306 330	239 263 287 308	223 245 267 288	38.4 42.2 45.9 49.5	120.1 131.9 143.4 154.6
13	1½ 1¼ 1¾ 1½ 1½	404 444 484 522	393 432 470 507	379 417 454 490	364 400 435 470	347 382 415 448	330 363 395 426	312 343 373 403	294 323 352 380	277 304 331 358	260 286 311 336	42.0 46.1 50.2 54.2	131.2 144.2 156.9 169.4
14	11/4	485	473	459	442	424	405	386	366	347	327	50.1	156.5
	13/8	528	515	499	482	462	441	420	399	378	357	54.5	170.4
	11/2	570	556	540	520	499	477	454	431	408	385	58.9	184.1
	15/8	612	597	579	558	535	511	487	462	437	413	63.2	197.4
15	18/8	573	560	545	528	509	489	467	446	424	406	58.9	183.9
	11/2	618	605	589	570	550	528	505	482	459	439	63.6	198.8
	15/8	664	650	632	612	590	567	542	517	492	471	68.3	213.4
	18/4	708	694	675	653	630	605	579	552	525	502	72.8	227.6
16	1½	666	654	638	620	600	579	557	533	510	486	68.3	213.5
	158	716	702	686	666	645	622	598	573	548	522	73.4	229.3
	134	764	750	732	711	689	664	638	611	584	558	78.3	244.8
	178	811	796	777	756	731	705	678	649	621	592	83.2	260.0

SAFE LOADS IN THOUSANDS OF POUNDS FOR HOLLOW ROUND CAST IRON COLUMNS. SQUARE ENDS.

Based on Gordon's Formula P = $\frac{10\ 000}{1 + \frac{1^2}{800\ d^2}}$

P = safe load in pounds per square inch.

1 = length of column in inches.

d = outside diameter of column in inches.

Ultimate compressive strength = 80 0000 pounds per square inch. Safety factor 8. Safe loads for other safety factors than that of the tables may be obtained as

follows:-New safe load = Safe load from table X New factor

Outside Diam- eter in	Thick- ness in	The second second	L	eng	th o	Col	lum	n in	Fee	t.		Area of Metal	Weight per Foot
Inches.	Inches.	14	16	18	20	22	24	26	28	30	32	Sq. Ins.	Pounds.
18	18/8 13/4 17/8	754 806 857 907	732 782 832 880	708 757 805 852	732 777	659 704 749 792	633 677 720 762	608 650 691 731	596 637 677 717	557 596 633 670	533 569 605 641	83.6 89.3 95.0 100.5	261.2 279.2 296.8 314.2
20	13/4 17/8 2 21/8		900 957 1014 1070	876 932 987 1041		824 877 929 980	797 845 598 94 8	769 819 867 915		714 760 805 849		100.3 106.8 113.1 119.3	313.6 333.6 353.4 372.9
22	17/8 2 21/8 21/4	1171 1239	1082 1147 1213 1275	1122 1186	1094 1157	$1065 \\ 1126$	$1035 \\ 1094$	1062	974 1029	996	910 962	118.5 125.7 132.9 139.6	370.5 392.7 415.3 436.3
24	2 21/8 21/4 23/8	1376	1280 1352 1423 1494	1311 1380	1298 1367	1268 1335	1238 1303	1206 1269	$\frac{1173}{1235}$	1140 1200	1106 1165	138.2 146.0 153.7 161.4	432.0 456.4 480.4 504.2
26	21/8 21/4 23/8 21/2	1596 1675	1492 1572 1650 1728	1546 1623	1517 1593	$\frac{1487}{1562}$	$\frac{1456}{1528}$	$1423 \\ 1494$	1389 1458	1354 1422	1319 1385	159.4 167.9 176.3 184.6	498.1 524.6 550.9 576.8
28	21/4 23/4 21/4 28/8	1829 1917	1719 1806 1892 1967	1780 1864	1751 1834	1721 1802	1689 1769	1655 1734	1620 1697	1584 1660	1548 1622	182.0 191.2 200.3 209.3	568.8 597.5 625.9 653.9
80	23/8 21/2 28/8 23/4	2078 2172	1961 2055 2148 2240	2028 2119	2000 2090	$\frac{1969}{2058}$	1937 2024	1903 1989	1867 1952	1830 1913	1793 1874	206.1 216.0 225.8 235.4	644.1 675.0 705.5 735.7
82	21/2 28/8 28/4 27/8	2341 2442	2217 2318 2418 2517	2292 2391	2264 2361	2233 2329	$\frac{2200}{2295}$	2165 2259	2129 2221	2092 2182	2053 2141	231.7 242.2 252.7 263.1	724.0 757.0 789.7 822.1
84	25/8 23/4 27/8 3	2620 2725	2488 2596 2793 2810	2570 2676	2542 2646	2511 2614	2478 25%)	2441 2544	2406 2565	2370 246-	2329 2425	258.7 270.0 281.1 292.2	808.6 843.7 878.5 913.0
36	23/4 27/8 3		2774 2889 3003	2583	2534	2803	2770	2735	29,00	2659	2619	287.3 299.2 311.0	897.7 935.0 971.9

STRENGTH OF HOLLOW ROUND AND HOLLOW RECTANGULAR CAST IRON COLUMNS.

For various values of $\frac{L}{d}$ in which:—

L = length of column in feet.

d = least outside diameter in inches.

P = ultimate strength in pounds per square inch.

Based on Gordon's Formulæ for Columns with Square Ends. Hollow Round. Hollow Rectangular.

 $\mathbf{P} = \frac{80000}{1 + \frac{(12L)^2}{800 \, d^2}}$

 $P = \frac{80000}{1 + \frac{(12L)^2}{1067 d^2}}$

L d		Strength er sq. in.	E d		Strength er sq. in.
đ	Hollow Round.	Hollow Rectangular.	d	Hollow Round.	Hollow Rectangular.
1.0	67800	70487	2.5	37647	43396
1.1	65692	68770	2.6	36088	41834
1.2	63532	66983	2.7	34599	40326
1.3	61340	65142	2.8	33178	38871
1.4	59137	63265	2.9	31817	37471
1.5	56940	61366	3.0	30534	36123
1.6	54766	59458	3.1	29306	34829
1.7	52625	57553	3.2	28137	33586
1.8	50531	55660	3.3	27025	32393
1.9	48491	53792	3.4	25967	31249
2.0	46512	51954	3.5	24961	30152
2.1	44598	50151	3.6	24004	29101
2.2	42753	48391	3.7	23093	28094
2.3	40979	46676	3.8	22227	27130
2.4	39277	45011	3.9	21403	26206

Safe loads for any given hollow round or hollow rectangular columns, corresponding to any suitable factor of safety, can be found from the above table as follows:—

Find from the table the ultimate strength in pounds per square inch corresponding to the given value of $\frac{L}{d}$. Multiply this by the area of the column in square inches and divide the product by the safety factor which will give as a quotient the required safe load in pounds.

Example:—Required the safe load for a hollow round cast iron column 16 feet long, 10 inches external diameter with metal 1 inch thick with safety factor of eight. The ratio of $\frac{L}{d}$ in this case is $\frac{16}{10} = 1.6$ and the corresponding ultimate strength from the tables is 54 766 pounds per square inch.

From the table of areas of circles it is found that the net area of the column is 28.3 square inches. The safe load is, therefore, $\frac{54\ 766\times28.3}{8}$ = 193 735 pounds or approximately 97 net tons, which is the required result.

EXPLANATIONS OF TABLES OF SAFE LOADS FOR BEAM BOX-GIRDERS AND PLATE GIRDERS, PAGES 306 TO 326 INCLUSIVE.

For cases in what the half to be carried exceed the capacities of single rolled beams or crimary : am gir ers composed of two or more beams with the usual to its and separation, it is necessary to use built-up sections.

I FAM DEX-OLD IT-S - A settle and even mind section of this kind can be compise tof two reactions with a ates rivered to the top and bottom flances, making a beam box-garder, by what tailes of safe uniformly distributed loads are given

on pages 306 to 316 inclusive.

The safe leads given in the tables include the weights of the beam box-girders, and are figure ! from the moment of inertia or the section modulus after making the ne essay deductions for root moles, the fibre stress used in the calculations being 15 000 pounds per square inch of net section.

Fear beveriers are part, ularly useful for supporting wide walls and in other lo at insupt the hards of the reapacity, but they should not be placed where ex-I sel to masture, as the sect, as is such that access cannot be had to their interior

for inspection and painting.

PLATE GIFTE . - In cases where the widths of beam box-girders would prohibit their use, at 1 it it had greater than their capacities, plate girders composed of plates and angles may be used.

Tal es el sate la suniformly distributed for plate girders from 24" to 48" deep are given on pages 317 to 326 inclusive.

The lads given in the tables include the weights of the girders and are calculated fr in the moment of inertia or the section madulus after making a proper deduction for rivet hales, the fibre stress used in the calculation being 15 000 pounds per square

inch of net section.

A though the talles do not show the stiffener angles for plate girders, care should be taken that these are provided in all cases where he essary to prevent buckling of the well due to the shearing act. in therein. The stiffeners should be made of angles rivered to the we' fitted tightly between the top and bottom flange angles, and they shall be provided, at the end of the girlers, of such size and number as to be ca; able of carry .: g the t tairea .tion at each end to the supports. Stiffeners should als, e provided at intervals along the girder, spaced at suitable distances apart, as determined by the formula and explanations on pages 94 and 95.

Care shou I as to be taken in arranging the rivet spaling for connecting the flange anges to the web, so that sufficient rivets are provided to properly transmit the stresses which act between these two portions of the construction. This will require the rivets to be spaced more of sely at the ends than at the center, and the exact spacing at any point along the girder may be obtained by dividing the product of the distance between the center lines of the rivet holes in the two flanges and the resistance of one rivet by the total vertical shear at the given point, thus:

 $p = \frac{rh}{S}$ in which

S = the total vertical shear, in pounds, at the point under consideration.

r = the resistance of one rivet, i. e., the bearing value or shearing value, whichever

is the smaller, expressed in pounds.

h = the depth of the girder between the upper and lower center lines of rivets, expressed in inches.

p = pitch of givets in the flar ge angles, expressed in inches.

The firmula ablive will give the theoretical rivet spaling at any point in the flanges due to the total sheer, but in practice the pitch for various portions of the length should be stated for the least least length of stacing panels containing an even number of staces, the path in each of which should preferably be expressed in even miles or even in hes at thalves or quarters of an inch, and the usual limits

of pitch will vary from 21/2" to 6".

The rivet space 2 at 11 is confirm to the rules given on page 358, and in cases where had are any sel him thy to the flances, sufficient rivets must be provilled to carry these in a bit in to the rivets necessary for securing the web and

flanges together as explained above.

It should are he mind that the safe I ade given in the tables are based on the assumption that the gurder is a prost of laterally, otherwise a proper reduction in the all walls safe load a ust be made, as explained in connection with beams on

pages 82 and 83.

The weights of beam in x-girders and plate girders in the tables are expressed in post de per lineal fort, in Juding the rivets necessary to se ure the web and flanges together, but the weights do not me tile any all wance for brackets, stiffeners, conpections or other deans, as these will vary, subject to the conditions of each case.

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED FOR BEAM BOX GIRDERS.

Safe loads below are figured for fibre stress of 15 000 pounds per square inch, with $\frac{18}{18}$ " rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of Bearings in Feet.	Thickness of Plates in Inches. For Thicknesses Greater than 2/4" Use Two Plates.								
	$\frac{1}{2}$	9 16	5/8	116	34	13	7 8	15	1
10 11 12 13 14	90 82 75 69 64	96 87 80 74 69	102 93 85 79 73	109 99 90 84 78	115 104 96 88 82	121 110 101 93 86	127 116 106 98 91	134 121 111 103 95	140 127 117 108 100
15 16 17 18 19	60 56 53 50 47	64 60 57 53 51	68 64 60 57 54	72 68 64 60 57	77 72 68 64 60	81 76 71 67 64	85 80 75 71 67	89 83 79 74 70	93 87 82 78 74
20 21 22 23 24	45 43 41 39	48 46 44 42 40	51 49 47 45 43	54 52 49 47 45	57 55 52 50 48	58 55 53 50	64 61 58 55	677 64 61 58 56	70 67 64 61 58
25	36	38	41	43	46	48	51	53	56
26 27 28 29	35 33 32 31	37 36 34 33	39 38 37 35	42 40 39 37	44 43 41 40	47 45 43 42	49 47 45 44	ŏ1 49 48 46	54 52 50 48
30 31 32 33 34	30 29 28 27 26	32 31 30 29 28	34 33 32 31 30	36 35 34 33 32	38 37 36 35 34	40 39 38 37 36	42 41 40 39 37	45 43 42 40 80	47 45 44 42 41
Weight per Foot in Pounds.	94.6	99.8	104.8	110.0	115.0	120.1	125.2	130.3	135.4
Section Modulus.	90.1	96.3	102.4	108.6	114.8	121.0	127.2	133.5	139.8
Coefficient of Deflection.	0.00000145			0.00000118			0.0000098		

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{260}$ span.

Safe loads below are figured for fibre stress of 15 000 pounds per square inch, with H rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of		For		ness o				lates.	
Bearings in Feet.	1/2	16	5 8	16	34	13	Ziel	15	1
10 11 12 13 14	132 120 110 102 94	141 128 117 108 101	150 136 125 115 107	159 144 132 122 113	167 152 140 129 120	176 160 147 136 126	185 168 154 143 132	194 177 162 149 139	203 185 169 156 145
15 16 17 18 19	88 83 78 73 70	94 88 83 78 74	100 94 88 83 79	106 99 93 88 83	112 105 98 93 88	118 110 104 98 93	123 116 109 103 98	129 121 114 108 102	135 127 120 113 107
20 21 22 23 24	66 63 60 57 55	70 67 64 61 59	75 71 68 65 62	79 76 72 69 66	84 80 76 73 70	88 84 80 77 73	93 88 84 81 77	97 92 88 84 81	102 97 92 88 85
25 26 27	53 51 49	56 54 52	60 58 55	63 61 59	67 64 62	71 68 65	74 71 69	78 75 72	81 78 75
28	47	50	53	57	60	63	66	69	73
29	46	49	52	55	58	61	64	67	70
30	44	47	50	53	56	59	62	65	68
31 32 33 34	43 41 40 39	45 44 43 41	48 47 45 44	51 50 48 47	54 52 51 49	57 55 53 52	60 58 56 54	63 61 59 57	66 64 62 60
Weight per Foot in Pounds.	114.4	120.4	126.3	132.3	138.3	144.2	150.1	156.1	162.0
Section Modulus.	132.1	140.9	149.7	158.5	167.4	176.3	185.3	194.2	203.2
Coefficient of Deflection.	0.	.0000008	42	0.	0000006	58	0.	0000005	77

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{3}$ span.

Safe loads below are figured for fibre stress of 15 000 pounds per square inch, with \%" rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of		For		ses Grea				ates.	
Bearings in Feet.	$\frac{1}{2}$	9 16	5 8	11/16	34	13 16	78	15 16	1
10 11 12 13 14	147 133 122 113 105	155 141 129 119 111	164 149 137 126 117	173 157 144 133 123	181 165 151 140 130	190 173 158 146 136	199 181 166 153 142	208 189 173 160 148	217 197 181 167 155
15 16 17 18 19	98 92 86 81 77	104 97 91 86 82	109 102 96 91 86	115 108 102 96 91	121 113 107 101 95	127 119 112 106 100	133 124 117 111 105	139 130 122 115 109	144 135 127 120 114
20 21 22 23 24	73 70 67 64 61	78 74 71 68 65	82 78 75 71 68	86 82 78 75 72	91 86 82 79 76	95 91 86 83 79	99 95 90 87 83	104 99 94 90 87	108 103 99 94 90
25 26 27	59 56 54	62 60 58	66 63 61	69 66 64	73 70 67	76 73 70	80 77 74	83 80 77	87 83 80
28	52	55	59	62	65	68	71	74	77
29	51	54	57	60	63	66	69	72	75
80	49	52	55	58	60	63	66	69	72
31 32 33 34	47 46 44 43	50 49 47 46	53 51 50 48	56 54 52 51	59 57 55 53	61 59 58 56	64 62 60 59	67 65 63 61	70 68 66 64
Weight per Foot in Pounds.	131.4	137.4	143.3	149.3	155.3	161.2	167.1	173.1	179.0
Section Modulus.	146.6	155.3	163.9	172.7	181.4	190.2	199.0	207.8	216.7
Coefficient of Deflection.	0.	0000007	63	0.	0000006	35	0.	0000005	39

For safe loads below the heavy lines, the deflections will be greater than the allowable limit for plastered ceilings = $\frac{1}{360}$ span,

Safe loads below are natural for tibre stress of 15 000 pounds per square inch, with H rivet holes in both thinges deducted, and include weight of girder.

Distance Center to Center of Bearings in		F					es in 1			s.	
Feet.	5	116	3	1.3	7	15 16	1	$1\frac{1}{16}$	11	$1\frac{3}{16}$	11/4
10 11 12 13 14	212 193 177 163 151	223 203 186 172 159	234 213 195 180 167	245 223 294 185 175	256 233 213 197 183	267 243 223 205 191	278 253 232 214 199	289 263 241 223 207	300 273 250 231 215	312 283 260 240 223	323 293 269 248 231
15 16 17 18 19	141 133 125 115 112	149 139 131 124 117	156 146 158 130 123	163 153 144 136 129	171 160 151 142 135	178 167 157 145 141	185 174 164 155 146	193 181 170 161 152	200 188 177 167 155	208 195 183 173 164	215 202 190 179 170
20 21 22 23 24	106 101 96 92 88	112 106 101 97 93	117 111 106 102 98	122 117 111 107 162	128 122 116 111 107	134 127 121 116 111	139 132 126 121 116	145 138 131 126 121	150 143 137 131 125	156 148 142 135 130	161 154 147 140 135
25 26 27 28 29	85 82 79 76 73	89 86 83 80 77	94 90 87 84 81	98 94 91 88	102 95 95 91 85	107 103 99 95 92	111 107 103 99 96	116 111 167 103 100	120 116 111 107 104	125 120 115 111 107	129 124 120 115 111
30 31 32 33 34	71 68 66 64 62	74 72 70 65 66	75 75 73 71 69	52 79 77 74 72	85 83 80 78 75	89 86 83 81 79	93 90 87 84 82	96 93 90 88 85	100 97 94 91 88	104 101 97 94 92	108 104 101 98 95
Weight per Post in Pounds.	147.3	153.3	159.3	165.2	171.1	177.1	183.0	189.0	194.9	200.9	206.8
Section Modulus.	212.1	223.0	234.0	245.0	256.0	267.1	278.2	289.3	300.5	311.6	322.8
Coefficient of Deflection.	0.0	000004	26	0.0	000003	62	0.0	000003	14	0.0000	000281

Distance Center to Center of Bearings in		Thickness of Plates in Inches. For Thicknesses Greater than 3/" Use Two Plates.											
Feet.	58	$\frac{11}{16}$	$\frac{3}{4}$	13 16	78	15 16	1	$1\frac{1}{16}$	11/8	$1\frac{3}{16}$	11		
10	259	271	282	294	306	318	329	341	353	365	377		
11	236	246	257	267	278	289	299	310	321	332	342		
12	216	226	235	245	255	265	274	284	294	304	314		
13	199	208	217	226	235	244	253	262	272	281	290		
14	185	193	202	210	218	227	235	244	252	261	269		
15	173	181	188	196	204	212	220	227	235	243	251		
16	162	169	177	184	191	198	206	213	221	228	235		
17	152	159	166	173	180	187	194	201	208	215	222		
18	144	150	157	163	170	176	183	190	196	203	209		
19	136	143	149	155	161	167	173	180	186	192	198		
20	130	135	141	147	153	159	165	171	176	182	188		
21	123	129	134	140	146	151	157	162	168	174	179		
22	118	123	128	134	139	144	150	155	160	166	171		
23	113	118	123	128	133	138	143	148	153	159	164		
24	108	113	118	123	127	132	137	142	147	152	157		
25	104	108	113	118	122	127	132	136	141	146	151		
26	100	104	109	113	118	122	127	131	136	140	145		
27	96	100	105	109	113	118	122	126	131	135	140		
28	93	97	101	105	109	113	118	122	126	130	135		
29	89	93	97	101	105	109	114	118	122	126	130		
30	86	90	94	98	102	106	110	114	118	122	126		
31	84	87	91	95	99	102	106	110	114	118	122		
32	81	85	88	92	96	99	103	107	110	114	118		
33	79	82	86	89	93	96	100	103	107	111	114		
34	76	80	83	87	90	93	97	100	104	107	111		
Weight per Foot in Pounds.	187.6	194.0	200.4	206.7	213.1	219.5	225.8	232.2	238.6	245.0	251.4		
Section Modulus	259.2	270.8	282.4	294.1	305.8	317.5	329.3	341.1	353.0	364.9	376.8		
Coefficient of Deflection.	0.0	0.000000350											

Safe loads below are figured for fibre stress of 15 000 pounds per square inch; with H rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of Bearings in		Thickness of Plates in Inches. For Thicknesses Greater than ¾" Use Two Plates.												
Feet.	5 8	11 16	34	13	7 8	15	1	$1\frac{1}{16}$	1 1/8	$1\frac{3}{16}$	14			
10	300	311	322	334	345	357	368	380	391	403	414			
11	272	283	293	303	314	324	335	345	356	366	377			
12	250	259	269	278	255	297	307	316	326	336	345			
13	231	239	248	257	265	274	283	292	301	310	319			
14	214	222	230	238	247	255	263	271	279	288	296			
15	200	207	215	222	230	238	245	253	261	269	276			
16	187	194	201	209	216	223	230	237	244	252	259			
17	176	183	190	186	203	210	217	223	230	237	244			
18	167	173	179	185	192	198	204	211	217	224	230			
19	158	164	170	176	182	188	194	200	206	212	218			
20	150	156	161	167	173	178	184	190	196	201	207			
21	143	148	154	15 +	164	170	175	181	186	192	197			
22	136	141	147	152	157	162	167	173	178	183	188			
23	130	135	140	145	150	155	160	165	170	173	180			
24	125	130	134	139	144	149	153	158	163	168	173			
25	120	124	129	133	138	143	147	152	156	161	166			
26	115	120	124	128	133	137	142	146	150	155	159			
27	111	115	119	124	128	132	136	141	145	149	153			
28	107	111	115	119	123	127	131	136	140	1 44	148			
29	103	107	111	115	119	123	127	131	135	139	143			
80	100	104	107	111	115	119	123	127	130	134	138			
31	97	100	104	105	111	115	119	122	126	130	134			
32	94	97	101	104	108	111	115	119	122	126	130			
33	91	94	55	101	105	108	112	115	119	122	126			
34	88	91	95	95	102	105	108	112	115	118	122			
Weight per Foot in Pounds.	227.6	234.0	240.4	246.7	253.1	259.5	265.8	272.2	278.6	285.0	291.4			
Section Modulus.	299.7	311.0	322.4	333.7	345.1	356.6	368.1	379.6	391.2	402.8	414.4			
Coefficient of Deflection.	0.0	0.000000305												

Distance Center to Center of		Fo					es in I			3.	
Bearings in Feet.	34	13 16	7/8	15 16	1	$1\frac{1}{16}$	13	$1\frac{3}{16}$	14	$1\frac{5}{16}$	13/8
15	227	237	247	258	268	278	289	299	309	320	330
16	213	222	232	242	251	261	271	280	290	300	310
17	200	209	218	227	237	246	255	264	273	282	291
18	189	198	206	215	223	232	241	249	258	267	275
19	179	187	195	203	212	220	228	236	244	253	261
20	170	178	186	193	201	209	217	224	232	240	248
21	162	169	177	184	191	199	206	214	221	228	236
22	155	162	169	176	183	190	197	204	211	218	225
23	148	155	161	168	175	182	188	195	202	209	215
24	142	148	155	161	168	174	180	187	193	200	206
25	136	142	148	155	161	167	173	179	186	192	198
26	131	137	143	149	155	161	167	173	179	185	191
27	126	132	137	143	149	155	160	166	172	178	183
28	122	127	133	138	144	149	155	160	166	171	177
29	117	123	128	133	139	144	149	155	160	165	171
30	113	119	124	129	134	139	144	150	155	160	165
31	110	115	120	125	130	135	140	145	150	155	160
32	106	111	116	121	126	130	135	140	145	150	155
33	103	108	112	117	122	127	131	136	141	145	150
34	100	105	109	114	118	123	127	132	137	141	146
35	97	102	106	110	115	119	124	128	133	137	142
36	95	99	103	107	112	116	120	125	129	133	138
37	92	96	100	104	109	113	117	121	125	130	134
38	90	94	98	102	106	110	114	118	122	126	130
39	87	91	95	99	103	107	111	115	119	123	127
Weight per Foot in Pounds.	195.5	202.2	209.0	215.8	222.6	229.4	236.2	243.1	249.8	256.7	263.4
Section Modulus.	340.5	355.8	371.2	386.6	402.1	417.5	433.0	448.6	464.2	479.8	495.4
Coefficient of Deflection.	0.0	0000002	223	0.0	000001	.93	0.0	000001	.70	0.0000	000154

Safe loads below are figured for fibre stress of 15 000 pounds per square inch, with \(\frac{1}{2} \) rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of Bearings in		Thickness of Plates in Inches. For Thicknesses Greater than 34" Use Two Plates.											
Feet.	34	13	78	15 16	1	116	11/8	13/16	11	15/16	13/8		
15	275	286	297	308	320	331	343	354	365	377	388		
16	257	268	279	259	300	310	321	332	343	350	364		
17	242	252	262	272	282	292	302	312	322	333	343		
18	229	238	248	257	266	276	285	295	305	314	324		
19	217	226	235	244	252	261	270	280	288	298	307		
20	206	214	223	231	240	248	257	266	274	283	291		
21	196	204	212	220	228	237	245	253	261	269	277		
22	187	195	203	210	218	226	234	241	249	257	265		
28	179	186	194	201	209	216	223	231	235	246	253		
24	172	179	186	193	200	207	214	221	228	236	243		
25	165	171	178	185	192	199	206	212	219	226	233		
26	158	165	171	178	184	191	198	204	211	217	224		
27	153	159	165	171	175	184	190	197	203	209	216		
28	147	153	159	165	171	177	184	190	196	202	208		
29	142	148	154	160	165	171	177	183	189	195	201		
30	137	143	149	154	160	166	171	177	183	188	194		
31	133	138	144	149	155	160	166	171	177	182	188		
32	129	134	139	145	150	155	161	166	171	177	182		
33	125	130	135	140	145	151	156	161	166	171	177		
34	121	126	131	136	141	146	151	156	161	166	171		
35	115	122	127	132	137	142	147	152	157	162	166		
36	114	119	124	129	133	138	143	148	152	157	162		
37	111	116	120	125	130	134	139	144	148	153	157		
38	108	113	117	122	126	131	135	140	144	149	153		
39	106	110	114	119	123	127	132	136	141	145	149		
Weight per Foot in Pounds.	215.5	222.2	229.0	235.8	242.6	249.4	256.2	263.1	269.8	276.7	283.4		
Section Modulus.	411.8	428.7	445.7	462.7	479.7	496.7	513.8	531.2	548.1	565.3	582.5		
Coefficient of Deflection.	0.0	0.000000168 0.000000147 0.000000131									000119		

Safe loads below are figured for fibre stress of 15000 pounds per square inch, with 18" rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of		Thickness of Plates in Inches. For Thicknesses Greater than 3/" Use Two Plates.												
Bearings in Feet.	3 4													
15	309	320	331	343	354	365	376	387	399	410	421			
16	290	300	311	321	332	342	353	363	374	384	395			
17	273	283	292	302	312	322	332	342	352	362	372			
18	258	267	276	285	295	304	313	323	332	342	351			
19	244	253	262	270	279	288	297	306	315	324	332			
20	232	240	249	257	265	274	282	291	299	307	316			
21	221	229	237	245	253	261	269	277	285	293	301			
22	211	218	226	234	241	249	256	264	272	279	287			
23	202	209	216	223	231	238	245	253	260	267	275			
24	193	200	207	214	221	228	235	243	249	256	263			
25	186	192	199	206	212	219	226	232	239	246	253			
26	178	185	191	198	204	211	217	224	230	236	243			
27	172	178	184	190	196	203	209	215	221	228	234			
28	166	172	178	184	189	195	201	208	214	220	226			
29	160	166	171	177	183	189	195	200	206	212	218			
30	155	160	166	171	177	182	188	194	199	205	211			
31	150	155	160	166	171	177	182	187	193	198	204			
32	145	150	155	161	166	171	176	182	187	192	197			
33	141	146	151	156	161	166	171	176	181	186	191			
34	136	141	146	151	156	161	166	171	176	181	186			
35	133	137	142	147	152	156	161	166	171	176	180			
36	129	133	138	143	147	152	157	161	166	171	175			
37	125	130	134	139	143	148	152	157	162	166	171			
38	122	126	131	135	140	144	148	153	157	162	166			
39	119	123	127	132	136	140	145	149	153	158	162			
Weight per Foot in Pounds.	245.5	252.2	259.0	265.8	272.6	279.4	286.2	293.1	299.8	306.7	313.4			
Section Modulus.	463.8	480.4	497.1	513.8	530.6	547.3	564.1	581.2	597.8	614.7	631.7			
Coefficient of Deflection.	0.0	0000001	149	0.0	000001	33	0.0	000001	19	0.000	000110			

Safe loads below are figured for fibre stress of 15 000 pounds per square inch, with \(\frac{1}{2} \) rivet holes in both flanges deducted, and include weight of girder.

Distance Center to Center of Bearings in		Thickness of Plates in Inches. For Thicknesses Greater than 34" Use Two Plates.										
Feet.	3	13 16	7 ×	1 <u>5</u> 16	1	116	13	13	14	$1\frac{5}{16}$	13/8	
15	396	411	427	442	458	473	489	505	520	536	551	
16	371	386	400	415	429	444	458	473	488	502	517	
17	349	363	377	390	404	418	431	445	459	473	487	
18	330	343	356	369	351	394	407	421	433	446	460	
19	312	325	337	349	361	374	386	398	411	423	435	
20	297	308	320	332	343	355	367	379	390	402	414	
21	283	294	305	316	327	338	349	361	372	383	394	
22	270	280	291	302	312	323	333	344	355	365	376	
23	258	268	278	288	299	309	319	329	339	349	360	
24	247	257	267	276	286	296	306	315	325	335	345	
25	237	247	256	265	275	254	293	303	312	321	331	
26	228	237	246	255	264	273	282	291	300	309	318	
27	220	228	237	246	254	263	272	280	289	298	306	
28	212	220	229	237	245	254	262	270	279	287	295	
29	205	213	221	229	237	245	253	261	269	277	285	
30	198	206	213	221	229	237	244	252	260	268	276	
31	192	199	206	214	222	229	237	244	252	259	267	
32	186	193	200	207	215	222	229	237	244	251	258	
33	180	187	194	201	208	215	222	229	236	244	251	
34	175	181	188	195	202	209	216	223	229	236	243	
35	170	176	183	190	196	203	210	216	223	230	236	
96	165	171	178	184	191	197	204	210	217	223	230	
37	160	167	173	179	186	192	198	205	211	217	224	
88	156	162	168	175	181	187	193	199	205	211	218	
89	152	158	164	170	176	182	188	194	200	206	212	
Weight per Foot in Pounds.	255.7	263.3	271.0	278.6	286.2	293.9	301.5	309.2	316.8	324.5	332.1	
Section Modulus.	593.7	616.9	640.1	663.4	686.7	710.0	733.3	757.1	780.2	803.6	827.1	
Coefficient of Deflection.	0.0	0000004	983	0.0	000000	870 ¹	0.00	0000007	778	0.0000	000713	

Safe loads below are figured for fibre stress of 15000 pounds per square inch, with \(\frac{15}{8}\)" rivet holes in both flanges deducted, and include weight of girder.

2 Plates 18" Wide.

2-24" I-Beams
105 lbs. per foot.

+125/8"·-

Distance Center to Center of		Thickness of Plates in Inches. For Thicknesses Greater than ¾", Use Two Plates.											
Bearings in Feet.	3 4	13	7/8	15	1	116	11/8	1 3 16	11/4	1 5 1 6	13/8		
15	466	481	496	511	526	541	557	572	587	602	618		
16	437	451	465	479	493	507	522	536	550	565	579		
17	411	424	437	451	464	478	491	505	518	532	545		
18	388	401	413	426	438	451	464	477	489	502	515		
19	368	379	391	403	415	427	439	451	463	476	488		
20	349	361	372	383	395	406	417	429	440	452	463		
21	333	343	354	365	376	387	398	408	419	430	441		
22	317	328	338	348	359	369	379	390	400	411	421		
23	304	314	323	333	352	353	363	373	383	393	403		
24	291	300	310	319	329	338	348	357	367	376	386		
25	279	288	297	307	316	325	334	343	352	361	371		
26	269	277	286	295	303	312	321	330	339	347	356		
27	259	267	275	284	292	301	309	318	326	335	343		
28	249	258	265	274	282	290	298	306	314	323	331		
29	241	249	256	264	272	280	288	296	304	312	319		
30	233	240	248	255	263	271	278	286	293	301	309		
31	225	232	240	247	254	262	269	277	284	291	299		
32	218	225	232	239	246	254	261	268	275	282	289		
33	211	218	225	232	239	246	253	260	267	274	281		
34	205	212	219	225	232	239	245	252	259	266	272		
35	199	206	212	219	225	232	238	245	251	258	265		
36	194	200	206	213	219	225	232	238	245	251	257		
37	189	195	201	207	213	219	226	232	238	244	250		
38	184	190	196	202	208	214	220	226	237	238	244		
39	179	185	191	196	202	208	214	220	226	232	237		
Weight per Foot in Pounds	305.6	313.3	320.9	328.6	336.2	343.9	351.5	359.2	366.8	374.5	382.1		
Section Modulus.	698.6	721.3	744.0	766.8	789.6	812.4	835.3	858.2	881.1	904.1	927.1		
Coefficient of Deflection = 0.000000001 ×	87	84	81	78	76	73	71	69	66	64	63		

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15 000 pounds per square inch on the net section. The net section is obtained by be deuting holes figured at 7% of an inch in diameter (for 3/4" rivets) from both flanges.

Web : 24" >		F B	lange Ang		Web Pl			ge Angles
Distance		ickness ngles in				ickness ingles in		
b ar.ngs in Feet.	3 -	1/2	5/8	34	3 8	1/2	5/8	3/4
25 26 27 28 29	59 57 55 53 51	74 71 68 66 63	87 84 81 78 75	92 89 86	69 67 64 62 60	85 82 79 76 74	101 97 93 90 87	103 99
30 31 32 33 34	50 48 46 45 44	61 59 57 56 54	73 70 68 66 64	83 80 78 75 73	58 56 54 53 51	71 69 67 65 63	84 81 79 76 74	96 93 90 87 85
35 36 37 38 39	42 41 40 39 38	53 51 50 48 47	62 60 59 57 56	71 69 67 66 64	50 48 47 46 41	61 59 58 56 55	72 70 68 66 65	82 80 78 76 74
40 41 42 48 44	37 36 35 35 34	46 45 44 43 42	54 53 52 51 49	62 61 59 58 57	43 42 41 40 39	53 52 51 50 49	63 61 60 59 57	72 70 69 67 65
45 46 47 48 49	33 32 32 31 30	41 40 39 38 38	45 45 44	55 54 53 52 51	39 38 37 36 35	1 47 1 46 45 41 41	56 55 54 53 51	64 63 61 60 59
50 51 52 53 54	30 29 29 28 28	37 36 35 35 34	44 43 42 41 40	50 49 48 47 46	35 34 33 33 33	43 42 41 40 40	50 49 48 48 47	58 57 55 54 53
We get per Foot in Pounds	74.1	86.9	99.7	111.7	78	90.8	103.6	115.6

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15 000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at 7% of an inch in diameter (for 3/4" rivets) from both flanges.

Web :		F	Tange Ang $6'' \times 3\frac{1}{2}$		Web Pl			ge Angler × 3½″
Distance Center to Center of		nickness Angles in		0		ickness ingles in		-
Bearings in Feet.	3/8	$\frac{1}{2}$	58	34	3/8	1/2	8	114
30 31 32 33 34	74 71 69 67 65	91 88 86 83 81	108 105 101 98 95	116 113 109	83 81 78 76 74	103 100 97 94 91	122 118 114 111 107	131 127 123
35	63	78	93	106	72	88	104	119
36	61	76	90	103	70	86	101	116
37	60	74	88	101	68	84	99	113
38	58	72	85	98	66	81	96	110
39	57	70	83	95	64	79	94	107
40	55	69	81	93	63	77	91	104
41	54	67	79	91	61	75	89	102
42	53	65	77	89	60	74	87	99
43	51	64	75	86	58	72	85	97
44	50	62	74	85	57	70	83	95
45	49	61	72	83	56	69	81	93
46	48	60	71	81	54	67	79	91
47	47	58	69	79	53	66	78	89
48	46	57	68	77	52	64	76	87
49	45	56	66	76	51	63	75	85
50	44	55	65	74	50	62	73	84
51	43	54	64	73	49	61	72	82
52	43	53	62	72	48	59	70	80
53	42	52	61	70	47	58	69	79
54	41	51	60	69	46	57	68	77
55	40	50	59	68	46	56	66	76
56	39	49	58	66	45	55	65	75
57	39	48	57	65	44	54	64	73
58	38	47	56	64	43	53	63	72
59	37	46	55	63	42	52	62	71
Weight per Foot in Pounds.	87.0	101.4	115.8	129.8	90.8	105.2	119.6	133.6

The safe loads below include the weight of the girler and are calculated for a fibre stress of 15000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at one inch in diameter (for 3.6" rivets) from both flanges.

Web Plate 36" × 3%"

Flange Angles 6" × 4"

Web Plate 36" × 3%"

Flange Angles 6" × 4"

Flange Plate 14"

Distance Center to Center of Bearings in		ickne				Thickness of Flange Plate in Inches.					ate
Feet.	3 9	1/2	58	34	7 8	3/00	$\frac{1}{2}$	5 5	34	78	1
30	95	117	138	158	177	191	209	226	243	260	277
31	92	113	133	152	171	185	202	218	235	252	268
32	89	109	129	148	166	179	196	212	227	244	260
33	86	106	125	143	161	174	190	205	221	236	252
34	81	103	121	139	156	169	184	199	214	229	244
35	81	100	118	135	151	164	179	193	208	223	237
36	79	97	115	131	147	159	174	188	202	217	231
37	77	94	112	128	143	155	169	183	197	211	225
38	75	92	109	124	140	151	165	178	192	205	219
39	73	90	106	121	136	147	160	174	187	200	213
40	71	87	103	118	132	143	156	169	182	195	208
41	69	85	101	115	129	140	153	165	178	190	203
42	68	83	98	113	126	137	149	161	173	186	198
43	66	81	96	110	123	133	146	157	169	181	193
44	65	79	94	107	120	130	142	154	165	177	189
45	63	78	92	105	118	127	139	150	162	173	185
46	62	76	90	103	115	125	136	147	158	169	181
47	61	74	88	101	113	122	133	144	155	166	177
48	59	73	86	98	110	120	130	141	152	162	173
49	58	71	84	96	108	117	128	138	149	158	170
50	57	70	83	95	106	115	125	135	146	156	166
51	56	69	81	93	104	112	123	133	143	153	163
52	55	67	79	91	102	110	120	130	140	150	160
53	54	66	78	89	100	108	118	128	137	147	157
54	53	65	76	88	98	106	116	125	135	144	154
55	52	64	75	86	96	104	114	123	132	142	151
56	51	62	74	84	95	102	112	121	130	139	148
57	50	61	72	83	93	101	110	119	128	137	146
58	49	60	71	82	91	99	108	117	125	134	143
59	43	59	70	80	90	97	106	115	123	132	141
Weight per Foot in Pounds.	98.0	113.6	128.8	143.2	157.6	184.8	196.7	208.6	220.5	232.4	244.3

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15,000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at $\frac{7}{8}$ of an inch in diameter (for $\frac{8}{4}$ " rivets) from both flanges.

Distance Center to Center of Bearings in		kness igles i					ness of e in Ir		е
Feet.	38	$\frac{1}{2}$	5 8	34	1/2	50	34	7 8	1
30 31 32 83 34	108 104 101 98 95	134 130 125 122 118	159 154 149 144 140	183 177 171 166 161	238 230 223 216 210	255 247 239 232 225	264 256 248 241	264 256	
35 36 37 38 39	92 90 87 85 83	115 112 109 106 103	136 132 129 125 122	157 152 148 144 141	204 198 193 188 183	219 213 207 201 196	234 227 221 215 210	249 242 235 229 223	264 257 250 243 237
40 41 42 43 44	81 79 77 75 74	100 98 96 93 91	119 116 113 111 108	137 134 131 128 125	178 174 170 166 162	191 187 182 178 174	205 200 195 190 186	218 213 207 203 198	231 225 226 216 216 210
45 46 47 48 49	72 70 69 67 66	89 87 85 84 82	106 104 101 99 97	122 119 117 114 112	158 155 152 149 146	170 166 163 160 156	182 178 174 171 167	194 189 185 182 178	208 201 193 193 189
50 51 52 53 54	65 63 62 61 60	80 79 77 76 74	95 93 92 90 88	110 108 106 104 102	143 140 137 135 132	153 150 147 144 142	164 160 157 154 152	174 171 168 164 161	185 181 176 176 171
55 56 57 58 59	59 58 57 56 55	73 72 70 69 68	87 85 84 82 81	100 98 96 95 93	130 127 125 123 121	139 137 134 132 130	149 146 144 141 139	158 156 153 150 148	168 165 165 159 157
Weight per Foot in Pounds.	107.5	126.3	144.7	162.7	214.1	226	237 9	249.8	261.

Note.—When Flange plates are thicker than 3/4", use two plates.

The safe loads below include the weight of the girder and are calculated for a fiber stress of 15000 person persons in hear the net section. The net section is obtained by definiting holes figured at one inch in diameter (for 1/4" rivets) from both flanges.

Web Plate 42" × 1."
Flange Angles 6" × 4"

Web Plate 42" \times 3 ," Flange Angles 6" \times 4" \times 3 4" Flange Plates 14"

Distance Center to Center of Bearings in		ickne				Thickness of Flange Plate in Inches.					
Feet.	3 8	- ¹ / ₂ _	5.	34	1 2 8	3.8	1/2	5 8	3 4	7.8	1
35 36 37 38 39	100 97 95 92 90	122 119 116 113 110	143 139 136 132 129	164 159 155 151 147	183 178 173 169 165	198 192 187 182 175	215 209 203 148 1.43	232 226 220 214 205	249 242 236 230 221	267 259 252 246 239	284 276 269 261 255
40 41 42 43 44	97 96 83 81 79	107 104 102 97	125 122 119 117 114	143 140 137 133 130	160 157 153 149 146	173 163 165 161 157	188 184 174 175 171	2 13 1 5 1 15 1 5 1 5 1 5	218 213 203 203 195	233 228 222 217 212	248 242 237 231 225
45 46 47 48 49	78 76 74 73 71	95 93 91 59 57	111 109 197 195 192	127 125 122 120 117	143 140 157 174 131	154 151 147 144 141	167 104 100 157 154	181 177 173 164 166	194 190 185 182 175	207 203 119 194 191	221 216 211 207 213
50 51 52 53 54	70 69 67 66 65	86 54 52 51 79	100 35 96 95 93	115 112 110 105 1 3	128 126 127 121 113	13 4 1 6 1 33 1 31 1 2 5	151 145 145 142 153	163 153 156 153 150	175 171 168 165 162	187 183 180 176 173	1 9 165 1 · 1 157 154
55 56 57 58 59	64 62 61 60 59	78 76 75 74 73	91 90 85 86	104 102 101 107	117 115 113 111 1)	126 124 121 119 117	137 134 132 130 125	145 145 143 140 135	159 156 153 150 145	170 167 164 161 155	181 177 174 171 165
60 61 62 63 64	58 57 56 55 55	71 70 69 68 67	84 *2 *1 *1	46 41 42 41 90	1+7 1+5 1+3 1+3 1+3	115 114 112 110 105	125 123 121 119 115	135 133 131 129 127	145 143 141 138 136	156 153 151 148 146	166 163 160 158 155
Weight per Foot in Pounds.	105.7	121.3	136.5	150.9	165.3	192.5	204.4	216.3	228.2	240.1	252.0

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15 000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at one inch in diameter (for 1/8" rivets) from both flanges.

Mhishman

Web Plate 42" × 3/8"

Flange Angles 6" × 6" × 3/4"

Flange Plates 14"

Distance Center to Center of Bearings in	Center of in Inches.					in In	Flange ches.	Plate	
Feet.	$\frac{1}{2}$	58	34	1/2	<u>5</u> .	34	7 8	1	14
35	139	164	189	240	257	275	292	309	309
36	135	160	184	234	250	267	284	301	
37	131	155	179	227	244	260	276	293	
38	128	151	174	221	237	253	269	285	
39	125	148	169	216	231	247	260	278	
40	122	144	165	210	225	240	256	271	301
41	119	140	161	205	220	235	249	264	294
42	116	137	157	200	215	229	243	258	287
43	113	134	154	195	210	224	238	252	280
44	111	131	150	191	205	219	232	246	274
45	108	128	147	187	200	214	227	241	268
46	106	125	144	183	196	209	222	235	262
47	103	122	141	179	192	205	217	230	256
48	101	120	138	175	188	200	213	226	251
49	99	117	135	172	184	196	209	221	246
50	97	115	132	168	180	192	204	217	241
51	95	113	130	165	177	189	200	212	236
52	94	111	127	162	173	185	197	208	232
53	92	109	125	159	170	181	193	204	227
54	90	107	122	156	167	178	189	201	223
55	88	105	120	153	164	175	186	197	219
56	87	103	118	150	161	172	183	193	215
57	85	101	116	147	158	169	179	190	211
58	84	99	114	145	155	166	176	187	208
59	82	98	112	142	153	163	173	184	204
60	81	96	110	140	150	160	170	180	201
61	80	94	108	138	148	158	168	178	197
62	78	93	107	136	145	155	165	175	194
63	77	91	105	133	143	153	162	172	191
64	76	90	103	131	141	150	160	169	188
Weight per Foot in Pounds.	134.9	153.3	171.3	224.7	236.6	248.5	260.4	272.3	296.1

Note.—When Flange plates are thicker than 3/4", use two plates.

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at one inch in diameter (for %" rivets) from both flanges.

Web Plate 48" × 3%"
Flange Angles 6" × 4"

Web Plate 48" × 38"

Flange Angles 6" × 4" × 34"

Flange Plates 14"

Distance Center to Center of Bearings in				Flan nches		Th	ickne	ss of in In	Flan	ge Pl	ate
Feet.	38	1/2	<u>5</u>	34	7 8	38	1 2	58	3 4	7/8	1
35	120	146	170	194	217	233	253	273	293	312	332
36	117	142	165	189	211	227	246	265	284	303	322
37	113	138	161	183	205	220	239	258	276	295	314
38	110	134	157	179	199	215	233	251	269	287	305
39	108	131	153	174	194	209	227	245	262	280	298
40	105	127	149	170	189	204	221	238	256	273	290
41	102	124	145	166	185	199	216	233	249	266	283
42	100	121	142	162	180	194	211	227	243	260	276
43	98	119	139	158	176	190	206	222	238	254	270
44	95	116	135	154	172	185	201	217	232	248	264
45	93	113	132	151	168	181	197	212	227	243	258
46	91	111	130	148	165	177	192	207	222	237	252
47	89	108	127	144	161	174	188	203	218	232	247
48	87	106	124	141	158	170	184	199	213	227	242
49	86	104	122	138	156	166	181	195	209	223	237
50	84	102	119	136	152	163	177	191	205	218	232
51	82	100	117	133	149	160	174	187	201	214	228
52	81	98	115	131	146	157	170	183	197	210	223
53	79	96	112	128	143	154	167	180	193	206	219
54	78	94	110	126	140	151	164	177	189	202	215
55	76	93	108	123	138	148	161	173	186	198	211
56	75	91	106	121	135	146	158	170	182	195	207
57	74	89	104	119	133	143	155	167	179	192	204
58	72	88	103	117	131	141	153	164	176	188	200
59	71	86	101	115	128	138	150	162	173	185	197
60	70	85	99	113	126	136	147	159	170	182	193
61	69	84	98	111	124	134	145	156	168	179	190
62	68	82	96	109	122	132	143	154	165	176	187
63	67	81	95	108	120	129	140	151	162	173	184
64	66	80	93	106	118	127	138	149	160	171	181
Weight per Foot in Pounds.	113.3	128.9	144.1	158.5	172.9	200.1	212.0	223.9	235.8	247.7	259.

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15 000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at one inch in diameter (for 7% rivets) from both flanges.

istance Center to Center of Bearings in	Flan	icknes nge An n Inch	gles		Thicks		Flang ches.	e Plate	
Feet.	1/2	5 8	34	1/2	5.8	34	7/8	1	14
35	166	195	224	283	303	322	342	362	361
36	161	190	218	275	294	313	333	352	
37	157	185	212	267	286	305	324	342	
88	153	180	206	260	279	297	315	333	
39	149	175	201	254	272	289	307	325	
40	145	171	196	247	265	282	299	317	352
41	141	167	191	241	258	275	292	309	343
42	138	163	187	236	252	269	285	302	335
43	135	159	182	230	246	263	279	295	327
44	132	155	178	225	241	256	272	288	320
45	129	152	174	220	235	251	266	282	312
46	126	149	170	215	230	245	260	275	306
47	123	145	167	211	225	240	255	270	299
48	121	142	163	206	221	235	249	264	293
49	118	140	160	202	216	230	244	259	287
50	116	137	157	198	212	226	240	253	281
51	114	134	154	194	208	221	235	248	276
52	112	131	151	190	204	217	230	244	270
53	109	129	148	187	200	213	226	239	265
54	107	127	145	183	196	209	222	235	260
55	105	124	142	180	193	205	218	230	256
56	104	122	140	177	189	201	214	226	251
57	102	120	137	174	186	198	210	222	247
58	100	118	135	171	183	195	206	218	242
59	98	116	133	168	179	191	203	215	238
60	97	114	131	165	176	188	200	211	234
61	95	112	128	162	174	185	196	208	231
62	94	110	126	160	171	182	193	204	227
63	92	109	124	157	168	179	190	201	223
64	91	107	122	155	165	176	187	198	220
Weight per Foot in Pounds.	142.5	160.9	178.9	232.3	244.2	256.2	268	279.9	303.

The safe loads below include the weight of the girder and are calculated for a fibre stress of 1500 points per square in h on the net section. The net section is obtained by dollaring holes figured at one inch in diameter (for \(\frac{7}{3} \) "rivets) from both flanges.

Web Plate 60" × 3 8"

Flange Angles 6" × 4"

Web Plate 60" × 3 ,"

Flange Angles $6'' \times 4'' \times \frac{3}{4}$

Flange Plates 14"

Distance Center to Center of Bearings in	Th A	ickne	in I	Flan	ıgθ 3.	Thickness of Flange Plate in Inches.				ate	
Feet.	3	1/2	5	3.	5	3	1/2	5	3 4	75	1
40 41 42 43 44	143 140 137 133 130	172 168 164 161 156	1'-9 1 -5 1'-0 1 -6 1 -1	226 220 215 210 205	251 245 239 234 225	269 262 256 250 244	291 254 277 270 264	312 305 297 290 251	334 326 318 311 304	356 347 339 331 323	377 368 359 351 343
45 46 47 48 49	127 125 122 120 117	153 149 146 143 149	177 173 170 166 163	201 196 192 155 154	223 215 214 200 2 5	239 234 229 224 229	258 253 247 212 237	277 271 266 260 255	297 290 284 273	316 309 363 266 290	335 328 321 314 308
50 51 52 53 54	115 112 110 108 109	134 135 132 130 127	190 156 153 150 145	151 177 174 171 167	201 197 193 190 156	215 211 207 203 200	233 225 224 219 215	250 245 240 236 231	267 262 257 252 247	255 279 274 268 263	302 296 290 285 290
55 56 57 58 59	104 102 101 99 97	125 123 121 114 117	145 142 140 138 135	164 161 159 156 153	183 179 176 173 170	196 192 184 185 182	211 205 204 200 197	227 223 219 215 212	243 235 234 230 226	259 254 250 245 211	274 270 265 260 256
60 61 62 63 64	96 . 94 92 91 9)	115 113 111 1 m 107	133 131 127 127 125	151 148 146 146 143 141	167 165 162 154 157	179 176 173 171 155	194 191 187 185 182	268 205 201 145 195	223 219 215 212 209	237 233 229 226 222	252 247 243 240 236
65 66 67 68 69 70	88 87 86 84 83 82	103 104 103 101 100 98	12? 121 119 117 116 114	139 137 135 133 131 129	155 152 151 145 146 143	165 163 160 155 155 154	179 176 173 171 165 136	161 189 186 154 151 175	205 202 199 196 194 191	220 216 213 210 207 207	232 224 225 222 219 216
Weight per Foot in Pounds.	128.6	144.2	159.4	173.3	188.2	215.4	227.3	239.2	251.1	263.0	274.9

The safe loads below include the weight of the girder and are calculated for a fibre stress of 15 000 pounds per square inch on the net section. The net section is obtained by deducting holes figured at one inch in diameter (for %" rivets) from both flanges.

Web Plate $60'' \times \frac{3}{8} i''$

Flange Angles 6" × 6"

Web Plate 60" × 3/8"

Flange Angles $6'' \times 6'' \times \frac{3}{4}''$

Flange Plates 14"

Distance Center to Center of		nickne Ingles				Th	ickne	ss of in In		ge Pl	ate
Bearings in Feet.	3 8	1 2	5.8	34	7/8	$\frac{1}{2}$	5 8	34	7 8	1	14
40	160	194	227	259	290	323	345	366	388	410	453
41	157	190	222	253	283	316	336	357	379	400	442
42	153	185	217	247	276	308	328	349	370	390	431
43	149	181	212	241	270	301	321	341	361	381	421
44	146	177	207	236	264	294	314	333	353	372	412
45	143	173	202	230	258	287	307	326	345	364	403
46	140	169	198	225	252	281	300	319	338	356	394
47	137	165	194	221	247	275	294	312	330	349	385
48	134	162	190	216	242	269	287	305	323	341	377
49	131	159	186	212	237	264	282	299	317	334	370
50	128	156	182	207	232	259	276	293	311	328	362
51	126	152	178	203	227	254	270	287	304	321	353
52	123	150	175	199	223	249	265	282	298	315	348
53	121	147	172	196	219	244	260	277	293	309	342
54	119	144	168	192	215	240	255	271	287	303	335
55	117	141	165	188	211	235	251	266	282	298	329
56	115	139	162	185	207	231	246	262	277	293	323
57	113	136	160	182	203	227	242	257	272	287	318
58	111	134	157	179	200	223	238	253	268	282	312
59	109	132	154	176	197	219	234	248	263	278	307
60	107	130	152	173	193	216	230	244	259	273	302
61	105	127	149	170	190	212	226	240	254	269	297
62	103	125	147	167	187	209	222	236	250	264	292
63	102	123	144	165	184	205	219	232	246	260	288
64	100	121	142	162	181	202	216	229	243	256	288
65	99	120	140	159	178	199	212	225	239	252	279
66	97	118	138	157	176	196	209	222	235	248	274
67	96	116	136	155	173	193	206	219	232	245	270
68	94	114	134	152	171	190	203	215	228	241	267
69	93	113	132	150	168	187	200	212	225	237	263
70	92	111	130	148	166	185	197	209	222	234	259
Weight per Foot in Pounds.	139.0	157.8	176.2	194.2	211.8	247.7	259.6	271.5	283.4	295.3	319.

GRILLAGE BEAMS FOR FOUNDATIONS.

In designing foundations for walls or columns carrying heavy loads resting upon the soil, it is necessary to distribute the weight over a suitable area, and this is readily accomplished, in a small depth, by using a grillage composed of steel beams imbedded in concrete, thus obviating the necessity of large masses of masonry and deep excavations. For heavy loads on soil of small bearing power three tiers of beams may be necessary, while for lighter loads and soil of greater bearing power two tiers of beams will ordinarily suffice.

The grillage beams which are to be surrounded by concrete should be spaced not less than 3" apart in the clear between the flanges, so that the concrete may be thoroughly rammed between them, and gas-pipe, or standard cast-iron separators should

be used to maintain the beams in proper position.

Knowing the total weight to be carried and the allowable intensity of loading per square foot of the supporting soil, the area of the footing required can be readily found, which, taken into consideration with any other conditions limiting the form or proportions of the footing, will determine the external dimensions of the foundation. The beams may be considered as subjected to a uniform load extending over a portion of their upper surfaces, the center of which is at the center of length of the beams, and as being uniformly supported from below throughout their length.

Under these circumstances, the maximum bending moment will occur at the center of the beam and, using the notation given for the upper tier in the sketch

below, this bending moment for one beam will be as follows:

Bending moment in inch pounds = $\frac{W}{8}$ (c - b)

in which c and b are expressed in inches and W is the total weight in pounds on one beam, obtained by dividing the total load by the number of beams composing

the tier in question.

This formula for the bending moment is the same as that for a beam of the length (c-b) supported at the ends and uniformly loaded with the total weight W, so that the proper sizes of beams, bending considered, may be obtained directly from the tables of safe loads uniformly distributed for Cambria 1-Beams, on pages 106tol17 inclusive, or for cases in which the lengths are shorter than those given in these tables, the sizes may be calculated from the coefficients of strength or the section moduli given in the tables of properties of 1-Beams, pages 182 to 185 inclusive, taking care, however, to use as the length, the distance (c-b), for the upper tier, and the corresponding figures for the other tiers.

After determining the size of beam required based upon bending, as stated above, an examination should also be made of the capacity of the beam web to resist buckling. This may be done by considering the web as a column of height equal to the clear distance between the fillets and calculating the safe load therefor by the use of the tables of strength for steel columns or struts, on pages 218 to 221, using the

proper safety factor.

If the beam web is found insufficient as a column when calculated in this manner, a beam with a web of greater thickness should be tried until one is found that will meet this requirement and the conditions for bending; or it might be more economical, in some cases, to use the beam with the thinner web and provide it with sufficient separators, fitting between the beam flanges, or stiffeners secured to the web to assist it in resisting as a column.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

Live Loads for Floors in Different Classes of Buildings, Exclusive of
the Weight of the Materials of Construction.

(Revised to 1917.) Pounds per Square Foot.

		Dwell's, Apart- ments, Hotels,	Office Bu	ildings.	Schools or	Buildings for
No	City.	Tenements or Lodgings.	First Floor.	Upper Floors.	Places of Instruction.	Public Assembly.
6		60	150 150	75 75	75 75	90 75(a), 125
5	Boston	{100(b) 50	100	100	{125(c) 60	125
4.	Buffalo	{ 40(d) 70	70	70	100	100
E		50(e)	50	50	75	100
	Cincinnati	40	100	50	60	100
7	Cleveland	80	125	80	80(a) 125	{125(c) 100
8	Denver	40 50(h)	70	70	50(a)	80(a) 120(f)
٤		80(f) 50	125	75	{100(c) 75	80(a)
10		50	100	100		120
12			150	75	75	90
18		60	75	75		125
	aro and third in the contract of	60	150	75	75 f 40	100
14		30	80	40	60	50(a)
16		50 60	100 150	75 75	100 75	125
17		(100(g)	100	10	75	90
-		60				110
18	New Orleans	{ 70(b) 40	70	70	{125(c) 60	125
19		40	60	60	75	100
20		70 (50	100	100		120
21	Pittsburgh	70(h)	70	70	70	125
22	Portland, Ore	80(f) 50	100	60	80(c) 60	80(a)
28	Providence	100(b) 50	150	75	125(c) 60	25
24	Rochester	60(h) 50	70	70	70	70
25	St. Louis	60	150	70	100	100
26	St. Paul	50	125	60	{125(c)	125
27	San Francisco	60	60	60	60 125(c) 75(a)	{ 75(a) 125(c)
28	Seattle	(75(b)	125	50	100(c)	75(a)
29	Syracuse	60	{100(g) 75	{100(g) 75	75 90(e) 75	100 80(a) 100
30		∫ 75(g)	110(g)	110(g)		(
-		50	75	75	75	110
31	Worcester, Mass	60	125	75	75	125
-						THE RESIDENCE IN COLUMN 1988

⁽a) Where seats are fixed; (b) Public rooms exceeding 500 sq. ft. area; (c) Assembly rooms; (d) Occupied by less than 25 persons; (e) Sleeping accommodations for 20 or more persons; (f) First floor—Hotels, Tenements and Lodging Houses; (g) Rooms and spaces for public use or common use of tenants; (h) Tenement Houses and Hotels.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

Live Loads for Floors in Different Classes of Buildings, Exclusive of
the Weight of the Materials of Construction.

the Weight of the Materials of Construction.

(Revised to 1917.) Pounds per Square Foot.

Stables		Ord. Stores, Light Manu-	Stores (Heavy Materials,)	Roo	ofs.	Side-	
Carriage Houses.	Garages.	facturing, Light Storage.	Warehouses, Factories.	Slope <20°.	Slope >20°.	walks.	No.
75 100		120 125	150 250(k), 175	40(i) 40(i)	30(j) 20(j)(l)	200 200	2
		125	250	40(m)			3
40 (n)		120	150	40(j)	40(j)		4
{ 40 (o) 100	{ 40(o)	100	100	25(j)	25(j)		5
75		100	150	25(j)	25(j)	300	6
80	{ 100 150(q)	{ 125(q) 100	200	35(m)	30(i)	200	7
		150	150	40	20		8
{ 60(p)	{ 60(p) 80	(130(r), 100		40	40	250	9
75		125 120	125 150	50(i) 50(i)	50(i) 30(j)	300	10
		150	150	1 20(v)(u)	(20(v)(u)	000	12
100	100	200	150	30 40	30 30(i)	300	13
80	80	100		30	30	150	14
85	100	100		30'i.	30(i)	300(j)	15
75		120	150	50(i)	30(j)	300	16
*****		120	150	40(i)	40(i)		17
• • • • • • • • • • • • • • • • • • • •		125	200	30(m)		300	18
120	120	120 120	120 150	40 30	30(j) 30	300	19
		125	200	∫ 50·j, 1	50(j)		21
80		{ 125(q) 100	200	(40(m) 40	40	300	22
		125	250	40(m)			23
{ 50 n . 100	50 (n)	100	200	40(j)	40(j)		24
		150	150	40(m)			25
85		100	200	30(j)	30(j)	300	26
75		125	250	30(i)	20(j)	150	27
75	125	125		40(j)	40(j)		28
80	125	125	200	40	40	250	29
		110	150	25(i)	25(i)		30
125	125-175	125	200	50(i)	30(j)	300	31
G Don an	unen foot	of curface.	(i) Por cour	re foot n	nongueod h	orizont	. 11

⁽i) Per square foot of surface; (j) Per square foot, measured horizontally; (k) Heavy storage; (l) Where used for public assembly or special purpose use same load as floors; (m) Flat; (n) Private; (o) Ground area less than 500 sq. ft.; (p) Small; (a) 1st floor; (r) Light storage and manufacturing; (s) Heavy Merchandise storage; (t) Hotel corridors; (u) Dwellings; (v) Sheds and outbuildings.

ALLOWABLE UNIT STRESSES FOR STEEL AND IRON.

(Revised to 1917.)

			Tensi	ion.	
No.	City.	Rolled Steel.	Cast Steel.	Wrought Iron.	Cast Iron.
1 2 3 4	Atlanta Baltimore Boston Buffalo	16 000 16 000 16 000 16 000	16 000 16 000 16 000 16 000	12 000 12 000 12 000 12 000	3 000 5 000 3 000
5 6 7 8	Chicago Cincinnati Cleveland Denver	16 000 16 000 16 000 16 000	16 000 16 000	12 000 12 000 12 000 12 000	3 000
9 10 11 12	Detroit Hartford(f). Jersey City. Los Angeles(e).	16 000(d) 16 000	16 000(d) 16 000	12 000 12 000	3 000
13 14 15 16	Louisville Milwaukee Minneapolis Newark, N. J	16 000 16 000 16 000 16 000	16 000 16 000 16 000 16 000	12 000 12 000 12 000 12 000	3 000
17 18 19 20	New Haven	16 000 16 000 16 000 { 14 500(c) 16 250(d)	16 000 16 000	12 000 12 000 12 500	3 000
21 22 23 24	Pittsburgh Portland, Ore. Providence(e) Rochester	16 000 16 000	16 000	12 000 12 000 12 000	3 000
25 26 27 28	St. Louis(f)	16 000 16 000 16 000	16 000 16 000 16 000 (10 000(b)	12 000 12 000 12 000	3 000
29 30 31	Syracuse Washington Worcester, Mass	16 000 16 000 16 000	16 000 (b) 16 000 (d) 16 000	12 000 12 000	3 000 3 000 3 000

⁽a) Annealed; (b) Not annealed; (c) Mild Steel; (d) Medium Steel; (e)

ALLOWABLE UNIT STRESSES FOR STEEL AND IRON.

(Revised to 1917.)

Pounds per Square Inch.

Extreme Fibre Stress (Bending).												
	Steel.			Wrought In	ron.	Cast	Iron.					
Rolled Beams.	Rolled Pins, Rivers and Bolts.	Riveted Beams Net Flange Section.	Rolled Beams.	Rolled Pins, Rivets and Bolts.	Riveted Beams Net Flange Section.	Compress- ion Side.	Tension Side.	No.				
16 000 16 000 16 000 16 000	20 000 20 000 22 500	14 000 15 000 16 000	12 000 12 000 12 000	15 000 15 000 18 000	12 000 12 000	16 000 16 000 16 000 13 000	3 000 5 000 3 00 3 000	1 2 3 4				
16 000 16 000 16 000 16 000	25 000 24 000 24 000	15 000 16 000 16 000	12 000 12 000 12 000		12 000 12 000	10 000 16 000	3 000	5678				
16 000 16 000	20 000	16 000 14 000		15 000	12 000 12 000	16 000	3 000	9 10 11 12				
16 000 16 000 16 000 16 000	20 000 25 000 20 000	15 000 16 000 14 000	12 000 12 000 12 000	15 000 15 000	12 000 12 000	16 000 10 000 16 000		13 14 15 16				
16 000 16 000 16 000	20 000 22 000 20 000	16 000 16 000	12 000 12 000	18 000	12 000	16 000 16 000	3 000 3 000 3 750	17 18 19 20				
16 000 16 000 16 000	21 000 20 000 20 000	16 000 15 000 14 000	12 000 12 000	15 000 15 000	12 000 12 000	16 000 16 000	3 000	21 22 23 24				
16 900 16 000 16 000	20 000	15 000	12 000 12 000	15 000	12 000	16 000	3 000 3 000 3 000	25 26 27 28				
16 000 16 000 16 000	20 000 20 000 20 000	16 000 14 000 16 000	12 000 12 000	15 000 15 000	12 000 12 000	16 000 16 000 16 000	2 500 3 000 3 000	29 30 31				

Determined by the best modern practice; (f) Building Laws being revised, 1917.

ALLOWABLE UNIT STRESSES FOR STEEL AND IRON.

(Revised to 1917.)

		Compression.							
No.	City.	Rolled Steel.	Cast SteeL	Wrought Iron.	Cast Iron (in short blocks).	Steel Pins and Rivets Bearing.	Wrought Iron Pins and Rivets Bearing.		
1 2 3 4	Atlanta Baltimore Boston Buffalo	16 000 16 000 16 000	16 000 16 000 16 000	12 000 12 000 12 000	16 000 16 000 16 000 15 000	20 000 20 000 18 000 15 000	15 000 15 000 15 000 15 000		
5 6 7 8	Chicago Cincinnati Cleveland Denver	14 000(a) 16 000	14 000(a) 16 000 16 000	10 000(a) 12 000 12 000	10 000(a) 16 000	(20 000(f) (25 000(s) 20 000 20 000 18 000	12 000(t) 15 000		
9 10 11 12	Detroit Hartford(I) Jersey City Los Angeles(j)	(b)	(b)	75% Steel		(15 000(f) (20 000(s) 20 000	12 000(t)		
13 14 15 16	Louisville Milwaukee Minneapolis Newark, N. J.	16 000 12 000(a) 16 000 16 000	16 000 12 000 (a) 16 000 16 000	12 000 10 000 a) 12 000 12 000	16 000 8 000 (a) 16 000 16 000	20 000 20 000(k) 18 000 20 000	15 000 15 000 15 000		
17 18 19 20	New Haven New Orleans New York Philadelphia	16 000 16 000 16 000 (14 500 c	16 030	12 000 12 000 12 500	16 000 11 670	20 000 18 000 24 000 (17 60) f 122 000(s	15 000 15 000 15 000 14 100 fi 18 000 s)		
21 22 23 24	Pittsburgh Portland, Ore. Providence (j) Rochester	16 000 16 000	16 000 16 000	12 000 12 000 12 000	12 000 16 000 16 000	20 000 f 24 000 s 20 000	20 000.:) 15 000		
25 26 27 28	St. Louis(I) St. Paul San Francisco Seattle	16 000 16 000 16 000	16 000 16 000 16 000	12 000 12 000 12 000	16 000 16 000 10 000(a)	20 000 20 000 (20 000(f) (24 000 s	15 000		
29 30 31	Syracuse Washington Worcester	16 000 16 000 16 000	10 000(g) 16 000(e) 16 000 16 000	12 000 12 000		116 000(h	15 000 15 000		

⁽a) Based on gross section; (b) Based on values given by standard steel manufacturer's handbook; (c) Mild steel; (d) Medium steel; (e) Annealed; (f) Field rivets; (g) Not annealed; (h) Field rivets driven by hand;

ALLOWABLE UNIT STRESSES FOR STEEL AND IRON.
(Revised to 1917.)
Pounds per Square Inch.

Shear.												
	Stee	el.			Wrough	t Iron.			No.			
Web Plates.	Shop Rivets and Pins.	Field Rivets.	Field Bolts.	Web Plates.	Shop Rivets and Pins.	Field Rivets.	Field Bolts.	Cast Iron.				
9 000 9 000 10 000 7 000	10 000 10 000 10 000 9 000	8 000 8 000 10 000 8 000	7 000 7 000 8 000	6 000 6 000 9 000 6 000	7 500 7 500 9 000 7 500	6 000 6 000 9 000 6 000	5 500 5 500 7 200	3 000	1 2 3 4			
10 000(a) 10 000 10 000 9 000	12 000 10 000 10 000 10 000	10 000 9 000 7 000	7 500 6 000	6 000	6 000	6 000	6 000	2 000(i) 3 000	5 6 7 8			
10 000	10 000	7 500 10 000	6 000 7 000	6 000	7 500	6 000	5 500	3 000	9 10 11 12			
9 000 10 000 10 000 9 000	10 000 10 000 9 000 10 000	8 000 8 000 6 750 8 000	8 000 7 000 7 000	6 000 6 000	7 500 7 500 7 500	6 000 6 000 6 000	5 000 5 500	2 500 2 000(i) 3 000	13 14 15 16			
10 000 10 000 10 000 8 759 c 10 000 d	10 000 10 000 12 000 11 000	8 000 10 000 8 000 8 800	8 000 7 000	6 000 9 000 7 500	7 500 9 000 9 000	6 000 9 000 7 200	7 200	3 000	17 18 19 20			
10 000 9 000 9 000	12 000 10 000 10 000	10 000 8 000 8 000	10 000 7 000 7 000	6 000	7 500	6 000	5 500	3 000	21 22 23 24			
9 000 9 000 10 000(a)	10 000 10 000	8 000 8 000 10 000	7 000	6 000 7 000	7 500	6 000 6 000	5 500	3 000 2 000(i)	25 26 27 28			
10 000 9 000 10 000	10 000 10 000 10 000	8 000 h 10 000 k) 8 000 8 000	7 000 7 000 7 000	6 000 6 000	7 500 7 500	6 000 6 000	5 500 5 500	2 000 3 000 3 000	29 30 31			

⁽i) Brackets; (j) Based on best modern practice; (k) Power driven; (l) Building Laws being revised, 1917; (s) Shop rivets; (t) Bearing on steel bolts.

ALLOWABLE UNIT STRESSES FOR STEEL AND IRON.

(Revised to 1917.) Pounds per Square Inch.

				Columns.			
No.	Oi4-	Steel.		Cast Iron.		Wrought Ir	on.
No.	City.	Formula.	Max. Length L=	Formula.	Max. Length L=	Formula.	Max. Length L=
1	Atlanta	(A)	120 R	(B)	70 R	(C)	120 R
2	Baltimore	Soft Steel (E) Medium " (F)	120 R	{<50 R—10 000 > " (G)	60 R		
3	Boston	(H)	120 R	(B)	70 R	(1)	
4	Buffalo	{<90 R-12 000 > " (J)	40 D	Round (M) Rectangular (N)	30 D	{<90 R-8 000 > " (K)	40 D
5	Chicago	(O) 14 000 max.	120 R	(Q)	70 R	(P) 10 000 max.	
6	Cincinnati	$\left\{ \substack{<70\mathrm{R}-13000\\ >\ ''\ (\mathrm{J})} \right.$	180 R	Round (T) Rectangular (S) Others (U)	180 R		
	Cleveland(f). Denver	(f) (J)	120 R	(f) (EE)	30 D	(f) (K)	
9	Detroit	{<60 R-12 000 > " (O)(b)	44 D	Round (T)	30 D	75% Steel	
11	Hartford(e) Jersey City LosAngeles(d)	(A)	120 R	(B)	70 R	(C)	120 R
13	Louisville	\$\frac{\frac{70 \text{R-13 000}}{\text{(CC)}}\$	120 R	Round (T) Rectangular(S) Others (U)	120 R		
14	Milwaukee	(J)	120 R	(Q)	25 D	(P)	120 R
15	Minneapolis	(J)	40 D	Round (V)	30 D	(K)	40 D
16	Newark, N.J.	(A)	120 R	(B)	70 R	(C)	120 R

L = Length in inches; R = Radius of Gyration in inches; D = Diameter

or Least Dimension in i	nches.	
FORMULÆ:-		
(A) $15\ 200 - 58\frac{L}{R}$	(G) $\frac{11\ 000}{1 + \frac{L^2}{1\ 000\ R^2}}$	$(M) \frac{14\ 000}{1 + \frac{L^2}{600\ D^2}}$
(B) $11\ 300 - 30 \frac{L}{R}$	(H) 16 000 R ²	
(C) $14\ 000 - 80\frac{L}{R}$	$(H) \frac{16\ 000}{1 + \frac{L^2}{20\ 000\ R^2}} - \frac{12\ 000}{12\ 000}$	$(N) \frac{14\ 000}{1 + \frac{L^2}{850\ D^2}} -$
(E) $\frac{14\ 000}{1+\frac{L^2}{13\ 500\ R^2}}$	$ \begin{array}{c} \text{(I)} & -12\ 000 \\ 1 + \begin{array}{c} \text{L}^2 \\ 20\ 000\ \text{R}^2 \end{array} $	(O) $16\ 000 - 70\ \frac{L}{R}$
(F) 13 500 R ²	(J) 17 100 – 57 ^L .	(P) 12 000 - 60 ^L _R

$$\frac{1}{1 + \frac{L^2}{13500 R^2}}$$
 (K) 10 600 – 30 $\frac{L}{R}$ (Q) 10 000 – 60 $\frac{L}{R}$

(b) 85% for soft steel.

ALLOWABLE UNIT STRESSES FOR STEEL AND IRON.

Revised to 1917.

Pounds per Square Inch.

			Columns								
No.	0:4-	Steel		Cast Iron		Wrought	Iron				
	City	Formula	Max. Length L	Formula	Max. Length L =	Formula	Max. Length L= 40 D 120 R 120 R 120 R 120 R				
17	New Haven	12 500(c)	40 D 120 R	13 330(c)	20 D	10 000(c)					
	New Orleans New York	(H) (O)	120 R 120 R		70 R 70 R	(I)					
20	Philadelphia	Mild Steel (X) Med'm " (Y)	140 R	(Z)	20 D	(AA)	140 R				
21 22 23	Pittsburgh Portland, Ore. Providence	(GG)Max.13000	120 R 120 R	(HH) Max. 9000 (B)	70 R 70 R	(C)					
24 25	Rochester St. Louis		120 R	(II)	70 R 25 D	(C)	120 R				
26 27	St. Paul San Francisco.	{ <30 R-12 000 > " (DD)	120 R	(T) (Round (EE) Rectangular(FF)	20 D						
28	Seattle	(0) 14 000 max.	120 R	(Q)	70 R	(P)					
	Syracuse Washington Worcester	(A) (A) (A) (A)	120 R 120 R	(BB) (B) (BB)	70 R 70 R	(C)	120 R				

L = Length in inches; R = Least Radius of Gyration in inches; D = Diameter or Least Dimension in inches.

FORMULÆ (continued):-

(c) Coefficients for use with Gordon's Formula. (d) Based on best modern practice. (e) Building Laws being revised, 1917. (f) See Building Laws.

Allowable Unit Stresses for Masonry and Building Materials.
(Revised to 1917.) Pounds per Square Inch.

-					Com	npression.					
			Concre	te.				tonework.			
No.	City.	Portland Cement 1:2:4	Portland Cement 1:2:5.	Rosendale Cement 1:2:4.	Rosendale Cement 1:2:5.	Portland Cement Mortar	Rosendale Cement Mortar.	Lime and Coment Mortar.	Lime Mortar.		
1	Atlanta	230	208	125	111	140	111	97	70		
2	Baltimore	400	350	125	111	125	100	70	50		
3	Boston	417									
4	Buffalo	56 (a)	56 (a)			70					
5	Chicago	(400 (d) (350 (e)	(350(d,f) (300 (e,f)		150	{200 (b) 100 (c)			{120 (b) 60 (c)		
6	Cincinnati	908	208			167	125		83		
	Cleveland Denver	400 56	350(h) 139				167		56-111		
	Detroit	417	417	111	111	139	111	{ 83 97(g)	70		
10	Hartford	153	153					(0 , (8)			
11	Jersey City	230	208	125	111	140	111	97	70		
	Los Angeles	278(a)	278(a)				167				
	Milwaukee	400	{ 250(k) 300(f)	111	83	175	125	97	90		
15	Minneapolis .	{ 500(i) 300	208(h)			167	125	111	83		
16	Newark, N. J.	230	208	125	111	140	111	97	70		
17	New Haven	208(a)	208(a)								
18	New Orleans.										
19	New York	500	400(f)	210	150(f)	140	110	100			
	Philadelphia.	208	208			139		111	70		
	Pittsburgh(j). Portland, Ore.	347	278(k)			∫ 208 b) 167(c)		167-b 139 c)	{ 139(b) 83(c)		
23	Providence	222	195	111	83	139(c) 153(b)	(125 b) 97(c)	(97(b) 70(c)	{ 83(b) 56(c)		
24	Rochester	230	208	125	111	140	111	97	70		
25	St. Louis	250(h)									
100	St. Paul	500	400	125	111	200	100	125(g)	80		
	San Francisco	277	277			(200(b)			(120(b)		
28	Seattle	400	350(f)			(100(c)			(60(c)		
29	Syracuse	400	300	100	80	110					
	Washington Worcester	400 278	320 208(k)	125 111	111	140 139	111	97	70		

⁽a) Foundations; (b) Coursed; (c) Ordinary; (d) Machine-mixed; (e) Handmixed; (f) 1:2½:5; (g) Portland Cement Mortar; (h) 1:3:5; (i) 300 where height is 12 diameters; 500 for 5 diameters or under; intermediate heights, intermediate values; (i) Based on best modern practice; (k) 1:3:6.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

Allowable Unit Stresses on Masonry and Building Materials.

(Revised to 1917.)

Pounds per Square Inch.

	D .			_	С	omp	ressi	on				200		
Portland, Oem Mor- tar 1:3	Cern Mor-	Cem Mor 23	Lime	1.4	Granites (per Test)	Greenwich Stone	Gneiss	Limestone (per Test)	Marble (per Test)	Sandstone (per 1est)	Bluestone	Hard-burned Brick, flatwise	Slate	No.
250	208	160	111		12400		1200	700- 12300	600- 1200	{ 400− 1600	2000	300	1000	1
250	208	160	111		1003-	,		1000	12000-	400 n				2
1278 q 1250 r 167 q	1250 H 1208 F 1125 t	(139 r	1111 1 97r 1 83	P	833			556	556	417	····			3 4
(350 v	150	125	100	u	600					400				5
(175 u 250	167		111	Ì	1000-	,				1 400-				6
200 125	175 125	150	100		2 (00) 1000 560			600		1600 400 167			 	7 8
208 208 t		(153 g (125 160	97 111	+	<i></i> .			. .						9
250	208	160	111		1000-		1200	1 700- 12300	J 600-	{ 400- 1600	2000	300	1000	
208 250 (180 (250 t	208 167 {139 160 t	111	111 111 ∫ 83 (120	t									 	12 13 14
208 250	208	160 160	111 111		1000-		1200	700-	∫ 600- 1200	∫ 400- (1600)	2000	300	1000	
208 ∫250 q \167 u		160	111 1125 \ 83	q	830			550	550	415				17
250 208	210	160 167	110		1000	1200	1000	700	600	400	2000		1000	19
{167 u	∫139 u	(139 u (157 v	(111	u v										21 22
222 v 250		139 v 160	1111	V	1069 2400	1200		(1300	∫ 600- +1200	{ 400-		300	1000	23
300	210		120		1000					1600		150-		25
250 208	208	225 g 139	111		2000 389y			(2300	∫ 600- 11200	11660		300		26
175 v		125 v	100		800y			400		1 235-				138
250	175	160 g	110		1000- 2400	1200	1300	700- 12300	f 600-	3 400-	2000	300	1000	39
250 295	167	160 130	111	i	us us		1300 1200		14	ч	2006		1000 1000	

⁽I) Mortar 1:3; (m. Falls Road Stone; (n) Cement Stone; (o) Mortar 1:2; (p) Mortar 1:6; (q) Hard-burned Brick—first-class work; (r) Same—Ordinary work; (t) Hard-burned Brick; (u. Common Brick; v.) Higher values for special Brick; (w. Local; v.) Medina—2000; v.) Granite Masonry.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES. Allowable Unit Stresses for Masonry, Etc. (Revised to 1917.) Pounds per Square Inch

Extreme Fibre Stress (Bending). No. City. Greenwich Granite. Gneiss. Marble. Limestone. Stone. 1,16 Atlanta, Newark 11 Jersey City..... Worcester..... 180 150 400 120 150 2 Baltimore..... 180 150 400 120 150 6 Cincinnati..... 14 Milwaukee..... 50 Rochester..... 26 St. Paul..... 180 150(b) 400 120 180 400 120 150 29 Syracusc

Safe Bearing Capacity of Soils, Etc.

150

150

400

120

150

180

Tons per Square Foot.											
			Ordinary Clay and	Loam,	Very Firm	Piers of S	in Caisson				
No.	City.	Soft Clay.	Sand, in Layers, Wet and Springy.	Firm and Dry.	Coarse Sand, Stiff Gravelor Hard Clay	Carried down to Rock.	down to Firm Gravel or Hard Clay.	to Rock.			
1	Atlanta	1	2	2-3	3-4	15	8-10	8			
2	Baltimore	I	2	3	6(a),4	20-24	12-18(d)				
3	Boston										
4	Buffalo				31/2						
5	Chicago		1,12	13/4-21/2							
6		1	1-2	2-4	8(c),5						
7 8	Cleveland Denver	1	1½ 1-2	3	3-8 4,8(d)	10(h)					
9	Detroit		2	3	4, 8(u)			1			
11	Jersey City	1	2	3	4	15	10	8			
12	Los Angeles		1 e	2-4	4						
13	Louisville			21/2	4						
14	Milwaukee	{ ½(g)	2	3	4-5(c) 6(d) 20(h)						
15	Minneapolis	1	2 2	3	4						
16	Minneapolis Newark, N.J	1		3	4	15		8			
17	New Haven				4(f)						
18	New Orleans	0.7									
19	New York		2	3-4	4-6	8-40					
20	Philadelphia				$6(c), 3\frac{1}{2}$						
21	Pittsburgh	(1 (a)									
22	Portland, Ore	112	3	4	8(c)						
23	Providence		2-3	2-5	1						
24	Rochester		2	3 .	10(c), 6	15	10	8			
26	St. Paul		2	3							
27	San Francisco	1	2	3	6(a), 4	20(h)		10(d)			
28	Seattle	1	2	212	8(c) 31 ₂ -5			1			
29	Syracuse		2	3	4						
30	Washington	1	2	3	4		1	1			

⁽a) Coarse Gravel; (b) Local; (c) Well cemented; (d) Bearing—Hardpan or Hard Shale rock unexposed to air, frost and water; (e) Sandy loam; (f) Good, solid, natural earth: (g) Quicksand or alluvial soil; (h) Bearing—Very hard, native bed rock.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES. Allowable Unit Stresses for Masonry, Etc. Revised to 1917.) Pounds per Square Inch.

Extreme Fibre Stress (Bending). | Rosendale Concrete. | Brick- | Brickwork Portland Concrete. No. Bine-Sand-1:2:4. | 1:2:5. | 1:2:4. | 1:2:5. Hardburned in Cement. stone. stone. 1,16 11 10 100 300 30 20 16 50 100 2 50 25(k)30(l) 14 50(i) 100(j) 300 30 20 16 30 24 100 20 16 10 50(i) 30 26 300 100 29

Allowable Safe Loads and Sizes for Wooden Piles.

Spa	eing	Min	imum Dian	ieter.	Safe Loa	1—Tons.	Concrete	Capping.	<u> </u>
Maxi- mum C. to C. in inches.	Mini- mum C. to C. in inches.	Of Small End. Inches.	Of Butt. Lengths = < 20ft. Inches.	Of Butt. Lengths >20 ft. Inches.	Formula for Single Pile.	Not to exceed per Pile	Thickness Rammed Between Heads. Inches	Width Outside of Piles. Inches.	No.
36	20 24	5 8(m).6	10	12 10	(D)	20	12 12(n), 6	12	1 2
36 36	24	6	12	12		25	16(n) 12	12	12345578
36	24	6 6 5	12	12	(D) (D)		12 12 10 12	12 12 12 12	8 9
36	20	5	10	12	(D)	20			12
. , ,		6			(D)&(S)	500(p)	,		14
36 36 36 30	20 20 20	5 5 6 5 6 6 6			(D) (D) (D)&(S) (D)&(S)	20 7-20 20 20 20 20 20 25	12 12 12 6(n), 12	12 12 12 6 12	15 16 17 18 19 20 21 22
36	24 20 12(o) 24	5 5 7 6	10 10 12 10	12 12 12	(D) (D) (D)&(S) (D)	12 20 25 25 25 25 10–15	12 9(n), 9 12(n) 6(n) 6	12 12 12 12 12	23 24 26 27 28 29 30

(i) Common; (j) Medina; (k) 1:3:6 mixture: (l) 1:21 $\frac{1}{2}$:5 mixture: (m) Length = >20 ft.; (n) Capping, on top of heads; (o) In clear between piles; (D) For Drop Hammer, $\frac{2WH}{P+1}$; (S) For Steam Hammer, $\frac{2WH}{P+1\frac{1}{10}}$ where W=Weight of

hammer in Tons; H=Height of drop in Feet; P Penetration of last blow (or average of last several blows) in Ins.; (p.Pounds per sq. in.) (q.Lengths < or > 25 ft.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

				Compression.						
No.	City.	0al	k.	Yellov	v Pine.	White	Pine			
		With Grain.	Across Grain.	With Grain.	Across Grain.	With Grain.	Across Grain.			
1 2 3 4 5	Atlanta Baltimore Boston Buffalo Chicago	900 1000 810(e) 800(c) 900	800 600 600(e)	1000 1000 900 1000(g) {1100(g,d) 800(f)	600 600 500 250(d)	800 800 630 700 700(c)	400 400 250 200(c)			
6 7 8 9 10	Cincinnati Cleveland Denver Detroit Hartford(q)	900 800(c) 1000	800 300	1000 1000 1250	600 350	800 700 875	400 300			
11 12 13 14 15	Jersey City Los Angeles(a) Louisville Milwaukee Minneapolis	900 1000 1500(e) 800(e)	800 600 500(e)	1000 1000 { 1500(g) 1200(f) 1000(h)	600 600 { 350(g) 300(f)	800 800 1100(d) 700	400 400 200(d)			
16 17 18 19 20	Newark, N. J New Haven(a) New Orleans New York Philadelphia	1100	1000	1500 1600(g) 750	600 { 400(f) 500(g) 1000(g) 550	800 1000(b,f)	400 800(b,f)			
21 22 23 24 25	Pittsburgh(a) Portland, Ore Providence(a) Rochester. St. Louis(q)		800	1000	600	900(1)	200(1)			
26 27 28 29 30	St. Paul. San Francisco Seattle Syracuse Washington	900 - 900	700 800 800	1100(h) 800(f,b) 1000(g) 1000	600(h) { 400(f,b) 600(g) 600	900 800(1) 800 800	400 200(1) 400 400			
31	Worcester(a)									

⁽a) Based on best modern practice; (b) Applies also to North Carolina Pine; (c) Also for Norway Pine; (d) Also for Douglas Fir; (e) White Oak; (f) Shortleaf; (g) Longleaf; (h) Also for Washington or Oregon Fir; (i) Douglas or Yellow Fir only.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

				93310n.	Compre			
	emlock. Chestnut.		Hemi	ıst.	Loca	uce	Spr	
	Across Grain.	With Grain.	Across Grain.	With Grain.	Across Grain.	W::h Grain.	Across Grain	With Grain
			500 500	500 600	1000	1200 1200	400 400(b,k) 250	800 800 b,k) 630
			150	700 500				
	1000	500	500 200	500	1000	1200	400	800
		600(r)		700 750		\$50(m)		700 950(n)
	1000	500	500	500	1000	1800	400	5.00
	1000 240(n	600 1100(m)	500 200	600 900 600	250(n)	1000(n) 760(n)	300(o)	1100 o) 1000 800
	1000	500	500	600	1000	1200	400	800
			800 250	800 350	1000	1200	200 m) 800(d) 300	1200(d) 500
6					250(j)	1200(j)	400(i)	1500'i)
	1000	500	500	500	1000	1200	400	800
	400	800	300 250(j) 350(p)	500 900(j) 1400(p)	1000 300(i) 400 i)	1200 1600(i) 1600(i)	400 200 300	800 800 800
6	1000	500	300	600	1000	1200	400 400(k)	800(k)
	1000	000	, , , , , , , ,		1000	1250	200(E)	000(2)

⁽j) Red Fir only; (k) Also for Virginia Pine; (l) Also for Redwood; (m) Cypress only; (n) Norway Pine only; (o) Cedar; (p. Western Hemlock; (q) Building Laws being revised, 1917; (r) Colorado, Texas or Mexican Hemlock.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

			Extrer	ne Fibr	e Stress	(Bendi	ng).	
No.	City.	Yellow Pine.	White Pine.	Spruce.	0ak.	Locust.	Hem- lock.	800 800 800 1100(p)
1 2 3 4 5	Atlanta Baltimore Boston Buffalo Chicago	1200 1800(1) 1500(1) 1800(1) \$\frac{1}{1000(s)}\$ 1300(1,m)	800 1000 1000 1080(b) 800(b)	800 1350(f) 1000	1000 1500 1000(d) 1350 1200	1200	600 1000 1080 600	
6 7 8 9 10	Cincinnati Cleveland Denver Detroit Hartford(u)	1200 1600 1260(a) 1250	800 1250 750	800 750	1000 1250 1170(w) 1000(d)	1200 950(e)	600 1000 720(v)	800
11 12 13 14 15 16 17 18	Minneapolis Newark, N. J New Haven	1200 1620(c) 1200 (1500(s) 1800(1) 1620(a) 1500 1800 (1200(s) 1500(1) 1600(1)	800 1260 \$1200(e) 1000 1080(b) 800 1080	800 1260 1000 800 1260 	1000 2160 1000 1500(d) 1350 1100 1350	1300(h) 1200 900(o)	800 700 1080 600 954	1100(p)
20 21 22 23 24 25	Philadelphia Pittsburgh(k) Portland, Ore Providence(k) Rochester St. Louis(u)	1200	900	1100 1000(i) 800	800(j)	1200	900	800
26 27 28 29 30	St. Paul	800(s)(g) 1200(l) 1200	800 700 700 800(f)	800 700 1000 800 800	1000 800(i) 1200 1000	1200 750(j) 1200	600 1400(t) 600	800
27 28 29 30	San Francisco	1200(h) 1600(h) 800(s)(g) 1200(l) 1200	700	700 1000 800	800(i) 1200	750(j)	1400(t)	

⁽a) Also for Washington and Oregon Fir; (b) Also for Norway Pine; (c) Oregon Pine only; (d) White Oak; (e) Norway Pine only; (f) Also for Virginia Pine; (g) Also for North Carolina Pine; (h) Douglas Oregon Yellow Fir only; (i) Washington or Red Fir only; (j) Redwood only; (k) Based on best modern practice;

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

Pounds per Square Inch.

		Tension.			
Yellow Pine.	White Pine.	Sprace.	Oak.	Hemlock.	N
1200 1800 l)	800 1000	I 800 I 1200 f)	1000 1500	600 800	
1000 s (1300 l, m)	800(Ъ)		1200	600	
1200	800	800	1000	(a) 000	1
1200	\$00	\$00	1000	600	1
1200			1000		1
(1000 s) (120) [7	700(q)	800(m)(b)	1200(d)	600(r)	.1
1200(a)	800	800	1000		. 1
1200	800	800	1000	600	1
					. 1
(900 =)	700	800 m)	1200	600	1
15(N) 1)		1250		1000	2
1300/h)	80i)	1999 i)	· • • • • • • • • • • • • • • • • • • •	700(j)	. 2
1200	\$(n)		1000	600	. 2
1200 a	800	800	1000 .	600	2
1200(h) 16 · · i.)	7(0)	70×1 1600	1000(i)	7(00 j) 1400(t)	2
∫ 800(a)	800	800	1000	600	2
1200 l) 1200	800	50) f,	1000	0,70	3
La Ur	1777		1.775		
					. 3

⁽l) Longleaf; (m. Also for Dona'as Fir: (m. Also for Chestnut; (o) Cypress only; (o) Cypress and Cedar only; (q) Also for Cedar; (r) Also Cypress;

⁽s) Shortleaf; (t) Western Headlers; (u) Building Laws being revised, 1917; (v) Colorado or Mexicus; (w) Also for Texas Pine. Spruce or Hemlock.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

Pounds per Square Inch.

				She	ear.		
No.	City.	Yellow	Pine.	White	Pine.	Spri	ice.
		With Fibre.	Across Fibre.	With Fibre.	Across Fibre.	With Fibre.	Across Fibre.
1 2 3 4	Atlanta	70 100(l) 100(l)	500 500(1)	40 85 80	250 350	50 90 80	320 350
5	Chicago	120(s) 130(l)(c)		80(d)			
67	Cincinnati	70 150	500 500	40 100	250 400	40	250
8 9 10	Denver(q)	100(1)		80		80	
11 12	Jersey City Los Angeles(e)	70	500	40	250	50	320
13 14 15	Louisville Milwaukee Minneapolis(r)	80 {150(s)(c) 175(l)	400 {1000(s) 1250(l)	{120(n) 100	500	125	750
16 17	Newark, N. J New Haven(e)	70	500	40	250	50	320
18	New Orleans	65(s) 70(l)		50(f)			
19 20	New York Philadelphia	150(1) 100(l)	1000(l) 1125	100	500	100 75	500 750
21 22 23 24 25	Pittsburgh(e) Portland, Ore Providence(e) Rochester St. Louis(q)	150(g) 70	500(g) 500	100	500	100(h) 50	600(h) 320
26 27 28	St. Paul	70(j) 150(g) 200(g) 50(s)	500(j) 750(g)	50 100	250 500	50 100 130	320 500
30	Syracuse Washington	70(1) 70	(500(l) 500	50 40	300 250	50 50(k)	300 320(k)
31	Worcester(c)	1					

⁽a) Virginia Pine only; (b) White Oak; (c) Also for Douglas Fir; (d) Also for Norway Pine; (e) Based upon best modern practice; (f) Cypress only; (g) Douglas or Yellow Fir only; (h) Red Fir only;

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

Pounds per Square Inch.

				Shear.			
No.	Chestnut,	lock.	Hem	ust	Loc	k.	0al
	Across Fibre.	Across Fibre.	With Fibre.	Across Fibre.	With Pibre.	Across Pibre.	With Fibre.
1 2 3 4	150 150		40 75		100 90(a)	600 720	100 100 150(b)
5			60		· · · · · · · · · · · · · · · · · · ·		200
89	150	270 300	40 80	720	100 90(n)	600 400	100 100 -
10							
11 12 13	150	275		720	100	600 400	100
14		600	100(o)	400(m)	100(m)	1000(b)	240(b)
16	150	275	40	720	100		100
18							
19		600 625	100 63			1000(c)(s)	200
21						400(i)	80(i)
23 24 25	150	275	40	720	100	600	100
26	150	275	40	4.000.00	100 100(i)	600(h)	100 125(h)
28		250	180(p) 35				109
30		250		720	100		100
31							

⁽i) Redwood only; (j) Also for Washington Fir; (k) Also for Virginia Pine; (l) Longleaf; (s) Shortleaf; (m) Cedar only; (n) Norway Pine only; (o) Also for Cypress; (p) Western Hemlock; (q) Building Laws being revised, 1917. (r) Do not specify.

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

Pounds per Square Inch.

					Column	s.		
No	D.	City.	Longleaf Yellow Pine,	White Pine, Norway Pine and Spruce.	0ak.	Chestnut and Hemlock.	Locust.	Maxi- mum Length L =
	1	Atlanta	(A)	(B)	(I)	5/8 (B)	1½ (B)	30 D
	2	Baltimore	{<12D (C) > " (E)	{<12D (C) > " (E)	{<12D (C) > " (E)	{<12D (C) > " (E)	{<12D (C) > " (E)	:
	3	Boston	(F)	(G)	(H)			30 D
	4	Buffalo	{<12D-1000 > " (F)	{<12D-700 > " (J)(b)	(<12D-800 > "(K)(a)	{<12D-700 > " (J)(c)		, .
	5	Chicago	(M)	(M)	(M)	(M) (c)		30 D
	6	Cincinnati	{<12D-1000 > " (F)	{<12D-700 > " (J)	{<12D-800 > " (K)			180 R
	7	Cleveland(m)	(u)	(u)	(u)	(u)		150 R
	8	Denver	{<12D-1000 (O)	.<12D-700 (O)	<12D-800 (O)	<12D-700(c) (O)	<12D-600(v)	
	9	Detroit	<12D-1250 > " (F)	{<10D-875 > " (J)(d)	<10D-1000 > "(K)(a)			24 D
1	0	Hartford(m)						
1	1	Jersey City	(A)	(B)	(I)	5/8 (B)	1½ (B)	30 D
1	2	Los Angeles (l)						
1	3	Louisville	{<12D-1000 > " (F)		<12D-1000 > " (F)			120 R
1	4	Milwaukee	<15D-1125 > " (T)(k)	{<15D-825 i > " (T)(b)	<15D-1125 > " (T)	{<15D-675 > "(T)(c)		30 D
1	5	Minneapolis	<12D-1000 > " (F)(e)	<12D-700 > " (J)(b)	<12D-800 > " (K)(a)	<12D-600 > " (J)(c)		
1	6	Newark, N. J.	(A)	(B)	(I)	5/8 (B)	1½ (B)	30 D

L = Length of column in inches; D = Diameter or least dimension of column in inches; R = Least radius of gyration in inches; C = Allowable compressive unit stress (with grain) for that wood.

FORMULÆ:-

FORMULÆ:— (E)
$$C - 125 \frac{L}{12D}$$
 (H) $900 - 9 \frac{L}{D}$ (A) $1\ 000 - 18 \frac{L}{D}$ (F) $1\ 000 - 10 \frac{L}{D}$ (I) $900 - 17 \frac{L}{D}$

(F)
$$1\ 000 - 10^{\text{L}}$$

(I)
$$900 - 17\frac{I}{I}$$

(B)
$$800 - 15\frac{L}{D}$$
 (G) $700 - 7\frac{L}{D}$ (J) $625 - 6\frac{L}{D}$

(G)
$$700 - 7\frac{L}{D}$$

(J)
$$625 - 6 \frac{L}{D}$$

⁽a) Also for Norway Pine; (b) White Pine only; (c) Hemlock only; (d) White Pine and Spruce only; (e) Also for Washington and Oregon Fir; (f) Spruce only; (g) Oregon Pine only; (h) White Pine and Virginia Pine only; (i) Also Douglas

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES.

ALLOWABLE UNIT STRESSES FOR TIMBER.

(Revised to 1917.)

Pounds per Square Inch.

			C	olumn	8.		
No.	City.	Longleaf Yellow Pine	White Pine. Norway Pine and Spruce.	Oak.	Chestnut and Hemlock.	Locust.	Maximum Length L =
17	New Haven	1000 (N)	(700 b) (800 f)(N)	900(N)			
18	New Orleans	(F)			(V) (k)	(U) (t)	30 D
19	New York	(717)	(I)	(V)			30 D
20	Philadelphia	(O)	(O)	(O)	(O)	(O)	
21	Pittsburgh(1)						
22	Portland, Ore	(P)	(P)	(P)	(P)	(P)	20 D
23	Providence(1)						20 D
24	Rochester	(A)	(B)	(I)	5 % (B)	1½ (B)	30 D
25	St. Louis						
26	St. Paul	(M)	(M)	(M)	(M)	(M)	
27	San Francisco	>15D(Q)(g)					
28	Seattle	(P)	(P)	(P)	(P)	(P)	24 D
29	Syracuse	{ 34(A)(s) (A)	(B)	(I)	(S) (c)		30 D
30	Washington	(A)	(B) (h)	(I)		(A)	30 D
31	Worcester(1)						

L = Length of column in inches; D = Diameter or least dimension of column in inches; R = Least radius of gyration in inches; C = Allowable compressive unit stress (with grain) for that wood.

Fir, Cypress and Codar; (j) For Norway Pine, Spruce and Eastern Fir only; (k) Shortlesi; (< 15D = 900); (l) Based on best modern practice; (s) Shortleaf; (t) Cypress only; (u) See Building Laws; (v) Colorado, Texas or Mexican Hemlock.

(K)
$$750 - 7.5 \frac{L}{D}$$
 (P) C $(1 - \frac{L}{70D})$ (U) $450 - 5 \frac{L}{D}$

(P) C
$$(1 - \frac{L}{70D})$$

(U)
$$450 - 5 \frac{L}{D}$$

(M) C
$$(1 - \frac{L}{80D})$$
 (Q) $1300 - 20 \frac{L}{D}$ (V) $815 - 8 \frac{L}{D}$

(V)
$$815 - 8 \frac{L}{D}$$

(N) Coefficients to apply to Gordon's Formula. (S) $500 - 9 \frac{L}{D}$ (W) $1200 - 20 \frac{L}{D}$

(S)
$$500 - 9 \frac{L}{D}$$

(0) C
$$(1 - \frac{L}{100D})$$
 (T) C $(1 - \frac{L}{60D})$

(T) C (1
$$-\frac{L}{60D}$$

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES. Allowable Unit Stresses for Reinforced Concrete.

