IMPORTING LIBRARIES

```
In []:
    import pandas as pd
    import numpy as np
    from matplotlib import pyplot as plt
    import seaborn as sns
    from sklearn.linear_model import LinearRegression
```

2. Load the dataset into the Google Colab

```
In []: df=pd.read_csv("/content/abalone.csv")
In []: df['age'] = df['Rings']+1.5
    df = df.drop('Rings', axis = 1)
```

3. UNIVARIATE ANALYSIS

t[]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
	Sex								
	- 1	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
	М	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497
	F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

3. BIVARIATE ANALYSIS & MULTIVARIATE ANALYSIS

```
In [ ]:
    numerical_features = df.select_dtypes(include = [np.number]).columns
    sns.pairplot(df[numerical_features])
```

Out[]: Seaborn.axisgrid.PairGrid at 0x7fc8fde17fd0>

4. Descriptive statistics

In []: df.describe()

t[]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing Values

```
In []: df.isnull().sum()

Out[]: Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
age 0
dtype: int64
```

6. OUTLIER HANDLING


```
In []:
    # outliers removal
    df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
    df.drop(df[(df['Viscera weight']< 0.5) & (df['age'] > 25)].index, inplace=True)
```

```
In []:
    var = 'Shell weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)
    #Outliers removal
    df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True)
    df.drop(df[(df['Shell weight']<0.8) & (df['age'] > 25)].index, inplace=True)
```

```
25 20 20 15 10 00 02 04 06 08 10
```

```
In []:
    var = 'Shucked weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)

#Outlier removal
    df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
    df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```



```
In []:
    var = 'Height'
    plt.scatter(x = df[var], y = df['age'])
    plt.grid(True)
    df.drop(df[(df['Height'] > 0.4) &
        (df['age'] < 15)].index, inplace = True)

    df.drop(df[(df['Height'] \cdot 0.4) & (
        df['age'] > 25)].index, inplace = True)
```


7. Categorical columns

```
In [1]: numerical_features = df.select_dtypes(include = [np.number]).columns

In [19]: numerical_features

Out[19]: Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'Sex_F', 'Sex_I', 'Sex_M'],

In [20]: categorical_features

Out[20]: Index([], dtype='object')
```

ENCODING

8. Split the dependent and independent variables

```
In [22]: x=df.iloc[:,:5] x
```

vet[22]: Length Diameter Height Whole weight Shucked weight 0 0.455 0.365 0.095 0.5140 0.2245 1 0.350 0.0265 0.090 0.2255 0.0995 2 0.530 0.420 0.135 0.6770 0.2565 3 0.440 0.365 0.125 0.5160 0.2155 4 0.330 0.255 0.080 0.2050 0.0895 4172 0.565 0.450 0.165 0.8870 0.3700 4390 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310 4176 0.710 0.555 0.195 1.9485 0.9455							
1 0.350 0.265 0.090 0.2255 0.0995 2 0.530 0.420 0.135 0.6770 0.2565 3 0.440 0.365 0.125 0.5160 0.2155 4 0.330 0.255 0.080 0.2050 0.0895 4172 0.565 0.450 0.165 0.8870 0.3700 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310	ut[22]:		Length	Diameter	Height	Whole weight	Shucked weight
2 0.530 0.420 0.135 0.6770 0.2565 3 0.440 0.365 0.125 0.5160 0.2155 4 0.330 0.255 0.080 0.2050 0.0895 4172 0.565 0.450 0.165 0.8870 0.3700 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310		0	0.455	0.365	0.095	0.5140	0.2245
3 0.440 0.365 0.125 0.5160 0.2155 4 0.330 0.255 0.080 0.2050 0.0895 4172 0.565 0.450 0.165 0.8870 0.3700 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310		1	0.350	0.265	0.090	0.2255	0.0995
4 0.330 0.255 0.080 0.2050 0.0895 4172 0.565 0.450 0.165 0.8870 0.3700 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310		2	0.530	0.420	0.135	0.6770	0.2565
4172 0.565 0.450 0.165 0.8870 0.3700 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310		3	0.440	0.365	0.125	0.5160	0.2155
4172 0.565 0.450 0.165 0.8870 0.3700 4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310		4	0.330	0.255	0.080	0.2050	0.0895
4173 0.590 0.440 0.135 0.9660 0.4390 4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310							
4174 0.600 0.475 0.205 1.1760 0.5255 4175 0.625 0.485 0.150 1.0945 0.5310		4172	0.565	0.450	0.165	0.8870	0.3700
4175 0.625 0.485 0.150 1.0945 0.5310		4173	0.590	0.440	0.135	0.9660	0.4390
		4174	0.600	0.475	0.205	1.1760	0.5255
4176 0.710 0.555 0.195 1.9485 0.9455		4175	0.625	0.485	0.150	1.0945	0.5310
		4176	0.710	0.555	0.195	1.9485	0.9455

3995 rows × 5 columns

```
In [23]: y=df.iloc[:,5:] y
```

Out[23]:		Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
	0	0.1010	0.1500	16.5	0	0	1
	1	0.0485	0.0700	8.5	0	0	1
	2	0.1415	0.2100	10.5	1	0	0
	3	0.1140	0.1550	11.5	0	0	1
	4	0.0395	0.0550	8.5	0	1	0
	4172	0.2390	0.2490	12.5	1	0	0
	4173	0.2145	0.2605	11.5	0	0	1
	4174	0.2875	0.3080	10.5	0	0	1
	4175	0.2610	0.2960	11.5	1	0	0
	4176	0.3765	0.4950	13.5	0	0	1

3995 rows × 6 columns

9. Feature Scaling

In [26]:	<pre>from sklearn.preprocessing import StandardScaler ss=StandardScaler() x_train=ss.fit_transform(x_train)</pre>
In []:	mlrpred=mlr.predict(x_test[0:9])
In []:	mlrpred

10. Train , Test , Split

In [25]:
 from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

11. Model building

In []: from sklearn.linear_model import LinearRegression
 mlr=LinearRegression()
 mlr.fit(x_train,y_train)

12 & 13. Train and Test the model

```
In []: x_test[0:5]

In []: y_test[0:5]
```

14. Measure the performance using metrics

In []:
 from sklearn.metrics import r2_score
 r2_score(mlr.predict(x_test),y_test)