Perceptron, again



# Homogeneous linear classifiers

• Homogeneous linear classifier:  $w \in \mathbb{R}^d$  (weight vector)

$$f_w(x) = f_{w,0}(x) = \begin{cases} +1, & \langle x, w \rangle > 0 \\ -1, & \langle x, w \rangle \le 0 \end{cases}$$

# Perceptron (Rosenblatt, '58)

**Input**: training data *S* 

- Let  $w_1 = \vec{0}$ .
- For t = 1, 2, ...:



- Update:  $w_{t+1} \coloneqq w_t + y_t x_t$
- Else: return  $w_t$



If S is separable with margin  $\gamma > 0$ , and  $R \coloneqq \max_{(x,y) \in S} ||x||$ ,

then Perceptron terminates after  $\left(\frac{R}{\nu}\right)^2$  updates with linear separator for S.

# Online Perceptron

**Input**: training data *S* as an *input stream*.

- Let  $w = \vec{0}$ .
- For each  $(x, y) \in S$ :
  - If  $f_w(x) \neq y$ , then:
    - Update: w := w + yx
- Return w



# Online Perceptron

- Always terminates: in fact, just makes a single pass through the data!
- Does it return a linear separator (assuming one exists)? Maybe not.

#### However:

If 
$$S$$
 is separable with margin  $\gamma>0$ , and  $R\coloneqq\max_{(x,y)\in S}\|x\|$ , then Online Perceptron makes at most  $\left(\frac{R}{\gamma}\right)^2$  mistakes (and updates).

# What good is a mistake bound?

• Mistake bound: upper-bound on number of mistakes made by an online learning algorithm on an arbitrary sequence of examples.

• Online learning algorithm (for our purposes): algorithm that operates on a stream of examples, and always has a "current classifier" in hand.

• Amazing fact: online learning algorithms with small mistake bounds can be used to produce classifiers with small classification error!

# Voted-Perceptron (Freund and Schapire, '99)

**Input**: training data *S* as an *input stream*.

- Let  $w_1 = \vec{0}$ ,  $c_1 = 0$ , t = 0.
- For each  $(x, y) \in S$ :
  - If  $f_{W_t}(x) \neq y$ , then:
    - Update:  $w_{t+1} \coloneqq w_t + yx$ ,  $c_{t+1} \coloneqq 0$ ,  $t \coloneqq t+1$ .
  - Else:  $c_t \coloneqq c_t + 1$
- Return  $((w_1, c_1), (w_2, c_2), ..., (w_t, c_t))$

 $c_t$  represents # of examples that  $w_t$  correctly classifies.

A.K.A. "survival time".

note the survival time in c fore each classifier w

# Voted-Perceptron (Freund and Schapire, '99)

What is the final classifier based on  $(w_1, c_1), (w_2, c_2), \dots, (w_t, c_t)$ ?

**Input**: test point x

- Compute score:  $z := \sum_{s=1}^{t} c_s f_{w_s}(x)$
- Compute prediction:  $\hat{y} := \text{sign}(z)$

 $c_s$  represents # of examples that  $w_s$  correctly classifies.

A.K.A. "survival time".

the computed score z should against which value ?

# Voted-Perceptron: classification error

- Assume S is a sequence of n i.i.d. examples (x, y) from P.
- Also assume there exists  $w_{\star}$  with  $||w_{\star}|| = 1$  and  $\gamma, R > 0$  such that  $\Pr_{(x,y)\sim P}(y\langle w_{\star}, x\rangle \geq \gamma \wedge ||x|| \leq R) = 1.$
- If  $\hat{f}$  denote the classifier returned by Voted-Perceptron on input S, then:

$$\mathbb{E}[\operatorname{err}(\hat{f})] \le \frac{2(R/\gamma)^2}{n+1}$$

#### Other variants

- What determines final classifier?
  - 1. Just run Online Perceptron and return final w
  - 2. Voted-Perceptron, based on survival times  $c_i$

note: the order of the S

- 3. Weighted Perceptron:  $\widehat{w} := \sum_{i=1}^{t} c_i w_i$
- How to use the training data?
  - 1. Make a single pass through S.
  - 2. Make multiple passes through S. is matter

### Experimental results

Test error(online - P) the classifier w' could be easily distorted by a sigular feature vector, not stable~~~

- Using OCR digits data, binary classification problem of distinguishing even the sample is IID, what if the sample is sorted~ 54000 negative, then 6000 positive~~
- # training examples: 60000 (about 6000 are from class "9").

| # passes               | 0.1   | 1     | 2     | 3     | 4     | 10    |
|------------------------|-------|-------|-------|-------|-------|-------|
| Test error (online-P)  | 0.079 | 0.064 | 0.057 | 0.063 | 0.058 | 0.059 |
| Test error (voted-P)   | 0.045 | 0.039 | 0.038 | 0.038 | 0.038 | 0.037 |
| Test error (average-P) | 0.045 | 0.039 | 0.038 | 0.038 | 0.038 | 0.037 |