Campus

INSTITUTO FEDERAL DA PIAUÍ

Campus Picos

Disciplina: Matemática Computacional

Professor(a): Rogerio Figueredo de Sousa

Curso: Análise e Desenvolvimento de Sistemas Semestre: 1

Lista 4: Conjuntos

1. Julgue se os conjuntos são finitos ou infinitos:

a) Conjunto das letras do alfabeto;

b)
$$P = \{y | y = 2x \ e \ x \in \mathbb{N}\}$$

c)
$$M = \{x \in \mathbb{N} | x > 0 \ e \ x < 6\}$$

d) O conjunto do números naturais.

2. Descreva cada um dos conjuntos a seguir listando seus elementos:

1.
$$A = \{x | x \text{ \'e um inteiro } e \ 3 < x < 8\}$$

6.
$$F = \{x | x \in \mathbb{N} \ e \ (\forall y)(y \in \mathbb{N} \ \to \ x \le y)\}$$

2.
$$B = \{x | x \notin um \text{ $m\hat{e}s$ com exatamente } 30 \text{ $dias} \}$$
 7. $A = \{x | x \in \mathbb{N} \text{ e } (\forall y)(y \in \{2,3,4,5\}) \rightarrow \{2,3,4,5\}) \}$

$$A = \{x | x \in \mathbb{N} \ e \ (\forall y)(y \in \{2, 3, 4, 5\}) \rightarrow$$

3.
$$C = \{x | x \ \'e \ a \ capital \ do \ Brasil\}$$

$$x \ge y$$
.

4.
$$D = \{x | (\exists y)(y \in \{0, 1, 2\} \ e \ x = y^3)\}$$

8.
$$B = \{x | (\exists y)(\exists z)(y \in \{1,2\} \ e \ z \in \{$$

5.
$$E = \{x | x \in \mathbb{N} \ e \ (\exists y)(y \in \mathbb{N} \ e \ x \le y)\}$$

$$\{2,3\} \ e \ x = y + z)\}$$

3. Descreva cada um dos conjuntos a seguir através de uma relação de recorrência.

a)
$$A = \{2, 4, 16, 256, ...\}$$

b)
$$B = \{1, 4, 9, 16, ...\}$$

c)
$$C = \{1, 3, 9, 27, ...\}$$

4. Sejam $A = \{x | x \in \mathbb{N} \ e \ x \ge 5\}, B = \{10, 12, 16, 20\} \ e \ C = \{x | (\exists y)(y \in \mathbb{N} \ e \ x = 2y)\}$

Quais das proposições abaixo são verdadeiras:

a)
$$B \subseteq C$$

g)
$$\{12\} \in B$$

b)
$$B \subset A$$

$$h) \ \{12\} \subseteq B$$

c)
$$A \subseteq C$$

i)
$$\{x|x\in\mathbb{N}\ e\ x<20\}\nsubseteq B$$

d)
$$26 \in C$$

$$j) 5 \subseteq A$$

e)
$$\{11, 12, 13\} \subseteq A$$

$$\mathbf{k}) \ \{\emptyset\} \subseteq B$$

f)
$$\{11, 12, 13\} \subset C$$

1)
$$\emptyset \notin A$$

5. Sejam: $A = \{x | x \in \mathbb{R} \ e \ x^2 - 4x + 3 = 0\} \ e \ B = \{x | x \in \mathbb{N} \ e \ 1 \le x \le 4\}$ Prove que $A \subset B$.

6. Sejam $A = \{x | x \in \mathbb{N} \ e \ x^2 < 15\} \ e \ B = \{x | x \in \mathbb{N} \ e \ 2x < 7\}$ Prove que A = B.

7. Para $A = \{1, 2, 3\}$, qual é o $\wp(A)$?

- 8. Se S tem n elementos, então $\wp(A)$ tem quantos elementos?
- 9. Sobre o conjunto $A = \{1, 2, 3, 4\}$, considere as afirmativas a seguir.
 - 1. $\mathcal{P}(A) = \{\emptyset, \{2, 3, 4\}\}\$ é uma partição de A.
 - 2. $\mathcal{P}(A) = \{\emptyset, \{1, 2, 3\}, \{3, 4\}\}\)$ é uma partição de A.
 - 3. $\mathcal{P}(A) = \{\{1, 2\}, \{3, 4\}\}\)$ é uma partição de A.
 - 4. $\mathcal{P}(A) = \{\{1\}, \{2\}, \{3\}, \{4\}\}\}$ é uma partição de A.

Assinale a alternativa correta.

