Uncertainty inspired solutions to stochastic problems via variational autoencoders

Fatemeh Saleh Australian National University

Outline

Introduction to Variational Autoencoders

- Recent Applications:
 - A Stochastic Conditioning Scheme for Diverse Human Motion Prediction
 - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders
- Conclusion

Generative Models

- Informally:
 - A model that can generate new data after learning from the dataset.
- More formally:
 - A generative model models the joint distribution P(X,Y) of the observation X and the target Y.
 - A discriminative model models the conditional distribution P(Y|X).

Discriminative versus Generative

- Discriminative Model
 - Tries to learn the discriminative information from the data
 - Example: Classify C1 vs C2 vs C3
 - Finds a good decision boundary by directly modeling conditional distribution P(Y|X)
 - Learns mappings from inputs to classes

- Generative Model
 - Tries to learn the distribution of the data
 - Models the distribution of inputs characteristic of the class
 - For classification, builds a model of P(X|Y) and then applies Bayes Rule

Generative Models

• Given a training set of examples, e.g., images of cats:

$$x_i \sim P_{data}$$

 $i = 1, 2, ..., n$

- We want to learn a probability distribution p(x) over images x for
 - Generation: If we sample $x_{new} \sim p(x)$, x_{new} should look like a cat (sampling)
 - Density estimation: p(x) should be high if x looks like a cat, and low otherwise
 - Unsupervised representation learning: The model should be able to learn what these images have in common, e.g., ears, tail, etc. (features)

Latent Variable Models

- ullet LVM defines a distribution over observations x by using a latent variable z and specifying
 - The prior distribution p(z) for the latent variable
 - The likelihood p(x|z) that connects the latent variable to the observation
- The joint distribution

$$p(x,z) = p(x|z)p(z)$$

• We are interested in computing the marginal likelihood p(x) and the posterior distribution p(z|x)

Why latent variables?

- Latent variables explains the data
- To generate an observation from such explanation $z \sim p(z)$ $x \sim p(x|z)$

• The inverse of generation is called inference, $z \sim p(z|x)$

Inference

- Why inference is important?
 - Explaining the observation
 - Inferring the posterior distribution for a datapoint allows us to determine what latent configurations could have plausibly generate such datapoint.
 - Learning
 - Training latent variable models requires performing the inference.

Inference

Exact inference is hard!

$$p(z|x) = \frac{p(x,z)}{p(x)} = \frac{p(x,z)}{\int p(x,z)dz}$$

• Computing $\int p(x,z)dz$ is intractable as it requires considering all configurations of z for a reasonable approximation of p(x).

There are some exceptions!

Inference

One way to avoid interactable inference is to approximate posterior distribution

An overview

Prior space (known distribution)

- VAE's objective function
 - $q_{\varphi}(z|x) \approx p_{\theta}(z|x)$

$$D_{KL}\left[q_{\phi}(z|x)||p_{\theta}(z|x)\right] = \mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

Background on KL Divergence

- KL divergence provides a way of quantifying the difference between two distributions.
- KL divergence is defined as

$$KL(q(z)||p(z)) = E_{q(z)} \left[\log \frac{q(z)}{p(z)} \right]$$

- KL divergence is
 - Non-negative
 - KL=0 if q(z) = p(z)
 - Non-symmetric, $KL(q(z)||p(z)) \neq KL(p(z)||q(z))$

Expanding the KL divergence between the approximate and true posterior distributions

$$D_{KL}\left[q_{\phi}(z|x)||p_{\theta}(z|x)\right] = \mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$
$$= \mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log q_{\phi}(z|x) - \log p_{\theta}(z|x)\right]$$

True posterior

$$p_{\theta}(z|x) = \frac{p_{\theta}(x|z)p(z)}{p_{\theta}(x)}$$

• The data distribution $p_{\theta}(x)$ is independent of z, so

$$D_{KL}\left[q_{\phi}(z|x)||p_{\theta}(z|x)\right] = \mathbf{E}_{z \sim q_{\phi}(z|x)}\left[\log q_{\phi}(z|x) - \log p_{\theta}(x|z) - \log p(z)\right] + \log p_{\theta}(x)$$

