INTERNATIONAL CRITICAL TABLES OF NUMERICAL DATA PHYSICS, CHEMISTRY AND TECHNOLOGY

.

INTERNATIONAL CRITICAL TABLES

NUMERICAL DATA, PHYSICS, CHEMISTRY AND TECHNOLOGY

Prepared under the Auspices of the International Research Council and the National Academy of Sciences

BY THE
NATIONAL RESEARCH COUNCIL
OF THE

UNITED STATES OF AMERICA

EDWARD W. WASHBURN, Ph.D.

ASSOCIATE EDITORS

CLARENCE J. WEST, Ph.D. Director, Research Information Service National Research Council N. ERNEST DORSEY, Ph.D. Formerly Physicist, U. S. Bureau of Standards

ASSISTANT EDITORS

F. R. BICHOWSKY, Ph.D.

Associate in Chemistry, Johns
Hopkins University

ALFONS KLEMENC, Ph.D.

Professor of Chemistry, University
of Vienna

FIRST EDITION

PUBLISHED FOR THE NATIONAL RESEARCH COUNCIL

BY THE

McGRAW-HILL BOOK COMPANY, Inc. NEW YORK: 370 SEVENTH AVENUE LONDON: 6 & 8 BOUVERIE ST., E. C. 4 Copyright, 1926, by the National Academy of Sciences

PRINTED IN THE UNITED-STATES OF AMERICA

BOARD OF TRUSTEES

GEORGE P. ADAMSON, Chairman, Director of Research, The General Chemical Company.

HARRISON E. Howe, Secretary to May 21, 1922, Editor, Industrial and Engineering Chemistry.

WILLIAM M. Corse, Secretary (since May 21, 1922), Vice-President and General Manager, Research Service, Inc.

EDWARD B. CRAFT, Executive Vice-President, Bell Telephone Laboratories, Inc.

Hugh K. Moore, D.Sc., Technical Director, Brown Company.

CHARLES L. REESE, Ph.D., Sc.D., Chemical Director, E. I. du Pont de Nemours & Co.; President, American Institute of Chemical Engineers.

REPRESENTING THE AMERICAN CHEMICAL SOCIETY

Julius Stieglitz, Ph.D., D.Sc., Chem.D., Professor and Chairman, Department of Chemistry, University of Chicago; Past President, The American Chemical Society.

REPRESENTING THE AMERICAN PHYSICAL SOCIETY

EDWARD P. HYDE, Ph.D. (until June, 1923), Director of Research (until July 1, 1923), National Lamp Works of General Electric Company.

F. B. Jewett, Ph.D. (September, 1923 to January, 1925), American Telephone and Telegraph Company.

MICHAEL I. Pupin, Ph.D., Sc.D. (since January, 1925), Professor of Electro-Mechanics, Columbia University.

BOARD OF EDITORS

EDWARD W. WASHBURN, Chairman.

George K. Burgess, D.Sc., D.Eng., Director, U.S. Bureau of Standards.

SAUL DUSHMAN, Ph.D., Physicist, General Electric Company.

John Johnston, D.Sc., Sterling Professor of Chemistry, Yale University.

S. C. Lind, Ph.D., Associate Director, Fixed Nitrogen Research Laboratory.

CHARLES E. MENDENHALL, Professor of Physics, University of Wisconsin.

RICHARD B. MOORE, D.Sc., General Manager, The Dorr Company, New York.

CORRESPONDING EDITORS

AND

ADVISORY COMMITTEES

AUSTRIA

PROF. DR. RUDOLF WEGSCHEIDER, University of Vienna, Vienna, Austria.

Belgium (and its dependencies)

Prof. Dr. Jean Timmermans, University of Brussels (Solbosch), Brussels, Belgium.
Prof. Dr. M. M. Strauven (until November, 1924), Ecole des Mines, Mons, Belgium

THE BRITISH EMPIRE (excluding British North America)

G. W. C. KAYE, O.B.E., M. A., D.Sc., National Physical Laboratory, Teddington, England.

Advisory Committee: Sir Robert Robertson, K.B.E., F.R.S.; W. Rosenhain, D.Sc., F.R.S.; Prof. A. W. Porter, D.Sc., F.R.S.; T.E. Stanton, C.B.E., D.Sc., F.R.S.; J. E. Sears, C.B.E., M.A.; A. C. Egerton, B.Sc.; W. F. Higgins, M.Sc. (Secretary).

British North America

PROF. OTTO MAASS, McGill University, Montreal, Canada.

Advisory Committee: J. W. Bain, R. J. Durley, G. S. Whitby

DENMARK (Norway and Sweden)

Prof. Dr. Niels Bjerrum, Royal Veterinary and Agricultural College, Copenhagen, Denmark.

Advisory Committee: Martin Knudsen, Carl Jacobsen.

FRANCE (Spain and Portugal)

DR. CHARLES MARIE, Maître de Conférences adjoint à la Faculté des Sciences, Paris, France.

Advisory Committee: C. Moureu, Membre de l'Institut, Professeur au Collège de France, Paris, France; A. Fabry, Professeur à la Faculté des Sciences, Paris, France; A. Guillet, Directeur de l'Ecole Centrale des Arts et Manufactures, Paris, France

HOLLAND (and its dependencies)

Dr. W. J. van Heteren, Chemist, Royal Mint, Utrecht, Holland.

Advisory Committee: Dr. E. Cohen, Professor of Chemistry, University of Utrecht; Dr. C. A. Crommelin, Assistant Director, Physical Laboratory, University of Leiden; H. Baucke, Chemical Engineer, Director of the Laboratory, "Koning and Bienfait," Amsterdam.

ITALY (and its dependencies)

Prof. Dr. Nicola Parrayano, Director of the Chemical Institute of the Royal University of Rome, Rome, Italy.

Advisory Committee: Prof. Ugo Bordoni, R. Scuola di Ingegneria di Roma, Rome, Italy: Prof. Francesco Giordani, R. Politecnico di Napoli, Naples, Italy: Prof. Luigi Rolla, R. Università di Firenze, Florence, Italy.

JAPAN (and Eastern Asia)

Prof. Kotaro Honda, Tohoku University, Sendai, Japan.

SWITZERLAND

Prof. A. Berthoud, University of Neuchâtel, Neuchâtel, Switzerland.

*Advisory Committee: Prof. Ch. E. Guye, Genève; Prof. H. Rupe, Basel; Prof. F. Schüle, Zürich.

PREFACE BY THE BOARD OF TRUSTEES

The publication of International Critical Tables at a price that would make possible a world-wide distribution required that the undertaking be financed by those appreciating its importance and in a position to make the necessary investment. Some 244 firms and individuals and two of the larger Foundations have provided the sum of \$170,000 required for the compilation.

Many individuals have given freely of their time and effort in helping to obtain the funds necessary for the compilation of this work. In addition to those who have been responsible for assigned territory, there are a large number of others in industrial organizations which have supported the enterprise, and grateful acknowledgment is made of their interest and help, quite as much as if it were possible to give here the complete list of names. Indeed, it is impossible for the trustees to know of all those who at different stages of the work have rendered valuable assistance.

Special acknowledgment is due to the Carnegie Corporation of New York and to the International Education Board, whose appropriations in the support of this work were a large factor in making its successful completion possible.

It is appropriate to give here special recognition to those who assumed and carried out definite responsibility in the solicitation of funds, as well as to those whose financial support enabled the project to be made a reality.

LIST OF THOSE WHOSE SUPPORT HAS MADE POSSIBLE THE COM-PLETION OF INTERNATIONAL CRITICAL TABLES

Carhegie Corporation of New York.

International Education Board.

The Abbott Laboratories, Chicago, Ill.

Acheson Graphite Company, Niagara Falls, N. Y.

Aluminum Company of America, Pittsburgh, Pa.

American Cyanamid Company, New York City

American Gas Association, New York City

The American Gas Company, Philadelphia, Pa

American Institute of Chemical Engineers, Brooklyn, N. Y.

American Institute of Chemical Engineers, Drooklyn, N. 1 American Institute of Electrical Engineers, New York City

American Institute of Mining and Metallurgical Engineers, New York City

The American Leather Chemists' Association, New York City

 ${\bf American\ Nitrogen\ Products\ Company,\ Seattle,\ Wash.}$

The American Rolling Mill Co., Middletown, Ohio

American Society of Civil Engineers, New York City

The American Society of Mechanical Engineers, New York City

American Trona Corporation, New York City

Anheuser-Busch, Inc., St. Louis, Mo.

The Arco Company, Cleveland, Ohio

Armstrong Cork Company, Pittsburgh, Pa.

Edward E. Arnold, Providence, R. I.

The Atlantic Refining Company, Philadelphia, Pa.

Atlas Powder Co., Wilmington, Delaware

The Ault & Wiborg Company, Cincinnati, Ohio

The Babcock & Wilcox Company, New York City

E. B. Badger and Sons Company, Boston, Mass.

Bakelite Corporation, 247 Park Avenue, New York City.

J. T. Baker Chemical Company, Phillipsburg, N. J.

Joseph Bancroft & Sons Company, Rockford, Wilmington, Delaware

The Barrett Company, New York City

Beckett Paper Company, Hamilton, Ohio

Bell Telephone Laboratories, Incorporated, New York City

H. K. Benson, Scattle, Wash,

David Berg Industrial Alcohol Company, Philadelphia, Pa.

The Biggs Boiler Works Company, Akron, Ohio

C. T. Bragg, Detroit, Mich.

Brown Company, Portland, Maine

C. F. Burgess Laboratories, Madison, Wis.

Samuel Cabot, Inc., Boston, Mass.

The Calco Chemical Company, Bound Brook, N. J.

Calumet Baking Powder Co., Chicago, Ill.

Calumet and Heela Consolidated Copper Company, Calumet, Mich.

The Carborundum Company, Niagara Falls, N. Y.

H. A. Carpenter, Rochester, N. Y.

Central Dyestuff & Chemical Co. (H. A. Metz, Successor), New York City.

Central Scientific Company, Chicago, Ill.

Edward S. Chapin, Boston, Mass.

Chemical Foundation, 85 Beaver St., New York City

Cheney Brothers, South Manchester, Conn.

Chicago, North Shore & Milwaukee Railroad Company, Chicago, 101.

Chicago Rapid Transit Company, Chicago, Ill.

G. H. Clamer, Philadelphia, Pa.

F. O. Clements, Dayton, Ohio

Cleveland-Cliffs Iron Co., Cleveland, Ohio

The Cleveland Electric Illuminating Company, Cleveland, Ohio

The Cleveland Twist Drill Company, Cleveland, Ohio

Galen H. Clevenger, Boston, Mass.

Colgate & Company, Jersey City, N. J.

Columbia Can Company, St. Louis, Mo.

Commonwealth Edison Company, Chicago, Ill.

Commonwealth Steel Company, St. Louis, Mo.

Corning Glass Works, N. Y.

Corn Products Refining Company, New York City

Crane Company, Chicago, Ill.

Crescent Manufacturing Company, Scattle, Wash.

F. T. Crowe, Scattle, Wash.

The Davison Chemical Company, Baltimore, Md.

Dearborn Chemical Company, Chicago, Ill.

De Laval Separator Company, Poughkeepsie, N. Y.

The Detroit Edison Company, Detroit, Mich.

Devoe & Reynolds, Inc., New York City

Dill & Collins Co., Philadelphia, Pa.

The Dorr Company, New York City

Dow Chemical Company, Midland, Mich.

L. C. Drefahl, Cleveland, Ohio

E. I. du Pont de Nemours & Company, Wilmington, Delaware

Winthrop C. Durfee, Boston, Mass.

The Duriron Company, Inc., Dayton, Ohio

Eastern Manufacturing Company, Boston, Mass.

Eastman Kodak Company, Rochester, N. Y.

Eimer & Amend, New York City

The Electric Storage Battery Company, Philadelphia, Pa.

Ethyl Gasoline Corporation, New York City

Euston Process Company, Scranton, Pa.

Everett Pulp and Paper Company, Everett, Wash.

Fansteel Products Company, Inc., North Chicago, Ill. Fels & Co., Philadelphia, Pa. Finch, Pruyn & Co., Inc., Glens Falls, N. Y. The Firestone Tire & Rubber Company, Akron, Ohio The Fleischmann Laboratories, New York City Ford Motor Company, Detroit, Mich. W. H. Fulweiler, Philadelphia, Pa. A. F. Gallun & Sons Company, Milwaukee, Wis. W. C. Geer, Akron, Ohio General Chemical Company, New York City General Electric Company, Schenectady, N. Y. General Motors Corporation, Detroit, Mich. The General Tire & Rubber Company, Akron, Ohio The Globe Soap Company, Cincinnati, Ohio B. F. Goodrich Company, Akron, Ohio The Goodyear Tire & Rubber Company, Akron, Ohio M. B. Graff, Cincinnati, Ohio The Grasselli Chemical Company, Cleveland, Ohio Great Western Electro Chemical Company, San Francisco, Calif. The Great Western Sugar Co., Denver, Colo. Gulf Refining Company, Pittsburgh, Pa Hamersley Manufacturing Company, Inc., Garfield, N. J. Hammermill Paper Company, Eric, Pa. The Harshaw Fuller & Goodwin Co., Cleveland, Ohio Hercules Powder Company, Wilmington, Delaware Hood River Apple Vinegar Company, Hood River, Oregon Hood Rubber Company, Watertown, Mass Hynson, Westcott & Dunning, Baltimore, Md. Illinois Glass Company, Alton, Ill. Imperial Candy Company, Seattle, Wash. The Institute of Medicine of Chicago, Chicago, Ill. The International Nickel Company, 67 Wall St., New York City The Jessup & Moore Paper Co , Wilmington, Delaware John Finn Metal Works, Scattle, Wash. Biarne Johnsen, Erie, Pa. The Kalbfleisch Corporation, 200 Fifth Avenue, New York City Kalmus, Comstock & Wescott, Inc., Boston, Mass. Kimble Glass Company, Vineland, N. J. Maurice A. Knight, Akron, Ohio H. Kohnstamm & Company, Inc., New York City The Koppers Company, Pittsburgh, Pa. The Krebs Pigment & Chemical Co., Newport, Delaware Lapp Insulator Co , Inc., LeRoy, N. Y. Larkin Co., Inc., Buffalo, N. Y. Launderyowners National Association, La Salle, Ill. Leary's, Cleansers, Rochester, N. Y. Leeds & Northrup Company, Philadelphia, Pa. Lehn & Fink, Inc., Bloomfield, N. J. Victor Lenher, Madison, Wis Max Levy & Company, Philadelphia, Pa. Eli Lilly and Company, Indianapolis, Ind. Lindsay Light Company, Chicago, Ill. Arthur D. Lattle, Inc., Cambridge, Mass The Lowe Brothers Company, Dayton, Ohio Lumen Bearing Company, Buffalo, N. Y. The Lunkenheimer Company, Cincinnati, Ohio H. N. McCoy, Chicago, Ill. Harvey F. Mack, Easton, Pa. Charles T. Main, Engineer, Boston, Mass. E. Mallinckrodt, Jr , St. Louis, Mo. Mallinekrodt Chemical Works, St. Louis, Mo. A. E. Marshall, Baltimore, Md.

Marx & Rawolle, Inc., New York City

Merrell-Soule Company, Syracuse, N. Y.

Merck & Co., New York City

The Mathieson Alkali Works (Inc.), New York City

Merrimac Chemical Company, Boston, Mass. Mover Brothers Drug Company, St. Louis, Mo. Middle West Utilities Company, Chicago, Ill. John B. Miller, Los Angeles, Calif. The Miller Rubber Company, Akron, Ohio Missouri Portland Cement Company, St. Louis, Mo. Monsanto Chemical Works, St. Louis, Mo. Paul Moore, Washington, D. C. H. W. Moseley, New Orleans, La. H. K. Mulford Company, Philadelphia, U. S. A. Munroe Felt and Paper Company, Boston, Mass. Mutual Chemical Company of America, New York City National Biscuit Company, New York City National Canners Association, Washington, D. C. The National Cash Register Company, Dayton, Ohio The National Electrolytic Company, Niagara Falls, N. Y. National Foundry Company, Erie, Pa. National Lead Company, New York City National Lime Association, Washington, D. C. National Research Council, Washington, D. C. The Naugatuck Chemical Company, Naugatuck, Conn. Newport Chemical Works, Inc., Passaic, N. J. North East Electric Company, Rochester, N. Y. Northwest Lead Company, Seattle, Wash. Norton Company, Worcester, Mass George Oenslager, Akron, Ohio Oglebay Norton & Company, Cleveland, Ohio The Ohio Brass Company, Mansfield, Ohio The Ohio Match Company, Wadsworth, Ohio Oldbury Electro-Chemical Company, Niagara Falls, N. Y. Olympic Portland Cement Company, Ltd., Bellingham, Wash. Pacific Ammonia and Chemical Company, Scattle, Wash. Pacific Car and Foundry Company, Seattle, Wash. Pacific Coast Biscuit Company, Seattle, Wash. Pacific Coast Coal Company, Seattle, Wash. Pacific Creosoting Company, Scattle, Wash. Park Drop Forge Company, Cleveland, Ohio Parke, Davis & Company, Detroit, Mich. The Peerless Motor Car Company, Cleveland, Ohio Pennsylvania Salt Manufacturing Company, Philadelphia, Pa. Penobscot Chemical Fibre Company, Boston, Mass. The Peoples Gas Light and Coke Company, Chicago, Ill. Chas. Pfizer & Co., Inc., New York City The Philadelphia Electric Co., Philadelphia, Pa. Philadelphia Quartz Company, Philadelphia, Pa. The Philadelphia Rubber Works Company, Akron, Ohio Pittsburgh Plate Glass Company, Pittsburgh, Pa. (including Columbia Chemical and Patton Piteairn Divisions Plaut Research Laboratory, Bloomfield, N. J. Powers-Weightman-Rosengarten Co., Philadelphia, Pa. The Procter & Gamble Company, Cincinnati, Ohio Public Service Company of Northern Illinois W. P. Putnam, Detroit, Mich. The Quaker Oats Company, Chicago, Ill. Raccolith Floor & Stucco Co., Scattle, Wash. Rasmussen & Company, Portland, Oregon H. W. Rhodehamel, Indianapolis, Ind. The Richardson Company, Lockland, Ohio Rochester Gas and Electric Corporation, Rochester, N. Y. The Roessler & Hasslacher Chemical Company, New York City Roxana Petroleum Corporation, St. Louis, Mo. The Rubber Service Laboratories Company, Akron, Ohio Rumford Chemical Works, Providence, R. I. St. Joseph Lead Company, 60 Wall St., New York City St. Louis Independent Packing Company, St. Louis, Mo. Walter A. Schmidt, Los Angeles, Calif.

Schmidt & Ault Paper Company, York, Pa. Seattle Lighting Company, Seattle, Wash Semet-Solvay Company, Syracuse, N. Y. The Sharples Specialty Company, Philadelphia, Pa. The Sherwin-Williams Company, Cleveland, Ohio H. J. Skinner, Boston, Mass. Skinner, Sherman & Esselen, Inc., Boston, Mass. A. W. Smith, Cleveland, Ohio Solvay Process Company, Syracuse, N. Y. The Southern Cotton Oil Co., New Orleans, La. A. G. Spalding & Bros., Chicopee, Mass. Standard Oil Company of Indiana, Chicago, Ill. Standard Oil Company (New Jersey), 26 Broadway, New York

Edwin H. Steedman, St. Louis, Mo.

Stewart & Homes Drug Company, Seattle, Wash.

Stone & Webster, Inc., Boston, Mass.

C. B. Stowe, The Stowe-Fuller Refractories Company, Cleveland,

Strietman Biscuit Company, Cincinnati, Ohio Stromberg-Carlson Telephone Mfg Co., Rochester, N. Y.

Superior Portland Cement Company, Scattle, Wash,

Swenson Evaporator Company, Harvey, Ill.

Swift & Company, Chicago, Ill.

A. P. Sy, Buffalo, N. Y.

Tacoma Gas & Fuel Company, Tacoma, Wash,

Texas Gulf Sulphur Company, New York City

Arthur H. Thomas Company, Philadelphia, Pa.

Ticonderoga Pulp and Paper Company, Ticonderoga, N. Y.

Maximilian Toch, New York City

The Twitchell Process Company, Cincinnati, Ohio

The W. S. Tyler Company, Cincinnati, Ohio

The U. G. I. Contracting Company, Philadelphia, Pa.

Union Carbide & Carbon Corporation, New York City

Union Electric Light and Power Company, St. Louis, Mo.

The Union Switch & Signal Company, Swissvale, Pa.

United Fruit Company, Boston, Mass.

U. S. Industrial Alcohol Co., New York City

U. S. Industrial Chemical Company, New York City

United States Rubber Company, New York City

United States Smelting, Refining & Mining Company, Boston, Mass

W. R. Veazey, Cleveland, Ohio

S. D. Warren Company, Cumberland Mills, Maine

Washington Brick, Lime & Sewer Pipe Company, Spokane, Wash.

The Washington Water Power Company, Spokane, Wash.

E. R. Weidlein, Pittsburgh, Pa.

W. M. Welch Manufacturing Company, Chicago, Ill.

West Coast Lumbermen's Association, Scattle, Wash.

Western Electric Company, Incorporated; Hawthorne Works; Chiengo III

Western Precipitation Company, Los Angeles, Calif.

Westinghouse Electric & Manufacturing Company, East Pittsburgh, Pa.

West Virginia Pulp & Paper Company, New York City

A. E. White, Ann Arbor, Mich.

The White Motor Company, Cleveland, Ohio

Willard Storage Battery Company, Cleveland, Ohio

R. B. Wolf, New York City

J. E. Zanetti, New York City

The work of the trustees began with the appointment of Hugh K. Moore in 1920, with whom were later associated Julius Stieglitz. representing the American Chemical Society, and E. P. Hyde, representing the American Physical Society. After a substantial sum had been procured, the number was enlarged to include H. E. Howe and later George P. Adamson and Charles L. Reese. Mr. Hyde resigned to go abroad and was succeeded by Frank B. Jewett, who has lately been succeeded by Michael Pupin as representative of the American Physical Society, Upon relinquishing his active duties in the National Research Council. H. E. Howe was succeeded as Secretary of the Board of Trustees by W. M. Corse, but remained a member of the Board; and a little later Edward B. Craft was added to the Board.

The trustees have been obliged to place a maximum limit on the cost of this work, but they realize that other material which could not be included because of financial limitations should be made available and that International Critical Tables, if it is to render maximum service, should become an established institution, with supplements and revisions published from time to time, in order that these fundamental data may be made available as rapidly as the values are established through further research. An endowmost therefore should be sought for International Critical Tables. and with the appearance of the completed set it is believed the enterprise will appeal to many of those able to make such an endowment a reality.

The trustees wish to express their gratitude to the many industrialists who have given of their time to become acquainted with this enterprise, for the courtesy which they have everywhere met, and for the widespread cooperation without which International Critical Tables could not have been brought into existence.

> George P. Adamson William M. Corse Edward B Craft Harrison E. Howe

Hugh K. Moore Michael I. Pupin Charles L. Reese Julius Stieghtz

PREFACE BY THE ROARD OF EDITORS

At the organization meeting of the International Union of Pure and Applied Chemistry, held in London in June 1919, the Union approved as one of its projects the compilation of International Critical Tables of Numerical Data of Physics, Chemistry, and Technology, and assigned to the United States of America the financial and editorial responsibility for the undertaking. The project was later given the patronage of the International Research Council at its Brussels meeting in 1923.

On behalf of the National Academy of Sciences, the National Research Council of the United States accepted the executive, editorial and financial responsibilities of the project, and with the cooperation of the American Chemical Society and the American Physical Society, created a Board of Trustees to take charge of the financial and business administration, and a Board of Editors to supervise and carry out the preparation of the text.

The first action of the Board of Editors, early in 1922, was to approve the appointment of Corresponding Editors in different parts of the world, particularly in all those countries in which conditions were such that they might be expected to take a really active part in the undertaking. In making these appointments, the Board first sought the advice of competent individuals in the several countries, and in accordance with the suggestions thus received, appointed ten Corresponding Editors and empowered them to arrange for Advisory Committees to assist in the work. In the case of certain countries, the Board was unsuccessful in its efforts to secure cooperation, usually either because of the receipt of no reply or an unfavorable reply, or through failure of the Corresponding Editor, after appointment, to perform his duties.

The general plan of preparation of the Tables was as follows: The subject matter was first divided into some 300 different sections. The Corresponding Editors were then asked to recommend for the several sections one or more persons who should either have some special knowledge of the subject matter of the section, or be otherwise qualified to pass critical judgment upon the available information on the subject. On the basis of the recommendations thus received, the Board of Editors selected the Cooperating Experts, to whom was intrusted the task of critically compiling, and displaying in suitable form, the available quantitative information upon the several topics. In making these selections, the Board consistently endeavored to secure the best man available in the light of all the information which it possessed. In certain special fields composed of closely related topics, the Board provided also for the appointment of Special Editors to supervise the work and to assist in the final arangement of the material.

In the course of its labors the Board of Editors has enjoyed the cooperation of numerous organizations and individuals whose advice, suggestions, and assistance, in many ways have greatly aided it in its complex and difficult task. It is especially indebted to the several Corresponding Editors and their Advisory Committees, who have generously contributed their time and thought to the success of the work; to the Special Editors; to the U. S. Bureau of Standards, the National Physical Laboratory of Great Britain and the Physical Society of France; to the International Commission in charge of Annual Tables; and to various organizations and individuals who made available unpublished data for the use of the Cooperating Experts.

PREFACE PAR LE COMITÉ DES RÉDACTEURS

Lors de l'Assemblée d'organisation de l'Union internationale de Chimie pure et appliquée, qui eut lieu à Londres en Juin 1919, l'Union approuva comme l'un de ses projets l'élaboration de Tables critiques de valeurs numériques de physique, chimie et technologie, et elle chargea les Etats-Unis d'Amérique de la responsabilité financière et d'édition de l'entreprise. Le projet fut, plus tard, placé sous le patronage du Conseil international de Recherches à son assemblée de Bruxelles en 1923.

Chargé de ces attributions, le Conseil national de Recherches des Etats-Unis, agissant en collaboration avec la Société chimique américaine et la Société physique américaine, nomma un Conseil d'Administration et un Comité des Rédacteurs

La première activité que manifesta le Comité des Rédacteurs, au début de 1922, fut d'approuver la nomination de Rédacteurs-correspondants dans les différentes parties du monde, particulièrement dans tous les pays dont les conditions autorisaient l'espoir d'une collaboration active dans cette entreprise. Pour procéder à ces nominations, le Comité sollicita d'abord l'avis de personnalités compétentes dans les divers pays, et c'est en tenant compte des suggestions ainsi obtenues qu'il nomma dix Rédacteurs-correspondants et leur donna les pouvoirs nécessaires pour organiser des Comités-consultatifs dans le but d'aider à l'accomplissement du travail. Dans le cas de certains pays, les efforts du Comité en vue de s'assurer leur coopération furent vains, soit qu'il n'y eût pas de réponse ou que celle-ci fut défavorable, soit encore que le Rédacteur-correspondant, après sa nomination, eût manqué à ses engagements.

Le plan général de préparation de ces Tables fut le suivant: l'ensemble des matières à traitér fut d'abord divisé en quelque 300 différentes sections. Les Réductours-correspondants furent alors priés de recommander, pour les différentes sections, une ou plusieurs personnes qui cussent des connaissances spéciales du sujet traité dans la section ou qui fussent qualifiées pour formuler un jugement critique sur les informations à disposition concernant le sujet. Sur la base des recommandations ainsi reçues, le Comité des Rédacteurs choisit les Experts-coopérants qui furent chargés de la compilation critique et de la disposition sous une forme convenable des informations quantitatives disponibles sur les différents sujets. En faisant cette sélection, le Comité s'efforça de s'assurer la collaboration de la personne qui, d'après les renseignments recueillis, était la plus qualifiée et qui se trouvait alors disponible. Dans certains domaines spéciaux, composés de sujets étroitement apparentés, le Comité se chargea aussi de nommer des rédacteurs spéciaux pour diriger le travail et pour aider à l'arrangement final de la matière.

Au cours de ses travaux, le Comité des Rédacteurs a eu le plaisir d'enregistrer la coopération de nombreuses organisations et de particuliers dont lès conseils, les suggestions et l'aide lui ont été, en maintes circonstances, d'un grand secours dans l'accomplissement de sa tâche complexe et difficile. Il est spécialement reconnaissant aux nombreux Rédacteurs-correspondants et à leurs Comités-consultatifs qui ont généreusement donné leur temps et leur pensée pour assurer le succès de l'oeuvre; aux Rédacteurs spéciaux, au U. S. Bureau of Standards, au National Physical Laboratory of Great Britain et à la Société de Physique de France; à la Commission internationale chargée des Tables annuelles; ainsi qu'aux

VORWORT DER REDAKTIONS-KOMMISSION

An der geschäftlichen Sitzung der Internationalen Union für reine und angewandte Chemie in London, Juni 1919 billigte die Union, als eine ihrer Aufgaben, die Abfassung Internationaler kritischer Tafeln, numerischer Daten der Physik, Chemie und Technologie und betraute die Verenigten Staaten von Amerika sowohl mit dem finanziellen als auch mit dem redaktionellen Teil dieser Aufgabe. Der Plan erhielt spater die Förderung durch International Research Council an der Tagung in Brussel 1923.

Entsprechend dieser Betraung errichtete National Research Council der Vereinigten Staaten, zusammenwirkend mit American Chemical Society und American Physical Society vorgehend, eine geschäfts-fuhrende Kommission und eine Redaktions-Kommission.

Die ersten Schritte, welche die Redaktions-Kommission zu Beginn des Jahres 1922 machte, war, sich korrespondierende Mitglieder in allen Teilen der Welt zu sichern, besonders in denjenigen in welchen die Bedingungen vorhanden waren, die eine lebbafte Beteiligung an dem Unternehmen erwarten hessen. Nach diesem nahm die Kommission zuerst den Rat massgebender Personlichkeiten verschiedener Länder entgegen; in Übereinstimmung mit den so erhaltenen Vorschlagen, wurden zehn korrespondierende Mitglieder bestimmt, welche nun einen beratenden Ausschuss zu bilden hatten, um der Arbeit ihre Unterstützung zu zuwenden. In einigen Ländern gelang es der Kommission nicht Mitarbeiter zu erlangen, meistens deshalb weil keine, oder eine ablehnende Gegenäusserung erfolgte, oder, dass das korrespondierende Migglied, nach der entsprechenden Zusage nicht vorging.

Die Grundlinien für die Bearbeitung der Tafeln waren die folgenden. Das Material wurde zuerst in etwa dreihundert verschiedene Abschnitte zerlegt. Die korrespondierenden Mitglieder wurden dann gebeten, für einige dieser Abschnitte, einen oder mehrere Mitarbeiter zu empfehlen, die entweder besondere Kenntnisse über den Gegenstand des Abschnittes besitzen, oder imstande waren, kritisch, vorhandenes Material durchzugehen. Auf Grund der so erhaltenen Empfehlungen, wahlte die Redaktionskommission die Mitarbeiter aus, die mit der Aufgabe betraut wurden, kritisch die numerischen Daten des betreffenden Gegenstandes durchzuarbeiten und in entsprechender Form darzustellen Bei dieser Auswahl war die Kommission ganz besonders bestrebt, nach den vorhandenen Mitteilungen, den besten zur Verfügung stehenden Mitarbeiter zu erhalten. In gewissen nahe verwandten Gebieten war man darauf bedacht, besondere Redaktions-mitgheder zu erhalten, um die Arbeit hier zu überwachen und tätigen Auteil der Schlussredaktion des Materials zu nehmen.

Im Laufe ihrer Bestrebungen konnte sich die Redaktion-Kommission der Mitarbeit zahlreicher Veremigungen und einzelner Personen erfreuen, deren Ratschläge, Winke and Beihlfe ihnen bei der verwickelten und schweren Aufgabe von grossem Nutzen waren. Die Redaktionskommission ist besondren Dank ihren verschiedenen korrespondierenden Mitgliedern und dem beratendem Ausschuss schuldig, die in grossmütiger Weise ihre Zeit und Arbeit dem Erfolg dieser Tafeln gewidmet haben, ferner auch den Mitgliedern, die die Arbeit an den besonderen Kapiteln überwachten. Der Dank gebührt U. S. Bureau of Standards, National Physical Laboratory of Great Britain und Société de Physique de France, der Internationalen Kommission betraut mit der Herausgabe der Tables annuelles und den verschiedenen Ver-

PREFAZIONE DELL'. UFFICIO DI REDAZIONE

Nella conferenza tenuta a Londra nel giugno 1919 per organizzare la Unione Internazionale della Chimica Pura ed Applicata venne, tra gli altri, formulato il progetto di compilare delle Tabelle Critiche Internazionali contenenti dati numerici di fisica, chimica e tecnologia, e venne affidata agli Stati Uniti la responsabilità finanziari ed editoriale dell'impresa. Al progetto fu in seguito accordato il patronato del Consiglio Internazionale di Ricerche nella riuniono del 1923 a Bruvelles.

In seguito all'incarico ricevuto, il Consiglio Nazionale di Ricerche degli Stati Uniti, d'accordo con la American Chemical Society e con la American Physical Society, nominò un Consiglio di Amministrazione ed un Ufficio Editoriale.

Come suo primo atto, l'Ufficio, nel 1922, nominò Redattori Corrispondenti in tutto il mondo, seegliendoli di preferenza nei Paesi dove poteva ritenersi che essi avrebbero preso parte attiva al lavoro. Le nomine furono fatte dopo aver sentito il parere di persone competenti. A questo modo furono scelti dieci Redattori Corrispondenti e ad essi venne data facoltà di nominare ciascuno un Comitato consultivo col compito di assisterii nel lavoro. In alcuni Paesi l'Ufficio non riusel ad assicurarsi collaborazione di sorta, o perchè addirittura non gli fu possibile ottenere una risposta, o perchè la risposta fu negativa, o perchè il Redattore Corrispondente scelto, dopo essere stato nominato, mancò agli obblighi

Il piano generale di preparazione delle tabelle è stato il seguente. Si è divi a la materia in circa 300 capitoli differenti, e i Redattori Corrispondenti sono stati invitati a suggerire per ogni singolo capitolo il nome di una o più persone le quali o avessero una speciale competenza nell'argomento o potessero ritenersi capaci di vagliare criticamente tutto quello che si conosce al riguardo. In base alle proposte ricevute, l'Ufficio di Redazione scelse gli Esperti, e a questi affidò l'incarico di raccogliere, vagliare ed esporre in forma opportuna i dati quantitativi che si sono potuti riunire sui diversi argomenti.

Nel fare la scelta degli Esperti l'Ufficio cercò sempre di assicurarsi la collaborazione degli uomini che, in base alle informazioni avute, dovevano ritenersi i migliori di cui si potesse disporre. In certi campi speciali, comprendenti argomenti strettamento connessi, l'Ufficio nominò anche dei Redattori Speciali col compito di sorve gliare il lavoro e collaborare alla disposizione definitiva del materiale.

Nell'espletare il suo compito, l'Ufficio di Redazione ha potuto giovarsi della collaborazione di numerouse organizzazioni e di numerose persone, le quali con consigli e suggerimenti vari sono state di grande aiuto nel portare a fine un lavoro che è stato certamente complesso e difficile. L'Ufficio è specialmente grato ai vari Redattori Corrispondenti e ai rispettivi Comitati Consultivi i quali hanno generosamente dato il loro tempo e la loro intelligenza al successo dell'opera, ai Redattori Speciali, al Bureau of Standards degli Stati Uniti, al National Physical Laboratory inglese e alla Société de Physique francese, alla Commissione Internazionale in carica per le Tabelle annuali e alle varie organizzazioni e persone che misero a disposizione degli Esperti dati inediti.

Infine i Membri dell'Ufficio desiderano manifestare l'alto apprezzamento che fanno dei contributi di tutti gli Esperti, il lavoro dei quali, compiuto in larga misura con entusiasmo e disinteressatamente, ha reso possibile queste tabella; ed in particolar modo

THE INTRODUCTION

Finally, the members of the Board desire to record their appreciation of the work of all of the Cooperating Experts whose contributions, largely a labor of love, have made these tables possible; and in particular, of the work of the Editorial Staff, Messrs. Washburn, Dorsey, and West, to whom indeed the utility of this collection of tables should be largely accredited.

George K Burgess S. C. Lind
Saul Dushman C. E. Mendenhall
John Johnston R. B. Moore.

organisations diverses et aux personnes qui ont procuré des données inédites à l'usage des Experts-coopérants.

Efin, les membres du Comité désirent exprimer leur appréciation pour le travail de tous les Experts-coopérants dont les contributions, pour une large part désintéressées, ont rendu possible l'élaboration de ces Tables, et en particulier pour le travail des Rédacteurs, MM. Washburn, Dorsey et West, auxquels nous sommes en grande partie redevables des services que rendra cette collection de Tables.

George K. Burgess S. C. Lind
Saul Dushman C. E. Mendenhall
John Johnston R. B. Moore.

INTRODUCTION

International Critical Tables is the result of the cooperative labors of a large number of specialists, each of whom has been charged with the responsibility for the critical compilation of the quantitative information available on his topic. The word "critical" in this connection means that the Cooperating Expert was requested to give in each instance the "best" value which he could derive from all the information available, together, where possible, with an indication of its probable reliability.

Through a cooperative arrangement with International Annual Tables, the Board of Editors has been able to place in the hands of each Cooperating Expert the Interature references belonging to his topic for the years 1910–1923 inclusive, as compiled by the staff of International Annual Tables. For the period preceding 1910, each Cooperating Expert was directed to collect the necessary literature references from the various published handbooks, special treatises, works of reference, and other sources known to him as a specialist in the field. No attempt has been made to systematically cover the literature since 1923, although a certain amount of information published since then has been utilized.

In preparing the various sections, the Cooperating Experts were instructed.

- 1. To include in the bibliography only (a) the sources of the data upon which their reported values actually rest, and (b) the sources of available data of the same kind pertaining to those systems for which no numerical value is given. It is not intended to be a complete bibliography of the field.
- To out from the tables of numerical data all those systems for which the available data (a) were of slight scientific or practical interest, or (b) were so discordant as to be of little, if any, value
- 3. To set forth the results of their work in the form of text, equations, tables, graphs, or charts, as seemed most appropriate under the circumstances, having regard to the necessity of space economy.
- 4. To give only selected samples illustrating types in the case of very large and heterogeneous fields, such as colloids, chemical kinetics, and certain classes of industrial materials
- 5. To restrict the accompanying explanatory text to the amount necessary for the intelligent use of the data. (Under this restriction, the Expert is given no opportunity to present a general discussion of his subject or of the methods by which he obtained the values given.)

In preparing the textual material for publication the Editors have been compelled, in the interest of economy of space, to enforce the restrictions imposed by sections 3 and 5 of the preceding paragraph and have freely rearranged and rewritten the text, whenever it was evident that a compression or an improvement in logical order could be so secured. With few exceptions, which are duly

INTRODUCTION

Les Tables critiques internationales sont le résultat du travail coopératif d'un grand nombre de spécialistes, chacun de ceux-ci ayant été chargé de la responsabilité de la compilation critique des informations disponibles sur son sujet. Le mot "critique" dans ce cas signifie que l'expert coopérant fut invité à donner dans chaque circonstance la "meilleure" valeur qu'il pouvait recucillir de toutes les informations disponibles, en ajoutant si possible une indication au sujet de la confiance probable qu'on pouvait avoir en etle.

Par le fait d'un arrangement coopératif avec les Tables annuelles internationales, le Comité des Rèdacteurs a été en mesure de mettre à la disposition de chaque expert coopérant les références bibliographiques appartenant à son sujet de l'année 1910 à l'année 1923 inclusivement, celles-ci ayant été compilées par le Bureau des Tables annuelles internationales. Pour la période précédant 1910, chaque expert coopérant fut chargé de recullir les références bibliographiques nécessaires en usant des manuels variés publiés, des traités spéciaux, des ouvrages de références, et d'autres sources connues de lui en sa qualité de spécialiste du sujet traité. En ce qui concerne la littérature depuis 1923, aucune tentative n'a été faite pour la couvrir d'une façon systématique; un certain nombre d'informations postérieures à 1923 ont cependant été utilisées.

Pour la préparation des différentes sections, il fut recommandé aux experts coopérants:

- 1. D'inclure dans la bibliographie sculement (a) les sources de valeurs sur lesquelles reposent actuellement leurs valeurs reportées, et (b) les sources des données de même nature appartenant aux systèmes pour lesquels aucune valeur numérique n'est donnée. Le but poursuivi n'est pas de constituer une bibliographie complète du sujet.
- 2. De ne pas introduire dans les tables de valeurs numériques tous les systèmes pour lesquels les valeurs disponibles (a) sont de peu d'intérêt scentifique ou pratique, ou (b) sont par trop discordantes pour être d'une valeur quelconque, si toutefois elles en présentent une.
- 3. De disposer les résultats de leur travail sous la forme d'un texte, d'équations, de tables, de graphiques ou de cartes, en employant le moyen qui leur parut le mieux approprié suivant les circonstances, en ayant en vue la nécessité d'économiser de la place.
- 4. De ne donner que des exemples choisis, illustrant les types, dans le cas d'un champ très vaste et hétérogène, tel que: les colloides, la cinétique chimique et certaines classes de matières industrielles.
- 5. De restreindre le texte explicatif accompagnant les données au strict nécessarie pour la compréhension de celles-ci. (Vu cette restriction, l'expert n'a donc pas l'occasion de présenter une discussion générale de son sujet et des méthodes par lesquelles il a obtenu les valeurs données).

einigungen und Freunden, die noch nicht veroffentlichten Daten den Mitarbeiteren zur Verfügung stellten.

Schliesslich möchte die Redaktions-Kommission ihre Anerkennung den Mitarbeiteren ausdrücken, deren Arbeitsfreudigkeit diese Tafeln möglich machten, im besondrem aber auch der Muhewaltung des Redaktionsstabes der Herrn Washburn, Dorsey und West, denen man vorwiegend den Erfolg und die Nutzhehkeit dieses Tabellenwerkes schulden muss.

> George K. Burgess S. C. Lind Saul Dushman C. E. Mendenhall John Johnston R. B. Moore

ricordano l'opera dei dirigenti dell'Ufficio di Redazione, Sigg. Washburn, Dorsey, e West ai quali sopratutto si deve essere grati per l'utilità che si avrà dulla presente raccolta di tabelle.

George K. Burgess Saul Dushman John Johnston

8. C. Lind C. E. Mendenhall R. B. Moore.

EINLEITUNG

Die Internationalen kristischen Tafeln stellen die Ergebnisse des Zusammenwirkens einer grossen Zahl von Mitarbeiteren mit besonderen Erfahrungen dar, die mit der Aufgabe betraut wurden, die erreichbaren Daten des entsprechenden Gebietes kritisch darzustellen. In dieser Verbindung bedeutet das Wort kritisch soviel, dass der Mitarbeiter gebeten wurde, in jedem einzelnem Fall die "besten" Werte zu geben, die er auf Grund aller zur Verfugung stehenden Literaturstellen, ableiten konnte, zugleich ferner, wenn möglich, alle Angaben mit dem Grade ihrer Zuverlasslichkeit zu vermerken.

Durch ein Übereinkommen mit der Redaktion der Tables annuelles konnte die Redaktionskommission jedem emzelnem Mitarbeiter, über seinen Gegenstand die Literatur der Jahre 1910 bis einschliesslich 1923 soweit übergeben, als sie durch die Redaktion der Tables annuelles ausgearbeitet worden ist. Für die Zeit vor 1910 wurde ein jeder Mitarbeiter gebeten, die notwendigen Literaturstellen und Daten aus den verschieden vorhandenen Handbüchern Spezial-und Nachschlageweiken und anderen, ihm als besonderem Kenner auf diesem Gebiete erreichbaren Quellen, zu sammeln. Es ist nicht versucht worden, die Literatur seit 1923 noch systematisch darzustellen, obwohl ein gewisser Teil davon noch Berücksichtigung finden konnte.

Bei der Bearbeitung der verschiedenen Abschnitte erhielt der Mitarbeiter folgende Anweisungen:

- 1. Als Literatur sind (a) nur diejenigen Stellen anzugeben, auf Grund deren die angegebenen Werte besonders folgerten, (b) die Quellen, über denselben Gegenstand, die aber keine numerischen Daten enthalten, die Verwendung gefunden haben.
- 2. Es sind in den Zahlenangaben der Tafeln alle diejenigen Systeme wegzulassen, deren vorliegende Daten, (a) von geringem wissenschaftlichen und pruktischen Werte sind, order (b) die Daten sind so wiedersprechend, dass sie, wenn überhaupt, von geringem Werte sind.
- 3. Die Ergebnisse ihrer Arbeit sind in einer solchen Form darzustellen, dass durch den Text, die Gleichungen, Tabellen und Tafeln mit Rücksichtnahme auf Raumersparnis, der Zweck am besten erfüllt wird.
- 4. In sehr grossen, heterogenen Gebieten wie in denen der Kolloide, der chemischen Kinetik und in gewissen Fallen von technischer Bedeutung, sind nur ausgewahlte Beispiele zu geben, die das Gebeit charakterisieren sollen.
- 5. Der erläuternde Text ist soweit zu beschränken, dass eine sachgemässe Verwertung der Tafeln noch möglich ist. (Bei dieser Einschränkung hat der Experte nicht die Gelegenheit allgemein seine Aufgabe, noch die Methode, darzustellen, nach welchen er seine Angaben erhalten hat.)

INTRODUZIONE

Le Tabelle Critiche internazionali sono il frutto della collaborazione di un gran numero di specialisti a ciascuno dei quali è stato affidato il compito di vagliare i dati disponibili sopra un determinato soggetto. La denominazione di tabelle "critiche" indica che l'esperto è stato incaricato di dare in ogni caso il valore "migliore," deducibile da tutte le notizie che si hanno a disposizione. Tutte le volte che è stato possibile l'esperto è stato incaricato anche di dare indicazioni sul grado di attendibilità dei valori numerosi.

In seguito ad accordi intervenuti con le Tabelle annuali internazionali, l'ufficio di Redazione ha potuto fornire a ciascun esperto le indicazioni bibliografiche riferentisi agli anni dal 1910 al 1923 incluso, quali vengono compilate dalla direzione delle Tabelle internazionali. Per gli anni precedenti al 1910, gli esperti vennero consigliati a raccogliere la letteratura dai vari manuali, trattati speciali, lavori bibliografici e da altre fonti ad essi note data la qualità di ognuno di specialista in un determinato campo. Dei dati pubblicati dopo il 1923 si è tenuto conto solo in parte.

- E' stato raccomandato agli esperti che, nel preparare le varie parti:
- 1. Includessero nella Bibliografia soltanto: (a) le fonti delle indicazioni sulle quali sono basati i valori riportati, e (b) le fonti delle indicazioni riguardanti i sistemi per i quali non viene dato nessun valore. Non si è riportare inteso una bibliografia completa del soggetto.
- 2. Omettessero nelle tabelle delle grandezze numeriche tutti quei sistemi per i quali i dati disponibili; (a) fossero di poco interesse scientifico o pratico, oppure (b) fossero così in disaccordo da essere di poco o di nessum valore.
- 3. Esponessero, a seconda dei casi, i risultati del loro lavoro in forma di testo, di equazioni, di tabelle, di grafici, o di tavole tenendo presente la necessità di economia di spazio.
- 4. Riportassero soltanto esempi tipici nei campi molto vasti ed eterogenei come colloidi, cinetica chimica ed alcune classi di prodotti industriali.
- 5. Limitassero il testo esplicativo a quel tanto sufficiente per un uso intelligente delle tabelle (data questa limitazione, all' esperto non è stato consentito di redigere una esposizione generale del suo soggetto o dei metodi con i quali egli ha ottenuto i valori che riporta).

Nel preparare il testo per la pubblicazione i Redattori sono stati obbligati, per economia di spazio, ad applicare le restrizioni imposte nei capoversi 3 e 5 del precedente paragrafo, ed hanno liberamente cambiato disposizione e forma al testo, ogni qualvolta era evidente che potesse derivarne un miglioramento. Salvo poche eccezioni, tutte indicate la forma definitiva del testo è stata sottoposta alla approvazione dell'Esperto.

noted, the final form of the rewritten text was submitted to the Expert and was accepted by him.

In preparing the numerical data for publication the Editors have made no change except in their arrangement and in their mode of presentation. In making such changes the Editors have been guided by the necessity of saving space. The numerical data are in all cases those submitted by the Expert, excepting that (a) a few additional values, all duly indicated, have been inserted, and (b) when an Expert has submitted a number of values for the same nominal quantity, these have been grouped so as to make a single entry with an indication of the range covered by the values submitted, whenever such grouping seemed justifiable. In these cases, the final manner of grouping was in every case where possible submitted to and accepted by the Expert. The exceptional cases are noted as they occur.

Owing to the method of publication, i.e., one volume at a time, a strictly logical arrangement of subject matter is not always followed. Among such a large number of Cooperating Experts a few instances of greatly delayed reports, arising from illness, accident, or other unforescen causes, are to be expected; and certain sections or parts of sections, therefore, may not appear in their logical places but will be found in a later volume. The whole set of volumes is very completely indexed, however, and the user who consults the index should have no difficulty in locating any information given.

Chemical compounds are arranged in the tables by formula according to a definite system, called the "Standard Arrangement." This system is based upon a set of key numbers for the chemical elements and is fully explained in Volume One.

In order to find a given substance in the longer tables it is therefore necessary to know its chemical formula, at least approximately. If only the name is known, the formula, for most organic compounds or minerals, may be found with the aid of the name indices in Volume One, p. 174 and 280. Pour la préparation du texte destiné à la publication, les rédacteurs se sont vu obligés, afin d'économiser encore de la place, d'accentuer encore les restrictions imposées dans les sections 3 et 5 du paragraphe précédent et ils ont pris la liberté de ré-arranger et de ré-écrire le texte partout où il était évident qu'une compression ou une amélioration dans l'ordre logique pouvait ainsi être réalisée. A part de rarcs exceptions, qui sont du reste dûment notées, la forme définitive du texte ré-ècrit fut soumise à l'expert et acceptée par lui.

En disposant les données numériques pour la publication, les rédacteurs n'ont fait aucune modification, excepté en ce qui concerne l'arrangement et le mode de présentation. En faisant ces changements, les rédacteurs ont été guidés par la nécessité d'éparguer de la place.

Les données numériques sont dans tous les cas celles fournies par les experts, à l'exception (a) d'un petit nombre de valeurs, toutes dûment indiquées, qui ont été insérées, et (b) lorsqu'un expert à soumis un certain nombre de valeurs pour la même quantité nominale, ces valeurs ont été groupées de façon à constituer une entrée unique, avec une indication du range occupé par les valeurs fournies, toutes les fois qu'un tel groupement paraissait indiqué. Dans ces cas, la forme définitive du groupement fut, partout où cela était possible, soumise a l'expert et acceptée par lui. Les cas exceptionnels sont notés lorsqu'ils se présentent.

Etant donné le mode de publication par un volume à la fois, un arrangement strictement logique de la matière traitée n'est pas toujours possible. En effet, avec un tel nombre d'experts co-opérants, il faut s'attendre à ce qu'il y ait quelques circonstances imprévues, telles que maladies, accidents ou autres causes, occasionnat un grand retard dans la remise des rapports; c'est pourquoi certaines sections ou parties de sections ne peuvent paraître à leur place logique mais se trouveront dans un volume suivant. Cependant, la série complète des volumes étant indexée d'une façon très détaillée, le lecteur qui consulte la table des matières n'aura aucune difficulté pour repérer toute information donnée.

Les composés chimiques sont disposés dans les tables suivant leurs formules et cela d'après un système défini appelé "arrangement type." Ce système est basé sur une suite de "nombres clés" pour les éléments chimiques, et il est expliqué d'une façon complète dans le volume I.

Afin de trouver une substance donnée dans les longues tables, il est nécessaire de connaître sa formule chimique au moins approximativement. Si le nom seul est connu, la formule peut être trouvée pour la plupart des composés organiques ou des minéraux au moyen des noms indices qui se trouvent dans le volume I, p. 171 et 280.

Bei der Zusammenstellung des Textes für die Veröffentlichung waren die Herausgeber gezwungen, im Interesse der Raumersparnis die unter 3 und 5 oben angegebenen Richtlinein besonders zu betonen. Sobald erkannt wurde, dass eine Zusammenzichung und eine Verbesserung in der logische Anordnung moglich sei, wurde der Text frei zusammengestellt und frisch geschrieben. Mit wenigen Ausnahmen, welche besonders bezeichnet sind, wurde die entgiltige Form des neu geschriebenen Textes dem Experten vorgelegt und von ihm angenommen.

Bei der Vorbereitung des Zahlenmaterials fur die Veroffentlichung änderten die Herausgeber nichts, ausgenommen war nur
dessen Anordnung und die Form der Darstellung, wober man sich
von der Notwendigkeit, Raum zu sparen, leiten liess. Die Zahlenwerte sind in allen Fällen dieselben, welche vom Experten vorlagen, ausgenommen, (a) dass einige erganzende, besonders
bezeichnete Werte hinzugefügt wurden und (b), wenn der Experte
für dieselbe quantitative Grösse mehrere Werte angegeben hat.
Diese wurden dann, sobald ein solches Vorgehen gerechtfertigt
war, zusammengestellt, so, dass nur eine Zahl, mit den Grenzen
hingeschrieben werden konnte, welche durch die Werte gegeben
sind. In so einem Falle wurde die Endform der Anordnung
jedesmal dem Experten, wo moglich vorgelegt und von ihm angenommen. Die Ausnahmsfalle sind dorten wo sie vorgekommen

Entsprechend der Publikationsmethode, der Herausgabe eines Bandes zu einer bestimmten möglichen Zeit, konnte eine genaue logische Anordnung eines bestimmten Kapitels nicht immer erreicht werden. Unter einer so grossen Zahl von Mitarbeiteren sind Fälle zu erwarten, wo sich einige Artikel stark verzögern werden, sei es durch Krankheit oder andere unvorhergeschene Ursachen. Deshalb werden gewisse Abschnitte oder deren Teile nicht an ihren richtigen Plätzen erscheinen, sonderen sie können in einem späteren Band gefunden werden. Die ganze Bänderfolge ist mit einem sehr vollständigem Verzeichnis versehen und der Leser, welcher das Verzeichnis benützt, wird keine Schwierigkeit haben. Vorhandenes aufzufinden.

Die chemischen Verbindungen sind in den Tafeln nach einem Formelsystem angeordnet, das als "Normalanordnung" (Standard Arrangement) bezeichnet wird. Dieses System, das im ersten Bande vollständig erklärt wird, beruht darauf, dass fur die chemischen Elemente Schlüsselnummern gewählt werden.

Um im den längeren Tafeln eine gegebene Substanz aufzufinden, ist es notwendig, deren chemische Formel wenigstens annähernd zu kennen. Ist nur der Name bekannt, so kann die Formel der meisten organischen Verbindungen und der Minerale, mit Hilfe des englischen Namenverzeichnisses im Bande 1 Seite 174 und 280 gefunden werden.

Nell'allestire i dati numerici per la pubblicazione i Redattori hanno fatto cambiamenti solo nel modo di disporli e di presentarli. Nel fare questi cambiamenti i Redattori sono stati guidati dalla necessità di risparmiare spazio. I dati numerici sono in tutti i casi quelli forniti dall'Esperto; solo qualche volta sono stati aggiunti alcuni pochi valori, tutti bene indicati, e qualche altra, avendo l'Esperto riportato parecchi valori per una stessa grandezza, questi—allorchè è sembrato giustificato il farlo—sono stati raggruppati indicando un solo numero ed i limiti entro i quali oscillano i valori considerati. In questi casi, la disposizione finale fu sempre, quando possibile, sottoposta all'approvazione dell'Esperto. Tutte le volte che è stato fatto diversamente, lo si è indicato.

Siccome le tabelle vengono pubblicate un volume alla volta, non sempre la disposizione della materia è fatta in modo strettamente logico

Dato il numero grande di Esperti, è da aspettarsi che qualche rapporto sarà presentato con grande ritardo a causa di malattie o di meidenti imprevedibili. Certe parti periciò potranno comparire non nel posto che logicamente ad esse spetterebbe, ma in volumi posteriori. Tutti i volumi sono però muniti di indici accurati e il lettore, consultandoli, non avrà difficoltà a rintracciare una notisia qualunque.

I composti chimici sono disposti nelle tabelle in base alle formule seguendo un sistema chiamato "disposizione Standard." Questo sistema è fondato sopra una serie di numeri chiave assegnati agli elementi chimici ed è esaurientemente spiegato nel primo volume.

Per poter quindi trovare una data sostanza nelle tabelle più lunghe, è necessario conoscerne la formula chimica, almeno approssimativamente. Se si conosce solo il nome, la formula si può trovare (per la massima parte dei composti organici o minerali) con l'aiuto degli indici per nome centenuti nel 1° volume p. 174 e

((), (1 151 (1))		
1	, we a	i
Preface by the Board of Trustees	VII	Préface, Cor
Preface by the Board of Editors	x	Préface, Cor
Introduction	ХII	Introduction
Cooperating ExpertsVolume One	**	Experts coop
National and Local Systems of Weights and Measures	1	Systèmes de
(a) International Metric System	1	(a) Systèi
(b) Modern systems .	2	(b) Systèr
(c) Systems of antiquity	14	(c) Systèi
Symbols, Basic Constants, Conversion Data, Dimensions, Defi-		Symboles, co
nitions	16	sions,
(a) Symbols and abbreviations	16	(a) Symbo
(b) Fundamental constants of nature, accepted and		(b) Const
conventional values	17	tées et
(c) Conversion factors and dimensional formulae	18	(c) Facter
(d) Hydrometers	31	(d) Hydro
(e) Technical efflux viscometers	32	(e) Viscos
(f) Selected scientific and technical terms. Definitions,		(f) Term:
dimensional formulae, etc	34	formu
Chemical Elements and Atoms	43	Eléments ch
(a) Atomic numbers Atomic weights for each year since		(a) Nomb
1880	43	année
(b) The Periodic System	46	(b) Le sys
(c) Isotopes	45	(c) Les is
(d) Structure of the isolated atom	47	(d) Struc
Laboratory Technique		
		Thermomét
Thermometry .	52	(a) Echel
(a) Thermometric scales	52	(b) Points
(b) Fixed points	53	(c) Therr
(c) Resistance thermometers	54	(d) Theri
(d) Liquid-in-glass thermometers	54	(e) Coup
(e) Thermocouples	57	(f) Pyror
(f) Optical pyrometry	59	Méthodes d
Laboratory Methods for Producing and Maintaining Constant		temps
Temperatures	61	(a) Temp
(a) Temperatures below 0°C.	61	(b) Produ
(b) Production of cold	62	(c) Temp
(c) Temperatures above 0°C	66	(d) Produ
(d) Production of high temperatures	67	Méthodes d
Laboratory Methods for Maintaining Constant Humidity	67	stant
Barometry and Manometry	68	Barométrie
Psychrometry, Density of Moist Air, Change in Barometric		Psychromét
Pressure with Altitude	71	sion a
Volume of Liquid Menisci	72	Volume du
Weights and Weighing. Adjustment and Constancy of		i
Weights; Correction for Air Buoyancy; Determination		Poids et per
of Density	73	tion
•		Calibrage d
Calibration of Volumetric Vessels	80	Solutions to
Standard Buffer Solutions and Acid-base Indicators	81	bases
High Vacuum Technique	91	Technique
11 (6)	0.1	1

CONTENTS | MATIÈRES

İ	AGE
Préface, Conseil d'Administration	vii
Préface, Comité des Rédacteurs	x
Introduction	xii
Experts coopérants pour le Vol. I	xx
Systèmes de poids et mesures nationaux et locaux	1
(a) Système métrique international.	1
(b) Systèmes modernes .	2 14
(c) Systèmes de l'antiquité .	14
Symboles, constantes de base, facteurs de conversion, dimen- sions, définitions	16
(a) Symboles et abréviations	16
(b) Constantes fondamentales de la nature. Valeurs accep-	
tées et conventionnelles .	17
(c) Facteurs de conversion et formules de dimensions	18
(d) Hydromètres	31 32
 (e) Viscosimètres techniques à écoulement (f) Terms scientifiques et techniques choisis. Définitions, 	-
formules de dimensions, etc	34
Eléments chimiques et atomes	43
(a) Nombres atomiques. Poids atomiques pour chaque année depuis 1880	43
(b) Le système périodique	46
(c) Les isotopes	45
(d) Structure de l'atome isolé	47
Technique du Laboratoire	
Thermométrie	52
(a) Echelles thermométriques	52
(b) Points fixes (c) Thermomètres à résistance	53 54
(d) Thermomètres de verre à colonne liquide	54
(e) Couples thermo-électriques	57
(f) Pyrométrie optique	59
Méthodes de laboratoire pour la production et le maintien de	
températures constantes	61
(a) Température au-dessous de 0°	61 62
(c) Température au-dessus de 0°	66
(d) Production de hautes températures	67
Méthodes de laboratoire pour maintenir une humidité con-	
Méthodes de laboratoire pour maintenir une humidité con- stante.	67
Méthodes de laboratoire pour maintenir une humidité con- stante. Barométrie et Manométrie.	67 68
Méthodes de laboratoire pour maintenir une humidité con- stante.	
Méthodes de laboratoire pour maintenir une humidité con- stante. Barométrie et Manométrie. Psychrométrie, Densité de l'air humide, Variation de la pres-	68
Méthodes de laboratoire pour maintenir une humidité con- stante. Barométrie et Manométrie. Psychrométrie, Densité de l'air humide, Variation de la pres- sion atmosphérique avec l'altitude	68 71 72
Méthodes de laboratoire pour maintenir une humidité constante. Barométrie et Manométrie. Psychrométrie, Densité de l'air humide, Variation de la pression atmosphérique avec l'altitude. Volume du ménisque liquide. Poids et pesée. Adjustment et constance des poids, correc-	68 71 72
Méthodes de laboratoire pour maintenir une humidité constante. Barométrie et Manométrie. Psychrométrie, Densité de l'air humide, Variation de la pression atmosphérique avec l'altitude. Volume du ménisque liquide. Poids et pesée. Adjustment et constance des poids, correction pour la poussée de l'air, détermination de la densité Calibrage des récipients volumétriques Solutions tampons types et indicateurs pour les acides et les	68 71 72 73 80
Méthodes de laboratoire pour maintenir une humidité constante. Barométrie et Manométrie. Psychrométrie, Densité de l'air humide, Variation de la pression atmosphérique avec l'altitude. Volume du ménisque liquide. Poids et pesée. Adjustment et constance des poids, correction pour la poussée de l'air, détermination de la densité Calibrage des récipients volumétriques	68 71 72 73 80

INHALTSVERZEICHNIS

Vorwort der geschaftsfuhrenden Kommission	ELITE VII	Prefazione degli editori	Paom vii
Vorwort der Redaktions-Kommission		Prefazione dei redattori	
	λ	,	x
Einleitung	XII	Introduzione	xii
Mitarbeiter des I. Bandes	**	Collaboratori del volume primo	xx
Mass- und Gewichtssysteme in den verschiedenen Landern		Sistemi nazionale e regionali di pesi e misure	1
und Gebieten	1	(a) sistema metrico internazionale	1
(a) Das internationale metrische System (b) Moderne Systeme	$\frac{1}{2}$	(b) sistemi moderni	2
(c) Systeme des Altertums .	11		14
	٠,	Simboli, costanti fondamentali, coefficienti di riduzione, di-	10
Zeichen, Grundkonstanten, Umrechnungsgrossen, Dimen- sionen, Definitionen	16	mensioni, definizioni	16 16
(a) Zeichen und abkurzungen	16	(b) costanti fondamentali della natura. Valori stabiliti e	10
(b) Naturkonstanten, festgelegte und konventionelle Grös-	117	convenzionali	17
sen .	17	(c) coefficienti di riduzione e formule di dimensione	18
(c) Umrechnungsfaktoren und Dimensionen	18	(d) arcometri	31
(d) Hydrometer	31	(c) viscosimetri tecnici ad efflusso	32
(e) Technische Ausfluss-Viskosimeter	32	(f) termini scelti scientifici e tecnici. Definizioni, formule	
(f) Ausgewahlte wissenschaftliche und technische Aus-		di dimensione ece	34
drücke, Definitionen, Dimensionen u s w	34	Elementi chimici e atomi	43
Chemische Elemente und Atome	43	(a) numeri atomici. Pesi atomici per tutti gli anni a partire	
(a) Atomzahl. Atomgewichte für jedes Jahr seit 1880	43	del 1880	43
(b) Das periodische System der Elemente	46	(b) il sistema periodico	46
(c) Isotope Elemente	45	(c) isotopi	45
(d) Aufbau der einzelnen Atome	47	(d) struttura dell'atomo	47
Hilfstafel physikalisch chemischer Messungen		Tecnica di laboratorio	
Hilfstafel physikalisch chemischer Messungen Thermometrie .	52	m · · ·	52
	52 52	Termometria	52 52
Thermometrie . (a) Temperaturskalen (b) Fixpunkte .		Termometria	52
Thermometrie . (a) Temperaturskalen (b) Expunkte . (c) Wiederstandsthermometer	52	Termometria	
Thermometrie . (a) Temperaturskalen (b) Fixpunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer	52 53 54 54	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a hquidi (in vetio)	52 53
Thermometrie . (a) Temperaturskalen (b) Fixpunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente .	52 53 54 54 57	Termometria. (a) scale termometriche (b) punti fissi	52 53 54 54 57
Thermometrie . (a) Temperaturskalen (b) Fixpunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente . (f) Optische Pyrometrie .	52 53 54 54	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a hquidi (in vetio)	52 53 54 54
Thermometrie . (a) Temperaturskalen (b) Fixpunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente . (f) Optische Pyrometrie . Laboratoriumsmethoden für die Erzeugung und Konstant-	52 53 54 54 57 59	Termometria. (a) scale termometriche (b) punti fissi (c) termometri a resistenza (d) termometri a hquidi (in vetio) (c) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature	52 53 54 54 57 59
Thermometrie . (a) Temperaturskalen (b) Expunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente . (f) Optische Pyrometrie . Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen	52 53 54 54 57 59	Termometria. (a) scale termometriche (b) punti fissi (c) termometri a resistenza (d) termometri a hquidi (in vetio) (c) coppie termoelettiiche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti	52 53 54 54 57 59
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C	52 53 54 54 57 59 61	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0'C.	52 53 54 54 57 59 61 61
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte	52 53 54 54 57 59 61 61 62	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo.	52 53 54 54 57 59 61 61 62
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C	52 53 54 54 57 59 61	Termometria. (a) scale termometriche (b) punti fissi. (c) termometri a resistenza (d) termometri a liquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C.	52 53 54 54 57 59 61 61 62 66
Thermometrie . (a) Temperaturskalen (b) Fixpunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente . (f) Optische Pyrometrie . Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C . (b) Erzeugung von Kälte . (c) Temperaturen über 0°C .	52 53 54 54 57 59 61 61 62 66	Termometria. (a) scale termometriche (b) punti fissi. (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C. (d) produzione di temperature elevate.	52 53 54 54 57 59 61 61 62 66 67
Thermometrie . (a) Temperaturskalen (b) Fixpunkte . (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente . (f) Optische Pyrometrie . Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C . (b) Erzeugung von Kalte . (c) Temperaturen über 0°C . (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit	52 53 54 54 57 59 61 61 62 66	Termometria. (a) scale termometriche (b) punti fissi. (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C. (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante	52 53 54 54 57 59 61 61 62 66 67
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit keit. Barometrie und Manometrie	52 53 54 54 57 59 61 61 62 66 67	Termometria. (a) scale termometriche (b) punti fissi. (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C. (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro).	52 53 54 54 57 59 61 61 62 66 67 67 68
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kalte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohen-	52 53 54 54 57 59 61 62 66 67 67	Termometria. (a) scale termometriche (b) punti fissi (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di soppa di 0°C (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pres-	52 53 54 54 57 59 61 61 62 66 67 67
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit keit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale.	52 53 54 54 57 59 61 62 66 67 67 68	Termometria. (a) scale termometriche (b) punti fissi (c) termometri a resistenza (d) termometri a hquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pressione barometrica con l'altezza	52 53 54 54 57 59 61 61 62 66 67 67 68
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus	52 53 54 54 57 59 61 62 66 67 67	Termometria. (a) scale termometriche (b) punti fisst (c) termometri a resistenza (d) termometri a liquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperatuie elevate Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro) Psicrometria, densità dell'aria umida, variazioni della pressione barometrica con l'altezza Volume dei menischi liquidi	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kalte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus Gewichte und Wagen. Justierung und Konstanz der	52 53 54 54 57 59 61 62 66 67 67 68	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a liquidi (in vetro) (c) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C. (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pres- sione barometrica con l'altezza. Volume dei menischi liquidi. Pesi e pesare. Rettifica e costanza dei pesi; correzione per la	52 53 54 54 57 59 61 62 66 67 67 68 71 72
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus Gewichte und Wagen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriches,	52 53 54 54 57 59 61 62 66 67 67 68	Termometria. (a) scale termometriche (b) punti fisst (c) termometri a resistenza (d) termometri a liquidi (in vetio) (e) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperatuie elevate Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro) Psicrometria, densità dell'aria umida, variazioni della pressione barometrica con l'altezza Volume dei menischi liquidi	52 53 54 54 57 59 61 62 66 67 67 68 71 72
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus Gewichte und Wagen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriches, Bestimmung der Dichte	52 53 54 54 57 59 61 62 66 67 68 71 72	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a liquidi (in vetro) (c) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C. (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pres- sione barometrica con l'altezza. Volume dei menischi liquidi. Pesi e pesare. Rettifica e costanza dei pesi; correzione per la	522 533 544 5457 570 611 622 666 677 687 7172
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus Gewichte und Wagen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriehes, Bestimmung der Dichte Kalibrierung von Gefassen in der Volumetrie	52 53 54 54 57 59 61 62 66 67 67 68	Termometria. (a) scale termometriche (b) punti fisst. (c) termometri a resistenza (d) termometri a liquidi (in vetro) (c) coppie termoelettriche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti. (a) temperature al di sotto di 0°C. (b) produzione del freddo. (c) temperature al di sopra di 0°C. (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pres- sione barometrica con l'altezza. Volume dei menischi liquidi. Pesi e pesare. Rettifica e costanza dei pesi; correzione per la spinta dell'aria; determinazione della densità.	52 53 54 54 57 59 61 62 66 67 67 68 71 72
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus Gewichte und Wagen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriebes, Bestimmung der Dichte Kalibrierung von Gefassen in der Volumetrie Standard Puffer-Lösungen und Indikatoren für Säuren und	52 53 54 54 57 59 61 62 66 67 68 71 72	Termometria. (a) scale termometriche (b) punti fisst (c) termometri a resistenza (d) termometri a liquidi (in vetro) (c) coppie termoelettiche (f) pirometria ottica Metodi di laboratorio per produrie e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pres- sione barometrica con l'altezza Volume dei menischi liquidi. Pesi e pesare. Rettifica e costanza dei pesi; correzione per la spinta dell'aria; determinazione della densità Taratura di recipienti per la misura di volumi	52 53 54 54 57 59 61 62 66 67 67 68 71 72
Thermometrie (a) Temperaturskalen (b) Fixpunkte (c) Wiederstandsthermometer (d) Glas-Flussigkeits-Thermometer (e) Thermoelemente (f) Optische Pyrometrie Laboratoriumsmethoden für die Erzeugung und Konstanterhaltung von Temperaturen (a) Temperaturen unter 0°C (b) Erzeugung von Kälte (c) Temperaturen über 0°C (d) Erzeugung hoher Temperaturen Laboratoriumsmethoden zur Erhaltung konstanter Feuchtigkeit Barometrie und Manometrie Psychrometrie, Dichte feuchter Luft, barometrische Hohenskale Volumen des Flussigkeits-Meniskus Gewichte und Wagen. Justierung und Konstanz der Gewichte, Korrektion wegen des Luft-Auftriehes, Bestimmung der Dichte Kalibrierung von Gefassen in der Volumetrie	52 53 54 54 57 59 61 62 66 67 68 71 72	Termometria. (a) scale termometriche (b) punti fisst (c) termometri a resistenza (d) termometri a hquidi (in vetro) (c) coppie termoelettiiche (f) pirometria ottica Metodi di laboratorio per produrte e mantenere temperature costanti (a) temperature al di sotto di 0°C (b) produzione del freddo (c) temperature al di sopra di 0°C (d) produzione di temperature elevate. Metodi di laboratorio per mantenere una umidità costante Misura delle pressioni (barometro manometro). Psicrometria, densità dell'aria umida, variazioni della pres- sione barometrica con l'altezza Volume dei menischi liquidi Pesi e pesare. Rettifica e costanza dei pesi; correzione per la spinta dell'aria; determinazione della densità Taratura di recipienti per la misura di volumi Soluzioni a concentrazione constante di ioni idrogeno e indi-	52 53 54 54 57 59 61 61 62 66 67 67 68 71 72 73 80

r	PAGE	1	Page
METHOD OF ARRANGEMENT OF CHEMICAL SUBSTANCES AN SYSTEMS IN I. C. T.	р 96	METHODE POUR L'ARRANGEMENT DES SUBSTANCES CHIMIQUES ET SYSTÈMES EMPLOYÈS DANS LES T. C. I.	96
Physical Properties of Chemical Substances		Propriétes physiques des substances chimiques	
(c) Chemical compounds (meluding minerals)	98 98 102 106	Tables de références rapides (a) Introduction explicative (b) Substances élémentaires et air atmosphérique (c) Composés chimiques (minéraux inclus) (d) Composés chimiques arrangés dans l'ordre de leurs	102 106
(*) Liquid crystals (f) Crystallography of compounds of carbon	306 314 320		306 314 320
Disperse Systems ("Colloids") Sweetening Agents	338 354 357	rayons X pour les cristaux et les liquides	338 354 357
Odoriferous Materials	358	Radioactivité	
RADIOACTIVITY			
International Table of the Radioactive Elements and their	362	Table internationale des éléments radioactifs et de leurs constantes. Propriétés physiques des éléments radioactifs	362 364
• • • • • • • • • • • • • • • • • • • •	364 365	Désintégration artificielle des éléments . Emissions électroniques sous l'influence des rayonnements radioactives	365 365
Substances Energy of Radioactive Processes	365 366 366	Energie des processus radioactifs . Effets chimiques des particules α . Courant de saturation	366 366 367
Saturation Current Absorption in Liquids and Solids	367 368 369	Absorption dans les liquides et les solides Radiations radioactives dans les gaz Rayons B; absorption et diffusion dans les liquides et les	368 369
β-Rays: Absorption and Diffusion in Liquids and Solids Wave Lengths of $γ$ -Rays	370 371 372	solides	370 371 372
Distribution of Radioactive Materials in the Atmosphere, the Hydrosphere and the Lithosphere	372 381	Distribution des substances radioactives dans l'atmosphère, l'hydrosphère et la lithosphère Age des roches et des minèraux.	372 381
Age of nocks and minerals .	901		001
ASTRONOMICAL AND GEODETIC DATA		Données astronomiques et géodésiques	
(a) Spectral classes, masses, densities, temperatures,	384	(a) Classes spectrales; masses, densités, températures, diamètres	384 384
(b) Distribution (c) Motions	384 388 389	l 11	388 389
Time. Units, Correlation of Chronological Eras, Equation of Time The Solar System. Orbital Data, Selected Characteristics of	391	1	391
the Members Composition of the Atmosphere	392 393 393	1	393
for Depth and Height. The Gravitation Constant	395	de gravitation	395
Aerodynamics	402	Aerodynamique	402
LIST OF JOURNALS AND THEIR KEY NUMBERS	412	Liste des journaux et leurs nombres-clés	412

INHALTSVERZEICHNIS-INDICE

Sı	BITB	1	Page
DIE METHODEN DER ANORDNUNG CHEMISCHER STOFFE UND SYSTEMB IN I. C. T.	96	METODI ADOTTATI PER L'ORDINAMENTO DELLE SOSTANSE NELLE T. C. I.	96
Physikalische Eigenschaften chemischer Stoffe		PROPRIETA' FISICHE DEI CORPI	
Kurze Übersichts-Tafeln (a) Erklärende Einleitung (b) Elementare Stoffe und atmosphärische Luft (c) Chemische Verbindungen (einschlieslich Minerale)	98 98 102		98 98 102 106
(d) Chemische Verbindungen in der Reihenfolge ihrer Eigen- schaften	306 314	(c) composti (minerali inclusi) (d) composti ordinati secondo le loro proprietà. (c) cristalli liquidi (f) cristallografia dei composti del carbonio	306 314 320
• • • • • • • • • • • • • • • • • • • •	320	Struttura cristallina. Valori della diffrazione dei raggi X in cristalli e liquidi	338
	338 354	Sistemi dispersi ("colloidi")	354 357
	357 358		358
Radioaktivität		RadioAttivita'	
Internationale Tafeln der radioaktiven Elemente und deren		Tabelle internazionali degli elementi radioattivi e loro cos- tanti	362
Physikalische Eigenschaften radioaktiver Elemente	362 364 365	Proprietà fisiche degli elementi radioattivi . Disintegrazione artificiale degli elementi	364 365
Elektronen-Emission radioaktiver Strahler	365 366	Emissione di elettroni prodotta da radinzioni di sostanze radio- attive	365 366
Chemische Wirkungen der a-Teilchen	366 367	Energia dei processi radioattivi Azioni chimiche delle particelle α	366 367
Radioaktive Strahlung in Gasen .	368 369	Assorbimento nei liquidi e nei solidi Radiazioni radioattive nei gas	368 369
	$\frac{370}{371}$	Raggi β: assorbimento e diffusione nei liquidi e nei jolidi Lunghezza d'onda dei raggi γ	370 371
Verteilung radioaktiver Stoffe in der Atmosphare, Hydro-	372	Radiazioni ionizzanti emesse da sostanze ordinarie Distribuzione dei materiali radioattivi nell'atmosfera, nell'	372
apital o distribution printer.	381	idro-fera e nella litosfera Età delle roccie e dei minerali	372 381
ASTRONOMISCHE DATEN UND DIE ERDE Sterne und Nebel	384	Dati Astronomici E Geodetici	
(a) Spektralklassen, Massen, Dichten, Temperaturen, Durchmesser. (b) Verteilung	384 388 389	Stelle e nebulose (a) classi spettrali, masse, densità, temperature, diametri (b) distribuzione (c) movimento	384 388 389
Zeit, Einheiten, Beziehungen der Zeitepochen, Zeitgleichung Sonnensystem, Bahnen, ausgewähltes Verhalten seiner Glieder Zusammensetzung der Luft		Tempo. Unità, rapporti fra le ere cronologiche, equazione del tempo	391
Education and a second	393	singoli componenti Composizione dell'atmosfera	393 393
Korrektionen für die Tiefe und Hohe. Die Gravitations-konstante	395	La Terra. Forma, dimensione, densità Valori della gravità relativi a più di 400 stazioni. Correzione per l'altezza. Costante di gravitazione	
	402	Aerodinamica	40:
Verzeighnis der Zeitschriften und deren Schlüssel- Nummern	412		41:

COOPERATING EXPERTS-VOLUME ONE

```
Adams, Leason H., B.S.: Physical Chemist, Geophysical Laboratory, Carnegic Institute of Washington, Washington, D. C.
ASTON, F. W., D.Sc., F.R.S., F.I.C.: Fellow, Cavendish Laboratory, Trinity College, Cambridge, England.
AUGER, PIERRE: Agrégé des sciences physiques, Faculté des Sciences de Paris, France.
RANDWELL, D. C., Ph.D.: Associate Physical Chemist, Fixed Nitrogen Research Laboratory, U. S. Department of Agriculture, Washing-
    ton. D. C.
Biog, Philip, H., B.Sc.: Jumor Assistant, The National Physical Laboratory, Teddington, Middlesex, England.
Briggs, Lyman J., Ph. D. Chief, Division of Mechanics and Sound, Bureau of Standards, Washington, D. C.
CLARK, MANSFIELD, Ph.D.: Professor of Chemistry, Hygienic Laboratory, U. S. Public Health Service, Washington, D. C.
DRYDEN, HUGH L., Ph.D.: Chief, Aerodynamical Physics Section, Bureau of Standards, Washington, D. C.
DUSHMAN, SAUL, Ph.D.: Physicist, General Electric Co., Schenectady, N. Y.
FAIRCHILD, CHARLES O., M. S.: Physicist, Bureau of Standards, Washington, D. C.
FOOTE, HARRY W., Ph.D.: Professor of Chemistry, Yale University, New Haven, Connecticut.
FORSYTHE, WILLIAM E., Ph.D.: Director, Nela Research Laboratory, Cleveland, Ohio.
GOULD, F. A., M.A.: Assistant, Metrology Department, The National Physical Laboratory, Teddington, Middlesex, England.
Guillaume, Charles-Edouard: Directeur du Bureau international des Poids et Mesures, Sèvres, France.
HANN, RAYMOND M., B.S.: Bureau of Chemistry, Washington, D. C.
HERSCHEL, WINSLOW H., A.B.: Associate Physicist, Bureau of Standards, Washington, D. C.
Hevesy, G., Ph.D.: Professor, Universitetets Institut for Teoretiskfysik, Copenhagen, Denmark
HOUGEN, OLAF A., Ph D.: Assistant Professor of Chemical Engineering, Univ. of Wisconsin, Madison, Wisconsin.
HUMPHREYS, WILLIAM J., Ph.D : Professor of Meteorological Physics, U. S. Weather Bureau, Washington, D. C.
Joy, Alfred H., M.A.: Astronomer, Mount Wilson Observatory of the Carnegic Institution of Washington, Pasadena, California.
KANOLT, C. W., Ph. D.: Physicist, Bureau of Standards, Washington, D. C.
KEENAN, GEORGE L., M.A.: Bureau of Chemistry, Washington, D. C.
 KLEEMAN, RICHARD D., D Sc.: Consulting and Research Physicist and Physical Chemist; Associate Professor of Physics, Union College,
     Schneetady, N. Y.
 KRAMERS, H. A.: Institut for Teoretiskfysik, Copenhagen, Denmark.
 LAMBERT, WALTER D., A.M.: Mathematician, U.S. Coast and Geodetic Survey, Washington, D. C.
 Lind, S. C., Ph. D.: Assistant Director, Fixed Nitrogen Research Laboratory, U. S. Department of Agriculture, Washington, D. C.
 MEYER, STEFAN, Ph.D : O O Prof. d Physik, Universitat, Vienna, Austria.
 Moore, Richard B., Sc.D.: General Manager, The Dorr Company, New York City, N. Y.
 MUELLER, EUGENE F.: Physicist; Chief, Heat Measurement Section, Bureau of Standards, Washington, D. C.
 PIENKOWSKY, ARTHUR T., Ph B: Associate Physicist, Bureau of Standards, Washington, D. C.
 RAGATZ, ROLAND A., M.S.: Instructor in Chemical Engineering, University of Wisconsin, Madison, Wisconsin.
 RUDORE, G.: Air Ministry, Kingsway, London, England.
 SCHLUNDT, HERMAN, Ph D: Chairman, Department of Chemistry, University of Missouri, Columbia, Missouri
 Schweidler, Egon, Ph. D. O. Ö. Professor der Physik, Physikalisches Institut der Universität, Innsbruck, Austria.
 SEARES, FREDERICK II., B.S.: Assistant Director, Mt. Wilson Observatory of the Carnegic Institution of Washington, Pasadena,
     California
 Soddy, Frederick, M.A., F.R S.: Professor, Chemical Department, University Museum, Oxford, England.
 Spencer, Hugh M., Ph D: Instructor in Chemistry, Yale University, New Haven, Connecticut.
 STOTT, VERNEY, B.A., F. Inst. P: Assistant, The National Physical Laboratory, Teddington, Middlesex, England.
 STROMBERG, GUSTAF, Ph.D.: Astronomer, Mt. Wilson Observatory of the Carnegie Institution of Washington, Pasadena, California.
 SWICK, CLARENCE E., C.E.: Geodetic Mathematician, U.S. Coast and Geodetic Survey, Washington, D. C.
 VOLET, CHARLES: Lacencié ès-Sciences, Adjoint au Bureau international des Poids et Mesures, Sèvres, France.
  WALTON, C. F., Jr.: Research Chemist, Bureau of Chemistry, Washington, D. C.
  WEIMARN, P. P., von: Professor of Physical Chemistry; Mining Engineer; Head, Dispersoidological Department, Imperial Industrial
      Research Institute, Osaka, Japan.
  Wells, Roger C., Ph.D.: Physical Chemist, U.S. Geological Survey, Washington, D. C.
  Wensel, H. T., Ph.D.: Associate Physicist, Bureau of Standards, Washington, D. C.
  WHERRY, EDGAR T., Ph.D.: Senior Chemist, Bureau of Chemistry, Washington, D. C.
  WHIPPLE, F. J. W., M.A., F. Inst. P.: Superintendent, Kew Observatory, Richmond, Surrey, England.
```

WYCKOFF, RALPH W. G.: Research Associate, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D. C.

WOODWORTH, ROBERT S., Ph. D.: Professor of Psychology, Columbia University, New York City, N. Y.

ZWAARDEMAKER, H., M.D.: Professor of Physiology, Univ. of Utrecht, Holland.

VOLUME I ERRATA

			a sur supreme
PAGE		PAGE	
	Dandy Defending Tables Patricip (.) and (d) count Horling South	155	Index No. 2008. For 00 read 256 d. Index No. 2004. For KCalHabb read KCaHaOr. Sernal No. 1 For 1 833 read 1 1833
IVIII & XIX	Ready Reference Tables. Between (c) and (d) insert Boiling points (inorganic) . 162 To (d) entry add 165, 276	1000	Index No. 2004 For hCuHarOr read KCuHarOr.
	Between (d) and (e) insert Index to minerals 174.	165	Sernd No. 1 For 1 833 read 1 1833
	Index to C-Table 280	174	Column 1 For Apiohmite read Appoints.
4	Column 4 Kee Columbus read Colombus		Delete Arseme siderite
7	Column 3, under Mass For 453 592 45 read 453 592 43 For 64 798 182 read 64 798 9182		Column 2, Automolite. For 1119 read 1911.
_	64 798 182 read 64 798 9182		Column 3 For Cerargytite read Cerargytite Column 4. For Chrysotite read Chrysotile.
.8	Column 1, I bushel For 35 307 7048 1 read 36 367 7048 1		Column 4. For Chrysotite read Chrysotile. For Cotinnite read Cotunnite
10 12	Column 1 For 1 mal = 10 a read 1 mil or maal = 9 843 or 10 a Column 2 For 1 alm read 1 aln		Column 5 For Durfeidtite read Durfeldtite
12	1 famm 1 famm		Column 6. For Eriochalite read Eriochalcite.
	1 stang = 16 1 stang = 10 or 16		For Gano-hyllite read Ganophyllite.
	Column 3, under Mass	175	Column 1. For Geocromite read Geocromite
	For skalpund read skalpund		For Jeremejerite read Jeremejevite. Column 3 For Molybdophillite read Molybdophyllite
	l as l ass 1 quintin l kvintin		Artem Madamata angunt Marangata 1000
	1 untz 1 uns		Column 4 For Phosphochalite read Phosphochaleite
	1 nylast = 12 000 1 nylast = 10 000 or 12 000		Column 4 For Phosphorhalte read Phosphochaleite Polanite For (Pyrosulite) read (Pyrolusite) Column 5, Schechte For 2306 1 read 2306.
	Add + korn = -ka		Column 5, Scheente Tor 2300 1 read 2300. 1fter Spencerite insert Sperrylite, 1179
	1 ort = 100 Column 3, under Capacity, dry	175	Column 5 For Szomolnokite read Szomolnikite
	Toleta Lore m. A.	11.9	
	Delete 1 ort == fr For 1 junkfra == read 1 jungfra or jumfra		For Tennante read Tennante, 1683. Column 6. After Tennantie read Tennante, 1683. For Ura dagite read Urveligite Index No. 20. Delete 2.3. Index No. 232. Delete 1.7 Index No. 233. For I old read 0.6006
	1 quarter 1 kvarter		For Uru algute read Urvelgyite
	1 kappar 1 kappe 1 fjerdingar 1 fj. rding	176	Index No. 20 Delete 2 53.
	1 feedinger 1 fr rding	179 180	Index No. 263 For 1 617 read 0 6606
19	1 spanna 1 spann Column 1 1 span For A- read A-	183	Index No. 435 For NH(COCH ₂) ₂ read NH ₂ CONHCOCH ₄ .
13 17	Column 1. (v) For p. 27 read p. 38	187	Index No 686, For - 18 read - 5
••	Column 1, 1 saah For 14 read 14 Column 1, 1 saah For 14 read 15 S Column 1, 10 For p 27 read p 38 Accepted Basic Constants Regarding Uncertainty column add	188	Index No. 264 For 101 Freia Crown Index No. 435 For NHCOCHL) Freia Crown Index No. 686 For - 18 read = 5 Index No. 725 For CHCOCHL Freia CHCOCHL Index No. 7731 For Methy read Methy Index No. 1761 For Methy read Methy Index No. 1012 For ChHCOHL read CHCOHL Index No. 1012 For ChHCOHL Index No. 1012
	These values are rough estimates and those for e, e ma and n	192	Index No. 773 1 For Methy read Methyl
•••	should probably be several times as great as the values given	193	Index No. 1074 For Dimethy read Dimethyl
18	Section A. These Derived Constants have been computed from the Accepted Basic Constants on p. 17, and are vitinted by the	200	Index Nos 1466, 1468, and 1470. Data probably not for pure
	common to these values. The greatest errors occur to a good		Index Nos. 1466, 1468, and 1470. Data probably not for pure compounds. o-Dihydrobenzene and 1, 3-cyclohexadiene are
	N, which differ from the best experimental values by about		two names for the same compound.
	N_{∞} , which differ from the best experimental values by about 0.4%, the computed value of ν_{∞} being too small	211	Index No. 2328. Delete entry. Index No. 2330 For - 126 4 read - 126 3
	For t a read v a		100 8 100 3
	Section B, logic \ For 1 808 7827 read 3 808 7827		100 3 100 3 1074 1075 1075 1075 1075 1075 1075 1075 1075
23	Table 28, last line For 15 5951 read 13 5951, For 1 192 9882 read 1 133 3824.	220	Index Nos. 2719, 2720, and 2721. For Crosyl read Tolyl
26	Table 48, For 1 0000 lambert 0,000 0000	221	Index No 2012 For 2-Ethylhexane CHa(Cilla)CHCalla read
	1,0764 milhlambert 0 031 9684		J-Ednymerane (Carton avera
	read 3 1416 lambert 0 497 1499	227	
	3 3816 milhlambert 0 529 1183		Index Nos. 3150, 3151, and 3152 For Cresyl read Tolyl Index No. 3576 For CellsCH CHC: H5 read CellsCH3CiCCH1.
34 42	Column 2, line 1 For 980 655 read 980 665	234	Index No. 3576 For CellsCH CHCzHs read CellsCHzCCCHz.
49	Column 1 For X read Xe	235	Index No 3635 For Benzacetta read 5-Acetylamino-2-methoxy-
52	For F O Fairchild read C O Fairchild	238	benzenc-1-carboxylic acid Index No 3848 For C10H10O read (C10H10O):
62	Column 2. For above 20° read below 20°	2.5.7	152 12 456 36
66	Column 2, line 1 For 898 655 read 980 665 Column 1, line 1 For 898 655 read 980 665 Column 1 For Synonical read Synodral Column 1 For X read Xe For F O Fairchild read C O Fairchild Column 2, For above 20° read below 20° Section (a), Phosphorus pentasulfide For 52° read 522° High Vaccoun Technome	İ	295 310
91	High Vacuum Technique line 1, for Amount read Mass		Index No. 3862. For [C ₁₀ H ₁₀ O] _x read (C ₁₀ H ₁₆ O) _x [152.12] _x 456-36
	line 6, after molecules add striking 1 cm ² sec 1		[152.12]x 456.36 264 285
	hne 6, after molecules add striking 1 cm ² sec ⁻¹ hne 11, for $Q =$ amount read $Q =$ volume	242	Index No. 4078 Add 5-Acetylamino-2-ethoxybenzene-1-car-
102	The Gascous State, viscosity column	1	hoxylic acid
	A, for 221 read 222 Br, for 155 read 154.	247	Index No. 4394. 1 525 is the density for the monohydrate. Index No. 4734. For Cress1 read Tolyl. For p-CH ₄ CaH ₅ O ₇ CC ₆ H ₄ .
	Air, for 284 2 read 180 8	253	Index No. 4734. For Creat read Tolyl. For p-ChaCanaOaCosta
106	Line 1. For Smithers read Smither.		read p-CH ₂ C ₈ H ₄ O ₂ CC ₈ H ₅ Index Nov. 4730, 4741, 4742, and 4744. For Creavl read Tolvi
	Line 1. For Smithers read Smither. Line 3. For John C. W. Fritzer read J. C. W. Fritzer	251	Index Nos 4730, 4741, 4742, and 4744 For Creayl read Tolyl . Index Nos 4730, 4784, 4784, and 4780 For Creayl read Tolyl. Index No. 5057. For Cullinky read Cillian. For 233.12 read
	Index No 0 For = (0 read = 39 Index No 0 For = (0 read = 39	258	Index No. 5057. For CalliaNa read CalliaNa. For 233.12 read
109	Index No. 35.1 — Detect 110 density column for 3.172. Index No. 204, di ^a . Add 3.022 Index No. 205, di ^a . Add 3.04 Index No. 206, di ^a . Add 3.03. Index No. 259. Delete entry.		127 121
100	Index No. 205, dlo. Add 4 49	260	Index No. 5152. For capronate read caproate. Index No. 5291 For Chinosol read Quinosol
	Index No. 206, dec. Add 3 63.	262 266	
110	Index No 259. Delete entry.	268	Index No. 5653. For Strychine read Strychine.
115	Index No. 500 For Attaite read Altuite	269	Index No 5711. For Gelsemine read Gelseminue.
119	Index No. 560 For Attaite read Altuite Index No. 766. Delte entry. Index No. 767 For 45 5 read 44 07.	270	Index No. 5053. For Strychine read Strychune. Index No. 5779. For Gelsentine read Gelsentine. Index No. 5779. For a-Crosol read o-Tritolyl.
122	Index No. 910 Add Eriochaleite.	271 272	Index No. 5902. Delete entry Index No. 5928. For CmH12O1s read CmH10O1s.
	Index No. 1001. For Phosphochalite read Phosphochalcite	212	612 25 610 23
128	Index No. 1354. For Szomolnokite read Szomolnikite.		183 1140
129	Index No. 1355 For Siderotilate read Siderotilite. Index No. 1394. For FeCO ₂ .H ₂ O read FeCO ₂ . For 133 855 read		Index No. 5967. For Octocosane read Octacosane.
-20	115 84,	274	Index No. 6054. For capronate read caproate.
131	Index No 1507. For 2 81825 read 4 13	1	Index No. 6082. For Filixic read Filicic. Index No. 6096. Delete entry
188	Index No. 1631. For Crocottite read Crocotte.	275	Index No. 6110 For caprinate read caprate.
19384	Index No. 1683. Insert Tungstenite. Index No. 1726. For UO ₁ .CO ₂ read UO ₂ CO ₃ .	278	Serial No 910. Delete entry.
136	Index No. 1728. For CO ₁ .CO ₂ read CO ₂ CO ₃ . Index No. 1819. For BN ₂ read BN. For 38 8360 read 24 8280	280	Column 3 After p-Acetylaminobenzoic acid insert
139	Index No 1990. Insert Monagite.	1	5-Acctylamino-2-ethoxybensene-1-carboxylic acid, 4078.
139 143	Index No. 2236. For Hydrophyllite read Hydrophilite	l	Column 4 After o-Acetylaminomethoxybenzene insert
149	Index No 2622. For d 29 6 read 29 88	282	5-Acetylamino-2-methoxybenzene-1-carboxylic acid, 3635. Column 4, Benzacetin Delete 3635.
152	Index No. 2807. Probably a decahydrate, c. Conroy, 54, 17: 104; 98	285	Column 1. For Cerebrin, 5931, 6153 read Cerberin, 5931
153	Index No. 2877. For 3.55 read 2.55.		Cerebrin, 6153
		1	

Page 286		Column 3. Delete 14 entries, beginning with o-Creayl acctate	PAGE 362	Column 2, line 8. For V = 0.0342a ^{1/2} read V = 0.0342a ^{1/4} .
		3150 and ending with p-Cresyl salicylate, 4743 Delete o-Cresol orthoscetate, 5779		Above Remarks Concerning the Nomenclature there should be a
290 291	,	Column 4. After m-Cymene insert p-Cymene, 3728 1 Column 4. Ergosterol Delete 5902 Column 3 Delete 2 Ethylhexane, 2942 3-Ethylhexane For 2942 1 roid 2042	363 364 366	Column 2, Note 9. For DAI read DAI. Series of Thorium, Thoron. For 0.574 read 0.0574 Column 2, Tables (b) and (c) For cm ⁻¹ read cm ² . Chemical Effects of a Particles, column 1, line 3. After a-particles
292		Ethyl hippurate For 4516 read 4077 1 Column 2, Filiere acid For 6006 read 6082 Filixie acid Delete entry	368	intert in the time the M are reacting equation, line 12. For ln read loge equation, line 12. For In read loge Column 1, line 4. For T ₁₂ read T (cf. p. 362, column 1, line 14).
*		Column 3. For Gelsemine, 5711 read Gelsemine, 5547 Gelseminine, 5711	372	Column 2, Laterature
295 300		Column 4, Jelsemine, 5547 and Jelsemine hydrochloride, 5550 Delete entries Column 4, N-Phenylthiourethane For 321 read 3201	373	(4). For 151:1751 read 150:1750. (10). 10:11 11:628 Ltt. column. For (**) read (**0).
301		Column 4, Pyrene. For 5206 read 5026	375 376	Lit column, For (*7) read (*8), Column 2. For Japan (*2) read Japan (*1).
301 302 303 304		Column 2 After Quinoneoxime insert Quinosol, 5291 Column 1, Terephthalic acid Delete entry.	377	Column 2, Hokutolite For (42) read (41). Column 2, S. For Skaldowskite read Sklodowskite.
204		Column 2. After Toluylene-3, 5-diamine insert o-Tolyl acctate, 3150		Column 2, Torbernite For (UCaPOxaq) read (UCuPOxaq)
F.#		m-Tolyl acctate, 3151 p-Tolyl acctate, 3152	379	Column 2, Y For Yitrotantalite read Yttrotantalite. Oceanic Deposits Data from (138) have been superseded by the
•		After p-Tolylantipyrene insert m-Tolyl benzoate, 4736		the author's later work (Joly, S, 24:691,12) and should read.
		p-Tolyl bensoate, 1734		No Re Re
		After p-Tolyldimethylpyraxolone insert o-Tolyl ether, 4778		speci- mens mean
		m-Tolyl other, 4779 p-Tolyl other, 4780		Blue mud
		After p-Tolyl mothic yanate sneet o-Tolyl methyl ether, 2719		"Ooze"
		m-Tolyl methyl ether, 2720		720 fath
		p-Tolyl methyl ether, 2721 After p-Tolyl mustard oil insert		199 to 2493 fath
		o-Tolyl salicylate, 4741 m-Tolyl salicylate, 4742		Radiolarian ooze
305		p-Tolyl salicylate, 1743 Column 3. After Trithoglycerol insert o-Tritolyl orthoacetate,		Red clay
306		5779.		2350 fath 1 11 0
		Column 2, Xanthine. Delete entry Property-Substance Tables, -150. Delete 2328	380	The Loctschberg Tunnel For Aplete read Aplete.
307 308		00: For 1516 read 4077 1. 96: Delete 3:2968	381	Meteorites, Remarks - For hexallydrite read hexalledrite Column 1, line 2 of table - For Anondoga read Onondaga
310		116: After 253347 insert 67. 266: After 4931 snarrt 252968.	382	Column 2, (138). For Joly, 3, 16:190.18 read Joly, 3, 16:190:08. Lines 2 and 3 of table For Felixtowe read Felixstowe.
		361: Delete 3862. 368: After 2620 insert 3862.	0.75	Line 16 of table For Frier read Friar Line 20 of table. For Charnokite read Charnockite
		292: Delete 3848	392	Characteristics of Members of Solar System
311		310 : After 1385 inacrt 3846. 93 : Delete 171		Sidereal rotation of Sun - For 25 3 read 25 0 Number of satellites - Mars - For 0 read - 2
		106: Delete 2328 116: Delete 2942.1.		Jupiter 7 9 Saturn 9 10
		116: Delete 67. 180: For 4516 read 4077 1		Column 1, line 2 bottom. For 24 da and 30 da read 24 5 da and
318		0.760: Delete 2328 and 2330		30 6 da, respectively Column 2, Constant of notation For notation read nutation.
319		CallisO ₂ . For caprotate read caproate CallisO ₂ . For caprotate read caprate		Column 2, Constant of aberration. Add this note. Astronomers now generally accept a value near 20 52, but the Paris conference
322		SrC:HA & H.O. For Strontium disulfonate read Strontium ethane disulfonate		value is used in the computation of the national ephemerides. Column 2, Solar parallax — Add this note. The direct determination
331 353		C(1H)(O)N For Glutaric amiline read Glutaricamlide (244), Sasahara For 329 read 210		(8.806") is by far the most reliable, the one from the velocity
358		Odoriferous Materials, Classification		of light is based upon the value for the constant of aberration adopted at the Paris conference of 1896, which is smaller than
		For fragante : 1 - read fragrantes Allyl Allinceous		the value now generally accepted. The two others are from the nature of the case somewhat uncertain
		empyreumatic empyreumatici tetri tebri		Column 2, Inclination of Moon's orbit to ecliptic. For about 5° read 5° 8′ 43″
		nauscosi nauscosi	394	Table 1, item 6 For meridonal read meridional
360		Column 1, line 3 For 6.06 × 10 ²¹ read 6.06 × 10 ²² Columns 1 and 2, table heading For Molecules per cerrod	398	Column 1, Greenwich, g For 981 184 read 981 188 Column 1, Kew, g For 981 144 read 981 201
		Molecules per 0.01 cm ⁴	Í	The second secon

INTERNATIONAL CRITICAL TABLES

NATIONAL AND LOCAL SYSTEMS OF WEIGHTS AND MEASURES

CHARLES-ÉDOUARD GUILLAUME AND CHARLES VOLET

Plan.—Section A: International Metric System; list of countries in which its use was compulsory on January 1, 1925, list of those in which its use was either legally optional or partially compulsory on same date.

Section B: Other modern systems; the more important units at present in use or in use before adoption of metric system.

Section C: Weights and measures of antiquity.

