

PART-1: PHYSICS

SECTION-I

1) If $y = x^2 \sin x$, then \overline{dx} will be

- (A) $x^2 \cos x + 2x \sin x$
- (B) 2x sin x
- (C) $x^2 \cos x$
- (D) 2 x cos x

- 2) $y = \sin x$ then the value of 0
- (A) $\frac{\pi}{4}$
- (B) 0
- (C) π
- (D) $\frac{\pi}{5}$

3) If $v = 3t^2 - 2t + 1$, find the value of t for which $\frac{dv}{dt} = 0$.

- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$
- (C) $\frac{1}{3}$
- (D) None

4) Find the minimum value of the function $y = 3x^3 - 9x^2 + 2$, for $x \in [0, 3]$

- (A) 0
- (B) -10
- (C) 2
- (D) None of these

$$\int_{0}^{1} (t^2 + 9t + c) dt = \frac{9}{2}$$

. Find the value of 'c'

- (A) $-\frac{1}{3}$
- (B) Zero
- (C) 3
- (D) 2
- 6) A particle is moving towards east with velocity 8 m/s and acceleration 4 m/s^2 directed towards west. Find the distance travelled in 6 seconds.
- (A) 40 m
- (B) 24 m
- (C) 32 m
- (D) 16 m
- 7) The adjoining curve represents the velocity-time graph of a particle, its acceleration values along

- OA, AB and BC in metre/sec² are respectively:-
- (A) 1, 0, -0.5
- (B) 1, 0, 0.5
- (C) 1, 1, 0.5
- (D) 1, 0.5, 0
- 8) Two cars C_1 and C_2 are approaching each other on a straight track, C_1 has velocity 5 m/s and C_2 has 3 m/s. Then their relative velocity will be :
- (A) 2 m/s
- (B) 8 m/s
- (C) 4 m/s
- (D) 16 m/s
- 9) A particle moves in a straight line with a constant acceleration. It changes its velocity from 10 m/s to 20 m/s while passing through a distance of 135 m in t seconds. The value of t is:-
- (A) 12
- (B) 9
- (C) 10
- (D) 1.8

10) A ball is thrown vertically upwards with an initial velocity of 5 m/sec from point P as shown. Q is a point 10m vertically below the point P. Then the speed of the ball at point Q will be (in m/sec):

(take $g = 10 \text{ m/s}^2$ and neglect air resistance)

- (A) 15 m/s
- (B) 10 m/s
- (C) 12 m/s
- (D) 14 m/s

11) The ratio of the distances traversed, in successive equal intervals of time by a body freely falling from rest, are:-

- (A) 1:3:5:7:9:....
- (B) 2:4:6:8:10:....
- (C) 1:4:7:10:13:....
- (D) None of these

12) Which one of the following curves do not represent motion in one dimension :-

X-coordinate of a particle moving along this axis is: $x = (2 + t^2 + 2t^3)$. Here, x is in metre and t in seconds. Find the position of particle from where it started it journey and initial velocity of particle.

- (A) 2m, 0 m/s
- (B) 0 m, 0 m/s
- (C) 0.5 m, -1 m/s
- (D) None of these

14) A ball is thrown vertically upward such that it comes back to hand at same height after 4s. Find initial speed of ball by which it is thrown. $(g = 10 \text{ m/s}^2)$

- (A) 10 m/s
- (B) 20 m/s
- (C) 5 m/s
- (D) 25 m/s

15) A particle is moving along x-axis whose instantaneous speed is v^2 = 108 - $9x^2$. The acceleration of particle is

- (A) $-9x \text{ m/s}^2$
- (B) $-18x \text{ m/s}^2$
- (C) $\frac{-9x}{2}$ m/s²
- (D) None of these

16) A particle is projected horizontally with a speed of $\frac{20}{\sqrt{3}}$ m/s, from height at t = 0. At what time

will its velocity make 60° angle with the initial velocity (in s)

- (A) 2 s
- (B) 1 s
- (C) 4 s
- (D) 3 s

17) A projectile is given an initial velocity of $\hat{i} + 2\hat{j}$. The Cartesian equation of its path is : $(g = 10 \text{ m/s}^2)$:

(A)
$$y = 2x - 5x^2$$

(B)
$$y = x - 5x^2$$

(C)
$$4y = 2x - 5x^2$$

(D)
$$y = 2x - 25x^2$$

18) An object is thrown horizontally from a tower H meter high with a velocity of $\sqrt{2gH}$ m/s. Its speed on striking the ground will be:

(A)
$$\sqrt{2gH}$$

(C)
$$2\sqrt{gH}$$

19) Two projectiles of same mass with same speed are thrown at an angle 60° and 30° respectively with the horizontal, then which will remain same for both.

