

# **IOT607U Data Mining**

Week 3: Data exploration and visualization

Dr Lin Wang

School of EECS, Queen Mary University of London

### Last week: Data

- · Attributes and Objects
- · Characteristics of Data
- · Data Representations
- Basic Statistical Descriptions of Data
- · Similarity and Distance



## This week's contents

- 1. Data Exploration
- 2. Data Summarization
- 3. Data Visualization



# Reading

- Chapter 2.3 of J. Han, M. Kamber, J. Pei, "Data Mining: Concepts and Techniques", 3rd edition, Elsevier/Morgan Kaufmann, 2012
- Chapter "Data Exploration" of Section 2.3 of P.-N. Tan, M. Steinbach, A. Karpatne, V. Kumar, "Introduction to Data Mining", 2nd edition, Pearson, 2019



# **Data Exploration**

## **Data Exploration**

- Data exploration refers to a preliminary investigation of the data
- This investigation typically has the following goals:
  - Revealing the need for data pre-processing
  - · Answering simple questions about the data
  - Identifying applicable data analysis techniques
- There are two main methods for data exploration: data summarisation and data visualisation

# Data Summarization

Data Summanzation

Summarization techniques

### **Data Summarization**

- Descriptive statistics
- Central tendency: mean, median, mode
- Dispersion: range, inter-quartile range, variance

# **Data Visualization**

# Purpose of Visualization

- Exploratory data analysis: what does my data look like?
- Error detection: anything weird in the data before you try to use it?
- Communication: can you explain the data? Or convince your audience about your point?
  - e.g. data journalism: reporting a story with charts.

### **Visualization Process**

- Data collection and cleansing.
- Research on the data, e.g. get descriptive statistics.
- Produce visualization that conveys those statistics.
- Assess the effectiveness of the visualization.
  - Does it show what we intend to show?
  - Is it easy to interpret for the target reader?
  - Could it mislead readers?

### **Visualization Tools**

- Scatter plot: exploring data
- Time series: time
- Bar chart: comparisons
- Histogram: binned frequency
- Density: continuous functions
- Box plot: quantiles
- QQ plot: comparing distributions
- Other: displaying multivariate

# Data Visualization

Data Visualización

**Scatter Plot** 

### Scatter Plot: Definition

- Using Cartesian coordinates to display values for two variables for a set of data
- The data is displayed as a collection of points, each having the value of one variable determining the position on the horizontal axis and the value of the other variable determining the position on the vertical axis.



#### Scatter Plot vs Bubble Plot

# BUBBLE PLOT



# Scatter Plot in Python

```
x = np.linspace(0, 10, 30)
y = np.sin(x)
plt.plot(x, y, 'o', color='black')
```



### Scatter Plot in Python



#### aka bubble plot

# Scatter Plot: Adding Line of Fit

 Line of best fit: straight line that is the best approximation of the given set of data

In a scatter plot, what is the linear tendency of my data?

```
numpy.polyfit(x, y, deg)
```

# Scatter Plot: Adding Line of Fit

```
x = np.random.randn(20)
y = 2*x + np.random.randn(20)
plt.plot(x,y,'.')
```



```
m,b = np.polyfit(x,y,1)
yy = m*x + b
plt.plot(x,yy)
```



### Scatter Plot: Discussion

- Useful for exploration of variables and their relationships
- Shows the raw data: outliers will show up
- Link to descriptive statistics: provides an immediate feeling of
  - Range
  - Dispersion
  - Correlation



#### Scatter Plot Matrix



|   | Α         | В         | С         | D         |
|---|-----------|-----------|-----------|-----------|
| 0 | 1.193096  | -0.946914 | -0.936265 | -1.848978 |
| 1 | -1.813538 | -1.042910 | -2.177161 | -0.230932 |
| 2 | 0.569173  | 0.044870  | 0.271126  | -0.372552 |
| 3 | 0.575154  | -0.738166 | -0.546672 | 0.336331  |
| 4 | 2.454912  | -1.546656 | -0.928218 | -1.181470 |

# **Data Visualization**

**Time Series** 

### Time Series: Definition

- Sequence of data points, measured typically at successive points in time spaced at uniform time intervals
- Time series are used in statistics, signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, earthquake prediction, electroencephalography, control engineering, astronomy, communications engineering, and largely in any domain of applied science and engineering which involves temporal measurements.

# Time Series: Example





A time series graph of the population of the United States from the years 1900 to 2000



Monthly airline bookings of a flight company

### Time Series: Discussion

- Trends and patterns over time
- Immediate feeling of
  - Noise vs. signal
  - Trends
  - Anomalies

#### UK daily cases between 2 April 2020 and 15 July 2021



# **Data Visualization**

**Bar Chart** 

### Bar Chart: Definition

- Rectangular bars with lengths proportional to the values they represent.
- Used to show comparisons among categories.
- Some bar graphs present bars clustered in groups of more than one (grouped bar graphs), and others show the bars divided into subparts to show cumulative effect (stacked bar graphs).



