Tutorial: Multi-Objective Recommendations

Yong Zheng, Illinois Institute of Technology, USA David (Xuejun) Wang, Morningstar, Inc., USA

Tutorial Schedule

9:00 AM - 12:00 PM (Singapore Time)

- Part 1: Multi-Objective Optimization (MOO)
 - Presenter: David (Xuejun) Wang
 - Time: 09:00 10:10 (Singapore Time)
 - QA: 10:10 10:20

-----Break: 10:20 - 10:30-----

- Part 2: Recommender Systems with MOO
 - Presenter: Yong Zheng
 - Time: 10:30 11:50 (Singapore Time)
 - QA: 11:50 12:00
- Website: https://moorecsys.github.io/

Presenters

Yong Zheng, PhD
Assistant Professor
College of Computing
Illinois Institute of Technology
USA

David (Xuejun) Wang, PhD Principal Data Scientist Quantitative Research Morningstar, Inc. USA

Part 1: Multi-Objective Optimization

David Wang Principal Data Scientist Morningstar, Inc. 8/14/2021

Time: 09:00 - 10:10 (Singapore Time)

Contents

- Background and Some History
- Multi Objective Optimization (MOO)
- MOO Solutions
 - Scalarization Algorithms
 - Multi Objective Evolutionary Algorithms
- Selection of the best solution in Pareto set
- MOO libraries
- Summary & QA

Multi Objective Optimization Problems Everywhere

Multi Objective Optimization in Finance

- Multi Metrics in Recommendation Systems
 - Goal: Meets user's need
 - Objectives:
 - Maximize Accuracy
 - Maximize Diversity
 - Maximize Novelty
 - Challenge
 - Increase Diversity may decease Accuracy
 - Increase Novelty may decease Accuracy

- Multi Stakeholder Recommendation Systems
 - Goal: Meet interests of all stakeholders
 - Objectives: Maximize Three Item Utilities
 - In respect of End User
 - In respect of Provider
 - In respect of Platform Owner
 - Challenge
 - Utilities regarding to three stakeholders may conflict each other

MOO Research is Becoming Popular

- Francis Ysidro Edgeworth (1845-1926)
 - Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences, published in 1881
 - "It is required to find a point (x, y) such that, in whatever direction we take an infinitely small step, P and Π do not increase together, but that, while one increases, the other decreases"

- Vilfredo Pareto (1848-1923)
 - Manual of Political Economy, published in 1906
 - "The optimum allocation of the resources of a society is not attained so long as it is possible to make at least one individual better off in his own estimation while keeping others as well off as before in their own estimation."

Contents

- Background
- Multi Objective Optimization (MOO)
- MOO Solutions
 - Scalarization Algorithms
 - Multi Objective Evolutionary Algorithms
- Selection of the best solution in Pareto set
- MOO libraries
- Summary & QA

Multi Objective Optimization (MOO) Problem

$$\min_{\mathbf{x}}(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))$$

Subject to:

$$g_j(\mathbf{x}) \ge 0,$$
 $j = 1, 2, ..., J$
 $h_k(\mathbf{x}) = 0,$ $k = 1, 2, ..., K$
 $x_i^L \le x_i \le x_i^U,$ $i = 1, 2, ..., n$

Decision variable: $x \in \mathbb{R}^n$

Objective Functions: f_i , i = 1, 2, ..., M

Feasible Solutions: *S*

$$S = \{x \mid x_i^L \le x_i \le x_i^U, g_j(x) \ge 0, h_k(x) = 0, j = 1, 2, ..., J, k = 1, 2, ..., K, i = 1, ..., n\}$$

Example: Two Objectives in Recommender Systems

Name	Symbol	Meaning
Decision Variable	$\boldsymbol{\chi}$	Top N recommendation list
Feasible Solution Set	S	All top N recommendation list
First Objective	$f_1(x)$	1 — accuracy
Second Objective	$f_2(x)$	1 – diversity

Filiu recominenuation ust that maximize accuracy and diversity

$$\min_{x \in S} (f_1, f_2) \qquad \text{or} \qquad \min_{x \in S} F(x), \text{ where } F(x) = (f_1, f_2)$$

- Special Characters of MOO
 - Objectives may be conflict each other
 - Cannot determine which solution is better
 - Example:

$$\min_{x} (f_1, f_2)$$
Where $f_1(x) = 2(x - 1) + 1$,
$$f_2(x) = 2(x - 3)^2 + 1$$
Subject $x \in [0, 6]$

Dominance Relation

A solution x is said to be Dominated by x^* if and only if

$$\min_{x}(f_1,f_2)$$

$$f_m(x^*) \le f_m(x)$$
 for all $m = 1, 2, ..., M$

and there exists at least one m' such that:

$$f_{m'}(x^*) < f_{m'}(x)$$

A and B dominate C, D is only dominated by A.

A and B: no dominance relationship

D and B: no dominance relationship

- Non-Dominated Solution (Pareto Optimal Solution)
 - Not dominated by any other solutions
 - Solution A, B, E and G are Pareto Optimal
- Pareto Optimal Set:
 - All x such that F(x) is on curve from F(E) to F(G)
- Pareto Front:
 - All F(x) on curve from F(E) to F(G)

• Example:

$$\min_{x}(f_{1},f_{2})$$
 Where $f_{1}(x)=2(x-1)+1$,
$$f_{2}(x)=2(x-3)^{2}+1$$
 Subject $x\in[0,6]$

Analysis

- Feasible solutions: S = [0,6]

- Pareto Set: $\{x \mid x \in [0,3]\}$

- Pareto Front: $\{(f_1, f_2) | x \in [0, 3]\}$

Solving Multi Objective Optimization (MOO) Problem

$$\min_{\mathbf{x} \in S} F(\mathbf{x})$$
 where $F(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_M(\mathbf{x}))$ $\mathbf{x} \in S$ S is set of all feasible solutions

- Outputs
 - Find a Non-Dominated Solution
 - Find All Non-Dominated Solutions (Pareto Set)

MOO Decision Making Process

MOO Decision Making Process

DM Method	DM Preference Stage	Pareto Set Needed	Use Case
A Priori	Before	No	DM know the preference of objective
A Posteriori	After	Yes	DM not clear about objective preference
Interactive	Middle	No	DM know the objective preference
No DM	Not available	Yes	DM is not available

Scalarization Algorithms

- Transform multi-objectives into a single objective
- Solve it by single objective optimizer
- Find one Pareto optimal solution in one run
- Find Pareto Set in multiple run

Multi Objective Evolutionary Algorithms (MOEA)

- Follow natural evolution process such as gene evolution, a flock of birds seeking food and other resources, a cooling process of melted crystal, ...
- Find multiple Pareto optimal solutions in one run

Contents

- Background and Some History
- Multi Objective Optimization (MOO)
- MOO Solutions
 - Scalarization Algorithms
 - Multi Objective Evolutionary Algorithms
- Selection of the best solution in Pareto set
- MOO libraries
- Summary & QA

Scalarization Algorithms

- Weighting Methods
- ε-Constraint Method
- Normal Boundary Intersection (NBI) & Normal Constraint (NC)
- Goal Programming
- Physical Programming
- Lexicographic Method

Weighted Sum Method

A weight vector based on DM preference of each objectives:

$$\min_{x} \sum_{i=1}^{M} w_i f_i(x)$$

subject to $x \in S$

Where
$$\sum_{i=1}^{M} w_i = 1$$
 and $w_i > 0$

The condition of the weights guarantees Pareto optimal

Scalarization Algorithms: Weighted Sum Methods

Example: Two Objective Metrics Recommender Systems

$$\min_{x \in S} (f_1, f_2), \quad f_1=1$$
 - accuracy, $f_2=1$ - diversity

Solve:
$$\min_{x \in S} (w_1 f_1 + w_2 f_2)$$

$$w_1 + w_2 = 1, w, w_2 > 0$$

- Each (w_1, w_2) gives one Pareto solution
- Question: Can we get all Pareto solutions in this way?

