

提高算法班 概率与期望DP

Mas

随机试验 & 样本空间

随机试验 (random test) 是试验结果呈现出不确定性的试验

随机试验满足以下条件:

- 试验可在相同条件下重复进行
- 试验的可能结果不止一个且所有可能结果可事先预知
- 每次试验的结果只有一个,但不能事先预知

在一次随机试验 E 中可能发生的不可再细分的结果被称为 样本输出/样本点 (sample point)

在随机试验中可能发生的所有样本输出的集合称为 **样本空间** (sample space) 用 Ω 表示

进行一次随机试验 E, 其结果一定符合 Ω 中的恰好一个元素, 不可能是零个或多个

掷六面骰子的随机试验中用点数表示样本输出

可能出现 6 个样本输出,样本空间可表示为 $\Omega = \{1,2,3,4,5,6\}$

随机事件

当随机实验的结果为某个样本点 ω ,若 $\omega \in A$ 则称事件 A 发生了否则称事件 A 未发生

随机事件 (random event) 是样本空间 Ω 的子集

它由样本空间 Ω 中的元素构成,用大写字母 A, B, C, ... 表示

在掷两个六面骰子的随机试验中

设随机事件 A 为 "点数和大于 10"

那么 A 是 3 个样本输出组成的集合 A = $\{(5,6),(6,5),(6,6)\}$

仅含有一个样本点的随机事件称为 基本事件 (elementary event)

整个样本空间也是事件, 称为 必然事件 (certain event)

空集也是事件, 称为 不可能事件 (impossible event) 记为 Ø

随机事件由集合定义,那么随机事件也可进行集合的运算对于随机事件 A 与随机事件 B

- A ⊂ B 表示事件 A 发生必然导致事件 B 发生
 若 A ⊂ B ∧ B ⊂ A 那么 A = B
- A∩B表示 A,B 事件都发生,也可记为 AB
- AUB表示 A, B 事件至少发生一个, 也可记为 A + B
- A B 表示 A 事件发生而 B 事件不发生,也可记为 AB
- A | B 表示 在 B 发生的前提下 A 发生
- 若 A ∩ B = Ø 称 A, B 为 **互斥事件** (mutually exclusive events), 也称 A, B **互不相容**

互斥事件

随机事件

对于 A, B, C 三个随机事件

如下给出事件的形式化描述

- 只有A发生: A∩B∩C或A-B-C
- A, B, C 同时发生: A∩B∩C
- A, B, C 不同时发生 (A, B, C 至少有一个不发生): A∩B∩C 或 Ā∪ B∪ C
- A,B,C 同时不发生: Ā∩Ē∩Ē
- A, B, C 恰有一个发生: (A ∩ B ∩ C) ∪ (Ā ∩ B ∩ C) ∪ (Ā ∩ B ∩ C)
- A, B, C 至少有一个发生: A∪B∪C 或 Ā∩B∩C
- A, B, C 至多有一个发生: (Ā ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (Ā ∩ B ∩ C) ∪ (Ā ∩ B ∩ C)

事件运算

幂等律

 $A \cup A = A$ $A \cap A = A$

交换律

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

结合律

 $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

分配律

 $A \cap (B \cup C) \cup C = (A \cap B) \cup (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

对偶律/德摩根律(De Morgan's laws)

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

概率

古典定义

若试验满足以下两条, 称其为古典试验

- 试验基本结果有限
- 试验的每个基本结果出现等可能

对于古典试验中的事件 A, 它的概率定义为 $P(A) = \frac{m}{n}$

其中 n 表示该试验中所有可能出现的基本结果的总数目

m 表示事件 A 包含的试验基本结果数

统计定义

在一定条件下进行了n次试验,事件A发生了 N_A 次

若随着 n 逐渐增大频率 $\frac{N_A}{n}$ 逐渐稳定在某一数值 p 附近

概率

那么数值 p 称为事件 A 在该条件下发生的概率, 记做 P(A) = p

概率的统计定义存在数学上的不严谨性,在实际中几乎不可能每一个事件做大量重复的试验来计算频率 苏联数学家柯尔莫哥洛夫 (Kolmogorov)于 1933 年给出了概率的公理化定义

公理化定义

设 E 是随机试验 Ω 为其样本空间,对 Ω 的每一个事件 A 赋予一个 [0,1] 范围内的实数

记为 P(A) 称为事件 A 的 概率 (probability), P(A) 是一个从集合到实数的映射

对于一个事件 A 其发生概率 P(A) 满足以下公理

非负性

 $P(A) \in [0,1]$

规范性

样本空间的概率值为 1 即

概率公理

$$P(\Omega) = 1$$

可列可加性

若事件 $A_1, A_2, \dots, A_n, \dots$ 互不相容 (即 $\forall i \neq j$ 都有 $A_i \cap A_j = \emptyset$)

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

还存在以下性质

•
$$P(\emptyset) = 0$$

证明

$$\Omega = \Omega \cup \emptyset \cup \emptyset \cdots \cup \emptyset \cup \cdots$$
,根据 **可列可加性** 有

$$P(\Omega) = P(\Omega) + P(\emptyset) + P(\emptyset) \cdots + P(\emptyset) + \cdots$$
$$\Rightarrow P(\emptyset) + P(\emptyset) \cdots + P(\emptyset) + \cdots = 0$$

