Записи векторов в координатах определенного базиса

Пусть e_1,\ldots,e_n - базис в $V,\,x\in V,\,x^1,\ldots,x^n\in\mathbb{K}$ - координаты x в этом базисе \Rightarrow

$$x = x^i e_u = x^1 e_1 + \ldots + x^n e_n$$

Если $\widetilde{e}_1,\dots,\widetilde{e}_n$ - другой базис в $V\Rightarrow$ удобнее записывать так:

$$\forall i, \ \widetilde{e}_i = c_i^j e_j = c_i^1 e_1 + \ldots + c_i^n e_n$$

Тогда: $x=x^ie_i=\widetilde{x}^k\widetilde{e}_k=\widetilde{x}^kc_k^je_j\Rightarrow$ каждая координата выразится следующим образом:

$$x^j = \widetilde{x}^k c_k^j = \widetilde{x}^1 c_1^j + \ldots + \widetilde{x}^n c_n^j$$

Изоморфизм в линейных пространствах

Пусть V, W - линейные пространства над полем \mathbb{K} .

Опр: 1. Отображение $f: V \to W$ называется изоморфизмом, если:

- (1) f взаимно однозначно;
- (2) f сохраняет структуру линейного пространства:
 - 1) $f(a+b) = f(a) + f(b), \forall a, b \in V;$
 - 2) $f(\lambda a) = \lambda \cdot f(a), \forall \lambda \in \mathbb{K}, \forall a \in V;$

Пример: Если W=V, то $\mathrm{id}\colon V\to V$, $\mathrm{id}(a)=a,\, \forall a\in V$ - изоморфизм.

Рис. 1: Зеркальное отражение f(a). Поворот всех векторов q(a).

Пример: f(a) - отражение, $f(f(a)) = a \Rightarrow f$ - изоморфизм.

Пример: g(a) - поворот всех векторов, также изоморфизм.

Пример: $f: V \to W, f(a) = 0, \forall a \in V$ - не изоморфизм (нарушается взаимная однозначность).

Опр: 2. Линейные пространства V и W - изоморфны, если \exists изоморфизм $f:V\to W$.

Обозначение: V изоморфно $W \Leftrightarrow V \simeq W$.

Только что показали, что $V \simeq V, \forall V$ - линейное пространство (рефлексивность). Очень похоже на отношение эквивалентности.

Изоморфизм, как отношение эквивалентности

Отношение эквивалентности обладает следующими свойствами:

- (1) $V \sim V, \forall V$ линейное пространство (рефлексивность);
- (2) Если V эквивалентно W, то W эквивалентно V (симметричность);
- (3) Если V эквивалентно W, W эквивалентно U, то V эквивалентно U (транзитивность);

Если есть соотношения (1) - (3) между объектами (отношение эквивалентности) \Rightarrow можем разбивать объекты на классы эквивалентности.

Лемма 1. Изоморфизм является симметричным и транзитивным.

(**Симметричность**): Пусть $f\colon V\to W$ - изоморфизм, f - взаимно однозначное \Rightarrow \exists обратное к f отображение $g\colon W\to V$ и тоже взаимно однозначное. Тогда:

- $(1) \ f(g(x+y)) = x + y \land f(g(x) + g(y)) = f(g(x)) + f(g(y)) = x + y \Rightarrow g(x+y) = g(x) + g(y);$
- (2) $f(g(\lambda x)) = \lambda x$, $f(\lambda g(x)) = \lambda f(g(x)) = \lambda x \Rightarrow g(\lambda x) = \lambda g(x)$;

(**Транзитивность**): Пусть $f\colon V\to W,\ h\colon W\to U$ - изоморфизмы. $h\circ f\colon V\to U$. Так как f,h - взаимно однозначны, то $h\circ f$ - взаимно однозначная функция. $(h\circ f)(a)=h(f(a))$ и структура линейного пространства сохраняется:

- (1) h(f(x+y)) = h(f(x) + f(y)) = h(f(x)) + h(f(y));
- (2) $h(f(\lambda x)) = h(\lambda f(x)) = \lambda h(f(x));$

Таким образом можно поделить линейные пространства на классы эквивалентностей.

Лемма 2. Пусть e_1, \dots, e_n - базис в $V, f \colon V \to W$ - изоморфизм, тогда $f(e_1), \dots, f(e_n)$ - базис в W.

