TALLER 3: Mínimos Cuadrados /Métodos Iterativos

MATLAB

- [Q,R] = gr(A): Factorización QR full de la matriz A.
- [Q,R] = qr(A,0): Factorización QR reducida de la matriz A.
- cond(A,p): Número de condición de la matriz A, en la norma subordinada p.

Parte Práctica

1. Considere el siguiente sistema de ecuaciones Ax = b, donde:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{bmatrix} \quad \mathbf{y} \quad b = \begin{bmatrix} 3 \\ \epsilon \\ \epsilon \\ \epsilon \end{bmatrix}$$

La solución exacta de este sistema es $x_* = (1, 1, 1)^t$ razón por la cual $r = b - Ax_* = 0$. Así mismo, observe que para $|\epsilon| \neq 0$ el rango de A es tres, mientras que para $\epsilon = 0$ el rango de esta matriz es uno. El objetivo de este ejercicio es, aproximar x_* mediante distintos métodos directos para resolver un sistema sobredeterminado y luego determinar la calidad de dichas aproximaciones.

Para los siguientes valores de $\epsilon = 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}, 10^{-10}$:

- (a) Calcule la condición de A^TA .
- (b) Resuelva el sistema de ecuaciones normales usando la factorización de Cholesky de A^TA , y denote por x_c la aproximación obtenida. Calcule $r_c = b Ax_c$ y $e_c = x_* x_c$.
- (c) Resuelva el sistema sobredeterminado usando la factorización QR full de A y denote por x_f la aproximación obtenida. Calcule $r_f = b Ax_f$ y $e_f = x_* x_f$.
- (d) Resuelva el sistema sobredeterminado usando la factorización QR reducida de A, y denote por x_r la aproximación obtenida. Calcule $r_r = b Ax_r$ y $e_r = x_* x_r$.
- (e) Con los valores obtenidos en los ítems anteriores complete la siguiente tabla

		Residuales			Errores		
ϵ	$cond(A^TA)$	$ r_c _2$	$ r_f _2$	$ r_r _2$	$ e_c _2$	$ e_f _2$	$ e_r _2$
10^{-6}							
10^{-7}							
10^{-8}							
10^{-9}							
10^{-10}							

- (f) En función de los datos de la Tabla anterior, ¿Qué método usaría para resolver el sistema dado?. Justifique su respuesta.
- 2. Considere los siguientes puntos (x_i, y_i) en \mathbb{R}^2 : (0,4), (1,5), (2,8), (3,1).
 - Obtenga el polinomio $p_2(x)$ de grado menor o igual a dos que mejor aproxime, en el sentido de los mínimos cuadrados, a los puntos dados.
 - Grafique a $p_2(x)$ y a los puntos (x_i, y_i) en el intervalo [-0.5, 3.5].
 - Calcule $e_t = \sum_{i=1}^4 [p_2(x_i) y_i]^2$ (suma de los errores al cuadrado).
 - Cambie el punto (3,1) por el punto (3,13) y repita los ítems anteriores. ¿Qué observa?
- 3. Dado el sistema lineal Ax = b, donde:

$$A = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix} \quad \mathbf{y} \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Emplee el método de $SOR(\omega)$ para resolver este sistema con $\omega \notin (0,2)$. ¿Qué observa?
- Realice una gráfica en donde se muestre cómo evoluciona la norma del residual por iteración ($||r_k||$ con $r_k = b Ax_k$) para el método de $SOR(\omega)$ para distintos valores de ω que varíen en (0,2) y con $\omega = \frac{2}{1+\sqrt{1-\rho(B_J)^2}}$. Comente los resultados.
- Compare a los métodos de Jacobi, Gauss-Seidel y $SOR(\omega)$ con $\omega = \frac{2}{1+\sqrt{1-\rho(B_J)^2}}$, en cuanto a número de iteraciones.