Style and Abbreviations.—Only the singular number of the names of the units are used; ten meters will appear as 10 meter. Units of area and of volume will be written in the form centimeter² (=cm²) and centimeter⁴ (=cm²), respectively.

i.	Value given is only approximate.
h.	Units have changed from time to time.
m²	Square centimeter – centimètre carré = Quadratzentimeter – centimetro quadrato.
urrent	Units, other than metric, which are now in use; some of the units included in this class are practically obsolete. (See Local.)
cal	Units of local or native origin or derivation which are in use, but which are embraced neither by the metric system nor by that of the central govern- ment. Applies mainly to colonial possessions (See Current)
ù,	Cubic meter = mètre cube = Kubikmeter = metro cubico.
i c.	International metric system compulsory since
O.	International metric system legally optional since
lder	Units used before adoption of international metric system.
lder =	The older units were those of
provincial	Units vary from one province or city to another
	= Since the units have been the same

A. INTERNATIONAL METRIC SYSTEM

Units are variable, not rigidly defined.

as those of

Vide = see.

far.

The decimal metric system, established in France by the Lou 7 Avril, 1795, and represented by standards deposited in the Archives de France, became international on May 20, 1875, by the action of the Convention Internationale du Mètre. The new tandards, of platinum-iridium, constructed at that time and serving as the basis of the international system, were copied from those if the Archives.

On January 1, 1925, the metric system was compulsory in:

Algeria	Greece	Peru
Allemagno	Guam	Poland
Argentina	Guatemala	Porto Rico
Austria	Haiti	Portugal and colonies
Autriche	Holland	Rumania
Belgium	Honduras	Rumin
Bohvja	Hungary	Salvador
Bruzil	Iceland	Schweden
Bulgaria	Italy & colonies	Schweiz
Chile	Japan	Herbie-Croatie-Blovéni
Colombia	Kolumbien	Seychelles Islands
Congo, Belgian	Kongo, Belgisch	Siam
Costa Rica	Kuba	Spain
Cuba	Luxemburg	Suddo
Czechoslovakia	Malta	Вшиле
Denmark	Mauritius	Svēzia.
Deutschland	Mexico	Hvizzora
Ecuador	Netherlands & colonies	Sweden
Louateur	Nicaragua	Switzerland
Espagne	Norway	Tchécoslovaquie
Filippine	Olanda	Tunis
	• · · · · ·	Ungarn
Finland	Osterreich	Ungberia.
France	Panama	Uruguay
Germany	Pay-Bas & colomes	Venesuela.
Groppóne	Philippine Islands	Yugoslavia

On the same date, it was legally optional or partially compulsory

in:		
Canada	Great Britian	Irish Free State
China	India, British	Paraguay
Egypt	india, Dillian	Turkey
Ethiopia	Ireland, Northern	United States of America

The fundamental units are Meter (m), which is the distance at 0°C between the axes of two lines ruled on the prototype deposited at the Bureau international des Poids et Mesures, Sèvres, France; Kilogram (kg), which is the mass of the prototype deposited at the same Bureau; and Liter (l), which is the volume of one kilogram of pure water at the temperature of its maximum density, under the pressure of one normal atmosphere.

The primary units of the system are the meter (m), micron $(\mu) = 10^{-6}$ meter, $gram(g) = 10^{-4}$ kilogram, liter (l), arè (a) = area of a square with a side 10 meter long, and stere (s) = volume of a cube with an edge one meter long. The units of area [of volume], characterized by the adjective square [cubic], are not derived from a primary unit, but are each defined as the area [volume] of a square [cube] with side [edge] equal to the stated unit of length. The names of other secondary units are formed by attaching to the name of a primary unit certain prefixes of unvarying significance.

1 Normal atmosphere, r p 18.

1

Secondary units.		Length	Unit Ngus
	LENGTH m = meter	1 pic (dzera à torky) = 0.640 m	1 mau = 900 1 quo = 1800
	micron* = 10 8 m	1 pic (dzera à rabry) = 0.480 m	1 - 1 - 1
μ mm	milimeter = 10 ⁻³ m	Unit Pic	Capacity
cm	centimeter = 10 2 m	1 termin = k	1 hao or shita = 28.26 l
din	decimeter = 10 ¹ m	1 rebia = 1	1 tao = 2 hao
dkm	dekameter = 10 m	1 nus = ½	Angola.—m.c. 1910.
hm	hectometer = 10 ⁷ m	Mass	Arabia.—Provincial, current
km	kilometer – 10³ m	1 ukkia = 34.13 g	Length
Mm	myriameter = 104 m	1 metical = $ca. 4.7 g$	1 covid = 0.482 m
	megameter = 106 m	Unit Ukkia	1 guz = 0.635 m
* mµ millimicron -	10 ° m μμ macromeron = 10 ⁻¹² m	1 rottolo à tharv = 16	1 cassaba = 3.84 m
		1 rottolo à khadhary = 18	1 farsakh = 4.83 km
****** ** ** ****** ***	Mass g = gram	1 rottolo à kebyr = 24	Unit Farsakh
μ ξ *	microgram = 10 * g	1 cantar = 100	1 baryd = 4
mg	milligram = 10 ⁻¹ g	rottolo	1 marhala = 8
cg	centigram $= 10^{-2} \text{ g}$	Camacity day	Mass
dg		Capacity, dry	1 maund = 1350 g
dkg	dekagram = 10 g	1 caffiso = 317.47 l	1 ratl = $ca. 460 \text{ g}$
hg	hectogram = 10 ² g	1 saah = 58 1	Unit Maund
kg	kilogram = 10 ³ g	1 tarri = 1 caffiso	1 coffilas $= 4 \stackrel{1}{\downarrow} 0$
9	metric quintal $\sim 10^{3} \text{ kg} = 10^{6} \text{ g}$	Capacity, liquid	1 voking
t	metric ton = 10 t kg = = 106 g metric carat == 200 mg	1 khoull = 163 l or 16 l	1 tukeas
('	metric carat = 200 mg	Allemagne v. Germany.	1 furzil
Symbol y also used		Anam.—var.: ch., current:	$\begin{vmatrix} 1 & \text{farecella} \\ 1 & \text{farecella} \end{vmatrix} = 10$
CAPACI	rry 1 = liter > 1 000 027 dm ³		1 bahar
μl*	microliter = 10 ° 6 1	Length	1 bokard = 150
ml	milliliter = 10^{-4} l	1 thuoc moe = 0.425 m	Capacity, dry
el	centiliter = 10 ½ l	1 thuoc de ruong = 0.470 m	1 téman = 85 l
dl	decliter = 10 ⁻¹ l	1 thuoc vai = 0 644 m	Unit Téman
dkl	dekalıter = 10 l	Unit Thuoc	1 mecmeda
hl	hectoliter = 10° l	1 ly = 0.001	1 kella = 40
* Symbol \(\lambda\) also used		1 phan = 0.01	$1 \text{ mec dema} = \frac{1}{80}$
Λ	REA m ² - square meter	1 tat = 0.1	
mm² ,	square millimeter = 10 ⁸ m ²	$\left \begin{array}{c} 1 \text{ tam} \\ \vdots \end{array}\right = 5$	Capacity, liquid
cm²	square centimeter = 10 ⁻⁴ m ²	1 ngu)	1 nusfiah = 0.79 l or
dm²	square decimeter = 10^{-2} m ²	1 truong = 10	= 0.951
a	are $= 10^2 \text{ m}^2$	1 sao = 15	Unit Nusfiah
ha	heetare $= 10^2 \mathrm{a}$	$\left\{\begin{array}{c} 1 \text{ chai vai} \\ 1 \text{ that} \end{array}\right\} = 30$	l vakia = 1 6
km²	square kilometer == 10 ⁸ m ²	1 mao = 150	1 cuddy = 4
Vo	DLUME m³ = cubic meter	1 gon = 300	1 zudda = 8
mm'	cubic millimeter = 10 ° m ⁺		Argentine Republic.—m.c.
cm ^s	cubic centimeter = 10^{-6} m ³	Mass	1887; m.o. 1863. Older,* pro-
dm³	cubic decimeter = 10 ⁻³ m ³	1 dong = 3.775 g	vincial:
km³	cubic kılometer = 10° m³	1 picul = 60 kg	Length
ds	decistere $\neq 0.1 \text{ s} \neq 10^{-1} \text{ m}^3$	Unit Dong	1 vara = 0.8666 m
8	stere -1 m^3	1 hao = 0.001	Unit Vara
dks	$dekastere = 10 s = 10 m^{3}$	1 li = 0.01	$1 \ln 6a = \frac{1}{482}$
		1 fan = 0.1	1 pulgada = 3 6
F	B. MODERN SYSTEMS	1 luong = 10	1 pié = 1
_		1 neu == 100	1 braza = 2
Abyssiniavar.: e	urrent, ca. ' 1 wakea = 1 2	1 can = 160 1 ven = 1600	1 cuadra = 150
Length	l mocha ≖ 1 0	1 yen = 1600 1 binh = 8000	1 legua = 6000
-	Capacity, dry	1 ta = 16 000	Mass
1 pic = 0.686 m	1 mudorn = 0.44.1	1 quan = 18 000	1 libra† = 459.4 g
1 farsang = 5.07 km	Lurdob = 10 or 24 madage	· .	Unit Libra
1 berri = 3 farsan	·K	Area	1 grano = 5218
Mass	Capacity, liquid	$1 \text{ ngu}^2 = 4.5156 \text{ m}^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 kuba = 1.016 l	Unit Ngu²	1 onza == 1 ¹ 6 * National system derived from old
1 rottolo = 311 g	Agypten v. Egypt.	1 thuce = 6	Spanish. Units given are those of
Unit Rottolo		1 sao = 90	province of Buenos Aires.
1 drachm = \ i	Algeria.—Since 1843 =	* By an ordinance of 1872, units	† 1 libra de farmacia = 1 libra =
1 derime = 110	France, Older:	were defined in terms of metric.	344.5 g.

Unit Libra	Capacity, dry	Mass	Unit Gus
1 arroba = 25	1 Metze = 61.489 l	1 livre = 489.5 g	1 hath
1 quintal = 100	Unit Metze	Unit Livre	1 covid } = {
1 tonelada = 2000	1 Probmetze = 10114	1 loth - g ¹ 2	1 cubit)
Area	1 Becher = 1 1/2 8	1 once = 1 ¹ 6	Mass
$1 \text{ vara}^2 = 0.75 \text{ m}^2$	1 Futtermassel = 1 7	1 marc = 1	1 seer = 317.5147 g
Capacity, dry	1 Muthmassel = 1 ⁿ	1 stein = 8 1 quintal = 100	Unit Scor
	1 Achtel = t	1 chariot = 165	1 tank - 1/2
1 fanega = 137.1977 l	1 Viertel == \(\frac{1}{4}\) 1 Muth == 30	1 balle = 200	$ \begin{array}{c} 1 \text{ pice} \\ 1 \text{ parah} \end{array} $
Unit Fanega 1 cuartilla = ‡	1 Math = 00	1 schiffpfund = 300	1 maund = 40
1 tonelada = 7.5	Capacity, liquid	1 charge = 400	1 candy = 800
1 lastre = 15	1 Mass = 1.4151 l	Arca	Area
Capacity, liquid	Unit Mass	1 arpent = 400 perche ²	Unit Are
• • • •	1 Pfiff = }	= 130.6 a	1 ground = 2.03
1 frasco = 2.375 l	1 Seidel =	Birmanie v. British India,	1 biggah # 24.68
Unit Frasco 1 octava = 1 0	1 Halbe = \frac{1}{2}	Rangoon.	1 kani = 30.75
1 cuarta = 1	1 Viertel = 10 1 Eimer = 40	Bolivia. m.e. 1893; m.o.	1 cawnie = 54 1 chahar = 2962
1 baril = 32	1 Fass = 400	1871. Older = Spain. Brazil. m.c 1862 Older *	Capacity
1 cuarter = 48	1 Dreiling = 1200	Length	1 parah = 110.1 1
1 pipa = 192	1 Fuder = 1280	1 pé = 0 33 m	Unit Parah
Austriam.c. 1876; m.o.	Balearic Islands.—r Spain.	Unit Pe	1 tipree = 128
1873. Older:	Local:	1 palmo	1 seer = 04
Length	Length	1 vara = 3 1	1 adoulie = 116
1 Fuss* = 0.316 08 m	1 canna = 1.564 m	1 passo geometrico = 5	1 candy = 8
1 Ell = 0.7792 m	1 palmos = ½ canna	1 braca ~ 63	1 garce = 80
Unit Fuss	. 1	1 legoa = 20 000	Calcutta.
$1 \text{ Punkt} = \frac{1}{128}$	Mass	Mass	Length
1 Linie = 144	1 rottolo = 408 g	1 libra = 459.05 g	1 guz* == 0.9144 m
1 Zoll = $\frac{1}{2}$	Unit Rottolo	Unit Libra	Unit Guz
1 Klafter = 6	1 libra major = 3	$ \begin{array}{rcl} 1 \text{ onza} & = \frac{1}{16} \\ 1 \text{ marco} & = \frac{1}{2} \end{array} $	1 jaob ~ 114
1 Meile = 24 000	1 corta = 9	1 arroba† = 32	1 jow ∫ 114 1 unglee ~ 48
Mass, (1) ordinary	1 quartano = 9 1 arroba = 26	1 quintal = 128	1 moot = 12
1 Pfund = $560.01 g$	1 misura = 36	1 tonelada = 1728	1 span 🧸
Unit Pfund	1 cantaro barbaresco = 100	Arca	1 covid
$ \begin{array}{c} 1 \text{ Pfennig} \\ 1 \text{ Denot} \end{array} = 5 \frac{1}{2} $	1 cantaro = 104	1 tarefa = 30 to 40 a	I naut)
i Denat)	1 cargo = 312	1 alqueire = 242 or 484 a	1 danda == 2 1 niranga == 10
1 Quentchen = $1\frac{1}{28}$ 1 Loth = $3\frac{1}{2}$	Capacity, dry	Capacity	1 coss = 2000
1 Unze = 116		1 almude = 31.944 l	Mass
1 Vierding $=\frac{1}{4}$	1 quartera = 71 97 l	1 alqueire = 40 to 320 l	1 seer = 933.04 g
$1 \text{ Mark} = \frac{1}{2}$	Unit Quartera $1 \text{ barcella } = \frac{1}{6}$	Unit Almude	Unit Seer
1 Stein = 20	1 almude = g ¹ 0	1 canada = 1 ¹ 2	1 ruttee = 76 80
1 Zentner = 100 1 Saum = 275		1 pipa = 15 1 tonel = 30	1 masha = 9 do
1 Karch = 400	Capacity, liquid	Britain, British v. Great	1 tolah = 10
	1 quartin = 27.14 l	Britain.	1 sieca)
Mass, (2) for drugs	Unit Quartin	British Indiam.o. 1920.	I chittack = 1 1 1 1 1 1 1 1 1 1
1 Pfund apoth. = \(\frac{3}{4}\) Pfund	1 quarte = 1 ² 3	Current: British and local.	1 raik = 1
= 420.01 g	1 quarta = ½6	Local, ‡ provincial	1 pally } = 5
Unit Pfund apoth.	Bavaria v. Germany.	Bombay.	I dhurra
1 Gran = 57^{10} 5 1 Scrupel = 288	Belgian Congo m.c. 1911.	Length	I maund (bazar) = 40
1 Drachme = 9^{1}_{6}	Belgiumm.c. 1820; at first	1 guz = 0.6858 m	Area
1 Unze = 1 ¹ 2	with the names aune = m, htron = 1, livre = kg, once =	Unit Guz	$1 \text{ guz}^2 = 0.836126 \text{ m}^2$
Area	hg, lood = dg, wigtje = g ,	1 tassoos = 24	Unit Guz²
	Older:	* Those of Portugal, with notable	1 chattack = 5 1 cottah = 80
1 Joch = 1600 Klafter ² = 57.557 a	Length	local differences † 1 arroba metrica = 15 kg	1 cottah = 80 1 biggah = 1600
$1 \text{ Metze} = \frac{1}{3} \text{ Joch}$	1 perche = 6.497 m	Local or national measures are	1 tenab = 2500
•	1 pied = J ₀ perche	now defined by their equivalents in British units	* Old guz = 0.915 m.
* Vienna.	1 - brow # 0 borons	•	•

	l Mass	Ceylon v. British India.	Unit	Tehi
British India Cont'd.		Chile.—m.c. 1848. Older	1 hao	= 10-4
Capacity	1 tical == 16.32 g	were from Spanish; legal values:	1 lî	= 10-3
1 pally = 50 to 5.51	Unit Tical		1 fen	= 10-1
Unit Pally	$1 \text{ runy } = 6^1 \text{c}$	Length	1 tsouen	$= 10^{-1}$
1 chattack = 80	1 pai = 1 6	1 bara = 0.836 m	1 pou	= 5
1 khoonke = gl4	1 moo = 1	Unit Bara	1 tchang	= 10
1 kunk " 1 6	1 mat = }	1 linea = 4 ⅓ ⊊	1 vin	
1 rack = 1	1 cattle = 33\frac{1}{3}	l pulgada = 30	1 van	= 100
1 soully 20	1 viss = 100	1 pié = 3	1 fen	= 120
1 khahoon == 320	1 eandy = 15000	1 cuadra = 150	1 kyo	= 300
CEYLON.	Capacity	1 legua = 5400	1 li	= 1800
•	' .	Mass	1 poû	= 18 000
Length	1 byee = 0.505 l		I thsan	= 144 000
1 covid == 0 461 m	Unit Byce	1 libra = 460,093 g	1 tou	= 450 000
Mass	I lamany = k	Unit Libra		Mass
1 candy	1 zalay = {	$1 \text{ granos} = 92^{1} 16$		
1 bahar = 226 8 kg	1 zayoot = 2	1 adarme = 2 8 6	1 liang	= 37.301 g
<i>'</i>	1 seit = 4	1 castellano = 1 0 0	Unit	Liang
Ca pacity	1 kwai == 8	1 onza $-\frac{1}{16}$	1 hao	= 0.0001
1 ammonam = 203 4 1	STRAITS SETTLEMENTS.	1 arroba = 25	1 hi	= 0 001
Unit Ammonam	Mass	1 quintale = 100	1 fen	= 0.01
1 parrah		Area	1 tsien	= 0.1
1 seer = 2 8 8		$1 \text{ bara}^2 = 0.698 896 \text{ m}^2$	1 km	= 16
Madras.	Unit Katı	Capacity, dry	1 tchin J	400
Length	1 tahil = 1 to 100	• '' "	1 kwan	= 480
1 covid = 0.472 m	1 pikul = 100	1 almude = 8.083 l	1 tan	= 1600
Mass	1 bhara = 300	1 fanega = 12 almude	1 shih	- 1920
*****	1 koyan = 4000	Capacity, liquid		Arca
1 seer == 283 195 g 1 cafh == 1 230 447 mg	Capacity	1 cuartillo = 1.111 l	1 meou	= 6000 tchi²
	1 gantang* = 4 545 96 l	1 arroba = 32 cuartillo		- 614.4 m ²
Unit Cafh	Unit Gantang	Chinam.o. 1903 with the	Unit	Meou
1 fanam = 80	1 para = 10	following names:	1 hao	= 1000
1 pagoda - 2880	1 koyan = 800	Length -	1 pou ² }	$= 2\frac{1}{4}\sigma$
Unit Seer	·	-	1 kung f	- 240
1 pagoda = x ¹ 0	Bulgaria, m.e. 1892.	kılometer = sin li	1 lyı	$= \frac{1}{1} \frac{1}{6} 0$
1 pollam	Burma v. British India.	hectometer = sin ym	I fen	$= 1_0^{1}$
i varanan j	Cambodia v. Indo-China.	dekameter = sin tchang	1 kish	772
1 powe = 1 1 vis = 5	Canadam.o. 1871. Cur-	meter = sin tchi	1 king	= 10
1 vis = 5 1 maund = 10	rent = British,† French names	decimeter = sin tshwen	1 ching	== 100
	are:	centimeter = sin fen		Volumc
•	Length	millimeter = sin li	1 tchi³	$=32.768 \; dm^3$
Area	1 pouce = 1 inch	Area	I ma	100 / 1.1
1 cawnie = 53 11 a	1 chamon = 1 link	hectare = sin khing	1 fang	= 100 tcht ³
$1 \text{ maoney } = \frac{1}{2^4} \text{ cawnio}$	1 pred = 1 foot	are = sm meou	- 1	Capacity
Capacity	1 verge = 1 vard	centare = sin li	1 cheng	= 1 035 44 1
1 puddy == 1.533 l	1 perche == 1 rod, pole	Capacity	Umt	Cheng
Unit Puddy	1 chaine = 1 chan‡	kiloliter = sin ping	1 quei	= 0.0001
1 olluck = 1	Mass	hectoliter = sin chi	1 ço	= 0.001
1 measure = 1	1 livre = 1 pound av.	dekaliter = sin teou	1 chao	= 0.01
1 marcal = 8	1 cent	liter = sin cheng	1 yo	= 0.5
1 parah = 40	1 quintal = 1 hundred weight	deciliter = sm ho	1 khô	= 0.1
1 garce = 3200	1 tonneau = 1 short ton	centiliter = sin cho	1 to	= 10
Rangoon.	Area	millditer = sin tshwo	1 hou	= 50
Length		Great diversity in national	1 cher	
1 sandong = 0.5588 m	1 arpent = 34.196 a	system; since 1908, defined by	1 sei	= 100
	Capacity	metric equivalents. (The or-	1 ping	= 500
Unit Sandong	1 pinte = 1 quart	thography here employed is		lapacity, liquid
1 palgat $\frac{\pi}{2} \frac{1}{2}$ 1 taim $\frac{1}{2}$	1 chopine = 1 pint	arbitrary; there is diversity in	1	. "' '
$ \begin{array}{ccc} 1 & \text{taim} \\ 1 & \text{cubit} \end{array} $	1 boisseau = 8 gallons	provincial pronunciation.)		s are measured by
r cubit)	1 minot = 39.025 l	Length	weight.	e, Cipro v. Cyprus.
1 hambaa	* Gantang - British gallon	"		
$ \begin{array}{c c} 1 \text{ bamboo} \\ 1 \text{ dha} \end{array} = 7 $	Old French measures have been			1-China v. Indo-China. bia.—m.c. 1854, but
1 oke thapal = 140	used, but only minot and arpent are	Unit Tchi 1 hoé = 10 ⁻⁶		
1 dain = 7000	now in use.	$1 \text{ hoé} = 10^{-6}$ $1 \text{ su} = 10^{-5}$		g, derived from metric are current:
a dout IVIV	Cunther's.	1 1 24 - 10 -	, system,	are current.

Length	Capacity	Capacity	Unit Pott
1 vara = 0.8 m	1 bocov = 136.271	1 merice* = 70.6 l	1 viertel = 8
Unit Vara	1 barrile = { bocoy	1 kama	$1 \text{ fod}^3 = 32$
1 pulgada ≃ 2 ^l 7	Cyprus British system.	$\begin{vmatrix} 1 & \text{strych} \end{vmatrix} = 93.592 1$	1 anker* = 40
1 cuarta = 1	Accepted equivalents:	Denmarkm.c. 1912; m.o.	1 ohm * = 160 1 oxhoft * = 240
1 cuadra = 100	Length	1910. Older:	t oxhoft* = 240 t pipe* = 480
1 legua = 6250	1 pie = 2 foot	Length	1 fuder* = 960
Mass	= 0.6096 m	1 fod == 0.313 857 m	Deutschland r. Germany.
1 libra = 500 g			Dutch East Indies.—Same as
Unit Libra	Mass	Unit Fod 1 lime = 1 / 1	Netherlands, Old Dutch and
$1 \text{ onza} = 1^{1} \text{g}$	1 oke = 2.8 pound av = 1270 06 g	1 tomme $= \frac{1}{12}$	local measures are also used.
1 arroba = 25	1 moosa * = 50 700 g	1 aln = 2	Latter very variable; recently
1 quintal = 100		I faon, favn ~ 6	they have been legally defined
1 saco = 125	Unit Oke 1 drachme = 100	1 ruthe = 10	by their metric equivalents.
1 carga = 250	1 rottolo = 0.44	1 mul == 24 000	Current:
1 tonelada = 2000	1 stone 5	Mass	Length 1 depa == 1.70 m
Arca	l kantar – 11	1 pund = 500 g	l
$1 \text{ vara}^2 = 0.64 \text{ m}^2$	1 kantar (Aleppo) = 180	•	Umt Depa 1 hasta = 1
1 fanegada = 10 000 vara²	1 ton = 800	Unit Pund $1 \text{ es} = \frac{1}{9} \frac{1}{15} \frac{1}{2}$	1 kilan = 1
Cirénaïque v. Tripoli.	Area	1 ort = 512	Mass. (1) Ordinary
Congo, Belgian.—m c. 1911. Costa Rica, Guatemala,	+ = 1600 yard?	$\begin{array}{ccc} & & & & & & & & & & & \\ 1 & \text{quintin} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ \end{array}$	1 mkal
Honduras, Nicaragua, Salva-	1 donum = 13.378 a	1 loth	1 pecul > = 61.761 3025 kg
dor.—m.c. 1912 by a joint con-	1 scala — 1 donum	Lunze 16	Unit Pikol
vention; in partial use at earlier	Capacity	1 mark = }	1 thail = 16100
dates. Older (modified Span-	1 oke = 1.278 55 l	1 bismerpund 12	Lt cutte
ish, English, and local):	1 cass = 4.73 l	1 hspund → 16	1 kabi } = 1 60
Length	1 kile† + 36 368 l	1 wog = 36	1 kulack = 0.0725
1 vara = 0.8393 m (Costa Rica)	1 medimne = 75.05 l	1 minutal	1 amat 2
= 0.8359 m (Guatemala)	1 kurtos = 4 oke	1 centner = 100	1 small bahar = 3 1 large bahar = 4.5
= 0 8128 m (Honduras)	1 kouza = 8 oke 1 gomari = 128 oke	1 skippund = 320	1 timbung = 5
Unit Vara	Cyrenaïca r. Tripoli.	1 skyplast = 5200	1 kojang
1 cuarta =	Czechoslovakia.—m.c. 1876 ‡	I quint = 0.1	(Batavia) = 1667.555 kg
1 tercia = { 1 mecate = 24	Local:	1 ort = 0.01 1 kvint = 0.001	1 kojang
Mass	Length		(Semarang) = 1729.316 kg
1 caja = 16 kg	1 latro = 1.917 m	Area	1 kojang (Soerabaya) = 1852.839 kg
1 fanega = 92 kg	Вонеміл.	1 tondelande = 55.162 a 1 tonde = 283.69 a	Mass. (2) For precious metals
1 carga = 161 kg	1 stopa § = 0.296 m		1 thail = 54,090 g
Area	1 sah = 1.778 m 1 mile = 7.003 km	Unit Tonde 1 penge = 3 \ 8	Unit Thail
$1 \text{ manzana} = 10 000 \text{ vara}^2$	PRAGUE	$\begin{array}{ccc} 1 & \text{album} & & & & & \\ 1 & & & & & & \\ \end{array}$	1 wang = 18
$= 6960 5 \text{ m}^2 \text{ (Costa}$	1 loket - 0.593 m	1 fjerdingar = 312	1 tali = 16
Rica)	Moravia.	1 skiepper – 1	1 soekoe ≖ å
$= 6987 \ 4 \ m^2 \ (Guat-$	1 stopa§ = 0 284 m	1 pflug = 32	1 read = ½
emala) = 6987.4 m² (Nica-	1 loket = 0.594 m	Capacity, dry	Mass. (3) For opium
ragua)	Silesia.	1 korntonde = 139.12 l	1 thail = 38.601 g
1 caballeria = 64 manzana	1 loket = 0.579 m	Unit Korntonde	Unit Thail
Capacity	1 mile = 6.483 km	1 pott = $\frac{1}{144}$	$\begin{array}{ccc} 1 & \text{tii} & = 0.1 \\ 1 & \text{tiii} & = 0.1 \end{array}$
1 botella = 0.63 to 0 67 l	Area	1 achtel = \mathfrak{g}_4^1	$ \begin{array}{c c} 1 \text{ tjembang Mata} \\ 1 \text{ hoen} \end{array} = 0.001 $
1 cajuela = 16.6 l	Вонеміл. 1 merice — 19.99 a	1 viertel = a ¹ 2	Area
Cuartillo is very variable.	1 merice - 19.99 a 1 korec	$ \begin{array}{c c} 1 \text{ skieppe} \\ 1 \text{ ottngkar} \end{array} = \frac{1}{8} $	1 habon
Cubam.e. 1858, but others	1 strych - 28 78 a	1 fjerdingkar = 1	$\left \begin{array}{c} 1 \text{ bathoe} \\ 1 \text{ bouw} \end{array} \right = 70.965 \text{ a}$
(old Spanish, American, and	1 mira	1 last = 22	1 lieue² f = 55.0632 km
local) are current:	Unit Koree	Capacity, liquid	Volume
Mass	1 jitro = 2	1 pott = 0.9661 1	$1 \text{ kojang} = 1.976 \ 362 \ \text{m}^3$
1 tonelada = 1015.65 kg	1 lan = 60	Unit Pott	1 toembak = 6.684 m ³
1 tercio = 72.22 kg	* Moosa = hundredweight	1 paegel = 1	Capacity, dry
Area	† Kile = bushel. ‡ Old Vienna (r. Austria) and some	1 kande = 2	1 kojang = 2011.2679 l
1 caballeria	local measures were still in use when	1 stubchen = 4	1 pikol = 3 ¹ 5 kojang
Cubana = 1342.02 a 1 cordele = $\frac{1}{3}\frac{1}{2}4$ caballeria	the state was established Stopa = strevic.	* Moravian.	* Variable † Geographic.
= 33.400 894 Capaneras	· · · · · · · · · · · · · · · · · · ·		

Putch Past Indias - Contid	England v. Great Britain.	Mass	Unit Livre
Dutch East Indies.—Cont'd.	Equateur v. Ecuador.	1 kasm = 3.90 g	1 quintal = 100
Capacity, liquid	Britrea.—m.o. Local, pro-	1 neter = 336 g	1 millier = 1000
(Legal equivalents)	vincial.	1 farasula* = 13.478 kg	Unit Livre (Ch)
Unit Liter		I farasula † = 16.85 kg	1 sol = \frac{1}{2}0
$1 takar^* = 25.770$	Length	1 farasula‡ = 17.072 kg	$\begin{array}{ccc} 1 & \text{denier} & = 21 & 0 \\ 1 & \text{denier} & = 21 & 0 \end{array}$
$1 \text{ kit}^* = 15.159$	1 cubi = 0.32 m	Unit Kasm	1 obole = 485
1 koclak* = 3 709	1 emmet = 0.46 m	1 mutagalla = 2	$\begin{array}{ccc} 1 \text{ grain} & = \frac{480}{5760} \end{array}$
$1 \text{ kan} \dagger = 1.5751$	I derah	l alada = 4	Area
$1 \text{ mutsje}_{\uparrow} = 0.1516$	Mass	1 wogiet = 8	
1 pintje* = 0.0758	1 rotolo = 448 g	Capacity	1 pied ² = $0.10552 \mathrm{m}^2$
Ecuador m.c. 1865, but the	I okia. ≔ 1 ¹ 6 rotolo	• •	Unit Pied ²
British and, more generally the	1 gisla = 163 kg	1 menelik = 11 (approximate)	1 toise ² = 36
old Spanish, measures are	Capacity	Filippine v. Philippine. Finlandm.c. 1892; m o.	1 perche de Paris = 324
currently used.	$1 \text{ mess\'e} = 1.50 1$	1887. Older (Russian and	1 perche des Eaux
Egypt. m o. 1873; m e m	Unit Messé	local):	et Forêts = 484
government use, 1891. Cur-	1 cabaho ≠ 4	Area	1 arpent de Paris = 32 400
rent:‡	1 tanica		1 arpent des Eaux
Length	Lghebeta = 16	1 tunnland = 46 54 a	et Forêts = 48 400
1 diraa baladi = 0.58 m	1 entelam = 128	Capacity	$Capacity,\ dry$
1 kassabah = 3.55 m	Espagne v. Spain	1 tunna = 163.491	1 boisseau = 1.862 78 l*
Unit Diraa	Esthonia.—Russian and local	$1 \text{ kannor} = \frac{1}{6} \text{ tunna}$	Unit Boisseau
1 kirat - 2 4	Current:	1 ottingar = 15.71 l	1 litron = 10
labdat - 1	Length	1 sextingkar = ½ ottingar	1 quart = 1
1 kadam - 1	1 archine (Rus-	France m.c. 1794. Other	1 minot = 3
I pie = Î	sian) = 0.7112 m	legal units.	1 mine = 6
1 gasab == 4	1 elle (Livonian) = 0.6096 m	Length	1 setier = 12
1 mil hachmi = 1000	Unit Archine	1 mille marin = 1852 m	1 muid = 144
1 farsakh ~ 3000	1 elle (Kuunar) = 0.75	Volume	Capacity, liquid
Mass	1 faden = 3	1 tonneau de jauge = 2.83 m ¹	1 muid = 274.239 1†
1 oke = 1248 g		1 tonneau de mer = 1.44 m³	1 muid = 268.2411 ‡
Unit Oke	Mass	Old measures derived from	1 pinte = 0.931 389 1§
1 kirat = 8 1 0 0	1 pfund = 130 g	the system of Charlemagne are:	· ·
1 dirhem = 460	Unit Pfund	Length	Unit Pinte Troquille = 3 ¹ 5
1 miskal = 880	1 quent 1 2 s	1 toise§ = 1.949 0365 m	1 posson = 1
1 okieh = 0.03	1 loth $= \frac{1}{32}$	1 toise§ = 1.949 090 m ¶	1 demi-setier = 1
1 rotoli = 0.36	1 hespfund = 20	Unit Toise	1 chopine = 1
1 kantar = 36	1 centner = 120	1 ligne = 1 1	$1 \text{ pot} \qquad = 2$
1 helm = 200	1 tonne = 240	1 pouce = 1/2	1 velte = 8
Area	1 schiffspfund = 400	1 pied = 1	1 quarteau = 72
1 feddan = 42.008 a	Area	1 aune = 0.6064	1 feuillette = 144
	Reval	1 lieue = 2280.3	1 muid = 288
	1 lofstelle = 18 55 a	1 mille marin = 950.13	Frância, Isola di v. Mauritius.
1 sahme = 5 to	1 tounland - 54 627 a	1 lieue marine = 2850.4	Frankreich v. France.
1 kirat kamel == 2 ¹ 4 1 feddan masri == 1	Livonian 1 lofstelle = 37 1 a	Mass	Germanym.c. 1872. Since
	i i	1 livre** = 489.505 85 g	the beginning of the nineteenth
Capacity	1 tonnland = 51.94 a	Unit Livre	century, the other units and
1 keddah = 2.0625 l	Capacity	1 grain = $\frac{1}{9216}$	their interrelations have been
Unit Keddah	1 hulmit = 11.48 l	1 scruple = 3 1 4	fairly definite, but before that
$1 \text{ kirat} = 3^{1} 3$	Unit Hulmit	1 gros	there was great diversity.
1 khanoubah = 1/6	1 lof (Reval) = 3	$\left \frac{1}{1} \frac{1}{2} \frac{1}{8}\right $	Length: fundamental unit was
1 toumnah = 1 1 robhah = 1	1 lof (Livonian) = 6	1 once $=\frac{1}{16}$	Fuss (foot), its value, depend-
1 nisf keddah = 1	1 tonne (Livonian) = 12	1 marc $\dagger \dagger$ = $\frac{1}{2}$	ing upon the state, varied from
1 malouah = 2	Etablissements des Détroits	* For ivory.	0.280 to 0.320 m. The one
1 rob	r. British India.	† For coffee.	most extensively used was the Rheinlandischer Fuss (Rhenish
1 roubouh	Etats-Unis v. United States.	‡ For rubber. § Toise de Perou at 16 25°C	foot) = $0.313857 \mathrm{m}$, $Mass$:
1 keila = 8	Ethiopia.—var. Current	Equivalent made legal in 1799	fundamental unit was Pfund
1 ardeb = 96	Length	¶By measurement, in 1887, by	*From 1 mud = 268.241 1 by
1 daribah = 768	(Approximate only)	J R. Benoit ** One livre de Charlemagne	relation 144 boisseau = 1 muid (see
• For oil	Unit cm	367.128 g	Capacity, Liquid).
† For various products	1 tat = 2.5	tti Marc de la Rochelle = 244 75 g	† Legal value.
In national system, units and their interrelations were very variable.	1 gat = 8	1 Marc de Limoges = 240 93 g 1 Marc de Tours = 237 87 g	Derived from concrete stand-
but since 1891, have been defined by	1 sınzér = 16	1 Marc de Troyes et	From 1 mud = 268.241 l by
their metric equivalents.	1 kend = 49	Paris = 260 05 g	relation 288 pints = 1 muid.

(pound), its value generally	Capacity, dry	set in a bronze bar preserved at	Avoirdupois (av.)
varied little from 467 g; during	1 Metze = 3.435 89 1	the Standards Department of	(General use)
transition period preceding 1872	Unit Metze	the Board of Trade, Mass	Unit Pound
the accepted equivalents were	1 Quart = 1	The pound avoirdupois is the	l
Pfund = 30 Loth = 300 Zeut	1 Zoll ³ = 1 1/2	mass of a certain platinum	
= 3000 Korn; Centner = 100	1 Scheffel = 16	standard, similarly preserved.	1 ounce (oz.) = 16
Pfund. Older:		Capacity The gallon is the	
BAVARIA.	Capacity, liquid	volume of 10 pounds avoirdu-	stone = 8
Length	1 Quart = 64 Zoll ³	pois of pure water, as weighed	1
1 Fuss = 0.291 86 m	1 Quart = 1.145 03 1	in air against brass weights, the	• • • • • • • • • • • • • • • • • • • •
1 Elle = 0.833 01 m	Unit Quart	water and air being at the tem-	1 cental - 100
	1 Anker = 30	perature of 62°F and the bar-	1 hundred-weight
	1 Eimer = 60	ometer at 30 inches. In official	(cut.) - 112
1 Linie = 1 4 4	1 Ohm = 120	comparisons, the density of	1 wey - 252*
1 Zoll = 1/2	1 Oxhoft = 180	brass is taken as 8.143 g 'em².	1 load)
1 Ruthe = 10	1 Fuder == 720	Some of the units in the follow-	1 ton = 2240
1 Chauseemeile = 25 406	Würtemberg,	ing tables are not in current use.	Troy (t.)
Mass	Length		(For precious metals)
1 Pfund = 560 g	1 Fuss = 0 286 49 m	Length	·
Unit Pfund	Unit Fuss	1 vard* (yd.) = $0.914.3992$ m	Unit Grain
	1 Linie = 0 01	1 foot (ft.) == \frac{1}{3} yd.	1 pennyweight (dwt.) = 24
1 Gran = $\frac{76^{1}80}{512}$ 1 Pfennig = $\frac{512}{512}$	1	= 30.479 97 cm	1 ounce (oz.) = 480
	1 Zoll = 0.1	1 mch (in.) = 3 t yd.	1 pound (lb.) - 5760
$ \begin{array}{rcl} 1 & \text{Quint} & = 1 \frac{1}{2} \frac{1}{6} \\ 1 & \text{T-Ab} \end{array} $	1 Elle = 2 144	≈ 2.539 998 cm	A pothecary (ap.)
$\begin{array}{ll} 1 \text{ Loth} &= \frac{1}{3} \\ 1 \text{ More } & & \\ \end{array}$	1 Ruthe = 10	Unit Inch	(For dispensing drugs)
1 Unze = 1 n	1 Meile ≈ 26 000	1 mil == 0.001	· · · · · · · · · · · · · · · · · · ·
1 Z entner = 100	Mass	1 point = $\frac{1}{2}$	Unit Grain
Area	1 Pfund = 467.728 g	l line ∞ j¹2	1 scruple (s.) = 20
1 Morgen	1 Apotheker-Pfund = 357 647 g	I barleycorn = 3	1 drachm (dr.) = 60
1 Tagwerk = 34 072 a	Unit Pfund	1 nail = 2 25	1 ounce (oz.) = 480
1 Juchert	1 Quentlein = 10	1 palm ≈ 3	1 pound (lb.) = 5760
= 400 Ruthe ²	$1 \text{ Leth} = \frac{1}{82}$	1 hand = 4	Area
Capacity, dry	1 Mark = 3 2	1 span	1 inch² (sq. in.)
• " '	1 Zentner = 104	1 quarter = 9	= 6.451 5898 cm ⁴
1 Metzen = 37.0596 1	Area	1 foot = 12	1
Unit Metzen	1 Ruthe ² = 8 207 66 m ²	1 cubit = 18	$\begin{array}{c} 1 \text{ foot}^2 \text{ (sq. ft.)} \\ = 929.0289 \text{ cm}^2 \end{array}$
1 Dreissiger $= \frac{1}{3}g$	1 Morgen = 384 Ruthe ²	1 pace = 30	l .
1 Massel = $\frac{1}{8}$	1 Juchart \ 570 D. d. a	1 yard = 36	1 yard² (sq. yd.)
1 Scheffel = 6	$\left \frac{1 \text{ Tagwerk}}{1 \text{ Tagwerk}} \right = 576 \text{ Ruthe}^2$	1 ell = 45	= 0.836 1259 m ³
Capacity, liquid	'''	Unit Foot	$1 \text{ acre } (\Lambda.) = 4046.849 \text{ m}^2$
1 Masskanne = 1.069 03 1	Capacity, dry 1 Simri = 942.125 Zoll ³	1 fathom = 6	Unit Foot ²
Unit Masskanne		,	1 inch2 = 114
1 Zoll ³ $= \frac{1}{43}$	≈ 22.1533 l	1 pole	1 yard ² = {
1 Eimer = $60 \text{ or } 64$	Unit Sımri	1 rod (rd.) = 16.5	Unit Yard:
1 Fass = 1600	1 Viertelein = 12 g	1 perch	1 pole? (sq. po.)
Prussia.	$1 \text{ Erklein } = {}_{3}^{1}{}_{2}$	1 rope == 20	1 rod ² = 30.25
	1 Vierling == 1	1 chain† = 66	1 perch²
Length	1 Scheffel = 8	1 skein = 360	1 chain²†
1 Fuss = $0.313 857 \text{ m}$	Capacity, liquid	1 furlong = 660	(ch.) = 484
Unit Fuss	1 Maass = 78.125 Zoll ¹	1 cable length = 720	1 rood = 1210
I Linie = $\frac{1}{14}$	≈ 1.837 05 l	1 mile (statute) = 5280	1 acre (A.) = 4840
$1 \text{ Zoll} = \frac{1}{1}$	Unit Maass	1 mile (nautical) = 6080	· ·
1 Ruthe = 12	1 Schoppe = 1	1 knot	Unit = Acre
1 Meile = 24 000	1 Imi = 10	1 league = 15 840	1 mile² (sq. mi.)
1 Elle = 25.5 Zoll	1 Eimer == 160	Мавн	= 640
Mass	1 Fuder = 960	1 pound avoirdupois (lb. av.)	Volume
	Gioppône v. Japan.	= 453.59245 g	1 yard² (cu. yd.)
1 Pfund = 467.711 g	Great Britain, Irish Free	= 7 000 grain	= 0.764 552 85 m
Unit Pfund	State, and Northern Ireland	$1 \text{ grain (gr.)} = 64.798 \ 182 \text{ mg}$	1 foot ³ (cu. ft.)
1 Quentchen = $\frac{1}{9}$	m.o. 1864. Since 1898, the	(Three systems: avoirdupois,	1
1 Loth = $\frac{1}{3}$ 2	national measures are convert-	troy, apothecary.)	= 28 316.77 cm ³
1 Stein = 22	ible to metric by the legally	* This is the present legal equivalent	1 inch³ (cu. in.)
1 Centner = 110	sanctioned factors given below.	of the imperial yard; recent compari-	= 16.387 0253 cm
1 Schiffspfund = 330	i sanctioned factors given octow i		I I wit Wood?
		sons by the National Physical Lab-	Unit Foot ³
-	National fundamental units de-	oratory show that the yard as defined by the Weights and Measures Act of	1 inch ³ = 17 ¹ 28
Area	National fundamental units defined thus: Length: The yard is	oratory show that the yard as defined by the Weights and Measures Act of 1878 = 0 914 3987 m.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-	National fundamental units de-	oratory show that the yard as defined by the Weights and Measures Act of	1 inch = 1728

Great BritainCord'd.	Capacity	Iceland.—m.c. 1907. Older	Length
Unit Foot ^a	1 oka = 1.333 to 1.340 l	(analogous to Danish) were	1 muoi mètre = 1 m
I register	1 bard = 74.236 l	defined by their metric equiva-	Mass
ton = 100	Grossbritannien v. Great	lents.	1 pram rôi = 1 kg
1 rod = 1000	Britain.	Length	1 muoi gramme = 1 g
Capacity, dry	Guam Metric is compul-	1 fet = 0.313 85 m	1 hocsep = 60 kg
1 gallon (gal.) = 4.545.9631.1	sory	1 sjomila = 1855 m	
1 bushel (bu.) - 8 gallon	Guatemala r. Costa Rica.	Unit Fet	Capacity
= 35 367 7048 1		t lina = 1 1 4	1 muoi litre ≔ 1 l
Unit Gallon	Guinea. m.c. 1910. Older =	1	1 sesep litre = 40 l
1 quartern = ½	Portugal, England, and local:	1 alm = 2	Irish Free State v. Great
1 peck == 2	Length	1 faðmur = 6	Britain.
1 bucket = 4	1 pik = 0 578 m	1 mila a landı — 24 000	Islande v. Iceland.
1 bushel ± 8	1 jacktan = 3 658 m	Mass	Italian coloniesMetrie
1 firkm ~ 9	·	1 pund $= 0.5 \text{ kg}$	compulsory.
1 kilderkin — 18	Mass	•	Italy. m.c. 1861; adopted m
1 barrel 36	1 benda = 64.2 g	Unit Pund	Milan as early as 1803, with the
1 hogshead 63	1 kantar == 977 kg	1 mark = 2 1 fisk = 8	following names:
1 puncheon = 81	1 gammell = ¦ kantar	1 fierding = 40	Length
1 butt - 126	Unit Benda	1 herding = 40 1 hespund = 64	metro = m
Unit Bushel	$1 \text{ nkey} = \frac{1}{48}$	1 tunna smjors = 224	palmo = dm
1 strike 2	1 mediatabla — 3^12	1 skinnund	dito = em
1 snek	1 aguirage = ± 1/6	1 batt = 320	atomo = mm
I bug	1 quinto = 3 ³ ∑	,	16
1 coomb = 4	$\left\{\begin{array}{c} 1 \text{ piso} \\ 1 \text{ piso} \end{array}\right\} = \frac{1}{8}$	Area	Mass
1 quarter = 8	I HZHII)	1 ferfaðmur = 3 546 m²	libbra nuova = kg
1 seam 8	1 seron $=\frac{3}{16}$	$1 \text{ fermila} = 56.7383 \text{ km}^2$	oncia = hg
1 chaldron 32*	1 benda (offa) $= \frac{1}{2}$	Unit Ferfa ðmur	grosso = dkg
1 wey (= 40*	Haiti. m.c. 1921. Older =	1 ferpumlungur = $\frac{1}{5.184}$	denar = g
1 load 1 last 80*	British, old French, and Span-	1 ferfet - 3 6	grano = dg
	ish; legal equivalents during	1 feralm - 1	Capacity
Capacity, Liquid	transition period:	1 tundagslatta = 900	soma = hl
1 gallon (gal.) ~ 4 545 9631 l	Length	1 engjatergur = 1600	mina = dkl
Unit Gallon	·	Capacity	pmta = 1
1 gill	1 toise = 1 9488 m 1 aune = 1 188 m	1 pottar = 3 ¹ 2 fet ³	coppo = dl
1 quartern = 3 ¹ 2	1 attue = 1 155 m	= 0.96611	Older, provincial:
1 noggin	Area	Unit Pottar	Length
1 pint = 1 1 quart = 1	1 carreau = 1292.3 m	1 kornskeppa = 18	1 piede liprando = 0.51377 m
	Volume	1 anker = 39	Unit Piede lip.
1 pottle ½ Greece, m.e. 1922; m.o.		1 almenn turma = 120	1 punto = 1 1 4
1836, Older.	1 bard = 0.1 m ³	1 ôltunna = 136	1 oncia = 1 2
	1 corde = 3.84 m ³	1 korntunna = 144	1 canna = 4
Length	1 toise = 8 m ³	India r. British India; r. Indo-	1 trabucco = 6
1 piki varies 0 640 to 0 670 m 1 pie = 4 piki	Holland v. Netherlands.	China.	1 miglio = $4333\frac{1}{3}$
1 small pikt of Con-	Honduras v. Costa Rica. Hungary m c. 1876. Older	Indies, East v. British India;	Mass
stantinople 0.648 m	= old Vienna	r. Dutch East Indies.	1 libbra = 307 to 398 g
1 large piki of Con-	- Old Viellin	Indo-China, British v. British	Unit Libbra
stantinople = 0.669 m	Length	India.	$1 \text{ grano } = \frac{1}{6912}$
1 piki (masoniv) = 0.750 m	1 mertfold name	Indo-China, French:	$\begin{array}{ccc} 1 & \text{denaro} & = 2 & 8 & 8 \end{array}$
Mass	$\left \begin{array}{c} 1 \text{ meiter} \\ 1 \text{ meile} \end{array}\right\rangle = 8.3536 \text{ km}$	COCHIN CHINAm.c. 1911, with the names:	1 ottavo = 18
1 dramme = 3.2 g	$\left \begin{array}{c} 1 \text{ marok} \\ \vdots \\ 0.105 36 \text{ m} \end{array}\right $	1	1 oncia = 1 2
1 livre (Venetian) = 450 g	1 faust \(\)	Length	1 rubbo = 25
1 mna = 1 5 kg	Area	1 môt thuộc = 1 m	1 cantaro = 150
1 mine (royal) = 1.5 kg	1 hold = 43.16 a	Mass	Area
1 oka† = 1 280 kg	1 joch = 43.16 a	1 một cấn tây = 1 kg	Laundrao)
1 oka = 1.250 to	1 meile ² = 6978 ha	1 một dòng cần tây = 1 g	$\begin{vmatrix} 1 & \text{quadrao} \\ 1 & \text{giornata} \end{vmatrix} = 38 \text{ a}$
1.333 kg		1 picul = 60 kg	1 tavola = 100 giornata
	Volume	. "	Capacity, dry
1 stater $= 56.32 \text{ kg}$		Capacity	Capacity, ary
1 stater $= 50.32 \text{ kg}$ 1 talanton $= 150 \text{ kg}$	1 eimer = 54.30 l	1	1 mino - region 10 to 100 1
	I ballon)	1 vuông một bat tây = 1 l	1 mine = varies 12 to 120 l
1 talanton = 150 kg Area		1 vuông một bat tây = 1 l 1 vuông một gia = 40 l	Capacity, liquid
1 talanton = 150 kg	t halbe = 1 cimer	1 vuông một bat tây = 1 l	

1820.

Length

- 58 T

- 1.1 1

Length

Mass

= dl

≈ 1

~ (1)(1

= hl

Length

Mass

* \msterdam.

= 18 cuartillos

```
Tanan.-m.o. 1893. Before
                                     Kuba v. Cuba.
                                                                                  Lenath
                                                                                                          Morocco.-m.o.; local, var.:
1891, great diversity; since
                                     Latvia.-m.o. Russian and
                                                                     1 foot = 0.2836 m
1891, fundamental units de-
                                   local measures since 1845. Old
                                                                     1 canna = 2 088 m
                                                                                                        1 cubit
                                                                                                                   = 0.533 m
fined by metric equivalents.
                                   measures were those of Hol-
                                                                     I palmo = 1 canna
                                                                                                        1 canna
                                   land
                                                                                  Mass
                                                                                                        1 pie - 0.61 m
            Length
                                               Length
                                                                      1 rottolo = 1.75 lb. av.
                                                                                                        I tonni = 1 pie
1 shaku* = 18 m
                                                                               \approx 0.793.79 \text{ kg}
                                   1 elle
                                                     = 0.537 m
          = 0.303 0303 m
                                                                                 Rottolo
                                   1 quartier
                                                      = } elle
                                                                        1'mit
                                                                                                        1 rotal
  Unit
            Shaku
                                                                                                                  ∞ 507.5 g
                                   1 meile
                                                      = 7 verste
                                                                     1 parto = 4 10
1 ehi
          = 10-5
                                                                                                        1 artal
                                                                     1 ounce = 10
                                                        (Russian
          = 10 4
                                                                                                        1 gerbe
                                                                                                                  ** 3 kg
1 mA
                                                      = 7.468 km
                                                                     1 cantaro = 100
                                                                                                                 = 22 rotal
                                                                                                        1 kulu
1 rin
          = 10 -3
                                                                                Capacity
                                                                                                        1 kantar = 100 rotal
          = 10 2
                                                11....
1 bu
          = 10 1
                                   1 nfund = 419 g
                                                                      1 caffiso = 20 457 l
1 gun
                                                                                                                    Capacity
                                                                      1 bard == 43.162 l
1 \text{ vabiki} = 2.5
                                     For secondary units, see Es-
                                                                                                        Lanhh
                                                                      1 \text{ salma} = 290.944 1
                                   thoma
1 hiro
          = 5
                                                                                                        1 fanega
          = 6
                                                                        Marokko v. Morocco
1 ken
                                                1.00
                                                                                                        1 mudd
                                                                        Mauritius and Seychelles
1 iô
          - 10
                                                                                                        1 almude
                                                  - 1.4864 a
                                   1 kapp
1 chó
          = 360
                                                                      Islands, m.e. Older - old
                                                                                                          Mozambique r. Portuguese
                                    Unit
                                                    Kapp
1 rit
          = 12.060
                                                                      French British, and the follow-
                                   1 pourvete
                                                                                                        Post Africa
                                                 . 95
                                                                      iner.
                                   1 loofstelle
                                                                                                          Netherlands, --m.c.
             Mars
                                                                                 Capacity
                                   1 tonnstelle -- 35
                    = 1,3 kg
                                                                                                        with the names:
1 bwan
                                                                      1~\mathrm{cash} \, = \, 227.11~\mathrm{l}
                    = 3.75 \text{ kg}
                                               Volume
                                                                      Lvelt = 30 cash
                       Kwan
                                   1 \text{ faden} = 4.077 \text{ s}
  Unit
                                                                                                        streep = mm
                                                                        Mexico, m.e. 1896; m.o.
1 shi
                    = 10 -
                                                                                                        dum = em
                                                                      1857. Older (from Spanish,
                                              Canacitu
                     = 10 °
1 mô
                                                                                                        palm = dm
                                                                      Castillian), legally defined, dur-
                                   1 stoof
                                              ≈ 1 2752 Î
                     = 10 ·
1 rin
                                                                                                        elle - m
                                                                      ing transition period, in terms
                                     Unit
                                                Stoof
                    -- 10 ¥
1 fun
                                                                                                        roede = dkm
                                                                      of metric equivalents:
                                   1 kanne
                                              - 9
                     = 10 4
                                                                                                        mijle = km
1 candareen
                                   1 kulmet == 9
                                                                                  Length
1 mommé
                     - 10:3
                                                                                = 0.838 m
                                   Lanker ~ ~ 30
                                                                      1 vara
                     = 0.004
1 nivo
                                   1 poure
                                                                                                         korrel = dg
                                                                        Past
                                                                                   Vara
I hyaku-mé
                     -0.10
                                             -- 54
                                   1 loof
                                                                                                        wintle = g
                     = 0.16
                                                                      \begin{array}{c} 1 \text{ linea} \\ 1 \text{ pulgada} = \frac{1}{3} a \end{array}
                                                                      1 linea
1 kin
                                                                                 - 132
                                             = 108
                                                                                                        lood ≔ dkg
                                   Lionne
t ninsoku-ichi-nin
                   - 7
                                                                                                         once = hg
                                     Lettonie v. Latvia.
                    - 16
                                                                      1 pie
1 kiyak-kın
                                                                                                        pond - kg
                                     Luxemburg. m.e. 1820 Pre-
 1 karus harr-ichi-da = 18
                                                                      1 legua
                                                                                 - 5000
1 komma-ichi-da
                                   viously used a local unit
                                                                                                                Capacity, dry
                                                                                   Mass
                                   1 malter = 191 l.
                                                                                                         maatie = dl
                                                                      1 libra
                                                                                = 460 246 34 g
              Area
                                      Malacca.
                                                                                                         kop ~ 1
                                                                        Unit
                                                                                  Libra
        (Land Measure)
                                                                                                         schepel = dkl
                                                Length
                                                                      I tomin = 7/18
         =\frac{100}{30.25} m<sup>2</sup>
                                                                                                         mudde = hl
 1 bu
                                            = 0.157 m
                                   Lasta
                                                                      1 adarme = 216
                                                                                                                ≂ bl
                                                                      1 \text{ ochava} = 1 \frac{1}{2} s
                                                                                                         zak
                                    1 depa - - 4 asta
         = 3.305 785 12 m<sup>2</sup>
                                                                                                                 = 30 hl
                                                                                                         last
                                    1 jumba = 8 asta
                                                                      Lonza
  Unit Bu
                                                 Mass
                                                                                                                 Capacity, liquid
                                                                      1 arroba = 25
 1 g\hat{o} = 0.1
                                               = 0.61 \text{ kg}
                                    Leafty
                                                                      1 quintal - 100
                                                                                                         vingerhoed = cl
 1 tsubo = 1
                                      Unit
                                                  Catty
                                                                      1 tereio = 160
                                                                                                         maatje
 1 86
         = 30
                                    1 miam
                                                - 3 20
                                                                                                         kon
                                                                                   Area
 l tan
         =: 300
                                    1 buncal
                                                                                                         dekaliter
         = 3000
                                                                      1 fanega
                                                                                   - 356 628 a
 1 chô
                                    1 tampang - 1
                                                                                                         vnt
         = 46 656
 1 ri2
                                                                        Unit
                                                                                     Fanega
                                               - 2
                                    1 bedur
                                                                                                           Old national system is more
            Capacity
                                                                       1 caballeria = 12
                                    1 kip
                                               = 15
                                                                                                         or less current in some of the
 1 shô
         = 11811
                                                                      1 labor
                                                                                  -= 18
                                               ~ 100
                                    1 pecul
          = 1.803 9068 1
                                                                                                         old colonies:
                                                                                   = 492.28
                                                                      1 sitio
                                               = 300
          = 64827 bu³
                                    1 bahar
                                                                               Capacity, dry
                                                 Ana
          Shô
                                                                                                                  (Amsterdam)
   Unit
                                                                      1 cuartillo = 1.8918 l
                                                .: 13.38 m<sup>2</sup>
                                    1 jumba²
 1 \text{ shaku} = 10^{-2}
                                                                                                         1 \text{ roeden} = 3.679 77 \text{ m}
                                                = 400 numba<sup>2</sup>
                                                                         Unit
                                                                                   Cuartillo
                                    1 orlong
       = 10^{-1}
 1 26
                                                                                                         1 \text{ elle} = 0.687 813 \text{ m}
                                                ~ 53 52 a
                                                                      1 almud
                                                                                 - 4
 1 to
         = 10
                                                                                                         1 voeten = 0.283 0594 m
                                                                      1 fanega
                                                                                = 48
 1 \text{ koku} = 100
                                               Capacity
                                                                                                         1 \text{ duime} = 25.733 \text{ mm}
                                                                                  = 96
                                                                      1 carga
                                    1 chupa
                                              - ea. 11
                                                                                                         1 lyne = 2.144 mm
   Kanada r. Canada.
                                    1 gantang = 4 chupa
                                                                              Capacity, liquid
   Kolumbien v. Columbia.
                                                                                       = 0.456 2641
                                                                       1 cuartillo
                                      Malaysia r. British India; r.
                                                                                                         1 pond = 492.16772 g
   Kongo r. Congo.
                                                                       1 cuartillo for
                                    Dutch East Indies.
                                                                                                         1 pond* = 494.090 32 g
   * The old shaku (kujirajaku) ==
                                                                                       \approx 0.506 \cdot 162 \cdot 1
```

Malta.-m.c. 1914.

British and local (old Sicilian):

1.25 shaku is legal for fabrics

† One ri marin (kai-ri) = nautical ri

Older.

oil

1 jarra

NetherlandsCont'd.	Length	Unit Miskal	Poland.—Metric in process
1 pond (Apothecary)	1 vara (old) = 0.838 56 m	$\begin{array}{c} 1 \text{ nakhod} \\ 1 \text{ nakhod} \end{array}$	of adoption; in some provinces
= 4 pond	$\frac{1 \text{ cuerda}}{1 + \frac{1}{2}} = 831 \text{ vara} = 69.88 \text{ m}$	1 carat	it has been in use since 1872.
= 369.126 g	1 cordel	$\begin{array}{ccc} 1 \text{ dung} & = \frac{1}{6} \\ 1 \text{ dartung} & = 0.22 \end{array}$	Russian system legalized in 1849, without displacing
Unit Pond	1 vara = 0.866 m	1 dirhem = 2	national measurements. Since
$1 \text{ mark} = \frac{1}{2}$	Unit Vara	1 sir = 16	1819 these have been defined by
$ \begin{array}{rcl} 1 \text{ unze} & = \frac{1}{16} \\ 1 \text{ drachme} & = \frac{1}{128} \end{array} $	1 piede = \(\frac{1}{3} \) 1 pouce = \(\frac{1}{3} \)	1 pinar = 20	their metric equivalents.
1 engel = 3 10	1 ligne = $\frac{36}{432}$	1 danar = 40	National:
1 vierling = $\frac{1}{12}$ $\frac{1}{80}$	1 cuadra = 100	1 abbassi = 80 1 rottel = 100	Length
1 grein = 76 80	1 lieue = 5000	1 tcheirek = 160	1 stopa = 0.288 m
Area	Mass	1 saddirham = 320	Unit Stopa
1 morgen = 81.244 346 n	1 libra (old) = 160.08 g	1 batman (Tauris) = 640	$ \begin{array}{rcl} 1 & \lim_{t \to 1} a & = 1 & \frac{1}{4} & I \\ 1 & \lim_{t \to 1} a & = 1 \end{array} $
Capacity, dry	1 libra = 459 g	1 batman (Shirez) = 1280	$ \begin{array}{rcl} 1 & \text{cnl} & = \frac{1}{12} \\ 1 & \text{lokiec} & = 2 \end{array} $
1 schepel = 27.26 l	Unit Libra	1 batman = 600 to 1000	1 sazen = 6
Unit Schepel	1 once = 16 1 arrobe = 25	1 karvar = 100 bat-	1 pret = 15
$1 \text{ kop} = 8^{1} 2$	1 arrobe	man	Old measures
1 vierd = 1	1 tonne = 2000	Area	1 pied (Warsaw) = 0.2978 m
1 zak == 3	Area	1 jerih = $1082 \text{ m}^2 \text{ to } 1153 \text{ m}^2$	1 pied (Cracow) = 0.3564 m
1 mud == 4 1 last == 108	1 liño (old) = 48.832 a	$= 1000 \text{ to } 1068 \text{ zar}^2$	1 aune $= 0.620 \text{ m}$
1 last == 108	1 liño = 100 vara²	Capacity	Mass
Capacity, liquid	1 liño = 75 m²	1 chenica = 1.32 l Unit Chenica	1 funt = $405.504 g$
1 mingelen = 1.200 to 1.237 l	Capacity, dry	1 sextario = 0 25	Unit Funt
Unit Mingelen	1 fanega = 288 1	1 capichas = 2	$1 \text{ gran} = 9 2 \frac{1}{10}$
1 vat = 768 1 oxhooft = 192	$1 \text{ almude} = {}_{1}^{1}{}_{2} \text{ fanega}$	1 sabbitha = 5.5	1 skrupul = 3 84
1 aam = 128	Capacity, liquid	1 colluthun = 6 25 1 legana = 30	$ \begin{array}{rcl} 1 & \text{drachma} &= & \frac{1}{2} \frac{1}{8} \\ 1 & \text{lut} &= & \frac{1}{2} \frac{1}{8} \end{array} $
1 anker = 32	1 frasco = 3.029 l	1 legana = 30 1 artaba = 50	$\begin{array}{rcl} 1 & \text{lut} & = & 3^{1}\overline{2} \\ 1 & \text{uncja} & = & 1^{1}\overline{6} \end{array}$
1 steekan 🐷 16	Unit Frasco 1 cuarta = {	Peru. —m c. 1869. Older	1 kamian = 25
1 stoop = 2	1 baril = 32	(from Spanish, Castillian):	l centnar ≔ 100
1 pint = - 1	1 pipe = 192	Length	Old measures
1 mutsje = \{	Pays-Bas v. Netherlands.	1 vara = 0.835 98 m	1 funt $= 404 g$
Nicaragua v. Costa Rica. Nicderlande v. Netherlands.	Persia Metric is in process	Мавя	1 centner = 16 funt
Northern Ireland v. Great	of adoption. By 1924 the fol-	1 libra = 460.09 g	1 stein = 3.2 funt
Britain.	lowing assimilation had occur- red: 1 zar = 1 m, 1 dram = 1 g,	Unit Libra 1 arroba = 25	Area
Norwayin.c. 1882; m.o.	1 ralte = 1 l. National meas-	1 quintal = 100	$1 \text{ pret}^2 = 18.6624 \text{ m}^2$
1879. Older differed very little	ures, provincial, var.; even to-	1 fanega = 140	1 morga = 300 pret ²
from Danish; legal equivalents:	day, in retail commerce, cereal	Area	1 wloka = 9000 pret*
Length	grains are used as weights:	1 topo = 27.06 a	Capacity
1 fod = 0.3137 m	Length	I fanegada = 64.596 a Philippine Islandsm.e.	1 kwarta = 11
Mass	1 guerze (common) = 0.63 to 0.97 m	1860. Older = Spain. Local:	Unit Kwarta 1 kwarterka = ‡
1 skaalpund = 0.4981 kg	1 monk-	Mass	1 garniec = 4
Area	elzer	1 catty = about 600 g	1 cwiere = 32
1 mal = 10 a	1 zar == 1.04 m	Unit Catty	1 korzec = 128
Capacity, dry	Unit Zar	1 punto $=\frac{1}{3}$	Porto Ricom.c. 1860.
1 korntonde = 138.97 l	$\begin{array}{ccc} 1 & \text{gireh} & = \frac{1}{16} \\ 1 & \text{ouroub} & = \frac{1}{8} \end{array}$	1 chinanta = 10 1 lachsa = 48	Older = Spain:
Capacity, liquid	1 charac = 1	1 caban = 97	Area
1 pot = 0.9651 1	1 gez } == 1	1 pecul = 100	1 cuerdo = 2250 vara² = 15.72 a
OceaniaBritish measures.	l guerze	Area	Portugal.—m.c. 1872; m.o.
Olanda v. Netherlands.	$ \begin{array}{c} 1 \text{ farsakh} \\ 1 \text{ farsakh} \end{array} = 6000 $	1 balita = 27.95 a	1852, Older:*
Osterreich v. Austria.	1 parasang	Unit Balita	Length
Paési Bássi r. Netherlands	Mass 1 miskal = 4.60 g	1 loan = 0.1 1 quignon = 10	1 pe = 0.3285 m
Panama.— Metric compul- sory.	Unit Miskal	Capacity	1 estadio 💌 258 m
Paraguay.—Metric almost	$1 \text{ una} = \frac{3184}{384}$	1 kaban = 99.90 1	1 milha = 8 estadio
exclusively used, m.o. 1899.	1 gandum	1 chupa = 3.75 cm ³	1 legoa = 24 estadio * In some of the older colonies the
Older = Spain; legal equiva-	l r Kram)	l ganta = 15 kaban	old Portuguese system, more or less
lents:	1 abbas $=\frac{1}{25}$	1 apatan = ¼ chupa	modified, is still in use.

Unit Pe	Capacity] Unit Ligne*	Length
1 linha = 1 4	1 dimerla = 24.6 l	1 duime* = 100	1 wah = 2 m
1 pollegada = 12	Unit Dimerla	1 verchoc* = 306.25	Unit Wah
1 palmo = §	1 oke = 18	1 foute ² = 14 400	1 anukabiet = 7 d g
1 covada = 2	1 mirze = 8	1 archine ² = 78 400	1 kabiet = str
$1 \text{ vara } = \frac{1.0}{3}$	1 kilo = 16	Unit Archine ²	1 niou = 0.8
Mass	1 100	1 sugène² == 9	1 keup - 1
1 libra* = 459 g	Capacity, liquid	1 déciatine = 21 600	1 sawk } - 1
	1 viacka = 14.151	1 verste ² = 2 250 000	I sock
Unit Libra 1 grao = 9 2 1 6	1 oke = 0.1 viacka	Volume	1 ken = 1
$ \begin{array}{ccc} 1 & \text{grad} & -9216 \\ 1 & \text{escrupulo} & = 3 & 4 \end{array} $	Russiam.o. 1900. Defini-	1 archine ³ = 0.359 7288 m ³	1 sen = 20 1 roeneng = 2000
$ \begin{array}{rcl} 1 \text{ outava} &= \frac{3}{1} \frac{1}{2} \frac{3}{8} \\ \end{array} $	tions of fundamental national	$1 \text{ ligne}^{2} = 16.387.06 \text{ mm}^{3}$	1 0
1 onca = 16	units: Length Archine is dis-	Unit Ligne ³	1 yote = 8000
1 margo	tance at 17°C between the axes	1 dulme ³ = 1000	Mass
1 maio = 1	of two lines drawn on the	1 verchoc* = 5359.375	1 tchang* = 1200 g
arratel = 1	platinum-iridium prototype	1 foute ³ == 1.728 000	Unit Tchang
1 arroba = 32	marked "H 1894" Mass:	1 archine ³ = 21 952 000	1 klom = 10240
1 quintal = 128	Fount is mass of the platinum-	Unit Archine ³	1 klam = 51 2 0
Area	iridium prototype marked "H	1 sagène³ == 27	1 pai = 25 ¹ 6 5
$1 \text{ vara}^2 = 1.2 \text{ m}^2$	1894" Capacity, liquid Vedro	1 tonne marine = 7 871 72	1 sompay = 1285
Unit Vara ²	is volume of 30 founts of pure	1 last marin 15.743 44	· K 1)
1 ferrado = 605	water at 16 ² 3°C. Capacity, dry Garnetz is 4 ₁₅ vedro.	Capacity, dry	1 fuang = 6 1 6
1 geira = 4840	dry Garnetz is 15 vedio.	1 garnetz == 3.279 842 1	I salung = 8½0
· ·	Length	1 tehast = 0.109 328 07 l	1 baht = g_0^1 1 tamlung = g_0^1
Capacity, dry	1 archine = 0.711.200 m	Unit Tchast	1 doon = 20
1 fanga = 54 l	1 totchka ≈ 0.254 0000 mm	1 polougarnetz = 15	1 hap = 50
Unit Fanga	Unit Totchka	1 garnetz ≈ 30	1 bara = 400
1 outava = 3 2	1 ligne = 10	1 lof = 592	
1 quarto = 1 0 1 meio = 1	1 paletz == 50	Unit Garnetz	Area
1 alqueira = 1	1 sotka = 81	1 tchetverik == 8	$1 \text{ wah}^2 = 4 \text{ m}^2$
1 moio = 15	1 dume = 100	1 polouosmina == 16	1 ngan = 100 wah*
Capacity, liquid	1 verchoc = 175 1 foute = 1200	1 osmina = 32	1 rai = 400 wah²
1 almude = 16.5 l	1 archine = 2800	1 tchetvert = 64	Capacity
Unit Almude		Capacity, liquid	1 tanan† = 11
1 quartillo = 4^{1} g	Unit Archine	1 vedro = 12.299 41 1	Unit Tanan
$ \begin{array}{rcl} 1 & \text{meio} & = 2^{1}4 \\ \end{array} $	1 verste = 1500	1 tcharka = 0.122 9941 l	1 niou = 1 0 0
$1 \text{ canada} = \frac{24}{12}$. , , , , , , , , , , , , , , , , , , ,	Unit Tcharka	I chai meu = 3 2
1 alqueira = 1	Mass (1) Ordinary	1 chkalik = 0.5	I kam meu = }
1 bota) = 26	1 fount = 409.51241 g	1 bottle (vodka) = 5 1 bottle (wine) = 6.25	1 laang } = 3
I pipa }	1 doli = 44.434 9403 mg	1 krouchka = 10	i changawn j
1 tonelada = 52	Unit Doli	1 shtoff = 12.5	1 kanahn == 1
Portuguese ColoniesMet-	1 sol = 96	1 vedro = 100	1 sat = 20
ric compulsory.	1 zolotnik J	Unit Vedro	1 tang = 40 1 tamlaum = 400
Portuguese East Africa (Mo-	1 lote = 288 1 once = 576	1 stekar = 1.5	1 seste = 800
zambique).—m.c. 1910. Older,	I lana = 768	1 anker = 3	1 ban = 1600
mainly of Portugal; one bahar	1 fount = 9216	1 pipe = 36	1 kwien)
is considered equivalent to	Unit Fount	1 fass = 40	1 koyan = 2000 or 3200
109 kg. Prussia v. Germany.	1 poud = 40	1 botchka f	1 cohi = 32 000
Rumania.—m.c. 1884; m.o.	1 berkovets = 400	Salvador v. Costa Rica.	Siria v. Syria.
1866. In old Bessarabia, Rus-	1 tonne marine = 2400	Schottland v. Great Britain.	Somaliland m.o.; local,
sian measures replaced by met-	Maria (O) King James	Schweden v. Sweden.	vary with material and prov-
ric in 1922. Older:	Mass (2) For drugs	Schweiz v. Switzerland. Scotland, Scotla v. Great	ince:
Length	Unit Doli	Britain.	Length
1 halibiu = 0.701 m	1 grain == 1.4 1 scrupule == 28	Serbie-Croatie-Slovénie v.	1 top = 3.92 m
1 endere = 0.662 m	1 drachme = 28	Yugoslavia.	1 cubito = ½ top
1 stringene = 1.96 m	1 once = 672	Seychelles Islands v. Mauri-	Mass
Mass	1 livre = 8064	tius.	l .
$1 \operatorname{cantar} = ca. 56 \operatorname{kg}$		Siam.—m.c. 1923; m.o. 1889.	1 rottolo = 448 g
$1 \text{ oke } = \frac{1}{44} \text{ cantar}$	Area	Older now defined by metric	* Previously, 1 tchang = 600 to 1300 g.
*For drugs 1 libra = 1 libra =	1 archine ² = 0.505 8054 m ²	equivalents; those of transition	† Previously, 1 tanan = 0.9 to 1.2
344.25 g.	$1 \text{ ligne}^2 = 6.451 600 \text{ mm}^2$	period:	l liter.

Somaliland Cont'd.	Area	M ass	Unit Pied
Unit Rottolo	$1 \text{ vara}^2 = 0.698 7372 \text{ m}^2$	1 skälpund = 425.076 g	1 perche = 16
lokia = 1 g	Unit Vara ²	Unit Skålpund	1 lieue = 16 000
1 frasla = 36	1 cuartilla = 25	$1 \text{ as } = \frac{1}{88} \frac{1}{18}$	Mass (1) Ordinary
1 gisla = 360	1 calemin = 768	1 quintin = $1\frac{1}{2}$	1
Area	1 aranzada = 6400	$1 \log = \frac{1}{2}$	1 livre = 500 g
1 darat = 80 a	1 fanega = 9216	1 untz = 16	Unit Livre
Capacity, dry	I fanegada)	1 lispund = 20	$\begin{array}{ll} 1 \text{ loth } = \frac{1}{8} \frac{1}{2} \\ 1 \text{ once } = \frac{1}{16} \end{array}$
1 chela = 1.359 l	1 yugada = 460 800	1 sten = 32 1 centner = 100 or 120	1
Unit Chela	Capacity, dry	1 waag = 165	Mass (2) For medicine
1 tabla = 15	I fanega = ≈ 55.501 l	1 skeppund = 400	1 livre = 375 g
1 gisla = 120	Unit Fanega	1 nylást = 12 000	Unit Livre
Capacity, liquid	1 ochavillo = 7 d g	Area	1 grain = 576 0
1 caba ≈ 0.453 l	1 racion = 192	$1 \text{ fot}^2 = 0.088 149 61 \text{m}^2$	$\begin{array}{ll} 1 \text{ scruple} &= \frac{1}{2} \frac{1}{8} \frac{1}{8} \\ 1 \text{ drachme} &= \frac{1}{9} \frac{1}{9} \end{array}$
	$\begin{array}{ll} 1 \text{ cuartillo} &= \frac{1}{48} \\ 1 \text{ medio} &= \frac{2}{4} \end{array}$	1 kappland $\left\{ = 1.54261817 \text{ a} \right.$	$1 \text{ once } = \frac{1}{12}$
Soudan v. Sudan. South Africa v. Union of	l calemn = 1 2	(= 1790 101.	Syria.—m.o.; current:
South Africa	$1 \text{ almude } = \frac{1}{12}$	1 ref ² = 8.814 961 a	_ '
Spain m c. 1860. Older,*	I cuartilla = 1	1 tunland $\begin{cases} = 49.3637816 \text{ a} \\ = 56000 \text{ fot}^2 \end{cases}$	Length
var., provincial; Castillian:	1 cahiz == 12	,	1 pic = 0.582 m
Longth	Capacity, liquid	Capacity, dry 1 kanna = 2.617 l	Mass
Length	(Arroba was defined as vol-		1 rottolo = 1785 g
1 vara = 0.835 905 m (Other vara composed be-	ume of 34 libra of river water	Unit Kanna 1 ort = 2 12	Unit Rottolo
tween 0.768 m and 0.912 m)	The arroba for oil was volume	1 ort = 3 ¹ 2 1 junkfra = 3 ¹ 2	1 drachme } 1 .
Unit Vara	of 25 libra of oil)	l quarter = }	$\left\{\begin{array}{c} 1 \text{ pesi} \end{array}\right\} = 6 \ 0$
I punto = Auliz	1 arroba (wine) = 16.133 l	$1 \text{ stop } = \frac{1}{2}$	1 metecali = 4 do
$1 \text{ linea} = 5\frac{1}{4}6$	1 arroba (oil) = 12.563 l	l kappar = [1 mitcal = 100
1 diedo ≈	Unit Arroba 1 copas = 1 l _a	l fjerdingar = 7	$\begin{array}{ll} 1 \text{ once} & = {}_{6}{}^{1}{}_{0} \\ 1 \text{ zurbo} & = 27.5 \end{array}$
l pulgada = gla	1 quarterone)	1 spanna = 28	1 cola = 35
1 scama = \$	1 panilla* = 100	1 tunna = 56 1 koltunna = 63	1 cantar = 100
1 palma = }	Llibra) .	1 kollast = 756	Capacity
l pie - } l codos = }	1 cuartillo = 3 ¹ 2	Capacity, liquid	1 rot1 = 321
1 passo = 13	1 azumbre ⇒ 1	$1 \text{ kanna} = 0.1 \text{ fot}^3$	Unit Rotl
1 estado - 2	I cuartilla* = 1	$= 2.617 \ 162 \ 1$	1 makuk 250
1 estadal = 4	1 cantara = 1 1 moio = 16	Unit Kanna	1 garava = 450
1 milla † == 16663	1 pipa = 27	liungfrur) .	Tchéco-Slovaquie v. Czecho-
1 legua = 5000 or 8000	1 bota = 30	1 jungfer } = 3 g	slovakia.
Mass	Stati Uniti r United States.	1 quarter $=\frac{1}{8}$	Tonkin.—Same as Anam
1 libra ⇒ 460 093 g	Straits Settlements v. British	$1 \text{ stop} \qquad = \frac{1}{2}$	(q v.)
(Other libra comprised be-	India.	1 ankar = 15 1 eimer = 30	Tripoli and Cyrenaïca.—m.o.,
tween 350 g and 575 g)	Sud-Africaine, Union v.	1 am)	current defined by metric equi-
Unit Libra	Union of South Africa.	$\left\{\begin{array}{c} 1 \text{ ohm} \end{array}\right\} = 60$	valents:
$\frac{1}{9} \operatorname{grano} = 9 \cdot 2 \frac{1}{16}$	Sudan. Egyptian in use. Sudde r. Sweden.	$\begin{cases} 1 \text{ oxhufud} \end{cases} = 90$	Length
1 arienzo = 23 ¹ 0 1	Suisse v. Switzerland.	1 oxnort	1 pik = 0.68 m = 1 handaze
$\begin{array}{lll} 1 \text{ tomin} & = \frac{1}{2} \frac{1}{4} \\ 1 \text{ dinero} & = \frac{1}{3} \frac{1}{4} \end{array}$	Svézia v. Sweden.	1 pipe = 180	1 palmo = $\frac{1}{3}$ pik
1 adarme	Svizzera v. Switzerland.	1 fuder = 360	1 draa = 0.46 m
1 draema } = 250	Sweden. m.c. 1889; m.o.	Switzerlandm.c. 1877;	Mass
1 ochava	1879, Older:	m.o. 1868. Older, var.; during transition were fixed as follows:	1 rottolo = 512.8 g
I caracter \ = 1\frac{1}{2}8	Length	Length	= 2.5 rottolo
1 escrupulo = $\frac{3}{64}$	1 fot = 0.296 90 m	1 mind)	$\frac{1 \text{ oka}}{\text{ oka}} = 1282 \text{ g}$
$1 \text{ onza} = 1^{1}6$		- 1 \ = 20 am	1 metical = 4.76 g
l marco !	Unit Fot†	$\begin{cases} 1 \text{ fuss} \end{cases} = 30 \text{ cm}$	**
$\begin{array}{ll} 1 \text{ marco} & = \frac{1}{2} \\ 1 \text{ arroba} & = 25 \end{array}$	$1 \text{ lime} = \frac{1}{144}$	1 fuss ∫ = 30 cm Unit Pied	Unit Rottolo
1 marco = ½ 1 arroba = 25 1 barril = 50	$\begin{array}{rcl} 1 \text{ lime} &= \frac{1}{1} \frac{1}{4} 4 \\ 1 \text{ turn} &= \frac{1}{12} \end{array}$	Unit Pied	Unit Rottolo 1 kharouba = 25 ¹ 6 6
1 arroba = 25	$\begin{array}{rcl} 1 \text{ lime} &= \frac{1}{1} \frac{1}{4} 4 \\ 1 \text{ turn} &= \frac{1}{12} \\ 1 \text{ alm} &= 2 \end{array}$	Unit Pied Unit Pied Unit Pied Unit Pied Unit Pied	Unit Rottolo 1 kharouba = $\frac{1}{2560}$ 1 dram = $\frac{1}{10}$
1 arroba = 25 1 barril = 50 1 quintal = 100 1 quintalmacho = 150	1 hme = 1 \frac{1}{4} 4 1 tum = 1 \frac{1}{2} 1 alm = 2 1 famm = 6	Unit Pied I ligne I linie I pouce I pouce	Unit Rottolo 1 kharouba = $\frac{25^{1}66}{160}$ 1 dram = $\frac{160}{160}$ 1 termino = $\frac{1}{28}$
1 arroba = 25 1 barril = 50 1 quintal = 100	$\begin{array}{rcl} 1 \text{ lime} &= \frac{1}{1} \frac{1}{4} 4 \\ 1 \text{ turn} &= \frac{1}{12} \\ 1 \text{ alm} &= 2 \end{array}$	$ \begin{array}{ccc} \text{Unit} & \text{Pied} \\ \text{Unit} & \text{Pied} \\ \text{Unit} & \text{Unit} \\ \text{Unit} & Unit$	Unit Rottolo 1 kharouba = $\frac{1}{2560}$ 1 dram = $\frac{1}{10}$
1 arroba = 25 1 barril = 50 1 quintal = 100 1 quintalmacho = 150	1 hme = 1 \frac{1}{4} 4 1 tum = 1 \frac{1}{2} 1 alm = 2 1 famm = 6 1 stang = 16	Truss	Unit Rottolo 1 kharouba $= 25 \frac{1}{6} \frac{1}{6} \frac{1}{6}$ 1 dram $= 1 \frac{1}{6} \frac{1}{6}$ 1 termino $= 1 \frac{1}{2} \frac{1}{6}$ 1 uckin $= 1 \frac{1}{6} \frac{1}{6}$
1 arroba = 25 1 barril = 50 1 quintal = 100 1 quintalmacho = 150 1 tonelada = 2000 *Old national system, more or less modified, in still in use in the old	1 lime = 1 \frac{1}{4} 4 1 tum = 1 \frac{1}{2} 1 alm = 2 1 famm = 6 1 stang = 16 1 ref = 100 or 160 1 mil = 18 000 0 or 160 0	Titss Pied Pied	Unit Rottolo 1 kharouba $= 25^{1}6 \cdot 6$ 1 dram $= 16 \cdot 6$ 1 termino $= 12 \cdot 8$ 1 uckin $= 16 \cdot 6$ 1 mattaro $= 42 \cdot 6$
1 arroba = 25 1 barril = 50 1 quintal = 100 1 quintalmacho = 150 1 tonelada = 2000 * Old national system, more or less	1 lme = 1 \frac{1}{44} 1 tum = 1 \frac{1}{2} 1 alm = 2 1 famm = 6 1 stang = 16 1 ref = 100 or 160 1 mil = 18 000	Truss	Unit Rottolo 1 kharouba $25^{1}60$ 1 dram $= 1 \frac{1}{6} 0$ 1 termino $= 1 \frac{1}{2} 8$ 1 uckin $= \frac{1}{16}$ 1 mattaro $= 42$ 1 cantar $= 100$

Unit Pik*	Length	Length	Area
denum = 1600	1 archine = 64 to 76 cm	1 yard (yd.) - \$889 m	1 inch* (sq. in.)
i jabia = 1800	1 archine (for	= 0.914 401 83 m	= 6,451 6258 cm ²
3 Capacity, dry	architecture) = 75.77 cm	1 foot (ft.) $=\frac{1}{3}$ yd.	I foot ^y (sq. ft.)
# orba = 7.6 l	1 nul 1 km	= 30.480 001 cm	= 929.0341 cm²
Unit Orba	Unit Archine	$1 \text{ inch (in.)} = \frac{1}{8} \text{ yd.}$	1 yard² (sq. yd.) = 0.836 130 71 m²
1 nufsorbah = 1	1 nocktat = 3 1 5 6 1 hatt = 3 1 a	= 2.540 005 08 cm	1 acre (A.)
I temen = 4	1 hatt = 1 kg 1 parmack = 2 kg	Unit Inch	= 4046,873 m²
1 ueba = 16	l ouromb = 1	1 mil == 0.001 1 hand == 4	Unit Foot ²
(Measured by weight)	1 pic = 1	l span = 9	1 mch2 = 114
1 oka = 1282 g	Mass	1 foot = 12	1 yard 2 - 9
1 marta = 11 to 14 oka	1 oka = 1283 g	1 yard = 36	Unit Yard ²
1 kele = 2 marta	Unit Oka	Unit Foot	1 rod (sq. rd.) = 30.25
Capacity, liquid	1 karat = 0 +00	1 fathom == 6	1 perch
1 barde = 64.8 l	1 denke	1 rod	1 chain ^{2*} = 484
1 bozze = $\frac{1}{24}$ barile	1 durhem	1 pole == 16.5	1 rood = 1210 1 acre (A.) = 4840
(Measured by weight)	1 drachme = 400	1 perch 1 chain* (Gunther's) = 66	Unit Acre
1 oka = 1282 g	1 miskal = 480	1 chain*	1 mile ² (sq. mi.) = 640
Unit Oka	1 cequi	(engineer's) = 100	1 township = 23 040
1 gorraf = 9.75	1 yusdrum 1 rottel = 0 44	1 bolt = 120	• .
1 giarra = 58.5	1 batman = 6	1 furlong = 660	Volume
Tschechoslovak v Czechoslo-	1 kantar = 44	1 cable length = 720	1 yard³ (cu. yd.)
rakia.	1 tchekr = 176 to 195	1 mile (statute) - 5280	= 0.764 559 45 m³
Tunism.e. 1895. Current.	Arca	1 mile (nautical)† = 6080.20 1 league (statute) = 3 st, mile	1 foot ³ (cu. ft.) = 28 317.0 cm ³
Length		1 league	23 317.0 cm ²
I pic arabe = 48.8 cm	1 deunum $\begin{array}{c} = 1600 \text{ archine}^{2} \\ = 913 \text{ m}^{2} \end{array}$	(nautical) = 3 n. mile	= 16.387 162 cm ³
1 pic ture = 63.7 cm	1 djent — 100 a	· ·	Unit Foot*
1 pie endazé = 67,3 cm	Capacity	Mass	1 inch 5 = 17 28
The pic used depends upon	1 kile = 32 to 43 l	1 pound avoirdupois	I board foot (bd. ft.) = $\frac{1}{12}$
the object measured.	$1 \text{ zira}^3 = 0.435 \text{ m}^3$	(lb. av.) = $453.592 4277 g$	1 yard ³ . = 27
, Mass	Unit Kıle	= 7000 grain (gr.)	1 shipping ton = 40
1 uckir = 31.495 g	1 chinik = 1	1 grain = 64.798 918 24 mg (Three systems: avoirdupois,	1 register ton = 100 1 cord (cd.) = 128
Unit Uckir	I fortin = 4	troy, apothecary.)	1 cord (cd.) = 128
1 rottolo attari = 16	Ungarn, Ungheria v. Hun-	,,	Capacity, dry
1 rottolo sueki = 18	gary.	Avoirdupois (av.)	1 bushel (bu.) = 2150.42 inch ³
1 rottolo khaddarı = 20	Union of South AfricaMet-	(General use)	= 35.238 329 1
1 cantaro = 100	ric, British, and old Dutch:	Unit Pound	Unit Bushel
Capacity	Length	1 dram (dr.) → 2 ½ 5 s	1 pint (pt.) = 6 ¹ 4
1 cafisso = 496 1	1 elle = 0.685 m	$1 \text{ ounce } (oz.) = \frac{1}{16}$	1 quart (qt.) = 3/2 1 peck (pk.) = 1
1 millerole (Marseilles)	Mass	1 hundred-weight (ewt.)	1 peck (pk.) = 1 1 barrel‡ (bbl.) = 3.281
= ca. 64 1	1 bundle = 3175 g	(long) = 112 1 ton (short) (sh. tn.) = 2000	1 chaldron§ = 36
Unit Cafisso	Area	1 ton (long) (l. tn.) = 2240	1 firkin = 9 gallon
1 saah = $1\frac{1}{2}$ 9 1 whiba = $1\frac{1}{0}$	1 morgen = 85.5 a		Capacity, liquid
Turkestan.	Capacity	Troy (t.)	
	1 gantang = 9.2 l	(For precious metals)	1 gallon (gal.) $\begin{cases} = 231 \text{ inch}^3 \\ = 3.785 332 1 \end{cases}$
Length	1 ballı = 5 gantang	Unit Grain	1 minim (min. or m)
1 hasch = 0.7112 m	1 muid = 109.1 l	1 pennyweight (dwt.) = 21	= n 1 1 4 0 gal.
Unit Hasch	1 legger = 516 l	1 ounce (oz) = 480 1 pound (lb.) = 5760	= 0.061 6102 ml
l archine* = 1	Umt Legger	1 pound (m.) = 3700	Unit Minim
,	1 kanne = 388 1 ahm = 4	A pothecary (ap.)	1 fluid dram (fl. dr.) = 60 1 fluid ounce (fl. oz.) = 480
Mass	United States of America. ~	(For dispensing drugs)	1 fluid ounce (n. oz.) = 480 1 gill (gi.) = 1920
l batman = 125 kg to 128 kg	m.o. 1866; m.c. for certain	Unit Grain	
Unit Batman	governmental purposes. Fun-	1 scruple (s. or 3)) = 20	* Gunther's chain. † 36 mile².
$ \begin{array}{rcl} 1 & \text{sir} & = \frac{1}{8} \\ 1 & \text{transports} & = 1 \end{array} $	damental units of national	1 dram (dr. or 3) = 60	‡ For dry commodities, except
1 tscharik = $_{6}^{1}_{4}$ 1 mimtscha = $_{2}^{1}_{6}$	system are defined in terms of	1 ounce (oz. or 3) = 480	cranberries, barrel = 7056 inch ² ; cran-
	metric units. For less common	1 pound (lb.) = 5760	berry barrel = 5826 inch*; lime barrel contains 180 lb. av. or 280 lb. av.; by
Turkey. —m.o.; current, var.:	and obsolescent units, see Great	* 1 lnk = 0.01 chain.	custom, flour barrel = 196 lb. av.
*Russian.	Britain.	† 1 nautical mile = 1853.249 m	Variable.

United States Cont'd.	Length
Unit Gallon	1 linija = 21,95 mm
1 gill (gi.) $= \frac{1}{3}$	1 palaz = 36.34 mm
1 pint (pt.) =	1 archine == 660 mm to 712 mm
1 quart (qt.) = 1	1 khvat = 1.896 m
1 barrel* = 31.5	I stopa ≃ ¹ / ₆ kvat
1 hogshead × 63	Mass
Uruguaym.e. 1894; m.o.	1 oka = 1280 g
1866, Older = Spain (Castil-	Unit Oka
lian), more or less modified.	1 dramm = 1ha
Venezuela m c. 1914; m o.	1 sathyk = 1
1857, Older = Spain (Castil-	1 litra = 1
lian), more or less modified, and	1 akov 40
the following of Granada:	1 tovar = 100
Length	Area
1 vara == 0.8 m	1 stopa ² = 998.56 cm ²
1 mede = 6280 vara	Unit m2
There - 0200 vara	1 dunum 700
Mass	1 motyka – 800
1 1 days	1 raliza = 2500
1 libra = 1 kg 1 bag = 62 5 kg	I dan oranja = 3597
	∫ 5760
Vereinigte Staaten v United	I lanaz = 1600 khvat²
States. Württemberg v. Germany	Capacity
Yugoslavia. m.e. 1883	(Liquids are measured by
Older:	weight.)
Ome	· · · · · · · · · · · · · · · · · · ·

C. SYSTEMS OF ANTIQUITY

Our knowledge of the measures of antiquity is derived from the texts and moniments which have persisted to modern times, and some actual standards which have come down to us. The latter enable us to establish quite exact equivalence between the measures which they represent and ours. But most frequently such equivalence is only very roughly known, or is actually unknown. In this section are given only the more important or the best studied of these systems. The values given must not be taken too literally. Indeed, especially in antiquity, systems do not succeed one another; they evolve. Several may coexist among a single people; it is generally impossible to fix the dates at which these systems were used. The ancients had no capacity measures, such as ours; they weighed liquids and grains in terms of standards forming a second system of weights.

Arabian Syste	m.		Mass		
Len	gth ~ 0.320 m	(So-called	system Prophet)	of tl	ıe
Unit I assban (finger) I cabda (palm) I cubit (new) I cubit † I orgve (pace) I qasab I seir I ghalva I mille I parasang I barid I veredus I marhala • Wine barret Hasbarme	Foot	Unit I dirhem I nev at I nasch I oukia I man I mine I ocque I qauthar I kikkar I feddan	= 340 g Rot1 = 1 10 = 1 1 0 = 1 1 0 = 1 1 0 = 125 Area = 14 400 = 59 a	cubit²†	

```
Unit
              Feddan
1 achir
1 gasaba
1 gamha
              1 2
4 0
1 habbah
1 cafiz
1 orrat
1 danca
1 diamb
           Capacity
    (Measured by weight)
             = 32.64 \text{ kg}
1 cafiz
 Unit
               Cafiz
1 mudd
              = 1_8
1 kiladia
1 caphite
             = 2/4
1 kist
1 sâa
             ==
1 makuk
1 fork
1 woebe
1 khoull
Lmodus
             -- 11
Lartabe
1 amphora
1 gariba
```

Assyro-Chaldean-Persian System.

1 den

	Length
1 foot	= 0.320 m
Unit	Foot
1 finger	= 110
1 pålm	= 10
1 zereth	== [
Leubit	= 2
1 pace	- 6
1 qasab 📄	10
1 cane	= 12
1 chebel	- 80
l stadion l ghalva	= 720
1 mille	- 5400
1 parasang	= 20 000
1 schoeme	= 21 600
1 stathmos	VO 000
1 mansion	= 80 000

1 talent = 32.6 kg (Talent divided into 50, 60 or 100 mina) 1 drachma = 0.01 mina Area

```
Area

1 gar = \begin{cases} = 14.7 \text{ m}^2 \\ = 144 \text{ foot}^2 \\ \text{Unit} & \text{Gar} \\ 1 \text{ dizaine} & = 10 \\ 1 \text{ gar} & = 100 \\ 1 \text{ gur} & = 1000 \end{cases}
```

Capacity

```
(Measured by weight)
                  =32.6 \text{ kg}
1 amphora
 Unit
                    Amphora
1 cados
                     'n,
1 makuk
1 wocbe
                  =\frac{1}{2}
1 modius
1 small artaba
                  =1\frac{1}{2}
                  ~ 9
I large artaba
1 large amphora = 3
                  = 8
1 gariba
```

Egypt: System of the Pha-raohs.

Length

```
1 pied
                   = 0.349 m
 Unit
                     Pied
1 doigt, finger
1 theb
1 palme
1 chorvos
1 dichas
1 spithame
1 pied royal
Lzereth
1 pigon
                  = 1^{1}
1 coudée royale
                  \approx 1\frac{1}{2}
Lderah
                  = 2
1 coudée longue
1 pas
                   = 2\frac{1}{3}
                   -4\frac{1}{2}
1 xilon
1 orgve
                  = 6
1 canne
                  = 11\frac{2}{3}
1 senus
                  = 150
1 stade
                  = 500 or 600
                  _ 5000
1 mille
1 atour vulgaire
                  = 15 000
1 schoeme
                  = 18000
                  = 20 000
1 narasange
1 atour royal
                  = 30000
```

Mass

$$\begin{array}{ll} 1 \; \mathrm{mine} &= 850 \; \mathbf{g} \\ \mathrm{Unit} & \mathrm{Mine} \\ 1 \; \mathrm{gerah} &= {}_{1} \, {}_{2}^{1} {}_{0} \, {}_{0} \\ 1 \; \mathrm{sicle} &= {}_{0}^{1} {}_{0} \\ 1 \; \mathrm{kikkar} \\ 1 \; \mathrm{talent} \end{array} \right\} = 50$$

Area

```
1 pekeis
                   = 27.405 \text{ m}^2
Unit
                      Pekeis
1 coudée<sup>2</sup>
                    = 1 ho
1 s\hat{u}
                   = 6.25
1 dizaine
                    == 10
                    = 50
1 rema
Laurure
                    = 100
l aroure ∫
                   = 1000
1 setta
```

Capacity	Unit Chenica	Hindu System.	1 decempeda
(Measured by weight)	1 maris = 2	Length	(perch) = 10
1 khar = 34 kg	1 choüs = 3	_	1 actus (chain) = 120
	1 hemiektos = 4	1 hasta = 0.457 m	1 millarium (mile) = 5000
Unit Khar 1 outen = 160	1 hektos = 8	Unit Hasta	Mass
1	1 modius)	I angula (finger) = $\frac{1}{2}$	
$ \begin{array}{c} 1 \text{ man} \\ 1 \text{ mine} \end{array} $	1 metretes = 36	1 vitasti (span) = 1	1 podium = 326 g
1 hecte = 116	1 medimnos = 48	1 cubit - 1 1 dhanush)	Unit Podium
1 apt =	Hebrew System.	1 orgyla	l scrupulus = 2 kg
1 keramion = 1	Length	Terosa - 8000	1 denier * ~ o¹a
1 metretes d'Héron = 1	1 sacred cubit = 0.640 m	1 gavyuti = 16 000	1 denier† == p ¹ 0
1 artabe des septante = 1½	1 cubit* 0.555 m	1 yodjana = 32 000	I denarius # 84
1 artabe = 43 2	Unit Cubit*		1 solidus = 7 2
1 letech	1 finger - 2 ¹ f	Mass	1 miliaresum = 60
Greek System.	1 palm	1 retti 0.117 g	1 sicilium - 4 g
-	1 zereth = \{	t ratica (I duella = 36
Length	Mass (Sacred system)	1 pala - 47 g	I semuncia = 214
$1 \text{ pous}^* = 0.308 \ 56 \text{ m}$	1 mina = 850 g	Umt Retti	Lounce = 12
Unit Pous	Unit Mina	1 yaya = 0.1	I mina ~ 13
1 daktylos (finger) = 16	Later)	1 masha 2, 5, 6, or 8	1 centum-
1 condylos = 1	$\left\{\begin{array}{c} 1 \text{ GPO} \\ 1 \text{ gerah} \end{array}\right\} = \left\{\begin{array}{c} 1 \\ 2 \end{array}\right\}$	1 tank-sala = 21	podium ≈ 100
1 palestra (palm) = 1	$1 \text{ rabah } = 2\frac{1}{4}0$	1 kona - 48	Area
1 dichas = ½	$1 \text{ bekah} = \frac{1}{1} \int_0^{\infty}$	1 tola 80	
1 spithame (span) = $\frac{3}{4}$	1 shekel $-\frac{1}{60}$	1 karsha -= 96	1 common pes ² = 0.102 14 m ³
1 cubit $= 1\frac{1}{2}$	1 talent † = 50	$ 1 dharana = \begin{cases} 32 & (silver) \\ 3200 & (gold) \end{cases} $	1 legal pes ³ (1st) == 0.087 73 m ²
1 Grecian cubit — 2	Mass (Talmudist or Rabbanical	1 pala 320	$1 \text{ legal pes}^2 \text{ (2nd)} = 0.088 \text{ 03 m}^2$
1 bema (pace) = $2\frac{1}{2}$	system)	1 '	Unit Pes ²
1 orgyia = 6 1 amma (corde) = 60	1 mina = 354 2 g	Unit Pala Ltuba - 100	1 decempeda
		1 hara - 200	1 clima = 3600
1 plethron = 100 1 stadion = 600	Unit Mina	1 bara - 2000	1 versum - 10 000
1 mile = 4500	1 pondiuscule $= \frac{1}{12^{\frac{1}{0.0}}}$	1 achita = 20 000	1 actus = 14 400
1 kiloorgyia = 6000	1 gerah - 1	Tavanta 20 000	1 jugerum - 28 800
	1 obol	Capacity	1 heredium = 57 600
Mass	1 zuzah	(Measured by weight)	1 centuria = 5 760 000
1 mina = 425 g	1 drachma	1 drona - 13.2 kg	1 saltus = 23 040 000
Unit Mina	1 shekel	Unit Drona	
1 chalque = $\frac{1}{4} \frac{1}{800}$	1 tetradrachma 1	1 pala 1	Capacity, dry
1 obol , $= 6 \frac{1}{6} \frac{1}{6}$	1 talent - 60	1 musti 2 5 6	1 sextarus = 544 g
1 diobol = $\frac{1}{8}$ diobol	Capacity, dry	1 cudava - 1/2	Umt Sextarius
1 drachma = 0.01	(Monsured by weight)	1 prastha = 16	1 modius - 16
1 tetradrachma = 0.04	1 ephah (now) = 21, 120 kg	1 adhaka - i	1 quadrantal → 48
1 talent = 60	$\frac{1 \text{ ephah}}{1 \text{ (new)}} = 21.420 \text{ kg}$	1 cumbha (small) = 2	1 pes ¹ ‡ (of water) = 18
Area	Unit Ephah	1 shari 16	Capacity, liquid
	$1 \log = \frac{1}{12}$	1 cumbha = 20	(Measured by weight)
$1 \text{ pous}^2 = 0.095 \ 209 \ \text{m}^2$	1 cab - 12	1 baha = 200	
Unit Pous ²	1 gomor = 0 1	Persian System v. Assyrio-	1 sextarius = 544 g
1 dekapode ² = 100	1 sath 0 3	Chaldean-Persian,	1 sextus
1 plethron* = 10 000	1 modius f	Roman System.	Unit Sextarius
Capacity	1 cor 10	_	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(Measured by weight)	Capacity, liquid	Length	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(Measured by weight)	1 pes (common or	1 hemina $=\frac{1}{2}$
1 chenica = 816 g	1 bath (old) = 29.376 kg	Drusian) (foot) == 0.3196 m	1 congus = 6
Unit Chenica	1 bath (new) = 21,420 kg	1 legal pes (1st) = 0 2962 m	1 urna = 24
$ \begin{array}{rcl} 1 & \text{cyanthos} &= 2 \\ 1 & \text{oxybaphon} &= 1 \\ \end{array} $	Unit Bath	1 legal pes (2nd) = 0.2967 m	1 amphora = 48
$\begin{array}{ll} 1 \text{ oxybaphon} &= \frac{1}{16} \\ 1 \text{ cotyle} &= \frac{1}{2} \end{array}$	1 log = 1/2	Unit Pes	1 culous
$\begin{array}{rcl} 1 & \text{cotyle} & = \frac{1}{4} \\ 1 & \text{sexte} & = \frac{1}{2} \end{array}$	$\begin{array}{ccc} 1 & \log & 72 \\ 1 & \sin & = \frac{7}{6} \end{array}$	1 digitus (finger) $= \frac{1}{1.6}$	1 dolium , = 960
* The Olympic foot of Egyptian	1 cor = 10	Luncia (inch) - 12	* Silver
origin.	* Talmudist	1 cubitus (cubit) = 12	+ Neroman.
† Lapidary.	† Of Moses.	1 passus (pace) = 5	‡ Legal pes (2).

