UFBA - IME - DMAT —- ÁLGEBRA LINEAR I(MATA07) - PROFA: ISAMARA 4^a LISTA DE EXERCÍCIOS - ESPAÇOS VETORIAIS

- 1. Considere os seguintes subespaços de \mathbb{C}^3 : $W_1 = \{(x, y, z) \in \mathbb{C}^3 \mid x + z = 0\}$ e $W_2 = \{(x, y, z) \in \mathbb{C}^3 \mid x + y = 0 \text{ e } z = 0\}$. Determine os subconjuntos e verifique se são subespaços vetoriais do \mathbb{C}^3 : $W_1 \cap W_2$, $W_1 \cup W_2$, e $W_1 + W_2$.
- 2. Considere os seguintes subespaços de $P_2(\mathbb{C})$: $W_1 = \{p(t) \in P_2(\mathbb{C}) \mid a_0 = a_1\}$, $W_2 = \{p(t) \in P_2(\mathbb{C}) \mid a_2 = 0\}$. Determine os subconjuntos e verifique se são subespaços vetoriais do $P_2(\mathbb{C})$: $W_1 \cap W_2$, $W_1 \cup W_2$, e $W_1 + W_2$.
- 3. Considere o seguinte subespaço de \mathbb{R}^4 : $W_1 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y = 0\}$ e $W_2 = \{(x, y, z, w) \in \mathbb{R}^4 \mid z + w = 0\}$. Determine os subconjuntos e verifique se são subespaços vetoriais do \mathbb{R}^4 : $W_1 \cap W_2$, $W_1 \cup W_2$, e $W_1 + W_2$.
- 4. Considere os seguintes subespaços de $M_3(\mathbb{C})$: $W_1 = \{A \in M_3(\mathbb{C}) \mid a_{ij} = 0; \forall i \neq j\}$, $W_2 = \{A \in M_3(\mathbb{C}) \mid a_{ij} = a_{ji}; \forall i, j\}$, e $W_3 = \{A \in M_3(\mathbb{C}) \mid a_{ij} = -a_{ji}; \forall i, j\}$. Determine os subconjuntos e verifique se são subespaços vetoriais do $M_3(\mathbb{C})$: $W_1 \cap W_2 \cap W_3$, $W_1 \cup W_2 \cup W_3$, e $W_1 + W_2 + W_3$.
- 5. Seja $\mathcal{V} = \mathbb{R}^4$ e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; tais que, $\mathcal{W}_1 = \{u = (x, y, z, w) \in \mathbb{R}^4 \mid x + z = y \text{ e } w = 0\}$; e, $\mathcal{W}_2 = [e_1, 3e_3 + e_4]$. (Responda os itens abaixo justificando suas respostas.)
 - (a) Verifique se $W_1 \cup W_2$ é um subespaço vetorial do \mathbb{R}^4 .
 - (b) Determine uma base e a dimensão para os seguintes subespaços: $W_1 \cap W_2$ e $W_1 + W_2$.
 - (c) Verifique se $\mathbb{R}^4 = \mathcal{W}_1 \oplus \mathcal{W}_2$.
 - (d) Determine um subespaço \mathcal{W} tal que $\mathbb{R}^4 = \mathcal{W}_1 \oplus \mathcal{W}$.
- 6. Seja $\mathcal{V} = \mathbb{M}_2(\mathbb{R})$ um espaço vetorial de dimensão finita e; sejam $\mathcal{W}_1 = [e_1 + e_4, 3e_2]$ e $\mathcal{W}_2 = [2e_1 e_3]$ subespaços vetoriais de \mathcal{V} . (Responda os itens abaixo justificando suas respostas.)
 - (a) Determine uma base ordenada $\beta_{\mathbb{M}_2(\mathbb{R})}$, diferente da base canônica, para o espaço vetorial $\mathbb{M}_2(\mathbb{R})$; utilizando uma base do subespaço $\mathcal{W}_1 + \mathcal{W}_2$.
 - (b) Ache a matriz mudança da base canônica do $\mathbb{M}_2(\mathbb{R})$ para a base $\beta_{\mathbb{M}_2(\mathbb{R})}$ encontrada no item (a).
 - (c) Determine as coordenadas do vetor $u = e_1 + 3e_2 e_3 + 4e_4 = \begin{bmatrix} 1 & 3 \\ -1 & 4 \end{bmatrix} \in \mathbb{M}_2(\mathbb{R})$ em relação à base $\beta_{\mathbb{M}_2(\mathbb{R})}$ utilizando a matriz do item (b).