- a) Somente as afirmativas I e II são corretas;
- b) Somente as afirmativas I e IV são corretas;
- c) Somente as afirmativas III e IV são corretas;
- d) Somente as afirmativas I, II e III são corretas;
- e) Somente as afirmativas II, III e IV são corretas;
- 10. Sejam

$$A = \{x | x \text{ \'e um inteiro n\~ao} - negativo par\}$$
$$B = \{x | (\exists y)(y \in \mathbb{N} \text{ } e \text{ } x = 2y + 1)\}$$
$$C = \{x | (\exists y)(y \in \mathbb{N} \text{ } e \text{ } x = 4y)\}$$

Julgue a veracidade de cada alternativa:

- a) $A \cup B$
- b) A = B
- c) $C \subset A$
- d) $A \cup C$
- e) $A C = \{x | (\exists y)(y \in \mathbb{N} \ e \ x = 4y + 2)\}$
- 11. Sejam

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

Se $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, encontre:

- a) |A| + |B|
- b) $A \cup B$
- c) A-C
- d) $B \cap (A \cup C)$
- e) \overline{C}
- 12. Usando as identidades básicas, prove a identidade:

$$[C \cap (A \cup B)] \cup [(A \cup B) \cap \overline{C}] = A \cup B$$

 $(A, B \in C \text{ são subconjuntos arbitrários de } S.)$

- 13. Enuncie a identidade dual do exemplo anterior.
- 14. Usando as identidades básicas, prove a identidade:

$$(A \cup B) \cap (A \cup \overline{B}) = A$$

- 15. Liste os elementos dos seguintes conjuntos:
 - a) $\{x \mid x \notin um \ n\'umero \ real \ e \ x^2 = 1\}$
 - b) $\{x \mid x \in \mathbb{Z} \ e \ |x| < 4\}$ (|x| denota a função valor absoluto)
 - c) $\{x \mid x \in m\'ultiplo\ de\ 4\}$
- 16. Descreva cada um dos seguintes conjuntos, atribuindo-lhes uma propriedade específica:
 - a) $S = \{1, 4, 9, 16\}$
 - b) $S = \{2, 3, 5, 7, 11, 13, ...\}$
 - c) $S = \{0, 1, 10, 11, 100, 101, 110, 111, 1000, \dots\}$
- 17. Sejam os conjuntos: $A = \{x \mid x \text{ \'e par positivo } e \text{ } x < 15\}, B = \{x \in N \mid x < 15\} \text{ e } C = \{x \mid x < 15 \text{ e } x \text{ \'e primo}\}.$ Insira os elementos correspondentes no diagrama de Euler-Venn:
- 18. Faça um diagrama de Euler-Venn que simbolize a seguinte situação: A, B, C, D são conjuntos não vazios e $D \subset C \subset B \subset A$.
- 19. Sejam U (universo) = $\{n \in \mathbb{N} \mid 0 \le n \le 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{x \in \mathbb{R} | (x-1)(x-3)^3 = 0\}$ e $C = \{n \in \mathbb{N} | n \notin impar\}$. Determine:
 - a) $A \cup B$
 - b) $A \cap (B \cup C)$
 - c) C-A
 - d) $\overline{A} \cup C$
 - e) a cardinalidade de A, B e C
- 20. Sejam os conjuntos $A = \{a, b, c\}, B = \{x, y\}$ e $C = \{0, 1\}$. Encontre os seguintes produtos cartesianos:
 - a) $A \times B$
 - a) $C \times A$
- 21. A, B e C são subconjuntos de um conjunto S. Prove as identidades a seguir usando as identidades básicas envolvendo conjuntos.
 - a) $(A \cup B) \cap (A \cup \overline{B}) = A$
 - b) $A \cap (B \cap \overline{A}) = B \cap A$ [OBS: Corrigida no gabarito]
- 22. Encontre A e B, se $A B = \{1, 5, 7, 8\}, B A = \{2, 10\}, e A \cap B = \{3, 6, 9\}.$
- 23. Dados os conjuntos $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2, 4, 6, 8\}$ e $C = \{2, 4, 5, 7\}$, obtenha um conjunto X tal que $X \subset A$ e $A X = B \cap C$.

24.

18 Considerando os conjuntos A, B, C e D, assinale a alternativa que representa, corretamente, a região sombreada associada à relação $\{(A \cap B) \cup (C \cap D)\} \cap \{(A \cap B) \cup (B \cap C)\}.$

c)

Gabarito

Questão 1:

- a) Finito
- b) Infinito
- c) Finito
- d) Infinito

Questão 2:

a)
$$A = \{4, 5, 6, 7\}$$

b)
$$B = \{Abril, Junho, Setembro, Novembro\}$$

c)
$$C = \{Bras\'ilia\}$$

d)
$$D = \{0, 1, 8\}$$

e)
$$E = \{0, 1, 2, ...\}$$

f)
$$F = \{0\}$$

g)
$$A = \{5, 6, 7, ...\}$$

h)
$$B = \{3, 4, 5\}$$

Questão 3:

- $2 \in A$ a)
 - Se $n \in A$, então $n^2 \in A$
- $a_1 = 1$ b)
 - $n \in \mathbb{N}+, a_{n+1} = a_n + 2n 1$
- $1 \in C$ c)
 - Se $n \in C$, então $3n \in C$

