Explorando Criptografias MPKC

Guilherme Cappelli

Computação Algébrica - UFRJ

04/12/2024

Sumário

- Introdução
- 2 Criptografia de Chave Pública Multivariável
- 3 Proteções Contra Ataques
- 4 Criptografia de Chen
- Bases de Gröbner

Conteúdo

- Introdução
- 2 Criptografia de Chave Pública Multivariáve
- Proteções Contra Ataques
- 4 Criptografia de Chen
- Bases de Gröbner

Contexto Histórico

- Em 1997, a NIST iniciou processo para selecionar uma criptografia de chave simétrica
 - Necessidade de padronização global
 - Busca por algoritmos seguros e eficientes
- O algoritmo Rijndael foi selecionado como AES
 - Desenvolvido por Vincent Rijmen e Joan Daemen
 - Oferece excelente combinação de segurança e performance
- Com o advento da Computação Quântica e Algoritmo de Shor:
 - Vários sistemas criptográficos tornaram-se vulneráveis
 - NIST iniciou novo processo seletivo para criptografia pós-quântica
 - MPKC emerge como alternativa promissora

Motivação para Criptografia Pós-Quântica

- Computadores quânticos ameaçam criptografias atuais
 - RSA vulnerável ao algoritmo de Shor
 - Necessidade de alternativas resistentes a ataques quânticos
- MPKC oferece vantagens importantes:
 - Baseada em problemas NP-difíceis
 - Resistente a ataques quânticos conhecidos
 - Operações eficientes em hardware
- Desafios atuais:
 - Tamanho das chaves
 - Complexidade de implementação
 - Necessidade de análise de segurança profunda

Conteúdo

- Introdução
- 2 Criptografia de Chave Pública Multivariável
- Proteções Contra Ataques
- 4 Criptografia de Chen
- Bases de Gröbner

Criptografias de Chave Pública Multivariada

- Multivariate Public Key Cryptosystems MPKC é uma família de criptografias baseadas em funções em várias variáveis sob um corpo finito como chave pública.
- É evidente que, por usar chave pública, estas serão Criptografias Assimétricas, diferentemente de Cifras de Feistel ou o próprio AES.

Corpo Finito

Um corpo finito $\mathbb F$ é um corpo cuja ordem $q\in\mathbb N$ é finita, para q um número primo. Se a ordem for q^m , para m>1 dizemos que é uma extensão de corpo.

- Ex1: \mathbb{F}_2 (Corpo binário)
- Ex2: GF(2⁸) (Corpo usado para o AES-256)

Problemas NP-Difícil

- Sistemas de criptografia devem se basear em problemas difíceis de serem solucionados computacionalmente para a trapdoor.
- Nas Criptografias de Curvas Elípticas, como a Variante de Menezes e Vanstone para o ElGamal, é adotado o Problema do Logaritmo Discreto.
- Para o RSA, a maior dificuldade é fatorar $n=p\cdot q$, pois uma vez feito isso, calcular $\phi(n)=(p-1)\cdot (q-1)$ é trivial, e portanto, $e\cdot d\equiv 1\mod \phi$.
- A segurança dos esquemas MPKC é baseada na dificuldade de encontrar soluções para um sistema de equações de polinômios em várias variáveis, conhecido como o Multivariate Polynomial Problem.
- Se esse sistema for composto apenas por polinômios quadráticos se chama Multivariate Quadratic Problem, ou ainda, Problema MQ.

Multivariate Quadratic Problem

Problema MQ

Sejam $\mathbb{F}[x_1,\ldots,x_n]$ um anel de polinômios sobre um corpo finito \mathbb{F} e os polinômios quadráticos $f_1,\ldots,f_m\in\mathbb{F}[x_1,\ldots,x_n]$, para m>n. O sistema de equações dos polinômios f_1, \ldots, f_m que constrói o problema MQ é:

$$\begin{cases} f_1(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(1)} \cdot x_i \cdot x_j + \sum_{1 \le i \le n} b_i^{(1)} \cdot x_i + c^{(1)} = d_1 \\ \vdots \\ f_m(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(m)} \cdot x_i \cdot x_j + \sum_{1 \le i \le n} b_i^{(m)} \cdot x_i + c^{(m)} = d_m \end{cases}$$
 onde todos $a_{ij}, b_{ij}, c \in \mathbb{F}$.

onde todos $a_{ij}, b_{ij}, c \in \mathbb{F}$.