Scalarization Algorithms: Weighted Sum Methods

- Question: Can we get all Pareto solutions in this way?
 - Try all (w_1, w_2) ?
- Answer:
 - Not guaranteed
- A Sufficient Condition¹
 - -S is convex in \mathbb{R}^n
 - Each objective function $f_k(x)$ is convex

1. Yair Censor, Pareto Optimality in Multiobjective Problems, Applied Mathematics and Optimization 4, 41-59

Scalarization Algorithms: Weighted Sum Methods

A nonconvex
 problem(https://commons.wikimedia.org/wiki/File:

$$\min_{x} F(x) = w_1 f_1(x) + w_2 f_2(x))$$

Where $f_1(x) = x_1$

$$f_2(\mathbf{x}) = 1 + x_2^2 - x_1 - 0.1\sin(3\pi x_1)$$

$$0 \le x_1 \le 1 \text{ and } -2 \le x_2 \le 2$$

Here f_2 is not convex on S

Weighted Exponential Sum¹

$$U = \sum_{i=1}^{M} w_i [f_i(x)]^p, f_i(x) > 0 \text{ for all } i = 1, 2, ..., M$$

where
$$1 \le p < \infty$$
, $\sum_{i=1}^{M} w_i = 1$ and $w_i > 0$

- 1) The condition of the weights guarantees the solution is Pareto optimal¹
- 2) Bigger p increase the effectiveness of finding all Pareto solutions

Weighted Metric Methods¹

$$U = \left[\sum_{i=1}^{M} w_i^p | f_i(x) - f_i^*|^p\right]^{\frac{1}{p}}$$

where
$$1 \le p < \infty$$
, $\sum_{i=1}^{M} w_i = 1$ and $w_i > 0$

$$f^* = (f_1^*, f_2^*, ..., f_M^*)$$
 is ideal point in objective space

- 1) f^* : Utopian point (min value of each objective), goal point (specified by DM) or
- 2) The condition of the weights guarantees the solution is Pareto optimal
- 3) Bigger p increase the effectiveness of finding all Pareto solutions
 1. P. L. Yu and G. Leitmann, Compromise Solutions, Domination Structures, and Salukvadze's Solution, Journal of Optimization Theory and Applications:

Weighted Chebyshev method¹

$$U = \max_{i} \{ w_{i} | f_{i}(x) - f_{i}^{*} | \}$$

where
$$\sum_{i=1}^{M} w_i = 1$$
 and $w_i > 0$

- 1) Taking $p \to \infty$ in $\left[\sum_{i=1}^{M} w_i^p | f_i(x) f_i^*|^p\right]^{\frac{1}{p}}$
- 2) Can get complete Pareto set by changing weights without convex conditions²
- 3) May get non-Pareto solutions
- 1. Michael R. Lightner and Stephen W. Director, *Multiple Criterion Optimization for the Design of Electronic Circuits*, IEEE Transactions on Clrcuil-S and Systems, Vol. Cas-28, No. 3, March 1981
- 2. A. Messac and others. Ability of Objective Functions to Generate Points on Nonconvex Pareto Frontiers, AIAA JOURNAL, Vol. 38, No. 6, June 2000

Exponential Weighted Criterion¹

$$U = \sum_{i=1}^{K} (e^{pw_i} - 1)e^{pf_i(x)}$$
 , $p \ge 1$

Can find Pareto set in non-convex problem

Weighted Product Method²

$$U = \prod_{i=1}^{K} |f_i(x)|^{w_i}$$

Minimize impact of different magnitude of objective function

- 1. Timothy Ward Athan & Panos Y. Papalambros, A Note on Weighted Criteria Methods for Compromise Solutions in Multi-Objective Optimization, Engineering Optimization, 27:2, 155-176
- 2. E. N. Gerasimov and V. N. Repko, Multicriterial Optimization, 1979, Plenum Publishing Corporation

Scalarization Algorithms: Weighting Methods Summary

Method	Formula	Pro	Con
Weighted Sum	$\sum_{i=1}^{M} w_i f_i(x)$	Simple	Require convex condition for Pareto set
Weighted Exponential Sums	$\sum_{i=1}^{M} w_i [f_i(x)]^p$	Increase p to approximate Pareto set	Bigger p may give non-Pareto solution
Weighted Metric Methods	$\left[\sum_{i=1}^{M} w_{i}^{p} f_{i}(x) - f_{i}^{*} ^{p}\right]^{\frac{1}{p}}$	Different choice of ideal points	Bigger p may give non-Pareto solution
Weighted Chebyshev method	$\max_{i} \left\{ w_{i} f_{i}(x) - f_{i}^{*} \right\}$	Can find complete Pareto set	Some solution may not Pareto optimal
Exponential Weighted Criterion	$\sum_{i=1}^{K} (e^{pw_i} - 1)e^{pf_i(x)}$	Can find complete Pareto set	May lead computation over low
Weighted Product Method	$\prod_{i=1}^{K} f_i(x) ^{\mathbf{w}_i}$	Deal with different magnitude of objectives	Rarely used