• By putting $p_{\theta}(x)$ to the left side

$$D_{KL}\left[q_{\phi}(z|x)||p_{\theta}(z|x)\right] - \log p_{\theta}(x) = \mathbf{E}_{z \sim q_{\phi}(z|x)}\left[\log q_{\phi}(z|x) - \log p_{\theta}(x|z) - \log p(z)\right]$$
$$\log p_{\theta}(x) - D_{KL}\left[q_{\phi}(z|x)||p_{\theta}(z|x)\right] = \mathbf{E}_{z \sim q_{\phi}(z|x)}\left[\log p_{\theta}(x|z) - \left(\log q_{\phi}(z|x) - \log p(z)\right)\right]$$
$$= \mathbf{E}_{z \sim q_{\phi}(z|x)}\left[\log p_{\theta}(x|z)\right] - \left[\mathbf{E}_{z \sim q_{\phi}(z|x)}\left[\log q_{\phi}(z|x) - \log p(z)\right]\right]$$

So, it can be written as

$$\log p_{\theta}(x) - D_{KL} \big[q_{\phi}(z|x) || p_{\theta}(z|x) \big] = \mathbf{E}_{z \sim q_{\phi}(z|x)} \big[\log p_{\theta}(x|z) \big] - D_{KL} \big[q_{\phi}(z|x) || p(z) \big]$$
 Log-likelihood of the data approximate and the true posterior Reconstruction loss approximate posterior and prior

not computable!

According to definition, it is positive!

• Thus, we can only optimize the lower bound on the data log-likelihood

$$\log p_{\theta}(x) \ge \mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL} \left[q_{\phi}(z|x) || p(z) \right]$$

• Therefore, the ELBO of the VAE is

$$\log p_{\theta}(x) \ge \mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL} \left[q_{\phi}(z|x) || p(z) \right]$$

• And, similarly, the ELBO of conditional VAE is

$$\log p_{\theta}(x|c) \ge \mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z,c) \right] - D_{KL} \left[q_{\phi}(z|x,c) || p(z|c) \right]$$

- In practice,
 - Prior: $p(z) = \mathcal{N}(0, I)$
 - Encoder: $q_{\varphi}(z|x) = \mathcal{N}\left(\operatorname{Net}_{\varphi}(x), \operatorname{diag}\left(\operatorname{Net}_{\varphi}(x)\right)\right)$
 - Decoder: $p_{\theta}(x|z) = \text{Net}_{\theta}(z)$

• In practice,

• In practice, Sampling is stochastic w.r.t network params VAE VAE Enc. Dec.

In practice,

Sampling is stochastic

- To sample from posterior
 - Sample epsilon from $\epsilon \sim \mathcal{N}(0, I)$
 - Shift and scale ϵ given estimated posterior parameters
 - $z = \mu + \sigma \odot \epsilon$
 - This is equivalent to $z \sim \mathcal{N}(\mu, \sigma)$

$$\log p_{\theta}(x) \ge \frac{\mathbf{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z)\right]}{-D_{KL} \left[q_{\phi}(z|x)||p(z)\right]}$$

A Stochastic Conditioning Scheme for Diverse Human Motion Prediction

Sadegh Aliakbarian, Fatemeh Saleh, Mathieu Salzmann, Lars Petersson, Stephen Gould, CVPR 2020

Problem definition

Generating a sequence given a strong conditioning signal

111

We've trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state of the art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization —

A red double-decker bus is parked at the bus stop.

Text completion

Image captioning

Human motion prediction

Problem definition

• Even given strong conditions, the solution might be ambiguous!

