Reg.No

Course Code & Title KPR Institute of Engineering and Technology
(Autonomous)
Avinashi Road, Arasur, Coimbatore - 641 407 : U21AM401 Machine Learning 1 Semester: 04 Date: 16.05.2025 - AN Dept.: Ac.Yr.: 2024 - 2025 CSE(AIML)

Duration: 90 Minutes

Maximum Marks: 60

CIAT

9		_	0		7			D			ហ		The state of the s		2			w			4	v	1	<u>.</u>		1
What is a key limitation of the Find-5 algorithm?	c Learn from labelled data to generalize d) Maximize the separation between	b Minimize the error between predicted	Identify the feature goal of concept learning	C Starting from the goal and working Generating all possible solutions and backwards to find the facts filtering them.	a derive the goal b Using random search to find the goal.	Backward chaining works by:	a	a (P ∧ Q) → R b (P ∨ (Q ∧ R))	in propositional logic, which of the following is a valid formula?	c It cannot handle quantifiers d It only represents facts and not beliefs	a between variables b If is too complex to use in practical applications.	which of the following is a limitation of propositional logic?	C Breadth-First Search d All of the above	a Uepth+irst Search b Uniform Cost Search	within a finite search space?	Search.	C They use a heuristic to guide the They are faster than uninformed search	a the goal is reachable. They can only work in deterministic b environments.	which of the following statements is true about Informed search strategies?	c Greedy Best-First Search d Depth-First Search	a A* Search b Uniform Cost Search	Which of the following search algorithms is complete and guarantees optimality if all step costs are equal?	c search space. It explores all possible states in the d trequires domain-specific knowledge to work.	It always uses a heuristic to find the b It does not guarantee finding the goal in goal.	which of the following is a true statement about uninformed search?	-
-					-		4					46 48 2		-				- 49				7.78 184			and a	Marks
=	703	_		3	C		大道	C			æ			Z			5	χ,			æ			v .		ВТ
3		COS			င္ထ	4		C02		7	C02			C02		20 ·	Ç	3			S			3		င္ပ

2		10		-	
Section - F	c rescortaines to classify data.	a possible concepts A set of rules to the concepts	A hungale Elimination algorithm maintains:	C It is too computationally expensive	examples
	a	Б	ntains	a	σ
Section - B (10V2-22-2	d A single concept representing the best	A decision tree representing all possible features.	principly crassification	d It can only handle him of the	b It does not handle noisy data well
		-			
	12	C			
1		CO3			gir Par

	20	19	18	17	16	ō	14		13	12	<u>=</u>	Q.No		10	
	How does a decision tree work as a learning algorithm?	Define concept learning.	Define Candidate Elimination Algorithm in machine learning.	Translate the following into First-Order Logic (FOL) and infer the conclusion: "All students are intelligent." "Alice is a student." Task: Translate into FOL Infer: "Alice is intelligent."	Frove whether the following expression is a tautology, contradiction, or contingent using a truth table: $(P \lor Q) \rightarrow (P \land Q)$.	What is forward chaining?	that the sum is correct and no two letters have the same digit: (0–9) to each letter such that the sum is correct and no two letters have the same digit: A + A + A = BA.	Solve the following constraint and in (CSP)?	What is a Constraint Satisfaction Broken (Costs)	Define a heuristic function. Explain admissibility.		Section - B (10X2=20 Marks) Answer All Questions	d A single concept representing the best	A hypothesis space representing all b A decision tree representing all possible concepts b features.	angolium maintains:
	2	N	2	2	2	2	ွှN	2	2	2	170	arke.		_	
-	_	20	R)	A .	₽	ZD	Ą	R	D	c	2	P .	-4	C	
1		CO3	соз	CO3	CO2	CO2	CO2	C02	CO1	C01	5	3]		CO3	

