日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年11月29日

出 願 番 号 Application Number:

特願2002-348016

[ST. 10/C]:

[J P 2 0 0 2 - 3 4 8 0 1 6]

出 願 人
Applicant(s):

株式会社デンソー

2003年10月20日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

IP7280

【提出日】

平成14年11月29日

【あて先】

特許庁長官殿

【国際特許分類】

B60R 16/02

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

小林 正幸

【特許出願人】

【識別番号】

000004260

【氏名又は名称】

株式会社デンソー

【代理人】

【識別番号】

100100022

【弁理士】

【氏名又は名称】 伊藤 洋二

【電話番号】

052-565-9911

【選任した代理人】

【識別番号】

100108198

【弁理士】

【氏名又は名称】

三浦 高広

【電話番号】

052-565-9911

【選任した代理人】

【識別番号】

100111578

【弁理士】

【氏名又は名称】

水野 史博

【電話番号】

052-565-9911

【手数料の表示】

【予納台帳番号】

038287

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 車両制御システム

【特許請求の範囲】

【請求項1】 車両のクランク角に同期した作動を行うアクチュエータを制御するアクチュエータ制御ECUと、前記アクチュエータ制御ECUと同一の車内通信ネットワークに接続され、前記車両のクランク信号およびカム信号が入力されるセンサECUと、タイミング決定手段とを少なくとも有する車両制御システムにおいて、

前記センサECUは、入力された前記カム信号および前記クランク信号に基づいてクランク角を算出するクランク角算出手段と、前記クランク角算出手段が算出したクランク角を、前記タイミング決定手段に、前記ネットワークを介して送信するクランク角送信手段と、を備え、

前記タイミング決定手段は、車内通信ネットワークに接続するいずれかのEC U内にあり、受信した前記クランク角に基づいて前記アクチュエータの作動のタ イミングを決定し、

前記アクチュエータ制御ECUは、前記タイミング決定手段の決定したタイミングに基づいて前記アクチュエータを制御するタイミング制御手段を備えたことを特徴とする車両制御システム。

【請求項2】 前記クランク角送信手段はさらに、前記タイミング決定手段に送信を行う時におけるクランク角に関する情報を、前記タイミング決定手段に前記ネットワークを介して送信することを特徴とする請求項1に記載の車両制御システム。

【請求項3】 前記車内通信ネットワークの通信方式はTDMA方式であり

このTDMA方式において前記センサECUの送信に割り当てられた時間スロットと、前記時間スロットの後に最初に来る前記タイミング決定ECUに割り当てられた時間スロットとの間の時間に、前記タイミング決定手段の作動のタイミングが割り当てられていることを特徴とする請求項1または2に記載の車両制御システム。

【請求項4】 前記タイミング決定手段は、前記車両通信ネットワークに接続する、前記アクチュエータ制御ECUおよび前記センサECU以外のタイミング決定ECU内にあり、決定した前記アクチュエータの作動のタイミングを、前記車内ネットワークを介して前記タイミング制御手段に送信することを特徴とする請求項1ないし3のいずれか1つに記載の車両制御システム。

【請求項5】 前記タイミング決定手段は、直前に受信した前記クランク角 および1回前に受信した前記クランク角を用いて線形補間されたクランク角の時 間依存性に基づいて、前記アクチュエータの作動のタイミングを決定することを 特徴とする請求項1ないし4のいずれか1つに記載の車両制御システム。

【請求項6】 前記センサECUは、前記クランクセンサおよび前記カムセンサの故障診断を行う故障診断手段を備えたことを特徴とする請求項1ないし5のいずれか1つに記載の車両制御システム。

【請求項7】 車両のクランク角に同期した作動を行うアクチュエータを制御するアクチュエータ制御ECUと、前記アクチュエータ制御ECUと同一の車内通信ネットワークに接続され、前記車両のクランク信号が入力されるクランクECUと、前記車内通信ネットワークに接続され、前記車両のカム信号が入力されるカムECUと、タイミング決定手段と、を少なくとも有する車両制御システムにおいて、

前記クランクECUは、入力された前記クランク信号に基づいた情報を、タイミング決定手段に送信し、

前記カムECUは、入力された前記カム信号に基づいた情報を、前記タイミング決定手段に送信し、

前記タイミング決定手段は、受信した前記クランク信号およびカム信号に基づいて前記アクチュエータの作動のタイミングを決定し、

前記アクチュエータ制御ECUは、前記タイミング決定手段の決定したタイミングに基づいて前記アクチュエータを制御するタイミング制御手段を備え、

前記車内通信ネットワークは、前記クランクECUが、前記入力されたクランク信号に基づいた情報を欠けることなく送信することができるようになっていることを特徴とする車両制御システム。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、車両のクランク角に同期した作動を行うアクチュエータを制御するための車両制御システムに関するものである。

[0002]

【従来の技術】

従来、車両全体の制御を機能別に分散し、分散された機能毎にその機能の制御手段を備え、また前記制御機能間の車内通信ネットワークを介した通信により、分散された機能間の調整を行うような、車両制御システムが提案されている(例えば、非特許文献1参照)。このような分散処理を行う車両制御システムにおいて用いられる通信プロトコルとしては、欧州のTTPコンソーシアムのTTP/C(特許文献1参照)、FlexRayコンソーシアムのFlexRay(非特許文献2参照)等がある。これらは、TDMA(Time Division Multiple Access:時間分割多重通信)を用いた通信プロトコルである。TDMAにおいては、一定時間間隔毎に区切られた時間スロットのそれぞれが異なる通信によって占有されることで、多重通信が実現されている。

[0003]