SYMBOLS, BASIC CONSTANTS, CONVERSION DATA, DIMENSIONS, DEFINITIONS

13.	I MIDOLO, DAGIC	COM	JIMILIO,	COMVE		Dilli, Dilli		
Symb	ols and Abbreviations			16	C	Centigrade	fir.	Firkin
	amental Constants			17	CTU	Centigrade thermal unit Concentration. Molecular	fl.	Fluid Foot-pound-second system
	ersion Factors and Dimer	winnal 1	Sarmulao X		1	heat	fps	of units
	RSEY	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o, m,	18	C1, C1	Radiation constants of	fpse	Fps electrostatic system
	ical Efflux Viscometers	· Intorn	mentuum und		1	black body, (See defini-	fpsm	Fps electromagnetic system
	version of Readings, W. H	-		32	c_i	tion of black body) Intensity coefficient, (See	ft. ft.'	Foot Square foot
						definition of black body)	ft.*	Cubic foot
perech	ed Technical Terms, N. E	RNEST L	ORSEY.	. 34	C_{P}, C_{\bullet}	Molecular heat at constant	fur.	Furlong
	D. CDC CD D. CC			_		pressure, at constant volume	G	Gravitation constant
	BASES OF DATA CO	NIAIN	ED IN I. C.	1.	c	Velocity of light in vacuo	E	Gram
Whe	n many experts are coope	erating is	the assemble	ling of data.	c	Carat. Centi-	gul.	Gallon
	sential that the same valu				ca.	Candle circa - about, approxi-	gi. gr.	Gill Grain
	r the necessary conversion				1	mately	gı.	Acceleration due to gravity
Conse	quently, at the very beg	inning o	f the work,	the Editors	cal	Calorie (gram)	0.	Standard gravity
compil	ed a set of accepted, or L	. C. T., ·	values for suc	h constants	cd.	Cord Confer = compare	IP	Horse-power
and fa	ctors; and the Experts v	vere inst	ructed to be	se all their	egs	Centimeter-gram-second	H	Atomic weight of hydrogen
	pon these values. In the t					system of units	h	Planck's constant of action
sible to	o follow these instructions,	the data	ı were to be a	ccompanied	cgse	Cgs electrostatic system	h	Hecto-
byas	tatement of the actual bar	sis upon	which they r	est.	cgsm	Cgs electromagnetic system Chain	ha bhd,	Hectare Hogshead
_	ompiling this list, and in				em	Centimeter	bр.	Horse-power
	the quantities as were in				em¹	Square centimeter	hr	Hour
	I and utilized the advice				em ⁸	Cubic centimeter Candle power	h	Height
	rds, the National Physic				cu.	Cubic	Int.	International
	e Société Française de P				cu ft.	Cubic foot	I. C. T.	International Critical
	e to Dr. F. E. Fowle, of the				cwt.	Hundredweight Specific heat ~ heat capac-	I	Tables Electric current
	assistance in preparing to its, and to Professors T.				1	ity of the substance	ıbıd.	Ibidem = in the same place
	ir recommendations conce				Cp, Cy	Specific heat at constant	i.e.	Id est - that is
	list so prepared comprise				}	pressure, at constant vol- ume	in. in.*	Inch Cubic inch
	(2) a set of nine basic of				l	dillo		Cubic inch
	inties were added at a lat				D	Density	J	Radiance
	nts (computed directly fro				d da	Derivative. Deci- Day	J_{λ}	Intensity of monochromatic radiance of wave-length \(\lambda \)
conven	tional constants, and two	experin	nental consta	nts (p. 18)	deg	Thermometric degree, abso-	J _m	Value of J_{λ} for $\lambda = \lambda_{-}$
and (4) c <mark>ertain</mark> conversion facto	rs select	ed from Tab	les 1 to 79		lute C unless contrary is	-	^ "
	32). Although the acce				dk	indicated Deka-	K	Karat. Kelvin, or absolute
	s to the best values at		ie available,	it was not	dm ^a	Cubic decimeter	K	C, scale of temperature Constant of chemical equi-
claime	I that they were such best	values.			dr	Dram	••	librium
	73734D014 1ND				dwt	Pennyweight Density. Diameter	k	Kilo-
	SYMBOLS AND	ABBRE	IATIONS		de	Critical density	kg km	Kilogram Kilometer
Exce	pt as the contrary is defi	nitely st	ated, the foll	owing sym-	d'*	Specific gravity at temper-	km³	Square kilometer
	d abbreviations will alway				''	rature t ₁₂ , with reference to water at temperature	k	Velocity coefficient of
cated.	Other symbols will be o	defined 1	n the section	s in which		t ₁	k ₀	chemical reaction Boltzmann's gas constant
they a	re used. For those quan	itities wl	nich are inch	ided in the	_			- or or or or or or or or or or or or or
	symbols approved by t				E E ₀	Electromotive force Mean translational energy	L	Latent heat per mole
Chemic	al Societies (4, 119 : 502	2; 21), t	ne symbols s	o approved		of molecule of ideal gas	1 1.	Liter Long
have, i	n general, been used; in a	some cas	es, this has i	necessitated		at 0°C	lat.	Latitude
	of the same symbol to r				6	Electronic charge Base of natural system of	1b,	Pound
the cor	stext will serve to indicate	e which	interpretatioi	is correct.	· ·	logarithms = 2 71828+	h. liq.	Link Liquid
Tooling	planations of the several	technica.	terms, cons	ult Selected	# .g	Exempli gratia - for	long.	Longitude
	cal Terms, p. 34.				em	example Cgsm unit of quantity of	ı	Length. Latent heat pe
À	Angstrom unit	ар	Apothecanes			electricity		gram
A. An	Acre Normal atmosphere	Av. av.	Average Avoirdupois		emf	Electromotive force	M	Molecular weight
A sa	Atmosphere, 15° latitude	a.		al's pressure	equiv es	Electrochemical equivalent Cgse unit of quantity of	M [a]	Molecular rotatory power
A	Atomic weight. Maximum		constant	Capillary con-		electricity	Μ [ω]	Molecular magnetic rota tory power
	work of a thermodynamic system		stant		etc.	Et cetera = and so forth	m,	Mass of electron at lov
٨	Are	BTU	British Thern	val Unit	et seq	Et sequentes = and the following		velocity
(a)	Based on Int. ohm and Int	bbl	Barrel		ro .	Ratio of Eo to To	m m²	Meter. Milli- Square meter
	ampere as defined by sil- ver voltameter. (See	bd.	Board Bushel		_	-	max.	Maximum
	Int. elec. units, p. 27)	bu. b		aal's volume	F	Faraday Fahrenheit	mg mi.	Milligram Mile
abe.	Absolute		constant	· · · · · · · · · · · · · · · · · · · ·	fath.	Fathom	min. min	Minute

nio. ni	Minim, Minimum Milliliter	T. T	Ice point, absolute C Temperature on absolute C scale
nmf Rø	Magnetomotive force Millimicron. Millimicro-	T.	Critical temperature, abso-
	Ман		lute C Metric ton
· H	Mass of a hydrogen atom	t.	
1		t. tn.	Troy Ton
N	Numerio	tn.	Time. Temperature (
N.	Avogadro's number	•	(above see point)
N _{oo}	Rydberg's universal series constant	l _s	Critical temperature C
	Refractive index		(above ice point)
Re, Rè	Transport number for anion, kation	U. 8.	United States of America
No.	Loschmidt's number	v	Volume
		Y.	Volume per gram-mole of
0	Atomic weight of oxygen	••	ideal gas at 0°C and An
OB.	Ounce	۴.	Vide = ace
P	Pressure	(v)	Based on Int ohm and Int.
p.k	Peck		volt as defined by stand-
Dt.	Pint		ard cell. (See Int elec.
p	Pressure		units, p. 27)
Pe. Pr	Critical pressure, reduced		Volume
	pressure	te, te	Critical volume, reduced volume
Q	Quantity		***
q	Quintal	W	Electrical resistance
qt.	Quart	wt.	Weight
q.v.	Quod vide - which see	w	Wien's displacement con- stant
R	Réaumur	,	Yard
R	Gas constant per mole of	yd.	Year
	ideal gas. Electrical re-	yr	iear
	sistance.	z	Atomic number
rd.	Rod		
•	Radius	α	Degree of dissociation.
*a	Specific refractivity (Glad-		Angle of optical rotation
	stone and Dale)	[α]	Specific rotatory power
₹ _L	Specific refraction (Lorentz	β	Specific heat constant
	and Lorenz)	γ	Surface tenmon. Ratio of
rı	Radius of first Bohr ring,		c _p /c _c Gamma (mag- netic unit)
	hydrogen		Diffusion coefficient
	G	7	Dielectric constant Elec-
8.E.	Siemena unit	•	trode potential
S	Entropy Stere		Electrode potential above
	Scruple	°4, °6	that of normal hydrogen,
s. sec	Second (mean solar unless		of normal calomel, elec-
sec ,	contrary is stated)		trode
ab.	Short	7	Viscosity
#11.	Square	θ	Angle (plane). Temper-
вq вq. ft.	Square foot	•	ature C above see point
∍q 1t.	oquare 1001		arare o abort tee point

¹ In every computation it is tacitly assumed that the values employed are exact. If but three digits are employed, it is assumed that all others are zero; if a computing machine is used, the assumption is carried out to the extreme limit of the machine; if logarithms are used, it is carried to the limit within which the logarithms are interpolated. Fo adopt an accepted or a conventional

4	Susceptibility (magnetic), Electrical (volume) con- ductivity	m 5 5 2	Minim Apothecaries' ounce Apothecaries' dram
٨	Equivalent conductivity (electrical)	•	Apothecaries' scruple Degree (are or temperature)
λ	Wave-length, \(\lambda 5890 \rightarrow\) apcetral line of wave-length \(\rightarrow 5890\hat{\lambda}\)	9%	Minute of arc (sexagesimal) Second of arc (sexagesimal) Percent = per hundred
λ-,	Wave-length of maximum monochromatic radiance of black-body at stated temperature	()	Per thousand = 0.1 % Dimensional expressions are inclosed in []. In text, [] is used to inclose
μ	Permeability (magnetic) Micron, Micro-, Molec- ular conductivity (elec- trical)		a second reading. (<i>R.g.</i> , Length [diameter] of the bar is 10 cm [1 cm] = length of bar is 10 cm,
μμ	Micromicron Micromicro-		diameter of bar is 1 cm)
,	Frequency	<	A < B [A > B] denotes
F 10	Rydberg's fundamental fre- quency		that A is less than [greater than] B
•	Ratio of circumference of a circle to its diameter	*	Negative of <; A < B denotes that A is not less than B
•	Stefan's constant (radi- ation)	s	Combination of < and =: A < B denotes that A is
۴	Fluidity, Angle		equal to or less than, B
¥	Luminous flux	prá.	is not equal to
13	Ohm	24	Identically equal to; used
[12]	Relative molecular mag-	_	in defining symbols, etc.
	netic rotatory power with reference to water	~	Approximately (or casen- tially) equal to
w lwl	Solid angle Specific magnetic rotatory power	œ	Infinity

FUNDAMENTAL CONSTANTS

By an accepted, conventional, or defined value, is meant one which is to be regarded as exactly correct for purposes of computation.¹ Thus, errors from computational approximations are avoided and do not enter into consideration in any future revision of the computed result for a discovered difference between the true and the accepted value. When the computation involves several accepted values, it is especially important that each shall be regarded as exactly correct, for only then can the result be independently revised (without complete recalculation) for changes in the values of each. For this reason the logarithms of the several accepted values are given to the full precision of Vega's seven-place table. The degree of uncertainty in the value accepted is indicated by the number of significant figures retained in the value itself, not by the logarithm.

value, and to give as its logarithm an abbreviated value, is to introduce an ambiguity of a magnitude determined by the degree of abbreviation of the logarithm. But the sole object in adopting accepted or conventional values is to avoid ambiguity.

ACCEPTED BASIC CONSTANTS Units: egs, °C, liter, An, absolute electric

	Quantity	Value	Uncertainty	Log ₁₀ (value)
c	Velocity of light	$2.9986 \times 10^{10} \mathrm{cm \ sec^{-1}}$	0.0003	10.476 9185
G	Gravitation constant.	$6.66 \times 10^{-8} \mathrm{cm^3 g^{-1} sec^{-2}}$	0 01	8.823 4742
e	Electronic charge	$4.774 \times 10^{-10} \text{ es}$	0 005	10.678 8824
•	Electronic charge	*1 592 × 10 ⁻²⁰ em		20.201 9639
e/m _o	Electronic ratio	$5 \ 305 \ imes 10^{17} \ \mathrm{es} \ \mathrm{g}^{-1}$	0 010	17.724 6854
e/ma	Electronic ratio	*1 769 × 10 ⁷ emg ⁻¹		7.247 7669
F	Faraday	9 6500 × 104 coulombs	0 0010	4.984 5273
F	Faraday	*2 893 65× 1014 es		14.461 4458
¥ø	Volume 1 mole at 0°C, An.	†22 4115 × 103 cm2 mole~1	0 002	4.350 4709
h	Planck's constant	6 554 × 10 ⁻²⁷ erg sec	0 001	27.816 5064
T.	Ice point, absolute	273 1 deg C	+0.15 to -0.05	2.436 3217
0	Atomic weight of oxygen.	16 000 (by definition)	(definition)	1.204 1200

^{*} This value is derived from the preceding one, which is the value actually accepted.

[†] Derived from volume at 0°C, $A_{44} = 22.412$ liters/g-mole on assumption log_{10} (A_{11}/A_{44}) = 0.000 0214, liter = 1000.027 cm³.

ACCEPTED CONSTANTS:—CONVENTIONAL AND NON-BASIC Units: cgs, °C, liter, An absolute electric, international angstrom

	Quantity	Value	Log ₁₀ (value)
		A. Derived Constants	
ĸ	Gas constant	$8.315 \times 10^{7} \mathrm{erg \ deg^{-1} \ mole^{-1}}$	7.919 8658
R	Gas constant	0 082 06 liter atm deg ⁻¹ mole ⁻¹	2.914 1375
R	Gas constant	1 9869 cal ₁₅ deg ⁻¹ mole ⁻¹	0.298 1703
N_{o}	Avogadro's number	6 061 × 10 ²³ mole ^{~1}	23.782 5634
710	Loschmidt's number	. $10^{19} \text{ cm}^{-3} \text{ (at 0°C, An)}$	19.432 0925
k,	Molecular gas constant	$1.372 \times 10^{-16} \mathrm{erg \ deg^{-1}}$	16.137 3024
E.	Translational energy of molecules, 0°C	$5.620 \times 10^{-14} \mathrm{erg}$	14.749 7154
•,	Ratio of E ₀ to T ₀	$2.058 \times 10^{-16} \mathrm{erg \ deg^{-1}}$	16.313 3937
nn	Mass of hydrogen atom	$1.663 \times 10^{-24} \text{ g}$	24.220 7679
n _o	Electronic mass	$8.999 \times 10^{-28} \mathrm{g}$	28.954 1970
1	Radius 1st Bohr ring of hydrogen	$0.5305 \times 10^{-8} \mathrm{cm}$	$\bar{9}.724 6912$
1/e	Photo-electric constant	$1.373 \times 10^{-17} \mathrm{erg \ sec \ es^{-1}}$	17.137 6240
1/0	Photo-electric constant	*4.117 × 10 ⁻¹⁵ volt sec	15.614 5425
,	Photo-electric constant	4 117 \times 10 ⁻⁷ erg cm es ⁻¹	7.614 5425
c/e	Photo-electric constant	1 2344 × 104 volt Å	4.091 4610
1	Specific heat constant	$4.778 \times 10^{-11} \text{ sec deg}$	11.679 2040
	Stefan's constant	$5.709 \times 10^{-5} \text{ erg cm}^{-2} \text{ sec}^{-1} \text{ deg}^{-4}$	5.756 5416
7,	Radiation constant, first	$3.703 \times 10^{-5} \mathrm{erg cm^2 sec^{-1}}$	5.568 5233
12	Radiation constant, second	1 433 cm deg	0.156 1225
,	Wien's displacement constant	0 2885 cm deg	1.460 1933
,	Intensity coefficient	$1.301 \times 10^{-6} \mathrm{erg \ em^{-3} \ sec^{-1} deg^{-6}}$	4.114 2762
) P	Rydberg frequency	$3\ 2775 \times 10^{15}\ {\rm sec}^{-1}$	15.515 5372
r [Rydberg wave number	1 0930 × 10 ⁵ cm ⁻¹	5.038 6187
-	Trythorig wave infinite	B. Conventional Constants	0.000 0101
	At 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		C 005 7100
L _n	Normal atmosphere	1 0132 50 × 106 dyne cm ⁻²	6 005 7166
44	Atmosphere, latitude 45°	$1.0132.00 \times 10^6 \mathrm{dyne} \mathrm{cm}^{-2}$	6.005 6952
L	Wave-length of red Cd line is	6438 4696 A	4.808 7827
	Standard gravity	980 665 cm sec ⁻²	2 991 5207
	Aberration constant	20 47"	1 311 1178
	The second of th	C. Experimental Constants	
	ng space in calcite	3 028 Å	0.481 1559
Į	Atomic weight of hydrogen	1 0077	0.003 3313
	face a constant	1000 027 cm ³	3.000 0117
Grai	n calorie (20°C')	4.181 joule	0.621 2802
Grai	n calorie (15°C')	4.185 joule	0.621 6955
Grai	n calorie (mean)	4.186 joule	0.621 7992
	sh Thermal Unit (39°F)	1060 4 joule	3.025 4697
Briti	sh Thermal Unit (mean)	1054 8 joule	3 023 1701
Briti	sh Thermal Unit (60°F)	1054.6 joule	3.023 0878
Inte	rnational ohm	1 000 52 ohm	0 000 2259
Inte	rnational ampere (v)§	0 999 90 ampere	0.999 9566
Inte	rnational ampere (a) § .	0 999 93 ampere	0 999 9696

^{*}This value is derived from the preceding one, which is the value actually accepted.

CONVERSION FACTORS AND DIMENSIONAL FORMULAE

N. Ernest Dorsey

In the following tables are given the factors by which values expressed in other units must be multiplied in order to obtain their equivalents in units of the centimeter-gram-second (cgs) system. To convert in the reverse direction, divide by the factor given. The dimensional formula in the cgs, or any similarly constructed, system is given in the title of each table.

Conversion Factors.—With few exceptions, the values given are based exclusively upon legal definitions, conventional con-

¹ The exceptions are (1) astronomical unit of distance, (2) parsec, (3) sidereal second, (4) certain units of luminous intensity, (5) international electrical units prior to 1911, and (6) the data for hydrometers

stants, and the I. C. T. accepted values (p. 16). Consequently, they are computable to as extreme a precision as may be desired. They have been computed by means of Vega's seven-place logarithms, and it is hoped that their logarithms as given are correct to a unit in the last digit. Obviously, those factors which involve the accepted value of an experimentally determined constant will be in error by an amount determined by the error in the accepted value; but quantities converted by means of the logarithms given will retain their same relative precision, however great this may be, within the limit set by the seven-place table, and may at any time be as exactly corrected for a revision of the accepted value. This would not be true if an abbreviated logarithm were used, unless the exact value of the abbreviated logarithm itself were given. The latter would be equivalent merely to the adoption of another accepted value for the experimental constant involved;

[‡] In the original list, this quantity was included solely in the list of conversion factors; its value, however, is an independently selected, accepted constant, and, consequently, is treated as exact in all computations

§ (v) = Based on Int. ohm and Weston normal cell = 1.018300 Int. volts at 20°C, (a) = based on deposit of 1.11800 mg of silver per Int. ampere second.

and the new value so fixed would, in general, be expressible only by an indefinite number of digits. The former procedure is to be preferred.

Frequently, the same factor applies to more than one type of physical quantity; if the units of the several types have distinctive names, separate tables are given, otherwise, not. In general, the tables are arranged in the order of increasing complexity of the dimensional formulae. Some quantities for which conversion factors are seldom required, and a few dimensionless quantities have been grouped together in Table 78. The dimensional formulae of the more important electric and magnetic units, and the numerical relations connecting these units in the three systems most frequently used, are assembled in Table 77. To find the conversion factor for a given quantity, consult the index below.

Dimensions.—Two types of dimensional equations need to be considered, viz.: (1) Those in which the dimensions are expressed in terms of the quantities directly involved in the phenomenon under consideration, and (2) those in which the dimensions are expressed in terms of certain fundamental units.

As an illustration of the first we may consider the force of repulsion between two point charges (e,e') of electricity situated at a distance, r, apart in a medium of dielectric constant ϵ . If this force is denoted by f, then $f = ee'/er^2$, and we may write $[e^2] = [fd^2]$, $[\epsilon] = [e^2f^{-1}l^{-2}]$, etc., where $[\cdot]$ denotes that we are concerned with dimensions only; [l] denotes the dimension of length, [f] that of force, etc. These dimensional equations are true whatever be the system of units employed. As they involve quantities, such as force, which can be expressed in terms of other units that are usually considered more fundamental, such dimensional equations will be referred to as "unreduced," in order to distinguish them from those of the second class in which the dimensions are expressed solely in terms of a small number of fundamental units.

It is evident that the dimensions of a quantity in terms of fundamental units can be assigned only in relation to a specific system of units and to a specific method of derivation. For example, (1) if the unit of volume is defined as the volume occupied by a unit mass of water when at its greatest density under a pressure of one atmosphere, then the volume so defined will be independent of the units of length and time, and will vary directly as the unit of mass: we will have [v] = [m]. (2) If the unit of

volume is defined as the volume occupied by a mass of water (when at its greatest density, etc.) which is equal to the mass of a specified block of platinum, then the volume so defined will not change as we change our units of length, of mass, and of time: that is |v| = |v|. In this case |v| is an independent unit and must be so regarded in all dimensional equations. (3) If the unit of volume is defined as the volume of a cube of which the edge is equal to the unit of length then $|v| = |I^2|$. A unit may be defined in any desired unambiguous manner and, in general, the dimensions of the unit will vary from definition to definition.

Dimensional equations of the second type stand in marked contrast to those of the former, in being far less general and in implying the acceptance of a very exactly defined system of units. This, however, is the type of equation which is commonly in mind when dimensional equations are mentioned, and is probably the one which is the more generally useful; the unreduced dimensional expressions (the first type), however, are often simpler, convey more detailed information, and m many cases are to be preferred. For these reasons, unreduced dimensional expressions are to be found in explanations of technical terms (p. 34); they are followed by others, the final one in each case being the fully reduced dimensions on the centimeter, gram, second, degree centigrade absolute, electrostatic system. Wherever necessary, this system of units will be denoted by the symbol case in order to distinguish it from the corresponding electromagnetic system, which will be denoted by cgsm. In the conversion tables, dimensional formulae only of the case and of the casm systems are given. In the case system, the fundamental units and their symbols are those of length Ill the centimeter of mass [m] the gram, of time [t] the mean solar second, of temperature [T] the absolute centigrade degree, and of dielectric constant [e], that of a vacuum. The fundamental units in the egsm system differ from those in the egse system only by the replacement of dielectric constant by magnetic nermonbility $[\mu]$, the unit being the permeability of a vacuum.

It should be realized that dimensional expressions give no positive information regarding the ultimate nature of the quantity to which they refer; e.g., energy and torque have the same dimensions, but differ vastly in their nature.

Symbols.—(U. S.) before a logarithm denotes that it is based upon the U. S. yard; for explanation of other symbols, see Symbols and Abbreviations, p. 16.

INDEX TO TABLES OF CONVERSION FACTORS

Absorption (Radiation), Coefficient of, Absorption (Radiation) Index of, 78 Absorptivity (Radiation), 2 Acceleration, Angular, 26 Acceleration, Linear, 24 Action, 37 Angle, Plane, 7, 8 Angle, Solid, 9, 10 Annealed Copper, Electrical Constants, 61 Area, 16, 17 Area-1 Time-1, 22 Brightness, Surface, 48 Bulk Modulus, 33 Capacity, Electrical, 56, 77 Capacity, Heat, 78 Capacity, Polarisation, 77, 78 Capacity (Volume), 18, 19 Capillary Constant, 43 Charge, Electric, 49, 50, 77 Compressibility, 34 Compression, Modulus of, 33, 34 Concentration (Mass), 29 Concentration (Volume), 28 Conductivity, Electrical (Mass), 60, 77 Conductivity, Electrical (Surface), 77 Conductivity, Electrical (Volume), 58,

Conductivity, Thermal, 44 Copper, Electrical Constants of An nealed, 61 Curie's Constant (Magnetic), 12 Current, Electric, 51, 77 Degree (Thermometric), 11, 12 Degree-1 Length (Thermometric), 20 Degree -1 Mass-1 (Thermometric), 21 Density, 28 Density, Surface (Electric), 78 Density, Volume (Electric), 78 Dielectric Constant, 14, 77 Dielectric Strength, 52, 53 Diffusivity, 41 Diffusion, Coefficient of, 41 Dumberment Electric (Local), 77 Displacement, Electric (Integral), 49, 50, 77 Elastic Moduli, 33 Electric Units, Fundamental, 77 Electromotive Force, 52, 77 Energy, 35 Ettinghausen Effect, Coefficient of, 74 Expansivity, 12 Field Intensity, Electric, 53, 77 Field Intensity, Magnetic, 67, 68, 77 Fluidity, 38 Flux, Electric Induction, 49, 50 Flux, Luminous, 13

Flux, Magnetic Induction, 71, 77 Flux, Magnetic, 71, 77 Force, 30, 31 Force, Electromotive, 52, 77 Force, Magnetizing, 67, 77 Force, Magnetomotive, 69, 77 Frequency, 6 Hall Effect, Coefficient of, 73 Heat, 35 Heat Capacity, 78 Heat Conductivity, 44 Heat, Latent, 78 Heat. Reaction, 78 Heat, Superficial Latent, 78 Heat, Transformation, 78 Hydrometers, 79 Illumination, 47 Inductance (Electrical), 55, 77 Induction, Flux of Electric, 49, 50, 77 Induction, Flux of Magnetic, 71, 77 Induction, Magnetic, 70, 77 Inductivity, Electrical, 14, 77 Intensity, Luminous, 46 Intensity of Magnetization, 70, 77 Intensity of Radiation, 45, 78 Kerr's Constant, 78 Kinematic Viscosity, 40, 78 Leduc Effect, Coefficient of, 68 Length, 1, 2

Length Degree-1, 20 Luminous Flux, 13 Magnetic Flux, 71, 77 Magnetic Induction, 70, 77 Magnetic Induction Flux of 71, 77 Magnetic Units, Fundamental, 77 Magnetism, Quantity of, 71, 77 Magnetization, Intensity of, 70, 77 Magnetizing Force, 67, 68, 77 Magnetomotive Force 69, 77 Mass, 3, 4 Mass-1 Degree-1, 21 Mobility, Ionic, 62, 77 Moduli, Elastic, 33 Moment of Force or Couple 32 Nernst Effect, Coefficient of, 75 Peltier Coefficient, 64
Permeability, Magnetic, 15, 77, Piezoelectric Constant, 66 Polarization Capacity, 77, 75 Pole Strength (Magnetic), 71, 77 Potential (Electric), 52, 77 Potential (Magnetic), 69. 77 Potential Gradient (Electric), 53 Potential Gradient (Magnetic), 67, 68 Power, 36 Power, Therm Pressure, 33, 34 Pyroelectric Constant, 78

INDEX TO TABLES OF CONVERSION FACTORS.—Continued

Quantity of Electricity, 49, 50, 77
Quantity of Magnetism, 71, 77
Reflectivity, 78
Refraction, Index of, 78
Refurtance (Magnetic), 72, 77
Resistance, Electrical, 54, 77
Resistivity, Electrical (Mass), 59, 77
Resistivity, Electrical (Surface), 54, 77
Resistivity, Electrical (Yolume), 57, 77
Rigidity, Modulus of, 33
Rotatory Power, 27

Skin Friction, Coefficient of, 33
Solubility (Gases), 78
Solubility (Non-gases), 28
Specific Heat, 78
Specific Heat of Electricity (Thomson), 65, 77
Specific Inductive Capacity, 14, 77, 78
Streas, 33, 34
Surface Tension, 42
Suaceptibility (Magnetic), 15, 77
Temperature, 11, 12

Tension, 33, 34
Tension, 8urface, 42
Thermal (See Heat)
Thermoelectric Power, 63, 78
Thomson's Coefficient (Thermoelectric, 65
Time, 5, 6
Time, 5, 6
Time-1 Area-1, 22
Torque, 32
Transmission, Coefficient of (Radiation), 2

Twist, 27
Velocity, Angular, 25
Velocity, Linear, 23
Velocity of a Process, 6
Verdet's Constant, 76
Viscosity, 30
Viscosity, Kinematic, 40, 78
Volume, 18, 19
Weight, 3, 4, 30, 31
Work, 35
Young's Modulus, 33, 34

CONVERSION FACTORS

1. Length [l] (see also p. 1)

		1. Length [l] (see also p. 1)	
Unit		Value	Log ₁₀ (value)
1 angström unit	72	1 0000 × 10 ⋅ m cm	8.000 0000
1 micron	22	1 0000 × 10 ⁻⁴ cm	4.000 0000
1 mil	2002	$2.5400 \times 10^{-3} \text{ cm}$	3.404 8346
1 inch	-	2.5400 cm	(U. S.) 0.404 8346
1 foot	=	30.480 cm	(U. S.) 1.484 0158
1 yard (U. S.)	rant .	91.44018 cm	1.961 1371
1 yard (British)	==	91 43992 cm	1.961 1350
1 mile, statute	-	1.6093 km	(U. S.) 0.206 6497
1 light year	1788	$9.4627 \times 10^{12} \text{ km}$	12.976 0131
1 astronomical unit	uar .	$1.495 \times 10^8 \text{ km}$	8.174 6712
1 parsec	=	$3.084 \times 10^{13} \text{ km}$	13.489 09
William Co. Co. Management Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	2. Length	; Absorptivity; Coefficient of Absorption* [l-	1
1 angstrom 1		1.0000 × 10 ⁸ cm ⁻¹	8.000 0000
1 micron ^{~1}		$1.0000 \times 10^{4} \text{ cm}^{-1}$	4.000 0000
1 mil-1	==	393 70 cm ⁻¹	2 595 1654
1 inch ⁻¹	2.7	0 39370 cm ⁻¹	(U. S.) T 595 1654
1 foot-1	74	$3.2808 \times 10^{-2} \mathrm{cm}^{-1}$	(U. S.) 2.515 9842
1 mile ⁻¹	53	0 62137 km ⁻¹	1.793 3503
* Coefficient of transmission (r) is so	defined that -1	og, r - coefficient of absorption	
		3. Mass [m]; Weight (see also p. 1)	
1 grain		64.799 mg	1 811 5677
1 carat (metric)	=	200 000 mg	2 301 0300
1 ounce (avoirdupois)	==	28.350 g	1 452 5458
1 ounce (apothecary) or (troy)	=	31.103 g	1 492 8090
1 pound (avoirdupois)	100	453 59243 g	2.656 6658
1 pound (apothecary) or (troy)	776	373.2417 g	2.571 9902
1 ton, short (2000 pounds)	==	907 185 kg	2 957 6958
1 ton, long (2240 pounds)	ine	1016 047 kg	3 006 9138
1 alug (g.)	2702	14 594 kg	1.164 1707
1 gram mole	ma	M. W.† g-	
1 molecule/M. W.†	22	$1.6498 \times 10^{-24} \mathrm{g}$	$\overline{24}.217 4366$
1 assay ton	=	29 1667 g	1 464 8868
† M. W. denotes the molecular weight	of the substance	4.35	
1 and 1		4. Mass ⁻¹ [m ⁻¹]	0.100.4900
1 grain ⁻¹ 1 ounce ⁻¹ (avoirdupois)		$1.5432 \times 10^{-2} \text{ mg}^{-1}$	2 188 4323
• •		$3.5274 \times 10^{-2} \text{ g}^{-1}$	2 547 4542 3 507 1010
1 ounce ⁻¹ (troy)	502	$3\ 2151 \times 10^{-2}\ g^{-1}$	2.507 1910
1 pound = (avoirdupois)		$2.2046 \times 10^{-2} \mathrm{g}^{-1}$	3.343 3342
1 ton ⁻¹ (2000 pounds)		11 0231 × 10 ⁻⁴ kg ⁻¹	3.042 3042
1 ton ⁻¹ (2240 pounds)	-4	9 8421 × 10 ⁻⁴ kg ⁻¹	4.993 0862
1 (gram mole) 1 † M. W. denotes the molecular weight	if the substance	†(M. W.) ⁻¹ g ⁻¹	
i in denotes the more that weight	or con-adomination	5. Time [<i>t</i>]	
1 second, mean solar	7	1 00273791 sidereal sec	0.001 1874
1 second, sidereal	ža	0 997270 sec (mean solar)	1 998 8126
I hour (tropical, mean solar)	==	3 6000 × 10 ³ sec (mean solar)	3.556 3025
l day (tropical, mean solar)	mage	8 6400 × 104 sec (mean solar)	4.936 5137
l day (sidereal)	23.	8 6164 × 104 sec (mean solar)	4.935 3263
1 year (tropical, mean solar)	=	31 5569 × 106 sec (mean solar)	7.499 0946
1 year (tropical, mean solar)	**	365 2422 day (mean solar)	2 562 5809

		6. Time-	; Frequency; "Velocity" of a Process [(-1)
1 second ⁻¹ (sidere	al)	-	1 002738 sec ⁻¹ (mean solar)	0.001 1874
1 minute ⁻¹ (mean	solar)	13	1 66667 \times 10 ⁻¹ sec ⁻¹ (mean solar)	2.221 8487
l hour-1 (mean so	olar)	E	$2.77778 \times 10^{-4} \text{sec}^{-1} (\text{mean solar})$	4.443 6975
l day ⁻¹ (mean sol	ar)	=	1 15741 \times 10 ⁻⁴ sec ⁻¹ (mean solar)	5.063 4863
l year ⁻¹ (mean so	lar)	za .	$3 16888 \times 10^{-8} \text{ sec}^{-1} \text{ (mean solar)}$	8.500 9054
year - (mean so	lar)	**	$2.73791 \times 10^{-3} day^{-1}$ (mean solar)	3.437 4191
electron-volt, qu		**	$2 4292 \times 10^{14} \text{ sec}^{-1} \text{ (mean solar)}$	14.385 4575
joule per mole, .		THE .	$2 5173 \times 10^9 \text{ see}^{-1} \text{ (mean solar)}$	9.400 9301
velocity of light	, (angström unit)-1	=	$2 9986 \times 10^{18} \text{ sec}^{-1} \text{ (mean solar)}$	18.476 9185
velocity of light.	, millimicron ⁻¹	=	2 9986 $\times 10^{17} \text{ sec}^{-1} \text{ (mean solar)}$	17.476 9185
velocity of light	, micron ⁻¹	70a	$2 9986 \times 10^{14} \text{ sec}^{-1} \text{ (mean solar)}$	14.476 9185
l velocity of light.		24	2 9986 \times 10 ¹¹ sec ⁻¹ (mean solar)	11.476 9185
velocity of light	, meter-1	ж;	2 9986 × 10 ^a sec ⁻¹ (mean solar)	8.476 9185
			 Angle [θ] 	
radian		=	57.29578 degree	1.758 1226
circumference		==	6 28319 radian	0 798 1799
quadrant		=	1.57080 radian	0.196 1199
degree		122	1 74533 × 10 ⁻² radian	2.241 8774
minute		20	2 90888 × 10 ⁻⁴ radian	4.463 7261
second		ne.	4 84814 × 10 ⁻⁶ radian	6.685 5749
			8. Angle ⁻¹ [θ ⁻¹]	
circumference-1			0 159155 radian ⁻¹	1.201 8201
degree ⁻¹		ter.	57 29578 radian ⁻¹	1.758 1226
minute ⁻¹		Les.	3.43775 × 10 ^a radian ⁻¹	3.536 2739
second ⁻¹		==	2 06265 × 10 ⁵ radian ⁻¹	5.314 4251
BECOILL				
			9. Solid Angle [ω]	1 000 0000
Entire space		F-2	12 5664 steradian	1.099 2099
hemisphere		112	6 2832 steradian 3 0462 × 10 ⁻⁴ steradian	0.798 1799 4.483 7548
square degree				1.777 7020
			10. Solid Angle ⁻¹ [ω ⁻¹]	å 000 7001
Entire space-1		==	7 9577 × 10 ⁻² steradian ⁻¹	2.900 7901 T.201 8201
hemisphere-1		2.5	1 5916 × 10 ⁻¹ steradian ⁻¹	1.201 8201 3.516 2452
		=	3.2828 × 10³ steradian⁻¹	3.010 2402
edunio dellico .			A ST To be a second of the sec	
equate degree .		11. Temp	erature [T] (See also Thermometry, p. 5	
equate ucgice .	Fahrenheit.		. x° F == (§)(x	− 32)°C
Aquaiv acgine	Réaumur		$x^{\circ} F = (\S)(x$ $x^{\circ} R = (\S)x^{\circ}$	= 32)°C
equate degree	Réaumur	de)	$x^{\circ} F = (\S)(x)$ $x^{\circ} R = (\S)x^{\circ}(x)$ $x^{\circ} K = (x - (\S)x)$	= 32)°C ⊖ T ₀)°C
equato degree	RéaumurAbsolute (Centigra- Absolute (Fahrenhe	de)	$x^{\circ} \text{ F} = (\S)(x)$ $x^{\circ} \text{ R} = (\S)x^{\circ}$ $x^{\circ} \text{ K} = (x - x)$ $x^{\circ} \text{ Rankine} = (\S)(x)$	= 32)°C C T ₀)°C = 491.58)°C
	RéaumurAbsolute (Centigra- Absolute (Fahrenhe	de)	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° K $= (x - x)$ x° Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (= 32)°C C T ₀)°C = 491.58)°C
per degree F	RéaumurAbsolute (Centigra- Absolute (Fahrenhe	de). eit) ee ⁻¹ (Thermon	$x^{\circ} \text{ F} = (\frac{5}{9})(x$ $x^{\circ} \text{ R} = (\frac{1}{4})x^{\circ}$ $x^{\circ} \text{ K} = (x - x)$ $x^{\circ} \text{ Rankine} = (\frac{5}{9})(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C	- 32)°C (: T ₀)°C
per degree F per degree R	RéaumurAbsolute (Centigra- Absolute (Fahrenhe	de). eit) ee ⁻¹ (Thermon	$x^{\circ} \text{ F} = (\frac{6}{9})(x$ $x^{\circ} \text{ R} = (\frac{4}{9})x^{\circ}$ $x^{\circ} \text{ K} = (x - x)$ $x^{\circ} \text{ Rankine} = (\frac{6}{9})(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C) 0.8000 per degree C	- 32)°C C T ₀)°C - 491.58)°C magnetic) [<i>T</i> ⁻¹]
per degree F per degree R per degree K	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degre	de). sit) ee ⁻¹ (Thermon	$x^{\circ} \text{ F} = (\S)(x)$ $x^{\circ} \text{ R} = (\S)x^{\circ}$ $x^{\circ} \text{ K} = (x - x)$ $x^{\circ} \text{ Rankine} = (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.	- 32)°C (1) T ₀)°C - 491.58)°C magnetic) [T ⁻¹] 0 255 2725 1 903 0900 0.000 0000
l per degree F per degree R 1 per degree K	Réaumur Absolute (Centigra Absolute (Fahrenhe 12. Degre	de). cit) ee-1 (Thermon = = flux emitted by	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ}$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.1. Luminous Flux $\{\psi\}$ The point source of one spherical candle per constant $\{\psi\}$	= 32)"C T_0 "C = 491.58)"C magnetic) $[T^{-1}]$ = 0 255 2725 1 903 0900 0.000 0000 bower is 4π lumen.
per degree F per degree R per degree K By definition,	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). eti) eti) flux emitted by delta Dielectric	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° K $= (x - x)$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.5 Luminous Flux $[\psi]$ y a point source of one spherical candle p Constant; Electrical Inductivity $[\epsilon]$; $[\mu^{-}]$	$\begin{array}{c} = 32)^{\circ}\mathrm{C} \\ = 23)^{\circ}\mathrm{C} \\ = 100^{\circ}\mathrm{C} \\ = 491.58)^{\circ}\mathrm{C} \\ = 10000000000000000000000000000000000$
per degree F per degree R per degree K By definition, Specific inductive	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). ee-1 (Thermon flux emitted by 14. Dielectric	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ})$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.5 Luminous Flux $[\psi]$ y a point source of one spherical candle per Constant; Electrical Inductivity $[*]$; $[\mu^{-}]$ understally equal to the dielectric constant expression.	- 32)°C (1) T ₀ °C - 491.58)°C magnetic) [T ⁻¹] 0 255 2725 1 903 0900 0.000 0000 bower is 4π lumen. 1l ^{-2l²}] essed in egge or in fpse units.
per degree F per degree R per degree K By definition, Specific inductive cgsm unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). eti) eti) flux emitted by delta Dielectric	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ}$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 13. Luminous Flux $\{\psi\}$ y a point source of one spherical candle p Constant; Electrical Inductivity $\{\epsilon\}$; $[\mu^{-}]$ numerically equal to the dielectric constant expression of the spherical candle p 8.9916 \times 10 ²⁰ egse unit	- 32)°C (1) T ₀ °C - 491.58)°C magnetic) [T ⁻¹] 0 255 2725 1 903 0900 0.000 0000 bower is 4π lumen. 1 $l^{-2}l^{2}$] essed in ease or in fpse units. 20 953 8370
per degree F per degree R per degree K By definition, Specific inductive cgsm unit fpee unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). de). ee-! (Thermon flux emitted by 14. Dielectric ensions li is n =	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ})(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1	= 32)°C T ₀ °C = 491.58)°C magnetic) [T ⁻¹] 0 255 2725 1 903 0900 0.000 0000 bower is 4π lumen. 1l ⁻² l ²] essed in egge or in fpse units. 20 953 8370 0.000 0000
per degree F per degree R per degree K By definition, Specific inductive cgsm unit fpse unit fpsm unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). de). ee-1 (Thermon flux emitted by 14. Dielectric mensions It is n	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ}$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.5. Luminous Flux $\{\psi\}$ y a point source of one spherical candle p Constant; Electrical Inductivity $[*]$; $[\mu^{-}]$ unerically equal to the dielectric constant expr. 8.9916 \times 10 ²⁰ egse unit 1.0000 egse unit 1.0764 \times 10 ⁻³ egsm unit	$\begin{array}{c c} = 32)^{\circ}C\\ \\ = 1\\ T_{0}^{\circ}C\\ = 491.58)^{\circ}C\\ \\ \\ \text{magnetic}) \ [T^{-1}]\\ \\ 0 \ 255 \ 2725\\ 1 \ 903 \ 0900\\ 0 .000 \ 0000\\ \hline \\ 0 .000 \ 0000\\ \\ \\ \text{ower is } 4\pi \ lumen.\\ \\ 1l^{-1}l^{2}\\ \\ \text{essed in egse or in fpse units.}\\ \\ 20 \ 953 \ 8370\\ 0 .000 \ 0000\\ 3 .031 \ 9684\\ \\ \end{array}$
per degree F per degree R per degree K By definition, Specific inductive cgsm unit fpse unit fpsm unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). de). ee-! (Thermon flux emitted by 14. Dielectric ensions li is n =	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ})(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1	= 32)°C T ₀ °C = 491.58)°C magnetic) [T ⁻¹] 0 255 2725 1 903 0900 0.000 0000 bower is 4π lumen. 1l ⁻² l ²] essed in egge or in fpse units. 20 953 8370 0.000 0000
per degree F per degree R per degree K By definition, Specific inductive cgsm unit fpse unit fpsm unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). ee-1 (Thermon flux emitted by 14. Dielectric energions It is n = = =	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ})$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.000 per degree C 1.000 per degree C 2.1000 per degree C 3. Luminous Flux $\{\psi\}$	$\begin{array}{c c} -32)^{\circ}C \\ (3) \\ T_0)^{\circ}C \\ -491.58)^{\circ}C \\ \\ \text{magnetic} \ [T^{-1}] \\ \hline \\ 0 \ 255 \ 2725 \\ 1 \ 903 \ 0900 \\ 0.000 \ 0000 \\ \hline \\ 0.000 \ 0000 \\ \hline \\ 0.000 \ 0000 \\ \hline \\ 0.000 \ 0000 \\ \hline \\ 0.000 \ 0000 \\ \hline \\ 3.031 \ 9684 \\ 17.985 \ 8054 \\ \hline \\ (5 \ [\mu] \end{array}$
per degree F per degree R per degree K By definition, Specific inductive cgsm unit fpse unit fpsm unit fpsm unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). ee-1 (Thermon flux emitted by 14. Dielectric energions It is n = = =	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ})$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.5. Luminous Flux $[\psi]$ y a point source of one spherical candle per constant; Electrical Inductivity $[\epsilon]$; $[\mu^{-1}]$ numerically equal to the dielectric constant expression $[x + x^{\circ}]$ 8.9916 \times 10 ²⁰ egse unit 1.0000 egse unit 1.0764 \times 10 ⁻³ egsm unit 9.6784 \times 10 ¹⁷ egse unit	$ \begin{array}{c c} = 32)^{\circ}C \\ \square \\ = 491.58)^{\circ}C \\ = 491.58)^{\circ}C \\ \\ \text{magnetic} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
By definition, Specific inductive cgsm unit I fpsm unit I fpsm unit	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). de). ee-1 (Thermon flux emitted by 14. Dielectric ensions It is n = = 15. Magnet	x° F $= (\S)(x)$ x° R $= (\S)x^{\circ}$ x° R $= (\S)x^{\circ}$ x° K $= (x - x^{\circ})$ Rankine $= (\S)(x)$ netric); Expansivity; Curie's Constant (1.8000 per degree C 0.8000 per degree C 1.000 per degree C 1.000 per degree C 1.000 per degree C 2.1000 per degree C 3. Luminous Flux $\{\psi\}$	$ \begin{array}{c c} = 32)^{\circ}C \\ \\ \hline C \\ T_0)^{\circ}C \\ = 491.58)^{\circ}C \\ \\ \hline \text{magnetic}) [T^{-1}] \\ \hline \\ 0 & 255 & 2725 \\ \hline 1 & 903 & 0900 \\ 0.000 & 0000 \\ \hline \\ \hline \\ \text{ower is } 4\pi \ lumen. \\ \\ \hline 1l^{-2}l^2] \\ \hline \\ \text{essed in egse or in fpse units.} \\ \hline \\ 20 & 953 & 8370 \\ \hline \\ 0.000 & 0000 \\ \hline \\ 3.031 & 9684 \\ \hline \\ 17.985 & 8054 \\ \hline \\ ; [\mu] \\ \hline \\ \hline \\ 20.953 & 8370 \\ \hline \\ 0.000 & 0000 \\ \hline \end{array} $
	RéaumurAbsolute (Centigra Absolute (Fahrenhe 12. Degree 12. Degree 14. Degree 15. De	de). ee-1 (Thermon flux emitted by 14. Dielectric technions It is n = 15. Magnet	$x^{\circ} \text{ F} = (\S)(x$ $x^{\circ} \text{ R} = (\S)x^{\circ}(x)$ $x^{\circ} \text{ R} = (x - x)$ $x^{\circ} \text{ Rankine} = (\S)(x)$ $1.8000 \text{ per degree C}$ $0.8000 \text{ per degree C}$ $1.000 \text{ per degree C}$ $1.000 \text{ per degree C}$ $1.8000 \text{ per degree C}$ $2.8000 \text{ per degree C}$ $1.8000 \text{ per degree C}$ $2.8000 \text{ per degree C}$ $3.8000 \text{ per degree C}$ $4.8000 $	$ \begin{array}{c c} = 32)^{\circ}C \\ \square \\ = 491.58)^{\circ}C \\ = 491.58)^{\circ}C \\ \\ \text{magnetic} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

	CONVERSION FACTORS.—Continued	
	16. Area [l²]	
f circular millimeter =	$7.8540 \times 10^{-3} \mathrm{cm}^2$	3.895 0899
1 circular mil ==	$5.0671 \times 10^{-6} \mathrm{cm}^2$	(U. S.) 6.704 7591
1 square inch	6.4516 cm ²	(U. S.) 0.809 6692
1 square foot	$9.2903 \times 10^{2} \text{ cm}^{2}$	(U. S.) 2.968 0316
1 square yard ==	$8.3613 \times 10^{1} \text{ cm}^{2}$	(U. S.) 3.922 2742
1 square mile	2.5900 km²	(U. S.) 0.413 2995
1 are	$1.0000 \times 10^{2} \text{ m}^{2}$	2.000 0000
1 hecture ==	$1.0000 \times 10^{4} \text{ m}^2$	4 000 0000
1 acre	4 0469 × 10 ³ m ²	3.607 1196
	17. Area ⁻¹ [l ⁻²]	
1 (circular millimeter) ⁻¹ = ±	127 324 cm ⁻²	2.104 9101
1 millimeter ⁻²	100 0000 cm ⁻²	2.000 0000
1 meter ^{−2} ==	0.0001 em ⁻²	$\overline{4}.000\ 0000$
1 (circular mil) -1 =	$1.9735 \times 10^{8} \text{ cm}^{-2}$	(U. S.) 5,295 2409
1 inch-2 ==	0 15500 cm ⁻²	(U. S.) T. 190 3308
1 foot-2 ==	$1.0764 \times 10^{-3} \mathrm{cm}^{-2}$	$(U. S.) \overline{3}.031 9684$
1 yard-1 ==	$1.19599 \times 10^{-4} \mathrm{cm}^{-2}$	$(U. S.) \overline{4} 077 7258$
1 mile ⁻²	0 38610 km ⁻²	$(U. S.) \overline{1} 586 7005$
The state of the s	18. Volume [l³] or [v]	7,
1 liter		
1 cubic inch	1000 027 cm ³	3.000 0117
1 cubic foot	16 387 cm ³	(U. S.) 1.214 5038
1 cubic yard	2 8317 × 10 ⁴ cm ³	(U. S.) 4.452 0474
1 gallon (U. S)	7 6156 × 10 ⁶ cm ⁸	(U. S.) 5.883 4112
	$3.7854 \times 10^{3} \mathrm{cm}^{3}$	3.578 1157
1 gallon (British) =	$4.5461 \times 10^{3} \mathrm{cm}^{2}$	3.657 6376
1 bushel (U, S.)	$3.5239 \times 10^4 \mathrm{cm}^3$	4.547 0271
1 bushel (British)	3 6369 × 104 cm3	4.560 7276
1 quart, dry (U. S.) ==	1101 23 cm³	3.041 8771
1 quart, liquid (U. S.)	946 358 cm³	2.976 0557
1 quart (British)	1136.521 em³	3.055 5776
1 fluid ounce (U, S) =	29 5737 cm ²	
1 fluid ounce (British) =	28 4130 cm ⁴	1 470 9057 1 453 5176
	19. Volume ⁻¹ $\{l^{-s}\}$ or $[v^{-1}]$	
1 liter ⁻¹	9 9997 × 10 ⁻⁴ cm ⁻³	4 000 0000
1 inch-1	6 1023 × 10 ⁻² cm ⁻²	4 999 9883
1 foot-1	I	(U. S.) 2.785 4962
l yard-1 =	$35314 \times 10^{-6} \text{ cm}^{-3}$	(U. S.) 5 547 9526
l gallon-1 (U, S,) ==	1 3079 m-s	(U. S.) 0 116 5888
gallon-1 (British) ==	2 6417 × 10 ⁻⁴ cm ⁻³	4 421 8843
$l \operatorname{quart}^{-1}, \operatorname{dry}(U, S) =$	2 1997 × 10 4 cm ⁻³	4.342 3624
l quart ⁻¹ , liquid (U. S.)	$9.0808 \times 10^{-4} \mathrm{cm}^{-3}$	$\overline{4}.958 1229$
l quart (British)	1 0567 × 10 ⁻³ cm ⁻³	$\overline{3}.023 9443$
I (fluid ounce) 1 (U.S.)	8 7988 × 10 ⁻⁴ cm ⁻³	4.944 4224
(fluid ounce) ⁻¹ (British) =	$3.3814 \times 10^{-2} \mathrm{cm}^{-2}$	$\bar{2}.529 0943$
(Million (Million)	$3.5195 \times 10^{-2} \mathrm{cm}^{-3}$	2.546 4824
inch per °F	20. Length Degree ⁻¹ [lT ⁻¹]	
foot per °F'	4 5720 cm per °C	0.660 1071
meter per °C' ==	54 864 cm per °C 100 00 cm per °C	1.739 2883
The secondary of the control of the		2.000 0000
per gram °F =	21. Mass ⁻¹ Degree ⁻¹ [m ⁻¹ T ⁻¹]	
per pound °F ==	1 8000 per gram °C	0.255 2725
per pound °C =	3 9683 × 10 ⁻³ per gram °C 2 2046 × 10 ⁻³ per gram °C	3.598 6067
And the second s	The second secon	3.343 3342
foot=1 second=1 ==	3.8750 cm ⁻² hr ⁻¹	
foot ⁻¹ second ⁻¹ =		(U. S.) 0.588 2709
mile-1 second-1 =	1.0764 × 10 ⁻³ cm ⁻² sec ⁻¹	(U. S.) 3.031 9684
meter-second-1 =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(U. S.) $\overline{3}$.085 7951
A Part Control of the	$3.600 \times 10^{-1} \mathrm{cm}^{-2} \mathrm{hr}^{-1}$	<u>1.556 3025</u>

23. Velocity (lt-1)

	23. Velocity [11-1]	
D1	30 4801 cm see ⁻¹	(U. S.) 1.484 0158
TOE	0 5080 cm sec-1	(U. S.) T. 705 8645
22	44 7041 cm sec ⁻¹	(U. S.) 1 650 3472
TOR	$2.6822 \times 10^{3} \text{ cm sec}^{-1}$	(U. S.) 3 428 4984
-	1 6667 cm sec ⁻¹	0.221 8487
-=	27 7778 cm sec ⁻¹	1.443 6975
C 3	$2.9986 \times 10^{10} \mathrm{cm \ sec^{-1}}$	10.476 9185
	24. Acceleration [lt-2]	- The second sec
==	30.480 cm sec 2	(U. S.) 1.484-0158
	44 704 cm sec 2	(U.S.) 1.650 3472
===	0 74507 cm sec ⁻¹	(U.S.) 1.872 1959
-=	100 000 cm sec ⁻²	2.000 0000
70	27 778 cm sec ⁻²	1 443 6975
	980-665 cm sec ⁻²	2 991 5207
	32 171 ft sec 2	(U. S.) 1 507 5049
	25. Angular Velocity [01 1]	
- 1	$7/2722 \times 10^{-5}$ radian sec $^{-1}$	5 861 6662
	$1.0172 \times 10^{-1} \mathrm{radian \ sec^{-1}}$	1 020 0286
7	6 2832 radian sec ⁴	0.798 1799
	1.7453×10^{-2} radian see ⁻¹	2.241 8774
	28. Angular Acceleration [01 2]	
. 1	6 2832 - radian sec 2	0.798 1799
7.	$1.7453 \times 10^{-3} \mathrm{radian \ sec^{-2}}$	3.241 8773
	0 10120 radian sec ²	1 020 0286
	27. Twist; Rotatory Power θl	
	6 8714 × 10 ⁻³ radian cm ⁻¹	(U. S.) 3.837 0428
=	5 7261 × 10 ⁻⁴ radian cm ⁻¹	(U. S.) 4.757 8616
-=	1 7453 × 10 ⁻² radian cm ⁻¹	2 241 8774
	$2.9089 \times 10^{-4} \text{ radian cm}^{-1}$	4 463 7261
oncentratio	on; Solubility (Non-gases) $[ml^{-3}]$ or $[mv^{-1}]$ (See e.	ilso Hydrometer Tables, p. 31)
	0-999973 g cm ⁻³	1 999 9883
-	27 680 g cm ⁻³	(U. S.) 1 442 1621
	0 016018 g cm ⁻³	(U. S.) 2 204 6183
==	0 119826 g cm ⁻¹	1 078 5502
	0 099776 g cm ^{-a}	2 999 0282
125	0 5154 g cm ⁻²	(U. S.) 1-712-1233
	The second secon	30 4801 cm sec ⁻¹ 0 5080 cm sec ⁻¹ 44 7041 cm sec ⁻¹ 2 6822 × 10 ² cm sec ⁻¹ 2 7 7778 cm sec ⁻¹ 2 9986 × 10 ¹⁰ cm sec ⁻¹ 2 9986 × 10 ¹⁰ cm sec ⁻¹ 30 480 cm sec ⁻¹ 2 9986 × 10 ¹⁰ cm sec ⁻¹ 44 704 cm sec ⁻² 44 704 cm sec ⁻² 5 980 665 cm sec ⁻² 27 778 cm sec ⁻² 28 80 665 cm sec ⁻² 32 171 ft sec ⁻² 1 0172 × 10 ⁻¹ radian sec ⁻¹ 1 0172 × 10 ⁻¹ radian sec ⁻¹ 2 6 2832 radian sec ⁻¹ 1 7453 × 10 ⁻² radian sec ⁻¹ 6 17 832 radian sec ⁻² 1 7453 × 10 ⁻² radian sec ⁻² 1 7453 × 10 ⁻² radian sec ⁻² 1 7453 × 10 ⁻² radian cm ⁻¹ 5 7261 × 10 ⁻⁴ radian cm ⁻¹ 5 7261 × 10 ⁻⁴ radian cm ⁻¹ 1 7453 × 10 ⁻² radian cm ⁻¹ 2 9089 × 10 ⁻⁴ radian cm ⁻¹ 1 1926 g cm ⁻² 0 1999776 g cm ⁻²

29. Mass Concentration $[m_1m_2^{-1}]$

(This quantity involves two distinct units of mass; when the two units are the same, the concentration is called the "titer," or is denoted as a per cent.)

gram per ton (2000 pound)		1 1023 mg per kilogram	0.042 3042
gram per ton (2240 pound)	==	0 9842 mg per kilogram	1.993 0862
milligram per assay ton		*34.286 mg per kilogram	1 535 1132
ounce (av.) per ton (2000 lb.)	an l	31 2500 mg per kilogram	1.494 8500
ounce (av) per ton (2240 lb.)	72	27 9018 mg per kilogram	1.445 6320
pound (av.) per ton (2000 lb.)) =	500 000 mg per kilogram	2 698 9700
pound (av.) per ton (2240 lb.)) -=	446 429 mg per kilogram	2 649 7520
gram per ton (metric)		1 0000 mg per kilogram	0.000 0000
karat †		41 667 ing per gram	1 619 7888

^{*} Equals one troy ounce per 2000 lb. av 11 of gold to 24 of mixture

30. Force [mlt-2]

		001 - 0100 (
1 gram weight (g.)	=	980 665 dyne	2 991 5207
1 poundal	==	$1.3825 \times 10^4 \mathrm{dyne}$	(U. S.) 4.140 6816
1 pound weight (g.)	=	4.4482 × 10 ^s dyne	5 648 1864
1 ton weight (2000 lb.) (g.)	5.3	$8.8964 \times 10^{*} \mathrm{dyne}$	8.949 2164
1 ton weight (2240 lb.) (g.)	==	$9.9640 \times 10^{8} \text{dyne}$	8 998 4344

	COM	VERSION FACTORS.—Continued	
		31. Force ⁻¹ [m ⁻¹ l ⁻¹ l ²]	
1 (gram weight) ⁻¹ (g.)	20	1 0917 × 10 ⁻³ dyne ⁻¹	3.008 4793
1 poundal-1	•	$7 2330 \times 10^{-4} \text{ dyne}^{-1}$	5.859 3184
1 (pound weight) ⁻¹ (g.)		$2.2481 \times 10^{-6} \text{dyne}^{-1}$	6.351 8136
		orque; Moment of a Force [ml²t-²]	
1 pound-foot (g,)	52	1 3558 × 10 ⁷ dyne cm	(U. S.) 7 132 2022
1 pound-inch (g.)	***	1 1298 × 10° dyne cm	(U. S.) 6.053 0210
1 kilogram-meter (g,) 1 poundal-foot		9.8066×10^7 dyne cm 4 2140 × 10 ⁵ dyne cm	7.991 5207
The Rest of the Control of the Contr		Modulus of Rigidity; Modulus of Compressi	On: Bulk Modulus: Coefficient of
	,	Skin Friction $[ml^{-1}l^{-2}]$	os, ser moderos, coemicient or
1 barye	20	1 0000 dyne cm ⁻²	0.000 0000
I bar	225	*1 0000 × 10° dyne cm ⁻²	6.000 0000
1 gram weight per cm² (g.)	520	980 665 dyne cm ⁻²	2 991 5207
1 kilogram weight per m ² (g.)	PE	98 0665 dyne cm ⁻²	1.991 5207
1 kilogram weight per mm ² (g.)	12	9 8066 \times 107 dyne cm ⁻²	7.991 5207
l pound weight per in.2 (g.)	rear	6 8947 × 104 dyne cm ⁻²	(U. S.) 4.838 5173
l pound weight per ft.² (g.)	224	$4.7880 \times 10^{2} \mathrm{dyne cm^{-2}}$	(U. S.)2.680 1548
1 ton (2000 lb.) weight per in. 2 (g.)	***	$1.3789 \times 10^{8} \mathrm{dyne} \mathrm{cm}^{-2}$	(U. S.) 8.139 5473
l ton (2240 lb.) weight per in. 2 (g.)	±77	$1.5444 \times 10^{8} \mathrm{dyne cm^{-2}}$	(U. S.) 8 188 7653
ton (2000 lb.) weight per ft ² (g.)	200	9.5760 × 10 ⁶ dyne cm ⁻²	(U. S.) 5.981 1848
ton (2240 lb.) weight per ft. 2 (g.)	==	10 7251 × 10 ⁵ dyne cm ⁻²	(U. S.) 6 030 4028
continuous of water at 4°C (g.)	286	$9.80638 \times 10^{2} \mathrm{dyne cm^{-2}}$	2.991 5090
inch of water at 4°C (g,)	==	$2.49082 \times 10^3 \mathrm{dyne cm^{-2}}$	(U. S.) 3.396 3436
centimeter of mercury at 0°C (g _s)	22	1 33322 × 10 ⁴ dyne cm ⁻²	4 124 9031
inch of mercury at 0°C (g.)	3	3.38639 × 104 dyne cm ⁻²	(U. S.) 4 529 7377
normal atmosphere (g.)	77	1 01325 × 10° dyne cm ⁻²	6 005 7166
This value accords with the only international	y accepted :	use of this term, but "bar" has also been used to deno	ote a pressure of one dyne per cm².
centimeter ² per gram weight (g.)	91. 3	tress ⁻¹ ; Compressibility [m ⁻¹ lt ²]	
centimeter ² per kilogram weight (g.)	==	1 0197 × 10 ⁻³ cm ² dyne ⁻¹	3 008 4793
millimeter ² per kilogram weight (g _s)	an an	1 0197 × 10 ⁻⁶ cm ² dyne ⁻¹	6 008 4793
inch ² per pound weight (g_s)	 	1 0197 × 10 ⁻⁸ cm ² dyne ⁻¹	8.008 4793
inch ² per ton weight (2000 lb.) (g_*)	148	$1 4504 \times 10^{-6} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) $\bar{5}$. 161 4827
inch ² per ton weight (2240 lb.) (g.)		$7 \ 2519 \times 10^{-9} \ \text{cm}^2 \ \text{dyne}^{-1}$	(U. S.) 9.860 4527
foot ² per pound weight (g_*)	=	$6.4749 \times 10^{-9} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 9 811 2347
(centimeter of water at 4°C)-1 (g,)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(U. S.) 3 319 8452
(inch of water at 4°C)-1 (g.)		$4.0147 \times 10^{-4} \text{ cm}^2 \text{ dyne}^{-1}$	3 008 4910
(centimeter of mercury at 0°(')-1 (q,)	220	$7.5006 \times 10^{-5} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 4 603 6564
(inch of mercury at 0°C)-1 (g.)	2.2	2 9530 × 10 ⁻⁶ cm ² dyne ⁻¹	5.875 0969
(normal atmosphere) "1 (g.)	7	$9.8692 \times 10^{-7} \text{ cm}^2 \text{ dyne}^{-1}$	(U. S.) 5 470 2623 7 994 2834
	35.	Work; Energy; Heat [ml²t-²]	1 001 2391
centimeter-dyne		1 0000 erg	0 000 0000
joule (absolute)	4	$1.0000 \times 10^{7} \text{ erg}$	7.000 0000
joule (International) (v)	=	1 00032 joule (abs.)	0 000 1390
$meter-kilogram (g_s)$	-2	9 80665 joule (abs.)	0.991 5207
foot-pound (g,)	-72	1 35582 joule (abs.)	(U. S.) 0.132 2022
liter-atmosphere (normal) (g _s)	.ma	101.328 joule (abs.)	2.005 7283
liter-atmosphere (45° lat.)	74	*101 323 joule (abs.)	2.005 7067
cubic continueter-atmosphere (normal) (g_s)	una.	0 101325 joule (abs.)	1.005 7166
horse-power hour (HP hr.) (g.)		2 6845 × 10 ⁶ joule (abs.)	(U. S.) 6.428 8674
horse-power hour (electrical, U. S., British)	75	2 6856 × 10 ⁶ joule (abs.)	6 429 0413
cheval-vapeur heure (g.)	22	2 6478 × 10 ⁶ joule (abs.)	6 422 8845
kilowatt-hour (abs.)	222	3.6000 × 10 ⁶ joule (abs.)	6 556 3025
International volt (v) faraday	=	9.6541 × 104 joule (abs.)	4 984 7097
International volt (v) electronic charge	1	1 5927 \times 10 ⁻¹⁹ joule (abs.)	Ĩ9.202 1463
gram calorio (20°C)	212	4 181 joule (abs.)	0.621 2802
gram calorie (15°C)	22	4 185 joule (abs.)	0.621 6955
gram calorie (mean)	138	4 186 joule (abs.)	0.621 7992
British Thermal Unit (39°F)	w	1060 4 joule (abs.)	3 025 4697
British Thermal Unit (mean) British Thermal Unit (60°F)	=	1054 8 joule (abs.)	3.023 1701
	=	1054 6 ioule (abs.)	
Centigrade Thermal Unit (15°C)	=	1054 6 joule (abs.) 1 8983 × 10 ³ joule (abs.)	3.023 0878

CONVERSION FACTORS

CONVERSION FACTORS.—Continued

1 watt (absolute)		3. Power [ml ² (-2)	
1 watt (absolute) 1 watt (International) (v)	-	1.0000 × 10 ⁷ erg sec ⁻¹	7.000 0000
1 meter-kilogram per second (g _s)	-	1.00032 watt (abs.)	0.000 1890
	-	9.80665 watt (abs.)	0.991 5207
I foot-pound per second (g.) I horsepower, electrical (U. S., British)	-	1.35582 watt (abs.)	(U. S.) 0.132 2022
horsepower, electrical (Continental Europe)	-	*746 00 watt (abs.)	2.872 7388
	-	*736.00 watt (abs.)	2.866 0778
I horsepower (IP) (g _i)	*	†745.70 watt (abs.)	2.872 5649
t cheval-vapeur (g.) * Defined in terms of the watt, commonly used in ra	ting pleatment m	735.499 watt (abs.)	2.866 5820
political to the value continuity used in a		7. Action [ml ² t ⁻¹]	
1 Planck's quantum		6.554 × 10 ⁻¹⁷ erg sec	27,816 5064
1 volt electronic-charge second	-	2.4292 × 1014 quanta	14.385 4575
1 volt faraday second	_	1 4721 × 10 ³⁸ quanta	38.168 0209
1 joule second	200	1 5258 × 10 ³⁵ quanta	83.183 4936
1 calorie (15°C) second	_	6.3854 × 10 ³² quanta	33.805 1891
1 joule second/No*		2.5173 × 10° quanta	9.400 9302
1 calorie (15°C) second/No*		1 0535 × 10 ¹⁰ quanta	10.022 6257
* No denotes Avogadro's number, the number of m	olecules per gran		
		dity [m ⁻¹ lt] (See also 39)	
1 rhe	=	1.0000 poise-1	0.000 0000
	39.	Viscosity [ml-1t-1]	· Available 11 construction and a substitute of the substitute of
1 poise	-	1 000 gram cm ⁻¹ sec ⁻¹	
1 gram weight sec cm ⁻¹ (g _s)	-	980 665 poise	2.991 5207
1 pound weight sec inch-1 (g.)	-	6.895 × 104 poise	(U. S.) 4.838 5173
1 pound weight sec foot ⁻² (g_s)	=	4.788 × 10 ² poise	(U. S.) 2.680 1548
	40. Kin	ematic Viscosity [l²l⁻¹]	
1 poise centimeter' gram-1	=	1.000 cm ² sec ⁻¹	0.000 0000
1 poise inch gram-1	max	16.387 cm ² sec ⁻¹	1.214 5038
1 inch² second-1	REE .	6.451 cm ³ sec ⁻¹	(U. S.) 0.809 6692
1 poise foot ³ pound ⁻¹		62.43 cm ² sec ⁻¹	(U. S.) 1.795 3817
All quantities of the thing diffusing are to be ex by the product of the density times the heat capacity	pressed in terms (per unit of me	ass); all must be expressed in the same sys	numerically equal to heat conductivity divitem of units.
1 liter centimeter ⁻¹ day ⁻¹	=	1 1574 × 10 ⁻² cm ² sec ⁻¹	
1 centimeter ² day ⁻¹	=	1 1574 × 10 ⁻⁶ cm ² sec ⁻¹	5 063 4863
1 inch² sec-1	Tengion [mt=	6 4516 cm² sec-1	(U. S.) 0.809 6692
	Tension [mt	9 80665 dyne cm ⁻¹	0.991 5207
1 milligram weight per mm (g.)		0 38609 dyne cm ⁻¹	(U. S.) 1.586 6861
1 milligram weight per inch (g.)	=	1 00000 dyne cm ⁻¹	0.000 0000
1 erg per centimeter ²	=	100 00000 dyne cm ⁻¹	2.000 0000
1 erg per millimeter ³			
The term "Capillary Constant" is used in two d follow the former practice, and German authors the positive difference in the densities of the adjacent fluids	ifferent senses; relatter; neither u	apillary Constant) ³ [l^2] is a either to denote $a_1 = \sqrt{\gamma/\rho g}$, or to denote the subscript. γ denotes the surface t	enote $a_1 = \sqrt{2\gamma/\rho g}$. English authors generation, g the acceleration of gravity, and ρ
1 inch²	.m.	6 451 cm²	0 809 6692
	=	*9 807 dyne cm ⁻¹ per (g ci	m ^{-a}) 0.991 5207
1 millimeter ² (a_1^2) (a_2)	}	*4.903 dyne cm ⁻¹ per (g cr	
	35		
1 millimeter ² (a_1^2) (g_*) 1 millimeter ² (a_2^2) (g_*) 1 inch ² (a_1^2) (g_*)	=	*6 327 × 10* dyne cm-1 per (g ci	m ⁻³) (U. S.) 3.801 1899

44. Thermal Conductivity [T⁻¹mlt⁻³]

The dimensions practically employed in expressing this property are (Heat Area ¹ Time ¹ per Degree Length ⁻¹). Other conversion factors may be obtained by combining those of Tables 35 (Heat), 22 (Area ⁻¹ Time ¹) and 20 (Length Degree ⁻¹).

4 1 1 (4 (4)	= 4.185 joules (abs.) cm ⁻¹ sec ⁻¹ (°C, cm ⁻¹) ⁻¹	0.621 6955
1 calorie (15°) cm ⁻¹ sec ⁻¹ (°C, cm ⁻¹) ⁻¹		*
1 calorie (20°) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	= 4.181 joules (abs.) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	0.621 2802
1 Calone (20) cm - sec - (C, cm -)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

1 electronic charge

1 faraday

1 faraday

CONVERSION FACTORS .- Continued

44. Thermal Conductivity $[T^{-1}mlt^{-2}]$.—Continued

1 British Thermal Unit (39°F) ft. ⁻² sec ⁻¹ (°F, in. ⁻¹) ⁻¹ = 5.218 joules (abs.) cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹	0.717 5452
1 British Thermal Unit (39°F) II. * sec * (°F, in. *) = 3.215 pines (abs.) cm * 2 sec * (°C, cm * 1) = 1 British Thermal Unit (mean) ft. * 2 sec * (°F, in. * *) = 5.191 joules (abs.) cm * 2 sec * (°C, cm * 1) = 1 Sec * (°C, cm *	0.715 2456
1 British Thermal Unit (mean) ft. 7 sec (F, in. 1) = (5.191 joures tails, ft. sec (C, om 1)=1	0 715 1633
1 British Thermal Unit (60°F) ft. $^{-2}$ sec $^{-1}$ (°F, in $^{-1}$) $^{-1} = 5$ 190 joules (abs.) cm $^{-2}$ sec $^{-1}$ (°C, cm $^{-1}$) $^{-1}$	0 110 1000

45. Intensity of Radiation $[mt^{-3}]$ or $[ml^{-1}t^{-2}]$

The dimensions depend upon the point of view, when the receptor is considered, they are [Energy, Area-1, Time-1]; when the radiation itself is considered they are [Energy, Volume 1]. Conversion from one to the other involves the velocity of propagation, if this is the velocity of light in vacuo, the factors are as given below, if the velocity is a can see 1, the factors given must be multiplied by $\pi/(2.9986 \times 10^{19})$. For other units, combine these factors with those of Tables 19 (Volume 1), 22 (Area 1 Time 1), and 35 (Fnergy).

19 (Volume 1), 22 (Area 1 Time 1), and 3	, it height		
1 erg cm ⁻²	100	2 9986 × 10 ¹⁰ erg cm ⁻² sec ⁻¹	10 476 9185
1 foot-pound ft -1 (g,)	=	$1.4357 \times 10^{13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$	(U. S.) 13.157 0733

46. Luminous Intensity of a Source in a Given Direction $[\psi\omega^{-1}]$

By definition of the lumen a source of one subgrical candle power emits 4z (= 12.568) lumens. (See also Photometric Standards, in another section (con-

1 candle, International	==	1 0000 Int. lumen per steradian	0.000 0000
pentane candle	24	1 0 Int. candle	
Hefner unit	==	0 9 ₀ Int. candle	
Carcel unit	-	9 6 Int. candle Approximate	
bougie decimale		1 0 Int. candle	
English sperm candle		1 0 Int. candle	
	47.	Illumination of a Surface $[\psi l^{-2}]$	
lux		1 000 lumen meter ⁻²	0 000 0000
meter-candle		1 000 lumen meter ⁻²	0 000 0000
phot	TI	1 000 × 10⁴ lumen meter ⁻²	4 000 0000
foot-candle	***	10 764 lumen meter ⁻²	(U. S.) 1 031 9684
lumen foot**		10 764 lumen meter ⁻²	(U. S.) 1 031 9684
	48	. Surface Brightness $[\psi l^{-2}\omega^{-1}]$	
lumen centimeter-2 steradian-1	* :	1 0000 lambert	0 000 0000
lumen foot ⁻² steradian ⁻¹	.=	1 0764 millilambert	(U. S.) 0 031 9684
candle centimeter -2		3 1416 × 10³ millilambert	3 497 1499
candle inch ⁻²	==	4 8695 × 10 ² millilambert	(U S.) 2 687 4807
49. Electrical Quantity	; Charge ; To	al Electric Displacement; Flux of Induction [$\epsilon^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}]; [\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}]$
absolute coulomb	-	1 00010 Int. coulomb (v)	0.000 0434
absolute coulomb		1 00007 Int. coulomb (a)	0 000 0304
International coulomb (v)	***	0 99990 abs. coulomb	$\overline{1}.999 9566$
International coulomb (a)	.==	0 99993 abs. coulomb	1.999 9696
l egsm unit		10 0000 abs. coulomb	1.000 0000
Legsm unit		*2 0088 V 1010 ages unit	10 176 0105

1 absolute coulomb	į.	1 00007 - Int. coulomb (a)	0 000 0301
1 International coulomb (v)	==	0 99990 abs. coulomb	T.999 9566
1 International coulomb (a)		0 99993 abs. coulomb	1.999 9696
1 egsm unit	-11	10 0000 abs. coulomb	1.000 0000
1 cgsm unit	==	*2 9986 × 10 ¹⁰ cgse unit	10 476 9185
1 cgse unit		3 3349 × 10 ⁻¹⁶ abs. coulomb	10.523 0815
1 fpsm unit	=	1 1758 × 10 ² cgsm unit	2 070 3408
1 fpse unit	120	3.5839×10^{3} egse unit	3.554 3566
1 fpse unit		1 1952 × 10 ⁻⁶ abs. coulomb	6 077 4381
1 ampere-hour (abs.)	=	3 6000 × 10 ⁴ abs. coulomb	3 556 3025
1 electronic charge		1 5921 × 10 ⁻¹⁰ abs. coulomb	19 201 9639

4 774 \times 10⁻¹⁰ egse unit

9 6500 × 104 abs, coulomb

10 678 8824

4 984 5273

578

50. Electrical Quantity	-1; Charge-1; Total	Electric Displacement ⁻¹ ; Flux of Induction	$e^{-i} \left[e^{-\frac{1}{2}} m^{-\frac{1}{2}} l^{-\frac{3}{2}} \ell \right]; \left[\mu^{\frac{1}{2}} m^{-\frac{1}{2}} l^{-\frac{1}{2}} \right]$
1 absolute coulomb: 1	LI	0 99990 Int. coulomb=1 (v)	1 999 9566
1 absolute coulomb ⁻¹		0 99993 Int. coulomb ⁻¹ (a)	ī 999 9696
1 egsm unit ⁻¹	22	0 1000 abs. coulomb ⁻¹	Ĩ.000 0000
1 cgse unit ⁻¹	=	2 9986 × 10 ⁹ abs. coulomb ⁻¹	9 476 9185
1 ampere-hour ⁻¹	==	2 7778 × 10 ⁻⁴ abs. coulomb ⁻¹	4.443 6975
1 faraday ⁻¹		1 0363 × 10 ⁻⁵ abs. coulomb ⁻¹	5.015 4727
1 electronic charge ⁻¹	===	6 281 × 10 ¹⁸ abs. coulomb ⁻¹	18 798 0361

^{9 6510} \times 104 Int. coulomb (v) 4.984 5707 1 faraday --= 9 6507 \times 104 Int. coulomb (a) 4.984 5577 1 faraday 2 89365 × 10¹⁴ egse unit 14 461 4458 * Value of C; experimental value = 2 9979 × 1010 (Rosa and Dorsey, Bull. U. S. Bur. Standards, \$: 433, 07)

CONVERSION FACTORS.—Continued 51. Electrical Current [c] mill(-1): [u-imili(-1)]

51	. Electrical (Current [4]m [1] [[[[] m [] []]	
absolute ampere		1 00010 Int. ampere (v)	0.000 0434
absolute ampere	***	1 00007 Int. ampere (a)	0.000 0804
International ampere (v)		0 99990 abs. ampere	1.999 9566
International ampere (a)	-	0 99993 abs. ampere	T.999 9696
cgsm unit	=	10 0000 abs. ampere	1 000 0000
cgse unit	-	3 3349 × 10 ⁻¹⁰ abs. ampere	10.523 0815
faraday second ⁻¹	Table 1	9 6500 × 104 abs. ampere	4.984 5273
International ampere (U. S. before 1911)		0 99916 Int. ampere (v)	1.999 6353
International ampere (England before 1906)	24	0 99870 Int. ampere (v)	1.999 4358
International ampere (England 1906-8)	-	0 99894 Int. ampere (v)	1.999 5399
International ampere (England 1909-10)		0 99990 Int. ampere (v)	1.999 9566
International ampere (France before 1911)	-	0 9998 Int. ampere (v)	1.999 9131 T.000 9010
International ampere (Germany before 1911)	**	0 99968 Int. ampere (v)	1.990 8610
		otential $[e^{-\frac{1}{2}m^{\frac{3}{2}}l^{\frac{1}{2}}t^{-1}]; [\mu^{\frac{1}{2}m^{\frac{3}{2}}l^{\frac{1}{2}}t^{-2}]}$	1 000 0184
absolute volt	-	0 99958 Int. volt (v)	1.999 8176
absolute volt	=	0 99955 Int. volt (a)	1.999 8046
International volt (v)	200	1 00042 abs. volt	0.000 1824 0.000 1954
International volt (a)	-	1 00045 abs. volt 1 0000 \times 10 ⁻⁸ abs. volt	8.000 0000
cgsm unit	=		2.476 9185
. cgse unit . International volt (U. S. before 1911)	-	299-86 abs. volt 0-99916 Int. volt (v)	1.999 6353
International volt (U. S. before 1911) International volt (England before 1906)	-	0 99870 Int. volt (v)	1.999 4358
International volt (England before 1500) International volt (England 1906-8)		0 99894 Int. volt (v)	1.999 5399
International volt (England 1909–10)		0 99990 Int. volt (v)	1.999 9566
International volt (Germany and France, before	e 1911) =	0 99968 Int. volt (v)	1 999 8610
The state of the s		Gradient; Dielectric Strength [e 1m1/1/1/1]; [µ	
cgsm centimeter ⁻¹	n, rotential	1 0000 \times 10 ⁻⁸ abs. volt cm ⁻¹	8 000 0000
egsm inch ⁻¹	_	3 9370 × 10 ⁻⁶ abs. volt cm ⁻¹	(U. S.) 9 595 1654
cgse centimeter ⁻¹	==	2 9986 × 10 ² abs. volt cm ⁻¹	2.476 9185
cgse inch-1	200	1 1805 × 10 ² abs, volt cm ⁻¹	(U. S.) 2 072 0839
volt inch-1	-m	3.9370×10^{-1} volt cm ⁻¹	(U. S.) T 595 1654
****	ral Resistanc	e; Surface Resistivity $[e^{-t}l^{-t}t]$; $[\mu lt^{-t}]$	and the same of th
absolute ohm	=	0 99948 Int. ohm	1 999 7741
International ohm	===	1 00052 abs. ohm	0.000 2259
cgsm unit	==	1 0000 × 10 ⁻⁹ abs. ohm	9.000 0000
cgse unit		$8.9916 \times 10^{11} \text{ abs. ohm}$	11.053 8370
International ohm (France before 1911)	==	0 9699 Int. ohm	1.999 9566
Board of Trade unit (England 1903)	.5	0 99984 Int. ohm	1.999 930 6
B. A. unit	==	0 98660 Int. ohm	Ī 994 1420
"Legal ohm" of 1884 (England)	ze.	0 99718 Int. ohm	1 998 7727
Siemens unit	===	0 94073 Int. ohm	1.973 4667
	55. Electrica	l Inductance $[\epsilon^{-1}l^{-1}t^2]$; $[\mu l]$	
absolute henry		0 99948 Int. henry	1 999 7741
International henry	=	1.00052 abs, henry	0.000 2259
. cgsm unit*	700	1 0000 × 10 ⁻⁹ abs. benry	9.000 0000
. cgse unit		8 9916 × 10 ¹¹ abs. henry	11.953 8370
* Occasionally called a centimeter	56 Flactric	al Capacity $[\epsilon l]$; $[\mu^{-1}l^{-1}\ell^2]$	
absolute farad	20. Electric	1 00052 Int. farad	0.000 2259
International farad	223	0 99948 abs. farad	1.999 7741
cgsm unit	=	1 0000 × 10° abs. farad	9.000 0000
cgse unit*		1 1121 \times 10 ⁻¹² abs. farad	12.046 1630
cgsm unit	==	8 9916 × 1020 cgse unit	20.953 8370
absolute farad	**	8 9916 × 10 ¹¹ egse unit	11.953 8370
* Frequently called a centimeter		Desiration (=14), (194=1)	
	Electrical Vo	lume Resistivity $[\epsilon^{-1}t]$; $[\mu l^2t^{-1}]$ 0,99948 Int. ohm-cm	1.999 7741
absolute ohm-centimeter	1805 	1.00052 abs. ohm-em	0.000 2259
International ohm-centimeter	-	9.9948 \times 10 ⁻¹⁰ Int. ohm-cm	10.999 7741
l cgsm unit l cgse unit	==	8.9869 × 10 ¹¹ Int. ohm-cm	11.953 6111
cRea muit	-	0.0000 X 10 1110.00111-0011	

57	Riectrical	Volume	Registivity	[4-16]-	[ul2t-1]Continued	

57. Electrical vo	tume Remstratty [e-t]; [µt't' '].—Continued	
I microhm-centimeter ==	1.0000 × 10 ⁻⁶ ohm-cm	€.000 0000
1 microhm-inch	2.5400 microhm-cm	(U. S.) 0.404 8346
1 ohm-inch	2.5400 × 10 ⁶ microhm-cm	(U. S.) 6.404 8346
1 ohm (meter, millimeter?) ==	100.0000 microhm-em	2.000 0000
1 ohm (meter, millimeter)	78.540 microhm-cm	1.895 0899
1 ohm (mil, foot)	1.6624×10^{-1} microhm-cm	(U. S.) 1.220 7433
International Annealed Copper Standard (20°C) =	1.7241 microhm-cm	0.236 5720
58. Vo	lume Conductivity $[\epsilon t^{-1}]$; $[\mu^{-1}l^{-2}t]$	
1 absolute *ohm-1-centimeter-1 ==	1 00052 Int.* ohm-1 cm-1	0.000 2259
1 International ohm ⁻¹ -centimeter ⁻¹ =	0 99948 abs. ohm ⁻¹ cm ⁻¹	Ĩ.999 7741
1 cgem unit =	1.00052×10^9 Int. ohm ⁻¹ cm ⁻¹	9.000 2259
1 cgse unit =	1.11273×10^{-12} Int. ohm ⁻¹ cm ⁻¹	12.046 3889
1 microhm ⁻¹ -centimeter ⁻¹	$1.0000 \times 10^6 \text{ ohm}^{-1} \text{ cm}^{-1}$	6.000 0000
1 microhm ⁻¹ -inch ⁻¹	3 9370 × 10 ⁻¹ microhm ⁻¹ cm ⁻¹	(U. S.) 1.595 1654
1 ohm ⁻¹ -inch ⁻¹ =	3 9370 × 10 ⁻⁷ microhm ⁻¹ cm ⁻¹	(U. S.) 7.595 1654
1 ohm ⁻¹ (meter, millimeter ²) ⁻¹	1.000 × 10 ⁻² microhm ⁻¹ cm ⁻¹	2.000 0000
1 ohm ⁻¹ (meter, millimeter) ⁻¹ =	1.2732 × 10 ⁻² microhm ⁻¹ cm ⁻¹	2.104 9101
1 ohm ⁻¹ (mil, foot) ⁻¹ ==	6 0153 microhm ⁻¹ cm ⁻¹	(U. S.) 0.779 2567
International Annealed Copper Standard (20°C) =	0 5800 microhm ⁻¹ cm ⁻¹	1.763 4280
100% conductivity (20°(')	0 5800 microhm ⁻¹ cm ⁻¹	1.763 4280
"Mho" is occasionally used instead of ohm '.		· · · · · · · · · · · · · · · · · · ·
59. Electrica	Mass Resistivity $[\epsilon^{-1}ml^{-1}t]; [\mu ml^{l-1}t^{-1}]$	
1 absolute ohm (meter, gram)	0 99948 Int. ohm (meter, gram)	1.999 7741
1 International ohm (meter, gram) =	1.00052 abs. ohm (meter, gram)	0 000 2259
1 cgsm unit ==	9 9948 × 10 ⁻⁶ Int. ohm (meter, gram)	$\overline{6}.9997741$
1 cgse unit	8 9869 × 1016 Int. ohm (meter, gram)	15.953 6111
1 ohm (mile, pound)	1 7513 × 10 ⁻⁴ ohm (meter, gram)	(U. S.) 4.243 3663
1 ohm (centimeter, gram) ==	1.0000 × 104 ohm (meter, gram)	4.000 0000
1 ohm (centimeter, gram) =	D* ohm-cm	
†International Annealed Copper Standard at 20°C =	0 15328 ohm (meter, gram)	ī.185 4738
* D represents the density in grams per centimeter ²	† Density = 8.89 grains per centimeter. See	Table 61
60. Electrical	Mass Conductivity $\{\epsilon m^{-1}l^3l^{-1}\}$; $[\mu^{-1}m^{-1}lt]$	
1 absolute ohm -1 (meter, gram) =	1.00052 Int. ohm ⁻¹ (meter, gram)	0.000 2259
1 International ohm ⁻¹ (meter, gram) =	0 99948 abs. ohm ⁻¹ (meter, gram)	1.999 7741
1 cgsm unit ⁻¹	1 00052 × 10 ⁵ Int. ohm ⁻¹ (meter, gram)	5.000 2259
1 cgse unit ⁻¹ =	1 1127 × 10 ⁻¹⁶ Int. ohm ⁻¹ (meter, gram)	16 046 3889
1 ohm ⁻¹ (mile, pound)	5.7100 × 10 ⁻³ ohm ⁻¹ (meter, gram)	3.756 6337
1 ohm ⁻¹ (centimeter, gram) =	1.0000 × 10 ⁻⁴ ohm ⁻¹ (meter, gram)	4.000 0000
1 ohm ⁻¹ (centimeter, gram) =	*D ⁻¹ (ohm-centimeter) ⁻¹	
* D 1 = reciprocal of the density in grams per centimeter.		
61. Constants of An	nealed Conner as Accented at Various Times	

61. Constants of Annealed Copper as Accepted at Various Times

Temperature °C	England (Eng. Stds. Com. 1904)	Germany (Old "Nor- mal Kupfer" density = 8 91)	Germany (Old "Nor- mal Kupfer" assuming density 8.89)	Lindeck, Matthiessen, assuming density 8.89	A. I. E. E. before 1907 (Matthies- sen value)	A. I. E. E. 1907 to 1910	Bureau Standards and A. I. E. E. 1911	Inter. Annealed Copper Standard 1913
		R	esistivity in	ohms (meter,	grams)			
0	0.141362	0 139590	0 139277	0.141571	0.141729	0.141728	0.141068	0.141332
15	0 150437	0.148502	0.148164	0.149974	0.150141	0.15065s	0 150034	0.150290
15.6	0.1508		1					
20	0 153463	0.151470	0 151130	0.152851	0 153022	0 153634	0.153022	0.15328
25	0 156488	0 154440	0 154098	0 155765	0 155938	0 156610	0.156010	0.156262
		Temperatu	re coefficient	of resistance	(mass consta	int)		
0	0.00428	0.004255	0 004255	1 1 1 2	97014 \ 4 10-1	0.0042	0.004277	0.004265
15	0.004022	0.004	0.004	$\overline{R}_{i} = R_{o}^{(1-3)}$	$8701t \times 10^{-3}$	0 003951	0.004019	0.004009
20	0 003943	0 003922	0 003922	+ 9.009	¹² × 10 ⁻⁶)	0.003875	0.00394	0.00393
25	0 003866	0 003846	0.003846			0.003801	0.003864	0.003854
				Density			,	
	8.89 15.6°	8.91	(8 89)	(8 89)	8.89	8.89	8.89 20°	8.89 20°

CONVERSION FACTORS

CONVERSION FACTORS.—Continued 62. Ionic Mobility $\{e^{i}m^{-1}l^{i}\}; [\mu^{-i}m^{-i}l^{i}t]$

	Land 2 1 1 1	0.000	7
ntimeter ² second ⁻¹ per egse unit of pot th ² second ⁻¹ per egse unit of potential		$3.3349 \times 10^{-3} \text{ cm}^2 \text{ sec}^{-1} \text{ volt}^{-1} \text{ (abs.)}$	3.523 0815
ch second - per eges unit of potential ch second - volt-1 (absolute)	_	2.1515 × 10 ⁻² cm ² sec ⁻¹ volt ⁻¹ (abs.) 6 4516 cm ² sec ⁻¹ volt ⁻¹ (abs.)	(U. S.) 2.332 7507 (U. S.) 0.809 6692
m-second - voit - (absorate)		G 4510 CHI Rec · VOIT · (ADR.)	(0.8.) 0.809 0092
•	33. Thermoe	lectric Power $[e^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}T^{-1}]; [\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}T^{-1}]$	
para unit of potential per °C	-	1.0000 × 10 ⁻¹ microvolt per °C (abs.)	2.000 0000
pm unit of potential per °F	200	1 8000 × 10 ⁻¹ microvolt per °C (abs.)	2.255 2725
pe unit of potential per °C	-	2 9986 × 10 ^s microvolt per °C (abs.)	8 476 9185
me unit of potential per °F	-)	5 3975 × 10 ^a microvolt per °C (abs.)	8 732 1910
icrovolt per °F		1 8000 microvolt per °C	0.255 2725
64	l. Peltier Co	efficient $[e^{-\frac{1}{4}}m^{\frac{1}{4}}l^{\frac{1}{4}}t^{-1}]; [\mu^{\frac{1}{4}}m^{\frac{1}{4}}l^{\frac{1}{4}}t^{-2}]$	
oule per ampere-hour (absolute)	229	2.7778×10^{-2} joule em ⁻¹	3.443 6975
oule per ampere-hour (absolute)	22	9 2636 × 10 ⁻¹⁴ joule es ⁻¹	14.966 7790
oule per coulomb	-	10 000 joule em ⁻¹	1.000 0000
oule per faraday		1 0363 × 10 ⁻⁴ joule cm ⁻¹	4.015 4727
oule per electron	=	6 2811×10^{10} joule em ⁻¹	19.798 0361
calorie (15°C) per ampere-hour	178	1.1625 × 10 ⁻¹ joule em ⁻¹	2.065 3930
calorie (15°C) per coulomb	==	41 850 joule em ⁻¹	1.621 6955
millivolt		1 0000 × 10 ⁻² joule em ⁻¹	2.000 0000
65. Thomson Effect, C	oefficient of;	Specific Heat of Electricity $[\epsilon^{-\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}T^{-1}]; [\mu^{\frac{1}{2}}$	$m^{\frac{1}{2}}[^{\frac{n}{2}}t^{-2}T^{-1}]$
oule coulomb ⁻¹ per °F	ny	1 8000 joule coulomb - per °C	0.255 2725
oule es-1 per °F		5 3975 × 10° joule coulomb per °C	9.732 1910
oule em ⁻¹ per °F		0 1800 joule coulomb ⁻¹ per °C	1.255 2725
oule es-1 per °C	ar I	2 9986 × 10° joule coulomb ⁻¹ per °C	9.476 9185
oule faraday-1 per °C	-	1.0363 × 10 ⁻³ joule coulomb ⁻¹ per °C	5.015 4727
oule electron-1 per °C	-	6 2811 × 1014 joule coulomb-1 per °C	18.798 0361
volt per °C		1 0000 joule coulomb ⁻¹ per °C	0.000 0000
66.	Piezoelectric	Constant $[e^{\frac{1}{2}}m^{-\frac{1}{2}}l^{\frac{1}{2}}t]; [\mu^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t^{2}]$	
em per kılogram weiglit (g.)	=	3 0577 × 104 es per dyne	4.485 3978
em per pound weight (g.)	330	6 7411 × 104 es per dyne	4.828 7321
es per kilogram weight (g.)	==	1 0197 × 10 ⁻⁶ es per dyne	6.008 4793
es per pound weight (g.)	-	2 2481 × 10 ⁻⁶ es per dyne	ő.351 8136
roulomb per kilogram weight (g.)	-	3 0577 × 10 ³ es per dyne	3.485 3978
faraday per kilogram weight (y.)	2 53	2 9507 × 10° es per dyne	8.469 9251
electron per kilogram weight (g _s)		4 868 × 10 ⁻¹⁶ es per dyne	16.687 3617
67. Magnetic Field Intensi	ty; Magneti	Potential Gradient; Magnetizing Force $[\epsilon^{rac{1}{2}}m^{rac{1}{2}}l]$	$^{\frac{1}{2}}t^{-2}$]; $[\mu^{-\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}]$
gauss, absolute	= 1	1.00010 Int. gauss (v)	0.000 0434
gauss, absolute	=	· 1 00007 Int. gauss (a)	0 000 0304
International gauss (v)	=	0 99990 abs. gauss	Ĩ.999 95 66
International gauss (a)	-	0 99993 abs. gauss	1.999 9696
egem unit	=	1.0000 abs. gauss	0.000 0000
egse unit	=	3 3349 × 10 ⁻¹¹ abs. gauss	TI.523 0815
gilbert per centimeter		1 0000 gauss	0.000 0000
	mat	a www	
ampere-turn per centimeter	==	1 2566 gauss	0.099 2099
- ·	i		0.099 2099 (U. S.) 1.694 3753
ampere-turn per centimeter	=	1 2566 gauss	
ampere-turn per centimeter ampere-turn per inch gamma, γ		1 2566 gauss 0 49474 gauss	(U. S.) 1.694 3753 5 000 0000
mpere-turn per centimeter ampere-turn per inch gamma, γ 68. (Magnetic Field I		$\begin{array}{ccc} & 1 & 2566 & \text{gauss} \\ & 0 & 49474 & \text{gauss} \\ & 1 & 0000 & \times 10^{-8} & \text{gauss} \\ \end{array}$ Coefficient of Leduc Effect $[e^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}t^2]; [\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}l^2]$	(U. S.) 1.694 3753 5 000 0000
ampere-turn per centimeter ampere-turn per inch gamma, γ 68. (Magnetic Field I gauss ⁻¹ (absolute)	ntensity)-1;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(U. S.) 1.694 3753 5 000 0000 1441 1.999 9566
ampere-turn per centimeter samma, 68. (Magnetic Field I gauss ⁻¹ (absolute) International gauss ⁻¹ (v)	ntensity)-1;	$\begin{array}{cccc} 1 & 2566 & \text{gauss} \\ 0 & 49474 & \text{gauss} \\ 1 & 0000 & \times 10^{-6} & \text{gauss} \\ \end{array}$ Coefficient of Leduc Effect $[e^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}l^{2}]; [\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{1}{2}}l^{2}]; [\mu^{\frac{1}{2}}m^{-\frac{1}{2}}l^{-$	(U. S.) 1.694 3753 5 000 0000 1441 1.999 9566 0.000 0434
ampere-turn per centimeter ampere-turn per inch gamma, \(\gamma \) 68. (Magnetic Field I gauss^-1 (absolute) International gauss^-1 (v) egsm unit^-1	ntensity)-1;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(U. S.) 1.694 3753 5 000 0000 1441 1.999 9566 0.000 0434 0.000 0000
ampere-turn per centimeter ampere-turn per inch gamma, \(\gamma \) 68. (Magnetic Field I gauss^1 (absolute) International gauss^1 (v) gam unit^1 gge unit^1	ntensity)-1;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(U. S.) 1.694 3753 5 000 0000 1014 1.999 9566 0.000 0434 0.000 0000 10.476 9185
ampere-turn per centimeter sampere-turn per inch gamma, \(\gamma \) 68. (Magnetic Field I gauss^-1 (absolute) International gauss^-1 (v) agsm unit^-1 agse unit^-1 agse unit-1 centimeter per gilbert	ntensity)-1;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(U. S.) 1.694 3753 \$ 000 0000 \$\frac{1}{2}ili_1\] 1.999 9566 0.000 0434 0.000 0000 10.476 9185 0.000 0000
ampere-turn per centimeter ampere-turn per inch gamma, \(\gamma \) 68. (Magnetic Field I gauss^1 (absolute) International gauss^1 (v) gam unit^1 gge unit^1	ntensity)-1;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(U. S.) 1.694 3753 5 000 0000 1014 1.999 9566 0.000 0434 0.000 0000 10.476 9185

69. Magnetomotive Force; Magnetic Potential $[\epsilon^{\frac{1}{2}} m^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}}]$; $[\mu^{-\frac{1}{2}} m^{\frac{1}{2}} l^{\frac{1}{2}} l^{-1}]$

ov. magneton	nouve For	ce, mag					
1 gilbert, absolute	THE STATE OF THE S	1	1 00010	Int. gilber			0 0434
I gilbert, absolute	-	1	1.00007	Int. gilber	• •	1	0 0304
1 International gilbert (v)	-		0.99990	abs. gilber			9 9566
1 International gilbert (a)	=	-	0.99993	abs. gilber		J.	9 9696
1 cgsm unit	F2	1	1 00000	abs. gilber			0 0000
1 cgse unit	==			11 abs. gilber			3 0815
1 ampere-turn	20	·	1 2566	gilber	t	0.09	9 2099
70. Magneti			sity of Magnetis		$\{l^{-\frac{1}{2}}\}; \{\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}\}$		
1 maxwell per centimeter ² , absolute			0.99958	Int. max	well per cm² (v)	1.99	9 8176
1 maxwell per centimeter ² , absolute	EZ		0 99955	Int. max	well per cm² (a)		9 8046
1 International maxwell per centimeter ² (v	v) -		1 00042	abs. max	well per cm²	0.00	1824
1 International maxwell per centimeter ² (a	n)		1 00045	abs, max	well per cm²	0.00	1954
1 maxwell per inch ²	-72		0 15500	max	well per cm²	(U. S.) Ī. 190	3308
1 cgsm unit			1 00000		well per cm²	0.00	0000
1 cgse unit	22		$2 9986 \times 10^{-10}$	010 abs. max	well per cm²		9185
1 line per centimeter ²	222		1 00000	max	well per cm²	0.00	0000
1 line per inch ²			0.15500	max	well per cm²	(U. S.) T 190	3308
71. Flux of Magnetic Inductio			; Pole Strength; id Quantity of Mag			$m^{\frac{1}{2}}l^{\frac{1}{2}}]; [\mu^{\frac{1}{2}}m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-\frac{1}{2}}$	1
1 maxwell, absolute	=	1	0 99958		maxwell (v)	1 00	9 8176
1 maxwell, absolute	.=	1	0 99955		maxwell (a)		9 8046
1 International maxwell (v)	.15	1	1.00042		maxwell		0 1824
I International maxwell (a)			1 00015		maxwell		0 1954
1 cgsm unit	238		1 0000		maxwell		0 0000
1 cgse unit	7.4		2 9986	\times 10 ¹⁰ abs.	•	L .	6 9185
1 line			1 0000		maxwell	r ·	0 0000
1 volt-second	_=		1 0000		maxwell	i i	0 0000
	72. N	// Agnetic	Reluctance [ell	$^{-2}$]; [$\mu^{-1}l^{-1}$]	•		
Loersted, absolute			1 00052	Int	t, oersted	0.00	0 2259
1 International oersted			0 99948	i ab	s. oersted	1.99	9 7741
1 egsin unit			1 0000		s. oersted	0.00	0 0000
1 egse unit			1 1122	× 10 ⁻²¹ abs	s, oersted	21 04	6 1630
		ffect, Co	efficient of $[\epsilon^{-1}m]$				
1 volt centimeter per ampere gauss (absol	ute) -			× 10° egsm		9.00	0000 00
1 volt inch per ampere gauss (absolute)	178			× 10° cgsm		(U. S.) 9.40	4 8346
1 egse unit		!	2.6962	× 10 ³¹ cgsm	unit	31.43	7555
		n Effect	, Coefficient of [
1°C centimeter per ampere gauss (absolute		1	10 000		m per cgsm unit	ł .	0 0000
1°F inch per ampere gauss (absolute)	===		45.720		m per cgsm unit		0 1071
1°C centimeter per cgse unit					m per cgsm unit	20 95	3 8370
1 volt per gauss °C (absolute)		t Effect,	Coefficient of [e			1	0.005
1 voit per gauss °F (absolute)	=	İ			unit per °C		0 0000
1 cgse unit per °C	227 228	,			unit per °C		5 2725
· vgov dini per V					unit per °C	20.95	3 8370
I minute per gilbert	76. Verd	et's Con	$\frac{\text{stant } \left[\epsilon^{-\frac{1}{2}}m^{-\frac{1}{2}}l^{-\frac{3}{2}}t\right]}{1.0000}$		te per egsm unit	0.00	0 0000
1 minute per ampere-turn	-	1	1.2566		te per egsm unit	i i	9 2099
1 radian per gilbert	=				te per egsm unit		6 2739
	77. Fun	dament	al Electric and M			1 0.00	- MIUU
			1 *Cgsm unit			Dimensions	
Name of quantity		Cgse units	Practical u	nits (abs.)	Cgse system	Cgsm system	‡Practica system
		T				<u> </u>	
Electric:							
Electric: Capacity		. c1	10° farad		d	$\mu^{-1}l^{-1}t^{2}$	IE-1t

77. Fundamental Electric and Magnetic Units.—(Continued)

Conductivity (mass)	c,	10° ohm-1 (cm, g)	em-1/3/-1	μ-1m-1lt	R-1m-1/2
Conductivity (surface)	C1	10° ohm-1	dl"	μ-1l-1t	R-1
Conductivity (volume)	c¹	10° ohm-1 cm-1	el-1	µ-12-21	R-11-1
Current	¢	10 ampere	eimilit-s	µ-1m111-1	I
Dielectric constant	C2	100 ohm-1 per (cm sec-1)		μ-1/-3/2	+1E-4-4
Displacement (local)	c	10 coulomb per cm ²	elm11-11-1	μ-imil-i	11-4
Displacement (integral)	c	10 coulomb	elmillt-1	μ-imili	/t
Electromotive force	C-1	10-* volt	e-1m121-1	µ1m111-2	E
Field strength	C ~ 1	10 ⁻⁸ volt cm ⁻¹	e-1,111-11-1	4 m 1 1 1-2	El-1
Inductance.	C-3	10-• henry	e-1[-1[2	μl	Rt
Inductivity.	C2	† 10° ohm 1 per (cm sec 1)		μ-11-21°	†1E-11-16
Ionic mobility	С	108 cm sec per (volt em 1)	,im-1/1	4-1m-121t	$E^{-1}l^{\eta-1}$
Polarization capacity .	C ²	10° farad cm 2	el-1	4-11-3/2	$1E^{-1}l^{-2}l$
Potential	C" I	10-* volt	e-1m1/1/-1	4 m 1 l 1 t-2	E
Resistance.	C~1	10 ^{-•} ohm	e~1l~1t	ult-1	R
Resistivity (mass)	C 3	10~ ohm (cm, g)	e-1ml-3t	uml-1t-1	Rml-2
Resistivity (surface)	C 1	10 ⁻⁹ ohm	e~1l-1t	μlt-1	R
Resistivity (volume)	C -1	10° ohm-cm	e−1t	μl2t-1	Rl
Specific heat of electricity (Thomson)	C "I	10 ⁻ volt deg ⁻¹	e-imilit-IT	utmilit-27-1	ET^{-1}
Specific inductive capacity	1	1	zero	zero	zero
lagnetic:					
Field intensity	С	1 gauss	etmilte 2	μ-1m1l-1t-1	Il^{-1}
Flux of induction (integral)	C 1	1 maxwell	e-imili	μ m 1 l l - 1	Et
Induction (local)	c~l	1 maxwell cm ⁻²	a-1m11-1	4 mil-11-1	$El^{-2}t$
Intensity of magnetization (volume)	C- 1	1	e-4m41-3	$\mu^{\dagger}m^{\dagger}l^{-1}l^{-1}$	$El^{-2}t$
Magnetic flux (integral)	C -1	1 maxwell	e-imili	u milit	Et
Magnetizing force.	C	1 gauss	elmilit-z	μ-1m3l-1t-1	Il^{-1}
Magnetomotive force	c	1 gilbert	elmilit-2	4-1m111t-1	I
Permeability	C - 2	1 maxwell cm ⁻² per gauss	e 11-212	μ	$I^{-1}El^{-1}t$
Pole strength	C-I	1	e-imili	μ1m1l1t-1	Et
Potential	С	1 gilbert	elmille-2	μ-1m1l1t-1	I
Quantity	C1	1	e-imili	μ m llt-1	Et
Reluctance	-	1 oersted	elt-2	$\mu^{-1}l^{-1}$	$IE^{-1}t^{-1}$
Susceptibility	C3	14π maxwell cm ⁻¹ per gauss	e-11-212	μ	$I^{-1}El^{-1}t$

[•] For the purposes of International Critical Tables, c has been taken as 2.9986 × 10¹⁰ cm per sec, logic c = 10.476 9185, logic c ¹ = 11.523 0815. This is the accepted value for the velocity of light in vacuo. The best directly determined value of the ratio of the two electrical units of quantity gives c = 1.9979 × 10¹⁰ cm per sec. (Rosa and Dorsey, Bull. U. S. Bur Standards, 3: 433; 07.)

