积分变换手册

豆包

2025年4月7日

目录

1	傅里叶变换表	2
2	拉普拉斯变换表	5
3	梅林变换表	11
4	汉克尔变换表	12
5	有限傅里叶正弦变换表	13
6	有限傅里叶余弦变换表	14
7	有限汉克尔变换表	15
8	Z 变换表	16

1 傅里叶变换表

表 1: 傅里叶变换表

编号	像原函数 $f(t)$	像函数 $F(\omega)$
1	$\begin{cases} E, & t \le \frac{\tau}{2} \\ 0, & 其他 \end{cases}$	$2E\frac{\sin\frac{\omega\tau}{2}}{\omega}$
2	$u(t)e^{-\beta t}, \beta > 0$	$\frac{1}{\beta+i\omega}$
3	$Ae^{-\beta t^2}, \beta > 0$	$\sqrt{rac{\pi}{eta}}Ae^{rac{\omega^2}{4eta}}$
4	$\begin{cases} \frac{2A}{\tau}(\frac{\tau}{2} + t), & -\frac{\tau}{2} \le t < 0\\ \frac{2A}{\tau}(\frac{\tau}{2} - t), & 0 \le t < \frac{\tau}{2} \end{cases}$	$\frac{4A}{\tau\omega^2}(1-\cos\frac{\omega\tau}{2})$
5	$\frac{\sin(\omega_0 t)}{\pi t}$	$\begin{cases} 1, & \omega \le \omega_0 \\ 0, & \omega > \omega_0 \end{cases}$
6	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2\sigma^2}}$	$e^{-rac{\sigma^2\omega^2}{2}}$
7	$\begin{cases} E\cos(\omega_0 t), & t \le \frac{\tau}{2} \\ 0, & 其他 \end{cases}$	$\frac{E_{\tau}}{2} \left\{ \frac{\sin\left[(\omega - \omega_0)\frac{\tau}{2}\right]}{(\omega - \omega_0)\frac{\tau}{2}} + \frac{\sin\left[(\omega + \omega_0)\frac{\tau}{2}\right]}{(\omega + \omega_0)\frac{\tau}{2}} \right\}$
8	$\delta(t)$	1
9	$\delta(t-c)$	$e^{-i\omega c}$
10	$\delta'(t)$	$i\omega$
11	$\delta^{(n)}(t)$	$(i\omega)^n$
12	$\delta^{(n)}(t-c)$	$(i\omega)^n e^{-i\omega c}$
13	$\sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{n=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi n}{T}\right)$
14	$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$

表 1: 傅里叶变换表 (续)

编号	像原函数 $f(t)$	像函数 $F(\omega)$
15	$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
16	1	$2\pi\delta(\omega)$
17	t	$2\pi i \delta'(\omega)$
18	t^n	$2\pi i^n \delta^{(n)}(\omega)$
19	e^{iat}	$2\pi\delta(\omega-a)$
20	$t^n e^{iat}$	$2\pi i^n \delta^{(n)}(\omega - a)$
21	u(t)	$\frac{1}{i\omega} + \pi\delta(\omega)$
22	u(t-c)	$\frac{1}{i\omega}e^{-i\omega c} + \pi\delta(\omega)$
23	$u(t)\cdot t$	$\pi i \delta'(\omega) - \frac{1}{\omega^2}$
24	$u(t) \cdot t^n$	$\frac{n!}{(i\omega)^{n+1}} + \pi i^n \delta^{(n)}(\omega)$
25	$u(t)\sin(at)$	$\frac{a}{a^2 - \omega^2} + \frac{\pi}{2i} [\delta(\omega - a) - \delta(\omega + a)]$
26	$u(t)\cos(at)$	$\frac{i\omega}{a^2 - \omega^2} + \frac{\pi}{2} [\delta(\omega - a) + \delta(\omega + a)]$
27	$u(t)e^{iat}$	$\frac{1}{i(\omega - a)} + \pi \delta(\omega - a)$
28	$u(t-c)e^{iat}$	$\frac{1}{i(\omega - a)}e^{-i(\omega - a)c} + \pi\delta(\omega - a)$
29	$u(t)e^{iat}t^n$	$\frac{n!}{[i(\omega-a)]^{n+1}} + \pi i^n \delta^{(n)}(\omega - a)$
30	e^{at} , $\operatorname{Re}(a) < 0$	$-\frac{2a}{\omega^2 + a^2}$

表 1: 傅里叶变换表 (续)

