$T\ a\ 6\ \pi\ u\ q\ a\ 1$ Основные физические постоянные

	1	T
Величина	Обозначение или формула	Числовое значение
Скорость света в вакууме	c	$2,99792458 \cdot 10^8$ м/с (точно)
Постоянная Планка	h	6,62606876(52) · 10 ⁻³⁴ Дж·с
T	$\hbar = h/2\pi$	1,054571596(82) · 10 ⁻³⁴ Дж·с
Постоянная Больцмана	<u>k</u>	$1,3806503(24) \cdot 10^{-23}$ Дж/К
Постоянная Авогадро	N_A	$6,02214199(47) \cdot 10^{23} \text{ моль}^{-1}$
Атомная единица массы	1 а.е.м	$1,66053873(13) \cdot 10^{-27}$ кг
Газовая постоянная	$R = kN_A$	8,314472(15) Дж/(моль-К)
Объём моля идеального газа при нормальных условиях $(T_0 = 273,15 \text{ K}, P_0 = 101325 \text{ \Pia})$	$V_0 = \frac{RT_0}{P_0}$	$22,413996(39) \cdot 10^{-3} \frac{\text{м}^3}{\text{моль}}$
Число Лошмидта	$N_{\pi} = N_A/V_0$ G	$2,68677(5) \cdot 10^{19} \text{ cm}^{-3}$
Гравитационная постоянная	G	$6,673(10) \cdot 10^{-11} \text{ H} \cdot \text{м}^2/\text{кг}^2$
Постоянная Фарадея	$F = N_A e$	$9,6485341(39) \cdot 10^4 \ \mathrm{K} \pi / \mathrm{моль}$
Постоянная Стефана-Больцмана	$\sigma = \frac{\pi^2 k^4}{60\hbar^3 c^2}$	$5,670400(40)\cdot10^{-8} \text{ Bt/(M}^2\cdot\text{K}^4)$
Постоянная Ридберга	$R_{\infty} = \frac{\mu_0^2 m_e c^3 e^4}{8\hbar^3}$	$1,0973731568549(83) \cdot 10^{7} \text{ m}^{-1}$
Постоянная тонкой структуры	$R_{\infty} = \frac{\mu_0^2 m_e c^3 e^4}{8\hbar^3}$ $\alpha = \frac{\mu_0 c e^2}{2\hbar}$ α^{-1}	$7,297352533(27) \cdot 10^{-3} 137,03599976(50)$
Магнитная постоянная	$\mu_0 = 4\pi \cdot 10^{-7}$	$1,2566370614\cdot 10^{-6}$ Гн/м
Электрическая постоянная	$\varepsilon_0 = 1/(\mu_0 c^2)$	$8,854187817 \cdot 10^{-12} \Phi/M$
Радиус первой боровской орбиты для атома водорода	$a_0 = \frac{\alpha}{4\pi R_{\infty}}$	$0,5291772083(19) \cdot 10^{-10}$ м
Радиус электрона классический	$r_e = \frac{\mu_0 e^2}{4\pi m_e}$	$2,817940285(31) \cdot 10^{-15}$ м
Элементарный заряд (заряд электрона)	e	$1,602176462(63) \cdot 10^{-19} \text{ Kл}$ $4,8032042 \cdot 10^{-10} \text{ ед. СГСЭ}$
Удельный заряд электрона	e/m_e	$4,8032042 \cdot 10^{-10}$ ед. СГСЭ $1,758820174(71) \cdot 10^{11}$ Кл/кг
Масса электрона	m_e	$0.910938188(72) \cdot 10^{-30}$ кг
Масса протона	m_p	$1,67262158(13) \cdot 10^{-27}$ кг
Масса нейтрона	m_n	$1,67492716(13) \cdot 10^{-27}$ кг
Магнетон Бора	$\mu_{\rm B} = e\hbar/(2m_e)$	$9,27400899(37) \cdot 10^{-24} \text{ A} \cdot \text{m}^2$
Ядерный магнетон	$\mu_{\rm H} = e\hbar/(2m_p)$	$5,05078317(20) \cdot 10^{-27} \text{ A} \cdot \text{m}^2$
Магнитный момент протона	μ_p	$1,410606633(58) \cdot 10^{-26} \text{ A} \cdot \text{m}^2$
Магнитный момент электрона	μ_e	$9,28476362(37) \cdot 10^{-24} \text{ A} \cdot \text{m}^2$
Энергия покоя электрона	$m_e c^2$	0,510998902(21) МэВ
Энергия покоя протона	$m_p c^2$	938,271998(38) M ₃ B
Энергия покоя нейтрона	$m_n c^2$	939,565330(38) МэВ

В скобках указана погрешность последних знаков.