78. Indicated Conversion Factors

a = area, C = electrical capacity, T = thermometric degree, l = density, E = electrical potential, e = electric charge, F = electrical field intensity, h = heat, m = mass, Q = quantity of nagnetism, R = electrical resistance, t = time, v = volume, ϵ = lielectric constant, η = viscosity, θ = plane angle.

Name of quantity	Dimen- sions	Tables
Nectricity		
Electric displacement	eF.	14, 53
Polarization capacity	Ca^{-1}	56, 17
Pyroelectric constant	$ca^{-1}T^{-1}$	19, 17, 12
Specific inductive capacity	zero	1 ' '
Surface density of charge	ea-1	49, 17
Thermoelectric power	ET^{-1}	52, 12
Volume density of charge	ev^{-1}	49, 19
leat, capacity	$hm^{-1}T^{-1}$	35, 21
Latent	hm^{-1}	35, 4
Reaction	hm^{-1}	35, 4
Superficial latent	ha-1	35, 17
Transformation	hm-1	35, 4

Name of quantity	Dimen- sions	Tables
Radiation, index of absorption Intensity of. Kerr's constant (magneto-optic) Reflectivity Refraction, index of Solubility, gases in liquids Viscosity, kinematic	zero ha-1-1 θQ-1a zero zero zero nd-1	35, 22 7, 71, 16 39, 28

79. Hydrometer Scales

Unless the hydrometer is used in the liquid and at the temperature for which it is graduated, corrections must be applied for the changed capillary depression and for the expansion (or contraction) of the instrument. (The following table does not include all scales which have been used.)

T = temperature at which the instrument is to be used; r = reading of instrument; the specific gravity is with reference to water at temperature T unless another temperature is indicated in the last column.

[†] In practice this unit is not used; the quantity given in essentially every instance is the dimensionless "specific inductive capacity," which is numerically equal to the dielectric constant expressed in case units.

In this column are given the dimensions in terms of the practical electrical units, as these generally enter into the actual determinations of the several quantities. As three basic electrical units are employed, alternative expressions are possible. T - thermometric degree, R - potential, I - current,

79. Hydrometer Scales.-Continued

Hydromete	T T	Spec	ilic gravity	Remarks
		Dense	Light	
A. P. I Ame can Petrolec Institute.	eri- 60°F im = 15,56°C	7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Petroleum
Balling	17.5°C	200	200	1
Bates.	1	200 - r	200 + r	1
Dates.	60°F - 15 56°C	1000 + 2.78		
Baumé	10°R	145 88	145 88	
	= 12 5°C	145 88 - r	135.88 + r	
Baumé	15°C	146 3	146 3	
	1	146 3 - r	136.3 + r	1
Baumé	17.5°C	146 78	146 78	
	17.3	146 78 - r	136.78 + r	
Baumé	. 15°C	1443		"Rational"
_		144 3 - r		
Baumé .	15°C	144 3	' I	"Rational"
		144 3 - r		(water at 4°C)
Baumé-Lunge	12 5°C	144 32	144 32	"Rational"
		144 32 - r 144 32	14432 + r	
Baumé	15°C	144 32 - r	144 32	French (water at 4°C)
		144 32 r 145	144 32 + r	(water at 4 C)
Baumé	60°F = 15.56°C	115 - r		American
. .	- 10.00 (170	130 + r 170	
Beck	12 5°C	170 - r	170 + 7	
D.1		400	400	
Brix .	12 5°R = 15 625°C	400 - 7	400 + r	
Cartier		136.8	136.8	
Cartier	12 5°C	126 1 - 7	126 1 + r	
Fischer	* 12 5°R	400	400	
	= 15 625°C	100 - r	100 + r	
Fleischer		1000 + 10r	100 , ,	
		1000		
Gay-Lussac		100	100	
·····		100 - r	100 + r	
Gerlach, or "new"	17.5°C	146 78		
		146 78 - r	1	
Holland, or "old"	12 5°C	141		
	10.70	114 - r		
Stoppani .	12 5°R	166		
· · · · · · · · · · · · · · · · · · ·	= 15 625°C	166 - r		
Twaddell	60°F	1000 5r		British
	= 15.56°C	1000	I	(water at 4°C)

TECHNICAL EFFLUX VISCOMETERS: INTERPRETATION AND INTERCONVERSION OF READINGS

WINSLOW H. HERSCHEL

Since changes are made from time to time in the standardization or method of operation of these instruments, and many old instruments are still in use, it is believed that in general the determination of kinematic viscosity from the readings of the instruments, and direct interconversions between instruments, when used at the same temperature, may be made by the use of Fig. 1, with as great precision (about 5%) as the data will warrant. It is assumed that the instruments are used in the normal manner. For the Saybolt instruments, a higher precision is occasionally justified, and may be obtained by the use of Table 2.

If the instruments are used at different temperatures, appropriate temperature corrections must be applied. For lubricating oils, the viscosity at one temperature may be estimated from that at another by the approximate empirical rule, applicable between 100° and 212°F (37.8° and 100°C), that the logarithmic viscosity-temperature graphs are straight and meet at a point, temperatures being expressed in degrees Fahrenheit. (For other temperatures see (1.7.8)). The location of the point of intersection for several classes of oils is given in Table 1.

TABLE 1.—COORDINATES OF POINTS OF INTERSECTION OF LOGARITHMIC GRAPHS(8)

no = viscosity in poises; to = temperature in °F

Class of oils	log10 70	70	logio to	to
Paraffin base	3.58	0.0038	2.77	589
Naphthene base	3 88	.0076	2.57	371
Mixed base	. 3.43	.0027	2.78	605
Fatty oils	3.75	.0056	2.82	661

In estimating the viscometer reading at a given temperature for a certain type of instrument, from an observed reading at another temperature with another type of instrument, the following steps may be taken

- 1. Determine the kinematic viscosity corresponding to the observed reading by means of Fig. 1.
- 2. Multiply by the density (g/cm^2) so as to obtain the absolute viscosity (η) in poises; find the logarithm of the absolute viscosity and the logarithm of the temperature (t) of test $({}^{\circ}F)$.
- 3. Plot the observed η , t and the η_o , t_o of the point of intersection, as given in Table 1, on logarithmic paper. Or plot the corresponding logarithms on equispaced coordinate paper. In either case, these two points locate a straight graph upon which the viscosity at the desired temperature will be found.
- 4. Divide the absolute viscosity at the desired temperature by the density at that temperature to get the kinematic viscosity. From this, determine, by means of Fig. 1, the corresponding time of flow on the desired viscometer.

It will be noted that the density under (2) and (4) must be the density at the temperature under consideration, and not the density at 60°F (15.6°C), which is generally the standard for such density determinations.

If an instrument is used in an irregular manner, appropriate corrections must be applied (2, 3, 6, 9).

Table 2.—Saybolt Universal and Saybolt Furol Viscometers Units: Time (t), see; kinematic viscosity = (η/d) , poise/(g per cm²).

Saybolt	Universal	Saybo	lt Furol
t	η/d	1	η/d
32	0 0115	25	0 486
40	0 0417	26	0.512
50	0 0740	27	0.537
60	0 103	28	0.562
70	0 130	29	0.586
80	0 156	30	0.610
90	0 181	35	0.730
100	0 206	40	0.846
125	0 266	45	0.960
150	0 324	50	1.072
175	0 381	60	1 292
200	0.437	70	1.507
225	0.492	80	1.724
250	0.548	90	1.939
275	0.603	100	2 155
300	0 658		

For higher viscosities the kinematic viscosity is equal to 0.00220t for the Saybolt Universal, or to 0.0216t for the Saybolt Furol.

LITERATURE

(For a key to the periodicals see end of volume)

Fortach and Wilson, 45, 16: 789, 24.
 Ganz, 252, 6: 218; 99.
 Herschel, 52, No. 100; 17.
 Herschel, 244, 10: 31; 22.
 Herschel, 45, 14: 715; 22.
 Holde, Examination of hydrocarbon oils, 1917.
 Lane and Dean, 45, 16: 905; 24.
 MacCoull, 253, 7: No. 6; 21.
 Ubbelohde, Tabellen zum Englers hen Viskosimeter, 1907.

SELECTED TECHNICAL TERMS

N. ERNEST DORSEY

In this section are given the definitions of numerous units, and very brief explanations of such technical terms as occur in many sections of the I. C. T. or are for other reasons more suitably considered here than elsewhere. Other terms will be explained where they occur in the body of the work. Symbolical explanations will be given wherever they appear to be satisfactory. In many cases, dimensional formulae (see p. 18) are given; these are enclosed in []. Symbols are enclosed in (). The sequence will be: Name, symbol or symbols, dimensional formula, definition or explanation; but the symbol or formula, or both may be omitted. For the explanation of the symbols employed in the formulae and explanations, see p. 16.

Aberration, Constant of. $[\theta]$. $\tan (V-v)/c$. V, v = maximum and minimum velocity of earth in its orbit, c = velocity of light in vacuo.

Absolute. - (abs.). 1. An adjective, descriptive of a system of units which is based upon the smallest possible number of independent units. In this connection, every specification of a definite substance or of a vacuum is to be regarded as the introduction of an independent unit. 2. Absolute zero. The temperature at which the pressure of a fixed mass of an ideal gas, maintained at a constant volume, becomes zero. 3. Absolute temperature. The temperature reckoned from the absolute zero.

Absorption. When the absorption of radiation by a substance is such that $J = J_n e^{-kt}$, $J_n J_n =$ intensity, l = length of path, k is the coefficient of absorption. k/d = coefficient of mass absorption. Writing $k = (4\pi k'n)/\lambda$, n = index of refraction, $\lambda =$ wave length in vacuo, k' = index of absorption. (Some call k'n the index.)

Absorptivity. Ratio of radiant energy absorbed to that absorbed, under same conditions, by a black body.

Action, Planck's constant of. See Planck.

Ampere. Unit of electric current. Abs. ampere = 0.1 egs unit. Int. ampere is that unvarying electric current which, when passed through a solution of silver intrate in water, in accordance with certain specifications, deposits silver at the rate of 0.00111800 gram per second.

Ampere-turn. Unit of mmf. Difference in magnetic potential between the faces of a coil of one turn carrying one ampere.

Angstrom unit. ··(Â). [1]. 10 ½ meters. International Angstrom defined as such a length that wave-length of red cadmium line in air at 15°C, An, is exactly 6438,4696 Int. Å; it = 10⁻¹⁰ m within experimental error.

Anomalistic. -Anom. year [month] = time between successive passages of earth [moon] through perihelion [perigee].

Aphelion.-Point of planet's orbit farthest from sun.

Apogee. Point of moon's orbit farthest from earth.

Aries, First point of. Designation of position of vernal equinox (see Celestral sphere); not at present in constellation Aries.
Assay ton. [m]. 2016 grains; as many mg as there are troy onnees in short ton.

Astronomical unit of length. Mean distance (q v.) earth to sun; 149.50×10^6 km.

Astronomical unit of mass. - Mass of sun.

Astronomical unit of time. - Mean solar day.

Atmosphere. --[force area 1], [m/lt²]. 1. Normal atmosphere (An) defined as pressure exerted by vertical column of liquid 76 cm long, density 13 5951 grams per cm³, acceleration of gravity being 980 665 cm sec 2. 2. Atmosphere at 45° (A45) differs from An only in use of acceleration of gravity at sea level

and lat. 45° instead of 980.655 cm sec⁻¹. 3. British atmosphere is based on 30 inches instead of 76 cm.

Avogadro's number. $-(N_0)$. $[m^{-1}]$. Number of molecules in a mole.

Bar. –[force/area], |m/ll²]. Internationally accepted unit of pressure; = 10⁶ dyne/cm². Has also been used to denote one dyne/cm² (cf. Barve).

Barye.—[force/area], [m/l²]. The cgs unit of pressure, one dyne/cm². (In accordance with recommendation of special committee of International Congress of Physicists, Paris, 1900, and with the usage of the International Bureau of Weights and Measures.) (cf. Bar).

B. A. unit.—A unit of electrical resistance based on certain coils prepared in 1863-1864 by British Association for Advancement of Science.

Black Body.—One which absorbs all radiant energy incident upon it. Its radiance of wave-length λ is J_{λ} d λ ; the intensity, $J_{\lambda} = C_1 \lambda^{-\delta} [e^{C_2 \lambda T} - 1]^{-1}$, T = absolute temperature, C_1 , C_2 are radiation constants. Total radiance (J) is $\int J_{\lambda}$ d λ taken over all wave-lengths. $J = \sigma T^4$, $\sigma = \text{Stefan}$, or Stefan-Boltzmann constant of total radiation. For each T there is a wave-length (λ_m) for which $J_{\lambda}(=J_m)$ is a maximum; $J_m = C_1 T^6$, $C_1 = \text{intensity coefficient}$; $\lambda_m = w/T$, w = Wien's displacement constant.

Board of Trade unit.—1. A unit of electrical resistance based upon certain coils preserved by British Board of Trade. 2. (B.T.u.). Unit of work. Generally used in England as equivalent of one kilowatt-hour. (To be distinguished from British thermal unit (BTU).)

Boltzmann's molecular gas constant.— (k_o) , $[ml^2/t^2T]$. Gas constant (q,r_o) per molecule.

Bougie decimale. — $[\psi\omega^{-1}]$. An old unit of luminous intensity, 0.05 Violle unit.

Brightness.— $|\psi/l^2\omega|$. Luminous intensity per unit of apparent area of the luminous surface; if emission follows Lumbert's law, brightness is independent of direction of line of sight, otherwise it is not; in latter case, line of sight is assumed to be normal to the surface unless the contrary is stated.

British Thermal Unit.—(BTU). [energy], $[ml^2/t^2]$. Heat per pound, per °F of rise, required to produce small rise in temperature of water under pressure $A_{\rm B}$; varies with temperature, which must be stated. "Mean" BTU = $\frac{1}{180}$ of heat required to raise one lb. of water from 32°F to 212°F, pressure $A_{\rm B}$. (To be distinguished from Board of Trade unit (B.T.u.).)

Bulk modulus. —[stress], $[m/lt^2]$. Hydrostatic pressure divided by resulting decrease in volume per unit volume. Also called volume elasticity, cubical elasticity, resistance to compression, modulus of compression (cf. compressibility).

Calorie.—[Heat], $[ml^2/t^2]$. I. Heat per unit of mass, per °C of rise, required to produce small rise in temperature of water under pressure A_n ; varies with temperature, which must be stated. If unit of mass is gram, it is called small calorie, gram calorie, or calorie; symbol is call. If unit of mass is kilogram, it is called large calorie, kilogram calorie, or Calorie; symbol, Cal. (2) Mean calorie = $^1_{100}$ of heat required to raise unit mass of water from 0°C to 100°C, pressure A_n .

Candle. --(ca). [ψω⁻¹]. Basic photometric unit of luminous-intensity. A value determined by international agreement, and maintained at certain national laboratories by means of incandescent electric lamps is known as the "International candle."

Candle per square centimeter.— $|\psi/l^2\omega|$. Brightness of surface which, in direction considered, has a luminous intensity of one

candle per cm² of apparent area; * lamberts. Similarly: Candle per sq. in., etc.

pandlepower.—(c.p.). Luminous intensity in terms of candles.

papacity, heat.—1. Of a substance, is heat per unit of mass, per degree of rise, required to produce a very small rise in temperature, also called specific heat, and thermal capacity.

2. Of a body, is heat, per degree of rise, required to heat the body.

Papacity, electrical.—Of body A with reference to body B is $Q/(V_A - V_B)$, all other bodies in the field being insulated and uncharged; Q = charge on A; V_A , $V_B = \text{potential of } A$, B.

Capacity, polarization.—Of one electrode with reference to another is its electrical capacity per unit of area.

Capillary constant. -(a). [i]. 1. British usage: $a_1^2 = \gamma/(d_1 - d_1)g$; $\gamma = \text{surface tension}$, g = acceleration of gravity, $(d_1 - d_2) = \text{positive difference}$ in the densities of the fluids separated by the surface. 2. German usage: $a_2^2 = 2\gamma/(d_1 - d_2)g$. (The subscripts to the a are usually omitted.)

Carat fine. -- See Karat.

Carcel unit.—A superseded unit of luminous intensity; approximately = 9.6 Int. candles.

Celestial sphere. - Sphere, concentric with earth, serving to locate angular positions of celestial bodies; its intersection with plane of earth's orbit [equator] is called ecliptic [celestial equator]; intersections of ecliptic and equator are called equinoxes; motion of equinoxes with reference to stars is called precession of equinoxes, it is resultant of an oscillatory and a nearly uniform motion, a fictitious equinox possessing only the latter motion is called mean equinox. The mean equinox through which sun passes in spring of northern terrestrial hemisphere is called mean vernal equinox, and is point from which celestial longitude (along the ecliptic) and mean right ascension (R. A.) (along the equator) are measured positive to the east. Intersections of the sphere and the axis of rotation of earth are called celestial poles; that of the sphere and its diameter perpendicular to plane of ecliptic called poles of the ecliptic. Declinations are measured from equator along great circles passing through the poles-positive towards north; celestial latitudes, from ecliptic along great circles passing through poles of ecliptic positive towards north. The pole of the sphere has a motion compounded of a nearly uniform progressive motion and a rotation about a point having the former motion; that point is called mean pole, its motion is the precession of the pole, the rotation of the true pole about the mean pole is called the nutation of the pole; mean (angular) distance between mean pole and true pole is called constant of nutation.

Centi-.--Prefix denoting 1100.

Centigrade.—(C). Thermometric system in which freezing point of water is called 0° and its boiling point is called 100°; pressure = A_n.

Centigrade thermal unit. -(CTU), [energy], [ml²/t']. Differs from British Thermal Unit only in the substitution of Centigrade for Fahrenheit scale.

Centimeter.—(cm). 1. The cgs unit of length, 0.01 meter. 2
Often used to denote cgse unit of electrical capacity. 3
Occasionally used to denote cgsm unit of electrical inductance.
Centimeter-dyne.—[work], [ml²/r²]. One erg.

Centimeter of water [of mercury, etc.] at t° . -[force/area], $[m/lt^{2}]$ Denotes pressure exerted by a vertical column of water [of mercury, etc.] one cm long, temperature t° , at a place where acceleration of gravity is g_{\bullet} (= 980.665 cm/sec²).

Cheval-vapeur.—[work/time], [ml²/l³]. 1. Primary definition, 75 meter-kilograms per second. Also called force de cheval, continental horsepower, Pferdekraft. 2. For electrical purposes, generally regarded as exactly 736 watts; may be called continental electrical horsepower.

Circular inch.—(cir. in.). [l¹]. Area of a circle one inch in diameter. Similarly for circular mil (cir. mil), circular millimeter (cir. mm), etc.

Compressibility. - [lt2/m]. Reciprocal of bulk modulus.

Compression, modulus of, - [m /lt2]. See Bulk modulus.

Concentration.—1. The amount per unit of volume; may be called volume concentration. If amount is measured by mass, the symbol is C. 2. The mass of the material per unit of mass of the mixture containing it; may be called mass concentration. If both masses are expressed in terms of the same unit, this concentration is generally called the titer of the mixture.

Conductance. Reciprocal of resistance.

Conductance, Specific. See Conductivity, electrical.

Conductivity, Electrical.—Reciprocal of electrical resistivity (q,v).

1. (*) Volume conductivity = reciprocal of volume resistivity; specific conductance. 2. Mass conductivity = κ/d ; d = density. 3. Equivalent conductivity (*\Lambda) is κ/c ; c = equivalents of solute per unit volume of solution.

4. Molecular conductivity (*\Lambda) is κ/m ; m = moles of solute per unit volume of solution.

Conductivity, Thermal. $-[(heat/area-time)/(T/l)]; [ml/Tt^3].$

 $dQ/dt = -k dx dy \frac{d\theta}{dz}; k = \text{thermal conductivity, } dQ = \text{amount}$ of heat through dx dy, in direction dz, in time dt, $d\theta = \text{increase}$

in temperature in distance dz

Coulomb.—The quantity of electricity transferred in one second

by a current of one ampere.

Critical. I. Any point, line, or region serving to locate a well marked transition may be described as critical. 2. As regards condensation of vapors, the temperature corresponding to the isotherm above which liquefaction is impossible is called the critical temperature; the vapor pressure at which the two phases are in equilibrium at the critical temperature is the critical pressure; volume of unit mass at the critical pressure.

and temperature is the critical volume. These three values are called the critical constants.

Cubic. (cu.), (3). Used in conjunction with name of unit of length to form name of a related unit of volume; e.g., cubic meter (cu. m) (m³) is name of a unit of volume equivalent to

volume of a cube with edges one meter long.

Cubic centimeter atmosphere. See Liter-atmosphere.

Curie. Internationally defined as amount of radon (radium emanation) which can exist in equilibrium with one gram of

Current. -(I). The current of x through a surface S is I = dx/dt, where dx is the amount of x which passes through S in time dt. The density of the current through S at a given point is $\sigma_* = dI/dS$, where dI is the current at that point through an element of S of area dS. The value of σ varies with the orientation of dS, and for a certain orientation it is a maximum. The normal, in the direction of the flux, to the element so oriented is the direction of the current; and this maximum value of σ is called the density, or the intensity, of the current at that point.

Dalton. -[m]. A unit of mass, \(\frac{1}{10}\) mass of atom of oxygen.

Approximately 1.650 × 10⁻²⁴ grams.

Day.—(da). [t]. 1. Solar day = interval between successive transits of sun across same meridian. It is not of uniform length. 2. Mean solar day = average length of all the solar days in a tropical year. This is the basis of all our time measurements and is what is meant by day unless the contrary is definitely indicated. 3. Sidereal day = interval between successive transits of true vernal equinox. 4. The day defined by successive transits of same fixed star is not used in astronomical computations, and appears to have no name.

Deci -. - Prefix denoting 110.

Declination.—1. Of celestial objects. See Celestial sphere. 2.

Magnetic declination = angular deviation of horizontal com-

ponent of earth's magnetic field from northerly measured geographic meridian; easterly deviations, positive.

Degree.—1. (°), (deg). Unit of difference in temperature; size depends upon thermometric scale employed. 2. (°). Unit of angle, ½60 of complete circumference. 3. (°). Hydrometer degree is an arbitrary unit of difference in specific gravity; its value depends upon type of hydrometer (see p. 31).

Deka -- Prefix denoting 10.

Demal.—A concentration of one g-equivalent per dm3.

Density.—1. Volume density = dQ/dv, dQ = amount of the physical quantity considered which is contained in the element of volume dv. 2. **Density of a substance**, (d), (D), is dm/dv, m = mass. When, on a particular scale of operation, the density varies from point to point, it may be that on a larger scale it will not; then the density on the larger scale may properly be called the apparent density (sometimes called bulk density) when operations on the smaller scale are being considered. 3. Surface density = dQ/ds, ds = element of area of surface over which dQ is distributed.

Dielectric constant.— (ϵ) . $[t^2/\mu l^2]$, $[\epsilon]$. The force (f) of repulsion between two point charges (ϵ, e') of electricity at a distance (r) apart in a uniform medium of great extent is $f = ee'/\epsilon r^2$; ϵ depends upon the nature of the medium, and is called its dielectric constant.

Diffusion, Coefficient of .- See Diffusivity.

Diffusivity.—1. (Δ). [quantity vol. concenderated distance of d passing through area dydz in direction of x in time dt, dc/dx = rate of increase, in

direction of x, of volume concentration of Q. Also called coefficient of diffusion. 2. Heat diffusivity. $\begin{bmatrix} \frac{\text{heat}}{\text{area} \times \text{time}} \end{bmatrix}$

specific heat \times density \times temp. $\frac{1}{2}$ tensity $\frac{1}{2}$ specific heat $\frac{1}{2}$ tensity $\frac{1}{2}$ specific heat $\frac{1}{2}$ tensity $\frac{1}{2}$ specific heat, $\frac{1}{2}$ density, $\frac{1}{2}$ tensity $\frac{1}{2}$ specific heat, $\frac{1}{2}$ density, $\frac{1}{2}$ temperature. $\frac{1}{2}$ tensity $\frac{1}{2}$ specific heat, $\frac{1}{2}$ density, $\frac{1}{2}$ temperature. $\frac{1}{2}$ density $\frac{1}{2}$ specific heat, $\frac{1}{2}$ density $\frac{1}{2}$ temperature conductivity.

Displacement constant, Wien's .- See Black body.

Displacement, Electric. - See Induction, electrostatic.

Draconic month. -- See Nodical month.

Dyne.—[ml/t²]. The egs unit of force. The force which, when acting continuously upon a mass of one gram and not opposed by another, will impart to the mass a uniform acceleration of one cm per sec.²

Dyne-centimeter.—[force length], [ml²/t²]. The torque of one dyne acting on a lever-arm of one cm.

Ecliptic .- See Celestial sphere.

Blastic modulus.—Ratio of stress to resulting elastic strain. There are as many types of moduli as there are types of strain. 2. Occasionally used to denote Young's modulus.

Elasticity.—I. Cubical; see Bulk modulus. 2. Longitudinal; see Young's modulus. 3. Shear; see Rigidity. 4. Torsional; see Rigidity. 5. Modulus of; see Elastic modulus.

Electric displacement, field strength, etc.—See corresponding nouns.

Electromagnetic unit of quantity of electricity. -See Quantity of electricity.

Electromotive force.—(E), (emf). See Potential.

Electron.—Negative electrons are very small negatively charged particles observed under many, very diverse conditions. All appear to be alike in every way, including amount of charge carried. They appear to be one of the basic elements of which atoms are made.

Electronic charge.—(e). A quantity of electricity, of either sign, which is numerically equal to the electric charge carried by an electron.

Electronic mass.—(m_o). The mass of a negative electron when moving with a velocity much less than that of light.

Electronic ratio.—(e/m_o). Ratio of electronic charge to electronic mass.

Electrostatic unit of quantity of electricity.—See Quantity of electricity.

Elongation.—Distance of an oscillating, or of a revolving, body from a point of reference; e.g., the distance of an electron from the nucleus about which it revolves.

Emissivity.—Ratio of radiance of the body to that of a black body at same temperature. If radiation of only one wave-length is considered, it is monochromatic emissivity; if all wave-lengths, it is total emissivity. The ratio of the radiances (or of the emissivities) of two non-black bodies is called relative emissivity of first with respect to second.

English sperm candle.-See Sperm candle.

Equation of time. - See Time.

Equator.—1. The intersection of surface of the earth, or other rotating spheroid, with the plane through its center perpendicular to its axis of rotation. 2. The intersection of the surface of a spheroid with a plane through its center and perpendicular to any diameter chosen as axis. 3. Celestial equator. See Celestial sphere.

Equinox.—See Celestial sphere.

Equivalent.—(equiv). Electrochemical equivalent (briefly equivalent) of an ion—actual or potential—is its formula weight divided by its valence.

Erg.—[force distance], $[ml^2/t^2]$. Work done by a force of one dyne while acting through a distance of one centimeter in its own direction.

Erg-second.—[work · time], [ml²/t]. The action produced by one dyne acting through one cm in one sec.

Expansion, coefficient of .- See Expansivity.

Expansivity.— $[T^{-1}]$. 1. Volume expansivity $\Rightarrow dv/(vdT)$. 2. Linear expansivity = dl/(ldT). v, l, T = volume, length, temperature; dv[dl] is change in v[l] produced by change dT in temperature.

Fahrenheit.—(F). A thermometric system in which 32° denotes the freezing, and 212°, the boiling point of water under pressure of A_n.

Farad.—Capacity of electrical condenser which is charged to a potential difference of one volt by one coulomb.

Faraday.—(F). A subsidiary unit, the electrical charge carried in electrolysis by one gram-equivalent.

Field.—The field of a physical quantity is the region of space within which phenomena characteristic of the quantity exist. The strength, or intensity, of the field at any point is measured by the magnitude at that point of some chosen, characteristic phenomenon, and the complete designation of the field includes an indication of this phenomenon; e.g., electrical field of force. As force is the phenomenon most frequently chosen, and in other cases the context indicates what is intended, the explicit designation of the chosen phenomenon is quite frequently omitted.

Field intensity.—The strength, or intensity, of a field of force at any point is df/dm, where df is the mechanical force experienced by dm, a vanishingly small amount of m placed at that point. For an electrical field, m is positive electricity; for a magnetic field it is a north magnetic pole; for a gravitational field it is mass. Magnetic field strength is frequently called magnetizing force.

Fluidity.— (φ) . Reciprocal of viscosity. Also called coefficient of fluidity.

Flux.—1. Flux (ψ) of vector (V) through surface S is $\psi = \int_S V_n dS$; $V_n = \text{component of } V$ normal to dS, integral is to be taken over S. 2. Flux of a quantity Q through surface is $\psi = dQ/dt$.

dQ = amount of Q which passes through S in time dt. 3. From point source. If $V = I/r^2$, where r = distance from source and I is a constant independent of direction, I is called intensity of the source, and $\psi = I\omega$; $\omega =$ solid angle subtended, at the source, by S (cf. Intensity, luminous).

Tux. Luminous. - (4). Flux of radiant energy expressed in terms of its power to produce luminous sensation in the human

Plux, Magnetic .- Flux of magnetic induction.

Poot-candle.— $[\psi/l^2]$. Unit of illumination, one lumen per square

Poot-lambert.— $[\psi/l^2\omega]$. Unit of brightness; see Lambert.

Poot-pound.-[ml2/t2]. Work required to raise one pound a vertical distance of one foot, where g = 980.665 cm/sec² (cf. meter-kilogram).

Foot-poundal.— $[ml^2/t^2]$. Work done by force of one poundal (a n) acting through a distance of one foot

Force. -[ml/t2]. That which imparts acceleration to material bodies.

Force, Biectromotive.-See Potential.

Force, Magnetizing.—See Field intensity.

Force, Magnetomotive, -- See Potential

Force de cheval.-See Cheval-vapeur.

Frequency.— (ν) . [N/t]. Number per unit of time. In case of vibrations, waves, etc., the frequency is the number of com-- plete vibrations, of complete waves, etc., per unit of time,

Gamma.—(γ). [$\sqrt{m/\mu lt^2}$], [$\sqrt{ml\epsilon/t^2}$]. A unit of magnetic field intensity; 0.000 01 gauss.

Gas constant.—1. (R). [work/mass-degree], $[l^2/t^2T]$. The coefficient R in the ideal gas equation pv = RTm; p = pressure, v = volume of the mass m at absolute temperature T = 2(R). [work/mole-degree]. Gas constant per mole obtained by expressing m in moles. 3. (k). [work/molecule-degree], [ml2/t2T]. Boltzmann's molecular gas constant: obtained by expressing m in terms of number of molecules.

Gas, Ideal.—One which strictly satisfies the equation (pr = RTm)and other relations deduced from the classical kinetic theory of gases on the assumption that the molecules are infinitely small and devoid of mutual attraction.

Gauss.--[$\sqrt{m/\mu lt^2}$], [$\sqrt{ml\epsilon/t^4}$]. The egsm unit of magnetic field intensity.

Gaussian gravitation constant.—The square root of the intensity of the gravitational field of force of the sun at a point whose distance from the sun is the astronomical unit of length (cf. Gravitation constant).

Geepound. -See Slug.

Gilbert.— $[\sqrt{ml/\mu t^2}]$, $[\sqrt{\epsilon m l^3/t^4}]$. Electromagnetic unit of magnetic potential, of magnetomotive force. Unless contrary is indicated, it is the cgsm unit. In precise work, the International gilbert, based upon the Int. elec. units, should be distinguished from the absolute, or cgsm, gilbert.

Grade.— $[\theta]$. Unit of plane angle, $\frac{1}{400}$ of complete circumference.

Gram atom .- See Mole.

Gram calorie .-- See Calorie

Gram equivalent.-See Mole. Gram formula weight. - See Mole.

Gram weight .- See Weight.

Gravitation constant.—(G), $[l^3/mt^2]$, The coefficient G occurring in the equation $f = G(mm')/r^2$; f =force of gravitational attraction between two point masses (m, m') in vacuo, r =distance between m and m' (cf. Gaussian gravitation constant).

Gravity, Acceleration of.—(g), (g_*) . $[l/t^2]$. Unless the contrary is indicated, this expression refers specifically to the earth, and denotes the resultant acceleration downward experienced by a freely falling body placed at the point considered. It includes centrifugal effects arising from the rotation of the earth, as well as the effects of gravitational attraction (cf. Gravity, standard).

Gravity, Specific .- See Specific gravity.

Gravity, Standard.— (g_i) , $[l/t^2]$. Standard gravity is the value adopted by the International Committee on Weights and Measures as the "accepted" value of the acceleration of gravity to which all measurements involving this quantity are to be referred. Thus a pressure of x cm of mercury at to be understood as denoting the pressure exerted by x cm of mercury at t°C at a place where the acceleration of gravity is g. accepted value is $g_t = 980.665 \text{ cm/sec}^2 (= 32.174 \text{ ft./sec}^2)$

Heat. -1. By the heat of a process is meant the amount of heat. evolved, per unit quantity of material involved, during the isothermal process, the process proceeding in the direction indicated. The quantity of material may be expressed in terms of mass, of moles, of equivalents, etc., as may seem desirable 2 By the latent heat of a transformation is meant the amount of heat absorbed per unit quantity of material transformed, the transformation proceeding in the direction indicated. Latent heat of transformation of A to B = -(heat)of transformation of A to B) = heat of transformation of B to A. Heat diffusivity.-Sec Diffusivity.

Heat, Specific .- See Capacity, and Specific heat.

Hecto-.--Prefix denoting 100.

Hefner unit.—A superseded unit of luminous intensity; approximately = 0.9 Int. candles.

Henry.— $[\mu l]$, $[t^2/\epsilon l]$. Unit of electromagnetic inductance. Defined as that inductance for which an induced electromotive force of one volt is produced when the inducing current is changed at the uniform rate of one ampere per second.

Horsepower.--(h.p.). [work/time], [ml2/t3]. 1. (HP) Primary definition of the term is work done at the rate of 550 foot-pounds per second. 2. For electrical purposes it is regarded as exactly = 746 watts, which is frequently called the electrical horsepower. 3. Continental horsepower. See Cheval-vaneur

Humidity. -1. Absolute humidity of a gas is the actual amount of water vapor per unit volume of the gas. Usually expressed in terms of the actual pressure of the water vapor present. 2. Relative humidity of a was - ratio of the pressure of water vapor present to the pressure of water vapor which is in equilibrium with water at the same temperature. 3. Dew-point of a gas is the temperature at which the pressure of water vapor in equilibrium with water is equal to the actual pressure of the water vapor contained in the gas. If the temperature of the gas be varied while its absolute humidity remains unchanged, then the dew-point is that temperature at which the relative humidity is 100%. 4. If the bulb of a thermometer be encased in a fabric which is kept wet with water (wet-bulb), the thermometer will record a lower temperature than if the bulb were dry (drybulb). If the circulation over the wet bulb is sufficiently rapid, the difference in the temperatures depends solely upon the total pressure of the gas, its absolute humidity, and its temperature. Hence the humidity of the atmosphere, or of any other very large volume of gas, can be readily determined by the use of wet- and dry-bulb thermometers.

Hydrometer.—An instrument which, by the extent of its submergence, indicates the specific gravity of the liquid in which it floats. Frequently, its readings are expressed in degrees (°). Various systems of graduations are in use, see p. 31.

Hygrometric.-Pertaining to humidity of atmosphere.

Hypsometry.—The art of measuring the elevation above sea-level. More specifically, the use of the boiling-point of water for such

Ice point.--(To). Temperature at which water freezes when under the pressure of one normal atmosphere.

Ideal gas .- See Gas, ideal.

Illumination.— $[\psi/l^2]$. The illumination at a point of a surface is the surface density of the luminous flux incident at that point.

Inch of water [of mercury, etc.] at t° .—Analogous to cm of water (a, v).

Index of absorption. -See Absorption.

Index of refraction. See Refraction.

Inductance.—The electrical inductance of circuit A with reference to circuit B is ψ_A/I_B ; $\psi_A = \text{flux}$ of magnetic induction through A as a result of the current I_B in B. A and B may be the same circuit

Induction.—1. That modification which is acquired by a medium when it becomes the scat of a field of force, and which is evidenced by the fact that its boundaries with other media exhibit distinctive properties which they do not possess in the absence of the field. 2. The distinctive properties mentioned in (1); as in magnetization by induction, induced electric charges, etc.

3. Electrostatic induction. $[\sqrt{m/\mu^2}]$, $[\sqrt{\epsilon m/l^2}]$. eF, $\epsilon =$ dielectric constant, F = intensity of electrostatic field of force. Electric displacement $= eF/4\pi$. 4. Magnetic induction (B). $[\sqrt{m/l^2}]$, $[\sqrt{m/\ell^2}]$. $B = \mu II$, $\mu =$ magnetic permeability, H = intensity of magnetic field of force. 5. Electromagnetic induction is the phenomenon which is characterized by the appearance, in every circuit, of a cyclical emf which is proportional to the rate of change of the flux of magnetic induction through that circuit.

Intensity coefficient. -- See Black body.

Intensity, Field .- See Field intensity.

Intensity, luminous. 1 Of a point source in a given direction = amount of luminous flux, per unit of solid angle, which the source emits in the direction considered. 2. Of a point of an extended source = brightness of that point of the source; also called intrinsic brightness. 3. Of an extended source, in a given direction, is its intensity at a point so distant in the stated direction that the source may be regarded as a point. For nearer points the apparent intensity will depend upon the distance, and is defined as the intensity of that point source which at the same distance will produce the same illumination (cf. flux).

Intensity of magnetization. -- See Magnetization.

Intensity of radiation. 1 The intensity of the radiation emitted in a specified direction by a body is the amount of radiant energy cunited in that direction, per unit of time, per unit of area, and per unit of solid angle of emission. For spectral, or monochromatic, intensity, See Radiance. 2. Of received radiation, See Irradiation. 3. Of radiation in transit. The amount of radiant power per unit area which passes through an element of area which is normal to the direction of propagation; this equals the volume density of radiant energy at the point considered.

International electrical units.—A system of electrical and magnetic units based upon the ohm, the ampere, and secondarily upon the volt, all as realized by certain concrete standards which have been internationally agreed upon, and upon the egs units for such other quantities as may be involved. The concrete standards have been so chosen as to make the international system nearly identical with the practical system; as now defined, the outstanding discrepancy in no case exceeds 52 parts in 100 000. In distinguishing between the two systems, the units of the practical system are described as absolute, those of the other, as international. The introduction of the volt as a secondary unit defined by a concrete standard (Weston normal cell = 1.018300 Int. volts at 20°C) introduces confusion when measurements of high precision are to be recorded. In these Tables, values based upon the Int. ohm and the Int. ampere (as defined by the silver voltameter) are denoted by (a). Those based on the Int. ohm and the Int. volt (as defined by the standard cell) are denoted by (v).

Irradiation.—The radiant power, per unit of area, incident upon a surface.

Joule.— $[ml^2/t^2]$. 1. Absolute joule = 10^7 ergs. 2. International joule = work expended per second by an Int. ampere in an Int. ohm.

Karat.—(K). Denotes the "fineness of gold" in terms of parts (by weight) of gold per 24 parts of the alloy. Twenty-four g of an n karat alloy contains n g of gold, the alloy is "n carats fine"

Kelvin.—(K). Name applied to the absolute centigrade scale of temperature.

Kilo-. -- Prefix denoting 1000.

Kilogram calorie.—See Calorie.

Kilogram-meter.—A torque equivalent to that of one kilogram weight acting on a lever-arm one meter long.

Kilowatt-hour.—Work expended by one kilowatt in one hour.

In Great Britain it is quite generally called Board of Trade unit (R.T.u.)

Kinematic viscosity.— $[l^2/t]$. Ratio of viscosity to density.

Lambert. $-|\psi/l^2\omega|$. The brightness of a surface which, radiating in accordance with Lambert's law, emits a total luminous flux of one lumen per cm². For such a surface, brightness is independent of direction of the line of sight and equals $1/\pi$ lumen, per steradian, per cm² = $1/\pi$ candles per cm². If the total emission is one lumen per sq. ft., the brightness is called one foot-lambert.

Lambert's law.— $I = I_o \cos \theta$; $I_o[I] =$ intensity of radiation emitted in direction normal [at angle θ with normal] to the surface. In many cases this law does not express the facts.

Latent heat .- (l. L). See Heat.

Latitude. -(lat.). 1. The angular distance of a point from the equator of a spheroid, measured along a great circle passing through the poles. 2. Celestial latitude. See Celestial sphere.

Legal ohm.—A unit of resistance; so designated by the International Conference of 1884, and defined as the resistance of a column of mercury 1 mm² in cross-section and 106 cm in length at the temperature of melting ice. It was never legalized.

Light-year. - Distance traveled by light in free space in one year.

Line.—Unit of flux of magnetic induction = one maxwell.

Liter-atmosphere.—The amount of external work done when a volume is increased by one liter against an external pressure of one atmosphere.

Longitude. (long.). 1. The longitude of a point is the angle which its axial plane makes with a fiducial one. For the earth, angles measured from the fiducial plane towards the west are usually considered positive. 2. Celestial or astronomical longitude. See Celestial sphere.

Loschmidt's number. $-(n_o)$. $[l^{-3}]$. Number of molecules per unit volume of an ideal gas at 0° C and pressure Λ_0 .

Lumen. [ψ]. Fundamental unit of luminous flux. A uniform point source of one candle emits 4π lumens.

Luminous flux .- See Flux, luminous.

Luminous intensity. -See Intensity, luminous.

Lunar month.—The time which clapses between successive new moons. Also called synodical month.

Lux .-- A unit of illumination, one lumen per square meter.

Magnetic flux.—See Flux, magnetic.

Magnetic induction .- See Induction.

Magnetic moment.—See Moment.

Magnetization, Intensity of.—Magnetic moment per unit of volume (cf. moment).

Magnetomotive force.—(mmf). See Potential.

Ignitude.—The magnitude, or apparent magnitude, (m) of a star is primarily an indication of the amount of light the earth receives from it. The value to be assigned to the latter depends upon the characteristics of the perceptive apparatus: visual, photovisual, photographic, and radiometric magnitudes are to be distinguished. Certain stars near the north pole have been chosen as standards; the numerical magnitudes assigned to them are such as represent satisfactorily the range covered by fearly naked-eye estimates, and satisfy the equation $m=2.5 \le (\log_{10}I_0 - \log_{10}I)$, $I = \text{intensity of light from a star of magnitude m, and <math>I_0 = \text{that from one of magnitude zero}$. For Vega, m=0.2; a star of m=6 is near the limit of naked-eye visibility. The absolute magnitude M is internationally defined as the apparent magnitude the star would have if its distance were 0.1 parsec; $M=m+5+5\log_{10}x$, x=parallax expressed in "."

mass, Engineers' unit of .-- See Slug.

Maxwell.—The egsm unit of flux of magnetic induction.

Mean distance.—In astronomical parlance, the mean distance of a planet from the sun denotes the mean of the greatest and the least distance from the sun to the path of the planet. Similarly in other cases.

Mean spherical candlepower. Average candlepower of a source, in all directions.

Mega-.-Prefix = 1 000 000.

Megmho. -Conductance of one reciprocal microhm.

Meter-candle.—The illumination of an element of surface one meter distant from a uniform source of one candle situated upon the normal to the center of the element.—One lux.

Meter-kilogram. -[ml²/t²]. Work required to raise one kilogram a vertical distance of one meter at a place where the acceleration of gravity is 980 665 cm/sec.²

Mho. -An electrical conductance of one reciprocal ohm.

Micro-.--Prefix denoting 1/106

Microhm.--10-6 ohm

Micromicro-.—Prefix denoting 1/1012

Micron.— (μ) . Unit of length = 1/10° m = 0.001 mm.

Mil. - 0.001 in. (cf. Circular inch).

 $\mathbf{Milli-.--Prefix} = 0.001.$

Millimicro-.—Prefix = $0.000 \ 000 \ 001$.

Minute.—1. (min). Time, ¹₁₄₁₀ of a day. 2. ('). Unit of angle, ¹₆₀ degree. 3. ('). Centesimal minute = unit of angle = 0.01 grade.

Modulus.—1. See Elastic modulus. 2. For the several clastic moduli—bulk, compression, elasticity, rigidity, torsion, Young's see distinguishing name.

Mohs.—An arbitrary scale of hardness based upon a selected list of 10 native numerals.

Mole.—A variable, derived unit of mass; its mass is numerically equal to the molecular weight of the substance measured. The expressions gram-mole, kilogram-mole, etc. are used to designate the basic unit of mass employed. Similarly derived units based upon the atomic weight, the formula weight, or the equivalent are called the gram-atom, gram-formula weight or gram-equivalent when the gram is the basic unit, and correspondingly in other cases.

Molecular.—For molecular properties, see appropriate properties.

Molecular volume.—Volume occupied by one mole. Molecular weight divided by density.

Molecular weight.—(M). The sum of the atomic weights of all the atoms contained in a molecule.

• Moment.—1. Of force (F) about a point = Fl, l = perpendicular distance from the point to the line of F. 2. Of a couple = product of either force times perpendicular distance between them. 3. Of a magnet = moment of couple acting upon it when it is at right angles to a magnetic field of unit intensity. 4. Of inertia about an axis = sum of the products

of each element of mass times the square of its distance from the axis.

Month.—1. Period of time determined by motion of moon. See lunar, synodical, tropical, sidereal, anomalistic, nodical, draconic. 2. Solar month = !12 of tropical year. 3. Calendar month = conventional subdivision of year.

Myria-.--Prefix = 10 000.

Node.—1. A point of a standing wave where the displacement is independent of the time. 2. In astronomy, the points where an orbital, or other, plane cuts the ecliptic; the rising node is the one at which the passage across the plane of the cellptic is from south to north

Nodical month. -Time required by the moon to pass from one rising node to the next. Also called draconic month.

Noon. - Sec Time.

Normal.—1. The normal to a surface is a line drawn perpendicular to the surface at the point considered. 2. Any line perpendicular to another may be said to be normal to it. 3. A concentration of one gram-equivalent per liter.

Normal atmosphere. (A_n) . See Atmosphere.

Numeric. -(N). A pure number A dimensionless quantity.

Nutation. Sec Celestial sphere.

Oersted. -The egsm unit of magnetic reluctance.

Ohm. (3). A unit of electrical resistance. 1. Absolute ohm = 10° egsm units. 2. International ohm is the resistance, at the temperature of melting ice, offered to an unvarying electric current by a column of mercury, of constant sectional area, having a mass of 14.4521 grams and a length, at the temperature mentioned of 106.300 cm.

Ohm-centimeter.—Unit of electrical volume resistivity. The resistivity of a material of which a uniform bar one cm² in sectional area has a longitudinal resistance of one ohm per cm of length. Frequently called one ohm per centimeter cube.

Ohm (cm, gram). -Unit of electrical mass resistivity. The resistivity of a material of which a bar, having such a uniform section that its mass per linear cm is one gram, has a longitudinal resistance of one ohm per cm of length.

Ohm (meter, mm). "Unit of electrical volume resistivity. The resistivity of a material of which a circular cylinder one mm in diameter has a longitudinal resistance of one ohm per meter.

Ohm (meter, mm²).—Unit of electrical volume resistivity. The resistivity of a material of which a circular cylinder one square mun in sectional area has a longitudinal resistance of one ohm per meter.

Ohm (mil, ft.). -Analogous to ohm (meter, mm). Cylinder one mil in diameter, resistance of one ohm per foot.

Ohm (mile, pound).—Analogous to ohm (cm, gram).

Ohm-inch.—Analogous to ohm-centimeter.

Parallax. -1. The annual parallax of a star is defined as the maximum angle subtended by one astronomical unit of length at the distance of the star from the sun. 2. The equatorial horizontal parallax of a member of the solar system is the maximum angle subtended by the equatorial radius of the earth at the distance of the earth from the member considered.

Parsec. -The distance of a star for which the annual parallax is one second of arc.

Pentane candle. -- A superseded unit of luminous intensity = one Int. candle.

Percent...(%). The number of units of the constituent in 100 units of the mixture containing it. If units of volume are used, the ratio is called volume percent; if units of mass, it is called mass percent, weight percent, or simply percent. (% must be distinguished from \$\text{\text{\$\grace}}_0\$ which is frequently used to denote per thousand)

Perigee.—That point of the moon's orbit which is nearest to the earth (cf. apogee).

Perihelion.—That point of a planet's, or comet's, orbit which is nearest to the sun (cf aphelion).

Permeability.— (μ) . The force (f) of repulsion between two rigidly magnetized poles (m, m') at a distance r apart is $f = (mm')/(\mu r^2)$; μ depends upon the material in which the poles are immersed, and is called its permeability.

Pferdekraft, -See Cheval-vapeur.

Phot.—An illumination of one lumen per cm2.

Photoelectric constant.—1. h/e. It is 1/ν of the rise in potential required to impart to a negative electron the energy it has when emitted under the action of radiation of frequency ν.
2. hc/e. This is λ times the rise in potential mentioned in (1).
λ = wave-length in vacuo.

Planck's constant of action.—(h). $[ml^2/t]$. A universal constant which fixes the amount of energy contained in the individual bundles, or quanta, of radiation emitted by a radiating body. Each such bundle contains an amount of energy $= h\nu$, $\nu = vibration$ frequency of the radiation. h is also called Planck's quantum.

Poise. - [m/ll]. The egs unit of viscosity. If the tangential force, per unit area, which one layer of a fluid exerts upon an adjacent one is one dyne when the space rate of variation of the tangential velocity from layer to layer is unity, the viscosity of the fluid is one poise.

Poisson's ratio.—If a bar of uniform section be subjected to a pure tensile stress, the ratio of its transverse contraction per unit of transverse thickness to its elongation per unit of length is called the Poisson's ratio of the material.

Pole strength, --- See Quantity of magnetism.

Poncelet.—Unit of power = 100 meter-kilograms per second.

Potential.—The excess of the potential at the point A over that at B, with reference to any quantity m, is the mechanical work per unit of m which must be done in carrying a very small positive amount of m from B to A. The difference in electrical potential is called electromotive force, emf, potential difference; in magnetic potential, is called magnetomotive force, mmf.

Potential gradient.—The space rate of increase in the potential.

If the direction in which the rate to be measured is not stated, that corresponding to the maximum gradient is to be understood.

Pound weight .- See Weight.

Poundal.—The unit of force in the fps system. It is the force which, if acting continuously upon a mass of one pound, will impart to it a uniform acceleration of one foot per second² (cf. Dyne).

Power.—1. The time rate of doing work. 2. If when the two junctions of a bimetallic circuit differ in temperature by a small amount (dt), there is an open circuit emf (dE) around the circuit, then (dE)/(dt) is called the thermoelectric power of the circuit, corresponding to the average temperature of the two junctions. 3. The ability to do some specific thing; as in rotatory power.

Practical electric units.—A system of electrical units based upon 10^9 cm, 10^{-11} gram, sec, and the permeability of a vacuum, as fundamental units. The units of most interest are the ohm (=10° cgsm), ampere (=0.1 cgsm), and volt (=10° cgsm). Frequently described as absolute (cf. Int. elec. units).

Precession of the equinoxes.—See Celestial sphere.

Pressure. -(p), (P), $[m/ll^2]$. Normal force per unit of area. A hydrostatic pressure is a pressure which is the same in all directions. For critical pressures, see Critical.

Quadrant.—1. Unit of angle = 90°. 2. Formerly used occasionally to denote the henry.

Quantity of electricity.—1. (es). The electrostatic unit is that quantity which when concentrated to a point and placed at unit distance from an equal point charge will exert upon it a unit force, the surrounding medium being a vacuum. 2. (em). The electromagnetic unit is that quantity which is transferred per unit of time across any section of an infinitely long, straight, linear conductor when the current is such that the intensity of the resulting magnetic field at unit distance from the conductor is unity. 3. For other units—coulomb, electronic charge, faraday—see corresponding names.

Quantity of magnetism.—Also called pole strength. 1. The electromagnetic unit is that quantity which when concentrated to a point pole and placed at a unit distance from an equal point pole will exert upon it a unit force, the surrounding medium being a vacuum. 2. The electrostatic unit is that quantity which when concentrated to a point pole and placed at a unit distance from an infinitely long, straight, linear conductor would experience a unit force as a result of a current in the conductor such that one electrostatic unit of electricity per second is transferred across each section of the conductor. 3. The Int. electric unit is not named, it is the same as the cgsm unit.

Quantum. --1. Certain processes are essentially discrete, and consequently parcel out into bundles the several quantities involved. If for a certain quantity and a particular process these bundles are all alike, it is now customary to call them quanta, without implying that the quantity so bundled has in itself any atomistic properties. 2. Planck's quantum. See Planck.

Radian.—An angle which encloses, of the circumference of a concentric circle, an arc = radius.

Radiance.—The radiance of a body, within the spectral range λ_1 to λ_2 , is defined as the intensity of the radiant energy, having wave-lengths lying between λ_1 and λ_2 , which the body emits in a direction perpendicular to its radiating surface. If the spectral range is not mentioned, all wave-lengths are to be included; this is frequently called the total radiance. The spectral, or monochromatic, intensity of the radiance of wavelength λ is defined as the ratio of the radiance within the range $(\lambda - \frac{1}{2}d\lambda)$ to $(\lambda + \frac{1}{2}d\lambda)$ to $d\lambda$, when the latter is indefinitely small (cf. Emissivity).

Radiation constants. - See Black body.

Rankine.—A name sometimes applied to the absolute Fahrenheit scale of temperature.

Réaumur. -(R). A thermometric system in which the freezing point of water is called 0°, and the boiling point, 80°.

Reflectivity.—The ratio of the intensity of the light specularly reflected from a surface to the intensity of the light incident upon it. It is a pure numeric.

Refraction.—1. The index of refraction, refractive index, or refractive exponent is $n = \sin i/\sin r$; i = angle of incidence from a vacuum upon the substance, and r = angle of refraction, each measured from the normal to the surface. 2. Refractivity is (n-1). 3. Specific refractivity (r_0) is (n-1)/d. Specific refraction (r_L) is $(n^2-1)/d(n^2+2)$. d = mass per unit of volume. 4. Molecular refractivity $= Mr_0$. Molecular refraction $= Mr_L$. M = molecular weight. By replacing M by the atomic weight, the corresponding atomic values are obtained. 5. Refractive constant of a solute is its specific refractivity computed on the assumption that the refractivity of the solution is equal to the sum of the refractivities of its pure constituents each multiplied by the ratio of its mass per unit volume of the solution to its own density when pure.

Reluctance.—The magnetic reluctance of a body between two specified equipotential surfaces is the ratio of the difference in the two potentials divided by the flux of magnetic induction from [to] either surface to [from] the body. It has no significance unless these two fluxes are the same.

Resistance.—1. The electrical resistance of a body between two specified equipotential surfaces is E/I, where E is the unchanging difference in the potentials of the surfaces and I is the result-

ing current across any transverse section between them. 2. Specific resistance. See Resistivity.

Resistivity.—1. [resistance × length]. Resistivity, or volume resistivity, of a substance is the longitudinal resistance per unit of length of a uniform bar of the substance of unit sectional area. 2. [resistance × mass/(length)]. Mass resistivity of a substance is the longitudinal resistance per unit of length of a uniform bar of the substance of such a sectional area that it contains one unit of mass per unit of length. 3. [resistance] Surface resistivity is the resistance per unit of length of a strip of the surface of unit width. It has reference solely to the current which is restricted to the surface.

Rhe. -Name proposed for egs unit of fluidity; = one reciprocal

Right ascension .- See Celestial sphere.

Rigidity.—If to the four faces of a cube which are parallel to a given edge there be applied tangential stresses which are equal in absolute value, perpendicular to the given edge, and so directed as to produce a pure distortion, the other two faces will be deformed into diamond shaped figures if the material is isotropic. The modulus of rigidity is defined as the quotient of the stress on any one of the faces divided by the resulting change in any one of the angles of a distorted face. Also called modulus of shear, Coulomb's modulus, modulus of torsion (the last is undesirable)

Rotation .- See Rotatory power.

Rotatory power, Optical. -1. The natural rotatory power is θ/l , where θ is the rotation of the plane of polarization which occurs in a path of length l. The specific rotatory power $([\alpha])$ is θ/dl , d = density. The molecular [or atomic] rotatory power is $M\theta/dl$ [or $A\theta/dl$]; M = molecular, A = atomic weight. 2. The magnetic rotatory power is $\theta/(lH\cos\alpha)$, where H = intensity of the magnetic field and $\alpha =$ angle between H and the path of the light. It is commonly called Verdet's constant. From the magnetic rotatory power, the specific ($(\omega]$), molecular, and atomic magnetic rotatory powers are derived exactly as in the case of natural rotation. The ratio of any one of these quantities to the corresponding one for a chosen reference substance is called the relative power. Water is the reference substance commonly chosen, and $[\Omega]$ is used to denote the molecular magnetic rotatory power relative to water.

Rydberg's fundamental frequency, and series constant.—See Series, spectral.

Secohm. - A superseded name for the henry.

Second.—1. (sec). Time, ¹86400 day. Mean solar day, unless contrary is indicated. 2. ("). Unit of angle, ¹3600 degree. 3. ('). Centesimal second = 0.0001 grade.

Seger cone.—One of a graded series of cones of refractory material which, by their softening and the resultant deformation, indicate the heat treatment to which they have been subjected.

Series, Spectral.—Spectral lines, or groups of lines, which occur in orderly sequence. Most of these sequences can be represented by an equation of the form $\frac{1}{\lambda} = A - \frac{BN}{(m+\alpha+\beta/m^2)^2}$; $\lambda = \text{wave-length}$ in vacuo; m is an integer varying from one line (or group) to another; for any one series, A, B, N, α and β are constants; B is an integer; N is known as Rydberg's constant, its value is determined by the constitution of the radiating atom. On Bohr's theory, $N = N_{\infty} \frac{M}{M+m_{\star}}$ where M = mass of the atom, $m_0 = \text{electronic mass}$, and $N_{\infty} = 2\pi^2 m_0 e^4/h^3 c_{\epsilon,2}$; N_{∞} is known as Rydberg's universal series constant; $\epsilon = \text{electronic charge}$; h = Planck's constant; $\epsilon = \text{dielectric constant}$ of vacuum; $\epsilon = \text{velocity of light in vacuo.}$ On this theory, B denotes the number of electrons displaced from their normal positions, m is the principal quantum number, α depends

upon the subordinate, or azimuthal, quantum number, and $\beta=0$. For atoms of the type of hydrogen, $\alpha=0$, $\beta=0$; for others $(m+\alpha+\beta/m^2)$ is frequently called the **effective** quantum number, generally it is not an integer. Rydberg's fundamental frequency is $\nu_{\omega}=c.V_{\infty}$.

Sidereal month.—The time required for the moon to complete one apparent circuit among the stars.

Siemens unit.—(S.E.). A superseded unit of electrical resistance proposed in 1860 by Werner von Siemens; defined as the resistance at 0°C of a column of mercury one meter long and of a uniform cross section = one min².

Slug.—A unit of mass. 1. The mass which will acquire an acceleration of one foot per sec² when continuously acted upon by a force of one pound weight. Also called geepound, and engineer's unit of mass. 2. The metric slug is the mass which will acquire an acceleration of one meter per sec² when continuously acted upon by a force of one kilogram weight.

Solar month.-1,2 tropical year,

Solubility. -1. By solubility of the non-gas a in b is meant the mass of a per unit mass of b which is contained in the mixture which is in equilibrium with an excess of a. In this mixture b is said to be saturated with a. Data are frequently restricted to mass of a per unit mass of mixture, mass of a per unit volume of mixture, or moles of a per mole of mixture. 2. Solubility of a gas is C_a/C_a , C_a = concentration of gas in the solution, C_b = concentration of gas in overlying gas phase. 3. Solubility product of an ionized substance (A_aB_m) in a stated solvent = $[A]^n \cdot [B]^n$, where [A] and [B] denote the concentrations of the two ions when the solution is saturated with the substance.

Specific gravity.— $(d_{t_1}^{l_2})$. The ratio of the mass of a certain volume of the substance at the temperature t_1 to that of the same volume of a reference substance (usually water) at temperature t_1 . Frequently, but incorrectly, called density.

Specific heat.—1. Heat capacity. See Capacity. 2. Specific heat of electricity.—See Thomson effect. 3. Einstein's specific heat constant $(\beta) = \text{ratio of Planck's constant (h) to Boltzmann's molecular gas constant <math>(k_n)$. 4. Ratio of specific heats = $\gamma = c_p/c$; c_p , c_r = specific heat at constant pressure and at constant volume, respectively.

Specific inductive capacity.—The ratio of the dielectric constant of the substance to that of a vacuum.

Specific refractive power.—Used indifferently to denote several of the refractive constants (cf. Refraction).

Sperm candle, English.—A superseded unit of luminous intensity

Spheradian. -See Steradian.

Spherical candlepower, Mean.—See Mean spherical candlepower. Square.—(sq.), (*). Used in conjunction with the name of a unit of length to form the name of a related unit of area; e.g., square foot (sq. ft.), (ft.*) is the name of a unit of area equivalent to the area of a square with edges one foot long.

Square degree.—The solid angle enclosed by a cone of vanishingly small vertex angle 2θ is $k\pi\theta^2$. If θ is expressed in radians and the unit of solid angle is so chosen that k=1, that unit is called a steradian. If θ is expressed in degrees, and k=1, the corresponding unit of solid angle is called a square degree. One square degree = $(\pi/180)^2$ steradians. This procedure defines a definite unit of solid angle although the solid angles enclosed in cones of finite vertex angles are not proportional to the squares of those angles.

Stefan's constant .- See Black body.

Steradian.—The solid angle which encloses on the surface of a concentric sphere an area = (radius)².

Stoichiometric.—Pertaining to the ratio of the masses of the several elements contained in a pure chemical compound.

Strain.—1. For pure distortion the strain is measured by the change in a significant angle. 2. The ratio of change in size to original size.

Stress. - The force per unit of area over which it acts.

Surface tension.— (γ) . $[m/t^2]$. Owing to molecular attraction, two fluids in contact adjust themselves so that the area of their interface is a minimum, consistent with other requirements. This adjustment may be pictured as arising from a tension residing in the surface itself; to this is given the name surface tension. Its value is defined as the normal, tensile force, per unit of length, across any line traced on the surface.

Susceptibility.—(*). In the electromagnetic systems of units, $4\pi x$ is the excess of the magnetic permeability of the substance over that of a vacuum

Synodical.—In astronomy, the synodical period of a body is the interval between its successive returns to the same position with reference to the plane which is perpendicular to the plane of the ecliptic and which continuously passes through the centers of the earth and the sun.

Synonical month --- See Lunar month

Temperature conductivity. -See Diffusivity.

Tension, Surface. See Surface tension.

Tenth-meter. -10⁻¹⁰ meter; one Ångstrom unit.

Thermal. -See Heat.

Thermoelectric power.—See Power.

Thomson effect.—In a region in which the temperature of a homogeneous metallic conductor varies from section to section, there exists a potential gradient which is proportional to the product of the temperature and its gradient. This is the Thomson (or Kelvin) thermoelectric effect. The constant of proportionality is called the coefficient of the effect. If the coefficient is positive, a positive electric current flowing from hot section to cooler section tends to make the temperature more uniform; it is as if the current carried heat from hot portion to

uniform; it is as if the current carried heat from hot portion to cooler portion, as if the electricity had a certain specific heat. This is what Thomson called the specific heat of electricity. It may be either positive or negative, depending upon the metal.

Time.—True noon, or local true noon, is the instant at which the

sun is bisected by the meridional plane of the observer. Mean noon, or local mean noon, is the instant at which a fictitious mean sun is bisected by the meridional plane. This mean sun is one endowed with such a uniform, apparent angular velocity in the equatorial plane that in one tropical year it will make exactly the same number of apparent revolutions around the earth as are made by the true sun. Time measured from the true noon is called true, or apparent, solar time; that from mean noon is called mean time. The excess of mean time over true time is called equation of time. The earth has been divided into a series of time zones, each 15° of longitude m width, so that intercourse may be facilitated by all places in each zone using the mean time corresponding to the center of the zone; this is known as standard time. The first zone is centered on Greenwich, England.

Titer.—See Concentration.

Torque. -The moment of a force.

Tropical month.—The yearly average of the time required for the moon to traverse 360° of astronomical longitude.

Twist.—If a uniform bar of free length l be clamped rigidly at one end and the other end be twisted, about the axis of the bar, through an angle θ , the twist of the bar is defined as θ/l . Similarly for other cases.

Units, Systems of.—The fundamental units in most absolute systems are those of mass, length, time, thermometric degree, and the dielectric constant (or the magnetic permeability) of a vacuum. Other units are defined in terms of these by the use of established relations, arbitrary factors being made unity.

The most common systems are the centimeter-gram-second-degree Centigrade (cgs), and the foot-pound-second-degree Fahrenheit (fps) systems. See also International electric units. practical electric units, and absolute.

Van der Waals. -See Waals.

Violle unit.—A superseded unit of luminous intensity based upon the brightness of fused platinum at the temperature of solidification

Viscosity.—If a fluid is flowing in the plane yz with velocity v it exerts upon an adjacent plane a tangential drag = $\eta(dv)/(dx)$, per unit of area. η is called the viscosity, coefficient of viscosity, or coefficient of internal friction. Unit: poise.

Viscosity, Kinematic. Viscosity divided by density.

Volt.—The electrical potential difference which, when steadily applied to a conductor having a resistance of one ohm, will produce in it a current of one ampere (cf. absolute and international units). The Int. Committee authorized by the London Conference, 1908, agreed to regard the emf of the Weston normal cell at 20°C as exactly 1.0183 Int. volts. This furnishes a subsidiary definition which is slightly discordant with the primary one. These tables distinguish between the two, and between units derived from them, by using (a) to denote those based on ampere and ohm, and (v) to denote those based on volt as defined by the Weston cell.

Volt-electronic charge. -- Analogous to volt-faraday.

Volt-faraday.—The work which must be done in order to transfer one faraday of positive electricity from any point to another having a potential one volt higher than the former.

Volt-second.—Unit of flux of magnetic induction. The amount defined by the change per second, of the magnetic induction through an area, required to induce around the area an emf of one volt.

Volume, Specific.—Reciprocal of the density.

Waals, Van der.—In the equation $(p + a/v^2)(v - b) = 1 + \alpha t$, a and b are known as Van der Waals' constants; a[b] = pressure [volume] constant.

Watt.—Unit of power; work done at rate of one joule per second.
Watt-hour.—Work expended by one watt in one hour (cf. kilowatt-hour).

Wave-length.—(λ). Distance between consecutive corresponding points in a monofrequent wave train. Occasionally applied to complex waves.

Wave number .- Reciprocal of wave-length.

Weight.—The force with which a body, left to itself, is urged towards the earth. In the absolute systems of units it is numerically equal to the mass of the body multiplied by the acceleration of gravity (g) at the position considered; hence varies with position. Such expressions as gram weight [pound weight] are to be interpreted as meaning the weight of a gram [a pound] at a place where g has the standard value, 980.665 cm/sec.²

Wien's displacement constant.—(w). See Black body.

Year.—(yr). Time required for earth to make one complete circuit of its orbit, as defined by its return to the same position as determined by the sun and some celestial point of reference. For the tropical, equinoctial, or ordinary year the reference point is the mean vernal equinox; for the sidereal, or true, year, it is a fixed star; for anomalistic year, it is perihelion of earth's orbit; for eclipse year, it is ascending node of moon's orbit.

Young's modulus.—If a bar of uniform section be subjected to a longitudinal tension, the ratio of this stress to the resulting elongation per unit of length is called its Young's modulus. Also called modulus of elasticity, elastic modulus, longitudinal elasticity, coefficient of resistance to extension, modulus of traction.

ELEMENTS AND ATOMS

3	,40%
tomic Numbers. Atomic Weights for Each Year Since 1882	43
otopes. F. W. Aston	45
riodic Table	16
Radioactive Elements. FREDERICK SODDY	46
Structure of the Isolated Atom. H. A. KRAMERS	47

ATOMIC WEIGHTS

The values given in column four were compiled for International Critical Tables (I. C. T.) by Prof. G. P. Baxter in 1923 and are those upon which all the data given in International Critical Tables are based.

Following these are shown the accepted atomic weights back to 1882. For the period since 1903 these are taken from the reports of the International Committee on Atomic Weights; for the period 1894 to 1903, from the reports of the American Chemical Society's Committee on Atomic Weights; for the year 1882, from F. W. Clarke's "A Recalculation of the Atomic Weights," reproduced in the first (1883) edition of "Landolt-Bornstein." These 1882 values (to two decimals) are given in parentheses. A date in parentheses indicates the first appearance of the element in the atomic weight table. All the values given are based upon O-16,000

Symbol	Atomic	Name	I. C. T. at. wt.	Atomic weights (1925~1882)
Λ.	18	Argon	39 91	'25, 39.91, '24-'19, 39.9; '18-'11, 39.88; '10-'03, 39.9; '02, 39.96 (1902)
Ae	89	Actinium	?	30, 02, 5005 (10.02)
Ag	47	Silver	107 880	'25, 107.880; '21-'09,
				107.88; '08-'03, 107.93; '02-'94, 107.92 (107.92)
Al	13	Aluminium	26 96	'25, 26.97; '24 '22, 27 0; '21-'00, 27.1; '99-'96,
			j	27.11; '95='94, 27 (27.08)
Ав	33	Arsenic	74 96	'25-'10, 71.96; '09-'00, 75.0; '99-'97, 75.01; '96,
				75.09; '95-'91, 75 0 (75.09)
Au	79	Gold	197 2	25-'00, 197.2; '99 '97,
				197.23; '96, 197.21;
В	5	Boron	10 00	'95 '94, 197 3 (196.61)
	a	Doron	10 82	'25, 10 82; '24-'19, 10 9; '18-'00, 11 0; '99 '96,
,				10.95; '95-'94, 11 (10.97)
Ba	56	Barium	137 37	'25-'09, 137 37; '08 '00,
				137.40; '99-'94, 137.43
73	١.	D 111		(137.01)
Be	4	Beryllium	9 02	25, 9.02; '24-'00, 9.1;
				'99-'96, 9.08; '95-'94, 9 (9.11)
Bi	83	Bismuth	209 00	25-'22, 209,0; '21-'07.
			200 00	208.0; '06-'03, 208.5;
			ı	'02-'00. 208.1: '99-'96.
	1			208.11; '95, 208; '94,
	1		1	208.9 (208.00)
Br	35	Bromine	79 916	'25, 79.916; '24-'09, 79.92;
				'08-'03, 79.96; '02-'94,
С			10.000	79.95 (79.95)
C	6	Carbon	12.000	'25, 12.000; '24-'16,
		1		12.005; '15-'98, 12.00; '97-'96, 12.01; '95-'94,
		1		12 (12.00)
	1	•	t	1 22 (22.00)

ympol	Atomic	Name	I. C. T. at. wt.	Atomic weights (1925–1882)
		Calcium	40 07	25 '12, 40.07; '11-'09, 40.09; '08 '00, 40.1; '99-'97, 40.07; '96, 40.08; '95 '94, 40 (40.08)
СР	41	Columbium	93-1	35 54, 40 (40.08) '25 '17, 93.1; '16 '09, 93.5; '08-'03, 94; '02-'00, 93.7; '99-'97, 93.73; '96 '94, 94.0 (94.03)
Ca	48	Cadmium	112 41	'25, 112.41; '24-'09, 112.40; '08-'00, 112.4; '99, 112.38; '98-'97, 111.95; '96, 111.93; '95-'94, 112 (112.09)
Ce	58	Cerium	140 25	25-'04, 140,25; '03, 140; '02-'00, 139; '99-'98, 139,35; '97-'94, 140,25
cı	17	Chlorine	35 458	(140.75) '25, 35.457; '24'09, 35.46; '08'94, 35.45 (35.45)
Co	27	Cobalt	58 97	'25, 58.94; '24-'09, 58.97 '08-'00, 59.0; '99-'98 58.99; '97, 58.93; '96 58.95; '95, 59.5; '94, 5 (59.02)
Cp Cr	71 24	Cassiopeium Chromium	175 0 52 01	Sec Lat '25, 52.01; '24-'10, 52.0 '09-'00, 52.1; '99-'90 52.14; '95-'94, 52.0 (52.13)
Cs	55	Cesium	132 81	'25-'09, 132.81; '08-'0 132.9; '03, 133.0; '02-'0 132.9; '00-'96, 132.8; '95-'94, 132.9 (132.9; Same as Hf
Ct Cu	72 29	Celtium Copper	63 57	Same as 111 '25 '09, 63.57; '08'9 63.6 (63.32)
Ds Dy	66	Dysprosium	162 52	'25, 162.52; '24-'08, 162 (1908)
Em Er	86 68	1	222 167 7	See Rn '25-'12, 167.7; '11-'0 167.4; '08-'00, 166. '99 '97, 166.32; '96-'9 160.3 (166.27)
Eu F	63	,	152 0 19 00	25-'07, 152.0 (1907) 25-'03, 19.0; '02-'0 19.05; '99-'97, 19.0 '96, 19.03; '95-'94,
Fe	26	Iron	55 84	25-'12, 55.84; '11-'0 55.85; '08-'01, 55.9; '0 56.0; '99-'96, 56.0 '95-'94, 56 (56.04)
Ga	31	Gallium	69 72	25, 69.72; '24-'19, 70. '18-'09, 69.9; '08-'0 '70.0; '99-'97, 69.9 '96-'94, 69.0 (68.96)
Gd	64	Gadolinium	157 26	'25, 157.26; '24-'09, 157. '08-'03, 156; '02, 156. '01-'00, 157.0; '99-'0 156.76; '96-'94, 156.1

Symbol	Atomic	Name	I. C. T.	Atomic weights	Symbol	Atomic	Name	I. C. T.	Atomic weights
S	A to		at. wt.	(1925–1882)	Syr	Ato		at. wt.	(1925–1882)
Ge	32	Germanium	72 38	'25, 72.60; '24 '00, 72.5; '99 '97, 72.48; '96-'94, 72.3	Nd	60	Neodymium	144.27	'25, 144.27; '24-'0 144.3; '08-'99, 143. '98-'97, 140.80; '96-'9
H	1	Glucinium Hydrogen	9 02 1 0077	1 ' ' '	Ne	10	Neon	20.2	140.5 '25-'09, 20.2; '10-'0
He	2	Helium	4 00	(1 00) '25-'16, 4 00; '15-'11, 3.99; '10-'03, 4.0; '02, 3.96 (1902)	Ni	28	Nickel	58.69	20.0 (1904) '25, 58.69; '24-'09, 58.6 '08-'00, 58.7; '99-'9 58.69; '95-'94, 58
Hf	72	Hafnium	178 6					1	(58.06)
Hg	80	Mercury	200-61	25, 200.61; '23-'12, 200.6; '11-'94, 200.0	Nt O	86 8	Niton Oxygen	222. 16 000	See Rn '25-'94, 16.000 (16.00)
Но	67	Holmium	163 4	(200 17) '25, 163.4; '23-'13, 163.5 (1913)	On	76	Osmium	190 8	25, 190.8; '23-'09, 190.9 '08-'00, 191.0; '99-'96 190.99; '95-'94, 190.
I (J)	53	Iodine	126 932	'25, 126.932; '24-'09, 126.92; '08-'05, 126.97; '04-'94, 126.85 (126.85)	P	15	Phosphorus	31 024	(198.95?) '25, 31.027; '24-'11 31.04; '10-'00, 31.0
In	49	Indium	114 8	'25-'09, 114.8; '08-'05, 115; '04-'00, 114; '09-'97, 113.85; '96-'94,	Pa	91	Protoactinium	?	'99-'94, 31.02; '95-'94 31 (31.03)
Ir	77	Iridium	193 1	113.7 (113.66) '25-'09, 193.1; '08-'03, 193.0; '02-'00, 193.1; '99-'96, 193.12; '95-'94,	Pb	82	Lend	207.20	'25-'16, 207.20; '15-'09 207.10; '08-'03, 206.9 '02-'96, 206.92; '95-'94 206.95 (206.95)
к	19	Potassium	39 095	193.1 (193.09) '25, 39.096; '24-'09, 39.10; '08-'03, 39.15; '02-'94, 39.11 (39.11)	Pd	46	Palladium	106.7	'25-'09, 106.7; '08-'03 106.5; '02-'00, 107.0 '99-'96, 106.36; '95 106.5; '94, 106.6 (105.98
Kr	36	Krypton	82 9	'25, 82.9; '24-'11, 82.92; '10, 83.0; '09-'03, 81.8;	Po Pr	84 59	Polonium Prascodymium	(210) 140 92	25, 140.92; '24'16
La	57	Lanthanum	138-91	'02, 81.76 (1902) '25, 138.90; '24-'09, 139.0; '08-'03, 138.9; '02-'00, 138.6; '99-'97, 138.64;	Pt	78	Platinum	195.23	140.9; '15-'09, 140.6 '08-'00, 140.5; '99-'97 143.60; '96-'94, 143.5 '25, 195.23; '24-'11
Li	3	Lithium	6 939	'96, 138.6; '95-'94, 138.2 (138.84) '25, 6.940; '24-'11, 6.94; '10-'09, 7.00; '08-'96,					195.2; '10-'09, 195.0 '08-'03, 194.8; '02-'00 194.9; '99-'96, 194.89
Lu	71	Lutecium	175 0	7.03; '95–'94, 7.02 (7.02) '25-'16, 175.0; '15-'09,	Ra	88	Radium	225.95	'95-'94, 195 (194.87) '25, 225.95; '24-'16, 226; '15-'09, 226.4; '08-'03,
Ma	43	Masurium	1	174.0 (1909)	Rb	37	Rubidium	85 44	225 (1903)
Mg	12	Magnesium	24 32	'25-'09, 24.32; '08-'03, 24.36; '02-'00, 24.3; '99-'97, 24.28; '96,				60 44	'25, 85.44; '24-'09, 85.45; '08-'05, 85.5; '04-'00, 85.4; '99-'96, 85.43; '95-'94, 85.5 (85.53)
1				24 29; '95-'94, 24.3 (24.01)	Re		Rhenium		
Mn	25	Manganese	54 93	'25-'09, 54.93; '08-'00, 55.0; '99-'96, 54.99; '95-'94, 55 (54.03)	Rh	45	Rhodium	102 91	'25, 102.91; '24-'09, 102.9; '08-'00, 103.0; '99-'96, 103.01; '95-'94, 103 (104.29)
Mo	42	Molybdenum	96-0	'25-'00, 96.0; '99-'97, 95.99; '96, 95.98; '95-'94,	Rn		Radon	222	'25, 222; '24-'12, 222.4 (1912)
N	7	Nitrogen	14 008	96 (95.75) '25'19, 14.008; '18'07, 14.01; '06'96, 14.04; '95, 14.05; '94, 14.03	Ru		Ruthenium Sulfur	32.065	'25-'00, 101.7; '99-'96, 101.68; '95-'94, 101.6 (104.46?) '25, 32.065; '24-'16, 32.06;
Na	11	Sodium	22 997	(14.03) '25, 22.997; '24-'09, 23.00; '08-'94, 23.05					'15-'09, 32.07; '08-'03, 32.06; '02-'96, 32.07;
Nb	41	Niobium	93.1	(23.05) See Cb	Sa	62	Samarium	150.43	'95-'94, 32.06 (32.06) '25, 150.43; '24-'09, 150.4; '08-'05, 150.3;

ymbc	Atomic	Name	I. C. T. at. wt.	Atomic weights (1925-1882)
Se	62	Samarium	150.43	'04-'03, 150; '02-'00, 150.3; '99-'97, 150.26;
Вь	51	Antimony	121.77	'96-'94, 150.0 '25, 121.77; '24-'03, 120.2; '02-'00, 120.4; '99-'96, 120.43; '95-'94, 120 (120.23)
Sc I	21	Scandium	45 10	'25-'21, 45.10; '20-'00, 44.1; '99-'97, 44.12; '96-'94, 44.0 (44.08)
Se	34	Selenium	79 2	'25-'00, 79.2; '99, 79.17; '98-'97, 79.02; '96-'94, 79.0 (78.98)
Si	14	Silicon	28 06	'25, 28.06; '24-'22, 28.1; '21-'09, 28.3; '08-'94, 28.4 (28.26)
Sm Sn	62 50	Samarium Tin	150 43 118 70	See Sa '25-'16, 118.70; '15-'00, 119.0; '99-'96, 119.05; '95-'94, 119 (117.97)
Sr	38	Strontium	87 62	'25 '11, 87.63; '10-'09, 87.62; '08-'00, 87.6; ''99-'06, 87.61; ''95, 87.66; '94, 87.6 (87.58)
Та	73	Tantalum	181.5	'25-'10, 181.5; '11-'07, 181.0; '06-03, 183; '02-'00, 182.8; '99-'97, 182.84; '96-'94, 182.6 (182.58)
Тъ	65	Terbium	159 2	'25-'07, 159.2; '06-'94, 160
Те	52	Tellurium	127 5	'25-'09, 127.5; '08-'03, 127.6; '02, 127.7; '01-'00, 127.5; '99-'97, 127.49; '96, 127; '95-'94, 125 (128.252)
Th	90	Thorium	232 15	'25-'19, 232.15; '18-'11, 232.4; '10-'09, 232.42; '08-'03, 232.5; '02-'00, 232.6; '99-'96, 232.63; '95-'94, 232.6 (233.95)
Ti	22	Titanium	47.9	'25-'03, 48.1; '02-'96, 48.15; '95-'94, 48 (49.96?)
TI	81	Thallium	204.4	'25, 204.39; '24-'09, 204.0; '08-'03, 204.1; '02-'96, 204.15; '95-'94, 204.18 (204.18)
m u	69	Thulium	169.4	'25, 169.4; '24-'22, 169.9; '21-'09, 168.5; '08-'03, 171; '02-'94, 170.7
Ŭ X.	92	Uranium	238.17	'25, 238.17; '24-'16, 238.2; '15-'03, 238.5; '02-'00, 239.6; '99-'96, 239.59; '95-'94, 239.6 (239.03)
7	91 23	Uranium-X ₂ Vanadium	50.96	Isotope of Pa '25, 50.96; '24-'12, 51.0; '11, 51.06; '10-'03, 51.2; '02-'00, 51.4; '99-'96, 51.38; '95-'94, 51.4 (51.37)

Symbol	Atomic number	Name	1. C. T. at. wt.	Atomic weights (1925–1882)
w	74	Tungsten	184 0	'25-'00, 184.0; '09-'97, 184.83; '96, 184.84; '95, 184.9; '94, 184 (184.03)
Xe	51	Xenon	130 2	'25-'11, 130.2; '10, 130.7; '09-'02, 128 (1902)
Y	39	Yttrium	89.0	'25, 88.9; '24-'19, 89.83; '18-'16, 88.7; '15-'00, 89.0; '99-'97, 89.02; '96, 88.95; '95-'94, 89.1 (90.02?)
Yb	70	Ytterbium	173 6	25, 173.6; '24-'16, 173.5; '15-'09, 172.0; '08-'03, 173; '02-'00, 173.2; '09-'97, 173.19; '96-'94, 173.0 (173.16)
Zn	30	Zine	65-38	'25, 65.38; '24-'10, 65.37; '00, 65.7; '08-'00, 65.4; '99-'90, 65.41; '95-'94, 65.3 (65.05)
Zr	40	Zirconium	91	'25, 91; '24-'09, 90.6; '01-'97, 90.4; '96-'94, 90.6 (89.57)

TABLE OF ISOTOPES

F. W. Aston

Element	Atomic number	I. C. T. atomic veight	Minimum number of isotopes	Mass numbers in order of the intensities of the mass-spectrum lines	Lit.
A	18	39.91	2	40, 36	(3, 5, 21)
Ag	47	107.880	2	107, 109	(15, 26)
Al	13	26.96	1	27	(10)
Ая	33	74.96	1	75	(4, 22)
В	5	10.82	2	11, 10	(4, 22)
Ba	56	137.37	1	138, 186	(17, 18)
Be	4	9 02	1	9	(33)
Bi	83	209.00	1	209	(19)
Br	35	79 916	2	79, 81	(4, 22)
\mathbf{C}	U	12.000	1	12	(2, 21)
Ca	20	40.07	2	40, 44	(31, 32)
Cd	48	112.41	6	110, 111, 112, 113, 114, 116	(19)
Се	58	140 25	2	140, 142	(18)
Cl	17	35 458	2	35, 37	(2, 21, 23)
Co	27	58 97	1	59	(15, 26)
Cr	24	52 01	1	52	(15, 26)
Cs	55	132 81	1	133	(6, 24)
Cu	29	63.57	2	63, 65	(14, 26)
F	9	19.00	1	19	(4, 22)
Fe	26	55.84	2	56, 54	(9, 17)
Ga	31	69.72	2	69, 71	(15, 26)
Ge	32	72 38	3	74, 72, 70	(13, 26)
Gl	4	9.02	1	9	(33)
Н	1	1.0077	1	1	(3, 21)
He	2	4.00	1	4	(3, 21)
Hg	80	200.61	2,6	197-200, 202, 204	(2, 3, 21)
ľ	53	126.932	í	127	(5, 23)
In	49	114.8	1	115	(16)
K	19	39.095	2	39, 41	(6, 24)
Kr	36	82.9	6	84, 86, 82, 83, 80, 78	(3, 21)
La	1	138.91	1	139	(17)

PERIODIC CHART OF THE ELEMENTS WITH ATOMIC NUMBERS AND ATOMIC WEIGHTS

								_								7						
		1				1		1				1		1	VIII	1		57	1 58		59	
	I	1	ΙΙ	I	H	1	V		V	1 '	V.I	1	VII	1	or	*		La		Ce		1
												_		_	0			138.91	140.	25	140.9	92
		1												2		60		G I		62		(
_	H	1				1				İ		1		i	He	ŀ	Nd		Sa		Eu	
1.	0077					l		1							4 00	144.	27		150.	43	152.0	0
		1 4				5 6		7		8		9		10			64	6.5	6.6		67	
Li		1	Be]]	В	(С		N		0			1		Gd		ТЪ	}	D٧		Е
	939		02	10	82	12	00	11	008	16			00	2	0.2	157.	26	159.2	162	52	163.	
	1	1 2			1:	14		15		16		17		18		68		69		70		71
		l N		1	11	5	Si		F		S	1	Cl		A	1	Er	Tu	Yb		Lu	-
22	997	2	1.32	26	96	28	.06	31	024	32	065	35	. 458	3	9.91	167.	7	169 4	173.0	6	175.0)
			20		2 1		2 2		2.5		24	_	2.5					127		28		_
K.		Ca		Sc		Ti		v		Cr		Mn		l			F		Co	1		
39	095	40	0.07	45	10	47	9	50					1 93	ļ		55.8			97		58.69	1
20		30		31		3 2		33		.3 \$		3 5	-	36			<u> </u>	1 00			in.00	
	Cu		Zn	l	Ga		Ge	1	As		Se		Br		Kr							
63	57	65	38	69	72	72	38	74	96	79	2	79	916	1	2.9							
	3 7		38		39	$-\frac{72}{}$	40	-	41		12		4 3		44			45		46		
						Zr								İ			Rı	1	Rh			F
85	11	87	62													101 7		102 9	1 1		106.7	-
47		1 H	-	49		50		51		5 2		53		54				102 .	/1		100.7	
	Ag		Cd		In		Sn		Sb		Τe		I		Xe							
107		112	41	111		118							932	130								
	5.5		5.6	* .			72		7.3		74		7.5		176			77		78		
8		Ba		L		Hf		Ta		w		Re			1		Os	1	Ir			F
132	81	137	37			(178										190.8		193.1			195.23	_
79		80		81		82		83		H-4		85		86				1.0.1			150.20	
	Au		Hg		TI		Pb		Bi		Po		ł		Rn							
197	2	200		201	4	207.				(21	1			222			* Indic	ates rare earth	s See abo	ove		
	87		88		89	************			91													
		Ra		Ac		Th		Pa		U												
			95				15			238	- 1											

a - ray -	a - ray ←			THE RADIOACTIVE ELEMENTS FREDERICK SODDY					→ β-ray (or rayless)			
Group	111	10	v	VI	VII	VIII or 0	Ţ	II	111	IV	v	VI
Principal element	Tì	Pb	Bi	Po		Rn		Ra	Ac	Th	Pa	U
Atomic number	81	82	83	84	85	86	87	88	89	90	91	92
Series	Ra-C'	Ru-B	Ra-C	Ra-A -	•	— Kn≖Ra-Em ← (or Badon)		—Ra →		UX ₁	*UX2	— U ₁ ⇒ U ₂
U-Ra S		Ra-O	→ Ha-E	Ra-C				Ms-Th 1	Ma-Th 2	—Th		
Th Senes	Th-C	Th-B	≥ Tb-C	– Th-A –		Th-Em Theren		- Th-X →		(Ra-Th	→ Pa	- U10r U2
Ac Series	Ac-C	Ac-Ω΄ Ac-Ω΄ Ac-Ω΄	Ac-C	Ac-A		Ac-Em		— ∆ c•X ≪	Ac 4	lia-Ac		

TABLE OF ISOTOPES .- Continued

_						
T. Mement	Atomic number			Mass numbers in order of the intensities of the mass-spectrum lines	Lit	
Li	3	6.939	2	7, 6	(24, 27, 29,	
ĺ					30)	
dg	12	24 32	3	24, 25, 26	(28, 30)	
£ n	25	54.93	1	55	(15, 26)	
N Na Nd Ne	7	14 008	1	14	(3, 21)	
Na	11	22 997	1	23	(6, 24)	
Nd	60	144 27	3	142, 144, 146, 145	(17, 18)	
Ne	10	20 2	$\frac{2}{2}$	20, 22	(1, 20, 21)	
Ni O	28	58 69		58, 60	(7)	
О	-8	16 000	1	16	(2, 21)	
P	15	31 024	1	31	(4, 22)	
₽r	59	140 92	1	141	(17)	
Rb	37	85 44	2	85, 87	(6, 24)	
8	16	32 065	1	32	(4, 22)	
₿b	51	121 77	2	121, 123	(11, 25)	
Be	21	45 10	1	45	(15, 26)	
Be	34	79 2	-6	80, 78, 76, 82, 77, 74	(10)	
Bi	11	28 06	3	28, 29, 30	(4, 18, 22)	
Bn	50	118 70	7,8	120, 118, 116, 124, 119,	(8)	
ř	1			117, 122, 121		
Br Ce Ci V	38	87.62	2	88, 86	(15, 17, 26)	
Ce	52	127 5	3	128, 130, 126	(19)	
Ti	22	47 9	1	48	(15, 26)	
V	23	50-96	1	51	(15, 26)	
Če	54	130 2	7,9	129, 132, 131, 134, 136,	(3, 5, 10, 21,	
:	١			128, 130, 126, 124	23)	
lt	39'	89 0	1	89	(15, 26)	
'n	30	65.38	-4	64, 66, 68, 70	(31)	
/r	40	91	3	90, 94, 92	(18)	

LITERATURE

(For a key to the periodicals see end of volume)

THE STRUCTURE OF THE ISOLATED ATOM

(Symbols, p. 50)

H. A. KRAMERS

According to the fundamental postulates of Bohr's atomic sory, a series of discrete "stationary states" has to be correlated the each atom. A definite "energy-content" can be assigned to very state, and an atom in a given state can change its energy only performing a process of "transition" to another state. The nission of a spectral line of frequency ν is correlated with a contaneous transition from a stationary state of energy content to another of energy content E_2 by equation (1)

$$\nu = \frac{1}{h} (E_1 - E_2) \tag{1}$$

The stationary state with the smallest energy is termed the "normal state" of the atom. The properties of the stationary states can, to a considerable extent, be accounted for by assuming that the electrons surrounding the nucleus have definite motions, characterized by integral values of certain quantities. These integers are called the "quantum numbers" of the stationary state in question; by their values the energy of the state is completely fixed. For general treatment of the subject, see (1, 3, 4, 10, 11, 18)

Of special interest are the recent attempts (21) to develop a rational "quantum mechanics" of the atom. This work clearly demonstrates the limited applicability of a picture of atomic structure, in which the behavior of the electrons inside the atom is visualized by orbits noisessing definite kinematical properties.

Atoms Containing One Electron.—Only for atoms containing a single electron, can a fairly complete description of the electronic motion in the stationary state, and of the significance of the quantum numbers be given. The motion of the electron obeys quite approximately the laws of electrodynamics, and can be described as a Keplerian elliptic motion, with the centre of gravity of the nucleus and the electron in one focus. On this motion, a slow uniform precession in the plane of motion is superposed (effect of variability of mass or "relativity-effect"). Two quantum numbers (n, k) define the stationary states $(n, k = 1, 2, 3, 3, k \le n)$, k/n being the ratio of the minor to the major axis of the ellipse. The states are denoted by the symbol n_k .

In the normal state, $1_1(n=k-1)$, the orbit is circular; and, omitting the correction due to the relativity effect, its constants are given by equations (2)

given by equations (2)
$$a_{1} = \frac{1}{2} \cdot \frac{h^{2}}{4\pi^{2}e^{2}m_{0}} = \frac{r_{1}}{Z} - \frac{0.53}{Z} \times 10^{-8} \text{ cm}$$

$$\omega_{1} = \frac{Z^{2}}{1 + \frac{m_{0}}{M}} \times \frac{4\pi^{2}e^{4}m_{0}}{h^{3}} = \frac{2\nu_{e}Z^{2}}{1 + \frac{m_{0}}{M}} = \frac{0.6Z^{2}}{1 + \frac{m_{0}}{M}} \times \frac{10^{18} \text{ sec}^{-1}}{1 + \frac{m_{0}}{M}}$$

$$W_{1} = \frac{Z^{2}}{1 + \frac{m_{0}}{M}} \times \frac{2\pi^{2}e^{4}m_{0}}{h^{2}} = \frac{Z^{2}\nu_{e}h}{1 + \frac{m_{0}}{M}} = \frac{2.15Z^{2}}{1 + \frac{m_{0}}{M}} \times 10^{-11} \text{ erg.}$$
(2)

In higher quantum states, the orbital constants are, with the same approximation, given by (3, 4):

$$a_{n} \sim n^{2}a_{1} = \frac{n^{2}}{Z}r_{1}$$

$$\omega_{n} = \frac{\omega_{1}}{n^{3}} = \frac{2Z^{2}\nu_{n}}{n^{3}\left(1 + \frac{\mathbf{m}_{0}}{M}\right)}$$

$$W_{n} = \frac{W_{1}}{n^{2}} = \frac{Z^{2}\nu_{n}\mathbf{h}}{n^{2}\left(1 + \frac{\mathbf{m}_{0}}{M}\right)}$$

$$b_{n,k} = nka_{1} = \frac{nkr_{1}}{Z}; \ p_{k} = k^{2}a_{1} = \frac{k^{2}r_{1}}{Z}$$
(4)

The number of revolutions corresponding to one rotation of the major axis, is, to a first approximation, given by (5):

$$\frac{\omega_n}{\sigma_{n,k}} = \frac{k^2}{Z^2} \times \frac{2}{\alpha^2} = \frac{k^2}{Z^2} \times 37,700$$

$$\left(\alpha = \frac{2\pi e^2}{hc} = 7.30 \times 10^{-3} \cong \frac{1}{137}; \alpha^2 = 5.31 \times 10^{-6}\right)$$
(5)

The exact energy formula, neglecting terms containing \mathbf{m}_a/M , is given by (6):

en by (6):

$$W_{n,k} = \mathbf{m}_0 \mathbf{c}^2 \left[\left\{ 1 + \left(\frac{\alpha Z}{n - k + \sqrt{k^2 - \alpha^2 Z^2}} \right)^2 \right\}^{-3/4} - 1 \right]$$

$$= \frac{Z^2}{n^2} \times \frac{2\pi^2 \mathbf{e}^4 \mathbf{m}_0}{\mathbf{h}^2} \left\{ 1 + \alpha^2 Z^2 \left(\frac{1}{kn} - \frac{3}{4n^2} \right) + \dots \right\}$$

(For general formula for W, including terms in \mathbf{m}_n/M , see (9).) Figure 1 illustrates the stationary states in the hydrogen atom for which n=1, 2, 3, 4. The arrows indicate the transitions giving

rise to the fine-structure components of the spectral lines, H_{α} and H_{β} . The numerical constants for these states are given in Table 1.