• Problema NP-difícil sobre corpos finitos, até mesmo para \mathbb{F}_2 .

Mapeamento Afim

Definição

Um mapeamento afim $S:=(S_{matriz}, s_{vetor}): \mathbb{F}^m \to \mathbb{F}^m$ é definido como:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = S_{matriz} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} + s_{vetor}$$

Propriedades Importantes

- Preserva estrutura linear
- ullet Facilmente invertível quando S_{matriz} é inversível
- Usado para mascarar a estrutura do sistema central

Conteúdo

- Introdução
- 2 Criptografia de Chave Pública Multivariáve
- 3 Proteções Contra Ataques
- 4 Criptografia de Cher
- Bases de Gröbner

Modificadores de Segurança

Modificador 'Menos'

- \bullet Polinômios são removidos do mapeamento central F, restando os primeiros (n+1-a) polinômios.
- a próximo de $\lfloor \log_2(n) \rfloor$

Modificador 'Mais'

- Acrescenta s polinômios quadráticos aleatórios à chave pública, onde foi implementado o método anterior.
- ullet Torna o mapeamento central F em injetivo.
- Assim, $P: \mathbb{F}^n \to \mathbb{F}^m$, onde m = n + 1 a + s.
- Decriptar mensagem se torna muito mais custoso, apesar de adicionar uma camada de segurança extra contra ataques de Linearização.

Conteúdo

- Introdução
- 2 Criptografia de Chave Pública Multivariáve
- Proteções Contra Ataques
- 4 Criptografia de Chen
- Bases de Gröbner

- Seja $\mathbb{F}[x_1,\ldots,x_n]$ um anel de polinômios sobre um corpo finito de ordem q. Suponha que a característica de \mathbb{F} não seja 2.
- Sejam $C \in \mathbb{F}^{(n+1) \times n}$ uma matriz e os polinômios $f_1,...,f_{n+1} \in \mathbb{F}[x_1,...,x_n]$. Estruturamos esse sistema como o problema MQ enunciado anterioremente.

Sistema Base

$$\begin{cases} f_1 = (x_1 - c_{1,1})^2 + \dots + (x_n - c_{1,n})^2, \\ \vdots \\ f_{n+1} = (x_1 - c_{n+1,1})^2 + \dots + (x_n - c_{n+1,n})^2 \end{cases}$$

• Queremos solucionar esse sistema para $y=(y_1,\ldots,y_{n+1})\in\mathbb{F}^{(n+1)}$, então se tomarmos a diferença entre equações de f_{i+1} e f_i , para todo $i\leq i\leq n$, obtemos

$$\begin{cases} f_2 - f_1 = y_2 - y_1 \\ \vdots \\ f_{n+1} - f_n = y_{n+1} - y_n \end{cases}$$

• Como $f_i=(x_1^2-2\cdot x_1\cdot c_{i,1}+c_{i,1}^2)+\cdots+(x_n^2-2\cdot x_n\cdot c_{i,n}+c_{i,n}^2)$, podemos agrupar esses termos pelo grau.

$$f_i = (\sum_{j=0}^n x_j^2) - 2 \cdot (\sum_{k=0}^n x_k \cdot c_{i,k}) + (\sum_{l=0}^n c_{i,l}^2)$$

O que nos leva a

$$f_{i+1} - f_i = 2 \cdot (\sum_{k=0}^{n} x_k \cdot (c_{i,k} - c_{i+1,k})) + (\sum_{l=0}^{n} c_{i+1,l}^2 - c_{i,l}^2)$$

• Sabemos do sistema inicial que $f_{i+1} - f_i = y_{i+1} - y_i$. Então, se definirmos a matriz $C' := (2 \cdot (c_{i,j} - c_{i+1,j}))_{i,j} \in \mathbb{F}^{n \times n}$, obtemos o seguinte sistema.

$$\begin{bmatrix} y_2 - y_1 \\ y_3 - y_2 \\ \vdots \\ y_{n+1} - y_n \end{bmatrix} = C' \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} \sum_{k=1}^n (c_{2,k}^2 - c_{1,k}^2) \\ \sum_{k=1}^n (c_{3,k}^2 - c_{2,k}^2) \\ \vdots \\ \sum_{k=1}^n (c_{n+1,k}^2 - c_{n,k}^2) \end{bmatrix}$$

• Se construirmos C para que C' tenha inversa, o sistema possui solução única, o que vai ser bastante desejável para a criptografia.