Problem definition

Challenge

- Related datasets are often deterministic
- One sample per condition, e.g.:
- Condition 有有有有有有
- Sample: तत्रतत्रतत्रत्तत्रत्त्रत्त्रत्त्रत्त्

• Solution:

- Learning the underlying distribution instead of a mapping.
- We use VAFs

• Deterministic motion prediction (high level overview of the state-of-the-art)

• Deterministic motion prediction (high level overview of the state-of-the-art)

• From deterministic to stochastic

• Stochastic motion prediction baseline

- How conditioning is done?
 - Deterministically, usually by concatenation

Conditioning the VAE Encoder

Conditioning the VAE Decoder

- How conditioning is done?
 - Deterministically, usually by concatenation

• E.g., conditioning the decoder

As in MT-VAE*

Orange weights are related to variational input

* Yan, Xinchen, et al. "Mt-vae: Learning motion transformations to generate multimodal human dynamics." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018.

Deterministic conditioning when dealing with strong conditions

- Posterior Collapse
 - Concatenation operation allows the decoder to learn to ignore the latent variable
 - Posterior collapses to the prior
 - Latent variable carries no information about the data

ignoring the latent variable \approx ignoring the root of variation

Mix-and-match Perturbation

- Our solution
 - Replacing the deterministic conditioning to a stochastic one

Mix-and-Match Perturbation

Mix-and-Match versus concatenation

Mix-and-Match Perturbation

An overview of the framework

Mix-and-Match Perturbation

Learning: Loss functions

$$\mathcal{L}_{motion} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathcal{L}_{rot}(X_i) + \mathcal{L}_{skl}(X_i) \right) + \lambda \mathcal{L}_{prior}$$

• Dataset: Human 3.6M dataset

- (Quantitative) Evaluation Metrics:
 - Human evaluations
 - Deterministic evaluations, i.e., against GT

- We propose two new evaluation metrics to quantitatively measure the quality and diversity of motions
 - Quality
 - Diversity
 - Diversity as a function of Quality

- Diversity Measure
 - make use of the average distance between all pairs of generated motions.
- Quality Measure
 - A binary classifier trained to discriminate real (ground-truth) samples from fake (generated) ones.
 - The accuracy of this classifier on the test set is inversely proportional to the quality of the generated motions.

Evaluating quality and diversity

Diversity as a function of quality

Qualitative results

Observation: 16 frames Generation: 60 frames

Qualitative results

Observation: 16 frames Generation: 60 frames

Qualitative results

Observation: 16 frames

Generation: 160 frames

UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders

Jing Zhang, Deng-Ping Fan, Yuchao Dai, Saeed Anwar, Fatemeh Saleh, Tong Zhang, Nick Barnes, CVPR 2020

Task

 Separating the most conspicuous objects that attract humans from the background

Existing approaches

- Treat saliency detection as a point estimation problem
- Produce a single saliency map for each input image following a deterministic pipeline
- Fails to capture the stochastic characteristic of saliency detection

Our Goal

- Employ uncertainty for RGB-D saliency detection by learning from the data labeling process
- Interested in how the network produces multiple predictions

X: Conditioning variable (RGB-D) image pair

 $z \sim \mathcal{N}(\mu, diag(\sigma^2))$: Latent variable

Y : Output variable

 $P_{\theta}(z|X)$: Prior Net that maps the input RGB-D (X) to latent feature space

 $Q_{\varphi}(z|X,Y)$: Posterior Net

 $D_{KL}(Q_{\varphi}(z|X,Y)||P_{\theta}(z|X))$: Regularization loss to reduce the gap between the prior and posterior

 $P_{\omega}(Y|X,z)$: Likelihood of P(Y) given latent variable z and conditioning variable X

$$\mathcal{L}_{CVAE} = E_{z \sim Q_{\varphi}(z|X,Y)} \left[-\log P_{\omega}(Y|X,z) \right] + D_{KL}(Q_{\varphi}(z|X,Y)||P_{\theta}(z|X))$$

