Review

Yingkai Li

EC5881 Semester 1, AY2024/25

Exchange Economy

Exchange economy: a finite set A of agents, ℓ commodities.

For each agent $a \in A$:

- utility function $U^a: \mathbb{R}_+^\ell \to \mathbb{R}$
- \bullet endowment $\omega^a=(\omega_1^a,\omega_2^a,...,\omega_l^a)$ in $\mathbb{R}_+^\ell.$

Assume U^a satisfies: (P1) continuous, (P2) strongly monotone, and (P3) strictly quasiconcave

Aggregate endowment:

$$\bar{\omega} = \sum_{a \in A} \omega^a \gg 0.$$

Excess Demand

Aggregate (or market) demand at price p is

$$X(p) = \sum_{a \in A} \hat{x}^a(p).$$

The aggregate excess demand function $Z:\mathbb{R}_{++}^\ell \to \mathbb{R}^\ell$ is given by

$$Z(p) = X(p) - \bar{\omega}.$$

Exchange Economy: Excess Demand

Theorem

The excess demand function $Z: \mathbb{R}^{\ell}_{++} \to \mathbb{R}^{\ell}$ of the economy \mathcal{E} (under assumption (P1), (P2), (P3)) has the following properties:

- (1) it is zero-homogenous,
- (2) it obeys Walras' Law,
- (3) it is continuous,
- (4) it satisfies the boundary condition,
- (5) it is bounded below.

Theorem (Arrow and Debreu '54; McKenzie '59)

Suppose Z satisfies properties (1) to (5). Then there is $p^* \gg 0$ such that $Z(p^*) = 0$.

4/6

Pareto Optimality

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a\in A}$ with $y^a\in\mathbb{R}^\ell_+$ is *feasible* if $\sum_{a\in A}y^a=\bar{\omega}$.

Definition

An allocation $\{z^a\}_{a\in A}$ is a Pareto improvement of another allocation $\{y^a\}_{a\in A}$ if $U^a(z^a)\geq U^a(y^a)$ for all $a\in A$ and the inequality is strict for at least one agent. Moreover, an allocation $\{y^a\}_{a\in A}$ is Pareto optimal if it cannot be Pareto-improved by another feasible allocation.

5/6

The First Welfare Theorem

Definition

An allocation $\{x^a\}_{a\in A}$ is a Walrasian allocation if there exists $p\in \mathbb{R}_++^\ell$ such that Z(p)=0 and $x^a=\hat{x}(p)$.

Theorem

Suppose U^a is monotone for all agent $a \in A$. Then every Walrasian allocation is Pareto optimal.

6/6