Problem 1. True or False

[3+3+3+3+3+3=18 points]

(a) Let $f \in \mathbb{Z}[t]$ be a polynomial, every root of which has multiplicity 2024. Then f is not separable over \mathbb{Q} .

(b) If L:K is an algebraic extension of fields with $K\subseteq L$, then the algebraic closure \overline{L} of L is isomorphic to the algebraic closure \overline{K} of K.

(c) Every algebraic extension of \mathbb{Q} is separable.

(d) Suppose that K and L are fields with $K \subseteq L$, and L is algebraically closed. Then the field extension L: K is normal.

(e) Suppose that L:M and M:K are field extensions with L:K normal. Then L:M is a normal field extension.

(f) Let $f \in \mathbb{Z}[x]$ be a polynomial having prime degree p, and let θ be any root of f in a splitting field extension for f over \mathbb{Q} . Then $[\mathbb{Q}(\theta):\mathbb{Q}]=p$.

Problem 2. [3+3+3+3=12 points]

(a) Define what it means for a field extension L:K to be a splitting field extension.

(b) Define what it means for a field extension L:K to be normal.

(c) Let L:K be a field extension. Define what it means for an element $\alpha \in L$ to be separable over K.

(d) Define what it means for a field extension L:K to be separable.

Problem 3. [8+8+8=24 points]

This question concerns the polynomial $f(t) = t^4 - (t+1)^2 \in \mathbb{Q}[t]$.

(a) Find a splitting field extension $L:\mathbb{Q}$ for f, justifying your answer.

(b) Determine the degree of your splitting field extension $L:\mathbb{Q},$ justifying your answer.

(c) Determine the subgroup of S_4 to which $\operatorname{Gal}(L:\mathbb{Q})$ is isomorphic.

MA 45401-H01 – Galois Theory Honors Exam 2 (Prof. Trevor Wooley, 2024)

Josh Park Prof. Ilya Shkredov Spring 2025 Page 7

Problem 4. [14 points]

Suppose that L: K is a splitting field extension for the polynomial $f \in K[t] \setminus K$. Prove that [L:K] divides $(\deg f)!$.

Problem 5. [7+7=14 points]

(a) Suppose that M is an algebraically closed field. Show that all polynomials in M[t] are separable.

(b) Suppose that p is a prime number and t is an indeterminate, and let $L = \mathbb{F}_p(t)$, where \mathbb{F}_p denotes the algebraic closure of \mathbb{F}_p . Are all polynomials in L[X] separable? Justify your answer.

Problem 6. [8+8=16 points] Throughout, let f denote the polynomial $t^5 - 9t - 3 \in \mathbb{Q}[t]$, let L be a splitting field for f over \mathbb{Q} , and let M be a field with $\mathbb{Q} \subsetneq M \subsetneq L$ (that is, a field strictly intermediate between \mathbb{Q} and L).

(a) Show that, for any $\sigma \in \operatorname{Gal}(L:\mathbb{Q})$, and for any $\alpha \in M$, the polynomial $\sigma(m_{\alpha}(\mathbb{Q}))$ is monic and irreducible over \mathbb{Q} . Here $m_{\alpha}(\mathbb{Q})$ denotes the minimal polynomial of α over \mathbb{Q} .

(b) Suppose that $M: \mathbb{Q}$ is normal and that f factors as a product of monic irreducibles f_1, \ldots, f_r (of positive degree) over M[t]. Show that $\deg(f_i) = \deg(f_1)$ for each i.

(c) Show that if $M:\mathbb{Q}$ is normal, then f remains irreducible over M.