المستوى: السنة الثانية ثانوي

مقاربة كيفية لطاقة جملة وانحفاظها

الوحدة 01

حسب الطبعة 2012 / 2013 للكتاب المدرسي

ماذا يجب أن أعرف حتى أقول: إنى استوعبت هذا الدرس

- 1 يجب أن أعرف المعنى الفيزيائي للطاقة .
- 2 يجب أن أعرف شكل طاقة جملة وكيفية تحوّلها .
- 3 يجب أن أعرف كيفية التعبير عن ظاهرة أو تركيب بواسطة سلسلة طاقوية .
- 4 يجب أن أعرف أن طاقة جملة لا تضيع بل تتحول إلى شكل آخر (انحفاظ الطاقة) .
 - 5 يجب أن أعرف كيفية التعبير عن تحول الطاقة بواسطة تمثيل الحصيلة الطاقوية .

الدرس

1 - المعنى الفيزيائي للطاقة

الطاقة هي قياس لقدرة جملة على:

- تغيير حالة فيزيائية (مثلا صهر الجليد)
 - إنتاج عمل
- إحداث حركة أو إشعاع كهرومغناطيسي أو حرارة

2 - أشكال طاقة جملة

- الطاقة الحركية : تتعلق بالمتحرك (كتلته) وحالته الحركية (سرعته) ، نرمز لها ب E_c
- الطاقة الكامنة: تتعلق بالتأثيرات المتبادلة بين الأجسام (مثلا الجذب بين جسم والأرض) ، نرمز لها بـ En
- الطاقة الداخلية: هي مجموع الطاقتين الحركية والكامنة المجهريتين ، حيث الأولى تتعلق بحركة الجسيمات المكوّنة للجملة ، وتتعلق الثانية بالتأثيرات المتبادلة بين هذه الجسيمات ، نرمز لها ب E_i .

3 - أنماط تحويل الطاقة

- تحويل ميكانيكي W_m : يحدث هذا النمط من التحويل بواسطة تطبيق قوى من جسم على آخر . مثلا: رجل الدرّاج عندما تدير دوّاسة الدراجة .
 - تحويل كهربائي $W_{\rm e}$: يحدث هذا النمط عندما يمر تيار كهربائي .
 - مثلا: بطارية تغذى مصباحا
- تحويل بالإشعاع E_r : يحدث هذا النمط عند سقوط أشعة ضوئية مرئية أو غير مرئية من جسم على جسم آخر . مثلا : سقوط أشعة الشمس على قطعة حديدية (تسخُن القطعة) .
 - تحويل حراري Q: يحدث هذا النمط عند تلامس أجسام تختلف في درجة حرارتها .
 - مثلا: المسخن الكهربائي في المنزل . (تلامس الهواء الموجود في المنزل مع المسخن)

4 - وصف ظاهرة بواسطة سلسلة وظيفية

تتكون الظاهرة أو التركيب من أجسام تتميز بحالة معينة وتؤدّى وظيفة معيّنة .

مثال: تغذية مصباح بواسطة بطارية.

تملك البطارية طاقة داخلية نتيجة التفاعلات الكيميائية التي تحدث داخلها ، فتتفرغ (فعل حالة) من أجل تغذية المصباح (فعل أداء)

المصباح يلمع (فعل حالة) فيضيء ويسخن (فعل أداء) الوسط الخارجي .

نعبر عن هذا التركيب بواسطة السلسلة الوظيفية التالية:

5 - وصف ظاهرة بواسطة سلسلة طاقوية

نكتب أسفل الجسم شكل الطاقة التي يحوّلها ، ونكتب فوق السهم الشكل الذي تتحول به هذه الطاقة إلى الجسم الآخر .

مثال: دارة مغلقة على بطارية ومصباح .

