Solutions to homework 4:

- 1. Recall that we say $n \in \mathbb{Z}$ is a perfect square when $n = k^2$ for some $k \in \mathbb{Z}$. Let $n \in \mathbb{Z}$.
 - (a) Prove that if $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$, then n is not a perfect square.

Proof by Contrapositive: If n is a perfect square then $n \equiv 2. \neg \pmod{4}$ or $n \not\equiv 3 \pmod{4}$. Assume that n is a perfect square $n = k^2$.

- Case 1: Assume that k is even such that $k=2\ell, \ell\in\mathbb{Z}$, and consider $n=4\ell^2$. By definition of divisibility by $4,4\ell^2\equiv 0(\operatorname{mod} 4)$ which implies that $n\equiv 0(\operatorname{mod})4$
- Case 2: Assume that k is odd such that $k=2\ell+1, \ell\in\mathbb{Z}$, and consider $n=4\ell^2+4\ell+1=4(\ell^2+\ell)+1$. Since ℓ is an integer we $\ell^2+\ell=m, m\in\mathbb{Z}$. By definition of divisibility by definition of $1 \mod 4$, $4m+1\equiv 1 \pmod 4$ which implies that $n\equiv 1 \pmod 4$

Hence in both cases and the contrapositive, we can conclude that if $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$

(b) Prove that if n^2+1 is a perfect square then n=0. Hint: Factor a difference of squares and think about divisors.

Proof: Assume that $n^2 + 1$ is a perfect square such that $n^2 + 1 = k^2$. We can say that $n^2 = k^2 - 1$.

$$k^2 - n^2 = (k+n)(k-n)$$

 $1 = (k+n)(k-n)$

Now consider the following cases, since we know that the only divisors of 1 are 1 and -1, we can conclude that either both (k+n) and (k-n) are equal to 1 or they are equal -1. Consider the following case work.

• Case 1: Assume that (k+n)=1 and (k-n)=1.

$$k=1-n$$

$$\mbox{We rearrange } (k+1) = -1(1-n) - n = 1$$

$$-2n = 0n \qquad \qquad = 0$$

• Case 2: Assume that (k + n) = -1 and (k - n) = -1.

$$k=-1-n$$

$$\mbox{We rearrange } (k+1)=-1(-1-n)-n=-1$$

$$-2n=0n \qquad \qquad =0$$

Hence, in either case that (k+n) or (k-n) are equal to 1 or -1 we can conclude that n=0, thus if n^2+1 is a perfect square then n=0.

2. Recall Bézout's identity: Let $a,b\in\mathbb{Z}$ such that a and b are not both zero. Then there exists $x,y\in\mathbb{Z}$ such that $ax+by=\gcd(a,b)$. Use this result to prove the following result: Let $a,b,c\in\mathbb{Z}$ such that $\gcd(a,b)=1$. Then $(a\mid bc)\Longrightarrow(a\mid c)$.

Proof: Assume that $(a \mid bc)$ such that bc = ak, for some $k \in \mathbb{Z}$. Now consider the fact that $\gcd(a,b) = 1$ and by Bézout's identity we know that ax + by = 1. Multiplying both sides by c we find acx + bcy = c and using our assumption $a \mid bc$ we know acx + aky = c. Factoring a out of the result yields, a(cx + by) = c, and since we know that the result of $(cx + by) \in \mathbb{Z}$ we can conclude that $a\ell = c$. Hence $a \mid c$.

- 3. Let $P \subseteq \mathbb{N}$ be the set of prime numbers $P = \{2, 3, 5, 7, 11, ...\}$. Determine whether the following statements are true or false. Prove your answers ("true" or "false" is not sufficient).
 - 1. $\forall x \in P, \forall y \in P, x + y \in P$. False we prove negation.
 - Choose x = 3, y = 5, x + y = 8, and $8 \notin P$.
 - 2. $\forall x \in P, \exists y \in P \text{ such that } x + y \notin P.$ This statement is true.

Proof: Assume $x \in P$ and choose y = 23. Consider the following case work.

- Case 1: Assume that x is even, such that x=2, since 2 is the only even number in P. 23+2=25, thus if x is even then $x+y\notin P$.
- Case 2: Assume that x is odd, such that x=2k+1. We can write x+y as (2k+1)+2(10)+3=2k+2(10)+4. Factoring 2 out of our expression yields $2(\ell)$, since we know that x+y>2, since x+y is even and and greater than two, we can conclude that $(x+y) \notin P$.

Hence by both cases we can conclude that $\forall x \in P, \exists y \in P \text{ such that } x + y \notin P.$

3. $\exists x \in P$ such that, $\forall y \in P, x + y \in P$. This statement is false, we can prove the negations.