Scalarization Algorithms: Weighting Methods Summary

Conditions of Pareto optimal solution

Method	Formula	Conditions of Pareto Optimal
Weighted Sum	$\sum_{i=1}^{M} w_i f_i(x)$	$\sum_{i=1}^{M} w_i = 1 \text{ and } w_i > 0$
Weighted Exponential Sums	$\sum_{i=1}^{M} w_i [f_i(x)]^p$	$\sum_{i=1}^{M} w_i = 1 \text{ and } w_i > 0, p \ge 1$
Weighted Metric Methods	$\left[\sum_{i=1}^{M} w_{i}^{p} f_{i}(x) - f_{i}^{*} ^{p}\right]^{\frac{1}{p}}$	$\sum_{i=1}^{M} w_i = 1 \text{ and } w_i > 0, p \ge 1$
Weighted Chebyshev method	$\max_{i} \left\{ w_{i} f_{i}(x) - f_{i}^{*} \right\}$	$\sum_{i=1}^{M} w_i = 1$ and $w_i > 0$, and unique solution
Exponential Weighted Criterion	$\sum_{i=1}^{K} (e^{pw_i} - 1)e^{pf_i(x)}$	$\sum_{i=1}^{M} w_i = 1 \text{ and } w_i > 0, p \ge 1$
Weighted Product Method	$\prod_{i=1}^{K} f_i(x) ^{\mathbf{w}_i}$	NA

Scalarization Algorithms

• ϵ -Constraint Method¹

$$\min f_l(x)$$

subject to $f_i(x) \le \epsilon_i$, for all $i \ne l$
 ϵ_i is a known the upper bound of f_i

- 1) Choose different ϵ_i may produce all Pareto solutions
- 2) No convex requirement
- 3) May not Pareto optimal

^{1.} Haimes, Lasdon, Wismer, On a Bicriterion Formulation of the Problems of Integrated, System Identification and System Optimization, IEEE Transactions on Systems, Man, And Cybernetics, July 1971

Scalarization Algorithms: ϵ -Constraint Method

- A sufficient condition of Pareto optimal¹
 - If optimal solution x^* is unique
- Two objective example

$$\min_{x \in S} f_1(x)$$

subject to $f_2 \le \epsilon$

Constraint	Unique Solution	Pareto Optimal
ϵ^1	No solution	NA
$\epsilon^2, \epsilon^3, \epsilon^4, \epsilon^5$	Yes	Yes
ϵ^6	No	Not necessary

1. V. Chankong, Y. Haimes, Multiobjective Decision Making, Dover Publication, 1983

Scalarization Algorithms

- Normal Boundary Intersection (NBI¹) and Normal Constraint (NC²)
 - Step 1: Find Anchor Points in objective space
 - Step 2: Define Utopia Line(hyperplane) connecting Anchor Points
 - Step 3: Set evenly distributed base points on Utopia Line
 - Step 4: Find Utopia line normal vector at each based point
 - Step 5: Optimize one objective in area above normal vectors at each base point
 - 1. Das, Dennis, 1998: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657
 - 2. Messac, Ismail-Yahaya, Mattson, 2003: *The normalized normal constraint method for generating the Pareto frontier*, Struct Multidisc Optim 25, 86–98 (2003)

Scalarization Algorithms: NBI & NC Method

Example of two objective MOO problem

$$\min_{x} F(x), F(x) = (f_1, f_2)$$

- Anchor Points: A₁ and A₂
 - A_1 : x^{*1} only minimize f_1

$$A_1 = (f_1^*(x^{*1}), f_2(x^{*1}))$$

- A_2 : x^{*2} only minimize f_2

$$A_2 = (f_1(x^{*2}), f_2^*(x^{*2}))$$

• Utopia Line Vector: $(\overline{A_1}\overline{A_2})$:

$$\vec{U} = A_1 - A_2$$

Scalarization Algorithms: NBI & NC Method

• Set evenly distributed base points (F_{pj}) on Utopia Line (\vec{U})

