```
ADD Rd, Fr Add two Registers Rd-Rd-Rr 0000, lird, dddd, rrrr
ADDR Rd, Fr Add two Registers Rd-Rd-Rr 0000, lird, dddd, rrrr
ADDR Rd, K 2012 AND Register to Word Mch Rdd-Rdh-Rdh-Rd, Fr. 2, 1001, 0011, NORE, dddd, DDDR
ADDR Rd, K 2012 AND Register and Constant Rd-RdW, Zn, Wr 1011, NORE, dddd, DDDR
ADDR Rd, Fr Address SEDG() = 1010, 1010, 1020, 1020, 1020
ADR Rd Arithmetic Shift Right Edd() - Rd (noil), noil, c. 2, C., Wr 11001, 0104, dddd, dddd, Edd
BBG 2, A Branch if Status Flag Cleared if (EMEG(s)=0) then FC-EC+k+1 None 1/2: 1111, 0004, ktkk, ktm.
BBG 3, Branch if Status Flag Cleared if (EMEG(s)=0) then FC-EC+k+1 None 1/2: 1111, 0004, ktkk, ktm.
BBG 3, Branch if Status Flag Cleared if (EMEG(s)=0) then FC-EC+k+1 None 1/2: 1111, 0004, ktkk, ktm.
BBG 3, Branch if Carry Set if (C-1) then FC-EC+k+1 None 1/2: 1111, 0004, ktkk, ktm.
BBG 3, Branch if Carry Set if (C-1) then FC-EC+k+1 None 1/2: 1111, 0004, ktkk, ktm.
BBG 4, Branch if Gester or Equal, Signed if (MgW-0) then FC-EC+k+1 None 1/2: 1111, 1014, ktkk, ktm.
BBG 8, Branch if Set and Set and
```

C - bit 0 - carry flag, Z - bit 1 - Zero flag, N - bit 2 - Negative flag, V - bit 3 two's compliment flag, S - bit 4 - Sign bit, H - bit 5, half carry flag, T - bit 6 bit copy storage, I – bit 7 – global interrupt enable.

Immediate – operand is in instruction, Direct – operand is in memory locaton or register Is in an instruction, Memory indirect - operand is in a effective addres is in an address, Regiister indirect - operand is in a register is in an

Rrrrr - source register, rrrr - source register 16-31, rrr source register 16-23, RRRR – source register pair, ddddd – destination register, ddd – destination register 16-31, DDDD – destination register pair, pp – register pair XYZ, y – Y/Z register pair (0=Z Y = 1), u - FMUL signed (0=s 1=us), s - store/load (0=load 1=store), c - call/jump (0=jump 1=call), cy with carry (0=no 1=Y), aaaaaa - io space address, aaaaa – first 32 io space address's, bbb – bit number, B – bit value, kkkkkk - 6-bit unsigned constant, KKKKKKKK - 8 bit constant. All branches k's are in two's compliment form, CBR is the same as ANDI but the k's are complemented. Branches and calls are address - Pc + 1

b₇ | b₆ | b₅ | b₄ | b₃ | b₂ | b₁ | b₀ Before b₇ b₆ b₅ b₄ b₃ b₂ b₁ b₀ GPR GPR b₆ b₅ b₄ b₃ b₂ b₁ b₀ b_C b_C b₇ b₆ b₅ b₄ b₃ b₂ b₁

(a) Rotate left.

(b) Rotate right.

Figure 4.17: Rotate left and right operations. ASR is the same as LSR except it maintains bit 7 by copying bit 7 and shifting it right once.

Table 3.2: Instructions in the pseudo-ISA.

Instruction	Description
LDA x	Load accumulator
STA x	Store accumulator
ADD x	Add to accumulator
SUB x	Subtract from accumulator
NAND x	Logical NAND to accumulator
SHFT	Shift accumulator
Jх	Jump
BNZ x	Branch conditionally
	STA x ADD x SUB x NAND x SHFT J x

The following shows the sequence of micro-operations required for each instruction in Table 3.2.

Execute Cycle:

Execute Cycle:

Cycle 1: MDR ← M[MAR] Note that SHFT can also be described as Cycle 2: $AC \leftarrow \overline{AC \land MDR}$ Cycle 1: $AC(n...1) \leftarrow AC(n-1...0)$, $AC(0) \leftarrow 0$