- (A) Time of flight
- (B) Range of projectile
- (C) Maximum height
- (D) All of them

20) A car covers the first half of the distance between two place at a speed of 40 km/h and the other half at 60 km/h. The average speed of the car is:

- (A) 40 km/h
- (B) 48 km/h
- (C) 50 km/h
- (D) 60 km/h

SECTION-II

1) A particle moves on straight line according to the velocity-time graph shown in figure. If the total

distance covered in 10 sec is 100x (in meter) then the value of x is

2) If a car at rest accelerates uniformly to a speed of 144 km/h in 20 seconds, it covers a distance (in meter) of :

- 3) Velocity of particle depend on x as $v=4x^2-4$ where x is position of the particle then find acceleration at x=1 is
- 4) A stone is projected from the ground with velocity 25 m/s. two seconds later, it just clears a wall 5 m high the angle of projection of the stone is $__$ ° (in degree). (g= 10 m/s²)
- 5) If a projectile is thrown at an angle of θ . Then at the uppermost point of a projectile its velocity and acceleration are at an angle of (in radian) :-
- 6) During an interval a particle accelerating uniformly has initial velocity 25 m/s and final velocity 35 m/s. If total displacement is 180 meters, find the time interval in seconds.

The position of an object moving along a straight line is given by $x = 3 - 2t^2 + 3t^3$ where x is in meters and t in seconds. Find average velocity between t = 1 s and t = 3 s.

$$\int_{0}^{2} \frac{3}{2} dt$$
8) -1 = _____

- 9) If $f(x) = \frac{5}{4}x 5$, then f '(5) is equal to ?
- 10) If $x = (2-5t+6t^2)$, then find the value of $\frac{dx}{dt}$ at t = 2

PART-2: CHEMISTRY

SECTION-I

- 1) If radius of second stationary orbit (in Bohr's atom) is R. Then radius of third orbit will be :-
- (A) R/3
- (B) 9R
- (C) R/9
- (D) 2.25 R
- 2) If the radius of first orbit of H atom is a_0 , the de-Broglie wavelength of an electron in the third orbit is :-
- (A) $6 \pi a_0$

- (B) 8 π a₀
- (C) $2 \pi a_0$
- (D) $4 \pi a_0$
- 3) The electrons, identified by n & \square ;
- (ii) n = 4, $\square = 0$
- (iii) n = 3, $\square = 2$

can be placed in order of increasing energy, from the lowest to highest as:

- (A) (iv) < (ii) < (iii) < (i)
- (B) (iii) < (ii) < (iv) < (i)
- (C) (i) < (ii) < (iv)
- (D) (iii) < (i) < (iv) < (ii)
- 4) The orbital diagram in which the Auf-bau principle is violated-
- (A) 2s 2p $1 \downarrow 1$
- (B) $\frac{2s}{1}$ $\frac{2p}{1 | 1 | 1}$
- (C) 2s 2p 1111
- (D) $\frac{2s}{1}$ $\frac{2p}{1 \cdot 1 \cdot 1}$

5)

The de-Broglie wavelength of a particle with mass 1gm and velocity 100 m / sec is

- (A) 6.63×10^{-33} m
- (B) $6.63 \times 10^{-34} \text{m}$
- (C) $6.63 \times 10^{-35} \text{m}$
- (D) 6.65×10^{-35} m
- 6) The ionisation energy of a hydrogen atom is 13.6 ev. The energy of the ground level in doubly ionised lithium is
- (A) -28.7 ev
- (B) -54.4 ev
- (C) -122.4 ev
- (D) -13.6 ev
- 7) Find the wavelength of light emitted by an electron during a transition from n=3 to n=1 level in the C^{+5} ion. Given $R_H=1.097\times 10^7~m^{-1}$.

