Gramian and Covariance

Ng Yen Kaow

The inner products AA^{T} and $A^{T}A$

- \square Given an $n \times m$ matrix A where the rows are datapoints, columns are features with zero sum for each column
 - The inner product $A^{T}A$ is the covariance matrix (more precisely $A^{T}A/n$)
 - Used in PCA
 - The inner product AA^T is called a Gram matrix, or Gramian
 - Used in Multidimensional Scaling
 - Used in Kernel method
 - Eigendecomposition of both $A^{T}A$ and AA^{T} are equivalent (later)

Properties of AA^{T} and $A^{T}A$

- \Box AA^T and A^TA are related
 - Equivalent eigendecomposition (later)
 - Convertible through their eigenvectors (later)
 - Obtainable from SVD of A (proof omitted)
- $\square \quad M = AA^{\mathrm{T}} \Leftrightarrow \forall x, x^T M x \ge 0 \ (\Rightarrow) \text{ proof later}$ Similarly $M = A^{\mathrm{T}}A \Leftrightarrow \forall x, x^T M x \ge 0$
 - M where $(\forall x)[x^T M x \ge 0]$ holds is said to be positive semi-definite (PSD)
 - Kernel matrices (in kernel method) need to be positive semi-definite
 - A is called the square root of M

$M = AA^{\mathrm{T}} \Rightarrow M$ is PSD

- □ Given M, to show M is positive semi-definite, need to show $\forall x(x^TMx \ge 0)$
- □ For example, $M = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$ is positive semidefinite because

$$(x_1 \quad x_2) \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 - 2x_1x_2 + x_2^2$$
$$= (x_1 - x_2)^2 \ge 0$$

To show that AA^{T} is positive semi-definite, we first establish the equivalence between $x^{T}Mx$ and a quadratic formula

$M = AA^{\mathrm{T}} \Rightarrow M$ is PSD

- □ A generalized quadratic formula of n variables can be written in the form of x^TMx
- For instance, a quadratic formula of two variables $a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + a_{22}x_2^2$

can be written as

$$(x_1 x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1 a_{11} + x_1 a_{12} x_1 a_{12} + x_2 a_{22}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= a_{11} x_1^2 + a_{12} x_1 x_2 + a_{21} x_2 x_1 + a_{22} x_2^2$$

 \square The general form of n variables is

$$(x_1 \quad \dots \quad x_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x^T A x = \sum_{ij} a_{ij} x_i x_j$$

$M = AA^{\mathrm{T}} \Rightarrow M \text{ is PSD}$

□ Let $B = AA^{T}$, then $x^{T}Bx \ge 0$, let a_i be the irow of A, then

$$x^{\mathrm{T}}(AA^{\mathrm{T}})x = \sum_{ij} \langle a_i, a_j \rangle x_i x_j$$
$$= \sum_{ij} \langle a_i x_i, a_j x_j \rangle$$
$$= \langle \sum_i a_i x_i, \sum_j a_j x_j \rangle \ge 0$$

- This says that $x^{T}(AA^{T})x$ can be factorized into a linear addition of the terms t^{2} for each element t in the vector $\sum_{i} a_{i}x_{i}$
 - Hence AA^{T} is positive semi-definite

PSD. Example of 2×2 matrix

$$A = (\xleftarrow{} a_{1} \xrightarrow{}), A^{T} = (\xrightarrow{} a_{1}^{T} \quad a_{2}^{T} \\ \downarrow \quad \downarrow)$$

$$AA^{T} = (\xrightarrow{} a_{1}a_{1}^{T} \quad a_{1}a_{2}^{T} \\ a_{2}a_{1}^{T} \quad a_{2}a_{2}^{T})$$

$$x^{T}AA^{T}x = (x_{1} \quad x_{2}) (\xrightarrow{} a_{1}a_{1}^{T} \quad a_{1}a_{2}^{T} \\ a_{2}a_{1}^{T} \quad a_{2}a_{2}^{T}) (\xrightarrow{} x_{2})$$

$$= (x_{1}a_{1}a_{1}^{T} + x_{2}a_{2}a_{1}^{T} \quad x_{1}a_{1}a_{2}^{T} + x_{2}a_{2}a_{2}^{T}) (\xrightarrow{} x_{1})$$

$$= a_{1}a_{1}^{T}x_{1}^{2} + 2a_{1}a_{2}^{T}x_{1}x_{2} + a_{2}a_{2}^{T}x_{2}^{2} \quad (\because a_{1}a_{2}^{T} = a_{2}a_{1}^{T})$$

$$= (x_{1}a_{1} + x_{2}a_{2})(x_{1}a_{1}^{T} + x_{2}a_{2}^{T})$$

$$= ||x_{1}a_{1} + x_{2}a_{2}||^{2}$$

$$\geq 0$$

PSD. Example of 2×2 matrix

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$x^{T}AA^{T}x = (x_{1} \quad x_{2}) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= (x_{1} + x_{2} \quad x_{1} + 2x_{2}) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= x_{1}^{2} + x_{1}x_{2} + x_{1}x_{2} + 2x_{2}^{2}$$

$$= (x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2}) + x_{2}^{2}$$

$$= (x_{1} + x_{2})^{2} + x_{2}^{2}$$
By theorem, $\sum_{i} a_{i}x_{i} = x_{1}(1 \quad 0) + x_{2}(1 \quad 1) = (x_{1} + x_{2} \quad x_{2})$

