FEM21045-20 & FEM31002-20 Machine Learning (in Finance) Unsupervised Learning - part 2

Dick van Dijk

Econometric Institute
Erasmus University Rotterdam

e-mail: djvandijk@ese.eur.nl

Block 1 (Sep-Oct 2020)

Unsupervised Learning

Outline

- ★ Unsupervised Learning: What and why?
- ★ Principal Components Analysis
- ★ Non-negative Matrix Factorization (or: The secret behind online recommendation systems)
- ★ K-means clustering
- ★ Hierarchical clustering
- ★ Gaussian mixture models and the EM algorithm

Cluster analysis

Cluster analysis

- We have a training sample $\{x_i; i = 1, ..., N\}$, where $x_i^T = (x_{i1}, x_{i2}, ..., x_{ip})$ is p-dimensional, and p can be large.
- \star Observations *i* may represent individuals (consumers, firms, assets, countries) or time periods (days, months, years)
- ★ Key question: are there distinct subgroups of observations in the data with substantially different properties?
- ★ Two crucial ingredients
- 1. Measure of (dis)similarity [or distance] between observations
- 2. Clustering algorithm

Dissimilarity measures

- \bigstar Quantify the dissimilarity / distance between any two data points i and i'.
- \star Typically based on the observed variables/features x_{ij}
- ★ Default choice is squared Euclidean distance

$$D(x_i, x_{i'}) = ||x_i - x_{i'}||^2 = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2$$

- Works well for quantitative/continuous features x_{ij} ; categorical and ordinal variables require some special care
- Possibly use weighted sum $\sum_{j=1}^{p} w_j (x_{ij} x_{i'j})^2$ (with $w_j \ge 0$ and $\sum_{j=1}^{p} w_j = 1$), because some features may be more important than others, or to account for differences in scale.

Clustering algorithms

 \bigstar Goal: partition the training sample into K groups ("clusters") of 'similar' observations

- ★ Combinatorial algorithms vs. mixture models
- ★ ('Nonparametric') Combinatorial algorithms minimize the within-cluster dissimilarity

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} D(x_i, x_{i'}),$$

where C(i) = k is an *encoder* assigning observation i to cluster k.

K-means clustering

★ Use latent variable to represent encoder

$$z_{ik} = \begin{cases} 1 & \text{if observation } i \text{ is assigned to cluster } k \\ 0 & \text{otherwise} \end{cases}$$

★ K-means clustering solves

$$\min_{m,z} \sum_{k=1}^{K} \sum_{i=1}^{N} z_{ik} ||x_i - m_k||^2$$
s.t.
$$\sum_{k=1}^{K} z_{ik} = 1, \quad i = 1, 2, \dots, N$$

$$z_{ik} \in \{0, 1\}, \quad i = 1, 2, \dots, N; k = 1, 2, \dots, K$$

$$m_k \in \mathbb{R}^p, \quad k = 1, 2, \dots, K.$$

K-means clustering

- ★ NP-hard problem, but intuitive heuristic available:
 - ullet Initialize with random means $m_k \in \mathbb{R}^p$
 - Iterate until convergence:
 - ★ E-step: Given the current means, update the assignments

$$z_{ik} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||x_{i} - m_{j}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

★ M-step: Given the current assignments, update the means

$$m_k = \frac{\sum_{i=1}^{N} z_{ik} x_i}{\sum_{i=1}^{N} z_{ik}}$$

K-means clustering

K-means clustering - convergence

- \star At each step, the objective function does not deteriorate \Rightarrow convergence is guaranteed
- ★ Convergence is to local minimum only
- ★ To improve chances of finding the **global** minimum, run the algorithm with different initial cluster means.

K-means clustering - convergence

K-means clustering - pros and cons

★ Good

- Simple to implement
- Fast

★ Bad

- Local minima
- Can fail miserably in case of 'non-spherical' clusters
- Sensitive to the features scale
- ullet Number of clusters K to be chosen in advance
- Cluster assignments are 'hard, not 'soft'/probabilistic (ict Gaussian Mixture Model)

K-means clustering - the mysterious K

- \star How to choose the number of clusters (hyperparameter!) K?
 - May be given in application
 - Using statistical measures requires distributional assumptions
 - ullet Elbow plot: Increasing K gradually and monitoring within-cluster dissimilarity values

K-means clustering - the elbow plot

Hierarchical clustering

- \star Produces a hierarchy of clusterings for all K = 1, 2, ..., N
- * Requires dissimilarity measure between **groups** of observations
- ★ Approach can be
 - Agglomerative (bottom-up): start with N singleton clusters and successively merge the two 'closest' clusters
 - Divisive (top-down): start with a single cluster and successively split a cluster resulting in two new clusters with the largest possible between-group dissimilarity.