Table 1.—Hydrogen Orbits; $r_1 = 5.286 \times 10^{-9}$ cm (11)

n_k	a/r_1	b/r_1	p/r_1	$\omega \times 10^{-11}$	$\sigma \times 10^{-8}$	ω/σ
11	1	1	1	65 78	1746	37 700
21	4	2	1	8 222	218 3	37 700
22	4	4	-4	8 222	51 57	150 700
31	9	3	1	2 436	64-68	37 700
32	9	6	4	2 436	16 17	150 700
38	9	9	9	2 436	7.187	339 300
41	16	4	1	1 029	27 29	37 700
42	16	8	1	1 029	6 822	150 800
43	16	12	9	1 029	3 032	339 300
41	16	16	16	1.029	1.705	603 200

Fig. 1 — Orbits in hydrogen to n = 4. (Reproduced by permission from The Journal of the Franklin Institute.)

Atoms Containing More than One Electron.—A complete theory of stationary states is lacking. Many properties of these states can be accounted for, however, on the basis of the principles applied to atoms containing one electron. As a first approximation, each electron may be considered as moving in a central field of force due to the nucleus and the other electrons, its motion being characterized by a "principal quantum number" n and a "subordinate quantum number" k. The electronic orbit can be described as a plane periodic orbit on which a uniform precession in the plane is superposed ("central orbit" cf. Fig. 2).

If the position of the electron in the orbital plane is defined by polar coordinate (r, φ) , the quantum numbers are defined by Sommerfeld's quantum conditions (7)

$$k = \frac{2\pi \mathbf{m}_0 \beta r^2}{\mathbf{h}} \frac{d\phi}{dt} \approx \frac{2\pi l^2}{\mathbf{h}} \qquad (n-k) = \frac{1}{\mathbf{h}} \mathbf{f} \mathbf{m}_0 \beta \left(\frac{dr}{dt}\right)^2 dt \quad (7)$$

where the factor β becomes equal to 1 if the relativity effect is neglected. P is equal to the angular momentum of the electron with respect to the nucleus; the integral has to be taken over a complete period of the radial motion, from A to B (Fig. 2).

In the normal state the electrons are distributed in groups, each of which is characterized by its quantum numbers (n, k). On passing from the nucleus to the surface of the atom, the successive groups correspond to successive integral values of the main quantum number n ("n-quantum group"), the innermost group being characterized by n=1; each group is divided into subgroups corresponding to the different values which k may take. The possibility of reconciling such a picture with the dynamical properties of quantized central orbits is closely connected with the fact that in an orbit for which k < n the electron will, in each revolution, dive into and leave again all regions occupied by

electronic orbits for which the principal quantum number is smaller than n but equal to or greater than k (conception of "penetrating orbits").

The maximum number of electrons which an n-quantum group can contain is equal to $2n^2$. If it contains this number, it contains sub-groups corresponding to all possible values for k (k = 1, $2 \dots n$), and it is said to be a "finally completed" group. If a group, due to the dynamical properties of the atom under consideration, contains only sub-groups corresponding to k = 1.

Fig. 2.-Central orbit.

 $2 \dots k_0$ $(k_0 < n)$ it will be in a state which is termed "provisionally completed," if it contains $2k_0^2$ electrons. For example, the 4-quantum group has reached the state of a 2-group $(k_0 = 1)$ in (a (20), the state of an 8-group or 8-shell $(k_0 = 2)$ in Kr (36), the state of an 18-group or 18-shell ($k_0 = 3$) in Ag (47), and its final state of a completed 32-group or 32-shell ($k_0 = 4$) in Lu (71). With the exception of the 2-groups it seems impossible to assign definite values to the number of electrons in the several sub-groups of a provisionally, or finally, completed group; in fact. the actual properties of the electronic groups seem to show that the simple conception of central orbits characterized by the symbol ne is essentially insufficient for their description. (Originally Bohr assumed that a group of $2k_0^2$ electrons contained $2k_0$ electrons in each sub-group.) Closely connected herewith is the impossibility of assigning definite spatial arrangements to the orbits belonging to one and the same group. In Table 2 the number of electrons in each group is given as far as the theory allows of a definite statement; those in parentheses are uncertain.

From calculations based on Sommerfeld's quantum conditions and certain simplifying assumptions, a rough estimate of the dimensions of the different types of orbits may be made. Such estimates for neutral atoms and for positive ions containing only finally, or provisionally, completed groups are schematically represented in Fig. 3. The small vertical lines are so drawn that their distances from the dot at the left are proportional to the radius of the sphere inside which the electrons belonging to the respective groups are moving. The symbols $g(n_{1}, 2, \dots, k_{\ell})$ means that the corresponding groups contain g electronic orbits of principal quantum number n, and of subordinate quantum numbers from 1 to k_0 .

For the calculation of the dimensions of the outermost groups it has been necessary to consider also experimental data relative to the effective gas-kinetic radii of the atoms of the inert gases, the effective radii of ions in crystals, ionic refraction, etc. As a rule the effective radii are 1.5 to 2.5 times larger than the orbital dimensions. As regards the inner groups, the estimate is rather accurate; for the outer groups, errors of the order of 10% might be expected. Special mention must be made of the uncertainty in the radius of the 5-quantum group for elements heavier than barium; the radii of this group as given in Fig. 3 for the elements (72), 79, 80, 81, 82 are perhaps some 10% too high, as compared with radii of the homologous elements 47, 48, 49, 50.

For atoms containing only one electron in the outermost group, the dimensions of the orbit of this electron, and its frequency of revolution can with considerable accuracy be derived from the

TABLE 2

							
	11	21 22	81 32 38	41 42 40 44	51 52 58 54 55	61 62 68 64 68 68	71 72
1 H 3 He	1 2						1
3 Li 4 Be 5 B 6 C	2 2 2	1 2 2 1 2 (2)					
10 Ne	2	8					_
11 Na 12 Mg 13 Al 14 Si	2 2 2 2	8 8 8 8	1 2 2 1 2 (2)				
18 A	2	R	8				
19 K 20 Ca 21 Se 22 Ti	2 2 2	8 8 8 8	8 8 8 1 8 2	1 2 (2) (2)			
29 Cu 30 Zn 31 Ga	2 2 2	8 8 8	18 18 18	1 2 2 1 ———			
36 Kr	2	8	18	8	- !		
37 Rb 38 Sr 39 Y 40 Zr	2 2 2 2 2	8 8 8 8	18 18 18 18	8 8 8 1 8 2	1 2 (2) (2)		
47 Ag 48 Cd 49 In	2 2 2	8 8 8 	18 18 18 	18 18 18	1 2 2 1		
54 X	8	8	18	18	8		
55 Ca 56 Ba 57 La 58 Ce 59 Pr	2 2 2 2 2 2	8 8 8 8	18 18 18 18 18	18 18 18 18 18 1 18 2	8 8 8 1 8 1 8 1	1 2 (2) (2) (2)	
71 Lu 72 Hf	2 2	8 8	18 18	82 32	8 1 8 2	(2) (2)	
79 Au 80 Hg 81 Tl	2 2 2	8 8 8	18 18 18	32 32 32 32	18 18 18 	1 2 2 1	
86 Rn	3	8	18	32	18	8	44 19
87 — 88 Ra 89 Ao 90 Th	2 2 2 2 -	8 8 8	18 18 18 18	32 32 32 32 32	18 18 18 18 18	8 8 1	1 2 (2) (2)
118	3	8	rs	82	32	18	8]
-							

frequency of the lowest frequency term in the corresponding spectral series, provided we may adhere to the simple central orbit model. Figure 4 contains a schematic picture of the orbits of the outer electron in the normal state of neutral atoms of the alkali metals, and of Cu, Ag, Au. They are all penetrating orbits, since they correspond to k=1. The regions inside which the electrons of the completed groups are moving are designated by circles. The atoms of the inert gases are added for the sake of comparison. The numbers at the left of the nucleus indicate the number of electrons contained in each group; the symbols $n_{1;1} = 1$ at the right indicate the quantum numbers of the orbits contained in each group.

[For detailed calculations of electronic orbits, based on simplifying assumptions, see (12, 13, 20) (Cs and U); the work is semi-empirical. For detailed calculations on purely theoretical basis, see (15) (Ne, Na, Mg*, Al**, Si***, P****) and (16) (alkali metals); in Lindsay's work, the radii of outer groups in K**, Rb**, and Cs* seem too large, probably on account of inadequacy of assumptions regarding numbers of electrons in sub-groups, as well as of the simplifying assumptions made. For critical review of work on effective atomic radii, see (14) and for recent work (8). There is no simple direct connection between effective atomic radii and the magnitude of the space occupied by electronic orbits.]

In experiments on optical and X-ray spectra, we meet neutral atoms or atomic ions in higher quantum states. Several features of these states can be described on the simple central orbit model. In the case of "single excitation" all electronic orbits except one remain normal, and the other electron describes an orbit with quantum numbers which differ from those of the normal state. "Double excitation" corresponds to two electrons describing orbits different from those in the normal state, etc. We will here consider only singly-excited states.

In the stationary states (energy levels) involved in the emission of the ordinary X-ray spectra, one electron in the inner groups of the atom is lacking. In the states involved in the emission of the ordinary series-spectra, one electron belonging to the outermost group of the atom, the "series electron," moves in a central n₂ orbit the dimensions of which are large as compared with those of the rest of the atom. It may move either quite outside the atomic residue or it may penetrate into it in each revolution.

As a first approximation, a non-penetrating orbit may be described as a Keplerian elliptical orbit performing a uniform precession in its plane, the shape of the ellipse being very nearly that of an n_k -orbit in an atom containing only one electron and having a nuclear charge $Z^*\mathbf{e}$ equal to the net-charge of the atomic residue. If the electron orbit is of the penetrating type, it may, as a first approximation, be described as a set of congruent outer Keplerian elliptical loops, connected by congruent inner loops, the angular distance between successive loops being the same. The semi-major axis, the semi-parameter p_k and the semi-minor axis b of the outer loop can be found from the value of the corresponding spectral term (T) by means of the formulae

$$a = \frac{Z^*Nr_1}{T}$$
 $p = \frac{k^2}{Z^*}r_1$ $b = \sqrt{ap}$ (8)

where $N = \frac{v_{\infty}}{c} \times \frac{1}{1 + m_0/M}$ is the Rydberg constant for the element in question, and Z^*e is the net-charge of the atomic residue. If we introduce the effective quantum number n^* $(n^{*2} = Z^{*2}N/T)$, these formulae may be written:

$$a = \frac{n^{*2}}{Z_{*}}r_{1}$$
 $p = \frac{k^{2}}{Z_{*}}r_{1}$ $b = \frac{n^{*}k}{Z_{*}}r_{1}$ (9)

The greater the ratio n^*/k (or a/b) the closer the approximation to which this description of the outer loops may be considered to hold. The maximum distance of the electron from the nucleus is equal to $a + \sqrt{a^2 - b^2}$, or very nearly equal to $2a - \frac{1}{2}p$.

Fig. 3 Maximum elongations of electrons of several groups.

The values to be assigned to the precessional frequency characterizing the penetrating central orbits are very uncertain. For the alkali elements, the ratio ω/σ for the n_1 orbits probably has between 0.3 and 0.5, for the n_2 orbits (except lithium) between 0.5 and 1.0. Based on the above formulae, an illustration of the shapes of the orbits of the series electron corresponding to the stationary states of the K-atom, is given in Fig. 5. [For connection between spectra and the group structure of atoms, see (5.5); for spectra and central field of force, see (12.13); for series spectra and electronic orbits, see (2.71); for recent development of formal theory of electronic groups, see (17.19)].

SYMBOLS

The symbols c_i , e_i , h, m_{θ_i} , λ have their usual significance (see p. 16); others which occur more than once are:

- a_n Semi-major axis of electronic orbit, state n.
- $b_{n,k}$ Semi-minor axis of electronic orbit, state n, k.
- k Subordinate, or azimuthal, quantum number defining a stationary state.
- M Nuclear mass
- Principal quantum number defining a stationary state.

Fig. 5. - Orbits of the series electron of potassium. (Reproduced by permission from The Journal of the Franktin Institute.)

Fig. 4.—Normal orbit of outer electron.

- Effective quantum number $= Z^*N/T$. Designation of the state characterized by the numbers n, k. Rydberg constant. N-Semi-parameter of the electronic orbit (semi-latus rectum). Radius of first Bohr ring for hydrogen. Spectral term = a wave number $(1/\lambda)$ of a spectral series. Speed of electron in its orbit Energy expenditure required to remove the electron to w infinity Atomic number: Ze = nuclear charge. Charge of atomic residue 2re2/hc. $(1-r^2/c^2)^{-12}$ Frequency of emitted radiation. Rydberg fundamental frequency. Frequency of precession of electronic orbit.
- Frequency of revolution of electron; for penetrating orbits. the radial frequency, one revolution being from A to R Fig 2

TITERATURE

(For a key to the periodicals, see end of volume)

- (1) Andrade, The Structure of the Atom, 1923. (2) Birge and Blackett, Andrage, the Structure of the Atom, 1953. (4) Inige and Discount, 48, 8: 213; 24 (4) Bohr, The Theory of Spectra and Atomic Constitution, 2nd ed., 1924 (4) Bohr, 58, 112: 29; 23, 218, 11: 606; 23. (5) Bohr, 8, 71: 228, 23 (6) Bohr and Coster, 96, 12: 342; 23. (62) Born, Vor-6, 12, 25, 25 (17 Ioni and Coster, 87 Ioni and Heisenberg, 96, 22: 388; 24. (*) Davey, 2, 22: 211; 23. (*) Davein, 5, 39: 537; 23.
- (10) Foote and Mohler, Origin of Spectra, 1923. (11) Foote, 143, 198: 344, Foots and Monter, Origin of Spectra, 1933.
 161; 24. (12) Fuesa, 96, 11: 384; 22. 12: 1; 22. 21: 265; 24. 8, 76: 299; 25. (13) Hartree, 201, 21: 630; 23. 22: 409, 464; 24. δ, 106: 552; 24. (14) Herzfeld, 200, 19: 250; 23. (15) Kramers and Urey, O. (16) Lindsay, B, 23: 552, 24. 285, 3: 191; 24. 2, 25: 239; 25. (17) Pauli, Jr., 96, 31: 765; 25. (18) Sommerfeld, Atombau und Spektrallinien, 4th ed., 1925. (19) Stoner, 3, 48: 719, 24
 (20) Urey, O. (21) Heisenberg, 90, 33: 879, 25.

THERMOMETRY

E. F. MUELLER, L. H. ADAMS, F. O. FAIRCHILD AND H. T. WENSEL

	3.	AGE
Thermometric Scales)	52
The Standard Thermodynamic Scale		52
Fixed Points	E. F. MUELLER	53
Resistance Thermometers		54
Liquid-in-glass Thermometers	}	54
		57
Ontical Pyrometry C. O. FAIRCHILD		59
H. T. WENSEL.		
	Thermometric Scales. The Standard Thermodynamic Scale Fixed Points Resistance Thermometers Liquid-in-glass Thermometers Thermo-couples. L. H. Adams Optical Pyrometry C. O. FAIRCHLD H. T. WENSEL.	Thermometric Scales. The Standard Thermodynamic Scale Fixed Points Resistance Thermometers Liquid-in-glass Thermometers

1. THERMOMETRIC SCALES

E. F. MUELLER

Centigrade or Celsius scale, °C

Fahrenheit scale, °F

Réamur scale, "R

Contigrade absolute or Kelvin scale, °K

Fahrenheit absolute or Rankine scale, "R'

By definition or as basic values adopted for I. C. T., the ice and steam points under a pressure of $1A_n$ have the following values:

Ice point: 0° C = 32° F = 0° R = 273.1° K = 491.58° R'. Steam point: 100°C = 212°F = 80°R = 373.1°K = 703.58°R'. $^{\circ}$ C = 5 9 ($^{\circ}$ F - 32) $\sim ^{5}$ 4 $^{\circ}$ R = $^{\circ}$ K - 273.1. ${}^{\circ}\mathbf{F} = {}^{9}\mathbf{5}{}^{\circ}\mathbf{C} + 32 = {}^{\circ}\mathbf{R}' - 459.58.$

2. THE STANDARD THERMODYNAMIC SCALE

E. F. MUELLER

The thermodynamic scale, which is based solely on the laws of thermodynamics and is independent of the properties of any material substance, is accepted as the standard scale of temperature. Temperatures on the thermodynamic scale are proportional to the pressures (or to the volumes) of an ideal gas in a perfect constant volume (or constant pressure) gas thermometer. The standard scale is realized in practice by use of gas thermometers, the indications of which can be reduced to the standard scale, or for higher temperatures, by use of the relations between the intensity of radiation from a black body and its temperature.

The experimental difficulties in the use of gas thermometers and the relatively low precision attainable in a single measurement have led to the introduction of a standard practical or working scale. This working scale is defined by certain base points, the temperatures of which have been determined by gas thermometer measurements, and by the indications of suitable instruments used for interpolation between the base points or for extrapolation to higher temperatures. It is possible in this way, without actually using a gas thermometer, to establish a working scale which does not differ to a demonstrable extent from the standard scale at any temperature within the range of the working scale. The practice of the various national standardizing laboratories in defining the working scale is substantially uniform at present, and it requires only minor adjustments and formal agreement to give the working scales of these laboratories the status of an international temperature scale. Such a scale would bear essentially the same relation to the standard scale, as do the international electric units to the absolute units.

The standard working scale may be defined by assigning numerical values to the temperatures defined by the boiling point of oxygen, the melting point of ice, the boiling point of water, the boiling point of sulfur, and the freezing points of antimony, silver and gold. The platinum resistance thermometer is the standard for interpolation in the range -195° to 0°C and from 0° to 650°C; the platinum-platinum rhodium thermocouple for the range from 650° to 1063°; and the luminous filament pyrometer above 1063°C.

Wien's law is accepted as expressing the brightness-temperature relation for a black body. For the purpose of defining the temperature scale above 1063°C the present practice of the national laboratories tends to favor the use of the value 1.430 cm degrees for the constant C2 in this equation but the value 1.433 cm degrees has been adopted for I. C. T.

LITERATURE

(For a key to the periodicals, see end of volume)

(1) Reichsanstalt, 8, 48; 1034; 15. (2) Griffiths and Schofield. 83, 12; 222; 18. (3) Waidner, Mueller and Foote, Pyrometry, p. 46 (pub. by Am. Soc. Min. and Met. Engrs., 1920). (4) Day and Sosman, Dictionary of Applied Physics, 1: 836; 22. (*) Henning, 243, 44: 349; 24. (*) Riechsanstalt, 243, 44: 517; 24.

Reduction of Gas Thermometer Indications to the Thermodynamic Scale

The temperature t_{θ} on the scale of a constant volume or constant pressure gas thermometer filled with any real gas, is proportional to the pressure the gas would exert or the volume it would occupy, respectively, if all of the gas were at the uniform temperature to be measured, and if the volume or the pressure, respectively, were the same at all temperatures. At 0° and 100°C, the temperature t_{θ} is by definition identical with the thermodynamic temperature t_{θ} while at other temperatures t_{θ} departs from t by amounts which are proportional to the pressure at 0°, called the initial pressure. The tabular values are accordingly given only for an initial pressure equivalent to 1 m of mercury.

The values of $t-t_{\theta}$ obtained by various methods cover a wide range, so that only the order of magnitude of the values can be considered as known with any certainty. The tendency in modern work in gas thermometry has been to employ hydrogen or helium s the thermometric gas, and for these gases the magnitude of $-t_{\theta}$ is comparable with the experimental error of the gas thermometer itself, so that the importance of an exact knowledge of he departure of the scales of these gas thermometers from the hermodynamic scale is correspondingly reduced.

LEDUCTION OF GAS THERMOMETER INDICATIONS, $t_{\rm e}$, to the Thermodynamic Centigrade Scale, t

	Hel	ium	Hyd	rogen	Nitrogen			
$^{t}_{\mathrm{C}}$	Const.	Const.	Const.	Const.	Const.	Const. press.		
-0	vol.	press.	vol.	press.	vol.			
- 250	+0.04	Ī	+0 12	l	1			
- 200	+ .02	+0.04	+ 06	+0 3	+0 5			
- 150	+ .01	+ 02	+ 03	+ .1	+ 2	+13		
- 100	+ .005	+ .005	+ 015	+ .04	+ 06	+ 4		
- 50	+ .002	+ .002	+ 005	+ 02	+ 03	+ 12		
0	000	.000	000	000	00	00		
- 25	- 001	- 001	- 001	- 003	- 008	- 02		
50	001	.000	- 002	001	010	- 03		
75	- 001	000	- 001	- 003	005	- 02		
100	.000	000	000	000	000	00		
150	+ .002	+ 001	+ 01	+ 01	+ .01	+ 05		
200	+ 006	+ .001	+ .02	+ 02	+ 02	+ 12		
250	+ .01	+ .002		+ 03	+ .04	+ 2		
300	+ .02	+ .003	1	+ 04	+ .07	+ 3		
350	+ 03	+ .005		İ	+ 10	+ 1		
400	+ 04	+ 006			+ .14	+ 5		
450	+ .05	+ .008			+ .17	+ 6		
500	·			1	+ 2	+ 7		
600			1		+ 3	+ 9		
800	١.				+ 5	+1 3		
1000	l				+ 7	+1.8		
1200					(110 −	+2/3		

LITERATURE

(For a key to the periodicals see end of volume)

Rose-Innes, 5, 2: 131; O1. 15: 301, O8. (2) Callendar, 5, 5: 48; O3. (2)
 Berthelot, 253, 13B: 113p; O7. (4) Buckingham, 31A, 3: 237, O7. (5) Cath and Onnes, 168, No. 156a; 22. 18, 6: 1, 22. (4) Holborn and Otto, 96, 23: 77; 24. 30: 320, 24 (7) Keesom and Onnes, B60: 15; 24.

2 FIXED POINTS

E. F. MUELLER

t =Temperature on standard scale.

p = Pressure in millimeters of Hg (1 mm Hg = 1/60 An) where p is between 680 and 780 mm.

Base Points Used in Defining the Standard Working Scales
(I. C. T. temperature scale)

Substance	Phenome	non	Temperature, *C
Liquid Or	Vapor press	ure / t	$= \begin{bmatrix} -183.00 + 0.245 (t + 273.1) \log_{10} p/760 \text{ or} \\ -183.00 + 0.0126 (p - 760) \\ -0.0000065 (p - 760)^2 \end{bmatrix}$
Solid CO ₁ * .	Vapor pressu.	re/t -	$\begin{bmatrix} -78.51 + 0.1443 (t + 273.1) \log_{10} p/760 \text{ or} \\ -78.51 + 0.01595 (p - 760) \\ -0.000011 (p - 760)^{3} \end{bmatrix}$
Mercury*	Freezing		- 3H H7°
lce .	Melting	1 -	0 000°
Steam	Condensing	, -	100.000 + 0.1727 (t + 273 1) logic p/760 or 100.000 + 0.0367 (p - 760) = 0.000028 (p - 760)*
iulfur	Condensing	t -	$\begin{bmatrix} 444 & 00 + 0 & 2215 & (t + 273 & 1) & \log_{10} p / 760 & \text{or} \\ 444 & 60 + 0 & 0009 & (p - 760) \\ -0 & 000048 & (p - 760)^2 \end{bmatrix}$
Antimon y	Freezing		he determined with resistance rmometer t = approx. 630.5°
alver	Freeging		960 5° (reducing atmosphere).
iold	Freezing		1063°

^{*} Not needed according to one suggested definition of the scale.

SECONDARY FIXED POINTS USEFUL IN CALIBRATING TEMPERATURE MEASURING INSTRUMENTS

(I. C. T. temperature scale)

,		
Substance	Phenomenon	Temperature °C
Hydrogen	Boiling	t = -252.7s + 0.0044 (p - 760)
Nitrogen	Vapor pressure	t = -195.80 + 0.0109 (p - 760)
Naphthalene	Condensing	t = 217.96 + 0.207s (t + 273.1) $\log_{10} (p/760)$
Tin	Freezing	t = 231 8s
Benzophenone	Condensing	$t = 305.9 + 0.194 (t + 273.1) \log_{10}(p/760)$
Cadmium	Freezing	t = 320 9
Lead	Freezing	t = 327.4
Zinc	Freezing	r = 419.4s
Aluminum (99.85 %)	Freezing	t = 658.9
Copper	Freezing	t = 1083 (reducing atmosphere)
Palladium	Freezing	$t = 1555 \pm 2$
Platinum .	Melting	t = 1755 + 6
Tungsten .	Melting	$t = 3370 \pm 30$

The above values are in accord with the temperature scale used throughout I C T. For the last three points the following slightly different values have here suggested for future adoption as secondary points on an international practical scale.

princeten beare.	ı	1 1	T 0 1400]
Palladium	Freezing	t -	$\begin{bmatrix} 1555 \text{ for } C_1 = 1430 \\ 1554 \text{ for } C_2 = 1433 \end{bmatrix}$
Platinum	Melting	· -	1765 for C ₁ = 1.430 1763 for C ₁ = 1.433
Tungsten	Melting	1 +	3400 for C ₂ = 1 430 3386 for C ₂ = 1 433

ADDITIONAL USEFUL SECONDARY POINTS

				Tr	mp	er-
Bubatance	Form	ula	Phenomenon	atu	re,	°C
Isopentane	Cillia	1	Freezing		159	
Methylcyclohezane	CdInCH		Freezing	1 7	26	_
Lither	(CiHoiO	1:	Slow freezing (un-		123	3
Ether	(C _I H ₄) _I O		stable) Rupid freezing or slow melting		116	
Carbon doulfide	CS ₁	- 1	Freezing		111	-
Toluene	C.H.	1.	Freezing		95	
Ethyl acctute	CHICOL	'alle	Freezing	-	83	
Chloroform	CHCb		Freezing		63	
Chlorobensene	C ₆ H ₂ Cl		Freezing	-	45	
Carbon tetrachloride	CCL	I	breezing		22	
Bodoum sulfate	Na.50, 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Transition	l	32	
Potamiqui dichroniste	KiCriOr		Melting		97	
30 5 NACT + 89 5 NAS	o. I	, ,	felting		37	
Potamium chloride	/ AC /		elting /	800	0 3	1
Sodium chloride	1.00		ttin x /	RRI		1
ochum vallute	1 1000		ting /	001 543 (-/
otumuutu millate	KiSO	Inver	,,,,,	169 I		/
tamuum millisti – – – – – – – – – – – – – – – – – – –	K 304	Melti	/			1
krl /	N ₁		a		- 1	1
	Co.		g or freezing 145		- 1	
	.15S1O2	Melting			- 1	
	'n MgStaOa	Melting			- 1	in
thite C	'a M-SuOs	Melting	155	,	-1	tŀ

LITERATURE

(For a key to the periodicals see end of volume)

(1) Holborn and Day, 8, 2: 505, 00 12, 10: 171, 00 (Sb. Ag. Au. Cu) (2) Buck ingham, 31A, 3: 281, 07 (Review of values for S boiling point). (3) Waidner and Burgess, 31A, 7:1, 11 (Naphthalene, benzophenone, Sn, Cd, Zn) (4)Holborn and Henning, 8, 35: 761, 11 (Naphthalene, beazophenone, S, Sn, Cd, Zn) (*) Day and Sosman, 182, No. 157; 11 (Zn, Sh, Ag, Au, Cu, Pd, Pt) (*) Day

(*)Day and Sosman, 152, No. 187; 11 (Zn. Sh. Ag. Au, Cu, Pd. Pt).
(*)Day and Sosman, 152, 33: 517, 12 8, 38: 819, 12 (Benzophenone, Zn. Sb. S).
(7)Henning, 8, 43: 282, 14 (O, CO₃, Hg).
(*)Eumorfopoulous, 5, 90A: 189; 14 (S).
(*)Wilhelm, 51A, 13: 655, 16 (Hg).
(*)Chappus, 238, 16: 17 (S).
(*)Chappus, 238, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 16: 17 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 258, 26: 18 (S).
(*)Chappus, 26: 18 (S).
(*)Chappus, 26: 18 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S).
(*)Chappus, 278, 28 (S). (16) Finck and Wilhelm, 1, 47: 25 (Naphthalene, benzophenone) See also References under Standard Scale of Temperature.

Additional Fixed Points Tummermans, van der Horst and Onnes, 168, No. 187; 22 (Organic liquids below 08), Dickinson and Mueller, 31A, 3: 641; 07 (NasSO, transition) Roberts, 2, 23: 386, 24 (Saits) Day and Nosman, Dictionary of Applied Physics, 1: 836, 22 (Metals and silnates) Richards, et al. 1, 36; 485, 14 (Nu/COs hydrates transitions) 40; 89, 18 (SrCls and SeBra transitions) 41: 2019, 19 (Calla)

THE LEIDEN TEMPERATURE SCALE

In certain sections of International Critical Tables (where so indicated) the Leiden temperature scale will be employed. (Onnes and Hoist, 168, No. 141a. 64V, 23: 175; 14. Cath and Onnes, 168, No. 152a. 64V, 26: 437, 490; 17. Cath, 168, No. 152d. 64V, 27: 553; 18.) The relation between the Leiden and the I.C. T. scales is shown by the following table:

Point	1. C. T	Leiden	Leiden - I C. T.
H ₂ (B, P.)	252 8° ·	-252 74	+0 06°
O ₂ (B, P.)	- 183 0°	- 182 95	+0 05°
ca 40°			+0.01

4. RESISTANCE THERMOMETERS

E. F. MUELLER

Standard methods of calibration have been developed only for platinum resistance thermometers. Data on the resistancetemperature relation for particular thermometers of other metals, such as gold and lead, are available, and formulae to represent the relation have been published, but standardized methods for the calibration of such thermometers have not been developed.

The standard working scale, in the interval 0° to 650°C, is defined by means of a resistance thermometer of pure platinum, for which the relation between resistance R and temperature t is given by the equation:

 $R = R_0(1 + at + bt^2).$

$$R = R_0(1 + at + bt^2).$$
This may be transformed into the Callendar equations:
$$(pt) = \left(\frac{R - R_0}{R_{100} - R_0}\right)100; t - (pt) = \delta \left[\frac{t}{100} - 1\right] \frac{t}{100}.$$
(2)

The three constants in these equations, namely R_0 , a, and b or R_0 , R_{100} and δ respectively, are determined by calibration at the ice point, the steam point, and the sulfur boiling point.

The purity of the platinum must be such that $R_{100}/R_0 > 1.390$ and $R_{444,6}/R_0 > 2.645$, the latter requirement being equivalent to $\delta \le 1.50$.

The Callendar equations were devised to facilitate computations by the method of successive approximations. The platinum temperature, symbol (pt), is proportional to the resistance above Ro and the amount by which it differs from the true temperature is given by the correction term,

$$\delta\left(\frac{t}{100}-1\right)\frac{t}{100}$$

 $\delta \left(\frac{t}{100} - 1\right) \frac{t}{100}.$ Consequently, a value of t sufficiently exact for use in computing the value of the correction term is readily obtained, if not by the first, then certainly by a second or third approximation.

In the interval -195° to 0°C the standard reference scale is defined by means of the platinum resistance thermometer, using the equation

$$t - (\text{pt}) = \delta \left[\left(\frac{t}{100} - 1 \right)_{100}^{t} \right] + \beta \left[\left(\frac{t}{100} - 1 \right)_{100}^{t^3} \right]$$
The constants R_0 , R_{100} and δ are determined just as for the

range above 0° and the additional constant β is determined by a calibration at the boiling point of oxygen. A criterion for the purity of the platinum is that $R_{-183}/R_0 \le 0.250$.

Thermometers which are not to be heated above ordinary temperatures may be calibrated at the freezing point of mercury, the CO2 point and the oxygen point, using the interpolation formula:

$$R = R_0(1 + at + bt^2 + ct^4).$$
(4)

The constant c in the equation is approximately equal to 5×10^{-12} and when this value is assumed, calibration at the CO₂ point may be omitted.

Equations (3) and (4) will yield substantially equivalent results, but they are not algebraically interconvertible.

Equation (1) or equation (2) may be used for temperatures up to 1000° or even 1100°C and the temperatures so determined will not depart appreciably from the standard scale.

LITERATURE

(For a key to the periodicals see end of volume)

(1) Callendar, 62, 178: 160; 87. (2) Waidner and Burgess, 31A, 6: 149; 09. (2) Holborn and Henning, 8, 35: 761, 11. (4) Henning, 8, 40: 635; 13 (Pt and Pb at low temperatures). (5) Henning, 8, 43: 282; 14. (6) Cath, Onnes and Burgers, 168, No 183c; 17 64P. 20, 1163, 18 (Pt and Au at low temperatures) (7) Henning and Heuse, 96, 28: 95; 24. (8) Van Dusen, 1. 47: 326, 25

5. TEMPERATURE SCALES DEFINED BY LIQUID-IN-GLASS THERMOMETERS

E. F. MUELLER

The readings of any particular thermometer, taken when all of the liquid in the thermometer is at a uniform temperature, may be reduced to those which would have been obtained if the thermometer had been perfect and used under ideal conditions, by applying corrections for non-uniformity of the capillary bore, corrections for the change of reading due to departure of the external and internal pressures from arbitrary constant values, a correction for the departure of the ice-point reading, taken immediately after the temperature measurement, from the 0° mark, and a correction to allow for the value of the mean scale degree, in case the difference between the readings of the thermometer taken first at 100°C and then at 0°C, does not correspond to 100 scale degrees. The reading of a thermometer, when so corrected, may be defined as the temperature on the liquid-in-glass scale for the particular liquid and the particular kind of glass of which the thermometer is made.

The temperature scales of mercury thermometers made of French hard glass (verre dur), Jena 16¹¹¹, Jena 59¹¹¹, Jena 1565¹¹¹ and Jena combustion tubing are defined as above. For Kew glass, the temperature scale is defined in a somewhat different wav, in that the point of reference is the (single) ice point reading taken after the thermometer has been held for a sufficiently long period at ordinary temperature (about 10°C) instead of the (variable) ice point reading taken immediately after each temperature measurement. It is apparent that temperatures on the mercury-in-glass scale are not proportional to the relative increase of volume of mercury-in-glass.

Constants characteristic of the several glasses are the ice-point depression, the softening point, and the average coefficient of expansion of mercury-in-glass, between 0° and 100°C.

The ice point depression is the difference between the ice point reading of the thermometer taken after it has been kept a sufficiently long time (a few days or weeks) at 0° and the ice point reading taken immediately after the thermometer has been kept a sufficiently long time (a few minutes or hours) at 100°C. Good thermometric glasses are characterized by small ice point depression (less than 0.1°C) and rapid recovery. Some glasses have an ice point depression of nearly 1°C.

The softening point determines the upper limit of temperature at which thermometers made of the glass can be used

The expansion coefficient is useful in calculating corrections for emergent stem.

Values of these characteristic constants are.

Glass	Ice point depression °C	Softening point °C	Coefficient of cubical exp. of mercury-in-glass 0° to 100°C
Verre dur	0 07 0 11	500	0.000158
"Kew" glass	0 20		
Jena 16 ¹¹¹ , .	0 04-0 08	505	0.000158
Jena 59 ¹¹¹	0 03-0 04	510	0.000164
Jena 1565 ¹¹¹	0 01	660	0.000172
Jena combustion	0 03	560	

Thermometers containing alcohol, toluene or pentane are not adapted for observation at 100°C , and for such thermometers the mean scale degree is conveniently referred to the interval 0° to -78.5° , the sublimation temperature of carbon dioxide serving to fix the latter temperature.

The tabular values are the result of comparisons of mercurvin-glass thermometers with gas thermometers or platinum resistance thermometers which served to establish the standard scale of temperature. The data for Jena 16th glass and Jena 59th glass may be used for Corning normal and Corning borosilicate thermometer phases respectively.

Data of this kind were of great importance during the latter part of the 19th and even during the early part of this century, when calibrated mercury-in-glass thermometers were used to distribute the standard scale of temperature. At present the data are useful principally for minor purposes, such as calculation of factors for determining emergent stem correction, calculation of setting factors for metastatic thermometers, such as the Beckmann thermometer, graduation of thermometers by mercury thread calibration in the absence of standards and thermally controlled baths, etc.

In the tables, t represents the temperature on the standard working scale (platinum resistance thermometer) except for verm dur, where t represents temperatures on the former Internationa hydrogen scale, which in practice is not distinguishable from the standard reference scale, while t_{sl} represents corresponding temperatures on the soveral liquid-in-glass scales.

Values of $t = t_{gl}$ for Mercury-in-glass Thermometers t = temperature on standard scale, $t_{gl} =$ temperature on mercury-in-glass scale.

cury-in-	giass s							<u> </u>		
t°(Frenc hard	1	iew	Jen		Jena		ena	Jena com-
• •		(verr		lass	1611	'	59^{11}	15	65 ^m	bustion
		dur)			<u> </u>			<u></u>		
	39	1+0 12	/	1		/		/	- 1	
- 30	- /	F 29K	/	/	f 0-28	`/+	θ . $I3/$		/	
- 20	/+	172/		- <i> †</i>	. 16	/+	. 07/		/	
- 10	/ / -	. 073/		/+	-07		. 03/		/	
0		.000	0 00	/	00		00/	0.00	,	0. <i>0</i> 0
<i>f- 10</i>	1.	052	(0)		06 [-)2/	. 03	1	
20	- 1	085	(0)	1	09 -		4	05		
30		$\frac{102}{107} + \frac{1}{107}$	005		11 -	0		06		
40 50		1 '	01		12	0:	.1	.06		
60		103 -	01		0 -	0.		.04		
70	1	172 +	015	- ,(I	i	.01	1	.03		
80	i i)50, +	02	.0	- 1	X)		02		
90	1		.025		3 F	.02	1	01		
100	í	1 '	.00		0	OC	1	00	0.	00
120	+ .0		.,	+ .0	- 1	0.5		06	•	
140	14 .0		1	+ 0	- 1	. 16		03		
160	+ .0			~ 0		.31	1 '	13		
180	1 ').1	1	- 1	2 -	52		38		
200	- 1	2	- 1	. 2	9	84	l	90 -	- 1.	13
220		1		5		1 3	- 1.	3 -	- 1.	6
240		1		- 9		1.9	1	8 -	- 2.	2
260				-1 4	-	$^{2-6}$	2.	4 -	- 3 ,	0
280			- 1	~2 0		3 1	· 3.	1 -	- 4.	0
300	}		-	-27		1 1	- 3.	9 -	- 5.	1
320					- 1	5.8	- 4.	- 6	- 6.	
340	1	1	- 1		,	7 2	- 5.		- 7.	
360		İ			1	8.8	- 7		- 9.	
380	1	ı				0-6	8.	- 1	-11.4	
400	1	ł				2.6	-10		-13.	
420		- 1				19	-12.		-15.9	
140					- (7 4	-14.	- 1	-18.0	
460		-			1	0 2	17	- 1	-21.	
480						3 3	-20		-24.8	
500					-2	6 9	-23		-28.4	1
550			-				-32	-	-39.	
600		- 1					-58			
650	1	1	- 1		1		1 - 58	1		

Values of $t-t_g$ for Liquid-in-glass Thermometers

t	Pentane in 16 ^{11t} glass	Toluene in verre dur	Alcohol in verre dur
190	-23 4		
-180	-21 0		
170	-18 6		
160	-16 2		
-150	-13 9		
140	-11 6		
130	- 9 4	!	
120	- 7 3		
-110	- 5.3		

VALUES OF t- to FOR LIQUID-IN-GLASS THERMOMETERS.—Continued

ı	Pentane in 16 ¹¹¹ glass	Toluene in verre dur	Alcohol in verre dur
-100	- 3 4		
- 90	- 17	•	
- 80	- 02	0.0	
- 78 5	0.0	0.0	0.0
- 70	+ 10	+ 4	+0 3
- 60	+ 2 0	+ 8	+ 6
- 50	+ 2 6	+ 1 1	+ 7
40	+ 3 0	+ 12	+ .9
- 30	+ 2 9	+ 1 2	+ 9
- 20	+ 2 1	+ 1 0	+ .8
- 10	+ 1.5	+ 0 6	+ 5
0	0.0	0.0	.0
+ 10	2 0		
20	4 4		
30	- 76		-36
100	1	-24 4	

LITERATURE

(For a key to the periodicals see end of volume)

Guillaume, Traite pratique de la thermometerie Gauthier-Villars, Paris, 1889 (General). Chappus, 238, 6: 1, 88 (Verre dur -25° to 100°). Harker, 5, 78A: 225; 08 (Kew glass) School, Deut Mechan Ztg., 1916: 170 and Holborn, Scheel and Henning, Bills (Jena glasses and organic liquids in glass).

Emergent Stem Correction for Liquid-in-glass Thermometers

If a liquid-in-glass thermometer standardized for total immersion is used with a portion of the liquid column at a temperature below that of the bulb, the reading will be too low for this reason, and an emergent stem correction should be applied to the observed reading.

The emergent stem correction is calculated by the formula,

Correction =
$$Kn(t - t_*)$$

in which

K = coefficient of cubical expansion of mercury-in-glass, per °('.

t = temperature of bulb, °C

 $t_* = \text{average temperature}^{-6}\text{C}^{*}$ of the mercury column $n^{\circ}\text{C}^{*}$ degrees in length.

The value of t is to be determined by means of an auxiliary thermometer or thermometers, preferably with a capillary thermometer. The sign as well as the magnitude of the correction is given by the formula.

For many purposes, in using mercury-in-glass thermometers Kmay be treated as a constant of the glass, using the values given above for the apparent coefficient of expansion of mercury-inglass. The value of K does, however, change with temperature. For purposes of computing the emergent stem correction, it may be considered as depending on the average of t and t_0 that is $t + t_e$ and is here so tabulated.

If the coefficients of expansion of mercury and of glass were both constant, K would also be constant. Most of the change in K is the result of the varying coefficient of the mercury, so that the change in K with temperature for one glass may with some certainty be inferred from the change for some other glass.

The use of the formula requires that t, the temperature of the bulb, be known. In case t is not known, but is to be determined from the indication of the thermometer, the reading of the thermometer may be substituted in the formula in place of t, as a first approximation and the true magnitude of the correction then calculated by means of a second, or if necessary, a third approximation.

In many cases, in calculating the emergent stem correction for thermometers containing organic liquids, it is sufficient to use the approximate value, K = 0.001. The tables show to what extent this is justified for pentane, toluene, and alcohol. In such thermometers, K is practically independent of the kind of plass used.

With the abandonment of the mercury-in-glass thermometer as an instrument of high precision there has been an increasing tendency to use partial immersion thermometers, graduated and standardized for a particular depth of immersion, thus avoiding the necessity of determining and applying the correction for emergent stem.

TABLE OF EMERGENT STEM CORRECTION FACTORS Mercury-in-glass Thermometers

	24411111	ing in givens	Merchany in global the time and the time							
t + t. 2 °C	Verre dur	Jena 16 ¹¹¹	Jena 59 ¹¹¹	Jena 1565 ¹¹¹	Jena combus- tion					
50	0 000158	0 000158	0.000164	0 000172	0.000164					
100	158	158	164	172	164					
150	158	158	165	173	165					
200	159	159	167	175	167					
250		161	170	177	171					
300		164	171	180	174					
350	1		177	184	178					
400	1	ì	182	188	182					
450			187	194	188					
500			195	200	195					

Liquid-in-glass Thermometers

t + t, 2	Pentane	Toluene	Alcohol
-180	0.0009		1
-160	09		
-140	09		ı
-120	10		
100	10		
- 80	10	0 0009	0 0010
- 60	11	09	10
40	12	10	10
- 20	13	10	10
0	14	10	10
+ 20	15	11	10

LITERATURE

(For a key to the periodicals see end of volume) Buckingham, 31a, 8: 239, 12

Example: A thermometer of Jena 59¹¹¹ (or Corning borosilicate glass) indicated a temperature, t, of 470° after application of corrections peculiar to the instrument. The thermometer was immersed to the 150° mark, and the average temperature to of the 320° (n°) of exposed mercury column was found to be 190°. The average of t and t_t is 330° and the value of the factor K for this temperature is 0 000176. Accordingly

Correction = $0.000176(320)(470 - 190) = 15.8^{\circ}$ The corrected temperature is therefore $470^{\circ} + 15.8^{\circ} = 485.8^{\circ}$. Since the bulb temperature was considerably higher than 470° a second approximation may be tried:

Correction = $0.000176(320)(486 - 190) = 16.7^{\circ}$ The second approximation yields a corrected temperature of 470° + 16.7° = 486.7° which in view of the rather large emergent stem correction, may properly be reported as 487°.

Possible short cuts in making the second approximation will be readily apparent.

The example given is purposely somewhat exaggerated by assuming an unusually high temperature (190°) for the emergent stem, in order to show that the factor K may differ appreciably from the conventional value of 0.00016.

For computations in Fahrenheit temperatures, the proper value of K is \$\frac{5}{2}\text{ of the tabulated value.}

6. THERMOCOUPLES

L. H. ADAMS

"Standard" Calibration Tables (for Use with Deviation Curve)

Standard tables such as these do not necessarily have any absolute significance; primarily, they are arbitrary reference curves which, although representing fairly well the temperature-emf functions for certain thermocouples, are intended for use with an appropriate deviation-curve. This correction-curve is determined for each couple by calibration at several—preferably

three or more—fixed points within the "applicability range of the couple." This curve is constructed by plotting ΔE as ordinate (ΔE = E_{star} , $-E_{csad}$) against E_{csad} as abscissa. In order to obtain the temperature corresponding to the emf indicated by the couple, the appropriate value of ΔE (as obtained from its deviation curve) is subtracted algebraically from the observed value of E before the latter is converted into degrees by means of the table. Example: At a certain temperature a copper-constantan couple gave an emf of 8720 microvolts. From the previously determined deviation curve of the particular couple the value of ΔE at 8720 microvolts is found to be 12 microvolts. The "standard" omf is therefore 8720 — 12 or 8708 microvolts and from the copperconstantan table this may be seen to correspond to 189.08°, which is the required temperature.

The fixed (i.e., cold) junction is supposed to be maintained at the control of th

Temperatures and Temperature Differences for Every 100 Microvolts Platinum: Platinrhodium (90-10). Standard range, 630°-1083°C. Applicability range, 0 -1754°C

Ε μν	0	1000	2000	8000	4000	5000	6000	7000	8000	9000	12 #4
0	0	147 1	265 4	374 3	478 1	578-3	675 3	769 5	801.1	950-4	•
100	17 8	159-7	276 b	384-9	488 3	9 8 589 1	684 8	778 8	9 0 870 1	959 2	100
200	34 5	172 1	287 7	395 4	498 4	597-9	691 3	788 0	879 1	968-0	200
300	50 3	181.3	298 7	405 9	508 5	607 7	703 S	797 2	888 1	976-7	800
400	65 4 14 6	196 3	309 7	10 4 416 3 10 4	518 6	617 4	713 3	806-4	897.1	985-4	400
500	80.0	208.1	320 6	426 7	528 6	627.1	722 7	815.6	906.1	994 L	500
600	94.1	219 7	331 5	10 4 437 1	538 6	636-8	732 1	824.7	915 0	1002 8	600
700	107.8 13.4	231 2	10 8 342 3 10 7	447 4	10 0 518 6 9 9	646 5	741 5	833 8 9 1	923.9	8 7 1011 5 8 0	700
800	121 2	212.7	353 0	457 7	558-5	656-1	750-9	812 9	932 4	1020.1	800
900	134 3 12 8	251 1	363 7	467 9	568-4	665-7	760 2	852.0	941 6	1028 7	900
1000	147.1	265 4	374 3	478 1	578-3	675 8	769-5	861 I	950-1	1037-3	1000
Ε μν	10,000	11,000	12,000	13,000	14,000	15,000	16,000	17,000	18,000		Ε μν
0					1372 4				1704 3		0
100		1130 6		1297 7	1380-7	1463 0	8 8 1545 8	1629 2	1712 6		100
200	1054 4	1139 0	1222 6	8 3 1306 0	1389 0	1471 2	1554 1	1637.6			200
800		1147 4	1230.9	1311 3		1470 4	1562.4	1645.9	1729 3		200
400	1071.4 8 5	1155.8	1239 3		1405-6			1654.3	8 4 1737.7 8 3		400
500				1330 9							800
600	1088.4		1255 9	1339 2	1122 0	1504 3	1587 5	1670.9	8.8 1754-3		600
700	1096.9	1180.9	1264 3		1430 2		1595-8				700
800	1 1	1189 2	1272 6	1355 8	1435-4	1520 9	1604 2	1687 6			800
900			1281.0		1446 6	1529 2	8 3 1612 5 8.4	1696.0		·	900
	1 7										

TEMPERATURES AND TEMPERATURE DIFFERENCES FOR EVERT 100 MICROVOLTS

TEMPERATURES AND TEMPERATURE DIFFERENCES FOR EVERY 0.5
MILLIVOLT

		Chron	nel-alumel		
E mv	0	10	20	30	40
0	0.0	244.5		719.2	970 4
0.5	12.3	256.7	494 5	731 4	13 () 983.4
1.0	12 1 24.4 12.0	268.9	506 2 11 7	743 7	13 1 996 5
1.5	36.4	281 0	517 9 11 7	13 3 756 0 12 3	1009 7
2.0	48 4	293 1	529 6	768-3	13 3 1023 0
2.5	60 4 12.0	305 1	541 3	12 4 780 7	13 3 1036 3
3.0	72 4	317.1	553-0	12 4 793 1	13 4 1019 7
3.5	12 0 84 4 12 0			12 5 805 6	13 5
4.0	1 1			818 1	13 6 1076 8
4.5	1 :	1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 7 1090 5 13 7
5.0	1 1	,		843-2	1104 2
5.5	1 1			855 8 12 6	1118 0
6.0				868 4 12 6	1131 8
6.5	1 1		635 4	881 0	13 9
7.0	170 2	412.2	1	12 7 893 7	13 9 1159 6
7.5		1			(1174)
8.0			1		(1188)
8.5	1 1	T.			(1202)
9.0	1 1	t t	1	944 7	
9.5	1 1	- (12 8 957 5	
10.0	12 2 244.5	182 8	12 1 19 2	970 4 12 9	

Fixed-junction Corrections

If the fixed or "cold" junction be not maintained at 0°C, a correction must be applied. This may be done by any one of several methods, of which the following are suggested.

A. Let the temperature of the fixed junction be t_c and that of the variable or "bot" junction be t_c . Then to the emf as read E_{t-t_c} add the emf corresponding to t_c . This gives E_t which may at once be converted into degrees by means of the proper table.

B. Multiply the fixed-junction temperature by the factor, $f = (dE/dt)_0/(dE/dt)$, which is the ratio of the mean emf-temperature gradient between 0° and t_c to the gradient at t_c , and add the product to t', the uncorrected temperature. That is, $t = t' + ft_c$. These emf-temperature gradients may be obtained by taking the reciprocals of the numbers appearing in the difference columns of the calibration tables.

COMPARISON OF THE MORE COMMON THERMOCOUPLES

	11	emper	ature, °	('	Ι	Ten	peratur	o, °C
E my	Iron: constantan	Chromel (X): copel	Chromel (P): alumel	Platinrhodium:* gold-palladium	E mv	Platinum: platinrho- dium (Heracus)	Platinum: Platinrhodium (Johnston-Matthey)	Copper: constantan
0	0	0	0	0	0	0	0	0
5	95	105	121	131	1	147	146	25
10	186	195	244	237	2	265	260	49
15	277	277	365	835	3	374	364	72
20	367	353	183	129	4	478	461	94
25	457	425	600	513	5	578	553	115
30	546	495	719	607	6	675	641	136
35	632		843	694	7	769	725	156
40	713		970	779	8	861	806	176
45	792		1104	866	9	950	884	195
50	871		1	954	10	1037	959	213
55	950		1	1044	11	1122	1032	232
60				1136	12	1206	1103	250
]			13	1289	1173	268
		- }		H	14	1372	1242	285
	1			11	15	1455	1311	302
- 1		1	- 1	į.	16	1537	1379	320
ļ	- 1	1	į	ĺ.	17	1620	1447	336
					18	1704	1515	353

* 10 % Rh, 40 % Pd.

LITERATURE

(For a key to the periodicals see end of volume)

Adams, 128, 3: 489; 13. 1, 36: 65; 14. 255, 1919: 2111. (2) Adams, O.
 Adams and Johnston, 12, 32: 534; 12. (4) Foote, Fairchild and Harrison, 22, No. 170, 21. (5) Hoskins Mfg. Co., Catalog. D; 24. (6) Roberts, O. (7) Sosman, 12, 30: 7, 10.

OPTICAL PYROMETRY

C. O. FAIRCHILD AND H. T. WENSEL

The temperature scale above the melting point of gold is based $-C_1$

upon Wien's Law, $J_{\lambda}=c_1\lambda^{-a}e^{\lambda T}$, in which the constant C_s (1.433 cm deg) and the value 1336°K for the melting point of gold determine the scale. In optical pyrometry temperatures are usually measured by comparing the brightness of a glowing object with that of the filament of a lamp mounted in the image plane of a simple telescope. For highest accuracy the current through the lamp is kept at or near the value corresponding to 1336°K and higher temperatures are measured by reducing the brightness of the image of the object to match that of the filament by means of a suitable screen such as a rotating sector or an absorption glass of known transmission. The temperature is then found from the following formula derived from Wien's Law:

$$\frac{1}{T} = \frac{1}{1336} + \lambda_0 \cdot \frac{\log_{10} R}{6222},$$

in which R is the transmission of the absorption device and $\lambda_{\rm e}$ is the "mean effective wave-length" of a color filter in the pyrometer for the temperature interval 1336° to T. Values of $\lambda_{\rm e}$ can be obtained in some cases by the use of Table 2.

For practical purposes the pyrometer is ordinarily calibrated in the range 700° to 1400°C (occasionally to 1550°C) in terms of filament current. A satisfactory empirical relation between the current I through the lamp filament and temperature I°C is:

 $I=a+bt+ct^2+dt^2$. For tangeten lamps with short 3 mil filaments dI/dt varies from about 0.00015 ampere per degree at 700°C (I=0.3) to 0.0003 ampere per degree at 1400° (I=0.5). For measurements above 1400° an absorption glass of such type is employed that $\Lambda(=\lambda_6\log_{10}R/6223)$ is a constant or varies slightly with temperature. If the spectral transmission, Tr, of the

absorption device is of the form $\mathrm{Tr}_{\lambda} = e^{\lambda}$, Λ will be a constant and equal to K/e_2 . For sector discs $\Lambda = \mathrm{constant} \cdot \lambda e$.

TABLE I

Temperatures extrapolated from 1336°K, using Wien's Law, compared with those obtained using Planck's Law. The values in this table were computed from the relation:

$$T_{\nu} = \frac{C_2}{\lambda \log_{\pi} \left[1 + e^{\lambda T_{\nu}} \right]}$$

taking $\lambda = 0.65\mu$.

$\overline{r_{v}}$	T _p	$ T_w - T_p $	T_u	T_{P}	$ T_w - T_p $
1336	1336 000	l il	4500	4493	7
2000	1999 997	0 003	5000	4986	14
2500	2499 958	.012	6000	5959	41
3000	2999 71	.26	8000	7825	175
3500	3499 0	1.0	10 000	9550	450
4000	3997	3	നാ	31 800	no

Table 2

Effective wave-length and mean effective wave-length of optical pyrometer red glass filters. The effective wave-length λ_T is found from the formula

$$\frac{1}{\lambda_T} = a \cdot a \cdot - \frac{b}{T}$$

Equation*	Cor	ning H.	Γ. red gla	IRRCH	
raduation	A	В	[C	D	
11	1 5509	1 5115	1 5369	1 5319	Visibility
b	29.6	28 2	28 0	26.8	visionity
Wave-length microns		Transi	nission		
0.615	0.000	0.000	0.000	0.000	0 442
.625	.085	.007	.000	.000	.323
. 635	, 520	.270	.141	.080	. 220
. 645	. 730	.533	.389	.350	. 141
. 655	.798	. 637	.508	. 520	.084
. 665	.815	. 661	.541	580	.046
. 675	823	.677	. 557	. 605	.024
. 685	828	686	567	605	0126
. 695	830	. 689	572	. 603	0061
.705	830	689	572	598	0031
.715	826	.682	564	590	00158
.725	824	.679	. 559	.580	00078
. 735	822	.676	. 555	.572	00038
.745	820	.672	551	567	00018
.755	818	. 669	.547	.550	00009
. 765	815	. 664	541	535	00003
. 775	813	661	537	510	00000

The constants a and b are given for four typical red glasses of the transmissions indicated. The change in effective wave-length with temperature of glass filter itself is closely 0.00000 per deg C at ordinary room temperatures.

Angular spertures required in the telescope of the disappearing filament type of optical pyrometer for a balance between reflection and diffraction at the filament. Under such conditions disappearance of the filament is obtained without resorting to low magnification or very low resolving power.

TABLE 3.-TUNGSTEN FILAMENT OF CIRCULAR CROSS-SECTION

Poit montane	Entrance ape	rture, radians
Exit aperture radians	Filament diameter 0.04 to 0.06 mm	Filament diameter 0.1 mm
0.005	very low resolving pov	ver
.01	0.04 and larger	0.04 and larger
02	.06 to .16	.055 to .07
.04	.08 to .13	
.06	non-disappearance	

Table 4.—Brightness Temperature versus true Temperature for Red Light($\gamma = 0.65 \mu$)

TOKE FOR RED INGHT(γ = 0.00μ)							
			True	temper	ature		
Observed brightness temperature	Platinum(1)	Iron(2)	Iron oxide 3	Nickel oxide(⁴)	Copper(5)	Copper oxide(5)	Nichrome or chromel(6)
700	745		700	701			702
800	857		801	802			804
900	972		902	901		903	906
950		1		ļ	1083	958	
975	1	ĺ	1		1181		
1000	1090		1004	1007	1156	1020	1010
1025			1		1193		
1050					1231	1087	
1100	1210	1183	1106	1110		1159	1116
1150						1233	
1200	1332	1296	1210	1215			1224
1300	1455	1410		1320			
1400		1525					
1500		1641					
1600		1758					
1700		1877			1		
1750		1936	l		l	ļ	

LITERATURE

(For a key to periodical see end of volume)

Waidner and Burgess, 31a, 3: 163, 07.
 Computed for an emissivity of 0.4, cf. Burgess, 32, No. 91: 17.
 Burgess and Foote, 31a, 11: 41; 15.
 Burgess, 31a, 6: 111; 09.
 Foote, Bureau of Standards, O For data on C, Ta, W and other substances see sections on emissivity, color temperature, etc.

GENERAL REFERENCES

Burgess and Le Chatelier, Measurement of High Temperature, 1912. Pyrometry: Symposium of American Institute of Mining and Metallurgical Engineers, 1919. Foote, Fairchild and Harmson, 38, No. 170: 21. Foote, Mohler and Fairchild, 128, 7: 18: 17. Foote, 83, 18: 3; 18. Forsythe, 83, 18: 3, 20. Fairchild and Hoover, 48, 7: 7; 23.

LABORATORY METHODS FOR PRODUCING AND MAINTAINING CONSTANT TEMPERATURE

C. W. KANOLT, OLAF A. HOUGEN, ROLAND A. RAGATZ AND W. E. FORSYTHE

		. V G1
* Temperatures below 0°C. C. W. KANOLT.		61
Laboratory Methods for the Production of Cold. ('. W.	
Kanolt.		
Temperatures above 0°C. O. A. Hougen and R. A. Rag	ATZ.	66
Production and Maintenance of High Temperatures.	W. E.	
FORSYTHE		67

The successful application of the methods described in this section involves careful attention to the details of construction and operation of the auxiliary apparatus. For these details the reader is referred to the original literature.

1. TEMPERATURES BELOW 0°C

C. W. KANOLT

(a) Bath Liquids Boiling at Constant Pressure.—The temperature-pressure data for a number of suitable liquids are displayed graphically in Fig. 1. For further data concerning these liquids consult the index of I. C. T. Solid CO₂ mixed with a suitable low-freezing liquid may also be used. Cf. Sec. (b) infra, also (42).

Bath liquids for the maintenance of constant temperatures by boiling at a constant pressure.

(b) Bath Liquids with Thermostatic Control.—In some cases the liquid-solid mixture with proper thermal insulation may be conveniently used to automatically maintain the temperature of the invariant point (M.P. or eutcetic). For general discussion of low temperature baths v. (16). The systems given below are arranged approximately in ascending order of their minimum working temperatures.

Abbreviations and Signs.—B. = "boils;" Cor. = "corrosiveness" or "corrosive;" E. = "cutectic composition;" Fl. = "flammable," hazardous, especially if cooled by means of liquid air. S. = "solidifies" or "solidification;" SS. = "suggested for use at the solidifying temperature;" η = "viscosity;" + = "high," - = "moderate or low," thus, η - = "moderate or low viscosity."

Below -150° , -1. Petroleum distillate, d_{+}^{1} 0.647: S. $< -190^{\circ}$ (3). Ibid, $d_{+}^{12} = 0.651$: S. $< -190^{\circ}$. B. 33°. $\eta + at = -190^{\circ}$ (22). 2. Amylene, techn.: S. $< -188^{\circ}$. Fl. $\eta > petrol$ ether, q.v. (18, 22). 3. Propane: S. at -187.8° . B. at -37° . Fl. 4. Propylene: S. at -185.2° . B. at -47° . Fl. May be used -190° to -160° . Moisture causes turbidity (28). 5. Bulane, techn.: $\eta = at = -180^{\circ}$. Fl. Gas at ordinary temp. (24). 6. Methyl chloride 25% + methyl ether 75%, E.: S. at -154° . B. $< -20^{\circ}$. Fl(4). 7. Isopenlane: S. at -159.6° . B. at 28.0°. Fl. SS. (37).

From -150° to -125°.-8. Pentane, techn.: S. <-190° for some samples. B. ca. 25°. Fl. (16). n varies with diff. samples. ('f. (5, 7, 16, 17, 22, 24, 31), 9. Petroleum ether: one sample S. at -160° (7). Other samples used down to -130° (16); -135° (5); -150° (15, 30); -160° (25). Fl. 9a. Chloroform 18% + trans-dichloroethylene 13 % + trichloroethylene 20 % + ethyl bromide 41% + ethyl chloride 8% S < -150%. Non-Fl. n_{-140} 0.71 poises. n-180 6.3 poises (21), 10. Chloroform 15% + methylene chloride 25% + trans-dichloroethylene 11% + trichloroethylene 16% + ethyl bromide 33 %; S. ca. -150°. Non-Fl. 7.140 = 0.85 poises, 7.140 = 15 poises (21), 11, Ethyl chloride: S. at -138.7°, B. 12.2°. Fl. η - at -138.7° (21), Cor. - (20, 19), Non-Fl. by adding methyl bromide (13). 12. Chloroform 20% + trans-dichlorosthylene 14 % + trichloroethylene 21 % + ethyl bromule 45 %. E.: 8, at -139°. Non-Fl. $\eta_{-140} = 0.29$ poises; $\eta_{-140} = 0.81$ poises (21). 13. Methyl ether: S. at -138.5°. B. at -23.7°. Fl. 14. n-Pentane: S. at -130.8°. Fl. Very volatile. 15. Ethyl ether 75 vol. % + toluene 25 vol. %: S. ca. -130° (7). 16. Methylcyclohexane: S. at -126.3.° Fl. SS. (37). 17. Petroleum distillate, d. 0.713: pasty ca. -125°. S. ca. -147° (6).

From -125° to -100°.--18. Chloroform 23% + ether 77%, E.: S. at -121.7° (35), 19. Ethyl bromide: S. at -119°. Non-Fl. Becomes Cor under action of light (10), \$\eta_{-11}\$, = 0.053 poises (21). 20. Ethyl ether: S. at -116.3° and (metastable) at -123.3°. Fl. SS. (37). 21. Carbon disulfide: S. at -111.6°. Fl. toxic. SS. (37). 22. Chloroform 27% + methylene chloride 60% + carbon tetrachloride 13%. E.: S. at -111°. Non-Fl. \$\eta_{-}\$ at -111° (21).

From -100° to -90° .—23. Chloroform 31% + trichloroethylene 69%. E.: S. at -100° . Non-Fl. η – at -100° (21). 24. Chloroform 71% + ether 29%. E.: S. at -97.4° (28). 25. Methylene chloride: S. at -97° . Volatile but non-Fl. η – at -97° (21). Addition of alcohol recommended to avoid formation of HCl in light (28). 26. Chloroform 79% + ether 21%. E.: S. at -95° (35). 27. Toluene: S. at -95.1° . Fl. η + at -80° (24). SS. (37). 28. Acetone: S. at -94.6° . Fl. $\eta_{-10.7}$ = 0.0205 poise (1). 29. Methyl chloride: S. at -91.5° . B. at -24.1° . Fl.- η , and non-Fl. by adding methyl bromide (14).

From -90° to -80° .—30. Ethyl alcohol: S. at -114.1° . Fl. $\eta+$ near -114° (18, 39). η increased by presence of H₄O (24). Used down to -80° (15, 16) and to -90° (24). 31. Trichlorocthylene: S. at -86.4° . Non-Fl. $\eta-$ at -86° . Cor.—, when pure but + when ox. by air. 32. Ethyl acetate: S. at -83.6° . Fl. SS. (37). 33. Carbon tetrachloride 49% + chloroform 51%. E.: S. at -81° . Non-Fl. $\eta-$ at -81° (21). 34. trans-Dichlorocthylene: S. at -80.5° . Fl. (8), but less so than vol. hydrocarbons (21). Cor—.

From -80° to -50°, -35. Ethyl ether 80% + ethyl alcohol 20%: | LABORATORY METHODS FOR THE PRODUCTION FI. Used down to -78° . $\eta <$ alcohol Less turbid from moisture than is ether (25) 36 H_2SO_4 , 38% in H_2O , E.: S. at -75° . 7+ at low temps. Cor. (23), 37. Chloroform: S. at -63.5°. η = at iow temps. (or. (**), St. Commonum. St. at ** -65.5 .

Non-Fl. η = at **-63° (21), Cor**-, SS. (37). A small quantity of alcohol prevents decomposition. 38, CaCl, 298% in H₂O. E.: S. at -55° . $\eta + at$ -55° (38). Cor. + (32, 41). Cor. diminished by addition of K₂CrO₄ (27).

From -50" to -25". 39. Gasolene + CCL: Depending upon the density of the gasolene the following "6's of CCL should be used to reduce Fl. 0.765, 30%; 0.725, 45%; 0.700, 60%; 0.680, 70% (2, 28). The 65% ('Cl4 may be used at -50°. Flash pt. ca. 50°. Cor- (8). 40. Chlorobenzene: S. at -45.2°. Fl. SS. (37). 41. NaCNS 500 g per 1 H₂O, E.: S. at ca. -33°. Cor. < NaCl or CaCl2 (38). 42. Ethyl alcohol 25% + glycerine 25% + water 50%: Used to -30° (40).

From -25" to 0". 43. Carbon tetrachlorule: S. at -22.9°. Non-Fl. 7- at -23° (21) Cor -. SS. (37). 44. NaCl 22 4% in water, E.: 8. at -21 2°. n-. Cor.

DISTILLATES FROM GALICIAN PETROLEUM(11)

Fractionation temp	24° 40°	40° 60°	60° 80'	80°-100°	100°-120°
d	0 6324	0 6593	0 7005	0.7351	0.7495
	203°	198°	185°	-170°	151°
Fractionation temp.	120° 110°	140°-160°	160°-180°	180°-200°	200°-220°
d ₄ ¹⁵	0 7625	0 7738	0 7872	0.7962	0.8072
	-139°	-127°	112°	104°	-93°

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Archibald and Ure, 4, 125: 726, 24 (2) Associated Factory Mutual Fire Areniosid and tre, 4, **** (20.2)
 1. | Areniosid and tre, 4, **** (20.2)
 1. | Areniosid and tre, 4, *** (20.2)
 1. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 2. | Areniosid and tre, 4, *** (20.2)
 3. | Areniosid and tre, 4, *** (20.2)
 4. | Areniosid and tre, 4, *** (20.2)
 4. | Areniosid and tre, 4, *** (20.2)
 (*) Cragoe, McKelvy and O'Connor, 31.1, 18: 707; 23. (*) Fabre, 42.
- (10) Fischer, Die neueren Arzneumttel, 6th ed., p. 74. (11) Formanek, Knop 7 menuer, 130 menuera arancometer, our etc. p. es. (**) Formanes, Knop and Korber, 130, 41: 731, 17 (12) Hammel, 75, 78: 59; 78, (13) Hennig, U. S. Pat. 1,393,124, Brit. Pat. 158,494, 20. (14) Henning, U. S. Pat. 1,386,497; Canadian Pat. 213,825. (15) Henning, 243, 33; 33; 13 (16) Henning, Batt, p 261 (17) Hoffmann and Rothe, 243, 27; 265; 07. (18) Holborn and Wien, 8, 59; 213, 96 (19) Jenkin, 83, 18; 107 . 22
- (30) Jenkin and Shorthose, 115, 116: 761, 23 246, 66: 347, 24 (21) Kanolt, Bur. Stands, O. (24) Loomis and Walters, Bur. Mines, O. (25) Massis and Wright, I, 43: 1098, 21 (24) Meyerhoffer and Saunders, 7, 31: 381; 90
- Wright, I, 43: 1098, 21 (24) Meyerhoffer and Saunders, 7, 31: 381; 99 (27) Pedersen, U. S. Pat. 1,105,320 (24) Remington and Wood, U. S. Dispensatory, 20th ed. 18 (24) Roozehoum, 7, 4: 42; 99 (24) Rothe, 243, 33: 14, 33; 02 (31) Rothe, 243, 33: 192,02, (32) Rudnick, 46, 11: 608, 10 (33) Ruff and Fischer, 25, 36: 421; 03. (34) Saposhinikov, 256, 6, 381 (34) Smits and Berckmans, 64P, 31: 401; 19 (34) Sperr, U.S. Pat. 1,173,327 (37) Timmermana, van der Horst and Onnes, 34, 176; 365, 22 Timmermana, 28, 32; 95, 23. (38) Tucker, 67, 25; 111. (39) Wahl, 5, 87: 371, 12
- (40) Walton and Judd, 50, 18: 717, 14 (41) Zimmerman, 244, 9: 307, 21. (42) Thiele and Schulte, 7, 96: 312, 20.

C W KANOLT

(a) Liquids for Cooling by Vaporization into the Atmosph

The liquid may be sprayed onto the object to be cooled (2, 3, it may be vaporized by a current of air passed through it, formi a bath in which the object to be cooled is immersed (5); it may ! vaporized from a porous vessel (1); or in other ways. The tem peratures obtainable from the liquids are approximately in the order of their boiling points given below, but are much lower. Gases with critical temperatures above 20° are not included.

The data given below are, in the order given; boiling point, name of liquid, remarks, and literature.

Remarks: 1. Harmless. 2. Harmful. 3. Flammable. 4. Non-flammable. 5. Anaesthetic.

100°, Water (1, 4). 61.2°, Chloroform (4, 5). 46.2°, Carbon disulphide (2, 3). 40°, Methylene chloride (4, 5). 38.4°, Ethyl bromule (4, 5). 35°-39°, Amylene, techn. (3, 5). 34.6°, Ethyl ether (3, 5) produces -15° to -20° (2, 5). 13.1°, Ethyl chloride (3, 5) produces -35°(2). 0°-70°, Volatile petroleum distillates (1, 3). -10.0°, Sulfur dioxide (2, 4). -24.1°, Methul chloride (3, 5) produces -55° to -60° (1, 2). -33.4°, Ammonia (2, 3). Carbon dioxide (1, 4). (The liquid can not exist at atmospheric pressure. Solid can be obtained by the release of liquid from pressure. Sublimation temperature -78.5°. Used mixed with a liquid (6), produces -112° to -115° (1). -89.8°. Nitrous oxide (1, 5).

LITERATURE

(For a key to the periodicals see end of volume)

d'Arsonval, 34, 133; 980; 01 (2) Braun, Die Lokalanasthesie, Chapt. 4.
 (3) Kanolt, 48, 9; 416; 24. (4) Krause, Ball, 6; 635; 19. (5) Lawrence, 247, No. 18; 10; 16. (6) Thiele and Schulte, 7, 96; 312; 20.

(b) Freezing Mixtures

To absorb the largest amount of heat, an aqueous freezing mixture should be made with ice, rather than with water, and the other substance used should be cooled to 0° , or as low as possible, before mixing with the ice. To absorb at a given temperature the maximum amount of heat per unit mass of mixture, the proportions of ice and the other cooling agent should be those of a solution. the freezing point of which is the required temperature (8). The eutectic (cryohydric) temperature is the lowest attamable, if the ingredients are precooled sufficiently. Most, if not all, salts when mixed at room temperature with ice, produce sufficient cooling to reach this temperature.

For more extensive information than given here relative to the freezing points of solutions, together with the literature references, see the separate tables of freezing points.

The following mixtures are among the most useful:

- (a) Sodium chloride with ice for temperatures down to -21.2°.
- (b) Hydrated calcium chloride, CaCl2.6H2O, with ice, for temperatures down to -55°.

Aqueous solutions of sulfuric acid or hydrochloric acid with ice have an advantage over salts with ice in avoiding the delay incident to the solution of the salt.

Substances	Composition of n ture (% anhydre salt, unless oth wise stated). E sutectio composition	ous	point of	Initial condition freezing mixtur	Lowest attaur temperatur recorded		to be encled as
NaCl—II (0 (4, 12)	22 4 (E for NaCl 2H ₂ O) 23 1 (E for NaCl) 24 8	22 40	N3	dt and ice at -1°	-21 3° -21°		56.4*
NaNO ₂ —H ₂ O (12, 13)	33 3 37 E 42 9	-18 5°		It and see at -1°	-17 75° - 5 3°	-	57 5*
Na ₁ CO ₂ .10H ₂ O—H ₂ O (12)	5 93E 16 7	2 10		t and ree at - 1°	2.0°		77 2*
Na ₁ SO ₄ 10H ₁ O—H ₁ O	3.8E	- 12	,	MA			80 1*
Na ₂ S ₂ O ₂ .5H ₂ O—H ₂ O (¹³)	30 OE 52 4	-11°	- t wat	er and salt 10 7°	S 0°		
NaOOCCH ₃ .H ₂ O—H ₂ O (13)	45 9		wat	er and salt 10 7°	4 70		
KCl—H ₂ O (12)	19 3 23 L	- 9 0		malt -1°	10 98		71 2*
KNO ₂ H ₂ O (¹²)	11 2E 11 5	3 0*	walt	and see at -1"	2.85°		80.7*
$K_4SO_4-H_4O=(12)$	6 54E 9 1	- 1.55°	s alt	and we at +1'	1.8,		
KSCN—H ₂ () (13)	60 0		wat	er and salt 10 S	23 7°		
NH ₄ Cl—H ₂ O (12)	18 7E 20,0	15.8%	salt	indicent 1º	15 4°		75 0+
	16.6	- 69		or and selt 0°	14-02	12-2 78-8	2 6 73 6
	31 0	12"		end salt at 1"	16 75° - 26 0°	19.7	6.8
•	37 5			e and salt 0° er and salt 13 6°	13 o°	71-6	65,6 -
	41 2 43 3E	17.4° - 17.5°	İ	ter and salt 0° e and salt 0°	ił da	21 d 69 5	68 4* 8 2 57.1
NH ₄ N() ₂ H ₂ () (12, 13, 18)	46 8	12°		er and selt 0"	36-4°	25 5	13 6 3 1 50 8
	50 3	- 6°	wat wat	e and salt 0° ter and salt 0° er and salt 20° e and salt 0°	30 30	26 5	19 0
	51 1	0,	± wa	ter and salt 0°	12 20	27 ()	24 3
	57 1		*"	e and salt 0° ter and salt 0° er and salt 20°	-41 7°	64 4 28 4	64.4 28.4 18.8
NH ₄ SCNH ₂ O (¹²)	57.1		i	er and salt at	18 0°		
Ca ₂ Cl ₂ 6HOH ₂ O(⁶)	% of hydrated salt	- 4 0°	10	e and salt 0°		69-9	66 2

Substances	Composition of mix- ture (% anhydrous salt, unless other- wise stated) E = eutectic composition	1		Initial condition of freezing mixture	Lowest attained temperature recorded	Heat absorbed at temperature of mixing, cal. per g of mixture	Heat absorbed (at freesing or astur- ation point of solu- tion) from object to be cooled, cal- per g of mixture The "values are heats of fusion of the cuteotic, v. (8)
alie o gale on the Community of the Comm	26 8	- 8 1°		ice and salt 0°		63 8	57.8
	31 6	- 12 4°		ice and salt 0°		59.3	50.2
	45 7	- 22 7°		ice and salt 0°		53 0	38.4
	54 9	39 9°		ice and salt 0°		48 0	26.0
	54 NL	- 54 9°		ice and salt 0°		45 8	17.7
	·	00.40)	ice and salt 0°		43.7	27.9
	63 7	- 33 3°	1	water and salt 0°		14 4	none
CaCl ₁ 6H ₂ OH ₂ O (6)	47.1	19 7°	1	ice and salt 0°		41.9	33.2
Continued	67 1	13 /		water and salt 0°		15 4	6.7
			Ē	ice and salt 0°		41 0	35.0
	69 0	14 1°	para	water and salt 0°		16 0	10.1
			1 %	water and salt 20°		none	1.5
			Z.	ice and salt 0°		38 7	38 7
	71 1	() _o		water and salt 0°	-	17.7	17.7
		Mattellance was		water and salt 20°	-	none	10 2
	77 5	7.6°		water and salt 0°		19 0	21 6
				water and salt 20°		none	14.7
Mg8O4 12H1O—H1O(8)	', anhyd salt	- 3 9°		To complete the company		58 2	
Cu8O4 5H4O—H4O(15)	11 9	- 1 6°		NOTE And to		69 0	
ZnSO ₄ 7H ₂ O -H ₃ O(5)	27 2	- 6 55°		and the second second		50 9	-
FeSO ₄ 7H ₁ O—H ₁ O(5)	13 0	- 1.8°				67 2	
	", of 66 19", H ₃ SO, 7 1			ice and acid at 0°	16°	- 2.1°†	68.6
	11 2			ice and acid at 0°	- 20°	- 3.1°†	62.0
	17 2			ice and acid at 0°	- 24°	- 5.5°†	52.9
66 10 % H ₁ SO ₄ H ₂ O (11)	23 9	-		ice and acid at 0°	-28°	- 9.5°†	43.0
	33 6			ice and seid at 0°	- 32°	-16 5°†	24.5
	14 2			ice and acid at 0°	-36°	30 2°†	7.5
	17 7			ice and acid at 0°	- 37°	-37°†	0
HC1H ₂ O	% HCl 24 8E	- 86°					
	% of Na ₃ SO ₄ 10H ₂ O 21 05			0,0		6 09	
	30 33			0°		9 17	
	36 59			00		11 15	
	37 69			21 29	- 8 1°		William College Processing College
	12 37	The Control of the Co		0°		13 15	
	50 22			21.60	-12 2°		
	62 67			15°			21.2 at 0° 12.0 at -15°
in ₁ SO ₄ 10H ₁ O36 89 % HCL (14)	62 96			21 6°	-15 3°		
	63 88	-		0°		28 89	(70.4 - 1.00
	74 64			15°			30.6 at 0° 19.1 at -15°
	74 68			0°		30 85	
	75 30			21 5°	-14 8°		
	79 90			00		27 43	
	86-63			15°			{24.5 at 0° 13 4 at -15°
	86 72			0°		19.44	
	88 53			20.1°	-15 6°		

[†] Temperature when all ice is melted

Substances	Composition of mix- ture (% anhydrous salt, unless other- wise stated). E = eutectic composition	Freezing point of solution	Initial condition of freesing mixture	Lowest attained temperature recorded	Heat absorbed at temperature of mixing, cal per g of mixture	Heat absorbed (at freesing or satur- ation point of solu- tion) from objects to be couled, est, per g of mixture. The "values are heats of fusion of the cutectic, v (*)
	% of Na ₂ 8O ₄ 10H ₂ O 46.04		19 7°	-11 8°		
	49.74		19 7°	-11 8°	- 2 m mante managemente de 10	
	63.46		19 7°	-14.40		
1818O4.10H1O-30 13% HCl (14)	65.23		20 4°	-15 6		
	75 43		20.0°	-14 8°		
	82 54		19 9°	- 17.2°		
	86 31		20 0°	-12.6°		
	89 88		20 1°	ca 0°		
	% of Na ₂ SO ₄ 10H ₂ O 35.54		()0		12 67	
	38.16	-	19.9℃	8 2°		
	50 42		19 80	10 0°		
	62 22		0°	* *************************************	26.84	
Ja ₁ SO ₄ 10H ₂ O-24 47% HCl (14)	63 86		20 5°	-12 0°		
	67 57		0°	The maker as	27.18	
	71.46		0,	77.00.4	25 72	
	75 36		21.0	- 11 8°	71.81	
	78 40	LAMBOUR V	0_a		20 21	
C ₁ H ₄ OH—H ₂ O (10)			alc at 2° ice at 0°	- 24 2°		
	% alc 50	- 37°	alc at 1.5° ice at -1°	- 29 4°		
	51 3	- 38°	alc at 4° ice at 0°	ca -30°		

, Salts	Temperature produced by mix- ing salts with water	Lat	Reduction of temperature produced by a ater with an equal weight of a salt or of a mixture of saits in equal parts (?)
NH ₄ Cl	1		14°
NaCl			4°
KCl			12°
NH ₄ NO ₃			25°
NaNO ₂			9 5°
KNO ₁			10°
NH ₄ 8O ₄			8°
Na ₂ SO ₄ .10H ₂ O			7 5° 4 5°
K ₂ SO ₄	40.00		
NH ₄ Cl—KNO ₂	-18 2°	(9)	20°
NH ₄ Cl—NaNO ₁	-31 5°	(9)	17°
NH ₄ Cl—NH ₄ NO ₄			22°
NH ₄ Cl—Na ₂ SO ₄ .10H ₂ O	-17 6°	(9)	19°
NH ₄ Cl—K ₂ SO ₄	-18 0°	(9)	10°
NaCl-KNO ₁	-24 9°	(9)	10
	-24 9	(5)	11°
KCl-NaNO ₁			20°
NH4NOr—KNO4		l	22°
NH ₄ NO ₅ —Na ₂ SO ₄ .10H ₂ O	10_5°	(9)	26°
Na ₂ NO ₂ —Na ₃ SO ₄ .10H ₂ O		(-)	10°

Salts	Temperature produced by mixing salts with water	lat.	Reduction of temperature produced by water with an equal weight of a salt or of a mixture of salts in equal parts (?)
NaNO ₄ KCNS	-37 4°	(1)	
KNO _z NH ₄ CNS	-28.2°	(1)	
NH ₄ Cl-~NH ₄ NO ₂ KNO ₂ .	-22 6°	(9)	
NH ₄ Cl—NH ₄ NO ₂ —NaNO ₂	-30.1°	(9)	
NH ₄ ClNa ₂ SO ₄ .10H ₂ OKNO ₈ .			17°-23°
NH ₄ Cl(NH ₄) ₂ SO ₅ K ₂ SO ₄	-15.2°	(9)	
NH ₄ Cl (NH ₄) ₂ SO ₄ —N ₁₁₂ SO ₄ .10H ₂ O	-19.9°	(9)	
NaCl 2H ₂ O -NaNO ₂ KNO ₃	-24 6°	(9)	
KClKNO ₂ K ₂ SO ₄	-11.55°	(2)	1
NH ₄ NO ₄ —KNO ₄ —NaNO ₄		1	16°-27°
NH4NO2-KNO2-NB2SO4.10H2O			17°-26°
NH ₄ NO ₃ (NH ₄) ₂ SO ₄ Na ₂ SO ₄ .10H ₂ O ₄ .	-19.5°	(9)	

LITERATURE

(For a key to the periodicals see end of volume)

(For a key to the periodicals see end of volume)

(1) Brendel, Diss., Charlottenburg; 92. (2) Bruni, 30, 27, 1: 537; 97. (3)

Duclaux, 34, 151; 715, 10. (4) Gortner, 193, 39; 584; 14. (5) Gröber,

Diss., Techn. Hochschüle, München; 98. (4) Hammerl, 75, 78: 59; 78.

(7) Hanamann, 112, 173: 314; 64. (5) Kanolt, 43, 9: 416; 24.

(8) Maszotto, 72, 28: 545, 633; 90.

(10) Morits, 136, 6: 1374; 82. (11) Pfaundler, 75, 71: 509; 75. (12) Rüdorff,

8, 123: 337; 64. (13) Rüdorff, 8, 124: 276; 69. 25, 2: 68; 69. (14)

Szydlowski, 75, 116: 855; 97. (18) Tollinger, 75, 72: 535; 75.

2. TEMPERATURES ABOVE 0°C

OTAR A HOUSEN AND ROLLED A RACIATE

(a) Bath Liquids or Vapor Baths with Boiling under Constant External Pressure. For heterogeneous systems and solutions v. (13). For fire hazards on certain of these liquids v. p. 61. For a more extensive series of liquids arranged in order of boiling points r p 310

	Borbrog	point	Actual tange	i
Substance	At 760	At 100	used	Lat
	mm	trim	1,000	
Ethyl chloride	12.2	-31 3°	13° to 30°	
Ethyl ether	34 5°	-12 12		(2, 11, 13)
Carbon doutlide	16.37	1.82	16° to ~26°	(3, 11, 13, 26, 27 31, 41)
Acetone	56 12	7.52		(13, 21)
Chloroform	61 22	9.70		(11, 21)
Methyl alcohol	61.5	20-627	65° to 19°	(Z, 10, 11, 13, 21
Ethyl alcohol	7× 5°	31 1	78° to 40°	(2, 10, 11, 13, 21 31)
Benzene	79.81	25.82	81° to 40°	(10, 11, 13, 39)
Water	100	51.72	145° to 25°	(2, 3, 9, 11, 13,
	1			16, 14, 26, 27
				29, 30, 32, 43)
Toluene	110.52	51.83	130° to 70°	(10, 13, 21, 21
)			32, 39, 45)
Chlorobenzene	132 17	70.32	132° to 70°	(11, 39)
m-Xylene	139 02	77 8°	140° to 70°	10, 21, 28, 32
		1		39, 45)
Isonuvi acetate	112.52		141° to 119°	(30, 45)
Bromobenzene	156.20	90.7°	160° to 120°	(28, 31)
Ambre	181.1°	119 49	184° to 150	(27, 31, 32, 31
	1		1 10 1 10	42, 48)
Ethyl benzoate	213 20	1122	1	(21, 27, 45)
Naphthalene	217 92	111 32	1	(28, 39)
Methyl salicylate	223 3	1512	225° to 175°	(31)
Quinoline	237 7°	166.7	2 08° to 170°	(15, 21, 39, 45)
Isoamyl benzoate	262"			(21, 28, 45)
a-Bromonaphthalene	281 1°	198 5	281° to 215°	(28, 31)
Diphenylamine	302 0°	221		(5, 15, 28, 39, 41
Benzophenone	305 42	2219	3067 to 257°	(28, 39)
Mercury .	358 90	261 51	Various	(2, 5, 31, 39)
· · · · · · · · · · · · · · · · · · ·		''''	Patiges	1
Hulfur	111 60	130 7	Various	(2, 8, 6, 39)
Discontinuo mantana 14. 1	520		Fringes	
Phosphorus pentasulfide		~	1	(5)
Zine Petersoniale	907°	7381		(2)

(b) Solid-liquid Non-variant Points 1, Ice-water, v (11, 24, 29, 46). 2. Transformation temperatures of crystalline hydrates.

Salt	Hydration temperature	Lat		
Sodium chromate	19.71	1 (12, 33)		
Sodium sulfate	32 383	(11, 12, 32, 33, 34, 35)		
Sodium carbonate	35-3	(12, 33)		
Sodium thiosulfate	18 0	(12, 33)		
Sodium bromide	50/8	(12, 33)		
Manganese chloride	57.8	(12, 33)		
Trisodium phosphate	73 4	(12, 33)		
Barium hydroxide	78.0	(12. 33)		

(c) Bath Liquids with Thermostatic Control

Liquid	Useful range	Lat
Water	0° to 90°	(17, 18, 21, 40)
Mineral oils	To 20° below	(5, 19, 22, 37,
	the flash point	
Paraffin .	M.P. to 300°	(5, 27, 29, 40)
10 parts cottonseed oil, 1 part		
beeswax	M.P. to 300°	(7)
Hydrogenated sesame oil	60° to 300°	(36)
Hydrogenated cottonseed oil	60° to 285°	(36)

Fused salts	Melting point	Lit.
NaNO ₃ (45%), KNO ₃ (55%).	. 218°	(8, 14, 21, 32, 44)
NaNO ₂ (55%), NaNO ₂ (45%)	221°	(44)
KNO,	. 337°	(1)
NaCl (28%), CaCl ₂ (72%)	500°	(44)
NaCl (50%), K ₂ CO ₂ (50%)	. 560°	(44)
Na ₂ CO ₂ (50%), KCl (50%)	560°	(44)
CaCl ₂ (50 %), BaCl ₂ (50 %)	600°	(44)
NaCl (35%), Na ₂ CO ₂ (65%)	620°	(44)
NaCl (22%), BaCl ₂ (78%)	654°	(44)
NaCl (44 %), KCl (56 %)	663°	(44)

Molten metals	Useful range	Lit.
Lead .	327° to 700° Above 183°	(4, 5, 6, 29)
Lead (30%), Tin (70%)	Above 183°	(14)
Lead (50%), Tin (50%)		(5)

Other liquids	Useful range	Lit.
Naphthalene .	80° to 217°	(20, 21, 25)
Benzophenone	49° to 305°	(20, 21, 25)
Sulfur		(20, 25)

(d) Metal Blocks - Aluminum and copper blocks have been used up to 600°, with a uniformity of temperature of 1° (39).

(e) Gas Baths and Furnaces.—For temperatures above 900°. an electrically heated gas bath is usually employed, although for the higher temperatures a bath material is not essential since heat transfer takes place primarily by radiation. For lower temperatures, heat transfer and temperature uniformity are promoted by packing with a granular non-oxidizing metal.

The following references (compiled by the Geophysical Laboratory) deal with the construction and temperature regulation of high temperature furnaces: Kolovrat, 51, 8:495; 09. Haughton and Hanson, 47, 14: 145; 15. 18: 173; 17. White and Adams, 2, 14: 44; 19. Hangn, 101, 40: 670; 19. Roberts, 128, 11: 409; 21. 48, 6: 965; 22 Bunting, 38, 6: 1209; 23. Adams, 48, 9: 599; 24. Roberts, 48, 10: 723; 25.

LITERATURE

(For key to the periodicals see end of volume)

- (1) Aten, 7, 78: 13, 12 (2) Barus and Hallock, 156, No 84; 89. (3) Brown, 3, 7: 411, 79 (4) Bodenstein, 7, 29: 665, 99 (5) Bodenstein, 7, 30: 113; Solenstein, 7, 30: 125, 99 (7) Bosent, 1, 31: 724, 99. (*) Day and Sosman, 8, 38: 849, 853, 12. (*) Dupre, 77, 38; 308; 13.
 Forster, 1.55, 106: 80, 12. (*1) Freus, Thesis, Chicago; 11. (*2) Geer, 50,
- Forster, 101, 102, 103, 122, (17) Fixes, Incago, 11. (17) Greer, 007, 61,85, 102. (13) Golodetz, 156, 38; 1253, 14. (14) Goodwin and Mailey, 2, 38; 469, 07. (15) Gordon, 7, 38; 305; 199. (14) Grutzmacher, Deutsch. Mech.-Ztg. 1903; 193. (17) Grutzmacher, Deutsch. Mech.-Ztg. 1903; 184. (14) Grutzmacher, 89, 3; 248, 260, 00. (19) Holborn and Henning. 8, 98: 810, 07
- (20) Holborn and Henning, 8, 26: 880, 08. (21) Holborn, Scheel and Henning, B63 (22) Holborn and Schultze, 8, 47: 1101: 15. (23) Jenkin, 85, 18: 197, 22. (24) Marshall, 83, 7: 249: 11 (23) Meisner, 8, 39: 1230; 12.
- (20) Pomplun, 247, 11: 1, 91.
 (31) Ramsay and Young, 4, 47: 640, 85.
 (22) Richards, 45, 4: 910; 12.
 (33) Richards and Churchill, 7, 33: 313; 99. Richards, 43, 4: 910; 12 (33) Richards and Churchill, 7, 28: 313; 99,
 (34) Richards and Mark, 66, 38: 417; 92, (35) Richards and Wells, 65,
 38: 431, 92 (34) Robertson, 45, 18:701, 23. (37) Rothe, 243, 18: 144; 99,
 (31) Shaw, 69, 11, 111; 129, 17 (39) Stähler, B65, 1: 501.
 (40) Stähler, B65, 1: 498, (41) Stock, Henning and Kuss, 25, 58: 1119; 21.
 (42) Sudborough, 54, 18: 16, 99 (42) Thesen, Scheel and Sell, 89, 2:
- 140; 95. (44) Tour, £1£, 6: 171, 24, (45) Wiebe and Böttcher, £45, 10: 10; 90. (46) Washburn and Williams. 1, 25: 741, 13.

MAXIMUM TEMPERATURES THAT CAN BE REACHED AND MAINTAINED FOR OBSERVATIONAL PURPOSES BY VARIOUS MEANS

W. E. FORSYTHE

	Maximum temperature, °C
Electric furnaces operating in open air	<u> </u>
Iron tube or iron wire wound furnace	500
Nicrome wound refractory tube	800
Platinum wound refractory tube-double wind-	
ing (2)	1530
Iridium tube	1900
Carbon resistor furnace	2200
Carbon are furnace	3200
Electric furnaces operating in vacuo or inert gas	
Tungsten wound refractory tube limited by re-	
fractory tube	2000
Carbon tube furnace	2700
Tungsten tube furnace (in vacuo)	2200
Tungsten tube furnace (in inert gas)	2800
Gas-fired furnaces	
Special makes of furnaces(5) with flames enter-	
ing the furnace in tangential direction so as	
to give a good distribution of the heat, if	
gas and air are well mixed, can be raised up	
to about	1700

	Maximum temperature °C
The regenerative furnaces, such as are used in open hearth steel furnaces, can be heated up to about the same temperature of	1700
Arc under pressure Carbon (4) Tungsten (3)	5790 4785
Exploding fine wires by discharging a condenser charged to high voltage through them gives a	
temperature up to about (1)	19700

LITERATURE

(For a key to the periodicals see end of volume)

(¹) Anderson, \$\mathrm{\epsilon}\$, \$\mathrm{\beta}\$: 37; 20 (²) Hyde and Forsythe, \$\mathrm{\epsilon}\$, \$\mathrm{\beta}\$: \$\mathrm{\epsilon}\$: 131; 17 (³) Lunchey, \$\mathrm{\epsilon}\$: \$\mathrm{\epsilon}\$: 181; 17 (³) McCauley, Corning Glass Works, Corning, N Y, O Spencer, National Lamp Works, Nela Park, Cleveland, Ohio, O.

LABORATORY METHODS FOR MAINTAINING CONSTANT HUMIDITY

HUGH M. SPENCER

A saturated aqueous solution in contact with an excess of a definite solid phase at a given temperature will maintain a constant humidity within any enclosed space around it. By properly selecting the salt to be used almost any desired degree of humidity can be secured and controlled in this way. A number of salts suitable for this purpose are displayed in the accompanying chart and tables, together with the % humidity prevailing above their saturated solutions at different temperatures. To convert "% humidity" into "aqueous tension" multiply it by the vapor pressure of pure water at the same temperature.

SOLID PHASE

1.	CaCl ₂ 2H ₂ O (19)	11. Mg(1 ₂ .6H ₂ O (8, 13)
2.	CoCl ₂ .6H ₂ O (8).	12. MgSO ₄ .6H ₂ O (7).
3.	CoSO ₄ 6H ₂ O (7).	13. MnSO ₄ H ₂ O (7).
4.	CuCl ₂ .2H ₂ O (8, 13, 22).	14. NH ₄ NO ₃ (9, 18).
5.	CuSO ₄ .5H ₂ O (11, 16).	15. NaCl (4, 5, 18, 21).
6.	K ₂ C ₄ H ₄ O ₆ , 1 ₂ H ₂ O (4).	16. Na ₂ CO ₂ .H ₂ () (10, 22)
7.	KCl (4, 5, 9, 18, 21).	17. Na ₂ C ₄ H ₄ O ₆ .2H ₂ O (14)
8.	KClO ₃ (5, 11, 16).	18. NaKC ₄ H ₄ O ₆ .4H ₂ O (14).
9.	KNO, (4, 5, 9, 16).	19. NaNO ₂ (4, 5, 9, 18, 21).
	K ₂ SO ₄ (4, 5, 15, 20)	20. Na ₂ SO ₄ (4, 16, 24, 26)

Solid phases	t, °C	% humidity	Lit	
Ba('l ₂ .2H ₂ ()	24 5	88	(15)	
CaCl ₂ .6H ₂ O	5	39-8	(20)	
	10	38	(19)	
	18 5	35	(15)	
	20 0	32 3	(19)	
	24 5	31	(15)	
Ca(NO ₁) ₂ .4H ₂ O	18 5	56	(15)	
	24 5	51	(15)	

Solid phases	. t, °C	% humidity	Lit.
CaSO _{4.5} H ₂ O	20	98	(15)
CrO ₂	20	35	(15)
H ₂ C ₂ O ₄ ,2H ₂ O	. 20	76	(15)
H ₂ PO ₄ , HH ₂ O	24 5	9	(15)
KC ₂ H ₃ O ₂	20	20	(15)
• • •	168	13	(11)
KBr	20	84	(15)
	100	69.2	(5)

Lit (15) (15) (15) (15) (5)

Solid phases		1, "(%)	numidity	L
K ₂ CO ₂ .2H ₂ O			44	(1
KCNS,	1	,	13 7	(1)
$K_{i}C_{i}O_{i}$	/ :	20 81	y /	15
KF	/ 10A	0 0 22	9 1	(5)
K_tHPO_t	20	/ 92		5,
KHSO ₄	: 20	/ 86	/ (1)	
<i>KI</i> , .	/ 100.	0 56-2	/ (5)	ĺ
KNO ₂	20	4.5	(15)	,
LiCl.H₂O	20	1.5	(15)	
$Mg(C_2H_4O_2)_2,4H_2O$	20	65	(15)	
$Mg(NO_s)_s$ $6H_2()$	18.5	56	(15)	
NH ₄ Cl	24 5	52	(15)	
MIII (C)	20 0	79-2	(9)	
	25 0	79-3	(9)	
NH4Cl and KNO4	30 0	79.5	(9)	- 1
24114 1 Hill 14.4472	20 0	72 6	(9)	- 1
	25 0	71 2	(9)	- 1
NH4H4PO4	30 0	68-6	(9)	- 1
	20 0	93-1	(9)	-1
	25 0	93 0	(9)	- [
(NH ₄) ₂ SO ₄	30 0	92-9	(9)	-
(******/p**/**	20 0	81 0	(9)	1
	25 0	81.1	(9)	
	30 0	81 1	(9)	1
NaBr .	108 2	75	(11)	
NaBr.2H ₂ O	100 0	22 9	(5)	1
NaBrO ₁	20	58	(15)	
NaCl and KClO,	20	92	(15)	İ
NaCl and KNO	16 39	36 58	(6)	1.
NaCl, KNO _s and NaNO _s	16 39	32 57	(6)	1'
NaC ₂ H ₄ O ₂ .3H ₂ O	16.39 20	30.49	(6)	1
Na ₃ CO ₃ , 10H ₂ O	18.5	76	(15)	
	21.5	92	(15)	Ι.
NaClO ₃	20 20	87	(15)	1
	100 0	75 - 1	(15)	
	100.0	54	(5)	1

. Solid phases	4,	°C % h	umidity Lit.
Na ₂ Cr ₂ O ₇ .2H ₂ O	20		52 (15)
NaF	. 100	0.0 9	6.6 (s)
Na ₂ HPO ₄ .12H ₂ O .	20	9.	5 (15)
NaHSO4.H2O	. 20	52	
/ NaI	. 100.	0 / 50	
/ NaNO ₂	/ 20	66	(18)
/ Na ₂ SO ₄ .7H ₂ O	29	95	(15)
$\int Na_2S_2O_2.5H_2O$	20	78	(15)
Na ₂ SO ₄ .10H ₂ O	20	93	(15)
$Pb(NO_2)_2$	20	98	(15)
	103 5	88.4	(11)
TIC1	100 097	99.7	(4)
TINO	100 317	98.7	(4)
Tl ₂ SO ₄	104 7	84.8	(4)
ZnCl ₂ .1½H ₂ ()*	20	10	(15)
Zn(NO ₂) ₂ ,6H ₂ ()	20	42	(15)
$ZnSO_4.7H_2O_{++-+}$	5	94.7	(20)
	20	90	(15)

^{*} I netable at this temperature

LITERATURE

(For a key to the periodicals see end of volume)

 Badger and Baker, 33, 23: 569; 20. (2) Baker and Waite, 33, 25: 1137; 21. (3) Baker and Waite, 33, 25: 1174, 21. (4) Berkeley and Appleby, 5, 85A: 489, 11. (5) Bronated, 7, 82: 633; 03. (6) Bronated, 137, 1: 5; 18: (7) Carpenter and Jette, I, 45: 578, 23. (8) Derby and Ingve, I, 38: 1149; 16. (8) Edgar and Swan, I, 44: 570; 22.
 Gernamov, 53, 48: 1666; 13. (11) Gerlach, 9I, 26: 413; 87. (12) Lescouer, 34, 103: 1290, 88. (14) Lescouer, 6, 2: 78; 94. (14) Lowry and Morgan, I, 46: 2192; 24. (15) Obermiller, 7, 109: 145; 24. (14) Pawlowitach, 7, 84: 169, 13. (17) Prideaux, 54, 89: 182; 20. (18) Rodebush, I, 40: 120; 118. (18) Roseeboom, 7, 4: 31, 89.
 Sidgwick and Ewbank, 4, 126: 2268, 24. (21) Speranski, 7, 70: 519; 10. (22) Speranski, 7, 78: 86: 300, 85. (28) van't Hoff, 7, 45: 288, 03. (24) Wuite, 7, 86: 369; 14. (1) Badger and Baker, 33, 23: 569; 20. (2) Baker and Waite, 33, 25: 1137;

BAROMETRY AND MANOMETRY

H. H. KIMBALL

1. Gravity Correction.-The equivalent barometric, or other manometric, height (B_*) corresponding to standard gravity $(g_* =$ 980.665 cm sec⁻²) is related to the height (B_i) corresponding to local gravity (g_i) as shown by equation (1):

$$B_{s} = B_{i} \frac{g_{t}}{g_{s}} = B_{t} + C_{s}; \quad C_{g} = B_{i} \frac{g_{t}}{g_{s}} = \frac{g_{s}}{g_{s}}$$
When g_{t} and g_{s} are expressed in em sec 2 ,
$$C_{g} = B_{t} \left[\begin{array}{c} (g_{t} - g_{s})(1.0197) \\ 1000 \end{array} \right]$$

$$C_g = B_t \begin{bmatrix} (g_t - g_s)(1.0197) \\ 1000 \end{bmatrix}$$

Any desired unit may be used for B_i ; C_a and B_i are in the same unit as B_i . [For most barometric purposes, a sufficiently accurate correction (within $\pm 0.01\%$ of B_l) is obtained by the use of the

approximate correction $C_{n'} = B_n \frac{g_1 - g_2}{g_2}$, in which B_n is the usual barometric pressure at the station]

Example: $B_i = 29.851$, $g_i = 978.053$ cm sec⁻². Then $(g_i - g_s)$ = -2.612 cm sec⁻²; $0.0197(g_1 - g_2) = -0.0515$ cm sec⁻²; $1000 C_a$ $= -2.663B_1 = -79.49$. $B_0 = 29.851 - 0.079 = 29.772$.

