EXAMEN Semestre: 1 Session: Principale Rattrapage Module: Mathématique de base 3 Enseignant(s): UP-Maths Classe(s): 2A,2P OUI Documents autorisés : NON Nombre de pages : 2 NON Internet autorisée : OUI NON Calculatrice autorisée : OUI Date: 12/01/2019 Heure: 11h Durée: 1h30min

NB: Tous les calculs et toutes les étapes de raisonnements doivent figurer clairement sur votre copie.

Exercice 1:(2 points)

On cherche la solution y(t) de l'équation différentielle :

(E)
$$y'' - y = 2.e^{-t}$$

On désigne par (E_0) l'équation homogène associée à (E).

- 1. Résoudre l'équation différentielle homogène E_0 associée à (E). (0.5 point)
- 2. Trouver une solution particulière de (E).(1 point)
- 3. Donner la forme générale des solutions de (E).(0.5 point)

Exercice 2:(5.5 points)

On considère la forme quadratique

$$q: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(x_1, x_2, x_3) \longmapsto x_1^2 - 2x_1x_2 - 2x_1x_3 + x_2^2 + 2x_2x_3 + x_3^2$

 \mathbb{R}^3 est muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$ avec $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ et $e_3 = (0, 0, 1)$.

- 1. Déterminer l'expression de la forme polaire φ de q dans la base canonique de \mathbb{R}^3 .(1 point)
- 2. Déterminer la matrice de q dans la base canonique de \mathbb{R}^3 .(0.5 point)
- 3. Déterminer le rang de q. (1 point)
- 4. q est-elle non dégénérée? Justifier votre réponse.(0.5 point)
- 5. Décomposer q en somme de carrés de formes linéaires par la méthode de Gauss.(1 point)
- 6. En déduire la signature de q.(0.5 point)
- 7. Montrer que q est positive et n'est pas définie. (0.5 point)
- 8. φ est-elle un produit scalaire? Justifier votre réponse.(0.5 point)

Exercice 3:(4.5 points)

On considére la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = 2x^2 + 2y^2 + 2xy - x - y$$

- 1. Calculer les dérivées partielles premières de f.(1 point)
- 2. Déterminer les points critiques de f. (1 point)
- 3. Calculer la matrice Hessienne de f.(0.5 point)
- 4. Donner la nature des points critiques de f.(1 point)
- 5. On considère la fonction g définie par :

$$g(x,y) = 2\exp(2x) + 2\exp(2y) + 2\exp(x+y) - \exp(x) - \exp(y)$$

Déduire que g admet un minimum local sur \mathbb{R}^2 et préciser en quel point ce minimum est atteint.(1 point)

Exercice 4:(8 points)

 \mathbb{R}^3 est muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$ avec $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ et $e_3 = (0, 0, 1).$

On considère la matrice : $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -1 & 1 & 3 \end{pmatrix}$ et la matrice identité $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

On note P_A le polynôme caractéristique de A défini par $P_A(\lambda) = det(A - \lambda I_3)$.

- 1. Montrer que : $P_A(\lambda) = (1 \lambda)(2 \lambda)(3 \lambda).(1 \text{ point})$
- 2. On pose : $u_1 = (-1, 1, -1)$, $u_2 = (1, 1, 0)$ et $u_3 = (1, 1, 1)$ et $C = (u_1, u_2, u_3)$. Montrer que C est une base de vecteurs propres de A.(1.5 points)
- 3. Déterminer la matrice de passage P de la base \mathcal{B} à la base $\mathcal{C}.(0.5 \text{ point})$
- 4. Calculer P^{-1} .(1 point)
- 5. Montrer que : $A = PDP^{-1}$, où $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.(1 point) .
- 6. En déduire que A est diagonalisable. (0.5 point)
- 7. Calculer A^n pour $n \in \mathbb{N}^*$.(1 point)
- 8. On considère les trois suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par : $x_0=1,\ y_0=1,\ z_0=-1$ et pour tout $n\in\mathbb{N}$,

$$\begin{cases} x_{n+1} = x_n + y_n + z_n \\ y_{n+1} = 2y_n + z_n \\ z_{n+1} = -x_n + y_n + 3z_n \end{cases}$$

Pour tout $n \in \mathbb{N}$, on pose : $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

- (a) Vérifier que, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$. (0.5 point)
- (b) Montrer par récurrence que, pour tout $n \in \mathbb{N}^{\star}$, $X_n = A^n X_0.(0.5 \text{ point})$
- (c) Déterminer alors x_n , y_n et z_n en fonction de n.(0.5 point)

Bon travail