Теория и реализация языков программирования.

Задание 7: контекстно-свободные языки и магазинные автоматы

Сергей Володин, 272 гр.

задано 2013.10.16

Упражнение 1

Упражнение 2

Упражнение 3

- 1. Грамматика $\Gamma = (\{S\}, \Sigma_n \cup \overline{\Sigma}_n, P, S)$. $P = \{S \longrightarrow \sigma_i \overline{\sigma}_i | \sigma_i S \overline{\sigma}_i | SS\}$. $D_n = L(\Gamma)$.
- 2. Исходное утверждение: $\forall w \left(\underbrace{w \in D_n}_A \Rightarrow \underbrace{\forall i \leqslant n \, \forall k \leqslant |w| \hookrightarrow ||w[1,k]||_i \geqslant 0, \, ||w||_i = 0}_B\right)$
- 3. Отрицание обратного утверждения: $\exists w \colon (B \wedge \neg A)$. Пусть $w = \varepsilon$.
 - а. Тогда $k\leqslant |w|\Rightarrow k=0$, поэтому $\forall i\leqslant n\hookrightarrow ||w[1,k]||_i\equiv |\varepsilon|_{\sigma_i}-|\varepsilon|_{\overline{\sigma_i}}=0$ и $\forall i\leqslant n\hookrightarrow ||w||_i=0$. Получаем B.
 - b. Но $w = \varepsilon$ не порождается грамматикой Γ : первые два правила добавляют нетерминалов, поэтому не могут быть применены, и применение третьего правила не уменьшает количества нетерминалов. Получаем ¬А ■

Задача 1

- 1. Определим МП-автомат $\mathcal{A} = (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по пустому стеку.
 - (a) $n \stackrel{\text{def}}{=} 2$
 - (b) $\Sigma_n \stackrel{\text{def}}{=} \{[1, ..., [n]] \equiv \{[1, [2]], \overline{\Sigma}_n \stackrel{\text{def}}{=} \{]1, ..., [n]\} \equiv \{]1,]2\}.$
 - (c) $\Sigma \stackrel{\text{def}}{=} \Sigma_n \cup \overline{\Sigma}_n \equiv \{[1,]_1, [2,]_2\}$
 - (d) $\Gamma \stackrel{\text{def}}{=} \{Z\} \Sigma_n \equiv \{Z, \lceil_1, \lceil_2\}.$
 - (e) $Q \stackrel{\text{def}}{=} \{q_0, q_1\}$
 - (f) δ изображена справа
 - (g) $F \stackrel{\text{def}}{=} \emptyset$ (N-автомат)