7. Considere os seguintes subespaços vetoriais do \mathbb{R}^4 :

$$W_1 = [e_1, e_2 + e_3, e_4]; e W_2 = [2e_1, 3e_4].$$

- (a) Determine, se possível, a DIMENSÃO de cada um dos seguintes subconjuntos do \mathbb{R}^4 :
 - (i) $W_1 \cup W_2$
 - (ii) $W_1 \cap W_2$
 - (iii) $W_1 + W_2$
- (b) Verifique se o espaço vetorial \mathbb{R}^4 é SOMA DIRETA dos subespaços W_1 e W_2 .
- 8. Sejam o espaço vetorial \mathbb{R}^4 , e as seguintes bases ordenadas: $\beta_{\mathbb{R}^4} = \{e_1 + 2e_2, -e_4, e_1, 2e_3\}$ e, $\beta_{\mathbb{R}^4}'$ a base canônica.
 - (a) Determine a MATRIZ MUDANÇA DA BASE $\beta'_{\mathbb{R}^4}$ para a base $\beta_{\mathbb{R}^4}$: $[I]^{\beta'_{\mathbb{R}^4}}_{\beta_{\mathbb{R}^4}}$.
 - (b) Determine a MATRIZ DAS COORDENADAS do vetor $v = 3e_1 + e_2 4e_4 \in \mathbb{R}^4$ em relação à base $\beta_{\mathbb{R}^4}$, utilizando a matriz $[I]_{\beta_{\mathbb{R}^4}}^{\beta_{\mathbb{R}^4}'}$.
- 9. Considere os seguintes subespaços vetoriais do \mathbb{R}^3 :

$$W_1 = \{(x, y, z) \in \mathbb{R}^3 / x = 0 \ e \ y - 2z = 0\}; \ e \ W_2 = [(1, 0, 1)].$$

- (a) Determine, se possível, a DIMENSÃO de cada um dos seguintes subconjuntos do \mathbb{R}^3 :
 - (i) $W_1 \cup W_2$
 - (ii) $W_1 \cap W_2$
 - (iii) $W_1 + W_2$
- (b) Verifique se o espaço vetorial \mathbb{R}^3 é SOMA DIRETA dos subespaços W_1 e W_2 .
- 10. Sejam o espaço vetorial $P_3(\mathbb{R})$ de dimensão finita, e as bases ordenadas: $\beta_{P_3(\mathbb{R})} = \{1 + 2t, -t^3, 1, 2t^2\};$ e $\beta'_{P_3(\mathbb{R})}$ a base canônica.
 - (a) Determine a MATRIZ MUDANÇA DA BASE $\beta'_{P_3(\mathbb{R})}$ para a base $\beta_{P_3(\mathbb{R})}: [I]^{\beta'_{P_3(\mathbb{R})}}_{\beta_{P_2(\mathbb{R})}}$.
 - (b) Determine a MATRIZ DAS COORDENADAS do vetor $p(t) = 3 + t 4t^3 \in P_3(\mathbb{R})$ em relação à base $\beta_{P_3(\mathbb{R})}$, utilizando a matriz $[I]_{\beta_{P_3(\mathbb{R})}}^{\beta_{P_3(\mathbb{R})}'}$.
- 11. Considere os seguintes subespaços de \mathbb{C}^3 : $W_1 = \{(x, y, z) \in \mathbb{C}^3/x + z = 0\}$ e $W_2 = \{(x, y, z) \in \mathbb{C}^3/x + y = 0 \text{ e } z = 0\}$. Verifique se $\mathbb{C}^3 = W_1 \oplus W_2$.
- 12. Considere os seguintes subespaços de $M_3(\mathbb{C})$: $W_1 = \{A \in M_3(\mathbb{C})/a_{ij} = 0; \forall i \neq j\}$, $W_2 = \{A \in M_3(\mathbb{C})/a_{ij} = a_{ji}; \forall i, j\}$, e $W_3 = \{A \in M_3(\mathbb{C})/a_{ij} = -a_{ji}; \forall i, j\}$. Verifique se $M_3(\mathbb{C}) = W_1 \oplus W_2 \oplus W_3$.