编号	像原函数 $f(t)$	像函数 $F(\omega)$
31	$\frac{1}{a^2+t^2}, \operatorname{Re}(a) < 0$	$-\frac{\pi}{a}e^{a \omega }$
32	$\frac{t}{(a^2+t^2)^2}, \operatorname{Re}(a) < 0$	$\frac{i\omega\pi}{2a}e^{a \omega }$
33	$\frac{e^{ibt}}{a^2+t^2}$, $\operatorname{Re}(a) < 0$, b 为实数	$-\frac{\pi}{a}e^{a \omega-b }$
34	$\frac{\cos(bt)}{a^2+t^2}$, $\operatorname{Re}(a) > 0$, b 为实数	$-\frac{\pi}{2a}\left[e^{a \omega-b } + e^{a \omega+b }\right]$
35	$\frac{\sin(bt)}{a^2+t^2}$, $\operatorname{Re}(a) > 0$, b 为实数	$-\frac{\pi}{2ai}\left[e^{a \omega-b } + e^{a \omega+b }\right]$
36	$\frac{\sinh(at)}{\sinh(\pi t)}, -\pi < a < \pi$	$\frac{\sin a}{\cosh \omega + \cos a}$
37	$\frac{\sinh(at)}{\cosh(\pi t)}, -\pi < a < \pi$	$-2i\frac{\sin\frac{a}{2}\sinh\frac{\omega}{2}}{\cosh\omega + \cos a}$
38	$\frac{\cosh(at)}{\cosh(\pi t)}, -\pi < a < \pi$	$2\frac{\cos\frac{a}{2}\cosh\frac{\omega}{2}}{\cosh\omega + \cos a}$
39	$\frac{1}{\cosh(at)}$	$\frac{\pi}{a} \frac{1}{\cosh \frac{\pi \omega}{2a}}$
40	$\sin(at^2), a > 0$	$\sqrt{\frac{\pi}{a}}\cos\left(\frac{\omega^2}{4a} + \frac{\pi}{4}\right)$
41	$\cos(at^2), \ a > 0$	$\sqrt{\frac{\pi}{a}}\cos\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right)$
42	$\left \frac{1}{t}\sin(at), a > 0 \right $	$\begin{cases} \pi, & \omega \le a \\ 0, & \omega > a \end{cases}$
43	$\frac{1}{t^2}\sin^2(at), \ a > 0$	$\begin{cases} \pi \left(a - \frac{ \omega }{2} \right), & \omega \le 2a \\ 0, & \omega > 2a \end{cases}$
44	$\frac{\sin(at)}{\sqrt{ t }}$	$i\sqrt{\frac{\pi}{2}}\left(\frac{1}{\sqrt{ \omega+a }} - \frac{1}{\sqrt{ \omega-a }}\right)$
45	$\frac{\cos(at)}{\sqrt{ t }}$	$\sqrt{rac{\pi}{2}}\left(rac{1}{\sqrt{ \omega+a }}-rac{1}{\sqrt{ \omega-a }} ight)$

表 1: 傅里叶变换表(续)

编号	像原函数 $f(t)$	像函数 $F(\omega)$
46	$\frac{1}{\sqrt{t}}$	$\sqrt{rac{2\pi}{ \omega }}$
47	$\operatorname{sgn} t$	$\frac{1}{i\omega}$
48	t	$-\frac{2}{\omega^2}$
49	$\frac{1}{ t }$	$\frac{\sqrt{2\pi}}{ \omega }$

2 拉普拉斯变换表

表 2: 拉普拉斯变换表

编号	像原函数 $f(t)$	像函数 $F(s)$
1	$\delta(t)$	1
2	$\delta(t-a), a > 0$	e^{-as}
3	$oxed{u(t)}$	$\frac{1}{s}$
4	$t^n, n = 0, 1, 2, \cdots$	$\frac{n!}{s^{n+1}}$
5	e^{at}	$\frac{1}{s-a}$
6	$t^n e^{at}, n = 0, 1, 2, \cdots$	$\frac{n!}{(s-a)^{n+1}}$
7	$t^a, a > -1$	$\frac{\Gamma(a+1)}{s^{a+1}}$
8	$t^a e^{at}, a > -1$	$\frac{\Gamma(a+1)}{(s-a)^{a+1}}$

表 2: 拉普拉斯变换表 (续)

编号	像原函数 $f(t)$	像函数 $F(s)$
9	$\cos(bt)$	$\frac{s}{s^2+b^2}$
10	$\sin(bt)$	$\frac{b}{s^2+b^2}$
11	$\cosh(bt)$	$\frac{s}{s^2 - b^2}$
12	$\sinh(bt)$	$\frac{b}{s^2 - b^2}$
13	$e^{-at}\cos(bt)$	$\frac{s+a}{(s+a)^2+b^2}$
14	$e^{-at}\sin(bt)$	$\frac{b}{(s+a)^2+b^2}$
15	$e^{at}\cosh(bt)$	$\frac{s-a}{(s-a)^2-b^2}$
16	$e^{at}\sinh(bt)$	$\frac{b}{(s-a)^2 - b^2}$
17	$e^{at}[A + (aA + B)t]$	$\frac{As+B}{(s-a)^2}$
18	$t\cos(bt)$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
19	$t\sin(bt)$	$\frac{2bs}{(s^2+b^2)^2}$
20	$t \cosh(bt)$	$\frac{s^2 + b^2}{(s^2 - b^2)^2}$
21	$t \sinh(bt)$	$\frac{2bs}{(s^2-b^2)^2}$
22	$\frac{1}{2}t^2\cos(bt)$	$\frac{s(s^2 - 3b^2)}{(s^2 + b^2)^3}$
23	$\frac{1}{2}t^2\cosh(bt)$	$\frac{s(s^2+3b^2)}{(s^2-b^2)^3}$
24	$\frac{1}{6}t^3\cos(bt)$	$\frac{s^4 - 6b^2s^2 + b^4}{(s^2 + b^2)^4}$

表 2: 拉普拉斯变换表 (续)

