Statistical Inference - Part 1: Simulation Exercise

Saeed Nusri July 29, 2016

Synopsis

This project is focused on simulation to explore inference and conducting some simple inferential data analysis. The project consists of two parts:

- 1. A simulation exercise
- 2. Basic inferential data analysis

1. Simulation

Setting up the simulation

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also also 1/lambda. Set lambda = 0.2 for all of the simulations. In this simulation, you will investigate the distribution of averages of 40 exponential(0.2)s. Note that you will need to do a thousand or so simulated averages of 40 exponentials.

```
#Setting seed for reproduci
set.seed(10)

#Stating parameters for running the simulations
lambda <- 0.2

#40 exponentials
n<-40

# running 1000 simulations
simulated_exponentials <- replicate(1000, rexp(n, lambda))

# calculate mean of exponentials from 1000 simulations
means_exponentials <- apply(simulated_exponentials, 2, mean)</pre>
```

Distributions of Sample and Theoritical Means

To show where the distribution is centered at and to compare it to the theoretical center of the distribution the following is carried out.

```
#Sample mean from 1000 simulations
sample_mean <- mean(means_exponentials)
sample_mean</pre>
```

```
## [1] 5.04506
```

```
#Calculating the theoritical mean
theo_mean <- 1/lambda
theo_mean</pre>
```

[1] 5

The results can also be demonstrated through the following histogram where the blue line indicates the theoretical mean

```
hist(means_exponentials, xlab = "mean", main = "Exponential Function Simulations", col = "orange")
abline(v = theo_mean, col = "blue", b= 4)
```

Exponential Function Simulations

Therefore, the simulated mean, which is 5.04506 is not away from the theoritical mean of 5.

Distributions of Sample and Theoretical Standard Deviations

The standard deviations were compared. Note that standard deviations of the theoretical distribution is given by

$$\frac{1/\lambda}{\sqrt(n)}$$

and variance is given by

$$(\frac{1}{\lambda}*\frac{1}{\sqrt(n)})^2$$

```
#Sample stabdard deviation
sample_sd <- sd(means_exponentials)</pre>
sample sd
## [1] 0.7982821
#Theoritical stabdard deviation
theo_sd <- (1/lambda)/sqrt(n)</pre>
theo_sd
## [1] 0.7905694
#Sample variance
sample_variance <- sample_sd^2</pre>
sample_variance
## [1] 0.6372544
#Theoritical variance
theo_variance <- ((1/lambda)*(1/sqrt(n)))^2</pre>
theo_variance
## [1] 0.625
```

Hence, as seen, the sample variance and standard deviations are quite close to the theoretical values.

Showing Normal Distribution in Simulated Sample

The normal distribution of the 1000 simulations of 40 exponentials is seen by the following histogram.

Normal Distribution of Sample Means

As seen, the sample distribution follows a normal distribution trend due to Central Limit Theorem.