Anubhav Bhatla

☑ bhatlaanubhav2001@gmail.com • • • anubhavbhatla.github.io

Research Interests

Computer Architecture, Microarchitectural Security, Digital Design, Microprocessors

Education

Indian Institute of Technology Bombay

Bachelor of Technology in Electrical Engineering with Honours Minor in Computer Science and Engineering (Jul. 2020 - Present) CPI: 9.03/10

Scholastic Achievements

 Secured All India Rank 266 in JEE Advanced, 2020 among 160 thousand candidates 	(2020)
o Acquired an All India Rank 490 in JEE Mains, 2020 among 1.1 million candidates	(2020)
o Awarded the Kishore Vaigyanak Protsahan Yojana (KVPY) fellowship with All India Rank 337	(2018)
 Qualified for Indian National Olympiad (INO) in Astronomy, Chemistry & Physics 	(2019)
 Bagged a position among the Top 1% students nationally in NSEP & NSEA 	(2019)
o Secured 399 marks out of 450 in the <i>BITSAT</i> examination (Top 250 in 300 thousand candidates)	(2020)

• Recipient of Merit Certificate for being among the top 0.1% of successful candidates in *Physics* (2020)

Research Experience

Hardware-efficient Secure Cache Design

Prof. Biswabandan Panda

(Jan. 2023 - Present)

Research Project

- O Extensively analyzed side-channel attacks and state-of-the-art cache designs which are secure against such attacks
- o Proposed modifications to the MIRAGE cache design aiming to reduce hardware overhead while retaining security
- \circ Simulated the proposed cache design to ensure no Set-Associative Eviction occurs in 10^{13} years of system lifetime
- Implementing the proposed cache design on **ChampSim** simulator to estimate performance overhead compared to a baseline non-secure cache design

Secure Cache-line Reallocation

Prof. Virendra Singh

(Jul. 2022 - Dec. 2022) EE691: R&D Project

- O Covered literature on multi-core processors, cache replacement policies, side channel attacks and their mitigation
- Implemented the PASS-P, Utility-based DCP (UCP), and static cache partitioning techniques on the SNIPER multi-core simulator and carefully analyzed results for different cache configurations
- O Performed extensive analysis of performance, sensitivity, re-allocated blocks and dead blocks for different benchmarks
- Proposed and implemented a modification to PASS-P using SNIPER simulator to preferentially re-allocate dead blocks with the aim to improve performance

Professional Experience

Embedded Software Intern

(May 2023 - Jul. 2023)

Texas Instruments India

Summer Internship

- Created a driver monitoring application for the AM62Ax Sitara processor using the GStreamer media framework
- Modified the existing GStreamer pipelines to enable stacking of multiple DNN models required for the application
- O Analyzed the boot flow of a competitor processor and created a boot loader porting guide for the AM62x processor
- o Extensively analyzed the existing documentation and Linux examples on the AM62x and suggested improvements

Key Projects

Superscalar Processor Design

(Jul. 2022 - Nov. 2022)

Prof. Virendra Singh

CS683: Advanced Computer Architecture

- O Designed a 2-way OOO Superscalar processor with a Turing-complete instruction set architecture of 17 instructions
- O Implemented key components: Reservation station, Reorder Buffer, Execution pipelines, & Memory system in VHDL
- O Performed extensive software testing for all 17 instructions on GHDL and GTKWave simulations using a Testbench
- o Implemented an Assembler and a Bootloader in Python to dump user instructions into the memory of the processor

EEG Data Acquisition System

(Jan. 2023 - Apr. 2023)

Prof. Siddharth Tallur and Prof. Laxmeesha Somappa

EE344: Electronic Design Lab

- o Extensively analyzed datasheets for various ADCs, regulators, microcontrollers, Wi-Fi modules and other peripherals
- Designed a 24-channel setup on a 4-layer PCB complete with the analog front-end, daisy-chaining for the ADCs, analog and digital power regulators, and peripheral interfacing using the 2 available SPI buses on the Microcontroller
- o Implemented a 4-channel easy-to-replicate modular design along with a 3D printed headgear for demo purposes
- O Bagged the Best Project Award out of 70+ teams for exemplary performance in the final demo and presentation

VLSI Circuit Design

(Jul. 2022 - Nov. 2022)

Prof. Dinesh Sharma

EE671: VLSI Design

- O Designed logic gates using CMOS, pseudo-NMOS, CVSL, and CPL design styles, and analyzed output characteristics
- o Implemented a 16-bit Brent Kung logarithmic fast adder in VHDL and validated design using ModelSim simulations
- O Used the Dadda Reduction Algorithm to optimize efficiency of a 16-bit Multiply and Accumulate circuit in VHDL

RISC Processor Design

(Jan. 2022 - Apr. 2022)

Prof. Virendra Singh

EE309: Microprocessors

- Designed and implemented the 16-bit IITB RISC-22 Microprocessor, capable of running a total of 17 instructions using both 6-stage Pipelining and Multicycle implementations
- \circ One of the few teams to optimize the pipelined processor using **Hazard mitigation**, **Forwarding** & Branch prediction
- O Performed software testing for all instructions using Intel Quartus Environment and the ModelSim HDL simulator