-		
编号 ———	像原函数 $f(t)$	像函数 $F(s)$
25	$\frac{1}{6}t^3\cosh(bt)$	$\frac{s^4 + 6b^2s^2 + b^4}{(s^2 - b^2)^4}$
26	$\frac{\sin(bt) - bt\cos(bt)}{2b^3}$	$\frac{1}{(s^2+b^2)^2}$
27	$\cos(bt) - \frac{1}{2}bt\sin(bt)$	$\frac{s^3}{(s^2+b^2)^2}$
28	$\frac{bt\cosh(bt) + \sinh(bt)}{2b}$	$\frac{s^2}{(s^2-b^2)^2}$
29	$\cosh(bt) + \frac{1}{2}bt - \sinh(bt)$	$\frac{s^3}{(s^2-b^2)^2}$
30	$\frac{e^{at} + e^{bt}}{a - b}, \ a \neq b$	$\frac{1}{(s-a)(s-b)}$
31	$\frac{ae^{at} - be^{bt}}{a - b}, \ a \neq b$	$\frac{s}{(s-a)(s-b)}$
32	$\frac{(b-c)e^{at}}{(a-b)(a-c)(b-c)} + \frac{(c-a)e^{bt} + (a-b)e^{ct}}{(a-b)(a-c)(b-c)}, \ a \neq b \neq c$	$\frac{1}{(s-a)(s-b)(s-c)}$
33	$\begin{vmatrix} \frac{a(b-c)e^{at}}{(a-b)(a-c)(b-c)} + \frac{b(c-a)e^{bt} + c(a-b)e^{ct}}{(a-b)(a-c)(b-c)}, & a \neq b \neq 0 \\ c & \\ c & \\ \end{vmatrix}$	$\frac{s}{(s-a)(s-b)(s-c)}$
34	$\frac{a(b-c)e^{at}}{(a-b)(a-c)(b-c)} + \frac{b^2(c-a)e^{bt} + c^2(a-b)e^{ct}}{(a-b)(a-c)(b-c)}, \ a \neq b \neq c$	$\frac{s^2}{(s-a)(s-b)(s-c)}$
35	$\frac{e^{at} - [1 + (a-b)t]e^{bt}}{(a-b)^2}, \ a \neq b$	$\frac{1}{(s-a)(s-b)^2}$
36	$\frac{ae^{at} - [a+b(a-b)t]e^{bt}}{(a-b)^2}, \ a \neq b$	$\frac{s}{(s-a)(s-b)^2}$
37	$\frac{a^2}{(a-b)^2} - \frac{[2ab-b^2+b^2(a-b)t]e^{bt}}{(a-b)^2}, \ a \neq b$	$\frac{s^2}{(s-a)(s-b)^2}$
38	$\frac{a\sin(bt) - b\sin(at)}{a^2 - b^2}$	$\frac{ab}{(s^2 + a^2)(s^2 + b^2)}$
39	$\frac{\cos(bt) - \cos(at)}{a^2 - b^2}$	$\frac{s}{(s^2+a^2)(s^2+b^2)}$

表 2: 拉普拉斯变换表 (续)

编号	像原函数 $f(t)$	像函数 $F(s)$
40	$\frac{a\sin(at) - b\sin(bt)}{a^2 - b^2}$	$\frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$
41	$\frac{1}{3b^2} \left[e^{bt} - e^{-bt/2} \left(\cos \frac{\sqrt{3}bt}{2} + \sqrt{3} \sin \frac{\sqrt{3}bt}{2} \right) \right]$	$\frac{1}{s^3 - b^3}$
42	$\frac{1}{3b} \left[e^{bt} - e^{-bt/2} \left(\cos \frac{\sqrt{3}bt}{2} - \sqrt{3} \sin \frac{\sqrt{3}bt}{2} \right) \right]$	$\frac{s}{s^3-b^3}$
43	$\frac{1}{3} \left[e^{bt} + 2e^{-bt/2} \cos \frac{\sqrt{3}bt}{2} \right]$	$\frac{s^2}{s^3 - b^3}$
44	$\frac{1}{4b^3}[\sin(bt)\cosh(bt) - \cos(bt)\sinh(bt)]$	$\frac{1}{s^4 + 4b^4}$
45	$\frac{1}{2b^2}\sin(bt)\sinh(bt)$	$\frac{s}{s^4 + 4b^4}$
46	$\frac{1}{2b}[\sin(bt)\cosh(bt) + \cos(bt)\sinh(bt)]$	$\frac{s^2}{s^4 + 4b^4}$
47	$\cos(bt)\cosh(bt)$	$\frac{s^3}{s^4 + 4b^4}$
48	$\frac{1}{2b}[\sinh(bt) - \sin(bt)]$	$\frac{1}{s^4 - b^4}$
49	$\frac{1}{2b^2}[\cosh(bt) - \cos(bt)]$	$\frac{s}{s^4-b^4}$
50	$\frac{1}{2b}[\sinh(bt) + \sin(bt)]$	$\frac{s^2}{s^4 - b^4}$
51	$\frac{1}{2}[\cosh(bt) + \cos(bt)]$	$\frac{s^3}{s^4 - b^4}$
52	$\frac{e^{bt} - e^{at}}{t}$	$\ln \frac{s-a}{s-b}$
53	$\frac{2\sinh(bt)}{t}$	$\ln \frac{s+b}{s-b}$
54	$\frac{2[\cos(at) - \cos(bt)]}{t}$	$\ln \frac{s^2 + a^2}{s^2 + b^2}$
55	$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$

表 2: 拉普拉斯变换表 (续)