$$F_{pj} = \omega_{1j} A_1 + \omega_{2j} A_2$$

- Normal vector: \vec{N}_1 , \vec{N}_2
- Optimize f_2 with new constraint

$$\min_{x} f_2(x)$$

subject to $\vec{U} \cdot (F(x) - F_{pj}) \leq 0$,

• Pareto Optimal: P_1 , P_2

Scalarization Algorithms: NBI & NC Method

Works for non-convex case, may find Non-Pareto points: R

Need to use filter to remove dominated points

Scalarization Algorithms

Other Scalarization Methods

Method	Idea	Scalarization	Characteristic
Goal Programming ¹	Set up goal for each objective	$\min \sum_{i=1}^{M} d_i $	May not be Pareto optimal
Physical Programming ²	Map goals and objective to utility functions \bar{g}_i	$\min \log_{10} \sum \bar{g_i}$	Pareto optimal Need detail knowledge of each objective
Lexicographic Method ³ 1. A. Charnes and W.W. Cooper, <i>Goal program</i>	Order each objective by importance	Minimize each objective in order	The solution may not be feasible

^{(1977) 39-54}

^{2.} Achille Messac, Physical Programming: Effective Optimization for Computational Design, AIAA JOURNAL Vol. 34, No. 1, January 1996

Peter C. Fishburn, Exceptional Paper—Lexicographic Orders, Utilities and Decision Rules: A Survey. Management Science 20(11):1442-1471 (1974)

Scalarization Algorithms

Major scalarization methods summary

Method	To be Pareto Solution	To Get All Pareto Solutions	Other
Weighting methods	$\sum_{i=1}^{M} w_i = 1 \text{ and } w_i > 0$	Convex for weighed sum	Some methods may get non-Pareto solution
ϵ -Constraint	Solution is unique	Solution is unique	May not get solution
Normal Bonded Intersection & Constraint	Pareto front is Convex	Pareto front is Convex	May get non-Pareto solution in concave case
Goal Programming	No guarantee	Not available	
Physical Programming	Guaranteed	Guaranteed	
Lexicographic Method	Not available	Not available	

Contents

- Background and Some History
- Multi Objective Optimization (MOO)
- MOO Solutions
 - Scalarization Algorithms
 - Multi Objective Evolutionary Algorithms
- Selection of the best solution in Pareto set
- MOO libraries
- Summary & QA

Evolutionary Algorithms inspired by natural evolutionary process:

Genetic Algorithm (GA)

Particle
Swam
Optimization
(PSO)

Simulated Annealing (SA)

Ant Colony Optimal (ACO)

Benefits:

Objective can be any function

Parallel computing

Multi Objective Evolutionary Algorithms: Basic Concepts

- Terminologies of Solutions:
 - Individual: a feasible solution x
 - Population: a set of individuals
 - Parents: selected from Population
 - Children: produced from Parents

Multi Objective Evolutionary Algorithms: Basic Concepts

- Operators of Genetic Algorithm
 - Evaluation: measure how 'good' each solution is
 - assigning fitness value (or order): z(x)
 - Selection: find Parents
 - Random process
 - Tournament process
 - Variation: produce children
 - Crossover
 - Mutation
 - Elitism:
 - maintain 'better' solution in each iteration

Multi Objective Evolutionary Algorithms: Encoding in Genetic Algorithm

- Binary Encoding in Recommender
 - Chromosome: a recommendation list (decision variable x)
 - Length of Chromosome = total number of available items
 - Each Gene position is corresponding an item
 - 1: item is in recommender list ,
 - 0: item is not in recommender list

Multi Objective Evolutionary Algorithms: Encoding in Genetic Algorithm

- Permutation Encoding in Recommender
 - Length of Chromosome = N in top N recommendation list
 - The value of each Gene: index of an item
 - 6: the 6th item
 - Total 9 available items
 - -N = 6

Multi Objective Evolutionary Algorithms: Encoding in Genetic Algorithm

Real Value Encoding

- Chromosome: a set of parameters (such as weights)
- Length of Chromosome = Number of parameters to be optimized
- Value in the Gene: value of the parameter
 - 6 parameters here
 - Parameter value is real value in [1, 10]

Summary: Single Objective Genetic Algorithms

Operators of Genetic Algorithm

Evaluation: measure how 'good' each solution is

– assigning fitness value (or order): z(x)

