* Eigen Value and Eigen Vectoris *

to be characteristic vector of A' if I a scalar 'A' I Ax=Ax

If Ax=Ax, $(x\neq 0)$ we say that 'x' is eigen vector (a) characteristic vector of 'A' cornersponding to the eigen value (on) characteristic value λ' of 'A'.

eg: Take
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
, $X = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ then
$$\Rightarrow AX = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1X$$

$$i AX = [1 X]$$

: [] is an eigen vector of 'A' consuponding to the eigen value '!

eg:- Consider
$$X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \end{bmatrix}$

$$\Rightarrow AX = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 & -4 & 3 \end{bmatrix} = 0X$$

i [2] is an eigen victor of A' consesponding to the eigen

value 'o' of 'A'.

Note: An eigen value of a square matrix A' ran be zono. 15 of a son

To find the eigen vector of a materia : Let A = [aij] be a nxn ma Let 'x' be on eigen vector of 'A' corresponding to the eigen value d then by definition, AX= 1x ie AX= 1-IX AX-1.IX=0 $\rightarrow (A - dI) \times 0$ they is a homogenous system if 'n'- Equations in 'n' unknowns. This will have a non-zero solution x, \(> |A-AI| = 0 -* (A-1) is called characteristic materia of A. Also IA-1I is a polynamic n'il of degree n' and is called the characteristic Polynamial of A. the IA-11/=0 is called the characteristic Equation of A. solving the equation, we get the roots 1=1,12,---, In of the characteristic eqn. there care the characteristic roots (or) eigen value the matrix. Corresponding to each one of these 'n' eigen values, we can find ne characteristic vector x'. Consider the homogenous system (A-1.1) $x_{i=0}$. for $i=1,2,3,--,\eta$ The non-sealo 501" (X; 'of the system is the eigen vector of A' corresponding to the eigen value it! Let $A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \end{bmatrix}$ be a given mataix. $a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$

The characteristic matrix is $A-dI = \begin{bmatrix} a_{11}-d & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22}-d & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ a_{n1} & a_{n2} & \dots & a_{nn}-d \end{bmatrix}$

Consider the System (5-1 4) 21 = (0) [(A-d] X=0] Even vector consuponding totleigen value 1=1:- $\therefore \begin{pmatrix} 31 \\ 22 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \text{ where } 2 \neq 0 \text{ put } 3 = 2 \end{pmatrix}, \boxed{22 = 2}$ मं ० रत्विका. Hence (-1) is eigen vector of A' consusponding to the eigen value of Figen victor conserponding tothergen value 1=6: $\Rightarrow \begin{bmatrix} -1 & 4 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 21 \\ 22 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ the system of Equations & -21+422=0 $\begin{array}{c} \therefore & \begin{pmatrix} 21 \\ 22 \end{pmatrix} = \begin{pmatrix} 42 \\ 22 \end{pmatrix} = 2 \begin{pmatrix} 42 \\ 1 \end{pmatrix} \end{array}$ Hence (4) is eigen vector of 'A', cosisiesponding to the eigen value. (3) * find the eigen values and the corresponding eigen vectors of 30°8-1-1 -2 0 ine characteristic EgistiA' & [A-AI] = 0 -> [-2 2-3] - [1 0 0] 2 1-6 - 0 1 0 2 1-1 -2 0 0 0 1 → (-2-d) (1-d)(-d)-12] -2(-2d-6)-3(-4+(1-d)) =0 7 (-2-A) [-1+12-12]+2(21+6)-3(-3-1)=0 → (-2-1) (12-1-12)+41+12+9+31=0 → -212+21+24-13+12+4121+41+31 → 13-12+211+45=0 => 13+12-211-45=0

The Augmented matrix of the System of

$$\Rightarrow \begin{bmatrix}
1 & 2 & 5 \\
2 & -4 & -6
\end{bmatrix}
\begin{bmatrix}
21 \\
2_1 \\
2_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
+ & 2 & -3
\end{bmatrix}
\begin{bmatrix}
x_3
\end{bmatrix} = \begin{bmatrix}
0
\end{bmatrix}$$

$$R_{1} = \frac{P_{1}}{8}$$
; $P_{3} = \frac{P_{3}}{16}$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2_1 \\ 2_2 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

7

Note: in Sum of the eigen voluey of 'A' is some as the 8. trace of 'A'.

(i) the Product of the eigen value of A' & some of the determinant of A'.

Det verify that the sum of eigen values is equal to the trace of A for the metrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and find the

Coppersonding eigen vectogs.

III- the characteristic Equation of A & IA-dI =0.

$$\begin{vmatrix} 3-\lambda & -1 & 1 \\ -1 & 5-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{vmatrix} = 0 \Rightarrow (3-\lambda) \left[(5-\lambda)(3-\lambda) - 1 \right] + (\lambda - 3+1) + (1-5+\lambda) = 0$$

$$\lambda = 3 \begin{bmatrix} 1 & -11 & 36 & -36 \\ 0 & 3 & -24 & 36 \\ \hline 1 & -8 & 19 & 6 \end{bmatrix}$$
 (3thod)

$$| \frac{1}{4} - 3 = 0$$

$$| \frac{1}{4} - 8 + 12 = 0$$

: A= 2,3,6.

Sum if the eigen valuey = 2+3+6=11

Tace
$$f$$
 $A = 3+5+3=19$

The Sum of the eigen volvey strong of A' is verified.

Eigen vectors corresponding to $A=3$:

Gasider $A = 1$ $X = 0$,

 $A = 1$ $A = 1$ $A = 1$ $A = 2$ $A = 3$:

 $A = 1$ $A = 1$ $A = 1$ $A = 2$ $A = 3$:

 $A = 1$ $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 1$ $A = 3$:

 $A = 1$ $A = 1$ $A = 1$ $A = 1$
 $A = 1$ $A = 1$
 $A = 1$ $A = 1$
 $A = 1$ $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$
 $A = 1$

Figen vectore Corresponding to 1=2: - Consider (A-1)x=0. $\begin{bmatrix}
1 & -1 & 1 & 3 & 1 & 5 & 0 \\
-1 & 3 & -1 & 3 & 2 & 0 \\
1 & -1 & 1 & 3 & 3 & 0
\end{bmatrix}$ B=B+R; B=B-R $\begin{vmatrix}
1 & -1 & 1 & | & 1 & | & 2 & | & 0 & | &$ $\Rightarrow 3_{1}-3_{1}+3_{3}=0 ; 23_{3}=0$ $3_{1}=0$ $3_{1}=0$: \[\begin{aligned}
\begin{al Eigen rectage Corresponding to 1=6: Consider (A-AI) X=0. $\begin{bmatrix} -3 & -1 & 1 \\ -1 & -1 & -1 \\ 1 & -1 & -3 \end{bmatrix} \begin{bmatrix} 81 \\ 8_1 \\ 2_2 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & -3 \\ 0 & -2 & -4 \\ 0 & -4 & -8 \end{bmatrix}$ $R_{1} \leftarrow R_{3}.$ $R_{3} = R_{3} - 2R_{2}$ $-4 - - 2 \times 2$ -1 - 1 - 1 -3 - 1 - 1 $R_{2} = R_{3} + 3R_{1}$ $R_{3} = R_{3} - 2R_{2}$ $-4 - - 2 \times 2$ 0 - 2 - 4 0 - 2 - 4 0 - 0 - 3 $R_{1} = R_{2} + R_{1} \cdot 3 \cdot R_{3} = R_{3} + 3R_{1}$ $R_{2} = R_{3} + R_{1} \cdot 3 \cdot R_{3} = R_{3} + 3R_{1}$ R2= R2+ R13 R3= R3+3R1

the matrix.

(i).
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 4 & 2 \\ 1 & 0 & 2 \end{bmatrix}$$

$$A^{12}$$
 (ii). $A = \begin{bmatrix} 2 & 5 & +7 \\ 1 & 4 & 6 \\ 2 & -2 & 3 \end{bmatrix}$

= 16

s!":- Let- "A' be a 5quagemateix et cadeq 'n'.

Let 1=0 be the eigen value of 'A'. Then 1A-121=0.

Conversely, Suppose that 'A' is Singulary materiz.

