1. Considere a equação $e^x - 4x = 0$, a qual tem uma única raiz, α , no intervalo I = [0.3, 0.5] e as funções $\varphi(x) = \frac{e^x}{4}$ e $\psi(x) = \ln(4x)$.

Qual das seguintes afirmações é falsa?

- \sqcap **a**) α é ponto fixo atractor de φ e ponto fixo repulsor de ψ ;
- \Box b) A sucessão $y_n = \psi(y_{n-1}), n = 1, 2, ...,$ converge para α se e só se $y_0 = \alpha$;
- \Box c) A sucessão $x_n = \varphi(x_{n-1}), n = 1, 2, ...,$ converge para α qualquer que seja $x_0 \in [0.3, 0.5];$
- \square d) A sucessão $x_n = \varphi(x_{n-1}), n = 1, 2, ...,$ converge para α se e só se $x_0 = \alpha$. (opção correcta)
- 2. Considere uma sucessão de vectores definida por

$$\begin{cases} X^{(0)} = [0 \ 0 \dots 0]^T, \\ X^{(n+1)} = GX^{(n)} + H, \ n = 0, 1, \dots, \end{cases}$$

onde $H = [h_1 \, h_2 \dots h_n]^T$ e G é uma matriz quadrada de ordem n tal que $||G||_1 = \frac{3}{2}$ e $||G||_{\infty} = \frac{1}{2}$. Qual das seguintes afirmações é sempre verdadeira?

- \square a) A sucessão $\{X^{(n)}\}_{n\in\mathbb{N}}$ converge para a solução do sistema X=GX e $\|X-X^{(n)}\|_{\infty} \leq \left(\frac{1}{2}\right)^{n-1} \|G\|_{\infty}$;
- \square b) A sucessão $\{X^{(n)}\}_{n\in\mathbb{N}}$ converge para a solução do sistema X=GX+H e $\|X-X^{(n)}\|_{\infty}\leq \left(\frac{1}{2}\right)^{n-1}\max_{1\leq i\leq n}\{|h_i|\};$ (opção correcta)
- \Box c) $\rho(G) = \frac{3}{2}$ pelo que a sucessão $\{X^{(n)}\}_{n \in \mathbb{N}}$ não é uma sucessão convergente;
- \square d) A sucessão $\{X^{(n)}\}_{n\in\mathbb{N}}$ converge para a solução do sistema X=GX+H e $\|X-X^{(n)}\|_1\leq \left(\frac{1}{2}\right)^{n-1}\sum_{i=1}^n|h_i|$.

3. Considere $I = \int_{-1}^{1} f(x) dx$ e $I_S = 2$ um valor aproximado de I usando a regra de Simpson simples. Sejam I_G uma aproximação de I usando a regra de Gauss com 2 pontos e I_T uma aproximação de I usando a regra dos trapézios simples.

Sabendo que $f(x) = 3x^2 + ax + b$, com $a, b \in \mathbb{R}$, quais os valores de I_G e I_T ?

- \square a) $I_T = I_G = 2;$
- \sqcap **b**) $I_G = 2 \text{ e } I_T = 0;$
- \sqcap **c**) $I_G = 2$ e $I_T = 6$; (opção correcta)
- \sqcap d) $I_T = I_G = 0$.
- 4. Considere I=[2,3], f uma função contínua, a qual tem um único zero, β , no intervalo I e $x_0=2.5,$ $x_1=2.75$ e $x_2=2.625$ as 3 primeiras iteradas associadas ao método da bissecção.

Sabendo que $f(x_0) \times f(x_2) < 0$, qual o valor de x_3 e o menor natural n para o qual pode garantir que x_n é uma aproximação de β com, pelo menos, 6 algarismos significativos?

