Math 74, Week 14

Tianshuang (Ethan) Qiu

November 29, 2021

1 Mon Lec, 3a

Let a be the length of this rectangle that is opposite the wall, and b be the length of the other side. So we have $a+2b \leq 36$, and we try to maximize ab. We can simplify the first equation to a=36-2b

By AM-GM, we have that $\frac{2a+b}{2} \ge \sqrt{2ab}$, now since we know that $a+2b \le 36$, we can substitute that in.

$$18 \ge \frac{2a+b}{2} \ge \sqrt{2ab}$$

Thus the maximum the area ab can be is $18^2/2 = 162$. Now we try to find an a, b such that ab = 162. Let a = 9, b = 18, and ab = 162, achieving the maximum.

2 Mon Lec, 5a

We manipulate $2\sqrt{x} > 3 - \frac{1}{x}$, and it is equivalent to showing

$$2\sqrt{x} + \frac{1}{x} \ge 3$$

Then apply AM-GM to see that $\frac{\sqrt{x}+\sqrt{x}+1/x}{3} \ge \sqrt[3]{\sqrt{x}\sqrt{x}1/x} = 1$. Rearranging this gives

$$2\sqrt{x} + \frac{1}{x} \ge 3$$

Thus we have proven the statement.

3 Mon Lec, 6

We say two inequalities are equivalent when they are true and false at the same time.

In the first equation $(x-a)^2+1>0$, $(x-a)^2$ is non-negative, so the statement is always true.

$$4ax^{2} + 4x + 1 > 0$$
$$(4a - 4)x^{2} + (2x + 1)^{2} > 0$$

This inequality holds true when (4a - 4) > 0, so the two inequalities are equivalent when a > 1

4 Mon Dis, 1a

By AM-GM, $\frac{a+b}{2} \ge \sqrt{ab}$, $\frac{b+c}{2} \ge \sqrt{bc}$, etc. We can multiply these equations to get

$$\frac{(a+b)(b+c)...(e+a)}{2^5} \ge \sqrt{a^2b^2c^2d^2e^2}$$
$$(a+b)(b+c)(c+d)(d+e)(e+a) \ge 32abcde$$

5 Mon Dis, 1b

By AM-CM, $(\sum_{n=1}^{2021} n)/2021 \ge \sqrt[2021]{2021}$. We can apply the arithmetic series sum to the lhs:

$$\frac{(2021+1)2021}{2\times 2021} \ge \sqrt[2021]{2021!}$$
$$(\frac{2022}{2})^{2021} \ge 2021!$$

Thus it is proven.

6 Mon Dis, 3c

Let our box have dimensions h, w, l for height, width, and length. Now we know by AM-GM that $\frac{h+w+l}{3} \geq \sqrt[3]{whl}$. Since this box is inscribed on the ellipsoid, the edge in the octant 1 with coordinates (w, l, h) satisfies

$$\frac{w^2}{a^2} + \frac{l^2}{b^2} + \frac{h^2}{c^2} = 1$$

Now we manipulate the equation: $w^2a^2b^2 + l^2a^2c^2 + h^2b^2c^2 = a^2b^2c^2$