- Para a implementação dos modificadores da seção 3 escolha os primeiros (n+1-a) polinômios de f_1,\ldots,f_{n+1} , chamaremo-os F'_{α}
- Escolha $g_1,\dots,g_s\in\mathbb{F}[x_1,\dots,x_n]$ polinômios de grau 2 de forma aleatória, denote o conjunto desses como G
- Faça a união $F'_{\alpha} \cup G$ no mapeamento central F, onde $a,s \in \mathbb{Z}^+$ e como é fácil perceber m=n+1-a+s.

$$F = (f_1, f_2, \dots, f_{n+1-a}, g_1, \dots, g_s) \in \mathbb{F}^m[x_1, \dots, x_n]$$
 (1)

• Considere dois mapeamentos afins invertíveis $S:\mathbb{F}^n \to \mathbb{F}^n, T:\mathbb{F}^m \to \mathbb{F}^m$ e denote a *chave pública* do criptosistema como $P:\mathbb{F}^n \to \mathbb{F}^m$ e calcule-a com $P=S\circ F\circ T.$ Enquanto isso, a *chave privada* será a quádrupla (C,G,T,S).

Algoritmo 1 - Computando Chave Pública P

```
 \begin{aligned} \text{func pubkey}(S, F, T, x) \colon \\ \mathbf{v} &\leftarrow S \cdot x + s \\ \mathbf{v}_1 &\leftarrow F(\mathbf{v}) \\ \mathbf{P} &\leftarrow T \cdot \mathbf{v}_1 \ + \ \mathbf{t} \\ \mathbf{return} \ \mathbf{P} \end{aligned}
```

Encriptando uma mensagem

- Devido à adoção dos métodos 'Mais' e 'Menos' na criptografia, o custo para decriptar um 'ciphertext' aumenta, embora encriptar seja extremamente barato.
- Seja pt uma mensagem a ser encriptada, esta deve ser convertida para uma cadeia numérica, seja transformando string para bytes ou com o auxílio de algum padding, denote o resultado dessa transformação por $\alpha \in \mathbb{F}^n$.
- O processo de encriptar é feito facilmente através de $y=P(\alpha)\in\mathbb{F}^m$. Já decriptar um *ciphertext* é um pouco mais trabalhoso, visto que exige realizarmos as operações inversas recursivamente de $\alpha=T^{-1}\circ F^{-1}\circ S^{-1}$.

Decriptando uma mensagem

• Seja $P(\alpha)=y\in\mathbb{F}^m$ o *ciphertext* a ser decriptado. Por construção, os dois mapeamentos afins S e T são invertíveis, logo $\beta=(\beta_1,\ldots,\beta_m):=T^{-1}\circ y$. Denote $\beta'\in\mathbb{F}^a[x_1,\ldots,x_n]$ para o laço atual.

$$\begin{cases} f_1(x_1, \dots, x_n) = \beta_1 \\ \vdots \\ f_{n+1-a}(x_1, \dots, x_n) = \beta_{n+1-a} \\ f_{n+1-a+1}(x_1, \dots, x_n) = \beta'_1 \\ \vdots \\ f_{n+1}(x_1, \dots, x_n) = \beta'_a \end{cases}$$

• Relembre a construção do sistema para que C^\prime fosse invertível, é aqui que ela se torna fundamental.

$$\gamma = C'^{-1} \cdot \left(\begin{bmatrix} \beta_2 - \beta_1 \\ \vdots \\ \beta'_a - \beta'_{a-1} \end{bmatrix} - \begin{bmatrix} \sum_{k=1}^n (c_{2,k}^2 - c_{1,k}^2) \\ \sum_{k=1}^n (c_{3,k}^2 - c_{2,k}^2) \\ \vdots \\ \sum_{k=1}^n (c_{n+1,k}^2 - c_{n,k}^2) \end{bmatrix} \right)$$

Decriptando uma mensagem

• Por conta do Modificador 'Mais', precisamos verificar se para cada $g_i \in G$, vale a igualdade

$$\begin{cases} g_1(\gamma) = \beta_{n+1-a+1} \\ \vdots \\ g_s(\gamma) = \beta_m \end{cases}$$

- ullet Se não o for, escolha outro $eta' \in \mathbb{F}^a[x_1,\ldots,x_n]$ e repita o processo
- Caso contrário, damos prosseguimento à decriptação e calculamos $\alpha=S^{-1}\circ\gamma$, que é a resposta que procuramos para $P(\alpha)=y$.

