

ACM

zjgsu

Mr.l

February 24, 2020

Contents

U	头又		
	0.1	. 头文件	
	0.2	? 读人模板	
1	字串	串符	;
_	1.1		-
	1.2	5 7 7 7 9	
	1.3	-0.14	
	1.4	Ŀ AC 自动机	8
	1.5	5 回文自动机	17
	1.6		
	1.0		20
2	ᆉ	态规划	28
_			
	2.1	130 1	
	2.2	? 数位 dp	28
	2.3	3 dp 优化	29
	2.4		30
	2.5		
	2.0	, WIZ db	
9	₩'nŧБ	据结构	32
9			
	3.1		
	3.2		
	3.3	5 st 表	33
	3.4	. 线性基	34
	3.5		
	3.6		
	3.7	173 0 000-2	
	3.8	3 树的直径	38
4	图论	论	39
	4.1		39
	4.2		
	4.3		
	4.4	13-276	
	4.5	5 最小树形图	4
	4.6	5 割点、桥、双联通分量	50
	4.7	⁷ 二分匹配	50
)(
	18		
	4.8	3 第 k 最短路	57
	4.9	3 第 k 最短路	57
	4.9	3 第 k 最短路	57
	4.9 4.10	3 第 k 最短路	56
	4.9 4.10	3 第 k 最短路	56
5	4.9 4.10	3 第 k 最短路 0 2-SAT .0 LCA .1 欧拉路	56
5	4.9 4.10 4.11	3 第 k 最短路 D 2-SAT D LCA D LCA D W拉路 S W拉路	56 56 66 64
5	4.9 4.10 4.11 数等 5.1	第 k 最短路2-SAT0 LCA1 欧拉路BM	56 56 66 64
5	4.9 4.10 4.11 数等 5.1 5.2	第 k 最短路 0 2-SAT 0 LCA 1 欧拉路 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57 58 60 64 67 67 68
5	4.9 4.10 4.11 数学 5.1 5.2 5.3	第 k 最短路	57
5	4.9 4.10 4.11 数等 5.1 5.2	第 k 最短路	55 58 60 67 67 68 69 77
5	4.9 4.10 4.11 数学 5.1 5.2 5.3	第 k 最短路	55 58 60 67 67 68 69 77
5	4.9 4.10 4.11 数学 5.1 5.2 5.3 5.4	第 k 最短路	67 68 69 69 69 69 69 69 69 69 69 69
5	4.9 4.10 4.11 数学 5.1 5.2 5.3 5.4 5.5 5.6	第 k 最短路	67 67 67 67 67 67 67 67 67 67
5	4.9 4.10 4.11 数学 5.1 5.2 5.3 5.4 5.5 5.6 5.7	第 k 最短路	67 67 68 69 67 68 69 69 69 69 69 69 69 69 69 69
5	4.9 4.10 4.11 数学 5.1 5.2 5.3 5.4 5.5 5.6 5.7	第 k 最短路	67 67 68 69 67 68 69 69 69 69 69 69 69 69 69 69
5	4.9 4.10 4.11 数等 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	第 k 最短路	67 68 69 69 69 69 69 69 69 69 69 69
5	4.9 4.10 4.11 数等 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	第 k 最短路	67 67 68 69 69 69 69 69 69 69 69 69 69

ACM, Mr.l

6	杂七	杂八	89
	6.1	二分、三分查找	89
	6.2	离散化	91
	6.3	斯坦纳树	91
	6.4	子矩阵问题	92
	6.5	矩阵模板	95
	6.6	汉诺塔	96
	6.7	前缀和与差分。	97
	6.8	stl	100
	6.9	最长上升子序列	102
_			
7	专题	17 115/01	L05
	7.1	区间 dp	105
	7.2	一般 dp	100
		их ар	108
	7.3	数位 dp	
	7.3 7.4		112
		数位 dp	112 118
	7.4	数位 dp	112 118 122
	7.4 7.5	数位 dp 概率 dp 斜率 dp	112 118 122 125
	7.4 7.5	数位 dp	112 118 122 125 131
	7.4 7.5 7.6 7.7	数位 dp	112 118 122 125 131 133

0 头文件

0.1 头文件

```
#pragma comment(linker, "/STACK:1024000000,1024000000")
2 #include<iostream>
3 #include<cstdio>
4 #include<cmath>
5 #include<cstring>
6 #include<vector>
7 #include<algorithm>
8 #include<sstream>
9 #include<map>
10 #include<queue>
11 #include<set>
12 #include<br/>bitset>
13 #include<list>
14 using namespace std;
15
16 typedef pair<int, int> pii;
17 typedef long long ll;
18 typedef unsigned long long ull;
19 #define pw(k) ((111)<<(k))</pre>
20 const ull hash1 = 201326611;
21 const double eps = 1e-8;
22 const ll INF = 0x3f3f3f3f3f3f3f3f3f;
23 const int inf = 0x3f3f3f3f;
24 \quad const \ ll \ mod = 1e9 + 7;
25 const int N = 2e6+10;
26 const int M = 12;
27 const int dif = 26;
28 const double PI = acos(-1.0);
29  ll Mod(ll x){ return (x%mod+mod)%mod;}
30 void BinaryBitset(int n) { cout << bitset<sizeof(int) * 4>(n) << endl; }</pre>
inline int getBinary(int x){int cnt=0; for(;x;x-=(x & (-x))) cnt++;return cnt;}
32
33 int main() {
34
   #ifdef ACM_LOCAL
       freopen("./std.in", "r", stdin);
35
       //freopen("./std.out", "w", stdout);
36
       auto start = clock();
37
38 #endif
39
   #ifdef ACM_LOCAL
40
       auto end = clock();
41
       cerr << "Run Time: " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;</pre>
42
   #endif
43
   }
44
   0.2 读入模板
1 1、快读
2 struct ioss
3
   #define endl '\n'
4
5
       static const int LEN = 20000000;
       char obuf[LEN], *oh = obuf;
6
       std::streambuf *fb;
```

```
ioss()
8
9
            ios::sync_with_stdio(false);
10
11
            cin.tie(NULL);
12
            cout.tie(NULL)
            fb = cout.rdbuf();
13
14
        inline char gc()
15
16
17
            static char buf[LEN], *s, *t, buf2[LEN];
18
19
            return (s == t) && (t = (s = buf) + fread(buf, 1, LEN, stdin)), s == t ? -1 : *
       S++;
20
        inline ioss &operator>>(long long &x)
21
22
            static char ch, sgn, *p;
23
            ch = gc(), sgn = 0;
24
25
            for (; !isdigit(ch); ch = gc())
26
27
                if (ch == -1)
                     return *this;
28
                sgn l= ch == '-';
29
30
31
            for (x = 0; isdigit(ch); ch = gc())
                x = x * 10 + (ch ^ '0');
32
            sgn \&\& (x = -x);
33
            return *this:
34
35
        inline ioss &operator>>(int &x)
36
37
            static char ch, sgn, *p;
38
            ch = gc(), sgn = 0;
39
            for (; !isdigit(ch); ch = gc())
40
41
                if (ch == -1)
42
43
                     return *this;
44
                sgn |= ch == '-';
45
            for (x = 0; isdigit(ch); ch = gc())
46
                x = x * 10 + (ch ^ '0');
47
            sgn \&\& (x = -x);
48
            return *this;
49
50
        inline ioss &operator>>(char &x)
51
52
            static char ch;
53
            for (; !isalpha(ch); ch = gc())
54
55
            {
                if (ch == -1)
56
57
                     return *this;
58
            }
            x = ch;
59
            return *this;
60
61
62
        inline ioss &operator>>(string &x)
63
64
            static char ch, *p, buf2[LEN];
            for (; !isalpha(ch) && !isdigit(ch); ch = gc())
65
```

```
if (ch == -1)
66
                       return *this;
67
              p = buf2;
68
              for (; isalpha(ch) || isdigit(ch); ch = gc())
69
70
                  p = ch, p++;
              *p = '\0';
71
72
              x = buf2;
              return *this;
73
74
         inline ioss &operator<<(string &c)</pre>
75
76
77
              for (auto &p : c)
78
                  this->operator<<(p);
              return *this;
79
80
         inline ioss &operator<<(const char *c)</pre>
81
82
             while (*c != '\0')
83
84
                  this->operator<<(*c);</pre>
85
86
                  C++;
87
              return *this;
88
89
90
         inline ioss &operator<<(const char &c)</pre>
91
              oh == obuf + LEN ? (fb->sputn(obuf, LEN), oh = obuf) : 0;
92
              *oh++ = c;
93
              return *this;
94
95
         inline ioss &operator<<(int x)</pre>
96
97
              static int buf[30], cnt;
98
              if (x < 0)
99
                  this->operator<<('-'), x = -x;
100
              if (x == 0)
101
102
                  this->operator<<('0');
103
              for (cnt = 0; x; x \neq 10)
                  buf[++cnt] = x \% 10 | 48;
104
105
              while (cnt)
106
                  this->operator<<((char)buf[cnt--]);</pre>
              return *this;
107
108
109
         inline ioss &operator<<(long long x)</pre>
110
              static int buf[30], cnt;
111
              if (x < 0)
112
                  this->operator<<('-'), x = -x;
113
              if (x == 0)
114
                  this->operator<<('0');
115
116
              for (cnt = 0; x; x \neq 10)
117
                  buf[++cnt] = x \% 10 | 48;
118
              while (cnt)
                  this->operator<<((char)buf[cnt--]);</pre>
119
              return *this;
120
121
122
         ~ioss()
123
         {
              fb->sputn(obuf, oh - obuf);
124
```

```
125
        }
126 } io;
127
128 2、__int128读入
129
130 inline __int128 read(){
       int X=0, w=0; char ch=0;
131
132
      while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
133
      while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48), ch=getchar();
      return w?-X:X;
134
135
   }
136
   void print(__int128 x){
137
        if (!x) return;
138
        if (x < 0) putchar('-'),x = -x;
139
        print(x / 10);
140
        putchar(x % 10 + '0');
141
142
    }
143
144 3,
    template<class T>inline void read(T &res){
145
        char c;T flag=1;
146
147
        while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
148
        while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;</pre>
149 }
150
151
152 4、整行读人, 其中包含空格
    //注意前后使用getchar()清除多余空字符
153
    int i=0;
154
    while((s[i]=getchar())!='\n') i++;
155
156
    s[i]=0;
157
158
159 //注意前后使用cin.get()清除多余空字符
160
   getline(cin,s);
161
162
    在使用char参数或没有参数的情况下,get()方法读取下一个字符,及时该字符是空格,制表符或换行符。get(
       char & ch) 版本将输
163
   入字符赋给其参数,而get (void) 版本将输入字符转换为整型(通常为int)。然后将其返回。
```

1 字串符

1.1 KMP, E-KMP, Manacher

```
1.KMP模板
1
2
3
   //求取循环节的基础
   void getNext(){
4
        int i,j;
5
        j=nx[0]=-1;
6
7
        i=0;
8
        while(i<n){</pre>
9
            while(-1!=j && x[i]!=x[j]) j=nx[j];
10
             nx[++i]=++j;
11
        }
   }
12
13
14
   //消除循环节
15
   void getNext(){
16
        int i,j;
17
        j=nx[0]=-1;
        i=0;
18
        while(i<m){</pre>
19
20
            while(-1!=j && x[i]!=x[j]) j=nx[j];
21
             if(x[++i]==x[++j]) nx[i] = nx[j];
22
             else nx[i]=j;
23
        }
24
   }
25
26
   //返回x在y中匹配次数,包含重叠
   int KMP() {
27
28
        int i, j;
29
        int ans = 0;
30
        getNext(x, m, nx);
31
        i = j = 0;
32
        while (j < n) {
33
            while (i != -1 && x[i] != y[j])
                 i = nx[i];
34
35
             i++; j++;
36
             if (i == m)
                 ans++;
37
38
39
        return ans;
40
   }
41
   2、扩展KMP
42
    void pre_EKMP(){
43
        nx[0]=m;
44
45
        int j = 0;
        while(j+1 < m\&x[j] == x[j+1]) j++;
46
        nx[1]=j;
47
48
        int k = 1;
        for(int i=2;i<m;i++){</pre>
49
50
             int p = nx[k]+k-1;
51
             int L = nx[i-k];
             if(i+L<p+1) nx[i]=L;</pre>
52
53
             else{
                 j = \max(0, p-i+1);
54
55
                 while(i+j<m&&x[i+j]==x[j]) j++;</pre>
```

```
nx[i]=j;
56
57
                  k=i;
             }
58
         }
59
    }
60
61
    void EKMP(){
62
         pre_EKMP();
63
64
         int j = 0;
         while(j<n&&j<m&&x[j]==y[j]) j++;</pre>
65
66
         extend[0]=j;
67
         int k = 0;
         for(int i=1;i<n;i++){</pre>
68
              int p = extend[k]+k-1;
69
              int L = nx[i-k];
70
              if(i+L<p+1) extend[i]=L;</pre>
71
72
              else{
                  j = max(0,p-i+1);
73
                  while(i+j<n\&\&j<m\&\&y[i+j]==x[j]) j++;
74
75
                  extend[i]=j;
76
                  k=i;
77
             }
         }
78
79
    }
80
81 3 Manacher
82 //内存开两倍
    const int N = 110100;
    char Ma[N];
84
    int Mp[N],top;
85
    void Manacher(char *s,int len){
86
87
         top=0;
         Ma[top++]='$';
Ma[top++]='#';
88
89
         for(int i=0;i<len;i++){</pre>
90
             Ma[top++]=s[i];
91
92
             Ma[top++]='#';
93
         Ma[top]=0; Mp[top]=0;
94
95
         int id=0, mx=0;
         for(int i=1;i<top;i++){</pre>
96
             Mp[i]=mx>i?min(Mp[2*id-i],mx-i):1;
97
             while(Ma[i+Mp[i]]==Ma[i-Mp[i]]) Mp[i]++;
98
99
              if(i+Mp[i]>mx){
100
                  mx=i+Mp[i];
101
                  id=i;
102
             }
         }
103
   }
104
     1.2 字典树
    class tire{
 1
    public:
 2
         int nx[N][dif],end[N];
 3
 4
         int root,tot;
 5
 6
         int newNode(){
```

```
for(int i=0;i<26;i++) nx[tot][i]=-1;</pre>
7
             end[tot]=0;
8
             return tot++;
9
10
        }
11
        void init(){
12
             tot=0;
13
             root=newNode();
14
        }
15
16
        void insert(char *s,int id){
17
             int len=strlen(s);
18
19
             int now=root;
             for(int i=0;i<len;i++){</pre>
20
                 int c=s[i]-'a';
21
                 if(nx[now][c]==-1) nx[now][c]=newNode();
22
23
                 now=nx[now][c];
24
             end[now]=id;
25
26
        }
27
        int query(char *s){
28
             int len=strlen(s);
29
             int now=root;
30
31
             for(int i=0;i<len;i++){</pre>
                 int c=s[i]-'a';
32
                 if(nx[now][c]==-1) return -1;
33
                 now=nx[now][c];
34
35
             if(end[now]>0) return end[now];
36
37
             else return -1;
38
   }tr;
39
```

1.3 哈希

- 1 求hash值
- 2 hash的特征就是不同的key(就是目标位置)对应的数据不同,所以将字符串转化为数字应该注意一对应, 避免哈 希冲突(比如不同字符
- 3 串对应了同一个值,但是你的程序还是会判断它们是同一个字符串一般的字符串hash值求法(终于到正题了)给一个字符串从左到右枚举字符
- 4 串的每一位,每一个字母直接对应它的ASCII码(就变成int了),对应好子就把每位加起来, 就输快的冲突子直接相 加会冲突,例如ab和ba
- 5 ,第二串后来的那个a和第一串的前面的a虽然一个更老一个更年轻,但是它们的作用居然是一样的,这是不符合常识的 (我是在说实话)
- 6 所以,为了使资质更老的a更显眼,可以在处理之后的那些后代的时候给它乘上一个数base显示它的不同。如果考虑到每一个字符后面都有
- 7 后代的话,那么每处理一个后面的字符,前面的祖宗们就都会乘上——个数。容易看出,每个位置都比它后面那个位置多乘了——次, 这样
- 8 就可以显示出各个位置的等级差距了,再结合之前的直接相加,就可以表示出来每一个不同的字符串 了,即:9 val ["abc"] = 'a'*base^2+'b'*base^1+'c'*base^0
- 10 那么对于一个母串,怎么提取它[l, r]中的hash值呢。我们已经知道了这个串从1到每个位置这一部分的hash值,这类似于前缀和,
- 11 即hash[r]-hash[l-1],但是由于对于r位置的hash[r],它前面一部分(即被它包含在内的hash[1]部分)被多乘了许多次base,减的时候
- 12 应该给hash[I]他乘上(换个说法:求出hash[l-1]之后,继续向后面走,每走一步都会hash[L-1]乘上base,直求到hash[r]时已经

```
乘了(r-I+1)个base了, 实际上hash[r]=hash[l,r]+hash[1-1]*base^(r-l+1)所以答案应该是(多乘了的次
       数[1,r]区间长度)
   val[i,r]=hash[r]-hash[ 1-1 ]*base^(r-l+1)最后,因为乘的base-般很大,所以乘多了容易爆,要取模,
       为了避免麻烦, 一般使用
   unsigned long long
15
  Qhash如何支持单点修改?
16
17 A可以用线段树维护
18 要用线段树维护要资瓷区间台并>
19 hash=左子树hash*(base^右子树size)+右子树hash
20
   struct HASH{
21
22
       ull hash1;
       ull p[N],ha[N];
23
       void init(int n){
24
          hash1=201326611;//233,50331653
25
          p[0]=1; ha[0]=0;
26
           for(int i=1;i<=n;i++)</pre>
27
28
              p[i]=p[i-1]*hash1;
29
30
       //传指针要从s开始,不用s+1
       void build(char *s,int x,int n){
31
           for(int i=x;i<=n;i++) ha[i]=ha[i-1]*hash1+s[i];</pre>
32
33
34
       ull getha(int l,int r){
35
           return ha[r]-ha[l-1]*p[r-l+1];
36
       int query(int x,int y){
37
           int right=n-max(x,y)+1,left=1;
38
          while(left<=right){</pre>
39
40
              int mid=(left+right)>>1;
              if(getha(x,x+mid-1)==getha(y,y+mid-1)) left=mid+1;
41
              else right=mid-1;
42
43
           }
           return right;
44
45
   }hs;
46
47
48
  //将可以通过此类方法将二维、三维等压缩到一维ha数组中
  int ha[10000007];
49
  11 \text{ seed} = 309989, \text{mod} = 9989783;
50
51
   inline int gethash(ll x,ll y){
52
       int t=(x*seed+y)%mod;
53
       return t;
54
55
   }
   1.4 AC 自动机
1 1、查询一个串可以匹配多少个串
2 int n;
3 char s[M];
4
  //ac自动机中dif看具体字符串出现的种类数,而N为字符串数*字符串长度
5
  //nx[i][j]表示i节点若下一个字符为j时转向的节点,fail[i]表示i节点失配时指向的节点
  //end[i]表示i节点所包含的状态,tot所表示节点范围为[0,tot-1],root=0
8
  class tree {
9
   public:
10
       int nx[N][dif], fail[N];
```

```
int end[N];
11
12
        int root, tot;
13
        int newNode() {
14
            for (int i = 0; i < 26; i++)
15
16
                nx[tot][i] = -1;
            end[tot] = 0;
17
            return tot++;
18
        }
19
20
21
        void init() {
22
            tot = 0;
            root = newNode();
23
24
        }
25
        //插入字母注意调整
26
        void insert(char* s) {
27
28
            int len = strlen(s);
            int now = root;
29
            for (int i = 0; i < len; i++) {
30
                int id = s[i] - 'a';
31
                if (nx[now][id] == -1)
32
                     nx[now][id] = newNode();
33
34
                now = nx[now][id];
35
            }
            end[now]++;
36
37
        }
38
        void build() {
39
40
            queue<int>q;
41
            fail[root] = root;
            for (int i = 0; i < 26; i++) {
42
                if (nx[root][i] == -1) {
43
                     nx[root][i] = root;
44
                }
45
                else {
46
47
                     fail[nx[root][i]] = root;
48
                     q.push(nx[root][i]);
                }
49
50
            while (!q.empty()) {
51
                int now = q.front();
52
53
                q.pop();
54
                //if (end[fail[now]]) end[now] = 1; 看情况加入
                for (int i = 0; i < 26; i++) {
55
56
                     if (nx[now][i] == -1) {
                         nx[now][i] = nx[fail[now]][i];
57
58
                     else {
59
60
                         fail[nx[now][i]] = nx[fail[now]][i];
61
                         q.push(nx[now][i]);
62
                     }
63
                }
            }
64
        }
65
66
67
        //查询存在
        int query(char* s) {
68
            int res = 0,len = strlen(s);
69
```

```
int now = root;
70
             for (int i = 0; i < len; i++) {
71
                now = nx[now][s[i] - 'a'];
72
73
                int tmp = now;
                while (tmp != root&&end[tmp]!=0) {
74
                     res += end[tmp];
75
                     end[tmp] = 0;
76
                     tmp = fail[tmp];
77
                }
78
            }
79
80
            return res;
81
        }
    }ac;
82
83
    int main() {
84
        int t;
85
        scanf("%d",&t);
86
        while(t--){
87
            ac.init();
88
            scanf("%d",&n);
89
            for(int i=1;i<=n;i++){</pre>
90
                scanf("%s",s); ac.insert(s);
91
            }
92
93
            ac.build();
94
            scanf("%s",s);
            printf("%d\n",ac.query(s));
95
        }
96
    }
97
98
    2、查询一个字符串中子串出现可重叠子串个数
99
    int query(char s[]) {
100
       int res = 0;
101
       int len = strlen(s);
102
       int now = root;
103
       for (int i = 0; i < len; i++) {
104
            now = nx[now][s[i]];
105
106
            int tmp = now;
107
            while (tmp != root) {
                   if(end[tmp]) v[end[tmp]]++;
108
109
                   tmp = fail[tmp];
110
            }
111
112
       return res;
113
    }
114
    3、有m(m<=10)个长度不超过10的只包括AGCT字符串,现在求产生n(n<=1e9)长度的字符串,并且不包括m个字符串,
115
        求种类数
    通过ac自动机产生关系矩阵.
116
117
    build函数中要加入: if (end[fail[now]]) end[now] = 1;
    void pre_mat() {
119
        memset(a.arr, 0, sizeof a.arr);
120
        for (int i = 0; i < tot; i++) {
            if (end[i]) continue;
121
            for (int j = 0; j < 4; j++) {
122
                 int k = nx[i][j];
123
                if (!end[k]) a.arr[i][k]++;
124
125
            }
126
        }
127 }
```

```
128
129
    或当n小的时候使用dp即可实现
    int n,m;
130
    char s[N];
131
132
   class tree {
133
134
    public:
135
         int nx[N][2], fail[N];
136
         int end[N];
         int root, tot;
137
138
         int newNode() {
139
             for (int i = 0; i < 2; i++)
140
                 nx[tot][i] = -1;
141
             end[tot] = 0;
142
             return tot++;
143
         }
144
145
         void init() {
146
             tot = 0;
147
             root = newNode();
148
         }
149
150
151
         void insert(char* s) {
             int len = strlen(s);
152
             int now = root;
153
             for (int i = 0; i < len; i++) {
154
                 int id = s[i]-'0';
155
                 if (nx[now][id] = -1)
156
                      nx[now][id] = newNode();
157
158
                 now = nx[now][id];
159
160
             end[now]=1;
         }
161
162
         void build() {
163
164
             queue<int>q;
165
             fail[root] = root;
             for (int i = 0; i < 2; i++) {
166
167
                 if (nx[root][i] == -1) {
                      nx[root][i] = root;
168
                 }
169
                 else {
170
171
                      fail[nx[root][i]] = root;
                      q.push(nx[root][i]);
172
173
                 }
174
             }
             while (!q.empty()) {
175
                 int now = q.front();
176
177
                 q.pop();
178
                 if (end[fail[now]]) end[now] = 1;
179
                 for (int i = 0; i < 2; i++) {
                      if (nx[now][i] == -1) {
180
                          nx[now][i] = nx[fail[now]][i];
181
182
183
                      else {
                          fail[nx[now][i]] = nx[fail[now]][i];
184
185
                          q.push(nx[now][i]);
                      }
186
```

```
187
                 }
            }
188
189
190
    }ac;
191
   ll dp[50][N];
192
193
    int main() {
194
        int t;
195
        scanf("%d",&t);
196
197
        while(t--){
            scanf("%d%d%s",&n,&m,s);
198
199
            ac.init();
200
            ac.insert(s);
            for(int i=0;i<n;i++){</pre>
201
                 if(s[i]=='1') s[i]='0';
202
                 else s[i]='1';
203
                 ac.insert(s);
204
                 if(s[i]=='0') s[i]='1';
205
206
                 else s[i]='0';
            }
207
            ac.build();
208
            for (int i = 0; i <= m; i++) {
209
210
                 for (int j = 0; j < ac.tot; j++) {
211
                     dp[i][j] = 0;
                 }
212
213
            }
            dp[0][0] = 1;
214
            for(int i=1;i<=m;i++){</pre>
215
                 for(int j=0;j<ac.tot;j++){</pre>
216
                     if(ac.end[j]) continue;
217
218
                     for(int k=0;k<2;k++){</pre>
219
                         int x=ac.nx[j][k];
220
                         if(!ac.end[x]){
221
                             dp[i][x]+=dp[i-1][j];
222
                         }
223
                     }
224
                 }
225
226
            ll ret=0;
227
            for(int i=0;i<ac.tot;i++) ret+=dp[m][i];</pre>
228
            printf("%lld\n",pw(m)-ret);
229
        }
230 }
231
232
    4、给出一个文本串和n次查询,每次查询给出一个模式串和相应标记op——若op为0说明查询文本串时模式串允许重
        叠, 若op为
233 1说明查询时模式串不能重叠。对每次查询,输出当前模式串在文本串中出现的个数。
234 #include<bits/stdc++.h>
235 using namespace std;
237 typedef long long ll;
238 const int N = 1e5 + 10;
239 char str[N];
240 int n;
241 char s[2][N][8];
242
    int p[2][N];
243 int cnt, cnt2;
244 int v[N],len,vis[N];
```

```
245 int 1[N];
    int vis2[N*10];
246
247
248
249 class tree {
    public:
250
251
         int nx[600005][26], fail[600005];
252
         vector<int>end[600005];
253
         int root, tot;
254
255
         int newNode() {
256
             for (int i = 0; i < 26; i++)
                 nx[tot][i] = -1;
257
258
             end[tot].clear();
259
             vis2[tot] = 0;
             return tot++;
260
         }
261
262
         void init() {
263
264
             tot = 0;
             root = newNode();
265
         }
266
267
268
         void insert(char s[8], int x) {
             int len = strlen(s);
269
             int now = root;
270
             for (int i = 0; i < len; i++) {
271
                 int id = s[i]-'a';
272
                 if (nx[now][id] = -1)
273
                      nx[now][id] = newNode();
274
275
                 now = nx[now][id];
276
277
             end[now].push_back(x);
278
         }
279
         void build() {
280
281
             queue<int>q;
282
             fail[root] = root;
             for (int i = 0; i < 26; i++) {
283
284
                 if (nx[root][i] == -1) {
                      nx[root][i] = root;
285
                 }
286
                 else {
287
288
                      fail[nx[root][i]] = root;
289
                      q.push(nx[root][i]);
290
                 }
291
             }
             while (!q.empty()) {
292
                 int now = q.front();
293
294
                 q.pop();
295
                 for (int i = 0; i < 26; i++) {
296
                      if (nx[now][i] == -1) {
                          nx[now][i] = nx[fail[now]][i];
297
                      }
298
                      else {
299
                          fail[nx[now][i]] = nx[fail[now]][i];
300
301
                          q.push(nx[now][i]);
302
                      }
                 }
303
```

```
304
             }
         }
305
306
         void query1() {
307
308
             int now = root;
             for (int i = 0; i < len; i++) {
309
                  int id = str[i] - 'a';
310
311
                  now = nx[now][id];
312
                  int tmp = now;
                  while (tmp != root) {
313
314
                      if (end[tmp].size()) {
315
                           vis2[tmp]++;
316
                      tmp = fail[tmp];
317
                  }
318
319
             for (int i = 0; i < tot; i++) {</pre>
320
321
                  if (vis2[i]) {
                      for (int j = 0; j < end[i].size(); j++) {</pre>
322
323
                           v[end[i][j]]+=vis2[i];
324
                      }
                  }
325
             }
326
327
328
         void query2() {
             int now = root; int step = 0;
329
             for (int i = 0; i < len; i++) {
330
                  int id = str[i] - 'a'; step++;
331
                  now = nx[now][id];
332
                  int tmp = now;
333
                  while (tmp != root) {
334
335
                      if (end[tmp].size() && (step - vis[tmp]) >= l[end[tmp][0]]) {
336
                           vis[tmp] = step;
337
                           vis2[tmp]++;
338
                      tmp = fail[tmp];
339
340
                  }
341
             for (int i = 0; i < tot; i++) {
342
343
                  if (vis2[i]) {
                      for (int j = 0; j < end[i].size(); j++) {</pre>
344
                           v[end[i][j]] += vis2[i];
345
346
347
                  }
348
             }
349
         }
350
   }ac;
351
352
    int main() {
353
         int t=1,pos;
         while(scanf("%s",str)==1){
354
355
             len = strlen(str);
356
             cnt = cnt2 = 0;
             scanf("%d", &n);
357
             for (int i = 1; i <= n; i++) {
358
                  scanf("%d", &pos); v[i] = vis[i] = l[i] = 0;
359
                  if (pos == 0) {
    scanf("%s", s[pos][++cnt]);
360
361
                      p[pos][cnt] = i;
362
```

```
}
363
                 else {
364
                     scanf("%s", s[pos][++cnt2]);
365
                     l[i] = strlen(s[pos][cnt2]);
366
367
                     p[pos][cnt2] = i;
                 }
368
369
             }
            ac.init();
370
             for (int i = 1; i <= cnt; i++)</pre>
371
                 ac.insert(s[0][i], p[0][i]);
372
373
             ac.build();
374
             ac.query1();
375
             ac.init();
376
             for (int i = 1; i <= cnt2; i++)</pre>
                 ac.insert(s[1][i], p[1][i]);
377
             ac.build();
378
379
             ac.query2();
             printf("Case %d\n",t++);
380
             for (int i = 1; i <= n; i++)
381
                 printf("%d\n", v[i]);
382
            printf("\n");
383
        }
384
385 }
386
387 #include <cstdio>
388 #include <cstring>
389 #include <queue>
390 #include <algorithm>
391 #define MAXN 600000+10
392 #define INF 0x3f3f3f3f
393 using namespace std;
394 int ans[MAXN][2];
395 int node[100000+10];//记录串在Trie中的结束点
396 int n;
   int op[100000+10];
397
398 struct Trie
399
    {
400
        int next[MAXN][26], fail[MAXN];
        int pos[MAXN];//记录当前节点的字符在模式串的位置
401
402
        int last[MAXN];//记录当前节点上一个匹配的位置
403
        int L, root;
        int newnode()
404
405
406
             for(int i = 0; i < 26; i++)
407
                 next[L][i] = -1;
408
             //End[L++] = 0;
409
            pos[L++] = 0;//这里忘写了, MLE到死。。。
             return L-1;
410
411
412
        void init()
413
414
             L = 0;
415
             root = newnode();
416
        void Insert(char *s, int id)
417
418
419
             int now = root;
420
             for(int i = 0; s[i]; i++)
421
             {
```

```
if(next[now][s[i]-'a'] == -1)
    next[now][s[i]-'a'] = newnode();
422
423
                  now = next[now][s[i]-'a'];
424
425
                  pos[now] = i+1;
426
             node[id] = now;//记录串结束点
427
428
         void Build()
429
430
431
             queue<int> Q;
432
             fail[root] = root;
433
              for(int i = 0; i < 26; i++)
434
                  if(next[root][i] == -1)
435
                       next[root][i] = root;
436
                  else
437
                  {
438
                       fail[next[root][i]] = root;
439
440
                       Q.push(next[root][i]);
                  }
441
             }
442
             while(!Q.empty())
443
444
445
                  int now = Q.front();
446
                  Q.pop();
                  for(int i = 0; i < 26; i++)
447
448
                       if(next[now][i] == -1)
449
                           next[now][i] = next[fail[now]][i];
450
451
                       else
452
                       {
453
                           fail[next[now][i]] = next[fail[now]][i];
                           Q.push(next[now][i]);
454
                       }
455
                  }
456
             }
457
458
         }
459
         void solve(char *s)
460
             memset(last, -1, sizeof(last));
461
             memset(ans, 0, sizeof(ans));
462
             int len = strlen(s);
463
             int now = root;
464
             for(int i = 0; i < len; i++)
465
466
467
                  now = next[now][s[i]-'a'];
                  int temp = now;
468
                  while(temp != root)
469
470
471
                       ans[temp][0]++;
472
                       if(i - last[temp] >= pos[temp])
473
474
                           ans[temp][1]++;
475
                           last[temp] = i;
476
                       temp = fail[temp];
477
478
                  }
479
             }
         }
480
```

```
481 };
   Trie ac;
482
   char str[100000+10];
483
   char s[10];
484
485
   int main()
486
   {
487
       int k = 1;
       while(scanf("%s", str) != EOF)
488
489
           ac.init(); scanf("%d", &n);
490
           for(int i = 0; i < n; i++)</pre>
491
492
              scanf("%d%s", &op[i], s);
493
              ac.Insert(s, i);
494
495
           ac.Build(); ac.solve(str);
496
           printf("Case %d\n", k++);
497
           for(int i = 0; i < n; i++)</pre>
498
              printf("%d\n", ans[node[i]][op[i]]);
499
500
           printf("\n");
501
       return 0;
502
   }
503
    1.5
        回文白动机
 1
   裸模板
   1.len[i]表示编号为i的节点表示的回文串的长度(一个节点表示一个回文串)
 3 2.next[i][c]表示编号为i的节点表示的回文串在两边添加字符c以后变成的回文串的编号(和字典树类似)。
   3.fail[i]表示节点i失配以后跳转不等于自身的节点i表示的回文串的最长后缀回文串(和AC自动机类似)。
   4.cnt[i]表示节点i表示的本质不同的串的个数(建树时求出的不是完全的,最后count()函数跑一遍以后才是正确
       的)
 6
   5.num[i]表示以节点i表示的最长回文串的最右端点为回文串结尾的回文串个数。
   6.last指向新添加一个字母后所形成的最长回文串表示的节点,便于下次insert。
   7.s[i]表示第i次添加的字符(一开始设s[0] = -1(可以是任意一个在串s中不会出现的字符))。
 9 8.p表示添加的节点个数。
10 9.tot表示添加的字符个数。
11 10.偶子树根节点为0,奇子树根节点为1,fail[0]指向1,len[0]=0,len[1]=-1,now的上一个节点为cur
12 class PalindromicTree{
13
   public:
       int nx[N][dif],fail[N],len[N],cnt[N],num[N];
14
       int tot,p,last,s[N];
15
       int newnode(int 1){
16
           memset(nx[p],0, sizeof(nx[p]));
17
18
           len[p]=l;
           cnt[p]=num[p]=0;
19
20
           return p++;
21
       void init(){
22
           tot=p=last=0;
23
           s[0]=-1,fail[0]=1;
24
           newnode(0):
25
26
           newnode(-1);
27
       int getfail(int x){
28
           while(s[tot-len[x]-1]!=s[tot])
29
30
              x=fail[x];
           return x;
31
```

```
32
        void insert(int x){
33
            s[++tot]=x;
34
            int cur = getfail(last);
35
            int now = nx[cur][x];
36
            if(!now){
37
                now = newnode(len[cur]+2);
38
                fail[now]=nx[getfail(fail[cur])][x];
39
                nx[cur][x]=now;
40
                num[now]=num[fail[now]]+1;
41
42
43
            last=nx[cur][x];
            cnt[last]++;
44
        }
45
        void makecnt(){
46
            for(int i=p-1;i>=2;i--)
47
                cnt[fail[i]]+=cnt[i];
48
        }
49
   }pt;
50
51
52
   可以双向增加,查询本质不同回文串个数,已经生成回文串个数
   const int dif = 26;
54 int n, q;
  int op;
56
   char str[5];
57
58
   class PalindromicTree{
59
   public:
60
        int nx[N][dif],fail[N],len[N],num[N];
61
        int tot[2],p,last[2],s[N];
62
63
        int newnode(int 1){
64
            memset(nx[p],0, sizeof(nx[p]));
            len[p]=l;
65
            num[p]=0;
66
            return p++;
67
68
        }
69
        void init(int x){
            memset(s,-1, sizeof(s));
70
71
            last[0]=last[1]=p=0;
            tot[0]=x;tot[1]=x-1;
72
            fail[0]=fail[1]=1;
73
            newnode(0);
74
75
            newnode(-1);
76
77
        int getfail(int x,int tag){
78
            if(!tag){
79
                while(s[tot[tag]+len[x]+1]!=s[tot[tag]])
                    x=fail[x];
80
81
            }else{
82
                while(s[tot[tag]-len[x]-1]!=s[tot[tag]])
83
                    x=fail[x];
84
            return x;
85
86
        int insert(int x,int tag){
87
88
            if(!tag)
                s[--tot[0]]=x;
89
90
            else
```

```
s[++tot[1]]=x;
91
             int cur = getfail(last[tag],tag);
92
             int now = nx[cur][x];
93
             if(!now){
94
                 now = newnode(len[cur]+2);
95
                 fail[now]=nx[getfail(fail[cur],tag)][x];
96
97
                 nx[cur][x]=now;
                 num[now]+=num[fail[now]]+1;
98
99
             last[tag]=nx[cur][x];
100
101
             if(len[last[tag]]==tot[1]-tot[0]+1)
102
                 last[tag^1]=last[tag];
             return num[last[tag]];
103
104
         }
105
    }pt;
106
107
108
    int main() {
         while(scanf("%d",&q)==1){
109
             pt.init(q);
110
             ll ans=0;
111
             while(q--){
112
                 scanf("%d",&op);
113
114
                 if(op==1){
                      scanf("%s",str);
115
                      ans+=pt.insert(str[0]-'a',0);
116
                 }else if(op==2){
117
                      scanf("%s",str);
118
                      ans+=pt.insert(str[0]-'a',1);
119
                 }else if(op==3){
120
                      printf("%d\n",pt.p-2);
121
122
                 }else{
                      printf("%lld\n",ans);
123
124
                 }
125
             }
126
         }
127
         return 0;
128
    }
129
130
    3、使用vector优化内存
131
    class PalindromicTree{
132
    public:
         vector<pii>nx[N];
133
134
         int fail[N],len[N],num[N];
135
         int tot,p,last,s[N];
136
         int newnode(int 1){
137
             nx[p].clear();
             len[p]=l;
138
             num[p]=0;
139
140
             return p++;
141
142
         void init(){
143
             tot=p=last=0;
             s[0]=-1, fail[0]=1;
144
             newnode(0);
145
             newnode(-1);
146
147
         int getfail(int x){
148
             while(s[tot-len[x]-1]!=s[tot])
149
```

```
150
                 x=fail[x];
151
             return x;
         }
152
153
154
         int is_exist(int p,int c){
155
             for(auto t:nx[p]){
                 if(t.first==c)
156
                      return t.second;
157
             }
158
159
             return 0;
         }
160
161
         void insert(int x){
162
             s[++tot]=x;
163
             int cur = getfail(last);
164
             int now = is_exist(cur,x);
165
166
             if(!now){
                 now = newnode(len[cur]+2);
167
                 fail[now]=is_exist(getfail(fail[cur]),x);
168
                 nx[cur].push_back(make_pair(x,now));
169
                 num[now]=num[fail[now]]+1;
170
171
             last=now;
172
173
         }
174 }pt;
```