Valet Parking Bot

(Jan. 2023 - Apr. 2023)

Prof. Paritosh Pandya and Prof. Kavi Arya

CS684: Embedded Systems

- O Interfaced the tracker sensors, proximity sensors, and position encoders using the Arduino present on the Alphabot
- O Implemented and tested algorithms for Line following, Obstacle avoidance, and Parking in the Heptagon language
- O Wrote the controller in Embedded C to set up the sensor and motor drivers and interfacing with the Heptagon code

VLSI Circuit Partitioning

(Jul. 2022 - Nov. 2022)

Prof. Virendra Singh

EE677: Foundation of VLSI CAD

- Studied and implemented graph partitioning algorithms and heuristics such as the Kernighan-Lin Algorithm,
 Clustering Based Heuristic, and Hagen Kahng EIG Algorithm
- O Visualized the algorithms using the plotting tools of matplotlib and networkx libraries and compared their performance

Digital Circuit Design

(Jul. 2021 - Nov. 2021)

Prof. Maryam Shojaei Baghini

EE214: Digital Circuits Lab

- O Acquired the knowledge of Finite-state machines and the methodology for implementing them using D-FlipFlops
- o Implemented a 4-bit Sequence Generator with D-FlipFlops using Sequential and Behavioral modelling in VHDL
- O Performed software testing using Quartus simulations and hardware testing using Scanchain on the Krypton board

Microprocessor Implementations

(Jan. 2022 - Apr. 2022)

Prof. Saravanan Vijaykumaran

EE337: Microprocessors Lab

- Designed and tested a two-party, password-secure ATM capable of taking action inputs from keyboard using UART
- o Implemented a reaction timer in Assembly to display the time it takes for the user to respond to a stimulus (in ms)
- O Developed a subroutine capable of generating voltage waveforms corresponding to different music note frequencies
- Interfaced an LM35 sensor with the microcontroller using an ADC, through serial peripheral interfacing, to monitor and display real-time ambient temperature

Other Projects

Predicting the RUL of EV Batteries

(Jul. 2021 - Nov. 2021)

Prof. Amit Sethi

DS203: Programming for Data Science

- O Achieved an R2 score of 98.09 for estimating the RUL of EV Lithium batteries using an XGBoost regression model
- o Performed EDA on the Charging, Discharge and Impedance cycles for Li-ion batteries using NASA's PCoE Datasets
- O Understood and tested various models such as SVR, Multilayer Perceptron, LSTM, Random Forest as well as various Boosting Algorithms

General Purpose GPUs

(May 2022 - Jul. 2022)

Prof. Virendra Singh

Research Project

- o Reviewed literature about analyzing and leveraging a Decoupled LLC design and implementing it on GPGPU-Sim
- Studied and reviewed the SIMT Core, Memory systems and the programming model related to GPU architecture
- o Performed various benchmark simulations on the GPGPU-Sim simulator and carefully analyzed the outputs received

Operating Systems

(May 2022 - Jul. 2022)

Maths and Physics Club, IIT Bombay

Summer of Science

- O Studied various Scheduling policies, Process APIs, and Context switching used to facilitate CPU Virtualization
- O Covered different Memory APIs, Segmentation, Paging, TLBs, and Swapping in context of Memory Virtualization

Postitions of Responsibility

Served as an undergraduate teaching assistant for a batch of 200+ students, with the responsibility of conducting doubt-solving sessions, and academically mentoring students over the duration of the following course: o EE309: Microprocessors (Jan. 2023 - Apr. 2023)

Technical Skills

Languages C, C++, VHDL, Verilog, Python, Assembly, Heptagon

Intel Quartus, Autodesk Fusion 360, GStreamer, Keil µVision, GHDL, MATLAB, Ngspice, **Software**

ArduinoIDE, AutoCAD, Solidworks, GNU Radio, LATEX

Simulators ChampSim, Sniper, GPGPU-Sim

Courses Undertaken

VLSI Design, Foundation of VLSI CAD, Microprocessors, Electronic Design Lab,

Digital Systems, Analog Circuits, Communication Networks, Information Theory & **Electrical Engineering**

Coding, Probability & Random Processes, Electronic Devices & Circuits, Control

Systems, Power Engineering, Electromagnetic Waves

Advanced Computer Architecture, Embedded Systems, Principles of Data and **Computer Science**

System Security, Computer Programming & Utilization

Mathematics Calculus, Linear Algebra, Differential Equations, Complex Analysis Miscellaneous Economics, Sociology, Quantum Physics and Application, Biology

Extracurriculars

 Completed one year of training under the National Cadet Corps, IIT Bombay (2021)

o Awarded a Special Mention out of a total of 82 students in the LATEX bootcamp conducted by the Under-Graduate Academic Council, IIT Bombay (2021)

o Designed and assembled a remote-controlled plane and participated in the RC Plane Competition conducted by the Aeromodelling Club, IIT Bombay (2021)