Ruslan Shaydulin

E-mail: rshaydu@g.clemson.edu GitHub: https://github.com/rsln-s

Web: shaydul.in Google Scholar: https://scholar.google.com/citations?user=PxOuGGcAAAAJ

Profile

An expert in quantum information science. My research focuses on applying quantum computers to problems in optimization and machine learning. I have extensive experience in all aspects of designing and implementing quantum and hybrid quantum-classical algorithms from theoretical analysis to error mitigation.

Work Experience

Vice President, Applied Research Lead, JPMorgan Chase & Co.

Spring 2022 - Present

Quantum algorithms researcher at the Global Technology Applied Research center

Maria Goeppert Mayer fellow – Argonne Scholar, Argonne National Laboratory

Fall 2020 - Spring 2022

- Working on quantum optimization and quantum machine learning with focus on DOE applications
- Recipient of prestigious and selective postdoctoral fellowship (< 5 awarded annually)

Research Intern, IBM Research - Quantum

Summer 2020

- Developed and implemented a novel approach for Clifford circuit optimization in collaboration with Sergey Braviy, Dmitri Maslov and Shaohan Hu (<u>arXiv:2105.02291</u>, patent application <u>US20220129411A1</u>)
- Selected as one of four interns to be <u>highlighted in a promotional video</u> on the basis of performance

Intern, Quantum Artificial Intelligence Lab (QuAIL)

Spring 2020

NASA Ames Research Center (KBR)

- Developed novel analysis connecting the symmetries in problem instance structure to the performance of Quantum Approximate Optimization Algorithm in collaboration with Stuart Hadfield and Tad Hogg (arXiv:2012.04713)
- Performed extensive numerical simulations using HPC resources

Research Aide, Argonne National Laboratory

Summer 2018, 2019

- Developed quantum-accelerated frameworks for network community detection and graph partitioning under the supervision of Yuri Alexeev
- Co-authored 6 papers on quantum optimization and machine learning (5 first author)
- Contributed to multiple proposals

Education

Clemson University, SC Summer 2020

PhD in Computer Science, advisor: Ilya Safro

Master of Science in Computer Science en route to PhD

Fall 2019

Research in algorithms, high performance computing, big data analysis and quantum computing Relevant coursework: Design & Analysis of Algorithms, Data Mining, Distributed & Cluster Computing, Parallel

Architecture, Network Science

Moscow Institute of Physics and Technology

Summer 2016

Department of Control and Applied Math,

Bachelor of Science in Applied Mathematics and Physics

Minor: Computer Science and Data Analysis

Peer-reviewed Publications

Pradeep Niroula*, **Ruslan Shaydulin***, Romina Yalovetzky*, Pierre Minssen, Dylan Herman, Shaohan Hu, Marco Pistoia. Constrained Quantum Optimization for Extractive Summarization on a Trapped-ion Quantum Computer. *Scientific Reports (to appear)*. Preprint: 2206.06290

Ruslan Shaydulin, Stefan Wild. Importance of Kernel Bandwidth in Quantum Machine Learning. *Phys. Rev. A (to appear)*. Preprint: <u>arXiv:2111.05451</u>

Xiaoyuan Liu, **Ruslan Shaydulin**, Ilya Safro. Quantum Approximate Optimization Algorithm with Sparsified Phase Operator. 2022 *IEEE International Conference on Quantum Computing and Engineering (QCE)*, 2022 Preprint: arXiv:2205.00118

Ashish Kakkar, Jeffrey Larson, Alexey Galda, **Ruslan Shaydulin**. Characterizing Error Mitigation by Symmetry Verification in QAOA. 2022 *IEEE International Conference on Quantum Computing and Engineering (QCE)*, 2022 Preprint: arXiv:2204.05852

Xiaoyuan Liu, Anthony Angone, **Ruslan Shaydulin**, Ilya Safro, Yuri Alexeev, Lukasz Cincio. Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers. *IEEE Transactions on Quantum Engineering*. DOI: 10.1109/TQE.2021.3140190