# **Grouped Bar Chart**

## Example of a grouped (clustered) bar chart



## Stacked Bar Chart

### Example of a stacked bar chart



## Bar Chart in Python

```
import matplotlib.pyplot as plt
import numpy as np
objects = ('Python', 'C++', 'Java', 'Perl', 'Scala', 'Lisp')
x_pos = np.arange(len(objects))
usage = [10, 8, 6, 4, 2, 1]
plt.bar(x_pos, usage)
plt.xticks(x_pos, objects)
plt.ylabel('Usage')
plt.title('Programming language usage')
```



## **Grouped Bar Chart in Python**

```
import matplotlib.pyplot as plt
import numpy as np
x = ['a', 'b', 'c', 'd']
v1 = [5, 10, 5, 6]
y2 = [7, 3, 8, 15]
                                   15.0
v3 = [1, 7, 18, 3]
                                   12.5
w = 0.2
x pos = np.array(range(len(x)))
plt.bar(x_pos-0.2, y1, width=w) 7.5
plt.bar(x pos, y2, width=w)
                                   5.0
plt.bar(x pos+0.2, y3, width=w)
                                    2.5
plt.xticks(x pos,x)
plt.legend(['v1','v2','v3'])
```

## Stacked Bar Chart in Python

```
import matplotlib.pyplot as plt
import numpy as np
x = ['a', 'b', 'c', 'd']
y1 = [5, 10, 5, 6]
y2 = [7, 3, 8, 15]
y3 = [1, 7, 18, 3]
plt.bar(x, y1)
plt.bar(x, y2, bottom=y1)
z = list(np.array(y1) + np.array(y2))
plt.bar(x, y2, bottom=z)
```

## Pie Chart in Python

#### PIF CHART IN PYTHON

```
import matplotlib.pyplot as plt
import numpy as np
x = ['a', 'b', 'c', 'd']
y1 = [5, 10, 5, 6]
y2 = [7, 3, 8, 15]
y3 = [1, 7, 18, 3]
za= [y1[0], y2[0], y3[0]]
plt.pie(za, labels=['y1','y2','y3'])
plt.title(x[0])
```



# Data Visualization

Histogram

## Histogram: Definition

- Representation of tabulated frequencies, shown as adjacent rectangles, erected over discrete intervals (bins), with an area proportional to the frequency of the observations in the interval.
- The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency divided by the width of the interval. The total area of the histogram is equal to the number of data.



## Histogram in Python

```
import matplotlib.pyplot as plt
x = [21, 22, 23, 4, 5, 6, 77, 8, 9, 10, 31, 32, 3
3, 34, 35, 36, 37, 18, 49, 50, 100]
num_bins = 5
```

#### [count, bin\_boundary, patch] = plt.hist(x, bins=num bins, facecolor='blue')

```
#bin_boundary: [4.0, 23.2, 42.4, 61.6, 80.8, 100.0] #count: [10.0, 7.0, 2.0, 1.0, 1.0]
```

```
# can also use np.histogram + bar
[count2, bins2] = np.histogram(x, bins=5)
plt.bar((bins2[0:-
11+bins2[1:1)/2.count2,width=20)
```



# Histogram: Discussion

- Can be hard to read due to the bin size choice
- No "best" number of bins: different bin sizes can reveal different features of the data
- Square root choice (used by Excel):  $k = \sqrt{n}$
- Sturges (normal data):  $k = \lceil \log_2 n + 1 \rceil$



# **Data Visualization**

Data Visualizati

**Density Plot** 

### **Density: Definition**

- Function that describes the relative likelihood for this variable to take a given value
- The probability of the random variable falling within a particular range of values is given by the integral of this variable's density over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is non-negative everywhere, and its integral over the entire space is equal to one.

$$p(x) \ge 0$$
  

$$p(a < x < b) = \int_{a}^{b} p(x) dx$$
  

$$\int_{-\infty}^{\infty} p(x) dx = 1$$





# Density: Example

$$p(x) \ge 0$$

$$p(a < x < b) = \int_a^b p(x) dx$$

$$\int_{-\infty}^{\infty} p(x) dx = 1$$



### Density in Python

### plt.hist()

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

flights = pd.read_csv("http://www.eecs.qmul.ac.uk/~linwang/download/
ecs764/formatted_flights.csv")

