4M x 16-Bit Dynamic RAM (4k & 8k Refresh)

HYB 3164160T -50/-60 HYB 3165160T -50/-60

Preliminary Information

- 4 194 304 words by 16-bit organization
- 0 to 70 °C operating temperature
- · Fast access and cycle time

RAS access time:

50 ns (-50 version)

60 ns (-60 version)

Cycle time:

90 ns (-50 version)

110 ns (-60 version)

CAS access time:

13 ns (-50 version)

15 ns (-60 version)

· Fast page mode cycle time

35 ns (-50 version)

40 ns (-60 version)

- Single + 3.3 V (± 0.3V) power supply
- · Low power dissipation

max. 396 active mW (HYB 3164160T-50)

max. 360 active mW (HYB 3164160T-60)

max. 504 active mW (HYB 3165160T-50)

max. 432 active mW (HYB 3165160T-60)

7.2 mW standby (TTL)

720 W standby (MOS)

- Read, write, read-modify-write, CAS-before-RAS refresh (CBR), RAS-only refresh, hidden refresh and self refresh modes
- · Fast page mode capability
- 2 CAS / 1 WRITE byte control
- 8192 refresh cycles/128 ms , 13 R/ 9C addresses (HYB 3164160T)
- 4096 refresh cycles/ 64 ms , 12 R/ 10C addresses (HYB 3165160T)
- Plastic Package: P-TSOPII-54-1 500 mil

This device is a 64 MBit dynamic RAM organized 4 194 304 by 16 bits. The device is fabricated in SIEMENS/IBM most advanced first generation 64Mbit CMOS silicon gate process technology. The circuit and process design allow this device to achieve high performance and low power dissipation. This DRAM operates with a single 3.3 +/-0.3V power supply and interfaces with either LVTTL or LVCMOS levels. Multiplexed address inputs permit the HYB 3164(5)160T to be packaged in a 500 mil wide TSOP-54 plastic package. These packages provide high system bit densities and are compatible with commonly used automatic testing and insertion equipment.

Ordering Information

Туре	Ordering Code	Package		Descriptions
HYB 3164160T-50	on request	P-TSOPII-54-1	500 mil	DRAM (access time 50 ns)
HYB 3164160T-60	on request	P-TSOPII-54-1	500 mil	DRAM (access time 60 ns)
HYB 3165160T-50	on request	P-TSOPII-54-1	500 mil	DRAM (access time 50 ns)
HYB 3165160T-60	on request	P-TSOPII-54-1	500 mil	DRAM (access time 60 ns)

Pin Names

A0-A12	Address Inputs for HYB 3164160T
A0-A11	Address Inputs for HYB 3165160T
RAS	Row Address Strobe
ŌE	Output Enable
I/O1-I/O16	Data Input/Output
UCAS, LCAS	Column Address Strobe
WRITE	Read/Write Input
Vcc	Power Supply (+3.3V)
Vss	Ground
	·

Pin Configuration

TRUTH TABLE

FUNCTION		RAS	LCAS	UCA S	WRIT E	OE	ROW ADD	COL ADD	I/O1- I/O16
Standby		Н	H - X	H - X	Х	Х	Х	Х	High Impedance
Read:Word		L	L	Н	Н	L	ROW	COL	Data Out
Read:Lower Byte		L	L	Н	Н	L	ROW	COL	Lower Byte:Data Out Upper-Byte:High-Z
Read:Upper Byte		L	Н	L	Н	L	ROW	COL	Lower Byte:High-Z Upper Byte:Data Out
Write:Word (Early-Write)		L	L	L	L	Х	ROW	COL	Data In
Write:Lower Byte (Early-Write)		L	L	Н	L	Х	ROW	COL	Lower Byte:Data Out Upper-Byte:High-Z
Write:Upper Byte (Early Write)		L	Н	L	L	Х	ROW	COL	Lower Byte:High-Z Upper Byte:Data Out
Read-Modify- Write		L	L	L	H-L	L-H	ROW	COL	Data Out, Data In
Fast Page Mode Read (Word)	1st Cycle	L	H-L	H - L	Н	L	ROW	COL	Data Out
Fast Page Mode Read (Word)	2nd Cycle	L	H-L	H - L	Н	L	n/a	COL	Data Out
Fast Page Mode Early Write(Word)	1st Cycle	L	H-L	H - L	L	Х	ROW	COL	Data In
Fast Page Mode Early Write(Word)	2nd Cycle	L	H - L	H - L	L	Х	n/a	COL	Data In
Fast Page Mode RMW	1st Cycle	L	H - L	H - L	H-L	L-H	ROW	COL	Data Out, Data In
Fast Page Mode RMW	2st Cycle	L	H - L	H - L	H-L	L-H	n/a	COL	Data Out, Data In
RAS only refresh		L	Н	Н	Χ	Х	ROW	n/a	High Impedance
CAS-before-RAS refresh		H-L	L	L	Н	Х	X	n/a	High Impedance
Test Mode Entry		H-L	L	L	L	Х	Х	n/a	High Impedance
Hidden Refresh (Read)		L-H- L	L	L	Н	L	ROW	COL	Data Out
Hidden Refresh (Write)		L-H- L	L	L	L	Х	ROW	COL	Data In