HWRD(expression) Returns bits 16-31 of an expression

Cycle 2	: AC ←	AC /\ MDR						
.BYTE	Reserve b	yte to a variable		Instruction	1			
. CSEG	Code Segr	ment		T .	-			
.DB	Define con	nstant byte(s)		X	-			
.DEF	Define a s	ymbolic name on a register						
.DEVICE	Define wh	ich device to assemble for	x	EA	+1			
.DSEG	Data Segr	nent			Ac			
. DW	Define con	nstant words	EA		<= Operand			
.ENDMACRO	End macr	О	-					
.EQU		bol equal to an expression						
.ESEG	EEPROM	segment			I			
.EXIT	Exit from	a file	These steps can be impleme	nted by the fol	llowing microoperations:			
. INCLUDE	Read sour	ce from another file	Execute Cycle	TT-10	Read effective address (EA) and store AC			
.LIST	Turn listfi	le generation on	Step 1: MDR ← M(MAR), Step 2: AC ← MDR	TEMP ← AC	: Move EA to AC			
.LISTMAC	Turn mac	ro expression on	Step 3: AC ← AC +1		; Increment EA			
.MACRO	Begin Ma	cro	Step 4: $MDR \leftarrow AC$; Move EA+1 to MDR			
.NOLIST	Turn listfi	le generation off	Step 5: M(MAR) ← MDR, —Step 6: MAR ← AC	AC ← AC •	; Store EA+1 back and regenerate EA ; Move EA to MAR			
. ORG	Set progra	am origin	Step 7: MDR ← TEMP, A	C ← TEMP	: Move the original AC into MDR and restore AC			
.SET	Set a sym	bol to an expression	Step 8: $M(MAR) \leftarrow MDR$; Store AC			
LOW(expre	ession)	Returns the low-byte	of an expression					
HIGH(expression) Returns the high-byte		of an expression	1					
BYTE2(expression) Is the same function as		as HIGH						
BYTE3(expression) Returns the third byte			e of an expression	n				
BYTE4(expression) Returns the fourth byte			te of an expression	on				
LWRD (exp	ression)	Returns bits 0-15 of a	n expression					

BOTTOM	The Timer/Counter reaches the BOTTOM when it be- comes zero (i.e., 0x00 or 0x0000).
MAX	The Timer/Counter reaches its MAX when it becomes 0xFF or 0xFFFF.
TOP	The Timer/Counter reaches the TOP when it becomes the highest value in the count sequence. The TOP value can be the value stored in one of the OCRs, i.e., OCRO, OCRIA, OCRIB, and OCRIC, or assigned to 0xFF or 0xFFFFF (i.e., MAX). The assignment is dependent on the mode of operation.

CS02	CS01	CS00	Description				
0	0	0	No clock source				
0	0	1	$clk_{I/O}$				
0	1	0	clk1/0/8				
0	1	1	$clk_{I/O}/64$				
1	0	0	$clk_{I/O}/256$				
1	0	1	$clk_{I/O}/1024$				
1	1	0	External clock source on T1 pin. Clocked on falling edge				
1	1	1	External clock source on T1 pin. Clocked on rising edge				

Clock Select bits in TCCR0.									
CS02	CS01	CS00	Description						
0	0	0	No clock source						
0	0	1	clk _{I/O}						
0	1	0	$clk_{I/O}/8$						
0	1	1	$clk_{I/O}/32$						
1	0	0	$clk_{I/O}/64$						
1	0	1	$clk_{I/O}/128$						
1	1	0	$clk_{I/O}/256$						
1	1	1	$clk_{I/O}/1024$						

UBRR

11

16 × (Baud Rate)

Baud Rate

 $16 \times (UBRR + 1)$

MAX:	= TOP			MAX	USART C	ontrol an	d Status R	egister	A (UCSR	A)
(Ox	FF)			(0xFF)	7	6	5	4	3	
	/				RXCn	TXCn	UDREn	FEn	DORn	UF
TCNT0		TCNTO	TOP = OCRO	ŕ	R (0)	R/W (0)	R (1)	R (0)	R (0)	R
BOTTOM (0x00) Trmer start		BOTTOM (0x00) Timer start	Timer end Delay	OCF0 set	USART	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	- USART F - USART C - Frame er - Data Ove - Parity Err - Double U - Multi-Prod d Status F	ransmit lata Reg ror rRun or SART Tr cessor C	Complete ister Empt ansmissio ommunica	n Sp

