```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

#### In [2]:

```
salary=pd.read_csv('salary.csv')
```

## In [3]:

salary

## Out[3]:

|       | age | workclass            | education      | education_num | marital_status         | occupation            | relationship  | race  | gender | capital_gain | capital_loss |
|-------|-----|----------------------|----------------|---------------|------------------------|-----------------------|---------------|-------|--------|--------------|--------------|
| 0     | 39  | State-gov            | Bachelors      | 13            | Never-married          | Adm-<br>clerical      | Not-in-family | White | Male   | 2174         | 0            |
| 1     | 50  | Self-emp-<br>not-inc | Bachelors      | 13            | Married-civ-<br>spouse | Exec-<br>managerial   | Husband       | White | Male   | 0            | 0            |
| 2     | 38  | Private              | HS-grad        | 9             | Divorced               | Handlers-<br>cleaners | Not-in-family | White | Male   | 0            | 0            |
| 3     | 53  | Private              | 11th           | 7             | Married-civ-<br>spouse | Handlers-<br>cleaners | Husband       | Black | Male   | 0            | 0            |
| 4     | 28  | Private              | Bachelors      | 13            | Married-civ-<br>spouse | Prof-<br>specialty    | Wife          | Black | Female | 0            | 0            |
|       |     |                      |                |               |                        |                       |               |       |        |              |              |
| 32556 | 27  | Private              | Assoc-<br>acdm | 12            | Married-civ-<br>spouse | Tech-<br>support      | Wife          | White | Female | 0            | 0            |
| 32557 | 40  | Private              | HS-grad        | 9             | Married-civ-<br>spouse | Machine-<br>op-inspct | Husband       | White | Male   | 0            | 0            |
| 32558 | 58  | Private              | HS-grad        | 9             | Widowed                | Adm-<br>clerical      | Unmarried     | White | Female | 0            | 0            |
| 32559 | 22  | Private              | HS-grad        | 9             | Never-married          | Adm-<br>clerical      | Own-child     | White | Male   | 0            | 0            |
| 32560 | 52  | Self-emp-<br>inc     | HS-grad        | 9             | Married-civ-<br>spouse | Exec-<br>managerial   | Wife          | White | Female | 15024        | 0            |

## 32561 rows × 14 columns

4

# In [4]:

salary.describe()

## Out[4]:

|       | age          | education_num | capital_gain | capital_loss | hours_per_week |
|-------|--------------|---------------|--------------|--------------|----------------|
| count | 32561.000000 | 32561.000000  | 32561.000000 | 32561.000000 | 32561.000000   |
| mean  | 38.581647    | 10.080679     | 1077.648844  | 87.303830    | 40.437456      |
| std   | 13.640433    | 2.572720      | 7385.292085  | 402.960219   | 12.347429      |
| -     |              |               |              |              |                |

