

Graph Evolution Networkslecture-9

Course on Graph Neural Networks (Winter Term 21/22)

Prof. Dr. Holger Giese (holger.giese@hpi.de)

Christian Medeiros Adriano (christian.adriano@hpi.de) - "Chris"

Matthias Barkowski (matthias.barkowski@hpi.de)

Evolving Networks

Almost all networks evolve by adding or removing links and node

- Social Networks
- Emails
- News Comments
- Product Evaluations

Evolution of the pooled R&D network

Figure 1. Evolution of the pooled R&D network. Pooled R&D network snapshots in 1989, 1993, 1997, 2001, and 2005. To ...

Evolution of the pooled R&D network

Figure 2. Evolution of five selected sectoral R&D networks. Snapshots in 1989, 1993, 1997, 2001, 2005, and 2009 for ...

Figure 3. Size and density evolution of the pooled R&D network. Time-evolution of size (solid line, right y-axis) and ...

Road Map (1/2)

1. Intro and Course Organization

_ Week-1

Objectives

Team building, Setup, Topic

- 2. Graph Metrics and Random Models
- 3. Graph Structural Features Clustering
- 4. Message Passing & Belief Propagation
- 5. Graph Embeddings Message Passing
- 6. PageRank & Markov Chains & Graph Queries
- 7. Graph Convolutional Networks
- 8. Graph Attention Networks
- 9. Graph Evolution Networks
- 10. Temporal Graph Networks
- 11. Deep Graph Generative Models
- 12. Causal Graph Neural Networks
- 13. Propagation Graph Neural Networks
 - Network Effects, Cascading and Contagion
 - Outbreak Detection and Influence Maximization

Week-2

Description and Feature models

Organization

Week-3

Basic

Prediction models

Week-4

Advanced Prediction models

Understand a phenomenon

Extract features

Establish baselines

Preprocessing data

Predict an outcome

ML architecture and pipeline

Training models

Evaluation models

Week-5

Generative and Intervention models

Effects of interventions
Risks of confounding
Causal structure

5

Why do we need Graph Evolution?

Time is a feature of nodes, edges, and graphs

- Frequent versus stale relationships
- Similarity or clustering w.r.t. time

Time itself is a characteristic to be predicted

- Probability of links in time
- Network events (contagion, influence) in time

Brief (incomplete) historical perspective

2000's - Measuring network evolution phenomena

- Growth dynamics of the world-wide web [Huberman & Adamic 1999]
- Graphs over time densification laws, shrinking diameters and possible explanations [Leskovec et al. 2005]
- The dynamics of viral marketing [Leskovec, Adamic & Huberman 2007]

2010's - Generative models for network evolution

- Kronecker graphs an approach to modeling networks [Leskovec et al. 2010]
- Emerging topic detection on twitter based on temporal and social terms evaluation [Cataldi et al. 2010]
- Collaboration over time characterizing and modeling network evolution [Huang et al. 2012]

2020's – Prediction models of network evolution

- Temporal Graph Neural Networks [Rossi et al. 2020]
- Evolvegraph: Multi-agent trajectory prediction with dynamic relational reasoning [Li et al. 2020]
- Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting [Cao et al. 2020]

Topics

Structural Evolution

Densification, Diameter Shrinking

Temporal Evolution Models

- Community Model
- Forest Fire Model
- Temporal PageRank

Temporal Gaph Models (Next Lecture)

Structural Evolution

Macro Evolution

Proportion of number of nodes and edges over time

Change in diameter

Degree distribution

Connectivity

Evolution of Edges and Nodes Distribution

Exponential growth of nodes and edges

Network Diameter (or geodesic distance)

Network diameter \bar{h} : average **shortest path** length among all nodes

Path is sequence of nodes that are connected to each other

Shortest path h: is the minimal distance between nodes

Evolution of Diameter

Shrinking diameters

Evolution of Connectivity - Emergence of giant component

The fraction of the nodes that are part of the giant connected component over time.

After 4 years, 90% of all nodes are connected to the giant component.

Random Graph - Distribution of Node Degree

Distribution of Node Degrees

$$p_k = {N \choose k} p^k (1-p)^{N-k} \approx \frac{z^k e^{-z}}{k!},$$

z = average number of edgesk = degree of an edge

In the limit when N is very large. i.e., a Poisson distribution

For the binomial distribution:

Mean
$$\bar{k} = p(N-1)$$

Variance $\sigma^2 = p(1-p)(N-1)$

Evolution of Average degree - Densification

Linear growth of average out-degree

Evolution Models

Community Guided Attachment Model

Goal: approximate the power law behavior of densification

Intuitions: edges(t) $\propto nodes(t)^a$

Densification as a process of communities within communities, hence trees.