(Линейная независимость): Рассмотрим следующую линейную комбинацию:

$$\lambda_1 f(e_1) + \ldots + \lambda_n f(e_n) = 0 \Leftrightarrow f(\lambda_1 e_1 + \ldots + \lambda_n e_n) = 0$$

Знаем, что f(0) = 0, так как сохраняется структура линейного пространства \Rightarrow по взаимной однозначности:

$$\lambda_1 e_1 + \ldots + \lambda_n e_n = 0 \Rightarrow \forall \lambda_i = 0, \ i = \overline{1, n}$$

(Максимальность): Пусть $x \in W$, тогда $\exists a \in V : f(a) = x$ (по взаимной однозначности).

$$a = a_1e_1 + \ldots + a_ne_n \Rightarrow f(a) = f(a_1e_1 + \ldots + a_ne_n) = a_1f(e_1) + \ldots + a_nf(e_n) = x$$

Таким образом, любой элемент из W можно представить как линейную коммбинацию элементов из $f(e_1), \ldots, f(e_n)$.

Следствие 1. Пусть $n = \dim V$, $m = \dim W$, если $V \simeq W$, то n = m.

 \square Если $n \neq m$, то количество элементов в базисах разное \Rightarrow противоречие с леммой.

Лемма 3. Пусть $\dim V = n$, тогда $V \simeq \mathbb{K}_n$ - линейное пространство строк длины n.

- \square Пусть $f: V \to \mathbb{K}_n$. Выберем в V базис e_1, \ldots, e_n и возьмем элемент $a \in V$, $a = a_1e_1 + \ldots + a_ne_n$. Определим функцию $f(a) \coloneqq (a_1, \ldots, a_n) \in \mathbb{K}_n$. Проверим, что она изоморфизм:
 - (1) f взаимно однозначная:
 - 1) Инъективность: $f(a) = f(b) \Rightarrow a = b$ очевидно;
 - 2) <u>Сюръективность</u>: $\forall (a_1, \dots, a_n) \in \mathbb{K}_n, \ \exists \ a \in V \colon f(a) = (a_1, \dots, a_n), \ \text{где} \ a = a_1e_1 + \dots + a_ne_n;$

Таким образом функция f взаимно однозначна;

- (2) f сохраняет структуру линейного пространства:
 - 1) Пусть $a = a_1e_1 + \ldots + a_ne_n$, $b = b_1e_1 + \ldots + b_ne_n$, тогда:

$$a+b=(a_1+b_1)e_1+\ldots+(a_n+b_n)e_n \Rightarrow$$

$$\Rightarrow f(a+b) = (a_1 + b_1, \dots, a_n + b_n) = f(a) + f(b) = (a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$

2) Пусть $a = a_1 e_1 + \ldots + a_n e_n, \ \lambda \in \mathbb{K}$, тогда:

$$f(\lambda a) = (\lambda a_1, \dots, \lambda a_n) = \lambda(a_1, \dots, a_n) = \lambda f(a)$$

Таким образом, функция f сохраняет структуру линейного пространства;

И в результате f - изоморфизм.

Следствие 2. Если $\dim V = \dim W$, то $V \simeq W$.

 \square По лемме $V \simeq \mathbb{K}_n$, $W \simeq \mathbb{K}_n \Rightarrow$ по транзитивности и симметричности $V \simeq \mathbb{K}_n \simeq W \Rightarrow V \simeq W$.

Двойственное пространство и линейные функции

Пусть дано поле \mathbb{K} и линейное пространство V над ним.

Опр: 3. Отображение $l \colon V \to \mathbb{K}$ называется линейной функцией, если:

- (1) $l(a+b) = l(a) + l(b), \forall a, b \in V;$
- (2) $l(\lambda \cdot a) = \lambda \cdot l(a), \forall a \in V, \forall \lambda \in \mathbb{K};$

Пример: $V = \mathbb{R}_n, x \in \mathbb{R}_n, x = (x_1, \dots, x_n)$, тогда

- $l(x) = x_1$ линейная функция;
- $l(x) = x_1 + 1$ не линейная функция;
- $l(x) = x_1 + \ldots + x_n$ линейная функция;
- l(x) = 1 не линейная функция;
- l(x) = 0 линейная функция;
- $l(x) = x_1^2 + \ldots + x_n^2$ не линейная;

V - произвольное линейное пространство с базисом $e_1, \ldots, e_n, a = a_1e_1 + \ldots + a_ne_n$, пусть l_1 и l_2 - произвольные линейные функции на V. Определим их сумму и умножение на скаляр, как:

- (1) $(l_1+l_2)(a) \coloneqq l_1(a) + l_2(a)$ линейная функция;
- (2) $(\lambda \cdot l_1)(a) \coloneqq \lambda \cdot l_1(a)$) линейная функция;

Таким образом множество линейных функций образуют линейное пространство.

Опр: 4. Множество линейных функций на V со структурой указанной выше, образует линейное пространство, называемое двойственным к V пространством, которое обозначим V'.

Опр: 5. Пусть e_1, \ldots, e_n - базис в V, l - линейная функция. Координатами l в этом базисе называются числа $l_1 = l(e_1), \ldots, l_n = l(e_n)$.

