Principal Component Analysis (PCA)

Analiza componentelor principale

Reducerea dimensionalității

 rezumarea datelor cu multe (p) variabile printr-un set mai mic de (k) variabilee derivate (sintetice, compozite)

Reducera Dimensionalitatii

- Variația "reziduală" este informația din A care nu este păstrată în X
- act de echilibru între
 - claritatea reprezentării, ușurința înțelegerii
 - suprasimplificare: pierderea informaţiilor importante sau relevante.

Principal Component Analysis (PCA)

- probabil cea mai utilizată și cunoscută metodă "standard" de analiză multivariată
- inventată de Pearson (1901) și Hotelling (1933)

Principal Component Analysis (PCA)

- Se da o matrice de date de n observații si p variabile, potențial corelate și o rezumă prin axe necorelate (componente principale sau axe principale) care sunt combinații liniare ale celor p variabile originale
- primele k componente vor explica cea mai mare parte din variația dintre variabile

Explicatii Geometrice pt PCA

- observaţiile sunt reprezentate ca un nor de n puncte într-un spaţiu multidimensional cu o axă pentru fiecare dintre cele p variabile
- centroidul punctelor este definit de media fiecărei variabile
- variația fiecărei variabile este abaterea medie pătrată ale celor n valori ale sale în jurul valorii medii:

$$V_i = \frac{1}{n-1} \sum_{m=1}^{n} \left(X_{im} - \overline{X}_i \right)^2$$

Explicatii Geometrice pt PCA

• gradul în care variabilele sunt corelate liniar este reprezentat de covarianța lor.

Explicatii Geometrice pt PCA

- obiectivul PCA este de a roti rigid axele acestui spațiu p-dimensional către noi poziții (axe principale) care au următoarele proprietăți:
 - ordonat astfel încât axa principală 1 să aibă cea mai mare varianță, axa 2 are următoarea cea mai mare varianță,, iar axa p are cea mai mică varianță
 - covarianța dintre fiecare pereche de axe principale este zero (axele principale sunt necorelate)

Exemplu 2D de PCA

• variabilele X_1 si X_2 au covarianță pozitivă și fiecare are o variație similară.

Centrarea variabilelor

• fiecare variabilă este ajustată la o medie de zero (scăzând media de la fiecare valoare).

Calcularea Componentelor Principale

- PC 1 are cea mai mare varianta (9.88)
- PC 2 are varianta de 3.03

Măsura de disimilare folosită în PCA este distanța euclidiană

 PCA folosește distanța euclidiană calculată din variabilele p ca măsură a disimilarității dintre n obiecte

 PCA obţine cea mai bună reprezentare kdimensională (k<p) a distanţelor euclidiene între obiecte

Generalizare la p dimensiuni

- În practică nimeni nu folosește PCA cu doar 2 variabile
- Algoritmul pentru găsirea axelor principale se generalizează la p variabile
- PC 1 este direcția de varianță maximă în norul pdimensional de puncte
- PC 2 se orientează spre următoarea varianță cea mai mare, cu constrângerea de a avea covarianță zero cu PC 1.

Generalizare la p dimensiuni

- PC 3 se orientează spre următoarea varianță cea mai mare, cu constrângerea că are covarianță zero atât cu PC 1 cât și cu PC 2
- și așa mai departe ... până la componenta principala p

• fiecare axă principală este o combinație liniară a celor două variabile originale

 $PC_j = a_{i1}Y_1 + a_{i2}Y_2 + ... + a_{in}Y_n$ a_{ij} 's sunt coeficienții pentru factorul i, înmulțiți du valoarea măsurată pentru variabila j

Axele PC sunt o rotație rigidă a variabilelor originale

 PC 1 este simultan direcția de varianță maximă și o "linie de cea mai bună potrivire" (distanțele pătrate ale punctelor îndepărtate de PC 1

