Problem 1.

Exercise Set 8.1

11.
$$A = \{3,4,5\}, B = \{4,5,6\}$$

 $\forall (x,y) \in A \times B, x S y \Leftrightarrow x \mid y$
 $S = \{(3,6),(4,4),(5,5)\}$
 $S^{-1} = \{(6,3),(4,4),(5,5)\}$

Problem 2.

Exercise Set 8.1

$$20. \ A = \{-1, 1, 2, 4\}, \ B = \{1, 2\}$$

$$\forall (x, y) \in A \times B, \ x \ R \ y \Leftrightarrow |x| = |y|$$

$$x \ S \ y \Leftrightarrow x - y \ \text{is even}$$

$$A \times B = \left\{ (-1, 1), (1, 1), (2, 1), (4, 1), (-1, 2), (1, 2), (2, 2), (4, 2) \right\}$$

$$R = \{(-1, 1), (1, 1), (2, 2), (4, 2)\}$$

$$S = \{(-1, 1), (1, 1), (2, 2), (4, 2)\}$$

$$R \cup S = \{(-1, 1), (1, 1), (2, 2), (4, 2)\} = S$$

$$R \cap S = \{(-1, 1), (1, 1), (2, 2)\} = R$$

Problem 3.

Exercise Set 8.2

10. $\forall x, y \in \mathbb{R}, \ x \ C \ y \Leftrightarrow x^2 + y^2 = 1$ C is not reflexive because for $x = 1, \ x \not C \ x$. C is symmetric because $\forall x, y \in \mathbb{R}, \ (x^2 + y^2 = 1) \equiv (y^2 + x^2 = 1)$. C is not transitive because for $(x, y, z) = (1, 0, 1), \ x \ C \ y$ and $y \ C \ z$, but $x \not C \ z$.

Problem 4.

Exercise Set 8.2

16. $\forall x,y \in \mathbb{R}, \ x \ A \ y \Leftrightarrow |x| = |y|$ A is reflexive because $\forall x \in \mathbb{R}, \ |x| = |x| \Leftrightarrow x \ R \ x$ is true. A is symmetric because $\forall x,y \in \mathbb{R}, \ (|x| = |y|) \equiv (|y| = |x|)$, therefore $x \ A \ y \Leftrightarrow y \ A \ x$. A is transitive because $\forall x,y,z \in \mathbb{R}$, if $x \ A \ y \Leftrightarrow |x| = |y|$ and $y \ A \ z \Leftrightarrow |y| = |z|$, then |x| = |y| = |z|, therefore $|x| = |z| \Leftrightarrow x \ A \ z$.

Problem 5.

Exercise Set 8.2

17. $\forall m,n\in\mathbb{Z},\ m\ P\ n\Leftrightarrow\exists$ a prime number p such that $p\mid m$ and $p\mid n$ P is not reflexive because for $m=1,\ m\ \not\!P\ m$. P is symmetric because $\forall m,n\in\mathbb{Z},\ (p\mid m\text{ and }p\mid n)\equiv (p\mid n\text{ and }p\mid m),$ therefore $m\ P\ n\Leftrightarrow n\ P\ m$. P is not transitive because for $(x,y,z)=(3,12,4),\ x\ P\ y$ for p=3 and $y\ P\ z$ for p=2, but $x\ \not\!P\ z$.

Problem 6.

Exercise Set 8.2

19. $\forall x, y \in \mathbb{R}, \ x \ I \ y \Leftrightarrow x - y \text{ is irrational}$ I is not reflexive because for $x = 1, \ x \ I \ x$.

I is symmetric because $\forall x, y \in \mathbb{R}$, if x - y is irrational, then y - x = -(x - y) must also be irrational because the negation of an irrational number is also irrational, therefore $x \ I \ y \Leftrightarrow y \ I \ x$.

I is not transitive because for $(x, y, z) = (\pi, \sqrt{2}, \pi), \ x \ I \ y \ \text{and} \ y \ I \ z$, but $x \ I \ z$.

Problem 7.

Exercise Set 8.2

33. Let A be the set of all lines in the plane.

$$\forall l_1, l_2 \in A, \ l_1 \ R \ l_2 \Leftrightarrow l_1 \perp l_2$$

 ${\cal R}$ is not reflexive because no line is perpendicular to itself.

R is symmetric because $\forall l_1, l_2 \in A$, if $l_1 \perp l_2$, then $l_2 \perp l_1 \Leftrightarrow l_2 R l_1$.

