ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ А.Ф. МОЖАЙСКОГО

Кафедра управления организационно-техническими системами космического назначения

(наименование кафедры)

УТВЕРЖДАЮ Начальник 23 кафедры полковник Г. ДУДАЛЕВ

(воинское звание, подпись, инициал имени, фамилия) « » февраля 2020 г.

(должность, ученая степень, ученое звание,						
А. ДАНИЛОВ						
воинское звание, инициал имени, фамилия)						
Задание на практическое занятие № 5						
Тема: <u>«Моделирование показателя виртуального качества результатов</u>						
операции»						
(наименование темы лекции по тематическому плану изучения дисциплины)						
по дисциплине: Основы теории управления						

(наименование дисциплины)

доцент кафедры, кандидат технических наук, доцент

Автор

Обсуждено и одобрено на заседании кафедры (предметно-методической комиссии) «26» ноября 2019 г. протокол № 15

Содержание занятия и время

Введение	-10 мин.
Учебные вопросы (основная часть)	–160 мин.
1. Постановка задачи и определение исходных данных	– 60 мин.
2. Решение задачи и анализ полученных результатов	-100 мин.
Заключение	-10 мин.
Общее время проведения занятия	-180 мин.

Литература:

- 1. Петухов Г.Б., Якунин В.И. Методологические основы внешнего проектирования целенаправленных процессов и целеустремленных систем М.: АСТ, 2006 г.
- 2. Петухов Г.Б. Основы теории эффективности целенаправленных процессов, ч.1, МО РФ 1989г.
- 3. Минаков Е.П., Шафигуллин И.Ш., Зубачев А.М. Методы исследования эффективности применения ОТС космического назначения. СПб.: ВКА имени А.Ф. Можайского, 2016. 244 с.

1. Постановка задачи и определение исходных данных

Как известно, существует ряд методов моделирования различных объектов, и моделирования результатов операции, в частности. Одним из основных классификационных признаков, позволяющих разделить эти методы, является то, по каким свойствам оригинал заменяется моделью. Так, имитационные модели заменяют проявления изучаемых свойств оригинала проявлениями свойств модели. В противоположность им аналитические модели заменяют не проявления свойств оригинала, а механизм образования проявлений свойств. Поэтому аналитические модели, как правило, сложнее построить, но спектр задач, которые могут быть решены с их помощью, шире.

Рассмотрим основные аспекты использования аналитического моделирования показателей виртуальных и требуемых результатов операции.

1.1. Методика аналитического моделирования показателя качества результатов операции

Напомним, что аналитический метод расчета вероятности $P_{\text{дц}}$ достижения цели операции основан на интегрировании выражений вида (в симплексной канонической форме):

$$P_{\text{ДЦ}} = P(\hat{Y}_{<3>} \geq \hat{Z}_{<3>}) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} \Phi_{\hat{Y}_{<3>}}(\hat{Z}_{<3>}) dF_{\hat{Z}_{<3>}}(Z_{<3>}).$$

где $(\hat{Y}_{<3>} \stackrel{>}{<} \hat{Z}_{<3>})$ означает, что компоненты случайного вектора $\hat{Y}_{<3>}$ находятся в необходимых для достижения цели операции соотношениях ($\stackrel{>}{<} = (>, \geq, <, \leq)$) с соответствующими компонентами случайного вектора $\hat{Z}_{<3>}$,

например
$$(\hat{Y}_{<3>} \geq \hat{Z}_{<3>}) = [(\hat{y}_1 \geq \hat{z}_1) \cap (\hat{y}_2 \leq \hat{z}_2) \cap (\hat{y}_3 \leq \hat{z}_3)].$$

Как видно, для расчета вероятности $P_{\text{дц}}$ необходимо знать закон распределения случайного вектора $\hat{Y}_{\langle n \rangle}$ показателя качества результатов операции (ПКРО).

Проще всего закон распределения случайного вектора $\hat{Y}_{\langle n \rangle}$ определяется тогда, когда его компоненты $(\hat{y}_1 ... \hat{y}_n)$ взаимно независимы.

