Instytut Inżynierii Środowiska

Projekt instalacji wodnokanalizacyjnej

Jakub Nonna

gr. IŚ 17

semestr 3

rok akademicki 2018/2019

nr. Indeksu 135109

Opis techniczny

1. Wstęp

Projekt dotyczy instalacji zimnej wody, ciepłej wody użytkowej, wody cyrkulacyjnej oraz kanalizacji w budynku mieszkalnym, wielorodzinnym, pięciokondygnacyjnym.

2. Zakres projektu

Projekt obejmuje:

- 1) Projekt i obliczenia dla instalacji zimnej wody
- 2) Projekt i obliczenia dla instalacji ciepłej wody użytkowej
- 3) Dobór wodomierzy
- 4) Projekt i obliczenia dla instalacji cyrkulacyjnej
- 5) Rysunek aksonometryczny instalacji zimnej i ciepłej wody użytkowej oraz cyrkulacji
- 6) Obliczenia parametrów pompy cyrkulacyjnej
- 7) Projekt i obliczenia dla instalacji kanalizacji sanitarnej
- 8) Rzuty kondygnacji powtarzalnej oraz piwnic wraz z naniesionymi instalacjami
- 9) Przekrój po trasie przewodów odpływowych z rozwinięciem pionów

Budynek mieszkalny posiada sześć kondygnacji powtarzalnych. W budynku znajduje się piwnica oraz dwie klatki schodowe. Na każdą klatkę schodową przypadają po trzy mieszkania na każdej kondygnacji. Budynek usytuowany jest na działce uzbrojonej umożliwiającej podłączenie budynku do sieci wodociągowej oraz kanalizacyjnej. Wewnętrzna instalacja wodociągowa składa się z przewodów rozprowadzających, pionów rozdzielczych oraz odgałęzień do punktów czerpalnych. Część wody zimnej jest doprowadzana do wymiennika ciepła, gdzie zostaje podgrzana do temperatury 60°C, skąd następnie rozprowadzana jest do mieszkań jako ciepła woda użytkowa. Woda będzie podgrzewana w węźle cieplnym umieszczonym w specjalnie wydzielonym pomieszczeniu piwnicznym. rozprowadzające wodę wykonane są z rur polietynelowych PE charakteryzujących się dobrą plastycznością i wysoką odpornością mechaniczną. Ponadto rury te zapewniają długotrwałą wytrzymałość na działanie wysokiej temperatury i ciśnienia. Zaprojektowano na przyłączu wodociągowym wodomierz główny oraz na klatkach schodowych wodomierze wody ciepłej i zimnej dla każdego z mieszkań. Wszystkie mieszkania znajdujące się w obrębie jednej klatki schodowej podłączone są do jednego pionu. W celu sprawdzenia instalacji pod względem strat ciśnienia w instalacji, ustalona została trasa miarodajna w instalacji ciepłej i zimnej wody użytkowej, czyli obieg najniekorzystniejszy hydraulicznie. Jest to odcinek, który rozpoczyna się w punkcie początkowym przyłącza a kończy w punkcie czerpalnym na najwyższej kondygnacji budynku. Charakteryzuje się on największą sumą strat ciśnienia. Wewnętrzna instalacja kanalizacyjna składa się z podejść kanalizacyjnych, pionów kanalizacyjnych oraz przewodu odpływowego. Przewód sieci kanalizacyjnej połączony jest z zewnętrzną studzienką rewizyjną za pomocą przykanalika. Przewody kanalizacyjne wykonane sią z rur PVC łączonych kielichowo. Odprowadzanie ścieków zostało zaprojektowane zgodnie z systemem. Minimalne spadki przewodów odpływowych zaprojektowano na 2%. Sposób usytuowania przyborów sanitarnych i pionów wodociągowych narzuca konieczność zastosowania 7 pionów kanalizacyjnych z mieszkań i 2 wpusty podłogowe oraz 1połączenie kanalizacyjne z piwnicy. Ścieki odprowadzane są do studzienki na zewnątrz budynku, a następnie przykanalikiem do miejskiego kanału sieci kanalizacyjnej.

Obliczenia

1. Zimna i ciepła woda:

Obliczenia dla zimnej i ciepłej wody polegają na dobraniu średnic przewodów wodociągowych oraz strat ciśnienia. Po dokonaniu podziału instalacji na działki obliczeniowe wyznaczono przepływy obliczeniowe dla każdego z odcinków na podstawie sumy wypływów normatywnych na danym odcinku. Przy dobieraniu średnic przyjęto prędkość 2,0 m/s jako prędkość graniczną, której nie powinna przekraczać prędkość obliczeniowa dla danego odcinka. Jednostkowe straty ciśnienia określono na podstawie nomogramów zawartych w nomogramie.

Przepływ obliczeniowy dla każdej działki wyznaczono z zależności:

$$q_{obl} = 0.682 \cdot \left(\sum q_n\right)^{0.45} - 0.14$$
 $dla \ 0.07 \le \sum q_n < 20 \frac{dm^3}{s}$

oraz

$$q_{obl} = 1.7 \cdot \left(\sum q_n\right)^{0.21} - 0.7$$
 $dla \sum q_n \ge 20 \frac{dm^3}{s}$

gdzie:

 $\sum q_n$ – suma wypływów normatywnych z punktów czerpalnych [dm³/s]

Liniowe straty ciśnienia wyznaczono na podstawie wzoru:

$$\Delta p_{strL} = R \cdot l$$
 [Pa]

gdzie:

R – jednostkowe liniowe straty ciśnienia [Pa/m]

1 – długość przewodu [m]

Straty miejscowe wyznaczono z zależności:

$$\Delta p_{strM} = 1 \cdot \Delta p_{strL}$$
 [Pa]

$$\Delta p_{strL+M} = 2 \cdot R \cdot l$$
 [Pa]

Tabelaryczne zestawienie obliczeń

Instalacja zimnej wody

					•				
działka	Σqn		q	bl	d	V	R	I	Δpstr.I
[-]	[dm3/s	5]	[dm	3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]
				Mies	zkanie 1				
1618	0,07		0,0)66	16x2	0,55	5	4,31	2,155
1617	0,13		0,1	.32	16x2	1,1	15	0,92	1,38
1616	0,07		0,0)66	16x2	0,55	5	0,85	0,425
1615	0,2		0,1	91	16x2	1,6	32	1,25	4
1614	0,25		0,2	25	20x2,25	1,25	15	1,73	2,595
1613	0,45		0,3	36	25x2,5	1,1	8	0,27	0,216
1612	0,15		0,1	.50	16x2	1,25	20	1,23	2,46
1611	0,6		0,4	02	25x2,5	1,3	12	1,04	1,248
1610	0,67		0,4	30	25x2,5	1,4	14	6,23	8,722
straty liniowe 23			,201	kPa					

straty liniowe	23,201	kPa
straty miejscowe	23,201	kPa
straty M + L	46,402	kPa

Trasa miarodajna
1,38
4
0,216
1,248
8,722
15,566

	Mieszkanie 2									
1628	0,07	0,066		16x2		0,55	5	4,12	2,06	
1627	0,13	0,132		16x2		1,1	15	0,83	1,245	
1626	0,07	0,066		16x2		0,55	5	0,85	0,425	
1625	0,2	0,191		16x2		1,6	32	1,19	3,808	
1624	0,25	0,225		20x2,25		1,25	15	1,68	2,52	
1623	0,45	0,336		25x2,5		1,1	8	0,27	0,216	
1622	0,15	0,150		16x2		1,25	20	1,42	2,84	
1621	0,6	0,402		25x2,5		1,3	12	0,69	0,828	
1620	0,67	0,430		25x2,5		1,4	14	8,24	11,536	
straty liniowe 2		25,4	78	kPa			•			

straty liniowe	25,478	kPa
straty miejscowe	25,478	kPa
straty M + L	50,956	kPa

Trasa miarodajna
1,245
3,808
0,216
0,828
11,536
17 622

	Mieszkanie 3									
1638	0,13	0,132	16x2	1,1	15	0,85	1,275			
1637	0,07	0,066	16x2	0,55	5	0,87	0,435			
1636	0,2	0,191	16x2	1,6	32	0,47	1,504			
1635	0,15	0,150	16x2	1,25	20	1,62	3,24			
1634	0,35	0,285	20x2,25	1,5	20	0,51	1,02			
1633	0,25	0,225	20x2,25	1,25	15	1,61	2,415			
1632	0,6	0,402	25x2,5	1,3	12	0,8	0,96			
1631	0,07	0,066	16x2	0,55	5	4,43	2,215			
1630	0,67	0,430	25x2,5	1,4	14	6,47	9,058			

straty liniowe	22,122	2 kPa
straty miejscowe	22,122	2 kPa
straty M + L	44,24	4 kPa

Trasa miarodajna
3,24
1,02

0,96	
9,0588	
14,2788	

pion nr.1 woda zimna										
działka	Σqr	1	Qobl	d	v	R	I	Δpstr.I		
[-]	[dm3	/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]		
16	2,0	1	0,794	32x3	1,6	12	1,4	1,68		
17	4,0	2	1,136	40x4	1,3	6	3,3	1,98		
15	6,0	3	1,391	40x4	1,5	8	3,3	2,64		
14	8,0	4	1,602	50x4,5	1,25	4	3,3	1,32		
13	10,0)5	1,786	50x4,5	1,4	5	3,3	1,65		
12	12,0)6	1,951	50x4,5	1,5	5	3,3	1,65		
11	14,0)7	2,101	50x4,5	1,6	5	3,3	1,65		
straty liniowe		12,57	kPa							
straty miejscowe			12,57	kPa						
straty M +	L		25,14	kPa						

Obliczenia hdrauliczne instalacji wody zimnej (pion 2)									
działka	Σqn		Qobl	d	v	R	ı	Δpstr.l	
[-]	[dm3/	s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]	
				Mieszkanie	1				
2618	0,07		0,066	16x2	0,55	5	4,36	2,18	
2617	0,13		0,132	16x2	1,1	15	0,92	1,38	
2616	0,07		0,066	16x2	0,55	5	0,85	0,425	
2615	0,2		0,191	16x2	1,6	32	1,26	4,032	
2614	0,25		0,225	20x2,25	1,25	15	1,71	2,565	
2613	0,45		0,336	25x2,5	1,1	8	0,17	0,136	
2612	0,15		0,150	16x2	1,25	20	1,23	2,46	
2611	0,6		0,402	25x2,5	1,3	12	0,95	1,14	
2610	0,67		0,430	25x2,5	1,4	14	7,45	10,43	
straty liniowe			25,145	kPa					
straty miejscowe			25,145	kPa					
straty M + L			50,29	kPa					
Trasa miarodajna		1							

Trasa miarodajna
1,38
4,032
0,136

1,14	
10,43	
17.118	3

	Mieszkanie 2									
2628	0,07	0,066	16x2	0	,55	5	4,12	2,06		
2627	0,13	0,132	16x2	-	1,1	15	0,84	1,26		
2626	0,07	0,066	16x2	0	,55	5	0,85	0,425		
2625	0,2	0,191	16x2	-	1,6	32	1,2	3,84		
2624	0,25	0,225	20x2,25	1	,25	15	1,68	2,52		
2623	0,45	0,336	25x2,5		1,1	8	0,27	0,216		
2622	0,15	0,150	16x2	1	,25	20	1,23	2,46		
2621	0,6	0,402	25x2,5		1,3	12	0,69	0,828		
2620	0,67	0,430	25x2,5		1,4	14	8,24	11,536		
atanata di at	1.0 L.D.									

straty liniowe	25,145	kPa
straty miejscowe	25,145	kPa
straty M + L	50,29	kPa

Trasa miarodajna
1,26
3,84
0,216
0,828
11,536
17,68

	pion nr.2 woda zimna									
działka	Σq	n	Qobl		d	v	R	ı	Δ p str.l	
[-]	[dm3	3/s]	[dm3/s]		[mm]	[m/s]	[hPa/m]	[m]	[kPa]	
26	1,3	4	0,638		32x3	1,3	7	1,4	0,98	
27	2,6	8	0,923		32x3	1,4	9	3,3	2,97	
25	4,0	2	1,136		40x4	1,2	5	3,3	1,65	
24	5,3	6	1,312		40x4	1,3	6	3,3	1,98	
23	4,0	2	1,136		40x4	1,3	6	3,3	1,98	
22	6,7	7	1,465		40x4	1,4	7	3,3	2,31	
21	8,0	4	1,602		40x4	1,5	8	3,3	2,64	
straty linio	straty liniowe 14,51		kF	Pa						
straty miej	straty miejscowe 14,51		14,51	kF	Pa					
straty M +	L		29,02	kF	Pa					

	Obliczenia hdrauliczne instalacji wody zimnej pion 3								
działka	Σqn	Qobl	d	V	R	1	Δpstr.l		
[-]	[dm3/s	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]		
			Mieszkanie	1					
3618	0,13	0,132	16x2	1,1	15	0,91	1,365		
3617	0,07	0,066	16x2	0,55	5	0,85	0,425		
3616	0,2	0,191	16x2	1,6	32	0,5	1,600		
3615	0,15	0,150	16x2	1,25	20	1,68	3,360		
3614	0,35	0,285	20x2,25	1,5	20	0,45	0,900		
3613	0,25	0,225	20x2,25	1,25	15	1,68	2,520		
3612	0,6	0,402	25x2,5	1,3	12	0,74	0,888		
3611	0,07	0,066	16x2	0,55	5	4,33	2,165		
3610	0,67	0,430	25x2,5	1,4	14	6,29	8,806		
straty linio	owe	22,029	kPa						
straty mie	iscowe	22,029	kPa						
straty M +	- L	44,058	kPa						
Trasa mi	arodaina								

Trasa miarodajna
1,38
4
0,216
1,248
11,382
18,226

3638	0,07	0,066		16x2	0,55	5	4,12	2,06
3637	0,13	0,132		16x2	1,1	15	0,84	1,26
3636	0,07	0,066		16x2	0,55	5	0,85	0,425
3635	0,2	0,191		16x2	1,6	32	1,2	3,84
3634	0,25	0,225		20x2,25	1,25	15	1,68	2,52
3633	0,45	0,336		25x2,5	1,1	8	0,27	0,216
3632	0,15	0,150		16x2	1,25	20	1,35	2,7
3631	0,6	0,402		25x2,5	1,3	12	0,69	0,828
3630	0,67	0,430		25x2,5	1,4	14	6,34	8,876
straty liniowe 22,7		25	kPa					
straty miejscowe		22,72	25	kPa				
ctraty M	LI	15 /	15	kDa.				

straty liniowe	22,725	kPa
straty miejscowe	22,725	kPa
straty M + L	45,45	kPa

Trasa miarodajna
1,26
3,84
0,216
0,828
8,876
15,02

pion nr.3 woda zimna									
działka	Σqn	١	qobl	d	V	R	ı	Δpstr.l	
[-]	[dm3	/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]	
36	2,01	L	0,794	32x3	1,6	12	1,4	1,68	
37	4,02	2	1,136	40x4	1,3	6	3,3	1,98	
35	6,03	3	1,391	40x4	1,5	8	3,3	2,64	
34	8,04	1	1,602	50x4,5	1,25	4	3,3	1,32	
33	10,0	5	1,786	50x4,5	1,4	5	3,3	1,65	
32	12,0	6	1,951	50x4,5	1,5	5	3,3	1,65	
31	14,0	7	2,101	50x4,5	1,6	5	3,3	1,65	
straty liniowe 12,57			12,57	kPa					
straty miejscowe		12,57	kPa						
straty M +	L		25,14	kPa					

	Obl	iczen	ia hdraulic	zne instala	cji w	vody	zimnej piw	nica		
działka	Σqn		qobl	d	\	,	R	ı	Δpstr.l	
[-]	[dm3/	s]	[dm3/s]	[mm]	[m	/s]	[hPa/m]	[m]	[kPa]	
piwnica										
10	16,08	3	2,240	50	1,	,5	5,88	1,52	0,894	
6	0,07		0,066	16x2	0,	,6	6	6,7	4,020	
5	16,15	5	2,245	50	1,	,5	5,88	17,29	10,167	
20	6,7		1,465	40x4	1,	,7	10	1,59	1,590	
4	22,85	5	2,580	63	1,	,1	2,16	16,67	3,601	
30	16,08	3	2,240	50	1,	,5	5,88	1,52	0,894	
3	38,93	3	2,968	63	1,	,3	2,94	9,47	2,784	
2	16,9		2,294	50x4,5	1,	,7	7	1,67	1,169	
straty linio	liniowe 24,22418		24,22418	kPa						
straty mie	ejscowe		24,22418	kPa						
straty M +	straty M + L 48,44836		48,44836	kPa						

TRASA MIARODAJNA

			Trasa Miaro	odajna d	lla całego bi	udynku		
	٦	Trasa Miaro						
działka	Σqn	Qobl	d	V	R	I	Δpstr.l	trasa miarodajna
[-]	[dm3/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]	
2	16,9	2,294	50x4,5	1,7	7	1,67	1,169	1,169
3	38,93	2,968	63	1,3	2,94	9,47	2,784	2,784
30	16,08	2,240	50	1,5	5,88	1,52	0,894	
4	22,85		63	1,1	2,16	16,67	3,601	3,601
20	6,7	1,465	40x4	1,7	10	1,59	1,590	
5	16,15	2,245	50	1,5	5,88	17,29	10,167	10,167
6	0,07	0,066	16x2	0,6	6	6,7	4,020	
10	16,08	2,240	50	1,5	5,88	1,52	0,894	0,894
11	14,07	2,101	50x4,5	1,6	5	3,3	1,65	1,650
12	12,06	1,951	50x4,5	1,5	5	3,3	1,65	1,650
13	10,05	1,786	50x4,5	1,4	5	3,3	1,65	1,650
14	8,04	1,602	50x4,5	1,25	4	3,3	1,32	1,320
15	6,03	1,391	40x4	1,5	8	3,3	2,64	2,640
17	4,02	1,136	40x4	1,3	6	3,3	1,98	1,980
16	2,01	0,794	32x3	1,6	12	1,4	1,68	1,680
1620	0,67	0,430	25x2,5	1,4	14	8,24	11,536	11,536
1621	0,6	0,402	25x2,5	1,3	12	0,69	0,828	0,828
1622	0,15	0,150	16x2	1,25	20	1,42	2,84	
1623	0,45	0,336	25x2,5	1,1	8	0,27	0,216	0,216
1624	0,25	0,225	20x2,25	1,25	15	1,68	2,52	
1625	0,2	0,191	16x2	1,6	32	1,19	3,808	3,808
1626	0,07	0,066	16x2	0,55	5	0,85	0,425	
1627	0,13	0,132	16x2	1,1	15	0,83	1,245	1,245
1628	0,07	0,066	16x2	0,55	5	4,12	2,06	

suma 48,817

straty L 48,817 staty M 48,817

Instalacja Ciepłej wody użytkowej

Obliczenia hdrauliczne instalacji wody ciepłej										
działka	Σqn	Qobl	qoы d v R							
[-]	[dm3/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]			
		1	Mieszkani	e 1		1				
1614'	0,07	0,066	16x2	0,55	5	4,42	2,21			
1613'	0,07	0,066	16x2	0,55	5	2,28	1,14			
1612'	0,15	0,150	16x2	1,25	20	1,29	2,58			
1611'	0,22	0,205	20x2,25	1,1	12	1,04	1,248			
1610'	0,29	0,251	20x2,25	1,25	15	6,62	9,93			
straty linio	we	17,108	kPa							
straty mie	jscowe	17,108	kPa							
straty M +	L	34,216	kPa							
Trasa mia	arodajna									
2,5	58									
1,248										
9,9										
13,7	758									

			Mieszka	nie 2				
1624'	0,07	0,066	16x2		0,55	5	4,06	2,03
1623'	0,07	0,066	16x2		0,55	5	1,41	0,705
1622'	0,15	0,150	16x2		1,25	20	1,17	2,34
1621'	0,22	0,205	20x2,2	5	1,1	12	0,81	0,972
1620'	0,29	0,251	20x2,2	0	1,25	15	7,82	11,73
straty linio	we	17,777	kPa					
straty miejs	scowe	17,777	kPa					
straty M + I		35,554	kPa					
Trasa miai	rodajna							
2,34	4							
0,97	2							

	Mieszkanie 3										
1634'	0,07	0,066	16x2		0,55	5	1,38		0,69		
1633'	0,15	0,150	16x2		1,25	20	1,68		3,36		
1632'	0,22	0,205	20x2,2	25	1,1	12	0,19		0,228		
1631'	0,07	0,066	16x2		0,55	5	4,37		2,185		
1630'	0,29	0,251	20x2,2	25	1,25	15	6,35		9,525		
straty linio	we	15,988	kPa								
straty miejs	scowe	15,988	kPa								
straty M +	L	31,976	kPa								
Trasa mia	rodajna			_							
3,3	6										
0,22	28										
9,52	25										
13,1	13										
pion nr.1 woda ciepła											
działka	Σqn	Qobl	d		V	R		I	Δpstr.l		

		р	ion nr.1 wo	oda ciepła			
działka	Σqn	Qobl	d	V	R	ı	Δpstr.l
[-]	[dm3/s]	[dm3/s] [mm	[m/s]	[hPa/m]	[m]	[kPa]
16'	0,87	0,501	25x2	,5 1,6	17	1,4	2,38
17'	1,74	0,735	32x3	3 1,8	8	3,3	2,64
15'	2,61	0,910	40x4	1,2	5	3,3	1,65
14'	3,48	1,055	40x4	1,3	6	3,3	1,98
13'	4,35	1,182	40x4	1,3	6	3,3	1,98
12'	5,22	1,295	40x!	5 1,4	6	3,3	1,98
11'	6,09	1,398	40x	5 1,4	6	3,3	1,98
straty linio	we	14,59	kPa				
straty miej	traty miejscowe 14,5		kPa				
straty M + L		29,18	kPa				

Obliczenia hdrauliczne instalacji wody ciepłej pion 2										
działka	Σqn	q obl	d	٧	R	I	Δ p str.l			
[-]	[dm3/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]			
Mieszkanie 1										
2614'	0,07	0,066	16x2	0,55	5	4,37	2,185			
2613'	0,07	0,066	16x2	0,55	5	2,32	1,16			
2612'	0,15	0,150	16x2	1,25	20	1,35	2,7			
2611'	0,22	0,205	20x2,25	1,1	12	0,95	1,14			

2610'	0,29	0,251	20x2,25	5 1,25	15	7,93	11,895
straty liniowe		19,08	kPa			_	
straty miejscowe		19,08	kPa				
straty M +	L	38,16	kPa				
Trasa mia	arodajna						
2,	7						
1,1	L4						
11,8	395						
15,7	735						

			Mieszkan	ie 2				
2624'	0,07	0,066	16x2		0,55	5	4,45	2,225
2623'	0,07	0,066	16x2		0,55	5	1,41	0,705
2622'	0,15	0,150	16x2		1,25	20	1,17	2,34
2621'	0,22	0,205	20x2,25		1,1	12	0,81	0,972
2620'	0,29	0,251	20x2,25		1,25	15	7,82	11,73
straty linio	we	17,972	kPa					
straty miejs	scowe	17,972	kPa					
straty M + I		35,944	kPa					
Trasa miai	rodajna							
2,34	4							
0,97	2							
11,7	3							
15,04	42							

	pion nr.2 woda ciepła										
działka	Σqn	Qobl	d	v	R	ı	Δpstr.I				
[-]	[dm3/s]	[dm3/s] [mr	n] [m/s]	[hPa/m] [m]	[kPa]				
25'	0,59	0,398	25x2	,5 1,3	12	1,4	1,68				
27'	1,18	0,595	32x	3 1,4	8	3,3	2,64				
25'	1,77	0,742	32x	3 1,5	10	3,3	3,3				
24'	2,36	0,864	40x	1,1	5	3,3	1,65				
23'	2,95	0,970	40x	1,2	5	3,3	1,65				
22'	3,54	1,065	40x	1,3	5	3,3	1,65				
21'	4,13	1,151	40x	1,4	5	3,3	1,65				
straty linio	we	14,22	kPa								
straty miej	straty miejscowe 14		kPa								
straty M + L 28		28,44	kPa								

	Obliczenia hdrauliczne instalacji wody ciepłej										
działka	Σqn	Qobl	d	v	R	I	Δpstr.l				
[-]	[dm3/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]				
			Mieszkani	e 1							
3614'	0,07	0,066	16x2	0,55	5	1,29	0,645				
3613'	0,15	0,150	16x2	0,55	5	1,62	0,81				
3612'	0,22	0,205	16x2	1,25	20	1,31	2,62				
3611'	0,07	0,066	20x2,25	1,1	12	4,36	5,232				
3610'	0,29	0,251	20x2,25	1,25	15	6,47	9,705				
straty linic	we	19,012	kPa								
straty mie	jscowe	19,012	kPa								
straty M +	L	38,024	kPa								
Trasa mia	arodajna										
5,2	32										
9,7	05										
14,9	937										

			Mieszkai	nie 2				
3624'	0,07	0,066	16x2	(0,55	5	4,42	2,21
3623'	0,07	0,066	16x2	(0,55	5	2,28	1,14
3622'	0,15	0,150	16x2		1,25	20	1,29	2,58
3621'	0,22	0,205	20x2,25		1,1	12	1,04	1,248
3620'	0,29	0,251	20x2,25		1,25	15	8,55	12,825
straty linio	we	20,00	3 kPa					
straty miej	scowe	20,00	3 kPa					
straty M +	L	40,00	6 kPa					
Trasa mia	rodajna							
2,5	8							
1,2	48							
12,8	25							
16,6	53							

Mieszkanie 3								
3634'	0,07	0,066	16x2	16x2		5	4,06	2,03
3633'	0,07	0,066	16x2		0,55	5	2,26	1,13
3632'	0,15	0,150	16x2		1,25	20	1,22	2,44
3631'	0,22	0,205	20x2,25	5	1,1	12	0,81	0,972
3630'	0,29	0,251	20x2,25	5	1,25	15	5,92	8,88
straty linio	we	15,452	kPa					
straty miej	scowe	15,452	kPa					
straty M +	L	30,904	kPa					
Trasa mia	rodajna							
2,44								
0,972								
8,88								
12,292								

	pion nr.3 woda ciepła							
działka	Σqn	qobl	d	v	R	ı	Δpstr.I	
[-]	[dm3/s]	[dm3/s]	[mm	[m/s]	[hPa/m]	[m]	[kPa]	
36'	0,87	0,501	25x2	,5 1,6	17	1,4	2,38	
37'	1,74	0,735	32x3	3 1,8	8	3,3	2,64	
35'	2,61	0,910	40x4	1,2	5	3,3	1,65	
34'	3,48	1,055	40x4	1,3	6	3,3	1,98	
33'	4,35	1,182	40x4	1,3	6	3,3	1,98	
32'	5,22	1,295	40x!	5 1,4	6	3,3	1,98	
31'	6,09	1,398	40x	5 1,4	6	3,3	1,98	
straty liniowe		14,59	kPa					
straty miejscowe 14,			kPa					
straty M +	L	29,18	kPa					

	Obliczenia hdrauliczne instalacji wody ciepłej piwnica							
działka	ka Σqn qobi d v R I Δpstr.i							
[-]	[dm3/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]	
			piwnica	Э				
4'	0,07	0,066	16x2	0,55	5	7,12	3,56	
10'	6,96	1,493	50x4,5	1,2	3	1,46	0,438	

3'	7,03	1,500	50x4,5	1,2	3	17,31	5,193
20'	2,91	0,963	40x4	1,3	6	1,54	0,924
2'	9,94	1,777	50x4,5	1,3	5	16,65	8,325
30'	6,96	1,493	50x4,5	1,2	3	1,46	0,438
1'	16,9	2,294	50x4,5	1,7	7	8,99	6,293

straty liniowe	25,171	kPa
straty miejscowe	25,171	kPa
straty M + L	50,342	kPa

TRASA

MIARODAJNA

	Trasa Miarodajna dla całego budynku								
działka	Σqn	q obl	d	V	R	I	Δpstr.l	trasa miarodajna	
[-]	[dm3/s]	[dm3/s]	[mm]	[m/s]	[hPa/m]	[m]	[kPa]		
1'	16,9	2,294	50x4,5	1,7	7	8,99	6,293	6,293	
30'	6,96	1,493	50x4,5	1,2	3	1,46	0,438		
2'	9,94	1,777	50x4,5	1,3	5	16,65	8,325	8,325	
20'	2,91	0,963	40x4	1,3	6	1,54	0,924		
3'	7,03	1,500	50x4,5	1,2	3	17,31	5,193	5,193	
10'	6,96	1,493	50x4,5	1,2	3	1,46	0,438	0,438	
4'	0,07	0,066	16x2	0,55	5	7,12	3,56		
11'	6,09	1,398	40x6	1,4	6	3,3	1,98	1,98	
12'	5,22	1,295	40x5	1,4	6	3,3	1,98	1,98	
13'	4,35	1,182	40x4	1,3	6	3,3	1,98	1,98	
14'	3,48	1,055	40x4	1,3	6	3,3	1,98	1,98	
15'	7,83	1,582	40x4	1,2	5	3,3	1,65	1,65	
17'	15,66	2,212	32x3	1,8	8	3,3	2,64	2,64	
16'	0,87	0,501	25x2,5	1,6	17	1,4	2,38	2,38	
1620'	0,29	0,251	20x2,25	1,25	15	7,82	11,73	11,73	
1621'	0,22	0,205	20x2,25	1,1	12	0,81	0,972	0,972	
1622'	0,15	0,150	16x2	1,25	20	1,17	2,34	2,34	
1623'	0,07	0,066	16x2	0,55	5	1,41	0,705		
1624'	0,07	0,066	16x2	0,55	5	4,06	2,03		
							suma	49,881	

straty L

49,881

staty M

49,881

OBLICZENIA DLA PRZYŁĄCZA

	Przyłącze							
działka	Σqn	qobl		d	v	R	ı	Δpstr.l
[-]	[dm3/s]	[dm3/	[dm3/s]		[m/s]	[daPa/m]	[m]	[kPa]
1	55,83	3,25	6	63	1,25	34,3	1,93	6,620
straty l	iniowe	6,620	k	(Pa				
straty miejscowe		6,620	k	(Pa				
straty M + L		13,240	k	Ра				

Dobór wodomierzy:

Przy dobieraniu wodomierzy mieszkaniowych oraz domowego należy sprawdzić warunek:

$$q_{obl} \leq Q_3$$

gdzie:

 q_{obl} – obliczeniowy przepływ wody [m 3 /h]

 Q_3 – nominalny przepływ wodomierza [m 3 /h]

DN – średnica nominalna wodomierza [mm]

D − średnica przewodu [mm]

Straty ciśnienia na wodomierzach odczytane zostały z ich karty katalogowej.

Wodomierz	q obl [dm3/s]	q obl [m3/h]	Q3 [m3/h]	typ	Δp str W [kPa]
mieszkaniowy ciepłej wody	0,251	0,904	1,6	JS90 1,6-02 Smart C+R160	20
mieszkaniowy zimnej wody	0,67	2,412	2,5	JS90 2,5-02 Smart C+R160	60
domowy	3,26	11,736	40	JS 65 R315	4

Wymagane ciśnienie w instalacji wodociągowej:

$$p_{wym} = \rho \cdot g \cdot h_g + p_{pcz} + \left(\sum \Delta p_{strL} + \sum \Delta p_{strM}\right) + \Delta p_{strWM} + \Delta p_{strWD} + \Delta p_{strP}$$

gdzie:

hg – geometryczna wysokość instalacji [m]

 ρ – gęstość wody [kg/m³]

g – przyspieszenie ziemskie [m/s²]

 p_{vcz} – ciśnienie wody na wypływie z punktu czerpalnego [kPa]

 $\sum \Delta p_{strL} + \sum \Delta p_{strM}$ - straty na trasie miarodajnej [kPa]

 Δp_{strWM} – straty na wodomierzu mieszkaniowym [kPa]

 Δp_{strWD} – straty na wodomierzu domowym [kPa]

 Δp_{strP} – straty na przyłączu [kPa]

Ciśnienie wymagane dla instalacji Zimnej wody						
ρ [kg/m³]	1000					
g [m/s ²]	9,81					
hg [m]	22,88					
Ppcz. [kPa]	100					
ΣΔpstr.L [kPa]	48,82					
ΣΔpstr.M [kPa]	48,82					
Δpstr.WM [kPa]	60					
Δpstr.WD [kPa]	4					
Δpstr.P [kPa]	13,24					
P wym. [kPa]	499,32696					

Ciśnienie wymagane dla instalacji ciepłej wody						
ρ [kg/m³]	1000					
g [m/s ²]	9,81					
hg [m]	22,88					
Ppcz. [kPa]	100					
ΣΔpstr.L [kPa]	49,88					
ΣΔpstr.M [kPa]	49,88					
Δpstr.WM [kPa]	20					
Δpstr.WD [kPa]	4					
Δpstr.P [kPa]	13,24					
ΔpstrWym. [kPa]	10					
P wym. [kPa]	471,4546					

1. Instalacja cyrkulacyjna:

Podczas projektowania założono wymuszony, pompowy system cyrkulowania ciepłej wody użytkowej. Przyjęto, że minimalna temperatura wody w punkcie czerpalnym wynosi +55°C, natomiast maksymalna temperatura +60°C. Założono, że schładzanie wody przebiega równomiernie na długości przewodów. Dopuszczalne schłodzenie wody w instalacji wynosi 5°C.

Obliczeniowy spadek temperatury c.w.u na drodze od węzła do najniekorzystniej położonego punktu czerpalnego:

$$\Delta t_{ins} = t_{wvm} - t_{pcz}$$
 [°C]

gdzie:

 t_{wym} – temperatura c.w.u na wypływie z wymiennika [°C]; $t_{wym} = 60$ °C

 t_{pcz} – wymagana minimalna temperatura c.w.u w punkcie czerpalnym [°C]; $t_{pcz} = 55$ °C

Jednostkowy spadek temperatury:

$$\Delta t_j = \frac{\Delta t_{inst}}{I}$$
 [°C/m]

gdzie:

 Δt_{inst} – obliczeniowy spadek temperatury c.w.u na drodze od węzła do najniekorzystniej położonego punktu czerpalnego [°C]

L – długość trasy c.w.u na drodze od węzła do najniekorzystniej położonego punktu czerpalnego [m]

Obliczeniowa różnica temperatur na odcinku obliczeniowym:

$$\Delta t_{obl} = \frac{t_p + t_k}{2} - t_0 \quad [^{\circ}C]$$

gdzie:

 t_p – temperatura wody na początku odcinka obliczeniowego [°C]

 t_k – temperatura wody na końcu odcinka obliczeniowego [°C]

 t_0 – temperatura otoczenia na początku odcinka obliczeniowego [°C]; piwnica: 5°C, pomieszczenia mieszkalne: 25°C

$$t_k = t_p - \Delta t_i \cdot l$$

 Δt_i – jednostkowy spadek temperatury [°C/m]

1 – długość odcinka obliczeniowego [m]

Współczynnik przenikania ciepła rur bez izolacji:

$$U = 1.38 \cdot d_z^{-0.45} \cdot \Delta t_{obl}^{0.13} \left[\frac{W}{m^2 \cdot K} \right]$$
 dla odcinków poziomych

$$U=1.72 \cdot d_z^{-0.28} \cdot \Delta t_{obl}^{0.15} \left[\frac{W}{m^2 \cdot K}\right] dla odcinków pionowych$$

 d_z – zewnętrzna średnica rury [m]

Straty energii cieplnej:

$$Q = \pi \cdot d_z \cdot l \cdot U \cdot \Delta t_{obl} \cdot (1 - \eta) \quad [W]$$

d_z – średnica zewnętrzna odcinka obliczeniowego [m]

1 – długość odcinka obliczeniowego [m]

U – współczynnik przenikania ciepła przewodu [W/m²K]

 Δt_{obl} – obliczeniowa różnica temperatur na odcinku obliczeniowym

 η – współczynnik sprawności izolacji cieplnej przewodu [-]; η = 0,6

Całkowity strumień objętościowy wody cyrkulacyjnej:

$$\dot{V}_c = \frac{\mathbf{Q}}{\Delta t_{inst} \cdot c_w \cdot \rho} \left[\frac{m^3}{s} \right]$$

Q – straty energii cieplnej [W]

 ρ – gęstość wody; ρ = [kg/m³]

 c_w – ciepło właściwe wody; $c_w = 4.2 \text{ [kJ/kg·K]}$

 Δt_{inst} – obliczeniowy spadek temperatury c.w.u na drodze od węzła do najniekorzystniej położonego punktu czerpalnego [°C]

Obliczenia strat mocy cieplnej

	Działka	I	d	t _p	t _k	t _o	Δt_{obl}	U	Q
	[-]	[m]	[mm]	[°C]	[°C]	[°C]	[°C]	[W/m²/°C]	[W]
	1'	8,99	50	60,00	59,34	5	54,67	8,94	276,03
	30'	1,46	50	59,34	59,24	5	54,29	8,93	44,48
	31'	3,3	40	59,24	59,00	25	34,12	7,19	40,71
	32'	3,3	40	59,00	58,76	25	33,88	7,19	40,38
m	33'	3,3	40	58,76	58,52	25	33,64	7,18	40,05
Pion 3	34'	3,3	40	58,52	58,28	25	33,40	7,17	39,72
Ā	35'	3,3	40	58,28	58,04	25	33,16	7,16	39,39
	37'	3,3	32	58,04	57,80	25	32,92	7,62	33,26
	36'	1,4	25	57,80	57,69	25	32,74	8,15	11,74
	2'	16,65	50	59,34	58,13	5	53,74	8,92	501,37
	20'	1,54	40	58,13	58,02	5	53,08	9,84	40,45
	21'	3,3	40	58,02	57,78	25	32,90	7,15	39,04
	22'	3,3	40	57,78	57,54	25	32,66	7,15	38,71
2	23'	3,3	40	57,54	57,30	25	32,42	7,14	38,38
Pion 2	24'	3,3	40	57,30	57,06	25	32,18	7,13	38,06
Д	25'	3,3	32	57,06	56,82	25	31,94	7,58	32,13
	27'	3,3	32	56,82	56,58	25	31,70	7,57	31,85
	26'	1,4	25	56,58	56,47	25	31,53	8,11	11,24
	3'	17,31	50	58,13	56,87	5	52,50	8,89	507,70
	10'	1,46	50	56,87	56,76	5	51,82	8,88	42,19
	11'	3,3	40	56,76	56,52	25	31,64	7,11	37,33
	12'	3,3	40	56,52	56,28	25	31,40	7,10	37,00
⊣	13'	3,3	40	56,28	56,04	25	31,16	7,10	36,68
Pion 1	14'	3,3	40	56,04	55,80	25	30,92	7,09	36,35
Ā	15'	3,3	40	55,80	55,56	25	30,68	7,08	36,03
	17'	3,3	32	55,56	55,32	25	30,44	7,53	30,40
	16'	1,4	25	55,32	55,22	25	30,27	8,06	10,73
								ΣQ [W]	2111,40
								V	0,102

η	Δtinst	L	Δtj
0,6	5	68,61	0,07

Strumień wody cyrkulacyjnej w pionie:

$$\dot{V}_p = \frac{Q_p}{\Delta t_p \cdot c_w \cdot \rho} \left[\frac{m^3}{s} \right]$$

Pion	V_{in}	Qp	Q _{out}	V_p
3	0,102	289,72	1545,64	0,016
2	0,086	229,41	774,42	0,020
1	-	-	-	0,067

 Q_p – straty ciepła w przewodach pionu instalacji c.w.u odgałęzienia w węźle [W]

 Q_{out} – straty ciepła w przewodach pozostałej części instalacji c.w.u za węzłem [W]

Obliczenia hydrauliczne przewodów instalacji cyrkulacyjnej

Średnice przewodów powrotnych dobrano się przy założeniu prędkości wody od 0,2 do 0,5 m/s.

Straty ciśnienia

Liniowe straty ciśnienia wyznaczono na podstawie wzoru:

$$\Delta p_{strl.} = R \cdot l$$
 [Pa]

gdzie:

R – jednostkowe liniowe straty ciśnienia [Pa/m]

l – długość przewodu [m]

Straty miejscowe wyznaczono z zależności:

$$\Delta p_{strM} = 1 \cdot \Delta p_{strL}$$
 [Pa]

$$\Delta p_{strL+M} = 2 \cdot R \cdot l$$
 [Pa]

Dobór termostatycznych zaworów cyrkulacyjnych

Dobierając zawory wyznaczono ich współczynniki przepływu oraz nastawy. Temperaturę wody powrotnej w miejscu zainstalowania zaworu przyjęto +55°C. Zawór i jego nastawę dobrano w oparciu o obliczeniowy współczynnik przepływu zaworu oraz temperaturę wody przepływającej przez zawór.

Obliczeniowy strumień wody cyrkulacyjnej przepływającej przez zawór:

 \dot{V}_p – strumień wody cyrkulacyjnej w pionie $\left[\frac{m^3}{s}\right]$

Autorytet zaworu:

$$a = \frac{\Delta p_z}{\Delta p_{ob-z} + \Delta p_z} \quad [-]$$
$$a_{min} = 0.3$$

 Δp_{ob-z} – spadek ciśnienia w obiegu [kPa]

 Δp_z – spadek ciśnienia na termostatycznym zaworze cyrkulacyjnym [kPa]

Obliczeniowy współczynnik przepływu zaworu:

$$k_{v \text{ dop}} = \frac{\dot{V}_{p}}{\sqrt{\Delta p_{\text{ob-z}}}} \cdot \sqrt{\frac{1 - a_{\text{min}}}{a_{\text{min}}}} \quad \left[\frac{m^{3}}{h}\right]$$

 \dot{V}_p – obliczeniowy strumień wody cyrkulacyjnej przepływającej przez zawór $\left[\frac{m^3}{s}\right]$

 Δp_{ob-z} – spadek ciśnienia w obiegu [kPa]

a – autorytet zaworu, $a_{min} = 0.3$ [-]

Spadek ciśnienia na termostatycznym zaworze cyrkulacyjnym:

$$\Delta p_z = 100 \cdot \left(\frac{\dot{V}_p}{k_v}\right)^2 \quad [kPa]$$

 \dot{V}_p – strumień wody cyrkulacyjnej w pionie $\left[\frac{m^3}{s}\right]$

k_v – obliczeniowy współczynnik przepływu zaworu

Spadek ciśnienia w obiegu cyrkulacyjnym:

$$\Delta p_{ob} = \sum \Delta p_{strL+M} + \Delta p_z \ [kPa]$$

 Δp_{strL+M} – suma liniowych i miejscowych strat ciśnienia [kPa]

 Δp_z – spadek ciśnienia na termostatycznym zaworze cyrkulacyjnym [kPa]

Korzystając z powyższych wzorów oraz nomogramu dobrano dla zaworów współczynniki przepływu oraz nastawy

Obliczenia hydrauliczneprzewodów cyrkulacji rozprowadzającej

	Działka [-]	qobl [dm3/s]	d [mm]	V [m/s]	R [daPa/m]	l [m]	Δp str. L
	1'	0,102	50	0,05	0,14	1,46	2,0
	30'	0,102	50	0,05	0,14	8,99	12,6
	31'	0,016	40	0,01	0	3,3	0
	32'	0,016	40	0,01	0	3,3	0
က	33'	0,016	40	0,01	0	3,3	0,0
Pion 3	34'	0,016	40	0,01	0	3,3	0,0
<u> </u>	35'	0,016	40	0,01	0	3,3	0,0
	37'	0,016	32	0,02	0,13	3,3	4,3
	36'	0,016	25	0,03	0,41	1,4	5,7
	2'	0,086	50	0,04	0,14	16,65	23,3
	20'	0,086	40	0,07	0,58	1,54	8,9
	21'	0,020	40	0,02	0	3,3	0,0
	22'	0,020	40	0,02	0	3,3	0,0
2	23'	0,020	40	0,02	0	3,3	0,0
Pion 2	24'	0,020	40	0,02	0	3,3	0,0
<u> </u>	25'	0,020	32	0,02	0,17	3,3	5,6
	27'	0,020	32	0,02	0,17	3,3	5,6
	26'	0,020	25	0,04	0,56	1,4	7,8
	3'	0,067	50	0,03	0	17,31	0,0
	10'	0,067	50	0,03	0	1,46	0,0
	11'	0,067	40	0,05	0,24	3,3	7,9
	12'	0,067	40	0,05	0,24	3,3	7,9
Pion 1	13'	0,067	40	0,05	0,24	3,3	7,9
Pio	14'	0,067	40	0,05	0,24	3,3	7,9
	15'	0,067	40	0,05	0,24	3,3	7,9
	17'	0,067	32	0,08	1,08	3,3	35,6

16'	0,067	25	0,14	3,63	1,4	50,8
					$\Sigma \Delta p_{strL}$	151.20

Obliczenia hydrauliczneprzewodów cyrkulacji powrotnej

Działka [-]	qobl [dm3/s]	d [mm]	V [m/s]	R [daPa/m]	l [m]	Δp str. L	Dwew.[mm]
1"	0,102	25	0,31	7,55	10,45	789,0	20,5
31"	0,016	16	0,14	4	21,2	848,0	12
2"	0,086	20	0,46	1,57	18,19	285,6	15,5
21"	0,020	16	0,17	7,3	21,2	1547,6	12
3"	0,067	20	0,35	17	18,77	3190,9	15,5
11"	0,067	20	0,35	17	21,2	3604,0	15,5
				-	$\Sigma \Delta p_{strL}$	10265,06	