: Leso à the eigen volve of a moteix = it is Singular.

the eigen vector conserponding to eigen value 1=6:- $-421+222=0 \Rightarrow \boxed{201:22} \Rightarrow \boxed{22=21}$ $\begin{array}{c|cccc}
-4 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & -3
\end{array}$ $\begin{array}{c|cccc}
7_1 & 0 \\
3_2 & 0 \\
0 & 0
\end{array}$ 271-72=0- 2x1-2x1:0 Put [xi=k] - 373=0 =t [23=0] $\begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} k \\ 2k \\ 0 \end{bmatrix} = k \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ inte cigen verlog consistsonding to engen value 1=6 & 2

(a). [-2 5]

(b). [8 -4] find eigen value and

-1 4]

(c). [-1 4]

(d). [-1 4] $A = 3, -1. \longrightarrow A(A-6)-4(A-6).$ 1=3:- [-5] = [0] =7 A=6,4 (1-6)(1-4)=1 1=6:- 2 -4 2 = 0 → -5×1+5×2=0 -21+72=0 → 271-1472 = O 1-4:- 2 -2 22 15x=1K. ≠ 271=472 => 21=272 Put | x1 = K => Pa=10 Put 22= K = 140, -472=0 : | 31 = | K = K | 1 0= 2 /1 - 1/2 $\frac{1}{2} = \begin{bmatrix} -1 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $\Rightarrow \overline{[x_1 - x_2]} \quad \text{for } x_2 = k$ $\therefore \overline{[x_1 - x_2]} \quad \text{the } x_1 = k$ -71+572=0 21=5721 $\left| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} k \\ k \end{bmatrix} = k \right| \left| \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right|$ $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5k \\ k \end{bmatrix} = \begin{bmatrix} 5k \\ 1 \end{bmatrix}$ Put 3=k

TSut this contradicts own assumption that knoke age not Hence own assumption that xi and xe are linearly dependent मं भज्यान

Hence the two eigen vectory corresponding to the two different eigen value are linearly independent (L.I). Hence Poloved.

Algebraic and Germetric Multiplicity of a characteristic root: Def: - Suppose 'A' is non mataix. If 'li's a characteristic root if order it of the characteristic equation of A', then it is called the algebraic multiplicity of 'I.'.

Def: If '5' is the number of linearly independent characteristic vectors, corresponding to the characteristic vector 1, then 5° is called the geometric routiplicity of 1.

Lote: the geometric multiplicity of a characteristic root cannot exceed its Algebraic multiplicity. i.e. 554) Pomblems: Find the eigen value and eigen vectors of the matrix A and "If inverse. where $A = \begin{bmatrix} 4 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$ The characteristic Equation of 'A' is given by \A-dI)=0 $\Rightarrow \begin{vmatrix} 1-\lambda & 3 & 4 \\ 0 & 2-\lambda & 5 \end{vmatrix} \Rightarrow \begin{vmatrix} (1-\lambda)(2-\lambda)(3-\lambda) \\ 1-\lambda & 0 \end{vmatrix} \Rightarrow \begin{vmatrix} (1-\lambda)(2-\lambda)(2-\lambda)(2-\lambda) \\$: the characteristic roots are 1,2,3. To find choracteristic vector of 1: (1=1) The eigen vector of A's given by (A-I)x=0 : $X = \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ where $x \neq 0$ is the eigen vector conseponding to $x \neq 1$. It is orbitarary. To find characteristic vector of '2' (1=2); The eigenvector of 'A' is given by $(A-2I) \times = 0$ $\Rightarrow \begin{cases}
\begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 21 \\ 21 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} & \begin{bmatrix} 21 \\ 21 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 4 \\ 21 \end{bmatrix} & \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$

Let f(A) = 3A+5A-6A+2I then, the eigen value of f(A) are f(1), f(3) & f(-2) \Rightarrow -f(3) = 3(2+)+5(9)-6(3)+2 = 81+45-18+2 = 128-18=110 $\Rightarrow f(-2) = 3(-2)^{3} + 5(-2)^{2} - 6(-2) + 2 = -24 + 20 + 12 + 2 = -24 + 34 = 10$ they, eigen value of 3A+5A-6A+2I are 4,110,10.

A I 2,3,5 are the eigen volum of 'A', then find the eigen value of 2A+3A+;

* Verify that the geometric multiplicity of a characteristic root cannot exceed its algebraic multiplicity given the matrix $-A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ the characteristic equation of 'A' is |A-JI|=0-> (-2-1)[(1-1)(-1)-12]-2 (-21-6)-3 (-4+1-1) =0 + (-2-d) (A-1)1-12)+41+12-3(-3-1)=0 $\Rightarrow (-2-1)(1^{2}-1)+412+9+31=0$ 7 7/+21-222+21+24-23+12/=0 → -13-12-211-45=0 -> 13-12-211-45=0 → (1+3)(1=21-15)=0 → (1+3)(1=51+31-15)= in the characteristic roots are 5,-3,-3. => (1+3) [1(1-5)+3(1-5) → (1+3) (1+3)(1-5)=(

=> A=5,-3,-3.

Here '-3' is the multiple soot of oorder '2'. Hence the algebraic multiplicity of the characteristic root -3 3 2/ the characteristic roofs corresponding to 1=-3 age $\frac{1}{4-3}:-(A+31)\times=0 \Rightarrow \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3_1 \\ 7_2 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 31 \\ 22 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 3_1 + 23_2 - 33_3 = 0 \\ 23_1 + 43_2 - 63_3 = 0 \\ -3_1 - 23_2 + 33_3 = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 3_2 - 21 \\ 23_2 - 21 \end{bmatrix}$ 21+272-373=0 3=-2k+3k 3=-2k+3k 3=-2k+3k 3=-2k+3k 3=-2k+3k 3=-2k+3k 3=-2k+3k 3=-2k+3k 3=-2k+3k+ 21+22g-373=0 -71-272+373=0 $\sqrt{2} = k$ - 1 1= -272+373 PUL 82= L, 83=13 = 21 =- 2x+3/3 $\begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -22+3 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}$ they the geometric multiplicity of 1=-3 & 2 they, here, gesmetric multiplicity = Algebraic multiplicity. D:12/7/13 Diagonalization of a matrix = A matair 'A' is diagonalisable if I an investible matri: 'P' & PAP=D, where 'D' is diagonal matrix, where 'P' is said to be diego Similarity of Matrix: - Let A' and 't' be square matrice of order

then is said to be similar to A if I a non-singular

malaix P' - 13= PAP

nm'- An nxn materia à diagonalizable => if it possesses
n' linearly independent eigen vectors.
Proof: - Let 'A' is diagonalizable. Then 'A' is similar to a diagonal
matair D= dia[1,12,-,17].
" I an investible materia P' > FAP=D
→ AP=PD
$\Rightarrow A\left[\alpha_{1},\alpha_{2},\alpha_{3},\ldots,\alpha_{n}\right] = \left[\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\right] \cdot \left[\alpha_{1}$
[-A 21, Aag, Adn] = [1,21, de 29, d323,, duay] dia(d, dg)
- A71= 1121, A22=1222, , A2n=1n2n.
50, 21, 22,, 2n are eigen vector of A' corresponding to the eigen.
value 1, 12, -, In respectively.
Since the matrix is non-singular of column vectors
1,72,,1n cote linearly independent.
: "A' Passessey 'n' linearly independent eigen vectors.
Conversely given that x1, x2, , xn be eigen vector of A
corresponding to the eigen values 1, 12,, In respectively and
there eigen vector and L.I.
Define $P = (a_1, a_2, \dots, a_n)$
Since the n-column of pare L.I, 19/ =0
Hence p'exist.
Consider -AP = A[x,x2,-,xn] = [Az, -Azz Azn]

Consider $AP = A [31, x_2, ..., x_n] = [A3, Ax_2 ... Ax_n]$ $= [\lambda_1 a_1 \lambda_2 a_2 ... \lambda_n \lambda_n]$ $= [\alpha_1 \alpha_2 ... \alpha_n] \begin{bmatrix} \lambda_1 & 0 ... & 0 \\ 0 & \lambda_2 ... & 0 \\ 0 & ... & \lambda_n \end{bmatrix}$ = PD

Then PP = PP = IV = x | P = P| (2. 'A' is Symmetric)

= [-1/J2 0 | 1/J2 | 1/J3 | 1/J3 | 1/J5 | 1/

Mote: If 'A' is non-singular matrix, and it eigen values are distinct then the matrix 'p' is found by grouping the eigen vectors of A' into square matrix and the diagonal matrix has the eigen values of 'A' as it clements.