```
17.000000
age
                       1.000000
education_num
 min
                                           0.000000
capital_gain
                                                           0.000000
capital_loss
                                                                          1.000000
hours_per_week
                              9.000000
                                              0.000000
                                                               0.000000
                                                                                 40.000000
           28.000000
25%
50%
          37.000000
                             10.000000
                                              0.000000
                                                               0.000000
                                                                                 40.000000
75%
          48.000000
                             12.000000
                                              0.000000
                                                               0.000000
                                                                                 45.000000
          90.000000
                             16.000000 99999.000000
                                                           4356.000000
max
                                                                                 99.000000
```

#### In [5]:

salary.dtypes

## Out[5]:

age int64 workclass object education object education\_num int64 marital status object occupation object relationship object object gender object capital\_gain capital\_loss int64 int64 hours\_per\_week int64 native country object income\_bracket object dtype: object

### In [6]:

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['workclass','education','marital\_status','occupation','relationship','race','gender','native
\_country','income\_bracket']
for val in list1:
 salary[val]=le.fit\_transform(salary[val].astype(str))

## In [7]:

salary

## Out[7]:

|       | age | workclass | education | education_num | marital_status | occupation | relationship | race | gender | capital_gain | capital_loss | h |
|-------|-----|-----------|-----------|---------------|----------------|------------|--------------|------|--------|--------------|--------------|---|
| 0     | 39  | 7         | 9         | 13            | 4              | 1          | 1            | 4    | 1      | 2174         | 0            |   |
| 1     | 50  | 6         | 9         | 13            | 2              | 4          | 0            | 4    | 1      | 0            | 0            |   |
| 2     | 38  | 4         | 11        | 9             | 0              | 6          | 1            | 4    | 1      | 0            | 0            |   |
| 3     | 53  | 4         | 1         | 7             | 2              | 6          | 0            | 2    | 1      | 0            | 0            |   |
| 4     | 28  | 4         | 9         | 13            | 2              | 10         | 5            | 2    | 0      | 0            | 0            |   |
|       |     |           |           |               |                |            |              |      |        |              |              |   |
| 32556 | 27  | 4         | 7         | 12            | 2              | 13         | 5            | 4    | 0      | 0            | 0            |   |
| 32557 | 40  | 4         | 11        | 9             | 2              | 7          | 0            | 4    | 1      | 0            | 0            |   |
| 32558 | 58  | 4         | 11        | 9             | 6              | 1          | 4            | 4    | 0      | 0            | 0            |   |
| 32559 | 22  | 4         | 11        | 9             | 4              | 1          | 3            | 4    | 1      | 0            | 0            |   |
| 32560 | 52  | 5         | 11        | 9             | 2              | 4          | 5            | 4    | 0      | 15024        | 0            |   |

## 32561 rows × 14 columns

1 <u>|</u>

#### In [8]:

sns.heatmap(salary.isnull())

#### Out[8]:

<matplotlib.axes. subplots.AxesSubplot at 0x20061492f88>



## In [9]:

```
salary.isnull().sum()
```

### Out[9]:

age 0 0 workclass education 0 education\_num 0 0  ${\tt marital\_status}$ occupation 0 0 relationship 0 race gender 0 capital\_gain
capital\_loss 0 0 hours\_per\_week 0 native\_country 0 income\_bracket dtype: int64

## In [10]:

```
salary.corr()
```

## Out[10]:

|                | age      | workclass | education | education_num | marital_status | occupation | relationship | race     | gender   | capital_ |
|----------------|----------|-----------|-----------|---------------|----------------|------------|--------------|----------|----------|----------|
| age            | 1.000000 | 0.003787  | -0.010508 | 0.036527      | -0.266288      | -0.020947  | -0.263698    | 0.028718 | 0.088832 | 0.077    |
| workclass      | 0.003787 | 1.000000  | 0.023513  | 0.052085      | -0.064731      | 0.254892   | -0.090461    | 0.049742 | 0.095981 | 0.030    |
| education      | 0.010508 | 0.023513  | 1.000000  | 0.359153      | -0.038407      | -0.021260  | -0.010876    | 0.014131 | 0.027356 | 0.030    |
| education_num  | 0.036527 | 0.052085  | 0.359153  | 1.000000      | -0.069304      | 0.109697   | -0.094153    | 0.031838 | 0.012280 | 0.122    |
| marital_status | 0.266288 | -0.064731 | -0.038407 | -0.069304     | 1.000000       | -0.009654  | 0.185451     | 0.068013 | 0.129314 | -0.043   |
| occupation     | 0.020947 | 0.254892  | -0.021260 | 0.109697      | -0.009654      | 1.000000   | -0.075607    | 0.006763 | 0.080296 | 0.02     |
| relationship   | 0.263698 | -0.090461 | -0.010876 | -0.094153     | 0.185451       | -0.075607  | 1.000000     | 0.116055 | 0.582454 | -0.057   |
| race           | 0.028718 | 0.049742  | 0.014131  | 0.031838      | -0.068013      | 0.006763   | -0.116055    | 1.000000 | 0.087204 | 0.01     |
| gender         | 0.088832 | 0.095981  | -0.027356 | 0.012280      | -0.129314      | 0.080296   | -0.582454    | 0.087204 | 1.000000 | 0.048    |
| capital_gain   | 0.077674 | 0.033835  | 0.030046  | 0.122630      | -0.043393      | 0.025505   | -0.057919    | 0.011145 | 0.048480 | 1.000    |
| capital_loss   | 0.057775 | 0.012216  | 0.016746  | 0.079923      | -0.034187      | 0.017987   | -0.061062    | 0.018899 | 0.045567 | -0.03    |
| houre nor wook | N N68756 | N 138063  | N N5551N  | በ 1/18123     | _N 1QN51Q      | ሀ ሀልሀሪහሪ   | _∩ ว/\RQ7/   | N N/101N | U 3303U0 | n n7s    |