このTDMA方式を用いた車両制御システムにおいては、制御手段としてのE CUのそれぞれに時間スロットをあらかじめ割り当て、ECUは割り当てられた 時間スロットでのみ車内通信ネットワークにデータの送信を行うことができるよ うになっている。この割り当てられた時間スロットは周期的になっており、各E CUはいつでも好きなときに送信することができない。

[0004]

【特許文献 1】

特開2000-268288号公報

[0005]

【非特許文献1】

tta Group、"TTA-Group Forum"、[online]、[平成14年11月1

9日検索]、インターネット < URL: http://www.ttpforum.org/>

[0006]

【非特許文献2】

FlexRay-Consortium、"FlexRay"、 [online] 、 [平成14年11月19日検索] 、インターネット <URL: http://www.flexray-group.org/>

[0007]

【発明が解決しようとする課題】

発明者の検討によれば、上記したような分散処理を行う車両制御システムとして、エンジンの点火装置、燃料噴射装置を制御するECUと、クランクの回転を検出するECUとを分散し、これらECU間の信号のやりとりは車内通信ネットワークで行えば、従来のエンジン制御システムに比べて構成が簡易になる等の利点が発生する。

[0008]

しかし、このような車両制御システムで、例えば上記したTDMAを用いると、クランクに同期した燃料噴射装置や点火装置等の制御にとっての問題が発生し得る。一般にクランクの回転は、クランクセンサからのクランク信号によって検出される。このクランク信号は、クランクが所定の角度(例えば2.5度)回転する毎に、その信号レベルがハイとローとの間で交互に切り替わるようになっている。ここで、クランクセンサからのクランク信号にもとづいて、車内通信ネットワークにクランク信号のハイレベルとローレベルの切り替わりの情報を送信するセンサECUについて以下考察する。

[0009]

図12に、クランク信号と、車内通信ネットワークに送信されるクランク信号の情報との時間的関係を示す。図中右方向が時間の向きであり、上段の矩形線はクランク信号のレベルを、下段の四角形は各ECUに割り当てられた送信の時間スロットの並びを示している。センサECUからの送信には、図中下段の斜線が引かれた四角形の時間スロット101、102、103が割り当てられている。

[0010]

クランクのTDC(上死点)に対応する0 'CA(クランク角)における、ク

5/

ランク信号のハイレベルへの切り替わり情報は、直後の時間スロット101においてセンサECUから送信される。そして2.5 'CAでクランク信号がローレベルに切り替わった情報は時間スロット102において送信され、続いて5 'CAでハイレベルに切り替わった情報はスロット103において送信される。このようにして送信されたクランク信号の切り替わり情報を受信した他のECUは、受信した信号数をカウントすることで、クランク角の値を知ることができる。

[0011]

ただし、図12に示すように、クランクの回転タイミングと同期して時間スロットの周期がまわってこない場合、クランクの回転と、実際に車内通信ネットワークに送信されるクランクの回転の情報との間には、時間的ずれが生じる。

[0012]

さらに、クランクの回転はエンジンの回転数に伴って変化するので、クランク信号の変化周期はエンジン回転数と共に変化する。図13に、図12の場合よりもエンジン回転数が高くなった場合の、クランク信号と時間スロットとの関係を示す。

[0013]

この場合、時間スロット104でハイレベル信号の情報が送信された後、次に割り当てられた時間スロット105が来るまでの間に、クランク信号がロー、ハイ、ローと3回変化してしまっている。しかし、センサECUは時間スロット105で直前に変化したローレベルの情報をネットワークに送信するだけなので、受信側のECUでは2回分の信号の切り替わりの情報が欠けてしまった状態となる。これによって、受信側では実際のクランク角よりも5 'CAずれた値を現在のクランク角として認識してしまう。このような状況が続けばずれは増大してゆき、制御タイミングとクランク角とのずれが増大し、エンジンの点火、噴射処理との関係においては、高エンジン出力、低エミッションを得られないという問題が発生する。

[0014]

また発明者の検討によれば、このような問題は、車内通信ネットワークの通信 方式としてTDMAが使用されていない場合にも発生し得る。これは、ネットワ ークの通信速度が遅いため、センサECUがクランク信号の切り替わりの情報をネットワークに送出し終わる前に、次のクランク信号の切り替わりタイミング、 さらに次の切り替わりタイミングが来てしまう場合等に起こり得る。

[0015]

本発明は上記点に鑑みて、車両のクランク角に同期した作動を行うアクチュエータを制御するECUと、車両のクランク信号が入力されるセンサモECUとが分散されている車両制御システムにおいて、これらECUが車内通信ネットワークを介して情報をやり取りしている場合に、このアクチュエータの制御タイミングとクランク角との間の時間的ずれを抑えることを目的とする。

[0016]

なおクランクECUとカムECUは、まとめて一体のECUとして実現されていてもよい。

[0017]

【課題を解決するための手段】

上記目的を達成するための請求項1に記載の発明は、車両のクランク角に同期した作動を行うアクチュエータを制御するアクチュエータ制御ECUと、前記アクチュエータ制御ECUと同一の車内通信ネットワークに接続され、前記車両のクランク信号およびカム信号が入力されるセンサECUと、タイミング決定手段とを少なくとも有する車両制御システムにおいて、前記センサECUは、入力された前記カム信号および前記クランク信号に基づいてクランク角を算出するクランク角算出手段と、前記クランク角算出手段が算出したクランク角を、前記タイミング決定手段に、前記ネットワークを介して送信するクランク角送信手段と、を備え、

前記タイミング決定手段は、車内通信ネットワークに接続するいずれかのEC U内にあり、受信した前記クランク角に基づいて前記アクチュエータの作動のタ イミングを決定し、前記アクチュエータ制御ECUは、前記タイミング決定手段 の決定したタイミングに基づいて前記アクチュエータを制御するタイミング制御 手段を備えたことを特徴とする車両制御システムである。

[0018]