概率性质

根据 非负性 必有

$$P(\emptyset) = 0$$

• 有限可加性

对于有限个互不相容的事件 A_1, A_2, \cdots, A_n

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$

证明

$$A_1 \cup A_2 \cup \cdots \cup A_n = A_1 \cup A_2 \cup \cdots \cup A_n \cup \emptyset \cup \emptyset \cdots \cup \cdots$$
,根据 **可列可加性** 有

$$P(A_1 \cup A_2 \cup \cdots \cup A_n \cup \emptyset \cup \emptyset \cdots \cup \cdots) = P\left(\bigcup_{i=1}^n A_i\right) + P(\emptyset) + P(\emptyset) \cdots + P(\emptyset) + \cdots$$

$$= P\left(\bigcup_{i=1}^{n} A_i\right)$$

概率性质

•
$$P(\overline{A}) = 1 - P(A)$$

证明

显然 A, \overline{A} 互不相容 且 $A \cup \overline{A} = \Omega$

根据 规范性 及 有限可加性 有

$$P(\Omega) = P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 - P(A)$$

单调性

若
$$A \subset B$$
 则有 $P(B - A) = P(B) - P(A)$ 且有 $P(A) \le P(B)$

证明

$$B = A \cup (B - A)$$
 显然 $A \cap (B - A) = \emptyset$ 即 $A, B - A$ 互不相容

根据 **有限可加性** 有 P(B) = P(A) + P(B - A), 又由于 **非负性**

$$P(B - A) \ge 0 \Rightarrow P(B) - P(A) \ge 0 \Rightarrow P(B) \ge P(A)$$

•
$$P(A - B) = P(A) - P(AB)$$

概率性质

证明

$$A - B = A - AB$$
且 显然 $AB \subset A$

根据 单调性 有
$$P(A\overline{B}) = P(A - AB) = P(A) - P(AB)$$

• 加法公式

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

证明

$$A \cup B = A \cup (B - AB)$$
 显然 $A \cap (B - AB) = \emptyset$ 即 $A, B - AB$ 互不相容

根据 **有限可加性** 有
$$P(A \cup B) = P(A) + P(B - AB) = P(A) + P(B) - P(AB)$$

可推广至多个事件

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{r=1}^{\infty} \left((-1)^{r+1} \left(\sum_{i_1 < \dots < i_r} P(A_{i_1} \cdots A_{i_t}) \right) \right)$$

不难通过数学归纳法证明

条件概率

条件概率

P(B | A) 为事件 A 发生的前提下事件 B 发生的概率

简称 条件概率 (Conditional Probability)

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

当事件 A 发生后试验条件发生改变,新试验条件下 A 成为样本空间

A 的样本点具有等可能性且 A 发生后 AB 是 A 的子集

$$P(B|A) = \frac{n(AB)}{n(A)} = \frac{\frac{n(AB)}{n(\Omega)}}{\frac{n(A)}{n(\Omega)}} = \frac{P(AB)}{P(A)}$$

乘法公式

若 P(A) > 0 根据 条件概率 公式不难得出

$$P(AB) = P(A) P(B \mid A) = P(B) P(A \mid B)$$

若 $P(A_1A_2\cdots A_{n-1}) > 0$ 有

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdots P(A_n | A_1 A_2 \cdots A_{n-1})$$

上述公式被称为 **乘法公式** (muitipiicatme formula of probability)

证明

根据 单调性 有
$$P(A_1) \ge P(A_1A_2) \ge \cdots \ge P(A_1A_2 \cdots A_{n-1}) > 0$$

$$P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

$$= P(A_1) \frac{P(A_1 A_2)}{P(A_1)} \frac{P(A_1 A_2 A_3)}{P(A_1 A_2)} \cdots \frac{P(A_1 A_2 \cdots A_n)}{P(A_1 A_2 \cdots A_{n-1})} = P(A_1 A_2 \cdots A_n)$$

设罐中有 b 个黑球、r 个红球, 每次随机取出一个球后放回, 同时加入 c 个同色球和 d 个异色球

记事件 B_i 为第 i 次取出黑球,记事件 R_j 为第 j 次取出红球

若连续从罐中取出三个球其中有两个红球一个黑球,根据 乘法公式 有

$$P(B_1R_2R_3) = P(B_1) P(R_2 | B_1) P(R_3 | B_1 R_2) = \frac{b}{b+r} \times \frac{r+d}{b+r+c+d} \times \frac{r+d+c}{b+r+2c+2d}$$

$$P(R_1B_2R_3) = P(R_1) P(B_2 | R_1) P(R_3 | R_1B_2) = \frac{r}{b+r} \times \frac{b+d}{b+r+c+d} \times \frac{r+d+c}{b+r+2c+2d}$$

$$P(R_1R_2B_3) = P(R_1) P(R_2 | R_1) P(B_3 | R_1R_2) = \frac{r}{b+r} \times \frac{r+c}{b+r+c+d} \times \frac{b+2d}{b+r+2c+2d}$$

不难发现概率与黑球再第几次取出有关

该问题也被称为 波利亚罐子模型 (Polya's urn scheme)

该问题存在一些特殊情况

当 c = -1, d = 0 时, 即为 **不放回抽样**, 此时前次抽取结果将影响后次抽取结果

但只要抽出红球和黑球个数确定, 概率不依赖抽出球的顺序

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r-1)}{(b+r)(b+r-1)(b+r-2)}$$

当 c = 0, d = 0 时称为 **放回抽样**,此时前次抽取结果不影响后次抽取结果,概率都相等

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br^2}{(b+r)^3}$$

当 c > 0, d = 0 时称为 传染病模型, 此时每次取出球都会增加下一次取出该颜色球的概率

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r+c)}{(b+r)(b+r+c)(b+r+2c)}$$

可以发现 d = 0 时,只要抽出红球和黑球个数确定,概率不依赖抽出球的顺序,概率都相同

当 c = 0, d > 0 时, 称为 **安全模型**, 可理解为:

每当安全事故发生(红球被取出)安全工作就抓紧,下次出现事故的概率降低

而当安全事故未发生(黑球被取出)安全工作就放松,下次出现事故的概率增大

此时上述三种概率为

$$P(B_1R_2R_3) = \frac{b}{b+r} \times \frac{r+d}{b+r+d} \times \frac{r+d}{b+r+2d}$$

$$P(R_1B_2R_3) = \frac{r}{b+r} \times \frac{b+d}{b+r+d} \times \frac{r+d}{b+r+2d}$$

$$P(R_1R_2B_3) = \frac{r}{b+r} \times \frac{r}{b+r+d} \times \frac{b+2d}{b+r+2d}$$

#2848、生日悖论

题目描述

假设你在个有 23 个人的聚会上

聚会中至少有两个人生日相同的概率是多少?