Generalizare la p dimensiuni

- dacă luăm primele componente principale k, ele definesc "hiperplanul de cea mai bună potrivire" k-ul la nor
- din variația totală a celor p variabile:
 - PC-urile de la 1 la k reprezintă proporția maximă posibilă a acelei variații care poate fi afișată în dimensiuni k

Covarianță vs Corelație

- utilizarea covarianțelor dintre variabile are sens numai dacă sunt măsurate în aceleași unități
- chiar și atunci, variabilele cu variații mari vor domina componentele principale
- aceste probleme sunt în general evitate prin standardizarea fiecărei variabile la variația unitară și media zero

$$X_{im}' = \frac{\left(X_{im} - \overline{X}_i\right)^{\text{Media}}}{\text{SD}_i}$$
 variabilei i

a variabilei i

Covarianță vs Corelație

- covarianțele dintre variabilele standardizate sunt corelații
- după standardizare, fiecare variabilă are o variație de 1.000
- corelaţiile pot fi, de asemenea, calculate din variaţii şi covarianţe:

Corelatie intre variabilele
$$i$$
 and j

$$Varianta$$

$$Varianta$$

$$Variabilei $i$$$

$$Variabilei $i$$$

- prima etapă este calcularea matricei de variații și covarianțe (sau corelații) între fiecare pereche de variabile p
- matrice pătratică, simetrică
- diagonalele sunt varianțele, in rest covarianțele.

	X ₁	X ₂
X ₁	6.6707	3.4170
X ₂	3.4170	6.2384

	X ₁	X ₂
X ₁	1.0000	0.5297
X ₂	0.5297	1.0000

Variance-covariance Matrix

Correlation Matrix

• în notație matricială

 unde X este matricea de date n x p, cu fiecare variabilă centrată (de asemenea, standardizată dacă se utilizează corelații).

	X ₁	X ₂
X ₁	6.6707	3.4170
X ₂	3.4170	6.2384

	X ₁	X ₂
X ₁	1.0000	0.5297
X ₂	0.5297	1.0000

Variance-covariance Matrix

Correlation Matrix

Manipulari Matriciale

 transpusa: schimba coloanele în rânduri sau rândurile în coloane

$$X = \begin{bmatrix} 10 & 0 & 4 \\ 7 & 1 & 2 \end{bmatrix}$$
 $X' = \begin{bmatrix} 10 & 7 \\ 0 & 1 \\ 4 & 2 \end{bmatrix}$

- înmulțirea matricilor
 - trebuie să fie același număr de coloane în matricea din stânga ca și numărul de rânduri din matricea din dreapta

- suma diagonalelor matricei varianță-covarianță se numește urmă (trace)
- reprezintă variația totală a datelor
- este distanța euclidiană pătrată medie între fiecare obiect și centroid în spațiul p-dimensional.

	X_1	X ₂
X ₁	6.6707	3.4170
X ₂	3.4170	6.2384

	X ₁	X ₂
X ₁	1.0000	0.5297
X ₂	0.5297	1.0000

Trace = 12.9091

Trace = 2.0000

- găsirea principalelor axe implică analiza valorilor proprii ale matricei S)
- valorile proprii (rădăcini latente) ale lui S sunt soluții
 (λ) la ecuația caracteristică:

$$|S-\lambda I|=0$$

- Valorile proprii, λ_1 , λ_2 , ... λ_p sunt variațiile coordonatelor pe fiecare axă principală a componentelor
- suma tuturor valorilor proprii este egală cu urma lui S (suma variațiilor variabilelor inițiale).

	X_1	X ₂
X ₁	6.6707	3.4170
X ₂	3.4170	6.2384

$$\lambda_1 = 9.8783$$
 $\lambda_2 = 3.0308$

Obs: $\lambda_1 + \lambda_2 = 12.9091$

Trace = 12.9091

- Fiecare vector propriu (eigenvector este format din p valori care reprezintă "contribuția" fiecărei variabile la axa componentă principală
- Vectorii proprii nu sunt corelaţi (ortogonali)
 - produsul lor scalar e zero.