(Revised to 1917.) Pounds per Square Inch.

			Ratio	Conc	rete-	Allowa	ole Uni	it Stres	ses.
			Moduli	Co	mpression	1.			
No.	City.	Concrete Mixture.	Elastic- ity Steel to Con- crete.	Direct.	Extreme Fibre Bending	In Hooped Columns	Shear.	Tension.	Bond.
2	Baltimore	1:2:4	15	{500(b) {500	500	1200(ff)	50		60
8	Boston	1:5(h) 1:2:5	15 12		500		60 50		60 50
5	Chicago	1:2:3	15	350 400	500 700	5500 (1)	40	40(w)	50(x)
6	Cincinnati	1:2:4	15	600	700	(z)	65	40(W)	{ 70(y)
7	Cleveland	1:2:4	15	500	700	650 (j)	40	40(w)	{ 70 50 m
8	Denver	1:2:3	15	450	500		50		75
	Detroit	$\begin{cases} 1: 1\frac{1}{2}: 3t \\ 1: 2: 4 \end{cases}$	{12 }15	450	650	(z) 1800 (1)	40		80 100(q)
	Jersey City	1:2:4	18	350	500	(z)	50 (40		50 f 80(y)
12	Los Angeles	1:21/2:31/2	15		650	800	{120(n)		{120(q)
13	Louisville	1:2:4	15	{450(b) {650	650	(650 d,1)540	50		
14	Milwaukee	1:2:4	15	500(b)	700	[800(d) {600 600 (l)	[120(n) { 60 cc { 40 bb		{ 40aa 80
15	Minneapolis	1:2:4	{10 15	600 dd	650	\$00ee	50		{100(q) 75(u)
16	Newark, N. J.	1:2:4	15	450(b)	650)650(d)	40		40
18	New Orleans		15	500 (r)	650 (r)	(040	50 (r)		50
19	New York	1:6(h)	15	500	650	725	150(n)		100(q) 80
20	Philadelphia	1:2:4	15	500	650	750	{120(n) {40		{100(q) 80
21	Pittsburgh	1:6(h)	8gg 15	500	650	(540(ff))450	120	90(w)	80
24	Rochester	1:6 (h)	15	(450(b)) 650	650	(540 (1) (650	60		(150(p) (80
25	St. Louis	1:6(h)	20(ii)	(300(ii))500	f 100(ii) 1800	500	100(ii)		65
26	St. Paul	1:2:4	15	500(b)	650	750(d)	50		80(q)
	San Francisco	1:6(h)	15	500	500	700	75		60
28	Seattle	1:2:4	15	450	667	500 (j)	f120(n) 1 60cc		$\begin{cases} 50(x) \\ 70(y) \end{cases}$
30	Washington	1:2:4	15	{120(c) {450	{150 (c) {650		60	50	

⁽b) Columns not hooped; (c) Cinder-Concrete; (d) Vertical bars with hoops; (e) Actual compression in concrete surrounding steel; (f) Floor slabs; (g) Girders and beams; (h) Cement; aggregate; (i) Pure shear; (j) Spiral reinforcement; (k) Minimum area, gross section; (l) Structural steel units encasing concrete: (m) High carbon steel; (n) Where thoroughly reinforced for shear; (o) Without sign or crack; (p) Where adequate mechanical bond is provided: (q) Deformed bars; (r) Rock or gravel concrete; (s) Slag concrete;

EXTRACTS FROM THE BUILDING LAWS OF VARIOUS CITIES. Allowable Unit Stresses for Reinforced Concrete.

(Revised to 1917.) Pounds per Square Inch.

Steel-A	llowable	Unit St	resses.	C	olumn	ıs.	T	ests.	
Tension.	Com- pression.	Vertical Reinforce- ment in Columns	Shear.	Maxi- mum Length L	Mini- mum Allow- able Dimen- sion Inches.	Actual less Effective Diam. Inches.	Ratio Test to Calcu- la1ed Load.	Ratio Span to Maximum Deflection.	No.
(12000 (v) (15000 16000	8000v	ļ	8000v 10000	16		3			2 3
16000			10000	16			3		4
18000	10500	7500	12000	12	64(k)	3	2	800	5
16000	16000	(OFFO())	10000	32(z)		2	4		6
{18000(m) 16000	16000(1)	{ 9750(j) 7500	10000w	15		4			7
13(hh)			10000	15		2	2	700	8
(18000m,q 16000	15×(e)	12000 (1)		15	10	4	2	400	9
16000	16000	6000		12		2			11
16000	15×(e)	(ff)		30	7	8	2		12
16000	16000			15		3	4		13
16000	10500	{12000(d) 7500(b)		15	64(k)	3	2(o)		14
[20000(m) [160(H)	\$8000- (12000	8000 dd 10000 ee	10000	15	12	3	2	{1000 g 300(f)	15
16000 m)		{ 8100(d) 6750(b)	10000	15		4 .			16
(20000(aa) 16000	16000	7500		15	12	4	13/4		18 19
16000	16000	6000 9000(d) 16000 (l)		15	12	4	2(o)		20
16000	7500	6750 8100(ff)	4500	15	9	3	2		21
\$20000(m) 1160000	9750	9750(d) 6750(b)		15		3			24
[20000(m)]	114000 m			15		2			25
f20000 m	(5000-	7500(b)	10000	15	12	4	2	∫100 gg	26
20090	7500	(ff)	10000	15	10	4	2	300(f) 700	27
18000		7500 (j) 6750	12000	15	8	3	2	700	28
16090	11000		10000	15	50(k)	4			30

⁽t) For columns; (u) Bars 3/4 inch or less; larger bars, proportionately less; (v) Soft steel; (w) Diagonal tension; (x) Flat bars with size ratio less than 2, and high carbon rounds and squares; (y) Structural steel rounds and squares; (z) For hooped columns, see Building Laws; (aa) Cold drawn material as wire; (bb) Horizental bars; (cc) Bent up bars; (dd) Square columns; (ee) Round core columns; (f), Special cases, see Building Laws; (gg) For calculating deflections; (bb) Flotte limits; (f) Rurat clays carette. (hh) Elastic limit; (ii) Burnt clay concrete.

EXPLANATION OF TABLES OF RIVETS AND PINS.

RIVETS.

In the design of riveted joints the total stress transmitted is assumed to be taken up by the rivets, no allowance being made for the friction between the plates riveted together, and the manner of failure of the joint will be by shearing of the rivet or crushing of the plate. This assumes that the rules given on page 358 are followed and failure by tearing off the plate caused by the rivets being too near the edge is thus prevented.

In the table of "Shearing Value of Rivets and Bearing Value of Riveted Plates," pages 352 and 353, these values are given for all customary sizes and thicknesses corresponding to various usual allowable unit stresses.

For any given size of rivet or thickness of plate to be used, an inspection of the table will show at once if the bearing value of the plate or the shearing value of the rivet is to govern the design and the amount of stress that can be transmitted by each rivet.

PINS.

In designing pin-connected joints the points which govern the design are the bending moments produced in the pin by the bars or plates connected, and the bearing value of the plates themselves. The bearing value in the case of eye-bars of proper proportions is sufficiently ample and need not be computed. Shear in pins need not ordinarily be considered, as the bending and bearing stresses usually determine the size.

In the table of "Maximum Bending Moments on Pins," pages 360 and 361, is given the allowable bending moments on pins of various diameters for the usual allowable fibre stresses.

In the table of "Bearing Values of Pin Plates for One-Inch Thickness of Plate," on page 359, is given the allowable bearing values of plates against pins of various usual diameters, corresponding to the customary unit stresses of this character.

If the bearing value exceeds the allowable limit in any given case pin-plates must be added, thus increasing the bearing value until it is reduced to a safe limit as shown by the tables.

CONVENTIONAL SIGNS FOR RIVETING.

FIELD SHOP Two Full Heads. Countersunk Inside (Farside) and Chipped. Countersunk Outside (Nearside) and Chipped. Countersunk both Sides and Chipped. INSIDE. OUTSIDE. (NEARSIDE) BOTH SIDES (FARSIDE) Flattened to 1/8" high or Countersunk and not Chipped. Flattened to 1/1" high. Flattened to 3/" high.

This system, designed by F. C. Osborn, C. E., has for foundation the diagonal cross to represent a countersink, the blackened circle for a field rivet and the diagonal stroke to indicate a flattened head. The position of the cross, with respect to the circle (inside, outside or both sides), indicates the location of the countersink and, similarly, the number and position of the diagonal strokes indicate the height and position of the flattened heads.

Any combination of field, countersunk and flattened head rivets liable to occur may be readily indicated by the proper combination of above signs.

SHEARING VALUE OF RIVETS AND BEARING VALUE OF RIVETED PLATES.

All Dimensions in Inches.

Shearing Value = Area of Rivet × Allowable Shearing Stress per Square Inch.

Diameter	Area	Unit Stress	=6 000 ibs.	Bearin	ng Valu	e for Di	fferent
of Rivet	Square Inches.	Single Shear.	Double Shear.	1/4	5 1 6	3/8	$\frac{7}{16}$
3/8	.1105	663	1325	1125	1406	1688	
1/2	.1964	1178	2356	1500	1875	2250	2625
5/8	.3068	1341	3682	1875	2344	2813	3281
3/1	.4418	2651	5301	2250	2813	3375	3938
7/8	.6013	3608	7216	2625	3281	3938	4594
1	.7854	4712	9425	3000	3750	4500	5250
Diameter	Area	Unit Stress	=8 000 lbs.	Beari	ng Valu	e for Di	fferent
of Rivet.	Square Inches.	Single Shear.	Double Shear.	1/4	5 1 6	<u>3</u> 8	7 16
3/8	.1105	884	1767	1500	1875	2250	
1/2	.1964	1571	3142	2000	2500	3000	3500
5/8	.3068	2454	4909	2500	3125	3750	4375
3/4	.4418	3534	7069	3000	3750	4500	5250
7/8	.6013	4811	9621	3500	4375	5250	6125
1	.7854	6283	12566	4000	5000	6000	7000
Diameter	Area	Unit Stress	- 10 000 lbs.	Bearin	ng Valu	e for Di	fferent
of Rivet.	in Square Inches	Single Shear.	Double Shear.	1	5 1 6	8	7 16
ef	in			1875	5 1 6 2344	2813	7 1 6
of Rivet.	Square Inches	Shear.	Shear.		16	8	$\frac{\frac{7}{16}}{4375}$
ef Rivet.	Square Inches -1105	Shear. 1105	Shear. 2209	1875	2344	2813	16
of Rivet.	Square Inches .1105 .1964	Shear. 1105 1964	Shear. 2209 3927	1875 2500	2344 3125 3906 4688	2813 3750	4375
of Rivet. 3/8 1/2 5/8 3/4 7/8	in Square Inches .1105 .1964 .3068 .4418 .6013	Shear. 1105 1964 3068 4418 6013	2209 3927 6136 8836 12026	1875 2500 3125 3750 4375	2344 3125 3906 4688 5469	2813 3750 4688 5625 6563	4375 5469 6563 7656
of Rivet. 3/8 1/2 5/8 3/4	.1105 .1964 .3068 .4418	Shear. 1105 1964 3068 4418	2209 3927 6136 8836	1875 2500 3125 3750	2344 3125 3906 4688	2813 3750 4688 5625	4375 5469 6563
of Rivet. 38 1/2 58 34 7/8 1 Diameter	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854	Shear. 1105 1964 3068 4418 6013 7854	2209 3927 6136 8836 12026	1875 2500 3125 3750 4875 5000	2344 3125 3906 4688 5469 6250	2813 3750 4688 5625 6563	4375 5469 6563 7656 8750
of Rivet. 3/8 1/2 5/6 3/4 7/6 1	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854	1105 1964 3068 4418 6013 7854 Unit Stress:	2209 3927 6136 8836 12026 15708 =12000 lbs. Double	1875 2500 3125 3750 4375 5000 Bearin	1 6 2344 3125 3906 4688 5469 6250 ng Valu	2813 3750 4688 5625 6563 7500 e for Di	16 4375 5469 6563 7656 8750 fferent
of Rivet. 38 1/2 58 34 7/8 1 Diameter	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854	1105 1964 3068 4418 6013 7854	2209 3927 6136 8836 12026 15708	1875 2500 3125 3750 4875 5000	3125 3906 4688 5469 6250	2813 3750 4688 5625 6563 7500	16 4375 5469 6563 7656 8750
of Rivet. 3/8 1/2 5/6 3/4 7/6 1	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854	1105 1964 3068 4418 6013 7854 Unit Stress:	2209 3927 6136 8836 12026 15708 =12000 lbs. Double	1875 2500 3125 3750 4375 5000 Bearin	1 6 2344 3125 3906 4688 5469 6250 ng Valu	2813 3750 4688 5625 6563 7500 e for Di	16 4375 5469 6563 7656 8750 fferent
of Rivet.	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854 Area in Square Inches.	1105 1964 3068 4418 6013 7854 Unit Stress Single Shear.	2209 3927 6136 8836 12026 15708 =12 000 lbs. Double Shear.	1875 2500 3125 3750 4875 5000 Bearin	2344 3125 3906 4688 5469 6250 ng Valu	2813 3750 4688 5625 6563 7500 e for Di	16 4375 5469 6563 7656 8750 fferent
of Rivet. 38 32 58 34 75 1 Diameter of Rivet.	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854 Area in Square Inches1105	Shear. 1105 1964 3068 4418 6013 7854 Unit Stress: Single Shear. 1325	2209 3927 6136 8836 12026 15708 =12 000 lbs. Double Shear. 2651	1875 2500 3125 3750 4375 5000 Bearing 14 2250	1 6 2344 3125 3906 4688 5469 6250 ag Valu 2813	2813 3750 4688 5625 6563 7500 e for Di	16 4375 5469 6563 7656 8750 ferent
of Rivet. 3/8 1/2 5/8 3/4 7/8 1 Diameter of Rivet.	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854 Area in Square Inches1105 .1964	Shear. 1105 1964 3068 4418 6013 7854 Unit Stress- Single Shear. 1325 2356	2209 3927 6136 8836 12026 15708 =12 000 lbs. Double Shear. 2651 4712	1875 2500 3125 3750 4375 5000 Bearin 1/4 2250 3000	1 6 2344 3125 3906 4688 5469 6250 ag Valu 5 1 6 2813 3750	8 2813 3750 4688 5625 6563 7500 e for Di 8 3375 4500	16 4375 5469 6563 7656 8750 ferent 7 16
of Rivet. 38 1/2 58 34 75 1 Diameter of Rivet. 38 1/2 58 34 78	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854 Area in Square Inches1105 .1964 .3068 .4418 .6013	Shear. 1105 1964 3068 4418 6013 7854 Unit Stress- Single Shear. 1325 2356 3682	Shear. 2209 3927 6136 8836 12026 15708 =12000 lbs. Double Shear. 2651 4712 7363	1875 2500 3125 3750 4875 5000 Bearin 1 4 2250 3000 3750	1 6 2344 3125 3906 4688 5469 6250 ag Valu 5 1 6 2813 3750 4688	8 2813 3750 4688 5625 6563 7500 e for Di 3 3 4500 5625 4500 5625 6750 7875	16 4375 5469 6563 7656 8750 fferent 7 16
of Rivet. 3/8 1/2 5/8 3/4 7/8 1 Diameter of Rivet. 3/8 1/2 5/6 3/4	in Square Inches .1105 .1964 .3068 .4418 .6013 .7854 Area in Square Inches1105 .1964 .3068 .4418	Shear. 1105 1964 3068 4418 6013 7854 Unit Stress: Single Shear. 1325 2356 3682 5301	Shear. 2209 3927 6136 8836 12026 15708 =12000 lbs. Double Shear. 2351 4712 7363 10603	1875 2500 3125 3750 4375 5000 Bearin 1 4 2250 3000 3750 4500	1 6 2344 3125 3906 4688 5469 6250 ag Valu 1 5 1 6 2813 2750 4688 5625	8 2813 3750 4688 5625 6563 7500 e for Di 8 3375 4500 5625 6750	16 4375 5469 6563 7656 8750 fierent 7 16

In the above tables the bearing values between the lower and upper zigzag black lines are greater than single and less than double shear for the corresponding dimensions, so that in case of single shear, the single shearing value governs, and in case of double shear, the bearing value governs the design.

SHEARING VALUE OF RIVETS AND BEARING VALUE OF RIVETED PLATES.

All Dimensions in Inches.

Bearing Value = Diameter of Rivet X Thickness of Plate X Allowable Bearing Stress per Square Inch.														
Thickne	8865	of	Plate	in	Inches	at	12	000	Pot	ınds	pe	r Squar	0	Inch.
$\frac{1}{2}$	9 16		<u>5</u> 8	-	116	$\frac{3}{4}$		1	<u>3</u>	7/8	_	1.5		1
8000 3750 4500 5250 6000	421 506 590 675	6	4688 5625 6563 7500		6188 7219 8250	678 78'	75	1	531 750	91 105		9844 11250	12	3000
Thickne	8388	of	Plate	in	Inches	at	10	5 000	Po	unds	pe	r Squar	0	Inch.
$\frac{1}{2}$	Thicknesses of Plate in Inches at 16 000 Pounds per Square Inch. $\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{1}{16}$ $\frac{3}{4}$ $\frac{1}{16}$ $\frac{7}{8}$ $\frac{1}{16}$ $\frac{1}{16}$													
4000 5000 6000 7000 8000 Thickne	675 787 900	5		1	1000	1200	00	130	000	1400	00	13125 15000		
$\frac{1}{2}$	9 16		<u>5</u> 8	1	116	3		1	3 6	7 /8		15		1
5000 6250 7500 8750	703 843 984	8	7813 9375 10938	1	0313	1129 131	25		219	153		16406 18750	20	0000
Thickne	3368	of	Plate	in	Inche	a at	2	4 000	Po	unds	pe	er Squar	re	Inch.
$\frac{1}{2}$	$\frac{9}{16}$		<u>5</u> 8	-	116	$\frac{3}{4}$		1	3 6	7 8		$\begin{array}{c c} 15 \\ \hline 16 \end{array}$		1
10500 12000	1012 1181 1350	2	15000	1 1 1	4437 6500	1575	00	195	500	2100	00	19687 22500	_	
greater t	han do	val.	le her	r fo	and to t	orres	719	ndin	g di	mensio	ons,	so that	in	these

Cases the shearing values govern the design.

The bearing values below and to the left of the lower zigzag black lines are less than single shear, so that in these cases the bearing values govern the design.

LENGTH OF RIVETS REQUIRED FOR VARIOUS GRIPS INCLUDING AMOUNT NECESSARY TO FORM ONE HEAD.

Grip of Rivet			Diamet	ter of R	ivet in I	nches.		
in Inches.	1"	3''	1//	5//	3//	7''	1"	13"
1/2	1	11/4 13/8 11/2 15/8	1½ 15/8 13/4 17/8	13/4 17/8	17/8	21/2	2½ 2½ 2¼	21/4
1/2 5/8 3/4 7/8	1½ 1¼ 1¾ 13/8	11/2	134	21/8	2½ 2½ 2¼	2½8 2¼ 2¾ 2¾	23/8 21/2	23/8 21/2 25/8
1	11/2	13/4 17/8	2		23/8	21/2	25/8	2 ³ / ₄ 2 ⁷ / ₈
1½ 1¼	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	2	21/8 21/4 28/8 21/2 25/8 23/4	21/4 28/8 21/2 25/8 23/4	23/8 21/2 25/8 27/8	$2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	25/8 23/4 27/8	3
13/8 11/2	2	2½ 2½	28/8	25/8 23/4	3	2	2	31/8
15/8 13/4 17/8	2½ 2½ 2½	21/8 21/4 23/8 21/2 25/8	25/8	21/8	31/8 31/4	31/8 31/4 33/8 31/2	31/8 31/4 31/2	31/8 31/4 31/2 35/8
17/8	23/8	25/8	$2\frac{7}{8}$	31/4	33/8	31/2	35/8	33/4
2 2½ 2½ 2¼	$\frac{21}{2}$ $\frac{25}{8}$	23/4 27/8	$\frac{31/8}{31/4}$	33/8 3½	3½ 35/8	35/8 33/4 37/8	3 ⁸ / ₄ 3 ⁷ / ₈	37/8
937	23/4 27/8	3	31/8/33/3/8/33/3/8/33/3/8/33/3/8/33/3/8/33/3/8/33/3/8/33/3/8/3/3/8/3/8/3/8/3/3/8/3/8/3/3/8/3/3/8/3/3/8/3/3/3/8/3/3/3/8/3/3/3/8/3	3 ⁸ / ₈ 3 ¹ / ₂ 3 ⁵ / ₈ 3 ⁷ / ₈	31/2 35/8 38/4 37/8	4	4 4½ 4½	4½ 4½ 4½
21/2 25/8	3	31/8 31/4 31/2 35/8	35/8 33/4	37/8	4	41/8 41/4 43/8	41/4	43/8 41/2 45/8
23/4 27/8	3½ 3½ 3½ 3¾	35/8 33/4	37/8 4	4½ 4½	4½ 4¼ 4¾ 43/8	43/8 41/2	43/8 41/2 45/8	45/8
3	31/2	378		43/8	41/2	45/8 43/4	43/4	47/8
3½ 3½	31/2 35/8 33/4 37/8	4 41/8 41/4	43/8	43/8 41/2 43/4 47/8	434	5	5 5½	5 51/4
33 ³ / ₈ 31 ² / ₂ 3 ⁵ / ₈	4	43/8	4½ 45/8	5	5 5½	5½ 5¼	5 ¹ / ₄ 5 ³ / ₈	53/8 51/2
334	41/8	4½ 45/8	41/8 41/4 43/8 41/2 45/8 43/4 47/8	5½ 5¼	51/8 51/4 53/8 51/2	53/8 51/2 55/8	51/8 51/4 53/8 51/2 55/8	51/4 53/8 51/2 55/8 53/4
37/8	43/8	434	5	53/8	51/2	55/8	53/4	57/8
41/8	45/0	5	51/4	5 ¹ / ₂ 5 ⁵ / ₈ 5 ⁸ / ₄ 5 ⁷ / ₈	55/8 53/4 57/8	534 578	57/8	61/8
4 ³ / ₈ 4 ¹ / ₂	434 47/8	5½ 5½ 5½	51/8 51/4 51/2 55/8 53/4 57/8	57/8	6	6 61/8	61/8	h3/6
45/8	5 5½	53/8 51/2 55/8	57/8	6 6½ 6¼	61/8	61/4 63/8	63/8 61/2	61/2
43/4 47/8	5½ 53/8	598 534	6 61/8	61/4	61/2 65/8	65/8 634	634	63/4
5	5½ 55/8	578 6	61/4	65/8	634 67/8	67/8 7	7	7
51/8 51/4 53/8	534 578	616	63 8 61 2 65 3	634 67/8 7	7		7½ 7¼ 7¾ 738	71/4
51/2	6	63/8	63 4 67/8	71/8	71/8 71/4	71/8 71/4 73/8	71/2	73/8 71/2 75/8
5% 53/4	61/4	68.4	7	71/8 71/4 73/8	78/8 75/8	71/2 75/8	71/2 75/8 73/4 77/8	73/
57/8	63/8	67/8	7½ 7¼	71 ½ 75 8	734	73/4	71/8	77/8

Amount in Inches to be subtracted from above lengths for Countersunk Heads.

1/8 1/4 1/2 1/2 1/8 1/4 1/8 1/8

WEIGHT OF 100 STEEL RIVETS. INCLUDING 100 HEADS.

Diameter of Rivet in Inches. Length Under 10 58 1 Head Inches. Average Weight in Pounds. 13/4 9.2 10.5 17.0 11/8 11/4 13/8 11/2 18.0 11.15 11.80 19.0 28.0 41.3 12.45 29.5 20.0 43.4 13.10 45.5 63.5 21.0 81.0 15/8 13/4 17/8 2 22.0 32.5 13.75 47.6 66.2 68.9 71.7 74.4 23.0 34.0 49.7 51.8 14.40 15.00 15.70 24.0 25.0 35.5 53.9 37.0 21/8 21/4 21/2 21/2 16.35 17.00 17.65 18.30 26.0 27.0 28.0 38.5 56.0 40.0 41.5 58.0 79.8 60.1 82.6 62.2 85.3 29.0 43.0 25/8 23/4 27/8 88.0 18.95 30.0 44.5 64.3 90.7 31.0 46.0 66.4 19.60 32.0 47.5 93.5 20.25 68.5 20.90 33.0 49.0 70.6 96.2 72.7 74.7 76.8 31/8 34.0 50.5 99.0 52.0 53.5 35.0 101.6 103.8 33% 36.0 78.9 31/2 37.0 55.0 107.1 35/8 81.0 38.0 56.5 109.8 83.1 85.2 87.3 112.6 115.2 118.0 39.0 58.0 40.0 59.5 4 41.0 61.0 41/4 64.0 91.4 123.5 41/2 67.0 95.6 128.9 70.0 99.8 134.4 104.0 139.8 73.0 5½ 5½ 5¾ 76.0 1082 145.3 79.0 112.3 150.7 82.0 116.5 156.2 85.0 120.7 161.6 Weight of 30.8 5.3 9.0 13.0 205 100 Heads.

AREAS TO BE DEDUCTED TO OBTAIN NET AREA OF RIVETED PLATE.

Square Inches.

Thick- ness Plates		SIZE OF HOLE. Inches.												
in Inches.	1/4	5 16	3/8	7 7 8	1/2	9 16	5/8	118	8/4	13	7/8	18	1	116
1/4 5 16 8/8 7	.06 .08 .09 .11	.08 .10 .12 .14	.09 .12 .14 .16	.11 .14 .16 .19	.13 .16 .19 .22	.14 .18 .21 .25	.16 .20 .23 .27	.17 .21 .26 .30	.19 .23 .28 .33	.20 .25 .30 .36	.22 .27 .33 .38	.23 .29 .35 .41	.25 .31 .38 .44	.27 .33 .40 .46
1/2 9 16 5/8 11	.13 .14 .16 .17	.16 .18 .20 .21	.19 .21 .23 .26	.22 .25 .27 .30	.25 .28 .31 .34	.28 .32 .35 .39	.31 .35 .39 .43	.34 .39 .43 .47	.38 .42 .47 .52	.41 .46 .51 .56	.44 .49 .55 .60	.47 .53 .59 .64	.50 .56 .63 .69	.53 .60 .66 .73
8/4 13 16/8 16	.19 .20 .22 .23	.23 .25 .27 .29	.28 .30 .33 .35	.33 .36 .38 .41	.38 .41 .44 .47	.42 .46 .49 .53	.47 .51 .55 .59	.52 .56 .60 .64	.56 .61 .66 .70	.61 .66 .71 .76	.66 .71 .77 .82	.70 .76 .82 .88	.75 .81 .88 .94	.80 .86 .93 1.00
1 11/6 11/8 11/8	.25 .27 .28 .30	.31 .33 .35 .37	.38 .40 .42 .45	.44 .46 .49 .52	.50 .53 .56 .59	.56 .60 .63 .67	.63 .66 .70 .74	.69 .73 .77 .82	.75 .80 .84 .89	.81 .86 .91	.88 .93 .98 1.04	.94 1.00 1.05 1.11	1.00 1.06 1.13 1.19	1.06 1.13 1.20 1.26
$1\frac{1}{4}$ $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$.31 .33 .34 .36	.39 .41 .43 .45	.47 .49 .52 .54	.55 .57 .60 .63	.63 .66 .69 .72	.70 .74 .77 .81	.78 .82 .86 .90	.86 .90 .95	.94 .98 1.03 1.08	1.02 1.07 1.12 1.17	1.09 1.15 1.20 1.26	1.17 1.23 1.29 1.35	1.25 1.31 1.38 1.44	1.33 1.39 1.46 1.53
$1\frac{1}{2}$ $1\frac{9}{16}$ $1\frac{5}{8}$ $1\frac{11}{16}$.38 .39 .41 .42	.47 .49 .51 .53	.56 .59 .61 .63	.66 .68 .71 .74	.75 .78 .81 .84	.84 .88 .91 .95	.94 .98 1.02 1.05	1.03 1.07 1.12 1.16	1.13 1.17 1.22 1.27	1.22 1.27 1.32 1.37	1.31 1.37 1.42 1.47	1.41 1.46 1.52 1.58	1.50 1.56 1.63 1.69	1.59 1.66 1.73 1.79
$1\frac{3}{4}$ $1\frac{13}{16}$ $1\frac{7}{8}$ $1\frac{15}{16}$ 2	.44 .45 .47 .48 .50	.55 .57 .59 .61 .63	.66 .68 .70 .73 .75	.77 .79 .82 .85 .88	.88 .91 .94 .97 1.00	.98 1.02 1.05 1.09 1.13	1.09 1.13 1.17 1.21 1.25	1.20 1.25 1.29 1.33 1.38	1.31 1.36 1.41 1.45 1.50	1.42 1.47 1.52 1.57 1.63	1.53 1.59 1.64 1.70 1.75	1.64 1.70 1.76 1.82 1.88	1.75 1.81 1.88 1.94 2.00	1.86 1.93 1.99 2.06 2.13

MAXIMUM SIZE OF RIVETS IN ANGLES AND IN FLANGES OF BEAMS AND CHANNELS.

		I-BEA	AMS.			CH	ANNE	LS.		ANG	LES.	_
Depth of Beam. Ins. 3 4 5 6 7 8 9 10 12 12 12	Weight per Foot. Pounds. 5.5 7.5 9.75 12.25 15.0 18.00 21.0 25.0 31.5 40.0	Size of Rivet. Inch. 3/8 1/2 1/2 5/8 5/8 3/4 3/4 3/4 3/4	Depth of Beam. Ins. 15 15 15 18 20 20 24 24	Weight per Foot. Pounds. 42.0 60.0 80.0 55.0 65.0 80.0 80.0 105.0	of	Depth of Channel Inches. 3 4 5 6 7 8 9 10 12 15	Weight per Foot. Pounds. 4.0 5.25 6.50 8.0 9.75 11.25 13.25 15.0 20.50 33.0	Size of Rivet. Inch.	Length of Leg. Inches. Inches. 34 1 1 1 4 1 3 8 1 1 2 1 4 2 1 4 2 1 2 3 4 2 3 4	Size of Rivet. Inch.	Length of Leg. Inches. 3 3 1/2 4 4 1/2 5 6 6 7 8	Size of Rivet. Inch.

AREAS TO BE DEDUCTED TO OBTAIN NET AREA OF RIVETED PLATE.

Square Inches.

SIZE OF HOLE. Inches.												Thick- ness Plates in			
11.8	1 3 16	114	1 5 16	138	$1_{\frac{7}{16}}$	11/2	1 16	158	1 116	13/4	113	17/8	1 15	2	Inches.
.28 .35 .42 .49	.30 .37 .45 .52	.31 .39 .47 .55	.33 .41 .49 .57	.34 .43 .52 .60	.36 .45 .54 .63	.38 .47 .59	.39 .49 .59 .68	.41 .51 .61 .71	.42 .53 .63 .74	.44 .55 .66	.45 .57 .68 .79	.47 .59 .70 .82	.48 .61 .73 .85	.50 .63 .75 .88	1/4 5 16 3/8 7 16
.56 .63 .70 .77	.59 .67 .74 .82	.63 .70 .78 .86	.66 .74 .82 .90	.69 .77 .86 .95	.72 .81 .90 .99	.75 .84 .94 1.03	.78 .88 .98 1.07	.81 .91 1.02 1.12	.84 .95 1.05 1.16	.88 .98 1.09 1.20	.91 1.02 1.13 1.25	.94 1.05 1.17 1.29	.97 1.09 1.21 1.33	1.00 1.13 1.25 1.38	1/2 9 16 5/8 11 16
.84 .91 .98 1.05	.89 .96 1.04 1.11	.94 1.02 1.09 1.17	.98 1.07 1.15 1.23	1.03 1.12 1.20 1.29	1.08 1.17 1.26 1.35		1.17 1.27 1.37 1.46	$\begin{array}{c} 1.22 \\ 1.32 \\ 1.42 \\ 1.52 \end{array}$	1.27 1.37 1.48 1.58	1.31 1.42 1.53 1.64	1.36 1.47 1.59 1.70	1.41 1.52 1.64 1.76	1.45 1.57 1.70 1.82	1.50 1.63 1.75 1.88	3/4 13 16 7/8 15
1.13 1.20 1.27 1.34	1.26 1.34			1.38 1.46 1.55 1.63	1.44 1.53 1.62 1.71	1.59 1.69	1.56 1.66 1.76 1.86	1.73	1.69 1.79 1.90 2.00	1.75 1.86 1.97 2.08	1.81 1.93 2.04 2.15	1.88 1.99 2.11 2.23	1.94 2.06 2.18 2.30	2.00 2.13 2.25 2.38	1 1 1 1 1 8 1 1 1 8 1 3 1 6
1.48 1.55		$\frac{1.64}{1.72}$	1.64 1.72 1.80 1.89	1.72 1.80 1.89 1.98	1.80 1.89 1.98 2.07	1.88 1.97 2.06 2.16	1.95 2.05 2.15 2.25	2.03 2.13 2.23 2.34	2.11 2.21 2.32 2.43	2.19 2.30 2.41 2.52	2.27 2.38 2.49 2.61	2.34 2.46 2.58 2.70	2.42 2.54 2.66 2.79	2.50 2.63 2.75 2.88	$ \begin{array}{c c} 1\frac{1}{4} \\ 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \end{array} $
	1.86		1.97 2.05 2.13 2.21	2.23	2.16 2.25 2.34 2.43	2.25 2.34 2.44 2.53			2.53 2.64 2.74 2.85	2.63 2.73 2.84 2.95	2.72 2.83 2.95 3.06	2.81 2.93 3.05 3.16	2.91 3.03 3.15 3.27	3.00 3.13 3.25 3.38	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \end{array}$
	2.15 2.23 2.30	2.19 2.27 2.34 2.42 2.50	2.46 2.54	$2.49 \\ 2.58 \\ 2.66$		2.72 2.81 2.91		2.84 2.95 3.05 3.15 3.25	2.95 3.06 3.16 3.27 3.38	3.06 3.17 3.28 3.39 3.50	3.17 3.29 3.40 3.51 3.63	3.28 3.40 3.52 3.63 3.75	3.39 3.51 3.63 3.75 3.88	3.50 3.63 3.75 3.88 4.00	13/4 11/8 17/8 11/6 2

RIVET SPACING.

All Dimensions in Inches.

Rivet. Allows	ble. Preferable.	Members.	Sheared Edge.	Rolled Edge.	Plate and Shape
1/4 3/4		Members.	ontarea napor	попец гаде.	Members.
3/8 11/3 1/2 11/4 1/8 17/8 3/4 21/4 7/8 25/3	134 2 21/2 3	21/2 3 31/2 4	1 11/8 11/4 11/2	7% 1 1½ 1½	4 4½ 6 6

For General Rules for Rivet Spacing see next page.

GENERAL RULES FOR RIVET SPACING FOR BRIDGE AND STRUCTURAL WORK.

The pitch or distance from center to center of rivets should not be less than 3 diameters of the rivet, preferably not less than 3 inches for $\frac{7}{8}$ inch rivets, $\frac{21}{2}$ inches for $\frac{3}{4}$ inch rivets, 2 inches for $\frac{5}{8}$ inch rivets and $\frac{13}{4}$ inches for $\frac{1}{2}$ inch rivets.

At the ends of compression members the pitch should not exceed 4 diameters of the rivet for a length equal to 1½ times the maximum width of the member.

Where two or more plates are in contact, rivets spaced notmore than 12 inches in either direction shall be used to hold them together.

For members composed of plates and shapes the pitch in the direction of the line of stress should not exceed 6 inches for ½ and ¾ inch rivets, 4½ inches for ½ inch rivets and 4 inches for ½ inch rivets. For angles with two gauge lines in built-up members, rivets staggered, the maximum pitch in each line may be twice these distances.

The distance between the sheared edge of any piece and the center of the rivet hole should not be less than $1\frac{1}{2}$ inches for 7% inch rivets, $1\frac{1}{4}$ inches for 34 inch rivets, $1\frac{1}{6}$ inches for 5% inch rivets and 1 inch for $\frac{1}{2}$ inch rivets; for a rolled edge, these distances may be $1\frac{1}{4}$, $1\frac{1}{6}$, 1 and 7% inches, respectively; when practicable it should, for all sizes, be at least 2 diameters of the rivet and should not exceed 8 times the thickness of the plate.

Minimum spacing is generally used in pin plates, at ends of columns, girders, etc., etc.

In figuring clearance of rivets for special cases, allow 5% inch in addition to diameter of head.

BEARING VALUES OF PIN PLATES.

For One Inch Thickness of Plate.

Bearing value = Diameter of Pin X 1" X Stress per Square Inch.

Diam- eter of Pin.	Area of Pin	Bearing Value at 12 000 Pounds per Square Inch.	Bearing Value at 13 500 Pounds per Square Inch.	Bearing Value at 15 000 Pounds per Square Inch.	Diam- eter of Pin.	Area of Pin.	Bearing Value at 12 000 Peunds per Square Inch.	Bearing Value at 13 500 Pounds per Square Inch.	Bearing Value at 15 000 Pounds per Square Inch.
Inches.	Sq. Ins.	Pounds.	Pounds.	Pounds.	Inches.	Sq. Ins.	Pounds.	Pounds.	Pounds.
1	.785	12000	13500	15000	41/2	15.90	54000	60750	67500
114	.994	13500	15190	16880	45/9	16.80	55500	62440	69380
114	1 227	15000	16880	18750	43/4	17.72	57000	64130	71250
13 g	1.485	16500	18560	20630	47/9	18.67	58500	65810	73130
11 2	1.767	19000	20250	22500	51 51 51 53 8	19.64	60000	67500	75000
15 3	2.074	19500	21940	24380		20.63	61500	69190	76880
13 4	2.405	21000	23630	26250		21.65	63000	70880	78750
17 8	2.761	22500	25310	28130		22.69	64500	72560	80630
2	3.142	24000	27000	36000	51/2	23.76	66000	74250	82500
21 9	3.547	25500	28690	31880	55/8	24.85	67500	75940	84380
21 4	3.976	27000	30380	33750	53/4	25.97	69000	77630	86250
23 5	4.430	25500	32060	35630	57/8	27.11	70500	79310	88130
21.2 25.4 27.8	4.909 5.412 5.940 6.492	36000 31500 33000 34500	33750 35440 37130 38810	37500 39380 41250 43130	6 6 ¹ 4 6 ³ 8	28.27 29.46 30.68 31.92	72000 73500 75000 76500	81000 82690 84380 86060	90000 91880 93750 95630
3	7.069	36000	40500	45000	61 2	33.18	78000	87750	97500
317	7.670	37500	42190	46880	65 4	34.47	79500	89440	99380
314	8.296	39000	43880	48750	63 4	35.79	81000	91130	101250
33 8	8.946	40500	45560	50630	67 8	37.12	82500	92810	103130
31/2	9.621	4290)	47250	52500	7	38.48	84000	94500	105000
31/2	10.32	4350)	48910	51080	71/2	44.18	90000	101250	112500
33/4	11.15	4500	50630	51259	8	50.27	96000	108000	120000
37/8	11.79	4650)	52310	58130	81/2	56.75	102000	114750	127500
4	12 57	48100	540(Y)	6(600)	9	63.62	108000	121500	135000
414	13 36	445.1	556 PJ	61550	10	78.54	120000	135000	150000
414	14 19	51 (a)	573-0	62750	11	95.03	132000	148500	165000
438	15 93	52500	59() *)	65630	12	113.10	144000	162000	180000

Example.—The stress in the end post of a bridge is 250 000 pounds and the diameter of the pin is 51.". Required the total thickness of steel pin plates for a bearing value of 15 000 pounds per square inch.

From the table the bearing value of a 55," pin in a 1" plate for 15 000 pounds unit stress is \$1 350 pounds. Therefore the total thickness of metal required is 250 000

250 000 84 380 = 2.96".

The nearest commercial size would therefore be 1½" on each side, including web and necessary reinforcing plates.

MAXIMUM BENDING MOMENTS ON PINS.

With Extreme Fibre Stresses Varying from 15 000 to 25 000
Pounds per Square Inch.

Diameter of	Area of Pin	Mome	nts in Inch	-Pounds for	Fibre Stre	esses of
Pin in	in Square	15 000 Lbs.	18 000 Lbs.	20 000 Lbs.	22 500 Lbs.	25 000 Lbs.
ria ta	In oquare	per	per	per	per	per
Inches.	Inches.	Square Inch.	Square Inch	Square Inch.	Square Inch.	Square Inch
1	.785	1470	1770	1960	2210	2450
114 114	.994	2100	2520	2800	3150	3490
114	1.227	2900	3450	3830	4310	4790
13/8	1.485	3830	4590	5100	5740	6380
116	1.767	4970	5960	6630	7460	8280
158	2.074	6320	7580	8430	9480	10530
11/2 15/8 13/4	2.405	7890	9470	10520	11840	13150
17/8	2.761	9710	11650	12940	14560	16180
2	3.142	11780	14140	15710	17670	19630
21/8	3.547	14130	16960	18840	21200	23550
214	3.976	16770	20130	22370	25160	27960
23/8	4.430	19730	23670	26300	29590	32880
$2\frac{1}{2}$	4.909	23010	27610	30680	34510	38350
25/8	5.412	26640	31960	35520	39960	44400
234	5.940	30630	36750	40830	45940	51040
21/8	6.492	34990	41990	46660	52490	58320
3	7.069	39730	47680	52970	59600	66220
318	7.670	44940	53930	59920	67410	74900
314	8.296	50550	60660	67400	75830	84250
338	8.946	56610	67940	75480	84920	94350
312	9.621	63140	75770	84180	94710	105230
338	10.321	70159	84180	93530	105220	116910
334	11.045	77660	93190	103540	116490	129430
$3\frac{7}{8}$	11.793	85690	102820	114250	128530	142810
4	12.566	94250	113100	125660	141370	157080
41/9	13.364	103360	124040	137820	155040	172270
41/4	14.186	113050	135660	150730	169570	188410 205530
43/8	15.033	123320	147980	164420	184980	200000
416	15.904	134190	161030	178920	201290	223650
400	16.800	145690	174830	194250	218510	242810
434	17.721	157820 170580	189390 204740	210430 227490	236740 255920	263040 284360
4.78	18.665	170000	204140	221400	200020	201000
5	19.635	184080	220890	245440	276120	306800
51/8	20.629	198230	237880	264310	297350	330390
514	21.648	213090 228680	255710 274420	284120 304910	319640 343020	355160 381130
538	22.691	228080	274420	304910	040020	331130
513	23.758	245010	294010	326680	367510	408350
55 s	24.850	262100	314510	349460	393140	436830
534 578	25.967 27.109	279960 298620	335950 358340	373280 398160	419940 447930	466600

MAXIMUM BENDING MOMENTS ON PINS.

With Extreme Fibre Stresses Varying from 15 000 to 25 000 Pounds per Square Inch.

Diameter	Area of	Mome	nts in Inch	-Pounds fo	or Fibre Stre	esses of
of Pin in Inches.	Pin	15 000 Lbs.	18 000 Lbs.	20 000 Lbs.	22500 Lbs.	25 000 Lbs.
	in Square	per	per	per	per	per
	Inches.	Square Inch.				
6	28.274	318090	381700	424120	477130	530140
61/8	29.465	338380	406060	451180	507580	563970
61/4	30.680	359530	431430	479370	539290	599210
63/8	31.919	381530	457840	508710	572300	635890
614	33.183	404420	485400	539230	606630	674030
65/8	34.472	428200	513840	570940	642300	713670
63/4	35.785	452900	543480	603870	679350	754830
67/8	37.122	478530	574240	638040	717800	797550
7	38.485	505110	606130	673480	757660	841850
71/8	39.871	532650	639190	710210	798980	887760
71/4	41.282	561180	673420	748250	841780	935310
71/8	42.718	590710	70 8860	787620	886070	984520
71/2	44.179	621260	745510	828350	931890	1035440
75/8	45.664	652850	783410	870460	979270	1088080
73/4	47.173	685480	822580	913980	1028220	1142470
73/8	48.707	719190	863030	958920	1078780	1198650
8	50.265	753980	904780	1005310	1130970	1256640
81/6	51.849	789880	947860	1053170	1184820	1316470
81/4	53.456	826900	992280	1102530	1240350	1378170
83/8	55.088	865060	1038070	1153410	1297590	1441760
81/2	56.745	904370	1085250	1205830	1356560	1507290
85/8	58.426	944860	1133830	1259820	1417290	1574770
81/4	60.132	986540	1183850	1315390	1479810	1644240
87/8	61.862	1029430	1235310	1372570	1544140	1715710
9 9½ 9¼ 9¾ 9¾	63.617 65.397 67.201 69.029	1073540 1118900 1165510 1213400	1288250 1342680 1398610 1456080	1431390 1491860 1554010 1617870	1610310 1678340 1748270 1820100	1789240 1864830 1942520 2022340
91/2	70.882	1262590	1515110	1683450	1893880	2104310
95/8	72.760	1313090	1575700	1750780	1969630	2188480
98/4	74.662	1364910	1637900	1819880	2047370	2274850
97/8	76.590	1418090	1701700	1890780	2127130	2363480
10	78.540	1472620	1767150	1963500	2208930	2454370
10¼	82.516	1585850	1903020	2114470	2378780	2643090
10½	86.590	1704740	2045690	2272990	2557120	2841240
10¾	90.763	1829430	2195320	2439250	2744150	3049060
11	95.033	1960060	2352070	2613410	2940090	3266770
111/4	99.402	2096760	2516110	2795680	3145140	3494600
111/4	103.869	2239670	2687610	2986230	3359510	3732790
12	113.098	2544690	3053630	3392920	3817040	4241150

DIMENSIONS OF BOLTS AND NUTS.

Franklin Institute Standard.

		Bolts as	nd Thre	ads.		Rough Nuts and Heads.						
Diameter of Bolt.	Threads per Inch.	Diameter at Root of Thread	Width of Flat.	Area of Bolt Body.	Area of Bolt at Root of Thread.	Short Diameter of Square and Hexagon.	Long Diameter of Square.	Long Diameter of Hexagon,	Thickness of Nuts.	Thickness of Heads.		
Ins.	No.	Ins.	Ins.	Sq. Ins.	Sq. Ins.	Ins.	Ins.	Ins.	Ins.	Ins.		
지생 이 지역 10 10 10 10 10 10 10 10 10 10 10 10 10	20 8 14 3 2 11 10 5 8 7 7 6 6 5 5 5 5 4 4 4 4 9 3 3 9 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.185 .240 .294 .344 .400 .454 .507 .620 .731 .837 .940 1.065 1.160 1.284 1.389 1.490 1.615 1.712 2.175 2.425 2.629 2.879 3.100 3.317 3.567 3.798 4.028 4.255 4.480 4.730 4.953 5.203	.0062 .0070 .0078 .0089 .0096 .0104 .0113 .0125 .0140 .0180 .0210 .0227 .0250 .0250 .0280 .0310 .0310 .0310 .0310 .0310 .0357 .0384 .0410 .0410 .0480 .0480 .0480 .0480 .0500 .0500 .0506 .0526 .0526 .0526	.049 .077 .110 .150 .196 .249 .307 .442 .601 .785 .994 1.227 1.485 1.767 2.074 2.405 2.761 3.142 3.976 4.909 5.940 7.069 8.296 9.621 11.045 12.566 14.186 14	.027 .045 .068 .093 .126 .162 .202 .302 .420 .550 .694 .893 1.057 1.295 1.515 1.744 2.048 2.302 3.715 4.619 5.428 6.510 7.548 8.641 9.993 11.329 12.743 14.220 15.763 17.572 21.262 23.098		.707 .840 .972 1.105 1.238 1.370 1.503 1.768 2.033 2.298 2.563 2.829 3.094 3.359 4.154 4.420 4.950 5.480 6.011 6.541 7.071 7.602 8.132 8.662 9.193 9.723 10.253 10.784 11.314 11.314 11.314 12.375 12.905	.577 .686 .794 .902 1.010 1.119 1.227 1.443 1.660 1.876 2.093 2.309 2.526 2.742 2.959 3.175 3.392 3.608 4.042 4.475 4.908 5.341 6.207 6.640 7.073 7.506 6.207 6.640 7.073 7.506 9.238 9.671 10.104 10.537	1 1 1 1 1 1 1 1 1 1	- 14+1(c-1/32/61/14-16-1/32/61/14-17-32/61/14-17-16-1		

RULES FOR PROPORTIONS OF BOLTS AND NUTS.

Franklin Institute Standard.

The dimensions of nuts and bolts are determined by the following rules, which apply to both square and hexagon.

Short diameter of rough nut = $1\frac{1}{2}$ × diameter of bolt + $\frac{1}{8}$ in. Short diameter of finished nut = $1\frac{1}{2}$ × diameter of bolt + $\frac{1}{16}$ in.

Thickness of rough nut = diameter of bolt.

Thickness of finished nut = diameter of bolt $-\frac{1}{16}$ in.

Short diameter of rough head = $1\frac{1}{2} \times$ diameter of bolt $+\frac{1}{8}$ in. Short diameter of finished head = $1\frac{1}{2} \times$ diameter of bolt +

 $\frac{1}{16}$ in.

Thickness of rough head $= \frac{1}{2}$ of short diameter of head.

Thickness of finished head = diameter of bolt $-\frac{1}{16}$ in.

In 1864, a committee of the Franklin Institute recommended the above system of screw threads and bolts which was devised by Mr. William Sellers, of Philadelphia. This system as far as it relates to screw threads is generally used in the United States, but the proportions of bolt heads and nuts are not adhered to because the sizes of bar required to make the nuts are special and extra work is necessary to make the bolt heads. Sizes of nuts and bolt heads in accordance with the Manufacturers' Standard are given on pages 369, 370 and 371.

WEIGHTS OF 100 MACHINE BOLTS WITH SQUARE HEADS AND HEXAGON NUTS.

Franklin Institute Standard Sizes.
Basis-1 cubic foot Iron = 480 pounds.

Basis—1 cubic foot Iron = 480 pounds.										
Length under Head to Point.		Diam	eter o	f Bolt	in I	ches.				
Inches.	1/4	<u>5</u> 16	38	7 16	1/2	9 16	5			
11/2	4.9	8.2 8.7	12.2 13.0	17.5 18.5	24.0	31.8	41.1			
13/4	5.3	9.2	13.8	19.6	25.3 26.7	33.5 35.2	43.2			
21/4	6.0	9.8	14.5	20.6	28.1	37.0	47.5			
21/2	6.3	10.3	15.3	21.6	29.4	38.7	49.6			
23/4	6.6	10.8	16.1	22.7	30.8	40.4	51.7			
31/4	7.0	11.4 11.9	16.8 17.6	23.7 24.8	32.1 33.5	42.1	53.9 56.0			
31/2	7.7	12.4	18.4	25.8	34.9	45.6	58.1			
33/4	8.0	13.0	19.1	26.9	36.2	47.3	60.3			
4 41/2	8.3 9.0	13.5 14.6	19.9 21.4	27.9 30.0	37.6 40.3	49.0 52.5	62.4 66.6			
5	9.7	15.6	23.0	32.1	43.0	55.9	70.9			
51/2	10.4	16.7	24.5	34.2	45.8	59.4	75.2			
6	11.1	17.8	26.0	36.2	48.5	62.8	79.4			
61/2	11.7 12.4	18.8 19.9	27.6 29.1	38.3 40.4	51.2 53.9	66.3	83.7 87.9			
7½	13.1	21.0	30.6	42.5	56.7	73.2	92.2			
8	13.8	22.0	32.2	44.6	59.4	76.6	96.5			
8½ 9	14.5	23.1 24.2	33.7	46.7 48.8	62.1 64.8	80.1	100.7 105.0			
91/2	15.8	25.2	36.8	50.8	67.6	87.0	109.2			
10	16.5	26.3	38.3	52.9	70.3	90.4	113.5			
101/2	17.2	27.4	39.9	55.0	73.0 75.7	93.9 97.3	117.8			
11 11½	17.9 18.5	28.4 29.5	41.4	57.1 59.2	78.5	100.8	122.0 126.3			
12		30.5	44.5	61.3	81.2	104.2	130.5			
121/2		31.6	46.0	63.3	83.9	107.7	134.8			
13 13½		32.7	47.5	65.4	86.6 89.4	111.1	139.1 143 3			
14			50.6	69.6	92.1	118.0	147.6			
141/2			52.1	71.7	94.8	121.5	151.8			
15 15½			53.7 55.2	73.8	97.5 100.3	124.9 128.4	156.1 160.4			
16			00.2	77.9	103.0	131.8	164.6			
161/2				80.0	105.7	135.3	168.9			
17 17½				82.1 84.2	108.4 111.2	138.7 142.2	173.1 177.4			
18				01.2	113.9	145.6	181.7			
181/2					116.6	149.1	185.9			
19					119.3	152.5	190.2			
19½ 20					122.1 124.8	156.0 159.4	194.4 198.7			
One inch in length of 100 Bolts.	1.36	2.13	3.07	4.18	5.45	6.90	8.52			
To obtain Weights with Square Nuts per 100: Add }	.23	.41	.66	.99	1.42	1.96	2.62			
Weight of one Hexagon Nut	.0116	.020	.031	.046	.065	.088	.117			
Weight of one Hexagon Head	.0150	.025	.039	.057	.081	.109	.144			
Weight of one Square Nut Weight of one Square Head		.024	.038	.066	.093	.126	.167			
All weight										

All weights are approximate.

WEIGHTS OF 100 MACHINE BOLTS WITH SQUARE HEADS AND HEXAGON NUTS.

Franklin Institute Standard Sizes. Basis-1 cubic foot Iron = 480 pounds.

Length under Head to Point.		Dian	neter o	of Bol	t in I	nches.	
Inches.	3	7 8	1	11/8	11	13	11/2
13/2	64.5	95.2	134	182	240	309	390
13/4	67.6	99.4	140	189	248	319	402
2	70.6	103.5	145	196	257	329	414
21/4	73.7	107.7	150	203	265	340	426
21/4	76.8	111.9	156	210	274	350	439
23/4	79.8	116.1	161	216	282	360	451
31/4 31/4 33/4	82.9 86.0 89.1 92.1	120.2 124.4 128.6 132.8	167 172 178 183	223 230 237 244	291 300 308 317	371 381 391 402	463 475 488 500
4	95.2	136.9	189	251	325	412	512
41/2	101.3	145.3	199	265	342	432	537
5	107.4	153.6	210	279	359	453	561
51/2	113.6	162.0	221	292	376	474	586
6	119.7	170.3	232	306	393	494	610
61/2	125.9	178.7	243	320	410	515	635
7	132.0	187.0	254	334	427	536	659
71/2	138.1	195.4	265	348	444	556	684
8 81/4 91/4	144.3 150.4 156.5 162.7	203.7 212.1 220.4 228.8	276 287 298 308	361 375 389 402	461 478 495 513	577 597 618 639	709 733 758 782
10	168.8	237.1	319	417	530	659	807
10½	174.9	245.5	330	430	547	680	831
11	181.1	253.8	341	444	564	701	856
11½	187.2	262.2	352	458	581	721	880
12	193.3	270.5	363	472	598	742	905
12½	199.5	278.9	374	486	615	762	929
13	205.6	287.2	385	499	632	783	954
13½	211.7	295.6	396	513	649	804	978
14	217.9	303.9	407	527	666	824	1003
14½	224.0	312.3	417	541	683	845	1027
15	230.1	320.6	428	555	700	866	1052
15½	236.3	329.0	439	568	717	886	1077
16	242.4	337.3	450	582	734	907	1101
16)-5	248.5	345.7	461	596	751	927	1126
17	254.7	354.0	472	610	768	948	1150
17)-6	260.8	362.4	483	624	785	969	1175
18	266.9	370.7	494	637	802	989	1199
18½	273.1	379.1	505	651	819	1010	1224
19	279.2	387.4	516	665	836	1031	1248
19½	285.3	395.8	526	679	853	1051	1273
20	291.5	404.1	537	693	870	1072	1297
One inch in length of 100 Bolts.	12.27	16.70	21.82	27.61	34.09	41.25	49.09
To obtain Weights with Square } Nuts per 100: Add }	4.35	6.72	9.81	13.73	18.57	24.42	31.42
Weight of one Hexagon Nut Weight of one Hexagon Head	.190	.289	.417 .516	.579 .616	.777 .962	1.016 1.259	1.299
Weight of one Square Nut	.234	.356	.515 .596	.716 .827	.963	1.260	1.614

WEIGHTS OF 100 MACHINE BOLTS WITH SQUARE HEADS AND NUTS.

WROUGHT IRON.

Manufacturers' Standard Sizes.

Basis-Hoopes & Townsend's List.

Length under Head to Point.		Di	amete	or of B	olt in	Inche	s.	
Inches.	1/4	<u>5</u>	38	7 16	1/2	9 16	58	34
1½	3.4	6.0	9.2	13.6	19.1	26.0	33.8	55.3
$\frac{2}{2^{1/2}}$	4.1	7.1	10.8	15.7	21.8	29.5	38.1	61.5
	4.8	8.2	12.3	17.8	24.6	33.0	42.4	67.7
3	5.5	9.2	13.8	19.9	27.4	36.5	46.7	73.9
3½	6.2	10.3	15.3	21.8	29.8	40.0	51.0	80.1
4	6.9	11.4	16.9	24.0	32.6	43.5	55.4	86.3
4½	7.5	12.4	18.4	26.1	35.4	46.7	59.3	92.1
5	8.2	13.5	19.9	28.2	38.1	50.2	63.6	98.3
5½	8.9	14.6	21.5	30.3	40.9	53.7	67.9	104.5
0	9.6	15.6	23.0	32.4	43.7	57.2	72.3	110.7
6½	10.3	16.7	24.6	34.5	46.4	60.7	76.6	116.9
7	11.0	17.8	26.1	36.6	49.2	64.2	80.9	123.1
7½	11.7	18.9	27.7	38.8	51.9	67.6	85.2	129.4
B	12.4	20.0	29.2	40.9	54.7	71.1	89.5	135.6
9	13.7	22.1	32.4	44.9	60.0	77.8	97.8	147.5
10	15.1	24.3	35.5	49.1	65.5	84.8	106.4	160.0
11	16.5	26.4	38.6	53.4	71.0	91.8	115.1	172.4
12	17.9	28.6	41.7	57.6	76.5	98.8	123.7	184.8
13	19.3	30.7	44.8	61.8	82.0	105.5	132.0	197.2
14	20.6	32.9	47.9	66.0	87.6	112.5	140.6	209.7
15	22.0	35.1	51.0	70.3	93.1	119.5	149.2	222.1
16	23.4	37.2	54.1	74.5	98.6	126.4	157.9	234.5
17	24.8	39.4	57.2	78.7	104.1	133.4	166.5	246.9
18	26.2	41.5	60.3	82.9	109.7	140.4	175.1	259.4
19	27.5	43.7	63.4	87.2	115.2	147.4	183.7	271.8
20	28.9	45.8	66.5	91.4	120.7	154.4	192.4	284.2
21	30.3	48.0	69.6	95.6	126.2	161.4	201.0	296.6
22	31.7	50.2	72.7	99.9	131.7	168.4	209.6	309.1
23	33.1	52.3	75.8	104.1	137.3	175.4	218.3	321.5
24	34.4	54.5	78.9	108.3	142.8	182.4	226.9	333.9
25	35.8	56.6	82.1	112.5	148.3	189.3	235.5	346.3

WEIGHTS OF 100 MACHINE BOLTS WITH SQUARE HEADS AND NUTS.

WROUGHT IRON.

Manufacturers' Standard Sizes.

Basis-Hoopes & Townsend's List.

Length under Head to Point.	Diameter of Bolt in Inches.										
Inches.	7 8	1	11/8	11	1 3	11/2	13	2			
11/2	83.4										
2 2½	91.8 99.7	129.0 140.1	184.5 198.4	264.8							
31/2	108.1 116.6	151.1 132.2	212.4 226.4	282.0 299.3	350 370	470 495					
41/2	125.0 132.9	173.2 182.7	240.4 253.3	316.6 332.6	390 410	520 525	720 753				
5	141.3	193.7	267.3	349.9	430	570	786	1180			
5½	149.8	204.8	281.2	367.1	450	595	820	1225			
6½	158.2	215.8	295.2	384.4	470	620	854	1270			
	166.7	226.9	309.2	401.6	490	645	883	1315			
7 71/2	175.1	237.9	323.2	418.9	510	670	922	1316			
	183.6	248.9	337.2	436.2	530	695	956	1405			
8	192.0	260.0	351.1	453.4	550	725	990	1450			
	208.3	281.3	377.0	486.7	590	775	1053	1540			
10	225.2	303.3	404.9	521.2	630	825	1126	1630			
11	242.2	325.5	432.9	555.8	670	875	1194	1720			
12	259.1	347.6	460.8	590.3	710	925	1262	1810			
13	276.0	369.6	458.8	624.8	751	975	1330	1900			
14	292.9	391.7	516.7	659.3	793	1025	1398	1990			
15	309.8	413.8	544.7	693.8	835	1075	1468	2080			
16	326.7	435.9	572.7	728.3	877	1125	1536	2170			
17	343.6	458.0	600.6	762.8	919	1175	1604	2260			
18	360.5	480.1	628.6	707.4	961	1225	1672	2350			
19	377.5	502.2	656.5	831.9	1003	1275	1740	2440			
20	394.4	524.3	684.5	866.4	1045	1325	1808	2530			
21	411.3	546.4	712.1	900.9	1087	1375	1876	2620			
22	428.2	568.1	740.4	935.4	1129	1425	1944	2710			
23	445.1	590.5	768.3	969.9	1171	1475	2012	2800			
24	462.0	612.6	798.3	1004.5	1213	1525	2080	2890			
25	478.9	634.7	824.3	1039.0	1255	1575	2148	2980			

Bolts from 11/2 inch to 2 inches, inclusive, are fitted with nuts made to U.S. Standard.

WEIGHTS OF 100 ROUND-HEADED RIVETS OR ROUND-HEADED BOLTS WITHOUT NUTS.

WROUGHT IRON.

Basis-1 cubic foot Iron = 480 pounds.

Length under Head to Point.		Diam	eter of	Rive	in In	ches.	
Inches.	38	1/2	5/8	34	7/8	1	11/8
1 1½ 1½ 1½ 1¾	4.7 5.5 6.2 7.0	9.3 10.7 12.1 13.4	16.0 18.1 20.2 22.4	25.2 28.3 31.3 34.4	37.2 41.3 45.5 49.7	52.6 58.0 63.5 68.9	71.3 78.2 85.1 92.0
2	7.8	14.8	24.5	37.5	53.9	74.4	98.9
21/4	8.5	16.2	26.6	40.5	58.0	79.8	105.8
21/2	9.3	17.5	28.8	43.6	62.2	85.3	112.7
23/4	10.1	18.9	30.9	46.7	66.4	90.7	119.6
3	10.8	20.3	33.0	49.8	70.6	96.2	126.5
3½	11.6	21.6	35.1	52.8	74.7	101.6	133.4
3½	12.4	23.0	37.3	55.9	78.9	107.1	140.3
3¾	13.1	24.3	39.4	59.0	83.1	112.6	147.2
4	13.9	25.7	41.5	62.0	87.3	118.0	154.1
41/4	14.7	27.1	43.7	65.1	91.4	123.5	161.0
41/2	15.4	28.4	45.8	68.2	95.6	128.9	167.9
43/4	16.2	29.8	47.9	71.2	99.8	134.4	174.8
5	17.0	31.2	50.1	74.3	104.0	139.8	181.7
5½	17.7	32.5	52.2	77.4	108.2	145.3	188.6
5½	18.5	33.9	54.3	80.4	112.3	150.7	195.6
5¾	19.3	35.3	56.4	83.5	116.5	156.2	202.5
61/4 61/5 63/4	20.0 20.8 21.6 22.3	36.6 38.0 39.3 40.7	58.6 60.7 62.8 65.0	86.6 89.6 92.7 95.8	120.7 124.8 129.0 133.2	161.6 167.1 172.5 178.0	209.4 216.3 223.2 230.1
7	23.1	42 1	67.1	98.8	137.4	183.5	237.0
71/4	23.9	43.4	69.2	101.9	141.6	188.9	243.9
71/5	24.6	44.8	71.4	105.0	145.7	194.4	250.8
73/4	25.4	46.2	73.5	108.0	149.9	199.8	257.7
8	26.2	47.5	75.6	111.1	154.1	205.3	264.6
8½	27.7	50.2	79.9	117.2	162.4	216.2	278.4
9	29.2	53.0	84.1	123.4	170.8	227.1	292.2
9½	30.8	55.7	88.4	129.5	179.1	238.0	306.0
10	32.3	58.4	92.7	135.6	187.5	248.8	319.8
10½	33.8	61.2	96.9	141.8	195.8	259.8	333.6
11	35.4	63.9	101.2	147.9	204.2	270.7	347.4
113½	36.9	66.6	105.4	154.1	212.5	281.6	361.2
12	38.4	69.3	109.7	160.2	220.9	292.5	375.0
One inch in length of 100 Rivets Weight of 100 Rivet Heads	3.07 1.78	5.45 4.82	8.52 9.95	12.27 16.12	16.70 24.29	21.82	27.61 47.67

WEIGHTS AND DIMENSIONS OF BOLT HEADS. MANUFACTURERS' STANDARD SIZES.

Basis-Hoopes & Townsend's List.

Diameter		Squ	are.		Hexagon.						
of Bolt.	Short Diameter.	Long Diameter.	Thickness.	Weight per 100.	Short Diameter.	Long Diameter.	Thickness.	Weight per 100.			
Inches.	Inches	Inches.	Inch.	Pounds.	Inches.	Inches.	Inches.	Pounds.			
1 4	es/co	.530	3 16	.7	3 8	.433	3 16	.6			
<u>5</u> 16	15 32	.664	15 64	1.4	15 32	.541	15 64	1.2			
3 8	9 16	.795	9 32	2.5	9 16	.670	32	2.2			
716	21 82	.928	21 64	4.0	21 32	.758	21 64	3.4			
1/2	34	1.061	38	5.9	100	.866	38	5.1			
9 <u> </u>	27	1.193	27 64	8.4	27 32	.974	27	7.3			
5 8	15	1.320	<u>; 5</u> 3 2	11.5	15 16	1.083	32	10.0			
2	11/8	1.591	9 16	19.9	11/8	1.299	9 16	17.3			
7 8	1 5 16	1.856	21 32	31.1	15/16	1.516	21 32	27.4			
1	11/2	2.122	3	47.3	11/2	1.733	3 4	42.0			
11/8	111	2.386	27 32	67.3	111	1.944	2 7 3 2	58.3			
11	178	2.652	15 16	92.3	17/8	2.166	15	80.0			
13	21/16	2.917	1 1 3 2	122.8	21/16	2.383	1 1 3 2	106.5			
11	21/4	3.182	11/8	159.5	21/5	2.599	11/8	138.2			
15	27/16	3.447	1 7 3 2	202.7	2 7 16	2.818	1 7 3 2	175.7			
1 2	25	3.712	1 5	253.2	25	3.032	1 5 1 6	219.5			
17	213	3.977	133	311.5	213	3.349	113	269.8			
2	3	4.243	11/2	378.0	3	3.464	11/2	327.6			

WEIGHTS AND DIMENSIONS OF HEXAGON NUTS.

MANUFACTURERS' STANDARD SIZES.

Basis—Hoopes & Townsend's List.

Diameter				Diameter	Pla	in.	Cuj	pped.
of Bolt.	Short Diameter.	Long Diameter.	Thickness.	of Rough Hole.	Weight per 100.	Number in 100	Weight per 100.	Number in 100
Inches.	Inches.	Inches.	Inches.	Inch.	Pounds.	Pounds.	Pounds.	Pounds.
다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	+(C15)60 배(숙박(G17)60 -(G16)60 (선구)60 (선구)	.578 .722 .866 .011 1.011 1.155 1.155 1.299 1.299 1.299 1.444 1.444 1.588 1.733 1.733 1.733 1.733 1.733 1.733 1.733 1.735 2.021 2.02	**************************************	7 (3) (3) (3) (3) (4) (6) (6) (6) (6) (6) (6) (6	1.3 2.3 4.3 7.0 7.5 9.9 10.8 13.7 15.9 17.9 19.5 23.0 22.0 26.6 30.3 34.5 40.0 37.7 45.9 45.3 50.8 57.5 63.7 100.0 138.9 243.9 48.2 493.8 487.8 512.8	7800 4440 2330 1480 1380 1010 930 730 630 560 514 435 450 376 330 290 250 265 218 221 197 174 157 100 72 54 41 30 24½ 20½ 20½ 19¾	1.2 2.1 4.0 6.3 6.9 9.2 10.2 12.5 15.2 17.0 18.5 21.7 20.6 25.4 28.8 32.3 37.6 35.3 43.5 42.6 47.6 53.8 59.5 90.9 126.6 169.5 222.2 303.0 370.4 454.5 487.8	8500 4790 2510 1580 1440 1090 980 800 660 588 541 460 485 394 347 310 266 283 230 235 210 186 168 110 79 59 45 33 27 212 222

WEIGHTS AND DIMENSIONS OF SQUARE NUTS.

MANUFACTURERS' STANDARD SIZES.

Basis-Hoopes & Townsend's List.

Diameter				Diameter	Pla	in.	Cupped.		
of Bolt.	Shart Diameter.	Long Diameter.	Thickness.	of Rough Hole.	Weight per 100.	Number in 100	Weight per 100.	Number in 100	
Inches.	Inches.	Inches.	Inches.	Inch.	Pounds.	Pounds.	Pounds.	Pounds.	
1	1/2	.707	1	7 3 2	1.5	6750	1.4	7200	
5	8	.884	5 16	33	2.8	3540	2.5	4000	
3 8	3 4	1.061	3 8	11 32	4.8	2100	4.2	2380	
76	7 8	1.237	7 16	13 32	7.5	1330	6.8	1460	
1/2	7 8	1.237	1/2	716	8.9	1120	8.1	1230	
1/2	1	1.414	1 2	7 16	11.9	840	10.8	930	
9 16	11/8	1.591	9 16	1/2	15.4	650	14.3	700	
58	11/8	1.591	5/8	16	17.3	575	16.1	620	
	11/4	1.768	5 8	9 16	23.0	435	21.1	475	
5 34	11/4	1.768	3	21	27.8	360	25.0	400	
3	13	1.945	14	21	31.7	315	29.0	345	
**** **** **** ***** *****	11/2	2.122	3 4	21 32	41.0	244	37.0	270	
7 8	11/2	2.122	7	25	46.5	215	41.7	240	
7 8	15	2.298	7	25 32	55.6	180	48.8	205	
7 8	13	2.475	7	25 32	61.3	163	54.6	183	
1	13	2.475	1	7 8	70.9	141	64.1	156	
1	2	2.828	1	7 8	95.2	105	87.0	115	
11	2	2.828	11	15	102.0	98	94.3	106	
11	21	3.182	118	15	135.1	74	123.5	81	
11	21	3.182	11/4	116	156.3	64	142.9	70	
11/4	21/2	3.536	11/4	116	192.3	52	175.4	57	
18	23	3.889	13	1 3 1 6	250.0	40	227.3	44	
11/2	3	4.243	11/2	1 5 16	307.7	321	285.7	35	
15	314	4.597	15	17/16	454.5	22	400.0	25	
13	31	4.950	134	1 9 16	555.6	18	500.0	20	
178	33	5.303	17/8	1116	666.7	15	625.0	16	
2	4	5.657	2	113	816.3	121		123	

UPSET SCREW ENDS FOR ROUND BARS.

Diameter of Bar.	Area of Body of	Diameter of Screw.	Length of Upset.	Area at Root of	Number of Threads	Weight per Foot of Bar.	Add for Upset.	Excess of Area at Root of Thread Over that of
A	Bar.	В	G	Thread.	per Inch.	or Bar.	Upset.	Body of Bar.
Inch.	Sq. Ins.	Inches.	Inches.	Sq. Ins.		Pounds.	Inches.	Per Cent.
96	.196 .249 .307 .371	ক)ৰূজ)ৰাম্ভ	44 44 42 42	.302 .302 .420 .550	10 10 9 8	.668 .845 1.043 1.262	6½ 4¼ 5½ 6¼	54 21 37 48
14 3 5 6 5 6 5 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	.442 .519 .601 .690	1 12 14 14	413 424 434 434 434	.550 .694 .893 .893	8 7 7 7	1.502 1.763 2.044 2.347	4½ 5½ 6¼ 4½	25 34 49 29
$ \begin{array}{c} 1 \\ 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \end{array} $.785 .887 .994 1.108		555	1.057 1.057 1.295 1.295	6 6 6	2.670 3.014 3.379 3.766	514 414 434 834	35 19 30 17
$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \end{array} $	1.227 1.353 1.485 1.623	150 134 134 178	514 514 512	1.515 1.744 1.744 2.048	5½ 5 5	4.173 4.600 5.049 5.518	4½ 5 4 434	23 29 18 26
$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \end{array} $	1.767 1.918 2.074 2.237	2 2 2 2 2 8 2 8	5555555555	2.302 2.302 2.650 2.650	4½ 4½ 4½ 4½	6.008 6.520 7.051 7.604	51 41 5 41	30 20 28 18
13 113 17 17 115 115	2.405 2.580 2.761 2.948	214 214 238 212	5344	3.023 3.023 3.419 3.715	412 412 413 4	8.178 8.773 9.388 10.020	43 4 4 4 5	26 17 24 26

Lengths of Upset Ends above are best adapted for use with Turnbuckles of standard length, six inches between heads, as shown on page 378, and with Clevises shown on page 380. Lengths of Upset Ends for use with ordinary Right and Left Nuts, shown on page 379 may be one inch shorter than above.

UPSET SCREW ENDS FOR ROUND BARS.

Diameter of Bar.	Area of Body	Diameter of Screw.	Length of Upset,	Area at Root of	Number of Threads	Weight per foot of Bar.	Add for Upset.	Excess of Area at Root of Thread Over that of
A	Bar.	В	G	Thread.	per Inch.	or par.	Upset.	Body of Bar.
Inches.	Sq. Ins.	Inches.	Inches.	Sq. Ins.		Pounds.	Inches.	Per Cent.
$ \begin{array}{c} 2 \\ 2 \\ \frac{1}{16} \\ 2 \\ \frac{3}{16} \end{array} $	3.142 3.341 3.547 3.758	2125/205/2034 225/205/2034	61 61 61	3.715 4.155 4.155 4.619	4 4 4 4	10.68 11.36 12.06 12.78	41 43 4 4 42	18 24 17 23
$ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{5}{16} \\ 2\frac{3}{8} \\ 2\frac{7}{16} \end{array} $	3.976 4.200 4.430 4.666	27 27 3 3	6½ 6½ 6½ 6¾	5.108 5.108 5.428 5.957	4 4 3 ¹ / ₂ 3 ¹ / ₂	13.52 14.28 15.07 15.86	514 412 414 52	28 22 23 28
2½ 2½ 2½ 2½ 2½ 2½ 2½	4.909 5.157 5.412 5.673	90 144 90 90 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80	63 63 63 7	5.957 6.510 6.510 7.087	30 30 30 30 30 30 30 30 30 30 30 30 30 3	16.69 17.53 18.40 19.29	434 54 42 5	21 26 20 25
23 213 216 278 215	5.940 6.213 6.492 6.777	ର ପ୍ରଦ୍ର ପର୍ମ ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପର୍ମ ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପର ପର ପର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପର ପ୍ରଦ୍ର ପର ପର ପର ପର ପର ପର ପ୍ରଦ୍ର ପର	7 7 7 7 1 7 1 7	7.087 7.548 8.171 8.171	3122 324 344 314 314	20.20 21.12 22.07 23.04	423 434 544 434	19 22 26 21
3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7.069 7.670 8.296 8.946	34 37 4 4	71 71 71 71 71	8.641 9.305 9.993 10.706	3 3 3	24.03 26.08 28.20 30.42	5 54 43 43 43	22 21 20 20
313 30 31 4 7 10 30 30 30 30 30 30 30 30 30 30 30 30 30	9.621 10.321 11.045 11.793	44 42 45 43 43	8 8 8 8 8	11.329 12.743 13.544 14.220	2700014014558 2014558	32.71 35.09 37.56 40.10	4½ 5¼ 5¼ 5	18 23 23 21
4	12.566	5	81/2	15.763	21/2	42.73	514	25

Lengths of Upset Ends above are best adapted for use with Turnbuckles of standard length, six inches between heads, as shown on page 378, and with Clevises shown on page 380. Lengths of Upset Ends for use with ordinary Right and Left Nuts, shown on page 379, may be one inch shorter than above.

UPSET SCREW ENDS FOR SQUARE BARS.

Side of Square Bar.	Area of Body of	Diameter of Screw.	Length of Upset.	Area at Root of	Number of Threads	Weight per Foot of Bar.	Add for Upset.	Excess of Area at Root of Thread Over that of
A	Bar.	В	G	Thread.	per Inch.	of Bar.	O paos.	Body of Bar.
Inch.	Sq. Ins.	Inches.	Inches.	Sq. Ins.		Pounds.	Inches.	Per Cent.
16 16 8 116	.250 .316 .391 .473	3 4 7 8 1	414 412 412 412	.302 .420 .550 .550	10 9 8 8	.850 1.076 1.328 1.607	4 5 5 3 4 3 3	21 33 41 17
3 13 16 78 156	.563 .660 .766 .879	181 143 183 183 18	4 ³ / ₄ 4 ³ / ₄ 5	.694 .893 1.057 1.057	7 7 6 6	1.913 2.245 2.603 2.989	$\begin{array}{c} 4\frac{1}{2} \\ 5 \\ 5\frac{3}{4} \\ 4\frac{1}{4} \end{array}$	23 35 38 20
$ \begin{array}{c} 1 \\ 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \end{array} $	1.000 1.129 1.266 1.410	11/25/00/2014 11/25/00/2014	5 5 5 5 4 5 4	1.295 1.515 1.515 1.744	6 5½ 5½ 5	3.400 3.838 4.303 4.795	434 512 414 434	29 34 20 24
$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \end{array} $	1.563 1.723 1.891 2.066	17/8 17/8 2 2 1/8	55555555	2.048 2.048 2.302 2.650	5 5 4 ¹ / ₂ 4 ¹ / ₂	5.312 5.851 6.428 7.026	514 414 412 514	31 19 22 28
$1\frac{1}{2} \\ 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16}$	2.250 2.441 2.641 2.848	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 6 B	2.650 3.023 3.419 3.419	$\begin{array}{c} 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	7.650 8.300 8.978 9.682	$4\frac{1}{4}$ $4\frac{1}{2}$ 5 $4\frac{1}{4}$	18 24 30 20
134 143 116 178 116	3.063 3.285 3.516 3.754	2125185518314 22518518314	6 6 6 6 4 6 4	3.715 4.155 4.155 4.619	4 4 4 4	10.410 11.170 11.950 12.760	$4\frac{1}{2}$ 5 $4\frac{1}{4}$ $4\frac{1}{2}$	21 26 18 23

Lengths of Upset Ends above are best adapted for use with Turnbuckles of standard length, six inches between heads, as shown on page 378, and with Clevises shown on page 380. Lengths of Upset Ends for use with ordinary Right and Left Nuts, shown on page 379, may be one inch shorter than above.

UPSET SCREW ENDS FOR SQUARE BARS.

Side of Square Bar.	Area of Body of	Diameter of Screw.	Length of Upset	Area at Root of	Number of Threads	Weight per Poot of Bar.	Add for Upset.	Excess of Area at Root of Thread Over that of
A	Bar.	В	G	Thread.	per Inch.		- 1	Body of Bar.
Inches.	Sq. Ins.	Inches.	Inches.	Sq. Ins.		Pounds.	Inches.	Per Cent.
$\begin{array}{c} 2\\ 2\frac{1}{16}\\ 2\frac{1}{8}\\ 2\frac{3}{16} \end{array}$	4.000 4.254 4.516 4.785	27/8 27/8 31/8	6½ 6½ 6½ 6¾	5.108 5.108 5.428 5.957	4 4 3 ½ 3 ½ 3 ½	13.60 14.46 15.35 16.27	$5\\4\frac{1}{4}\\4\frac{1}{2}$ 5	28 20 20 20 24
$ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{5}{16} \\ 2\frac{3}{3} \\ 2\frac{7}{16} \end{array} $	5.063 5.348 5.641 5.941	1 ST ST ST ST ST ST ST S	$6\frac{3}{4}$ $6\frac{3}{4}$ 7	5.957 6.510 7.087 7.087	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	17.22 18.19 19.18 20.20	41/4 43/4 51/4 41/2	18 22 26 19
$\begin{array}{c} 2\frac{1}{2} \\ 2\frac{9}{16} \\ 2\frac{5}{5} \\ 2\frac{11}{16} \end{array}$	6.250 6.566 6.891 7.223	1[25] ansion 3[4]	7 7 ¹ / ₄ 7 ¹ / ₄ 7 ¹ / ₄	7.548 8.171 8.171 8.641	ジャー マックラン マックラン マックラン マックラン マックラン マックラン マック	21.25 22.33 23.43 24.56	434 541 423 434	21 24 19 20
$\begin{array}{c} 2\frac{3}{4} \\ 2\frac{1}{16} \\ 2\frac{7}{8} \\ 2\frac{15}{16} \end{array}$	7.563 7.910 8.266 8.629	37/8 37/8 4 4 48	7½ 7½ 7½ 7½ 7½ 7½	9.305 9.305 9.993 10.706	3 3 3 3	25.71 26.90 28.10 29.34	5½ 4½ 4¾ 5	23 18 21 24
78 1443 70 70 70 70 70 70 70 70 70 70 70 70 70 7	9.000 9.766 10.563 11.391	41/8 43/8 41/2 45/8	7 ³ / ₄ 8 8 8 8 ¹ / ₄	10.706 12.087 12.743 13.544	3 7 100 314 314 24 314	30.60 33.20 35.92 38.73	4½ 5¼ 5 5	19 24 21 19
14(25)(0.0)47(0 00 00 00	12.250 13.141 14.063 15.016	478 5 518 514	01/2 02/3 03/4 03/4	15.068 15.763 16.658 17.572	25 2 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	41.65 44.68 47.82 51.05	5 ¹ / ₂ 21/ ₄ 5 4 3/ ₄	23 20 18 17
4	16.000	$5\frac{1}{2}$	9	19.267	23/8	54.40	51/4	20

Lengths of Upset Ends above are best adapted for use with Turnbuckles of standard length, six inches between heads, as shown on page 378, and with Chrises shown on page 380. Lengths of Upset Ends for use with ordinary Right and Left Nuts, shown on page 379, may be one inch shorter than above.

UPSET SCREW ENDS FOR FLAT BARS.

Width of Bar.	Thickness of Bar.	Diameter of Upset.	Area of	Area at Root of	Length of Upset.	Add
A	T	В	Bar.	Thread.	G	Upset.
Inches.	Inch.	Inches.	Sq. Inches.	Sq. Inches.	Inches.	Inches.
Inches. 22 33 33 44 44 44 45 55 55 56 66	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Inches. 2 24 Angularida in An	2.00 2.63 3.00 3.38 3.75 4.13 4.50 3.00 4.50 5.50 6.00 6.50 7.00 3.75 4.38 5.00 5.63 6.25 6.88 7.50 8.13 8.75 6.75	2.30 3.023 3.719 4.159 4.62 4.92 5.43 3.719 4.159 4.62 5.43 6.51 6.51 7.54 8.64 4.62 5.43 6.51 6.51 7.55 8.64 9.99 9.99 8.64	56677776777777777777777777777777777777	Inches. 6 11½ 11½ 11½ 11½ 11½ 11½ 110 10 12½ 11 11 11 10 10 9½ 11 11 10 10 9½ 11 11 10 10 9½ 11 11 10 10 10 9½ 11 11 10 10 10 10 10 10 10 10 10 10 10
6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.50 8.25	8.64 9.99	71/2	
6	11/2		9.00	9.99		

For dimensions of heads corresponding to different-sized pins, see table of Eye Bars on page 377.

Shortest length of bar permissible on account of method of manufacture is 6' 0" center to end.

The above length is used only for bars having heads 12½" diameter or less. When possible lengths of 7'0" are preferred.

STEEL EYE BARS.

As = Area of Excess to form one Head = Plane Area of Head - AX.

$$A_{B} = \frac{(180 + 2\theta)}{360} \pi R^{2} + \left(4 R^{2} - \frac{A^{2}}{4}\right) Tan. \theta - .0698 R^{2}\theta.$$

$$2R + \frac{A}{2}$$

$$\cos \theta = \frac{2R + \frac{A}{2}}{3R} \cdot G = \frac{5A_{B}}{4A} \cdot u.$$

$$0.698 = 8.843855 - 10.$$

Width of Body of Bar.	Minimum Thickness.	Diameter of Head.	Diameter of Largest Pin Hole,	Sectional Area of the Head on Line S—S in Excess	Additional Length of Bar Beyond Center of Eye Re- quired to Form One Head.
A	T	E	D	of that	G
Inches.	Inch.	Inches.	Inches.	in Body of Bar.	Inches,
22 22 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 7 7 8 8 8 9 9 9 9 0		4555668 9 10111213 4 1515 17 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	12232454566666666666666666666666666666666	33% "" "" "" "" "" "" "" "" ""	7 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 3 2 2 3 2 3

The size of head given is the size of die. The size of finished head will overrun this about ½°. Eye Bars are Hydraulic Forged without the addition of extraneous metal and without buckles or welds. The heads on Eye Bars are finished of the same thickness "T" as body of bar.

TURNBUCKLES.

PRESSED WROUGHT IRON.

The Cleveland City Forge and Iron Co.

Di	Dimensions of Bar.								
Diameter of Screw.	Diameter of Bar.			T	A	E	F	H	G
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/2 and % % % % % % % % % % % % % % % % % % %	1/2 and 118 an	71/5 71/6 71/6 71/6 71/6 71/6 71/6 85/8 99/3 85/8 99/3 101/2 111/4 12 123/3 131/2 123/3 131/2 131/3 161/2 16	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66666666666666666666699999	25/2/2 11/2 11/4 11/4 11/4 11/4 11/4 11/4	10/1/20 10/1/2	113/6/113/113/113/113/113/113/113/113/11	1000004488 11100011111111111111111111111

Standard Lengths, 6, 9, 12, 15, 18, 24, 36, 48 and 72 inches between heads (A) for all sizes.

Lengths of Upset Ends shown on pages 372 to 375 inclusive are those best adapted for use with Turnbuckles of Standard Lengths, as above.

Dimensions E, F, G and H depend upon the specifications of the Bars with which the Turnbuckles are to be used.

RIGHT AND LEFT NUTS.

Diam-	Length	Diameter	Side	Length	Length	Diam-	Weig	ht of
eter of Screw.	Upset.	of Bar.	of Square Bar.	Length of Nut.	Length of Thread.	eter of Hex.	One Nut.	One Nut and Two Screw
В	G	A	A	L	T	W		Ends.
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Pounds.	Pounds.
70 160 144 150 141 150 141 150 140 150 141 150	44 44 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6	58 1 16 1 16 1 16 1 16 1 16 1 16 1 16 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0rdinary Lengths. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 2 22 22 22 22 22 22 22 22	5 00 00 00 5 00 00 40 40 41 01 01 01 40 40 40 00 00 5 00 40 40 00 5 00 40 40 40 00 5 00 40 40 40 40 40 40 40 40 40 40 40 40	124 3 4 4 5 5 3 4 4 5 5 3 5 5 3 5 5 5 5 5	4444161223461634416416414 71146163416416416416414 1623416416416416416 22316416416416 3116666 81 116 138
111111111111111111111111111111111111111	443434 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} \frac{3}{4} \\ \frac{13}{16} \\ \frac{7}{8} \end{bmatrix} & & \frac{15}{16} \\ 1 \\ 1 \\ \frac{1}{16} & & 1 \\ \frac{1}{8} \\ 1 \\ \frac{3}{16} \\ 1 \\ \end{bmatrix}$	Lengths. 12 8 ½ 8 ½ 9 ½ 10 10	$\begin{array}{c} 2\frac{1}{8} & 585 & 585 & 787 & 787 & 165 & $	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 6 6 8 8 8 12 14 14 14 14 14 14 14 14 14 14 14 14 14	93434141412123434 1541412123434 2123434 2934

For Details of Upset Ends, see pages 372 to 375 inclusive. Length of Upset Ends for use with Right and Left Nuts may be made one inch shorter than the dimensions given in column "G" above.

CLEVISES.

The Cleveland City Forge and Iron Co.

Diameter of Sorew.	Length of Fork.	Length of Thread.	Diameter of Pin in Inches.	USO	mension l with Diame	Speci	ified
D	A	В	1 11/4 11/2 13/4 2 21/4 21/2 23/4 3 31/4 31/2 33/4 4	I	G	F	E
Ins.	Ins.	Ins.	Diameter I in Inches.	Ins.	Ins.	Ins.	Ins.
3/4 7/8	51/2	11/8	234 234 284 3	23/4	11/2	1/2	11
1/8	$\frac{51}{2}$	13/8 11/2	234 234 3 3	3	15/8	1/2	17
11/8	6	134	294 294 3 314 31/2 384	31/4	13/4	20	19
11/4	61/2	17/8	3 314 31/2 31/2 33/4	31/2	17/8	75	19
13/8 11/2	61/2	21/8		33/4	2	5/8	33
15/9	7	21/2	334 4 4 4 438 434 514	4	-		
13/4 17/8	8	25/8	43/8 $43/4$ $51/4$ $51/4$ $51/4$ $51/4$	-	21/8	5/8	37
17/8	8	27/8	$5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{3}{4}$	48/8	21/4	11	8/4
21/8	9	3 31/4	5½ 5½ 5¾ 6¾ 6¾	48/4	21/2	23	31
21/4	10	31/4	534 634 634 634 634	51/4	23/4	13	7/8
23/8	10	31/2		53/4	3	37	15
21/2	10	334	634 634 634 634 83 8 8	63/4	31/4		
25/8 23/4	10 12	41/4				16	110
27/8	12	41/4	8 8 8 8 8 8 9 9	8	4	110	11/4
3	12	41/2		9	41/2	18	11/2

Dimension "H" is usually in larger than diameter of pin and "J" is made to suit the thickness of the pin plate. The above Clevises are designed for use with medium steel rods of 60000 to 68000 pounds tensile strength per square inch. All clevis nuts with diameter "1" 8 inches or larger dimension "A" will be 12 inches.

DIMENSIONS OF RIVET HEADS AFTER DRIVING.

Height of Head = % Diameter of Rivet. Radius of Head = % Diameter of Rivet + ½".

COUNTERSUNK HEADS.

Diameter of Countersunk Head same as Button Head. Angle of Countersink = 30°. In figuring Clearances for Rivet Heads allow for Heights as follows: %" for ¾" rivets, ¾" for ¾" rivets. All dimensions in inches.

WEIGHTS, DIMENSIONS AND SAFE LOADS OF CHAINS.

As given by Standard Manufacturers.

Size.	C	omn	on Co	il.		Cr	ane.		Stud Link.					
Thickness of Link Bar.	Longth of Link.	Width of Link.	Approximate Weight per Foot.	Safe Load in Thousand Lbs.	Longth of Link.	Width of Link.	Approximate Weight per Foot.	Safe Load in Thousand Lbs.	Length of Link.	Width of Link.	Approximate Weight per Poot.	Safe Load in Thousand Lbs.		
Ins.	Ins.	Ins.	Lbs.		Ins.	Ins.	Lbs.		Ins.	Ins.	Lbs.			
3 1/4 1/4 1/6 8/8 1/6	13/8 11/2 13/4 21/8 21/4	7/8 1 1/4 11/4 11/2 1 1/1	.46 .75 1.10 1.55 2.00	.5 .8 1.3 1.8 2.3										
1/2 16 5/8	2½ 2½ 2½ 3¾ 3¾	17/8 21/8 21/4	2.60 3.25 4.00	3.3 4.0 4.8	31/8	21/8	4.0	6.9	3 3 ³ / ₈ 3 ³ / ₄ 4	134 2 214 21/2	2.3 3.0 4.0 4.8	4.8 5.9 6.3 8.5		
14 14 1/8	37/8 43/8	2 11 3½8	5.90	6.8	35/8 4 ¹ / ₈	2½ 2½ 2½	6.3	9.6	43/8 43/4 5 53/8	2 ³ / ₄ 3 ¹ / ₄ 3 ¹ / ₂	5.7 6.7 7.3 8.5	10.1 11.9 14.0 15.8		
11/8 11/4 13/8	5 5½ 6½ 6%	35/8 4 43/8	10.0 13.0 15.0	12.0 14.5 19.5	43/4 51/4 57/8 616	3½ 3¾ 4½ 4½ 4½ 416	10.0 13.0 16.0 19.0	17.0 21.5 27.0 31.0	57/8 61/2 71/8 73/4	33/4 41/8 41/2 47/8	9.8 12.5 15.2 18.8	18.0 22.8 28.1 34.0		
1½ 15/8 13/4 17/8					7½8 7½8 85% 93%	5 5½ 5½ 5½ 63/8	23.0 28.0 31.0 35.0	36.0 41.5 44.8 51.3	8½ 9¼ 10 10½	53/3 57/8 61/4 68/4	22.0 26.0 29.2 34.2	40.5 47.5 55.1 63.3		
21/8 21/4 22/3 21/2					10% 107% 115% 12	63/4 71/8 75/8 8	40.0 47.0 53.0 58.5 65.0	58.3 65.8 73.7 82.0 90.9	11½ 12 13 13½ 14	7½ 7¾ 7¾ 8¼ 8¾ 9	40.0 44.2 50.0 54.2 60.0	72.0 81.3 91.1 101.5 112.5		

Safe Loads based on one-half Proof Test, or one-fourth of the approximate breaking load of chain.

BRIDGE PINS, NUTS AND PILOT NUTS.

All Threads 8 per inch.

Nominal Diameter of Pin,	Turned Diameter of Pin.	Diameter of Thread.	Short Diameter of Nut.	Long Diameter of Nut.	Diameter of Holes
	D	F	A	G	in Eye Bars.
Inches.	Inches.	Inches.	Inches.	Inches.	
11/2 13/4 21/4/2 23/4 33/4 33/4 41/2 43/4 55/4 61/2 63/4	11444 122 2144 124 124 124 124 124 124 1	114 112 112 2 2 2 214 234 3 314 4 4 4 4 4	2 21/2 21/2 3 3 31/2 4 4 41/2 41/2 5 5 5 5 6 6 6 6 7 7 7 7 7 7	2.5 2.5 2.5 3.5 2.5 3.5 2.5 4.1 4.1 4.1 5.5 6.3 6.3 6.1 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	D + 1000 " + 10

Allow $\frac{1}{16}$ excess for each eye bar packed on the pin.

COLD ROLLED STEEL COTTER PINS.

Dimensions of Pin in Inches.

			DILL	OTTOR	OILS .	01 1.			1100.					
Diameter of Pin.	D	1	11/4	11/2	13/4	2	21/4	21/2	23/4	3	31/4	31/2	33/4	4
Diameter of Reduced Point.	P	7/8	11/8	11/4	11/2	13/4	2	21/4	21/2	23/4	3	31/4	31/2	33/4
Lengths of Ends.	A	16	5 16	1/2	1/2	1/2	1/2	1/2	1/2	7/8	7/8	7/8	7/8	78,
Diameter of Cotter.	C	<u>5</u>	5 16	8 16	5 16	3/8	3/8	3/8	8/8	1/2	1/2	3/2	3/2	1/2
Diameter of Pin Hole.		116	15	1 9 16	113	$2\frac{1}{16}$	25/16	216	213	316	316	3 0	318	416

Rough Diameter of Pin.	Nominal Diameter of Pin.	Finished Diameter of Pin.	Reduced Point.	Short Diameter of Nut.	Long Diameter of Nut.	Diameter of Thread.	Diameter of Cotter Pin.
G	·N	D	P	T	R	F	C
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inch.
1½ 1¾	11/4	13/16	I	15/8	17/8	1	16
13/4	11/2	114	11/4	21/6	$\begin{array}{c} 1\frac{7}{8} \\ 2\frac{5}{16} \\ 2\frac{7}{8} \end{array}$	11/4	4
21/4	2	118	13/4	21/2	27/8	11/2	а
21/2	21/4	2 3	2 21/4	21/2	27/8	11/2	3/8
23/4	21/2	211	21/2	31/2	416	2	a
31/4	3	215	23/4	31/2	4 16 4 16 5 16	2	4
31/2	31/4	318	31/4	41/2	516	21/2	44
38/4	33/4	311	31/2	41/2	5 1 6 5 1 6	21/2	a
	D	$=G-\frac{5}{16}''$		P	$= N - \frac{1}{4}''$		

COUNTER AND LATERAL RODS. SOLID OR UPSET EYES.

ROUND BARS.

SQUARE BARS.

	1	1
	77-	A F
- ())	DE
	11	VI
-	d-f-	J- 1.
-		A.

Diameter of Bar.	Diameter of Largest Head.	Diameter of Largest Pin.	Add for One Head.	Side of Square Bar.	Diameter of Largest Head.	Diameter of Largest Pin.	Add for One Head.
A	E	D	220000	A	E	D	2000
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
7/8 11/4 11/4 11/4 11/4 11/4 11/6 11/4 11/6 11/4 21/4 21/4 21/4 21/4 21/4 21/4 21/4	214 414 414 55 512 512 612 714 714 8	11/4/2 21/2/2 28/4 28/4 28/4 33/4/2 33/4/2 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4	9 18 16 2014 20 1814 20 1814 21 1914 2114 20 2414 2234 2434 2234 244 2234 244 2214	11/8 11/4 11/4 11/8 11/8 11/8 11/8 11/8	414 414 55 5142 6142 7142 88 8144 5144 5144 5144 5144	21/22/24/22/24/24/22/24/24/24/24/24/24/24/	16 14 18 ¹ / ₂ 16 ¹ / ₂ 18 16 ¹ / ₂ 18 16 ¹ / ₂ 17 21 ¹ / ₂ 21 22 ¹ / ₂ 21 23 23 20 20

For details of upset screw ends for round and square bars see pages 372 to 375.

COUNTER AND LATERAL RODS. LOOP WELDED EYES.

Additional length of bar beyond center of pin required to make eye for square or round bars.

Diameter or Side of Bar.				Dia	meter	of Pi	n in I	nches.			
Inches.	3	1	11/4	11/2	13/4	2	21/4	21/2	23	3	31/4
শ্বৈত্যত স্থাধানত	5 ³ / ₄ 6 ¹ / ₄ 6 ³ / ₄	634 744 712 8	$7\frac{1}{2}$ 8 $8\frac{1}{2}$ 9	8½ 9 9½ 10	$ \begin{array}{c c} 9\frac{1}{2} \\ 10 \\ 10\frac{1}{4} \\ 10\frac{3}{4} \end{array} $	$ \begin{array}{c} 10\frac{1}{4} \\ 10\frac{3}{4} \\ 11\frac{1}{4} \\ 11\frac{3}{4} \end{array} $	$ \begin{array}{c} 11\frac{1}{4} \\ 11\frac{3}{4} \\ 12\frac{1}{4} \\ 12\frac{3}{4} \end{array} $	$ \begin{array}{c c} 12\frac{1}{4} \\ 12\frac{3}{4} \\ 13\frac{1}{4} \\ 13\frac{1}{2} \end{array} $	$ \begin{array}{c} 13\frac{1}{4} \\ 13\frac{1}{2} \\ 14 \\ 14\frac{1}{2} \end{array} $	14 14½ 15 15½	15 15½ 16 16½
1 1 1 1 1 1 3 8		81/2	$\begin{bmatrix} 9\frac{1}{2} \\ 10 \\ 10\frac{1}{4} \\ \dots \end{bmatrix}$	10½ 10¾ 11¼ 11¾	$ \begin{array}{c} 11\frac{1}{4} \\ 11\frac{3}{4} \\ 12\frac{1}{4} \\ 12\frac{3}{4} \end{array} $	12½ 12¾ 13¼ 13½ 13½	$ \begin{array}{c c} 13\frac{1}{4} \\ 13\frac{1}{2} \\ 14 \\ 14\frac{1}{2} \end{array} $	14 14½ 15 15½	15 15½ 16 16½	16 16½ 16¾ 17¼	16 ³ / ₄ 17 ³ / ₄ 18 ³ / ₄
12500 3141-00				121	13½ 13½ 14	14 14½ 15 15½	$ \begin{array}{c} 15 \\ 15\frac{1}{2} \\ 16 \\ 16\frac{1}{2} \end{array} $	16 16½ 16¾ 17¼	$ \begin{array}{c} 16\frac{3}{4} \\ 17\frac{1}{4} \\ 17\frac{3}{4} \\ 18\frac{1}{4} \end{array} $	173 181 183 191	18 ³ / ₄ 19 ¹ / ₂ 20
2 2 2 2 2 2 2 2 2 8						16	$ \begin{array}{c c} 16\frac{3}{4} \\ 17\frac{1}{4} \\ 18 \end{array} $	17 ³ / ₄ 18 ¹ / ₄ 18 ³ / ₄ 19 ¹ / ₄	183 194 193 204	$ \begin{array}{c} 19\frac{1}{2} \\ 20\frac{1}{4} \\ 20\frac{3}{4} \\ 21\frac{1}{4} \end{array} $	20½ 21 21½ 21½ 22
21356 2156 21478 2178								193	20 ³ / ₄ 21 ¹ / ₄ 21 ³ / ₄	21 ³ / ₄ 22 ¹ / ₄ 22 ³ / ₄ 23 ¹ / ₄	223 234 234 234 244
3 3 3 3 4										233	243 251 253

Length in inches beyond center of pin required to form one eye = X.

FORMULÆ: When $\frac{A}{2} = \text{or} < 1$ $\frac{A}{D} = \text{Diameter of Pin.}$ A = Side or Diameter of Pin.

D = Diameter of Pin.

X = 3.7 [D + A] + 1 Length of Parincium and to form one eye = $E - \frac{1}{2} C + X$. Length of bar including amount required

When $\frac{A}{2} > 1$ X = 3.7 [D + A] + $\frac{A}{2}$

COUNTER AND LATERAL RODS. LOOP WELDED EYES.

Additional length of bar beyond center of pin required to make eye for square or round bars.