2. Temperature Correction.—The equation by which the equivalent barometric, or other manometric, height (B) at the standard temperature (t_m) can be computed from the nominal height (B') at the temperature t, is generally written in the form

$$B = B' + C_t; \quad C_t \equiv B^{l(t-t_s)} - m(t-t_m)$$

$$1 + m(t-t_m)$$
(2)

where $t_m = \text{standard temperature of the manometric liquid, } t_s =$ temperature at which the scale, after correction for errors of graduation, reads correctly, m = coefficient of cubical expansionof the manometric liquid, l = coefficient of linear expansion of the material on which the scale is engraved.

The value of m which is generally used for mercury, and which has been adopted by the International Meteorological Tables, is $m = 181.8 \times 10^{-6}$ per °C. For temperatures between 0°C and 30°C this value appears (5, 6, 8, 15, 17) to be correct within $\pm 0.1 \times 10^{-4}$ per °C. The value of l, for brass, which has been adopted by the International Meteorological Tables, is l=18.4 X 10⁻⁶ per °C. The best determinations (1, 2, 11) of this coefficient for temperatures between 0° and 30° yield values varying from

 17.5×10^{-6} per °C to 19.3×10^{-6} per °C, or by $\pm 5\%$. For glass scales the approximate value $l = 8.5 \times 10^{-6}$ per °C is usually satisfactory. (For silicate flint glasses (13) I varies from 7.88 × 10⁻⁴ per °C to 9.35 × 10⁻⁴ per °C; for crown glasses (¹³) it varies from 6.75 × 19⁻⁶ to 9.54 × 10⁻⁶ per °C.

For barometers with metric scales, the combined effect of an

will cause an error in C_t of $\pm \frac{B't \times 10^{-4}}{1 + mt}$ For $t = 30^{\circ}$ C and B' =760 mm, the error would be ± 0.023 mm; while for $t = 10^{\circ}$ C, B' = 100 mm, it would be only ± 0.001 mm. At ordinary room

temperatures, the error so produced in C, will be less for barometers error of $\pm 0.1 \times 10^{-6}$ per °C in m and of $\pm 0.9 \times 10^{-6}$ per °C in t | barometers graduated in inches $t_* = 62^{\circ}\text{F}$, $t_* = 32^{\circ}\text{F}$). graduated in inches than for one graduated in millimeters. (For

Table 1.—Temperature Correction (C_t) for Mercurial Manometers and Banometers $B=B'+C_t;$ $(B'=\text{nominal height at }t^\circ;B=\text{equivalent height for mercury at }0^\circ\mathrm{C};B,B',$ and C_t are all in the same unit, which may be anything desired)

A. Brass scale correct at 62°F, inches, °F; $t_m = 32$ °F, $t_r = 62$ °F, $m = 181.8 \times 10^{-6}$ per °C, $l = 18.4 \times 10^{-6}$ per °C (Applies directly to commercial barometers graduated in inches)

	1	,				maated in inc	near		
t(°F)	10	20	30	40	50	60	70	80	90
+12	+0 015	+0 030	+0 045	+0 061	+0 076	+0 091	+0 106	+0 121	+0 136
22 32	+0.006 -0.003	+0.012 -0.006	+0 018	+0 024	+0 030	+0 036	+0 042	+0 048	+0 054
42	-0 012	-0 000	-0 009 -0 036	-0.012 -0.049	-0 015 -0 061	-0 018 -0 073	-0 021 -0 085	-0 024	-0.028
52	-0.021	-0 042	-0 064	-0 085	-0 106	-0 127	-0 083	-0 097 -0 169	-0.109 -0.191
62 72	-0 030 -0 039	-0 060	-0 091	-0 121	-0 151	-0 181	-0 211	-0 242	-0.272
82	-0.048	$ \begin{array}{c c} -0.078 \\ -0.096 \end{array} $	-0.118 -0.145	-0 157 -0 193	-0 196 -0 241	-0 235	-0 275	0 314	-0.353
92	-0.057	-0 114	-0.172	-0 229	-0.241 -0.286	-0 289 -0 343	-0 338 -0 400	0 386 0 458	-0.434 -0.515

B. Brass scale correct at 0°C, millimeters, °C; $t_m = t_s = 0$ °C, $m = 181.8 \times 10^{-6}$ ner °C, $l = 18.4 \times 10^{-6}$ per °C.

			., ., .,		. 101.0 X	to per C	, t ~ 10.4 A	to per c	,
t(°C)	100	200	300	400	500	600	700	800	900
-10	+0 16	+0 33	+0 49	+0 65	+0.82	+0.98	+1 15	+1 31	+1 47
- 5	+0 08	+0 16	+0.25	+0 33	+0.41	4 0 49	+0 57	+0 65	+0.74
0	0 00			İ		1	1	' '	,
+ 5	-0 08	-0 16	-0 24	-0 33	-0 41	-0 49	-0.57	-0 65	-0.73
10	-0 16	-0.33	~0 49	-0 65	-0.82	0 98	1 14	1 30	-1.47
15	-0 24	-0 49	-0 73	0 98	-1 22	-1 47	1 71	~1.96	-2 20
20	-0 33	-0 65	-0.98	-1 30	-1 63	-1 95	-2 28	-2 60	-2 93
25	-0.41	-0.81	-1 22	-1 63	-2.03	-2 44	-2 85	~3 25	-3.66
30	-0.49	-0.98	-1 46	-1 95	-244	-2 93	-3 41	-3.90	-4.39
35	-0 57	-1 14	-1 70	-2 27	-2 84	-3 41	-3 98	4 55	-5.11
40	-0.65	-1 30	-1 95	-2 60	-3 24	-3.89	-4 54	- 5.19	-5 84

C. Glass scale correct at 0°C, $t_m = t_* = 0$ °C, $m = 181.8 \times 10^{-6} \text{ per °C}$, $t = 8.5 \times 10^{-6} \text{ per °C}$

	so scare (thi	cco at oc,	(m = t] = (/ · · · · · · · · · · · · · · · · · · ·	11.0 / 10	per c, t =	0.0 × 10	M-1 (7	
1(°C)	100	200	300	400	500	600	700	800	900
-10	+0 17	+0 35	+0 52	+0 69	+0.87	+1 04	+1 22	+1 39	+1.56
- 5	+0.09	+0 17	+0 26	+0 35	+0 43	+0 52	+0 61	+0 69	+0.78
0	0 00				l .	Í			
+ 5	-0 09	-0 17	-0 26	-0 35	-0 43	-0.52	-0 61	-0 69	-0 78
10	-0 17	-0 35	-0 52	-0.69	-0.86	1 04	1 21	-1 38	-1.56
15	-0.26	-0 52	-0.78	-1 04	-1 30	-1.56	1 81	-2 07	-2.33
20	-0 34	-0 69	- 1 04	-1 38	-1 73	-2 07	-242	-2.76	-3.11
25	-0.43	-0.86	-1 29	-1 73	$-2 \ 16$	-2.59	-3 02	-3 45	-3.88
30	-0.52	-1 03	-1.55	-2 07	-2.59	-3 10	-3.62	-4 14	-4.65
35	-0 60	-1 21	-1 81	$-2 \ 41$	-3.01	-3.62	-4 22	-4.82	-5.42
40	-0.69	-1.38	-2 06	-2.75	-3 44	-4 13	-4 82	-5 51	-6.19

Example: Barometer graduated in inches, brass scale correct at 62°F; B' = 29.564 in., t = 76.8°F. From section A it is found that at 72°, C_t for B' = 29.564 is -0.1155, at 82° it is -0.1421; hence at 76.8°, $C_i = -0.1155 + \frac{4.8}{10}(-0.0266) = -0.1155$ 0.0128 = -0.128. Hence B = 29.564 - 0.128 = 29.436 in.

3. Capillary Corrections.—The curvature of the surfaces of the manometric liquid introduces pressures directed towards the centers of curvature of the surfaces. For each surface, this pressure is

 $\gamma \binom{1}{r_1} + \frac{1}{r_2} \text{dynes cm}^{-1} = \frac{\gamma}{dg} \binom{1}{r_1} + \frac{1}{r_2} \text{cm of the manometric liquid.}$ $[\gamma = \text{surface tension (in dynes cm}^{-1}), d = \text{density of the liquid}]$ (in g cm⁻³), g is the acceleration of gravity (in cm sec⁻²), and r_1 and r_2 are the principal radii of curvature (in cm) of the surface

at the point considered.] At the vertex of the meniscus in a tube of circular section, $r_1 = r_2 = r$, and if the angle of contact of the liquid with the tube is either 0° or 180°, and if the tube is not too large, r is practically equal to the internal radius of the tube. If

the liquid surface is in an annular space between coaxial, circular cylinders (as in the reservoir of a Fortin barometer), if the angle of contact is 0° , and if neither r_1 nor (r_3-r_2) is very great as compared with the capillary constant, $(1^{\$})$, then $h'=\frac{2dhr_1}{(r_3-r_2)^2}$ approximately; h' and h are the respective capillary pressures (in the annular space of width (r_3-r_2) , and in a tube of radius r_1 ; and d is the depth of the annular menseus

Laplace (12) has shown that, except for sign, the equations for a convex meniscus are the same as those for a concave one. Hence, this expression can probably be accepted as a first approximation to the value for h' for any liquid, provided that the angle of contact of the liquid with the solid is the same at all three surfaces, and that r_1 and $(r_3 - r_2)$ are not too great. In the case of the ordinary mercurial eistern barometers, $(r_3 - r_2)$ is quite large as compared with the capillary constant of mercury, and the angles of contact may not be the same at all three surfaces; for these reasons, no great confidence can be placed in the actual value of h', as so computed, for such barometers, but its order of magnitude will probably be correct.

Table 2. -Capillary Depression of the Apex of a Mercurial Column in a Glass Tube of Circular Section*

Depression in millimeters.

Radius of the tube,	Ī			Н	eŋ	ght	0	ſ t	he	m	rn	set	۱۲,	m	m			
mm	0	2	0	4	0	6	0	8	1	()	1	2	1	1	1	6	1	8
1 0	2	16	Ī	40	<u> </u>						Ī				Ī			
1 4	1	26	2	36	3	22												
1.8	0	75	1	41	2	02	2	18										
2 2	0	49	0	95	1	36	1	70	1	98					ĺ			
2 6	0	34	0	66	0	96	1	22	1	44	1	64			1			
3 0	0	21	0	48	ю	.70	0	90	ı	07	1	21	1	32				
3 5	0	17	0	34	0	49	0	64	0	76	0	87	0	96	ı	01		
4 0	0	12	0	21	0	35	0	46	0	56	0	64	0	71	0	77	0	82
4 5	0	09	0	18	0	26	0	31	0	41	0	47	0	. 53	0	58	0	62
5 0	ю	07	0	13	0	19	0	25	0	30	0	35	0	10	0	1.4	0	47
5 5	0	05	ю	. 10	0	1 1	0	19	ю	23	0	27	0	30	ю	. 33	0	36
6.0	ю	04	0	07	ю	11	0	11	0	18	0	20	o	23	lo	25	0	. 27
6.5	0	03	0	06	ю	09	0	11	ю	11	0	16	ю	18	0	. 20	0	.21
7.0	0	02	o	04	o	06	0	08	lo	10	lo	12	lo	14	lo	1.5	lo	16

^{*} From the Schleiermacher-Deleros (4, 2, 10) table, as revised by Süring (14). The values are about 5% larger than those obtained from Bravais's (3) table, in which the arguments are the diameter of the tube, and the angle of incidence of the meaness of the moreural column with the walls of the tube.

Example: In a barometer eistern for which $r_2=6$ mm, $r_3=16$ mm, d was found to be 0.5 mm; the radius of the barometer tube was $r_1=5$ mm, and the height of the meniscus in it was 1.0 mm. From Table 2 it is found that the depression h, due to the meniscus in the 5 mm tube, is 0.30 mm; hence h'=0.015 mm. That is, the pressure due to the annular surface is of the order of 0.02 mm; and the total depression of the column is H=0.30=0.02=0.28 mm, subject to the uncertainty regarding the actual value of h'.

4. Possible Residual-gas Error in Good Barometers.—Under ordinary laboratory conditions, errors amounting to as much as 4.1 mm (0.163 in) have been observed, and errors of 1.1 mm (0.043 in.) are not uncommon; but in most barometers, this error

does not exceed 0.25 mm (0.010 in.) when the instrument is shipped by the manufacturer. Air may be introduced during shipment and by handling. The smaller the tube of the barometer, the more likely is the error to be large. The magnitude of the error varies with the temperature and with the volume of the space above the mercury column, as indicated by equation (3):

$$x = x_0 \frac{V_0}{V} [1 + 0.00367(t - t_0)]$$
 (3)

where x_0 and x are, respectively, the errors corresponding to the volume V_0 temperature t_0 , and to the volume V temperature t; temperatures being expressed in ${}^{\circ}C$.

5. Conversion of Water Column at $t^{\circ}C$ to the Equivalent Water Column at $4^{\circ}C$.—If h_t and h_4 are the equivalent true heights (corrected for scale errors of graduation and expansion, and for capillary pressures), and if d_1 and d_4 are the respective densities (7, 16) then, if $\delta = (d_4 - d_1)/d_4$, $h_4 = h_1(1 - \delta)$.

Table 3.-Values of 1008

4 /9/ 1.			Units of	!	
t (°C)	0	2	1	6	8
tens	!				
0	0 013	0 003	0.000	0 003	0 012
1	0.027	0 048	0 073	0.103	0.138
2	0.177	0.221	0 268	0 320	0.375
3	0.435	0 497	0.563	0 633	0.706

Example.— $h_{2b} = 67.53$ cm. At 25°, $100\delta = 0.294$. $\therefore \delta h_{2b} = 0.199$, $h_4 = h_{2b}(1 - \delta) = 67.53 - 0.20 = 67.33$ cm.

6. Conversion of Water Column at $4^{\circ}C$ to Equivalent Mercury Column at Standard Density (13.5951 g cm⁻³); and the Reverse.—
If h_{w} and h_{m} are the equivalent true heights (corrected for the scale errors of graduation and expansion, and for all capillary effects) of the water and the mercury, respectively, $h_{m} = 0.073554h_{w}$.

Table 4. -Equivalent Columns of Water (h_w) and of Mercury (h_m)

(Density of water = 0.999973 g cm⁻³; of mercury = 13.5951 g cm⁻³)

h _w	h _m	h _u	h _m	h.,,	h _w	h _m	ho
100	7.3554	600	11 132	1	13 5955	6	81.573
200	14 7108	700	51 488	2	27 1909	7	95 168
300	22 0662	800	58.843	3	40 7864	8	108.764
400	29 4216	900	66 199	1	54 3818	9	122.359
500	36 7770	1000	73 554	.5	67 9773	10	135 955

LITERATURE

(For a key to the periodicals see end of volume)

- Benn, 88, 14: 1113; 12 (2) Benott, 238, 6: 190, 88. (3) Bravaia, 6, 6: 192, 42 (4) Bravais and Martins, 239, 14: 47, 41 (4) Broch, 238, 2: 21, 83 (6) Chappuis, 238, 13: 28, 07 (7) Chappuis, 238, 13: 30; 07, (4) Chappuis, 238, 16: 31, 17 (9) Deletos, Annaire Météorologique de la France, 169-170; 49.
- (1º) Deleros, 240, 8; 3; 18
 (1¹) Dittenberger, 98, 46; 1535; 02.
 (1²) Laplace, Mécanique Céleste (Bowditch translation) 4; 737.
 (1²) Pulfrich, 8, 46; 661; 92.
 (4²) Sirriag, Ber u d Tätigk d Kgl. Pruss Meteor. Inst., 24-42; 16.
 (1²) Thiessen, 89, 4; 4, 04.
 (1²) Thiessen, Scheel and Sell, 89, 2; 180; 95.
 (1²) Verschaffelt, 168, No. 32. 64V, 24; 175; 85.

PSYCHROMETRY

PSYCHROMETRY; DENSITY OF MOIST AIR; CHANGE IN BAROMETRIC PRESSURE WITH ALTITUDE

F. W. J. WHIPPLE

$B; B_h$	Barometric pressure, in general; at h
c	Instrumental constant
d; da; do	Density of air, in general; at h ; at T_o and A_n
e; e'	Pressure of water vapor, present; when in equilibrium with water (or ice) at temperature t'
g; g.	Acceleration of gravity, actual; standard value
h; H	Altitude above sea level, em; meters
t; t'	Readings of dry bulb; of wet bulb
$T; T_a; T'$	
x	Ratio (mass of vapor)/(mass of dry air)

1. Psychrometry.—The pressure of the water vapor contained in the air is commonly deduced from the simultaneous readings of wet bulb and of dry bulb thermometers. The difference in these two readings depends upon the heat received by radiation as well as upon that furnished directly by the air. When the air flow is slow, the radiation is an important factor. In the Assmann psychrometer the bulb is surrounded by a double metal sheath; this largely eliminates radiation effects. It is important to secure adequate ventilation by the use of a thermometer with a bulb much smaller than the sheath. The standard bulb is 12 mm long and 4 mm in diameter. Alternatively, the thermometers may be "slung," i.e., whirled on a suitable holder. In this case, direct radiation from sun or sky should be avoided as it affects the drybulb readings and therefore the psychometric difference.

The general formula for the computation of vapor pressure is

$$e'-e=CB(t-t')\times 10^{-4}$$

B, c, and c' are expressed in the same units, which may be anything desired. Within the order of accuracy of psychrometer observations, C is constant for a given velocity of the air-flow past the wet bulb. The relation of C to the air velocity has not been determined very precisely. The variation of C with temperature is negligible. If temperatures are expressed in °C, the value of C for thermometers with adequate ventilation (a relative velocity of 3 m per second or more) is 66 when the cover of the wetbulb is saturated with water. On theoretical grounds, a lower factor, 5.8, is appropriate for an ice-covered bulb, but in the tables in general use 6.6 is adopted in this case as well. (Aspirations Psychrometer Tafeln, Braunschweig. 1908. Ferrel, Report of Chief Signal Officer, p. 248. Washington, 1886) For the reduction of the readings of thermometers exposed in a Stevenson screen, Regnault's values of C, 8 for water and 7 for ice, are generally recommended (Études sur l'Hygrométrie, p. 102, Paris, 1845) As, however, the ventilation is indeterminate, the accuracy obtainable is of a lower order.

Relative Humidity is computed by expressing e, determined by the psychrometric formula, as a percentage of the pressure of vapor in equilibrium with water (not ice) at the temperature of the dry bulb.

2. Density of Moist Air*

T. T. = absolute temperature in $^{\circ}$ C

*If $d_w, d_a =$ density of vapor and of dry air at same pressure and temperature, $d_w/d_a = 0.6217$ and $(d_a = d_w)/d_a = 0.3783$.

Pressure unit	d
Any unit	$\left(\frac{d_s T_s}{T} \left(\frac{B - 0.3783e}{A_n} \right); \right)$
	$\frac{d_s T_s B}{T B_s} \left(\frac{0.6217(1+x)}{0.6217+x} \right)$
Mm Hg	$\frac{461.6}{10^{\circ}} {B - 0.3783e \choose T} \mathbf{g/cm^{*}};$
	$\frac{288.9}{10^6} \left(\frac{B(1+x)}{(0.6217+x)T} \right) g/cm^3$
Kilodynes per cm²	$\frac{348.5}{10^6} {B - 0.3783e \choose T} g/em^2$
	$\left[\frac{216.7}{10^6}\left(\frac{B(1+x)}{(0.6217+x)T}\right)\mathbf{g}/\mathrm{cm}^4\right]$

mass of vapor 0.6217 a x = mass of dry air B -- e

Fables in Dictionary of Applied Physics 3: 76, and in paper by Shaw and Fahmy in Quart. J. Roy. Meteorological Soc., 1925, 210

Specific humidity =
$$\frac{\text{mass of vapor}}{\text{total mass}} = \frac{0.6217 \ e}{B - 0.3783 \ e}$$

3. Relations Connecting Pressure and Altitude, -V. Bierknes defines "virtual" temperature (T') as T' = TB/(B - 0.3783e).

$$\frac{\mathrm{d}B}{B} = \mathrm{d}(\log_{10}B) = -\frac{gd}{B}\mathrm{d}h = -0.03416\frac{g}{g_{\star}}\frac{\mathrm{d}H}{T'} = -\frac{g}{29.26\frac{g}{g_{\star}}}\frac{\mathrm{d}H}{T'} \quad (1)$$

$$\mathrm{d}(\log_{10}B) = -\frac{0.014842}{g_{\star}}\frac{g}{T'} + \frac{\mathrm{d}H}{T'} = -\frac{g}{67.38\frac{g}{g_{\star}}}\frac{\mathrm{d}H}{T'} \quad (2)$$

$$d(\log_{10} B) = -\frac{0.014842 \ g}{g_*} \cdot \frac{dH}{T'} = -\frac{g}{67.38 \ g_*} \cdot \frac{dH}{T'} \tag{2}$$

If suffix $_1$ refers to the lower station and $_2$ to the upper, then

$$\log_{10} \frac{B_1}{B_2} = 0.014842 \frac{g}{g_s} \cdot \frac{2(H_2 - H_1)}{T'_1 + T'_2}, \text{ approx.}$$
 (3)

If suffix 1 refers to the lower station and 2 to the upper, then
$$\log_{10} \frac{B_1}{B_2} = 0.014842 \frac{g}{g} \cdot \frac{2(H_2 - H_1)}{T'_1 + T'_2}, \text{ approx.} \tag{3}$$

$$B_1 = B_2 \left[1 + 0.03416 \frac{g}{g} \cdot \frac{2(H_2 - H_1)}{T'_1 + T'_2} - 0.03116 (H_2 - H_1) \frac{g}{g} \right],$$

$$\text{approx.} \tag{4}$$

$$H_2 = H_1 = \frac{29}{g} \frac{26}{g_*} \cdot \frac{B_1 - B_2}{B_1 + B_2} (T'_1 + T'_2)$$
, approximately. (5)

For $(H_2 - H_1)$ not exceeding 1000 m, equations (4) and (5) are equivalent to the logarithmic formula. The factor $q/q_* = (1 0.002640 \cos 2\phi)(1 - 3.14H \times 10^{-7})$ may generally be taken as unity. The distinction between virtual and actual temperature may be ignored except when high temperatures are involved.

In the determination of heights in an extended barometric survey of a country, allowance must be made for the horizontal pressure gradient. When daily weather maps are available, B_1 may be taken from them as the pressure at sea-level in the neighborhood. If T_1 is not known, the conventional value (adopted by Intern. Meterological Conference, Innsbruck, 1905) $T_1 = T_2 + \cdots$ 0.005 $(H_2 - H_1)$ may be used, but in hot weather $T_1 = T_2 +$ 0.01 $(H_2 - H_1)$ is a better approximation. Value of T_2 observed at a mountain station may differ considerably from the temperature of free atmosphere at same level; this is especially true in calm weather, at night, and in the early morning. (cf. Hesselberg, Int Meterol. Conference, Utrecht, 1923, App. L.) Tables of

virtual temperatures: V. Bjerknes, Dynamic Meteorology, etc., Washington, 1911. Values of 0.01484/T: Computer's Handbook of Meteorological Office, London, 2: 45.

Graduation of Aneroids.—The height scales on aneroids designed for the use of travellers, are graduated on the assumption that the temperature of the atmosphere is constant and independent of the altitude. Various standard temperatures, such as 50°F and 0°C have been used. For such scales, especially when applied to aircraft use, the difference between the indicated and the true height may be excessive.

The International Commission for Aerial Navigation adopted in 1925 a scale based on the following conventions (cf. Dict. Applied Physics 3: 182); (a) Pressure at sea-level is $A_n=1.0132\times 10^6$ dynes/cm²; (b) temperature at sea-level is 15° C; (c) temperature decreases by 6.5°C per km, up to 11 km; and above 11 km is constant at -56.5 C; (d) humidity may be ignored; (e) value of g is same at all heights and $=g_{45}$ (essentially g.). Whence, denoting the pressure and density at sea-level by B_1 , and d_1 ; those at 11 000 m by $B_{11,000}$ and $d_{11,000}$:

$$\frac{B}{B_1} = \left(\frac{288 - 0.0065 \, H}{288}\right)^{4.156}; \frac{d}{d_1} = \left(\frac{288 - 0.0065 \, H}{288}\right)^{4.156};$$
if H > 11 000 m.
$$\log_{10} \frac{B_{11.000}}{B} = \log_{10} \frac{d_{11.000}}{d} = \frac{H - 11.000}{14.600}, \text{ if } H > 11 000 \text{ m}.$$

	Unit	Value	Log10
B_1	mm	760	2.88081
$\boldsymbol{B_1}$	kilodyne/cm²	1013.2	3.00570
d_1	g/m³	1226	3.08849
$B_{11\ 000}$	mm	169.6	2.22943
$B_{11\ 000}$	kilodyne/cm²	226.1	2.35432
d11 000	g/m³	364	2.56104

As the regulations drawn up by the I. C. A. N. are ambiguous, attention must be drawn to the fact that whilst the altimeter reading, H, gives the pressure uniquely, it cannot give the temperature and density of the air. Hence the formulae for d are on quite a different footing from those for B. (Cf. Section on Aerodynamics, Ed.)

VOLUMES OF LIQUID MENISCI

F. A. GOULD

As used in this section, the volume (V_m) of the liquid meniscus in a vertical, circular cylinder = volume of the liquid which lies below the capillary surface and between two horizontal planes, one tangent to the meniscus, and the other passing through the line in which the meniscus meets the wall of the tube. The value of V_m depends upon the surface tension (γ) , the acceleration of gravity (g), the difference (ρ) in the densities of the fluids separated by the surface, the radius (r) of the cylinder, and the angle (θ) at which the capillary surface meets the wall of the cylinder. If θ is variable and not too small, it is more convenient to use the height (h_m) of the menscus (= distance between the planes mentioned), than θ , as one of the variables. This has been done in Tables 1 and 2, which give the volume of the mercury meniscus for $\gamma = 400$ mg wt /cm (=392.27 dynes/cm, g = 980.065), $\rho = 400$ mg wt /cm (=392.27 dynes/cm, g = 980.065), $\rho = 400$

13.55g/cm². This value of γ is close to the mean of the values corresponding to the experimental determinations of V_m by Scheel and Heuse (8, **33**: 295; 10) (425 mg/cm), and by Palacios (139, **17**: 295; 19. 63, **24**: 152; 23) (406 to 326 mg/cm); an idea of the error which is associated with a departure of the actual value of γ from that assumed may be obtained by comparing their values with those here given. (See also Schalkwijk, 168, No. **67**, and 64 V, **8**: 462; 00. **9**: 512; 01.)

If $\theta=0$, it is convenient to tabulate the dimensionless quantities V_m/r^3 and $h_c/r=V_m/\pi r^3$ as functions of $g_\rho r^2/\gamma$, as is done in Table 3. $[g_\rho r^2/\gamma=r^2/a_1^2]$, where a_1 is capillary constant (British usage), see section Technical Terms (p. 34); $h_c=$ length of circular cylinder of radius r and volume V_m].

Table 1.—Volume (V_m) of Mercury Meniscus $h_m = \text{height of meniscus}$, d = internal diameter of tube. Accuracy for the larger meniscus = 0.3%, for the smaller = 1%. Unit of $V_m = 0.001 \text{ cm}^2$; of h_m and d = 1 mm. Assumes $\gamma = 400 \text{ mg wt./em}$

h.,		-	1	1	٦		2	1		3	1	4	1	Ŧ	5		Ī	6	Ī	7			ĸ	ī	1	,	Ī	10	١	1	1	Ι.	12		13	ī	14	T	15	10	I	17	1	8	19	2	20	21	2	2	23	24	d ha
- 0	1		0	0	40	0	1:	111	0	366	'n	0	64	ßį.	1	02	1	1	0	2	08	2	7	5	3	55	1 4	1 4	6	5	49	6	. 67	7	97	1 1	42	11	1 1	12	8 1	14 8	8 16	9	19 :	2 21	1 6	24	2 27	0	30 0	33 1	0 1
0	2	:	0	()	н3	0	32	1	()	72:	4	1	30	1	2	05	:	3.(ю	4.	16	5	5	3	7.	12	1 8	3 (5	11	0	13	1.4	16	. ()	11	0	22	2 2	25	7 2	29 (6 33	9	38	43	3 4	48.0	B 54	- 1	60 0	66.3	0.2
0	3	3	0	1	34	0	11	H)	١.،	(10)	1	1	95																																							99 6	0.3
0	4	,	0	1	95	0	66	30	1	47	1	2	63	1	ŧ	14	1	3 (14	8	37	11	1	1	14	3	18	3 0	1:	22.	3	27	0.'	32	3	38	3.1	114	4 7	51	8	59 (6 68	1	77 :	87	7 1	97 .	5 1	09	120	133	0.4
0	٨	•				0	80	11	l	87	1	3	31	1	5	21	1:	7 :	59	10	5	14	0	1	18.	0	22	2.7	١.	28	0	33	9	40	.6	47	7.9	56	B 1	65.	0 7	74	7 85	4	96 (1	100	12	2 1	36	151	167	0.5
			1											1			1		- 1					1			ı		-1					•		1		1			-		1		l	1			1	- 1			
	0		1					- 1		29																																										200	06
	7		1					- 1		72																																									212		0.7
	H		1					- 1		17																																										268	0.8
	ก					1	ö.	- 1		67																																										303	
1	. 0)						- 1	1	19		7	12	T	11	0	1	5.8	3	21	7	28	0	1	36	9	40	3 5	1	57	3	89	0.6	83	2	198	3.3	1	115	13	13	15	3 1	74	197	1 2	222	24	8 2	76	306	337	1.0
						1				_	ı	_		1			١.					l		. 1			L				_	L.				١.		1		١	_		١.			١.							
	. 1		1			1		- 4		76																							0				109								218							372	
	. 2							- 1		39																							5				119								238			30				407	
	3		1						()	07																							2.1			1	130			17					260							443	
	4					1					-1.		9																				9			1	141															478	
,	ŀ	,						ľ			1	2	1	ì	l ×	0	2	3	١,	34	5	1.0	2	1	37	8	10	2 :	١,	жy	U	! '	108	١,	29		152	13	177	20	2.5	23.	9 2	:68	30:	1 4	540	38	1	22	408	515	1.5
			1			1					١.		3	-			١.,	-	.			١.,		.			١.,	٠.	,	0.5	-	١.	116	١.	าแ	١.		1.	100	00			١.		20	١.			١.		501	550	
						1					1		.,				1-				2	1.		- 1		-	1.		- 1				124	1	38 48	,	163 175	1	$\frac{190}{204}$						34							552 589	
			1			1					1			- 1		-	1-		- 1		3	1					1				10		133		58		186			25											570		
	1 1		1								ı			- 1	,	4			_ ,		5	1							- 1			1	141		68		199															666	
	2.0		1			1					1			- [١.	-			.8										24		150	1	79		211				- 1											706	
		_	1			1					1			- 1			ľ	•	٠.			ľ		1	•••	U	ı	• • • • • • • • • • • • • • • • • • • •	1	•	••	Ι.		11		1	•••	1	- 10	-	Π.		η,	•••		Ή.	• (,,,	"-	1		٠		2.0
	2. 1	1	1			l					1			-			1			53	. 4	lac.		.	87	3	1	10	١	1	32	١,	159	١,	90	1.	224	١.	261	30		34.	4 3	101	44	ا ا	195	55	2 6	14	878	746	2.1
			1			1			ĺ					١			1				•					0		11		-	40	1	169		201		237			31					46		523				716		
	2.3		1			1					1			١			1					Ι΄`	•			.9		12:			19		179		213	ı	250		291													829	
	1.4		1			1					-			١								1		-	,			130			58		189		225	1	264															872	
	2.1					1					1			-			1					1		1							67		200			4	279															915	

Table 2.—Height (h_*) of Cylinder Equivalent to Volume (V_m) of Mercury Meniscus

 $h_c = V_m/\pi r^2$ = length of tube of radius r and volume V_m ; $h_m = \text{height of meniscus}$; d = 2r = diameter of tube. Accuracy and basis are same as for Table 1

Unit of h_c , h_m , and d=1 mm. Assumes $\gamma=400$ mg wt./cm

																				,							
h	ď	1 1	2	3	4	5 ,	6	1	7	8	9	10	11	12	13	14	15	16	17 ;	18	19	20	21	22	23	24	d. Am
0.1		0.051	.0510	.0510	0510	0520	0.05	30	0540	0550	0560	0570	0580	0590	0600	0610	0630	0640	0650	0660	0680	0690	0700	0710	072	073	0.1
0.2		0.1060																									
0.3		0.1710																									
0.4		0.2480																									0.4
0.5			2740																								0.5
				1		- 1						1							1	1	1		- 1	1	1	!	
0.6			3410	3230	319	321	0.32	40	3290	3350	3410	3480	3550	3620	365 (3750	3830	389 0	397 0	4040	.4110	4180	4210	4300	437	0 443	0.6
0.7			4160																								
0.8			1970																								0.8
0.9			0.5880																								0.9
1.0		ł														6380											1.0
1.0		i	- 1	-	i			1			1					,						1	ı	1		ì	
1 1		•	0	6740	. 636	824	0.62	3 0	6260	6320	6430	6550	i tibb (0.6817	694	7060	7196	7310	7430	7560	7670	7790	7900	802	812	0 823	1.1
1 2		1														7750											
13		,														3 8440											
1 4		!			896	837	0.82	960	8250	8290	8397	8526	8670	853 (899	9156	0300	9460	9610	9760	9911	01 1	02 1	03	1 05	1.06	1.4
1 5		1		Č	961	0 915	0.80	90	5081	9006	0000	0210	0366	1 0537	969	0861	00 1	02 1	01 1	05 1	07 1	08	10 1	-11	1 13	1.14	1.5
1 0		'			, 001				0000	1.000							170										
1 6				١,	ne.	1 00	0 97	หก	0000	0790	0800	1 001 1	. 01	1 02 1	. 04	1 06 1	08 1	10 1	11 1	13 1	1.5 1	16	1 18 1	19	1 21	1 22	1.6
17					.00	1 00	1 04		01 1	05 1	05	001	กง	1 10	1 19	1 13 1	15 1	17 1	10 1	21 1	99 1	24	26 1	27	1 20	1.30	1.7
				- 1	1	1 10	1 11	•	10 1	19 1	12	1 14	1 15	17	1 10	1 21 1	99 1	95 1	97 1	20 1	31 1	32	31 1	36	1 37	1 39	1.8
1.8)	1.10	1 00		91 1	12 1	13	1 198 1	1 00	1 05	1 10	1 29 1	2.9	20 1	25 1	17 1	39 1	10	1 12 1	41	1 46	1.47	1.0
1 0				ì	,	- 1	1 20	, ,	20 1	00 1	21	1 22 1	1 23 .	1 20	27	1 37 1	20 1	1 11 1	(3.1	45 1	47 1	40	51 1	53	1 54	1 56	2.0
2 0	,			- 1	1		1.34	1	30	219	20	1 30 .		1 33 .	3.3	1 3/ 1	30		10	***		•••					
			- 1					١.	00		0.7			'		1 45			E-9 1	54 1	5.A 1	ng i	1.50 %	aı	1 63	1 65	2.1
2.1			- 1	- 1	- 1			ı	39	37	37	1 38	1 319	1 41	1 43	1 40	47		444	49 1	81 1	na.	1 68	70	1 72	1 74	2.2
2 2			ŀ	ļ						L 47	1 46	1 47	1 48	1 30	1 02	1 54 1	1 00	1 0M 1	40	71 1	72 1	78	1 78	80	1 82	1 83	2.8
2 3			i i	1	1						1 35	1 56	1 57	1 38	1 00	1 63	. 60	1 07	70	1 60 1	וניו	1 10	1 87	HU	1 01	1 93	2.4
2 4				1								1 65	1 66	1 68	1 69	1 72	1.74	1 (0)	1 68 1	00 1	00 1	1 05	1 07	00	2 01	2 02	2.5
2.5	<u> </u>												1 76	1 77	1 79	1.81	1 K3	1 86	85	1911	172	11.1	1 17/		- '/1	- 0-	

Table 3.—Volume (V_m) of Liquid Meniscus, $\theta = 0$ (Meniscus concave upwards)

As quantities tabulated are dimensionless, any consistent system of units may be used. $g = \text{acceleration of gravity}, r = \text{radius } \sigma$ tube, $h_e = \text{length of tube of radius } r$ and volume V_m . (Computed from tables of Bashforth and Adams as given in their "Capillary Action.")

$g\rho r^2/\gamma$	$ V_m/r^{\rm J} $	h_c/r	$g\rho r^2/\gamma$	V_m/r^3	h_c/r
0	1 048	0 333	4 0	0 649	0 206
0 1	1 029	0 327	4.5	0 623	0.198
0 2	1 010	0 321	5.0	0 599	0 190
0 4	0 978	0 311	5 5	0.578	0.184
0.6	0 947	0 301	6.0	0 557	0 177
0.8	0 919	0.292	6.5	0 537	0 171
10	0.894	0 284	7.0	0 518	0 165
1 5	0 837	0 266	7.5	0 501	0 159
2 0	0 789	0 251	8.0	0 484	0 1540
2 5	0 747	0 238	8.5	0 470	0 149
3 0	0 711	0 226	9 0	0.456	0.1149
3 5	0 678	0 216	9.5	0 442	0.140
			10-0	0 429	0 136

Example 1. A gas is collected in a endiometer over mercury. The volume to the plane through the line of contact of the mercury with the wall of the tube $\sim V_{\rm en}$. If this portion of the endiometer is a vertical, circular cylinder of diameter d=10 mm, and if height of meniscus is $h_{\rm m} \simeq 1.5$ mm, then $V_{\rm m} = 0.0723$ cm³ (Table 1), and the actual volume of the gas is $V \simeq V_{\rm e} = 0.072$ cm³.

If volumes are expressed in terms of a linear scale engraved upon the cylindrical portion of the eudiometer, and if the scale reading at the line of contact is h_m and if d=10 mm, $h_m=1.5$ mm, then $h_c=0.921$ mm (Table 2), and the actual volume of the gas corresponds to $h_n=h_c=h_n=0.921$ mm.

Example 2: A gas is collected in a endiometer over water. The volume to the plane tangent to the bottom of the meniscus = V_o . If this portion of the endiometer is a vertical, circular cylinder of radius $\tau=0.5$ cm, if $\gamma=73$ dynes/cm, g=980.7 cm/sec², $\rho=1~000$, and $\theta=0$ (the tube is perfectly wetted by the water), then $g\rho/\gamma=13.43$ cm⁻², $g\rho\tau^2/\gamma=3.36$. Hence $V_m/\tau^2=0.689$ (Table 3), and $V_m=0.086$ cm². Hence the actual volume of the gas is $V_o=V_m=V_o=0.086$ cm².

If volumes are expressed in terms of a linear scale engraved upon the cylindrical portion of the eudiometer, and if the scale reading corresponding to the bottom of the menscus is h_{σ} , then for $g\rho r^{5}/\gamma = 3.36$, $h_{c}/r = 0.219$ (Table 3), and if r = 5 mm, $h_{c} = 1.10$ mm, and the actual volume of the gas corresponds to $h_{\sigma} - h_{c} = h_{\sigma} - 1.10$ mm.

WEIGHTS AND WEIGHING

A. T. Pienkowsky

In this section are considered:—(A) Weights—the basis upon which they are adjusted or tested, and their constancy; (B) the correcting of weighings for the buoyant effect of the air, including the weighing of substances in containers; and (C) the correcting of density determinations for the buoyant effect of the air.

WEIGHTS

Basis of Adjustment.—Most weights are adjusted by the maker according to their apparent weight in air against brass standards. This is equivalent to adjusting brass weights according to their real mass (or "weight in vacuo"), but the true mass values of other

weights (e.g., those of platinum, aluminum, or quartz) may be much different from their nominal values. When a set of weights is calibrated, however, the values found may be either true mass or apparent values, depending on the standard used and the method of conducting the test. Certificates from different standardizing laboratories may give values on either basis, or on both.

"Weight in Air against Brass."—Commercial weighing is all based on apparent weight in air against brass standards, this basis being more or less accurately defined in some countries. Precise scientific weighing is based on true mass values (i.e., on "weight in vacuo"), but weights below one gram may be tested and used as if they were of brass, even for work of rather high precision. In so testing these weights, their apparent "values" are computed on the assumption that their density is Δ_b - density of brass (generally Δ_b is taken as 8.4 g per cm³); and in using them the apparent values so found are used as though they were the true masses of the weights, Δ_b being at the same time used just as though it were the true density of the weights. In such cases the error $(m_f - m)$ so introduced, arises solely from the fact that the density (σ_i) of the air at the time the values of the weights were determined differs from that (σ) at the time they were used in weighing the object. This error is given approximately by equation (1) in which m is the correct, and m_{ℓ} is the false mass, s is the nominal value of the weight. As is the density assumed for brass weights and Δ the actual density of the weights used. $m_f - m = s \left(\frac{1}{\Delta_b} - \frac{1}{\Delta}\right) (\sigma_1 - \sigma)$

$$m_f - m = s \left(\frac{1}{\lambda} - \frac{1}{\lambda}\right) (\sigma_1 - \sigma) \tag{1}$$

Example: If the value of a platinum 500 mg weight ($\Delta =$ 21.5 g/cm³) is determined according to "weight in air against $(\Delta_b = 8.4 \text{ g/cm}^3)$ at sea level $(\sigma_1 = 0.0012 \text{ g/cm}^3)$, and this value is used at an altitude of 5000 ft. ($\sigma = 0.0010 \text{ g/cm}^3$) the error in the mass of a body as so weighed will be $m_f - m = 0.007$ mg.

"Apparent" densities or specific gravities determined according to apparent "weight in air against brass" are subject not merely to variations in the density of the air, but also to differences in experimental technique (see p. 78 to 80).

Constancy. Data on changes in weights can indicate only the order of magnitude of such changes, and as a rule can show only what man happen, since such changes are extremely irregular.

Ordinary brass weights with knobs serewed in (whether gold plated, platinum plated, or lacquered) may continue to gain in weight for many years, and may do so without developing any visible signs of such change. The following examples are typical of extreme changes that sometimes occur | Larger changes have been recorded.

Denomination	ĸ	100	50	20	10	-5	2	1
		1.7						
Gain in 14 yr	mg	3 3	3 9	1.8	2.5	0.8	0.3	11

The following is typical of what has often happened when new weights were not used and were carefully protected.

Denomination	K	100	50	20	10	5	2	1
Gain in 5 mo	ing	0.1	0.1	0.0	0.1	0.1	0.0	0.0
Gain in Lyr	mg	0.2	0.1	0.0	0.0	0.1	0.0	0.0

Lacquered weights of good quality are less subject to spotting and general surface tarnishing than are the gold or platinum plated weights often sold. Lacquered weights, however, are subject to rapid variations caused by changes in the relative humidity of the air. Lacquered weights of about 20 to 100 g may be expected to vary 0.1 or 0.2 mg with large variations in humidity. Changes of over 0.5 mg have been recorded.

Sets of weights of the ordinary type may, however, be very constant. For example, one set was used for over a year with changes less than 0.02 mg and few changes over half that amount; and two sets were used occasionally for 17 and 18 yr, respectively, with no changes over 0.2 mg.

For reference standards, one-piece weights are very much more reliable than the common screw-knob type. The following changes in a high grade, gold plated, bronze set of this type are typical for weights used little and with great care. Positive changes are gains, negative changes losses.

Denomination.	g	50	20	20	10	5	2	2	1
Changes in 15 vr	me	-0 12	0 00	0.02	-0 01	-0 006	0 001	0 008	-0.007

Solid platinum or platinum-iridium weights of moderate size may be expected to remain constant within about 0.01 mg if handled with sufficient care and protected from dust and other deposits. The sheet metal weights below one g are not much more constant than this: very good weights kept with extreme care as reference standards may stay within 0.001 mg for some years. but this cannot safely be assumed. If these small weights are much used, even with good care, losses of 0.01 mg may soon be expected in the larger ones.

CORRECTING OF WEIGHINGS FOR BUOYANT EFFECT OF THE AIR

("Reduction of Weighings to Vacuo")

In addition to a sufficiently sensitive balance, accurate weighing requires (1) that the balance itself maintain a sufficiently constant. zero point and ratio of arms of the beam; (2) that the effect of meguality of the arms of the beam be eliminated by the method of weighing, since it cannot as a rule be corrected for with sufficient accuracy; (3) that the object and the weights have definite constant values, free from such effects as variable surface. magnetic attractions, etc.; (4) that surrounding conditions be maintained free from sources of disturbance and error, such as electrostatic attractions, convection currents, variable or unsymmetrical heat radiations, etc.; and (5) that proper correction be made for the buoyant effect of the air.

The first four types of requirements are matters of technique, and no general methods of correction can be used for errors arising from them. They are therefore outside the scope of these tables.

The fifth requirement demands definite formulae and facts, some of the most fundamental or general of which are given below.

The phrase "apparent weight" is commonly used for the result of a weighing in which no correction has been made for the buoyant effect of the air. The phrase is ambiguous and often leads to a confusion of ideas. Therefore this term is not used in the equations of this section, but reference is made directly to the weights that would be used on an equal-arm balance to make the weighings. The phrase "weights needed" must be understood to include the proper fraction of the rider or other small weights needed to make up the total amount; and it refers to actual values of the weights, which may or may not equal the nominal values marked on them.

- Symbols mass of the contents of the "empty" portions of the container. (In weighing gases a is zero. In weighing solids or liquids it may be the mass of air or of vapor of the solid or liquid. In weighing a pyknometer with the liquid which fills it at a temperature different from that at which it is weighed, the volume occupied by a results from the unequal expansion of pyknometer and liquid)
- $(v_{\bullet} v_{\bullet})/v_{\bullet}$. Relative size of the container and its counterpoise
- mass of counterpoise
- buoyancy reduction factor
 - mass of liquid that fills the pyknometer at the established filling temperature
- mass of object; in general or where its volume is not fixed by the volume of a pyknometer
- mass of pyknometer or other container
- error resulting from use of approximate buoyancy formula
- ¹Compare equations (8) and (9); in each case s'' s' would be called the apparent weight, but its value in (9) is sme greater than in (8).

- mass of weights needed on an equal arm balance, whether with or without special counterpoise, to balance the objects being weighed. (Regarding use of other than true mass values, see p. 73)
- $s v_s \sigma = s (1 \sigma/\Delta)$. This is not "weight in vacuo" as that phrase is often used
- temperature. If accented it is the temperature at the time of the indicated weighing; if unaccented, it is the temperature at which the pyknometer is filled. In so far as their temperatures have any effect upon the operation considered, all objects (e.g., the balance, its loads, and the surrounding air) are assumed to be at the same temperature
- volume or capacity; when without subscript it is capacity of the container at time of weighing; with one of the subscripts a, c, l, m, p, s, or w, it is volume of the object whose mass is indicated by the subscript $(e.g., v_m = \text{volume of the object})$ whose mass is m)
- v_t capacity of the pyknometer at the temperature of filling
- volume of the pyknometer itself, excluding the space that would be filled by liquid at the temperature of filling. (Ordinarily v_{ν} = volume of the material of which the pyknometer is constructed)
- "exterior volume" of the pyknometer or other container. With pyknometers, at temperature of filling, $v_r = v_p + v_i$; at another temperature, $t^{\prime\prime}$, $v_e^{\prime\prime}$ - $v_p^{\prime\prime}$ + $v^{\prime\prime}$ = $v_p^{\prime\prime}$ + $v_w^{\prime\prime}$ + $v_a^{\prime\prime}$
- mass of the calibrating liquid (e.g., water) which is used to determine a volume or to serve as a standard of density
- cubical coefficient of thermal expansion
- density of the weights at the time of weighing
- density of the air at the time of weighing
- density of object being studied or of calibrating liquid accented it is density at time of weighing; if unaccented it is density at temperature (t) at which the pyknometer was filled

Density is true mass per unit of volume.

Accents denote the weighing to which the quantity applies. In general 'denotes the weighing of the object alone or of the container; " denotes the weighing of the combined container and object studied, or of the container filled with the calibrating liquid or of the object suspended in the calibrating liquid; " denotes the weighing of the pyknometer "filled" with liquid to be studied, or "filled" with object studied plus calibrating liquid.

Subscripts.-/ denotes false or erroneous values. For , see above $(s_{\bullet}$ and v_{ϵ}). Other subscripts indicate the object to which the quantity applies; e.g., ρ_a = density of material whose mass is a.

Fundamental Exact Equation.—The use of the direct, fundamental, exact equation (2) avoids many complications and approximations introduced by most formulae based on densities.

$$m = s + (v_m - v_s)\sigma \tag{2}$$

The equation using densities, in one of the exact forms (3) given below, is useful chiefly for computing exact tables, or the effect of errors, approximations, etc. As a rule, either the densities are not known well enough to warrant its use, or the volumes involved will have been measured, thus going back to equation (2).

$$m = s \begin{pmatrix} 1 - \frac{\sigma}{\Delta} \\ 1 - \frac{\sigma}{\rho_{m}} \end{pmatrix} = s \frac{\rho_{m}(\Delta - \sigma)}{\Delta(\rho_{m} - \sigma)} = s \left\{ 1 + \frac{\sigma(\Delta - \rho_{m})}{\Delta(\rho_{m} - \sigma)} \right\} = s + s \frac{\sigma(\Delta - \rho_{m})}{\Delta(\Delta - \rho_{m})}$$
(3)

In the last form of (3), the second term is the exact "buoyancy correction term," and in this correction term the factor (fraction) by which s is multiplied is the exact "buoyancy reduction factor" (k). See Tables 2 and 3.

Common Equation Using Densities.—Some form of equation (4) is commonly used for reducing weighings. This equation is not exact It is entirely inapplicable to weighing gases, but is amply accurate for much work with solids and liquids.

$$m = s + s\sigma\left(1 - \frac{1}{s}\right) \tag{4}$$

 $m = s + s \sigma \left(\frac{1}{\rho_m} - \frac{1}{\Delta}\right) \tag{4}$ The factor $\sigma \left(\frac{1}{\rho_m} - \frac{1}{\Delta}\right)$ is the "buoyaney reduction factor" commonly given. When the densities he between 0.5 and 21.5 g per cm3, and are known with sufficient accuracy, the error (r) introduced by the use of this formula does not exceed one part in 100 000 of the mass of the object weighed. Its value, and that of the proportional error (r' = i/s) may be calculated by formula (5): their orders of magnitude may readily be determined from Table 1, which is based on $\sigma \simeq 0.0012$ g/cm³.

$$r' = \frac{r}{8} = \frac{\sigma^2(\Delta - \rho_m)}{\Delta \rho_m(\rho_m - \sigma)}$$
 (5)

Unit of Density is g/emi

	100 r'								
ρm	Δ 21 5	2 8 4	4 - 2 65						
1 00	0 0001	0 0001	0.0001						
0.5	0 0006	0.0005	0 0005						
0 05	0.06	0.06	0.06						
0.005	8	8	7.						

Density of the Air .- Variations in the density of the air under standard conditions, as well as the uncertainties of its experimental determination, limit the precision with which very large or extremely precise buoyancy corrections can be calculated from tables of air density. The former seems at present to be the larger, and therefore sets a fixed limit which can be exceeded only by eliminating or reducing the size of the correction, or by making an experimental determination of the density of the air at the time of the weighing. These limiting uncertainties are of the order of 5 in 104 and affect the total buoyancy correction in the same ratio. Since they affect only the fourth significant figure in the buoyancy reduction factor they are negligible in the use of Tables 2 and 3.

In weighing gases, the density of the air must be found from precise tables (consult index). When the volume of the gas is not compensated by a counterpoise of the same size, the density of the air must be known with approximately the same precision as is desired for that of the gas; when it is so compensated, the buoyancy correction is generally the total buoyancy on the weights, and therefore is still relatively large.

For most work with solids and liquids an approximate value of the density of the air is sufficient. The precision to which it must be known can be found from an examination of Table 2. It should be noted that a precision of 1 in 10° in the mass to be determined requires a precision of 1 in the n'th decimal place of the buoyancy reduction factor (i.e., in the actual factor k, not in the printed value of 1000k). In getting the buoyancy reduction factor from Table 2, and in similar work, to a precision not greater than one in about 10s, the density of the air may be found from the "Air Density Chart," Fig. 1.

The precision to which temperature, pressure, and humidity must be known in order to find the density of the air to the necessary precision, may be inferred from Fig. 1, except in the case of very large corrections, or of corrections to be determined with extreme precision. In the latter cases this information must be sought in other places.

Density of the Weights .- If the density of the air in which the weights are used is the same as that in which their values were determined, errors in the density assumed for the weights will have

¹ Treuthart, 54, 172: 1598, 21 Moles, 54, 172: 1600, 21.

no effect on the accuracy with which the mass of the object may be determined, provided the same density that was assumed for them in determining their values is assumed for them when they are used. It is not necessary, therefore, to know the density of the weights as accurately as that of the object weighed.

If weights are used in air whose density differs by not more than 20% from that of the air in which their values were determined, the amount by which the density of ordinary weights is likely to differ from the values used in Tables 2 and 3 will not cause errors greater than one part in about 100,000 in the determination of the mass of the object weighted; provided that the density used in determining the value of the weight is the same as that used in the computation of the mass.

For a precision above one part in a million, it is frequently necessary to measure the volume or density of each weight.

Fig. 1.- Air density chart (For use with Tables 2 and 3.)

Ordinary two-piece weights are not used for such work because they cannot safely be put into liquids for hydrostatic weighing.

Aluminum is not used for weights above 0.02 g in high quality weights, nor above 0.5 g in second quality sets. When the values of such weights have been determined on the assumption of a density of 2.7 g per cm¹ at 0°C, the use of the buoyancy reduction factors given for quart in Table 2 introduces an error in the mass of the object weighed, of less than 0.0002 mg for amounts up to 0.2 g, and of less than 0.005 mg for amounts up to 0.5 g.

The densities of most gold alloys used for weights he between 16 and 18 g per cm³. For gold within this range, the use of the factors given in Tables 2 and 3 will not introduce errors greater than one part in 200,000, or not over 0.005 mg in weighing amounts under one g.

In Tables 2 and 3, the densities used for weights of platinum or platinum-iridium, for those of brass or bronze, and for those of aluminum, are those which were adopted many years ago for certifying weights at the National Bureau of Standards of the United States of America, and were assumed as the densities at 0°C. The following coefficients of cubical expansion are assumed in reducing the volumes of such weights to the volumes at 20°C.

Platinum and Platinum	0 000 0	26 per deg. C	
Brass or bronze		0 000 0	54 per deg. C
Aluminum		0.000 0	69 per deg. C

The densities of gold and of crystal quartz are assumed as the densities at 20°C. All buoyancy reduction factors are based on differences in volume at 20°C.

Density of Object Weighed.—A change of one in 10° of the mass of the object corresponds to a change of one in the n'th decimal place of the buoyancy reduction factor. Therefore, to the precision obtainable by the use of Table 2, the precision required in the density of the object may be found by noting in that table what change in density (at approximately the density under consideration) corresponds to the allowable variation in the buoyancy reduction factor.

The use of "standard" or "adopted" densities for the object weighed may give an accuracy which is entirely fictitious. There is no compensation as in the case of weights, and the actual error or uncertainty in the density of the particular object weighed has its full effect in the error or uncertainty of the calculated mass

A fictitious "apparent" density derived from weighings uncorrected for buoyancy of the air must be corrected to true density before being inserted in the formulae given in this section unless only an approximate value of density is needed (see p. 78).

Temperature of Objects and Weights.—In weighing gases, and to secure the highest precision in many other cases, it is necessary to compute all volumes or densities at the actual temperature of the observations, unless the coefficient of expansion of the object happens to be nearly the same as that of the weights. If the temperature is entirely neglected, and weighings are made at room temperatures, the extreme error likely to be introduced in the mass calculated for solids and liquids is less than three in 10^4 . (This would be the error for material having a density of 0.2 g per cm³ at 0° C, and a coefficient of cubical expansion of 1.6×10^3 , when compared with weights whose actual volumes or densities are those used in the calculation.)

Example 1: The actual mass of the weights used was $s = 10\,0105$ g; the corrected barometric height was 758 mm; air temperature, 19.6°C; relative humidity 25%; density of object 3.5 g/cm³; weights were of brass.

Referring to Fig. 1, the air density corresponding to these conditions is seen to be close to 0.0012 g/cm^3 . Entering Table 2 with $\rho_m = 3.5$ and the column for brass weights, under $1000\sigma = 1.2$, it is found that 1000 k is 0.20; hence the mass of the object is $m = s + ks = 10.0105 + 0.00020 \times 10.0105 = 10.0125 \text{ g}$

Example 2: The factor for $\rho_m = 3.0$ differs by 6 in the fifth decimal place from that for $\rho_m = 3.5$. The error in mass produced by using 3.0 in place of 3.5 as the density of the object is therefore 6 parts in 10°. For the object in Example 1 this would be an error of 0.000 6 g. Similarly the use of 7.0 instead of 7.5 for ρ_m would produce an error of about one part in 10° in the mass of the object.

Example 3: In Fig. 1 the point corresponding to barometric height 720 mm, air temperature 21°C, and relative humidity 50%, lies to the right of the line for 0.0011 g/cm², 50%, by $^{1}9_{32}$ of the distance between the 0.0011 and the 0.0012 lines. Hence, $\sigma=0.0011+0.0001\times ^{1}9_{32}=0.001131$ g/cm². (For most work for which Table 2 is suited the density can be estimated by eye with sufficient accuracy; as in this case, 0.00113 g/cm².) The factor from Table 2 may then be found either by multiplying the factor for $1000\sigma=1.0$ by 1.13 or by interpolating between the factor for $1000\sigma=1.1$ and that for $1000\sigma=1.2$. For brass weights and $\rho_m=3.5$ the former gives $0.17\times1.13=0.192$ as the value of 1000k. A calculated interpolation between 0.18 and 0.20 gives 0.186, which agrees with the other value within the accuracy of such tabular interpolations.

Weighing Objects in Containers.—Two weighings are required; one of the container alone and the other with the object in the

TABLE 2.—BUOYANCY REDUCTION FACTOR (k)

$$m = s + ks$$
, where $k = \frac{\sigma(\Delta - \rho_m)}{\Delta(\rho_m - \sigma)}$

(cf equation (3). Symbols, p. 74.) Unit of density is g/cm² or, to precision of this table, g/ml)

ensity of object weighed	Δ = 21.5 Pt or Pt-Ir 1000 σ =			or or other section of the section o	A = 17 Gold			A = 8 4 rass or bron	IC .	Δ = 2.65 Crystal quarts or aluminum*		
	10	1.1	1.2	10	1000 -	1 2	1 0	1000	1.2	10	1000 -	1.2
0.2 0.3	4 98 3 30	5 48 3 63	5 98 3 96	4 97 3 29	5 47 3 62	5 97 3 95	4 91 3 22	5 40 3 55	5 89 3 87	4 65 2 97	5 11 8 26	5.5 8.5
0.4 0.5 0.6 0.7	2 46 1 96 1 62 1 38	2 71 2 15 1 79 1 52	2 95 2 35 1.95 1 66	2 45 1.95 1 61 1 37	2 69 2 14 1 77 1 51	2 94 2 34 1 93 1 65	2 39 1 88 1 55 1 31	2 63 2 07 1 71 1 44	2 87 2 26 1 86 1 57	2 13 1 63 1 29 1 05	2.84 1.79 1.42 1.16	2.5 1 9 1.5 1.2
0.75	1.29	1.42	1.55	1.28	1 40	1 53	1 22	1 34	1 46	0.98	1 05	1.1
0.80 0.82 0.84 0.86 0.88	1 20 1 17 1 15 1 12 1 09	1.33 1 29 1 26 1 23 1 20	1 45 1 41 1 37 1 34 1 31	1 19 1 16 1 13 1 11 1 08	1 31 1 28 1 25 1 22 1 19	1 43 1 39 1 36 1 33 1 29	1 13 1 10 1 07 1 04 1 02	1 25 1 21 1 18 1 15 1 12	1 36 1 32 1 29 1 25 1 22	0 87 0 84 0 81 0 79 0.76	0 96 0 93 0 90 0 86 0 88	1.0 1.0 0.9 0.9
0 90 0.91 0 92 0 93 0.94	1.07 1 05 1 04 1.03 1 02	1 17 1 16 1 15 1 13 1.12	1 28 1 26 1 25 1 24 1 22	1 05 1 04 1 03 1 02 1 01	1 16 1 15 1 13 1 12 1 11	1 26 1 25 1 24 1 22 1 21	0 99 0 98 0 97 0 96 0 95	1 09 1 08 1 06 1 05 1 04	1 19 1 18 1 16 1 15 1 13	0 73 0 72 0 71 0 70 0 69	0 81 0.79 0 78 0 77 0 76	0.8 0.8 0.8 0.8
0.95 0.96 0.97 0.98 0.99	1 01 1 00 0 99 0 97 0 96	1 11 1 10 1 08 1 07 1 06	1 21 1 20 1 18 1 17 1 16	0 99 0 98 0 97 0 96 0 95	1 09 1 08 1 07 1 06 1 08	1 19 1 18 1 17 1 16 1 14	0 93 0 92 0 91 0 90 0 89	1 03 1 02 1 00 0 99 0 98	1 12 1 11 1 09 1 08 1 07	0 68 0 67 0 65 0 64 0 63	0 74 0 73 0 72 0 71 0 70	0 8 0 8 0 .
1.00 1.01 1.02 1.03 1.04	0 95 0 94 0 93 0 93 0 92	1 05 1 04 1 03 1 02 1 01	1 15 1 13 1 12 1 11 1.10	0.94 0 93 0 92 0 91 0 90	1 04 1 03 1 01 1 00 0 99	1 13 1 12 1 11 1 10 1 08	0 88 0 87 0 86 0 85 0 84	0 97 0 96 0 95 0 94 0 93	1 06 1 05 1 03 1 02 1 01	0 62 0 61 0 60 0 59 0 58	0 69 0 67 0 66 0 65 0 64	0. 0. 0. 0.
1.05 1.06 1.07 1.08 1.09	0 91 0 90 0 89 0 88 0 87	1 00 0 99 0 98 0 97 0 96	1 09 1 08 1 07 1 06 1 05	0 89 0 89 0 88 0 87 0 86	0 98 0 97 0 96 0 95 0 94	1 07 1 06 1 05 1 04 1 03	0 83 0 82 0 82 0 81 0 80	0 92 0 91 0 90 0 89 0 88	1 00 0 99 0 98 0 97 0 96	0.58 0.57 0.56 0.55 0.55	0 63 0 62 0 61 0 60 0 59	0
1.10 1.12 1.14 1.16 1.18	0 86 0 85 0 83 0 82 0 80	0 95 0 93 0 91 0 90 0 88	1 04 1 02 1 00 0 98 0 96	0 85 0 83 0 82 0 80 0 79	0 94 0 92 0 90 0 88 0 87	1 02 1 00 0 98 0 96 0 95	0 79 0 77 0 76 0 74 0 73	0.87 0.85 0.83 0.82 0.80	0 95 0 93 0 91 0 89 0 87	0 53 0 52 0 50 0 49 0 47	0 59 0 57 0 55 0 58 0 52	0.0 0.0 0.0
1.20 1.25 1.30 1.35	0 79 0 75 0 72 0 69	0 87 0 83 0 80 0 76	0 95 0 91 0 87 0 83	0 78 0 74 0 71 0 68	0 85 0 82 0 78 0 75	0 93 0 89 0 85 0 82	0 71 0 68 0 65 0 62	0 79 0.75 0.72 0.68	0 86 0.82 0 78 0 75	0 46 0 42 0 39 0 36	0 50 0 47 0 43 0.40	0. 0. 0. 0.
1.40 1.50 1.6 1.7 1.8 1.9	0.67 0 62 0 58 0.54 0 51 0.48	0.74 0 68 0.64 0 60 0 56 0.53	0 80 0 74 0 69 0 65 0 61 0 58	0 66 0 61 0 57 0 53 0 50 0 47	0 72 0 67 0 62 0 58 0 55 0 51	0 79 0 73 0 68 0 64 0 60 0 56	0 60 0 55 0 51 0 47 0 44 0 41	0 66 0 60 0 56 0 52 0 48 0 45	0 71 0 66 0 61 0 56 0 52 0 49	0 34 0 29 0 25 0 21 0 18 0 .15	0.37 0 32 0 27 0 23 0 20 0 16	0 0 0 0. 0.
2 0 2.2 2.4 2.6 2.8	0 45 0.41 0 37 0 34 0.31	0 50 0 45 0 41 0 37 0 34	0 54 0 49 0 44 0 41 0 37	0 44 0 40 0 36 0 33 0 30	0 49 0 44 0 39 0 36 0 33	0 53 0 48 0 43 0 39 0 36	0 38 0 34 0 30 0 27 0 24	0 42 0 37 0 33 0 29 0 26	0 46 0 40 0 36 0 32 0.29	0 12 0 08 0 04 0 01 -0 02	0 14 0.08 0 04 0 01 -0 02	0 0.0 0.0 -0
3.0 3.5	0.29 0.24	0.32 0.26	. 0 34 0 29	0 27 0 23	0 30 0 25	0 33 0 27	0 21 0 17	0 24 0 18	0 26 0 20	-0 04 -0 09	-0 05 -0 10	-0.
4 5 6 7 8	0 20 0.15 0 12 0 10 0 08 0 06	0 22 0.17 0 13 0 11 0 09 0 07	0 24 0 18 0 14 0 12 0 09 0 08	0 19 0 14 0 11 0 08 0 07 0 05	0 21 0 16 0 12 0 09 0 07 0 06	0 23 0 17 0 13 0 10 0 08 0 06	0 13 0 08 0 05 0 02 0 01 -0 01	0 14 0 09 0 05 0 03 0 01 -0 01	0 16 0 10 0 06 0 03 0 01 -0 01	-0 13 -0 18 -0 21 -0 23 -0 25 -0 27	-0 14 -0 20 -0 23 -0 26 -0 28 -0 29	-0. -0. -0. -0.
10 12 14 16 18 20 22	0 05 0 04 0 02 0 02 0 01 0 00 0 00	0 06 0.04 0 03 0 02 0 01 0.00 0 00	0 06 0 04 0 03 0 02 0 01 0 00	0 04 0 02 0 01 0 00 0 00 -0 01 -0 01	0 05 0 03 0 01 0 00 0 00 -0 01 -0 01	0 05 0 03 0 02 0 00 0 00 -0 01 0 02	-0 02 -0 04 -0 05 -0 06 -0 06 -0 07 -0 07	-0 02 -0 04 -0 05 -0 06 -0 07 -0 08 -0 08	-0 02 -0 04 -0 06 -0 07 -0 08 -0 08 -0 09	-0 28 -0 29 -0 31 -0 31 -0 32 -0 33 -0 33	-0 31 -0 32 -0 34 -0 35 -0 35 -0 36 -0 37	-0. -0 -0 -0. -0.

responding to equation (2) are:

$$(p' + a') = (s' + c') + [v_{\bullet}' - (v_{\bullet}' + v_{\epsilon}')]\sigma'$$

$$(p'' + m + a'') = (s'' + c'') + [v_{\bullet}'' - (v_{\bullet}'' + v_{c}'')]\sigma''$$

Assuming p and c to be constant, as must generally be done, and subtracting, gives the general equation (6).

container. The exact equations connecting the masses and corresponding to equation (2) are:
$$|m| = (s'' - s') - (a'' - a') + [v_*'' - (v_*'' + v_*'')]\sigma'' - [v_*'' - (v_*'' + v_*'')]\sigma''$$

If also v_s , v_c , Δ and σ are the same for both weighings, which requires the same temperature and equivalent atmospheric conditions,

$$m = (s'' - s') - (a'' - a') - (v_s'' - v_s')\sigma$$
 (7)

Table 3.—Buoyancy Reduction Factor (k) for Use in Intercomparison of Weights
(For other factors and for symbols, see Table 2 and p. 74)

m = s + ksUnity of density = g/cm³

	I		1000k	00k			
Density of weight	Δ* = 21.5 Pt or Pt-Ir	4 = 17 Gold	$\Delta^{+} = 8.4$ Brass or bronze	$\Delta^* = 2.7$ Aluminum	Δ† = 2.65 Crystal quartz		
tested	1000ø =	1()()()σ ==	1000σ =	1000σ =	1000σ =		
ρm	10 11 12	10 11 12	1.0 11 1.2	10 1.1 12	10 1.1 1.2		
174	0 0190 0140 015	0.000 0.000 0.000	[-0 060]-0.066]-0 072	-0.312 -0.343 -0.374	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8.4*	0 073 0 080 0 087	+0 060 +0.066 +0 072	0.000 0.000 0.000	-0 252 -0.277 -0.302	-0.258 -0.284 -0.310 -0.006 -0.007 -0.008		
2.7* 2.65†	0.324 0.357 0 389 0.331 0 364 0 397	I	0 258 0 284 0.310	+0.006 +0.007 +0.008	0.000 0.000 0.000		

Density at 0°C, see "Density of Weights," p. 75
 Density at 20°C, see "Density of Weights," p. 75

If also $\rho_a{''} = \rho_a{'} = \sigma$, as when the "empty" portion of the container is filled with air of the same density as the surrounding atmosphere, and the vapor of the "object" weighed is negligible or

should be included in
$$m$$
,
 $m = (s'' - s') + (r_m - v_{s'' \rightarrow s'})\sigma$ (8)

OF

$$m = (s^{\prime\prime} - s^{\prime}) \left(1 - \frac{\sigma}{\Delta} \right) + v_m \sigma = (s^{\prime\prime} - s^{\prime}) \begin{pmatrix} 1 - \frac{\sigma}{\Delta} \\ 1 - \frac{\sigma}{\sigma} \end{pmatrix} \quad (8^{\prime})$$

In equations (8) and (8') the effect of the container has been eliminated; the equation is of the form of equation (2), and the buoyancy reduction factor from Table 2 may be used.

If the container is exhausted, when weighed alone; and if, when the object is being weighed there is in the container only material whose mass should be part of m, then a' = a'' = 0 and instead of equations (8) and (8') we have

$$m = (s'' - s') - v_{s''-s'} \sigma = (s'' - s') \left(1 - \frac{\sigma}{\Delta}\right)$$
 (9)

In this case the buoyant effect of the air on the object weighed has been eliminated, and the ordinary buoyaney reduction factors or equations do not apply (cf. (2) and (3)); Table 2 can not be used.

CORRECTING DENSITY DETERMINATIONS FOR THE BUOYANT EFFECT OF THE AIR

Correcting "Apparent" Values.—Radical differences in the constancy of temperatures or air densities, or such differences as that between equations (8) and (9) above, make it impossible to develop any single correction formula for correcting what are often called "apparent" values of specific gravity, or of density—values which have been determined without proper correction for the buoyant effect of the air. Such values can, however, be corrected in so far as the method and conditions of their determination are known.

Limitations. In general: (1) It is impossible to correct each weighing on which the determination depends, because some unknown mass, volume, or density will generally be needed in order to find the volume of the air displaced. In some cases, however, approximate values may be known with sufficient accuracy for this purpose.

(2) Some special experimental requirements are always involved. Among these may be equal temperatures for two operations, constant volumes (e.g., of pyknometer), negligible changes in the density of the air, etc., or a combination of several of them. A variety of combinations of such requirements may be used, each

1 As v_0 is assumed to remain constant, pressure effects must be suitably elimi-

having its peculiar advantages, and each leading to a different equation.

(3) If the number of experimental requirements is made very small, the resulting equation for true density is very complex. Simplification of the final solution can be accomplished only by increasing the experimental requirements or by introducing approximations into the solution.

No method can be selected as "best." Hence, the material given here is limited to the general fundamental equations, and to the exact solutions for certain cases that are of wide applicability in work of moderate precision. From these it is possible to arrange procedures suited to many different conditions, and to determine the accuracy of the corresponding solutions, and the effects of different errors under various circumstances.

In every case, ρ_m is obtained in the same units as those in which ρ_w is expressed. For the purposes of the following equations, σ may, in general, be expressed either as g/cm^2 or as g/ml.

Density of Gases.—The general equations for weighing gases are the same as those for pyknometer determinations of liquids, particularly those for cases in which the pyknometer is exhausted when weighed alone, as in equation (17).

Experimental Requirements.—All the following equations involve two general requirements: (1) That in any one weighing or other operation all objects involved are at the same temperature (in weighing, the temperature of the atmosphere is involved); and (2) that changes in pressure produce no change in any of the volumes; e.g., the volume of the pyknometer or other container must not change when it is exhausted. In addition, each equation involves one or more of the following special requirements:

- A. Mass of pyknometer and its counterpoise remains constant: p' = p'' = p''' and c' = c'' = c'''.
- B. Coefficient of expansion of counterpoise is the same as that of the pyknometer: $\beta_p = \beta_c$. This makes b the same for all weighings.
- C. Temperature at which pyknometer is filled is the same for the material being studied as for the calibrating liquid. Therefore $w'' = \rho_u v_t$ and $l''' = \rho_t v_t$.
- D. Temperature for all three weighings is the same as that at which the pyknometer is filled. This results in all volumes being constant, in $v_{w''} = v_{t'''} = v''' = v'''$, in a'' = a''' = 0, and in the density of each material being constant.
- E. Density of the atmosphere the same for all three weighings: $\sigma' = \sigma'' = \sigma'''$.
- F. Density of the weights the same in all weighings. This demands that the temperature be the same for all three weighings. See also p. 75.
- ¹ The advantages and disadvantages of different experimental arrangements, such as the size and mass of the counterpoise used, or the temperature control, do not depend on the form of solution of the equations so much as on the effect of variations and errors that are not shown in the fundamental equations.

C Denaity of air or other material in the "empty" portion of the pyknometer equal to that of the surrounding atmosphere: $\rho_a' = \sigma', \rho_a'' = \sigma'', \rho_a''' = \sigma'''$

H. Pyknometer evacuated when weighed empty.

I. Volume of counterpoise equal to "exterior" volume of pyknometer. $v_a = v_a$.

J. Volume of counterpoise equals that of the pyknometer itself. excluding the space that would be filled by liquid at the temperature of filling: ve = vp.

Pyknometer Determinations.—(1) Liquids.—Three weighings are required, from which, under experimental requirement .1. w" and l" are obtained directly by equation (6). Under requirement C, $\rho_l = \frac{l'''}{w''} \rho_w$

Therefore under requirements A and C:

$$\begin{array}{l} \rho_t = \\ (s^{\prime\prime\prime} - s^\prime) - (a^{\prime\prime\prime\prime} - a^\prime) + [v_s^{\prime\prime\prime\prime} - (v_s^{\prime\prime\prime} + v_s^{\prime\prime\prime})]\sigma^{\prime\prime\prime} - [v_s^\prime - (v_s^\prime + v_s^\prime)]\sigma^\prime \\ (s^{\prime\prime\prime} - s^\prime) - (a^{\prime\prime\prime} - a^\prime) + [v_s^{\prime\prime\prime} - (v_s^{\prime\prime} + v_s^{\prime\prime\prime})]\sigma^{\prime\prime\prime} - [v_s^\prime - (v_s^\prime + v_s^\prime)]\sigma^\prime \end{array}$$

and
$$v_t = \frac{(s'' - s') - (a'' - a') + [v_{\bullet}'' - (v_{\bullet}'' + v_{\bullet}'')]\sigma'' - [v_{\bullet}' + v_{\bullet}']\sigma'}{\rho_w}$$
(11)

Under requirement B, b may be introduced for $\frac{v_e - v_c}{v_c}$. If also a part of the buoyancy correction for each weighing is made by calculating s.', s.", and s.", then the remaining buoyancy reduction terms can be combined and simplified. Then under requirements

A, B, and C the equations may be put in the form
$$\rho_t = \frac{s_{s''} - s_{s'}}{s_{s''} - s_{s'}} \left[\rho_w + \frac{a'' - a'}{v_t} - \frac{b}{v_t} (v_{s''}\sigma'' - v_{s'}\sigma') \right] - \frac{a''' - a'}{v_t} + \frac{b}{v_t} (v_{s''}\sigma''' - v_{s'}\sigma') \quad (12)$$

and

$$v_t = \frac{(s_{\sigma}^{\prime\prime} - s_{\sigma}^{\prime}) - (a^{\prime\prime} - a^{\prime}) + b(r_{\sigma}^{\prime\prime} \sigma^{\prime\prime} - r_{\sigma}^{\prime} \sigma^{\prime})}{\rho_{\Psi}}$$
(13)

Under the conditions noted, these equations are perfectly general. They do not involve any mathematical approximations in their derivation and therefore show the proper effect of each quantity. However, in using them, approximate data must, in general, be used, because v_c which is needed in computing v_t cannot be accurately known until after v, has been computed. If a first approximation is not sufficiently accurate the accuracy may be increased by successive approximations.

{The values of v_{\bullet}' , v_{\bullet}'' and v_{\bullet}''' may be computed from the relation $v_t = v_p + v_t = \frac{p}{\rho_p} + \frac{w}{\rho_w}$ and if the capacity depends solely on temperature (and not on pressure or other factors),

$$v_{e'} = v_{e}[1 + \beta_{p}(t' - t)]; v_{e''} = v_{e}[1 + \beta_{p}(t'' - t)]; v_{e'''} = v_{e}[1 + \beta_{p}(t''' - t)]$$
(14)

The values of a', a'', and a''' may be computed from known values of pa and the equations

$$\begin{aligned} v_{a'} &= v' = v_{t}[1 + \beta_{p}(t' - t)] \\ v_{a''} &= v'' - v_{a''} = v_{t}(\beta_{p} - \beta_{w})(t'' - t) \\ v_{a'''} &= v''' - v_{t}''' = v_{t}(\beta_{p} - \beta_{t})(t''' - t) \end{aligned}$$
 (15)

Under requirements D, E, F, and G, in addition to A, B, and C. (12) becomes

$$\rho_{l} = \frac{8''' - 8'}{8'' - 8'} (\rho_{w} - \sigma) + \sigma \tag{16}$$

And under requirement H in addition to A, B, C, D, E, F, and G

$$\rho_{l} = \frac{s^{\prime\prime\prime} - s^{\prime}}{s^{\prime\prime} - s^{\prime}} \rho_{w} \tag{17}$$

As shown in equations (16) and (17), experimental requirements A to G inclusive render the results independent of the size or nature of the counterpoise and of the value of the density of the weights used, though these quantities must be the same for all observations. Including requirement H renders the results independent of the actual value of the density of the air also, but still requires that this value shall be the same for all three weighings.

Under requirement I. with A. B. and C. (10) becomes

$$\rho_{l} \simeq \frac{(s_{r}^{"'} - s_{r}) - (a^{"'} - a')}{(s_{s}^{"} - s_{s}') - (a^{"} - a')} \rho_{w}$$
 (18)

$$\rho_{l} = \frac{s_{e}^{(\prime)} - s_{e}^{\prime}}{s_{e}^{\prime\prime} - s_{e}^{\prime}} \left[\rho_{w} + \frac{a^{\prime\prime} - a^{\prime}}{v_{l}} \right] - \frac{a^{\prime\prime\prime} - a^{\prime}}{v_{l}}$$
(19)

and

$$v_t = \frac{(s_{r''} - s_{r'}) - (a'' - a')}{a_{rr}}$$
 (20)

Under requirement J, with A, B, and C, (10) becomes

$$= \frac{(s''' - s') - (a''' - a') + [r''' - r_{s'''}]\sigma''' - [r' - r_{s'}]\sigma'}{(s'' - s') - (a'' - a') + [r'' - r_{s'''}]\sigma''' - [r' - r_{s'}]\sigma'}$$

and its equivalent (12), and (13) become

$$\rho_i = \frac{s_{i''} - s_{i'}}{s_{i''} - s_{i'}} \left[\rho_r + \frac{a^{\prime\prime} - a^\prime}{v_t} - \frac{1}{v_t} (v^{\prime\prime}\sigma^{\prime\prime} - v^\prime\sigma^\prime) \right] - \frac{a^{\prime\prime\prime} - a^\prime}{v_t} +$$

and

$$v_t = \frac{(s_{t''} - s_{t'}) - (a'' - a') + v''\sigma'' - v'\sigma'}{\rho_w}$$
 (23)

Pyknometer Determinations. - (2) Solids. -- The following equations are based on two pyknometer weighings and a separate determination of the mass of the object. If the pyknometer is used as a container for weighing the object this requires two weighings. (See p. 76 to 78.)

The symbol " refers to the weighing with the calibrating liquid alone; " to the weighing with both this liquid and the object being studied.

Under requirements A and C only,
$${}^{\mu_{\mu_{\mu}}}{}^{\mu_{\nu}} = {}^{\mu_{\nu}}{}^{\mu_{\nu}} = {}^{\mu_$$

Under requirement B_i in addition to A and C_i equation (24) may be put into the form (25) by combining the terms in s with those

$$\frac{m\rho_{w}^{"'}}{m - (s_{\epsilon}^{"'} - s_{\epsilon}^{"}) + (a^{"'} - a^{"}) - b(v_{\epsilon}^{"'}\sigma^{"'} - v_{\epsilon}^{"}\overline{\sigma}^{"})}}$$
Under requirements D and E , in addition to A , B , and C ,

$$\rho_m = \frac{m\rho_w}{m - (s_e''' - s_s'')}$$
 (26)

This equation is independent of the magnitudes of σ , c, and v_c , merely requiring their constancy.

Hydrostatic Weighings for Density of Solids .-- These equations are based on two weighings; one with the object in air and one with it suspended in a liquid (e.g., water) of known density. The equilibrium equations for these weighings are

 $m' - v_m'\sigma' = s' - v_s'\sigma'$

and

$$m'' - v_m'' \rho_m'' = s'' - v_s'' \sigma''$$

the notation being similar to that used for pyknometer weighings. If the mass of the object remains constant (i.e., m' = m''), (27) is an exact solution of these equations.

$$\rho_{m'} = \frac{s_{e'}}{s_{g'} - s_{g''}} (\rho_{w'}'[1 + \beta_{m}(t'' - t')] - \sigma') + \sigma' \qquad (27)$$

If also all temperatures, the air density, and the density of the weights are the same in the two weighings,

$$\rho_m = \frac{8'}{\mu^2 - R''} (\rho_w - \sigma) + \sigma \tag{28}$$

Correction Formula.--When the result of a density determination is calculated without any correction for the buoyant effect

of the air, a false value (pt) is obtained except for pyknometer determinations in which the conditions of the work are those specified for equation (17)

If for pyknometer determinations, these false values were computed by means of the equation $\rho_f = \frac{s''' - s'}{s'' - s'} \rho_0$ and for hydrostatic

weighings of solids by means of the equation $\rho_f = \frac{g'}{g' - g'} \rho_{\pi_f}$ then to the precision attainable by assuming that the conditions were those specified for equations (16) or (28) the values may be corrected by the equation

$$\rho = \rho_f \left(1 - \frac{\sigma}{\rho_w} \right) + \sigma \tag{29}$$

VOLUME OF A MASS OF LIQUID OF KNOWN WEIGHT IN AIR (See also p. 73)

VERNEY STOTT AND PHILIP H. BIGG

Symbols. $F = \frac{1}{n} = \frac{\sigma}{\sigma}$; t = temperature of the liquid when itsvolume is V; t_* = temperature of the liquid when weighed; V =volume of the liquid at temperature t_i W = weight of the liquid in air against weights of density Δ ; ρ , ρ_0 = density of the liquid at t^a and at t_a^a , respectively; $\sigma = \text{density of air at time of weighing.}$ If densities are expressed in g/em^3 , and W in g, V is in em^3 ; if

densities are in g/ml and W in g, V is in ml; if densities are in lb./gal., and W in lb., V is in gal.; etc.

The exact relations connecting these quantities are given by the equation

$$V = \frac{W \begin{pmatrix} 1 - \frac{\sigma}{\Delta} \\ 1 - \frac{\sigma}{\rho} \end{pmatrix}}{\begin{pmatrix} 1 - \frac{\sigma}{\Delta} \\ 1 - \frac{\sigma}{\rho} \end{pmatrix}} \begin{pmatrix} \frac{1 - \frac{\sigma}{\rho}}{1 - \frac{\sigma}{\rho}} \end{pmatrix} = FW \begin{pmatrix} 1 - \frac{\sigma}{\rho} \\ 1 - \frac{\sigma}{\rho} \\ 1 - \frac{\sigma}{\rho} \end{pmatrix}$$

VALUES OF F FOR WATER AND MERCURY (Liquids are air-free)

$$V = FW - \frac{\sigma}{\rho}$$

$$1 - \frac{\sigma}{\rho}$$

In many cases the factor $\begin{pmatrix} 1 - \frac{\sigma}{\rho} \\ 1 - \frac{\sigma}{\sigma} \end{pmatrix}$ does not differ significantly from unity. If $t_o = 20^{\circ}$ C, the greatest value of this factor for the

temperature range covered by the following table differs from unity by only 7.3×10^{-6} for water and by 0.48×10^{-6} for mercury. If $t_a=t,\ V=FW$. For water, $F=1+0.001\ K_{\rm H_2O}$; for mercury, $F=0.07+0.001\ K_{\rm Hg}$

Unit of
$$F = \text{milhiter per } g$$
 of W ; of $t = {}^{\circ}C$. Assumes $\sigma = 0.0012 \text{ g/ml}$; $\Delta = 8.3 \text{ g/ml}$.

									.,	6/ Hi.				
1	$K_{\rm H_2O}$	KIIg	1	K _{H₂O}	KHg	t	K ₁₁₂ 0	K_{Hg}	t	$K_{\rm H_2O}$	K _{Hg}	t	$K_{\rm H_2O}$	KHg
0	1 189	3 550	10	1 330	3 683	20	2.832	3.817	1 30	5.410	3.951	40	8 890	4.085
1	1 130	3 563	11	1 425	3 697	21	3 044	3 830	31	5.720	3 964	41	0.000	1
2	1 089	3 576	12	1 533	3 710	22	3 267	3 844	32	6 038	3.977	42	i	4.098
3	1 065	3 590	13	1 654	3 723	23	3 501	3 857	33	6 366		11		4.111
4	1 057	3 603	11	1 788	3 737	24	3 744	3 870	11		3.991	43	l	4.125
5	1 065	3 616	15	1 933	1	11)		34	6.702	4 004	44		4.138
8	1.089	1	11 1		3 750	25	3 998	3 884	35	7 046	4.018	45		4.152
		3 630	16	2 090	3 763	26	4 261	3 897	36	7 399	4 031	46		4.165
7	1 127	3 613	17	2 259	3 777	27	4 534	3 910	37	7.760	4.044	47		4 178
8	1 181	3 656	18	2 438	3 790	28	4.817	3 924	38	8 129	4 058	48		4 192
9	1 248	3.670	19	2.630	3 803	29	5.109	3.937	39	8.505	4.071	49	į	
1		}			1	1	103	0.001	30	0.000	4.071	11 11		4 205
			'1 1		1		1		11 1		1	50	1	4.219

[•] The increase (dK) produced in K by changing Δ to Δ(1 + δ) and σ to σ(1 + ε) is closely given (± ca 1 %) for the range of this table by the equations:

$$dK_{\text{H}_2\text{O}} = 0.145(7.3s + 0.997\delta + 8.3s\delta) \frac{1}{1 + \delta} dK_{\text{H}_2\text{G}} = 0.00078(-5.3s + 13.6\delta + 8.3s\delta) \frac{1}{1 + \delta}$$

 $dK_{\rm H_{2}O} = 0.14s(7.3s + 0.997s + 8.3s\delta)\frac{1}{1+\delta}$ $dK_{\rm H_{2}O} = 0.00078(-5.3s + 13.6s + 8.3s\delta)\frac{1}{1+\delta}$ units being those of this table. For uncertainties in s, and for the variation of σ with pressure, temperature, and humidity, see p. 78. When brass weights are not used, δ will, in general, be large , in such cases it is desirable to transform the equations once for all by inserting the proper value for δ ; they will take the convenient form dK = a + bs. If $\delta = 0$, $dK_{\rm H_{2}O} = 0.0414$ s. If s = 0, $dK_{\rm H_{2}O} = 0.14s\frac{3}{1+\delta}$; $dK_{\rm H_{2}O} = 0.010s\frac{3}{1+\delta}$.

Example.—(1) If
$$\sigma = 0.00132$$
 and $\Delta = 8.383$, $s = 0.1$, $\delta = 0.01$ and $dK_{\text{H}_2\text{O}} = 0.145(0.73 \pm 0.01 \pm 0.008) \frac{1}{1.01} = 0.144(0.75) = 0.108$. Hence, if $t = 19^{\circ}\text{C}$, $K_{\text{H}_2\text{O}} = 2.63 \pm 0.108 = 2.74$.

(2) If
$$\sigma = 0.00132$$
 and $\Delta = 2.65$ (quartz), $s = 0.1$, $(1 + \delta) = 2.65$ g $\frac{5}{8}$ $\frac{65}{3}$, and $dK_{\rm Hg} = 0.00078(-0.53 - 9.26 - 0.565)$ (3.13) = $-0.025s$. Hence, if $t = 25^{\circ}$ C, $K_{\rm Hg} = 3.884 - 0.025 = 3.85a$

STANDARD BUFFER SOLUTIONS AND ACID-BASE INDICATORS

MANSFIELD CLARK

In the following tables pH represents (formalistically) $\log_{10} \frac{1}{[H^{\frac{3}{4}}]}$ where $[H^{+}]$ is the symbol for grams of hydrogen ions per liter. Since there is a disagreement concerning the precise interpretation of experimental values, the experimental meaning of pH is defined by the set of conditions described below (8.57).

The normal hydrogen-electrode is regarded as a properly coated, noble metal, under one atmosphere partial-pressure of hydrogen, immersed in a solution normal with respect to hydrogen ions. The difference of potential between electrode and solution is regarded as zero at all temperatures.

The following values are regarded as standard differences of potential (E_c) (liquid-junction potential-difference being climinated) between the tenth-normal KCl—Hg₂Cl₂—Hg half-cell and the hypothetical, normal hydrogen-electrode.

For present purposes it is assumed that the liquid-junction potential-difference between an Hg₂Cl₂ half-cell solution and the solution the pH of which is under measurement has been eliminated when there has been interposed a saturated solution of KCl, or when there has been employed the Bjerrum extrapolation (4) from measurements made with 3.5N KCl and 1.75N KCl as interposed solutions.

When the electromotive force, e mf, of the "chain".

is measured under the above conditions, and the Hg is positive to the Pt, pH is calculated from the equation

$$\frac{\text{E.M.F.} - E_t}{0.000\ 198\ 37(273.09\ + t)} = \text{pH}.$$

(See (8, 37, 45, 64) and references therein on potentiometric measurement of pH.)

The chief modes of employing indicators for the determination of pH may be illustrated by the following examples.

I. A solution having been found to induce a blue color with brom thymol blue (see No. 139, Table 3A), a vellow color with thymol blue (No. 129), and a color intermediate between yellow and red with phenol red (No. 142) is judged to have a pH value between 7.0 and 7.8. Then to 10 ± 0.05 cc of solution are added 5 drops 0.04% phenol red solution (made by dissolving 0.1 g phenol red in 28.5 cc 0.01N NaOH solution and diluting to 250 cc). The resulting mixture is then compared with standards made by adding 5 drops of the same phenol red solution to each of 10 ± 0.05 cc portions of buffers having pH values of 7.0, 7.2, 7.4, 7.6, etc. (See Table 1A.)

The comparison is made in containers of identical dimensions and under uniform illumination. It is found that the tested solution has a color intermediate and half-way between those of buffers 7.4 and 7.6, and since the total salt contents of the tested solution and of the buffers are of the same order of magnitude, and since the solution contains no protein or substance known to affect the indicator, 7.5 is judged to be the true pH value of the tested solution (8, 11, 31, 37, 45, 53, 54, 56).

- II. A solution is found to induce a partial color transformation of phenol red. Using uniform containers (e g., test tubes) there are prepared:
- (1) A mixture of 10 ± 0.05 cc solution under test and 10 drops standard phenol red solution (see 1).

- (2) A mixture of x drops of indicator and sufficient buffer solution of the value shown in column B of Table 3A to equal the total volume of solution 1
- (3) A mixture of 10 x drops of indicator and sufficient buffer of the value shown in column C of Table 3A to equal the total volume of solution 1.

X is varied and there is found at $x\sim 4$ a match in color between solution 1 and superposed solutions 2 and 3. From the relation:

pH = pK +
$$\log \frac{r}{10 - x^2}$$
 and the value 7.8 for pK given in Table 3.3 it is calculated that the value of the tested solution is 7.6 (see in

3A it is calculated that the value of the tested solution is 7.6 (see in addition to the general references under I (2, 19, 20, 22, 34, 63),

HI A solution is found to induce a partial color-transformation in m-introphenol (No. 15, Table 3C). It is found that 10 cc of the tested solution plus 1 cc of 0.3 $^\circ\epsilon_c$ m-introphenol matches in color 11 cc of an alkalimized solution containing 0.2 cc of 0.3 $^\circ\epsilon_c$ m-introphenol. It is thus shown that the tested solution has induced a 20 $^\circ\epsilon_c$ transformation. If a is the percentage transformation of the indicator, pH is calculated from

$$pH = pK + \log \frac{a}{100} - a$$

In the case at hand a=20, the temperature of the measurement was 25° and the total salt content of the solution was of the order of magnitude of 0.15M. Hence from Table 3C, pK is taken as 8.16. By the above equation pH = 7.56

The equation pH \sim pK + log $\frac{a}{100-a}$ cannot be used with

pieric acid, phenolphthalein or Alizarme yellow GG listed in Table 3C, since these indicators do not behave as monoacidic within the range of pH specified. Empirical data (38) for phenolphthalein and Alizarme yellow GG are shown in Table 1. It is best to vary the amounts of indicator used till the most favorable color-differences are found. (In addition to the material found in the general references under 1 see (39, 31, 38, 39) for method III.)

pK in the tables represents the pH at which there is an apparent half-transformation of the indicator. For indicators behaving as monoacidic or monobasic, within the zone of pH designated, pK is log I/Ka when Ka is the "apparent dissociation constant" (43), When an indicator, such as phenolphthalem, is known not to behave as monoacidic within the range of pH designated, pK is bracketed

pK values listed in Tables 3A and 3C are uniform with respect to the bases of reference. Those of the indicators in the general list (Table 2) are referred to such a variety of bases that tabulation is impracticable. The reader is therefore referred to original articles (8, 31, 37, 43, 45, 51, 58, 59, 60, 61, 67).)

The values assigned to useful pH ranges are somewhat arbitrary, depending upon concentration of indicator, the spectral distribution of illumination, and psychological preferences.

Indicator solutions are affected to various degrees by

- a. Total salt content.
- b. Specific ions: e.g., alizarine red S is affected by borates differently than by phosphates (67).
- c. Colloidal suspensions, protein solutions, etc.: e.g., congo red in a gelatine solution of pH 3.6 behaved as if the pH were 5.6 (*3). Neutral red in soap solutions forms a fatty acid complex (*27).
- d. Presence of immiscible solvents: e.g., chloroform used for disinfection removes benzene-azo-benzyl-aniline from the aqueous phase (53).

- e. Mixed solvents and change of solvent (3, 31, 32, 40, 62).
- f. Temperature. See Table 3A, 3C.
- g. Time: e.g., water blue changes color slowly and propyl red precipitates
- h. Destructive agents: e.g., methyl red is irreversibly reduced in some bacterial cultures.

Since it is impracticable to tabulate all available data, only representative "salt" and temperature effects are given in Tables 3A, 3B and 4.

The indicators of Table 3 include the better of those which may be used in acidimetric and alkalimetric titration. (For principles see (8, 31, 43, 45).)

TABLE L.—STANDARD BUFFER SOLUTIONS

The following tables give the compositions of solutions which furnish, at the temperatures indicated, values of pH which conform in essential respects to the specifications listed in the general notes above. Recalculation to make the conformity rigid would involve changes in the original data which would be less than the uncertainties of the working standards used in the experiments. The solutions listed may serve as standards for the colorimetric measurements of pH. The solutions suffer relatively slight displacement of pH with addition or subtraction of small proportions of acid or alkali. This property is referred to as that of a buffer (puffer, tampon). (For buffer solutions see (8, 37, 45, 64).)

