

ЭТИКЕТКА <u>УПЗ.487.362 ЭТ</u>

Микросхема интегральная 564 ИП2В Функциональное назначение –

 $4^{\underline{x}}$ – разрядная схема сравнения

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	9	Вход
2	Вход	10	Вход
3	Выход	11	Вход
4	Вход	12	Выход
5	Вход	13	Выход
6	Вход	14	Вход
7	Вход	15	Вход
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	Вуквенное обозначение не менее 2 3	не более	
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; 10 \; B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	$ m U_{OH}$		-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B~U_{CC}=10~B,~U_{IL}=3,0~B,~U_{IH}=7,0~B$	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U_{OHmin}		- -
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~{\rm B}$	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I _{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC}=5~B,~U_O=0,4~B\\ U_{CC}=10~B,~U_O=0,5~B$	I_{OL}	0,4 1,0	- -

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \ B, \ U_O = 2,5 \ B$ $U_{CC} = 10 \ B, \ U_O = 9,5 \ B$	I_{OH}	/-1,0/ /-1,0/	- -
9. Ток потребления, мкА, при: $U_{\rm CC}$ = 5 B $U_{\rm CC}$ = 10 B $U_{\rm CC}$ = 15 B	I_{CC}	- - -	5,0 10,0 20,0
10. Время задержки распространения при включении, н C , при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$	t _{PHL}	-	900 360
11. Время задержки распространения при выключении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PLH}	- -	900 360

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г, в том числе: золото г/мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ C - не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1\ \underline{\Gamma}$ арантии предприятия изготовителя по ОСТ В $11\ 0398 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИП2В	соответствуют техничес	ким условиям бК0.34	17.064 ТУ 9 и признаны	годными для эксплуатации.

Приняты по (извещение, акт	от	(дата)	_	
Место для штампа ОТК			Место для штамг	іа ВП
Место для штампа « Перепро	верка произвед	цена	(дата)	»
Приняты по(извещение, акт и	от	(дата)	_	
Место для штампа ОТК			Место для штамі	та ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.