Eigenvectors			
	u ₁	u ₂	
X ₁	0.7291	-0.6844	
X ₂	0.6844	0.7291	

0.7291*(-0.6844) + 0.6844*0.7291 = 0

• coordonatele fiecărui obiect i pe axa principală k, cunoscute sub numele de scoruri pt. PC k, sunt calculate ca

$$z_{ki} = u_{1k} x_{1i} + u_{2k} x_{2i} + \cdots + u_{pk} x_{pi}$$

- where Z is the n x k matrix of PC scores, X is the n x p centered data matrix and U is the p x k matrix of eigenvectors
- unde Z este matricea n x k a scorurilor PC, X este matricea de date centrată n x p și U este matricea p x k a eigenvectorilor.

- variația scorurilor pe fiecare componentă este egală cu valoarea corespunzătoare a valorii proprii pentru acea axă
- valoarea proprie reprezintă variația afișată ("explicată" sau "extrasă") de axa k
- suma primelor k valori proprii este variaţia explicată prin ordonarea k-dimensională.

 $\lambda_1 = 9.8783$ $\lambda_2 = 3.0308$ Trace = 12.9091

PC 1 "explică" 9.8783/12.9091 = 76.5% din variația totală

The Algebra of PCA

- Matricea de produse scalare calculată între axe principale are o formă simplă:
- toate valorile din afara diagonalei sunt zero (axele principale sunt necorelate)
- valorile diagonale sunt valorile proprii.

	PC ₁	PC ₂
PC ₁	9.8783	0.0000
PC ₂	0.0000	3.0308

Variance-covariance Matrix of the PC axes

Un exemplu mai provocator

- date din cercetările privind definirea habitatului în broasca Baw Baw pe cale de dispariție
- 16 variabile de mediu și structurale măsurate la fiecare din 124 de situri

• matricea de corelație folosită deoarece variabilele au

unități diferite

Valori proprii

Axis	Eigenvalue	% de Variatie explicata	% cumulat de Variatie explicata
1	5.855	36.60	36.60
2	3.420	21.38	57.97
3	1.122	7.01	64.98
4	1.116	6.97	71.95
5	0.982	6.14	78.09
6	0.725	4.53	82.62
7	0.563	3.52	86.14
8	0.529	3.31	89.45
9	0.476	2.98	92.42
10	0.375	2.35	94.77

Interpretarea vectorilor proprii

 Corelaţiile dintre variabile şi axele principale sunt cunoscute sub denumirea de sarcini

fiecare element al vectorilor proprii reprezintă contribuția

unei variabile date la o componentă

	1	2	3
Altitude	0.3842	0.0659	-0.1177
pH	-0.1159	0.1696	-0.5578
Cond	-0.2729	-0.1200	0.3636
TempSurf	0.0538	-0.2800	0.2621
Relief	-0.0765	0.3855	-0.1462
maxERht	0.0248	0.4879	0.2426
avERht	0.0599	0.4568	0.2497
%ER	0.0789	0.4223	0.2278
%VEG	0.3305	-0.2087	-0.0276
%LIT	-0.3053	0.1226	0.1145
%LOG	-0.3144	0.0402	-0.1067
% W	-0.0886	-0.0654	-0.1171
H1Moss	0.1364	-0.1262	0.4761
DistSWH	-0.3787	0.0101	0.0042
DistSW	-0.3494	-0.1283	0.1166
DistMF	0.3899	0.0586	-0.0175

Câte axe sunt necesare?

- axa principală (k + 1) reprezintă mai multă variație decât ne-am aștepta?
- au fost propuse mai multe teste și reguli
- o "regulă generală" comună când PCA se bazează pe corelații este că axe cu valori proprii> 1 merită interpretate

Care sunt ipotezele PCA?

- relațiile dintre variabile sunt LINEARE
- nor de puncte în spațiul p-dimensional are dimensiuni liniare care pot fi rezumate eficient de axele principale
- dacă structura din date este NELINEARĂ (norul de puncte se curbează prin spațiul p-dimensional), axele principale nu sunt un rezumat eficient și informativ al datelor.