1.6 后缀数组、后缀自动机

```
1
   后缀数组模板
2
   int n,m;
3 int sa[N],c[N],wa[N],wb[N];
4 int rk[N],height[N];
5 //sa[i]表示排名为i的后缀的起始位置的下标,rk[i]表示起始位置的下标为i的后缀的排名
  //c[i]表示桶,x[i]是第i个元素的第一关键字,y[i]表示第二关键字排名为i的数,第一关键字的位置
   //height[i]为LCP(i,i-1), 1<i<=n, 显然height[1]=0;
   //设h[i]=height[rk[i]],同样的,height[i]=h[sa[i]];则有h[i]>=h[i-1]-1;
8
9
10
   void DA(int *s,int n,int m){
11
       //如果多组数据,x需要初始化
12
       for(int i=0;i<=m;i++) c[i]=wa[i]=0;</pre>
       int *x=wa,*y=wb;
13
       for(int i=1;i<=n;i++) ++c[x[i]=s[i]];</pre>
14
       for(int i=2;i<=m;i++) c[i]+=c[i - 1];</pre>
15
       for(int i=n;i>=1;i--) sa[c[x[i]]--] = i;
16
17
       for(int k=1;k<=n;k<<=1){
18
           int p = 0;
           for(int i=n-k+1;i<=n;i++) y[++p]=i;</pre>
19
           for(int i=1;i<=n;i++) if(sa[i]>k) y[++p] = sa[i]-k;
20
           for(int i=0;i<=m;i++) c[i]=0;</pre>
21
           for(int i=1;i<=n;i++) ++c[x[i]];
22
23
           for(int i=2;i<=m;i++) c[i]+=c[i-1];
           for(int i=n;i>=1;i--) sa[c[x[y[i]]]--]=y[i];
24
25
           swap(x,y);
26
           x[sa[1]]=1;
27
           p=1;
           for(int i=2; i <= n; i++) x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&y[sa[i]+k]==y[sa[i-1]+k])
28
        ? p : ++p;
           if(p==n) break;
29
```

```
30
           m=p;
31
       int k=0;
32
       for (int i=1; i<=n; ++i) rk[sa[i]]=i;</pre>
33
        for (int i=1; i<=n; ++i) {</pre>
34
35
            if (rk[i]==1) continue;//第一名height为0
            if (k) --k;//h[i]>=h[i-1]-1;
36
            int j=sa[rk[i]-1];
37
           while (j+k \le n \& i+k \le n \& s[i+k] == s[j+k]) ++k;
38
39
           height[rk[i]]=k;//h[i]=height[rk[i]];
       }
40
   }
41
42
   int main() {
43
       scanf("%s",s+1);
44
45
       int n = strlen(s+1);
46
       //注意下标从s开始, 而不是s+1
       DA(s,n,127);
47
48
       for(int i=1;i<=n;i++) printf("%d ",sa[i]);</pre>
49 }
50
51 后缀数组dc3:
52 #include <cstdio>
53 #include <cstring>
54 #include <algorithm>
55 #define F(x)((x) / 3 + ((x) % 3 == 1 ? 0 : tb))
56 #define G(x) ((x) < tb ? (x) * 3 + 1 : ((x) - tb) * 3 + 2)
57 using namespace std;
58 //开三倍空间
59 const int N = 3000005;
60 int wa[N], wb[N], wss[N], wv[N], sa[N];
61 int rnk[N], height[N], s[N];
62 char str[N];
63 //sa和rnk实际上是从[0,len]的所有值,而s[len]=0,height正常
64
65
   int c0(int *r, int a, int b) {
66
67
        return r[a] == r[b] \&\& r[a + 1] == r[b + 1] \&\& r[a + 2] == r[b + 2];
68
69
   int c12(int k, int *r, int a, int b) {
70
       if (k == 2)
71
            return r[a] < r[b] \mid | r[a] == r[b] \&\& c12(1, r, a + 1, b + 1);
72
73
        return r[a] < r[b] \mid | r[a] == r[b] \&\& wv[a + 1] < wv[b + 1];
74 }
75
76
   void Rsort(int *r, int *a, int *b, int n, int m) {
       for (int i = 0; i < n; i++) wv[i] = r[a[i]];
77
       for (int i = 0; i < m; i++) wss[i] = 0;
78
79
       for (int i = 0; i < n; i++) wss[wv[i]]++;
80
       for (int i = 1; i < m; i++) wss[i] += wss[i - 1];
81
       for (int i = n - 1; i >= 0; i--) b[--wss[wv[i]]] = a[i];
82
   }
83
   void dc3(int *r, int *sa, int n, int m) {
84
       int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p;
85
86
       r[n] = r[n + 1] = 0;
       for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i;
87
88
       Rsort(r + 2, wa, wb, tbc, m);
```

```
Rsort(r + 1, wb, wa, tbc, m);
89
90
        Rsort(r, wa, wb, tbc, m);
        for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
91
             rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++;
92
93
        if (p < tbc) dc3(rn, san, tbc, p);</pre>
        else for (i = 0; i < tbc; i++) san[rn[i]] = i;
94
95
        for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
        if (n \% 3 == 1) wb[ta++] = n - 1;
96
        Rsort(r, wb, wa, ta, m);
97
        for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
98
         for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
99
100
             sa[p] = c12(wb[j] \% 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
        for (; i < ta; p++) sa[p] = wa[i++];</pre>
101
        for (; j < tbc; p++) sa[p] = wb[j++];</pre>
102
103
104
    void calheight(int *r, int *sa, int n) {
105
        int i, j, k = 0;
106
        for (i = 1; i <= n; i++) rnk[sa[i]] = i;</pre>
107
        for (i = 0; i < n; height[rnk[i++]] = k)
108
             for (k ? k-- : 0, j = sa[rnk[i] - 1]; r[i + k] == r[j + k]; k++);
109
110 }
111
112
    int main() {
113
        while (scanf("%s", str) == 1 && str[0] != '.') {
             int len = strlen(str);
114
             for (int i = 0; i < len; i++)</pre>
115
                 s[i] = str[i] - 'a' + 1;
116
             s[len] = 0;
117
             dc3(s, sa, len + 1, 105);
118
119
             calheight(s, sa, len);
             int aa = len - height[rnk[0]];
120
121
             int ans = 1;
122
             if(len % aa == 0) {
                 ans = len / aa;
123
124
125
             printf("%d\n", ans);
126
127
        return 0;
128
    }
129
130 后缀自动机:
    //凡是和后缀自动机相关的数组都必须开2倍
132 int n;
133 char s[N];
   int sz[N<<1],c[N<<1],rk[N<<1];</pre>
134
135
136 class SuffixAutoMaton{
137
    public:
138
         int last,tot;
139
        int nx[N<<1][dif],fa[N<<1],len[N<<1];</pre>
140
        void init(){
141
             last=tot=1;
             fa[1]=len[1]=0;
142
             memset(nx[1],0, sizeof(nx[1]));
143
144
145
         inline void insert(int c){
146
             int p=last,np=++tot;
147
             memset(nx[np],0, sizeof(nx[np]));
```

```
last=np; len[np]=len[p]+1;
148
             for(;p&&!nx[p][c];p=fa[p]) nx[p][c]=np;
149
             if(!p) fa[np]=1;
150
151
             else{
152
                  int q=nx[p][c];
                 if(len[p]+1==len[q]) fa[np]=q;
153
                 else{
154
                      int nq=++tot;
155
                      len[nq]=len[p]+1;
156
                     memcpy(nx[nq],nx[q], sizeof(nx[q]));
157
                      fa[nq]=fa[q]; fa[q]=fa[np]=nq;
158
159
                      for(;nx[p][c]==q;p=fa[p])
160
                          nx[p][c]=nq;
                 }
161
             }
162
             sz[np]=1;
163
164
         //求出S的所有出现次数不为1的子串的出现次数乘上该子串长度的最大值。
165
166
         11 query(){
             11 ans=0;
167
             for(int i=1;i<=tot;i++) c[len[i]]++;</pre>
168
             for(int i=1;i<=tot;i++) c[i]+=c[i-1];</pre>
169
             for(int i=1;i<=tot;i++) rk[c[len[i]]--]=i;</pre>
170
             for(int i=tot;i>=1;i--){
171
172
                 int p=rk[i];
                 sz[fa[p]]+=sz[p];
173
                 if(sz[p]>1){
174
                     ans=max(ans,(ll)sz[p]*len[p]);
175
176
177
178
             return ans;
179
   }SAM;
180
181
    //set优化nx
182
    class SuffixAutoMaton{
183
    public:
184
185
         int last,tot;
         set<pii>nx[N<<1];</pre>
186
187
         int fa[N<<1],len[N<<1];</pre>
188
         ll ret;
         void init(){
189
             last=tot=1;
190
191
             fa[1]=len[1]=0; nx[1].clear(); ret=0;
192
         inline void insert(int c){
193
             int p=last,np=++tot;
194
             nx[np].clear();
195
             last=np; len[np]=len[p]+1;
196
197
             for(;p;p=fa[p]) {
198
                 auto x=nx[p].lower_bound(make_pair(c,0));
199
                 if(x=nx[p].end()||(*x).first!=c){}
200
                      nx[p].insert(make_pair(c,np));
201
                 }else break;
202
             if(!p) fa[np]=1;
203
204
             else{
205
                  int q=(*nx[p].lower_bound(make_pair(c,0))).second;
206
                 if(len[p]+1==len[q]) fa[np]=q;
```

```
207
                  else{
208
                      int nq=++tot;
                      len[nq]=len[p]+1;
209
                      nx[\overline{nq}]=nx[q];
210
                      fa[nq]=fa[q]; fa[q]=fa[np]=nq;
211
                      for(;;p=fa[p]) {
212
                          auto x=nx[p].lower_bound(make_pair(c,0));
213
                          if((*x).second!=q){
214
                               break;
215
                          }else{
216
217
                               nx[p].erase(x);
218
                               nx[p].insert(make_pair(c,nq));
                          }
219
                      }
220
221
                  }
             }
222
223
224
    }SAM;
225
226
    //set优化vector
227
    vector<pii>::iterator ite;
228
229 class SuffixAutoMaton{
230
    public:
231
         int last,tot;
         vector<pii>nxΓN<<1];
232
         int fa[N<<1],len[N<<1];</pre>
233
234
         ll ret;
         void init(){
235
             last=tot=1;
236
             fa[1]=len[1]=0; nx[1].clear(); ret=0;
237
238
         }
239
         int isOK(int p,int c){
240
             for(auto x:nx[p]){
241
                  if(x.first==c) return x.second;
242
243
             }
244
             return 0;
         }
245
246
247
         void Del(int p,int c){
             for(ite=nx[p].begin();ite!=nx[p].end();ite++){
248
249
                  if((*ite).first==c){
250
                      nx[p].erase(ite);return;
251
                  }
252
             }
253
         }
254
         inline void insert(int c){
255
256
             int p=last,np=++tot;
257
             nx[np].clear();
258
             last=np; len[np]=len[p]+1;
             for(;!isOK(p,c);p=fa[p]) nx[p].push_back(make_pair(c,np));
259
260
             if(!p) fa[np]=1;
261
             else{
                  int q=is0K(p,c);
262
263
                  if(len[p]+1==len[q]) fa[np]=q;
264
                  else{
                      int nq=++tot;
265
```

```
266
                    len[nq]=len[p]+1;
                    nx[nq]=nx[q];
267
                    fa[nq]=fa[q]; fa[q]=fa[np]=nq;
268
269
                    for(;is0K(p,c)==q;p=fa[p]) {
270
                        Del(p,c);
                        nx[p].push_back(make_pair(c,nq));
271
272
                    }
273
                }
274
            }
            ret+=len[np]-len[fa[np]];
275
276
277
    }SAM;
278
279
   //广义后缀自动机
280
281
    1、直接建立新节点
282
    给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数。两个方案不同当且仅当这两个子
        串中有一个位置不同。
    //每次加入新字符串需要将last=1,此模板有时候有节点表示完全相同的东西len[fa[i]]==len[i]如果直接进行基
283
        数排序会wa SAM能直接基数
    //排序代表拓扑序成立的条件是len[i]严格大于len[fa[i]], (比如ab,abc) 因此不能使用基数排序, 而是建立
284
        fail树进行答案计数。
285 class SuffixAutoMaton{
    public:
287
        int last,tot;
        int nx[N<<1][dif],fa[N<<1],len[N<<1];</pre>
288
        ll sz[2][N<<1];
289
        void init(){
290
            last=tot=1;
291
            fa[1]=len[1]=0;
292
            memset(nx[1],0, sizeof(nx[1]));
293
294
        inline void insert(int c,int op){
295
296
            int p=last,np=++tot;
297
            memset(nx[np],0,sizeof(nx[np]));
298
            last=np; len[np]=len[p]+1;
299
            for(;p&&!nx[p][c];p=fa[p]) nx[p][c]=np;
300
            if(!p)
                fa[np]=1;
301
302
            else{
303
                int q=nx[p][c];
                if(len[p]+1==len[q]) fa[np]=q;
304
305
                else{
306
                    int nq=++tot;
307
                    len[nq]=len[p]+1;
308
                    memcpy(nx[nq],nx[q], sizeof(nx[q]));
309
                    fa[nq]=fa[q]; fa[q]=fa[np]=nq;
                    for(;nx[p][c]==q;p=fa[p])
310
                        nx[p][c]=nq;
311
312
                }
313
            }
314
            sz[op][np]=1;
        }
315
316
317
        int head[N<<1],cnt;</pre>
318
        struct Edge{
319
            int to, nx;
320
        }e[N];
321
```

```
322
        inline void addedge(int a,int b){
             e[cnt]=(Edge){b,head[a]}; head[a]=cnt++;
323
        }
324
325
326
        ll ret;
327
        void dfs(int u){
328
             for(int i=head[u];i;i=e[i].nx){
329
330
                 int v=e[i].to;
                 dfs(v);
331
332
                 sz[0][u]+=sz[0][v]; sz[1][u]+=sz[1][v];
333
                 ret+=(len[v]-len[u])*sz[0][v]*sz[1][v];
             }
334
        }
335
336
        void query(){
337
             memset(head,0, sizeof(int)*(tot+1));cnt=1;
338
339
             for(int i=2;i<=tot;i++) addedge(fa[i],i);</pre>
             ret=0; dfs(1);
340
             printf("%lld\n",ret);
341
342
    }SAM;
343
344
   //若想直接使用基数排序可以在main函数中进行一个小操作
    //通过画{ab,abc}可知, 节点(2,4)和节点(3,5)其实代表一样的东西, 因此直接在main函数将p进行转移
347
    //使得基数排序时不会出错
348
    int main(){
        SAM.init();
349
        scanf("%s",s);
350
        n=strlen(s);
351
352
        int p=1;
353
         for(int i=0;i<n;i++)</pre>
             SAM.insert(s[i]-'a'),p=SAM.nx[p][s[i]-'a'],SAM.sz[0][p]++;
354
        SAM.last=p=1;
355
        scanf("%s",s);
356
        n=strlen(s);
357
358
        for(int i=0;i<n;i++)</pre>
359
             SAM.insert(s[i]-'a'),p=SAM.nx[p][s[i]-'a'],SAM.sz[1][p]++;
360
        SAM.calc();
361
    }
362
363
364
    //选择性建立新节点
365
    class SuffixAutoMaton{
366
    public:
367
        int last,tot;
        int nx[N<<1][26],fa[N<<1],len[N<<1];</pre>
368
        int sz[2][N<<1],rk[N<<1],c[N<<1];</pre>
369
        void init(){
370
371
             last=tot=1;
372
             fa[1]=len[1]=0;
373
             memset(nx[1],0, sizeof(nx[1]));
374
375
        //新字符串插入时需要提前将last设置为1
376
        inline void insert(int c){
             int p=last;
377
             if(nx[p][c]&&len[nx[p][c]]==len[p]+1){
378
379
                 last=nx[p][c];return;
             }
380
```

```
381
             int np=++tot;
             memset(nx[tot],0, sizeof(nx[tot]));
382
             last=np; len[np]=len[p]+1;
383
             for(;p&&!nx[p][c];p=fa[p]) nx[p][c]=np;
384
385
             if(!p) fa[np]=1;
             else{
386
387
                  int q=nx[p][c];
                  if(len[p]+1==len[q]) fa[np]=q;
388
                  else{
389
390
                      int nq=++tot;
391
                      len[nq]=len[p]+1;
392
                      memcpy(nx[nq],nx[q], sizeof(nx[q]));
                      fa[nq]=fa[q]; fa[q]=fa[np]=nq;
393
394
                      for(;nx[p][c]==q;p=fa[p])
395
                          nx[p][c]=nq;
                  }
396
             }
397
         }
398
399
         void query(){
400
             ll ret=0;
401
             for(int i=1;i<=tot;i++) c[len[i]]++;</pre>
402
             for(int i=1;i<=tot;i++) c[i]+=c[i-1];</pre>
403
404
             for(int i=1;i<=tot;i++) rk[c[len[i]]--]=i;</pre>
405
             for(int i=tot;i>=1;i--){
                  int p=rk[i];
406
                  sz[0][fa[p]]+=sz[0][p]; sz[1][fa[p]]+=sz[1][p];
407
                  ret+=(ll)sz[0][p]*sz[1][p]*(len[p]-len[fa[p]]);
408
409
             printf("%lld\n",ret);
410
         }
411
412
413
    }SAM;
414
415
    int main(){
416
417
         SAM.init();
418
         scanf("%s",s);
         int len=strlen(s),p=1;
419
420
         for(int i=0;i<len;i++){</pre>
             int c=s[i]-'a';SAM.insert(c);
421
422
             p=SAM.nx[p][c];SAM.sz[0][p]++;
423
424
         SAM.last=p=1;
425
         scanf("%s",s);
         len=strlen(s);
426
427
         for(int i=0;i<len;i++){</pre>
428
             int c=s[i]-'a';SAM.insert(c);
429
             p=SAM.nx[p][c];SAM.sz[1][p]++;
430
431
         SAM.query();
432 }
```

2 动态规划

2.1 背包 dp

```
1 //m-背包容量, w-物品体积, val-物品价值, cnt-物品数量
   //01背包
2
3
   void OneZero(int m,int w,int val){
4
       for(int i=m;i>=w;i--)
5
            dp[i]=max(dp[i-w]+val,dp[i]);
6
   }
7
8
  //完全背包
   void Com(int m,int w,int val){
9
10
       for(int i=0;i<=m-w;i++)</pre>
11
            dp[i+w]=max(dp[i]+val,dp[i+w]);
12 }
13
   //多重背包
14
   void Mul(int m,int w,int val,int cnt){
15
16
       if(cnt*w>=m){
            Com(m, w, val);
17
18
            return;
19
20
       for(int i=1;i<=cnt;i<<=1){</pre>
            OneZero(m,w*i,val*i); cnt-=i;
21
22
       if(cnt) OneZero(m,cnt*w,val*cnt);
23
  }
24
   2.2 数位 dp
   int gcd(int a, int b) {
1
2
       return b ? gcd(b, a%b) : a;
3
   }
4
   11 dfs(int pos, int tot, int lcm, bool limit) {
5
6
       if (pos == 0)
7
            return (tot%lcm == 0);
8
       if (!limit&&dp[pos][ha[lcm]][tot] != -1)
9
            return dp[pos][ha[lcm]][tot];
10
       ll res = 0;
       int top = limit ? di[pos] : 9;
11
       for (int i = 0; i <= top; i++) {</pre>
12
            res += dfs(pos - 1, (tot * 10 + i) % mod, i ? i * lcm / gcd(i, lcm) : lcm, i ==
13
        di[pos] && limit);
14
       if (!limit)
15
            dp[pos][ha[lcm]][tot] = res;
16
17
       return res;
   }
18
19
   ll solve(ll x) {
20
21
       int pos = 0;
22
       while (x) {
            di[++pos] = x \% 10;
23
24
            x /= 10;
25
26
       return dfs(pos, 0, 1, true);
```

27 }

43

44

观察一下在每行每列上是否单

之内单调, 比如对于区间dp

```
2.3 dp 优化
```

```
1、斜率优化
1
  int tail=0,head=0;
2
  q[tail++]=0;
3
  for(int i=1;i<=n;i++){</pre>
4
      //判断答案是否最优
5
      while(tail>1+head&&isOK(i,q[head+1],q[head])) head++;
6
      dp[i]=getsum(i,q[head]);
7
8
      //判断新加入的点是否最优
9
      while(tail>1+head&&isOK2(i,q[tail-1],q[tail-2])) tail--;
10
      a[tail++]=i;
11
  printf("%lld\n",dp[n]);
12
13
14
  2、四边形不等式
  在dp问题中,我们常遇见这样的一类问题,他们的dp转移方程式这样的: dp[i][j]=min{dp[i][k]+dp[k+1][j]+
15
      cost[i][j]}
16
  对于(a < b < c < d),如果有f[a][c] + f[b][d] < e f[b][c] + f[a][d],则说明f满足四边形不等式
17
  1、当决策代价函数w[i][j]满足w[i][j]+w[i'][j']<=w[i'][j]+w[i][j'] (i<=i'<=j<=j')时,称满足四边
      形不等式
19
  2、当函数w[i][j]满足w[i'][j]<=w[i][j'](i<=i'<=j<=j')时,称w关于区间包含关系单调.
  结论: 若决策代价函数满足四边形不等式,包含关系单调,且dp[i][j]方程也满足四边形不等式,设s[i][j]表示
  dp[i][j]取得最优值时对应的下标,即(i<=k<=j)。就满足s[i][j-1]<=s[i][j]<=s[i+1][j]。
22
23
  一般做法:
  对于dp转移合法的证明,其实很多时候直接打表就行了,比如先跑一个0(n^3)的代码,跑的时候判断是否满足四边
      形不
25
   等式,决策是否单增等等,如果不满足就输出false之类的,或者打一个决策表出来观察,这样其实会省下一部分时
26
  //判断是否满足平行四边形不等式优化w[i][j]+w[i+1][j+1]<=w[i+1][j]+w[i][j+1]
27
28
  bool is0K(){
      for(int i=1;i<n;i++){</pre>
29
30
          for(int j=i+2; j<n; j++){</pre>
31
             if(w[i][j]+w[i+1][j+1]<=w[i+1][j]+w[i][j+1]) continue;
32
             else return false;
33
         }
34
35
      return true;
36
  }
37
38
      四边形不等式优化代码十分简单,且效果也很好,但是最令人头疼的就是如何证明w满足四边形不等式。有可能这个
39
      对大家还比较容易, 但是要
  知道. 满足这些性质的转移方程不止这一种! 对于f[i][j] = min{ f[i-1][k] + w(k+1,j) | i-1 <= k < j
40
       }这个方程来说,若w满足四
41
  边形不等式,f同样满足四边形不等式,也可以使用决策单调性优化,但是证明就比较困难了。YJQ教给我一种很好的绕
      过证明使用四边形不等式的
42
  方法,但是使用起来不是那么简单,有一些注意事项。下面的内容可就是别人博客里没有的东西了!
```

大致方法很简单,如果我们觉得一个方程能用四边形不等式优化,就把他的所有决策点,也就是p矩阵打印出来,

如果单调,就说明这个方程可以用四边形不等式优化。不过需要小心一些地方。首先,注意决策点应该在哪些范围

```
45 的方程来说,决策点的单调范围就应该是行号小于等于列号的那一部分。这点在实际问题中应该很容易体现出来,比如
对于区间dp,行号大于列号
```

46 的那些状态肯定是无用的,决策单调性也肯定不关它们什么事。

47

19

for(int j=1; j<=m; j++){</pre>

其次,应该注意递推时枚举的顺序和状态之间的依赖关系。比如对于上面那个方程来说,决策矩阵p在每行每列单调递增,所以应该把k的枚举

- 48 范围该成p[i-1][j]至p[i][j+1],注意这里和区间dp就不一样了,所以应该根据状态之间的依赖关系灵活调整枚举范围。而且,如果我们遵循这
- 49 样的依赖关系,就应该有p[i][j]依赖于p[i][j+1],所以k应该从大到小倒着枚举。

```
2.4 编辑距离
1
   编辑距离:
2
       给定两个序列S和S2,通过一系列字符编辑(插人、删除、替换)等操作,将S转变成S2,完成这种转换所需要的最
       少的编辑操
   作个数称为S和S2的编辑距离.
3
4
5
   int main(){
       scanf("%s%s",s+1,s2+1);
6
7
       int len=strlen(s+1),len2=strlen(s2+1);
       dp[1][1]=s[1]==s2[1]?0:1;
8
       for(int i=2;i<=len;i++) dp[i][1]=dp[i-1][1]+1;</pre>
9
       for(int j=2; j<=len2; j++) dp[1][j]=dp[1][j-1]+1;</pre>
10
       for(int i=2;i<=len;i++){</pre>
11
           for(int j=2;j<=len2;j++){</pre>
12
               dp[i][j]=min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1;
13
               if(s[i]==s2[j]) dp[i][j]=min(dp[i][j],dp[i-1][j-1]);
14
           }
15
16
       for(int i=1;i<=len;i++){</pre>
17
18
           for(int j=1; j<=len2; j++){</pre>
               printf("%d ",dp[i][j]);
19
20
           printf("\n");
21
       }
22
   }
23
   2.5 状压 dp
   遍历方式:
   //第一层从[0,pw(n)-1]的遍历方式,正好从前到后扫到所有n个位置变化状态
   //第二层可以检验某一位是否存在,从而做出操作
3
   for(int i=0;i<pw(n);i++){</pre>
4
       for(int j=0;j<n;j++){</pre>
5
6
           if(pw(j)&i){
7
8
           }
9
       }
10
   }
11
12
   //矩阵类型的遍历,通过预处理减少不必要的状态来降低复杂度
13
   int main(){
14
       int x;
15
       scanf("%d%d",&n,&m);
16
17
       int top=pw(m);
       for(int i=1;i<=n;i++){</pre>
18
```

```
scanf("%d",&x);
20
21
                g[i]=(g[i]<<1)+x; //预处理状态, 将其直接保存
22
            }
23
        }
        a[0]=0;
24
25
        for(int i=0;i<top;i++){</pre>
            if((((i<<1)&i)==0)&&(((i>>1)&i)==0)){
26
27
                a[++a[0]]=i; //通过移位操作, 预处理出相邻不为1的状态
28
        }
29
30
        dp[0][0]=1;
31
        for(int i=1;i<=n;i++){</pre>
32
            //遍历矩阵上下关系来处理
            for(int j=1;j<=a[0];j++){</pre>
33
34
                for(int k=1;k<=a[0];k++){</pre>
35
36
                }
37
            }
38
39
        ll ret=0; //答案统计
40
        for(int i=0;i<top;i++) ret=(ret+dp[n][i])%mod;</pre>
41
        printf("%lld\n",ret);
42
43
   }
44
45
   //初始化状态,然后用已有状态去推导接下来的状态,写起来有时候会方便很多
   for(int i=0;i<n;i++) if(p[i]==-1||p[i]==0) dp[pw(i)][i]=0;</pre>
   for(int i=0;i<top;i++){</pre>
47
        for(int j=0;j<n;j++){</pre>
48
            if(dp[i][j]==-inf) continue;
49
            for(int k=0;k<n;k++){</pre>
50
                if(k==j) continue;
51
                if(p[k]=-1||p[k]==cnt[i])
52
                    if(pw(k)&i) continue;
53
                    dp[i|pw(k)][k]=max(dp[i|pw(k)][k],dp[i][j]+a[j]*a[k]);
54
                }
55
56
            }
57
        }
   }
58
59
60
   //可以快速求出所有关于S的二进制子集
61
   int S=i;
62
63
   for (int s=(S-1)\&S; s; s=(s-1)\&S) {
64
         int t=S^s;
65
   }
```

3 数据结构

3.1 并查集

```
1、并查集模板
1
   int find(int x){
2
3
        if (x != parent[x])
 4
            parent[x] = find(parent[x]);
5
        return parent[x];
6
   }
7
8
  2、带权并查集
9
   int find(int x){
10
        if (x != parent[x]){
11
            int t = parent[x];
            parent[x] = find(parent[x]);
12
            value[x] += value[t];
13
14
15
        return parent[x];
   }
16
17
   void Merge(int x,int y,int v){
18
        int fx = find(x);
19
20
        int fy = find(y);
        if (fx != fy){
21
            parent[fx] = fy;
22
23
            value[fx] = -value[x] + value[y] + v;
        }
24
25
   }
    3.2 线段树
1
   struct SegTree{
2
        ll sum[N<<2];
3
        static inline int lson(int k) {return k<<1;}</pre>
4
5
        static inline int rson(int k) {return k<<1|1;}</pre>
6
7
8
        void up(int k){
            sum[k]=sum[lson(k)]+sum[rson(k)];
9
10
11
        void build(int k,int l,int r){
12
13
            if(l==r){
                scanf("%lld",&sum[k]);
14
                return;
15
16
            }
            int mid=(l+r)>>1;
17
            build(lson(k),1,mid);
18
            build(rson(k),mid+1,r);
19
            up(k);
20
21
        }
22
        void update(int k,int l,int r,int pos,int val){
23
24
            if(l==r){
                sum[k]=max(0ll,sum[k]+val);
25
26
                return;
```

```
27
            int mid=(l+r)>>1;
28
            if(pos<=mid) update(lson(k),l,mid,pos,val);</pre>
29
            else update(rson(k),mid+1,r,pos,val);
30
31
            up(k);
        }
32
33
        11 query(int k,int l,int r,int x,int y){
34
35
            if(l==x&&r==y){
36
                 return sum[k];
37
            }
38
            int mid = (l+r)>>1;
            if(y<=mid) return query(lson(k),1,mid,x,y);</pre>
39
40
            else if(x>mid) return query(rson(k),mid+1,r,x,y);
            else return query(lson(k),l,mid,x,mid)+query(rson(k),mid+1,r,mid+1,y);
41
        }
42
43
   }st;
   3.3 st 表
1 1、st表
2
   struct ST {
3
        int k2[21], st[21][N], Log[N];
4
        void init_st(int n) {
5
            k2[0] = 1;
            for (int i = 1; i \le 20; i++) k2[i] = 2 * k2[i - 1];
6
            Log[0] = -1; for (int i = 1; i < N; i++) Log[i] = Log[i / 2] + 1;
7
            for (int i = 1; i <= n; i++) st[0][i] = height[i];</pre>
8
            for (int i = 1; i <= Log[n]; i++) {</pre>
9
                for (int j = 1; j + k2[i] - 1 <= n; j++) {
10
                     st[i][j] = min(st[i - 1][j], st[i - 1][j + k2[i - 1]]);
11
                }
12
            }
13
14
15
        int query_min(int x, int y) {
16
            int len = log2(y - x + 1);
            return min(st[len][x], st[len][y - k2[len] + 1]);
17
18
19
   }st;
20
   精简版
   scanf("%d%d",&n,&m);
   for(int i=1;i<=n;i++)</pre>
23
        scanf("%d",&st[0][i]);
24
   int top = log2(n);
25
   for(int i=1;i<=top;i++){</pre>
26
27
        for(int j=1;j+(1<<i)-1<=n;j++){</pre>
28
            st[i][j]=min(st[i-1][j],st[i-1][j+(1<<i-1)]);
29
30
   int x=1, y=m;
31
   while(y<=n){</pre>
32
33
         int len = log2(y-x+1);
         printf("%d\n",min(st[len][x],st[len][y-(1<<len)+1]));</pre>
34
35
         x++;y++;
36 }
```

3.4 线性基

```
struct Linear_Basis{
1
2
        ll d[61],p[61];
3
        int cnt;
4
        bool zero;
5
        //初始化
        Linear_Basis(){
6
7
            memset(d,0,sizeof(d));
            memset(p,0,sizeof(p));
8
9
            cnt=0; zero=0;
10
        .
//插人
11
12
        bool insert(ll val){
            for (int i=60;i>=0;i--)
13
                if (val&(1LL<<i)){</pre>
14
15
                     if (!d[i]){
                         d[i]=val;
16
17
                         break;
18
19
                     val^=d[i];
20
21
            return val>0;
22
        }
23
        //查询线性基所能表示最大值
24
        11 query_max(){
25
            ll ret=0;
26
            for (int i=60;i>=0;i--)
                if ((ret^d[i])>ret)
27
                     ret^=d[i];
28
29
            return ret;
        }
30
        //查询线性基所能表示最小值
31
32
        ll query_min(){
            for (int i=0;i<=60;i++)</pre>
33
                if (d[i])
34
35
                     return d[i];
36
            return 0;
37
38
        //重构,消除多余的1
39
        void rebuild(){
            for (int i=60;i>=0;i--)
40
                for (int j=i-1;j>=0;j--)
41
                     if (d[i]&(1LL<<j))
42
                         d[i]^=d[j];
43
            for (int i=0;i<=60;i++)
44
45
                if (d[i])
46
                     p[cnt++]=d[i];
47
        //求第k小数,注意特判0
48
        ll kthquery(ll k){
49
            ll ret=0;
50
            if (k>=(1LL<<cnt))
51
52
                 return -1;
            for (int i=60;i>=0;i--)
53
                if (k&(1LL<<i))
54
55
                     ret^=p[i];
56
            return ret;
        }
57
```

```
58
       //查询是否存在x->y的变化
       bool query_exist(ll x,ll y){
59
           for(int i=60;i>=0;i--){
60
61
               if((111<<i)&y){
62
                    if((1ll<<i)&x)
63
                        continue;
64
                    else
                       x^=d[i];
65
               }else if((111<<i)&x){</pre>
66
67
                    x^=d[i];
68
69
           }
70
           return x==y;
       }
71
   };
72
73
74
   //线性基合并
   Linear_Basis merge(const Linear_Basis &n1,const Linear_Basis &n2){
75
       Linear_Basis ret=n1;
76
       for (int i=60;i>=0;i--)
77
           if (n2.d[i])
78
79
               ret.insert(n1.d[i]);
80
       return ret;
81
  }
        树分治
   3.5
   //多组测试数据,每次输入n、m,和一棵n个点的有边权的树,问你满足x到y距离小于等于m的无序点对(x,y)的个数
       是多少。
   int n,k,head[N],tot;
   bool vis[N];
  int part[N],cnt[N],root,deep[N],d[N],dtot,sn;
5
   ll ans;
6
   struct node{
       int to,nx,val;
7
   }edge[N*2];
8
9
   void add_edge(int from,int to,int val){
10
11
       edge[tot].to=to;
12
       edge[tot].val=val;
       edge[tot].nx=head[from];
13
       head[from]=tot++;
14
   }
15
16
17
   //求取重心
   void getRoot(int from,int pre){
18
       cnt[from]=1; part[from]=0;
19
       for(int i=head[from];i;i=edge[i].nx){
20
           int to=edge[i].to;
21
           if(to==prellvis[to]) continue;
22
           qetRoot(to,from); cnt[from]+=cnt[to];part[from]=max(part[from],cnt[to]);
23
       }
24
25
       part[from]=max(part[from],sn-cnt[from]);
26
       if(part[root]>part[from]) root=from;
   }
27
28
29
   //求取树深度
   void getDeep(int from, int pre){
```

```
d[++dtot]=deep[from];
31
        for(int i=head[from];i;i=edge[i].nx){
32
            int to=edge[i].to;
33
            if(to==prellvis[to]) continue;
34
35
            deep[to]=deep[from]+edge[i].val;
            getDeep(to,from);
36
37
        }
   }
38
39
40
   //计算答案贡献
   ll calc(int from){
41
42
        dtot=0; getDeep(from,0);
        sort(d+1,d+1+dtot);
43
        11 sum=0;
44
        int i=1, j=dtot;
45
        while(i<j){</pre>
46
47
            if(d[i]+d[j]<=k) sum+=j-i,i++;
            else j--;
48
49
50
        return sum;
   }
51
52
   //分治
53
   void Divide(int from){
54
55
        deep[from]=0; ans+=calc(from); vis[from]=1;
        for(int i=head[from];i;i=edge[i].nx){
56
            int to=edge[i].to;
57
            if(vis[to]) continue;
58
            deep[to]=edge[i].val; ans-=calc(to); sn=part[to];
59
            root=0; getRoot(to,0); Divide(root);
60
        }
61
   }
62
63
   int main() {
64
        part[0]=inf;
65
66
        int u,v,w;
67
        while(scanf("%d%d",&n,&k)==2){
68
            if(n==0\&\&k==0) break;
            tot=1;
69
70
            memset(head,0, sizeof(int)*(n+1));
71
            memset(vis,0, sizeof(bool)*(n+1));
            for(int i=1;i<n;i++){</pre>
72
                scanf("%d%d%d",&u,&v,&w);
73
74
                add_edge(u,v,w); add_edge(v,u,w);
            }
75
76
            ans=root=0; sn=n;
77
            getRoot(1,0); Divide(root);
78
            printf("%lld\n",ans);
79
80
        return 0;
81
  }
   3.6 树重心
1 int n;
2 vector<int>e[N];
3 int min_p,min_part;
4 int node[N];
```

```
5 //树的重心也叫树的质心。对于一棵树n个节点的无根树,找到一个点,使得把树变成以该点为根的有根
6
  //树时,最大子树的结点数最小。换句话说,删除这个点后最大连通块(一定是树)的结点数最小。
7
  //性质:
  //1、树中所有点到某个点的距离和中,到重心的距离和是最小的,如果有两个距离和,他们的距离和一样。
9 //2、把两棵树通过一条边相连,新的树的重心在原来两棵树重心的连线上。
10 //3、一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置。
  //4、一棵树最多有两个重心, 且相邻。
11
12
  //min_p,min_part是求得重心
13
14
  void dfs(int from,int pre){
15
16
      node[from]=1; int max_part=0;
      for(int i=0;i<e[from].size();i++){</pre>
17
          int to=e[from][i];
18
          if(pre==to) continue;
19
          dfs(to,from);
20
          node[from]+=node[to];
21
          max_part=max(max_part,node[to]);
22
23
      max_part=max(max_part,n-node[from]);
24
25
      if(max_part<min_part){</pre>
          min_p=from; min_part=max_part;
26
27
      }
28
  }
29
   int main() {
30
      int t,u,v;
31
      scanf("%d",&t);
32
      while(t--){
33
          scanf("%d",&n);
34
          for(int i=1;i<=n;i++) e[i].clear();</pre>
35
          for(int i=1;i<n;i++){</pre>
36
             scanf("%d%d",&u,&v);
37
             e[u].push_back(v); e[v].push_back(u);
38
          }
39
          min_p=0; min_part=inf;
40
41
          dfs(1,0);
42
          printf("%d %d\n",min_p,min_part);
43
      }
      return 0;
44
  }
45
   3.7
       树状数组
1
   树状数组:
2
      树状数组常用于维护前缀信息,如前缀和、前缀乘积等等。最常见的如给你一个长度为n的数组,单点修改,查询
      区间的和。
3
      在树状数组中,第i个点储存了右端点为i,区间长度为lowbit(i)的区间元素和,也就是从i-lowbit(i)+1到i
      的区间和
  Lowbit(x)表示求x在二进制下位最低的1连同后面的0所组成的数字,举个例子,6的二进制表示是110(2),那么
      lowbit(6)=10(2)=2. 也就是lowbit(6)=2
5
  //注意0
6
  //对一个数组进行区间修改可以使用差分思想,即初始是c[N]=\{0\},修改时add(l,val),add(r+1,-val),getsum
      (i)+a[i]即为更新后结果
   struct BIT{
8
      ll c[N];
9
10
```

```
inline int lowbit(int x) {return x&-x;}
11
12
      void add(int x,int val){
13
          for(;x<=n;x+=lowbit(x)){</pre>
14
             c[x]+=val;
15
         }
16
      }
17
18
      11 sum(int x){
19
         11 sum=0;
20
21
          for(;x>0;x-=lowbit(x)){
22
             sum+=c[x];
23
24
         return sum;
      }
25
  };
26
27
28
  树状数组维护前缀和的前缀和:
29
      主要应用在以下两个方面: 1、区间加数,区间求和问题。2、区间加等差数列,单点求值问题。
30
      设s1表示数组a的前缀和, s2表示s1的前缀和, 则有:
      s1[i]=sigma(j=1,i)a[j]
31
      s2[i]=sigma(j=1,i)s1[j]
32
      经化简可得: s2[i]=(i+1)sigma(j=1,i)a[j]-sigma(j=1,i)j*a[j]
33
34
      因此我们只需要开两个数组维护(i+1)sigma(j=1,i)a[j]和sigma(j=1,i)j*a[j]即可。
35
36
  更高阶情况查看纸质模板
   3.8 树的直径
  树的直径:
1
2
     概念:
3
         树上距离最远的点(树的最长路)。
     思想
4
         在树上任选一点u,求距离点u最远的点v,再求距离点v最远的点s,点v到点s的距离即为树的直径。
5
6
     过程:
         两遍BFS:先任选一个起点BFS找到最长路的终点,再从终点进行BFS,则第二次BFS找到的最长路即为树的
7
      直径; 原理: 设起点
     为u,第一次BFS找到的终点v一定是树的直径的一个端点。
8
9
     证明:
         1) 如果u是直径上的点,则v显然是直径的终点(因为如果v不是的话,则必定存在另一个点w使得u到w的距离
10
```

更长,则于BFS找到了v矛盾)

一定是直径的一个端点,所以 从v进行BFS得到的一定是直径长度

11

12

2) 如果u不是直径上的点,则u到v必然于树的直径相交(反证),那么交点到v必然就是直径的后半段了所以v

4 图论

4.1 最短路

```
1 1, Dijkstra
   //不能处理负权图,复杂度(V+E)logV
3 int n,m,tot,head[N];
 4 ll dis[N];
5 bool vis[N];
   struct node{
6
7
        int id;
        11 d;
8
9
        node(){}
10
        node(int id,ll d):id(id),d(d){}
11
        bool operator < (const node& x) const {</pre>
12
            return d>x.d;
        }
13
   };
14
15
   struct edge{
16
17
        int to, nx;
        11 w;
18
   }e[N<<1];</pre>
19
20
   //tot初始化为1
21
22
   void add_edge(int from,int to,ll w){
23
        e[tot].to=to; e[tot].w=w;
24
        e[tot].nx=head[from]; head[from]=tot++;
   }
25
26
   void Dijkstra(int st){
27
       memset(dis,0x3f, sizeof(ll)*(n+1));
28
        memset(vis,0, sizeof(bool)*(n+1));
29
30
        dis[st]=0;
31
        priority_queue<node>q;
        node y(st,0);
32
33
        q.push(y);
34
        while(!q.empty()){
35
            node x=q.top(); q.pop();
36
            if(vis[x.id]) continue;
37
            vis[x.id]=1;
            for(int i=head[x.id];i;i=e[i].nx){
38
                int to=e[i].to,w=e[i].w;
39
                if(vis[to]) continue;
40
                if(w+dis[x.id]<dis[to]){</pre>
41
42
                    dis[to]=w+dis[x.id];
                    y.d=dis[to]; y.id=to;
43
44
                    q.push(y);
45
                }
            }
46
        }
47
   }
48
49
50 2, Floyd
51 //可以求任意两个点的最短路,以及输出字典序的路径
  int n;
  int link[N][N],path[N][N];
   int w[N];
55
```

```
void Floyd(int n){
56
        for(int k=1;k<=n;k++){</pre>
57
            for(int i=1;i<=n;i++){</pre>
58
                for(int j=1; j<=n; j++){</pre>
59
                    if(link[i][k]+link[k][j]+w[k]<link[i][j]){
60
                        link[i][j]=link[i][k]+link[k][j]+w[k];
61
62
                        path[i][j]=path[i][k];
                    }else if(link[i][k]+link[k][j]+w[k]==link[i][j]&&path[i][j]>path[i][k])
63
        {
                        path[i][j]=path[i][k];
64
                    }
65
66
                }
            }
67
        }
68
    }
69
70
    int main() {
71
72
        int x;
        while(scanf("%d",&n)==1){
73
74
            if(n==0) break;
            for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){</pre>
75
                scanf("%d",&x);
76
77
                if(x==-1) link[i][j]=inf;
78
                else link[i][j]=x;
79
                path[i][j]=j;
80
            for(int i=1;i<=n;i++) scanf("%d",&w[i]);</pre>
81
            Floyd(n);
82
            int start, endd;
83
            while(scanf("%d%d",&start,&endd)==2){
84
                if(start==endd&&start==-1) break;
85
                printf("From %d to %d :\nPath: ",start,endd);
86
                int x=start;
87
                printf("%d",x);
88
                while(x!=endd){
89
                    printf("-->%d",path[x][endd]);
90
91
                    x=path[x][endd];
92
                printf("\nTotal cost : %d\n\n",link[start][endd]);
93
            }
94
95
        }
96
    }
97
98
99
    题意:
        有N个城市,然后直接给出这些城市之间的邻接矩阵,矩阵中-1代表那两个城市无道路相连,其他值代表路径长
100
    如果一辆汽车经过某个城市,必须要交一定的钱。现在要从a城到b城,花费为路径长度之和,再加上除起点与终点外所
101
102
    有城市的过路费之和。求最小花费,如果有多条路经符合,则输出字典序最小的路径。
103
   //输入
104
105 5
106 0 3 22 -1 4
107
   3 0 5 -1 -1
    22 5 0 9 20
108
   -1 -1 9 0 4
109
110 4 -1 20 4 0
    5 17 8 3 1
111
112 1 3
```

```
113 3 5
114 2 4
    -1 -1
115
    0
116
117
   //输出
118
119 From 1 to 3:
120 Path: 1-->5-->4-->3
121 Total cost: 21
122
123 From 3 to 5:
124
    Path: 3-->4-->5
    Total cost: 16
125
126
   From 2 to 4 :
127
    Path: 2-->1-->5-->4
128
    Total cost: 17
129
130
131 3, spfa
132 //主要拿来判断负环,负环的概念为环中所有权值和为负数,只需要有个点重复使用次数>n,那么存在负环
133
   bool spfa(int st){
        memset(dis,0x3f, sizeof(ll)*(n+1));
134
        memset(vis,0, sizeof(bool)*(n+1));
135
136
        memset(cnt,0, sizeof(int)*(n+1));
137
        queue<int>q;
        vis[st]=1;dis[st]=0;q.push(st);cnt[st]++;
138
139
        while(!q.empty()){
             int from=q.front();
140
             q.pop(); vis[from]=0;
141
             for(int i=head[from];i;i=edge[i].nx){
142
                 int to=edge[i].to;
143
144
                 if(dis[to]>dis[from]+edge[i].w){
                     dis[to]=dis[from]+edge[i].w;
145
                     if(!vis[to]){
146
                         vis[to]=1;q.push(to); cnt[to]=cnt[from]+1;
147
                         if(cnt[to]>n) return true;
148
149
                     }
150
                 }
            }
151
152
153
        return false;
    }
154
155
156
    //Floyd判负环
157
    bool Floyd(int n){
158
        for(int k=1;k<=n;k++){</pre>
159
             for(int i=1;i<=n;i++){</pre>
                 for(int j=1;j<=n;j++){</pre>
160
                     int t=link[i][k]+link[k][j];
161
162
                     if(link[i][j]>t)link[i][j]=t;
163
164
                 if(link[i][i]<0) return true;</pre>
             }
165
166
167
        return false;
168
    }
```