Diameter or Side of Bar.				Dia	meter	of Pi	n in I	nches.			
Inches.	3½	33	4	41	41/2	434	5	51/4	51/2	53	6
1445 (00 p) 44-100	16 16½ 16¾ 17¼	16 ³ / ₄ 17 ¹ / ₄ 17 ³ / ₄ 18 ¹ / ₄	17 ³ / ₄ 18 ¹ / ₄ 18 ³ / ₄ 19 ¹ / ₄	18 ³ / ₄ 19 ¹ / ₂ 19 ¹ / ₂ 20	19½ 20 20½ 20½ 21	$ \begin{array}{c c} 20\frac{1}{2} \\ 21 \\ 21\frac{1}{2} \\ 22 \end{array} $	$\begin{array}{c} 21\frac{1}{2} \\ 22 \\ 22\frac{1}{2} \\ 22\frac{3}{4} \end{array}$	$\begin{array}{c} 22\frac{1}{2} \\ 22\frac{3}{4} \\ 23\frac{1}{4} \\ 23\frac{3}{4} \end{array}$	$ \begin{array}{r} 23\frac{1}{4} \\ 23\frac{3}{4} \\ 24\frac{1}{4} \\ 24\frac{3}{4} \end{array} $	$ \begin{array}{r} 24\frac{1}{4} \\ 24\frac{3}{4} \\ 25\frac{1}{4} \\ 25\frac{3}{4} \end{array} $	25½ 25¾ 26 26½
1 14 14 18	173 181 183 191	18¾ 19¼ 19½ 20	$ \begin{array}{c} 19\frac{1}{2} \\ 20 \\ 20\frac{1}{2} \\ 21 \end{array} $	$\begin{array}{c} 20\frac{1}{2} \\ 21 \\ 21\frac{1}{2} \\ 22 \end{array}$	$\begin{array}{c} 21\frac{1}{2} \\ 22 \\ 22\frac{1}{2} \\ 22\frac{3}{4} \end{array}$	$\begin{array}{c} 22\frac{1}{2} \\ 22\frac{3}{4} \\ 23\frac{1}{4} \\ 23\frac{3}{4} \end{array}$	$ \begin{array}{r} 23\frac{1}{4} \\ 23\frac{3}{4} \\ 24\frac{1}{4} \\ 24\frac{3}{4} \end{array} $	$ \begin{array}{r} 24\frac{1}{4} \\ 24\frac{3}{4} \\ 25\frac{1}{4} \\ 25\frac{3}{4} \end{array} $	25½ 25¾ 26 26½	26 26½ 27 27½	27 27½ 28 28½
125/00 mid 17/00	19½ 20 20½ 21	$ \begin{array}{c c} 20\frac{1}{2} \\ 21 \\ 21\frac{1}{2} \\ 22 \end{array} $	21½ 22 22½ 22½ 22¾	$\begin{array}{c} 22\frac{1}{2} \\ 22\frac{3}{4} \\ 23\frac{1}{4} \\ 23\frac{3}{4} \end{array}$	$ \begin{array}{c} 23\frac{1}{4} \\ 23\frac{3}{4} \\ 24\frac{1}{4} \\ 24\frac{3}{4} \end{array} $	$ \begin{array}{r} 24\frac{1}{4} \\ 24\frac{3}{4} \\ 25\frac{1}{4} \\ 25\frac{3}{4} \end{array} $	25½ 25¾ 26 26½	26 26½ 27 27½	27 27½ 28 28½	28 28 ¹ / ₂ 28 ³ / ₄ 29 ¹ / ₄	283 294 292 304
2 2 2 2 2 2 2 2 2 2 2	21½ 22 22½ 22½ 23	$\begin{array}{c} 22\frac{1}{2} \\ 23 \\ 23\frac{1}{2} \\ 24 \end{array}$	23½ 23½ 24½ 25	24½ 24¾ 25¼ 25¾	$ \begin{array}{c} 25\frac{1}{4} \\ 25\frac{3}{4} \\ 26\frac{3}{4} \end{array} $	$ \begin{array}{c} 26 \\ 26\frac{1}{2} \\ 27\frac{1}{4} \\ 27\frac{3}{4} \end{array} $	27 27½ 28 28½	28 28½ 29 29½	28 ³ / ₂ 29 ¹ / ₂ 30 30 ¹ / ₂	$\begin{array}{c} 29\frac{3}{4} \\ 30\frac{1}{4} \\ 30\frac{3}{4} \\ 31\frac{1}{4} \end{array}$	30 ³ / ₄ 31 ¹ / ₄ 31 ³ / ₄ 32 ¹ / ₄
212 255 2314 278	$\begin{array}{c} 23\frac{1}{2} \\ 24 \\ 24\frac{1}{2} \\ 25\frac{1}{4} \end{array}$	$\begin{array}{c} 24\frac{1}{2} \\ 25 \\ 25\frac{1}{2} \\ 26 \end{array}$	$25\frac{1}{2}$ 26 $26\frac{1}{2}$ 27	$ \begin{array}{c} 26\frac{1}{4} \\ 26\frac{3}{4} \\ 27\frac{1}{2} \\ 28 \end{array} $	$ \begin{array}{r} 27\frac{1}{4} \\ 27\frac{3}{4} \\ 28\frac{1}{4} \\ 28\frac{3}{4} \end{array} $	$ \begin{array}{r} 28\frac{1}{4} \\ 28\frac{3}{4} \\ 29\frac{1}{4} \\ 29\frac{3}{4} \end{array} $	$\begin{array}{c} 29 \\ 29\frac{3}{4} \\ 30\frac{1}{4} \\ 30\frac{3}{4} \end{array}$	30 30½ 31 31½	31 31½ 32 32½	$\begin{array}{c} 32 \\ 32\frac{1}{2} \\ 33 \\ 33\frac{1}{2} \end{array}$	324 334 334 342
1 1 district of the color of	25 ³ / ₄ 26 ¹ / ₄ 26 ³ / ₄ 27 ¹ / ₄ 27 ³ / ₄	26½ 27 27¾ 28¼ 28¾ 28¾	$ \begin{array}{c} 27\frac{1}{2} \\ 28 \\ 28\frac{1}{2} \\ 29 \\ 29\frac{1}{2} \end{array} $	$ \begin{array}{c} 28\frac{1}{2} \\ 29 \\ 29\frac{1}{2} \\ 30 \\ 30\frac{1}{2} \end{array} $	29½ 30 30½ 31 31½	$\begin{array}{c} 30\frac{1}{4} \\ 30\frac{3}{4} \\ 31\frac{1}{4} \\ 31\frac{3}{4} \\ 32\frac{1}{2} \end{array}$	3114 3134 3214 3214 3214	2243414 22 22 23 414 22 23 414 23 414 24 44	$33\frac{1}{2}$ $34\frac{3}{4}$ $35\frac{1}{4}$	34 34 35 35 35 36	35 35½ 36 36½ 37

For additional length required to form upset end and details of same see tables of Upset Ends, pages 372 to 375 inclusive.

For details of Turnbuckles, see page 378.

For details of Right and Left Nuts, see page 379.

STANDARD STEEL WIRE NAILS AND SPIKES.

Sizes, Lengths and Approximate Number per Pound.

	Length.	(Commen	l	Irads.	srads.			Box.			Bar	
Size.	Ins.	Diam W. & M. G.	Inch.	No. per Lb.	Common Brads.	Flooring Brads	Finishing.	Casing.	Smooth or Barbed Box.	Slating.	Shingle.	Невту.	Light.
2d 3d 4d 5d 6d 7d 8d 9d 10d 12d 16d 20d 30d 40d 50d 60d	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 4 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 3 \\ 1 \\ 2 \\ 4 \\ 4 \\ 1 \\ 2 \\ 5 \\ 5 \\ 1 \\ 2 \\ 6 \\ \end{array}$	15 14 12½ 12½ 11½ 11½ 10¼ 10¼ 10¼ 10¼ 10¼ 10¼ 2	.099	876 568 316 271 181 161 106 96 63 49 31 24 18 14	876 568 316 271 181 161 106 96 69 31 24 18 14	157 139 99 90 69 54 43 31	1351 807 584 500 309 238 189 172 121 113 90 62	1010 635 473 406 236 210 145 132 94 87 71 52 46 35	1010 635 473 406 236 210 145 132 94 88 71 52 46 35	411 225 187 142 103	568 274 235 204 139 125 114 83	165 118 103 76 69 54 50 42 35 26 24 18 15	274 142 124 92 82 62 57 50 43 31 28 21 17
	ų.	Hir	ige.				•	δů			Wi	re Spil	.893
Size.	Length.	ry.	bt.	Fence.	Clinch.	Fine.	Lining.	Barbed Roofing.	Barrel.	Tobaccio.	Dian	eter.	No.
	Ins.	Невуу.	Light,	A	10	E	Li	Ã	m	T	W. & M. G.	Inch.	per Lb.
2d Ex. Fine 2d 3d Ex. Fine 3d 4d 5d 6d 7d 8d 9d 10d 12d 16d 20d 30d 40d 50d 60d	5/8 3/4 11 1 11/8 11/4 11/3/4 21/4 21/2 23/4 31/4 4 4 4 5 5 5 1 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		82 62 50 25 23 22 19		710 429 274 235 157 139 99 90 69 49 37		2077 1781 1558	714 469 411 365 251 230 176 151 103		274 235 157 139 99 00 69	6 6 6 5 4 4 3 2 2 1 1 1	.192 .192 .207 .225 .244 .283 .283 .283	41 38 30 23 17 10 8 7 6 5 4

MISCELLANEOUS STEEL WIRE NAILS.

Approximate Number per Pound.

Moen nuge.	ameter. Inches.	T	Length in Inches. $\frac{3}{16}$ $\begin{vmatrix} \frac{1}{4} & \frac{3}{8} & \frac{1}{2} & \frac{5}{8} & \frac{3}{4} & \frac{7}{8} & 1 & 1\frac{1}{8} & 1\frac{1}{4} & 1\frac{1}{2} \end{vmatrix}$														
Washburn & Moen Gauge.	Diameter in Inches	13	6	1	38		1/2	5/8	1 34		7/8	1	1	18	11	$1\frac{1}{2}$	
000 00 00 0 1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 17 18 19 20 21 22 22	.362 .331 .307 .283 .244 .225 .207 .162 .177 .162 .135 .120 .092 .080 .072 .080 .054 .047 .047 .035 .032 .028	200	2840 3504 4571 6233 8276 20000 15000 23702 17777 30476 22856		3504 2336 1752 4571 3048 2280 3233 4156 3116 3276 5517 4138 3668 7112 5334 4000 10000 7500 7777 11850 8888		1699 1977 2399 2755 331 3977 502 658 857 1136 82495 3310 7111 9143	. 11. 11. 22. 22. 33. 44. 5. 77. 99. 111. 155. 200. 277. 355. 509. 76	100 120 141 141 121 164 1-200 17 229 18 276 229 333 22 418 335 48 44 714 66 947 8 1168 10 1523 134 2077 177 2758 23556 29 2556 29 5000 444 5026 502		577 655 766 90 106 122 207 248 314 411 536 876 1143 152 266 27 3750 4444	33 1 1 2 2 3 3 3 1 1 2 3 3 3 3 1 1 2 3 3 3 3	50 58 67 80 94 111 133 153 153 184 2220 365 476 631 778 385 385 3839 370 3333	288 338 45 52 85 99 120 137 165 198 251 329 429 568 701 913 1246 1655 3000	165 209 274 357 473 584		
Washburn & Moon Gauge.	Diameter in Inches.	13	2	21/4	$2\frac{1}{2}$	234	3	3 ¹ / ₂	4	41/2	5	6	7	8	9	10	
000 00 0 1 2 2 3 4 5 6 7	.362 .331 .307 .283 .263 .244 .225 .207 .192 .177 .162 .148	20 23 27 32 37 43 51 60 71 85 98 118	17 20 24 28 32 38 45 53 62 75 86 103	16 18 21 25 29 34 40 47 55 67 76 92	14 16 19 23 26 30 36 42 50 60 69 82	13 15 17 21 24 28 33 39 45 54 62 75	12 14 16 19 22 25 30 35 41 50 57 69	10 12 14 16 19 22 26 30 35 43 49	9 10 12 14 16 19 23 26 31 37 43 52	8 9 10 13 14 17 20 24 28 33 39 46	7 8 9 11 13 15 18 21 25 30 35 41	6 7 8 10 11 13 15 18 21 25 29	5 6 7 8 9 11 13 15 18	41 5 6 7 8 10 11	4 41 5 6 7 8 10	31/2 4 43/4 51/2 61/2 71/2 9	
10 11 12 13 14 15 16 17 18	.135 .120 .105 .092 .080 .072 .063 .054	142 179 235 306 406 500 653 890 1182	124 157 204 268 350 438 571 779	110 139 182 238 315 389 508	99 125 164 214 284 350	90 114 149 195 258	83 105 137 178 236	71 90 117 153	62 79 103	55 70	50			31 33 33 41 5 6	4	3 3 ¹ / ₄ 4 4 ¹ / ₂ 5 ¹ / ₂	

These approximate numbers are an average only, and the figures given may be varied either way, by changes in the dimensions of heads or points. Brads and no-head nails will have more to the pound than table shows, and large or thick-headed nails will have less.

CUT STEEL NAILS AND SPIKES.

Sizes, Lengths, and Approximate Number per Pound.

Sizes.	Length. Inches.	Common.	. Clin	oh. Finis	shing.	Casing and Box.	Fencing.	Spikes.
2 d	1	740	40) 11	.00			
3d	11/4	460	260		880			
4d	11/2	280	180	0 5	30	420		
5d	13/4	210	125	5 3	50	300	100	
6d	2	160	100) 3	00	210	80	
7d	21/4	120	80) 2	10	180	60	
8d	21/2	88	68	3 1	.68	130	52	
9d	23/4	73	55	2 1	.30	107	38	
10d	3	60	48	3 1	.04	88	26	
12d	31/4	46	40)	96	70	20	
16d	31/2	33	34	1	86	52	18	17
20d	4	23	24	1	76	38	16	14
25d	41/4	20						
30d	41/2	161/2				30		11
40d	5	12				26		9
50d	51/2	10				20		71/2
60d	6	8				18		6
	61/2				- 1			51/2
			1					
	7 Length	2	Light			Length	Flat Grip.	5
Sizes.	Length.	Barrel.	Light Barrel.	Slating.	Sizes	Length Inches.		5
Sizes.	Length. Inches.	Barrel.		Slating.	Sizez	Inches.	Fine.	Edge Grip
Sizes.	Length. Inches.	8arrel. 750		Slating.	Sizez	Inches.	Fine.	Edge Grip
Sizes.	Length. Inches.	750 600		Slating.		Inches.	Fine. 1462 1300	Edge Grip
	Length. Inches.	750 600 500			Sizez	Inches. 34 3/8	Fine. 1462 1300 1100	Edge Grip Fine.
Sizes.	Length. Inches.	750 600 500 450	Barrel,	Slating.	2d 3d	Inches. 34 38 I 11/8	Fine. 1462 1300 1100 800	Edge Grij Fine.
2d	Length. Inches. 5/8 3/4 7/8 1 11/8	750 600 500 450 310	Barrel,		2d	Inches. 34 3/8	Fine. 1462 1300 1100	Edge Grip Fine.
	Length. Inches. 5/8 3/4 7/8 1 11/8 11/4	750 600 500 450	Barrel,	340	2d 3d 4d	Inches. 34 38 I 11/8	Fine. 1462 1300 1100 800	Edge Grip Fine.
2d	Length. Inches. 58 34 78 1 11/8 11/4 13/8	750 600 500 450 310 280	Barrel,	340	2d 3d 4d	Inches. 34 78 1 1½8 13%	1462 1300 1100 800 650	5 Edge Grip Fine.
2d 3d	Length. Inches. \$46 34 76 1 11/6 11/4 12/6 11/4	750 600 500 450 310 280 210	Barrel, 400 304	340	2d 3d 4d	Inches. 34 78 1 1½8 13%	1462 1300 1100 800 650	5 Edge Grig Fine.
2d 3d 4d	Length. Inches. 58 34 78 1 11/8 11/4 13/8	750 600 500 450 310 280 210	Barrel, 400 304	340 280 220	2d 3d 4d	Inches. 34 7/8 1 11/8 13/6 Tobacco.	1462 1300 1100 800 650	5 Edge Grig Fine.
2d 3d 4d 5d	Length. Inches. 5/6 3/4 7/8 1 11/6 11/6 11/6 11/6 11/6 11/6 11/6	750 600 500 450 310 280 210	Barrel, 400 304	340 280 220	2d 3d 4d	Inches. 34 7/8 1 11/8 13/8 Tobacco.	1462 1300 1100 800 650 Brads.	5 Edge Grip Fine.
2d 3d 4d 5d 6d	Length. Inches.	750 600 500 450 310 280 210	Barrel, 400 304	340 280 220	2d 3d 4d	3/4 7/8 I 11/8 13/8 Tobacco.	1462 1300 1100 800 650 Brads.	5 Edge Grip Fine.
2d 3d 4d 5d 6d 7d	Length. Inches. 56 34 76 1 11/4 13/6 11/4 13/4 2 21/4	750 600 500 450 310 280 210	Barrel, 400 304	340 280 220	2d 3d 4d	Inches. 34 76 1 11/8 13/8 13/8 10bacco.	Fine. 1462 1300 1100 800 650 Brads.	Edge Grip Fine.
2d 3d 4d 5d 6d 7d 8d	Length. Inches. 56 34 76 1 11/6 11/4 13/6 11/4 2 2 1/4 21/4	750 600 500 450 310 280 210	Barrel, 400 304	340 280 220	2d 3d 4d	Inches. 34 76 1 136 138 100 130 97 85 68	Fine. 1462 1300 1100 800 650 Brads.	5 Edge Griu Fine. 980 750 600 Shingle.
2d 3d 4d 5d 6d 7d 8d 9d	Length. Inches. 56 34 36 1 136 134 134 2 234 234	750 600 500 450 310 280 210	Barrel, 400 304	340 280 220	2d 3d 4d	Inches. 34 76 1 136 136 130 97 85 68 58	Fine. 1462 1300 1100 800 650 Brads.	5 Edge Grig Fine. 980 750 600 Shingle.

SQUARE BOAT SPIKES. Approximate Number in a Keg of 200 Pounds.

Size.				Lei	ngth o	of Spi	ke—l	nche	8.			
Inch.	3	4	5	6	7	8	9	10	11	12	14	16
1 / 5 16 3 4	3000 1660 1320	2375 1360 1140	2050 1230 940	1825 1175 800	990	880 600	525	475				
1456 876 218				600 450	590 375	510 335 260	400 300 240	360 275 220	320 260 205	280 240 190	175	160

WROUGHT SPIKES. Approximate Number in a Keg of 150 Pounds.

Size.				Le	ngth	of Sp	ike-	Inch	es.			
Inch.	3	31/2	4	41/2	5	6	7	8	9	10	11	12
1/4 5 16 3/8 7 16 1/2	2250	1890 1208	1650 1135	1464 1064	1380 930 742	1292 868 570	1161 662 482 445 306	635 455 384 256	573 424 300 240	391 270 222	249 203	236 180

WOOD SCREWS.

Size Num- ber.	Diam- eter. Inch.	Size Num- ber.	Diam- eter. Inch.	Size Num- ber.	Diam- eter.	Size Num- ber.	Diam- eter. Inch.	Size Num- ber.	Diam- eter. Inch.	Size Num- ber.	Diam- eter.
1 2 3 4	.056 .069 .082 .096 .109	5 7 8 9	.122 .135 .149 .162 .175	10 11 12 13 14	.188 .201 .215 .228 .241	15 16 17 18 19	.255 .268 .281 .293 .308	20 21 22 23 24	.321 .334 .347 .361 .374	25 26 27 28 29 30	.387 .401 .414 .427 .440 .453

RAILROAD SPIKES.

Size Measured. Under Eead.	Average Number per Keg of 200 Founds	Track. Ties	per Mile of Single' 2 feet c. to c. per Tie.	Rail Used. Weight per Yard.
Inches.	or 200 rounds	Pounds.	Kegs.	Pounds.
51/2 × 5/8	300	7040	351/5	75 to 100
51/2 X 16	375	5870	291/3	45 " 75
	400	5170	26	40 " 56
5 × ½ 5 × ½	450	4660	231/3	35 " 40
41/2 X 1/2	530	3960	20	30 " 35
4 × 1/2	600	3520	17%	25 4 35
41/2 X 7/8	680	3110	1556	20 " 30
4 × 17	720	2910	143/4	20 " 30
31/2 X 1/3	900	2350	11	16 " 25
4 × 3 8	1000	2090	101/2	16 " 25
31/2 × 3/8	1190	1780	9	16 " 20
3 × 3/8	1240	1710	81/2	16 " 20
2½ X 3/8	1342	1575	77/8	12 " 16

DIMENSIONS, WEIGHTS AND PROPERTIES OF STANDARD PIPE.

				34	1	
Dia	meter in Incl	nes.	Weight per Foot.	Moment of Inertia.	Section Modulus.	Radius of Gyration.
Nominal.	External.	Internal.	Pounds.	Inches.4	Inches.3	Inches.
BLA	CK OR	GALVANI:	ZED STA	NDARD W	EIGHT P	IPE.
1 1 4 명 1 1 2 명 4	.405	.269	.244	.001	.005	.12
	.540	.364	.424	.003	.012	.16
	.675	.493	.567	.007	.022	.21
	.840	.622	.850	.017	.041	.26
	1.050	.824	1.130	.037	.071	.33
$1\\1\frac{1}{4}\\1\frac{1}{2}\\2\\2\frac{1}{2}$	1.315	1.049	1.678	.09	.13	.42
	1.660	1.380	2.272	.19	.23	.54
	1.900	1.610	2.717	.31	.36	.62
	2.375	2.067	3.652	.67	.56	.79
	2.875	2.469	5.793	1.53	1.06	.95
$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 4 \\ 4 \\ 4 \\ 5 \end{array} $	3.500	3.068	7.575	3.02	1.72	1.16
	4.000	3.548	9.109	4.79	2.39	1.34
	4.500	4.026	10.790	7.23	3.21	1.51
	5.000	4.506	12.538	10.4	4.2	1.68
	5.563	5.047	14.617	15.2	5.5	1.88
6 7 8 8	6.625 7.625 8.625 8.625 9.625	6.065 7.023 8.071 7.981 8.941	18.974 23.544 24.696 28.554 33.907	28.1 46.5 63.4 72.5 107.6	8.5 12.2 14.7 16.8 22.4	2.25 2.59 3.31 2.94 3.28
10	10.750	10.192	31.201	125.9	23.4	3.70
10	10.750	10.020	40.483	160.9	29.9	3.67
10	10.750	10.136	34.240	137.1	25.5	3.69
11	11.750	11.000	45.557	217.0	36.9	4.02
11	12.750	12.090	43.773	248.5	40.0	3.91
12	12.750	12.000	49.562	285.4	44.7	4.38
13	14.00	13.25	54.568	372.8	53.3	4.82
14	15.00	14.25	58.573	461.0	61.5	5.23
15	16.00	15.25	62.579	562.0	70.3	5.53
	STA	NDARD	EXTRA S	TRONG P	IPE.	
1014000401014	.405	.215	.314	.001	.006	.11
	.540	.302	.535	.004	.014	.15
	.675	.423	.738	.009	.026	.20
	.840	.546	1.087	.020	.048	.25
	1.050	.742	1.473	.045	.085	.32

DIMENSIONS, WEIGHTS AND PROPERTIES OF STANDARD PIPE (CONTINUED).

	OF S	TANDAI	an Fir.	(CONTI	NIED).	
Dia	ameter in Incl	nes.	Weight per Foot.	Moment of Inertia.	Section Modulus.	Radius of Gyration
Nominal.	External.	Internal.	Pounds.	Inches.4	Inches.3	Inches.
	STANDA	RD EXT	RA STRO	NG PIPE	(Continue	D).
$1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 2 \\ 2\frac{1}{2}$	1.315	.957	2.171	.11	.16	.41
	1.660	1.278	2.996	.24	.29	.52
	1.900	1.500	3.631	.39	.46	.61
	2.375	1.939	5.022	.87	.73	.77
	2.875	2.323	7.661	1.92	1.34	.92
$\begin{array}{c} 3\\ 3\frac{1}{2}\\ 4\\ 4\frac{1}{2}\\ 5 \end{array}$	3.500	2.900	10.252	3.89	2.23	1.14
	4.000	3.364	12.505	6.28	3.14	1.29
	4.500	3.826	14.983	9.6	4.3	1.48
	5.000	4.290	17.611	14.1	5.6	1.65
	5.563	4.813	20.778	20.7	7.4	1.84
6	6.625	5.761	28.573	40.5	12.2	2.19
7	7.625	6.625	38.048	71.4	18.7	2.53
8	8.625	7.625	43.388	105.7	24.5	2.88
9	9.625	8.625	48.728	149.4	31.0	3.23
10	10.750	9.75	54.735	212.0	39.3	3.63
11	11.750	10.75	60.075	280.1	47.7	3.98
12	12.750	11.75	65.415	360.7	56.6	4.33
	STANDA	RD DOUB	BLE EXT	RA STRON	G PIPE.	
1/2	.840	.252	1.714	.024	.058	.22
3/4	1.050	.434	2.440	.058	.110	
$1\\ 1\frac{1}{4}\\ 1\frac{1}{2}\\ 2\\ 2\frac{1}{2}$	1.315	.599	3.659	.14	.21	.36
	1.660	.896	5.214	.34	.41	.47
	1.900	1.100	6.408	.57	.67	.55
	2.375	1.503	9.029	1.31	1.10	.70
	2.875	1.771	13.695	2.87	2.00	.84
3	3.500	2.300	18.583	6.0	3.4	1.05
3½	4.000	2.728	22.850	9.8	4.9	1.21
4	4.500	3.152	27.541	15.3	6.8	1.37
4½	5.000	3.580	32.530	22.6	9.0	1.54
5	5.563	4.063	38.552	33.7	12.3	1.72
6	6.625	4.897	53.160	66.3	20.0	2.08
7	7.625	5.875	62.079	107.5	28.2	2.41
8	8.625	6.875	72.424	162.0	37.6	2.76

WROUGHT IRON WELDED STEAM, GAS AND WATER PIPE.

11 200	, o data .		,	D & E LEADER	,			
	DIAMETER.		Thickness.	Weight		ERENCE.	Lineal Fe	et to 1 Sq.
Nominal.	Inside.	Outside.	THICKHOSS.	per Foot.	Internal.	External.	Ft. St	rface.
Inches.	Inches.	Inches.	Inches.	Pounds.	Inches.	Inches.	Inside.	Outside.
1/8	.269	.405	.068	.244	.85	1.27	14.13	9.45
1/4	.364	.540	.088	.424	1.14	1.70	10.52	7.06
3/8 1/2 3/4	.493	.675	.091	.567	1.55	2.12	7.74	5.66
1/2	.622	.840	.109	.850	1.95	2.64	6.15	4.55
8/4	.824	1.050	.113	1.130 1.678	2.59	3.30	4.63	3.64
1	1.049	1.315	.133	1.678	3.30	4.13	3.64	2.91
$\frac{1\frac{1}{4}}{1\frac{1}{2}}$	1.380	1.660	.140	2.272	4.34	5.22	2.77	2.30
11/2	1.610	1.900	.145	2.717	5.06	5.97	2.37	2.01
2	2.067	2.375	.154	3.652	6.49	7.46	1.85	1.61
21/2	2.469	2.875	.203	5.793	7.76	9.03	1.55	1.33
3	3.068	3.500	.216	7.575	9.64	11.00	1.24	1.09
31/2	3.548	4.000	.226	9.109	11.15	12.57	1.08	.95
4	4.026	4.500	.237	10.790	12.65	14.14	.95	.85
41/2	4.506	5.000	.247	12.538	14.16	15.71	.85	.76
5	5.047	5.563	.258	14.617	15.86	17.48	.76	.69
6	6.065	6.625	.280	18.974	19.05	20.81	.63	.58
7 8 8	7.023	7.625	.301	23.544	22.06	23.95	.54	.50
8	8.071	8.625	.277	24.696	25.36	27.10	.47	.44
8	7.981	8.625	.322	28.554	25.07	27.10	.48	.44
9	8.941	9.625	.342	33.907	28.09	30.24	.43	.40
10	10.192	10.750	.279	31.201	32.02	33.77	.37	.36
10	10.136	10.750	.307	34.240	31.84	33.77	.38	.36
10	10.020	10.750	.365	40.483	31.48	33.77	.38	.36
11	11.000	11.750	.375	45.557	34.56	36.91	.35	.33
12	12.090	12.750	.330	43.773	37.98	40.06	.32	.30
12	12.000	12.750	.375	49.562	37.70	40.06	.32	.30
13	13.250	14.000	.375	54.568	41.63	43.98	.29	.27
14	14.250	15.000	.375	58.573	44.77	47.12	.27	.25
15	15.250	16.000	.375	62.579	47.91	50.27	.25	.24
Naminal.	A	REA.	Lincol	Foot No.	Conton	to to 41 CO	UPLINGS F	OR PIPE.

	Nominal	AR	EA.	Lineal Feet	No. of	Contents to 1	COUPLINGS	FOR PIPE.
	Diameter.	Internal.	External.	containing	Threads	Lineal Foot.	Outside Diam	Length.
	Inches.	Sq. Inches.	Sq. Inches.	1 Cubic Foot.	per Inch.	Gallons.	Inches.	Inches.
	1/9	.06	.13	2540.00	27	.003	.59	.81
	1/4	.10	.23	1384.00	18	.005	.72	.94
	3/8	.19	.36	754.40	18	.010	.84	1.06
	1/2	.30	.55	473.90	14	.016	1.00	1.31
	1/8 1/4 3/8 1/2 8/4	.53	.87	270.00	14	.028	1.33	1.56
	1	.87	1.35	166.60	111/2	.045	1.56	1.81
	$\frac{11_4}{11_2}$	1.50	2.16	96.28	111/2	.078	1.95	2.13
	11/2	2.04	2.84	70.73	111/2	.106	2.22	2.38
	2	3.35	4.43	42.91	111/2	.174	2.75	2.63
	21/2	4.78	6.49	30.08		.249	3.28	2.88
	3	7.38	9.62	19.48	8 8 8	.380	3.94	3.13
	31/2	9.88	12.57	14.57	8	.514	4.44	3.63
	4	12.72	15.90	11.31	8	.661	5.00	3.63
	4½ 5	15.93	19.63	9.03	8	.828	5.50	3.63
		19.99	24.30	7.20	8	1.040	6.22	4.13
	в	28.87	34.47	4.98	8 8 8 8	1.500	7.31	4.13
	7	38.71	45.66	3.72	8	2.010	8.31	4.13
	8	51.16	58.43	2.82	8	2.660	9.31	4.63
	8 8 9	50.03	58.43	2.88	8	2.610	9.31	4.63
		62.79	72.76	2.29	8	3.260	10.38	5.13
	10	81.47	90.76	1.77	8	4.230	11.66	6.13
	10	80.33	90.76	1.78	8	4.190	11.66	6.13
1	10	78.86	90.76	1.83	8	4.100	11.66	6.13
ı	11	95.03	108.43	1.52	8	4.940	12.66	6.13
ı	12	114.63	127.68	1.25	18	5.960	13.88	6.13
	12	113.10	127.68	1.27	B 8 8 8 8 8	5.880	13.88	6.13
	13	137.89	153.94	1.04	8	7.160	15.06	6.13
	14	159.48	176.71	.90	8	8.280	16.38	6.13
	15	182.65	201.06	.79	8	9.490	17.38	6.13

MANUFACTURERS' STANDARD SPECIFICATIONS.

REVISED APRIL 22, 1919

STRUCTURAL STEEL.

Grades.

1. These specifications cover three classes of structural steel, namely:

Class A steel, to be used for railway bridges and ships.

Class B steel, to be used for buildings, highway bridges, train sheds and similar structures.

Class C steel, to be used for structural rivets.

I. MANUFACTURE.

Process.

Steel for Classes A and C shall be made by the open-hearth process.Steel for Class B may be made either by the open-hearth or by the Bessemer process.

II. CHEMICAL PROPERTIES AND TESTS.

Chemical Composition.

3. The steel shall conform to the following requirements as to chemical composition:

Elements Considered.	Class A Steel.	Class B Steel.	Class C Steel.
Phosphorus, max., per cent.:			
Basic open hearth	0.04	0.06	0.04
Acid open hearth	0.06	0.08	0.04
Bessemer		0.10	
Sulphur, max., per cent	0.06		0.05

Ladle Analyses.

4. To determine whether the material conforms to the requirements specified in section 3, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative, if requested.

Check Analyses.

5. A check analysis of Class A and Class C steel may be made by the purchaser from finished material representing each melt, in which case an excess of 25 per cent. above the requirements specified in section 3 shall be allowed.

III. PHYSICAL PROPERTIES AND TESTS.

Tension Tests.

6. The steel shall conform to the following requirements as to tensile properties:

Class A Steel.	Class B Steel.	Class C Steel.
55,000-65,000	55,000-65,000*	46,000-56,000
0.5 tens. str.	0.5 tens. str.	0.5 tens. str.
1 400 0001	1 400 0001	1 400 000
tens. str.	tens. str.	1,400,000 tens. str.
22	22	
	Steel. 55,000–65,000 0.5 tens. str. 1,400,000†	Steel. Steel. 55,000-65,000 55,000-65,000* 0.5 tens. str. 0.5 tens. str. 1,400,000† tens. str. 1,400,000† tens. str.

^{*}See section 8. †See section 9.

Yield Point.

The yield point shall be determined by the drop of the beam of the testing machine.

Modification in Tensile Strength.

8. Class B steel may have tensile strength up to 70,000 lb. maximum, provided the elongation is not less than the percentage required for 65,000 lb. tensile strength.

Modifications in Elongation.

- 9. (a) For material over $\frac{34}{4}$ in. in thickness, a deduction of 1 from the percentage of elongation in 8 in. specified for Classes A and B in section 6 shall be made for each increase of $\frac{3}{4}$ in. in thickness above $\frac{3}{4}$ in., to a minimum of 18 per cent.
- (b) For material under $\frac{1}{16}$ in. in thickness, a deduction of 2.5 from the percentage of elongation in 8 in. specified for Classes A and B in section 6 shall be made for each decrease of $\frac{1}{16}$ in. in thickness below $\frac{1}{16}$ in.

Character of Fracture.

10. All broken tension test specimens shall show a silky fracture.

Bend Tests.

11. (a) The test specimen for plates, shapes and bars shall bend cold through 180 deg, without fracture on the outside of the bent portion, as follows: For material $\frac{3}{4}$ in, and under in thickness, flat on itself; for material over $\frac{3}{4}$ in, up to $\frac{1}{4}$ in, in thickness, around a pin the diameter of which is equal to $\frac{1}{4}$ times the thickness of the specimen; and for material over $\frac{1}{4}$ in, in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

- (b) The test specimen for pins and rollers shall bend cold through 180 deg, around a 1-in, pin without fracture on the outside of the bent portion.
- (c) A rivet rod shall bend cold through 180 deg. flat on itself without fracture on the outside of the bent portion.
 - (d) Bend tests may be made by pressure or by blows.

Test Specimens.

- 12. (a) Tension and bend test specimens shall be taken from the finished rolled or forged product, and shall not be annealed or otherwise treated, except as specified in section 13.
- (b) Tension and bend test specimens for plates, shapes and bars, except as specified in paragraph (c), shall be of the full thickness of material as rolled, and with both edges milled to the form and dimensions shown in Fig. 1, or may have both edges parallel.

Fig. 1.

- (c) Tension and bend test specimens for plates and bars (except eye-bar flats) over 1½ in. in thickness or diameter may be turned or planed to a diameter or thickness of at least ¾ in. for a length of at least 9 in.
- (d) Tension and bend test specimens for pins and rollers shall be taken parallel to the axis, 1 in. from the surface of the bar. Tension test specimens shall be of the form and dimensions shown in Fig. 2. Bend test specimens shall be 1 in. by ½ in. in section.

Fig. 2.

(e) Rivet bars shall be tested in full-size section as rolled.

Annealed Specimens.

13. Test specimens for material which is to be annealed or otherwise treated before use shall be cut from properly annealed or similarly treated short lengths of the full section of the piece.

Number of Tests.

- 14. (a) At least one tension test and one bend test shall be made from each melt. If material from one melt differs 3% in. or more in thickness, tests shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen develops flaws, or if an 8-in. tension test specimen breaks outside the middle third of the gage length, or if a 2-in. tension test specimen breaks outside the gage length, it may be discarded and another specimen substituted therefor.
- (c) Material intended for fillers or ornamental purposes will not be subject to test.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE. Permissible Variations.

- 15. (a) The sectional area or weight of each structural shape and of each rolled-edge plate up to and including 36 inches in width shall not vary more than 2.5 per cent. from theoretical or specified amounts.
- (b) The thickness or weight of each universal plate over 36 in. in width, and of each sheared plate, shall conform to the schedules of permissible variations for sheared plates, Manufacturers' Standard Practice, appended to these specifications.
- (c) The weights of angles, tees, zees and channels of bar sizes, and the dimensions of rounds, squares, hexagons and flats, shall conform to the Manufacturers' Standard Practice governing the allowable variations in size and weight of hot-rolled bars.

V. FINISH.

Finish.

16. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING.

Marking.

17. The name of the manufacturer and the melt number shall be legibly marked, stamped or rolled upon all finished material, except that each pin and roller shall be stamped on the end. Rivet and lattice steel and other small pieces may be shipped in securely fastened bundles, with the above marks legibly stamped on attached metal tags. Test specimens shall have their melt numbers plainly marked or stamped.

VII. INSPECTION AND REJECTION.

Inspection.

18. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the

material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

Rejection.

19. Material which, subsequent to the above tests at the mills and its acceptance there, develops weak spots, brittleness, cracks or other imperfections, or is found to have injurious defects, may be rejected at the shop, and shall then be replaced by the manufacturer at his own cost.

BOILER STEEL.

Grades.

 There shall be three grades of steel for boilers, namely: flange, firebox, and boiler rivet.

I. MANUFACTURE.

Process.

2. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS.

Chemical Composition.

3. The steel shall conform to the following requirements as to chemical composition:

Elements Considered.	Flange Steel.	Firebox Steel.	Boiler Rivet Steel.
Manganese, per cent Phosphorus, max., per cent.:	0.30 to 0.60	0.30 to 0.50	0.30 to 0.50
Basic	0.04	0.035	0.04
Acid	0.05	0.04	0.04
Sulphur, max., per cent	0.05	0.04	0.045

Ladle Analyses.

4. To determine whether the material conforms to the requirements specified in section 3, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative.

Check Analyses.

5. A check analysis may be made by the purchaser from a broken tension test specimen representing each plate as rolled, and this analysis shall conform to the requirements specified in section 3.

III. PHYSICAL PROPERTIES AND TESTS.

Tension Tests.

6. The steel shall conform to the following requirements as to tensile properties:

Properties Considered.	Flange Steel.	Firebox Steel.	Boiler Rivet Steel.
Tensile strength, lb. per sq. in	55,000-65,000	52,000-60,000	45,000-55,000
sq. in	0.5 tens. str.	0.5 tens. str.	0.5 tens. str.
Elongation in 8 in., min., per cent	1,450,000* tens. str.	1,450,000* tens. str.	1,450,000 tens. str.

^{*} See section 8.

Yield Point.

The yield point shall be determined by the drop of the beam of the testing machine.

Modifications in Elongation.

- 8. (a) For plates over ¾ in. in thickness, a deduction of 0.5 from the specified percentage of elongation will be allowed for each increase of ¼ in. in thickness above ¾ in., to a minimum of 20 per cent,
- (b) For plates under $\frac{5}{16}$ in. in thickness, a deduction of 2.5 from the percentage of elongation specified in section 6 shall be made for each decrease of $\frac{1}{16}$ in, in thickness below $\frac{4}{16}$ in,

Bend Tests.

- 9. (a) Cold-bend tests shall be made on the material as rolled.
- (b) Quench-bend test specimens, before bending, shall be heated to a light cherry red as seen in the dark (about 1200 deg. F.), and quenched in water the temperature of which is about 80 deg. F.
- (c) Specimens for cold-bend and quench-bend tests of flange and firebox steel shall bend through 180 deg, without fracture on the outside of the bent portion, as follows: For material $\frac{3}{4}$ in, and under in thickness, flat on themselves; for material over $\frac{3}{4}$ in, up to $\frac{11}{4}$ in, in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over $\frac{11}{4}$ in, in thickness, around a pin the diameter of which is equal to $\frac{11}{4}$ times the thickness of the specimen.
- (d) Specimens for cold-bend and quench-bend tests of boiler rivet steel shall bend cold through 180 deg, flat on themselves without fracture on the outside of the bent portion.
 - (e) Bend tests may be made by pressure or by blows.

Test Specimens.

- 10. (a) Tension and bend test specimens for plates shall be taken from the finished product, and shall be of the full thickness of material as rolled. Tension test specimens shall be of the form and dimensions shown in Fig. 1. Bend test specimens shall be 1½ in. to 2½ in. wide, and shall have the sheared edges milled or planed.
- (b) The tension and bend test specimens for rivet bars shall be of the full-size section of material as rolled.

Number of Tests.

- 11. (a) One tension, one cold-bend, and one quench-bend test shall be made from each plate as rolled.
- (b) Two tension, two cold-bend, and two quench-bend tests shall be made for each melt of rivet steel.
- (c) If any test specimen develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted therefor.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE. Permissible Variations.

- 12. (a) The thickness or weight of each sheared plate shall conform to the schedule of permissible variations, Manufacturers' Standard Practice, appended to these specifications.
- (b) The dimensions of rivet bars shall conform to the Manufacturers' Standard Practice governing allowable variations in the size of hot-rolled bars.

V. FINISH.

Finish.

13. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING.

Marking.

14. The melt or slab number, name of the manufacturer, grade, and the minimum tensile strength for its grade as specified in section 6 shall be legibly stamped on each plate. The melt or slab number shall be legibly stamped on each test specimen representing that melt or slab.

VII. INSPECTION AND REJECTION.

Inspection.

15. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

Rejection.

16. Material which, subsequent to the above tests at the mills and its acceptance there, develops weak spots, brittleness, cracks or other imperfections, or is found to have injurious defects, may be rejected at the shop, and shall then be replaced by the manufacturer at his own cost.

MANUFACTURERS' STANDARD PRACTICE.

PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS OF SHEARED PLATES.

WHEN ORDERED TO WEIGHT.

One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

When ordered to weight per square foot, the weight of each lot* in each shipment shall not vary from the weight ordered more than the amount given in the following table:

					Permi					Veights : ercentage				
Ordered Weight Lbs. per Sq. Ft.			Under 48 In.		t	n. incl.	60 in. incl. to 72 in. excl.		72 in. incl. to 84 in. excl.		84 in. incl. to 96 in. excl.			
					Over.	Under.	Over.	Under.	Over.	Under.	Over.	Under.	Over.	Under.
Unde	r 5				5	3	5.5	3	6	3	7	3		
5 i	ncl	. to	7.5	excl.	4.5	3	5	3	5.5	3	6	3		
7.5	4	66	10	ш	4	3	4.5	3	5	3	5.5	3	6	8
10	44	ш	12.5	4	3.5	2.5	4	3	4.5	3	5	3	5.5	3
12.5	ш	44	15	и	3	2.5	3.5	2.5	4	3	4.5	3	5	3
15	ш	66	17.5	ш	2.5	2.5	3	2.5	3.5	2.5	4	3	4.5	3
17.5	ee	ш	20	ш	2.5	2	2.5	2.5	3	2.5	3.5	2.5	4	3
20	æ	66	25	ш	2	2	2.5	2	2.5	2.5	3	2.5	3.5	2.5
25	и	44	30	66	2	2	2	2	2.5	2	2.5	2.5	3	2.5
30	66	α	40	ш	2	2	2	2	2	2	2.5	2	2.5	2.5
40 or	ov	er			2	2	2	2	2	2	2	2	2.5	2

Note:—The weight per square foot of individual plates shall not vary from the ordered weight by more than 1/3 times the amount given in this table.

^{*} The term "lot" applied to this table means all of the plates of each group width and group weight.

MANUFACTURERS' STANDARD PRACTICE.

PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS OF SHEARED PLATES.

WHEN ORDERED TO WEIGHT.

One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

When ordered to weight per square foot, the weight of each lot* in each shipment shall not vary from the weight ordered more than the amount given in the following table:

96 in. incl. to 108 in. excl.		108 in. incl. to 120 in. excl.			n. incl. to n. excl.	132 in. or over.		Ordered Weight Lbs. per Sq. Ft.		
Over.	Under.	Over.	Under.	Over.	Under.	Over.	Under.			
			i !					Under	5	
			ļ !					5 in	cl. to 7.5	excl.
7	3	3	3					7.5 "	4 10	4
6	3	7	3	8	3	9	3	10 "	" 12.5	и
5.5	3	6	3	7	3	8	3	12.5 "	" 15	ш
5	3	5.5	3	6	3	7	3	15 "	4 17.5	u
4.5	3	5	3	5.5	3	6	3	17.5 "	# 20	4
4	3	4.5	3	5	3	5.5	3	20 "	~ 25	u
3.5	3	4	3	4.5	3	5	3	25 "	4 30	44
3	2.5	3.5	3	4	3	4.5	3	30 "	" 40	и
2.5	2.5	3	2.5	3.5	3	4	3	40 or c	ver	

NOTE:—The weight per square foot of individual plates shall not vary from the ordered weight by more than 11/3 times the amount given in this table.

^{*} The term "lot" applied to this table means all of the plates of each group width and group weight.

MANUFACTURERS' STANDARD PRACTICE.

PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS OF SHEARED PLATES (CONTINUED).

WHEN ORDERED TO THICKNESS.

One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

When ordered to thickness, the thickness of each plate shall not vary more than 0.01 inch under that ordered. The overweight of each lot* in each shipment shall not exceed the amount given in the following table:

	Permissible Excess in Average Weights Per Square Foot of Plates for Widths Given, Expressed in Percentages of Nominal Weights.									
Ordered Thickness Inch.	Under 48 in.	48 in. incl. to 60 in. excl.	60 in. incl. to 72 in. excl.	72 in. incl. to 84 in. excl.	84 in. incl. to 96 in. excl.	96 in. incl. to 108 in. excl.	108 in. incl. to 120 in. excl.	120 in. incl. to 132 in. excl.	132 in. or over	
Under ½	9	10	12	14						
1/8 incl. to 3 excl.	8	9	10	12						
3 u u 1/4 u	7	8	9	10	12					
14 " " 5 " "	6	7	8	9	10	12	14	16	19	
5 u u 3/8 u	5	6	7	8	9	10	12	14	17	
3 8 4 4 7 16	4.5	5	6	7	8	9	10	12	15	
7 16 " " 1/2 "	4	4.5	5	6	7	8	- 8	10	13	
1/2 4 4 5/8 4	3.5	4	4.5	5	6	7	18	9	11	
58 " " 34 "	3	3.5	4	4.5	5	6	7	8	9	
3/4 " " 1 "	2.5	3	3.5	4	4.5	5	6	7	8	
1 or over	2.5	2.5	3	3.5	4	4.5	5	6	7	

^{*} The term "lot" applied to this table means all of the plates of each group width and group thickness.

WOODEN BEAMS AND COLUMNS.

The results of a series of studies of wooden beams and columns of various kinds of American timber are contained in the Proceedings of the Fifth Annual Convention of the Association of Railway Superintendents of Bridges and Buildings, October, 1895, at which the Committee on Strength of Bridge and Trestle Timbers presented a report, portions of which have been used in preparing certain of the tables on the following pages, but as noted thereon the arrangement and values in many cases have been modified by later information from various sources.

The publications of the Forestry Division of the United States Department of Agriculture, Bulletins Nos. 8 and 12, and Circular No. 15, contain reports of tests of American woods, and deductions drawn therefrom. Extracts and tables from these reports are given on the following pages.

The tables of safe loads for wooden beams and tables of strength of wooden columns given on the following pages have been specially calculated for this book, using the information regarding the properties of the various species contained in the reports above referred to, as modified in some cases by later data.

In order that information on this subject will be more complete, tables are given herein showing structural timber stress values, as published in the United States Forestry Service Bulletin, No. 108, and also those recommended by the American Railway Engineering and Maintenance of Way Association, Bulletin No. 107.

Explanation of the Tables of Safe Loads in Pounds, Uniformly Distributed, for Rectangular Wooden Beams One Inch Thick, Pages 416 to 421 Inclusive.

General.

For convenience in use, three of these tables have been prepared from which the safe loads of the various species can be obtained, either directly or by proportion as stated in the footnotes.

The values given in the tables are the safe loads in pounds uniformly distributed, including the weight of the beam itself, for rectangular beams one inch thick for spans from four to forty feet and for depths from four to twenty-four inches. The safe load for a beam of any thickness may be found by multiplying the values given in the tables by the thickness of the beam in inches.

The last column of each of the three Tables of Safe Loads for

Rectangular Wooden Beams gives a coefficient of deflection, by means of which the deflection for any beam may be obtained, corresponding to the given span and safe load, by dividing the coefficient by the depth of the beam in inches, which will give approximately the deflection in inches under the given conditions.

In each table the deflection coefficient is given for only one species of wood, as shown, but the deflections for other species may be obtained from these by proportion as explained hereafter.

For the reason that wood has no well-defined limit or modulus of elasticity the deflections obtained by the use of the coefficients are only approximate and will vary, according to the moisture content of the wood and the character of the loading. The deflections thus obtained are, therefore, useful only as a general indication of the amount of bending to be expected under the given conditions and are not exact as in the case of materials like steel, which has a well-defined limit and modulus of elasticity.*

The safe loads for other species of woods than those stated in the headings of the tables may be obtained from those given, by direct proportion, dependent upon the ratio of their allowable unit stress as compared with that for which the table is figured, as stated in the foot-notes at the bottom of the tables.

*Note.—"A series of tests, undertaken at the College of Forestry at Cornell University, seems to demonstrate that, at least in coniferous wood, a definite elastic limit for any particular piece can be easily shown, and, that it coincides with the theoretically calculated elastic limit upon the bases of compression tests and their application, according to Neely's formula."

Explanation of the Table of Safe Loads for Rectangular Beams of White Pine, Cedar, Spruce or Eastern Fir.

The values for the various species of woods, which are included in this table are calculated for an allowable fibre stress, for flexure, of 700 pounds per square inch.

The deflection coefficients are given for white pine and are based upon a modulus of elasticity of 1 000 000 pounds per square inch.

The lower dotted line crossing the table indicates the limits of spans for which the deflection will exceed $\frac{1}{360}$ of the span for the kind of wood for which the deflection coefficient is given. For spans below the line the safe loads given in the tables will produce a deflection greater than $\frac{1}{360}$ of the span, while those above the line will produce less than this, which is the usual limit of deflection in order to prevent cracking of plastered ceilings. Similarly,

the upper dotted line indicates the limit of deflection for the kind of wood for which the deflection coefficient is given, corresponding to a modulus of elasticity of 500 000 pounds per square inch, which should be considered in cases where the deflection should be more closely limited.

The coefficients of deflection for Cedar corresponding to moduli of 700 000 and 350 000 may be obtained by multiplying those of the table by $\frac{10}{7}$ and $\frac{20}{7}$ respectively, and for Spruce and Eastern Fir corresponding to moduli of 1 200 000 and 600 000 by

multiplying those of the table by 5 and 5 respectively.

The full zig-zag line in the table gives the limits of the safe loads corresponding to the allowable shearing stress along the neutral axis of the beam. The safe loads above the line, which are based upon the extreme fibre strains, will produce shearing stresses along the axis or with the grain in excess of that allowable, which, in the case of White Pine and the other woods of this table, is 100 pounds per square inch.

The position of this line, which indicates the limit of safe loads for shearing along the neutral axis, was determined by the aid of the following formula:

$$W = \frac{4bds}{3}$$

in which

W = safe load in pounds uniformly distributed.

d = depth of beam in inches.

b = breadth of beam in inches.

s = allowable shear in the direction of the grain in pounds per square inch.

Explanation of the Table of Safe Loads for Rectangular Beams of Short-leaf Yellow Pine.

The table is calculated for an allowable fibre stress, for flexure, of 1 000 pounds per square inch.

The deflection coefficients are figured for a modulus of elasticity of 1 200 000 pounds per square inch, but may be used for other moduli, after obtaining the corresponding coefficients by proportion as heretofore explained.

The lower dotted line across the table indicates the limits of spans for which the safe load will produce deflections greater than

CAMBRIA STEEL.

of the length of the beam. Values above the line will give s deflection than this, and those below will give greater, based a modulus of 1 200 000 pounds per square inch. upper dotted line indicates the limit of deflection correspondto a modulus of elasticity of 600 000 pounds per square inch. The full zig-zag line across the table indicates the limiting spans d loads based on the allowable intensity of shearing stress along e neutral axis of the beam. The values above the full zig-zag e correspond to shearing stresses greater than the allowable ess in the direction of the grain for Short-leaf Yellow Pine. ile those below the line correspond to shearing stresses less an that allowable, which, in this case, is assumed to be 100 unds per square inch.

Explanation of Tables of Safe Loads for Rectangular Beams of White Oak and Long-leaf Yellow Pine.

This table is computed for an allowable fibre stress of 1 200 unds per square inch, for flexure, and the deflection coefficients calculated for a modulus of elasticity of 1 500 000 pounds per are inch.

The limit for a deflection of $\frac{1}{360}$ of the span is indicated by the ver dotted zig-zag line on the tables, the values below which respond to deflections greater than, and those above to flections less than, the limiting deflections. The upper dotted -zag line similarly indicates the limits of deflection for a odulus of elasticity of 750 000 pounds per square inch.

1211

Provence

The lower full zig-zag line indicates the limit of allowable earing stress along the axis corresponding to the allowable ensity, for Yellow Pine, of 150 pounds per square inch.

Similarly, the upper full zig-zag line indicates the limits for earing along the axis for White Oak based on an allowable ensity of 200 pounds per square inch.

BEARING AT POINTS OF SUPPORT.

Care should be taken in designing to provide sufficient bearing the points of support so that the allowable intensity of comession across the grain, as given in the tables on pages 409 to is not exceeded.

This may be obtained, where necessary, by the use of corbels bearing plates of harder wood arranged so as to give a large aring area against the softer beam.

The following statements are made in Bulletin No. 12, U. S. Department of Agriculture, Division of Forestry:

RECOMMENDED PRACTICE.

"Since the strength of timber varies very greatly with the moisture contents (see Bulletin 8 of the Forestry Division), the economical designing of such structures will necessitate their being separated into groups according to the maximum moisture contents in use.

MOISTURE CLASSIFICATION.

"Class A (moisture contents, 18 per cent.)—Structures freely exposed to the weather, such as railway trestles, uncovered bridges, etc.

"Class B (moisture contents, 15 per cent.)—Structures under roof but without side shelter, freely exposed to outside air, but protected from rain, such as roof trusses of open shops and sheds, covered bridges over streams, etc.

"Class C (moisture contents, 12 per cent.)—Structures in buildings unheated, but more or less protected from outside air, such as roof trusses of barns, enclosed shops and sheds, etc.

"Class D (moisture contents, 10 per cent.)—Structures in buildings at all times protected from the outside air, heated in the winter, such as roof trusses in houses, halls, churches, etc.

"For long-leaf pine add to all the values given in the tables, except those for moduli of elasticity, tension and shearing, for Class B, 15 per cent.; for Class C, 40 per cent.; and for Class D, 55 per cent. For the other species add to these values, for Class B, 8 per cent.; for Class C, 18 per cent., and for Class D, 25 per cent."

Based upon the above classification of structures, the two following tables have been figured to facilitate calculations of allowable loads for wooden beams and columns.

Proportion of the Values given in the "Tables of Safe Loads for Wooden Beams," Pages 416 to 421 inclusive, to be used in order to obtain the Safe Loads for the various classes of structures referred to above.

Classes.	Yellow Pine.	All Others.
Class A	1.00	1.00
Class B	1.15	1.08
Class C	1.40	1.18
Class D	1.55	1.25

Safety Factors to be applied to the Values given in the Table of "Strength of Solid Wooden Columns," Pages 422 and 423, in order to obtain the Safe Loads for the various classes of structures referred to above.

Classes,	Yellow Pine.	All Others.
Class A. Class B. Class C. Class D.	0.28	0.20 0.22 0.24 0.25

SPECIFIC GRAVITY AND WEIGHT PER FOOT FOR VARIOUS KINDS OF TIMBER.

Name of Wood.	Specific Gravity.	Weight per Cubic Foot.	Weight per Foot, Board Measure.
White Oak	0.80 0.38	49.94 23.72	4.16 1.98
Pine. Douglas Fir. Short-leaf Yellow Pine.	0.61 0.51 0.51	38.08 31.84 31.84	3.17 2.65 2.65
Red Pine (Norway Pine)	0.50 0.40 0.40	31.21 24.97 24.97	2.60 2.08 2.08 2.39
Cypress. Cedar Chestnut. California Redwood.	$0.46 \\ 0.37 \\ 0.66 \\ 0.39$	28.72 23.10 41.20 24.16	1.93 3.43 2.01
California Spruce	0.40	24.97	2.08

The specific gravities and weights given above are the averages of a large number of determinations by various authorities, for woods containing less than 15 per cent. of moisture or such as are commercially known as dry timber. The weights of green or unseasoned woods will be from 20 to 40 per cent. greater than those given in the above table.

SAFE UNIT STRESSES FOR TIMBER.

RECOMMENDED IN BULLETIN No. 12, U. S. DEPARTMENT OF AGRICULTURE, DIVISION OF FORESTRY.

Safe Unit Stresses at 18% Moisture.

Species.	Modulus of Strongth at Rupture per Square Inch.	Modulus of Elasticity per Square Inch.	Resilience per Cubic Inch.	Crushing Strength Endwise per Square Inch.	Crushing Strength Across the Grain per Square Inch.	Tensile Strongth per Square Inch.	Strength por Square Inch.
	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
Long-leaf Pine (Pinus palustris) D Short-leaf Pine (Pinus	1550	720000	1.30	1000	215	12000	125
echinata) D	1300	600000	1.30	840	215	9000	100
White Pine (Pinus stro- bus) Norway Pine (Pinus res-	880	435000			147		
inosa)	1090	566000	1	760	143		
Colorado Pine (Pinus ponderosa)	980			630	180		
suga douglasii)	1320	690000		880	167		
Redwood (Sequoia sem- pervirens) Red Cedar (Juniperus	*1440			650	115		
virginiana)	1000	335000		700	250		
Bald Cypress (Taxo- dium distichum) D White Oak (Quercus	1000	450000		675	120	6000	60
alba) D	1200	5500000	1.25	800	400	10000	200
Factor of Safety				5	3	1	1
actor of barcty	U.	~	1	0	0	1	7

The values marked "D" were obtained from experiments made by the Forestry Division. The other values were obtained from various sources, chiefly the 10th Census Report, but so modified as to give results comparable with Forestry Division values. To arrive at true average values of strength multiply safe loads by factor of safety given in each column. The value for resilience and tensile strength are the ultimate values. The former is practically never used in designing. The latter is a factor impossible to develop in practice, since the piece will always fail in some other way, usually by shearing.

The crushing strength across the grain in above is based upon a crushing of 3 per cent, of the cross sectional height of the piece.

This value is certainly too large.

^{† &}quot; " small.—Ep.

AVERAGE TESTED STRENGTH VALUES OF STRUCTURAL TIMBERS WITH ORDINARY DEFECTS.

		Bending.		
Kind of Condition. Timber.	Average Moisture Content.	Fibre Stress at Elastic Limit.	Modulus of Rupture.	
	Per Cent.	Lbs. per Sq. In.	Lbs. per Sq. In.	
Long-leaf Pine (Pinus Palustris). Douglas Fir (Pseudotsuga Taxifolia). Short-leaf Pine (Pinus Echinata). Western Larch (Larix Occidentalis). Loblolly Pine (Pinus Tæda). Tamarack (Larix Laricina). Western Hemlock (Tsuga Heterophylla). Redwood (Sequoia Sempervirens). Air Seasoned Green Air Seasoned	27.6 19.2 33.2 17.3 46.4 15.9 34.4 17.9 34.4 17.9 42.0 21.5 47.6 17.7 87.5 20.9	3734 3691 3968 4563 3237 4675 3324 3503 3040 3517 2813 3730 3516 4398 3760 3442	6140 5749 5983 6372 5548 6573 4948 5856 5084 6118 4556 5498 5296 6420 4472 3891	

The above table presents the average results of an extensive series of tests on structural timbers as conducted by the United States Forestry Service and published in Bulletin No. 108, issued September 23, 1912. Many engineering handbooks and other publications dealing with timber quote results of tests made only on small thoroughly seasoned specimens, free from defects. Such values may be from one and one-half to two times as high as stresses

developed in large timbers and joists.

The above tabulations, with the exception of those in final column headed "Shear," are based upon tests of structural size timbers having such defects as are ordinarily to be found. The "Shear" column values, owing to the method of testing, were obtained from small specimens and it will be seen that the shearing stresses developed are much higher than the calculated shearing stresses in beams that failed by horizontal shear. The difference is doubtless due to the fact that on account of checks and shakes, the actual area resisting shear is likely to be much less than the calculated area used in the formula for horizontal shear. Since large timbers almost invariably form checks during seasoning, it is not safe, in designing timber beams, to use shearing stresses higher than those determined for beams that failed in horizontal shear.

AVERAGE TESTED STRENGTH VALUES OF STRUCTURAL TIMBERS WITH ORDINARY DEFECTS.

Bene	ding.		Compression.						
Modulus			Parallel to Gra	in.	Perpendicular to Grain.	Shearing			
of Elesticity.	*Horizontal Shear.	Crushing Strength at Elastic Limit.	Crushing Strength at Maximum Load.	Modulus of Elasticity.	Crushing Strength at Elastic Limit.	Strength (Small Specimens).			
1000 Lbs. per Sq. In.	Lbs. per Sq. In.	Lbs. per Sq. In.	Lbs. per Sq. In.	1000 Lbs. per Sq. In.	Lbs. per Sq. In.	Lbs. per Sq. In.			
1463 1705 1517 1549 1473 1726 1301 1487 1387 1487 1220 1341 1445 1737 1042 890	353 272 166 221 332 364 288 340 335 434 261 299 288 307 302	3480 3480 2770 3271 2460 4070 2675 	4800 4800 3495 4258 3435 6030 3510 5746 2940 4292 3230 4320 3355 5814 3882 4276	1414 1038 1548 1951 1575 548 1206 1373 1351 1617 2140 1240	568 572 570 639 351 796 456 597 500 655 	973 984 765 822 704 1135 700 905 630 1115 668 879 630 924 742 671 589			
	232 278	2065 3047		1002 1367		(

^{*}Only those pieces which failed first by horizontal shear are included in this column.

The averages for the bending tests are the results of tests on timbers ranging in cross section from 4 by 10 inches to 8 by 16 inches, over a 15-ft. span.

A comparison of the results of tests on air seasoned material with those on green material shows that, in general, all of the mechanical properties are increased by seasoning. Increase in strength of wood fibre, due to drying, is, in the case of large timbers, largely offset by a weakening of the timber due to the formation of checks. If the moisture content of a seasoned timber is increased, it loses strength rapidly, and if thoroughly soaked with water will become slightly weaker than when green. On this account, it is not safe in practice to depend upon any increase of strength in timbers, due to seasoning. When, however, large beams are seasoned with ordinary care, it is safe to assume that they are not weaker than when green.

UNIT STRESSES FOR STRUCTURAL TIMBER.

(Expressed in Pounds per Square Inch.)

	I	Bending		Shearing.			
Kind of Timber,	Extr Fibre		Modulus of Elasticity	Paral to Gr		Longitudinal Shear in Beams.	
	Average Ultimate.	Safe Stress.	in Thou- sands.	Average Ultimate.	Safe Stress.	Average Ultimate.	Safe Stress.
Douglas Fir	6100	1200	1510	690	170	270	110
Long-leaf Pine Short-leaf Pine White Pine	6500 5600 4400	1300 1100 900	1610 1480 1130	720 710 400	180 170 100	300 330 180	120 130 70
Spruce Norway Pine Tamarack Western Hemlock	4800 4200 4600 5800	1000 800 900 1100	1310 1190 1220 1480	600 *590 670 630	150 130 170 160	170 250 260 *270	70 100 100 100
Redwood Bald Cypress Red Cedar White Oak	5000 4800 4200 5700	900 900 800 1100	800 1150 800 1150	300 500 840	80 120 210	270	110

Note.—These unit stresses are for a green condition of timber and are to * Partially air-dry.

The above table gives the ultimate and safe unit stress values for structural timber as adopted by the American Railway Engineering and Maintenance of Way Association, upon recommendation of their Committee on Wooden Bridges and Trestles, Convention of 1909; and published in the Association's "Bulletin No. 107," 1909, and "Manual," 1911.

They state that the working unit stresses given in this table are intended for railroad bridges and trestles. For highway bridges and trestles, the unit stresses may be increased twenty-five (25) per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased fifty (50) per cent. To compute the deflection of a beam under long continued loading instead of that when the load is first applied, only fifty (50) per cent. of the corresponding modulus of elasticity given in the tables is to be employed.

The safe unit stresses were determined by carefully considering both the average ultimate stresses, which represent the best results now available, as well as the unit stresses which have been in use in designing wooden bridges and trestles, and have been demonstrated by extensive practice to be safe.

† Timber has no well-defined modulus of elasticity.-Ep.

UNIT STRESSES FOR STRUCTURAL TIMBER.

(Expressed in Pounds per Square Inch.)

	Compression.										
Perpendicular to Grain.				Columns	Long Columns	Ratio of Length to Stringer					
Elastic Limit.	Safe Stress.	Average Ultimate.	Safe Stress.	15 Diams. Safe Stress.	15 Diameters. Safe Stress.	Depth.					
630	310	3600	1200	900	$1200 \ (1 - \frac{L}{60D})$	10					
520 340 290	260 170 150	3800 3400 3000	1300 1100 1000	980 830 750	1300 (") 1100 (") 1000 (")	10 10 10					
370	180 150 220	3200 *2600 *3200	1100 800 1000	830 600 750	1100 (") 800 (") 1000 (")						
440 400 340 470 920	150 170 230 450	3500 3300 3900 2800 3500	900 1100 900 1300	900 680 830 680 980	1200 (") 900 (") 1100 (") 900 (") 1300 (")	12					

be used without increasing the live load stresses for impact.

L = length in inches.

D = least side or diameter in inches.

The relation between the strength of the lowest 10 per cent, group of tests and the average strength for each series, the relation between the elastic limit and the ultimate strength, as well as the fact that the live load stresses are not to be increased for impact, are all to be taken into account in determining the general relation between the safe stress and the average ultimate stress; it being always remembered that it is more rational to relate the safe unit stress to the elastic limit of the material than to its ultimate strength.

As large columns not over 15 diameters in length may not develop more than 70 per cent. of the strength of short blocks, the column formulas are arranged to give approximately these relative values at the given limit of length when L, the length of the column in inches, equals 15 times its least diameter D, also expressed in inches.

It is expected that these unit stresses will be revised at intervals of a few years, whenever new results of timber tests are published, or when the experience of bridge engineers who have adapted them shall indicate that revision is desirable.

AVERAGE ULTIMATE BREAKING UNIT

	Ten	sion.
Kind of Timber.	With Grain.	Across Grain.
White Oak. White Pine Southern Long-leaf or Georgia Yellow Pine. Douglas Fir. Short-leaf Yellow Pine Red Pine (Norway Pine) Spruce and Eastern Fir. Hemlock. Cypress Cedar Chestnut. California Redwood. California Spruce.	12000 7000 12000 8000 9000 8000 8000 6000 7000 8500 7000	2000 500 600 500 500 500

AVERAGE SAFE ALLOWABLE WORKING UNIT

	Ten	Tension.	
Kind of Timber.	With Grain.	Across Grain.	
Factor of Safety.	Ten.	Ten.	
White Oak White Pine Southern Long-leaf or Georgia Yellow Pine. Douglas Fir Short-leaf Yellow Pine. Red Pine (Norway Pine) Spruce and Eastern Fir Hemlock Cypress. Cedar Chestnut California Redwood California Spruce.	1200 700 1200 800 900 800 800 600 700 850 700	200 50 60 50 50 50 50	

The above tables are based on those recommended by the committee on intendents of Bridges and Buildings at their Fifth Annual Convention in by later data from various sources.

STRESSES, IN POUNDS PER SQUARE INCH.

C	ompression.		Tran	sverse.	Shea	ring.
With Grain.						
Rnd Bearing. Columns Under 15 Diams.		Across Grain.	Extreme Fibre Stress.	Modulus of Klasticity.	With Grain.	Across Grain.
7000 5500 7000 5700 5700 6000 6000 5000 6000	5000 3500 5000 4500 4500 4000 4000 4000 4000 4000 4000 4000 4000	2000 700 1400 800 1000 800 700 600 700 900 600	7000 4000 7000 5000 6000 4000 3500 4000 4000 5000 4500 5000	1500000 1000000 1500000 1400000 1200000 1200000 900000 900000 700000 1200000 1200000	800 400 600 500 400 350 400 600 400	4000 2000 5000 4000 3000 2500 1500 2000

STRESSES, IN POUNDS PER SQUARE INCH.

C	ompression.		Tran	sverse.	Shea	ring.
With	Grain.	Acress	Extreme Fibre	Modulus of	With	Across
and Bearing.	Columns Under 15 Diams.	Grain.	Stress.	Elasticity.	Grain.	Grain.
Five.	Five.	Four.	Six.	Two.	Four.	Four.
1400 1100 1400 1100 1200 1200 1200 1200	1000 700 1000 900 800 800 800 800 800 800 800 800	500 200 350 200 250 200 200 150 200 250 250	1200 700 1200 800 1000 800 700 600 800 750 800 750	750000 500000 750000 600000 665000 450000 450000 450000 500000 500000 600000	200 100 150 130 100 100 100 100 150 100	1000 500 1250 1000 750 600 400 500

[&]quot;Strength of Bridge and Trestle Timbers" of the Association of Railway Super-October, 1895, but the arrangement and values in many cases are now modified

SAFE LOAD IN POUNDS FOR RECTANGULAR OF WHITE PINE, CEDAR

Allowable fibre stress 700 pounds per square inch. Safety factor 6.

Safe loads for other safety factors may be obtained as follows:

Span		1		Dep	th of	Bean	n in I	nches	3.	1	1	Deflection Coefficient for White Pine
Feet.	4	5	6	7	8	9	10	11	12	13	14	V
4	311	486	700	953	1244	1575	1944	2352	2800	3286	3811	.34
5	249	389	560	762	996	1260	1556	1882	2240	2629	3049	.53
6	207	324	467	635	830	1050	1296	1569	1867	2191	2541	.76
7	178	278	400	544	711	900	1111	1344	1600	1878	2178	1.03
8	156	243	350	476	622	788	972	1176	1400	1643	1906	1.34
9	138	216	311	423	553	700	864	1046	1244	1460	1694	1.70
10	124	194	280		498	630	778	941	1120	1314	1524	2.10
11	113	177	255	346	453	573	707	856	1018	1195	1386	2.54
12 .	103	162	233	318	415	525	648	* 784	933	1095	1270	3.02
13	96	150	215	293	383		598	724	862	1011	1173	3.55
14	89	139	200	272	356	450	556	672	800	939	1089	4.12
15	83	130	187	254	332	420		627	747	876	1016	4.73
16	78	122	175	238	311	394	486		700	821	953	5.38
17	73	114	165	224	293	371	458	554	659	773	897	6.07
18	69	108	156	212	277	350	432	523	622	730	847	6.80
19	65	102	147	201	262	332	409	495	589	692	802	7.58
20	-	97	140	191	249	315	389	471	560	657	762	8.40
21		93	133	182	237	300	370	448	533	626	726	9.26
22		88	127	173	226	286	354	428	509	597	693	10.16
23		85	122	166	216	274	338	409	487	572	663	11.11
24			117	159	207	263	324	392	467	548	635	12.10
25			112	152	199	252	311	376	448	526	610	13.13
26			108	147	191	242	299	362	431	506	586	14.20
27			104	141	184	233	288	349	415	487	565	15.31
28			100	136	178	225	278	336	400	469	544	16.46
29			97	131	172	217	268	325	386	453	526	17.66
30			93	127	166	210	259	314	373	438	508	18.90
31			90	123	161	203	251	304	361	424	492	20.18
32			88	119	156	197	243	294	350	411	476	21.50
33			85	115	151	191	236	285	339	398	462	22.87
34				112	146	185	229	277	329	387	448	24.28
35	l		1	109	142	180	222	269	320	376	436	25.73

UNIFORMLY DISTRIBUTED BEAMS ONE INCH THICK AND SPRUCE OR EASTERN FIR.

Modulus of rupture 4 200 pounds per square inch.

New safe load = Safe load from table $\times \frac{6}{\text{New factor}}$

Span			1	Depth	of B	eam i	n Inch	les.		1	Deflection Coefficient for White Pine
Feet.	15	16	17	18	19	20	21	22	23	24	V
9	1944	2212	2498	2800	3120	3457	3811	4183	4571	4978	1.70
10	1750	1991	2248	2520	2808	3111	3430	3764	4114	4480	2.10
11	1601	1810	2044	2291	2552	2828	3118	3422	3740	4073	2.54
12	1458	1659	1873	2100	2340	2593	2858	3137	3428	3733	3.02
13	1346	1531	1729	1938	2160	2393	2638	2896	3165	3446	3.55
14	1250	1422	1606	1800	2056	2222	2450	2689	2939	3200	4.12
15	1167	1328	1499	1680	1872	2074	2287	2510	2743	2987	4.73
16	1094	1244	1405	1575	1755	1944	2144	2353	2571	2800	5.38
17	1029	1171	1322	1482	1652	1830	2018	2214	2420	2635	6.07
18	972	1106	1249	1400	1560	1728	1906	2091	2286	2489	6.80
19	921	1048	1183	1326	1478	1637	1805	1981	2165	2358	7.58
20	875	996	1124	1260	1404	1556	1715	1882	2057	2240	8.40
21	833	948	1070	1200	1337	1481	1633	1793	1959	2133	9.26
22	795	905	1022	1145	1276	1414	1559	1711	1870	2036	10.16
23	761	866	977	1096	1221	1353	1491	1637	1789	1948	11.11
24	729	830	937	1050	1170	1296	1429	1569	1714	1867	12.10
25	700		899	1008	1123	1244	1372	1506	1645	1792	13.13
26	673	766	865	969	1080	1197	1319	1448	1582	1723	14.20
27	648	737	833	933	1040	1152	1270	1394	1524	1659	15.31
28	625	711	803	900	1003	1111	1225	1344	1469	1600	16.46
29	603	687	775	869	968	1073	1183	1298	1419	1545	17.66
30	583	664	749	840	936	1037	1143	1255	1371	1493	18.90
31	565	642	725	813	906		1106	1214	1327	1445	20.18
32	547	622	703	787	877	972	1072	1176	1286	1400	21.50
33	534	603	681	764	850	943	1039	1141	1247	1358	22.87
34	515	586	661	741	826	915	1009	1107	1210	1318	24.28
35	500	569	642	720	802	889	980	1076	1176	1280	25.73
36	486	553	624	700	780	864	953	1046	1143	1244	27.22
37	473	538	608	681	759	841	927	1017	1112	1211	28.75
38	460	524	592	663	739	819	903	991	1083	1179	30.32
39	449	511	576	646	720	798	880	965	1055	1149	31.94
40	438	498	562	630	702	778	858	941	1029	1120	33.60

SAFE LOADS IN POUNDS FOR RECTANGULAR OF SHORT-LEAF

Allowable fibre stress 1 000 pounds per square inch. Safety factor 6.

Safe loads for other safety factors may be obtained as follows:

Span				Dep	th of	Bean	n in I	nches	ı.			Deflection Coefficient
Feet.	4	5	6	7	8	9	10	11	12	13	14	V
4	444	694	1000	1361	1778	2250	2778	3361	4000	4694	5444	.40
5	356	556	800	1039	1422	1800	2222	2689	3200	3756	4356	.63
6	296	463	667	907	1185	1500	1852	2241	2667	3130	3630	.90
7	254	397		778	1016	1286	1587	1921	2286	2683	3111	1.23
8	222	347	500	681	889	1125	1389	1681	2000	2347	2722	1.60
9	198	309	444	605	790	1000	1235	1494	1778	2086	2420	2.03
10	178	278	400	544	711	900	1111	1344	1600	1878	2178	2.50
11	162	253	364	495	646		1010	1222	1455	1707	1980	3.03
12	148	231	333	454	593	750	926	1120	1333	1565	1815	3.60
13	137	214	308	419	547	692	855	1034	1231	1444	1675	4.23
14	127	198	286	389	508	643	794	960	1143	1341	1556	4.90
15	119	185	267	363	474	600	741	896		1252	1452	5.63
16	111	174	250	340	444	563	694	840	1000		1361	6.40
17	105	163	235	320	418	529	654	791	941	1105	1281	7.23
18	99	154	222	302	395	500	617	747	889	1043	1210	8.10
19	94	146	211	287	374	474	585	708	842	988	1146	9.03
20	89	139	200	272	356	450	556	672	800	039	1089	10.00
21	85	132	190	259	339	429	529	640	762	894	1037	11.03
22	81	126	182	247	323	409	505	611	727	854	990	12.10
23	77	121	174	237	309	391	483	585	696	816	947	13.23
24		116	162	227	296	375	463	560	667	782	907	14.40
25		111	160	218	284	360	444	538	640	751	871	15.63
26		107	154	209	274	346	427	517	615	722	838	16.90
27		103	148	202	263	333	412	498	593	695	807	18.23
28		09	143	194	254	321	397	480	571	671	778	19.60
29			138	188	245	310	383	464	552	648	751	21.03
30			133	181	237	300	370	448	533	626	726	22.50
31			129	176	229	290	358	434	516	606	703	24.03
32			125	170	222	281	347	420	500	587	681	25.60
33			121	165	215	273	337	407	485	569	660	27.23
34			118	160	209	265	327	395	471	552	641	28.90
35			114	156	203	257	317	384	457	537	602	30.63

Safe loads for any fibre stress may be readily obtained from this table by proportion.

UNIFORMLY DISTRIBUTED, BEAMS ONE INCH THICK, YELLOW PINE.

Modulus of rupture 6 000 pounds per square inch.

New safe load = Safe load from table $\times \frac{6}{\text{New factor}}$

Span				Depth	of Be	am in	Inch	es.			Deflection Coefficient
Feet.	15	16	17	18	19	20	21	22	23	24	V
9	2778	3160	3568	4000	4457	4938	5444	5975	6531	7111	2.03
10	2500	2844	3211	3600	4011	4444	4900	5378	5878	6400	2.50
11	2273	2586	2919	3273	3646	4040	4455	4889	5343	5818	3.03
12	2083	2370	2676	3000	3343	3704	4083	4481	4898	5333	3.60
13	1923	2188	2470	2769	3085	3419	3769	4137	4521	4923	4.23
14	1786	2032	2294	2571	2865	3175	3500	3841	4198	4571	4.90
15	1667	1896	2141	2400	2674	2963	3267	3585	3919	4267	5.63
16	1563	1778	2007	2250	2507	2778	3062	3361	3674	4000	6.40
17	1471	1673	1889	2118	2359	2614	2882	3163	3458	3765	7.23
18	1389	1580	1789	2000	2228	2469	2722	2988	3265	3556	8.10
19	1316	1497	1690	1895	2111	2339	2579	2830	3094	3368	9.03
20	1250	1422	1606	1800	2006	2222	2450	2689	2939	3200	10.00
21	1190	1354	1529	1714	1910	2116	2333	2561	2799	3048	11.03
22	1136	1293	1460	1636	1823	2020	2227	2444	2672	2909	12.10
23	1087	1237	1396	1565	1744	1932	2130	2338	2556	2783	13.23
24	1042	1185	1338	1500	1671	1852	2042	2241	2449	2667	14.40
25	1000	1138	1284	1440	1604	1778	1960	2131	2351	2560	15.63
26	962	1094	1235	1385	1543	1709	1885	2068	2261	2462	16.90
27	926	1053	1189	1333	1486	1646		1992	2177	2370	18.23
28	893	1016	1147	1286	1433	1587	1750	1921	2099	2286	19.60
29	862	981	1107	1241	1383	1533	1690	1854	2027	2207	21.03
30	833	948	1070	1200	1337	1481	1633	1793	1959	2133	22.50
31	806	918	1036	1161	1294	1434	1581	1735	1896	2065	24.03
32	781	889	1003	1125	1253	1389	1531	1681	1837	2000	25.60
33	758	862	973	1091	1215	1347	1485	1630	1781	1939	27.23
34	735	837	944	1059	1180	1307	1441	1582	1728	1882	28.90
35	714	813	917	1029	1146	1270	1400	1537	1677	1829	30.63
36	694	780	894	1000	1114	1235	1361	1494	1633	1778	32.40
37	676	769	568	973	1084	1201	1324	1453	1589	1730	34.23
38	658	749	845	947	1056	1169	1289	1415	1547	1684	36.10
39	641	729	823	923	1028	1140	1256	1379	1507	1641	38.03
40	625	711	803	900	1003	1111	1225	1344	1469	1600	40.00

Safe loads for beams of California Redwood, 34 of above.

SAFE LOADS IN POUNDS FOR RECTANGULAR OF WHITE OAK AND

Allowable fibre stress 1 200 pounds per square inch. Safety factor 6.

Safe loads for other safety factors may be obtained as follows:

Span				Dep	th of	Bean	n in I	nches	3.			Deflection Coefficient.
Feet.	4	5	6	7	8	9	10	11	12	13	14	4
4	533	833	1200	1633	2133	2700	3333	4033	4800	5633	6533	.38
5	427	667	960	1307	1707	2160	2667	3227	3840	4507	5227	.60
6	356	556	800	1089	1422	1800	2222	2689	3200	3756	4356	.86
7	305	476	686	933	1219	1543	1905	2305	2743	3219	3733	1.18
8	267	417	600	817	1067	1350	1667	2017	2400	2817	3267	1.54
9	237	370	533	726	948	1200	1481	1793	2133	2504	2904	1.94
10	213	333	480	653	853	1080	1333	1613	1920	2253	2613	2.40
11	194	303	436	594	776	982	1212	1467	1745	2048	2376	2.90
12	178	278	400	544	711	900	1111	1344	1600	1878	2178	3.46
13	164	256	369	503	656	831	1026	1241	1477	1733	2010	4.06
14	152	238	343	467	610	771	952	1152	1371	1610	1867	4.70
15	142	222	320	436	569	720	889	1076	1280	1502	1742	5.40
16	133	208	300	408	533	675	833	1008		1408	1633	6.14
17	125	196	282	384	502	635	784	949		1325	1537	6.94
18	119	185	267	363	474	600	741	896	1067	1252	1452	7.78
19	112	175	253	344	449	568	702	849	1011	1186	1375	8.66
20	107	167	240	327	427	540	667	807	960	1127	1307	9.60
21	102	159	229	311	406	514	635	768	914	1073	1244	10.58
22	97	152	218	297	388	491	606	733	873	1024	1188	11.62
23	93	145	209	284	371	470	580	701	835	980	1136	12.70
24	89	139	200	272	356	450	556	672	800	939	1089	13.82
25	85	133	192	261	341	432	533	645	768	901	1045	15.00
26		128	185	251	328	415	513	621	738	867	1005	16.22
27		123	178	242	316	400	494	598	711	835	968	17.50
28		119	171	233	305	386	476	576	686	805	933	18.82
29		115	166	225	294	372	460	556	662	777	901	20.18
30		111	160	218	284	360	444	538	640	751	871	21.60
31		108	155	211	275	348	430	520	619	727	843	23.06
32			150	204	267	338	417	504	600	704	817	24.58
33			145	198	259	327	404	489	582	683	792	26.14
34			141	192	251	318	392	475	565	663	769	27.74
35		1	137	187	244	309	381	461	549	644	747	29.40

Safe loads for beams of Douglas Fir, Red Pine (Norway Pine), Cypress, Chestnut and California Spruce, 2% of above.

UNIFORMLY DISTRIBUTED, BEAMS ONE INCH THICK, LONG-LEAF YELLOW PINE.

Modulus of rupture 7 200 pounds per square inch. New safe load = Safe load from table $\times \frac{6}{\text{New factor}}$.

Span				Depth	of Be	am in	Inch	es.			Deflection Coefficient
Feet.	15	16	17	18	19	20	21	22	23	24	V
9	3333	3793	4281	4800	5348	5926	6533	7170	7837	8533	1.94
10	3000	3413	3853	4320	4813	5333	5880	6453	7053	7680	2.40
11	2727	3103	3503	3927	4376	4848	5356	5867	6412	6982	2.90
12	2500	2844	3211	3600	4011	4444	4900	5378	5878	6400	3.46
13	2308	2626	2964	3323	3703	4103	4523	4964	5426	5908	4.06
14	2143	2438	2752	3086	3438	3810		4610	5038	5486	4.70
15	2000	2276	2569	2880	3209	3556	3920	4302	4702	5120	5.40
16	1875	2133	2408	2700	3008	3333	3675	4033	4433	4800	9.14
17	1765	2008	2267	2541	2831	3137	3459	3796	4149	4518	6.94
18	1667	1896	2141	2400	2674	2963	3267	3585	3819	4267	7.78
19	1579	1796	2027	2274	2533	2807	3095	3396	3712	4042	8.66
20	1500	1707	1927	2160	2407	2667	2940	3227	3527	3840	9.60
21	1429	1625	1835	2057	2292	2540	2800	3073	3359	3657	10.58
22	1364	1552	1752	1964	2188	2424	2678	2933	3206	3491	11.62
23	1304	1484	1675	1878	2093	2319	2557	2806	3067	3339	12.70
24	1250	1422	1606	1800	2006	2222	2450	2689	2939	3200	13.82
25	1200	1365	1541	1728	1925	2133	2352	2581	2821	3072	15.00
26	1154	1313	1482	1662	1851	2051	2262	2482	2713	2954	16.22
27	1111	1264	1427	1600	1783	1975	2178	2390	2612	2844	17.50
28	1071	1219	1376	1543	1719	1905	2100	2305	2519	2743	18.82
29	1034	1177	1329	1490	1660	1839	2028	2225	2432	2648	20.18
30	1000	1138	1284	1440	1604	1778	1960	2151	2351	2560	21.60
31	968	1101	1243	1394	1553	1720	1897	2082	2275	2477	23.06
32	938	1067	1204	1350	1504	1667	1838	2017	2217	2400	24.58
33	909	1034	1168	1309	1459	1616	1785	1956	2137	2327	26.14
34	882	1004	1133	1271	1416	1569	1729	1898	2075	2259	27.74
35	857	975	1101	1234	1375	1524	1680	1844	2013	2194	29.40
36	833	948	1070	1200	1337	1481	1633	1793	1959	2133	31.10
37	811	923	1041	1168	1301	1441	1589	1744	1906	2076	32.86
38	789	893	1014	1137	1267	1404	1547	1698	1856	2021	34.66
39	769	875	988	1108	1234	1368	1508	1655	1809	1969	36.50
40	750	853	963	1080	1203	1333	1470	1613	1763	1920	38.40

Safe loads for beams of Hemlock, 1/2 of above.

STRENGTH OF SOLID WOODEN COLUMNS OF DIFFERENT KINDS OF TIMBER.

For various values of $\frac{1}{d}$.

l = length of column in inches. d = least diameter in inches.

Based on the Formula of the U. S. Department of Agriculture, Division of Forestry.

$$P = F \times \frac{700 + 15c}{700 + 15c + c^2}$$

P = ultimate strength in pounds per square inch.

F = ultimate crushing strength of timber. $c = \frac{1}{d}$

Values of F are those given in table on pages 414 and 415 herein.

	Ultimate	Ultimate Strength in Pounds per Square Inch.									
	White Oak and Southern Long-leaf or Georgia Yellow Pine.	Douglas Fir and Short-leaf Yellow Pine.	Red Pine (Norway Pine), Spruce or Eastern Fir, Hemlock, Cypress, Chestnut, California Redwood and Cali- fornia Spruce.	White Pine and Cedar.							
F	5000	4500	4000	3500							
<u>1</u>											
2 3	4973	4475	3978	3481							
3	4940	4446	3952	3458							
4	4897	4407	3918	3428							
5	4844	4359	3875	3391							
6	4782	4304	3826	3347							
7	4713	4242	3770	3299							
8	4638	4174	3710	3247							
9	4558	4102	3646	3190							
10	4474	4026	3579	3132							
11	4386	3948	3509	3070							
12	4297	3867	3438	3008							
13	4206	3785	3365	2944							
14	4114	3703	3291	2880							
15	4022	3620	3217	2815							
16	3930	3537	3144	2751							
17	3838	3455	3071	2687							
18	3748	3373	2998	3624							
19	3659	3293	2927	2561							

For safety factors for various classes of structures to be used in connection with the above table, see p. 408.

STRENGTH OF SOLID WOODEN COLUMNS OF DIFFERENT KINDS OF TIMBER.

For various values of $\frac{1}{d}$.

1 = length of column in inches. d = least diameter in inches. Based on the Formula of the U. S. Department of Agriculture, Division of Forestry.

$$P = F \times \frac{700 + 15c}{700 + 15c + c^2}$$

P = ultimate strength in pounds per square inch.

F = ultimate crushing strength of timber. $c = \frac{1}{d}$

Values of F are those given in table on pages 414 and 415 herein.

	Ultimate Strength in Pounds per Square Inch.								
	White Oak and Southern Long-leaf or Georgia Yellow Pine.	Douglas Fir and Short-leaf Yellow Pine.	Red Pine (Norway Pine). Spruce or Eastern Fir. Hemlock, Cypress, Chestnut, California Bedwood and Cali- fornia Spruce.	White Pine and Cedar.					
F	5000	4500	4000	3500					
1 1	05.83	2214	0055	2500					
20	3571	3214	2857	2500					
21	3486	3137	2788	2440					
22	3402	3061	2721	2381					
23	3320	2988	2656	2324					
24	3240	2916	2592	2268					
25	3162	2846	2529	2213					
26	3086	2777	2469	2160					
27	3013	2711	2410	2109					
28	2941	2647	2353	2059					
29	2872	2585	2298	2010					
30	2805	2524	2244	1963					
32	2677	2409	2142	1874					
34	2557	2301	2046	1790					
36	2445	2200	1956	1711					
38	2340	2106	1872	1638					
40	2241	2017	1793	1569					
42	2149	1934	1719	1505					
44	2063	1857	1650	1444					
46	1982	1784	1586	1388					
48	1907	1716	1525	1335					
50	1835	1652	1468	1285					

For safety factors for various classes of structures to be used in connection with the above table, see p. 408.

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches. Weight of One Cubic Foot, 62.355 Pounds.	Average Specific Gravity. Water = 1.	Average Weight of One Cubic Foot. Pounds.
Acid, acetic, 90%	1.062 1.20 1.20 1.217 1.558 1.841	66.3 75 75 76 97.2
Air, atmospheric at 60 degrees F., under pressure of one atmosphere, or 14.7 pounds per square inch, weighs \(\frac{1}{2} \) as much as water	.00123	.0765.
Alabaster		160
Alcohol, commercial	.833	52
Alder wood	.68	42
Alum	.53	33
Aluminum bronze, 10%	7.70 8.26 2.74	480 516 170.9
" " cast	2.85	178.1
" " rolled	2.76	172.1
pure, annealed	2.66 2.56	165.9 159.6
cast	2.68	167.1
" wire	2.70	168
wrought	2.67	167
Ammonia, liquid, 29%	.897	56
Anthracite, 1.3 to 1.84; of Penna., 1.3 to 1.7	1.5	93.5
broken, or any size, loose		52 to 57 56 to 60
" moderately shaken" " heaped bushel, loose, 77 to 83		
pounds a ton loose occupies 40 to 43 cubic		
feet		
Antimony, cast	6.70	418
native	6.67	416
Apple wood.	5.67	354
	2.40	149
Ash, American white, dry (see note p. 433)	.61	38
" perfectly dry (see note p. 423)	.752	47
Ashes of soft coal, solidly packed.		40 to 45
Asphaltum, 1 to 1.8.	1.4	87.3
and a second sec		01.0
D . 1	95	00
Bamboo wood	.35	22
Barley	2.86	40
Basalt		178
Beech wood	.73	46
Beer, lager	1.034	64.5

The Basis for Specific Gravities is Pure Water at 62 Degrees Fab., Barometer 30 Inches. Weight of One Cubic Foot, 62.355 Pounds.	Average Specific Gravity. Water = 1.	Average Weight of One Cubic Poot. Pounds.
Beeswax	.965	60,2
Benzine	,500	50
Birch wood	.65	41
Bismuth	9.78	611
		31
Bleaching powder		150
Bluestone		
Borax	0.7	110
Boxwood	.97	60
Brass, cu. 67, zn. 33, cast	8.32 8.59	519 535
high yellow plates	8.22	512
" Naval rolled	8.51	530
sheet	8.46	527
" wire	8.56	533
Brick, best pressed		150
common and hard		125
" soft inferior		100
Brickwork, at 125 pounds per cubic foot, 1 cubic yard equals 1.507 tons, and 17.92 cubic feet equal 1 ton.		
coarse, inferior, soft:		100
" medium quality		125
pressed brick, fine joints		140
Bronze, cu. 90, tin 10	8.67	541
" gun	8.75	546
100111	8.38	523
Butter	.94	59
Butternut wood	.45	28
Calcite		170
Calcium	1.57	98
Camphor.	.99	61.7
Caoutchouc		60
	.96	
Carbon	2.15	134
Carpet		12
Caustic soda		88
Cedar, American	.56	35
mortar, Portland, 1:2½		135
natural, per parrel, net, 282 pounds		
" bag, net, 94 pounds		99 40 09
" packed, as in barrels		88 to 92
" per bag, net, 94 pounds		103 (0 110

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches. Weight of One Cubic Foot, 62.355 Pounds.	Average Specific Gravity.	Average Weight of One Cubic Foot. Pounds.
	11 00002 2.	
Cement, Portland, per barrel, net, 376 pounds. " standard proportioning. " set. Chalk. Charcoal of pines and oaks. Cheese. Cherry wood, perfectly dry (see note p. 433) Chestnut. Chromium.	2.85 2.5 .672 .66 6.8	100 178 156 15 to 30 30 42 41 425
Cider	1.02	63.4
Cinders (coal ashes and clinkers) Cinnabar Citron Clay, dry in lump, loose a hard, ordinary. potters', dry, 1.8 to 2.1 Coal, anthracite (see Anthracite).	8.81 .73 2.1 1.9	40 550 45 63 150 119
bituminous, a heaped bushel, loose, 70 to 78 broken, of any size, loose moderately shaken moderately shaken " solid, Cambria Co., Pa., 1.27-1.34 " " 1.2 to 1.5 " " ton occupies 43 to 48 cubic feet	1.35	47 to 52 51 to 56 79 to 84 84
" lignite	.83	52
Cobalt	8.77 1.34	546 85
" good quality		23 to 32
" 1 ton occupies 80 to 97 cubic feet. Concrete, cinder, with Portland cement. " conglomerate " " " gravel " " " limestone " " " sandstone " " " trap loose, unrammed, weighs 5 to 25% lighter, varying with consistency.		112 150 150 148 143 155
Copper, cast, 8.6 to 8.8. hammered. plates and sheets. pure. rolled, 8.8 to 9. wire. wrought. Cork, dry (see note p. 433).	8.7 8.93 8.93 8.82 8.9 8.89 8.9	542 557 557 549 555 554 555 15

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches.	Average Specific Gravity,	Average Weight of One Cubic Foot.
Weight of One Cubic Foot, 62.355 Pounds.	Water=1.	Pounds.
Corn		31
Cornmeal.		37
Corundum, pure, 3.8 to 4.	3.9	
Cotton goods	0.0	11-33
Crockery		40
Cypress wood.	.46	29
Dy paces in out		
Dogwood	.76	47
Dolomite		180
Dolomice		100
Ently was a first to the		70 . 00
Earth, common loam, perfectly dry, loose		72 to 80 82 to 92
" " rammed		90 to 100
slightly moist, loose		70 to 76
more moist, loose		66 to 68 75 to 90
a a a a a shaken		90 to 100
as soft flowing mud		104 to 112
well pressed.		110 to 120
Ebonite	1.15	72
Ebony wood, American	1.33	83
" Indian	1.21	75
Eggs	.70	
Elm wood, perfectly dry (see note p. 433)	.56	35
Eim wood, perfectly dry (see note p. 433)	.50	33
Fat—beef, hog and mutton	.92	57
Feldspar		160
Fir wood	.55	34
Flax		90
Flint	2.6	162
Flour, compact		40
4 loose		30
Gamboge	1.22	76
Gasoline (motor)	.7175	44 to 47
Glass, common window	2.52	157
crown or plate		160
crystal flint.	2.70	188
Glassware in boxes.	3.70	230
Gneiss, common, 2.62 to 2.76.	2.69	168
Oucles, Commun, 2.02 CO 2.10	2.09	100

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches.	Average Specific Gravity,	Average Weight of One Cubic Foot,
Weight of One Cubic Foot, 62.355 Pounds.	Water=1.	Pounds.
Gneiss, in loose piles		96
Gold, cast, pure or 24-karat	19.258	1204
pure, hammered	19.5	1217
standard 22-k. (gold 11, copper 1)	17.5	1090
Granite, solid	2.72	170 96
" broken" dressed		165
" rubble		154
" dry		138
Graphite		130
Gravel		120
" and sand		90-130
Greenstone, trap, 2.8 to 3.2	3.00	187
Gum arabic	1.45	90
Gum wood	.92	57
Gunpowder, loose	.90	56
shaken	1.00	62.4
« solid	1.55-1.80	97-113
Gutta-percha	.98	61
Gypsum, plaster of Paris or stucco mixed with water		
into a stiff mass, such as mortar, set and		77
dried out " rock, natural, free from surface water, not		11
calcined in block form		140-145
" crushed, not calcined, all to pass through		
1-inch ring		90-100
ground, 90% to pass through 100-mesh screen		
dried of all free moisture, not calcined, known as "land plaster"		75-80
same, but calcined, known as "stucco" or		10-00
"plaster of Paris"—loose		55-65
well shaken down or in bins		65-75
Hackmatack wood (American larch) (tamarack)	.59	37
Hav. baled	.00	24
Hazel wood	.60	38
Hemlock wood	.40	25
Hemp.	.40	90
Hickory wood, perfectly dry (see note p. 433)	.85	53
Holly wood.	.85	47
	1.45	91
Honey	0.22	1
Hornbeam wood	.76	47
Hornblende		190
Human blood	1.054	65.7

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches. Weight of One Cubic Foot, 62.355 Pounds.	Average Specific Gravity. Water = 1.	Average Weight of One Cubic Foot. Pounds.
Hydrogen	.00008	.0052
Ice, .917 to .922.	.92	57.4
India rubber	.93	58
Indigo	1.01	63
Iron, cast, 6.9 to 7.4	7.15	446
grey cast	7.08	442
" foundry, cold	7.21 6.94	450 433
" molten	7.86	491
white cast	7.65	477
« wire	7.77	485
" wrought	7.69	480
Jasmine wood, Spanish.	.77	48
Juniper wood	.56	35
Larch wood	.56	35
Lard	.95	59
Lead, cast	11.37	708
" commercial	11.38	709.6
* sheet	11.43	712
Leather, dry	.86 1.02	54
greased. in bales.	1.02	64 16–23
Lignite		80
Lignum-vitæ wood (dry)	.65-1.33	41 to 83
Lime	1.03	64
" quick	1.03	95
ground, thoroughly shaken, per struck	1.0	95
bushel 93¾ pounds well shaken, per struck bushel		75
80 pounds		64
Limestone and marble	2.6	164.4
broken	1.61	100
" solid	2.70	168
Linden wood	.60	38
Locust wood, dry (see note p. 433)	1.23	77
Logwood	.71	44
	.91	57
Lye		110
Magnesite.		190

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches Weight of One Cubic Poot, 62.355 Pounds.	Average Specific Gravity. Water=1.	Average Weight of One Cubic Foot. Pounds.
	7 774	100
Magnesium	1.74	109
Mahogany wood, Spanish, dry (see note p. 433) Honduras, dry (see note p. 433)	.85 .56	53 35
Manganese	8.00	500
Maple wood, dry (see note p. 433)	.79	49
Marl		140 -
Masonry debris		90
" of brickwork (see Brickwork).		
" granite or limestone, well dressed " well-scabbled mortar rubble,		165
about ½ of mass will be mortar		154
well-scappled dry rupple		138
" " roughly scabbled mortar rubble, about ½ to ½ of mass will be		
mortar		150
scabbled dry rubble		125
" sandstone, 1/8 less than granite		
Mastic wood	.85	53 849
Mercury, at 32° F	13.62 13.5	846
Mica, 2.75 to 3.1	2.93	183
Milk	1.03	64.5
Molybdenum	8.50	532
Mortar, hardened, 1.4 to 1.9	1.65	103
Muck (decayed vegetable matter, manure, etc.)	.92	57
Mud, dry, close wet, moderately pressed fluid		80 to 110 110 to 130 104 to 120
Mulberry wood	.73	46
Nickel, cast	8.29	516
roiled	8.69	541
" silver (52 cu. +26 zn. +22 ni.)	8.44	527
Nitrogen	.00125	.0782
Oak wood, heart of old	1.17	73
" live, perfectly dry, .88-1.02 (see note p. 433)	.95	59.3
" red, black, perfectly dry		32 to 45
write	.84	52
		27
Oil—bone, colza, cylinder, engine, 500° fire test, mustard seed, neatsfoot, paraffin, rape seed,		
tallow	.90	56.2
" burning (kerosene), 150° and 300°	.83	51.7

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches. Weight of One Cubic Foot, 62:355 Founds.	Average Specific Gravity. Water = 1	Average Weight of One Cubic Foot. Pounds.
Oil, cotton seed gasoline (motor) lard linseed mineral lubricating Navy sperm olive petr leum signal turpentine whale Oxygen		60.2 44 to 49 57.4 58.8 57 54 57 55 53 54 58
Paper, calendered strawboard newspaper writing or wrapping Paraffine Pear wood Peat Petroleum Phosphate rock	.89 .66	50-70 33-44 70-90 55.5 41 50 54.8 200
Pine wood, white. yellow, Northern Southern Pitch.	.40 .55 .72 1.15	25 34 45 71.7
Plaster	21.5	53 1342
Poplar wood, dry (see note p. 433)	.78 .47 .53	49 29 33
Porcelain Potassium Potatoes, in pile Proof spirit	2.40	149 54 45 58
Pumice stone	.63 2.65	39 165
Rags in bales		15–36 30 42 68.6

The Basis for Specific Gravities is Pure Water at 62 Degrees Fah., Barometer 30 Inches.	Average Specific Gravity.	Average Weight of One Cubic Foot.
Weight of One Cubic Foot, 62.355 Pounds.	Water=1.	Pounds.
Rubber		60
Rubber goods		95
Rye		50
Nye		50
Salt, coarse (per struck bushel, Syracuse, N. Y., 56 lbs.)		45
Saltpetre		68
Sand, of pure quartz, perfectly dry and loose		90 to 106
voids full of water		118 to 129
wery large and small grains, dry.		144
" 2.1 to 2.73, 131 to 171	2.41	151
quarried and piled, 1 measure solid makes		86
1¾ (about) piled	.48	30
Sassafras wood	2.6	162
Silk	, 2.0	8-32
Silver.	10.5	655
Slag.	10.0	160 to 180
furnace, granulated		53
Slate, 2.7 to 2.9	2.8	175
Snow, fresh-fallen		5 to 12
moistened, compacted by rain		15 to 50
Soapstone, 2.65 to 2.8	2.73	170
Soda ash		62
Sodium	.97	61
Spelter, 6.8 to 7.2	7.00	437.5
Spermaceti	.94	59
Spruce wood.	.50	31.2 28.7
Starch.		95
Starch (in barrels)		23
Steam at 212° F	.0006	.0368
Steel	7.85	489.6
Straw, baled		24
Sugar,	1.60	100
" stored	2.00	42 125
Sumac wood.	2.00	39
Sycamore wood, perfectly dry (see note p. 433)	.59	37
bycamore wood, pericent dry (see note p. 188)	.00	01
Talc		170
Tallow.	.94	58.6
Tar		71.7

The Baxis for Specific Gravities is Pure Water at 62 Degrees Pah., Barometer 30 Inches.	Average Specific Gravity.	Average Weight of One Cubic Foot.
Weight of One Cubic Foot, 62.355 Pounds.	Water=1	Pounds.
Teak wood	.82	51
Tin, cast, 7.2 to 7.5.	7.35 7.29	459 455
Tobacco		28
Trap rock, compact	3.02	188
" " in pile		190
Tungsten	19.1	1192
Turf	.40	25
Vanadium	5.5	343
Vapor, alcohol	.00198	.122
" turpentine spirits	.00615	.378
" water	.00077	.047
Vine wood	1.33	83
Vinegar	1.08	67.4
Walnut wood, black, perfectly dry (see note below)	.61	38
Water, pure rain, distilled, at 32° F., Bar. 30 inches.		62.417
" " " " " " 30 " " 30 " " " 30 " " " 30 " " " 30 " " " 30 " " " "	1	62.355
* sea, 1.026 to 1.030	1.028	59.7 64.08
Wax, bees-		61
		39-44
White metal (Babbitts)		00 ==
Willow wood	7.32	456
	.54	34
Wine	.99	62
Wool, in bales		15-22
Woolen goods		13-22
Yew wood	.79	49
Zinc, cast	6.86	428
" pure	7.15	446
" rolled	7.19	449

NOTE.—Green timbers usually weigh from one-fifth to nearly one-half more than dry; ordinary building timbers, tolerably seasoned, one-sixth more.