Block Diagram for HYB 3164160T

Block Diagram for HYB 3165160T

Absolute Maximum Ratings

Operating temperature range	0 to 70 °C
Storage temperature range	– 55 to 150 °C
Input/output voltage	0.5 to min (Vcc+0.5,4.6) V
Power supply voltage	0.5V to 4.6 V
Power dissipation	1.0 W
Data out current (short circuit)	50 mA

Note

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

DC Characteristics

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm SS}$ = 0 V, $V_{\rm CC}$ = 3.3 V \pm 0.3 V, (values in brackets for HYB 3165160T)

Parameter	Symbol	Limit	Values	Unit	Note	
		min.	max.]		
Input high voltage	V _{IH}	2.0	Vcc+0.3	V	1)	
Input low voltage	V _{IL}	- 0.3	0.8	V	1)	
Output high voltage (LVTTL) Output "H" level voltage (lout = -2mA)	V _{OH}	2.4	_	V		
Output low voltage (LVTTL) Output "L"level voltage (lout = +2mA)	$V_{\scriptscriptstyle{ m OL}}$	_	0.4	V		
Output high voltage (LVCMOS) Output "H" level voltage (lout = -100uA)	V _{OH}	Vcc-0.2	-	V		
Ouput low voltage (LVCMOS) Output "L" level voltage (lout = +100uA)	V_{OL}	-	0.2	V		
Input leakage current, any input (0 V < Vin < Vcc , all other pins = 0 V	I _{I(L)}	-2	2	μΑ		
Output leakage current (DO is disabled, 0 V < Vout < Vcc)	I _{O(L)}	-2	2	μΑ		
Average <i>Vcc</i> supply current: -50 ns version -60 ns version (RAS, CAS, address cycling: tRC = tRC min.)			110 (140) 100 (120)	mA mA	2) 3) 4)	
Standby Vcc supply current (RAS=CAS= Vih)	I _{CC2}	_	2	mA	_	

DC Characteristics (cont'd)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm SS}$ = 0 V, $V_{\rm CC}$ = 3.3 V \pm 0.3 V, (values in brackets for HYB 3165160T)

Parameter	Symbol	Limit	Values	Unit	Note	
		min.	max.			
Average Vcc supply current, during RAS-only refresh cycles: -50 ns version -60 ns version (RAS cycling: CAS = VIH: tRC = tRC min.)			110 (140) 100 (120)	mA mA	2) 4)	
Average V cc supply current, during fast page mode: -50 ns version -60 ns version $(\overline{RAS} = V_{IL}, \overline{CAS}, \text{ address cycling: } tPC=tPC \text{ min.})$			85 (85) 75 (75)	mA mA	2) 3) 4)	
Standby Vcc supply current (RAS=CAS= Vcc-0.2V)	I _{CC5}	_	200	Α	_	
Average Vcc supply current, during $\overline{\text{CAS}}$ -before-RAS refresh mode: -50 ns version -60 ns version ($\overline{\text{RAS}}$, $\overline{\text{CAS}}$ cycling: tRC = tRC min.)	I _{CC6}		110 (140) 100 (120)	mA mA	2) 4)	
Self Refresh Current Average Power Supply Current during Self Refresh. (CBR cycle with tRAS>TRASSmin, CAS held low, WE = Vcc-0.2V, Address and Din=Vcc-0.2V or 0.2V)	I _{CC7}	_	400	A		