Sergey Bravyi, **Ruslan Shaydulin**, Shaohan Hu, Dmitri Maslov. Clifford Circuit Optimization with Templates and Symbolic Pauli Gates. Quantum 5, 580, 2021. DOI: 10.22331/q-2021-11-16-580

Ruslan Shaydulin, Stuart Hadfield, Tad Hogg, Ilya Safro. Classical symmetries and the Quantum Approximate Optimization Algorithm. *Quantum Inf Process 20, 359,* 2021. DOI: 10.1007/s11128-021-03298-4

Ruslan Shaydulin, Kunal Marwaha, Jonathan Wurtz, Phillip C. Lotshaw. QAOAKit: A Toolkit for Reproducible Study, Application, and Verification of the QAOA. In *Proceedings of the 2nd International Workshop on Quantum Computing Software (in conjunction with Supercomputing '21)*, 2021. DOI: 10.1109/QCS54837.2021.00011

Ruslan Shaydulin, Alexey Galda. Error Mitigation for Deep Quantum Optimization Circuits by Leveraging Problem Symmetries. 2021 *IEEE International Conference on Quantum Computing and Engineering (QCE)*, 2021. DOI: 10.1109/QCE52317.2021.00046

Ruslan Shaydulin, Stefan M. Wild. Exploiting Symmetry Reduces the Cost of Training QAOA. *IEEE Transactions on Quantum Engineering*, 2021 DOI: <u>10.1109/TQE.2021.3066275</u>

Zirou Qiu, **Ruslan Shaydulin**, Xiaoyuan Liu, Yuri Alexeev, Christopher S. Henry, Ilya Safro. ELRUNA: Elimination Rulebased Network Alignment. *ACM Journal of Experimental Algorithmics*, 2021. DOI: 10.1145/3450703

Hayato Ushijima-Mwesigwa*, **Ruslan Shaydulin***, Christian F. A. Negre, Susan Mniszewski, Yuri Alexeev, Ilya Safro. Multilevel Combinatorial Optimization Across Quantum Architectures. *ACM Transactions on Quantum Computing*, 2020. DOI: 10.1145/3425607

^{*} Co-first author

Justin Sybrandt, **Ruslan Shaydulin**, Ilya Safro. Hypergraph Partitioning With Embeddings. *In IEEE Transactions on Knowledge and Data Engineering*, 2020. DOI: <u>10.1109/TKDE.2020.3017120</u>

Ruslan Shaydulin, Caleb Thomas, Paige Rodeghero. Making Quantum Computing Open: Lessons from Open-Source Projects. In *Proceedings of First International Workshop on Quantum Software Engineering* (Q-SE 2020) (co-located with ICSEW 2020). DOI: 10.1145/3387940.3391471

Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash. Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems. In *Proceedings of Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)*, 2020. Acceptance rate: 20.6%

DOI: 10.1609/aaai.v34i03.5616

Sami Khairy, **Ruslan Shaydulin**, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash. Reinforcement-Learning-Based Variational Quantum Circuits Optimization for Combinatorial Problems. In *Proceedings of the Machine Learning and the Physical Sciences workshop at Conference on Neural Information Processing Systems (NeurIPS 2019), 2019. (<u>link</u>) Preprint: <u>arXiv:1911.04574</u>*

Ruslan Shaydulin, Yuri Alexeev. Evaluating Quantum Approximate Optimization Algorithm: A Case Study. In Proceedings of the 2nd International Workshop on Quantum Computing for Sustainable Computing (QCSC 2019) (in conjunction with 10th International Green and Sustainable Computing Conference (IGSC 2019)), 2019

DOI: 10.1109/IGSC48788.2019.8957201

Sami Khairy, **Ruslan Shaydulin**, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash. Reinforcement Learning for Quantum Approximate Optimization. *Research Poster, Supercomputing '19,* 2019 (<u>available in Proceedings</u>)

Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson. Multistart Methods for Quantum Approximate Optimization. In *Proceedings of 2019 IEEE High Performance Extreme Computing Conference (HPEC)*, 2019

Best Student Paper (of ~50 student papers). DOI: 10.1109/HPEC.2019.8916288

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian F.A. Negre, Ilya Safro, Susan M Mniszewski, and Yuri Alexeev. A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers. *Computer*, 52(6):18-26, 2019. Cover Feature. DOI: 10.1109/MC.2019.2908942

