

Financial Market for Restructured Power Systems

Salvador Pineda Morente Centre for Electric Technology

16th September 2011

DTU Electrical Engineering
Department of Electrical Engineering

Outline

- Introduction
- Forward contracts
- Electricity options
- Conclusions
- Bibliography

- What is a derivative?
 - financial instrument
 - its value is derived from the value of another underlying asset
- What is a derivative for?
 - to facilitate the "buying" and "selling" of risk

- Derivatives as mechanisms to transfer risk
 - Farmer
 - Decrease the risk of having low prices
 - Increase the risk of having high prices (thereby losing additional income)
 - –Fruit seller
 - Decrease the risk of having high prices
 - Increase the risk of having low prices (thereby paying more for the apples)

- Wide variety of derivatives
 - rice derivatives traded since the eighteen century
 - pork bellies, live cattle, sugar, wool, lumber, copper, aluminum, gold, and tin
 - financial assets include stock indices, currencies, and Treasury bonds
- Since restructuration of electricity markets
 - electricity derivatives

- Types of derivatives
 - Forward contracts
 - Futures contracts
 - Option contracts
 - Swaps

— ...

- Derivatives can be traded in two ways:
 - –Ex-change market:
 - pre-defined and standardized contracts
 - traded through a central authority
 - free of the counterparty risk
 - Required to pay a margin fee
 - –Over-the-counter (OTC):
 - contracts privately traded between 2 parties
 - flexibility to design products
 - significant counterparty risk

Outline

- Introduction
- Forward contracts
- Electricity options
- Conclusions
- Bibliography

DTU

Forward contracts

- Definition of forward/futures contract
 - -The quantity and quality of the commodity
 - -The date of delivery
 - -The price to be paid
 - -The date of payment following delivery
- Positions
 - -Long position: party buying the commodity
 - -Short position: party selling the commodity

• Forward vs. Futures

Forward	Futures
Traded on over-the-counter market	Traded on an exchange
Not standardized	Standardized contract
Usually one specified delivery date	Range of delivery dates
Settled at end of contract	Settled daily
Delivery or final cash settlement usually takes place	Contract is usually closed out prior to maturity

- How are they traded?
 - -Initial auction
 - buy and sell offers are matched to obtain the settlement price
 - -Continuous market
 - each agent can see other agents' orders
 - decide its own orders
 - executed following a price-time criteria

Trading

Pre-trading	Main tra	Post-trading	
	Opening auction	Continuous trading	
8:30 - 08:55	08:55 – 09:00	09:00 – 16:00	16:00 – 17:00

Initial auction (EEX)

Bid		А	sk
Volume	Price	Price	Volume
17	15.25	15.20	11
15	15.23	15.23	12
16	15.16	15.25	15
		15.28	17

Initial auction (EEX)

Bid		Ask		
Volume	Price	Price	Volume	
17	15.25	15.20	11	
15	15.23	15.23	12	
16	15.16	15.25	15	
		15.28	17	

Price	Bid volume	Ask volume	Volume matched	Surplus
15.16	48	0	0	48
15.20	32	11	11	21
15.23	32	23	23	9
15.25	17	38	17	21
15.28	0	55	0	55

Continuous trading (EEX)

Input: Ask

Price: 15.20 €/MWh

Qty.: 170

Bid		Ask	
BidQty	Bid	Ask	AskQty
160	15.20	15.20	170
140	15.14	15.22	175
100	15.12	15.28	180
		15.30	200

Execution: Ask

Price: 15.20 €/MWh

Qty.: 160

Bid		Ask	
BidQty	Bid	Ask	AskQty
140	15.14	15.20	10
100	15.12	15.22	175
		15.28	180
		15.30	200

Continuous trading (EEX)

Input: Ask

Price: 15.17 €/MWh

Qty.: 170

Bid		Ask	
BidQty	Bid	Ask	AskQty
100	15.20	15.17	170
60	15.19	15.22	175
100	15.12	15.28	180
		15.30	200

Execution: Ask

Price: 15.19625 €/MWh

Qty.: 160

Bid		Ask	
BidQty	Bid	Ask	AskQty
100	15.12	15.17	10
		15.22	175
		15.28	180
		15.30	200

- Settlement price
 - Determination of the settlement prices at 16:00
 - Last traded price (on the exchange)
 - Trading volume of at least 5 contracts
 - Average of fair values (Chief trader procedure)
 - Needs to be between best bid and best ask at the end of trading
 - Free from arbitrage

- Daily settlement example
 - Unit of 30 MW
 - Expected pool price of 53.3 €/MWh in Sep10
 - 30 contracts of the Base Month Sep10 for 53.3
 €/MWh in July 1st
 - Expected revenue:

30MW x 24h/day x 30days x 53.3€/MWh=1155600€

Average spot price 47.53 (Profit 1026648 €)

Daily settlement

	nange ing dav	Daily settlement price of the Future [€ per MWh]	Phelix Day Base [€ per MWh]	Average Phelix Day Base [€ per MWh]	Variation Margin [€] (-) Additional contribution (+) Credit
sə,	Thu, 01/07/10	53.50	-	-	0
é è					
Derivatives trading	 Fri, 27/08/10	48.20	-	-	114,480
Ta e	Mo, 30/08/10	48.00	-	-	4,320
	Tue, 31/08/10	47.00	48.00	48.00	21,600
늉	We, 01/09/10	47.50	48.20	48.10	-10,800
Spot trading	Thu, 02/09/10	46.90	43.00	46.40	12,960
and	Fri, 24/09/10	47.80	38.00	44.30	-19,440
	Mo, 27/09/10	48.30	48.00	45.04	-10,800
Ve	Tue, 28/09/10	48.00	53.00	46.37	6,480
Derivatives	We, 29/09/10	Final settlement price: 47.53	54.50	47.53	10,152

<u>Total:</u> <u>128,952</u>

Cascading

Risk premium

$$\text{Risk premium}_{t,T} = 100 \cdot \frac{\textbf{F}_{t,T} - \textbf{S}_{T}}{\textbf{S}_{T}} = 100 \cdot \frac{23 - 20.3}{20.3} = 13.3\%$$

- Risk premium
 - -Retailers are more risk averse → RP ↑
 - –Producers are more risk averse → RP ↓

Risk premium (EEX)

GenCo model

Pool market (price risk)

Futures market (fixed price)

- GenCo model
 - Risk neutral (maximize expected profit)
 - average spot > forward price → 100% spot
 - average spot < forward price → 100% forward</p>
 - Risk averse (worried about getting low profits)
 - not so clear

GenCo model

Pool market (price risk)

Production unit (availability risk)

Futures market (fixed price)

GenCo model

Example

Pool

Forward contract

- GenCo model
 - method: stochastic optimization
 - uncertainty characterization: scenario tree

GenCo model

Maximize CVaR_a(profit)

subject to

Profit of the power producer

Production cost of the units

Technical limits of the units

Energy balance

Risk constraints

Binary variable declarations

• CVaR

• CVaR

Scenario generation

Pool price scenario generation: ARIMA

$$\widehat{\lambda^{\mathrm{P}}}_{(t)} = \Phi\left(\lambda^{\mathrm{P}}_{(t-1)}, \lambda^{\mathrm{P}}_{(t-2)}, \dots, \lambda^{\mathrm{P}}_{(t-p)}\right) + \\ + \Theta\left(\varepsilon_{(t-1)}, \varepsilon_{(t-2)}, \dots, \varepsilon_{(t-q)}\right) + \varepsilon_{(t)} \\ \varepsilon_{(t)} \sim N(0, \sigma_{\varepsilon}) \\ \text{scenario 1} \\ \text{scenario 2} \\ \text{scenario 2} \\ \text{scenario 3} \\ \text{scenario 4} \\ \text{scenario 4} \\ \text{scenario 5} \\ \text{scenario 5} \\ \text{scenario 6} \\ \text{scenario 8} \\ \text{scenari$$

Scenario Reduction

Scenario Reduction

- Case study: data
 - Study horizon of 8 weeks
 - One generating unit (50 scen.)
 - Pool price uncertainty (30 scen.)
 - Final tree of 1500 scenarios
 - Forward contracts
 - Risk aversion parameter
 - √ 6 values: 0, 0.2, 0.5, 0.6, 0.7, 0.9

EEX (base/peak week/month/quarter/year) web

Continuous Trading | Phelix Baseload Week Futures

Name	Best Bid	Best Ask	No. of Contr.	Last Price	Abs. Change	Last Time	Last Vol.	Settl. Price
Week 36/11	-	-	-	-	-	-	-	48.91
Week 37/11	51.00	51.50	175	-	-	-	-	51.63
Week 38/11	56.00	56.75	-	-	-	-	-	56.25
Week 39/11	60.25	60.75	-	-	-	-	-	59.75
Week 40/11	60.25	62.00	-	-	-	-	-	60.63

Continuous Trading | Phelix Peakload Week Futures

Name	Best Bid	Best Ask	No. of Contr.	Last Price	Abs. Change	Last Time	Last Vol.	Settl. Price
Week 36/11	-	-	-	-	-	-	-	57.00
Week 37/11	60.00	60.50	-	-	-	-	-	60.88
Week 38/11	66.25	67.25	-	-	-	-	-	66.25
Week 39/11	71.50	73.50	-	-	-	-	-	71.75
Week 40/11	71.75	73.75		_	_			72.13

NordPool (base/peak week/month/quarter/year)
 web

PRODUCT SERIES	BID	ASK	LAST	+/-	%	HIGH	LOW	CLOSING	
ENOW37-11	38,00	39,75	38,50	-1,25 🐥	-3,14 😛	39,50	38,50	39,75	
ENOW38-11	42,25	42,50		0,00	0,00			43,00	
ENOW39-11	44,00	44,75		0,00	0,00			45,00	
ENOW40-11	44,00	45,25		0,00	0,00			45,50	
ENOW41-11	45,00	48,00		0,00	0,00			46,50	
ENOW42-11	45,50	48,50		0,00	0,00			47,00	
ENOPLW37-11	40,50	48,50		0,00	0,00			45,50	
ENOPLW38-11	43,50	51,50		0,00	0,00			48,50	
ENOPLW39-11	45,75	53,75		0,00	0,00			49,50	
ENOPLW40-11	46,50	54,50		0,00	0,00			50,25	
ENOPLW41-11	47,50	55,50		0,00	0,00			51,50	

Outline

- Introduction
- Forward contracts
- Electricity options
- Conclusions
- Bibliography

Basic idea

• Basic idea

Basic idea

Period 1 Period 2

Put option to sell electricity at $p \in MWh$ during period 2 (Δp)

DTU

Electricity options

Basic idea

Put option to sell electricity at $p \in MWh$ during period 2 (Δp)

Option is exercised to hedge against low prices

Basic idea

Put option to sell electricity at $p \in MWh$ during period 2 (Δp)

Option is not exercised to obtain high profits

• Basic idea

Basic idea

Put option to sell electricity at $p \in MWh$ during period 2 (Δp)

Option is not exercised to hedge against unit failures

Basic idea

Put option to sell electricity at $p \in MWh$ during period 2 (Δp)

Option is exercised

Definition

Right to buy	=> buy option	= call
or to sell	=> sell option	= put
a given futures contract	=> underlying asset	Phelix Base Year Future for the year 2011
in a given quantity	=> number	1 MW
at a price specified in advance	=> exercise price	EUR 52.00
at or until a time specified	=> last trading day	09/12/2010

Sources of uncertainty

Pool prices

Unit availability

Forward contracts

Option contracts

DTU

Electricity options

Multi-stage stochastic programming

Example

Forward contract

Option contract

DTU

Electricity options

- Case study: put option
 - Study horizon of 8 weeks
 - One generating unit (30 scen.)
 - Pool (30 scen.) / Forward contracts (3 scen.)
 - Final tree of 2700 scenarios
 - Put contract (last four weeks)
 - Strike price 21 €/MWh
 - ✓ Option price 0,1 €/Mwh
 - Power level 350 MW
 - Risk aversion parameter

$\alpha^{\rm P}$	FOR	= 0%	FOR	= 5%	FOR :	= 10%
α	Case (a)	Case (b)	Case (a)	Case (b)	Case (a)	Case (b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

α^{P}	FOR	= 0%	FOR	= 5%	FOR :	= 10%
	Case (a)	Case (b)	Case (a)	Case (b)	Case (a)	Case (b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

$E_2\{\lambda_{(\omega,t)}^{\mathrm{P}}\}$	22.41	22.58	22.64	20.97	24.39	21.85	22.35	20.28	26.01	22.04
$y_{(o,\omega)}$				_				1		0

$\alpha^{\rm P}$	FOR	= 0%	FOR	= 5%	FOR :	= 10%
α	Case (a)	Case (b)	Case (a)	Case (b)	Case (a)	Case (b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

$\overline{E_2\{\lambda_{(\omega,t)}^{\mathrm{P}}\}}$				k	$\hat{a}(\omega, N)$	V_{T_1}				
$-2\left(\left(\omega,t\right) ight)$	1	0	1	1	1	1	1	1	1	1
26.01	0	0	0	0	0	0	0	0	0	0
20.97	1	0	1	1	1	1	1	1	1	1
20.28	1	1	1	1	1	1	1	1	1	1

• EEX (web)

Continuous Trading | Phelix Baseload Month Futures

Name	Best Bid	Best Ask	No. of Contr.	Last Price	Abs. Change	Last Time	Last Vol.	Settl. Price
Sep-11	-	-	-	-	-	-	-	53.61
▼ 0ct-11	62.75	63.75	-	-	-	-	-	62.60
C 5400	-	-	-	-	-	-	-	8.608
C 5500					-	-		7.624
C 5600					_	-		6.653
C 5700					_	-		5.704
C 5800					_	-		4.789
C 5900	-	-	-	-	-	-	-	3.924
C 6000	-	-	-	-	-	-	-	3.127
P 5400	-	-	-	-	-	-	-	0.015
P 5500	-	-	-	-	-	-	-	0.030
P 5600					-	-		0.058
P 5700	-	-	-	-	-	-	-	0.108
P 5800	-	-	-	-	-	-	-	0.193
P 5900	-	-	-	-	-	-	-	0.327
P 6000	-	-	-	-	-	-	-	0.529

Conclusions

- Derivatives are defined as financial contracts whose value depends on the value of another asset.
- Two main types of derivatives:
 - Future and forward contracts
 - Options
- Derivatives contracts are use to transfer risk in exchange for a given premium or fee.

Bibliography

[1] J.F. Marshall. *Dictionary of financial engineering. John Wiley & Sons* Inc, 2000.

[2] S.J. Deng and S.S. Oren. Electricity derivatives and risk management. *Energy*, 31(6-7):940-953, 2006.

[3] J. Hull. Options, futures and other derivatives. Pearson Prentice Hall, 2009.

Thanks Questions?