これによってセンサECUは、クランク角算出手段によって算出したクランク角を、クランク角送信手段によって車内通信ネットワークに送信するので、クランク角の情報がネットワークを流れるようになる。したがって、通信速度等の問題によって送信されるクランク角の情報が欠けても、次に送信されるクランク角によって適切な値に追従することができるので、アクチュエータの制御とクランク角との間の時間的ずれを抑えることができる。

[0019]

なお、ここでいうクランク角とは、クランク信号のようなクランク角の変化を示す相対値ではなく、クランクの回転角そのものの絶対値を示す値である。また、クランク角は、クランクの角度そのものの値のみならず、例えば後述するクランクカウンタ値のような、クランク角度と一意の関係にある値をも含む概念である。また、タイミング決定手段は、アクチュエータ制御ECU内にあってもよいし、あるいは車両制御システム中の他のECU内にあってもよい。

[0020]

また、請求項2に記載の発明は、請求項1に記載の車両制御システムにおいて、前記クランク角送信手段はさらに、前記タイミング決定手段に送信を行う時におけるクランク角に関する情報を、前記タイミング決定手段に前記ネットワークを介して送信することを特徴とする。

[0021]

これによって、クランク角送信手段からタイミング決定手段には、クランク角送信手段がタイミング決定手段に送信を行う時におけるクランク角に関する情報が渡されるので、通信による時間遅れが抑えられ、アクチュエータの制御とクランク角との間の時間的ずれをさらに抑えることができる。なお、「送信を行う時におけるクランク角に関する情報」とは、例えば送信の時点におけるクランク角であってもよいし、また例えば送信より前の時点におけるクランク角と、その時点から送信の時点までの時間間隔の情報であってもよい。

[0022]

また、請求項3に記載の発明は、請求項1または2に記載の車両制御システムにおいて、前記車内通信ネットワークの通信方式はTDMA方式であり、このT

DMA方式において前記センサECUの送信に割り当てられた時間スロットと、前記時間スロットの後に最初に来る前記タイミング決定ECUに割り当てられた時間スロットとの間の時間に、前記タイミング決定手段の作動のタイミングが割り当てられていることを特徴とする。

[0023]

また、請求項4に記載の発明は、請求項1ないし3のいずれか1つに記載の車両制御システムにおいて、前記タイミング決定手段は、前記車両通信ネットワークに接続する、前記アクチュエータ制御ECUおよび前記センサECU以外のタイミング決定ECU内にあり、決定した前記アクチュエータの作動のタイミングを、前記車内ネットワークを介して前記タイミング制御手段に送信することを特徴とする。

[0024]

また、請求項5に記載の発明は、請求項1ないし4のいずれか1つに記載の車両制御システムにおいて、前記タイミング決定手段は、直前に受信した前記クランク角および1回前に受信した前記クランク角を用いて線形補間されたクランク角の時間依存性に基づいて、前記アクチュエータの作動のタイミングを決定することを特徴とする。

[0025]

また、請求項6に記載の発明は、請求項1ないし5のいずれか1つに記載の車両制御システムにおいて、前記センサECUは、前記クランクセンサおよび前記カムセンサの故障診断を行う故障診断手段を備えたことを特徴とする。

[0026]

また、請求項7に記載の発明は、車両のクランク角に同期した作動を行うアクチュエータを制御するアクチュエータ制御ECUと、前記アクチュエータ制御ECUと同一の車内通信ネットワークに接続され、前記車両のクランク信号が入力されるクランクECUと、前記車内通信ネットワークに接続され、前記車両のカム信号が入力されるカムECUと、タイミング決定手段と、を少なくとも有する車両制御システムにおいて、前記クランクECUは、入力された前記クランク信号に基づいた情報を、タイミング決定手段に送信し、前記カムECUは、入力さ

れた前記カム信号に基づいた情報を、前記タイミング決定手段に送信し、タイミング決定手段は、受信した前記クランク信号およびカム信号に基づいて前記アクチュエータの作動のタイミングを決定し、前記アクチュエータ制御ECUは、前記タイミング決定手段の決定したタイミングに基づいて前記アクチュエータを制御するタイミング制御手段を備え、前記車内通信ネットワークは、前記クランクECUが、前記入力されたクランク信号に基づいた情報を欠けることなく送信することができるようになっていることを特徴とする車両制御システムである。

[0027]

これによって、この車両制御システムにおいて、これらECUが車内通信ネットワークを介して情報をやり取りしている場合に、車内通信ネットワークが、クランクECUがクランク信号に基づいた情報を欠けることなく送信することができるようになっているので、このアクチュエータの制御タイミングとクランク角との間の時間的ずれを抑えることができる。

[0028]

【発明の実施の形態】

(第1実施形態)

図1に、本発明の第1実施形態に係る車両制御システム1の構成を示す。車両制御システム1は、センサECU2、TCM(トランスミッションコントロールモジュール)ECU3、点火ECU4、クランクセンサ5、カムセンサ6、イグナイタ7、車内通信ネットワーク8、および車内通信ネットワーク8に接続された図示しない車両の各機能を制御するECUから成る。

[0029]

車内通信ネットワーク8は、分散された車両の機能を制御するECU等の通信を媒介する。本実施形態においては、車内通信ネットワーク8はTDMA方式を用いており、また通信の堅牢性を高めるために二重化されている。

[0030]

クランクセンサ 5 は、車両のクランクの回転を検出し、出力する信号を回転に同期してハイとローとの間で切り替えるようになっている。具体的には、クランク角が 2.5 'CA (クランクアングル)回転する毎に信号をハイからローへ、

