

Session Name: Electric Mobility

Title of paper

Design And Development of Grid-Tied Off-Board Intelligent Charging Station Speaker

Dr. Brijesh Singh

Senior Member IEEE, IEEE-PES, IEEE-PELS

Associate Professor

KIET Group of Institutions, Delhi-NCR, Ghaziabad (UP)

Introduction

- Growth of electric vehicle (EV) industry and future of transportation
- Role of advancements in battery technologies and charging infrastructure

Needs

- Innovation and investment for charging technology
- Large-scale charging infrastructures

Introduction

AC charging versus DC charging On-board versus off-board equipment

Introduction

EV Cars	Battery Specification	Charging Methods	
Tata Nexon EV	30.2 kWh, 320 volts lithium-ion battery	15A socket slow charging, fast charging also available	
MG ZS EV	44.5 kWh, 364 V lithium-ion battery	DC fast charging (up to 80% in 40 minutes)	
Hyundai Kona Electric	64 kWh, 356 V lithium-ion Polymer battery	DC fast charging (up to 80% in 47 minutes)	
Mahindra eKUV100	15.9 kWh, 400 V lithium-ion battery	AC charging (6 hours for full charge) and DC fast charging (up to 80% in 55 minutes)	
Tata Tigor EV	26 kWh, 355 V, lithium-ion battery	AC charging (8.5 hours for full charge) and DC fast charging (up to 80% in 60 minutes)	
Mahindra eVerito	21.2 kWh, 318 V, lithium-ion battery	AC charging (11 hours for full charge) and DC fast charging (up to 80% in 90 minutes)	
Audi e-tron	95 kWh, 396 V, lithium-ion battery	DC fast charging (up to 80% in 30 minutes with 150 kW charger)	
Jaguar I-PACE	90 kWh, 394 V, lithium-ion battery	DC fast charging (up to 80% in 40 minutes with 100 kW charger)	

Introduction

Technical and Economical Impacts

	On-board Charger	Off-board Charger
Energy (kW) transfer	Less	High
Problem of battery heating	Required less concern	Required high concern
Weight of EV	More	Less
Charging time	Slow	Fast
Charging power level	Low	High
Complexity in BMS design and cost	Simple and less	Complex and high
Charging flexibility	Flexible	Not flexible
Incorrect charging responsibility	No	Yes
Identification of malfunctioning of battery pack cells	Possible	Very complex

Context

Relevance

- Need of universal adaptive chargers with common charging terminals
- Encouragement for establishment for charging stations as filling stations, especially in rural and remote part of country
- Motivation for e-mobility mission
- Maintenance of power quality issues at on place in power distribution networks (such as peak load demand increases, violations of regulatory voltage limit, overloaded distribution system assets, harmonic issues, and higher power losses)
- Easy exchange of information about the battery's health in terms of state of charge, voltage, temperature, cut-off voltage, rate of charging/charging time etc
- Higher charging speeds and use by all kind of electric vehicles

Presentation on the Topic

Key features of proposed work

- Design of intelligent off-board universal charging system with adaptive charging method for various battery packs
- Design of **communication strategy** for charging terminals and battery packs
- The proposed adaptive charging method can detect the various information from battery packs such as type of battery, voltage, capacity, SOH and SOC level and calculate the required charging current and voltage levels
- The mathematical modelling and simulation of all required components (AC-DC, and DC-DC converters, adaptive voltage and current methods have been carried out
- An intentional delay of 1 to 5 seconds is incorporated with charging terminals to fetched information from the battery packs and then supply the power

The present work having three major parts

- Design of a universal charger converters using MATLAB/SIMULINK,
- Design and development of control unit and communication protocols
- (iii) Testing and validation of proposed system

The appropriate charging of following batteries are demonstrated as test cases.

Case 1: Battery Type – 1 (Lead-acid battery)

Case 2: Battery Type – 2 (Li-ion Battery)

Case 3: Battery Type – 3 (Nickel Cadmium)

ORGANIZER

Grid-tied off-board intelligent charging station

Charging station control diagram

Presentation on the Topic

MATLAB/SIMULINK Model of Proposed Charging Station

Use Case/Case Study

Algorithm for identification of **Charger Control** parameters

Test results and observations

Grid profile of the test model

AC/DC converter output voltage and current profile at charging

Test results and observations

Comparison of Charging Performance (Case 1)

Test results and observations

Comparison of Charging Performance (Case 2)

Test results and observations

Comparison of Charging Performance Case 3

ORGANIZER

The summary of the work –

- ✓ Need of universal off-board chargers
- ✓ Common charging terminals
- ✓ Adaptive charging methodology
- ✓ Tests are conducted on the following batteries:
 - Lead-acid battery
 - Li-ion battery
 - Ni-Cd battery

The proposed adaptive chargers provide optimal charging options, while the charging algorithms ensure efficient and effective charging method for maintaining battery health by avoiding overcharging and overheating.

Thank You

For discussions/suggestions/queries email:

brijesh.singh@kiet.edu

www.kiet.edu

www.isuw.in

