SEQUENCE LISTING

```
<110> Evans, Ronald M.
      Blumberg, Bruce
<120> NOVEL STEROID-ACTIVATED NUCLEAR
  RECEPTORS AND USES THEREFOR
<130> SALK2270-2
<140> 09/458,366
<141> 1999-12-09
<150> 09/005,286
<151> 1998-01-09
<160> 39
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 2068
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (583)...(1884)
<223> N is selected from A, C, T/U or G
<400> 1
ggcacgagga gatctaggtt caaattaatg ttgcccctag tggtaaagga cagagaccct
                                                                        60
cagactgatg aaatgcgctc agaattactt agacaaagcg gatatttgcc actctcttcc
                                                                       120
ccttttcctg tgtttttgta gtgaagagac ctgaaagaaa aaagtaggga gaacataatg
                                                                       180
agaacaaata cggtaatctc ttcatttgct agttcaagtg ctggacttgg gacttaggag
                                                                       240
gggcaatgga gccgcttagt gcctacatct gacttggact gaaatatagg tgagagacaa
                                                                       300
gattgtctca tatccgggga aatcataacc tatgactagg acgggaagag gaagcactgc
                                                                       360
ctttacttca gtgggaatet cggcctcagc ctgcaagcca agtgttcaca gtgagaaaag
                                                                       420
caagagaata agctaatact cctgtcctga acaaggcagc ggctccttgg taaagctact
                                                                       480
cettgatega teetttgeac eggattgtte aaagtggace ecaggggaga agteggagea
                                                                       540
                                                                       594
aagaacttac caccaagcag tccaagaggc ccagaagcaa ac ctg gag gtg aga
                                                Leu Glu Val Arg
ccc aaa gaa agc tgg aac cat gct gac ttt gta cac tgt gag gac aca
                                                                       642
Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His Cys Glu Asp Thr
                      10
gag tot gtt cot gga aag coc agt gto aac gca gat gag gaa gto gga
                                                                       690
Glu Ser Val Pro Gly Lys Pro Ser Val Asn Ala Asp Glu Glu Val Gly
                                      30
ggt ccc caa atc tgc cgt gta tgt ggg gac aag gcc act ggc tat cac
                                                                       738
Gly Pro Gln Ile Cys Arg Val Cys Gly Asp Lys Ala Thr Gly Tyr His
                                                                       786
 ttc aat gtc atg aca tgt gaa gga tgc aag ggc ttt ttc agg agg gcc
 Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ala
```