В этом случае плотность и функция распределения случайного вектора определяются через произведение безусловных (априорных, маргинальных) законов распределения его компонент по следующим выражениям:

$$\phi_{\hat{\mathbf{y}}_{cn7}}(\mathbf{y}_{cn7}) = \phi_{\hat{\mathbf{y}}_{1}}(\mathbf{y}_{1}) \, \phi_{\hat{\mathbf{y}}_{2}}(\mathbf{y}_{2}) \dots \, \phi_{\hat{\mathbf{y}}_{n}}(\mathbf{y}_{n}); \qquad (5.4.1)$$

$$F_{\hat{Y}_{(n)}}(Y_{(n)}) = F_{\hat{y}_1}(y_1) F_{\hat{y}_2}(y_2) \dots F_{\hat{y}_n}(y_n)$$
. (5.4.2)

Если между случайными величинами существует стохастическая зависимость, то она описывается с помощью условных (апостериорных) законов распределения этих величин и соотношения (5.4.1). (5.4.2) значительно усложняются, но зато они, эти формулы, носят универсальный характер и "работают" при любом виде и степени взаимной зависимости компонент вектора $\hat{Y}_{< n>}$. Формулы же (5.4.1) и (5.4.2) соответственно представляют собой их частные случаи и имеют узкую область применения. В частности, они непригодны для определения закона распределения показателя $\hat{Y}_{< n>}$ качества результатов операции, поскольку, как отмечалось, его компоненты существенно взаимно зависимы.

Как было показано, основу математической модели результатов операции составляет интегральный закон распределения (функция распределения) показателя $\hat{Y}_{< n>}$ их качества (ПКРО), определяемый в симплексной канонической форме выражением

С учётом стохастической зависимости компонент вектора ПКРО его функцию распределения можно представить в виде

$$\Phi_{\hat{Y}_{3>}}(y_3, y_{11}, y_2) = R_{\hat{y}_1}(y_1) F_{\hat{y}_2 \perp \hat{y}_1}(y_2; y_1) F_{\hat{y}_3 I < y_1, y_2>}(y_3; y_1, y_2), \quad (5.4.10)$$

где $R_{\hat{y}_1}(y_1)$ - вероятность того, что $P(\hat{y}_1 \geq y_1)$,

$$F_{\hat{y}_2 \perp \hat{y}_1}(y_2, y_1) = P(\hat{y}_2 \le y_2 / \hat{y}_1 \ge y_1),$$

$$F_{\hat{y}_3^{1} < y_1, y_2}(y_3; y_1, y_2) = P(\hat{y}_3 \le y_3 / (\hat{y}_1 \ge y_1) \cap (\hat{y}_2 \le y_2)).$$

Функция распределения $\Phi_{\hat{Y}}(Y)$ может определяться либо **аналитически**, либо **экспериментально**.

В первом случае необходимо знать все "операнды" выражения (5.4.10), т.е. безусловные и условные законы распределения компонент случайного вектора $Y_{< n>}$.

Во втором случае необходимо наблюдать реализации $Y_{< n>}^j$ вектора $\widehat{Y}_{< n>}$ в длинной серии однородных операций (экспериментов), проводимых в

одинаковых условиях, по результатам которых может быть построена статистическая функция распределения или кумулята распределения случайного вектора $Y_{< n>}$. Машинный эксперимент может оказаться весьма трудоёмким, длительным и дорогостоящим.

Как отмечалось, имитационное моделирование ЦПФС может проводиться и без использования явного аналитического выражения функции распределения $\Phi_{\hat{Y}}(Y)$. В этом одно из достоинств данного метода. Аналитическое построение функции $F_{\hat{Y}_{\langle n \rangle}}(Y_{\langle n \rangle})$ распределения показателя $\hat{Y}_{\langle n \rangle}$ в последнем случае трудоемко.

Отыскание закона распределения $\hat{Y}_{\langle n \rangle}$ может быть упрощено в случае, если известны функциональные связи между компонентами $\hat{Y}_{\langle n \rangle}$ (операционный функционал), а также, если может быть выделен "агрегат" - некоторый комплекс параметров ЦПФС и ВТС, такой, что каждая из компонент $\hat{Y}_{\langle n \rangle}$ может быть однозначно определена по заданному значению параметров, входящих в агрегат.

Операционный функционал — это совокупность операционной функции и функции связи. Операционной функцией (ОФ) называется соотношение, описывающее зависимость целевого эффекта от расходуемых операционных ресурсов и времени. Функцией связи (ФС) называются балансные соотношения между различными характеристиками результатов операции (в частности, между ресурсами различных видов).

Рассмотрим случай, когда известен операционный функционал на примере.

Пример 1. Пусть показатель качества результатов операции (ПКРО) задан в симплексной канонической форме, т.е.

$$\hat{Y}_{<3>} = <\hat{y}_1, \hat{y}_2, \hat{y}_3> = <\hat{\vartheta}, \hat{r}, \hat{\tau}>$$

а его компоненты связаны монотонными зависимостями.

В общем случае целевой эффект связан с ресурсами такой зависимостью (ОФ):

$$\vartheta = R(r, \tau)$$

Пусть целевой эффект и время связаны с расходом ресурсов функциями связи (ФС), для которых существуют обратные функции:

$$\vartheta = R(r)$$
 и $\tau = S(r)$, $r = R^{-1}(\vartheta)$ и $r = S^{-1}(\tau)$.