-		
编号	像原函数 $f(t)$	像函数 $F(s)$
56	$2\sqrt{rac{t}{\pi}}$	$\frac{1}{s\sqrt{s}}$
57	$\frac{4^n n! t^{n-\frac{1}{2}}}{(2n)! \sqrt{\pi}}, n = 0, 1, 2, \cdots$	$\frac{1}{s^n\sqrt{s}}$
58	$\frac{e^{bt}}{\sqrt{\pi t}}(1+2bt)$	$\frac{s}{(s-b)^{3/2}}$
59	$\frac{e^{bt} - e^{at}}{2t\sqrt{\pi t}}$	$\sqrt{s-a} - \sqrt{s-b}$
60	$\frac{e^{bt} - e^{at}}{2(b-a)t\sqrt{\pi t}}$	$\frac{1}{\sqrt{s-a} + \sqrt{s-b}}$
61	$\frac{\cos(2\sqrt{bt})}{\sqrt{\pi t}}$	$\frac{e^{-b/s}}{\sqrt{s}}$
62	$\frac{\cosh(2\sqrt{bt})}{\sqrt{\pi t}}$	$\frac{e^{b/s}}{\sqrt{s}}$
63	$\frac{\sin(2\sqrt{bt})}{\sqrt{\pi b}}$	$\frac{e^{-b/s}}{s\sqrt{s}}$
64	$\frac{\sinh(2\sqrt{bt})}{\sqrt{\pi t}}$	$\frac{e^{b/s}}{s\sqrt{s}}$
65	$\frac{\sqrt{b}}{2t\sqrt{\pi t}}\exp\left(-\frac{b}{4t}\right)$	$\exp(-\sqrt{sb}), b > 0$
66	$\frac{1}{\sqrt{\pi t}} \exp\left(-\frac{b}{4t}\right)$	$\frac{\exp(-\sqrt{sb})}{\sqrt{s}}, \ b > 0$
67	$\frac{\operatorname{erf}(\sqrt{bt})}{\sqrt{b}}$	$\frac{1}{s\sqrt{s+b}}$
68	$\frac{e^{bt}\mathrm{erf}(\sqrt{bt})}{\sqrt{b}}$	$\frac{1}{\sqrt{s}(s-b)}$
69	$\frac{1}{\sqrt{\pi t}} - be^{b^2 t} \operatorname{erfc}(b\sqrt{t})$	$\frac{1}{\sqrt{s+b}}$
70	$e^{b^2t}\operatorname{erfc}(b\sqrt{t})$	$\frac{1}{\sqrt{s}(\sqrt{s}+b)}$
71	$\frac{1}{\sqrt{\pi t}} + be^{b^2 t} \operatorname{erf}(b\sqrt{t})$	$\frac{\sqrt{s}}{s-b^2}$

表 2: 拉普拉斯变换表(续)

	T	T
编号 ——	像原函数 $f(t)$	像函数 $F(s)$
72	$\frac{\cos(b\sqrt{t})}{\pi\sqrt{t}}$	$\frac{1}{\sqrt{\pi s}} \exp\left(-\frac{b^2}{4s}\right)$
73	$\frac{\sin(b\sqrt{t})}{\pi}$	$\frac{b}{2s\sqrt{\pi s}}\exp\left(-\frac{b^2}{4s}\right)$
74	$\frac{1}{\pi t}\sin(2b\sqrt{t})$	$\operatorname{erf}\left(\frac{b}{\sqrt{s}}\right)$
75 ———	$\frac{1}{\pi t} \exp(-2b\sqrt{t})$	$\frac{1}{\sqrt{s}}e^{b^{2/s}}\operatorname{erfc}\left(-\frac{b}{\sqrt{s}}\right)$
76	$\frac{\sin(bt)}{t}$	$\arctan \frac{b}{s}$
77	$\frac{\sinh\sqrt{2bt}\sin\sqrt{2bt}}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}\sin\frac{b}{s}$
78	$\frac{\cosh\sqrt{2bt}\cos\sqrt{2bt}}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}\cos\frac{b}{s}$
79	$\frac{\cosh\sqrt{2bt}\sin\sqrt{2bt}}{\sqrt{\pi b}}$	$\frac{1}{s\sqrt{2s}}\left(\cos\frac{b}{s} + \sin\frac{b}{s}\right)$
80	$\frac{\sinh\sqrt{2bt}\cos\sqrt{2bt}}{\sqrt{\pi b}}$	$\frac{1}{s\sqrt{2s}}\left(\cos\frac{b}{s} - \sin\frac{b}{s}\right)$
81	$\frac{\cosh(2\sqrt{bt}) - \cos(2\sqrt{bt})}{2\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}\sinh\frac{b}{s}$
82	$\frac{\cosh(2\sqrt{bt}) + \cos(2\sqrt{bt})}{2\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}\cosh\frac{b}{s}$
83	$\frac{\sinh(2\sqrt{bt}) - \sin(2\sqrt{bt})}{2\sqrt{\pi b}}$	$\frac{1}{s\sqrt{s}}\sinh\frac{b}{s}$
84	$\frac{\sinh(2\sqrt{bt}) + \sin(2\sqrt{bt})}{2\sqrt{\pi b}}$	$\frac{1}{s\sqrt{s}}\cosh\frac{b}{s}$
85	$a^n J_n(at)$	$\frac{(\sqrt{s^2 + a^2} - s)^n}{\sqrt{s^2 + a^2}}, \ n > -1$
86	$a^nI_n(at)$	$\frac{(s-\sqrt{s^2-a^2})^n}{\sqrt{s^2-a^2}}, \ n>1$
87	$J_0(a\sqrt{t(t+2b)})$	$\frac{\exp[b(s-\sqrt{s^2+a^2})]}{\sqrt{s^2+a^2}}$

表 2: 拉普拉斯变换表 (续)

编号	像原函数 $f(t)$	像函数 $F(s)$
88	$t^n J_n(at)$	$\frac{(2a)^n\Gamma(n+\frac{1}{2})}{\sqrt{\pi}(s^2+a^2)^{n+1/2}}, \ n > -\frac{1}{2}$
89	$L^n(t), n = 0, 1, 2, \cdots$	$\frac{1}{s} \left(\frac{s-1}{s} \right)^n$

