Data Mining and Business Intelligence

Lecture 6: Time Series Introduction

Jing Peng
University of Connecticut
2/27/20

Time Series Basics

What is a time series?

• A **time series** is a sequence of measurements of the same variable collected over time, often at regular time intervals

Common Patterns of Time Series

- Trend
- Seasonality
- Events

Pattern: Trend

• Trend: long term increase or decrease in the measurement

Pattern: Seasonality

 Seasonality: patterns reoccurring at a regular interval (e.g., day, week, year)

Pattern: Events

• Event: a factor that results in abrupt changes in outcome

Source: https://stackoverflow.com/questions/8317584/r-ggplot-time-series-with-events

Time Series Models

Models for Time Series

- Linear Regression
- Exponential Smoothing Models
- Autoregressive Integrated Moving Average Models (ARIMA)
 - Autoregressive (AR)
 - Moving Average (MA)

Recurrent Neural Networks: Long Short-Term Memory

Linear Regression

$$Savings_t = \beta_0 + \beta_1 Week_t + \varepsilon_t \ (t = 1, ..., 8)$$

Beyond Linear Regression: Example

- Bob opened a bank account with \$500 initial deposit
- Bob deposits \$1000 at the end of each week
- How much money does Bob have in his account after 10 weeks?
 - What if Bob spends 30% of his money at the beginning of each week?
 - What if there is some random variation in the amount Bob deposits each week (e.g., \$995 in week 1, \$1001 in week 2, ...)

Beyond Linear Regression: Example (cont.)

A recursive approach

$$Y_0 = 500$$
$$Y_t = 1000 + 0.7Y_{t-1}$$

With random variation

$$Y_t = 1000 + 0.7Y_{t-1} + \varepsilon_t$$

Autoregressive Model

Autoregressive (AR) Model

• AR (1): autoregressive model of order 1

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t$$

AR(p): autoregressive model of order p

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$

Examples: global temperature, stock price

Moving Average (MA) Model

MA (1): moving average model of order 1

$$Y_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

MA(q): moving average model of order q

$$Y_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- Examples
 - Unobserved shocks with sustaining effect (e.g., coupons and disasters)
 - Data manipulation (e.g., smoothing and interpolation)

Autocorrelations

Correlation Functions

 Autocorrelation, also known as serial correlation, is the correlation of a signal with a delayed copy of itself as a function of delay.

 Autocorrelation Function (ACF): Correlation of observations k time units apart

• **Partial Autocorrelation Function** (PACF): Correlation of observations k time units apart, **conditional on** observing observations in-between

Theoretical ACF and PACF for AR(1)

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t$$

Source: http://slideplayer.com/slide/6399540/

Theoretical ACF and PACF for MA(1)

Theoretical Patterns of ACF and PACF

Type of Model	Typical Pattern of ACF	Typical Pattern of PACF
AR (<i>p</i>)	Decays exponentially or with damped sine wave pattern or both	Cut-off after lags p
MA (<i>q</i>)	Cut-off after lags q	Declines exponentially
ARMA (<i>p,q</i>)	Exponential decay	Exponential decay

Source: http://slideplayer.com/slide/1507028/

Conditional Dependence vs. Independence

- Conditional independence: for AR(1) model, Y(t) and Y(t-2) are unrelated conditional on Y(t-1)
- Conditional dependence: for MA(1) model, Y(t) and Y(t-2) become correlated conditional on Y(t-1)
- Conditional dependence: events A and B are unrelated, but they become correlated conditional on event C
 - A: money spent on food
 - B: money spent on clothing
 - C: total money spent

Inverse Autocorrelation Function

IACF is the ACF of the inverse model

$$\begin{aligned} Y_t &= \theta_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t \\ & \qquad \qquad \qquad \qquad \end{aligned} \\ \text{inverse model} \\ Y_t &= \theta_0 + \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + \varepsilon \end{aligned}$$

 IACF is similar to PACF, but more sensitive than PACF for some features of autocorrelation

Autocorrelation Plots in SAS

Autocorrelation Detection

Detection of Autocorrelation

- Approach 1: Manually inspection
- Approach 2: Autocorrelation plots

Comparison of Two Time Series

• AR(1):
$$Y_t = \phi Y_{t-1} + \varepsilon_t$$

• White noise: ε_t

Plot of Series with ACF(1)=0.90 Overlaid with the Error Term (White Noise)

Plot of Series with ACF(1)=0.50 Overlaid with the Error Term (White Noise)

Plot of Series with ACF(1)=0.10 Overlaid with the Error Term (White Noise)

Plot of Series with ACF(1)= -0.90 Overlaid with the Error Term (White Noise)

Takeaway for Manual Inspection

- **Positive autocorrelation**: remain above or below the mean for extended periods of time
- Negative autocorrelation: rapidly switch between above and below the mean
- Autocorrelation is NOT always detectable from plots of the data

Autocorrelation Plots for Series with ACF(1)=0.90

Autocorrelation Plots for Series with ACF(1)=0.50

Autocorrelation Plot for Series with ACF(1)=0.10

Autocorrelation Plots for Series with ACF(1)=-0.90

Takeaway for Autocorrelation Plots

- Can effectively detect autocorrelation even if the autocorrelation is small
- There are 5% probability that a significant spike is observed in white noise series (definition of p-value)
- IACF plot for the same dataset may vary across software, and even different versions of the same software
- IACF and PACF may have different number of significant spikes

Illustration in R

• The data underlying the above plots are not provided, now let's generate similar data on our own

• Overlaid.R

Simulations

Demo on Simulated Datasets

Four time series

- AR(1) with $\phi = 0.7$
- AR(1) with $\phi = -0.7$
- MA(1) with $\theta = 0.7$
- MA(1) with $\theta = -0.7$

simulate.R

$AR(1): \phi = 0.7 (1000 \text{ obs})$

AR(1): $\phi = -0.7$ (1000 obs)

$AR(1): \phi = 0.7 (100 \text{ obs})$

$AR(1): \phi = -0.7$ (100 obs)

Exercise

- Examine the autocorrelation plots for different MA models in both simulation 100 and simulation 1000 datasets
- Examine the autocorrelation plots for white noise in simulation100 dataset
- Copy and paste those figures in the slides

Further Readings

- Forecasting Chapter 1
- https://onlinecourses.science.psu.edu/stat510/