إن للبطارية طاقة داخلية بسبب التفاعلات الكيميائية الحادثة فيها ، ينتج عن ذلك تيار كهربائي يمر في المصباح (تحويل كهربائي) ، فيشتعل المصباح مكتسبا طاقة داخلية نتيجة حركة الإلكترونات في سلكه المتوهج ، فيسخن هذا السلك وينشر إشعاعات ضوئية وكمية من الحرارة إلى الوسط الخارجي ، أي المحيط (تحويل حراري و تحويل بالإشعاع) .

النشاطات

الطاقة الحركية

النشاط 1 (ص 16)

- قم بذلك ...
- يكون المطاط متوترا ، أي مستطالا .
- نستنتج أن المطاط اكتسب طاقة مرونية ، حيث تحوّلت الطاقة الحركية للعربة إلى طاقة كامنة مرونية اكتسبها المطاط .
- تتوقف العربة ، ثم تعود راجعة بفعل الطاقة الكامنة المرونية للمطاط التي تتحوّل الآن إلى طاقة حركية ، وتكون هذه الطاقة الحركية أكبر ما يُمكن عندما يصبح طول المطاط مساويا لطوله الطبيعي . تواصل العربة حركتها إلى أن تصطدم بالحاجز (عدم وجود أي ضياع في الطاقة) .

الأسئلة الأخرى: نستنتج أن الطاقة الحركية تتعلق بسرعة الجسم.

النشاط 1 (ص 16)

- قم بذلك
- يجب أن تكون للعربتين نفس السرعة لكي ندرس علاقة الطاقة الحركية بالكتلة فقط.
- نثبّت أفقيا نابضين متماثلين في طرف الطاولة ونضغطهما بواسطة العربتين بنفس القيمة ونتركهما في نفس اللحظة ، بشرط أن لا نعرقل حركة المطاطين .
- يجب أن يكون المطاطان متماثلين حتى يتسنى لنا أن نحكم على تناسب الطاقة الحركية للعربتين مع مقداري استطالتهما . نتحقق من تماثلهما ، أولا بقياس طوليهما ، أي يجب أن يكون لهما نفس الطول ، وثانيا يجب أن تكون لهما نفس المرونة ، ولكي نتحقق من ذلك نثبتهما شاقوليا ونعلق في الطرف الثاني لكل واحد منهما نفس الثقل فيستطيلان بنفس القيمة .
 - كلما كانت حمولة العربة أكبر كلما استطال المطاط أكثر ، وبالتالي نستنتج أن الطاقة الحركية تتعلق بكتلة الجسم .

إكمال الفراغات:

 E_{c} يملك كل جسم متحرك في مرجع معين طاقة حركية ونرمز لها بالرمز

تتعلق الطاقة الحركية لجسم بسرعته في المرجع المعتبر ، بحيث تزداد كلما زادت سرعة الجسم .

كما تتعلق بكتلته ، فتزداد طاقته الحركية بازدياد كتلته

ملاحظة : إذا كان الجسم ساكنا ، فمهما كانت كتلته فإن طاقته الحركية تكون معدومة ، أي أن تأثير الكتلة يظهر فقط أثناء الحركة .

الطاقة الداخلية

النشاط 1 (ص 17)

- نلاحظ أن العربة تشرع في الحركة.
- لا تكتسب العربة في الموضع A طاقة بدون وجود العمود لأنه لا يوجد أي منبع يحوّل الطاقة للعربة .
- نعم تكتسب العربة طاقة في الموضع B وهي تسير لأن العربة لها سرعة في هذه النقطة ، وهذه الطاقة هي طاقة حركية ، وتتعلق بسرعة العربة وكتلتها ، واكتسبتها من العمود ، حيث أن هذا الأخير قام بتغذية المحرك الذي تعتمد عليه العربة في حركتها .
 - نعم للعمود طاقة في الموضع A ، وهي طاقة داخلية .
 - نمط تحويل الطاقة من العمود إلى المحرك هو كهربائي (W_e)
 - نمط تحويل الطاقة من المحرك إلى العربة هو ميكانيكي (W_m)
 - السلسلة الطاقوية :

إكمال الفراغات:

يخزّن العمود الكهربائي طاقة ندعوها الطاقة الداخلية ، ونرمز لها بالرمز E_i ، تتعلق بالحالة المجهرية للمادة الكيميائية W_e . نتحوّل الطاقة من العمود إلى المحرك ، ونقول أنه حدث تحويل كهربائي ، ونرمز له بالرمز W_e . يتحقّق هذا التحويل عندما يعبر تيار دارة كهربائية .