- (A) 2.85 nm
- (B) 8.76 nm
- (C) 6.40 nm
- (D) 12.0 nm
- 8) Angular momentum in 2^{nd} Bohr orbit of H-atom is x. Then find out the angular momentum of electron in 1^{st} excited state of Li^{+2} :-
- (A) 3x
- (B) 9x
- (C) $\frac{x}{2}$
- (D) x
- 9) Incorrect relation is-
- (A) $E_1 < E_2 < E_3$ (E = Energy of shell)
- (B) Balmer series spectral lines = n_2 2
- (C) $r_n = 0.529 \frac{n^2}{Z} pm (r_n = radius of n^{th} shell)$
- (D) $\overline{v} = R_H Z^2 \left(\frac{1}{n_1^2} \frac{1}{n_2^2} \right)$
- 10) The correct set of quantum numbers for the unpaired electron of chlorine atom is

	n	l	m
(A)	2	1	0
(B)	2	1	1
(C)	3	1	1
(D)	3	0	0

- (A) (A)
- (B) (B)
- (C) (C)
- (D) (D)
- 11) The ratio of the difference in energy between the first and second Bohr orbits to that between the second and third Bohr orbit is :
- (A) 1/2
- (B) 1/3
- (C) 4/9
- (D) 27/5
- 12) Which of the following set of quantum numbers is permitted?

(A)
$$n = 3 l = 3 m = +\frac{1}{2} s = +1$$

(B)
$$n = 5 I = 3 m = -3 s = +1$$

(C)
$$n = 6 l = 2 m = -3 s = +\frac{1}{2}$$

(D)
$$n = 7 I = 3 m = -3 s = +\frac{1}{2}$$

- 13) Ψ_{311} represents which orbital :-
- (A) $5p_z$
- (B) 3d_{vz}
- (C) $3d_{7^2}$
- (D) $3p_x$
- 14) ('□' and 'm' are respectively the azimuthal and magnetic quantum numbers)

	Column-I	C	olumn-II
(a)	Total number of values of (□) for a shell	(i)	0, 1, 2, (n-1)
(b)	Values of (□) for a shell	(ii)	+[],+2, +1, 0, -1, -2,[]
(c)	Total number of values of (m) for a subshell	(iii)	(2[] + 1)
(d)	Values of (m) for a subshell	(iv)	n

- (A) (a)-(iv); (b)-(i); (c)-(iii); (d)-ii
- (B) (a)-(i); (b)-(ii); (c)-(iii); (d)-iv
- (C) (a)-(ii); (b)-(i); (c)-(iv); (d)-(iii)
- (D) (a)-(iii); (b)-(ii); (c)-(i); (d)-iv
- 15) A 5000 W gas discharge lamp emits 5.0 W of U.V radiation in narrow range centered around 198 nm wavelength. Then number of photons of this wavelength emitted in one minute:

(Given:
$$h = 6.6 \times 10^{-34} \text{ Js}$$
, $C = 3 \times 10^8 \text{ m/s}$)

- (A) 2×10^{16}
- (B) 3×10^{20}
- (C) 5×10^{18}
- (D) 8.3×10^{16}
- 16) An increasing order (lowest first) for the values of $\left|\frac{e}{m}\right|$ for electron(e), proton(p), neutron(n) and (α) particle is :

- 5) The maximum number of electrons in p-orbital with n = 6; m = 0 is
- 6) According to Bohr's theory, the angular momentum of an electron in 5th orbit is: If your is then $\overline{\pi}$, then x = ?
- 7) In H-atom electron jump nth shell to ground state, If number of line in paschen series is 3, nth shell will be?
- 8) A light source of wavelength λ illuminates a metal and ejects photo-electrons with (K.E.)_{max} = 1 eV Another light source of wavelength $\lambda/3$ ejects photo-electrons from same metal with (K.E.)_{max} = 4 eV. Find the value of work function? (in eV)
- 9) The ratio of wavelength of 2nd line of Balmer series and 1st line of Lyman series for an atom is :-
- 10) If the de Broglie wavelength of the electron in n^{th} Bohr orbit in a hydrogenic atom is equal to $1.5 \pi a_0(a_0)$ is Bohr radius), then the value of n/z is:

PART-3: MATHEMATICS

SECTION-I

1) If $x = a + a/r + a/r^2 +\infty$, $y = b - b/r + b/r^2 - ...\infty$ and $z = c + c/r^2 + c/r^4 + ...\infty$ then \overline{z} equals (|r| < 1)

- (A) $\frac{ab}{c}$
- (B) $\frac{bc}{a}$ (C) $\frac{ca}{b}$
- (D) $\frac{a}{bc}$
- 2) G.M. of numbers 3, 3^2 , 3^3 3^n is :-
- (A) $3^{2/n}$
- (B) $3^{n/2}$
- (C) $3^{\frac{n+1}{2}}$
- (D) $3^{\frac{n-1}{2}}$

3) If 4th term of an AP is 64 and its 54th term is -61, then its common difference is

- (A) $-\frac{5}{2}$
- (B) $\frac{5}{2}$
- (C) $\frac{3}{50}$
- (D) $-\frac{3}{50}$

4) The Harmonic mean of the roots of equation $x^2 - 10x + 11 = 0$ is

- (A) $\frac{1}{5}$
- (B) $\frac{5}{21}$
- (C) $\frac{21}{20}$
- (D) $\frac{11}{5}$

5) If 19^{th} term of an A.P is zero, then its $(49^{th}$ term) : $(29^{th}$ term) is (where common difference of A.P. is non-zero)

- (A) 1:3
- (B) 2:1
- (C) 3:1
- (D) 4:1

6)

The maximum value of the sum of the A.P. 50, 48, 46, 44, is

- (A) 325
- (B) 648
- (C) 650
- (D) 652

7)

$$S = \frac{4}{19} + \frac{44}{(19)^2} + \frac{444}{(19)^3} + \dots \infty \text{ terms}$$

Then S is equal to

(A) $\frac{40}{9}$

- (B) $\frac{38}{81}$
- (C) $\frac{36}{171}$
- (D) $\frac{20}{81}$

If the sides of a right triangle are in A.P. then the ratio of its smallest side to the greatest side is

- (A) 3:4
- (B) 3:5
- (C) 4:5
- (D) None of these

9) Suppose 'a' is a fixed real number such that $\frac{a-x}{px} = \frac{a-y}{qy} = \frac{a-z}{rz}$ if p, q, r are in AP then x, y, z are in

- (A) A. P.
- (B) G. P.
- (C) H. P.
- (D) None of these
- 10) If |x| < 1, then the sum of series 1 + 2x + 3x² + 4x³ + ... ∞ will be
- (A) $\frac{1}{1-x}$
- (B) $\frac{1}{1+x}$
- $\text{(C)}\,\frac{1}{\left(1+x\right)^2}$
- (D) $\frac{1}{(1-x)^2}$

11) $6^{\log_6 5} + 3^{\log_9 16} =$

- (A) 9
- (B) 21
- (C) 7
- (D) 1

12) Number of integral values of 'x' which satisfy the equation $5^{\log_5 x} + 4x + 20 = 0$, is

(A) 0

```
(B) 1
 (C) 2
 (D) 3
13) Find the value of log_24.log_45.log_510.log_{10}32 is
 (A) 2
 (B) 5
 (C) 4
 (D) 3
14) The greatest value of (4\log_{10}x - \log_x(.0001)) for
0 < x < 1 is
 (A) 4
 (B) -4
 (C) 8
 (D) -8
15) If log_k A.log_5 k = 3, then A is equal to
(where k > 0, k \neq 1)
 (A) 5k^{3}
 (B) k^3
 (C) 125
 (D) 243
16) Find the solution of the equation given by log_2(25^{x+3}-1)=2+log_2(5^{x+3}+1)
 (A) -1
 (B) 5
 (C) -2
(D) -3
17)
If \log_{0.3}(x-1) < \log_{0.09}(x-1) then x lies in the interval is
(A) (2, \infty)
 (B) (-2, -1)
 (C)(1,2)
(D) (0, \infty)
\frac{1}{18) \text{ The value of }} \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ac} abc} \text{ is}
```

