Knot Surgery and Integer Characterizing Slopes

Gabriel Agostini, Sophia Chen, Christian Serio, Cecilia Wang, Anton Wu, and Kexin Wu Advisors: Kyle Hayden and Aliakbar Daemi

Columbia University

August 1, 2019

Knots and links in the 3-sphere

Definition

A $knot\ K$ is the image of a smooth embedding of the circle S^1 into a 3-manifold, usually the 3-sphere S^3 . In particular, K is diffeomorphic to S^1 . A $link\ L$ is a disjoint union of knots, which may be knotted together.

Definition

Let M,N be manifolds and $g,h\colon N\to M$ embeddings. An ambient isotopy of M carrying g to h is a continuous map $F\colon M\times [0,1]\to M$, such that $F_t=F(\cdot,t)$ is a homeomorphism of M for each $t\in [0,1],\ F_0=\mathbb{1}$, and $F_1\circ g=h$.

- We regard two knots $K, K' \subset S^3$ to be equivalent if they differ by an ambient isotopy of S^3 . We write $K \simeq K'$.
- ullet Equivalently, we can view knots as subsets of \mathbb{R}^3 rather than S^3 .

Knot diagrams

- ullet We can study a knot $K\subset\mathbb{R}^3$ by projecting it onto a hyperplane $\mathbb{R}^2.$
- If $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ is a projection such that $\pi(K)$ is an embedded curve except at finitely many *crossing points*, then $\pi(K)$ is a *diagram* for K.
- The crossing number c(K) is the minimum number of crossings in a diagram of K.

Figure: Knots with $c(K) \le 7$

Figure: Hopf link

Reidemeister moves

Theorem (Reidemeister)

Two knots K, K' are isotopic if and only if they have diagrams that differ by a sequence of planar isotopies and Reidemeister moves.

Crossings

- If we orient a knot K, then we can define a sign for each crossing by the right-hand rule.
- For a two-component link $L = K \cup K'$, the *linking number* lk(L) is one half the sum of the signs of the crossings between K and K' in a diagram of L.

Piccirilo's construction: Knots with the same surgery

Theorem (Piccirilo 2018)

Let $L = R \cup G \cup B$ be a surgery diagram for some 3-manifold Y such that:

- R is a zero-framed unknot, B and G have integral framings.
- 2 Ignoring B, R is isotopic to a meridian of G.
- Ignoring G, R is isotopic to a meridian of B.
- B and G have linking number 0.

Then, there exist knots K and K' such that $Y = S_n^3(K) = S_n^3(K')$.

 Piccirilo's construction comes from an older construction, the dualizable patterns construction, to produce knots with the same surgery.

Piccirilo's construction (cont.)

Figure: Diagram of a link L used by Piccirilo on her original paper. The colors (red, blue, and green) match the component letters R, B, G.

Baker-Motegi: Knots with the same surgery

- We adapted the following construction from Baker and Motegi (2018).
- Let K be a knot, and suppose we can take an unknot c linked with K such that (0,0)-surgery on $K \cup c$ is S^3 .
- Baker-Motegi present a method for producing knots K'_n with $S^3_n(K) \cong S^3_n(K'_n)$ from this link.
- Define K' to be the surgery dual to c in $S^3 = S^3_{(0,0)}(K \cup c)$.
- Then K' has the same 0-surgery as K.

Baker-Motegi (cont.)

- Also define c' to be the surgery dual to K in S^3 .
- After some Kirby calculus, we find that in the surgered manifold $S^3 = S^3_{(0,0)}(K \cup c)$, c' is an unknot linked with K'.
- Let K'_n be the result of twisting K' through c', n times.
- Then K'_n has the same *n*-surgery as K for all n.
- Moreover, if c is not a meridian to K, then $K \simeq K'_n$ for at most finitely many n.

Baker-Motegi Illustration

Obtaining a link $K \cup c$ when u(K) = 1 (Piccirillo)

- In the special case where K has unknotting number one, we can use a band presentation for K.
- We start with a Hopf link $R \cup B$ and slide one component over the other according to the band presentation for K.
- Then R remains an unknot, which we rename c, and B becomes the knot K.
- After adding a meridian to R and sliding B over R, we get a diagram that also fits Piccirillo.
- Example: 77

$K \cup c$ for u(K) = 1 (cont.)