あるいはローからハイへ切り替える。これは、クランク軸に取り付けられたロータの周に、角度にして2.5°の長さを持つ歯を72本等間隔で形成し、クランクセンサ5にこのロータの歯形に同期して変化する信号を出力させることで実現する。なお、クランク角は $0\sim720$ 'CAまでの値を取ることができる。すなわち、クランク軸の2回転がクランク角の一周期に対応する。

[0031]

ただし、これら72本の歯のうちの1本は実際には形成されず、ロータは歯が一本欠けた状態となっている。したがって、クランクセンサ5からの信号も、71回に1回だけ7.5 'CA分ロー信号が続くことになる。この歯欠けの存在によって、このロータの特定の部分を認識することができ、ひいてはクランクの回転角の特定の位置を認識することができる。この特定の位置は、本実施形態においては0 'CA(=720 'CA) および360 'CAに対応する。

[0032]

カムセンサ6は、車両のカムの回転を検出し、出力する信号を回転に同期してハイとローとの間で切り替えるようになっている。具体的には、カムが1回転((360°回転)する毎に信号をローからハイへ切り替え、ローからハイへ切り替わってからカムが2.5°回転するとき信号をハイからローへ切り替える。これは、カム軸に取り付けられたロータの周に、角度にして2.5°の長さを持つ歯を1本だけ形成し、クランクセンサ5にこのロータの歯形に同期して変化する信号を出力させることで実現する。

[0033]

なお、カム軸は、クランク軸が2回転する毎に1回転するようになっている。また、カム軸のロータの歯に対応するハイ信号の出力があってから短期間内に、カム信号の歯欠けに対応する長いロー信号の出力があるよう、クランク軸とカム軸の回転は同期している。したがって、歯欠けに対応するクランク信号の出力があったときに、その直前にカム信号のハイ出力があった場合と無かった場合とで、その歯欠けが0 'CAであるか360' CAであるかを区別することが可能となる。本実施形態においては、カム信号のハイ信号の後短期間内にあった歯欠け直後の立ち上がりが0 'CAに対応し、もう一方の歯欠け直後の立ち上がりが3

60 'CAに対応する。

[0034]

センサECU2は、ドライバ/レシーバIC21、プロトコルIC22、マイコン23、およびI/O24を有している。

[0035]

ドライバ/レシーバIC21は、車内通信ネットワーク8から受信した電気信号をプロトコルIC22内部で扱えるディジタルデータに変換してプロトコルIC22に出力する。またドライバ/レシーバIC21は、プロトコルIC22に入力されたディジタルデータを電気信号に変換して車内通信ネットワーク8に出力する。

[0036]

プロトコルIC22は、ドライバ/レシーバIC21から入力されたデータを、使用している通信プロトコルのフレームフォーマットに従って加工し、通信プロトコルに依存しない形式のデータに変換した後、マイコン23に出力する。またプロトコルIC22は、マイコン23から入力されたデータに、使用している通信プロトコルに適合するように、IDやCRCを付加する等フレームフォーマットの加工を施した後、ドライバ/レシーバIC21に出力する。

[0037]

I/O24は、クランクセンサ5およびカムセンサ6から入力された信号を、 ディジタルデータに変換してマイコン23に出力する。

[0038]

マイコン23は、図示しないCPU、RAM、フラッシュメモリを有する。CPUは、フラッシュメモリに保存されているプログラムを読み出して実行することで各種処理を行う。またマイコン23この処理の必要に応じて、RAMに対してデータの書き込み/読み出しを行い、また、他のECUとの通信の必要があれば、プロトコルIC22からの入力、送信のためのデータの出力を行う。なお、クランク角処理25が行う処理としては、後述するクランク角処理25、およびクランクセンサ5、カムセンサ6の故障診断を行うダイアグ処理26等がある。

[0039]

TCMECU3は、ドライバ/レシーバIC31、プロトコルIC32、およびマイコン33を有している。TCMECU3は本来的には車両の車両の走行状態に合わせて変速点の決定、変速制御等を行うトランスミッション制御用のECUであるが、本実施形態においては、エンジン点火のために必要な処理の一部を行うようになっている。

[0040]

ドライバ/レシーバIC31、プロトコルIC32、マイコン33はそれぞれ、ドライバ/レシーバIC21、プロトコルIC22、マイコン23と同等の機能を有している。ただし、マイコン33のフラッシュメモリには、上記したトランスミッション制御のためのプログラム(図示せず)、および後述する点火タイミング処理34のプログラムが保存されており、マイコン33はこれらのプログラムに従った処理を行う。

[0041]

点火ECU4は、ドライバ/レシーバIC41、プロトコルIC42、マイコン43、I/O44を有する。

[0042]

ドライバ/レシーバIC41、プロトコルIC42、マイコン43はそれぞれ、ドライバ/レシーバIC21、プロトコルIC22、マイコン23と同等の機能を有している。ただし、マイコン43のフラッシュメモリには、点火処理45のプログラムが保存されており、マイコン43はこのプログラムに従うことで、車内通信ネットワーク8、ドライバ/レシーバIC41、およびプロトコルIC42を介して受信した点火タイミングの通知に従って、点火命令のデータをI/O44に出力する。

[0043]

I/O44は、マイコン43から点火命令のデータの入力があると、エンジン 点火用のイグナイタ7に点火信号を出力する。

[0044]

以上のような構成の車両制御システム1における、エンジンの点火制御のタイミングを、図2に概略的に示す。この図の2段目は、車内通信ネットワーク8を

流れるデータを左から右へ時間順に並べたものである。TDMAにおいては、この2段目の各4角形に相当する時間スロットは、車内通信ネットワーク8内のいずれかのECUからの送信に占有されるようにあらかじめ割り当てられている。本実施形態では、一定周期で現れる時間スロット51が、センサECU2からの送信に割り当てられ、また同じ周期で現れる時間スロット52が、TCMECU3の送信に割り当てられている。その他の時間スロットは、その他のECUの送信のために割り当てられている。