3 梅林变换表

表 3: 梅林变换表

编号	像原函数 $f(x)$	像函数 $F_M(s)$
1	$e^{-\alpha x}$	$\alpha^{-s}\Gamma(s), \operatorname{Re}(s) > 0$
2	$x^{1/2}J_{\nu}(x)$	$\frac{2^{s-1/2}\Gamma\left(\frac{s}{2} + \frac{\nu}{2} + \frac{1}{4}\right)}{\Gamma\left(\frac{\nu}{2} - \frac{s}{2} + \frac{1}{4}\right)}$
3	e^{-x^2}	$rac{1}{2}\Gamma\left(rac{s}{2} ight)$
4	$\sin(ax), a > 0$	$\frac{1}{a^s}\Gamma(s)\sin\left(\frac{1}{2}s\pi\right)$
5	$\cos(ax), a > 0$	$\frac{1}{a^s}\Gamma(s)\cos\left(\frac{1}{2}s\pi\right)$
6	$(1+x)^{-1}$	$\pi \csc(\pi s)$
7	$(1+x)^{-\alpha}$, $\operatorname{Re}(\alpha) > 0$	$\frac{\Gamma(s)\Gamma(\alpha-s)}{\Gamma(\alpha)}$
8	$(1+x^2)^{-1}$	$\frac{\pi}{2}\csc\left(\frac{1}{2}\pi s\right)$
9	$\begin{cases} 1, & 0 \le x \le a \\ 0, & x > a \end{cases}$	$\frac{a^s}{s}$
	· ·	

表 3: 梅林变换表 (续)

编号	像原函数 $f(x)$	像函数 $F_M(s)$
10	$\begin{cases} (1-x)^{\alpha-1}, & 0 \le x < 1\\ 0, & x > 1, \text{Re}(\alpha) > 0 \end{cases}$	$\frac{\Gamma(s)\Gamma(\alpha)}{\Gamma(s+\alpha)}$
11	$\begin{cases} 0, & 0 \le x < 1 \\ (x-1)^{-\alpha}, & x > 1, 0 < \text{Re}(\alpha) < 1 \end{cases}$	$\frac{\Gamma(\alpha - s)\Gamma(1 - \alpha)}{\Gamma(1 - s)}$
12		$\frac{\pi}{s}\csc(s\pi)$
13	$\operatorname{ci}(x)$	$s^{-1}\Gamma(s)\cos\left(\frac{1}{2}s\pi\right)$
14	$ $ $\operatorname{si}(x)$	$s^{-1}\Gamma(s)\sin\left(\frac{1}{2}s\pi\right)$

4 汉克尔变换表

表 4: 汉克尔变换表

编号	n	f(r)	$F_n(\xi)$
1	> -1	$\begin{cases} r^n, & 0 < r < a \\ 0, & r > a \end{cases}$	$\frac{a^{n+1}}{\xi}J_{n+1}(\xi a)$
2	0	$\begin{cases} 1, & 0 < r < a \\ 0, & r > a \end{cases}$	$\frac{a}{\xi}J_1(\xi a)$
3	0	$\begin{cases} a^2 - r^2, & 0 < r < a \\ 0, & r > a \end{cases}$	$\frac{4a}{\xi^3} J_1(\xi a) - \frac{2a^2}{\xi^2} J_0(\xi a)$
4	> -1	$r^n e^{-pr^2}$	$\frac{\xi}{(2p)^{n+1}}e^{-\frac{\xi^2}{4p}}$
5	> -1	$r^{\mu-1}$	$\frac{2^{\mu}\Gamma\left(\frac{1+\mu+n}{2}\right)}{\xi^{\mu+1}\Gamma\left(\frac{1-\mu+n}{2}\right)}$
6	0	$\frac{e^{-pr}}{r}$	$\frac{1}{\sqrt{\xi^2 + p^2}}$

表 4: 汉克尔变换表 (续)

编号	n	f(r)	$F_n(\xi)$
7	0	e^{-pr}	$\frac{p}{\sqrt{(\xi^2 + p^2)^3}}$
8	1	$\frac{e^{-pr}}{r^2}$	$\frac{p}{\sqrt{(\xi^2 + p^2)^3}}$ $\frac{\sqrt{\xi^2 + p^2} - p}{\xi}$
9	1	$\frac{e^{-pr}}{r}$	$\frac{1}{\xi} - \frac{p}{\xi\sqrt{\xi^2 + p^2}}$
10	1	e^{-pr}	$\frac{\xi}{\sqrt{(\xi^2+p^2)^3}}$
11	0	$\frac{a}{(a^2+r^2)^{3/2}}$	$e^{-a\xi}$
12	0	$\frac{\sin(ar)}{r}$	$\begin{cases} 0, & \xi > a \\ \frac{1}{\sqrt{a^2 - \xi^2}}, & 0 < \xi < a \end{cases}$
13	1	$\frac{\sin(ar)}{r}$	$\begin{cases} 0, & \xi > a \\ \frac{1}{\sqrt{a^2 - \xi^2}}, & 0 < \xi < a \end{cases}$ $\begin{cases} \frac{a}{\xi\sqrt{\xi^2 - a^2}}, & \xi > a \\ 0, & \xi < a \end{cases}$
14	0	$\frac{\sin r}{r^2}$	$\begin{cases} \arcsin\frac{1}{\xi}, & \xi > 1 \\ \frac{\pi}{2}, & \xi < 1 \end{cases}$

