

ACE 센서 기술세미나-4

차량용 센서 기술동향

`22. 04. 01

광학솔루션연구소 S-Task 박승룡 책임

Content

목적 : 차댱 센서의 기술 동향 및 각 센서社볃 득성은 비교 분석하고, 모듇 연계 분석 (MTF저하/ flare/ 신뢰성 분댱)에 대한 예측 system은 강화하고자 차댱 RGBW 센서 기술 분석은 진행함

- 자율주행과 카메라
- 차량용 vs 모바일용 센서
- 차량용 센서 구조
- 센서사 별 차량용 센서 비교
- 차량용 센서 Function

"자율주행과 카메라"

자율주행 레벨

각 Level에 따라 제어 주체 및 책임주체 변동 Level 5(Full automation)의 경우 사람은 운전자가 아닌 탑승자 개념

	Human					System
	Level 0	Level 1	Level 2	Level 3	Level 4	Level 5
정의	비자동화	운전자 지원	부분 자동화	조건부 자동화	고도 자동화	완전 자동화
내용	운전자가 모든 운전	운전자가 운전	운전자가 운전	제한된 조건에서 자윧주행	득정구간 완전자윧주행	자동차가 모든 운전
주행 중 비상상황 대처	Human	Human	Human	Human	System	System
책임주체	Human	Human	Human	System	System	System
제어주체	Human	Human & System	System	System	System	System
			المار المار	الم	١٠	L^,
	· 🕙 🤛 😭			◎ 🖳 😓		◎ ○ ↓ .⊕≗

자율주행 용 센서

카메라의 경우 넓은 관측 영역과 저렴한 가격으로 많은 수량 탑재

차댱용 센서의 종듀와 득성

Long range RADAR
Object detection,
through rain, fog, dust.
Signal can bounce
around/underneath
vehiclesin front that
obstruct view.

A combination of cameras for short-long range object detection. Broad spectrum of use cases: from distant feature perception to cross traffic detection. Road sign recognition.

Cameras

LIDAR3D environment mapping, object detection.

Short / Medium range RADAR Short-mid range object detection. Inc. side and rear collision avoidance. Ultrasound Close range object detection. For objects entering your lane. For parking.

Sensor	Measurement distance (m)	Cost (\$)	Data rate (Mbps)
Camera	0 - 250	4 - 200	500 – 3500
Ultrasound	0.02 - 10	30 – 400	< 0.01
RADAR	0.2 - 300	30 – 400	0.1 – 15
LIDAR	Up to 250	1,000 – 75,000	20 - 100

차량용 카메라 종류 및 분류

자율주행을 위한 차량용 카메라 모듈은 크게 Viewing과 sensing의 역할로 분류하며 두 역할을 동시에 하는 경우도 있음

Proliferation of cameras in modern vehicles.

Automotive Camera Link Technology Challenges and Solutions (https://www.analog.com/en/technical-articles/auto-camera-link-tech-challenges-and-solutions.html)

업체별 카메라 적용 현황

Tesla는 카메라 만으로 자율주행 구현하는 방향으로 진행 중

■ 제조사 별 적용 센서 개수*

제조사/모델	레이더	카메라	라이다	초음파
Waymo	4	29	6	-
Uber	7	20	7	-
Yandex	6	5	3	-
BMW	9	12	5	12
Tesla	9	8	-	12
Nexo	3	4	4	-

*자율주행자동차 최신기술 동향_현대모비스_2020.4

Tesla

3x forward facing camera
Forward looking side camera
Rearward looking side camera
Rear view camera

Total: 8ea cameras

Uber w/ Volvo

Waymo (5th Gen.)