[0045]

このような時間スロットの並びに対して、クランクセンサ 5 からのクランク信号の変化が図 2 の一段目のようなタイミングになっている場合、センサECU 2 、TCMECU 3 、点火ECU 4 の行うエンジン点火のための処理のタイミングは 3 ~ 6 段目のようになる。

[0046]

以下、図2を適宜参照しながら、センサECU2、TCMECU3、点火ECU4の作動について説明する。

[0047]

図3に、センサECU2のクランク角処理25の一部としての、カム信号の立ち上がり処理のフローチャートを示す。この処理は、カムセンサ6からのカム信号の立ち上がり、すなわちカム信号のローからハイへの切り替わりをマイコン23が検出すると、割り込みで始まる処理である。この処理は、ステップ310でフラグをRAM中の所定の領域にセットして終了する。以下、このフラグをカムフラグと記す。

[0048]

図4に、同じくセンサECU2のクランク角処理25の一部としての、クランク信号の立ち上がり処理のフローチャートを示す。この処理は、クランクセンサ5からのクランク信号の立ち上がりをマイコン23が検出すると、割り込みで始まる処理である。この処理は、図2の3段目の4角形のタイミングで行われる。以下この処理について図4に従って説明する。

[0049]

この処理が始まると、まずステップ405で通信開始後れ計測タイマの値αを クリアする。通信後れ計測タイマとは、マイコン33のCPUが動作中常時カウントしている時間である。この時点でタイマの値αをクリアする、すなわち0に することで、値αは直前のクランク信号立ち上がり後の経過時間となる。

[0050]

次にステップ410で、先述したカムフラグがセットされているか否かを、このカムフラグのためのRAM中の所定の領域の情報を読み出すことで判定する。セットされていれば処理はステップ415に進む。

[0051]

カムフラグがセットされていれば、ステップ415で判定カウンタと呼ぶ変数を、RAM中の所定の領域にセットし、更にステップ420でカウンタフラグをリセットする、すなわちカウンタフラグのセットを解除する。判定カウンタは、マイコン23がクランク信号の歯欠けの部分に対応する信号の入力を受けたときに、その入力がカム信号のハイ後の短期間内であるか否かを判定するためのカウンタである。なお、判定カウンタをセットするときの初期値は所定の自然数、例えば8である。

[0052]

カムフラグがセットされていなければ、ステップ425で判定カウンタをデクリメントする。すなわち、RAM中の所定の領域の判定カウンタの値を1減らした値に置き換える。

[0053]

ステップ420およびステップ425の処理の次には、処理はステップ430に進み、現在変数Tnewにセットされている値をToldに代入する。そしてステップ435で、前回のクランク信号の立ち上がり時刻から今回のクランク信号の立ち上がり時刻までの時間差をTnewに代入する。そして現在時刻をRAM中の所定の領域に保存する。時間差の測定は、RAMの所定の領域に保存された前回の立ち上がり時刻と、現在時刻との差を求めることで行う。この時点で、Tnewは前回のクランク信号立ち上がりから今回のクランク信号立ち上がりまでの時間となり、Toldは前々回のクランク信号立ち上がりから前回のクラン

[0054]

そしてステップ440では、Tnew/Toldの値が所定の比より大きいか 否かを判定する。所定の比は、TnewとToldとのずれがクランク軸のロー タの歯欠けによるものであるか否かを判定するための閾値である。本実施形態で は、例えばこの所定の比を1.5とする。

[0055]

Tnew/Toldが所定の比以下であれば、直前に歯欠けはないとして処理はステップ445に進み、クランクカウンタをインクリメントして処理が終了する。クランクカウンタとは、クランク角が0 'CAの位置のときから、クランク信号が何本の歯数を経てきたかを示すための値である。すなわち、クランクカウンタは、現在のクランク角が何度であるかを一意的に示す指標である。

[0056]

Tnew/Toldが所定の比より大きければ、直前に歯欠けがあったとして処理はステップ450に進み、判定カウンタが正であるか否かを判定する。正でなければ処理はステップ445に進み、クランクカウンタをインクリメントして処理が終了する。正であれば処理はステップ455に進み、クランクカウンタをクリアして処理が終了する。

[0057]

ステップ455のクランクカウンタをクリアする処理が行われる場合は、ステップ440およびステップ450で共に肯定の判定が行われた場合、すなわちクランク信号の歯欠けを検知し、かつ判定カウンタが正の場合である。このような場合の意味について、図5を用いて説明する。図5は、上述した判定カウンタ、クランクカウンタの変化のタイミングを、クランク信号およびカム信号のタイミングと対比したタイミングチャートである。図中右方向が時間の向きである。

[0058]

図5中、カム信号のハイへの立ち上がりがあると、図3のステップ310によってカムフラグがセットされ、その直後のクランク信号の立ち上がりによる図4の処理中、ステップ415において判定カウンタが所定の値にセットされる(タ

イミング61)。その後、クランク信号が立ち上がる度に図4の処理が行われるが、カム信号立ち上がり直後でない限りカムフラグがセットされていないので、判定カウンタはクランク信号の立ち上がりの度に段階的に1づつ減っていく(図4ステップ425参照)。そしてクランクカウンタも、カム信号の歯欠けを検知してかつ判定カウンタが正でない限り、クランク信号の立ち上がりの度に1づつ増大する(図4ステップ445参照)。

[0059]