Sp	Spadki ciśnienia w obiegach cyrkulacyjnych - Dobór termostatycznych zaworów Cyrkulacyjnych									
Pion	$ V_z \Sigma \Delta p_{\text{str L+M}} \Delta p_{\text{obl-z}} k_{\nu(\text{dop})} [m3/h] nastawa k_{\nu} \Delta p_z a \Delta p_{\text{obkr}} $									
3	0,016	3,3	5,3	0,38	55	0,36	2,58	0,33	7,85	
2	0,020	6,9	8,9	0,36	54	0,30	5,51	0,38	14,45	
1	0,067	20,5	22,5	0,77	60	0,74	10,33	0,31	32,86	

Dobór pompy cyrkulacyjnej

Pompa cyrkulacyjna zainstalowana jest na głównym przewodzie powrotnym, przed wymiennikiem ciepła. Wydajność pompy odpowiada całkowitemu strumieniowi wody cyrkulacyjnej, natomiast jej wysokość podnoszenia spadkowi ciśnienia w obiegu krytycznym. Obiegiem krytycznym jest obieg 1, gdyż występują w nim największe straty ciśnienia.

Wydajność:

$$\dot{V}_{pompa} = \dot{V}_c \quad [\text{m}^3/\text{h}]$$

 \dot{V}_c – całkowity strumień wody cyrkulacyjnej [m³/h]

Wysokość podnoszenia:

$$H_{pompa} = 1000 \cdot \frac{\Delta p_{ob \, kr}}{\rho \cdot g} \quad [\text{m}]$$

 $\Delta p_{ob\ kr}$ – spadek ciśnienia w obiegu krytycznym [kPa]

Ciśnienie dyspozycyjne w układzie cyrkulacyjnym [kPa]	35,57
Całkowity strumień wody cyrkulacyjnej [dm³/s]	0,102
Wydajność pompy [m³/h]	0,37
Wysokość podnoszenia pompy [m]	3,63

Dobieram pompę : LFP 25POr40K

	SPADKI CIŚNIENIA W OBIEGACH CYRKULACYJNYCH												
DOBÓR TERMOSTATYCZNYCH ZAWORÓW CYRKULACYJNYCH PO REGULACJI													
Pion	V _z	ΣΔp _{str L+M}	$\Delta p_{\text{obl-z}}$	k _{v(dop)}	nastawa	k _v	Δp _z	а	Δp_{obkr}				
3	0,016	3,3	5,3	0,38	51	0,11	27,59	0,84	32,87				
2	0,020	6,9	8,9	0,36	52	0,14	25,32	0,74	34,26				
1	0,067	20,5	22,5	0,77	60	0,74	10,33	0,31	32,86				

KANALIZACJA

a) Wymiarowanie podejść pojedynczych

Średnicę dobieramy w zależności od rodzaju przyboru sanitarnego.

b) Wymiarowanie podejść zbiorowych

Polega ono na określeniu:

- sumy DU
- przepływu obliczeniowego dla poszczególnych odcinków przewodu
- c) Wymiarowanie pionów

Na całej wysokości pionu przyjęto jednakową średnicę. Średnica pionu nie może być mniejsza niż średnica największego podejścia. Przyjęto średnicę pionów 110 mm. W dolnej części pionów zamontowane są czyszczaki.

d) Przewody odpływowe

Przewody odpływowe z pionów prowadzone są pod posadzką piwnicy i pod powierzchnią terenu na zewnątrz budynku. Średnice przewodów odpływowych są większe niż średnice pionów.

Obciążenie pionów

Przepływ obliczeniowy:

$$Q_{ww} = K \cdot \sqrt{\sum DU} \text{ [dm}^3/\text{s]}$$

gdzie:

k-współczynnik częstości, zależny od przeznaczenia budynku; <math display="inline">k=0.5 $DU-odpływ jednostkowy urządzeń sanitarnych <math display="inline">[dm^3/s]$

KANALIZACJA

	Odpływ Jednostkowy DU [dm³/s]
umywalka	0,5
wanna	0,8
miska	2,5
ustępowa	2,3
pralka	0,8
zlewozmywak	0,8
wpust	
podłogowy	0,8

Średnica
podejścia [m]
0,04
0,05
0,11
0,05
0,05
0,05

	Obciążenia pionów										
Pion	Urządzenia sanitarne	ΣDU	Q_{ww}								
2, 3, 4, 5, 6, 7, 8, 9	umywalka, wanna, miska ustępowa, pralka, zlewozmywak	37,8	3,07								
1	umywalka	0,5	0,35								

współczynnik częstości K								
ΣDU		suma odpływów jednostkowych						
Qww	[dm³/s]	nateżenie przepływu ścieków						

Nr odcinka	ΣDU	Q_{ww}	DN	Długość przewodu [m]	i	Rzędna dna kanału [m]	Odległość od SR [m]
K1 → 8	0,5	0,35	50	0,73	2	-3,39	27,61
WP \rightarrow 8	0,8	0,45	75	1,69	6	-3,38	28,57
8 → 7	1,3	0,57	125	3,58	2	-3,41	26,88
K2 → 7	37,8	3,07	125	2,33	2	-3,43	25,63
7→ 6	39,1	3,13	125	2,99	2	-3,48	23,3
K3 → 6	37,8	3,07	125	2,33	2	-3,49	22,64
6 → 5	76,9	4,38	125	3,08	2	-3,54	20,31
K4 → 5	37,8	3,07	125	3,42	2	-3,53	20,65
5 → 4	114,7	5,35	125	8,12	2	-3,60	17,23
K5 → 4	37,8	3,07	125	2,36	2	-3,72	11,47
4→ 0	152,5	6,17	160	4,00	2	-3,76	9,11
K6 → 3	37,8	3,07	125	5,26	2	-3,46	24,44
K7 → 3	37,8	3,07	125	2,3	2	-3,52	21,48
$3 \rightarrow 2$	75,6	4,35	125	3,15	2	-3,56	19,18
K8→ 2	37,8	3,07	125	3,4	2	-3,56	19,46
2→1	113,4	5,32	125	10,06	2	-3,63	16,03
K9→ 1	37,8	3,07	125	2,36	2	-3,78	8,33
1→0	151,2	6,15	160	0,86	2	-3,83	5,97
$0 \rightarrow SR$	189	6,87	160	5,11	2	-3,84	5,11

rzędna dna kanału SR -3,9464

ΣDU	[dm³/s]	suma odpływów jednostkowych
Q_{ww}	[dm³/s]	natężenie przepływu ścieków
DN	[mm]	średnica nominalna
i	[%]	spadek