

Agenda

Architecture

Architecture

Octomap

Octomap - Point Cloud

Challenge: During the movement, the camera is shaking.

- Adjust the point cloud coordinates frame relative to the frame true_body
- Make ground, stairs and the ramp "sink" a little bit to filter them
- (failed) Tried to use filter_ground in pkg
 Octomap, but there are warnings

Octomap

At the beginning

At second stair

Path Planning

Path Planning

- Only final goal is needed to be given (One click)
- Proper robot size and inflation radius of the obstacle
- Ignore the stairs and the ramp so the robot can walk through them

Limits:

- When go downstairs, camera towards to the ground, after walk through second stairs, path cannot be found
- (Potential) May not go through the last narrow passage (trade off with obstacle avoidance)

Path Planning

Path Planning

Path Planning

Path Planning

Path Planning

ТΙΠ

Controller

Stance Phase

Swing Phase

State Machine

	0-90	90-180	180-270	270-360
Front Left				
Front Right				
Back Right				
Back Left				

Sequence diagram of trot gait (Straight)

```
msg.angular_velocities[0] = 0;
msg.angular_velocities[1] = 90;
msg.angular_velocities[2] = 0;
msg.angular_velocities[3] = 0;
msg.angular_velocities[4] = 8;
```


State Machine

	0-45	45-90	90-135	135-180
Front Left				
Front Right				
Back Right				
Back Left				

Sequence diagram of turn right/left

```
msg.angular_velocities[0] = 0;
msg.angular_velocities[1] = 45;
msg.angular_velocities[2] = 0;
msg.angular_velocities[3] = 0;
msg.angular_velocities[4] = 8;
```

Swing Phase

Stance Phase

State Machine

	0-90	90-180	180-270	270-360
Front Left	Low Amp	Low Amp	Low Amp	Low Amp
Front Right	Low Amp	Low Amp	Low Amp	Low Amp
Back Left	High Amp	High Amp	High Amp	High Amp
Back Right	High Amp	High Amp	High Amp	High Amp

Sequence diagram of climb


```
msg.angular_velocities[0] = 0;
msg.angular_velocities[1] = 0;
msg.angular_velocities[2] = 3;
msg.angular_velocities[3] = 25;
msg.angular_velocities[4] = 12;
```


Controller

ПШ

ТШП

ПШ

Controller & State Machine

straight		
angular velocities[0]	0	
angular velocities[1]	90	
angular velocities[2]	0	
angular velocities[3]	0	
angular velocities[4]	8	
2.08.2023	Introd	

Turn left or right			
angular velocities[0]	0		
angular velocities[1]	-45 or 45		
angular velocities[2]	0		
angular velocities[3]	0		
angular velocities[4]	8		

Introduction to ROS / Team 26

Overview of Project and Results - Controller, state machine

	jump up to one-step staircase(the front legs)		
	angular velocities[0]	0	
	angular velocities[1]	0	
	angular velocities[2]	3	
	angular velocities[3]	25	
	angular velocities[4]	12	
02	2.08.2023	Introd	

jump up to one-step staircase (the back legs)			
angular velocities[0]	0		
angular velocities[1]	0		
angular velocities[2]	3		
angular velocities[3]	38		
angular velocities[4]	10		

Introduction to ROS / Team 26

Descending stairs				
angular velocities[0]	0			
angular velocities[1]	90			
angular velocities[2]	0			
angular velocities[3]	4			
angular velocities[4]	8	Introdu	ction to	RO

Ascending a slope				
angular velocities[0]	0			
angular velocities[1]	0			
angular velocities[2]	3			
angular velocities[3]	25			
angular velocities[4]	10			

Controller & State Machine

jump up to two-step staircase(the front legs)		
angular velocities[0]	0	
angular velocities[1]	0	
angular velocities[2]	3	
angular velocities[3]	25	
angular velocities[4]	10	
02.08.2023	Introd	

t legs)		jump up to two-step staircase (the back legs)		
		angular velocities[0]	10	
		angular velocities[1]	10	
		angular velocities[2]	-4	
		angular velocities[3]	40	
Introd	uction	angular velocities[4] to ROS / Team 26	10	

29

Live Demo

Limitations and issues

- 1. Finding an optimal value for "inflation_radius" is challenging. **In narrow passages**, the robot's large size and a large inflation radius cause it to consider the passage impassable.
- 2. When descending stairs, the camera angle facing the ground is too large, causing the ground to be perceived as an obstacle. As a result, after descending the stairs, the robot cannot find a suitable path to reach the goal.
- 3. When using DWA as the local planner, it cannot find a path to reach the 2D goal. It is unclear whether the problem lies with the DWA planner itself or if there are errors in "base local planner.yaml" parameters.
- 4. Finding a perfect solution for the gait during ascending and descending stairs is indeed challenging. This is because the height and slope of the stairs can lead to gait instability or difficulties in balancing for the robot.

Feedback about the project work

- Good practical understanding of ROS.
- Effective teaching approach with theory followed by projects.
- Challenges to address for a more robust and reliable robot performance.

- Continuous testing, iteration, and parameter fine-tuning are crucial for optimal results.
- Problems lead to knowledge