Предположим, что функции R и S монотонно возрастающие.

Замечание. Вообще говоря, понятие ресурс достаточно многогранно (это сырье, энергия, время, информация, технология и т.д.). Однако, если рассмотреть операционные ресурсы, то, как правило, при фиксированной технологии, чем больше в ходе операции расходуется сырья, тем больше необходимо затратить времени (это для обоснования правомерности использования возрастающей функции S).

Пусть известна функция распределения (ФР) $F_{\hat{r}}(r)$ количества расходуемых ресурсов \hat{r} (т.е. это **генеральная** компонента).

При указанных предположениях найдем ΦP вектора $\hat{Y}_{<3>}$ (всё выражаем через известную (генеральную) компоненту \hat{r}):

$$\begin{split} \Phi_{\hat{Y}_{<3>}}(Y_3) &= \Phi_{<\hat{\vartheta},\hat{r},\hat{\tau}>}(\vartheta,r,\tau) = P\big[\big(\hat{\vartheta} \geq \vartheta\big) \cap (\hat{r} \leq r) \cap (\hat{\tau} \leq \tau)\big] = \\ &= P\big[\big(R(r) \geq \vartheta\big) \cap (\hat{r} \leq r) \cap (S(r) \leq \tau)\big] = \\ &= P\big[\big(\hat{r} \geq R^{-1}(\vartheta)\big) \cap (\hat{r} \leq r) \cap (\hat{r} \leq S^{-1}(\tau))\big] = \\ &= P\big[R^{-1}(\vartheta) \leq \hat{r} \leq \min\{r,S^{-1}(\tau)\}\big] = F_{\hat{r}}\big[\min\{r,S^{-1}(\tau)\}\big] - F_{\hat{r}}\big[R^{-1}(\vartheta)\big] = \\ &= F_{\hat{r}}\big[\mu(r,\tau)\big] - F_{\hat{r}}\big[\nu(\vartheta)\big], \end{split}$$

где $\mu(r,\tau) = \min\{r, S^{-1}(\tau)\}, \ \nu(\vartheta) = R^{-1}(\vartheta).$

Замечание. В общем случае, если аспект $Y_{< n1>}^{(1)}$ содержит более одной компоненты, т.е. $n_1 \ge 2$, то в критерии пригодности результата операции будет входить более одной компоненты типа $(\hat{\vartheta} \ge \vartheta)$.

Тогда имеем:
$$\nu = \nu(\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3...\mathcal{G}_{n1}) = \max \left\{ R_{1/2}^{-1}(\mathcal{G}_1), R_{2/2}^{-1}(\mathcal{G}_2), R_{3/2}^{-1}(\mathcal{G}_3)....R_{n1/2}^{-1}(\mathcal{G}_{n1}) \right\}$$

Аналогичное замечание можно сделать и для других компонент.

Вывод: если компоненты случайного вектора $\hat{Y}_{< n>}$ связаны функционально, то в общем случае достаточно знать ΦP подвектора его взаимно независимых компонент, называемых доминирующими (генеральными). В симплексной канонической форме это означает, что достаточно знать ΦP одной или двух компонент.

Замечание. Если зависимости типа: $\mathcal{G} = R(\tau)$ $\tau = S(r)$ - неизвестны, а также если компоненты вектора $\hat{Y}_{<3>}$ связаны стохастически (нефункционально), то:

- либо экспериментально определяются функции регрессии, связывающие числовые характеристики одних компонент со значениями, принимаемыми другими компонентами, и тогда эти функции регрессии используются в качестве операционного функционала;
- либо ФР вектора $\hat{Y}_{<3>}$ строится по общей формуле (5.4.10) (с учётом зависимостей СВ).

2. Решение задач и анализ полученных результатов

Каждый обучаемый выполняет индивидуальное задание по своему варианту. Номер варианта соответствует порядковому номеру обучаемого по списку учебной группы в журнале. Исходные данные для каждого из вариантов сведены в таблицу.

Решение задач аналитического моделирования показателя качества результатов операции

Рассмотрим решения подобных задач на примере.