- 13. Considere os seguintes subespaços de $P_2(\mathbb{C})$: $W_1 = \{p(t) \in P_2(\mathbb{C})/a_0 = a_1\}$, $W_2 = \{p(t) \in P_2(\mathbb{C})/a_2 = 0\}$. Verifique se $P_2(\mathbb{C}) = W_1 \oplus W_2$.
- 14. Considere o seguinte subespaço de \mathbb{R}^4 : $W_1 = \{(x, y, z, w) \in \mathbb{R}^4 | x + y = 0 \text{ e } z + w = 0\}$. Determine um subespaço W_2 de \mathbb{R}^4 tal que $\mathbb{R}^4 = W_1 \oplus W_2$.
- 15. Considere o seguinte subespaço de $M_2(\mathbb{C})$: $W_1 = \{A \in M_2(\mathbb{C}) | a_{ij} = 0; \forall i \neq j\}$. Determine um subespaço W_2 de $M_2(\mathbb{C})$ tal que $M_2(\mathbb{C}) = W_1 \oplus W_2$.
- 16. Considere o seguinte subespaço de $P_2(\mathbb{C})$: $W_1 = \{p(t) \in P_2(\mathbb{C}) | a_1 + a_2 = 0\}$. Determine um subespaço W_2 de $P_2(\mathbb{C})$ tal que $P_2(\mathbb{C}) = W_1 \oplus W_2$.
- 17. Considere o seguinte subespaço de \mathbb{R}^4 : $W = \{(x, y, z, w) \in \mathbb{R}^4 / x + y = 0 \text{ e } z + w = 0\}$. Determine um conjunto de geradores para o subespaço W.
- 18. Considere o seguinte subespaço de $M_2(\mathbb{C})$: $W = \{A \in M_2(\mathbb{C})/a_{ij} = 0; \forall i \neq j\}$. Determine um conjunto de geradores para o subespaço W.
- 19. Considere o seguinte subespaço de $P_3(\mathbb{R})$: $W = \{p(t) \in P_3(\mathbb{R})/a_0 + 3a_2 = 0\}$. Determine um conjunto de geradores para o subespaço W.
- 20. Considere os seguintes subespaços de \mathbb{C}_3 : $W_1 = \{(x,y,z) \in \mathbb{C}_3/x + z = 0\}$ e $W_2 = \{(x,y,z) \in \mathbb{C}_3/x + y = 0 \text{ e } z = 0\}$. Determine um conjunto de geradores para cada subespaço: $W_1, W_2, W_1 \cap W_2, W_1 + W_2$.
- 21. Considere o seguinte subconjunto de $M_2(\mathbb{R})$: $W = \{A \in M_2(\mathbb{R}) | A = A^t \in tr(A) = 0\}$. Mostre que W é um subespaço de $M_2(\mathbb{R})$; e determine um conjunto de geradores para o subespaço W.
- 22. Considerando os seguintes subespaços de \mathbb{R}^4 : $W_1 = \{(x,y,z,w) \in \mathbb{R}^4/x + y z + w = 0 \text{ e} z w = 0\}$; $W_2 = \{(x,y,z,w) \in \mathbb{R}^4/x + y + z = 0\}$. Determine uma base para cada um dos seguintes subespaços de \mathbb{R}^4 : $W_1, W_2, W_1 \cap W_2, W_1 + W_2$.
- 23. Considere os seguintes subespaços vetoriais de \mathbb{R}^3 : $W_1 = \{(x,y,z) \in \mathbb{R}^3/2x 4y + 6z = 0\}$; $W_2 = [(1,0,1),(1,1,3)]$. Determine um conjunto de geradores para cada um dos subespaços: $W_1 \cap W_2, W_1 + W_2$.
- 24. Seja W o subespaço de \mathbb{R}^4 gerado pelos vetores de $S = \{(1,0,1,2), (2,-1,1,3), (-1,1,0,-1)\} \subset \mathbb{R}^4$. Determine uma base para \mathbb{R}^4 contendo uma base do subespaço W.
- 25. Considere o sistema linear homogêneo

$$\begin{cases} 2x + 4y + z &= 0\\ x + y + 2z &= 0\\ x + 3y - z &= 0 \end{cases}$$

