Grundbegriffe der Informatik Aufgabenblatt 6

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr. Name des Tutors:					
Ausgabe:	27. November	2013				
Abgabe: 6. Dezember 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift,						
 mit dieser Seite als Deckblatt und in der oberen linken Ecke zusammengetackert 						
abgegeben w	verden.	O				
Vom Tutor au	szufüllen:					
erreichte Pui	nkte					
Blatt 6:	/ 20	0				
Blätter 1 – 6:	/ 11:	2				

Aufgabe 6.1 (2+3+2=7 Punkte)

In dieser Aufgabe geht es um die Zahlendarstellung mit Hilfe der Ziffern aus dem Alphabet $Z = \{1,0,1\}$ mit den Wertigkeiten

- $\operatorname{num}(\mathfrak{I}) = -1$, $\operatorname{num}(\mathfrak{0}) = 0$, $\operatorname{num}(\mathfrak{1}) = 1$ und den Festlegungen
- $\operatorname{Num}(\varepsilon) = 0$ und $\forall w \in Z^* \ \forall x \in Z \colon \operatorname{Num}(wx) = 3 \cdot \operatorname{Num}(w) + \operatorname{num}(x)$ Auf den Vorlesungsfolien wurde die "schriftliche Addition" zweier solcher Zahlen etwas ungenau vorgeführt.

Gegeben sei die Funktion $\bar{S}: Z^3 \to M$ mit $M = \{-3, -2, -1, 0, 1, 2, 3\}$ und $\bar{S}(a,b,c) = \text{num}(a) + \text{num}(b) + \text{num}(c)$ für alle $a,b,c \in Z$.

a) Geben Sie die Wertetabellen für zwei Funktionen $S' : M \to Z$ und $C' : M \to Z$, so dass für die Funktionen $S = S' \circ \bar{S}$ und $C = C' \circ \bar{S}$ beim schriftlichen Addieren gilt: Stelle Stelle

$$p-1$$
 p a_p b_p $C(a_p,b_p,c_p)$ c_p $\mathbf{S}(a_p,b_p,c_p)$

Dabei sind a_p und b_p die beiden mit dem Übertrag c_p von der nächsten Stelle weiter rechts zu addierenden Ziffern, $\mathbf{S}(a_p,b_p,c_p)$ die Ziffer, die man unter den Strich schreibt, und $\mathbf{C}(a_p,b_p,c_p)$ ist der Übertrag für die nächste Stelle weiter links.

Wir nehmen nun an, dass x und y zwei Wörter *gleicher Länge* n seien. Gehen Sie davon aus, dass die ersten Ziffern von x und y 0 sind, also $x, y \in \{0\} \cdot Z^{n-1}$. Fassen Sie x und y wie am Anfang der Vorlesung als Abbildungen mit Definitionsbereich \mathbb{G}_n auf. Dann ist zum Beispiel x(0) das erste Symbol links in x und y(n-1) das letzte Symbol rechts in y.

b) Ergänzen Sie die Lücken im folgenden Algorithmus so, dass am Ende im Wort $z \in Z^*$ die eine Repräsentation der Zahl $\operatorname{Num}(x) + \operatorname{Num}(y)$ steht. Benutzen Sie die Funktionen **S** und **C** aus Teilaufgabe a).

c) Warum wurde vorausgesetzt, dass *x* und *y* mit einer führenden 0 beginnen? Welche Anweisung muss man nach Ende der Schleife ergänzen, damit diese Voraussetzung nicht mehr nötig ist?