Пример 2. Пусть в условиях примера 1, полученная там Φ Р показателя $Y_{<3>}$ качества результатов операции имеет вид:

$$\Phi_{\hat{Y}_{<3>}}(Y_3) = \Phi_{<\hat{\vartheta},\hat{r},\hat{\tau}>}(\vartheta,r,\tau) = F_{\hat{r}}[\mu(r,\tau)] - F_{\hat{r}}[\nu(\vartheta)] = F_{\hat{r}}[\min\{r,S^{-1}(\tau)\}] - F_{\hat{r}}[R^{-1}(\vartheta)],$$

где $\mu(r,\tau) = \min\{r, S^{-1}(\tau)\}, \ \nu(\vartheta) = R^{-1}(\vartheta).$

Конкретизируем пример, положив, что генеральная компонента расхода ресурсов $F_{\hat{r}}(r)$ имеет равномерное распределение:

$$F_{\hat{r}}(r) = \frac{r-a}{b-a}\Pi(r;a,b) + \Delta(r-b),$$

где $\Delta(x)$ — «селектор луча» («единичная функция Хевисайда») — суть индикатор полубесконечного интервала $[0,\infty)$, т.е.

$$\Delta(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$
 или $\Delta(x - a) = \begin{cases} 0, & x \le a \\ 1, & x > a \end{cases}$;

 $\Pi(r;a,b)$ — «селектор интервала» («единичный прямоугольный импульс») — индикатор интервала [a,b].

Пусть при этом a = 0,8; b = 3, а к результату операции предъявлены детерминированные требования, т.е.

$$Z_{<3>} = <\vartheta_{\rm TP}, r_{\Pi}, \tau_{\Lambda}> = <2, 3, 4>.$$

Пусть известны операционная функция и функция связи, имеющие обратные функции:

$$\vartheta = R(r) = a_1 + b_1 r \implies r = R^{-1}(\vartheta) = \frac{\vartheta - a_1}{b_1}$$
,

$$\tau=S(r)=a_2+b_2r \ \Rightarrow \ r=S^{-1}(\tau)=\frac{\tau-a_2}{b_2}.$$

С учетом этого выражение для вероятности достижения цели операции примет вид:

$$P_{\text{дц}} = \Phi_{<\widehat{\vartheta}, \hat{r}, \hat{\tau}>} (\vartheta_{\text{тр}}, r_{\text{п}}, \tau_{\text{д}}) = F_{\hat{r}} [\mu(r_{\text{п}}, \tau_{\text{д}})] - F_{\hat{r}} [\nu(\vartheta_{\text{тр}})] =$$

$$=(\frac{\min\{r_{\scriptscriptstyle \Pi},S^{-1}(\tau_{\scriptscriptstyle \Pi})\}-a}{b-a}-\frac{R^{-1}(\vartheta_{\scriptscriptstyle {\rm Tp}})-a}{b-a})\Pi(r_{\scriptscriptstyle \Pi};r',r^{"})\Pi(\tau_{\scriptscriptstyle {\rm H}};\tau',\tau^{"})\Pi(\vartheta_{\scriptscriptstyle {\rm Tp}};\vartheta',\vartheta''),$$

где $r', r^{"}$; $\tau', \tau^{"}$; $\vartheta', \vartheta^{"}$ соответственно минимальное и максимальное значения предельно допустимого расхода ресурса, директивного (операционного) времени и требуемого целевого эффекта. Их значения для всех вариантов задачи следующие: r'=2, $r^{"}=4$, $\tau'=3$, $\tau^{"}=5$, $\vartheta'=1$, $\vartheta''=3$.

Задание 1. Решить рассмотренную задачу, для исходных данных своего варианта (см. таблицу).

Варианты	заданий:
----------	----------

рарианты задании.									
No	а	b	a_1	b_1	a_2	b_2	$\vartheta_{ ext{rp}}$	$r_{\!\scriptscriptstyle \Pi}$	$ au_{\mathtt{A}}$
варианта							_		
1	0,5	2,2	1	1	2	1	2	3	4
2	0,6	2,5	1	1	2	1	2	3	4
3	0,7	2,8	1	1	2	1	2	3	4
4	0,8	3	1	1	2	1	2	3	4
5	0,9	3,3	1	1	2	1	2	3	4
6	0,95	3,5	1	2	2	1	2	3	4
7	1,1	3,6	1	2	2	1	2	3	4
8	1,2	3,7	1	2	2	1	2	3	4
9	1,3	3,8	1	2	2	1	2	3	4
10	0,8	3	1	2	2	1	2	3	4
11	0,1	2,1	1	2	2	1	2	3	4
12	0,2	2,3	1	2	2	1	2	3	4
13	0,3	2,4	1	2	2	1	2	3	4
14	0,4	3	1	2	2	1	2	3	4
15	0,45	3	1	2	2	1	2	3	4
16	0,5	2,1	1	1	2	0,5	2	3	4
17	0,6	2,3	1	1	2	0,5	2	3	4
18	0,7	2,4	1	1	2	0,5	2	3	4
19	0,8	2,6	1	1	2	0,5	2	3	4
20	0,9	2,8	1	1	2	0,5	2	3	4

Задание 2.