- Selection: find Parents
 - Random process
 - Tournament process
- Variation: produce children
 - Crossover
 - Mutation
- Elitism:
 - maintain 'better' solution in each iteration

From Single Objective to Multi Objective Evolutionary Algorithms

- Solve a MOO problem
 - Find non-dominated solutions (Pareto optimal)
- Where are dominance relations applied? • Where are multi objective considered?
 - Fitness value z(x) evaluation
 - Parent selection
 - Elitism

Population

Major MOO Genetic Algorithm Methods

Method	Fitness Evaluation	Parent Selection	Elitism
VEGA (Schaffer,1985)	Single objective	Probability distribution	Dominance relation
MOGA (Fonseca & Fleming,1993)	Dominance relation	Probability distribution	NA
NSGA (Srinivas and Deb,1994)	Dominance relation	Probability distribution	NA
NSGA-II (Debb, etc., 2002)	Dominance relation	Probability distribution	Dominance relation
NPGA (Horn, etc.,1994)	No Fitness	Tournament method (dominance relation)	NA
PAES (Knowles and Corne, 1999)	No Fitness	Local search (dominance relation)	Dominance relation

Classification of Multi Objective Genetic Algorithms

- Dominance relation in Elitism
 - VEGA (Schaffer, 1985)
- Dominance relation in fitness function
 - MOGA (Fonseca & Fleming, 1993),
 - NSGA (Srinivas and Deb,1994) ,
 - NSGA-II (Debb, etc., 2002)
- No fitness values, but dominance relation in selection process
 - NPGA (Horn, etc., 1994),
 - PAES (Knowles and Corne, 1999)

- Vector Evaluated Genetic Algorithm (VEGA¹)
 - First genetic algorithm applied to MOO: $\min_{x \in S} (f_1, f_2)$
 - Fitness value, $z_i(x)$, is based on objective function $f_i(x)$

1. Schaffer, 1985: *Multiple Objective Optimization with Vector Evaluated Genetic Algorithms*, The First International Conference on Genetic Algorithms and their Applications (held in Pittsburgh), pp. 93–100

Classification of Multi Objective Genetic Algorithms

- Fitness value determined by single objective
 - VEGA (Schaffer, 1985)
- Fitness value determined by dominance relations
 - MOGA (Fonseca & Fleming, 1993),
 - NSGA (Srinivas and Deb,1994) ,
 - NSGA-II (Debb, etc., 2002)
- No fitness value needed:
 - NPGA (Horn, etc., 1994),
 - PAES (Knowles and Corne, 1999)

- Multi-Objective Genetic Algorithm (MOGA¹)
 - Rank all solutions: r(x) = 1 + (# of solutions that dominates x)
 - Fitness value:

$$z(x) = N - \sum_{k=1}^{r(x)-1} n_k - 0.5(n_{r(x)} - 1)$$

N = 5, Total number of solutions

 n_k =Number of solutions with r(x) = k:

$$n_1 = 2$$
, $n_2 = 2$, $n_3 = 0$, $n_4 = 1$

$$z(E) = 5 - (2 + 2) - 0.5(1 - 1) = 1$$

$$z(C) = z(D) = 5 - (1) - 0.5(2 - 1) = 3.5$$

$$z(A) = z(B) = 5 - 0 - 0.5(2 - 1) = 4.5$$

^{1.} Fonseca and Fleming, 1993: *Multiobjective Genetic Algorithm*, IEEE colloquium on 'Genetic Algorithms for Control Systems Engineering' (Digest No. 1993/130), 28 May 1993. London, UK: IEE; 1993

- Nondominated Sorting Genetic Algorithm (NSGA¹)
 - Sorting by selecting non-dominated solutions without replacement each time:

$$P_0 = \{A, B\}, P_1 = \{C, D\}, P_2 = \{E\}$$

 P_0 dominates P_1 dominates P_2

$$P_0$$
: $z(A) = z(B) = 10$

$$P_1: z(C) = z(D) = 8$$

$$P_2$$
: $z(E) = 5$

^{1.} Srinivas and Deb, 1994: *Multiobjective optimization using nondominated sorting in genetic algorithms*. Journal of Evolutionary Computing 1394;2(3):221–48.

