Mathematics - 3

Practice Assignment - 1

- 1. Locate the numbers $z_1 + z_2$ and $z_1 z_2$ vectorically when
 - (i) $z_1 = (-\sqrt{3}, 1)$ and $z_2 = (\sqrt{3}, 0)$
 - (ii) $z_1 = x_1 + iy_1$ and $z_2 = x_1 iy_1$
- 2. Use established properties of moduli to show that when $|z_3| \neq |z_4|$

$$\frac{Re(z_1+z_2)}{|z_3+z_4|} \le \frac{|z_1|+|z_2|}{||z_3|-|z_4||}$$

- 3. Sketch the set of points determined by the given condition
 - (i) $|z + i| \le 3$
 - (ii) $|z 4i| \ge 4$
- 4. Using the fact that $|z_1 z_2|$ is the distance between two points z_1 and z_2 , give a geometric argument that

|z-1|=|z+i| represents the line through the origin with slope -1.

- 5. Use properties of conjugates and moduli to show that
 - (i) $|(2\overline{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|$ (ii) $\overline{(2+i)}^2 = 3-4i$
- 6. Sketch the set of points determined by condition
 - (i) $Re(\overline{z} i) = 2$
 - (ii) $|2\overline{z} + i| = 4$
- 7. By factoring $z^4 4z^2 + 3$ into two quadratic factors and using inequality $|z_1 \pm z_2| \ge ||z_1| - |z_2||$, show that if z lies on the circle |z| = 2, then

$$\left|\frac{1}{(z^4-4z^2+3)}\right| \le 1/3$$

- 8. Prove that z is either real or pure imaginary if and only $\overline{z}^2 = z^2$
- 9. Use mathematical induction to show that when n=2,3,...
 - (i) $\overline{z_1 + z_2 + \dots + z_n} = \overline{z_1} + \overline{z_2} + \dots + \overline{z_n}$
 - (ii) $\overline{z_1 z_2 ... z_n} = \overline{z_1 z_2 z_n}$
- 10. Let $a_0, a_1, a_2, ..., a_n$ (n \geq 1) denote real numbers and let z by any complex number. Show that

$$\overline{a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n} = a_0 + a_1 \overline{z} + a_2 \overline{z}^2 + \ldots + a_n \overline{z}^n.$$

11. Follow the steps below to give an algebraic derivation of the triangle inequality $|z_1 + z_2| \le |z_1| + |z_2|$.

$$|z_1+z_2|^2=(z_1+z_2)(\overline{z_1}+\overline{z_2})=z_1\overline{z_1}+(z_1\overline{z_2}+\overline{z_1}\overline{z_2})+z_2\overline{z_2}.$$

- 12. Show that (a) $|e^{i\theta}| = 1$, (b) $\overline{e^{i\theta}} = e^{-i\theta}$.
- 13. Using the fact that the modulus $|e^{i\theta}-1|$ is the distance between the points $e^{i\theta}$ and 1 , give a geometric argument to find a value of o in the interval $0 \le \theta \le 2\pi$ that satisfies the equation $|e^{i\theta} - 1| = 2$.
- 14. By writing the individual factors on the left in exponential form, performing the needed operations and finally changing back to rectangulat coordinates, show that

(i)
$$i(1 - \sqrt{3}i)(\sqrt{3} + i) = 2(1 + \sqrt{3}i)$$

(ii)
$$5i/(2+i) = 1+2i$$

(iii)
$$(-1+i)^7 = -8(1+i)$$

(ii)
$$5i/(2+i) = 1+2i$$

(iii) $(-1+i)^7 = -8(1+i)$
(iv) $(1+\sqrt{3}i)^{-10} = 2^{-11}(-1+\sqrt{3}i)$

- 15. Let z be a non zero complex number and n a negative integer (n= -1, -2,). Also, write z = $re^{i\theta}$ and m = -n = 1,2,... Using expressions $z^m = r^m e^{im\theta}$ and $z^{-1} = (\frac{1}{r})e^{i(-\theta)}$, verify that $(z^m)^{-1} = (z^{-1})^m$ and hence the definition $z^n = (z^{-1})^m$ could have been alternatively written as $z^n = (z^m)^{-1}$.
- 16. Find the square roots of (a) 2i and (b) $1-\sqrt{3}i$ and express them as rectangle coordinates.
- 17. Find all roots in rectangle coordinates, exhibit them as vertices of certain squares and point out which is the principal root:

(i)
$$(-16)^{1/4}$$

(i)
$$(-16)^{1/4}$$

(ii) $(-8 - 8\sqrt{3}i)^{1/4}$.

It's for practice purpose.