

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

The University of Texas at Dallas

Course Project

- Team Project (45%)
 - 2 3 students for a project
 - Project proposal (5%)
 - Project mid-term report (10%)
 - Project presentation (15%)
 - Project final report (15%)

Course Project Tracks

- Research-oriented
 - Proposal a new idea in robotics that has not been explored before
 - Implement the new idea and conduct experiments to verify it
- Application-oriented
 - Apply an existing algorithm or method to a new problem or a new application
 - E.g., if a method is proposed for domain A, explore applying it to a different domain
- Implementation-oriented
 - Select an existing algorithm or method, implement it and conduct experiments to verify the implementation
 - Cannot just use open-source code and run experiments with it

Mandatory Requirements

The project needs to have a robot

The project needs to have robot manipulation

Topic: Model-based Grasping

Topic: 6D Object Pose-based Grasping

Self-supervised 6D Object Pose Estimation for Robot Manipulation. Deng et al., ICRA'20

https://arxiv.org/abs/1909.10159

Topic: Model-based Grasping Planning

Graspit! https://graspit-simulator.github.io/

Topic: Model-based Grasping Planning

Topic: Model-based Motion Planning

https://opensource.fetchrobotics.com/icra-challenge/2019/01/28/tutorial.html

Moveit https://moveit.ros.org/

Topic: Learning-based Top-Down Grasping

https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. Kalashnikov, et al., 2018 https://arxiv.org/abs/1806.10293

Topic: Learning-based Top-Down Grasping

Sample Efficient Grasp Learning Using Equivariant Models. Zhu et al. RSS, 2022 https://zxp-s-works.github.io/equivariant_grasp_site/

Topic: Learning-based 6D Grasping

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. Mousavian et al., ICCV'19 https://arxiv.org/abs/1905.10520

Topic: Learning-based 6D Grasping

Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds. Wang et al., CoRL'21

https://sites.google.com/view/gaddpg

Topic: Articulated Object Manipulation

https://hyperplane-lab.github.io/vat-mart/

VAT-Mart: Learning Visual Action Trajectory Proposals for Manipulating 3D ARTiculated Objects, Wu et al., ICLR'22

Topic: Deformable Object Manipulation

Learning Latent Graph Dynamics for Visual Manipulation of Deformable Objects. Ma et al., ICRA'21.

https://arxiv.org/abs/2104.12149

Topic: Mobile Manipulation

https://www.youtube.com/watch?v=ZQknooga8A0

Topic: Mobile Manipulation

TidyBot

https://tidybot.cs.princeton.edu/

https://say-can.github.io/

Topic: Human-Robot Handover

Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian and Dieter Fox In Conference on Robot Learning (CoRL), 2021.

Simulator: Gazebo

Integrated with ROS

https://gazebosim.org/home

Simulator: PyBullet

Python interface

https://pybullet.org/wordpress/

Simulator: NVIDIA Isaac Gym

- GPU acceleration
- Parallelization of thousands of environments

https://developer.nvidia.com/isaac-gym

https://github.com/NVIDIA-Omniverse/IsaacGymEnvs

Simulation Environment: iGibson

Fully-Interactive and Photorealistic

15 scenes annotated from real-world homes

Support 12000+ scenes from CubiCasa5K and 3D-Front

Physical Interaction with Articulated Objects

More than 500 object models

Sourced from open source datasets and cleaned up

Articulated objects can be operated by agents

https://svl.stanford.edu/igibson/

Simulation Environment: ManipulaTHOR

iTHOR

RoboTHOR

https://ai2thor.allenai.org/manipulathor

Simulation Environment: Habitat-sim

https://github.com/facebookresearch/habitat-sim

Simulation Environment: SAPIEN

https://sapien.ucsd.edu/

Simulation Environment: BulletArm

BulletArm: An Open-Source Robotic Manipulation Benchmark and Learning Framework. Wang et al. 2022 https://arxiv.org/abs/2205.14292

Propose Your Projects

- Which topic to work on?
 - Grasping? Language-guided Manipulation? Mobile Manipulation?
- What specific problem to work on within the chosen topic?
 - Model-based grasping? Motion planning? RL for grasping? Etc.
- Which simulation environment to use?
 - Gazebo with ROS? iGibson? Isaac Gym? Etc.
- Which track is your project?
 - Research-oriented? Application-oriented? Implementation-oriented?

Discussion