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev. Network Community Detection on Small Quantum Computers. *Advanced Quantum Technologies*, 2(9):1900029, 2019. DOI: 10.1002/qute.201900029

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev. Community Detection Across Emerging Quantum Architectures. In *Proceedings of the 3rd International Workshop on Post Moore's Era Supercomputing (in conjunction with Supercomputing '18)*, 12-14, 2018. Preprint arXiv:1810.07765

Ruslan Shaydulin and Ilya Safro. Aggregative Coarsening for Multilevel Hypergraph Partitioning. *In Proceedings of 17th International Symposium on Experimental Algorithms (SEA 2018)*, 103:2:1-2:15, 2018.

DOI: <u>10.4230/LIPIcs.SEA.2018.2</u>

Ruslan Shaydulin, Jie Chen, and Ilya Safro. Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning. *Multiscale Modeling & Simulation*, 17(1):482-506, 2019. DOI: 10.1137/17M1152735

Invited Articles and White Papers

Ruslan Shaydulin, Martin Suchara and Jeffrey Larson. Standardized low-level noise characterization to differentiate DOE quantum testbeds. *Quantum Computing Testbeds Stakeholder Workshop White Paper*, 2021

Yuri Alexeev, Jeffrey Larson, Sven Leyffer, and **Ruslan Shaydulin**. Solving Combinatorial Optimization Problems on Quantum Computers. *In SIAM News Vol.* 53 #6 July/August 2020

Online Preprints and In-Submission Works

Dylan Herman*, **Ruslan Shaydulin***, Yue Sun*, Shouvanik Chakrabarti, Shaohan Hu, Pierre Minssen, Arthur Rattew, Romina Yalovetzky, Marco Pistoia. Portfolio Optimization via Quantum Zeno Dynamics on a Quantum Processor. *In submission*. Preprint: <u>arXiv:2209.15024</u>

Kaiyan Shi, Rebekah Herrman, **Ruslan Shaydulin**, Shouvanik Chakrabarti, Marco Pistoia, Jeffrey Larson. Multi-Angle QAOA Does Not Always Need All Its Angles. *In submission*. Preprint: <u>arXiv:2209.11839</u>

Abdulkadir Canatar, Evan Peters, Cengiz Pehlevan, Stefan M. Wild, **Ruslan Shaydulin**. Bandwidth Enables Generalization in Quantum Kernel Models.

In submission. Preprint: arXiv:2206.06686

Alvin Gonzales, **Ruslan Shaydulin**, Zain Saleem, Martin Suchara. Quantum Error Mitigation by Pauli Check Sandwiching. *In submission*.

Preprint: 2206.00215

Ruslan Shaydulin*, Phillip C. Lotshaw*, Jeffrey Larson, James Ostrowski, Travis S. Humble. Parameter Transfer for Quantum Approximate Optimization of Weighted MaxCut. *In submission*.

Preprint: arXiv:2201.11785

Ruslan Shaydulin, Justin Sybrandt. To Agile, or not to Agile: A Comparison of Software Development Methodologies. Preprint: arXiv:1704.07469

Patents

Sergey Bravyi, Shaohan Hu, Dmitri Maslov, **Ruslan Shaydulin**. Partitioned template matching and symbolic peephole optimization. *Pending*. Patent application <u>US20220129411A1</u>

Contributed Talks and Posters

Chicago Quantum Exchange Seminar University of Chicago

Sep 29, 2022

Gave an invited talk "Solving Constrained Optimization Problems on Quantum Computers".

Quantum Computing Tutorial Argonne National Laboratory Led a tutorial on Quantum Approximate Optimization Algorithm.