 $- * If A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ find (a). A⁸
(b). A⁴

301": The characteristic eq of A is 1-1 1 1 0 2-1 1 (2-1) (2-1) (3-1) -4 -1 [4] + 4(2-1) = 0 2-1 1 = 0

 $\Rightarrow (1-1)(6-21-31+12-4)-4+8-41=0$ $\Rightarrow (1-1)(6-21-31+12-4)-4+4=0 \Rightarrow 1^{2}-51+2-1^{3}+51^{2}-21-41+4=0$

that the visite visites corresponding to
$$\lambda = 1$$
:

\[
\begin{align*}
\text{Pat} & \text{Visites} & \text{Corresponding} & \text{Visites} & \t

$$\Rightarrow (1-A) \left[(2-A)(3-A) - \frac{1}{2} - 0 - 1 \left[2-2(2-A) \right] = 0 \right]$$

$$\Rightarrow (1-A) \left((6-5A+A^{2}-2) - (2-4+2A) - 0 \right)$$

$$\Rightarrow (1-A) \left((6-5A+A^{2}-2) - (2-4+2A) - 0 \right)$$

$$\Rightarrow (A^{2}-5A+4) (1-A) - (2A-2) = 0 \Rightarrow A^{2}-6A+4 - A^{2}+5A^{2} - 4A-2A+2 = 0$$

$$\Rightarrow (A^{2}+6A^{2}-1A+6 - 0) \Rightarrow A^{2}-6A+4 - A^{2}+5A^{2} - 4A-2A+2 = 0$$

$$\Rightarrow (A-1) (A^{2}-5A+6) = 0 \Rightarrow (A-1) \left(A(A-3) - 3(A-3) \right) = 0 \Rightarrow (A-1) (A^{2}-3A-2A+6) = 0 \Rightarrow (A-1) (A^{2}-3) - (A-3) (A-3) = 0$$

$$\Rightarrow (A-1) (A-3A-2A+6) = 0 \Rightarrow (A-1) \left(A(A-3) - 3(A-3) \right) = 0 \Rightarrow (A-1) (A-2) (A-3) = 0$$

$$\Rightarrow (A-1) (A-3) - (A-$$

NilPotent matrix: A non-zero matrix 'A' is said to be nil potent if for some Positive n', [A'=0].

Note in A non-sero matrin is nilpotent all it eigen value are equal to rego.

). A non-sego nilpotent materia cannot be similar to a diagonal material (i.e.) it cannot be diagonalised.

eg:- P.T the matria $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not diagonalizable.

some Given $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

They 'A' is nilpotent & hence cannot diagonalised.

The characteristic Eq. of 'A' is |A-dI|=0 $\Rightarrow |[0]-[d]-[d]=0 \Rightarrow |[-d]|=0 \Rightarrow |[-d]|=0 \Rightarrow |[-d]|=0 \Rightarrow |[-d]|=0$ $\Rightarrow |[0]-[d]-[d]=0 \Rightarrow |[-d]|=0 \Rightarrow |[-d]|=0 \Rightarrow |[-d]|=0$

characteristic value.

in the characteristic vector is [2] = [k] = k[1].

the given matain has only one linearly independent characteristic vector [1] corresponding to repeated characteristic value (1=0) o.

orthe matria & not diagonalizable.

where
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{11^{n}}{0} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

: 2,2,1 are the characteristic velices of A.

Since the eigen values of "A' age not distinct, : Eigen vectore age 'A' ave not lineag independent Hence the mother 'A' & not diagonolised. characteristic vectors:

The characteristic vectors

The characteristic vectors

(A-AI)X=0

given by (A-AI) X=0.

(*1=2)

$$\Rightarrow \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Applying
$$R_3 = R_3 - R_9$$

$$\Rightarrow \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3_1 \\ 3_2 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 33_2 + 43_3 = 0 \quad \text{if } -23 = 0$$

$$\Rightarrow 33_2 - 43_3 = -48(0)$$

$$\Rightarrow 33q = -480$$

$$\Rightarrow 33q = -480$$

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ b_2 \end{bmatrix} = k \begin{bmatrix} a_1 \\ 0 \\ 0 \end{bmatrix} = k \begin{bmatrix} a_1 \\ 0$$

Te Eigen vector corresponding to the eigen value 1=1

by
$$(A-dI)X=0$$

$$\begin{bmatrix} 2-\lambda & 3 & 4 \\ 0 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} 21 \\ 22 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 3-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} a_3 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \text{ by Rowing } \underbrace{p_1 + 3n_2 + 4n_3 = 0; a_2 - a_3 = 0}_{2n_2 = n_3} \\ \underbrace{p_2 + 2n_3}_{2n_2 = n_3} \\ \underbrace{p_3 + 2n_2 + 2n_3}_{2n_2 = n_3} \\ \underbrace{p_4 + 2n_2 + 2n_3}_{2n_2 = n_3} \\ \underbrace{p_4 + 2n_3 + 2n_3}_{2n_2 = n_3} \\ \underbrace{p_4 + 2n_3}_{2n_$$

$$\begin{cases} 2i \\ 3z \\ 23 \end{cases} = \begin{bmatrix} -4k \\ k \\ -k \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix}.$$

: p' does not caugh

* CAYLEY-HAMILTON THEORM *

Motaix Polynamial: An expression of the footon $F(z) = A_0 + A_1 \times + A_2 \times + \cdots + A_n \times + \cdots$

Equality of materia Polynamial: - Two materia Polynamials are equal the coefficients of like Power of 'x' oute the same.

Thon: Every square mataix satisfies le own characteristic eg?

Proof: Let 'A' be n-rowed square materia. Then IA-AII=0 is the characteristic equation of 'A'.

Let $|A-J\Sigma| = (-1)^n \left[J^n + a_1 J^{n-1} + a_2 J^{n-2} + a_3 J^{n-3} + \cdots + a_n \right]$

Since all the elements of A-AI are almost of first degree in 1, all the elements of adj(A-AI) are polynamials in 1 of degree (n-1) on less and hence adj (A-AI) can be written as a matrix-polynamials in 1.

Let adj (A-1) = 13.1 + 15.1 +

NOW (A-1I) adj (A-1I). (A-1I) adj (A-1I).

 $-B_0 = (-1)^{\frac{1}{2}}$ $-AB_1 = (-1)^{\frac{1}{2}}Q_1^{\frac{1}{2}}$ $-AB_2 = (-1)^{\frac{1}{2}}Q_1^{\frac{1}{2}}$ $-AB_1 = (-1)^{\frac{1}{2}}Q_1^{\frac{1}{2}}$ $-AB_2 = (-1)^{\frac{1}{2}}Q_1^{\frac{1}{2}}$

By cayley-Hamilton than, we must have

$$-A = A \cdot A = \begin{bmatrix} + & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix} \begin{bmatrix} + & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 25 & 8 & -8 \\ -24 & -4 & 8 \\ 24 & 8 & -4 \end{bmatrix}$$

$$A^{3}=A^{2}A = \begin{bmatrix} 25 & 8 & -8 \\ -24 & -4 & 8 \\ 24 & 8 & -4 \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ 6 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 49 & 26 & -26 \\ -48 & -25 & 26 \\ 48 & 26 & -25 \end{bmatrix}$$

$$\Rightarrow A = \frac{1}{3} \begin{bmatrix} 25 & 8 & -8 \\ -24 & -4 & 8 \\ 24 & 8 & -4 \end{bmatrix} \begin{bmatrix} 35 & 10 & -10 \\ -30 & -5 & 10 \\ 30 & 10 & -5 \end{bmatrix} + \begin{bmatrix} + & 0 & 0 \\ 0 & + & 0 \\ 0 & 0 & + \end{bmatrix} = \begin{bmatrix} -3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -2 & 5 \end{bmatrix}$$

$$= 5 \begin{bmatrix} +9 & 26 & -26 \\ -48 & -25 & 26 \end{bmatrix} - + \begin{bmatrix} 25 & 8 & -8 \\ -24 & -4 & 8 \end{bmatrix} + 3 \begin{bmatrix} + & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$$

$$= 5 \begin{bmatrix} +9 & 26 & -26 \\ -48 & -25 & 26 \end{bmatrix} - + \begin{bmatrix} 25 & 8 & -8 \\ -24 & -4 & 8 \\ -24 & 8 & -4 \end{bmatrix} + 3 \begin{bmatrix} -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -6 & 395 & 130 & -130 \\ -390 & -125 & 130 \end{bmatrix} - \begin{bmatrix} 145 & 56 & -56 \\ -18 & -3 & 6 \\ 18 & 6 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 390 & 130 & -125 \end{bmatrix} \begin{bmatrix} 168 & 56 & -69 \end{bmatrix} + \begin{bmatrix} 18 & 6 & -6 \\ 18 & 6 & -3 \end{bmatrix}$$

SH. T

The characteristic En f A & IA-121=0

risy cayley-Hamilton than, Every square mateix satisfiés if our characteristic Egn.

NOW
$$A^2 = A - A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 16 \\ 8 & 17 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 9 & 16 \\ 8 & 17 \end{bmatrix} - 4 \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} - 5 \begin{bmatrix} 10 \\ 0 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

Find al. cayley - Hamilton thin is verified.