$NJU2K \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Deep Models								
$NJU2K \ [28] \ \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Metric	DF	AFNet	CTMF	MMCI	PCF	TANet	CPFP	DMRA	UC-Net
$NJU2K \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			[43]	[54]	[24]	[<mark>7</mark>]	[5]	[<mark>6</mark>]	[64]	[<mark>61</mark>]	Ours
$SSB \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	NJU2K [28]	$S_{lpha}\uparrow$.763	.822	.849	.858	.877	.879	.878	.886	.897
$SSB \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$F_{eta}\uparrow$.653	.827	.779	.793	.840	.841	.850	.873	.886
$SSB \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$E_{\xi}\uparrow$.700	.867	.846	.851	.895	.895	.910	.920	.930
$SSB \ [40] \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.140	.077	.085	.079	.059	.061	.053	.051	.043
$Beta = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSB [40]		.757	.825	.848	.873	.875	.871	.879	.835	.903
$Beta = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F_{eta}\uparrow$.617	.806	.758	.813	.818	.828	.841	.837	.884
$DES [8] \begin{array}{c ccccccccccccccccccccccccccccccccccc$.692	.872	.841	.873	.887	.893	.911	.879	.938
$DES [8] \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{M}\downarrow$.141	.075	.086	.068	.064	.060	.051	.066	.039
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DES [8]		.752	.770	.863	.848	.842	.858	.872	.900	.934
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F_{eta}\uparrow$.604	.713	.756	.735	.765	.790	.824	.873	.919
$NLPR \ [41] \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$E_{\xi}\uparrow$.684	.809	.826	.825	.838	.863	.888	.933	.967
$NLPR \ [41] \ \begin{array}{c} F_{\beta} \uparrow \\ E_{\xi} \uparrow \\ .757 \\ .851 \\ M \downarrow .079 \\ .058 \\ .056 \\ .056 \\ .059 \\ .044 \\ .041 \\ .036 \\ .031 \\ .025 \\ .031 \\ .036 \\ .031 \\ .025 \\ .031 \\ .025 \\ .031 \\ .025 \\ .031 \\ .025 \\ .031 \\ .036 \\ .031 \\ .025 \\ .031 \\ .025 \\ .031 \\ .036 \\ .031 \\ .036 \\ .031 \\ .025 \\ .031 \\ .036 \\ .036 \\$		$\mathcal{M}\downarrow$.093	.068	.055	.065	.049	.046	.038	.030	.019
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NLPR [41]		.806	.799	.860	.856	.874	.886	.888	.899	.920
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F_{eta}\uparrow$.664	.755	.740	.737	.802	.819	.840	.865	.891
$LFSD \ [35] \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.757	.851	.840	.841	.887	.902	.918	.940	.951
$LFSD \ [35] \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{M}\downarrow$.079	.058	.056	.059	.044	.041	.036	.031	.025
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LFSD [35]	$S_{lpha}\uparrow$.791	.738	.796	.787	.794	.801	.828	.847	.864
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F_eta\uparrow$.679	.736	.756	.722	.761	.771	.811	.845	.855
SIP [18] $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$E_{\xi}\uparrow$.725	.796	.810	.775	.818	.821	.863	.893	.901
SIP [18] $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathcal{M}\downarrow$.138	.134	.119	.132	.112	.111	.088	.075	.066
$E_{\xi}\uparrow$.565 .793 .704 .845 .878 .870 .893 .844 .914	SIP [18]		.653	.720	.716	.833	.842	.835	.850	.806	.875
$E_{\xi}\uparrow$.565 .793 .704 .845 .878 .870 .893 .844 .914		$F_{eta}\uparrow$.465	.702	.608	.771	.814	.803	.821	.811	.867
$\mathcal{M}\downarrow .185 .118 .139 .086 .071 .075 .064 .085 \ .051$		$E_{\xi}\uparrow$.565	.793	.704	.845	.878	.870	.893	.844	.914
			.185	.118	.139	.086	.071	.075	.064	.085	.051

Conclusion

- Generative models
 - Latent Variable models
 - Variational Autoencoders
- Stochastic problems
 - Human Motion Prediction
 - RGB-D Saliency Object Detection
- What we care about is:
 - High quality solutions
 - Diverse solutions where there is inherent uncertainty

Thanks! Q&A