Prova Facoltativa di Comunicazioni Numeriche - Parte I - Fila B

4 Aprile 2013

Es. 1 - Sia dato il segnale $x(t) = \sum_{n} \left(1 - \frac{\left|t - \frac{2}{B}n\right|}{\frac{1}{4B}}\right) rect\left(\frac{t - \frac{2}{B}n}{\frac{1}{2B}}\right)$ in ingresso al sistema in Fig. 1, dove $h(t) = Bsinc^{2}(Bt)$. Calcolare: a) la espressione analitica di y(t), b) P_{y} e c) E_{y} .

Fig. 1

Es. 2 - Si consideri il sistema in Fig. 2 e siano dati il segnale in ingresso $x(t) = 2\text{sinc}(2Bt)\sin\left(2\pi Bt + \frac{\pi}{6}\right)$ e la funzione interpolatrice p(t) = Bsinc(Bt). Si calcolino quindi: a) la espressione analitica del segnale y(t) in uscita all'interpolatore, b) E_y e c) P_y .

Es. 3 - Si consideri il sistema in Fig. 3 come la cascata di due sistemi, definiti dalle trasformazioni T_1 e T_2 , dove T_1 rappresenta la trasformazione T_1 [·] = $\int_a^t x(\alpha) d\alpha$ e T_2 rappresenta la trasformazione di un sistema lineare con risposta impulsiva $h(t) = \delta(t - t_1)$ e con $a, t_1 > 0$ ($a, t_1 \in \mathcal{R}$). Considerando il sistema T composto dalla cascata di T_1 e T_2 , si verifichi se tale sistema e': a) lineare, b) causale, c) stazionario e d) con memoria.

- Es. 4 Definire e dimostrare il Teorema di Parseval per segnali aperiodici.
- Es. 5 Definire l'operazione di convoluzione ed illustrarne le proprietà