Questão 4:

a) V

e) V

- mentos e não a conjuntos)
- j) F (observar operador)

b) V

- f) F
- g) F (Operador \in
- h) V

k) F

d) V

c) F

- é aplicado a ele-
- i) V

1) V

Questão 5:

Seja $x \in A$. Então $x \in \mathbb{R}$ e $x^2 - 4x + 3 = 0$ ou (x - 1)(x - 3) = 0, o que nos dá x = 1 ou x = 3. Em qualquer dos casos, $x \in \mathbb{N}$ e $1 \le x \le 4$, de modo que $x \in B$. Portanto, $A \subseteq B$. O número 4 pertence a B, mas não pertence a A, logo $A \subset B$.

Questão 6:

Sejam $A = \{x | x \in x^2 < 15\} \text{ e } B = x | x \in \mathbb{N}e2x < 7.$

Para provar que A=B, vamos mostrar que $A\subseteq B$ e $B\subseteq A$. Para $A\subseteq B$, precisamos escolher um elemento arbitrário de A — ou seja, qualquer coisa que satisfaça a propriedade que caracteriza os elementos de A — e mostrar que satisfaz a propriedade que caracteriza os elementos de B. Seja $x\in A$. Então x é um inteiro não negativo que satisfaz a desigualdade $x^2<15$. Os inteiros não negativos cujos quadrados são menores do que 15 são 0, 1, 2 e 3, logo esses são os elementos de A. O dobro de cada um desses inteiros não negativos é um número menor do que 7. Portanto, todo elemento de A pertence a B e $A\subseteq B$.

Vamos mostrar agora que $B\subseteq A$. Todo elemento de B é um inteiro não negativo cujo dobro é menor do que 7. Esses números são 0, 1, 2 e 3, e cada um deles tem o quadrado menor do que 15, logo $B\subseteq A$.

Questão 7:

$$\wp(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Questão 8:

 2^n elementos.

Questão 9:

 \mathbf{c}

Questão 10:

_)	<i>(</i> 1	1	[A	D	LT/4
a) -	(anii	lada.)	$\perp A \cup$	B =	: 1/9/1

d) - (anulada)
$$[A \cup C = A]$$

- b) F
- c) V

e) V

Questão 11:

a) 10

d) $\{2,8\}$

- b) $\{1, 2, 3, 4, 5, 7, 8, 9, 10\}$
- c) $\{1, 2, 3\}$

e) $\{1, 2, 3, 4, 6, 7, 9\}$

Questão 12:

- $[(A \cup B) \cap C] \cup [(A \cup B) \cap \overline{C}]$
- $(A \cup B) \cap (C \cup \overline{C})$
- $(A \cup B) \cap S$
- \bullet $(A \cup B)$

- (comutatividade)
- (distributividade)
- (complemento)
- (elemento neutro)

Questão 13:

$$[C \cup (A \cap B)] \cap [(A \cap B) \cup \overline{C}] = A \cap B$$

Questão 14:

- $A \cup (B \cap \overline{B})$
- $\bullet \ \ A \cup \emptyset$
- \bullet A

- (distributividade)
- (complemento)
- (elemento neutro)

Questão 15:

- a) $\{-1,1\}$
- b) $\{-3, -2, -1, 0, 1, 2, 3\}$
- c) $\{4, 8, 12, 16, 20, ...\}$

Questão 16:

- a) $\{x | (\exists y)(y \in \{1, 2, 3, 4\} \ e \ x = y^2)\}$
- b) $\{x | x \text{ são os números primos} \}$
- c) $\{x | x \in \mathbb{R}$ é um inteiro não negativo escrito em forma binária $\}$

Questão 17:

Questão 18:

Questão 19:

- a) $\{1, 2, 3, 4, 5\}$
- b) $\{1,3\}$
- c) $\{5, 7, 9, 11, \ldots\}$

- d) $\{0, 5, 6, 7, 8, 9, 11, 13, 15, 17, ...\}$
- e) $\{4, 2, \infty\}$

Questão 20:

- a) $\{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$
- b) $\{(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)\}$

Questão 21:

- $A \cup (B \cap \overline{B})$ a)
 - \bullet $A \cup \emptyset$
- A
- b) Correção: $A \cap (B \cup \overline{A}) = B \cap A$
 - $(A \cap B) \cup (A \cap \overline{A})$
 - $(A \cap B) \cup \emptyset$
 - $(A \cap B)$
 - $(B \cap A)$

• (distributividade)

• (distributividade)

• (elemento neutro)

• (complemento)

- (complemento)
- (elemento neutro)
- (comutatividade)

Questão 22:

$$A = \{1, 3, 5, 6, 7, 8, 9\}$$
e $B = \{2, 3, 6, 9, 10\}$

Questão 23:

$$X = \{1, 3, 5\}$$

Questão 24:

a