Analise Keal _ 1ª PROVA

- 3 Seja ACIR não vazio, Cimitado su periormente. Su ponha que L= supremo (A) não pertence a A. Mostre que existe seguência crescente (xn) t.q. xn EA para todo n EIN e xn > L
 - 3 Considere a seguência yn=n°a", onde 0<a<1 é fixado. Mostre que ela é convergente
- B Seja $g:(a,b) \rightarrow \mathbb{R}$ função continua e $c \in (a,b)$ porto de mínimo local extrito (isto é, existe $\delta_0 > 0$ t. q. se $x \in (c-\delta_0,c+\delta_0)$ então g(x) > g(c)caso $x \neq c$. Mostre que existe $\varepsilon_0 > 0$ t. q.

 se $z \in (g(c),g(c)+\varepsilon_0)$ então $g^{-1}(z)$ possui

 pob menos $z \in (a,b) \rightarrow \mathbb{R}$ função continua e $z \in (a,b)$