360 vision system
Peripheral vision system
Perimeter vision system

Total: 29ea cameras

https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html

"차량용 vs 모바일용 센서"

Image Sensor 기술 정의

모바일 용 이미지 센서는 사람이 보는 것을 사람의 눈과 유사한 수준으로 snapshot 으로 촬영하는 것이 주 목적 (보관/감상용) 차량용 용 이미지 센서는 사람보다 더 잘 보기 위해 사람 눈보다 더 높은 수준의 이미지를 동영상으로 촬영하는 것이 주 목적 (Viewing, Sensing)

✓ 카메라 모듈 기술 비교

▲:나쁨, ●:유사, ◎:좋음

		차량용 카메라		
	모바일 용 카메라	Viewing	Sensing	
목적	이미지 보관/감상	Viewing	Sensing	
주요 촬영 모드	Snapshot	당 당 당	동영상	
Sensitivity	•	0	0	
Dynamic range	•	0	0	
Color	0	•	A	
Motion blur	•	•	0	

✓ 차량용 이미지 센서의 요구조건

GS (Global Shutter)

차량 CM 신뢰성 및 센서 비교

차량 센서의 신뢰성 조건 (고온/ 고습)을 위한 모듈/ 센서 구조 분석

- 모바일/ 차댱 CM 부품 비교 (핵심 부품 lens, actuator, sensor)
- 모바일/ 차댱 CM 센서 비교 (차댱 센서 : big pixel, split PD, RGBW, cu-filled TSV, etc)

✓	✔ 핵심 부품 차량 CM 신뢰성 6월 보고 (A-Task)					
부품		모바일 CM	차량 CM			
	모듇	Transfer of the second				
	Lens	✓ •	✓ •			
	O-ring	X	● 방수용			
	Gasket	X	● 방수용			
	Front Body	X	•			
	Bracket	● 합체용	X			
	Actuator	✓ •	X			
	Base	•	X			
	Filter	•	•			
	Sensor	✓ •	✓ •			
	PCB	•	✓ •			
	S/Can	● 회토소지 ● 9종 187				
	Rear Body	Х	✓ •			

차량 센서 구조/ 기능 비교 부품 모바일 센서 차량 센서 센서 센서명 차량용 CM (IMX490) 아이폰12 (IMX603) Optical format 1/1.8" 1/1.55" Pixel pitch 12.8M, 1.7um 5.4M 3.0um Pixel shared 2x4 shared X (No-shared) Single PD Split PD Pixel **RGB** CFA RGBW/RYBW Dual PD PDAF Χ Spatial HDR (split PD) HDR Stagger HDR LFM Χ • (split PD) 소닉 65nm (4Cu) 소니 90nm (4Cu 1Al) 상판 pixel 하판 logic TSMC 40nm (6Cu 1Al) TSMC 40nm (6Cu 1Al) 4-DBI (direct bong Cu-filled TSV Interconnect interconnect)

요소<u>기술</u> **Dual MLA** 3.0um RGBW Split PD (L/ S-PD) TSV (Top) TSV (profile)

차량 센서 특성 (요소기술)

차량 센서는 시인성 및 신뢰성 확보를 위해 모바일 센서 대비 요소기술의 차이가 발생함

- 시인성 득성 : Sensitivity (①), HDR (②), LFM (③), MAF (④), etc

- 신뢰성 득성 : Dark noise, Temp noise 개선 구조

HDR (high dynamic range)
LFM (LED flicker mitigation)
MAF (motion artifact free)

Image Sensor 구조 : Mobile vs Automotive

SONY의 mobile / automotive 용 split 픽셀 구조 비교/분석 (dual pixel vs Sub pixel)

- Mobile 용 이미지 센서의 경우 small pixel에서의 X-talk 저감은 위한 DTI 구조 적용 → Automotive 이미지 센서의 sub-pixel에 DTI 적용
- Automotive 용의 경우 Unit pixel의 구동은 위한 Tr이 상대적으로 많아 PD의 fill factor 낮음 → Mobile 2T/pixel vs Automotive 7T/pixel + Cap.*

IMX603 (Mobile)

- 12.8M, 1.7um, Dual PD
- 6T for unit pixel (3T effective per pixel)

Image Sensor market Share

모바일 영역에서는 소니/삼성이 주도권을 갖고 있는 반면 차량용 영역에서는 On Semi/Omnivision이 주도 최근 소니가 차량용 이미지센서 영역에서 MS 확대 중

