Turma Olímpica

24 de outubro de 2019

Geometria 4 Guilherme Zeus Moura zeusdanmou@gmail.com

Problema 1 (IGO 2019, 1) Os círculos ω_1 e ω_2 se intersectam nos pontos A e B. O ponto C está na reta tangente por A de ω_1 tal que $\angle ABC = 90^\circ$. Uma reta ℓ passa por C e corta ω_2 nos pontos P e Q. As retas AP e AQ cortam ω_1 novamente em X e Z, respectivamente. Seja Y o pé da altitude de A na reta ℓ . Prove que os pontos X, Y e Z são colineares.

Problema 2 (IGO 2018, 1) Two circles ω_1, ω_2 intersect each other at points A, B. Let PQ be a common tangent line of these two circles with $P \in \omega_1$ and $Q \in \omega_2$. An arbitrary point X lies on ω_1 . Line AX intersects ω_2 for the second time at Y. Point $Y' \neq Y$ lies on ω_2 such that QY = QY'. Line Y'B intersects ω_1 for the second time at X'. Prove that PX = PX'.

Problema 3 (IGO 2017, 1) In triangle ABC, the incircle, with center I, touches the sides BC at point D. Line DI meets AC at X. The tangent line from X to the incircle (different from AC) intersects AB at Y. If YI and BC intersect at point Z, prove that AB = BZ.

Problema 4 (IGO 2016, 1) Let the circles ω and ω' intersect in A and B. Tangent to circle ω at A intersects ω' in C and tangent to circle ω' at A intersects ω in D. Suppose that CD intersects ω and ω' in E and F, respectively (assume that E is between F and C). The perpendicular to AC from E intersects ω' in point P and perpendicular to AD from F intersects ω in point Q (The points A, P and Q lie on the same side of the line CD). Prove that the points A, P and Q are collinear.

Problema 5 (IGO 2015, 1) Let w_1 and w_2 be two circles such that $w_1 \cap w_2 = \{A, B\}$. Let X be a point on w_2 and Y be a point on w_1 such that $BY \perp BX$. Suppose that O is the center of w_1 and $X' = w_2 \cap OX$. If $K = w_2 \cap X'Y$, prove that X is the midpoint of the arc AK.

Problema 6 (IGO 2014, 1) ABC is a triangle with $\angle BAC = 90^{\circ}$ and $\angle ACB = 30^{\circ}$. Let M_1 be the midpoint of BC. Let W be a circle passing through A tangent in M_1 to BC. Let P be the circumcircle of ABC. W is intersecting AC in N and P in M. Prove that MN is perpendicular to BC.