- (a) Mostre que o conjunto solução S é um subespaço vetorial de \mathbb{R}^3 e determine uma base para esse subespaço.
- (b) Dado o subespaço vetorial $W = \{(x, y, z) \in \mathbb{R}^3 / x y + z = 0\}$, determine o subespaço $W \cap S$ e uma base para esse subespaço.
- (c) Determine o subespaço vetorial W+S e uma base para esse subespaço.
- 26. Sejam o espaço vetorial $V=\mathbb{C}^3$ e, $W_1=\{u=(x,y,z)\in\mathbb{C}^3/x-y-z=0\}, W_2=[(1,2,1)]$ subespaços de V.
 - (a) Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (b) Determine a dimensão dos subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (c) $V = W_1 \oplus W_2$?
- 27. Sejam o espaço vetorial $V = \mathbb{R}^3$ e, $W_1 = [(-1, 1, -1), (1, 2, 1)], W_2 = [(2, 2, 1), (1, 1, -1)]$ subespaços de V.
 - (a) Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (b) Determine a dimensão dos subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (c) $V = W_1 \oplus W_2$?
- 28. Sejam o espaço vetorial $V = M_2(\mathbb{R})$ e, $W_1 = [e_2 e_4, e_1 + e_2 + e_3]$, $W_2 = [e_1, e_2 + e_3]$ subespaços de V.
 - (a) Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (b) Determine a dimensão dos subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (c) $V = W_1 \oplus W_2$?
- 29. Sejam o espaço vetorial $V=P_2(\mathbb{R})$ e, $W_1=[e_1+e_2+e_3], W_2=[e_1,e_2-e_3]$ subespaços de V.
 - (a) Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (b) Determine a dimensão dos subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
 - (c) $V = W_1 \oplus W_2$?
- 30. Seja \mathbb{C}^2 um espaço vetorial sobre um corpo \mathcal{K} .
 - (a) Verifique se o conjunto $S = \{(1-i,i), (2,-1+i)\} \subset \mathbb{C}^2$, é uma base para \mathbb{C}^2 sobre $\mathcal{K} = \mathbb{C}$.
 - (b) Verifique se o conjunto $S = \{(1-i,i), (2,-1+i)\} \subset \mathbb{C}^2$, é uma base para \mathbb{C}^2 sobre $\mathcal{K} = \mathbb{R}$.

