Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified. I am also operating under the convention $v_a(b) = \{x \in \mathbb{R} : |x-b| < a\}$

Exercise 1: Suppose $f: A \to \mathbb{R}$ and c is a limit point of A. Suppose $f(x) \ge 0$ for all $x \in A$ and that $\lim_{x \to c} f(x)$ exists. Show that the limit is non-negative. Provide two proofs, one $\epsilon - \delta$ style, and the other using the sequential characterization of limits.

Proof. Suppose $f: A \to \mathbb{R}$ and c is a limit point of A. Suppose $f(x) \ge 0$ for all $x \in A$ and that $\lim_{x \to c} f(x) = L$ exists.

Suppose L < 0. Define $\epsilon = -L/2 > 0$. There must exist a $\delta > 0$ such that for all $x \in A$ where $0 < |x-c| < \delta$, $|f(x)-L| < \epsilon$. Note that c is a limit point of A, thus $V_{\delta}(c) \cap A - \{c\} \neq \emptyset$. Take one of the elements of this set $a \in V_{\delta}(c) \cap A - \{c\}$. Note that $a \neq c$. Note that $a \in A$. Note $|a-c| < \delta$. Thus $|f(a)-L| < \epsilon$ and so $L-\epsilon < f(a) < L+\epsilon = L/2 < 0$. A contradiction, we know that $f(a) \geq 0$ and now we have f(a) < 0.