Exponential Families And Generalized Linear Models

Machine Learning Course - CS-433 Oct 25, 2022 Nicolas Flammarion

Motivation

The LS estimator can be defined in two different ways

Geometric way:

Minimizing the sum of the squares of the residuals:

$$\hat{w} = \arg\min \frac{1}{2} \sum_{n=1}^{N} (y_n - x_n^{\mathsf{T}} w)^2$$

Probabilistic way:

Assume the data follow a linear Gaussian model:

$$Y = x^{\mathsf{T}}w + \varepsilon \text{ where } \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

 $\Rightarrow Y \sim \mathcal{N}(x^{\mathsf{T}}w, \sigma^2)$

Doing MLE recovers the LS estimator \hat{w}

How to get non-linear models?

- Features augmentations: add non linear features (x, x^2, x^3)
- Different probabilistic models:
 - LS: $Y \sim \mathcal{N}(x^{\mathsf{T}}w, \sigma^2)$

The linear model predicts the mean of a distribution from which the data are sampled

• Logistic regression: $Y \sim \mathcal{B}(\sigma(x^{\mathsf{T}}w))$

The linear model predicts an other quantity

- Generalized linear model
- Exponential family

Logistic regression

Logistic regression models the probability of the two classes $\{0,1\}$ by

$$p(1 \mid \eta) = \sigma(\eta) \text{ and } p(0 \mid \eta) = 1 - \sigma(\eta),$$

where $\eta = x^T w$. This can be compactly written as

$$p(y|\eta) = \frac{e^{\eta 1}}{1 + e^{\eta}} = \exp(\eta y - \ln(1 + e^{\eta}))$$

- The linear model predicts η which is not the mean of the distribution of the observations
- Rather η is related to the mean μ through the non-linear relation $\eta=\ln\frac{\mu}{1-\mu}$ or $\mu=\sigma(\eta)$
- The relation between η , the parameter predicted by the linear model and μ , the distribution's mean, makes possible to use linear model in this context
 - → It is called the link function

 $M = \phi(\eta)$

Exponential family: definition

A distribution belongs to the exponential family if it can be written in the form

$$p(y | \eta) = \underbrace{h(y)}_{\geq 0} \exp[\eta^{\mathsf{T}} \phi(y) - A(\eta)]$$

- η : natural or canonical parameter
- $\phi(y)$: sufficient statistics contains all the relevant information
- $A(\eta)$: cumulant or log partition, here for normalization but still informative $[p(y|\eta)dy = 1 \implies A(\eta) = \log[\int h(y)\exp(\eta^{\mathsf{T}}\phi(y))]$

Degrees of freedom: h, ϕ and η

Exponential family: definition

A distribution belongs to the exponential family if it can be written in the form

$$p(y | \eta) = h(y) \exp[\eta^{\mathsf{T}} \phi(y) - A(\eta)]$$

- η : natural or canonical parameter
- $\phi(y)$: sufficient statistics contains all the relevant information
- $A(\eta)$: cumulant or log partition, here for normalization but still informative $[p(y|\eta)dy = 1 \implies A(\eta) = \log[[h(y)\exp(\eta^{\top}\phi(y))]]$

Natural parameter space
$$M = \{ \eta : \int h(y) \exp(\eta^{\mathsf{T}} \phi(y)) dy < \infty \}$$

Why?

Bernoulli distributions belong to the exponential family

The Bernoulli distribution is the binary random variable such that for $\mu \in [0,1]$:

$$\mathbb{P}(Y=1) = \mu \quad \text{and} \quad \mathbb{P}(Y=0) = 1 - \mu$$

Claim: The Bernoulli distribution is a member of the exponential family:

$$p(y|\mu) = \mu^{y}(1-\mu)^{1-y}$$

$$= \exp\left(\ln\frac{\mu}{1-\mu}y + \ln(1-\mu)\right)$$

$$= \exp\left(\eta\phi(y) - A(\eta)\right)$$

We can identify:

$$\phi(y) = y$$
, $\eta = \ln \frac{\mu}{1 - \mu}$, $h(y) = 1$, and $A(y) = -\ln(1 - \mu) = \ln(1 + e^{\eta})$

We have a 1-1 correspondance between μ and η :

$$\eta = g(\mu) = \ln \frac{\mu}{1-\mu} \iff \mu = g^{-1}(\eta) = \frac{e^{\eta}}{1+e^{\eta}}$$
 link function (it links the mean of $\phi(y)$ to η)