Find A: Multiply 'A' on b.g.f Egn(1), we get

$$\Rightarrow A-42-5A=0 \Rightarrow A=\frac{1}{5}\begin{bmatrix} A-42 \end{bmatrix}=\frac{1}{5}\begin{bmatrix} -3 & 1 \\ 2 & -1 \end{bmatrix}.$$

Find B: - Given
$$B = A^{5} + A^{4} - 4A^{3} + 11A^{2} - A - 10I$$

$$= A(A^{5} + A^{4} - 5A^{3} - 2A^{3}) + 11A^{2} - A - 10I$$

$$= A^{3}(A^{2} - 4A - 5I) - 2I + 11A^{2} - A - 10I$$

$$= A^{3}(0) - 2A^{3} + 11A^{2} - A - 10I$$

$$= A^{3}(0) - 2A^{3} + 11A^{2} - A - 10I$$

$$= A^{3}(0) - 2A^{3} + 11A^{2} - A - 10I$$

$$= A^{3}(0) - 2A^{3} + 11A^{2} - A - 10I$$

$$B = -2A^{3} + 11A^{2} - A - 10I$$
 (2).

Here
$$A^2 = A \cdot A = \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 9 & 16 \\ 8 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 14 \end{bmatrix}$$

$$A = A^{2} \cdot A = \begin{bmatrix} 9 & 16 \\ 8 & 1 + \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 41 & 84 \\ 42 & 83 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 2 & 1 & 17 \\ 0 & 1 & 0 \end{bmatrix}$$
 find the value of the militize

6. Verify cayley-Hamilton Theorem and find inverse of 2-1-1

osthogonal reduction to geal - Symmetric ordeice in Dia (57)
Suppose 'A' & real Symmetric ordein with 'n' paiewise distinct eigen values 1, 19, -- , In then the coasesponding eigen rector x1, x2, ---, xn are pairure outhogonal. P= (e1, e2, ---, en) $e_1 = \frac{x_1}{\|x_1\|}$, $e_2 = \frac{x_2}{\|x_2\|}$, $e_n = \frac{x_n}{\|x_n\|}$ Then 'p' will be authogonalmolin. i.e, $PP=P=I \Rightarrow P=P$. "[PAP=D] > [PAP=D] : Diagonalised esteis PAP=PAP. Or Diagonalize the mateix, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$, by aethogonal seduction. 1)- The characteristic Egn & IA-1II=0. $\Rightarrow (1-\lambda)[(3-\lambda)^3-1]=0 \Rightarrow \lambda=1,2,4.$ we can find the eigen vectors corresponding to the eigen valley $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\text{model model} \ \text{model} \ \text{m$

be can easily verify that
$$PAP = D$$
 (02) $D = PAP$.

$$D = diag(1, 2, 4) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

thus H'és reduced to diagons farm by oethogons!

2). Find the Diagonal mateix outhogonally similar to the (39). following deal symmetric miteria. Also obtain the transforming matria. $A = \begin{bmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{bmatrix}$. 31? - the characteristic Egn of 'A' of $\begin{vmatrix} 4 - \lambda & 4 & -4 \\ 4 - 8 - \lambda & -1 \\ -4 - 1 & -8 - \lambda \end{vmatrix} = 0$ → (7-1)[-8-1)(8-1)-1]-4[4(-8-1)-4]-4[-4-4(8+1)]=0 7 (7-1) [8+1)-1]-4[-32-41-4]-4[-4-32-47]=0 7 (7-1) [64+12+161-1]-4[-41-36]-4[-41-36]=0 7 (7-1)[16/1+22+63]+(4/1+36)[4+4]=0 \Rightarrow (7-1)(1+161+63)+(41+36)(8)=0= +12+1121+441-13-1617+631+321+288=0 > -13-912+811+729=0 > 13+912-8+1-729=0. {:: put [1=9] => 729-9(8)-81/9)-729=0 >0=0} by synthetic Division (OD) Hosney's wethod 1=9 | 1 9 -81 -729 0 9 +62 +29 1 18 81 0

$$\Rightarrow (1-9)(1^{2}+18\lambda+81)=0.$$

The characteristic vector corresponding to A=9 is given by (A-9I)A=0 [: (A-II) x=0]

$$\Rightarrow \begin{bmatrix} -2 & 4 & -4 \\ 4 & -14 & -1 \\ -4 & -1 & -14 \end{bmatrix} \begin{bmatrix} 2_1 \\ 2_2 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -2 & 4 & -4 \\ 0 & -9 & -9 \\ 0 & -9 & -9 \end{bmatrix} \begin{bmatrix} 3_1 \\ 3_2 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$R_3 = R_3 - R_2$$

$$\Rightarrow \begin{bmatrix} -2 & 4 & 4 \\ 0 & -9 & -9 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2a_{1}+4a_{2}-4a_{3}=0; -9a_{2}-9a_{3}=0$$

$$-9a_{2}-9a_{3}=0$$

$$-9a_{2}-9a_{3}=0$$

$$-9a_{2}-9a_{3}=0$$

$$7a_{3}=4k+4k$$

$$7a_{2}=-a_{3}$$

$$\Rightarrow [a_{3}-k]$$

$$\begin{bmatrix} 21 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4k \\ -k \\ k \end{bmatrix} = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}$$

Eigen vector corresponding to 1=-9:

$$(A-\lambda 1) \times = 0$$

$$\Rightarrow \begin{bmatrix} 16 & 4 & -4 \\ 4 & 1 & -1 \\ -4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 31 \\ 22 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 16 & 4 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3_1 \\ 3_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$21 = \frac{k_1 - k_2}{4}$$

$$\begin{vmatrix} 2_1 \\ 2_2 \\ 2_3 \end{vmatrix} = \begin{vmatrix} k_1 - k_2 \\ k_2 \\ k_1 \end{vmatrix} = \begin{vmatrix} k_1 \\ 4 \\ 0 \end{vmatrix} + \begin{vmatrix} k_2 \\ 4 \\ 0 \end{vmatrix}$$

above two vectors are not outhogenel.

so, we can wiele the linear combination

consider a [] _ []

Consider a
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a-b \\ 4b \\ 4q \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

(4)

$$\Rightarrow$$
 $(a-b) + 4bx0 + 4ax4 = 0$

from (1)
$$\Rightarrow$$
 $\begin{bmatrix} -16a \\ 68a \end{bmatrix}$ is aethogonal to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Vecloge. Now Noomalizing above Vecloge, ne get

$$P = \sqrt{306} \sqrt{17} - \sqrt{18}$$

$$1 + \sqrt{306} \sqrt{17} - \sqrt{18}$$

$$\sqrt{306} \sqrt{17} \sqrt{18}$$

P= -4/306 1/17 -1/18

1-1/306 0 -1/18

1-1/306 0 -1/18

Will diagonalise 'A'.

1-1/306 1/17 1/18

$$D = \begin{bmatrix} 9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & -9 \end{bmatrix} = \text{diag}(9, -9, -9)$$

3. Determine the modal maters p for
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix}$$
 e-Hence diagonalize A by aethogonal reduction. $\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$

(4). find on althogonal matein that will diagonalize the accl Symmetric mileix

.

eigen vectors:- $\frac{\lambda=-3}{A}:-\left[A-\lambda 1\right]X=0$ $\Rightarrow \begin{bmatrix} 2-\lambda & 3+4i \\ 3-4i & 2-\lambda \end{bmatrix} \begin{bmatrix} 2i \\ 22 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ → 5 3+41° [7] = [0] $\Rightarrow 5x_1 + (3+4i)x_2 = 0 \Rightarrow x_1 = \left(\frac{3+4i}{5}\right)x_2 \Rightarrow \frac{21}{5} = \frac{22}{5}$ (3-4i) $\alpha_1 + 5\alpha_2 = 0 \Rightarrow \frac{\alpha_1}{-5} = \frac{\alpha_2}{2-4i}$ " eigen vertor y [-3-4i] $\lambda = \frac{1}{4} : - \left[A - \lambda I\right] \times = 0$ $\Rightarrow \begin{bmatrix} 2-\lambda & 3+4i \\ 3-4i & 2-\lambda \end{bmatrix} \begin{bmatrix} 2i \\ 2i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 3-41 & 2-1 \end{bmatrix} \begin{bmatrix} 21 \\ 22 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -5x_1 + (3+4i) & 0 \\ 3-4i & -5 \end{bmatrix} \begin{bmatrix} 21 \\ 22 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 5x_1 = (3+4i) & 2z \\ 3+4i & 5 \end{bmatrix}$ · eigen vector & [3+4] D. Find the eigen value of the metain $A = \begin{bmatrix} 3i & 2+i \\ 2+i & -i \end{bmatrix}$ son The characteristic materis if 'A' is IA-121=0 $| 3i-d | 2+i | = 0 \Rightarrow (3i-d)(-i-d) - (2+i)(-2+i) = 0$ $| -2+i | -i-d | \Rightarrow (3,-3id+id+d^2) - (-4+2i-2i-1) = 0$ → 8-2il+13=0

 $\Rightarrow 1^{2}-2id+8=0 \Rightarrow 1^{2}-4id+2id+8=0$ $\Rightarrow 1(1-4i)+2i(1-4i)=0 \Rightarrow [1=4i,-2i]$

