<

NON CLASSIFIÉ

(3)

DREV REPORT 4069 77 FILE: 3621C-001 MARCH 1977

CRDV RAPPORT 4069 77

LIANTS POLYETHERS ET POLYESTERS DANS LES PROPERGOLS COMPOSITES

- M. Tremblay
- G. Perrault
- G. Duchesne
- E. Ahad

Centre de Recherches pour la Défense Defence Research Establishment Valcartier, Québec

LUREAU - RECHERCHE ET DEVELOPPEMENT MINISTERE DE LA DEFENSE NATIONALE

CANADA

A. D. British Union

HAUTO; LOG RESEARCH AND DEVELOPMENT BRANCH DEPARTMENT OF NATIONAL DEFENCE CANADA

UNCLASSIFIED

CRDV R-4069/77 DOSSIER: 3621C-001

NON CLASSIFIE

DREV-R-4069/77 FILE: 3621C-001

Polyether	and	Polyeste	r Binders	in
Composite	Proj	pellants)	,	

LIANTS POLYETHERS ET POLYESTERS
DANS LES PROPERGOLS COMPOSITES

M. Tremblay, G. Perrault, G. Duchesne E. Ahad

1) Mar 111 (12) 38p.

> CENTRE DE RECHERCHES POUR LA DEFENSE DEFENCE RESEARCH ESTABLISHMENT.

> > VALCARTIER

Tel: (418) 844-4271

Québec, Canada

ACCESSION for

NTIS White Section DOC Buff Section DUMARROUNCED

JUSTIFICATION

BY

DISTRIBUTION/AVAICACILITY CODES

DIST. HAIL ONCOME SPECIAL

March/mars 1977

404945

YB

RESUME

Un polybutadiène à terminaisons hydroxyles (R45M) a été réticulé avec les époxydes (liant polyéther) et avec un mélange d'anhydride et d'époxydes (liant polyester). A partir de ces liants, des propergols polyéthers et polyesters contenant 88% de solides ont été préparés et les propriétés mécaniques ont été évaluées suivant la proportion optimale et l'ordre d'addition des ingrédients, la température de cuisson et l'effet des agents de surface. Les propergols polyesters donnent de meilleures propriétés physiques et mécaniques lorsqu'on fait réagir antérieurement l'anhydride avec le R45M plutôt que d'ajouter tous les ingrédients simultanément au cours du malaxage. Les propergols polyéthers possèdent des propriétés mécaniques légèrement inférieures aux polyesters et exigent des temps de cuisson plus longs. L'analyse du comportement rhéologique de ces propergols à l'aide du rhéovibromètre a permis de mesurer l'efficacité de divers agents de surface à basse température. Quelques agents de surface améliorent les propriétés mécaniques des propergols polyesters mais tous ces produits diminuent la catalyse de AP dans les propergols polyéthers. (NC)

ABSTRACT

A hydroxyl-terminated polybutadiene prepolymer (R45M) was crosslinked with an epoxide to yield an elastomeric material known as a polyether or with a mixture of an anhydride and an epoxide to form a polyester material. Polyether and polyester propellants containing up to 88% of solid ammonium perchlorate (AP) in the powder form and aluminum powder were prepared from the above two materials (binders). The physical and mechanical properties of these propellants depended on the ratio and on the order of addition of ingredients, the curing temperature and the presence of surface-active agents. Polyester propellants were made either by using R45M prereacted with anhydrides or by mixing simultaneously all ingredients with the solids. Polyester propellants made by the former procedure had superior properties to those made by the latter. Polyether propellants had slightly lower mechanical and physical properties than those of polyesters. The effectiveness of the several surface-active additives in these highly filled composite propellants were evaluated by mechanical spectroscopy. Some additives were found to improve the mechanical properties of polyester propellants, but were detrimental to the catalytic activity of AP in polyether propellants. (U)

NON CLASSIFIE ii

TABLE DES MATIERES

	RESUME/ABSTRACT
	SYMBOLES ii
1.0	INTRODUCTION
2.0	INSTRUMENTS
	2.1 Tonométrie
3.0	PARTIE EXPERIMENTALE
,	 3.1 Préparation du R45M carboxylé (R45M/AS) 3.2 Préparation du dérivé méthyle du R45M carboxylé (R45M/AMS) 3.3 Préparation du dérivé de l'anhydride cyclohexane
	di-carboxylique-1,2 (cis) avec le R45M (R45M/ACHD) 3.4 Préparation du liant polyester à partir du R45M
	carboxylé et des époxydes
	di-carboxylique-1,2 (cis) (ACHD)
4.0	RESULTATS ET DISCUSSION
	4.1 Vitesse de polymérisation des liants par la mesure de la viscosité en fonction de la température et des catalyseurs
	4.2 Vitesse de polymérisation des liants par la mesure du poids moléculaire par GPC
	4.3 Propriétés mécaniques et formulation des liants 1
	4.4 Propriétés mécaniques des propergols
	4.4 Propriétés mécaniques des propergols
5.0	CONCLUSIONS
6.0	BIBLIOGRAPHIE
	TABLEAUX I à XVIII
	FIGURES 1 à 15

NON CLASSIFIE iii

SYMBOLES

ACHD	anhydride de l'acide cyclohexane di-carboxylique 1, 2 (cis).
AL H-15	aluminium en poudre de 17 μm de diamètre moyen vendu par Valley Metallurgical.
A1 HDX-65	aluminium en poudre de 10 μm de diamètre moyen vendu par ALCAN.
ADH-1	produit de condensation du méthyldiéthanol-amine avec l'acide cyclohexane di-carboxylique 1,2 (cis).
AHD~2	produit de condensation de la méthyldiéthanolamine, de l'hydroxyéthylaziridine et de l'acide sébacique.
AHD-3	produit de condensation du DD1 et de l'hydroxy-2 éthylaziridine.
AO 2,2,4,6	méthylène-2,2' bis (méthyl-4 tert-butyl-6 phénol).
AP	perchlorate d'ammonium.
AP Code 5	mélange de perchlorate d'ammonium de 200 et 17 μm de proportion en poids 1.66/l respectivement.
CY-179	époxyde semblable à ERL-4221 vendu par Ciba Products Co., Summit, N.J. (poids équivalent: 144.6).
DD1	diisocyanate dimérique de General Mills Chemicals Inc., Minneapolis, Minnesota.
DER 732	éther diglycidyle du glycol de polyoxypropylène (poids équivalent; 310) vendu par Dow Chemical of Canada Ltd. Montréal.
DER 736	éther diglycidyle du glycol de polyoxypropylène (poids équivalent: 178) vendu par Dow Chemical of Canada Ltd.
DSC	calorimètre à balayage thermique différentiel.
€ m	allongement à charge maximale en cm/cm.
ε _r	allongement à la rupture en cm/cm.
E	module en traction en MPa.

NON CLASSIFIE iv

E'	module d'entreposage en Pa.
E''	module de perte en Pa.
EP-201	époxyde semblable à ERL 4221 vendu par Union Carbide Canada Ltd. Belleville, Ontario (poids équivalent: 132).
Epon 812	dérivé glycidyle du glycérol de Shell Chemical Co. N.Y. (poids équivalent: 153).
ERL 4221	époxy-3,4 cyclohexylméthyle époxy-3,4 cyclohexane carboxylate de Union Carbide Canada Ltd. (poids équivalent: 135).
ERL 4289	bis (époxy-3,4 méthyl-6 cyclohexylméthyle) adipate de Union Carbide Canada Ltd. (poids équivalent: 192).
ERLA 0510	glycidoxy di-glycidyl-N,N p-aminophényle de Union Carbide Canada Ltd. (poids équivalent: 89).
EPOUTUF- 37-151	dérivé époxyde de l'acide sébacique de Reichholds Chemicals Inc. Tuxedo Park, New York (poids équivalent: 354).
GPC	chromatographie sur gel perméable.
HEA	hydroxy1-2 éthylaziridine.
IDP	pélargonate d'isodécyle.
J	joules.
JANA F	Joint Army-Navy Force (US).
MAPO	oxyde de tris-(aziridiny1-1, méthy1-2) phosphine de Interchemical Corp.
M _n	poids moléculaire moyen en nombre.
M _w	poids moléculaire moyen en poids.
N8C	polyester d'amine, polysébaçate de méthyl-N bis (hydroxyl-2 éthyle) amine possédant des groupements carboxyles terminaux de structure suivante:
	H (COO CH_2CH_2 - N (CH_3) - CH_2 CH_2 - COO (CH_2) ₈) _n COOH

ν

Oc. de Cr octanoate de chrome, The Shephard Chemicals Co.

01. de Cr 01éate de chrome.

PBCT polybutadiène à terminaisons carboxyles.

PBHT polybutadiène à terminaisons hydroxyles.

PBNA phényl-bêta-naphthylamine.

PEA polyester d'aziridine, un triaziridine polymérisé avec

des diacides de structure suivante: HO[CO-R"-OCO-R"-

 $(N-CH_2-CH-CH_3)_x-0]_yH.$

REC rapport des groupements époxydes aux groupements

carboxyles.

R45M polybutadiène à terminaisons hydroxyles, lot 006121, vendu

par Arco Chemical Corp.

R45M/AS produit de la réaction R45M avec l'anhydride succinique.

R45/AMS produit de la réaction de R45M avec l'anhydride

méthylsuccinique.

R45M/ACHD produit de la réaction de R45M avec l'anhydride cyclohexane

di-carboxylique-1,2 (cis).

R45MC dérivé carboxylé du R45M obtenu par réaction avec les

anhydrides.

T température de transition vitreuse.

tan δ tangente de l'angle de phase δ , entre une force sinusordale

appliquée et l'allongement résultant.

V fraction volumique de caoutchouc réticulé dans le caoutchouc

gonflé dans le toluène.

VPO tonométrie ou osmométrie en phase vapeur

WLF Williams-Landel-Ferry.

n viscosité en N.s/m².

force à charge maximale en MPa.

force à la rupture en MPa.

1.0 INTRODUCTION

Nous avons pensé utiliser le R45M de Arco Chemical Corp. pour former un liant polyéther et polyester par réticulation avec les époxydes. Le R45M, qui est ordinairement réticulé avec les isocyanates, donne un liant polyuréthane employé dans les propergols et explosifs composites. Sa faible viscosité, sa grande disponibilité sur le marché et son coût peu élevé en font un candidat de choix. Notre étude voulait utiliser les avantages marqués de ce produit, en particulier sa faible viscosité qui permet d'incorporer une grande proportion de solides. L'emploi d'un nouveau système de cuisson du R45M dans notre procédé donne un liant polyéther ou polyester susceptible d'être plus stable à la chaleur que le liant polyuréthane.

Une première étude visait à réticuler le R45M avec les époxydes. En présence d'un catalyseur, le diol réagit avec le diépoxyde pour donner un polyéther (équation 1).

HOCH₂R₁CH₂OH + CH₂-CH-R₂-CH-CH₂

$$0$$

H(OCH₂R₁CH₂OCH₂CH-R₂-CH-CH₂)_xR₃ [1]

R₁ = polybutadiène, (C₄H₆)_n

R₂ = alkyle ou aryle

R₃ = OCH₂R₁CH₂OH ou - OCH₂-CH-R₂-CHCH₂

Une deuxième étude a porté sur la formation de liants polyesters à partir du dérivé carboxylé du R45M (R45MC) par réticulation avec les époxydes. Le polybutadiène est d'abord transformé en dérivé carboxylé d'après une méthode déjà décrite (1). Ce dérivé (R45MC) est ensuite réticulé avec les époxydes et les sels de chrome pour former un élastomère. Une légère modification de ce système est obtenue par réaction du R45M avec un mélange d'anhydride et d'époxyde. L'addition de l'anhydride de l'acide cyclohexane di-carboxylique - 1,2 (cis) (ACHD) produit un liant à 80°C. Cet anhydride, qui est liquide à la température de la réaction et soluble dans le prépolymère, entre en réaction avec le diol R45M pour former un diacide qui avec le di-époxyde donne un polyester d'après le mécanisme décrit dans l'équation 2.

 $R_1 = \text{polybutadiène}, (C_4 H_6)_n$

 R_2 = alkyle ou aryle

Cependant, la réaction de l'anhydride ACHD avant l'addition d'époxyde permet de former un élastomère ou un propergol à température plus basse (60°C) que lorsque les ingrédients sont ajoutés en une seule étape.

Le travail expérimental fut effectué de janvier 1973 à mai 1974 en rapport avec le programme d'étude sur les propergols au polybutadiène dans le cadre du PCN 21C01 (précédemment 17A01, projet 47-60-04) Technologie de la propulsion par fusées.

2.0 INSTRUMENTS

2.1 Tonométrie

Les mesures de tonométrie ont été effectuées dans le chloroforme à 37°C avec un appareil Hewlett-Packard (modèle 302B). Le benzyle a été utilisé comme produit d'étalonnage.

2.2 Température de transition vitreuse

La température de transition vitreuse des liants ou propergols a été mesurée à l'aide du calorimètre à balayage thermique différentiel de Perkin-Elmer (modèle DSC-2).

2.3 Viscosimétrie

Les viscosités ont été déterminées avec l'appareil Rotovisko (Gebruder Haake, Berlin) relié à un enregistreur Honeywell (modèle Electronik 194).

2.4 Spectres infrarouges

Les spectres infrarouges ont été déterminés à l'aide de l'appareil Perkin-Elmer (modèle 521).

2.5 Chromatographie sur gel perméable (GPC)

On a déterminé les poids moléculaires M et M en utilisant le chromatographe ANA-PREP de Waters Associates Inc. à 23°C et le tétrahydrofurane comme solvant. Les quatres colonnes contenaient des gels de porosité 0.7 x 10° - 0.5 x 10°, 0.15 x 10° - 0.5 x 10°, 70 - 200 et 8-10 nm respectivement. Les poids moléculaires furent calculés d'après la courbe log M avec comptes obtenus par l'emploi de polystyrènes standard et corrigés pour les PBHT ou PBCT (2).

2.6 Propriétés mécaniques des liants et propergols

Les propriétés mécaniques des liants($^{\sigma}$, $^{\sigma}$, $^{\varepsilon}$, $^{\varepsilon}$, et E) ont été mesurées à température ambiante (23°C) à $^{\eta}$ aide de l'appareil Instron (Instron Canada Ltd., modèle TTC 1114) sur des anneaux fabriqués à l'aide d'un poinçon. Ces anneaux avaient un diamètre intérieur de 3.17 cm. Les échantillons sont étirés à la vitesse de 0.212 cm/s. La longeur effective de l'éprouvette était de 3.50 cm.

Des éprouvettes JANAF vsinées à partir de blocs de propergols ont servi à déterminer les propriétés mécaniques à 23 et à -45°C. Le tablier mobile se déplaçait à une vitesse de 0.0847 cm/s et à un taux de déformation de 0.0123 s . La longueur effective de l'éprouvette mesurait 8.43 cm. La charge maximale et l'allongement obtenu avec l'éprouvette sont déterminés à partir de la courbe tension-déformation qui sert à calculer l'effort (σ_m) à allongement maximum (ε_m) . On calcule le module initial à partir de la pente au début de cette même courbe.

2.7 Spectres mécaniques des propergols

Les propriétés mécaniques dynamiques ont été mesurées sur l'appareil (Rheovibron Dynamic Viscoelastometer, Modèle DDV II, Toyo Measuring Instruments Co. Ltée., Tokyo Japan) à des températures variant de -100 à 0°C. Les échantillons mesurant 6 x 0.5 x 1 cm sont refroidis à un taux de 1 à 2°C/min et soumis à des oscillations sinusoidales.

3.0 PARTIE EXPERIMENTALE

3.1 Préparation du R45M carboxylé (R45M/AS)

- a) On chauffe sous reflux un mélange de R45M (1420 g, 1.00 équiv.), d'anhydride succinique (100 g, 1.0 mole) et de benzène (1500 cc) durant 48 heures (1). Après évaporation du solvant, on obtient 1510 g de produit ayant un équivalent carboxyle de 1505 et une viscosité de 167 poises (16.7 N. s/m²) à 25°C.
- b) Le même produit formé par ébullition dans le toluène pendant 24 heures donne un produit ayant un poids équivalent de 1505 et une viscosité de 157 poises (15.7 N.s/m²) à 25°C. (Tableau I).

3.2 Préparation du dérivé méthyle du R45M carboxylé (R45M/AMS)

La même condensation effectuée lorsqu'on emploie de l'anhydride méthylsuccinique au lieu de l'anhydride succinique donne un produit ayant un poids équivalent variant de 1440 à 1530 et une viscosité de 184 à 185 poises (18.5 N.s/m²) à 25°C. (Tableau I).

3.3 Préparation du dérivé de l'anhydride cyclohexane di-carboxylique-1,2 (cis) avec le R45M (R45M/ACHD)

On chauffe à 90°C un mélange de l'anhydride de l'acide cyclohexane di-carboxylique -1,2 (cis) (154 g, 1 équiv.) et de R45M (1420 g, 1 équiv.) pendant 66 heures. Le spectre infrarouge du produit obtenu indique la disparition des groupes hydroxyle et anhydride du mélange et l'apparition du groupe carboxyle. (Fig. 1). Le produit préparé à deux reprises a un poids équivalent qui varie de 1420 à 1500 et une viscosité variant de 374 à 417 poises (37.4 à 41.7 N.s/m²) à 25°C. (Tableau 1).

3.4 Préparation du liant polyester à partir du R45M carboxylé et des époxydes

Nous avons préparé des élastomères à partir du R45M carboxylé (R45M/AS, R45M/ACHD). Ces produits carboxylés furent réticulés successivement avec divers époxydes en présence d'oléate de chrome. Le mélange est placé dans une étuve à 60°C jusqu'à dureté constante. Les propriétés mécaniques des liants ont été déterminées à température ambiante (23°C) à l'aide de l'appareil Instron.

3.5 Préparation du liant polyester à partir du R45M, des époxydes et de l'anhydride de l'acide cyclohexane di-carboxylique-1,2 (cis) (ACHD)

Un mélange de R45M, d'époxyde et de l'anhydride de l'acide cyclohexane di-carboxylique - 1,2 (cis) (ACHD) est versé dans un moule

TABLEAU I

Propriétés des PBHT et PBCT

Nom	Solvant		4 n	M _w	1	Pds
· · · · · · · · · · · · · · · · · · ·		VPO	GPC	GPC	N. s/m ²	équiv. g
R45M (Lot 006121)		4860	3330	4630	6.9	1420
R45M/AS	Benzène	5080	4290	6090	16.7	1500
R45M/AS	Toluène	8480	4600	6450	15.7	1500
R45M/AS	Benzène	-	4775	6890	18.2	1490
R45M/AMS	Toluène		4640	6640	18.4	1440
R45M/ACHD		2582	4240	6270	37.4	1420
R45M/ACHD	Benzène	3330	į	i	41.7	1350

FIGURE 1 - Spectres infrarouges de ACHD, de R45M et de R45M/ACHD.

en téflon et chauffé dans une étuve à 80°C jusqu'à dureté constante du caoutchouc. Après un temps de cuisson variant entre 7 et 18 jours, on détermine les propriétés mécaniques suivant la méthode décrite au paragraphe 2.6.

3.6 Préparation des échantillons de propergols

Les échantillons de propergols furent préparés à partir du perchlorate d'ammonium (mélange de 400, 200 et 17 µm de proportion en poids 1.7, 2.7 et 1.0 respectivement), d'aluminium H-15 et des divers ingrédients employés dans les liants d'après une méthode déjà décrite (3). Les divers ingrédients sont mélangés dans un malaxeur à hélices verticales de 500 g (Atlantic Research Corp., Alexandria, Virginia). Au mélange de prépolymère et de plastifiant contenant en général un agent de surface, on ajoute l'aluminium, le perchlorate d'ammonium et enfin l'agent de cuisson au cours d'une période de 3 heures en malaxant constamment à une température de 60°C sous vide. On fait couler la charge dans un moule en téflon, qui est alors agité par un vibrateur sous vide. La cuisson se fait à température constante dans une étuve, jusqu'à ce que la dureté de l'échantillon soit constante. Les éprouvettes de propergols sont alors usinées suivant les dimensions JANAF, (Fig. 2) et les propriétés mécaniques en traction sont déterminées suivant la méthode usuelle (3).

FIGURE 2 - Eprouvette JANAF.

4.0 RESULTATS ET DISCUSSION

4.1 <u>Vitesse de polymérisation des liants par la mesure de la viscosité en fonction de la température et des catalyseurs</u>

L'accroissement de la viscosité des liants polyesters (R45M/AS avec époxydes ou R45M avec anhydrides et époxydes) en fonction du temps de réaction a été mesuré en présence de divers catalyseurs, à des températures constantes. On remarque que la viscosité initiale du mélange R45M carboxylé/époxyde est plus grande que celle du mélange R45M/anhydride/époxyde à la même température, 3.6 et 1.6 N.s/m respectivement à 60°C. La viscosité du liant fait à partir du mélange R45M carboxylé/époxyde augmente plus rapidement que celle du liant fait à partir du mélange R45M/ACHD/époxyde, soit 27 et 2.9 N. s/m respectivement après 8 x 10° secondes à 60°C (Fig. 3 et 4).

L'accroissement de la viscosité des liants polyéthers a été déterminé à 60° C en fonction du temps. La viscosité du mélange R45M/PBNA/CY197/Ol de Cr augmente très lentement pour atteindre 2.4 N. s/m² après 1.9 x 10° s (22 jours). Il n'y a aucune formation de gel après 70 jours de réaction (Fig. 5).

FIGURE 3 - Viscosité du mélange R45M/AS et CY 179 en fonction du temps.

FIGURE 4 - Viscosité du mélange R45M, ACHD et CY 179 en fonction du temps.

FIGURE 5 - Viscosité du mélange R45M et CY 179 en fonction du temps.

4.2 <u>Vitesse de polymérisation des liants par la mesure du poids</u> moléculaire par GPC

La détermination des poids moléculaires par perméation de gel (GPC) des divers mélanges de liants a permis de mesurer l'accroissement du poids moléculaire du produit obtenu avec le temps de réaction.

Le faible accroissement de viscosité des liants polyéthers, et l'absence de formation de gel nous a incités à étudier l'augmentation du poids moléculaire avec le temps par GPC. Le poids moléculaire du mélange R45M/AO 2,2,4,6/CY 179/Ol de Cr augmente lentement avec le temps à 60°C (Tableau II). Le poids moléculaire moyen en poids (M) augmente plus rapidement que le poids moléculaire moyen en nombre $(M_{\rm p})$ qui se traduit par une augmentation de la polydispersité.

Vu que le temps de gel des polyéthers est plus court et la polymérisation plus rapide en présence de perchlorate d'ammonium, nous avons cherché à obtenir des données permettant d'expliquer ce comportement. Par conséquent, nous avons déterminé l'accroissement du poids moléculaire du R45M par GPC, en présence du perchlorate d'ammonium, en fonction du temps à 60°C, selon l'hypothèse qu'une réaction secondaire du R45M avec l'oxydant pourrait accélérer la polymérisation.

En premier lieu, pour faire ressortir l'effet possible de l'oxygène atmosphérique sur le R45M, on fait circuler de l'oxygène pur dans le polybutadiène R45M ou dans des mélanges contenant du R45M. On voit alors (Tableau II) qu'il y a augmentation rapide du poids moléculaire M avec le temps de chauffage à 60°C et formation rapide de gel en l'absence de quantités suffisantes d'antioxydant.

Cependant, en faisant circuler de l'azote, on remarque le comportement variable du R45M à 60°C avec le temps suivant le composé qui accompagne le polybutadiène. Le mélange R45/PBNA est stable à 60°C, mais le R45M sans antioxydant se polymérise lentement et forme un gel après 90 jours de réaction. Le mélange R45M/AP se polymérise rapidement et donne un gel après 10 jours à 60°C (Tableau III). Le mélange R45M/AP/ CY 179 forme aussi un gel après 11 jours. Si on ajoute un antioxydant (PBNA ou AO 2,2,4,6) aux mélanges de R45M/AP (Tableau IV) R45M/AP/Ol de Cr ou R45M/01 de Cr, il ne se produit aucune polymérisation à 60°C mais le mélange R45M/PBNA/AP/CY 179 (Tableau V) polymérise après 40 jours de réaction à cette température. Si on ajoute au dernier mélange un catalyseur comme l'oléate de chrome (Tableau VI, Fig. 6), il y a formation de gel après 8 jours de réaction et formation de deux produits de condensation possédant des poids moléculaires élevés, la proportion du plus haut poids moléculaire augmentant avec le temps de réaction par addition de molécules d'unités de polybutadiène sur les groupements hydroxyles primaires ou secondaires jusqu'à formation de gel (Fig. 7).

TABLEAU II

Poids moléculaire par GPC de R45M et de mélanges contenant R45M en fonction du temps à 60°C, dans un courant d'air ou d'oxygène

Mélanges	Temps à 60°C jours	M _L	M _n	M _w /M _n	Observations
R45M/Air	0	6,680	3630	1.84	
R45M/Air	6	77,600	4750	16.35	Gelà 8 jour
R45M/2% PBNA/0 ₂	30	6,300	3680	1.72	Stable
R45M/0.01% PBNA/02	4	43,700	4730	9.25	Gel à 7 jour
R45M/2% AU2246/02	2 7	7,813	3870	2.02	Stable
R45M/0î de Cr/0 ₂	O	7,703	3870	1.98	
R45M/Ot de Cr/O ₂	2	32,760	4520	7,24	Gel à 3 jour
R45M/CY179/0 ₂	1.0	22,150	4560	4.85	Gel à 2 jour
R45M/AP/O ₂	1.0	134,800	5560	24.2	Gel à 2 jour
R45M/O4 de Cr/CY- 179/O ₂	1.0	25,500	4760	5.37	Gel à 2 jour

TABLEAU 111

Poids moléculaires moyens, déterminés par GPC du mélange R45M/AP à 60°C en fonction du temps, sous atmosphère d'azote

R45M (Lot 908021): 90.6g; AP 200 um, AP 10 um en proportion en poids respectivement de 5 à 3. 50g, temp. 60% ϵ .

Temps jours	M _W	Mn	M _B /M _R
0	6,680	3630	1.84
6.75	29,930	\$100	5.87
8.00	46,810	4890	y.57
9.00	94,750	5210	18.2
9.80	207,000	5390	38.4
10.00	gel		
			1

TABLEAU IV

Poids moléculaires moyens, déterminés par GPC, du mélange R45M/PBNA/AP à 60°C en fonction du temps, sous atmosphère d'azote

R45M (Lot 212285): 49g; PBNA: 1.0 g; AP 200 μ m, AP 10 μ m en proportion en poids respectivement de 5 &3: 25g, temp.: 60°C.

Temps jours	н,	M _n	M _w /M _n
0	6320	3680	1.72
1.75	6940	3830	1.81
2.85	6860	3870	1.77
6.75	6\$70	3710	1.77
7.80	6690	3880	1.72
8.75	6830	3860	1.77
9.75	6630	3800	1.74
10.80	6780	3730	1.81
23.00	6840	3840	1.78
29.80	6900	3770	1.83

TABLEAU V

Poids moléculaires moyens, déterminés par GPC, du mélange R45M/PBNA/AP/CY-179 à 60°C en fonction du temps

R4SM (Lot 212285): 43.7g; PBNA: 0.88g; AP 200 μm et AP 10 μm en proportion en poids respectivement de 5 å 3: 25g; CY 179: 5.375g.

Temps jours	₩,	M _n	M _w /M _n
o	6,320	3680	1.72
1.75	6,630	3750	1.76
2.85	6,520	3780	1.72
6.75	6,570	3770	1.74
7.80	6,630	3770	1.76
8.75	6,970	3850	1.81
9.75	6,870	3800	1.80
10.75	6,670	3840	1.74
13.75	6,860	3990	1.75
16.75	7,160	3850	1.86
23.00	8.150	4230	1.92
29.80	12,600	4540	2.77
34.80	18,260	4900	3.73

TABLEAU VI

Poids moléculaires moyens, déterminés par GPC, du mélange R45M/AP/CY179 à 60°C en fonction du temps

R45M (Lot 908021): 45.25g; AF 200 μm et AP 10 μm en proportion en poids respectivement de 5 à 3: 25g; CY 179: 4.767g.

Temps jours	М	M _n	M _w /M _n
0	7,700	3870	1.98
1.75	8,470	3980	2.13
2.85	7,840	3870	2.02
6.75	10,570	4150	2.54
7.80	12,600	44.00	2.86
8.80	11,250	4410	2.55
9.80	40,400	4850	8.32
10.75	200,900	4940	52.8
13.70	gel		

TABLEAU VII

Poids moléculaires moyens, déterminés par GPC, du produit de la réaction R45M/CY179 en fonction du temps à 60°C

R45M (Lot 908021): 64.98g; AO 2246: 1.3g; oléate de chrome: 2g; CY179: 8.71g; temp.: 60°C.

Temps jours	M _w	M _n	M _w /M _n
0	7,050	4180	1.68
27	10,080	4290	2.35
35	11,700	4370	2.67
48	13,380	4600	2.91
64	15,190	4620	3.29
84	24,600	4670	5.26

FIGURE 6 - Variation de M du R45M et de R45M mélangé à divers ingrédients dans un courant d'oxygène ou d'azote, à 60°C, avec le temps de réaction.

FIGURE 7 - Courbes GPC du produit de la réaction R45M/PBNA/AP/CY 179/ oléate de chrome au début et après 8 jours, à 60°C.

Par contre, le liant seul, c'est à dire le mélange R45M/AO 2,2,4,6/CY 179/Ol de Cr (Tableau VII), polymérise très lentement.

En résumé, on peut conclure qu'en l'absence d'antioxydant, il est possible de polymériser le polybutadiène R45M très rapidement en présence de perchlorate d'ammonium, alors qu'en présence d'antioxydant, le perchlorate d'ammonium et l'époxyde sont tous deux nécessaires, l'oléate de chrome servant uniquement à accélérer la réaction de polyétherification, c'est-à-dire la formation de liens polyéthers entre l'époxyde et le groupement hydroxyle du polybutadiène.

4.3 Propriétés mécaniques et formulation des liants

Les propriétés mécaniques établies à l'aide de l'appareil Instron ont servi à évaluer les divers ingrédients, à déterminer les proportions optimales de chaque ingrédient et à étudier le comportement des propergols au cours du malaxage.

4.3.1 Liants polyesters à partir du R45M/SA

La cuisson du R45M carboxylé (R45M/anhydride succinique) avec les divers époxydes à 60°C, en présence d'oléate de chrome, montre que le ERL 4221 (ou CY 179 ou EP 201) nous donne un des meilleurs caoutchoucs parmi tous les époxydes étudiés. L'époxyde ERL 4289 possédant une structure semblable à ERL 4221 donne un caoutchouc de force équivalente mais exige un temps de cuisson plus long (Tableau VIII).

4.3.2 Liants polyesters à partir de R45M/ACHD

La cuisson du dérivé R45M/ACHD avec les divers époxydes à 60°C, en présence d'oléate de chrome, donne des liants possédant des propriétés mécaniques semblables à celles obtenues avec le dérivé R45M/SA.

4.3.3 <u>Liants polyesters fabriqués à partir du mélange de R45M, de ACHD et d'époxydes</u>

Le polybutadiène dihydroxylé (R45M) contenant du PBNA et divers époxydes (EP 201, ERL 4221, CY 179 ou ERL 4289, etc.) en présence d'oléate de chrome ne forme pas de gel à des températures de cuisson aussi élevées que 125°C. Par contre, si on ajoute du perchlorate d'ammonium, il se produit une cuisson après 8 jours aux environs de 60°C. On obtient une cuisson en l'absence de perchlorate d'ammonium à 80°C si on ajoute au mélange R45M/époxyde/oléate de chrome l'anhydride du cyclohexane dicarboxylique-1,2 (cis) (ACHD). Par contre, aucune réaction n'a lieu en présence de méthyldiéthanolamine, hydroxyl-2 éthylaziridine, éthylèneimine, triéthanolamine, méthyl-N morpholine, hydroxylamine, ε -caprolactone, γ -valérolactone, méthylhydrazine ou anhydride glutarique à 100°C. La détermination des propriétés mécaniques

de ces liants montre qu'ils sont moins résistants que ceux préparés à partir du R45M/AS ou R45M/ACHD. La cuisson est plus lente et doit être effectuée à plus haute température (Tableau IX).

IABLIAU VIII

Formulation et propriétés mécaniques des liants polyesters à partir du liant R45M/AS et des époxydes

Oléate de chrome 0.5% du frant; temp du cursson 60°.

Essai	Epoxyde		lenaps ງ de	ת נ	o m	1	Energie
	Nom	Equiv.	cuisson Jours	МРа	em em	ME'a	J
1	ERL 4221	1.0	7	0.481	8.29	0.142	1.71
2	ERL 4221	1.2	-	0.449	11.14	0.996	i.88
3	ERL 4221	U.95	7	0.349	9.93	0.086	1.45
4	ERL 4221	0.90	7	0.251	12.5	0.058	1.16
5	EPON 812	1.0	7	Q. 358	4.32	0.165	0.3
6	EPON 812	1.2	7	0.453	2.27	0.30	0.55
7	ERLA 0510	1.0	7	0.392	3.03	0.190	0.56
8	ERL 4289	1.0	14	0.437	11.4	0.081	1.83
9	DER 732	1.0	14	0.295	14.3	0.034	1.33
10	EPOTUF- 37-151	1.17	14	0.189	6.8	0.042	0.51

TABLEAU IX

Formulation et propriétés mécaniques des liants polyesters à partir de R45M/ACHD et d'époxydes

R45M (Lot 212285): 1.0 mole; PBNA: 2% de R45M; ACHD: 1.0 mole

Essai	Fp	oxydes	Oléate de	Тетр. de	ν _r	Gel	, m	εm	E	Energie
	CY179 Moles	DER 736 Moles	chrome %	cuisson °C		%	MPa	<u>cm</u>	MPa	J
11	1.2	0	2.0	100	0.058	65.4	0.265	4.30	0.129	0.38
12	"	0	11	80	0.016	48.4	0.137	7.97	0.050	0.35
13	"	0	0	80	0.040	61.6	0.159	5.16	0.067	0.27
14	0.5	0.5	2.0	80	0.037	62.0	0.197	5.31	0.065	0.32

4.4 Propriétés mécaniques des propergols

4.4.1 Propergols polyesters à partir de R45M/SA

Les propriétés mécaniques des propergols polyesters contenant le liant R45M/AS et des époxydes ont été déterminées à 23 et -45°C. L'énergie du liant tend à augmenter avec l'accroissement de la proportion d'époxyde et avec le temps de cuisson à 60°C. L'énergie du liant passe de 0.65 à 0.80 J après 56 jours de vieillissement, l'allongement demeurant constant, mais la force de traction à charge maximale $(\sigma_{\rm m})$ augmente de 0.40 à 0.60 MPa. L'addition de N8C améliore les propriétés mécaniques à température ambiante mais n'affecte en rien le faible allongement observé à -45.5°C (Essais 21, 24 et 26, Tableau X). L'emploi d'un mélange de deux époxydes dont l'un possède une structure à longue chaîne (DER 732) se traduit par une amélioration de l'allongement sans modification de l'énergie du liant (Tableau XI).

4.4.2 Propergols polyesters à partir de R45M/ACHD

Les propriétés mécaniques des propergols contenant le liant R45M/ACHD sont légèrement inférieures à celles des propergols faits à partir de R45/AS. Cependant, comme on l'a remarqué avec l'emploi du R45M/SA, l'allongement à basse température (-45°C) diminue de moitié sa valeur à température ambiante. L'addition des agents de surface N8C et PEA augmente l'énergie du liant sans pour autant améliorer le comportement à basse température (Tableau XII).

4.4.3 Propergols polyesters à partir du mélange de R45M, de ACHD et d'époxydes

Les propriétés mécaniques de ces propergols polyesters sont données au Tableau XIII. Ces propergols contenant 88% de solides, et préparés à partir du R45M, de CY 179, de ACHD et d'oléate de chrome, possèdent des propriétés mécaniques légèrement inférieures à celles des propergols polyesters R45M/ACHD et nécessitent une température de cuisson plus élevée et des temps de cuisson plus longs. L'allongement à basse température est également assez faible. L'addition de l'agent de surface PEA améliore les propriétés mécaniques de ces propergols à la température ambiante alors que l'énergie passe de 0.57 à 0.83 J. Cependant, les propriétés à basse température sont tout aussi médiocres que celles provenant de liants R45M/AS et R45M/ACHD.

TABLEAU A

Propriétés mécaniques des propergols polyesters de R45M/AS

Poids équiv. de R45M/AS. 1500g; temp. de cuisson: 60°C; temps de cuisson jusqu'à dureté constante, solides. 88°C (70% AP de 400, 200 et 17 um dans le rapport en poids respectivement de 1.7/2.7/1.0 et 18° de Al H-15); oléate de chrome: 1° du liant.

Essai	EP-201	IUP		ts de face	Temp. de	· Vieillissement jours	, m	r	· m	`r	1	Energie
	Moles	4	Nom	\$	l'essai °C		MPa	MPa	cm cm	em em	Mľa	t.
15	1.2	20			23	υ	0.524	0.523	0.194	0.198	5.91	1.08
16	1.2	20	1		23	o	0.619	0.619	0.178	0.178	9.20	0.60
17	1.0	20		**	23	. 0	0.670	0.670	0.108	0.108	11.3"	0.63
18	0.95	20			23	U	0.655	0.651	0.106	0.111	10.07	0.60
19	0.90	20		••	23	O	0.499	0.497	0.136	0.144	6.42	0.65
20	0.85	20			23	0	. 0.405	0.404	0.147	U.148	4.37	0.44
21	0.85	25		••	23	o	. 0.396	0.393	0.185	0.185	3.41	0.65
					; 23	28	0.509	0.507	0.188	0.193	4.12	0.82
					23	56	0.599	0.595	0.197	0.199	5.26	0.80
					-45	o	2.09	2.58	0.088	0.089	9.70	2.98
					-45	56	3.18	3.17	0.077	0.085	10.49	3.18
22	0.85	23.2	N8C	0.3	23	o	0.516	0.515	0.095	0.095	10.81	0.45
23	0.85	23.5	N8C	0.5	23	0	0.643	0.643	0.097	0.097	13.47	200
24	0.85	24.0	N8C	1.0	23	o	0.414	0.411	0.138	0.192	4 64	1.00
			}		23	56	0.666	0.657	0.253	0.270	5.51	1.38
					-45	o	3.02	3,02	0.088	0.088	10.87	3,84
					-45	56	3.17	3.15	0.100	0.122	8.43	5.72
25	0.95	21.6	PEA	2.4	23	О .	0.694	0.595	0.099	0.101	11.66	0.61
26	0.85	22.6	PEA	2.4	23	0	0.586	0.596	0.108	0.110	7.02	0.48
					23	28	0.786	0.767	0.116	0.117	8.76	0.64
1 1					23	56	0.889	0.888	0.142	0.142	8.84	0.95
	ļ				-45	o	3.49	3.49	0.091	0.112	5.16	3.10
			1		-45	56	4.09	4,08	0.090	0.093	11.25	3.00

TABLEAU XI

Propriétés mécaniques des propergols polyesters de R45M/AS et mélanges d'epoxydes

Pds equiv. de R45M/AS (Lot 006121): 1500g; temp. de cuisson. 65%; temps de cuisson jusqu'à dureté constante; solides: 88% (70% AP de 400, 200 et 17 um dans le rapport en poids respectivement de 1.7/2.7/1.0 et 18% de At H-15); oléate de chrome: 1% du liant, temp. de l'essai 23%.

i.ssaı	Lpox	ydes	•REC	150	N8t.	, ,	' 'r		r	F	Inergie
		DER 732 Moles			} ·	MPa	Ml'a	em em	<u>⊾m</u> om	ME a	
27	0.63	U.213	0.85	23.5	0.5	U,4°1	0.474	0.180	n 180	; 4e	e =
3.3	0.60	0.20	0.80	23.5	0.5	0.305	0: 304	0.228	6.25	2.53	4
34	0.60	u 20	0.80	23.5	0.8	0.284	0.282	0.214	a 222	. i.	41.4
Vi.	0.60	0.20	0.80	23.5	1 :	0.233	0.239	0.225	0.238		1

^{*}REC. rapport équivalent d'époxyde à carboxyle.

TABLEAU XII

Propriétés mécaniques des propergols polyesters de R45M/ACHD

Poids équiv. de R45M/ACHD (Lot 00012)): 1420g; temp. de cuisson: o0°C; temps de cuisson jusqu'à dureté constante; sulides. 8%; (70% AP de 400, 200 et 17 "m dans le rapport en poids respectivement de 1.7/2.7/1.0 et 18% de AI H-15: oféate de chrome 2% du liant.

Essai	Epoxy	de	100		nts de irface		Cuisson		lemp. de	n m	ŗ	, Dr	· *r	1 1	Energie
	Non	Moles	į	Nom		Temps	Jours	Dureté Shore A	l'essai	MFa	MPa	em em	cm cm	Mira	.1
οl	cY-179	1.0	23.0			60	14	65	23	0.710	0.708	0.145	0.146	5.0t	11,77
50	61-179	1.0	23.0	10203	2.	00 0	-		- 23	0.50	0.503	0.176	0.189	4.08	50
				Fe203	2.	.0 60	-	65	-45	2.96	2.96	0.088	0.091	64.4	3.14
				re ₂ a ₃	2.	.0 60	35	65	. 3	0.332	0.530	0.183	0.190	4.1~	.76
				Fe ₂ 03	2.	.0 , 60	63	65	23	. u.576	0.073	0.184	0.194	4.45	- SI
				Fe ₂ O ₃	1 2.	.0 60	63	b 5	-45	3.11	5.11	0.081	0.088	74.5	3.31
62	(3-179	1.0	22.7	N8C	Ú.	.3 80	1.3	75	23	0.771	0.771	0.076	0.076	16.21	1.50
6.5	c.Y - 179	1.0	22.7	N8C	U.	. 3 60	13	57	2.5	0.639	0.632	0.270	0.305	1.50	: 7
• 6	· 1-179	1.0	22.6	PLA	1 2	.4 60	29	; ~4	23	0.75		0.119	1.131	y 8.	×4"
67	(5.479	1.2	22.6	PLA	, 2	4 60	18	64	23	0.094	0.682	c 164	1,180	5.1	
ti.a	(3-179)	1.0	21.5	PEA/N8C	j 0,9	0.2 60	1 16	1 ~0	23	0.748	. ***	0.149	# 16i		
1.8	EKI 4289	1.4	21.9	PEA/N8s	0.9	/0.2 6u	2.5	3.2	23	$x\in Q$	0.027	1 245	0.249	5.	1 1.
69	100N-842	1.0	21.9	PLA/N8c	0.9,	/U.2 60	15	1-	23	0.780	. 754	e see	i des	16.1.	. 74
							:	ì							

TABLEAU VITT

Propriétés mécaniques des propergols polyesters du melange 645% Acho et epoxydes

Poids équiv. de R45M (Lot 006121). 1420g; temp, de cursson, 80° C, temps de cursson osqu'à durête constante, solides, 881 (702 AP de 400, 200 et 17 um dans le rapport en poids respectivement de 1.7 \pm 7 1.6 et 185 de 8. 804 C.

Essai	/Y-179	ACHD	tataly E	s eu r	tor	Agents Surfa		1.5	21 S S O D	issa: me	÷	1	· m	' r	1 -	- Unergio
	Moles	Moles	Nom	ç		Som	\$	Jours	Durete Shore A	۰,	MF a	Mi a	em em	c m	чуа	:
146	1.2	1.2	Or de Cr	2.0	23.0			21		23	0.545	0 345	0.165	0.165	4 55	57
147	1.2	1 2		2.0	20.6	PEA	2.4	21		23	0.384	0.584	0.178	0.178	1 58	: 43
125	1.0	1.0		2.0	20.6	PLA	1.2.4	12		23	0.383	0.383	0.122	0.126	4.4.	1 31
		:	ļ		!		!			-45	1.80	1.86	0.087	0.087	6 94	2.71
					J			i		- 59	2.49	2.49	0.071	0.071	19-54	2.64
145	1.2	1.2		2.0	22.5	N8C	0.5	12		23	0.224	0.224	□ i.189	0.189	1.65	0.19
150	1.2	1.2		2.0	20.6	ADH-2	2.4	30		23	0.234	0.234	0.084	0.084	t- 28	
148	1.2	1.2		2.0	20.6	ADH-3	2.4	21	!	2.3	0.575	0.572	0.125	0.126	8.83	u 56
173	1.2	1.2		2.0	22.0	PEA/N8C	0.6/0.4	23	1	23	0.500	0.500	0.123	0.123	6.55	0.44
185	1.0	1.0	Oc de Er	0.5	24.5			13	68	23	0.386	U.386	0.124	0.124	4.**	0.36
183	1.0	1.0		0.5	22.1	PEA	2.4	18	45	23	0.213	0.213	0.161	0.161	1.89	0.25
187	1.0	1.0		0.5	24.2	N8C	0.3	12	\$2	23	0.268	0.266	0.162	0.168	2.75	0.33
186	1.0	1.0		0.5	23.4	PEA/N8C	0.9/0.2	12	48	23	0.242	0.242	0.158	0.158	2.12	0.28

4.4.4 Propergols polyéthers

Notre étude visait à réticuler le R45M avec les époxydes. La formation de polyéthers est beaucoup plus lente que la formation de polyesters et se produit à température beaucoup plus élevée. L'emploi de sels de chrome comme catalyseurs en l'absence de perchlorate ne donne pas de bons résultats à des températures relativement élevées. Par contre, en présence du perchlorate d'ammonium et de sels de chrome, la cuisson du R45M avec les époxydes se produit à une température supérieure à 60°C. En présence d'un initiateur, le polybutaliène à terminaisons hydroxyles réagit avec le diépoxyde pour donner des liaisons polyéthers. La formation de polyéthers est favorisée par la présence d'amines, d'acides carboxyliques et de perchlorate d'ammonium. A une température de 100 à 110°C, en présence de perchlorate d'ammonium, les époxydes se transforment en polyépoxydes vitreux et cassants. Par contre, de 60 à 90°C, la réaction de polyéthérification est favorisée alors que l'époxyde réagit avec le diol. Le point de transition vitreuse (Tg) du propergol polyéther mesuré par DSC est de -78 à -79°C. Une première série de propergols préparés à partir du R45M contenant 2% de PBNA en présence d'oléate ou d'octanoate de chrome, a été cuite à une température de 90 à 110°C. Les propriétés mécaniques des propergols préparés avec des quantités décroissantes d'époxydes à cette température de réaction sont très décevantes, et ne sont pas améliorées par l'addition d'agents de surface (Tableau XIV). Par contre, en employant du R45M dans lequel on ajoute une quantité connue d'antioxydant et en assumant que l'antioxydant réagit avec l'époxyde, on obtient des propergols qui possèdent des énergies comparables à celles des polyesters. Les temps de cuisson à 60°C sont très longs et en général des périodes de 25 à 60 jours sont nécessaires pour atteindre une dureté constante. L'emploi de perchlorate plus fin semblerait améliorer les propriétés mécaniques (Essais 51 et 45, Tableau XV) alors qu'une plus grande surface de solide en se recouvrant d'époxyde permet une meilleure catalyse du perchlorate d'ammonium.

4.5 Spectres mécaniques des propergols

Les spectres mécaniques des propergols composites, déterminés à l'aide d'un viscoélastomètre de type oscillatoire, ont servi à mesurer l'efficacité des agents de surface utilisés dans les propergols. Les propriétés mécaniques dynamiques ont été mesurées sur l'appareil (Rheovibron). Ces efforts de durée variable appliqués à des composites nous permettent d'étudier le phénomène de démouillage entre les solides et le polymère. On peut alors relier la quantité de démouillage à la hauteur des pics de tan &, qui est égale au rapport du module de perte, E'', sur le module d'entreposage, E'. Ces pics sont observés au voisinage de la température de transition vitreuse, Tg.

TABLEAU XIV

Proprietés nécaniques des propergols polyéthers de RASM (contenant 24 de PBM) et épocyées

Fds dapiv, de R45M (Lot 006121): 1420g; temps de cuisten jusqu'à dureté constante; sultides: BMS (70% AP de 400,200 et 17m dans le repport en polds respectivement de 1.7/2,7/1.0 et 185 de At 18-15;

j. stál	1P-201	Eatalys	į	i i i i i i	Agent		Cuisson	temp de L'essai	1,	a,	¢ _B	4	Ŀ	inergie
distant traces made	Weles	Son	\$	Mary of the Collection of the	Nos	1	16	٠.	чга	48.0	<u>(8</u>	(<u>e</u>	MF s	3
14,	1,0	At do Cr.	n , 5	20		••	110	25	0,355	0.352	0.232	0.251	2.52	0.49
27	1,0	gi de Cr,	9,6	20		•••	100	23	0.225	0,225	0,248	0.255	1.36	0,47
54	1.0	Oc de Cr	0,2	3 22.4	PFA	2,4	90	-45	0,710	0,708	0.087	0.091	17.3	6.2
59	0.35	Oc de Ce	0,2	24.2	NAC	0,5	90	23	0.227	0,227	0.095	0.095	5.2	6.10
111	0,50	Oc de Gr	0.2	24,2	NAC	0,5	90	23	0,138	0,134	0.124	0.124	1.9	0.12
1	ococznas rzana. v													

unie o

THE RESERVE AS A PROPERTY OF THE PARTY OF TH

man dun in die klaist man mangel. Bliffig flage de material curpetà diretti constante, temp de l'espai adianogue. Bliún denidos 1884. L'où le de pranquaderse entighte et seu de 1944.

\$ 10 2%	**	1 25	414	gr. 1855 ees	. W. W. D.			Les a	en sien	MAY SO Y		Person 4 :	1 14 1	Dr. nje te regime to	vest uni	T	44.0	PARE A	nas eruse est e de	HIDDEN	No. 17. 18 17.25. 1			ge eretas e	mar man	- December 1	S. COLLECK M.		******
. 4 9 1 # 1		v 4	in	*44	Squa.			149	* * %	++		\$1.0		terfa		1		5-054			**	_		ş '=	. A∎	•	44	3	-
		4,	171	4.4	***	į	4	•		1	1	+	- 3	44	١,	ľ	e i		\$0,246\$ \$0-48	pinh, m	} (wm.≪	1,4	į.	} ** *	, w.	精	į 1	g 47 *	5 .P
t twi	. 2	÷ ^	-,,-		\$ 75 W	•	" 24	. 44	- 6 67 -	~420	દ અ 	10.00		(C12: 2)	173	1	2 1	34 22		* 1	4 1	1	e copo esere. C	- BA	C AM	6 14	A Alla	Be at	i a ut
. *1		W	**			ŝ	٠,		6 🌞	3		#*	i		!	1		11	_	ľ	4	\$ T			v.	1			8
* -		,	4.	* ***	3.88		À	*	- 1	G	١,	48	• {	2		ľ	Nr :	10	**	١,		. "		W 40	e de	8	§ # # ***	9 44 H	2 10 100
ŧ:		i.	b .	4 5-18	11		4	**	4	*	ve '	11	•			ŀ	•	1	1 4	٠		1	*	ें के ध्य	k Édel And	n i in alles	B 1800	F FR M	1 * M
. i		,	17.0	3 t -			26	i¢	5 €	r	ř				. 4	ŀ		14	**	٦		-		. g 19	i e to	i de sais	. g 🐠 🦫	int e	j. 4 🖛
,			,				. 17	i.	14	:	j.		• [¥-5	i i	ŀ	a	41	**	,	1	į v		* **	14 44	راجو را	*		- in the
Pa			ise	164			4.	74	5.4	4			*		: 4	ı.	u	kr	No.	٠,	{ ·	÷			cjana)	e Emaile	Jak 1989		A 24
				y 40 + 3			46	4.0		*			- 3		ינו ער ב	١.	ne i	**	**	١.		·			e la va		240	4 4	
1.				1	,			1.5		**	`		į			1		_	3.5	١,		1 4					4. 844		
4.8			1.	- 444	4 p	٠.	.49.	Z11	10	3	•	••	٠,		٠,	1	•		1			1		1		a 410	i		
. :			٠,	1.1	9 - 11		4	6-4		4	ě	. 41	• 1		. 4	1	•	14	4.2	1	: '	; "	3		f a te		à	2	1
							4	÷	154	-4	ş		•		, ,	ŀ	6++	34	14		1 1	: 4		1 19		4 144	S IF THE	\$ 65 W	5 A 64
					- 10	, .	., *	- 34	, x 1	1	ď	3.8				ŀ	21+	ŧε	13		\$ 6	į,	1 %		₹ 9.8 *	7 1. 44.	# HM	E 58 6	્રં 🔻
							12,0	10	- 5			144		44	1,	ı,	414	. 14	*	1 .	f	ž	ļ .		# W	E 80 20/4	g n syd		4 4
				1										754	١.,	١,	•	0/6		٠.	1	\$ x			4.66	# 181			ર્ચ 1 ફ્રેલક≨લા
15			٠.									1	- 1		i i		-	20	į	,		į,	1						. F. & **
			, ,		3 *. 11	۹.	, 124	m		- 1	4.	19	•	764	, .	1		***	t i	1	1		i	i	5	1	1	1	È

4.5.1 Propergols polyesters obtenus à partir de R45M/AS et R45M/ACHD

Les valeurs de tan δ et de E" des propergols polyesters obtenus après carboxylation de R45M avec les anhydrides (AS et ACHD) sont données au Tableau XVI. Les mélanges 33, 34 et 35 montrent que l'effet de la concentration de l'agent de surface N8C est négligeable lorsque employé dans les propergols polyesters R45M/AS. Les mélanges 62, 65 et 67 étudient l'effet des divers agents de surface dans les polyesters R45M/ACHD alors que les mélanges 65, 68 et 69 examinent l'effet des différents époxydes sur l'efficacité du mélange des agents de surface PEA/N8C dans ce même polyester. On remarque que le module d'entreposage E' est peu affecté par l'emploi des différents époxydes (Fig. 8) ou la concentration de l'agent de surface (Fig. 9) mais que ce même module est moins élevé lorsque le propergol contient un agent de surface (Fig. 10). La présence d'agents de surface dans le propergol modifie la réticulation et donnerait des réseaux très peu comparables même si on corrigeait a l'aide du facteur de déplacement WLF (6). Il semblerait toutefois qu'à l'examen du Tableau XVI et de la Figure 11 que l'agent de surface PEA améliore les propriétés des propergols polyesters, tel que remarqué par la mesure des propriétés mécaniques (Tableau XIII).

4.5.2 <u>Propergols polyesters obtenus à partir du mélange de R45M et de ACHD.</u>

Les valeurs de E" et de tan δ des propergols polyesters obtenus par l'addition des ingrédients R45M et ACHD séparément au cours du malaxage sont données au Tableau XVII. L'addition de différents agents de surface produit des effets variés sur le comportement des propergols, soit au cours du malaxage, par augmentation de la viscosité, soit sur les valeurs de E" et tan δ ou sur la courbe du module d'entreposage (Fig. 12). Les agents de surface PEA, N8C et le mélange PEA/N8C augmentent moins la valeur E' que les autres agents (ADH-2, ADH-3 et MAPO). Les agents de surface PEA et N8C sembleraient améliorer les propriétés d'après les Figures 13 et 14 alors qu'il n'est pas possible d'évaluer les autres agents (ADH-2, ADH-3 et MAPO) qui contribuent au réseau polymérique et augmentent la valeur E' de façon marquée.

4.5.3 Propergols polyéthers obtenus à partir de R45M et des époxydes

Les valeurs de E" et de tan δ des propergols polyéthers obtenus à partir des liants R45M/époxydes sont données au Tableau XVIII. L'influence des agents de surface (PEA, N8C et le mélange PEA/N8C) sur les valeurs E" et tan δ des propergols polyéthers est très faible (Tableau XVIII). De plus, ces mêmes agents de surface augmentent légèrement la valeur du module d'entreposage, E', et influencent légèrement la réticulation (Fig. 15). La cuisson est de plus fortement ralentie sans amélioration de la qualité de l'interface polymère-solide. La présence de ces agents de surface sur le perchlorate d'ammonium retarderait la catalyse du perchlorate au cours de la formation du liant polyéther.

FIGURE 8 - Courbes réduites du module d'entreposage des composites polyesters contenant divers époxydes.

FIGURE 9 - Courbes réduites du module d'entreposage des composites polyesters (R45M/AS) contenant des proportions variables de l'agent de surface N8C.

FIGURE 10 - Courbes réduites du module d'entreposage des composites polyesters (R45M/ACHD) contenant divers agents de surface.

FIGURE 11 - Courbes de tan δ des propergols polyesters (R45M/ACHD) contenant divers agents de surface.

TABLEAU XVI

Valeurs de E' en Pa x 10^{-8} et tan δ au maximum d'absorption mécanique près du Tg des propergols polyesters (R45M/AS et R45M/ACHD) à 110 Hz

Essai	Polyester		its de face	Ta	an ć	E"	
1		Nom	8	Max.	Temp.	Pa x 10 ⁻⁸	Temp.
33	R45M/AS/CY-179	N8C	0.5	0.28	-50	1.15	-65
3.4	••	N8C	0.8	0.30	-50	1.10	-65
35	••	N8C	1.1	0.29	-50	1.05	-65
62	R45M/ACHD/CY-179	N8C	0.3	0.25	-45	0.85	-60
67	0	PEA	2.4	0.20	-52	0.72	-53
65	**	PEA/N8C	0.9/0.2	0.25	-55	0.88	-57
68	R45M/ACHD/ERL4289	PEA/N8C	0.9/0.2	0.30	-50	0.90	-54
69	R45M/ACHD/EPON812	PEA/N8C	0.9/0,2	0.25	-52	0.85	-60
61	R45M/ACHD/CY-179			0.35	-45	1.40	-62
]	}	}]	

TABLEAU XVII

Valeurs de E" en Pa x 10^{-8} et tan δ au maximum d'absorption mécanique au voisinage du Tg des propergols polyesters (R45M + ACHD) à 110 Hz

Essai		gents de surface	Te	an ó	E''	
	Nom	1	Maximum	Temap. °C	Pa x 10 8	Temp. °C
146			0.39	-45	1.13	-60
145	N8C	0.\$	0.30	-45	1.40	-62
147	PEA	2.4	0.22	-45	0.88	-58
150	ADH-2	2.4	0.21	-45	1.26	-42
148	ADH-3	2.4	0.35	-35	0.95	- 38
100	MAPO	1.2	0.30	-60	1.35	-60
173	PEA/N8C	0.6/0.4	0.25	-45	0.90	-54

FIGURE 12 - Courbes réduites du module d'entreposage des composites polyesters (mélange R45M et ACHD) contenant divers agents de surface.

FIGURE 13 - Courbes de tan δ des propergols polyesters (mélange R45M et ACHD) contenant divers agents de surface.

FIGURE 14 - Courbes du module de perte des polyesters (mélange R45M et ACHD).

FIGURE 15 - Courbes réduites du module d'entreposage des propergols polyéthers.

TABLEAU XVIII

Valeurs de E" en Pa x 10⁻⁸ et hauteur du pic de tan ò à la température près de Tg, et au point d'absorption mécanique, à 110 Hz, des propergols polyethers

Essai		ts de face	tan	ó	E''	
	Nom	8	Maximum	Temp.	Pa x 10 ⁻⁸	Temp.
41			0.42	- 35	0.80	-60
42			0.40	- 35	0.90	-50
43			0.58	- 35	0.85	-60
44			0.50	-43	0.85	-60
45			0.50	- 35	0.85	-60
52	N8C	0.5	0.40	- 35	0.77	-60
53	PEA	2.4	0.50	-40	1.00	-60
54	PEA/N8C	0.2/0.9	0.40	-40	1.15	-60
					1 1	

5.0 CONCLUSIONS

- 1. La transformation d'un polybutadiène à terminaisons hydroxyles (R45M) en des polybutadiènes à terminaisons carboxyles par réaction du R45M avec des anhydrides solides (anhydride succinique, anhydride méthylsuccinique, etc.) sous reflux, dans des solvants (benzène ou toluène), nous donne un prépolymère moins visqueux (16 N.s/m²) que les PBCT disponibles sur le marché.
- 2. La transformation d'un polybutadiène à terminaisons hydroxyles (R45M) en un polybutadiène à terminaisons carboxyles par réaction du R45M avec un anhydride liquide, l'anhydride de l'acide cyclohexane di-carboxylique-1,2 (cis), à des températures de 60 à 90°C, sans solvant, donne un prépolymère de viscosité plus élevée que le R45M (37.4 et 6.9 N. s/m² respectivement) mais inférieure au PBCT.
- 3. On obtient des élastomères à partir des dérivés carboxylés du R45M, préparés comme aux paragraphes 1 et 2, et d'époxydes commerciaux (ERL 4221, ERL 4289, ERL 0510, EPON 812, etc.) en présence de sels de chrome (oléate, octanoate, octoate, etc.) comme catalyseurs. Les polyesters obtenus ont des énergies variant de 1.0 à 2.0 joules à 23°C, énergies comparables à celles obtenues par réaction du R45M avec les isocyanates.
- 4. On a préparé des élastomères à partir d'un mélange de R45M de l'anhydride cyclohexane di-carboxylique-1,2 (cis) et d'époxydes (CY 179, ERL 4221, etc.) en présence de sels de chrome (oléate, octanoate ou octoate, etc.) à 80°C. Ces polyesters ont des énergies semblables aux polyesters du paragraphe 3.
- 5. Des propergols composites contenant 88% de solides (aluminium et perchlorate d'ammonium) ont été préparés à partir des polyesters décrits aux paragraphes 3 et 4. Ces propergols donnent des allongements de 15 à 20% à 23°C et de 8 à 10% à -45°C.
- 6. Nous avons préparé des propergols composites contenant 88% de solides (Al et AP) et un liant polyéther obtenu par réaction du R45M et des époxydes (ERL 4221, CY 179 etc.) en présence des sels de chrome (octanoate et oléate). La cuisson de ces propergols polyéthers se fait à des températures variant de 60 à 125°C en présence d'oléate de chrome et de perchlorate d'ammonium. Les propergols polyéthers ont en général des propriétés mécaniques légèrement inférieures à celles des propergols polyesters et nécessitent des longs temps de cuisson. Si on ajoute des agents de surface, ceux-ci réduisent la catalyse et ralentissent ainsi la cuisson.

- 7. Un nouvel agent de surface, N8C, qui est obtenu à partir du méthyl-diéthanolamine et d'un lêger excès d'acide sébacique, donne un produit possédant des groupes carboxyles terminaux. L'addition de cet agent de surface aux propergols préparés au paragraphe 5 améliore les propriétés mécaniques telles que l'effort à traction maximale, $\mathfrak s$, et l'allongement à charge maximale, $\mathfrak s$, valeurs déterminées au moyen de l'appareil Instron. Les propriétés mécaniques des propergols polyesters sont améliorées de 25 à 50% par l'addition de 1.0% de l'agent de surface N8C, mais ces propriétés mécaniques ne sont atteintes qu'après 56 jours de vieillissement.
- 8. L'effet d'un polyester d'aziridine (PEA) employé à la place du polyester d'amine (N8C) améliore très peu les propriétés mécaniques des propergols polyesters.
- 9. L'addition d'agents de surface (PEA et N8C) aux propergols polyéthers, en plus d'allonger le temps de cuisson, améliore très peu les propriétés à basse température.

6.0 BIBLIOGRAPHIE

- 1. Tremblay, M. et Perrault, G., "Formation de dérivés à terminaisons époxydes et carboxyles à partir de diols et de triols", DREV TN-1969/71, novembre 1971, NON CLASSIFIE
- 2. Adams, H.E. et al, "A Cooperative Molecular Weight Distribution Test", J. of Appl. Polym. Sci. Vol. 17, pp 269 282, 1973.
- 3. Boivin, J.L. and Tremblay, M. "Curing System for Polybutadiene Propellants", Can. Pat. 891562, 25 January 1972; U.S. 3,738,426, 11 September 1973.
- 4. Rheovibron, Direct Reading Dynamic Viscoelastometer Instruction Manual 17, pp 5-6 and 20-30, (1969), Toyo Measuring Instruments Co. Ltd., 104, 1-chome chofuminemachi, Ota-Ku, Tokyo, Japan.
- 5. Perrault, G. and Duchesne, G., "Evaluation of Surface-Active Additives in Highly Filled Compositions by Mechanical Spectroscopy", J. Appl. Polymer Sci. Vol. 18, pp 1295-1304, 1974.
- 6. Billmeyer, F.W., "Testbook of Polymer Science" Interscience, New York, 1972.

DREV REPORT 4069/77 (UNCLASSIFIED)

Research and Development Branch, Department of National Defence, Canada. DREV, P.O. Box 880, Courcelette, Qué. GDA 180

"Liants polyéther, et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

A hydroxyl-terminated polybutablene prepolymer (R45M) was cross-linked with an any depoxide to yeld an elastometric material known as a polyether or with a mixture of an anhydride and an epoxide to form a polyester material. Folyether and polyester propellants containing up to 88% of solid ammonium perchlorate (AP) in the powder form and aluminam powder were prepared from the above two materials (binders). The physical and mechanical properties of these propellants depended on the ratio and on the order of addition of ingredients, the curing temperature and the presence of surface-active agents. Polyesters propellants were made either by using R45M prereacted with anhydride or by mixing similateously all ingredients with the solids. Polyester propellants made either by using R45M prereacted with anhydride or by mixing similateously all ingredients with the solids. Polyester propellants had superior properties to those made by the circumstance of sightly lover mechanical and physical properties than those of polyesters. The effectiveness of the everal surface-active additives in these highly filled composite propellants were evaluated by mechanical spectroscopy. Some additives were found to improve the mechanical properties of polyester propellants. Just were detrimental to the catalytic activity of AP in polyether propellants. (II).

DREV REPORT 4069/77 UNCLASSIFIED

Revearch and Development Branch, Department of National Defence, Canada. DREV, P.O. Box 880, Courcelette, Qué. GOA IRO

"liants polyéthers et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

A hydroxyl-terminated polybutadiene prepolymer (R45M) was cross-linked with an epocide to yeild an elastomeric material, hown as a polyecter or with a mixture of in inhydride and an epocide to form applyster material. Polyether or with a mixture of inhydride and an epocide to form applyster material such a mixture of the polyecter materials. The physical and adiantim powder were prepared from the above two materials (binders). The physical and mechanical properties of these propellants depended on the ratio and on the order of addition of ingredients, the curing temperature and the presence of surface-active agents. Polyecters propellants were made either by using R45M prereacted with anhydride or by mixing sumilateously all ingredients with the solids. Polyecter propellants have been sufficiently and physical properties after. Discether propellants had slightly fower mechanical and physical properties in those made additives in these highs filled composite propellants were found to improve the mechanical properties of polyecter propellants. Here estimite properties of polyecter propellants had supported by mechanical properties of him properties of him propellants, tills.

DREV REPORT 4069/77 (HNCLASSIFIED)

Research and Development Branch, Department of National Defence, Canada DREV, P.O. Box 880, Courcelette, Que. GOA 1RD

"Liants polyéthers et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

A hydroxyl-terminated polybutadiene prepolymer (R45M) was cross-linked with an any depoxide to yeild an elastoeneric material known as a polyecter or with a mixture of an anhydride and an epoxide to form a polyester as polyecter and polyester propellants containing up to 88% of solid ammonium perchlorate (AP) in the powder form and aluminum powder were prepared from the above two materials louders). The physical and mechanical properties of those propellants depended on the ratio and on the order of addition of ingredients, the curing temperature and the presence of surface-active agents. Polyesters propellants were made either by using R45M prereacted with anhydride or by mixing simultaneously all ingredients with the solids. Polyester propellants made by the former procedure had superior properties to those made by the than those of polyesters. The effectiveness of the several surface-active additives in these highly filled composite propellants were evaluated by mechanical spectrioscupy. Some additives were found to improve the mechanical properties of propellants, thus were found to improve the mechanical properties of propellants, [III].

DREV REPORT 4069/77 (UNCLASSIFIED)

Research and Development Branch, Department of National Defence, Canada. DREV, P.O. Box 880, Courcelette, Qué. GA IRO

"Liants polyéthers et polyesters dans les propergels composites" M. Tremblay, G. Perriult, G. Duchesne et E. Ahad

Any objects contained personalized proposed the second and apposite to yell an antiture of an ambificited and an epoxide to form a poliverter material. Polyether and poliverter properly and an expensive to form a poliverter material. Polyether and poliverter properly all antis containing up to 48% of solid ammonium perchlorate (AP) in the powder form and aluminum powder were prepared from the show two materials thinders). The physical and mechanical properties of these propellants where two materials thinders. The physical and addition of ingredients, the curing temperature and the presence of surface-active addition of ingredients, the curing temperature and the presence of surface-active analysis to forester propellant were made inter by using R43M perceased with any subultaneously all ingredients with the solids. Polyester propellants and superior properties to those made by the latter. Polyether propellants and slightly lower mechanical and physical properties, than those of polyester. The effectivenes of the everal surface-active additives than those of polyester. Propellants were evaluated by mechanical spectroscopy. Some additives were found to improve the mechanical properties of polyester propell. A hydroxyl-terminated polyhutadiene prepolymer (R45M) was cross-linked with an

DREV REPORT 4069/77 (NON CLASSIFIE)

Bureau - Recherche et Développement, Ministère de la Défense nationale, Canada. CRDV, C.P. 880, Courcelette, Qué. GDA 1RO

"Liants polyéthers et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

Un polybutadiène à terminaisons hydroxyles (R4SM) a été réticulé avec les époxydes (liant polyèther) et avec un mélange d'anhydride et d'époxydes (liant polyèther). A partir de ces liants, des propergols polyèthers et polyèsters contenant 688 de solides ont été préparés et les propriétés mécaniques ont été évaluées suivant la proportion oprimals et l'ordre d'addition des ingrédients, la température de cuisson et l'effet des agents de surface. Les propergols polyèsters donnent de meilleures propriétés physiques et mécaniques lorsqu'on fait réagir simultanément au cours du malaxage. Les propergols polyèthers possèdent des propriétés mécaniques légèrement inférieures aux polyesters et exigent des temps de cuisson plus longs. L'analyse du comportément préside divers agents de surface à basse température. Quelques agents de mesurer l'efficacité de divers agents de surface à basse température. Quelques agents de surface à basse température. Quelques agents de surface améliorent les propriétés mécaniques des propergols polyèthers. (NC)

DREV REPORT 4069/77 (NON CLASSIFIE)

Bureau - Recherche et Développement, Ministère de la Défense nationale, Canada CRDV, C.P. 880, Courcelette, Qué. COA 1RO

"Liants polyéthers et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

Un polybutadiène à terminations hydroxyles (R4SM) a été réticulé avec les époxydes (liant polyèther) et avec un mélange d'anhydride et d'époxydes (liant polyèther). A partir de ces liants, des propergols polyèthers et nolyèthers contenant 8M de solides ont été préparés et les propriétés mécaniques ont été évaluées suivant la proportion optimale et l'ordre d'addition des ingrédients, la température de cuisson et l'effet des agents de surface. Les propergols polyèteres, la température de cuisson et l'effet des agents de surface. Les propergols polyèteres annues l'égrement inférieures aux propergols polyèthers possèdent des propriétés mécaniques des temps de cuisson plus longs. l'analyse du comportèment rhéologique de ces propergols à l'aide du rhéoxibremètre a permis de mésurer l'efficacité de divers agents de surface à basse température. Quelques agents de surface à basse température. Quelques agents de surface améliorent les propriétés mécaniques des propergols polyèthers.

DREY REPORT 4069/77 (NON CLASSIFIE)

Bureau - Recherche et Développement, Ministère de la Défense nationale, Canada CRDV, C.P. 880, Courcelette, Qué. GOA 1RO

"Liants polyéthers et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

Un polybutadiène à terminaisons hydroxyles (R4SM) a été réticulé avec les époxydes (liant polyéther) et avec un mélange d'anhydride et d'époxydes (liant polyester). A partir de ces liant, des propergols polyéthers et polyesters contenant 884 de solides ont été préparés et les propriétés mécaniques ont été évaluées suivant la proportion optimale et l'ordre d'addition des ingrédients, la température de cuisson et l'effet de agents de surface. Les propergols polyétesters donnent de meilleures propriétés physiques et mécaniques lorsqu'on fait réagir simultanément au cours du malaxage. Les propergols polyéthers possèdent des propriétés mécaniques les propergols polyéthers possèdent des propriétés mécaniques les propergols polyéthers possèdent des tempé de cuisson plus longs. L'analyse du comportement rhéologique de ces propergols à l'aide du rhéovibromètre a permis de mesurer l'éfficacité de divers agents de surface à basse température. Quelques agents de surface améliorent les propriétés mécaniques des propergols polyéthers, (NC)

DREV REPORT 4069/77 (NON CLASSIFIE)

Bureau - Recherche et Développement, Ministère de la Défense nationale, Canada CRDY, C.P. 880, Courcelette, Qué. GOA 1RO

"Liants polyéthers et polyesters dans les propergols composites" M. Tremblay, G. Perrault, G. Duchesne et E. Ahad

Un polybutadiène à terminaisons hydroxyles (R45M) a été réticulé avec les époxydes (liant polyèther) et avec un mélange d'anhydride et d'époxydes (liant polyèter). A partir de ces liants, des propergols polyèthers et polyèterers contièté préparés et les propriétés mécanques ont été évaluées suivant la proportion optimale et l'ordre d'addition des ingrédients, la température de cuisson et l'éfet des agents de cuisson ces propriètés mécanques loisters donnent de mellieures propriétés physiques et mécanques lorsqu'en fait réagir simultanément au cours du malaxage, les propriètés polyèthers possèdent des propriétés mécanques légétement inférieures aux polyesters et exigent des temps de cuisson plus longs. L'analyse du comportement rédolyque de ces propergols à l'aide du réfoxitremètre a permis de mésurer l'efficacité de divers agents de surface à basse température. Unelques agents de surface améliorent les propriétés mécanques des propergols polyèthers mais tous ces produits diminuent la catalyse de AP dans les propergols polyéthers. 'N'