4.2 最小生成树

把一个连通无向图的生成树边按权值递增排序,称排好序的边权列表为有序边权列表,则任意两棵最小生成树的有序边 权列表是相同的。 2 1、Prim 3 //时间复杂度(V+E)logV 4 5 struct node{ 6 7 int id,w; bool operator <(const node&x) const {</pre> 8 9 return w>x.w; 10 } 11 **}**; 12 11 Prim(){ 13 11 res=0; node x; int cnt=0; 14 priority_queue<node>q; q.push(node{1,0}); 15 16 while(!q.empty()){ node y=q.top(); q.pop(); 17 18 if(vis[y.id]) continue; res+=y.w; vis[y.id]=1; cnt++; 19 20 for(int i=head[y.id];i;i=edge[i].nx){ 21 int to=edge[i].to,w=edge[i].w; 22 if(vis[to]) continue; 23 q.push(node{to,w}); 24 } 25 if(cnt==n) return res; 26 27 return -1; } 28 29 30 2, Kruscal 31 //时间复杂度ElogE 32 //将权值从大到小排列可生成最大生成树 33 34 int n,m,tot,parent[N]; 35 struct node{ 36 int from, to, w; 37 }edge[N]; 38 int find(int x){ 39 if (x != parent[x]) parent[x] = find(parent[x]); 40 return parent[x]; 41 } 42 43 bool cmp(node x,node y){ 44 return x.w<y.w;</pre> 45 } 46 47 ll Kruskal(){ 48 ll res=0; 49 for(int i=1;i<=n;i++) parent[i]=i;</pre> 50 sort(edge+1,edge+1+m,cmp); int cnt=0; 51 for(int i=1;i<=m;i++){</pre> 52 if(cnt==n-1) return res; 53 int fx=find(edge[i].from),fy=find(edge[i].to); 54 if(fx!=fy){ 55 parent[fx]=fy; 56

```
res+=edge[i].w;
57
58
               cnt++;
           }
59
60
       if(cnt!=n-1) return -1;
61
       else return res;
62
   }
63
64
   //检验最小生成树唯一性可以使用Kruscal求出所有边,然后将逐一枚举将边去掉,尝试是否能生成最小生成树
65
   ll Kruskal(){
67
       ll ret=0; int cnt=0; v[0]=0;
68
       for(int i=1;i<=n;i++) parent[i]=i;</pre>
       sort(edge+1,edge+1+m,cmp);
69
       for(int i=1;i<=m;i++){</pre>
70
           if(cnt==n-1) break;
71
           int fx=find(edge[i].from),fy=find(edge[i].to);
72
73
           if(fx!=fy){
               parent[fx]=fy; cnt++; ret+=edge[i].w; v[++v[0]]=i;
74
75
76
       for(int i=1;i<=v[0];i++){</pre>
77
           11 sum=0; cnt=0;
78
           for(int j=1;j<=n;j++) parent[j]=j;</pre>
79
80
           for(int j=1;j<=m;j++){</pre>
81
               if(j==v[i]) continue;
               int fx=find(edge[j].from), fy=find(edge[j].to);
82
83
               if(fx!=fy){
                   parent[fx]=fy; cnt++; sum+=edge[j].w;
84
85
               if(cnt==n-1&&ret==sum) return -1;
86
               else if(cnt==n-1) break;
87
88
           }
89
       return ret;
90
91
   }
   4.3
        强联诵分量
1 1, tarjan
2 //初始化dfs=top=cnt=0,tot=1;
3 //如果多组数据head[N], dfn[N], low[N], Stack[N], color[N]都得初始化
4 //用来判强联通分量, 若存在路径u->v,v->u, 那么会归并到一个集合之中
5 //时间复杂度为0(v+e)
6 //若将一个图n个点转化为一整个强联通分量,只需要统计整个图出度和人度,答案为其中最大值
  int n, m;
7
8 int head[N], dfn[N], low[N], Stack[N], color[N];
   bool vis[N];
9
10 int dfs, tot, top, cnt;
11
   struct node {
12
       int from, to, nx;
13
  } edge[M];
14
15
   void add_edge(int from, int to) {
16
       edge[tot].from = from;
17
       edge[tot].to = to;
18
       edge[tot].nx = head[from];
19
20
       head[from] = tot++;
```

```
21 }
22
   void Tarjan(int x) {
23
       dfn[x] = ++dfs; low[x] = dfs;
24
       vis[x] = 1; Stack[++top] = x;
25
       for (int i = head[x]; i; i = edge[i].nx) {
26
27
            int tmp = edge[i].to;
            if (!dfn[tmp]) {
28
29
                Tarjan(tmp); low[x] = min(low[tmp], low[x]);
           } else if (vis[tmp]) low[x] = min(low[x], dfn[tmp]);
30
31
       if (dfn[x] == low[x]) {
32
           vis[x] = 0; color[x] = ++cnt;
33
           while (Stack[top] != x) {
34
                color[Stack[top]] = cnt;
35
                vis[Stack[top--]] = false;
36
37
38
            top--;
       }
39
   }
40
41
   void gao(){
42
        //多组注意初始化
43
       for(int i=1;i<=n;i++){</pre>
44
45
            if(color[i]==0) Tarjan(i);
46
       for(int i=1;i<=n;i++) printf("%d ",color[i]);</pre>
47
       //重新建图,进行操作
48
   }
49
50
   2, kosaraju
51
   //通过两次dfs得到强联通分量,注意要正反建图,初始化tot=tot2=1
53 //时间复杂度为0(v+e)
54
55 int n,m,cnt;
  int head[N],head2[N],tot,tot2;
57 int color[N];
58
  bool vis[N];
   struct node{
59
       int to, nx;
60
  }edge[N],edge2[N];
61
   stack<int>st;
62
63
64
   void dfs1(int from){
       vis[from]=1;
65
66
       for(int i=head[from];i;i=edge[i].nx){
            int to=edge[i].to;
67
            if(!vis[to]) dfs1(to);
68
69
70
       st.push(from);
71
   }
72
   void dfs2(int from){
73
74
       color[from]=cnt;
       for(int i=head2[from];i;i=edge2[i].nx){
75
            int to=edge2[i].to;
76
77
            if(!color[to]) dfs2(to);
78
       }
79
  }
```

```
80
   void Kosaraju(){
81
        memset(color,0, sizeof(int)*(n+1));
82
        memset(vis,0, sizeof(bool)*(n+1)); cnt=0;
83
84
        for(int i=1;i<=n;i++)</pre>
            if(!vis[i]) dfs1(i);
85
86
        while(!st.empty()){
            int x=st.top(); st.pop();
87
            if(!color[x]){
88
89
                cnt++;
90
                dfs2(x);
91
            }
        }
92
   }
93
   4.4 网络流
   1, dinic
2
   struct Edge {
3
        int e, nxt;
        11 v;
4
5
6
        Edge() = default;
7
8
        Edge(int a, ll b, int c = 0) : e(a), v(b), nxt(c) {}
9
10
        bool operator<(const Edge& a) const {</pre>
            return (a.v == v ? e < a.e : v < a.v);
11
12
13
14
        bool operator>(const Edge& a) const {
15
            return (a.v == v ? e > a.e : v > a.v);
16
        }
17
   };
18
19
   struct Graph {
20
        Edge eg[M];
        int head[N];
21
22
        int cnt;
23
24
        void init(int n) {
25
            memset(head, -1, sizeof(int) * ++n);
26
            cnt = 0;
27
28
29
        inline void addEdge(int x, int y, ll v) {
30
            eg[cnt] = Edge(y, v, head[x]);
31
            head[x] = cnt++;
32
   } gh;
33
34
35
36
   struct Dinic {
37
        Graph gh;
        // 点的范围[0, n)
38
39
        int n;
        // 弧优化
40
        int cur[N], dis[N];
41
```

```
42
        Dinic() {};
43
44
        // 设置N
45
        void init(int _n) {
46
47
            n = _n + 1;
            gh.init(n);
48
        }
49
50
        // 加流量
51
52
        void addFlow(int x, int y, ll f) {
53
            gh.addEdge(x, y, f);
54
            gh.addEdge(y, x, 0);
        }
55
56
        bool bfs(int s, int e) {
57
            memset(dis, -1, sizeof(int) * n);
58
59
            int q[N];
            int l, r;
60
            1 = r = 0;
61
            dis[s] = 0;
62
63
            q[r++] = s;
            while (l < r) {
64
65
                 int f = q[l++];
66
                 for (int i = gh.head[f]; ~i; i = gh.eg[i].nxt) {
                     if (gh.eg[i].v > 0 \& dis[gh.eg[i].e] == -1) {
67
                         dis[gh.eg[i].e] = dis[f] + 1;
68
                         q[r++] = gh.eg[i].e;
69
                     }
70
                 }
71
72
73
            return dis[e] > 0;
74
        }
75
        ll dfs(int s, int e, ll mx) {
76
77
            if (s == e | | mx == 0) {
78
                 return mx;
79
            11 flow = 0;
80
            for (int& k = cur[s]; \sim k; k = gh.eg[k].nxt) {
81
82
                 auto& eg = gh.eg[k];
                 11 a;
83
                 if (eg.v > 0 \& dis[eg.e] == dis[s] + 1 \& (a = dfs(eg.e, e, min(eg.v, mx))
84
        )) {
85
                     eg.v -= a;
86
                     gh.eg[k ^ 1].v += a;
87
                     flow += a;
                     mx -= a;
88
                     if (mx <= 0) break;</pre>
89
90
                 }
91
            }
92
            return flow;
93
94
        ll max_flow(int s, int e) {
95
96
            11 \text{ ans} = 0;
97
            while (bfs(s, e)) {
                 memcpy(cur, gh.head, sizeof(int) * n);
98
99
                 ans += dfs(s, e, INF);
```

```
100
         }
101
         return ans;
102
103
   } dinic;
   4.5 最小树形图
   朱刘算法(0(VE))
 1
 2
   一、相关定义
   定义: 设G = (V,E)是一个有向图,它具有下述性质: 1、G中不包含有向环; 2、存在一个顶点vi,它不是任何弧的终
 3
      点,而V中的
   其它顶点都恰好是唯一的一条弧的终点,则称 G是以vi为根的树形图。
   最小树形图就是有向图G = (V, E)中以Vi为根的树形图中权值和最小的那一个。
 5
 6
   另一种说法:最小树形图,就是给有向带权图一个特殊的点root,求一棵以root为根节点的树使得该树的的总权值最
      小。
   性质: 最小树形图基于贪心和缩点的思想。
 8
   缩点: 将几个点看成一个点, 所有连到这几个点的边都视为连到收缩点,所有从这几个点连出的边都视为从收缩点连出
 9
10
   算法概述:
   为了求一个图的最小树形图, 1、先求出最短弧集合E0; 2、如果E0不存在, 则图的最小树形图也不存在; 3、如果E0存
11
      在且不具有环,
   则EO就是最小树形图;4、如果EO存在但是存在有向环,则把这个环收缩成一个点u,形成新的图G1,然后对G1继续求
12
      其的最小树形图
   直到求到图Gi,如果Gi不具有最小树形图,那么此图不存在最小树形图,如果Gi存在最小树形图,那么逐层展开,就
13
      得到了原图的最
   小树形图。
14
15
16
   模板1:
17
   题意:
      给出n(1<=n<=1000)个点,m(1<=m<=10000)条边,求出最小树形图,并输出根节点,点从0开始
18
19
   输入:
20
   3 1
21
   0 1 1
22
  4 4
23
24
  0 1 10
  0 2 10
  1 3 20
27
   2 3 30
28
29
   输出:
30
   impossible
31
   40 0
32
33
   int n,m,pos,pre[N],id[N],vis[N];
34
   //in[i]存最小人边权,pre[v]为该边的起点
35
   ll in[N];
36
   struct node{
37
      int u,v;
38
      11 w;
39
   }edge[M];
40
41
   11 Directed_MST(int root,int V,int E){
42
43
      //存最小树形图总权值
44
      ll ret=0;
      while(1){
45
```

//1.找每个节点的最小人边

46

```
for(int i=0;i<V;i++) in[i]=INF;</pre>
47
             for(int i=0;i<E;i++){</pre>
48
                 int u=edge[i].u,v=edge[i].v;
49
                 if(edge[i].w<in[v]&&u!=v){</pre>
50
51
                      in[v]=edge[i].w;
52
                      pre[v]=u;
53
                      //这个点就是实际的起点
                      if(root==u) pos=i;
54
                 }
55
56
             }
             //判断是否存在最小树形图
57
58
             for(int i=0;i<V;i++){</pre>
                 if(i==root) continue;
59
                 //除了根以外有点没有人边,则根无法到达它说明它是独立的点 一定不能构成树形图
60
                 if(in[i]==INF) return -1;
61
             }
62
             //2.找环
63
             int cnt=0;
64
             memset(id,-1, sizeof(int)*(n+1));
65
             memset(vis,-1, sizeof(int)*(n+1));
66
             in[root]=0;
67
             for(int i=0;i<V;i++){</pre>
68
                 ret+=in[i];
69
70
                 int v=i;
71
                 while(vis[v]!=i&&id[v]==-1&&v!=root){
72
                      vis[v]=i;
                     v=pre[v];
73
74
                 if(v!=root&&id[v]==-1){
75
                      for(int u=pre[v];u!=v;u=pre[u]) id[u]=cnt;
 76
 77
                      id[v]=cnt++;
                 }
78
79
             if(cnt==0) break; //无环则break
80
             for(int i=0;i<V;i++){</pre>
81
                 if(id[i]==-1) id[i]=cnt++;
82
83
             }
84
             ///3.建立新图
                            缩点,重新标记
             for(int i=0;i<E;i++){</pre>
85
86
                 int u=edge[i].u,v=edge[i].v;
87
                 edge[i].u=id[u]; edge[i].v=id[v];
                 if(id[u]!=id[v]){
88
89
                      edge[i].w-=in[v];
90
                 }
91
             V=cnt;
92
             root=id[root];
93
94
         return ret;
95
96
    }
97
98
    int main() {
         while(scanf("%d%d",&n,&m)==2){
99
100
             11 sum=0;
             for(int i=0;i<m;i++){</pre>
101
                 scanf("%d%d%lld",&edge[i].u,&edge[i].v,&edge[i].w);
102
103
                 edge[i].u++;edge[i].v++;
104
                 sum+=edge[i].w;
             }
105
```

```
106
            sum++;
            //增加超级节点0,节点0到其余各个节点的边权相同(此题中边权要大于原图的总边权值)
107
            for(int i=m;i<n+m;i++){</pre>
108
                edge[i].u=0; edge[i].v=i-m+1; edge[i].w=sum;
109
110
            ll ans=Directed_MST(0,n+1,m+n);
111
            //n+1为总结点数,m+n为总边数
112
            //ans代表以超级节点0为根的最小树形图的总权值,
113
            //将ans减去sum,如果差值小于sum,说明节点0的出度只有1,说明原图是连通图
114
            //如果差值>=Sum,那么说明节点0的出度不止为1,说明原图不是连通图
115
116
            if(ans==-1|lans-sum>=sum) printf("impossible\n\n");
            else printf("%lld %d\n\n",ans-sum,pos-m);
117
        }
118
119
        return 0;
    }
120
121
122
    模板2:
123
    题意:
124
        给定包含n个结点,m条有向边的一个图。试求一棵以结点r为根的最小树形图,并输出最小树形图每条边
125
    的权值之和,如果没有以r为根的最小树形图,输出 -1。
126
    输入:
127
128 4 6 1 //n,m,root
129 1 2 3
130 1 3 1
131
   4 1 2
132 4 2 2
    3 2 1
133
    3 4 1
134
135
136
    输出:
137
    3
138
   int n,m,pos,pre[N],id[N],vis[N],root;
139
   //in[i]存最小人边权,pre[v]为该边的起点
141
   ll in[N];
142
    struct node{
143
        int u,v,w;
    }edge[M];
144
145
146
    11 Directed_MST(int root,int V,int E){
        ll ret=0;
147
        while(1){
148
149
            for(int i=1;i<=V;i++) in[i]=INF;</pre>
            for(int i=1;i<=E;i++){</pre>
150
                int u=edge[i].u,v=edge[i].v;
151
152
                if(edge[i].w<in[v]&&u!=v){</pre>
                    in[v]=edge[i].w;
153
                    pre[v]=u;
154
155
                }
156
157
            for(int i=1;i<=V;i++){</pre>
                if(root==i) continue;
158
                if(in[i]==INF) return -1;
159
160
161
            int cnt=0;
           memset(id,-1, sizeof(int)*(n+1));
162
            memset(vis,-1, sizeof(int)*(n+1));
163
            in[root]=0;
164
```

```
for(int i=1;i<=V;i++){</pre>
165
                  ret+=in[i];
166
                  int v=i;
167
                  while(vis[v]!=i&&id[v]==-1&&v!=root){
168
                      vis[v]=i;
169
                      v=pre[v];
170
171
                  if(v!=root&&id[v]==-1){
172
                      id[v]=++cnt;
173
                      for(int u=pre[v];u!=v;u=pre[u]) id[u]=cnt;
174
                  }
175
176
             }
             if(cnt==0) break; //无环则break
177
             for(int i=1;i<=V;i++){</pre>
178
                  if(id[i]==-1) id[i]=++cnt;
179
180
             ////3.建立新图,缩点,重新标记
181
             for(int i=1;i<=E;i++){</pre>
182
                  int u=edge[i].u,v=edge[i].v;
183
                  edge[i].u=id[u]; edge[i].v=id[v];
184
                  if(id[u]!=id[v]){
185
                      edge[i].w-=in[v];
186
                  }
187
188
189
             V=cnt;
             root=id[root];
190
191
192
         return ret;
    }
193
194
    int main(){
195
         scanf("%d%d%d",&n,&m,&root);
196
         for(int i=1;i<=m;i++) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);</pre>
197
         printf("%lld\n",Directed_MST(root,n,m));
198
         return 0;
199
200
   }
```

4.6 割点、桥、双联通分量

1 1、割点

5

2 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点

3 4 Tarjan算法

- 可以使用Tarjan算法求割点(注意,还有一个求连通分量的算法也叫Tarjan算法,与此算法类似)。首先选定 一个根节点,从该根节
- 6 点开始遍历整个图(使用DFS)。对于根节点,判断是不是割点很简单——计算其子树数量,如果有2棵即以上的子树,就是割点。因为如果
- 7 去掉这个点,这两棵子树就不能互相到达。对于非根节点,判断是不是割点就有些麻烦了。我们维护两个数组dfn[]和low[],dfn[u]表示
- 8 顶点u第几个被(首次)访问,low[u]表示顶点u及其子树中的点,通过非父子边(回边),能够回溯到的最早的点(dfn最小)的dfn值(
- 9 但不能通过连接u与其父节点的边)。对于边(u, v),如果low[v]>=dfn[u],此时u就是割点。但这里也出现一个问题:怎么计算low[u]。
- 10 假设当前顶点为u,则默认low[u]=dfn[u],即最早只能回溯到自身。有一条边(u, v),如果v未访问过,继续DFS,DFS完之后,low[u]=
- 11 min(low[u], low[v]); 如果v访问过(且u不是v的父亲),就不需要继续DFS了,一定有dfn[v]<dfn[u], low[u]=min(low[u], dfn[v])。
 12

```
13
   代码:
14
   //dfs初始为0,tot=0, head=-1
15
   int n,m,head[N],tot,dfn[N],low[N],dfs,iscut[N];
17
   struct node{
       int v,nx;
18
   }edge[M<<1];
19
20
   void add_edge(int u,int v){
21
22
       edge[tot].v=v;
23
       edge[tot].nx=head[u];head[u]=tot++;
24
   }
25
   //求出所有割点,id为上一条边
26
   void Tarjan(int u,int id){
27
       int cnt=0;
28
       dfn[u]=low[u]=++dfs;
29
       for(int i=head[u];~i;i=edge[i].nx){
30
            int v=edge[i].v;
31
            if(i==(id^1)) continue;
32
            if(!dfn[v]){
33
                cnt++; Tarjan(v,i);
34
                low[u]=min(low[u],low[v]);
35
36
                if(low[v]>=dfn[u]) iscut[u]=1;
37
           }else low[u]=min(low[u],dfn[v]);
38
       if(cnt==1&&id==-1) iscut[u]=0;
39
   }
40
41
42
   //求一个图中去掉两个点后的最大连通块数
43
   int n,m,head[N],tot,dfn[N],low[N],dfs,iscut[N];
44
   struct node{
45
       int v,nx;
46
   }edge[M];
47
48
   void add_edge(int u,int v){
49
50
       edge[tot].v=v;
       edge[tot].nx=head[u];
51
       head[u]=tot++;
52
   }
53
54
   //一个点时父节点iscut=0, iscut>0时就是砍掉该点后连通块个数
55
56
   void Tarjan(int u,int pre,int ban){
       int cnt=0;
57
58
       dfn[u]=low[u]=++dfs;
59
       for(int i=head[u];i;i=edge[i].nx){
            int v=edge[i].v;
60
            if(v==prellv==ban) continue;
61
62
            if(!dfn[v]){
63
                cnt++; Tarjan(v,u,ban);
64
                low[u]=min(low[u],low[v]);
65
                if(low[v]>=dfn[u]) iscut[u]++;
66
           }else low[u]=min(low[u],dfn[v]);
67
68
       //if(cnt==1&&pre==-1) iscut[u]=0;
   }
69
70
71
   int main() {
```

```
72
       int x,y;
       while(scanf("%d%d",&n,&m)==2){
73
           memset(head,0, sizeof(int)*(n+1)); tot=1;
74
           for(int i=1;i<=m;i++){</pre>
75
               scanf("%d%d",&x,&y);
76
77
              add_edge(x,y); add_edge(y,x);
           }
78
79
           int ret=0;
80
           //去掉一个点后, 求割点
81
           for(int j=0; j<n; j++){</pre>
82
              memset(dfn,0, sizeof(int)*(n+1));dfs=0;
83
              //对节点进行初始化
              for(int i=0;i<n;i++) iscut[i]=1; iscut[j]=0;</pre>
84
               int k=0;
85
               for(int i=0;i<n;i++){</pre>
86
                  if(i==j||dfn[i]) continue;
87
                  iscut[i]=0; k++;
88
89
                  Tarjan(i,i,j);
90
              for(int i=0;i<n;i++){</pre>
91
                  if(i==j) continue;
92
                  ret=max(ret,k+iscut[i]-1);
93
              }
94
95
           }
96
           printf("%d\n",ret);
       }
97
   }
98
99
100
   2、桥
   对于一个无向图,如果删掉一条边后图中的连通分量数增加了,则称这条边为桥或者割边。
101
102
       和割点差不多,只要改一处:low[v]>dfn[u]就可以了,而且不需要考虑根节点的问题。
103
   割边是和是不是根节点没关系的,原来我们求割点的时候是指点v是不可能不经过父节点为回到祖先节点(包括父节
       点),所以顶点u是割点。
   如果low[v]==dfn[u]表示还可以回到父节点,如果顶点v不能回到祖先也没有另外一条回到父亲的路,那么u-v这条
104
       边就是割边。
105
   //如果图中有重边,且允许两个点形成一个环,则需修改对能否访问父节点的判断,即若当前边指向父节点,但不是从
       父节点走到当前点的边,
   //则可以用父节点的dfn更新当前点的low。
   //桥上有防卫, 现在要去炸一条桥, 使得图不连通, 求最少需要的士兵数。
109 //如果桥上没有防卫也需要一个士兵去炸桥,如果图不连通那么不需要士兵,重边存在则不可能是该边被炸
110
111 //dfs初始为0,tot=0, head=-1
int n,m,head[N],tot,dfn[N],low[N],dfs;
113 int ret;
114 struct node{
115
       int v,w,nx;
   }edge[M<<1];
116
117
   void add_edge(int u,int v,int w){
119
       edge[tot].v=v;edge[tot].w=w;
120
       edge[tot].nx=head[u];head[u]=tot++;
121
   }
122
123
   //求出所有割点,id为上一条边
   void Tarjan(int u,int id){
124
       dfn[u]=low[u]=++dfs;
125
       for(int i=head[u];~i;i=edge[i].nx){
126
127
           int v=edge[i].v;
```

```
if(i==(id^1)) continue;
128
129
           if(!dfn[v]){
              Tarjan(v,i);
130
              low[u]=min(low[u],low[v]);
131
132
              //或low[v]>dfn[u]
              if(low[v]==dfn[v]) {
133
                  //edge[i]为桥
134
                  ret=min(ret,edge[i].w);
135
136
           }else low[u]=min(low[u],dfn[v]);
137
138
       }
139
   }
140
   int main() {
141
142
       int u,v,w;
       while(scanf("%d%d",&n,&m)==2){
143
           if(n==0\&\&m==0) break;
144
           tot=0;memset(head,-1, sizeof(int)*(n+1));
145
           for(int i=1;i<=m;i++){</pre>
146
              scanf("%d%d%d",&u,&v,&w);
147
              add_edge(u,v,w); add_edge(v,u,w);
148
149
           int cnt=0;ret=inf;
150
           memset(dfn,0, sizeof(int)*(n+1)); dfs=0;
151
152
           for(int i=1;i<=n;i++){</pre>
              if(!dfn[i]){
153
                  cnt++; Tarjan(i,-1);
154
              }
155
156
           if(cnt>1){
157
              printf("0\n");
158
              continue;
159
160
           if(ret==inf){
161
              printf("-1\n");
162
              continue;
163
164
           }
165
           printf("%d\n",ret==0?1:ret);
       }
166
167
   }
168
169
170
   3、双联通分量
   在一张连通的无向图中,对于两个点u和v,如果无论删去哪条边(只能删去一条)都不能使它们不连通,我们就说u和v
       边双连通 。
172
      -张连通的无向图中,对于两个点u和v,如果无论删去哪个点(只能删去一个,且不能删u和v自己)都不能使它们不
       连通,我们就说u和点双连通。
   边双连通具有传递性,即,若x,y边双连通,y,z边双连通,则x,z边双连通。点双连通不具有传递性.
173
   求解点双连通分量与边双连通分量其实和求解割点与桥密切相关。不同双连通分量最多只有一个公共点,即某一个割
174
       点,任意一个割点都是至少两个
175
   点双连通的公共点。不同边双连通分量没有公共点,而桥不在任何一个边双连通分量中,点双连通分量一定是一个边双
       连通分量。
176
177
   怎么判断一个双连通分量中环的个数呢? 根据点数跟边数的关系
   1. 当点数=边数,形成一个环
178
   2. 当点数>边数(一条线段,说明这条边是桥)
179
180
   3. 当点数<边数,那么就含1个以上的环了
181
182
   int co,color[N];
```

```
183 //co初始化为0,颜色相同则说明是属于同一个双联通分量之中,注意根节点为0,若其他点也为0,则说明改点也属于根
       节点双联通分量中
184
185
    //边双联通分量
186
    //如何将一个图补成边双联通分量,将图中已有双联通分量合并,然后形成一棵树,统计所以度为1的节点,那么最小
       值为(leaf+1)/2
187
188
    void Tarjan(int u,int id,int cnt){
189
        low[u]=dfn[u]=++dfs;
190
191
        bcc[u]=cnt; st.push(u);
192
        for(int i=head[u];~i;i=edge[i].nx){
            int v=edge[i].v;
193
            if(id==(i^1)) continue;
194
            if(!dfn[v]) {
195
               Tarjan(v, i,cnt);
196
               low[u] = min(low[u], low[v]);
197
            }else low[u]=min(low[u],low[v]);
198
199
        if(dfn[u]==low[u]){
200
           blocks++;
201
            int curr;
202
            do{
203
204
               curr=st.top();
205
               st.pop();
               ebc[curr]=blocks;
206
            }while(curr!=u);
207
        }
208
    }
209
210
211
212
    //一个无向连通图中,每个点都有值,现在求去掉一个桥后,得到的两个连通图价值和之差最小
    void Tarjan(int u,int id){
213
214
        dfn[u]=low[u]=++dfs;
215
        st.push(u);
216
        for(int i=head[u];~i;i=edge[i].nx){
            int v=edge[i].v;
217
            if(id==(i^1)) continue;
218
            if(!dfn[v]){
219
220
               Tarjan(v,i);
               low[u]=min(low[u],low[v]);
221
222
               if(low[v]==dfn[v]){
223
                   int cnt=0,x;
224
                   do{
225
                       x=st.top();st.pop();cnt+=a[x];
                   }while(x!=v);
226
227
                   ret=min(ret,abs(sum-2*cnt));
228
                   a[u]+=cnt;
229
230
            }else low[u]=min(low[u],dfn[v]);
231
        }
232 }
233
234 //blocks=0,ebc表示第i个点属于哪一个双联通分量
   //instack去除不知道会不会有事
235
   stack<int>st;
236
    int blocks,ebc[N];
237
238
    int instack[N];
```

239

```
void Tarjan(int u,int id){
240
        low[u]=dfn[u]=++dfs;
241
242
        st.push(u);
243
        instack[u]=1;
        for(int i=head[u];~i;i=edge[i].nx){
244
            int v=edge[i].v;
245
           if(id==(i^1)) continue;
246
           if(!dfn[v]) {
247
               Tarjan(v, i);
248
               low[u] = min(low[u], low[v]);
249
250
           }else if(instack[v]&&dfn[v]<dfn[u]) low[u]=min(low[u],low[v]);</pre>
251
        if(dfn[u]==low[u]){
252
253
           blocks++;
           int curr;
254
           do{
255
256
               curr=st.top();
               st.pop();
257
               instack[curr]=0;
258
259
               ebc[curr]=blocks;
           }while(curr!=u);
260
        }
261
262 }
263
264
    点双连通分量 BCC
265
       对于一个连通图,如果任意两点至少存在两条"点不重复"的路径,则说图是点双连通的(即任意两条边都在一个简单
       环中),点双连通的
    极大子图称为点双连通分量。 通常来说,如果要求任意两条边在同一个简单环中,那么就是求点-双连通
266
       易知每条边属于一个连通分量,且连通分量之间最多有一个公共点,且一定是割点。
无向连通图中割点一定属于至少两个BCC,非割点只属于一个BCC。
267
268
269
       注意: 两个直接连接的点也是bcc,但是单个点不算bcc
270
   //一个公园中有n个景点,景点之间通过无向的道路来连接,如果至少两个环公用一条路,路上的游客就会发生冲突;
271
272 //如果一条路不属于任何的环,这条路就没必要修,问,有多少路不必修,有多少路会发生冲突
273
274 //bcc存的是点双联通分量中的点,初始化bcc_cnt=-1, bccno为-1
275 vector<int>bcc[N];
276 int bcc_cnt,bccno[N];
277 stack<node>st;
278
279
    void Tarjan(int u,int id){
        dfn[u]=low[u]=++dfs;
280
        for(int i=head[u];~i;i=edge[i].nx){
281
282
            int v=edge[i].v;
            if(id==(i^1)) continue;
283
            if(!dfn[v]){
284
               st.push(edge[i]);
285
               Tarjan(v,i);
286
               low[u]=min(low[u],low[v]);
287
288
               //判断桥
289
               if(low[v]==dfn[v]) ret++;
290
               int cnt=0;node x;
291
               //获得点双联通分量
292
               if(low[v]>=dfn[u]){
293
                   bcc_cnt++; bcc[bcc_cnt].clear();
                   do{
294
295
                       cnt++;
296
                       x=st.top(); st.pop();
297
                       if(bccno[x.u]!=bcc_cnt){
```

```
bcc[bcc_cnt].push_back(x.u);
298
                         bccno[x.u]=bcc_cnt;
299
300
                     if(bccno[x.v]!=bcc_cnt){
301
                         bcc[bcc_cnt].push_back(x.v);
302
                         bccno[x.v]=bcc_cnt;
303
304
                  }while(x.u!=u||x.v!=v);
305
                  if(bcc[bcc_cnt].size()<cnt) ret2+=cnt;</pre>
306
307
308
           }else if(dfn[v]<dfn[u]){ //加入还没有加入过的边
309
              st.push(edge[i]);
              low[u]=min(low[u],dfn[v]);
310
311
           }
       }
312
   }
313
   4.7
       二分匹配
   1、匈牙利算法(0(n*m))
 1
 2
 3
   二分图最小顶点覆盖 = 二分图最大匹配;
 4
   最小覆盖要求用最少的点(X集合或Y集合的都行)让每条边都至少和其中一个点关联。
 5
   DAG图的最小路径覆盖 = 节点数 (n) - 最大匹配数;
 6
 7
   最小路径覆盖: 用尽量少的不相交简单路径覆盖有向无环图 G的所有结点。1~n匹配1~n的最大匹配数。
 8
 9
   二分图最大独立集 = 节点数 (n) - 最大匹配数;
10
   二分图最大独立集要求从二分图中选出一些点,使这些点两两互不相邻。即没有独立集中任意两点没有边相连
11
12
   最大匹配数: 最大匹配的匹配边的数目
13
14
   最小点覆盖数: 选取最少的点,使任意一条边至少有一个端点被选择
15
   最大独立数: 选取最多的点, 使任意所选两点均不相连
16
17
   最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以
18
       为 0 (即单个点)。
19
20
  int k,n,m,girl[N];
   vector<int>g[N];
   bool vis[N];
22
23
   //n表示男生数, m表示女生数, girl[i]表示i女生搭档的男生
   bool Match(int x){
24
       for(int i=0;i<g[x].size();i++){</pre>
25
           int y=g[x][i];
26
27
           if(!vis[y]){
28
              vis[y]=1;
              if(!girl[y]||Match(girl[y])){
29
                  girl[y]=x; return true;
30
              }
31
           }
32
33
       }
34
       return false;
   }
35
36
   void gao(int n,int m){
37
38
       int ret=0;
```

```
memset(girl,0, sizeof(int)*(m+1));
39
        for(int i=1;i<=n;i++){</pre>
40
            memset(vis,0, sizeof(bool)*(m+1));
41
42
            if(Match(i)) ret++;
43
        printf("%d\n",ret);
44
   }
45
   4.8 第 k 最短路
   1、给你一个无向图(有向也可),可以将图中k个路的值变为0,求s->t的最短距离
2
3
   输入:
 4
   //n,m,s,t,k
   3 2 1 3 1
5
   1 2 1
6
   2 3 2
 7
 8
9
   int n,m,s,t,k;
10
   bool vis[N];
   ll dp[1005][N];
11
12
   struct edge{
        int v,nx;
13
14
        11 w;
   }e[M];
15
   int tot,head[N];
16
17
   void add_edge(int u,int v,ll w){
18
        e[tot].v=v;e[tot].w=w;e[tot].nx=head[u];
19
        head[u]=tot++;
   }
20
21
22
   struct node{
        int u; ll w;
23
24
        bool operator<(const node&t)const{</pre>
25
            return w>t.w;
        }
26
27
   };
28
29
   void Dijkstra(int st,int ed,int k){
30
        memset(dp[k],0x3f, sizeof(ll)*(n+1));
31
        memset(vis,0, sizeof(bool)*(n+1));
32
        dp[k][st]=0;
33
        priority_queue<node>q;
34
        q.push(node{st,0});
35
        while(!q.empty()){
            node x=q.top();q.pop();
36
            if(vis[x.u]) continue;
37
            vis[x.u]=1;
38
            for(int i=head[x.u];~i;i=e[i].nx){
39
                int v=e[i].v; ll w=e[i].w;
40
41
                if(vis[v]) continue;
                if(k==0){
42
                    if(dp[k][v]>dp[k][x.u]+e[i].w){
43
44
                        dp[k][v]=dp[k][x.u]+e[i].w;
45
                        q.push(node{v,dp[k][v]});
                    }
46
47
                }else{
                    ll len=min(dp[k-1][x.u],dp[k][x.u]+w);
48
```

```
if(dp[k][v]>len){
49
                     dp[k][v]=len;
50
                     q.push(node{v,len});
51
                 }
52
53
             }
          }
54
      }
55
   }
56
57
   int main(){
58
59
      int u,v,w;
60
      scanf("%d%d%d%d%d",&n,&m,&s,&t,&k);
      tot=0; memset(head,-1, sizeof(int)*(n+1));
61
62
      for(int i=1;i<=m;i++){</pre>
          scanf("%d%d%d",&u,&v,&w);
63
          add_edge(u,v,w);add_edge(v,u,w);
64
65
      for(int i=0;i<=k;i++) Dijkstra(s,t,i);</pre>
66
      11 ret=INF;
67
68
      for(int i=0;i<=k;i++) ret=min(ret,dp[i][t]);</pre>
      printf("%lld\n", ret);
69
   }
70
   4.9 2-SAT
   概念:
1
   2-SAT, 简单的说就是给出n个集合, 每个集合有两个元素, 已知若干个<a,b>, 表示a与b矛盾(其中a与b属于不同的
      集合)。
3
   然后从每个集合选择一个元素,判断能否一共选n个两两不矛盾的元素。显然可能有多种选择方案,一般题中只需要求
      出一种即可。
4
   1, tarjan
5
   假设有a1,a2和b1,b2两对,已知a1和b2间有矛盾,于是为了方案自洽,由于两者中必须选一个,所以我们就要拉两条
      有向边(a1,b1)和(b2,a2)表示选了a1则必须选b1,
   选了b2则必须选a2才能够自洽。然后通过这样子建边我们跑一遍Tarjan SCC判断是否有一个集合中的两个元素在同一
      个SCC中, 若有则输出不可能, 否则输出方案。
8
   构造方案只需要把几个不矛盾的 SCC 拼起来就好了。
9
10
   寻求一组可行解:
   当x所在的强连通分量的拓扑序在x'所在的强连通分量的拓扑序之后取x为真就可以了。在使用Tarjan算法缩点找强连
11
      通分量的过程中, 已经为每组强连通分量标记好
   顺序了——不过是反着的拓扑序。
12
13
   2、爆搜模板,可以求字典序可行最优解
14
15
   struct Twosat {
      int n;
16
17
      vector<int> g[N * 2];
      bool mark[N * 2];
18
      int s[N * 2], c;
19
      bool dfs(int x) {
20
          if (mark[x ^ 1]) return false;
21
          if (mark[x]) return true;
22
23
          mark[x] = true;
          s[c++] = x;
24
          for (int i = 0; i < (int)g[x].size(); i++)
25
             if (!dfs(g[x][i])) return false;
26
27
          return true;
      }
28
```

```
void init(int n) {
29
30
           this->n = n;
           for (int i = 0; i < n * 2; i++) g[i].clear();
31
           memset(mark, 0, sizeof(mark));
32
33
       void add_clause(int x, int y) { // 这个函数随题意变化
34
           g[x].push_back(y ^ 1);
35
                                         // 选了 x 就必须选 y^1
           g[y].push_back(x ^ 1);
36
37
       bool solve() {
38
           for (int i = 0; i < n * 2; i += 2)
39
40
               if (!mark[i] && !mark[i + 1]) {
41
                   c = 0;
                   if (!dfs(i)) {
42
                       while (c > 0) mark[s[--c]] = false;
43
                       if (!dfs(i + 1)) return false;
44
                   }
45
46
               }
47
           return true;
48
   }sat;
49
50
   int main() {
51
52
       int x,y;
       while(scanf("%d%d",&n,&m)==2){
53
54
           sat.init(n);
           for(int i=1;i<=m;i++){
55
               scanf("%d%d",&x,&y);
56
57
               x--;y--;
               sat.add_clause(x,y);
58
59
           if(sat.solve()){
60
               for(int i=0; i<2*n; i++){}
61
                   if(sat.mark[i]) printf("%d\n",i+1);
62
63
           }else printf("NIE\n");
64
       }
65
66
   }
67
68
   建模情况:
69
   1、(A,B)不能同时选:选了A就要选B',选了B就要选A',所以要建立A->B',B->A'边
70
71
72
   2、(A,B)不能同时不取:选择了A'就只能选择B,选择了B'就只能选择A,所以要建立A'->B,B'->A的边
      如要alb==1,其中a和b为真假状态,那么有三种建边情况
73
74
      1) a=b=1 | 0,那么会建边0->1或1->0
75
      2) a=1,b=0或a=0,b=1,那么会建边0->0,1->1
      3)上述方法
76
77
   3、如果存在一个图,图中点需要赋予0或1的值,满足边a op b == c,其中op有and, or, xor
78
79
      有六种情况需要讨论:
      1) a and b == 1,则需建边a=0->a=1,b=0->b=1。这里需要体会一下,只需要两条即可
80
      2) a and b == 0, 则需建边a=1->b=0, b=1->a=0。
81
82
      3) a or b == 1, 则需建边a=0->b=1, b=0->a=1。
      4) a or b == 0,则需建边a=1->a=0,b=1->b=0。同1情况
83
84
      5) a xor b == 1, 则需建边a=0->b=1, a=1->b=0, b=0->a=1, b=1->a=0.
85
      6) a \times b == 0, 则需建边a=0->b=0, b=0->a=0, a=1->b=1, b=1->a=1.
86
```

```
4、对于(a,b,c), 若a留下,则b,c回家,若b,c留下,a回家,对于(a,b)若a留下,b回家,若b留下,a回家,对
      于
      有两种情况需要讨论:
88
      1) a=1->b=0, c=0 b=1, c=1->a=0
89
      2) a=0->b=1,b=0->a=1
90
91
   5、有n个集合(a,b),表示炸弹可放的两个位置,要求将n个炸弹都放置,求最大的半径长度
92
93
       二分答案,通过二分的数据进行约束,创建2-sat
94
   6、给出n个牛棚、两个特殊点S1,S2的坐标。S1、S2直连。牛棚只能连S1或S2、还有、某些牛棚只能连在同一个S、
95
      某些牛棚不能连在同一个S。
96
   求使最长的牛棚间距离最小,距离是曼哈顿距离,使最大值最小。
97
       二分答案,用2-sat判断是否可行
      1.hate关系的a,b。 a->b^1,b->a^1,a^1->b,b^1->a
98
      2.friend关系的a,b。 a->b,b->a,a^1->b^1,b^1->a^1
99
      接下来的也要检查, 因为引入参数, 就是多了约束条件了
100
      这四种情况就是i,j到达对方的所有情况了
101
102
      3.dis[a]+dis[b]>limit a->b^1,b->a^1
      4.dis[a^1]+dis[b^1]>limit a^1->b,b^1->a
103
      5.dis[a]+dis[b^1]+tdis>limit a->b,b^1->a^1
104
      6.dis\lceil a^1 \rceil + dis \lceil b \rceil + tdis > limit a^1 - b^1, b - > a
105
106
   7、两者(A, B)要么都取,要么都不取
107
      建边: a->b,b->a,a^1->b^1,b^1->a^1
108
109
110
   8、两者 (A, A') 必取A
      建边: a^1->a
111
112
   4.10 LCA
 1
   LCA:
 2
      在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最
      大的
   公共的祖先节点。所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。
 3
 4
 5
   1、Tarjan离线算法
 6
      什么是Tarjan(离线)算法呢?顾名思义,就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是[[[]
      +0).
 7
   Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解下面详细介绍一下Tarjan算法的基本思路:
 8
      1) 选一个点为根节点,从根节点开始。
      2) 遍历该点u所有子节点v,并标记这些子节点v已被访问过。
 9
10
      3) 若是v还有子节点,返回2,否则下一步。
      4) 合并v到u上。
11
12
      5) 寻找与当前点u有询问关系的点v。
13
      6) 若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。
14
   代码:
15
  //第一行包含三个正整数 N,M,S. 分别表示树的结点个数、询问的个数和树根结点的序号。
16
  //输出m次询问的公共祖先
  //使用并查集查询结果,其中子节点必须并到父节点的祖先上
19 //注意并查集parent需要初始化
20 int n,m,s,ans[N],parent[N];
21 int ehead[N],etot;
22 struct edge{
      int v,nx;
23
24 }e[N<<1];
```