5 有限傅里叶正弦变换表

表 5: 有限傅里叶正弦变换表

编号	像原函数 $f(t)$	像函数 $F_s(n)$
1	1	$\frac{a}{\pi n}[1+(-1)^{n+1}]$
2	$oxed{x}$	$(-1)^{n+1} \frac{a^2}{n\pi}$
3	$1-\frac{x}{a}$	$\frac{a}{\pi n}$

表 5: 有限傅里叶正弦变换表(续)

编号	像原函数 $f(t)$	像函数 $F_s(n)$
4	$\begin{cases} x, & 0 \le x \le \frac{a}{2} \\ a - x, & \frac{a}{2} \le x \le a \end{cases}$	$\frac{2a^2}{\pi^2 n^2} \sin\left(\frac{1}{2}n\pi\right)$
5	x^2	$\frac{a^3}{\pi n}(-1)^{n-1} - \frac{2a^3}{\pi^3 n^3}[1 - (-1)^n]$
6	x^3	$(-1)^n \frac{a^4}{\pi^5} \left(\frac{6}{n^3} - \frac{\pi^2}{n} \right)$
7	$x(a^2 - x^2)$	$(-1)^{n+1} \frac{6a^4}{n^3\pi^3}$
8	x(a-x)	$\frac{2a^3}{\pi^3 n^3} [1 - (-1)^n]$
9	e^{kx}	$\frac{n\pi a}{\pi^2 n^2 + k^2 a^2} [1 - (-1)^n e^{ka}]$
10	$\cos(kx)$	$\frac{n\pi a}{\pi^2 n^2 - k^2 a^2} [1 - (-1)^n \cos(ak)], \ n \neq \frac{ka}{\pi}$
11	$\sin\frac{\pi mx}{a}$, m 为整数	$\begin{cases} 0, & n \neq m \\ \frac{a}{2}, & n = m \end{cases}$

6 有限傅里叶余弦变换表

表 6: 有限傅里叶余弦变换表

编号	像原函数 $f(x)$	像函数 $F_c(n)$
1	1	$\begin{cases} a, & n = 0 \\ 0, & n = 1, 2, \dots \end{cases}$
2	$\begin{cases} 1, & 0 < x < \frac{a}{2} \\ -1, & \frac{a}{2} < x < a \end{cases}$	$\begin{cases} 0, & n = 0\\ \frac{2a}{\pi n} \sin\left(\frac{1}{2}n\pi\right), & n = 1, 2, \dots \end{cases}$
3	x	$\begin{cases} \frac{1}{2}a^2, & n = 0\\ \left(\frac{a}{\pi n}\right)^2 [(-1)^n - 1], & n = 1, 2, \dots \end{cases}$

表 6: 有限傅里叶余弦变换表(续)

-		
编号	像原函数 $f(x)$	像函数 $F_c(n)$
4	x^2	$\begin{cases} \frac{1}{3}a^3, & n = 0\\ \frac{2a^3}{\pi^2 n^2}(-1)^n, & n = 1, 2, \dots \end{cases}$
5	$1-\frac{x}{a}$	$\begin{cases} \frac{1}{3}a, & n = 0\\ \frac{2a}{\pi^2 n^2}, & n = 1, 2, \dots \end{cases}$
6	x^3	$\begin{cases} \frac{1}{4}a^4, & n = 0\\ \frac{3a^4(-1)^n}{\pi^2n^2} + \frac{6a^4}{\pi^4n^4}[(-1)^n - 1], & n = 1, 2, \dots \end{cases}$
7	e^{kx}	$\frac{a^2k}{k^2a^2+n^2\pi^2}[(-1)^ne^{ka}-1]$
8	$\sin(kx)$	$\frac{a^2k}{n^2\pi^2 - a^2k^2}[(-1)^n\cos(ka) - 1], \ n \neq \frac{ka}{\pi}$

7 有限汉克尔变换表

变换式 $F(s) = \int_0^a x f(x) J_n(sx) dx$

$$f(x) = \frac{2}{a^2} \sum_{s} \frac{F(s)J_n(sx)}{[J'_n(as)]^2}$$

式中 \sum_s 是关于方程 $J_n(as) = 0$ 的一切正根求和。

表 7: 有限汉克尔变换表

编号	f(x)	n	F(s)
1	$\left \begin{array}{c} x^n \end{array} \right $	> -1	$rac{a^{n+1}}{s}J_{n+1}(as)$
2	c	0	$\frac{ac}{s}J_1(as)$
3	$a^2 - x^2$	0	$\frac{4a}{s}J_1(as)$
4	$\frac{J_n(\beta x)}{J_n(\beta a)}$	> -1	$\frac{as}{\beta^2-s^2}J_n'(as)$

表 7: 有限汉克尔变换表(续)

编号	f(x)	n	F(s)
5	$rac{J_0(eta x)}{J_0(eta a)}$	0	$\frac{as}{\beta^2 - s^2} J_1(as)$

8 Z 变换表

表 8: Z 变换表

编号	原序列 f_n	Z 变换 F(z)
1	δ_n	1
2	δ_{n-k}	z^{-k}
3	u_n	$\frac{z}{z-1}$
4	u_{n-k}	$\frac{z^{1-k}}{z-1}$
5	$(-1)^n$	$\frac{z}{z+1}$
6	$\frac{1}{2}u_n + \frac{1}{2}(-1)^n$	$\frac{z^2}{z^2-1}$
7	a^n	$\frac{z}{z-a}$
8	$e^{lpha n}$	$\frac{z}{z-e^{\alpha}}$
9	n	$\frac{z}{(z-1)^2}$
10	n^2	$\frac{z^2 + z}{(z-1)^3}$
11	n^3	$\frac{z^3 + 4z^2 + z}{(z-1)^4}$