Gaussian distributions belong to the exponential family

<u>Claim:</u> The Gaussian distribution with mean μ and variance σ^2 is also a member of the exponential family:

$$p(y | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

$$= \exp\left[(\mu/\sigma^2, -1/(2\sigma^2))(y, y^2)^{\mathsf{T}} - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2) \right]$$

$$\phi(y) = (y, y^2)^{\mathsf{T}}, \quad \eta = (\mu/\sigma^2, -1/(2\sigma^2))^{\mathsf{T}}, \quad A(\eta) = \frac{\mu^2}{2\sigma^2} + \frac{1}{2}\ln(2\pi\sigma^2), \text{ and } \quad h(y) = 1$$

$$= -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\ln(-\eta_2/\pi)$$

Link function:

$$\eta_1 = \frac{\mu}{\sigma^2}, \quad \eta_2 = -\frac{1}{2\sigma^2} \iff \mu = -\frac{\eta_1}{2\eta_2}, \quad \sigma^2 = -\frac{1}{2\eta_2}$$

Poisson distributions belong to the exponential family

<u>Claim:</u> The Poisson distribution with mean μ belongs to the family: for $y \in \mathbb{N}$

$$p(y | \mu) = \frac{\mu^{y} e^{-\mu}}{y!}$$

$$= \frac{1}{y!} e^{y \ln(\mu) - \mu}$$

$$= h(y) e^{\eta \phi(y) - A(\eta)}$$

We can identify:

$$h(y) = 1/y!$$
, $\phi(y) = y$, and $\eta = \ln \mu$

Link function:

$$\eta = g(\mu) = \ln \mu \iff \mu = g^{-1}(\eta) = e^{\eta}$$

Basic properties of the cumulant

Claim:

- $A(\eta)$ is convex
- $\nabla A(\eta) = \mathbb{E}[\phi(Y)]$
- $\nabla^2 A(\eta) = \mathbb{E}[\phi(Y)\phi(Y)^{\mathsf{T}}] \mathbb{E}[\phi(Y)]\mathbb{E}[\phi(Y)]^{\mathsf{T}}$

Convexity of the cumulant

Proof: for η_1, η_2 two parameters we define $\eta = \lambda \eta_1 + (1 - \lambda)\eta_2$. We want to show $A(\eta) \leq \lambda A(\eta_1) + (1 - \lambda)A(\eta_2)$

We have first

$$\exp A(\eta) = \int h(y) \exp\left(\eta^{\top} \phi(y)\right) dy$$

$$= \int h(y) \exp\left((\lambda \eta_1 + (1 - \lambda) \eta_2)^{\top} \phi(y)\right) dy$$

$$= \int \left[h(y)^{\lambda} \exp\left(\lambda \eta_1^{\top} \phi(y)\right)\right] \cdot \left[h(y)^{1 - \lambda} \exp\left((1 - \lambda) \eta_2^{\top} \phi(y)\right)\right] dy$$

$$= \int f(y)g(y) dy$$

$$= \|fg\|_1$$

The proof uses Hoelder's inequality

We recall the Hoelder's inequality:

$$||fg||_1 \le ||f||_p ||g||_q$$

for
$$p, q \in [1, +\infty]$$
 s.t. $\frac{1}{p} + \frac{1}{q} = 1$, and $||f||_p = (\int |f(y)|^p dy)^{1/p}$

We apply Hoelder's inequality to f and g for $p = 1/\lambda$ and $q = 1/(1 - \lambda)$:

$$||fg||_1 \le ||f||_p ||g||_q$$

We check that $1/p + 1/q = \lambda + (1 - \lambda) = 1$

Proof

$$\begin{split} \|f\|_p &= \left(\int f(y)^p dy\right)^{1/p} \\ &= \left(\int \left(h(y)^\lambda \exp\left(\lambda \eta_1^\top \phi(y)\right)\right)^{1/\lambda} dy\right)^\lambda \\ &= \left(\int \left(h(y)^{1-\lambda} \exp\left((1-\lambda)\eta_2^\top \phi(y)\right)\right)^{\frac{1}{1-\lambda}} dy\right)^\lambda \\ &= \left(\int h(y) \exp\left(\eta_1^\top \phi(y)\right) dy\right)^\lambda \\ &= \left(\int h(y) \exp\left(\eta_2^\top \phi(y)\right) dy\right)^{1-\lambda} \end{split}$$