Lösung 6.1

a) Tabellen: _

b) Ergänzen Sie die Lücken im folgenden Algorithmus so, dass am Ende im Wort $z \in Z^*$ die eine Repräsentation der Zahl $\operatorname{Num}(x) + \operatorname{Num}(y)$ steht. Benutzen Sie die Funktionen **S** und **C** aus Teilaufgabe a).

$$\langle Eingabe\ sind\ W\"{o}rter\ x = x(0) \cdots x(n-1)\ und\ y = y(0) \cdots y(n-1)\ \rangle$$
 $z \leftarrow \varepsilon$
 $c \leftarrow 0$
 $p \leftarrow n-1 \quad \langle betrachtete\ Position \rangle$
 $for\ i \leftarrow 0\ to\ n-1\ do$
 $z \leftarrow \mathbf{S}(x(p),y(p),c) \cdot z \quad \langle Konkatenation \rangle$
 $c \leftarrow \mathbf{C}(x(p),y(p),c)$
 $p \leftarrow p-1$
 od

c) Wenn x und y nicht beide mit einer führenden 0 beginnen, kann es passieren, dass das Ergebnis ein Zeichen länger ist als x und y. Dann ist am Ende der Schleife c nicht Null.

In diesem Fall sollte man nach der Schleife noch die Anweisung

$$z \leftarrow c \cdot z$$
 ergänzen.

Aufgabe 6.2 (5 Punkte)

Es sei $h:A^*\to B^*$ ein Homomorphismus. Beweisen Sie

$$\forall w_1 \in A^* : \forall w_2 \in A^* : h(w_1 w_2) = h(w_1)h(w_2)$$

Hinweis: vollständige Induktion über die Länge von w_2 .

Lösung 6.2

Es sei $w_1 \in A^*$ ein beliebiges Wort. Wir zeigen durch vollständige Induktion

$$\forall w_2 \in A^* : h(w_1 w_2) = h(w_1) h(w_2)$$

Induktionsanfang: $w_2 = \varepsilon$: Dann ist

$$h(w_1w_2) = h(w_1\varepsilon) = h(w_1) = h(w_1)\varepsilon = h(w_1)h(w_2)$$

Induktionsvoraussetzung: für ein beliebiges aber festes Wort w_2 gelte: $h(w_1w_2) = h(w_1)h(w_2)$.

Induktionsschluss zu zeigen: für jedes $x \in A$ gilt $h(w_1 \cdot (w_2 x)) = h(w_1)h(w_2 x)$. Das geht so

$$h(w_1 \cdot (w_2 x)) = h((w_1 w_2) x)$$

= $h(w_1 w_2) h(x)$ nach Def. Homomorphismus
= $h(w_1) h(w_2) h(x)$ nach Induktionsvoraussetzung
= $h(w_1) h(w_2 x)$ nach Def. Homomorphismus

Aufgabe 6.3 (4 Punkte)

Es sei A das Alphabet $A = \{a, b\}$ und $f: A^* \to A^*$ die Abbildung

$$f(\varepsilon) = \varepsilon$$
$$\forall w \in A^* \ \forall x \in A \colon f(wx) = xf(w)x$$

- a) Ist f surjektiv?
- b) Beweisen Sie Ihre Behauptung aus Teilaufgabe a).
- c) Ist *f* ein Homomorphismus?
- d) Beweisen Sie Ihre Behauptung aus Teilaufgabe c).

Lösung 6.3

- a) Nein, f ist *nicht* surjektiv.
- b) Wie man sieht ist f(w) entweder das leere Wort (falls $w = \varepsilon$), oder es hat Länge $|f(wx)| = |xf(w)x| \ge 2$. Also ist nie $f(w) \in A$, also ist f nicht surjektiv.
- c) Nein, f ist kein Homomorphismus.
- d) Für $x \in A$ ist $f(x) = xf(\varepsilon)x = xx$. Also ist zum Beispiel f(a)f(b) = aabb. Das ist aber *verschieden* von f(ab) = af(b)a = abba.

Aufgabe 6.4 (2+2=4 Punkte)

- a) Konstruieren Sie den Huffman-Baum für das Wort w = dadbdadcdadbdad.
- b) Geben Sie an, welche Huffman-Codierungen für die in w vorkommenden Symbole man aus dem Baum in Teilaufgabe a) ablesen kann.

Lösung 6.4

a) Zunächst bestimmt man die Häufigkeiten der Symbole in w:

\boldsymbol{x}	a	b	С	d
$N_x(w)$	4	2	1	8

ein möglicher Baum (weitere Bäume erhält man durch Vertauschen von linken und rechten Ästen):

b) resultierender Homomorphismus:

x	a	b	С	d
h(w)	01	001	000	1