Таблица 2

Важнейшие единицы физических величин Международной системы СИ

Величины		Единицы		Соотношение
Наименование	Обозна-	Наименование	Обозна-	единиц системы СИ и
	чение		чение	единиц других систем
		Основные е		
длина	1	метр	M	$1 \text{ Å (Ангстрем}) = 10^{-10} \text{ м}$
масса	m	килограмм	КГ	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг
время	\mathbf{t}	секунда	c	1 мин = 60 c
сила тока	I	Ампер	A	1 ед.СГСМ =
				$= 3.10^{10}$ ед.СГСЕ $= 10$ А
		Производные	е елинины	
сила, вес	F, G	Ньютон	Н	1 дина = 10^{-5} H
давление	p	Паскаль	Па	1 атм=760 мм Hg $\approx 10^5$ Па
работа,				$1 \text{ эрг} = 10^{-7} \text{ Дж}$
энергия	A, W	Джоуль	Дж	$1 \ \mathrm{9B} = 1.6 \cdot 10^{-19} \ \mathrm{Дж}$
мощность	Р	Ватт	Вт	$1 \text{ ppr/c} = 10^{-7} \text{ Br}$
эл. заряд	Q	Кулон	Кл	1 ед. $C\Gamma C = 1/(3 \cdot 10^9) \text{ K}$ л
зл. напряж.	U	Вольт	В	1 ед. $C\Gamma C = 300~B$
эл. сопрот.	R	Ом	Ом	1 ед. $\mathrm{C}\Gamma\mathrm{C}(\mathrm{c}/\mathrm{c}\mathrm{m}) = 9 \cdot 10^{11} \; \mathrm{O}\mathrm{m}$
эл. проводим	G	Сименс	См	1 ед. $C\Gamma C = 1/(9 \cdot 10^{11}) \text{ CM}$
уд. сопрот.	ho	Ом·метр	Ом·м	1 ед. $C\Gamma C(c^{-1}) = 9 \cdot 10^9 \text{Ом} \cdot \text{м}$
уд. проводим.	σ	Сименс/метр	См/м	1 ед.СГС = $1/(9 \cdot 10^9)$ См/м
напряжённость				
эл. поля	${f E}$	Вольт/метр	В/м	$1 \; \text{ед.C}\Gamma \text{C} = 3 \cdot 10^4 \; \text{B/M}$
эл. индукция	D	${ m Kyлoh/metp}^2$	$K\pi/M^2$	1ед. $\mathrm{C}\Gamma\mathrm{C}{=}10^{-5}/(12\pi)~\mathrm{K}_{\mathrm{J}}/\mathrm{M}^{2}$
эл. ёмкость	С	Фарада	Φ	1 ед.СГС(см) = $1/(9 \cdot 10^{11})$ Ф
напряжённость				
магн. поля	Η	Ампер/метр	А/м	1 Э (эрстед) = 79,6 А/м
магн. поток	Φ	Вебер	Вб	1 Мкс(максвелл)= 10 ⁻⁸ Вб
магн. индукция	В	Тесла	Т	1 Γc (raycc) = 10^{-4} T
индуктивность	L	Генри	Γ	1 ед.СГС (см) = 10^{-9} Г

Таблица 3 Некоторые постоянные элементов при давлении 760 мм рт. ст. ρ — плотность (при 20 °C); $t_{\text{пл}}$ и $t_{\text{кип}}$ — температуры плавления и кипения; α — температурный коэффициент линейного расширения изотропных элементов при 0 °C

