Некоторые задачи аппроксимации подпространства сигнала

Горбунова Ирина Николаевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. В.В. Некруткин Рецензент: к.ф.-м.н., доц. Н.Э. Голяндина

Санкт-Петербург 2012г.

Основные обозначения: подпространство сигнала

- ullet $F_N = (x_0, \dots, x_{N-1})$ сигнал: $x_n = \sum_{k=1}^d a_k x_{n-k}$;
- Минимальная ЛРФ;
- ullet H траекторная ганкелева матрица сигнала размерности L imes K, где N = K + L 1, т.е. $\mathbf{H}[i,j] = x_{i+j-2}$;
- $\min(L, K) > d = \operatorname{rank} \mathbf{H}$;
- ${\rm U}_0^{\perp}$ линейное пространство, натянутое на столбцы матрицы ${\bf H}$; $\dim {\rm U}_0^{\perp} = d$;
- ullet \mathbf{P}_0^\perp ортогональный проектор на $\mathrm{U}_0^\perp.$

Пространство U_0^\perp содержит большую информацию о сигнале.

Основные обозначения: возмущение сигнала

- $E_N = (e_0, \dots, e_{N-1})$ помеха;
- $F_N(\delta) = F_N + \delta E_N$ возмущенный сигнал, δ формальный параметр возмущения;
- $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$;
- $\mathrm{U}_0^\perp(\delta)$ линейное пространство, натянутое на d главных сингулярных векторов SVD матрицы $\mathbf{H}(\delta)$;
- ullet $\mathbf{P}_0^\perp(\delta)$ ортогональный проектор на $\mathrm{U}_0^\perp(\delta)$.

Близость подпространств

На близости возмущенного и невозмущенного подпространств сигнала основаны многочисленные методы анализа временных рядов (Signal Subspace Methods):

- методы Прони и Писаренко;
- ESPRIT и MUSIC;
- SSA (Singular Spectrum Analysis),
- и др.

Мера близости — $\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\|$ — синус максимального угла между подпространствами.

Асимптотическая постановка задачи

- F_N , E_N и $F_N(\delta)$ конечные отрезки рядов, $N \to \infty$;
- Выбор L = L(N); K = N L + 1;
- $\bullet \ \mathbf{H} \ \mathsf{u} \ \mathbf{H}(\delta); \quad \mathrm{U}_0^\perp \ \mathsf{u} \ \mathrm{U}_0^\perp(\delta); \quad \mathbf{P}_0^\perp \ \mathsf{u} \ \mathbf{P}_0^\perp(\delta).$

Общая задача

Найти условия, при которых (при $N \to \infty$ и L = L(N)) $\|\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp\|$ стремится к нулю, и оценить скорость этой сходимости.

Подход к решению

- В.В. Некруткин (SII, 2010):
- 1. Оценки сверху норм $\|\mathbf{P}_0^{\perp}(\delta) \mathbf{P}_0^{\perp}\|$.
- 2. Примеры (условия сходимости и скорость сходимости).
 - Сигналы:
 - полиномиальные;
 - экспоненциальные;
 - тригонометрические.
 - **2** Помехи:
 - тех же типов;
 - линейные стационарные последовательности.

Задача диплома

Задача

Распространить результаты на:

- случай сигнала, имеющего вид экспоненциально-модулированной гармоники;
- многомерные временные ряды, траекторными матрицами которых являются блок-ганкелевые матрицы.

Модулированная гармоника: базовое утверждение

- \mathbf{H}, \mathbf{E} траекторные матрицы сигнала и помехи;
- μ_{\min}, μ_{\max} минимальное и максимальное положительные собственные числа матрицы $\mathbf{H}\mathbf{H}^T$;
- u_{\max} максимальное собственное число матрицы $\mathbf{E}\mathbf{E}^T$;

•

$$\Theta = \sqrt{\frac{\nu_{\text{max}}}{\mu_{\text{max}}}} \frac{\mu_{\text{max}}}{\mu_{\text{min}}} .$$

В.В. Некруткин, 2010:

Теорема

Если $\Theta \to 0$ при $N \to \infty$, тогда для любого δ

$$\limsup_{N} \Theta^{-1} \| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} \| \le C|\delta|.$$

Результаты: техника

ТЕХНИКА:

Вычисление асимптотики максимального и минимального сингулярных чисел ганкелевых и блок-ганкелевых матриц.

ВРЕМЕННЫЕ РЯДЫ:

Экспоненциально-модулированная гармоника, многомерные ряды тригонометрического, экспоненциального и полиномиального типов.

Результаты: модулированная гармоника — сигнал

Сигнал: $x_n = a^n \cos(2\pi\omega n + \phi)$, $\omega \in (0, 1/2)$, a > 1.

