Using Image Smoothly To Improve Global Thresholding

Figure 10.40 -success

Figure 10.41 - failure

need more local approach

Variable Thresholding

Often simply con't pick effective global threshold dies to

- · image noise
- · nononiform illumination

Instead, vary threshold at different locations of image.

I mage Partitioning

Subdivide image into nonoverlapping rectangles and perform (global) thresholding in each Fig. 10.46. and 10.47.

Problem: what if rectangle contains only object or background?

Variable Thresholding Based on Local Image Properties

Compute threshold at every point (xiy) in image based on properties computed in neighborhood of (xxy)

Ex. Suppose oxy and may are mean & standard deviction in neighborhood Sxy of pt. (xiy).

choose Txy = aoxy + bmxy where where a, b are non-negative constants.

Segmented image:

nted image:

$$g(x_{iy}) = \begin{cases} 1 & \text{if } f(x_{iy}) > T_{xy} \\ 0 & \text{if } f(x_{iy}) = T_{xy} \end{cases}$$

Alternately

Txy = adxy + bmg where mg is global mean.

Also, g(x1) = { 1 if fay) > aoxy AND f(x1y) > bmxy

O otherwise

Moving Averages

2

Threshold based on average of pixels in neighborhood.

Often neighborhood taken in one dimension in text segmentation.

Along each like:

, let ZR+1 be intensity at pt. k+1

. moving average

 $M(k+1) = \frac{1}{n} \sum_{j=k+2-n}^{k+1} Z_{j}$

initialize each line $m(i) = \frac{z_{k+1} - z_{k-n}}{h}$

-> efficient!

Let Txy = bmxy

Fig. 10.49 - illumination typical of photographic flash. Here n= 20 & 5 x awage stroke width (~4 pixels here)

Fig. 10.50