25

```
void add_edge(int u,int v){
26
        e[etot].v=v; e[etot].nx=ehead[u];
27
28
        ehead[u]=etot++;
   }
29
30
   int qhead[N],qtot;
31
32
   struct query{
33
        int v,id,nx;
   }q[N<<1];
34
35
36
   void add_query(int u,int v,int id){
37
        q[qtot].v=v; q[qtot].nx=qhead[u]; q[qtot].id=id;
        qhead[u]=qtot++;
38
   }
39
40
   bool vis[N];
41
42
43
   int find(int x){
        if(x!=parent[x]) parent[x]=find(parent[x]);
44
        return parent[x];
45
   }
46
47
   void Merge(int x,int y){
48
49
        int fx=find(x), fy=find(y);
50
        if(fx!=fy){
            parent[fy]=fx;
51
        }
52
   }
53
54
   void Tarjan(int u){
55
56
        vis[u]=1;
57
        for(int i=ehead[u];i;i=e[i].nx){
58
             int v=e[i].v;
            if(vis[v]) continue;
59
            Tarjan(v);
60
            Merge(u,v);
61
62
        }
63
        for(int i=qhead[u];i;i=q[i].nx){
            int v=q[i].v;
64
65
            if(vis[v]){
66
                 ans[q[i].id]=find(v);
            }
67
        }
68
69
   }
70
71
   int main() {
        int u,v;
72
73
        scanf("%d%d%d",&n,&m,&s);
74
        etot=qtot=1;
75
        for(int i=1;i<n;i++){</pre>
76
            scanf("%d%d",&u,&v);
77
            add_edge(u,v); add_edge(v,u);
78
        for(int i=1;i<=m;i++){</pre>
79
            scanf("%d%d",&u,&v);
80
            add_query(u,v,i); add_query(v,u,i);
81
82
        memset(vis,0, sizeof(bool)*(n+1));
83
        for(int i=1;i<=n;i++) parent[i]=i;</pre>
84
```

```
Tarjan(s);
85
         for(int i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
86
    }
87
88
89
    2、树上倍增LCA
90
    const int MAX_DEP = 20;
91
92
   // 倍增2^k的父亲
93
   int fa[N][MAX_DEP];
95
   int dep[N];
96
97
    int n,m,s;
    int head[N],tot=1;
98
    struct edge{
99
         int v,nx;
100
101
    }e[N<<1];
102
    void add_edge(int u,int v){
103
104
         e[tot].v=v; e[tot].nx=head[u];
         head[u]=tot++;
105
    }
106
107
108
    void lineFa(int u,int v){
109
         fa[u][0]=v;
         for(int i=1;i<MAX_DEP;i++)</pre>
110
             v=fa[u][i]=fa[v][i-1];
111
112
113
    void dfs(int u,int pre){
114
         for(int i=head[u];i;i=e[i].nx){
115
116
             int v=e[i].v;
117
             if(v==pre) continue;
             dep[v]=dep[u]+1;
118
             lineFa(v,u);
119
120
             dfs(v,u);
121
         }
122
    }
123
124
    int LCA(int u,int v){
125
         if(dep[u]>dep[v]) swap(u,v);
         int hu=dep[u],hv=dep[v];
126
         int tu=u,tv=v;
127
128
         for(int det=hv-hu,i=0;det;det>>=1,i++){
129
             if(det&1) tv=fa[tv][i];
130
         if(tu==tv) return tu;
131
         for(int i=MAX_DEP-1;i>=0;i--){
132
             if (fa[tu][i] == fa[tv][i]) {
133
134
                 continue;
135
136
             tu = fa[tu][i];
137
             tv = fa[tv][i];
138
139
         return fa[tu][0];
140
    }
141
142
    int main() {
143
         int u,v;
```

```
scanf("%d%d%d",&n,&m,&s);
144
145
         tot=1;
         for(int i=1;i<n;i++){</pre>
146
             scanf("%d%d",&u,&v);
147
148
             add_edge(u,v); add_edge(v,u);
149
150
         dep[s]=0;
151
         dfs(s,0);
         for(int i=1;i<=m;i++){</pre>
152
             scanf("%d%d",&u,&v);
153
154
             printf("%d\n",LCA(u,v));
155
         }
    }
156
157
158
    3、st表查询
159 //注意调用LCA_init初始化
int n,m,rt,head[N],tot;
int dfn[N],pos[N],rmq[N],dno;
162 struct edge{
163
         int v,nx;
164 }e[N<<1];
    void add_edge(int u,int v){
165
         e[tot].v=v; e[tot].nx=head[u];
166
167
         head[u]=tot++;
168 }
169
170
    struct ST {
         int k2[21], st[21][N], Log[N];
171
172
         void init_st(int n) {
             k2[0] = 1;
173
             for (int i = 1; i \le 20; i++) k2[i] = 2 * k2[i - 1];
174
             Log[0] = -1; for (int i = 1; i <=n; i++) Log[i] = Log[i / 2] + 1;
175
             for (int i = 1; i <= n; i++) st[0][i] = i;</pre>
176
             for (int i = 1; i <= Log[n]; i++) {</pre>
177
                 for (int j = 1; j + k2[i] - 1 <= n; j++) {
178
                      st[i][j] = (rmq[st[i - 1][j]] < rmq[st[i - 1][j + k2[i - 1]]]) ?
179
180
                                 st[i - 1][j]:st[i - 1][j + k2[i - 1]];
181
                 }
             }
182
183
184
         int query_min(int x, int y) {
             int len = log2(y - x + 1);
185
             return (rmq[st[len][x]]<rmq[st[len][y - k2[len] + 1]]) ?</pre>
186
187
                    st[len][x]:st[len][y - k2[len] + 1];
188
189
    }st;
190
    void dfs(int u,int pre,int dep){
191
192
         dfn[++dno]=u;
193
         rmq[dno]=dep;
194
         pos[u]=dno;
195
         for(int i=head[u];i;i=e[i].nx){
196
             int v=e[i].v;
197
             if(v==pre) continue;
             dfs(v,u,dep+1);
198
             dfn[++dno]=u;
199
200
             rma[dno]=dep;
201
         }
202 }
```

```
203
    void LCA_init(int root,int n){
204
        dno=0;
205
        dfs(root,root,0);
206
207
        st.init_st(2*n-1);
    }
208
209
    int LCA(int u,int v){
210
211
        int pu=pos[u],pv=pos[v];
212
        if(pu>pv) swap(pu,pv);
213
        return dfn[st.query_min(pu,pv)];
214
    }
215
    int main() {
216
217
        int u,v;
        scanf("%d%d%d",&n,&m,&rt);
218
        tot=1; memset(head,0, sizeof(int)*(n+1));
219
        for(int i=1;i<n;i++){</pre>
220
            scanf("%d%d",&u,&v);
221
222
            add_edge(u,v); add_edge(v,u);
223
        LCA_init(rt,n);
224
        for(int i=1;i<=m;i++) {</pre>
225
            scanf("%d%d", &u, &v);
226
            printf("%d\n", LCA(u, v));
227
        }
228
229
    }
230
231
    4、朴素查询
232
    while(q--){
        scanf("%d%d",&u,&v);
233
234
        u=find(ebc[u]); v=find(ebc[v]);
        if(u==v){
235
236
            printf("%d\n",ret);
237
            continue;
        }
238
239
        if(dep[u]<dep[v]) swap(u,v);</pre>
240
        int i=u, j=v;
        while(parent[i]!=parent[j]){
241
242
            if(dep[parent[i]]<dep[parent[j]]) swap(i,j);</pre>
243
            ret--; i=find(f[i]);
244
        printf("%d\n",ret);
245
246
        while(parent[u]!=parent[v]){
            if(dep[parent[u]]<dep[parent[v]]) swap(u,v);</pre>
247
248
            parent[u]=i; u=find(f[u]);
249
        }
   }
250
           欧拉路
    4.11
 1
      连诵图:
 2
        在图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有
        路径)
 3
      则称i和j是连通的。如果 G 是有向图, 那么连接i和j的路径中所有的边都必须同向。如果图中任意两点都是连通
 4
    么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质。
 5
```

```
6
  定义:
  欧拉路:欧拉路是指从图中任意一个点开始到图中任意一个点结束的路径,并且通过图中每条边,且只通过一次。
7
8
  欧拉回路: 欧拉回路是指起点和终点相同的欧拉路。
9
  无向图是否具有欧拉路或回路的判定:
10
11
      欧拉路:图连通,所有点度都是偶数,或者恰好有两个点度是奇数,则有欧拉路。若有奇数点度,则奇数点度点一
      定是欧
  拉路的起点和终点,否则可取任意一点作为起点。
12
      欧拉回路:图连通,图中所有节点度均为偶数
13
14
  有向图是否具有欧拉路或回路的判定:
15
16
      欧拉路:图连通,除2个端点外其余节点入度=出度;1个端点入度比出度大1;一个端点入度比出度小1,取出度大
      者为起点,入度大者为终点。
  或 所有节点入度等于出度
17
18
      欧拉回路:图连通,所有节点入度等于出度
19
  对于Hierholzers算法,前提是假设图G存在欧拉回路,即有向图任意点的出度和人度相同。从任意一个起始点v开始
20
     遍历,直到再次到达点V,
21
  即寻找一个环,这会保证一定可以到达点v,因为遍历到任意一个点u,由于其出度和人度相同,故u一定存在一条出
     边, 所以一定可以到达v。
  将此环定义为C,如果环C中存在某个点x,其有出边不在环中,则继续以此点x开始遍历寻找环C',将环C、C'连接起来
22
     也是一个大环, 如此往
23
  复,直到图G中所有的边均已经添加到环中。
24
25 //有向图欧拉回路打印路径模板
26
  //因为有向图欧拉回路的性质,其实st中正序或倒叙输出都没问题,都要回到最初点u=1
  void dfs(int u){
27
      for(int i=head[u];~i;i=e[i].nx){
28
         int v=e[i].v;
29
         if(vis[i]) continue;
30
31
         vis[i]=1;
         head[u]=i;
32
33
         dfs(v);
         i=head[u];
34
35
      st[++st[0]]=u;
36
37
  }
38
  //非递归版
39
  int st[N];
40
  int syst[N*10], systop;
41
42
  void dfs(int u){
43
44
      systop=0;
      syst[++systop]=1; //初始点进入
45
      while(systop>0){
46
         int x=syst[systop],i=head[x];
47
         while((\sim i)&vis[i]) i=e[i].nx;
48
         if(~i){
49
            syst[++systop]=e[i].v;
50
51
            vis[i]=1;
            head[x]=e[i].nx;
52
53
         }else{
            systop--, st[++st[0]]=x;
54
         }
55
56
      }
57
  }
58
```

//无向图欧拉回路打印路径模板,边或点

```
void dfs(int u){
60
      for(int i=head[u];~i;i=e[i].nx){
61
         int v=e[i].v;
62
         if(vis[i]) continue;
63
         vis[i]=vis[i^1]=1; //有向图只用禁掉一条, 无向禁两条, 具体禁的边看构图而定
64
65
         dfs(v);
66
         //st里边存边,外部存点, st[st[0]]->st[1]输出就是路径结果
67
      st[++st[0]]=u;
68
  }
69
70
71
72
  问题一:
73
       -个无向图图中(不是所有点联通,无重边,无自环),求问最少要几笔才能将所有边画到,孤立点不用画。
74
      考虑无向图欧拉路三种情况:
75
         1、若只存在一个点,则答案贡献为0,
76
77
         2、若奇数入度点为0,则ans+=1
         3、若奇数人度点为cnt,则ans+=cnt/2
78
79
80
  问题二:
      给n个字符串,要求排个序,使得si字符串的尾部是si+1字符串的首部,求问是否存在这种排序序列
81
      思路:
82
83
         初始想法就是在一个带有字符串关系之间的图中找到一个合法结果,显然不现实,因为n<=1e5。那么可以设
      in[26],out[26],vis[26],parent[26]数组,统计各字符串的出入读,并用并查集进行关系合并。若发现只
84
      i==parent[i],说明只有一个头,那么可能存在合法序列。否则不行。然后根据有向图欧拉路的欧拉路定义,只
85
     有满足
86
      该条件才能存在合法序列。
87
      注意:
         1.判断是否所有字符串连通 2.注意有向还是无向,从而通过定义解决问题 3、对于给定字符串,如果顺序
88
     不能改变,
      那么首字母为out++, 尾字母为in++
89
```

5 数学

5.1 BM

```
#include<bits/stdc++.h>
   using namespace std;
3 #define rep(i,a,n) for (int i=a;i<n;i++)</pre>
4 #define per(i,a,n) for (int i=n-1;i>=a;i--)
5 #define pb push_back
6 #define mp make_pair
7 #define all(x) (x).begin(),(x).end()
8 #define fi first
9 #define se second
10 #define SZ(x) ((int)(x).size())
11 typedef vector<int> VI;
12 typedef long long ll;
13 typedef pair<int,int> PII;
14 const ll mod=1000000007;
   ll powmod(ll a,ll b) {ll res=1;a%=mod; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}
       return res;}
16 // head
17
18 ll n;
   namespace linear_sea {
19
       const int N=10010;
20
21
       11 res[N],base[N],_c[N],_md[N];
22
23
       vector<int> Md;
       void mul(ll *a,ll *b,int k) {
24
            rep(i,0,k+k) _c[i]=0;
25
            rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
26
27
            for (int i=k+k-1;i>=k;i--) if (_c[i])
28
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
29
            rep(i,0,k) a[i]=_c[i];
30
       int solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
31
            11 \text{ ans=0,pnt=0;}
32
33
            int k=SZ(a);
34
            assert(SZ(a)==SZ(b));
35
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
36
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
37
            rep(i,0,k) res[i]=base[i]=0;
38
39
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;</pre>
40
41
            for (int p=pnt;p>=0;p--) {
                mul(res,res,k);
42
                if ((n>>p)&1) {
43
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
44
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
45
                }
46
            }
47
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
48
49
            if (ans<0) ans+=mod;</pre>
50
            return ans;
51
       VI BM(VI s) {
52
            VI C(1,1),B(1,1);
53
            int L=0, m=1, b=1;
54
```

```
rep(n,0,SZ(s)) {
55
                 11 d=0;
56
                 rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
57
58
                 if (d==0) ++m;
                 else if (2*L<=n) {</pre>
59
                     VI T=C;
60
                      11 c=mod-d*powmod(b,mod-2)%mod;
61
                     while (SZ(C)<SZ(B)+m) C.pb(0);</pre>
62
                      rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
63
                      L=n+1-L; B=T; b=d; m=1;
64
                 } else {
65
66
                      11 c=mod-d*powmod(b,mod-2)%mod;
                     while (SZ(C)<SZ(B)+m) C.pb(0);</pre>
67
                     rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
68
69
                      ++m;
                 }
70
             }
71
72
             return C;
73
        int gao(VI a,ll n) {
74
75
             VI c=BM(a);
76
             c.erase(c.begin());
77
             rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
78
             return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
79
        }
    };
80
81
    int main() {
82
        /*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/
83
84
        vector<int>v;
85
        v.push_back(3);
86
        v.push_back(9);
87
        v.push_back(20);
        v.push_back(46);
88
        v.push_back(106);
89
        v.push_back(244);
90
91
        v.push_back(560);
92
        v.push_back(1286);
        v.push_back(2956);
93
        v.push_back(6794);
94
        int nCase;
95
        scanf("%d", &nCase);
96
97
        while(nCase--){
             scanf("%lld", &n);
98
99
             printf("%lld\n",1LL * linear_seq::gao(v,n-1) % mod);
100
        }
101
    }
    5.2 gcd, ex-gcd
 1 1, qcd
    ll\ acd(ll\ a,ll\ b)
 2
 3
        return b>0?gcd(b,a%b):a;
    }
 4
 5
 6
     斐波那契数列的最大公约数定理: gcd(F(m),F(n))=F(gcd(m,n))
 7
     F[0]=0, F[1]=1...
 8
```

```
9 2, ex-gcd
   void extend_gcd(ll a, ll b, ll &x, ll &y) {
10
11
       if (!b){
12
           x = 1, y = 0;
13
           return;
14
       }
       else{
15
           extend_gcd(b, a \% b, y, x);
16
           y -= x * (a / b);
17
18
           return;
       }
19
20
   }
21
   ll inv(ll a, ll n) {
22
23
       11 x, y;
24
       extend_gcd(a,n,x,y);
25
       x = (x \% n + n) \% n;
26
       return x;
27 }
        拉格朗日插值法
   5.3
   /*
1
  测试用例 (函数) x^3-2*x+7
a = \{7,6,11,28,63\}
4 第0-4项和 115
   最高次项3,代入项数4
5
6
7
   ll powmod(ll a, ll b) { ll res = 1; a %= mod; for (; b; b >>= 1) { if (b & 1)res = res
       * a % mod; a = a * a % mod; }return res; }
9
10 namespace polysum {
11
   #define rep(i,a,n) for (int i=a;i<n;i++)</pre>
   #define per(i,a,n) for (int i=n-1; i>=a; i--)
12
       const int D = 1e5;
13
14
       ll a[D], f[D], g[D], p[D], p1[D], p2[D], b[D], h[D][2], C[D];
15
       //函数用途: 给出数列的 (d+1) 项, 其中d为最高次方项
16
       //求出数列的第n项,数组下标从0开始
17
       ll calcn(int d, ll* a, ll n) { // a[0].. a[d] a[n]
           if (n <= d) return a[n];</pre>
18
           p1[0] = p2[0] = 1;
19
           rep(i, 0, d + 1) {
20
               ll t = (n - i + mod) \% mod;
21
22
               p1[i + 1] = p1[i] * t % mod;
           }
23
           rep(i, 0, d + 1) {
24
               ll t = (n - d + i + mod) \% mod;
25
               p2[i + 1] = p2[i] * t % mod;
26
27
           11 ans = 0;
28
           rep(i, 0, d + 1) {
29
30
               ll t = g[i] * g[d - i] % mod * p1[i] % mod * p2[d - i] % mod * a[i] % mod;
               if ((d - i) \& 1) ans = (ans - t + mod) \% mod;
31
32
               else ans = (ans + t) \% mod;
33
34
           return ans;
35
       }
```

```
void init(int M) {
36
            f[0] = f[1] = g[0] = g[1] = 1;
37
            rep(i, 2, M + 5) f[i] = f[i - 1] * i % mod;
38
            g[M + 4] = powmod(f[M + 4], mod - 2);
39
            per(i, 1, M + 4) g[i] = g[i + 1] * (i + 1) % mod;
40
41
42
       //函数用途:给出数列的 (m+1) 项,其中m为最高次方
       //求出数列的前 (n-1) 项的和
43
       ll polysum(ll m, ll* a, ll n) { // a[0]... a[m] \sum_{i=0}^{n-1} a[i]
44
45
           ll b[D];
            for (int i = 0; i \le m; i++) b[i] = a[i];
46
47
           b[m + 1] = calcn(m, b, m + 1);
            rep(i, 1, m + 2) b[i] = (b[i - 1] + b[i]) \% mod;
48
            return calcn(m + 1, b, n - 1);
49
50
       ll qpolysum(ll R, ll n, ll* a, ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
51
            if (R == 1) return polysum(n, a, m);
52
           a[m + 1] = calcn(m, a, m + 1);
53
            ll r = powmod(R, mod - 2), p3 = 0, p4 = 0, c, ans;
54
           h[0][0] = 0; h[0][1] = 1;
55
            rep(i, 1, m + 2) {
56
                h[i][0] = (h[i - 1][0] + a[i - 1]) * r % mod;
57
                h[i][1] = h[i - 1][1] * r % mod;
58
59
            rep(i, 0, m + 2) {
60
                ll t = g[i] * g[m + 1 - i] % mod;
61
                if (i & 1) p3 = ((p3 - h[i][0] * t) \% mod + mod) \% mod, p4 = ((p4 - h[i][1]
62
        * t) % mod + mod) % mod;
                else p3 = (p3 + h[i][0] * t) % mod, p4 = (p4 + h[i][1] * t) % mod;
63
64
            c = powmod(p4, mod - 2) * (mod - p3) % mod;
65
            rep(i, 0, m + 2) h[i][0] = (h[i][0] + h[i][1] * c) % mod;
66
            rep(i, 0, m + 2) C[i] = h[i][0];
67
            ans = (calcn(m, C, n) * powmod(R, n) - c) % mod;
68
69
            if (ans < 0) ans += mod;
70
            return ans;
71
72
   } // polysum::init();
73
74
75 ll b[N];
  int n,m;
76
   int l,r;
77
78
79
   int main(){
       int t;
80
       scanf("%d",&t);
81
       while(t--){
82
            scanf("%d%d",&n,&m);
83
            polysum::init(n+10);
84
85
            for(int i=0;i<=n;i++)</pre>
86
                scanf("%lld",&b[i]);
87
            while(m--){
                scanf("%d%d",&l,&r);
88
                printf("%lld\n",((polysum::polysum(n,b,r+1)-polysum::polysum(n,b,l))%mod+
89
       mod)%mod);
90
            }
91
       }
92 }
```

5.4 素数

```
1
   1、素数筛
   //Mark中标记为true的为合数
   int prime[N];
   bool Mark[N];
   int cnt=0;
5
6
7
   void Prime(int n){
       for(int i=2;i<=n;i++){</pre>
8
            if(Mark[i]==0)
9
10
                prime[cnt++]=i;
            for(int j=0;j<cnt&&prime[j]*i<=n;j++){</pre>
11
12
                Mark[i*prime[j]]=1;
13
                if(i%prime[j]==0)
                    break;
14
15
            }
       }
16
   }
17
18
19
   //获得[2,n]的所有最小质因子和,1不为质因子
20
  ll res=0;
21
  int n,cnt;
22
  int prime[N];
  bool Mark[N];
24
25
   void Prime(int n){
26
       for(int i=2;i<=n;i++){</pre>
27
            if(!Mark[i])
                res+=prime[cnt++]=i;
28
            for(int j=0,e=n/i;j<cnt&&prime[j]<=e;j++){</pre>
29
30
                Mark[i*prime[j]]=1;
                res+=prime[j];
31
32
                if(i%prime[j]==0) break;
33
            }
       }
34
   }
35
36
   //求[2,n]内所有数能分解出的合数因子,复杂度nlogn
37
38
   void init(int n){
39
       Prime(n);
       tot=0; memset(head,-1, sizeof(head));
40
       for(int v=2;v<=n;v++){</pre>
41
            if(!Mark[v]) continue; //若v为合数则可以加入答案
42
            for(int u=v;u<=n;u+=v){</pre>
43
44
                add_edge(u,v);
            }
45
       }
46
47
   }
48
   //若一个数满足n=ab,a和b不能被平方数整除,除了1,设f(n)为满足对数,比如f(4)=1,2*2,f(6)
49
       =4,1*6,6*1,2*3,3*2
   //求[1,n]之间f(i)的和, 其中n<=2e7
50
   void Prime(int n){
51
52
       dp[1]=1;//必须放在第一个
       for(int i=2;i<=n;i++){</pre>
53
            if(Mark[i]==0) {
54
                prime[cnt++]=i;dp[i]=2;
55
            }
56
```

```
for(int j=0;j<cnt&&prime[j]*i<=n;j++){</pre>
57
                 int di=i*prime[j];
58
                 Mark[di]=1;
59
                 if(i%prime[j]) dp[di]=dp[i]*2;
60
61
                 else{
                      if((i/prime[j])%prime[j]==0) dp[di]=0;
62
63
                      else dp[di]=dp[i/prime[j]];
                      break;
64
                 }
65
             }
66
67
68
         for(int i=2;i<=n;i++) dp[i]+=dp[i-1];</pre>
    }
69
70
    2、单点判断
71
    bool isPrime(ll num){
72
         if (num == 2 || num == 3)
73
             return true;
74
         if (num % 6 != 1 && num % 6 != 5)
75
             return false;
76
         for (ll i = 5; i*i <= num; i += 6)
77
             if (num \% i == 0 | | num \% (i+2) == 0)
78
79
                  return false;
80
         return true;
81 }
82
83
84
    3、一个素数为P,它之前的素数为Q,求Q!%P的值
    int cnt=0;
85
86
    ll p,q;
87
    bool isPrime(ll num){
88
         if (num == 2 | l | num == 3)
89
90
             return true;
91
         if (num % 6 != 1 && num % 6 != 5)
92
             return false;
93
         for (ll i = 5; i*i <= num; i += 6)
94
             if (num \% i == 0 | | num \% (i+2) == 0)
                  return false;
95
96
         return true;
    }
97
98
    void extend_gcd(ll a, ll b, ll &x, ll &y) {
99
100
         if (!b){
101
             x = 1, y = 0;
             return;
102
103
         else{
104
             extend_gcd(b, a \% b, y, x);
105
106
             y -= x * (a / b);
107
             return;
108
         }
109
    }
110
    ll inv(ll a, ll n) {
111
112
         11 x, y;
113
         extend_gcd(a,n,x,y);
114
         x = (x \% n + n) \% n;
         return x;
115
```

```
116 }
117
    int main() {
118
         int t;
scanf("%d",&t);
119
120
121
         while(t--){
              scanf("%lld",&p);
122
123
              q=p-1;
              while(!isPrime(q))
124
125
                  q--;
126
              ll top = p-q-1;
127
              if(top==0)
                  top=1;
128
129
              ll res=1;
              for(ll i=1;i<=top;i++){</pre>
130
                  res=res*i%p;
131
132
              res = inv(res,p);
133
             printf("%lld\n",res);
134
135
         }
    }
136
137
138
139 LL Mult_Mod(LL a,LL b,LL m)//res=(a*b)%m
140
    {
141
         a\%=m;
         b%=m;
142
         LL res=0;
143
         while(b)
144
145
              if(b&1)
146
147
                  res=(res+a)%m;
148
              a=(a<<=1)%m;
149
             b>>=1;
         }
150
151
         return res%m;
152
    }
153
    LL Pow_Mod(LL a, LL b, LL m)//res=(a^b)%m
154
155
         LL res=1;
         LL k=a;
156
         while(b)
157
158
              if((b&1))
159
160
                  res=Mult_Mod(res,k,m)%m;
161
162
              k=Mult_Mod(k,k,m)%m;
163
             b>>=1;
164
165
         return res%m;
166
    }
167
    bool Witness(LL a, LL n, LL x, LL sum)
168
169
    {
170
         LL judge=Pow_Mod(a,x,n);
171
         if(judge==n-1||judge==1)
172
              return 1;
173
         while(sum--)
174
```

```
{
175
             judge=Mult_Mod(judge, judge, n);
176
             if(judge==n-1)
177
                  return 1;
178
179
180
         return 0;
181
    }
182
183
    bool Miller_Rabin(LL n)
184
185
         if(n<2)
186
             return 0;
187
         if(n==2)
188
             return 1;
         if((n&1)==0)
189
             return 0;
190
191
         LL x=n-1;
192
193
         LL sum=0;
         while(x\%2==0)
194
         {
195
             x>>=1;
196
197
             sum++;
198
         }
199
200
         int times=20;
201
         for(LL i=1;i<=times;i++)</pre>
202
203
             LL a=rand()%(n-1)+1;//取与p互质的整数a
204
             if(!Witness(a,n,x,sum))//费马小定理的随机数检验
205
206
                  return 0;
207
         }
208
         return 1;
209
210 LL GCD(LL a, LL b)
211
    {
212
         return b==0?a:GCD(b,a%b);
213
    }
214
    LL Pollard_Rho(LL n,LL c)//寻找一个因子
215
216
         LL i=1, k=2;
217
         LL x=rand()%n;//产生随机数x0(并控制其范围在1 ~ x-1之间)
         LL y=x;
218
219
         while(1)
220
         {
221
             i++;
222
             x=(Mult_Mod(x,x,n)+c)%n;
223
             LL gcd=GCD(y-x,n);
224
225
             if(gcd<0)
226
                  gcd=-gcd;
227
             if(gcd>1&&gcd<n)
228
229
                  return gcd;
230
231
             if(y==x)
                  return n;
232
233
```

```
if(i==k)
234
235
236
                 y=x;
237
                 k <<=1;
             }
238
        }
239
240 }
241
242 int total;//因子的个数
243 LL factor[N]; // 存储所有因子的数组, 无序的
   void Find_fac(LL n)//对n进行素因子分解,存入factor
245
        if(Miller_Rabin(n))//是素数就把这个素因子存起来
246
247
             factor[++total]=n;
248
249
             return;
        }
250
251
        long long p=n;
252
253
        while(p>=n)//值变化, 防止陷入死循环k
            p=Pollard_Rho(p,rand()%(n-1)+1);
254
255
        Find_fac(n/p);
256
257
        Find_fac(p);
258 }
          高斯消元
    5.5
 1
    1.解同余方程模板
 2
    11 a[N][N],x[N];
 3
    inline ll gcd(ll a,ll b) {
 4
        return b ? gcd(b, a % b) : a;
 5
    }
 6
    inline ll lcm(ll a,ll b) {
 7
        return a/gcd(a,b)*b;
 8
 9
    }
 10
    ll inv(ll a,ll p){
 11
 12
        if(a == 1) return 1;
 13
        return inv(p\%a,p)*(p-p/a)%p;
    }
 14
 15
    int Gauss(int equ,int var) {
 16
 17
        int max_r, col, k;
        for (k = 0, col = 0; k < equ && col < var; k++, col++) {
 18
 19
             max_r = k;
 20
             for(int i = k+1; i < equ; i++)
                 if(abs(a[i][col]) > abs(a[max_r][col]))
 21
 22
                     max_r = i;
             if(a[max_r][col] == 0){
 23
 24
                 k--;
 25
                 continue;
 26
             if(max_r != k)
 27
                 for(int j = col; j < var+1; j++)</pre>
 28
 29
                     swap(a[k][j],a[max_r][j]);
 30
             for(int i = k+1; i < equ; i++) {
```

```
if (a[i][col] != 0) {
31
                    ll LCM = lcm(abs(a[i][col]),abs(a[k][col]));
32
                    ll ta = LCM/abs(a[i][col]);
33
                    ll tb = LCM/abs(a[k][col]);
34
35
                    if(a[i][col]*a[k][col] < 0)tb = -tb;
36
                    for(int j = col; j < var+1; j++)
                         a[i][j] = ((a[i][j]*ta - a[k][j]*tb)%mod + mod)%mod;
37
                }
38
            }
39
40
        for(int i = k; i < equ; i++)
41
42
            if(a[i][col] != 0)
                return -1;//无解
43
        if(k < var) return var-k;//多解
44
        for(int i = var-1; i >= 0; i--){
45
            ll temp = a[i][var];
46
            for(int j = i+1; j < var; j++) {
47
                if (a[i][j] != 0) {
48
                    temp -= a[i][j] * x[j];
49
50
                    temp = (temp % mod + mod) % mod;
                }
51
52
            x[i] = (temp*inv(a[i][i],mod))%mod;
53
54
55
        return 0;
   }
56
57
   2.
58
   const double EPS = 1e-9;
   inline int sign(double x){return (x>EPS)-(x<-EPS);}</pre>
   double A[250][250];
61
62
   bool gauss(int n){
63
64
        int i,j,k,r;
65
        for(i=0;i<n;i++){</pre>
            //选一行与r与第i行交换,提高数据值的稳定性
66
67
            r=i;
68
            for(j=i+1; j<n; j++)</pre>
                if(fabs(A[j][i]) > fabs(A[r][i]))r=j;
69
            if(r!=i)for(j=0;j<=n;j++)swap(A[r][j],A[i][j]);</pre>
70
            //i行与i+1~n行消元
71
                for(k=i+1;k<n;k++){ //从小到大消元,中间变量f会有损失
72
                  double f=A[k][i]/A[i][i];
73
                  for(j=i;j<=n;j++)A[k][j]-=f*A[i][j];
74
75
76
            for(j=n; j>=i; j--){ //从大到小消元, 精度更高
                for(k=i+1; k<n; k++)
77
                    A[k][j]-=A[k][i]/A[i][i]*A[i][j];
78
79
            }
80
81
        //判断方程时候有解
82
        for(i=0;i<n;i++)if(sign(A[i][i])==0)return 0;</pre>
83
        //回代过程
        for(i=n-1;i>=0;i--){
84
            for(j=i+1; j<n; j++)</pre>
85
                A[i][n]-=A[j][n]*A[i][j];
86
87
            A[i][n]/=A[i][i];
88
89
        return 1;
```

90 }

5.6 几何基础模板

```
class Point{
1
2
   public:
3
       double x, y;
       Point(double x = 0, double y = 0) :x(x), y(y) {}
4
       Point operator + (Point a){
5
            return Point(x + a.x, y + a.y);
6
7
8
       Point operator - (Point a){
            return Point(x - a.x, y - a.y);
9
10
       bool operator < (const Point& a) const{</pre>
11
12
            if (x == a.x) return y < a.y;
            return x < a.x;
13
14
       bool operator == (Point a){
15
16
            if (x == a.x \&\& y == a.y) return true;
            return false;
17
18
       double abs(void){
19
            return sqrt(x * x + y * y);
20
       }
21
22
   };
23
24 typedef Point Vector;
25
26 //叉积
27 double cross(Vector a, Vector b){
       return a.x * b.y - a.y * b.x;
28
29
   }
30
31 //点积
32 double dot(Vector a, Vector b){
33
       return a.x * b.x + a.y * b.y;
34 }
35
36
   //判断方向
37
   bool isclock(Point p0, Point p1, Point p2){
38
       Vector a = p1 - p0;
39
       Vector b = p2 - p0;
       if (cross(a, b) < 0) return true;
40
41
       return false;
42
43
   typedef vector<Point> Polygon;
44
45
46
   //求凸包
   Polygon andrewScan(Polygon s) {
47
       Polygon u, 1;
48
49
       if (s.size() < 3) return s;</pre>
       sort(s.begin(), s.end());
50
       u.push_back(s[0]);
51
52
       u.push_back(s[1]);
       l.push_back(s[s.size() - 1]);
53
       1.push_back(s[s.size() - 2]);
54
```

```
for (int i = 2; i < s.size(); i++){</pre>
55
             for (int n = u.size(); n >= 2 && isclock(u[n - 2], u[n - 1], s[i]) != true; n
56
         --)
57
                 u.pop_back();
58
             u.push_back(s[i]);
59
60
         for (int i = s.size() - 3; i >= 0; i--){}
             for (int n = 1.size(); n >= 2 && isclock(l[n - 2], l[n - 1], s[i]) != true; n
61
62
                 1.pop_back();
             l.push_back(s[i]);
63
64
         for (int i = 1; i < u.size() - 1; i++)</pre>
65
             1.push_back(u[i]);
66
         return 1;
67
    }
68
69
70
    //判断符号
    int signal(double x){
71
         if(fabs(x)<eps)</pre>
72
             return 0;
73
         else
74
             return x<0?-1:1;</pre>
75
76 }
77
78
    //判断线段相交
    bool segmentCross(Point a,Point b,Point c,Point d){
    //快速排斥实验
80
         if(max(c.x,d.x) < min(a.x,b.x) | lmax(a.x,b.x) < min(c.x,d.x) | lmax(c.y,d.y) < min(a.y,b.y)
81
         IImax(a.y,b.y) < min(c.y,d.y) {
             return false:
82
83
         }
         //跨立实验
84
         if(cross(a-d,c-d)*cross(b-d,c-d)>0||cross(d-b,a-b)*cross(c-b,a-b)>0){}
85
             return false;
86
87
88
         return true;
89
    }
90
91
    //得到多边形面积
    double getArea(Polygon s){
92
         double sum=0;
93
         double x1,y1,x2,y2;
94
         int n = s.size()-1;
95
         for(int i=1;i<=n-1;i++){</pre>
96
97
             x1=s[i].x-s[0].x;
             y1=s[i].y-s[0].y;
98
             x2=s[i+1].x-s[0].x;
99
             y2=s[i+1].y-s[0].y;
100
101
             sum + = (x1*y2 - x2*y1)/2;
102
103
         return fabs(sum);
104
    }
105
    //判断点是否存在于多边形中
106
107
    bool is0k(Point x,double area,Polygon s){
108
         double sum=0;
109
         int n = s.size();
         for(int i=0;i<n;i++){</pre>
110
```

```
Point y = s[i], z = s[(i+1)\%n];
111
         sum+=fabs(cross(y-x,z-x))/2;
112
113
114
      return fabs(sum-area)<=eps;</pre>
   }
115
116
117
   已知平面三个点, 求外接圆圆心
118
   119
      x1)*(y2-y1)-2*((x2-x1)*(y3-y1)));
   y1)*(x2-x1)-2*((y2-y1)*(x3-x1)));
   printf("%.31f %.31f\n",x,y);
121
122
123
   如何判断三角形是钝角、直角、还是锐角三角形
124
125
   1、设c为最长的边
      若a^2+b^2<c^2,则为钝角三角形
126
      若a^2+b^2=c^2,则为直角三角形
127
      若a^2+b^2>c^2,则为锐角三角形
128
129 2、三点中, 若存在点乘<0, 则说明存在钝角
130 //i为顶点
131 bool check(int i,int j,int k){
      return ((p[i].x-p[j].x)*(p[i].x-p[k].x)+(p[i].y-p[j].y)*(p[i].y-p[k].y))<0;</pre>
133 }
134
   点乘是向量的内积, 叉乘是向量的外积
135
136
   点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。
   叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量。
137
138
   在一条直线上,同向是叉乘为0,点乘为正,反向为叉乘为0,点乘为负
139
140
   向量的点乘:a * b, x1*x2+y1*y2
141
   公式: a * b = |a| * |b| * cosl 点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长
142
      度的乘积;
   是标量。 点乘反映着两个向量的"相似度", 两个向量越"相似", 它们的点乘越大。
143
144
145
   向量的叉乘: a x b, x1*y2-x2*y1
   a \wedge b = |a| * |b| * sin  向量积被定义为: 模长: (在这里 表示两向量之间的夹角(共起点的前提下)(
      0^{\circ} \leq \square \leq 180^{\circ}
   它位于这两个矢量所定义的平面上。) 方向: a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手
147
      定则。
148
      个简单的确定满足"右手定则"的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a
      以不超过180度的转角转向b时.
   竖起的大拇指指向是c的方向。c = a \wedge b)
149
150
   3、现有一个边长为正整数的三角形,问能否以其三个顶点为圆心画三个圆,使三个圆两两外切
151
      只要满足a+b>c,则必定有解,且结果为(a+b-c)/2,(a+c-b)/2,(b+c-a)/2;
152
      大数模板
   5.7
```

```
1 0、快速幂
2 ll quick(ll a,ll b){
3 ll ret=1;a%=mod;
4 while(b){
5 if(b&1) ret=ret*a%mod;
6 b>>=1;
7 a=a*a%mod;
```

```
8
9
        return ret;
   }
10
11
12
   1、求phi模板
   11 phi(ll m) {
13
        ll\ ans = 1;
14
        for (ll i = 2; i*i <= m; i++) {
15
            if (m%i == 0) {
16
17
                 m /= i;
18
                 ans *= i - 1;
19
                 while (m%i == 0) {
                     m \neq i;
20
                     ans *= i;
21
                 }
22
            }
23
24
        if (m > 1) ans *= m - 1;
25
        return ans;
26
27
   }
28
29
   2、大数取模模板
30
   ll Mod(string a,ll b){
31
        ll len=a.length()-1;
32
        ll ans=0;
33
        for(int i=0;i<=len;i++)</pre>
            ans=(ans*10+(a[i]-'0')%b)%b;
34
        return ans;
35
   }
36
37
38
   3、大数相乘模板
39
   string Mul(string s,int x){
40
        reverse(s.begin(),s.end());
        int cmp=0;
41
        for(int i=0;i<s.size();i++){</pre>
42
            cmp = (s[i] - '0')*x + cmp;
43
44
            s[i]=(cmp%10+'0');
45
            cmp/=10;
        }
46
        while(cmp){
47
            S+=(cmp%10+'0');
48
            cmp/=10;
49
50
51
        reverse(s.begin(),s.end());
52
        return s;
53
   }
54
   4、大数相加模板:
   string sum(string s1,string s2){
56
57
        if(s1.length()<s2.length()) swap(s1,s2);</pre>
58
        for(i=s1.length()-1, j=s2.length()-1; i>=0; i--, j--){
59
            s1[i]=char(s1[i]+(j>=0?s2[j]-'0':0));
60
61
            if(s1[i]-'0'>=10){
                 s1[i]=char((s1[i]-'0')%10+'0');
62
63
                 if(i) s1[i-1]++;
64
                 else s1='1'+s1;
65
            }
        }
66
```

```
67
        return s1;
    }
68
69
    5、__int128 2^128次使用,只能在Linux下使用
70
    inline __int128 read() {
71
72
        __int128 x = 0, f = 1;
73
        char ch = getchar();
        while (ch<'0' || ch>'9') {
74
             if (ch == '-')
75
                 f = -1;
76
77
             ch = getchar();
78
        }
        while (ch >= '0'&&ch <= '9') {</pre>
79
            x = x * 10 + ch - '0';
80
             ch = getchar();
81
82
        return x * f;
83
    }
84
85
    inline void print(__int128 x) {
86
        if (x < 0) {
87
            putchar('-');
88
89
            X = -X;
90
        if (x > 9)
91
            print(x / 10);
92
        putchar(x % 10 + '0');
93
    }
94
95
    其他时候可以使用printf,cin,cout
96
97
98
99 6、快速乘
100
   //0(1)快速乘
    inline LL quick_mul(LL x,LL y,LL MOD){
101
102
        x=x\%MOD, y=y\%MOD;
103
        return ((x*y-(LL)(((long double)x*y+0.5)/MOD)*MOD)%MOD+MOD)%MOD;
104
   }
    //0(log)快速乘
105
106
    inline LL quick_mul(LL a,LL n,LL m){
107
        LL ans=0;
108
        while(n){
             if(n\&1) ans=(ans+a)%m;
109
110
            a=(a<<1)%m;
            n>>=1;
111
112
113
        return ans;
114 }
115
116 7、高精度相加
117
    struct BigInteger {
118
        static const int BASE = 10000; //高进制
        static const int WIDTH = 4; //高进制位数
119
120
        vector<int>s;
121
        BigInteger() {}
        BigInteger(long long num) { // 构造函数
122
123
             *this = num;
124
        //赋值
125
```

```
BigInteger operator = (long long num) {
126
127
             s.clear();
             do {
128
                  s.push_back(num%BASE);
129
130
                 num /= BASE;
             } while (num > 0);
131
             return *this;
132
         }
133
         //+
134
         BigInteger operator + (BigInteger& b) {
135
136
             BigInteger c;
137
             c.s.resize(max(s.size(), b.s.size()) + 1);
             for (int i = 0; i < c.s.size() - 1; i++) {
138
                 int tmp1, tmp2;
139
                 if (i >= s.size())tmp1 = 0;
140
                 else tmp1 = s[i];
141
                 if (i \ge b.s.size())tmp2 = 0;
142
143
                 else tmp2 = b.s[i];
                 c.s[i] = tmp1 + tmp2;
144
145
             for (int i = 0; i < c.s.size() - 1; i++) {</pre>
146
                 c.s[i + 1] += c.s[i] / BASE;
147
                 c.s[i] %= BASE;
148
149
150
             while (c.s.back() == 0 && c.s.size() > 1)c.s.pop_back();
151
             return c;
152
         void operator += (BigInteger& b) {
153
             *this = *this + b;
154
155
156
    };
157
    BigInteger dp[55][265];
158
159
    ostream& operator << (ostream& output, const BigInteger& x) {</pre>
160
         output << x.s.back();
161
162
         for (int i = x.s.size() - 2; i >= 0; i--) {
             char buf[20];
sprintf(buf, "%04d", x.s[i]);
163
164
165
             for (int j = 0; j < strlen(buf); j++)output << buf[j];</pre>
166
167
         return output;
168
    }
          组合数学
 1 1、打表求组合数
    c[n][m], n>=m
    for(int i=0;i<=n;i++){</pre>
 3
 4
         c[i][0]=1;
 5
         for(int j=1; j<=i; j++){
             c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
 6
 7
         }
    }
 8
 9
    2、预处理, 调用C(int n, int m)
    ll dp[N], fac[N], inv[N];
12
```

```
ll quick(ll a, ll b) {
       ll res = 1;
14
       while (b) {
15
16
           if (b & 1) res = res * a % mod;
           b >>= 1;
17
           a = a * a % mod;
18
19
20
       return res;
21
   }
22
23
   void init(int n) {
24
       fac[0] = 1, fac[1] = 1;
       for (int i = 2; i \le n; i++) {
25
           fac[i] = fac[i - 1]*i \% mod;
26
27
       inv[n] = quick(fac[n], mod - 2);
28
       for (int i = n-1; i >= 0; i--)inv[i] = inv[i+1]*(i+1) % mod;
29
30 }
31
32 //n大
33 ll C(int n, int m) {
       return fac[n] * inv[m] % mod * inv[n - m] % mod;
35
        快速阶乘
   5.9
1 //minamoto
2 #include<bits/stdc++.h>
3 #define R register
4 #define ll long long
5 #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
6 #define fd(i,a,b) for (R int i=(a),I=(b)-1;i>I;--i)
7 #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
8 using namespace std;
9 const int N=(1<<17)+5;int P;</pre>
inline int add(R int x,R int y){return 0ll+x+y>=P?0ll+x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}</pre>
12 inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
13 int ksm(R int x,R int y){
14
       R int res=1;
15
       for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
16
       return res;
17
   const double Pi=acos(-1.0);
18
   struct cp{
19
20
       double x,y;
21
       inline cp(){}
       inline cp(R double xx,R double yy):x(xx),y(yy){}
22
       inline cp operator +(const cp &b)const{return cp(x+b.x,y+b.y);}
23
       inline cp operator -(const cp &b)const{return cp(x-b.x,y-b.y);}
24
       inline cp operator *(const cp &b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);}
25
       inline cp operator *(const double &b)const{return cp(x*b,y*b);}
26
27
       inline cp operator \sim()const{return cp(x,-y);}
28
   }w[2][N];
   int r[21][N],ifac[N],lg[N],inv[N];double iv[21];
29
30
   void Pre(){
31
       iv[0]=1;
32
       fp(d,1,17){
```

```
fp(i,0,(1<< d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<< (d-1));
33
            lg[1 << d] = d, iv[d] = iv[d-1]*0.5;
34
35
        inv[0]=inv[1]=ifac[0]=ifac[1]=1;
36
        fp(i,2,131072)inv[i]=mul(P-P/i,inv[P%i]),ifac[i]=mul(ifac[i-1],inv[i]);
37
        for(R int i=1,d=0;i<131072;i<<=1,++d) fp(k,0,i-1)
38
39
            w[1][i+k]=cp(cos(Pi*k*iv[d]),sin(Pi*k*iv[d])),
            w[0][i+k]=cp(cos(Pi*k*iv[d]),-sin(Pi*k*iv[d]));
40
41
   int lim,d;
   void FFT(cp *A,int ty){
43
44
        fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);</pre>
45
        for(R int mid=1;mid<lim;mid<<=1)</pre>
46
            for(R int j=0;j<lim;j+=(mid<<1))</pre>
47
                fp(k,0,mid-1)
48
                     A[j+k+mid]=A[j+k]-(t=w[ty][mid+k]*A[j+k+mid]),
49
                     A[j+k]=A[j+k]+t;
50
        if(!ty)fp(i,0,lim-1)A[i]=A[i]*iv[d];
51
   }
52
   void MTT(int *a,int *b,int len,int *c){
53
        static cp f[N],g[N],p[N],q[N];
54
        lim=len,d=lg[lim];
55
        fp(i,0,len-1)f[i]=cp(a[i]>>16,a[i]&65535),g[i]=cp(b[i]>>16,b[i]&65535);
56
57
        fp(i, len, lim-1)f[i]=g[i]=cp(0,0);
        FFT(f,1), FFT(g,1);
58
        fp(i,0,lim-1){
59
            cp t, f0, f1, g0, g1;
60
            t=-f[i?lim-i:0], f0=(f[i]-t)*cp(0,-0.5), f1=(f[i]+t)*0.5;
61
            t=\sim q[i?lim-i:0], q0=(q[i]-t)*cp(0,-0.5), q1=(q[i]+t)*0.5;
62
63
            p[i]=f1*g1,q[i]=f1*g0+f0*g1+f0*g0*cp(0,1);
64
65
        FFT(p,0), FFT(q,0);
        fp(i,0,\lim_{t\to 0})c[i]=((((ll)(p[i].x+0.5))P<<16)P<<16)+((ll)(q[i].x+0.5)<<16)+((ll)(q[i].x+0.5)<<16)+((ll)(q[i].x+0.5)<=16)
66
       i].y+0.5)))%P;
67
   void calc(int *a,int *b,int n,int k){
68
69
        static int f[N],g[N],h[N],sum[N],isum[N];
        int len=1;while(len<=n+n)len<<=1;</pre>
70
        fp(i,0,n)f[i]=mul(a[i],mul(ifac[i],ifac[n-i]));
71
72
        for(R int i=n-1;i>=0;i-=2)f[i]=P-f[i];
        int t=dec(k,n);
73
        fp(i,0,n+n)g[i]=add(i,t);
74
75
        sum[0]=g[0]; fp(i,1,n+n)sum[i]=mul(sum[i-1],g[i]);
        isum[n+n]=ksm(sum[n+n],P-2);
76
        fd(i,n+n,1)isum[i-1]=mul(isum[i],g[i]);
77
78
        fp(i,1,n+n)g[i]=mul(isum[i],sum[i-1]);g[0]=isum[0];
79
        fp(i,n+1,len-1)f[i]=0; fp(i,n+n+1,len-1)g[i]=0;
80
81
        MTT(f,q,len,h);
82
        int res=1,p1=k-n,p2=k;
83
        fp(i,p1,p2)res=1ll*res*i%P;
84
        res=dec(res,0);
85
        fp(i,0,n)g[i]=(0ll+P+p1+i)%P;
86
        sum[0]=g[0];fp(i,1,n)sum[i]=mul(sum[i-1],g[i]);
87
        isum[n]=ksm(sum[n],P-2);
88
89
        fd(i,n,1)isum[i-1]=mul(isum[i],g[i]);
        fp(i,1,n)g[i]=mul(isum[i],sum[i-1]);g[0]=isum[0];
90
```

```
91
         for(R int i=0;i<=n;p2=add(p2,1),++i)</pre>
92
             b[i]=mul(h[i+n],res),res=mul(res,mul(g[i],p2+1));
93
94
    int solve(int bl){
95
         static int a[N],b[N],c[N];
96
97
         int s=0; for(int p=bl;p;p>>=1)++s;a[0]=1,--s;
         int qwq=ksm(bl,P-2);
98
         for(int p=0;s>=0;--s){
99
             if(p){}
100
101
                 calc(a,b,p,p+1);
102
                 fp(i,0,p)a[p+i+1]=b[i];a[p<<1|1]=0;
                 calc(a,b,p << 1,mul(p,qwq));
103
                 p \le 1; fp(i,0,p)a[i] = mul(a[i],b[i]);
104
105
             if(bl>>s&1){
106
                 fp(i,0,p)a[i]=mul(a[i],(1ll*bl*i+p+1)%P);
107
108
                 p = 1, a[p] = 1;
                 fp(i,1,p)a[p]=mul(a[p],(1ll*bl*p+i)%P);
109
             }
110
         }
111
         int res=1;
112
         fp(i,0,bl-1)res=mul(res,a[i]);
113
114
         return res;
115
    }
    int GetFac(int n){
116
         int s=sqrt(n),res=solve(s);
117
         fp(i,s*s+1,n)res=mul(res,i);
118
         return res;
119
120
    int Fac(int n){
121
122
         if(n>P-1-n){
             int res=ksm(GetFac(P-1-n),P-2);
123
124
             return (P-1-n)&1?res:P-res;
125
         }
126
         return GetFac(n);
127
    }
128 int n;
129 int main(){
130 //
         freopen("testdata.in","r",stdin);
         scanf("%d%d",&n,&P),Pre();
131
         printf("%d\n",Fac(n));
132
         return 0;
133
134
    }
    5.10 FFT
    inline int lowbit(int x) { return x & -x; }
 2
    int calc(int n) {
 3
 4
         int k = 0;
         while ((1 << k) < n) k++;
 5
 6
         return k;
    }
 7
 8
   // FFT
    const double pi = acos(-1.0);
10
11
```

```
12 const int N = (1 << 20);
   using Complex = complex<double>;
13
14
   void change(Complex p[], int n) {
15
16
       int k = calc(n);
17
       n = 1 << k;
       vector<int> r(n, 0);
18
       for (int i = 0; i < n; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
19
       for (int i = 0; i < n; i++) if (i < r[i]) swap(p[i], p[r[i]]);
20
   }
21
22
23
   void FFT(Complex p[], int n, int type) {
24
       change(p, n);
25
       for (int mid = 1; mid < n; mid <<= 1) { //待合并区间的长度的一半
            Complex wn(cos(pi / mid), type * sin(pi / mid)); //单位根 for (int R = mid << 1, j = 0; j < n; j += R) { //R是区间的长度,j表示前已经到哪个位置
26
27
       3
28
                Complex w(1, 0); //幂
                for (int k = 0; k < mid; k++, w = w * wn) { //枚举左半部分
29
30
                    Complex x = p[j + k], y = w * p[j + mid + k]; //蝴蝶效应
                    p[j + k] = x + y;
31
                    p[j + mid + k] = x - y;
32
                }
33
34
           }
35
       }
36 }
37
38
  1.大数相乘
   给出两个n位10进制整数x和y, 你需要计算x*y。
39
   int n,rev[N];
   char x[N], y[N]
41
   Complex a[N],b[N];
42
  int ans[N];
43
44
   void fft(Complex p[],int n,int type){
45
        for(int i=0;i<n;i++) if(i<rev[i]) swap(p[i],p[rev[i]]);</pre>
46
47
       for (int mid = 1; mid < n; mid <<= 1) { //待合并区间的长度的一半
48
            Complex wn(cos(pi / mid), type * sin(pi / mid)); //单位根
            for (int R = mid << 1, j = 0; j < n; j += R) { //R是区间的长度, j表示前已经到哪个位置
49
       3
                Complex w(1, 0); //幂
50
                for (int k = 0; k < mid; k++, w = w * wn) { //枚举左半部分
51
                    Complex x = p[j + k], y = w * p[j + mid + k]; //蝴蝶效应
52
                    p[j + k] = x + y;
53
                    p[j + mid + k] = x - y;
54
                }
55
           }
56
       }
57
  }
58
59
60
   int main() {
       scanf("%d",&n);
61
       scanf("%s%s",x,y);
62
       for(int i=n-1;i>=0;i--) a[n-1-i].real(x[i]-'0');
63
       for(int i=n-1;i>=0;i--) b[n-1-i].real(y[i]-'0');
64
65
       int top=1,bit=0;
66
       while(top<=(n<<1)) top<<=1,bit++;</pre>
67
       for(int i=0;i<top;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));</pre>
68
       fft(a,top,1); fft(b,top,1);
```

```
for(int i=0;i<top;i++) a[i]=a[i]*b[i];</pre>
69
70
        fft(a,top,-1);
        for(int i=0;i<top;i++){</pre>
71
            ans[i]+=(int)(a[i].real()/top+0.5);
72
            if(ans[i]>=10){
73
                ans[i+1]+=ans[i]/10; ans[i]%=10; top+=(i==top);
74
75
            }
76
        }
77
        while(!ans[top]&&top>=1) top--;
78
79
        while(--top>=0) printf("%d",ans[top]);
80
   }
          平面最近点对
   5.11
   int n;
2
   int a[N],tot;
3
   struct node{
4
5
        double x,y;
   }p[N];
6
   bool cmp(node a,node b){
8
9
        if(a.x!=b.x) return a.x<b.x;</pre>
10
        return a.y<b.y;</pre>
11
   }
12
13
   bool cmp2(int i,int j){
14
        return p[i].y<p[j].y;</pre>
15
16
   double dist(int i,int j){
17
        return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
18
19
   }
20
   double merge(int left,int right){
21
22
        double d = 1e18;
        if(left==right) return d;
23
24
        if(left+1==right) return dist(left,right);
25
        int mid=(left+right)>>1;
        double d1=merge(left,mid),d2=merge(mid+1,right);
26
27
        d=min(d1,d2);
        tot=0;
28
        for(int i=left;i<=right;i++) if(fabs(p[mid].x-p[i].x)<d) a[++tot]=i;</pre>
29
        sort(a+1,a+1+tot,cmp2);
30
31
        for(int i=1;i<=tot;i++){</pre>
            for(int j=i+1;j<=tot&&p[a[j]].y-p[a[j]].y<d;j++){</pre>
32
                double d3=dist(a[i],a[j]);
33
                d=min(d,d3);
34
            }
35
        }
36
        return d;
37
38
   }
39
   int main() {
40
   #ifdef ACM_LOCAL
41
        freopen("./std.in", "r", stdin);
42
43
   #endif
```