その後、判定カウンタがまだ2以上のときに、クランク信号の歯欠けが検知されると、そのときの図4の処理において、ステップ440およびステップ450の判定は肯定となり、クランクカウンタがクリアされる(タイミング62)。これによって、カム信号の立ち上がり後短期間内のクランク信号の歯欠けが検知されると、その直後のクランク信号の立ち上がり(0 'CAに対応する)においてクランクカウンタがゼロになる。このようにすることで、クランク角とクランクカウンタが1対1の対応関係を有するようになる。なお、本実施形態においてカム信号の立ち上がり後短期間内とは、カム信号の立ち上がり後所定回数のクランク信号の立ち上がり以内のことをいう。また、本実施形態においてはこの所定回数は8回である。

[0060]

図 6 に、マイコン 2 3 のクランクデータ設定および送信の処理のフローチャートを示す。この処理は、所定の周期で開始するようにあらかじめ設定されている。所定の周期とは、本実施形態においては、図 2 の 4 段目の 4 角形のタイミングがやってくる周期である。また、この処理は、時間スロット 5 1 の終了の時刻から時間 β だけ前に開始するとも言える。この値 β は、例えば工場出荷時にマイコン 2 3 のフラッシュメモリに記録される。以下、図 6 の処理について説明する。

$[0\ 0\ 6\ 1]$

ステップ610では、割り込み禁止処理を行う。これは、図4のクランク信号立ち上がりの割り込みに対する処理の開始を、割り込み禁止が解除されるまで待たせる処理である。これは、もし図6の処理の途中で上記割り込みによる処理が始まってしまうと、通信開始遅れ計測タイマの値αがリセットされてしまい(図

40 のステップ 405 参照)、直前のクランク信号立ち上がりから図 60 の処理の開始までの時間 α (図 2 参照)が不明になってしまうからである。

[0062]

続いてステップ620では、RAM中に保存されているタイマ値 α を読み込む。そしてステップ630で同じくRAMからクランクカウンタの値を読み込む。そしてステップ640で割り込みを解除する。そしてステップ650で α + β の値とクランクカウンタの値ををプロトコルIC22に出力することで、時間スロット51でこのデータがTCMECU3に送信されるための準備を行う。この α + β は、直前にクランク信号が立ち上がってから、マイコン23からTCMECU3へ上記データの送信が終了するときまでの通信等遅れ時間を表している(図2参照)。すなわち α + β は、センサECU2がTCMECU3に送信を行う時におけるクランク角に関する情報であるといえる。なおこの情報は、 α + β といった遅れ時間の情報であってもよいが、時間 α + β 後のクランク角といった、遅れ時間に基づいて補正されたクランク角であってもよい。

[0063]

そしてステップ650の後に処理が終了する。これにより、その後プロトコル IC22によって時間スロット51で上記データがTCMECU3に対して送信 される。従って、ステップ650の送信準備処理は、実質的には送信処理である

[0064]

このようにして、クランクカウンタの値と、クランク信号立ち上がりからクランクカウンタ送信完了までの遅れ時間とからなるデータが、TCMECU3に送信されることになる。

[0065]

TCMECU3では、マイコン23がドライバ/レシーバIC31、プロトコルIC32を介してこのデータを受信し、このデータに基づいて点火時期を演算する。このマイコン33の演算処理のフローチャートを図7に示し、この図に従って点火時期演算処理について説明する。

[0066]

図7の処理は、所定の周期で開始するようにあらかじめ設定されている。所定の周期とは、本実施形態においては、図2の5段目の4角形のタイミングがやってくる周期である。またこの処理は、時間スロット51と、この時間スロット51の後に最も先に来る時間スロット52の間の期間内に開始して終了するようになっている。すなわち、図7の処理は、センサECU2の送信に割り当てられた時間スロット51と、この時間スロット51の後に最初に来るTCMECU3に割り当てられた時間スロット52との間の時間に割り当てられている。これによって、時間スロット51の送信によって受け取ったデータについて処理した結果を、時間スロット52のうちこの時間スロット51の後に最も先に来る時間スロット52で送信できるので、通信による時間の遅れを抑えることができる。

[0067]

なお、マイコン33には、時間スロット51とその後最も先に来る時間スロット52との間の時間間隔 γ (図2参照)の値がフラッシュメモリ中にあらかじめ記録されている。

[0068]

ステップ710では、受信したクランクカウンタの値から、後述する補間処理 を行って点火時期、すなわち今からどれくらいの後に点火をするかの情報を算出 する。ただしこの情報は、この時点においては通信による時間遅れを考慮してい ない。

[0069]

ステップ720では、ステップ710で得られた点火時期から、通信等後れの補正を行う。具体的には、ステップ710で得られた点火時期から、時間 $\alpha+\beta+\gamma$ を差し引く。この時間 $\alpha+\beta+\gamma$ が差し引かれた値は、TCMECU3が点火ECU4に送信を行う時からどれくらい後に点火をするかの情報である。そしてステップ730で補正された点火時期のデータをプロトコルIC32に出力することで、時間スロット52でこのデータが点火ECU4に送信されるための準備を行う。そしてステップ730の後に処理が終了する。これにより、その後プロトコルIC32によって時間スロット52で上記データが点火ECU4に対して送信される。従って、ステップ730の送信準備処理は、実質的には送信処理

である。

[0070]

[0071]

例えば、今回受信したクランク角が点92の値だった場合、1回前の点91と 今回の点92とを含む直線を後の時刻に外挿することで、クランク角が720' CAとなる時刻、すなわち点火時期を算出する。

[0072]

また今回受信したクランク角が点93の値だった場合、前回の点92と今回の点93とを含む直線ではなく、前回の点92を720 'CA下げた点94と点93とを含む直線を外挿して、点火時期を算出する。以下、図8に沿ってこの補間処理について説明する。

[0073]

まずステップ810で、受信したクランクカウンタ値をクランク角に変換する。マイコン33のフラッシュメモリには、この変換のための変換テーブルが保存されており、ステップ810の処理はこの変換テーブルを読み出すことで行われる。

[0074]