	(a) Nor	mal mode	(b) CTC mode
1	\$0000	RESET	Hardware Reset
2	80002	INTO	External Interrupt Request 0
3	\$0004	INT1	External Interrupt Request 1
4	\$0006	INT2	External Interrupt Request 2
5	\$0008	INT3	External Interrupt Request 3
6	\$000A	INT4	External Interrupt Request 4
7	\$000C	INT5	External Interrupt Request 5
8	\$000E	INT6	External Interrupt Request 6
9	\$0010	INT7	External Interrupt Request 7
10	\$0012	TIMER2 COMP	Timer/Counter2 Compare Match
11	\$0014	TIMER2 OVF	Timer/Counter2 Overflow
12	80016	TIMERI CAPT	Timer/Counter1 Capture Event
13	\$0018	TIMER1 COMPA	Timer/Counter1 Compare Match A
14	\$001A	TIMER1 COMPB	Timer/Counter1 Compare Match B
15	\$001C	TIMERI OVF	Timer/Counter1 Overflow
16	\$001E	TIMERO COMP	Timer/Counter0 Compare Match
17	\$0020	TIMERO OVF	Timer/Counter0 Overflow
18	80022	SPI, STC	SPI Serial Transfer Complete
19	\$0024	USARTO, RX	UASRTO, Rx Complete
20	\$0026	USARTO, UDRE	USARTO Data Register Empty
21	\$0028	USARTO, TX	USARTO, Tx Complete
22	\$002A	ADC	ADC Conversion Complete
23	\$002C	EE READY	EEPROM Ready
24	\$002E	ANALOG COMP	Analog Comparator
25	80030	TIMER1 COMPC	Timer/Counterl Compare Match C
26	\$0032	TIMER3 CAPT	Timer/Counter3 Capture Event
27	\$0034	TIMER3 COMPA	Timer/Counter3 Compare Match A
28	\$0036	TIMER3 COMPB	Timer/Counter3 Compare Match B
29	\$0038	TIMER3 COMPC	Timer/Counter3 Compare Match C
30	8003A	TIMER3 OVF	Timer/Counter3 Overflow
31	\$003C	USARTI, RX	USART1, Rx Complete
32	\$003E	USARTI, UDRE	USART1 Data Register Empty
33	\$0040	USARTI, TX	USART1, Tx Complete
34	\$0042	TWI	Two-wire Serial Interface
35	\$0044	SPM READY	Store Program Memory Ready

RESET	Hardware Reset	100
INT0	External Interrupt Request 0	
INT1	External Interrupt Request 1	
INT2	External Interrupt Request 2	
INT3	External Interrupt Request 3	
INT4	External Interrupt Request 4	
INT5	External Interrupt Request 5	
INT6	External Interrupt Request 6	
INT7	External Interrupt Request 7	
TIMER2 COMP	Timer/Counter2 Compare Match	
TIMER2 OVF	Timer/Counter2 Overflow	
TIMERI CAPT	Timer/Counter1 Capture Event	U
TIMERI COMPA	Timer/Counter1 Compare Match A	
TIMER1 COMPB	Timer/Counter1 Compare Match B	r
TIMERI OVF	Timer/Counter1 Overflow	L
TIMERO COMP	Timer/Counter0 Compare Match	-
TIMERO OVF	Timer/Counter0 Overflow	
SPI, STC	SPI Serial Transfer Complete	
USARTO, RX	UASRTO, Rx Complete	
USARTO, UDRE	USARTO Data Register Empty	
USARTO, TX	USARTO, Tx Complete	
ADC	ADC Conversion Complete	
EE READY	EEPROM Ready	L
ANALOG COMP	Analog Comparator	E
TIMERI COMPC	Timer/Counter1 Compare Match C	
TIMER3 CAPT	Timer/Counter3 Capture Event	ſ
TIMER3 COMPA	Timer/Counter3 Compare Match A	L
TIMER3 COMPB	Timer/Counter3 Compare Match B	
TIMER3 COMPC	Timer/Counter3 Compare Match C	
TIMER3 OVF	Timer/Counter3 Overflow	
USARTI, RX	USART1, Rx Complete	
USARTI, UDRE	USART1 Data Register Empty	E
USARTI, TX	USART1. Tx Complete	
TWI	Two-wire Serial Interface	١
SPM READY	Store Program Memory Ready	L

JSART C	ontrol an	d Status F	tegister	A (UCSRn	A)		
7	6	5	4	3	2	1	0
RXCn	TXCn	UDREn	FEn	DORn	UPEn	U2Xn	MPCMn
R (0)	R/W (0)	R (1)	R (0)	R (0)	R (0)	R/W (0)	R/W (0)
		- USART F					

E/W (0)	R (1)	H (0)	R (0)	H (0)	R/W (0)	H/W (0
Bit 7 -	USART F	Receive C	omplete			
	USART 1					
Bit 5 -	USART D	ata Regis	ster Empty	1		
Bit 4 -	Frame er	ror				
Bit 3 -	Data Ove	erRun				
	Parity En					
Bit 1 -	Double U	SART Tra	ansmission	Speed		
Bit 0 -	Multi-Pro	cessor Co	ommunicat	tion Mode		

	; In:	itiali	ze stack		
0	ldi	mpr,	high(RAMEND)		
	out	SPH,	mpr		
CMn	ldi	mpr,	low(RAMEND)		
N (0)	out	SPL,	mpr		
	; Ini	itiali	ze I/O Ports		
	ldi	mpr,	(1< <pe1)< td=""><td>;</td><td>9</td></pe1)<>	;	9