Беспилотный летательный аппарат (ЛА) производит разведку района площадью S, занятого противником, и передает полученные разведданные по радиоканалу. Целевой эффект — доля $\hat{\vartheta}$ объектов противника, обнаруженных ЛА, связана со временем $\hat{\tau}$ полета ЛА над районом разведки соотношением

$$\vartheta=1-e^{-\lambda\tau},$$

где λ – интенсивность обнаружения объектов.

Продолжительность времени $\hat{\tau}$ от момента t' входа в район разведки до момента $t'+\hat{\tau}$ окончания операции разведки t'', связанного с израсходованием запаса горючего или поражением ЛА системой ПВО противника, случайно и подчинено равномерному закону распределения (3P) на интервале $\hat{\tau} \in [t',t'']$.

Расходуемые в ходе операции ресурсы \hat{r} (горючее) пропорциональны времени $\hat{\tau}$, т.е. $r=a\tau$.

Цель операции достигнута, если $(\hat{\vartheta} \geq \vartheta_{\scriptscriptstyle {\rm T}}) \cap (\hat{r} \leq r_{\scriptscriptstyle {\rm I}}) \cap (\hat{\tau} \leq \tau_{\scriptscriptstyle {\rm J}}) \cong U.$

Требуется:

- а) найти закон распределения (3P) $\boldsymbol{\Phi}_{(\hat{\boldsymbol{\theta}},\hat{r},\hat{\boldsymbol{\epsilon}})}(\boldsymbol{\theta},r,\boldsymbol{\tau})=$
- $=P\left[\left(\hat{g} \geq \mathcal{G}\right) \cap \left(\hat{r} \leq r\right) \cap \left(\hat{r} \leq \tau\right)\right]$ вектора $\left\langle \hat{g}, \hat{r}, \hat{\tau} \right\rangle$ показателей виртуального качества (ПВК) результатов операции (РО);
- б) определить функцию распределения (ФР) $F_{\hat{\boldsymbol{\sigma}}^{(3)}}(\boldsymbol{\sigma})$ условной вероятности $\hat{\boldsymbol{\sigma}}^{(3)} = F_{(\hat{\boldsymbol{\vartheta}},\hat{r},\hat{\boldsymbol{\tau}})}(\boldsymbol{\vartheta}_T,r_H,\boldsymbol{\tau}_A);$
 - в) определить выражения для вероятностей достижения цели операции:
 - безусловной (априорной) P_{JII} и
 - условной (апостериорной) $\boldsymbol{\omega}_{\mathit{ЛИ}}^{\mathit{\Gamma}}(\boldsymbol{\gamma})$;
- г) вычислить их при следующих значениях параметров: $\mathbf{\mathcal{G}}_T=0.7$; $r_H=20$ [литров]; $\boldsymbol{\tau}_A=3$ [часа]; a=4 [объекта/час]; t'=0 [час]; t''=5 [час]; $\lambda=10$ [объектов/час]; $\gamma=0.9$;
 - д) сравнить влияние аспектов ${\bf g}_{T}$ и ${\bf \tau}_{J}$ на эффективность ЦНПФС.

Варианты задания к п.п. г) и д):

Варианты задания к п.п. т у и ду.								
№	$artheta_{ ext{ iny T}}$	r_{Π}	$ au_{ extsf{ iny A}}$	а	t'	t"	λ	
варианта		[лит]	[час]	[лит/час]	[час]	[час]	[об/час]	
1	0,5	16	2,1	4	0	4	10	0,508
2	0,52	16	2,2	4	0	4	10	
3	0,55	16	2,3	4	0	4	10	
4	0,58	16	2,4	4	0	4	10	
5	0,6	16	2,5	4	0	4	10	
6	0,62	20	2,6	4	0	5	10	
7	0,65	20	2,7	4	0	5	10	
8	0,68	20	2,8	4	0	5	10	
9	0,7	20	3	4	0	5	10	0,576
10	0,72	20	2,9	4	0	5	10	
11	0,75	20	3,1	4	0	5	10	
12	0,78	20	3,2	4	0	5	10	0,61

Пример выполнения задания 2

Из условия задачи генеральной компонентой является операционное время $\hat{\tau}$ подчиненное равномерному закону распределения на интервале $\hat{\tau} \in [t',t'']$. Поэтому при построении ΦP вектора показателя качества результатов операции будем использовать этот факт.