2020 CIS player market share

(Source: Status of CMOS Image Sensor Industry 2021 report, Yole Développement, 2021)

* 출처 : TSR `21 상반기 자료

"센서사 별 차량용 센서 비교"

소니/ On Semi 차량 센서 분류 (I)

차량용 센서는 고화소 (≥ 8M)/ 2.1um pixel pitch로 size-down 되며, 시인성 확보를 위해 HDR/ LFM 기술이 필수임

- 시인성 특성 : HDR/ LFM 기술 적용은 위해 split PD 구조 도입

HDR (high dynamic range), LFM (LED flicker mitigation)

Pixel size-down (2.1um)에 따른 Sensitivity 개선은 위해 non-bayer (RGBW, RYB) 기술 확대

FSI BSI Stack
FSI global shutter
BSI global shutter

차량용 센서		Sen	sing (AD/ ADAS/ IMS/ D	MS)	S) Viewing (RVC/ SVS/ CMS)		
Year		MP	'22	'23	MP	'22	'23
소니	>8M		IMX728 (8.3M 2.1urLF	MFuji 15M	IMX424 (8M 2.25um)		
	5~8M	IMX490 (5M 3.0unLFM			IMX324 (7.4M 2.25um) IMX725 (4.9M 2.1um) LF	NA IF	:М
	2~4M				IMX390 (2.4M 3.0um) IMX290 (2M 2.9um) IMX224 (1M 3.75um)	IMX623 (2.9M 3.0umLF IMX622 (2.5M 3.0um)	
	>8M	NIR	AR1212 (12M 4.2um)	IF	M/ RGB-IR		
On Semi	5~8M	AR0825 (8M 2.1um) AR0820 (8M 2.1um)	л	AR0823/4 (8M 2.1um)		LFI	.A
	1~3M	AR0323 (3M 3.0um)LFN AR0233 (2.6M 3.0um) AR0220 (2M 4.2um) AR0138 (1M 4.2um) AR0132 (1M 3.75um)		AR0341 (3.1M 2.1um) AR0225 (2M 4.2um)	AR0239 (2.3M 3.0um) AR0234 (2.3M 3.0ıLFN AR0147 (1M 3.0um) AR0144 (1M 3.0um) AR0140 (1M 3.0um)	AS0149 (1M 3.0um)	v.

AD (autonomous driving)
IMS (in-cabin monitor system)
DMS (driver monitor system)

RVC (rear view camera)
SVS (surround view system)
CMS (camera monitor system)

OVT/ 삼성 차량 센서 분류 (II)

차량용 센서는 고화소 (≥ 8M)/ 2.1um pixel pitch로 size-down 되며, 시인성 확보를 위해 HDR/LFM 기술이 필수임

- On Semi/ OVT 차댱용 센서 MP 제품군이 다양하나, 최근 시인성 개선 (split PD)용 센서를 소니 (주도)하며, 삼성 (후받 fast-follower) 진행 중임

FSI BSI Stack
FSI global shutter
BSI global shutter

차량용 센서		Sensing (AD/ ADAS/ IMS/ DMS)				Viewing (RVC/ SVS/ CMS	fiewing (RVC/ SVS/ CMS)		
Year		MP	'22	'23	MP	'22	'23		
	4~8M	OX08B4 (8M 2.1umLFM OX08A4 (8M, 2.1um) OV4690 (4M, 2.0um)	OX05B1 (5M 2.2uLFM	OX05A4 (5M, 2.1unLFM OX05B1 (5M 2.2unLFM					
	2~3M	OV2778 (2M, 2.8um) OX03A2 (3M 3.2um) OX03A1 (2M 3.2um) OV2312 (2M 3.0urRGB	-IR	OX03E4 (3M 2.1unLFM	OV2775 (2M 2.8um) OX03A1 (2.4M 3.2um)	OX03F1(3M 3um) LFM	OX03E4(3M 2.1um)LFM		
OVT	VGA~1M	OV1065 (1.3M, 4.2um), OV1064 (1.3M 4.2um) OV9284 (1M 3.0um) OV7261 (VGA 3um)	LFM LFM	OX01H1 (1.3M LFI 2.2um)	MOX01E1 (1.4M 3um) OV9716 (1.4M 2.8um) OX02A1 (1.7M, 4.2um) OV01A1 (1.3M 4.2um) OV10626 (1M, 6um) OV7975 (VGA, 6um)				
삼성	>8M		1H1 (8M 2.1um) 1H2 (8M 2.1um)	1P1 (15M 2.1um) <mark>RGB-IR</mark>	LFM	LFM			
	5~8M			2EG (5M 2.2um)	2G1 (7M 2.1um)				
	1~3M				4AC (1M 3,0um)	3B6 (3M 3.0um)	3C3 (3M 2.1um)		

