

Normal Forms & Propositional Resolution

By Sukmawati NE

Resolution Rule

 $A \lor C, B \lor \neg C$ $A \lor B$

- dengan A, B, C merupakan formula proposisi
- Formula A ∨ B disebut **resolvent dari** A ∨ C dan B ∨ ¬C,
- Dan ditulis $A \lor B = Res(A \lor C, B \lor \neg C)$
- Berikan contohnya!

TERMINOLOGI (Definisi istilah)

- 1. A literal is a propositional variable or its negation.
- 2. An elementary disjunction (respectively elementary conjunction) is any literal or a disjunction (respectively conjunction) of two or more literals.
- 3. A disjunctive normal form (DNF) is any elementary conjunction or a disjunction of two or more elementary conjunctions.
- 4. A conjunctive normal form (CNF) is any elementary disjunction or a conjunction of two or more elementary disjunctions.

- p, ¬q, p V ¬q, p V ¬p V q V ¬r are elementary disjunctions;
- p, $\neg q$, $\neg p \land q$, $\neg p \land q \land \neg r \land \neg p$ are elementary conjunctions;
- p, ¬q, p ∧ ¬q, p ∨ ¬q, (p ∧ ¬p) ∨ ¬q, (r ∧ q ∧ ¬p) ∨ (¬q ∧ p) ∨ (¬r ∧ p) are disjunctive normal forms;
- p, $\neg q$, p $\land \neg q$, p $\lor \neg q$, p $\land (\neg p \lor \neg q)$, (r $\lor q \lor \neg r) \land \neg q \land (\neg p \lor r)$ are conjunctive normal forms

Cara Membentuk Equivalent Normal Form

• **Method 1** This method is based on the following algorithm, which transforms any formula into a DNF, respectively CNF

• **Method 2** This second method constructs the normal forms directly from the truth table of the given formula. We will outline it for DNF.

Cara membentuk equivalent normal form

 Proses dalam metode diatas, formula proposisi dapat disederhakan menggunakan hukum-hukum logika yang ada.

```
p \vee \neg p \equiv \top, p \wedge \neg p \equiv \bot, ,; p \wedge \top \equiv p, p \wedge \bot \equiv \bot; p \vee \top \equiv \top, p \vee \bot \equiv p.
```


Metode 1

- 1. Eliminate all occurrences of \leftrightarrow and \rightarrow using the logical equivalences
- $A \rightarrow B \equiv \neg A \lor B$,
- $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$.
- 2. Import all negations to stand directly in front of the propositional variables, using the logical equivalences listed above.
- 3. For DNF: distribute all conjunctions over disjunctions using the distributive law: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$.
- 4. Respectively, for CNF: distribute all disjunctions over conjunctions using the other distributive law: $p \ V(q \ \land r) \equiv (p \ Vq) \ \land (p \ Vr)$.

$$(p \land \neg r) \to (p \leftrightarrow \neg q)$$

$$\equiv \neg (p \land \neg r) \lor ((p \to \neg q) \land (\neg q \to p))$$

$$\equiv (\neg p \lor \neg \neg r) \lor ((\neg p \lor \neg q) \land (\neg \neg q \lor p))$$

$$\equiv \neg p \lor r \lor ((\neg p \lor \neg q) \land (q \lor p))$$

For a DNF we further distribute \land over \lor and simplify:

$$\equiv \neg p \lor r \lor (((\neg p \lor \neg q) \land q) \lor ((\neg p \lor \neg q) \land p))$$

$$\equiv \neg p \lor r \lor ((\neg p \land q) \lor (\neg q \land q)) \lor ((\neg p \land p) \lor (\neg q \land p))$$

$$\equiv \neg p \lor r \lor ((\neg p \land q) \lor \bot) \lor (\bot \lor (\neg q \land p))$$

$$\equiv \neg p \lor r \lor (\neg p \land q) \lor (\neg q \land p).$$

For a CNF we distribute \lor over \land and simplify:

$$\equiv (\neg p \lor r \lor \neg p \lor \neg q) \land (\neg p \lor r \lor q \lor p)$$

$$\equiv (\neg p \lor r \lor \neg q) \land (\top \lor r \lor q)$$

$$\equiv (\neg p \lor r \lor \neg q) \land \top$$

$$\equiv \neg p \lor r \lor \neg q.$$

Contoh Metode 2

The formula $p \leftrightarrow \neg q$ has a truth table

p	q	$p \leftrightarrow \neg q$
Т	Т	F
T	F	T
F	Т	T
F	F	F

The corresponding DNF is $(p \land \neg q) \lor (\neg p \land q)$. Check this!

Latihan 1

Bentuk ke DNF atau CNF

(a)
$$\neg (p \leftrightarrow q)$$

(b)
$$((p \rightarrow q) \land \neg q) \rightarrow p$$

(c)
$$(p \leftrightarrow \neg q) \leftrightarrow r$$

(d)
$$p \rightarrow (\neg q \leftrightarrow r)$$

(e)
$$(\neg p \land (\neg q \leftrightarrow p)) \rightarrow ((q \land \neg p) \lor p)$$

Clausal Form

- 1. A clause is essentially an elementary disjunction l1 V · · · V ln but written as a set of literals {11, ..., ln}.
- 2. The empty clause is a clause containing no literals; a unit clause is a clause containing only one literal.
- 3. A clausal form is a (possibly empty) set of clauses, written as a list: C1 · · · Ck. It represents the conjunction of these clauses.