Jun 15, 2022

Ruslan Shaydulin	shaydul.in
Southeast Quantum Computing Workshop University of Georgia Gave an invited talk "Importance of Kernel Bandwidth in Quantum Machine Learning."	May 20, 2022
American Physical Society March Meeting '22 Chicago, IL Gave talk "Importance of Kernel Bandwidth in Quantum Machine Learning."	Mar 17, 2022
Quantum Information Processing '22 Pasadena, CA Presented poster "Importance of Kernel Bandwidth in Quantum Machine Learning."	Mar 8, 2022
DOE Quantum Computing Testbeds Stakeholder Workshop Gave talk "Standardized Low-Level Noise Characterization to Differentiate DOE Quantum Testbeds"	Dec 2, 2021
Supercomputing '21 (International Workshop on Quantum Computing Software) Gave talk "QAOAKit: A Toolkit for Reproducible Study, Application, and Verification of the QAOA"	Nov 15, 2021
IEEE Quantum Week 2021 Gave talks "Classical Symmetries and QAOA" and "Error Mitigation for Deep Quantum Optimization Leveraging Problem Symmetries"	Oct 17-22, 2021 Circuits by
QIC seminar University of Delaware Gave talk "Towards Practical Advantage in Quantum Optimization"	Sep 29, 2021
SIAM Conference on Optimization (OP21) Gave a talk "Classical Symmetries and QAOA"	Jul 21, 2021
Quantum Computing Tutorial Argonne National Laboratory Led a tutorial on Quantum Approximate Optimization Algorithm.	Jun 16, 2021
HPC-Al colloquium Intel Gave talk "Towards Practical Advantage in Quantum Optimization"	Jun 8, 2021
CM/QIS seminar Virginia Tech Gave talk "Classical Symmetries and QAOA"	Apr 19, 2021
Chicago Quantum Exchange Member and Partner Workshop Gave talk "Quantum Optimization: the Next Five Years"	Apr 19, 2021
Sixth International Conference for Young Quantum Information Scientists (YQIS 2021) Gave talk "Classical Symmetries and QAOA"	Apr 12, 2021
LANS Seminar Argonne National Laboratory Gave talk "Classical Symmetries and QAOA"	Mar 24, 2021
APS March Meeting Gave talk "Classical Symmetries and QAOA"	Mar 17, 2021

Ruslan Shaydulin	<u>shaydul.in</u>
INFORMS Annual Meeting Gave talk "Classical Symmetries and the Quantum Approximate Optimization Algorithm"	Nov 13, 2020
Quantum Computing Seminar IBM Research Gave talk "Practical Optimization on Near-term Quantum Computers"	Sep 24, 2020
Quantum Computing Tutorial Argonne National Laboratory Led a tutorial on Quantum Approximate Optimization Algorithm.	Jun 15, 2020
SIAM Conference on Parallel Processing for Scientific Computing (PP20) Seattle, WA Gave talk "Multilevel Hybrid Quantum-Classical Algorithms on Graphs"	Feb 13, 2020
Information Science and Technology Institute Seminar Los Alamos National Laboratory Gave talk "Practical Optimization on Near-term Quantum Computers"	Nov 26, 2019
Supercomputing '19 Denver, CO Gave talk "Hybrid Quantum-Classical Algorithms for Graph Problems: Forging a Path to Near-Ter the Clemson booth and at the SC Theater	Nov 17-22, 2019 om Applications" at
Mathematics and Computer Science Seminar Argonne National Laboratory Gave talk "Practical Optimization on Near-term Quantum Computers"	Nov 15, 2019
Quantum Computing Seminar Oak Ridge National Laboratory Gave talk "Practical Optimization on Near-term Quantum Computers"	Nov 4, 2019
International Green and Sustainable Computing Conference (IGSC 2019) Alexandria, VA Presented poster "Reinforcement Learning for Quantum Approximate Optimization"	Oct 22, 2019
Chicago Quantum Exchange Meeting University of Chicago Presented poster "Practical Quantum Approximate Optimization"	June 12, 2019
SIAM Conference on Computational Science and Engineering (CSE19) Spokane, WA Presented poster "Quantum Local Search for Graph Community Detection"	Feb 25-28, 2019
Quantum Computing Tutorial Argonne National Laboratory Gave talk "QAOA Algorithm Introduction"	Dec 10-11, 2018
Supercomputing '18 Dallas, TX Gave talk "Community Detection Across Emerging Quantum Architectures" at Clemson booth	Nov 11-16, 2018
Quantum Computing Workshop Argonne National Laboratory Presented preliminary results on "Machine Learning on Near-Term Quantum Computers"	Jul 25-27, 2018
32nd Clemson Mini-Conference on Discrete Mathematics and Algorithms <i>Clemson University</i> Presented poster "Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning"	Nov 4, 2017