النشاط 2 (ص 18)

- نعم يخزّن العمود طاقة قبل غلق القاطعة (طاقة داخلية) . نقصُد أن العمود يملك طاقة داخلية .
- نعلم أن مقاومة السلك المسخن تزداد بازدياد درجة حرارة السلك ، وبما أن شدّة التيار الكهربائي تتناسب عكسيا مع المقاومة ، إذن نلاحظ أن شدة التيار تؤول إلى قيمة صغيرة كلما طال الزمن لأن حرارة السلك تزداد بمرور الوقت .
 - ملاحظة : هناك مواد مقاومتها الكهربائية تنقص عندما ترتفع درجة حرارتها ، مثل الفحم)
 - المحرار يبين ارتفاع درجة حرارة الماء .
 - يكتسب الماء طاقة ، وهي طاقة داخلية ، وتتعلق بالحركة العشوائية لجزيئات الماء والتأثيرات المتبادلة بينها .
 - نمط تحويل الطاقة من المقاومة الكهربائية إلى الماء هو نمط حراري .
 - السلسلة الطاقوية:

إكمال الفراغات

عندما ترتفع درجة حرارة الماء تزداد طاقته الداخلية . نفسر ارتفاع الطاقة الداخلية للماء بزيادة الطاقة الحركية لجزيئات الماء (طاقة حركية مجهرية ، او ميكروسكوبية) .

حدث تحويل حراري بين المقاومة الكهربائية والماء ونرمز لهذا التحويل بالرمز Q

النشاط 3 (ص 18)

- 1 المحرار هو الذي يبيّن أن الوعاء الذي كان معرّضا مباشرة للأشعة هو الذي ترتفع فيه درجة حرارة الماء بقيمة أكبر بعد مرور مدة زمنية معيّنة.
- 2 درجة حرارة الماء تتناسب مع الطاقة التي اكتسبها الماء ، وبالتالي تكون الطاقة المكتسبة في الوعاء المعرض مباشرة للأشعة أكبر من الطاقة التي اكتسبها الماء في الوعاء المغلق .
- 3 الطاقة في الوعاء تكون بمقدار كمية الإشعاعات التي تصل إلى الماء في هذا الوعاء . هذا لا يُعني أن الماء الموجود في الكأس المغلق لا يكتسب طاقة . سقوط الأشعة الضوئية على الصغيحة المعدنية يُكسبها طاقة داخلية تتحول حراريا للهواء ثم إلى الماء . ونستنتج من هذا أن الطاقة تكون مختلفة في الوعاءين بعد فترة زمنية معيّنة .
 - نمط تحويل الطاقة في هذه الحالة: تحويل بالإشعاع في الوعاء 1 وتحويل حراري في الوعاء 2.

إكمال الفراغات

اكتسب الماء في الوعاء 1 طاقة داخلية أكبر من الطاقة الداخلية التي اكتسبها الماء في الوعاء 2 نتيجة تعرّضه للأشعة . نقول أنه حدث تحويل للطاقة بواسطة الأشعة الضوئية من المصباح (أو الشمس) إلى الماء . يُدعى هذا النمط من التحويل تحويل بالإشعاع ونرمز له بالرمز E_r .