令人惊讶的是,结果超过了 0.5

你现在在其他星球上——年有 N 天

你必须找到必须邀请参加聚会的最少人数

以使聚会中至少有两个人生日相同的概率至少为 0.5

输入格式

第一行输入一个正整数 T 表示 T 组询问

接下来每行一个正整数 N , 表示这个星球一年有 N 天

输出格式

每组询问输出一行一个整数,表示最少需要邀请的人数

输入样例

2 365 669

输出样例

22 30 记第 i 人与前 i-1 人生日都不同为事件 A_i

显然 $P(A_1) = 1$

数据规模

对于全部的数据 $1 \leq T \leq 20000, 1 \leq N \leq 10^5$

#2848、生日悖论

根据 乘法公式

$$P(A_1A_2 \cdots A_i) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdots P(A_n | A_1 A_2 \cdots A_{n-1})$$

第二个人有 n-1 种选择, 第三个人有 n-2 种选择

$$\mathbb{P}\left(A_{j} \mid A_{1} A_{2} \cdots A_{j-1}\right) = \frac{n-j+1}{n}$$

$$P(A_1 A_2 \cdots A_i) = \frac{n}{n} \times \frac{n-1}{n} \times \cdots \times \frac{n-i}{n}$$

显然事件 $\overline{A_1A_2\cdots A_i}$ 表示前 i 人中至少两人生日相同

那么
$$P(\overline{A_1A_2\cdots A_i}) = 1 - P(A_1A_2\cdots A_i)$$

直接递推计算即可

经过计算 N = 100000 仅需 372 人, 当概率超过 0.5 时停止即可

全概率公式

若随机事件 A_1, A_2, \dots, A_n 满足

- $\forall i \neq j$ 都有 $A_i \cap A_j = \emptyset$
- $\Omega = \bigcup_{i=1}^n A_i$

那么称 A_1, A_2, \cdots, A_n 为样本空间 Ω 的一个 **分割**,或称为 **完备事件组** (collectively exhaustive events)

若事件 A_1, A_2, \cdots, A_n 为 **完备事件组** 且 $P(A_i) > 0$,对于任意事件 B 有

$$P(B) = \sum_{i=1}^{n} (P(A_i) P(B \mid A_i))$$

证明

不难发现

$$B = B \cap \Omega = B \cap \left(\bigcup_{i=1}^{n} A_i\right) = \left(\bigcup_{i=1}^{n} BA_i\right)$$

而 $B \cap A_1, B \cap A_2, \dots, B \cap A_n$ 互不相容, 根据 **有限可加性** 有

$$P(B) = \sum_{i=1}^{n} P(BA_i)$$

由于已保证 $P(A_i) > 0$,根据 **乘法公式** 有 $P(BA_i) = P(A_i) P(B \mid A_i)$

$$P(B) = \sum_{i=1}^{n} P(BA_i) = \sum_{i=1}^{n} (P(A_i) P(B \mid A_i))$$

称上式为 全概率公式 (total probability theorem)

将 完备事件组 换为 A_1, A_2, \cdots, A_n 互不相容 且 $B \subset U_{i=1}^n A_i$ 时 全概率公式 依然成立 可理解为: B 为某一过程的结果,将事件 A_1, A_2, \cdots, A_n 视为产生该结果的若干原因 根据 全概率公式 可将复杂事件分解为若干 互不相容 的简单事件

全概率公式

在n 张彩票中仅有一张可中奖,求第二个人中奖的概率

设第 i 人中奖的事件为 A_i , 要求出 $P(A_2)$

 A_1 是否发生影响 A_2 的发生,有

$$P(A_2 | A_1) = 0$$
 $P(A_2 | \overline{A_1}) = \frac{1}{n-1}$

显然 $P(A_1) = \frac{1}{n} > 0$ $P(\overline{A_1}) = \frac{n-1}{n} > 0$, 根据 **全概率公式**

$$P(A_2) = P(A_1) \times P(A_2 \mid A_1) + P(\overline{A_1}) \times P(A_2 \mid \overline{A_1}) = \frac{1}{n} \times 0 + \frac{n-1}{n} \times \frac{1}{n-1} = \frac{1}{n}$$

这表明中奖概率与先后次序无关,类似的可以得出 $P(A_3) = \cdots = P(A_n) = \frac{1}{n}$

后者可能处于不利局面(前者中奖),也可能处于有利局面(前者未中奖增大了中奖机会)

但经过 全概率公式(加权平均)综合后机会均等

若有 n 张彩票, 其中 k 张可中奖 $P(A_1) = P(A_2) = \cdots = P(A_n) = \frac{k}{n}$

未成年人不得购买彩票及兑奖

Bayes 公式

Bayes 公式

若事件 A_1, A_2, \cdots, A_n 为 **完备事件组**, 同时有 P(B) > 0 且 $P(A_i) > 0$

$$P(A_i \mid B) = \frac{P(A_i) P(B \mid A_i)}{\sum_{j=1}^{n} (P(A_j) P(B \mid A_j))}$$

证明

根据 条件概率 定义

$$P(A_i \mid B) = \frac{P(A_i B)}{P(B)}$$

根据 全概率公式 $P(B) = \sum_{j=1}^{n} (P(A_j) P(B \mid A_j))$

$$P(A_i \mid B) = \frac{P(A_i B)}{P(B)} = \frac{P(A_i B)}{\sum_{j=1}^{n} (P(A_j) P(B \mid A_j))}$$

Bayes 公式

再根据 **乘法公式** $P(A_iB) = P(A_i) P(B \mid A_i)$

$$P(A_i \mid B) = \frac{P(A_i) P(B \mid A_i)}{\sum_{j=1}^{n} (P(A_j) P(B \mid A_j))}$$

上述公式被称为 Bayes 公式 (Bayes' theorem)