表 8: Z 变换表 (续)

编号	原序列 f_n	Z 变换 F(z)
12	na^n	$\frac{az}{(z-a)^2}$
13	n^2a^n	$\frac{az^2 + a^2z}{(z-a)^3}$
14	n^3a^n	$\frac{az^3 + 4a^2z^2 + a^3z}{(z-a)^4}$
15	$\frac{(n+2)(n+1)}{2}$	$\frac{z^3}{(z-1)^3}$
16	$\frac{(n+1)n}{2}$	$\frac{z^2}{(z-1)^3}$
17	$\frac{n(n-1)}{2}$	$\frac{z}{(z-1)^3}$
18	$(n+1)^2$	$\frac{z^3 + z^2}{(z-1)^3}$
19	$(n-1)^2 u_{n-1}$	$\frac{z+1}{(z-1)^3}$
20	$n^2 + 1$	$\frac{z^3 - z^2 + 2z}{(z-1)^3}$
21	$\binom{n+k}{k}a^n$	$\left(\frac{z}{z-a}\right)^{k+1}$
22	$\binom{n}{k}a^n$	$\frac{a^k z}{(z-a)^{k+1}}$
23	$\binom{n-1}{k}a^nu_{n-1}$	$\left(\frac{a}{z-a}\right)^{k+1}$
24	$\binom{k}{n}a^nb^{k-n}$	$\frac{(a+bz)^k}{z^k}$
25	$u_n - u_{n-k}$	$\frac{z^k - 1}{z^k - z^{k-1}}$
26	$\frac{a^n + (-a)^n}{2a^2} u_{n-1}$	$\frac{1}{z^2 - a^2}$
27	$\frac{a^n - (-a)^n}{2a}$	$\frac{z}{z^2 - a^2}$

表 8: Z 变换表 (续)

编号	原序列 f_n	${ m Z}$ 变换 $F(z)$
28	$\frac{a^n + (-a)^n}{2}$	$\frac{z^2}{z^2 - a^2}$
29	$-a^{n-2}u_{n-1}\cos\left(n\frac{\pi}{2}\right)$	$\frac{1}{z^2 + a^2}$
30	$a^{n-1}\sin\left(n\frac{\pi}{2}\right)$	$\frac{z}{z^2+a^2}$
31	$a^n \cos\left(n\frac{\pi}{2}\right)$	$\frac{z^2}{z^2 + a^2}$
32	$(n-1)a^{n-2}u_{n-1}$	$\frac{1}{(z-a)^2}$
33	na^{n-1}	$\frac{z}{(z-a)^2}$
34	$(n+1)a^n$	$\frac{z^2}{(z-a)^2}$
35	$\frac{a^{n-1}-b^{n-1}}{a-b}u_{n-1}$	$\frac{1}{(z-a)(z-b)}$
36	$\frac{a^n - b^n}{a - b}$	$\frac{z}{(z-a)(z-b)}$
37	$\frac{a^{n+1}-b^{n+1}}{a-b}$	$\frac{z^2}{(z-a)(z-b)}$
38	$\frac{a^n-1}{a-1}$	$\frac{z}{(z-a)(z-1)}$
39	$\frac{a^n - 1}{(a - 1)^2} - \frac{n}{a - 1}$	$\frac{z}{(z-a)(z-1)^2}$
40	$\frac{a^n - b^n}{(a-b)^2} - \frac{nb^n - 1}{a-b}$	$\frac{z}{(z-a)(z-b)^2}$
41	$\frac{na^{n-1}}{a-1} + \frac{1-a^n}{(a-1)^2}$	$\frac{z}{(z-a)^2(z-1)}$
42	$\frac{na^{n-1}}{a-b} + \frac{b^n - a^n}{(a-b)^2}$	$\frac{z}{(z-a)^2(z-b)}$
43	$\frac{1}{a-b} \left(\frac{a^n - 1}{a-1} - \frac{b^n - 1}{b-1} \right)$	$\frac{z}{(z-a)(z-b)(z-1)}$

表 8: Z 变换表 (续)