次にステップ815で、前回受信したクランクカウンタ値に対応するクランク 角が、今回ステップ810で得られたクランク角より小さいか否かを判定する。 前回のクランク角は、マイコン33のフラッシュメモリ中に保存されている。

[0075]

この判定が肯定なら、フラッシュメモリ中の所定の領域に割り当てられた変数

AK,

(今回のクランク角ー前回のクランク角) / (通信間隔)

の値を代入する(ステップ820)。これは、図9で今回受信したクランク角が 点92の値だった場合の補間に対応する。なお、(通信間隔)は、前回クランク 角を受信した時の時刻と今回クランク角を受信した時の時刻の時間間隔である。 ステップ815の判定が否定の場合は、この変数Aに

(720 'CA-今回のクランク角+前回のクランク角) / (通信間隔) の値を代入する(ステップ825)。これは、図9で今回受信したクランク角が 点93の値だった場合の補間に対応する。

[0076]

ステップ820および825の次には、ステップ830でフラッシュメモリ中の所定の領域に割り当てられた変数Bに今回のクランク角を代入する。

[0077]

そしてステップ835では、ステップ820~830で得られたA、BについてAx+B=720' CAとなる $x=x_0$ を算出する。ここで、x は今回のクランク角の受信時刻からの経過時間を表している。式Ax+B は線形補間によって得られた直線の、値x におけるクランク角を示す式である。したがって x_0 は、今回の受信時刻からあとどれだけ時間が経てばクランク角が720' CAとなるかを示す値である。すなわち、補間によって得られた点火時期は、時間 x_0 後となる。

[0078]

そしてステップ840では、今回のクランク角およびクランク角受信時刻を、 次に図8の処理が行われたときの「前回のクランク角」および「前回の受信時刻 」として用いるためにフラッシュメモリに記録する。

[0079]

この補間処理は、エンジン回転数がクランクカウンタの分解能(ここでは5 CA)に比べて急激に変化しないので、十分よい精度の補間である。また、この補間は図10(a)の2次補間のようなオーバーシュート、アンダーシュート(図中点線で囲まれた部分)が発生することなく、また図10(b)のようなクラ

ンク角720 'CAと0 'CAとの間の不連続性による誤差も生じない。

[0080]

図7、8の処理によって、点火ECU4に対して送信された点火時期のデータは、ドライバ/レシーバIC41およびプロトコルIC42を介してマイコン43によって受信される。そして点火処理45が、受信した点火時期にI/O44に点火命令を出力し、I/O44はイグナイタ7に点火信号を出力する。

[0081]

これによってセンサECU2のマイコン23は算出したクランクカウンタ値を 、によって車内通信ネットワーク8に送信するので、クランク角の情報がネット ワークを流れるようになる。したがって、通信速度等の問題によって送信される クランク角の情報が欠けても、次に送信されるクランクカウンタ値によって適切 な値に追従することができるので、イグナイタ7の制御とクランク角との間の時 間的ずれを抑えることができる。

[0082]

また、センサECU2からTCMECU3には、センサECU2が送信を行う時におけるクランク角に関する情報が渡され、またTCMECU3から点火ECU4には、TCMECU3が点火ECU4に送信を行う時からどれくらい後に点火をするかの情報が与えられるので、通信による時間遅れが抑えられ、イグナイタ7の制御とクランク角との間の時間的ずれをさらに抑えることができる。

(第2実施形態)

以下、本発明の第2実施形態について説明する。図11に、第2実施形態に係る車両制御システム1'の構成を示す。本実施形態においては、車内通信ネットワーク8のTDMAの通信周期が十分早いとする。通信周期が十分早いとは、各ECUにおいて、クランク信号の変化の最速周期の1/2より早く自己の通信周期が廻ってくることをいう。

[0083]

この車両制御システム1'は、クランクセンサ5、カムセンサ6、イグナイタ 7、マイコン73、クランクECU85、およびカムECU95を有している。 なお、本実施形態における構成要素で第1実施形態の構成要素と同等のものにつ いては同一の符号を付し、それらの説明については簡略化または省略する。

[0084]

クランクECU85は、ドライバ/レシーバIC86、プロトコルIC87、 およびI/O88を有している。クランクセンサ5から入力されたクランク信号 は、I/O88、プロトコルIC87、およびドライバ/レシーバIC86を介 し、車内通信ネットワーク8のプロトコルに従ったクランク信号のデータとして エンジンECU70に出力される。

[0085]

カムECU95は、ドライバ/レシーバIC96、プロトコルIC97、およびI/O98を有している。カムセンサ6から入力されたカム信号は、I/O98、プロトコルIC97、ドライバ/レシーバIC96を介し、車内通信ネットワーク8のプロトコルに従ったカム信号のデータとしてエンジンECU70に送信される。

[0086]

これら送信されるカム信号、クランク信号は、第1実施形態で車内通信ネットワーク8内に送信されるクランクカウンタ値と異なり、クランク角の絶対量としての角度を示す情報ではなく、クランク角の変化量を示す相対情報であるといえる。本実施形態においては通信周期が十分早いので、カム信号、クランク信号の変化の周期が速すぎて送信データの抜けが発生するということがない。

[0087]

エンジンECU70は、ドライバ/レシーバIC71、プロトコルIC72、マイコン73、およびI/O74より成る。マイコン73は、車内通信ネットワーク8を介してマイコン73に送信されたデータを、ドライバ/レシーバIC71、プロトコルIC72を介して受信し、またI/O74を介してイグナイタ7の点火の制御を行うようになっている。

[0088]

マイコン73が実行する処理としては、クランク角処理25、ダイアグ処理26、点火タイミング処理34、点火処理45がある。これらの処理は、第1実施 形態で示した処理と同等のものである。ただし、ダイアグ処理26、点火タイミ ング処理34、点火処理45間のデータのやり取りは、車内通信ネットワーク8を介さないようになっている。従って、図6、7のα、β、γは、通信の遅れによるものではなく、むしろ処理にかかる時間による遅れとなる。