а) Построение ФР вектора ПКРО

$$\begin{split} \Phi_{<\widehat{\vartheta},\widehat{r},\widehat{\tau}>}(\vartheta,r,\tau) &= P\big[\big(\widehat{\vartheta} \geq \vartheta\big) \cap (\widehat{r} \leq r) \cap (\widehat{\tau} \leq \tau)\big] = \\ &= P\big[\big(1 - e^{-\lambda \widehat{\tau}} \geq \vartheta\big) \cap (a\widehat{\tau} \leq r) \cap (\widehat{\tau} \leq \tau)\big] = \\ &= P\left[\big(1 - \vartheta \geq e^{-\lambda \widehat{\tau}}\big) \cap \Big(\widehat{\tau} \leq \frac{r}{a}\Big) \cap (\widehat{\tau} \leq \tau)\right] = \\ &= P\left[\big(-\lambda \widehat{\tau} \leq \ln(1 - \vartheta)\big) \cap \Big(\widehat{\tau} \leq \frac{r}{a}\Big) \cap (\widehat{\tau} \leq \tau)\right] = \\ &= P\left[\Big(\widehat{\tau} \geq -\frac{\ln(1 - \vartheta)}{\lambda}\Big) \cap \Big(\widehat{\tau} \leq \frac{r}{a}\Big) \cap (\widehat{\tau} \leq \tau)\right] = \\ &= P\left[-\frac{\ln(1 - \vartheta)}{\lambda} \leq \widehat{\tau} \leq \min\left\{\frac{r}{a}, \tau\right\}\right] = F_{\widehat{\tau}}[\min\left\{\frac{r}{a}, \tau\right\}] - F_{\widehat{\tau}}\left[-\frac{\ln(1 - \vartheta)}{\lambda}\right]. \end{split}$$

б) Построение ΦP условной вероятности $P_{{\mbox{\tiny AU}}}$

Обозначим $\min\left\{\frac{r}{a},\tau\right\}$ как $\mu\left(\frac{r}{a},\tau\right)$ и выпишем диапазоны изменения параметров с учетом их значений по условию задачи:

$$\hat{\tau} \in [t', t''] = [0,5];$$

$$\hat{\vartheta} \in [1 - e^{-\lambda t'}, 1 - e^{-\lambda t''}] = [0,1 - e^{-\lambda t''}] = [0,1);$$

$$\hat{\tau} \in [at', at''] = [0, at''] = [0,20].$$

Для равномерного закона распределения переменной $\hat{\tau}$

$$F_{\hat{\tau}}[\min\left\{\frac{r}{a},\tau\right\}] - F_{\hat{\tau}}\left[-\frac{\ln(1-\vartheta)}{\lambda}\right] = \frac{\mu\left(\frac{r}{a},\tau\right) - t'}{t'' - t'} - \frac{-\frac{\ln(1-\vartheta)}{\lambda} - t'}{t'' - t'}.$$

С учетом равномерного закона распределения $F_{\hat{\tau}}(\tau)$ и области допустимых значений вектора $\hat{Y}_{<3>}$, которая определяется декартовым (прямым) произведение трех множеств

$$\{\hat{Y}_{<3>}^{\delta}\} = [\hat{z}_{1}, \infty) \times (-\infty, \hat{z}_{2}] \times (-\infty, \hat{z}_{3}] = [(\hat{z}_{1}, \hat{z}_{2}, \hat{z}_{3}), (\infty, \hat{z}_{2}, \hat{z}_{3}), (\hat{z}_{1}, -\infty, \hat{z}_{3}), (\hat{z}_{1}, \hat{z}_{2}, -\infty), (\infty, -\infty, \hat{z}_{3}), (\infty, \hat{z}_{2}, -\infty), (\hat{z}_{1}, -\infty, -\infty), (\infty, -\infty, -\infty)],$$

получаем выражение для закона распределения вектора $\hat{Y}_{\scriptscriptstyle <3>}$ и $P_{\scriptscriptstyle {
m DII}}$.