编号	原序列 f_n	Z 变换 F(z)
44	$\frac{1}{a-b} \left(\frac{a^n - c^n}{a-c} - \frac{b^n - c^n}{b-c} \right)$	$\frac{z}{(z-a)(z-b)(z-c)}$
45	$\cos(n\theta)$	$\frac{z(z-\cos\theta)}{z^2-2z\cos\theta+1}$
46	$\sin(n\theta)$	$\frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$
47	$\sin(n\theta + \phi)$	$\frac{z^2 \sin \phi + z \sin(\theta - \phi)}{z^2 - 2z \cos \theta + 1}$
48	$\cos(n\theta + \phi)$	$\frac{z^2\cos\phi - z\cos(\theta - \phi)}{z^2 - 2z\cos\theta + 1}$
49	$a^n \cos(n\theta)$	$\frac{z(z-a\cos\theta)}{z^2 - 2az\cos\theta + a^2}$
50	$a^n \sin(n\theta)$	$\frac{az\sin\theta}{z^2 - 2az\cos\theta + a^2}$
51	$\cosh(n\beta)$	$\frac{z(z-\cosh\beta)}{z^2-2z\cosh\beta+1}$
52	$\sinh(neta)$	$\frac{z \sinh \beta}{z^2 - 2z \cosh \beta + 1}$
53	$a^n \cosh(n\beta)$	$\frac{z(z-a\cosh\beta)}{z^2 - 2az\cosh\beta + a^2}$
54	$a^n \sinh(n\beta)$	$\frac{az\sinh\beta}{z^2 - 2az\cosh\beta + a^2}$
55	$n\sin(n heta)$	$\frac{(z^3-z)\sin\theta}{(z^2-2z\cos\theta+1)^2}$
56	$n\cos(n\theta)$	$\frac{(z^3+z)\cos\theta - 2z^2}{(z^2-2z\cos\theta + 1)^2}$
57	$na^n\sin(n\theta)$	$\frac{(az^3 - a^3z)\sin\theta}{(z^2 - 2az\cos\theta + a^2)^2}$
58	$na^n\cos(n\theta)$	$\frac{(az^3 + a^3z)\cos\theta - 2a^2z^2}{(z^2 - 2az\cos\theta + a^2)^2}$
59	$\frac{\sin(n\theta)}{\sin^3\theta} - \frac{n(\cos\theta)\cos(n\theta)}{\sin^2\theta} - \frac{n\sin\theta}{\sin\theta}$	$\frac{2z}{(z^2 - 2z\cos\theta + 1)^2}$

表 8: Z 变换表 (续)

编号	原序列 f_n	Z 变换 F(z)
60	$a^{n} \left[1 + \cos(n\pi) + 2\cos\left(n\frac{\pi}{2}\right) \right]$	$\frac{4z^4}{z^4 - a^4}$
61	$a^n \left[1 + \cos(n\pi) - 2\cos\left(n\frac{\pi}{2}\right) \right]$	$\frac{4a^2z^2}{z^4-a^4}$
62	$a^n \left[1 + \cos(n\pi)\right] \sin\left(n\frac{\pi}{4}\right)$	$\frac{2a^2z^2}{z^4+a^4}$
63	$na^n \left[1 + \cos(n\pi)\right]$	$\frac{4a^2z^2}{(z^2-a^2)^2}$
64	$na^n\cos\left(n\frac{\pi}{2}\right)$	$\frac{2a^2z^2}{(z^2+a^2)^2}$
65	$\begin{cases} 0, & n = 0 \\ \frac{a^n}{n}, & \text{ 其他} \end{cases}$	$\ln \frac{z}{z-a}$
66	$\begin{cases} 0, & n = 0\\ \frac{(-a)^n}{n}, & \text{其他} \end{cases}$	$ \ln \frac{z}{z+a} $
67	$\begin{cases} \frac{a^n}{n}, & n = 1, 3, 5, \cdots \\ 0, & 其他 \end{cases}$	$\frac{1}{2} \ln \frac{z+a}{z-a}$
68	$\begin{cases} \frac{a^n}{n}, & n = 2, 4, 6, \cdots \\ 0, & 其他 \end{cases}$	$ \ln \frac{z}{\sqrt{z^2 - a^2}} $
69	$\begin{cases} \frac{a^n}{n!}, & n = 1, 3, 5, \cdots \\ 0, & 其他 \end{cases}$	$\sinh \frac{a}{z}$
70	$\begin{cases} \frac{a^n}{n!}, & n = 0, 2, 4, \cdots \\ 0, & 其他 \end{cases}$	$\cosh \frac{a}{z}$
71	$\frac{1}{n+1}$	$z \ln \frac{z}{z+1}$
72	$\frac{1}{(n+1)(n+2)}$	$z + (z - z^2) \ln \frac{z}{z - 1}$
73	$\frac{n}{(n+1)(n+2)}$	$-2z + (2z^2 - z) \ln \frac{z}{z-1}$

表 8: Z 变换表 (续)

编号	原序列 f_n	Z 变换 F(z)
74	$\frac{2}{(n+1)(n+2)(n+3)}$	$\frac{3}{2}z - z^2 + z(1-z)^3 \ln \frac{z}{z-1}$
75	$\frac{1}{2n+1}$	$\sqrt{z} \arctan \sqrt{\frac{1}{z}}$
76	$\frac{a^n}{n!}$	$e^{\frac{a}{z}}$
77	$\frac{(\ln a)^n}{n!}$	$a^{rac{1}{z}}$
78	$\frac{1}{(2n)!}$	$ \cosh\sqrt{\frac{1}{z}} $
79	$\begin{cases} 0, & n = 0 \\ \frac{1 - e^{an}}{n}, & 其他 \end{cases}$ $\begin{cases} 0, & n = 0 \end{cases}$	$ \ln \frac{z - e^a}{z - 1} $
80	$\begin{cases} 0, & n = 0\\ \frac{\sin(n\theta)}{n}, 其他 \end{cases}$	$\arctan \frac{\sin \theta}{z - \cos \theta}$
81	$\begin{cases} 0, & n = 0\\ \frac{\sin(n\pi/2)}{n}, & 其他 \end{cases}$	$\arctan \frac{1}{z}$
82	$\begin{cases} 0, & n = 0\\ \frac{\cos(n\theta)}{n}, & 其他 \end{cases}$	$\ln \frac{z}{(z^2 - 2z\cos\theta + 1)^{1/2}}$
83	$\frac{(2n)!a^n}{(2^n n!)^2}$	$\left(\frac{z}{z-a}\right)^{1/2}$
84	$\frac{(2n)!(-a)^n}{(2^n n!)^2}$	$\left(\frac{z}{z-a}\right)^{1/2}$ $\left(\frac{z}{z+a}\right)^{1/2}$