Hierarchical clustering - dissimilarity measures

★ Single linkage ('nearest-neighbors')

$$d_{SL}(G,H) = \min_{i \in G, i' \in H} D(x_i, x_{i'})$$

★ Complete linkage ('furthest-neighbors')

$$d_{CL}(G,H) = \max_{i \in G, i' \in H} D(x_i, x_{i'})$$

★ Group average

$$d_{GA}(G, H) = \frac{1}{N_G N_H} \sum_{i \in G} \sum_{i' \in H} D(x_i, x_{i'})$$

 \Rightarrow Results may be sensitive to the dissimilarity measure used...

Hierarchical clustering

Ilker Birbil, 2020

 \circ^{x_4}

Hierarchical Clustering (Complete Linkage)

Clusters: $\{x_1\}$, $\{x_2\}$, $\{x_3\}$, $\{x_4\}$, $\{x_5\}$

$$s({x_1}|{x_2}) = 5.0$$

$$s({x_1}|{x_3}) = 0.5$$

$$s({x_1}|{x_4}) = 4.5$$

$$s({x_1}|{x_4}) = 4.5$$
 $s({x_1}|{x_5}) = 2.0$

$$s({x_2}|{x_3}) = 4.7$$

$$s({x_2}|{x_3}) = 4.7$$
 $s({x_2}|{x_4}) = 0.6$

$$s({x_2}|{x_5}) = 3.0$$

$$s({x_2}|{x_5}) = 3.0$$
 $s({x_3}|{x_4}) = 4.0$

$$s({x_3}|{x_5}) = 2.2$$

$$s({x_3}|{x_5}) = 2.2$$
 $s({x_4}|{x_5}) = 2.5$

Clusters: $\{x_1, x_3\}, \{x_2\}, \{x_4\}, \{x_5\}$

$$s({x_1, x_3}|{x_2}) = 5.0$$
 $s({x_1, x_3}|{x_4}) = 4.5$

$$s({x_1, x_3}|{x_4}) = 4.5$$

$$s({x_1, x_3}|{x_5}) = 2.2$$

 x_5

 $\bigcirc x_3$

$$s({x_2}|{x_4}) = 0.6$$

$$s({x_2}|{x_5}) = 3.0$$

$$s({x_4}|{x_5}) = 2.5$$

 x_1 \bigcirc

Clusters: $\{x_1, x_3\}, \{x_2, x_4\}, \{x_5\}$

$$s({x_1, x_3}|{x_2, x_4}) = 5.0$$
 $s({x_1, x_3}|{x_5}) = 2.2$ $s({x_2, x_4}|{x_5}) = 3.0$

$$s({x_1, x_3}|{x_5}) = 2.2$$

$$s({x_2, x_4}|{x_5}) = 3.0$$

Clusters: $\{x_1, x_3, x_5\}, \{x_2, x_4\}$

$$s({x_1, x_3, x_5}|{x_2, x_4}) = 5.0$$

Hierarchical clustering

Ilker Birbil, 2020

Hierarchical Clustering

If we want **three** clusters, then these would be $\{x_1, x_3\}, \{x_5\}$ and $\{x_2, x_4\}$

- ★ 'Generative model' or Data Generating Process (DGP)
 - There are K clusters in X. The latent multinomial variable $z_i \in \{1, 2, ..., K\}$ represents the relevant cluster for observation i, with prior probability

$$\Pr(z_i=k)=\pi_k, \quad \text{with } \pi_k \in [0,1] \text{ and } \sum_{k=1}^K \pi_k=1$$

• Observations in cluster k are normally distributed with mean μ_k and covariance matrix Σ_k , that is

$$f(x_i|z_i=k)=\phi(x_i;\mu_k,\Sigma_k)$$

• The unconditional/marginal distribution of an observation x_i then is a mixture of normals

$$f(x_i) = \sum_{z_i} f(x_i, z_i) = \sum_{k=1}^K f(x_i | z_i = k) \Pr(z_i = k) = \sum_{k=1}^K \pi_k \phi(x_i; \mu_k, \Sigma_k)$$

 \star Observations x_i generated from GMM with K=3

 \bigstar But... we only observe x_i as an 'unlabelled sample' — we do not know/observe z_i !