الطاقة الكامنة المرونية

النشاط الوحيد (ص 19)

نمثل السلسلة الطاقوية:

- 1

- في الوضع A النابض لم يطرأ عليه أي تشوّه ، فهو لا يخزن أي طاقة .
- في الوضع B النابض متقلص بمقدار معين (أي طوله أصبح اقل من طوله الطبيعي) ، في هذه الحالة يخزن طاقة بسبب تشوهه ، وقد اكتسب هذه الطاقة من العربة ، وهذه الطاقة هي طاقة كامنة مرونية وتتعلق بمقدار تشوه النابض (أي تقلصه أو استطالته) .
 - نمط تحويل الطاقة من العربة للنابض هو تحويل ميكانيكي (W_m) .
 - ليس هذا مكان الجواب عن هذا السؤال ، فلكي نتطرق للحصيلة الطاقوية يجب أن تعرف على كل أشكال الطاقة .

النابض | W_m | العربة | E_c | E_{pe}

- 2

- التمثيل:

بما أن الطاقة الحركية للعربة تتعلق بسرعتها ، هذا معناه أنها تكتسب طاقة حركية أكبر مما في التجربة الأولى عند اصطدامها بالنابض وبالتالى تكون الطاقة المحوّلة إلى النابض أكبر كذلك . ، وبهذا يتقلص النابض أكثر . .

- طاقة النابض في هذه الحالة تكون أكبر منها في التجربة الأولى .

- تتناسب الطاقة الكامنة للنابض بمقدار التشوّه فيه .

إكمال الفراغات

عندما يكون نابض منضغطا (أو مستطالا) فإنه يخرّن طاقة تتعلّق بمقدار انضغاطه أو استطالته ، نسميها الطاقة الكامنة المرونية ونرمز لها بالرمز E_{pe} . كلما زاد انضغاط أو استطالة النابض (في حدود مرونة النابض) زادت طاقته الكامنة المرونية المخزنة .

الطاقة الكامنة الثقالية

النشاط 1 (ص 19)

- 1 نعم ، تكتسب المزهرية طاقة لحظة ملامستها الأرض ، والدليل على ذلك هو الأثر الذي تركته على التراب .
 - 2 الطاقة التي اكتسبتها المزهرية هي طاقة حركية ، وقد اكتسبتها من جراء حركتها .
- 3 نعم كانت تكتسب الجملة (المزهرية + الأرض) طاقة عندما كانت المزهرية موضوعة على حافة الشرفة (قبل السقوط) ، لأن هذه الطاقة هي التي بدأت تتحول إلى طاقة حركية خلال سقوط المزهرية .
 - 4 هذه الطاقة هي طاقة كامنة ثقالية.

النشاط 2 (ص 20)

- الأثر الذي تُحدثه المزهرية في الشكل 23 يكون أعمق من الذي تُحدثه المزهرية في الشكل 22 (طبعا إذا كانت حالة الأرضية هي نفسها تحت العمارتين) ، نرجو أن يكون الشارع خاليا من المارة .
 - نستنتج أن طاقة الجملة (المزهرية + الأرض) في الشكل 23 أكبر منها في الشكل 22 عندما كانت المزهرية على حاقة الشرفة ، وتتعلق هذه الطاقة بمقدار ارتفاع المزهرية عن سطح الأرض .

النشاط 3 (ص 20)

- المزهرية التي لها الكتلة الأكبر هي التي تُحدث في التراب الأثر الأكثر عمقا (حدسيًا).
- نستنتج أن طاقة الجملة (المزهرية + الأرض) في الشكل 24 أكبر منها في الشكل 23 .
 - تتعلق هذه الطاقة بكتلة المزهرية.

إكمال الفراغات

عندما يكون جسم ذو كتلة M على ارتفاع h من سطح الأرض ، فإن الجملة (الجسم + الأرض) تخزّن طلقة نسميها طلقة كامنة ثقالية ، وهي تتعلق بكتلة الجسم والارتفاع في مكان معيّن ، ونرمز لها بالرمز $E_{\rm pp}$.

