Hon Pre-Calculus Test Chapter 3

Name

Leave Answers In Simplified Calculator Ready Form!!! Circle All Final Answers!!!

rsu

Short Answer

1. Solve for x:

$$\frac{4}{3 - e^{3x}} = 8$$

$$4$$

$$\frac{4}{8} = \frac{8(3-e^{3})}{8}$$

$$\frac{1}{2} = \frac{2}{3} - e^{3}$$

$$\frac{1}{2} = \frac{2}{3} - e^{3}$$

$$\frac{1}{2} = \frac{1}{2} - e^{3}$$

2. Given: $f(x) = 3(4)^{5-x} - 2$. Use interval notation to write:

b) Range = $(-2, \infty)$

3. Solve for x: $6e^{2x} + 13e^x = 5$

$$(3e^{x}-1)=0$$
 $2e^{x}+5=0$
 $e_{n}e^{x}=\frac{1}{13}$ $2e^{x}=-5$
 $x=10^{-\frac{1}{3}}$ $x=\frac{5}{2}$

- 4. Given: $f(x) = -\log_3(x+2)$ Use interval notation to determine:
 - a) Domain =

 $[(-2,\infty)]$

b) Range =

c) Write the equations of any asymptotes.

5. Find the x and y intercepts of
$$y = \log_5(x-1) + 2$$

a)
$$x = \left(\frac{26}{25}, 0\right)$$

$$0 = \log_5(x-1)$$

$$-2 = \log_5(x-1)$$

$$\frac{1}{15} = x-1$$

$$x = \frac{26}{15}$$

$$9 = \log_5(x-1) + 2$$

6. Evaluate:
$$\log_8 \sqrt[3]{32}$$
 $8^{\times} = 2$ $\log_8 \sqrt[3]{2^5}$ $(2^{3\times}) = 2^{1}$ $\log_8 2$ $(2^{3\times}) = 2^{1}$ $\log_8 2$ $\log_8 2$

7. Expand:
$$\ln \left[\frac{\sqrt[3]{x-1} (3x-2)^4}{(x+1)\sqrt{x-1}} \right]^2$$

ln (x-1) + ln (3x-2) = ln (x+1) 2

8. Condense:
$$\frac{1}{3} [\log_8 y + 2 \log_8 (y+4)] - \log_8 (y-4)$$

$$= \log_8 y^{3} (y+4)^{2/3} - \log_8 (y-4)$$

$$= \log_8 y^{3} (y+4)^{3/3} - \log_8 (y-4)$$

$$= \log_8 y^{3/3} (y+4)^{3/3}$$

$$= \log_8 y^{3/3} (y+4)^{3/3}$$

20. Given that $\log_b 9 = a$ and $\log_b 2 = a$. Find an expression for $\log_b \frac{24}{b^2}$ in terms of a and b.

$$2 = \log_{b} 24 - \log_{b} 8^{2} = \log_{b} 24$$

$$2 = \log_{b} 24 - \log_{b} 8^{2} = \log_{b} 24$$

$$2 = \log_{b} 24 - \log_{b} 8^{2} = \log_{b} 24$$

$$2 = \log_{b} 24 - \log_{b} 8^{2} = \log_{b} 24$$

$$2 = \log_{b} 24 - \log_{b} 24$$

10. Solve for x in terms of a: Separate sheet!

$$\log_b x = 2 - a + \log_b \left(\frac{a^2 b^a}{b^2}\right)$$

$$\log_b x = 2 - a + \log_b a^2 + \log_b a^4 + \log_b a^4$$

$$\log_b x = 2 \log_b a^2$$

$$\log_b x = 2 \log_b a^2$$

$$\log_b x = \log_b a^2$$

$$\log_b x = \log_b a^2$$

$$\log_b x = \log_b a^2$$

(-2)

Condense:
$$\frac{1+2\log_8 x}{3}$$

$$\frac{1}{3}(1+2\log_8 x)$$

$$\frac{1}{3}(1+\log_8 x^2)$$

$$\frac{1}{3}(1+\log_8 x^2)$$

$$\frac{1}{3}+\log_8 x^2$$

$$\frac{1}{3}+\log_8 x^2$$

12. Solve:
$$\frac{1}{2} \log_a (x+2) + \frac{1}{2} \log_a (x-2) = \frac{2}{3} \log_a 27$$

$$\log_a \sqrt{(x+2)(x-2)} = \log_a 9$$

$$\sqrt{(x+2)(x-2)} = 9$$

$$\sqrt{2} = 4 = 81$$

$$\sqrt{2} = \sqrt{85}$$

$$\sqrt{2} = \sqrt{85}$$

$$\sqrt{2} = \sqrt{85}$$

13. Solve:
$$3(5^{2x+3}) = 18(2^{3x-2})$$

$$2x^2 = 96(2^{3x-2})$$

$$(2\times13) ln5 = ln6 + ln2(3x-2)$$

$$2\times ln5 + 3ln5 = ln6 + 3\times ln2 - 2ln2$$

$$2\times ln5 - 3\times ln2 = ln6 - 2ln2 - 3ln5$$

$$\times (2ln5 - 3ln2) = ln6 - 2ln2 - 3ln5$$

$$2ln5 - 3ln2$$

$$X = \frac{\ln 6 - \ln 11 - 3 \ln^{3}}{\ln^{25} - \ln 8} = \frac{\ln^{25} q}{\ln^{25} q}$$