- 31. Sejam os seguintes subespaços de \mathbb{R}^3 : $W_1=[(1,0,0)], W_2=[(1,1,0),(0,1,1)]$. Verifique se $\mathbb{R}^3=W_1\oplus W_2$.
- 32. Considere o espaço vetorial real \mathbb{R}^4 . Determine uma base para este espaço contendo elementos do conjunto $S = \{(1, 0, -2, 2), (1, 2, -2, 1)\}.$
- 33. Considere o espaço vetorial \mathbb{C}^3 sobre o corpo \mathcal{K} . Determine uma base para \mathbb{C}^3 nos itens abaixo:
 - (a) Considere $\mathcal{K} = \mathbb{C}$, e os elementos do conjunto $S = \{(1, 0, -2), (1, 2, 1)\}.$
 - (b) Considere $K = \mathbb{R}$, e os elementos do conjunto $S = \{(1, 0, -2), (1, 2, 1), (0, 0, i)\}.$
- 34. Sejam V um espaço vetorial real, com $dim(V)=9,\ W_1$ e W_2 subespaços de V tais que $dim(W_1)=6$ e $dim(W_2)=5$. Mostre que $2\leq dim(W_1\cap W_2)\leq 5$.
- 35. Determine os valores de $a \in \mathbb{R}$ de modo que o conjunto $S = \{(a, 1, 0), (1, a, 1), (0, 1, a)\}$ seja uma base para o espaço vetorial \mathbb{R}^3 .
- 36. Considere os seguintes subespaços vetoriais de $P_2(\mathbb{R})$: $W_1 = \{p(t) = a + bt + ct^2 \in P_2(\mathbb{R})/a 2c = 0\}$ e $W_2 = [1 t, t t^2]$. Determine uma base para o subespaço $W_1 \cap W_2$ e a $dim(W_1 + W_2)$.
- 37. Considere o espaço vetorial real \mathbb{R}^3 e a base $\beta_{\mathbb{R}^3} = \{(1,1,1)(1,0,1),(1,0,-1)\}$. Determine as coordenadas do vetor $u = (3,1,6) \in \mathbb{R}^3$ com relação à base $\beta_{\mathbb{R}^3}$.
- 38. Seja $\beta_{P_2(\mathbb{R})} = \{1, 1+t, 1+t^2\}$ uma base ordenada do espaço vetorial real $P_2(\mathbb{R})$. Determine as coordenadas do vetor $p(t) = 2 + 4t + t^2$ em relação à base $\beta_{P_2(\mathbb{R})}$.
- 39. Considere o espaço vetorial real $M_2(\mathbb{R})$ com a base ordenada $\beta_{M_2(\mathbb{R})} = \{e_1 + e_2 + e_3, e_1 + e_2 + e_4, e_1 + e_3 + e_4, e_2 + e_3 + e_4\}$. Determine o vetor de coordenadas $[A]_{\beta_{M_2(\mathbb{R})}}$ da matriz $A \in M_2(\mathbb{R})$ dada por: $A = \begin{pmatrix} 4 & 6 \\ 5 & 6 \end{pmatrix}$.
- 40. Sejam $\beta_{P_2(\mathbb{R})} = \{t, 1+t, 1-t^2\}$ e $\gamma_{P_2(\mathbb{R})} = \{e_1, e_2, e_3\}$ bases ordenadas do espaço vetorial $P_2(\mathbb{R})$. Seja $p(t) = 2+4t+t^2 \in P_2(\mathbb{R})$. Determine $[p(t)]_{\beta_{P_2(\mathbb{R})}}$ e $[p(t)]_{\gamma_{P_2(\mathbb{R})}}$ usando as matrizes mudança de base: $[I]_{\gamma}^{\beta}$ e $[I]_{\beta}^{\gamma}$.
- 41. Considere a matriz mudança de base $[I]^{\gamma}_{\beta}=\begin{pmatrix}1&1&0\\0&-1&1\\1&0&-1\end{pmatrix}$. Encontre:

(a)
$$[v]_{\beta}$$
 onde $[v]_{\gamma} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$ (b) $[v]_{\gamma}$ onde $[v]_{\beta} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$

42.	Seja \mathcal{V} um espaço vetorial qualquer de dimensão finita sobre um corpo \mathcal{K} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Verifique se as afirmações abaixo são verdadeiras ou falsas.
	() $W_1 \cap W_2$ é subespaço vetorial de V se, e somente se, $W_1 \cap W_2 = W_1$ ou $W_1 \cap W_2 = W_2$
	() W_1+W_2 é subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq \mathcal W_2$ ou $\mathcal W_2\subseteq \mathcal W_1$
	() \mathcal{V} é um espaço vetorial então está definida em \mathcal{V} a soma e a multiplicação entre seus vetores, satisfazendo às propriedades: comutatividade, associatividade, elemento neutro e elemento simétrico.
	() O próprio espaço vetorial $\mathcal V$ e o subespaço $\{\emptyset\}$ são os chamados subespaços vetoriais triviais de $\mathcal V$.
43.	Seja $\mathcal{V} = \mathbb{R}^2$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{R} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; tais que $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$. Verifique se as afirmações abaixo são verdadeiras ou falsas. () $\beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \{0\}$ e $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$ () $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$ () $\mathcal{W}_1 \oplus \mathcal{W}_2$ e $\dim(\mathcal{W}_1 + \mathcal{W}_2) = \dim(\mathcal{V})$ () $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $\dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) = \dim(\mathcal{V})$
44.	Seja $\mathcal{V} = \mathbb{R}^4$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{R} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; então, $\mathcal{W}_1 \cup \mathcal{W}_2$ é subespaço vetorial de \mathcal{V} se, e somente se, () $\mathcal{W}_1 \cup \mathcal{W}_2 = \mathcal{W}_1 \cap \mathcal{W}_2$ () $\mathcal{W}_1 \cup \mathcal{W}_2 = \mathcal{W}_1 + \mathcal{W}_2$ () $\dim(\mathcal{W}_1) + \dim(\mathcal{W}_2) = \dim(\mathcal{V})$ () $\mathcal{W}_1 \cup \mathcal{W}_2 = \mathcal{V}$ () N.R.A.
45.	Seja $\mathcal{V} = \mathbb{C}^2$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{C} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; tais que $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$. Então, () $\beta_{\mathcal{W}_1 \cap \mathcal{W}_2} = \{0\}$ e $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$ () $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$ () $\mathcal{W}_1 \oplus \mathcal{W}_2$ e $dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{V})$ () $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $dim(\mathcal{W}_1) + dim(\mathcal{W}_2) = dim(\mathcal{V})$ () N.R.A.
46.	Seja \mathcal{V} um espaço vetorial qualquer de dimensão finita sobre um corpo \mathcal{K} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; tais que $dim(\mathcal{W}_1) = 2$ e $dim(\mathcal{W}_2) = 3$. Então, () $dim(\mathcal{W}_1 \cup \mathcal{W}_2) = 5$ () $0 \leq dim(\mathcal{W}_1 \cap \mathcal{W}_2) \leq 2$ () $\mathcal{W}_1 \subset \mathcal{W}_2$ () $5 \leq dim(\mathcal{W}_1 + \mathcal{W}_2) \leq dim(\mathcal{V})$ () N.R.A.