6 杂七杂八

6.1 二分、三分查找

```
// 查找第一个相等的元素
   int findFirstEqual(int[] array, int key) {
3
       int left = 0;
       int right = array.length - 1;
4
       while (left <= right) {</pre>
5
            int mid = (left + right) / 2;
6
            if (array[mid] >= key)
7
8
                right = mid - 1;
9
            else
10
                left = mid + 1;
11
       if (left < array.length && array[left] == key)</pre>
12
            return left;
13
       return -1;
14
   }
15
16
   // 查找最后一个相等的元素
17
   int findLastEqual(int[] array, int key) {
18
       int left = 0;
19
20
       int right = array.length - 1;
       while (left <= right) {</pre>
21
22
            int mid = (left + right) / 2;
23
            if (array[mid] <= key)</pre>
24
                left = mid + 1;
            else
25
26
                right = mid - 1;
27
        if (right >= 0 && array[right] == key)
28
29
            return right;
30
       return -1;
31 }
32
33 浮点查找最后一个相等的元素,因为浮点区间连续,所以不需要整数一样+-1
   double left=0,right=2000;
   while(left+eps<=right){</pre>
36
          double mid = (left+right)/2;
37
          if(isOK(mid)) left=mid;
38
         else right=mid;
39
   printf("%lld\n",(ll)(1000*right));
40
41
42
   // 查找最后一个等于或者小于key的元素
   int findLastEqualSmaller(int[] array, int key) {
43
       int left = 0;
44
       int right = array.length - 1;
45
       while (left <= right) {</pre>
46
            int mid = (left + right) / 2;
47
48
            if (array[mid] > key)
                right = mid - 1;
49
50
            else
51
                left = mid + 1;
52
53
       return right;
54
   }
55
```

```
// 查找最后一个小于key的元素
    int findLastSmaller(int[] array, int key) {
57
        int left = 0;
58
        int right = array.length - 1;
59
        while (left <= right) {</pre>
60
            int mid = (left + right) / 2;
61
            if (array[mid] >= key)
62
                 right = mid - 1;
63
            else
64
                left = mid + 1;
65
66
67
        return right;
    }
68
69
70
    // 查找第一个等于或者大于key的元素
    int findFirstEqualLarger(int[] array, int key) {
72
        int left = 0;
73
        int right = array.length - 1;
        while (left <= right) {</pre>
74
            int mid = (left + right) / 2;
75
            if (array[mid] >= key)
76
                right = mid - 1;
77
            else
78
79
                left = mid + 1;
80
        return left;
81
82 }
83
    // 查找第一个大于key的元素
84
    int findFirstLarger(int[] array, int key) {
85
86
        int left = 0;
87
        int right = array.length - 1;
        while (left <= right) {</pre>
88
            int mid = (left + right) / 2;
89
            if (array[mid] > key)
90
                right = mid - 1;
91
92
            else
93
                left = mid + 1;
94
        return left;
95
    }
96
97
98
    当二分的函数值不是递增/减,而是先增后减或者先减后增时二分就挂了。此时使用三分,需要注意的是必须严格递增
99
        或递减
100
101
    //当存在极小值时
    while(left+eps<=right){</pre>
102
        double lm=left+(right-left)/3;
103
104
        double rm=right-(right-left)/3;
105
        if(calc(lm)>=calc(rm)) left=lm;
106
        else right=rm;
107
    printf("%.10lf\n",calc(left));
108
109
110
   //当存在极大值时
111
    while(left+eps<=right){</pre>
112
        double lm=left+(right-left)/3;
113
        double rm=right-(right-left)/3;
```

```
if(calc(lm)>=calc(rm)) right=rm;
114
        else left=lm;
115
116
   printf("%.10lf\n",calc(left));
117
    6.2 离散化
    1、离散化
 1
    for (int i = 1; i <= n; i++) {
 2
        scanf("%d", &a[i]);
 3
        b[i] = a[i];
 4
    }
 5
   sort(b + 1, b + 1 + n);
 6
   m = unique(b + 1, b + 1 + n) - b - 1;
   for (int i = 1; i <= n; i++) {
 9
        a[i] = lower\_bound(b + 1, b + 1 + m, a[i]) - b;
10
   }
    6.3
         斯坦纳树
    给定n个点,m条边,请选择一些边,使得1 <= i <= d(1 <= d <= 4),i 号节点和i + 1 号节点可以通过选中的边连通,
       最小化选中的所有边的权值和。
    首先我们设计状态: f[i][j]表示根为i, 连通状态为j的最小代价(状态只李记录关键点)
    有两种转移方法:
   枚举子树的形态: f[i][j]=min(f[i][j], f[i][k]+f[i][l]), 其中k和l是对j的一个划分
   按照边进行松弛: f[i][j]=min(f[i][j], f[i'][j]+w[i][i']), 其中i和i'之间有边相连
 5
    对于第一种转移,我们直接枚举子集
 6
 7
    对于第二种转移, 我们用spfa进行状态转移
 8
 9
   int n,m,d;
10
11 struct node{
12
        int to, v, nx;
13 }edge[N<<1];</pre>
   int tot,head[N];
15
16
    void add(int from,int to,int v) {
17
        edge[tot].to=to;
18
        edge[tot].v=v;
        edge[tot].nx=head[from];
19
        head[from]=tot++;
20
21
   }
22
23
   class SteinerTree{
    public:
24
25
        int f[260][N],g[260];
26
        queue<int>q;
        bool in[N];
27
28
        void spfa(int S) {
29
            while (!q.empty()) {
30
               int from=q.front(); q.pop();
31
32
               in[from]=0;
               for (int i=head[from];i;i=edge[i].nx) {
33
34
                   int to=edge[i].to;
                   if (f[S][to]>f[S][from]+edge[i].v) {
35
                       f[S][to]=f[S][from]+edge[i].v;
36
```

```
if (!in[to]) {
37
38
                               in[to]=1;
39
                               q.push(to);
                          }
40
41
                      }
                 }
42
            }
43
        }
44
45
        void solve(){
46
             memset(f,0x3f,sizeof(f));
47
48
             int cnt=2*d;
             for (int i=1;i<=d;i++) f[1<<i-1][i]=0,f[1<<d+i-1][n-i+1]=0;</pre>
49
             int top=(1<<cnt);</pre>
50
             for (int S=1;S<top;S++) {</pre>
51
                 for (int s=(S-1)\&S; s; s=(s-1)\&S) {
52
53
                      int t=S^s;
54
                      for (int i=1;i<=n;i++)</pre>
                          f[S][i]=min(f[S][i],f[s][i]+f[t][i]);
55
56
                 for (int i=1;i<=n;i++)</pre>
57
                      if (f[S][i]<INF&&!in[i])</pre>
58
59
                           q.push(i),in[i]=1;
                 spfa(S);
60
61
             }
             memset(g,0x3f,sizeof(g));
62
             top=(1<< d);
63
             for (int S=1;S<top;S++)</pre>
64
                 for (int i=1;i<=n;i++)</pre>
65
                      g[S]=min(g[S],f[S^(S<<d)][i]);</pre>
66
             for (int S=1;S<top;S++)</pre>
67
                 for (int s=(S-1)\&S; s; s=(s-1)\&S)
68
69
                      g[S]=min(g[S],g[s]+g[S^s]);
70
             printf("%d",g[top-1]==INF? -1:g[top-1]);
71
   }steinerTree;
72
73
74
   int main(){
75
        int cin_x,cin_y,cin_v;
76
        scanf("%d%d%d",&n,&m,&d);
77
        tot=1;
        for(int i=1;i<=m;i++){</pre>
78
             scanf("%d%d%d",&cin_x,&cin_y,&cin_v);
79
80
             add(cin_x,cin_y,cin_v);
             add(cin_y,cin_x,cin_v);
81
82
83
        steinerTree.solve();
84
   }
    6.4 子矩阵问题
   1、01矩阵求第二大全是1矩阵, 单调栈
   int main() {
2
3
        int hi, li, top;
        scanf("%d%d", &n, &m);
4
        for (int i = 1; i \le n; i++)
5
        scanf("%s", s[i] + 1);
for (int i = 1; i <= n; i++) {
6
7
```

```
for (int j = 1; j \le m; j++) h[i][j] = (s[i][j] == '1') ? <math>h[i - 1][j] + 1 : 0;
8
            h[i][m + 1] = 0; st[top = 0] = 0;
9
            for (int j = 1; j \leftarrow m + 1; j++) {
10
                 if (h[i][j] == h[i][st[top]]) st[top] = j;
11
                 else if (h[i][j] > h[i][st[top]]) st[++top] = j;
12
                 else {
13
                     int t = st[top];
14
                     do {
15
                          hi = h[i][st[top]]; li = (t - st[--top]); //求长度和高度
16
                          ans.push_back(hi * li); //计算面积
17
                          ans.push_back(max((hi - 1) * li, hi * (li - 1)));
18
19
                     } while (h[i][j] < h[i][st[top]]);</pre>
20
                     if (h[i][j] > h[i][st[top]]) top++;
                     st[top] = j;
21
                 }
22
            }
23
24
            sort(ans.begin(), ans.end(), greater<int>());
25
            ans.resize(2);
26
27
        printf("%d\n", ans[1]);
28 }
29
   2、01矩阵求最大全是1矩阵, 如需求第二大子矩阵则需要将int a=i,b=r[i][j],R=r[i][j]-l[i][j]+1,H=h[i
30
        ][j]; 四点进行去重即可
31
   void solve(){
32
        int maxl,maxr;
33
        for(int i=1;i<=m;i++) r[0][i]=m;</pre>
        for(int i=1;i<=n;i++){</pre>
34
            maxl=1; maxr=m;
35
            for(int j=1;j<=m;j++){</pre>
36
37
                 if(s[i][j]=='0'){
                     maxl=j+1;
38
                     h[i][j]=l[i][j]=0;
39
                 }else{
40
                     h[i][j]=h[i-1][j]+1;
41
                     l[i][j]=max(maxl,l[i-1][j]);
42
                 }
43
44
            for(int j=m; j>=1; j--){
45
                 if(s[i][j]=='0'){
46
                     maxr=j-1;
47
                     r[i][j]=m;
48
49
                 }else{
                     r[i][j]=min(maxr,r[i-1][j]);
50
                     int R=r[i][j]-l[i][j]+1,H=h[i][j];
51
                     ans=max(ans,R*H);
52
                 }
53
            }
54
55
        printf("%d\n",ans);
56
57 }
58
59
   //简单悬线法
   for (int i = 1; i <= n; i++)
60
   for (int j = 1; j <= m; j++)
    scanf(" %c", s[i] + j), lft[i][j] = rgt[i][j] = j, up[i][j] = 1;
for (int i = 1; i <= n; i++) {</pre>
61
62
63
64
      for (int j = 1; j \le m; j++)
        if (s[i][j] == '0' && s[i][j - 1] == '0') lft[i][j] = lft[i][j - 1];
65
```

```
66
      for (int j = m; j >= 1; j--)
        if (s[i][j] == '0' && s[i][j + 1] == '0') rgt[i][j] = rgt[i][j + 1];
67
68
    for (int i = 1; i <= n; i++)
69
70
      for (int j = 1; j \ll m; j++) {
        if (i > 1 \&\& s[i][j] == '0' \&\& s[i - 1][j] == '0') {
71
72
           lft[i][j] = max(lft[i][j], lft[i - 1][j]);
73
           rgt[i][j] = min(rgt[i][j], rgt[i - 1][j]);
74
           up[i][j] = up[i - 1][j] + 1;
75
76
        ans = \max(ans, (rgt[i][j] - lft[i][j] + 1) * up[i][j]);
77
    }
78
    3、优先队列+并查集求第二大1矩阵
79
    int find(int x){
80
81
         if (par[x] == x)return x;
82
        return par[x] = find(par[x]);
83
    }
84
    void merge(int x,int y){
85
        int fx=find(x), fy=find(y);
86
        par[fy]=fx;
87
88
        len[fx]+=len[fy];
89
        return;
90
   }
91
    int main() {
92
        scanf("%d%d",&n,&m);
93
         int ans=0,ans2=0;
94
95
         for(int i=1;i<=n;i++){</pre>
             scanf("%s",s+1);
96
97
             for(int j=1;j<=m;j++){</pre>
                 if(s[j]=='0') h[j]=0;
98
                 else{
99
100
                     h[j]++;
                     q.push(node(j,h[j]));
101
102
103
                 len[j]=1;par[j]=j;vis[j]=0;
             }
104
             while(!q.empty()){
105
                 node t=q.top(); q.pop();
106
                 int pos=t.pos,hi=t.height;
107
108
                 vis[pos]=1;
109
                 if(vis[pos-1]) merge(pos-1,pos);
110
                 if(vis[pos+1]) merge(pos+1,pos);
                 int f=find(pos);
111
                 if(len[f]*hi>=ans) ans2=ans,ans=len[f]*hi;
112
                 else ans2=max(ans2,len[f]*hi);
113
                 ans2=max(ans2, max((len[f]-1)*hi, len[f]*(hi-1)));
114
115
             }
116
117
        printf("%d\n",ans2);
118
119
    4、给定一个矩阵n*m(1<=n,m<=500),求其中最大子矩阵满足矩阵中I最大值-最小值I<=K的大小
120
121
    void solve(){
122
         int ans=0, ans2=0;
123
         for(int i=1;i<=n;i++){</pre>
124
             for(int j=1;j<=m;j++) { mx[j]=-inf; mn[j]=inf;}</pre>
```

```
for(int j=i;j<=n;j++){</pre>
125
                  for(int k=1;k<=m;k++) mx[k]=max(mx[k],a[j][k]);</pre>
126
                 for(int k=1;k<=m;k++) mn[k]=min(mn[k],a[j][k]);</pre>
127
                 int l=1,head=1,tail=0,head2=1,tail2=0;
128
129
                 for(int r=1;r<=m;r++){</pre>
                      while(head<=tail&&mx[r]>=mx[q[0][tail]]) tail--;
130
                      while(head2<=tail2&&mn[r]<=mn[q[1][tail2]]) tail2--;</pre>
131
                      q[0][++tail]=r;
132
                      q[1][++tail2]=r;
133
                      \frac{\text{while}(1 <= r\&mx[q[0][head]] - mn[q[1][head2]] > k)}{}
134
135
136
                          if(q[0][head]<1) head++;</pre>
                          if(q[1][head2]<l) head2++;</pre>
137
                      }
138
                      ans=max(ans,(j-i+1)*(r-l+1)); //求最大子矩阵
139
                      ans+=r-l+1; //求所有满足条件的子矩阵
140
                 }
141
             }
142
143
         printf("%d\n",ans);
144
    }
145
    6.5
          矩阵模板
    friend bool operator< (node a,node b){</pre>
 3
             return a.step>b.step;
    }
 4
 5
    优先队列将步数较小的放在前面
 6
    2、
 7
 8
    do {
         if (check()) {
 9
10
11
    } while (next_permutation(a + 1, a + 1 + n));
    全排列函数、注意最初需要将a从小到大进行排序。
14
15
16
    矩阵模板:
17
    mat Mul(mat a, mat b) {
        mat c;
18
         for (int i = 0; i < ac.tot; i++) {
19
             for (int j = 0; j < ac.tot; j++) {
20
                 ull sum = 0;
21
                 for (int k = 0; k < ac.tot; k++)
22
23
                      sum = sum + a.arr[i][k] * b.arr[k][j];
24
                 c.arr[i][j] = sum;
             }
25
26
27
         return c;
    }
28
29
30
    mat quick(mat a, int b) {
31
         mat res = ones;
         while (b) {
32
             if (b & 1)
33
34
                 res = Mul(res, a);
```

```
35
         b >>= 1;
36
         a = Mul(a, a);
37
38
      return res;
39
  }
40
  mat add(mat a, mat b) {
41
42
      mat c;
      for (int i = 0; i < ac.tot; i++) {
43
          for (int j = 0; j < ac.tot; j++) {
44
             c.arr[i][j] = a.arr[i][j] + b.arr[i][j];
45
46
47
      }
48
      return c;
  }
49
50
  求: A^1+A^2+A^3+A^4...+A^K
51
   mat getsum(int k) {
52
53
      if (k == 1)
          return A;
54
      mat t = getsum(k / 2);
55
      if (k & 1) {
56
         mat reminder = quick(A, k);
57
         mat cur = quick(A, (k - 1) / 2);
58
59
         t = add(t, Mul(cur, t));
60
         t = add(reminder, t);
      }
61
62
      else {
         mat cur = quick(A, k / 2);
63
64
          t = add(t, Mul(cur, t));
65
66
      return t;
67
  }
   6.6 汉诺塔
  汉诺塔:
2
      其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n-1。只要轮流进行两步操作就可以了。首先把三
   柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶
3
4
   按顺时针方向依次摆放 A B C; 若n为奇数, 按顺时针方向依次摆放 A C B。
5
      □ 按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;
   盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
6
7
      □ 接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根
      柱子
   都非空时,移动较大的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行
8
      动是唯一的。
      □ 反复进行□□ 操作,最后就能按规定完成汉诺塔的移动。
9
10
      所以结果非常简单,就是按照移动规则向一个方向移动金片:
      如3阶汉诺塔的移动: A→C,A→B,C→B,A→C,B→A,B→C,A→C
11
12
13
  void Move(int n, char a, char b){
      printf("第%d次移动 Move %d: Move from %c to %c !\n",++cnt,n,a+'A',b+'A');
14
15
  }
16
  void Hanoi(int n,int a,int b,int c){
```

```
if(n==1){
18
19
            Move(n,a,c);
        }else{
20
21
            Hanoi(n - 1, a, c, b);
            Move(n, a, c);
22
            Hanoi(n - 1, b, a, c);
23
        }
24
25
   }
26
27
28
   求汉诺塔具体操作数结果:
29
   int main(){
        int ab=0, ac=1, ba=2, bc=3, ca=4, cb=5;
30
        scanf("%d",&n);
31
        ret[ac]++; dp[1][ac]=1;
32
        for(int i=2;i<=n;i++){</pre>
33
34
             if(i%2==0){
                 dp[i][ab]+=dp[i-1][ac]+dp[i-1][cb];
35
                 dp[i][bc]+=dp[i-1][ac]+dp[i-1][ba];
36
                 dp[i][ca]+=dp[i-1][ba]+dp[i-1][cb];
37
            }else{
38
                 dp[i][ac]+=dp[i-1][ab]+dp[i-1][bc];
39
                 dp[i][ba]+=dp[i-1][bc]+dp[i-1][ca];
40
                 dp[i][cb]+=dp[i-1][ab]+dp[i-1][ca];
41
42
            for(int j=0;j<6;j++) ret[j]+=dp[i][j];</pre>
43
44
        printf("A->B:%lld\n", ret[0]);
printf("A->C:%lld\n", ret[1]);
printf("B->A:%lld\n", ret[2]);
printf("B->C:%lld\n", ret[3]);
printf("C->A:%lld\n", ret[4]);
printf("C->B:%lld\n", ret[5]);
printf("SIM:%lld\n", rw(n)-1);
45
46
47
48
49
50
        printf("SUM:%lld\n", pw(n)-1);
51
   }
52
   6.7
         前缀和与差分
   1、前缀和与差分
1
2
        对于一个数组a定义数组s[i]=sigma(j=1,i)a[j]
   //为了避免数组越位,下标从1开始用
3
    for(int i=1;i<=n;i++)</pre>
4
5
        s[i]=s[i-1]+a[i];
6
        定义数组d[i]= 1、i==0,di[i]=a[i] 2、i>=1,d[i]=a[i]-a[i-1]
7
8
9
   //为了避免数组越位,下标从1开始用
10
    for(int i=n;i>=1;i--)
        d[i]=a[i]-a[i-1];
11
12
13
        发现对于原数组a的区间加数操作对应差分数组d只改变了两个地方。因为差分数组的前缀和数组为原数组,所以
        对差分数组的
   修改,在原数组上产生的影响是这个位置以后的一个后缀影响。给d[l]加上x就相当于给a[l],a[l+1],a[l+2]....
14
       a[n]全部加上x。
   给d[r+1]加上-x就相当于给a[r+1],r[r+2],....a[n]全部加上-x。那么如果要给a[l],a[l+1]...a[r]全部加
15
        上x就很简单了。
16
   void add(int l,int r,int x){
17
```

```
18
       d[l]+=x;
       d[r+1]-=x;
19
   }
20
21
22
   注意我们操作的是数组d,是差分数组,不是原数组。也就是说如果你最后要输出原数组a的话还要在做一遍前缀和还
      原。
23
   2、静态维护区间加等差数列的求和问题
24
25
       维护一个数组,先进行m次操作,然后查询每个位置的值,每个操作给定四个参数1,r,a,k表示从1到r依次加上一
      个首项为a、公差为k的等差数列。
26
   其中[1,r]区间分别加上[a,a+k,a+2k,...a+(r-1)k]
27
   int n,m,d2[N],l,r,a,k;
28
   void add(int l,int r,int a,int k){
29
30
       d2[1]+=a;
       d2[l+1]+=k-a;
31
       d2[r+1]=(r-l+1)*k+a;
32
       d2[r+2]=(1-r)*k-a;
33
34
   void iter(){
35
       for(int i=1;i<=n;++i) d2[i]+=d2[i-1];</pre>
36
37
   }
38
   int main(){
39
40
       scanf("%d%d",&n,&m);
       for(int i=1;i<=m;++i){</pre>
41
          scanf("%d%d%d%d",&l,&r,&a,&k);
42
          add(l,r,a,k);
43
       }
44
       iter(); //第一次为了将每项额外加的补齐
45
       iter(); //还原完整数组
46
       for(int i=1;i<=n;++i) printf("%d%c",d2[i],i==n?'\n':' ');</pre>
47
       return 0:
48
   }
49
50
   3、二维前缀和与差分
51
       对于一个二维数组a定义s[i][j]=sigma(p=0,i)sigma(q=0,j)a[p][q]为数组a的前缀和数组
52
53
   //为了避免数组越位,下标从1开始
54
   for(int i=1;i<=n;i++){</pre>
       for(int j=1; j<=m; j++){</pre>
55
          s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
56
       }
57
   }
58
59
       那么定义d[i][j]为差分数组
60
   为了避免数组越位,下标从1开始
   for(int i=n;i;i--){
61
62
       for(int j=m; j; j--){
          d[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
63
64
   }
65
66
67
   静态数组的求和问题
68
   sum(l1,r1,l2,r2)=s[r1][r2]-s[l1-1][r2]-s[r1][l2-1]+s[l1-1][l2-1]。这个是利用了简单的容斥原
      理,纸上画画图就能理解
   因为s[i][j]是一个左上矩形的矩阵和,所以s[r1][r2]这个矩阵在减去s[l1-1][r2]与s[r1][l2-1]矩阵后,它
69
      们共有的s[l1-1][l2-1]
   部分被减了两次,所以再加上一次。
70
   ll sum(int l1,int r1,int l2,int r2){
71
72
       return s[r1][r2]-s[l1-1][r2]-s[r1][l2-1]+s[l1-1][l2-1];
```

```
}
73
74
   进行m次区间修改后的静态单点求值问题
75
76
       推导过程类似一维的前缀和与差分,其实就是反过来考虑差分数组对原数组的影响是一个后缀影响(这里可以理解
       为影响整个右下角矩阵)
   void add(int l1,int r1,int l2,int r2,int x){
77
       d[11][12]+=x;
78
79
       d[r1+1][12]-=x;
       d[11][r2+1]=x;
80
       d[r1+1][r2+1]+=x;
81
82
   }
83
       同理,d数组可以靠一次前缀和操作还原为原数组,如果是矩阵求和问题还可再做一遍前缀和。
84
85
   4、高维前缀和
86
       同理三维只需要三个维度进行处理即可
87
   for(int i=1;i<=n;++i){</pre>
88
89
       for(int j=1;j<=m;++j){</pre>
          a[i][j]=a[i][j]+a[i][j-1];
90
91
92
   for(int i=1;i<=n;++i){</pre>
93
       for(int j=1; j<=m;++j){</pre>
94
95
          a[i][j]=a[i][j]+a[i-1][j];
96
       }
   }
97
98
   5、状压dp前缀和
99
   for(int i=0;i<w;++i)//依次枚举每个维度
100
101
102
       for(int j=0; j<(1<<w);++j)//求每个维度的前缀和
103
       {
104
          if(j&(1<<i))s[j]+=s[j^(1<<i)];
       }
105
106
   }
107
108
109
   6、菱形差分
110
   题目:
       地方阵地可以看做是n×m的矩形,航空母舰总共会派出q架飞机。飞机有两种,第一种飞机会轰炸以(xi, yi)为
111
       中心,
   对角线长为li的正菱形(也就是两条对角线分别于x轴 y轴平行的正方形),而第二种飞机只会轰炸正菱形的上半部分(
112
       包括第xi行)
113
   (具体看样例解释)。现在小a想知道所有格子被轰炸次数的异或和,注意:不保证被轰炸的格子一定在矩形范围内,若
      越界请忽略
114
   输入:
115
       第一行三个整数n,m,q分别表示矩阵的长/宽/询问次数,接下来q行,每行四个整数opt,x,y,l表示飞机类
116
       型,轰炸的坐标,以及对角线长度
117
   保证1为奇数!
118
119 4 5 4
120 1 2 2 1
   1 3 3 5
121
   1 3 2 3
122
   2 2 4 3
123
124
125
   轰炸后结果为:
126
```

```
127 00110
    0 3 2 2 1
128
    2 2 2 1 1
129
    0 2 1 1 0
130
131
    最后把所有元素异或后为2
132
133
    代码:
134
   int n, m, q, base=500;
135
   int op,x,y,L;
136
   int a[N][N],b[N][N];
137
138
    void down(int x,int y,int L){
139
        a[x+L+1][y]++;
        a[x+1][y+L]--;
140
141
        b[x+1][y-L+1]++;
142
        b[x+L+1][y+1]--;
143
    }
144
145
    void up(int x,int y,int L){
146
        a[x-L][y]++;
147
        a[x+1][y-L-1]--;
148
149
150
        b[x-L][y+1]--;
151
        b[x+1][y+2+L]++;
    }
152
153
    int main() {
154
        read(n); read(q);
155
156
        while(q--){
            read(op); read(x); read(y); read(L);
157
            x+=base; y+=base;
158
            if(op==1) down(x,y,L/2);
159
            up(x,y,L/2);
160
        }
161
        int ans=0;
162
163
        for(int i=1;i<=n+base*2;i++){</pre>
164
            int x=0;
            for(int j=1;j<=m+base*2;j++){</pre>
165
                x+=a[i][j]+b[i][j];
166
                if(i>base&&i<=n+base&&j>base&&j<=m+base) ans^=x;</pre>
167
                a[i+1][j-1]+=a[i][j];
168
169
                b[i+1][j+1]+=b[i][j];
170
            }
171
        printf("%d\n",ans);
172
    }
173
    6.8 	ext{ stl}
    1, lower_bound,upper_bound
 2
        lower_bound()和upper_bound()都是利用二分查找的方法在一个排好序的数组中进行查找的。
 3
 4
        在从小到大的排序数组中:
        1、lower_bound(begin,end,num): 从数组的begin位置到end-1位置二分查找第一个大于或等于num的数
 5
        字,找到返回该数
    字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
```

```
7
       2、upper_bound(begin,end,num): 从数组的begin位置到end-1位置二分查找第一个大于num的数字,找
      到返回该数字的
   地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
8
9
10
       在从大到小的排序数组中, 重载lower_bound()和upper_bound():
       1、lower_bound(begin,end,num,greater<type>()):从数组的begin位置到end-1位置二分查找第一个
11
       小于或等于num
12
   的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下
      标。
       2、upper_bound(begin,end,num,greater<type>()):从数组的begin位置到end-1位置二分查找第一
13
      个小干num的数字.
   找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
14
15
16
17
   //数组测试
   int a[N];
18
19
20
   int main(){
       int n=10;
21
22
       //从小到大,lower_bound测试,找第一个大于或等于num的数字,超出去一律返回位置n
23
       for(int i=0;i<n;i++) a[i]=i;</pre>
       int i=lower_bound(a,a+n,n+n)-a;
24
25
       printf("%d %d\n",i,a[i]);
26
       //从小到大,upper_bound测试,第一个大于num的数字,超出去一律返回位置n
27
       i=upper\_bound(a,a+n,100)-a;
       printf("%d %d\n",i,a[i]);
28
       //从大到小,lower_bound测试,找第一个小于或等于num的数字,若小于所有值,则一律返回n
29
       for(int i=0;i<n;i++) a[i]=n-i-1;</pre>
30
       i=lower_bound(a,a+n,-1,greater<int>())-a;
31
       printf("%d %d\n",i,a[i]);
32
       //从大到小,upper_bound测试,第一个小于num的数字,若小于所有值,则一律返回n
33
34
       i=upper_bound(a,a+n,-999,greater<int>())-a;
       printf("%d %d\n",i,a[i]);
35
36
       //情况上面情况一样
37
38
       vector<int>v;
39
       for(int i=0;i<n;i++) v.push_back(i);</pre>
40
       int i=lower_bound(v.begin(), v.end(), 23)-v.begin();
       printf("%d %d\n",i,v[i]);
41
   }
42
43
44
45
   2、结构体中比较函数作用于数组和set
   //没有t的是i,t是j,i<j,因此返回x较小,如果x一样大,返回y大的
46
   struct node{
47
48
       int x,y;
49
       bool operator <(const node&t)const{</pre>
          if(x==t.x) return y>t.y;
50
          return x<t.x;</pre>
51
52
       }
53
   };
54
55
   int main(){
   #ifdef ACM_LOCAL
56
       freopen("./std.in", "r", stdin);
57
       //freopen("./std.out","w",stdout);
58
   #endif
59
60
       set<node>st:
       st.insert(node{1,1});
61
```

```
st.insert(node{1,3});
62
        st.insert(node{2,2});
63
        node p[N];
64
        p[1]=node{1,1}; p[2]=node{1,3}; p[3]=node{2,2};
65
66
        sort(p+1,p+1+3);
67
        //(1,3)(1,1)(2,2)
   }
68
69
   3、优先队列的比较函数
70
   //跟上述情况相反
72
   struct node{
        int x,y;
73
        bool operator <(const node&t)const{</pre>
74
75
            if(x==t.x) return y>t.y;
76
            return x<t.x;</pre>
        }
77
   };
78
79
   int main(){
80
   #ifdef ACM_LOCAL
81
        freopen("./std.in", "r", stdin);
82
        //freopen("./std.out", "w", stdout);
83
   #endif
84
85
        priority_queue<node>q;
86
        q.push(node{1,3});
        q.push(node{1,1});
87
        q.push(node{2,1});
88
89
        while(!q.empty()){
            node t=q.top(); q.pop();
printf("%d %d\n",t.x,t.y);
90
91
92
93
        //(2,1)(1,1)(1,3)
        set<int>st;
94
        for(int i=1;i<=5;i++) st.insert(i);</pre>
95
        cout<<*(--st.end())<<endl;</pre>
96
        //5
97
98
   }
        最长上升子序列
   6.9
1
   问题1:
2
        现在想修路,连接两个城市,城市标号分别为x,y。想要路不交叉,求最多能修多少条路
3
        注意直接求LIS可以得到最优解的个数,但是St里面存储的不是最优解
4
   int main(){
5
6
        int Case=1;
        while(scanf("%d",&n)==1){
7
            for(int i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);</pre>
8
9
            sort(a+1,a+1+n); //x<t.x
10
            set<int>st;
            st.insert(a[1].y);
11
            for(int i=2;i<=n;i++){</pre>
12
                auto it=st.lower_bound(a[i].y);
13
14
                if(it==st.end()){
15
                     st.insert(a[i].y);
16
                }else{
17
                     st.erase(it);
                     st.insert(a[i].y);
18
```

```
}
19
           }
20
           printf("Case %d:\n",Case++);
21
22
           if(st.size()==1){
23
               printf("My king, at most %d road can be built.\n\n",st.size());
24
           }else{
25
               printf("My king, at most %d roads can be built.\n\n",st.size());
           }
26
27
       }
28
       return 0;
29
   }
30
31
   问题2:
       现在你有N块矩形木板,第i块木板的尺寸是Xi*Yi,第i块木板能放在第j块木板上方当且仅当Xi<Xj且Yi<Yj,
32
       于是你很可能没法
   把所有的木板按照一定的次序叠放起来。你想把这些木板分为尽可能少的组,使得每组内的木板都能按照一定的次序叠
33
       放。你需要给出任
34
   意一种合理的分组方案。
35
36
       根据Dilworth定理,最小组数等于Zi的最长下降子序列长度。因此可以求最长下降子序列,获得结果,并可以得
       到分组情况
37
38
  int n;
   struct node{
39
40
       int x,y,id;
41
   }p[N];
42
   bool cmp(node s,node t){
43
       if(s.x==t.x) return s.y>t.y;
44
45
       return s.x>t.x;
   }
46
47
  int bcc[N];
48
   set<pii>st;
49
50
   int main(){
51
52
   #ifdef ACM_LOCAL
       freopen("./std.in", "r", stdin);
53
       //freopen("./std.out", "w", stdout);
54
   #endif
55
       scanf("%d",&n);
56
       for(int i=1;i<=n;i++){</pre>
57
           scanf("%d%d",&p[i].x,&p[i].y);
58
59
           p[i].id=i;
       }
60
       sort(p+1,p+1+n,cmp);
61
       int tot=1;
62
       for(int i=1;i<=n;i++){</pre>
63
           auto it=st.lower_bound(make_pair(p[i].y,0));
64
           if(it==st.end()){
65
66
               bcc[p[i].id]=tot;
67
               st.insert(make_pair(p[i].y,tot));
68
               tot++;
           }else{
69
               bcc[p[i].id]=(*it).second;
70
71
               st.erase(it);
72
               st.insert(make_pair(p[i].y,bcc[p[i].id]));
73
           }
       }
74
```

```
75 printf("%d\n",st.size()); //有多少组解
76 for(int i=1;i<=n;i++) printf("%d%c",bcc[i],i==n?'\n':' ');
77 }
```