For specific gravities of woods not given in this table, see page 408.

STANDARD DECIMAL GAUGE.

Standard	Thickness	Approximate		Square Foot Avoirdupois.
Decimal Gauge in Inches.	in Fractions of an Inch.	Thickness in Millimetres.	IRON. Basis—480 Pounds per Cubic Foot.	STEEL. Basis—489.6 Pounds per Cubic Foot.
.002 .004 .006 .008	1-500 1-250 3-500 1-125 1-100	.05080010 .10160020 .15240030 .20320041 .25400051	.08 .16 .24 .32 .40	.0816 .1632 .2448 .3264 .4080
.012	$3-250$ $7-500$ $2-125(\frac{1}{64}+)$ $9-500$ $1-50$.30480061	.48	.4896
.014		.35560071	.56	.5712
.016		.40640081	.64	.6528
.018		.45720091	.72	.7344
.020		.50800102	.80	.8160
.022	$\begin{array}{c} 11\text{-}500 \\ 1\text{-}40 \\ 7\text{-}250 \\ 4\text{-}125(\frac{1}{27}+) \\ 9\text{-}250 \end{array}$.55880112	.88	.8976
.025		.63500127	1.00	1.0200
.028		.71120142	1.12	1.1424
.032		.81280163	1.28	1.3056
.036		.91440183	1.44	1.4688
.040	1-25	1.01600203	1.60	1.6320
.045	9-200	1.14300229	1.80	1.8360
.050	1-20	1.27000254	2.00	2.0400
.055	11-200	1.39700280	2.20	2.2440
.060	3-50 (1)	1.52400305	2.40	2.4480
.065	13-200	1.65100330	2.60	2.6520
.070	7-100	1.77800356	2.80	2.8560
.075	3-40	1.90500381	3.00	3.0600
.080	2-25	2.03200406	3.20	3.2640
.085	17-200	2.15900432	3.40	3.4680
.090	9-100	2.28600457	3.60	3.6720
.095	19-200	2.41300483	3.80	3.8760
.100	1-10	2.54000508	4.00	4.0800
.110	11-100	2.79400559	4.40	4.4880
.125	1-8	3.17500630	5.00	5.1000
.135	27-200	3.42900686	5.40	5.5080
.150	3-20	3.81000762	6.00	6.1200
.165	33-200	4.19100838	6.60	6.7320
.180	9-50	4.57200914	7.20	7.3440
.200	1-5	5.08001016	8.00	8.1600
.220	11-50	5.58801118	8.80	8.9760
.240	6-25	6.09601219	9.60	9.7920
.250	1-4	6.35001270	10.00	10.2000

WIRE AND SHEET METAL GAUGES.

In Decimals of an Inch.

Number of Gauge.	Birmingham or Stubs Iron Wire Gauge (B. W. G.)	American or Brown & Sharpe Wire Gaugo.	United States Standard Gauge for Sheet and Plate Iron and Steel.	Washburn & Moen Manufacturing Co. and John A. Roebling's Sons Co. Wire Gauge.	Trenton Iron Co. Wire Gauge.	American Screw Co. Screw Wire Gauge.	British Imperial or English Legal Standard Wire Gauge.	New Birmingham Standard Shoet and Hoop Gauge (B. G.)
7/0 6/0 5/0 4/0 3/0 00 0	.454 .425 .380 .340	.460000 .409642 .364796 .324861	.5 .46875 .4375 .40625 .375 .34375 .3125	.4600 .4300 .3938 .3625 .3310 .3065	.450 .400 .360 .330	.0315 .0447 .0578	.500 .464 .432 .400 .372 .348	.6666 .625 .5883 .5416 .500 .4452
1 2 8 4 5	.300 .284 .259 .238 .220	.289297 .257627 .229423 .204307 .181940	.28125 .265625 .25 .234375 .21875 .203125	.2830 .2625 .2437 .2253 .2070	.285 .265 .245 .225 .205	.0710 .0842 .0973 .1105 .1236	.300 .276 .252 .232 .212	.3532 .3147 .2804 .250 .2225
1 2 2 4 4 5 6 7 8 9 10 11 12 13 14 15	.180 .165 .148 .134 .120 .109	.144285 .128490 .114423 .101897 .090742 .080808 .071962	.1875 .171875 .15625 .140625 .125 .109375	.1770 .1620 .1483 .1350 .1205 .1055 .0915	.175 .160 .145 .130 .1175 .105 .0925	.1500 .1631 .1763 .1894 .2026 .2158	.176 .160 .144 .128 .116 .104	.1764 .1570 .1398 .1250 .1113 .0991
14 15 16 17 18 19 20	.083 .072 .065 .058 .049 .042	.064084 .057068 .050821 .045257 .040303 .035890	.078125 .0703125 .0625 .05625 .05 .04375	.0800 .0720 .0625 .0540 .0475 .0410	.0806 .070 .061 .0525 .045	.2421 .2552 .2684 .2816 .2947 .3079 .3210	.080 .072 .064 .056 .048	.0785 .0699 .0625 .0556 .0495
21 22 23 24 25	.035 .032 .028 .025 .032 .020	.031961 .028462 .025346 .022572 .020101 .017900	.0375 .034375 .03125 .028125 .025 .021875	.0348 .03175 .0286 .0258 .0230 .0204 .0181	.035 .031 .028 .025 .0225 .020	.3342 .3474 .3605 .3737 .3868	.036 .032 .028 .024 .022 .020	.0392 .0349 .03125 .02782 .02476 .02204
26 27 28 29 30 31	.016 .014 .013 .012 .010	.014195 .012641 .011257 .010025 .008928 .007950	.0171875 .015625 .0140625 .0125 .0109375 .01015625	.0173 .0162 .0150 .0140 .0132 .0128	.017 .016 .015 .014 .013 .012	.4132 .4263 .4395 .4526 .4658 .4790	.0164 .0148 .0136 .0124 .0116 .0108	.01745 .015625 .0139 .0123 .0110
31 32 33 34 35 36 37 38 39	.008 .007 .005 .004	.007080 .006305 .005615 .005000 .004453 .003965	.009375 .00859375 .0078125 .00703125 .006640625	.0118 .0104 .0095 .0090 .0085	.011 .010 .0095 .009 .0085 .008	.4921 .5053 .5184 .5316 .5448 .5579	.0100 .0092 .0084 .0076 .0068 .0050	.0087 .0077 .0069 .0061 .0054 .0048
40		.003531		.0075	.0075	.5711 .5842	.0052	.0043

WEIGHTS OF SHEETS AND PLATES OF STEEL, WROUGHT IRON, COPPER AND BRASS.

American or Browne & Sharpe Gauge.

Number	Thickness		Weight per	Square Foot.	
of Gauge.	in Inches.	Steel.	Iron.	Copper.	Brass.
0000	.460000	18.7680	18.4000	20.8380	19.6880
	.409642	16.7134	16.3857	18.5568	17.5327
	.364796	14.8837	14.5918	16.5253	15.6133
0	.324861	13.2543	12.9944	14.7162	13.9041
1	.289297	11.8033	11.5719	13.1052	12.3819
2	.257627	10.5112	10.3051	11.6705	11.0264
3	.229423	9.3605	9.1769	10.3929	9.8193
4	.204307	8.3357	8.1723	9.2551	8.7443
5	.181940	7.4232	7.27 76 6.4809 5.7714 5.1396 4.5769	8.2419	7.7870
6	.162023	6.6105		7.3396	6.9346
7	.144285	5.8868		6.5361	6.1754
8	.128490	5.2424		5.8206	5.4994
9	.114423	4.6685		5.1834	4.8973
10	.101897	4.1574	4.0759	4.6159	4.3612
11	.090742	3.7023	3.6297	4.1106	3.8838
12	.080808	3.2970	3.2323	3.6606	3.4586
13	.071962	2.9360	2.8785	3.2599	3.0800
14	.064084	2.6146	2.5634	2.9030	2.7428
15	.057068	2.3284	2.2827	2.5852	2.4425
16	.050821	2.0735	2.0328	2.3022	2.1751
17	.045257	1.8465	1.8103	2.0501	1.9370
18	.040303	1.6444	1.6121	1.8257	1.7250
19	.035890	1.4643	1.4356	1.6258	1.5361
20	.031961	1.3040	1.2784	1.4478	1.3679
21	.028462	1.1612	1.1385	1.2893	1.2182
22	.025346	1.0341	1.0138	1.1482	1.0848
23	.022572	.92094	.90288	1.0225	.96608
24	.020101	.82012	.80404	.91058	.86032
26 27 28 29	.017900 .015941 .014195 .012641 .011257	.73032 .65039 .57916 .51575 .45929	.71600 .63764 .56780 .50564 .45028	.81087 .72213 .64303 .57264 .50994	.76612 .68227 .60755 .54103 .48180
30	.010025	.40902	.40100	.45413	.42907
31	.008928	.86426	.35712	.40444	.38212
32	.007950	.32436	.31800	.36014	.34026
33	.007080	.28886	.28320	.32072	.30302
34	.006305	.25724	.25220	.28562	.26985
35	.005615	.22909	.22460	.25436	.24032
36	.005000	.20400	.20000	.22650	.21400
37	.004453	.18168	.17812	.20172	.19059
38	.003965	.16177	.15860	.17961	.16970
89	.003531	.14406	.14124	.15995	.15113
40	.003144	.12828	.12576	.14242	.13456

For weights of steel plates &" and over in thickness, see "Table of Weights of Flat Rolled Bars," pages 475 to 486 inclusive.

WEIGHTS OF SHEETS AND PLATES OF STEEL, WROUGHT IRON, COPPER AND BRASS.

Birmingham Wire Gauge (B. W. G.)

Number	Thickness		Weight per Square Foot.			
of Gauge.	in Inches.	Steel.	Iron.	Copper.	Brass.	
0000	.454	18.5232	18.16	20.5662	19.4312	
	.425	17.3400	17.00	19.2525	18.1900	
	.380	15.5040	15.20	17.2140	16.2640	
0	.340	13.8720	13.60	15.4020	14.5520	
1	.300	12.2400	12.00	13.5900	12.8400	
2	.284	11.5872	11.36	12.8652	12.1552	
3	.259	10.5672	10.36	11.7327	11.0852	
4	.238	9.7104	9.52	10.7814	10.1864	
5	.220	8.9760	8.80	9.966	9.4160	
6	.203	8.2824	8.12	9.1959	8.6884	
7	.180	7.3440	7.20	8.1540	7.7040	
8	.165	6.7320	6.60	7.4745	7.0620	
9	.148	6.0384	5.92	6.7044	6.3344	
10	.134	5.4672	5.36	6.0702	5.7352	
11	.120	4.8960	4.80	5.4360	5.1360	
12	.109	4.4472	4.36	4.9377	4.6652	
13	.095	3.8760	3.80	4.3035	4.0660	
14	.083	3.3864	3.32	3.7599	3.5524	
15	.072	2.9376	2.88	3.2616	3.0816	
16	.065	2.6520	2.60	2.9445	2.7820	
17	.058	2.3664	2.32	2.6274	2.4824	
18	.049	1.9992	1.96	2.2197	2.0972	
19	.042	1.7136	1.68	1.9026	1.7976	
20 21 22 23 24	.035 .032 .028 .025 .022	1.4280 1.3056 1.1424 1.0200 .8976	1.40 1.28 1.12 1.00	1.5855 1.4496 1.2684 1.1325 .9966	1.4980 1.3696 1.1984 1.0700	
25	.020	.8160	.80	.9060	.8560	
26	.018	.7344	.72	.8154	.7704	
27	.016	.6528	.64	.7248	.6848	
28	.014	.5712	.56	.6342	.5992	
29	.013	.5304	.52	.5889	.5564	
30	.012	4896	.48	.5436	.5136	
31	.010	4080	.40	.4530	.4280	
32	.009	3672	.36	.4077	.3852	
33	.008	3264	.32	.3624	.3424	
34	.007	2856	.28	.3171	.2996	
85	.005	.2040	.20	.2265	.2140	
36	.004	.1632	.16	.1812	.1712	
Specific Grawinght of	avities	7.85 489.6 .2833	7.70 480.0 .2778	8.72 543.6 .3146	8.24 513.6 .2972	

COMBINED TABLE OF SIZES IN THE PRINCIPAL WIRE GAUGES.

Values printed in bold-faced type are exact; values not exact are rounded off to four significant figures, except diameters of the American (B. & S.) Wire Gauge and of the Metric Wire Gauge in the column headed "Diameter, inches," are given to 0.001 inch for the larger sizes and to 0.0001 inch for the smaller. This represents the usual degree of accuracy in the measurement of wires.

I	Diameter		V	7ire G	auge N	lumber	s		Cross S	ection	
Mils	Mm.	Ins.	American (B. & S.)	Washburn & Moen	Birmingham (Stubs')	British Standard	Metric	Sq. Ins.	Sq. Mils	Circular Mils	Sq. Mm.
500 490 464	12.70 12.45 11.79	.500 .490 .464		7-0				.1963 .1886 .1691	188 600	250 000 240 100 215 300	126.7 121.7 109.1
461.5 460 454	11.70 11.68 11.53	.4615 .460 .454	4-0	6-0	4-0			.1673 .1662 .1619	166 200	213 000 211 600 206 100	107.9 107.2 104.4
432 430.5 425	10.97 10.93 10.80	.432 .4305 .425		5-0	3–0			.1466 .1456 .1419	145 600	186 600 185 300 180 600	94.56 93.91 91.52
409.6 400 393.8	10.40 10.16 10.00	.410 .400 .3938	3-0			4-0		.1318 .1257 .1218	125 700	167 800 160 000 155 100	85.03 81.07 78.58
393.7 380 372	10.0 9.652 9.449	.3937 .380 .372				3-0	100	.1217 .1134 .1087	113 400	155 000 144 4 0 0 138 400	78.54 73.17 70.12
364.8 362.5 354.3	9.266 9.208 9.0	.365 .3625 .354	2-0	3-0			90	.1045 .1032 .098 61	103 200	133 100 131 400 125 500	67.43 66.58 63.62
348 340 331	8.839 8.636 8.407	.348 .340 .331			0			.095 11 .090 79 .086 05	90 790	121 100 115 600 109 600	61.36 58.58 55.52
324.9 324 315	8.251 8.230 8.0	.325 .324 .315	0			0	80	.082 89 .082 45 .077 91	82 450	105 500 105 000 99 200	53.48 53.19 50.27
306.5 300 289.3	7.785 7.620 7.348	.3065 .300 .289	1	0	1	1		.073 78 .070 69 .065 73	73 780 70 690 65 730	90 000	47.60 45.60 42.41

Ι)iam ete		7	Vire G	auge N	Vumber	18		Cross S	Section	
Mils	Mm.	Ins.	American (B. & S.)	Washburn & Moen	Birmingham (Stubs')	British Standard	Metric	Sq. Ins.	Sq. Mils	Circular Mils	Sq. Mm.
284 283 276	7.214 7.188 7.010	.284 .283 .276		1	2	2		.063 35 .062 90 .059 83	63 350 62 900 59 830	80 660 80 090 76 180	40.87 40.58 38.60
275.6 262.5 259	7.0 6.668 6.579	.276 .2625 .259		2	3		70	.059 65 .054 12 .052 69	59 650 54 120 52 690	75 950 68 910 67 080	38.48 34.92 33.99
257.6 252 243.7	6.544 6.401 6.190	.258 .252 .2437	2	3		3		.052 13 .049 88 .046 64	52 130 49 880 46 640	66 370 63 500 59 390	33.63 32.18 30.09
238 236.2 232	6.045 6.0 5.893	.238 .236 .232			4	4	60	.044 49 .043 83 .042 27	44 490 43 830 42 270	56 640 55 800 53 820	28.70 28.27 27.27
229.4 225.3 220	5.827 5.723 5.588	.229 .2253 .220	3	4	5			.041 34 .039 87 .038 01	41 340 39 870 38 010	52 630 50 760 48 400	26.67 25.72 24.52
212 207 204.3	5.385 5.258 5.189	.212 .207 .204	4	5		5		.035 30 .033 65 .032 78	35 300 33 650 32 780	44 940 42 850 41 740	22.77 21.71 21.15
203 196.8 192	5.156 5.0 4.877	.203 .197 .192		6	6	6	50	.032 37 .030 43 .028 95	32 370 30 430 28 950	41 210 38 750 36 860	20.88 19.63 18.68
181.9 180 177.2	4.621 4.572 4.5	.182 .180 .177	5		7		45	.026 00 .025 45 .024 65	26 000 25 450 24 650	33 100 32 400 31 390	16.77 16.42 15.90
177 176 165	4.496 4.470 4.191	.177 .176 .165		7	8	7		.024 61 .024 33 .021 38	24 610 24 330 21 380	31 330 30 980 27 220	15.87 15.70 13.80
162 1 60 157.5	4.115 4.064 4.0	.162 .160 .157	6	8		8	40	.020 62 .020 11 .019 48	20 620 20 110 19 480		13.30 12.97 12.57
148.3 148 144.3	3.767 3.759 3.665	.1483 .148 .144	7	9	9			.017 27 .017 20 .016 35	17 270 17 200 16 350	21 990 21 900 20 820	11.14 11.10 10.55
144 137.8 135	3.658 3.5 3.429	.144 .138 .135		10		9	35	.016 29 .014 91 .014 31	16 296 14 910 14 310	18 990	10.51 9.621 9.235
134 128.5 128	3.404 3.264 3.251	.128	8]	10	10		.014 10 .012 97 .012 87	14 100 12 970 12 870		8.366

D	iameter		W	Tire Ga	uge N	umber	3		Cross S	ection	
Mils	Mm.	Ins.	American (B. & S.)	Washburn & Moen	Birmingham (Stubs')	British Standard	Metric	Sq. Ins.	Sq. Mils	Circular Mils	Sq. Mm.
120.5 120 118.1	3.061 3.048 3.0	.1205 .120 .118		11	11		30	.011 40 .011 31 .010 96	11 400 11 310 10 960	14 520 14 400 13 950	7.358 7.297 7.069
116 114.4 109	2.946 2.906 2.769	.116 .114 .109	9			11		.010 57 .010 28 .009 331	10 570 10 280 9331	13 460 13 090 11 880	6.818 6.634 6.020
105.5 104 101.9	2.680 2.642 2.588	.1055 .104 .102		12				.008 742 .008 495 .008 155	8742 8495 8155	11 130 10 820 10 380	5.640 5.481 5.261
98.42 95 92	2.5 2.413 2.337	.098 .095 .092			13	13	25	.007 609 .007 088 .006 648	7609 7088 6648	9687 9025 8464	4.909 4.573 4.289
91.5 90.74 83	2.324 2.305 2.108	.0915 .091 .083	11					.006 576 .006 467 .005 411	6576 6467 5411	8372 8234 5889	4.242 4.172 3.491
80.81 80 78.74	2.053 2.032 2.0	.081 . 080 .079	12	14			20	.005 129 .005 027 .004 869	5129 5027 4869	6530 6400 6200	3.309 3.243 3.142
72 71.96 70.87	1.829 1.828 1.8	.072 .072 .071	13		15		18	.004 072 .004 067 .003 944	4067	5184 5178 5022	2.627 2.624 2.545
65 64.08 64	1.651 1.628 1.626	.065 .064 .064	14					.003 318 .003 225 .003 217	3225	4225 4107 4096	2.141 2.081 2.075
62.99 62.5 58	1.6 1.588 1.473	.063 .0625 .058		16	17			.003 116 .003 068 .002 642	3068	3968 3906 3364	2.011 1.979 1.705
57.07 56 55.12	1.450 1.422 1.4	.057 .056 .055	15			17	14	.002 558 .002 468 .002 386	2463	3257 3136 3038	1.650 1.589 1.539
54 50.82 49	1.372 1.291 1.245	.054 .051 .049	16					.002 028	2028	2916 2583 2401	1.478 1.309 1.217
48 47.5 47.24	1.219 1.207 1.2	.048 .0475 .047		. 18		. 18		.901 810 .001 772 .001 753	1772	2304 2256 2232	1.167 1.143 1.131
45.26 42 41	1.150 1.067 1.041	.042	17	. 19	19			.001 609	9 1609 5 1385 0 1320	2048 1764 1681	1.038 0.8938 0.8518

I	Diamete	r	V	Vire G	auge N	lumber	8	Cross Section			
Mils	Mm.	Ins.	American (B. & S.)	Washburn & Moen	Birmingham (Stubs')	British Standard	Metric	Sq. Ins.	Sq. Mils	Circular Mils	Sq. Mm.
40.3 40 39.37	1.024 1.016 1.0	.040 .040 .039	18			19	10	.001 276 .001 257 .001 217	1276 1257 1217	1624 1600 1550	.8231 .8107 .7854
36 35.89 35.43	.9144 .9116 .90	.036 .036 .035	19			20	9	.001 018 .001 012 .0 ₃ 9861	1018 1012 986.1	1296 1288 1255	.6567 .6527 .6362
35 34.8 32	.8890 .8839 .8128	.035 .0348 .032		20	20	21		.0 ₃ 9621 .0 ₅ 9511 .0 ₃ 8042	962.1 951.1 804.2	1225 1211 1024	.6207 .6136 .5189
31.96 31.7 31.5	.8118 .8052 .80	.032 .0317 .031	20	21			8	.0 ₃ 8023 .0 ₃ 7892 .0 ₃ 7791	802.3 789.2 779.1	1022 1005 992	.5176 .5092 .5027
28.6 28.46 28	.7264 .7229 .7112	.0286 .0285 .028	21	22		22		.0 ₃ 6424 .0 ₃ 6363 .0 ₃ 6158	642.4 636.3 615.8	818 810.1 784	.4145 .4105 .3973
27.56 25.8 25.35	.70 .6553 .6438	.0276 .0258 .0253	22	23			7	0,5965 .0 ₃ 5228 .0 ₃ 5046	596.5 522.8 504.6	759.5 665.6 642.4	.3848 .3373 .3255
25 24 23.62	.6350 .6096 .60	.025 .024 .0236			23	23	6	.0.4909 .0 ₃ 4524 .0 ₃ 4383	490.9 452.4 438.3	625 576 558	.3167 .2919 .2827
23 22.57	.5842 .5733 .5588	.023 .0226 .022	23	24	24	24		.0 ₃ 4155 .0 ₃ 4001 .0 ₃ 3801	415.5 400.1 380.1	529 509.5 484	.2675 .2582 .2452
20.4 20.1 20	.5182 .5106 .5080	.0204 .0201 .020	24	25		25		.0 ₃ 3269 .0 ₃ 3173 .0 ₃ 3142	326.9 317.3 314.2	416.2 404 400	.2109 .2047 .2027
19.68 18.1 18	.50 .4597 .4572	.0197 .0181 .018		26	26	26	5	.0 ₃ 3043 .0 ₃ 2573 .0 ₂ 2545	304.3 257.3 254.5	387.5 327.6 324	.1963 .1660 .1642
17.9 17.72 17.3	.4547 .45 .4394	.0179 .0177 .0173	25				4.5	.0 ₃ 2517 .0 ₃ 2465 .0 ₃ 2351	251.7 246.5 235.1	320.4 313.9 299.3	.1624 .1590 .1517
16.4 16.2 16	.4166 .4115 .4064	.0164 .0162 .016		28	27	27		.0 ₃ 2112 .0 ₃ 2061 .0 ₃ 2011	211.2 206.1 201.1	269 262.4 256	.1363 .1330 .1297
15.94 15.75 IS	4049 .40 .3810	.0159 .0157 .015	26				4	.031948	199.6 194.8 176.7	254.1 248 225	.1288 .1257 .1140

I	Diamete	Г	M	ire Ga	uge N	umber	8		Cross S	Section	
Mils	Mm.	Ins.	American (B. & S.)	Washburn & Moen	Birmingham (Stubs')	British Standard	Metric	Sq. Ins.	Sq. Mils	Circular Mils	Sq. Mm.
14.8 14.2 14	.3759 .3606 .3556	.0148 .0142 .0140	27	30	28	28		$.0_31720$ $.0_31583$ $.0_31539$	172.0 158.3 153.9	219 201.5 196	.1110 .1021 .099 32
13.78 13.5 13.2	.35 .3454 .3353	.0138 .0136 .0132		31		29	3-5	.0 ₃ 1491 .0 ₃ 1453 .0 ₃ 1368	149.1 145.3 136.8	189.9 185 174.2	.096 21 .093 72 .088 29
13 12.8 12.64	.3302 .3251 .3211	.0130 .0128 .0126	28	32				.0 ₃ 1327 .0 ₃ 1287 .0 ₃ 1255	132.7 128.7 125.5	169 163.8 159.8	.085 63 .083 02 .080 98
12.4 12 11.81	.3150 .3048 .30	.0124 .0120 .0118					3	.0 ₃ 1208 .0 ₃ 1131 .0 ₃ 1096	120.8 113.1 109.6	153.8 144 139.5	.077 91 .072 97 .070 69
11.8 11.6 11.26	.2997 .2946 .2859	.0118 .0116 .0113	29	33		31		.0 ₃ 1094 .0 ₃ 1057 .0 ₄ 9954	109.4 105.7 99.54	139.2 134.6 126.7	.070 55 .068 18 .064 22
10.8 10.4 10.03	.2743 .2642 .2546	.0108 .0104 .0100	30	34				.0 ₄ 9161 .0 ₄ 8495 0 ₁ 7894	91.61 84.95 78.94	116.6 108.2 100.5	.059 10 .054 81 .050 93
9.842 9.5	.2540 .25 .2413	.0100 .0098 .0095		35	31	33	2.5	.0 ₄ 7854 .0 ₄ 7609 .0 ₄ 7088	78.54 76.09 70.88	96.87 90.25	.050 67 .049 09 .045 73
9.2 9 8.928	.2337 .2286 .2268	.0092 .0090 .0089	31	36	32			.0 ₄ 6648 .0 ₄ 6362 .0 ₄ 6260	66.48 63.62 62.60	84.64 81 79.7	.042 89 .041 04 .040 39
8.5 8.4 8	.2159 .2134 .2032	.0085 .0084 .0080		37	33	35		.0 ₄ 5675 .0 ₄ 5542 .0 ₄ 5027	56.75 55.42 50.27	72.25 70.56 64	.036 61 .035 75 .032 43
7.95 7.874 7.6	.2019 .20 .1930	.0080 .0079 .0076				36	2	.0 ₄ 4964 .0 ₄ 4869 .0 ₄ 4536	49.64 48.69 45.36	63.21 62.00 57.76	.032 03 .031 42 .029 27
7.5 7.087 7.08	.1905 .18 .1798	.0075 .0071 .0071	33					0 ₄ 4418 .0 ₄ 3944 .0 ₄ 3937	44.18 39.44 39.37	56.25 50.22 50.13	.028 50 .025 45 .025 40
7 6.8 6.6	.1778 .1727 .1676	.0070 .0068 .0066			34	37		.0 ₄ 3848 .0 ₄ 3632 .0 ₄ 3421	38.48 36.32 34.21	49 46.24 43.56	.024 83 .023 43 .022 07
6.305 6.299 6.2	.1601 .16 .1575	.0063 .0063 .0062	34				1.6	.0 ₄ 3122 .0 ₄ 3116 .0 ₄ 3019	31.22 31.16 30.19	39.75 39.68 38.44	.020 14 .020 11 .019 48

]	Diameter		77	ire Ga	uge N	umber	B		Cross S	Section	
Mils	Mm.	Ins.	American (B. & S.)	Washburn & Moen	Birmingham (Stubs')	British Standard	Metric	Sq. Ins.	Sq. Mils	Circular Mils	Sq. Mm.
5.906 5.8	.1524 .15 .1473	.0060 .0059 .0058		43		38	1.5	.0 ₄ 2827 .0 ₄ 2739 .0 ₄ 2642	28.27 27.39 26.42	36 34.87 33.64	.018 24 .017 67 .017 05
5.615 5.512 5.5	.1426 .14 .1397	.0056 .0055 .0055	35	45				.0 ₄ 2476 .0 ₄ 2386 .0 ₄ 2376	24.76 23.86 23.76	31.52 30.38 30.25	.015 97 .015 39 .015 33
5.2 5 4.8	.1321 .1270 .1219	.0052 .0050 .0048	36	45 47 48	35	39 40		.0 ₄ 2124 .0 ₄ 1963 .0 ₄ 1810	21.24 19.63 18.10	27.04 25 23.04	.013 70 .012 67 .011 67
4.724 4.6 4.453	.12 .1168 .1131	.0047 .0046 .0045	37	49			1.2	.041753 $.041662$ $.041557$	17.53 16.62 15.57	22.32 21.16 19.83	.011 31 .010 72 .010 05
4.4 4 3.965	.1118 .1016 .1007	.0044 .0040 .0040	38	50	36	41 42		.0 ₄ 1521 .0 ₄ 1257 .0 ₄ 1235	15.21 12.57 12.35	19.36 16 15.72	.009 810 .008 107 .007 967
3.937 3 6 3.531	.10 .091 44 .089 69	.0039 .0036 .0035	39			43		.0 ₄ 1217 .0 ₄ 1018 .0 ₅ 9793	12.17 10.18 9.793	15.50 12.96 12.47	.007 854 .006 567 .006 318
3.2 3.145 2.800	.081 28 .079 87 .071 13	.0032 .0031 .0028	40					.0 ₅ 8042 .0 ₅ 7766 .0 ₅ 6159	8.042 7.766 6.159	10.24 9.888 7.842	.005 189 .005 010 .003 973
2.8 2.494 2.4	.071 12 .063 34 .060 96	.0028 .0025 .0024						$.0_56158 \\ .0_54884 \\ .0_54524$	6.158 4.884 4.524	7.84 6.219 5.76	.003 973 .003 151 .002 919
2.221 2 1.978	.056 41 .050 80 .050 23	.0022 .0020 .0020	43			47		.0 ₅ 3873 .0 ₅ 3142 .0 ₅ 3072	3.873 3.142 3.072	4.932 4 3.911	.002 499 .002 027 .001 982
1.969 1.761 1.6	.05 .044 73 .040 64	.0020 .0018 .0016	45			48	0.5	.0 ₅ 3044 .0 ₅ 2436 .0 ₅ 2011	3.044 2.436 2.011	3.875 3.102 2.56 0	.001 963 .001 572 .001 297
1.568 1.397 1.243	.039 84 .035 47 .031 59	.0016 .0014 .0012	46 47 48					$.0_{5}1932$ $.0_{5}1532$ $.0_{5}1215$	1.932 1.532 1.215	2.460 1.951 1.547	.001 246 .0 ₃ 9884 .0 ₃ 7838
1.2 1.107	.030 48 .028 13 .025 40		49					$.0_51131$ $.0_69635$ $.0_67854$	1.131 .9635 .7854	1.44 1.227	.0 ₃ 7297 .0 ₃ 6216 .0 ₃ 5067
.9863	.025 05	.0010	50					.067641	.7641	.9728	.034929

DECIMAL EQUIVALENTS OF NON-BINARY FRACTIONS

(Denominators 7 to 19.)

Nu-					DENOM	NATOR				
mer- ator	7	9	11	12	13	14	15	17	18	19
1	.1429	.1111	.0909	.0833	.0769	.0714	.0667	.0588	.0556	.0526
2	.2857	.2222	.1818	.1667	.1538	.1429	.1333	.1176	.1111	.1053
3	.4286	.3333	.2727	.2500	.2308	.2143	.2000	.1765	.1667	.1579
4	.5714	.4444	.3636	.3333	.3077	.2857	.2667	.2353	.2222	.2105
5	.7143	.5556	.4545	.4167	.3846				.2778	
6	.8571	.6667	.5455	.5000	.4615	.4286	.4000	.3529	.3333	.3158
7		.7778	.6364	.5833			.4667	.4118		.3684
8		.8889	.7273	.6667	.6154	.5714	.5333			.4211
9			.8182	.7500	.6923	.6429	.6000	.5294	.5000	.4737
10			.9091		.7692			.5882		.5263
11				.9167		.7857		.6471	.6111	.5789
12					.9231	.8571			.6667	.6316
13						.9286	.8667		.7222	.6842
14							.9333	.8235	.7778	.7368
15								.8824		
16								.9412		.8421
17									.9444	.8947
18				1	1					.9474

SQUARE ROOTS AND CUBE ROOTS OF FRACTIONS

Frac- tion	Square Root	Cube Root	Frac- tion	Square Root	Cube Root	Frac- tion	Square Root	Cube Root
1 2	.70711	.79370	67	.92582	.94991	1 12 5 12	.28868	.43679
1 3 2 3	.57735 .81650	.69336 .87358	183	.35355	.50000	1 2 7 1 2 1 1 1 2	.76376	.83555
1434	.50000	.62996	1838587,8	.79057	.85499	1 2	.25000	.39685
1 0 5 6	.40825	.55032	1	.33333	.48075	1 6 3 1 6 5 1 6	.43301	.57236
5	.91287	.94104	9 9 9	.47140	.60571	16	.66144	.75915
2-22-3	.53452	.65863	9 5 9	.74536	.82207	16 11 16 13	.82916	.88259
37 47 5	.65465 .75593	.75395 .82983	8.9	.88192	.91968	13 16 15 16	.90138 .96825	.93318
4	.84515	.89390						

DECIMAL EQUIVALENTS OF NON-BINARY FRACTIONS

(Denominators 21 to 31.)

-										
NUMERATOR					DENOM	INATOR				
MER									1	
ND	21	22	23	24	26	27	28	29	30	31
_	DAMO	.0455	0495	0418	.0385	0000	0075	0045	0000	0000
	.0952	.0909				.0370	.0714	.0345	.0333	
	.1429	.1364	.1304	.1250	.1154	.1111	.1071	.1034	.1000	.0968
4	.1905	.1818	.1739	.1667	.1538	.1481	.1429	.1379	.1333	.1290
	0004	0000	041114	0000	1000	1000		4 1110 4		
-	.2381	.2273	.2174		.1923	.1852	.1786	.1724	.1667	.1613
	.3333	.2727 .3182	.2609	.2500	.2308	.2222	.2143	.2069	.2000	
	.3810	.3636	.3043	.3333	.2692	.2593 .2963	.2500	.2414	.2333	.2581
	.4286	.4091	.3913	.3750	.3462	.3333	.3214	.3103	.3000	.2903
	. 2200	.1001	.0010	.0700	.010%	.0000	.0211	.0100	.0000	.2000
10	.4762	.4545	.4348	.4167	.3846	.3704	.3571	.3448	.3333	.3226
11	.5238	.5000	.4783	.4583	.4231	.4074	.3929	.3793	.3667	.3548
	.5714	.5455	.5217	.5000	.4615		.4286	.4138	.4000	.3871
	.6190	.5909	.5652	.5417	.5000	.4815	.4643	.4483	.4333	.4194
14	.6667	.6364	.6087	.5833	.5385	.5185	.5000	.4828	.4667	.4516
15	.7143	.6818	.6522	.6250	.5769	.5555	.5357	.5172	.5000	4839
	.7619		.6957	.6667	.6154		.5714	.5517	.5333	
17	.8095	.7727	.7391	.7083	.6538	.6296	.6071	.5862	.5667	.5484
	.8571	.8182	.7826	.7500	.6923	.6667	.6429	.6207	.6000	.5806
19	.9048	.8636	.8261	.7917	.7308	.7037	.6786	.6552	.6333	.6129
20	.9524	.9091	.8696	.8333	.7692	.7407	.7143	.6897	.6667	.6452
21		.9545	.9130	.8750	.8077		.7500			.6774
22			.9565	.9167	.8462	.8148	.7857	.7586	.7333	.7097
23				.9583	.8846	.8519	.8214	.7931	.7667	.7419
24					.9231	.8889	.8571	.8276	.8000	.7742
25					.9615	.9259	.8929	.8621	.8333	.8065
26						.9630	.9286	.8966	.8667	.8387
27							.9643	.9310	.9000	.8710
28								.9655	.9333	.9032
29									.9667	.9355
30										Ocer
00										.9677
_										

DECIMALS OF A FOOT FOR EACH 1/64 OF AN INCH.

Inch.	0"	1"	2"	3"	4"	5"
0	0	.0833	.1667	.2500	.3333	.4167
$\begin{array}{r} \frac{1}{64} \\ \frac{1}{32} \\ \frac{3}{64} \\ \frac{1}{16} \end{array}$.0013 .0026 .0039 .0052	.0846 .0859 .0872 .0885	.1680 .1693 .1706 .1719	.2513 .2526 .2539 .2552	.3346 .3359 .3372 .3385	.4180 .4193 .4206 .4219
64 3 32 7 64 1	.0065 .0078 .0091 .0104	.0898 .0911 .0924 .0937	.1732 .1745 .1758 .1771	.2565 .2578 .2591 .2604	.3398 .3411 .3424 .3437	.4232 .4245 .4258 .4271
$\begin{array}{r} 9 \\ \hline 64 \\ 5 \\ \hline 32 \\ 11 \\ 64 \\ \hline 16 \end{array}$.0117 .0130 .0143 .0156	.0951 .0964 .0977 .0990	.1784 .1797 .1810 .1823	.2617 .2630 .2643 .2656	.3451 .3464 .3477 .3490	.4284 .4297 .4310 .4323
164 7 355 64	.0169 .0182 .0195 .0208	.1003 .1016 .1029 .1042	.1836 .1849 .1862 .1875	.2669 .2682 .2695 .2708	.3503 .3516 .3529 .3542	.4336 .4349 .4362 .4375
17 64 9 32 19 64 5 16	.0221 .0234 .0247 .0260	.1055 .1068 .1081 .1094	.1888 .1901 .1914 .1927	.2721 .2734 .2747 .2760	.3555 .3568 .3581 .3594	.4388 .4401 .4414 .4427
216 1 24 3 4 4 3 (8)	.0273 .0286 .0299 .0312	.1107 .1120 .1133 .1146	.1940 .1953 .1966 .1979	.2773 .2786 .2799 .2812	.3607 .3620 .3633 .3646	.4440 .4453 .4466 .4479
25 64 13 22 264 7	.0326 .0339 .0352 .0365	.1159 .1172 .1185 .1198	.1992 .2005 .2018 .2031	.2826 .2839 .2852 .2865	.3659 .3672 .3685 .3698	.4492 .4505 .4518 .4531
9 455 214 615 214 133 61 2	.0378 .0391 .0404 .0417	.1211 .1224 .1237 .1250	.2044 .2057 .2070 .2083	.2878 .2891 .2904 .2917	.3711 .3724 .3737 .3750	.4544 .4557 .4570 .4583

DECIMALS OF A FOOT FOR EACH 1/64 OF AN INCH.

Inch.	6"	7"	8"	9"	10"	11"
0	.5000	.5833	.6667	.7500	.8333	.9167
$ \begin{array}{r} \frac{1}{644} \\ \frac{1}{32} \\ \frac{3}{64} \\ \frac{1}{16} \end{array} $.5013 .5026 .5039 .5052	.5846 .5859 .5872 .5885	.6680 .6693 .6706 .6719	.7513 .7526 .7539 .7552	.8346 .8359 .8372 .8385	.9180 .9193 .9206 .9219
5 64 3 32 7 64 2 8	.5065 .5078 .5091 .5104	.5898 .5911 .5924 .5937	.6732 .6745 .6758 .6771	.7565 .7578 .7591 .7604	.8398 .8411 .8424 .8437	.9232 .9245 .9258 .9271
9 64 32 11 64 3	.5117 .5130 .5143 .5156	.5951 .5964 .5977 .5990	.6784 .6797 .6810 .6823	.7617 .7630 .7643 .7656	.8451 .8464 .8477 .8490	.9284 .9297 .9310 .9323
13 64 7 325 65 4	.5169 .5182 .5195 .5208	.6003 .6016 .6029 .6042	.6836 .6849 .6862 .6875	.7669 .7682 .7695 .7708	.8503 .8516 .8529 .8542	.9336 .9349 .9362 .9375
$\begin{array}{c} 17\\ 64\\ 9\\ 32\\ 19\\ 64\\ 5\\ 16 \end{array}$.5221 .5234 .5247 .5260	.6055 .6068 .6081 .6094	.6888 .6901 .6914 .6927	.7721 .7734 .7747 .7760	.8555 .8568 .8581 .8594	.9388 .9401 .9414 .9427
21 64 132 23 8 3 5	.5273 .5286 .5299 .5312	.6107 .6120 .6133 .6146	.6940 .6953 .6966 .6979	.7773 .7786 .7799 .7812	.8607 .8620 .8633 .8646	.9440 .9453 .9466 .9479
25 64 13 32 27 64 7 16	.5326 .5339 .5352 .5365	.6159 .6172 .6185 .6198	.6992 .7005 .7018 .7031	.7826 .7839 .7852 .7865	.8659 .8672 .8685 .8698	.9492 .9505 .9518 .9531
29 615 32 364 12	.5378 .5391 .5404 .5417	.6211 .6224 .6237 .6250	.7044 .7057 .7070 .7083	.7878 .7891 .7904 .7917	.8711 .8724 .8737 .8750	.9544 .9557 .9570 .9583

DECIMALS OF A FOOT FOR EACH 1/64 OF AN INCH.

Inch.	0"	1"	2"	3"	4"	5"
33 64 1325 364 9	.0430 .0443 .0456 .0469	.1263 .1276 .1289 .1302	.2096 .2109 .2122 .2135	.2930 .2943 .2956 .2969	.3763 .3776 .3789 .3802	.4596 .4609 .4622 .4635
37 64 19 39 39 64 5	.0482 .0495 .0508 .0521	.1315 .1328 .1341 .1354	.2148 .2161 .2174 .2188	.2982 .2995 .3008 .3021	.3815 .3828 .3841 .3854	.4648 .4661 .4674
41 61 32 43 64 116	.0534 .0547 .0560 .0573	.1367 .1380 .1393 .1406	.2201 .2214 .2227 .2240	.3034 .3047 .3060 .3073	.3867 .3880 .3893 .3906	.4701 .4714 .4727 .4740
45 64 23 32 47 64 34	.0586 .0599 .0612 .0625	.1419 .1432 .1445 .1458	.2253 .2266 .2279 .2292	.3086 .3099 .3112 .3125	.3919 .3932 .3945 .3958	.4753 .4766 .4779 .4792
9 45 2 1 4 5 G	.0638 .0651 .0664 .0677	.1471 .1484 .1497 .1510	.2305 .2318 .2331 .2344	.3138 .3151 .3164 .3177	.3971 .3984 .3997 .4010	.4805 .4818 .4831 .4844
500747-035-6 7-035-6 7-18	.0690 .0703 .0716 .0729	.1523 .1536 .1549 .1562	.2357 .2370 .2383 .2396	.3190 .3203 .3216 .3229	.4023 .4036 .4049 .4062	.4857 .4870 .4883 .4896
5 62 35 67 1	.0742 .0755 .0768 .0781	.1576 .1589 .1602 .1615	.2409 .2422 .2435 .2448	.3242 .3255 .3268 .3281	.4076 .4089 .4102 .4115	.4909 .4922 .4935 .4948
61 64 31 63 64 1	.0794 .0807 .0820	.1628 .1641 .1654	.2461 .2474 .2487	.3294 .3307 .3320	.4128 .4141 .4154	.4961 .4974 .4987

DECIMALS OF A FOOT FOR EACH & OF AN INCH.

Inch.	6"	7"	8"	9"	10"	11"
3 9 6 4 7 1 3 2 5 5 6 9 1 6	.5430 .5443 .5456 .5469	.6263 .6276 .6289 .6302	.7096 .7109 .7122 .7135	.7930 .7943 .7956 .7969	.8763 .8776 .8789 .8802	.9596 .9609 .9622 .9635
7-140 200 4 1000 400 400 600 600 600 600 600 600 600	.5482 .5495 .5508 .5521	.6315 .6328 .6341 .6354	.7148 .7161 .7174 .7188	.7982 .7995 .8008 .8021	.8815 .8828 .8841 .8854	.9648 .9661 .9674 .9688
41 21 32 43 64 11 16	.5534 .5547 .5560 .5573	.6367 .6380 .6393 .6406	.7201 .7214 .7227 .7240	.8034 .8047 .8060 .8073	.8867 .8880 .8893 .8906	.9701 .9714 .9727 .9740
45 43 23 34 63 4	.5586 .5599 .5612 .5625	.6419 .6432 .6445 .6458	.7253 .7266 .7279 .7292	.8086 .8099 .8112 .8125	.8919 .8932 .8945 .8958	.9753 .9766 .9779 .9792
49 64 25 32 54 16	.5638 .5651 .5664 .5677	.6471 .6484 .6497 .6510	.7305 .7318 .7331 .7344	.8138 .8151 .8164 .8177	.8971 .8984 .8997 .9010	.9805 .9818 .9831 .9844
564 27 3564 78	.5690 .5703 .5716 .5729	.6523 .6536 .6549 .6562	.7357 .7370 .7383 .7396	.8190 .8203 .8216 .8229	.9023 .9036 .9049 .9062	.9857 .9870 .9883 .9896
5 6 2 2 2 9 4 5 5 6 5 1 1 6	.5742 .5755 .5768 .5781	.6576 .6589 .6602 .6615	.7409 .7422 .7435 .7448	.8242 .8255 .8268 .8281	.9076 .9089 .9102 .9115	.9909 .9922 .9935 .9948
61 64 31 32 63 64	.5794 .5807 .5820	.6628 .6641 .6654	.7461 .7474 .7487	.8294 .8307 .8320	.9128 .9141 .9154	.9961 .9974 .9987 1.0000

DECIMALS OF AN INCH FOR EACH \$\frac{1}{64}\text{TH}\$. WITH MILLIMETRE EQUIVALENTS.

Frac- tion	1/64ths	Decimal	Millime- tres	Frac- tion	$\frac{1}{64}$ ths	Decimal	Millime- tres
$\begin{array}{c} \cdot \cdot \cdot \\ \frac{1}{32} \\ \cdot \cdot \cdot \\ \frac{1}{16} \end{array}$	1 2 3 4	.015625 .03125 .046875 .0625	0.397 0.794 1.191 1.588	17 32 16	33 34 35 36	.515625 .53125 .546875 .5625	13.097 13.494 13.891 14.288
$\frac{3}{32}$ $\frac{1}{8}$	5 6 7 8	.078125 .09375 .109375 .125	1.984 2.381 2.778 3.175	19 32 5/8	37 38 39 40	.578125 .59375 .609375 .625	14.684 15.081 15.478 15.875
$\begin{array}{c} \cdot \cdot \cdot \\ \frac{5}{32} \\ \cdot \cdot \cdot \\ \frac{3}{16} \end{array}$	9 10 11 12	.140625 .15625 .171875 .1875	3.572 3.969 4.366 4.763	$\frac{21}{32}$	41 42 43 44	.640625 .65625 .671875 .6875	16.272 16.669 17.066 17.463
$\begin{array}{c} \frac{7}{32} \\ \frac{7}{32} \\ \frac{1}{4} \end{array}$	13 14 15 16	.203125 .21875 .234375 .25	5.159 5.556 5.953 6.350	23 32 34	45 46 47 48	.703125 .71875 .734375 .75	17.859 18.256 18.653 19.050
9 32 	17 18 19 20	.265625 .28125 .296875 .3125	6.747 7.144 7.541 7.938	25 32 13 16	49 50 51 52	.765625 .78125 .796875 .8125	19.447 19.844 20.241 20.638
11 32 3/8	21 22 23 24	.328125 .34375 .359375 .375	8.334 8.731 9.128 9.525	· · · · · · · · · · · · · · · · · · ·	53 54 55 56	.828125 .84375 .859375 .875	21.034 21.431 21.828 22.225
$\frac{13}{32}$ $\frac{7}{16}$	25 26 27 28	.390625 .40625 .421875 .4375	9.922 10.319 10.716 11.113	29 32 	57 58 59 60	.890625 .90625 .921875 .9375	22.622 23.019 23.416 23.813
152	29 30 31 32	.453125 .46875 .484375 .5	11.509 11.906 12.303 12.700	31 32	61 62 63 64	.953125 .96875 .984375	24.209 24.606 25.003 25.400

WEIGHTS AND AREAS OF SQUARE AND ROUND BARS AND CIRCUMFERENCES OF ROUND BARS.

One cubic foot of steel weighs 489.6 lbs.

The following tables of weights of rounds, squares, flats, etc., are theoretical only. The various sizes made by us are listed elsewhere herein under appropriate headings, and the weights of rolled steel are subject to variation in accordance with mill practice for the different classes of products.

Thickness	Weight	Weight	Агев	Area	Circumference
or Diameter	of Bar	of Bar	of Bar	of O Bar	of O Bar
in Inches.	One Foot Long.	One Foot Long.	in Sq. Inches.	in Sq. Inches.	in Inches.
1 16 5 64 3 3 7 64	.013 .021 .030 .041	.010 .016 .023 .032	.0039 .0061 .0088 .0120	.0031 .0048 .0069 .0094	.1964 .2454 .2945 .3436
1 9 6 4 5 3 2 1,6 4	.053 .067 .083 .100	.042 .053 .065 .079	.0156 .0198 .0244 .0295	.0123 .0155 .0192 .0232	.3927 .4418 .4909 .5400
3 16 3 64 7 32 35 64	.120 .140 .163 .187	.094 .110 .128 .147	.0352 .0413 .0479 .0549	.0276 .0324 .0376 .0431	.5891 .6381 .6872 .7363
1 1 7 7 6 4 1 3 2 1 9 6 4	.212 .240 .269 .300	.167 .188 .211 .235	.0625 .0706 .0791 .0881	.0491 .0554 .0621 .0692	.7854 .8345 .8836 .9327
5 16 221 11 22 23 6 4	.332 .366 .402 .439	.261 .288 .316 .345	.0977 .1077 .1182 .1292	.0767 .0846 .0928 .1014	.9818 1.0308 1.0799 1.1290
3 8 255 64 13 3 277 64	.478 .519 .561 .605	.376 .407 .441 .475	.1406 .1526 .1650 .1780	.1104 .1198 .1296 .1398	1.1781 1.2272 1.2763 1.3254
7 16 15 15 23 23 34 64	.651 .698 .747 .798	.511 .548 .587 .627	.1914 .2053 .2197 .2346	.1503 .1613 .1726 .1843	1.3745 1.4235 1.4726 1.5217
2 2 3 6 4 3 2 3 2 8 5 4	.850 .904 .960 1.017	.668 .710 .754 .799	.2500 .2659 .2822 .2991	.1963 .2088 .2217 .2349	1.5708 1.6199 1.6690 1.7181

Thickness	Weight	Weight	Area	Area	Circumference
or Diameter	of Bar	of Bar	of Bar	of Bar	of O Bar
in Inches.	One Foot Long.	One Foot Long.	in Sq. Inches.	in Sq. Inches.	in Inches.
9 137 49 332 334	1.076 1.136 1.199 1.263	.845 .893 .941 .992	.3164 .3342 .3525 .3713	.2485 .2625 .2769 .2916	1.7672 1.8162 1.8653 1.9144
41 64 22 23 4 64	1.328 1.395 1.464 1.535	1.043 1.096 1.150 1.205	.3906 .4104 .4307 .4514	.3068 .3223 .3382 .3545	1.9635 2.0126 2.0617 2.1108
165 45 43 43 43 43 43 43 46	1.607 1.681 1.756 1.834	1.262 1.320 1.380 1.440	.4727 .4944 .5166 .5393	.3712 .3883 .4057 .4236	2.1599 2.2089 2.2580 2.3071
13 16 7 8 15	1.913 2.245 2.603 2.988	1.502 1.763 2.044 2.347	.5625 .6602 .7656 .8789	.4418 .5185 .6013 .6903	2.3562 2.5526 2.7489 2.9453
1 16 8 8 3 16	3.400 3.838 4.303 4.795	2.670 3.015 3.380 3.766	1.0000 1.1289 1.2656 1.4102	.7854 .8866 .9940 1.1075	3.1416 3.3380 3.5343 3.7306
1 5 16 3 8 7	5.313 5.857 6.428 7.026	4.172 4.600 5.049 5.518	1.5625 1.7227 1.8906 2.0664	1.2272 1.3530 1.4849 1.6230	3.9270 4.1234 4.3197 4.5161
150 150 150 160 160	7.650 8.301 8.978 9.682	6.008 6.519 7.051 7.604	2.2500 2.4414 2.6406 2.8477	1.7671 1.9175 2.0739 2.2365	4.7124 4.9088 5.1051 5.3015
3 13 16 15 15	10.41 11.17 11.95 12.76	8.178 8.773 9.388 10.02	3.0625 3.2852 3.5156 3.7539	2.4053 2.5802 2.7612 2.9483	5.4978 5.6942 5.8905 6.0869

Thickness	Weight	Weight	Area	Area	Circumference
or Diameter	of Bar	of Bar	of Bar	of Bar	of O Bar
in Inches.	One Foot Long.	One Foot Long.	in Sq. Inches.	in Sq. Inches.	in Inches.
2	13.60	10.68	4.0000	3.1416	6.2832
1 6	14.46	11.36	4.2539	3.3410	6.4796
18 3 16	15.35 16.27	12.06 12.78	4.5156 4.7852	3.5466 3.7583	6.6759 6.8723
	10.27			0.7000	0.0120
1/4 5/5 1.6 3/8	17.21 18.18	13.52 14.28	5.0625 5.3477	3.9761 4.2000	7.0686
16 3 8	19.18	15.06	5.6406	4.4301	7.4613
7 16	20.20	15.87	5.9414	4.6664	7.6577
1 2	21.25	16.69	6.2500	4.9087	7.8540
9 16	22.33	17.53	6.5664	5.1573	8.0504
12 9 16 5 8 11 16	23.43	18.40 19.29	6.8906 7.2227	5.4119 5.6727	8.2467 8.4431
3 13 16 7 8 15	25.71 26.90	20.19 21.12	7.5625 7.9102	5.9396 6.2126	8.6394 8.8358
16	28.10	22.07	8.2656	6.4918	9.0321
15	29.34	23.04	8.6289	6.7771	9.2285
3	30.60	24.03	9.0000	7.0686	9.4248
116	31.89	25.05	9.3789	7.3662	9.6212
16 16 8 3 16	34.55	26.08 27.13	9.7656 10.160	7.6699 7.9798	9.8175 10.014
16 36 7	35.92 37.31	28.21 29.30	10.563 10.973	8.2958 8.6179	10.210
38	38.73	30.42	11.391	8.9462	10.603
716	40.18	31.55	11.816	9.2806	10.799
1/2	41.65	32.71	12.250	9.6211	10.996
16	43.15	33.89 35.09	12.691 13.141	9.9678 10.321	11.192 11.388
16 5 16 5 11	46.23	36.31	13.598	10.680	11.585
	47.82	37.55	14.063	11.045	11.781
13 16	49.42	38.81	14.063	11.416	11.781
7 8 15 16	51.05	40.10	15.016	11.793	12.174
16	52.71	41.40	15.504	12.177	12.370

			1		
Thickness	Weight	Weight	Area	Area	Circumference
or Diameter	of Bar	of Bar	of Bar	of Bar	of O Bar
in Inches.	One Foot Long.	One Foot Long.	in Sq. Inches.	in Sq. Inches.	in Inches.
4	54.40	42.73	16.000	12.566	12.566
1,6	56.11	44.07	16.504	12.962	12.763
1 8 3 16	57.85 59.62	45.44 46.33	17.016 17.535	13.364 13.772	12.959 13.155
1 16 3 8 7	61.41	48.24 49.66	18.063 18.598	14.186	13.352 13.548
16	65.08	51.11	19.141	15.033	13.745
7 16	66.95	52.58	19.691	15.466	13.941
1	68.85	54.07	20,250	15,904	14.137
12 16 5 11 16	70.78	55.59	20.230	16.349	14.334
5	72.73	57.12	21.391	16.800	14.530
16	74.71	58.67	21.973	17.257	14.726
3 4	76.71	60.25	22.563	17.721	14.923
13 16	78.74	61.85	23.160	18.190	15.119
3 13 16 7 1 15	80.80	63.46 65.10	23.766 24.379	18.665	15.315 15.512
5	85.00	66.76	25.000 25.629	19.635	15.708
1 16 1	87.14	68.44 70.14	26.266	20.129	15.904 16.101
1 3 16	91.49	71.86	26.910	21.135	16.297
	93.71	73,60	27.563	21.648	16.493
5	95.96	75.37	28.223	22.166	16.690
1 15 16 3 8 7	98.23	77.15	28.891	22.691	16.886
716	100.5	78.95	29.566	23.221	17.082
1/2	102.9	80.78	30.250	23.758	17.279
1 2 9 16	105.2	82.62	30.941	24.301	17.475
5 8 11 16	107.6	84.49 86.38	31.641 32.348	24.851 25.406	17.672 17.868
3 13 16	112.4	88.29	33.063	25.967	18.064
16 7 8	114.9	90.22	33.785 34.516	26.535 27.109	18.261 18.457
15 16	119.9	94.14	35.254	27.688	18.653

Thickness	Weight	Weight	Area	Area	Circumference
or Diameter	of Bar	of Bar	of Bar	of O Bar	of O Bar
in Inches.	One Foot Long.	One Foot Long.	in Sq. Inches.	in Sq. Inches.	in Inches.
6 116 18 8 3 16	122.4 125.0 127.6 130.2	96.13 98.15 100.2 102.2	36.000 36.754 37.516 38.285	28.274 28.867 29.465 30.069	18.850 19.046 19.242 19.439
14 16 38 7 16	132.8 135.5 138.2 140.9	104.3 106.4 108.5 110.7	39.063 39.848 40.641 41.441	30.680 31.296 31.919 32.548	19.635 19.831 20.028 20.224
12 16 5 8 116	143.7 146.5 149.2 152.1	112.8 115.0 117.2 119.4	42.250 43.066 43.891 44.723	33.183 33.824 34.472 35.125	20.420 20.617 20.813 21.009
13 1.6 7 1.5 1.6	154.9 157.8 160.7 163.6	121.7 123.9 126.2 128.5	45.563 46.410 47.266 48.129	35.785 36.451 37.122 37.800	21.206 21.402 21.599 21.795
7 16 18 3 16	166.6 169.6 172.6 175.6	130.8 133.2 135.6 138.0	49.000 49.879 50.766 51.660	38.485 39.175 39.871 40.574	21.991 22.188 22.384 22.580
14 116 3 8 16	178.7 181.8 184.9 188.1	140.4 142.8 145.2 147.7	52.563 53.473 54.391 55.316	41.283 41.997 42.718 43.446	22.777 22.973 23.169 23.366
129 16 5 11 16	191.3 194.5 197.7 200.9	150.2 152.7 155.3 157.8	56.250 57.191 58.141 59.098	44.179 44.918 45.664 46.415	23.562 23.758 23.955 24.151
13 136 7 15 15	204.2 207.5 210.9 214.2	160.4 163.0 165.6 168.2	60.063 61.035 62.016 63.004	47.173 47.937 48.707 49.483	24.347 24.544 24.740 24.936

	Weight	Weight	Area	Area	Circumference
Thickness or Diameter	of Bar	of Bar	of Bar	of Bar	of Bar
in Inches.	One Foot Long.	One Foot Long.	411111	in Sq. Inches.	in Inches.
in inches.	Une root Long.	One root hong.	in sq. inches.	in Sq. inches.	in inches.
8	217.6	170.9	64.000	50.266	25.133
16 18 3 16	221.0	173.6	65.004	51.054	25.329
18 3	224.5	176.3 179.0	66.016 67.035	51.849 52.649	25.526 25.722
16	441.0	175.0	07.000	04.049	40.144
1	231.4	181.8	68.063	53.456	25.918
16	234.9	184.5	69.098	54.269	26.115
1 5 16 3 7 7	238.5 242.1	187.3 190.1	70.141 71.191	55.088 55.914	26.311 26.507
	212.1	100.1	71.101	00.011	20.001
$\frac{\frac{1}{2}}{\frac{5}{1.6}}$	245.7	192.9	72.250	56.745	26.704
16	249.3 252.9	195.8 198.6	73.316 74.391	57.583 58.426	26.900 27.096
5 8 11 16	256.6	201.5	75,473	59.276	27.293
3	260.3	204.4	76.563	60.132	27.489
16	264.0 267.8	207.4 210.3	77.660	60.994	27.685 27.882
3 13 16 7 8 15 16	271.6	213.3	79.879	62.737	28.078
9	275.4 279.2	216.3 219.3	81.000 82.129	63.617 64.504	28.274 28.471
16	283.1	222.3	83.266	65.397	28.667
1 16 16 3 16	287.0	225.4	84.410	66.296	28.863
	0000	990 5	85.563	67.201	29.060
4 5	290.9 294.9	228.5 231.6	86.723	68.112	29.060
14 5 16 3	298.8	234.7	87.891	69.029	29.453
16	302.8	237.8	89.066	69.953	29.649
1	306.9	241.0	90.250	70.882	29.845
$\frac{\frac{1}{2}}{\frac{9}{16}}$	310.9	244.2	91.441	71.818	30.042
5 8 11 16	315.0	247.4	92.641	72.760	30.238
116	319.1	250.6	93.848	73.708	30.434
34	323.2	253.8	95.063	74.662	30.631
13	327.4	257.1	96.285	75.622	30.827
7/8	331.6	260.4	97.516 98.754	76.589	31.023
15 16	335.8	263.7	88.704	17.561	31.220

(CONCLUDED.)

Thickness	Weight	Weight	Area	Area	Circumference
or Diameter	of Bar	of Bar	of Bar	of Bar	of O Bar
in Inches.	One Foot Long.	One Foot Long.	in Sq. Inches.	in Sq. Inches.	in Inches.
10	340.0 344.3	267.0 270.4	100.00 101.25	78.540 79.525	31.416 31.612
1 16 8 16	348.6	273.8	102.52	80.516	31.809
16	352.9	277.1	103.79	81.513	32.005
1 1 5 16	357.2 361.6	280.6 284.0	105.06 106.35	82.516 83.525	32.201 32.398
16 36 7	366.0 370.4	287.4 290.9	107.64 108.94	84.541 85.563	32.594 32.790
16 56 116	374.9 379.3	294.4 297.9	110.25 111.57	86.590 87.624	32.987 33.183
1 6 5 8	383.8	301.5	112.89	88.664	33.380
16	388.4	305.0	114.22	89.710	33.576
3 4 13	392.9 397.5	308.6 312.2	115.56	90.763	33.772
2 13 16 7 8 15 16	402.1	315.8	116.91 118.27	91.821 92.886	33.969 34.165
15 16	406.7	319.5	119.63	93.957	34.361
11	411.4	323.1	121.00	95.033	34.558
$\frac{\frac{1}{16}}{\frac{1}{8}}$	416.1	326.8 330.5	122.38 123.77	96.116 97.206	34.754 34.950
16	425.5	334.3	125.16	98.301	35.147
1 5 16	430.3	338.0	126.56	99.402	35.343
5 16 3	435.1	341.7 345.5	127.97 129.39	100.51 101.62	35.539 35.736
3 8 7 16	444.8	349.3	130.82	102.74	35.932
	449.7	353.2	132.25	103.87	36.128
16	454.6	357.0	133.69	105.00	36.325
12 9 16 5 8 11	459.5 464.4	360.9 364.8	135.14 136.60	106.14 107.28	36.521 36.717
34	469.4	368.7	138.06	108.43	36.914
3 14 13 16 7 8 15 16	474.4	372.6 376.6	139.54 141.02	109.59 110.75	37.110
8 15 16	484.5	380.5		111.92	37.307 37.503

WEIGHTS OF SQUARE AND ROUND BARS PER RUNNING INCH.

One cubic inch of steel weighs 0.2833 lb.

	1				
Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.	Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.
16 16 8 8 3	.01		$\frac{2}{\frac{1}{16}}$	1.13 1.21 1.28 1.36	.89 .95 1.01 1.07
5 16 33 8 7	.02 .03 .04 .05	.01 .02 .03 .04	16 16 36 7	1.43 1.52 1.60 1.68	1.13 1.19 1.26 1.32
13 9 16 55 8 11 16	.07 .09 .11 .13	.06 .07 .09 .11	12 16 58 116	1.77 1.86 1.95 2.05	1.39 1.46 1.54 1.61
3 13 16 7 8 16	.16 .19 .22 .25	.13 .15 .17 .20	3 13 16 7 15 15 16	2.14 2.24 2.34 2.44	1.69 1.76 1.84 1.92
1 16 16 2 8 3	.28 .32 .36 .40	.22 .25 .28 .31	3 16 18 3 16	2.55 2.66 2.77 2.88	2.01 2.09 2.18 2.26
14 5 16 33 5 7	.44 .49 .54 .58	.35 .38 .42 .46	1 5 16 38 7	2.99 3.11 3.23 3.35	2.35 2.44 2.53 2.63
1 2 9 16 5 8	.64 .69 .75 .81	.50 .54 .59 .63	12 16 5 8 16	3.47 3.60 3.72 3.85	2.73 2.82 2.92 3.03
3 13 16 7 8 16	.87 .94 1.00 1.06	.68 .73 .78 .84	34 13 16 7 8 15	3.98 4.12 4.25 4.39	3.13 3.23 3.34 3.45

Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.	Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.
4 116 18 8 16	4.53 4.68 4.82 4.97	3.57 3.67 3.79 3.90	6 16 18 3 16	10.20 10.41 10.63 10.85	8.01 8.18 8.35 8.52
56 166 98 7	5.12 5.27 5.42 5.58	4.02 4.14 4.26 4.38	145 16 38 7	11.07 11.29 11.51 11.74	8.69 8.87 9.04 9.22
12 96 16 58 111 16	5.74 5.90 6.06 6.23	4.51 4.63 4.76 4.89	12 9 16 5 11 11 16	11.97 12.20 12.43 12.67	9.40 9.58 9.77 9.95
15 16 78 15	6.39 6.56 6.73 6.91	5.02 5.15 5.29 5.42	34 13 16 7 15 15 16	12.91 13.15 13.39 13.64	10.14 10.33 10.52 10.71
5 16 16 2 3 16	7.08 7.26 7.44 7.62	5.56 5.70 5.84 5.99	$7^{\frac{1}{16}}_{\frac{1}{8}}_{\frac{3}{16}}$	13.88 14.13 14.38 14.64	10.90 11.10 11.30 11.50
16 38 7	7.81 8.00 8.19 8.38	6.13 6.28 6.43 6.58	11 15 16 38 7 16	14.89 15.15 15.41 15.67	11.70 11.90 12.10 12.31
12 29 16 58 11	8.57 8.77 8.96 9.16	6.73 6.88 7.04 7.20	12 9 16 58 116	15.94 16.20 16.47 16.74	12.52 12.73 12.94 13.15
13 16 7 8 15	9.37 9.57 9.78 9.99	7.36 7.52 7.68 7.84	34 136 78 156	17.02 17.29 17.57 17.85	13.36 13.58 13.80 14.02

Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.	Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long
8 16 16 18 3 16	18.11 18.42 18.70 18.99	14.24 14.46 14.69 14.92	10 16 18 3 16	28.33 28.69 29.04 29.41	22.25 22.53 22.81 23.09
14 16 16 8 8 7	19.28 19.58 19.87 20.17	15.14 15.38 15.61 15.84	16 16 38 7 16	29.77 30.13 30.50 30.87	23.38 23.66 23.95 24.24
$\begin{array}{c} \frac{1}{2} \\ \frac{9}{1.6} \\ \frac{5}{8} \\ \frac{1}{1.6} \end{array}$	20.47 20.77 21.08 21.38	16.08 16.31 16.55 16.79	12 9 16 5 11 11	31.24 31.61 31.98 32.36	24.53 24.82 25.12 25.42
3 13 16 7 8 15 16	21.69 22.00 22.31 22.63	17.04 17.28 17.53 17.77	13 16 7 16	32.74 33.12 33.51 33.89	25.71 26.01 26.32 26.62
9 16 18 8 3 16	22.95 23.27 23.59 23.91	18.02 18.27 18.53 18.78	$11_{\frac{\frac{1}{16}}{\frac{1}{8}}\frac{3}{3}}$	34.28 34.67 35.06 35.46	26.92 27.23 27.54 27.85
1.6 3.8 7.6	24.24 24.57 24.90 25.23	19.04 19.30 19.56 19.82	14 16 16 8 7	35.86 36.26 36.66 37.06	28.16 28.48 28.79 29.11
12 16 5 8 16	25.57 25.91 26.25 26.59	20.08 20.35 20.61 20.88	12 9 16 5 8	37.47 37.88 38.29 38.70	29.43 29.75 30.07 30.39
3 13 16 25 16	26.93 27.28 27.63 27.98	21.15 21.42 21.70 21.97	3 4 13 10 7 8 15	39.12 39.53 39.95 40.37	30.72 31.04 31.38 31.71

Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.	Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.
12	40.80 41.65 42.52 43.39	32.04 32.71 33.39 34.08	16 18 14 38	72.53 73.67 74.81 75.97	56.96 57.86 58.76 59.66
#(% 5)00 -	44.27 45.16 46.06 46.96	34.77 35.47 36.17 36.88	1 m 5/000 4 m	77.13 78.31 79.49 80.68	60.58 61.50 62.43 63.36
13	47.88 48.81 49.74 50.68	37.60 38.33 39.06 39.80	17	81.88 83.09 84.30 85.53	64.30 65.25 66.21 67.17
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	51.63 52.59 53.56 54.54	40.55 41.31 42.07 42.84	7(245)655)477	86.77 88.01 89.26 90.52	68.14 69.12 70.10 71.09
14	55.53 56.53 57.53 58.54	43.62 44.39 45.18 45.98	18 18 18 14 318	91.79 93.07 94.36 95.66	72.09 73.10 74.11 75.13
14(Ct s) so m) 16 7-100	59.57 60.60 61.64 62.69	46.78 47.59 48.41 49.23	11115)80(47)8	96.96 98.28 99.60 100.94	76.15 77.19 78.22 79.27
15	63.75 64.81 65.89 66.97	50.06 50.90 51.75 52.60	19	102.28 103.63 104.99 106.35	80.32 81.39 82.45 83.53
	68.07 69.17 70.28 71.40	53.46 54.32 55.20 56.08	*(2 5)(2 m)(車 F)(8	107.73 109.12 110.51 111.91	84.61 85.70 86.79 87.89

Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.	Thickness or Diameter in Inches.	Weight of Bar One Inch Long.	Weight of Bar One Inch Long.
20	113.33 114.75 116.18 117.62	89.00 90.12 91.24 92.37	24	163.19 164.89 166.61 168.33	128.16 129.50 130.85 132.20
न्द्रिय usico esi-क्रा-(कo	119.06 120.52 121.98 123.46	93.51 94.65 95.80 96.96	125 1834 1	170.06 171.80 173.55 175.31	133.57 134.93 136.30 137.68
21	124.94 126.43 127.93 129.44	98.13 99.30 100.48 101.66	25	177.07 178.85 180.63 182.42	139.07 140.46 141.86 143.27
নুবে u)ত ত\-ৰ-্-ত	130.96 132.49 134.03 135.57	102.85 104.05 105.26 106.47	T(245)000)#17-100	184.23 186.04 187.86 189.68	144.68 146.11 147.54 148.97
22	137.12 138.69 140.26 141.84	107.69 108.92 110.15 111.40	26	191.52 193.37 195.22 197.09	150.41 151.86 153.32 154.78
Terro co prima primo	143.43 145.03 146.63 148.25	112.64 113.90 115.16 116.43	PARKO DIM TIO	198.96 200.84 202.73 204.63	156.25 157.73 159.22 160.71
23	149.88 151.51 153.15 154.81	117.71 118.99 120.28 121.58	27	206.54 208.45 210.38 212.31	162.21 163.71 165.22 166.74
7-17-15-18 C3-1-4-7-10	156.46 158.13 159.81 161.49	122.88 124.19 125.51 126.83	educio sia rio	214.26 216.21 218.17 220.14	168.27 169.80 171.34 172.89

Thickness or Diameter	Weight of Bar	Weight of Bar	Thickness or Diameter	Weight of Bar	Weight of Bar
in Inches.	One Inch Long.	One Inch Long.	in Inches.	One Inch Long.	One Inch Long.
28	222.12 224.11 226.10 228.11	174.44 176.01 177.57 179.15	32	290.11 292.39 294.67 296.95	227.85 229.63 231.42 233.22
1((245)00 (2) 487 00	230.12 232.15 234.18 236.22	180.73 182.32 183.91 185.52	= (245)@@]=(7-)@	299.25 301.56 303.87 306.20	235.02 236.83 238.65 240.48
29 18 14 18 18 18 18	238.27 240.33 242.39 244.47	187.13 188.74 190.37 192.00	33	308.53 310.87 313.22 315.58	242.31 244.15 245.99 247.85
1 12 miles ratem 7 les	246.56 248.65 250.75 252.86	193.64 195.28 196.93 198.59	1-(245)000)417 W	317.95 320.33 322.71 325.11	249.71 251.57 253.45 255.33
30	254.98 257.11 259.25 261.40	200.25 201.93 203.61 205.29	34	327.51 329.93 332.35 334.78	257.22 259.11 261.01 262.92
1(20 to)(00 to) # 7\00	263.55 265.72 267.89 270.07	206.99 208.69 210.39 212.11	⇔(€115)@ Φ(±15)@	337.22 339.66 342.12 344.59	264.84 266.76 268.69 270.63
31 1 1 1 1 1 8	272.27 274.47 276.68 278.89	213.83 215.56 217.29 219.03	35	347.06 349.54 352.04 354.54	272.57 274.52 276.48 278.44
9 (III o) (o o) #17 (o	281.12 283.36 285.60 287.85	220.78 222.54 224.30 226.07	rejeancier rojera-jeo	357.05 359.57 362.09 364.63	280.41 282.39 284.38 286.37

WEIGHTS OF CIRCULAR STEEL PLATES. POUNDS.

Diameters 35 to 134 ins.; Thicknesses $\frac{3}{16}$ to 1 inch.

Diameter in				kness, Inch								
Inches	3 1 6	$\frac{1}{4}$	5 1 6	3 8	7 1 6	1/2	9					
35	51.1	68.1	85.2	102.2	119.3	136.3	153.3					
36	54.1	72.1	90.1	108.1	126.2	144.2	162.2					
37	57.1	76.2	95.2	114.2	133.3	152.3	171.4					
38	60.2	80.3	100.4	120.5	140.6	160.7	180.7					
39	63.5	84.6	105.8	126.9	148.1	169.2	190.4					
40	66.8	89.0	111.3	133.5	155.8	178.0	200.3					
41	70.1	93.5	116.9	140.3	163.7	187.0	210.4					
42	73.6	98.1	122.7	147.2	171.7	196.3	220.8					
43	77.1	102.9	128.6	154.3	180.0	205.7	231.4					
44	80.8	107.7	134.6	161.6	188.5	215.4	242.3					
45	84.5	112.6	140.8	169.0	197.1	225.3	253.5					
46	88.3	117.7	147.1	176.6	206.0	235.4	264.9					
47	92.2	122.9	153.6	184.3	215.1	245.8	276.5					
48	96.1	128.2	160.2	192.3	224.3	256.4	288.4					
49	100.2	133.6	167.0	200.4	233.8	267.1	300.5					
50	104.3	139.1	173.9	208.6	243.4	278.2	312.9					
51	108.5	144.7	180.9	217.0	253.2	289.4	325.6					
52	112.8	150.4	188.0	225.6	263.3	300.9	338.5					
53	117.2	156.3	195.3	234.4	273.5	312.5	351.6					
54	121.7	162.2	202.8	243.3	283.9	324.4	365.0					
55	126.2	168.3	210.4	252.4	294.5	336.6	378.6					
56	130.8	174.5	218.1	261.7	305.3	348.9	392.5					
57	135.6	180.7	225.9	271.1	316.3	361.5	406.7					
58	140.4	187.1	233.9	280.7	327.5	374.3	421.1					
59	145.2	193.7	242.1	290.5	338.9	387.3	435.7					
60	150.2	200.3	250.3	300.4	350.5	400.6	450.6					
61	155.3	207.0	258.8	310.5	362.3	414.0	465.8					
62	160.4	213.9	267.3	320.8	374.2	427.7	481.2					
63	165.6	220.8	276.0	331.2	386.4	441.6	496.8					
64	170.9	227.9	284.8	341.8	398.8	455.7	512.7					
65	176.3	235.0	293.8	352.6	411.3	470.1	528.9					
66	181.8	242.3	302.9	363.5	424.1	484.7	545.3					
67	187.3	249.7	312.2	374.6	437.0	499.5	561.9					
68	192.9	257.2	321.6	385.9	450.2	514.5	578.8					
69	198.6	264.9	331.1	397.3	463.5	529.7	595.9					
70	204.4	272.6	340.7	408.9	477.0	545.2	613.3					
71	210.3	280.4	350.6	420.7	490.8	560.9	631.0					
72	216.3	288.4	360.5	432.6	504.7	576.8	648.9					
73	222.3	296.5	370.6	444.7	518.8	592.9	667.0					
74	228.5	304.6	380.8	457.0	533.1	609.3	685.4					
75	234.7	312.9	391.2	469.4	547.6	625.9	704.1					
76	241.0	321.3	401.7	482.0	562.3	642.7	723.0					
77	247.4	329.8	412.3	494.8	577.2	659.7	742.1					
78	253.9	338.5	423.1	507.7	592.3	676.9	761.6					
79	260.4	347.2	434.0	520.8	607.6	694.4	781.2					
80	267.0	356.0	445.1	534.1	623.1	712.1	801.1					
81	273.8	365.0	456.3	547.5	638.8	730.0	821.3					
82	280.6	374.1	467.6	561.1	654.6	748.1	841.7					
83	287.4	383.3	479.1	574.9	670.7	766.5	862.3					
84	294.4	392.5	490.7	588.8	686.9	785.1	883.2					

WEIGHTS OF CIRCULAR STEEL PLATES. POUNDS.

Diameters 35 to 134 ins.; Thicknesses 3 to 1 inch.

		Ti	irkn-ss, In-	irs			Diameter in
5.8	1 1 1 6	3 4	13	-78	1 5 1 6	1 .	Inches
170.4	187.4	204.4	221.5	238.6	255.6	272.6	35
180.2	198.3	216.3	234.3	252.4	270.3	288.3	36
190.4	209.4	228.3	247.5	266.6	285.6	304.6	37
200.8	220.9	241.0	261.0	281.2	301.2	321.3	38
211.5	232.7	253.9	275.0	296.2	317.3	338.4	39
222.5	244.8	267.0	289.3	311.6	333.8	356.0	40
233.8	257.2	280.6	303.9	327.5	350.7	374.1	41
245.8	269.9	294.4	318.9	343.4	368.0	392.5	42
257.2	282.9	308.6	334.3	360.0	385.8	411.5	43
269.3	296.2	323.1	350.1	377.0	403.9	430.9	44
281.6	309.8	338.0	366.1	394.3	422.4	450.6	45
294.3	323.7	353.2	382.6	412.1	441.4	470.9	46
307.2	338.0	368.7	399.4	430.2	460.8	491.5	47
320.4	352.5	384.5	416.5	448.6	480.6	512.7	48
333.9	367.3	400.7	434.1	467.6	500.9	534.8	49
347.7	382.5	417.2	452.0	486.8	521.6	556.3	50
361.7	397.9	434.1	470.2	506.4	542.6	578.7	51
376.1	413.7	451.3	488.9	526.6	564.1	601.7	52
390.7	429.7	468.8	507.9	547.0	586.0	625.1	53
405.6	446.1	486.7	527.3	567.8	608.4	648.9	54
420.7	462.8	504.9	546.9	589.0	631.1	673.2	55
436.2	479.8	523.4	567.0	610.7	654.3	697.9	56
451.9	497.1	542.2	587.4	632.6	677.8	723.0	57
467.9	514.7	561.4	608.2	655.0	701.8	748.6	58
484.1	532.6	581.0	629.4	677.8	726.2	774.7	59
500.7	550.8	600.8	650.9	701.0	751.0	801.1	60
517.5	569.3	621.0	672.8	724.5	776.3	828.1	61
534.6	588.1	641.6	695.1	758.5	800.9	855.4	62
552.0	607.2	662.4	717.6	772.8	828.0	883.2	63
569.7	626.6	683.6	740.6	797.6	854.5	911.4	64
587.6	646.4	705.1	763.9	822.6	881.4	940.2	65
605.8	666.4	727.0	787.6	848.1	908.7	969.3	66
624.8	686.8	749.2	811.6	874.0	936.5	999.0	67
643.1	707.4	771.7	836.0	900.3	964.7	1029	68
662.2	728.4	794.6	860.8	927.1	993.3	1060	69
681.5	749.6	817.8	885.9	954.1	1023	1091	70
701.1	771.2	841.3	919.4	985.5	1052	1122	71
721.0	793.1	865.2	937.3	1010	1082	1154	72
741.2	815.3	889.4	963.5	1038	1112	1186	73
761.6	837.8	913.9	990.0	1066	1143	1219	74
782.3	860.6	938.8	1017	1096	1174	1252	75
803.3	883.7	964.0	1045	1125	1205	1286	76
824.6	907.1	989.5	1072	1155	1287	1320	77
846.2	930.8	1015	1100	1185	1270	1354	78
868.0	954.8	1042	1129	1216	1302	1389	79
890.1	979.1	1068	1158	1247	1336	1425	80
912.5	1004	1095	1187	1278	1369	1460	81
935.2	1029	1122	1216	1310	1403	1497	82
958.1	1054	1150	1246	1342	1438	1533	83
981.4	1080	1178	1276	1374	1472	1571	84

WEIGHTS OF CIRCULAR STEEL PLATES.

POUNDS.

Diameters 35 to 134 ins.; Thicknesses 3 to 1 inch.

	Thickness, Inches										
Diameter in Inches	3	1 1	5	ckness, incl	1es 7	1	9				
Inches	16	4	16	8	16	2	16				
85	301.5	401.9	502.4	602.9	703.4	803.9	904.4				
86	308.6	411.5	514.3	617.2	720.0	822.9	925.8				
87	315.8	421.1	526.4	631.6	736.9	842.2	947.4				
88	323.1	430.8	538.5	646.2	753.9	861.6	969.3				
89	330.5	440.7	550.8	661.0	771.2	881.3	991.5				
90	338.0	450.6	563.3	675.9	788.6	901.2	1014				
91	345.5	460.7	575.9	691.0	806.2	921.4	1037				
92	353.2	470.9	588.6	706.3	824.0	941.7	1060				
93	360.9	481.2	601.5	721.7	842.0	962.3	1083				
94	368.7	491.6	614.5	737.4	860.2	983.1	1106				
95	376.6	502.1	627.6	753.1	878.6	1047	1130				
96	384.5	512.7	640.9	769.1	897.2		1154				
97	392.6	523.4	654.3	785.2	916.0		1178				
98	400.7	534.3	667.9	801.4	935.0		1202				
99	408.9	545.3	681.6	817.9	954.2		1227				
100	417.2	556.3	695.4	834.5	973.6	1113	1252				
101	425.6	567.5	709.4	851.3	993.1	1135	1277				
102	434.1	578.8	723.5	868.2	1013	1158	1802				
103	442.7	590.2	737.8	885.3	1033	1180	1328				
104	451.3	601.7	752.1	902.6	1053	1203	1354				
105	460.0	613.3	766.7	920.0	1094	1227	1380				
106	468.8	625.1	781.4	937.6		1250	1406				
107	477.7	636.9	796.2	955.4		1274	1433				
108	486.7	648.9	811.1	978.3		1298	1460				
109	495.7	661.0	826.2	991.5		1322	1487				
110	504.9	673.2	841.4	1047	1178	1346	1515				
111	514.1	685.4	856.8		1200	1371	1542				
112	523.4	697.9	872.3		1221	1396	1570				
113	532.8	710.4	888.0		1243	1421	1598				
114	542.2	723.0	903.7		1265	1446	1627				
115	551.8	735.7	919.7	1104	1288	1472	1655				
116	561.4	748.6	935.7	1123	1310	1497	1684				
117	571.2	761.6	951.9	1142	1333	1523	1714				
118	581.0	774.6	968.3	1162	1356	1549	1743				
119	590.9	787.8	984.8	1182	1379	1576	1773				
120 121 122 123 124	600.8 610.9 621.0 631.2 641.6	801.1 814.5 828.0 841.7 855.4	1035 1052	1202 1222 1242 1263 1283	1402 1425 1449 1473 1497	1602 1629 1656 1683 1711	1803 1833 1863 1894 1925				
125 126 127 128 129	651.9 662.4 673.0 683.6 694.3	869.3 883.2 897.3 911.5 925.8	1104 1122 1139	1304 1325 1346 1367 1389	1521 1546 1570 1595 1620	1739 1766 1795 1823 1852	1956 1987 2019 2051 2083				
130 131 132 133 134	705.1 716.0 727.0 738.1 749.2	940.2 954.7 969.3 984.1 998.9	1193 1212 1230	1410 1432 1454 1476 1498	1645 1671 1696 1722 1748	1880 1909 1939 1968 1998	2115 2148 2181 2214 2248				

WEIGHTS OF CIRCULAR STEEL PLATES.

POUNDS.

Diameters 35 to 134 ins.; Thicknesses 3 to 1 inch.

			hickness, In		-		Diameter in
5 8	1 1 1	3 4	1 3 1 6	8	15	1	Inches
1005	1105	1206	1307	1407	1509	1608	85
1029	1132	1234	1338	1441	1543	1646	86
1053	1158	1263	1369	1474	1580	1685	87
1077	1185	1293	1400	1508	1616	1724	88
1102	1212	1322	1433	1543	1653	1763	89
1127	1239	1352	1465	1577	1690	1803	90
1152	1267	1382	1498	1613	1728	1843	91
1177	1295	1413	1531	1648	1766	1884	92
1203	1323	1444	1564	1684	1804	1925	93
1229	1352	1475	1598	1721	1843	1967	94
1255	1381	1506	1632	1757	1883	2008	95
1282	1410	1538	1666	1795	1923	2051	96
1309	1440	1570	1701	1832	1963	2094	97
1336	1469	1603	1737	1870	2004	2137	98
1363	1499	1636	1772	1908	2045	2181	99
1391	1530	1669	1808	1947	2086	2225	100
1419	1561	1703	1844	1986	2128	2270	101
1447	1592	1736	1881	2026	2171	2315	102
1476	1623	1771	1918	2066	2213	2361	103
1504	1655	1805	1956	2106	2256	2407	104
1533	1687	1840	1993	2147	2300	2453	105
1563	1719	1875	2032	2188	2344	2500	106
1592	1752	1911	2070	2229	2389	2548	107
1622	1785	1947	2109	2271	2433	2596	108
1652	1818	1983	2148	2313	2479	2644	109
1683	1851	2020	2188	2356	2524	2693	110
1714	1885	2056	2228	2399	2570	2742	111
1745	1919	2094	2268	2443	2617	2791	112
1776	1954	2131	2309	2486	2664	2842	113
1808	1988	2169	2350	2531	2711	2892	114
1839	2023	2207	2391	2575	2759	2943	115
1872	2059	2246	2433	2620	2807	2994	116
1904	2094	2285	2475	2665	2856	3046	117
1937	2130	2324	2518	2711	2905	3099	118
1970	2167	2363	2560	2757	2954	3151	119
2003	2203	2403	2604	2804	3004	3204	120
2036	2240	2444	2647	2851	3054	3258	121
2070	2277	2484	2691	2898	3105	3312	122
2104	2315	2525	2735	2946	3156	3367	123
2139	2352	2566	2780	2994	3208	3422	124
2173	2391	2608	2825	3042	3260	3477	125
2208	2429	2650	2871	3091	3312	3533	126
2243	2468	2692	2916	3141	3365	3589	127
2279	2507	2734	2962	3190	3418	3646	128
2314	2546	2777	3009	3240	3472	3703	129
2351	2586	2821	3056	3291	3526	3761	130
2387	2625	2864	3103	3342	3580	3819	131
2423	2666	2908	3150	3393	3635	3877	132
2460	2706	2952	3198	3444	3690	3936	133
2497	2747	2997	3247	3496	3746	3996	134

For Thicknesses from 1 in. to 2 in. and Widths from 1 in. to 123 in.

Thickness in Inches.	1"	11/4	11/2"	13"	2"	21/1	2½"	23′′	12"
16 16 18 3 16 14	.063 .125 .188 .250	.078 .156 .234 .313	.094 .188 .281 .375	.109 .219 .328 .438	.125 .250 .375 .500	.141 .281 .422 .563	.156 .313 .469 .625	.172 .344 .516 .688	.750 1.50 2.25 · 3.00
5 16 3 8 7 16 12	.313 .375 .438 .500	.391 .469 .547 .625	.469 .563 .656 .750	.547 .656 .766 .875	.625 .750 .875 1.00	.703 .844 .984 1.13	.781 .938 1.09 1.25	.859 1.03 1.20 1.38	3.75 4.50 5.25 6.00
9 16 5 8 11 16	.563 .625 .688 .750	.703 .781 .859 .938	.844 .938 1.03 1.13	.984 1.09 1.20 1.31	1.13 1.25 1.38 1.50	1.27 1.41 1.55 1.69	1.41 1.56 1.72 1.88	1.55 1.72 1.89 2.06	6.75 7.50 8.25 9.00
13 16 7 N 15 16	.813 .875 .938 1.00	1.02 1.09 1.17 1.25	1.22 1.31 1.41 1.50	1.42 1.53 1.64 1.75	1.63 1.75 1.88 2.00	1.83 1.97 2.11 2.25	2.03 2.19 2.34 2.50	2.23 2.41 2.58 2.75	9.75 10.50 11.25 12.00
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	1.06 1.13 1.19 1.25	1.33 1.41 1.48 1.56	1.59 1.69 1.78 1.88	1.86 1.97 2.08 2.19	2.13 2.25 2.38 2.50	2.39 2.53 2.67 2.81	2.66 2.81 2.97 3.13	2.92 3.09 3.27 3.44	12.75 13.50 14.25 15.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	1.31 1.38 1.44 1.50	1.64 1.72 1.80 1.88	1.97 2.06 2.16 2.25	2.30 2.41 2.52 2.63	2.63 2.75 2.88 3.00	2.95 3.09 3.23 3.38	3.28 3.44 3.59 3.75	3.61 3.78 3.95 4.13	15.75 16.50 17.25 18.00
$1\frac{9}{16}$ $1\frac{5}{8}$ $1\frac{11}{16}$ $1\frac{3}{4}$	1.56 1.63 1.69 1.75	1.95 2.03 2.11 2.19	2.34 2.44 2.53 2.63	2.73 2.84 2.95 3.06	3.13 3.25 3.38 3.50	3.52 3.66 3.80 3.94	3.91 4.06 4.22 4.38	4.30 4.47 4.64 4.81	18.75 19.50 20.25 21.00
$ \begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	1.81 1.88 1.94 2.00	2.27 2.34 2.42 2.50	2.72 2.81 2.91 3.00	3.17 3.28 3.39 3.50	3.63 3.75 3.88 4.00	4.08 4.22 4.36 4.50	4.53 4.69 4.84 5.00	4.98 5.16 5.33 5.50	21.75 22.50 23.25 24.00

Thickness in Inches.	3"	31/1	3½"	3¾″	4"	41/1	41/	43"	12"
1 16 18 3 16 14	.188 .375 .563 .750	.203 .406 .609 .813	.219 .438 .656 .875	.234 .469 .703 .938	.250 .500 .750 1.00	.266 .531 .797 1.06	.281 .563 .844 1.13	.297 .594 .891 1.19	.750 1.50 2.25 3.00
16	.938	1.02	1.09	1.17	1.25	1.33	1.41	1.48	3.75
16	1.13	1.22	1.31	1.41	1.50	1.59	1.69	1.78	4.50
16	1.31	1.42	1.53	1.64	1.75	1.86	1.97	2.08	5.25
16	1.50	1.63	1.75	1.88	2.00	2.13	2.25	2.38	6.00
16 5 11 16 16	1.69 1.88 2.06 2.25	1.83 2.03 2.23 2.44	1.97 2.19 2.41 2.63	2.11 2.34 2.58 2.81	2.25 2.50 2.75 3.00	2.39 2.66 2.92 3.19	2.53 2.81 3.09 3.38	2.67 2.97 3.27 3.56	6.75 7.50 8.25 9.00
$ \begin{array}{c} \frac{13}{16} \\ \frac{7}{8} \\ \frac{15}{16} \end{array} $	2.44	2.64	2.84	3.05	3.25	3.45	3.66	3.86	9.75
	2.63	2.84	3.06	3.28	3.50	3.72	3.94	4.16	10.50
	2.81	3.05	3.28	3.52	3.75	3.98	4.22	4.45	11.25
	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	12.00
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	3.19	3.45	3.72	3.98	4.25	4.52	4.78	5.05	12.75
	3.38	3.66	3.94	4.22	4.50	4.78	5.06	5.34	13.50
	3.56	3.86	4.16	4.45	4.75	5.05	5.34	5.64	14.25
	3.75	4.06	4.38	4.69	5.00	5.31	5.63	5.94	15.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	3.94	4.27	4.59	4.92	5.25	5.58	5.91	6.23	15.75
	4.13	4.47	4.81	5.16	5.50	5.84	6.19	6.53	16.50
	4.31	4.67	5.03	5.39	5.75	6.11	6.47	6.83	17.25
	4.50	4.88	5.25	5.63	6.00	6.38	6.75	7.13	18.00
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	4.69	5.08	5.47	5.86	6.25	6.64	7.03	7.42	18.75
	4.88	5.28	5.69	6.09	6.50	6.91	7.31	7.72	19.50
	5.06	5.48	5.91	6.33	6.75	7.17	7.59	8.02	20.25
	5.25	5.69	6.13	6.56	7.00	7.44	7.88	8.31	21.00
$ \begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	5.63		6.34 6.56 6.78 7.00		7.25 7.50 7.75 8.00	7.70 7.97 8.23 8.50	8.16 8.44 8.72 9.00	8.61 8.91 9.20 9.50	21.75 22.50 23.25 24.00

Thickness in Inches.	5"	51"	5½"	53"	6"	61"	61''	63"	12"
1 16 1 3 16 1	.313 .625 .938 1.25	.328 .656 .984 1.31	.344 .688 1.03 1.38		.375 .750 1.13 1.50	.391 .781 1.17 1.56	.406 .813 1.22 1.63		.750 1.50 2.25 3.00
16 . 3 8 7 16 12	1.56 1.88 2.19 2.50	1.64 1.97 2.30 2.63	1.72 2.06 2.41 2.75	1.80 2.16 2.52 2.88	1.88 2.25 2.63 3.00	1.95 2.34 2.73 3.13	2.03 2.44 2.84 3.25	2.11 2.53 2.95 3.38	3.75 4.50 5.25 6.00
16 5 8 11 16 3	2.81 3.13 3.44 3.75	2.95 3.28 3.61 3.94	3.09 3.44 3.78 4.13	3.23 3.59 3.95 4.31	3.38 3.75 4.13 4.50	3.52 3.91 4.30 4.69	3.66 4.06 4.47 4.88	3.80 4.22 4.64 5.06	6.75 7.50 8.25 9.00
$ \begin{array}{c} \frac{1}{16} \\ \frac{7}{8} \\ \frac{15}{16} \\ 1 \end{array} $	4.06 4.38 4.69 5.00	4.27 4.59 4.92 5.25	4.47 4.81 5.16 5.50	4.67 5.03 5.39 5.75	4.88 5.25 5.63 6.00	5.08 5.47 5.86 6.25	5.28 5.69 6.09 6.50	5.48 5.91 6.33 6.75	9.75 10.50 11.25 12.00
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	5.31 5.63 5.94 6.25	5.58 5.91 6.23 6.56	5.84 6.19 6.53 6.88	6.11 6.47 6.83 7.19	6.38 6.75 7.13 7.50	6.64 7.03 7.42 7.81	6.91 7.31 7.72 8.13	7.17 7.59 8.02 8.44	12.75 13.50 14.25 15.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	6.56 6.88 7.19 7.50	6.89 7.22 7.55 7.88	7.22 7.56 7.91 8.25	7.55 7.91 8.27 8.63	7.88 8.25 8.63 9.00	8.20 8.59 8.98 9.38	8.53 8.94 9.34 9.75	8 86 9.28 9.70 10.13	15.75 16.50 17.25 18.00
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	7.81 8.13 8.44 8.75	8.20 8.53 8.86 9.19	8.59 8.94 9.28 9.63	8.98 9.34 9.70 10.06	9.38 9.75 10.13 10.50	9.77 10.16 10.55 10.94		10.55 10.97 11.39 11.81	18.75 19.50 20.25 21.00
$1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2$	9.38	10.17	9.97 10.31 10.66 11.00	10.78 11.14	11.25 11.63	11.33 11.72 12.11 12.50	12.19 12.59	12.23 12.66 13.08 13.50	21.75 22.50 23.25 24.00

Thickness in Inches.	7"	71"	71/2"	73"	8''	811"	81/1	83"	12"
16 8 16	.438 .875 1.31 1.75			.484 .969 1.45 1.94		.516 1.03 1.55 2.06	.531 1.06 1.59 2.13	.547 1.09 1.64 2.19	.750 1.50 2.25 3.00
5 16 3 8 7 16	2.19 2.63 3.06 3.50	2.27 2.72 3.17 3.63	2.34 2.81 3.28 3.75	2.42 2.91 3.39 3.88	2.50 3.00 3.50 4.00	2.58 3.09 3.61 4.13	2.66 3.19 3.72 4.25	2.73 3.28 3.83 4.38	3.75 4.50 5.25 6.00
9 16 5 8 11 16	3.94 4.38 4.81 5.25	4.08 4.53 4.98 5.44	4.22 4.69 5.16 5.63	4.36 4.84 5.33 5.81	4.50 5.00 5.50 6.00	4.64 5.16 5.67 6.19	4.78 5.31 5.84 6.38	4.92 5.47 6.02 6.56	6.75 7.50 8.25 9.00
13 16 7 8 15 16	5.69 6.13 6.56 7.00	5.89 6.34 6.80 7.25	6.09 6.56 7.03 7.50	6.30 6.78 7.27 7.75	6.50 7.00 7.50 8.00	6.70 7.22 7.73 8.25	6.91 7.44 7.97 8.50	7.11 7.66 8.20 8.75	9.75 10.50 11.25 12.00
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	7.44 7.88 8.31 8.75	7.70 8.16 8.61 9.06	7.97 8.44 8.91 9.38		8.50 9.00 9.50 10.00	9.28 9.80	9.03 9.56 10.09 10.63	9.84	12.75 13.50 14.25 15.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{5} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	9.63		9.84 10.31 10.78 11.25	10.66	10.50 11.00 11.50 12.00	10.83 11.34 11.86 12.38	12.22	11.48 12.03 12.58 13.13	15.75 16.50 17.25 18.00
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	10.94 11.38 11.81 12.25	11.78 12.23	11.72 12.19 12.66 13.13	12.59 13.08	13.00 13.50	12.89 13.41 13.92 14.44	13.28 13.81 14.34 14.88	14.77	18.75 19.50 20.25 21.00
$1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2$	13.13 13.56	13.59	14.06 14.53	14.05 14.53 15.02 15.50	15.00 15.50	15.47 15.98	15.94 16.47		21.75 22.50 23.25 24.00

Thickness in Inches.	9"	914"	917	93"	10"	101"	1012"	103"	12"
16	.563	.578	.594	.609	.625	.641	.656	.672	.750
18	1.13	1.16	1.19	1.22	1.25	1.28	1.31	1.34	1.50
16	1.69	1.73	1.78	1.83	1.88	1.92	1.97	2.02	2.25
14	2.25	2.31	2.38	2.44	2.50	2.56	2.63	2.69	3.00
$\begin{array}{c} \frac{5}{16} \\ \frac{8}{8} \\ \frac{7}{16} \\ \frac{1}{2} \end{array}$	2.81	2.89	2.97	3.05	3.13	3.20	3.28	3.36	3.75
	3.38	3.47	3.56	3.66	3.75	3.84	3.94	4.03	4.50
	3.94	4.05	4.16	4.27	4.38	4.48	4.59	4.70	5.25
	4.50	4.63	4.75	4.88	5.00	5.13	5.25	5.38	6.00
9 16 5 8 11 16 3	5.06 5.63 6.19 6.75	5.20 5.78 6.36 6.94	5.34 5.94 6.53 7.13	5.48 6.09 6.70 7.31	5.63 6.25 6.88 7.50	5.77 6.41 7.05 7.69	5.91 6.56 7.22 7.88	6.05 6.72 7.39 8.06	6.75 7.50 8.25 9.00
$1 \\ \frac{13}{16} \\ \frac{7}{1} \\ \frac{15}{16} \\ 1$	7.31	7.52	7.72	7.92	8.13	8.33	8.53	8.73	9.75
	7.88	8.09	8.31	8.53	8.75	8.97	9.19	9.41	10.50
	8.44	8.67	8.91	9.14	9.38	9.61	9.84	10.08	11.25
	9.00	9.25	9.50	9.75	10.00	10.25	10.50	10.75	12.00
$\begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array}$	9.56	9.83	10.09	10.36	10.63	10.89	11.16	11.42	12.75
	10.13	10.41	10.69	10.97	11.25	11.53	11.81	12.09	13.50
	10.69	10.98	11.28	11.58	11.88	12.17	12.47	12.77	14.25
	11.25	11.56	11.88	12.19	12.50	12.81	13.13	13.44	15.00
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	11.81	12.14	12.47	12.80	13.13	13.45	13.78	14.11	15.75
	12.38	12.72	13.06	13.41	13.75	14.09	14.44	14.78	16.50
	12.94	13.30	13.66	14.02	14.38	14.73	15.09	15.45	17.25
	13.50	13.88	14.25	14.63	15.00	15.38	15.75	16.13	18.00
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	14.06	14.45	14.84	15.23	15.63	16.02	16.41	16.80	18.75
	14.63	15.03	15.44	15.84	16.25	16.66	17.06	17.47	19.50
	15.19	15.61	16.03	16.45	16.88	17.30	17.72	18.14	20.25
	15.75	16.19	16.63	17.06	17.50	17.94	18.38	18.81	21.00
$1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2$	17.44	17.92		18.89	18.13 18.75 19.38 20.00	18.58 19.22 19.86 20.50	19.03 19.69 20.34 21.00	19.48 20.16 20.83 21.50	21.75 22.50 23.25 24.00

(CONCLUDED.)