Clausal Form

- Every CNF can be rewritten in a clausal form, and therefore every propositional formula is equivalent to one in a clausal form.
- For instance, the clausal form of the CNF formula $(p \ V \ \neg q) \ V \ \neg r) \land \ \neg p \land (\ \neg q \ V r) \ is \{p, \ \neg q, \ \neg r\} \{\ \neg p\} \{\ \neg q, \ r\}.$
- The Resolution Rule can be rewritten for clauses as follows: $\frac{\{A_1, ..., C, ..., A_m\}\{B_1, ..., \neg C, ..., B_n\}}{\{A_1, ..., A_m, B_1, ..., B_n\}}.$

• The clause {A1,..., Am, B1,..., Bn} is a **resolvent of** the clauses {A1,..., C,..., Am} and {B1,..., ¬C,..., Bn}.

Example 3.6.7

Some examples of applications of clausal resolution:

• Terdapat dua clauses yang dapat mempunyai lebih dari satu resolvents, misal:

$$\frac{\{p, \neg q\}\{\neg p, q\}}{\{p, \neg p\}}, \ \frac{\{p, \neg q\}\{\neg p, q\}}{\{\neg q, q\}}.$$

Namun tidak berarti:

$$\frac{\{p, \neg q\}\{\neg p, q\}}{\{\}}$$

Resolution – based Derivations

- The idea behind the method of resolution is similar to that of semantic tableaux.
- In order to determine whether a logical consequence $A1, ..., An \models B$ holds using the method of resolution, we negate the conclusion B and transform each of the formulae A1, ..., An, $\neg B$ into clausal form.
- Then we test whether the resulting set of clauses is unsatisfiable, by looking for a resolution-based derivation of the empty clause from that set of clauses.

Definisi

• A resolution-based derivation of a formula B from a list of formulae A1,..., An is a derivation of the empty clause {} from the set of clauses obtained from the formulae A1,..., An, ¬B, by successive applications of the Rule of Propositional Resolution.

Example 3.6.9

Using Propositional Resolution, check the logical consequence $p \rightarrow q, q \rightarrow r \models p \rightarrow r$.

Solution

First, we transform each of $p \to q$, $q \to r$, $\neg(p \to r)$ to clausal form. The resulting set of clauses is:

$$C_1 = \{ \neg p, q \}, C_2 = \{ \neg q, r \}, C_3 = \{ p \}, C_4 = \{ \neg r \}.$$

Now we apply the Resolution Rule successively:

$$C_5 = \{q\} = Res(C_1, C_3);$$

 $C_6 = \{r\} = Res(C_2, C_5);$
 $C_6 = \{\} = Res(C_4, C_6).$

The derivation of the empty clause completes the proof that $p \to q$, $q \to r \models p \to r$.

• Catatan:

- $p \rightarrow q \equiv \neg p \lor q$
- $q \rightarrow r \equiv \neg q \lor r$
- $\neg (p \rightarrow r) \equiv \neg (\neg p \lor r) \equiv \neg \neg p \land \neg r \equiv p \land \neg r$

Example 3.6.10

Check whether $(\neg p \rightarrow q)$, $\neg r \models p \lor (\neg q \land \neg r)$ holds.

Solution

First transform $(\neg p \rightarrow q)$, $\neg r$, $\neg (p \lor (\neg q \land \neg r))$ to clausal form:

$$C_1 = \{p, q\}, C_2 = \{\neg r\}, C_3 = \{\neg p\}, C_4 = \{q, r\}.$$

Now, applying resolution successively:

$$C_5 = Res(C_1, C_3) = \{q\};$$

 $C_6 = Res(C_2, C_4) = \{q\}.$

At this stage, no new applications of the Propositional Resolution Rule are possible hence the empty clause is not derivable. Therefore, $(\neg p \rightarrow q)$, $\neg r \nvDash p \lor (\neg q \land \neg r)$.

- Catatan:
 - $(\neg p \rightarrow q) \equiv \neg \neg p \lor q \equiv p \lor q$
 - $\bullet \quad \neg \left(p \lor \left(\neg \ q \land \neg \ r \right) \equiv \neg \ p \land \neg \left(\neg \ q \land \neg \ r \right) \equiv \neg \ p \land \left(\neg \ \neg \ q \lor \neg \neg \ r \right) \right) \equiv \neg \ p \land \left(q \lor r \right)$

Latihan 2

• Using the method of resolution check which of the following formulae are tautologies.

(a)
$$((p \rightarrow q) \rightarrow q) \rightarrow q$$

(b)
$$((p \rightarrow q) \land (p \rightarrow \neg q)) \rightarrow \neg p$$

(c)
$$((p \ Vq) \rightarrow \neg r) \rightarrow \neg (\neg q \land r)$$

(d)
$$((p \rightarrow q) \land (p \rightarrow r)) \rightarrow (p \rightarrow (q \land r))$$

Latihan 3

• Using the method of resolution check the following logical consequences.

(a)
$$\neg p \rightarrow q$$
, $\neg p \rightarrow \neg q \models p$

(b)
$$p \rightarrow r$$
, $q \rightarrow r \models (p \lor q) \rightarrow r$

(c)
$$(p \land q) \rightarrow r \models (q \rightarrow r) \lor (p \rightarrow r)$$