$$\begin{split} P_{\text{\tiny AUI}} &= \Phi_{<\widehat{\vartheta}, \hat{r}, \hat{t}>} \Big(\vartheta_{\text{\tiny TP}}, r_{\text{\tiny II}}, \tau_{\text{\tiny A}} \Big) = \left[\frac{\mu \left(\frac{r}{a}, \tau \right) - t'}{t'' - t'} + \frac{\ln(1 - \vartheta) + \lambda t'}{\lambda(t'' - t')} \right] \Pi(r; at', at'') \times \\ &\times \Pi(\tau; t', t'') \Pi(\vartheta; 1 - e^{-\lambda t'}, 1 - e^{-\lambda t''}) + \left[\frac{\mu \left(\frac{r}{a}, \tau \right) - t'}{t'' - t'} \right] \Delta \Big(1 - e^{-\lambda t'} - \vartheta \Big) \times \\ &\times \Pi(r; 0, at'') \Pi(\tau; t', t'') + \left[\frac{\tau - t'}{t'' - t'} + \frac{\ln(1 - \vartheta) + \lambda t'}{\lambda(t'' - t')} \right] \Pi(\vartheta; 0, 1 - e^{-\lambda t''}) \times \\ &\times \Delta(r - at'') \Pi(\tau; t', t'') + \left[\frac{r - at'}{a(t'' - t')} + \frac{\ln(1 - \vartheta) + \lambda t'}{\lambda(t'' - t')} \right] \Pi(\vartheta; 0, 1 - e^{-\lambda t''}) \times \\ &\times \Pi(r; 0, at'') \Delta(\tau - t'') + \frac{\tau - t'}{t'' - t'} \Delta \Big(1 - e^{-\lambda t'} - \vartheta \Big) \Delta(r - at'') \Pi(\tau; t', t'') + \\ &+ \frac{r - at'}{a(t'' - t')} \Delta \Big(1 - e^{-\lambda t'} - \vartheta \Big) \Pi(r; 0, at'') \Delta(\tau - t'') + \\ &+ \frac{\ln(1 - \vartheta) + \lambda t'}{\lambda(t'' - t')} \Pi(\vartheta; 0, 1 - e^{-\lambda t''}) \Delta(r - at'') \Delta(\tau - t'') + \\ &+ \Delta \Big(1 - e^{-\lambda t'} - \vartheta \Big) \Delta(r - at'') \Delta(\tau - t'') + \\ &+ \Delta \Big(1 - e^{-\lambda t'} - \vartheta \Big) \Delta(r - at'') \Delta(\tau - t'') \Big). \end{split}$$

в) Определение выражений для ΦP условной вероятности $P_{ ext{ iny III}}$

Так как к ПКРО предъявлены детерминированные требования, то все показатели ее эффективности равны между собой при любом уровне гарантии, т.е.

$$\mathbf{\textit{P}}_{\text{дц}} = \omega^{\Gamma} = \Phi_{<\widehat{\vartheta},\hat{r},\widehat{\tau}>} \left(\vartheta_{\text{тр}}, r_{\Pi}, \tau_{\Pi}\right)$$
 и $F_{\widehat{\omega}}(\omega) = \Delta(\omega - \omega^{\Gamma})$

г) Вычисление вероятности достижения цели

$$P_{\text{ди}} = \Phi_{<\widehat{\vartheta},\hat{r},\widehat{\tau}>} \left(\vartheta_{\text{тр}}, r_{\text{п}}, \tau_{\text{д}}\right) = \Phi_{<\widehat{\vartheta},\hat{r},\widehat{\tau}>}(0.7,20,3) =$$

$$= \frac{\min\left\{\frac{20}{4}, 3\right\} - 0}{5 - 0} + \frac{\ln(1 - 0.7) + 0}{10(5 - 0)} = 0.6 + \frac{-1.2}{50} = 0.576.$$

д) Сравнение влияния аспектов ϑ_{Tp} и τ_{A} на эффективность операции

$$\begin{split} P_{\text{дц}}(\vartheta_{\text{тр}},\tau_{\text{д}}) &= \frac{\tau_{\text{д}} - t'}{t'' - t'} + \frac{\frac{\ln(1 - \vartheta_{\text{тр}})}{\lambda} + t'}{t'' - t'} = \frac{\tau_{\text{д}} - 0}{5 - 0} + \frac{\ln(1 - \vartheta_{\text{тр}}) + 0}{50} = \\ &= \frac{\tau_{\text{д}}}{5} + \frac{\ln(1 - \vartheta_{\text{тp}})}{50}. \end{split}$$

Вычисляем коэффициенты чувствительности и влияния:

$$h_{\tau_{A}}^{P_{A\mathsf{I}\mathsf{I}}} = \frac{\partial P_{A\mathsf{I}\mathsf{I}}(\vartheta_{\mathsf{Tp}}, \tau_{A})}{\partial \tau_{A}} = \frac{1}{5} = 0,2; \qquad V_{\tau_{A}}^{P_{A\mathsf{I}\mathsf{I}}} = h_{\tau_{A}}^{P_{A\mathsf{I}\mathsf{I}}} \tau_{A} = 0,2 \times 3 = 0,6.$$

$$h_{\vartheta_{\mathsf{Tp}}}^{P_{A\mathsf{I}\mathsf{I}}} = \frac{\partial P_{A\mathsf{I}\mathsf{I}}(\vartheta_{\mathsf{Tp}}, \tau_{A})}{\partial \vartheta_{\mathsf{Tp}}} = \frac{1}{1 - \vartheta_{\mathsf{Tp}}} \left(-\frac{1}{50} \right) = -0,067$$

$$V_{\vartheta_{\mathsf{Tp}}}^{P_{A\mathsf{I}\mathsf{I}}} = h_{\vartheta_{\mathsf{Tp}}}^{P_{A\mathsf{I}\mathsf{I}}} \vartheta_{\mathsf{Tp}} = -0,067 \times 0,7 = -0,047.$$

Вывод. Параметр $au_{\rm д}$ влияет сильнее на значение показателя эффективности $P_{\rm дц}$, чем параметр $au_{\rm тp}$. Причем, с увеличением значения $au_{\rm д}$, значение ПЭ возрастает (т.к. значение производной положительное), а с увеличением значения $au_{\rm tp}$, значение ПЭ уменьшается (т.к. значение производной отрицательное).

