Solve the following questions from the Discrete Math zyBooks:

- 1. Exercise 3.1.1
 - (a) $27 \in A \Rightarrow \text{True}$
 - (b) $27 \in A \Rightarrow \text{False}$
 - (c) $100 \in B \Rightarrow \text{True}$
 - (d) $E \subseteq C$ or $C \subseteq E \Rightarrow$ False
 - (e) $E \subseteq A \Rightarrow \text{True}$
 - (f) $A \subseteq E \Rightarrow \text{False}$
 - (g) $E \in A \Rightarrow \text{False}$
- 2. Exercise 3.1.2
 - (a) $15 \subset A \Rightarrow \text{False}$
 - (b) $\{15\} \subset A \Rightarrow \text{True}$
 - (c) $\emptyset \subset C \Rightarrow \text{True}$
 - (d) $D \subseteq D \Rightarrow \text{True}$
 - (e) $\emptyset \in B \Rightarrow \text{False}$
- 3. Exercise 3.1.5
 - (b) $\{3,6,9,12,...\} \Rightarrow \mathbf{A} = \{\mathbf{x} \in \mathbb{Z} : \mathbf{0} < \mathbf{x} \text{ and } \mathbf{x} \text{ is an integer multiple of 3}\}$; infinite set
 - (d) $\{0,10,20,30,...,1000\} \Rightarrow \mathbf{A} = \{\mathbf{x} \in \mathbb{N} : \mathbf{x} \text{ is a natural multiple of } \mathbf{10}\}; |A| = \mathbf{101}$
- 4. Exercise 3.2.1
 - (a) $2 \in X \Rightarrow \text{True}$
 - (b) $\{2\} \subseteq X \Rightarrow \text{True}$
 - (c) $\{2\} \in X \Rightarrow \text{False}$
 - (d) $3 \in X \Rightarrow \text{False}$
 - (e) $\{1,2\} \in X \Rightarrow \text{True}$
 - (f) $\{1,2\} \subseteq X \Rightarrow \text{True}$
 - (g) $\{2,4\} \subseteq X \Rightarrow \text{True}$
 - (h) $\{2,4\} \in X \Rightarrow \text{False}$
 - (i) $\{2,3\} \subseteq X \Rightarrow \text{False}$
 - (j) $\{2,3\} \in X \Rightarrow \text{False}$
 - (k) $|X| = 7 \Rightarrow \text{False}$

Solve the following question from the Discrete Math zyBooks:

1. Exercise 3.2.4

(b)
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}\$$
 $\{X \in P(A) : 2 \in X\} \Rightarrow \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}\}$

Solve the following questions from the Discrete Math zyBooks:

- 1. Exercise 3.3.1
 - (c) $A \cap C \Rightarrow \{-3,1,17\}$
 - (d) $A \cup (B \cap C) \Rightarrow A \cup \{-5, 1\} \Rightarrow \{-5, -3, 0, 1, 4, 17\}$
 - (e) $A \cap B \cap C \Rightarrow \{1, 4\} \cap C \Rightarrow \{1\}$
- 2. Exercise 3.3.3

(a)
$$\bigcap_{i=2}^{6} A_i \Rightarrow A_2 \cap A_3 \cap A_4 \cap A_5 \Rightarrow \{1\}$$

 $A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$

$$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

 $A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$

(b)
$$\bigcup_{i=2}^{5} A_i \Rightarrow A_2 \cup A_3 \cup A_4 \cup A_5 \Rightarrow \{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{9}, \mathbf{16}, \mathbf{25}\}$$

$$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

$$A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$$

(e)
$$\bigcap_{i=1}^{100} C_i \Rightarrow \{ \mathbf{x} \in \mathbf{R} : \frac{-1}{100} \le \mathbf{x} \le \frac{1}{100} \}$$

$$i=1: \frac{-1}{1} \le x \le \frac{1}{1}$$

 $i=100: \frac{-1}{100} \le x \le \frac{1}{100}$

$$(f) \bigcup_{i=1}^{100} C_i \Rightarrow \{\mathbf{x} \in \mathbf{R} : -1 \le \mathbf{x} \le 1\}$$

$$i=1 : \frac{-1}{1} \le x \le \frac{1}{1}$$

$$i=100 : \frac{-1}{100} \le x \le \frac{1}{100}$$

$$i=1: \frac{-1}{1} \le x \le \frac{1}{1}$$

 $i=100: \frac{-1}{100} \le x \le \frac{1}{100}$

3. Exercise 3.3.4

(b)
$$P(A \cap B) \Rightarrow \{\emptyset, \{\mathbf{b}\}\}\$$

$$A\cap B\Rightarrow \{b\}$$

(d)
$$P(A) \cup P(B) \Rightarrow \{\emptyset, \{\mathbf{a}\}, \{\mathbf{b}\}, \{\mathbf{c}\}, \{\mathbf{a}, \mathbf{b}\}, \{\mathbf{b}, \mathbf{c}\}\}$$

$$P(A) \Rightarrow \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

$$P(B)\Rightarrow\{\emptyset,\{b\},\{c\},\{b,c\}\}$$

Solve the following questions from the Discrete Math zyBooks:

```
1. Exercise 3.5.1
```