将 Bayes 公式 中的 $P(A_i)$ 称为 A_i 的 先验概率

将 Bayes 公式 中的 $P(A_i | B)$ 称为 A_i 的 后验概率

Bayes 公式 专门用于计算 后验概率,即通过 B 的发生这个新信息来修正 A_i 的概率

《伊索寓言》中有一则"孩子与狼"的故事,使用 Bayes 公式 分析此寓言中村民对这个小孩的可信度是如何下降的

记事件 A 为小孩说谎,事件 B 为小孩可信

实验舱 青少年编程 _{走近科学 走进名校}

Bayes 公式

设过去村民对小孩的印象 $P(B) = 0.8 P(\overline{B}) = 0.2$

考虑使用 Bayes 公式 求出 P(B | A) 即小孩说了一次谎后, 村民对其信任度的改变

设 $P(A \mid B) = 0.1$ 表示小孩可信且说谎的概率为 0.1, $P(A \mid \overline{B}) = 0.5$ 表示小孩不可信且说谎的概率为 0.5

第一次村民并没有发现狼即小孩说谎了,根据 Bayes 公式 有

$$P(B \mid A) = \frac{P(B) P(A \mid B)}{P(B) P(A \mid B) + P(\overline{B}) P(A \mid \overline{B})} = \frac{0.8 \times 0.1}{0.8 \times 0.1 + 0.2 \times 0.5} = 0.444$$

此时村民对小孩的印象修正为 P(B) = 0.444, $P(\overline{B}) = 0.556$

在此基础上,第二次村民没有发现狼即小孩又说谎了,根据 Bayes 公式 有

$$P(B \mid A) = \frac{0.444 \times 0.1}{0.444 \times 0.1 + 0.556 \times 0.5} = 0.138$$

此时村民对小孩的信任度从 0.8 → 0.138

所以第三次发生悲剧!!!

#3975、 盒子取球

题目描述

有四个一样的不透明盒子

第一个盒子内有 \mathbf{n}_1 个小球,其中 \mathbf{w}_1 个白球,剩下 $\mathbf{n}_1-\mathbf{w}_1$ 个都是黑球第二个盒子内有 \mathbf{n}_2 个小球,其中 \mathbf{w}_2 个白球,剩下 $\mathbf{n}_2-\mathbf{w}_2$ 个都是黑球第三个盒子内有 \mathbf{n}_3 个小球,其中 \mathbf{w}_3 个白球,剩下 $\mathbf{n}_3-\mathbf{w}_3$ 个都是黑球第四个盒子内有 \mathbf{n}_4 个小球,其中 \mathbf{w}_4 个白球,剩下 $\mathbf{n}_4-\mathbf{w}_4$ 个都是黑球小球质地均匀,从盒子外部无法看到盒内的情况

现在 Mas 随机从四个箱子中取出一个小球,请你计算有多大的概率取出白球?

输入格式

第一行输入两个空格分隔的整数 $\mathbf{n}_1, \mathbf{w}_2$

第二行输入两个空格分隔的整数 n_2, w_2

第三行输入两个空格分隔的整数 n_3, w_3

第四行输入两个空格分隔的整数 n_4, w_4

输出格式

输出一个实数表示答案

答案并非

$$\frac{w_1 + w_2 + w_3 + w_4}{n_1 + n_2 + n_3 + n_4}$$

若第一个箱子中有94个球,其中1个白球

第二个箱子中有2个球,其中1个白球;第三个箱子中有2个球,其中

1个白球;第四个箱子中有2个球,其中1个白球

取出白球的概率并非 4%

凭直觉 或 蒙特卡罗方法 (Monte Carlo method) 都可察觉出 4% 过低

蒙特卡罗方法 也称统计模拟方法,是一种用随机数(或伪随机数)来解决计算问题的方法

#3975、 盒子取球

设事件 A_i 表示选择箱子 i , 事件 B 表示选出白球 , 那么事件 $B \mid A_1$ 表示从第 i 个箱子取出白球

显然
$$P(A_1) = P(A_2) = P(A_3) = P(A_4) = \frac{1}{4}$$

同时
$$P(B \mid A_1) = \frac{w_1}{n_1}$$
 $P(B \mid A_2) = \frac{w_2}{n_2}$ $P(B \mid A_3) = \frac{w_3}{n_3}$ $P(B \mid A_4) = \frac{w_4}{n_4}$

根据 全概率公式

$$P(B) = \frac{1}{4} \times \frac{w_1}{n_1} + \frac{1}{4} \times \frac{w_2}{n_2} + \frac{1}{4} \times \frac{w_3}{n_3} + \frac{1}{4} \times \frac{w_4}{n_4}$$

时间复杂度 O(1)

已知取出白球,从第 i 个箱子取出的概率为?

根据 Bayes 公式 求解即可

$$P(A_i \mid B) = \frac{P(A_i) P(B \mid A_i)}{P(B)}$$

事件的独立性

一般情况下 $P(B \mid A) = \frac{P(AB)}{P(A)} \neq P(B)$ 即事件 A 发生对事件 B 发生产生影响

然而在有些情况下,事件 A 的发生对事件 B 的发生没有任何影响,即 $P(B \mid A) = P(B)$

根据 条件概率公式

$$P(B) = P(B \mid A) = \frac{P(AB)}{P(A)} \Rightarrow P(AB) = P(A) P(B)$$

此时称事件 A 与事件 B 相互独立 (mutually independent)

若事件 A 与事件 B 相互独立, 那么 A 与 \overline{B} 相互独立、 \overline{A} 与 \overline{B} 相互独立、 \overline{A} 与 \overline{B} 相互独立

证明

根据概率性质有 $P(A\overline{B}) = P(A - AB) = P(A) - P(AB)$

又由于事件 A 与事件 B 相互独立 有 P(AB) = P(A) P(B),那么

$$P(A\overline{B}) = P(A - B) = P(A) - P(AB) = P(A) - P(A) P(B) = P(A) (1 - P(B)) = P(A) P(\overline{B})$$

不难证明其它情况

独立性&互斥

从一副扑克 (不含大/小王) 中随机抽取一张牌, 事件 A 表示抽到 10, 事件 B 表示抽到黑色牌事件 A 与 B 是否相互独立?