Proof: $\forall x \in P, \exists y \in P \text{ such that } x + y \notin P.$ Assume $x \in P \text{ and choose } y = 7.$ Consider the following case work.

- Case 1: Assume that x is even, such that x = 2, since 2 is the only even number in P. 7 + 2 = 9, thus if x is even then $x + y \notin P$.
- Case 2: Assume that x is odd, such that x=2k+1. We can write x+y as (2k+1)+2(4)+1=2k+2(10)+2. Factoring 2 out of our expression yields $2(\ell)$, since we know that x+y>2, since x+y is even and and greater than two, we can conclude that $(x+y) \notin P$.

Hence by proving both cases of the negation we can conclude that our original statement is false.

4. Prove the following statement: For every positive number ε there is a positive number M such that

$$\left|\frac{2x^2}{x^2+1}-2\right|<\varepsilon$$

whenever $x \geq M$.

Proof: Assume that $\varepsilon > 0$, let $M = \sqrt{\frac{2}{\varepsilon}}$ and assume $x \geq M$. Consider the following.

$$x \ge M$$

$$x \ge \sqrt{\frac{2}{\varepsilon}}$$

$$x^2 \ge \frac{2}{\varepsilon}$$

$$\varepsilon \ge \frac{2}{x^2}$$

$$\varepsilon > \frac{2}{x^2 + 1}$$

Hence

$$\left|\frac{2x^2}{x^2+1}-2\right| = \left|\frac{2x^2-2x^2-2}{x^2+1}\right| = \frac{2}{x^2+1} < \varepsilon$$

5. We say that a function $f:\mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ if $\lim_{x \to a} f(x) = f(a)$. Let

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Is f continuous at x=0? (You may use the result: $\forall x \in \mathbb{R}, |\sin x| \leq 1$.)

Note: Make sure to use the definition of a limit to justify your answer, namely: Let $a, L \in \mathbb{R}$. The limit of a function f as x approaches a is L, when (for $\varepsilon, \delta, x \in \mathbb{R}$)

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } (0 < |x - a| < \delta) \Longrightarrow (|f(x) - L| < \varepsilon).$$

Hint: You can make use of the fact that $|f(x)| \le x^2$.

Proof: Assume that $\varepsilon > 0$, let $\delta = \sqrt{\varepsilon}$ and assume that $|0 < x - 0 < \delta|, x \in \mathbb{R}$. Consider the following.

$$0 < x < \sqrt{\varepsilon}$$
$$0 < x^2 < \varepsilon$$

Hence

$$|f(x)| \le x^2 < \varepsilon$$
 and $|f(x) - 0| < \varepsilon$

Thus, we can conclude that since $\lim_{x\to 0} f(x) = 0$ and f(0) = 0 it must be true that f(x) is continuous.

6. We say that a sequence (x_n) converges to L if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n > N) \Longrightarrow |x_n - L| < \varepsilon.$$

Using the definition, prove that the sequence (x_n) with

$$x_n = (-1)^n + \frac{1}{n}$$

does not converge to any $L \in \mathbb{R}$.

Proof: Consider the definition of non-convergence. $\exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \in \mathbb{N}, (n > N) \land |x_n - L| \ge \varepsilon$. Choose $\varepsilon = \frac{1}{2}$ and consider the following case work.

• Case 1: Assume $L \ge 0$

Choose $n > N \ge 2$ such that n is odd.

Then:

$$x_n = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} < -1 + \frac{1}{2} = -\frac{1}{2}$$

Since $L \ge 0$ and $x_n < -\frac{1}{2}$:

$$|x_n - L| = L - x_n > 0 - \left(-\frac{1}{2}\right) = \frac{1}{2}$$

Therefore $|x_n - L| \ge \frac{1}{2}$.

• Case 2: Assume L < 0

Choose $n > N \ge 2$ such that n is even.

Then:

$$x_n = (-1)^n + \frac{1}{n} = 1 + \frac{1}{n} > 1 > \frac{1}{2}$$

Since L<0 and $x_n>\frac{1}{2}$:

$$|x_n-L|=x_n-L>\frac{1}{2}-L>\frac{1}{2}-0=\frac{1}{2}$$

Therefore $|x_n - L| \ge \frac{1}{2}$.

Hence, for every $L \in \mathbb{R}$ and every $N \in \mathbb{N}$, we found n > N such that $|x_n - L| \ge \frac{1}{2}$. Therefore, the sequence (x_n) does not converge to any $L \in \mathbb{R}$.