- 2. Определим морфизм $P \colon P \colon (\Sigma_n \cup \overline{\Sigma}_n)^* \longrightarrow (\Sigma_n \cup \overline{\Sigma}_n)^* \colon P([i) =]_i, P([i) = [i пары для скобок. Доопределим до морфизма: <math>P(w_1...w_l) = P(w_1)...P(w_l)$.
- 3. $L=D_2\cap \left([_1|_2)^*(_{]1}|_{]2}\right)^*$. $w\in L\Rightarrow w=w_1w_2,\,w_1=\left([_1|_2\right)^{n_1},\,w_2=(_{]1}|_{]2}\right)^{n_2}$. $w\in D_2\Rightarrow 0=||w||_i=||w_1||_i+||w_2||_i=||w_1||_i+||w_2||_i-||w_1||_i-||w_2||_i$. Сложим равенства, получим $0=||w_1||_1+||w_1||_2-||w_2||_1$. Сложим равенства, получим $0=||w_1||_1+||w_1||_2-||w_2||_1-||w_2||_2\Rightarrow ||w_1||=||w_2||\Rightarrow n_1=n_2$.
- 4. $w \in L$, $|w_1| = s$, $w_1 = [_{i_1}...[_{i_s}, w_2 =]_{j_1}...]_{j_s}$. Докажем, что $P(w_2) = w_1^R$: $Q(k) \stackrel{\text{def}}{=} [P(w_2)[1,k] = w_1^R[1,k]]$.
 - а. Очевидно, Q(0), так как $P(w_2)[1,0] \equiv \varepsilon \equiv w_1^R[1,0]$.
 - b. Пусть Q(k). Тогда $w_1=p[_{i_{s-k+1}}...[_{i_s},w_2=]_{i_s}...]_{i_{s-k+1}}q$. То есть, k скобок от центра парные друг к другу. Обозначим их за $t=[_{i_{s-k+1}}...[_{i_s}]_{i_s}...]_{i_{s-k+1}}\Rightarrow ||t||_i=0,\ t-\Pi \text{CB}$. Предположим $Q(k+1)\stackrel{Q(k)}{\Rightarrow} P(w_2)[k+1]\neq w_1^R[k+1]$. Без ограничения общности $p=p_0[_1,\ q=]_2q_0$. Тогда $w=p_0[_1t]_2q_0$. Но $t-\Pi \text{CB}$, поэтому пара для $[_1-\text{в}\ q_0,\ \text{пара}\ \text{для}\]_2-\text{в}\ p_0$: $w=...[_2...[_1t]_2...]_1...-$ не $\Pi \text{CB}\Rightarrow w\notin D_2-$ противоречие. Значит, Q(k+1).
- 5. Пусть $w \in L$. Докажем, что $(q_0, w, Z) \vdash^* (q_1, \varepsilon, Z)$ и $(q_1, w, Z) \vdash^* (q_1, \varepsilon, Z)$. $3 \Rightarrow w = w_1 w_2, 4 \Rightarrow P(w_1)^R = w_2$.
 - а. Докажем $Q(k) \stackrel{\text{def}}{=} [(q_0, w_1[1, k], Z) \vdash^* (q_0, \varepsilon, (w_1[1, k])^R Z)]$: а. $k = 0 \Rightarrow w_1[1, k] = \varepsilon \Rightarrow (w_1[1, k])^R = \varepsilon$. Получаем $(q_0, w_1[1, k], Z) \equiv (q_0, (w_1[1, k])^R, Z) \Rightarrow Q(0)$

- b. Пусть $Q(k) \Rightarrow (q_0, w_1[1, k], Z) \vdash^* (q_0, \varepsilon, (w_1[1, k])^R Z)$. Рассмотрим $w_1[k+1] = \begin{bmatrix} i_{k+1} \end{bmatrix}$. По определению δ имеем $\forall \gamma (q_0, [i_{k+1}, \gamma) \vdash (q_0, \varepsilon, [i_{k+1} \gamma))$. Тогда $(q_0, w[1, k+1], Z) \equiv (q_0, w_1[1, k][i_{k+1}, Z) \stackrel{Q(k)}{\vdash^*} (q_0, [i_{k+1}, (w_1[1, k])^R Z) \stackrel{\text{def } \delta}{\vdash} (q_0, \varepsilon, w_1[k+1](w_1[1, k])^R Z) \equiv (q_0, \varepsilon, (w_1[1, k+1])^R Z) \Rightarrow Q(k+1)$.
- b. Докажем $Q(k) \stackrel{\text{def}}{=} [\forall \gamma \in \Gamma^+ \hookrightarrow (q_1, w_2[1, k], P(w_2)[1, k]\gamma) \vdash^* (q_1, \varepsilon, \gamma)]$:
 - a. $k = 0 \Rightarrow w_2[1, k] \equiv \varepsilon \equiv P(w_2)[1, k] \Rightarrow Q(0)$
 - b. Пусть $Q(k) \Rightarrow \forall \gamma \hookrightarrow (q_1, w_2[1, k], P(w_2)[1, k]\gamma) \vdash^* (q_1, \varepsilon, \gamma). \ \not \subset w_2[k+1] =]_{i_{k+1}}.$ Из определения δ получаем $\forall \gamma_1 \hookrightarrow (q_1,]_{i_{k+1}}, [_{i_{k+1}}\gamma_1) \vdash (q_1, \varepsilon, \gamma_1).$

