NANYANG TECHNOLOGICAL UNIVERSITY SPMS/DIVISION OF MATHEMATICAL SCIENCES

2016/17 Semester 1 MH2500 Probability and Introduction to Statistics Tutorial 10

For the tutorial on 27 October, let us discuss

• Ex. 4.7.42, 45, 49, 50, 54, 60.

Ex. 4.7.42. Let X be an exponential random variable with standard deviation σ . Find $P(|X - E(X)| > k\sigma)$ for k = 2, 3, 4, and compare the results to the bounds from Chebyshev's inequality.

Ex. 4.7.45. Find the covariance and correlation of N_i and N_j , where N_1, N_2, \ldots, N_r are multinomial random variables. (Hint: Express them as sums.)

Ex. 4.7.49. Two independent measurements, X and Y, are taken of a quantity μ . Suppose $E(X) = E(Y) = \mu$ but σ_X and σ_Y are unequal. The two measurements are combined by means of a weighted average to give

$$Z = \alpha X + (1 - \alpha)Y$$

where α is a scalar and $0 \le \alpha \le 1$.

- a. Show that $E(Z) = \mu$.
- b. Find α in terms of σ_X and σ_Y to minimize Var(Z).
- c. Under what circumstances is it better to use the average (X+Y)/2 than either X or Y alone?

Ex. 4.7.50. Suppose that X_i , where i = 1, ..., n are independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Let $\overline{X} = n^{-1} \sum_{i=1}^n X_i$. Show that $E(\overline{X}) = \mu$ and $Var(\overline{X}) = \sigma^2/n$.

Ex. 4.7.54. Let X, Y, and Z be uncorrelated random variables with variances σ_X^2, σ_Y^2 , and σ_Z^2 , respectively. Let

$$U = Z + X$$

$$V = Z + Y$$
.

Find Cov(U, V) and ρ_{UV} .

Ex. 4.7.60. Let Y have a density that is symmetric about zero and let X = SY, where S is an independent random variable taking on the values +1 and -1 with probability $\frac{1}{2}$ each. Show that Cov(X,Y) = 0, but that X and Y are not independent.