- Nondominated Sorting Genetic Algorithm II (NSGA-II¹)
 - Sorting by number of dominated solutions

$$P_1 = \{A, B\}, \quad 0 \text{ dominated solution}$$

$$P_2 = \{C, D\},$$
 1 dominated solution

$$P_3 = \{\},$$
 2 dominated solutions

$$P_4 = \{E\},$$
 3 dominated solutions

$$P_1: n_A = n_B = 1$$

$$P_2: n_C = n_D = 2$$

$$P_4: n_E = 3$$

- All solutions are ranked by pair $(n_x d_x)$, d_x is a crowding distance
- 1. Deb, Pratap, Agarwal, Meyarivan, 2002: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolutionary Computing 2002;6(2):182–97.

Classification of Multi Objective Genetic Algorithms

- Fitness value determined by single objective
 - VEGA (Schaffer, 1985)
- Fitness value determined by dominance relations
 - MOGA (Fonseca & Fleming, 1993),
 - NSGA (Srinivas and Deb,1994) ,
 - NSGA-II (Debb, etc., 2002)
- No fitness value needed:
 - NPGA (Horn, etc., 1994),
 - PAES (Knowles and Corne, 1999)

- Niched Pareto Genetic Algorithm (NPGA¹)
 - Use tournament method for Parent selection

```
Selection: for randomly pair x, y \in P,
    randomly choose G = \{C\}
    choose a 'better one' comparing with G:
    (A, E): E is dominated by G \longrightarrow choose E
    (B, E): E is dominated by E \longrightarrow choose E
    (B, D): neither E or E is dominated by E
    (D) is in less crowded area)

Parent = E
```


1. Horn, Nafpliotis and Goldberg A, 1994: *A niched Pareto genetic algorithm for multiobjective optimization*. Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, 27–29 June, Orlando, FL, USA, 1994.

- Pareto Archived Evolution Strategy (PAES¹)
 - Selection Operator

```
Archived Solutions: G = \{\text{Non-Dominated Solutions discovered}\}\ , initialize G = \emptyset
```

Local Search:

choose A_0 as a Parent, $G = \{A_0\}$ Mutate $A_0 \longrightarrow A'_0$, dominated by A_0 , discard A'_0 Mutate $A_0 \longrightarrow A_1$, dominates A_0 , be a new Parent

Mutate $A_1 \longrightarrow A_2$, A_1 and A_2 are equally 'good'

Update Archive *G*:

Replace A_0 by a better A_2 as new Parent and $G = \{A_2\}$,

or

Choose either A_1 or A_2 to add to G if A_2 does not dominate |G|

^{1.} Knowles and Corne, 1999: *The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimization*. Proceedings of the 1999 congress on evolutionary computation, 6–9 July 1999. Washington, DC USA

- Inherited issues of EA
 - Converge towards local optima rather than the global optimum
- How to maintain solution diversity?
 - Niche Count¹: nc(x)
 - More crowed around $x \rightarrow$ bigger nc(x)
 - Fitness Sharing¹: discount fitness value with niche count:

$$z'(x) = \frac{z(x)}{nc(x)}$$

1. David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison Wesley Publishing Company, 1989

MOEA methods based on other EAs

Particle Swam Optimization (PSO)

James Kennedy and Russell C. Eberhart. *Particle swarm optimization*. Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, New Jersey, 1995

M. Reyes-Sierra and C. Coello, *Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art*, International Journal of Computational Intelligence Research, Vol.2, No.3 (2006), pp. 287–308

Simulated Annealing (SA)

Paolo Serafini, Simulated Annealing for Multi Objective Optimization Problems, Multiple Criteria Decision Making, Springer-Verlag New York, Inc. 1994

Ant Colony Optimal (ACO)

Marco Dorigo, Gianni Di Car0, *Ant Colony Optimization: A New Meta-Heuristic*, Proceedings of the 1999 Congress of Evolutionary Computation - CEC99

Contents

- Background and Some History
- Multi Objective Optimization (MOO)
- MOO Solutions
 - Scalarization Algorithms
 - Multi Objective Evolutionary Algorithms
- Selection of the best solution in Pareto set
- MOO libraries
- Summary & QA

- When do we need to produce Pareto set?
 - Most MOEA method (A posterior, No DM available)
 - Scalarization without DM preference (A posterior, No DM available)

