This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

MAP Kinase/Phosphoinositide/ Fig. 2

PI3 Kinase Pathways in the Network (prior art)

(prior art

The first first first first to the control of the first o

Measurement of Kinase Activation (Current Technology)

prepare for assay (variable-days) 1. Grow up cells &

2

2. Immunoprecipitate the kinase (~4 hr)

3. Set-up and perform kinase reaction (hours)

+ $^{32}\mathbf{p}$ + $^{\text{co}}$

or SDS-PAGE assay (hours-day)

4. Perform phosphocellulose assay

 $^{32}\mathrm{p}$

Electrophorese

Assay Time ~Days

(prior art) Measurement of Protein Location (via GFP Tag)

1. Develop stably transfected cell lines carrying the overexpressed GFP-tagged protein

2. Fluorescent imaging and pattern recognition

3. Infer protein activity from location

Assay Time ~Minutes

Fig. 5A

Single

Multiple

Fig. 5B

Average" Measurements Performing "Population

Single Cells or Population Averages

Sampling a Portion of a Cell Fig. 6A

Fig. 6C
Analyzing A Neuronal Process

Loading Single Cells With Enzyme Substrates

Loading Multiple Cells With Enzyme Substrates

Electroporation

Cells

Reporters

Laser

14

Passive Techniques

Pinocytosis
Vesicle Fusion
Membrane-Permeant
Substrates

Fluorescence Image Transmitted Light Image Nuclear-Localized Substrate for PKC

Nucleus of Cell

Cytoplasm of Cell

Coupling to Other Technologies

Proteomics

Fig. 12A

Coupling to Other Technologies Genomics

Fig. 12B SIGNAL TRANSDUCTION MICROCHIP

Coupling to Other Technologies Flow Cytometry

Cell Contents Detection Separation 70 Region **3** Cell Interogation

Integration With Other Cellular Analysis Methods

Fluorescence Imaging

Fig. 15A

Profiling Signal Transduction Pathways in Cells with Four Reporters

Separation of Reporters and Altered Reporters

Fig. 17

Profiling Signal Transduction Pathways

Applications

Drug Discovery and Validation

Toxicity High

Efficacious

Low Toxicity

Efficacious

Not

Fig. 20

Identifying the Cellular Targets of Compounds 28

Applications

Diagnostics and Prognostics

Enzyme Activation Profile of Patient's Cells

> Patient's Cell Loaded with Reporters

Compare to Database

Personalised Diagnosis, Prognosis, Therapy

Analysis of Biologic Systems

Protein Activity Maps

DNA Arrays

Mass Spec., Protein Arrays Proteomics

Signaling

Genomics

Fig. 24

Serial Analysis of Cells

Parallel Processing of Cells-

Arrays of Separation Channels

Computer-control of microlumen alignment over cells, lysis, and/or other steps,

118.0B

Fig.7a

Cell Assay

Active Enzyme

Fig. 15B

Profiling Signal Transduction Pathways in Cells with Three Reporters

Separation of Reporters and Altered Reporters

Profiling Signal Transduction Pathways in Cells with Five Reporters

Fig. 18

Profiling Signal Transduction Pathways in Cells with Many Reporters

Identifying and Targeting Pre-Disease or Disease States

Table I

Intracellular Environment Influence of the

Cellular

Is it the same after

Property

removal from the cell?

I. DNA, RNA

Yes

(sequence, quantity)

2. Protein

Likely

(identity, conc.)

3. Activity

Usually Not

Table II

Distinguished By Their Timescales Cellular Properties Are

DNA & RNA Minutes - Years "Genomics"

Seconds - Hours "Proteomics" Protein

Milliseconds - Seconds "Signaling" Activity

Table III

Available Technologies A Sampling Of

Field

Property

Technologies

1. Genomics

DNA, RNA

DNA Arrays

2. Proteomics

Protein Identity Protein Gels/Arrays & Conc.

Mass Spec.

3. Signaling

Activity

GFP-Based Methods Critical Need