Quantum Processes Near Black Holes*

G. W. Gibbons
University of Cambridge, D.A.M.T.P.
Silver Street, Cambridge, England

Abstract

A general review is given of quantum processes near black holes with a special emphasis on the Hawking Thermodynamic Emission Process. Astrophysical applications are not discussed.

I wish in this talk to summarize recent work on quantum effects near black holes. In doing so I wish to confine myself to giving an outline of what principles go into the calculations and the results. I shall not discuss any astrophysical applications (for which see e.g. [40]). I have tried to put the various results in some sort of perspective and I hope that in doing so I have not given insufficient weight to anyone's contribution or incorrectly judged it. If I have done so I apologize in advance. In my talk I hope to indicate what parts of the theory look satisfactory and which require more work and also I shall try to indicate parallels which other parts of physics — especially the theory of quantum processes in strong external electromagnetic fields.

The first indication of potentially interesting effects arose when Penrose pointed out the existence of what has come to be known as the "Penrose Effect" [1]. This arises because of the existence of negative energy orbits in-side the "ergosphere" of a rotating black hole (the region where the Killing vector which is timelike at infinity becomes spacelike). Given a region of negative energy orbits it is possible to extract energy — in this case the rotational energy of the black hole. One simply drops in a particle with positive energy E_1 , and lets it split (inside the region) into 2 particles one with positive energy E_2 , which emerges and the other with negative energy E_3 which remains inside. Since

^{*}This is a remake of the paper *Quantum Processes Near Black Holes* originally published in the first Marcel Grossmann Meeting on the Recent Progress of the Fundamentals of General Relativity, 1975, pages 449-458. The new version was typed out by Pete Su on November 18, 2024.

 $E_1 = E_2 + E_3$ we have $E_2 > E_1$. This situation also occurs in electromagnetism near a point charge, in special relativity or indeed in any deep enough potential well [2]. It also occurs near charged black holes [3].

In fact in any electro-magnetic background which is stationary, axisymmetric and invariant under simultaneous inversion of time and angle coordinates one finds that the energy E and angular momentum L of a particle of mass m and charge e must satisfy

$$(E dt + L d\phi + eA)^2 > m^2 \tag{1}$$

where A is the vector potential which falls to zero at infinity. This expression (or a simple generalization of it if there is a third constant of the motion) determines two surfaces $E^{\pm}(r,\theta)$ in the (E,r,θ) space between which a classical particle cannot exist. If the surface E^{+} can fall below -m we have just the required situation referred to sometimes as "level crossing". The region r, is referred to as a "generalized ergosphere" for the mode in question. It is easy to check the existence of such a region in "superheavy" atoms. If

$$A = \Phi \ dt + B \ d\phi; \quad \Omega = g_{\phi t}/(g_{tt}) \tag{2}$$

the rate of rotation of inertial frames and $\sigma^2 = (g_{\phi t})^2 - g_{\phi \phi} g_{tt}$ we have

$$E^{\pm} = e\Phi + (L + eB)\Omega \pm \sigma^2 \sqrt{m^2 + (L + eB)^2}.$$
 (3)

On a horizon $\sigma \to 0$ and $\Omega \to \Omega_H$, $\Phi + \Omega B \to \Omega_H$, and $E^{\pm} \to e \Phi_H + L \Omega_H = \mu_H$ which may be thought of as a chemical potential for the mode in question.

From the duality between waves and particles one expects a similar phenomenon to occur for waves and indeed this turns out to be the case (Misner [4] and Zeldovich [5]), and one has here the phenomenon of "super radiance." For a classical scalar field this arises because the conserved flux vector

$$J_{\mu} = \frac{(\bar{\phi} \nabla_{\!\mu} \phi - \phi \nabla_{\!\mu} \bar{\phi})}{2i} \tag{4}$$

need not necessarily be future directed timelike. An incident wave carrying positive flux can send negative flux down the hole and the reflected positive flux can be greater than the incident flux. All of this is very reminiscent of the well known "Klein Paradox" situation [6] and indeed in the most general case of a charged, rotating black hole we have a rather close analogy to the Klein Paradox.

In our previous notation we find the ϕ can be written as $\phi = e^{iEt}e^{iL\phi}\chi$ and χ obeys

$$\frac{1}{\sigma}(\nabla_A \sigma \nabla^A \chi) + [(E dt + L d\phi + eA)^2 - m^2]\chi = 0$$
 (5)

where ∇_A denotes covariant differentiation in the r, θ plane. The conserved flux is

$$J = (E dt + L d\phi + A)|\chi|^2 + \frac{(\bar{\chi}d\chi - \chi d\bar{\chi})}{2i}$$
 (6)

The null generator of the horizon is $\ell = \partial/\partial t - \Omega_H \partial/\partial \phi$. The flux through the horizon is $\propto \langle J, \ell \rangle \propto E - \mu_H$. Thus $E < \mu_H$ but $E^2 < m^2$ so we have superradiance. This is of course just the previous criterion.