. 차량 센서 구조 비교

차량 RGBW센서는 시인성 및 신뢰성 확보를 위해 New 센서의 요소기술을 적용함

- Sensing 센서 (AD, ADAS, IMS, DMS) : 고화소 & HDR, LFM, split PD 기술 집중

HDR (high dynamic range), LFM (LED flicker mitigation)

- Viewing 센서 (RVC, SVS, CMS) : 고/저화소 & HDR, single PD 기술 집중

Source) TechInsights

센	서사	소니 차량센서	On Semi 차량센서	OVT 차량센서	삼성 차량센서
출시	/ 차량용	'18년, sensing (ACE 차량 센서)	'19년, sensing 센서	'19년, sensing 센서	'20년, viewing 센서
센서	명/ 화소	IMX490 (5.4Mp)	AR0820AT (8.3Mp)	OX08A (8.3Mp)	S5K4AC (1Mp)
Pixe	el Pitch	3.0um (split PD), RGB/ RGBW	2.1um (single PD), RWB, RYYB	2.1um (single PD), RYYW	2.1um (single PD), RWWG
Pixel To	ech (상판)	소닉 90nm (4Cu)	TSMC 90nm (3Cu)	TSMC 65nm (4Cu)	삼성 90nm (5Cu)
Logic T	ech (하판)	TSMC 40nm (6Cu 1Al)	TSMC 65nm (5Cu)	TSMC 40nm (8Cu)	삼성 65nm (5Cu)
상/하판 II	nterconnect	Cu-filled TSV TSV (throu	gh Si via) 1-DBI DBI (direct bon	ding interconnect)-DBI	W-liner TSV
EPI THK/	/ DTI Depth	3.1/ 2.3um	2.9um/ 1.6um	2.9/ 2.1um	4.4/ 1.9um
Optio	cal Stack	2.8 (large)/1.7um (small)	2.2um	1.7um	2.7um
Pixel Structure	Profile LPD (large photod SPD (small photoc FCp (FD capacitor MLA (microlens ar Shared 배치	diode)	2.21um (single MLA) 2.1um 2x2-shared 子本:	1.7um 2.9um 2.1um 2.1um 2.2x2_shared	1.9um 4.4um PD 2.1um No-shared

ACE 차량용 카메라 모듈 이미지 센서

SONY는 차량용 이미지 센서에 Sub-pixel 구조를 적용한 2.1um/3.0um의 2가지 line으로 구성

SONY IMX728

• Resolution: 8M

• Pixel size: 2.1 um + 0.8 um Sub pixel

• Optical format : 1/1.7"

• Color filter : RGGB (option : RCCB, RCCG)

• Function : HDR, LFM, MAF

√ Sony Automotive Image Sensor Product Concept

Only 2 pixel configuration (2.1um & 3.0um) can cover full range applications Contribute BOM Cost reduction and efficient development works

Resolution	Fuji Family (2.1 um + 0.8um Sub-pixel) HDR + LFM + MAF		Eiger Family (3.0 um + 1.0 um Sub-pixel HDR + LFM + MAF		
	Sensor	Sensor + ISP	Sensor	Sensor + ISP	
15M	Fuji 15M	Fuji 15M + ISP			
8M	IMX728	ISX028			
5M	IMX725	ISX025	IMX490		
3M	Fuji 3M	Fuji 3M + ISP	IMX623	ISX031	
2M			IMX622	ISX021	