Thickness in Inches.	11"	111/4"	11½"	113"	12"	121"	12½"	123"
1 16 18 3 16	.688 1.38 2.06 2.75	.703 1.41 2.11 2.81	.719 1.44 2.16 2.88	.734 1.47 2.20 2.94	.750 1.50 2.25 3.00	.766 1.53 2.30 3.06	.781 1.56 2.34 3.13	.797 1.59 2.39 3.19
5 16 3 8 7 16 1	3.44 4.13 4.81 5.50	3.52 4.22 4.92 5.63	3.59 4.31 5.03 5.75	3.67 4.41 5.14 5.88	3.75 4.50 5.25 6.00	3.83 4.59 5.36 6.13	3.91 4.69 5.47 6.25	3.98 4.78 5.58 6.38
9 16 5 11 16 3	6.19 6.88 7.56 8.25	6.33 7.03 7.73 8.44	6.47 7.19 7.91 8.63	6.61 7.34 8.08 8.81	6.75 7.50 8.25 9.00	6.89 7.66 8.42 9.19	7.03 7.81 8.59 9.38	7.17 7.97 8.77 9.56
$ \begin{array}{c} 13 \\ 16 \\ 7 \\ \hline{3} \\ 15 \\ 16 \end{array} $	8.94 9.63 10.31 11.00		9.34 10.06 10.78 11.50		9.75 10.50 11.25 12.00	9.95 10.72 11.48 12.25	10.16 10.94 11.72 12.50	10.36 11.16 11.95 12.75
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	11.69 12.38 13.06 13.75	11.95 12.66 13.36 14.06	12.22 12.94 13.66 14.38	12.48 13.22 13.95 14.69	12.75 13.50 14.25 15.00	13.02 13.78 14.55 15.31	13.28 14.06 14.84 15.63	13.55 14.34 15.14 15.94
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	15.81	15.47 16.17	15.09 15.81 16.53 17.25	15.42 16.16 16.89 17.63	15.75 16.50 17.25 18.00	16.08 16.84 17.61 18.38	16.41 17.19 17.97 18.75	16.73 17.53 18.33 19.13
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	17.19 17.88 18.56 19.25	17.58 18.28 18.98 19.69	19.41	18.36 19.09 19.83 20.56	18.75 19.50 20.25 21.00	19.14 19.91 20.67 21.44	20.31 21.09	19.92 20.72 21.52 22.31
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	19.94 20.63 21.31 22.00	20.39 21.09 21.80 22.50	22.28	21.30 22.03 22.77 23.50	22.50 23.25	22.20 22.97 23.73 24.50	22.66 23.44 24.22 25.00	23.11 23.91 24.70 25.50

The areas for 12" width are repeated on each page to facilitate making the additions necessary to obtain the areas of plates of any width greater than 12". Thus, to find the area of 15% × %, add the areas to be found in the same line for 3% × % and 12 × % = 2.84 + 10.50 = 13.34 square inches. Area of plate 4'' 6% × % = 4 × 7.50 + 4.06 = 34.06 square inches.

WEIGHTS OF FLAT ROLLED STRIPS, HOOP OR BAND STEEL.

Pounds per Lineal Foot.

Thicknesses by Birmingham Wire Gauge.

One cubic foot of steel weighs 489.6 pounds. For widths from ¼ inch to ¾ inch and thicknesses from No. 19 to No. 11 B.W.G.

Width in Inches.	No. 19.	No. 18.	No. 17.	No. 16.	No. 15.	No. 14.	No. 13.	No. 12.	No. 11.
	.042 In.	.049 In.	.058 In.	.065 In.	.072 In.	.083 In.	.095 In.	.109 In.	.120 In.
14 174 9 192 194	.036 .038 .040 .042	.042 .044 .047 .049	.049 .052 .055 .059	.055 .059 .062 .066	.061 .065 .069 .073	.071 .075 .079 .084	.081 .086 .091 .096	.093 .098 .104 .110	.102 .108 .115 .121
5 1 1 4 1 2 3 4 5 1 3 2 4 6 4	.045	.052	.062	.069	.077	.088	.101	.116	.128
	.047	.055	.065	.073	.080	.093	.106	.122	.134
	.049	.057	.068	.076	.084	.097	.111	.127	.140
	.051	.060	.071	.079	.088	.101	.116	.133	.147
38 54322 74 26 13 28 6	.054 .056 .058 .060	.062 .065 .068 .070	.074 .077 .080 .083	.083 .086 .090 .093	.092 .096 .099 .103	.106 .110 .115 .119	.121 .126 .131 .136	.139 .145 .151 .156	.153 .159 .166 .172
7 16 12 16 13 16 13 16 16 16 16 16 16 16 16 16 16 16 16 16	.062 .065 .067 .069	.073 .075 .078 .081	.086 .089 .092 .096	.097 .100 .104 .107	.107 .111 .115 .119	.123 .128 .132 .137	.141 .146 .151 .156	.162 .168 .174 .180	.179 .185 .191 .198
10 01/04/7 (2 5 h4	.071	.083	.099	.111	.122	.141	.162	.185	.204
	.074	.086	.102	.114	.126	.146	.167	.191	.210
	.076	.089	.105	.117	.130	.150	.172	.197	.217
	.078	.091	.108	.121	.134	.154	.177	.203	.223
9 6 7 HAD (2) 2) 44	.080	.094	.111	.124	.138	.159	.182	.208	.230
	.083	.096	.114	.128	.142	.163	.187	.214	.236
	.085	.099	.117	.131	.145	.168	.192	.220	.242
	.087	.102	.120	.135	.149	.172	.197	.226	.249
55/00 1-1441 (24 50)44 41/42 21/53 44/66	.089 .091 .094 .096	.104 .107 .109 .112	.123 .126 .129 .132	.138 .142 .145 .148	.153 .157 .161 .164	.176 .181 .185 .190	.202 .207 .212 .217	.232 .237 .243 .249	.255 .261 .268 .274
1665 Tropics 7-14 and	.098	.115	.136	.152	.168	.194	.222	.255	.281
	.100	.117	.139	.155	.172	.198	.227	.261	.287
	.103	.120	.142	.159	.176	.203	.232	.266	.293
	.105	.122	.145	.162	.180	.207	.237	.272	.300
	.107	.125	.148	.166	.184	.212	.242	.278	.306

Pounds per Lineal Foot.

One cubic foot of steel weighs 489.6 pounds. For thicknesses from $\frac{1}{16}$ inch to $\frac{1}{16}$ inch and widths from $\frac{1}{4}$ inch to 1 inch.

Thickness in Inches.	1"	178	9 7 3 2	198	5 7 6	215	110	235	3 #
16 64 3 64	.053 .066 .080 .093	.056 .071 .085 .099	.060 .075 .090 .105	.063 .079 .095 .110	.066 .083 .100 .116	.070 .087 .105 .122	.073 .091 .110 .128	.076 .095 .115 .134	.080 .100 .120 .139
1600 1-160	.106 .120 .133 .146	.113 .127 .141 .155	.120 .134 .149 .164	.126 .142 .158 .173	.133 .149 .166 .183	.139 .157 .174 .192	.146 .164 .183 .201	.153 .172 .191 .210	.159 .179 .199 .219
3 160 170 7 225 150 150 150 150 150 150 150 150 150 15	.159 .173 .186 .199	.169 .183 .198 .212	.179 .194 .209 .224	.189 .205 .221 .237	.199 .216 .232 .249	.209 .227 .244 .261	.219 .237 .256 .274	.229 .248 .267 .286	.239 .259 .279 .299
16 4 9 2 2 5 4	.213 .226 .239 .252	.226 .240 .254 .268	.239 .254 .269 .284	.252 .268 .284 .300	.266 .282 .299 .315	.279 .296 .314 .331	.292 .310 .329 .347	.305 .325 .344 .363	.319 .339 .359 .379
5 16 12 10 10 10 10 10 10 10 10 10 10 10 10 10	.266 .279 .292 .305	.282 .296 .310 .325	.299 .314 .329 .344	.315 .331 .347 .363	.332 .349 .355 .382	.349 .366 .383 .401	.365 .383 .402 .420	.382 .401 .420 .439	.398 .418 .438 .458
35 WOLUS 260	.319 .332 .345 .359	.339 .353 .367 .381	.359 .374 .388 .403	.379 .394 .410 .426	.398 .415 .432 .448	.418 .436 .453 .471	.433 .457 .475 .493	.458 .477 .496 .515	.478 .498 .518 .538
7 6 0 4 5 0 4 5 0 4 5 0 6 1 6 8 8 6 6 1 6 8 8 6 6 6 8 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 6 8	.372 .385 .398 .412	.395 .409 .423 .437	.418 .433 .448 .463	.442 .457 .473 .489	.465 .481 .498 .515	.488 .506 .523 .540	.511 .530 .548 .566	.535 .554 .573 .592	.558 .578 .598 .618
विषय कोन्सर्गिक कोर्प ।	.425 .438 .452 .465 .478	.452 .466 .480 .494 .508	.478 .493 .508 .523 .533	.505 .520 .536 .552 .567	.531 .548 .564 .581 .598	.558 .575 .593 .610 .628	.584 .603 .621 .639 .657	.611 .630 .649 .668	.638 .657 .677 .697 .717

Pounds per Lineal Foot.

Thickness in Inches.	25# 64	13"	27" 64"	716"	29" 64	15/32	31"	1"	12"
16 5 64 3 32 7 64	.083 .104 .125 .145	.086 .108 .129 .151	.090 .112 .134 .157	.093 .116 .139 .163	.096 .120 .144 .169	.100 .125 .149 .174	.103 .129 .154 .180	.106 .133 .159 .186	2.55 3.19 3.83 4.46
189 65 311 164	.166 .187 .208 .228	.173 .194 .216 .237	.179 .202 .224 .247	.186 .209 .232 .256	.193 .217 .241 .265	.199 .224 .249 .274	.206 .232 .257 .283	.212 .239 .266 .292	5.10 5.74 6.38 7.01
3 16 18 16 7 7 2 15 4 3 15 4 3 16 4 3 16 4	.249 .270 .291 .311	.259 .281 .302 .324	.269 .291 .314 .336	.279 .302 .325 .349	.289 .313 .337 .361	.299 .324 .349 .374	.309 .335 .360 .386	.319 .345 .372 .398	7.65 8.29 8.93 9.56
164 932 194	.332 .353 .374 .394	.345 .367 .388 .410	.359 .381 .403 .426	.372 .395 .418 .442	.385 .409 .433 .457	.398 .423 .448 .473	.412 .437 .463 .489	.425 .452 .478 .505	10.20 10.84 11.48 12.11
5 6 1 4 1 2 3 4 2 5 1 3 2 5 4	.415 .436 .457 .477	.432 .453 .475 .496	.448 .471 .493 .515	.465 .488 .511 .535	.481 .506 .530 .554	.498 .523 .548 .573	.515 .540 .566 .592	.531 .558 .584 .611	12.75 13.39 14.03 14.66
ছাত প্রচান বাত ব্যক্ত চানিকার দানন	.498 .519 .540 .560	.518 .540 .561 .583	.538 .560 .583 .605	.558 .581 .604 .628	.578 .602 .626 .650	.598 .623 .647 .672	.618 .643 .669 .695	.638 .664 .691 .717	15.30 15.94 16.58 17.21
7 6 9 4 5 2 4 5 2 4 5 2 5 6 4 3 3 5 6	.581 .602 .623 .643	.604 .626 .647 .669	.628 .650 .672 .695	.651 .674 .697 .721	.674 .698 .722 .746	.697 .722 .747 .772	.721 .746 .772 .798	.744 .770 .797 .823	17.85 18.49 19.13 19.76
163 00 00 00 00 00 00 00 00 00 00 00 00 00	.664 .685 .706 .726 .747	.691 .712 .734 .755 .777	.717 .740 .762 .784 .807	.744 .767 .790 .813 .837	.770 .794 .818 .843 .867	.797 .822 .847 .872 .896	.823 .849 .875 .901 .926	.850 .877 .903 .930 .956	20.40 21.04 21.68 22.31 22.95

Pounds per Lineal Foot.

Thickness in Inches.	33# 64	17# 32	35#	9 16	37"	19" 32"	39"	5 <i>n</i> /8	12"
16 5 64 3 32 7 64	.110 .137 .164 .192	.113 .141 .169 .198	.116 .145 .174 .203	.120 .149 .179 .209	.123 .154 .184 .215	.126 .158 .189 .221	.129 .162 .194 .227	.133 .166 .199 .232	2.55 3.19 3.83 4.46
1689, K. 1689, 168	.219 .247 .274 .301	.226 .254 .282 .310	.232 .261 .291 .320	.239 .269 .299 .329	.246 .276 .307 .338	.252 .284 .315 .347	.259 .291 .324 .356	.266 .299 .332 .365	5.10 5.74 6.38 7.01
3 16 133 64 7 322 154	.329 .356 .383 .411	.339 .367 .395 .423	.349 .378 .407 .436	.359 .388 .418 .448	.369 .399 .430 .461	.379 .410 .442 .473	.388 .421 .453 .486	.398 .432 .465 .498	7.65 8.29 8.93 9.56
14 164 9 3 194 3 194	.438 .466 .493 .520	.452 .480 .508 .536	.465 .494 .523 .552	.478 .508 .538 .568	.491 .522 .553 .584	.505 .536 .568 .599	.518 .550 .583 .615	.531 .564 .598 .631	10.20 10.84 11.48 12.11
10 141 12 014 1240 12 2 24	.548 .575 .603 .630	.564 .593 .621 .649	.581 .610 .639 .668	.598 .628 .657 .687	.614 .645 .676 .706	.631 .662 .694 .725	.647 .680 .712 .745	.664 .697 .730 .764	12.75 13.39 14.03 14.66
জান্ত গুলিকাল স্থাত	.657 .685 .712 .740	.677 .706 .734 .762	.697. .726 .755	.717 .747 .777 .807	.737 .768 .799 .829	.757 .789 .820 .852	.777 .809 .842 .874	.797 .830 .863 .896	15.30 15.94 16.58 17.21
7 160)445 2445 2445 245 245 245 245 245 245 24	.767 .794 .822 .849	.790 .818 .847 .875	.813 .843 .872 .901	.837 .867 .896 .926	.860 .891 .921 .952	.883 .915 .946 .978	.906 .939 .971 1.00	.930 .963 .996 1.03	17.85 18.49 19.13 19.76
10 10 10 10 10 10 10 10 10 10 10 10 10 1	.877 .904 .931 .959 .986	.903 .931 .960 .988 1.02	.930 .959 .988 1.02 1.05	.956 .986 1.02 1.05 1.08	.983 1.01 1.04 1.07 1.11	1.01 1.04 1.07 1.10 1.14	1.04 1.07 1.10 1.13 1.17	1.06 1.10 1.13 1.16 1.20	20.40 21.04 21.68 22.31 22.95

Pounds per Lineal Foot.

Thickness in Inches.	41"	21 " 32"	43"	11/16	457	23" 32"	47"	3#	12"
16 5 64 3 32 7	.136 .170 .204 .238	.139 .174 .209 .244	.143 .178 .214 .250	.146 .183 .219 .256	.149 .187 .224 .261	.153 .191 .229 .267	.156 .195 .234 .273	.159 .199 .239 .279	2.55 3.19 3.83 4.46
188 99.4 55.2 11.1 6.4	.272 .306 .340 .374	.279 .314 .349 .383	.286 .321 .357 .393	.292 .329 .365 .402	.299 .336 .374 .411	.305 .344 .382 .420	.312 .351 .390 .429	.319 .359 .398 .438	5.10 5.74 6.38 7.01
3 16 13 64 7 32 15 64	.408 .442 .476 .510	.418 .453 .488 .523	.428 .464 .500 .535	.438 .475 .511 .548	.448 .486 .523 .560	.458 .496 .535 .573	.468 .507 .546 .585	.478 .518 .558 .598	7.65 8.29 8.93 9.56
1 4 1 7 4 8 9 3 2 1 9 6 4 4	.545 .579 .613 .647	.558 .593 .628 .662	.571 .607 .642 .678	.584 .621 .657 .694	.598 .635 .672 .710	.611 .649 .687 .725	.624 .663 .702 .741	.638 .677 .717 .757	10.20 10.84 11.48 12.11
5 6 1 41 2 3 4	.681 .715 .749 .783	.697 .732 .767 .802	.714 .750 .785 .821	.730 .767 .804 .840	.747 .784 .822 .859	.764 .802 .840 .878	.780 .819 .858 .897	.797 .827 .877 .916	12.75 13.39 14.03 14.66
3 8 5 43 22 7 4 2 6 1 3 2 6	.817 .851 .885 .919	.837 .872 .906 .941	.857 .892 .928 .964	.877 .913 .950 .986	.896 .934 .971 1.01	.916 .955 .993 1.03	.936 .975 1.01 1.05	.956 .996 1.04 1.08	15.30 15.94 16.58 17.21
7 169445 152 84	.953 .987 1.02 1.06	.976 1.01 1.05 1.08	.999 1.04 1.07 1.11	1.02 1.06 1.10 1.13	1.05 1.08 1.12 1.16	1.07 1.11 1.15 1.18	1.09 1.13 1.17 1.21	1.12 1.16 1.20 1.24	17.85 18.49 19.13 19.76
33 64 17 32 854 9	1.09 1.12 1.16 1.19 1.23	1.12 1.15 1.19 1.22 1.26	1.14 1.18 1.21 1.25 1.38	1.17 1.21 1.24 1.28 1.31	1.20 1.23 1.27 1.31 1.34	1.22 1.26 1.30 1.34 1.37	1.25 1.29 1.33 1.37 1.40	1.28 1.31 1.35 1.39 1.43	20.40 21.04 21.68 22.31 22.95

Pounds per Lineal Foot.

Thickness in Inches.	4911	25"	51//	13"	53//	27//	55//	7//	12"
$ \begin{array}{r} \frac{1}{16} \\ \frac{5}{64} \\ \frac{3}{322} \\ \frac{7}{644} \end{array} $.163 .2 13 .244 .255	.166 .243 .249 .291	.169 .212 .254 .296	.173 .216 .259 .302	.176 .220 .264 .308	.179 .224 .269 .314	.183 .228 .274 .320	.186 .232 .279 .325	2.55 3.19 3.83 4.46
189 64 5 32 11 64	.325 .366 .407 .447	.352 .374 .415 .457	.339 .381 .423 .466	.345 .388 .432 .475	.352 .396 .440 .484	.359 .403 .448 .493	.365 .411 .457 .502	.372 .418 .465 .511	5.10 5.74 6.38 7.01
3 16 13 64 7 2 15 64	.488 .529 .569 .610	.498 .540 .581 .623	.508 .550 .593 .635	.518 .561 .604 .647	.528 .572 .616 .660	.538 .583 .628 .672	.548 .594 .639 .685	.558 .604 .651 .697	7.65 8.29 8.93 9.56
1 7 6 4 9 2 1 9 6 4	.651 .631 .732 .773	.664 .706 .747 .789	.677 .720 .762 .804	.691 .734 .777 .820	.704 .748 .792 .836	.717 .762 .807 .852	.730 .776 .822 .867	.744 .790 .837	10.20 10.84 11.48 12.11
5 164 112 233 64	.813 .854 .895 .936	.830 .872 .913 .955	.847 .889 .931 .974	.863 .906 .950 .993	.880 .924 .968 1.01	.897 .941 .986 1.03	.913 .959 1.00 1.05	.930 .976 1.02 1.07	12.75 13.39 14.03 14.66
3 5 5 4 3 2 7 4	.976 1.02 1.06 1.10	.996 1.04 1.08 1.12	1.02 1.06 1.10 1.14	1.04 1.08 1.12 1.17	1.06 1.10 1.14 1.19	1.08 1.12 1.17 1.21	1.10 1.14 1.19 1.23	1.12 1.16 1.21 1.26	15.30 15.94 16.58 17.21
7 16 29 64 132 31 64	1.14 1.18 1.22 1.26	1.16 1.20 1.25 1.29	1.19 1.23 1.27 1.31	1.21 1.25 1.30 1.34	1.23 1.28 1.32 1.36	1.26 1.30 1.35 1.39	1.28 1.32 1.37 1.42	1.30 1.35 1.40 1.44	17.85 18.49 19.13 19.76
333 64 17 335 64 9	1.30 1.34 1.38 1.42 1.46	1.33 1.37 1.41 1.45 1.49	1.35 1.40 1.44 1.48 1.52	1.38 1.42 1.47 1.51 1.55	1.41 1.45 1.50 1.54 1.58	1.43 1.48 1.52 1.57 1.61	1.46 1.51 1.55 1.60 1.64	1.49 1.53 1.58 1.63 1.67	20.40 21.04 21.68 22.31 22.95

Pounds per Lineal Foot.

Thickness in Inches.	57//	29// 32	59//	15//	61.11	31//	63//	1"	12"
$ \begin{array}{r} \frac{1}{16} \\ \frac{5}{64} \\ \frac{3}{32} \\ \frac{7}{64} \end{array} $.189 .237 .284 .331	.193 .241 .289 .337	.196 .245 .294 .343	.199 .249 .299 .349	.203 .253 .304 .354	.206 .257 .309 .360	.209 .262 .314 .366	.213 .266 .319 .372	2.55 3.19 3.83 4.46
18 64 55 32 11 64	.379 .426 .473 .520	.385 .433 .481 .529	.392 .441 .490 .538	.398 .448 .498 .548	.405 .456 .506 .557	.412 .463 .515 .566	.418 .471 .523 .575	.425 .478 .531 .584	5.10 5.74 6.38 7.01
3 16 13 64 7 32 15 64	.568 .615 .662 .710	.578 .626 .674 .722	.588 .637 .686 .735	.598 .648 .697 .747	.608 .658 .709 .760	.618 .669 .721 .772	.628 .680 .732 .784	.638 .691 .744 .797	7.65 8.29 8.93 9.56
1 17 64 9 32 19 64	.757 .804 .852 .899	.770 .818 .867 .915	.784 .833 .882 .931	.797 .847 .896 .946	.810 .861 .911 .962	.823 .875 .926 .978	.837 .889 .941 .994	.850 .903 .956 1.01	10.20 10.84 11.48 12.11
5 16 21 64 11 32 23 64	.946 .994 1.04 1.09	.963 1.01 1.06 1.11	.980 1.03 1.08 1.13	.996 1.05 1.10 1.15	1.01 1.06 1.11 1.17	1.03 1.08 1.13 1.18	1.05 1.10 1.15 1.20	1.06 1.12 1.17 1.22	12.75 13.39 14.03 14.66
3 8 2 5 6 4 1 3 2 2 7 6 4	1.14 1.18 1.23 1.28	1.16 1.20 1.25 1.30	1.18 1.22 1.27 1.32	1.20 1.25 1.30 1.35	1.22 1.27 1.32 1.37	1.24 1.29 1.34 1.39	1.26 1.31 1.36 1.41	1.28 1.33 1.38 1.43	15.30 15.94 16.58 17.21
7 16 29 64 15 32 31 64	1.33 1.37 1.42 1.47	1.35 1.40 1.44 1.49	1.37 1.42 1.47 1.52	1.40 1.44 1.49 1.54	1.42 1.47 1.52 1.57	1.44 1.49 1.54 1.60	1.46 1.52 1.57 1.62	1.49 1.54 1.59 1.65	17.85 18.49 19.13 19.76
\$3364 7723354 916	1.51 1.56 1.61 1.66 1.70	1.54 1.59 1.64 1.69 1.73	1.57 1.62 1.67 1.71 1.76	1.59 1.64 1.69 1.74 1.79	1.62 1.67 1.72 1.77 1.82	1.65 1.70 1.75 1.80 1.85	1.67 1.73 1.78 1.83 1.88	1.70 1.75 1.81 1.86 1.91	20.40 21.04 21.68 22.31 22.95

Pounds per Lineal Foot.

One cubic foot of steel weighs 489.6 pounds. For Thicknesses from $\frac{1}{16}$ in, to 2 ins. and Widths from 1 in, to 1234 ins.

Thickness in Inches.	1"	11/4"	112"	13"	2"	$2\frac{1}{4}''$	2^{1}_{2} "	23"	12"
1 16 18 3 16 1	.213 .425 .638 .850	.266 .531 .797 1.06	.319 .638 .956 1.28	.372 .744 1.12 1.49	.425 .850 1.28 1.70	.478 .956 1.43 1.91	.531 1.06 1.59 2.13	.584 1.17 1.75 2.34	2.55 5.10 7.65 10.20
16 3 7 7 16 1	1.06 1.28 1.49 1.70	1.33 1.59 1.86 2.13	1.59 1.91 2.23 2.55	1.86 2.23 2.60 2.98	2.13 2.55 2.98 3.40	2.39 2.87 3.35 3.83	2.66 3.19 3.72 4.25	2.92 3.51 4.09 4.68	12.75 15.30 17.85 20.40
9 16 5 8 11 16 3	1.91 2.13 2.34 2.55	2.39 2.66 2.92 3.19	2.87 3.19 3.51 3.83	3.35 3.72 4.09 4.46	3.83 4.25 4.68 5.10	4.30 4.78 5.26 5.74	4.78 5.31 5.84 6.38	5.26 5.84 6.43 7.01	22.95 25.50 28.05 30.60
$1^{\frac{13}{16}}$ $1^{\frac{7}{8}}$ 1	2.76	3.45	4.14	4.83	5.53	6.22	6.91	7.60	33.15
	2.98	3.72	4.46	5.21	5.95	6.69	7.44	8.18	35.70
	3.19	3.98	4.78	5.58	6.38	7.17	7.97	8.77	38.25
	3.40	4.25	5.10	5.95	6.80	7.65	8.50	9.35	40.80
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	3.61	4.52	5.42	6.32	7.23	8.13	9.03	9.93	43.35
	3.83	4.78	5.74	6.69	7.65	8.61	9.56	10.52	45.90
	4.04	5.05	6.06	7.07	8.08	9.08	10.09	11.10	48.45
	4.25	5.31	6.38	7.44	8.50	9.56	10.63	11.69	51.00
$ \begin{array}{c} 1\frac{5}{1.6} \\ 1\frac{3}{8} \\ 1\frac{7}{1.6} \\ 1\frac{1}{2} \end{array} $	4.46	5.58	6.69	7.81	8.93	10.04	11.16	12.27	53.55
	4.68	5.84	7.01	8.18	9.35	10.52	11.69	12.86	56.10
	4.89	6.11	7.33	8.55	9.78	11.00	12.22	13.44	58.65
	5.10	6.38	7.65	8.93	10.20	11.48	12.75	14.03	61.20
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	5.31	6.64	7.97	9.30	10.63	11.95	13.28	14.61	63.75
	5.53	6.91	8.29	9.67	11.05	12.43	13.81	15.19	66.30
	5.74	7.17	8.61	10.04	11.48	12.91	14.34	15.78	68.85
	5.95	7.44	8.93	10.41	11.90	13.39	14.88	16.36	71.40
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	6.16	7.70	9.24	10.78	12.33	13.87	15.41	16.95	73.95
	6.38	7.97	9.56	11.16	12.75	14.34	15.94	17.53	76.50
	6.59	8.23	9.88	11.53	13.18	14.82	16.47	18.12	79.05
	6.80	8.50	10.20	11.90	13.60	15.30	17.00	18.70	81.60

Pounds per Lineal Foot.

Thickness in Inches.	3"	31"	3½"	33"	4"	41/4"	41/2"	43"	12"
1 16 18 3 16 14	.638 1.28 1.91 2.55	.691 1.38 2.07 2.76	.744 1.49 2.23 2.98	.797 1.59 2.39 3.19	.850 1.70 2.55 3.40	.903 1.81 2.71 3.61	.956 1.91 2.87 3.83	1.01 2.20 3.03 4.04	2.55 5.10 7.65 10.20
16 18 7 16 12	3.19 3.83 4.46 5.10	3.45 4.14 4.83 5.53	3.72 4.46 5.21 5.95	3.98 4.78 5.58 6.38	4.25 5.10 5.95 6.80	4.52 5.42 6.32 7.22	4.78 5.74 6.69 7.65	5.05 6.06 7.07 8.08	12.75 15.30 17.85 20.40
9 16 5 8 11 16 3	5.74 6.38 7.01 7.65	6.22 6.91 7.60 8.29	6.69 7.44 8.18 8.93	7.17 7.97 8.77 9.56	7.65 8.50 9.35 10.20	8.13 9.03 9.93 10.84	8.61 9.56 10.52 11.48	9.08 10.09 11.10 12.11	22 95 25.50 28.05 30.60
$ \begin{array}{c} 13\\16\\7\\8\\15\\16\\1 \end{array} $	8.29	8.98	9.67	10.36	11.05	11.74	12.43	13.12	33.15
	8.93	9.67	10.41	11.16	11.90	12.64	13.39	14.13	35.70
	9.56	10.36	11.16	11.95	12.75	13.55	14.34	15.14	38.25
	10.20	11.05	11.90	12.75	13.60	14.45	15.30	16.15	40.80
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	10.84	11.74	12.64	13.55	14.45	15.35	16.26	17.16	43.35
	11.48	12.43	13.39	14.34	15.30	16.26	17.21	18.17	45.90
	12.11	13.12	14.13	15.14	16.15	17.16	18.17	19.18	48.45
	12.75	13.81	14.88	15.94	17.00	18.06	19.13	20.19	51.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	13.39	14.50	15.62	16.73	17.85	18.97	20.08	21.20	53.55
	14.03	15.19	16.36	17.53	18.70	19.87	21.04	22.21	56.10
	14.66	15.88	17.11	18.33	19.55	20.77	21.99	23.22	58.65
	15.30	16.58	17.85	19.13	20.40	21.68	22.95	24.23	61.20
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	15.92	17.27	18.59	19.92	21.25	22.58	23.91	25.23	63.75
	16.58	17.96	19.34	20.72	22.10	23 48	24.86	26.24	66.30
	17.21	18.65	20.08	21.52	22.95	24.38	25.82	27.25	68.85
	17.85	19.34	20.83	22.31	23.80	25.29	26.78	28.26	71.40
$\begin{array}{c} 1_{\frac{13}{16}} \\ 1_{\frac{7}{8}} \\ 1_{\frac{15}{16}} \\ 2 \end{array}$	18.49	20.03	21.57	23.11	24.65	26.19	27.73	29.27	73.95
	19.13	20.72	22.31	23.91	25.50	27.09	28.69	30.28	76.50
	19.76	21.41	23.06	24.70	26.35	28.00	29.64	31.29	79.05
	20.40	22.10	28.80	25.50	27.20	28.90	30.60	32.30	81.60

· Pounds per Lineal Foot.

Thickness in Inches.	5″	51/	51/2"	53"	6"	61"	61"	63"	12"
16 18 3 16 14	1.06 2.13 3.19 4.25	1.12 2.23 3.35 4.46	1.17 2.34 3.51 4.68	1.22 2.44 3.67 4.89	1.28 2.55 3.83 5.10	1.33 2.66 3.98 5.31	1.38 2.76 4.14 5.53	1.43 2.87 4.30 5.74	2.55 5.10 7.65 10.20
5 16 3 8 7 16	5.31 6.38 7.44 8.50	5.58 6.69 7.81 8.93	5.84 7.01 8.18 9.35	6.11 7.33 8.55 9.78	6.38 7.65 8.93 10.20	6.64 7.97 9.30 10.63	6.91 8.29 9.67 11.05	7.17 8.61 10.04 11.48	12.75 15.30 17.85 20.40
9 16 5 11 16 8	9.56 10.63 11.69 12.75	10.04 11.16 12.27 13.39	10.52 11.69 12.86 14.03	11.00 12.22 13.44 14.67	11.48 12.75 14.03 15.30	11.95 13.28 14.61 15.94	12.43 13.81 15.19 16.58	12.91 14.34 15.78 17.21	22.95 25.50 28.05 30.60
13 16 7 15 15 16	13.81 14.88 15.94 17.00	14.50 15.62 16.73 17.85	15.19 16.36 17.53 18.70	15.88 17.11 18.33 19.55	16.58 17.85 19.13 20.40	17.27 18.59 19.92 21.25	17.96 19.34 20.72 22.10	18.65 20.08 21.52 22.95	33.15 35.70 38.25 40.80
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	18.06 19.13 20.19 21.25	18.97 20.08 21.20 22.31	19.87 21.04 22.21 23.38	20.77 21.99 23.22 24.44	21.68 22.95 24.23 25.50	22.58 23.91 25.23 26.56	23.48 24.86 26.24 27.63	24.38 25.82 27.25 28.69	43.35 45.90 48.45 51.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	22.31 23.38 24.44 25.50	23.43 24.54 25.66 26.78	24.54 25.71 26.88 28.05	25.66 26.88 28.10 29.33	26.78 28.05 29.33 30.60	27.89 29.22 30.55 31.88	29.01 30.39 31.77 33.15	30.12 31.56 32.99 34.43	53.55 56.10 58.65 61.20
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	26.56 27.63 28.69 29.75	27.89 29.01 30.12 31.24	29.22 30.39 31.56 32.73	30.55 31.77 32.99 34.21	31.88 33.15 34.43 35.70	33.20 34.53 35.86 37.19	34.53 35.91 37.29 38.68	35.86 37.29 38.73 40.16	63.75 66.30 68.85 71.40
$ \begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	30.81 31.88 32.94 34.00	32.35 33.47 34.58 35.70	33.89 35.06 36.23 37.40	35.43 36.66 37.88 39.10	36.98 38.25 39.53 40.80	38.52 39.84 41.17 42.50	40.06 41.44 42.82 44.20	41.60 43.03 44.47 45.90	73.95 76.50 79.05 81.60

Pounds per Lineal Foot.

		1							1
Thickness in Inches.	7"	71/4	71/2"	73"	8"	81/4"	81/2"	83"	12"
$ \begin{array}{r} \frac{1}{16} \\ \frac{1}{8} \\ \frac{3}{16} \\ \frac{1}{4} \end{array} $	1.49	1.54	1.59	1.65	1.70	1.75	1.81	1.86	2.55
	2.98	3.08	3.19	3.29	3.40	3.51	3.61	3.72	5.10
	4.46	4.62	4.78	4.94	5.10	5.26	5.42	5.58	7.65
	5.95	6.16	6.38	6.59	6.80	7.01	7.23	7.44	10.20
$ \begin{array}{c} $	7.44	7.70	7.97	8.23	8.50	8.77	9.03	9.30	12.75
	8.93	9.24	9.56	9.88	10.20	10.52	10.84	11.16	15.30
	10.41	10.78	11.16	11.53	11.90	12.27	12.64	13.02	17.85
	11.90	12.33	12.75	13.18	13.60	14.03	14.45	14.88	20.40
$ \begin{array}{r} 9 \\ 16 \\ 5 \\ 8 \\ 11 \\ 16 \\ 3 \\ 4 \end{array} $	13.39	13.87	14.34	14.82	15.30	15.78	16.26	16.73	22.95
	14.88	15.41	15.94	16.47	17.00	17.53	18.06	18.59	25.50
	16.36	16.95	17.53	18.12	18.70	19.28	19.87	20.45	28.05
	17.85	18.49	19.13	19.76	20.40	21.04	21.68	22.31	30.60
13 16 7 15 16	19.34 20.83 22.31 23.80	20.03 21.57 23.11 24.65	20.72 22.31 23.91 25.50	21.41 23.06 24.70 26.35	22.10 23.80 25.50 27.20	22.79 24.54 26.30 28.05	23.48 25.29 27.09 28.90	24.17 26.03 27.89 29.75	33.15 35.70 38.25 40.80
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	25.29	26.19	27.09	28.00	28.90	29.80	30.71	31.61	43.35
	26.78	27.73	28.69	29.64	30.60	31.56	32.51	33.47	45.90
	28.26	29.27	30.28	31.29	32.30	33.31	34.32	35.33	48.45
	29.75	30.81	31.88	32.94	34.00	35.06	36.13	37.19	51.00
$ \begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array} $	31.24	32.35	33.47	34.58	35.70	36.82	37.93	39.05	53.55
	32.73	33.89	35.06	36.23	37.40	38.57	39.74	40.91	56.10
	34.21	35.43	36.66	37.88	39.10	40.32	41.54	42.77	58.65
	35.70	36.98	38.25	39.53	40.80	42.08	43.35	44.63	61.20
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	37.19	38.52	39.84	41.17	42.50	43.83	45.16	46.48	63.75
	38.68	40.06	41.44	42.82	44.20	45.58	46.96	48.34	66.30
	40.16	41.60	43.03	44.47	45.90	47.33	48.77	50.20	68.85
	41.65	43.14	44.63	46.11	47.60	49.09	50.58	52.06	71.40
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	43.14	44.68	46.22	47.76	49.30	50.84	52.38	53.92	73.95
	44.63	46.22	47.81	49.41	51.00	52.59	54.19	55.78	76.50
	46.11	47.76	49.41	51.05	52.70	54.35	55.99	57.64	79.05
	47.60	49.30	51.00	52.70	54.40	56.10	57.80	59.50	81.60

Pounds per Lineal Foot.

Thickness in Inches.	9″	917	91"	93"	10"	101/4"	10½"	103"	12"
$ \begin{array}{c} $	1.91	1.97	2.02	2.07	2.13	2.18	2.23	2.28	2.55
	3.83	3.93	4.04	4.15	4.25	4.36	4.46	4.57	5.10
	5.74	5.90	6.06	6.22	6.38	6.53	6.69	6.85	7.65
	7.65	7.86	8.08	8.29	8.50	8.71	8.93	9.14	10.20
5 1 6 3 9 7 7 1 6 1 2 2	9.56	9.83	10.09	10.36	10.63	10.89	11.16	11.42	12.75
	11.48	11.79	12.11	12.43	12.75	13.07	13.39	13.71	15.30
	13.39	13.76	14.13	14.50	14.88	15.25	15.62	15.99	17.85
	15.30	15.73	16.15	16.58	17.00	17.43	17.85	18.28	20.40
9 16 55 11 16 34	17.21 19.13 21.04 22.95	17.69 19.66 21.62 23.59	18.17 20.19 22.21 24.23	18.65 20.72 22.79 24.86	19.13 21.25 23.38 25.50	19.60 21.78 23.96 26.14	20.08 22.31 24.54 26.78	20.56 22.84 25.13 27.41	22.95 25.50 28.05 30.60
136 25 156	24.86 26.78 28.69 30.60	25.55 27.52 29.43 31.45	26.24 28.26 30.28 32.30	26.93 29.01 31.03 33.15	27.63 29.75 31.88 34.00	28.32 30.49 32.67 34.85	29.01 31.24 33.47 35.70	29.70 31.98 34.27 36.55	33.15 35.70 38.25 40.80
$ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{6} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $	32.51	33.42	34.32	35.22	36.13	37.03	37.93	38.83	43.35
	34.43	35.38	36.34	37.29	38.25	39.21	40.16	41.12	45.90
	36.34	37.35	38.36	39.37	40.38	41.38	42.39	43.40	48.45
	38.25	39.31	40.38	41.44	42.50	43.56	44.63	45.69	51.00
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	40.16	41.28	42.39	43.51	44.63	45.74	46.86	47.97	53.55
	42.08	43.24	44.41	45.58	46.75	47.92	49.09	50.26	56.10
	43.99	45.21	46.43	47.65	48.88	50.10	51.32	52.54	58.65
	45.70	47.18	48.45	49.73	51.00	52.28	53.55	54.83	61.20
$ \begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{5} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	47.81	49.14	50.47	51.80	53.13	54.45	55.78	57.11	63.75
	49.73	51.11	52.49	53.87	55.25	56.63	58.01	59.39	66.30
	51.64	53.07	54.51	55.94	57.38	58.81	60.24	61.68	68.85
	53.55	55.04	56.53	58.01	59.50	60.99	62.48	63.96	71.40
$\begin{array}{c} 1\frac{1}{1}\frac{3}{6} \\ 1\frac{7}{6} \\ 1\frac{15}{16} \\ 2 \end{array}$	55.46	57.00	58.54	60.08	61.63	63.17	64.71	66.25	73.95
	57.38	58.97	60.56	62.16	63.75	65.34	66.94	68.53	76.50
	59.29	60.93	62.58	64.23	65.88	67.52	69.17	70.82	79.05
	61.20	62.90	64.60	66.30	68.00	69.70	71.40	73.10	81.60

Pounds per Lineal Foot.

(CONCLUDED.)

Thick- ness in Inches.	11"	1114"	$11\frac{1}{2}''$	113"	12"	$12\frac{1}{4}''$	$12\frac{1}{2}''$	1234"	the ights plate
16 16 16 16	2.34 4.68	2.39 4.78	2.44	2.50	2.55 5.10	2.60 5.21	2.66 5.31	2.71 5.42	additions necessary to obtain the of 15½" × ½", add the weights 46.11 pounds. Weight of plate
	7.01 9.35 11.69	7.17 9.56 11.95	7.33 9.78 12.22	7.49 9.99 12.48	7.65 10.20 12.75	7.81 10.41 13.02	7.97 10.63 13.28	8.13 10.84 13.55	X 78", a
5 16 3 8 7 16 152	14.03 16.36 18.70	14.34 16.73 19.13	14.66 17.11 19.55	14.98 17.48 19.98	15.30 17.85 20.40	15.62 18.22 20.83	15.94 18.59 21.25	16.26 18.97 21.68	nt of 15½" = 46.11 por
9 16 5 8 11 16 24	21.04 23.38 25.71 28.05	21.52 23.91 26.30 28.69	21.99 24.44 26.88 29.33	22.47 24.97 27.47 29.96	22.95 25.50 28.05 30.60	23.43 26.03 28.63 31.24	23.91 26.56 29.22 31.88	24.38 27.09 29.80 32.51	The weights for 12" width are repeated on each page to facilitate making the sights of pates of any width greater than 12". Thus, to find the weight be found in the same line for $3/k \times 1/k$ and $12 \times 1/k = 10.41 + 35.70 = 6/k^2 \times 5/k^2 = 4 \times 25.50 + 15.31 = 115.31.$
13 16 7 8 15 16	30.39 32.73 35.06 37.40	31.08 33.47 35.86 38.25	31.77 34.21 36.66 39.10	32.46 34.96 37.45 39.95	33.15 35.70 38.25 40.80	33.84 36.44 39.05 41.65	34.53 37.19 39.84 42.50	35.22 37.93 40.64 43.35	Thus, to facilit Thus, to fi 12 × 1/8 = 10
$ \begin{array}{c} 1_{\overline{16}} \\ 1_{\overline{8}} \\ 1_{\overline{16}} \\ 1_{\overline{1}} \end{array} $	39.74 42.08 44.41 46.75	40.64 43.03 45.42 47.81	41.54 43.99 46.43 48.88	42.45 44.94 47.44 49.94	43.35 45.90 48.45 51.00	44.25 46.86 49.46 52.06	45.16 47.81 50.47 53.13	46.06 48.77 51.48 54.19	ated on each 12". 12" × 78 and 115.81.
1 5 1 3 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49.09 51.43 53.76 56.10	50.20 52.59 54.98 57.38	51.32 53.76 56.21 58.65	52.43 54.93 57.43 59.93	53.55 56.10 58.65 61.20	54.67 57.27 59.87 62.48	55.78 58.44 61.09 63.75	56.90 59.61 62.32 65.03	vidth are repe y width great ime line for 3 50 + 13.81 =
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58.44 60.78 63.11 65.45	59.77 62.16 64.55 66.94	61.09 63.54 65.98 68.43	62.42 64.92 67.42 69.91	63.75 66.30 68.85 71.40	65.08 67.68 70.28 72.89	66.41 69.06 71.72 74.38	67.73 70.44 73.15 75.86	ghts for 12" v plates of an nd in the sa
1 1 8 1 8 1 1 8 2	67.79 70.13 72.46 74.80	69.33 71.72 74.11 76.50	70.87 73.31 75.76 78.20	72.41 74.91 77.40 79.90	73.95 76.50 79.05 81.60	75.49 78.09 80.70 83.30	77.03 79.69 82.34 85.00	78.57 81.28 83.99 86.70	weights of plates to be found in 4' 6\\frac{1}{2}\times \in \frac{1}{2}\times \in \frac{1}{2}\tin \times \in \frac{1}{2}\times \in \frac{1}{2}\times \in \

For Diameters from 1 to 100, advancing by Tenths.

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
0.0 .1 .2 .3	.007854 .031416 .070686 .12566	.31416 .62832 .94248 1.2566	4.0 .1 .2 3	12.5664 13.2025 13.8544 14.5220 15.2053	12.5664 12.8805 13.1947 13.5088 13.8230
.5 .6 .7 .8	.19635 .28274 .38485 .50265 .63617	1.5708 1.8850 2.1991 2.5133 2.8274	.5 .6 .7 .8	15.9043 16.6190 17.3494 18.0956 18.8574	14.1372 14.4513 14.7655 15.0796 15.3938
1.0 .1 .2 .3 .4	.7854 .9503 1.1310 1.3273 1.5394	3.1416 3.4558 3.7699 4.0841 4.3982	5.0 .1 .2 .3	19.6350 20.4282 21.2372 22.0618 22.9022	15.7080 16.0221 16.3363 16.6504 16.9646
.5 .6 .7 .8	1.7671 2.0106 2.2698 2.5447 2.8353	4.7124 5.0265 5.3407 5.6549 5.9690	.5 .6 .7 .8	23.7583 24.6301 25.5176 26.4208 27.3397	17.2788 17.5929 17.9071 18.2212 18.5354
2.0 .1 .2 .3 .4	3.1416 3.4636 3.8013 4.1548 4.5239	6.2832 6.5973 6.9115 7.2257 7.5398	6.0 .1 .2 .3	28.2743 29.2247 30.1907 31.1725 32.1699	18.8496 19.1637 19.4779 19.7920 20.1062
.5 .6 .7 .8	4.9087 5.3093 5.7256 6.1575 6.6052	7.8540 8.1681 8.4823 8.7965 9.1106	.5 .6 .7 .8	33.1831 34.2119 35.2565 36.3168 37.3928	20.4204 20.7345 21.0487 21.3628 21.6770
3.0 .1 .2 .3 .4	7.0686 7.5477 8.0425 8.5530 9.0792	9.4248 9.7389 10.0531 10.3673 10.6814	7.0 .1 .2 .3 .4	38.4845 39.5919 40.7150 41.8539 43.0084	21.9911 22.3053 22.6195 22.9336 23.2478
.5 .6 .7 .8	9.6211 10.1788 10.7521 11.3411 11.9459	10.9956 11.3097 11.6239 11.9381 12.2522	.5 .6 .7 .8	44.1786 45.3646 46.5663 47.7836 49.0167	23.5619 23.8761 24.1903 24.5044 24.8186

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.	
8.0 .1 .2 .3	50.2655 51.5300 52.8102 54.1061 55.4177	25.1327 25.4469 25.7611 26.0752 26.3894	12.0 .1 .2 .3 .4	113.0973 114.9901 116.8987 118.8229 120.7628	37.6991 38.0133 38.3274 38.6416 38.9557	
.5 .6 .7 .8	56.7450 58.0880 59.4468 60.8212 62.2114	26.7035 27.0177 27.3319 27.6460 27.9602	.5 .6 .7 .8	122.7185 124.6898 126.6769 128.6796 130.6981	39.2699 39.5841 39.8982 40.2124 40.5265	
9.0 .1 .2 .3 .4	63.6173 65.0388 66.4761 67.9291 69.3978	28.2743 28.5885 28.9027 29.2168 29.5310	13.0 .1 .2 .3 .4	132.7323 134.7822 136.8478 138.9291 141.0261	40.8407 41.1549 41.4690 41.7832 42.0973	
.5 .6 .7 .8	70.8822 72.3823 73.8981 75.4296 76.9769	29.8451 30.1593 30.4734 30.7876 31.1018	.5 .6 .7 .8	143.1388 145.2672 147.4114 149.5712 151.7468	42.4115 42.7257 43.0398 43.3540 43.6681	
10.0 .1 .2 .3 .4	78.5398 80.1185 81.7128 83.3229 84.9487	31.4159 31.7301 32.0442 32.3584 32.6726	14.0 .1 .2 .3 .4	153.9380 156.1450 158.3677 160.6061 162.8602	43.9823 44.2965 44.6106 44.9248 45.2389	
.5 .6 .7 .8	86.5901 88.2473 89.9202 91.6088 93.3132	32.9867 33.3009 33.6150 33.9292 34.2434	.5 .6 .7 .8	165.1300 167.4155 169.7167 172.0336 174.3662	45.5531 45.8673 46.1814 46.4956 46.8097	
11.0 .1 .2 .3 .4	95.0332 96.7689 98.5203 100.2875 102.0703	34.5575 34.8717 35.1858 35.5000 35.8142	15.0 .1 .2 .3 .4	176.7146 179.0786 181.4584 183.8539 186.2650	47.1239 47.4380 47.7522 48.0664 48.3805	
.5 .6 .7 .8	103.8689 105.6832 107.5132 109.3588 111.2202	36.1283 36.4425 36.7566 37.0708 37.3850	.5 .6 .7 .8	188.6919 191.1345 193.5928 196.0668 198.5565	48.6947 49.0088 49.3230 49.6372 49.9513	

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
16.0 .1 .2 .3 .4	201.0619 203.5831 206.1199 208.6724 211.2407	50.2655 50.5796 50.8938 51.2080 51.5221	20.0 .1 .2 .3 .4	314.1593 317.3087 320.4739 323.6547 326.8513	62.8319 63.1460 63.4602 63.7743 64.0885
.5 .6 .7 .8	213.8246 216.4243 219.0397 221.6708 224.3176	51.8363 52.1504 52.4646 52.7788 53.0929	.5 .6 .7 .8	330.0636 333.2916 336.5353 339.7947 343.0698	64.4026 64.7168 65.0310 65.3451 65.6593
17.0 .1 .2 .3 .4	226.9801 229.6583 232.3522 235.0618 237.7871	53.4071 53.7212 54.0354 54.3496 54.6637	21.0 .1 .2 .3 .4	346.3606 349.6671 352.9893 356.3273 359.6809	65.9734 66.2876 66.6018 66.9159 67.2301
.5 .6 .7 .8	240.5282 243.2849 246.0574 248.8456 251.6494	54.9779 55.2920 55.6062 55.9203 56.2345	.5 .6 .7 .8	363.0503 366.4354 369.8361 373.2526 376.6848	67.5442 67.8584 68.1726 68.4867 68.8009
18.0 .1 .2 .3 .4	254.4690 257.3043 260.1553 263.0220 265.9044	56.5487 56.8628 57.1770 57.4911 57.8053	22.0 .1 .2 .3 .4	380.1327 383.5963 387.0756 390.5707 394.0814	69.1150 69.4292 69.7434 70.0575 70.3717
.5 .6 .7 .8	268.8025 271.7163 274.6459 277.5911 280.5521	58.1195 58.4336 58.7478 59.0619 59.3761	.5 .6 .7 .8	397.6078 401.1500 404.7078 408.2814 411.8706	70.6858 71.0000 71.3142 71.6283 71.9425
19.0 .1 .2 .3 .4	283.5287 286.5211 289.5292 292.5530 295.5925	59.6903 60.0044 60.3186 60.6327 60.9469	23.0 .1 .2 .3 .4	415.4756 419.0963 422.7327 426.3848 430.0526	72.2566 72.5708 72.8849 73.1991 73.5133
.5 .6 .7 .8	298.6477 301.7186 304.8052 307.9075 311.0255	61.2611 61.5752 61.8894 62.2035 62.5177	.5 .6 .7 .8	433.7361 437.4354 441.1503 444.8809 448.6273	73.8274 74.1416 74.4557 74.7699 75.0841

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
24.0 .1 .2 .3 .4	452.3893 456.1671 459.9606 463.7698 467.5946	75.3982 75.7124 76.0265 76.3407 76.6549	28.0 .1 .2 .3 .4	615.7522 620.1582 624.5800 629.0175 633.4707	87.9646 88.2788 88.5929 88.9071 89.2212
.5 .6 .7 .8	471.4352 475.2916 479.1636 483.0513 486.9547	76.9690 77.2832 77.5973 77.9115 78.2257	.5 .6 .7 .8	637.9397 642.4243 646.9246 651.4406 655.9724	89.5354 89.8495 90.1637 90.4779 90.7920
25.0 .1 .2 .3 .4	490.8739 494.8087 498.7592 502.7255 506.7075	78.5398 78.8540 79.1681 79.4823 79.7965	29.0 .1 .2 .3 .4	660.5199 665.0830 669.6619 674.2565 678.8668	91.1062 91.4203 91.7345 92.0487 92.3628
.5 .6 .7 .8	510.7052 514.7185 518.7476 522.7924 526.8529	80.1106 80.4248 80.7389 81.0531 81.3672	.5 .6 .7 .8	683.4927 688.1345 692.7919 697.4650 702.1538	92.6770 92.9911 93.3053 93.6195 93.9336
26.0 .1 .2 .3 .4	530.9292 535.0211 539.1287 543.2521 547.3911	81.6814 81.9956 82.3097 82.6239 82.9380	30.0 .1 .2 .3 .4	706.8583 711.5786 716.3145 721.0662 725.8336	94.2478 94.5619 94.8761 95.1903 95.5044
.5 .6 .7 .8	551.5459 555.7163 559.9025 564.1044 568.3220	83.2522 83.5664 83.8805 84.1947 84.5088	.5 .6 .7 .8	730.6167 735.4154 740.2299 745.0601 749.9060	95.8186 96.1327 96.4469 96.7611 97.0752
27.0 .1 .2 .3	572.5553 576.8043 581.0690 585.3494 589.6455	84.8230 85.1372 85.4513 85.7655 86.0796	31.0 .1 .2 .3 .4	754.7676 759.6450 764.5380 769.4467 774.3712	97.3894 97.7035 98.0177 98.3319 98.6460
.5 .6 .7 .8	593.9574 598.2849 602.6282 606.9871 611.3618	86.3938 86.7080 87.0221 87.3363 87.6504	.5 .6 .7 .8	779.3113 784.2672 789.2388 794.2260 799.2290	98.9602 99.2743 99.5885 99.9026 100.2168

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
32.0 .1 .2 .3 .4	804.2477 809.2821 814.3322 819.3980 824.4796	100.5310 100.8451 101.1593 101.4784 101.7876	36.0 .1 .2 .3 .4	1017.8760 1023.5387 1029.2172 1034.9113 1040.6211	113.0973 113.4115 113.7257 114.0398 114.3540
.5 .6 .7 .8	829.5768 834.6897 839.8184 844.9628 850.1229	102.1018 102.4159 102.7301 103.0442 103.3584	.5 .6 .7 .8	1046.3467 1052.0880 1057.8449 1063.6176 1069.4060	114.6681 114.9823 115.2965 115.6106 115.9248
33.0 .1 .2 .3 .4	855.2986 860.4902 865.6973 870.9202 876.1588	103.6726 103.9867 104.3009 104.6150 104.9292	37.0 .1 .2 .3	1075.2101 1081.0299 1086.8654 1092.7166 1098.5835	116.2389 116.5531 116.8672 117.1814 117.4956
.5 .6 .7 .8	881.4131 886.6831 891.9688 897.2703 902.5874	105.2434 105.5575 105.8717 106.1858 106.5000	.5 .6 .7 .8	1104.4662 1110.3645 1116.2786 1122.2083 1128.1538	117.8097 118.1239 118.4380 118.7522 119.0664
34.0 .1 .2 .3 .4	907.9203 913.2688 918.6331 924.0131 929.4088	106.8142 107.1283 107.4425 107.7566 108.0708	38.0 .1 .2 .3 .4	1134.1149 1140.0918 1146.0844 1152.0927 1158.1167	119.3805 119.6947 120.0088 120.3230 120.6372
.5 .6 .7 .8	934.8202 940.2473 945.6901 951.1486 956.6228	108.3849 108.6991 109.0133 109.3274 109.6416	.5 .6 .7 .8	1164.1564 1170.2118 1176.2830 1182.3698 1188.4723	120.9513 121.2655 121.5796 121.8938 122.2080
35.0 .1 .2 .3 .4	962.1127 967.6184 973.1397 978.6768 984.2296	109.9557 110.2699 110.5841 110.8982 111.2124	39.0 .1 .2 .3 .4	1194.5906 1200.7246 1206.8742 1213.0396 1219.2207	122.5221 122.8363 123.1504 123.4646 123.7788
.5 .6 .7 .8	989.7980 995.3822 1000.9821 1006.5977 1012.2290	111.5265 111.8407 112.1549 112.4690 112.7832	.5 .6 .7 .8	1225.4175 1231.6300 1237.85%2 1244.1021 1250.3617	124.0929 124.4071 124.7212 125.0354 125.3495

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference
40.0 .1 .2 .3 .4	1256.6371 1262.9281 1269.2348 1275.5573 1281.8955	125.6637 125.9779 126.2920 126.6062 126.9203	44.0 .1 .2 .3 .4	1520.5308 1527.4502 1534.3853 1541.3360 1548.3025	138.2301 138.5442 138.8584 139.1726 139.4867
.5 .6 .7 .8	1288.2493 1294.6189 1301.0042 1307.4052 1313.8219	127.2345 127.5487 127.8628 128.1770 128.4911	.5 .6 .7 .8	1555.2847 1562.2826 1569.2962 1576.3255 1583.3705	139.8009 140.1150 140.4292 140.7434 141.0575
41.0 .1 .2 .3	1320.2543 1326.7024 1333.1663 1339.6458 1346.1410	128.8053 129.1195 129.4336 129.7478 130.0619	45.0 .1 .2 .3 .4	1590.4313 1597.5077 1604.5999 1611.7077 1618.8313	141.3717 141.6858 142.0000 142.3141 142.6283
.5 .6 .7 .8	1352.6520 1359.1786 1365.7210 1372.2791 1378.8529	130.3761 130.6903 131.0044 131.3186 131.6327	.5 .6 .7 .8	1625.9705 1633.1255 1640.2962 1647.4826 1654.6847	142.9425 143.2566 143.5708 143.8849 144.1991
42.0 .1 .2 .3 .4	1385.4424 1392.0476 1398.6685 1405.3051 1411.9574	131.9469 132.2611 132.5752 132.8894 133.2035	46.0 .1 .2 .3 .4	1661.9025 1669.1360 1676.3852 1683.6502 1690.9308	144.5133 144.8274 145.1416 145.4557 145.7699
.5 .6 .7 .8	1418.6254 1425.3092 1432.0086 1438.7238 1445.4546	133.5177 133.8318 134.1460 134.4602 134.7743	.5 .6 .7 .8	1698.2272 1705.5392 1712.8670 1720.2105 1727.5696	146.0841 146.3982 146.7124 147.0265 147.3407
43.0 .1 .2 .3 .4	1452.2012 1458.9635 1465.7415 1472.5352 1479.3446	135.0885 135.4026 135.7168 136.0310 136.3451	47.0 .1 .2 .3 .4	1734.9445 1742.3351 1749.7414 1757.1634 1764.6012	147.6549 147.9690 148.2832 148.5973 148.9115
.5 .6 .7 .8	1486.1697 1493.0105 1499.8670 1506.7392 1513.6272	136.6593 136.9734 137.2876 137.6018 137. 9 159	.5 .6 .7 .8	1772.0546 1779.5237 1787.0086 1794.5091 1802.0254	149.2257 149.5398 149.8540 150.1681 150.4823

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference
48.0 .1 .2 .3 .4	1809.5574 1817.1050 1824.6684 1832.2475 1839.8423	150.7964 151.1106 151.4248 151.7389 152.0531	52.0 .1 .2 .3	2123.7166 2131.8926 2140.0843 2148.2917 2156.5149	163.3628 163.6770 163.9911 164.3053 164.6195
.5 .6 .7 .8	1847.4528 1855.0790 1862.7210 1870.3786 1878.0519	152.3672 152.6814 152.9956 153.3097 153.6239	.5 .6 .7 .8	2164.7537 2173.0082 2181.2785 2189.5644 2197.8661	164.9336 165.2478 165.5619 165.8761 166.1903
49.0 .1 .2 .3	1885.7410 1893.4457 1901.1662 1908.9024 1916.6543	153.9380 154.2522 154.5664 154.8805 155.1947	53.0 .1 .2 .3	2206.1834 2214.5165 2222.8653 2231.2298 2239.6100	166.5044 166.8186 167.1327 167.4469 167.7610
.5 .6 .7 .8	1924.4218 1932.2051 1940.0041 1947.8189 1955.6493	155.5088 155.8230 156.1372 156.4513 156.7655	.5 .6 .7 .8	2248.0059 2256.4175 2264.8448 2273.2879 2281.7466	168.0752 168.3894 168.7035 169.0177 169.3318
50.0 .1 .2 .3	1963.4954 1971.3572 1979.2348 1987.1280 1995.0370	157.0796 157.3938 157.7080 158.0221 158.3363	54.0 .1 .2 .3 .4	2290.2210 2298.7112 2307.2171 2315.7386 2324.2759	169.6460 169.9602 170.2743 170.5885 170.9026
.5 .6 .7 .8	2002.9617 2010.9020 2018.8581 2026.8299 2034.8174	158.6504 158.9646 159.2787 159.5929 159.9071	.5 .6 .7 .8	2332.8289 2341.3976 2349.9820 2358.5821 2367.1979	171.2168 171.5310 171.8451 172.1593 172.4734
51.0 .1 .2 .3	2042.8206 2050.8395 2058.8742 2066.9245 2074.9905	160.2212 160.5354 160.8495 161.1637 161.4779	55.0 .1 .2 .3	2375.8294 2384.4767 2393.1396 2401.8183 2410.5126	172.7876 173.1018 173.4159 173.7301 174.0442
.5 .6 .7 .8	2083.0723 2091.1697 2099.2829 2107.4118 2115.5563	161.7920 162.1062 162.4203 162.7345 163.0487	.5 .6 .7 .8	2419.2227 2427.9485 2436.6899 2445.4471 2454.2200	174.3584 174.6726 174.9867 175.3009 175.6150

Diameter.	Area.	Circumference.	Diameter.	Area	Circumference.
56.0 .1 .2 .3	2463.0086 2471.8129 2480.6330 2489.4687 2498.3201	175.9292 176.2433 176.5575 176.8717 177.1858	60.0 .1 .2 .3 .4	2827.4334 2836.8660 2846.3143 2855.7784 2865.2582	188.4956 188.8097 189.1239 189.4380 189.7522
.5 .6 .7 .8	2507.1873 2516.0701 2524.9687 2533.8830 2542.8129	177.5000 177.8141 178.1283 178.4425 178.7566	.5 .6 .7 .8	2874.7536 2884.2648 2893.7917 2903.3343 2912.8925	190.0664 190.3805 190.6947 191.0088 191.3230
57.0 .1 .2 .3 .4	2551.7586 2560.7200 2569.6971 2578.6899 2587.6984	179.0708 179.3849 179.6991 180.0133 180.3274	61.0 .1 .2 .3	2922.4666 2932.0563 2941.6617 2951.2828 2960.9196	191.6372 191.9513 192.2655 192.5796 192.8938
.5 .6 .7 .8	2596.7227 2605.7626 2614.8182 2623.8896 2632.9766	180.6416 180.9557 181.2699 181.5841 181.8982	.5 .6 .7 .8	2970.5722 2980.2404 2989.9244 2999.6241 3009.3394	193.2079 193.5221 193.8363 194.1504 194.4646
58.0 .1 .2 .3 .4	2642.0794 2651.1979 2660.3321 2669.4820 2678.6475	182.2124 182.5265 182.8407 183.1549 183.4690	62.0 .1 .2 .3 .4	3019.0705 3028.8173 3038.5798 3048.3580 3058.1519	194.7787 195.0929 195.4071 195.7212 196.0354
.5 .6 .7 .8	2687.8289 2697.0259 2706.2386 2715.4670 2724.7112	183.7832 184.0973 184.4115 184.7256 185.0398	.5 .6 .7 .8	3067.9616 3077.7869 3087.6279 3097.4847 3107.3571	196.3495 196.6637 196.9779 197.2920 197.6062
59.0 .1 .2 .3	2733.9710 2743.2465 2752.5378 2761.8448 2771.1675	185.3540 185.6681 185.9823 186.2964 186.6106	63.0 .1 .2 .3 .4	3117.2453 3127.1492 3137.0687 3147.0040 3156.9550	197.9203 198.2345 198.5487 198.8628 199.1770
.5 .6 .7 .8	2780.5058 2789.8599 2799.2297 2808.6152 2818.0165	186.9248 187.2389 187.5531 187.8672 188.1814	.5 .6 .7 .8	3166.9217 3176.9041 3186.9023 3196.9161 3206.9456	199.4911 199.8053 200.1195 200.4336 200.7478

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference
64.0 .1 .2 .3 .4	3216.9909 3227.0518 3237.1285 3247.2208 3257.3289	201.0620 201.3761 201.6902 202.0044 202.3186	68.0 .1 .2 .3 .4	3631.6811 3642.3704 3653.0753 3663.7960 3674.5324	213.6283 213.9425 214.2566 214.5708 214.8849
.5 .6 .7 .8	3267.4527 3277.5922 3287.7474 3297.9183 3308.1049	202.6327 202.9469 203.2610 203.5752 203.8894	.5 .6 .7 .8	3685.2845 3696.0523 3706.8358 3717.6351 3728.4500	215.1991 215.5133 215.8274 216.1416 216.4556
65.0 .1 .2 .3 .4	3318.3072 3328.5253 3338.7590 3349.0084 3359.2736	204.2035 204.5177 204.8318 205.1460 205.4602	69.0 .1 .2 .3 .4	3739.2807 3750.1270 3760.9890 3771.8668 3782.7603	216.7699 217.0841 217.3982 217.7124 218.0265
.5 .6 .7 .8	3369.5545 3379.8510 3390.1633 3400.4913 3410.8350	205.7743 206.0885 206.4026 206.7168 207.0310	.5 .6 .7 .8	3793.6695 3804.5944 3815.5349 3826.4913 3837.4633	218.3407 218.6548 218.9690 219.2832 219.5973
66.0 .1 .2 .3 .4	3421.1944 3431.5695 3441.9603 3452.3668 3462.7891	207.3451 207.6593 207.9734 208.2876 208.6017	70.0 .1 .2 .3 .4	3848.4510 3859.4544 3870.4735 3881.5084 3892.5589	219.9115 220.2256 220.5398 220.8540 221.1681
.5 .6 .7 .8	3473.2270 3483.6807 3494.1500 3504.6351 3515.1359	208.9159 209.2301 209.5442 209.8584 210.1725	.5 .6 .7 .8	3903.6252 3914.7072 3925.8048 3936.9182 3948.0473	221.4823 221.7964 222.1106 222.4248 222.7389
67.0 .1 .2 .3	3525.6523 3536.1845 3546.7324 3557.2960 3567.8753	210.4867 210.8009 211.1150 211.4292 211.7433	71.0 .1 .2 .3 .4	3959.1921 3970.3526 3981.5288 3992.7208 4003.9284	223.0531 223.3672 223.6814 223.9956 224.3097
.5 .6 .7 .8	3578.4704 3589.0811 3599.7075 3610.3497 3621.0075	212.0575 212.3717 212.6858 213.0000 213.3141	.5 .6 .7 .8	4015.1517 4026.3908 4037.6455 4048.9160 4060.2022	224.6239 224.9380 225.2522 225.5664 225.8805

Diameter.	Area.	Circumference	Diameter.	Area.	Circumference
72.0 .1 .2 .3 .4	4071.5041 4082.8216 4094.1549 4105.5039 4116.8687	226.1947 226.5088 226.8230 227.1371 227.4513	76.0 .1 .2 .3 .4	4536.4598 4548.4057 4560.3673 4572.3446 4584.3376	238.7610 239.0752 239.3894 239.7035 240.0177
.5 .6 .7 .8	4128.2491 4139.6452 4151.0570 4162.4846 4173.9278	227.7655 228.0796 228.3938 228.7079 229.0221	.5 .6 .7 .8	4596.3464 4608.3708 4620.4110 4632.4668 4644.5384	240.3318 240.6460 240.9602 241.2743 241.5885
73.0 .1 .2 .3 .4	4185.3868 4196.8615 4208.3518 4219.8579 4231.3797	229.3363 229.6504 229.9646 230.2787 230.5929	77.0 .1 .2 .3	4656.6257 4668.7287 4680.8474 4692.9818 4705.1319	241.9026 242.2168 242.5310 242.8451 243.1592
.5 .6 .7 .8	4242.9172 4254.4704 4266.0393 4277.6240 4289.2243	230.9071 231.2212 231.5354 231.8495 232.1637	.5 .6 .7 .8	4717.2977 4729.4792 4741.6765 4753.8894 4766.1180	243.4734 243.7876 244.1017 244.4159 244.7301
74.0 .1 .2 .3 .4	4300.8403 4312.4721 4324.1195 4335.7827 4347.4616	232.4779 232.7920 233.1062 233.4203 233.7345	78.0 .1 .2 .3 .4	4778.3624 4790.6225 4802.8982 4815.1897 4827.4969	245.0442 245.3584 245.6725 245.9867 246.3009
.5 .6 .7 .8	4359.1562 4370.8664 4382.5924 4394.3341 4406.0915	234.0487 234.3628 234.6770 234.9911 235.3053	.5 .6 .7 .8 .9	4839.8198 4852.1584 4864.5127 4876.8828 4889.2685	246.6150 246.9292 247.2433 247.5575 247.8717
75.0 .1 .2 .3 .4	4417.8647 4429.6535 4441.4580 4453.2783 4465.1142	235.6194 235.9336 236.2478 236.5619 236.8761	79.0 .1 .2 .3 .4	4901.6699 4914.0871 4926.5199 4938.9685 4951.4328	248.1858 248.5000 248.8141 249.1283 249.4425
.5 .6 .7 .8	4476.9659 4488.8332 4500.7163 4512.6151 4524.5296	237.1902 237.5044 237.8186 238.1327 238.4469	.5 .6 .7 .8	4963.9127 4976.4084 4988.9198 5001.4469 5013.9897	249.7566 250.0708 250.3849 250.6991 251.0133

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
80.0 .1 .2 .3	5026.5482 5039.1224 5051.7124 5064.3180 5076.9394	251.3274 251.6416 251.9557 252.2699 252.5840	84.0 .1 .2 .3	5541.7694 5554.9720 5568.1902 5581.4242 5594.6738	263.8938 264.2079 264.5221 264.8363 265.1504
.5 .6 .7 .8	5089.5764 5102.2292 5114.8977 5127.5818 5140.2817	252.8982 253.2124 253.5265 253.8407 254.1548	.5 .6 .7 .8	5607.9392 5621.2203 5634.5171 5647.8296 5661.1578	265.4646 265.7787 266.0929 266.4071 266.7212
81.0 .1 .2 .3 .4	5152.9973 5165.7286 5178.4756 5191.2384 5204.0168	254.4690 254.7832 255.0973 255.4115 255.7256	85.0 .1 .2 .3 .4	5674.5017 5687.8613 5701.2367 5714.6277 5728.0344	267.0354 267.3495 267.6637 267.9779 268.2920
.5 .6 .7 .8	5216.8109 5229.6208 5242.4463 5255.2876 5268.1446	256.0398 256.3540 256.6681 256.9823 257.2964	.5 .6 .7 .8	5741.4569 5754.8951 5768.3489 5781.8185 5795.3038	268.6062 268.9203 269.2345 269.5486 269.8628
82.0 .1 .2 .3 .4	5281.0172 5293.9056 5306.8097 5319.7295 5332.6650	257.6106 257.9248 258.2389 258.5531 258.8672	86.0 .1 .2 .3	5808.8048 5822.3215 5835.8539 5849.4020 5862.9659	270.1770 270.4911 270.8053 271.1194 271.4336
.5 .6 .7 .8	5345.6162 5358.5832 5371.5658 5384.5641 5397.5782	259.1814 259.4956 259.8097 260.1239 260.4380	.5 .6 .7 .8	5876.5454 5890.1406 5903.7516 5917.3782 5931.0206	271.7478 272.0619 272.3761 272.6902 273.0044
83.0 .1 .2 .3 .4	5410.6079 5423.6534 5436.7146 5449.7914 5462.8840	260.7522 261.0663 261.3805 261.6947 262.0088	87.0 .1 .2 .3 .4	5944.6787 5958.3525 5972.0419 5985.7471 5999.4680	273.3186 273.6327 273.9469 274.2610 274.5752
.5 .6 .7 .8	5475.9923 5489.1163 5502.2560 5515.4115 5528.5826	262.3230 262.6371 262.9513 263.2655 263.5796	.5 .6 .7 .8	6013.2047 6026.9570 6040.7250 6054.5088 6068.3082	274.8894 275.2035 275.5177 275.8318 276.1460

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
88.0 .1 .2 .3 .4	6082.1234 6095.9542 6109.8008 6123.6631 6137.5410	276.4602 276.7743 277.0885 277.4026 277.7168	92.0 .1 .2 .3 .4	6647.6100 6662.0692 6676.5441 6691.0347 6705.5410	289.0265 289.3407 289.6548 289.9690 290.2832
.5 .6 .7 .8	6151.4347 6165.3441 6179.2692 6193.2101 6207.1666	278.0309 278.3451 278.6593 278.9734 279.2876	.5 .6 .7 .8	6720.0630 6734.6007 6749.1542 6763.7233 6778.3081	290.59 78 290.9115 291.2256 291.5398 291.8540
89.0 .1 .2 .3 .4	6221.1388 6235.1268 6249.1304 6263.1498 6277.1848	279.6017 279.9159 280.2301 280.5442 280.8584	93.0 .1 .2 .3 .4	6792.9087 6807.5249 6822.1569 6836.8046 6851.4680	292.1681 292.4823 292.7964 293.1106 293.4248
.5 .6 .7 .8	6291.2356 6305.3021 6319.3843 6333.4822 6347.5958	281.1725 281.4867 281.8009 282.1150 282.4292	.5 .6 .7 .8 .9	6866.1471 6880.8419 6895.5524 6910.2786 6925.0205	293.7389 294.0531 294.3672 294.6814 294.9956
90.0 .1 .2 .3	6361.7251 6375.8701 6390.0308 6404.2073 6418.3994	282.7433 283.0575 283.3717 283.6858 284.0000	94.0 .1 .2 .3	6939.7781 6954.5515 6969.3405 6984.1453 6998.9657	295.3097 295.6239 295.9380 296.2522 296.5663
.5 .6 .7 .8	6432.6073 6446.8308 6461.0701 6475.3251 6489.5958	284.3141 284.6283 284.9425 285.2566 285.5708	.5 .6 .7 .8	7013.8019 7028.6538 7043.5214 7058.4047 7073.3037	296.8805 297.1947 297.5088 297.8230 298.1371
91.0 .1 .2 .3 .4	6503.8822 6518.1843 6532.5021 6546.8356 6561.1848	285.8849 286.1991 286.5132 286.8274 287.1416	95.0 .1 .2 .3	7088.2184 7103.1488 7118.0949 7133.0568 7148.0343	298.4513 298.7655 299.0796 299.3938 299.7079
.5 .6 .7 .8	6575.5497 6589.9304 6604.3267 6618.7388 6633.1666	287.4557 287.7699 288.0840 288.3982 288.7124	.5 .6 .7 .8	7163.0276 7178.0365 7193.0612 7208.1016 7223.1577	300.0221 300.3363 300.6504 300.9646 301.2787

(CONCLUDED.)

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.	
96.0 .1 .2 .3	7238.2294 7253.3169 7268.4201 7283.5391 7298.6737	301.5929 301.9071 302.2212 302.5354 302.8495	98.0 .1 .2 .3 .4	7542.9639 7558.3656 7573.7830 7589.2161 7604.6648	307.8761 308.1902 308.5044 308.8186 309.1327	
.5 .6 .7 .8	7313.8240 7328.9901 7344.1718 7359.3693 7374.5824	303.1637 303.4779 303.7920 304.1062 304.4203	.5 .6 .7 .8	7620.1293 7635.6095 7651.1054 7666.6170 7682.1443	309.4469 309.7610 310.0752 310.3894 310.7035	
97.0 .1 .2 .3 .4	7389.8113 7405.0559 7420.3162 7435.5921 7450.8838	304.7345 305.0486 305.3628 305.6770 305.9911	99.0 .1 .2 .3 .4	7697.6874 7713.2461 7728.8205 7744.4107 7760.0166	311.0177 311.3318 311.6460 311.9602 312.2743	
.5 .6 .7 .8	7466.1913 7481.5144 7496.8532 7512.2077 7527.5780	306.3053 306.6194 306.9336 307.2478 307.5619	.5 .6 .7 .8	7775.6381 7791.2754 7806.9284 7822.5971 7838.2815	312.5885 312.9026 313.2168 313.5309 313.8451	
			100.0	7853.9816	314.1593	

To find from the table areas or circumferences for larger diameters than those given.

CASE I.

For diameters greater than 100 and less than 1001:

Take from the table the area or circumference for a circle the diameter of which is one-tenth of the given diameter.

To obtain the required area or circumference, multiply the area so found by 100 and the circumference so found by 10.

For Example.-What is the area and circumference corresponding to a diameter of 459?

From the tables the area and circumference for diameter 45.9 are 1 654.6847 and 144.1991. Therefore 165 468.47 and 1 441.991 are the area and circumference required.

CASE II.

For diameters greater than 1000:

Divide the given diameter by any convenient factor which will give as a quotient a diameter found in the table, and take from the table the area or circumference for this diameter.

To obtain the required area or circumference multiply the area so found by the square of the factor and the circumference so found by the factor

For Example.-What is the area and circumference corresponding to a

diameter of 1 983?

 $1983 \div 3 = 661$. From the tables and Case I the area and circumference for diameter 661 are 343 156.95 and 2 076.593. Therefore 343 156.95 \times 9 = 3 088 412.55 = area required, and 2 076.593 \times 3 = 6 229.779 = circumference required.

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
	.0031 .0123 .0491 .1104 .1963 .3068 .4418 .6013	.1963 .3927 .7854 1.1781 1.5708 1.9635 2.3562 2.7489	CT 메스타이 이디자가 무여니 아니는 이번	19.6350 20.6290 21.6476 22.6907 23.7583 24.8505 25.9673 27.1086	15.7080 16.1007 16.4934 16.8861 17.2788 17.6715 18.0642 18.4569
	.7854 .9940 1.2272 1.4849 1.7671 2.0739 2.4053 2.7612	3.1416 3.5343 3.9270 4.3197 4.7124 5.1051 5.4978 5.8905		28.2744 29.4648 30.6797 31.9191 33.1831 34.4717 35.7848 37.1224	18.8496 19.2423 19.6350 20.0277 20.4204 20.8131 21.2058 21.5985
	3.1416 3.5466 3.9761 4.4301 4.9087 5.4119 5.9396 6.4918	6.2832 6.6759 7.0686 7.4613 7.8540 8.2467 8.6394 9.0321	ন(ত নাৰ্তাত ন(যেড)ত তাৰুদ।ত	38.4846 39.8713 41.2826 42.7184 44.1787 45.6636 47.1731 48.7071	21.9912 22.3839 22.7766 23.1693 23.5620 23.9547 24.3474 24.7401
	7.0686 7.6699 8.2958 8.9462 9.6211 10.3206 11.0447 11.7933	9.4248 9.8175 10.2102 10.6029 10.9956 11.3883 11.7810 12.1737	OD 16(30 miles III (30 mil(345)(30 miles (5).30	50.2656 51.8487 53.4563 55.0884 56.7451 58.4264 60.1322 61.8625	25.1328 25.5255 25.9182 26.3109 26.7036 27.0963 27.4890 27.8817
4 1 1 1 1 2 1 5 1 2 1 5 1 5 2 4 7 1 5	12.5664 13.3641 14.1863 15.0330 15.9043 16.8002 17.7206 18.6655	12.5664 12.9591 13.3518 13.7445 14.1372 14.5299 14.9226 15.3153	Q) = ((8 + 4 23 8 + 21 5) 5 23 4 7 (8	63.6174 65.3968 67.2008 69.0293 70.8823 72.7599 74.6621 76.5889	28.2744 28.6671 29.0598 29.4525 29.8452 30.2379 30.6306 31.0233

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference	
10	78.540 80.516 82.516 84.541 86.590 88.664 90.763 92.886	31.4160 31.8087 32.2014 32.5941 32.9868 33.3795 33.7722 34.1649	15 16 16 3 M 22 C C C C C C C C C C C C C C C C C	176.715 179.673 182.655 185.661 188.692 191.748 194.828 197.933	47.1240 47.5167 47.9094 48.3021 48.6948 49.0875 49.4802 49.8729	
F(0) H(4 rs/0) H(2 rs/00 rs/4 rs/00	95.033 97.205 99.402 101.623 103.869 106.139 108.434 110.754	34.5576 34.9503 35.3430 35.7357 36.1284 36.5211 36.9138 37.3065		201.062 204.216 207.395 210.598 213.825 217.077 220.354 223.655	50.2656 50.6583 51.0510 51.4437 51.8364 52.2291 52.6218 53.0145	
12 161	113.098 115.466 117.859 120.277 122.719 125.185 127.677 130.192	37.6992 38.0919 38.4846 38.8773 39.2700 39.6627 40.0554 40.4481	17	226.981 230.331 233.706 237.105 240.529 243.977 247.450 250.948	53.4072 53.7999 54.1926 54.5853 54.9780 55.3707 55.7634 56.1561	
19 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16	132.733 135.297 137.887 140.501 143.139 145.802 148.490 151.202	40.8408 41.2335 41.6262 42.0189 42.4116 42.8043 43.1970 43.5897	18 1(10 1(400)00 H((240)000)(47)(100	254.470 258.016 261.587 265.183 268.803 272.448 276.117 279.811	56.5488 56.9415 57.3342 57.7269 58.1196 58.5123 58.9050 59.2977	
14 1(811 m 2) 8 1 m 5) 8 m (47 8	153.938 156.700 159.485 162.296 165.130 167.990 170.874 173.782	43.9824 44.3751 44.7678 45.1605 45.5532 45.9459 46.3386 46.7313	19	283.529 287.272 291.040 294.832 298.648 302.489 306.355 310.245	59.6904 60.0831 60.4758 60.8685 61.2612 61.6539 62.0466 62.4393	

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
20 1/8 1/4 3/8 1/2 5/11 3/4 7/8	314.160 318.099 322.063 326.051 330.064 334.102 338.164 342.250	62.8320 63.2247 63.6174 64.0101 64.4028 64.7955 65.1882 65.5809	25 14 3 15 12 15 16 3 4 4 18	490.875 495.796 500.742 505.712 510.706 515.726 520.769 525.838	78.5400 78.9327 79.3254 79.7181 80.1108 80.5035 80.8962 81.2889
21 18144187125113478	346.361 350.497 354.657 358.842 363.051 367.285 371.543 375.826	65.9736 66.3663 66.7590 67.1517 67.5444 67.9371 68.3298 68.7225	26	530.930 536.048 541.190 546.356 551.547 556.763 562.003 567.267	81.6816 82.0743 82.4670 82.8597 83.2524 83.6451 84.0378 84.4305
22 1814 118125 183147 18	380.134 384.466 388.822 393.203 397.609 402.038 406.494 410.973	69.1152 69.5079 69.9006 70.2933 70.6860 71.0787 71.4714 71.8641		572.557 577.870 583.209 588.571 593.959 599.371 604.807 610.268	84.8232 85.2159 85.6086 86.0013 86.3940 86.7867 87.1794 87.5721
20 1(81)43:81(25,83)47(8	415.477 420.004 424.558 429.135 433.737 438.364 443.015 447.690	72.2568 72.6495 73.0422 73.4349 73.8276 74.2203 74.6130 75.0057	1(III) III(14 (S)(ID II) (III (I)(ID II) (III (I)(III (I)(III) (III (III) (III) (III) (III (III) (III) (III) (III (III) (III) (III) (III) (III) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIII) (IIIII) (IIIII) (IIIII) (IIIII) (IIIII) (IIIII) (IIIIII) (IIIII) (IIIIII) (IIIII) (IIIII) (IIIII) (IIIIII) (IIIIII) (IIIII) (IIIII) (IIIII) (IIIIII) (IIIIII) (IIIII) (IIIIII) (IIIII) (IIIIII) (IIIII) (IIII	615.754 621.264 626.798 632.357 637.941 643.549 649.182 654.840	87.9648 88.3575 88.7502 89.1429 89.5356 89.9283 90.3210 90.7137
24	452.390 457.115 461.864 466.638 471.436 476.259 481.107 485.979	75.3984 75.7911 76.1838 76.5765 76.9692 77.3619 77.7546 78.1473	9 1(8 H 4 H (6 H 20 5) 60 B) 4 7 10	660.521 666.228 671.959 677.714 683.494 689.299 695.128 700.982	91.1064 -91.4991 91.8918 92.2845 92.6772 93.0699 93.4626 93.8553

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference
30	706.860 712.763 718.690 724.642 730.618 736.619 742.645 748.695	94.248 94.641 95.033 95.426 95.819 96.212 96.604 96.997	1 S 1 4 3 S 1 2 5 5 5 5 6 7 1 1 1 1 1 1 1 1 1	962.115 969.000 975.909 982.842 989.800 996.783 1003.790 1010.822	109.956 110.349 110.741 111.134 111.527 111.919 112.312 112.705
1 de de color de colo	754.769 760.869 766.992 773.140 779.313 785.510 791.732 797.979	97.390 97.782 98.175 98.568 98.960 99.353 99.746 100.138	1 IIII 1/4 CO/10 1/(245/165) 1/4 7/(20	1017.878 1024.960 1032.065 1039.195 1046.349 1053.528 1060.732 1067.960	113.098 113.490 113.883 114.276 114.668 115.061 115.454 115.846
22 1611463图425图 1476	804.250 810.545 816.865 823.210 829.579 835.972 842.391 848.833	100.531 100.924 101.317 101.709 102.102 102.495 102.887 103.280	1(10 P.(14 P.)(10 P.((24)(10 P.)4 P.)(10	1075.213 1082.490 1089.792 1097.118 1104.469 1111.844 1119.244 1126.669	116.239 116.632 117.025 117.417 117.810 118.203 118.595 118.988
000 1/18 0/100 1/18 0/100 1/100 0/100 1/100 0/100 1/100 0/100 1/100 0/10	855.301 861.792 868.309 874.850 881.415 888.005 894.620 901.259	103.673 104.065 104.458 104.851 105.244 105.636 106.029 106.422	1(iS mil 4 00'IS 14 (24 0) is 00 4 7 (is	1134.118 1141.591 1149.089 1156.612 1164.159 1171.731 1179.327 1186.948	119.381 119.773 120.166 120.559 120.952 121.344 121.737 122.130
100100000000000000000000000000000000000	907.922 914.611 921.323 928.061 934.822 941.609 948.420 955.255	106.814 107.207 107.600 107.992 108.385 108.778 109.171 109.563		1194.593 1202.263 1209.958 1217.677 1225.420 1233.188 1240.981 1248.798	122.522 122.915 123.308 123.700 124.093 124.486 124.879 125.271

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
40 1তিনুৰ ছাত ন্ৰহাত জ্বান্ত	1256.64 1264.51 1272.40 1280.31 1288.25 1296.22 1304.21 1312.22	125.664 126.057 126.449 126.842 127.235 127.627 128.020 128.413	16 m 4 colo m (2 col m c	1590.43 1599.28 1608.16 1617.05 1625.97 1634.92 1643.89 1652.89	141.372 141.765 142.157 142.550 142.943 143.335 143.728 144.121
41	1320.26 1328.32 1336.41 1344.52 1352.66 1360.82 1369.00 1377.21	128.806 129.198 129.591 129.984 130.376 130.769 131.162 131.554		1661.91 1670.95 1680.02 1689.11 1698.23 1707.37 1716.54 1725.73	144.514 144.906 145.299 145.692 146.084 146.477 146.870 147.262
42	1385.45 1393.70 1401.99 1410.30 1418.63 1426.99 1435.37 1443.77	131.947 132.340 132.733 133.125 133.518 133.911 134.303 134.696	7 - (IIII = 400) 00 - 4(00 us) 100 14 - 100	1734.95 1744.19 1753.45 1762.74 1772.06 1781.40 1790.76 1800.15	147.655 148.048 148.441 148.833 149.226 149.619 150.011 150.404
43	1452.20 1460.66 1469.14 1477.64 1486.17 1494.73 1503.30 1511.91	135.089 135.481 135.874 136.267 136.660 137.052 137.445	48	1809.56 1819.00 1828.46 1837.95 1847.46 1856.99 1866.55 1876.14	150.797 151.189 151.582 151.975 152.368 152.760 153.153 153.546
44	1520.53 1529.19 1537.86 1546.56 1555.29 1564.04 1572.81 1581.61	138.230 138.623 139.016 139.408 139.801 140.194 140.587 140.979	99	1885.75 1895.38 1905.04 1914.72 1924.43 1934.16 1943.91 1953.69	153.938 154.331 154.724 155.116 155.509 155.902 156.295 156.687

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.	
50 নিজন্বলাজন্তিত তাৰিদ।ত	1963.50 1973.33 1983.18 1993.06 2002.97 2012.89 2022.85 2032.82	157.080 157.473 157.865 158.258 158.651 159.043 159.436 159.829	다 가는 하는	2375.83 2386.65 2397.48 2408.34 2419.23 2430.14 2441.07 2452.03	172.788 173.181 173.573 173.966 174.359 174.751 175.144 175.537	
51	2042.83 2052.85 2062.90 2072.98 2083.08 2093.20 2103.35 2113.52	160.222 160.614 161.007 161.400 161.792 162.185 162.578 162.970		2463.01 2474.02 2485.05 2496.11 2507.19 2518.30 2529.43 2540.58	175.930 176.322 176.715 177.108 177.500 177.893 178.286 178.678	
22 adio net 4 estilo net 4 estilo estille esti	2123.72 2133.94 2144.19 2154.46 2164.76 2175.08 2185.42 2195.79	163.363 163.756 164.149 164.541 164.934 165.327 165.719 166.112	(C) ((中で)(中で)((中で)(の)((中で)(の)((中で)(の)((中で)(の)((中で)(の)(((中で)(の)(((()(((()((((((((((((((((((((((2551.76 2562.97 2574.20 2585.45 2596.73 2608.03 2619.36 2630.71	179.071 179.464 179.857 180.249 180.642 181.035 181.427 181.820	
20 148 and 18 as bound (4.42) (50.00) (4.42) (50.00)	2206.19 2216.61 2227.05 2237.52 2248.01 2258.53 2269.07 2279.64	166.505 166.897 167.290 167.688 168.076 168.468 168.861 169.254	150 では、	2642.09 2653.49 2664.91 2676.36 2687.84 2699.33 2710.86 2722.41	182.213 182.605 182.998 183.391 183.784 184.176 184.569 184.962	
54	2290.23 2300.84 2311.48 2322.15 2332.83 2343.55 2354.29 2365.05	169.646 170.039 170.432 170.824 171.217 171.610 172.003 172.395	20 militaria (at co) (co militaria (at co) (co militaria) (co mili	2733.98 2745.57 2757.20 2768.84 2780.51 2792.21 2803.93 2815.67	185.354 185.747 186.140 186.532 186.925 187.318 187.711 188.103	

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference
60	2827.44 2839.23 2851.05 2862.89 2874.76 2886.65 2898.57 2910.51	188.496 188.889 189.281 189.674 190.067 190.459 190.852 191.245	50 1(81443) 161(25) 8 161(47) 16	3318.31 3331.09 3343.89 3356.71 3369.56 3382.44 3395.33 3408.26	204.204 204.597 204.989 205.382 205.775 206.167 206.560 206.953
61 1.1.1.1.4.3.18.1.1.2.5.18.3.14.7.18	2922.47 2934.46 2946.48 2958.52 2970.58 2982.67 2994.78 3006.92	191.638 192.030 192.423 192.816 193.208 193.601 193.994 194.386		3421,20 3434,17 3447,17 3460,19 3473,24 3486,30 3499,40 3512,52	207.346 207.738 208.131 208.524 208.916 209.309 209.702 210.094
2 1(8) #[40(0) #[215]00 0]#7-#	3019.08 3031.26 3043.47 3055.71 3067.97 3080.25 3092.56 3104.89	194.779 195.172 195.565 195.957 196.350 196.743 197.135 197.528	67 1 IIII nd 450 0 III (24.5) III (37.47.7) 0	3525.66 3538.83 3552.02 3565.24 3578.48 3591.74 3605.04 3618.35	210.487 210.880 211.273 211.665 212.058 212.451 212.843 213.236
50 1 1 1 1 1 1 1 1 1 1	3117.25 3129.64 3142.04 3154.47 3166.93 3179.41 3191.91 3204.44	197.921 198.313 198.706 199.099 199.492 199.884 200.277 200.670	68	3631.69 3645.05 3658.44 3671.86 3685.29 3698.76 3712.24 3725.75	213.629 214.021 214.414 214.807 215.200 215.592 215.985 216.378
64	3217.00 3229.58 3242.18 3254.81 3267.46 3280.14 3292.84 3305.56	201.062 201.455 201.848 202.240 202.633 203.026 203.419 203.811	69	3739.29 3752.85 3766.43 3780.04 3793.68 3807.34 3821.02 3834.73	216.770 217.163 217.556 217.548 218.341 218.734 219.127 219.519

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.
70 168 14 318 162 min 314 718	3848.46 3862.22 3876.00 3889.80 3903.63 3917.49 3931.37 3945.27	219.912 220.305 220.697 221.090 221.483 221.875 222.268 222.661	75	4417.37 4432.61 4447.38 4462.16 4476.98 4491.81 4506.67 4521.56	235.620 236.013 236.405 236.798 237.191 237.583 237.976 238.369
71 1(0 rd 4 mill rd(x s)(0 r) in 7 in	3959.20 3973.15 3987.13 4001.13 4015.16 4029.21 4043.29 4057.39	223.054 223.446 223.839 224.232 224.624 225.017 225.410 225.802	(C) 11(613)61(625)653(447)6	4536.47 4551.41 4566.36 4581.35 4596.36 4611.39 4626.45 4641.53	238.762 239.154 239.547 239.940 240.332 240.725 241.118 241.510
72 (814/49)(514/8)(611)(411)(611)(411)(6	4071.51 4085.66 4099.84 4114.04 4128.26 4142.51 4156.78 4171.08	226.195 226.588 226.981 227.373 227.766 228.159 228.551 228.944	1(5 m/q-3)(6 m/(245)(6 m) 11 7 (6	4656.64 4671.77 4686.92 4702.10 4717.31 4732.54 4747.79 4763.07	241.903 242.296 242.689 243.081 243.474 243.867 244.259 244.652
To de cito de	4185.40 4199.74 4214.11 4228.51 4242.93 4257.37 4271.84 4286.33	229.337 229.729 230.122 230.515 230.908 231.300 231.693 232.086	100mm/m 25(6 m/(245)66 25)4 \$1.00	4778.37 4793.70 4809.05 4824.43 4839.83 4855.26 4870.71 4886.18	245.045 245.437 245.830 246.223 246.616 247.008 247.401 247.794
74 de designatura de la composition della compos	4300.85 4315.39 4329.96 4344.55 4359.17 4373.81 4388.47 4403.16	232.478 232.871 233.264 233.656 234.049 234.442 234.835 235.227	79 1(8 14 3 16 14 (2 4 5) 6 3 (16 7) 6	4901.68 4917.21 4932.75 4948.33 4963.92 4979.55 4995.19 5010.86	248.186 248.579 248.972 249.364 249.757 250.150 250.543 250.935

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference.	
80 1487445000-421500-4716	5026.56 251.328 5042.28 251.721 5058.03 252.113 5073.79 252.506 5089.59 252.899 5105.41 253.291 5121.25 253.684 5137.12 254.077		00 (CT)	5674.51 5691.22 5707.94 5724.69 5741.47 5758.27 5775.10 5791.94	267.036 267.429 267.821 268.214 268.607 268.999 269.392 269.785	
81 1(11143)81(25)103)117 18	5153.01 5168.93 5184.87 5200.83 5216.82 5232.84 5248.88 5264.94	254.470 254.862 255.255 255.648 256.040 256.433 256.826 257.218	00 m(4cc) to m((245) to c) 4.7-(80	5808.82 5825.72 5842.64 5859.59 5876.56 5893.55 5910.58 5927.62	270.178 270.570 270.963 271.356 271.748 272.141 272.534 272.926	
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5281.03 5297.14 5313.28 5329.44 5345.63 5361.84 5378.08 5394.34	257.611 258.004 258.397 253.789 259.182 259.575 259.967 260.360	00 14 4 10 10 14 10 10 14 1 10 10 14 1 10 10 14 1 10 10 10 14 1 10 10 10 10 10 10 10 10 10 10 10 10 1	5944.69 5961.79 5978.91 5996.05 6013.22 6030.41 6047.63 6064.87	273.319 273.712 274.105 274.497 274.890 275.283 275.675 276.068	
89 78 14 13 8 12 16 8 11 47 8	5410.62 5426.93 5443.26 5459.62 5476.01 5492.41 5508.84 5525.30	260.753 261.145 261.538 261.931 262.324 262.716 263.109 263.502	00 ==((0 ==((m 0)(0 ==((N 0)(m 0)(m 0)(4 t=(0	6082.14 6099.43 6116.74 6134.08 6151.45 6168.84 6186.25 6203.69	276.461 276.853 277.246 277.638 278.032 278.424 278.817 279.210	
84	5541.78 5558.29 5574.82 5591.37 5607.95 5624.56 5641.18 5657.84	263.894 264.287 264.680 265.072 265.465 265.858 266.251 266.643	00 Price refreshed refreshed color color (4.5) and	6221.15 6238.64 6256.15 6273.69 6291.25 6308.84 6326.45 6344.08	279.602 279.995 280.388 280.780 281.173 281.566 281.959 282.351	

AREAS AND CIRCUMFERENCES OF CIRCLES. Diameters 1/10 to 100.

Diameter.	Area.	Circumference.	Diameter.	Area.	Circumference
. O 1/8-1 = 3/8 1/25/83/= 7/8	6361.74 6379.42 6397.13 6414.86 6432.62 6450.40 6468.21 6486.04	282.744 283.137 283.529 283.922 284.315 284.707 285.100 285.493	95 1814:05 1225 83447	7088.24 7106.90 7125.59 7144.31 7163.04 7181.81 7200.60 7219.41	298.452 298.845 299.237 299.630 300.023 300.415 300.808 301.201
9 18 1438 1258 3476	6503.90 6521.78 6539.68 6557.61 6575.56 6593.54 6611.55 6629.57	285.886 286.278 286.671 287.064 287.456 287.849 288.242 288.634	O 1/00 1/4 23/00 1/24/0 20/11 20/11 7 10	7238.25 7257.11 7275.99 7294.91 7313.84 7332.80 7351.79 7370.79	301.594 301.986 302.379 302.772 303.164 303.557 303.950 304.342
92 28 24 28 22 5 8 1147 8	6647.63 6665.70 6683.80 6701.93 6720.08 6738.25 6756.45 6774.68	289.027 289.420 289.813 290.205 290.598 290.991 291.383 291.776	97 100744EEE 102500 EEE 470	7389.83 7408.89 7427.97 7447.08 7466.21 7485.37 7504.55 7523.75	304.735 305.128 305.521 305.913 306.306 306.699 307.091 307.484
90 (E. Lange et 25) 8 2147 8	6792.92 6811.20 6829.49 6847.82 6866.16 6884.53 6902.93 6921.35	292.169 292.562 292.954 293.347 293.740 294.132 294.525 294.918	98 102 1 m 2) to 1(245) to 111 4 7 to	7542.98 7562.24 7581.52 7600.82 7620.15 7639.50 7658.88 7678.28	307.877 308.270 308.662 309.055 309.448 309.840 310.233 310.626
	6939.79 6958.26 6976.76 6995.28 7013.82 7032.39 7050.98 7069.59	295.310 295.703 296.096 296.488 296.881 297.274 297.667 298.059	G -(00-14-67)00-1(24 6)0 0-7(00	7697.71 7717.16 7736.63 7756.13 7775.66 7795.21 7814.78 7834.38	311.018 311.411 311.804 312.196 312.589 312.982 313.375 313.767
			100	7854.00	314.160

LOGARITHMS OF NUMBERS, FROM 0 TO 1000.