A. Standard Buffer Solutions of Clark and Lubs (10) at 20° 50 ec Λ + x ec B diluted to 200 ec

A = 0.2 B = 0.2		KH o	0 2M -phthal- ate 0 2 M	КН о В =	0 2M -phthal- ate 0 2M aOH	KI B •	0 2M I ₂ PO ₄ 0 2M aOH	H ₃ l + 0 2 B =	0 2 M BO ₄ † EM KCl 0 2 M 40 H
pH	ec B	pH	co B	pH	ce B	pН	ce B	pH	cc B
1 2 1 4 1.6 1 8 2 0 2 2	64 5 41 5 26 3 16 6 10.6 6.7	2 2 2 4 2 6 2 8 3 0 3 2 3.4 3 6 3 8	16 70 39 60 32 95 26 12 20 32 14 70 9 90 5 97 2 63	4 0 4.2 4.4 4 6 1 8 5 0 5 2 5.4 5.6 5 8 6 0	0.40 3.70 7.50 12 15 17 70 23 85 29 95 35 45 30 85 43 00 45 45	5 8 6 0 6 2 6 4 6 6 7 0 7 2 7 1 7 6 7 8	3 72 5 70 8 60 12 60 17 80 23 65 29 63 35 00 39 50 42 80 45 20	7 8 8.0 8.2 8 4 8 6 8 8 9 0 9.2 9 1 9 6 9 8	2.61 3 97 5.90 8.50 12 00 16 30 21 30 26 70 32 00 36 85 40 80
				6 2	47 00	8.0	16 80	10 0	13 90

B. Sørensen's Glacocoll-NaCl-HCL Mixtures(56)
Glycocoll solution: 0.1M Glycocoll + 0.1M NaCl per 1; HCl
0.1N. Values hold between 10°-70° (56)

Glycocoll (cc)	10.0	1.0	2 0	3 0	10	5.0
HCl (cc)	10-0	9.0	8.0	7.0	6.0	5.0
pH	1.04	1 15	1/25	1 42	1 65	1 93
Glycocoll (cc)		6.0	7 0	8.0	9.0	9 5
HCl (cc)		10	3 0	2.0	10	0.5
pH	,	2 28	2 61	2 92	3 34	3 68

C. SØRENSEN'S CITRATE-HCL MIXTURES (56)

Citrate solution: 21.008 g crystn, citric acid + 200 cc N NaOH per l; HCl; 0.1N. Values hold between 10°-70° (66)

Citrate (co)	0	0	1	0	2	()	3	()	3	33	4	0	4	5	4	75
HCl (cc)	10	0	9	0	8	0	7	0	В	67	6	0	5	5	5	25
pH	1	04	1	17	ı	42	1	93	2	27	2	97	3	36	3	53

^{*} The pH values of these mixtures are given by Clark and Lubs as preliminary measurements

Citrate (cc)		5.0	5.5	6.0	7.0	8.0	9.0	9.5	10.0 0.0 4.96
HCl (cc)	 	5.0	4.5	4.0	3.0	2.0	1.0	0.5	0.0
рН		3.69	3.95	4.16	4.45	4.65	4.83	4.89	4.96

D. Sørensen's Phosphate Mixtures (55, 56)
9.078 g KH₁PO₄, 11.876 g Na₁HPO₄.2H₂O each per l. Values
hold between 10°-70° (56)

	hold betw	een 10°	-70° (6	6).		
Na ₂ HPO ₄ (cc) KH ₂ PO ₄ (cc)	. 0.25 9.75	0.5 9.5	1.0 9.0	2.0 8.0	3.0 7.0	4.0 6.0
pH	5 29	5.59	5.91	6.24	6.47	6.64
Na ₂ HPO ₄ (cc)	5.0	6.0	7.0	8.0	9.0	9.5
KH ₂ PO ₄ (cc)	5.0	4.0	3.0	2.0	1.0	0.5
рН	6 81	6 98	7.17	7.38	7.73	8.04

E. Sørensen's Citrate-NaOH Mixtures (56); Walbum's Values (66)

Citrate solution; 21.008 g crystn. citric acid + 200 ee N NaOH per 1; NaOH: 0.1N

Volum	e parts	Temperature
Citrate	NaOH	10° 20° 30° 40° 50° 60° 70°
10.0	0.0	[4.93]4 96[5.00[5.04[5.07[5.10[5.14
9.5	0.5	4.99 5.02 5.06 5.10 5.13 5.16 5.20
9 0	10	5.08 5.11 5.15 5.19 5.22 5.25 5.29
8.0	20	5.27 5.31 5.35 5.39 5.42 5.45 5.49
7 0	30	5 53 5.57 5.60 5.64 5.67 5.71 5.75
6.0	4.0	[5.94 5.98 6.01 6.04 6.08 6.12 6.15
5 5	4.5	6 30 6 34 6 37 6 41 6 44 6 47 6 51
5 25	4 75	6 65 6 69 6.72 6 76 6.79 6.83 6.86

F. Sørensen's Borate-HCL Mixtures (56); Walbum's Values (66)

Borate: 12.404 g H₃BO₃ + 100 cc N NaOH per l: HCl: 0.1N

Volume	parts	Temperature
Borate	HCl	10° 20° 30° 40° 50° 60° 70°
10 0	0 0	9-30 9.23 9.15 9-08 9.00 8.93 8.86
9.5	0.5	= 9.22 9.15 9.08 9.01 8.94 8.87 8.80
9 0	1.0	9.14 9.07 9.01 8.94 8.87 8.80 8.74
8.5	1.5	9.06 8.99 8.92 8.86 8.80 8.73 8.67
80	2 0	8.96 8.89 8.83 8.77 8.71 8.65 8.59
7.5	2 5	8.84 8.79 8.72 8.67 8.61 8.55 8.50
7 0	3 0	8.72 8 67 8 61 8 56 8 50 8 45 8 40
6.5	3.5	8.548 498.448.408.358.308.26
60	4 0	8.32 8.27 8.23 8.19 8.15 8.11 8.08
5 75	4 25	8 17 8 13 8 .09 8 .06 8 .02 7 .98 7 .95
5.5	4.5	7 96 7 93 7 89 7 86 7 82 7 79 7 76
5 25	4 75	7 64 7 61 7 .58 7 55 7 52 7 49 7 .47

II. Sørensen's Borate-NaOII Mixtures (56); Walbum's Values (66)

Borate: 12.404 g H₃BO₃ + 100 cc N NaOH per 1; NaOH: 0.1N

Volum	e parts			,	Fempe	rature			
Borate	NaOH	10°	14°	18°	22°	26°	30°	34°	37°
10	0.0	9 30	9 27	9.24	9 21	9 18	9.15	9.13	9.11
9	1	9.42	9.39	9.36	9.33	9 29	9.26	9.23	9.20
8	2	9.57	9.54	9.50	9 46	9.43	9.39	9.35	9.32
7	3	9.76	9.72	9.68	9.63	9 59	9.55	9.50	9.47
6			10.02						
5	5	11.24	11.16	11.08	10.99	10.91	10.82	10.74	10.68
4	6	12 64	12 51	12 38	12 25	12.13	12 00	11 87	11 77

Continued on p. 84

[†] The old atomic weight (11.0) of boron is used throughout these tables

G. Sørensen's Glycocoll-NaCl-NaOH MIXTURES (86); WALBUM'S VALUES (86)

		,	Gly	cocoll: 7	7.505 g	glycocol	11 + 5.8	5 g Na	Cl per l	, NaOH	I: 0.1N					
Volume	parts								mperatu							
Glycocoll	NaOH	10°	12°	14°	16°	18°	20°	22°	24°	26°	28° 1	30°	32°	34°	37°	40°
9 5	0.5	8.75	8.70	8 66	8 62	8 58	8 53	8 49	8 45	8 40	8 37	8 32	8 28	8 24	8.18	8.12
9.0	1.0	9.10	9.06	9.02	8 97	8 93	8 88	8 84	8.79	8.75	8.71	8 67	8.62	8.58	8.52	8.45
8.0	2.0	9.54	9 50	9.45	9 40	9 36	9 31	9 26	9 22	9 17	9.13	9 08	9 04	9 00	8.92	8.85
7.0	3.0	9 90	9.85	9 80	9 75	9.71	9 66	9 61	9 56	9.51	9 46	9 42	9 37	9 32	9.25	9.18
60	4.0	10 34	10.29	10.24	10.18	10 14	10 09	10 03	9 98	9.93	9 88	9 83	9 78	9.73	9.66	9.58
5.5	4.5	10.68	10.63	10.58	10 53	10.48	10 42	10 37	10 32	10.27	10 22	10 17	10 12	10 07	9.99	9.91
5.1	49	11 29	11.24	11 18	11.12	11 07	11 01	10 96	10 90	10.85	10 79	10.74	10 68	10.62	10.54	10.46
5 0	5.0	11.53	11.48	11 42	11 36	11.31	11 25	11 20	11.14	11 09	11 03	10 97	10 92	10 86	10.78	10.70
49	5.1	11.80	11 74	11.68	11 62	11 57	11 51	11 45	11 39	11 33	11.27	11 22	11 16	11.10	11.02	10.93
4 5	5.5	12 34	12 28	12 22	12 16	12 10	12 04	11 98	11 92	11 86	11 80	11 71	11 68	11.62	11.53	11.44
40	6.0	12.65	12.59	12 52	12.46	12 40	12 33		12 21	12 15	12 09	12 03	11.96	11 90	11.81	11.72
3.0	7.0	12.92	12.86	12 80	12.73	12.67	12 60	12 54		12 42	12 35	12 29	12 23	12.17	12.07	11.98
20	80	13 12	13 06	12 99	12 92	12.86		12.73			12.53	12.47	12 41	12 34	12.25	12.15
1 0	90	13.23	13.16	13 09	13 03	12 97	12 90	12 83		12 70	12 64		12 51	12 45	1	12.25
Volume	parts							Ten	nperatu	ro						
Glycocoll	NaOH	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°	62°	64°	66°	68°	70°
9.5	0.5	8.07	8.03	7 99	7 95	7 91	7.86	7 82	7.78	7 74	7 69	7 65	7.61	7 56	7.52	7.48
90	10	8.41	8 37	8 32	8 28	8 24	8 19	8 14	8 10	8 06	8 02	7 97	7 93	7 88	7.84	7.79
8.0	2.0	8.81	8 76	8 72	8 67	8 63	8 58	8 53	8 49	8 44	8.40	8 35	8 30	8 26	8.21	8.16
70	3.0	9.13	9 08	9 03	8 99	8 94	8 89	8 84	8 79	8 74	8 70	8.65	8 60	8.55	8.50	8.45
6.0	40	9.53	9 18	9 43	9 38	9 33	9 28	9 23	9 18	9 13	9 08	9 03	8 98	8.93	8.88	8.82
5.5	4.5	9 86	9 81	9 76	9 71	9 66	9 61	9.56	9 51	9.46	9 41	9 35	9 30	9.25	9.20	9.15
5.1	4.9	10.40	10.35	10 29	10 24	10 18	10.13	10 07	10 02	9 96	9 90	9 85	9 79	9.74	9.68	9.62
5.0	5 0	10 64	10 59	10 54	10.48	10 43	10 37	10/32	10 26	10 20	10.14	10 09	10 04	9 98	9.93	9.87
4.9	5 1	10.87	10.81	10 75	10 69	10 64	10.58	10 52	10.46	10 40	10 35	10 29	10 23	10 17	10.11	10.05
4.5	5.5	11.38	11.32	11 26	11 20	11.14	11.08	11 02	10 96	10 90	10 84	10.78	10.72	10.66	10.60	10.54
4.0	6.0	11 65	11 59	11 53	11 47	11.41	11 34	11.28	11.22	11 16	11 10	11 03	10 97	10.91	10.84	10.78
3 0	7.0	11 91	11/85	11 79	11.73	11.66	11 60	11 54	11 47	11 41	11 35	11.28	11.22	11.16	11.09	11.03
20	8.0	12.08	12.02	11 96	11 89	11.83	11.77	11.70	11.64	11.57	11.51	11.44	11.38	11.31	11.25	11.18
										11 67					11.35	11.28

J. pH Values of Borax-borate Mixtures at 18° C and "Salt-effects" for Phenolphthalein and α -Naphtholphthalein Palitzsch (44)

Borax solution: 19 108 α Na₂B₄O₇, 10H₂O in 1 l. Boric acid solution: 12.404 g H₂BO₁ + 2.925 g NaCl in 1 l

tanda	rd solut	tions	Tru	ie pH val	ues of sea	water co	ntaining	S parts p	r 1000 sa	dimty at	color-mate	h with st	tandard
rax c	Boric acid	рН	S = 36	S = 30	S = 26	S = 22	S = 18	S = 14	8 = 10	S = 6	S = 4	S -a 2	S = 1
		!					•	:			1 1	I	
0	4 0	8 69	8 48	8 49	8 50	8 52	8 54	8 57	8 59	8 63	8 66	8 69	8.72
	4.5	8 60	8 39	8 40	8 11	8 43	8 45	8 18	8 50	8 54	8 57	8 60	8.63
5	5 0	8 51	8 30	8 31	8 32	8 34	8 36	8 39	8 41	8 45	8 48	8 51	8.54
0	5 5	8 41	8.20	8 21	8 22	8 24	8 26	8 29	8 31	8 35	8 38	8.41	8 44
5		1	í	1	8 12	8 14	8 16	8 19	8 21	8 25	8 28	8.31	8.34
0	6 0 6 5	8 31 8 20	8.10 7 99	8.11 8.00	8 01	8 03	8 05	8 08	8 10	8.14	8 17	8 20	8.23
5		<u>-</u>	'				· -	8 28	8.32	8 37	8 40	8.45	8.48
5	5.5	8 41	8 19	8 20	8 21	8 23	8 25	1	1	8 27	8 30	8 35	8.38
0	6.0	8 31	8 09	8.10	8 11	8 13	8 15	8 18	8 22	1	1	i .	1
5	65	8 20	7.98	7.99	8 00	8 02	8 04	8.07	8 11	8 16	8 19	8.24	8.27
.0	7.0	8.08	7 86	7 87	7 88	7 90	7 92	7 95	7 99	8.04	8 07	8 12	8.15
5	7.5	7.94	7 72	7.73	7.74	7.76	7.78	7 81	7.85	7 90	7 93	7.98	8.01
3	7.7	7.88	7 66	7.67	7 68	7 70	7 72	7.75	7 70	7.84	7.87	7.92	7.95
0	8.0	7 78	7.56	7 57	7 58	7.60	7 62	7 65	7.69	7.74	7 77	7.82	7.85
5	8.5	7.60	7.38	7 39	7.40	7.42	7 44	7.47	7.51	7.56	7.59	7.64	7.67
0	9.0	7 36	7 14	7.15	7.16	7 18	7 20	7 23	7.27	7.32	7.35	7.40	7.43
6	9.4	7.09	6 87	6 88	6.89	6 91	6 93	6.96	7.00	7.05	7.08	7.13	7.16
3	9.4	6.77	6.55	6 56	6 57	6 59	6 61	6 64	6 68	6.73	6.76	6.81	6.84

H. Sørensen's Borate-NaOH Mixtures.—(Continued)

Vol	ume part	s Temperature	-
Bore	te NaO	H 40° 44° 48° 52° 56° 60° 64° 70°	-
		9 08 9 05 9 02 9 00 8 97 8 93 8 90 8 86	ò
10	100	9 08 9 05 9 02 9 00 8 01 8 00 8 00	i
9	1 1	9 18 9 15, 9 11 9 08 9 05 9 01 8 98 8 94	r
8	/ 2		٠,
7	/ 3	0 44 9 40 9 35 9 31 9 27 9 22 9 18 9 12	1
в	4	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	ı
5	5	10 61 10 53 10 44 10 36 10 27 10 19 10 10 9 98	l
4	6 /		

I. ACETIC ACID-ACETATE MIXTURES; WALPOLE'S VALUES (RECALCULATED) (68)

CH ₂ CO ₂ H M. CH ₂ CO ₂ Na M		ю	015	60	024	0	036	Ю	. 147 053	0	074	0.	.098
pH		3	6	3	8	1	0	4	2	1	4	4	6
CH ₂ CO ₂ H M				0	080	0	059	0	.042	0.	029	0.	019
CH₄CO₂Na M				0	120	0	141	0	158	0	171	0	181
pH	1			1	8	5	0	5	2	5	4	5	6

TABLE 2.—GENERAL LIST OF INDICATORS

The following list of indicators includes all those for which data on the pH-ranges have been found. Many of the data of this table are to be regarded with caution, because in some cases the names proposed are inadequate for complete identification, and in others names have been given to materials of uncertain composition (6, 11, 31, 37, 45, 53, 54, 56, 64).

The Schultz (S.....) and Rowe (R.....) numbers are taken from the 1923 (52) and 1924 (48) editions, respectively, of theseworks. Delicate shades of meaning in the color nomenclature have been avoided, as data regarding the purity of the compounds have often been lacking. The abbreviations used are as follows: b, blue; br, brown; c, colorless; f, fades; fl, fluorescent; g, green; o, orange; p, pink; pu, purple; r, red; v, violet; y, yellow. pK is the pH at which there is an apparent half-transformation of the indicator. * indicates that the indicator has been studied in sufficient detail to be used in supplementing the lists of Table 3.

NITRO COMPOUNDS

Index	Indicator	Color and useful	Lit.
No.	Andrawot	range pH	
1	2, 4, 6-Trinitrophenol; Pieric acid [S=5; R, 7]	c 0 0- 1.3 y	(31, 39)
2	2, 6-Dinitrophenol [Michaelis' β]	с 2.0-4.0 у	(31, 38, 39)
3	2, 4-Dimtro-α-naphthol; Manchester yellow [S. 6; R. 9]	у 2.0-4.0 у	(9)
4	2, 4-Dinitrophenol [Michaelis' α]	c 2.6-4.4 y	(31, 38, 39)
5	Dinitrohydroquinol	3-10	(23, 46)
6	Nitrohydroquinol	3–11	(46)
7	2, 3-Dinitrophenol (Michaelis' e	с 3.9-59 у	(31, 38, 39)
8	2, 5-Dinitrophenol [Michaelis' γ]	e 4.0-58y	(31, 38, 39)
9	2, 6-Dinitro-4-aminophenol; Isopicramic acid.	р 4 1- 5 6 у	(67)
10	3, 4-Dinitrophenol [Michaelis' δ]	е 43-63 у	(38, 39)
11	4-Nitro-6-ammoguaiacol	y 45-80r	(35)
12	p-Nitrophenol	е 5.6-76 у	(31, 38, 39, 56)
13	o-Nitrophenol	с 50-70 у	(46)
14	*Dimtrobenzoylene urea	c 60-80y	(6)
15	m-Nitrophenol	c 68-86y	(31, 38, 39)
16	2, 4, 6-Trinitrophenyl-methyl-mitroamine; Nitramine	e 10 8-13 0 br	(31, 33)
17	symTrinitrobenzene.	c 12 0 ·14 0 o; f	
18	2, 4, 6-Trinitrotoluene	р 11 5-14 0 о	(9)
	Mono-azo Compounds		
19	p-Toluene-azo-phenyl-andine	1 0-20	(53, 54, 56)
20	p-Carboxybenzene-azo-dimethylaniline; Para methyl red	r 1 0- 3 0 y	` (9, 60)
21	p -Toluene-azo-phenyl- α -naphthylamine	1 1- 1 9	(53, 54, 56)
22	Benzene-azo-diphenylamine	р 1 2- 2 1 у	(56)
23	m-Benzenesulfonie acid-azo-diphenylamine; Metanil yellow [8, 134; R, 138]	r 1.2- 2 3 y	(56)
24	Benzene-azo-phenyl-a-naphthylamine	v 1 4 - 2 6 o	(53, 54, 56)
25	p-Benzenesulfonic acid-azo-diphenylamine; Tropacolin OO [8, 139; R, 143]	r 1 4-2 6 y	(56, 60)
26	o-Toluene-azo-o-toluidine; Spirit yellow R [8, 68; R. 17]	1 4 - 2 9	(53, 54, 56)
27	p-Toluene-azo-benzyl-α-naphthylamine.	16-26	(53, 54, 56)
28	p-Toluene-azo-benzyl-aniline	1 6- 2 8	(53, 54, 56)
29	Benzene-azo-benzyl-a-naphthylamine	1 9 - 2 9	(53, 54, 56)
30	Benzene-azo-amlme; Ammo-azo-benzene [S. 31; R. 15]	v 19-33y	(53, 54, 56, 60)
31	p-Benzenesulfome acid-azo-aniline	r 19 33y	(52, 53, 54, 60)
32	p-Benzenesulfonic acid-azo-benzylaniline	r 1 9- 3 3 y	(56, 60)
33	m-Carboxybenzene-azo-dimethylamline	r 20 40 y	(11)
34	Benzene-azo-benzy lamline	p 2 3 3 3 y	(56)
35	p-Benzenesulfonic acid-azo-m-chlorodiethylaniline	r 26-40y	(56, 60)
36	m-Nitrobenzene-azo-β-naphthol-3, 6-disulfonic acid; Orange III [S. 47; R. 39]	r 26 46y	(9)
37	Benzene-azo-dimethylaniline; Topfer's indicator [S. 32; R. 19]	r 29-40y	(56, 60)
38	o-Carboxybenzene-azo-α-naphthylamine	r 29-58y	(61)
39	p-Benzenesulfonic acid-azo-o-toluidine	mid-point 2 9	(60)
	• •		

	MONO-AZO COMPOUNDS,—(Continued)		
Index	Indicator	Color and useful range pH	Lit.
40	p-Benzenesulfonic acid-azo-m-xylidine	mid-point 2 9	(60)
41	o-Carboxybenzene-azo-diphenylamine	p 3 0- 4 6 y	(11)
42	p-Benzenesulfonic acid-azo-methylaniline p-Benzenesulfonic acid-azo-ethyl aniline	r 3.1- 4 2 v	(83, 84, 88, 60)
43	p-Benzenesulfonic acid-azo-ethyl aniline	r 3.1- 4 4 y	(83, 84, 86, 60)
44	D-Densencountric acid-azo-dimetrivianiline: Methyl orongo (c. 120. b. 140)	r 3 1- 4.4 y	(56, 60)
45	p-Benzenesulionic acid-azo-diethylaniline; Ethyl orange	r 3 5- 4.5 y	(53, 54, 56, 40)
46	o-Benzenesulionic acid-azo-dimethylaniline	mid-point 3 5	(60)
47	p-Benzenesulfonic acid-azo-m-toluidine	nud-point 3 5	(60)
48	p-Benzenesulfonic acid-azo-p-xylidine	mid-point 3 6	(60)
49	*p-Sulfo-o-methoxybenzene-azo-dimethyl-o-naphthylamine	b 3 5- 4 9 o	(42)
50	p-Benzenesulfonic acid-azo-α-naphthylamine	r 3 5- 5 7 y	(56, 61)
51	p-Benzenesulfonic acid-azo-phenyl-α-naphthylamine	v 3 5 6 5 o	(61)
52	o-Carboxybenzene-azo-phenyl-a-naphthylamine.	v 3 5 6 5 o	(61)
53	Benzene-azo-a-naphthylamine	r 37 50y	(56, 61)
54	p-Toluene-azo-α-naphthylamine	3 7 5 0	(53, 54, 56)
55 56	o-Carboxybenzene-azo-methylaniline	r 4 0 6 0 y	(11)
57	Benzene-azo-m-phenylenediamine; Chrysoidine [8, 33; R, 20] o-Carboxybenzene-azo-ethylaniline	o 4 0- 7 0 y	(9)
58	o-Carboxybenzene-azo-ethylaniline	r 4 2 6 2 y	(11)
59	o-Carboxybenzene-azo-dimethylaniline; Methyl red [R. 211]	r 4 2 6 2 y	(11)
60	o-Carboxybenzene-azo-diethylanilme; Ethyl red	r 4 2- 6 3 y	(11, 14, 56, 60) (11, 60)
61	*o-Carboxybenzene-azo-dien-propylaniline; Propyl red	r 4 4 - 6 2 y	(11, 00)
62		r 4 6 6 6 y	(*)
63	o-Carboxybenzene-azo-m-phenylenediamine Benzene-azo-dimethyl-α-naphthylamine	48-55	(53, 54, 56)
64	p-Benzene-azo-dimethyl-α-naphthylamine	r 50-570	(53, 54, 56, 61)
65	o-Carboxybenzene-azo-α-naphthylamine	p 5 6- 7 0 y	(11)
66	o-Carboxybenzene-azo-(di or mono?)-amyl aniline	o 5 6 7 6 y	(11)
67	o-Carboxybenzene-azo-dimethyl-α-naphthylamine	r 5 6 7 6 o	(11, 61)
68	4-Sulfo-α-naphthalene-azo-α-naphthol; Naphthylamine brown [S. 160; R. 175]	o 60-84p	(9)
69	Tropaeolin?	у 70 90г	(80)
		(o 7 0 8 0 b	1
70	6-Sulfo-α-naphthol-1-azo-m-hydroxybenzoic acid	v 12 13 r	(67)
71	Curcumine?	y 74 86b	` (31)
72	p-Benzenesulfonicacid-azo-α-naphthol; Tropaeolin OOO No. 1 [S. 144; R. 150]	у 7 6 8 9 р	(56)
73	p-Benzenesulfonicacid-azo-β-naphthol; Tropacolm OOO No. 2 [S. 145; R. 151]	7 6 8 9(?)	(45)
74	m-Nitrobenzene-azo-salicylic acid; Alizarine yellow GG [S. 48; R. 36]	e(?)10 0 12 0 y	(38, 39)
75	p-Nitrobenzene-azo-salicylic acid; Alizarine yellow R [8, 58; R, 40]	y 10.0-12 l y	(56)
76	α-Naphthylaminosulfonic acid-azo-β-naphthol; Red I [8, 161; R, 176]	10 5 12 1	(53, 54, 56)
77	α-Naphthalene-azo-β-naphthol-3, 6-disulfonic acid; Bordeaux B [S. 112; R. 88]	p 10 5 12 5 o	(9)
78	p-Benzenesulfonic acid-azo-resorcinol; Tropaeolin O [S. 143; R. 148]	у 11-1-12-7 о	(56)
79	Benzene-azo-β-naphthol-6, 8-disulfonic acid; Orange GG [8, 38; R 27]	у 11-5-14-0 р	(9)
80	Crocein?	p 12 0-14 0 v	(50)
81	remartin (Gruner):	o 11 0-12 0 r	(9)
82	Helianthin 1?	o 11 0-13 0 r	(50)
83	Helianthin II?	y 13 0-14 0 v	(50)
84	Curcumein?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(50)
		1 y 13 0 13 0 K	
	Dis-azo Compounds	[b 0 3 1 0 v	17
85	Ditolyl-disazo-bis- β -naphthylamine-6-sulfonic acid; Benzopurpurin B [8, 365; R. 450]	v 1 0- 5 0 y y 12 0-14 0 r	(50)
86	Ditolyl-disazo-bis-a-naphthylamine-4-sulfonic acid; Benzopurpurin 4B [S. 363; R. 448].	v 1 3- 4 0 r	(31)
87	Diphenyl-disazo-bis-α-naphthylamine-4-sulfonic acid; Congo red [S. 307; R. 370]	b 30-50r	(50)
88	Ditolyl-disazo-bis-α-naphthol-4-sulfonic acid; Azo blue [8, 377; R. 463]	v 10 5–11 5 p	(9)
89	Curcumin W [Probably Rowe, 364 (21)]	mid-point 7.3	(49)
COLU	arcumin of [1100abity flowe, our (**/)]	∏mid-point 7-6	(18)

Triphenylmethane Derivatives						
Index No.		Color and useful range pH	Lit.			
90	Methylated pararosaniline; Crystal violet [S. 516; R. 681]	g 0.0-2.0 b	(9)			
91	p, p'-Tetramethyldiamino-triphenylcarbinol; Malachite green [S. 495; R. 657]	$\begin{cases} y & 0.0-2.0 \text{ g} \\ b & 11.5-14.0 \text{ f} \end{cases}$	(50)			
92	Hofmann's violet; Methylated rosanilines and pararosanilines [S. 514; R. 679]	g 0.0- 2.0 b	(9)			
	Tetraethyl-diamino-triphenyl-carbinol; Brilliant green [8, 499; R, 662]	y 0.0-2.6 g	(9)			
	Heptamethylrosandine; Iodine green [R. 686]	y 0.0-2.6 b	(9)			
- 1	Hexaethylpararosaniline; Ethyl violet [S. 518; R. 682]	y 0.0-3.6b	(9)			
	Ethyl-hexamethyl-pararosaniline; Ethyl green [R. 685].	y 0.3- 2.0 b	(31)			
	Methyl violet 6B; Benzylated tetra- and pentamethyl-pararosaniline [S. 517; R. 683]	y 0.15- 3.2 v 0.4- 2.7	(56) (53, 54, 56			
	Jentian violet; mixture	pu 1.2- 3 0 f	(9)			
	Red violet 5RS; Di- and tri-sulfonate of ethylrosaniline [S. 525; R. 693]	р 3.6-6.0 с	(9)			
	Resazurin [R. 727 note]	o 3.8-6.5 v	(31)			
2 (Thina blue [S. 539; R. 707]; Mixture	b 4.7-7.0 c	(9)			
	Rosolic acid [8, 555; R. 724]; Mixture	br 6.9-80r	(56)			
	Alkali blue 4B [8, 536; R. 704]; Mixture	v 9.4–14 0 p	(9) (9)			
	KL Soluble blue [S. 538; R. 706]; Mixture Poirrier's blue	b 10 0-13 0 p b 11.0-13.0 r	(8)			
	Acid fuchsin; Di- and tri-sulfonic acids of resamline and pararesamiline [S. 524; R. 692]	r 12 0-14 0 f	(50)			
	PHTHALEINS AND RELATED COMPOUNDS					
8 1	Diethyl-m-amino-phenolphthalein; Rhodamine B [S. 573; R. 749]	o 0.1-12p	(9)			
	Pyrogallol-phthalem; Gallein [S. 599; R. 781]	variable 0-14	(ŠO)			
	Tetrabromofluorescein; Eosine Y S [S. 587; R. 768].	y 0 - 3.0 fl	(9)			
- 1	Erythrosin (iodeosin); Di- or tetra iodated fluorescein [S. 591, 592?; R. 772, 773?]	o 0.0-3.6 fl	(9)			
	Phloxin red B.H. (Grübler)?	p 1.4-3.6 r	(9)			
	Dihydroxyfluoran; Uranin (fluorescein) [S. 585; R. 766]	y 3.6-5.6 fl	(9)			
- 1	Dichlorofluorescein	y 4.0-6.6 fl y 8.9-9 5g(f)	(9) (17)			
	p-a-Naphthol phthalein	y 7 0- 9 0 b	(56)			
	Tetrabromophenol phthalein	c 80-90v	(45)			
1	-Cresoltetrachlorophthalein	e 8.5-90pu	(1)			
	-Cresolphthalein	c 82-98r	(11, 14)			
	Phenolphthalein [R. 764]	c 8.3-10.0 r	(38, 39, 56			
	1, 2, 3-Xylenolphthalem	c 8.9-10.2 b	(17)			
	Phymolphthalem Dibromo-dinitrofluorescein; Eosin BN [8, 590; R, 771]	e 9 3-10.5b(f)	(56) (9)			
- 1	· · · · · · · · · · · · · · · · · · ·	p 10.5-14.0 y	(9)			
- 1	R = SCH OII	c 8.4–10.0 v	(25)			
25 1	R = SC ₄ H ₀ .	c 86-98v	(25)			
26]	$R = SC_6H_6$ $O = C - O$ R	c 9 0-10 0 v	(25)			
	Sulfonphthaleins					
1		p 0 2- 0 8 o				
7	Catecholsulfonphthalem	y 40-7.0 g	(41)			
		v 8 5–10 2 b	}			
8 1	n-Cresolsulfonphthalem; Metacresol purple	r 0 8- 2 4 y	(11, 14)			
		y 7.6-92 pu r 12-28 y				
19 7	Thymolsulfonphthalem; Thymol blue .	y 8.0- 9 6 b	(11, 14)			
10 /	Tetranitrophenolsulfonphthalem	2 8- 3 8?	(11)			
	Fetrabromophenolsulfonphthalem; Bromphenol blue	y 3.0-46b	(11, 14)			
	Tetrachlorophenolsulfonphthalein	y 30-46b	(11)			
	Dichloro-dibromo-phenol-sulfonphthalem; Brom-chlorphenol blue	y 3 2- 4 8 h	(14)			
	Tetrabromo-m-cresolsulfonphthalein; Bromcresol green	y 38-54b	(11, 14)			
	Dichlorophenolsulfonphthalem; Chlorphenol red	y 50-66r y 52-68pu	(11, 14) (11, 14)			
	Dibrome⊕cresolsulfonphthalein; Bromeresol purple Dibromophenolsulfonphthalein; Bromphenol red.	y 5 2- 6 8 pu y 5 4- 7 0 r	(11, 14)			
	*Diiodophenolsulfonphthalein	y 5.7- 7 3 pu	(°)			
	Dibromothymolsulfonphthalein; Bromthymol blue	y 60-76b	(11, 14)			
	Brom Xylenol Blue, dibrominated No. 145	y 60-76b	(11, 14)			
	Phenol-nitrosulfonphthalein	y 6.6-8.4 pu	(11)			

SULFONPHTH	ALEINS	Contant

No.	Indicator	Co				seful	Lit.
142	Phenolsulfonphthalein; Phenol red.	·	_ra	uge	ρŀ	1	
143	o-Cresolsulfonphthalein; Cresol red	У	6	8	8	4 r	(11, 14)
144	Salicylsulfonphthalein	y	7	2	8	8 r	(11, 14)
145	*1.4-Dimethyl-5-hydroxybenzenesulfonphthalem; Xylenol blue	y	7	2	9	2 p	(9)
46	α-Naphtholsulfonphthalein	у	8	0	9	6 b	(12)
47	Carvacrolsulfonphthalem	у	7	5	9	0 b	(11)
48	Orcinsulfonphthalein	У	7	8-	9	6 b	(11)
	Nitro-thymolsulfonphthalein	y	8	6.	10	0.8	(11)
10		v	9	2.	11	5 y	(11)

150 α-(p-D	methylaminophenylethylene)-quinoline ethiodide; Quinaldine red. Eastman Kodak		
Co. N	0. 1301	1020	(36)
101 Quilloi	ne blue (cyanin); 1, 1' Disoamyl-4, 4'-quinocyanine iodide [S. 611; R. 806]	c 70 80v	(52, 54, 56)

Index No. 152 Indophenous (15)

Color changes: from brownish or clear red in acid to deep blue in alkali. All indophenols are somewhat unstable

HO'S	,	5	6	
но<	N	• <	>	- 0
	\rightarrow	3	2	

Indophenol

Orthoindophenol

Indonaphthol-2'-sulfonic acid

				monaphinol-2 -aunome acid
Substituents	pK	Substituents	pK	Substituents pK
2, 6, 3' Tribromo	5 1	3' Bromo-	7 1	2 6 Diablana
2, 6-Dibromo-3'-chloro	5 4	Orthoindophenol	184	Indonaphthol-2'-sulfonic acid8.7
2, 6-Dibromo-3'-methyl	5.4	2'-Methyl-	188	2-Methyl9.0
2, 6-Dichloro-3'-chloro	5.8	•		- mong
2, 6-Dichloro-3'-methyl	5.5			
2, 6-Dibromo-3'-methoxy	5 6			
2, 6-Dichloro-	5.7			
2, 6-Dibromo-	5 7			
2, 6-Dibromo-2'-methyl-	5.9			
2, 6-Dibromo-2'-bromo-	6 3			
2-Chloro	7 0			
2-Bromo-	7 1			
3-Bromo-	7.8			
Indophenol .	8.1			
2-Methyl-	8.4			
3-Methyl-	8.6			
2-Methoxy-	8.7			
2-Isopropyl-5-methyl-	8 8			
2-Methyl-5-isopropyl	8 9			

Azines

Index No.	Indicator	C			d u e p.	⊯eful H	Lit.
153	Safranine (Which?)	i b	()	3	1	0 r	(50)
154	Amino-dimethylamino-phenyl-diphenazonium chloride; Methylene violet B.N. [S. 680						1 '
	R. 842]	pu	0	0	- 1	2 v	(9)
155	Amino-phenylamino-p-tolyl-ditolazonium sulphate; Mauve [S. 688; R. 846]		0	1	2	9	(56)
156	Magdala red; Mixture amino- and diamino-naphthyl-dinaphthazonium chlorides [S. 694	;					
	R. 857]	l p	3	0-	- 4	0 fl	(50)
157	Induline, spirit soluble [S. 697; R. 860]; Mixture	h	5	6	- 7	0 v	(9)
158	Amino-dimethylamino-toluphenazonium chloride; Neutral red [S. 670; R. 825]	r	6	8-	- 8.	0 y	(56)
159	Dimethylamino-phenyl-naphtho-phenazonium chloride; Neutral blue [S. 676; R. 832]		9	3-	10	2	(52, 54, 56)

OXAZINE COMPOUNDS

160	Dihydroxy-dinaphthazoxonium sulfonate; Alizarın green B [S. 657; R. 918]	$\begin{cases} v - 0 & 3 \\ y & 12 & 0 \end{cases}$	3 1.0 p 0-14.0 br	(00)
161	Diethylamino-benzylamino-naphtho-phenazoxonium chloride; Nile blue 2B [S. 654; R. 914]	b 72	2-8.6 p	` (•)
162	Diethylamino-aminonaphtho-phenazoxonium sulfate; Nile blue A [S. 653; R. 913]	b 10.2	2-13.0 p	(9)

ANTHRAQUINONE COMPOUNDS

Index No.	Indicator	Color and useful range pH	Lit.
163	1, 2-Dihydroxy-anthraquinonc-g-quinoline; Alizarin blue ABI [S. 803; R. 1066]	p 0.0- 1 6 y y 6 0- 7 6 g	(9)
164	1, 2, 4-Trihydroxy-anthraquinone; Purpurin [S. 783; R. 1037]	y 0 0- 4 0 o o 4.0- 8 0 p	(9)
165	Alizarin sulfonic acid; Alizarin red S [S. 780; R. 1034]	у 37-42р	(67)
166	1, 2-Dihydroxy-anthraquinone; Alizarin [S. 778; R. 1027]	y 5 5- 6 8 r v 10 1-12 1 pu	(53, 54, 56)
167	Alizarin blue S	various 6-14	(45)
	Indigos		
168	Indigo disulfonate; Indigo carmine [S. 877; R. 1180]	b 11 6-14 0 y	(9)
	MISCELLANEOUS AND NATURAL INDICATORS		
169	Echtrot?	y 0 - 10r	(50)
170	Logwood [S 938; R. 1246]	various 0-14	(45)
171	*Red cabbage extract	r 2 4- 4 5 g	(65)
172	1-Oxynaphtho-quinomethane; Nierenstein's indicator	e 27-37 pu	(67)
173	Troger and Hille's Indicator, C14H15N SO3H	o 28-39y	(67)
174	Phenacetolm	y 3 0-6 0 r + r 10 0 13 0 c	(45)
175	Lacmosol	r 4 4 - 5 5 b	(26)
176	Lacmoid [R. 908 note]	r 4 4- 6 2 b	(53, 54, 56)
177	Azolitmin (htmus) [R. 1212]	r 4 5-8 3 b	(53, 54, 56)
178	Cochineal [S. 932; R. 1239]	y 4 8 6 2 v	(53, 54, 56)
179	Archil (orchil) [8, 934; R. 1242]	p 56 76v	(9)
180	Brazdein [8, 935; R. 1243]	е 60-80 р	(9)
181	Di-o-hydroxy-styryl ketone; Lygosine	y 73-87g	(67)
182	Mimosa flower extract	$7 \cdot 7 \cdot 9 \cdot 6$	(67)
183	Turmeric (cureuma) [S. 927; R. 1238]	₊ y 7 8- 9 2 br	(31)
184	Alkannin [R. 1240, note] of. alizarin	8 3-10 0	(53, 54, 56)
185	α-Naphtholbenzein	v 8.5-98g	(53, 54, 56)

COMMON SYNONYMS OF INDICATORS

Among synonyms given in this table are several which apply to dyes which are not listed in preceding table or which have been applied to two or more of the indicators listed. Such cases are indicated by *.

Acid bordeaux, 77 Acid brown R,* 68 Acid fuchsin,* 107 And magenta II, 107 Acid roseine, 107 Altearin 166 Aluarin blue ABI, 163 Alizarin blue S, 167 Alizarin blue X, 163 Alizarin carmine, 165 Alisarin green B, 160 Alisarin red S, 165 Alisarin sulfonate or S, 165 Alizarin yellow GG, 74 Alisarin yellow R, 75 Alkalı blue 4B, 104 Alkanet, 181 Alkanın, Alkannın, 184 Alphanaphtholbenzein, 185 Alphanaphtholphthalein, * 116 Amido-azo-benzol, 30 Amido-azo-toluol, 26 Amino-azo-benzene, 30 Amino-aso-toluene, 26 Amyl red, 66 Anchusin, 184 Aniline orange,* 31 Aniline red, 99 Aniline yellow,* 3, 25, 30 Archil, 179 Aurin, 103 Aso blue, 88

Azolitmin, 177 Azoresorem, 101 Bensonurnurin B 85 Benzopurpurin 1B, 86 Benzyl violet, 97 Beta naphthol orange, 73 Bitter almond oil green, 91 Blauholz, 170 Boettger's indicator, 181 Bordeaux B, 77 Brazilein, brazilin, brazilin, 180 Brazil wood, 180 Brilliant green, 93 Brilliant yellow,* 89 Brom-chlor-phenol blue, 133 Brom cresol green, 131 Brom cresol number 136 Brom phenol blue, 131 Brom phenol red, 137 Brom thymol blue, 139 Brom xylenol blue, 140 Butter yellow,* 26, 37 Cabbage red, 171 Campeachy wood, 170 Carmine, 178 Carminic seid, 178 Catechol sulphonphthalein, 127 China blue, 102 Chlor phenol red, 135 Chrome printing orange R, 75 Chrome printing yellow G, 74 Chrysoidine, * 56

Eosine YS, 110 Chrysoine 78 Coccus, 178 Erythrosine,* 111 Ethyl green,* 96 Cochenille, cochineal, 178 Congo. 87 Ethyl orange, 45 Congo red, 87 Ethyl red,* 60 Ethyl violet, 95 Corallin, 103 Fast red 4, 76 Cresol red. 143 Cresolphthalem,* 119 Fast red B, * 77 Cresolsulphonphthalem,* 143 Fluorescein, 113 Crismer's indicator, 101 Crocein,* 80 Formanek's indicator, 160 Fuchsia, 154 Fuchsia, * 99 Crystal violet, 90 Curcuma, 183 Fuchsin S, 107 Curcumein,* 84 Curcumin,* 183 Galeine, 109 Gallern, 109 Curcumin W, 89 Gentian violet, 98 Curcummin,* 183 Cvanin, 151 Golden orange, 44 Haematein,* 1 170 Dechan's indicator, 109 Haematoxylin,* 1 baematoxylon,* 170 Degener's indicator, 174 Diaml red,* 87 Hehanthine,* 44, 81, 82, 83 Hematein,* 1 hematine,* 1 170 Dichlorofluorescein, 114 Hematoxylin, * 1 170
Henderson & Forbes' indicator, 5 Diethylamline orange, 45 Herzberg's indicator, \$7 Dihydroxyanthraquinone, 166 Hofmann's violet, 92 Holt & Reid's indicators, 124-126 Dimethylamiline orange, 44 Dimethyl orange, 44 Dimethyl yellow, 37 Indigo carmine, 168 Dinitroanunophenol, 9
Dinitrohydroquinone, 5 Indigo disulphonate, 168 Indophenola, 152 Induline spirit-soluble, 157 Echtrot,* 169 Echtrot A, 76 Iodeosine,* 111 Isopicramic acid, 9 Echtrot B. 77 Iodine green, 94 Fosine BN 123 Kosmos red. 87

¹ Haematoxylin is the leuco-compound of Haematein or Hematine as obtained from logwood although the name is sometimes given to the oxidized form. Haematein or Hematine should not be confused with Hematin of the blood names.

Kroupa's indicator, 99 Krüger's indicator, 113 lackmoid, lacmoid, 176 Lacmosol, 175 Lacmus, 177 Litmus, 177 logwood, 170 Luck's indicator, 120 l unge's indicator, 44 l ygosine, 181 McClendon's indicator, 11 Magdala red, 156 Maganta * 99 Malachite green, 91 Manchester yellow, 3 Martins vellow. 3 Mauve, mauveine, 155 Mellet's indicator, 70 Meta cresol purple, 128 Meta methyl red, 33 Metanil yellow, 23 Metanitrophenol 15 Methyl blue,* 105 Methylene violet BN, 154 Methyl green. * 96 Methyl orange, 41 Methyl red, 59 Methyl violet 5B or 6B, 97 Methyl yellow, 37 Michaelis' nitro indicators, 1, 2, 4, 7, 8, 10, 12, 15 Mimosa flower extract, 182 Moir's "Improved methyl orange." 49 Moir's polychromatic indicator, 127 Monobenzyl orange, 32 Monoethyl orange, 43 Monoethyl red, 57 Monomethyl orange, 12 Monomethyl red. 55 Monopropyl red, 58 Naphthol benzein, 185 Naphthol orange, 72 Naphtholphthalem,* 115, 116 Naphthylamine brown, 68 Neutral blue, 159 Neutral red, 158 Nierenstein's indicator, 172 Nile blue A, 162 Nile blue B, 161 Nitramine, 16 Nitroaminoguaincol, 11 Nitrobenzene (tri), 17 Nitrobenzoylene urea, 14 Nitronaphthol, 3 Nitrotoluene, 18 Oil yellow,* 37 Oil yellow B, 30 Orange G,* 79 Orange GG, 79 Orange I, 72 Orange II, 73 Orange III,* 36, 44 Orange IV. 25 Orchil, 179 Orseille, 179 Parahelianthine, 44 Para methyl red, 20 Paranitrophenol, 12 Paraphthalem, 120 Pernambuco, 180 Phenacetolin, 174

Phenol red, 142 Phenolphthalem, 120 Phenolsulphonphthalem, 142 Phloxin red BH, 112 Phosphine substitute, 78 Pierre acid, 1 Poirrier's blue C4B, 106 Poirner's orange III, 44 Propyl red, 61 Purpurin, 164 Pyrogallol phthalein, 109 Quinaldine red, 150 Quinoline blue, 151 Red I. 76 Red cabbage extract, 171 Red violet 5R,* 92 Red violet 5RS, 100 Red wood, 180 Resasurin, 101 Resorcin blue,* 176 Resorein phthalein, 113 Resorcin yellow, 78 Rhodamine B, 108 Riegel's indicator, 87 Rossnilina 00 Roseine, 99 Rose magdala, 156 Rosolane 155 Rosolic acid, 103 Rothols, 180 Rubine S 107 Safranine,* 153 Salicyl yellow,* 74 Schaal's indicator, 166 Soluble blue 3M, 2R, 102 Soluble red woods, 180 Spirit yellow, 30 Spirit yellow G, 30 Spirit vellow R 26 Tetra brom fluorescein, 110 T. N T, 18 Thymol blue, 129 Thymolphthalem, 122 Tolundine orange* (ortho), 39 Toludine orange* (meta), 47 Toluylene red,* 158 Topfer's reagent, 37 Tournesol, 177 Troger and Hille's indicator, 173 Tropacolin*, ? 69 Tropaeolin D, 44 Tropacolin G,* 23, 72 Tropaeolin O, 78 Tropacolin OO, 25 Tropacolin OOO No. 1, 72 Tropacolin OOO No 2, 73 Tropacolin R, 78 Turmeric, 183 Turnsole, 177 Uranin 113 von Müller's indicator?, 25 Wenelsky's indicator, 101 Water blue, 102 XL Soluble blue, 105 Xylenol blue, 145 Xylenol phthalein,* 121 Xylidine orange* (meta), 10 Xylidine orange* (para), 18

Yellow T 78

Zellner's indicator, 113

TARLE S

A CLARK AND LUBS' SELECTION OF INDICATORS SUPPLEMENTED BY COHEN (11, 14)

A = Cubic centimeters of 0.01N NaOH required per 0.1 g acid indicator to form sodium salt. Dilute to 250 cc for 0.04% reagent. Use alcoholic solutions of methyl red (50) and cresolphthalein (119).

B = Approximate pH value of solution required for full "acid color" appertaining to range indicated

C = Approximate pH value of solution required for full "alkalme color" appertaining to range indicated

Index No.	A	В	(,	Useful range pH	pKţ
129	see below'c	one. HCl	- 6	1 2 2 8	1.5
131	15 0	0	7	3 0-4 6	4.0
134	14 5	1	8	4 0-5 6	4.7
59	1 1	?	9	4 4 6 0	[5.0
135	23 5	3	10	5 0 6.6	6.2
136	18.5	3	10	5 2-6 8	6.3
139	16 0	4	10	6076	7.1
142	28 5	5	11	6 8-8 4	7.8
143	26 3	5	11	7 2-8 8	8.2
128	26.5	5	11	7692	8.4
129	21.5	6	12	8096	8.9
119	1	в	12	8 2 9 8	19.4

* No salt and protein errors determined

† pK values are weighted means of values found in (2, 7, 11, 14, 19, 20, 24, 24),

Representative Corrections of Colorimetric Readings with Indicators of Table 3A to Bring Readings to Electrometric pH

	Peptone- beef infusion	10 % gelatine sol.	2 % egg- white	Urine
131 Brom phenol blue	0 05			
59 Methyl red	-0 10		0 24	0.05
136 Brom cresol purple.	0 01	0.04		0.01
139 Brom thymol blue	0 10	0 04		0.02
142 Phenol red	0 04	0.20		0.00
143 Cresol red	0 03	0 20		
129 Thymol blue	0 04	0.20		
119 Cresolphthalein	-0.03	0.20		

Corrections at different salt content [after Kolthoff (29)]

Thymol blue (acid ran	ge) 0 1N KCl		-0.06
	1 0N KCl		+0.05
Brom phenol blue	0.1N KCl	 	-0.05
-	1 0N KCl		-0.35
Methyl red	0 5N NaCl		+0.10
Brom cresol purple	0 5N NaCl		-0.25
Phenol red	0 5N NaCl		-0.15
Thymol blue	0 5N NaCl		-0.17

With color match between a solution at 70° and a standard buffer at 20° the solution at 70° will have the pH of the standard corrected by the following values according to Kolthoff (28).

Thymol blue (acid range)			 0.0
Brom phenol blue			0.0
Brom phenol bluc Methyl red			-0.2
Brom cresol purple			0.0 to +0.2
Phenol red			-0.3
Thymal blue (alk)			-0 4

Corrections in sea water of salinity S [parts per 1000] after Ramage and Miller 1925 (unpublished).

								-
8	.	5	10	15	20	25	30	35
Cresol red	. !	- 11 -	17 -	21 -	24 -	25 -	26 -	27

INTERNATIONAL CRITICAL TABLES

B. Sérensen's Selection of Indicators (86)

				U	efulness in p			
Index No.	Composition of test solution	Useful range pH	Sensitivity to neutral salts	True proteins	High conc. of products of pro- teolysis	Chloroform and toluene	Stability on standing	
97	0.01 %-0.05 % аqueоия	0 1-3 2	high	fair	good	with chloroform not, with tolu- ene useful	acid solutions fade	
155	0.01 %-0.05 % адчесия	0 1-2 9	high	fair	good	as above	as above	
22	0.01 g in 1 cc N HCl + 50 cc alco-				8		·	
	hol + 49 cc water	1221	low	not	fair	not	moderate	
25	0.01 % aqueous	1 4-2 6	low	not	fair	good	good	
23	0.01 % aqueous	1 2 2 3	low	not	fair	good	good	
34	0.02 g in 1 cc N/10 HCl + 50 cc						-	
	alcohol + 49 cc water.	2 3 3 3	low	not	good	not	moderate	
32	0.01 % aqueous	1933	low	not	fair	good	good	
35	0.01% aqueous	2 6-4 0	low	not	fair	good	good	
37	0.01 g 0.1 cc N/10 HCl + 80 cc							
	alcohol + 20 cc water	2 9 - 4 0	low	not	good	not	moderate	
44	0.01 % aqueous	3 1-4 4*	low	not	fair	good	good	
53	0.01 g in 0.4 cc N/10 HCl + 30 cc					•		
	alcohol + 70 cc water	3 7 - 5 0	low	not	good	not	moderate	
50	0.01 g in 60 cc alcohol + 40 cc water		low	not	good	good	good	
59	0.02 g in 60 cc alcohol + 40 cc water		low	S C	good	good	moderate	
12	0.04 g in 6 cc alcohol + 94 cc water		moderate	good	good	good	good	
158	0.01 g in 50 cc alcohol + 50 cc water	6.8-8.0*	low	S.C.	good	S.C.	good	
103	0.04 g in 40 cc alcohol + 60 cc water	6980	low .	fair	good	fair	good	
72	0.01 % aqueous .	7 6-8 9	low	good	good	good	good	
116	0.1 g in 150 cc alcohol + 100 cc water		moderate	S.C.	good	good	fair	
120	0.05 g in 50 cc alcohol + 50 cc water	8 3-10 0*	moderate	S.C.	good	good	good-fades in strong alkali	
122	0.04 g in 50 cc alcohol + 50 cc water	9 3-10 5	moderate	S.C.	good	good	fades in moderate alkali	
75	0.01% aqueous	10 1 12.1			good		good	
78	0.01 % aqueous	11 1-12 7			fair		good	

Index

No.

1

2

Representative average corrections of colorimetric readings with indicators of Table 3B to bring readings to electrometric pH (see also Table 2).

	1	ons (after en (53))	
Index No. of indicator	In 2% peptone 0.01-0.3N salt	In 2% egg-white 0.07 · 0.3N salt	Corrections in solutions con- taining salts
97	-0 02	-0 19	
155	-0 04	-0 19	
22	0 06	> -0 90	
25	-0 27	> 1.40	
23	-0 30	>-1 40	
34	+0 01	> -0 80	
32	~0 22	> -0.80	
35	-0 41		
37	-0.08	-0.53	
44	-0 18		0.1N KCl, -0.08; 1.0N KCl, +0.23 Kolthoff
53	-0 02	1	
50	-0 03	+0 15	0.5N NaCl, + 0.10 Sørensen
12	0 06	-0 04	0.5N NaCl, — 0.15 Sørensen (-0.05 Kolthoff)
158	+0 13	+0 68	0.5N NaCl, + 0.09 Sørensen

		ons (after en (53))	
Index No. of indicator	In 2 % peptone 0.01-0.3N salt	In 2 % egg-white 0.07-0.3N salt	Corrections in solutions containing salts
103	+0.08	+0.44	0.5N NaCl, - 0.06 Sørensen
72	-0.12	+0.10	0.5N NaCl, - 0.12 Sørensen
120	-0.01	+0 18	0.5N NaCl, - 0.12 Sørensen (-0.17 Kolthoff)
122	+0.01	+0 40	,
75		+0.29	
78		-0 30	0.1N KCl, + 0.38; 1.0N KCl, + 0.62 Kolthoff
C. Mi	CHAELIS' SE	LECTION OF	One-color Indicators
		InK (Mich	aelis and coworkers pK (Kol-

In low salt

content

[0.26]

Conc.

%

in

H₂O

Useful

range pH

0.03-1.3

2 0-4.0

(38, 39))

In

salt

 $\begin{vmatrix} 3 & 71 & +0.006 \\ (15 - t^{\circ}) & 3.59 & 3.41 & 3.58 \end{vmatrix}$

0 15M 0.5M

thoff

(31) at

15° and

0.05M

salt)

In

salt

^{8.}C. - useful in special cases

*Apparent pK values referred to standard buffers; Methyl orange (44) 3.7 (24 of 50), Methyl red (59) see Table 3A (59, 60), Paramtrophenol (12) see Table 3C. Neutral red (158) 6.85 (34). Phenolphthalem see Table 3C.

C. MICHAELIS' SELECTION OF ONE-COLOR INDICATORS.—(Continued) | Alizarine yellow GG. 20° a 56

		Conc.	pK (Michaelis a	pK(Kol- thoff			
No. Useful range pH		in H ₂ O	In low salt content	In 0 15.M salt	In 0 5M salt	(31) at 15° and 0.05.M salt)	
4	2.6-4.4	0.05	4 08 + 0 006				
		į	$(15 - t^{\circ})$	3.98	3 88	3 95	
7		ļ	4 87	4 76	4 71		
8	4.0-5.8	0 025	$5 \ 16 + 0 \ 005$	i	1		
			$(15 - t^{\circ})$	5.08	5 01	5 15	
10	ŀ		5 35	5.30	5 25	į	
12	5 6-7 6	0 10	7 22 + 0 011	l)	ļ		
			$(15 - t^{\circ})$	7 22	7.17	7 03	
15	6 8-8.6	0.30	8 35 + 0 008	3	1		
			$(15 - t^{\circ})$	8 24	8 19	8 30	
120	8 0-10.0	0.04	[9 76] + 0.011				
			$(18 - t^{\circ})$	9 6	9 5		
74	10 0-12 ()	$[11 \ 2] + 0 \ 013$	3			
			$(20 - t^{\circ})$	1	1	ì	

TARLE 4

RELATION BETWEEN PERCENTAGE, A, OF AVAILABLE COLOR AND PH (AFTER MICHAELIS AND GYEMANT (38))

18° a 1 0 1 4 3 0 4 7 6 9 9 0 Phenolphthalein. pH 8 45 8 5 8 6 8 7 8 8 8 9

18° a 12 0 16 0 21 0 27 0 34 0 40 0 Phenolphthalein pH 90 91 92 93 94 95

18° a 45 0 50 0 55 0 60 0 65 0 Phenolphthalein pH 96 97 98 99 100

18° a 70 0 75 0 80 0 84 5 87 3 Phenolphthalein pH 10 1 10.2 10 3 10 4 10 5

Alizarine yellow GG. 20° a 13 16 22 29 36 46 pH 10 0 10 2 10.4 10.6 10.8 11 0

pH 11 2 11 4 11 6 11.8 12.0

LITERATURE

(For a key to the periodicals see end of volume)

(1) Arnold, I, 46: 489, 24. (2) Barnett and Barnett, 287, 18: 127; 21. (3)

 Arnold, I, 46: 489, 24. (*) Barnett and Barnett, 227, 18: 127; 21. (*)
 Bishop, Kittredge and Hildebrand, I, 44: 135, 22. (*)
 Bierrum, P, 171
 S8, 389, 11. (*)
 Bjerrum, 198, 21: 1, 14. (*)
 Bogert and Soatchard, I, 38: 1906, 16. (*)
 Brode, I, 46: 581; 24. (*)
 Clark, The Determination of Hydrogen Ions, 2nd. ed., 1922. (*)
 Clark, Cohen and Elvove, O; cf. (*)
 Clark and Lube, 141, 38: 479; 16. (*)
 Clark and Lube, 241, 28: 479; 16. (*)
 Clark and Lube, 389, 8: 1, 109, 191, 17 (*)
 Chen, A., 250, 16: 31; 22. (*)
 Cohen, A., 250, 17: 385; 23. (*)
 Cohen, B., Gibbs and Clark, 251, 28: 381, 804; 24. (*)
 Cohn, Inducators and Test Papers, 1914. (*)
 Canny, P, 27: 64; 21. (*)
 Fels. 9, 10: 208, 04. (*)
 Gilleanie, 252. 8: Cannyi, 9, 27: 64; 21. (18) Fols, 9, 10: 208, 04. (19) Gillespie, 238, 9:

(15) 20
 (16) Gillespie, I, 48: 742; 20. (*1) Gilaser, Indikatoren der Acidimstrie und Alkalimetrie, 1901. (*2) Hatfield, I, 48: 940; 23. (*3) Henderson and Forbes, I, 32: 687; 10. (*4) Holmes and Snyder, I, 47: 221, 226; 25. (*3) Holt and Reid, I, 48: 2333, 24. (*3) Holtinger, 205, 58: 177; 14. (*7) Jarisch, 205, 136: 177; 22. (*3) Kolthoff, 70, 40: 775; 21. (*3) Kolthoff.

(20) (41.54, 22.
 (20) Kolthoff, 255, 89: 104; 22.
 (31) Kolthoff, 255, 89: 104; 22.
 (32) Kolthoff, 25, 89: 104; 22.
 (32) Kolthoff, 70, 42: 251; 23.
 (33) Kolthoff, 70, 42: 144; 24.
 (34) McClendon, 26; 39: 437; 24.
 (37) Michaella, Die Wasserstoffionenkonzentration, 1914.
 (38) Michaella and Gyemant, 205, 109: 165; 20.
 (39) Michaella and Krüger, 205, 119: 307; 21.
 (40) Michaella and Mizutan, 205, 147; 7; 24.
 (41) Mor, 254, 81 no. 2; 20.
 (42) Michaella and Mizutan, 205, 147; 7; 24.
 (43) Michaella and Mizutan, 205, 147; 24.

 Michaelia and Mizutani, 205, 147; 7; 24 (*) Moir, 234, 31 no. 2; 20.
 Moir, 234, 6: no. 2; 23. (*) Noyes, 1, 38; 815, 10.
 Moir, 234, 6: no. 2; 23.
 Noyes, 1, 38; 815, 10.
 Adoptionary phie, No. 409; 22. (*) Prideaux, The Theory and Use of Indicators, 1917.
 Ramage and Miller, O. (*) Prideaux and Nunn, 4, 138; 2110; 24.
 Salessky, 0.10 - 204 - 04

9, 10: 204; 04.

(*9) Salm, 7, \$7: 471, 06. (*1) Scudder, Electrical Conductivity and Ionization Constants of Organic Compounds, 1914. (*1) Schultz, Farbitofitabellen, 1923. (*1) Sgrensen, 255, \$1: 100. (*4) Sgrensen, 255, \$1: 131, 201; 09. (*5) Sørensen, 205, \$2: 352; 09. (*6) Sgrensen, 256, \$1: 393; 12. (*7) Sgrensen and Linderstram-Lang, 255, \$15: no. 6; 24. (*5) Thiel, 196, \$5: 45. (*1) Thield, 196, \$5: 45. (*1) Thi

the et sa measure par la méthode électrométrique, 1924. (**) Walbun, \$06, 107; 209; 20 (**) Walbun, \$50, \$5; 14. (**) Walpole, \$50, \$5; 628; 14. (**) Walpole, 4, 106; 2501, 2521; 14.

HIGH VACUUM TECHNIOUE

SAUL DUSHMAN

SELECTED FORMULAE

1. Amount of Gas Striking 1 Cm2 per Sec-

$$m = \frac{1}{4}\rho\Omega = p\sqrt{\frac{M}{2\pi RT}},$$

where ρ = density and Ω = average velocity

= $43.74 \times 10^{-6} \times p\sqrt{M/T} \text{ g cm}^{-2} \text{ sec}^{-1} (p \text{ in barves})$

= $58.32 \times 10^{-3} \times p\sqrt{M/T}$ g cm⁻² sec⁻¹ (p in mm of Hg)

n = number of molecules

=
$$6.062 \times 10^{22} \frac{m}{M}$$
 = $2.653 \times 10^{19} \frac{p}{\sqrt{MT}} \text{cm}^{-2} \text{ sec}^{-1} (p \text{ m})$

= 3.535 \times 10²² p/\sqrt{MT} cm⁻² sec⁻¹ (p in mm of Hg)

2. Laws of Molecular Flow (Flow of Gases at Very Low Pressures).—Q = amount of gas flowing through any tube or opening m cm³ per sec

$$=\frac{p_2-p_1}{W\sqrt{\rho_1}},$$

where $p_1 - p_1 = \text{difference of pressure}$

 ρ_1 = density at 1 barye pressure

$$= \frac{M}{83.15 \times 10^{\circ} T}$$

W = "resistance" of tube or opening

For a circular opening (diam., d cm) in a thin plate

$$W = \frac{3.184}{12}$$

For a tube of diameter d and length l

$$W = \frac{2.394l}{d^3} + \frac{3.184}{d^3}$$

3. Speed of Exhaust (S) of Given Volume (v).—

$$S = \frac{r}{t} \log_{\bullet} \frac{p_2}{p_1}$$

For $p_2/p_1 = 10$, t in sec and v in cm³

$$S = \frac{2.303v}{t} \, \mathrm{cm^{3} \, sec^{-1}}$$

For pump exhausting through resistance

$$\frac{1}{S_o} = \frac{1}{S_p} + \frac{1}{F}$$

where $S_o =$ observed speed of exhaust,

 S_p = speed of pump through negligible resistance, and

 $F = \text{rate of flow through resistance (cm}^2/\text{sec})$ $S = \frac{Q}{p_2 - p_1} = \frac{1}{W\sqrt{\rho_1}}$

$$S = \frac{Q}{p_2 - p_1} = \frac{1}{W\sqrt{\rho_1}}$$

TABLE OF MOLECULAR DATA

	H ₂	He	N ₁	0,	A	Hg	CO	CO,	H ₂ O
Mean Free path (cm) at 25°C and I barye.	19 2	29 6	10.0	10.7	10.6	[3.24]*	9.92	6.68	[6.03]*
$(1/d^2) \times 10^{-15}$ (Number of molecules per cm ²)	1 74	2 74	1 01	1.11	1.19	1.11	0.98	0.92	1.19
Micrograms (10 ⁻⁴ g) of gas striking 1 cm ² per				l		ļ			l
sec at 25°C and 1 barye	3 597	5.062	13 42	14.33	16.01	35.89	13.42	16.81	10.76
Number of molecules striking 1 cm² per sec at								İ	İ
25°C and 1 barve. Unit = 1018	1082	769 3	283 7	271 7	243 3	10.85	283 7	231.7	362.0

• Values in square brackets refer to 0°C. Note: 1 barye = 0.75 × 10⁻¹ mm mercury. Values of mean free path calculated from viscosity coefficients

RATE OF FLOW OF AIR AND HYDROGEN AT LOW PRESSURES AND 90%

ı	1 1	H.	F (air)	F (H ₂)
1 cm	1 cm	5 58	5 204	197 10
10	1	27 12	1 070	40 53
1	0.1	2 712 4	10 70	40 53
10	0.1	24 258	1 196	3 60

(Note - These relations are valid only for pressures so low that the mean free path is equal to or greater than d.)

DATA ON VARIOUS TYPES OF PUMPS

	(S_p ${ m m}^3~{ m sec}^{-1}$		Fo pur rem		Mir press attain	ure
Gaede rotary mercury		100 (max.)	co	ı. 1	cm	10-4	mm
Gaede molecular	1	400	0	01	mm	< 10-4	mm
Gaede diffusion	i	80				< 10-6	
Langmuir condensation							
(metal)	4	000	0	01	mm	< 10-6	mm
Gaede two stage metal	60	000	20			< 10 6	

Evolution of Gas from Glass .- For rate at which gas is evolved at different temperatures, v. R. G. Sherwood (1, 40: 1645; 18) and J. E. Shrader (2, 13:434; 19).

Chemical Clean-up Reagents for Producing Low Pressures .-1. Charcoal in liquid air. 2. Ca or Mg volatilized in sealed-off device, cleans up all gases except those of group 0. 3. P2O4 efficient for water vapor. 4. Palladium black at low temperatures, very good for hydrogen.

SOME VAPOR PRESSURES AT LOW TEMPERATURES

Substance	t°C	p, mm	p, baryes
Hg	- 78	3 × 10 ⁻⁹	4 × 10-4
H ₂ O	-111	0.75×10^{-6}	1 × 10-3
CO ₂	-182	0.75×10^{-6}	1 × 10-3
CO ₂	193	0.75×10^{-6}	1 × 10-3
CO	190	863	
СН	-185 8	79 8	
C ₂ H ₄	-188	0 076	
C ₂ H ₆	-180	0.076	
Vaseline (Stopcock			
grease)	-190		<10-4
	(fresh		
	liquid air)		

PSYCHOLOGICAL DATA PERTAINING TO ERRORS OF OBSERVATION

R. S. Woodworth

(Additional data pertaining to sight and hearing are given in other sections of International Critical Tables treating of the mechanical equivalent of light, colorimetry, and the physical aspects of audition. Consult index. Editor.)

Much of the available data pertaining to the sensitivity of the eye have been obtained under such conditions that the exact value of the stimulus cannot satisfactorily be determined. Some are expressed in terms of the illumination, others in terms of the brightness, of a screen; the latter procedure is to be preferred. If the illuminated screen were a perfect diffuser of the light, and also a perfect reflector, if illuminated from the front, or a perfect transmitter, if illuminated from the rear, then its brightness (B) expressed in millilamberts would be numerically equal to 0.1 of its illumination (I) expressed in meter-candles. In the following data, this relation has been used to reduce to the basis of B, data which have been given in terms of I. Although in many cases the screens surely did not possess the properties thus assumed, it seems probable that the error so introduced is of less importance than those arising from other sources. Data for reaction times will be found near the end of this report.

Spectral range (41) for daylight vision is $\lambda = 397 \text{m}_{\text{H}}$ to 760 m_H: for twilight vision (illumination too low for color perception), $\lambda = 440 \text{ m}\mu \text{ to } 670 \text{ m}\mu$

Threshold value = minimum stimulus which can be visually perceived as light; the perception of form is not involved. For

white light and a thoroughly light-adapted eye, luminous area subtending an angle of 10°, it is that corresponding to a brightness of 0.1 millilambert (37). For white light and a dark-adapted eye, it varies with the area of the luminous area and with the duration of stimulus as shown in Table 1.

TABLE 1.—THRESHOLD OF VISION FOR DARK-ADAPTED EYE (45)

D = distance; $\theta = \text{visual angle subtended by shortest dimen-}$ sion of area, B = brightness required for perception; P = power entering eye; t = duration of exposure. Diameter of pupil = 8.3 mm.

Unit of: Area = 1 cm²; D = 1 cm; B = 1 microlambert; P = 11 milliwatt = 10^{-10} erg sec⁻¹; t = 1 sec.

Form	Area	D	θ	В	P	t	B‡
Star*	0 00785	300	1 2'	7.20	17.10.	002	0.362
Star*	0 00785	150	2.30	2.60	24 8 0	006	0 098
Star*	0 00785	35	9.8	0 24	42.1 0.	011	0.0446
Square	0 04	35	19.6	0 028 3	25 3 0	020	0.0239
Square .	0 25	35	50	0.006 62	37 0.	034	0.0123
Square.	1.00	35	1° 30′	0 002 41	54 0	160	0.0071
Square	4 00	35	3 16	0 001 02	91 0	250	0 0051
Square.	9 00	35	4 54	0 000 45	91 0.	500	0.003 54
Square	36.0	35	9 44	0 000 258	208 1.	000	0.002 62
Square.	144 0	35	18 56	0 000 175	564 2.0	000†	0.000 77

Circle, Diameter - 1 mm

† If $t = \infty$, $B = 0.000 \, 45$, t = 4, $B = 0.000 \, 63$

1 For square, area = 9 cm², D = 35 cm, $\theta = 4.9^{\circ}$

TABLE 2.—CHANGE IN THRESHOLD DURING ADAPTATION

Threshold = brightness (B) of a surface which can just be seen. Senativity (S) = 1/B. In light adaptation, I = illumination to which dark adapted eye and subjected for the time t: S was measured 10 see after this exposure. Unit t = 1 min; B = 1 microlambert; S = 0 1 millilambert-1 = meter-candle

Dar	adaptation	(38)		†Light a	daptation	(34, 39)	
	В	s	1	5	25	60	Day:
		.,	/	8	S.	8	8
0 0 5 4 9 14 19 23 26 31 39	0 000 51		1 2 3 6 10 15 60 80	23 000 17 500 10 400 8130 5200 3470 3000	9950 7440 5200 3360 2740 2040 1450 1000 95 54	5800 3700 3250 2600 2038 1600 1130 312 28 28	435 230 200 115 87 48 40

The rates of adaptation to darkness and to light are indicated in Table 2 in which are given the threshold values at various intervals (1) after removal from daylight, and (2) immediately (10 seconds) after removal from a specified exposure, the eye before exposure having been kept in darkness for 45 min. The visibility of monochromatic light varies with the wave-length, and the relative risibility of lights of different wave-lengths depends upon their intensities. (Figs. 1, 2.) For a large surface with a brightness of

Fig. 1.—Relative visibility (V) (28, 40)

B = brightness, unit = 1 millilambert: abscissae = wavelengths.

Fig. 2.—Position (λmax) of maximum visibility (28, 40) Unit of brightness = 1 millilambert.

5 to 80 millilamberts, the maximum visibility for the average observer, is near (9) $\lambda = 557.6 \text{ m}\mu$, but even normal subjects exhibit individual differences; out of 125 subjects, the percentage finding the maximum at each of the several wave-lengths was as follows (9):

				, λ							
549 550	2	553	4	557	12	561	2	565	2	569	0
550	2	554	7	558	13	562	3	566	2	570	2
551	5	555	9	559	12	563	2	567	0		
552	3	556	8	560	7	564	1	568	2		

All of the preceding refer to direct vision. The sensitivity of other portions of the retina is greater.

Complementary colors are those pairs of colors which, when superposed upon the retina in suitable proportions, produce the sensation of white. Grunberg states that if their wave-lengths are λm_{μ} , $\lambda' m_{\mu}$, then $(\lambda - 559)(498 - \lambda') = 424$, $\lambda > 559$, $\lambda' < 498$ (47); there are no complementaries to the colors in the range 498mu to 559mu.

Stable, or invariable, colors are those which do not change in hue, except to become gray, as they are moved from the fovea to the periphery of the retina. They are: yellow of $\lambda = 570 \text{m}\mu$; bluish green of $\lambda = 490 \text{m}\mu$; blue of $\lambda = 460 \text{m}\mu$; and a non-spectral bluish red (21).

Discrimination of Brightnesses .- For large adjacent fields, differences of 1% or even of 0.8% in the brightness can be detected (31)if the brightness is of the order of 100 millilamberts. Under such

conditions the color of the light has no effect upon the discrimination. At lower brightnesses, the sensitiveness to change in brightness depends upon both the color and the brightness (Fig. 4).

Resolving power of the eye is the smallest angular separation at which two points, under the best illumination, can be seen as distinct. For different observers, it varies from 50" to 93" (20); the generally accepted normal value is 1'. It varies with the color of the light. In day-light and on a bright background, a dark line a few minutes long can be seen if it is 1.2" wide: but, on a dark background, a bright line is not visible unless it is at least 3.5" wide (48).

Aligning power, the ability to detect a lack of alignment of two similar adjacent lines of the same width as in setting a vernier. exceeds the resolving power. The average error (48) of skilled observers under best conditions corresponds to a visual error of not over 3"; in coincidence range-finders, the images can be aligned with an error not greater than 12" and sometimes as small as 2".

Fig. 4.—Discrimination of brightnesses (29, 40) noticeable increase in the brightness (B), is 1 milliambert; of wave-length (Δ) is $1m\mu$. Unit of B $\Delta R = least$

Acusty, or discrimination of form, is closely related to the resolving power, but differs from that in dealing, in general, with extended, interpenetrating, bright and dark areas, and frequently with low brightnesses. The absolute acuty (A) is the reciprocal of the smallest visual angle for which neighboring contrasted portions of the field can be seen as separated. Its variation with the brightness (B) of the brighter portions of the field is given by the equation (25) $A = c + k \log B$; the values of the constants c and k are determined by the units, the character of the field, and the eye; some values are given in Table 3. The unit commonly employed for A is 1 reciprocal minute.

TABLE 3.—ABSOLUTE ACUITY (A) AND BRIGHTNESS (B) $A = c + k \log_{10} B (cf. \text{ Fig. 5})$ Unit of: $A = 1 \text{ minute}^{-1}$; B = 1 millilambert

			· .	
Limits of B	C	k	Field	Lit.
0 01 to 43.5	1 05	0 415	Snellen and similar charts	(27)
40 to 1000	1 69	0.000	Snellen and similar charts	(27)
0 1 to 18	1 44	0 573	Snellen and similar charts	(12)
0 02 to 21	1 23	0 282	Crossed gratings	(8)
0 06 to 26	1 33	0 262	Crossed gratings	(7)

When the test field is a Snellen test chart, the acuity is commonly expressed as the ratio of the maximum distance (d_m) , at which the characters can be distinguished, to the standard distance (d_n) . This ratio (d_m/d_n) may be called the Snellen acuity; it is numerically equal to the reciprocal of the visual angle (in minutes) subtended by the sides of the elementary squares of the chart. As expressed in these units, the acuity of the average good eye exceeds 1.00; for the E-hooks, the mean of 100 subjects was 1.74, ranging from 1.00 to 2.45 (54).

Fig. 8.—Acuity in white and in chromatic illumination (**) Unit of acuity = 1 Snellen unit; of illumination = 1 meter-candle

Fig. 6.—Relative acuity in indirect vision (10). Abscissa indicates angular position of image upon the retina

The effect of dark adaptation upon acuity may be obtained by determining, at various intervals (t) after the light adapted eye had been placed in darkness, the minimum illumination (I) in which it can distinguish Snellen test characters placed at a known distance. For a distance corresponding to a Snellen acuity of $\frac{5}{20}$ (= 0.2), the median' values of I for 6 observers having in daylight a Snellen acuity of $\frac{5}{2}$ (= 1.5) were found to be as follows (13):

t	0	5	10	15	25	35	45 minutes
I	1.09	0.79					0 42 meter-cond

 $I = 1.09 \mid 0.79 \mid 0.56 \mid 0.40 \mid 0.34 \mid 0.42 \mid 0.42 \mid meter-candles$ The acuity depends also upon the color of the light, and upon the position of the image upon the retina. See Figs. 5, 6.

Detection of Differences in Length.—About 1% of the length is the least noticeable difference for simultaneously presented parallel lines which are relatively displaced (result of several old investigations). More recent work shows that a variable line, 1 to 5 om long, can, by eye, be set to equality with a standard line with a probable error, for a single setting, of only 0.4%; for shorter lines the error is greater, attaining 0.5% for lines 1 mm long (36). When the time allowed for observation and judgment is short, the differences which can be detected with certainty are considerably greater. If the sign of the difference is to be judged correctly in 75% of the trials, then, for a 10 cm line, the difference must be 3.5 mm if the time is 4 seconds, and over 5 mm if the time is only 0.5 second (18).

Decimal Subdivision of a Small Distance.—When a fine line is set on a millimeter scale to successive positions in random order, and the subject is required to estimate its position to the nearest 0.1 mm, the average actual setting, for each tenth as estimated by 10 subjects (total of 6000 readings), for horizontal and for vertical scales was as follows (3.52):

Estimate	0	1	0	2	10	3	0	1	n	5	Ю	6	10	7	10	н	Ю	9	11	0
Horisontal	0	126	o	234	ю	336	0	123	0	509	0	591	0	676	lo	773	0	886	li	0
Vertical	0	106	lo	202	0	304	ю	395	o	486	lo	576	ю	652	ю	757	0	975	0	992

The lines of the scale were presumably of the same width as the "fine line" of variable position. Settings were distributed over a length of 30 mm, the illumination was good, and the distance was that for best reading.

SENSES OTHER THAN SIGHT

Range of awtible tones is from 18 to 18 600 double vibrations per second (44, 53); at high intensities the lower limit may be reduced

¹ For each value of t, the 6 observed values of I are arranged in order of magnitude, the mean of the third and the fourth of the values is by definition the section of the set.

to 12. At the upper limit, individuals varied from 15 000 to 22 000 d.v. per sec. As the age increases, the upper limit becomes lower (Fig. 7).

Fig. 7.—Dependence of highest audible tone upon age of subject (4).

• It is probable that these frequencies should be divided by two.

 $J = \text{minimum audible power, unit} = 1 \text{ erg cm}^{-2} \text{ sec}^{-1}$. Data in terms of effective, or r.m.s. pressure (P) in dynes cm-2 have been reduced to erg cm-2 sec-1 (E) by means of the relation $P = \sqrt{dvE} = 6.5\sqrt{E}$; d = density of air, v = velocity of sound in air, both in cess units.

REACTION TIMES

The simple reaction time, or, briefly, the reaction time, is the interval which elapses between the application of a definite,

Fig. 9.—Discrimination of pitch.

N= number of double vibrations per sec; $\Delta N=$ smallest noticeable change in N. o= Knudsen (26), x= Stücker (51), $\Delta=$ Vance & Schaefer (25),

expected stimulus and the performance of a prescribed movement (usually a finger movement) indicating that it has been perceived.

4, 3

Light.—For foveal stimulation of medium intensity, reaction time is 0.190 (±0.008) sec; individuals range from 0.150 to 0.225 sec. It is the same for withdrawal as for initiation of stimulus (22) For faint stimulation, near threshold, interval is increased by 0.04 to 0.05 sec (16); reaction to withdrawal is 0.005 to 0.025 sec quicker than to initiation of stimulus (22). For photo-

Fig. 11.- Discrimination of differences in lifted weights

- ΔW = smallest noticeable change in the weight W.
- * Weights had horizontal handles, were lifted successively with same hand ** Culindrical boxes lifted successively with same hand, AW is change for which 50 % of the estimates were of proper sign.
- \$ Cylindrical boxes lifted successively with same hand: AW is change for which 75 % of the estimates were of proper sign.
- t Weights lifted by downward pressure of finger on a lever, several series of observations; curves represent the extremes.

Fig. 12.—Discrimination of differences in temperature (1).

Both hands were adapted by immersion in water of temperature Ta, they were then separately placed simultaneously in water at temperatures T and T_1 . ΔT = least value of $(T_1 - T)$ which could be detected

metrically equal stimuli of different colors, reaction time is independent of the color (22). Reaction time for eye to turn towards a stimulus in indirect vision is 0.151 sec (or 1 181 sec) if stimulus lies 1° (or 5°) from fixation point (10). For medium intensity, reaction time to monocular stimulation is about 0.015 sec greater than for binocular (43).

TABLE 4.—DISCRIMINATION REACTION TIME Unit of: T = 0.001 sec; L_1 , $L_2 = 1$ cm, $\lambda = 1$ m $\mu = 10$ \\$

Positio	n of	aqua	res* or circles!			11 14	ngt	hs I	(21
Contrast (21)		1 7	Contrast (21)		T	$\widehat{\Pi} \widehat{L}_1$	1 L	2 1	T
*	Iλ	1 1		Ι λ	i	11	1	1	
Black and	1	1	Red (640) and	1	1	1)	1	. 1	
White	.1	205	Orange red	627	270	1	11	3	31.
Red	. 640	222	Orange	614	257	1	1	25	31:
Orange	614	218	Yellow	1585	237	1 1	1	2	31
Yellow	585	2111	Green	521	222	11	1	15	32
Green		218	Blue	452		ll i	1	1	33
Blue		226	Yellow and	1.0-		11	1	1	
	1	1''	Green	521	232	11 1	lı i	0.5	35
†Circles (24)	1	296	Blue		200	И.	Ι.	١	.,

Sound .- For finger reaction to sound of medium intensity, reaction time = $0.136 \ (\pm 0.002)$ sec; individuals range from 0.082 to 0.195 sec. For very faint sound, the interval is increased by 0.06 to 0.07 sec (16).

Touch.-For finger reaction to tactile stimulus of medium intensity, reaction time is 0.148 sec (23)

The discrimination reaction time is the interval which elapses between the application of one of two possible, definite, expected stimuli and the performance of the prescribed movement indicating which of the two stimuli has been applied. For printed letters, 10-point type, average for the alphabet, the reaction time for Roman capitals is 0.327 sec. Roman lower case 0.325, for short words 0.353, for long words 0.355, for small (1 cm square) pictures of familiar objects 0 336 sec (6). For other data, see Table 4.

Number Limitation and Span of Apprehension .- For college students, the greatest number of digits which an individual can repeat correctly immediately after a single auditory presentation averages 7.6 (5, 19), individuals range from 5 to 11 (8); for visual presentation the average is 8.0 (19).

Fig. 13.-Reaction time for nonfoveal stimulation (43).

 ΔT = excess of reaction time over that required for foveal excitation Abscissa indicates angular position of image upon the retina. Finger reaction.

Fig. 14.--Span of approhension (41).

N = number of dots xposed; ordinates - % of judgments which were

When a number of black dots irregularly arranged upon a well illuminated white background were exposed to view for a very short interval (0.038 sec) and the subject was required to determine the number of dots presented, the average number of correct judgments made after considerable, but not extreme, practice was as shown in Fig. 14. The visual angle subtended by the dots was well above the threshold value

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Abbot, 550, No 68; 14 (2) Baird, Color Sensitivity of the Peripheral Retina, Washington, 1905 (3) Bauch, Fortschritte d. Psychol., 1: 169; 12.
 (4) Bruner, 551, 11: 46, 08 (5) Carothers, 551, 46: 29, 36; 21. (6) Cattell, 552, 8: 463, 86 (7) Cobb, 555, 21: 23, 14 (*) Cobb and Geissler, 555, 20: 425, 13. (*) Coblents and Emerson, 51A, 14: 167, 18.
-) Dodge, Psych Rev., Monograph Suppl., 36: 19; 07 (11) Feehner, Psycho physik, 1: 193, 89, (12) Ferree and Rand, Trans Illum Eng Soc, 15: 769, 20 (12) Ferree, Rand and Buckley, 554, 3: 352, 20, (14) Ferreberger, 555, 21: 346, 14, 555, 27: 269; 16 554, 1: 515, 16; 3: 141; 20, 4: 71, 21 (18) Fletcher and Wegel, #, 18: 533, 22 (18) Freeberg, \$51, 8: 00, 07 (17) Fullerton and Cattall On the Personal Cattall Control of the Proceedings of the Procedure of t (17) Fullerton and Cattell, On the Perception of Small Differences, (18) Garrett, 331, 86: 56, 22. (18) Gates, U of Cal Publ in Psych. 1:327.16
- (20) Helmholtz, B69, 2: 36, 24 (21) Henmon, Time of Perception York, 1906 (22) Holmes, Diss., Columbia Univ., 1923 (23) Jastrow, Time Relations of Mental Phenomena, 1890 (24) Johnson, 334, 7: 34; 24. (28) Johnson, 554, 7: 5, 24 (28) Knudsen, 2, 31: 84: 23 (27) König, 76, 1897: 559 (28) König, 12 Helmholtz Festgruss, 1891. (28) König and Brodhun, 78, 1888: 000
- (20) Koester, Centralbl. f. Physiol., 10: 433; 96 (21) Kraepelin, 332, 2: 306; Scincesphysiologie, 41: 307: 06 (38) Merkel, 532, 8: 253; 89. (34) 85 Merkel, 552, 9: 409, 94, (27) Nagel, B09, 2: 318; 24, (28) Nagel, B69, 2: 320, 24. (39) Nagel, B69, 2: 325, 24
- (40) Nutting, 37.4, 5: 201, 08-09 (41) Oberly, 555, 25: 330-338; 24 (42)
 Parsons, B70, 28, 54, 59, 15 (42) Poffenberger, 351, 23: 48; 12. (44)
 Pratt, 355, 31: 404; 20 (45) Reeves, 21, 47; 143, 145; 18. (44) Rics, 381, 20: 30; 12. (47) Southall, B69, \$: 128 (footnote); 24. (48) Southall, B69, 2: 33 (footnote), 24 (49) Steindler, 75, 118: 115; 06.
- (16) Stratton, 532, 13: 538, 96 (*1) Stücker, 75, 96: 367; 07. (*2) Urban, Arch, ges, Psychol., 21: 1; 14 (*3) Vance and Schaefer, 530, 69: 114, 115, 14. (*4) Woodworth and Bruner, O

^{*}Two colored squares each 3 by 3 cm, placed side by side; observer was to react with corresponding hand to indicate on which side the previously specified square was placed. This type of discrimination reaction is the quickest. The same procedure was used in the discrimination of lengths.

† On a background of approximately 26 milliamberts and at a visual angle of 45' to each side of fixation point was a circle of angular dismeter = 21', brightness = 35°; greater than that of background. Either circle could be made to disappear, and the subject, by a reaction with the corresponding hand, indicated which disappeared.

ARRANGEMENT OF CHEMICAL SUBSTANCES

Throughout I. C. T., except when otherwise indicated, the tabular arrangement of all chemical substances and of all systems capable of representation by formula is in accordance with a system called the "Standard Arrangement," which will now be explained and which should be learned by every user of L.C. T.

Elementary Substances

All tables containing only elementary substances (Λ -Tables) are arranged in alphabetical order of the symbols of the elements. In tables containing both elements and compounds (ΛB -Tables) the elements follow the "standard arrangement," v -infra

Chemical Compounds and Other Systems Represented by Formula

The arrangement is based upon the following table of "Keynumbers" of the elements:

ARRANGEMENT OF CHEMICAL SUB-

ARRANGEMENT DES SUBSTANCES CHIMIOURS

L'arrangement tabulaire de toutes les substances chimiques et de tous les systèmes susceptibles d'une représentation par formule est, dans les T. C. I, excepté lorsqu'il y a une autre indication, en accord avec un système appelé "arrangement type," (standard arrangement) expliqué ci-dessous, qui devra être appris par chaque personne qui veut utiliser les T. C. I.

Substances Élémentaires

Toutes les tables ne contenant que les substances élémentaires (Tables A) sont arrangées dans l'ordre alphabétique des symboles des éléments. Dans les tables contenant les éléments et les corps composés (Tables AM) les éléments se trouvent suivant l'arrangement type "voir infra.

Composés Chimiques et Autres Systèmes Représentés Par Formule

L'arrangement est basé sur la table suivante des "nombres elés" des éléments

			H	KY-NI M	85 KM OF	THE	CLEM	ENTR								Nом	BRES	CI.Es	DES ÉLE	MENTS				
-6	5 -4	-3	2	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(He	Ne A	Kr	Xe	Rn)	O	H	F	\mathbf{C}	Br	ı	(85)	\mathbf{s}	Se	Те	N	P	As	$\mathbf{S}\mathbf{b}$	Bi	C	Po	Si	Ti	Ge
					46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
					Cr	Mo	W	ſ.	V	Cb(Nb)	Ta	Pa	В	Al	Sc	Y	La	Се	Pr	Nd	(61)	Sa	Eu	Gd
Ac	Ag	Al	As	Au	В	Ba	Be	Bı	Br	\mathbf{c}	Ca	Cb	Cd	Ce	Cl	Со	Cr	Св	Cu	Dy	Er	Eu	F	Fe
74	32	55	13	33	54	79	75	15	5	16	77	51	29	59	4	44	46	85	31	67	69	64	3	43
					Os	P	Pa	Pb	Pd	Po	Pr	Pt	Ra	Rb	Re	Rh	Ru	\mathbf{s}	Sa	Sb	Sc	Se	Si	Sn
					35	12	53	23	41	17	60	37	80	84	34	40	39	8	63	14	56	9	18	22

To locate a given compound, first write its "key-formula," neglecting water of crystallization, thus:

Afin de situer un composé donné, il faut d'abord écrire sa "formule-clé," en négligeant l'eau de cristallisation, ainsi:

Compound	Composé	Na ₂ SO ₄	HClO₄3H₄O	Hg(C18H34O2)2	2Fe ₂ O ₃ ,P ₂ O ₄ ,12H ₂ O	N12Pr2(NO3)12.24H2O	I ₂ C ₆ H ₃ SO ₃ H	(NH ₄) ₂ CO ₄
Key formula	Formule-	82 8 1	121	30-16-2-1	43 12-1	60-45-11-1	16-8-6-2 1	16-11-2-1

In writing a key-formula the key-numbers must be written in descending order.

All chemical compounds ($\mathfrak{B}\text{-Tables}$) are arranged in the inverse numerical order of their key-formulae. Example: to find the compound $\Pi_{\mathbf{g}(\mathbf{C}_{18}\Pi_{13}O_2)_4}=30-16-2-1$; First, turn to section 30 of the table. Then follow down the column of chemical formulae until element 16 (C) is first encountered. From this point continue until element 2 (H) is found, and then on until element 1 (O) is reached. At this point will be found all the compounds composed of the four elements $\Pi_{\mathbf{g}}$, C, H, and O and these compounds are arranged in an obvious manner according to the subscripts in the chemical formula. To facilitate the use of the tables, key-numbers are inserted at frequent intervals either along the top of the page or down the left hand column or both

In looking for a chemical compound always consult the \mathfrak{B} -Table, the scope of which provides for all chemical compounds except those of the radioactive elements, of which only compounds of U, Th and Ra are given in the \mathfrak{B} -Table. For the others see p. 364. In certain of the \mathfrak{B} -Tables, at the point where key-formulae beginning with 16 occur, there will be found frequently only a few of the simpler compounds, and the reader will be referred to a

Lorsqu' on écrit une formule-clé, les nombres clés doivent être écrits dans l'ordre des valeurs décroissantes.

Tous les composés chuniques dans toutes les tables (Tables 35.) sont arrangés d'après l'ordre numérique inverse de leurs formules-clés. Exemple: pour trouver le composé Hg (C₁₄H₁₄O₁)₁ = 30 16-2-1; il s'agit premièrement de chercher la section 30 de la table; ensuite de suivre en descendant la colonne des formules chimiques jusqu'à ce qu'on trouve l'élément 16 (C). De ce point, on continue jusqu'à ce qu'on rencontre l'élément 2 (H), et ensuite jusqu'à ce que l'élément 1 (O) soit atteint. On trouvera alors à ce point tous les composés renfermant les quatre éléments Hg, C, H et O et ces composés sont arrangés d'une manière apparante en relation avec les indices de leurs formules chimiques. Afin de faciliter l'usage des tables, les nombres-clés sont inscrits, à de fréquents intervalles, ou au haut de la page ou le long de la colonne gauche, ou aux deux places.

Pour la recherche d'un composé chimique, il s'agit de consulter toujours la Table 39 dont le but est de renseigner sur tous les composés chimiques, à l'exception des éléments radio-actifs, dont seuls ceux de U, Th et Ra sont donnés dans la Table 39. Pour les autres, voir p. 364. Dans certaines des Tables 39, au point où les

STANCES AND SYSTEMS IN I. C. T.

DIE ANORDNUNG DER CHEMISCHEN VERBINDUNGEN

Durch die ganzen I. C. T., ausgenommen es ist etwas anderes angegeben, ist die tabellarische Anordnung aller chemischen Verbindungen und aller durch chemische Zeichen oder Formeln darstellbarer Systeme, nach der "Normal-Anordnung" (standard arrangement), durchgeführt. Sie ist im folgenden dargelegt und soll von jedem Leser der I. C. T. erlernt werden.

Elementare Stoffe

Alle Tafeln, welche nur elementare Stoffe (A-Tabellen) enthalten, sind in alphabetischer Reihenfolge nach den Symbolen der Elemente angeordnet. In den Tafeln, welche beides, Elemente und Verbindungen (AM-Tabellen), enthalten, folgen die Elemente der "Normal-Anordnung." Siehe weiter unten.

Die chemischen Verbindungen und andere durch Formeln darstellbare Systeme

Die Anordnung ist auf der folgenden Tafel begründet, welche die "Schlüsselnummern" der Elemente enthält:

ORDINE DI ELENCAZIONE DELLE SOSTANZE

In tutti i volumi delle T. C. I. Fordine in cui le sostanze ed i sistemi rappresentabili con formule sono disposti nelle tabelle è (tranne che non sia diversamente indicato) quello "standard" illustrato più avanti. Chiunque voglia servirsi delle T. C. L. deve anzitutto apprendere in che consiste questo sistema "standard".

Sostanze Elementari

Tutte le Tabelle contenenti soltanto sostauze elementari (tabelle A) sono disposte secondo l'ordine alfabetico dei simboli degli elementi. Nelle tabelle che comprendono elementi e composti (tabelle A-3) gli elementi sono ordinati secondo la disposizione "Standard" r infra.

Composti Chimici ed Altri Sistemi Rappresentati da Formule

La disposizione è basata sul quadro seguente di "numeri chiave" degli elementi.

			S	CHLÜMB	ELNUMMER	v der	ELE	MENT	Е						N	L M F H	а сиз	() E) (1 1	FIFM					
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40			42			
Zr	Sn	Pb	Th	Ga	In	Tl	Zn	Cq	Hg	$\mathbf{C}\mathbf{u}$	Ag	Au	Re	Os	lr	Pt	Ma	Ru	Rh		Pd	M n	Fe	Co	Ni
66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	81	85	86					
Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Ac	Be(Gl)	Mg	Ca	Sr	Ba	Ra	Li	Na	K	Rb	Св	(87)					
C.	Gd	Co	CI	н	116	Ho	Ho	ī	In	Ir	К	La	Lı	Lu	Ma	Mg	Mn	Mo	N		Na	Nb	Nd	Ni	0
25	65	20					68				83				38	76	42	47	11		82	51	61	45	1
Sr	Та	Tb	Те	Th	Ti	Tl	Tın	U	v	w	Y	Υb	\mathbf{z}_{n}	Zr	(61)	(75) (8	5) (87)						
78	52			24	19	27	70	49	50	48	57	71	28	21	62	34	7	•	86						

Um eine gegebene Verbindung aufzufinden, hat man zuerst seine Schlüsselformel aufzuschreiben, wobei man das Kristallwasser auslässt z B:

Per trovare il posto di un dato composto bisogna prima scrivere la formula chiave trascurando l'acqua di cristallizzazione, p. es

Verbin-	Composto	Na ₂ SO ₄	НСЮ₄ЗН₂О	Hg(C ₁₈ H ₃₃ () ₂) ₂	2Fe ₂ O ₃ P ₂ O ₄ 12H ₂ O	Ni ₃ Pr ₂ (NO ₄) ₁₂ .24H ₂ O	12C6H3SO2H	(NH4)2CO3
dungen	·					1		
Schlüssel-	Formula	82-8-1	4-2-1	4-2-1 30-16 2-1 43-12 1 60-45-11 1		60- 45-11-1	16 8-6 2-1	16-11-2-1
formel	chiave	82-8-1			<u> </u>		l	

In die Schlüssselformel müssen die Schlüsselnummern in abstrigender Reihenfolge geschrieben werden.

Alle chemischen Verbindungen (35-Tabellen) sind in der umgekehrten Reihenfolge der Schlüsselformeln angeordnet Z B: Um die Verbindung Hg(C₁₈H₅₅O₂)₂ = 30-16-2 1 zu finden, hat man zuerst den Abschnitt 30 aufzusuchen. Dann hat man den Kolonnen der chemischen Verbindungen abwärts zu folgen, bis man zuerst das Element 16 (C) antrifft, von da an setzt man weiter fort, bis das Element 2 (H) gefunden ist und dann weiter, bis das Element 1 (O) erreicht ist. Bei dieser Stelle werden alle Verbindungen gefunden werden, welche sich aus den 4 Elementen Hg, C, H, und O zusammensetzen. Diese Verbindungen sind in deutlicher Art, entsprechend der Bezeichnungsweise chemischer Formeln, angeordnet. Um den Gebrauch der Tafeln möglichst zu erleichtern, sind die Schlüsselnummern häufig an verschiedenen Stellen eingefügt. Sie befinden sich entweder am Kopf der Seiten, oder auf der linken Seite unten, oder an beiden Stellen.

Um eine chemische Verbindung zu suchen, benutze man ummer die 3-Tabellen: die alle chemischen Verbindungen enthalten, ausgenommen jene der radioaktiven Elemente. Von diesen sind

Nella formula chiave, i numeri chiave devono essere scritti in ordine decrescente.

Tutti i composti in tutte le tabelle (Tabelle 3) sono disposti nell'ordine numerico inverso delle loro formule chiavi.

Supponamo ad es. di voler trovare il composto Hg (C₁₈H₁₈O₂)₂ = 30-16-2-1. Prima si cerca la sezione 30 della Tabella, poi si scorie la colonna delle formule fino ad incontrare l'eliments 16 (C). Da questo punto si continua finchò si trova l'elemento 2 (H), e quindi fino a raggiungere l'elemento 1 (O). Qui si trovano tutti i composti risultanti dai quattro elementi Hg, C, H e O ordinati secondo gli indici delle formule. Per facilitare l'uso delle tabelle i numeri chiave sono inseriti ad intervalli frequenti nella testata o lungo il margine sinistro della pagina, o nell'una e nell'altro.

Per cercare un composto bisogna sempre consultare la tabella 35 che contiene tulti i composti tranne quelli degli elementi radio-attivi; di questi sono riportati nella tabella 25 soltanto i composti di U. Th, Ra. Per gli altri vedi p. 364. In alcune tabelle 35, laddove si trovano formule chiave che cominciano con 16, si troveranno spesso soltanto pochi composti fra i più semplici e il lettore

C-Table where the remainder of such compounds will be found listed under a different arrangement known as

The C-Arrangement

In this arrangement the compounds are arranged according to their empirical formulae (including water of crystallization), in the order C, H, with the remaining symbols alphabetical, e.g., C₄H₄I₂O₄S. The **C**-Tables, however, will not contain any carbon compound whose key-formula contains a number greater than 16.

SYSTEMS OF MORE THAN ONE COMPONENT

The components of each system are first arranged according to the standard arrangement, giving the order A, B, C, etc. The systems are then arranged, according to the standard arrangement, in the order of their A-components. All systems having the same A-component will be found (under that component) in the order of their B-components, etc.

In certain tables, the above plan will be based upon the C-arrangement instead of the standard arrangement. Such cases will always be so indicated.

Name Indices

The chemical formulae of nearly all of the organic compounds and minerals whose properties are given in L. C. T. can be found with the aid of the extensive indices of names given on p. 174 and 280. If the name is not found there, other works of reference must be consulted for the formula. It should be noted, however, that the exact formula is not required. The compound can be readily located if only the elements composing it are known (in the case of inorganic compounds) or if only the number of carbon atoms are known (in the case of organic compounds) provided only that the user can recognize either name or formula when he sees it.

PHYSICAL PROPERTIES OF CHEMICAL SUBSTANCES

INTRODUCTION

The following tables (p. 96 to 314) are intended to serve as a source of ready reference for the approximate values of certain properties of chemical substances, displayed in such a manner as to be of the greatest utility. The values given may be uncertain by one or more units in the last significant figure. Non-significant figures are given in small type. Thus, 2300 indicates that the correct value lies between 1800 and 2800, with 2300 as most probable value.

More accurate values for these properties, if known, will be found in subsequent sections of I. C. T, together with their literature references.

A. ELEMENTARY SUBSTANCES AND ATMOSPHERIC AIR

A-Tables, p. 102. Values in parentheses are estimated, usually with the aid of the Periodic Law.

B. CHEMICAL COMPOUNDS. STANDARD ARRANGE-MENT (r. p. 96)

33-Tables, p. 106

- 1. Formula or formula and name.
- 2. Gram-formula-weight. (I. C. T. atomic weights, v. p. 43.)
- 3. Crystal system.

33-Table.

Special tables.

formules-clés commençant par 16 se présentent, on ne trouvera fréquemment qu'un petit nombre de composés plus simples, et le lecteur sera alors renvoyé à une Table C, où le reste de ces composés se trouvera disposé d'une façon différente nommé

L'Arrangement C

Dans cet arrangement, les composés sont disposés en relation avec leurs formules empiriques (l'eau de cristallisation inclusivement) dans l'ordre C, H, les symboles restants venant ensuite dans l'ordre alphabétique; par ex: C₆H₄I₂O₄S. Cependant les Tables C ne contiendront aucun composé dont la formule-clé renferme un nombre supérieur à 16.

SYSTÈMES DE PLUS D'UN COMPOSANT

Les composants de chaque système sont premièrement disposés d'après l'arrangement type suivant l'ordre A, B, C, etc. Les systèmes sont alors arrangés, en accord avec l'arrangement type, dans l'ordre de leurs composants A. Tous les systèmes ayant le même composant A seront trouvés sous ce composant dans l'ordre de leurs composants B. etc.

Dans certaines tables, le plan sera basé sur l'arrangement **C** au lieu de l'arrangement type. De tels cas seront toujours mentionnés.

Noms Indices (Anglais)

Les formules chimiques de presque tous les composés organiques et les minéraux dont les propriétés sont données dans les T. C. I. peuvent être trouvées au moyen des indices extensifs des noms donnés aux p. 174 et 280.

Si l'on ne trouve pas le nom à cette place, il faudra consulter d'autres ouvrages de références pour la formule. Il faut noter, cependant, que la formule exacte n'est pas nécessaire. Le composé peut être immédiatement situé si l'on ne connait que les éléments qui le composent (dans le cas des composés inorganiques), ou que les nombres des atomes de C (dans le cas des composés organiques); à la seule condition que le lecteur puisse reconnaître ou le nom ou la formule lorsqu'il la voit.

PROPRIÈTÈS PHYSIQUES DES SUBSTANCES CHIMIQUES

INTRODUCTION

Les tables suivantes (p. 96 à 314) ont été établies dans le but de servir de source de référence rapide pour les valeurs approximatives de certaines propriétés des substances chimiques, et sont disposées de manière à être de la plus grande utilité possible. Les valeurs données puivent être incertaines par une ou plusieurs unités de leur dernier chiffre significatif. Les chiffres non signicatifs sont donnés en petits caractères. Ainsi, 2300 indique que la valeur correcte se trouve entre 1800 et 2800, avec 2300 comme valeur la plus probable. Si l'on connait des valeurs plus précises pour ces propriétés, on les trouvers dans les sections suivantes des T. C. I., accompagnées de leurs références bibliographiques.

A. SUBSTANCES ÉLÉMENTAIRES ET AIR ATMOS-PHÉRIOUE

Tables A, p. 102. Les valeurs entre parenthèses sont estimées ordinairement à l'aide de la Loi périodique.

3. COMPOSES CHIMIQUES. ARRANGEMENT TYPE

(v. p. 96)

Tables 33, (p. 106)

- 1. Formule ou formule et nom.
- 2. Poids moléculaire en grammes (Poids atomiques des T. C. I., $v.\ p.\ 43.$)

in den **28-Tabellen nur** die Verbindungen des U, Th und Ra enthalten. Für die anderen siehe Seite 364. In einigen 28-Tabellen, dort wo die Schlüsselnummern mit 16 beginnen, findet man häufig nur einige wenige einfache Verbindungen. Der Leser wird dann auf die C-Tabellen verwiesen, wo die restlichen derartigen Verbindungen gefunden werden können. Diese Tabellen sind nach anderen Gesichtspunkten zusammengestellt. Er ist das die

C-Anordnung (C-Arrangement)

Bei dieser Anordnung sind die Verbindungen nach ihrer empirischen Formel gegeben (einschliesslich Kristallwasser) und zwar in der Ordnung C, H, die restlichen Zeichen dann in alphabetischer Ordnung, z.B. C₆H₄I₂O₃S. Die C-Tabellen enthalten jedoch keine Kohlenstoffverbindung, in deren Schlüsselformel eine Zahl größer als 16 vorkommt.

SYSTEME MIT MEHR ALS EINER KOMPONENTE

Die Komponenten jedes einzeln Systemes sind zuerst in der Reihenfolge A, B, C, u. s. w., entsprechend des "Standard-Arrangement" anzuordnen. Die Systeme sind dann, entsprechend des "Standard-Arrangement," in der Reihenfolge ihrer A-Komponenten angegeben. Alle Systeme, welche dieselbe A-Komponente haben, werden unter dieser Komponente in der Reihenfolge ihrer B-Komponenten gefunden.

In gewissen Tabellen wird dieser Plan entsprechend der C-Anordnung, an Stelle des "Standard Arrangement," gewahlt. Solche Fälle werden immer entsprechend bemerkt.

Namenverzeichnis (Englisch)

Die chemischen Formeln von so ziemlich allen organischen Verbindungen und Mineralien, deren Eigenschaften in den I. C. T. enthalten sind, konnen mit Hilfe des ausgedehnten Namenverzeichnisses auf Seite 174 und 280 gefunden, werden. Ist der Name hier nicht auffindbar, so müssten andere Quellen für die Formel nachgesehen werden. Es soll aber bemerkt werden, dass eine genaue Formel nicht nötig ist. Die Verbindung kann bei anorganischen Verbindungen leicht aufgefunden werden, wenn nur die Elemente, die sie zusammensetzen, bekannt sind, bei organischen Verbindungen, wenn nur die Zahl der Kohlenstoffatome bekannt ist. Nötig ist es, dass der Leser entweder den Namen oder die Formel beim Ansehen erkenut.

