POKE: A Framework for Efficient PKEs, Split KEMs, and OPRFs from Higher-dimensional Isogenies

Andrea Basso

A brief history of isogeny-based crypto

SIDH

First practical isogenybased protocol

2011 2022

SIDH attacks

Efficient key-recovery attacks on SIDH

Constructive applications

The attacks are used to build SQIsignHD, (Q)FESTA, SCALLOP-HD, VDFs, VRFs, etc.

Countermeasures

Variants of SIDH including M-SIDH, MD-SIDH, binSIDH, terSIDH, etc.

The SIDH protocol

$$\ker \psi' = \phi(\ker \psi)$$
 $\ker \phi' = \psi(\ker \phi)$

The attacks on SIDH

Higher-dimensional representations

How to push HD representations

$$\Phi'\begin{pmatrix} P_B \\ Q_B \end{pmatrix} = \begin{bmatrix} \begin{bmatrix} \beta \end{bmatrix} \\ \begin{bmatrix} \beta^{-1} \end{bmatrix} \end{bmatrix} \Phi'\Psi\begin{pmatrix} P_0 \\ Q_0 \end{pmatrix} = \begin{bmatrix} \begin{bmatrix} \beta \end{bmatrix} \\ \begin{bmatrix} \beta^{-1} \end{bmatrix} \end{bmatrix} \Psi'\Phi\begin{pmatrix} P_0 \\ Q_0 \end{pmatrix} = \begin{bmatrix} \begin{bmatrix} \delta^{-1}\beta \end{bmatrix} \\ \begin{bmatrix} \alpha^{-1}\beta^{-1} \end{bmatrix} \Psi'\begin{pmatrix} P_A \\ Q_A \end{pmatrix} = \begin{bmatrix} \begin{bmatrix} \delta^{-1} \end{bmatrix} P_{AB} \\ \begin{bmatrix} \alpha^{-1} \end{bmatrix} Q_{AB}$$

How to get a shared secret

The POKE PKE

Key generation

- 1. Sample q
- 2. Generate endomorphism
- 3. Compute ψ
- 4. Compute $[3^{-b}]\psi(P)$, $[3^{-b}]\psi(Q)$
- 5. Obtain a repr. of ϕ of deg $q(2^a q)$

The POKE PKE

Security

can we recover an isogeny of secret degree given its action on large torsion?

Results

Parameters

- 2^{λ} : order of torsion points for HD repr
- $3^b \approx 2^{2\lambda}$: degree of smooth isogenies
- $x \approx 2^{\lambda/2}$: order of X

$$p = 2a3bf - 1 \approx 2^{3\lambda}$$
with x | p-1

22 λ

	Size (1	oytes)		Time (ms)		
λ	pk _{cmp}	ct _{cmp}	KeyGen	Encrypt	Decrypt	
128	272	384	496	110	190	
192	408	576	840	201	382	
256	544	768	1552	342	657	

A non-interactive^{ish} key exchange

Non-interactive key exchanges

Split KEMs

Proposed by Brendel, Fischlin, Günther, Janson, and Stebila

A split KEM?

A simple attack

$$\ker \varphi' = \psi(\ker \varphi) \Rightarrow P \in \ker \varphi \Rightarrow \psi(P) \in \ker \varphi' \Rightarrow \operatorname{recover} [\alpha]\psi(P)$$

uniSIDH isogenies

ord $R = B = p_1 \cdot p_2 \cdot ... \cdot p_{\lambda}$

 $B' = p_2 \cdot p_3 \cdot ... \cdot p_{122}$

A split KEM?

secure against active attacks?

Active attacks countermeasures - Alice

- 1. Scale P_{AB} , Q_{AB} by $[\alpha^{-1}]$ and $[\alpha'^{-1}]$
- 2. Compute HD repr. of ϕ'
- 3. Obtain $X_{AB} = \phi'(X_B)$
- 4. Check $P_{AB} = [\cdot] \varphi'(P_A)$ and $Q_{AB} = [\cdot] \varphi'(Q_A)$

Active attacks countermeasures - Bob

An oblivious PRF

Oblivious PRFs

A POKE OPRF

Results

```
p = 2aBf - 1 \approx 1500 \text{ bit } (for \lambda = 128) \Rightarrow \text{total bandwidth: } < 29 \text{ kB}
```

```
andrea@MBP POKE % sage POKE_OPRF_splitKEM.sage
             Benchmarking 10 iterations (\lambda = 128)
                   POKE OPRF
(Server's) KeyGen: 3.2 s
(Client's) Request: 12.2 s
(Server's) BlindEval: 80.0 s
(Server's) BlindEval: 12.8 s (parallel, 8 cores)
(Server's) BlindEval: 3.2 s (parallel, 25 cores)
(Client's) Finalize: 10.1 s
```

Conclusion

New framework for SIDH-like diagrams with high-dimensional representations

A new PKE, both efficient and compact

Many more applications, including split KEMs and OPRFs