No.	0	1	2	3	4	5	16	. 7	8	9
0	0	00000	30103	47712	60206	69897	77815	84510	90309	9542
10	00000	00432	00860	01284	01703	02119	02531	02938	03342	0374
11	04139	04532	04922	05308	05690	06070	06446	06819	07188	0755
12	07918	08279	08636	08991	09342	09691	10037	10380	10721	1105
13	11394	11727	12057	12385	12710	13033	13354	13672	13988	1430
14	14613	14922	15229	15534	15836	16137	16435	16732	17026	1731
15	17609	17898	18184	18469	18752	19033	19312	19590	19866	2014
16	20412	20683	20952	21219	21484	21748	22011	22272	22531	2278
17	23045	23300	23553	23805	24055	24304	24551	24797	25042	2528
18	25527	25768	26007	26245	26482	26717	26951	27184	27416	2764
19	27875	28103	28330	28556	28780	29003	29226	29447	29667	2988
20	30103	30320	30535	30750	30963	31175	31387	31597	31806	3201
21	32222	32428	32634	32838	33041	33244	33445	33646	33846	3404
22	34242	34439	34635	34830	35025	35218	35411	35603	35793	3598
23	36173	36361	36549	36736	36922	37107	37291	37475	37658	3784
24	38021	38202	38382	38561	38739	38917	39094	39270	39445	3962
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	4133
26	41497	41664	41830	41996	42160	42325	42488	42651	42813	4293
27	43136	43297	43457	43616	43775	43933	44091	44248	44404	4456
28	44716	44871	45025	45179	45332	45484	45637	45788	45939	4609
29	46240	46389	46538	46687	46835	46982	47129	47276	47422	4756
30	47712	47857	48001	48144	48287	48430	48572	48714	48855	489
31	49136	49276	49415	49554	49693	49831	49969	50106	50243	503
32	50515	50651	50786	50920	51055	51188	51322	51455	51587	517
33	51851	51983	52114	52244	52375	52504	52634	52763	52892	530
34	53148	53275	53403	53529	53656	53782	53908	54033	54158	542
35	54407	54531	54654	54777	54900	55023	55145	55267	55388	5550
36	55630	55751	55871	55991	56110	56229	56348	56467	56585	5670
37	56820	56937	57054	57171	57287	57403	57519	57634	57749	5780
38	57978	58093	58206	58320	58433	58546	58659	58771	58883	5890
39	59106	59218	59329	59439	59550	59660	59770	59879	59988	6000
40	60206	60314	60423	60531	60638	60746	60853	60959	61066	611:
41	61278	61384	61490	61595	61700	61805	61909	62014	62118	622:
42	62325	62428	62531	62634	62737	62839	62941	63043	63144	632:
43	63347	63448	63548	63649	63749	63849	63949	64048	64147	642:
44	64345	64444	64542	64640	64738	64836	64933	65031	65128	652:
45	65321	65418	65514	65610	65706	65801	65896	65992	66087	6618
46	66276	66370	66464	66558	66652	66745	66839	66932	67025	6711
47	67210	67302	67394	67186	67578	67669	67761	67852	67943	6803
48	68124	68215	68305	68395	68485	68574	68664	68753	68842	6893
49	69020	69108	69197	69285	69373	69461	69548	69636	69723	6981
50	69897	69984	70070	70157	70243	70329	70415	70501	70586	7067
51	70757	70842	70927	71012	71096	71181	71265	71349	71433	7151
52	71600	71684	71767	71850	71933	72016	72099	72181	72263	7234
53	72428	72509	72591	72673	72754	72835	72916	72997	73078	7315
54	73239	73320	73400	73480	73560	73640	73719	73799	73878	7395

LOGARITHMS OF NUMBERS, FROM 0 TO 1000

No.	0	1	2	8	4	5	В	. 7	8	19
55	74036	74115	74194	74273	74351	74429	74507	74586	74663	7474
56	74819	74896	74974	75051	75128	75205	75282	75358	75435	7551
57	75587	75664	75740	75815	75891	75967	76042	76118	76193	7626
58 59	76343 77085	76418 77159	76492 77232	76567 77305	76641 77379	76716 77452	76790 77525	76864 77597	76938 77670	7701 7774
60	77815	77887	7796C	78032	78104	78176	78247	78319	78390	7846
61 62	79533 79239	78604 79309	78675 79379	78746 79449	78817 79518	78888 79588	78958 79657	79029 79727	79099 79796	7916 7986
63	79934	80003	80072	80140	80209	80277	80346	80414	80482	8058
64	80618	80686	80754	80821	80889	80956	81023	81090	81158	8122
66	81291	81358	81425	81491	81558	81624	81690	81757	81823	8188
67	81954 82607	82020 82672	82086 82737	82151 82802	82217 82866	82282 82930	82347 82995	82413 83059	82478 83123	8254 8318
68	83251	83315	83378	83442	83506	83569	83632	83696	83759	8382
69	83885	83948	84011	84073	84136	84198	84261	84323	84386	8444
70	84510	84572	84634	84696	84757	84819	84880	84942	85003	8506
71 72	85126 85733	85187 85794	85248 85854	85309 85914	85370 85974	85431 86034	85491 86094	85552 86153	85612 86213	8567 8627
73	86332	86392	86451	86510	86570	86629	86688	86747	86806	8686
74	86923	86982	87040	87099	87157	87216	87274	87332	87390	8744
75	87506	87564	87622	87680	87737	87795	87852	87910	87967	8802
76 77	88081 88649	88138 88705	88196 88762	88252 88818	88309 88874	88366 88930	88423 88986	88480 89042	88 536 89098	8859 8913
78	89209	89265	89321	89376	89432	89487	89542	89597	89653	8970
79	89763	89818	89873	89927	89982	90037	90091	90146	90200	9025
80	90309	90363	90417	90472	90526	90580	90634	90687	90741	9079
81 82	90549	90902 91434	90956 91457	91009 91540	91062 91593	91116 91645	91169	91222 91751	91275 91803	9132
83	91908	91960	92012	92065	92117	92169	92221	92273	92324	923
84	92428	92480	92531	92583	92634	92686	92737	92788	92840	928
85 86	92942	92993	93044	93095	93146	93197	93247	93298	93349	9339
87	93450 93952	93500 94002	93551 94052	93601 94101	93651 94151	93702 94201	93752 94250	93802 94300	93852	9390
88	94448	94498	94547	94596	94645	94694	94743	94792	94841	9489
89	94939	94988	95036	95085	95134	95182	95231	95279	95328	953
90 91	95424	95472 95952	95521 95999	95569 96047	95617 96095	95665 96142	95713 96190	95761 96237	95809 96284	9588 9633
92	96379	96426	96473	96520	96567	96614	96661	96708	96755	9680
93 94	96848 97313	96895 97359	96942 97405	96988 97451	97035 97497	97081 97543	97128 97589	97174 97635	97220 97681	9726
95	97772	97818	97864	97909	97955	98000	98046	98091	98137	981
96	98227	98272	98318	98363	98408	98453	98498	98543	98588	986
97	98677	98722	98767	98811	98856	98900	98945	98989	99034	9907
98	99123 99564	99167 99607	99211	99255 99695	99300	99344	99388	99432	99476	9953

TRIGONOMETRIC FORMULAE. TRIGONOMETRIC FUNCTIONS.

Let A = angle BAC = arc BF. Let radius AF = AB = AH = 1.

Then versin A = CF = BE

 $\sin A = BC$
 cos A
 = AC
 covers A
 = BK

 tan A
 = DF
 exsec A
 = BD

 cot A
 = HG
 coexsec A
 = BG

 sec A
 = AD
 chord A
 = BF
 covers A = BK = HL

cosec A=AG chord 2A = BI = 2BC

RIGHT-ANGLED TRIANGLES.

In the right-angled triangle ABC. Let side AB = c, side AC = b, and side BC = a; let angle ABC = B.

Then
$$\sin A = \frac{a}{c} = \cos B$$
 $a = c \sin A = b \tan A$

$$\cos A = \frac{b}{c} = \sin B$$
 $b = c \cos A = a \cot A$

$$\tan A = \frac{a}{b} = \cot B$$
 $c = \frac{a}{\sin A} = \frac{b}{\cos A}$

$$\cot A = \frac{b}{a} = \tan B \qquad a = c \cos B = b \cot B$$

$$\sec A = \frac{c}{b} = \csc B$$
 $b = c \sin B = a \tan B$

$$\operatorname{cosec} A = \frac{c}{a} = \sec B$$
 $c = \frac{a}{\cos B} = \frac{b}{\sin B}$

vers A =
$$\frac{c-b}{c}$$
 = covers B $a = \sqrt{(c+b)(c-b)}$

exsec A =
$$\frac{c-b}{b}$$
 = coexsec B $b = \sqrt{(c+a)(c-a)}$

covers A =
$$\frac{c-a}{c}$$
 = versin B $c = \sqrt{a^2 + b^2}$

$$\operatorname{coexsec} A = \frac{c - a}{a} = \operatorname{exsec} B \qquad C = 90^{\circ} = A + B$$

Area
$$=$$
 $\frac{ab}{2}$ $=$ $\frac{a}{2}$ $=$ $\frac{a^2 \cot A}{2}$ $=$ $\frac{b^2 \tan A}{2}$ $=$ $\frac{c^2 \sin 2A}{4}$

	C	AMBRIA STEEL. 513
	B	TRIGONOMETRIC FORMULÆ (Continued). OBLIQUE TRIANGLES. s = ½ (a+b+c)
A KNOWN	b REOURED	LORMULE
A, B, a		
А, Б, а	C, D	$C = 180^{\circ} - (A + B), b = \frac{a}{\sin A} \cdot \sin B,$
	c	$c = -\frac{a}{\sin A} \sin (A + B)$
A, a, b	B, C	$\sin B = \frac{\sin A}{a}$. b, $C = 180^{\circ} - (A + B)$,
	С	$c = \frac{a}{\sin A} \cdot \sin C$
C, a, b	15 (A+B)	$\frac{1}{2}(A+B) = 90^{\circ} - \frac{1}{2}C$
	½ (A-B)	$\tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \tan \frac{1}{2} (A + B)$
	A, B	$A = \frac{1}{2} (A+B) + \frac{1}{2} (A-B),$ $B = \frac{1}{2} (A+B) - \frac{1}{2} (A-B)$
	С	$c = (a+b) \frac{\cos \frac{1}{2} (A+B)}{\cos \frac{1}{2} (A-B)}$
		$= (a-b) \frac{\sin \frac{1}{2} (A+B)}{\sin \frac{1}{2} (A-B)}$
		$=\sqrt{a^2+b^2-2ab\cdot\cos C}$
	area	$area = \frac{1}{2}a$ b sin C.
a, b, c	A	$\sin \frac{1}{2}A = \frac{(s-b)(s-c)}{bc}$
		$\cos \frac{1}{2} 4 = \sqrt{\frac{s(s-a)}{bc}}$
	9	$\tan \frac{1}{2} \Lambda = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
		$\sin A = \frac{2\sqrt{s(s-a)(s-b)(s-c)}}{bc}$
		$vers A = \frac{2 (s-b) (s-c)}{b c}$

bс area = $\sqrt{s(s-a)(s-b)(s-c)}$

 $area = \frac{a^2 \sin B \cdot \sin C}{area}$

2 sin A

area

area

A, B, C, a

TRIGONOMETRIC FORMULÆ—(Continued). GENERAL.

$$\sin A = \frac{1}{\csc A} = \sqrt{1 - \cos^2 A} = \tan A \cos A$$

$$= 2 \sin \frac{1}{2} A \cos \frac{1}{2} A = \text{vers } A \cot \frac{1}{2} A$$

$$= \sqrt{\frac{1}{2} \text{ vers } 2 A} = \sqrt{\frac{1}{2} (1 - \cos 2 A)}$$

$$\cos A = \frac{1}{\sec A} = \sqrt{1 - \sin^2 A} = \cot A \sin A$$

$$= 1 - \text{vers } A = 2 \cos^2 \frac{1}{2} A - 1 = 1 - 2 \sin^2 \frac{1}{2} A$$

$$-\cos^2 \frac{1}{2} A - \sin^2 \frac{1}{2} A = \sqrt{\frac{1}{2} + \frac{1}{2} \cos 2 A}$$

$$\tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A} = \sqrt{\sec^2 A - 1}$$

$$= \sqrt{\frac{1}{\cos^2 A} - 1} = \frac{\sqrt{1 - \cos^2 A}}{\cos A} = \frac{\sin 2 A}{1 + \cos 2 A}$$

$$= \frac{1 - \cos 2 A}{\sin 2 A} = \frac{\text{vers } 2 A}{\sin 2 A} = \text{exsec A cot } \frac{1}{2} A$$

$$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A} = \sqrt{\csc^2 A - 1}$$

$$= \frac{\sin 2 A}{1 - \cos 2 A} = \frac{\sin 2 A}{\text{vers } 2 A} = \frac{1 + \cos 2 A}{\sin 2 A} = \frac{\tan \frac{1}{2} A}{\text{exsec } A}$$

vers A =
$$1 - \cos A = \sin A \tan \frac{1}{2} A = 2 \sin^2 \frac{1}{2} A$$

exsec A = sec A-1 = tan A tan
$$\frac{1}{2}$$
 A = $\frac{\text{vers A}}{\cos A}$

$$\sin \frac{1}{2} A = \sqrt{\frac{1 - \cos A}{2}} = \sqrt{\frac{\operatorname{vers} A}{2}}$$

$$\cos \frac{1}{2} A = \sqrt{\frac{1 + \cos A}{2}}$$

$$\tan \frac{1}{2} A = \frac{\tan A}{1 + \sec A} = \csc A - \cot A = \frac{1 - \cos A}{\sin A} = \sqrt{\frac{1 - \cos A}{1 + \cos A}}$$

$$\cot \frac{1}{2} A = \frac{\sin A}{\operatorname{vers} A} = \frac{1 + \cos A}{\sin A} = \frac{1}{\operatorname{cosec} A - \cot A}$$

vers
$$\frac{1}{2}$$
 A = $\frac{\frac{1}{2} \text{ vers A}}{1 + \sqrt{1 - \frac{1}{2} \text{ vers A}}} = \frac{1 - \cos A}{2 + \sqrt{2 (1 + \cos A)}}$

TRIGONOMETRIC FORMULÆ—(Continued). GENERAL.

exsec
$$\frac{1}{2}$$
 A = $\frac{1 - \cos A}{(1 + \cos A) + \sqrt{2(1 + \cos A)}}$

$$\sin 2 A = 2 \sin A \cos A$$

$$\cos 2 A = 2 \cos^2 A - 1 = \cos^2 A - \sin^2 A = 1 - 2 \sin^2 A$$

$$\tan 2 A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\cot 2 A = \frac{\cot^2 A - 1}{2 \cot A}$$

$$\operatorname{exsec} 2 A = \frac{2 \tan^2 A}{1 - \tan^2 A}$$

$$\sin 3 A = 3 \sin A - 4 \sin^3 A$$

$$\cos 3 A = 4 \cos^3 A - 3 \cos A$$

$$\tan 3 A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$$

$$\sin 4 A = 4 \sin A \cos A - 8 \sin^3 A \cos A$$

$$\cos 4 A = 1 - 8 \cos^2 A + 8 \cos^4 A$$

$$\tan 4 A = \frac{4 \tan A - 4 \tan^3 A}{1 - 6 \tan^2 A + \tan^4 A}$$

$$\sin (A+B) = \sin A \cdot \cos B + \sin B \cdot \cos A$$

$$\sin (A-B) = \sin A \cdot \cos B - \sin B \cdot \cos A$$

$$cos(A+B) = cos A \cdot cos B - sin A \cdot sin B$$

 $cos(A-B) = cos A \cdot cos B + sin A \cdot sin B$

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

 $\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$

$$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

 $\cos B - \cos A = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$

$$\sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A = \sin (A+B) \sin (A-B)$$

 $\cos^2 A - \sin^2 B = \cos (A+B) \cos (A-B)$

$$\tan A + \tan B = \frac{\sin (A+B)}{\cos A \cdot \cos B}$$

$$\tan A - \tan B = \frac{\sin (A - B)}{\cos A \cdot \cos B}$$

FUNCTION.	QUADRANT SIGN.						
PUNCTION.	Ist	2nd	3rd	4th			
sine, cosecant, coexsecant	+	+	_	_			
cosine, secant, exsecant	+	_	_	+			
tangent, cotangent	+	- 1	+	_			
versed sine, coversed sine	+	+	+	+			

В	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	,	0
0	0 10 20 30 40 50	.000000 .002909 .005818 .008727 .011635 .014544	Infinite. 343.77516 171.88831 114.59301 85.945609 68.757360	.000000 .002909 .005818 .008727 .011636 .014545	Infinite. 343.77371 171.88540 114.58865 85.939791 68.750087	1.00000 1.00000 1.00002 1.00004 1.00007 1.00011	1.000000 .99996 .999983 .99962 .999932 .999894	50 40 30 20 10	90
1	0 16 20 30 40 50	.017452 .020361 .023269 .026177 .029085 .031992	57.298688 49.114062 42.975713 38.201550 34.382316 31.257577	.017455 .020365 .023275 .026186 .029097 .032009	57.289962 49.103881 42.964077 38.188459 34.367771 31.241577	1.00015 1.00021 1.00027 1.00034 1.00042 1.00051	.999848 .999793 .999729 .299657 .999577 .999488	0 50 40 30 20 10	89
2	0 10 20 30 40 50	034899 .037806 .040713 .043619 .046525 .049431	28.653708 26.450510 24.562123 22.925586 21.493676 20.230284	.034921 .037834 .040747 .043661 .046576 .049491	28.636253 26.431600 24.541758 22.903766 21.470401 20.205553	1.00061 1.00072 1.00083 1.00095 1.00108 1.00122	.999391 .999285 .999171 .999048 .998917 .998778	0 50 40 30 20 10	88
3	0 10 20 30 40 50	.052336 .055241 .058145 .061049 .063952 .066854	19.107323 18.102619 17.198434 16.380408 15.636793 14.957882	.052408 .055325 .058243 .061163 .064083 .067004	19.081137 18.074977 17.169337 16.349855 15.604784 14.924417	1.00137 1.00153 1.00169 1.00187 1.00205 1.00224	.998630 .998473 .998308 .998135 .997953 .997763	0 50 40 30 20 10	87
4	0 10 20 30 40 50	.069756 .072658 .075559 .078459 .081359 .084258	14.335587 13.763115 13.234717 12.745495 12.291252 11.868370	.069927 .072851 .075776 .078702 .081629 .084558	14.300666 13.726738 13.196888 12.706205 12.250505 11.826167	1.00244 1.00265 1.00287 1.00309 1.00333 1.00357	.997564 .997357 .997141 .996917 .996685 .996444	0 50 40 30 20 10	86
Б	0 10 20 30 40 50	.087156 .090053 .092950 .095846 .098741 .101635	11.473713 11.104549 10.758488 10.433431 10.127522 9.8391227	.087489 .090421 .093354 .096289 .099226 .102164	11.430052 11.059431 10.711913 10.385397 10.078031 9.7881732	1.00382 1.00408 1.00435 1.00463 1.00491 1.00521	.996195 .995937 .995671 .995396 .995113 .994822	0 50 40 30 20 10	85
6	0 10 20	.104528 .107421 .110313	9.5667722 9.3091699 9.0651512	.105104 .108046 .110990	9.5143645 9.2553035 9.0098261	1.00551 1.00582 1.00614	.994522 .994214 .993897	0 50 40	84 83
0	,	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	,	0

For functions from 83°-40' to 90° read from bottom of table upward.

0	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	,	0
В	30 40 50	.113203 .116093 .118982	8.8336715 8.6137901 8.4045586	.113936 .116883 .119833	8.7768874 8.5555468 8.3449558	1.00647 1.00681 1.00715	.993572 .993238 .992896	30 20 10	
7	0 10 20 30 40 50	.121869 .124756 .127642 .130526 .133410 .136292	8.2055090 8.0156450 7.8344335 7.6612976 7.4957100 7.3371909	.122785 .125738 .128694 .131653 .134613 .137576	8.1443464 7.9530224 7.7703506 7.5957541 7.4287064 7.2687255	1.00751 1.00787 1.00825 1.00863 1.00902 1.00942	.992546 .992187 .991820 .991445 .991061 .990669	0 50 40 30 20 10	83
8	10 20 30 40 50	.139173 .142053 .144932 .147809 .150686 .153561	7.1852965 7.0396220 6.8997942 6.7654691 6.6363293 6.5120812	.140541 .143508 .146478 .149451 .152426 .155404	7.1153697 6.9682335 6.8269437 6.6911562 6.5605538 6.4348428	1.00983 1.01024 1.01067 1.01111 1.01155 1.01200	.990268 .989859 .989442 .989016 .988582 .988139	0 50 40 30 20 10	82
9	0 10 20 30 40 50	.156434 .159307 .162178 .165048 .167916 .170783	6.3924532 6.2771933 6.1660674 6.0588583 5.9553625 5.8553921	.158384 .161368 .164354 .167343 .170334 .173329	6.3137515 6.1970279 6.0844381 5.9757644 5.8708042 5.7693688	1.01247 1.01294 1.01342 1.01391 1.01440 1.01491	.987688 .987229 .986762 .986286 .985801 .985309	0 50 40 30 20 10	81
10	10 20 30 40 50	.173648 .176512 .179375 .182236 .185095 .187953	5.7587705 5.6653331 5.5749258 5.4874043 5.4026333 5.3204860	.176327 .179328 .182332 .185339 .188359 .191363	5.6712818 5.5763786 5.4845052 5.3955172 5.3092793 5.2256647	1.01543 1.01595 1.01649 1.01703 1.01758 1.01815	.984808 .984298 .983781 .983255 .982721 .982178	0 50 40 30 20 10	80
11	0 10 20 30 40 50	.190809 .193664 .196517 .199368 .202218 .205065	5.2408431 5.1635924 5.0886284 5.0158517 4.9451687 4.8764907	.194380 .197401 .200425 .203452 .206483 .209518	5.1445540 5.0658352 4.9894027 4.9151570 4.8430045 4.7728568	1.01872 1.01930 1.01989 1.02049 1.02110 1.02171	.981627 .981068 .980500 .979925 .979341 .978748	0 50 40 30 20 10	79
12	0 10 20 30 40 50	.207912 .210756 .213599 .216440 .219279 .222116	4.8097343 4.7448206 4.6816748 4.6202263 4.5604080 4.5021565	.212557 .215599 .218645 .221695 .224748 .227806	4.7046301 4.6382457 4.5736287 4.5107085 4.4494181 4.3896940	1.02234 1.02298 1.02362 1.02428 1.02494 1.02562	.978148 .977539 .976921 .976296 .975662 .975020	0 50 40 30, 20 10	78
0	,	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	,	0

For functions from 77°-10' to 83°-30' read from bottom of table upward.

0	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	1	0
13	0 10 20 30 40 50	.224951 .227784 .230616 .233445 .236273 .239098	4.4454115 4.3901158 4.3362150 4.2836576 4.2323943 4.1823785	.230868 .233934 .237004 .240079 .243158 .246241	4.3314759 4.2747066 4.2193318 4.1652998 4.1125614 4.0610700	1.02630 1.02700 1.02770 1.02842 1.02914 1.02987	.974370 .973712 .973045 .972370 .971687 .970995	0 50 46 30 20 10	77
14	0 10 20 30 40 50	.241922 .244743 .247563 .250380 .253195 .256008	4.1335655 4.0859130 4.0393804 3.9939292 3.9495224 3.9061250	.249328 .252420 .255517 .258618 .261723 .264834	4.0107809 3.9616518 3.9136420 3.8667131 3.8208281 3.7759519	1.03061 1.03137 1.03213 1.03290 1.03368 1.03447	.970296 .969588 .968872 .968148 .967415 .966675	50 40 30 20 10	76
15	10 20 30 40 50	.258819 .261628 .264434 .267238 .270040 .272840	3.8637033 3.8222251 3.7816596 3.7419775 3.7031506 3.6651518	.267949 .271069 .274195 .277325 .280460 .283600	3.7320508 3.6890927 3.6470467 3.6058835 3.5655749 3.5260938	1.03528 1.03609 1.03691 1.03774 1.03858 1.03944	.965926 .965169 .964404 .963630 .962849 .962059	0 50 40 30 20 10	75
16	0 10 20 30 40 50	.275637 .278432 .281225 .284015 .286803 .289589	3.6279553 3.5915363 3.5558710 3.5209365 3.4867110 3.4531735	.286745 .289896 .293052 .296214 .299380 .302553	3.4874144 3.4495120 3.4123626 3.3759434 3.3402326 3.3052091	1.04030 1.04117 1.04206 1.04295 1.04385 1.04477	.961262 .960456 .959642 .958820 .957990 .957151	0 50 40 30 20 10	74
17	0 10 20 30 40 50	.292372 .295152 .297930 .300706 .303479 .306249	3.4203036 3.3880820 3.3564900 3.3255095 3.2951234 3.2653149	.305731 .308914 .312104 .315299 .318500 .321707	3.2708526 3.2371438 3.2040638 3.1715948 3.1397194 3.1084210	1.04569 1.04663 1.04757 1.04853 1.04950 1.05047	.956305 .955450 .954588 .953717 .952838 .951951	0 50 40 30 20 10	73
18	0 10 20 30 40 50	.309017 .311782 .314545 .317305 .320062 .322816	3.2360680 3.2073673 3.1791978 3.1515453 3.1243959 3.0977363	.324920 .328139 .331364 .334595 .337833 .341077	3.0776835 3.0474915 3.0178301 2.9886850 2.9600422 2.9318885	1.05146 1.05246 1.05347 1.05449 1.05552 1.05657	.951057 .950154 .949243 .948324 .947397 .946462	n 50 40 30 20 10	72
19	10 20	.325568 .328317 .331063	3.0715535 3.0458352 3.0205693	.344328 .347585 .350848	2.9042109 2.8769970 2.8502349	1.05762 1.05869 1.05976	.945519 .944568 .943609	0 50 40	71
0	,	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	,	0

For functions from 70°-40' to 77°-0' read from bottom of table upward.

ö	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	,	0
19	30 40 50	.333807 .336547 .339285	2.9957443 2.9713490 2.9473724	.354119 .357396 .360680	2.8239129 2.7980198 2.7725448	1.06085 1.06195 1.06396	.942641 .941666 .940684	30 20 10	
20	0 10 20 30 40 50	.342020 .344752 .347481 .350207 .352931 .355651	2.9238044 2.9006346 2.8778532 2.8554510 2.8334185 2.8117471	.363970 .367268 .370573 .373885 .377204 .380530	2.7474774 2.7228076 2.6985254 2.6746215 2.6510867 2.6279121	1.06418 1.06531 1.06645 1.06761 1.06878 1.06995	.939693 .938694 .937687 .936672 .935650 .934619	0 50 40 30 20 10	70
21	0 10 20 30 40 50	.358368 .361082 .363793 .366501 .369206 .371908	2.7904281 2.7694532 2.7488144 2.7285038 2.7085139 2.6888374	.383864 .387205 .390554 .393911 .397275 .400647	2.6050891 2.5826094 2.5604649 2.5386479 2.5171507 2.4959661	1.07115 1.07235 1.07356 1.07479 1.07602 1.07727	.933580 .932534 .931480 .930418 .929348 .928270	0 50 40 30 20 10	69
22	0 10 20 30 40 50	.374607 .377302 .379994 .382683 .385369 .388052	2.6694672 2.6503962 2.6316180 2.6131259 2.5949137 2.5769753	.404026 .407414 .410810 .414214 .417626 .421046	2.4750869 2.4545061 2.4342172 2.4142136 2.3944889 2.3750372	1.07853 1.07981 1.08109 1.08239 1.08370 1.08503	.927184 .926090 .924989 .923880 .922762 .921638	50 40 30 20 10	68
28	0 10 20 30 40 50	.390731 .393407 .396080 .398749 .401415 .404078	2.5593047 2.5418961 2.5247440 2.5078428 2.4911874 2.4747726	.424475 .427912 .431358 .434812 .438276 .441748	2.3558524 2.3369287 2.3182606 2.2998425 2.2816693 2.2637357	1.08636 1.08771 1.08907 1.09044 1.09183 1.09323	.920505 .919364 .918216 .917060 .915896 .914725	50 40 30 20 10	67
24	0 10 20 30 40 50	.406737 .409392 .412045 .414693 .417338 .419980	2.4585933 2.4426448 2.4269222 2.4114210 2.3961367 2.3810650	.445229 .448719 .452218 .455726 .459244 .462771	2.2460368 2.2285676 2.2113234 2.1942997 2.1774920 2.1608958	1.09464 1.09606 1.09750 1.09895 1.10041 1.10189	.913545 .912358 .911164 .909961 .908751 .907533	0 50 40 30 20 10	66
25	0 10 20 30 40 50	.422618 .425253 .427884 .430511 .433135 .435755	2.3662016 2.3515424 2.3370833 2.3228205 2.3087501 2.2948685	.466308 .469854 .473410 .476976 .480551 .484137	2.1445069 2.1283213 2.1123348 2.0965436 2.0809438 2.0655318	1.10338 1.10488 1.10640 1.10793 1.10947 1.11103	.906308 .905075 .903834 .902585 .901329 .900065	0 50 40 30 20 10	65 64
0	,	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	,	0

For functions from 64°-10' to 70°-30' read from bottom of table upward.

٥	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	,	0
26	0 10 20 30 40 50	.438371 .110084 .443593 .446198 .448799 .451397	2.2811720 2.2676571 2.2543204 2.2411585 2.2281681 2.2153460	.487733 .491339 .494955 .498582 .502219 .505867	2.0503038 2.0352565 2.0203862 2.0056897 1.9911637 1.9768050	1.11260 1.11419 1.11579 1.11740 1.11903 1.12067	.898794 .897515 .896229 .894934 .893633 .892323	0 50 40 30 20 10	64
27	0 10 20 30 40 50	.453990 .456580 .459166 .461749 .464327 .466901	2.2026393 2.1901947 2.1778595 2.1656806 2.1536553 2.1417808	.509525 .513195 .516876 .520567 .524270 .527984	1.9626105 1.9485772 1.9347020 1.9209821 1.9074147 1.8 939971	1.12233 1.12400 1.12568 1.12738 1.12910 1.13083	.891007 .889682 .888350 .887011 .885664 884309	0 50 40 30 20 10	63
28	0 10 20 30 40 50	.469472 .472038 .474600 .477159 .479713 .482263	2.1300545 2.1184737 2.1070359 2.0957385 2.0845792 2.0735556	.531709 .535447 .539195 .542956 .546728 .550515	1.8807265 1.8676003 1.8546159 1.8417708 1.8290628 1.8164892	1.13257 1.13433 1.13610 1.13789 1.13970 1.14152	.882948 .881578 .880201 .878817 .877425 .876026	0 50 40 30 20 10	62
29	0 10 20 30 40 50	.484810 .487352 .489890 .492424 .494953 .497479	2.0626653 2.0519061 2.0412757 2.0307720 2.0203929 2.0101362	.554309 .558118 .561939 .565773 .569619 .573478	1.8040478 1.7917362 1.7795524 1.7674940 1.7555590 1.7437453	1.14335 1.14521 1.14707 1.14896 1.15085 1.15277	.874620 .873206 .871784 .870356 .868920 .867476	0 50 40 30 20 10	61
30	0 10 20 30 40 50	.500000 .502517 .505030 .507538 .510043 .512543	2.0000000 1.9899822 1.9800810 1.9702944 1.9606206 1.9510577	.577350 .581235 .585134 .589045 .592970 .596908	1.7320508 1.7204736 1.7090116 1.6976631 1.6864261 1.6752988	1.15470 1.15665 1.15861 1.16059 1.16259 1.16460	.866025 .864567 .863102 .861629 .860149 .858662	0 50 40 30 20 10	60
31	0 10 20 30 40 50	.515038 .517529 .520016 .522499 .524977 .527450	1.9416040 1.9322578 1.9230173 1.9138809 1.9048469 1.8959138	.600861 .604827 .608807 .612801 .616809 .620832	1.6642795 1.6533663 1.6425576 1.6318517 1.6212469 1.6107417	1.16663 1.16868 1.17075 1.17283 1.17493 1.17704	.857167 .855665 .854156 .852640 .851117 .849586	0 50 40 30 20 10	59
32	0 10 20	.529919 .532384 .534844	1.8870799 1.8783438 1.8697040	.624869 .628921 .632988	1.6003345 1.5900238 1.5798079	1.17918 1.18133 1.18350	.848048 .846503 .844951	0 50 40	58 57
0	,	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	,	0

For functions from 57°-40' to 64°-0' read from bottom of table upward.

۰	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	,	0
32	30 40 50	.537300 .539751 .542197	1.8611590 1.8527073 1.8443476	.637070 .641167 .645280	1.5696856 1.5596552 1.5497155	1.18569 1.18790 1.19012	.843391 .841825 .840251	30 20 10	
33	0 10 20 30 40 50	.544639 .547076 .549509 .551937 .554360 .556779	1.8360785 1.8278985 1.8198065 1.8118010 1.8038809 1.7960449	.649408 .653551 .657710 .661886 .666077 .670285	1.5398650 1.5301025 1.5204261 1.5108352 1.5013282 1.4919039	1.19236 1.19463 1.19691 1.19920 1.20152 1.20386	.838671 .837083 .835488 .833886 .832277 .830661	50 40 30 20 10	57
34	0 10 20 30 40 50	.559193 .561602 .564007 .566406 .568801 .571191	1.7882916 1.7806201 1.7730290 1.7655173 1.7580837 1.7507273	.674509 .678749 .683007 .687281 .691573 .695881	1.4825610 1.4732983 1.4641147 1.4550090 1.4459801 1.4370268	1.20622 1.20859 1.21099 1.21341 1.21584 1.21830	.829038 .827407 .825770 .824126 .822475 .820817	0 50 40 30 20 10	56
35	0 10 20 30 40 50	.573576 .575957 .578332 .580703 .583069 .585429	1.7434468 1.7362413 1.7291096 1.7220508 1.7150639 1.7081478	.700208 .704552 .708913 .713293 .717691 .722108	1.4281480 1.4193427 1.4106098 1.4019483 1.3933571 1.3848355	1.22077 1.22327 1.22579 1.22833 1.23089 1.23347	.819152 .817480 .815801 .814116 .812423 .810723	0 50 40 30 20 10	55
86	0 10 20 30 40 50	.587785 .590136 .592482 .594823 .597159 .599489	1.7013016 1.6945244 1.6878151 1.6811730 1.6745970 1.6680864	.726543 .730996 .735469 .739961 .744472 .749003	1.3763810 1.3679959 1.3596764 1.3514224 1.3432331 1.3351075	1.23607 1.23869 1.24134 1.24400 1.24669 1.24940	.809017 .807304 .805584 .803857 .802123 .800383	0 50 40 30 20 10	54
37	0 10 20 30 40 50	.601815 .604136 .606451 .608761 .611067 .613367	1.6616401 1.6552575 1.6489376 1.6426796 1.6364828 1.6303462	.753554 .758125 .762716 .767327 .771959 .776612	1.3270448 1.3190441 1.3111046 1.3032254 1.2954057 1.2876447	1.25214 1.25489 1.25767 1.26047 1.26330 1.26615	.798636 .796 >> 2 .795121 .793353 .791579 .789798	0 50 40 30 20 10	53
88	0 10 20 30 40 50	.615661 .617951 .620235 .622515 .624789 .627057	1.6242692 1.6182510 1.6122908 1.6063879 1.6005416 1.5947511	.781286 .785981 .790698 .795436 .800196 .804979	1.2799416 1.2722957 1.2647062 1.2571723 1.2496933 1.2422685	1.26902 1.27191 1.27483 1.27778 1.28075 1.28374	.788011 .786217 .784416 .782608 .780794 .778973	0 50 40 30 20 10	52
0	,	Cosine.	Secant,	Ootangent.	Tangent.	Cosecant.	Sine,	,	0

For functions from 51°-10' to 57°-30' read from bottom of table upward.

О	,	Sine.	Cosecant.	Tangent.	Cotangent.	Secant.	Cosine.	,	10
39	0 10 20 30 40 50	.629320 .631578 .633831 .636078 .638320 .640557	1.5890157 1.5833318 1.5777077 1.5721337 1.5666121 1.5611424	.809784 .814612 .819463 .824336 .829234 .834155	1.2348972 1.2275786 1.2203121 1.2130970 1.2059327 1.1988184	1.28676 1.28980 1.29287 1.29597 1.29909 1.30223	.777146 .775312 .773472 .771625 .769771 .767911	0 50 40 30 20 10	51
40	0 10 20 30 40 50	.642788 .645013 .647233 .649448 .651657 .653861	1.5557238 1.5503558 1.5450378 1.5397690 1.5345491 1.5293773	.839100 .844069 .849062 .854081 .859124 .864193	1.1917536 1.1847376 1.1777698 1.1708496 1.1639763 1.1571495	1.30541 1.30861 1.31183 1.31509 1.31837 1.32168	.766044 .764171 .762292 .760406 .758514 .756615	0 50 40 30 20 10	50
41	0 10 20 30 40 50	.656059 .658252 .660439 .662620 .664796 .666966	1.5242531 1.5191759 1.5141452 1.5091605 1.5042211 1.4993267	.869287 .874407 .879553 .884725 .889924 .895151	1.1503684 1.1436326 1.1369414 1.1302944 1.1236909 1.1171305	1.32501 1.32838 1.33177 1.33519 1.33864 1.34212	.754710 .752798 .750880 .748956 .747025 .745088	0 50 40 30 20 10	49
42	0 10 20 30 40 50	.669131 .671289 .673443 .675590 .677732 .679868	1.4944765 1.4896703 1.4849073 1.4801872 1.4755095 1.4708736	.900404 .905685 .910994 .916331 .921697 .927091	1.1106125 1.1041365 1.0977020 1.0913085 1.0849554 1.0786423	1.34563 1.34917 1.35274 1.35634 1.35997 1.36363	.743145 .741195 .739239 .737277 .735309 .733335	0 50 40 30 20 10	48
43	0 10 20 30 40 50	.681998 .684123 .686242 .688355 .690462 .692563	1.4662792 1.4617257 1.4572127 1.4527397 1.4483063 1.4439120	932515 .937968 .943451 .948965 .954508 .960083	1.0723687 1.0661341 1.0599381 1.0537801 1.0476598 1.0415767	1.36733 1.37105 1.37481 1.37860 1.38242 1.38628	.731354 .729367 .727374 .725374 .723369 .721357	0 50 40 30 20 10	47
44	0 10 20 30 40 50	.694658 .696748 .698832 .700909 .702981 .705047	1.4395565 1.4352393 1.4309602 1.4267182 1.4225134 1.4183454	.965689 .971326 .976996 .982697 .988432 .994199	1.0355303 1.0295203 1.0235461 1.0176074 1.0117088 1.0058348	1.39016 1.39409 1.39804 1.40203 1.40606 1.41012	.719340 .717316 .715286 .713251 .711209 .709161	0 50 40 30 20 10	46
45	0	.707107	1.4142136	1.000000	1.0000000	1.41421	.707107	0	45
ю	,	Cosine.	Secant.	Cotangent.	Tangent.	Cosecant.	Sine.	,	0

For functions from 45°-0' to 51°-0' read from bottom of table upward.

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1 2 3 4 5 11 7 8 9	1 4 16 25 36 49 64 81	1 8 27 64 125 216 343 512 729	1.0000000 1.4142136 1.7320508 2.0000000 2.2360680 2.4494897 2.6457513 2.8284271 3.0000000	1.0000000 1.2599210 1.4422496 1.5874011 1.7099759 1.8171206 1.9129312 2.0000000 2.0800837	1.000000000 .500000000 .333333333 .250000000 .200000000 .16666667 .142837143 .125000000 .111111111
10 11 12 13 14 15 16 17 18	100 121 144 169 196 225 256 289 324 361	1000 1331 1728 2197 2744 3375 4096 4913 5832 6859	3.1622777 3.31662477 3.316624016 3.6055513 3.7416574 3.8729833 4.0000000 4.1231056 4.2426407 -4.3588989	2.1544347 2.2239801 2.2894286 2.3513347 2.4101422 2.4662121 2.5198421 2.5712816 2.6207414 2.6684016	.100000000 .090909091 .083333333 .076923077 .071428571 .066666667 .062500000 .05823529 .055555556
20	400	8000	4.4721360	2.7144177	.050000000
21	441	9261	4.5825757	2.7589243	.047619048
22	484	10643	4.6904158	2.8020393	.045454545
23	529	12167	4.7958315	2.8438670	.043478261
24	576	13824	4.8989795	2.8444991	.041666667
25	625	15625	5.0000000	2.9240177	.04000000
26	676	17576	5.0990195	2.9624960	.038461538
27	729	19683	5.1961524	3.0000000	.037037037
28	784	21952	5.2915026	3.0365889	.035714286
29	841	24389	5.3851648	3.0723168	.034482759
30	900	27000	5.4772256	3.1072325	.03333333
31	961	29791	5.5677644	3.1413806	.032258065
32	1024	32768	5.6568542	3.1748021	.031250000
33	1089	35937	5.7445626	3.2075343	.030303030
34	1156	34904	5.8309519	3.2396118	.029411765
35	1225	42875	5.9160798	3.2710663	.028571429
36	1296	46656	6.0000000	3.3019272	.027777778
37	1369	50653	6.0827625	3.3822218	.027027027
38	1444	54872	6.1644140	3.3619754	.026315789
39	1521	59319	6.2449980	3.3912114	.025641026
40	1600	64000	6.3245553	3.4199519	.025000000
41	1681	68921	6.4031242	3.4482172	.024390244
42	1764	74088	6.4807407	3.4760266	.023809524
43	1849	79507	6.5574385	3.5033981	.023255814
44	1936	85184	6.6332496	3.5303483	.022727273
45	2025	91125	6.7082039	3.5568933	.022222222
46	2116	97336	6.7823300	3.5830479	.021739130
47	2209	103823	6.8556546	3.6088261	.021276596
48	2304	110592	6.9282032	3.6342411	.020833333
49	2401	117649	7.0000000	3.6393057	.020408163
50	2500	125000	7.0710678	3.6840314	.020000000
51	2601	132651	7.1414284	3.7084298	.019607843
52	2704	140608	7.2111026	3.7325111	.019230769
53	2809	148877	7.2801099	3.7562858	.018867925
54	2916	157464	7.3484692	3.7797631	.018518519
55	3025	166375	7.4161985	3.8029525	.018181818
56	3136	173616	7.4833148	3.8258624	.017857143
57	3249	185193	7.549834	3.8485011	.017543860
58	3364	195112	7.6157731	3.8708766	.017241379
59	3481	205379	7.6811457	3.8929965	.016949153

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
60 61	3600 3721	216000 226981	7.7459667 7.8102497	3.9148676 3.9364972	.016666667 .016393443
62	3844	238328	7.8740079	3.9578915	.016129032
63	3969	250047	7.9372539	3.9790571	.015873016
64	4096	262144	8.0000000	4.0000000	.015625000
65	4225	274625	8.0622577	4.0207256	.015384615
66	4356	287496	8.1240384	4.0412401	.015151515
67	4489	300763	8.1853528	4.0615480	.014925373
68	4624	314432	8.2462113	4.0816551	.014705882
69	4761	328509	8.3066239	4.1015661	.014492754
70	4900	343000	8.3666003	4.1212853	.014285714
71	5041	357911	8.4261498	4.1408178	.014084507
72	5184	373248	8.4852814	4.1601676	.013888888
73 74	5329 5476	389017	8.5440037	4.1793390	.013698630
75	5625	405224	8.6023253	4.1983364	.013513514
76	5776	421875 438976	8.6602540 8.7177979	4.2171633	.013333333
77	5929	456533	8.7749644	4.2358236 4.2543210	.012987013
78	6084	474552	8.8317609	4.2726586	.012820513
79	6241	493039	8.8881944	4.2908404	.012658228
80	6400	512000	8.9442719	4.3088695	.012500000
81	6561	531441	9.00000000	4.3267487	.012345679
82	6724	551368	9.0553851	4.3444815	.012195122
83	6889	571787	9.1104336	4.3620707	.012048193
84	7056	592704	9.1651514	4.3795191	.011904762
85	7225	614125	9.2195445	4.3968296	.011764706
86	7396	636056	9.2736185	4.4140049	.011627907
87	7569	658503	9.3273791	4.4310476	.011494253
88	7744	681472	9.3808315	4.4479602	.011363636
89	7921	704969	9.4339811	4.4647451	.011235955
90	8100	729000	9.4868330	4.4814047	.011111111
91	8281	753571	9.5393920	4.4979414	.010989011
92	8464	778688	9.5916630	4 5143574	.010869565
93	8649	804357	9.6436508	4.5306549	.010752688
94	8836	830584	9.6953597	4.5468359	.010638298
95	9025	857375	9.7467943	4.5629026	.010526316
96	9216	884736	9.7979590	4.5788570	.010416667
97 98	9409	• 912673	9.8488578	4.5947009	.010309278
99	9604	941192	9.8994949	4.6104363	.010204082
	9801	970299	9.9498744	4.6260650	.010101010
100	10000	1000000	10.0000000	4.6415888	.010000000
101 102	10201	1030301	10.0498756	4.6570095	.009900990
103	10404 10609	1061208	10.0995049	4.6723287	.009803922
104	10816	1092727 1124864	10.1488916 10.1980390	4.6875482 4.7026694	.009615385
105	11025	1157625	10.1980390	4.7176940	.009523810
106	11236	1191016	10.2956301	4.7326235	.009433962
107	11449	1225043	10.3440804	4.7474594	.009345794
108	11664	1259712	10.3923048	4.7622032	.009259259
109	11881	1295029	10.4403065	4.7768562	.009174312
110	12100	1331000	10.4880885	4.7914199	.009090909
111	12321	1367631	10.5356538	4.8058955	.009009000
112	12544	1404928	10.5830052	4.8202845	.008928571
113	12769	1442897	10.6301458	4.8345881	.008849558
111	12996	1481544	10.6770783	4.8488076	.008771930
115	13225	1520875	10.7238053	4.8629442	.008695652
116	13456	1560896	10.7703296	4.8769990	.008620690
117	13689	1601613	10.8166538	4.8909732	.008547009
118	13924	1643032	10.8627805	4.9048681	.008474576
	14161	1685159	10.9087121	4.9186847	.008403361

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
120 121 122 123 124 125 126 127 128 129	14400 14641 14884 15129 15376 15625 15876 16129 16384 16641	1728000 1771561 1815848 1860867 1906624 1953125 2000376 2048383 2097152 2146689	10.9544512 11.0000000 11.0453610 11.095365 11.1355287 11.1803399 11.2249722 11.2694277 11.3137085 11.3578167	4.9324242 4.9460874 4.9596757 4.9731898 4.9866310 5.0000000 5.0132979 5.0265257 5.0396842 5.0527743	.008333333 .008264463 .008196721 .008130081 .008064516 .008000000 .007936508 .007874016 .007812500 .007751938
130 131 132 133 134 135 136 137 138	16900 17161 17424 17689 17956 18225 18496 18769 19044 19321	2197000 2248091 2299968 2352637 2406104 2460375 2515456 2571353 2628072 2685619	11.4017543 11.4455231 11.4891253 11.5325626 11.5758369 11.6189500 11.6619038 11.7046999 11.7473401 11.7898261	5.0657970 5.0787531 5.0916434 5.1044687 5.1172299 5.1299278 5.1425632 5.1551367 5.1676493 5.1801015	.007692308 .007633588 .007575758 .007518797 .007462687 .007407407 .007352941 .007299270 .007246377 .007194245
140 141 142 143 144 145 146 147 148	19600 19881 20164 20449 20736 21025 21316 21609 21904 22201	2744000 2803221 2863288 2924207 2985984 3048625 3112136 3176523 3241792 3307949	11.8321596 11.8743421 11.9163753 11.9582607 12.0000000 12.0415946 12.0830460 12.1243557 12.1655251 12.2065556	5.1924941 5.2048279 5.2171034 5.2293215 6.2414828 5.2535879 5.2656374 5.2776321 5.2895725 5.3014592	.007142857 .007092199 .007042254 .006993007 .006944444 .006896552 .006849315 .006802721 .006756757
150 151 152 153 154 155 156 157 158 159	22500 22801 23104 23409 23716 24025 24336 24649 24964 25281	3375000 3442951 3511808 3581577 3652264 3723875 3796416 3869893 3944312 4019679	12.2474487 12.2882057 12.328280 12.3693169 12.4096736 12.4498996 12.4899960 12.5299641 12.5698051 12.6095202	5.3132928 5.3250740 5.3368035 5 3484812 5.3601084 5.3716854 5.3832126 5.3946907 5.4061202 5.4175015	.00666667 .006622517 .006578947 .006535948 .006493506 .006451613 .006410256 .006369427 .006329114 .006289308
160 161 162 163 164 165 166 167 168 169	25600 25921 26244 26569 26589 27225 27556 27889 28224 28561	4096000 4173281 4251528 4330747 4410944 4492125 4574296 4657463 4741632 4826809	12.6491106 12.6885775 12.7279221 12.7671453 12.8062485 12.8452326 12.8840987 12.9228480 12.9614814 13.0000000	5.4288352 5.4401218 5.4513618 5.4625556 5.4737037 5.4848066 5.4958647 5.5068784 5.5178484 5.5287748	.006250000 .006211180 .006172840 .006134969 .006097561 .00606066 .006024096 .005988024 .005917160
170 171 172 173 174 175 176 177 178 179	28900 29241 29584 29929 30276 30625 30976 31329 31684 32041	4913000 5000211 5088448 5177717 5268024 5359375 5451776 5545233 5639752 5735339	13.0384048 13.0766968 13.1148770 13.1529464 13.1909060 13.2287566 13.2664992 13.3041347 13.3416641 13.3790882	5.5396583 5.5504991 5.5612978 5.5720546 5.5827702 5.6940787 5.6040787 5.6146724 5.6252263 5.6357408	.005882353 .005847953 .005813953 .005780347 .005747126 .005714286 .005681818 .005649718 .005586592

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
180 181 182 183 184 185 186 187 188	32400 32761 33124 33489 33556 34225 34596 34969 35344 35721	5832000 5929741 6028568 6128487 6229504 6331625 6434856 6539203 6644672 6751269	13.4164079 13.4536240 13.4907376 13.5277493 13.5646600 13.6014705 13.6381817 13.6747943 13.7113092 13.7477271	5.6462162 5.6566528 5.6670511 5.6774114 5.6877340 5.6980192 5.7082675 5.7184791 5.7286543 5.7387936	.00555556 .005524862 .005494505 .005464481 .005434783 .005405405 .005376344 .005347594 .005319149
190	36100	6859000	13.7840488	5.7488971	.005263158
191	36481	6967871	13.8202750	5.7589652	.005235602
192	36864	7077888	13.8564065	5.7689982	.005208333
193	37249	7189057	13.8924440	5.7789966	.005181347
194	37636	7301384	13.9283883	5.7889604	.005128205
195	38025	7414875	13.9642400	5.7988900	.005128205
196	38416	7529536	14.0000000	5.8087857	.005102041
197	38309	7645373	14.0356688	5.8186479	.005076142
198	39204	7762392	14.0712473	6.8284767	.005050505
199	39601	7880599	14.1067360	5.8382725	.005025126
200	40000	8000000	14.1421356	5.8480355	.005000000
201	40401	8120601	14.1774469	5.8577660	.004975124
202	40804	8242403	14.2126704	5.8674643	.004950495
203	41209	8365427	14.2478068	5.8771307	.004926108
204	41616	8489664	14.2828569	5.8867653	.004901961
205	42025	8615125	14.3178211	5.8963685	.004878049
206	42436	8741816	14.3527001	5.9059406	.004854369
207	42849	8869743	14.3874946	5.9154817	.004830918
208	43264	8998912	14.4222051	5.9249921	.004807692
209	43681	9129329	14.4568323	5.9344721	.004784689
210	44100	9261000	14.4913767	5.9439220	.004761905
211	44521	9393931	14.5258390	5.9533418	.004739336
212	44944	9528128	14.5602198	5.9627320	.004716981
213	45369	9663597	14.5945195	5.9720926	.004694836
214	45796	9800344	14.6287388	5.9814240	.004672897
215	46225	9938375	14.6628783	5.9907264	.004651163
216	46656	10077696	14.6969385	6.0000000	.004629630
217	47089	10218313	14.7309199	6.0092450	.004608295
218	47524	10360232	14.7648231	6.0184617	.004587156
219	47961	10503459	14.7986486	6.0276502	.004566210
220	48400	10648000	14.8323970	6.0368107	.004545455
221	48841	10793861	14.8660687	6.0459435	.004524887
222	49284	10941048	14.8996644	6.0550489	.004504505
223	49729	11089567	14.9331845	6.0641270	.004484305
224	50176	11239424	14.9666295	6.0731779	.004464286
225	50625	11390625	15.09900000	6.0822020	.004444444
226	51076	11543176	15.0332964	6.0911994	.004424779
227	51529	11697083	15.0665192	6.1001702	.004405286
228	51984	11852352	15.0996689	6.1091147	.004385965
229	52441	12008989	15.1327460	6.1180332	.004366812
230	52900	12167000	15.1657509	6.1269257	.004347826
231	53361	12326391	15.1986842	6.1357924	.004329004
232	53824	12487163	15.2315462	6.1446337	.004310345
223	54280	12649637	15.2643375	6.1534495	.004291845
234	54756	12812904	15.2970585	6.1622401	.004273504
235	55225	12977875	15.3297097	6.1710058	.004255319
236	55696	13144256	15.3622915	6.1797466	.004237288
237	56169	13312053	15.3918943	6.1884628	.004219409
238	56644	13481272	15.4272486	6.1971544	.004201681
239	57121	13651919	15.4596248	6.2058218	.004184100

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
240	57600	13824000	15.4919334	6.2144650	.004166667
241	58081	13997521	15.5241747	6.2230843	.004149378
242	58564	14172488	15.5563492	6.2316797	.004132231
243	59049	14348907	15.5884573	6.2402515	.004115226
244	59536	14526784	15.6204994	6.2487998	
245	60025	14706125	15.6524758	6.2573248	.004081633
246	60516	14886936	15.6843871	6.2658266	
247	61009	15069223	15.7162336	6.2743054	.004048583
248	61504	15252992	15.7480157	6.2827613	.004032258
249	62001	15438249	15.7797338	6.2911946	004016064
250	62500	15625000	15.8113883	6.2996053	.004000000
251	63001	15813251	15.8429795	6.3079935	
252	63504	16003008	15.8745079	6.3163596	.003968254
253	64009	16194277	15.9059737	6.3247035	
254 255 256	64516 65025 65536	16387064 16581375	15.9373775 15.9687194	6.3330256 6.3413257	.003937008
257 258	66049 66564	16777216 16974593 17173512	16.0000000 16.0312195	6.3496042 6.3578611	.003906250
259	67081	17373979	16.0623784 16.0934769	6.3660968 6.3743111	.003875969 .003861004
260	67600	17576000	16.1245155	6.3825043	.003846154
261	68121	17779581	16.1554944	6.3906765	
262 263 264	68644 69169 69696	17984728 18191447	16.1864141 16.2172747	6.3988279 6.4069585	.003816794
265 266	70225 70756	18399744 18609625 18821096	16.2480768 16.2788206 16.3095064	6.4150687 6.4231583 6.4312276	.003787879 .003773585 .003759398
267	71289	19034163	16.3401346	6.4392767	.003745318
268	71824	19248832	16.3707055	6.4473057	
269 270	72361 72900	19465109 19683000	16.4012195	6.4553148	.003717472
271 272	73441 73984	19902511 20123648	16.4316767 16.4620776 16.4924225	6.4633041 6.4712736 6.4792236	.003703704 .003690037 .003676471
273	74529	20346417	16.5227116	6.4871541	.003663004
274	75076	20570824	16.5529454	6.4950653	
275	75625	20796875	16.5831240	6.5029572	.003636364
276	76176	21024576	16.6132477	6.5108300	
277	76729	21253933	16.6433170	6.5186839	.003610108
278	77284	21484952	16.6733320	6.5265189	.003597122
279	77841	21717639	16.7032931	6.5343351	.003584229
280	78400	21952000	16.7332005	6.5421326	
281	78961	22188041	16.7630546	6.5499116	003558719
282	79524	22425768	16.7928556	6.5576722	
283	80089	22665187	16.8226038	6.5654144	003533569
284	80656	22906304	16.8522995	6.5731385	.003521127
285	81225	23149125	16.8819430	6.5808443	.003508772
286	81796	23393656	16.9115345	6.5885323	
287	82369	23639903	16.9410743	6.5962023	.003484321
288	82944	23887872	16.9705627	6.6038545	.003472222
289	83521 84100	24137569 24389000	17.0000000 17.0293864	6.6114890 6.6191060	.003460208
291	84681	24642171	17.0587221	6.6267054	.003436426
292	85264	24897088	17.0880075	6.6342874	.003424658
293	85849	25153757	17.1172428	6.6418522	.003412969
294	86436	25412184	17.1464282	6.6493998	.003401361
295	87025	25672375	17.1755640	6.6569302	.003389831
296	87616	25934336	17.2046505	6.6644437	.003378378
297	88209	26198073	17.2336879	6.6719403	.003367003
298	88804	26463592	17.2626765	6.6794200	.003355705
299	89401	26730899	17.2916165	6.6868831	.003344482

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
300 301 302 303 304 305 306 307 308	90000 90601 91204 91809 92416 93025 93636 94249 94864	27000000 27270901 27543608 27818127 28094464 28372625 28652616 28934443 29218112	17.3205081 17.3493516 17.3781472 17.4068952 17.4355958 17.4642492 17.4928557 17.5214155 17.5499288	6.6943295 6.7017593 6.7091729 6.7165700 6.7239508 6.7313155 6.7386641 6.7459967 6.7533134	.00333333 .00332259 .003311258 .003300330 .003289474 .003278689 .003267974 .003257329 .003246753
309 311 312 313 314 315 316 317 318	95481 96100 96721 97344 97969 98596 99225 99856 100489 101124	29503629 29791000 30080231 30371328 30664297 30959144 31255875 31554496 31855013 32157432	17.5783958 17.6068169 17.6351921 17.6635217 17.6918060 17.7200451 17.7482393 17.7763888 17.8044938 17.8325545	6.7606143 6.7678995 6.7751690 6.7824229 6.7896613 6.7968844 6.8040921 6.8112847 6.8112847 6.8128420 6.8256242	.003236246 .003225806 .003215434 .003205128 .003194888 .003184713 .003174603 .003164557 .003144654
319 320 321 322 323 324 325 326 327 328 329	101761 102400 103041 103684 104329 104976 105625 106276 106929 107584 108241	32461759 32768000 33076161 33386248 33698267 34012224 34328125 34645976 34965783 35287552 35611289	17.8605711 17.8885438 17.9164729 17.9443584 17.9722008 18.0000000 18.0277564 18.0554701 18.0831413 18.1107703 18.1383571	6.8327714 6.8399037 6.8470213 6.8541240 6.8612120 6.8682855 6.8753443 6.8823888 6.894188 6.8964345 6.9034359	.003134796 .003125000 .003115265 .003105597 .003095975 .003076923 .003076923 .003067485 .003048780 .003048780
330 331 332 333 334 335 336 337 338 339	108900 109561 110224 110889 111556 112225 112896 113569 114244 114921	35937000 36264691 36594368 36926037 37259704 37595375 37933056 38272753 38614472 38958219	18.1659021 18.1934054 18.208672 18.2482876 18.2756669 18.3030052 18.3575598 18.3847763 18.4119526	6.9104232 6.9173964 6.9243556 6.9313008 6.9382321 6.9451496 6.9520533 6.9589434 6.96568198 6.9726826	.003030303 .003021144 .003012048 .003003003 .002994012 .002985073 .002967359 .0029498538
340 341 342 343 344 345 346 347 348 349	115600 116281 116964 117649 118336 119025 119716 120409 121104 121801	39304000 39651821 40001688 40353607 40707584 41063625 41421736 41781923 42144192 42508549	18.4390889 18.4661853 18.4932420 18.5202592 18.5472370 18.5741756 18.6010752 18.6279360 18.6547581 18.6815417	6.9795321 6.9863681 6.9931906 7.0000000 7.0067962 7.0135791 7.0203490 7.0271058 7.0338497 7.0405806	.002941176 .002932551 .002923977 .002915452 .002906977 .002898551 .002890173 .00281844 .002873563
350 351 352 353 354 355 356 357 358 359	122500 123201 123904 124609 125316 126025 126736 127449 128164	42875000 43243551 43614208 43986977 44361864 44738875 45118016 45499293 45882712 46268279	18.7082869 18.7349940 18.7616630 18.7882942 18.8148877 18.8414437 18.8679623 18.8944436 18.9208879 18.9472953	7.0472987 7.0540041 7.0606967 7.0673767 7.0740440 7.0806988 7.0873411 7.0939709 7.1005885 7.1071937	.002857143 .002849003 .002840909 .002832861 .002824859 .002816901 .002808889 .002801120 .002793296

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
360 361 362 363 364 365 366 367 368 369	129600 130321 131044 131769 132496 133225 133956 135424 136161	46656000 47045881 47437928 47832147 48223544 48627125 49027896 49430863 49836032 50243409	18.978660 19.0000000 19.0262976 19.0525589 19.0787840 19.1049732 19.1311265 19.1572441 19.1833261 19.2093727	7.1137886 7.1203674 7.1269860 7.1334925 7.1409870 7.1465695 7.1595988 7.1660957 7.1725809	.002777778 .002777083 .002770083 .0027472431 .002747253 .002747253 .002732240 .002717391 .0027170927
370 371 372 373 374 375 376 377 378 379	136900 137641 138384 139129 139876 140625 141376 142129 1422884 143641	50653000 51064811 51478848 51895117 52313624 52734375 53157376 53582633 54010152 54439939	19.2353841 19.2613603 19.2873015 19.3132079 19.3390796 19.3649167 19.3907194 19.4164878 19.4422221 19.4679223	7.1790544 7.1855162 7.1919663 7.1984050 7.2948322 7.2112479 7.2176522 7.2240450 7.2304268 7.2367972	.002702703 .002695418 .002695418 .002680965 .002673797 .002669667 .002659574 .002652520 .002645503 .002635522
380 381 382 383 384 385 386 387 388	144400 145161 145924 146689 147456 148225 148996 149769 150544 151321	54872000 55306341 55742968 56181887 56623104 57066625 57512456 57960603 58411072 58863869	19.4935887 19.5192213 19.5448203 19.5703858 19.5959179 19.6214169 19.6468827 19.6723156 19.6977156 19.7230829	7.2431565 7.2495045 7.2558415 7.2621675 7.2684824 7.2747864 7.2810794 7.2873617 7.2936330 7.2998936	.602631579 .002624672 .002617801 .002610966 .002604167 .002597403 .002590674 .002533979 .002577320
390 391 392 393 394 395 396 397 398	152100 152881 153664 154449 155236 156025 156816 157609 158404 159201	59319000 59776471 60236288 60698457 61162984 61629875 62099136 62570773 63044792 63521199	19.7484177 19.7737199 19.7989899 19.8242276 19.8494332 19.8746069 19.8997487 19.9248588 19.9499373 19.9749844	7.3061436 7.3123828 7.3186114 7.3248295 7.3310369 7.3372339 7.3434205 7.3495966 7.3557624 7.3619178	.002564103 .002557545 .002551020 .002544529 .002538071 .002531646 .002525253 .002518892 .002512563 .002506266
400 401 402 403 404 405 406 407 408 409	160000 160801 161604 162409 163216 164025 164836 165649 166464 167281	6400000 64481201 64964808 65450827 65939264 66430125 66923416 67419143 67917312 68417929	20.000000 20.0249844 20.0499377 20.0748599 20.0997512 20.1246118 20.1494417 20.1742410 20.1990099 20.2237484	7.3680630 7.3741979 7.3803227 7.3864373 7.3925418 7.3986363 7.4047206 7.4107950 7.4168595 7.4229142	.002500000 .002493766 .002487592 .002487390 .002475248 .002469136 .002463054 .002457002 .6)2450980
410 411 412 413 414 415 416 417 418 419	168100 168921 169744 170569 171396 172225 173056 173889 174724 175561	68921000 69426531 69934528 70444997 70957944 71473375 71991296 72511713 73034632 73560059	20.2484567 20.2731349 20.2977831 20.3277831 20.3224014 20.3469899 20.3715488 20.3960781 20.4205779 20.4450483 20.4694895	7.4289589 7.4349938 7.4410189 7.4470342 7.4530399 7.4590359 7.4650223 7.470991 7.4769664 7.4829242	.002439024 .002433090 .002427184 .002421308 .002415459 .002409639 .002403846 .002395062 .002392344

CODE ROOTS AND RECTITIONALS.					
No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
420	176400	74088000	20.4939015	7.4888724	.002380952
421	177241	74618461	20.5182845	7.4948113	.002375297
422	178084	75151448	20.5426386	7.5007406	.002369668
423	178929	75686967	20.5669638	7.5066607	.002364066
424	179776	76225024	20.5912603	7.5125715	.002358491
425	180625	76765625	20.6155281	7.5184730	.002352941
426	181476	77308776	20.6397674	7.5243652	.002332941
427		77854483	20.6639783	7.5302482	.002341920
427	182329				
	183184	78402752	20.6881609	7.5361221	.002336449
429	184041	78953589	20.7123152	7.5419867	.002331002
430	184900	79507000	20.7364414	7.5478423	.002325581
431	185761	80062991	20.7605395	7.5536888	.002320186
432	186624	80621568	20.7846097	7.5595263	.002314815
433	187489	81182737	20.8086520	7.5653548	.002309469
434	188356	81746504	20.8326667	7.5711743	.002304147
435	189225	82312875	20.8566536	7.5769849	.002298851
436	190096	82881856	20.8806130	7.5827865	.002293578
437	190969	83453453	20.9045450	7.5885793	.002288330
438	191844	84027672	20.9284495	7.5943633	.002283105
439	192721	84604519	20.9523268	7.6001385	.002277904
440	193600	85184000	20.9761770	7.6059049	.002272727
441	194481	85766121	21.0000000	7.6116626	.002267574
442	195364	86350888	21.0237960	7.6174116	.002262443
443	196249	86938307	21.0475652	7.6231519	.002257336
444	197136	87528384	21.0713075	7.6288837	.002252252
445	198025	88121125	21.0950231	7.6346067	.002247191
446	198916	88716536	21.1187121	7.6403213	.002242152
447	199809	89314623	21.1423745	7.6460272	.002237136
448	200704	89915392	21.1660105	7.6517247	.002232143
449	201601	90518849	21.1896201	7.6574138	.002227171
450	202500		21.2132034	7.6630943	.002222222
451	203401	91125000			.002217295
		91733851	21.2367606	7.6687665	
452	204304 205209	92345408	21.2602916	7.6744303	.002212389
		92959677	21.2837967	7.6800857	.002207506
454	206116	93576664	21.3072758	7.6857328	.002202643
455 456	207025 207936	94196375	21.3307290	7.6913717	.00219780
457		94818816	21.3541565	7.6970023	
458	208849	95443993	21.3775583	7.7026246	.00218818
	209764	96071912	21.4009346	7.7082388	.002183400
459	210681	96702579	21.4242853	7.7138448	.002178649
460	211600	97336000	21.4476106	7.7194426	.002173913
461	212521	97972181	21.4709106	7.7250325	.00216919
462	213444	98611128	21.4941853	7.7306141	.002164503
463	214369	99252847	21.5174348	7.7361877	.00215982
464	215296	99897344	21.5406592	7.7417532	.00215517
465	216225	100544625	21.5638587	7.7473109	.002150538
466	217156	101194696	21.5870331	7.7528606	.00214592
467	218089	101847563	21.6101828	7.7584023	.00214132
468	219024	102503232	21.6333077	7.7639361	.00213675
469	219961	103161709	21.6564078	7.7694620	.002132190
470	220900	103823000	21.6794834	7.7749801	.00212766
471	221841	104487111	21.7025344	7.7804904	.002123142
472	222784	105154048	21.7255610	7.7859928	.00211864
473	223729	105823817	21.7485632	7.7914875	.00211416
474	224676	106496424	21.7715411	7.7969745	.00210970
475	225625	107171875	21.7944947	7.8024538	.002105263
476	226576	107850176	21.8174242	7.8079254	.002100840
477	227529	108531333	21.8403297	7.8133892	.002096430
478	228484	109215352	21.8632111	7.8188456	.002092050
479	229441	109902239	21.8860686	7.8242942	.002087683

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
480	230400	110592000	21.9089023	7.8297353	.002083333
481	231361	111284641	21.9317122	7.8351688	.002079002
482	232324	111980168	21.9544984	7.8405949	.002074689
483	233289	112678587	21.9772610	7.8460134	.002070393
484	234256	113379904	22.0000000	7.8514244	.002066116
485	235225	114084125	22.0227155	7.8568281	.002061856
486	236196	114791256	22.0454077	7.8622242	.002057613
487	237169	115501303	22.0680765	7.8676130	.002053388
488	238144	116214272	22.0907220	7.8729944	.002049180
489	239121	116930169	22.1133444	7.8783684	.002044990
490	240100	117649000	22.1359436	7.8837352	.002040816
491	241081	118370771	22.1585198	7.8890946	.002036660
492	242064	119095488	22.1810730	7.8944468	.002032520
493	243049	119823157	22.2036033	7.8997917	.002028398
494	244036	120553784	22.2261108	7.9051294	.002024291
495	245025	121287375	22.2485955	7.9104599	.002020202
496	246016	122023936	22.2710575	7.9157832	.002016129
497	247009	122763473	22.2934968	7.9210994	.002012072
498	248004	123505992	22.3159136	7.9264085	.002008032
499	249001	124251499	22.3383079	7.9317104	.002004008
500	250000	125000000	22.3606798	7.9370053	.002000000
501	251001	125751501	22.3830293	7.9422931	.001996008
502	252004	126506008	22.4053565	7.9475739	.001992032
503	253009	127263527	22.4276615	7.9528477	.001988072
504	254016	128024064	22.4499443	7.9581144	.001984127
505	255025	128787625	22.4722051	7.9633743	.001980198
506	256036	129554216	22.4944438	7.9686271	.001976285
507	257049	130323843	22.5166605	7.9738731	.001972387
508	258064	131096512	22.5388553	7.9791122	.001968504
509	259081	131872229	22.5610283	7.9843444	.001964637
510	260100	132651000	22.5831796	7.9895697	.001960784
511	261121	133432831	22.6053091	7.9947883	.001956947
512	262144	134217728	22.6274170	8.00000000	.001953125
513	263169	135005697	22.6495033	8.0052049	.001949318
514	264196	135796744	22.6715681	8.0104032	.001945525
515	265225	136590875	22.6936114	8.0155946	.001941748
516	266256	137388096	22.7156334	8.0207794	.001937984
517	267289	138188413	22.7376340	8.0259574	.001934236
518	268324	138991832	22.7596134	8.0311287	.001930502
519	269361	139798359	22.7815715	8.0362935	.001926782
520 521	270400	140608000	22.8035085	8.0414515	.001923077
	271441	141420761	22.8254244	8.0466030	.001919386
522 523	272484	142236648	22.8473193	8.0517479	.001915709
524	273529	143055667	22.8691933	8.0568862	.001912046
525	274576	143877824	22.8910463	8.0620180	.001908397
526	275625	144703125	22.9128785	8.0671432	.001904762
527	276676 277729	145531576	22.9346899	8.0722620	.001901141
528	278784	146363183	22.9564806	8.0773743	.001897533
529	279841	147197952 148035889	22.9782506 23.0000000	8.0824800 8.0875794	.001893939
530	280900	148877000	23.0217289	8.0926723	.001886792
531	281961	149721291	23.0434372	8.0977589	.001883239
532	283024	150568768	23.0651252	8.1028390	.001879699
533	284089	151419437	23.0867928	8.1079128	.001876173
534	285156	152273304	23.1084400	8.1129803	.001872659
535	286225	153130375	23.1300670	8.1180414	.001869159
536	287296	153990656	23.1516738	8.1230962	.001865672
537	288369	154854153	23.1732605	8.1281447	.001862197
538	289444	155720872	23.1948270	8.1331870	.001858736
539	290521	156590819	23.2163735	8.1382230	.001855288

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
540 541 542 549 544 545 546 547 548 549	291600 292681 293764 294849 295936 297025 298116 299209 300304 301401	157464000 158340421 159220088 160103007 160989184 161878625 162771336 163667323 164566592 165469149	23.2379001 23.2594067 23.2808935 23.3023604 23.3238076 23.3452351 23.3666429 23.3880311 23.4093998 23.4307490	8.1432529 8.1482765 8.1532939 8.1583051 8.1683102 8.1683092 8.1733020 8.1782888 8.1832695 8.1832441	.001851852 .001848429 .001845018 .001841621 .001838235 .001834862 .001831502 .001828154 .001824818
550 551 552 553 554 555 556 557 558 559	302500 303601 304704 305809 306916 308025 309136 310249 311364 312481	166375000 167284151 168196608 169112377 170031464 170953875 171879616 172808693 173741112 174676879	23.4520788 23.4733892 23.4946802 23.5159520 23.5372046 23.5584380 23.5796522 23.6008472 23.620236 23.6431808	8.1932127 8.1981753 8.2031319 8.2080825 8.2130271 8.2179657 8.2228985 8.2278254 8.2327463 8.2376614	.001818182 .001814882 .001811594 .001808318 .001805054 .001801802 .001798561 .001795332 .001792115 .001788909
560 561 562 563 564 565 566 567 568	313600 314721 315844 316969 318096 319225 320356 321489 322624 323761	175616000 176558481 177504328 178453547 179406144 180362125 181321496 182284263 183250432 184220009	23.6643191 23.6854386 23.7065392 23.7276210 23.7486842 23.7697286 23.7907545 23.8117618 23.8327506 23.8537209	8.2425706 8.2474740 8.2523715 8.2572633 8.2621492 8.2670294 8.2719039 8.2767726 8.2816355 8.2864928	.001785714 .001782531 .001779359 .001776199 .001769912 .001766784 .001763668 .001760563
570 571 572 573 574 576 576 577 578 579	324900 326041 327184 328329 329476 330625 331776 332929 334084 335241	185193000 186169411 187149248 188132517 189119224 190109375 191102976 192100033 193100552 194104539	23.8746728 23.8956063 23.9165215 23.9374184 23.9582971 23.9791576 24.000000 24.0208243 24.0416306 24.0624188	8.2913444 8.2961903 8.3010304 8.3058651 8.3106941 8.3155175 8.3203353 8.3251475 8.3299542 8.3347553	.001754386 .001751313 .001748252 .001745201 .001742160 .001739130 .001736111 .001733102 .001730104 .001727116
580 581 582 583 584 585 586 587 588 589	336400 337561 338724 339889 341056 342225 343396 344569 345744 346921	195112000 196122941 197137368 198155287 199176704 200201625 201230056 202262003 203297472 204336469	24.0831891 24.1039416 24.1246762 24.1453929 24.1660919 24.1867732 24.2074369 24.2280829 24.2487113 24.2693222	8.3395509 8.3443410 8.3491256 8.3539047 8.3586784 8.3634466 8.3682095 8.3729668 8.3777188 8.3824653	.001724138 .001721170 .001718213 .001715266 .001712329 .001709402 .001706485 .001703578 .001700680 .001697793
590 591 592 593 594 595 596 597 598	348100 349281 350464 351649 352836 353025 355216 357634 358801	205379000 206425071 207474688 208527857 209584584 210644875 211708736 212776173 213847192 214921799	24.2899156 24.3104916 24.3310501 24.3515913 24.3721152 24.3926218 24.4131112 24.4335834 24.4540385 24.4744765	8.3872065 8.3919423 8.3966729 8.4013981 8.4061180 8.4108326 8.4155419 8.4202460 8.4249448 8.4296383	.001694915 .001692047 .001689189 .001686341 .001683502 .001670672 .001677852 .001675042 .001675044 .001669449

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
600 601 602 603 604 605 606 607 608	360000 361201 362404 363609 364816 366025 367236 368449 369664	216000000 217081801 218167208 219256227 220348864 221445125 222545016 223648543 224755712	24.4948974 24.5153013 24.5356883 24.5560583 24.5764115 24.5967478 24.6170673 24.6373700 24.6576560	8.4343267 8.4390098 8.4436877 8.4483607 8.44530281 8.45763 8.4623479 8.4670001 8.4716471	.001666667 .001663894 .001661130 .001658375 .001655629
609 610 611 612 613 614 615 616 617 618 619	370881 372100 373321 374544 375769 376996 378225 379456 380689 381924 383161	225866529 226981000 228099131 229220928 230346397 231475544 232608375 233744896 234885113 236029032 237176659	24.6779254 24.6981781 24.7784142 24.77386338 24.7790234 24.7791935 24.8193473 24.8394847 24.8596058 24.5797106	8.4762892 8.4809261 8.4855579 8.4901848 8.4942035 8.5940350 8.5086417 8.5132435 8.5178403 8.5178403	.001642036 .001633844 .001636661 .001633987 .00162382 .001628016 .00162377 .001620746 .001618123 .001618509
620 621 622 623 624 625 626 627 628 629	384400 385641 386884 388129 389376 390625 391876 393129 394384 395641	238328000 239483061 240641848 241804367 242970624 244140625 245314376 246491883 247673152 248858189	24.8997992 24.9198716 24.9399278 24.9599679 24.9799920 25.0000000 25.0199920 25.0399681 25.0599282 25.0798724	8.524321 8.5270189 8.5316009 8.5361780 8.5407501 8.5453173 8.5498797 8.554372 8.558989 8.5635377 8.5680807	.001612903 .001612903 .001607717 .001605136 .001602564 .001600000 .001597444 .001594596 .001594596
630 631 632 633 634 635 636 637 638 639	396900 398161 399424 400689 401956 403225 404496 405769 407044 408321	250047000 251239591 252435968 253636137 254840104 256047875 257259456 258474853 259694072 260917119	25.0998008 25.1197134 25.1396102 25.1594913 25.1793566 25.1992063 25.2190404 25.2388589 25.2586619 25.2784493	8.5726189 8.5771523 8.5816809 8.5862047 8.5907238 8.5952380 8.5997476 8.6042525 8.6087526 8.6132480	.001587302 .001584786 .001582278 .001579779 .001577287 .001574803 .001572327 .001569859 .001564945
640 641 642 643 644 645 646 647 648 649	409600 410881 412164 413449 414736 416025 417316 418609 419904 421201	262144000 263374721 264609288 265847707 267089984 268336125 269586136 270840023 272097792 273359449	25.2982213 25.3179778 25.3377189 25.3574447 25.3771551 25.3968502 25.4165301 25.4361947 25.4558441 25.4754784	8.6177388 8.6222248 8.6267063 8.6311830 8.6356551 8.6401226 8.6445855 8.6490437 8.6534974 8.6579465	.001562500 .001560062 .001557632 .00155210 .001552795 .001547988 .001547988 .001543210
650 651 652 653 654 655 656 657 658 659	422500 423801 425104 426409 427716 429025 430336 431649 432264 434281	274625000 275894451 277167808 278445077 270726264 281011375 282300416 28593393 284890312 286191179	25.4950976 25.5147016 25.5342907 25.538647 25.5734237 25.6929678 25.6124969 25.6320112 25.6515107 25.6709953	8.6623911 8.6668310 8.6712665 8.6756974 8.6801237 8.6845456 8.6889630 8.6933759 8.6977843 8.7021882	.001538462 .001533698 .001533742 .001531394 .001529052 .001526718 .001524390 .001522070 .001517451

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
660	435600	287496000	25.6904652	8.7065877	.001515152
661	436921	288804781	25.7099203	8.7109827	.001512859
662	438244	290117528	25.7293607	8.7153734	.001510574
663	439569	291434247	25.7487864	8.7197596	.001508296
664	440896	292754944	25.7681975	8.7241414	.001506024
665	442225	294079625	25.7875939	8.7285187	.001503759
666	443556	295408296	25.8069758	8.7328918	.001501502
667		296740963	25.8263431	8.7372604	.001499250
	444889				
668	446224	298077632	25.8456960	8.7416246	.001497006
669	447561	209418309	25.8650343	8.7459846	.001494768
670	448900	300763000	25.8843582	8.7503401	.001492537
671	450241	302111711	25.9036677	8.7546913	.001490313
672	451584	303464448	25.9229628	8.7590383	.001488098
673	452929	304821217	25.9422435	8.7633809	.001485884
674	454276	306182024	25.9615100	8.7677192	.001483680
675	455625	307546875	25.9807621	8.7720532	.001481481
676	456976	308915776	26.0000000	8.7763830	.001479290
677	458329	310288733	26.0192237	8.7807084	.001477108
678	459684	311665752	26.0384331	8.7850293	.001474926
679	461041	313046839	26.0576284	8.7893465	.001472754
680	462400	314432000	26.0768096	8.7936593	001470588
681	463761	315821241	26.0959767	8.7979679	.001468429
682	465124	317214568	26.1151297	8.8022721	.001466276
683	466489	318611987	26.1342687	8.8065722	.001464129
684	467856	320013504	26.1533937	8.8108681	.001461988
685	469225	321419125	26.1725047	8.8151598	.001459854
686	470596	322828856	26.1916017	8.8194474	.001457726
687	471969	324242703	26.2106848	8.8237307	.001455604
688	473344	325660672	26.2297541	8.8280099	.001453488
689	474721	327082769	26.2488095	8.8322850	.001451379
690	476100	328509000	26.2678511	8.8365559	.001449275
691	477481	329939371	26.2868789	8.8408227	.001447178
692	478864	331373888	26.3058929	8.8450854	.001445087
693	480249	332812557	26.3248932	8.8493440	.001443001
694	481636	334255384	26.3438797	8.8535985	.001440922
695	483025	335702375	26.3628527	8.8578489	.001438849
696	484416	337153536	26.3818119	8.8620952	.001436782
697	485809	338608873	26.4007576	8.8663375	.001434720
698	487204	340068392	26.4196896	8.8705757	.00143266
699	488601	341532099	26.4386081	8.8748099	.00143061
700	490000	343000000	26.4575131	8.8790400	.00142857
701	491401	344472101	26.4764046	8.8832661	.00142653
702	492804	345948408	26.4952826	8.8874882	.00142450
703	494209	347428927	26.5141472	8.8917063	.001422478
704	495616	348913664	26.5329983	8.8959204	.00142045
704				8.9001304	.00142043
705	497025	350402625	26.5518361		
706	498436	351895816	26.5706605	8.9043366	.00141643
	499849	353393243	26.5894716	8.9085387	.00141442
708	501264	354894912	26.6082694	8.9127369	.001412429
709	502681	356400829	26.6270539	8.9169311	.00141043
710	504100	357911000	26.6458252	8.9211214	.00140845
711	505521	359425431	26.6645833	8.9253078	.001406470
712	506944	360944128	26.6833281	8.9294902	.00140449-
713	508369	362467097	26.7020598	8.9336687	.001402523
714	509796	363994344	26.7207784	8.9378433	.001400560
715	511225	365525875	26.7394839	8.9420140	.00139860
716	512656	367061696	26.7581763	8.9461809	.001396648
717	514083	368601813	26.7768557	8.9503438	.001394700
718	515524	370146232	26.7955220	8.9545029	.001392758
719	516961	371694959	26.8141754	8.9586581	.001390821

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.		
720	518400	373248000	26.8328157	8.9628095	.001388889		
721	519841	374805361	26.8514432	8.9669570	.001386963		
722	521284	376367048	26.8700577	8.9711007	.001385042		
723	522729	377933067	26.8886593	8.9752406	.001383126		
724	524176	379503424	26.9072481	8.9793766	.001381215		
725	525625	381078125	26.9258240	8.9835089	.001379310		
726	527076	382657176	26.9443872	8.9876373	.001373310		
727	528529	384240583	26.9629375	8.9917620	.001377410		
728	529984		26.9814751	8.9958829	.001373626		
729		385828352					
	531441	387420489	27.0000000	9.0000000	.001371742		
730	532900	389017000	27.0185122	9.0041134	.001369863		
731	534361	390617891	27.0370117	9.0082229	.001367989		
732	535824	392223168	27.0554985	9.0123288	.001366120		
733	537289	393832837	27.0739727	9.0164309	.001364256		
734	538756	395446904	27.0924344	9.0205293	.001362398		
735	540225	397065375	27.1108834	9.0246239	.001360544		
736	541696	398688256	27.1293199	9.0287149	.001358696		
737	543169	400315553	27.1477439	9.0328021	.001356852		
738	544644	401947272	27.1661554	9.0368857	.001355014		
739	546121	403583419	27.1845544	9.0409655	.001353180		
			7				
740	547600	405224000	27.2029410	9.0450417	.001351351		
741	549081	406869021	27.2213152	9.0491142	.001349528		
742	550564	408518488	27.2396769	9.0531831	.001347709		
743	552049	410172407	27.2580263	9.0572482	.001345895		
744	553536	411830784	27.2763634	9.0613098	.001344086		
745	555025	413493625	27.2946881	9.0653677	.001342282		
746	556516	415160936	27.3130006	9.0694220	.001340483		
747	558009	416832723	27.3313007	9.0734726	.001338688		
748	559504	418508992	27.3495887	9.0775197	.001336898		
749	561001	420189749	27.3678644	9.0815631	.001335113		
750	562500	421875000	27.3861279	9.0856030	.001333333		
751	564001	423564751	27.4043792	9.0896392	.001331558		
752	565504	425259008	27.4226184	9.0936719	.001331338		
753	567009	426957777	27.4408455		.001328021		
754				9.0977010			
755	568516	428661064	27.4590604	9.1017265	.001326260		
	570025	430368875	27.4772633	9.1057485	.001324503		
756	571536	432081216	27.4954542	9.1097669	.001322751		
757	573049	433798093	27 5136330	9.1137818	.001321004		
758	574564	435519512	27.5317998	9.1177931	.001319261		
759	576081	437245479	27.5499546	9.1218010	.001317523		
760	577600	438976000	27.5680975	9.1258053	.001315789		
761	579121	440711081	27.5862284	9.1298061	001314060		
762	580644	442450728	27.6043475	9.1338034	.001312336		
763	582169	444194947	27.6224546	9.1377971	.001310616		
764	583696	445943744	27.6405499	9.1417874	.001308901		
765	585225	447697125	27.6586334	9.1457742	.001307190		
766	586756	449455096	27.6767050	9.1497576	.001305483		
767	588289	451217663	27.6947648	9.1537375	.001303781		
768	589824	452984832	27.7128129	9.1577139	.001302083		
769	591361	454756609	27.7308492	9.1616869	.001300390		
770	1	1					
771	592900 594441	456533000	27.7488739	9.1656565	.001298701		
772		458314011	27.7668868	9.1696225			
	595984	460099648	27.7848880	9.1735852	.001295337		
773	597529	461889917	27.8028775	9.1775445	.001293661		
774	599076	463684824	27.8208555	9.1815003	.001291990		
775	600625	465484375	27.8388218	9.1854527	.001290323		
776	602176	467288576	27.8567766	9.1894018	.001288660		
777	603729	469097433	27.8747197	9.1933474	.001287001		
778 779	605284	470910952	27.8926514	9.1972897	.001285347		
	606841	472729139	27.9105715	9.2012286	.001283697		

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals
780	608400	474552000	27.9284801	9.2051641	.001282051
781	609961	476379541	27.9463772	9.2090962	.001280410
782	611524	478211768	27.9642629	9.2130250	.001278772
783	613089	480048687	27.9821372	9.2169505	.001277139
781	614656	481890304	28.0000000	9.2208726	.001275510
785	616225	483736625	28.0178515	9.2247914	.001273885
786	617796	485587656	28.0356915	9.2287068	.001273365
787	619369	487443403	28.0535203	9.2326189	.001270648
788				9.2365277	.001270048
	620944	489303872	28.0713377		
789	622521	491169069	28.0891438	9.2404333	.001267427
790	624100	493039000	28.1069386	9.2443355	.001265823
791	625681	494913671	28.1247222	9.2482344	.001264223
792	627264	496793088	28.1424946	9.2521300	.001262626
793	628849	498677257	28.1602557	9.2560224	.001261034
794	630436	500566184	28.1780056	9.2599114	.001259446
795	632025	502459875	28.1957444	9.2637973	.001257862
796	633616	504358336	28.2134720	9.2676798	.001256281
797	635209	506261573	28.2311884	9.2715592	.001254705
798	636804	508169592	28.2488938	9.2754352	.001253133
799	638401	510082399	28.2665881	9.2793081	.001251564
800	640000	512000000	28.2842712	9.2831777	.001250000
801	641601	513922401	28.3019434	9.2870440	.001248439
802	643204	515849608	28.3196045	9.2909072	.001246883
803	644809	517781627	28.3372546	9.2947671	.001245330
804	646416	519718464	28.3548938	9.2986239	.001243781
805	648025	521660125	28.3725219	9.3024775	.001242236
806	649636	523606616	28.3901391	9.3063278	.001240695
807	651249	525557943	28.4077454	9.3101750	.001239157
808	652864	527514112	28.4253408	9.3140190	.001237624
809	654481	529475129	28.4429253	9.3178599	.001236094
810					
	656100	531441000	28.4604989	9.3216975	.001234568
811	657721	533411731	28.4780617	9.3255320	.001233046
812	659344	535387328	28.4956137	9.3293634	.001231527
813	660969	537367797	28.5131549	9.3331916	.001230012
814	662596	539353144	28.5306852	9.3370167	.001228501
815	664225	541343375	28.5482048	9.3408386	.001226994
816	665856	543338496	28.5657137	9.3446575	.001225490
817	667489	545338513	28.5832119	9.3484731	.001223990
818	669124	547343432	28.6006993	9.3522857	.001222494
819	670761	549353259	28.6181760	9.3560952	.001221001
820	672400	551368000	28.6356421	9.3599016	.001219513
821	674041	553387661	28.6530976	9.3637049	.00121802
822	675684	555412248	28.6705424	9.3675051	.001216548
822 823	677329	557441767	28.6879766	9.3713022	.001215063
824					.001213595
825	678976 680625	559476224	28.7054002	9.3750963	.00121359.
826		561515625	28.7228132	9.3788873	
	682276	563559976	28.7402157	9.3826752	.00121065
827	683929	565609283	28.7576077	9.3864600	.001209190
828	685584	567663552	28.7749891	9.3902419	.001207729
829	687241	569722789	28.7923601	9.3940206	.001206273
830	688900	571787000	28.8097206	9.3977964	.001204819
831	690561	573856191	28.8270706	9.4015691	.001203369
832	692224	575930368	28.8444102	9.4053387	.00120192
833	693889	578009537	28.8617394	9.4091054	.001200480
834	695556	580093704	28.8790582	9.4128690	.00119904
835	697225	58218287 5	28.8963666	9.4166297	.001197605
836	698896				
837		584277056	28.9136646	9.4203873	.001196172
838	700569 702244	586376253	28.9309523	9.4241420	.001194748
839	703921	588480472 590589719	28.9482297	9.4278936	.00119331
		1 42700007119	28.9654967	9.4316423	.001191898

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
840 841 842 843 844 845 846 847 848 849	705600 707281 708964 710649 712336 714025 715716 717409 719104 720801	592704000 594823321 596947688 596077107 601211584 603351125 605495736 607645423 609800192 611960049	28.9827535 29.0000000 29.0172363 29.0344623 29.0516781 29.0688337 29.0860791 29.1032644 29.1204396 29.1376046	9.4353880 9.4391307 9.4428704 9.4466072 9.4503410 9.4577999 9.4615249 9.4652470 9.4689661	.001190476 .001189061 .001187648 .001186240 .001184834 .001182033 .001182033 .001180638 .001179245
850 851 852 853 854 855 856 857 858 859	722500 724201 725904 727609 729316 731025 732736 734449 736164 737881	614125000 616295051 618470208 620650477 622835864 625026375 627222016 629422793 631628712 633839779	29.1547595 29.1719043 29.1890390 29.2061637 29.2232784 29.2403830 29.2574777 29.2745623 29.2916370 29.3087018	9.4726824 9.4763957 9.4801061 9.4838136 9.4875182 9.4912200 9.4949188 9.4986147 9.5023078 9.5059980	.001176471 .001175088 .001173709 .001172333 .001170960 .001169591 .001168224 .001165501 .001164144
860 861 862 863 864 865 866 867 868 869	739600 741321 743044 744769 746496 748225 749956 751689 753424 755161	636056000 638277381 640503928 642735647 644972544 647214625 649461896 651714363 653972032 656234909	29.3257566 29.3428015 29.3598365 29.3768616 29.3938769 29.4108823 29.4278779 29.4448637 29.4618397 29.4788059	9.5096854 9.5133699 9.5170515 9.5207303 9.5244063 9.5280794 9.5317497 9.5354172 9.5390818 9.5427437	.001162791 .001161440 .001160093 .001158749 .001157407 .001154734 .001154734 .001152074
870 871 872 873 874 875 876 877 878	756900 758641 760384 762129 763876 765625 767376 769129 770884 772641	658503000 660776311 663054948 065338617 667627624 669921875 672221376 674526133 676636152 679151439	29.4957624 29.5127091 29.5296461 29.5296461 29.5465734 29.5634910 29.5803989 29.5972972 26.6141858 29.6310648 29.6470342	9.5464027 9.5500589 9.5537123 9.5573630 9.5610108 9.5646559 9.5682982 9.5719377 9.5755745 9.5792085	.001149425 .001148106 .001146789 .001145475 .001144165 .001142857 .001140251 .001140251 .001137656
880 881 882 883 884 885 886 887 888 889	774400 776161 777924 779689 781456 783225 784996 786769 788544 790321	681472000 683797841 686128968 688465387 699807104 693154125 695506456 697864103 700227072 702595369	29.6647939 29.6816442 29.6984848 29.7153159 29.7321375 29.7489496 29.7657521 29.7825452 29.7993289 29.8161030	9.5828397 9.5864682 9.5900939 9.5937169 9.5973373 9.6009548 9.6045696 9.6081817 9.6117911 9.6153977	.001136364 .001135074 .001133787 .001132503 .001131222 .001129944 .001128668 .001127396 .001126126 .001124859
890 891 892 893 894 895 896 897 898 899	792100 793881 795664 797449 799236 801025 802816 804609 806404 808201	704969000 707347971 709732288 712121957 714516984 716917375 719323136 721734273 724150792 726572699	29.8328678 29.8496231 29.8663690 29.8831056 29.8998328 29.9165506 29.9332591 29.9499583 29.9666481 29.9833287	9.6190017 9.6226030 9.6267016 9.6297975 9.6333907 9.6369812 9.6405690 9.6441542 9.6477367 9.6513166	.001123596 .001122334 .001121076 .001119821 .001118568 .001117318 .001116071 .001114827 .001113586

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
900	810000	729000000	30.0000000	9.6548938	.001111111
901	811801	731432701	30.0166620	9.6584684	.001109878
902	813604	733870808	30.0333148	9.6620403	.001108647
903	815409	736314327	30.0499584	9.6656096	.001107420
904	817216	738763264	30.0665928	9.6691762	.001106195
905	819025	741217625	30.0832179	9.6727403	.001104972
906	820836	743677416	30.0998339	9.6763017	.001103753
907	822649	746142643	30.1164407	9.6798604	.001102536
908	824464	748613312	30.1330383	9.6834166	.001101322
909	826281	751089429	30.1496269	9.6869701	.001100110
910	828100	753571000	30.1662063	9.6905211	.001098901
911	829921	756058031	30.1827765	9.6940694	.001097695
912	831744	758550528	30.1993377	9.6976151	.001096491
913	833569	761048497	30.2158899	9.7011583	.001095290
914	835396	763551944	30.2324329	9.7046989	.001094092
915	837225	766060875	30.2489669	9.7022369	.001092896
916	839056	768575296	30.2654919	9.7117723	.001091703
917	840889	771095213	30.2820079	9.7153051	.001090513
918	842724	773620632	30.2985148	9.7188354	.001089325
919	844561	776151559	30.3150128	9.7223631	
920	846400	778688000	30.3315018	9.7258883	.001086957
921	848241	781229961	30.3479818	9.7294109	.001085776
922	850084	783777448	30.3644529	9.7329309	.001084599
923	851929	786330467	30.3809151	9.7364484	.001083424
924	853776	788889024	30.3973683	9.7399634	
925	855625	791453125	30.4138127	9.7434758	.001081081
926	857476	794022776	30.4302481	9.7469857	.001079914
927	859329	796597983	30.4466747	9.7504930	.001078749
928	861184	799178752	30.4630924	9.7539979	.001077586
929	863041	801765089	30.4795013	9.7575002	.001076426
930	864900	804357000	30.4959014	9.7610001	.001075269
931	866761	806954491	30.5122926	9.7644974	
932	868624	809557568	30.5286750	9.7679922	.001072961
933	870489	812166237	30.5450487	9.7714845	.001071811
934	872356	814780504	30.5614136	9.7749743	.001070664
935	874225	817400375	30.5777697	9.7784616	.001069519
936	876096	820025856	30.5941171	9.7819466	.001068376
937	877969	822656953	30.6104557	9.7854288	.001067236
938	879844	825293672	30.6267857	9.7889087	.001066098
939	881721	827936019	30.6431069	9.7923861	.001064963
940	883600	830584000	30.6594194	9.7958611	.001063830
941	885481	833237621	30.6757233	9.7993336	.001062699
942	887364	835896888	30.6920185	9.8028036	.001061571
943	889249	838561807	30.7083051	9.8062711	
944	891136	841232384	30.7245830	9.8097362	.001059322
945	893025	843908625	30.7408523	9.8131989	.001058201
946	894916	846590536	30.7571130	9.8166591	.001057082
947	896809	849278123	30.7733651	9.8201169	.001055966
948	898704	851971392	30.7896086	9.8235723	
949	900601	854670349	30.8058436	9.8270252	.001053741
950	902500	857375000	30.8220700	9.8304757	.001052632
951	904401	860085351	30.8382879	9.8339238	.001051525
952 953	906304 908209	862801408 865523177	30.8582879 30.8544972 30.8706981	9.8373695 9.8408127	.001050420
954	910116	868250664	30.8868904	9.8442536	.001048218
955	912025	870983875	30.9030743	9.8476920	.001047120
956	913936	873722816	30.9192497	9.8511280	.001046025
957	915849	876467493	30.9354166	9.8545617	.001044932
958	917764	879217912	30.9515751	9.8579929	.001043841
959	919681	881974079	30.9677251	9.8614218	.001042753

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
960 961 962 963 964 965 966 967 968 969	921600 923521 925444 927369 929296 931225 933156 935089 937024 938961	884736000 887503681 890277128 893056347 895841344 898632125 901428696 904231063 907039232 909853209	30.9838668 31.0000000 31.0161248 31.0322413 31.0483494 31.0644491 31.0805405 31.1966236 31.1126984 31.1287648	9.8648483 9.8682724 9.8716941 9.875135 9.8755305 9.8819451 9.8853574 9.8827673 9.8921749 9.8955801	.001041667 .001040583 .001039501 .001038422 .001037344 .001036269 .001035197 .001034126 .001033058 .001031992
970 971 972 973 974 975 976 977 978	940900 942841 944784 946729 948676 950625 952576 954529 956484 958441	912673000 915498611 918330048 921167317 924010424 926859375 929714176 932574833 935441352 938313739	31.1448230 31.1608729 31.1769145 31.1929479 31.2089731 31.2249900 31.2409987 31.2569992 31.2729915 31.2889757	9.8989830 9.9023835 9.9057817 9.9091776 9.9125712 9.9159624 9.9193513 9.9227379 9.9261222 9.9295042	.001030928 .001029866 .001028807 .001027749 .001026694 .001024590 .001023541 .001022495 .001021450
980 981 982 983 984 985 986 987 988 989	960400 962361 964324 966289 966286 970225 972196 974169 976144 978121	941192000 944076141 946966168 949862087 952763904 955671625 965858256 961504803 964430272 967361669	31.3049517 31.3209195 31.3368792 31.3528308 31.3687743 31.3847097 31.4006369 31.416556 31.4324673 31.4483704	9,9328839 9,9362613 9,9396363 9,9430092 9,9463797 9,9497479 9,9531138 9,9564775 9,9598389 9,9631981	.001020408 .001019368 .001018330 .001017294 .001016260 .001015228 .001014199 .001013171 .001012146
990 991 992 993 994 995 996 997 998	980100 982081 984064 986049 988036 990025 992016 994009 996004 998001	970299000 973242271 976191483 979146657 982107784 985074875 988047936 991026973 994011992 997002999	31.4642654 31.4801525 31.4960315 31.5119025 31.5277655 31.52466206 31.5594677 31.5753068 31.5911380 31.6069613	9.9665549 9.969995 9.9732619 9.9766120 9.9799599 9.9833055 9.9866488 9.989900 9.9933289 9.9966656	.001010101 .001009082 .001008065 .001007049 .001005025 .001004016 .001003009 .001002004
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009	1000000 1002001 1004004 1006009 1008016 1010025 1012036 1014049 1016064 1018081	100000000 1003003001 1006012008 1009027027 1012048064 1015075125 1018108216 1021147343 1024192512 1027243729	31.6227766 31.6385840 31.6543836 31.6701752 31.6859590 31.7017349 31.7175030 31.732633 31.7490157 31.7647603	10.000000 10.0033322 10.0066622 10.0099899 10.0133155 10.0166389 10.0199601 10.0232791 10.0265958 10.0299104	.001000000 .0009990010 .0009980040 .0009970090 .0009950249 .0009940358 .0009930487 .0009920635 .0009910803
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019	1020100 1022121 1024144 1026169 1028196 1030225 1032256 1034289 1036324 1038361	1030301000 1033364331 1036433728 1039509197 1042590744 1045678375 1048772096 1051871913 1054977832 1058089859	31.7804972 31.7962262 31.8119474 31.8276609 31.8433666 31.8590646 31.8747549 31.8904374 31.9061123 31.9217794	10.0332228 10.0365330 10.0398410 10.0431469 10.0464506 10.0497521 10.0530514 10.0530514 10.0596435 10.0629364	.0009900990 .0009891197 .0009831423 .0009871668 .0009871668 .0009852217 .0009842520 .0009842520 .0009823183 .0009813543

SQUARES OF NUMBERS AND FRACTIONAL INTERVALS.