Lemma

Let $K \cup c$ be the link obtained by the handle slide above. Then (0,0)-surgery on $K \cup c$ gives S^3 .

Proof.

After the handle slide, the framing of c remains 0, and the framing of K changes by ± 2 depending on the linking number of the Hopf link. If we adjust the framing of the blue component of the Hopf link to ∓ 2 before the slide, then we see that (0,0)-surgery on $K \cup c$ is the same as $(\mp 2,0)$ surgery on a Hopf link. It can be shown that (n,0)-surgery on a Hopf link is S^3 for any $n \in \mathbb{Z}$.

Obtaining $K \cup c$ when u(K) > 1

- We do not have a systematic way of finding a link $K \cup c$ for a given knot K with u(K) > 1.
- If we perform multiple slides on a Hopf link, then we obtain a link $K \cup c$ for some knot K with higher unknotting number, but we have no way of predicting what K will be.
- Example: 10₁₂₅

Applications of the construction

- We have produced a banded Hopf link presentation for all the 78 unknotting number one knots K with $c(K) \le 10$.
- We followed the above procedure to manually produce a diagram for a knot K' that has the same zero-surgery as K, using a software called KLO which can perform Kirby calculus on link diagrams.
- Using a software called SnapPy, we were able to verify that whenever
 K was not a twist knot, K' was not isotopic to K. Thus, zero was
 not a characterizing slope.
- **Question:** Can we classify all integer slopes once we have the link $K \cup c$?

Ruling Out Integer Characterizing Slopes

- We developed an algorithm that can be carried out by a computer script to rule out the integer characterizing slopes of some knot K, once we have manually produced the link $L = K \cup c$.
- Given a link L, run SnapPy commands to find out the volume of the knot K, the volume of the manifold $Z = S_0^3(c)$, and the length of the Seifert longitude in Z.
- ② Using these values, apply the theorems of hyperbolic Dehn surgery to find the bound N such that any integer |n| > N is a characterizing slope for K.
- **③** For the remaining 2N + 1 cases, verify if the volume of the knot with the same *n*-surgery as K matches the volume of K.
 - We use the DT code of the link, which uniquely describes all links that we deal with, up to isotopy.

Findings

Theorem (Low-Crossing Knots)

Regarding the integer slopes of knots K such that $c(K) \leq 10$:

- If K has unknotting number u(K) = 1 and K is not a twist knot, then K has at most one integer characterizing slope, namely ± 2 .
- If K is the twist knot 8₁, then K has at most one integer characterizing slope, namely 0.
- If K is one of the u(K) = 2 knots 8_4 , 8_6 , 8_{10} , 8_{12} , 8_{16} , 10_{148} , 10_{149} , or 10_{150} , K has no possible integer characterizing slope.
- If K is one of the u(K) = 2 knots 8_3 , 10_{125} , or 10_{126} , K has at most one integer characterizing slope.

Proof of Theorem 1 (cont.)

- Recall that for K with u(K) = 1, we could obtain a link $K \cup c$ as in Baker-Motegi with (0,0)-surgery S^3 by sliding over a Hopf link according to the band presentation for K.
- It remains to show that if K is not a twisted Whitehead double, then
 c is not a meridian to K after the handle slide.
- In this case, in any band presentation for K, the band must cross the disc bounded by one of the components of the Hopf link.

Lemma

Let $R \cup B$ be a Hopf link, and consider a handle slide of R over B yielding a link L in which R remains a meridian to B. Then there exists a handle slide of R over B, yielding a link isotopic to L, along a band that does not cross either of the discs bounded by R or B.

Extension of Theorem 1

- How can we drop the condition on Twisted Whitehead Doubles? And on unknotting number?
- Can we produce an algorithm to find links $L = K \cup c$ from handle slides on a Hopf link?

Conjecture

If K is a knot with unknotting number u(K) = 1 and K is not a twist knot, then K has at most one integer characterizing slope: ± 2 .

Next Steps

- Rigorously prove the lemma on band presentations.
- Keep experimenting with handle slides in order to expand the list on Theorem 1.2.
- Attempt to use other tools to prove a version of Theorem 1.1 for Twisted Whitehead Doubles.
- Look into our final conjecture.