[NAACL19] Unsupervised Recurrent Neural Network Grammars

WeiYang **9** 51184506043

weiyang@godweiyang.com

https://godweiyang.com

2019.05.09

Model Architecture

Inference Network $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ Generative Model $p_{\theta}(\mathbf{x}, \mathbf{z})$

Inference Network: $q_{\phi}(z|x)$

Encoder:

$$f_i, b_i = BiLSTM([e_i, p_i])$$

Span scores:

$$s_{ij} = MLP([f_{j+1} - f_i; b_{i-1} - b_j])$$

Probability of a tree:

$$q_\phi(B|x) = rac{1}{Z_T(x)} \exp(\sum_{i \leq j} B_{ij} s_{ij})$$

Partition function:

$$Z_T(x) = \sum_{B' \in \mathcal{B}_T} \exp(\sum_{i \leq j} B'_{ij} s_{ij})$$

Inside Algorithm for Calculating $Z_T(x)$

Algorithm 1 Inside algorithm for calculating $Z_T(\mathbf{x})$

```
\triangleright scores s_{ij} for i \leq j
1: procedure INSIDE(s)
       for i := 1 to T do
                                                      ⊳ length-1 spans
3:
          \beta[i,i]=s_{ii}
   for \ell := 1 to T-1 do
4:
                                                          ⊳ span length
5:
          for i := 1 to T - \ell do

⊳ span start

6:
             j = i + \ell

⊳ span end

             \beta[i,j] = \sum_{k=i}^{j-1} s_{ij} \cdot \beta[i,k] \cdot \beta[k+1,j]
7:
       return \beta[1,T] \triangleright return partition function Z_T(\mathbf{x})
8:
```

Some mistakes here.

Sampling from $q_\phi(z|x)$

Algorithm 2 Top-down sampling a tree from $q_{\phi}(\mathbf{z} \mid \mathbf{x})$

```
1: procedure SAMPLE(\beta) \triangleright \beta from running INSIDE(s)
         \mathbf{B} = \mathbf{0}

    binary matrix representation of tree

        Q = [(1, T)]

    p queue of constituents

      while Q is not empty do
            (i,j) = pop(Q)
           \tau = \sum_{k=i}^{j-1} \beta[i,k] \cdot \beta[k+1,j]
            for k := i to j - 1 do \triangleright get distribution over splits
 7:
               w_k = (\beta[i,k] \cdot \beta[k+1,j])/\tau
            k \sim \operatorname{Cat}([w_i, \dots, w_{j-1}]) \quad \triangleright \text{ sample a split point }
 9:
10:
            \mathbf{B}_{i,k} = 1, \ \mathbf{B}_{k+1,j} = 1
                                                                ⊳ update B
11:
            if k > i then \triangleright if left child has width > 1
12:
               \operatorname{push}(Q,(i,k))

    b add to queue

            if k + 1 < j then \triangleright if right child has width > 1
13:
               \operatorname{push}(Q,(k+1,j))
14:

    b add to queue

         \mathbf{z} = f(\mathbf{B}) \quad \triangleright f : \mathcal{B}_T \to \mathcal{Z}_T maps matrix represen-
15:
                              tation of tree to sequence of actions.
16:
         return z
```

Generative Model: $p_{ heta}(x,z)$

Action prediction:

$$p_t = \sigma(w^T h_{prev} + b)$$

SHIFT:

$$egin{aligned} x \sim softmax(Wh_{prev} + b) \ h_{next} = LSTM(e_x, h_{prev}) \ Stack.push((h_{next}, e_x)) \end{aligned}$$

REDUCE:

$$egin{aligned} g_{new} &= TreeLSTM(g_l,g_r) \ h_{new} &= LSTM(g_{new},h_{prev}) \ Stack.push((h_{new},g_{new})) \end{aligned}$$

Generative Model: $p_{ heta}(x,z)$

$$\log p_{ heta}(x,z) = \sum_{t=1}^T \log p_{ heta}(x_t|x_{< t},z_{< n(t)})$$

$$+\sum_{j=1}^{2T-1} \log p_{ heta}(z_j|x_{< m(j)},z_{< j})$$

Supervised Learning: OK.

Unsupervised Learning: $\log p_{ heta}(x)$

Variational Inference

Language modeling:

$$\log p_{ heta}(x) = \log \sum_{z \in {\mathcal{Z}}_T} p_{ heta}(x,z)$$

Evidence Lower Bound (ELBO):

$$\log p_{ heta}(x) = \log \sum_{z \in {\mathcal{Z}}_T} p_{ heta}(x,z)$$

$$=\log\sum_{z\in\mathcal{Z}_{T}}q_{\phi}(z|x)rac{p_{ heta}(x,z)}{q_{\phi}(z|x)}$$

$$= \log \mathbb{E}_{q_{\phi}(z|x)} \left \lceil rac{p_{ heta}(x,z)}{q_{\phi}(z|x)}
ceil$$

$$\geq \mathbb{E}_{q_{\phi}(z|x)} \left[\log rac{p_{ heta}(x,z)}{q_{\phi}(z|x)}
ight]$$

Evidence Lower Bound (ELBO)

$$egin{aligned} ELBO &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log rac{p_{ heta}(x,z)}{q_{\phi}(z|x)}
ight] \ &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log rac{p_{ heta}(z|x)p_{ heta}(x)}{q_{\phi}(z|x)}
ight] \ &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{ heta}(x)
ight] - \mathbb{E}_{q_{\phi}(z|x)} \left[\log rac{q_{\phi}(z|x)}{p_{ heta}(z|x)}
ight] \ &= \log p_{ heta}(x) - KL(q_{\phi}(z|x) \parallel p_{ heta}(z|x)) \end{aligned}$$

Evidence Lower Bound (ELBO)

$$ELBO = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{ heta}(x,z)
ight] - \mathbb{H} \left[q_{\phi}(z|x)
ight]$$

Gradient of θ :

$$abla_{ heta}ELBO = \mathbb{E}_{q_{\phi}(z|x)}\left[
abla_{ heta}\log p_{ heta}(x,z)
ight]$$

$$abla_{ heta} ELBO pprox rac{1}{K} \sum_{k=1}^{K}
abla_{ heta} \log p_{ heta}(x, z_k)$$

Gradient of ϕ :

Two parts.

