Problem 1 _

Write a program which reads a natural number n and displays in one graphical box

all its nontrivial divisors (i.e., from the interval [2, n-1]). If there are no nontrivial divisors, the message should state that the number is prime.

Problem 2 _

Write a program which finds digits in the binary system (starting with the least significant) of a number given in decimal system. For example, for number 67_{10} (which is binary 1000011_2), program should display 1, 1, 0, 0, 0, 0, 1.

Problem 3 _

Write a program which asks the user, in a loop, to enter a positive integer until the user enters 0. Then the program prints one number from those which have been read in — the one for which the sum of digits is the largest (and this sum of digits).

Example of a run of the program:

```
enter a natural number (0 if done): 23 enter a natural number (0 if done): 59 enter a natural number (0 if done): 78 enter a natural number (0 if done): 91 enter a natural number (0 if done): 0 Max sum of digits was 15 for 78
```

Note: Do not use arrays, strings and any other kind of collection.

Problem 4_

Write a program which plays the '20 Questions' game with the user. The user chooses (in his/her mind) a number from the interval $[1, 1\,000\,000]$. The program asks in a loop Is this n?, and the user responds with a letter

- s (as in small) if n is smaller than the chosen number;
- b (as in big) if n is bigger than the chosen number;
- y (as in yes) if n is equal to the chosen number;

(to compare strings, use **equals!**).

At the end the program should print something like

Number that you think of is \dots and provide the correct answer and number of trials. Do not use arrays.