事件 AB 表示抽到黑色 10 有 $P(AB) = \frac{2}{52}$, 而 $P(A) = \frac{4}{52}$, $P(B) = \frac{1}{2}$ 显然 P(AB) = P(A) P(B) 故事件 A 与 B 相互独立

也可根据实际情况判断事件是否独立

事件 A 与事件 B 相互独立: 与概率相关, 反映事件的概率属性

$$P(AB) = P(A) P(B)$$

事件 A 与事件 B 互不相容: 与概率无关, 与事件的运算相关

$$A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$$

即互斥与独立并非同一概念,如上文抽取扑克牌,事件 A 与 事件 B 独立 但 不互斥

若 $P(A) \neq 0 \land P(B) \neq 0$ 不难证明

- 事件 A 与事件 B 独立, 那么 A 和 B 不 互斥
- 事件 A 与事件 B **互斥**, 那么 A 和 B 不 **独立**

题目描述

Mas 想出国,他需要去申请学校了

要申请国外的任何大学要交纳一定的申请费用,这可是很惊人的

Mas 没有多少钱,总共只攒了 n 万美元

他将在 m 个学校中选择若干的(当然要在他的经济承受范围内)

每个学校都有不同的申请费用 a (万美元),并且 Mas 估计了他得到这个学校 offer 的可能性 b

不同学校之间是否得到 offer 不会互相影响

请你计算 Mas 可以收到至少一份 offer 的最大概率

如果 ${
m Mas}$ 选择了多个学校,得到任意一个学校的 ${
m offer}$ 都可以

输入格式

第一行有两个正整数 \mathbf{n}, \mathbf{m}

后面的 m 行,每行都有两个数据 a_i (整型), b_i (实型)

分别表示第 i 个学校的申请费用和可能拿到 offer 的概率

设 dp[i][j] 为考虑大学 $1 \sim i$ 资金为 j 时的最小失败概率

显然 dp[0][*] = 1

不同大学间申请相互独立

 $dp[i][j] = min(dp[i-1][j], dp[i-1][j-a_i] \times (1-b_i))$

最终答案为 1 - dp[m][n]

本质为 0-1 背包, 时间复杂度 O(nm)

输出格式

输出一个实数表示 Mas 可能得到至少一份 offer 的最大概率

用百分数表示,精确到小数点后一位

数据规模

对于全部的数据 $0 \le n \le 10000, 0 \le m \le 10000$

题目描述

有 n 枚硬币排成-排

现在同时抛所有硬币

第 i 枚硬币向上的概率是 p_i

向下的概率是 $1-p_i$

求向上的硬币数量比向下的多的概率

输入格式

第一行输入一个正整数 n

第二行输入 n 个浮点数 p_i

输出格式

输出一个浮点数(保留 12 位小数),表示向上的硬币数量比向下的多的概率

数据规模

对于全部的数据 $1 \leq n \leq 3000, 0 \leq p_i \leq 1$,保证 n 为奇数

设 dp[i][j] 表示仅考虑前 i 个硬币有 j 枚硬币朝上的概率

显然抛硬币互不干扰, 即事件间独立

若第 j 枚朝上有

$$dp[i-1][j-1] \times p_i$$

若第 j 枚朝下有

$$dp[i-1][j] \times (1-p_i)$$

根据 全概率公式,状态转移方程

$$dp[i][j] = dp[i-1][j-1] \times p_i + dp[i-1][j] \times (1-p_i)$$

最终答案为

$$\sum_{i=0}^{n} ([i > n-i] \times dp[n][i])$$

#2852、生物繁衍

题目描述

-开始有 \mathbf{k} 只特殊生物,这种特殊生物只能存活 1 天

当时在其死亡时会产生 [0,n-1] 范围内只生物

其中有 p_i 的概率产生 i 只这种生物(也只能活一天)

请你求出 \mathbf{m} 天内所有生物都死亡的概率(包括 m 天前死亡的情况)

输入格式

第一行输入一个整数 T ,表示 T 组询问

每组询问第一行输入三个整数 n,k,m

每组询问第二行输入 n-1 个浮点数 p_i

输出格式

对于每组询问输出一行

每行输出一个浮点数(保留 7 位小数),表示 m 天内所有生物都死亡的概率

记事件 A_i 表示初始仅有一只 i 天内全部死亡

每只生物的死亡与否互不干扰

仅需考虑一只的情况 $P(A_i)$

k 只全部死亡的概率为 $P(A_i)^k$

数据规模

对于全部的数据 $1 \leq T \leq 100, 1 \leq n, k \leq 10, 1 \leq m \leq 1000$

#2852、生物繁衍

初始时 $P(A_1) = p_0$

记事件 B_j 表示初始仅有一只生物产生 j 只生物, 有 $P(B_j) = p_j$

 $A_i \mid B_i$ 表示初始仅有一只生物产生 i 只生物 i 天内全部死亡

由于生物之前的死亡对后续生物不产生干扰,仅需令这i只在i-1天内死亡,即

$$P(A_i \mid B_j) = P(A_{i-1})^j$$

根据 全概率公式

$$P(A_i) = \sum_{j=0}^{n-1} (P(B_j)P(A_i | B_j)) = \sum_{j=0}^{n-1} (P(B_j)P(A_{i-1})^j)$$

令 $dp_i = P(A_i)$ 递推求解即可,答案为 dp_m^k

时间复杂度 O(nm)

随机变量

随机变量 (random variable) 是取值由随机事件决定的变量 , 是从样本空间 $\Omega = \{\omega\}$ 到实数集 $\mathbb R$ 的映射

即 随机变量 $X: \Omega(X) \to \mathbb{R}$, 而 X 实际是 $X(\omega)$ 的简记

随机变量 X 取值 α (简记 $X = \alpha$) 可理解为某事件发生时该随机变量取值为 α

随机变量按其值域是否可数分为

- 离散型随机变量 (discrete random variable)
- 连续型随机变量 (continuous random variable)