7 专题训练

7.1 区间 dp

```
区间dp: 顾名思义,区间dp就是在区间上进行动态规划,求解一段区间上的最优解。主要是通过合并小区间的最优解进
      而得出整个大区间上最优解的dp算法。
2
   其基础代码为:
3
   for(int len=2;len<=n;len++){</pre>
     for(int i=1;i+len-1<=n;i++){</pre>
4
      int j = i+len-1;
5
      for(int k=i;k<j;k++){</pre>
6
7
        dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+cost[]);
      }
8
9
     }
10
   }
   其实是一个相对非常暴力的方法去求解最优问题,所以数据量在[100,800]之间的可以考虑0(n^3)求解,而破千通过
11
      题目内在关系降到0(n^2)进行求解。而
12
   dp[i][j]的初始化可以在循环内进行,可以通过内外关系一同确定一个区间的最优值。
13
14
   下面对一些精彩的题目进行分析:
15
   1) Cake(zoj 3537)
16
17
   题意:
      有一块多边形蛋糕,切一刀的代价为|x1+x2|*|y1+y2|%p,如果蛋糕为凸多边形则求出全部切成三角形的代价,
18
      否则输出无法切。
19
   思路:
20
21
      首先使用凸包判断是否为多边形,然后通过凸包得到点的序列,将n->2n,减去环的麻烦。设dp[i][j]表示点[i
      , j] 所组成的多边形被切成三角形所需的
22
   最少代价。可以设k为[i+1,j-1],通过区间扫描即可获得最终结果。
23
24
   2) Coloring Brackets(https://codeforces.com/problemset/problem/149/D)
25
   题意:
26
      有一串包含()的字符串,保证合法,最初颜色为黑色,现需要满足3个条件: 1.每种括弧都要有一种颜色 2.相匹
      配的括弧只有一种染了红色或者黑色
   3. 若括弧被染色,则相邻的括弧颜色不能相同,求最大组合数量,结果mod(1e9+7)。
27
28
29
   思路:
30
      本题思路较为奇特,设dp[N][N][3][3], dp[i][j][x][y]表示在区间[i,j]中, 最左边括弧颜色为x,最右边
      括弧颜色为y的合法括弧序列可以染色的
31
   最大数量。那么接下来只需要分类讨论即可获得最优解。
32
33
   代码:
   for(int L=3;L<=len;L++){</pre>
34
          for(int i=1;i+L-1<=len;i++){</pre>
35
36
              int j = i+L-1;
              if(s[i]=='('&&to[i]==j){
37
                 dp[i][j][0][1] = (dp[i][j][0][1]+dp[i+1][j-1][1][0]+dp[i+1][j-1][0][2]
38
                 +dp[i+1][j-1][2][0]+dp[i+1][j-1][0][0]+dp[i+1][j-1][2][2]+dp[i+1][j
39
      -17[17[27])mod;
                 dp[i][j][1][0] = (dp[i][j][1][0]+dp[i+1][j-1][0][1]+dp[i+1][j-1][2][0]
40
41
                 +dp[i+1][j-1][0][2]+dp[i+1][j-1][0][0]+dp[i+1][j-1][2][2]+dp[i+1][j
      -17[27[17])mod;
42
                 dp[i][j][2][0] = (dp[i][j][2][0]+dp[i+1][j-1][0][1]+dp[i+1][j-1][1][0]
                 +dp[i+1][j-1][0][2]+dp[i+1][j-1][0][0]+dp[i+1][j-1][1][1]+dp[i+1][j
43
      -1][1][2])%mod;
44
                 dp[i][j][0][2] = (dp[i][j][0][2]+dp[i+1][j-1][1][0]+dp[i+1][j-1][0][1]
                 +dp[i+1][i-1][2][0]+dp[i+1][i-1][0][0]+dp[i+1][i-1][1][1]+dp[i+1][i
45
      -1][2][1])%mod;
```

```
}else if(s[i]=='('&&s[j]==')'){
46
                  int k = to[i];
47
                  for(int x=0; x<3; x++){
48
                      for(int y=0;y<3;y++){</pre>
49
                         for(int q1=0;q1<3;q1++){</pre>
50
                             for(int q2=0;q2<3;q2++){</pre>
51
                                 if(q1==q2&&q1!=0)
52
                                    continue;
53
                                 dp[i][j][x][y]=(dp[i][j][x][y]+dp[i][k][x][q1]*dp[k+1][
54
      j][q2][y])%mod;
                             }
55
56
                         }
                     }
57
                  }
58
              }
59
          }
60
      }
61
   反思:
62
      区间dp不可以局限于简单的二维,可以通过实际情况进行设立情况,本题的难点在于意义的定义,将其定义成合
63
      法尤为重要。
64
   3) You Are the One(hdu 4283)
65
66
   题意:
       有一个序列,每个人带着屌丝值di,第k个上场的人会增加评委(k-1)*di,现在有一个小黑屋,可以让人先进去
67
      后出来,模拟堆栈,求最少的屌丝值
68
   总和。
69
   思路:
70
      设dp[i][j]表示在[i,j]区间所增加的最少屌丝值,这时候赋予k表示第i个人是第k个人进入,这时候存在 dp[
71
      i][j] = min(dp[i][j],
   dp[i+1][i+k-1]+dp[i+k][j]+(k-1)*a[i]+k*(pre[j]-pre[i+k-1]))的状态转移方程。
72
73
   反思:
74
75
      赋予k特殊含义,来求解。
76
   4) Palindrome subsequence(hdu 4632)
77
78
   题意:
79
      给一串字符,求解其中有多少个回文串,只要下标不同,回文串之间就是不同。
80
   反思:
81
      设数组为dp[N][N],其中dp[i][j]表示[i,j]区间拥有回文串的最大数量,显然有dp[i][j] = ((dp[i+1][
82
      j]+dp[i][j-1]-dp[i+1][j-1]
   )%mod+mod)%mod 和 if(s[i-1]==s[j-1]) dp[i][j]=(dp[i][j]+1+dp[i+1][j-1])%mod;
83
84
   5) Two Rabbits(hdu 4745)
85
86
   题意:
      现有一串石碓,围城一圈,两个兔子分别逆时针和顺时针跳,每次跳的石头权值相同,问最长的可行石碓序列长为
87
      多少。
88
   思路:
89
90
       考虑到一个回文串或者两个回文串可以组成一个满足要求的序列。因此可以先将石碓的回文情况求出然后进行求
      解。
91
   代码:
92
   for(int i=1;i<=n;i++)</pre>
93
       dp[i][i]=1;
94
   for(int len = 2;len<=n;len++){</pre>
95
      for(int i = 1;i+len-1<=2*n;i++){</pre>
96
         int j = i + len - 1;
97
```

```
dp[i][j]=max(dp[i+1][j],dp[i][j-1]);
98
99
           if(a[i]==a[j])
              dp[i][j]=max(dp[i][j],dp[i+1][j-1]+2);
100
        }
101
102
103
    int res=1;
    for(int i=1;i<=n;i++){</pre>
104
105
        int j = i+n-1;
        for(int k=i;k<j;k++){</pre>
106
107
            res = max(res,dp[i][k]+dp[k+1][j]);
108
109
    }
   printf("%d\n",res);
110
111
    6) Sit sit sit (hdu 5151)
112
113
    题意:
114
        现在有一个被染色为01的椅子,需要安排座位上座顺序,满足三种情况的不能坐: 1.两边都有人坐了 2.两边都
        有椅子 3.左右被坐颜色不同
115
    现求所有可行方案mod(1e9+7)
116
117
    思路:
        设第k个人为最后上座,加上一些组合数知识即可写出。
118
119
120 7) D-game
121
    题意:
122
        现在给了一个序列,并一个D{}集合,序列的公差要满足D集合中元素。1. 在当前剩下的有序数组中选择X(X≥2)
         个连续数字; 2. 检查1选择
    的X个数字是否构成等差数列,且公差 dl {D}; 3. 如果2满足,可以在数组中删除这X个数字; 4. 重复 1-3 步,
123
        直到无法删除更多数字。求最多能
    删除几个数。
124
125
126
    代码:
    for(int len=2;len<=n;len++){</pre>
127
       for(int i=1;i+len-1<=n;i++){</pre>
128
           int j = i+len-1;
129
           if(len==2){
130
131
              if(mp[a[j]-a[i]])
132
                 dp[i][j]=1;
            }else if(len==3){
133
                 if(mp[a[j-1]-a[i]]&&2*a[j-1]==a[j]+a[i])
134
135
                      dp[i][j]=1;
            }else{
136
                 if(mp[a[j]-a[i]]&dp[i+1][j-1])
137
138
                    dp[i][j]=1;
                 for(int k=i+1;k<j;k++){</pre>
139
140
                     dp[i][j] = dp[i][k]&dp[k+1][j];
                 }
141
            }
142
       }
143
144
145
    memset(res,0, sizeof(res));
146
    for(int j=1; j<=n; j++){</pre>
        res[j]=res[j-1];
147
        for(int i=1;i<=j;i++){</pre>
148
            if(dp[i][j])
149
150
               res[j]=max(res[j],res[i-1]+j-i+1);
151
152
    printf("%d\n",res[n]);
153
```

7.2 一般 dp

```
1.Photo Processing(cf 883I)
1
2
   题意:
3
      给你n个数,将其进行分组,每组最少k个数,求分组方案中最小的最大值差值,其中差值为一组中max(max-min
      )的值
4
   思路:
5
      先将答案进行二分,然后使用dp去处理,设dp[i]表示[1,i]中能否被完整分成满足条件的几段
6
7
  代码:
8
9
  方法一:通过二分的答案和k值去约束答案,如果dp[i]可行,那么标记dp[i]=1
   bool check(int differ){
10
      memset(dp,0, sizeof(bool)*(n+2));
11
      int index=1;dp[0]=1;
12
      for(int i=1;i<=n;i++){</pre>
13
          while(a[i]-a[index]>differ)
14
15
             index++;
             while(i-index+1>=k){
16
             if(dp[index-1]){
17
                 dp[i]=1;break;
18
19
20
          index++;
21
          }
22
      }
23
      return dp[n];
24
  }
25
   方法二: last去标记最后一个能似的dp[i]成功的位置,如果dp[n]==n那么说明都可以分段
26
   bool check(int differ){
27
      int last=0;
      for(int i=k;i<=n;i++){</pre>
28
29
          int j = dp[i-k];
30
          if(a[i]-a[j+1] \le differ)
31
             last=i:
32
         dp[i]=last;
33
      return dp[n]==n;
34
35
  }
36
37
  2.小D的剧场(https://ac.nowcoder.com/acm/contest/369/A)
38
  题意:
39
       -串音符,其中对于每三个都有限制,每个位置有49种音符可能,现在让你求总的可能方案数。
40
41
   思路:
42
      因为每三个才有限制,第三个的方案数只取决于前两个,因此可以列出dp[500][49][49], dp[i][j][k]表示
      在i种位置时
   第二个位置为j, 第三个位置为k的方案数, 可列出: dp[t][i][j]=(dp[t][i][j]+dp[t-1][j][k])%mod;
43
44
  3、最少拦截系统(hdu1257)
45
46
   题意:
47
      有n个导弹依次发射,设置的系统第一次可以打任意高度,接下来的高度不能超过上次发射高度,求最少需要几个
      系统才能
48
  将导弹全部射下。
49
50
   思路:
51
      此题其实也不算真正意义上的dp,通过求最大LIS可获得答案,而与之对应的思想是求最大LIS的贪心+二分的方
      法,这种
52
  方法不能求得最大LIS的真正意义上的值,但是可以求得最大LIS的长度。就是通过这个方法不断更新,加入求得最后
      答案。因
```

```
为每个导弹肯定是去寻找已发射导弹中离他高度最近的导弹,如果没有导弹满足条件,那么就再设一个。从而获得最后
       答案。
54
   3 Max Sum Plus Plus(hdu1024)
55
56
   题意:
57
       给你a[N]数组,(1 <= n <= 1e6),xk个区间段最大值为多少。
   思路:
58
       设dp[i][j]表示i段区间, j结尾的最大值(j纳人其中), 因此我们可以得到状态转移方程:
59
   dp[i][j]=max{dp[i][j-1],max{dp[i-1][t](i-1<=t<=j-1)}}+a[j].前者因为dp[i][j-1]的值已知,若不
60
       增加i、只需要
   将a[j]并入最后一个区间即可。后者是还缺一个区间,将a[j]视为独立区间并人其中。但是有2个max显得处理起来极
61
       其繁琐,
   且(1<=n<=1e6),因此我们可以设w[i][j]=max{dp[i][t](i<=t<=j)}=max{w[i][j-1],dp[i][j]},从而我
62
       们可以将方程化为:
   1)dp[i][j]=max{dp[i][j-1],w[i-1][j-1]}+a[j] 2)w[i][j]=max{dp[i][j],w[i][j-1]} 通过观察发
63
      现可以使用滚动数
   组将其空间大小进行优化,优化结果为: 1)dp[j]=max{dp[j-1],w[t^1][j-1]}+a[j] 2)w[t^1][j]=max{dp[
64
       j],w[t^1][j-1]}
   针对此数组对于时间的取值上发现,取m段需要n个数,取m-1段需要n-1个数,取m-2段需要n-2个数...因此在取m-(
65
       m-i)=i段的时候,
   只需要求解n-(m-i)个数组即可
66
67
68
  核心代码:
   scanf("%d",&n);
69
   for(int i=1;i<=n;i++){</pre>
70
       scanf("%d",&a[i]);
71
72
       pre[i]=pre[i-1]+a[i];
       w[0][i]=0;
73
   }
74
75
   int t=1;
   for(int i=1;i<=k;i++){</pre>
76
       dp[i]=w[t][i]=pre[i];
77
       for(int j=i+1;j<=n+i-k;j++){</pre>
78
          dp[j]=max(dp[j-1],w[t^1][j-1])+a[j];
79
          w[t][j]=max(dp[j],w[t][j-1]);
80
81
       t^=1;
82
83
   }
   printf("%lld\n",w[t^1][n]);
84
85
   3, Phalanx(hdu2859)
86
87
   题意:
88
       给你一个n*n的矩阵,(1 <= n <= 1000),求该矩阵中最大的对称矩阵,对称先为左下角到右上角。
89
90
   思路:
       对对称线进行dp,设dp[i][j]表示由(i,j)点为左下角点的最大对称矩阵边长。若dp[i][j]=q,那么显然以(i,j)
91
       j)向上和向右q-1个对应
   点都是相同的,因此dp[i][j]的值可以由dp[i-1][j+1]为保证,即(i-1,j+1)构成的为已知内部是对称矩阵,那么
92
       只需要扫一遍剩下的对应
   点即可。
93
94
95
   反思:
96
       写题目的时候要多思考一下反向,因为出题者为了增加难度经常反向出题。
97
   4. Making the Grade(poj3666)
98
99
   题意:
100
       给你一个a[n]数组,每次可以对一个位置上的数进行+1或者-1,求最小操作次数使得数组最后成为一个单调不减
       或者单调不增序列。
```

```
102
   思路:
       通过贪心考虑,显然数组的最大值一定会出现在原a[n]数组之中,而a[n]数组最大值为1e9,我们可以通过离散
103
       化考虑这个问题,设
104
   dp[i][j]表示到第i个数字的时候,最大值为第j小数字的最小花费费用。得dp[i][j]=min(dp[i-1][k](1<=k<=
       j))+abs(a[i]-b[j]).
   其中b[n]为原数组a[n]重新从小到大排序后的数组,这样可以保证dp[i][j]在最大值为j大小的时候所花费的费用最
105
       小。这里使用了离散
   化思想。
106
107
108
   反思:
       对于数据较为杂乱,难以处理的时候可以将数据进行离散化,从1-n排序上去。
109
110
   5、Jury Compromise(poj1015)
111
112
   题意:
113
       有评审员会打出两个值,pi和di(0<=pi,di<=20).现在有n(1<=n<=200)个评审员,要选取m(1<=m<=20),其
       中要满足Pi=sigma(pi),
114
   Di=siqma(di),要求|Pi-Di|最小,如若有相同则Pi+Di越大越好,并输出方案。
115
116
   思路:
      最初的想法是设dp[i][j][2],i表示选到第i个评审员,包含i在内共有j个,0表示差和,1表示加和。因为IPi-
117
       Dil不存在最优子结构,
   比如前者有10和-10, 因为-10的Pi+Di比10的大, 选择了-10的, 但是当下次遇到-5的时候显然应该取上10的, 应该
118
       这个方法无法成立。
      换种思路, 因为20*20=400, 因此极限差值为[-400,400],我们可以将其提升到[0,800]进行背包处理。设
119
       state[i][j]:
120
   typedef struct {
       int sum;
121
122
       bool vaild;
       int path[M];
123
124
   }node;
   state[i][j]表示有i个评审员时,差和为j的情况。其中sum记录最大值,vaild记录该方案是否存在,path[M]记录
125
       到该方法的操作顺序。
126
   接下来的操作和背包一样,最后按照题目要求输出答案即可。
127
   核心代码:
128
   int dp() {
129
       for (int i = 1; i <= n; i++) {
130
131
           int sub = a[i][0] - a[i][1];
           int add = a[i][0] + a[i][1];
132
           for (int j = m; j >= 1; j--) {
133
              for (int x = 0; x <= 800; x++) {
134
                  if (state[j - 1][x].vaild&&x + sub >= 0 && x + sub <= 800) {</pre>
135
                      if (state[j - 1][x].sum + add >= state[j][x + sub].sum) {
136
137
                         state[j][x + sub].sum = state[j - 1][x].sum + add;
                         state[j][x + sub].vaild = 1;
138
                         for (int index = 1; index < j; index++)</pre>
139
                             state[j][x + sub].path[index] = state[j - 1][x].path[index
140
       ];
                         state[j][x + sub].path[j] = i;
141
                      }
142
143
                  }
144
              }
145
           }
146
       for (int i = 0; i \le Base; i++) {
147
           if (state[m][i + Base].vaild || state[m][Base - i].vaild) {
148
149
               int sumMax = -1;
              if (state[m][i + Base].vaild)
150
                  sumMax = state[m][i + Base].sum;
```

```
if (state[m][Base - i].vaild&&state[m][Base - i].sum > sumMax)
152
                    return Base - i;
153
                return Base + i;
154
155
            }
156
        }
    }
157
158
    反思:
159
        dp要考虑是否存在最优子结构,如果没有最优子结构是行不通的.并且数据量小的时候可以考虑背包。
160
161
    6, Blank(http://acm.hdu.edu.cn/showproblem.php?pid=6578)
162
163
        现在有n,m(1<=n,m<=100),现在可以填4个数字0,1,2,3.现在有m个要求,即[1,r]区间内只能出现x种数字,n
164
        数列组成的方案数
165
    思路:
166
        设dp[2][N][N][N],表示数字[0,1,2,3]最后一次出现的位置,dp[i][j][k][q]表示排序后i>j>k>q.那么
167
        我们可以得到四种转移方程
        dp[0][0][0]=1;
168
        for(int i=1, p = 1; i \le n; i++, p \ge 1){
169
            for (int j = 0; j \le i; j++)
170
                for (int k = 0; k \le j; k++)
171
                    for (int q = 0; q <= k; q++)
172
                        dp[p][j][k][q] = 0;
173
174
            for(int j=0;j<i;j++) {</pre>
                for (int k = 0; k <= j; k++) {
175
                    for (int q = 0; q \le k; q++) {
176
                        Mod(dp[p][j][k][q]+=dp[p^1][j][k][q]);
177
                        Mod(dp[p][i-1][k][q]+=dp[p^1][j][k][q]);
178
                        Mod(dp[p][i-1][j][q]+=dp[p^1][j][k][q]);
179
180
                        Mod(dp[p][i-1][j][k]+=dp[p^1][j][k][q]);
                    }
181
182
                }
183
            for(int j=0;j<i;j++){</pre>
184
                for(int k=0;k<=j;k++){</pre>
185
                    for(int q=0;q<=k;q++){
186
187
                        for(pii t:v[i]){
                            if(1+(j>=t.first)+(k>=t.first)+(q>=t.first)!=t.second)
188
189
                                dp[p][j][k][q]=0;
190
                        }
                    }
191
                }
192
            }
193
194
        ll ans=0;
195
        for(int i=0,p=n&1;i<n;i++){</pre>
196
            for(int j=0;j<=i;j++){</pre>
197
                for(int k=0;k<=j;k++){</pre>
198
199
                    Mod(ans+=dp[p][i][j][k]);
200
                }
201
            }
202
        }
203
    7、炫酷雪花(https://ac.nowcoder.com/acm/contest/331/H)
204
205
206
        小希把接下来连续的要做作业的时间分成n个单位,每个单位时间内小希都会受到ai的寒冷值侵袭,她可以选择在
        任何一些
```

```
207
   时间站起来蹦蹦跳跳,以使得这个单位的寒冷值不侵袭她。小希最大能承受的寒冷程度是K,但是她想选择尽可能多的
       时间做作业,请你帮帮她!
    小希受到的寒冷程度即为不蹦蹦跳跳的时间的寒冷值总和。要求输出最最多学习的时间和字典序最小的可行方案
208
    1 <= n <= 5000, 0 <= k <= 1e15, 0 <= a <= 1e9
209
210
211
   思路:
212
       先进行贪心,从小到大排序得到最多的学习时间。设dp[i][j],表示i~n时间内,最多可以抖动j次的最小时间,
       那么转移方程为
    dp[i][j]=min(dp[i+1][j]+a[i],dp[i+1][j-1])。然后从1->n遍历,设sum为到i位置时寒冷总和,那么存在
213
       如下关系:
   1、sum+a[i]+dp[i+1][cnt] <= k, ysum+=a[i] 2. sum+a[i]+dp[i+1][cnt] > k, ysum+=a[i]
    7.3 数位 dp
   1、不要62(hdu2089)
 2
    题意:
 3
     求出区间[n,m]中数位没有62和4的个数
 4
    思路:
      1、设dp[i][j]表示最高i位时,第i为j符合条件的个数。例如dp[5][0]中包含00532。数位dp的精髓就是逐位比
 5
       较, 最终获得答案。
    设count(n)记录[0,n)的个数, 因此要获得[n,m]中的个数, 需要count(m+1)-count(n)。其中dp[i][j]的状态
 6
   1)、dp[i][j]=0 (j==4) 2)、dp[i][j]=sigma(dp[i-1][j]) (j=0,1...,9),当j=6时,需要减去dp[i
       -1][2]
    之后就是将数位拆开,挨个去比较比如102,拆出来为201,此时先去保存100以下的数字,之后去保存102以下,100以
 8
       上的数字。
 9
    最终即可获得答案。
10
11
   代码:
12
    1、
13
    void init(){
        dp \lceil 0 \rceil \lceil 0 \rceil = 1;
14
15
        for(int i=1;i<10;i++){
       for(int j=0;j<10;j++){</pre>
16
           if(j==4){
17
               dp[i][j]=0;
18
19
           }else if(j!=6){
20
               for(int k=0;k<=9;k++)
21
                   dp[i][i]+=dp[i-1][k];
22
           }else if(j==6){
               for(int k=0;k<=9;k++)</pre>
23
                   dp[i][j]+=dp[i-1][k];
24
               dp[i][j]-=dp[i-1][2];
25
           }
26
         }
27
28
29
   int v[N+10];
30
    ll solve(int di){
31
      ll res=0;
32
      V[0]=0;
33
      while(di){
34
35
       v[++v[0]]=di%10;
36
       di/=10:
37
      }
      v[v[0]+1]=0;
38
       for(int i=v[0];i>=1;i--){
39
```

for(int j=0;j<v[i];j++){

```
if(j!=4&&!(j==2&&v[i+1]==6))
41
              res+=dp[i][j];
42
43
      if(v[i]==4)
44
          break;
45
      if(v[i]==2\&v[i+1]==6)
46
          break;
47
48
      return res;
49
   }
50
51
52
   2、Beautiful numbers(https://codeforces.com/problemset/problem/55/D)
53
   题意:
        个正整数,如果它能被数位上每个非零数整除,那么这个数为完美数,求区间[n,m]的完美数个数。
54
55
   思路:
56
      1、如果一个数能被它所有非0数位整除那么这个数一定被lcm{[1,9]}整除。
57
      2、存在定理a%(x*n)%x=a%x
58
      3、[1,9]所有的组合的最小公倍数,最大值为2520,共有48个,2520%1cm[任意组合]=0。
59
      综上关系,我们可以发现我们需要找到所有满足a%(x*n)%x=a%x=0的结果,显然本题中x*n取值为2520,因此
60
      我们可
   以将数进行拆分, 然后逐层搜索, dp记录数据, 设dp[20][50][2525], dp[i][j][k]表示在数位i时, 经过离散化
61
      过的最小
   公倍数hash[lcm]=pos, k表示模后取值, 因为lcm最大为2520, 因此值只需取到2520即可。
62
63
64
   核心代码:
   il dfs(int pos, int tot, int lcm, bool limit) {
65
     if (pos == 0) //pos表示当前位数,tot表示取模后值,lcm表示当前最小lcm, limit表示是否可以任意取值
66
      return (tot%lcm == 0);
67
     if (!limit&&dp[pos][ha[lcm]][tot] != -1)
68
      return dp[pos][ha[lcm]][tot];
69
     11 \text{ res} = 0;
70
          int top = limit ? di[pos] : 9; //判断当前有限制
71
     for (int i = 0; i <= top; i++) {</pre>
72
      res += dfs(pos - 1, (tot * 10 + i) % mod, i ? i * lcm / gcd(i, lcm) : lcm, i == di[
73
      pos] && limit);
74
     } //讲一步搜索
75
      if (!limit) //如果没有限制,那么这个情况的值就确定下来了
      dp[pos][ha[lcm]][tot] = res;
76
      return res;
77
   }
78
79
  3、Beautiful numbers(https://ac.nowcoder.com/acm/contest/163/J)
80
81
   题意:
      给你一个数,若数位上所有的和能整除这个数,那么这个数可以称为美丽数,求[1,n]之中有多少个美丽数,其中1
82
      <=n<=1e12
   思路:
83
      因为1e12数位之中最大数位和只有9*12=108,因此我们可以通过我们可以依次循环数位和,然后使用dfs去暴力
84
   如果存在sigma(di)==mod,那么这个数可以成立。并设dp[12][120][120],设dp[i][j][k]表示在i位时候,数位
85
      和为j,被mod
86
   余k的数量。
87
   核心代码:
88
   11 dfs(int pos, int tot, int remain, bool limit) {
89
     if (pos == -1) //只有当数位和与mod相等时,并且正好模掉,才会有数字满足要求
90
91
      return (tot == mod && !remain);
     if (!limit&&dp[pos][tot][remain] != -1)
92
      return dp[pos][tot][remain];
93
```

```
11 \text{ res} = 0;
94
      int top = limit ? di[pos] : 9;
95
      for (int i = 0; i <= top; i++) {
96
97
       if (i + tot > mod)
           break;
98
       res += dfs(pos - 1, i + tot, (10 * remain + i) % mod, limit&&i == di[pos]);
99
100
      if (!limit)
101
       dp[pos][tot][remain] = res;
102
103
      return res;
   }
104
105
106
   反思:
107
       数位dp的变种中,有一类实际是靠暴力搜索去解决问题,时间复杂度难以估计,但可以通过记忆华搜索进行剪枝,减
       少不必要的
108
   访问,需要人勇敢去莽。
109
110 4, B-number(hdu3652)
111
       给你一个n(1<=n<=1000000000),求[1,n]内所有数中含有13, 且能被13整除的数。
112
113
    思路:
       典型的数位dp,设dp[i][j][k],i表示第i位,j表示数%13的结果,k表示状态,其中0表示前面不含13,1表示前一
114
       位含1,2表示前面含有13,
   这样进行相应的dfs即可获得答案。
115
116
117
   核心代码:
   11 dfs(int pos, int tot,int state, bool limit) {
118
119
      if (pos == -1)
       return (state==2 && !tot);
120
      if (!limit&&dp[pos][tot][state] != -1)
121
122
       return dp[pos][tot][state];
      int top = limit ? di[pos] : 9;
123
      ll res = 0;
124
      for (int i = 0; i <= top; i++) {</pre>
125
       int cstate = state;
126
       if (state == 1 && i == 3)
127
128
           cstate = 2;
129
       else if (state == 1 && i != 3&&i!=1)
130
           cstate = 0;
       else if (state == 0 && i == 1)
131
132
           cstate = 1;
       res += dfs(pos - 1, (tot * 10 + i) % 13, cstate, limit&&di[pos] == i);
133
134
       if (!limit)
135
       dp[pos][tot][state] = res;
136
      return res;
137
138 }
139
140
   反思:
       最刚开始,我只是通过flag记录是否存在13,设dp[i][j],这种方法会使一类前面数位不存在13或存在13,但是
141
       因为之前有记录而导致return,
142
    使得出错.若是记录dp[i][j][flag],这样会使得也许前面出现13或没出现13,因为已有保存,而使得结果出错.若是
       记录dp[i][j][[1,9]],这样
   使得前面是否出现13,而已有保存,使得结果出错.若记录dp[i][j][flag][[1,9]],这样可以获得答案,但是时间
143
       复杂度会很高,因为通过记忆
   化搜索的作用就减少很多.因此可以巧妙地使用题解的方法,即dp[i][j][state],state只记录前面是否出现13,前
        -位没有1的存在,前一位有1
145
   的存在,因为本题关键就是找到13的组合,因为dfs中只要一出现13,那么接下来的搜索都以存在13为基础,而前一位出
       现1,则可以按照后一位存在3
```

```
146
   或存在1,以及其他数字的情况进行搜索。最差的情况就是前面state=0.
147
   5, F(x) (hdu4734)
148
149
   题意:
       存在一个函数F(x)=An*2^(n-1)+An-1*2^(n-2)+...+A1*1,其中x=(AnAn-1An-2...A1),现在求x=[0,B]
150
       中,求F(x)<=F(A)的个数
151
152
    思路:
       显然是一道数位dp题,这题的t(1<=t<=10000),如若使用memset(dp),那么dp空间不应该开过10000,因为时
153
       间只有500ms,显然无法
   有有效的开数组方法解决问题.因此我们可以换一个思路,只需要初始化一次,之后的搜索只需要继续沿用之前的数组即
154
       可.根据题解,发现
155
    可以开dp[12][4600],dp[i][j]表示在第i个位置时,还剩下j个数字量可以继续装,类似于背包思想.至于若从0开始
       计数,显然说不通,且
156
   状态不正确。
157
158
    核心代码:
159
    11 dfs(int pos, int tot, bool limit) {
       if (pos == -1)
160
           return tot>=0;
161
       if (!limit&&dp[pos][tot] != -1)
162
           return dp[pos][tot];
163
       int res = 0;
164
165
       int top = limit ? di[pos] : 9;
166
       for (int i = 0; i <= top; i++) {</pre>
           int ntot = tot - i * (1 << pos);</pre>
167
           if (ntot <0)
168
               break;
169
           res += dfs(pos - 1, ntot, limit&&di[pos] == i);
170
171
       if (!limit)
172
173
           dp[pos][tot] = res;
174
       return res;
175 }
176
   反思:
177
178
       对于因为初始化时间复杂度过高的情况,可以考虑通过只初始化一次,将接下来沿用之前的状态保存.
179
    6, Balanced Number(hdu 3709)
180
181
   题意:
182
         个数如果在数位中有一个位置满足诸如4139,取3为中轴,有2*4+1*1==9*1,则此数为平衡数.求[n,m]之中有
       多少个平衡数
183
184
    思路:
       遍历每个位置为中轴,设dp[20][20][2000],其中dp[i][j][k]表示数位i,中轴为j,从左开始算起到右的总平
185
       衡值,如若
186
   tot==0,说明存在平衡.
187
188
   核心代码:
    ll dfs(int pos, int tot, int pivot, bool limit) {
190
      if (pos == -1)
191
       return tot==0;
      if (!limit&&dp[pos][pivot][tot] != -1)
192
193
       return dp[pos][pivot][tot];
194
      11 \text{ res} = 0;
      int top = limit ? di[pos] : 9;
195
      for (int i = 0; i <= top; i++) {
196
       int tmp = tot + i * (pos - pivot);
197
       if (tmp < 0)
198
```

```
break;
199
       res += dfs(pos - 1, tmp, pivot, limit&&di[pos] == i);
200
201
      if (!limit)
202
203
       dp[pos][pivot][tot] = res;
204
      return res;
   }
205
206
   反思:
207
208
       只想着如何拆分两个,其实只需要两个合并在一起即可,要心中牢记若是拆开失败,就想着如何合并
209
210
   7, Balanced Number(https://vjudge.net/contest/285467#problem/K)
211
   题意:
       如果一个数它出现的位数中,奇数出现的个数为偶数, 偶数出现的个数为奇数,例如6222,那么称为平衡数。求区
212
       间[n,m]中有多少个
213
   平衡树。
214
215
   思路:
216
       因为总共有3种状态,即一个数出现0次,奇数次,偶数次.那我们可以使用三进制进行状态压缩,那么[0,9]的情况
      共有3**10,因此可以
217
   开一个dp[22][60000],dp[i][j]表示在第i个位置,j状态下有多少种可能。
218
219
   核心代码:
220
   ll dfs(int pos,int state,bool limit){
221
       if(pos==-1)
          return judge(state);
222
223
       if(!limit&&dp[pos][state]!=-1)
224
          return dp[pos][state];
       ll res=0;
225
       int top=limit?di[pos]:9;
226
227
       for(int i=0;i<=top;i++){</pre>
          res+=dfs(pos-1,(state==0&&i==0)?0:change(state,i),limit&&di[pos]==i);
228
229
       if(!limit)
230
          dp[pos][state]=res;
231
       return res;
232
233
   }
234
   反思:
235
       数位dp关键是状态的保存,之前一直想不到如何解决,就是因为之前走过的状态无法保存,最初有想到状态压缩保
236
      存进制,但是只考虑到了
   二进制,难以保存难以保存状态,因此可以考虑3进制,这样就可以方便地保存3种状态,进行判断,今后做题如果状态
237
      偏多,可以考虑多进制
238
   操作。
239
240 8, Seven Segment Display(zoj3962)
241
   题意:
242
       有一个时钟以十六进制八位显示,如FFFFFFF,但是转化需要能量,现在给你时间,每秒十六进制加一,求最终
      需要消耗多少能量。
243
   思路:
244
       这题可以转化为数位dp,设dp[10][80],dp[i][j]表示在i位时,前面消耗总能量为j时花费的总能量为多少。设
      a. b. b=a+n-1,若
245
   b超出了8位十六进制,只需转化为solve(16^8)+solve(b)-solve(a-1)即可。
   反思:
246
       最初想到的是dp[i][j][k],j表示数位,k表示能量,方程意义是满足满足条件的个数,但是有bug至今也不清
247
      楚, 但是明显这个可以
   简化,因为无论当前为是什么数,对最终结果没有任何影响,所以应该考虑清楚再写。如果一个思路不通,可以寻找是
248
       否再存其他意义的
249
   状态方程。
```

```
250
251
        8、吉哥系列故事——恨7不成妻(hdu4507)
252
        题意:
253
                 求一个区间[N,M]内所有的满足条件的数的平方和,其中满足的条件有:1、数位中不能存在7. 2、数位整数的每
                   -位加起来的和不是7
254
        的整数倍. 3、这个整数不是7的整数倍.
255
256
        思路:
257
                 设node dp[i][j][k]表示i位时,位数和模为j,整数模为k,node中包含cnt表示个数,sum表示每个数的和,
                sqrsum表示平方和.本题的
        关键发现(x1+x2+...+xn)^2=x1^2+x1*(x2+...xn)+(x2+...+xn)^2=x1^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...xn)+x2^2+x1*(x2+...
258
                x2*(x3+...xn)+
        (x3+...xn)^2=.... 无限递归下去。
259
260
261
        核心代码:
        node dfs(int pos, int tot, int tot2, bool limit) {
262
                   node res; res.cnt = res.sqrsum = res.sum = 0;
263
                   if (pos == -1) {
264
                 res.cnt = (tot != 0 \&\& tot2 != 0);
265
266
                 return res;
267
                  }
                   if (!limit&&dp[pos][tot][tot2].cnt != -1)
268
                 return dp[pos][tot][tot2];
269
270
                   int top = limit ? di[pos] : 9;
271
                   for (int i = 0; i <= top; i++) {
                         if (i == 7)
272
273
                         continue:
                 node tmp = dfs(pos - 1, (tot + i) \% 7, (tot2 * 10 + i) \% 7, limit&&di[pos] == i);
274
                 ll A = p[pos] * i mod;
275
                 res.cnt = (res.cnt + tmp.cnt) % mod;
276
                 res.sum = (res.sum + tmp.sum + A*tmp.cnt%mod) % mod;
277
                 res.sqrsum = (res.sqrsum + A * A%mod*tmp.cnt%mod + tmp.sqrsum + 2 * A%mod*tmp.sum%
278
                mod) % mod;
279
                   }
                   if (!limit)
280
                 dp[pos][tot][tot2] = res;
281
282
                   return res;
283
        }
284
285
        反思:
286
                 本题关键在于难以处理和,其实要是耐心推导公式可以发现规律,另外dp方程不一定只能有一个数值,可以定义一个
                结构体去
287
        保存更多状态.
288
        9、pair(https://ac.nowcoder.com/acm/contest/887/H)
289
290
        题意:
291
                 给你A,B,C,现在求有多少个(x,y)满足x&y>c||x^y<c,其中(1<=x<=A,1<=y<=B,1<=A,B,C<=1e9)
292
         思路:
293
294
                 是一个数位dp的题目,为了简化问题我们可以先取反,即答案变为A*B-cnt(x\&y<=c\&x^y>=c)+max(011,A-C)
                +1)+max(0ll,B-C+1),因为x,y
         都大于0,因此需要减去x=0和y=0的情况.那么我们可以设dp[32][2][2][2][2],dp[i][j][k][1][m],其中i表示
295
                第i位,j表示AND限制是否存在,
296
        k表示XOR限制是否存在,1表示x是否有限制,m表示y是否有限制.
297
298
299
         11 dfs(int len,int AND,int XOR,int limit1,int limit2){
300
                 if(len<0)
301
                         return 1;
```

```
if(dp[len][AND][XOR][limit1][limit2]!=-1) return dp[len][AND][XOR][limit1][limit2];
302
                    int top=limit1?(A>>len)&1:1;
303
                    int top2=limit2?(B>>len)&1:1;
304
                    int c=(C>>len)&1;
305
                    ll cnt=0;
306
                    for(int i=0;i<=top;i++){</pre>
307
                               for(int j=0;j<=top2;j++){</pre>
308
                                        if((!AND||(i&j)<=c)&&(!XOR||(i^j)>=c)){}
309
                                                  cnt+=dfs(len-1,AND\&\&(i\&j)==c,XOR\&\&(i^j)==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit1\&\&i==top,limit2\&\&j==c,limit2\&\&j==c,limit2\&\&j==c,limit2\&\&j==c,limit2\&\&j==c,limit2\&\&j==c,limit2\&i==top,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2\&i==c,limit2
310
                    top2);
                                        }
311
312
                              }
313
                    }
                    return dp[len][AND][XOR][limit1][limit2] = cnt;
314
315
          }
316
          int main(){
317
                    int t;
318
319
                    cin>>t;
                    while(t--){
320
                              cin>>A>>B>>C;
321
                              memset(dp,-1, sizeof(dp));
322
                              cout << (A*B-dfs(30,1,1,1,1)+max(0ll,A-C+1)+max(0ll,B-C+1)) << endl;
323
324
325
                    return 0;
326 }
          7.4 概率 dp
          规律总结:
    1
          1、期望可以分解成多个子期望的加权和,权为子期望发生的概率,即E(aA+bB...)=aE(A)+bE(B)+...+1
   3
          2、期望从后往前找, 一般dp[n]=0,dp[0]是答案
   4
          3、解决过程,找出各种情况乘上这种情况发生的概率,求和
   5
        1, Favorite Dice (spoj)
   6
   7
          题意:
   8
                    甩一个n面的骰子,问每一面都被甩到的次数期望是多少?
   9
 10
           思路:
                    设dp[i]表示取了i种数时还需要数的期望,显然dp[n]=0,求解dp[0]为多少.本题很神奇,正着推死活推不出来,
  11
                    需要倒着推.
          反推显然满足这个式子,dp[i]=1+i/n*dp[i]+(n-i)/n*dp[i+1],推出来为dp[i]=dp[i-1]+n/(n-i),扫一遍[n
  12
                    -1,0]区间即可.
  13
  14
          核心代码:
          dp[n] = 0;
  15
          for (int i = n - 1; i >= 0; i--)
  16
                     dp[i] = dp[i + 1] + 1.0*n /(n - i);
  17
          printf("%.2lf\n", dp[0]);
  18
  19
          2, LOOPS (hdu3853)
  20
  21
          题意:
  22
                         个女生走迷宫,只有向下和向右走和保持在原地,每走一次会消耗掉2的魔力,求从(1,1)成功走到(r,c)所花
                    魔力的期望。
  23
  24
           思路:
                    设dp[r][c]=0, 那么有满足状态转移方程 dp[i][j] = p1*dp[i][j]+p2*dp[i][j+1]+p3*dp[i+1][j
  25
                    1+2
```

```
转化成 dp[i][j] = (p2*dp[i][j+1]+p3*dp[i+1][j]+2)/(1-p1) 即可
26
27
28
  核心代码:
   for (int i = r; i >= 1; i--) {
29
30
      for (int j = c; j >= 1; j--) {
      if (i == r \&\& j == c)
31
32
          continue;
      if (p[i][j].p1 == 1)
33
34
          continue;
      dp[i][j] = (p[i][j].p2*dp[i][j + 1] + 2 + p[i][j].p3*dp[i + 1][j]) / (1 - p[i][j].
35
      p1);
36
      }
37
   }
38
39
   反思:
      dp[i][j]表示在(i,j)这个点时,还差多少魔力值才能到达终点的期望。
40
      最开始的时候dp[i][j]将未来的状态也加入其中,其实那种想法是错误的,因为当前还未确定,未来也不会确
41
      定,因此状态转移方程所含
42
   的应该是当前不确定的dp[i][j]和之前已经推导出的状态来推导出dp[i][j]最终推导dp[1][1]的时候就是答案。
43
44 3 King Arthur's Birthday Celebration(poj3682)
45
  题意:
46
      有个国王过生日,投硬币,投到k次正面朝上就结束宴会,正面朝上概率为p,每一天投一次,花钱量1、3、5、7
      ...这样递增。求
47
  结束宴会的期望天数和期望花钱量。
48
49
  思路:
      设dp[i]表示投中i次后,还需要天数的期望。显然满足 dp[i]=(1-p)*dp[i]+p*dp[i+1]+1 => dp[i]=dp
50
      [i+1]+1/p_{*}
  dp2[i]表示投中i次后,还需要花钱的期望,显然满足 dp2[i]=(1-p)*(dp2[i]+2*(dp[i]+1)-1)+p*(dp2[i
51
      +17+2*(dp[i+17+1)-1).
  => 得到 dp2[i]=dp2[i]+2dp[i+1]+1+(1-p)(2dp[i]+1)/p。然后dp[n]=dp2[n]=0,for循环一下就可以得到
52
      答案。
     也可以正推,显然满足 dp[i]=(1-p)*dp[i]+p*dp[i-1]+1 => dp[i]=dp[i-1]+1/p,
53
  dp2[i]=(1-p)*(dp2[i]+2*dp[i]-1)+p*(dp2[i+1]+2*dp[i+1]-1)+2.然后dp[0]=dp2[0]=0,for循环一下
      就可以得到答案。
55
56
  反思:
57
      概率题可以用dp方式求得,两个不同的概率题也可以用dp方程之间建立联系.
58
  4、烟花 (https://ac.nowcoder.com/acm/contest/180/B)
59
60
  题意:
      小a有n个烟花,每个烟花代表着互不相同的颜色,对于第1个烟花,它有pi的概率点燃,现在小a要去点燃它们,
61
  他想知道产生颜色的期望个数及产生恰好产生k种颜色的概率。
62
63
64
  思路:
     第一个就是简单期望相加,即E(x)=sigma(pi)
65
     1、设方程dp[k][N],那么dp[i][j]表示有j个烟花,其中i个燃放的概率。初始化dp[0][0]=1,dp[0][i]=
66
  (1-p[1])(1-p[2])...(1-p[i])。那么就有dp[i][j]=dp[i-1][j-1]*p[j]+dp[i][j-1]*(1-p[j]),那么
  dp[k][n]即为所求答案。
     2、设方程dp[N][K],那么dp[i][j]表示有i个烟花,其中有j个被燃放的概率。因为此循环使用的是for(N),
  因此只用记录n-1的状态即可。因此可以使用滚动数组,设o=0,初始状态为dp[o][0]=1-p[1],dp[o][1]=p[1]。
71
  状态转移方程为dp[o][j]=dp[o^1][j]*(1-p[i])+dp[o^1][j-1]*p[i],其中j<=min(i,k)即可。
72
  5、流星雨(https://ac.nowcoder.com/acm/contest/368/C)
73
74
  题意:
75
      现在一共有n天,第i天如果有流星雨的话,会有wi颗流星雨。第i天有流星雨的概率是pi。如果第一天有流星雨
      了,
```