JetBlue = flights[flights['name']=='JetBlue Airways']

delay = JetBlue['arr_delay']
```

```
hist, bins, path = plt.hist(delay, bins=18, density=True)
bin_centers = (bins[1:]+bins[:-1])*0.5
plt.plot(bin_centers, hist, linewidth=5)
plt.title('JetBlue Airways')
```



### **Density in Python**

### seaborn.distplot()







### Density: Kernal Density Estimation

| Sample | 1    | 2    | 3    | 4   | 5   | 6   |
|--------|------|------|------|-----|-----|-----|
| Value  | -2.1 | -1.3 | -0.4 | 1.9 | 5.1 | 6.2 |



Comparison of the histogram (left) and kernel density estimate (right) constructed using  $^{6}$ 1 the same data. The six individual kernels are the red dashed curves, the kernel density estimate the blue curves. The data points are the rug plot on the horizontal axis.

### Density: Bandwidth Values



# **Data Visualization**

Data Visadiizati

**Box Plot** 

### **Box Plot: Definition**

#### **BOX PLOT: DEFINITION**

- Graphically depicts groups of numerical data through their quartiles/percentiles.
- Box plots display five number summary: "minimum", first quartile (Q1), median, third quartile (Q3), and "maximum".
  - · Lower whisker: Minimum Q1
  - Upper whisker: Q3 Maximum
  - Small/large values (outliers) may be plotted as individual points.



### **Box Plot**



### Box Plot in Python

### plt.boxplot()

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
flights = pd.read_csv("http://www.eecs.qmul.ac.uk/~linwang/download/ecs764/formatted_flights.csv")

JetBlue = flights[flights['name']=='JetBlue Airways']['arr_delay']

Delta = flights[flights['name']=='Delta Air Lines Inc.']['arr_delay']

United = flights[flights['name']=='United Air Lines Inc.']['arr_delay']

American = flights[flights['name']=='American Airlines Inc.']['arr_delay']

ExpressJet = flights[flights['name']=='ExpressJet Airlines Inc.']['arr_delay']
```

delay = [United, JetBlue, ExpressJet, Delta, American]
plt.boxplot(delay)

### Box Plot in Python

### plt.boxplot()





### **Box Plot Variant**

# seaborn.violinplot ()





https://seaborn.pydata.org/generated/seaborn.violinplot.html

### **Box Plot: Discussion**

- Quick way of examining one or more sets of data visually (exploratory)
- More primitive than histogram or density
- · No need for choice of bins and bandwidth
- Compact
- Histogram better for one group while boxplot better for multiple groups

# **Data Visualization**

**QQ Plot** 

### QQ Plot: Definition

• Comparing two probability distributions by plotting their quantiles against each other



### QQ Plot: Definition

- · Method:
  - 1)The set of intervals for the quantiles is chosen (typically k/(n + 1))
  - 2)A point (x, y) on the plot corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against the same quantile of the first distribution (x-coordinate).



### QQ Plot in Python

```
import matplotlib.pvplot as plt
import numpy as np
def standardize(data):
  z = (data - np.mean(data))/np.std(data)
  return z
def get quantiles(data):
    quantiles = []
    for g in np.arange(0, 1.001, 0.001):
        quantiles.append(np.quantile(data, q))
    return quantiles
def pyggplot(data1, data2):
    data1 = standardize(data1)
    data2 = standardize(data2)
    g1 = np.array(get quantiles(data1))
    g2 = np.array(get quantiles(data2))
    plt.scatter(q1, q2)
    minim = min(data1.min(), data2.min())
    maxim = max(data1.max(), data2.max())
    plt.plot([minim, maxim], [minim, maxim], 'r-')
```

```
x2 = np.random.normal(0, 1, 10000)
pyqqplot(x1, x2)

4
3
2
1
0
-1
-2
-3
```

x1 = np.random.normal(0, 1, 10000)

# QQ Plot: Example



# **Data Visualization**

# Displaying Multivariate:

Heatmap, Surface, Contour, Quiver

### Heatmap

• A heat map uses a colour to represent the value f(x,y) of each point (x,y) in a scalar field  $f: \mathbb{R}^2 \to \mathbb{R}$ 