Значит, $(q_1, w_2[1, k+1], P(w_2)[1, k+1]\gamma) \equiv (q_1, w_2[1, k]]_{i_{k+1}}, P(w_2)[1, k][_{i_{k+1}}\gamma) \overset{Q(k)}{\vdash^*} (q_1,]_{i_{k+1}}, [_{i_{k+1}}\gamma) \overset{\text{def } \delta}{\vdash} (q_1, \varepsilon, \gamma) \Rightarrow Q(k+1).$

- с. Рассмотрим $w_2 =]_i w_2^0$. Но $4 \Rightarrow w_2 = P(w_1)^R \Rightarrow w_1 = P(w_2^0)^R [_i$ Из определения δ получаем $\forall \gamma(q_0,]_i,[_i\gamma) \vdash (q_1,\varepsilon,\gamma)$. Тогда $\underline{(q_0,w,Z)} \stackrel{5a}{\vdash^*} (q_0,w_2,(w_1)^R Z) \equiv (q_0,]_i w_2^0,[_iP(w_2^0)Z) \stackrel{\text{def }\delta}{\vdash^*} (q_1,w_2^0,P(w_2^0)Z) \stackrel{5b}{\vdash^*} \underline{(q_1,\varepsilon,Z)}$.
- d. $w_1 = [_iw_1^0$. Из определения δ получаем $(q_1, [_i, Z) \vdash (q_1, \varepsilon, [_iZ)$. Тогда $(q_1, w, Z) \equiv (q_1, [_iw_1^0w_2, Z) \stackrel{\text{def }}{\vdash} (q_0, w_1^0w_2, [_iZ)$. Но эта конфигурация может быть получена иначе: $(q_0, [_i, Z) \vdash (q_0, [_i, [_iZ)$. Значит, дальнейшие конфигурации также могут совпадать. Имеем $5c \Rightarrow (q_1, w, Z) \vdash^* (q_1, \varepsilon, Z)$.
- 6. Пусть $w \in L^* \setminus \{\varepsilon\} \Rightarrow w = w_1...w_k$, $\forall i \in \overline{1,k} \hookrightarrow w_i \in L$. Определим $f \colon L^* \longrightarrow \mathbb{N} \cup \{0\}$: $f(w) \ni k$ (многозначная функция). Если $w = \varepsilon$, определим $f(w) \stackrel{\text{def}}{=} 0$.
- 7. $P(k) \stackrel{\text{def}}{=} \left[\forall w \in L^* : f(w) \ni k \hookrightarrow (q_0, w, Z) \vdash^* (q_1, \varepsilon, Z) \right]$
 - (a) Пусть k=0. Тогда $w=\varepsilon$. $(q_0,w,Z)\equiv (q_0,\varepsilon,Z)\vdash (q_1,\varepsilon,Z)\Rightarrow P(0)$.
 - (b) Пусть $k=1, w\in L^*\colon f(w)\ni 1\Rightarrow w\equiv w_1\in L. \ 5\Rightarrow (q_0,w,Z)\vdash^* (q_1,\varepsilon,Z)\Rightarrow P(1)\blacksquare$
 - (c) Пусть P(k). $w \in L^*$: $f(w) \ni k+1 \Rightarrow w = w_1...w_{k+1}$, $\forall i \in \overline{1,k+1} \hookrightarrow w_i \in L$. $\not \leq w_0 \stackrel{\text{def}}{=} w_1...w_k \in L^*$. $f(w_0) \ni k \stackrel{P(k)}{\Rightarrow} (q_0,w_0,Z) \vdash^* (q_1,\varepsilon,Z)$. Тогда $(q_0,w,Z) \equiv (q_0,w_0w_{k+1},Z) \vdash^* (q_1,\varepsilon w_{k+1},Z) \vdash^* (q_1,\varepsilon,Z) \Rightarrow P(k+1) \blacksquare$

Получаем $\forall w \in L^* \hookrightarrow (q_0, w, Z) \vdash^* (q_1, \varepsilon, Z) \stackrel{\text{def } \delta}{\vdash} (q_1, \varepsilon, \varepsilon) \Rightarrow \forall w \in L^* \hookrightarrow w \in L(\mathcal{A}) \Rightarrow \boxed{L^* \subseteq L(\mathcal{A})}$