Capacitance

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 3.3 V \pm 0.3V, f = 1 MHz

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Input capacitance (A0 to A11,A12)	<i>C</i> ₁₁	_	5	pF
Input capacitance (RAS, CAS, WRITE, OE)	C ₁₂	_	7	pF
I/O capacitance (I/O1-I/O16)	C _{IO}	_	7	pF

AC Characteristics (note: 6,7,8) $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 3.3 \pm 0.3V

Parameter	Symbol		YB)16T-50		YB)16T-60	Unit	Note
		min.	max.	min.	max.		
common parameters		•		•			
Random read or write cycle time	t_{RC}	90	_	110	_	ns	
RAS precharge time	t_{RP}	30	_	40	-	ns	
RAS pulse width	t _{RAS}	50	100k	60	100k	ns	
CAS pulse width	t_{CAS}	13	100k	15	100k	ns	
Row address setup time	t _{ASR}	0	_	0	_	ns	
Row address hold time	t_{RAH}	8	_	10	_	ns	
Column address setup time	t _{ASC}	0	_	0	_	ns	
Column address hold time	t _{CAH}	10	_	10	_	ns	
RAS to CAS delay time	t_{RCD}	18	37	20	45		
RAS to column address delay time	t_{RAD}	13	25	15	30	ns	
RAS hold time	t_{RSH}	13	_	15	_	ns	
CAS hold time	t _{CSH}	50	_	60	_	ns	
CAS to RAS precharge time	t _{CRP}	5	_	5	_	ns	
Transition time (rise and fall)	t _T	3	30	3	30	ns	7
Refresh period for HYB3164160T	t_{REF}	_	128	_	128	ms	
Refresh period for HYB3165160T	t_{REF}	_	64	_	64	ms	
Read Cycle							1
Access time from RAS	t _{RAC}	_	50	_	60	ns	8, 9
Access time from CAS	t_{CAC}	-	13	_	15	ns	8, 9
Access time from column address	t _{AA}	-	25	_	30	ns	8, 10
OE access time	t _{OEA}	_	13	_	15	ns	8
Column address to RAS lead time	t_{RAL}	25	_	30	_	ns	
Read command setup time	t_{RCS}	0	_	0	_	ns	
Read command hold time	t _{RCH}	0	_	0	_	ns	11
Read command hold time referenced to RAS	t_{RRH}	0	_	0	_	ns	11

CAS to output in low-Z

 t_{CLZ}

0

ns

AC Characteristics (cont'd)(note: 6,7,8)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 3.3 \pm 0.3V

Parameter	Symbol	HYB 3164(5)16T-50				Unit	Note
		min.	max.	min.	max.		
Output buffer turn-off delay	t _{OFF}	_	13	_	15	ns	12
Output buffer turn-off delay from OE	t _{OEZ}	_	13	_	15	ns	12
Data to OE low delay	t_{DZO}	0	_	0	_	ns	13
CAS high to data delay	t_{CDD}	13	_	15	_	ns	14
OE high to data delay	t_{ODD}	13	_	15	_	ns	14

Write Cycle

Write command hold time	t_{WCH}	8	_	10	_	ns	
Write command pulse width	t_{WP}	8	_	10	_	ns	
Write command setup time	t_{WCS}	0	_	0	_	ns	15
Write command to RAS lead time	t _{RWL}	13	_	15	_	ns	
Write command to CAS lead time	t _{CWL}	13	_	15	_	ns	
Data setup time	t_{DS}	0	_	0	_	ns	16
Data hold time	t_{DH}	10	_	10	_	ns	16
CAS delay time from Din	t_{DZC}	0	_	0	_	ns	13

Read-Modify-Write Cycle

Read-write cycle time	t_{RWC}	126	_	150	_	ns	
RAS to WE delay time	t_{RWD}	68	_	80	_	ns	15
CAS to WE delay time	t_{CWD}	31	_	35	_	ns	15
Column address to WE delay time	t_{AWD}	43	_	50	_	ns	15
OE command hold time	t _{OEH}	13	_	15	_	ns	

Fast Page Mode Cycle

Fast page mode cycle time	t_{PC}	35	_	40	_	ns	
CAS precharge time	$t_{\sf CP}$	10	_	10	_	ns	
Access time from CAS precharge	t_{CPA}	_	30	_	35	ns	8
RAS pulse width	t_{RAS}	50	200k	60	200k	ns	
CAS precharge to RAS Delay	t _{RHCP}	30	_	35	_	ns	

AC Characteristics (cont'd)(note: 6,7,8)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 3.3 \pm 0.3V

Parameter	Symbol	HYB 3164(5)16T-50		HYB 3164(5)16T-60		Unit	Note
		min.	max.	min.	max.		