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 19) The value of $2^{\log_{\sqrt{5}} \left(\frac{10}{4} + \frac{10}{8} + \frac{10}{16} + \dots \right)}$ is
- (A) 1
- (B) 2
- (C) $\frac{1}{2}$
- (D) 4
- 20) If $log_a \left(1 \sqrt{1 + x}\right) = log_{a^2} \left(3 \sqrt{1 + x}\right)$ then the set of values of x is (where a > 0, $a \ne 1$)
- $(A) \{0\}$
- (B) $\{0,3\}$
- $(C) \{3\}$
- (D) φ

SECTION-II

- 1) The number of real solution of the equation, log(-2x) = 2 log(x + 1) is (where base of log is 10)
- 2) What is the absolute value of $log_{0.001}1000$?
- 3) If $\log_{10} 2 = .3010$, $\log_{10} 3 = .4771$, then number of digits in $4^8.3^7.5^3$ is 'P', then $\frac{P-1}{2}$ is
- 4) Let $a, b \in R^+$ satisfying $\log_9 a = \log_{15} b = \log_{25} (2a + b)$, then $\frac{b}{a} = \log_{15} b = \log_{15} (2a + b)$
- 5) Value of $\log_{(\sqrt{5}+1)} (6 + 2\sqrt{5})$ is equal to
- 6) The product of three geometric means between 4 and $\frac{1}{4}$ will be
- 7) If a, b, $c \in R^+$ such that a + b + c = 18 then maximum value of a.b.c is N then, $\frac{10}{36}$ equals to

- 8) If the sum of n terms of an A.P. is $3n^2$ + 5n and t_m = 164, then m =
- 9) If a, b, c are positive real numbers such that $ab^2c^3=64$ then minimum value of $\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)_{is}$
- 10) Find the sum of an infinitely decreasing GP. with the common ratio r such that 0 < |r| < 1, if the ratio of the fourth term to the second term is $\overline{16}$ and the ratio of the third term to the square of the second term is $\overline{9}$.

ANSWER KEYS

PART-1: PHYSICS

SECTION-I

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A.	Α	В	С	В	Α	Α	Α	В	В	Α	Α	В	Α	В	Α	Α	Α	С	В	В

SECTION-II

Q.	21	22	23	24	25	26	27	28	29	30
A.	0.37	400.00	0.00	30.00	1.57	6.00	31.00	4.50	1.25	19.00

PART-2: CHEMISTRY

SECTION-I

Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
A.	D	Α	Α	В	Α	C	Α	D	С	C	D	D	D	Α	В	В	Α	D	Α	В

SECTION-II

Q.	51	52	53	54	55	56	57	58	59	60
A.	110.00	5.00	6.63	3.00	2.00	2.5	6.00	0.5	4.00	0.75

PART-3: MATHEMATICS

SECTION-I

	Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
ſ	Α.	Α	C	Α	D	С	С	В	В	С	D	Α	Α	В	D	С	С	Α	В	D	D

SECTION-II

Q.	81	82	83	84	85	86	87	88	89	90
A.	1.00	1.00	5.00	2.00	2.00	1.00	6.00	27.00	3.00	12.00

PART-1: PHYSICS

3)

$$y = 3t^{2} - 2t + 1$$

 $\frac{dy}{dt} = 6t - 2 = 0$
 $t = \frac{1}{3}$

6)

$$v = u + at$$

 $v = 0$ at $t = 2$ sec
 $t = 0$ to $t = 2$
 $S = ut + 1/2$ at²
 $= 8(2) + 1/2 (-4)(2)^2 = 8 m$
 $t = 0$ to $t = 6$
 $S = ut + 1/2$ at²

 $= 0 + 1/2 (4) (4)^2 = 32 m.$

7)

$$(Acceleration) = \begin{array}{l} Slope = \frac{\Delta v}{\Delta t} \\ OA \rightarrow \frac{10}{10} = 1 \\ AB \rightarrow 0 = 0 \\ BC \rightarrow \frac{-10}{20} = -0.5 \\ 8) \end{array}$$