"차량용 센서 Function "

차량용 Image Sensor 기술 : High Sensitivity

Sensitivity : 광량 변화에 대한 Vout 출력 변화 비율

✓ High Sensitivity의 영향

• 장점: 저조도 환경에서 유리

• 단점 : Dynamic range 축소

✓ Sensitivity에 영향을 주는 인자

• QE(Quantum Efficiency) : 들어온 광자에 대한 광전자 변환 효율 → Pixel size 관점

• Conversion Gain: 광전자량에 대한 출력전압(Vout) 변환 계수 → Pixel 회로 설계 관점

✓ QE의 영향 인자 : Pixel size, Microlens, color filter, AR layer, PD 구조 등

	Sensitivity	Dynamic Range	저조도	LED flicker
•	High	Bad	Good	Bad
•	Low	Good	Bad	Good

차량용 Image Sensor 기술: High Sensitivity

Quantum Efficiency를 올리기 위한 방법

- Big Pixel 적용 : sensor의 크기가 커지기 때문에 resolution은 높이는데 제약
- Color filter 조합 변경: 색감과 trade-off 관계

• PD 내 optical path length 증가 : Silicon에 빛이 흡수될 수 있는 확률 증가

Omnivision의 Sensitivity 향상 방안

- Thicker Silicon Pixel
- Extended Deep Trench Isolation
- Scattering Layer

→ QE 증가

Nyxel®

차량용 Image Sensor 기술: HDR

HDR 구현은 크게 Multiplexing을 이용해는 방법과 dual gain을 이용하는 방식 이용

- ✓ Multiplexing 방식
 - Time multiplexing (staggered HDR): 하나의 픽섿에서 long/middle/short expose time 이미지른 얻어 합성
 → 이미지른 얻는 시차에 의해 motion artifact 받생
 - Spatial multiplexing (Sub-pixel) : 두 개의 서도 다든
 sensitivity를 갖는 PD를 하나의 픽센도 결합
- ✓ Dual Conversion Gain (DCG) 방식: 픽섿의 floating diffusion에 추가의 cap.
 구조른 형성하여 신호른 High CG / Low CG 두 모드에서 reading하여 합성
 - High CG mode : 암부 계조가 좋기 때문에 저조도에 유리
 - Low CG mode : saturation level이 높기 때문에 고조도 환경에서 유리
 → 두 모드의 이미지 합성을 통해 Dynamic range 증대

	Sensitivity	Noise	FWC	적정환경
High CG	High	Low	Low	저조도
Low CG	Low	High	High	고조도

< Sub-pixel >

Fig. 6. Photoelectric conversion characteristics in a high CG mode (blue) and a low CG mode (red).*

^{*} A 0.8 µm Smart Dual Conversion Gain Pixel for 64 Mpixels CMOS Image Sensor with 12k eFull-Well Capacitance and Low Dark Noise_2019

차량용 Image Sensor 기술: LFM(LED Flicker Mitigation)

LED Flicker는 LED의 구동 시점과 camera의 촬영 시점이 어긋나서 발생

→ Expose time은 길게 하여 flicker 방지 가능

- <LFM>
- ✓ Expose time은 늘리기 위한 방법 및 제약
 - Low Sensitivity → 저조도 화질 저하
 - Big FWC → Pixel size 증가
- ✓ LFM 기술
 - Sub-pixel 적용: Low sensitivity를 갖는 sub-pixel을 적용하여 고조도 환경에서 expose time 확대
 - Deeper PD 구조 적용 : PD의 부피를 깊이 방향으로 확장하여 FWC 용량은 증대 → Deep well & Deep trench 필요