若随机变量 X 的取值 **有限** 或 **无穷可列**, 那么 X 称为 离散型随机变量

设 X 表示 "骰子的点数" $\Omega = \{1, 2, 3, 4, 5, 6\}$ 那么 $X(\omega) = i$ 该随机变量取值有限

设 X 表示 "硬币抛出第一个正面前会抛出多少反面" $\Omega = \{\omega_i \mid i = 0, 1, ...\}$ 那么 $X(\omega_k) = k$ 该随机变量取值无穷可列

本课主要讨论 离散型随机变量

随机变量

 $X = \alpha$ 对应着一个能实现该命题的 基本事件 集合, 也有与之对应的概率 $P(X = \alpha)$

由于事件都为基本事件,那么事件必然 互不相容 根据 有限可加性

$$P(X = \alpha) = \sum_{X(\omega) = \alpha} P(\omega)$$

若 $X_1(\omega), X_2(\omega), \cdots, X_n(\omega)$ 是定义在同一样本空间 $\Omega = \{\omega\}$ 上的 n 个随机变量则称

$$\mathbf{X} = (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$$

为 n 元随机变量 / n 维随机变量 (n - dimensional random vector)

对于分别在样本空间 $\Omega_1 = \{\omega_1\}$, $\Omega_2 = \{\omega_2\}$ 的随机变量, 仅能在乘积空间

$$\Omega_1 \times \Omega_1 = \{ (\omega_1, \omega_2) : \omega_1 \in \Omega_1, \omega_2 \in \Omega_2 \}$$

随机变量

对于 二元随机变量 X 和 Y 都在同一空间,即 ω 都为同一 样本点/事件 但两者映射的值可能不同

 $(X = \alpha, Y = \beta)$ 也对应着一个能实现该命题的 基本事件 集合, 也有与之对应的概率 $P(X = \alpha, Y = \beta)$

$$P(X = \alpha, Y = \beta) = \sum_{\substack{X(\omega) = \alpha \\ Y(\omega) = \beta}} P(\omega)$$

存在如下性质

$$\sum_{\beta} P(X = \alpha, Y = \beta) = \sum_{\beta} \sum_{\substack{X(\omega) = \alpha \\ Y(\omega) = \beta}} P(\omega) = \sum_{X(\omega) = \alpha} P(\omega) = P(X = \alpha)$$

考察 $Y(\omega)$ 所有取值 β 时, 若 ω 不能使得 $X(\omega) = \alpha$ 则 样本点 对应概率不被计入

仅有 $X(\omega) = \alpha$ 的事件 ω 的概率被计入 . 既

$$P(X = \alpha) = \sum_{\beta} P(X = \alpha, Y = \beta)$$

数学期望

若 $\Omega = \{\omega\}$ 表示 X 所在的样本空间,**离散型随机变量** X 的 **数学期望** (expected value) 定义如下

$$E(X) = \sum_{\omega \in \Omega} (X(\omega) \times P(\omega))$$

记 Range(X) 为随机变量 X 的值域

若在至于范围内考察 α 也可描述为

$$E(X) = \sum_{\alpha \in Range(X)} (\alpha \times P(X = \alpha))$$

数学期望就是随机变量 X 的取值与概率的乘积之和 (X 的取值按概率的加权平均)

也将 数学期望 称为 均值 (mean)

数学期望在实际中应用广泛, E(X) 常作为 X 的的分布的代表(一种统计指标)参与同类指标的比较

数学期望

有一种押注游戏, 其规则如下: 庄家从 6 副 (每副 52 张) 扑克中随机发给玩家两张

如果玩家下注 a 元, 当得到的两张牌是一对时庄家赔你十倍; 否则输掉玩家的赌注

如果玩家下注 100 元, 玩家和庄家在每局中各期望赢多少元?

设随机变量 X,Y 分别表示玩家和庄家在一局中的收益, a=100

$$P(X = 10a) = \frac{13C_{4\times 6}^2}{C_{52\times 6}^2} = 0.074 \qquad P(X = -a) = 1 - 0.074$$

那么

$$E(X) = 0.074 \times 10a + (1 - 0.074) \times -a = -18.6$$

$$E(Y) = 0.074 \times -10a + (1 - 0.074) \times a = 18.6 = -E(X)$$

当只使用一副扑克,可以计算出玩家每局期收益 -35.32 元

严禁赌博

• 若 a,b 为常数 X,Y 为随机变量

$$E(aX + bY) = aE(X) + bE(Y)$$

证明

$$E(aX + bY) = \sum_{x \in \text{Range}(X)} \sum_{y \in \text{Range}(Y)} \left((ax + by) \times P(X = x, Y = y) \right)$$

$$= a \times \left(\sum_{x \in \text{Range}(X)} \left(x \times \sum_{y \in \text{Range}(Y)} P(X = x, Y = y) \right) \right) + b \times \left(\sum_{y \in \text{Range}(Y)} \left(y \times \sum_{x \in \text{Range}(X)} P(X = x, Y = y) \right) \right)$$

$$= a \times \left(\sum_{x \in \text{Range}(X)} \left(x \times P(X = x) \right) \right) + b \times \left(\sum_{y \in \text{Range}(Y)} \left(y \times P(Y = y) \right) \right) = aE(X) + bE(Y)$$

利用该性质可将一个随机变量拆分成若干个随机变量

分别求这些随机变量的期望值,最后相加得到期望

特殊的, 若 c 为常数有

$$E(c) = c$$
 $E(X + c) = E(X) + c$

• 若 X,Y 为相互独立的随机变量(即对于任意使得 $X = \alpha$ 和 $Y = \beta$ 成立的事件都相互独立)

$$E(XY) = E(X) E(Y)$$

证明

$$E(XY) = \sum_{\substack{\alpha \in \text{Range}(X) \\ \beta \in \text{Range}(Y)}} (\alpha \times \beta \times P(X = \alpha, Y = \beta)) = \sum_{\substack{\alpha \in \text{Range}(X) \\ \beta \in \text{Range}(Y)}} (\alpha \times \beta \times P(X = \alpha) P(Y = \beta))$$