10)

$$v^2 = u^2 + 2as$$

 $v^2 = (5)^2 + 2 \times 10 \times 10$

$$v^2 = 25 + 200 \Rightarrow 225$$

v = 15 m/sec

$$\begin{split} &\tan 60^\circ = \frac{v_y}{v_x} \Rightarrow v_y = v_x \sqrt{3} = 20 \text{ m/s} \\ &v_y = 0 + gt \quad \ t = \frac{20}{g} = 2 \text{ sec} \,. \end{split}$$

$$v = \frac{5}{144 \times 18} = 40 \text{ m/s}$$

$$a = \frac{40 - 0}{20} = 2 \text{ m/s}^2$$

$$s = \frac{1}{2} \text{ at}^2 = \frac{1}{2} (2)(20)^2 = 400 \text{m}$$

$$v = 4x^2 - 4$$

$$\frac{dv}{dx} = 8x - 4$$
at x = 1
$$\frac{dv}{dx} = 4$$
at x = 1
$$v = 0$$

$$a = v\frac{dv}{dx} = 0 \times 4 = 0$$

29)
$$f(x) = x - 5$$

 $f'(x) = 1$
 $f'(5) = 1$

PART-2: CHEMISTRY

$$\square$$
 Moles of $C_{12}H_{22}O_{11}$ formed = $\frac{5.5}{11}$ = 0.5

Mass of sucrose obtained = $0.5 \times 342 = 171 \text{ gm}$

35) 1 gm =
$$10^{-3}$$
 kg

38)

45)

Angular momentum postulate,

$$mvr = \frac{nh}{2\pi}$$
for H-atom, $\frac{2h}{2\pi} = x$
for Li⁺² ion, 1st excited state is n = 2
So, $mvr = \frac{2h}{2\pi} = x$

Total energy in 1 min = $5 \times 60 = 300 \text{ J}$

$$Total\ energy = n \times \frac{hc}{\lambda}$$

$$\begin{array}{l} n = \dfrac{300 \times \lambda}{hc} \\ n = 3 \times 10^{20} \end{array} = \dfrac{300 \times 198 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$$

46)

Charge on neutron is zero

$$\begin{array}{c} \frac{1}{m_{_{\rm e}}} = \frac{1}{1836} \, m_{_p} & m_{_{\alpha}} = 4 m_{_p} \\ \text{Charge on } \alpha = 2 \times \text{charge on p} \end{array}$$

47)

Representative element belong to s- and p-block

$$\lambda = \frac{h}{mu} = \frac{6.626 \times 10^{-34}}{0.1 \times 100}$$
or $l = 6.62 \times 10^{-35} \text{ m} = 6.626 \times 10^{-25} \text{Å}$

$$\begin{split} \frac{1}{\lambda_{2B}} &= R_H \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = R_H \times \frac{3}{16} \\ \frac{1}{\lambda_{1L}} &= R_H \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = R_H \times \frac{3}{4} \\ \frac{\lambda_{2B}}{\lambda_{1L}} &= \frac{\left(R_H \times \frac{3}{4}\right)}{\left(R_H \times \frac{3}{16}\right)} = 4 \end{split}$$

PART-3: MATHEMATICS

62)

$$(3.3^{2}.3^{3}.....3^{n})^{\frac{1}{n}} = \left(3^{\frac{n(n+1)}{2}}\right)^{\frac{1}{n}} = 3^{\frac{n+1}{2}}$$
G.M. =

64) Let α , β are the roots, then $\alpha\beta=11$ and $\alpha+\beta=10$

Now H.M. of
$$\alpha$$
, $\beta = \frac{2\alpha\beta}{\alpha + \beta} = \frac{2 \times 11}{10} = \frac{11}{5}$