3). S.T A= [100] & a skew-Heymitish matrix o i o i o de the Eigen value . Consuponding to the eigen vectors of 'A'. AT = $-\overline{A}$ \Rightarrow A' is a 5 keD-Hormitian matrix.(A) = $\begin{bmatrix} -i & 0 & 0 \\ 0 & -i & 0 \end{bmatrix}$ whitery. We have to 5.T $A(\overline{A})^T = (\overline{A})^T A = T$ $A(\bar{A})^{T} = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix} = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & -i \\ 0 & -i & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \underline{T}$ $(\vec{A})\vec{A} = \begin{bmatrix} -i & 0 & 0 \\ 0 & 0 & -i \\ 0 & -i & 0 \end{bmatrix} \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix} = \begin{bmatrix} i & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 1 \end{bmatrix} = \vec{1}$ $A(\overline{A})' = (\overline{A})' A = 1$ Hence 'A' & unitary matria. the characteristic enf it is IA-12/=0

ie, | i-h 0 0 | =0
0 0-h i
0 i 0-h

=> (i-d) (19+1)=0 ⇒ [d=-1]; d=-1 [d=±1]

$$\frac{\lambda=1:-(A-\lambda 1)}{} x=0$$

$$\begin{bmatrix} i-\lambda & 0 & 0 \\ 0 & -\lambda & i \\ 0 & i & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & i \\ 0 & -1 & i \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\operatorname{Put}\left(x_{1}=k\right) + \left(x_{2}=x_{3}=k\right)$$

$$\operatorname{Put}\left(x_{1}=k\right) + \left(x_{1}=x_{3}=k\right)$$

$$\left(x_{1}=k\right) + \left(x_{1}=k\right)$$

$$\left(x_{1}=k\right) + \left(x_{1}=k\right)$$

$$\left(x_{1}=k\right) + \left(x_{1}=k\right)$$

$$\begin{bmatrix} i-1 & 0 & 0 \\ 0 & -1 & i \\ 0 & i & -1 \end{bmatrix} \begin{bmatrix} 2_1 \\ 3_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3i & 0 & 0 \\ 0 & i & i \\ 0 & i & i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
0 \\
0
\end{bmatrix}
\Rightarrow \begin{bmatrix}
x_1 + x_2 = 0 \\
0 \\
0
\end{bmatrix}
\Rightarrow \begin{bmatrix}
x_2 - k
\end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ k \\ -k \end{bmatrix} = k \cdot \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

. A' & unitary onation 3. S.T A = (atic -btid) is unilary if atbitctd=1.

 $\overline{A} = \left(\begin{array}{cc} a - ic & -b - id \\ b - id & a + ic \end{array}\right)$

-b-id Rtic

Given
$$A(A)^T = T$$

Atic -btid

btid a-ic

b-id

Rtic

-b-id

Rtic

 $\Rightarrow \begin{bmatrix} a_1^2 c_1^2 b_1^2 d^2 & 0 \\ 0 & a_1^2 b_1^2 c_1^2 d^2 \end{bmatrix} = T$

2) (2+b+c+d=1)

 $(\overline{A})^T = \begin{pmatrix} a - ic & b - id \\ -b - id & a + ic \end{pmatrix}$

-: groot siturbreug An expression of the form P= XAX = $\frac{2}{1} \leq \frac{2}{1} Q_{ij} X_i X_j - (i)$ Where and are constant is called a Quandratic--form" in "n-variable". the constant a; age sieal numbers then the quardratic form is called near quardratic form Here A' & called "Symmetric matrix (pr) Coefficient matrix." the standard form of P.F et three Vagiables 2, y, z is ant by+cz+2hay+2gz+2fzy=0 - (2) (09) for three variable 2, 2, 2, 23 is Qua, +Q,2,2, +Q33,2,3 + 2Q,2,2,2, +2Q,3,2,2,3 +2Q31,2,3,1=0 Note: from the above Egn(2) the Symmetric mitai (A' (ay) the co-efficient mataix A'. $\begin{bmatrix}
 a & h & 9 \\
 h & b & f
 \end{bmatrix}
 \begin{bmatrix}
 on \\
 dn
 \end{bmatrix}
 \begin{bmatrix}
 on \\
 dn
 \end{bmatrix}
 \begin{bmatrix}
 on \\
 dn
 \end{bmatrix}
 \begin{bmatrix}
 on \\
 o$ Note: the standard form of Q.F of Ors=031

Four vouisbly 2, 4, 2, to

Continuous of Q.F. of Ors=031

Continuous of Q.F. of Ors=031

Continuous of Q.F. of Ors=031

Continuous of Q.F. of Ors=031 The QF of the Symmetric anatrix A= [a h g]
h b f
g f c] Let $X = \begin{bmatrix} a \\ y \\ z \end{bmatrix}$, $X = \begin{bmatrix} a & y & z \end{bmatrix}$ The Q.F & = XAX = [xyz] [a h g] [x]
h b f [y]
g f c] [z] = [3 y] [axthy+gz]
hx+by+fz

gx+fy+cz] = ax + hyx zgx + hay+by+fzy+zgx+zfy+(z) = and by + CZ + 2 hay + 2 g Zx + \$ gz = 0 / Problem: - O. Find the Symmetric matrix Corresponding to the Q.F 2+32+ 429+592+622=0. W.k.t Q.f ezn fog 3-variables ès 02+ by+c=+2hzy+2fyz+2g=2=0 ----(2) Compained (1) 4(2) a=1, b=1, (=3) 2h=4; 2f=5; 2g=6 h=2; f=5/2; g=3.

2. Find the Symmetric matrix Corresponding to the Q.F 21+22+423+2321=0 30? - the standard form of 3-variable 2,72,73 anditant anditant assist 2012 x122 + 2013 x23 + 2013 237 =0 Comparing (1) +(2) , 2012=0 = a12=0 au=1 ;2025=4 → O25=2 ; 2as1=1 = as1=1/2 Find Q.F Corresponding to the materia A= 1 23 Let $x = \begin{bmatrix} x \\ y \end{bmatrix}$, $x' = \begin{bmatrix} y \\ y \end{bmatrix}$ acquired Quardactic form Q = X'AX 97 1 23 2 2 13 2 3 3 1 2 = [x y] [x+2y+3] 2x+y+3] Qu2 Qu3 Qu4 2427+3721+377+377+377+377+377+3 = x+y+x+42y+627+647=0 Note the standard form of Q.F. of face variables 2, 2, 2, Chia + Cos 72 + Cos 2 + Chu 24 + 2012 21 22 + 2013 21 23 + 2014 21 24 + 2023 123+2024 2234+ 034 2324 =0

Index if the Q.F:is called index of the Q.f. It is denoted by si. Signature of the Q.F :- In the OF the noise the termy of the non of -ve termy is called signature of the O.F." : Signature = 25-8.

Lere s is index

8-rank. nature of the Conf.: - the Q.F x'Ax in 'n'-variables is said to be (i). tre definite: - If r=n 15=n (on) if the all eigen values ef 'A' age the 691) In Q.F the hourst teamy all alething (ii). - ve definite :- If v=n. 15=0 (oor) If the all eigenvalue of 'A' are we (09) In Q.F the non-if temp all are-ve. cii). the Semi definite: - af ren es= n (09) af the all the eigen value et A7,0, at least one eigen value is Zero (e) In the O.F atleast one term are missing demaining all temp (iv). - ve semi definite : - It ren e 5=0 (02) If all the eigen value of ASO, et least one eigen value is Zero (ex) in the certableast one term are missing exemplining all tem

duce the Q.F 32+32+32+22,2+22,2-22,2 = to (56) rayin of squage (09) Mound-form by using authogonal transformation (DE) outhogonal aeduction and give the matrix of given Given Q.F is and find Index, signiture & Netwee. ghi- Given Q.F & 30/+30/+30/+20/0/+20/03-20/03 — (1) which is in the form of anaton of an Comparing (1) + (2), $a_{11}=3$; $a_{22}=3$; $a_{33}=3$; $a_{10}=2$; $a_{23}=-2$; $a_{23}=-2$; $a_{23}=-2$ $A = \begin{bmatrix} 0_{11} & 0_{12} & 0_{13} \\ 0_{21} & 0_{22} & 0_{23} \\ 0_{31} & 0_{32} & 0_{33} \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Eigen volcey Obe 1 = 1, 4, 4. Eigen vector Corresponding 1=1:-(A-AI)X=0

$$R_3 = 2R_2 - R_1$$
; $R_3 = 2R_3 - R_1$

$$\Rightarrow \begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 31 \\ 2_1 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

