DS n° 07 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :	Note:	

Porter directement les réponses sur la feuille, sans justification.

Développements limités et asymptotiques.

Calculer les développements limités ou asymptotiques suivants :

$\ln(1 + \operatorname{ch} x)$ en 0 à l'ordre 4 :	(1)
$\ln(\tan x)$ en $\pi/4$ à l'ordre 3 :	(2)
$\frac{x - \sin x}{1 - \cos x} \text{en 0 à l'ordre 3} :$	(3)
$(\cos x)\sqrt{1+x}$ à l'ordre 3 en 0 :	(4)
$\ln\left(\sqrt{1+x}\right)$ en $+\infty$ à la précision $\frac{1}{x^2}$:	(5)

Soit $f: x \mapsto \frac{\ln(1+x)}{2-\cos x}$. Alors:

$$f^{(6)}(0) = \tag{6}$$

Soit $g: x \mapsto \sqrt[3]{x^2(x-1)}$. Alors, en $-\infty$, le graphe de g est a	symptote à la droite d'équation				
	(7)				
et il se trouve	de cette asymptote. (8)				
Algèbre linéaire.					
Répondre par \mathbf{OUI} ou \mathbf{NON} :					
$\begin{pmatrix} 5\\2\\-1\\3 \end{pmatrix} \text{ est-il dans Vect} \left(\begin{pmatrix} -4\\3\\4\\-2 \end{pmatrix}, \begin{pmatrix} 3\\6\\2\\-4 \end{pmatrix}, \begin{pmatrix} 2\\5\\4\\4 \end{pmatrix} \right) ?$	(9)				
La famille $\begin{pmatrix} 1 \\ 2 \\ -1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 3 \\ 1 \\ 5 \end{pmatrix}$, $\begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ 2 \\ 0 \end{pmatrix}$ est-elle libre?	(10)				
Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$, $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} -x + 4y - 2z \\ 4x + 12y - 4z + 4t \\ 4x - 9y + 5z + t \\ x + 10y - 4z + 2t \end{pmatrix}$.					
Une base de Ker f est :	(11)				
et une base de $\operatorname{Im} f$ est :	. (12)				
- FIN $-$					