Hands-on Machine Learning With Python: Build, Train & Deploy

Organized by:

Department of Statistics,

Dr. D. Y. Patil Arts, Commerce & Science College

About Trainer

Sharad Kolse

- Sr. Analyst at Global Credit Bureau
- Masters in Statistics from SPPU
- Founder of ScaleÛp Analytics
- Conducted multiple courses and workshops

What you will gain after the course?

Practical Tools and Experience:

Gain hands-on experience with Python, ML algos, Streamlit, Github

Become a high-demand data analyst/ ML engineer in a rapidly growing field

- Identify patterns, trends, and insights in data - EDA

Enhance your resume with most trending skills in analytics

Apply skills to real-world projects and case studies

Gain upper hand in the data science market by learning the technical skills in academics

Machine Learning Tools/Libraries

Course Outline

- 1 Introduction to ML and Python
- **02** Gradient descent and core ML concepts
- 03 Supervised Learning
- Unsupervised
 Learning

- Model Building and validation
- Model deployment using Streamlit and Github
- **07** End to end case study
- **08** Capstone Projects

ScaleÛp Analytics **Advance Topics** Methods to Reduce **Imbalance Data** Overfitting Handling **Advanced Feature** Hyper-parameter Engineering Tuning **Outliers Treatment** Tree Based Algorithms

01 ntroduction

Introduction to ML and Python

01

Bird's eye view of ML

02

Types of Machine Learning 03

Important ML concepts

04

Introduction to Python

The Al Universe

What is ML?

Machine Learning (ML) is like **teaching a computer how to learn from experience**, just like humans do. Instead of programming it with fixed rules, we give it lots of examples, and it figures out patterns on its own.

Difference

Feature	Supervised Learning	Unsupervised Learning
Definition	Learns from labeled data (input-output pairs).	Learns patterns from unlabeled data.
Types	Classification, Regression.	Clustering, Association, Dimensionality Reduction.
Labels	Requires labeled data $(X \rightarrow Y)$.	No labels, only input data (X).
Goal	Predict output based on past examples.	Find hidden patterns & relationships.
Example Algorithms	Linear Regression, Decision Trees, Random Forest	K-Means, PCA, Clustering
Use Cases	Spam detection, fraud detection, loan approval, price prediction.	Customer segmentation, anomaly detection, topic modeling, recommendation systems.

What is Machine Learning?

- A. A programming technique that does not require data
- A subset of AI that enables computers to learn from data
 - C. A hardware component for faster computing
 - D. A method to manually program all possible outcomes

Which of the following is NOT a type of Machine Learning?

- A. Supervised Learning
- B. Unsupervised Learning
- C. Reinforcement Learning

Static Learning

Quiz 3

Which of the following is an example of supervised learning?

Spam email classification

- B. Customer segmentation
- C. Market basket analysis
- D. Anomaly detection

What is the key difference between supervised and unsupervised learning?

- V
- Supervised learning uses labeled data, while unsupervised learning uses unlabeled data
- B. Unsupervised learning requires human intervention, while supervised learning does not
- C. Both require labeled data
- D. Supervised learning is used only for clustering

Which of the following is an example of a regression problem?

- A. Predicting whether an email is spam or not
- Predicting the price of a house based on its features
 - C. Identifying handwritten digits
 - D. Classifying animals into different species

What is the primary goal of Unsupervised Learning?

To find patterns in data without predefined labels

- B. To predict continuous values
- C. To classify data into known categories
- D. To memorize data points