```
HOUIS PEI WEEK U.UUUTUU
                             U. 130302
                                         U.UUUU 1U
                                                          U. 140 120
                                                                         -U. 13UJ 13
                                                                                      U.UUUJUJ
                                                                                                   U.Z4U314 U.U4131U
                                                                                                                                      U.U1 (
                                                                                                                          gender
                                                                                                                                  capital_
                      age workclass education education_num marital_status occupation relationship
                                                                                                                 race
 native_country 0.001151
                             -0.007690
                                        0.064288
                                                          0.050840
                                                                         -0.023819
                                                                                     -0.012543
                                                                                                   -0.005507 0.137852
                                                                                                                                     -0.00°
                                                                                                                        0.008119
income bracket 0.234037
                             0.051604
                                        0.079317
                                                          0.335154
                                                                         -0.199307
                                                                                      0.075468
                                                                                                   -0.250918 0.071846 0.215980
                                                                                                                                     0.223
                                                                                                                                        \mathbf{F}
```

### In [11]:

```
plt.figure(figsize=(10,6))
sns.heatmap(salary.corr(),annot=True)
```

#### Out[11]:

<matplotlib.axes. subplots.AxesSubplot at 0x20063700f48>



## In [12]:

```
salary.skew()
```

#### Out[12]:

```
0.558743
                  -0.752024
workclass
education
                  -0.934042
education_num
                  -0.311676
marital_status
                   -0.013508
occupation
                    0.114583
relationship
                   0.786818
                   -2.435386
race
gender
                  -0.719293
                  11.953848
capital_gain
capital loss
                   4.594629
                   0.227643
hours_per_week
native country
                  -3.658303
income bracket
                   1.212430
dtype: float64
```

#### In [13]:

```
from scipy.stats import zscore
z_score=abs(zscore(salary))
print(salary.shape)
sal=salary.loc[(z_score<3).all(axis=1)]
print(sal.shape)</pre>
```