Conteúdo

- Introdução
- 2 Criptografia de Chave Pública Multivariáve
- Proteções Contra Ataques
- 4 Criptografia de Cher
- Bases de Gröbner

Relembrando...

Proposição 1

Se uma matriz quadrada $C' \in \mathbb{F}^{n \times n}$ é invertível, então suas colunas são linearmente independentes.

Demonstração: Como C' é invertível, então existe uma matriz quadrada $B \in \mathbb{F}^{n \times n}$ tal que $C' \times B = B \times C' = I$. Suponha, por absurdo, que as colunas de C' são linearmente dependentes. Então, por haver uma redundância nesses vetores, deve existir $\vec{v} \neq 0$ tal que $C' \cdot \vec{v} = 0$. Contudo, isso implica em $B \cdot C' \cdot \vec{v} = \overline{0} \Longrightarrow I \cdot \vec{v} = \overline{0} \Longrightarrow \vec{v} = \overline{0}$, que é uma contradição. Portanto, C' é linearmente independente.

- Dados uma chave pública $P \in \mathbb{F}^m[x_1,\ldots,x_n]$ e o ciphertext $y=(y_1,\ldots,y_m)\in\mathbb{F}^m$ para a criptografia de Chen et al.
- Considere $h_i = f_{i+1} f_i$, que por construção tem grau $(h_i) = 1$, para todo $1 \le i \le n-a$.
- Seja $\operatorname{span}(P) = \{p_1, \dots, p_m\}$. Como construímos C para que C' seja invertível, o conjunto $\{h_1, \dots, h_{n-a}\}$ é linearmente independente e, portanto, $\operatorname{span}(F) = \{h_1, \dots, h_{n-a}, f_1, g_1, \dots, g_s\}$.

Proposição 2

Sejam $S:\mathbb{F}^n o\mathbb{F}^n$ e $T:\mathbb{F}^m o\mathbb{F}^m$ mapeamentos afins invertíveis e $F=(f_1,\ldots,f_m)\in\mathbb{F}^m$ uma função regular. Se $P=S\circ F\circ T$,então

$$\mathsf{span}(P) = \mathsf{span}(F) \circ T$$

Demonstração: Seja V o domínio inicial dos vetores. Denotamos o $\operatorname{span}(P)$ como $\operatorname{span}_P(V) = \operatorname{Span}\{P(v) \mid v \in V\}$, então substituindo $P = S \circ F \circ T$ no span,

$$\operatorname{span}_P(V) = \operatorname{Span}\{S(F(T(v))) \mid v \in V\}$$

Contudo, S é invertível e a linearidade implica $S(\operatorname{Span}\{F(T(v)) \mid v \in V\})$.

$$\operatorname{span}_P(V) = S(\operatorname{Span}_{F \circ T}(V))$$

Portanto,

$$\operatorname{span}(P) = \operatorname{span}(F) \circ T$$

• Segue pela **Proposição 2**, que $\operatorname{span}(P) = \operatorname{span}(F) \circ T$, que é

$$\mathsf{span}(P) = \{h_1 \circ T, \dots, h_{n-a} \circ T, f_1 \circ T, g_1 \circ T, \dots, g_s \circ T\}$$

- Podemos concluir que $\operatorname{span}(P)$ é L.I., porque T também é linearmente independente.
- Além disso, a partir de uma chave pública P, podemos gerar um conjunto linearmente independente de (n-a) polinômios lineares, já que $\operatorname{span}(P)$ consiste de (n-a) polinômios de grau 1 e (s+1) polinômios quadráticos.

Definição 1

Seja $P \in \mathbb{F}^m$ um vetor com polinômios de grau 2 sobre as variáveis x_1,\ldots,x_n , a função Quad : $\mathbb{F}^m[x_1,\ldots,x_n] \to \mathbb{F}^{m \times n}$ armazena os coeficientes dos termos quadráticos dos polinômios em uma matriz de dimensão $m \times n$.

- Para ilustrar o comportamento desta função, segue o exemplo.
- Sejam $P = [x_1^2 + 2x_2^5, x_1 + x_2^2, 5x_1^2 + 1] \in \mathbb{F}^3[x_1, x_2].$

$$\mathsf{Quad}(P) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 5 & 0 \end{bmatrix}$$

• Para construir o ataque, precisamos que $\sum_{i=1}^m z_i \cdot \mathsf{Quad}(p_i) = 0$, onde $p_i \in P$, pois assim os polinômios $\sum_{i=1}^m z_i \cdot p_i$ tem grau 1.