температурный коэ		ı	_				
Элемент	Сим- вол	Атомный номер	Атомная масса ¹⁾	$\rho, \frac{\Gamma}{\mathrm{CM}^3}$	$t_{\rm пл}, {\rm ^{\circ}C}$	$t_{\text{кип}}, ^{\circ}\text{C}$	$^{\alpha}_{10^{-6} \mathrm{K}^{-}}$
Алюминий	Al	13	26,98	2,70	660	2447	22,58
Барий	Ba	56	137,34	3,78	710	1637	19,45
Бериллий	Ве	4	9,01	1,84	1283	2477	10,5
Бор (крист.)	В	5	10,81	3,33	2030	3900	8
Бром	$_{ m Br}$	35	79,90	3,12	-7,3	58,2	8,3
Ванадий	V	23	50,94	5,96	1730	3380	
Висмут	Bi	83	209,98	9,75	271,3	1559	$16,6^{2}$
Вольфрам	W	74	183,85	18,6–19,1	3380	5530	4,3
Германий	Ge	32	72,59	5,46	937,2	2830	5,8
Железо	Fe	26	55,85	7,87	$153\dot{5}$	_	12,1
Золото	Au	79	196,97	19,3	1063	2700	14.0^{2}
Индий	In	49	114,82	7,28	156,01	2075	$30,5^{2)}$
Йод	I	53	126,90	4,94	113,6	182,8	93,0
Иридий	Îr	77	192,2	22,42	2443	4350	6,5
Кадмии	Cd	48	112,40	8,65	321,03	765	29,0
Калий	K	19	39,1	0,87	63,4	753	84
Кальций	Ca	20	40,08	1,55	850	1487	22(0)
Кобальт	Co	27	58,93	8,71	1492	2255	12,0
Кремний(крист.)	Si	14	28,09	2,42	1423	2355	2,3
Литий	Li	3	6,94	0,534	180,5	1317	
Магний	Mg	12	24,3	1,74	649	1120	_
Марганец	Mn	25	54,94	7,42	1244	2095	22,6
Медь	Cu	29	63,55	8,93	1083	2595	$16,6^{2}$
Молибден	Мо	42	95,94	9,01	2625	4800	5,19
Натрий	Na	11	22,99	0,971	97,82	890	72
Неодим	Nd	60	144,24	6,96	1019	3110	8,6
Никель	Ni	28	58,71	8,6–8,9	1453	2800	14,0
Олово (серое)	Sn	50	118,69	5,8	231,9	2687	_
Палладий	Pd	46	106,4	12,16	1552	3560	$12,4^{2)}$
Платина	Pl	78	195,09	21,37	1769	4310	9
Родий	Rh	45	102,91	12,44	1960	3960	8,7
Ртуть (жидк.)	Hg	80	200,59	13,546	-38,86	356,73	_
Рубидий	Rb	37	85,47	1,53	38,7	701	90
Свинец	Pb	82	207,19	11,34	327,3	1751	28,3
Селен (крист.)	Se	34	78,96	4,5	217,4	657	20,3
Сера (ромбич.)	S	16	32,06	2,1	115,18	444,6	74
Серебро	Ag	47	107,87	10,42-10,59	960,8	2212	$19,0^{2)}$
Стронций	Sr	38	87,62	2,54	770	1367	20,6
Сурьма	Sb	51	121,75	6,62	630,5	1637	9,2
Тантал	Ta	73	180,95	16,6	2996	5400	6,2
Теллур (крист.)	Te	52	127,6	6,25	449,5	989,8	17,0
Титан	Ti	22	47,9	4,5	1668	3280	7,7
Торий	Th	90	232,04	11,1-11,3	1695	4200	9,8
Углерод (графит)	С	6	12,01	2,25	3500	3900	
Фосфор (белый)	P	15	30,97	1,83	44,2	_	125
Хром	Cr	24	52,00	7,1	1903	2642	7,78
Цезий	Cs	55	132,90	1,87	28,64	685	97
Цинк	Zn	30	65,37	6,97	419,5	907	32
Цирконий	Zr	40	91,22	6,44	1855	4380	5,1
1) A management and and and			,	(120)	19	2) п	20 °C

 $^{^{(1)}}$ Атомная масса дана по отношению к углероду: $m(^{12}\mathrm{C}) = 12$ а.е.м. $^{(2)}$ При 20 °C.

