

"Přímky, k nimž se graf funkce blíží."

"Přímky, k nimž se graf funkce blíží."

"Přímky, k nimž se graf funkce blíží."

Funkce $y = \frac{1}{x}$ má asymptoty x = 0 (svislá) a y = 0 (vodorovná).

 $\mathsf{asymptoty} \left\{ \right.$

$$asymptoty \left\{ \begin{array}{l} bez \ sm\Breve{e}rnice \end{array} \right.$$

$$asymptoty \begin{cases} bez \ směrnice \\ se \ směrnicí \end{cases}$$

Asypmtota bez směrnice

Definice

Přímka x = a se nazývá asymptotou bez směrnice grafu funkce f, existuje-li aspoň jedna z limit

$$\lim_{x\to a_+} f(x), \qquad \lim_{x\to a_-} f(x)$$

a je nevlastní (tj. rovna $\pm \infty$).

Asypmtota bez směrnice

Definice

Přímka x=a se nazývá asymptotou bez směrnice grafu funkce f, existuje-li aspoň jedna z limit

$$\lim_{x\to a_+} f(x), \qquad \lim_{x\to a_-} f(x)$$

a je nevlastní (tj. rovna $\pm \infty$).

Asypmtota bez směrnice

Definice

Přímka x=a se nazývá asymptotou bez směrnice grafu funkce f, existuje-li aspoň jedna z limit

$$\lim_{x\to a_+} f(x), \qquad \lim_{x\to a_-} f(x)$$

a je nevlastní (tj. rovna $\pm \infty$).

Asypmtota se směrnicí

Definice

Přímka y=ax+b (kde $a,b\in\mathbb{R}$) se nazývá asymptotou se směrnicí grafu funkce f , platí-li

$$\lim_{x\to\infty}(f(x)-(ax+b))=0\quad \text{nebo}\quad \lim_{x\to-\infty}(f(x)-(ax+b))=0.$$

Asypmtota se směrnicí

Definice

Přímka y=ax+b (kde $a,b\in\mathbb{R}$) se nazývá asymptotou se směrnicí grafu funkce f , platí-li

$$\lim_{x\to\infty}(f(x)-(ax+b))=0\quad \text{nebo}\quad \lim_{x\to-\infty}(f(x)-(ax+b))=0.$$

Asypmtota se směrnicí

Definice

Přímka y=ax+b (kde $a,b\in\mathbb{R}$) se nazývá asymptotou se směrnicí grafu funkce f, platí-li

$$\lim_{x\to\infty}(f(x)-(ax+b))=0\quad \text{nebo}\quad \lim_{x\to-\infty}(f(x)-(ax+b))=0.$$

• Spočteme $a = \lim_{x \to \infty} \frac{f(x)}{x}$. Pokud tato limita existuje a je vlastní, pokračujeme.

- Spočteme $a = \lim_{x \to \infty} \frac{f(x)}{x}$. Pokud tato limita existuje a je vlastní, pokračujeme.
- Spočteme $b = \lim_{x \to \infty} f(x) ax$.

- Spočteme $a = \lim_{x \to \infty} \frac{f(x)}{x}$. Pokud tato limita existuje a je vlastní, pokračujeme.
- ② Spočteme $b = \lim_{x \to \infty} f(x) ax$. Pokud tato limita existuje a je vlastní, je y = ax + b asymptotou (se směrnicí).

- Spočteme $a = \lim_{x \to \infty} \frac{f(x)}{x}$. Pokud tato limita existuje a je vlastní, pokračujeme.
- ② Spočteme $b = \lim_{x \to \infty} f(x) ax$. Pokud tato limita existuje a je vlastní, je y = ax + b asymptotou (se směrnicí).

Pokud nám v jednom z kroků nevyšla vlastní limita, asymptota se směrnicí (v ∞) neexistuje.

- Spočteme $a=\lim_{x\to\infty}\frac{f(x)}{x}$. Pokud tato limita existuje a je vlastní, pokračujeme.
- Spočteme $b = \lim_{x \to \infty} f(x) ax$. Pokud tato limita existuje a je vlastní, je y = ax + b asymptotou (se směrnicí).

Pokud nám v jednom z kroků nevyšla vlastní limita, asymptota se směrnicí (v ∞) neexistuje. Stejně se to provede pro $-\infty$.

Asymptoty se směrnicí mohou být různé!

$$f\colon y=\frac{x}{2^x+1}+x$$

Asymptoty se směrnicí mohou být různé!

Připomeňme, že funkce f je spojitá v bodě $a \in D_f$, pokud platí $\lim_{x \to a} f(x) = f(a)$.

Připomeňme, že funkce f je spojitá v bodě $a \in D_f$, pokud platí $\lim_{x \to a} f(x) = f(a)$.

Přidáme ještě:

- zprava spojitá v a: $\lim_{x \to a_+} f(x) = f(a)$,
- zleva spojitá v a: $\lim_{x \to a_{-}} f(x) = f(a)$.

Připomeňme, že funkce f je spojitá v bodě $a \in D_f$, pokud platí $\lim_{x \to a} f(x) = f(a)$.

Přidáme ještě:

- zprava spojitá v a: $\lim_{x \to a_+} f(x) = f(a)$,
- zleva spojitá v a: $\lim_{x \to a_{-}} f(x) = f(a)$.

Definice

Je-li *I* interval, pak řekneme, že *f je spojitá na I*, pokud je spojitá v každém vnitřním bodě *I*, případně jednostranně spojitá v krajních bodech, pokud patří do *I*.