atg Met	aaa Lys 70	cg c Arg	aac Asn	gcc Ala	cgg Arg	ctg Leu 75	agg Arg	tgc Cys	ccc Pro	ttc Phe	cgg Arg 80	aag Lys	ggc Gly	gcc Ala	tgc Cys	834
gag Glu 85	atc Ile	acc Thr	cgg Arg	aag Lys	acc Thr 90	cgg Arg	cga Arg	cag Gln	tgc Cys	cag Gln 95	gcc Ala	tgc Cys	cgc Arg	ctg Leu	cgc Arg 100	882
aag Lys	tgc Cys	ctg Leu	gag Glu	agc Ser 105	ggc Gly	atg Met	aag Lys	aag Lys	gag Glu 110	atg Met	atc Ile	atg Met	tcc Ser	gac Asp 115	gag Glu	930
gcc Ala	gtg Val	gag Glu	gag Glu 120	agg Arg	cgg Arg	gcc Ala	ttg Leu	atc Ile 125	aag Lys	cgg Arg	aag Lys	aaa Lys	agt Ser 130	gaa Glu	cgg Arg	978
aca Thr	gly ggg	act Thr 135	cag Gln	cca Pro	ctg Leu	gga Gly	gtg Val 140	cag Gln	gly aaa	ctg Leu	aca Thr	gag Glu 145	gag Glu	cag Gln	cgg Arg	1026
atg Met	atg Met 150	atc Ile	agg Arg	gag Glu	ctg Leu	atg Met 155	gac Asp	gct Ala	cag Gln	atg Met	aaa Lys 160	acc Thr	ttt Phe	gac Asp	act Thr	1074
acc Thr 165	ttc Phe	tcc Ser	cat His	ttc Phe	aag Lys 170	aat Asn	ttc Phe	cgg Arg	ctg Leu	cca Pro 175	gly ggg	gtg Val	ctt Leu	agc Ser	agt Ser 180	1122
ggc Gly	tgc Cys	gag Glu	ttg Leu	cca Pro 185	gag Glu	cct Pro	ctg Leu	cag Gln	gcc Ala 190	cca Pro	tcg Ser	agg Arg	gaa Glu	gaa Glu 195	gct Ala	1170
gcc Ala	aag Lys	tgg Trp	agc Ser 200	cag Gln	gtc Val	cgg Arg	aaa Lys	gat Asp 205	ctg Leu	tgc Cys	tct Ser	ttg Leu	aag Lys 210	gtc Val	tct Ser	1218
ctg Leu	caa Gln	gct Ala 215	gcg Ala	gly ggg	gga Gly	gga Gly	tgg Trp 220	cag Gln	tgt Cys	ctg Leu	gaa Glu	cta Leu 225	caa Gln	acn Xaa	ccc Pro	1266
agc Ser	cga Arg 230	cag Gln	tgg Trp	cgg Arg	aaa Lys	gag Glu 235	atc Ile	ttc Phe	tcc Ser	ctg Leu	ctg Leu 240	ccc Pro	cac His	atg Met	gct Ala	1314
gac Asp 245	Met	tca Ser	acc Thr	tac Tyr	atg Met 250	ttc Phe	aaa Lys	ggc	atc Ile	atc Ile 255	agc Ser	ttt Phe	gcc Ala	aaa Lys	gtc Val 260	1362
atc Ile	tcc Ser	tac Tyr	ttc Phe	agg Arg 265	Asp	ttg Leu	ccc Pro	atc Ile	gag Glu 270	qaA	cag Gln	atc Ile	tcc Ser	ctg Leu 275	Leu	1410
aag Lys	GJA aaa	gcc	gct Ala 280	Phe	gag Glu	ctg Leu	tgt Cys	caa Gln 285	Leu	aga Arg	ttc Phe	aac Asn	aca Thr 290	gtg Val	ttc Phe	1458
aac Asn	gcg Ala	gag Glu	act Thr	gga Gly	acc Thr	tgg Trp	gag Glu	tgt Cys	ggc	cgg	ctg Leu	tcc Ser	tac Tyr	tgc Cys	ttg Leu	1506

295 300 305

gaa gac act gca ggt ggc ttc cag caa ctt cta ctg gag ccc atg ctg Glu Asp Thr Ala Gly Gly Phe Gln Gln Leu Leu Leu Glu Pro Met Leu 310 315 320	1554					
aaa ttc cac tac atg ctg aag aag ctg cag ctg cat gag gag gag tat Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His Glu Glu Glu Tyr 325 330 335 340	1602					
gtg ctg atg cag gcc atc tcc ctc ttc tcc cca gac cgc cca ggt gtg Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp Arg Pro Gly Val 345 350 355	1650					
ctg cag cac cgc gtg gtg gac cag ctg cag gag caa ttc gcc att act Leu Gln His Arg Val Val Asp Gln Leu Gln Glu Gln Phe Ala Ile Thr 360 365 370	1698					
ctg aag tcc tac att gaa tgc aat cgg ccc cag cct gct cat agg ttc Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro Ala His Arg Phe 375 380 385	1746					
ttg ttc ctg aag atc atg gct atg ctc acc gag ctc cgc agc atc aat Leu Phe Leu Lys Ile Met Ala Met Leu Thr Glu Leu Arg Ser Ile Asn 390 395 400	1794					
gct cag cac acc cag cgg ctg ctg cgc atc cag gac ata cac ccc ttt Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp Ile His Pro Phe 405 410 415 420	1842					
gct acg ccc ctc atg cag gag ttg ttc ggc atc aca ggt agc Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr Gly Ser 425 430	1884					
tgageggetg cettgggtga cacettegag aggeageeag acceagagee etetgageeg geacteeegg gecaagaeag atggaeactg ceaagageeg acaatgeeet getggeetgt etecetaggg aatteetget atgaeagetg getageatte eteaggaagg acatggggtg eece	1944 2004 2064 2068					
<210> 2 <211> 434 <212> PRT <213> Homo sapiens						
<220> <223> Xaa is threonine						
<pre><400> 2 Leu Glu Val Arg Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His 1 10 15</pre>						
Cys Glu Asp Thr Glu Se Val Pro Gly Lys Pro Ser Val Asn Ala Asp						
Glu Glu Val Gly Gly Pro Gln Ile Cys Arg Val Cys Gly Asp Lys Ala						
Thr Gly Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe 50 55 60						
Phe Arg Arg Ala Met Lys Arg Asn Ala Arg Leu Arg Cys Pro Phe Arg 65 70 75 80						
Lys Gly Ala Cys Glu Ile Thr Arg Lys Thr Arg Arg Gln Cys Gln Ala 85 90 95	-					