- 那么第二天有流星雨的可能性是p2+P,否则是p2。相应的,如果第i-1 ($i \ge 2$)天有流星雨,第i天有流星雨的可能性 77 pi+P, 否则是pi。求n天后, 流星雨颗数的期望。 78 79 思路: 设dp[i]表示第i天会发生流星雨的概率,那么dp[i]只和dp[i-1]有关,满足:dp[i]=dp[i-1]*(pi+p)+ 80 (1-dp[i-1])*p。然后只需乘上每天的流星雨数量即可得到答案。 81 82 83 反思: 84 这道题我只想着如何直接推导推导期望公式,导致推出来的公式非常耗时间,公式如下: dp[i]=dp[i-1]+(p^(i-1)*p[1]+...+p^0*p[i])*w[i]。状态转移方程是对的,但是时间会超,因为可以考虑 85 期望的定义 即E(x)=p[x]*w[x],我们分段求出期望最后累加就是结果。 86 87 6, One Person Game(zoj3329) 88 89 题意: 90 有三个骰子,分别有k1,k2,k3个面。每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数 之和。 91 当分数大于n时结束。求游戏的期望步数。初始分数为0 92 93 思路: $\mathsf{gdp}[i]$ 表示达到i分时到达目标状态的期望, pk 为投掷 k 分的概率, $\mathsf{p0}$ 为回到 $\mathsf{0}$ 的概率则 $\mathsf{dp}[i]=\sum(\mathsf{pk*dp}[i+\mathsf{k}]$ 94)+dp[0]*p0+1;都和dp[0]有关系,而且dp[0]就是我们所求,为常数设dp[i]=A[i]*dp[0]+B[i];代入上述方程右边得到: 96 $dp[i] = \sum (pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1=(\sum (pk*A[i+k])+p0)dp[0]+\sum (pk*B[i+k])+1;$ 明显 $A[i] = (\sum (pk*A[i+k]) + p0)$ B[i]=∑(pk*B[i+k])+1,先递推求得A[0]和B[0]. 那么dp[0]=B[0]/(1-A[0]); 97 98 7、Dice(hdu 4652) 99 100 题意: 现在有一个m面骰子,每个面都有一个特定的数,现在有2个操作,1: 询问投出最后连续n个相同数字的期望 2: 询 101 问投出最后n个不连续 数字的期望. 102 103 104 思路: 对于1情况,我们可以设dp[n]=0,有关系式dp[i]=1+dp[i+1]/m+(m-1)*dp[1]/m,通过dp[i+2]-dp[i+1]= 105 m*(dp[i+1]-dp[i]),可以得到 106 dp[0]-dp[1]=1,dp[1]-dp[2]=m,...,dp[n-1]-dp[n]=m^(n-1),可以得到dp[0]=(m^n-1)/(m-1) 对于2情况,要注意是连续n个数不相同,因此dp[n]=0,dp[i]=1+(m-i)*dp[i]/m+(dp[1]+dp[2]+...dp[i 107])/m,因为如果加入相同的数,那么 108 会随着数字的不同回到的原始点不同,因此有了(dp[1]+dp[2]+...dp[i])/m,方法如上递推即可. 109 8 Maze(hdu 4035) 110 111 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,从结点1出发,开始走,在每个结点i都有3种可能:1.被 112 杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 (概率为ei) 3.和该点相连有m条边,随机走一条、求:走出迷宫所要走的边数的期望值。 113 114 思路: 设dp[i]=Ai*dp[1]+Bi*dp[fa[i]]+Ci,re[i]=1-ki-ei,other=re[i]/m 116
- 115

117 关于叶子节点: dp[i]=ki*dp[1]+Ei*0+other*(dp[fa[i]]+1)=ki*dp[1]+other*dp[fa[i]]+other, 因此可以得到叶子节点:

- 118 Ai=ki,Bi=other,Ci=other
- 119 关于非叶子节点:dp[i]=ki*dp[1]+Ei*0+other*(dp[fa[i]]+1+sigma(dp[child[i]]+1)),设j=nx[i ¬,则siqma(dp[child[i]]+1)
- =sigma(Aj)*dp[1]+sigma(Bj)*dp[fa[j]]+sigma(Cj),带人原式可以得到Ai=(ki+other*sigma(Aj))/(1-120 other*sigma(Bj)),
- 121 Bi=other/(1-other*sigma(Bj)), Ci=(re[i]+other)/(1-other*sigma(Bj))
- 因此一个dfs即可. 122

```
123
124
   代码:
   bool dfs(int from, int pre){
125
       int m = g[from].size();
126
       double other = re[from]/m;
127
       double a = k[from], b = 1, c = re[from];
128
       for(int i=0;i< m;i++){
129
           int to = g[from][i];
130
          if(to==pre) continue;
131
132
          if(!dfs(to,from)) return false;
          a+=other*A[to]; b-=other*B[to]; c+=other*C[to];
133
134
       if(b<eps) return false:
135
       A[from]=a/b; B[from]=other/b; C[from]=c/b;
136
       return true;
137
   }
138
139
140 9.Activation
141
   题意:
142
       Tomato在排队激活游戏,有四种情况:1.注册失败,但是不影响队列顺序,概率为p1 2.连接失败,队首的人排到队
       尾,概率为p2
   3.注册成功,队首离开队列,概率为p3 4.服务器崩溃,激活停止,概率为p4,现在给出总排队人数n,Tomato排在第m个
143
       ,一个数k, 然后是四种情况
   的概率p1-p4;如果Tomato前面在k-1个人之内,并且服务器崩溃了,那么这种情况Tomato认为服务器是很low的.问你
144
       ,发生这种很low的情况的概率。
145
146
   思路:
       设dp[i][j]为目前有i个人排队,Tomato排在第j个位置发生这种情况的概率.
147
       当j=1时, dp[i][j] = p1*dp[i][j]+p2*dp[i][i]+p4;
148
       当1<j<=k时, dp[i][j]= p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1]+p4;
149
       当k<j<=i时, dp[i][j] = p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1];
150
151
       化简得:
       当j=1时, dp[i][j] = p21*dp[i][i]+p41;
152
       当1<j<=k时, dp[i][j]= p21*dp[i][j-1]+p31*dp[i-1][j-1]+p41;
153
       当k<j<=i时, dp[i][j] = p21*dp[i][j-1]+p31*dp[i-1][j-1];
154
       其中: p21=p2/(1-p1)、p31=p3/(1-p1)、p41=p4/(1-p1);
155
       循环i: 1-n;
156
157
       由上面的式子可以看出,求dp[i][j]的时候dp[i-1][j-1]是已经计算出来了的。我们不妨把后面的部分用c数
       组保存起来,得到:
       当j=1时, dp[i][j] = p21*dp[i][i]+c[1];
158
159
       当1<j<=k时, dp[i][j]= p21*dp[i][j-1]+c[j], 其中, c[j]=p31*dp[i-1][j-1]+p41;
       当k<j<=i时, dp[i][j] = p21*dp[i][j-1]+c[j], 其中c[j]=p31*dp[i-1][j-1];
160
       显然,dp[i][1]与dp[i][i]有关,而dp[i][j]又与dp[i][j-1]有关,这样就形成了一个环。所以,我们先
161
       利用上面3个式子迭代求出dp[i][i]:
       dp[i][i]=dp[i][i]*p21^i+c[1]*p21^i-1+c[2]*p21^i-2+.....+c[i]; 变个形即可求出dp[i][i]
162
       得出dp[i][i],那么dp[i][1]也可以得出,之后就递推就行了。
163
164
   165
166
167
    3 Kids and Prizes(squ495)
168
    题意:
169
        本题就是有n个奖品,m个人排队来选礼物,对于每个人,他打开的盒子,可能有礼物,也有可能已经被之前的人
       取走了.
170
    然后把盒子放回原处。为最后m个人取走礼物的期望。
171
172
    思路:
173
    1、设每种礼物不会被拿到的概率为((n-1)/n)/m,因此不会被拿到的期望为n*((n-1)/n)/m, 所以会拿到的期望为
       n(1-((n-1)/n)^m)
174
    2、设dp[i]为总共i个人取得礼物时所拿到奖品的期望,则dp[1]=1,显然满足状态转移方程:
```

```
dp[i] = dp[i-1] + (n-dp[i-1])/n*1+dp[i-1]/n*0 => dp[i] = dp[i-1] + (n-dp[i-1])/n
175
176
177
    反思:
178
        概率题推期望不是只有一种模式逆推,要结合具体情况,通过赋予对状态转移方程的实际意义来推导。对于概率
       的题如果实在推不出来
179
    可以尝试使用日常经验的手段去推。
180
181
182
   5. Where is the canteen(hdu2262)
183
184
   题意:
185
       在一个迷宫中,寻找餐厅,餐厅有多个,每次上下左右走向一个空地,概率为等可能,求到达餐厅的步数期望
186
187
    思路:
       显然此题满足概率dp,状态转移方程满足 dp[i][j]=p1*dp[i+1][j]+p2*dp[i-1][j]+p3*dp[i][j-1]+
188
       p4*
    dp[i][j+1]+1,其中点为餐厅的dp[i][j]=0, 求最后dp[startx][starty]为多少? 因此只需要先bfs. 然后使用
189
   高斯消元即可获得答案。 关键在于转移方程的理解。dp[i][j]表示到达餐厅还剩下多少步,因此它的步数是由其余
190
191
   四个防线的dp[i][j]*p+移动步数1即可。
192
   反思: 代码不够优美, 要多看看优美的代码
193
    7.5 斜室 dp
   1, Print Article(hdu 3507)
 1
 2
   题意:
 3
       给出N个单词,每个单词有个非负权值Ci,现要将它们分成连续的若干段,每段的代价为此段单词的权值和,还要
       加一个常数M,
 4
   即(5Ci)^2+M。现在想求出一种最优方案,使得总费用之和最小。
 5
 6
    思路:
 7
       斜率dp裸题,n=500000,设dp[i]表示[1,n]的最优结果,显然满足dp[i]=min{dp[k]+sigma(c[k+1],c[i
       ])+M},显然斜率优化即可.
 8
 9
   2 Lawrence(hdu2829)
10
   题意:
       给出一条笔直无分叉的铁路上有n个仓库,每个仓库有一个v[i]代表价值,每两个仓库之间算作一段铁路,现在有
11
       m次攻击机会, 一次攻
   击可以炸毁一段铁路;m次攻击后,剩余的总价值为:\Sigma(v[i]*v[j]),i和j为所有任意两个互相可到达的仓库。现要求
12
       选定m段铁路进行攻击炸毁,
13
   然后使得总价值最小.
14
15
    思路:
16
       设dp[i][j]是前i个仓库,炸掉j段铁路后,剩余总价值的最小值.(显然,j<i)设w[a][b]表示铁路完好的情况
       下,从a仓库到b仓库的总价值,
   那么,就有:dp[i][j]=min(dp[k][j-1]+w[k+1][i]),j<k<i; 方程的意义是: 炸毁仓库k和仓库k+1之间的那段
17
       铁路(即第k段铁路),算出总
   价值, 枚举k找到最小的.
18
       那么如何计算w[k+1][i]呢? w[1][i]=w[1][k]+w[k+1][i]+(v[1]+v[2]+···+v[k])×(v[k+1]+v[k+2]+
19
       \cdots + v[i]) = w[1][k] + w[k+1][i] +
20
    sum\lceil k\rceil \times (sum\lceil i\rceil - sum\lceil k\rceil), @w\lceil k+1\rceil\lceil i\rceil = w\lceil 1\rceil\lceil i\rceil - w\lceil 1\rceil\lceil k\rceil - sum\lceil k\rceil \times (sum\lceil i\rceil - sum\lceil k\rceil)
       我们把w[k+1][i]的计算式带人状态转移方程得到:dp[i][j]=min{dp[k][j-1]+w[1][i]-w[1][k]-sum[k
21
       ]\times(sum[i]-sum[k])
   那么,对于这个DP, j一个循环、i一个循环、k一个循环,就是0(n3)的时间复杂度;需要斜率优化,优化到0(n2)即
22
```

24 3 Cross the Wall(Uvalive 5097)

25 题意:

```
26
      有N个长方形,要穿过一张纸,最多可以在这张纸上剪掉K个长方形,剪掉一个长方形的代价为该长方形的长*宽,
      现在问所有长方形都通过的
27
   最小代价
28
29
   思路:
30
      首先,排除掉那个无用的长方形,无用的长方形指的是h[i]<h[j]且w[i]<[j](h指长,w指宽)接着排序,排序按照
      长递减,宽递增,那么拥有单调性
   后可以列方程了,对于方程dp[i][j]表示最多有i个洞,j个矩形的最优值,因此即使i>1,也可以从1开始遍历.
31
32
33
  代码:
  sort(p+1,p+1+n,cmp);
34
35
  int tot=1;
   for(int i=2;i<=n;i++){</pre>
36
      if(p[i].w<=p[tot].w) continue;</pre>
37
      p[++tot]=p[i];
38
   }
39
40
  n=tot;
  for(int i=1;i<=n;i++) dp[1][i]=p[1].h*p[i].w;</pre>
42 ll ans=dp\lceil 1 \rceil \lceil n \rceil;
  m=min(m,n);
   for(int k=2;k<=m;k++){</pre>
44
      int tail=0,head=0;
45
      q[tail++]=0; dp[k][k]=0;
46
      for(int i=1;i<=n;i++){</pre>
47
          while (tail>1+head&&isOK(k,i,q[head+1],q[head])) head++;
48
          dp[k][i]=getsum(k,i,q[head]);
49
          while (tail>1+head&&isOK2(k,i,q[tail-1],q[tail-2])) tail--;
50
          q[tail++]=i;
51
52
      ans=min(ans,dp[k][n]);
53
54
   printf("%lld\n",ans);
55
56
  4、Picnic Cows(hdu3045)
57
   题意:
58
      给你一些牛,把它们分成若干组,每一头牛有自己的价值,每一组的牛的个数不少于T,每一组贡献的价值为这一
59
      组内的牛与最小
60
   价值牛的差的和,问所有组贡献的价值最小是多少。
61
   思路:
62
      这题dp方程容易想出dp[i]=dp[k]+sum[i]-sum[k]-(i-k)*a[k+1];(k>=m && i-(k+1)+1>=m), 但是在
63
      处理的时候有一定的技巧
   int j = i-t+1; if(j < t) continue; while(tail>1+head&&isOK2(j,q[tail-1],q[tail-2])) tail
64
       --; a「tail++]=j;
65
66
  5、Tree Construction(hdu3516)
   题意:
67
      平面上有点,每次只能向上和向右连接,每次连接的长度就是代价,求把n个点连接成一棵树的最小代价
68
69
   思路:
70
71
      f[i][j]表示把[i,j]中的点合成一棵树的最小代价,f[i][j]=min{f[i][k]+f[k+1][j]+abs(x[k+1]-x[
      i])+abs(y[k]-y[j])}
72
   然后利用四边形不等式进行优化,需要注意的是,这个dp应该先枚举区间长度,初始时s[i][i]=i
73
   6, Post Office(1160)
74
75
   题意:
76
         ·条高速公路,有N个村庄,每个村庄均有一个唯一的坐标,选择P个村庄建邮局,问怎么选择,才能使每个村庄
      到其最近邮局的距离
   和最小? 最后打印这个最小值。
```

```
78
    思路:
79
        dp[i][j]表示有i个邮局,前j个村庄的最优结果,对于dp[i][j]=min{dp[i-1][k]+w[k+1][j]}的情况,对
80
       于这种式子可以使用四边形
    不等式优化,对于这种情况优化的不等式为in[i-1][j]<=in[i][j]<=in[i][j+1],并且需要逆推,因为in[i][j
81
       +1]的存在,所以第二维度从
    for(n->i),并且需要注意越界的情况in[i][v+1]=v-1;
82
83
    代码:
84
85
    int main() {
       while(scanf("%d%d",&v,&p)==2){
86
87
           for(int i=1;i<=v;i++) {</pre>
               scanf("%lld",&a[i]);
88
               s[i]+=s[i-1]+a[i];w[i][i]=0;in[i][i]=i;
89
90
           for(int len=2;len<=v;len++){</pre>
91
               for(int i=1;i+len-1<=v;i++){</pre>
92
                   int j=i+len-1;
93
94
                   w[i][j]=INF; int index;
                   for(int k=in[i][j-1];k<=in[i+1][j];k++){</pre>
95
                      11 x = a[k]*(2*k-i-j+1)+s[j]+s[i-1]-2*s[k];
96
                      if(w[i][j]>x){
97
                          w[i][j]=x; index=k;
98
99
100
                   in[i][j]=index;
101
               }
102
103
           for(int i=1;i<=v;i++) dp[1][i]=w[1][i],in[1][i]=1;</pre>
104
           for(int i=2;i<=p;i++){</pre>
105
               in[i][v+1]=v-1; dp[i][i]=0;
106
               for(int j=v;j>=i+1;j--){
107
                   dp[i][j]=INF;
108
                   for(int k=in[i-1][j];k<=in[i][j+1];k++){</pre>
109
                      ll x = dp[i-1][k]+w[k+1][j];
110
                      if(dp[i][j]>=x) dp[i][j]=x,in[i][j]=k;
111
112
                   }
113
               }
           }
114
           printf("%lld\n",dp[p][v]);
115
116
       }
117
118
119
   7, Batch Scheduling(poj1180)
120
121
       N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务
       .从时刻0开始,
    这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始前,机器需要启动时间S,而完成这批任务所
122
       需的时间是各个任
    务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个
123
       分组方案,使得
   总费用最小. (1<=N<=10000)
124
125
126
    思路:
       S表示启动时间、T[i]是前i个任务的时间和、C[i]是前i个任务的开销和f[i][j]=Min{f[i-1][k]+(S*i+T[
127
       i])*(c[i]-c[k])};
128
    看了别人的结题报告,找到了优化到0(n*n)的方法。就是从n往前推。
129
       sumT[i]表示从i到n的任务所需要的时间总和,sumF[i]表示从i到n的费用系数总和, dp[i]表示对于从i到n的
       任务安排的最优解。
```

```
那么很容易可以得出这样一个简单的DP状态转移方程: (注:数组存储从1到n)
130
      dp[i]=min{dp[j]+(S+sumT[i]-sumT[j])*sumF[i]{i<j<=n+1} 边界条件 dp[n+1] = 0
131
      从后往前推效率可以降一维的原因:
132
133
      正向思考,在前面的分块情况不清楚的时候是没法决定下一块的开销的,但是反过来,假设前面都没有分块,先算后
      面的开销,然后.
134
   如果前面要分块,后面的开销就会全部多出来的一个S,将这个S算进当前的分块开销里面,于是倒过来动态成为可能。
135
  8 Best Cow Fences(poj2018)
136
137
   题意:
138
      给定一个非负序列,求长度大于F的连续子序列的平均数最大:
139
140
   思路:
141
      在实数上二分平均数mid,判断a中是否有长度大于F平均数大于等于mid,再进行调整二分区间设定一个b数组,b
      [i]=a[i]-mid
142
   当b[i]的区间和大于等于0的时候说明区间平均数大于等于mid,用sum数组表示b数组前缀和,再求出长度大于等于F的
      所有区间中的最大
   区间和=前缀和-前面的最小前缀和(要保证区间长度大于F),判读和是否大于等于0
143
144
      第二个方式可以通过斜率优化找最优值,可以画图分析可得
145
   代码:
146
   bool isOK(double x){
147
      for(int i=1;i<=n;i++) s[i]=s[i-1]+cow[i]-x;</pre>
148
      double minn = inf;
149
      for(int i=f;i<=n;i++){</pre>
150
151
         minn=min(minn,s[i-f]);
         if(s[i]-minn>=0) return true;
152
      }
153
154
      return false;
   }
155
   7.6 树形 dp
 1
   1, Computer(hdu 2196)
 2
   题意:
 3
      给出一棵树, 求离每个节点最远的点的距离:
 4
 5
   思路:
 6
      方法一:那么我们来设列dp方程吧,我们思考当前点x的最远点距离是怎么得到的,只有两种情况: 1、来自他的子
      树(红色部分) 2、来自他
 7
   的子树以外的树(蓝色部分简称父亲部)。第一种情况的话可以直接自底向上树形dp得到每一个节点的子树的最远点距
      离。 那么第二种情况就有点难办,
 8
   父亲部的最远点距离可以从哪里来呢?有两种情况:1、父亲点fa的父亲部 2、父亲点的子树
 9
      对于第二种情况的话会有一种情况需要考虑,想到这又不大家应该也会发现,父亲部的子树可能包括红色的部分,
      如果我们冒冒然去继承.
   那么就会造成没法继承到蓝色部分的解。怎么办呢,我们需要判断一下,假如fa的最远点路径经过了x,那么我们就不
10
      继承他,改为继承fa子树的次远点
11
   距离。
12
      那么我们可以设列dp方程了,我们设f[i][0]为i节点子树的最远点距离,f[i][1]为i节点子树的次远点距离,
      设f[i][2]为i节点的父亲部的最远
13
   点距离。那么我们列出dp方程:
      当x不在fa的最远点路径上: f[x][2]=max(f[fa][0],f[fa][2])+dist(x,fa)
14
      当x在fa的最远点路径上: f[x][2]=max(f[fa][1],f[fa][2])+dist(x,fa)
15
16
17
      方法二: 先从1为根节点, 求得一个树直径上一点p,然后以p为根求一个树直径,确定第二个直接端点p2,那么任意
       -个点的最远点是max(dis[i],
18
    dis2[i])即可
19
20
   代码:
```

```
int n,dp[N][3],p[N][2];
   vector<pii>e[N];
22
   void dfs(int from,int pre){
23
       dp[from][0]=dp[from][1]=0;
24
25
       for(int i=0;i<e[from].size();i++){</pre>
           int to = e[from][i].first,w=e[from][i].second;
26
27
           if(pre==to) continue;
           dfs(to,from);
28
           if(dp[from][0]<dp[to][0]+w){</pre>
29
30
               dp[from][1]=dp[from][0];
               dp[from][0]=dp[to][0]+w;
31
               p[from][0]=to;
32
           }else if(dp[from][1]<dp[to][0]+w){</pre>
33
               dp[from][1]=dp[to][0]+w;
34
               p[from][1]=to;
35
           }
36
       }
37
   }
38
39
   void dfs2(int from,int pre){
40
       for(int i=0;i<e[from].size();i++){</pre>
41
           int to = e[from][i].first,w=e[from][i].second;
42
           if(pre==to) continue;
43
           if(to!=p[from][0]) dp[to][2]=w+max(dp[from][2],dp[from][0]);
44
45
           else dp[to][2]=w+max(dp[from][2],dp[from][1]);
46
           dfs2(to,from);
       }
47
   }
48
49
50
   2 Rebuilding Roads(poj1947)
51
   题意:
52
       给出一棵树,问现在要得到一颗有p个节点的子树,需要最少减掉几条边?
   思路:
53
       设dp[i][j]表示i为根节点的子树含j个节点最少减少几条边.进行树形dp+背包即可
54
   代码:
55
   void dfs(int from,int pre){
56
57
       memset(dp[from],0x3f, sizeof(dp[from])); dp[from][1]=0; node[from]=1;
58
       for(int i=0;i<e[from].size();i++){</pre>
59
           int to=e[from][i];
           if(pre==to) continue;
60
           dfs(to,from);
61
           node[from]+=node[to];dp[from][1]++;
62
63
       for(int i=0;i<e[from].size();i++){</pre>
64
           int to=e[from][i];
65
           if(pre==to) continue;
66
           for(int j=m; j>=1; j--){
67
               for(int k=1;k<=node[to]&&j-k>=1;k++){
68
                    dp[from][j]=min(dp[from][j],dp[from][j-k]+dp[to][k]-1);
69
70
               }
71
           }
72
       }
73
   }
74
   3、Starship Troopers(hdu1011)
75
76
   题意:
77
       给出每个房间拥有的BUG数和能得到的能量数,然后给出每个房间的联通图,要到下一个房间必须攻破上一个房
       间.
   每个士兵最多消灭20个BUG,就算不足20个BUG也要安排一个士兵.
```

```
79
80
   思路:
       dp[from][j]=max(dp[from][j],dp[from][j-k]+dp[to][k]),关键在于如何确定一个跟节点一定在背包
81
       中的情况:
82
   代码:
83
   void dfs(int from,int pre){
84
       int r = (p[from].w+19)/20;
85
       for(int i=m;i>=r;i--) dp[from][i]=p[from].v;
86
       for(int i=0;i<e[from].size();i++){</pre>
87
          int to = e[from][i];
88
89
          if(to==pre) continue;
          dfs(to,from);
90
          for(int j=m; j>=r; j--){
91
              for(int k=1; j-k>=r; k++){}
92
                 dp[from][j]=max(dp[from][j],dp[from][j-k]+dp[to][k]);
93
              }
94
          }
95
96
       }
   }
97
98
   4、Find Metal Mineral(hdu 4003)
99
100
   题意:
       给你一颗有n个节点的树,给出每两个相连节点边的权值(如果你的一个机器人要走这条边花费的能量),再给你
101
       k个机器人,问
   从s点出发,最少花费多少d能量可以遍历所有的节点。
102
103
104
   思路:
       dp[i][j]表示对于以i结点为根结点的子树,放j个机器人所需要的权值和。当j=0时表示放了一个机器人下去,
105
       遍历完结点后又
   回到i结点了。状态转移方程类似背包,如果最终的状态中以i为根结点的树中有j(j>0)个机器人,那么不可能有别的机
106
       器人r到了这棵
   树后又跑到别的树中去因为那样的话,一定会比j中的某一个到达i后跑与r相同的路径再回到i,再接着跑它的路径要差
107
       (多了一条1回
   去的边)这样的话,如果最后以i为根结点的树中没有机器人,那么只可能是派一个机器人下去遍历完后再回来。
108
109
       状态转移,使用的"分组背包"思想。使用一维数组的"分组背包"伪代码如下:
110
   for 所有的组i
111
       for v=V..0
          for 所有的k属于组i
112
              f[v]=max\{f[v],f[v-c[k]]+w[k]\}
113
114
       对于每个根节点root,有个容量为K的背包,如果它有i个儿子,那么就有i组物品,价值分别为dp[son][0],dp
       [son][1]....
   dp[son][k] . 这些物品的重量分别为0,1,....k.现在要求从每组里选一个物品(且必须选一个物品)装进root
      的背包, 使得容量
   不超过k的情况下价值最大。那么这就是个分组背包的问题了。但是这里有一个问题,就是每组必须选一个物品。对于
116
      这个的处理, 我
   们先将dp[son][0]放进背包,如果该组里有更好的选择,那么就会换掉这个物品,否则的话这个物品就是最好的选
117
      择。这样保证每组
118
   必定选了一个。
119
120
   代码:
121
   void dfs(int from,int pre){
       memset(dp[from],0, sizeof(dp[from]));
122
       for(int i=0;i<e[from].size();i++){</pre>
123
          int to=e[from][i].first,w=e[from][i].second;
124
125
          if(pre==to) continue;
          dfs(to,from);
126
127
          for(int j=m; j>=0; j--){
              dp[from][j]+=dp[to][0]+2*w;
128
```

```
for(int k=1;k<=j;k++)</pre>
129
                dp[from][j]=min(dp[from][j],dp[from][j-k]+dp[to][k]+k*w);
130
          }
131
      }
132
   }
133
134
   5. The Ghost Blows Light(hdu4276)
135
136
137
        ·个有N个节点的树形的地图,知道了每条变经过所需要的时间,现在给出时间T,问能不能在T时间内从1号节点
      到N节点。
   每个节点都有相对应的价值,而且每个价值只能被取一次,问如果可以从1号节点走到n号节点的话,最多可以取到的最大
138
      价值为多少。
139
   思路:
140
      先求出从1号节点到n号节点的最短路,如果花费大于时间T,则直接输出不符合,将最短路上的权值全部赋值为0
141
       在总时间T上
142
   减去最短路的长度,表示最短路已经走过,对其它点进行树形背包求解,需要注意的是如果不是最短路上的边都要走两
      次, 即走过去
   还要再走回来,状态转移方程:
143
      dp[i][j]=max(dp[i][j],dp[i][k]+dp[i][j-2*val-k])
144
145
   6、Fire(poj2152)
146
147
   题意:
      Z国有N个城市,编号为从1到N。城市之间用高速公路连接,并且每两个城市之间都有唯一一条路径。最近Z国经常
148
      发生火灾, 所以
149
   政府决定在一些城市修建消防站。在城市K建立消防站要花费W(K)。不同的城市花费不同。如果在城市K没有消防站,
      则离他最近的
150
   消防站与他的距离不能超过D(K),不同城市的D也不相同。为了省钱,政府希望你能算出修建消防站最小的总花费。
151
152
   思路:
153
      dp[i][j]表示以i为根的子树里每个节点都被消防站管理,并且城市i被城市j所建的消防站管理情况下的最小花
      费。best[i]表示以
   i为根的子树的所有节点都被管理时的最小花费,我们的目的就是求出best[1]。而best[i]显然就是dp[i][j]中的
154
      最小值(j表示i的所有孩子)
      dis[i]表示以key为中心,城市i到城市key的距离,当距离大于D(key)时,就意味着key不能由i来管理。
155
      首先dfs到子节点,然后求出以key为中心的所有距离dis,再枚举每个节点i,考虑dp[key][i],如果dist[i
156
      ]>d[key] (即key能容忍消防
157
   站到他的最远距离)
               ,就将dp[key][i]置为一很大的数(M=1<<30),表示该情况不会被取到。如果能取到,则在此
      条件下枚举key的孩子,状
   态转移方程: dp[key][i]=w[i]+sum(min(best[j],dp[j][i]-w[i]))。即: 城市key被城市i管理时,其花费
158
      为w[i]与min(各孩子节点的最小花
   费,孩子节点j被i管理的最小花费减去i的建设费用)。最后best[key]为dp[key][i]最小的一个。
159
160
161
   代码:
   int n,w[N],d[N],head[N],tot,best[N],dis[N];
162
   int dp[N][N];
163
   struct node{
164
      int to,nx,w;
165
   }edge[N<<1];
166
167
168
   void add_edge(int from,int to,int val){
169
      edge[tot].to=to; edge[tot].nx=head[from]; edge[tot].w=val;
      head[from]=tot++;
170
171
   }
172
   void DFS(int from){
173
      for(int i=head[from];i;i=edge[i].nx){
174
175
          int to=edge[i].to;
          if(dis[to]!=-1) continue;
```

```
dis[to]=dis[from]+edge[i].w; DFS(to);
177
        }
178
    }
179
180
    void dfs(int from,int pre){
181
        for(int i=head[from];i;i=edge[i].nx){
182
            int to=edge[i].to;
183
            if(to==pre) continue;
184
           dfs(to,from);
185
186
        }
        memset(dis,-1, sizeof(int)*(n+1));
187
188
        dis[from]=0;DFS(from);
        best[from]=inf;
189
        for(int i=1;i<=n;i++) dp[from][i]=inf;</pre>
190
        for(int i=1;i<=n;i++){</pre>
191
            if(dis[i]<=d[from]){</pre>
192
193
               dp[from][i]=w[i];
               for(int j=head[from];j;j=edge[j].nx){
194
195
                   int to=edge[j].to;
                   if(to==pre) continue;
196
                   dp[from][i]+=min(best[to],dp[to][i]-w[i]);
197
198
               best[from]=min(best[from],dp[from][i]);
199
200
           }
201
        }
    }
202
203
    int main() {
204
        int t,x,y,z;
205
        scanf("%d",&t);
206
207
        while(t--){
           scanf("%d",&n);
208
            for(int i=1;i<=n;i++) scanf("%d",&w[i]);</pre>
209
            for(int i=1;i<=n;i++) scanf("%d",&d[i]);</pre>
210
           memset(head,0, sizeof(int)*(n+1)); tot=1;
211
           for(int i=1;i<n;i++){</pre>
212
213
               scanf("%d%d%d",&x,&y,&z);
214
               add_edge(x,y,z); add_edge(y,x,z);
           }
215
           dfs(1,0);
216
217
           printf("%d\n",best[1]);
218
219
        return 0;
220
    }
221
222
   7、GeoDefense(hdu4044)
223
    题意:
224
        地图是一个n个编号为1~n的节点的树,节点1是敌人的基地,其他叶子节点都是你的基地。敌人的基地会源源不
       断地出来怪兽,
225
    为了防止敌人攻进你的基地,你可以选择造塔。每个节点最多只能造一个塔,且节点i可以有ki种塔供你选择,价钱和
       攻击力分别为
226
    price_i, power_i, 攻击力power_i, 效果是让敌人经过这个节点时让敌人的血减少power_i点。那么从敌人的基
       地到你的任意一个叶
227
    子基地的路径,这条路径上的所有塔的攻击力之和,就是这个基地的抵抗力。敌人的攻击路径是不确定的,为了保护你
       的所有基地,
228
    你要确定所有基地中抵抗力最低的一个。 你只有数量为m的钱,问最佳方案,可以抵挡敌人的最大血量是多少?也就
       是, 让所有叶子
    基地中抵抗力最低的一个的值尽量大,最大是多少?
229
230
```

```
231
    思路:
232
        树形dp,dp[u][j]表示到达u点还有j块钱的最大攻击力,那么将j分配给孩子,取孩子的最小值,取分配方案的
        最大值就行了,
    因为每个点都可以建塔,所以更新树形更新完dp[u][j]后再01背包放哪个塔来更新,注意price可以为0
233
234
235
    代码:
    int n,m;
236
    vector<int>e[N];
237
   int dp[N][M],k[N];
238
    struct node{
239
240
         int price, val;
241
    }p[N][505];
242
    void dfs(int from,int pre){
243
        dp[from][0]=inf;
244
        for(int i=0;i<e[from].size();i++){</pre>
245
             int to=e[from][i];
246
247
             if(to==pre) continue;
248
             dfs(to,from);
             for(int j=m; j>=0; j--){
249
                 int x=0;
250
                 for(int k=0;k<=j;k++) x=max(x,min(dp[to][k],dp[from][j-k]));</pre>
251
                 dp[from][j]=x;
252
253
             }
254
        if(dp[from][0]==inf) dp[from][0]=0;
255
256
         for(int i=m;i>=0;i--){
             int x=dp[from][i];
257
             for(int j=1; j<=k[from]; j++){</pre>
258
                 if(p[from][j].price<=i){</pre>
259
                     x=max(x,dp[from][i-p[from][j].price]+p[from][j].val);
260
261
262
263
             dp[from][i]=x;
        }
264
    }
265
266
267
    int main() {
268
        int t,u,v;
        scanf("%d",&t);
269
270
        while(t--){
             scanf("%d",&n);
271
             for(int i=1;i<=n;i++) e[i].clear();</pre>
272
273
             for(int i=1;i<n;i++){</pre>
                 scanf("%d%d",&u,&v);
274
                 e[u].push_back(v); e[v].push_back(u);
275
276
             }
             scanf("%d",&m);
277
             for(int i=1;i<=n;i++){</pre>
278
279
                 scanf("%d",&k[i]);
                 for(int j=1;j<=k[i];j++){</pre>
280
281
                         scanf("%d%d",&p[i][j].price,&p[i][j].val);
282
283
             }
             for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) dp[i][j]=0;
284
285
             dfs(1,0);
             printf("%d\n",dp[1][m]);
286
287
288
        return 0;
```

289 }

7.7 KMP, E-KMP, Manacher

```
KMP内容:
1
2
3
  1、KMP最小循环节、循环周期:
4
   定理: 假设S的长度为len,则S存在最小循环节,循环节的长度L为len-next[len],子串为S[0···len-next[len
5
      ]-1]。
6
    (1) 如果len可以被len - next[len]整除,则表明字符串S可以完全由循环节循环组成,循环周期T=len/L。
7
8
9
    (2) 如果不能,说明还需要再添加几个字母才能补全。需要补的个数是循环个数L-len%L=L-(len-L)%L=L-next[
      len]%L, L=len-next[len].
10
   注意: 对于补全最小循环节, n % (n - Next[n]) == 0 && n / (n - Next[n]) > 1 表示无需再补循环节, n
11
       - Next[n] - n % (n - Next[n])表示
   补全最小循环节的最少个数。
12
13
   1) 求最小循环节周期>1的情况
14
   for(int i=1;i<=n;i++){</pre>
15
       if(i%(i-nx[i])==0&&i/(i-nx[i])>1)
16
          printf("%d %d\n",i,i/(i-nx[i]));
17
   }
18
19
20
   2) 求最小循环节周期
21
   printf("%d\n",(n%(n-nx[n])==0)?(n/(n-nx[n])):1);
22
   3) 补全最小循环节,周期要K>=2
23
24
   if (n \% (n - Next[n]) == 0 \& n / (n - Next[n]) > 1){
25
      printf("0\n");
26
      continue;
27
  int len = n - Next[n]; // 最小循环节
  printf("%d\n", len - n % len);
30
31
   2、KMP将一个字符串补成代价最小的回文串
32
       只需将字符串倒过来,进行KMP匹配,结果2*n-i即可。
33
   int KMP() {
      int i, j
34
      getNext();
35
36
      i = j = 0;
      while (j < n\&i < n)  {
37
          while (i != -1 && x[i] != y[j])
38
              i = nx[i];
39
40
          i++;j++;
41
      return 2*n-i;
42
43
   }
44
   3、求一个字符串的所有前缀在字符串中出现过多少次
45
      设dp[i]表示以i结尾的所有成立的字符串个数,因此状态转移返程为dp[i]=(dp[nx[i]]+1)%mod
46
47
   for(int i=1;i<=n;i++){</pre>
      dp[i]=(dp[nx[i]]+1)%mod;
48
49
      res=(res+dp[i])%mod;
50
   }
51
```

```
4、构造一个k([1,1e9])个字符串,字符限定来自提供的y,但是不能出现x字符串,求可以组合出来的字符串的最大数
      考虑到k最大为1e9,需要通过矩阵快速幂解决问题,因此关键就是构造矩阵.矩阵构造需要通过next数组,可以将
53
      矩阵长度限定为[0,n-1],其意义是
  前i个字符已经匹配成功,需要匹配下一个字符。如果匹配成功则转移到下一个位置,如果匹配失败则通过next数组所
54
      转移到位置即可。
   for(int i=0;i<m;i++){</pre>
55
      for(int j=0; j<n; j++){</pre>
56
         int t = i;
57
         while(t>0&&y[j]!=x[t])
58
              t=nx[t];
59
60
              if(y[j]==x[t]||t==-1)
61
                 t++
              A.arr[i][t]++;
62
       }
63
   }
64
65
   5、给定一个字符矩阵(1<=r<=10000,1<=c<=75),求最小的子矩阵可以将矩阵全部覆盖,运行多余。
66
67
      本题最初使用的方法是求所有的行的最小循环节和列的最小循环节,然后求最小公倍数相乘即是答案。但实际上有
      一组样例会否决情况,
   Input
68
   2 8
69
   ABCDEFAB
70
71
   ABCDEABC
72
   2 8
   ABCDEFAB
73
74
   AAAABAAA
   Output
75
   16
76
   12
77
78
      显然上述方法存在问题,因此得寻找其他方法。注意到1<=c<=75,我们可以设立一个vis[N]数组,vis[i]表示
      长度为i的循环串出现的个数,
  如果出现vis[i]==r,则说明这个循环串是可行的。这样最小满足的即是最小矩阵的列大小,接下来求行大小,因为列
79
      大小确定, 我们只需要对r行
  字符串进行求next数组,求出他们的最小循环节即是最小行大小。精彩之处在于使用整个字符串数组进行匹配。
80
  void solve_col(){
81
      int i,j;
82
83
      j=nx[0]=-1;
      i=0:
84
      while(i<r){</pre>
85
         while(-1!=j&&strcmp(cow[i],cow[j])!=0)
86
            j=nx[j];
87
88
         nx[++i]=++j;
89
      ans_row=r-nx[r];
90
  }
91
92
  E-KMP内容:
93
      定义母串S和子串T,S的长度为n,T的长度为m;求字符串T与字符串S的每一个后缀的最长公共前缀。也就是说,设
94
      有extend数组:extend[i]
95
  表示T=S[i,n-1]的最长公共前缀,要求出所有extend[i](0 <= i < n)。
96
   (注意到,如果存在若干个extend[i]=m,则表示T在S中完全出现,且是在位置i出现,这就是标准的KMP问题,所以
      一般将它称为扩展KMP算法。)
97
  1、求一个字符串所有前缀在字符串中出现次数和
98
99
      对该字符串进行e-kmp,得到nx[n]数组.显然sum(nx[0]...nx[n-1])就是答案。
```