Задание 3. (для самостоятельного решения)

Оцениваются параметры движения космического аппарата (КА) по данным измерений его траектории. Результаты процесса оценивания характеризуются: целевым эффектом $\hat{\epsilon}$ — ошибкой оценивания величины модуля радиус—вектора КА, определяющей точность оценивания; расходуемыми при этом ресурсами \hat{r} и временем $\hat{\tau}$.

Затраты операционного времени $\hat{\tau}$ слагаются из времени $\hat{\tau}_u$ измерений, имеющего закон распределения (3P)

$$F_{\tau_u}(\tau) = \frac{\tau - t_u'}{t_u'' - t_u'} \Pi(\tau; t_u', t_u'') + \Delta(\tau - t_u'')$$

и времени $\hat{\tau}_p$ расчета оцениваемых параметров, имеющего ЗР

$$F_{\tau_s}(\tau) = \Delta(\tau - t_p)$$
.

Известны также: ЭР-функция

$$\varepsilon = \Re(\tau) = \varepsilon_M e^{-\lambda(\tau - t'_u - t_p)} \Delta(\tau - t'_u - t_p),$$

где ε_M — максимальная ошибка оценивания величины модуля радиусвектора ЛА при минимальном значении времени $\hat{\tau}_u$ измерений равном t'_u ; и функция связи $\tau = S(r) = \alpha r$.

Цель операции достигнута, если $(\hat{\varepsilon} \leq \varepsilon_{_{\mathcal{I}}}) \cap (\hat{r} \leq r_{_{\mathcal{I}}}) \cap (\hat{\tau} \leq \tau_{_{\mathcal{I}}}) \cong U$. Требуется:

- а) найти ЗР $F_{\langle \hat{\pmb{\varepsilon}}, \hat{r}, \hat{\pmb{\tau}} \rangle}(\pmb{\varepsilon}, r, \pmb{\tau}) = P[(\hat{\pmb{\varepsilon}} \leq \pmb{\varepsilon}) \cap (\hat{r} \leq r) \cap (\hat{\tau} \leq \pmb{\tau})]$ случайного вектора $\langle \hat{\pmb{\varepsilon}}, \hat{r}, \hat{\pmb{\tau}} \rangle$ показателя виртуального качества результатов ЦНПФС;
- б) определить функцию распределения (ФР) $F_{\hat{\boldsymbol{\sigma}}^{(3)}}(\boldsymbol{\sigma})$ условной вероятности $\hat{\boldsymbol{\sigma}}^{(3)} = F_{(\hat{\boldsymbol{\varepsilon}},\hat{r},\hat{\boldsymbol{\tau}})}(\boldsymbol{\varepsilon}_{\mathcal{A}},r_{n},\boldsymbol{\tau}_{\mathcal{A}})$ достижения цели операции;
- в) определить выражения для вероятностей достижения цели операции:
 - безусловной (априорной) $P_{_{\it Л\! I\! I}}$ и
 - условной (апостериорной) $\boldsymbol{\omega}_{AH}^{r}(\boldsymbol{\gamma})$;
- г) вычислить их при следующих значениях параметров: $t_u'=2$ [мин]; $t_u''=12$ [мин]; $t_p=1$ [мин]; $\varepsilon_M=5$ [км]; $\alpha=0.5$ [мин/ед]; $\lambda=1$ [1/мин]; $\varepsilon_A=2$ [км]; $r_H=22$ [ед]; $\tau_A=12$ [мин]; $\gamma=0.8$;
 - д) сравнить влияние параметров α и λ на эффективность ЦНПФС.

3. Примерные вопросы на защиту работы:

- 1. Дать определение операционному функционалу.
- 2. Дать определение операционной функции.
- 3. Дать определение функции связи.
- 4. Привести примеры операционных функций.
- 5. Постулаты теории операционных функционалов.
- 6. Какие методы используются при нахождении показателя требуемого качества результатов операции.

	А. Данилов
(воинское звание, по	дпись, инициал имени, фамилия автора)
<< >>	2020 г.