- 8. $\not < \delta$. Заметим, что каждый переход, кроме $q_1 \xrightarrow{\varepsilon, Z/\varepsilon} q_1$ сохраняет количество Z в стеке, и, более того, оставляет Z на дне стека.
- 9. Пусть $(q_a, w, \phi) \vdash^* (q_b, \varepsilon, \gamma)$. Тогда $||\gamma||_i ||\phi||_i = ||w||_i$. Докажем по индукции: $Q(k) \stackrel{\text{def}}{=} [\forall w \colon |w| = k \, \forall q_a \, \forall q_b \, \forall \phi \, \forall \gamma \colon (q_a, w, \phi) \vdash^* (q_b, \varepsilon, \gamma) \hookrightarrow ||\gamma||_i ||\phi||_i = ||w||_i].$
 - а. $k=0\Rightarrow w=\varepsilon$. Поскольку все ε -переходы $q_0\stackrel{\varepsilon,Z/Z}{\longrightarrow} q_1$ и $q_1\stackrel{\varepsilon,Z/\varepsilon}{\longrightarrow} q_1$ не изменяют $||\cdot||_i$ для символов стека, получаем $||w||_i\equiv 0\equiv ||\phi||_i-||\delta||_i\Rightarrow Q(0)$.
- 10. Пусть $w \in L(\mathcal{A}) \Rightarrow (q_0, w, Z) \vdash^* (q, \varepsilon, \varepsilon)$.
 - а. Если $w = \varepsilon$, то $w \in L^*$
 - b. Пусть иначе. Изначально Z в стеке, в конце его нет. Значит (8), был переход $q_1 \stackrel{\varepsilon,Z/\varepsilon}{\longrightarrow} q_1$. Но Z был на дне стека, поэтому после стек пуст. Значит, это последняя конфигурация. Имеем $(q_0,w,Z) \vdash^* (q_1,\varepsilon,Z) \vdash (q_1,\varepsilon,\varepsilon)$. Рассмотрим $(q_0,w,Z) \vdash^* (q_1,\varepsilon,Z)$. Пусть $\{c_i\}_{i=0}^I$ эта цепочка конфигураций, $c_i = (q_k,w_i,\gamma_i)$
 - і. $\not < \delta$. Заметим, что автомат реализует алгоритм проверки на ПСВ: если была прочитана скобка [i], то она положена в стек. Скобки вынимаются из стека тогда и только тогда, когда прочитана парная скобка. Значит, $w = \Pi CB$.
 - іі. Рассмотрим все конфигурации $c_{i_j}: \gamma_{i_j} = Z \Rightarrow c_i \equiv (q_{k_{i_j}}, w_{i_j}, Z)$. Рассмотрим первую пару $c_{i_1} \vdash^* c_{i_2}$. Было прочитано слово $x_1.$ $9 \Rightarrow ||x_1||_i = ||Z||_i ||Z||_i = 0$. Получаем, что x_1 подстрока ПСВ со скобочным итогом, равным нулю. Значит, x_1 ПСВ. Пусть $x_1 = ab$, в a только открывающие скобки, в b первая закрывающая. Пусть в b есть открывающие скобки, а именно, b = cd, в d первая открывающая скобка. После прочтения a автомат находится в q_0 (5a). Далее после прочтения c автомат в q_1 (5b). Стек не пуст, так как иначе эта пара конфигураций не первая. Но из q_1 нет переходов по открывающим скобкам c непустым стеком противоречие. Получаем, что в b нет открывающих скобок a (иначе скобочный итог отрицательный), по ней автомат переходит в a0. Получаем, что a1 открывающая скобка (иначе скобочный итог отрицательный), по ней автомат переходит в a3. Получаем, что a4 открывающая скобка (иначе скобочный итог отрицательный), по ней автомат переходит в a4.