- 47. Seja $\mathcal{V} = \mathbb{P}_2(\mathbb{R})$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{R} e sejam $\mathcal{W}_1 = [1 + t^2, 3t]$ e $\mathcal{W}_2 = [2t t^2]$ subespaços vetoriais de \mathcal{V} . Responda os itens abaixo justificando suas respostas.
 - (a) Verifique se $\mathbb{P}_2(\mathbb{R})$ é soma direta de \mathcal{W}_1 com \mathcal{W}_2 .
 - (b) Determine uma base ordenada para $W_1 + W_2$, onde esta base $\beta_{W_1+W_2}$ seja diferente da base canônica.
 - (c) Determine a matriz mudança da base canônica do $\mathbb{P}_2(\mathbb{R})$ para a base $\beta_{\mathcal{W}_1+\mathcal{W}_2}$.
 - (d) Determine as coordenadas do vetor $p(t) = a_0 + a_1 t + a_2 t^2 \in P_2(\mathbb{R})$ em relação à base $\beta_{W_1 + W_2}$ utilizando a matriz do item (c).
- 48. Seja $\mathcal{V} = \mathbb{P}_2(\mathbb{C})$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{C} e sejam $\mathcal{W}_1 = [1 + t^2, 3t]$ e $\mathcal{W}_2 = [2t t^2]$ subespaços vetoriais de \mathcal{V} . Responda os itens abaixo justificando suas respostas.
 - (a) Verifique se $\mathbb{P}_2(\mathbb{C})$ é soma direta de \mathcal{W}_1 com \mathcal{W}_2 .
 - (b) Determine uma base ordenada para $W_1 + W_2$, onde esta base $\beta_{W_1+W_2}$ seja diferente da base canônica.
 - (c) Determine a matriz mudança da base canônica do $\mathbb{P}_2(\mathbb{C})$ para a base $\beta_{\mathcal{W}_1+\mathcal{W}_2}$.
 - (d) Determine as coordenadas do vetor $p(t) = a_0 + a_1 t + a_2 t^2 \in P_2(\mathbb{C})$ em relação à base $\beta_{W_1 + W_2}$ utilizando a matriz do item (c).
- 49. Seja $\mathcal{V}=\mathbb{C}^4$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{C} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetorials de \mathcal{V} ; então, $\mathcal{W}_1\cup\mathcal{W}_2$ é subespaço vetorial de \mathcal{V} se, e somente se,

 () $\mathcal{W}_1\cup\mathcal{W}_2=\mathcal{W}_1\cap\mathcal{W}_2$ () $\mathcal{W}_1\cup\mathcal{W}_2=\mathcal{W}_1+\mathcal{W}_2$ () $\mathcal{W}_1\cup\mathcal{W}_2=\mathcal{W}_1+\mathcal{W}_2$ () $\mathcal{W}_1\cup\mathcal{W}_2=\mathcal{V}$ () N.R.A.