by solving

$$\Rightarrow 2x_1 + x_2 + x_3 = 0 ; 3x_1 - 3x_3 = 0 ; patr x_3 = k$$

$$\Rightarrow 2x_1 = -2x_2 - 2x_3$$

$$\Rightarrow |x_1 - x_2| = k$$

$$2 \alpha_1 = -2k$$

$$\alpha_1 = -k$$

$$\begin{bmatrix} 2_1 \\ 2_2 \\ 2_3 \end{bmatrix} = \begin{bmatrix} -k \\ k \\ k \end{bmatrix} = k \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3-\lambda & 1 & 1 \\ 1 & 3-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{bmatrix} \begin{bmatrix} 24 \\ 22 \\ 33 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} k_1 + k_2 \\ k_2 \\ k_1 \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

we can week the linear combination of above two vectors

$$a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow 0 \text{ othogonal } fo \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

es.dal estera (P) =
$$\frac{|x_1|}{|x_2|}$$
, $\frac{|x_2|}{|x_3|}$

$$P = \begin{bmatrix} -1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{bmatrix}$$

$$PP^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = T.$$

NOW
$$D = PAP$$

$$= PAP$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Now.
$$\sqrt{D}y = [y_1 \ y_2 \ y_3][0 \ 0 \ 0][y_1]$$

$$= \begin{bmatrix} 9_{1} & 9_{2} & 9_{3} \\ 49_{2} \\ 49_{3} \end{bmatrix}$$

$$= \begin{bmatrix} 9_{1} & 9_{2} & 9_{3} \\ 49_{3} & 49_{3} \end{bmatrix}$$

The outhogonal transformation which reduces the QF to canonical From

is given by X=YY Y=YY Y=

3. Peduce the D.F Q=2 (2y+yZ+Z2) to cononcicl-fuent and find its rent, nature, index and dignature by wing outhought tray hamition.

Reduction of cononciel form (09) Normal form (09) 5cm of (6). Squares form by using Diagonalisation (Linear transformation): tep (1): - for given Q.F into Symmetric orteiz of order nxn. tep(2):- weste Anxn = In AIn - (1) "in is the Edentity materia of arder in". Step(3):- Apply row operations on LH-5 of egici) and Apply the some operations in prefactor of A' on R.H.s.f era). stephe): Apply the column operations on L.H.S.f cq'(1) and upply the same operations on R.H.S.f cq'(1) on post factor of A: top(5)- Repeat the same Procedure convert of the examination the form [D=PAP], is is the Diagonal matrix if order n. tep(6): - the acquired canoncial form of $\widehat{YDY} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2.$

tep (7): - the required linear transformation (09) esteris
transformation & X=PY.

(62)

O. Find the noture of the Q.F, Index, Signature of Egn 10x+2y+5x-42y-10x2+6yz are areduced into cononcial from by using Diagonalisation and find to transformation.

The Given Q.F & 10x+2y+5z-42y-10x2+6yz

which is in the form of $ax^2+by^2+(x^2+2hxy+2gxx+2fxy)$ there a=10,b=2,c=5, 2h=-4 |2g=-10| |2f=6h=-2 |g=-5-| |f=3-

 $A = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} = \begin{bmatrix} 0 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{bmatrix}$

We wiste $A_{3x3} = T_3A_{3}^2$

 $\Rightarrow \begin{bmatrix}
10 & -2 & -5 \\
-2 & 2 & 3 \\
-5 & 3 & 5
\end{bmatrix} = \begin{bmatrix}
10 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} A \begin{bmatrix}
10 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}$

APPLY R= SR2+R1; R3 = 2R3+R1 to Lites and Pacchater

[10 -2 -5] [10 07 [10 07]

Apply R3 = 2R3-R2 to 1.4.5 and Pactactor of R.H.g.

Apry == 56+61; (3 = 263+61 to Litts and Past fedor $\begin{bmatrix}
10 & 0 & 0 \\
0 & 40 & 20
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 5 & 0
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 & 0 \\
0 & 5 & 0
\end{bmatrix}$ Apply == 263-62 to Litis and post factor of Ritis $\begin{vmatrix} 10 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 0 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & -5 & 4 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & -5 \\ 0 & 0 & 4 \end{vmatrix}$ which is in the form of D= PAP where $D = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & -5 \\ 0 & 0 & 4 \end{bmatrix}$ is the Dequeeed Cononcial form and Mormal long is $\sqrt{D}y = [J, J, J_3] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 31 \\ 92 \\ 0 \end{bmatrix}$ $\therefore \left[y^{2}Dy = 10y^{2} + 40y^{2} \right]$ (3) Here Index=5=2 Signalure = 25-r=4-2=2 (or) Signalure = (tve)-(-ve) Nelue = + Voemi de linile (In (3) having two positive terms and one teen missing : the required moters townstremtion and linear transformation is

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 5 & -5 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 3_{1} \\ 3_{2} \\ 3_{3} \end{bmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 3_{1} \\ 3_{2} \\ 3_{3} \end{bmatrix} = \begin{bmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{bmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix} = \begin{cases} 3_{1} \\ 3_{2} \\ 3_{3} \end{bmatrix} = \begin{bmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{cases}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{cases} = \begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2} \\ 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} a_{1} \\ a_{2}$$

- 1). Reduce the Q.f is $7x^2+6y^2+5z^2-42y-4yz$ to the canonical form by using Linear transformation.
- 3. Pedace the Q.F to the canoncial form is $2x^2 + 2y^2 + 2z^2 2zy + 2zz 2yz$, by using aethogonal transferration.
- (4). Reduce the Q.F 62+32+32-422 2232+4232, to the Sum of the Squares and find the coarse ponding Linear-transformation. Find the Index and Synature.
- B. Reduce the Q.F to cononcial form by an outhornal geoduction and state the nature of the Q.F 5x+26y+10x+4yx+14xx+62y.

•

it singalag matain :- A square matrix 'A' is said to be . Singalar if IAI = 0 [if IAI to non-singular matria) - * Inverse et the matain: Let A' be any square matain of and TS & AB=BA=I then TS & called inverse of A, denoted by A - * Adjoint et a squarematria :- Let A' be a square matria et order 'n'the transpose of the matain got from 'A' by speplacing the elements of 'A' by the corresponding co-factors is called the adjoint of A' and denoted by adiA.

Theorems x

[Note]: For any scalor k, adj(kA)= k'-1 adj(A) Every invertible motaria possesses a unique inverse. the invoye of a material if it exist is unique. Proof :- Let it Possible, I and c bethe inverse of A, then AB=BA=I AC=CA=I YOW -B= BI = 13(Ac) = (3A)C Hence there is only one inverse of 'A', which is denoted by A'. Note: AA=AA=I

Notet: A= adj A, if 1A1+0 itim! - Evay square materix can be expressed as the sum of symmetonic and skew-symmetric matrices in one and only way (uniquely) Showthat any square matria A=B+c Where B's symmetric + 'c' & stew-symmetric. 101009: - Let 'A' be any square matria. $-A = \frac{1}{3} \left(A + A^{T} \right) + \frac{1}{2} \left(A - A^{T} \right)$ = P+Q (50y) whole P= 1/2 (A+AT), Q=1/2 (A-AT) P= [(A+AT)] = 1/2 (A+A) [: (KA) = KA] = 1/2 (AT+A)=P -> [F=P] : p' & a symmetric matrix. 4 Q = [1/2 (A-A)] = \frac{1}{2} (A-A) = \frac{1}{2} (A-A) $=-\frac{1}{2}(A-A^{T})=-Q\Rightarrow \overline{Q^{T}-Q}$ · squaremateria = symmetric + skew symmetric. If Possible Let A=R+5, where R= 5y monetonic onatorix uniquenes :-5= skew symmetric matrix in R=R & 5=-5 NOW AT = (P+5) = P-5 & 1/2 (A+A") = 1/2 (R+S+R-5) = R : P=P & Q=S 1/2 (A-AT). 1/2 (R+5-R+5) = 5 the relacementation in unique.

thm :- Prove that inverse of a non-singular symmetric materia 'A' is 5 jamelouic. Prof :- : Since 'A' is non-singular Symmetric matrix. : A exist and A=A Now, We have to Prove that A is Symmetric. We have (A) = (AT) = A ("A = A) Since (A) = A & Jumetric. thm: If 'A' is Symmetric materia, then provethat adj A is also Symmetric. Popof: Since 'A' & symmetrie, we have $\overline{A} = A$ Now, we have (adjA) = adjA [: adjA] = (adjA)] = adj A (: A=A) Since (adjA) = adjA = adjA & a symmetricimatria. thm: If 'A' & a mxn matrix and 'B' & a nxp matrix then corollagy: - (ABC -- Z) = ZYX -- c'BA! then: If A,15 core outhogonal matrice, each of corder in then Ats and BA are oathogonal matricy. Proof: Since A and B core both outhogonal matrices. AA = AA = 2 + BB = BB = 2 NOW (AB) = BAT -> (AB) (AB) = (BA) (AB) = B (AA) B = B IB (AA=A) -> (AB) & oathogonal 110 BA & also nothogonal. = BB= E ("BB=BE