Получаем $L(\mathcal{A}) \subseteq L^*$

Задача 2

- 1. Пусть $N=(\Sigma,\Gamma_N,Q_N,\delta_N,Z_0,q_0,F_N)$ МП-автомат, допускающий по пустому стеку. Построим МП-автомат $P=(\Sigma,\Gamma,Q,\delta,Z_0,q_s,F)$, допускающий по заключительному состоянию : L(N)=L(P).
 - a. $\Gamma = \Gamma_N \cup \{X\}$
 - b. $Q = Q_N \cup \{q_s, q_f\}$
 - c. $F = \{q_f\}$
 - d. $\delta-\delta_N$ с добавленными переходами: $q_s \overset{\varepsilon,Z_0/Z_0X}{\longrightarrow} q_0, \ q_i \overset{\varepsilon,X/X}{\longrightarrow} q_f, \ q_i \in Q_N.$
 - 1. Пусть $w \in L(N)$. Тогда $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon) \mathsf{B} N$. Для $P: (q_s, w, Z_0) \vdash (q_0, w, Z_0X) \vdash^* (q, \varepsilon, X) \vdash (q_f, \varepsilon, X)$. Переходы, отмеченные (*) возможны, так как в P сохранены переходы из N. Добавление X на дно стека не изменит работу автомата, т.к. X не будет удаляться из стека (в противном случае получим удаление символа из пустого стека в N). Но $q_f \in F \Rightarrow w \in L(P)$
 - 2. Пусть $w \in L(P)$. Принимающее состояние одно, поэтому цепочка конфигураций имеет вид $(q_s, w, Z_0) \vdash^* (q_f, \varepsilon, \gamma)$. Из q_s переход один, поэтому цепочка имеет вид $(q_s, w, Z_0) \vdash (q_0, w, Z_0X) \vdash^* (q_f, \varepsilon, \gamma)$. Переходы в q_f только при X на верхушке стека. Также X всегда остается на дне стека, т.к. переходы из исходного автомата не удаляют X. Поэтому $\gamma = X$. Имеем $(q_0, w, Z_0X) \vdash^* (q, \varepsilon, X) \vdash (q_f, \varepsilon, X)$. Удалим X, получим цепочку конфигураций в N: $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon) \Rightarrow w \in L(N)$.
- 2. Пусть $P = (\Sigma, \Gamma_P, Q_P, \delta_P, Z_0, q_0, F_P)$ МП-автомат, допускающий по принимающему состоянию. Построим МП-автомат $N = (\Sigma, \Gamma, Q, \delta, Z_0, q_s, F)$, принимающий по пустому стеку : L(N) = L(P).
 - a. $F = \emptyset$
 - b. $\Gamma = \Gamma_P \cup \{X\}$
 - c. $Q = Q_P \cup \{q_s, q_f\}$
 - d. $\delta-\delta_P$ с добавленными переходами: $q_s \overset{\varepsilon,Z_0/Z_0X}{\longrightarrow} q_0; \ q_i \overset{\varepsilon,\gamma/\gamma}{\longrightarrow} q_f, \ \gamma \in \Gamma, \ q_i \in F;$ а также $q_f \overset{\varepsilon,\gamma/\varepsilon}{\longrightarrow} q_f, \ \gamma \in \Gamma.$
 - (a) Пусть $w \in L(P)$. Тогда в P $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \mu), q \in F$. Тогда в N имеем $(q_s, w, Z_0) \vdash (q_0, w, Z_0X) \stackrel{(*)}{\vdash^*} (q, \varepsilon, \mu X) \vdash$ $(q_f, \varepsilon, \kappa) \stackrel{(*)}{\vdash^*} (q_f, \varepsilon, \varepsilon)$. Корректность переходов (*) доказывается также, как в предыдущем пункте, переходы $(*_2)$ возможны, т.к. в δ есть переходы $q_f \stackrel{\varepsilon, \gamma/\varepsilon}{\longrightarrow} q_f$. Получаем $(q_s, w, Z) \vdash^* (q_f, \varepsilon, \varepsilon) \Rightarrow w \in L(N)$.
 - (b) Пусть $w \in L(N)$. После q_s в стеке на дне всегда X. В конце его нет, и в изначальном автомате P нет удалений X (т.к. $X \notin \Gamma_P$). Значит, был переход $q_f \longrightarrow q_f$. Но из q_f нет переходов в другие состояния, поэтому q_f последнее состояние: $(q_s, w, Z_0) \vdash (q_0, w, Z_0 X) \vdash^* (q_f, \varepsilon, \varepsilon)$. Найдем первую конфигурацию с конца, состояние которой не q_f : $(q_s, w, Z_0) \vdash (q_0, w, Z_0 X) \vdash^* (q, w, \mu X) \vdash^* (q_f, \varepsilon, \varepsilon)$. Переходы в q_f есть только из $q_k \in F$, поэтому $q \in F$. Отсюда получаем цепочку конфигураций в P: $(q_0, w, Z_0) \vdash^* (q, w, \mu)$, так как наличие одного символа на дне стека не изменяет работу автомата в данном случае. $q \in F \Rightarrow w \in L(P)$.