Fraction	0	1	2	3	4.	5
0	.000000	1.00000	4.06900	9.00000	16.00000	25.00000
64 1	.000244	1.03149	4.06274	9.09899	16.12524	25.15649
3 32	.000977	1.05348	4.12598	9.18848	16.25698	25.31348
64 · ·	.002197	1.09595	4.18970	9.28345	18.27720	25.47095
$\begin{array}{ccc} & \frac{1}{16} \\ & \frac{3}{32} \\ & \frac{7}{64} & \vdots \\ & \ddots & \vdots \\ & \vdots & \ddots & \vdots \\ & \vdots & \vdots & \ddots & \vdots \\ & \vdots & \vdots & \ddots & \vdots \\ & \vdots & \vdots & \vdots & \vdots \\ & \vdots & \vdots & $.003906	1.12891	4.25391	9.37891	16.50391	25.62891
	.006104	1.16235	4.31860	9.47485	16.63110	25.78735
	.008789	1.19629	4.38379	9.57129	16.75879	25.94629
	.011963	1 23071	4.44946	9.66821	16.88535	26 10571
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.015625	1.26563	4.51563	9.76563	17.01563	26.26563
	.019775	1.30103	4.58228	9.86353	17.14478	26.42603
	.024414	1.33691	4.64941	9.96191	17.27441	26.58691
	.029541	1.37329	4.71704	19.06079	17.40454	26.74829
$\begin{array}{ccc} & \frac{1}{3} & \frac{3}{16} \\ \frac{1}{64} & \frac{7}{32} \\ \frac{1}{64} & \frac{1}{32} \\ \end{array}$.035156	1.41016	4.78516	10.16016	17.53516	26.91016
	.041260	1.44761	4.85376	10.26001	17.66626	27.07251
	.047852	1.48535	4.92285	10.36035	17.79785	27.23535
	.054932	1.52338	4.99243	10.46118	17.92993	27.39868
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.062500	1.56250	5.06250	10.56250	18.06250	27.56250
	.070557	1.60181	5.13306	10.66431	18.19556	27.72681
	.079162	1.64160	5.20410	10.76660	18.32910	27.89160
	.088135	1.68188	5.27563	10.86938	18.46313	28.05688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.097656	1.72296	5.34766	10.97296	18.59766	28.22266
	.107666	1.76392	5.42017	11.07642	13.73267	28.38892
	.118164	1.80566	5.49316	11.18086	18.86816	28.55566
	.129150	1.84790	5.56665	11.28540	19.00115	23.72290
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.140625	1.89063	5.64063	11.39063	19.14063	28.89063
	.152588	1.93384	5.71509	11.49624	19.27759	29.05884
	.165039	1.97754	5.79004	11.60254	19.41504	29.22754
	.177979	2.02173	5.86548	11.70923	19.55298	29.39673
$\begin{array}{cccc} & \frac{7}{16} \\ & \frac{15}{4} \\ & \frac{15}{32} \\ & 64 \\ \end{array}$.191406	2.06641	5.94141	11.81641	19.69141	29.56641
	.205322	2.11157	6.01782	11.92467	19.82032	29.73657
	.219727	2.15723	6.09473	12.03223	19.96973	29.90723
	.234619	2.20337	6.17212	12.14037	20.10962	30.07837
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.250000	2.25000	6.25000	12.25000	20.35000	30.25000
	.265869	2.29712	6.32837	12.35962	20.39087	30.42212
	.282227	2.34473	6.40723	12.46973	20.53223	30.59473
	.299072	2.39282	6.48657	12.58032	20.67407	30.76782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.316406	2.44141	6.56641	12.69141	20.81641	30.94141
	.334229	2.49048	6.64673	12.80298	20.95923	31.11548
	.352539	2.54004	6.72754	12.91504	21.10254	31.29004
	.371338	2.59009	6.80884	13.02759	21.24634	31.46509
5 8	.390625	2.64063	6.89063	13.14063	21.39063	31.64063
6 4 21	.410400	2.69165	6.97290	13.25415	21.53540	31.81665
4 3 3 2	.430664	2.74316	7.05566	13.36816	21.68966	31.99316
6 4	.451416	2.79517	7.13892	13.48267	21.82642	32.17017
11 45 64 23 47 32	.472556 .494385 .516602 .539307	2.84766 2.90063 2.95410 3.00806	7.22266 7.30688 7.39160 7.47681	13.59768 13.71313 13.82910 13.94556	21.97266 22.11938 22.26660 22.41431	32.34766 32.52563 32.70410 32.88306

SQUARES OF NUMBERS AND FRACTIONAL INTERVALS.

Fraction	6	7	8	9	10	11
0 1 64 1 3 64 1 32	36.00006 36.18774 36.37598 33.56470	49.00000 49.21899 49.43348 49.65845	64.00060 64.25024 64.50093 64.75220	81.00000 81.28149 81.56348 81.84535	100.00000 100.31274 100.62598 100.93970	121.00000 121.34399 121.68848 122.03345
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.75391	49.87891	65.00391	82.12891	101.25391	122.37891
	36.94360	50.09985	65.25610	82.41235	101.56860	122.72485
	37.13379	50.32129	65.50879	82.69629	101.88379	123.07129
	37.32446	50.54321	65.76196	82.98071	102.19946	123.41821
$\begin{array}{ccc} & 1/8 \\ \hline 64 & 5 \\ \hline 11 & 32 \\ \hline 64 & & \\ \end{array}$	37.51563	50.76583	66.01563	83.26563	102.51563	123.76563
	37.70728	50.98853	66.26978	83.55103	102.83228	124.11353
	37.89941	51.21191	66.52441	83.83691	103.14941	124.46191
	33.69204	51.43579	66.77954	84.12329	103.46704	124.81079
$\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ \hline & 6 & 4 & & & & \\ \hline & 1 & 5 & & & & \\ \hline & 6 & 4 & & & \\ \hline \end{array}$	33.28516	51.66015	67.03516	84.41016	103.78516	125.16016
	33.47876	51.88501	67.29126	84.69751	104.10376	125.51001
	38.67285	52.11035	67.54785	84.98535	104.42285	125.86035
	38.86743	52.33618	67.80493	85.27368	104.74243	125.21113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.06250	52.56250	68.06250	85.56250	105.06250	126.56250
	39.25806	52.78931	68.32056	85.85181	105.38306	126.91431
	39.45410	53.01660	68.57910	86.14160	105.70410	127.26660
	39.65063	53.24438	68 83813	86.43188	106.02563	127.61938
$\begin{array}{cccc} & \frac{1}{16} & \frac{5}{16} \\ \frac{1}{64} & \frac{1}{11} \\ \frac{1}{32} & \frac{3}{64} & \cdots \end{array}$	39.84766	53.47266	69.09766	86.72268	106.34766	127.97266
	40.04517	53.70142	69.35767	87.01392	106.67017	128.32642
	40.24318	53.93066	69.61816	87.30566	106.99316	128.68066
	40.44165	54.16040	69.87915	87.59790	107.31665	129.03540
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40.64063	54.39063	70.14033	87.89063	107.64063	129.39063
	40.84009	54.62134	70.40259	88.18384	107.96509	129.74634
	41.04004	54.85254	70.66504	88.47754	108.29004	130.10254
	41.24048	55.08423	70.92798	88.77173	108.61548	130.45923
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.44141	55.31641	71.19141	89.06641	108.94141	130.81641
	41.64282	55.54907	71.45532	89.36157	109.26782	131.17407
	41.84473	55.78223	71.71973	89.65723	109.59473	131.53223
	42.04712	56.01587	71.98462	89. 95 337	109.92212	131.89087
$\begin{array}{ccc} & \frac{3}{3} & \frac{1}{2} \\ \frac{3}{6} & \frac{1}{4} & \frac{1}{3} \\ \frac{3}{6} & \frac{1}{4} & \cdots \end{array}$	42.25000	56.25000	72.25000	90.25000	110.25000	132.25060
	42.45337	56.48462	72.51587	90.54712	110.57837	132.60962
	42.65723	56.71973	72.78223	90.84473	110.90723	132.96973
	42.86157	56.95532	73.04907	91.14232	111.23557	133.33032
$\begin{array}{ccc} & \frac{3}{16} \\ & \frac{3}{64} \\ & \frac{19}{32} \\ & \frac{39}{64} \\ & \ddots \\ \end{array}$	43.06641	57.19141	73.31641	91.44141	111.56641	133.69141
	43.27173	57.42798	73.58423	91.74048	111.89673	134.05298
	43.47754	57.66504	73.85254	92.04004	112.22754	134.41504
	43.68384	57.90259	74.12134	92.34009	112.55884	134.77759
5/8	43.89063	58.14063	74.39063	92.64063	112.89063	135.14063
64 21	44.09790	58.37915	74.66640	92.94165	113.22290	135.50415
32	44.30566	58.61816	74.93066	93.24316	113.55566	135.86816
64	44.51392	58.85767	75.20142	93.54517	113.88892	136.23267
$\begin{array}{cccc} & \frac{11}{16} \\ \frac{45}{64} & \frac{23}{32} \\ \frac{47}{64} & & & \\ & & & \\ \end{array}$	44.72266	59.09766	75.47266	93.84766	114.22266	136.59766
	44.93188	59.33813	75.74438	94.15063	114.55688	136.96313
	45.14160	59.57910	76.01660	94.45410	114.89160	137.32910
	45.35131	59.82053	76.23931	94.75808	115.22681	137.69556

SQUARES OF NUMBERS AND FRACTIONAL INTERVALS.

Fraction	0	1	2	3	4	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.562500	3.06250	7.56250	14.06250	22.56250	33.06250
	.586182	3.11743	7.64868	14.17993	22.71118	33.24243
	.610352	3.17285	7.73535	14.29785	22.86035	33.42285
	.635010	3.22876	7.82251	14.41626	23.01001	33.60376
53 16	.660156	3.28516	7.91016	14.53516	23.16016	33.78516
64 27	.685791	3.34204	7 99829	14.65454	23.31079	33.96704
55 32	.711914	3.39941	8.08691	14.77441	23.46191	34.14941
64	.738525	3.45728	8.17603	14.89478	23.61353	34.33228
57 64 59 32 64	.765625 .793213 .821289 .849854	3.51563 3.57446 3.63379 3.69360	8.26563 8.35571 8.44629 8.53735	15.01563 15.13696 15.25879 15.38110	23.76563 23.91821 24.07129 24.22485	34.51563 34.69946 34.88379 35.06860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.878906	3.75391	8.62891	15.50391	24.37891	35.25391
	.908447	3.81470	8.72095	15.62720	24.53345	35.43970
	.938477	3.87598	8.81348	15.75098	24.68848	35.62598
	.968994	3.93774	8.90649	15.87524	24.84399	35.81274
Fraction	12	13	14	15	16	17
0 1 3 2 1 1 6 3 2	144.0000 144.7510 145.5039 146.2588	169.0000 169.8135 170.6289 171.4463	196.0000 196.8760 197.7539 198.6338	225.0000 225.9385 226.8789 227.8213	256.0000 257.0010 258.0039 259.0088	289.0000 290.0635 291.1289 292.1963
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	147.0156	172.2656	199.5156	228.7656	260.0156	293.2656
	147.7744	173.0869	200.3994	229.7119	261.0244	294.3369
	148.5352	173.9102	201.2852	230.6602	262.0352	295.4102
	149.2979	174.7354	202.1725	231.6104	263.0479	296.4854
$\begin{array}{c} \frac{\cdot \cdot \cdot}{3} \\ \frac{3}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \end{array}$	150.0625	175.5625	203.0625	232.5625	264.0625	297.5625
	150.8291	176.3916	203.9541	233.5166	265.0791	298.6416
	151.5977	177.2227	204.8477	234.4727	266.0977	299.7227
	152.3682	178.0557	205.7432	235.4307	267.1182	300.8057
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153.1406	178.8906	206.6403	236.3906	268.1406	301.8906
	153.9150	179.7275	207.5400	237.3525	269.1650	302.9775
	154.6914	180.5664	208.4414	238.3164	270.1914	304.0664
	155.4697	181.4072	209.3447	239.2822	271.2197	305.1572
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156.2500	182.2500	210.2500	240.2500	272.2500	306.2500
	157.0322	183.0947	211.1572	241.2197	273.2822	307.3447
	157.8164	183.9414	212.0664	242.1914	274.3164	308.4414
	158.6025	184.7900	212.9775	243.1650	275.3525	309.5400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	159.3906	185.6406	213.8906	244.1406	276.3906	310.6406
	160.1807	186.4932	214.8057	245.1182	277.4307	311.7432
	160.9727	187.3477	215.7227	246.0977	278.4727	312.8477
	161.7666	188.2041	216.6416	247.0791	279.5166	313.9541
25 32 13 27 16	162.5625 163.3604 164.1602 164.9619	189.0625 189.9229 190.7852 191.6494	217.5625 218.4854 219.4102 220.3369	248.0625 249.0479 250.0352 251.0244	280.5625 281.6104 282.6602 283.7119	315.0625 316.1729 317.2852 318.3994
32 15 31 16 32 ···	165.7656 166.5713 167.3789 168.1885	192.5156 193.3838 194.2539 195.1260	221.2656 222.1963 223.1289 224.0635	252.0156 253.0088 254.0039 255.0010	284.7656 285.8213 286.8789 287.9385	319.5156 320.6338 321.7539 322.8760

SQUARES OF NUMBERS AND FRACTIONAL INTERVALS.

Fraction	6	7	8	9	10	11
3/4	45.56250	60.06250	76.56250	95.06250	115.56250	138.06250
64 25	45.77368	60.30493	76.83618	95.36743	115.89868	138.42993
51	45.98535	60.54785	77.11035	95.67285	116.23535	138.79785
64	46.19751	60.79126	77.38501	95.97876	116.57251	139.16626
53 64 27 55 64 27 32	46.41016 46.62329 46.83691 47.05103	61.03516 61.27954 61.52441 61.76978	77.66016 77.93579 78.21191 78.48853	96.28516 96.59204 96.89941 97.20728	116.91016 117.24829 117.58691 117.92603	139.53516 139.90454 140.27441 140.64478
57 64 29 32 59 61	47.26563 47.48071 47.69629 47.91235	62.01563 62.26196 62.50879 62.75610	78.76563 79.04321 79.32129 79.59985	97.51563 97.82446 98.13379 98.44360	118.26563 118.60571 118.94629 119.28735	141.01563 141.38696 141.75879 142.13110
61 16	48.12891	63.00391	79.87891	98.75391	119.62891	142.50391
64 31	48.34595	63.25220	80.15845	99.06470	119.97095	142.87720
63 32	48.56348	63.50098	80.43848	99.37598	120.31348	143.25098
64 · ·	48.78149	63.75024	80.71899	99.68774	120.65649	143.62524
Fraction	18	19	20	. 21 .	22	23
0 1 3 2 1 3 16 3 3 	324.0000 325.1260 326.2539 327.3838	361.0000 362.1885 363.3789 364.5713	400.0000 401.2510 402.5039 403.7588	441.0000 442.3135 443.6289 444.9463	484.0000 485.3760 486.7539 488.1338	529.0000 530.4385 531.8789 533.3213
32	328.5156	365.7656	405.0156	446.2656	489.5156	534.7656
32	329.6494	366.9619	406.2744	447.5869	490.8994	536.2119
3	330.7852	368.1602	407.5352	448.9102	492.2852	537.6602
16	331.9229	369.3604	408.7979	450.2354	493.6729	539.1104
9 1/4	333.0625	370.5625	410.0625	451.5625	495.0625	540.5625
32 :	334.2041	371.7666	411.3291	452.8916	496.4541	542.0166
11	335.3477	372.9727	412.5977	454.2227	497.8477	543.4727
32 :	336.4932	374.1807	413.8682	455.5557	499.2432	544.9307
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337.6406	375.3906	415.1406	456.8906	500.6406	546.3906
	338.7900	376.6025	416.4150	458.2275	502.0400	547.8525
	339.9414	377.8164	417.6914	459.5664	503.4414	549.3164
	341.0947	379.0322	418.9697	460.9072	504.8447	550.7822
$\frac{17}{2}$ $\frac{1}{2}$ $\frac{9}{16}$ $\frac{19}{32}$ $\frac{1}{16}$	342.2500	380.2500	420.2500	462.2500	506.2500	552.2500
	343.4072	381.4697	421.5322	463.5947	507.6572	553.7197
	344.5664	382.6914	422.8164	464.9414	509.0664	555.1914
	345.7275	383.9150	424.1025	466.2900	510.4775	556.6650
21 5/8	346.8906	385.1406	425.3906	467.6406	511.8906	558.1406
32 11	348.0557	386.3682	426.6807	468.9932	513.3057	559.6182
23 16	349.2227	387.5977	427.9727	470.3477	514.7227	561.0977
32	350.3916	388.8291	429.2666	471.7041	516.1416	562.5791
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	351.5625	390.0625	430.5625	473.0625	517.5625	564.0625
	352.7354	391.2979	431.8604	474.4229	518.9854	565.5479
	353.9102	392.5352	433.1602	475.7852	520.4102	567.0352
	355.0869	393.7744	434.4619	477.1494	521.8369	568.5244
29 32 31 31 32 	356.2656 357.4463 358.6289 359.8135	395.0156 396.2588 397.5039 398.7510	435.7656 437.0713 438.3789 439.6885	478.5156 479.8838 481.2539 482.6260	523.2656 524.6963 526.1289 527.5635	570.0156 571.5088 573.0039 574.5010

SQUARES OF NUMBERS AND FRACTIONAL INTERVALS.

No.	0	1/8	1/4	3/8	1/2	5/8	3/4	78
24	576	582.0156	588.0625	594.1406	600.25	606.3906	612.5625	618.7656
25	625	631.2656	637.5625	643.8906	650.25	656.6406	663.0625	669.5156
26	676	682.5156	689.0625	695.6406	702.25	708.8906	715.5625	722.2656
27	729	735.7656	742.5625	749.3906	756.25	763.1406	770.0625	777.0156
28	784	791.0156	798.0625	805.1406	812.25	819.3906	826.5625	833.7656
29	841	848.2656	855.5625	862.8906	870.25	877.6406	885.0625	892.5156
30	900	907.5156	915.0625	922.6406	930.25	937.8906	945.5625	953.2656
31	961	968.7656	976.5625	984.3906	992.25	1000.1406	1008.0625	1016.0156
32	1024	1032.0156	1040.0625	1048.1406	1056.25	1064.3906	1072.5625	1080.7656
33	1089	1097.2656	1105.5625	1113.8906	1122.25	1130.6406	1139.0625	1147.5156
34	1156	1164.5156	1173.0625	1181.6406	1190.25	1198.8906	1207.5625	1216.2656
35	1225	1233.7656	1242.5625	1251.3906	1260.25	1269.1406	1278.0625	1287.0156
36	1296	1305.0156	1314.0625	1323.1406	1332.25	1341.3906	1350.5625	1359.7656
37	1369	1378.2656	1387.5625	1396.8906	1406.25	1415.6406	1425.0625	1434.5156
38	1444	1453.5156	1463.0625	1472.6406	1482.25	1491.8906	1501.5625	1511 2656
39	1521	1530.7656	1540.5625	1550.3906	1560.25	1570.1406	1580.0625	1590.0156
40	1600	1610.0156	1620.0625	1630.1406	1640.25	1650.3906	1660.5625	1670.7656
41	1681	1691.2656	1701.5625	1711.8906	1722.25	1732.6406	1743.0625	1753.5156
42	1764	1774.5156	1785.0625	1795.6406	1806.25	1816.8906	1827.5625	1838.2656
43	1849	1859.7656	1870.5625	1881.3906	1892.25	1903.1406	1914.0625	1925.0156
44	1936	1947.0156	1958.0625	1369.1406	1980.25	1991.3906	2002.5626	2013.7656
45	2025	2036.2656	2047.5625	2058.8906	2070.25	2081.6406	2093.0625	2104.5156
46	2116	2127.5156	2139.0625	2150.6406	2162.25	2173.8906	2185.5625	2197.2656
47	2209	2220.7656	2232.5625	2244.3906	2256.25	2268.1496	2280.0625	2292.0156
48	2304	2316.0156	2328.0625	2340.1406	2352.25	2364.3906	2376.5625	2388.7656
49	2401	2413.2656	2425.5625	2437.8906	2450.25	2462.6406	2475.0625	2487.5156
50	2500	2512.5156	2525.0625	2537.6406	2550.25	2562.8906	2575.5625	2588.2656
51	2601	2613.7656	2626.5625	2639.3906	2652.25	2665.1466	2678.0625	2691.0156
52	2704	2717.0156	2730.0625	2743.1406	2756.25	2769.3906	2782.5625	2795.7656
53	2809	2822.2656	2835.5625	2848.8906	2862.25	2875.6406	2989.0625	2902.5156
54	2916	2929.5156	2943.0625	2956.6406	2970.25	2983.8906	2997.5625	3011.2656
55	3025	3038.7656	3052.5625	3066.3906	3080.25	3094.1406	3108.0625	3122.0156
56	3136	3150.0156	3164.0625	3178.1406	3192.25	3206.3906	3220.5625	3234.7656
57	3249	3263.2656	3277.5625	3291.8906	3306.25	3320.6406	3335.0625	3349.5156
58	3364	3378.5156	3393.0625	3407.6406	3422.25	3436.8906	3451.5625	3466.2656
59	3481	3495.7656	3510.5625	3525.3906	3540.25	3555.1406	3570.0625	3585.0156
00	3600	3615.0156	3630.0625	3645.1406	3660.25	3675.3906	3690.5625	3705.7656
61	3721	3736.2656	3751.5625	3766.8906	3782.25	3797.6406	3813.0625	3828.5156
62	3844	3859.5156	3875.0625	3890.6406	3906.25	3921.8906	3937.5625	3953.2656
53	3969	3984.7656	4000.5625	4016.3906	4032.25	4048.1406	4064.0625	4080.0156
84	4096	4112.0156	4128.0625	4144.1406	4160.25	4176.3906	4192.5625	4208.7656
65	4225	4241.2656	4257.5625	4273.8906	4290.25	4306.6406	4323.0625	4339.5156
66	4356	4372.5156	4369.0625	4405.6406		4438.8906	4455.5625	4472.2656
67	4489	4505.7656	4522.5625	4539.3906		4573.1406	4590.0625	4607.0156
68	4624	4641.0156	4658.0625	4675.1406		4709.3906	4726.5625	4743.7656
69	4761	4778.2656	4795.5625	4812.8906		4847.6406	4865.0625	4882.5156
70	4960	4917.5156	4935.0625	4952.6406		4987.8906	5005.5625	5023.2656

CUBES OF NUMBERS AND FRACTIONAL INTERVALS.

Fraction	0	1	2	3	4	5
$\begin{array}{ccc} & & & & & & & & & & & \\ & \frac{1}{32} & & & & & & & \\ & \frac{3}{32} & & \frac{1}{16} & & & & & \\ & & & & & & & & & \\ \end{array}$.0 ₄ 30518 .0 ₃ 24414 .0 ₃ 82397	1.000000 1.096710 1.199463 1.308441	8.000000 8.380890 8.773682 9.178558	27.00000 27.85257 28.72290 29.61118	64.00000 65.51176 67.04712 68.60629	125.00000 127.35843 129.74634 132.16391
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0019531	1.423828	9.595703	30.51758	70.18945	134.61133
	.0038147	1.545807	10.025299	31.44229	71.79678	137.08878
	.0065918	1.674561	10.467529	32.38550	73.42847	139.59644
	.0104675	1.810272	10.922577	33.34738	75.08469	142.13449
$\frac{9}{32}$ $\frac{1}{4}$ $\frac{1}{32}$ $\frac{5}{16}$.0156250	1.953125	11.390625	34.32813	76.76563	144.70313
	.0222473	2.103302	11.871857	35.32791	78.47147	147.30252
	.0305176	2.260986	12.366455	36.34692	80.20239	149.93286
	.0406189	2.426361	12.874603	37.38535	81.95859	152.59433
$\frac{13}{32}$ $\frac{3}{8}$ $\frac{15}{16}$ $\frac{15}{32}$ $\frac{7}{16}$.0527344	2.599609	13.396484	38.44336	83.74023	155.28711
	.0670471	2.780914	13.932281	39.52115	85.54752	158.01138
	.0837402	2.970459	14.482178	40.61890	87.38062	160.76733
	.1029968	3.168427	15.046356	41.73679	89.23972	163.55515
	.1250000	3.375000	15.625000	42.87500	91.12500	166.37500
$\begin{array}{c} \frac{17}{32} \\ \underline{19} \\ \underline{19} \\ 32 \end{array} \cdots$.1499329	3.590363	16.218292	44.03372	93.03565	169.22708
	.1779785	3.814697	16.826416	45.21313	94.97435	172.11157
	.2093201	4.048187	17.449554	46.41342	96.93979	175.02866
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2441406	4.291016	18.087891	47.63477	98.93164	177.97852
	.2826233	4.543365	18.741608	48.87735	100.95059	180.96133
	.3249512	4.805420	19.410389	50.14136	102.99683	183.97729
	.3713074	5.077362	20.095917	51.42697	105.07053	187.02658
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4218750	5.359375	20.796875	52.73438	107.17188	190.10938
	.4768372	5.651642	21.513947	54.06375	109.30106	193.22586
	.5363770	5.954346	22.247314	55.41528	111.45825	196.37622
	.6006775	6.267670	22.997162	56.78915	113.64365	199.56064
$\frac{\dot{29}}{32}$ $\frac{7/8}{\dot{15}}$ $\frac{\dot{31}}{32}$ $\frac{15}{16}$.6699219	6.591797	23.763672	58.18555	115.85742	202.77930
	.7442932	6.926910	24.547028	59.60464	118.09976	206.03238
	.8239746	7.273193	25.347412	61.04563	120.37085	209.32007
	.9091492	7.630829	26.165909	62.51169	122.67087	212.64255
Praction	6	7	8	9	10	11
0 1 32 1 1 1 1 1 1 1 1	216.00000 219.39261 222.82056 226.28403	343.00000 347.61429 352.26978 356.96664	512.00000 518.02347 524.09399 530.21176	729.0000 736.6201 744.2932 752.0194	1000.0000 1009.4043 1018.8674 1028.3895	1331.0000 1342.3760 1353.8167 1365.3221
${\frac{5}{32}}$ ${\frac{7}{32}}$ ${\frac{16}{16}}$	229.78320	361.70508	536.37695	759.7988	1037.9707	1376.8926
	233.31827	366.48526	542.58975	767.6317	1047.6112	1388.5282
	236.88940	371.30737	548.85034	775.5183	1057.3113	1400.2292
	240.49680	376.17160	555.15291	783.4587	1067.0710	1411.9958
$\frac{9}{32}$ $\frac{1}{4}$ $\frac{9}{32}$ $\frac{5}{16}$ $\frac{11}{32}$ $\frac{1}{16}$	244.14063	381.07813	561.51563	791.4531	1076.8906	1423.8281
	247.82108	385.02713	567.92068	799.5017	1036.7703	1435.7263
	251.53393	391.01880	574.37427	807.6047	1096.7102	1447.6907
	255.29257	396.05331	580.87656	815.7623	1106.7105	1459.7213
$\frac{13}{32}$ $\frac{3}{8}$ $\frac{13}{32}$ $\frac{7}{16}$ $\frac{15}{32}$	259.08393	401.13086	587.42773	823.9746	1116.7715	1471.8184
	262.91275	406.25162	594.02798	832.2418	1126.8932	1483.9821
	266.77905	411.41577	600.67749	840.5642	1137.0759	1496.2126
	270.68307	416.62350	607.37643	848.9419	1147.3198	1508.5102

CUBES OF NUMBERS AND FRACTIONAL INTERVALS.

Fraction	6	7	8	9	10	11			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274.62500 278.60501 282.62329 286.68002	421.87590 427.17044 432.51001 437.89389	614.12500 620.92337 627.77173 634.67026	857.3750 865.8638 874.4084 883.0091	1157.6250 1167.9917 1178.4202 1188.9105	1520.8750 1533.3072 1545.8069 1558.3774			
21 32 11 23 16 32 	290.77539 294.90958 299.08276 303.29514	443.32227 448.79532 454.31323 459.87619	641.61914 648.61856 655.66870 662.76974	891.6660 900.3793 909.1491 917.9758	1199.4629 1210.0775 1220.7546 1231.4943	1571.0098 1583.7133 1596.4851 1609.3254			
25 34 32 13 27 10 32 ···	307.54688 311.83817 316.16919 320.54013	465.48438 471.13797 476.83716 482.58212	669.92188 677.12527 684.38013 691.68661	926.8594 935.8001 944.7981 953.8536	1242.2969 1253.1624 1264.0911 1275.0831	1622.2344 1635.2122 1648.2590 1661.3751			
7/8 32 15 31 32 	324.95117 329.40250 333.89429 338.42673	488.37305 494.21011 500.09351 506.02341	699.04492 706.45523 713.91772 721.43259	962.9668 972.1378 981.3669 990.6543	1286.1387 1297.2580 1308.4412 1319.6884	1674.5605 1687.8156 1701.1404 1714.5351			
Fraction	12	13	14	15	16	17			
1 16 3 16	1728.0000 1755.1409 1782.5645 1810.2722	2197.0000 2228.8401 2260.9863 2293.4402	2744.0000 2780.9143 2818.1582 2855.7332	3375.0000 3417.3635 3460.0801 3503.1511	4096.0000 4144.1877 4192.7520 4241.6941	4913.0000 4967.3870 5022.1738 5077.3621			
5 1 4 16 3 7 3 3	1838.2656 1866.5461 1895.1152 1923.9744	2326.2031 2359.2766 2392.6621 2426.3611	2893.6406 2931.8821 2970.4590 3009.3728	3546.5781 3590.3625 3634.5059 3679.0095	4291.0156 4340.7180 4390.8027 4441.2712	5132.9531 5188.9485 5245.3496 5302.1580			
10 5 8 11 5 8 116 ··	1953.1250 1982.5686 2012.3066 2042.3406	2460.3750 2494.7053 2529.3535 2564.3210	3048.6250 3088.2170 3128.1504 3168.4265	3723.8750 3769.1038 3814.6973 3860.6570	4492.1250 4543.3655 4594.9941 4647.0125	5359.3750 5417.0022 5475.0410 5533.4929			
3,4 16 :- 15 :- 16 :-	2072.6719 2103.3020 2134.2324 2165.4646	2599.6094 2635.2200 2671.1543 2707.4133	3209.0469 3250.0129 3291.3262 3332.9880	3906.9844 3953.6809 4000.7480 4048.1873	4699.4219 4752.2239 4805.4199 4859.0115	5592.3594 5651.6418 5711.3418 5771.4607			
Frac'ı u	18	19	20	21	22	23			
0 16 16 3 16	5832.0000 5892.9612 5954.3457 6016.1550	6859.0000 6926.9104 6995.2676 7064.0730	8000.0000 8075.2346 8150.9395 8227.1160	9261.000 9343.934 9427.361 9511.284	10648.000 10739.008 10830.533 10922.577	12167.000 12266.457 12366.455 12466.995			
5 /4 5 /4 15 /3 7 /8	6078.3906 6141.0540 6204.1465 6267.6697	7133.3281 7203.0344 7273.1934 7343.8064	8303.7656 9380.8899 8458.4902 8536.5681	9595.703 9630.620 9766.037 9851.955	11015.141 11108.226 11201.834 11295.967	12568.078 12669.706 12771.881 12874.603			
10 12 10 5 5 11 10 · ·	6331.6250 6396.0139 6460.6379 6526.0984	7414.8750 7486.4006 7558.3848 7630.8289	8615.1250 8694.1624 8773.6816 8853.6843	9938.375 10025.299 10112.729 10200.665	11390.625 11485.811 11581.525 11677.770	12977.875 13081.698 13186.072 13291.001			
16	6591.7969 6657.9348 6724.5137 6791.5349	7703.7344 7777.1028 7850.9355 7925.2341	8934.1719 9015.1458 9096.6074 9178.5583	10289.109 10378.064 10467.529 10557.508	11774.547 11871.857 11969.701 12068.082	13396.484 13502.525 13609.123 13716.281			

CUBES OF NUMBERS AND FRACTIONAL INTERVALS.

No.	0	18	14	3 8	1/2	5/8	34	7/8
24 25	13824 15625		14260.516 16098.453	14482.178 16338.725	14706.125 16581.375	14932.369 16826.416	15160.922 17073.859	
26 27 28 29 30	19683 21952	19957.643 22247.315 24705.736	18087.891 20234.828 22545.266 25025.203 27680.641	18347.521 20514.568 22845.865 25347.412 28025.209		21081.760 23455.057 26000.104	19141.297 21369.234 23763.672 26330.609 29076.047	21659.311 24074.982 26663.904
31 32 33 34 35	29791 32768 35937 39304 42875	36346.924 39739.096	30517.578 33542.016 36759.953 40177.391 43800.328	30885.256 33933.553 37176.100 40618.896 44267.943	31255.875 34328.125 37595.375 41063.625 44738.875	31629.447 34725.744 38017.791 41511.588 45213.135	32005.984 35126.422 38443.359 41962.797 45690.734	35530.170 38872.092 42417.264
36 37 38 39 40	46656 50653 54872 59319 64000	51168.111 55415.283 59891.205	47634.766 51686.703 55962.141 60467.078 65207.516	48129.240 52208.787 56512.584 61046.631 65816.928	48627.125 52734.375 57066.625 61629.875 66430.125	49128.432 53263.479 57624.275 62216.822 67047.119	49633.172 53796.109 58185.547 62807.484 67667,922	54332.279 58750.451 63401.873
41 42 43 44 45	68921 74088 79507 85184 91125	80202.393 85912.065	70189.453 75418.891 80901.828 86644.266 92652.203	70829.475 76090.272 81605.318 87380.615 93422.162	71473.375 76765.625 82312.875 88121.125 94196.375	72121,166 77444,963 83024,510 88865,807 94974,854	72772.859 78128.297 83740.234 89614.672 95757.609	78815.639 84460.061 90367.732
47 48 49	110592 117649	98131.658 104653.58 111458.25 118551.67 125939.85	98931.641 105488.58 112329.02 119458.95 126884.39	99735.959 106328.01 113204.30 120370.85 127833.65	100544.63 107171.87 114084.12 121287.37 128787.62	101357.65 108020.20 114968.49 122208.54 129746.34	102175.05 108872.98 115857.42 123134.36 130709.80	102996.83 109730.25 116750.92 124064.84 131678.01
52 53 54	140608 148877 157464	133628.77 141624.44 149932.86 158560.03 167511.96	134611.33 142645.77 150993.70 159661.14 168654.08	135598.69 143671.99 152059.54 160767.33 169801.38	136590.87 144703.12 153130 37 161878.62 170953.87	137587.88 145739.18 154206.23 162995.03 172111.57	138589.73 146780.17 155287.11 164116.55 173274.48	139596.44 147826.11 156373.03 165243.20 174442.62
57 58 59	185193 196112. 205379	176794.63 186414.05 196376.22 206687.14 217352.81	177978.52 187640.45 197645.89 208000.83 218711.27	179167.68 188872.22 198921.02 209320.07 220075.37	180362.12 190109.37 200201.62 210644.87 221445.12	181561.87 191351.92 201487.71 211975.26 222820.56	182766.92 192599.86 202779.30 213311.23 224201.67	183977.29 193853.22 204076.39 214652.81 225588.48
62 63 64	238328 250047 262144	228379.24 239772.41 251538.33 263683.00 276212.42	229783.20 241222.64 253035.58 265228.02 277805.95	231192.91 242678.71 254538.76 266779.05 279405.60	232608.38 244140.63 256047.88 268336.13 281011.38	234029.60 245608.40 257562.95 269899.24 282623.29	247082.05 259083.98 271468.42	236889.40 248561.58 2606 ¹ 1.00 2 ⁷ 3043.67 285865.59
67 68 69	300763 314432 328509	289132.60 302449.52 316169.19 330297.61 344840.78	290775.39 304142.33 317912.77 332092.70 346688.14	292424.40 305841.44 319662.74 333894.29 348542.08	294079.63 307546.88 321419.13 335702.37 350402.61	295741.09 309258.63 323181.93 337516.98 352269.77	324951.17	299082.76 312701.19 326726.86 341165.78 356023.95

VALUES FOR COMBINATIONS OF π ($\pi = 3.14159265359$).

Combination Values for n.								
Combination.	1	2	3	4	5			
n _T	3.141593	6.283185	9.424778	12.566371	15.707963			
<u>nπ</u>	.785398	1.570796	2.356194	3.141593	3.926991			
<u>nπ</u>	.523599	1.047196	1.570796	2.094395	2.617994			
<u>n</u> π	.392699	.785398	1.178097	1.570796	1.963495			
<u>nπ</u> 16	.196350	.392699	.589049	.785398	.981748			
<u>nπ</u> 32 ····	.098175	.196350	.294524	.392699	.490874			
<u>nπ</u> 64	.049087	.098175	.147262	.196350	.245437			
$\frac{\pi}{n}$	3.141593	1.570796	1.047198	.785398	.628319			
<u>n</u> π	.318310	.636620	.954930	1.273240	1.591549			
7. 900	.034907	.017453	.011636	.008727	.005981			
n 90° π	28.647890	57.295780	85.943670	114.59156	143.239450			
π^{n}	3.141593	9.869604	31.006277	97.409091	306.01979			
1 \(\pi_n\)	.318310	.101321	.032252	.010266	.003268			
n /=	3.141593	1.772454	1.464592	1.331335	1.257274			
1 V N	.318310	.564190	.682784	.751126	.795371			
νπ nπ2	9.869604	19.739209	29.608813	39.478418	49.348022			
$\frac{n}{\pi^2}$.101321	.202642	.303963	.405284	.506605			
$\sqrt{n_{\pi}}$	1.772454	2.506628	3.069980	3.544908	3.963328			
$\sqrt{\frac{n}{\pi}}$.564190	.797885	.977205	1.128379	1.261566			
$n\sqrt{\pi}$.	1.772454	3.544908	5.317362	7.089815	8.862269			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.564190	1.128379	1.692569	2.256785	2.820948			
nπ3	31.006277	62.012553	93.018830	124.02511	155.03138			
$\frac{n}{\pi^3}$.032252	.064503	.096755	.129006	.161258			
$\sqrt[3]{n\pi}$ · ·	1.464592	1.845270	2.112469	2.324895	2.504417			
$\sqrt[3]{\frac{n}{\pi}}$.682784	.860254	.984745	1.086351	1.167544			
$n\sqrt[3]{\pi}$	1.464592	2.929184	4.393776	5.858368	7.322959			
n 3 =	.6827841	1.3655681	2.0483522	2.7311363	3.4139203			
nπ4	\$7.409091	194.81813	292.22727	389,63636	487.04545			
	.0102660	.0205320	.0307979	.0410639	.0513299			
$\sqrt{n\pi}$.	1.331335	1.583233	1.752136	1.882793	1.990811			
\ n	.751126	.893244	.988537	1.062252	1.123195			
-								

VALUES FOR COMBINATIONS OF π ($\pi = 3.14159265359$).

	Values	for n.		Combination.
6	7	8	9	Combination.
18.849556	21.991149	25.132741	23.274334	nπ
4.712389	5.497787	6.233185	7.068583	11 <u>2</u>
3.141593	3.635191	4.188790	4.712333	n ₇₇
2.356194	2.748394	3.141593	3.534293	<u>n</u> 7
1.178097	1.374447	1.570796	1.767148	<u>n</u> π
.583043	.637223	.785338	.883573	<u>n</u> π
.294524	.343612	.392699	.441786	nπ 6±
.523599	.44873)	.392699	.349066	<u>π</u>
1.909850	2.228169	2.546479	2.864783	<u>n</u>
.005818	.004987	.004363	.003879	. T
171.88738	200.53523	229.18312	257.84101	n 90°
961.38937	3020.1938	9433.5331	23800.103	73
.001040	.000831	.000103	.000034	1
1.210203	1.177664	1.153835	1.136635	V = 1
.826307	.849139	.839875	.880564	
59.217626	69.087231	79.956833	83.826440	nπ2
.507328	.709247	.810363	.911861	<u>n</u>
4.341603	4.589471	5.013257	5.317360	.√ nπ
1.381977	1.492705	1.595763	1.692559	1 <u>1</u>
10.634723	12.407177	14.179631	13.952085	. n√n = n
3.385138	3.949327	4.513517	5.077703	<u>n</u>
186.03766	217.04394	248.05021	273.05649	n\pi^3
.193509	.225761	.258013	.290264	
2.661340	2.801663	2.929184	3.046474	³ nπ
1.240701	1.306189	1.365593	1.420243	
8.787551	10.252143	11.716735	13.131327	n ³ /π
4.096704	4.779483	5.462273	6.145057	3, =
584.45455	681.86364	779.27273	373.68182	a#4
.061596	.071862	.082123	.092394	<u>1</u>
2.083653	2.165519	2.239030	2.305940	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1.175575	1.221763	1.263237	1.300988	

MENSURATION.

LENGTH.

Circumference of circle = diameter \times 3.1416.

Diameter of circle = gircumference \times 0.3183.

Side of square of equal periphery as circle = diameter $\times 0.7854$.

Diameter of circle of equal periphery as square = side \times 1.2732.

Side of an inscribed square = diameter of circle \times 0.7071.

Diameter of circle circumscribed about square = side \times 1.4142.

Circumference of circle whose diameter is 1=

$$\pi = 3.14159265$$

$$\frac{1}{\pi} = 0.318310$$

$$\sqrt{\pi} = 1.772454$$

$$\pi^{2} = 9.869604$$

$$r = \frac{c^{2}}{8v} + \frac{v}{2}$$

$$\frac{1}{\pi} = 0.318310$$

$$\frac{1}{\pi^{2}} = 0.101321$$

$$x = \sqrt{r^2 - (r + o - v)^2}$$
 $o = \sqrt{r^2 - x^2} - (r - v)$

$$v = r - \sqrt{r^2 - \frac{c^2}{4}} = \frac{c}{2} \tan \frac{A}{4} = 2r \sin^2 \frac{A}{4} = r + o - \sqrt{r^2 - x^2}$$

$$c = 2\sqrt{2vr - v^2} = 2r \sin \frac{A}{2}$$

Length of arc =
$$\frac{\pi \, r \, A^{\circ}}{180}$$
 = .0174533 r A°

Angle A° =
$$\frac{180 \times arc}{\pi r}$$
 = $\frac{57.29578 \times arc}{r}$

$$\cos \frac{A}{2} = \frac{c^2 - 4v^2}{c^2 + 4v^2}$$

For division of circle into n parts, $c = 2r \sin \frac{180^{\circ}}{n}$

MENSURATION—(Continued).

AREA.

Triangle = base × half perpendicular height.

Parallelogram = base × perpendicular height.

Trapezoid = half the sum of the parallel sides × perpendicular height.

Trapezium, found by dividing into two triangles.

Circle = diameter squared × 0.7854; or, = circumference squared × 0.07958.

Sector of circle = length of arc × half radius.

Segment of circle = area of sector of equal radius - triangle when segment is less, and + triangle when segment is greater than the semicircle; also for flat segments very nearly =

$$\frac{4v}{3}\sqrt{0.388 \ v^2 + \frac{c^2}{4}}$$

Side of square of equal area as circle = diameter × 0.8862; also, = circumference × 0.2821.

Diameter of circle of equal area as square = side \times 1.1284.

Parabola = base $\times \frac{2}{3}$ height.

Ellipse = long diameter \times short diameter \times 0.7854.

Regular polygon = sum of sides × half perpendicular distance from center to sides.

APPROXIMATE AREA OF IRREGULAR FIGURE.

Divide figure into n strips by equidistant parallel ordinates, h₀, h₁, h₂, etc.

Then by

Simpson's Rule, (n must be even)

Area =
$$\frac{\mathbf{W}}{3}$$
[(h₀+h_n)+4(h₁+h₃+...h_{n-1})+2(h₂+h₄+...h_{n-2})]

Durand's Rule

Area = w[0.4 (h₀+h_n)+1.1 (h₁+h_{n-1})+(h₂+h₃+...h_{n-2})]

Trapezoidal Rule

Area = w $[\frac{1}{2}(h_0+h_n)+(h_1+h_2+h_3+...h_{n-1})]$

RELATIONS IN CIRCULAR SEGMENTS

Central	Area	Chord	Height	Arc	Central	Area	Chord	Height	Arc
Angle Degrees	Radius ²	Radius	Radius	Radius	Angle	Radius ²	Radius	Radius	Radiu
1	.0640	.017	.0440	.017	46	.04176	.781	.0795	.80
2	.0535	.035	.0315	.035	47	.04448	.797	.0829	.82
3	.0 ₄ 12 .0 ₄ 28	.052	.0:34	.052	48	.04731	.813	.0865	.83 .85
5	.0,55	.087	.0:95	.087	50	.05331	.845	.0937	.87
6 7 8	.0 ₄ 96 .00015	.105	.0014	.105	51 52	.05649	.861 .877	.0974	.89
B	.00013	.140	10024	.140	53	.06319	.892	.1012	.92
9	.00032	.157	.0031	.157	54	.06673	.908	.1090	.94
10	.00044	.174	.0038	.175	55	.07039	.923	.1130	.95
11 12	.00059	.192	.0046	.192	56 57	.07417	.939	.1171	.97
13	.00097	.226	.0064	.227	58	.08212	.970	.1254	1.01
14	.00121	.244	.0075	.244	59	.08629	.985	.1296	1.03
15	.00149	.261	.0086	.262	60	.09059	1.000	.1340	1.04
16	.00181	.278	.0097	.279	61	.09502	1.015	.1384	1.06
17 18	.00217	.296	.0110	.297	62	.09058	1.030	.1428	1.08
19	.00302	.330	.0137	.332	64	.10911	1.060	.1520	1.11
20	.00352	.347	.0152	.349	65	.11408	1.075	.1566	1.13
21 22	.00408	.364	.0167	.367	66	.11919	1.089	.1613	1.15
23	.00468	.382	.0184	.401	67 68	.12443	1.104	.1661	1.16
24	.00607	.416	.0219	.419	69	.13535	1.133	.1759	1.20
25	.00686	.433	.0237	.436	70	.14102	1.147	.1808	1.22
26	.00771	.450	.0256	.454	71	.14683	1.161	.1859	1.23
27	.00862	.467	.0276	.471	72 73	.15279 .15889	1.190	.1910	1.25
29	.01067	.501	.0319	.506	74	.16514	1.204	.2014	1.29
30	.01180	.518	.0341	.524	75	.17154	1.218	.2066	1.30
31	.01301	.534	.0364	.541	76	.17803	1.231	.2120	1.32
33	.01429	.551	.0387	.559	77 78	.18477	1.245	.2174	1.34
34	.01711	.585	.0412	.593	79	.19859	1.272	.2284	1.36
35	.01864	.601	.0463	.611	80	.20573	1.286	.2340	1.39
36 37	.02027	.618	.0489	.628	81 82	.21301	1.299 1.312	.2396	1.41
38	.02198	.651	.0545	.646	83	.22045	1.312	.2453	1.43
39	.02568	.658	.0574	.681	84	.23578	1.338	.2569	1.46
40	.02767	.684	.0603	.698	85	.24367	1.351	.2627	1.48
41	.02976	.700	.0633	.716	86	.25171	1.364	.2686	1.50
42	.03195	.717	.0664	.733	87	.25990	1.377	.2746	1.51
44	.03425	.749	.0728	.750 .768	89	.26825	1.402	.2807	1.53
45	.03915	.765	.0761	.785	90	28540	1.414	.2929	

RELATIONS IN CIRCULAR SEGMENTS

Central Angle	Area Radius:	Chord	Height Radius	Arc	Central Angle Degrees	Area Radius:	Chord Radius	H-ight Radius	Arc
Degrees					Degrees				
91	.2942	1.427	.2991	1.588	136	.8395 .8545	1.854	.6254	2.374
92 93	.3032	1.439	.3116	1.606	137 138	.8697	1.867	.6416	2.409
94	.3215	1.463	.3180	1.641	139	.8850	1.873	.6498	2.426
96	.3309	1.475	.3244	1.658	140	.9003	1.879	.6580	2.443
96	.3405	1.486	.3309	1.676	141	.9158	1.885	.6662	2.46
97 98	.3502	1.498	.3374	1.693	142 143	.9313	1.891	.6744	2.47
99	.3701	1.521	.3506	1.710	144	.9627	1.902	.6910	2.51
100	.3803	1.532	.3572	1.745	145	.9786	1.907	.6993	2.53
101	.3906	1.543	.3639	1.763	146	.9945	1.913	.7076	2.54
102	.4010	1.554	.3707	1.780	147 148	1.0105	1.918	.7160	2.56
103	.4224	1.565	.3843	1.798	149	1 0427	1.927	.7328	2.60
105	.4333	1.587	.3912	1.833	150	1.0590	1.932	.7412	2.61
106	.4444	1.597	.3982	1.850	151	1.0753	1.936	.7496	2.63
107	.4556	1.608	.4052	1.868	152	1.0917	1.941	.7581	2.65
108	.4669	1.618	.4122	1.885	153 154	1.1082	1.945	.7666	2.67
110	.4901	1.638	.4264	1.920	155	1.1413	1.953	.7836	2.70
111	.5019	1.648	.4336	1.937	156	1.1589	1.956	.7921	2.72
112	.5138	1.658	.4408	1.955	157 153	1.1747	1.960	.8006	2.74
114	.5381	1.677	.4554	1.990	159	1.2083	1.967	.8178	2.77
115	.5504	1.687	.4627	2.007	160	1.2252	1.970	.8264	2.79
116	.5629	1.696	.4701	2.025	161	1.2422	1.973	.8350	2.81
117	.5755	1.705	.4775	2.042	162 163	1.2592	1.975	.8436	2.82
119	.6012	1.723	.4925	2.077	164	1.2933	1.981	.8608	2.86
120	.6142	1.732	.5000	2.094	165	1.3105	1.933	.8695	2.88
121	.6273	1.741	.5076	2.112	166	1.3277	1.985	.8781	2.89
122 123	.6406	1.749	.5152	2.129	167 168	1.3449	1.987	.8868	2.91
124	.6676	1.766	.5305	2.164	169	1.3794	1.991	.9042	2.95
125	.6812	1.774	.5383	2.182	170	1.3967	1.992	.9128	2.96
126	.6950	1.782	.5460	2.199	171	1.4140	1.994	.9215	2.98
127 128	.7090 .7230	1.790	.5538	2.217	172 173	1.4314	1.995	.9302	3.00
129	.7372	1.805	.5695	2.251	174	1.4562	1.997	.9477	3.03
130	.7514	1.813	.5774	2.269	175	1.4836	1.998	.9564	3.05
131	.7658	1.820	.5853	2.286	176	1.5010	1.999	.9651	3.07
132	.7803	1.827	.5933	2.304	177	1.5185	1.999	.9738	3.08
134	.7950 .8097	1.834	.6013	2.321	178 179	1.5359	2.000	.9825	3.10
135	.8245	1.848			180	1.5708		1.0000	

SURFACES AND VOLUMES OF SOLIDS.

CYLINDER

Convex Surface = πdh

Total Surface = $\pi dh + \frac{\pi d^2}{2}$

Volume = $\frac{\pi}{4}$ d²h

Volume Cylinder, right or oblique = area of section at right angles to sides X length of side.

PRISM

Lateral Surface = h × Base Perimeter Total Surface = Lateral Surface + (2 × Base Area) Volume = h × Base Area

PYRAMIO

Lateral Surface $=\frac{s}{2} \times Base$ Perimeter Total Surface =Lateral Surface +Base Area Volume $=\frac{h}{2} \times Base$ Area

Center of Gravity $=\frac{h}{4}$, above base

FRUSTUM OF PYRAMID

Lateral Surface = s(Top + Base Perimeters) ÷ 2
If a = top area and A = base area,
Total Surface = Lateral Surface + (a+A)

Volume = $h(a+A+\sqrt{aA}) \div 3$ Center of Gravity = $\frac{h}{4} \left(\frac{3a+A+2\sqrt{aA}}{a+A+\sqrt{aA}}\right)$

CONE

Convex Surface = $\frac{\pi}{2}$ ds = $\frac{\pi d}{4} \sqrt{d^2 + 4h^2}$ Total Surface = Convex Surface + $\frac{\pi d}{4}$

Volume = $\frac{\pi}{12}$ d²h = $\frac{\pi}{24}$ d² $\sqrt{4s^2 - d^2}$ Center of Gravity above base = $\frac{h}{4}$

FRUSTUM OF CONE

Convex Surface = $\frac{\pi S}{2}$ (d +d') = $\frac{\pi}{4}$ (d +d') $\sqrt{4h^2 + (d-d')^2}$ Total Surface = $\frac{\pi S}{2}$ (d +d') + $\frac{\pi}{4}$ (d²+d'²)

Volume = $\frac{\pi h}{12} (d^2 + dd' + d'^2)$

Center of Gravity above base = $\frac{h(d^2 + 2dd' + 3d'^2)}{4(d^2 + dd' + d'^2)}$

WEDGE

Surface = Sum of surfaces of bounding planes Volume = $\frac{wh}{c}(l+m+n)$

SURFACES AND VOLUMES OF SOLIDS.

SPHERE

Surface = $\pi d^2 = 4\pi r^2$ Volume = $\frac{\pi d^3}{6} = \frac{4}{3}\pi r^3$

Side of an equal cube =diameter of sphere × 0.806 Length of an equal cylinder =diameter of sphere × 0.6667

Center of Gravity of Half Sphere
= %r above spherical center

SPHERICAL SECTOR

Total Surface = $\frac{\pi r}{2}(4h + c)$

Volume = $\frac{2}{3}\pi r^2 h = \frac{2}{3}\pi r^2 \left(r - \sqrt{r^2 - \frac{c^2}{4}}\right)$

Center of Gravity = $\frac{3}{4}$ $\left(r - \frac{h}{2}\right)$

SPHERICAL SEGMENT

Spherical Surface = $2\pi rh = \pi (c^2 + 4h^2) \div 4$ Total Surface = Spherical Surface + $(\pi c^2 \div 4)$ Volume = $\pi h^2(3r - h) \div 3 = \pi h(3c^2 + 4h^2) \div 24$ Center of gravity above base of segment = $h(4r - h) \div 4(3r - h)$

SPHERICAL ZONE

Convex Surface = 2 mrh

Total Surface = $2\pi rh + \frac{\pi}{4}(c^2 + c'^2)$

Volume = $\frac{\pi h}{24}$ (3c²+3c'²+4h²)

ELLIPSOID (I. Revolution about transverse axis)

Surface = $2\pi r \left[r + R \left(\frac{\sin^{-1}e}{e} \right) \right]$

 $Volume = \frac{4}{3} Rr^2$

ELLIPSOID (II. Revolution about conjugate axis)

Surface = $\pi \left[2R^2 + \frac{2.302r^2}{e} \log \cdot \left(\frac{1+e}{1-e} \right) \right]$ Volume = $\frac{4}{3} \pi R^2 r$ Where $e = \frac{\sqrt{R^2 - r^2}}{R}$

PARABOLOID

Convex Surface = $\frac{\pi r}{6h^2} \left[(r^2 + 4h^2)^{3/2} - r^3 \right]$

Total Surface = Convex Surface + πr^2

Volume = $\frac{\pi r^2 h}{2}$ Center of Gravity = $\frac{h}{3}$ above base

SURFACES AND VOLUMES OF SOLIDS

CIRCULAR RING (TORUS)

D & R=Mean Diameter and Mean Radius, respectively, of Ring

respectively, of Ring d & r=Mean Diameter and Mean Radius, respectively, of Section Surface $=\pi^2 \mathrm{Dd} = 4\pi^2 \mathrm{Rr}$

Volume = $2\pi^2 R r^2 = \frac{\pi^2}{4} Dd^2$

PRISMOID

End faces are in parallel planes.

Volume = $\frac{1}{6}$ (A + A' + 4M), where

1 = perpendicular distance between ends
A, A' = areas of ends
M = area of mid section, parallel to ends

UNGULAS FROM RIGHT CIRCULAR CYLINDER

(As formed by cutting plane oblique to base)

I. Base, abc, less than semicircle; Convex Surface

 $= h(2re - (d \times length arc abc)) \div (r - d)$ $Volume = h(\frac{3}{2}e^{2} - (d \times area base abc)) \div (r - d)$

I. Base, abc, = semicircle;

Base, abc, = semicircle; Convex Surface = 2rh Volume = $\frac{2}{3}r^2h$

III. Base, abc, greater than semicircle (figure); Convex Surface

 $=h(2re+(d\times length arc abc))\div(r+d)$ Volume = $h(2ge^3+(d\times area base abc))\div(r+d)$

IV. Base, abc, = circle, oblique plane touching circumference.

Convex Surface = π rh Volume = $\frac{1}{2}\pi$ r²h Base, abc, = circle, oblique plane entirely

above (figure). Convex Surface = 2πr ×½(h, minimum+H, maximum)

 $\times \frac{1}{2}$ (h, minimum+H, maximum Volume = $\pi r^2 \times \frac{1}{2}$ (h, minimum +H, maximum)

ANY SOLID OF REVOLUTION

Let abcd represent the generating section about axis A-A of solid abef.

Let g at distance h from A-A be the center of gravity of abcd.

Let α^0 be the angular amount of generating revolution.

Then

Total Surface of solid abef $= (2\pi \ln \alpha + 360) \times \text{perimeter abcd}$ Volume of solid abef $= (2\pi \ln \alpha + 360) \times \text{area abcd}$ For complete revolution $(2\pi \ln \alpha + 360) = 2\pi \ln \alpha + 360$

MINUTES AND SECONDS EXPRESSED AS DECIMALS OF A DEGREE

Minutes	0	10	20	30	40	50
0 1 2 3 4	.01667 .03333 .05000 .06667	.16667 .18333 .20000 .21667 .23333	.33333 .35000 .36667 .38333 .40000	.50000 .51667 .53333 .55000 .56667	.66667 .68333 .70000 .71667 .73333	.83335 .85000 .86667 .88333 .90000
5 6 7 8 9	.08333 .10000 .11667 .13333 .15000	.25000 .26667 .28333 .30000 .31667	.41667 .43333 .45000 .46667 .43333	.58333 .60000 .61667 .63333 .65000	.75000 .76667 .78333 .80000 .81667	.91667 .93333 .95000 .96667 .98333
Seconds	0	10	20	30	40	50
0 1 2 3 4	.00028 .00056 .00083 .00111	.00278 .00306 .00333 .00361 .00389	.00556 .00583 .00611 .00639 .00667	.00833 .00861 .00889 .00917 .00944	.01111 .01139 .01167 .01194 .01222	.01389 .01417 .01444 .01472 .01500
5 6 7 8 9	.00139 .00167 .00194 .00222 .00250	.00417 .00444 .00472 .00500 .00528	.00694 .00722 .00750 .00778 .00806	.00972 .01000 .01028 .01056 .01083	.01250 .01278 .01306 .01333 .01361	.01528 .01556 .01583 .01611 .01639

DECIMALS OF A DEGREE EXPRESSED AS MINUTES OR SECONDS

Degree	.00 Min. (Sec.)	10 Min. (Sec.)	.20 Min. (Sec.)	.30 Min. (Sec.)	
.00 .01 .02 .03 .04	.6(36) 1.2(72) 1.8(108) 2.4(144)	6.0(360) 6.6(396) 7.2(432) 7.8(468) 8.4(504)	12.6(756) 13.2(792) 13.8(828)	18.0 (1080) 18.6 (1116) 19.2 (1152) 19.8 (1188) 20.4 (1224)	25.2 (1512) 25.8 (1548)
.05 .06 .07 .08 .09	3.0(180) 3.6(216) 4.2(252) 4.8(288) 5.4(324)	9.0(540) 9.6(576) 10.2(612) 10.8(648) 11.4(684)	15.6 (936 16.2 (972 16.8 (1008)	21.0 (1260) 21.6 (1296) 22.2 (1332) 22.8 (1368) 23.4 (1404)	27.6 (1656 28.2 (1692 28.8 (1728
Degree	Min. (Sec.)	.60 Min. (Sec.)	.70 Min. (Sec.)	1.80 Min. (Sec.)	.90 Min. (Sec.)
.00 .01 .02 .03 .04	30.0(1800) 30.6(1836) 31.2(1872) 31.8(1908) 32.4(1944)	37.2 2232 37.8 2268	42.6 2556 43.2 2592 43.8 (2628)	48.0 (2880) 48.6 (2916) 49.2 (2952) 49.8 (2988) 50.4 (3024)	54.6 (3276) 55.2 (3312) 55.8 (3348)
.05 .06 .07 .08	33.6 (2016) 34.2 (2052) 34.8 (2088)	39.0(2340) 39.6(2376) 40.2(2412) 40.8(2448) 41.4(2484)	45.6 (2736) 46.2 (2772) 46.8 (2808)	51.6 (3096) 52.2 (3132) 52.8 (3168)	57.6 3456 58.2 3492 58.8 3528

WEIGHTS AND MEASURES.

AVOIRDUPOIS WEIGHT.

United States and British.

Grains.	Drams,	Ounces.	Pounds.	Hundred- weight.	Gross Tons.
1. 27.34375 437.5 7000. 784000. 15680000.	.03657 1. 16. 256. 28672. 573440.	.002286 .0625 1. 16. 1792. 35840.	.000143 .003906 .0625 1. 112. 2240.	.00000128 .00003488 .00055804 .0089286 1. 20.	.000000064 .000001744 .00002790 .0004464 .05

¹ pound avoirdupois = 1.215278 pounds troy.

TROY WEIGHT.

United States and British.

Grains.	Pennyweight.	Ounces.	Pounds.
1 24 480 5760	.041667 1. 20. 240.	.0020833 .05 1.	.0001736 .0041667 .0833333

¹ pound troy = .822857 pound avoirdupois. 175 ounces troy = 192 ounces avoirdupois.

APOTHECARIES' WEIGHT.

United States and British.

Grains.	Scruples.	Drams.	Ounces.	Pounds.
1 20 60 480 5760	.05 1. 3. 24. 288.	.016667 .333333 1. 8. 96.	.0020833 .0416667 .125 1.	.000173611 .0034722 .0104167 .0833333 1.

The pound, ounce and grain are the same as in troy weight.

The avoirdupois grain = troy grain = apothecaries' grain.

¹ net ton = 2000 pounds = .892857 gross ton.

WEIGHTS AND MEASURES—Continued. LINEAR MEASURE.

United States and British.

Inches.	Feet.	Yards.	Rods.	Furlongs.	Miles.
1 12 36 198 7920 63360	.08333 1. 3. 16.5 660. 5280.	.02778 .33333 1. 5.5 220. 1760.	.0050505 .0606061 .1818182 1. 40. 320.	.00012626 .00151515 .00454545 .025 1.	.00001578 .00018939 .00056818 .003125 .125

ROPE AND CABLE MEASURE.

- 1 inch = .111111 span = .013889 fathom = .0001157 cable's length.
- 1 span = 9 inches = .125 fathom = .00104167 cable's length.
- 1 fathom = 6 feet = 8 spans = 72 inches = .008333 cable's length.
- 1 cable's length = 120 fathoms = 720 feet = 960 spans = 8640 inches.

NAUTICAL MEASURE.

1 nautical mile, as adopted by the United States Coast and Geodetic Survey, equals the length of one minute of arc of a great circle of a sphere whose surface equals that of the earth = 6080.204 feet = 1.1516 statute miles.

1 league = 3 nautical miles = 18240.613 feet.

GUNTER'S CHAIN.

- 1 link = 7.92 inches = .01 chain = .000125 mile.
- 1 chain = 100 links = 66 feet = 4 rods = .0125 mile.
- 1 mile = 80 chains = 8000 links.

SQUARE OR LAND MEASURE.

United States and British.

Square Inches.	Square Feet.	Square Yards.	Square Rods.	Acres.	Square Miles.
1 144 1296 39204 6272640	.006944 1. 9.0 272.25 43560. 27878400.	.0007716 .111111 1. .30.25 4840. 3097600.	.03306 1. 160. 102400.	.0002066 .00625 1. 640.	.00000977 .0015625

- 1 square rood = 40 square rods.
- 1 acre = 4 square roods.
- 1 square acre = 208.71 feet square.

WEIGHTS AND MEASURES-Continued.

CUBIC OR SOLID MEASURE.

United States and British.

- 1 cubic inch = .0005787 cubic foot = .000021433 cubic vard.
- 1 cubic foot = 1728 cubic inches = .03703704 cubic yard.
- 1 cubic yard = 27 cubic feet = 46656 cubic inches.
- 1 cord of wood = 128 cubic feet = 4 feet by 4 feet by 8 feet.
- 1 perch of masonry = 24.75 cubic feet = 16.5 feet by 1.5 feet by 1 foot. It is usually taken as 25 cubic feet.

DRY MEASURE.

United States only.

Pints.	Quarts.	Gallons.	Pecks.	Bushels	Cubic Inches.
1 2 8 16 64	.50 1. 4. 8. 32.	.125 .25 1. 2. 8.	.0625 .125 .05 1.	.015625 .03125 .125 .25	33,6003125 67.200625 263.8025 537.605 2150.42

1 heaped bushel = 1.25 struck bushel, and the cone must be not less than 6 inches high.

LIQUID MEASURE.

United States only.

Gills.	Pints.	Quarts.	Gallons.	Barrels.	Cubic Inches.
1 4 8 32 1008	.25 1. 2. 8. 252.	.125 .5 1. 4. 126.	.03125 .125 .25 1. 31.5	.000992 .003968 .007937 .031746	7.21875 28.875 57.75 231. 7276.5

The British imperial gallon = 277.410 cubic inches or 10 pounds avoirdupois of pure water at 62° F. and barometer at 30 inches.

The British imperial gallon = 1.20091 United States gallons.

- 1 fluid drachm = 60 minims = .125 fluid ounce = .0078125 pint.
- 1 fluid ounce = 480 minims = 8 drachms = .0625 pint.

WEIGHTS AND MEASURES-Concluded.

METRIC SYSTEM.

Measures of Length, Capacity and Weight.

LENGTH.	Kilometre.	Hecto- metre.	Decametre.	Metre.	Decimetre.	Centimetre.	Millimetre.
CAPACITY.	Kilolitre or Stere.	Hectolitre or Decistere.	Decalitre or Centistere.	Litre or Millistere.	Decilitre.	Centilitre.	Millilitre.
WEIGHT.	Kilo- gramme.	Hecto- gramme.	Deca- gramme.	Gramme.	Deci- gramme.	Centi- gramme.	Milli- gramme.
	I	10 1	100 10 1	1000 100 10 10 1 1 .01 .001	10000 1000 100 10 10 10 1.1 .01	100000 10000 1000 100 100 10 10 1	1000000 100000 10000 1000 1000 100 10

1 myriametre = 10 kilometres = 10000 metres.

1 tonne = 1000 kilogrammes = 100 quintals = 10 myriagrammes.

1 gramme = weight of 1 cubic centimetre of distilled water at its maximum density at sea level in latitude of Paris and barometer at 760 millimetres.

1 litre = 1 cubic decimetre.

METRIC SYSTEM.

Square or Surface Measure.

Square Kilometre.	Square Hectometre or Hectare.	Square Decametre or Are.	Square Metre or Centiare.	Square Decimetre.	Square Centimetre.	Square Millimetre.
1	100 1 .01 .0001 .000001	10000 100 1 .01 .0001 .000001	1000000 10000 100 100 1 .01 .0001 .000001	1000000 10000 100 1 .01 .0001	1000000 10000 100 100	1000000 10000 100 1

1 square myriametre = 100 square kilometres = 100 000 000 square metres.

METRIC SYSTEM.

Cubic Measure.

Cubic Decametre.	Cubic Metre.	Cubic Decimetre.	Cubic Centimetre.	Cubic Millimetre.
.001 .000001 .00000001	1000 1 .001 .000001 .00000001	1000000 1000 1 .001 .000001	1000000000 1000000 1000 1000	1000000000 1000000 1000 1

1 cubic metre = 1 kilolitre = 1 stere.

CUSTOMARY TO METRIC.

Weights.

See Page 590

No.	Grains to Milligrammes.	Troy Ounces to Grammes.	Avoirdupois Ounces to Grammes.	Avoirdupois Pounds to Kilogrammes. Page 582	Net Tons of 2000 Pounds to Tonnes.	Gross Tons of 2240 Pounds to Tonnes.
1	64.79892	31.10348	28.34953	.45359	.90718	1.01605
2	129.59784	62.20696	56.69905	.90718	1.81437	2.03209
3	194.39675	93.31044	85.04858	1.36078	2.72155	3.04814
4	259.19567	124.41392	113.39811	1.81437	3.62874	4.06419
5	323.99459	155.51740	141.74763	2.26796	4.53592	5.08024
6	388.79351	186.62088	170.09716	2.72155	5.44311	6.09628
7	453.59243	217.72437	198.44669	3.17515	6.35029	7.11233
8	518.39135	248.82785	226.79621	3.62874	7.25748	8.12838
9	583.19026	279.93133	255.14574	4.08233	8.16466	9.14442

1 Avoirdupois Pound = 453.5924277 Grammes.

Linear Measure.

No.	64ths of an Inch to Millimetres. Page 450	Inches to Centimetres. Page 568	Feet to Metres. Page 574	Yards to Metres.	Statute Miles to Kilometres.	Nautical Miles to Kilometres.
1	.39688	2.54001	.304801	.914402	1.60935	1.85325
2	.79375	5.08001	.609601	1.828804	3.21869	3.70650
3	1.19063	7.62002	.914402	2.743205	4.82804	5.55975
4	1.58750	10.16002	1.219202	3.657607	6.43739	7.41300
5	1.98438	12.70003	1.524003	4.572009	8.04674	9.26625
6	2.38125	15.24003	1.828804	5.486411	9.65608	11.11950
7	2.77813	17.78004	2.133604	6.400813	11.26543	12.97275
8	3.17501	20.32004	2.438405	7.315215	12.87478	14.82600
9	3.57188	22.86005	2.743205	8.229616	14.48412	16.67925

- 1 Nautical Mile = 1853.25 Metres.
- 1 Gunter's Chain = 20.1168 Metres.
- 1 Fathom = 1.829 Metres.

METRIC TO CUSTOMARY. Weights.

See Page 590

No.	Milligrammes to	Grammes to	Grammes to Avoirdupois	Kilogrammes to Aveirdupeis	Tonnes to Het Tons of	Tonnes to Gross Tons of
	Grains.	Troy Ounces.	Ounces.	Pounds.	2000 Pounds.	2240 Pounds
1 2 3 4 5 6 7 8 9	.01543 .03086 .04630 .06173 .07716 .09259 .10803 .12346 .13889	.03215 .06430 .09645 .12860 .16075 .19290 .22506 .25724 .28936	.03527 .07055 .10582 .14110 .17637 .21164 .24692 .28219 .31747	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160	1.10231 2.20462 3.30693 4.40924 5.51156 6.61387 7.71618 8.81849 9.92080	.98421 1.96841 2.95262 4.95262 4.92103 5.90524 6.88944 7.87365 8.85785

1 Kilogramme = 15432.35639 Grains.

Linear Measure.

No.	Millimetres to 64ths of an Inch.	centimetres to Inches. Page 570	Metres to Feet. Page 578	Metres to Yards.	Eilemetres to Statute Miles.	Eilometres to Nautical Miles.
1 2 3 4 5 6 7	2.51968 5.03936 7.55904 10.07872 12.59840 15.11808 17.63776 20.15744 22.67712	.39370 .78740 1.18110 1.57480 1.96850 2.36220 2.75590 3.14960 3.54330	3.280833 6.561667 9.842500 13.123333 16.404167 19.685000 22.965833 26.246667 29.527500	1.093611 2.187222 3.281833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	.62137 1.24274 1.57411 2.48548 3.11555 3.72822 4.34959 4.97096 5.59233	.53959 1.07919 1.61878 2.15\$37 2.69796 3.23756 3.77715 4.31674 4.85633

CUSTOMARY TO METRIC.

Square Measure.

No.	Square Inches to Square Centimetres.	Square Feet to Square Metres.	Square Yards to Square Metres.	Acres to Hectares.	Square Miles to Square Kilometres.
1 2 3 4 5 6 7	6.45163 12.90325 19.35488 25.80650 32.25813 38.70975 45.16138 51.61300 58.06463	.09290 .18581 .27871 .37161 .46452 .55742 .65032 .74323 .83613	.83613 1.67226 2.50839 3.34452 4.18065 5.01679 5.85292 6.68905 7.52518	.40470 .80939 1.21409 1.61879 2.02349 2.42818 2.83288 3.29758 3.64228	2.59000 5.18000 7.77000 10.35999 12.94999 15.53999 18.12999 20.71999 23.30999

¹ Square Statute Mile = 259.00 Hectares.

Cubic Measure

No.	Cubic Inches to Cubic Centimetres.	Cubic Inches to Cubic Decimetres.	Cubic Feet to Cubic Metres.	Cubic Yards to Cubic Metres.
1 2 3 4 5 6 7 8 9	16.38716 32.77482 49.16148 65.54864 81.93580 98.32296 114.71013 131.09729 147.48445	.01639 .03277 .04916 .06555 .08194 .09832 .11471 .13110	.02832 .05663 .08495 .11327 .14159 .16990 .19822 .22654 .25485	.76456 1.52912 2.29368 3.05824 3.82280 4.58736 5.35192 6.11648 6.88104

METRIC TO CUSTOMARY.

Square Measure.

No.	Square Centi- metres to Square Inches.	Square Metres to Square Feet.	Square Metres to Square Yards.	Hectares to Acres.	Square Kilo- metres to Square Miles.
1	.15500	10.76387	1.19599	2.47104	.38610
2	.31000	21.52773	2.39197	4.94209	.77220
3	.46500	32.29160	3.58796	7.41313	1.15830
4	.62000	43.05547	4.78394	9.88418	1.54440
5	.77500	53.81934	5.97993	12.35522	1.93050
6	.93000	64.58320	7.17591	14.82626	2.31660
7	1.08500	75.34707	8.37190	17.29731	2.70270
8	1.24000	86.11094	9.56788	19.76835	3.08880
9	1.39500	96.87481	10.76387	22.23940	3.47490

1 Hectare = .003861 Square Statute Mile.

Cubic Measure

No.	Cubic Centimetres	Cubic Decimetres	Cubic Metres	Cubic Metres
2101	Cubic Inches.	Cubic Inches.	Cubic Feet.	Cubic Yards
1	.06102	61.02338	35.31445	1.30794
2 3 4 5 6	.12205	122.04676 183.07013	70.62891 105.94336	2.61589 3.92383
4 5	.24409	244.09351 305.11689	141.25782 176.57227	5.23177 6.53971
6	.36614	366.14027 427.16365	211.88673 247.20118	7.84766
8	.48819	488.18702 549.21040	282.51564 317.83009	9.15560 10.46354 11.77149

CUSTOMARY TO METRIC.

Capacity Measures.

No.	Liquid Quarts to Litres.	Gallons to Litres.	Gallons to Gubic Metres.	Bushels to Hectolitres.	Fluid Drachms to Millilitres or Cubio Centimetres.	Fluid Ounces to Millilitres or Cubio Centimetres.
1	.94636	3.78543	.00379	.35239	3.69671	29.57370
2	1.89272	7.57087	.00757	.70479	7.39343	59.14741
3	2.83908	11.35630	.01136	1.05718	11.09014	88.72111
4	3.78543	15.14174	.01514	1.40957	14.78685	118.29482
5	4.73179	18.92717	.01893	1.76196	18.48357	147.86852
6	5.67815	22.71260	.02271	2.11436	22.18028	177.44222
7	6.62451	26.49804	.02650	2.46675	25.87699	207.01593
8	7.57087	30.28347	.03028	2.81914	29.57370	236.58963
9	8.51723	34.06891	.03407	3.17154	33.27042	266.16334

Miscellaneous.

No.	Pounds per Lineal Foot to Kilogrammes per Lineal Metre.	Pounds per Square Inch to Kilogrammes per Square Centimetre.	Pounds per Square Foot to Kilogrammes per Square Metre.	Pounds per Cubic Foot to Kilogrammes per Cubic Metre.	Foot-Pounds to Kilogramme- Metres	United States Horsepower to Metric Horsepower.
1	1.48816	.07031	4.88241	16.01837	.13826	1.01387
2	2.97632	.14061	9.76482	32.03674	.27651	2.02775
3	4.46448	.21092	14.64723	48.05510	.41477	3.04162
4	5.95264	.28123	19.52963	64.07348	.55302	4.05549
5	7.44081	.35153	24.41204	80.09185	.69128	5.06937
6	8.92897	.42184	29.29445	96.11021	.82953	6.08324
7	10.41713	.49215	34.17686	112.12858	.96779	7.09711
8	11.90529	.56245	39.05927	128.14695	1.10604	8.11098
9	13.39345	.63276	43.94168	144.16532	1.24430	9.12486

METRIC TO CUSTOMARY.

Capacity Measures.

No.	Litres to Fluid Quarts.	Litres to Gallons.	Cubic Metres to Gallons.	Hectolitres to Bushels.	Millilitres or Cubic Centi- metres to Fluid Drachms.	Millilitres or Cubic Centi- metres to Fluid Ounces.
1 2 3 4 5 6 7 8	1.05668 2.11336 3.17005 4.22673 5.28341 6.34009 7.39677 8.45345 9.51014	.26417 .52834 .79251 1.05668 1.32085 1.58502 1.84919 2.11336 2.37753	264.17047 528.34093 792.51140 1056.68187 1320.85234 1585.02280 1849.19327 2113.36374 2377.53420	2.83774 5.67548 8.51323 11.35097 14.18871 17.02645 19.86420 22.70194 25.53968	.27051 .54102 .81153 1.08204 1.35255 1.62306 1.89357 2.16408 2.43460	.03381 .06763 .10144 .13526 .16907 .20288 .23670 .27051 .30432

Miscellaneous.

No.	Kilogrammes per Lineal Metre to Pounds per Lineal Foot.	Kilogrammes per Square Centimetre to Pounds per Square Inch.	Kilogrammes per Square Metre to Pounds per Square Foot.	per Cubic Metre to Pounds per Cubic Foot,	Kilogramme- Metres to Foot-Pounds.	Metric Horsepower to United States Horsepower.
1 2 3 4 5 6 7 8	.67197 1.34393 2.01590 2.68787 3.35984 4.03180 4.70377 5.37574 6.04770	14,22340 28,44680 42,67020 56,89359 71,11699 85,34039 99,56379 113,78719 128,01059	.20482 .40963 .61445 .81927 1.02408 1.22890 1.43372 1.63854 1.84335	.06243 .12486 .18728 .24971 .31214 .37457 .43700 .49943 .56185	7.23300 14.46600 21.69899 28.93199 36.16499 43.39799 50.63098 57.86398 65.09698	.98632 1.97264 2.95895 3.94527 4.93159 5.91791 6.90423 7.89054 8.87686

EQUIVALENTS OF INCHES IN MILLIMETRES.

FRACTIONS OF AN INCH ADVANCING BY 32nds.

Page 450 shows values for each \(\frac{1}{64}\) to 1 inch.

Conversion Factor: 1 inch=25.40005 millimetres.

Inches		0"	1"	2"	3"	4"	5"
$\begin{array}{ccc} & \ddots & \ddots \\ & & 1 \\ & 32 & \ddots & \\ & \ddots & & \frac{1}{16} \\ & & 32 & \ddots & \\ & & & 32 & \ddots & \\ \end{array}$	0	1.588	25.400 26.194 26.988 27.781	50.800 51.594 52.388 53.181	76.994 77.788		127.794 128.588
$\frac{5}{32}$ $\frac{3}{6}$ $\frac{7}{32}$	1.8	3.969 4.763	28.575 29.369 30.163 30.956	54.769 55.563	80.169 80.963	104.775 105.569 106.363 107.156	130.969 131.763
$\frac{9}{32}$ $\frac{5}{16}$	14	7.144 7.938	31.750 32.544 38.338 34.131	57.944 58.738	83.344 84.138	107.950 108.744 109.538 110.331	134.144 134.938
$\frac{132}{32}$ $\frac{7}{16}$	3/8	10.319 11.113	34.925 35.719 36.513 37.306	61.119 61.913	86.519 87.313	111.125 111.919 112.713 113.506	137.319 138.113
$\begin{array}{cccc} & \ddots & \ddots & \\ \frac{17}{32} & \ddots & \\ \ddots & & \overline{16} \\ \frac{9}{32} & \ddots & \\ \end{array}$	I/2 	13.494 14.288	38.100 38.894 39.688 40.481	64.294 65.088	89.694 90.488	114.300 115.094 115.888 116.681	140.494 141.288
21 32 	? § 	16.669 17.463	41.275 42.069 42.863 43.656	67.469 68.263	92.869 93.663	117.475 118.269 119.063 119.856	143.669 144.463
25 32 13 27 32	34				96.044 96.838	120.650 121.444 122.238 123.031	146.844 147.638
29 32	78	22.225 23.019 23.813 24.606	48.419 49.213	73.025 73.819 74.613 75.406			150.019 150.813

12 Inches = 304.8006 Millimetres.

EQUIVALENTS OF INCHES IN MILLIMETRES.

Inches	6"	7"	8″	9"	10"	11''
$\begin{array}{cccc} \ddots & \ddots & 0 \\ \frac{1}{32} & \ddots & \ddots \\ \ddots & \frac{1}{16} & \ddots \\ \frac{3}{32} & \ddots & \ddots \end{array}$	153.194 153.988	178.594 179.388	203.200 203.994 204.788 205.582	229.394 230.188	254.794 255.588	280.194 280.988
$\begin{array}{ccccc} \ddots & \ddots & \frac{1}{8} \\ \frac{5}{32} & \ddots & \ddots \\ \ddots & \frac{3}{16} & \ddots \\ \frac{7}{32} & \ddots & \ddots \end{array}$	156.369 157.163	181.769 182.563	206.375 207.169 207.963 208.757	232.569 233.363	257.969 258.763	283.369 284.163
$\begin{array}{cccc} \ddots & \ddots & \frac{1}{4} \\ \frac{9}{32} & \ddots & \ddots \\ \ddots & \frac{5}{16} & \ddots \\ \frac{11}{32} & \ddots & \ddots \end{array}$	159.544 160.338	184.944 185.738	209.550 210.344 211.138 211.932	235.744 236.538	261.144 261.938	286.544 287.338
$\begin{array}{cccc} & & & & & & & 3/8 \\ \frac{13}{32} & & & & & & \\ & & & & & \frac{7}{16} & & \\ & & & & & \frac{15}{32} & & & & \\ \end{array}$	162.719 163.513	188.119 188.913	212.725 213.519 214.313 215.107	238.919 239.713	264.319 265.113	289.719 290.513
$\begin{array}{ccccc} \ddots & \ddots & \frac{1}{2} \\ \frac{17}{32} & \ddots & \ddots \\ \ddots & \frac{9}{16} & \ddots \\ \frac{19}{32} & \ddots & \ddots \end{array}$	165.894 166.688	191.294 192.088	215.900 216.694 217.488 218.282	242.094 242.888	267.494 268.288	292.894 293.688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	169.069 169.863	194.469 195.263	219.075 219.869 220.663 221.457	245.269 246.063	270.669 271.463	296.069 296.863
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172.244 173.038	197.644 198.438	222.250 223.044 223.838 224.632	248.444 249.238	273.844 274.638	299.244 300.038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.419 176.213	200.819 201.613	225.425 226.219 227.013 227.807	251.619 252.413	277.019 277.813	302.419 303.213

Conversion Factor: 1 millimetre=.03937 inch.

Millimetres	0	100	200	300	400
0	.000	3.937	7.874	11.811	15.748
1	.039	3.976	7.913	11.850	15.788
2	.079	4.016	7.953	11.890	15.827
3	.118	4.055	7.992	11.929	15.866
4	.157	4.095	8.032	11.969	15.906
5	.197	4.134	8.071	12.008	15.945
6	.236	4.173	8.110	12.047	15.984
7	.276	4.213	8.150	12.087	16.024
8	.315	4.252	8.189	12.126	16.063
9	.354	4.291	8.228	12.165	16.108
10	.394	4.331	8.268	12.205	16.142
11	.433	4.370	8.307	12.244	16.181
12	.472	4.409	8.347	12.284	16.221
13	.512	4.449	8.386	12.323	16.260
14	.551	4.488	8.425	12.362	16.299
15	.591	4.528	8.465	12.402	16.339
16	.630	4.567	8.504	12.441	16.378
17	.669	4.606	8.543	12.480	16.417
18	.709	4.646	8.583	12.520	16.457
19	.748	4.685	8.622	12.559	16.496
20	.787	4.724	8.661	12.599	16.536
21	.827	4.764	8.701	12.638	16.575
22	.866	4.803	8.740	12.677	16.614
23	.906	4.843	8.780	12.717	16.654
24	.945	4.882	8.819	12.756	16.693
25	.984	4.921	8.858	12.795	16.732
26	1.024	4.961	8.898	12.835	16.772
27	1.063	5.000	8.937	12.874	16.811
28	1.102	5.039	8.976	12.913	16.851
29	1.142	5.079	9.016	12.953	16.890
30	1.181	5.118	9.055	12.992	16.929
31	1.220	5.158	9.095	13.032	16.969
32	1.260	5.197	9.134	13.071	17.008
33	1.299	5.236	9.173	13.110	17.047
34	1.339	5.276	9.213	13.150	17.087
35	1.378	5.315	9.252	13.189	17.126
36	1.417	5.354	9.291	13.228	17.166
37	1.457	5.394	9.331	13.268	17.205
38	1.496	5.433	9.370	13.307	17.244
39	1.535	5.472	9.410	13.347	17.284
40	1.575	5.512	9.449	13.386	17.323
41	1.614	5.551	9.488	13.425	17.362
42	1.654	5.591	9.528	13.465	17.402
43	1.693	5.630	9.567	13.504	17.441
44	1.732	5.669	9.606	13.543	17.480
45	1.772	5.709	9.646	13.583	17.520
46	1.811	5.748	9.685	13.622	17.559
47	1.850	5.787	9.724	13.662	17.599
48	1.890	5.827	9.764	13.701	17.638
49	1.929	5.866	9.803	13.740	17.677

			1	1	i
Millimetres	0	100	200	300	400
50	1.969	5.906	9.843	13.780	17.717
51	2.008	5.945	9.882	13.819	17.756
52	2.047	5.984	9.921	13.858	17.795
53	2.087	6.024	9.961	13.898	17.835
54	2.126	6.063	10.000	13.937	17.874
55	2.165	6.102	10.039	13.977	17.914
56	2.205	6.142	10.079	14.016	17.953
57	2.244	6.181	10.118	14.055	17.992
58	2.283	6.221	10.158	14.095	18.032
59	2.323	6.260	10.197	14.134	18.071
60	2.362	6.299	10.236	14.173	18.110
61	2.402	6.339	10.276	14.213	18.150
62	2.441	6.378	10.315	14.252	18.189
63	2.480	6.417	10.354	14.291	18.229
64	2.520	6.457	10.394	14.331	18.268
65	2.559	6.496	10.433	14.370	18.307
66	2.598	6.535	10.473	14.410	18.347
67	2.638	6.575	10.512	14.449	18.386
68	2.677	6.614	10.551	14.488	18.425
69	2.717	6.654	10.591	14.528	18.465
70	2.756	6.693	10.630	14.567	18.504
71	2.795	6.732	10.669	14.606	18.543
72	2.835	6.772	10.709	14.646	18.583
73	2.874	6.811	10.748	14.685	18.622
74	2.913	6.850	10.787	14.725	18.662
75	2.953	6.890	10.827	14.764	18.701
76	2.992	6.929	10.866	14.803	18.740
77	3.032	6.969	10.906	14.843	18.780
78	3.071	7.008	10.945	14.882	18.819
79	3.110	7.047	10.984	14.921	18.858
80	3.150	7.087	11.024	14.961	18.898
81	3.189	7.126	11.063	15.000	18.937
82	3.228	7.165	11.102	15.040	18.977
83	3.268	7.205	11.142	15.079	19.016
84	3.307	7.244	11.181	15.118	19.055
85	3.346	7.284	11.221	15.158	19.095
86	3.386	7.323	11.260	15.197	19.134
87	3.425	7.362	11.299	15.236	19.173
88	3.465	7.402	11.339	15.276	19.213
89	3.504	7.441	11.378	15.315	19.252
90	3.543	7.480	11.417	15.354	19.292
91	3.583	7.520	11.457	15.394	19.331
92	3.622	7.559	11.496	15.433	19.370
93	3.661	7.598	11.536	15.473	19.410
94	3.701	7.638	11.575	15.512	19.449
95	3.740	7.677	11.614	15.551	19.488
98	3.780	7.717	11.654	15.591	19.528
97	3.819	7.756	11.693	15.630	19.567
98	3.858	7.795	11.732	15.669	19.606
99	3.898	7.835	11.772	15.709	19.646

Millimetres	500	600	700	800	900
0	19.685	23.622	27.559	31.496	35.433
1	19.725	23.662	27.599	31.536	35.473
2	19.764	23.701	27.638	31.575	35.512
3	19.803	23.740	27.677	31.614	35.552
4	19.843	23.780	27.717	31.654	35.552
5	19.882	23.819	27.756	31.693	35.630
6	19.921	23.858	27.796	31.733	35.670
7	19.961	23.898	27.835	31.772	35.709
8	20.000	23.937	27.874	31.811	35.748
9	20.040	23.977	27.914	31.851	35.788
10	20.079	24.016	27.953	31.890	35.827
11	20.118	24.055	27.992	31.929	35.866
12	20.158	24.095	28.032	31.969	35.906
13	20.197	24.134	28.071	32.008	35.945
14	20.236	24.173	28.110	32.048	35.985
15	20.276	24.213	28.150	32.087	36.024
16	20.315	24.252	28.189	32.126	36.063
17	20.355	24.292	28.229	32.166	36.103
18	20.394	24.381	28.268	32.205	36.142
19	20.433	24.370	28.307	32.244	36.181
20	20.473	24.410	28.347	32.284	36.221
21	20.512	24.449	28.386	32.323	36.260
22	20.551	24.488	28.425	32.362	36.300
23	20.591	24.528	28.465	32.402	36.339
24	20.630	24.567	28.504	32.441	36.378
25	20.669	24.607	28.544	32.481	36.418
26	20.709	24.646	28.583	32.520	36.457
27	20.748	24.685	28.622	32.559	36.496
28	20.788	24.725	28.662	32.599	36.536
29	20.827	24.764	28.701	32.638	36.575
30	20.866	24.803	28.740	32.677	36.615
31	20.906	24.843	28.780	32.717	36.654
32	20.945	24.882	28.819	32.756	36.693
33	20.984	24.921	28.859	32.796	36.733
34	21.024	24.961	28.898	32.835	36.772
35	21.063	25.000	28.937	32.874	36.811
36	21.103	25.040	28.977	32.914	36.851
37	21.142	25.079	29.016	32.953	36.890
38	21.181	25.118	29.055	32.992	36.929
39	21.221	25.158	29.095	33.032	36.969
40	21.260	25.197	29.134	33.071	37.008
41	21.299	25.236	29.173	33.111	37.048
42	21.339	25.276	29.213	33.150	37.087
43	21.378	25.315	29.252	33.189	37.126
44	21.418	25.355	29.292	33.229	37.166
45	21.457	25.304	29.331	33.268	37.205
46	21.496	25.433	29.370	33.307	37.244
47	21.536	25.473	29.410	33.347	37.284
48	21.575	25.512	29.449	33.386	37.323
49	21.614	25.551	29.488	33.425	37.363

Millimetres	500	600	700	800	900		
50	21.654	25.591	29.528	33.465	37.402		
51	21.693	25.630	29.567	33.504	37.441		
52	21.732	25.670	29.607	33.544	37.481		
53	21.772	25.709	29.646	33.583	37.520		
54	21.811	25.748	29.685	33.622	37.559		
55	21.851	25.788	29.725	33.662	37.599		
56	21.890	25.827	29.764	33.701	37.638		
57	21.929	25.866	29.803	33.740	37.677		
58	21.969	25.906	29.843	33.780	37.717		
59	22.008	25.945	29.882	33.819	37.756		
60	22.047	25.984	29.922	33.859	37.796		
61	22.087	26.024	29.961	33.898	37.835		
62	22.126	26.063	30.000	33.937	37.874		
63	22.166	26.103	30.040	33.977	37.914		
64	22.205	26.142	30.079	34.016	37.953		
65	22.244	26.181	30.118	34.055	37.992		
66	22.284	26.221	30.158	34.095	38.032		
67	22.323	26.260	30.197	34.134	38.071		
68	22.362	26.299	30.236	34.174	38.111		
69	22.402	26.339	30.276	34.213	38.150		
70	22.441	26.378	30.315	34.252	38.189		
71	22.481	26.418	30.355	34.292	38.229		
72	22.520	26.457	30.394	34.331	38.268		
73	22.559	26.496	30.433	34.370	38.307		
74	22.599	26.536	30.473	34.410	38.347		
75	22.638	26.575	30.512	34.449	38.386		
76	22.677	26.614	30.551	34.488	38.426		
77	22.717	26.654	30.591	34.528	38.465		
78	22.756	26.693	30.630	34.567	38.504		
79	22.795	26.733	30.670	34.607	38.544		
80	22.835	26.772	30.709	34.646	38.583		
81	22.874	26.811	30.748	34.685	38.622		
82	22.914	26.851	30.788	34.725	38.662		
83	22.953	26.890	30.827	34.764	38.701		
84	22.992	26.929	30.866	34.803	38.741		
85	23.032	26.969	30.906	34.843	38.780		
86	23.071	27.008	30.945	34.882	38.819		
87	23.110	27.047	30.985	34.922	38.859		
88	23.150	27.087	31.024	34.961	38.898		
89	23.189	27.126	31.063	35.000	38.937		
90	23.229	27.166	31.103	35.040	38.977		
91	23.268	27.205	31.142	35.079	39.016		
92	23.307	27.244	31.181	35.118	39.055		
93	23.347	27.284	31.221	35.158	39.095		
94	23.385	27.323	31.260	35.197	39.134		
95	23.424	27.362	31.299	35.237	39.174		
96	23.464	27.402	31.339	35.276	39.213		
97	23.503	27.441	31.378	35.315	39.252		
98	23.543	27.481	31.418	35.355	39.292		
99	23.582	27.520	31.457	35.394	39.331		

Conversion Factor: 1 foot = 0.3048006096 metre.

Feet	0	100	200	300	400
1 2 3 4	.30480 .60960 .91440 1.21920	30.48005 30.78485 31.08966 31.39446 31.69926	60.96012 61.26492 61.56972 61.87452 62.17932	91.44018 91.74498 92.04978 92.35458 92.65939	121.92024 122.22504 122.52985 122.83465 123.13945
5 7 8 9	1.52400 1.82880 2.13360 2.43840 2.74321	32.00406 32.30886 32.61367 32.91847 33.22327	62.48412 62.78893 63.09373 63.39853 63.70333	92.96419 93.26899 93.57379 93.87859 94.18339	123.44425 123.74905 124.05385 124.35865 124.66345
10	3.04801	33.52807	64.00813	94.48819	124.96825
11	3.35281	33.83287	64.31293	94.79299	125.27305
12	3.65761	34.13767	64.61773	95.09779	125.57785
13	3.96241	34.44247	64.92253	95.40259	125.86265
14	4.26721	34.74727	65.22733	95.70739	126.18745
15	4.57201	35.05207	65.53213	96.01219	126.49225
16	4.87681	35.35687	65.83693	96.31699	126.79705
17	5.18161	35.66167	66.14173	96.62179	127.10185
18	5.48641	35.96647	66.44653	96.92659	127.40665
19	5.79121	36.27127	66.75133	97.23139	127.71146
20	6.09601	36.57607	67.05613	97.53620	128.01626
21	6.40081	36.88087	67.36093	97.84100	128.32106
22	6.70561	37.18567	67.66574	98.14580	128.62586
23	7.01041	37.49047	67.97054	98.45060	128.93066
24	7.31521	37.79528	68.27534	98.75540	129.23546
25	7.62002	38.10008	68.58014	99.06020	129.54026
26	7.92482	38.40488	68.88494	99.36500	129.84506
27	8.22962	38.70968	69.18974	99.66980	130.14986
28	8.53442	39.01448	69.49454	99.97460	130.45466
29	8.83922	39.31928	69.79934	100.27940	130.75946
30	9.14402	39.62408	70.10414	100.53420	131.06426
31	9.44882	39.92888	70.40894	100.88900	131.36906
32	9.75362	40.23368	70.71374	101.19380	131.67386
33	10.05842	40.53848	71.01854	101.49860	131.97866
34	10.36322	40.84328	71.32334	101.80340	132.28346
35	10.66802	41.14808	71.62814	102.10820	132.58827
36	10.97282	41.45288	71.93294	102.41300	132.89307
37	11.27762	41.75768	72.23774	102.71781	133.19787
38	11.58242	42.06248	72.54255	103.02261	133.50267
39	11.88722	42.36728	72.84735	103.32741	133.80747
40	12.19202	42.67209	73.15215	103.63221	134.11227
41	12.49682	42.97689	73.45695	103.93701	134.41707
42	12.80163	43.28169	73.76175	104.24181	134.72187
43	13.10643	43.58649	74.06655	104.54661	135.02667
44	13.41123	43.89129	74.37135	104.85141	135.33147
45	13.71603	44.19609	74.67615	105.15621	135.63627
46	14.02083	44.50089	74.98095	105.46101	135.94107
47	14.32563	44.80569	75.28576	105.76581	136.24587
48	14.63043	45.11049	75.59055	106.07061	136.55067
49	14.93523	45.41529	75.89535	106.37541	136.85547

¹ inch = .02540 metre. 2 inches = .05080 metre. 3 inches = .07620 metre.

Feet	0	100	200	300	400
50	15.24003	45.72009	76.20015	106.68021	137.1602
51	15.54483	46.02489	76.50495	106.98501	137.4650
52	15.84963	46.32969	76.80975	107.28981	137.7698
53 54	16.15443 16.45923	46.63449	77.11455 77.41935	107.59462 107.89942	138.0746 138.3794
55	16.76403	47.24409	77.72416	108.20422	138.6842
56 57	17.06833 17.37363	47.54890 47.85370	78.02896 78.33376	108.50902 108.81382	138.9890 139.2938
58	17.67844	43.15850	78.63856	109.11862	139.5986
59	17.98324	48.46330	78.94336	109.42342	139.9034
50	18.28804	48.76810	79.24816	109.72822	140.2082 140.5130
61	18.59284 18.89764	49.07290	79.55296 79.85776	110.03302	140.8178
63	19.20244	49.68250	80.16256	110.64262	141.1226
64	19.50724	49.98730	80.46736	110.94742	141.4274
65	19.81204	50.29210	80.77216	111.25222	141.7322
66	20.11684 20.42164	50.59690 50.90170	81.07696 81.38176	111.55702 111.86182	142.0370 142.3418
68	20.72644	51.20650	81.68656	112.16662	142.6466
69	21.03124	51.51130	81.99136	112.47142	142.9514
70	21.33604	51.81610	82.29616	112.77623	143.2562
71 72	21.64084 21.94564	52.12090 52.42570	82.60097 82.90577	113.08103 113.38583	143.5610 143.8658
73	22.25044	52.73051	83.21057	113.69063	144.1706
74	22.55525	53.03531	83.51537	113.99543	144.4754
75	22.86005	53.34011	83.82017	114.30023	144.7802
76 77	23.16485	53.64491 53.94971	84.12497 84.42977	114.60503	145.0850 145.3898
78	23.77445	54.25451	84.73457	115.21463	145.6946
79	24.07925	54.55931	85.03937	115.51943	145.9994
80	24.38405	54.86411	85.34417	115.82423	146.3042
81	24.68885 24.99365	55.16891 55.47371	85.64897 85.95377	116.12903 116.43383	146.6090 146.9138
83	25.29845	55.77851	86.25857	116.73863	147.2186
84	25.60325	56.08331	86.56337	117.04343	147.5235
85	25.90805	56.38811	86.86817	117.34823	147.8283
85	26.21285 26.51765	56.69291 56.99771	87.17297 87.47777	117.65304 117.95784	148.1331
88	26.82245	57.30251	87.78258	118.26264	148.7427
89	27.12725	57.60732	88.08738	118.56744	149.0475
90	27.43205	57.91212	88.39218	118.87224	149.3523
91	27.73686 28.04166	58.21692 58.52172	88.69698 89.00178	119.17704 119.48184	149.6571
93	28.34646	58.82652	89.30658	119.78664	150.2667
94	28.65126	59.13132	89.61138	120.09144	150.5715
95 96	28.95606	59.43612	89.91618	120.39624	150.8763
97	29.26086	59.74092 60.04572	90.22098 90.52578	120.70104 121.00584	151.1811 151.4859
98	29.87046	60.35052	90.83058	121.31064	151.7907
99	30.17526	60.66532	91.13538	121.61544	152.0955

⁴ inches=.10160 metre. 5 inches=.12700 metre. 6 inches=.15240 metre.

(Continued)

	(Continued)						
Feet	500	600	700	800	900		
0	152.40030	182.88037	213.36043	243.84049	274.32055		
1	152.70511	183.18517	213.66523	244.14529	274.62535		
2	153.00991	183.48997	213.97003	244.45009	274.93015		
3	153.31471	183.79477	214.27483	244.75489	275.23495		
4	153.61951	184.09957	214.57963	245.05969	275.53975		
5 6 7 8	153.92431 154.22911 154.53391 154.83871 155.14351	184.40437 184.70917 185.01397 185.31877 185.62357	214.88443 215.18923 215.49403 215.79883 216.10263	245.36449 245.66929 245.97409 246.27889 246.58369	275.84455 276.14935 276.45415 276.75895 277.06375		
10	155.44831	185.92837	216.40843	246.88849	277.36855		
11	155.75311	186.23317	216.71323	247.19329	277.67336		
12	156.05791	186.53797	217.01803	247.49809	277.97816		
13	156.36271	186.84277	217.32283	247.80290	278.28296		
14	156.66751	187.14757	217.62764	248.10770	278.58776		
15	156.97231	187.45237	217.93244	248.41250	278.89256		
16	157.27711	187.75718	218.23724	248.71730	279.19736		
17	157.58192	188.06198	218.54204	249.02210	279.50216		
18	157.88672	188.36678	213.84684	249.32690	279.80696		
19	158.19152	188.67158	219.15164	249.63170	280.11176		
20	158.49632	188.97638	219.45644	249.93650	280.41656		
21	158.80112	189.28118	219.76124	250.24130	280.72136		
22	159.10592	189.58598	220.06604	250.54610	281.02616		
23	159.41072	189.89078	220.37084	250.85090	281.33096		
24	159.71552	190.19558	220.67564	251.15570	281.63576		
25	160.02032	190.50038	220.98044	251.46050	281.94056		
26	160.32512	190.80518	221.28524	251.76530	282.24536		
27	160.62992	191.10998	221.59004	252.07010	282.55017		
28	160.93472	191.41478	221.89484	252.37490	282.85497		
29	161.23952	191.71958	222.19964	252.67971	283.15977		
30	161.54432	192.02438	222.50445	252.98451	283.46457		
31	161.84912	192.32918	222.80925	253.28931	283.76937		
32	162.15392	192.63399	223.11405	253.59411	284.07417		
33	162.45872	192.93879	223.41835	253.89891	284.37897		
34	162.76353	193.24359	223.72365	254.20371	284.68377		
35	163.06833	193.54839	224.02845	254.50351	284.98857		
36	163.37313	193.85319	224.33325	254.81331	285.29337		
37	163.67793	194.15799	224.63805	255.11811	285.59817		
88	163.98273	194.46279	224.94285	255.42291	285.90297		
39	164.28753	194.76759	225.24765	255.72771	286.20777		
41 42 43	164.59233 164.89713 165.20193 165.50673 165.81153	195.07239 195.37719 195.68199 195.98679 196.29159	225.55245 225.85725 226.16205 226.46636 226.77165	256.03251 256.33731 256.64211 256.94691 257.25171	286.51257 286.81737 287.12217 287.42697 287.73178		
45	166.11633	198.59839	227.07645	257.55652	288.03658		
46	166.42113	196.90119	227.38125	257.86132	283.34138		
47	166.72593	197.20599	227.68606	258.16612	288.64618		
48	167.03073	197.51030	227.99086	258.47092	288.95098		
49	167.33553	197.81560	223.29565	258.77572	289.25578		

7 inches - .17780 metre. 8 inches - .20320 metre. 9 inches = .22860 metre.