The inverse of an orthogonal materia of onthogonal and it transpose is also with gonal. Proof: Let'A' be an orthogonal matrix Then AAT=ATA=I Consider AA = I Taking inverse on bothsides => (AAT) = I' => (AT) A=I ⇒ (A') Ā'=Z : A is onthogonal Again AA=I = Traking transpose on bothsides (A'A) = I -> A(A) = I -> AT & outhogonal & AA=I) thm: If A, 13 are inventible matrice if the same onder, then (i). (AB) = BA (ii). $(A^T) = (\bar{A}^t)^T$ Proof :- i). (be have (BA') (AB) = 15 (AA) B = 15 IB = BB = I 110 (AB) (15'A') = I : (AB) = BA! ai). We have $A\overline{A} = \overline{A}A = \overline{L}$ $\Rightarrow (AA)^T = (AA)^T = 2^T$ > (A') A' = A(A') = I => (A') = (A') (: by def. it inverse of the

That: Every square mateix can be expressed by the Sum of a symmetric and skew-symmetric mateices in one and only way (uniquely) Sit any square moteix A=B+C where 13' is Symmetric and C'& skew-symmetric. Parti- Let 'A' be any 5quage maleix. we can welte $A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T}) = P + Q$, 54y where $P = \frac{1}{2} (A + A^T)$ and $Q = \frac{1}{2} (A - A^T)$ Ne have $P = \left(\frac{1}{2}(A + A^T)\right)^T$ = \(\frac{1}{2} (A + A^T)^T \quad \text{("(kA)} = KAT) = 1 [AT+(AT)] = 1 (AT+A) $\therefore | P^T = P^T$.. Pig a symmetric metriz. NOW P = { [(A-AT)] = \frac{1}{2} \left\{A^T - \left(A^T)^T\}

 $\begin{aligned}
& = \frac{1}{2}(A - A) \\
& = \frac{1}{2}(A^{T} - A) \\
& = -\frac{1}{2}(A - A^{T}) \\
& : Q^{T} = -Q \end{aligned}$ $\therefore Q^{T} = -Q \qquad \therefore Q^{T} = 3 \text{ seco} - 5 \text{ yourselvic order.}$

Thus Square matris = Symmetric entrès + 5 ker 5 jonnéters on tens. Hence the moteria A's the sum of a symmetric materia and a sken-symmetric estria. To Paper that the Sum is unique -Il Possible, Let A=R+5 Where R'& Symmetric and 5' & asker-symmetric : P=R L 5=-5. NOW A = (R+5) = R+5 = R-5 and. 1 (A+A')= 1 (R+S+R-5)= R $\frac{1}{2} (A - A^T) = \frac{1}{2} (R+5 - R+5) = 5.$ => R=P and D=Q. " The defregentation is unique. - Hence Papaved. Thm: S.T Every square moders à uniquely expressible as the Sum of a Hermitian estair and a skew-Hermitian melair. Pant. Let "A' be squale matrix. NOW == 1 (A+A), Q=1/(A-A) We have $\rho = \left[\frac{1}{2}(A+A^0)\right] = \frac{1}{2}\left[A^0(A^0)^0\right] = \frac{1}{2}\left(A^0+A^0\right) = \rho$.

i'p' à temilian valeir.

NOW $Q^0 = \left\{ \frac{1}{2} (A - A^0) \right\}^0 = \frac{1}{2} \left\{ A^0 - (A^0)^0 \right\}^0 = \frac{1}{2} \left(A^0 - A \right)$ $=-\frac{1}{2}\left(A-A^{O}\right)=-Q.$

: Q = -Q

" D' és a stew-Hermitian ordris

i square matrix = Hermitian matria + sker Hermitian matrix, Hence the matrix 'A' is the sum of a Hermitian and a skew themition or therep.

To prove that the representation is unique:

Let A=R+5 be another such seprentation of A.

Where R'és Hermilian.

'S' & Skew-Hermilien

To Palove that R=P and 5=Q.

then A = (R+5) = R+5 = R-5.

" (P+5+R-5)= R. 1/2 (A-A°) = 1/2 (R+S-R+S)= S.

: R=P & S=Q.

: the aeseventetion à unique.

Hence Proved.

Properties of Eigen values:

ihm: It is eigen value of an orthogones moters then

Parti- UKI if is on eigen value et a motoir 'A', then '1/1' is on eigen value et 'A'.

Since 'A' is an aethogonal matein, there A' A' is an eigen value of 'AT'.

Eigen values, since the determinants (A-12) and [A'-12] are some.

Hence "12" is also an eigen value of "A".

Hence Poloved.

Properties of eigen Values: Theorem O: the Sum of the eigen value of a square matrix is equal to Proof: - i'e, If 'A' is an nxn matrix and A, 12, -, In are it n-eigenvalue, then littlet -- + In = Tr(A)

& li. la. la. -- In = det(A). Note: [A-AI] = (-1) 17+ L' characteristic équation of 'A' & 1A-121=0 (1) 1 - (1 Taga) + ies au au an let 3x3 square matrix agi az-1 --- azn **=** 0 A= On an and O21 O12 0131 anz - and Let I be the eigen value of A', then characteristic Eq 1A-121=0 => (4)3/4 /2 (trace A)+ --- =0 Expanding they, (are get (a,-1) (a2-1)--(an-1)-a12 (a Blynomial of degoice n-2)+

-> 1A-d[1=-d+1^2(tran).

a13 (a Polynamial of degoice n-2)+--+=0 1=1=tran)

d-tran ie, (1) (1-01) (1-022) (1-033) --- (1-022) + a polynamial of degree (n-2)= 14 (-1) 1 1 - (antazzt - + ann) 1 - 1 a Polynamial et degne e (n-2)] + a rolynamial of degree (n-2) ind $= (-1)^{n+1} + (-1)^{n+1}$ Totace A) λ^{n-1} + a Polynamial of degree (n-2) in $\lambda = 6$ If di, da, __ , In are the roof of the equation, Sum of the root = - (-1) Tr(A) = Tr(A) (d+ F= - b 4 B= = = Further | A-AII = (-1) 1 + - - + a. $Puf_{1=0} \Rightarrow |A| = a_0$ - Product of the roof = (-1) \(\frac{1}{2}, = |A| = \det f
\]
Hence \(\frac{(-1)^n}{2} = |A| = \det f (-1) 1 + and 1 + and 1 + -- + a = 0

the product of the eigen values of a matria 'A' is equal to it Proof: Let 1,, 12, __, In be the eigen value of Anxn, then → |A-AI| = (-1)(1-d1)(d-d2)--- (1-dn)=0 rut 1=0 => 1A1= (-1) (-1) (-12) --- (-1n)-= (-1) (-1) di. da --- dn = (-1) 1.1. In : lA = d1.d2 - - dn i the Product of the eigen value of a matrix "A' is equal to it déterminant. the June of the eigen values of a matrix is the trace of the matrix Consider $A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$ The characteristic equation is |A-AI|=0 $\Rightarrow |a_{11}-A| = 0$ $\Rightarrow |a_{1$ $= \frac{1}{12} + \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right) + \frac{1}{12} = 0$ $= \frac{1}{12} + \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right) + \frac{1}{12} = 0$ $= \frac{1}{12} + \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12}$ $\Rightarrow |A - \lambda I| = -\lambda^{2} + \lambda^{2} (\alpha_{11} + \alpha_{22} + \alpha_{53})_{+--} - \alpha_{22} \alpha_{53} \lambda + \lambda^{2} \alpha_{22} + \lambda^{2} \alpha_{53} - \lambda^{5}$ Also, if 1, 12, 13 be the eigen value then > |A-AI| = (-1)3 (1-1) (1-1) (1-1)

 $\Rightarrow |A - dI| = -d^3 + d^2 (d_1 + d_2 + d_3) + -$ (2)

thm: If 'I' is an eigen value of 'A' corresponding to the eigen vector
X, then 1° is eigen value of An, contrapponding to the eigen vector X,
Proof: - Since 1' & eigen value of A' corresponding to the eigen-
vector 'x', we have $Ax = Ax$
Vector 'x', we have $Ax = Ax$
i.e. $(AA)x = \lambda(Ax) \Rightarrow A^2x = \lambda^2x = (2)$ [: by (1)]
Hence 'de'is eigen value of 'Ae' with 'x' itself as the cossesponding
eigen vector. They the theorem is true to n=2.
Let the result be true foor n=k
Then $A^k x = A^k x$
Poe maltiplying the by (A) and using $Ax = Ax$, we get kill $A^{k+1}x = A^{k+1}x$ $\Rightarrow A^{k+1}$ is eigen value of A^{k+1} with x itself as the corresponding
→ 1 k+1 is eigen value of A k+1 with 'x' itself as the corresponding
eigen Vector.
Hence by the Principle of mathematical induction, the thon is
true for all Positive integers 'n'.
ihm: - 5.7 if hi, la,, In age the latent roots of A, then A3 has
latent roof 1,3,1,3, ,1,3.
Proof: - Since I's eigen value of A consuponding to the eigenvector
'x', we have [Ax=1.x]
Premettiplying (1) by 'A', A(AX) = A(AX)
ie, $A^2x = \lambda^2x$ (2)
Again Premoltiplying(a) by $A = A(A^2x) = A(A^2x)$ Hence this is true for all $= >[A^3x = 1.3x] = -1.23$ (3)

im 2- A square matrix -A' and if transpose AT have the fame:

eigen value.