- \square a) $x_3 = 2.5625$ e n = 17; (opção correcta)
- \sqcap **b)** $x_3 = 2.5625 \text{ e } n = 20;$
- \Box **c)** $x_3 = 2.8125$ e n = 13;
- 5. Considere $I(g) = \int_0^1 e^x g(x) dx$ e uma regra de quadratura da forma $Q(g) = A_0 g(0) + A_1 g(1)$ para aproximar I(g). Quais os valores de A_0 e A_1 de modo a que a regra de quadratura seja exacta para polinómios de grau ≤ 1 ?
 - \Box **a**) $A_0 = A_1 = 1;$
 - \Box **b**) $A_0 = -2, A_1 = 1;$
 - \Box **c**) $A_0 = e 2$, $A_1 = 1$; (opção correcta)
 - \Box **d**) $A_0 = e 2, A_1 = -1.$

6. Seja $\varphi(x) = \pi + \frac{\sin(x/2)}{2}$ e $\alpha \in I = [\pi, 2\pi]$ o único ponto fixo de φ no intervalo I.

Considere a sucessão definida por

$$\begin{cases} x_0 \in I, \\ x_{n+1} = \varphi(x_n), \ n = 0, 1, ..., \end{cases}$$

a qual converge para α , qualquer que seja $x_0 \in I$. Considere $\mathbf{x_0} = \pi$.

(a) Qual a ordem de convergência da sucessão x_n ? Justifique a sua resposta.

$$\varphi'(x) = \frac{\cos(x/2)}{4}$$
, $\varphi(x)$ e $\varphi'(x)$ funções continuas.
 $x = \pi$, $\varphi'(\pi) = \frac{\cos(\pi/2)}{4} = 0$

$$x = 2\pi, \ \varphi'(2\pi) = \frac{\cos(\pi)}{4} = -1/4 \neq 0$$

 $\varphi'(x)$ função decrescente em $I = [\pi, 2\pi]$.

$$\varphi'(x) \neq 0, \forall x \in I =]\pi, 2\pi] \in \varphi'(\pi) = 0.$$

 π é ponto fixo?

$$\varphi(\pi) = \pi + \frac{\sin(\pi/2)}{2} = \pi + 1/2$$
 ou seja $\varphi(\pi) \neq \pi$, logo π não é ponto fixo.

Assim, dado que $\alpha \in]\pi, 2\pi]$ vem $\varphi'(\alpha) \neq 0$, pelo que a sucessão x_n converge para α com ordem de convergência 1.

(b) Prove que os termos da sucessão, x_n , n=1,2,..., verificam a seguinte estimativa $|\alpha-x_n| \le \left(\frac{1}{4}\right)^n \frac{2}{3}$, n=1,2,....

Sabemos que $|\alpha - x_n| \le \frac{K^n}{1 - K} |x_1 - x_0|$, n = 1, 2, ..., onde $K = \max_{x \in [\pi, 2\pi]} |\varphi'(x)| = 1/4$ porque $|\varphi'(\pi)| = 0$, $|\varphi'(2\pi)| = 1/4$ e $|\varphi'(x)|$ é uma função estritamente crescente em $[\pi, 2\pi]$, uma vez que $|\varphi''(x)| = |\frac{\sin(x/2)}{8}| \ge 0$, logo o máximo de $|\varphi'(x)|$ em $[\pi, 2\pi]$ é atingido para $x = 2\pi$.

Determinemos
$$x_1$$
: $x_1 = \pi + \frac{\sin(\pi/2)}{2} = \pi + 1/2$ pois $x_0 = \pi$, logo $|\alpha - x_n| \le \frac{(1/4)^n}{1 - 1/4} |\pi + 1/2 - \pi| = \left(\frac{1}{4}\right)^n \frac{2}{3}, n = 1, 2, \dots$

(c) Sem calcular x_{15} , indique o número de algarismos significativos que pode garantir para x_{15} .

Justifique a sua resposta.