$$(\sum_{i} a_{i}x_{i})(\sum_{i} a_{i}x_{i}) = (x_{1} + x_{2} \quad x_{2}) \begin{pmatrix} x_{1} + x_{2} \\ x_{2} \end{pmatrix}$$

$$= (x_{1} + x_{2})^{2} + x_{2}^{2}$$

© 2021. Ng Yen Kaow

 $x^{T}AA^{T}x = (x_1 + x_2)^2 + x_2^2 \ge 0$

PSD. Example of 3×2 matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$x^{T}AA^{T}x = (x_{1} \quad x_{2} \quad x_{3}) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= (x_{1} + x_{3} \quad x_{2} + x_{3} \quad x_{1} + x_{2} + 2x_{3}) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= x_{1}^{2} + 2x_{1}x_{3} + x_{2}^{2} + 2x_{2}x_{3} + 2x_{3}^{2}$$
By theorem, $\sum_{i} a_{i}x_{i} = x_{1}(1 \quad 0) + x_{2}(0 \quad 1) + x_{3}(1 \quad 1)$

$$= (x_{1} + x_{3} \quad x_{2} + x_{3})$$

$$(\sum_{i} a_{i}x_{i}) (\sum_{i} a_{i}x_{i}) = (x_{1} + x_{3} \quad x_{2} + x_{3}) \begin{pmatrix} x_{1} + x_{3} \\ x_{2} + x_{3} \end{pmatrix}$$

$$= x_{1}^{2} + 2x_{3}^{2} + 2x_{1}x_{3} + x_{2}^{2} + 2x_{2}x_{3}$$

 $x^{T}AA^{T}x = (x_1 + x_3)^2 + (x_2 + x_3)^2 \ge 0$

AA^T/A^TA equal in decomposition

- AA^T and A^TA have equivalent eigendecomposition
- We will prove these facts
 - 1. AA^{T} and $A^{T}A$ have the same rank
 - 2.1 AA^{T} and $A^{T}A$ have the same eigenvalues
 - 2.2 AA^T and A^TA have the same eigenvectors (different for only up to an orthogonal transformation)

AA^{T} and $A^{\mathrm{T}}A$ have the same rank

- \Box Let N(A) denote the null space of A
 - $N(A) = \{x | Ax = 0\}$
- $\Box \quad \text{For } u \in N(A), Au = 0 \Rightarrow A^{\mathsf{T}}Au = 0 \Rightarrow u \in N(A^{\mathsf{T}}A)$
- For $u \in N(A^{T}A)$, $A^{T}Au = 0 \Rightarrow uA^{T}Au = 0 \qquad \text{next}$ $\Rightarrow (Au)^{T}(Au) = 0 \stackrel{\text{Slide}}{\Rightarrow} Au = 0$ $\Rightarrow u \in N(A)$
- □ Hence $N(A^{T}A) = N(A) \Rightarrow \operatorname{rank}(A^{T}A) = \operatorname{rank}(A)$
- □ Similarly $N(AA^{T}) = N(A^{T})$ ⇒ $rank(AA^{T}) = rank(A^{T})$
 - $: \operatorname{rank}(A) = \operatorname{rank}(A^{\mathrm{T}}), \operatorname{rank}(A^{\mathrm{T}}A) = \operatorname{rank}(AA^{\mathrm{T}})$

Proof $X^TX = 0 \Rightarrow X = 0$

- \Box Let $X = (x_{ij})$
- □ First note that $X^TX = 0$ is a system of equations where each element of X^TX

$$\left(X^{\mathrm{T}}X\right)_{ij} = \sum_{k} x_{ki} x_{kj} = 0$$

□ Since
$$(X^TX)_{ii} = \sum_k x_{ki}^2 = 0$$

⇒ $\forall i \forall k, x_{ki} = 0$

AA^T/A^TA have equal eigenpairs

- \Box For any matrices A and B, AB and BA have the same non-zero eigenvalues
 - Let $\lambda \neq 0$ be a eigenvalue for AB with eigenvector v
 - Then $ABv = \lambda v \Rightarrow BABv = \lambda Bv$ $\Rightarrow (BA)(Bv) = \lambda(Bv)$
 - $\Rightarrow \lambda$ is a eigenvalue of BA with eigenvector (Bv)
- \square This result holds for all A and B

Convert $AA^{\mathrm{T}} \longleftrightarrow A^{\mathrm{T}}A$

- □ Let Λ be the diagonal matrix of eigenvalues for both AA^{T} and $A^{T}A$
- Let U, V be their respective eigenvectors, that is, $AA^{T}U = \Lambda U$ and $A^{T}AV = \Lambda V$, then $AA^{T} = U\Lambda U^{T}$ $= U(V^{T}A^{T}AV)U^{T}$ $= (UV^{T})A^{T}A(VU^{T})$

AA^T and A^TA related through SVD

- □ Singular values and vectors of AA^{T} and $A^{T}A$ are related to the singular values and vectors of A
- □ Let $A = UDV^{T}$ (UDV^{T} is the SVD of A), then

$$A^{\mathrm{T}}A = VD^2V^{\mathrm{T}}$$
, and $AA^{\mathrm{T}} = UD^2U^{\mathrm{T}}$

(Proof omitted)