Připomeňme, že funkce f je spojitá v bodě $a \in D_f$, pokud platí $\lim_{x \to a} f(x) = f(a)$.

Přidáme ještě:

- zprava spojitá v a: $\lim_{x \to a_+} f(x) = f(a)$,
- zleva spojitá v a: $\lim_{x \to a_{-}} f(x) = f(a)$.

Definice

Je-li I interval, pak řekneme, že f je spojitá na I, pokud je spojitá v každém vnitřním bodě I, případně jednostranně spojitá v krajních bodech, pokud patří do I.

Funkce spojitá na intervalu $I \approx ",jde na \ l \ nakreslit jedním tahem".$

Věta

Nechť a, b jsou reálná čísla splňující a < b a funkce f je spojitá na intervalu $\langle a; b \rangle$.

Věta

Nechť a, b jsou reálná čísla splňující a < b a funkce f je spojitá na intervalu $\langle a;b\rangle$. Pak existují $m,M\in\langle a;b\rangle$ taková, že pro všechna $x\in\langle a;b\rangle$ platí

$$f(m) \leq f(x) \leq f(M)$$
.

Věta

Nechť a,b jsou reálná čísla splňující a < b a funkce f je spojitá na intervalu $\langle a;b \rangle$. Pak existují $m,M \in \langle a;b \rangle$ taková, že pro všechna $x \in \langle a;b \rangle$ platí

$$f(m) \leq f(x) \leq f(M)$$
.

Speciálně je spojitá funkce na uzavřeném intervalu omezená.

Věta

Nechť a,b jsou reálná čísla splňující a < b a funkce f je spojitá na intervalu $\langle a;b \rangle$. Pak existují $m,M \in \langle a;b \rangle$ taková, že pro všechna $x \in \langle a;b \rangle$ platí

$$f(m) \leq f(x) \leq f(M)$$
.

Speciálně je spojitá funkce na uzavřeném intervalu omezená.

Je nutné, aby byl interval uzavřený!

Spojitá funkce nabývá mezihodnot

Spojitá funkce nabývá mezihodnot

Věta

Nechť a, b jsou reálná čísla splňující a < b a funkce f je spojitá na intervalu $\langle a; b \rangle$. Pak pro každé y mezi f(a) a f(b) existuje $c \in \langle a; b \rangle$ splňující f(c) = y.

Spojitá funkce nabývá mezihodnot

Věta

Nechť a, b jsou reálná čísla splňující a < b a funkce f je spojitá na intervalu $\langle a; b \rangle$. Pak pro každé y mezi f(a) a f(b) existuje $c \in \langle a; b \rangle$ splňující f(c) = y.

Důsledek

Je-li f spojitá na $\langle a;b\rangle$ a platí buď $f(a)\leq 0$ a $f(b)\geq 0$, nebo $f(a)\geq 0$ a $f(b)\leq 0$, tak existuje $c\in\langle a;b\rangle$ splňující f(c)=0.

...aneb "Jak vyřešit libovolnou rovnici."

• Rovnici převedeme do tvaru f(x) = 0.

...aneb "Jak vyřešit libovolnou rovnici."

• Rovnici převedeme do tvaru f(x) = 0. (Předpokládáme, že f je spojitá na dostatečně velkém intervalu.)

- Rovnici převedeme do tvaru f(x) = 0. (Předpokládáme, že f je spojitá na dostatečně velkém intervalu.)
- ② Odhadneme body $a, b \in \mathbb{R}$ takové, že hodnoty f(a) a f(b) mají opačné znaménko.

- Rovnici převedeme do tvaru f(x) = 0. (Předpokládáme, že f je spojitá na dostatečně velkém intervalu.)
- **3** Odhadneme body $a, b \in \mathbb{R}$ takové, že hodnoty f(a) a f(b) mají opačné znaménko.
- **3** Podíváme se do bodu $c = \frac{a+b}{2}$.

- Rovnici převedeme do tvaru f(x) = 0. (Předpokládáme, že f je spojitá na dostatečně velkém intervalu.)
- **3** Odhadneme body $a, b \in \mathbb{R}$ takové, že hodnoty f(a) a f(b) mají opačné znaménko.
- **3** Podíváme se do bodu $c = \frac{a+b}{2}$. Mají-li f(c) a f(a) stejné znaménko, pak nahradíme a za c a pokračujeme předchozím bodem.

- Rovnici převedeme do tvaru f(x) = 0. (Předpokládáme, že f je spojitá na dostatečně velkém intervalu.)
- ② Odhadneme body $a, b \in \mathbb{R}$ takové, že hodnoty f(a) a f(b) mají opačné znaménko.
- 3 Podíváme se do bodu $c=\frac{a+b}{2}$. Mají-li f(c) a f(a) stejné znaménko, pak nahradíme a za c a pokračujeme předchozím bodem. Mají-li f(c) a f(a) různé znaménko, pak nahradíme b za c a pokračujeme předchozím bodem.

- Rovnici převedeme do tvaru f(x) = 0. (Předpokládáme, že f je spojitá na dostatečně velkém intervalu.)
- ② Odhadneme body $a, b \in \mathbb{R}$ takové, že hodnoty f(a) a f(b) mají opačné znaménko.
- 3 Podíváme se do bodu $c=\frac{a+b}{2}$. Mají-li f(c) a f(a) stejné znaménko, pak nahradíme a za c a pokračujeme předchozím bodem. Mají-li f(c) a f(a) různé znaménko, pak nahradíme b za c a pokračujeme předchozím bodem.
- Opakujeme body 2 a 3, dokud nemáme tak přesný výsledek, jak bychom chtěli.