Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 11 luglio 2022

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (6 punti) Siano

$$W_1 = \{ A \in \mathcal{M}_2(\mathbb{R}) \mid AB = \mathbf{0} \},\,$$

ove
$$B = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix} \in \mathrm{M}_2(\mathbb{R})$$
, e $\mathbf{0} \in \mathrm{M}_2(\mathbb{R})$ è la matrice nulla.
$$W_2 = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathrm{M}_2(\mathbb{R}) | \det \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = 0 \right\}, \quad W_3 = W_1 \cap W_2$$

- a) Per ciascuno degli insiemi W_1, W_2, W_3 si stabilisca se sono sottospazi vettoriali di $M_2(\mathbb{R})$ e si determini una base di quelli che sono sottospazi.
- b) Si trovino, se possibili, 4 matrici linearmente indipendenti di $M_2(\mathbb{R})$ che non appartengono a W_1 .

Esercizio 2. (5 punti) Si consideri la funzione

$$F_k: \mathrm{M}_2(\mathbb{R}) \to \mathbb{R}_2[x]$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (k+1)ax^2 + (b-2c)x + 3d$$

e siano $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 5 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -4 & 7 \end{pmatrix} \right\}, \, \mathcal{B}' = \{-1, \frac{1}{2}x^2, x\}$ due basi ordinate di $\mathcal{M}_2(\mathbb{R})$ e $\mathbb{R}_2[x]$ rispettivamente.

- a) Si stabilisca per quali valori di k si ha che F_k è lineare.
- b) Scelto un valore s tale che F_s sia lineare, sia $A_{\mathcal{B},\mathcal{B}'}$ la matrice associata ad F_s rispetto alle basi ordinate \mathcal{B} e \mathcal{B}' nel dominio e codominio rispettivamente. Si determini l'elemento di posto 3,2 (riga 3, colonna 2) di $A_{\mathcal{B},\mathcal{B}'}$.

Esercizio 3. (9 punti)

Sia $L_k : \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita da:

$$L_k(x_1, x_2, x_3) = (x_1 + kx_2, kx_1 + 7x_2 + x_3, 7x_1 + kx_2 + x_3, x_1 + kx_2).$$

- a) Si determini la dimensione del nucleo di L_k , al variare di $k \in \mathbb{R}$.
- b) Scelto un valore t tale che L_t non sia iniettiva, si determinino delle equazioni cartesiane per il nucleo di L_t .
- c) Si trovino i valori di k tali che il vettore $\mathbf{v} = \mathbf{e}_2 + 5\mathbf{e}_3 2k\mathbf{e}_4$ appartiene a Im (L_k) . Scelto un valore s tale che $\mathbf{v} \in \text{Im } (L_k)$ si scriva \mathbf{v} come combinazione lineare di $L_s(\mathbf{e}_1), L_s(\mathbf{e}_2), L_s(\mathbf{e}_3)$. Gli scalari in tale combinazione lineare sono unici?

Esercizio 4. (7 punti) Sia $T_k:\mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(\mathbf{e}_1) = \mathbf{e}_1 - 2\mathbf{e}_3$$
 $T_k(\mathbf{e}_2) = 3\mathbf{e}_2$, $T_k(e_3) = k\mathbf{e}_1 - \mathbf{e}_3$

- a) Si stabilisca per quali valori di ksi ha che ${\cal T}_k$ è diagonalizzabile.
- b) Si stabilisca per quali valori di ksi ha che $2\mathbf{e}_1+\mathbf{e}_3$ è autovettore di T_k

Esercizio 5 (3 punti)

Si stabilisca se le seguenti affermazioni sono vere o false:

- a) $[-5]_{30} \subseteq [25]_{60}$.
- b) L'equazione $[26]_{65}x = [52]_{65}$ non ha soluzioni.