Для любого δ при $N \to \infty$:

Предложение

ullet Пусть $e_n = \sum_{l=1}^p \gamma_l \cos(2\pi\omega_l n + \phi_l)$. Тогда

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = |\delta|O\left(\sqrt{LK}a^{-N}\right), \ \forall L = L(N).$$

- ullet Пусть e_n полином степени m.
 - 1. Если $L/N o lpha \in (0,1)$, то

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = |\delta|O(N^{m+1}a^{-N}).$$

2. Если L или K постоянны, то

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = |\delta|O(N^{m+1/2}a^{-N}).$$

Результаты: модулированные гармоники— помеха

Сигнал:

$$x_n = \beta_1 a_1^n + \ldots + \beta_p a_p^n, \quad a_i > 1.$$

Помеха:

$$e_n = \sum_{j=1}^{\ell} c_j b_j^n \cos(2\pi\omega_j n + \phi_j), \quad b_j > 1.$$

 $b_{\max} = \max_j b_j$, $a_{\max} = \max_i a_i$, $a_{\min} = \min_i a_i$.

Предложение

Если
$$au = b_{
m max} a_{
m max}/a_{
m min}^2 < 1$$
, то при $N o \infty$

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = |\delta|O(\tau^{-N})$$

для любых δ и L=L(N).

Многомерный сигнал: постановка задачи

- $F_N^{(1)},\dots,F_N^{(\ell)}$ компоненты многомерного сигнала, которые управляются ЛРФ порядков $d_i,i\in(1,\dots,\ell)$;
- $oldsymbol{f H}^{(i)}$ размера L imes K траекторные матрицы $(\min(L,K)>\max\{d_i\});$
- $oldsymbol{f H}=[{f H}^{(1)}:\ldots:{f H}^{(\ell)}]$ матрица размера $L imes\ell K.$

Предположение: Подпространства компонент сигнала совпадают.

 \mathbf{P}_0^\perp — проектор на это общее подпространство.

Постановка задачи

Выделить «общую часть» из возмущенных рядов. Формально: найти условия, при которых $\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\|$ стремится к нулю, и оценить скорость этой сходимости.

Результаты: многомерные тригонометрические сигналы и помехи

Сигналы и помехи: ($\ell = 1, 2, \ \alpha_{i\ell} \neq 0$):

$$x_n^{(\ell)} = \sum_{i=1}^r \alpha_{i\ell} \cos(2\pi\omega_i n), \quad e_n^{(\ell)} = \sum_{i=1}^{r_\ell} b_{i\ell} \cos(2\pi\nu_{i\ell} n).$$

Условие: множества $\{ \nu_i^{(1)} \}$ и $\{ \nu_i^{(2)} \}$ не пересекаются с $\{ \omega_i \}$,

Предложение

Если $\min(L,K) \to \infty$, то существует такое $\delta_0 > 0$, что при $|\delta| < \delta_0$

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = |\delta|O(1/\min(L, K)).$$

Результаты: многомерные полиномиальные сигналы и случайные помехи

Двумерный сигнал: два полинома степени m.

Помеха: линейные стационарные последовательности

$$e_n^{(1)} = \sum_{j=-\infty}^{\infty} c_j^{(1)} \, \epsilon_{j+n}^{(1)}, \quad e_n^{(2)} = \sum_{j=-\infty}^{\infty} c_j^{(2)} \, \epsilon_{j+n}^{(2)},$$

где $\epsilon_n^{(i)}$ — н. о. р. в. с $\mathbb{E}\epsilon_n^{(i)}=0$, $\mathbb{D}\epsilon_n^{(i)}=1$ и $\mathbb{E}|\epsilon_n^{(i)}|^3<\infty$, $\sum_j |c_j^{(i)}|<\infty$. Процессы $\epsilon_i^{(1)}$ и $\epsilon_i^{(2)}$ могут быть зависимы.

Предложение

Если $L/N \to \alpha \in (0,1)$, то для любого δ и $N > N_0(\delta)$ почти наверное $\|\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp\| = |\delta| O\big(\sqrt{\ln N} N^{-m-1}\big)$.

Итоги

- Выведены условия, при которых $\|\mathbf{P}_0^{\perp}(\delta) \mathbf{P}_0^{\perp}\| \to 0$, и получена оценка скорости этой сходимости для сигнала, имеющего вид экспоненциально-модулированной гармоники, и некоторых аддитивных помех;
- Рассмотрены случаи, когда такой временной ряд выступает в качестве аддитивной помехи;
- Решена аналогичная задача для многомерных сигналов в случае, если подпространства их компонент совпадают.