4

```
Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile
                                105
           100
Met Ser Asp Glu Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys
                            120
Lys Ser Glu Arg Thr Gly Thr Gln Pro Leu Gly Val Gln Gly Leu Thr
                                            140
                        135
Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys
                                        155
                    150
Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly
                                   170
                165
Val Leu Ser Ser Gly Cys Glu Leu Pro Glu Pro Leu Gln Ala Pro Ser
                                185
Arg Glu Glu Ala Ala Lys Trp Ser Gln Val Arg Lys Asp Leu Cys Ser
                            200
Leu Lys Val Ser Leu Gln Ala Ala Gly Gly Gly Trp Gln Cys Leu Glu
                                            220
                        215
Leu Gln Xaa Pro Ser Arg Gln Trp Arg Lys Glu Ile Phe Ser Leu Leu
                                        235
                    230
Pro His Met Ala Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Ser
                                    250
                245
Phe Ala Lys Val Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln
                                                    270
                                265
Ile Ser Leu Leu Lys Gly Ala Ala Phe Glu Leu Cys Gln Leu Arg Phe
                                                285
                            280
Asn Thr Val Phe Asn Ala Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu
                                            300
                        295
Ser Tyr Cys Leu Glu Asp Thr Ala Gly Gly Phe Gln Gln Leu Leu
                                        315
                    310
Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His
                                    330
                325
Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp
                                 345
            340
Arg Pro Gly Val Leu Gln His Arg Val Val Asp Gln Leu Gln Glu Gln
                                                365
                            360
Phe Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro
                                             380
                        375
Ala His Arg Phe Leu Phe Leu Lys Ile Met Ala Met Leu Thr Glu Leu
                                         395
                    390
Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp
                                    410
Ile His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr
                                 425
            420
Gly Ser
```

<210> 3

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> putative SXR response element from the steroid
 hydoxylase, rCYP3A1

<400> 3 tagacagttc atgaagttca tctac

<210> 4

<211> 25

<212> DNA

<213>	Artificial Sequence	
<220> <223>	putative SXR response element from the steroid hydoxylase, rCYP3A2	
<400> taagca	4 agttc ataaagttca tctac	25
<210> <211> <212> <213>	25	
<220> <223>	putative SXR response element from the steroid hydoxylase, rUGT1A6	
<400> actgt	5 agttc ataaagttca catgg	25
<210><211><212><213>	26	
<220> <223>	putative SXR response element from the steroid hydoxylase, rbCYP2C1	
<400> caatc	6 agttc aacagggttc accaat	26
<210><211><211><212><213>	33	
<220> <223>	putative SXR response element from the steroid hydoxylase, rP450R	
<400> cacag	7 gtgag ctgaggccag cagcaggtcg aaa	33
<210><211><211><212><213>	27	
<220; <223;	putative SXR response element from the steroid hydoxylase, rCYP2A1	
<400: gtgca	> 8 aggttc aactggaggt caacatg	27
<210: <211: <212:		

<213>	Artificial Sequence .	
<220> <223>	putative SXR response element from the steroid hydoxylase, rCYP2A2	
<400> gtgct	9 ggttc aactggaggt cagtatg	27
<210> <211> <212> <213>	27	
<220> <223>	putative SXR response element from the steroid hydoxylase, rCYP2C6	
<400> agtcta	10 agttc agtgggggtt cagtctt	27
<210><211><212><213>	27	
<220> <223>	putative SXR response element from the steroid hydoxylase, hCYP2E1	
<400> gagat	11 ggttc aaggaagggt cattaac	27
<210><211><212><213>	26	
<220> <223>	direct repeat with spacer of 0 nucleotides	
<400> catag	12 tcagg tcaaggtcag atcaac	26
<210><211><211><212><213>	27	
<220> <223>	direct repeat with spacer of 1 nucleotides	
<400> catag	13 tcagg tcataggtca gatcaac	27
<210><211><211><212><212>	28	