- (b) $B \times A \times C \Rightarrow$ (foam, tall, non-fat)
- (c) $B \times C \Rightarrow \{(foam, non-fat), (foam, whole), (no-foam, non-fat), (no-foam, whole)\}$

2. Exercise 3.5.3

- (b) $\mathbb{Z}^2 \subseteq \mathbb{R}^2 \Rightarrow \text{True}$
- (c) $\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset \Rightarrow \text{False}$
- (e) If $A \subseteq B$, then $A \times C \subseteq B \times C \Rightarrow$ True

3. Exercise 3.5.6

(d)
$$\{0\}^2 = \{0\} \times \{0\} \Rightarrow (0,0) \mid \{1\}^2 = \{1\} \times \{1\} \Rightarrow (1,1) \}$$

 $\{0\} \cup \{(0,0)\} \Rightarrow \{0,(0,0)\} \mid \{1\} \cup \{(1,1)\} \Rightarrow \{1,(1,1)\} \}$
 $\{xy : \text{ where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\} \Rightarrow \{(0,1),(0,(1,1)),((0,0),1),((0,0),(1,1))\} \}$

(e)
$$\{a\}^2 \Rightarrow \{a\} \times \{a\} \Rightarrow (a, a)$$

 $\{a\} \cup \{a\}^2 \Rightarrow \{a, (a, a)\}$
 $\{xy : x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\} \Rightarrow \{(\mathbf{aa,a}), (\mathbf{aa,(a,a)}), (\mathbf{ab,a}), (\mathbf{ab,(a,a)})\}$

4. Exercise 3.5.7

(c)
$$A \times B \Rightarrow \{ab,ac\}$$

$$A \times C \Rightarrow \{aa,ab,ad\}$$

$$(A \times B) \cup (A \times C) \Rightarrow \{aa,ab,ac,ad\}$$

(f)
$$A \times B \Rightarrow \{ab,ac\}$$

$$P(A \times B) \Rightarrow \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}\$$

(g)
$$P(A) \Rightarrow \{\emptyset, \{a\}\}$$

$$P(B) \Rightarrow \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$$

$$P(A) \times P(B) \Rightarrow \{(\emptyset, \emptyset), (\emptyset, \{\mathbf{b}\}), (\emptyset, \{\mathbf{c}\}), (\emptyset, \{\mathbf{b}, \mathbf{c}\}), (\{\mathbf{a}\}, \emptyset), (\{\mathbf{a}\}, \{\mathbf{b}\}), (\{\mathbf{a}\}, \{\mathbf{c}\}), (\{\mathbf{a}\}, \{\mathbf{b}, \mathbf{c}\})\}$$

Solve the following questions from the Discrete Math zyBooks:

 $1. \ \, \text{Exercise } 3.6.2$

(b)

 $(B \cup A) \cap (\overline{B} \cup A)$

Distributive Law: $(B \cap \overline{B}) \cup A$

Complement Law: $\emptyset \cup A$

Commutative Law: $A \cup \emptyset$

Identity Law: ${\bf A}$

(c)

 $\overline{A \cap \overline{B}}$

De Morgan's Law: $\overline{A} \cup \overline{\overline{B}}$

Double Complement Law: $\mathbf{A} \cup \mathbf{B}$

2. Exercise 3.6.3

(b) $A = \{1,2\}$ and $B = \{1\}$

 $B \cap A \Rightarrow \{1\}$

 $\{1,2\}-\{1\}\Rightarrow\{2\}\neq A$

(d) $B = \{1,2\}$ and $A = \{1\}$

 $(B-A)\cup A$

 $B - A \Rightarrow \{2\}$

 $\{2\} \cup \{1\} \Rightarrow \{1,2\} \neq A$

3. Exercise 3.6.4

(b)

 $A \cap (B - A)$

Subtraction Law: $A \cap (B \cap \overline{A})$

Commutative Law: $A \cap (\overline{A} \cap B)$

Associative Law: $(A \cap \overline{A}) \cap B$

Complement Law: $\emptyset \cap B$

Commutative Law: $B \cap \emptyset$

Domination Law: \emptyset

(c)

$A \cup (B - A)$

Subtraction Law: $A \cup (B \cap \overline{A})$ Distributive Law: $(A \cup B) \cap (A \cup \overline{A})$ Complement Law: $(A \cup B) \cap U$

Identity Law: $\mathbf{A} \cup \mathbf{B}$