 $\label{eq:Table} T\ a\ б\ л\ u\ ц\ a\ 4$ ЭДС термопар при различных температурах

		ЭДС, мВ							
t,	Платина — плати-	Хромель —	Железо —	Медь —					
°C	+ 10% родия	алюмель	константан	константан					
100	0,64	4,1	5	4					
200	1,44	8,1	11	9					
300	2,31	12,2	16	15					
400	3,25	16,4	22	21					
500	4,22	20,6	27						
600	5,23	24,9	33						
700	6,26	29,1	39						
800	7,34	33,3	45						
900	8,45	37,4	52						
1000	9,59	41,3	58						
1200	11,95	48,9							
1400	14,37	55,9							
1600	16,77								

Таблица 5 Удельное сопротивление и температурный коэффициент сопротивления металлических проволок (при $18~^{\circ}\mathrm{C}$)

	, -	
Вещество	$\rho, 10^{-8} \text{ Om·m}$	$\alpha, 10^{-4} \mathrm{K}^{-1}$
Алюминий	3,21	38
Вольфрам	5,5	51
Железо (0,1% C)	12,0	62
Золото	2,42	40
Латунь	6–9	10
Манганин (3% Ni, 12% Mn, 85% Cu)	44,5	0,02-0,5
Медь	1,78	42,8
Никель	11,8	27
Константан (40% Ni, 1,2% Mn, 58,8% Cu)	49,0	$-0.4 \div 0.1$
Нихром (67,5% Ni, 1,5% Mn, 16% Fe, 15% Cr)	110	1,7
Олово	11,3	45
Платина	11,0	38
Свинец	20,8	43
Серебро	1,66	40
Цинк	6,1	37

 $\label{eq:Table} T~a~b~n~u~\eta~a~b$ Электрические свойства металлов (при 20 °C)

Металл	Электро- провододность σ , $10^7 (\text{Ом·м})^{-1}$	Постоянная X олла $R, 10^{-10} \text{ м}^3/\text{K}$ л	Подвижность носителей тока $b, \text{cm}^2/(\text{B} \cdot \text{c})$
Алюминий	3,1	-0,33	12,3
Вольфрам	1,8	+1,1	20
Золото	4,1	-0.7	32
Медь	5,6	-0,53	32
Молибден	1,7	+1,8	30
Олово	0,9	-0,022	$0,\!17$
Платина	0,9	$-1,\!27$	12
Серебро	6,0	-0,9	56
Цинк	1,6	+1,04	17,5

 $\label{eq:Tadin} T\ a\ б\ \pi\ u\ q\ a\ 7$ Электрические свойства полупроводников

Вещество	Собственное удельное сопротивление при 20 °C, ρ , $OM \cdot M$	Относительная диэлектрическая проницаемость ε	Подвижности носителей тока в области собственной проводимости при $20~^{\circ}\mathrm{C},~\mathrm{cm}^2/(\mathrm{B\cdot c})$	
			электроны	дырки
Алмаз	$10^6 - 10^{10}$	5,5-16,5	1800	1200
Германий	0,43	16	3800	1800
Кремний	$2,6\cdot10^{3}$	11,7	1300	500
Селен (крист.)	$10^3 - 10^{10}$	6	_	_
Теллур	10^{-3}	25	1700	1200
Сульфид свинца	2.10^{-3}	_	600	200
Антимонид индия	7.10^{-5}	17	78000	750
Арсенид галия	1,5	12,7	85000	420

 $T\ a\ б\ \pi\ u\ ц\ a\ 8$ Работа выхода электронов из металлов

Металл	W, эВ	Металл	W, эВ	Металл	W, эВ
Алюминий	4,25	Медь	4,40	Ртуть	4,52
Барий	2,49	Никель	4,50	Серебро	4,3
Вольфрам	4,54	Олово	4,38	Цезий	1,81
Железо	4,31	Платина	5,32	Цинк	4,24

Таблица 9

Удельное сопротивление и относительная диэлектрическая проницаемость диэлектриков

(при **20** °C для не очень высоких частот)