•	•	
	7	
<220> <223> 0	direct repeat with spacer of 2 nucleotides	
<400> Catagto	14 cagg tcaataggtc agatcaac	28
<210 > 3 <211 > 3 <212 > 1 <213 > 3	29	
<220> <223>	direct repeat with spacer of 3 nucleotides	
<400>	15 cagg tcatataggt cagatcaac	29
<210> <211> <212> <213>	30	
<220> <223>	direct repeat with spacer of 4 nucleotides	
<400> catagt	16 cagg tcatataagg tcagatcaac	30
<210> <211> <212> <213>	31	
<220> <223>	direct repeat with spacer of 5 nucleotides	
<400> catagt	17 cagg tcatatatag gtcagatcaa c	31
<210><211><212><213>	33	
<220> <223>	direct repeat with spacer of 6 nucleotides	
<400> catagt	18 cagg tcatatataa ggtcaagatc aac	33
<210><211><211><212><213>	33	
<220> <223>	direct repeat with spacer of 7 nucleotides	
<400> catagt	19 ccagg tcatatatat aggtcagatc aac	3 3

```
<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence
<223> direct repeat with spacer of 10 nucleotides
<400> 20
                                                                         36
catagtcagg tcatatatat ataaggtcag atcaac
<210> 21
<211> 41
<212> DNA
<213> Artificial Sequence
<223> direct repeat with spacer of 15 nucleotides
<400> 21
                                                                         41
catagtcagg tcatagtagt agtagtagag gtcagatcaa c
<210> 22
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<221> repeat_unit
<222> (7)...(7)
<223> N is a nucleotide spacer of 3, 4 or 5 nucleotides,
      wherein each N is independently selected from A,
      T, C or G
<223> example of a response element suitable for
      practice of the invention method
<400> 22
                                                                          13
agttcantga act
<210> 23
<211> 13
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> repeat_unit
 <222> (7)...(7)
 <223> N is a nucleotide spacer of 6 nucleotides, wherein
       each N is independently selected from A, T, C or G
 <223> example of a response element suitable for
       practice of the invention method
 <400> 23
                                                                        . 13
 tgaactnagg tca
 <210> 24
 <211> 18
```

<212> DNA <213> Artificial Sequence	RECEIVED
<220> <223> inverted repeat with 6 nucleotide spacer found in CYP3A4	RECEIVED OEC 21 ZOTE
<400> 24 tgaactcaaa ggaggtca	TECH CENTER 1600/2900
<210> 25 <211> 18 <212> DNA <213> Artificial Sequence	
<220> · <223> inverted repeat response element with spacer of 0 nucleotides	
<400> 25 agcttaggtc atgaccta	18
<210> 26 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> inverted repeat response element with spacer of 1 nucleotides	
<400> 26 agcttaggtc agtgaccta	19
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> inverted repeat response element with spacer of 2 nucleotides	
<400> 27 agettaggte aegtgaeeta	20
<210> 28 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> inverted repeat response element with spacer of 3 nucleotides	
<400> 28 agcttaggtc acagtgacct a	21
<210> 29 <211> 22	-

<212> DNA <213> Artificial Sequence	
<220> <223> inverted repeat response element with spacer of 4 nucleotides	
<400> 29 agcttaggtc acatgtgacc ta	22
<210> 30 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> inverted repeat response element with spacer of 5 nucleotides	
<400> 30 agcttaggtc acactgtgac cta	23
<210> 31 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> inverted repeat response element with spacer of 6 nucleotides	
<400> 31 agctttgaac tcaaaggagg tca	23
<210> 32 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> IR-M	
<400> 32 agcttacgtc atgacgta	18
<210> 33 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> CYP3A oligonucleotide, CYP3A4, tested for binding	
<400> 33 tagaatatga actcaaagga ggtcagtgag tgg	33
<210> 34 <211> 33 <212> DNA -213> Artificial Sequence	

<220> <223> CYP3A oligonucleotide, CYP3A5, tested for binding	
<400> 34 tagaatatga actcaaagga ggtaagcaaa ggg	33
<210> 35 <211> 32 <212> DNA <213> Artificial Sequence	·
<220> <223> CYP3A oligonucleotide, CYP3A7, tested for binding	
<400> 35 tagaatatta actcaatgga ggcagtgagt gg	32
<210> 36 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 36 gagcaattcg ccattactct gaagt	25
<210> 37 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 37 gtccttgggg tcttctacct ttctc	25
<210> 38 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 38 gacgatttgg atctggacat gttgg	25.
<210> 39 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 39	

.