2000: - the characteristic matrix if A' is (A-AI)the characteristic matrix if A' is $(A-AI)^{-1} = A^{-1} + A^{-1} = A^{-1} = A^{-1} + A^{-1} + A^{-1} = A^{-1} + A^{$

they the eigen value of 'A' & A' age same.

Hence Proved,

Def: Two matrices 'A'' is are said to be similar, if I an invertible matrix 'P's

I'M' - It 'A' and B' are n-rowed square matrices and if 'A' is invertible. show that A'B and BA' have same eigen value.

Potof:- Given 'A' is invertible - A' exist.

NOW
$$\overline{A}'B = \overline{A}'BT$$

$$= \overline{A}'B(\overline{A}A) \qquad (:\overline{A}A = T)$$

$$= \overline{A}'(B\overline{A}')A$$

$$\overline{A}'B = \overline{A}'(B\overline{A}')A \qquad ()$$

Tince Figen value of two similar motrices are same, so matrices and $\overline{A}(\overline{13}\overline{A}')A$ have the same eigen values, so, by (1) — the matrices $\overline{A}\overline{B}$ and $\overline{-13}\overline{A}'$ have the same eigen values.

Hence Proved.

theorem: If hi, d2,, In one eigen value of A, then khi, kd2,kdn
agie the eigen value of kA Where 'k' is a non-zero scalog.
Proof: Let 1,12,, In be the eigen value of A.
(age(1):- k=0, then kA=0 and each eigen value of o' is o.
then oh, oh, - ohn dole the eigen value of KA.
$\frac{\operatorname{Caye}(2):-k_{\sharp 0}}{=} k_{A}-\lambda k_{I} = k_{A}-\lambda_{I} $
$= k^{n} \left[A - d \overline{z} \right]$ $\left[\left[k \overline{s} \right] = k^{n} \left[\overline{s} \right] \right]$
If k=0, then kA-AKI = 0 () A-AI =0
the shows that 'khi's eigen value of 'ka' (>) 'I's eigen value of 'A
Hence kd., kd2,, kdn are the eigen value of kA if dista, in
are the eigen values of "A'. 'k' is a non-zogo scalog,
there Proved.
The It did and the eigen values of 'A', then like he have
In-k age the eigen values of the matrix (A-KI), where 'k' is a non-Zodo
scal091.
Proof: Since 1,, da,, In one the eigen value of 'A'.
the characteristic polynamial of A' is IA-121 = (1,-1)(12-1)-
They the characteristic Polynamial of A-KI &
(A-KI-12) = 1A-(K+1)I1
$= \left[\lambda_1 - (\lambda + k) \right] \left[\lambda_2 - (\lambda + k) \right] - \left[\lambda_n - (\lambda + k) \right] \left[\frac{1}{2} - from(0) \right]$
- [(1,-k)-1] [(2-k)-1] [(1,-k)-1]
the shows that the eigen value of A-kI age hi-k, d2-k, - , In-

in 10:- If h, 12, -, In are the eigen value of A. Find the eigen- 10 value of the matrix (A-12). nof: - First we will find the eigen value of the matrix A-AI fince, 1,, 12, -, In are the eigen value of A. .. the characteristic polynamial of 'A' & | A-KI| = (1-k) (2-k) -- (1-k) Where k is a scalog. the characteristic polynamial of the materia (A-dI) is -A-12-121= 1A-(1+K)21 = [d,-(d+k)] [da-(d+k)] [= from (i)] $= \left[(\lambda_1 - \lambda) - k \right] \left[(\lambda_2 - \lambda) - k \right] - - \left[(\lambda_n - \lambda) - k \right]$ Which shows that the eigen value of A-dI are 1,-1, 12-1,... We know that, if the eigen value of 'A' are history, In, then the eigen value of 'A2' are 12, 12, 12, 13, -- 12. thus the eigen values of (A-AI) are (A,-A), (A2-A), ... (An-A), Hence Papved. thought If it is an eigen value of a non-singulary matria A,

corresponding to the eigen vector 'x' then 'I' is an eigen value of A and corresponding eigen vector 'x' itself (on) If d, dz, to, ___, In curther and corresponding eigen vector 'x' itself (on) If d, dz, to, ___, In curther Eigen value of A' then (pg) 'Id, 'Id, ___ Idn and the eigen value of A' are the reciperocal of the eigen value of Eigen value of A' are the reciperocal of the eigen value of Eigen value o

: If 'I' is an eigen value of the non-singulary materia 'A' and 195 'x' is consuponding eigen vector, 1+0 and [Ax=1x] Premaltiplying 'A', we get $\Rightarrow \overline{A}'(Ax) = \overline{A}'(Ax) \Rightarrow (\overline{A}A)x = \lambda \overline{A}'x$ $\Rightarrow x_i = \overline{A}(dx_i)$ $\Rightarrow Ix = \lambda \overline{A}x$ $\left[\frac{1}{\lambda}X_{i} = \overline{A}X_{i}\right]$ X= AAX $\Rightarrow \int \overline{A} \times = \overline{A} \times \left(: A \neq 0 \right)$ Hence by definition it follows that I's an eigen value of A' and 'x' is the cornerponding eigen vector. Hence Paloved. thm@: If it is an eigen value of a non-singular matria A', the IAI is an eigen value of the materia adjA. Porof: Since l' à an eigen value et a non-singulage materix, therefore, 1+0. Also 'l' is an eigen value of 'A' => = a non sero vector 'x' => Ax=Ax $\Rightarrow [(adjA)X] x = \lambda(adjA) x$ \Rightarrow (adjA) (Ax)= (adjA)(Ax) $\Rightarrow 1A|2X = \lambda (adjA)X$ [: (adjA)A = 1A12] $\Rightarrow \frac{1A1}{\lambda} x = (adj A) x$ \Rightarrow (idia) $x = \frac{1A1}{A}x$ Cince 'x' is a non-sodo vector, therefore, from the & an eigen value of the malaix orelation (1), it is clean that IAI

adjA.

Hence Broud

```
thm(15):-If it is an eigen value of A, then Provethat the eigen value of
        -13= a. A+ a, A+ a, I & a. 1+a, 1+a,
isloof: If 'x' be the eigen vector corresponding to the eigenvalue I, then
 Premultiply by 'A' on both side, => A(AX) = A(AX)
                                 \Rightarrow A_{X} = \lambda (A_{X})
   they shows that 12' is an eigen value of A?
    We have TB= a.A+ a,A+a,I
         " 15x = (a_0A + a_1A + a_2I)X = a_0Ax + a_1Ax + a_2X
                                  = a,12x+a,1x+a,x
                                  = (a, 1 + a, 1 + a2) x
 they shows that a literate is an eigenvalue if B' and the
Consuponding eigen vector of 13 & x'.
                   Hence Poloved.
tim(ip): Suppose that 'A' and 'p' age square matericy of ander in' -
is non-singular then 'A' and PAP have the Same eigen value.
Proof: Consider the characteristic equation of PAP is
   I(PAP) - AI = | PAP - APIP ( I = PIP)
              = | P(A-1I)P| = | P| | A- AI | IP|
                           = 1A-17 (: 17/11P1=1)
   Thus the characteristic polynamials of pap and A are Jame.
        Hence the eigen value of PAP'+ A' age dame.
                    Hence Proved.
```

roultiplying both sides of (2) by A; we get (19)
$$A(kx+k_1x_2)=A(0)=0.$$

$$\Rightarrow k_1(Ax_1) + k_2(Ax_2) = 0 \qquad (3) [: (12)]$$

$$\Rightarrow k_1(\lambda_1 x_1) + k_2(\lambda_2 x_2) - \lambda_2(k_1 x_1) + k_2 x_2 = 0$$

$$\Rightarrow k_1 (\lambda_1 \times 1) + k_2 (\lambda_2 \times 1) - k_1 \lambda_2 \times 1 - k_2 \lambda_1 \times 2 = 0$$

Test the conteadicte our assumption that k, , k, are not zerof.

are linearly defendent is verong.

Hencetheters eigen verlag corresponding to the two different eigen values are Linearly Independent (L.I)

— Hence Pepared.