[0089]

以上のような構成の車両制御システム1'は、上述した通り車内通信ネットワーク8のTDMAの通信周期が十分早い。すなわち、車内通信ネットワーク8は、クランクECUが、入力されたクランク信号に基づいた情報を欠けることなく送信することができるようになっている。したがって、イグナイタ7の制御タイミングとクランク角との間の時間的ずれを抑えることができる。

[0090]

なお、本発明の各実施形態においては、車内通信の多重方式としてTDMAを用いていたが、これは必ずしもTDMAでなくともよく、例えばCAN(Contro ller Area Network)で採用されているCSMA/CD(Carrer Sence Multiple Access/Collision Detection)であってもよい。

[0091]

なお、本発明の第1実施形態においては、イグナイタ7が車両のクランク角に同期した作動を行うアクチュエータを構成し、点火ECU4がアクチュエータ制御ECUを構成し、TCMECU3がタイミング決定ECUを構成する。なお、上記したアクチュエータは必ずしもイグナイタ7である必要はなく例えば燃料噴射装置であってもよい。

[0092]

また、図3および図4に記載のマイコン23のカム信号立ち上がり処理および クランク信号立ち上がり処理が、入力されたカム信号およびクランク信号に基づ いてクランク角を算出するクランク角算出手段を構成する。

[0093]

また、図6に記載のマイコン23のクランクデータ設定と送信処理が、クランク角算出手段が算出したクランク角を、ネットワークを介してタイミング決定手段に送信するクランク角送信手段を構成する。

[0094]

また、図7に記載のマイコン33の点火時期演算処理が、車内通信ネットワークに接続するいずれかのECU内にあって、受信したクランク角に基づいてアクチュエータの作動のタイミングを決定するタイミング決定手段を構成する。

[0095]

また、マイコン43の点火処理45が、タイミング決定手段の決定したタイミングに基づいてアクチュエータを制御するタイミング制御手段を構成する。

[0096]

また、マイコン23のダイアグ処理26が故障診断手段を構成する。

[0097]

また、第2実施形態においては、イグナイタ7が車両のクランク角に同期した作動を行うアクチュエータを構成し、エンジンECU70がアクチュエータ制御ECUを構成する。またダイアグ処理26および点火タイミング処理34がタイミング決定手段を構成し、また点火処理45が、タイミング決定手段の決定したタイミングに基づいてアクチュエータを制御するタイミング制御手段を構成する。

[0098]

また、第2実施形態においては、ダイアグ処理26、点火タイミング処理34、点火処理45が同一のECU内のマイコンの処理として実現されているが、ダイアグ処理26、点火タイミング処理34、は別のECU内の処理として実現されており、車内通信ネットワーク8を通じた通信によってデータのやりとりを行ってもよい。この場合、図6、7の α 、 β 、 γ は、通信の遅れによるものであると言える。

【図面の簡単な説明】

【図1】

本発明の第1実施形態に係る車両制御システム1の構成図である。

【図2】

エンジンの点火制御のタイミング図である。

【図3】

クランク角処理25の一部としての、カム信号の立ち上がり処理のフローチャ

ートである。

【図4】

クランク角処理25の一部としての、クランク信号の立ち上がり処理のフロー チャートである。

【図5】

判定カウンタ、クランクカウンタ等の変化のタイミングチャートである。

【図6】

マイコン23のクランクデータ設定および送信の処理のフローチャートである。

【図7】

点火時期演算処理のフローチャートである。

【図8】

点火時期算出のための補間処理を行う処理のフローチャートである。

【図9】

図8の線形補間の概念図である。

【図10】

他の補間の概念図である。

【図11】

第2実施形態に係る車両制御システム1'の構成図である。

【図12】

クランク信号と、車内通信ネットワークに送信されるクランク信号の情報との 時間的関係の図である。

【図13】

図12の場合よりもエンジン回転数が高くなった場合の、クランク信号と時間 スロットとの関係の図である。

【符号の説明】

- 1…車両制御システム、2…センサECU、3…TCMECU、
- 4…点火ECU、5…クランクセンサ、6…カムセンサ、7…イグナイタ、
- 8…車内通信ネットワーク、

- 21、31、41、71、86、96…ドライバ/レシーバIC、
- 22、32、42、72、87、97···プロトコルIC、
- 23、33、43、73…マイコン、
- 24, 34, 44, 74, 88, 98 ··· I/O,
- 25…クランク角処理、26…ダイアグ処理、34…点火タイミング処理、
- 45…点火処理、51、52…時間スロット、70…エンジンECU、
- 85…クランクECU、95…カムECU。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 車両のクランク角に同期した作動を行うアクチュエータを制御するECUと、車両のクランク信号が入力されるセンサモECUとが分散されている車両制御システムにおいて、これらECUが車内通信ネットワークを介して情報をやり取りしている場合に、このアクチュエータの制御タイミングとクランク角との間の時間的ずれを抑える。

【解決手段】 車両制御システム1において、センサECU2は、入力されたカム信号およびクランク信号に基づいてクランク角を算出し、算出したクランク角をTCMECU3に送信すする。また、TCMECU3は受信したクランク角に基づいてイグナイタ7の作動のタイミングを決定して点火ECU4に送信し、点火ECU4は、この受信したタイミングに基づいてイグナイタ7を制御する

【選択図】 図1

. 特願2002-348016

出願人履歴情報

識別番号

[000004260]

1. 変更年月日

1996年10月 8日

[変更理由]

名称変更

住 所

愛知県刈谷市昭和町1丁目1番地

氏 名

株式会社デンソー