For nodes added as leaves, $nodes = branchingFactor^{treeHeight}$

$$f(h) = c^{-h}$$
 $\bar{d} = n^{1 - \log_b(c)}$ if $1 \le c < b$
= $\log_b(n)$ if $c = b$
= $constant$ if $c > b$

Where:

f: is the difficulty of connecting two nodes

h: is the height of their least common ancestor (height of the smallest sub-tree containing both v and w)

 $ar{d}$: is the expected average out-degree of a node

n: number of nodes in the graph

c: is the Difficulty Constant which captures the difficulty in crossing communities

b: is the community branching factor (average number of children per node)

Forest Fire Model

Goal: generate graphs that densify and have shrinking diameters

Intuition: create new connections by generate a recursive cascade in the graph

Procedure:

- 1. Set a fire Uniformly at random choose an "ambassador" node w
- 2. Spread the fire To determine the number of in and out-edges to follow, flip 2 coins sampled from a geometric distribution $\Pr(X=k) = (1-p)^{k-1}p$ (based on p and r)
 - This "Fire" spreads recursively until it dies
- 3. Connect the new node v to all burned nodes

Forest Fire Results - # of edges and Effective Diameter

Number of nodes

sparse graph (a = 1.01 < 2), with increasing diameter (forward-burning probability: p = 0.35, backward probability: pb = 0.20)

densifying graph (a = 1.21 < 2) with slowly decreasing diameter (p = 0.37, $p_b = 0.32$).

Source: https://web.stanford.edu/class/cs224w/slides/16-evolution.pdf

= 5.20-1 x1.32 R

Number of nodes

densifying graph ((a = 1.32 < 2) with decreasing diameter (p = 0.37, pb = 0.33)

Autonomous Systems (Routers)

dense graph with densification exponent close to 2 (a = 1.57) and decreasing diameter (p = 0.38, pb = 0.35).

Forest Fire also generates Power law distributions

Degree distribution of a sparse graph with decreasing diameter (forward-burning probability: 0.37, backward probability: 0.32).

Forest Fire Sweet spot

 DPL Densification exponent Diameter factor clique-like very sparse graph graph Diameter 0.2 0.4 0.6 8.0 Forward burning probability

fix burning ratio, r = 0.5 and vary forward-burning probability p

fix backward-burning probability pb= 0.3 and vary forward-burning probability p

Temporal Page Rank

Goal: Make a random walk only on temporal or time-respecting paths

Intuition: Run a regular PageRank on a time-augmented graph

Time stamps increase along the path

 $c \rightarrow b \rightarrow a \rightarrow c$: time respecting

 $\mathbf{a} \rightarrow \mathbf{c} \rightarrow \mathbf{b} \rightarrow \mathbf{a}$: not time respecting

Temporal PageRank - Augmented Graph

r(u): Temporal PageRank estimate of u

$$r(u, \mathbf{t}) = \sum_{v \in V} \sum_{k=0}^{\mathbf{t}} (1 - \alpha) \alpha^k \sum_{\substack{z \in Z(v, u | \mathbf{t}) \\ |z| = k}} P[z | \mathbf{t}]$$

Z(v,u|t) is a set of all possible temporal walks from v to u until time t α is the probability of starting a new walk

Rank quality (Pearson corr. coeff. Between static and temporal PageRank) and transition probability β

Smaller β corresponds to slower convergence rate, but better correlated rankings

Next: Temporal Graph Models

- Temporal Graph Neural Networks [Rossi et al. 2020]
- EvolveGraph: Multi-agent trajectory prediction with dynamic relational reasoning [Li et al. 2020]
- Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting [Cao et al. 2020]
- Suggestions?

Next and Future Tasks

- 1. Compute and compare graph metrics (Wednesday, 2.12)
 - Any metrics and networks of your choice
- 2. First draft of **abstract** (Friday, 4.12)
- 3. Predictions using traditional method (Wednesday, 9.12)
 - Any two methods of your choice
- 4. Related work draft (Friday, 11.12)
- 5. Node and Graph Feature Learning (Wednesday, 16.12)
 - Any two methods of your choice
- 6. Design alternative pipelines for your GNN (Wednesday, 06.01)
 - Three alternative with different options for embedding, aggregation, and enconding
 - Test at least one.

END