Therefore we have

$$||f||_p ||g||_q = \left(\int h(y) \exp\left(\eta_1^{\mathsf{T}} \phi(y)\right) dy \right)^{\lambda} \left(\int h(y) \exp\left(\eta_2^{\mathsf{T}} \phi(y)\right) dy \right)^{1-\lambda}$$
$$= \exp\left(\lambda A(\eta_1)\right) \exp\left((1-\lambda)A(\eta_2)\right)$$

Summary of the proof:

We have

$$\exp A(\eta) = \int h(y) \exp(\eta^{\top} \phi(y)) dy$$

$$= \int h(y) \exp((\lambda \eta_1 + (1 - \lambda) \eta_2)^{\top} \phi(y)) dy$$

$$= \int \left[h(y)^{\lambda} \exp(\lambda \eta_1^{\top} \phi(y)) \right] \cdot \left[h(y)^{1-\lambda} \exp((1 - \lambda) \eta_2^{\top} \phi(y)) \right] dy$$

$$\leq \left[\int h(y) \exp(\eta_1^{\top} \phi(y)) dy \right]^{\lambda} \cdot \left[\int h(y) \exp(\eta_2^{\top} \phi(y)) dy \right]^{1-\lambda}$$

$$= \exp(\lambda A(\eta_1)) \exp((1 - \lambda) A(\eta_2))$$

Taking the log proves the claim:

$$A(\eta) \le \lambda A(\eta_1) + (1 - \lambda)A(\eta_2)$$

Derivative of $A(\eta)$ and moments: particular cases

the comobat is a Moment
generation)

= u

Instrum!

Bernoulli distribution:

$$A'(\eta) = \frac{d}{d\eta} \ln(1 + e^{\eta}) = \frac{e^{\eta}}{1 + e^{\eta}} = \sigma(\eta) = \mu$$

$$A''(\eta) = \frac{d}{d\eta} \sigma(\eta) = \sigma(\eta)(1 - \sigma(\eta)) = \mu(1 - \mu)$$

Gaussian distribution:

$$\frac{\partial}{\partial \eta_1} A(\eta) = \frac{\partial}{\partial \eta_1} \left(-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2} \ln(-\eta_2/\pi) \right) = -\frac{\eta_1}{2\eta_2} = \mu$$

$$\frac{\partial}{\partial \eta_2} A(\eta) = \frac{\partial}{\partial \eta_2} \left(-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2} \ln(-\eta_2/\pi) \right) = \frac{\eta_1^2}{4\eta_2^2} - \frac{1}{2\eta_2} = \mu^2 + \sigma^2$$

$$\frac{\partial^2}{\partial \eta_1^2} A(\eta) = \frac{\partial}{\partial \eta_1} \left(-\frac{\eta_1}{2\eta_2} \right) = -\frac{1}{2\eta_2} = \sigma^2$$

Derivative of $A(\eta)$ and moments: general case

$$\nabla A(\eta) = \nabla \left[\ln \int h(y) \exp(\eta^{\top} \phi(y)) dy \right]$$

$$= \nabla \left[\int h(y) \exp(\eta^{\top} \phi(y)) dy \right] \cdot \left(\int h(y) \exp(\eta^{\top} \phi(y)) dy \right)^{-1}$$

$$= \nabla \left[\int h(y) \exp(\eta^{\top} \phi(y)) dy \right] \cdot \exp(-A(\eta))$$

$$= \int \nabla \left[h(y) \exp(\eta^{\top} \phi(y)) dy \right] \cdot \exp(-A(\eta))$$

$$= \int h(y) \exp(\eta^{\top} \phi(y)) \phi(y) dy \cdot \exp(-A(\eta))$$

$$= \int h(y) \exp(\eta^{\top} \phi(y) - A(\eta)) \phi(y) dy$$

$$= \int \phi(y) p(y \mid \eta) dy$$

$$= \mathbb{E}[\phi(Y)]$$

Link function

Def: It is the function *g* such that:

$$\eta = g\big(\mathbb{E}[\phi(Y)]\big)$$

Thus the mean parameter $\mu:=\mathbb{E}[\phi(Y)]$ and the natural parameter η are linked through:

$$\eta = g(\mu) \iff \mu = g^{-1}(\eta)$$

Remark: $g^{-1}(\eta) = \nabla A(\eta)$

Moment parameterization and canonical parametrization

Applications in ML

Maximum likelihood estimation

Data $\{y_n\}_{n=1}^N$ coming from a member of the exponential family with given (h, ϕ)

