CSE 5524 HW2

Name: Neng Shi

1)

Output Image:

We tried with multiple sigma values (0.5, 2.0, 3.5, 5.0, 6.5, 8.0, 9.5, 11.0, 12.5, 14.0, 15,5, 17.0, 18.5, and 20.0), and the images are in "task1_affleck_gaussian" directory.

Discussion:

To my friends, when sigma = 11.0, the face becomes recognizable.

2)

Output Image:

3)

Input Image:

Output Image:

gxlm

gylm

magIm

4)

Output Image:

T = 50

T = 100

T = 150

T = 200

5)

Output Image:

T = 50

T = 100

T = 150

T = 200

Discussion:

Compared to results generated from Sobel masks, edges generated from Gaussian masks are thicker (i.e., closer edges are more likely to be clustered to one edge).

Output Image:

The above image is the result from canny detector with the default setting.

The way it compares is that:

- 1. Smooth the image to remove noises.
- 2. Find the gradients of the image.
- 3. Looking for points where gradient magnitude is maximal along the direction of the gradient and keep them.
- 4. Use upper and lower thresholds to perform edge linking.