IIT-JEE CHEMISTRY

Quantum number, Electronic configuration and Shape of orbitals

- **91.** (d) l = 3 means f subshell maximum number of e^- in f subshell = 14.
- 92. (a) $Cu^+ \rightarrow Cu (Z = 29) \rightarrow Cu^+$ has 28 electrons
- 93. (b) As per Aufbau principle.
- **94.** (b) l = 0 is s, l = 1 is p and l = 2 is d and so on hence spd may be used in state of no..

95. (d) For
$$4d$$
, $n = 4$, $l = 2$, $m = -2$, -1 , 0 , $+1$, $+2$, $s = +\frac{1}{2}$.

- **96.** (d) m cannot be greater than l = 0.1.
- **97.** (a) For n = 1, l = 0.
- 98 (a) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵

Iron (Fe) atomic number = 26

Neutral Fe configuration: **[Ar]** $4s^2$ $3d^6 \rightarrow 1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$ $3d^6$

Fe³⁺ ion:

Fe³+ → loses 3 electrons

Electrons are removed first from 4s, then from 3d if needed:

Remove 2 from $4s \rightarrow 4s^0$, $3d^6$

Remove 1 from $3d \rightarrow 3d^5$

So, Fe³⁺ configuration:

1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵

99. (d)
$$Na_{11} = 1s^2 2s^2 p^6 3s^2$$

$$n = 3, l = 0, m = 0$$
 and $s = +\frac{1}{2}$.

100. (c) Recall about orbitals and nodes:

Total number of nodes = n-1n - 1n-1

Number of angular (non-spherical) nodes = |

Number of radial (spherical) nodes = n-l-1n - I - 1n-l-1

Given: 3p orbital

$$n = 3$$
, $l = 1$ (p-orbital)

Total nodes = n - 1 = 3 - 1 = 2

Angular nodes = $I = 1 \rightarrow \text{non-spherical node}$

Radial nodes = $n - 1 - 1 = 3 - 1 - 1 = 1 \rightarrow spherical node$

So, 3p orbital has 1 spherical node and 1 non-spherical node

4p sub-shell
$$\rightarrow$$
 n = 4, I = 1 (p-orbital)

Each electron in this sub-shell can have:

n = 4 → principal quantum number

I = 1 → azimuthal quantum number (p-orbital)

 $m_1 = -1, 0, +1 \rightarrow$ magnetic quantum number (orientation)

$$s = \pm 1/2 \rightarrow spin$$

The question asks: All electrons in 4p must be characterized by the quantum number(s)

The common quantum numbers for all electrons in 4p are:

$$\mathbf{n} = \mathbf{4}$$
 and $\mathbf{I} = \mathbf{1}$ (\mathbf{m}_1 and \mathbf{s} can vary)

Looking at options:

n = 4, m = 0, s = $\pm 1/2 \rightarrow$ only one orbital, not all electrons

 $I = 1 \rightarrow \text{correct}$, common for all electrons in p-sub-shell

 $I = 0 \rightarrow wrong, s-orbital$

 $s = \pm 1/2 \rightarrow varies among electrons$

102. (d) According to Aufbau's rule.

103. (a)

IIT-JEE CHEMISTRY

Permitted values of I and m for n = 3

Principal quantum number: n = 3

Azimuthal quantum number (I): $0 \le l \le n - 1 \rightarrow l = 0, 1, 2$

Magnetic quantum number (m_1) : $-1 \le m_1 \le +1$

So:

I m₁ values

0 0

1-1, 0, +1

2-2, -1, 0, +1, +2

104 (c) Number of possible spatial orientations

Spatial orientation of an orbital is given by the magnetic quantum number (m_l)

Each m₁ corresponds to one possible orientation in space.

Magnetic quantum number

- **105.** (d) $2p_x$, $2p_y$, $2p_z$ sets of orbital is degenerate.
- **106.** (a) Mg_{12} have $1s^22s^22p^63s^2$ electronic configuration $n=3, l=0, m=0, s=-\frac{1}{2}.$
- **107.** (c) The principle quantum number n=3. Then azimuthal quantum number l=3 and number of orbitals $=n^2=3^2=9$. 3 and 9
- **108.** (d) $29Cu = [Ar]3d^{10}4s^1$, $Cu^{2+} = [Ar]3d^9$. $4s^0$. Ground state of $Cu^{29} = 1s^22s^22p^63s^23p^63d^{10}4s^1$ $Cu^{2+} = 1s^2, 2s^22p^6, 3s^23p^63d^9$.
- 109. (a) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d²

Titanium (Ti) atomic number = 22

Neutral Ti has 22 electrons

Fill orbitals according to Aufbau principle:

- $1s^2 \rightarrow 2$ electrons (total 2)
- $2s^2 \rightarrow 2$ electrons (total 4)
- $2p^6 \rightarrow 6$ electrons (total 10)
- $3s^2 \rightarrow 2$ electrons (total 12)
- $3p^6 \rightarrow 6$ electrons (total 18)
- $4s^2 \rightarrow 2$ electrons (total 20)
- $3d^2 \rightarrow 2$ electrons (total 22)

So, configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d2

- **110.** (d) $1s^22s^22p^63s^23p^64s^23d^6$ it shows electronic configuration of Iron.
- **111.** (d) Orbitals are 4s, 3s, 3p and 3d. Out of these 3d has highest energy.
- 112. (b) Azimuthal quantum number

 Shape of a subshell (s, p, d, f) is determined by the azimuthal quantum number (l).
 - $I = 0 \rightarrow s$ (spherical)
 - $I = 1 \rightarrow p \text{ (dumb-bell)}$
 - $I = 2 \rightarrow d$ (cloverleaf)
 - $I = 3 \rightarrow f$ (complex shapes)
- **113.** (c) For the n=2 energy level orbitals of all kinds are possible 2^n , $2^2=4$.
- **114.** (b) n = 2 than no. of orbitals $= n^2$, $2^2 = 4$
- 115. (b) 0, 1, 2

Possible values of azimuthal quantum number (I) for n = 3

Principal quantum number: n = 3

Azimuthal quantum number: I = 0, 1, 2, ..., n-1

So, I = 0, 1, 2

IIT-JEE CHEMISTRY

116. (b) I = 0,1,3; s = +1/2, (d) all are not correct

 $I = 4 \rightarrow \text{allowed for n} = 5 \rightarrow \text{correct}$

I = 0, 1, 3; $s = +1/2 \rightarrow m_1 = 3$ not allowed for I = 0 or $1 \rightarrow$ not correct

 $I = 3 \rightarrow \text{allowed for } m_1 = 3 \rightarrow \text{correct}$

All are correct → not correct

- **117.** (c) $Mg^+ \rightarrow Mg^+$ has 11 electrons \rightarrow configuration $1s^2 2s^2 2p^6 3s^1$
- **118.** (b) For both A & B electrons s = -1/2 & +1/2 respectively, n = 3, l = 0, m = 0
- **119.** (a) According to Aufbau's rule.
- **120.** (a) Possible number of subshells would be (6s, 5p, 4d).

EDUCATIONAL PLATFORM ESTD: 2005