Pela alínea anterior $|\alpha - x_{15}| \leq \left(\frac{1}{4}\right)^{15} \frac{2}{3} = 0.620... \times 10^{-9} < 0.5 \times 10^{-8}$, logo o nº de casas decimais significativas é k = 8 e tem-se m + 1 - n = -8. Além disso, dado que x_n é convergente para $\alpha \in [\pi, 2\pi], n = 0, 1, ...$, vem que $\pi \leq x_{15} \leq 2\pi$, logo $10^0 \leq x_{15} \leq 10^1$, donde m = 0.

Substituindo em m + 1 - n = -8 vem n = 9 ou seja podemos garantir para x_n , 9 algarimos significativos.

(d) Determine $n \in \mathbb{N}$ tal que $|\alpha - x_n| \le 10^{-9}$. Justifique a sua resposta.

Atendendo à alínea b),
$$|\alpha - x_n| \le \left(\frac{1}{4}\right)^n \frac{2}{3}$$
. Assim se $\left(\frac{1}{4}\right)^n \frac{2}{3} \le 10^{-9}$ então $|\alpha - x_n| \le 10^{-9}$.
$$\left(\frac{1}{4}\right)^n \frac{2}{3} \le 10^{-9} \Leftrightarrow \ln\left(\left(\frac{1}{4}\right)^n\right) \le \ln\left(\frac{3}{2}x10^{-9}\right) \Leftrightarrow n\ln\left(\frac{1}{4}\right) \le \ln\left(\frac{3}{2}x10^{-9}\right)$$
$$\Leftrightarrow n \ge \frac{\ln\left(\frac{3}{2}x10^{-9}\right)}{\ln\left(\frac{1}{4}\right)} \Leftrightarrow n \ge 14.65..., \log n = 15 \ge 14.65...$$

7. Considere o sistema de equações lineares AX = B, com

$$A = \begin{bmatrix} a_1 & 0 & c_1 \\ 0 & a_2 & c_2 \\ c_3 & 0 & a_3 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}; \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$$

onde $a_i = (-2)^i c_i \neq 0, i = 1, 2, 3$.

(a) Mostre que o método de Jacobi é convergente para a solução do sistema AX = B, qualquer que seja a iterada inicial $X^{(0)}$.

$$A = \begin{bmatrix} -2c_1 & 0 & c_1 \\ 0 & 4c_2 & c_2 \\ c_3 & 0 & -8c_3 \end{bmatrix}$$

A matriz A é de diagonal estritamente dominante porque $2|c_1| > |c_1| \wedge 4|c_2| > |c_2| \wedge 8|c_3| > |c_3|$, logo o método de Jacobi é convergente para a solução do sistema AX = B, qualquer que seja a iterada inicial $X^{(0)}$.

Também se podia provar a convergência verificando que $||G_J||_{\infty} < 1$.

$$G_{J} = -D^{-1}(L+U) = -\begin{bmatrix} -\frac{1}{2c_{1}} & 0 & 0 \\ 0 & \frac{1}{4c_{2}} & 0 \\ 0 & 0 & -\frac{1}{8c_{3}} \end{bmatrix} \begin{bmatrix} 0 & 0 & c_{1} \\ 0 & 0 & c_{2} \\ c_{3} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 0 & -1/4 \\ 1/8 & 0 & 0 \end{bmatrix}$$
$$||G_{J}||_{\infty} = \max\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\} = \frac{1}{2} < 1.$$

(b) Seja $X^{(j)}$, j=1,2,..., a sucessão gerada pelo método de Jacobi. Demonstre que $\|X-X^{(j)}\|_{\infty} \leq \left(\frac{1}{2}\right)^{j-1} \|X^{(0)}-X^{(1)}\|_{\infty}$, j=1,2,....