7.8 后缀数组、后缀树、后缀自动机

```
1
  后缀数组:
2
      后缀就是从字符串的某个位置i到字符串末尾的子串,我们定义以s的第i个字符为第一个元素的后缀为suff(i).
      把s的每个后缀按照字典序
  排序,后缀数组sa[i]就表示排名为i的后缀的起始位置的下标,映射数组rk[i]就表示起始位置的下标为i的后缀的排
3
      名, sa表示排名为i的是啥,
   rk表示第i个的排名是啥。
4
      最长公共前缀——后缀数组的辅助工具LCP: LCP(i,j)为suff(sa[i])与suff(sa[j])的最长公共前缀关于
5
      LCP的几条性质: 1、LCP(i,j)=LCP(j,i)
  2、LCP(i,i)=len(sa[i])=n-sa[i]+1 3、LCP(i,k)=min(LCP(i,j),LCP(j,k)) 对于任意1<=i<=j<=k<=n
        4、LCP(i,k)=min(LCP(j,j-1))
   对于任意1<i<=j<=k<=n
7
      如何求LCP?
8
9
      设height[i]为LCP(i,i-1), 1<i<=n, 显然height[1]=0. 由LCP Theorem可得, LCP(i,k)=min(
      height[j]) i+1<=j<=k
   设h[i]=height[rk[i]],同样的,height[i]=h[sa[i]]; => h[i]>=h[i-1]-1;
10
11
12
  应用:
  1)求两个字符串最大的公共子串
13
      将两个字符串连接起来,中间加一个其它字符,这样只需求出设height,只需要扫一遍height即可得到最优结
14
      果。height[i]为LCP(i,i-1)
   1<i<=n, LCP(i,j)为suff(sa[i])与suff(sa[j])的最长公共前缀.
15
   for(int i=1;i<=n;i++){</pre>
      if(sa[i]<p&&sa[i-1]>p) res = max(res,height[i]);
17
      if(sa[i]>p\&sa[i-1]<p) res = max(res,height[i]);
18
19
  }
20
21
  2) 求一个串中所有子串的种类个数
22
      举例多个字符串,将其后缀排序后进行枚举发现,当前字符串的贡献为与下一个字符串的非公共长度,最后一个只
      需要全加即可。
23
   而height[i]=LCP(i-1,i)的最长公共前缀。
24
   ll res=0;
25
   for(int i=2;i<=n;i++){</pre>
26
      int top = height[i];
      res+=(n-sa[i-1]+1-top);
27
  }
28
29
  res+=(n-sa[n]+1);
30
31
  3) 求一个数组中数重复出现次数>=k的子序列(可重叠)最长长度是多少
32
      建立后缀数组,对于每个height[i]进行枚举,使用二分+st表查询以i为中心,[l,r]区间的最大值,其中[l,r]
      区间中每个值都>=height[i]
33
  更新区间长度最大值即可.
34
35
   4) 查询一个数组中满足模式相似的子序列(一个子序列加上一个值也算相似)重复出现2次以上,且没有交集的最大长度
36
      可以先进行差分,取得差值[1,n-1],然后对于差值建立后缀数组,然后通过二分查询值进行判断是否存在可行解.
   bool isOK(int n,int k){
37
      vector<pii>v;
38
      for(int i=2;i<=n;i++){</pre>
39
          if(height[i]+1>=k){
40
41
             int j;
42
             for(j=i;j<=n;j++){
                 if(height[j]+1<k) break;</pre>
43
                 int l1=sa[j-1],r1=sa[j-1]+k-1;
44
                 int l2=sa[j],r2=sa[j]+k-1;
45
                 if(check(l1,r1,l2,r2)) return true;
46
                 for(int k=0;k<v.size();k++){</pre>
47
                     if(check(12,r2,v[k].first,v[k].second)) return true;
48
                 }
49
```

```
v.push_back(make_pair(l1,r1));
50
51
            i=j; v.clear();
52
         }
53
54
55
     return false;
56
  }
57
  5) 给定一个字符串, 求重复次数最多的连续重复子串,输出最大的重复次数
58
59
      本题是一道裸的后缀数组题,"重复次数最多的连续重复子串"解法(摘自罗穗骞的国家集训队论文):先穷举长度L
      然后求长度为L
60
  的子串最多能连续出现几次。首先连续出现1次是肯定可以的,所以这里只考虑至少2次的情况。假设在原字符串中连续
     出现2次,记这个
  子字符串为S,那么S肯定包括了字符r[0],r[L],r[L*2],r[L*3],……中的某相邻的两个。所以只须看字符r[L
61
     *i]和r[L*(i+1)]往前和
62
  往后各能匹配到多远。最后看最大值是多少。
63
     穷举长度L的时间是n,每次计算的时间是n/L。所以整个做法的时间复杂度是0(n/1+n/2+n/3+\dots+n/n)=0(
64
     要提一提的总共有两点,第一点比较显而易见 "S肯定包括了字符r[0],r[L],r[L*2],r[L*3],……中的某
     相邻的两个'
  由于当前S是有两个长度为L的连续重复子串拼接而成的,那意味着S[i]和S[i+L](\emptyset \le i < L)必定是一样的字符,而这两
65
     个字符位置相差L
  而字符r[0],r[L],r[L*2],r[L*3],.....中相邻两个的位置差均为L"只须看字符r[L*i]和r[L*(i+1)]往前和
66
     往后各能匹配到多远",对于往
  后能匹配到多远,这个直接根据最长公共前缀就能很容易得到,即上图中的后缀Suffix(6)和后缀Suffix(9)的最长
67
     公共前缀。而对于往前能匹
  配到多远,我们当然可以一开始就把字符串反过来拼在后面,这样也能根据最长公共前缀来看往前能匹配到多远,但这
68
     样效率就比较低了。
     其实,当枚举的重复子串长度为i时,我们在枚举r[i*j]和r[i*(j+1)]的过程中,必然可以出现r[i*j]在第一
69
     个重复子串里,而r[i*(j+1)]
  在第二个重复子串里的这种情况,如果此时r[i*j]是第一个重复子串的首字符,这样直接用公共前缀k除以i并向下取
70
     整就可以得到最后结果。但如
  果r[i*j]如果不是首字符,这样算完之后结果就有可能偏小,因为r[i*j]前面可能还有少许字符也能看作是第一个重
71
     复子串里的。于是,我们不妨
  先算一下,从r[i*j]开始,除匹配了k/i个重复子串,还剩余了几个字符,剩余的自然是k%i个字符。如果说r[i*j]
72
     的前面还有i-k%i个字符完成匹
  配的话,这样就相当于利用多余的字符还可以再匹配出一个重复子串,于是我们只要检查一下从r[i*j-(i-k%i)]和r
73
     [i*(j+1)-(i-k%i)]开始是否
74
  有i-k%i个字符能够完成匹配即可,也就是说去检查这两个后缀的最长公共前缀是否比i-k%i大即可。
      当然如果公共前缀不比i-k%i小,自然就不比i小,因为后面的字符都是已经匹配上的,所以为了方便编写,程序
75
     里面就直接去看是否会比i小就
76
  可以了。
77
78
  代码:
79
80
  int calc(int i,int j){
81
     int x = rk[i];
     int y = rk[j];
82
     if(x>y) swap(x,y);
83
      return st.query_min(x+1,y);
84
85
  }
86
  int ans=1;
87
  for(int i=1;i<n;i++){</pre>
88
      for(int j=1;j+i<=n;j+=i){</pre>
89
90
         int lcp = calc(j,j+i);
         int pos = j-(i-lcp%i);
int res = lcp/i+1;
91
92
```

if(pos>=1&&calc(pos,pos+i)>=i) res++;

```
94
             ans=max(ans,res);
         }
95
96
    printf("%d\n",ans);
97
98
99
    或者:
    for(int i=1;i<=n;i++){</pre>
100
101
         for(int j=1; j+i<=n; j+=i){</pre>
             int len = st.query_min(rk[j],rk[j+i]);
102
103
             int re = i-len%i;
             if(re==i){
104
105
                 ans=max((len+i)/i,ans);
106
             }else{
                 int p=j-re;
107
                 if(p>=1&&st.query_min(rk[p],rk[p+i])==len+re)
108
                      ans=max(ans,(len+re+i)/i);
109
             }
110
         }
111
112
113
114
    若输出循环次数最多的,最小字典序子串,那么可以存一个repeat,然后保存循环次数==repeat的长度,然后结合后
        缀数组性质暴力枚举即可。
    int main() {
115
         int Case=1;
116
         while(scanf("%s",s+1)==1){
117
             if(strcmp(s+1,"#")==0) break;
118
             printf("Case %d: ",Case++);
119
             n=strlen(s+1);
120
             DA(s,n,128); st.init(n);
121
122
             vector<int>v;
123
             int repeat=0;
             for(int i=1;i<=n;i++){</pre>
124
                 for(int j=1;j+i<=n;j+=i){</pre>
125
                      int len = st.query_min(rk[j],rk[j+i]);
126
                      int re=i-len%i,cnt=0;
127
                      if(re==i) cnt=(i+len)/i;
128
129
                      else{
130
                          int p=j-re;
                          if(p>=1&&st.query_min(rk[p],rk[p+i])>=re+len) cnt=(i+len+re)/i;
131
132
                      if(cnt>repeat){
133
                          repeat=cnt; v.clear();v.push_back(i);
134
135
                      }else if(cnt==repeat) v.push_back(i);
                 }
136
137
             if(repeat==1){
138
                 char c = 'z';
139
                 for(int i=1;i<=n;i++) c=min(c,s[i]);</pre>
140
                 printf("%c\n",c);
141
                 continue;
142
143
144
             int be=0,en=0;
145
             //枚举
             for(int i=1;i<=n&&!be;i++){</pre>
146
                 for(int j=0;j<v.size();j++){</pre>
147
                      int p=sa[i],p2=p+v[j];
148
149
                      if(p2>n) continue;
150
                      int len = st.query_min(rk[p],rk[p2]);
151
                      if(len>=(repeat-1)*v[j]){
```

```
152
                       be=p;en=p+repeat*v[j]-1;
                       break;
153
                   }
154
               }
155
156
           for(;be<=en;be++) printf("%c",s[be]);</pre>
157
           printf("\n");
158
       }
159
160
   }
161
      两个字符串, 求三元组(i,j,k),即s[i]...s[i+k-1]和s[j]...s[j+k-1]相同的个数,k>=给定l。
162
163
       计算A的某个后缀与B的某个后缀的最长公共前缀长度,如果长度L大于k,则加上L-k+1组。将两个字符串连接起
           -个没有出现的字符分开。(这是一个神奇的做法)然后通过height数组分组,某个组内的height都是大于
164
    ,中间用·
   于k的,也就是任意两个后缀的最长公共前缀都至少为k。扫描一遍,遇到一个B的后缀就与之前的A后缀进行统计,求出
165
   所有的满足的组数。但是这样的做法便是n^2的。可以发现两个后缀的最长公共前缀为这一段的height值的最小值。
    可以通过一个单调栈来维护一下,当前要人栈元素如果小于栈底元素,说明之后加入的B后缀与栈底的最长公共前缀是
    于等于人栈的。这样就保证了单调栈内的height值是绝对递增的,逐渐合并,均摊可以达到o(n)的复杂度。然后扫描
168
       两遍即可。
169
   int main() {
170
       while(scanf("%d",&k)==1){
171
172
           if(!k) break;
           scanf("%s%s",s+1,s2+1);
173
           int len=strlen(s+1);
174
           s[0]=1;strcat(s,"#");strcat(s,s2+1);s[0]=0;
175
           int Len=strlen(s+1);
176
177
           DA(s,Len,128);
           ll ans=0, tot=0;
178
           int top=0;
179
           //a扫b
180
           for(int i=1;i<=Len;i++){</pre>
181
               if(height[i]<k) top=tot=0;</pre>
182
               else{
183
                   ll cnt=0;
184
185
                   if(sa[i-1]<=len) cnt++,tot+=height[i]-k+1;</pre>
                   while(top>0&&st[top-1][0]>=height[i]){
186
187
                       top--;
                       tot-=st[top][1]*(st[top][0]-height[i]);
188
                       cnt+=st[top][1];
189
190
                   st[top][0]=height[i];st[top++][1]=cnt;
191
                   if(sa[i]>len) ans+=tot;
192
               }
193
           }
194
           //b扫a
195
           for(int i=1;i<=Len;i++){</pre>
196
               if(height[i]<k) top=tot=0;</pre>
197
198
               else{
199
                   ll cnt=0;
200
                   if(sa[i-1]>len) cnt++,tot+=height[i]-k+1;
                   while(top>0&&st[top-1][0]>=height[i]){
201
202
                       tot-=st[top][1]*(st[top][0]-height[i]);
203
204
                       cnt+=st[top][1];
205
                   st[top][0]=height[i];st[top++][1]=cnt;
206
```

```
207
                  if(sa[i]<=len) ans+=tot;</pre>
              }
208
209
          printf("%lld\n",ans);
210
       }
211
   }
212
213
214
   7) 有n个串, 求最长子串, 它的子串或者反串都在n个字符串中出现过
215
       只需要将正串和反串都加入后缀数组,然后计算即可。
216
       int t;
       scanf("%d",&t);
217
218
       while(t--){
           scanf("%d",&n);
219
           int left=1,right=100,len=1,sp=120;
220
           for(int i=1;i<=n;i++){</pre>
221
              scanf("%s",str);
222
              int l=strlen(str);
223
224
              right=min(right,1);
              for(int j=0;j<l;j++) {</pre>
225
                  mark[len] =2*i-1; s[len++] = str[j]-'0'+1;
226
227
              s[len++]=sp++;
228
              for(int j=l-1;j>=0;j--) {
229
230
                  mark[len] = 2*i; s[len++] = str[j]-'0'+1;
231
              s[len++]=sp++;
232
233
           }
           len--;
234
          DA(s,len,sp++);
235
236
           while(left<=right){</pre>
237
              int mid=(left+right)>>1;
              if(isOK(mid,len,sp)) left=mid+1;
238
239
              else right=mid-1;
           }
240
           printf("%d\n",right);
241
       }
242
243
244
245
   后缀自动机:
       一个子串,它在原串中可能出现在若干的位置。而一个子串p出现的这些位置的右端点标号组成的集合,我们称之
246
       为 endpos(p)
247
     1. 如果两个子串的endpos相同,则其中子串一个必然为另一个的后缀
     2.对于任意两个子串t和p(len_t<=len_p),要么endpos(p)@endpos(t),要么endpos(t) n endpos(p)=
248
     3.对于endpos相同的子串,我们将它们归为一个endpos等价类。对于任意一个endpos等价类,将包含在其中的所
249
       有子串依长度从大
250
   到小排序,则每一个子串的长度均为上一个子串的长度减 1, 且为上一个子串的后缀(简单来说,一个endpos等价类
       内的串的长度连续)
251
     4.endpos等价类个数的级别为0(n)
252
     5.一个类a中,有最长的子串,也有最短的子串,我们称最长子串的长度为len(a),最短子串长度为minlen(a)。
       对于存在父子关系的两个类,
   设fa(a)表示类a的父亲(也是一个类)。则:len(fa(a))+1=minlen(a)
253
254
     6.后缀自动机的边数为0(n)
255
256
   后缀自动机的性质:
257
     1.有一个源点,边代表在当前字符串后增加一个字符。
     2.每个点代表一个endpos等价类,到达一个点的路径形成的子串必须属于此点的类。
258
259
     3.点之间有父子关系,到达点i的所有字符串的长度都必然大于到达fa(i)的所有字符串的长度,且到达 fa(i)的
       任意一字符串必为到达i的任
```

```
260
   意一字符串的后缀。
     4.每个节点都代表不同的endpos等价类,longest[i]-minlen[i]+1表示其中的字符串个数,每个节点所包含的字
261
       符串都不相同,且有满足
262
   len(fa(a))+1=minlen(a),因此每个节点只需要记录最长的len[i]即可,最小值只需要找父节点来确定。
263
     5.数组要开两倍
264
265
   学习文章: hihocoder里面关于后缀自动机讲解
266
267
   应用:
268
269
   1、求一个字符串中子串*子串个数的最大值,其中个数要大于1
270
   代码:
271
   void solve(){
272
       ll ans=0;
273
       for(int i=1;i<=tot;i++) c[len[i]]++;</pre>
       for(int i=1;i<=tot;i++) c[i]+=c[i-1];</pre>
274
       for(int i=1;i<=tot;i++) rk[c[len[i]]--]=i;</pre>
275
276
       for(int i=tot;i>=1;i--){
           int p = rk[i];
277
           sz[fa[p]]+=sz[p];
278
           if(sz[p]>1)
279
              ans=max(ans,(ll)sz[p]*len[p]);
280
281
282
       printf("%lld\n",ans);
283
   }
284
285
   2、求一个字符串中长度大于等于m的个数总和
   void solve(){
286
       11 ans=0;
287
       for(int i=tot;i>=1;i--){
288
289
           if(len[i]<m)
290
              continue:
291
           else{
              ans+=(len[i]-max(m, len[fa[i]]+1)+1);
292
293
           }
294
295
       printf("%lld\n",ans);
296
   }
297
298
   3、求两个字符串的最长公共子串
   方法1:建立两个后缀自动机,然后dfs(1,1,0),第一个参数表示sam1的节点,第二个参数是sam2的节点,第三个参数是
299
       公共长度
   方法2:建立一个后缀自动机,然后将另外一个字符串进行沿点搜索
300
    void query(char *s){
301
       int ret=0,p=1,nowlen=0;
302
       int n=strlen(s);
303
304
       for(int i=0;i<n;i++){</pre>
           int ch=s[i]-'a';
305
           if(nx[p][ch]){p=nx[p][ch];ret=max(ret,++nowlen);continue;}
306
307
           //如果没有匹配成功则p=fa[p],保证endpos—样. 有满足min{p}=max{fa[p]}+1
308
           //因为p节点都是fa[p]前面加一个字母而来的,所以回去父节点保证了以i为点的匹配最长
309
           while(p&&!nx[p][ch]) p=fa[p];
310
           if(!p) nowlen=0,p=1;
           else{
311
               312
              ret=max(ret,nowlen=len[p]+1); p=nx[p][ch];
313
314
           }
315
       }
           printf("%d\n",ret);
316
```

```
317 }
318
319
    4、给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数。两个方案不同当且仅当这两
        个子串中有一个位置不同。
    方法一: 先建立对一串建立后缀自动机,然后操作如下:
320
    inline void topsort(){
321
322
        for(int i=1;i<=tot;i++) c[len[i]]++;</pre>
323
        for(int i=1;i<=tot;i++) c[i]+=c[i-1];</pre>
        for(int i=1;i<=tot;i++) rk[c[len[i]]--]=i;</pre>
324
        for(int i=tot;i>=1;i--){int p=rk[i]; sz[fa[p]]+=sz[p];}
325
326
        //表示状态转移到p节点时, dp[p]能新增多少答案
327
        for(int i=1;i<=tot;i++){</pre>
            int p=rk[i];dp[p]=dp[fa[p]]+sz[p]*(len[p]-len[fa[p]]);
328
329
        }
    }
330
331
    inline void solve(char *s){
332
        ll ret=0;
333
        int p=1,nowlen=0;
334
        int n=strlen(s);
335
        for(int i=0;i<n;i++){</pre>
336
            int c=s[i]-'a';
337
            if(nx[p][c]){
338
                p=nx[p][c]; nowlen++; ret+=dp[fa[p]]+sz[p]*(nowlen-len[fa[p]]);
339
340
                continue;
341
            for(;p&&!nx[p][c];p=fa[p]);
342
            if(!p) p=1,nowlen=0;
343
            else{
344
                nowlen=len[p]+1;
345
346
                p=nx[p][c];
                ret+=dp[fa[p]]+sz[p]*(nowlen-len[fa[p]]);
347
348
            }
349
        printf("%lld\n",ret);
350
    }
351
352
353
    5、给定一个字符串,现在想要构造此字符串,增加任意一个字符串,需要花费p元,从之前任意已经生成子串中增加为q,
        求最小花费
        对于i从小到大处理,维护使得s[j:i] s[1:j-1]的最小的j,那么记f[i]为输出前i个字符的最小代价,则f[i]
354
        i]=min\{f[i-1]+p,f[j-1]+q\}.
    HSAM维护s[1:j-1], 若s[1:j-1]中包含s[j:i+1], 即加人第 i + 1 个字符仍然能复制, 就不需要做任何处理。
355
        否则, 重复地将第 j 个字符加入
    后缀自动机并j=j+1,相应维护s[j:i+1]在后缀自动机上新的匹配位置,直到s[j,i+1]0 s[1,j-1]。
    class SuffixAutoMaton{
357
358
    public:
359
        int last,tot,p;
        int nx[N<<1][dif],fa[N<<1],len[N<<1];</pre>
360
        void init(){
361
362
            last=tot=1; p=1;
363
            fa[1]=len[1]=0;
364
            memset(nx[1],0, sizeof(nx[1]));
365
        }
366
        inline int match(char ch){
367
368
            return nx[p][ch-'a'];
369
370
        inline void withdraw(int 1){
371
```

```
372
            while(p!=0\&len[fa[p]]>=1) p=fa[p];
373
            if(p==0) p=1;
        }
374
375
376
        void transfer(int l,int ch){
            p=nx[p][ch];
377
378
            if(p==0) p=1;
            withdraw(l);
379
        }
380
381
382
        inline void insert(int c){
383
            int p=last,np=++tot;
            memset(nx[tot],0, sizeof(nx[tot]));
384
            last=np; len[np]=len[p]+1;
385
            for(;p&&!nx[p][c];p=fa[p]) nx[p][c]=np;
386
            if(!p) fa[np]=1;
387
388
            else{
389
                int q=nx[p][c];
                if(len[p]+1==len[q]) fa[np]=q;
390
                else{
391
                    int nq=++tot;
392
                    len[nq]=len[p]+1;
393
                    memcpy(nx[nq],nx[q], sizeof(nx[q]));
394
395
                    fa[nq]=fa[q]; fa[q]=fa[np]=nq;
396
                    for(;nx[p][c]==q;p=fa[p])
                        nx[p][c]=nq;
397
398
                }
            }
399
        }
400
401
    }SAM;
402
403
404
    void solve(){
405
        SAM.init();
406
        SAM.insert(s[0]-'a');
407
408
        dp[0]=p;
409
        int l=1, r=0;
        for(int i=1;i<n;i++){</pre>
410
411
            ++r
            dp[i]=dp[i-1]+p;
412
            while( ( !SAM.match(s[i]) | | r-l+1>(i+1)/2 ) \&& l<=r ){
413
                SAM.insert(s[l++]-'a');
414
415
                SAM.withdraw(r-1);
416
            SAM.transfer(r-l+1,s[i]-'a');
417
418
            if(l<=r){
                dp[i]=min(dp[i],dp[i-(r-l+1)]+q);
419
420
421
422
        printf("%lld\n",dp[n-1]);
423
    }
424
425
    6、小Hi发现旋律可以循环,每次把一段旋律里面最前面一个音换到最后面就成为了原旋律的"循环相似旋律",还可以
        对"循环相似旋律"进
    行相同的变换能继续得到原串的"循环相似旋律"。小Hi对此产生了浓厚的兴趣,他有若干段旋律,和一部音乐作品。对
426
        于每一段旋律,他想
427
    知道有多少在音乐作品中的子串(重复便多次计)和该旋律是"循环相似旋律"。
428
```

```
429
   输入:
   第一行,一个由小写字母构成的字符串S,表示一部音乐作品。字符串S长度不超过100000。第二行,一个整数N,表示
430
       有N段旋律。接下来N行,
431
    每行包含一个由小写字母构成的字符串str,表示一段旋律。所有旋律的长度和不超过100000。
432
   abac
433
   3
434
435
   а
   ab
436
437
   ca
438
439
   输出:
440
   输出共N行,每行一个整数,表示答案。
441
   2
442
   1
443
444
445
   //将字符串S->S+S,然后进入处理
   void query(char *s){
446
       int n=strlen(s),p=1,nowlen=0,limit=n/2;
447
       memset(vis,0, sizeof(bool)*(tot+1));
448
       ll ret=0;
449
       for(int i=0;i<n-1;i++){</pre>
450
451
           int c=s[i]-'a';
452
           if(nowlen==limit&&nx[p][c]){
               nowlen++;p=nx[p][c];
453
               if(nowlen>len[fa[p]]+1) nowlen--;
454
               else{
455
                   nowlen--; p=fa[p];
456
457
           }else{
458
               if(nx[p][c]){
459
                   nowlen++;p=nx[p][c];
460
               }else {
461
                  while (p \&\& !nx[p][c]) p = fa[p];
462
                   if (!p) {
463
464
                      p = 1;nowlen = 0;
465
                   } else {
                      nowlen = len[p] + 1;p = nx[p][c];
466
467
                   }
468
               }
469
           if(nowlen==limit&&!vis[p]){
470
471
               ret+=sz[p];vis[p]=1;
472
473
474
       printf("%lld\n",ret);
    }
475
476
   7、对于一个给定长度为N的字符串,求它的第K小子串是什么。
478
   两个整数T和K, T为0则表示不同位置的相同子串算作一个。T=1则表示不同位置的相同子串算作多个。
479
480
    思路:
481
       建立后缀自动机,然后进行记忆化搜索,用dp[i]表示以i为节点的子树所包含的子串个数。
482
483
   代码:
484
    //先记忆化搜索,得到以u为根节点的子树所包含的子串数
485
    void dfs(int u){
       dp[u]=sz[u];
486
```

```
487
        for(int i=0;i<26;i++){</pre>
488
            int v=nx[u][i];
            if(!v) continue;
489
490
            if(!dp[v]) dfs(v);
491
            dp[u]+=dp[v];
        }
492
    }
493
494
495
    //对答案进行计算
496
    void DFS(int u,ll k){
497
        if(sz[u]>=k) return;
498
        k=sz[u];
        for(int i=0;i<26;i++){</pre>
499
            int v=nx[u][i];
500
            if(!v) continue;
501
            if(dp[v]>=k){
502
                printf("%c",i+'a');
503
504
                DFS(v,k); return;
            }else k-=dp[v];
505
        }
506
507
    }
508
    void query(int t,ll k){
509
510
        topu(t); sz[1]=0; dfs(1);
        if(dp[1]<k){
511
            printf("-1\n"); return;
512
513
        DFS(1,k);
514
        printf("\n");
515
516
517
    8、给出n个串,求这个n个串的最长公共子串,1≤n≤10, ls l≤1e5
518
    对第一个串建立一个后缀自动机,然后用剩余n-1个串进行匹配,设mlen[i]表示i节点,n-1个串匹配长度的最大值中
519
        的最小值
    那么最后答案就是遍历所有节点的mlen,最大值即为答案。其中需要注意的是如果i节点匹配成功,那么其父节点的最
520
        大值为其父节点长度
521
522
    代码:
    bool Update(){
523
524
        if(scanf("%s",s)!=1) return 0;
525
        memset(clen,0, sizeof(int)*(tot+1));
526
        int n=strlen(s),nowlen=0,p=1;
        //进行节点匹配, clen[i]表示当前节点匹配的最大值
527
528
        for(int i=0;i<n;i++){</pre>
529
            int c=s[i]-'a';
530
            if(nx[p][c]){
                p=nx[p][c];nowlen++;
531
            }else{
532
                while(p&&!nx[p][c]) p=fa[p];
533
                if(!p){
534
535
                    p=1;nowlen=0;
536
                }else{
537
                    nowlen=len[p]+1; p=nx[p][c];
538
                }
539
            clen[p]=max(clen[p], nowlen);
540
541
542
        //更新mlen[i],并更新父节点的clen
543
        for(int i=tot;i>=1;i--){
```

```
int p=rk[i];
544
           mlen[p]=min(mlen[p],clen[p]);
545
           if(clen[p]&&fa[p]) clen[fa[p]]=len[fa[p]];
546
547
548
       return 1;
549
   }
550
   9、给定一个长度为n的字符串s,令Ti表示它从第i个字符开始的后缀,求sigma(1<=i<j<=n)len[i]+len[j]-2*
551
       lcp(Ti,Tj)的和
552
   其中,len[i]表示字符串i的长度,lcp(a,b)表示字符串a和字符串b的最长公共前缀
553
554
   思路:
555
   首先把字符串反过来,前缀变后缀,然后建立后缀自动机。我们发现parent树即后缀树,它是不断在前面加字符串而
       导致endpos集
   分裂,假设一个跟节点为z,两个子节点为x,y,那么两者lca的节点表示的长度是他们的最长匹配子串,因此我们只需
556
       要对每个节点进行
   计算即可。
557
558
559
   代码:
   void query(ll n){
560
       11 \text{ ret}=(n-1)*n*(n+1)/2;
561
       for(int i=1;i<=tot;i++) c[len[i]]++;</pre>
562
       for(int i=1;i<=tot;i++) c[i]+=c[i-1];</pre>
563
       for(int i=1;i<=tot;i++) rk[c[len[i]]--]=i;</pre>
564
565
       for(int i=tot;i>=1;i--){
           int p=rk[i]; sz[fa[p]]+=sz[p];
566
           ret-=(len[p]-len[fa[p]])*sz[p]*(sz[p]-1);
567
568
       printf("%lld\n",ret);
569
   }
570
571
572
   广义后缀自动机:
573
   1、神奇的是小Hi发现了一部名字叫《十进制进行曲大全》的作品集,顾名思义,这部作品集里有许多作品,但是所有
574
       的作品有一个共同特征:
   只用了十个音符, 所有的音符都表示成0-9的数字。现在小Hi想知道这部作品中所有不同的旋律的"和"(也就是把串看
575
       成数字,在十进制下的求和.
576
   允许有前导0)。答案有可能很大,我们需要对(10^9 + 7)取模。
577
578
   输入:
579
   2
   101
580
581
   09
582
583
   输出:
584
   131
585
586
   思路:
       建立广义后缀自动机,然后进行拓扑排序,累计答案即可。
587
589
   ll dp[N<<1],cnt[N<<1];</pre>
590
   int rk[N<<1],c[N<<1];
591
592
   void query(){
       for(int i=1;i<=tot;i++) c[len[i]]++;</pre>
593
       for(int i=1;i<=tot;i++) c[i]+=c[i-1];</pre>
594
       for(int i=1;i<=tot;i++) rk[c[len[i]]--]=i;</pre>
595
596
       cnt[1]=1;
597
       //正向扫可以得到以1节点拓扑排序
```

```
for(int i=1;i<=tot;i++){</pre>
598
          int u=rk[i];
599
          for(int j=0;j<10;j++){</pre>
600
601
             int v=nx[u][j];
             if(!v) continue;
602
             cnt[v]=(cnt[v]+cnt[u])%mod;
603
             dp[v]=(dp[v]+10*dp[u]%mod+cnt[u]*j%mod)%mod;
604
          }
605
606
      ll ret=0;
607
608
      for(int i=2;i<=tot;i++) ret=(ret+dp[i])%mod;</pre>
609
      printf("%lld\n",ret);
610
   }
   7.9 回文自动机
   Palindromic Tree, 译名为"回文树", 是一种专门处理回文串的数据结构, 类似于Manachar算法, 但更为强大。是
      由两颗分别存储偶数回文
 2
   串树和存储奇数回文串树组成,每个节点代表母串的回文串,两树之间中用fail指针连接。
 3
   假设我们有一个串S, S下标从O开始, 则回文树能做到如下几点:
 4
   1. 求串S前缀0~i内本质不同回文串的个数(两个串长度不同或者长度相同且至少有一个字符不同便是本质不同)
 5
  2.求串S内每一个本质不同回文串出现的次数
 6
   3. 求串S内回文串的个数(其实就是1和2结合起来)
   4. 求以下标i结尾的回文串的个数
 8
 9
10
  应用:
11
12
   1、求最长回文子串
13
      回文自动机中节点长点最长的即是答案
14
15
   2、求字符串中本质不同回文子串的数量
16
      回文自动机中除了0、1节点所产生的节点数量即为本质不同回文子串数量。
17
   3、求两个字符串有多少回文子串能配对的数量
18
      For example, (1, 3, 1, 3) and (1, 3, 3, 5) are both considered as a valid common
19
      palindrome substring
20
   between "aba" and "ababa". aba能匹配两次.
21
      建成两颗回文树后,只需要dfs(0,0)偶子树和dfs(1,1)奇子树,只要遍历到两个点同时存在,则数量ans += 1
      ll*pt1.cnt[to1]*pt2.cnt[to2];
22
23
   4、求一个字符串求最长双回文子串T,即可将T分为两部分X,Y,(IXI,IYI≥1)且X和Y都是回文串。
24
      只需要前后跑一次回文自动机,1[i]表示从左到i所形成的最长回文串,r[i]表示从i到右所形成的的最长回文串,
      遍历一遍字符串即可得到答案。
25
26
   5、求一个字符串每个前缀中有多少个本质不同的回文串
27
      每个字母插入时,统计一遍现在回文自动机中所产生的节点总数即可.
28
   6、求一个字符串(1≤T≤10、1≤length≤1000、1≤0≤100000、1≤l≤r≤length). 区间[l,r]中本质不同的回文串
29
       考虑到1≤length≤1000,我们可以强行打表记录ans[i][j],表示[i,j]之间回文子串个数,而不是在Q中每次
30
      查询情况:
31
32
   7、定义合法(x,y)为两个不相交的回文串,求个数.
      解释: aca, S1=T[0,0],S2=T[0,2],S3=T[1,1],S4=T[2,2],其中(S1,S3)(S1,S4)(S3,S4)为合法对
33
34
      从回文自动机的fail边可知: 边是连接一个字符串与另一个字符串的最长后缀回文子串,因此可以查询一个点到0点
      长度即加入一个点后
   所增加的回文串,再反着打一次后缀和,结果相乘即是答案。
```

```
36
   int getsum(int from){
37
       int res=1,x=from;
38
       if(vis[x])
39
           return vis[x];
40
       if(pt.fail[from]!=0&&pt.fail[from]!=1){
41
           int to=pt.fail[x];
42
           res+=vis[to];
43
       }
44
       vis[from]=res;
45
       return vis[from];
46
47
   }
48
   int main() {
49
       while(scanf("%s",str)==1) {
50
           int len = strlen(str);
51
52
           pt.init();
           memset(vis,0, sizeof(int)*(len+1));
53
           for(int i=0;i<len;i++){</pre>
54
               pt.insert(str[i]-'a');
55
               l[i]=getsum(pt.last);
56
           }
57
           memset(vis,0, sizeof(int)*(len+1));
58
           pt.init();
59
60
           r[len]=0;
           for(int i=len-1;i>=1;i--){
61
               pt.insert(str[i]-'a');
62
               r[i]=r[i+1]+getsum(pt.last);
63
64
           11 ans=0;
65
           for(int i=0;i<len-1;i++){</pre>
66
               ans+=l[i]*r[i+1];
67
68
           printf("%lld\n",ans);
69
70
       return 0;
71
72
   }
73
74
   8、有奇数个,并且他们手中的牌子所写的字母,从左到右和从右到左读起来一样,那么这一段女生就被称作和谐小群
75
   现在想找出所有和谐小群体,并且按照女生的个数降序排序之后,前K个和谐小群体的女生个数的乘积是多少。
       显然回文自动机上节点的标记就是他们出现的时间,以及len可以记录,因此只需要dfs(1)一遍奇回文树,即可得
76
       到每个节点的
77
   长度和该节点表示回文串出现的次数,然后排序扫一遍即可。
78
   9, three tuple (i,j,k) satisfy 1 \le i \le j < k \le length(S), S[i..j] and S[j+1..k] are all
79
       palindrome strings.
   wants to know the sum of i*k of all required three tuples. The answer may be very large
80
       , please output
   the answer mod 1000000007.
82
       设left[i]为以i为点从右往左的sigma(j)的和,right[i]以i为点从左往右的sigma(k)的和,因此需要dfs辅
       助记录点数和长度
   然后sigma(left[i]*right[i+1])即是答案.
83
84
   void Update(int from){
85
       int res=1,res2=pt.len[from];
86
87
       if(vis[from])
88
           return:
       if(pt.fail[from]!=0&&pt.fail[from]!=1){
89
```

```
int to = pt.fail[from];
90
            res+=vis[to];
91
            res2+=ls[to];
92
            res%=mod;
93
            res2%=mod;
94
95
        vis[from]=res;
96
        ls[from]=res2;
97
        return;
98
    }
99
100
101
    9、实现可前后插入字符,查询当前有多少个本质不同回文串,已经生成回文串个数
102
        给你n次操作,如果为1,则在字符串后面插人一个字符,如果为2,则在字符串前面插人一个字符,如果为3,则
        输出当前的字符
103
    串中的本质不同的回文串的个数,如果为4,则输出字符串的回文串的个数。
104
105 typedef pair<int, int> pii;
106 typedef long long ll;
107 const double eps = 1e-6;
108 const ll INF = 0x3f3f3f3f3f3f3f3f3f3f3;
109 const ll mod = 1000000007;
110 const int N = 2e5 + 10;
111 const int M = 2e5 + 10;
113 const double PI = acos(-1.0);
114
115 const int dif = 26;
    int n, q;
116
    int op;
117
    char str[5];
118
119
120
121
   class PalindromicTree{
122
    public:
123
        int nx[N][dif],fail[N],len[N],num[N];
        int tot[2],p,last[2],s[N];
124
125
        int newnode(int 1){
126
            memset(nx[p],0, sizeof(nx[p]));
            len[p]=l;
127
128
            num[p]=0;
129
            return p++;
130
        void init(int x){
131
            last[0]=last[1]=p=0;
132
            tot[0]=x;tot[1]=x-1;
133
            fail[0]=fail[1]=1;
134
            memset(s,-1, sizeof(s));
135
            newnode(0);
136
            newnode(-1);
137
138
139
        int getfail(int x,int tag){
140
            if(!tag){
                while(s[tot[tag]+len[x]+1]!=s[tot[tag]])
141
                     x=fail[x];
142
            }else{
143
                while(s[tot[tag]-len[x]-1]!=s[tot[tag]])
144
145
                    x=fail[x];
146
            }
147
            return x;
```

```
148
        int insert(int x,int tag){
149
             if(!tag)
150
                 s[--tot[0]]=x;
151
            else
152
                s[++tot[1]]=x;
153
            int cur = getfail(last[tag],tag);
154
            int now = nx[cur][x];
155
            if(!now){
156
                now = newnode(len[cur]+2);
157
158
                fail[now]=nx[getfail(fail[cur],tag)][x];
159
                nx[cur][x]=now;
                num[now]+=num[fail[now]]+1;
160
161
            }
            last[tag]=nx[cur][x];
162
            if(len[last[tag]]==tot[1]-tot[0]+1)
163
                last[tag^1]=last[tag];
164
165
             return num[last[tag]];
166
        }
    }pt;
167
168
169
    int main() {
170
171
        while(scanf("%d",&q)==1){
172
            pt.init(q);
            11 ans=0;
173
            while(q--){
174
                scanf("%d",&op);
175
                if(op==1){
176
                     scanf("%s",str);
177
                     ans+=pt.insert(str[0]-'a',0);
178
179
                }else if(op==2){
                     scanf("%s",str);
180
                     ans+=pt.insert(str[0]-'a',1);
181
                }else if(op==3){
182
                     printf("%d\n",pt.p-2);
183
184
                }else{
185
                     printf("%lld\n",ans);
                }
186
187
            }
188
        }
189
        return 0;
190
191
192
    10、两个相交的回文串为一对,求一个字符串中有多少对。
193
        直接求相交非常麻烦,且非常难处理,可以换一个思路,先求总和,以及不会相交的,那么相减即可得到结果。但是
        内存有限定,因此可以使用
    vector进行优化。
194
    class PalindromicTree{
195
196
    public:
197
        vector<pii>nx[N];
198
        int fail[N],len[N],num[N];
        int tot,p,last,s[N];
199
200
        int newnode(int 1){
            nx[p].clear();
201
202
            len[p]=l;
203
            num[p]=0;
204
            return p++;
205
        }
```

```
void init(){
206
            tot=p=last=0;
207
            s[0]=-1, fail[0]=1;
208
209
            newnode(0);
210
            newnode(-1);
211
212
        int getfail(int x){
            while(s[tot-len[x]-1]!=s[tot])
213
214
                x=fail[x];
215
            return x;
216
        }
217
        int is_exist(int p,int c){
218
219
            for(auto t:nx[p]){
220
                if(t.first==c)
                    return t.second;
221
222
223
            return 0;
        }
224
225
        void insert(int x){
226
            s[++tot]=x;
227
            int cur = getfail(last);
228
229
            int now = is_exist(cur,x);
230
            if(!now){
                now = newnode(len[cur]+2);
231
                fail[now]=is_exist(getfail(fail[cur]),x);
232
                nx[cur].push_back(make_pair(x,now));
233
                num[now]=num[fail[now]]+1;
234
235
236
            last=now;
237
238 }pt;
239
    11、求一个字符串中有多少子串满足,1.r-l+1==i 2.子串为回文串 3.[l,(l+r)/2]也为回文串
240
        有可能为答案的是回文自动机上的节点,只需要节点判断是否满足即可,关键在于判断[1,(1+r)/2]也为回文串,
241
        可以发现若满足条件三
    则前半段和后半段是一样的,因此可以用hash判断前半段和后半段是否相同即可,如果相同则进入计数。
    const ull hash1 = 201326611;
   const ull hash2 = 50331653;
    ull ha[N],pp[N];
245
246
    ull getha(int l,int r){
247
248
        if(l==0)
249
            return ha[r];
250
        return ha[r]-ha[l-1]*pp[r-l+1];
251
    }
252
253
    bool check(int l,int r){
254
        int len = r-l+1;
255
        int mid = (l+r)>>1;
256
        if(len&1)
257
            return getha(l,mid)==getha(mid,r);
258
        else
259
            return getha(l,mid)==getha(mid+1,r);
260
    }
261
262
    class PalindromicTree{
263
    public:
```

```
264
         int nx[N][dif],fail[N],len[N],cnt[N];
         int tot,p,last,s[N],id[N];
265
         int newnode(int 1){
266
             memset(nx[p],0, sizeof(nx[p]));
267
268
             len[p]=l;
269
             cnt[p]=0;
270
             return p++;
271
         }
         void init(){
272
             tot=p=last=0;
273
274
             s[0]=-1, fail[0]=1;
275
             newnode(0);
             newnode(-1);
276
277
         }
         int getfail(int x){
278
             while(s[tot-len[x]-1]!=s[tot])
279
280
                  x=fail[x];
281
              return x;
282
283
         void insert(int x){
             s[++tot]=x;
284
             int cur = getfail(last);
285
             int now = nx[cur][x];
286
287
              if(!now){
                  now = newnode(len[cur]+2);
288
                  fail[now]=nx[getfail(fail[cur])][x];
289
                  nx[cur][x]=now;
290
291
             last=nx[cur][x];
292
             cnt[last]++;
293
             id[last]=tot;
294
295
         void makecnt(){
296
297
             for(int i=p-1;i>=2;i--)
298
                  cnt[fail[i]]+=cnt[i];
299
              for(int i=2;i<p;i++){</pre>
300
                  if(check(id[i]-len[i],id[i]-1)){
301
                      ans[len[i]]+=cnt[i];
302
                  }
303
             }
304
         }
    }pt;
305
306
307
    int main(){
308
         pp[0]=1;
309
         for(int i=1;i<N;i++)</pre>
310
             pp[i]=hash1*pp[i-1];
         while(scanf("%s",str)==1){
311
             int len = strlen(str);
312
313
             memset(ans,0, sizeof(int)*(len+2));
314
             pt.init();
315
             ha[0]=str[0];
              for(int i=0;i<len;i++)</pre>
316
                  pt.insert(str[i]-'a');
317
              for(int i=1;i<len;i++)</pre>
318
                  ha[i]=ha[i-1]*hash1+str[i];
319
320
             pt.makecnt();
             printf("%d",ans[1]);
321
             for(int i=2;i<=len;i++)</pre>
322
```

```
printf(" %d",ans[i]);
323
           printf("\n");
324
       }
325
   }
326
327
328
   12、求一个字符串中所有回文串中,若一个回文串包含另一个回文串,则为为一对,求所有满足情况的对
329
       先建立回文树,显然每个节点代表一种回文串,我们可以通过dfs进行求取.
   void dfs(int x,ll res){
330
       vector<int>v;
331
       for(int i=x;i>1;i=fail[i]){
332
333
           if(!vis[i]){
334
              v.push_back(i);
              vis[i]=1;
335
336
              res++;
337
           }else break;
       }
338
       ans+=res;
339
       for(int i=0;i<26;i++) if(nx[x][i]) dfs(nx[x][i],res);</pre>
340
       for(auto t:v) vis[t]=0;
341
342
   }
343
   void solve(){
344
       ans=2-p;
345
346
       dfs(0,0);
347
       dfs(1,0);
       printf("%lld\n",ans);
348
349
   }
   7.10 线段树维护 dp
   1.Wi-Fi(http://codeforces.com/contest/1216/problem/F)
 1
 2
   题意:
 3
       现在有n(1<=n<=2e5)个房间,要将每个房间通上网络,其中标号为1的房间可以放置路由器,可以使得[max(1,
       i-k, min(n, i+k)]
   房间连上网络,标号为0的房间只能独自连上网络,每个房间连上网络的费用为i,即房间号1~n.现在求使得n个房间全部
 4
       联通的最小花费
 5
 6
   思路:
       设dp[i]表示1~i房间连上网的最小费用,当s[i]='0'时,则有dp[i]=min{dp[i-1]+i,dp[i]},当s[i]='1'时
 7
       ,则有dp[i]=min{dp[i],dp[i-1+i],
    dp[max{1,i-k}-1]+i]},并且dp[i]可以更新[max(1,i-k),min(n,i+k)]的所有值,因此可以使用线段树进行维
       护得到最终答案.
```