$$= \left(\sum_{\alpha \in \text{Range}(X)} (\alpha \times P(X = \alpha))\right) \times \left(\sum_{\beta \in \text{Range}(Y)} (\beta \times P(Y = \beta))\right)$$

$$= E(X) E(Y)$$

在掷两枚骰子的点数实验中,样本空间是由 36 个样本输出组成的集合,每个样本点可以写作 (a,b),其中 $1 \le a,b \le 6$

定义"掷出的点数之和"为 X,那么随机变量 X 的取值为 2~12

随机事件可描述为"掷出 X 点", 即由 a + b = X 的样本点 (a,b) 构成的子集

掷出 8 点的概率 $P(X = 8) = \frac{5}{36}$,则掷出的点数的数学期望为

$$\frac{1}{36} \times 2 + \frac{2}{36} \times 3 + \frac{3}{36} \times 4 + \frac{4}{36} \times 5 + \frac{5}{36} \times 6 + \frac{6}{36} \times 7 + \frac{5}{36} \times 8 + \frac{4}{36} \times 9 + \frac{3}{36} \times 10 + \frac{2}{36} \times 11 + \frac{1}{36} \times 12 = 7$$

设随机变量 X 表示掷一枚骰子的点数, 其期望值为

$$E(X) = \frac{(1+2+3+4+5+6)}{6} = 3.5$$

掷两枚骰子的点数可表示为随机变量 2X,则有

$$E(2X) = E(X + X) = 3.5 + 3.5 = 7$$

#2851、格点染色

题目描述

有 n 个格点,初始是全为白色

进行 m 次操作,每次等概率随机选一个格点染黑

已经染黑的可以再次被选择染黑

求操作完后期望有多少点被染黑了

输入格式

第一行输入一个正整数 T , 表示 T 组询问

接下来 T 行,每行输入两个正整数 n, m

输出格式

对于每组询问输出一行,输出一个浮点数(保留 5 位小数)

表示期望的黑色格点数量

数据规模

对于全部数据 $1 \leq T \leq 1000, 1 \leq n, m \leq 10^5$

思路1

设随机变量 $X_i \in \{0,1\}$ 表示第 i 个点是否被染黑

根据 期望可加性

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

其中
$$E(X_i) = 1 \times P(X_i = 1) + 0 \times P(X_i = 0)$$

第
$$i$$
 个点从未被染黑的概率 $P(X_i = 0) = \left(\frac{n-1}{n}\right)^m$

那么
$$P(X_i = 1) = 1 - \left(\frac{n-1}{n}\right)^m$$

即
$$E(X_i) = 1 - \left(\frac{n-1}{n}\right)^m$$
,答案为 $n - n \times \left(\frac{n-1}{n}\right)^m$

若使用快速幂求解 $\left(\frac{n-1}{n}\right)^m$, 一次询问时间复杂度 $O(\log m)$

#2851、格点染色

思路2

设事件 A_i 表示第 i 个点涂成黑色的概率

令 $dp_i = P(A_i)$ 初始时有 $dp_1 = 1$, 根据 全概率公式

$$dp_i = dp_{i-1} \times P(A_i \mid A_{i-1}) + (1 - dp_{i-1}) \times P(A_i \mid \overline{A_{i-1}})$$

由于各次涂色独立且格子无区别,第i-1次涂黑且第i次未涂黑 与 第i-1次未涂黑且第i次涂黑 等价

可理解将两次操作对调,即 $P(A_i | \overline{A_{i-1}}) = dp_{i-1}$

若 A_{i-1} 发生那么 A_i 发生的概率将减少 $\frac{1}{n}$,即 $P(A_i \mid A_{i-1}) = dp_{i-1} - \frac{1}{n}$

设随机变量 $X_i \in \{0,1\}$ 表示第 i 次涂色是否成功, 根据 期望可加性

$$E(X_1 + X_2 + \dots + X_m) = E(X_1) + E(X_2) + \dots + E(X_m)$$

其中 $E(X_i) = 1 \times P(X_i = 1) + 0 \times P(X_i = 0) = dp_i$

答案为 $\sum_{i=1}^{m} dp_i$, 一次询问时间复杂度 O(m)

条件期望

当 $X = \alpha$ 时随机变量 Y 的 **条件期望** (conditional expectation) 以 $E(Y \mid X = \alpha)$ 表示

$$E(Y | X = \alpha) = \sum_{\beta} (\beta \times P(Y = \beta | X = \alpha))$$

根据条件概率公式

$$E(Y \mid X = \alpha) = \sum_{\beta} \left(\beta \times \frac{P(Y = y, X = \alpha)}{P(X = \alpha)} \right)$$

 $E(Y | X = \alpha)$ 为一数值, 而 E(Y | X) 为一随机变量

特殊的有

$$E(X) = E(X \mid A) P(A) + E(X \mid \overline{A}) P(\overline{A})$$

期望计算

硬币抛出正面之前期望要抛出多少次反面?

今随机变量 X 表示"抛出正面前的反面次数", 令事件 A 表示"第一次抛出了正面"那么

$$E(X) = P(A) E(X \mid Y = A) + P(\overline{A}) E(X \mid Y = \overline{A})$$

不难想到 E(X | Y = A) = 0

$$\overline{m} E(X | Y = \overline{A}) = E(1 + X) = 1 + E(X)$$

第一次失败后第二次开始 与 重新开始 无异, 根据期望的可加性 E(1 + X) = 1 + E(X)

$$E(X) = \frac{1}{2} \times 0 + \frac{1}{2} \times \left(1 + E(X)\right)$$

解得 E(X) = 1, 即期望要抛 2 次才能抛出正面

推广到不停地做一件事情,每次有p的概率成功,期望在第 $\frac{1}{p}$ 次时成功

全期望定理

$$E(Y) = E(E(Y \mid X))$$

证明

记 I(X) 为随机变量 X 的值域

$$E(E(Y \mid X)) = \sum_{\alpha \in I(X)} (P(X = \alpha) \times E(Y \mid X = \alpha)) = \sum_{\alpha \in I(X)} \left(P(X = \alpha) \times \sum_{\beta \in I(Y)} \left(\beta \times \frac{P(Y = \beta, X = \alpha)}{P(X = \alpha)} \right) \right)$$

$$\sum_{\alpha \in I(X)} \sum_{\beta \in I(Y)} (\beta \times P(Y = \beta, X = \alpha)) = \sum_{\beta \in I(Y)} \left(\beta \times \sum_{\alpha \in I(X)} P(Y = y, X = \alpha) \right)$$

$$= \sum_{\beta \in I(Y)} (\beta \times P(Y = \beta)) = E(Y)$$

上述性质被称为 **全期望定理** (Law of total expectation)