	and the second	30		14	21 a)	1.0				Q.No
(Or)	Using the A* algorithm, find the shortest path from A to D, and show the steps including $f(n)=g(n)+h(n)$ for each node	• E → D (Cost = 2) ·	 C → E (Cost = 2) 	• C → D (Cost = 1)	• B → D (Cost = 3)	 A → C (Cost = 4) 	 A → B (Cost = 2) 	Edges:	oven the following graph with nodes A, B, C, D, E and their heuristic values (h): (A,10) (B,6) (C,4) (D,0) (E,3)	Section – C (1X6=6 Marks & 2X12=24 Marks) Answer All Questions
					n n	e (2			*	Marks
-	-									BT
+	The Pro-			_						co
	(Or)	Using the A* algorithm, find the shortest path from A to D, and show the steps including $f(n) = g(n) + h(n) \text{ for each node}$ (Or)	 E → D (Cost = 2) Using the A* algorithm, find the shortest path from A to D, and show the steps including f(n) = g(n) + h(n) for each node (Or) 	 C → E (Cost = 2) E → D (Cost = 2) Using the A* algorithm, find the shortest path from A to D, and show the steps including f(n) = g(n) + h(n) for each node (Or) 	e shortest path from A to D, and show the steps including (Or)	 B → D (Cost = 3) C → D (Cost = 1) C → E (Cost = 2) E → D (Cost = 2) Using the A* algorithm, find the shortest path from A to D, and show the steps including f(n) = g(n) + h(n) for each node (Or) 	 A → C (Cost = 4) B → D (Cost = 3) C → D (Cost = 1) C → E (Cost = 2) E → D (Cost = 2) E → D (Cost = 2) Using the A* algorithm, find the shortest path from A to D, and show the steps including f(n) + h(n) for each node (Or) 	 A → B (Cost = 2) A → C (Cost = 4) B → D (Cost = 3) C → D (Cost = 1) C → E (Cost = 2) E → D (Cost = 2) Using the A* algorithm, find the shortest path from A to D, and show the steps including f(n) = g(n) + h(n) for each node (Or) 	Edges: • A → B (Cost = 2) • A → C (Cost = 4) • B → D (Cost = 3) • C → D (Cost = 1) • C → E (Cost = 2) • E → D (Cost = 2) • Lysing the A* algorithm, find the shortest path from A to D, and show the steps including f(n) + h(n) for each node (Or)	nodes A, B, C, D, E and their heuristic values (h): (A,10) 6 Ap e shortest path from A to D, and show the steps including (Or)

(Or) Represent the following scenario in Propositional Logic: "If it rains, the ground will be wet. If the ground is wet, the grass will grow." Use logical connectives and evaluate the truth of the conclusion "The grass will grow" based on the truth values of the premises.	Given the following knowledge base in First-Order Logic (FOL): • ∀x (Human(x) → Mortal(x)) • ∀x (King(x) ∧ Greedy(x) → Evil(x)) • Human(John) • King(John) • Greedy(John) • Greedy(John) • Using the Forward Chaining algorithm, determine whether the following conclusions can be inferred: 1. Mortal(John) 2. Evil(John) Clearly show the sequence of inferences made.	Given the following facts and rules: If a person is guilty and has a motive, then they are a criminal. West has a motive. West is guilty. Represent these statements in First-Order Logic (FOL). Using the Backward Chaining algorithm, determine whether West is a criminal. Draw the corresponding backward chaining tree and show the steps of reasoning.
6	o	6
₹	Ð	Ap CO2
	is wet, the grass will grow." 6 of the conclusion "The grass	following conclusions t. the grass will grow." 6 Ap conclusion "The grass

23 b)		23 a)
i) Define inductive bias in Decision Tree learning. How does it affect the tree's ability to generalize from training data to unseen examples? Discuss its impact on model accuracy and performance. ii) Define concept learning and explain the Find-S algorithm used to generalize concepts from training data. Provide a simple example to illustrate how the algorithm works in practice.	(0r)	i) List and explain the components of a learning system in machine learning. Discuss the role of each component in the learning process and how they contribute to building an effective machine learning model. ii) Explain the Candidate Elimination algorithm and describe how it maintains the version space of hypotheses. How does this process help in refining the hypothesis to best fit the training data? Provide an example to demonstrate the concept.
2		ž
A P	and the second	Ap
COS		CO3