(Continued)

Feet	500	600	700	800	900
50	167.64034	198.12040	228.60046	259.08052	289.56058
51	167.94514	198.42520	228.90526	259.38532	289.86538
52	168.24994	198.73000	229.21006	259.69012	290.17018
53	168.55474	199.03480	229.51486	259.99492	290.47498
54	168.85954	199.33960	229.81966	260.29972	290.77978
55	169.16434	199.64440	230.12446	260.60452	291.08458
56	169.46914	199.94920	230.42926	260.90932	291.38938
57	169.77394	200.25400	230.73406	261.21412	291.69418
58	170.07874	200.55880	231.03886	261.51892	291.99898
59	170.38354	200.86360	231.34366	261.82372	292.30378
60 61 62 63	170.68834 170.99314 171.29794 171.60274 171.90754	201.16840 201.47320 201.77890 202.08280 202.38760	231.64846 231.95326 232.25806 232.56287 232.86767	262.12852 262.43332 262.73813 263.04293 263.34773	292.60859 292.91339 293.21819 293.52299 293.82779
65	172.21234	202.69241	233.17247	263.65253	294.13259
66	172.51715	202.99721	233.47727	263.95733	294.43739
67	172.82195	203.30201	233.78207	264.26213	294.74219
68	173.12675	203.60681	234.08687	264.55693	295.04699
69	173.43155	203.91161	234.39167	264.87173	295.35179
70	173.73635	204.21641	234.69647	265.17653	295.65659
71	174.04115	204.52121	235.00127	265.48133	295.95139
72	174.34595	204.82601	235.30607	265.78613	296.26619
73	174.65075	205.13081	235.61087	266.09093	296.57099
74	174.95555	205.43561	235.91567	266.39573	296.87579
75	175.26035	205.74041	236.22047	266.70053	297.18059
76	175.56515	206.04521	236.52527	267.00533	297.48539
77	175.86995	206.35001	236.83007	267.31013	297.79020
78	176.17475	206.65481	237.13487	267.61494	298.09500
79	176.47955	206.95961	237.43367	267.91974	298.39980
80	176.78435	207.26441	237.74448	268.22454	298.70460
81	177.08915	207.56922	238.04923	268.52934	299.00940
82	177.39395	207.87402	238.35408	268.83414	299.31420
83	177.69876	208.17882	238.65888	269.13894	299.61900
84	178.00356	208.48362	238.96368	269.44374	299.92380
85	178.30836	208.78842	239.26848	269.74854	300.22860
86	178.61315	209.09322	239.57328	270.05334	360.53340
87	178.91796	209.39802	239.87808	270.35814	300.83820
88	179.22276	209.70282	240.18288	270.66294	301.14300
89	179.52756	210.00762	240.48768	270.96774	301.44780
90 91 92 93	179.83236 180.13716 180.44196 180.74676 181.05156	210.31242 210.61722 210.92202 211.22682 211.53162	240.79248 241.09728 241.40268 241.70688 242.01168	271.27254 271.57734 271.88214 272.18694 272.49174	301.75260 302.05740 302.36220 302.66701 302.97181
95	181.35636	211.83642	242.31648	272.79655	303.27661
96	181.66116	212.14122	242.62129	273.10135	303.58141
97	181.96596	212.44602	242.92609	273.40615	303.88621
98	182.27076	212.75083	243.23089	273.71095	304.19101
99	182.57557	213.05563	243.53569	274.01575	304.49581

10 inches=.25400 metre. 11 inches=.27940 metre. 12 inches=.30480 metre.

Conversion factor: 1 metre=3.280833333 feet.

Metres	0	100	200	300	400
0 1 2 3	3.28083 6.56167 9.84250 13.12333	328.08333 331.36417 334.64500 337.92583 341.20667	656.16667 659.44750 662.72833 666.00917 669.29000	984.25000 987.53083 990.81167 994.09250 997.37333	1,312.3333 1,315.61417 1,318.89500 1,322.17583 1,325.45667
5 6 7 8	16.40417 19.68500 22.96583 26.24667 29.52750	344.48750 347.76833 351.04917 354.33000 357.61083	672.57083 675.85167 679.13250 682.41333 685.69417	1,000.65417 1,003.93500 1,007.21583 1,010.49667 1,013.77750	1,328.73750 1,332.01833 1,335.29917 1,338.58000 1,341.86083
10	32.80333	360.89167	688.97500	1,017.05833	1,345.14167
11	36.08917	364.17250	692.25583	1,020.33917	1,348.42250
12	39.37000	367.45333	695.53667	1,023.62000	1,351.70333
13	42.65083	370.73417	698.81750	1,026.90083	1,354.98417
14	45.93167	374.01500	702.09833	1,030.18167	1,358.26500
15	49.21250	377.29583	705.37917	1,033.46250	1,361.54583
16	62.49333	\$80.57667	708.66000	1,036.74333	1,364.82667
17	65.77417	383.85750	711.94083	1,040.02417	1,368.10750
18	59.05500	387.13833	715.22167	1,043.30500	1,371.38833
19	62.33583	390.41917	718.50250	1,046.58583	1,374.66917
20	65.61667	393.70000	721.78333	1,049.86667	1,377.95000
21	68.89750	396.98083	725.06417	1,053.14750	1,381.23083
22	72.17833	400.26167	728.34500	1,056.42833	1,384.51167
23	75.45917	403.54250	731.62583	1,059.70917	1,387.79250
24	78.74000	406.82333	734.90667	1,062.99000	1,391.07333
25	82.02083	410.10417	738.18750	1,066.27083	1,394.35417
26	85.30167	413.38500	741.46833	1,069.55167	1,397.63500
27	88.58250	416.66583	744.74917	1,072.83250	1,400.91583
28	91.86333	419.94667	748.03000	1,076.11333	1,404.19667
29	95.14417	423.22750	751.31083	1,079.39417	1,407.47750
30	98.42500	426.50833	754.59167	1,082.67500	1,410.75833
31	101.70583	429.78917	757.87250	1,085.95583	1,414.03917
32	104.98667	433.07000	761.15333	1,089.23667	1,417.32000
33	108.26750	436.35083	764.43417	1,092.51760	1,420.60083
34	111.54833	439.63167	767.71500	1,095.79833	1,423.88167
35	114.82317	442.91250	770.99583	1,039.07917	1,427.16250
36	118.11030	446.19333	774.27667	1,102.36000	1,430.44333
37	121.39083	449.47417	777.55750	1,105.64083	1,433.72417
38	124.67167	452.75500	780.83833	1,108.92167	1,437.00500
39	127.95250	456.03583	784.11917	1,112.20250	1,440.28583
41 42 43 44	131.23333 134.51417 137.79500 141.07583 144.35667	459.31667 462.59750 465.87833 469.15917 472.44000	787.40000 790.68083 793.96167 797.24250 800.52333	1,115.48333 1,118.76417 1,122.04500 1,125.32583 1,128.60667	1,443.56667 1,446.84750 1,450.12833 1,453.40917 1,456.69000
45	147.63750	475.72083	803.80417	1,131.38750	1,459.97083
46	150.91833	479.00167	807.08500	1,135.16833	1,463.25167
47	154.19917	482.28250	810.36583	1,138.44917	1,466.53250
48	157.48000	485.56333	813.64667	1,141.73000	1,469.81333
49	160.76083	488.84417	816.92750	1,145.01083	1,473.09417

Metres	0	100	200	300	400
50	164.04167	492.12500	820.20833	1,148.29167	1,476.37500
51	167.32250	495.40583	823.45917	1,151.57250	1,479.65583
52	170.60333	498.68667	826.77000	1,154.85333	1,482.93667
53	173.88417	501.96750	830.05083	1,158.13417	1,486.21750
54	177.16500	505.24833	833.33167	1,161.41500	1,489.49833
55	180,44583	508.52917	836.61250	1,164.69583	1,492,77917
56	183,72667	511.81000	839.89333	1,167.97667	1,496,06000
57	187,00750	515.09083	843.17417	1,171.25750	1,499,34083
58	190,28833	518.37167	846.45500	1,174.53833	1,502,62167
59	193,56917	521.65250	849.73583	1,177.81917	1,505,90250
60	196.85000	524.93333	853.01667	1,181.10000	1,509.18333
61	209.13083	528.21417	856.29750	1,184.38083	1,512.46413
62	203.41167	531.49500	859.57833	1,187.66167	1,515.74500
63	206.69250	534.77583	862.85917	1,190.94250	1,519.02583
64	209.97333	538.05667	868.14000	1,194.22333	1,522.30663
65	213.25417	541.33750	869.42083	1,197.50417	1.525.58756
66	216.53500	544.61833	872.70167	1,200.78500	1,528.86833
67	219.81583	547.89917	875.98250	1,204.06583	1,532.1491
68	223.09667	551.18000	879.26333	1,207.34667	1,535.43000
69	226.37750	554.46083	882.54417	1,210.62750	1,538.71083
70	229.65833	557.74167	885.82500	1,213.90833	1,541.9916
71	232.93917	561.02250	889.10583	1,217.18917	1,545.2725
72	236.22000	564.30333	892.38667	1,220.47000	1,548.5533
73	239.50083	567.58417	895.66750	1,223.75083	1,551.8341
74	242.78167	570.86500	898.94833	1,227.03167	1,555.1150
75	246.06250	574.14583	902.22917	1,230.31250	1,558.3958
76	249.34333	577.42667	905.51000	1,233.59333	1,561.6766
77	252.62417	580.70750	908.79083	1,236.87417	1,564.9575
78	255.90500	583.98833	912.07167	1,240.15500	1,568.2383
79	259.18583	587.26917	915.35250	1,243.43583	1,571.5191
80	262.46667	590.55000	918.63333	1,246.71667	1,574.8000
81	265.74750	593.83083	921.91417	1,249.99750	1,578.0808
82	269.02333	597.11167	925.19500	1,253.27833	1,581.3616
83	272.30917	600.39250	928.47583	1,256.55917	1,584.6425
84	275.59000	603.67333	931.75667	1,259.84000	1,587.9233
85	278.87083	606.95417	935.03750	1,263.12083	1,591.2041
86	282.15167	610.23500	938.31833	1,266.40167	1,594.4850
87	285.43250	613.51583	941.59917	1,269.68250	1,597.7658
88	288.71333	616.79667	944.88000	1,272.96333	1,601.0466
89	291.99417	620.07750	948.16083	1,276.24417	1,604.3275
90	295.27500	623.35833	951.44167	1,279.52500	1,607.6083
91	298.55583	626.63917	954.72250	1,282.80583	1,610.8891
92	301.83667	629.92000	958.00333	1,286.08667	1,614.1700
93	305.11750	633.20083	961.28417	1,289.36750	1,617.4508
94	308.39833	636.48167	964.56500	1,292.64833	1,620.7316
95	311.67917	639.76250	967.84583	1,295.92917	1,624.0125
96	314.96000	643.04333	971.12667	1,299.21000	1,627.2933
97	318.24083	646.32417	974.40750	1,302.49083	1,630.5741
98	321.52167	649.60500	977.68833	1,305.77167	1,633.8550
99	324.80250	652.88583	980.96917	1,309.05250	1,637.1358

Waters	F00	600	200	800	000
Metres	500	600	700	800	900
1	1,640.41667 1,643.69750	1,968.50000	2,296.58333	2,624.66667 2,627.94750	2,952.75000 2,956.03083
2	1,646.97833	1,975.0616?	2,303.14500	2,631.22833	2,959.31167
3	1,650.25917	1,978.34250	2,306.42583	2,634.50917	2,962.59250
4	1,653.54000	1,981.62333	2,309.70667	2,637.79000	2,965.87333
6	1,656.82083	1,984.90417	2,312.98750	2,641.07083	2,969.15417
E 7	1,660.10167	1,988.13500 1,991.46583	2,316.26833 2,319.54917	2,644.35167	2,972.43500 2,975.71583
8	1,656.66333	1,994.74587	2,322.83000	2,650.91333	2,978.99667
9	1,669.94417	1,993.02750	2,326.11083	2,654.19417	2,982.27750
10 11	1,673.22500 1,676.50583	2,001.30333	2,329.39167	2,657.47500	2,985.55833 2,988.83917
12	1,679.78667	2,004.53917	2,332.67250 2,335.95333	2,660.75583 2,664.03667	2,992.12000
13	1,683.06750	2,011.15083	2,339.23417	2,667.31750	2,995.40083
14	1,686.34833	2,014.43167	2,342.51500	2,670.59833	2,998.66167
15 16	1,689.62917	2,017.71250	2,345.79583	2,673.87917	3,001.96250 3,005.24333
17	1,692.91000	2,020.99333 2,024.27417	2,349.07667 2,352.35759	2,677.16000 2,680.44083	3,008.52417
18	1,699.47167	2,027.55500	2,355.63833	2,683.72167	3,011.80500
19	1,702.75250	2,030.83583	2,358.91917	2,687.00250	3,015.08583
20	1,706.03333	2,034.11667	2,362.20000	2,690.28333	3,018.36667
21 22	1,709.31417	2,037.39750	2,365.48083 2,368.76167	2,693.56417 2,696.84500	3,021.64750 3,024.92833
23	1,715.87533	2,043.95917	2,372.04250	2,700.12583	3,028.20917
24	1,719.15667	2,047.24000	2,375.32333	2,703.40667	3,031.49000
25	1,722.43750	2,050.52083	2,378.60417	2,706.68750	3,034.77083
26 27	1,725.71833 1,728.99917	2,053.80167 2,057.08250	2,381.88500 2,385.16583	2,709.96833 2,713.24917	3,038.05167 3,041.33250
28	1,732.28000	2,050.36333	2,388.44667	2,716.53000	3,044.61333
29	1,735.56083	2,063.64417	2,391.72750	2,719.81083	3,047.89417
30	1,738.84167	2,066.92500	2,395.00833	2,723.09167	3,051.17500
31 32	1,742.12250	2,070.20583 2,073.48667	2,398.28917 2,401.57000	2,726.37250 2,729.65333	3,054.45583 3,057.73667
33	1,748.68417	2,076.76750	2,404.85083	2,732.93417	3,061.01750
34	1,751.96500	2,080.04833	2,408.13167	2,736.21500	3,064.29833
35	1,755.24583	2,033.32917	2,411.41250	2,739.49583	3,067.57917
36 37	1,758.52667	2,086.61000 2,089.89083	2,414.69333 2,417.97417	2,742.77667 2,746.05750	3,070.86000 3,074.14083
38	1,765.08833	2,093.17167	2,421.25590	2,749.33833	3,077.42167
39	1,768.36917	2,096.45250	2,424.53583	2,752.61917	3,080.70250
40	1,771.65000	2,099.73333	2,427.81667	2,755.90000	3,083.98333
41	1,774.93083	2,103.01417 2,106.29500	2,431.09750 2,434.37833	2,759.18083 2,762.46167	3,087.26417
43	1,781.49250	2,109.57583	2,437.65917	2,765.74250	3,093.82583
44	1,784.77333	2,112.85667	2,440.94000	2,769.02333	3,097.10667
45	1,788.05417	2,116.13750	2,444.22083	2,772.30417	3,100.38750
47	1,791.33500 1,794.61583	2,119.41833	2,447.50167 2,450.78250	2,775.58500 2,778.86583	3,103.66833 3,106.94917
48	1,797.89667	2,125.98000	2,454.06333	2,782.14667	3,110.23000
16.9	1,801.17750	2,129.26093	2,457.34417	2,785.42750	3,113.51083

Metres	500	600	700	800	900		
50	1,804.45833	2,132.54167	2,460.62500	2,788.70833	3,116.79167		
51	1,807.73917	2,135.82250	2,463.90583	2,791.98917	3,120.07250		
52	1,811.02000	2,139.10333	2,467.18667	2,795.27000	3,123.35333		
53	1,814.30083	2,142.38417	2,470.46750	2,798.55083	5,126.63417		
54	1,817.58167	2,145.66500	2,473.74833	2,801.33167	3,129.91500		
55	1,820.86250	2,148.94583	2,477.02917	2,805.11250	3,133.19583		
56	1,824.14333	2,152.22667	2,480.31000	2,808.39333	3,136.47667		
57	1,827.42417	2,155.50750	2,483.59683	2,811.67417	3,139.75750		
58	1,830.70500	2,158.78833	2,486.87167	2,814.95509	3,143.03833		
59	1,833.98583	2,162.06917	2,490.15250	2,818.23583	3,146.31917		
60	1,837.26667	2,165.35000	2,493.43333	2,831.51667	3,149.60000		
61	1,840.54750	2,168.63083	2,496.71417	2,824.79750	3,152.88083		
62	1,843.82833	2,171.91167	2,499.99500	2,828.07833	3,156.16167		
63	1,847.10917	2,175.19250	2,503.27583	2,831.35917	3,159.44250		
64	1,850.39000	2,178.47333	2,506.55667	2,834.64000	3,162.72333		
65	1,853.67083	2,181.75417	2,509.83750	2,837.92083	3,166.00417		
66	1,856.95167	2,185.03500	2,513.11833	2,841.20167	3,169.28500		
67	1,860.23250	2,188.31583	2,516.39917	2,844.48250	3,172.56583		
68	1,863.51333	2,191.59667	2,519.68000	2,847.76333	3,175.84667		
69	1,866.79417	2,194.87750	2,522.96083	2,851.04417	3,179.12750		
70	1,870.07500	2,198.15833	2,526.24167	2,854.32500	3,182.40833		
71	1,873.35583	2,201.43917	2,529.52250	2,857.60583	3,185.68917		
72	1,876.63667	2,204.72000	2,532.80333	2,860.88667	3,188.97000		
73	1,879.91750	2,208.00083	2,536.08417	2,864.16750	3,192.25083		
74	1,883.19833	2,211.28167	2,539.36500	2,867.44833	3,195.53167		
75	1,886.47917	2,214.56250	2,542.64583	2,870.72917	3,198.81250		
76	1,889.76000	2,217.84333	2,545.92667	2,874.01000	3,202.09333		
77	1,893.04083	2,221.12417	2,549.20750	2,877.29083	3,205.37417		
78	1,896.32167	2,224.40500	2,552.48833	2,830.57167	3,298.65500		
79	1,899.60250	2,227.68583	2,555.76917	2,883.85250	3,211.93583		
80	1,902.88333	2,230.96667	2,559.05000	2,887.13333	3,215.21667		
81	1,906.16417	2,234.24750	2,562.33083	2,890.41417	3,218.49750		
82	1,909.44500	2,237.52833	2,565.61167	2,893.69500	3,221.77833		
83	1,912.72583	2,240.80917	2,568.89250	2,896.97533	3,225.05917		
84	1,916.00667	2,244.09000	2,572.17333	2,900.25667	3,228.34000		
85	1,919.28750	2,247.37083	2,575.45417	2,903.53750	3,231.62083		
86	1,922.56833	2,250.65167	2,578.73500	2,906.81833	3,234.90167		
87	1,925.84917	2,253.93250	2,582.01583	2,910.09917	3,238.18250		
88	1,929.13000	2,257.21333	2,585.29667	2,913.38000	3,241.46333		
89	1,932.41083	2,260.49417	2,588.57750	2,916.66033	3,244.74417		
90	1,935.69167	2,263.77500	2,591.85833	2,919.94167	3,248.02500		
91	1,938.97250	2,267.05583	2,595.13917	2,923.22250	3,251.30583		
92	1,942.25333	2,270.33667	2,598.42000	2,926.50333	3,254.58667		
93	1,945.53417	2,273.61750	2,601.70083	2,929.78417	3,257.86750		
94	1,948.81500	2,276.89833	2,604.98167	2,933.06500	3,261.14833		
95	1,952.09583	2,280.17917	2,603.26250	2,936.34583	3,264.42917		
96	1,955.37667	2,283.46000	2,611.54333	2,939.62667	3,267.71000		
97	1,958.65750	2,286.74083	2,614.82417	2,942.90750	3,270.99083		
98	1,961.93833	2,290.02167	2,613.10500	2,946.18833	3,274.27167		
99	1,965.21917	2,293.30250	2,621.33583	2,949.46917	3,277.55250		

EQUIVALENTS OF AVOIRDUPOIS POUNDS IN KILOGRAMS.

Conversion Factor: 1 avoirdupois pound=0.4535924277 kilogram.

Pounds	0	100	200	800	400
0 1 2 3	.45359 .90718 1.36078 1.81437	45.35924 45.81284 46.26643 46.72002 47.17361	90.71849 91.17208 91.62567 92.07926 92.53286	136.07773 136.53132 136.98491 137.43851 137.89210	181.43697 181.89056 182.34416 182.79775 183.25134
5 6 7 8	2.26796 2.72155 3.17515 3.62874 4.08233	47.62720 48.08080 48.53439 48.98798 49.44157	92.98645 93.44004 93.89363 94.34722 94.80082	138.34569 138.79928 139.25288 139.70647 140.16006	183.70493 184.15853 184.61212 185.06571 185.51930
10	4.53592	49.89517	95.25441	140.61365	185.97290
11	4.98952	50.34876	95.70800	141.06725	186.42649
12	5.44311	50.80235	96.16159	141.52084	186.88008
13	5.89670	51.25594	96.61519	141.97443	187.33367
14	6.35029	51.70954	97.06878	142.42802	187.78727
15	6.80389	52.16313	97.52237	142.88161	188.24086
16	7.25748	52.61672	97.97596	143.33521	188.69445
17	7.71107	53.07031	98.42956	143.78880	189.14804
18	8.16466	53.52391	98.88315	144.24239	189.60163
19	8.61826	53.97750	99.33674	144.69598	190.05523
20	9.07185	54.43109	99.79033	145.14958	190.50882
21	9.52544	54.88468	100.24393	145.60317	190.96241
22	9.97903	55.33828	100.69752	146.05676	191.41600
23	10.43263	55.79187	101.15111	146.51035	191.86960
24	10.88622	56.24546	101.60470	146.96395	192.32319
25	11.33981	56.69905	102.05830	147.41754	192.77678
26	11.79340	57.15265	102.51189	147.87113	193.23037
27	12.24700	57.60624	102.96543	148.32472	193.68397
28	12.70059	58.05983	103.41907	148.77832	194.13756
29	13.15418	58.51342	103.87267	149.23191	194.59115
30	13.60777	58.96702	104.32626	149.68550	195.04474
31	14.06137	59.42061	104.77985	150.13909	195.49834
32	14.51496	59.87420	105.23344	150.59269	195.95193
23	14.96855	60.32779	105.68704	151.04628	196.40552
34	15.42214	60.78139	106.14063	151.49987	196.85911
35	15.87573	61.23498	106.59422	151.95346	197.31271
36	16.32933	61.68857	107.04781	152.40706	197.76630
37	16.78292	62.14216	107.50141	152.86065	198.21989
38	17.23651	62.59576	107.95500	153.31424	198.67348
39	17.69010	63.04935	108.40859	153.76783	199.12708
41 42 43	18.14370 18.59729 19.05088 19.50447 19.95807	63.50294 63.95653 64.41012 64.86372 65.31731	108.86218 109.31578 109.76937 110.22296 110.67655	154.22143 154.67502 155.12861 155.58220 156.03580	199.58067 200.03426 200.48785 200.94145 201.39504
46 46 47 48	20.41166 20.86525 21.31884 21.77244 22.22603	65.77090 66.22449 66.67809 67.13168 67.58527	111.13014 111.58374 112.03733 112.49092 112.94451	156.48939 156.94298 157.39657 157.85016 158.30376	201.84863 202.30222 202.75582 203.20941 203.66300

1 oz. = .028350 kg. 2 oz. = .056699 kg. 3 oz. 085049 kg. 4 oz. = .113398 kg.

EQUIVALENTS OF AVOIRDUPOIS POUNDS IN KILOGRAMS.

· (Continued)

Pounds	0	100	200	300	400	
50	22.67962	68.03886	113.39811	158.75735	204.11659	
51	23.13321	68.49246	113.85170	159.21094	204.57018	
52	23.58681	68.94605	114.30529	159.66453	205.02378	
53	24.04040	69.39964	114.75888	160.11813	205.47737	
54	24.49399	69.85323	115.21248	160.57172	205.93096	
55 56 57 58	24.94758 25.40118 25.85477 26.30836 26.76195	70.30683 70.76042 71.21401 71.66760 72.12120	115.66607 116.11966 116.57325 117.02685 117.48044	161.02531 161.47890 161.93250 162.38609 162.83968	206.38455 206.83815 207.29174 207.74533 208.19892	
60	27.21555	72.57479	117.93403	163.29327	208.65252	
61	27.66914	73.02838	118.38762	163.74687	209.10611	
62	28.12273	73.48197	118.84122	164.20046	209.55970	
63	28.57632	73.93557	119.29481	164.65405	210.01329	
64	29.02992	74.38916	119.74840	165.10764	210.46689	
65	29.48351	74.84275	120.20199	165.56124	210.92048	
66	29.93710	75.29634	120.65559	166.01483	211.37407	
67	30.39069	75.74994	121.10918	166.46842	211.82766	
68	30.84429	76.20353	121.56277	166.92201	212.28126	
69	31.29788	76.65712	122.01636	167.37561	212.73488	
70	31.75147	77.11071	122.46996	167.82920	213.18844	
71	32.20506	77.56431	122.92355	168.28279	213.64203	
72	32.65865	78.01790	123.37714	168.73638	214.09563	
73	33.11225	78.47149	123.83073	169.18998	214.54922	
74	33.56584	78.92509	124.28433	169.64357	215.00281	
75	34.01943	79.37867	124.73792	170.09716	215.45640	
76	34.47302	79.83227	125.19151	170.55075	215.91000	
77	34.92662	80.28586	125.64510	171.00435	216.36359	
78	35.38021	80.73945	126.09869	171.45794	216.81718	
79	35.83380	81.19304	126.55229	171.91153	217.27077	
80	36.28739	81.64664	127.00588	172.36512	217.72437	
81	36.74099	82.10023	127.45947	172.81871	218.17796	
82	37.19458	82.55382	127.91306	173.27231	218.63155	
83	37.64817	83.00741	128.36666	173.72590	219.08514	
84	38.10176	83.46101	128.82025	174.17949	219.53874	
85	38.55536	83.91460	129.27384	174.63308	219.99233	
86	39.00895	84.36819	129.72743	175.08668	220.44592	
87	39.46254	84.82178	130.18103	175.54027	220.89951	
88	39.91613	85.27538	130.63462	175.99386	221.35310	
89	40.36973	85.72897	131.08821	176.44745	221.80670	
90	40.82332	86.18256	131.54180	176.90105	222.26029	
91	41.27691	86.63615	131.99540	177.35464	222.71388	
92	41.73050	87.08975	132.44899	177.80823	223.16747	
93	42.18410	87.54334	132.90258	178.26182	223.62107	
94	42.63769	87.99693	133.35617	178.71542	224.07466	
95 96 97 98	43.09128 43.54487 43.99847 44.45206 44.90565	88.45052 88.90412 89.35771 89.81130 90.26489	133.80977 134.26336 134.71695 135.17054 135.62414	179.16901 179.62260 180.07619 180.52979 180.98338	224.52825 224.98184 225.43544 225.88903 226.34262	

5 oz.=.141748 kg. 6 cz. .17 007 kg. 7 oz. .108447 kg. 8 oz.=.226796 kg.

EQUIVALENTS OF AVOIRDUPOIS POUNDS IN KILOGRAMS.

(Continued)

Pounds	500	600	700	800	900
0 1 2 3 4	226.79621	272.15546	317.51470	362.87394	408.23318
	227.24981	272.60905	317.96829	363.32753	408.68678
	227.70340	273.06264	318.42188	363.78113	409.1403
	228.15699	273.51623	318.87548	364.23472	409.59398
	228.61053	273.96983	319.32907	364.68831	410.04758
56785	229.06418	274.42342	319.78266	365.14190	410.50113
	229.51777	274.87701	320.23625	365.59550	410.95474
	229.97136	275.33060	320.68985	366.04909	411.4083
	230.42495	275.78420	321.14344	366.50268	411.86193
	230.87855	276.23779	321.59703	366.95627	412.31553
10	231.33214	276.69138	322.05062	367.40987	412.76913
11	231.78573	277.14497	322.50422	367.86346	413.22276
12	232.23932	277.59857	322.95781	368.31705	413.67629
13	232.69292	278.05216	323.41140	368.77064	414.12989
14	233.14651	278.50575	323.86499	369.22424	414.58349
15	233.60010	278.95934	324.31859	369.67783	415.0370°
16	234.05369	279.41294	324.77218	370.13142	415.4906°
17	234.50729	279.86653	325.22577	370.58501	415.9442°
18	234.96088	280.32012	325.67936	371.03861	416.3978°
19	235.41447	280.77371	326.13296	371.49220	416.8514°
20	235.86806	281.22731	326.58655	371.94579	417.3050
21	236.32165	281.68090	327.04014	372.39938	417.7586
22	236.77525	282.13449	327.49373	372.85298	418.2122
23	237.22884	282.58808	327.94733	373.30657	418.6658
24	237.68243	283.04167	328.40092	373.76016	419.1194
25	238.13602	283.49527	328.85451	374.21375	419.5730
26	238.58962	283.94886	329.30810	374.66735	420.0265
27	239.04321	284.40245	329.76169	375.12094	420.4801
28	239.49680	284.85604	330.21529	375.57453	420.9337
29	239.95039	285.30964	330.66888	376.02812	421.3873
30	240.40399	285.76323	331.12247	376.48171	421.8409
31	240.35758	286.21682	331.57606	376.93531	422.2945
32	241.31117	286.67041	332.02966	377.38890	422.7481
33	241.76476	287.12401	332.48325	377.84249	423.2017
34	242.21836	287.57760	332.93684	378.29608	423.6553
35	242.67195	288.03119	333.39043	378.74968	424.1089
36	243.12554	288.48478	333.84403	379.20327	424.5625
37	243.57913	288.93838	334.29762	379.65686	425.0161
38	244.03273	289.39197	334.75121	380.11045	425.4697
39	244.48632	289.84556	335.20480	380.56405	425.9232
40	244.93991	290.29915	335.65840	381.01764	426.3768
41	245.39350	290.75275	336.11199	381.47123	426.8304
42	245.84710	291.20634	336.56558	381.92482	427.2840
43	246.30069	291.65993	337.01917	382.37842	427.7376
44	246.75428	292.11352	337.47277	382.83201	428.1912
45	247.20787	292.56712	337.92636	383.28560	428.6448
46	247.66147	293.02071	338.37995	383.73919	429.0984
47	248.11506	293.47430	338.83354	384.19279	429.5520
48	248.56665	293.92789	339.28714	384.64638	430.0056
49	249.02224	294.38149	339.74073	385.09997	430.4592

9 oz. . .255146 kg. 10 oz. = .283495 kg. 11 oz. = .311845 kg. 12 oz. = .340194 kg.

EQUIVALENTS OF AVOIRDUPOIS POUNDS IN KILOGRAMS.

(Continued)

Pounds	500	600	700	800	900
50	249.47584	294.83508	340.19432	385.55356	430.91231
51	249.92943	295.28867	340.64791	386.00715	431.36640
52	250.38302	295.74226	341.10151	386.46075	431.81999
53	250.83661	296.19586	341.55510	386.91434	432.27358
54	251.29020	296.64945	342.06869	387.36793	432.72718
55	251.74380	297.10304	342.46223	387.82153	433.16077
56	252.19739	297.55663	342.91583	388.27512	433.63436
57	252.65098	298.01022	343.36947	388.72871	434.03795
58	253.10457	298.46382	343.82306	389.18230	434.54155
59	253.55817	298.91741	344.27665	389.63590	434.99514
60	254.01176	299.37100	344.73025	390.08949	435.44873
61	254.46535	299.82459	345.18384	390.54308	435.90232
62	254.91894	300.27819	345.63743	390.99667	436.35592
63	255.37254	300.73178	346.09102	391.45027	436.80951
64	255.82613	301.18537	346.54461	391.90386	437.26310
65	256.27972	301.63896	346.99821	392.35745	437.71669
66	256.73331	302.09256	347.45180	392.81104	438.17029
67	257.18691	302.54615	347.90539	393.26463	438.62383
68	257.64050	302.99974	348.35398	393.71823	439.07747
69	258.09409	303.45333	348.81258	394.17182	439.53106
70	258.54768	303.90693	349.26617	394.62541	439.98465
71	259.00128	304.36052	349.71975	395.07900	440.43825
72	259.45487	304.81411	350.17335	395.53260	440.89184
73	259.90846	305.26770	350.62695	395.98619	441.34543
74	260.36205	305.72130	351.08054	396.43978	441.79902
75	260.81565	306.17489	351.53413	396.89337	442.25262
76	261.26924	306.62848	351.98772	397.34697	442.70621
77	261.72283	307.08207	352.44132	397.80056	443.15980
78	262.17642	307.53567	352.89491	398.25415	443.61339
79	262.63002	307.98926	353.34850	398.70774	444.06699
80	263.08361	308.44285	353.80209	399.16134	444.52058
81	263.53720	308.89644	354.25569	399.61493	444.97417
82	263.99079	309.35004	354.70923	400.06852	445.42776
83	264.44439	309.80363	355.16287	400.52211	445.88136
84	264.89798	310.25722	355.61646	400.97571	446.33495
85	265.35157	310.71081	356.07006	401.42930	446.78854
86	265.80516	311.16441	356.52365	401.88289	447.24213
87	266.25876	311.61800	356.97724	402.33648	447.69573
88	266.71235	312.07159	357.43083	402.79008	448.14932
89	267.16594	312.52518	357.88443	403.24367	448.60291
90	267.61953	312.97878	358.33802	403.69726	449.05650
91	268.07312	313.43237	358.79161	404.15085	449.51010
92	268.52672	313.88596	359.24520	404.60445	449.96369
93	268.98031	314.33955	359.69880	405.05804	450.41723
94	269.43390	314.79314	360.15239	405.51163	450.87087
95	269.88749	315.24674	360.60598	405.96522	451.32447
96	270.34109	315.70033	361.05957	406.41882	451.77806
97	270.79468	316.15392	361.51316	406.87241	452.23165
98	271.24827	316.60751	361.96676	407.32600	452.68524
99	271.70186	317.06111	362.42935	407.77959	453.13884

13oz.=.368544 kg. 14 oz.=.396893 kg. 15 oz.=.425243 kg. 16 oz.=.453593 kg.

EQUIVALENTS OF KILOGRAMS IN AVOIRDUPOIS POUNDS.

Conversion factor: 1 kilogram=2.204622341 avoirdupois pounds.

Kilos	0	100	200	300	400
0	2.2046	220.4622 222.6669	440.9245 443.1291	661.3867 663.5913	881.8489 884.0536
2	4.4092	224.8715	445.3337	665.7959	886.2582
3	6.6139	227.0761	447.5383	668.0006	888.4628
4	8.8185	229.2807	449.7430	670.2052	890.6674
5	11.0231	231.4853	451.9476	672.4098	892.8720
6 7	13.2277 15.4324	233.6900 235.8946	454.1522 456.3568	674.6144 676.8191	895.0767 897.2813
8	17.6370	238.0992	458.5614	679.0237	899.4859
9	19.8416	240.3038	460.7661	681.2283	901.6905
10	22.0462	242.5085	462.9707	683.4329	903.8952
11	24.2508	244.7131	465.1753	685.6375	906.0998
12	26.4555	246.9177	467.3799	687.8422	908.3044
13	28.6601	249.1223	469.5846	690.0468	910.5090
14	30.8647	251.3269	471.7892	692.2514	912.7136
15	33.0693	253.5316	473.9938	694.4560	914.9183
16 17	35.2740 37.4786	255.7362	476.1984	696.6607	917.1229
18	39.6832	257.9408 260.1454	478.4030 480.6077	698.8653 701.0699	919.3275 921.5321
19	41.8878	262.3501	482.8123	703.2745	923.7368
20	44.0924	264.5547	485.0169	705.4791	925.9414
21	46.2971	266.7593	487.2215	707.6838	928.1460
22	48.5017	268.9639	489.4262	709.8884	930.3506
23	50.7063	271.1685	491.6308	712.0930	932.5553
24	52.9109	273.3732	493.8354	714.2976	934.7599
25	55.1156	275.5778	496.0400	716.5023	936.9645
26	57.3202	277.7824	498.2446	718.7069	939.1691
27	59.5248 61.7294	279.9870 282.1917	500.4493 502.6539	720.9115 723.1161	941.3737 943.5784
29	63.9340	284.3963	504.8585	725.3208	945.7830
30	66.1387	286.6009	507.0631	727.5254	947.9876
31	68.3433	288.8055	509.2678	729.7300	950.1922
32	70.5479	291.0101	511.4724	731.9346	952.3969
33	72.7525	293.2148	513.6770	734.1392	954.6015
34	74.9572	295.4194	515.8816	736.3439	956.8061
35	77.1618	297.6240	518.0863	738.5485	959.0107
36	79.3664	299.8286	520.2909	740.7531	961.2153
37	81.5710	302.0333	522.4955	742.9577	963.4200
38	83.7756	304.2379	524.7001	745.1624	965.6246
39	85.9803	306.4425	526.9047	747.3670	967.8292
41	88.1849	308.6471	529.1094	749.5716	970.0338
42	90.3895 92.5941	310.8518	531.3140	751.7762	972.2385
43	94.7988	313.0564 315.2610	533.5186 535.7232	753.9808 756.1855	974.4431 976.6477
44	97.0034	317.4656	537.9279	758.3901	978.8523
45	99.2080	319.6702	540.1325	760.5947	981.0569
46	101.4126	321.8749	542.3371	762.7993	983.2616
47	103.6173	324.0795	544.5417	765.0040	985.4662
48	105.8219	326.2841	546.7463	767.2086	987.6708
49	108.0265	328.4887	548.9510	769.4132	989.8754

EQUIVALENTS OF KILOGRAMS IN AVOIRDUPOIS POUNDS.

Kilos	0	100	200	300	400
50	110.2311	330.6934	551.1556	771.6178	992.0801
51	112.4357	332.8980	553.3602	773.8224	994.2847
52	114.6404	335.1026	555.5648	776.0271	996.4893
53	116.8450	337.3072	557.7695	778.2317	998.6939
54	119.0496	339.5118	559.9741	780.4363	1,000.8985
					,
55	121.2542	341.7165	562.1787	782.6409	1,003.1032
56	123.4589	343.9211	564.3833	784.8456	1,005.3078
57	125.6635	346.1257	566.5879	787.0502	1,007.5124
58	127.8681	348.3303	568.7926	789.2548	1,009.7170
59	130.0727	350.5359	570.9972	791.4594	1,011.9217
60	132.3773	352.7396	573.2018	793.6640	1,014.1263
61	134.4820	354.9442	575.4064	795.8687	1,016.3309
62	136.6866	357.1488	577.6111	798.0733	1,018.5355
63	138.8912	359.3534	579.8157	800.2779	1,020.7401
64	141.0958	361.5581	582.0203	802.4825	1,022.9448
65	143.3005	363.7627	584.2249	804.6872	1.025.1494
66	145.5051	365.9673	586.4295	806.8918	1,027.3540
67	147.7097	368.1719	588.6342	809.0964	1,029.5586
68	149.9143	370.3766	590.8388	811.3010	1,031.7633
69	152.1189	371.5812	593.0434	813.5056	1,033.9679
	454 0000	054 5050	EDE 0400	045 7400	1 000 1705
70	154.3236	374.7858	595.2480	815.7103	1,036.1725
71	156.5282	376.9904	597.4527	817.9149	1,038.3771
72	158.7328	379.1950	599.6573	820.1195	1,040.5817
73	160.9374	381.3997	601.8619 604.0665	822.3241	1,042.7864
74	163.1421	383.6043	302.0003	824.5288	1,044.9910
75	165.3467	385.8089	606.2711	826.7334	1,047.1956
76	167.5513	388.0135	608.4758	828.9380	1,049.4002
77	169.7559	390.2182	610.6804	831.1426	1,051.6049
78	171.9605	392.4228	612.8850	833.3472	1,053.8095
79	174.1652	394.6274	615.0896	835.5519	1,056.0141
80	176.3698	396.8320	617.2943	837.7565	1,058.2187
81	178.5744	399.0366	619.4989	839.9611	1,060.4233
82	180.7790	401.2413	621.7035	842.1657	1,062.6280
83	182.9837	403.4459	623.9081	844.3704	1,064.8326
84	185.1883	405.6505	626.1127	846.5750	1,067.0372
85	187.3929	407.8551	628.3174	848.7796	1,069,2418
86	189.5975	410.0598	630.5220	850.9842	1,071.4465
87	191.8021	412.2644	632.7266	853.1888	1,073.6511
88	194.0068	414.4690	634.9312	855.3935	1,075.8557
89	196.2114	416.6736	637.1359	857.5981	1,078.0603
	400 4400			050 0007	
90	198.4160	418.8782	639.3405	859.8027	1,080.2649
91	200.6206	421.0829	641.5451	862.0073	1,082.4696
92	202.8253	423.2875 425.4921	643.7497 645.9543	864.2120 866.4166	1,084.6742
94	205.0299	427.6967	648.1590	868.6212	1,089.0834
					· · · · · · · · · · · · · · · · · · ·
95	209.4391	429.9014	650.3636	870.8258	1,091.2881
96	211.6437	432.1060	652.5682	873.0304	1,093.4927
97	213.8484	434.3106	654.7728	875.2351	1,095.6973
98	216.0530	436.5152	656.9775	877.4397	1,097.9019
99	218.2576	438.7198	659.1821	879.6443	1,100.1065

EQUIVALENTS OF KILOGRAMS IN AVOIRDUPOIS POUNDS. (Continued)

Kilos	500	600	700	800	900
0	1,102,3112	1,322,7734	1,543.2356	1,763.6979	1,984.1601
1	1,104.5158	1,324.9780	1,545.4403	1,765.9025	1,986.3647
C)	1,106.7204	1,327.1826	1,547.6449	1,768.1071	1,988.5694
3	1,108.9250	1,329.3873	1,549.8495	1,770.3117	1,990.7740
4	1,111.1297	1,331.5919	1,552.0541	1,172.5164	1,992.9786
5	1,113.3343	1,333.7965	1,554.2588	1,774.7210	1,995.1832
- 6	1,115.5389	1,336.0011	1,556.4634	1,776.9256	1,997.3878
7	1,117.7435	1,338.2058	1,553.6680	1,779.1302	1,999.5925
8	1,119.9481	1,340.4104	1,560.8726	1,781.3349	2,001.7971
5	1,122.1528	1,342.5150	1,563.0772	1,783.5395	2,004.0017
10	1,124.3574	1,344.8196	1,565.2819	1,785.7441	2,006.2063
11	1,126.5620	1,347.0243	1,567.4865	1,787.9487	2,008.4110
12	1,128.7666	1,349.2289	1,569.6911	1,790.1533	2,010.6156
13	1,130.9713	1,351.4335	1,571.8957	1,792.3580	2,012.8202
14	1,133.1759	1,353.6381	1,574.1004	1,794.5626	2,015.0248
15	1,135.3805	1,355.8427	1,576.3050	1,796.7672	2,017.2294
16	1,137.5851	1,358.0474	1,578.5096	1,798.9718	2,019.4341
17 18	1,139.7898 1,141.9944	1,360.2520 1,362.4566	1,580.7142	1,801.1765	2,021.6387 2,023.8433
19	1,144.1990	1,364.6612	1,582.9188 1,585.1235	1.805.5857	2.026.0479
			,	,	2,020.01.0
20	1,146.4036	1,366.8659	1,587.3281	1,807.7903	2,028.2526
21 22	1,148.6082 1,150.8129	1,369.0705	1,589.5327	1,809.9949	2,030.4572
23	1,153.0175	1,371.2751 1,373.4797	1,591.7373 1,593.9420	1,812.1996 1,814.4042	2,032.6618 2,034.8664
24	1,155.2221	1,375.6843	1,596.1466	1,816.6088	2,037.0710
25	1,157.4267	1,377.8890	1,598,3512	1.818.8134	2,039.2757
26	1,159.6314	1,380.0936	1,600.5558	1,821.0181	2,041.4803
27	1,161.8360	1.382.2982	1,602.7604	1,823.2227	2,043.6849
28	1,164.0406	1,384.5028	1,604.9651	1,825.4273	2,045.8895
29	1,166.2452	1,386.7075	1,607.1697	1,827.6319	2,048.0942
30	1,168,4498	1,388.9121	1,609.3743	1,829.8365	2,050.2988
31	1,170.6545	1,391.1167	1,611.5789	1,832.0412	2,052.5034
32	1,172.8591	1,393.3213	1,613.7836	1,834.2458	2,054.7080
33	1,175.0637	1,395.5259	1,615.9882	1,836.4504	2,056.9126
34	1,177.2683	1,397.7306	1,618.1928	1,838.6550	2,059.1173
35	1,179.4730	1,399.9352	1,620,3974	1,840.8597	2,061.3219
36	1,181.6776	1,402.1398	1,622.6020	1,843.0643	2,063.5265
37	1,183.8822	1,404.3444	1,624.8067	1,845.2689	2,065.7311
33	1,186.0868	1,406.5491	1,627.0113	1,847.4735	2,067.9358
39	1,188.2914	1,408.7537	1,629.2159	1,849.6781	2,070.1404
40	1,190.4961	1,410.9583	1,631.4205	1,851.8828	2,072.3450
41	1,192.7007	1,413.1629	1,633.6252	1,854.0874	2,074.5496
42	1,194.9053	1,415.3675	1,635.8298	1,856.2920	2,076.7542
43	1,197.1099	1,417.5722	1,638.0344	1,858.4966	2,078.9589 2,081.1635
1					
45	1,201.5192	1,421.9814	1,642.4436	1,862.9059	2,083.3681
46	1,203.7238 1,205.9284	1,424.1860	1,644.6433	1,865.1105	2,085.5727
48	1,208.1330	1,428.5953	1,646.8529	1,867.3151 1,869.5197	2,089.9820
49	1,210.3377	1,430.7999	1,651.2621	1,871.7244	2,092.1866
	, -,	_,,	_,_,	_,012.1222	_,_,_,_,

EQUIVALENTS OF KILOGRAMS IN AVOIRDUPOIS POUNDS. (Continued)

(Continued)					
Kilos	500	600	700	800	900
50	1,212.5423	1,433.0045	1,653.4568	1,873.9290	2,094.3912
51	1,214.7469	1,435.2091	1,655.6714	1,876.1336	2,096.5958
52	1,216.9515	1,437.4138	1,657.8760	1,878.3382	2,098.8005
53	1,219.1562	1,439.6184	1,660.0806	1,880.5429	2,101.0051
54	1,221.3608	1,441.8230	1,662.2852	1,882.7475	2,103.2097
55	1,223.5654	1,444.0276	1,664.4899	1,884.9521	2,105.4143
56	1,225.7700	1,446.2323	1,666.6945	1,887.1567	2,107.6190
57	1,227.9746	1,448.4369	1,668.8991	1,889.3613	2,109.8236
58	1,230.1793	1,450.6415	1,671.1037	1,891.5660	2,112.0282
59	1,232.3839	1,452.8461	1,673.3084	1,893.7706	2,114.2328
60	1,234.5885	1,455.0507	1,675.5130	1,895.9752	2,116.4374
61	1,236.7931	1,457.2554	1,677.7176	1,898.1798	2,118.6421
62	1,238.9978	1,459.4600	1,679.9222	1,900.3845	2,120.8467
63	1,241.2024	1,461.6646	1,682.1268	1,902.5891	2,123.0513
64	1,243.4070	1,463.8692	1,684.3315	1,904.7937	2,125.2559
65	1,245.6116	1,466.0739	1,686.5361	1,906.9983	2,127.4606
66	1,247.8162	1,468.2785	1,688.7407	1,909.2029	2,129.6652
67	1,250.0209	1,470.4831	1,690.9453	1,911.4076	2,131.8698
68	1,252.2255	1,472.6877	1,693.1500	1,913.6122	2,134.0744
69	1,254.4301	1,474.8923	1,695.3546	1,915.8168	2,136.2790
70	1,256.6347	1,477.0970	1,697.5592	1,918.0214	2,138.4837
71	1,258.8394	1,479.3016	1,699.7638	1,920.2261	2,140.6883
72	1,261.0440	1,481.5062	1,701.9684	1,922.4307	2,142.8929
73	1,263.2486	1,483.7108	1,704.1731	1,924.6353	2,145.0975
74	1,265.4532	1,485.9155	1,706.3777	1,926.8399	2,147.3022
75	1,267.6578	1,488.1201	1,708.5823	1,929.0445	2,149.5068
76	1,269.8625	1,490.3247	1,710.7869	1,931.2492	2,151.7114
77	1,272.0671	1,492.5293	1,712.9916	1,933.4538	2,153.9160
78	1,274.2717	1,494.7339	1,715.1962	1,935.6584	2,156.1206
79	1,276.4763	1,496.9386	1,717.4008	1,937.8630	2,158.3253
80	1,278.6810	1,499.1432	1,719.6054	1,940.0677	2,160.5299
81	1,280.8856	1,501.3478	1,721.8100	1,942.2723	2,162.7345
82	1,283.0902	1,503.5524	1,724.0147	1,944.4769	2,164.9391
83	1,285.2948	1,505.7571	1,726.2193	1,946.6815	2,167.1438
84	1,287,4994	1,507.9617	1,728.4239	1,948.8861	2,169.3484
85	1,289.7041	1,510.1663	1,730.6285	1,951.0908	2,171.5530
86	1,291.9087	1,512.3709	1,732.8332	1,953.2954	2,173.7576
87	1,294.1133	1,514.5755	1,735.0378	1,955.5000	2,175.9623
88	1,296.3179	1,516.7802	1,737.2424	1,957.7046	2,178.1669
89	1,298.5226	1,518.9848	1,739.4470	1,959.9093	2,180.3715
90	1,300.7272	1,521.1894	1,741.6516	1,962.1139	2,182.5761
91	1,302.9318	1,523.3940	1,743.8563	1,964.3185	2,184.7897
92	1,305.1364	1,525.5987	1,746.0609	1,966.5231	2,186.9854
93	1,307.3410	1,527.8033	1,748.2655	1,968.7278	2,189.1900
94	1,309.5457	1,530.0079	1,750.4701	1,970.9324	2,191.3946
95 96 97 98	1,311.7503 1,313.9549 1,316.1595 1,318.3642 1,320.5688	1,532.2125 1,534.4171 1,536.6218 1,538.8264 1,541.0310	1,752.6748 1,754.8794 1,757.0840 1,759.2886 1,761.4933	1,973.1370 1,975.3416 1,977.5462 1,979.7509 1,981.9555	2,193.5992 2,195.8039 2,198.0085 2,200.2131 2,202.4177

COMPARISON OF THE VARIOUS TONS AND POUNDS IN USE IN THE UNITED STATES.

(See Pages 562, 563, 582, 586)

		(======================================	002, 000, 002,		<u> </u>
Troy Pounds	Avoirdupois Pounds	Kilograms	Short Tons	Long Tons	Metric Tons
1	.822 857	.373 24	.000 411 43	.000 367 35	.000 373 24
2	1.645 71	.746 48	.000 822 86	.000 734 69	.000 746 48
3	2.468 57	1.119 73	.001 234 29	.001 102 04	.001 119 73
4	3.291 43	1.492 97	.001 645 71	.001 469 39	.001 492 97
5	4.114 29	1.866 21	.002 057 14	.001 836 73	.001 866 21
6	4.937 14	2.239 45	.002 468 57	.002 204 08	.002 239 45
7	5.760 00	2.612 69	.602 880 00	.002 571 43	.002 612 69
8	6.582 86	2.985 93	.603 291 43	.002 938 78	.002 985 93
9	7.405 71	3.359 18	.003 702 86	.003 306 12	.003 359 18
1.215 28	1 2 3 4	.453 59	.0005	.000 446 43	.000 453 59
2.430 56		.907 18	.0010	.000 892 86	.000 907 18
3.645 83		1.360 78	.0015	.001 339 29	.001 360 78
4.861 11		1.814 37	.0020	.001 785 71	.001 814 37
6.076 39	5	2.267 96	.0025	.002 232 14	.002 267 96
7.291 67	6	2.721 55	.0030	.002 678 57	.002 721 55
8.506 94	7	3.175 15	.0035	.003 125 00	.003 175 15
9.722 22	8	3.628 74	.0040	.003 571 43	.003 628 74
10.937 50	9	4.082 33	.0045	.004 017 86	.004 082 33
2.679 23	2.204 62	1	.001 102 31	.000 984 21	.001
5.358 46	4.409 24	2	.002 204 62	.001 968 41	.002
8.037 69	6.613 87	3	.003 306 93	.002 952 62	.003
10.716 91	8.818 49	4	.004 409 24	.003 936 83	.004
13.937 50 16.075 37 18.754 60 21.433 83 24.113 06	11.023 11 13.227 73 15.432 36 17.636 98 19.841 60	5 6 7 8	.005 511 56 .006 613 87 .007 716 18 .008 818 49 .009 920 80	.004 921 03 .005 905 24 .006 889 44 .007 873 65 .008 857 86	.005 .006 .007 .008
2430.56	2000	907.18	1	.892 87	.907 18
4861.11	4000	1814.37	2	1.785 71	1.814 27
7291.67	6000	2721.55	3	2.678 57	2.721 55
9722.22	8000	3628.74	4	3.571 43	3.628 74
12 152.78 14 583.33 17 013.89 19 444.44 21 875.00	10 000 12 000 14 000 16 000 18 000	4535.92 5443.11 6350.29 7257.48 8164.66	5 6 7 8	4.464 29 5.357 14 6.250 00 7.142 86 8.035 71	4.535 92 5.443 11 6.350 29 7.257 48 8.164 66
2722.22	2240	1016.05	1.12	1	1.016 05
5444.44	4480	2032.09	2.24	2	2.032 09
8166.67	6720	3048.14	3.36	3	3.048 14
10 888.89	8960	4064.19	4.48	4	4.064 19
13 611.11 16 333.33 19 055.56 21 777.78 24 500.00	11 200 13 440 15 680 17 920 20 160	5080.24 6096.28 7112.32 8128.38 9144.42	5.60 6.72 7.84 8.96 10.08	1234 56789	5.080 24 6.096 28 7.112 32 8.128 38 9.144 42
2679.23	2204.62	1000	1.102 31	.984 21	1
5358.46	4409.24	2000	2.204 62	1.968 41	2
8037.69	6613.87	3000	3.306 93	2.952 62	3
10 716.91	8818.49	4000	4.409 24	3.936 83	4
13 937.50 16 075.37 18 754.60 21 433.83 24 113.06	11 023.11 13 227.73 15 432.36 17 636.98 19 841.60	5000 6000 7000 8000 9000	5.511 56 6.613 87 7.716 18 8.818 49 9.920 80	4.921 03 5.905 24 6.889 44 7.873 65 8.857 86	5 6 7 8

INDEX.

Angles, bulb, cuts of sections of	20-23
" properties of	
" weights and dimensions of	45, 46
connection, for 1-beams and channels, cuts of	53
" notes on	52, 56 54-61
" tables of	54, 55
cuts of sections of special, equal and unequal legs.	19
" standard, equal legs	17
" " unequal legs	18
" bulb and top guard angles	20, 23
explanation of tables of properties of	178
maximum sizes of rivets, and spacing of rivet and bolt holes in	62,356
properties of special, equal legs	202, 203
" unequal legs	208, 209 198–201
standard, equal legs	204-207
radii of gyration for two, back to back.	215-217
tables of safe loads for, used as beams	138-159
notes on	95-103
weights and dimensions of special, equal legs	50
" unequal legs	51
standard, equal legs	48
" unequal legs	49, 50
APOTHECARIES' weight	558
ARCHES, notes and tables for spacing tie rods for tile	76, 77
of floor, end construction	68, 69
on thrust of	
" tie rods to withstand thrust of	75
terra-cotta floor, explanation of tables of	70
" flat and segmental, tables of	71-73
tests and breaking loads for hollow tile floor	74
weights of hollow brick and tile floor	74 69
weights of hollow brick and tile floorsegmental floor	74 69 69
weights of hollow brick and tile floorsegmental floor	74 69 69 551
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional.	74 69 69 551 26
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles.	74 69 69 551 26 487–509
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred.	74 69 69 551 26 487–509 499
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars.	74 69 69 551 26 487–509
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred.	74 69 69 551 26 487-509 499 468-473
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars	74 69 69 551 26 487–509 499 468–473 302,303 356,357 451,457
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for.	74 69 69 551 26 487-509 499 468-473 302, 303 356, 357 451, 457 168-175
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections.	$\begin{array}{c} 74 \\ 69 \\ 69 \\ 551 \\ 26 \\ 487-509 \\ 499 \\ 468-473 \\ 302, 303 \\ 356, 357 \\ 451, 457 \\ 168-175 \\ 166, 167 \end{array}$
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of.	$\begin{array}{c} 74 \\ 69 \\ 69 \\ 551 \\ 26 \\ 487-509 \\ 499 \\ 468-473 \\ 302, 303 \\ 356, 357 \\ 451, 457 \\ 168-175 \\ 166, 167 \\ 328-349 \end{array}$
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms.	$\begin{array}{c} 74 \\ 69 \\ 69 \\ 551 \\ 26 \\ 487 - 509 \\ 499 \\ 468 - 473 \\ 302, 303 \\ 356, 357 \\ 451, 457 \\ 168 - 175 \\ 166, 167 \\ 328 - 349 \\ 582 \end{array}$
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms. weight.	$\begin{array}{c} 74\\ 69\\ 69\\ 551\\ 26\\ 487-509\\ 499\\ 468-473\\ 302,303\\ 356,357\\ 451,457\\ 168-175\\ 166,167\\ 328-349\\ 582\\ 558\\ \end{array}$
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms. Weight. BALTIMORE, extracts from building laws of.	74 69 69 551 26 487-509 468-473 302, 303 356, 357 451, 457 168-175 166, 167 328-349 582 558 328-349
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. Atlanta, extracts from building laws of. Avoirdupois pounds equivalents in kilograms. weight. Baltimore, extracts from building laws of. Band or hoop steel, table of weights of.	74 69 69 551 26 487-509 499 468-473 302, 303 356, 357 451, 457 168-175 166, 167 328-349 582 558 328-349 474
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDS, light, dimensions of	74 69 69 551 26 487-509 468-473 302, 303 356, 357 451, 457 168-175 166, 167 328-349 582 558 328-349
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. Atlanta, extracts from building laws of. Avoirdupois pounds equivalents in kilograms. weight. Baltimore, extracts from building laws of. Band or hoop steel, table of weights of.	74 69 69 551 26 487-509 468-473 302,303 356,357 451,457 168-175 166,167 328-349 328-349 474 33 377 376
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms. weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDS, light, dimensions of BARS, eye. " rolled steel areas of.	74 69 69 551 26 487-509 468-473 302,303 356,357 451,457 168,167 328-349 328-349 474 33 377 376 468-473
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms. weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDS, light, dimensions of BARS, eye. " rolled steel areas of.	74 69 69 551 266 487-509 468-473 302,303 356,357 451,457 168-175 166,167 328-349 558 328-349 33 377 468-473 473
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for. for standard sections ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms. weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDS, light, dimensions of . BARS, eye. flat, dimensions of upset screw ends for. " rolled steel, areas of. " " rolled steel, areas of. " " weights of.	74 69 69 551 26 487-509 468-473 302,303 356,357 451,457 168-175 168-175 328-349 558 328-349 377 33 377 468-473 473 486
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDs, light, dimensions of uset screw ends for. " rolled steel, areas of. " " motes on areas of. " " weights of.	74 69 69 69 69 687-509 468-473 302,303 356,357 451,457 168-175 166,167 328-349 474 33 328-349 474 473 474 475-486 475-486
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDs, light, dimensions of upset screw ends for. " rolled steel, areas of. " rolled steel, areas of. " weights of. " weights of. " weights of. " weights of. lattice, sizes of and rivet spacing in, for latticed channel columns	74 69 69 551 26 487-509 468-473 302,303 356,357 451,457 168-175 168-175 328-349 328-349 474 474 475-486 272,273
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for. for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDs, light, dimensions of upset screw ends for. " rolled steel, areas of. " " weights of. BARS, eye. " " a " weights of. " " weights of. lattice, sizes of and rivet spacing in, for latticed channel columns round and square, dimensions of upset screw ends for.	74 69 69 69 69 551 487-509 468-473 302, 303 356, 357 451, 457 168-175 168-175 168-175 328-349 474 33 377 468-473 473 486 475-486 475-486 475-486
weights of hollow brick and tile floor. segmental floor. AREAS in mensuration. method of increasing sectional. of circles. " " for diameters greater than one hundred. " flat rolled steel bars. " hollow cast iron columns. " rivet holes, to be deducted to obtain net areas of plates. " square and round bars. " various sections, formulæ for. for standard sections. ATLANTA, extracts from building laws of. AVOIRDUPOIS pounds equivalents in kilograms weight. BALTIMORE, extracts from building laws of. BAND or hoop steel, table of weights of. BANDs, light, dimensions of upset screw ends for. " rolled steel, areas of. " " weights of. BARS, eye. " " a " weights of. " " weights of. lattice, sizes of and rivet spacing in, for latticed channel columns round and square, dimensions of upset screw ends for.	74 69 69 551 26 487-509 468-473 302,303 356,357 451,457 168-175 168-175 328-349 328-349 474 474 475-486 272,273

Diene Austral Artette of column	PAGE
Bases, typical details of column	243 305
BEAM box girders, explanations of tables of safe loads fortables of safe loads for	306-316
BEAMS, notes on bearing plates for shapes used as	63
coefficients for deflection of	98, 99
general formulæ for flexure of	160,161
girders, notes on	52
grillage, notes on, for foundations	327
I section, cast iron separators for.	66, 67 4, 5, 7, 9
" cuts of sections of special	4, 5, 7, 9
" standard connection angles for	2-4, 6-8
" explanation of tables of properties of	176, 177
" diagram of sections of minimum standard	28
" location of connection angles for	54, 55
" maximum bending moments in foot pounds for	136
" size of rivets in	54, 356
" minimum spans for, with standard connection angles	58
notes on lateral strength of	78-83
" without lateral support	82
" safe loads for	100-105 102-105
spacing for proportions of sections of standard	27
" spacing of rivet and bolt holes in flanges and con-	21
nection angles of	60
nection angles of	
pling of web	96
" tables of bearing plates for	66
" properties of special	184, 185
standard	182-185
safe loads for used as columns	106-117
used as columns	244-247
" spacing for" " tangent distances between fillets	124-135 60
" weights and dimensions of special	41
" standard	40, 41
reduction in safe loads and fibre stress, due to lateral flexure of.	83
of uniform section, bending moments and deflections for	162-165
" safe superimposed loads and shears for	162-165
wooden, notes on bearing at points of support	406
" notes on safe loads for	403-406
tables of safe loads for	416-421
Braking plates for I-beams and channels, tables of sizes of	64, 65 63
" for shapes used as beams, notes onvalues of pin plates, tables of	359
" wall plates, safe unit	64
" rivets and plates	352, 353
of wooden beams at points of support, notes on	406
BEARINGS and bearing plates, standard, tables of sizes of	64
Bending moments for beams of uniform section	162-165
for I-beams and channels, tables of maximum	
" for pins, tables of maximum	
BILLETS, dimensions of square and round cornered steel	34-36
BIRMINGHAM wire gauge (B. W. G.). "ew standard sheet and hoop gauge (B. G)	435
Recover dimensions of steel	435 34, 35
BLOOMS, dimensions of steel. BOLSTERS for column bases, typical details of	243
BOLF and rivet holes, spacing of, through connection angles	60, 61
" heads, weights and dimensions of, Manufacturers' standard	369
Bolts and nuts, Franklin Institute standard	362-365
for standard and special cast iron beam separators	66, 67
weights of round headed, without nuts	368
	366, 367
Boston, extracts from building laws of	328-349
Box girders, beam, tables of safe loads of	306-316

		PAGE
	Box girders, beam, tables of safe loads of, explanation of	305
	Brackets for riveted columns, typical details of	243
	Brass, weights of sheets and plates of	436, 437
	Dansy weights of sheets and plates of	410, 417
	EREAKING unit stresses, tables of, for timber. BRICK, hollow, for partitions and arches, weights of	410-415
	BRICK, hollow, for partitions and arches, weights of	69
	BRIDGE pins and nuts, dimensions of	382
	Rucki P plates dimensions of	90
	BUCKLE plates, dimensions of	
	BUFFALO, extracts from building laws of	328-349
	Building laws of various cities, extracts from	328-349
	RIII P angles cuts of sections of	90 99
	" properties of " weights and dimensions ct. CABLE and rope measure. CAR forgings and pressed steel parts.	100 100
	properties of	192-195
	weights and dimensions of	45, 46
- (CABLE and rope measure	559
-	Ap forgings and pressed steel parts	30, 31
	Orn oldered and pressed steel parties	00, 01
1	CAR SIDE STAKES, CUI OI SECTION OI	20
	" properties of	194, 195
	" weights and dimensions of	46
-	CAST iron columns, tables of safe loads for hollow, round	302, 303
,	as in our conditions, tables of safe foods for monow, found,	302, 300
	" strength of hollow, round and rectangular	
	 bases for columns, typical details of separators, standard and special, for I-beams 	243
	separators standard and special for L-beams	66, 67
-	THE THICK weights of persons torre out to for	69
3	CEILINGS, weights of porous terra-cotta for	
(CENTER of gravity, formulæ for location of, in Cambria sections	166, 167
	" location of, in various sections	168 - 175
	of solids	554-556
-	Or solids	
'	CHAINS, dimensions and weights of, safe loads for	381
(CHANNEL and plate columns, tables of dimensions of safe loads for, series A safe loads for, series B series B.	232-235
	" " safe loads for series A	274-287
	# # # # # # marries D	288-301
	series D	
	columns, latticed, diameter of rivets for	273
	" spacing of rivets for lacing bars	272
	" tables of dimensions of	230
	# # # costs lands for	268-271
,	safe loads for	
(CHANNELS, bearing plates for, tables of	65
	" (standard) for, tables of	64
	cuts of sections of special	12-16
	" otendard	
	standard	10-12
	standard connection angles for	53
	diagram of sections of minimum standard	29
	explanation of properties of standard and special	177
		144
	limiting spans and maximum safe loads due to web crip-	
	plingmaximum bending moments in foot pounds for	97
	maximum bending moments in foot pounds for	137
	E cigo of Pivoto for	
	size of rivets forminimum spans for, with standard connection angles	62, 356
	minimum spans for, with standard connection angles	56
	proportions of sections of standard	27
	safe loads for, tables of	118-123
	g g g notes on	100-105
	spacing of rivet and bolt holes in flanges and connection	100-100
	spacing of rivet and boit holes in flanges and connection	
	angles of tables of properties of special. " standard	61
	tables of properties of special	188-191
	" chanded	
	standard	186, 187
	tangent distances between fillets	61
	weights and dimensions of special	43-45
	" standard	42, 43
0	Turcico extracte from building lower of	328-349
-	CHICAGO, extracts from building laws of	
(INCINNATI, EXTRACTS ITOIN DUILDING laws of	328-349
(IRCLES, areas and circumferences of, for diameters greater than 100.	499
	" tables of	487-509
0		
-	CIRCULAR plates, limiting sizes of	38, 39
	weights of	464-467
	segments, relations in	552, 553
(487-509
-	" for diameters content then 100	
	for diameters greater than 100	499
	" round bars	451-457

	PAGE
CITIES, extracts from building laws of various	
CLEVELAND, extracts from building laws of	
CLEVISES, dimensions of	380
COEFFICIENTS of deflection for beams, explanation of tables of	177
" " shapes used as beams	98
" strength, explanation of tables of, for I-beams	176
Columns, bases for, typical details of	243
cast iron, hollow, round and rectangular, strength of	304
" tables of safe loads for I-beams used as, tables of safe loads for	302, 303
latticed channel, diameter of rivets for	255
" lattice bars and stay plates for	272, 273
" tables of dimensions of	230
" tables of safe loads for	268
plate and channel, tables of dimensions of	232-235
" " safe loads for, series A	274-287
D.,,,,,,	288-301
steel, examples of the use of the tables of strength of	222
" explanation of tables of dimensions and safe loads for.	222, 223
medium, tables of strength of soft	220, 221
wooden, notes on	403
tables of strength of	422, 423
COMPOUND shapes, properties of, notes on	181
CONCRETE, reinforced, for floor slabs, notes on formulæ for and tables of formulæ for and tables of formulæ.	91
" " formulæ for and tables of	92, 93
CONNECTION angles for I-beams and channels, cuts of	53
notes on	52, 56
" " " spacing of rivet and bolt holes in	60 61
" beams, location of	60, 61 54, 55
" " notes on	52
Conversion tables, U. S. weights and measures to metric and vice versa	562-590
COPPER, weights of sheets and plates of	436, 437
COUNTER rods, loop-welded eyes, dimensions of	384, 385
" with solid or upset eyes, dimensions of	383
CRANE rail, cut of section of	26 214
Crippling of webs of I-beams and channels, notes and tables on	94-97
CUBE roots of fractions	444
CUBES and cube roots, tables of	523-539
CUBES and cube roots, tables of	515-547
CUBIC or solid measure	560
CUSTOMARY weights and dimensions converted to metric	562-590
Cut nails, tables of	388
Curs of sections of angles, special, equal and unequal legsstandard, equal legs	19
standard, equal legsunequal legs	17 18
" " bulb	20, 23
beams, special I	4, 5, 7, 9
standard I	2-4, 6-8
" channels, special and ship	12-16
standard	10-12
connection angles, standard	53
" crane rail	26
girders	243
DECIMAL gauge, standard, table of	434
parts of a foot for each $\frac{1}{2}$ of an inch, tables of	446-449
parts of a foot for each & of an inch, tables of	450
DECIMALS for non-binary fractions	444, 445
of a degree expressed as minutes and seconds	557
DEFLECTION, coefficient of, for beams, explanation of tables of	177
" shapes used as beams, tables of of beams, formulæ for	98, 99 160–165

D===== 1	-16 11 1	PAGE
	als of, expressed as minutes and seconds	557 328–349
DESIGN of roin	cts from building laws of	91-93
DETAILS of plat	te girders and column bases, steel columns, splices and	31-30
b	rackets	243
DETROIT, extra	oracketscts from building laws of	328-349
DIAGRAM for mi	inimum standard beams	28
Disensicione	" channelsd safe loads of steel columns, explanation of tables of	29
DIMENSIONS all	angles, special, equal legs	222, 223 50
01 "	" unequal legs	51
4	* standard, equal legs	46
	" unequal legs	49, 50
44	bolt heads and nuts, Manufacturer's standard	369-371
a a	bolts and nuts, Franklin Institute standard	362
4	bridge pins, nuts and pilot nuts	382
4	buckle plates	40 45, 46
4	bulb anglescast iron separators, standard and special, and bolts	40, 40
	for beams	66, 67
4	chains, weights of, safe loads for	381
	channels, special and ship	43-45
£	standard	42, 43
	clevises	380
- 4	columns, explanation of tables for	222, 223
	counter and lateral rods with loop welded eyes	384, 385 37-39
Æ	edged and sheared plateseye bars	377
44	flats and thin flats or light bands	33
4	I-beams, special	41
4	" standard	40, 41
4	lateral pins and rods	383
	lattice bars to be used with latticed channel columns.	272
4	latticed channel columns, tables of	230
44	minimum stay plates with latticed channel columns. plate and angle columns, tables of	273 224, 225
K	" channel columns, tables of, series A and B.	232-235
d	right and left nuts	379
"	rivet heads after driving	380
4	safety floor plate, rolled	90
	standard pipe	390-392
4	T-rails and crane rail.	214
4	steel billets	34-36 34, 35
4	" blooms and slabs	34, 35
e e	" guide and hand rounds	33
Si Si	" ingots	32
	* sheeting, flat and corrugated	85
- 4	" squares	33
a a	T-barstop guard angles	47 45
a	turnbuckles	378
a	upset screw ends for flat bars	376
4	" " round and square bars	372-375
	neutral axis to extreme fibre of standard sections	166, 167
Door spreader	section, cut of	26
Day massure	properties of	
DRY measure.	dimensions of	560 37
EXPLANATIONS.	of tables of properties of angles	178
	" channels	177
	" I-beams	176, 177
	" safe loads for beam box girders and plate	
	girders	305
	" terra-cotta floor arches	70

	PAGE
Eye bars, dimensions of	377
FACTORS of safety for various wooden structures	408
FASTENINGS for steel sheeting	85 574
FEET equivalents in metres	83
FIREPROOF floors and materials, notes and tables for	68-93
FLAT bars, upset screw ends for	376
rolled steel bars, areas of	468-473
rolled steel bars, areas of	475-486
FLATS, regular and thin, dimensions of	33
FLEXURE, lateral, reduction of allowable stress in beams due to	83
strength of beams to resist thrust of arches	78-81
of beams, formulæ for	160-175
terra-cotta, flat and segmental	70-73
tests and breaking loads for hollow tile	74
plates, rolled safety	90
slabs, reinforced concrete, notes on, design of	91-93
FLOORS, notes and tables for fireproof, and material for	68-93
usual live loads for	52, 328
FOOT, decimals of, fractions of an inch, tables of	446-449
FORMULÆ for bending moments, shears, safe loads and deflections	162-175
" moments of inertia for Cambria sections	166, 167
" the properties of various sections	168-175
general, for flexure of beams	160, 161
FOUNDATIONS, notes on grillage beams for	327
Fractions of an inch in decimals of a foot	446-449
an inch	450
non-binary, values of	444, 445
square and cube roots of. FRANKLIN INSTITUTE STANDARD for bolts and nuts.	362-365
FUNCTIONS, natural trigonometrical.	516-522
FURRING, weights of porous terra-cotta for	69
Gas, steam and water pipe, sizes of wrought iron welded	390-392
Gauge, table of American or Brown & Sharpe wire	435
" Screw Co. screw wire	435
Birmingham or Stubs iron wire (B. W. G.)	435
new Birmingnam sneet and noop (b. G.)	435
" British Imperial standard wire	435 435
Trenton Iron Co. wire	435
" U. S. standard for iron and steel sheets and plates	435
" Washburn & Moen Co. and Roebling's Sons Co. wire.	435
GAUGES, wire, combined table of	438-443
GIRDERS, beam box and plate, explanations of tables of safe loads for	305
tables of safe loads for	306-316 52
notes on beams used as	305
tables of safe loads for	317-326
GRAVITY, specific, for various kinds of timber	408
" of various substances, tables of	424-433
GRILLAGE beams for foundations, notes on	327
GRIP of rivets and bolts through flanges of beams and channels	60, 61
" lengths required for	354 33
GUIDE rounds, dimensions of	559
GYRATION, radii of, see Radii of gyration.	009
HAND rounds, dimensions of	33
HARTFORD, extracts from building laws of	328-349
HATCH section, Z-Bar, cut of	
" properties of	

CAMBRIA STEEL.

	PAGE
HEADS, bolt, weights and dimensions of, Manufacturers' standard	369
or circular plates, limiting sizes of	38, 39
rivet, dimensions of, after driving	380
or circular plates, limiting sizes of . rivet, dimensions of, after driving . square and hexagon, weights of, Franklin Institute standard .	364, 365
Hollow brick, weights of, for arches and partitions	(55)
round and rectangular cast iron columns, strength of	304
Hoop or band steel, tables of weights of	474
INCH, decimals of, for each 1/4, tables of a foot for fractions of an	450
" a foot for fractions of an	446-449
INCH, equivalents in millimetres	568
INERTIA, moments of, explanations of tables of, for rectangles	178
formulæ for various sections	169-175
for standard sections	166, 167
" tables of, for rectangles	210-213
INGOTS, grades, sizes and weights of steel	32 328–349
JERSEY CITY, extracts from building laws of KILOGRAM equivalents in avoirdupois pounds	586
TAND or aguere measure	559
LAND or square measure LATERAL flexure, reduction of allowable fibre stress due to	83
pine and rode dimensions of	383
pins and rods, dimensions ofrods, loop welded eyes, dimensions of	384, 385
etrongth of L-heams	78-83
strength of I-beams	82
LATTICE hars to be used with latticed channel columns, rivet spacing for	272
" " weights and di-	
mensions of.	272
LATTICED channel columns, spacing of rivets for lacing bars	272
" "rivets for diameter of	273
tables of dimensions of	230
" " moments of inertia and section	
moduli of	231
" " safe loads for	268-271
Laws, building, of various cities, extracts from	328-349
Linear measure	559
Liquid for foot	569
LIVE 1030S for moors	52, 328
	328-349
safe (see Safe Loads).	
Logarithms of numbers	510, 511
Loop welded eyes for counter and lateral rods, dimensions of	384, 355
Los Angeles, extracts from building laws of	328-349
Louisville, extracts from building laws of	328-319
MACHINE bolts, Franklin Institute standard	364, 365
" Manufacturers' standard	
Manufacturers' standard chains	381
machine bolts and bolt heads	366-369
square and nexagon nuts	370, 371
* specifications	393-402
structural and boiler steel	393-402
MASONRY, allowable pressure on	65
MAXIMUM loads for I-beams and channels due to web crippling	94-97
shear at points of support for beams of uniform section	
MEASURES, Metric System, length, capacity and weight	162-165
" square or surface and cubic	162-165 561
II C and Pritish linear sons shain neutical and land	162-165 561 561
U. S. and British, linear, rope, chain, nautical and land	162-165 561 561 559
U. S. and British, linear, rope, chain, nautical and land "cubic or solid, dry and liquid	162-165 561 561 559 560
U. S. and British, linear, rope, chain, nautical and land "cubic or solid, dry and liquid	162-165 561 561 559 560
U. S. and British, linear, rope, chain, nautical and land. " cubic or solid, dry and liquid MEASURES and weights	162-165 561 561 559 560 558-561 562-590
U. S. and British, linear, rope, chain, nautical and land " cubic or solid, dry and liquid MEASURES and weights	162-165 561 561 559 560 558-561 562-590 550-556
U. S. and British, linear, rope, chain, nautical and land "cubic or solid, dry and liquid MEASURES and weights "" U. S., tables for converting MENSURATION tables METRE equivalents in feet	162-165 561 561 559 560 558-561 562-590 550-556
U. S. and British, linear, rope, chain, nautical and land. "cubic or solid, dry and liquid	162-165 561 561 559 560 558-561 562-590 550-556 578
U. S. and British, linear, rope, chain, nautical and land "cubic or solid, dry and liquid MEASURES and weights "U. S., tables for converting METRIC System, measures of length, capacity, weight, area and volume weights and measures converted to U. S.	162-165 561 561 559 560 558-561 562-590 550-556 578 561 562-590
U. S. and British, linear, rope, chain, nautical and land. "cubic or solid, dry and liquid	162-165 561 561 559 560 558-561 562-590 550-556 578 561 562-590 570

	DICE
MINIMUM spans for beams and channels due to web crippling	94-97
with standard angle connections	58, 59
" channels with standard angle connections	56, 57
MINNEAPOLIS, extracts from building laws of	328-349
MINUTES and seconds expressed as decimals of a degree	557
Moduli, Section, for beams, explanation of	176
" latticed channel columns	231
" plate and angle columns	226-228
" " channel columns	236-242
" various sections, formulæ for	169-175
MOISTURE classification of wooden structures	407, 408
MOMENTS, bending, for beams of uniform section	
of inertia, formula for standard sections	166, 167 169–175
" " various sections	231
" plate and angle columns, tables of	226-228
" plate and channel columns, tables of	236-242
" rectangles, explanation of tables of	178
" tables of	210-213
Nails, standard cut wire and miscellaneous, tables of	386-389
Natural sines, cosecants, tangents, etc	516-522
Nautical measure	559
Newark, extracts from building laws of	328-349
NEW HAVEN	328-349 328-349
NEW HAVEN " " " " " " " " " " " " " " " " " " "	328-349
Nurs and bolts	362-367
dimensions of pin and pilot.	382
" right and left	379
square and nexagon, Frankin institute standard	362-365
Manufacturers' standard	370, 371
Partitions, weights and dimensions of porous terra-cotta and hollow	
brick for	. 69
PHILADELPHIA, extracts from building laws of	328-349
Pi, π, numerical combinations of	548, 549
PILES, wooden, safe loads and sizes for PILOT nuts, bridge pins and pin nuts, dimensions of	339 382
Pix plotes, table of bearing values of	359
PIN plates, table of bearing values of	350
dimensions of bridge	382
dimensions of bridge	383
table of maximum bending moments on	360, 361
PIPE, weights, dimensions and properties of standard	390-392
PITTSBURGH, extracts from building laws of	328-349
PLATE and angle columns, safe loads for, notes on	222
tables of dimensions of	224, 225
" " moments of inertia and section moduli of	226-228
moduli orsi moduli or	248-267
" channel " " dimensions of	232-235
" " moments of inertia and section	
moduli of	236-242
" " safe loads for, series A	274-287
u u u u u u u B	288-301
girders, explanations of tables of safe loads for	305
safe loads for, tables of	317-326
stiffener angles and rivet spacing for, notes on	305 436, 437
PLATES and sheets of steel, iron, copper and brass, weights of bearing, for I-beams and channels, table of	430, 437
" shapes used as beams, notes on	63
buckle, dimensions of	90
circular, limiting sizes of	36, 37
weights of	464-467
edged, dimensions of	37
pin, table of bearing values of	359

	PAGE
PLATES, riveted, tables of areas to be deducted to obtain net areas of.	356, 357
* tables of bearing values of	352, 353
rolled steel safety floor	90
sheared, tables of dimensions of	37-39
standard bearing, for I-beams and channels	64
stay, minimum sizes of, used with latticed channel columns.	273
PORTLAND, extracts from building laws of	
Pounds and tons used in the U.S., comparison of	590
avoirdupois, equivalents in kilograms	582
Pressed steel car parts	30
PROPERTIES, examples of use of tables of, for standard sections	179-180
explanation of tables of, for I-beams	176, 177
" " channels	177
" angles	178
of compound shapes, notes on	181
" regions cotions formula for	
" various sections, formulæ for	202, 203
tables for, angles, special, equal legs.	202, 200
unequal legs	
standard, equal legs	198-201
unequal legs	204 - 207
channels, special and ship	188, 191
a a a standard	186, 187
" " " bulb	192, 195
" " I-beams, special	184, 185
" " standard	182-185
" " pipe, standard	
" " T-rails, standard, and crane rail	214
PROPORTIONS of sections of standard I-beams and channels	27
PROVIDENCE, extracts from building laws of	328-349
RADII of gyration for two angles, back to back, equal legs	215
unequal legs	216, 217
« « « « « « example of use of	
tables of	222
tables of	222 169–175
tables of	169-175
tables of	169-175 26
# " of various sections, formulæ for	169–175 26 214
# " of various sections, formulæ for. RAIL for cranes, cut of section of	169–175 26 214 214
# " of various sections, formulæ for. RAIL for cranes, cut of section of	169–175 26 214 214
# " of various sections, formulæ for. RAIL for cranes, cut of section of	169–175 26 214 214
# " of various sections, formulæ for. RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RECTANGULAR hollow cast iron columns, strength of.	169-175 26 214 214 523-539 210-213 304
# " of various sections, formulæ for RAIL for cranes, cut of section of. " properties, weights and dimensions of RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECTANGUES, tables of moments of inertia of. RECTANGULAR hollow cast iron columns, strength of. REINFORCED concrete floor slabs.	169-175 26 214 214 523-539 210-213 304 92, 93
# " of various sections, formulæ for. RAIL for cranes, cut of section of	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348
# " of various sections, formulæ for RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECTANGUES, tables of moments of inertia of. RECTANGULAR hollow cast iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts. dimensions of.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379
# " of various sections, formulæ for. RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECTROCALS, tables of. RECTANGLES, tables of moments of inertia of. RECTANGULAR hollow cast iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of. RIVET and bolt grips in flanges of I-beams and channels.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61
# " of various sections, formulæ for. RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RECTANGLUAR hollow east iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of. RIVET and bolt grips in flanges of I-beams and channels. RIVETED plates, area to be deducted to obtain net area of.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61
# " of various sections, formulæ for. RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RECTANGLUAR hollow east iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of. RIVET and bolt grips in flanges of I-beams and channels. RIVETED plates, area to be deducted to obtain net area of.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61
# " of various sections, formulæ for. RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RECTANGLUAR hollow east iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of. RIVET and bolt grips in flanges of I-beams and channels. RIVETED plates, area to be deducted to obtain net area of.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61 356, 357 351
# " of various sections, formulæ for. RAIL for cranes, cut of section of	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61 356, 357 351, 357
### ### ### #### #####################	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61 356, 357 351 356, 357 380
" " of various sections, formulæ for. RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECTROCALS, tables of. RECTANGLES, tables of moments of inertia of. RECTANGULAR hollow cast iron columns, strength of. RECTANGULAR hollow cast iron columns, strength of. REINFORCED concrete floor slabs allowable unit stresses for. RIVET and left nuts, dimensions of. RIVET and bolt grips in flanges of 1-beams and channels. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61 356, 357 351 356, 357 380 272, 273
" " of various sections, formulæ for. RAIL for cranes, cut of section of. " " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECIPROCALS, tables of moments of inertia of. RECINGULAR hollow east iron columns, strength of. RECINGULAR hollow east iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of. RIVET and bolt grips in flanges of I-beams and channels. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates. length of, required for different grips.	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61 356, 357 380 272, 273 354
### ### ### ### #### #################	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 93, 348 356, 357 356, 357 356, 357 352, 272, 273 354 305, 358
" " of various sections, formulæ for. RAIL for cranes, cut of section of	169-175 26 214 214 523-539 210-213 304 92, 93 93, 348 379 60, 61 356, 357 350, 357 350, 357 350, 357 350, 357 350, 357 272, 273
" " of various sections, formulæ for RAIL for cranes, cut of section of. " " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RIVET and bolt grips in flanges of I-beams and channels. RIVETET and bolt grips in flanges of I-beams and channels. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates. length of, required for different grips. spacing of, general rules for. " " in latticed channel columns. " " plate griders, notes on.	$\begin{array}{c} 169175 \\ 26 \\ 214 \\ 523539 \\ 210213 \\ 304 \\ 92, 93 \\ 93, 348 \\ 379 \\ 60, 61 \\ 356, 357 \\ 356, 357 \\ 356, 357 \\ 356, 357 \\ 350, 358 \\ 272, 273 \\ 305, 358 \\ 272, 273 \\ 305, 358 \\ 272, 273 \\ 305 \end{array}$
" " of various sections, formulæ for RAIL for cranes, cut of section of. " " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RIVET and bolt grips in flanges of I-beams and channels. RIVETET and bolt grips in flanges of I-beams and channels. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates. length of, required for different grips. spacing of, general rules for. " " in latticed channel columns. " " plate griders, notes on.	169-175 26 214 523-539 210-213 304 92, 93 93, 348 356, 357 356, 357 356, 357 272, 273 305, 354 305, 354 305, 354 305, 354
" " of various sections, formulæ for RAIL for cranes, cut of section of	$\begin{array}{c} 169175 \\ 26 \\ 214 \\ 214 \\ 523539 \\ 210213 \\ 3210213 \\ 92, 93 \\ 93, 348 \\ 356, 357 \\ 356, 357 \\ 272, 273 \\ 354, 350 \\ 350, 358 \\ 272, 273 \\ 354, 350 \\ 272, 273 \\ 354 \\ 305, 358 \\ 262, 356 \\ $
" " of various sections, formulæ for. RAIL for cranes, cut of section of. RAIL for cranes, cut of section of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECTANGLES, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RECTANGULAR hollow east iron columns, strength of. RECTANGULAR hollow east iron columns, strength of. RIFECTANGULAR hollow east iron columns, attreated to. RIFECTANGULAR hollow east iron columns and channels. RIFECTANGULAR hollow east iron columns at the second channel columns at the second channel columns. """ plate girders, notes on. tables of maximum sizes of, in angles. """ shearing and bearing values of.	$\begin{array}{c} 169175 \\ 26 \\ 214 \\ 523539 \\ 210213 \\ 304 \\ 92, 93 \\ 93, 348 \\ 360, 61 \\ 356, 357 \\ 356, 357 \\ 356, 357 \\ 356, 357 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 360, 351 \\ 351, 352 \\ 352, 353 \\ 352, 352 \\ 352,$
" " of various sections, formulæ for RAIL for cranes, cut of section of	169-175
" " of various sections, formulæ for RAIL for cranes, cut of section of	$\begin{array}{c} 169175 \\ 26 \\ 214 \\ 523539 \\ 210213 \\ 304 \\ 92, 93 \\ 379 \\ 60, 61 \\ 356, 357 \\ 380 \\ 272, 273 \\ 356, 357 \\ 380 \\ 272, 273 \\ 356, 357 \\ 356 \\ 352, 353 \\ 357 \\ 368 \end{array}$
" " of various sections, formulæ for RAIL for cranes, cut of section of	169-175
" " of various sections, formulæ for RAIL for cranes, cut of section of	$\begin{array}{c} 169175 \\ 26 \\ 214 \\ 214 \\ 523539 \\ 210213 \\ 304 \\ 92, 93 \\ 93, 348 \\ 379 \\ 60, 61 \\ 356, 357 \\ 356, 357 \\ 360, 558 \\ 272, 273 \\ 305, 358 \\ 272, 273 \\ 305, 358 \\ 362, 356 \\ 62, 356 \\ 62, 356 \\ 352, 357 \\ 368 \\ 352, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 353, 357 \\ 368 \\ 355, 358 \\ 357 \\ 368 \\ 355, 358 \\ 356, 358$
" " of various sections, formulæ for RAIL for cranes, cut of section of	$\begin{array}{c} 169-175\\ 26\\ 214\\ 214\\ 523-539\\ 210-213\\ 3210-213\\ 39, 348\\ 39, 348\\ 356, 357\\ 356, 357\\ 272, 273\\ 305, 358\\ 272, 273\\ 305, 358\\ 262, 356\\ 352, 353\\ 357, 368\\ 352, 353\\ 353\\ 353\\ 353\\ 353\\ 353\\ 353\\ 353$
" " of various sections, formulæ for RAIL for cranes, cut of section of. " " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECTANGLES, tables of moments of inertia of. RECTANGLES, tables of moments of inertia of. RECTANGULAR hollow cast iron columns, strength of. REINFORCED concrete floor slabs " allowable unit stresses for RIGHT and left nuts, dimensions of. RIVET and bolt grips in flanges of I-beams and channels. RIVETED plates, area to be deducted to obtain net area of. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates. length of, required for different grips. spacing of, general rules for. " " latticed channel columns " " " latticed channel columns " " " " I-beams and channels. " " " " " " I-beams and channels. " " " spacing of. " " " 100, including 100 heads. ROCHESTER, extracts from building laws of. RODS, counter and lateral, with loop welded eyes, dimensions of.	$\begin{array}{c} 169-175\\ 26\\ 214\\ 523-539\\ 210-213\\ 92, 93\\ 93, 348\\ 92, 93\\ 93, 348\\ 356, 357\\ 356, 357\\ 356, 357\\ 352, 353\\ 362, 353\\ 352, 353\\ 352, 353\\ 352, 353\\ 352, 353\\ 353\\ 353\\ 353\\ 353\\ 353\\ 353\\ 353$
" " of various sections, formulæ for RAIL for cranes, cut of section of	$\begin{array}{c} 169-175\\ 266\\ 214\\ 214\\ 523-539\\ 210-213\\ 3210-213\\ 39, 348\\ 379\\ 39, 348\\ 379\\ 356, 357\\ 356, 357\\ 356, 357\\ 356, 358\\ 355, 358\\ 305\\ 62, 356\\ 62, 356\\ 62, 356\\ 62, 356\\ 62, 356\\ 328-349\\ 384, 383\\ 384, 383\\ 384, 383\\ 384, 383\\ 385\\ \end{array}$
" of various sections, formulæ for RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECIPROCALS, tables of moments of inertia of. RECINGULAR hollow east iron columns, strength of. RECINGULAR hollow east iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of I-beams and channels. RIVETED plates, area to be deducted to obtain net area of. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates. length of, required for different grips. spacing of, general rules for. " " in latticed channel columns " " blate girders, notes on. tables of maximum sizes of, in angles. " " " " " " I-beams and channels. " " spacing of. weight of round headed. " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " " I-beams and channels. " " " " " " " " I-beams and channels. " " " " " " " " I-beams and channels. " " " " " " " " I-beams and channels. " " " " " " " " I-beams and c	$\begin{array}{c} 169-175\\ 26\\ 214\\ 214\\ 523-539\\ 210-213\\ 30,348\\ 379\\ 60,61\\ 356,357\\ 350,357\\ 350\\ 272,273\\ 354\\ 305,358\\ 272,273\\ 354\\ 305,358\\ 272,356\\ 62,356\\ 62,356\\ 6352,353\\ 328,357\\ 368\\ 383\\ 383\\ 383\\ 85\end{array}$
" " of various sections, formulæ for RAIL for cranes, cut of section of	$\begin{array}{c} 169-175\\ 26\\ 214\\ 214\\ 523-539\\ 210-213\\ 304\\ 92, 93\\ 93, 348\\ 356, 357\\ 356, 357\\ 356, 357\\ 372, 273\\ 305, 358\\ 362, 356\\ 62, 356\\ 62, 356\\ 62, 356\\ 62, 356\\ 352, 357\\ 368, 357\\ 368, 357\\ 368, 358\\ 383\\ 384, 383\\ 884\\ 884\\ \end{array}$
" of various sections, formulæ for RAIL for cranes, cut of section of. " properties, weights and dimensions of. RAILS, T, properties, weights and dimensions of. RECIPROCALS, tables of. RECIPROCALS, tables of moments of inertia of. RECINGULAR hollow east iron columns, strength of. RECINGULAR hollow east iron columns, strength of. REINFORCED concrete floor slabs. " allowable unit stresses for. RIGHT and left nuts, dimensions of I-beams and channels. RIVETED plates, area to be deducted to obtain net area of. RIVETING, conventional signs for. RIVETING, conventional signs for. RIVETS, areas to be deducted to obtain net area of riveted plates. dimensions of heads after driving. for latticed channel columns, lattice bars and stay plates. length of, required for different grips. spacing of, general rules for. " " in latticed channel columns " " blate girders, notes on. tables of maximum sizes of, in angles. " " " " " " I-beams and channels. " " spacing of. weight of round headed. " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " I-beams and channels. " " " " " " " I-beams and channels. " " " " " " " " I-beams and channels. " " " " " " " " I-beams and channels. " " " " " " " " I-beams and channels. " " " " " " " " I-beams and c	$\begin{array}{c} 169-175\\ 26\\ 214\\ 214\\ 523-539\\ 210-213\\ 30,348\\ 379\\ 60,61\\ 356,357\\ 350,357\\ 350\\ 272,273\\ 354\\ 305,358\\ 272,273\\ 354\\ 305,358\\ 272,356\\ 62,356\\ 62,356\\ 6352,353\\ 328,357\\ 368\\ 383\\ 383\\ 383\\ 85\end{array}$

	Dian
Roof Trusses, coefficients and formulæ for	PAGE
Roots, square and cube, of fractions	444
" ". " numbers	523-539
ROPE and cable measure.	559
ROPE and cable measure	451-457
" unset screw ends tor	
hollow cast iron columns, strength of	304
ROUNDS, dimensions of hand and guide	33
RULES for proportions of bolts and nuts, Franklin Institute standard.	363
" rivet spacing for bridge and structural work	358
SAFE LOADS, explanation of tables of, flat and segmental floor arches.	. 70
" " for box and plate girders	305
" " steel columns wooden beams	222, 223
wooden beams	403-406
for angles used as beams, notes on	100
" I-beams and channels, notes on	100-105
beams, reduction in, due to lateral flexure various classes of wooden structures	83 407
maximum, for I-beams and channels, due to crippling of	401
weh	94-97
superimposed for beams of uniform section	162-165
tables of, for angles used as beams	138-159
" " beam box girders	306-316
" " chains	381
" " channels	118-123
" " channels	274-287
В	288-301
nollow round cast from columns	302, 303
" " " I-beams	106-117
used as columns	244-247
latticed channel columns	268-273
plate girders	317-326
terra-cotta noor arches	71-73
wooden beams	416-421
SAFE unit stresses for timber	409-415
" used in the safe loads for steel columns	223
SAN FRANCISCO, extracts from building laws of.	328-349
SCREW ends dimensions of upset for flat bars	376
SCREW ends, dimensions of upset, for flat bars round and square bars	372-375
Screws, wood, diameters of	389
SEATTLE, extracts from building laws of	328-349
Seconds and minutes expressed as decimals of a degree	557
Section moduli for beams, explanation of	176
" latticed channel columns	231
plate and angle columns	226-228
Channel Columns	236-242
various sections, formulæ for	169-175
SEGMENTS, circular, relations in	552, 553
SEPARATORS for I-beams, cast iron standard and special	66, 67 162–165
SHEARED plates dimensions of	37-39
SHEARED plates, dimensions of	352, 353
SHEET and tin bars	36
metal and wire gauges	434-443
metal and wire gauges. Sheets and plates of steel, wrought iron, copper and brass, weights of.	436, 437
thin sheared	37
SHEETING, flat and corrugated. Ship channels, cuts of sections of	85
SHIP channels, cuts of sections of	13, 16
". properties of	188-191
" weights and dimensions of SIDE stakes for cars, cut of section of	43, 44
SIDE Stakes for cars, cut of section of	23
" " properties of	194, 195
weights and dimensions of	46

CAMBRIA STEEL.

	PAGE
SIDING, flat and corrugated steel sheets for	85
Signs, conventional, for riveting	351 91–93
SLABS, reinforced concrete	34, 35
SLEEVE nuts, see Right and left nuts.	01, 00
Soils, safe bearing capacity of various	338
Solid or cubic measure	560
Solids, surfaces and volumes of	554-556
	102-105
" " tables of	124–133 222, 223
of channels for equal moments of inertia, notes on	229
tables of	62
" rivet and bolt holes in angles	02
angles	60, 61
" rivets, rules for bridge and structural work	358
" " tables of	357
" tie rods for tile arches, notes on and tables of	76, 77
Spans, limiting, for I-beams and channels, notes and tables	94-97
Specific gravity tables for various kinds of timber	408 424–433
Specification, Manufacturers' standard, structural and boiler steel	393-402
SPIKES, cut steel, railroad, square boat, wrought and standard	386-389
SPLICES for riveted columns, typical details of	243
SQUARE bars, dimensions of	33
" tables of weights and areas of	451-463
" upset ends for	374, 375
or land measure	559
SQUARE roots of fractions	444 523-539
SQUARES of numbers and fractional intervals.	540-544
tables of	523-539
STAKES, car side, cut of section of	23
" " properties of	194, 195
" properties of	. 46
STANDARD decimal gauge, table of	434
sections, formulæ for moments of mertia of	166, 167 66
STAY plates to be used with latticed channel columns.	273
STEAM, gas and water pipe, sizes of	390-392
STEEL bars, tables of areas of flat rolled.	468-473
" " weights of flat rolled	475-486
billets	34-36
blooms	34, 35
hoop or band, table of weights of	474
ingots	32 393–402
rounds, hand and guide	33
slabs	34, 35
squares, dimensions of	33
squares, dimensions of	434, 437
STIFFENER angles for plate girders, notes on	305
St. Louis, extracts from building laws of	328-349
ST. PAUL,	328-349 176
STRENGTH, coefficients of, for beams, explanation of tables of	422, 423
" steel columns, examples of	. 222
" " medium steel	220, 221
" " soft steel	218, 219
ultimate, of hollow round and rectangular cast iron columns	304
Stress, reduction of, for beams due to lateral flexure	400 415
safe unit, for timber	409–415 474
STRIPS, flat rolled, tables of weights of	393
Surfaces and volumes of solids	554-556
Detailed and Same of Sounds of the Sounds of	

Sypacise extracts from building laws of	328-349
Syracuse, extracts from building laws of	60, 61
T-Bars, cuts of sections of	24, 25
properties of	196, 197
TERRA-COTTA floor arches, notes on, tables for	47 70–73
porous, notes and tables for	69
Thrust of arches, notes on	75, 78-81
Tie rods for arches, notes on	75
Tile arches, breaking loads and tests for hollow floor	76, 77 74
" notes and tables for spacing of tie rods for	76, 77
hollow, weights of, for floor arches	69
Timber, safe unit stresses for	409-415
" safe loads for beams	409-415 416-421
Timber, table of specific gravities and weights per foot	408
" strength of solid wooden columns	422, 423
Tin bars. Tons and pounds used in the U.S., comparison of	36
Top-guard angles, cuts of sections of	590 20
" properties of	192 193
properties of weights and dimensions of	. 45
T-RAILS, properties, weights and dimensions of standard	214
TRIGONOMETRICAL formulæ. functions, natural.	512-515
Troy weight	558
TRUSSES, roof, coefficients and formulæ for	86-89
TURNBUCKLES, dimensions of	378
Strength of hollow, round and rectangular cast iron columns	409-415 304
" " steel columns	328-349
HIRCET eyes for counter and lateral rods	263
screw ends, dimensions of, for flat bars. "" round and square bars. VOLUMES and surfaces of solids. WASHINGTON, extracts from building laws of	376 372–375
Volumes and surfaces of solids	554-556
Washington, extracts from building laws of	328-349
WATER, Steam and gas pipe, sizes of	390-392
Web crippling in I-beams and channels. Weights and measures.	94-97 558-561
" tables for converting.	562-590
avoirdupois, troy and apothecaries'	558
of angles, special, equal legs	50
" " unequal legs standard, equal legs	51 48
" " unequal legs	49, 50
" bulb angles	45, 46
" cast iron separators and bolts for I-beams	66, 67
" " " standard and special" " chains	66, 67 381
" channels, special and ship	43, 45
" standard	42, 43
" flat arches of hollow brick	69
folied steel bars, tables of	475–486 474
" " strips, hoop or band steel" hollow brick and porous terra-cotta partitions	69
" round cast iron columns	
	69
" I-beams, special " " standard	40 41
" ingots, steel	40, 41
" lattice bars to be used with latticed channel columns	272, 273
" machine bolts, bolt heads and nuts, Mfrs.' standard	366, 367
	369, 371

CAMBRIA STEEL.

	PAGE
WEIGHTS of machine bolts, with square heads and hexagon nuts, Franklin Institute standard	
	304, 303
" minimum stay plates to be used with latticed channel	273
columns porous terra-cotta, furring, roofing and ceiling	69
porous terra-cotta, furring, roomig and centing	84
" roofing materials	368
	355
" rivets and rivet heads" " sheets and plates of iron, steel, copper and brass	436, 437
square and round bars	
standard pipe standard T-rails and crane rail.	214
" various substances per cubic foot, tables of	
per foot board measure and cubic foot for various kinds of	121 100
timber	408
Wire and sheet metal gauges	434-443
Wire gauges, in combined table	438-443
nails and spikes, standard and miscellaneous sizes.	
Wooden beams, bearing at points of support, notes on	
explanations of tables of safe loads for	
tables of safe loads for	
columns, notes on	403, 422
" tables of strength of solid	
structures, moisture classification	
proportions of safe loads for	407
" safety factors for	408
Wood screws, diameters of	389
Worcester, extracts from building laws of	328-349
WROUGHT iron welded steam, gas and water pipe	392
" weights of sheets and plates of	436, 437
spikes, weights and sizes of	389
Z-BAR, hatch section, cut of	23
" properties of	190, 191