Вещество	ρ , Om·m	ε
'		٥
Твёрдые п	$10^{11} - 10^{12}$	I 4 F
Бакелит	$10^{13}-10^{12}$ $10^{13}-10^{14}$	4,5
Битум		2,5-3
Бумага сухая	$10^{11} - 10^{12}$	2-2,5
Гетинакс	$10^{8} - 10^{9}$	5–6
Каучук	10^{14}	2,4
Кварц	$10^{12} - 10^{13}$	3,5-4,5
Керамика конденсаторная	10^9	10-200
Метатитанат бария	$3 \cdot 10^{-16}$	2000
Парафин	_	2-2,3
Плексиглас	10^{11}	3,5
Полистирол	$10^{15} - 10^{17}$	2,4-2,6
Полихлорвинил	10^{14}	3
Полиэтилен	10^{14}	2,3-2,4
Сегнетова соль	_	500
Слюда	10^{14}	5,7-7
Стекло	$10^6 - 10^{15}$	4-16
Текстолит	$10^{7} - 10^{8}$	_
Фарфор	10^{13}	4,5-7
Шеллак	$10^{13} - 10^{14}$	3,5
Эбонит	$10^{13} - 10^{14}$	2,5-3
Янтарь	$10^{15} - 10^{18}$	2,8
Жидкост	\overline{nu}	
Бензин	10^{10}	2
Вода дистиллированная	$10^3 - 10^4$	81
Масло вазелиновое	10^{14}	2
Масло касторовое	10^{9}	4,6-4,8
Масло трансформаторное	$10^{10} - 10^{13}$	2,2
Скипидар	10^{11}	2,2
Спирт этиловый	$10^4 - 10^5$	27
<i>Газы</i> (760 мм	рт. ст.)	
Азот	j	1,00054
Воздух сухой	$10^{14} - 10^{15}$	1,00025
Гелий	_	1,00007
Кислород	_	1,00055
Углекислый газ	_	1,0009

 $\label{eq:Table} \begin{tabular}{ll} T аблица 10 \\ \begin{tabular}{ll} M агнитная восприимчивость элементов и соединений при 20 °C ($B=\mu_0(1+\chi)H$)

Вещество	χ , 10^{-6}	Вещество	χ , 10^{-6}	
Алюминий	23	Серебро	$-26,\!25$	
Висмут	-176	Стекло	-12,6	
Вода	-9	Цинк	-12,3	
Вольфрам	176	Эбонит	14,0	
Золото	-36,7			
Калий	5,6	Газы		
Каменная соль	-12,6	Азот	0,013	
Кварц	-15,1	Водород	-0,063	
Кислород жидкий	3400	Воздух	0,38	
Медь	-10,3	Гелий	-1,1	
Платина	360	Кислород	1,9	

Таблица 11 Точки Кюри некоторых веществ

Вещество	Точка Кюри, °С
Сегнетоэлектрики	
Метатитанат бария	100
Сегнетова соль	Верхняя $+22,5$
	нижняя -15
Φ ерромагнетик u	
Железо	770
Железо кремнистое (Fe $+4.3\%$ Si)	690
Кобальт	1130
Никель	358
Пермаллой (22% Fe $+$ 78% Ni)	550
Гадолиний	16
Магнетит (Fe ₃ O ₄)	572
Ферриты	100-600

Таблица 12

Свойства ферромагнитных материалов Магнитомягкие материалы

Вещество	Состав (%), остальное железо и примеси	Относительная начальная проницаемость	максимальная	Коэрцитивная сила, $H_C, \mathrm{A/M}$	Индукция насыще- ния <i>В</i> , Тл
Железо					
чистое	0,05(прим.)	10 000	200 000	4	2,15
техническое	0,2(прим.)	150	5 000	80	2,15
кремнистое	3 Si	1 500	40 000	8	2,0
Сталь мягкая	0,2 C	120	2 000	140	2,12
Пермаллой	78,5 Ni	8 000	100 000	4	1,08
Пермендюр	50 Co	800	5 000	160	2,45
Кобальт	99 Co	70	250	800	1,79
Никель	99 Ni	110	600	400	0,61
Ферриты		1000	$(3-10)\cdot 10^3$	8-600	0,2-0,4

 $T\ a\ 6\ \pi\ u\ \mu\ a\ 13$ Свойства ферромагнитных материалов

Вещество	Состав (%), остальное— железо	${ m Ko}$ эрцитивная ${ m cu}_{ m Ja}$ ${ m H}_{ m C},{ m A/m}$	Остаточная индукция B , Тл
Сталь			
углеродистая	0,9 C, 1 Mn	4 000	1,0
вольфрамовая	0,4 C, 6 W	5 200	1,05
кобальтовая	1,0 C, 3 Co, 4 Cr, 0,4 Mn	6 400	1,0
Альнико	19 Ni, 10 Al, 18 Co, 3 Cu	52 000	0,9
Магнико	13,5 Ni, 9 Al, 24 Co, 3 Cu	40 000	1,23
Платина-железо	78 Pt	120 000	0,6
Платина-кобальт	77 Pt, 23 Co	320 000	0,5
Ферриты		$(120-300)10^3$	0,2-0,4

Магнитожёсткие материалы