استطاعة التحويل

نشاط

- 1 بعد القياس نلاحظ أن درجة الحرارة في الوعاء 2 أكبر.
- 2 تتناسب درجة الحرارة مع كمية الحرارة في الوعاء ، وبالتالي لا تكون كمية الحرارة متساوية في الوعاءين .
 - 3 تحويل الطاقة كان أسرع في الوعاء 2.

إكمال الفراغات

ارتفعت درجة حرارة الماء في الوعاء 2 أكثر منها في الوعاء 1 خلال نفس المدة ، أي أن الماء في الوعاء 2 اكتسب طاقة أكبر من الطاقة التي اكتسبها الماء في الوعاء 1 . نقول أنه حدث تحويل طاقوي أسرع في الحالة 2 منه في الحالة 1 .

 $P = \frac{E}{t}$ استطاعة التحويل (P) هي حاصل قسمة الطاقة المحولة على مدة التحويل

(s) الثانية : t ، (J) جول : E ، (W) : P

مبدأ انحفاظ الطاقة

الطاقة لا تضيع ، بل تتحوّل من جملة إلى أخرى .

الطاقة الابتدائية للجملة + الطاقة التي تستقبلها - الطاقة التي تقدّمها = الطاقة النهائية للجملة

نقول عن جملة أنها معزولة طاقويا إذا كانت:

طاقتها النهائية تساوى طاقتها الابتدائية

اصطلاحا نعتبر الطاقة المكتسبة موجبة والطاقة المفقودة سالبة.

الحصيلة الطاقوية

نمثل في الحصيلة الطاقوية الجسم بفقاعة وكل شكل من أشكال الطاقة بعمود يتوسطه سهم تدل جهته على جهة تغير الطاقة . نمثل الطاقة الابتدائية بخط متقطع أفقي والطاقة النهائية بخط متواصل أفقي .

مثال

نقذف كرة نحو الأعلى من نقطة مرتفعة عن سطح الأرض ، ونريد تمثيل الحصيلة الطاقوية منذ قذفها إلى أن تنعدم سرعتها .

الحالة الابتدائية (الحالة 1) : الكرة لها سرعة إذن لها طاقة حركية E_{c1} ، وتوجد على ارتفاع معيّن عن سطح الأرض ، إذن تملك طاقة

كامنة ثقالية E_{n1}

الحالة النهائية (الحالة 2) : تنعدم سرعة الكرة ، ومنه انعدام طاقتها الحركية ، أي $E_{\rm c2}=0$ ترداد طاقتها الكامنة لأنها ابتعدت عن الأرض لتصبح En2 .

ملاحظة 1: في حالة كون الجملة معزولة طاقويا نرسم السهمين بنفس الطول.

ملاحظة 2 : إذا لم تتغير طاقة جملة لا نمثل أي شيء داخل الفقاعة .

التحويل الحراري والتوازن الحراري

النشاط الوحيد (ص 23)

1 - الجملة (الوعاء + الماء + الكأس + الحليب) في البداية لم تكن في توازن حراري ، أي أن ليس كل هذه الأجسام تكون لها نفس درجة الحرارة ، لأن الحرارة تحتاج وقتا معيّنا لكي تنتقل من جسم لآخر .

2 - هذه الحالة ليست دائمة لأن الحرارة تنتقل عبر الأوساط.

3 - بعد مدة زمنية معيّنة تصبح للماء والحليب نفس درجة الحرارة .

4 - الحصيلة الطاقوية:

إكمال الفراغات

يحدث تحويل حراري () داخل جملة غير متوازنة حراريا من الجسم الساخن إلى الجسم البارد . يتواصل هذا التحويل إلى أن تصبح الجملة متوازنة حراريا. تكون لكل جسم نفس درجة الحرارة ، ونقول عندئذ أن للجملة نفس درجة الحرارة.