$$X = \frac{\ln^{3/250}}{\ln^{25} 250}$$

$$(he^{i})^{2} = \ln(e^{i})$$

 $36 = \ln(e^{30})$
 $\sqrt{36} = 36 \text{ gre}$

14. Solve: $(\ln x)^2 = \ln(x^6)$

$$\frac{(\ln x)(\ln x)}{\ln x} = \frac{6(\ln x)}{\ln x}$$

$$\frac{\ln x = 6}{e^6 = x}$$

15. Solve: $e^{-2x} - 2xe^{-2x} = 0$

$$\frac{e^{-2x}(1-2x)=0}{1-2x=0}$$

$$\frac{1-2x=0}{1-2x=0}$$

$$\frac{1-2x=0}{1-2x=0}$$

$$\frac{1-2x=0}{1-2x=0}$$

$$\frac{1-2x=0}{1-2x=0}$$

$$\frac{1-2x=0}{1-2x=0}$$

$$\frac{1-2x=0}{1-2x=0}$$

16. Solve: $\log_4 x = \log_{64} \left(-2x^2 + x + 2 \right)$

log 1 = log (-2(1)+1+2) x3+2x2-x-2=0

$$0 = 0$$
 / $(x+1)(x-1)(x+2)=0$

17. A cup of coffee contains approximately 96 mg of caffeine. When you drink the coffee, the caffeine is absorbed into the blood stream and is eventually metabolized by the body. Every 5 hours the amount of caffeine present in the body is reduced by one-half. How many hours does it take for the amount of caffeine to be reduced to 12 mg?

$$5 = ab^{2}$$
 $1 + 2mx = 9bmy (\frac{1}{2})^{\frac{1}{2}}$
 $1 + 2mx = 9bmy (\frac{1}{2})^{\frac{1}{2}}$
 $1 + 2mx = 9bmy (\frac{1}{2})^{\frac{1}{2}}$
 $1 + 3 = \frac{1}{2}(\frac{1}{2})^{\frac{1}{2}}$
 $1 + 3 = \frac{1}{2}(\frac{1}{2})^{\frac{1}{2}}$

18. If Brian invested \$1000 at 2% compounded continuously, how long would it take before Brian's initial investment (with no withdrawals or deposits) reached \$5000?

$$A = Pe^{rt}$$
 $5000 = 100000$
 $105 = 10000$
 $105 = 1000$
 10000
 10000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000

19. Assume that the number of people infected by newly discovered virus is growing exponential. If the number of people infected increases from 2 to 800 in 6 weeks, how much additional time will take before 12,800 people are infected?

$$\frac{800}{200} = 4$$

$$12,800 = 800(4)^{\frac{1}{6}}$$

$$16 = 4^{\frac{1}{6}}$$

$$4^{\frac{1}{6}} = 4^{\frac{1}{6}}$$

$$\frac{4}{6} = 2$$

$$1 = 12 \text{ weeks}$$

20. The populations of two states are growing exponentially. If state A currently has a population of 9 million and state B currently has a population of 11 million, and if the population of the two states increase annually by 3% and 2%, respectively, when will their populations be equal

$$9000000(1.03)^{\frac{1}{2}} = \frac{11000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}}$$

$$\frac{(1.03)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{9}(1.02)^{\frac{1}{2}}$$

$$\frac{11000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

$$\frac{11000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

$$\frac{11000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

$$\frac{11000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

$$\frac{110000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

$$\frac{110000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

$$\frac{110000000(1.02)^{\frac{1}{2}}}{(1.02)^{\frac{1}{2}}} = \frac{11}{109}$$

q. Assum $\log_{b}^{q} = a \log_{b}^{2} = c$ $\log_{b} \left(\frac{241}{b^{2}}\right) = \log_{b}^{2} + \log_{b}^{3} - \log_{b}^{3} - \log_{b}^{2}$ $3\log_{b}^{2} + \frac{1}{2}\log_{b}^{q} - 2$ $3c + \frac{1}{2}a - 2$

11. It
$$2\log_8 x = \frac{1}{3} + \frac{1}{3}\log_8 x$$

$$\log_8 2 + \log_8 x^{\frac{2}{3}}$$

$$\log_8 2 + \log_8 x^{\frac{2}{3}}$$

$$\log_8 2 3 \sqrt{x^2}$$

14. $(\ln x)^2 = \ln(x^6)$ $(\ln x)^2 = 6\ln x$ $(\ln x)^2 - 6\ln x = 0$ $\ln x (\ln x - 6) = 0$ $\ln x = 0$ $\ln x = 0$ $\ln x = 0$