Erro apriori

$$||X - X^{(j)}||_{\infty} \le \frac{||G_J||_{\infty}^j}{1 - ||G_J||_{\infty}} ||X^{(0)} - X^{(1)}||_{\infty} = \frac{\left(\frac{1}{2}\right)^j}{1 - \frac{1}{2}} ||X^{(0)} - X^{(1)}||_{\infty} = \left(\frac{1}{2}\right)^{j-1} ||X^{(0)} - X^{(1)}||_{\infty}$$

$$X^{(1)}||_{\infty}, j = 1, 2, \dots.$$

(c) Fazendo $c_1 = c_2 = c_3 = 1$ e tomando para iterada inicial $X^{(0)} = [-0.7 \quad 0.6 \quad -0.5]^T$, determine $X^{(1)}$ e $\eta > 0$ tal que $||X - X^{(1)}||_{\infty} \le \eta$.

$$X^{(j)} = G_J X^{(j-1)} + H_J, \ j = 1, 2, \dots$$

$$H_J = D^{-1}B = \begin{bmatrix} -1/2 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & -1/8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \\ -3/8 \end{bmatrix}$$

$$X^{(1)} = G_J X^{(0)} + H_J = \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 0 & -1/4 \\ 1/8 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.7 \\ 0.6 \\ -0.5 \end{bmatrix} + \begin{bmatrix} -1/2 \\ 1/2 \\ -3/8 \end{bmatrix} = \begin{bmatrix} -0.75 \\ 0.625 \\ -0.4625 \end{bmatrix}$$

$$\|X - X^{(1)}\|_{\infty} \le \frac{\|G_J\|_{\infty}}{1 - \|G_J\|_{\infty}} \|X^{(0)} - X^{(1)}\|_{\infty} = \frac{\left(\frac{1}{2}\right)}{1 - \frac{1}{2}} \|X^{(0)} - X^{(1)}\|_{\infty} = \|X^{(0)} - X^{(1)}\|_{\infty}$$

$$X^{(0)} - X^{(1)} = \begin{bmatrix} -0.7 \\ 0.6 \\ -0.5 \end{bmatrix} - \begin{bmatrix} -0.75 \\ 0.625 \\ -0.4625 \end{bmatrix} = \begin{bmatrix} 0.05 \\ -0.025 \\ 0.0375 \end{bmatrix}$$

$$\|X^{(0)} - X^{(1)}\|_{\infty} = \max\{0.05, 0.025, 0.0375\} = 0.05 = \eta > 0.$$

8. Considere a seguinte tabela relativa a uma função f

$$e I = \int_{-1}^{3} f(x)dx.$$

(a) Determine uma aproximação de I usando a regra de Simpson simples.

$$h = \frac{b-a}{2} = 2$$

$$\bar{I} = \frac{h}{3}(f(-1) + 4f(1) + f(3)) = \frac{2}{3}(-2 + 4(-6) + 22) = -\frac{8}{3}$$

(b) Determine uma aproximação de I usando a regra de Simpson composta.

$$n = 2 \Rightarrow h = \frac{b-a}{2n} = 1$$
$$\bar{I} = \frac{h}{3}(f(-1) + 4f(0) + 2f(1) + 4f(2) + f(3)) = \frac{1}{3}(-2 - 20 - 12 + 4\alpha + 22) = \frac{4\alpha}{3} - 4$$

(c) Sabendo que $f^{(4)}(x) = 24$, $\forall x \in [-1, 3]$, e usando as alíneas anteriores determine α .

Erro Regra de Simpsom simples:
$$I - \overline{I} = -\frac{h^5}{90}f^{(4)}(x)$$

donde
$$I - \left(-\frac{8}{3}\right) = -\frac{2^5}{90}24 \Leftrightarrow I = -\frac{768}{90} - \frac{8}{3} = -\frac{56}{5}$$

Erro Regra de Simpsom composta: $I - \bar{I} = -n \frac{h^5}{90} f^{(4)}(x)$

donde
$$-\frac{56}{5} - \left(\frac{4\alpha}{3} - 4\right) = -2\frac{1^5}{90}24 = -\frac{48}{90}$$

 $\Leftrightarrow -\frac{4\alpha}{3} = -\frac{48}{90} + \frac{56}{5} - 4 \Leftrightarrow -\frac{4\alpha}{3} = \frac{20}{3}$

$$\Leftrightarrow \alpha = -5$$