	USART C	ontrol an	d Status I	Register I	B (UCSR	B)			; Set	baudrate at 2400		
	7	6	5	4	3	2	1	0	1di	mpr, high(832)	5	Load high byte of 0x0340
_	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n	sts ldi	UBRROH, mpr mpr. low(832)		UBRROH in extended I/O space Load low byte of 0x0340
	R/W (0)	R/W (0)	R/W (0)	R/W (0)	R/W (0)	R/W (0)	R (0)	R/W (0)	out	UBRROL, mpr	;	Load 100 byte of 010340
		Dia 7	DW C	Satur Saturn	word Toronto	I						

1	STS	UBRRUH, mpr ;	UBRRUH in extended 1/U space
J	ldi	mpr, low(832) ;	Load low byte of 0x0340
	out	UBRROL, mpr ;	
	; Set	frame format: 8 dat	a, 2 stop bits, asynchronous
	ldi	mpr, (0< <umselo 1<="" td="" =""><td>< USBS0 1 < UCSZ01 1 < UCSZ00)</td></umselo>	< USBS0 1 < UCSZ01 1 < UCSZ00)
	sts	UCSROC, mpr ;	UCSROC in extended I/O space

ole both transmitter and receiver, and receive interrupt mpr, (1<<TXENO | 1<<RXCHEO) UCSROB, mpr ;

R/W (0)	R/W (0)	R/W (0)	R/W (0)	R/W (0)	R/W (0)	R (0)	R/W (0)	out	U
	Bit 7	RX Com	plete Inter	rupt Enab	le				
			olete Inten					; Set	f
				ster Empt	y Interrupt	Enable		ldi	m
		Receiver						sts	U
			ter Enable						
					h UCSZn1	:0 in UCS	SHnC)	: Ena	bl
			Data Bit 8 Data Bit 8					1di	m
	DIL U	Hansmit	Data Dit c	,				out	U
USART C	ontrol an	d Status	Register (C (UCSR	nC)				
7	6	5	4	3	2	1	0	sei	
-	UMSELn	UPMn1	UPMn0	USBSn	UCSZn1	UCSZn0	UCPOLn		
R/W (0)	P/W (0)	R/W (0)	R/W (0)	R/W (0)	R/W (1)	B/W (1)	R/W (0)		
	Bit 7 -	Reserved	Bit						
	Bit 6 -	USART N	Aode Sele	ct					
	Bit 5:4	- Parity n	node						
		Stop bit a							
			ter size U	CSZn2:0					
		Clock Pol							
Externa	Interrup	t Flag R	egister (EIFR)					
7	6	5	4	3	2	. 1	0		
INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	INTFO	EIFF	1
Charles and	PRINT OF	DAME IN	EN 844 100	Charles (M)	PROFES ON	Philade (m)	PRANT OF		

7	6	5	4	3	2	1	0	
INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	INTFO	EIF
R/W (0)	R/W (0)	RW (0)	R/W (0)	B/W (0)	R/W (0)	R/W (0)	R/W (0)	

xternal	Interrup	t Mask F	legister	(EIMSK)				
7	6	5	4	3	2	1	0	
INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO	EIMS
RW (0)	B/W (0)	R/W (0)	R/W (0)	R/W (0)	B/W (0)	B/W (0)	B/W (0)	

External	Interrup	t Contro	Registe	er A (EIC	RA)			
7	6	5	4	3	2	1	0	
ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	EICRA
R/W (0)	R/W (0)	RW (0)	R/W (0)	FI/W (0)	R/W (0)	R/W (0)	R/W (0)	

Enables interrupt

INTn = 1

External Interrupt Control Register B (EICRB) 5 ISC71 ISC70 ISC81 ISC80 ISC51 ISC50 ISC41 ISC40 EICRB

B/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

ISCn1:0 External Interrupt n Sense Control Bits

1.0 External Interrupt n Sense Control Bits
00 - Low level generates an interrupt request.
01 - Reserved (for ISC3-0)
Any logical change on generates an interrupt request (ISC7-4)
10 - Falling edge generates an interrupt request.
11 - Rising edge generates an interrupt request.

	0	0	0	5-bit
	0	0	1	6-bit
	0	1	0	7-bit
UCSZn2:0	0	1	1	8-bit
UCSZN2:0	1	0	0	Reserved
	1	0	1	Reserved
	1	1	0	Reserved
	1	1	1	9-bit
	0	0		No parity
UPMn1:0	1	0		Even parity
	1	1		Odd parity
USBSn	0			1 stop bit
USBSn	1			2 stop bits

RXCn	0	Receive incomplete
RACI	1	Receive complete
TVO.	0	Transmit incomplete
TXCn	1	Transmit complete
UDREn	0	UDRn (trasnmit buffer) full
UDREn	1	UDRn (transmit buffer) empty