- ullet Seja $M:=[\mathsf{Quad}(p_1),\mathsf{Quad}(p_2),\ldots,\mathsf{Quad}(p_m)]\in\mathbb{F}^{m imes n}$, para $p_i\in P.$
- Por construção de F, existem apenas (n-a) polinômios de grau 1 na função regular, logo o subespaço da solução de todos $\sum_{i=1}^m z_i \cdot \mathsf{Quad}(p_i) = 0$ também terá dimensão (n-a).
- Nesse sentido, sejam os vetores linearmente independentes que formam uma base para o espaço de soluções para o núcleo da matriz M,

$$Z=\{z_1^{(i)},\dots,z_m^{(i)}\}\in\mathbb{F}^m$$
, para $1\leq i\leq (n-a)$, assim temos o sistema

$$\begin{cases} r_1(x_1, \dots, x_n) = z_1^{(1)} \cdot p_1 + \dots + z_m^{(1)} \cdot p_m \\ \vdots \\ r_{n-a}(x_1, \dots, x_n) = z_1^{(n-a)} \cdot p_1 + \dots + z_m^{(n-a)} \cdot p_m \end{cases}$$

• Sendo assim, $\operatorname{span}(P)$ é gerado por r_1,\ldots,r_{n-a} e outros (s+1) polinômios quadráticos.

- Queremos então que os polinômios da chave pública sejam iguais ao ciphertext $y \in \mathbb{F}^m$. Isso acontece se $p_i y_i = 0$, para todo $1 \le 1 \le m$.
- Com as informações do slide anterior, podemos minimizar o problema MQ, propondo que se y=P, então $\sum_{i=1}^m z_i^{(j)} \cdot p_i = \sum_{i=1}^m z_i^{(j)} \cdot y_i$, para $1 \leq j \leq (n-a)$.
- Como passo final do algoritmo, rodamos Gröbner no sistema abaixo, que nos dará α tal que $P(\alpha)=y$.

Ataque de Gröbner

$$\begin{cases} p_1 - y_1 = 0 \\ p_2 - y_2 = 0 \\ \vdots \\ p_m - y_m = 0 \\ \sum_{i=1}^m z_i^{(1)} \cdot p_i - \sum_{i=1}^m z_i^{(1)} \cdot y_i = 0 \\ \vdots \\ \sum_{i=1}^m z_i^{(n-a)} \cdot p_i - \sum_{i=1}^m z_i^{(n-a)} \cdot y_i = 0 \end{cases}$$

• Como anulamos a parte quadrática do sistema com z's, podemos ter certeza que ao computarmos a base de Gröbner reduzida do ideal J, obtemos polinômios na forma $x_i-\alpha_i$, para $1\leq i\leq n$, onde α_i é um elemento do vetor da mensagem codificada.

$$J = \langle p_1 - y_1, \dots, p_m - y_m, \sum_{i=1}^m z_i^{(1)} \cdot p_i - \sum_{i=1}^m z_i^{(1)} \cdot y_i, \dots, \sum_{i=1}^m z_i^{(n-a)} \cdot p_i - \sum_{i=1}^m z_i^{(n-a)} \cdot y_i \rangle$$

• Sendo assim, basta efetuarmos $(x_i - (x_i - \alpha_i)) = \alpha_i$ em $\mathbb F$ e decodificarmos a mensagem.

Referências

- IKEMATSU, Yasuhiko; NAKAMURA, Shuhei. Security Analysis via Algebraic Attack Against "A New Encryption Scheme for Multivariate Quadratic System".
- CHEN, Jiahui; NING, Jianting; LING, Jie; LAU, Terry Shue Chien; WANG, Yacheng. *A new encryption scheme for multivariate quadratic systems*.
- SOBRAL, João Victor Pacheco. *On the Security of Multivariate Encryption Schemes.*
- PERRET, Ludovic. Gröbner Bases Techniques in Post-Quantum Cryptography.
- PATARIN, Jacques. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88.
- PATARIN, Jacques; GOUBIN, Louis; COURTOIS, Nicolas. C_{-+}^* and HM: Variations Around Two Schemes of T. Matsumoto and H. Imai.