```
(2//22, 14)
```

## In [14]:

sal

Out[14]:

|       | age | workclass | education | education_num | marital_status | occupation | relationship | race | gender | capital_gain | capital_loss | h |
|-------|-----|-----------|-----------|---------------|----------------|------------|--------------|------|--------|--------------|--------------|---|
| 0     | 39  | 7         | 9         | 13            | 4              | 1          | 1            | 4    | 1      | 2174         | 0            |   |
| 1     | 50  | 6         | 9         | 13            | 2              | 4          | 0            | 4    | 1      | 0            | 0            |   |
| 2     | 38  | 4         | 11        | 9             | 0              | 6          | 1            | 4    | 1      | 0            | 0            |   |
| 3     | 53  | 4         | 1         | 7             | 2              | 6          | 0            | 2    | 1      | 0            | 0            |   |
| 5     | 37  | 4         | 12        | 14            | 2              | 4          | 5            | 4    | 0      | 0            | 0            |   |
|       |     |           |           |               |                |            |              |      |        |              |              |   |
| 32556 | 27  | 4         | 7         | 12            | 2              | 13         | 5            | 4    | 0      | 0            | 0            |   |
| 32557 | 40  | 4         | 11        | 9             | 2              | 7          | 0            | 4    | 1      | 0            | 0            |   |
| 32558 | 58  | 4         | 11        | 9             | 6              | 1          | 4            | 4    | 0      | 0            | 0            |   |
| 32559 | 22  | 4         | 11        | 9             | 4              | 1          | 3            | 4    | 1      | 0            | 0            |   |
| 32560 | 52  | 5         | 11        | 9             | 2              | 4          | 5            | 4    | 0      | 15024        | 0            |   |

27722 rows × 14 columns

· ·

# In [15]:

x=sal.iloc[:,0:-1]

# In [16]:

Х

# Out[16]:

|       | age | workclass | education | education_num | marital_status | occupation | relationship | race | gender | capital_gain | capital_loss | h |
|-------|-----|-----------|-----------|---------------|----------------|------------|--------------|------|--------|--------------|--------------|---|
| 0     | 39  | 7         | 9         | 13            | 4              | 1          | 1            | 4    | 1      | 2174         | 0            |   |
| 1     | 50  | 6         | 9         | 13            | 2              | 4          | 0            | 4    | 1      | 0            | 0            |   |
| 2     | 38  | 4         | 11        | 9             | 0              | 6          | 1            | 4    | 1      | 0            | 0            |   |
| 3     | 53  | 4         | 1         | 7             | 2              | 6          | 0            | 2    | 1      | 0            | 0            |   |
| 5     | 37  | 4         | 12        | 14            | 2              | 4          | 5            | 4    | 0      | 0            | 0            |   |
|       |     |           |           |               |                |            |              |      |        |              |              |   |
| 32556 | 27  | 4         | 7         | 12            | 2              | 13         | 5            | 4    | 0      | 0            | 0            |   |
| 32557 | 40  | 4         | 11        | 9             | 2              | 7          | 0            | 4    | 1      | 0            | 0            |   |
| 32558 | 58  | 4         | 11        | 9             | 6              | 1          | 4            | 4    | 0      | 0            | 0            |   |
| 32559 | 22  | 4         | 11        | 9             | 4              | 1          | 3            | 4    | 1      | 0            | 0            |   |
| 32560 | 52  | 5         | 11        | 9             | 2              | 4          | 5            | 4    | 0      | 15024        | 0            |   |

27722 rows × 13 columns

# In [17]:

x.shape

# Out[17]:

(27722, 13)

In [18]:

```
y=sal.iloc[:,-1]
In [19]:
Out[19]:
1
         0
         0
2
         0
        0
32556
       1
32557
32558
        0
32559
        0
       1
32560
Name: income_bracket, Length: 27722, dtype: int32
In [20]:
y.shape
Out[20]:
(27722,)
In [21]:
x train,x test,y train,y test=train test split(x,y,test size=.22,random state=42)
In [22]:
lr=LogisticRegression()
lr.fit(x_train,y_train)
lr.score(x_train,y_train)
pred=lr.predict(x_test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
print(classification report(y test,pred))
0.8166912608624365
[[4476 244]
 [ 874 505]]
                        recall f1-score support
             precision
          0
                  0.84
                           0.95
                                     0.89
                                                4720
          1
                  0.67
                           0.37
                                      0.47
                                                1379
                                      0.82
                                               6099
   accuracy
                  0.76
                           0.66
                                     0.68
                                              6099
  macro avg
weighted avg
                  0.80
                           0.82
                                     0.80
                                               6099
In [23]:
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x test)
print(accuracy score(y test,predknn))
print(confusion_matrix(y_test,predknn))
print(classification_report(y_test,predknn))
0.8316117396294475
[[4276 444]
```

[ 583 79611