For classical spin 1/2 fields the situation is different the conserved flux vector

$$J = \bar{\psi}\gamma_{\mu}\psi\tag{7}$$

is always future directed timelike and so simple super radiance is not possible [7]. However it is still possible for negative energy to fall down the hole since the stress tensor of a spin ½ field does not obey the positive energy condition. Note that in both these cases a "hole" is necessary. Super radiance cannot occur unless a particle or energy can be trapped inside a certain region. Having seen how super radiance is possible, the analogy with "stimulated emission" is very close. On rather general grounds — Dirac [8], Feynman [9], Einstein [10] one expects — at least for bosons a related "spontaneous emission." Further each mode should be emitted with a coefficient just given by the super radiant coefficient (Starobinsky [11]). Note that while these physical arguments seem quite compelling one possible objection is that they seem to imply that a black hole can be some sort of thermal equilibrium with a surrounding heat bath. This as we shall see will turn out to be the case but at the early stages of this subject this seemed rather puzzling. Before I go on, it seems worthwhile here to point out that interesting as these speculations seem, the motivation for following them up would have been rather low had it not beenin one's mind that rather small black holes (masses > planck mass $\sim 10^{-5} g$) had been postulated earlier by Hawking [12] as possibly arising in the early stages of a chaotic big bang universe, although the idea of black holes smaller than the Chandrasekhar limit had been suggested earlier by Zeldovich [13]. In this connection these early speculations brought to light an amusing coincidence Starobinsky [11] pointed out that the order of magnitude for the time for spontaneous loss of all of its angular momentum by a black hole of mass must be (in units such that G = c = h = k = 1

$$t \sim M^3 \tag{8}$$

Thus a hole would lose all of its angular momentum in less than 10^{10} years if its mass were less than 10^{-13} cm – a number not without significance in other contexts. The extension of these ideas to the charge of a black hole [14] showed similarly that unless the hole had a mass of this order, e^2/m_e , it would be energetically favorable for it to discharge itself even if it possessed a single

electron charge. The rate was expected to depend on the field strength and in a Schwinger [15] type way. Thus unless the electric field is less than the critical field mile the rate is very fast. This implied that to have a charge comparable with its mass the black hole mass must exceed e^2/m_e (which is coincidentally the least mass of a "classical geon" [16]. Essentially the same ideas seem to have occurred to Zaumen [17] independently. The story has also been taken up by Ruffini and Deruelle [19] and Ruffini and Damour [20]. These estimates made it very unlikely that mini black holes possessed charge.

Having seen the physical ideas which enter it remained to give them a more rigorous expression. The first person to tackle this problem was Unruh [21]. Since there is at present no well worked out candidate for a quantum theory of gravity Unruh adopted an approach in which the gravitational field was treated as a classical background-the so called external field approach. Thus one takes the equations describing a free quantum field in flat space and minimally couples them to the external field by the replacement $\partial_{\mu} \to \nabla_{\mu} - ieA_{\mu}$. This does not always yield a sensible theory [41] but in the case of spin o, 1/2 and 1 a workable theory results.

The next problem one encounters is the definition of particle states or may be summarized as follows: the basic strategy of the quanvacuum state. This quantum theory of fields is to resolve a field into normal modes. The coefficients of these normal modes obey the familiar bose einstein/ fermi-dirac commutation/anticommutation relations. This gives field commutation/anticommutation relations which are independent of the choice of normal modes-provided they are properly normalized with the natural sesquilinear form available:

$$\frac{1}{2i} \int (\bar{\phi} \nabla_{\mu} \phi - \phi \nabla_{\mu} \phi) d\Sigma^{\mu} \quad \text{for spin o}$$

$$\int \bar{\psi} \gamma^{\mu} \psi d\Sigma^{\mu} \quad \text{for spin } \frac{1}{2}$$
(10)

$$\int \bar{\psi} \gamma^{\mu} \psi d\Sigma^{\mu} \quad \text{for spin } \frac{1}{2}$$
 (10)

What is *not* independent of the choice is the vacuum state. Any transformation of the normal modes (Bogoliubov transformation) which mixes up particle and antiparticle modes (or positive and negative frequencies to use a conventional expression) will give an inequivalent definition of the vacuum state. Indeed, as seems to occur in most practical examples, the number of "created particles" diverges and the two different state vectors may not even be connected by a unitary transformation [22]. Unruh made a particular choice — essentially that the particle modes be positive frequency with respect to the Killing vector $\partial/\partial t$ in the Kerr solution. He then computed the stress tensor expectation value $\langle T_{\mu\nu} \rangle$ in this state and found that $\langle T_{00} \rangle$ was infinite, $\langle T_{0r} \rangle$ was finite and corresponded to an outward flux of super radiant modes at the expected rate. Similar results were subsequently found by Ford [23]. It should be mentioned that the gravitational background used was the maximally extended Kerr solution. We see that in general we meet three generic types of problem:

- 1. choice of vacuum state
- 2. infinities in T
- 3. breakdown for higher spins.

All of these problems occur and are familiar in the corresponding electromagnetic case. The next advance came with the work of Hawking [24]. He realized that

- 1. One can only satisfactorily define particle states at infinity
- 2. One must for a satisfactory treatment take collapse into account.

To take the first point; Hawking decided in the spirit of the matrix approach to define two vacua, the in vacuum and the out vacuum $|0_{-}\rangle$, $|0_{+}\rangle$. Provided past infinity constitutes a Cauchy surface (thus excluding the mixed white hole/black hole situation considered by Unruh) one may define an initial no particle state by the usual prescription of associating positive frequencies with particle states and conversely negative frequencies with anti-particle states. Since the idea of positive frequency is invariant under the asymptotic symmetry group the B.M.S. group — this remains valid even in the presence of gravitational radiation. Indeed one can show that the gravitational field of a plane wave (like a plane electromagnetic wave) is incapable of producing particles [25]. Since at infinity any ingoing radiation will be effectively plane it is clear that as far as past infinity is concerned we have a reasonable definition of what it means to say that there are initially no ingoing particles. Similarly we can identify outgoing particles at future infinity. The task of identifying particle states in the interaction region is much less clear. This is perhaps not unreasonable physically a particle is really a certain sort of normal mode with high symmetry mathematically it is connected with irreducible representations of the Poincare Group [26]. Neither of these concepts is applicable near the black hole. These remarks do not apply to the strong electromagnetic field around a large black hole since here the typical wavelength of the created particles is much smaller than the horizon size.