Decision Trees (2)

Many of these slides courtesy of Alex Thomo (thanks!)

Last Time

· Building a decision tree

Entropy

• H(X) = E(I(X)) Expected value of the information in X • Expected value:
$$E(f(X)) = \sum_i P(x_i) * f(x_i)$$

Information:

$$I(x_i) = -\log_2 P(x_i)$$

Entropy:

$$H(X) = E(I(X)) = \sum_{i} P(x_i)I(x_i) = -\sum_{i} P(x_i)\log_2 P(x_i)$$

Strategy: choose attribute that results in lowest entropy of the children nodes.

Administrivia

- · Identifying promising projects
- Is this project easy to distribute amongst a team?
 in groups of 5, you must minimize communication overhead
- Does this project have a core task that seems do-able, as well as some more risky (and interesting!) extensions?
- Does the data already exist? If not, are the resources to get/create
 the data available? A data mining project that gets stuck in the
 data phase won't be successful.

A criterion for attribute selection

- Which is the best attribute?
- The one which will result in the smallest tree
- Heuristic: choose the attribute that produces the "purest"
- · Popular impurity criterion: entropy of nodes
 - Lower the entropy, purer the node.

Attribute "Temperature"

temperature=hot

entropy(2/4, 2/4) = -2/4*log(2/4) -2/4*log(2/4) = 1

entropy $(4/6,2/6) = -4/6*\log(4/6) - 2/6*\log(2/6) = .918$

temperature=cool

entropy $(3/4, 1/4) = -3/4*\log(3/4) - 1/4*\log(1/4) = .811$

Expected info:

AE = 1*(4/14) + .918*(6/14) + .811*(4/14) =**0.911**

Decision Trees

Pros/Cons?

Numerical attributes revisited

• Tests in nodes are of the form $f_i > constant$

Numerical attributes

- Tests in nodes are of the form $f_i > constant$ • Tests in noues are con-

Predicting Bankruptcy

Considering splits

· Consider splitting between each data point in each dimension.

Considering splits II

• And there are another 6 possible splits in the L dimension

Bankruptcy Example

Bankruptcy Example

Now, we consider all the splits of the remaining part of space.

Bankruptcy Example

• Continuing in this way, we finally obtain:

Bankruptcy Example

We consider all the possible splits in each dimension, and compute the average entropies of the children.

S	ī	i				Ιſ	7		0.92	1.80
Ē	+	•		Ē	•	Н			86.0	1.60
T	1			•		H	1.5		0.92	1.35
T					•				86.0	1.15
			Ō			ľ	-	ď		1.05
•				•						0.85
+	+	•				H	0			0.60
†	1	\dashv	٠		Ť	H			1.00	0.40
9	N)	L4	'n	7	Ť	C			1.00	0.25
0.93	0.74	0.85	0.86	0	0.63	0.93			AE	Rex
										_
-	m	4	r2		١.	7				
0	0	1 4	2 5	+	2	2 9				
				,	+					
0	0		2		n	9				
	. 9		9 2 4		2 4 N N N N N N N N N N N N N N N N N N	2 2 3 4 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1.5 R	10 0.5 1 1.5 R

And we see that, conveniently, all the points with L not greater than 1.5 are of class θ , so we can make a leaf there.

Bankruptcy Example

• Now the best split is at R > 0.9.

Alternative Splitting Criteria based on GINI

- We have used so far the entropy.
 - · GINI is an alternative.
- Both, have:
- Maximum when records are equally distributed among all classes, implying least purity
- Minimum attained at p equal to 0 or 1, i.e. when all records belong to one class, implying most purity

Pruning

- How can we reduce overfitting in our decision trees?
 - make the trees smaller (less complex)

Why is it overfitting?

- Where does overfitting come from?
- noise in labels
- noise in features
- too little data (lack of representative data)
 - model-data mismatch

Early Stopping (Pre-prune)

- Stop making splits when
- average entropy doesn't change much
 Predefined # of training instances reach leaf
 - Predefined depth
 - ...? Others?

Overfitting

- What is overfitting?
- What does overfitting look like?

Back to Decision Trees...

How can we avoid overfitting?

Post pruning

- Build a complex tree, then simplify
 You don't make.
- You don't get to see the test set accuracy during training

Validation Set

- Select some part of your training data for validation (tuning)
 - Choose depth based on validation performance peak
- · (hopefully similar to test data peak)

Random Forest Construction

Each tree is constructed using the following algorithm:

Input

- N training cases with M attributes each.
- Number $m\ (<\!M)$ of attributes to be used to determine the decision at a node of the
- Number n (<N) of training cases to be used for one tree.

Algorithm

- Choose a training set for this tree by choosing n times with replacement from all N available training cases.
- For each node of the tree, randomly choose *m* attributes on which to base the decision at that node. Calculate the best split based on these *m* attributes.
 - Fully grow the tree.

Random Forests

- More robust to overfitting
- why?
- · hint: trees are simple
- The average of multiple simple (not overfit) classifiers tend not to combine to make an overfit classifier
- more info http://kappa.math.buffalo.edu/aos.pdf

Random Forests

- Use multiple simple trees (i.e. a forest)
- Consider only a subset of the data, subset of attributes
- · Predict based on the majority prediction of all trees in forest

Random Forest Prediction

- The new sample is pushed down a tree.
- It is assigned the label of the terminal node it ends up in.
- This procedure is iterated over all trees in the ensemble (forest), and the
 majority vote of all trees is reported as random forest prediction.
 - Sunny, 15 degrees, windy = true, humidity = 75

Classification vs Regression

- So far we have described classification
- predicting one of a discrete set of labels
 - · play tennis? yes/no
- · Neighbor's behavior: walk/drive
- · Car type: luxury, mini, sports, van
- · Sometime we want to predict a number in a range
- E.g. age, forecast temperature, etc...
- That's regression (predicting a real number)

Regression Trees

• Like decision trees, but with real-valued constant outputs at the leaves.

Leaf values

- What to predict?
- Assume that multiple training points are in the leaf and we have decided for whatever reason, to stop splitting.
 - decided, for whatever reason, to stop splitting.

 In the boolean case, we used the majority output value
 - {yes, yes, no} → yes
 - In the numeric case?
- we'll use the average output value (here 0.675)

Variance

• Mean:

$$\mu = \frac{1}{m} \sum_{k=1}^{m} \mathbf{z}_k$$

- Variance (unbiased estimator): $\sigma^2 = \frac{1}{m-1} \sum_{k=1}^m (\mathbf{z}_k \mu)^2$
- We will use now the variance instead of entropy.

Things to consider

- Prediction is a real number
- Thus training labels are real numbers
- Instead of {yes, yes, pes, no} at a leaf, we will have something like {0.1, 0.5, 1.3, 0.8}
- · How to evaluate a candidate split?
- When to stop splitting?
- What to predict based on the instances in a leaf node?

Splitting

- How to evaluate splits?
- We can't use entropy. Why?
- What could we use?
- What is entropy measuring?
- What's a similar measure for continuous values?

Splitting

Splitting

Leaf values

- When to stop splitting?
- So, if we're going to use the average value at a leaf as its output, we'd like to split up the data so that the leaf averages are not too far away from the actual items in the leaf.
- Again we will use variance

Splitting

Stopping

- When to stop splitting?
- Stop when the variance at the leaf is "small enough".
- Stop when the variance doesn't change by much
- Then, set the value at the leaf to be the mean of the y values of the elements.

Scikit Learn

http://scikit-learn.org/stable/modules/tree.html