already know about how the real world works. If the compass and accelerometer tell you a user is going north, and the GPS is telling you the user is going south, you probably can't trust the GPS. If your position estimate tells you the user just walked through a wall, you should also be highly skeptical. It's possible to express this situation using a probabilistic model, and then use machine learning or probabilistic inference to find out how much you should trust each measurement, and to reason about what the best guess for the location of a user is.

Once you've expressed the situation and your model of how the different factors work together in the right way, there are methods to compute the predictions using these custom models directly. The most general of these methods are called probabilistic programming languages, and they provide a very elegant and compact way to express a learning problem. Examples of popular probabilistic programming languages are PyMC (which can be used in Python) and Stan (a framework that can be used from several languages, including Python). While these packages require some understanding of probability theory, they simplify the creation of new models significantly.

Neural Networks

While we touched on the subject of neural networks briefly in Chapters 2 and 7, this is a rapidly evolving area of machine learning, with innovations and new applications being announced on a weekly basis. Recent breakthroughs in machine learning and artificial intelligence, such as the victory of the Alpha Go program against human champions in the game of Go, the constantly improving performance of speech understanding, and the availability of near-instantaneous speech translation, have all been driven by these advances. While the progress in this field is so fast-paced that any current reference to the state of the art will soon be outdated, the recent book *Deep Learning* by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (MIT Press) is a comprehensive introduction into the subject.²

Scaling to Larger Datasets

In this book, we always assumed that the data we were working with could be stored in a NumPy array or SciPy sparse matrix in memory (RAM). Even though modern servers often have hundreds of gigabytes (GB) of RAM, this is a fundamental restriction on the size of data you can work with. Not everybody can afford to buy such a large machine, or even to rent one from a cloud provider. In most applications, the data that is used to build a machine learning system is relatively small, though, and few machine learning datasets consist of hundreds of gigabites of data or more. This makes expanding your RAM or renting a machine from a cloud provider a viable solution in many cases. If you need to work with terabytes of data, however, or you need

² A preprint of Deep Learning can be viewed at http://www.deeplearningbook.org/.