这意味着可根据已求出的期望推出其它状态的期望

#2850、骰子的期望

题目描述

有一个 n 面指定质地均匀的骰子

请你求出抛出 n 个面所需要的期望次数

输入格式

第一行输入一个正整数 T , 表示 T 组询问

接下来输入 T 行,每行一个正整数 n

输出格式

每组询问输出一行一个浮点数(保留两位小数),表示期望的次数

输入样例

输出样例

2 1 12

1.00 37.24 设 dp_i 为已抛出 i 个面为了抛出所有面的期望次数

显然 $dp_n = 0$

各次抛骰子相互独立

数据规模

#2850、骰子的期望

对于第 i 次抛骰子

- 抛出未出现的面概率为 $\frac{n-i}{n}$, 由于抛出了新的面仅需要抛 $\frac{n-i}{n} \times (1+\mathrm{dp}_{i+1})$ 次
- 抛出已出现的面概率为 $\frac{i}{n}$, 由于抛出了已出现的面, 还需要抛 $\frac{i}{n} \times (1 + \mathrm{dp}_i)$ 次

加上抛出当前这次

$$dp_i = (1 + dp_i) \times \frac{i}{n} + (1 + dp_{i+1}) \times \frac{n-i}{n}$$

整理得

$$dp_i = dp_{i+1} + \frac{n}{n-i}$$

答案为 dp[0], 需 $n \rightarrow 0$ 递推

时间复杂度 O(n)

题目描述

给出张 n 个点 m 条边的 DAG

起点为 1 ,终点为 n ,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达终点绿豆蛙从起点出发,走向终点

到达每一个顶点时,如果该节点有 k 条出边,绿豆蛙可以选择任意一条边离开该点,并且走向每条边的概率为 $\frac{1}{k}$ 现在绿豆蛙想知道,从起点走到终点的所经过的路径总长度期望是多少?

输入格式

输入的第一行是两个整数,分别代表图的点数 n 和边数 m 第 $2\sim m+1$ 行,每行有三个整数 u,v,w ,代表存在一条 $u\to v$ 长度为 w 的有向边

输出格式

输出一行一个实数代表答案,保留两位小数

数据规模

对于 20% 的数据,保证 $n \leq 10^2$

对于 40% 的数据, 保证 $n < 10^3$

对于 60% 的数据, 保证 $n \leq 10^4$

对于 100% 的数据,保证 $1\leq n\leq 10^5$, $1\leq m\leq 2\times n$, $1\leq u,v\leq n,1\leq w\leq 10^9$ 给出的图无重边和自环

输入样例

4	4		
1	2	1	
1	3	2	
2	3	3	
3	4	4	

输出样例

7.00

从起点1到达各个点的概率为?

#2849、绿豆蛙的归宿

若将边反向建立反图 G, n 变为起点

设 dp[i] 为 i 到 n 的期望路径长度, 初始时 $dp_n = 0$

对于一个点 v 存在 k 条有向边, 起点分别为 $u_1, u_2, ..., u_k$, 边长分别为 $w_1, w_2, ..., w_k$ 那么

$$E(v) = \frac{E(u_1) + w_1}{k} + \frac{E(u_2) + w_2}{k} + \dots + \frac{E(u_k) + w_k}{k}$$

状态转移方程

$$dp[v] = \frac{1}{k} \times \sum_{i=1}^{k} (dp[u_i] + w_i)$$

在反图 G 上做拓扑排序转移即可,答案为 dp[1]

时间复杂度 O(n+m)

能否从1→n 计算?

#3333、游走

题目描述

给定一个 n 个点 m 条边的无向连通图,点编号 $1\sim n$,边编号 $1\sim m$

小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点

每一步小 Z 以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数

当小 Z 到达 n 号顶点时游走结束,总分为所有获得的分数之和

现在请你对这 m 条边进行编号,使得小 Z 获得的总分的期望值最小

输入格式

第一行输入两个整数,分别表示该图的顶点数 n,m

接下来 m 行每行两个整数 u,v ,表示 u,v 间存在一条边

输出格式

输出一行一个实数表示答案,保留三位小数

数据规模

对于 30% 的数据,保证 $n \leq 10$

对于 100% 的数据,保证 $2 \leq n \leq 500, 1 \leq m \leq 125000, 1 \leq u,v \leq n$

给出的图无重边和自环,且从 1 出发可以到达所有的节点

记 d_u 为点 u 的度 , f_u 为点 u 期望经过的次数 g_i 为第 i 条边期望经过的次数

不难想到若 g_i 越大应尽可能分配较小的编号 对干第 i 条边 $u \leftrightarrow v$ 有

$$g_i = \frac{f_u}{d_u} + \frac{f_v}{d_v}$$

#3333、游走

考来求出 f_u , 对于点 u 考虑与之相邻的边有

$$f_u = \sum_{\langle u, v \rangle \in E} \frac{f_v}{d_v}$$

特殊的由于起点为 1

$$f_u = 1 + \sum_{\langle u, v \rangle \in E} \frac{f_v}{d_v}$$

又由于终点为 n, 所以其它点不能从 n 转移得到 (不能考虑 $\frac{f_n}{d_n}$ 的贡献)

发现上述计算式存在环状依赖,无法递推求解

可将 f_u 计算式作为线性方程,那么可得到 n-1 个线性方程组

高斯消元求解即可(本题对精度要求较高)

时间复杂度 $O(n^3 + m \log m)$

谢谢观看