Gradient of $\mathbb{H}\left[q_\phi(z|x) ight]$

Algorithm 3 Calculating the tree entropy $\mathbb{H}[q_{\phi}(\mathbf{z} \mid \mathbf{x})]$

```
1: procedure ENTROPY(\beta) \triangleright \beta from running INSIDE(s)
         for i := 1 to T do

    initialize entropy table

           H[i,i] = 0
 3:
      for l := 1 to T - 1 do
 4:
                                                            5:
            for i := 1 to T - l do

⊳ span start

 6:
                                                                ⊳ span end
               j = i + l
               \tau = \sum_{u=i}^{j-1} \beta[i, u] \cdot \beta[u+1, j]
 7:
               for u := i to j - 1 do
 8:
                  w_u = (\beta[i, u] \cdot \beta[u+1, j])/\tau
 9:
               H[i,j] = \sum_{u=i}^{j-1} (H[i,u] + H[u+1,j])
10:
                             -\log w_u) · w_u
11:
         return H[1,T] 
ightharpoonup \operatorname{return} \operatorname{tree} \operatorname{entropy} \mathbb{H}[q_{\phi}(\mathbf{z} \mid \mathbf{x})]
12:
```

Gradient of $\mathbb{E}_{q_{\phi}(z|x)}\left[\log p_{ heta}(x,z) ight]$

$$egin{aligned} &
abla_{\phi} \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{ heta}(x,z)
ight] \ &=
abla_{\phi} \sum_{z} q_{\phi}(z|x) \log p_{ heta}(x,z) \ &= \sum_{z} \log p_{ heta}(x,z)
abla_{\phi}q_{\phi}(z|x) \ &= \sum_{z} q_{\phi}(z|x) \log p_{ heta}(x,z)
abla_{\phi} \log q_{\phi}(z|x) \ &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{ heta}(x,z)
abla_{\phi} \log q_{\phi}(z|x)
ight] \ &pprox rac{1}{K} \sum_{k=1}^{K} \log p_{ heta}(x,z_{k})
abla_{\phi} \log q_{\phi}(z_{k}|x) \end{aligned}$$

Add Baseline

$$abla_{\phi} \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{ heta}(x,z)
ight]$$

$$pprox rac{1}{K} \sum_{k=1}^K \log p_ heta(x,z_k)
abla_\phi \log q_\phi(z_k|x)$$

$$pprox rac{1}{K} \sum_{k=1}^K \left(\log p_{ heta}(x, z_k) - r_k
ight)
abla_{\phi} \log q_{\phi}(z_k|x)$$

where

$$r_k = rac{1}{K-1} \sum_{j
eq k} \log p_ heta(x, z_j)$$

Final Objective Function

$$egin{aligned} rac{1}{K} \sum_{k=1}^K \left[\log p_ heta(x, z_k) + (\log p_ heta(x, z_k) - r_k) \log q_\phi(z_k|x)
ight] \ - \mathbb{H}\left[q_\phi(z|x)
ight] \end{aligned}$$

Experiments

	PTB		CTB	
Model	PPL	F_1	PPL	F_1
RNNLM	93.2	_	201.3	_
PRPN (default)	126.2	32.9	290.9	32.9
PRPN (tuned)	96.7	41.2	216.0	36.1
Left Branching Trees	100.9	10.3	223.6	12.4
Right Branching Trees	93.3	34.8	203.5	20.6
Random Trees	113.2	17.0	209.1	17.4
URNNG	90.6	40.7	195.7	29.1
RNNG	88.7	68.1	193.1	52.3
$RNNG \rightarrow URNNG$	85.9	67.7	181.1	51.9
Oracle Binary Trees	_	82.5	_	88.6

Experiments

Experiments

PTB	PPL
KN 5-gram (Dyer et al., 2016)	
RNNLM (Dyer et al., 2016)	
Original RNNG (Dyer et al., 2016)	
Stack-only RNNG (Kuncoro et al., 2017)	
Gated-Attention RNNG (Kuncoro et al., 2017)	
Generative Dep. Parser (Buys and Blunsom, 2015)	
RNNLM (Buys and Blunsom, 2018)	
Sup. Syntactic NLM (Buys and Blunsom, 2018)	
Unsup. Syntactic NLM (Buys and Blunsom, 2018)	
PRPN [†] (Shen et al., 2018)	
This work:	
RNNLM	93.2
URNNG	90.6
RNNG	88.7
$RNNG \rightarrow URNNG$	85.9
1M Sentences	PPL
PRPN [†] (Shen et al., 2018)	77.7
RNNLM	77.4
URNNG	71.8
RNNG [‡]	72.9
$\mathrm{RNNG}^{\ddagger} ightarrow \mathrm{URNNG}$	72.0

Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks

ICLR 2019 best paper

Neural Language Modeling by Jointly Learning Syntax and Lexicon

ICLR 2018