차량용 Image Sensor 기술: Global Shutter

Global shutter : 동시에 노출 후 순차적으로 readout

→ Pixel 내 메모리 소자 필요 (capacitor + Tr) → PD 영역 감소

- ✓ Global shutter 방식
 - Charge Mode: Source follower 이전에 cap. 설치
 - Correlated Double Sampling (CDS) 적용하여 noise 성능 우수
 - 메모리 cap.에 light shield 구조 필요
 - Voltage Mode: Source follower 이후에 cap. 설치
 - 메모리 cap.의 size 제약으로 인해 noise에 취약
 - → Stack 구조 적용 시 성능 개선 가능

< Global shutter CMOS image sensors* >

Rolling Shutter Exposure Start Line Reset. Line Readout Time

Rolling shutter: 4T

Global Shutter

Charge mode: 7T + 1C

< 이미지 센서 구동 방식 비교 및 픽섿 Scheme >

^{*}A Stacked Back Side-Illuminated Voltage Domain Global Shutter CMOS Image Sensor with a 4.0 m Multiple Gain Readout Pixel_2020

Image Sensor 구조 : Rolling vs Global shutter

Rolling shutter / Global shutter 픽셀 구조 비교 분석

- ✓ Rolling shutter의 경우 Tr share를 통해 단위 픽섿당 유효 Tr 수 감소 가능
- ✓ Global shutter의 경우 storage node의 shield를 위해 front illuminate 구조(FSI) 적용

OX08A(OVT)

- 8.3M, 2.1um, Stacked BSI
- 5T for unit pixel (2T effective per pixel)
- LFM, HDR(Dual conversion gain)

AR0234AT(ON Semi)

- 2.0M, 3um Pixel, FSI
- 6T for unit pixel (4.5T effective per pixel)
- Global shutter

Metal layer

Photo diode

차량용 Image Sensor 기술 : Stack Image Sensor

Stack 구조 적용을 통해 활용 면적 확대 → Logic, DRAM 추가

- ✓ Stack 이미지 센서 구조 적용은 동한 benefit
 - 센서 size 축소: 1 layer > 2 layer > 3 layer
 - Logic 기능 강화 : Al 기능 탑재
 - 메모리 확장은 통한 다양한 기능 구현 : Super slow motion

< 이미지 센서 Stack 구조의 변화 >

차량용 Image Sensor 기술 : Stack Image Sensor

Contact pitch 감소를 통해 Pixel 단위 connection 구현 → 성능 및 기능 강화

- ✓ Stack 이미지 센서 구조 적용은 동한 benefit
 - Pixel 성능 증대: Noise 저감
 - 기능 강화 : Global shutter, Dual Conversion Gain
- Global shutter
 - Stacked pixel circuitry enables low-voltage domain GS pixel

G. Park, IEDM 2019

- DCG (Dual Conversion Gain)
 - Stacked pixel circuitry enables reducing DCG pixel with high FWC

V. Venezia, IEDM 2018

차량 센서 정리 및 향후 계획

- ✓ 차량 센서는 1) 시인성과 2) 신뢰성의 중요 특성이 필요함
 - 시인성 특성: Sensitivity, HDR, LFM, Motion Blur 개선 기술
 - 요소 기술: Big Pixel/ Stack, RGBW, Split-Pixel, Global Shutter, RGB-IR
- ✓ 센서社별 제품 동향도 고화소/ 시인성 개선으로 전개되며, 모바일 제품대비 요소 기술의 차이가 발생함
 - On Semi & OVT (저/ 고화소 다양한 제품군, 시인성 개선 기술 미흡 : Low/ Mid-end급 중심)
 - 소니 (고화소, High-end급 센서로 최근 기술 주도)
 - 삼성 (고화소, High-end급 센서로 Fast-following 개발 중)
- ✓ 시인성 개선 요소기술 (split PD, double MLA)에 따른 모듈-센서 연계 분석
 - 모듈 센서 연계 해상력 (MTF) simulation 결과 :
 Split PD, Non-bayer CFA (RGBW, RWB) MTF 저하 예측 (추가 매칭성 개선 ~12/E)
 - 차량 신뢰성 확보를 위한 모듈-센서 연계 분석 예정 (~12/E)

EOD