Задача 3

- 1. $\Sigma \stackrel{\text{def}}{=} \{a, b, c\}$. КС-грамматика $\Gamma \equiv (N, \Sigma, P, S)$.
 - (a) $N \stackrel{\text{def}}{=} \{S, A, B, A_1, A_2, B_1\}$
 - (b) $P = \{S \longrightarrow A | B, A \longrightarrow A_1 A_2, A_1 \longrightarrow aA_1 b | \varepsilon, A_2 \longrightarrow cA_2 | \varepsilon, B \longrightarrow aBc | B_1, B_1 \longrightarrow bB_1 | \varepsilon \}$
 - 1. $L \stackrel{\text{def}}{=} \{a^i b^j c^k | i = j \lor i = k, i, j, k \ge 0\}$
 - 2. Докажем, что A_1 порождает $a^i b^i$:
 - і. Фиксируем i. Применим $A_1 \longrightarrow aA_1b$ i раз, получим $a^iA_1b^i$. Применим $A_1 \longrightarrow \varepsilon$. Получим a^ib^i
 - іі. Пусть $A_0 \longrightarrow^* w \in \Sigma^*$. Заметим, что к A_1 могут быть применены только правила $A_1 \longrightarrow aA_1b$ и $A_1 \longrightarrow \varepsilon$. Оба не добавляют нетерминалов, первое не уменьшает количество A_1 , второе уменьшает его на 1. Значит (КС-грамматика, правила применяются к нетермиранам), в выводе i применений первого, одно применение второго. Получаем $w = a^i b^i$.
 - 3. Аналогично (используя количество нетерминалов в правилах) докажем, что A_2 порождает c^j , B_1 порождает b^k , B порождает $a^ib^jc^i$.
 - 4. Пусть $w \in L$. Построим вывод w в Γ :
 - і. Если $w=\varepsilon$, то вывод следующий: $S\stackrel{S\to B}{\longrightarrow} B\stackrel{B\to B_1}{\longrightarrow} B_1\stackrel{B_1\to\varepsilon}{\longrightarrow} \varepsilon$
 - іі. Пусть $w \neq \varepsilon, w = a^i b^i c^k$. $S \xrightarrow{S \to A_1 A_2} A_1 A_2$.
 - A. $12 \Longrightarrow A_1 \to^* a^i b^i$
 - B. $13 \Longrightarrow A_2 \to^* c^j$
 - Получаем $S \to^* a^i b^i c^j$

і
іі. Пусть $w \neq \varepsilon, w = a^i b^j a^i$. 13 $\Rightarrow S \rightarrow^* a^i b^j c^i$.

Получаем $L \subseteq L(\Gamma)$

- 5. Пусть $S \longrightarrow^* w$. Из S могут быть получены только A и B. Рассмотрим эти случаи:
 - і. Первое правило $S\longrightarrow A$. Из A могут быть получены только $A_1A_2,\,12\Rightarrow$ из A_1 получено $a_ib_i,\,13\Rightarrow$ из A_2-c_j . Получаем, что $w=a^ib^ic^j\in L$.
 - іі. Первое правило $S\longrightarrow B$. 13 \Rightarrow из B может быть получено только $w\equiv a_ib^jc^i\in L$

Получаем $L(\Gamma) \subseteq L$