QUIZ

Concentrations of Solutions

1.	Select the answer that shows the words in the correct order to complete the	
	passage.	
	Molarity is defined as the per	A solution with lower
	amounts of solute is called a	solution, while a solution with higher
	amounts is called a solution	on.
	A. moles of solute; liters of solution; diluted; concentrated	

- B. liters of water; moles of solute; concentrated; diluted
- C. grams of solute; liters of solution; diluted; concentrated
- D. liters of solution; moles of solute; concentrated; diluted
- 2. What is the molarity of a solution that contains 78.5 g of copper(II) chloride in 1.50 L of solution?
 - **A.** 52.3*M*
 - **B.** 0.390*M*
 - **C.** 1.14*M*
 - **D.** 0.585*M*
- **3.** A student is asked to prepare 400.0 mL of a 0.25*M* HCl solution. The students find a bottle labeled "2.0*M* HCl". How many mL of the 2.0*M* solution are needed to prepare the 0.25*M* solution?
 - **A.** 25 mL
 - **B.** $3.0 \times 10^1 \text{ mL}$
 - **C.** $5.0 \times 10^1 \text{ mL}$
 - **D.** $2.0 \times 10^2 \text{ mL}$
- **4.** Vinegar is sold as a 5.00% (v/v) solution of acetic acid. How many mL of water is in a 455 mL bottle of vinegar?
 - **A.** 23 mL
 - **B.** 91 mL
 - **C.** 432 mL
 - **D.** 455 mL
- **5.** When performing reactions, chemists often begin with solutions of a compound rather than its solid form. One of the reasons this is done is so chemists do not need to wait for the solid to dissolve.

A chemist is given a 3.00*M* solution of KBr and needs to measure out 0.733 moles of this solution. How many mL of the 3.00<u>M</u> KBr solution would the chemist need?

- **A.** 244 mL
- **B.** 4.09 mL
- **C.** 2.20 mL
- **D.** 212 mL