- Example: Recommender Systems balancing multi metrics
 - End user (DM) cannot choose from Pareto set
 - A single best recommendation list needs to be produced

- No information from decision maker (DM)
 - All solutions in Pareto set are 'equally good'
 - Need to make the 'best' guess
- Best guess method
 - Knee point method
 - Hypervolume Method
 - Multiple-criteria decision-making (MCDM) methods

Knee Point

A special point (A) on Pareto Front

small improvement in either objective will cause a large deterioration in the

other objective,

Find Knee Point

- Angle Based Method¹
- Marginal Utility Method¹
- Hyperplane Normal Vector Method²

1. Deb and Gupta, Understanding Knee Points in Bicriteria Problems and Their Implications as Preferred Solution Principles, Engineering Optimization, 43(11)

2. Yu, Jin, Olhofer, A Method for a Posteriori Identification of Knee Points Based on Solution Density, 2018 IEEE Congress on Evolutionary Computation (CEC)

Angle Based Knee Point¹

- Only work in two objectives MOO
- Pareto front: $\{A_1, A_2, ..., A_8\}$
- Calculate reflex angle α for each point:

$$\alpha_i = \angle A_{i-1} A_i A_{i+1}$$

– Find the point with $\max \alpha_i$

$$\alpha_5 = \max\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\}$$

 A_5 is the Knee point

1. Deb and Gupta, *Understanding Knee Points in Bicriteria Problems and Their Implications as Preferred Solution Principles*, Engineering 70Optimization, 43(11)

Hypervolume Method¹

- Only work on convex case
- Evaluate a solution F(x)Area of rectangle to origin: V(x) $\max_{x} V(x)$
- Evaluate a Pareto Set P

$$\min \sum_{x \in P} area \ of \ \bigcup V(x)$$

1. Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele, The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration, EMO 2007, LNCS 4403, pp. 862–876, 2007.

- Multiple-criteria decision-making (MCDM) methods¹:
 - Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
 - Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE)
 - Least misery method
 - ÉLimination et Choix Traduisant la REalité (ÉLECTRE)
 - ...
- Most MCDM methods still need DM preference

 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS¹)

- A Pareto solution point: that is most close to ideal point or most apart to Entiideal point

min

- Utopia point: $F^* = (f_1^*, f_2^*, ..., f_M^*)$

- Upper bound point: $F^- = (f_1^-, f_2^-, ..., f_M^-)$

Find best Solution x in Pareto set:

 Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE), e.g., pairwise ranking,

Need weights for each objective

Contents

- Background and Some History
- Multi Objective Optimization (MOO)
- MOO Solutions
 - Scalarization Algorithms
 - Multi Objective Evolutionary Algorithms
- Selection of the best solution in Pareto set
- MOO libraries
- Summary & QA

MOO Libraries

Name	MOO Methods	Single Objectiv e	Langua ge	Open Source	Last updat e	Link
PyGMO	NSGA-II, MOEA, MH-AOC, NS-PSO	Yes	Pytho n	Yes	2021	https://esa.github.io/pygmo2/index.html
pymoo	NSGA-II, NSGA-III, MOEA	Yes	Pytho n	Yes	2020	https://pymoo.org/
Inspyred	PAES, NSGA-II	Yes	Pytho n	Yes	2019	https://pythonhosted.org/insp yred/
Platypus	NSGA-II, MOEA, SPEA2, MOEA/D, PSO, PAES, PESA2	No	Pytho n	Yes	2019	https://platypus.readthedocs.io
MOEA Framework	NSGA-II, NSGA-III, PAES, PESA2, SPEA2, MOEA, MO- PSO	Yes	Java	Yes	2019	http://moeaframework.org/
MATLAB & Simulink	MOEA, NSGA, SPEA2	Yes	Matla b	No	2021	https://www.mathworks.com/ matlabcentral/fileexchange
openGA	NSGA-III	Yes	C++	Yes	2020	https://github.com/Arash- codedev/openGA

Summary, Q&A

- The solution of MOO problem must be Pareto Optimal
- A Pareto Set must be found if DM preference is not available
 - Multiple runs of Scalarization algorithms is needed to get Pareto set
 - A single run of Evolutionary Algorithms can get Pareto set
 - Evenly distributed Pareto set is needed
- One 'best' solution should be identified in Pareto set for DM in most cases