Fast Page Mode Read-Modify-Write

Cycle

Fast page mode read-write cycle time	t_{PRWC}	71	_	80	_	ns	
CAS precharge to WE	t _{CPWD}	48	_	55	_	ns	

CAS-before-RAS refresh cycle

CAS setup time	t_{CSR}	5	_	5	_	ns	
CAS hold time	t_{CHR}	10	_	10	_	ns	
RAS to CAS precharge time	t_{RPC}	5	_	5	_	ns	
Write to RAS precharge time	t_{WRP}	10	_	10	_	ns	
Write hold time referenced to RAS	t_{WRH}	10	_	10	_	ns	

CAS-before-RAS counter test cycle

CAS precharge time	t_{CPT}	25	_	30	_	ns	
· · · · · · · · · · · · · · · · · · ·						l	1

Self Refresh Cycle

RAS pulse width	t _{RASS}	100k	_	100k	_	ns	17
RAS precharge time	t _{RPS}	90	_	110	_		17
CAS hold time	t _{CHS}	-50	_	-50	_	ns	17

Notes:

- 1) All voltages are referenced to VSS.
- 2) ICC1, ICC3, ICC4 and ICC6 and ICC7 depend on cycle rate.
- 3) ICC1 and ICC4 depend on output loading. Specified values are measured with the output open.
- 4) Address can be changed once or less while \overline{RAS} = Vil.In the case of ICC4 it can be changed once or less during a fast page mode cycle (tpc).
- 5) An initial pause of 100 s is required after power-up followed by 8 RAS-only-refresh cycles, before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 6) AC measurements assume tT = 5 ns.
- 7) VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VIL.
- 8) Measured with the specified current load and 100 pF at Voh = 2.0 V and Vol = 0.8 V.
- 9) Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only: If tRCD is greater than the specified tRCD (max.) limit, then access time is controlled by tCAC.
- 10) Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only: If tRAD is greater than the specified tRAD (max.) limit, then access time is controlled by tAA
- 11) Either tRCH or tRRH must be satisfied for a read cycle.
- 12) tOFF (max.) and tOEZ (max.) define the time at which the outputs achieve the open-circuit condition and are not referenced to output voltage levels.
- 13) Either tDZC or tDZO must be satisfied.
- 14) Either tCDD or tODD must be satisfied.
- 15) tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If tWCS > tWCS (min.), the cycle is an early write cycle and the I/O pin will remain open-circuit (high impedance) through the entire cycle; if tRWD > tRWD (min.), tCWD > tCWD (min.), tAWD > tAWD (min.) and tCPWD > tCPWD (min.), the cycle is a read-write cycle and I/O pins will contain data read from the selected cells. If neither of the above sets of conditions is satisfied, the condition of the I/O pins (at access time) is indeterminate.
- 16) These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early write cycles and to $\overline{\text{WRITE}}$ leading edge in Read-Modify-Write cycles.
- 17) When using Self Refresh mode, the following refresh operations must be performed to ensure proper DRAM operation:
 - If row addresses are being refresh in an evenly distributed manner over the refresh iterval using CBR refresh cycles, then only one CBR cycle must be performed immediatly after exit from Self Refresh.
 - If row addresses are being refresh in any other manner (ROR Distributed/Burst or CBR-Burst) over the refresh interval, then a full set of row refreshed must be performed immediately before entry to and immediately after exit from Self Refresh

Read Cycle

Write Cycle (Early Write)

Write Cycle (OE Controlled Write)

Read-Write (Read-Modify-Write) Cycle

Fast Page Mode Read-Modify-Write Cycle

Fast Page Mode Read Cycle

Fast Page Mode Early Write Cycle

RAS-Only Refresh Cycle

CAS-Before-RAS Refresh Cycle

Hidden Refresh Cycle (Read)

Hidden Refresh Cycle (Early Write)

CAS-Before-RAS Refresh Counter Test Cycle

CAS-before-RAS Self Refresh

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm