

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

+210 772 4025, +210 772 4235, +210 772 1317, +210 7721310 (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

MHXANIKH I (ΣΤΑΤΙΚΗ)

6^η σειρά ασκήσεων: Εφαρμογές του εξωτερικού γινομένου στη Μηχανική

Άσκηση 1

Η δύναμη στο σχοινί GBH έχει μέτρο 2 kN. Ο φορέας ABCD είναι οριζόντιος. Υπολογίστε:

- α. Τη ροπή της δύναμης που ασκεί το σκοινί στο φορέα ως προς την ευθεία GM, όπου M το γεωμετρικό κέντρο του τριγώνου AOD.
- β. Τη συνιστώσα της ως άνω ροπής που είναι κάθετη στο επίπεδο ADG.

Ασκηση 2

Στο φορέα του Σχ.2 ασκείται δύναμη F μέτρου 10 kN.

- α. Να ευρεθεί η ροπή της F ως προς τον άξονα $O_1\Gamma$.
- **β.** Να ευρεθεί η συνιστώσα της ως άνω ροπής η οποία εφάπτεται του επιπέδου (ΚΟ₁B).

Σχήμα 2

Άσκηση 3

Στις κορυφές οριζοντίου, ορθογωνίου (στην κορυφή A) και ισοσκελούς τριγώνου ABΓ (AB=AΓ=2 m) και στο βαρύκεντρό του G πακτώνονται τέσσερεις κατακόρυφοι στύλοι AA΄, BB΄, ΓΓ΄, GO, με μήκη 4, 6, 3, 2 m, αντιστοίχως. Στο O ασκούνται οι δυνάμεις $\mathbf{F_1}$, $\mathbf{F_2}$, $\mathbf{F_3}$ μέτρων 5, 2, 3 kN, αντιστοίχως, με φορά προς τα A΄, Β΄και Γ΄ (Σχ.3). Υπολογίστε:

- α. Τις γωνίες Α'ΟΒ'και Α'ΟΓ'.
- **β.** Τη ροπή της συνισταμένης των δυνάμεων ως προς το μέσον του GΓ΄.
- γ. Τη συνιστώσα της ροπής του προηγουμένου ερωτήματος η οποία είναι κάθετος επί του επιπέδου ΒΑ΄ Γ.

Σχήμα 3

Άσκηση 4

Κατά μήκος των πλευρών ισοπλεύρου τριγώνου πλευράς α ασκούνται τρεις δυνάμεις ίσου μέτρου **F**, όπως φαίνεται στο Σχ.4. Δείξτε ότι η συνισταμένη ροπή των ως άνω δυνάμεων δεν εξαρτάται από το σημείο ως προς το οποίο αυτή υπολογίζεται.

Σχήμα 4

Άσκηση 5

Κατά μήκος των πλευρών τυχαίου τριγώνου ABΓ ασκούνται οι δυνάμεις $\mathbf{F_1}$, $\mathbf{F_2}$, $\mathbf{F_3}$ με τη φορά που φαίνεται στο Σχ.5. Για τα μέτρα των δυνάμεων ισχύει: $|\mathbf{F_1}|$ =AB, $|\mathbf{F_2}|$ =BΓ, $|\mathbf{F_3}|$ =ΓΑ. Δείξτε ότι το σύστημα των δυνάμεων αυτών ισοδυναμεί με ροπή μέτρου ίσου με το διπλάσιο του εμβαδού του τριγώνου ABΓ.

Σχήμα 5

 $\begin{array}{lll}
\nabla_{1} \vec{F} = 100 + 100 + 100 + 100 - 100 + 100 - 100 - 100 - 100 - 100 - 100 + 100 + 100 + 100 - 1$

= -0,22 + 0,11 to, s = 0,39 =) A'or' = 67,04°

Form z_{x} z_{y} z_{z} z_{z}

「B= (マーメ)なーツラーをか

DC = -xi + (\frac{1}{2}a-y) \frac{1}{2} - zû

'Apa & Mo = Mo + Mo + Mo = = (\frac{1}{2} = \frac{1}{2} = = of + of + of | 12 Aga n ouverafien sur ponon de der Ezapedou and so onfero es operation con so on oro central unodaggeran.

To Efbador 200 ABT: E= LAB od = AB od Apa [SMr = Mr = Fil. d = AB. d = 2E.