R is not transitive because if a R b and b R c, then a and c are the same line, therefore $a \not R c$.

Problem 8.

Exercise Set 8.3

20. Let A be the set of all statement forms in three variables p, q, and r.

 $\forall P, Q \in A, P \mathbf{R} Q \Leftrightarrow P \text{ and } Q \text{ have the same truth table}$

R is reflexive because any statement has the same truth table as itself.

R is symmetric because $\forall P, Q \in A$, if P **R** Q, then P's truth table is the same as Q's, which means Q's truth table is the same as P's, therefore Q **R** P.

R is transitive because $\forall P, Q, R \in A$, if $P \mathbf{R} Q$ and $Q \mathbf{R} R$, then P and Q and R all have the same truth tables, therefore $P \mathbf{R} R$.

 \mathbf{R} is reflexive, symmetric, and transitive therefore \mathbf{R} is an equivalence relation.

There are $2^3 = 8$ distinct equivalence classes of **R**. Each class contains an infinite amount of 3 variable boolean statements that share the same truth table.

Problem 9.

Exercise Set 8.3

26. $\forall (w, x), (y, z) \in \mathbb{R}^2, (w, x) \ Q(y, z) \Leftrightarrow x = z$

Q is reflexive because $\forall (w, x) \in \mathbb{R}^2$, $x = x \Leftrightarrow (w, x) R(w, x)$ is true.

Q is symmetric because $\forall (w,x), (y,z) \in \mathbb{R}^2$, $(x=z) \equiv (z=x)$, therefore (w,x) Q $(y,z) \Leftrightarrow (y,z)$ Q (w,x).

Q is transitive because $\forall (a,b), (c,d), (e,f) \in \mathbb{R}^2$, if (a,b) Q (c,d) and (c,d) Q (e,f), then b=d=f, therefore (a,b) Q (e,f).

Q is reflexive, symmetric, and transitive therefore Q is an equivalence relation.

There are an uncountably infinite number of distinct equivalence classes of Q. Each class contains an uncountably infinite number of points in \mathbb{R}^2 with the same y coordinate.

Problem 10.

Exercise Set 8.3

28. Let A be the set of all straight lines in the Cartesian plane.

 $\forall l_1, l_2 \in A, \ l_1 \parallel l_2 \Leftrightarrow l_1 \text{ is parallel to } l_2$

A is reflexive because all lines are parallel to themselves.

A is symmetric because $\forall l_1, l_2 \in A$, if $l_1 \parallel l_2$, then l_1 is parallel to l_2 , which means l_2 is parallel to l_1 , therefore $l_2 \parallel l_1$.

A is transitive because $\forall l_1, l_2, l_3 \in A$, if $l_1 \parallel l_2$ and $l_2 \parallel l_3$, then l_1, l_2 , and l_3 are parallel to each other, therefore $l_1 \parallel l_3$.

|| is reflexive, symmetric, and transitive therefore || is an equivalence relation.

There are an uncountably infinite number of distinct equivalence classes of \parallel . Each class contains an uncountably infinite number of mutually parallel lines.

Problem 11.

Exercise Set 8.4

11.
$$a, c, n \in \mathbb{Z}$$
 and $n > 1$ and $a \equiv c \pmod{n}$
Prove $\forall m \geq 1 \in \mathbb{Z}$, $a^m \equiv c^m \pmod{n}$:
Let property $P(m)$ be $a^m \equiv c^m \pmod{n}$.
Basis:

$$P(1): (a^1 = a) \equiv (c^1 = c) \pmod{n} \text{ is true.}$$
Inductive hypothesis:
Assume $P(k): a^k \equiv c^k \pmod{n}$ for $k \geq 1 \in \mathbb{Z}$ is true.
Prove $P(k+1): a^{k+1} \equiv c^{k+1} \pmod{n}$:
$$a^{k+1} = a \cdot a^k$$

$$a = c + sn \text{ because } a \equiv c \pmod{n}.$$

$$a^k = c^k + tn \text{ because } P(k) \text{ is true.}$$

$$a^{k+1} = (c + sn)(c^k + tn)$$

$$= c^{k+1} + ctn + snc^k + stn^2$$

$$= c^{k+1} + n(\underline{ct + sc^k + stn})$$

$$k \in \mathbb{Z} \text{ and } a^{k+1} = c^{k+1} + kn$$

$$a^{k+1} \equiv c^{k+1} \pmod{n}$$
Basis and inductive hypothesis proven, therefore original statement is true.