```
precision
                       recall f1-score support
                       0.91
                                0.89
          0
                  0.88
                                              4720
                  0.64
                           0.58
                                    0.61
                                              1379
                                    0.83
                                             6099
   accuracy
                 0.76 0.74
                                  0.75
  macro avg
                                             6099
                                    0.83
                                              6099
weighted avg
                 0.83
                          0.83
In [24]:
gnb=GaussianNB()
gnb.fit(x_train,y_train)
gnb.score(x_train,y_train)
predgnb=gnb.predict(x test)
print(accuracy_score(y_test,predgnb))
print(confusion_matrix(y_test,predgnb))
print(classification report(y test,predgnb))
0.7868503033284145
[[3777 943]
[ 357 1022]]
             precision
                       recall f1-score support
                        0.80
          0
                  0.91
                                   0.85
                                              4720
                  0.52
                          0.74
          1
                                    0.61
                                              1379
                                    0.79
                                              6099
   accuracy
                        0.77
                 0.72
                                    0.73
                                              6099
  macro avq
weighted avg
                 0.82
                           0.79
                                    0.80
                                              6099
In [25]:
svc=SVC(kernel='rbf')
svc.fit(x_train,y_train)
svc.score(x train,y train)
predsvc=svc.predict(x_test)
print(accuracy_score(y_test,predsvc))
print(confusion matrix(y test,predsvc))
print(classification_report(y_test,predsvc))
0.8102967699622889
[[4703 17]
 [1140 239]]
             precision
                       recall f1-score support
          0
                 0.80
                          1.00
                                   0.89
                                              4720
                 0.93
                          0.17
                                   0.29
                                              1379
                                     0.81
                                              6099
   accuracy
                 0.87
                          0.58
                                    0.59
                                              6099
  macro avg
                                   0.76
                 0.83
                          0.81
                                              6099
weighted avg
In [26]:
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x_test)
print(accuracy_score(y_test,preddtc))
print(confusion_matrix(y_test,preddtc))
print(classification_report(y_test,preddtc))
0.8134120347597967
[[4190 530]
 [ 608 771]]
```

precision

0.87

Ω

recall f1-score support

0.88

4720

0.89

```
1 0.59 0.56 0.58 1379

accuracy 0.81 6099
macro avg 0.73 0.72 0.73 6099
weighted avg 0.81 0.81 0.81 6099
```

#### In [27]:

```
rf=RandomForestClassifier()
rf.fit(x train,y train)
rf.score(x_train,y_train)
predrf=rf.predict(x_test)
print(accuracy_score(y_test,predrf))
print(confusion_matrix(y_test,predrf))
print(classification_report(y_test,predrf))
0.8442367601246106
[[4354 366]
[ 584 795]]
                        recall f1-score support
             precision
          0
                0.88
                          0.92
                                    0.90
                                               4720
          1
                  0.68
                          0.58
                                     0.63
                                               1379
                                     0.84
                                               6099
   accuracy
                  0.78
                          0.75
                                    0.76
                                             6099
  macro avq
                  0.84
                            0.84
                                    0.84
                                               6099
weighted avg
```

#### In [28]:

```
from sklearn.ensemble import AdaBoostClassifier
ad=AdaBoostClassifier()
ad.fit(x_train,y_train)
ad.score(x_train,y_train)
predad=ad.predict(x_test)
print(accuracy score(y test,predad))
print(confusion_matrix(y_test,predad))
print(classification_report(y_test,predad))
0.8552221675684538
[[4447 273]
 [ 610 769]]
             precision recall f1-score support
          0
                  0.88
                            0.94
                                      0.91
                                                 4720
```

1379

6099

6099

6099

## In [29]:

1

accuracy

macro avg

weighted avg

0.74

0.81

0.85

0.56

0.75

0.86

0.64

0.86

0.85

0.77

```
#AdaBoostClassifier is the best model among all models
import joblib
joblib.dump(ad,'salary.pkl')
```

# Out[29]:

['salary.pkl']

## In [ ]: