INF01046 - Fundamentos de processamento de imagens

Aula 21 - Segmentação de imagens

Horacio E. Fortunato

Instituto de Informática Universidade Federal de Rio Grande do Sul Porto Alegre – RS

hefortunato@inf.ufrgs.br

Link do curso: http://www.inf.ufrgs.br/~hefortunato/cursos/INF01046

2° semestre de 2009

Adaptado de slides do Prof. Manuel Menezes de Oliveira Neto (INF-UFRGS)

Adaptado de sildes do 1101. Mandel Menezes de Oli

Limiarização

- Transforma uma imagem com valores em uma determinada faixa em uma nova imagem contendo apenas dois valores (imagem binaria)
- · Forma mais comum

$$g(x,y) = \begin{cases} 0, f(x,y) < T \\ 1 \text{ ou } 255, f(x,y) \ge T \end{cases}$$

• No caso de dois limiares

$$g(x,y) = \begin{cases} 0, f(x,y) < T_1 & & & & & \\ 1 \text{ ou } 255, T_1 \le f(x,y) \le T_2 & & & & \\ 0, f(x,y) > T_2 & & & & \\ & & & & & \\ \end{cases}$$

Horacio E Fortunato (UERGS)

Exemplo de Limiarização (1) • Segmentando bactérias Imagem original $g(x,y) = \begin{cases} 255, f(x,y) < 100 \\ 0, f(x,y) \ge 100 \end{cases}$ Horacio E. Fortunato (UFRGS)

Limiarização

- O sucesso do processo de limiarizaçãocão depende da escolha do(s) limiar(es)
- · Os valores de limiar adequados variam entre imagens
- Diferenças nas condições de iluminação e de contraste
- Desejável procedimento automático para cálculo de limiar
- · Abordagem mais geral baseia-se na análise do histograma
- Picos no histograma correspondem aos elementos de interesse
- · Limiar: vale entre dois picos adjacentes
- Em geral, picos adjacentes se sobrepõe, fazendo com que alguns pixels sejam detectados ou rejeitados erroneamente
- · Limiar ótimo minimiza o número de falsos positivos e negativos

Horacio E Fortunato (UERGS)

Determinação do Limiar

```
Determinação_iterativa_do_limiar (imagem f, float *limiar) {
    // f: imagem original;
    // limiar: valor do limiar calculado iterativamente

// assume como fundo
float m1 = media_dos_tons_de_cinza_dos_pixels_dos_cantos(f);

float m2 = media_dos_tons_de_cinza_dos_demais_pixels(f);
float limiar_ATUAL = (m1 + m2) / 2;

enquanto (limiar_ATUAL != limiar_ANT) faça
    m1 = media_dos_tons_de_cinza_dos_pixels_com_f(x,y) < limiar_ATUAL;
    m2 = media_dos_tons_de_cinza_dos_pixels_com_f(x,y) >= limiar_ATUAL;
    limiar_ANT = limiar_ATUAL;
    limiar_ATUAL = (m1 + m2) / 2;
fim enquanto

*limiar = limiar_ATUAL;
}
```

Exemplo de Determinação Automática do Limiar

 Resultados da execução do algoritmo de determinação do limiar sobre a imagem das bactérias.

m ₁	m ₂	Limiar_atual	
0.00	125.81	62.90	
29.88	132.78	81.33	
46.42	135.70	91.06	
53.00	136.94	94.97	
54.82	137.26	96.04	
51 94	137 45	96 69	

Imagem original

Segmentação poi

linf.

Horacio E. Fortunato (UFRGS)

Exemplo de Limiarização Local

a b FIGURE 10.37 (a) Original image. (b) Image segmented by local thresholding. (Courtesy of IBM Corporation.)

Imagem extraída do livro: Digital image processing 2ed, Gonzales e woods.

Horacio E. Fortunato (UFRGS)

Limiarização em Imagens RGB

- Definem-se limiares independentemente para cada canal
- Uma cor corresponde a um ponto em um espaço 3D de cores
- A limiarização corresponde a um particionamento deste espaço
- Alternativamente, pode-se definir um limiar para a distância medida com relação a uma cor de referência (R0; G0; B0)

$$g(x, y) = \begin{cases} 0, d(x, y) < d_{\text{max}} \\ 1 \text{ ou } 255, d(x, y) \ge d_{\text{max}} \end{cases}$$

onde d(x,y) e a distância Euclidiana da cor associada ao pixel f(x,y) e a cor de referência

Segmentação contextual

- Principais Técnicas
- Crescimento de Regiões
- Algoritmo split and merge (divisão e fusão)

linf

linf.

Horacio E. Fortunato (UFRGS)

Horacio E. Fortunato (UFRGS)

Crescimento de Regiões

- Cresce regiões similares a partir de um conjunto de pixels "sementes"
- Um pixel e incorporado a uma dada região se e somente se:
 - Ele ainda não pertence a nenhuma região
 - Ele encontra-se na vizinhança (fronteira) daquela região
- A região permanece uniforme apos a inclusão do pixel

1mf

Similaridade de Regiões

- Baseia-se na uniformidade das regiões conexas
- Predicado de Uniformidade em uma região R, P(R)
 - Condição que expressa similaridade entre tons de cinza ou cores

$$P(R) = \left\{ \begin{array}{l} \mathit{TRUE}, \mathit{se} \left| f(i,j) - \alpha \right| \leq \Delta \\ \mathit{FALSE}, \mathit{caso contrário} \end{array} \right.$$

- onde α pode representar
- o tom/cor de um pixel vizinho (f(m,n))
- a média dos tons/cores na região R $(\mu_{_{\!R}})$, excluindo-se o pixel em (i,j)
- •∆ representa a máxima diferença definida para o critério de similaridade

2ftraf

Javasia E Eastunata (IIEPCS)

Vizinhança entre Pixels

- Componente importante nas técnicas de segmentação baseadas em regiões
- Vizinhanca-4 (4-neighbourhood) x vizinhanca-8 (8-neighbourhood)

 \bullet Um caminho k-conexo entre pixels p1 e pn e uma sequência p1, p2,, pn, onde pi+1 e um k-vizinho de pi , para i , i = 1,..., n

Ioracio E. Fortunato (UFRGS)

Vizinhança entre Pixels

- O conjunto de pixels em cinza define
- 1 região 8-conectada
- 2 regiões 4-conectadas
- O conjunto de pixels em amarelo define um única região

Horacio E Fortunato (UERGS)

2inf

Rotulação de Regiões Conexas

Exemplo

Assumindo regiões 4-conectadas

1	1	1	1	1	1
1	2	2	2	1	1
1	2	2	2	1	1
1	1	1	1	3	1
1	1	3	3	3	1
1	1	1	1	1	1

2mf

Crescimento de Regiões

Regiões 8-conectadas e $\Delta = 2$

Pixels "sementes"

Após 1a iteração

Resultado final

2fter

Horacio E. Fortunato (UFRGS)

Horacio E. Fortunato (UFRGS)

Crescimento de Regiões - Limitações

- •Operação não é estável
 - O resultado pode variar com o tipo de vizinhanca (4 ou 8)
- •Resultado depende da escolha do predicado de uniformidade
- •Não garante uma segmentação completa da imagem

6 7 8 6 7 8 6 1 1 1 1 6 Regiões 8-1 0 1 0 0 7 conectadas e $\Delta = 2$ 6 7 8 6 7 8 6 1 1 6 1 2

0 2 1 2 1 Pixels "sementes"

2fmf

Segmentação Completa

· Critérios para segmentação completa

 $\begin{array}{l} R = imagem \, completa \\ R = U_{i=1}^{N} \, R_{i} \end{array}$ R.é conexa $U_i \cap U_i = \emptyset \text{ se } i \neq j$ $P(R_i) = True \ para \ i = 1,2...N$ $P(R_i \cup R_j) = False se R_i e R_j são regiões adjacentes$

- Crescimento de Regiões não satisfaz todos os critérios
 - · O número de sementes pode não ser suficiente para que cada pixel esteja numa região
 - Duas regiões adjacentes podem ser similares
 - · Basta inicializar duas sementes numa área uniforme

Algoritmo "Split and Merge" ou "divisão e fusão"

- Produz segmentação completa
- · Baseia-se em uma estrategia top-down
- Subdivide a imagem recursivamente em quadrantes ate que P(R) seja verdadeiro
- · Agrupa regiões adjacentes similares

Segmentação Usando Outras Propriedades de Imagens

• Técnicas de segmentação baseadas nos valores de tons de cinza ou cores, em geral, não se aplicam a imagens contendo texturas (complexas)

oosição de 2 texturas (

2inf

Segmentação de Texturas

- Na presença de texturas pode-se utilizar:
- Técnicas estatísticas (e.g., análise de variância de tons)
- · Técnicas de análise espectral

2mf

Processamento Digital de Imagens - Tarefas

Tarefas Novas:

- Leia as seções 10.3 e 10.4 do Capítulo 10 (aula 21) do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)
- Faça os exercícios do Capítulo 10 (aula 21) do livro Gonzalez, R. & Woods 2da Ed. (

Nota Importante: No livro Gonzalez, R.& Woods em português os capítulos possuem

Livro Gonzalez, R. & Woods 2ª Ed. (em Inglês): Gonzalez, R. & Woods, R. Digital Image Processing 2ª Ed. Prentice Hall, 2002. Link do curso: http://www.inf.ufrgs.br/~hefortunato/cursos/INF01046