(Reference to Ex.4(a), Question-31)

$$T_{19} = 0$$

$$\Rightarrow$$
 a + 18d = 0

$$\Rightarrow$$
 a = $-18d$

$$\Rightarrow \frac{T_{49}}{T_{29}} = \frac{a + 48d}{a + 28d} = \frac{-18d + 48d}{-18d + 28d}$$

$$\therefore \frac{T_{49}}{T_{29}} = \frac{3}{1}$$

The maximum value will correspond to n terms when the nth term is either zero or the smallest positive number of the series

i.e.
$$50 + (n-1)(-2) = 0$$
 when $n = 26$

$$S_{26} = \frac{26}{2}(a+\ell) = 13(50+0) = 650$$

Let the sides be a - d, a, a + dSince the triangle is right angled $(a + d)^2 = a^2 + (a - d)^2$ $68) \Rightarrow 2ad = a^2 - 2ad$ \Rightarrow a = 4d .. Ratio of smallest side to the greatest side $=\frac{a-d}{a+d}=\frac{4d-d}{4d+d}=\frac{3}{5}$ 72) $\Rightarrow 5^{\log_5^x} + 4x + 20 = 0$ $\Rightarrow x + 4x + 20 = 0$ $\Rightarrow x = -4$ $\{\log x \text{ is defined for } x > 0\}$ x = -4 is rejected $x = \phi$ ⇒ no. of solution is zero 73) We have, $\log_2 4.\log_4 5.\log_5 10.\log_{10} 32$. $= \log_2(32)$ $= \log_2(2^5)$ 75) By base change theorem $log_5A = 3$ $\prod A = 5^3 = 125$ 78) log_{abc} ab + log_{abc} bc + log_{abc} ac = log_{abc} (abc)² = 2 $\Rightarrow log_{a}\left(1 - \sqrt{1 + x}\right) = \frac{1}{2}log_{a}\left(3 - \sqrt{1 + x}\right)$ $\Rightarrow log_{a}\left(1 - \sqrt{1 + x}\right) = log_{a}\left(\sqrt{3 - \sqrt{1 + x}}\right)$ $\Rightarrow 1 - \sqrt{1 + x} = \sqrt{3 - \sqrt{1 + x}}$ $\Rightarrow \left(1 - \sqrt{1 + x}\right)^2 = 3 - \sqrt{1 + x}$ but both value are rejected $\therefore X \in \phi$

= 5

 $\log_{10} 1000 = 3\log_{10} 10 = 3$

82)

```
83)
 N = 2^{16}3^75^3
                                                                                                                                                                                                                                                                                                                                     3\log\left(\frac{10}{2}\right)
 \log_{10}N = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 = 16 \log 2 + 7 \log 3 + 3 \log 5 + 3 \log
  = 16\log 2 + 7\log 3 + 3 - 3\log 2 = 13\log 2 + 7\log 3 + 3
  = 3 + 13 \times .3010 + 7 \times 0.4771 = 3 + 3.9130 + 3.2397
  = 6.9130 + 3.2397
 \log_{10} N = 10.1527
 ⇒ characteristic = 10
 \Rightarrow Number of digits = P = 10 + 1 = 11
                                      84)
 Let \log_9 a = \log_{15} b = \log_{25} (2a + b) = t
     a = 9^t, b = 15^t, 2a + b = 25^t
     a(2a + b) = 9^{t} .25^{t} = (15^{t})2 = b^{2}
 \Rightarrow 2a<sup>2</sup> + ab - b<sup>2</sup> = 0
 \Rightarrow b<sup>2</sup> - ab - 2a<sup>2</sup> = 0
 \Rightarrow b2 - 2ab + ab - 2a2 = 0
 \Rightarrow (b - 2a) (b + a) = 0
 \Rightarrow b/a = 2 \Rightarrow b/a = -1
 but (a, b > 0)
 so, b/a = 2
                                      85)
\mathsf{E} = \mathsf{log}_{\left(\sqrt{5}+1\right)} \left(\sqrt{5}+1\right)^2 = 2
                                     87)
 \frac{a+b+c}{3} \geqslant (abc)^{\frac{1}{3}}
 \frac{18}{3} \geqslant (abc)^{\frac{1}{3}}
6^{3} \geqslant abc
 abc≤216
N = 216
                                     88)
 t_{m} = S_{m} - S_{m-1}
```

 $164 = 3m^2 + 5m - 3(m-1)^2 - 5(m-1) = 6m + 2$

 \square 6m = 162 or m = 27