Лемма 4. Пусть $l,h \in V'$, если $l \neq h$, то $(l_1,\ldots,l_n) \neq (h_1,\ldots,h_n)$.

 \square (От противного) Пусть $l \neq h$, но $(l_1, \dots, l_n) = (h_1, \dots, h_n) \Rightarrow$ пусть $a \in V \Rightarrow l(a) = a_1 l_1 \dots + a_n l_n = a_1 \cdot l(e_1) + \dots + a_n \cdot l(e_n)$, $h(a) = a_1 h_1 + \dots + a_n h_n \Rightarrow h(a) = l(a)$, $\forall a \in V \Rightarrow$ противоречие.

Лемма 5. $\forall l_1, \ldots, l_n \in \mathbb{K}, \exists l \in V' : l \mapsto (l_1, \ldots, l_n).$

 \square Есть набор $l_1, \ldots, l_n \in \mathbb{K} \Rightarrow \forall a \in V, \exists l(a) = l_1 \cdot a_1 + \ldots + l_n \cdot a_n$ - линейная функция $\in V'$.

Лемма 6. Сопоставление $l \mapsto (l_1, \dots, l_n)$ - взаимно однозначное, задает изоморфизм $V' \simeq \mathbb{K}_n$.

□ По лемме выше функция - линейная и взаимно однозначная ⇒ это изоморфизм.

Пусть e_1, \ldots, e_n базис в V. Рассмотрим следующие линейные функции $\varepsilon^1, \ldots, \varepsilon^n \in V'$, определяемые, как:

$$arepsilon^i(e_j)=egin{cases} 1, & i=j \ 0, & i
eq j \end{cases} \Rightarrow (\stackrel{1}{0},\ldots,\stackrel{i-1}{0},\stackrel{i}{1},\stackrel{i+1}{0},\ldots,\stackrel{n}{0})$$
 - координаты $arepsilon^i$

Таким образом, мы получим n линейных функций, которые линейно независимы.

 \square Рассмотрим функциональное равенство: $\lambda_1 \varepsilon^1 + \ldots + \lambda_n \varepsilon^n = 0 \Rightarrow$ тогда:

$$\lambda_1 \varepsilon^1(e_i) + \ldots + \lambda_i \varepsilon^i(e_i) + \ldots + \lambda_n \varepsilon^n(e_i) = \lambda_i \varepsilon^i(e_i) = \lambda_i = 0, \forall i = \overline{1, n}$$

Таким образом, линейные функции ε^i - линейно независимы.

Зная, что $\dim V = \dim V' = n$ и $\varepsilon^1, \dots, \varepsilon^n$ - линейно независимы и этот набор - максимален \Rightarrow получим двойственный к e_1, \dots, e_n базис.

Лемма 7. $\tilde{\varepsilon}^i=d^i_j \varepsilon^j$, где d^i_j - элементы матрицы $D=C^{-1}$.

 \square Пусть в V два базиса e_1, \ldots, e_n ; $\tilde{e}_1, \ldots, \tilde{e}_n$ и пусть C - это матрица перехода от (e) к $(\tilde{e}) \Rightarrow \tilde{e}_i = c_i^j e_j$. Пусть тогда $\varepsilon^1, \ldots, \varepsilon^n$ - двойственный к (e), а $\tilde{\varepsilon}^1, \ldots, \tilde{\varepsilon}^n$ - двойственна к (\tilde{e}) .

Пусть $\tilde{\varepsilon}^i = d^i_j \varepsilon^j \Rightarrow \tilde{\varepsilon}^i(\tilde{e}_k) = \tilde{\varepsilon}^i(c^j_k e_j) = d^i_p \varepsilon^p(c^j_k e_j) = d^i_p c^j_k \varepsilon^p(e_j) = \sum_{j,p=1}^n d^i_p c^j_k \varepsilon^p(e_j) = \sum_{j=1}^n d^i_j c^j_k = d^i_j c^j_k$. Таким образом получили:

$$\tilde{\varepsilon}^{i}(\tilde{e}_{k}) = d_{j}^{i}c_{k}^{j} = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases} \Rightarrow C = \begin{pmatrix} c_{1}^{1} & \dots & c_{n}^{1} \\ \vdots & \ddots & \vdots \\ c_{1}^{n} & \dots & c_{n}^{n} \end{pmatrix}, D = \begin{pmatrix} d_{1}^{1} & \dots & d_{n}^{1} \\ \vdots & \ddots & \vdots \\ d_{1}^{n} & \dots & d_{n}^{n} \end{pmatrix}, (DC)_{k}^{i} = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$$

Таким образом, получим $DC = E \Rightarrow D = C^{-1}$.