| CRIM -    | 1      | -0.2   | 0.41  | -0.056  | 0.42  | -0.22 | 0.35  | -0.38  |         | 0.58   | 0.29    | -0.39 | 0.46   | -0.39 |
|-----------|--------|--------|-------|---------|-------|-------|-------|--------|---------|--------|---------|-------|--------|-------|
| ZN -      | -0.2   |        |       | -0.043  |       | 0.31  |       |        | -0.31   | -0.31  | -0.39   | 0.18  |        | 0.36  |
| INDUS -   | 0.41   |        |       | 0.063   |       | -0.39 |       |        | 0.6     |        | 0.38    | -0.36 | 0.6    |       |
| CHAS -    | -0.056 | -0.043 | 0.063 | 1       | 0.091 | 0.091 | 0.087 | -0.099 | -0.0074 | -0.036 | -0.12   | 0.049 | -0.054 | 0.18  |
| NOX -     | 0.42   |        |       | 0.091   | 1     | -0.3  |       |        |         |        | 0.19    | -0.38 | 0.59   |       |
| RM -      | -0.22  | 0.31   | -0.39 | 0.091   | -0.3  |       | -0.24 | 0.21   | -0.21   | -0.29  | -0.36   | 0.13  |        |       |
| AGE -     | 0.35   |        |       | 0.087   |       | -0.24 |       | -0.75  | 0.46    | 0.51   | 0.26    | -0.27 | 0.6    | -0.38 |
| DIS -     | -0.38  |        |       | -0.099  | -0.77 | 0.21  |       |        |         |        | -0.23   | 0.29  |        | 0.25  |
| RAD -     | 0.63   | -0.31  | 0.6   | -0.0074 |       | -0.21 | 0.46  |        |         |        | 0.46    |       | 0.49   | -0.38 |
| TAX -     | 0.58   | -0.31  |       | -0.036  |       | -0.29 | 0.51  |        |         |        | 0.46    |       | 0.54   |       |
| PTRATIO - | 0.29   | -0.39  | 0.38  | -0.12   | 0.19  | -0.36 | 0.26  | -0.23  | 0.46    | 0.46   | 1       | -0.18 | 0.37   |       |
| В -       | -0.39  | 0.18   | -0.36 | 0.049   | -0.38 | 0.13  | -0.27 | 0.29   |         |        | -0.18   | 1     | -0.37  | 0.33  |
| LSTAT -   | 0.46   | -0.41  | 0.6   | -0.054  | 0.59  | -0.61 | 0.6   | -0.5   | 0.49    | 0.54   | 0.37    | -0.37 | 1      | -0.74 |
| MEDV -    | -0.39  | 0.36   |       | 0.18    |       |       | -0.38 | 0.25   | -0.38   |        |         | 0.33  |        |       |
|           | CRIM   | ΖŃ     | INDUS | CHAS    | Nox   | RМ    | AĠE   | Dis    | RÁD     | TAX    | PTRATIC | в     | LSTAT  | MEDV  |

- 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - -0.2





#### **Surface Plot**

- A surface plot displace the graph of a bivariate function
- A surface is plotted to fit a set of data (X, Y, Z), where Z if obtained by the function to be plotted Z = f(X, Y).
- · Optionally, the plotted values can be color-coded.



https://matplotlib.org/stable/gallery/mplot3d/surface3d.html

#### **Contour Plot**

- A contour plot represents a 3-D surface by plotting lines that connect points with common z-values along a slice.
- For example, you can use a contour plot to visualize the height of a surface in two dimensions.



https://matplotlib.org/stable/api/\_as\_gen/matplotlib.pyplot.contour.html

### **Contour Plot Example**

A biologist studies the effect of stream depth and canopy cover on fish biomass.



### Contour and Surface Plot



### Vector Field (Quiver)

- In some data, a characteristic may have both magnitude and a direction associated with it (e.g. flow of a substance)
- Vector filed plots (or quiver plots) display both direction and magnitude
- Vector fields can model velocity, magnetic force, fluid motion, and gradients.



### **Vector Field**

Optical flow in computer vision



### **GRAPH VISUALIZATION**

- Graph drawing is concerned with obtaining visual representations of graphs based on nodes and links
- There are many different graph layout algorithms that attempt to maximise different quality measures



https://plotly.com/python/network-graphs/

### **GRAPH VISUALIZATION**



Game of Thrones characters with more than 60 interactions

#### MORE ON PYTHON GRAPHS

• https://python-graph-gallery.com/





# Data Visualization

Data Visualization

Visualization principles

#### **Data Visualization Tools Covered**

• Scatter plot: exploring data

• Time series: time

• Bar chart: comparisons

• Histogram: binned frequency

• Density: continuous functions

• Box plot: quantiles

QQ plot: comparing distributions

• Others: displaying multivariate

### **Data Visualization**

- · Data visualisation is an art
- Many plot types for different purposes: knowing the right tools saves a lot of time
- Important tool for data exploration, especially extracting basic relationships

# Check list: Accent Principle

- Apprehension: does the visualisation maximize the understanding of the relationships in the data?
- Clarity: are the most important relationships the most visually prominent?
- Consistency: are the visual elements consistent with their use in previous visualisations?
- Efficiency: are the visual elements economically used and easy to interpret?
- Necessity: is the visualisation more useful than alternative ways to represent the data?
- Truthfulness: are the visual elements accurate and unambiguous?

Questions? also please use the forum on QM+