Proofs Portfolio

MAT 3100W: Intro to Proofs

Sam Ly

October 6, 2025

Introduction 1

(Leave this blank for now. Here's an outline of course topics for your reference.)

Proof techniques $\mathbf{2}$

(Here we give examples of some proof techniques.)

2.1**Proof by Induction**

As an example of Proof by Induction, we will prove the following.

Proposition 1. Let F_n be the n-th Fibonacci number, where $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$. Prove that $F_n \leq 1.9^n$ for all $n \geq 1$.

Proof. We begin by verifying the relation for small n to create our base cases:

$$n = 1, F_1 = 1 < 1.9^1 = 1.9$$

$$n = 2, F_2 = 2 < 1.9^2 = 3.61.$$

We then form our inductive hypothesis by assuming $F_n \leq 1.9^n$ for $1 \leq n \leq k$.

$$F_{k+1} < 1.9^{k+1}$$

$$F_k + F_{k-1} < 1.9^{k+1}$$
.

Using our inductive hypothesis, we see that $F_k \leq 1.9^k$ and $F_{k-1} \leq 1.9^{k-1}$. So, $F_k + F_{k-1} \leq 1.9^k + 1.9^{k-1}$. By refactoring $1.9^k + 1.9^{k-1}$, we get:

$$1.9^k + 1.9^{k-1} = 1.9(1.9^{k-1}) + 1.9^{k-1} = 2.9(1.9^{k-1}).$$

Also, 1.9^{k+1} can be rewritten as $1.9^2(1.9^{k-1}) = 3.61(1.9^{k-1})$.

Finally, we see

$$F_{k+1} = F_k + F_{k-1} \le 2.9(1.9^{k-1}) \le 3.61(1.9^{k-1}) = 1.9^{k+1}$$

$$F_{k+1} < 1.9^{k+1}$$
.

Therefore, $F_n \leq 1.9^n$ for all $n \geq 1$.

Appendix

(The first section, "Course objectives and student learning outcomes" is just here for your reference.)

A Course objectives and student learning outcomes

- 1. Students will learn to identify the logical structure of mathematical statements and apply appropriate strategies to prove those statements.
- 2. Students learn methods of proof including direct and indirect proofs (contrapositive, contradiction) and induction.
- 3. Students learn the basic structures of mathematics, including sets, functions, equivalence relations, and the basics of counting formulas.
- 4. Students will be able to prove multiply quantified statements.
- 5. Students will be exposed to well-known proofs, like the irrationality of $\sqrt{2}$ and the uncountability of the reals.

A.1 Expanded course description

- Propositional logic, truth tables, DeMorgan's Laws
- Sets, set operations, Venn diagrams, indexed collections of sets
- Conventions of writing proofs
- Proofs
 - Direct proofs
 - Contrapositive proofs
 - Proof by cases
 - Proof by contradiction
 - Existence and Uniqueness proofs
 - Proof by Induction

• Quantifiers

- Proving universally and existentially quantified statements
- Disproving universally and existentially quantified statements
- Proving and disproving multiply quantified statements
- Number systems and basic mathematical concepts
 - The natural numbers and the integers, divisibility, and modular arithmetic
 - Counting: combinations and permutations, factorials
 - Rational numbers, the irrationality of $\sqrt{2}$
 - Real numbers, absolute value, and inequalities
- Relations and functions
 - Relations, equivalence relations
 - Functions
 - Injections, surjections, bijections

• Cardinality

- Countable and uncountable sets
- Countability of the rational numbers, $\mathbb Q$
- Uncountability of the real numbers, $\mathbb R$