Goal: Estimate the natural parameter η

How: MLE for $p(y|\eta) = h(y) \exp(\eta^{T} \phi(y) - A(\eta))$ amounts to minimize

$$L(\eta) = -\frac{1}{N} \ln(p(\mathbf{y} | \eta))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left[-\ln(h(y_n)) - \eta^{\mathsf{T}} \phi(y_n) + A(\eta) \right]$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \ln(h(y_n)) - \eta^{\mathsf{T}} \left(\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) \right) + A(\eta)$$

ightharpoonup The cost function L is convex since the cumulant A is convex

Maximum likelihood parameter estimation

Gradient:

$$\nabla L(\eta) = -\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) + \nabla A(\eta)$$

= $-\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) + \mathbb{E}[\phi(Y)]$

Stationary point:

$$\mu := \mathbb{E}[\phi(Y)] = \frac{1}{N} \sum_{n=1}^{N} \phi(y_n)$$

Closed form: assume we have determined the link function $g(\mu) = \eta$

$$\eta = g\left(\frac{1}{N}\sum_{n=1}^{N}\phi(y_n)\right)$$

Ex: what does it mean for today's examples (Bernoulli, Poisson and Gaussian)?

Generalized Linear Models (GLM)

Both linear and logistic regressions focus on the conditional relationship between X and Y

- LS: $Y \sim \mathcal{N}(x^{\mathsf{T}}w, \sigma^2)$
- Logistic regression: $Y \sim \mathcal{B}(\sigma(x^{\mathsf{T}}w))$

Common feature of linear and logistic regression:

- 1. Model the conditional expectation as $\mu = f(w^{\mathsf{T}}x)$
- 2. Endow Y with a particular probability distribution having μ as parameter

The GLM frameworks extends these ideas to the general exponential family.

Generalized Linear Models (GLM)

A GLM makes three assumptions regarding the form of $p(y \mid x)$:

- The observed input x enters into the model via a linear combination $\eta = x^{\mathsf{T}} w$
- The conditional mean μ is represented as a function $f(\eta)$ of the linear combination η
- The observed output y is assumed to be characterized by an exponential family distribution with conditional mean μ

The condition probability is thus modeled as:

$$p(y \mid w, x) = h(y) \exp(\eta \phi(y) - A(\eta)) \text{ for } \eta = g \circ f(x^{\mathsf{T}} w)$$

Generalized Linear Models (GLM)

Two choice points in the specification of a GLM:

- The choice of the exponential family distribution
 - ightharpoonup Generally constrained by the nature of the data Y
- The choice of the response function f
 - Real degree of freedom!
 - ⇒Canonical response function: $f = g^{-1}$, uniquely associated with the given exponential family distribution

If we decide to use the canonical response function, the choice of the exponential family density completely determines the GLM:

$$p(y | w, x) = h(y) \exp(\eta \phi(y) - A(\eta))$$
 for $\eta = x^{\mathsf{T}} w$

Negative log-likelihood estimation

Data
$$\{x_n, y_n\}_{n=1}^{N}$$

Goal: Estimate the parameter w of the GLM in the case of the canonical response function

How: MLE for
$$L(w) = -\frac{1}{N} \sum_{n=1}^{N} \ln p(y_n | x_n^{\top} w)$$

= $-\frac{1}{N} \sum_{n=1}^{N} \ln(h(y_n)) + x_n^{\top} w \phi(y_n) - A(x_n^{\top} w)$

 \rightarrow L is convex

$$\nabla L(w) = -\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) x_n - A'(x_n^{\mathsf{T}} w) x_n$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) x_n - \mathbb{E}[\phi(Y_n)] x_n$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \phi(y_n) x_n - g^{-1}(x_n^{\mathsf{T}} w) x_n$$

$$\nabla L(w) = 0 \iff \mathbf{X}^{\mathsf{T}}[g^{-1}(\mathbf{X}w) - \phi(\mathbf{y})] = 0$$

Summary

- Linear model $y = x^T w + \varepsilon$ —> LS estimator
- Logistic regression: $p(y = 1 \mid x, w) = \sigma(x^{\mathsf{T}}w)$
- Exponential family $p(y | \eta) = h(y) \exp(\eta^{\mathsf{T}} \phi(y) A(\eta))$
 - h, ϕ degree of freedom
 - η natural parameter
 - A log-partition
 - $A(\eta)$ is convex
 - $\nabla_{\eta} A(\eta) = \mathbb{E}[\phi(y)]$
- GLM: $p(y | w, x) = h(y) \exp(w^{\mathsf{T}} x \phi(y) A(w^{\mathsf{T}} x))$
 - -> With MLE find \hat{w}