58th Scientific Conference Moscow Institute of Physics and Technology

Nov 23-28, 2015

Gave talk "IPC (Inter-Process Communication) in OS X"

Leadership and Service

Requested Reviewer (peer review)

- IOP Quantum Science and Technology (2022)
- Springer Quantum Information Processing (2022)
- Quantum journal (2020, 2021)
- npj Quantum Information (2020)
- IEEE Transactions on Computers (2020)
- IEEE Transactions on Quantum Engineering (2020, 2021, 2022)
- IOP New Journal of Physics (2021)
- ACM Journal of Experimental Algorithmics (2021)

Program Committee Member

- IEEE International Conference on Quantum Computing and Engineering (QCE21, QCE22)
- The Third International Workshop on Quantum Resource Estimation (QRE 2021)

IEEE Quantum Week 2022 Sep 23, 2022

Co-organized a workshop on Quantum Algorithms for Financial Applications

INFORMS Annual Meeting Oct 25, 2021

Led and co-organized a tutorial "Combinatorial Optimization on Quantum Computers" and a workshop "The Future of Quantum Optimization"

IEEE Quantum Week 2021 Oct 19, 2021

Session chair

Afro-Academic, Cultural, Technological and Scientific Olympics (ACT-SO) 2021-22

Mentored a high-school student

SIAM Conference on Optimization (OP21)

Jul 20-23, 2021

Co-organized a minisymposium "Quantum Discrete Optimization"

Chicago Quantum Exchange Apr 16, 2021

Co-organized a workshop "Quantum Feature Maps for the NISQ Era"

IEEE Quantum Week Oct 15, 2020

Led and co-organized a minitutorial "Combinatorial Optimization on Quantum Computers"

SIAM Conference on Parallel Processing for Scientific Computing (PP20) Seattle, WA Feb 12-15, 2020

Led and co-organized a minitutorial "Combinatorial Optimization on Quantum Computers"

SIAM Conference on Parallel Processing for Scientific Computing (PP20) Seattle, WA Feb 12-15, 2020

Co-organized a minisymposium "Recent Advances and Trends in Hybrid Quantum-Classical Algorithms"

Supercomputing '19 Denver, CO

Nov 17-22, 2019

Student volunteer, run tutorials, technical program session and Birds-of-Feather

Quantum Computing Tutorial Argonne National Laboratory

May 14, 2019

Led and co-organized a hands-on tutorial for Qiskit, a framework for quantum computing

Mathematics Teacher, Summer School Kostroma, Russia

Summer 2014

School administrator, organized extracurricular activities.

Teaching

Network Science CPSC 8480 Clemson University

Fall 2018, 2019

Teaching Assistant responsible for grading and answering students' questions during office hours

Design and Analysis of Algorithms CPSC 8400 Clemson University

Spring 2019

Teaching Assistant responsible for grading and answering students' questions during office hours

Algorithms and Data Structures CPSC 2120 Clemson University

Spring 2019

Teaching Assistant responsible for running the lab section, grading and answering students' questions during office hours

Mathematics Teacher, Summer School Kostroma, Russia

Summer 2014

Created and taught a course on basics of graph theory, combinatorics and number theory to middle and high school students.

Languages and Technologies

Python, C

Prior experience: C++, MATLAB, Objective-C, Swift, Bash, Qiskit

Limited prior experience: R, SQL, yacc, bison, AWS, Google Cloud Engine

Technologies and tools: UNIX/Linux, MPI, OpenMP

Honors and Awards

- Outstanding Young Engineer Award for the year 2021, awarded by IEEE Chicago Section
- Best Student Paper at IEEE HPEC 2019 (of ~50 student papers), recipient
- IBM Teach-the-Qiskit-Teacher training program, selected to represent Argonne National Laboratory
- Moscow Institute of Physics and Technology Abramov scholarship Top 300 students in the university, based on high academic achievement, recipients