 \bigstar But... we can estimate the parameters π_k, μ_k and Σ_k in the Gaussian mixture. Moreover, we can obtain posterior probabilities

$$Pr(z_i = k | x_i), \quad for \quad k = 1, \dots, K,$$

which can be used for 'soft clustering' of the observations.

Gaussian mixture models - soft clustering

The posterior cluster probabilities are easily obtained as

$$\Pr(z_{i} = k | x_{i}) = \frac{f(x_{i}, z_{i} = k)}{f(x_{i})}$$

$$= \frac{\Pr(z_{i} = k) f(x_{i} | z_{i} = k)}{\sum_{k=1}^{K} f(x_{i} | z_{i} = k) \Pr(z_{i} = k)}$$

$$= \frac{\pi_{k} \phi(x_{i}; \mu_{k}, \Sigma_{k})}{\sum_{k=1}^{K} \pi_{k} \phi(x_{i}; \mu_{k}, \Sigma_{k})}$$

Gaussian mixture models - estimation

- ★ Estimation is done by deriving a likelihood function from the GMM although we need to do a bit more than 'standard' maximum likelihood...
- \star Normally, the **likelihood function** is taken to be the joint density function of the N observations $\mathbf{X}^T = (x_1, x_2, \dots, x_N)$:

$$\mathcal{L}(\mathbf{X}|\boldsymbol{\theta}) = f(x_1, x_2, \dots, x_N; \boldsymbol{\theta}) = \prod_{i=1}^{N} f(x_i; \boldsymbol{\theta}) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k \phi(x_i; \mu_k, \boldsymbol{\Sigma}_k)$$

where θ is the vector of all parameters in the model.

★ Here this is not convenient, because we get a summation inside the logarithm, when we (as usual) consider the log-likelihood:

$$\updownarrow(\mathbf{X}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \phi(x_i; \mu_k, \boldsymbol{\Sigma}_k) \right).$$

Quarterly growth rates US real GDP, 1947Q2 - 2012Q2

Quarterly growth rates US real GDP, 1947Q2 - 2012Q2 Densities in NBER recessions and expansions

Quarterly growth rates US real GDP, 1947Q2 - 2012Q2 Mixture density

Quarterly growth rates US real GDP, 1947Q2 - 2012Q2 Posterior probability of recession

Parameter estimation in the GMM may be done using the EM algorithm. This (general) estimation method provides a (local) maximum of the log likelihood function using an iterative two-step procedure:

- E = Expectation
- M = Maximization

Key idea: Although z_i is unobserved, we may consider it to be part of the dataset. We then consider the so-called **complete data** likelihood function, based on the joint density of x_i and z_i .

Recall that the joint density of x_i and z_i is given by

$$f(x_i, z_i; \boldsymbol{\theta}) = f(x_i|z_i; \boldsymbol{\theta}) \Pr(z_i = k),$$

which may also be written as

$$f(x_i, z_i; \boldsymbol{\theta}) = \left[\pi_1 \phi(x_i; \mu_1, \sigma_1^2) \right]^{I[z_i = 1]} \left[(1 - \pi_1) \phi(x_i; \mu_2, \sigma_2^2) \right]^{I[z_i = 2]}.$$

Hence, the complete data likelihood function is given by

$$f(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) = \prod_{i=1}^{N} \left(\left[\pi_1 \phi(x_i; \mu_1, \sigma_1^2) \right]^{\mathbf{I}[z_i = 1]} \left[(1 - \pi_1) \phi(x_i; \mu_2, \sigma_2^2) \right]^{\mathbf{I}[z_i = 2]} \right),$$

where $\mathbf{x}^T = (x_1, x_2, \dots, x_N)$ and $\mathbf{z}^T = (z_1, z_2, \dots, z_N)$.

 \Rightarrow This is the function that should be maximized to find the maximum likelihood parameter estimates of θ (plus the desired soft clustering probability $\Pr(z_i = 1 | x_i; \theta)$).

The problem that z_i is unobserved is solved by using the EM algorithm.

The log complete data likelihood function is given by

$$\ln f(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) = \sum_{i=1}^{N} \left(\mathbb{I}[z_i = 1] \ln \pi_1 + \mathbb{I}[z_i = 2] \ln(1 - \pi_1) + \mathbb{I}[z_i = 1] \ln \phi(x_i; \mu_1, \sigma_1^2) + \mathbb{I}[z_i = 2] \ln \phi(x_i; \mu_2, \sigma_2^2) \right).$$

The iterative two-step estimation procedure consists of:

• E-step: Take the expectation of the log complete data likelihood function with respect to z, given x and θ

$$E_{\mathbf{z}}[\ln f(\mathbf{x},\mathbf{z};\boldsymbol{\theta})].$$

ullet M-step: Maximize the expected value with respect to the parameter eta

$$\max_{\boldsymbol{\theta}} \mathsf{E}_{\mathbf{z}}[\mathsf{In}\,f(\mathbf{x},\mathbf{z};\boldsymbol{\theta})].$$

E-step: We have to compute the expectation of z_i (or essentially $I[z_i = 1]$) given x_i and θ .

We know that $E[I[z_i = 1] | x_i; \theta] = Pr(z_i = 1 | x_i; \theta)$.

Assuming the parameters θ are known, this conditional (posterior) probability denoted by π_{1i}^* is

$$\Pr(z_{i} = 1 | x_{i}; \theta) = \frac{f(x_{i}, z_{i} = 1; \theta)}{f(x_{i}; \theta)}$$

$$= \frac{f(x_{i} | z_{i} = 1; \theta) \Pr(z_{i} = 1)}{\sum_{k=1}^{2} f(x_{i} | z_{i} = k; \theta) \Pr(z_{i} = k)}$$

$$= \frac{\pi_{1} \phi(x_{i}; \mu_{1}, \sigma_{1}^{2})}{\pi_{1} \phi(x_{i}; \mu_{1}, \sigma_{1}^{2}) + (1 - \pi_{1}) \phi(x_{i}; \mu_{2}, \sigma_{2}^{2})} \equiv \pi_{1i}^{*}$$

From the log complete data likelihood function

$$\ln f(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) = \sum_{i=1}^{N} \left(\mathbb{I}[z_i = 1] \ln \pi_1 + \mathbb{I}[z_i = 2] \ln(1 - \pi_1) + \mathbb{I}[z_i = 1] \ln \phi(x_i; \mu_1, \sigma_1^2) + \mathbb{I}[z_i = 2] \ln \phi(x_i; \mu_2, \sigma_2^2) \right).$$

we then arrive at the 'expected' log likelihood function

$$\begin{aligned} \mathsf{E}_{\mathbf{z}}[\ln f(\mathbf{x},\mathbf{z};\boldsymbol{\theta})] &= \sum_{i=1}^{N} \underbrace{\pi_{1i}^{*} \ln \pi_{1} + (1-\pi_{1i}^{*}) \ln (1-\pi_{1})}_{+ \underbrace{\pi_{1i}^{*} \ln \phi(x_{i};\mu_{1},\sigma_{1}^{2})}_{+ \underbrace{(1-\pi_{1i}^{*}) \ln \phi(x_{i};\mu_{2},\sigma_{2}^{2})}_{+ \underbrace{(1-\pi_{1i}^{*}) \ln \phi(x_{$$

<u>M-step</u>: The maximization step is easy, as we can consider the three parts of the expected log likelihood function separately. The first part provides the new estimate of π_1

$$\pi_1 = \frac{1}{N} \sum_{i=1}^{N} \pi_{1i}^*.$$

The second part of the expected log likelihood function can be written as

$$\sum_{i=1}^{N} \pi_{1i}^* (-\ln \sigma_1 - \frac{1}{2} (x_i - \mu_1)^2 / \sigma_1^2)$$

such that μ_1 and σ_1^2 can be updated as follows

$$\mu_1 = \frac{\sum_{i=1}^N \pi_{1i}^* x_i}{\sum_{i=1}^N \pi_{1i}^*} \quad \text{and} \quad \sigma_1^2 = \frac{\sum_{i=1}^N \pi_{1i}^* (x_i - \mu_1)^2}{\sum_{i=1}^N \pi_{1i}^*}.$$

The third part proceeds in the same way.

EM iterations for the **GMM**

