Graph Theory (1)

-sdegree thm:

\(\text{deg (v) = 2 | E(4) |}

- handshake thm:

of vertices of odd degree is even.

- bipartite graphi

IF W(G)=AUB and ANB= Φ and \forall edges of G have a vertex in both A and B.

-DTrees:

LA Every tree with prerticies has p-1 terticies.

LO Breadth-First Search Tirces (BFST)

" A Spanning tree

· Algorithm:

given: a Connected Greph G

gives: a Tree T

1. Select an arbitrary vertex + of G.

Set T:= {r3 Set porent (r)= a this is level 0.

2. IF there are no weeks reaghbour vertex's old of T to those in T

3. Select a neighbour outside of T. Add the edge and vertex to T, denote the parent (>). All reighours the same distance get added to the level set of distinct.

e.g.

3={13

· Bipartile Checking

given a BFST, Fon G if no edge of edge joins vertices on the same level in T, G is bipartite,

Graph Theory (2) -splanar graph drawn in a way that no edges cross. toquick checks for planarity: 11f v>3 then e 63v-6 2. IF v>3 and there are no cycles of length 3 prove non-planonity then e < 2v-4 (ie one of these fails, both holding true means nothing) -Dfaces degree of a face F is the value of it's walk. $\lim_{t \to \infty} \frac{f_1}{f_2} = \lim_{t \to \infty} \frac{deg(f_1) = 8}{deg(f_2) = deg(f_3) = 3}.$ -DFaceshake thm:

Given G, a planar embedding of graph G. F(G) is the set of faces.

-> Euler's Formula:

Grueni G is a connected graph G is a plantembedding of G.

we let: p= | V(6) | Q= | E(6) | 5= |F(G)|

then: P- 2+5=2 (NG)-1E(G)+1F(G)=2)

Graph Theory (3)	
-Amatching:	
a matering M in a graph is a	
set of edges at no edges in M share a common vertex.	
· · · · · · · · · · · · · · · · · · ·	; _G
e.g. a = {ae, bc}	© , _©
- D maximum matching:	
a matching with largest possible size.	
M= {ad, be, cf}	
-> perect matching:	
a matering with p/2 size e.g	
(p=1V(6)) + N(6)1 must be even)	
- alterating pathi	
Given : a greeph &	
a matching on G, M	
An alterating path P in G with M is a porthat. every second edge of P is in M	
2 Edua-bre-frez is alterrating.	
A answering - Herachins with:	
an alterating porth, of length >1, where both the 1st and last verticies are not saturated by M.	
M= {ae, bc3 8 = ana-bnc-d3 is augmenting alternating.	
Laswitching the matching on an augmenting porth Mito create M' will [MI < IMI] (M' is always bigger)	ll guarentee
Green: a biportile graph & with vertex closses A and B.) simply	y- the only obstaction
	perfect matching bipartite graphs
15	bipartite graphs
Then G has a matching that saturates A	a bad subset
[N(D)] > D]	

Graph Theory (4) -D cover:

a cover of graph G is a set of verticles, C, st . Yee E(G) is incident to at least on vertex in c.

- minimum cover:

a cover of the smallest possible size.

-byonig's thm:

Given a bipartite graph G a maximal matching Mon G.

Then there must exist a over C in G st. 101=1M1

-> Bipartite Matching Algorithm:

Given a biportite graph G=(V={X,43, E)

The algorithm finds a maximal matching by? 1. Finding on augmenting path from each nex to Y 2. adding it to the matching if it exists.

More Formally.

Given a bipartik graph G=(V={X,43, E) a multering Me in G

Gives a maximum matching H, in G a minimum cover C in G

- let &-{v∈X: v not saturated by M? M= Me
- 2. If IveY-9 st uveE(G) for some wex then set 9 = quev3 and power (v)
- 3. If no such y exists then M, = M c= Ŷu(Xxx) STOP .

- 4. If v is not saturated by M then augment the augmenting path given by parent(v).
- 5. If I we X \ X st une E(6) for some ue Y then set $\hat{X} = \hat{X} \cup \{w\}$ and parent (w) Goto 2,