DIE PHYSIKALISCHEN EIGENSCHAFTEN CHEMISCHER STOFFE

EINFÜHRUNG

Die folgenden Tafeln (s. 96 bis 314) sollen zur raschen Orientierung über angenäherte Werte gewisser Eigenschaften chemischer Verbindungen dienen. Sie sind in einer solchen Art angeordnet, um vom grösstmöglichem Nutzen zu sein. Die angegebenen Werte können auf einer und mehreren Stellen der letzten grossgeschriebenen Ziffer unsicher sein. Z.B. sagt die Zahl 2300 aus, dass der zwischen 1800 und 2800 liegende Wert am wahrscheinlichsten 2300 sein wird.

Genauere Werte fur diese Eigenschaften können, wenn sie bekannt sind, in den weiter unten vorhandenen Abschnitten der I. C. T. zusammen mit der Literatur gefunden werden

A ELEMENTARE STOFFE UND DIE ATMOSPHARISCHE LUFT

A-Tabellen, Seite 102. Werte, die in den Klammern sich befinden, sind geschätzt gewöhnlich nach dem periodischem System der Elemente.

$\mathfrak{B}.$ CHEMISCHE VERBINDUNGEN. NORMAL-ANORDNUNG [STANDARD-ARRANGEMENT] (siehe S. 97)

3-Tabellen, Seite 106

- 1. Formel oder Formel und Name.
- 2. Gramm-Formel-Gewicht (Atomgewichte der I. C. T. siehe S. 43.)

sarà rimandato a una tabella C dove si troveranno gli altri disposti con criterio differente che viene chiamato

La Disposizione C

Secondo questa i composti sono disposti in base alle formule empiriche (compresa l'acqua di cristallizzazione) nell'ordine C., H e con i rimanenti simboli ordinati alfabeticamente P. es. C. H. 12O.S. Le tabelle C non comprendono però composti del carbonio che hanno un numero chiave più grande di 16.

SISTEMI DI PIU' D'UN COMPONENTE

I componenti di ciascun sistema sono dapprima disposti secondo la disposizione tipo, nell'ordine A, B, C, etc. I sistemi sono quindi dispositi, secondo la disposizione tipo, nell'ordine dei loro componenti A. Tutti i sistemi aventi lo stesso componente A verianno trovati, sotto questo componente, nell'ordine dei loro componenti B, etc.

In alcune tavole il piano sara' basato sulla disposizione **C** in **luogo** della disposizione tipo. Di cio' verra' sempre fatta menzione.

Indici Per Nome (Inglese)

Le formule chimiche di quasi tutti i composti organici e minerali di cui sono riportate le proprietà nelle T. C. I. si possono trovare con l'aiuto di estesi indici di nomi dati a p. 174, e 280. Se negli indici non si trova il nome bisogna consultare altre opere per trovare la formula. Deve tuttavia notarsi che non è necessaria la formula esatta. Il composto può essere facilmente ritrovato se si conoscono solo gli elementi componenti (nel caso di composti inorganici) o se si conosce solo il numero di atomi di carbonio (nel caso di composti organici) purchè il lettore sia in grado di riconoscerne il nome o la formula quando li vede.

PROPRIETA' FISICHE DELLE SOSTANZE

INTRODUZIONE

Le tabelle seguenti (p. 96 a 314) hanno lo scopo di fornire per una serie di sostanze valori approssimati di certe proprietà disposti in modo da essere della più grande utilità. I valori riportati pòs sono essere meerti per una o più unità nelle ultime cifre significative. Le cifre non significative sono indicate in caratteri piccolli. Cost 2300 indica che il valore esatto si trova fra 1800 e 2800, e che 2300 è il valore più probabile.

Valori più precisi di queste proprietà quando sono conosciuti, sono riportati nelle sezioni successive delle T. C. I. insieme con le relative indicazioni bibliografiche.

A. SOSTANZE ELEMENTARI ED ARIA ATMOSFERICA

Tabelle A, p. 102. I valori fra parentesi sono calcolati generalmente con l'aiuto della legge periodica.

M. COMPOSTI, DISPOSIZIONE STANDARD (v. p. 97) Tabelle M. p. 106

- 1. Formula oppure formula e nome.
- 2. Peso della formula in grammi. (T. C. I. pesi atomici v. p. 43.)
- 3. Sistema cristallino.

Tabella 😘.

Tabelle speciali.

4. Punto di fusione. (Alla pressione di una atmosfera, tranne che non sia diversamente indicato dalla soprascritta; così 125^{17atm.} — fonde a 125° alla pressione di 17 atmosfere.)

Tabella 33

- Melting point. (Under 1 atm. unless otherwise indicated by superscript, thus 125^{17atm.} melts at 125° under 17 atm.)
- 5. Boiling point. (Under 700 mm Hg unless otherwise indicated by superscript, thus 321^{rs} = boils at 321° under 125 mm

Hg.)

Density, g cm⁻¹. (At 20° unless otherwise indicated by superscript, thus 1.8534° = 1.853 g cm⁻¹ at 40°C.)

29-Table.

7. Refractive index and dispersion, $(n_D$ and $H_\beta - H_\alpha)$ for 20° unless otherwise indicated.

ABBREVIATIONS AND CONVENTIONS

```
at. or atm.
ď
             cubic or regular
d.
             decomposes, e.g., d. 335 = \text{decomposes} at ca. 335^{\circ}:
                335 d. - melts (resp. boils) at 335° with decom-
                Donition
dian
             a dissociation temperature
             explodes
exp.
             liaud
1
н.
             hexagonal
M
             monoclinie
P.
             under pressure
             aublimation
s. d.
             slight decomposition
R
             rhombic or orthorhombic
Tet
             tetragonal
Tr
             transition temperature
Tri.
             triclinic
Trig.
             trigonal
vac
             in vacua
var.
             variable
```

THE PROPERTY-SUBSTANCE TABLES

Following the General Tables will be found (p. 306) the Property-substance Tables, in each of which the substances, identified by Index Number, are arranged in ascending order of the values of the property, the intervals on the scale of values of the property being given in black-face type.

To Identify a Substance by Means of Its Properties.—Example: A liquid is found to have the following properties: B. P. = 811° at 745 mm, d = 0.783, $n_D = 1.347$. What is the substance? With the aid of Craft's rule, first correct the boiling point to 760 mm. If the general nature of the substance is unknown, put $c = 10^{-4}$ in the Craft's equation, $\Delta t = cT_R(760 - P)$. Thus in the present instance, we should have $\Delta t = 10^{-4} \times (81.1 +$ 273) $(760 - 745) = 0.3^{\circ}$, and $t_B = 81.1 + 0.3^{\circ} = 81.4^{\circ}$. Next turn to the special B. P. (p. 310), d (p. 313), and n (p. 276) tables and read off from these tables the index numbers of substances having values of the above properties in the neighborhood of those for the unknown substance. Thus, for the present example, the following index numbers will be obtained: For B. P., 130, 758, 727, 1612, 168, 277, 1535, 506, 792; for d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; for np, 141, 168, 213. The only index number common to each of these properties is 168; and on turning to this index number in the General C-Table, we can readily identify our substance as acetonitrile. The identification can then be further checked by appropriate chemical tests, if desired.

3. Système cristallin.

Table 3.

Tables spéciales.

4. Point de fusion. (Sous 1 atm. à moins d'une indication par exposant, ainsi 12517atm. = fond à 125° sous 17 atm.)

Table %

- 5. Point d'ebullition. (Sous 760 mm Hg à moins d'une indication par exposant, ainsi 321¹²⁵ = boût à 321° sous 125 mm Hg.)
 Table 38.
- 6. Densité, g cm⁻³. (A 20° à moins d'une indication par exposant, ainsi 1,853° = g cm⁻³ à 40°C.)

Tuble %

7. Indice de réfraction, et dispersion $(n_D$ et ${\rm H}_\beta-{\rm H}_\alpha)$ à 20° à moins d'une indication.

ABRÉVIATIONS ET CONVENTIONS

```
atmosphère
at. ou atm.
             cubique ou régulier
             Se décompose, par ex., d. 335 = se décompose à
d.
               curron 335°: 335 d. = fond (resp. bout) à 335° avec
               décomposition
diss.
             une température de dissociation
             evoloser
exp.
             liquide
H.
             hexagonal
             monochnique
M
1)
             sous pression
             sublimation
8.
яd.
             légère décomposition
             rhombique ou orthorhombique
R
Tet.
             tétragonal ou quadratique
Tr.
             température de transition
Tri.
             triclinique
Trig
             trigonal
             dans le vide
vac.
var.
             variable
```

TABLES DES PROPRIÉTÉS DES SUBSTANCES

On trouvera (p. 306) à la suite des Tables générales, les Tables des Propriétés des Substances, dans chacune desquelles, les substances identifiées par leur Nombre-Index, sont arrangées dans l'ordre ascendant des valeurs de la propriété; les intervalles de l'échelle des valeurs de la propriété sont donnés en caractères gras.

Pour identifier une substance au moyen de ses propriétés.-Exemple: On a trouvé qu'un liquide a les propriétés suivantes: P.E. $= 81.1^{\circ}$ à 745 mm, d = 0.783, $n_{\rm p} = 1.344$. Quelle est la substance? Au moven de la règle de Craft, on corrige premièrement le point d'ébullition à 760 mm. Si la nature générale de la substance est inconnue, on pose $c = 10^{-4}$ dans l'équation de Craft, $\Delta t = cT_n$ (760 – P). Ainsi dans le cas présent, nous aurions $\Delta t = 10^{-4} \times$ $(81.1 + 273)(760 - 745) = 0.3^{\circ}$, et $t_{\rm m} = 81.1^{\circ} + 0.3^{\circ} = 81.4^{\circ}$. Ensuite on cherche dans les tables spéciales des P.E. (p. 310), des d (p. 313) et des n(p, 276) et on note les nombres-index des substances ayant les valeurs des propriétés ci-dessus dans le voisinage de celles de la substance inconnue. Ainsi, pour l'exemple présent, les nombres-index suivants seront obtenus; Pour le P.E., 130, 758, 727, 1612, 168, 277, 1535, 506, 792; pour d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; pour np, 141, 168, 213. Le seul nombreindex commun à chacune de ces propriétés est 168; en revenant à ce nombre-index dans la Table générale C, et en notant les autres propriétés, on peut rapidement identifier notre substance comme étant acétonitrile. L'identification peut être alors poussée plus loin au moyen d'essais chimiques appropriés, si on le désire.

- 3. Kristall-System
 - N. Tabellen.

Besondere Tabellen.

- 4 Schmelzpunkt. (Bei 1 Atmosphäre: wird dem Werte eine Zahl rechts hinaufgesetzt, so bedeutet diese den Druck unter welchem der Schmelzpunkt angegeben ist. Es bedeutet 125 ratm der Schmelzpunkt ist bei einem Druck von 17 Atm. bei 125°) 3. Tabellen.
- 5. Siedepunkt. (Unter 760 mm Quecksilber: wird dem Werte eine Zahl rechts hinaufgesetzt, so bedeutet diese Zahl den Druck, unter welchem der Siedepunkt angegeben ist. Es bedeutet 321123; der Siedepunkt liegt bei einem Druck von 125 mm Hg bei 321°) 32-Tabellen.
- 6. Dichte, g cm⁻³. (Bei 20°C: wird dem Wert eine Zahl rechtshimaufgesetzt, so bedeutet diese Zahl die Temperatur, fur welche die Dichte angegeben ist. Es bedeutet 1.853⁴⁰: die Dichte bei 40° beträgt 1.853).

3-Tabellen.

7. Brechungs-Index und Dispersion, $(n_D \text{ und } H_{\beta} - H_{\alpha})$ für 20°, wenn nichts anderes angegeben ist.

ABKÜRZUNGEN UND ZEICHEN

	ABKURZUNGEN UND ZEICHEN
at, oder atm.	Atmosphäre
C.	kubisch oder regulär
d.	zersetzt sich, z. B. d335 bedeutet, zersetzt sich bei ungefahr 335°; 335d bedeutet, schmilzt (oder siedet) bei ungefähr 335° unter Zersetzung
diss.	Dissoziations Temperatur
exp.	explodiert
l.	flüssig
H.	hexagonal
M	monoklin
Р.	unter Druck
s.	Sublimation
s.d.	schwache Zersetzung
R.	rhombisch oder orthorhombisch
Tet.	tetragonal
Tr.	Umwandlungstemperatur
Tri.	triklin
vac.	im Vacuum
var.	variabel

STOFF-EIGENSCHAFTS TAFELN

Den Haupttabellen folgend, findet man Seite 306 Stoff-Eigenschafts Tafeln. In jeder dieser Tafeln, in welcher die Stoffe durch ihre Indexzahlen bezeichnet sind, werden die Stoffe in aufsteigender Ordnung der Werte dieser Eigenschaften dargestellt. Die Intervalle an der Scala der Eigenschaftswerte sind in fettgedruckten Ziffern angegeben.

Die Erkennung eines Stoffes mit Hilfe seiner Eigenschaften. Beispiel: Es ist eine Flüssigkeit gefunden, welche folgende Eigenschaften hat: Siede-Punkt 81 1° bei 745 mm, $d=0.783, n_D=1.344$. Welcher Stoff ist das? Mit Hilfe der Regel von Craft corrigiere man zuerst den Siede-Punkt auf 760 mm. Ist die allgemeine Natur des Stoffes nicht bekannt, setze man $c=10^{-4}$ m die Gleichung von Craft ein: $\Delta t = cT_B(760 - P)$. Im gegenwartigen Falle ist also $\Delta t = 10^{-4} \times (81.1 + 275)(760 - 745) = 0.3^{\circ}$, wonach dann der Siede-Punkt $t_B = 81.1^{\circ} + 0.3^{\circ} = 81.4^{\circ}$ sich ergibt. Dann verwende man die Sd.P. Tabellen (Seite 310), die d-Tabellen (Seite 313) und die n-Tabellen (Seite 276), suche in diesen die Indexzahlen jener Stoffe heraus, deren oben genannte Eigenschaften solche Werte haben, die in der Nähe der Eigenschafts Zahlen des unbekannten Stoffes liegen. So erhält man für das gewählte Beispiel, folgende Indexnummern: für Sd. P. 130, 758, 727, 1612, 168, 277, 1535, 506, 792, für d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; für n_D 141, 168, 213. Die einzige Index-Nummer, die alle drei Eigenschaften vereinigt, ist 168. Diese Index-Nummer wird in der Haupt C-Tabelle aufgesucht; mit Beachtung noch anderer Eigenschaften kann man leicht die Flüssigkeit als Azetonitril erkennen. Die Identifizierung kann dann noch weiter durch eine chemische Untersuchung, wenn nötig, bestätigt werden.

5 Punto di ebollizione. (Alla pressione di 760 mm Hg tranne che non sia altrimenti indicato dalla soprascritta; così 321^{126} = bolle a 321° alla pressione di 125 mm Hg.)

Tabella 3.

- Densità, g cm⁻³ (A 20°, tranne che non sia altrimenti indicato dalla soprascritta; cosl 1 853⁴⁰ 1 853 g cm⁻³ a 40°C.)

 Tabella A
- 7 Indice di rifrazione e dispersione $(n_0 \in H_{\delta} H_{\alpha})$ per 20° tranne che non sui altrimenti indicato.

ABBREVIAZIONI E CONVENZIONI

at oppure atm.	
C	cubico o regolare
d.	si decompone; per es. d335 = si decompone a ca. 335°; 355d = fonde (o bolle) a 335° con decomposizione
diss.	una temperatura di dissociazione
exp.	esplode
1.	liquido
H.	esagonale
M.	monoclino
Р,	sotto pressione
8.	sublimazione
sd.	leggera decomposizione
R.	rombico od ortorombico
Tet.	tetragonale
Tr.	temperatura di trasformazione
Tri.	triclino
Trig.	trigonale
vac.	nel vuoto
var.	variable

LE TABELLE DELLE PROPRIETA' DELLE SOSTANZE

Seguendo le tabelle generali si troveranno (p. 306) le tabelle delle proprietà in ciascuna delle quali le sostanze, indicate col numero indice, sono disposte secondo l'ordine ascendente dei valori della proprietà. Gli intervalli nella scala dei valori della proprietà sono indicati in grassetto.

Identificazione di una sostanza a mezzo delle sue proprietà.-Esempio: si supponga che un liquido abbia le seguenti proprietà: B.P. = 81.1° a 745 mm, d = 0.783, $n_{\rm p} = 1.344$. Che sostanza 6? Con l'aiuto della regola di Craft, bisogna anzitutto ridurre il punto di ebollizione a 760 mm. Se non si conosce la natura della . sostanza bisogna mettere, nella equazione di Craft, c = 10^{-4} , $t=cT_B(760-P)$. Cosl, nel caso nostro, si avrebbe $t=10^{-4}~{\rm X}$ (81.1 + 273) $(760 - 745) = 0.3^{\circ}$, e $t_B = 81.1^{\circ} + 0.3^{\circ} = 81.4^{\circ}$. Dopo bisogna guardare alle tabelle speciali per il B. P. (p. 310), per d (p. 313) e per n (p. 276), e ricavare da queste tabelle i numeri indici delle sostanze aventi valori delle suddette proprietà vicini a quelli della sostanza sconosciuta. Così, per il nostro esempio, si otterranno i seguenti numeri indici: per B.P., 130, 758, 727, 1612, 168, 277, 1535, 506, 792; per d, 208, 168, 395, 506, 3320, 1049, 262, 792, 5156; per n_D 141, 168, 213. L'unico numero indice comune a ciascuna di queste proprietà è 168; tornando a questo numero udice nella Tabella Generale C, e osservando le altre proprietà, si può prontamente identificare la sostanza nel acetonitrile.

La identificazione può quindi essere ulteriormente comprovata da appropriati saggi chimici, se si desidera.

ELEMENTARY SUBSTANCES AND ATMOSPHERIC AIR. A-TABLE

THE	GA	SEC	MS	ST	LTR

		44.	IE CASE	003 31	ALL			
Ches. 172	Stand- ard density (p°, 1A, g -1	Density of the saturated vapor at the nor- mal boil- ing point g ! !		ical consta	nte	Speci- fic hea joules per gram atom at 15°	1 1/100	A X
	d ₀	d,	'4 °C	Pe Atm	g cm 1	<i>c</i> ,	A	,
A As	1.7824	5 89	- 122 4 > 1400	48 0	0 531	20 2	221	20
Br Cl	3.214		302 144	76	1 18 0 573	17 2	155 132	20 20
F H	1.695 0.08987	1 33	-2 39.9	12 8	0 0310	14 55	88.7	20
He Hg	0 1785	(11-2) 0-020 at	-267.9 1650		0 069 5		19 7 494	20 273
I		320°	553 .				184	124
Kr N	3 708 1.2508	(8.3) 4 61	- 62 6 -147 1	54.2 33.5	0.311	14 56	248	$\frac{20}{23}$
Ne O	0.9002 1.4290	9 46 4 74	-228.7 -118.8	26 9	0.484		312	20
o,	3 03 at -80°	4 / 2	- 50		0 430 0 54	14 60	203 9	23
P Rn		(10.4)	721	100				
8 Tl	9.73	(12-6)	104 4 1040	62 4			229	20
Xe Air	5 851 1 2930	14 8 (9 7)	16 6	58 2	1 15	- 1	225	20
VIL	1 4000			1	1	2	284 2	20

THE LIQUID STATE

Chem.			$g \text{ cm}^{-1} \qquad \qquad \frac{1}{s} \frac{dr}{dt} = A \times 10^{-s}$		Normal boding point (s = "solid")	of vapori- sation at ts Kilo-joules per gram stom (s = "solid")
	-		A_	at to	t _H	$L_{ m v}$
A	1.402	-185 7	4500	183	-185.7	6 3
Ac					(>1700)	
Ag	9 4	960	110	960 - 1200	1950	249
Al	2.40	658	113	658 1100	1800	225.
As					615 s	139 *
Au	17.	1063			2600	368
В					(2550)	
Ba					1140.	361.
Be					(15oo)	
Bi	10.1	270.	122	270-630	1450	193.
Br	3.119	20	1100	0.30	58 78	15 0
C		1			4200	600
Ca		i]	1170	399.
Cb					(>3300)	
Cd	80	320	150	320 540	767	107.
Ce				1	1400	
Cl	1.557	- 33 6	1500	-34	-34 6	10.0
Co		1			2900	380
Cr		İ			2200	320
Cs	1 84	26	37o.	27-123	670	73.
Cu	8.3	1083.	19o.	1083-1295	2300.	467.

THE LIQUID STATE .- (Continued)

Kr 2 6						
		1	j A	at t*	t _B	Ly
	1.11	-187.	3000	-200	-187.	(6.)
Fe	6 9	1530	1		3000.	380.
	6 095	29.7	7		>1600	1
			i .		(2700.)	(500.)
H	0 0709	-252.7	13000	-255	-252.7	0.450
	0 126	-268 9	9 (1		1
He	0.147	970 9	,)	1	200	
	dmas	1 -210 6	1		-268.9	0.10
Hf					(>3200.)	1
Hg	13 546	20	182	20	356 90	59.8
-	4.00	107.	800	107~150		
	1			İ	>1450.	1
	1		ļ		(>4800)	
		62.	290	62-150	760.	84.
	2 6	146.		İ	-151.8	(9.4)
			1		1800.	(
Li	1		180	186-230	>1200.	(170.)
	1 57	650	380	650-800	1110.	262.
					1900.	240.
					3700.	71o.
	0 808	-195 8	6000	- 195	-195 8	2.80
	,		280	100-200	880	105.
	1 204	-2459		ì	-245.9	1.74
					2900.	380.
-			4100	195	-183 00	3.415
	1.71	-183.	2000	-183	-112.	4.88
	1				(>5300.)	
	1 745	44.5	520	50-60	280.	
					(6200.)	
			120	327 - 825	162o.	193.
	!				2200.	
	19.	1755.			4300.	52 0.
	ا ـ ـ ـ ا				(1140.)	
	1.475	38.5	340	40–140	700.	74.
			i		(>2500.)	
	4.4	-62.			-61 8	(18 1)
	1 000				(>2700.)	
			1	-	444 6	8.98
	0.00	031.	100	030~1050	1380.	19o.
		ı			(2400)	
		}			688	31.
	8.08	222	100	222 1400	2600	170?
	3 36	202.	100	202-10UI)		325.
			1		1150.	383.
		1		ļ	(>4100) 1390.	of
		[- 1		(>3000)	85 .
Ti		l			(>3000.)	
	11.0	300.	140	300-350	1650.	120?
				000 000	1000.	256?
v					(3000.)	200;
W	1			1	5900.	910.
Xe	3 06	-109 1			-109.1	(13.4)
Yt	-	1			(2500)	(• · •)
	6.7	463	15o	419-543	907.	99.2
Zr	1	1			(>2900.)	
		1	1	1	(620.)	(69.6)
85					(520)	(83.7)
						

	_

			AIK		
Mole %	d	t	A at to	t _B	L_{p}
10	0.831	-195.0		-195 0	
20	.856	-194.3		$-194 \ 3$	
20.94	.861	-194.2		-194 2	0 185
	}				(pergram)
30	.893	-193.5		-193 5	
40	.932	-192.6		-192 6	
50	.974	-191 5	1	-191 5	

Chem. symb.	('p	t 1	A	n	ŧ
P			2 3	6	25.
Pb	1 1		98.	- 6	400.
Rb	32.	50	23.5	- 6	50.
s	30 4	100	95	10	115.
Sb	28	630	12	- B	860.
Se	1 1		76 6	- 9	390.
Sn	31.	232	49.	- 6	300.
IT	1 1		74.	- 6	300.
Zn			43	- 6	440.
Air	1 91*	-200			<u> </u>

^{*} Per gram, for hand containing 20.94 mole % Oa

Chem. symb.		heat joules am atom	Electrical resistivity ohm-em $R = \Lambda \times 10^{\text{n}}$			
	Cp	t	A	n	t	
A	22 4	-100.			1	
Ag	33 8	907-1100	17 0	- 6	1000	
ΑĬ	28	660	20 1	6	657	
Au	27.	1100	30-8	- 6	1063	
Bi	31.	400	127		269.	
Br	36.	13-45	7.8	12	17	
Cd	36	321	34	6	400	
Cl	33 5	0-24	>10	15	-70	
Cs	32.	50	36 6	- 6	28	
Cu	27.	1084	21 3	- 6	1083	
Ga	23	119	27	- 6	30	
H	0 975	-252				
Hg	27.9	20	95 8	- 6	20	
ľ	8 01	114-185	78	6	110 5	
In		i	29.	- 6	155	
K	30.	63	13	- 6	62	
Li		1	45.	- 6	230	
N	27 8	-200	1		ı	
Na	32	100	9 7	- 6	100.	
Ni	33	1452	109	1	1500	
0	28.4	200	1			

		SURFACE	Tension		
Chem symb	γ dyno cm ⁻¹	t	Chem. symb	γ dyne cm ⁻¹	1 .
Λ	12 5	-185 8	N	8 85	-195.8
ΛI	520	750	0	13 2	-183.
Bi	376	300	Pb	442.	350.
Br	36	58-6	\mathbf{s}	60.	120.
Cd	628.	350	Se	72.	217.
Cl	27	- 34 5			
Ga	358	30(CO ₂)	Air, with 50		
H	1 91	-252 7	mole % O ₁	11-6	-190.3
Hg	476	20			

Chem. symb.	np	ı	Chem. symb.	n_D	t
В	2.5*		N	1 2058	-190
Br	1 661	15	Na	0.0045	,
Cd	0 82*		0	1 221	-181
Cl	1 385	20.	Pb	2 6*	
Н	1 097*	-252 8	s	1.929	110
Hg	1 6-1 9	20	Se	2 9	220
N	1 1978*	-195 8	Sn	2 1	

^{*} These values are for the Hg line 5790 Å.

THE CRYSTALLINE STATE

Chem. symb. (At. wt. v. p. 43) Crystal system or form		Density,	isity, g cm ⁻⁴ $\begin{cases} Thermal \\ expansion \\ 1 & dl \\ l & dt = \Lambda \times 10^{-4} \end{cases}$		Melting point °C	Specific heat joules per gram atom 1 joule = 4.185 cal.		Latent heat of fusion at t _F Kilo- joules per gram atom	Electrical resistivity ohm-cm $R = A \times 10^{-6}$		
		d	T t	.1 a	it to	1p		(', at t°	L_{ν}	A	t
A	C.	1.65	-233			-189 2	25 9	- 223	1 12		
Ac Ag Al As	C. C. Met.H. Black	10 5 2.702 5.7 4.7	20 20 20	18 9 23 03 4 7	20 20 20	(1800) 960 5 660 0 814 ^{368tm}	25 2 24 2 25 8 27.0	20 20 0-100 0-100	11 8.0	1.62 2.62 35	20 20 0
Au B Ba	Yel. C. C.	2 0 19 3 2. 3 5	20 20 20	14.2	20	1063.0 2300. 850.	25.7 14	18 0100	13.3	2.4 1.8 × 10 ¹³	20 0
Be Bi Br	H. H. R.	1 8 9 80 (3 4)	20 20	13 3	20	1350. 271 -7 2	16 1 25.6 23 5	0-100 20 -192 to -108	12 10 9 5.4	18.5 115 >10 ¹⁴	20 20
C Graphite Graphite	Dia. C. C. Single o	3 51 2 25s	20 20	0 9	20 20	3500.	6.1 8.5	20 20		5 × 10 ²⁰ 1400. 39-60	15 20 20

THE CRYSTALLINE STATE .- (Continued)

hem.	Crystal	d	t	A at	t°	t _F	C	p at to	$L_{\it F}$	A	t
ymb.	C.	1 55	20	25	0-21	810	26 0	20	1	4 6	2
Св	· .	1	20	-"	,	1950					
Cb		8 4		29 8	20	320 9	28	20	6 2	7 5	2
Cd	H.	8 6	20	20 0		640	24 8	0 100	i	78	2
Ce	C.	6 90	20	1]	010	1 "				
	H.	(6.7)	l		ł	101 0	28	-113	3 40		
Cl	R.	(19)	1	1	1	-101 6	1 1		14 4	9 7	2
Co	C.	8 9	20	12 3	20	1480	24 8	20		1	
Cr	C.	7 1	1	8 2	20	1615	23	20	6 9	2 6	
		1 90	20	97	0-26	26	29	20	2 1	20	2
C's	C.	8 92	20	16-6	20	1083	24 5	20	11 5	1 69	2
Cu	٠.		2.7	•"		-223			(0.8)		
F		(1 3)	00	11 7	20	1535	24 9	20	11 2	10 0	- 2
Fe	C.	7 86	20	11 7		29 75	23	12-23	5 55	53	
Cia	Tet.	5 91	20	18	0 30		1 1	0-100		89×10^{1}	
Ge	C.	5 36	20	í	i	958 5	22 3		0 059	.,, , , ,	
H	C.	0.0808	~ 262			-259 14	2 4	-260 6	0 000		
He						< -272 2			1		
Hf					1	(1700)					
	H.?	14 19	-38 9	90	-190 to	-38.87	28.0	40	2 33	21 3	-
Hg	11.1	. 7 10	1,7,7		-40		1			!	!
_		4.00	20	93	20 100	113 5	27 8	20	8.38	1 3×10 ¹⁵	:
I	R.	4 93	i 1		1	155	27 3	0 100		9	!
In	Tet.	7 3	20	33	20		1 1	0 - 100		6	1
Īr	C.	22 4	20	6.5	20	2350	26 1	1	0.0	7 0	
K	C.	0.86	20	83	20	62 з	29	14	2 38	10	i i
Kr		(2)				169			(1-5)		
La		6 15	20			826	26	0 100		59	
	C.	0.53	20	56	20	186	23	0	(3 5)	9 3	
Li		() ().,		****		(2300)	1 1				ļ
Ma			00	25 6	20	651	25	20	7 13	4 46	
Mg	H.	1 74	20				24 6	0	8 4	5	
Mn		7 2	20	23	20	1260	1 1		(, 1	4 77	
Mo	C.	10 2		1	20	2620 ± 10	26	20 - 100		1 11	1
N	C.	1-026	- 252 5			-209.86	23	-212	0 356		1
Na	C.	0.97	20	71	20	97 5	28 4	20	2 65	4-6	
Nd		6.9	20			840	27	0 100		79	
						-248 67	1 1		(0 24)		
Ne		(1 0)	90	12-8	20	1452	25 8	20	18 17	6.9	
Ni	<u>C.</u>	8 90	20	12.6	20	-218 4	22 5	-221 8	0 22		
0	Н.	1 426	$-252 \ 5$				22 0	221 17	0		
0	Ozone		1			-251.	0.	00 100		9	
Os	H	22 - 48	20	6.1	20	2700.	25	20 100	0.054		
P	Yel H.	1.82	20	125	0~40	44 1	23	9	0 654	1017	
	Red, C.	2/20	20			59043atm	24	-21 to +7	1		1
	Black		ł		i .					710×10^{3}	i
DL	C.	11 34	20	29 1	20	327 5	26 5	20	4 70	21 9	1
Pb			20	11 8	20	1555	26 2	18	16	10-8	
Pd	C.	12 0	20	11.0	20	(1800)	-" -	• •			i
Po	1		,	1		1 '	27	0 100		88	1
Pr		6.5	20			940	- 1		22	10 5	
Pt	C.	21 45	20	8 9	20	1755	26 5	20	1 22	10.0	
Ra		(5)	1			(960)		_		100	
Rb		1 53	20	90	20	38 5	28 7	0	2 18	12 5	
Re				1		(3000)				1	
Rh	C.	12 5	20	8.1	20	1955	25	0-100	i	5 1	ı
	``	(1)		1		-71			(3 25)		1
Rn	***		200	9 1	20	2450	26	0 100	1	10	1
Ru	H.	12 2	20	L.	1	112 8	23	0 - 30		2 × 10 ¹³	
8	R.	2 07	20	64	40	119 0	24	0 30	1 18	1	
	M.	1 96	20			1		0 00	1 10		
Sa	1	7 7	1			>1300	0-	00	10.5	20	1
Sb	H.	6 684	25	11 4	20	630 5	25	20	19 5	39	-
Sc		(2 5)	1			1200		1	1		-
Se	Gray, Trig.	4 80	25	37	40	220	28	0-41	(2.2)	1 2	1
176		4 50	25	"	"			1	1	1	1
G.	Red, H.?	1	1	907	3 20	1420	20 7	20	1	85×10^3	1
Si	С.	2 4	20	287	1	231 85	26 9	18	(7)	11 4	
Sn	White, Tet.	7 31	20	20	20	i .	25 6	20	`` '	1	
	Gray, C.?	5 750	20	5	-163 t	OI.	1 20 0	1 20			- 1

THE CRYSTALLINE STATE, -(Continued)

Chem. symb.	Crystal system	d	t		nt to	t _F	7	C _r at t°	l.p	, A	ı
Sr		2 6		1		800	- 			ļ	1 000
Ta	C.	16 6		7	20	2850	07		i	23	20
Te	α Met. H.?	6 24	20	16 8	40	i	27	20	İ	15	20
			20	10 8	40	452	25	20	3 9	5.8 - 33	1
	в Н.?	6 00	20							× 10³]	
Th	C.	11 2		1		1815	26 8	0.100	1		00
Ti	C.	4 5	20			1		0-100		18	20
TI	Tet.	11.85	20	28		1800	29	0-100		3	20
	100.		20	28	20	303 5	26 6	20	6 15	18 1	20
Ü		18.7				< 1850	. 28	0.100		Go	20
V	C.	5 96				1710	24 6	0.100			1
W.	C.	19 3		4	20	3370	26	20 100		5 48	20
Xe		$(2 \ 7)$				-140	1	20 100	(2 05)		
Yt	1	5 51		1		1490	1 1		(2 03)		1
Zn	H.	7 140	20	33	20		05.0	000		,	90
Zr	C.	6 4	20	90	20	419 43	25 3	20	7.1	6	20
	``	0.4	20			1700	25 2	0 100		170	0
85						(470)	1			1	
87				1		(23)				1	1

8 HUV. 1926

CHEMICAL COMPOUNDS

33-TABLE

Compiled with the cooperation of Raleigh Gilchrist, F. W. Smithers and Edward Wichers, Bureau of Standards, Washington D. C; J. A. Almquist, J. M. Braham and E. W. Guernsey, Fixed Nitrogen Laboratory, Washington, D. C.; H. E. Merwin, H. S. Roberts, R. B. Sosman and E. G. Zies, Geophysical Laboratory, Washington, D. C.; John C. W. Frazer, F. O. Rice and H. C. Urey, Johns Hopkins Univ, Baltimore, Md.; Robert D. Coghill, Florence Fenwick, Donald M. Hetler, Norman W. Krase and Hugh M. Spencer, Yale Univ., New Haven, Conn. The list of minerals was supplied by E. T. Wherry, Bureau of Chemistry, Washington, D. C.

General index number		Formula	Molecular weight (I. C. T atomic weights, v. p. 43)	Crystal system	Normal melting point, °C	Specific gravity 20°/4° (or at other indicated temperature)	Refractive index find- ing num- ber, v. p. 165
1	H ₂ O	AND THE RESIDENCE OF THE PARTY	18 0154		0	0 917°	203
						1. 0 9982	8
2	H ₂ O ₂	•	34 0154		- 17	1 643 ^{-4.44} 1, 1 442	٠,,
3	H ₂ O ₂ 2H ₂ O		70 0462]	- 51	1. 1 442	16
4	HF.		20 0077		- 83	1. 0 98813 6	
5	Cl, 8H,O		215 039	R.	d. 9-6	1 23	
6	ClO,		67 4580	1	- 76	. = "	
7	Cl2O	• •	86 9160	1	- 20?		
7 1	Cl ₂ O ₆		166 916	1 1	- 1	1 65	
8	Cl ₂ O ₇		182 916	1			
9	HCl		36 4657		-111	l. 1 194-85 8	3
10	HCl.H ₂ O		54 4811	i	- 15.35	1 48	
11	HCl.2H₂O		72 4965	1	- 17 7	l. 1 464 a	
12	HCl 3H2O		92 6119		- 24 4		
13	HClO ₄		100 466		112	1. 1 768	
14	HClO ₆ H₂O		118 481	1	50	1 88	
						1. 1 7764	
15	HClO ₄ 2H ₂ O		136 497		- 17 8		
16	HClO4.3H2O		154 512		$-432(\alpha)$		
					- 37 (<i>b</i>)		_
17	HBr		80 9237		- 86	1. 2 16-68	5
18	HBr.2H ₂ O.	•	116 955	}	- 11	2 11-15	
19	HBr.3H ₂ O.		134 970)	- 47 5		
20 21	HBr 4H₂O.		152 985	1	- 55 8	ļ	
22	HBrO HBrO ₃		96 9237 128 924	}	d. 100		
23	BrF _x .		136 916		a. 100 5		
24 24	1O ₂ .		158 932		d. 130	4 210	
25	1204	•	333 864		d. 300	4 7994	
26	111		127 940		- 50.8	1. 2 847-4.7	27
27	H1.2H ₂ O		145 955		- 43		
28	H1.3H ₂ O		163 970		- 48		
29	HL4H ₂ O		181 985		- 36.5		
30	1110,		175 940	R.	110	4 6290	
31	HIO,		191 940				
32	HIO4 2H2O		227 971	M. ?	તે. 110		
33	I ₂ O ₅ HIO ₅		509 804		Tr. 170		
34	IF.		221 932		8	1. 3 5	
35	ICI (a)		162 390		27 2	1. 3 2414	
					40.0	3 1824	
35 1	ICI (p)		162 390	R.	13 9	1. 3.2434	
0.0	1.01		200 002	,,	00	1. 3.1824	
36	ICI ₃		233 306	R.	ca. 33	3.11 ¹⁵ 4.414 ¹⁰	
37	IBr	00.01.01.	206 848	D. B. B. B.	ca. 42		In W. V. II V.
Al As Au 55 13 88	B Ba Be Bi 54 79 75 15	Br C Ca Cb Cd Ce 8 16 77 51 29 59	Cl Co Cr Ca Cu 4 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I Ia 73 80 68 6 26	Ir K La 36 83 58

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d410	Ref. ind
38	80	64 0650		- 72 7		15
39	80	80 0650	1	16 83	1. 1 923	1
40	S ₂ O ₇	176 130		0		1
41	H ₂ S	34 0804	ļ	- 82 9	1. 0.96-40	10
42	H ₂ S ₂	66 1454	1	- 88	1. 1.376	65
43	H ₂ S ₁	98 2104	1	- 53	1. 1 4961	}
44	H ₂ S ₄	162 340	1	(A)	1 1 7114	ı
45	H ₂ SO ₄	98 0801		10.40		18
46	H ₂ SO ₄ .H ₂ O	116 095		10 49	1 1.834	1 .0
		1	1	8 62	1. 1 8424	1
47	H ₂ SO ₄ .2H ₂ O	134 019		- 38 9	1. 1 6504	ļ
48	H ₂ SO ₄ .4H ₂ O	170 142	1	- 25		1
49	H ₂ SO ₅	114 080	1	45		1
50	H ₂ S ₂ O ₇	178 145		35	l. 1 920	1
51	H ₂ S ₂ O ₈	194 145		< 60		
52	SF ₆	146 065	l	- 55	1	
53	SOF ₂	86 0650		110		
54	SO ₂ F ₂	102 065		-12044mm		1
55	SCl ₂	102 981	1	- 78	1. 1 62118	56
56	SC1	173 897		- 30	1	1
57	S ₂ Cl ₂	135 046	i	- 80	1. 1 678	61
	1 . 5 5			- au	1. 1 638	52
58	SOCI ₂	118 981		- 54 1	1. 1 667	22
59	SO ₁ Cl ₂	134 981				
60	SO ₃ .SO ₃ Cl ₂	215 046		- 37 5	1. 1 837	
61	S ₂ O ₃ Cl ₄	253 962	R.	57 d.		20
62	SO ₂ OHCL.	116 531		- 80	1. 1 753	20
63	S ₂ Br ₂	223 962		- 46	1. 2 635	64
64	SOBr	207 897		- 50	1. 2 6818	
65	SOCIBr	163 439			1. 2 310	
66	SeO ₁	111 200		340	3 95314	
67	HSe	80 2077				1
68	H ₂ Se	81 2154		- 64	1. 2 12-43	
69		129 215	H.	d.	3 0044	
		145 215	Н.	58	2 9504	ł
70	H ₂ SeO ₄	140 210	11.	1,4,7	1. 2 6084	1
		161 090		25	2 627	ì
71	H ₂ SeO ₄ .H ₂ O	161 230		20	1. 2 3564	
		155 000		- 80		
72	SeF ₄	155 200		nu		1
73	SeF ₆ .	193 200			1	1
74	SeCl ₄	221 032			1 0 00017 6	1
75	Se ₂ Cl ₂	229 316		2.	1, 2 9064	1
76	SeOCl ₂	166 116		8.3	1. 2 44	
77	Se ₂ Br ₂	318 232			1. 3 60414	1
78	SeOBr ₂	$255 \ 032$		41 7	1. 3 3860	
79	H ₂ SeO ₄ .SO ₄	225 280		6 6	1	1
80	H ₂ SeO ₄ 2SO ₃	305 345		20	1	
81	SO ₃ .SeCl ₄	301 097		165	1	
		159 500	Tet. P.		Tet. 5 06°	
82	TeO ₂ —Tellurite				R. 5 890	1056
00	m o	175 500		d.	5 ()810 5	
83	TeO ₃	129 515		- 48	1. 2 574 20	
84	H ₂ Te .	1		d. 160	3.4419 2	
85	H ₂ TeO ₄	193 515	C.	1. 100	3 053	1
86	$Te(OH)_{\bullet}(\alpha)$	229 546	М.		3 071	
86.1	Te(OH) ₆ (β)	229 546	WI.		0.011	
87	TeF.	241 500		1		
88	TeCl:	198 416	1	175		
89	TeCl4	269 332	1	214		
90	TeCl ₄ .HCl.5H ₄ O	395 875	1	- 20		
91	l '	287 332	I	ca. 280		
	1 -	417 164	1	ca. 380	4.314	1
92	TeBr ₄	635 228	1	259	8 4034	
93	Tel,	399 065	R.	d. 500	4 7	1
94	2TeO, SO,	30 0080		-161	1. 1 2694 180.2	7
95	NO	4		- 9 3	1. 1 448	
96	NO ₂	46 0080	1		Tb Te Th Ti Ti Tin U V 06 10 24 19 27 70 49 50	W Y Yb

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
97	N ₂ O.	44.0160	1	-102 4	1. 1 226-11	2
98	N ₂ O ₃	76 0160		-102	l. 1 4472	
99	N ₂ O ₄	108 016	R.	30		1
100	2N ₂ O ₄ .H ₂ O	231 047		5	1. 1.68214	1
101	N ₄ O ₆ .	152 032	1	"		1
102	NH,	17 0311	l	- 77 7	0.817-70	ŀ
102	201	17 (6)11	Į.	- " '		
400			ĺ		1. 0.607	6
103	H ₂ N NH ₂	32 0468		14	1. 1 011 ¹⁶	28
104	N ₂ H ₄ H ₂ O	50 0622		< - 40	I. 1 03 ²¹	
105	N ₂ H	43 0317	Į.	- 80		
106	NH ₄ HN ₃	60 0628		110		
107	2NH4.H2O	52 0776		- 78		1
108	N ₂ H ₄ ·HN ₄	75 0785	1	65		1
109	HNO ₁	63 0157	1	- 42	1. 1 502	12
110	HNO ₃ .H ₂ O	81 0311	1	- 38	1. 1 0.02	1
110 1			1	1		
	HNO ₃ .3H ₄ O	117 0619	1	- 18 5		1
111	NH ₂ OH	33 0311	1	34	1 35	1
		1			1. 1 204 ^{23 6}	21
112	H ₄ NO ₄	81 0311	R.	- 34		l
113	NH ₂ OH	35 0465		- 77		1
114	H ₄ NO ₄	99 0465	1	- 35		1
115	(OH),NON(OH),	180 078		- 39		
116	NH ₂ NO ₂	62 0314		72 d.		i
117	NH ₄ NO ₂			1 1		1
- 1		64 0468		d.	4 0 424	
118	NH ₄ NO ₄	80 0468	R.	169-6	$\alpha = 1 - 66_4^{24}$	
		1			$\beta = 725_4^{25}$	
119	NH ₄ ONNOH	79 0625		65		}
120	N ₂ H ₄ .HNO ₃	95 0625		70 7		}
			1	62 1		
121	NH4NO3HNO3	143 063		12		l
122	N ₂ H ₄ .2HNO ₃	158 078		104		ĺ
123	NH ₄ NO ₃ 2HNO ₃	206 078		30		}
124		i .		1		
	NH4NO ₁ 3NH ₁	131 140	}	ca 40		
125	NOF	49 0080	ł	-134		
126	NO ₃ F	65 0080		-139		
127	NH ₄ F.HF	57 0465	R.		1. 1 211 12	
128	$N_2H_4(HF)_2$	72 0622	C.	105		
129	NCI ₃	120 382			1. 1 653	
130	NOCL	65 4660		- 61 5	1. 1 417-12	
131	NO ₂ Cl	81 4660		< - 30	1 1 324	
132	NH ₄ Cl—Salammoniae	53 4968	C.	\ 30		145
133		1	` .	00	1 536	145
	N₄H₄ HCl	68 5125		89		
134	N ₄ H ₄ 2HCl	104 978	C.	198	1 42	
135	NH ₄ Cl3NH ₄	104 590		10 7		
136	NH ₄ Cl 6NH ₅	155 683		18		
137	NH ₂ OH.HCl	69 4968	M.	151	1 6717	
138	NH ₄ ClO ₄	117 497	R.	d.	1 95	489
139	N ₂ H ₄ HClO ₃	116 513		exp. 80		
140	N ₂ H ₄ HClO ₄ .2H ₂ O	168 543		132		
141			}			
	NOBr NOB-	109 924]]	- 55 5	1 0 40-	
142	NOBr ₁	269 756	ا ير ا	40	1 2 637	
143	NH ₄ Br	97 9548	C.		2 548	
144	N₁H₄ HBr .	112 971		80		
145	HBr 2NH,	114 986				
146	NH ₄ Br.3NH ₄	149 048	R.	13 7		
147	NH ₄ Br.6NH ₃	200 141	l	- 20		
148	NH ₄ I	144 971	C.		2 563	153
149		270 895	· ·	- 2		100
1		1		- z	1. 2 4614	
150	NH ₄ I ₅	398 835	R.	1	3.749	
151	NH ₄ I NH ₄	162 002				
152	N ₂ H ₄ ·Hl	159 987		exp. 127		
153	N ₄ H ₄ .2HI	287 926		220		
154	NI ₃ .NH ₃	411 835		d. > 20	3 5	
l As Au 5 13 33		Cl Co Cr Cs Cu 4 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43		Hf Hg Ho I In 73 30 68 6 26	Ir K La Li L 36 83 58 81 7

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d ²⁰	Ref. ind finding N
155	NH41.3NH3.	196 064		- 8		
156	NH.I.4NH ₃	213 095		- 51		1
157	3N.H.2HI	352 020		90		
158	NH,I 6NH,	247 157	-	28	a	
159	NH ₄ IO ₃	192 971	R.	d. 150	3 3094	
160	NH ₄ IO ₄	208 971	Tet	exp.	3 0564	1
161	2NH ₄ IO ₄ .H ₂ O	403 957	Trı.	exp. 150		
162	3NH ₂ OH.HI	227 033		104		1
163	N 28.	188 341		11	1 1 901	1
164	N ₄ S ₄	184 292	R.	178	2 224	
165	N ₃ O ₃ .28O ₃	236 146		230	2 14	
166	NH ₄ SH	51 1115		,		
167	(NH ₄) ₂ S	68 1426	•.	d.		
168	NO2SO3H	127 081	R.	73 d.	0.0011	
169	NH ₄ SO ₄ H	97 0961	R.	205 d.	2 034	
170	NH4H8O4	115 112		146 9	1 78	
171	$SO_1(NH_2)_2$.	96 112	R	92		
172	NH ₁ SO ₂ NH ₄	114 127	•.	125	4 07	1
173	N ₂ H ₄ , H ₂ SO ₄	130 127	R.	254	1 37	000
174	(NH ₄) ₂ SO ₄ -Mascagnite	132 143	R.	513 d.	1 769	602
175	(NH ₂ OH) ₂ H ₂ SO ₄	164 143	M.	170		
176	(NH ₄) ₂ S ₂ O ₃	148 208	М.	d. 150		
177	(NH ₄) ₂ S ₂ O ₅	180 208	R.	d.		
178	(NH ₄) ₂ N ₂ O ₆	196 208	M.	d. 130	1 000	543
179	(NH ₄) ₂ S ₂ O ₈	228 208	М.	d. 120	1 082	543
181	NH(SO ₂ NH ₄) ₂	179 223		1		
182	NH(SO ₃ NH ₄) ₂	211 223	M.	357	1 965	
183	(N ₂ H ₄) ₂ H ₂ SO ₄	162 174		117		
184	NH ₄ SO ₄ F	117 104		245		
185	NSe	93 2080		exp. 200		
186	$SeO_2(NO_2)_2$	203 216	_	- 13	0. 440	ľ
187	NH ₄ HSeO ₄	162 247	R.	d.	2 162	000
188	(NH ₄) ₂ SeO ₄	179 278	M.	d.	2 194	686
189	(NH ₄) ₂ SeBr ₅	594 774	C.		3 326	1
190	(NH ₄) ₂ TeO ₄	227 578			3 0126	į
191	P ₂ O ₃	110 048	M.	22 5	2 1354	ł
192	P ₂ () ₄	126 048	R.?	> 100	2 5374	
193	P ₂ O ₄	142 048		563 var.	2 387	
194	P ₄ O	140 096			1 9124	4
195	PH,3	31 0471		-132 5	1. 0 746 **	•
196	P ₂ H.	63 0557			1 8319	
197	P2H4.	66 0788			1. 1 012	
198	PoH ₂ .	281 231			1 9516	1
199	P12H6	378 334			1 831	
200	H ₂ PO ₃	81 0394		35	1 409188	
201	H ₁ PO ₂	66 0471			1 49318 8	1
202	H ₃ PO ₃	82 0471		73 6	1 651212	
203	H ₂ PO ₄	98 0471		42 35	1 83418.2	
204	PF ₃ .	88 0240		160		1
205	PF4.	126 024		- 83		1
206	POF ₃	104 024	l	- 68		4.7
207	PCls.	137 398	1	-111 8	1 1 5744	47
208	PCls.	208 314	Tet.	148 P.		
209	P ₂ Cl ₄	203 880		- 28		
210	POCla	153 398		1 25	1. 1 675	25
211	P ₂ O ₄ Cl ₄	251 880		< - 50	l. 1.587	
212	PH ₄ Cl	70 5128	1	284 atm		
213	PF ₁ Cl ₂	158 940		1		
214	PBr _a .	270 772		- 40	1. 2 8524	62
215	PBr _s	430 604	R.			
216	POBr.	286 772		56	2 822	1
217	PH Br	114 971				
218	POCl ₂ Br	197 856		13	1. 2 104	
Mn Mo N 42 47 11	Na Nb Nd Ni O Os P Pb Pd Pr Pt R 82 51 61 45 1 35 12 23 41 60 37 80		U U. UL	So Se Si Sa Sr Ta Ti	TeTh TiTmUV	W Y Yb Zı

Index No.	1	Formula	Mol. wt.	Crystal system	I MIP	d_4^{20}	Ref.
219	POCIBr ₂		. 242.314	1	30	1. 2.45**	ī
220	PI		411 820	H.	61	1	į
221	P ₄ I ₄		569 776	Tri.	110	Į.	l
222	PH ₄ 1		161 987			1	1
223	P _s S _s		158 243	- 1	900	1	1
224					290		1
	P ₂ S ₄		222 373	1	276	2.03	1
225	P _B S _a		285 462		298		1
226	P _s S _s		220 291	i	172 5	2 0317	i
227	P ₄ S ₇		348 551	1	310	2 1917	- 1
228	P.S.		444 746	ı	290	2 10	1
229	P ₂ O ₂ S ₂		190 243	1	I	f	f
230	P.O.S.				300	l .	
	1		348 356	1	102		
231	PSF,		120 089	- 1	3 87.6at.	j	1
2 32	PSCI ₂		169 463	1	- 35	l. 1.635	193
233	PS ₂ Cl ₄		272 444		< - 17	1. 1.000	193
234	PSBr ₁		302 837		1		ł
235	P.SBr.			1	38	2.8517	
			573 609	1	- 5		1
236	P ₂ S ₄ Br ₄		477 907	1		1. 2 26217	1
237	PSCI ₂ Br		213 921	1	- 30	1. 2 120	1
238	PSCIBr ₂		258 379	İ	- 60		1
239	P ₂ SI ₂		347 977	1	ı	1. 2.480	1
240	P ₁ N ₄			1	75		ı
	NH ₄ H ₂ PO ₂		163 112	1		2 5118	1
			83 0782		100		1
	NH ₄ H ₂ PO ₃		99.0782	1	ca. 123		1
	NH ₄ H ₂ PO ₄		115.078	Tet.		1 009	0.50
244	N2H4 H4PO4		114 094		20	1 803	250
	$N_1H_4H_4PO_4$		130 094		36		İ
	(NH ₄) ₂ HPO ₄	•	1		82		1
		* · ·	118 091	1		1.619	1
- · · ·	(N ₂ H ₄)H ₄ P ₂ O ₆	•	194.126	İ	152		
	$(NH_4)_2H_3P_2O_6$		196 141	1	170		1
249	$N_2H_4(H_2PO_1)_2$		196 141	1	1 1		1
250	PaNaCla		347 844	D	82		i
	P ₄ N ₄ Cl ₄	•		R.	114	1 98	ı
			463 792		123.5	2.18^{24}_{24}	- 1
	PaNaClio		579 740		41	••	
	PaNaClis	•	695 688	l	91		1
	PaN ₇ Cl ₀		603.322	1	237 5		
255	P7N7Cl14		811.636	1			
	PNBr ₂				< - 18		- 1
	'SaNHa		204 864	R.	190		1
			145 258			1. 1.7816 5	1
	\н ₂ О₃		197 920		275	3.71	- 1
	ls₂O ₅ - Arsenite		197 920	C.			ľ
260 A	Arsenolite		197 920	Ċ,	1	3 8654	1
261 A	182O3 - Claudetite		197 920	1		3 86	160
	.н ₂ () _в		1	М.	315	4 15	986
- 1	aH.		229 920		l	4 086	1
			77 9831		-113 5		
	sF,		131 960	1		1. 2 6664	
	sF,		169 960	ļ	- 80	1. 4 0004	1
266 A	sCl,		181 .334	i		1	1
267 A	sCl.			1	- 18	1. 2 163	191
. 1	sBr.		252 250	i	ca 40		1
			314 708	İ	32.8	1. 3 540 ²⁸	1
3	sl.		455 756	1	146	4.39^{11}	
	м		709 620	ł	76		1
271 A	8 ₂ S ₂ —Realgar		214 050	M.		3 93	
	••				307 (β)	α 3 506 ¹⁹	1067
272 A	82S3—Orpiment		040		Tr. 267	β 3 25419	1
""	er a valument		246 115	М.	300	3 43	1071
079	. 0			1	Tr. 170		10.1
	848a		396 035	1	1	3 6019	1
	\aSCl.As ₂ S ₃		531 081	1	120	3 00.7	1
	AsIa.SIa.	***	1705 17	ļ	120		
	H4H4A8O4			{	72		1
1			159 014	Tet.		2 31101	283
	(H ₄) ₂ HA ₈ O ₄		176 045	М.		1.989	
	O _r —Cervantite		153 770	C.		4 07	
	Os-Valentinite		291.540	R.	656		174
As Au 18 88	B Ba Be Bi Br 54 79 75 15 8	C Ca Cb Cd Ca Cl				5 67	1024
10 00	84 70 75 15 E		44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li L

281 Sb 282 Sh 283 Sb 284 Sb 285 Sb 286 Sb 287 Sb 288 Sb 290 Sb 291 Sb 291 Sb 292 Sh 293 Sb 294 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 300 Sb 301 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Sb 306 Bi 307 Bi 307 Bi 307 Bi	byO ₅ —Senarmontite byO ₄ byO ₄ byF ₄ byF ₄ byF ₄ byF ₄ byF ₄ byCl ₄ byCl ₄ byCl ₄ byCl ₄ byCl ₄ byCl ₄ byCl ₄ byCl ₄ byF ₄ Cl	291 540 323 540 124 793 178 770 216 770 574 310 228 144 299 000 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735	C. R. 7 M. Trig. M. R.	- 88 292 7 390 73 4 2 8 170 d. 55 96 6 167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	5 2 3 78 1 2 26 ⁻⁹⁸ 4 379 ⁹⁰ 1. 2.990 ⁹² 4 188 ⁹¹ 3 140 ¹⁶ 1 2 336 5 014 4 148 ²¹ 1. 3 845 ¹⁰ 4 768 ²² Trig. 4 848 ¹⁶ 4 64 red 4 120 ¹⁰ gray 4 284 ⁰ black 4 652 ⁰ 3 625 ¹ 4 6	58 1032
282 Sb 283 Sb 284 Sb 285 Sb 286 Sb 287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 293 Sb 294 Sb 295 SS 296 Sb 297 Sb 298 Sb 297 Sb 298 Sb 297 Sb 300 Sb 301 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Si 306 Sb 306 Sb 307 Sb 307 Sb 308 Sb 309 Sb	bH ₁	124 793 178 770 216 770 228 144 299 060 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	R. 7 M. Trig. M. R.	292 7 390 73 4 2 8 170 d. 55 96 6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ct. 115 550	3 78 1 2 26 ⁻⁸⁴ 4 379 ⁹⁰ 1. 2.990 ⁹² 4 188 ⁹¹ 3 140 ⁹⁴ 1 2 336 5 014 4 148 ⁹⁴ 1. 3 845 ⁹⁴ M. 4 768 ⁹² Trig. 4 848 ⁹⁴ 4 64 red 4 120 ⁹⁶ gray 4 284 ⁹⁶ black 4 652 ⁹⁶ 3 625 ⁹⁶ 3 625 ⁹⁶	58
282 Sb 283 Sb 284 Sb 285 Sb 286 Sb 287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 293 Sb 294 SS 295 SS 296 Sb 297 Sb 298 Sb 297 Sb 298 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Sb 306 Bit 307 Bit 30	bH ₁	124 793 178 770 216 770 228 144 299 060 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	M. Trig. M. R.	292 7 390 73 4 2 8 170 d. 55 96 6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ct. 115 550	1 2 26 ⁻⁹⁸ 4 379 ³⁰ 1 2 990 ³¹ 4 188 ³¹ 3 140 ⁴⁸ 1 2 336 5 014 4 148 ³¹ 1 3 845 ³¹ M. 4 768 ³² Trig. 4 848 ³⁸ 4 64 red 4 120 ³⁰ gray 4 284 ³⁰ black 4 652 ³⁰ 3 625 ⁴	
283 Sb 284 Sb 285 Sb 286 Sb 287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sh 292 Sh 293 Sb 294 Sb 295 (Sl 296 Sb 296 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 306 Sb 306 Bi 307 Bi 307 Bi	bF ₁ bF ₂ bF ₃ bF ₄ .28bF ₃ bCl ₃ bCl ₄ bCl ₄ bCl ₄ bCl ₄ bF ₅ Cl ₅ bF ₅ Cl ₇ bBF ₃ Cl ₇ bBF ₃ bI ₄ bI ₄ bF ₄ Cl ₇ bF ₅ Cl ₇ bBF ₃ Cl ₇ bBF ₃ Cl ₇ bBF ₃ Cl ₇ bBF ₃ Cl ₇ bBF ₃ Cl ₇ bBF ₄ Cl ₇ bF ₄ C	178 770 216 770 574 310 228 144 299 040 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	M. Trig. M. R.	292 7 390 73 4 2 8 170 d. 55 96 6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ct. 115 550	4 379 ** 1. 2.990** 4 188** 3 140** 1 2 336 5 014 4 148** 1. 3 845** M. 4 768** Trig. 4 848** 4 64 red 4 120** gray 4 284* black 4 652* 3 625*	
284 Sb 285 Sb 286 Sb 287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 292 Sb 294 Sb 295 (Sl 296 Sb 296 Sb 300 Sb 301 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 307 Bi 307 Bi	bF ₄ . bF ₄ .28bF ₃ bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bCl ₄ . bA ₄ C ₁ Cl ₃ bB ₇ . bI ₄ . bF ₄ I bF ₄ I bF ₄ I bF ₄ S ₃ —Stibnite b ₂ C ₁ O ₂ S ₃ S ₃ —Kermesite bF ₄ S ₃ bS ₈ S ₈ S ₈	216 770 574 310 228 144 299 000 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	M. Trig. M. R.	7 390 73 4 2 8 170 d. 55 96 6 167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	1. 2.900 ^{p+a} 4 188 ^{p1} 3 140 ^{p4} 1 2 336 5 014 4 148 ^{p1} 1. 3 845 ^{p1} M. 4 768 ^{p2} Trig. 4 848 ^{p3} 4 64 red 4 120 ^{p3} gray 4 284 ^{p3} black 4 652 ^{p3} 3 625 ^{p4}	
285 Sb 286 Sb 287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 292 Sb 294 Sb 295 SS 296 Sb 296 Sb 296 Sb 300 Sb 301 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 307 Bi 307 Bi	bF ₄ .28bF ₃ bCl ₃ bCl ₄ bCl ₄ bCl ₄ bdCl ₅ bdCl ₇ bdF ₇ Cl ₁ bBF ₃ bl ₄ bF ₄ I sbF ₄) ₁ I sbF ₄) ₂ I sp ₂ S ₃ —Stibnite bc ₁ (SO ₄) ₃ bc ₂ O ₃ .28b ₂ S ₃ —Kermesite bF ₄ S bSe	574 310 228 144 299 000 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	Trig. M. R.	390 73 4 2 8 170 d. 55 96 6 167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	4 188 ⁸¹ 3 140 ⁴⁸ 1 2 336 5 014 4 148 ²⁸ 1. 3 845 ²⁸ 5 M. 4 768 ²² Trig. 4 848 ¹⁸ 4 64 red 4 1200 gray 4 2840 black 4 6520 3 625 ⁴	
286 Sb 287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 292 Sb 293 Sb 294 Sb 295 (Sl 296 Sb 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 307 Bi 307 Bi	bCl ₁ bCl ₂ bCl ₃ bCl ₄ bCl ₄ bF ₃ Cl ₃ bBF ₃ bL ₄ bF ₄ I bF ₅ I sF ₅ I	228 144 299 000 173 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	Trig. M. R.	73 4 2 8 170 d. 55 96 6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	3 140 ¹⁴ 1 2 336 5 014 4 148 ¹⁴ 1 3 845 ^{16 6} M. 4 768 ¹² Trig. 4 848 ¹⁴ 4 64 red 4 1200 gray 4 2840 black 4 6520 3 625 ¹ 3 625 ¹	
287 Sb 288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 293 Sb 294 Sb 295 SS 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Sb 306 Bi 306 Bi 307 Bi 307 Bi	bCl ₁ bOCl bCl ₁ bF ₁ Cl ₁ bF ₁ Cl ₁ bI ₁ bI ₁ bF ₁ I bF ₁ I bF ₂ I bF ₃ I b ₃ I b ₃ I b ₁ I b ₃ I b ₃ I b ₁ I b ₃ I b ₄ I b ₄ I b ₅ I	756 430 343 702 560 472 560 472 560 472 339 735 571 010 248 835 200 970	Trig. M. R.	2 8 170 d. 55 96 6 167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	1 2 336 5 014 4 148 ²⁴ 1. 3 845 ^{26 6} M. 4 768 ²² Trig. 4 848 ³⁴ 4 64 red 4 120 ¹⁰ gray 4 284 ¹⁰ black 4 652 ¹⁰ 3 625 ⁴	
288 Sb 289 Sb 290 Sb 291 Sb 292 Sb 292 Sb 293 Sb 294 Sb 295 (Sl 296 Sb 296 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi 307 Bi	bOCl b4O4Cl b4O4Cl b4O4Cl b4O4Cl bbFtCl bbFtCl bbFtCl bbFt bbI4 bbI4 bbI4 bbI4 bbF4. lbbF4. lbbF4. lbbF4. lbbF4. lbbF4. lbbF4. bb1(SO4)3 bb1O3 2Sb2S3—Kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb4SS kermesite bb5SS kermesite .	73 228 637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	Trig. M. R.	170 d. 55 96 6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	5 014 4 148 ²¹ 1. 3 845 ²¹ 4 768 ²² Trig. 4 848 ¹⁴ 4 64 red 4 120 ¹⁰ gray 4 284 ¹⁰ black 4 652 ¹⁰ 3 625 ¹ 4	
289 Sb 290 Sb 291 Sb 292 Sb 292 Sb 293 Sb 294 Sb 295 (Sl 296 Sb 296 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi 307 Bi	b ₁ O ₃ Cl ₁ b ₁ F ₁ Cl ₁ b ₁ Br ₂ Cl ₁ b ₁ Br ₃ b ₁ Cl ₂ b ₂ Cl ₃ b ₃ Cl ₃ b ₃ Cl ₃ Cl ₃ b ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl	637 996 266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	Trig. M. R.	55 96 6 167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ct. 115 550	4 148 ²⁸ 1. 3 845 ²⁹ 4. 4 768 ²² Trig. 4 848 ³⁶ 4 64 red 4 120 ³⁰ gray 4 284 ³⁰ black 4 652 ³⁰ 3 625 ⁴	1032
290 Sb 291 Sb 292 Sb 293 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi 307 Bi	bF ₁ Cl ₁ bBr ₂ . bl ₄ bl ₄ bF ₄ I bbF ₄) ₁ I bp ₂ S ₂ —Stibnite b ₁ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S bSe	266 144 361 518 502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	Trig. M. R.	96-6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	4 148 ²⁸ 1. 3 845 ²⁹ 4. 4 768 ²² Trig. 4 848 ³⁶ 4 64 red 4 120 ³⁰ gray 4 284 ³⁰ black 4 652 ³⁰ 3 625 ⁴	1032
291 Sb 292 Sb 293 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 290 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi 307 Bi	bBr ₁ . bI ₄ bF ₄ I bF ₄ I b ₂ S ₃ —Stibnite b ₁ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S bSe	502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	R.	96-6 167 Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	1. 3 845 ^{40 b} M. 4 768 ²² Trig. 4 848 ⁴⁶ 4 64 red 4 120 ¹⁰ gray 4 284 ¹⁰ black 4 652 ¹⁰ 3 625 ⁴	1032
293 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi	bI ₁	502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	R.	167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	1. 3 845 ^{40 b} M. 4 768 ²² Trig. 4 848 ⁴⁶ 4 64 red 4 120 ¹⁰ gray 4 284 ¹⁰ black 4 652 ¹⁰ 3 625 ⁴	1032
293 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi	bI ₁	502 566 756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	R.	167 Tr 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	1. 3 845 ^{40 b} M. 4 768 ²² Trig. 4 848 ⁴⁶ 4 64 red 4 120 ¹⁰ gray 4 284 ¹⁰ black 4 652 ¹⁰ 3 625 ⁴	1032
293 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bI ₄ bF ₄ I sbF ₄) ₂ I b ₂ S ₃ —Stibnite b ₂ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S	756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	R.	Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	M. 4 768 ²² Trig. 4 848 ¹⁴ 4 64 red 4 120 ⁹ gray 4 284 ⁹ black 4 652 ⁹ 3 625 ⁴	1032
293 Sb 294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bI ₄ bF ₄ I sbF ₄) ₂ I b ₂ S ₃ —Stibnite b ₂ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S	756 430 343 702 560 472 339 735 531 735 971 010 248 835 200 970	R.	Tr. 114 (R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	Trig. 4 848 ¹⁴ 4 64 red 4 120 ⁰ gray 4 284 ⁰ black 4 652 ⁰ 3 625 ⁴	1032
294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bF ₄ I	343 702 560 472 339 735 531 735 971 010 248 835 200 970		(R. to Trig.) Tr. 125 (M. to Trig.) 79 ca. 80 ca. 115 550	4 64 red 4 120° gray 4 284° black 4 652° 3 6254	1032
294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bF ₄ I	343 702 560 472 339 735 531 735 971 010 248 835 200 970		Tr. 125 (M. to Trig) 79 ca. 80 ca. 115 550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bF ₄ I	343 702 560 472 339 735 531 735 971 010 248 835 200 970		(M. to Trig) 79 ca. 80 ca. 115 550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bF ₄ I	343 702 560 472 339 735 531 735 971 010 248 835 200 970		79 ca. 80 ca. 115 550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
294 Sb 295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bF ₄ I	343 702 560 472 339 735 531 735 971 010 248 835 200 970		ca. 80 ca. 115 550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
295 (Sl 296 Sb 297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bit 306 Bit 306 Bit 306 Bit 307 Bi	bF ₃) ₃ 1 b ₂ S ₃ —Stibnite b ₃ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S bSe	560 472 339 735 531 735 971 010 248 835 200 970		ca. 115 550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
297 Sb 298 Sb 299 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	bF ₃) ₃ 1 b ₂ S ₃ —Stibnite b ₃ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S bSe	560 472 339 735 531 735 971 010 248 835 200 970		ca. 115 550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 306 Bi 307 Bi	b ₂ S ₃ —Stibnite b ₃ (SO ₄) ₃ b ₂ O ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S bSe	531 735 971 010 248 835 200 970		550	red 4 120° gray 4 284° black 4 652° 3 6254	1032
297 Sb 298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bit 306 Bit 306 1 Bit 307 Bi	b ₁ (SO ₄) ₃ b ₂ () ₃ 2Sb ₂ S ₃ —Kermesite bF ₄ S bSe	531 735 971 010 248 835 200 970			red 4 120° gray 4 284° black 4 652° 3 6254	1002
298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi	b ₂ (), 28b ₂ 8 ₃ —Kermesite bF ₄ 8 b8e	971 010 248 835 200 970	М.	me	gray 4 284° black 4 652° 3 6254	
298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi	b ₂ (), 28b ₂ 8 ₃ —Kermesite bF ₄ 8 b8e	971 010 248 835 200 970	М.	Ann:	black 4 652° 3 6254	
298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi	b ₂ (), 28b ₂ 8 ₃ —Kermesite bF ₄ 8 b8e	971 010 248 835 200 970	М.	one.	3 6254	1
298 Sb 299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 Bi 307 Bi	b ₂ (), 28b ₂ 8 ₃ —Kermesite bF ₄ 8 b8e	971 010 248 835 200 970	М.	400		1
299 Sb 300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bit 306 Bit 306 1 Bit 307 Bi	bFi8 bSe	248 835 200 970	М.	202	4 6	1
300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 1 Bi 307 Bi	bSe	200 970		000	1	1073
300 Sb 301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 1 Bi 307 Bi	bSe		1	230		
301 Sb 302 Sb 303 Sb 304 Sb 305 Bi 306 Bi 306 1 Bi 307 Bi				542	1	1
302 Sb 303 Sb 304 Sb 305 Bit 306 Bit 306 1 Bit 307 Bi	O 30.C 3	481 140	1	611		j
303 Sb 304 Sb 305 Bio 306 Bio 306 1 Bio 307 Bi	S₂e₄ .	682 110		605		1
304 Sb 305 Bic 306 Bic 306 I Bic 307 Bi			1 1	590		
305 Bio 306 Bio 306 1 Bio 307 Bi	b ₁ Se ₁	883 080	1			1
306 Bio 306 1 Bio 307 Bi	b ₂ Te ₃	626 040		629		1
306 1 Bi 307 Bi	iO.	$225 \ 000$			7 5	1
307 Bi	iO ₂ .	241 000			5 6	i
	iO ₂ .2H ₂ O	277 - 031		d 110	5 6	
	i ₂ O ₁ (I)	466 000	R.	820	8.9	
	i ₂ O ₄ (II)	466 000		Tr. 704	8 20	
309 Bi	i ₂ O ₃ (III)	466 000	R.	860	8.5	
	i ₂ Q ₃ .3H ₂ O—Bismite	520 046	R.	d. 415	4 36	393
	i i	498 000		11. 11.0	5 10	
	i ₂ O ₄		1	J 190		1
	BiO ₃ .	258 008		d. 120	5.75	1
	iF,	266 000			5 32	1
314 Bi	iOF	214 000			7 5	1
315 Bi	iCl .	244 458	1	320		Ī
316 Bi	iCl _s	315 374]	230	4 7	1
1	iCl ₄	350 832]	225		i
1	iOC1.	260 458	1 1		7 72	1
	iBr	288 916	1 1	287		1
1 -	1	448 748		218	5 7	1
	iBr,]	210	8 08	1
1	iOBr	304 916	1 1	400		1
	il,	589 796	H.	439	5 7	1
I .	IOi	351 932	R.	#.J.=	7.92	1
324 Bi	is	241 065	1 1	685	7.7	1
325 Bi	i S. Bismuthinite	514 195	R.		7 39	i
1 .	iSe	288 200	1	625		ļ
	izSer Guanajuatite	655 600	R.	710	6 82	1
		800 500	"	573	7 7	
	i,Te,		1 1	3.0	3 79	1002
	i ₁ TeO ₆ .2H ₂ O—Montanite	677 531	p		1	1002
	i ₂ Te ₂ S—Tetradymite	705 065	R.	1 20	7.5	
	i(NO ₃) ₄ .5H ₂ O	485 101	Tri.	d. 30	2.83	i
	i(NO ₃) ₁ .6H ₂ O	503 116	1 . 1		2 76	
333 Bi		304 024	M.		3.23 5 To Th Ti Ti Tim U V 6 10 24 19 27 70 49 80	W Y Yb Zn

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
334	BiAnO ₄	347 960	M.		7.14	
335	Bi_AsH_OAtelestite	831 975	M.		6.4	1009
336	5Bi ₂ O ₃ 2As ₂ O ₃ .9H ₂ O? - Rhagite	2887 98	I	1	6 82	1
337	CO	28 0000	1	-207	1. 0.81384 196	- 1
338	CO ₂	44 0000		- 56 6 2at	1 53-79	1
		1			1. 1.101-17	
339	Compounds of C with e	68 0000		-107	1.1140	23
		·,				1 000
340	SiO ₂ Cristobalite SiO ₂ - Lechatelierite	60 0600	C. Tet. ?	1710	2 32 2 20	228 24
341 342	SiO ₂ - Quartz	60 0600	Trig.	<1470 m.	2 651	267
343	StO _z - Tridymite	60 0600	R.	1670	2 26	463
344	SiO ₂ , H ₂ O · Opal	60 0600	,	1070	2 1 to 2 3	1
345	SiH ₄	32 0908	l	-185	1. 0 68 ⁻¹⁴⁶	69, 82
;	Si ₂ II ₄	62 1662		-132 5	1. 0 69-24	1
,	-	1	1	!		
	Si ₃ H ₄	92 2416	}	-117	1. 0 7250	į
1	Si ₄ H ₁₀	122 317		- 93 5	1. 0.79	1
	Si ₃ H ₄ O	78 1662		-144	1. 0 881-20	1
	SiF ₄	104 060		- 77		
	SiHF ₃	86 0677		ca110		
	SiCl.	169 892		- 70	1. 1 483	192
	Si _s Cl _o	268 868	1	- 1	l. 1 58°	
1	Si ₄ Cl ₄	367 844	i	- 67		
	Si ₄ Cl ₁₀	466 820				
	Si ₄ Cl ₁₂	565 796	-			
359	Si ₄ Cl ₁₄	664 772		170 s. d.		l
360	Si ₂ OCl ₆	284 868		- 33		
361	Si ₄ O ₄ Cl ₄	459 904				
362	Si ₄ O ₃ Cl ₁₀	514 820		ł		1
363	Si _n O ₁₀ Cl ₁₂	809 976				
364	StH 3Cl	66 5411		-118	l. 1 145 ₄ -113	
305	SiH ₂ Cl ₂	100 991		-122	l. 1 42-122	
366	SiHCl ₃	135 442		-134	l. 1 34	1
367	SiBr ₄	347 724		5	2.812^{0}_{4}	190
368	Si ₂ Br ₄	535 616		95	•	
369	Si ₂ Br ₂	723 508		133		
	Si ₄ Br ₁₀	911 400		185 d.		
	SiH ₄ Br	110 999		- 94	I. 1 533°	i
	SiH ₂ Br ₂	189 907	1	- 77	l. 2 17°	İ
	SiHBr	268 816		< - 60	1. 2 717	
	Si ₂ H ₃ Br	141 075		-100		
- 1	Si ₂ IIBr ₄	456 708		89		
	SiCl ₃ Br	214 350		< - 60		
	SiCl ₁ Br ₂	258 808		<- 60		
	SiCIBr ₃	303 266		- 39	1. 2 432	
	Sil ₄ .	535 788		120 5	1. 4 404	
1	Si ₂ I ₄	817 712		250		
	SiHI,	409 864	i	8	1 2 214	
	SiChI				l. 3 314	
		261 366		< - 60		
	SiCl ₁ 1.	352 840	5	< - 60		1
	SiCH,	444 314		2		1
	SiBr ₃ I	394 740		14		
	SiBr ₂ I ₂	441 756		38		
	SiBrl,	488 772		ca. 53	4 05-11	1
	SiS	60 1250			1 8534	
1	SiSCl.	131 041		75		1
	SiCl _a .SH	167 507				1
	SiSBr ₁	219 957		93		1
1	SiN	42 0680			3 17	
(Si ₂ N ₃	98.1440			3 64	
	Si ₃ N ₄	140 212			3.44	
395	Si ₂ N ₄ H	99 1517			2 01517	1
Al As Au 55 13 33	B Ba Be Bi Be C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Lu

dex No.	Formula	Mol. wt.	Crystal system	М. Р.	d ^{ro}	Ref. in
396	Si, H, N	107 257			1. 0 895-104	
397	N.H.H.SiF.	176.122	1	186 d.		
398	(NH ₄) ₂ SiF ₆ —Cryptohalite	178.138	C.		2.01	68
399	SiBr ₄ .6NH ₃ .	449 911	1		2 30717	
400	SiO ₂ , P ₂ O ₃ ,	202 108			3.1	
401	3SiO ₂ .2Bi ₂ O ₃ —Agricolite	1112 18	М.		6	994
402	3SiO ₂ .2Bi ₂ O ₄ —Eulytite	1112 18	C.		6 11	175
403	SiC—Carborundum	40 0600	H.	> 2700	3 17	110
404	Si(CH ₃)H ₃	46 1062		-156.4	1. 0 624 57	
405	Si(CH ₂) ₂ H ₂	60 1216		-149 9	1. 0.684 80	ł
406	Si(CH ₃) ₄	88 1524	1		1. 0 64541.0	1
407	Si(CH ₂) ₃ C ₂ H ₄	102.168			1. 0.684	
408	Si(C ₂ H ₄),H .	116 183			1, 0.751*	
409	$Si(CH_a)_2[(C_2H_6)_2].$	116 183			1. 0.7168	1
410	Si(CH ₃) ₃ C ₃ H ₇	116.183	j		1. 0 7014	1
411	$[Si(CH_1)_2[(CH_2)_b].$	128 183	1		1. 0 804	439
412	Si(CH ₁) ₂ (C ₂ H ₅)(C ₃ H ₇)	130.199			1. 0.73247 6	1
413	Si(CH ₃) ₃ (C ₄ H ₉)	130 199	1		1. 0.721	1
414	Si(CH ₂) ₂ (iso-C ₄ H ₂)	130 199	1		1. 0.717	
415	Si(CH ₃) ₂ (C ₃ H ₇) ₂	144 214	1		1. 0 741 4	1
416	Si(CH ₃) ₂ (C ₂ H ₄)(iso-C ₄ H ₉)	144 214	1		1. 0.743	1
417	Si(('H ₁) ₃ (iso-(' _b H ₁₁)	144 214			1. 0.73114	1
418	S1(C2H1)4	144 214	1		1. 0.76619 4	1036
419	Si(C,H,),H	158 229	į		1. 0 76214	1000
420	$Si(C_2H_4)_3(C_3H_7)$	158 229	- 1		1. 0 77117	1
421	$Si(C_2H_4)_2(C_4H_9)$	172 245	1		1. 0 779	1
422	Si(('2H6)3(iso-('4H6)	172 245	1		1. 0 781,4	- {
423	Si(C ₂ H _b) ₂ (iso-C _b H ₁₁)	186 260	1		1. 0.7821	1
424	Si(CaHa)4	336 214		233		1
425	Si ₂ (C'H ₄) ₆	146 259		200	1. 0 7254	
426	Si(OCH ₃) ₄	152 152	į		1. 1 02822	9
427	Si(C ₂ H ₄) ₄ OH	132 183	1		1. 0 871"	1 "
428	Si(C ₂ H ₆) ₃ OC ₂ H ₆	160 214	ĺ		1. 0 8400	1
429	Si(OC ₃ H ₇) ₄ .	264 276	i		1. 0.915	1034
430	Si(C ₆ H ₆) ₄ OH	276 183			1 178	1,007
431	Si(C ₆ H ₆ CH ₂) ₃ OH.	318 229		106	1 177	{
432	Si ₂ O(OC ₃ H ₇) ₆	426 443	ł	100	1. 0 9774 6	1035
433	Si(CH ₃)H ₃ Cl.	80 5565	1	-134 1	1. 0 935, 80	1000
434	Si(CH ₁)HCl ₁	115 007		- 93	1. 0 934	ł
435	St(C ₂ H ₄)Cl ₃	163 473	l	0.7	1. 1 2394	ı
436	Si(C ₃ H ₇)Cl ₃	177 488			1. 1 2104	1
437	Si(C ₂ H _b) ₂ Cl ₂	157 053			I. 1 10614	1 -
438	Si(C ₄ H ₉)Cl ₃	191 503	į		l. 1 162 ¹⁸	1
439	Si(iso-C4H ₉)Cl ₃	191 503	į		1. 1 154	
440	Si(C ₂ H ₃)(C ₄ H ₃)Cl ₂	185 084	1		1. 1 042	1
441	Si(C ₆ H ₆)Cl ₂	211 473			1. 1 32648	1
442	Si(C ₆ H ₆ CH ₂)Cl ₃	225 488			1. 1 28919 1	
443	Si(C ₂ H _b)(C ₆ H _b)Cl ₂	205 053	ļ		1. 1.1594	
444	Si(SCN)4	260 352	1	143-8	1 2.200,	1
445	TiO ₂ —Anatase	79 9000	Tet.		3.84	407
446	TiO ₂ —Brookite	79 9000	R.		4.17	1028
447	T ₁ O ₂ —Rutile	79 9000	Tet.	1640 d.	4 26	409
448	Ti ₂ O ₂	143 800	Trig.		4 6	
449	TiF4	123 900	- !		2 79820 \$	
450	TiCl4	189 732	-	- 30	1. 1 726	59
451	TiBr ₄	367 564	ļ	39		""
452	TiBrCl.	234 190		.,,	1	1
453	Til,	301 764	İ		4 30	1
454	TiI.	555 628		150	,	
455		363 629	ł	64		
456		123 816	1	2930	5 1814	
457	Ti ₂ N ₂	78 9240		2000	3 9526	
458	TOO DO	327 130		85 5	0 804	
400 Mo N 12 47 11	TiCl ₄ .PCl ₂	02/ 100		60.0	1	1

Ag Al As Au 32 85 13 33 B Ha Be Bi Br 54 79 75 15 5 C Ca Cb Cd Ce 16 77 51 29 59 Cl Co Cr Ca Cu 4 44 46 85 31 Dy Er Eu F Fe 67 69 64 3 43

Hf Hg Ho I In 73 30 68 6 26

Index No.	Fo	rmula	Mol. wt.	Crystal system	M. P.	d4*	Ref. ind.
459	TiCl4.POCl1		. 343 130		110	Ì	
460	TiCl ₄ .2POCl ₄		. 496 528	l	107		ŀ
461	TiC .	•	59 9000	ŀ	3180	4.25	
462	Ti ₁₀ C ₂ N ₄		615 064			5.29	
463	Ti ₂ Si		123 860	ĺ	l	4 02	
464	GeO ₂		104 380	R.		4.703	1
465	GeH ₄		76 4108		-165	1. 1.523-142	
466	Ge ₂ H ₄		150 806		-109	l. 1.98-109	
487	Ge ₃ H ₄		225 202		-105 6	l. 2 20-106	
468	GeCl ₄	* *	214 212	İ	- 49 5	l. 1 87425	
469	GeHCl ₁		179 762				
470	GeBr		392 044		26 1	l. 3 13235	
471	GeI4		580 108		144	4 32226	
472	Ge(C _t H _t) _t	man and themselves about \$60.000	188 534		- 90	0 99134 5	13
		All Zr salts	probably con	taminated wi	ith 1-5% Hf		
473	ZrO _z Baddeleyite		123 000	M.	2700	5 49	1012
473 1	ZrO2 (free from Hf)		123 000			5.73	-012
474	ZrF.		167 000	1		4 48	
475	ZrCl.		232 832	1 1		-	1
475 5	ZrOCl, 8H2O		322 039	1 1			274.5
476	ZrOS .		139 065	1 1		4 87	2.1.0
477	4ZrO ₂ .3SO ₁		732 195	1		4 1	1
478	4ZrO2.3SO4.15H4O		1002 43	M.		2 5	
478 5	(NH ₄) ₃ ZrF ₇		278 034	C.			70 2
479	ZrP ₁		153 048	1	l	4 774	
480	2ZrCl, PCl,		673 978	1	164 5		
481	ZrC ₁		115 000	1			
482	ZrSi ₂		147 120	1		4 8822	
483	ZrO ₂ SiO ₂ Zircon		183 060	Tet.	2500	4 5	382, 387
484	Sn()		134 700	C.		6 95	002, 001
485	SnO _z Cassiterite		150 700	Tet. H. R.		7 0	391
486	Sn F ₄		194-700			4 78	00.
487	SnCl ₂		189 616	1 1	246 8		
488	SnCl ₄		260 532	1 1	- 30 2	1. 2 226	
489	H ₂ SnCl ₄ .6H ₂ O		441 556	1		1 92527	İ
490	SnBr ₂		278 532	1 1	215 5	5 1217	1
	SnBr ₄		438 364	1	31 0	1 3 3436	
	SnCl ₄ Br		304 990	1	- 31	1. 2 513	
	SnCl ₂ Br ₂		349 448		- 20	1. 2 813	
	SnClBr ₁		393 906	1	1	1. 3 113	
	SnI,		372 564	1	320		
,	Sn I.		626 428		143 5	4 46	
	SnCl.1,		443 480			1 3 29	
	SnBr ₂ I ₂		532 396		50 d.	3 6	
	SnS		150 765	1	880	5 0800	
4	SnS:		182 830			4 5	
- 1	SnSe		197 900		861	6 180	}
1	SnSe ₁		277 100			5 0	
	SnTe Social associa		246 200		780	6 48	ł
1	SnCl, 2NOCl 2N II Cl SnCl	,	391 464		180	26	
i	2NH ₄ Cl SnCl ₄ . (NH ₄) ₂ SnBr ₆		367 526			2 4	
	Sn ₄ P ₃ .		634 274	1		3.50	
1	SnCl ₄ POCl ₃		567 872	1		5 18	
	Sn ₂ As ₃		413 930	1	58		
,	SnC ₂ O ₄		462 280			6 56	
1	Sn(C ₂ H ₄);		206 700			3.561	
- 1	$\operatorname{Sn}(\operatorname{CH}_4)_4$		176 777			1. 1 654	
	$\operatorname{Sn}(\operatorname{CH}_3)_{\mathfrak{g}}(\operatorname{C}_{\mathfrak{p}}\operatorname{H}_{\mathfrak{b}})_{\mathfrak{p}}$	•	178 792			1. 1 3140	50
1	$\operatorname{Sn}(C_2H_b)_4$.		206 823	1	1	1. 1 232	1 .
	$\operatorname{Sn}(C_{\bullet}H_{\bullet})_{\mathtt{1}}$, ,	234 854 272 777	ł	202 7	l. 1 18723	44
Al As Au	B Ba Be Bi Br	C Co Cb Cd Co Cl	Co Cr Co Cu	Dy Er Eu F Fe	225 7 Ga Gd Ge Gl H	Hf He Ho I In	lr K la Li Lu
44 10 00							

adex No.	Formula	Mol. wt.	Crystal system	М. Р.	d4**	Ref. ind
517	Sn(C ₄ H ₄) ₄	426 854		226	1	
518	Sn ₂ (C ₂ H ₄) ₄	411 631			1. 1 412*	
519	$Sn(C_2H_2O_2)_2$	236 746	İ	182		- 1
520	$SnCl(C_2H_4)_2$	241 274			1. 1 428*	į.
521	SnBr(C ₂ H ₄) ₃	285 732	1		1. 1 630	ļ
522	SnI(CH ₁) ₁	290 701	1		1. 2 1091	ĺ
523	SnI(C ₂ H ₄) ₂ .	332 748			1. 1 833**	
524	PbO-Litharge	223 200	Tet.	88a	9 5a	423
525	PbO-Massicotite	223 200	R.	008	8 0	- 1
526	PbO ₁ —Plattnerite	239 200			1	1068
527	Pb ₂ O ₄ —Minium	685 600	Tet.		9 375	417
528	PbF ₁	1			9.1	
		245 200		855	8 24	
529	PbCl ₂ Cotunnite	278 116	R.	501	5.85	1016
530	PbCl ₄	349 032		- 15	1. 3 184	l
531	Pb(ClO ₂) ₁ .	342 116		exp. 126		
532	Pb(ClO ₃) ₂	374 116		1	3 89	1
533	Pb(ClO ₃) ₂ .H ₂ ()	392 131	M.	d. 110		1
534	Pb(ClO ₄) ₂ .3H ₂ O	460 162	R.	d. 100	2 6	
535	PbO.PbCl ₂ Matlockite	501 316	Tet.	524 d.	7 21	1008
536	2PbO.PbCl ₂ -Mendipite	724 516	R.	693	7 08	1022
537	PbO.2PbCl ₁ —Penfieldite	779 432	н	0.73	1 0%	- 6
538	6PbO.PbCl ₂ —Lorettoite.	1617 32	ſ		1 -	398
539			Tet.		7 6	418
	PbCl ₂ .PbO.H ₂ O—Laurionite	519 331	R	d. 142	6 24	1006
540	PbCl ₂ .PbO.H ₂ O-Paralaurionite	519 331	M	d. 150	6.05	1
541	2PbCl ₂ .PbO,H ₂ O—Fiedlerite .	797 447	M	d. 150	5.88	1005
542	PbFCl	261 658	Tet.	601		
543	PbBr ₁	367 032	R.	373	6 66	1
544	$Pb(Br()_1)_1 H_2()$	481 047	M,	d. 180	5.58	į
545	PbO.PbBr ₂ .H ₂ O	608 248	R.		6.72	1
546	PbClBr.	322 574	1		5 74	
547	PbI	334 132	1	d. 300	"	
548	THE T	461 064	H.	402	0	1
549	-	i .	11.	1	6 16	ı
	Pb(10 ₄) ₂	557 064		d. 300		1
550	PbO.PbI ₂	684 264		300 d.		
551	PbI ₂ .PbO _. H ₂ O	702 280	R.	d. < 100	6 83	
552	PbS—Galena	239 265	C.	1114	7 5	189
5 53	PbSO —Anglesite	303 265	R. M.	1170	6 2	981
		}		Tr. 864		ŀ
554	PbS ₂ O ₃	319 330			5 18	ł
556	PhS2O6.4H2O	439 392			3 22	311
557	Pb ₂ O(SO ₄)—Lanarkite	526 465	M	977	6 92	995
558	PbSe-Clausthalite	286 400	C,	1065	8 10	1
559	PbSeO ₄	350 400	R	d.	6 37	
			1		1	
560	PbTe—Attaite	334 700	C.	917	8 16	
561	PbN ₆	291 248	41.54	exp. 350	1	
562	Pb(NO ₃) ₂	331 216	C M.	470	4 53	162
563	2PbO.N ₂ O ₄ .1.5H ₂ O	581 439	М.	d. 100		
564	4PbO,N ₂ O ₃ ,N ₂ O ₄ 2H ₂ O	1112 86	R.	d. 100	1	
565	2PbO,N ₂ O ₄ ,H ₂ O	572 431	R	d. 180	5 9a	1
566	(NH ₄) ₂ PbCl ₆	456 026	C	d. 120		
567	Pb(PO ₁) ₂ .	365 248		800	1	
568	Pb ₂ P ₂ O ₇ .	588 448	R.	824	5.8	1
569		811 618	-•-	1014	0.0	389
	3PbO.P ₂ O ₄			Tr. 782		308
570	4PbO.P₂O ₆	1034 85		982		
571	5PbO.2P ₂ O ₄	1400 10		946		1
572	8PbO P ₂ O ₄	1927 65		860		1
573	PbCl ₂ .3Pb ₃ (PO ₄) ₂ —Pyromorphite .	2713 06	H.	1186	6 s	1000
574	Pb(AsO ₂) ₂	421 120			5 88	
575	Pb(AsO ₁) ₂	453 120	н.		6 42	
576	,	676 320		802	6 85	998
,	Pb ₂ As ₂ O ₇	899 520		1042	7 80	990
577	Pb ₁ (AsO ₄) ₁			1034	1	1
578	$Pb_2(AsO_4)_2.0.5H_2O$	908 528	1		7.00	ī

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. in finding
579	5PbO.Pb ₄ (AnO ₄) ₂	2015 52	ı	862	1	
580	5PbO Pb ₃ (AsO ₄) ₂ .0.5H ₂ O	2024 53	R.		8 04	
581	10PbO.3An ₂ O ₄ .3H ₂ O	2975 81	H.		6 86	179
582	PbHAsO ₄	347 168	M.	d. >200	5 79	1
583	Pb(H2A8O4)2	489 151	Tri.	d. 140	4 46	1054
584	Pb,(PbOH)2(A8O4)4	2040 26	1	u. 140	I .	963
585	2Pb ₂ (AsO ₄) ₂ 2Pb(OH) ₂ 10H ₂ O	1	1		7 08	i
586		2461 62	1		7.1	l
	65PbO 21As ₂ O ₄ 12H ₂ O	19552 5	1	d. >200	7.10	
587	9PbO.3As _z O ₄ PbCl _z Munetite	2976 68	H.	1140	!	
				Tr. 395	7 13	399
588	4PbO As ₂ O ₃ .2PbCl ₂ Ecdemite	1646 15	R.		7 o	
	3PbCl ₂ 3PbO,As ₂ O ₄ -Georgiadesite	1733 87	R.	d.	7 1	1
590	5PbO.2PbCl ₂ As ₄ O ₄	1870 15	Tet.		7 14	- 1
591	PbS As ₂ S ₃ : Sartorite	485 380	R.	<700 d.	4 6	i
592	2PbS.As ₂ S ₃ Dufrenoysite	724 645	R.		5 50	
	3PbS 2As ₂ S ₄ Rathite	1210 03	R.		1	
· · · · · · · · · · · · · · · · · ·	4PbS.As ₂ S ₄ —Jordanite		1 (5 11	1
1		1203 18	M.		6 10	1
1	4PbS 3As ₂ S ₂ Baumhauerite	1695 41	М.		5 33	
	7PbS 2As ₂ S ₄ — Lengenbachite	2167 09	Tri.		5 8	1
	10PbS 3As ₂ S ₂ —Guitermanite	3131 00			5 94	
	3PbO.Sb ₂ O ₄ Monimolite	1236 68	C.		6 58	
599	PbO.PbCl ₂ .Sb ₂ O ₂ —Nadorite	792 856	R.		7 02	1050
600	PbS.Sb ₂ S _c Zinkenite	579 000	R.			1059
601	2PbS.Sb ₂ S ₄ - Plumosite	818 265	M.		5 3	
[3PbS.Sb ₂ S ₄ —Dürfeldtite	1			5 62	1
	3PbS.2Sb ₂ S ₃ Domingite	1057 53			5 9	ſ
	and the second s	1397 27			5 62	
	4PbS Sb ₂ S ₄ - Meneghinite	1296 80	R.		6 30	ļ
	5PbS,Sb ₂ S ₃ - Geocronite	1536 06	R.		6 4	
606 /	5Pb8.28b ₂ 8 ∈ Boulangerite	1875 80	R.		6 18	
607 8	5PbS 2Sb ₂ S ₂ Mullanite	1875 80	R.		6.3	i
608 5	5PbS.4Sb ₂ S ₄ - Plagionite	2555 27	M.			
	3PbS.Sb ₂ S ₄ Kilbrickenite	1775 33			5 47	
1	PbS.Bi ₂ S ₃ —Galenobismutite	1 1	- {		6 5	- 1
		753 460	1		6 9	
	PbS.Bi ₂ S ₂ Cosalite, Bjelkite	992 725	R.		6 e	1
	PbS.3Bi ₂ S ₄ - Chiviatite	2021 12			6 92	- 1
	BPbS.Bi ₂ S — Lillianite	1231 99	R.	1	7 o	1
	PbS 5Bi ₂ S ₄ - Rezbanyite	3528 04	- 1		6 2	1
615 6	PbS Bi ₂ S _v Beegerite	1949 79	C.		7 27	1
616 2	BiSCI PbS.Bi ₂ S ₃ .	1306 51	1	500 d.		
	ЪCO _s Cerussite	267 200	R.		6 42	
	ЪС ₂ О₄	1 1	n.	d. 315	6 6	1001
		295 200	1		5 28	1
1		267 292	1	- 27 5	1. 1 995	42
	² b(CH ₄) ₄ (C ₂ H ₄)	281 308	ĺ	1	1. 1 889	43
	'b(('H ₃) ₂ ((' ₂ H ₆) ₂	295 323	j	Ì	1. 1 790	48
623 P	Ъ(СП ₄) ₃ (С ₄ Н ₇)	295 323			1. 1 7604	37
624 P	${\rm Pb}({\rm C_2H_4})_4({\rm CH_3})$.	309 339	1		1. 1 712 ²³	i i
	Pb(CH ₃),(C ₄ H ₉),	309 339	1	1		46
	Pb(CH ₃) ₃ (iso-C ₄ H ₃)	309 339	1	i	1. 1 674	34
	Ъ(СП ₂) ₂ (С ₁ П ₇) ₂	323 354	1		I. 1 668 ^{22.1}	32
		1	1		l. 1 623 ²⁴ 4	35
	Pb(C1H _b) ₄	323 354	1		l. 1 659 ¹⁸	51
	Pb(CH _B) ₄ (iso-C' _b H ₁₁)	323 354	1		1. 1 524 ^{21 4}	30
630	${}^{2}\mathrm{b}(\mathrm{C}_{3}\mathrm{H}_{5})_{4}(\mathrm{C}_{3}\mathrm{H}_{7})_{+}$	337 369	1	ı	1. 1 595 22.8	49
631 P	${\rm Pb}({\rm C}_2{\rm H}_3)_2({\rm C}_3{\rm H}_7)_2$	351 385	1	ľ	1. 1 5294.4	41
632	Pb(CH ₄) ₂ (180-C ₄ H ₉) ₂ .	351 385	{	1	l. 1 504 ²⁰ 6	33
633 P	$\operatorname{Ph}(C_2H_b)_4(i80-C_4H_b)$	351 385	1			1
634	Pb(CH ₃) ₂ (180-C ₅ H ₁₁) ₂	379 416	l		1. 1 5304.6	40
	Pb(C' ₂ H ₄) ₂ (iso-C' ₄ H ₄) ₂	1	1	1	1. 1 430	31
	1 1	379 416	1	1	l. 1 456 ²²	36
	(2****)*(* *****)*	365 400	[1	1. 1 482	38
890 T	$\mathrm{Pb}(\mathrm{C}_2\mathrm{H}_4)_{\pi}(\mathrm{iso}\mathrm{-}\mathrm{C}_4\mathrm{H}_{11})$	365 400			l. 1.506 ^{21.8}	39
	b(C ₆ H ₆) ₄ .	515 354	ļ	227 7	•	
	b(CHO ₁) ₂	297 215	R.	d. 190	4.63	973
640 P	$\operatorname{Pb}(dl - \operatorname{C}_{\operatorname{\mathfrak{a}}}\operatorname{H}_{\operatorname{\mathfrak{a}}}\operatorname{O}_{\operatorname{\mathfrak{a}}})$	355 231	1	ŧ	2 53019	1 5.0
641 P	$b(d-C_4H_4O_6)\dots$	355 231	R.	1	3 87119	
U As Au 5 13 33		CI Co Cr Co Cu	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 30 68 6 26	1

index No.	Formula	Mol. wt,	Crystal system	М. Р.	d.	Ref. ind
642	Pb(C ₁ H ₁ O ₁) ₁	325 246	1	280	3 251	
643	Pb(C ₁ H ₁ O ₁) ₁ .3H ₂ O	379 292	M.	75	2 55	710
644	Pb(C ₃ H ₄ O ₃) ₂ .10H ₂ O	505 400	R.	22	1 689	1
645	Pb(C ₁ H ₁ O ₂) ₄	459 292		180	2 23,4	1
646	Pb(C ₃ H ₄ O ₇) ₄	515 354		132		
647	Pb(C ₆ H ₁₁ O ₂) ₂ .	437 369		74		ŀ
648	Pb(C,H,O,),	465 400		91.5		1
649	Pb(('sH14O2)2	493 431		84.5	1	ļ
650	Pb(C ₃ H ₁₇ O ₃) ₃	521 416		95	1	ı
651	$Pb(C_{10}H_{10}O_{7})_{2}$	549 493		100	i	İ
652	Pb(C ₁₂ H ₂₁ O ₂) ₂	605 554	1	104		ı
653	Pb(C ₁₄ H ₂₇ O ₂) ₂	661 616		107		
	Pb(C ₁₆ H ₂₁ O ₂) ₂	717 677				· I
654	Pb(C ₁₅ H ₂₆ O ₂) ₂	1	i	112		i
655		769 708		ca 80)	ļ
656	Pb(C ₁₈ H ₄₈ O ₂) ₂	773 739		125		
657	3PbO.2CO ₂ H ₂ O Hydrocerusite	775 615	H.	d. 400	6 14	395
658	PbCl ₂ ,PbCO ₃ Phosgenite	545 316	Tet		6-13	396
659	PbBr ₂ .PbCO ₃	634 232	Tet.	d.	6.55	ŀ
660	Pb(OH) ₂ .PbSO ₄ .2PbCO ₃ —Leadhillite	1078 88	М.		6.5	996
661	Pb(OH)2.PbSO4.2PbCO4Maxite	1078 88	R.		6.9	
662	Pb(SCN) ₂	323 346	M.		$3/8_{2}$	
663	PbSiO ₃ Alamosite	283 260	M.	766	6 49	992
664	2PbO.SiO ₂	506 460		746		i
665	3PbO.SiO ₂ ?	729.660		717		
666	3PbO.2SiO _x -Barysthte	789 720	Trig.		6.72	304
667	SnPbS ₂ —Teallite	390 030	R		6.1	
668	ThO _z —Thorianite	264 150	Ċ.	>2800	9 69	182
669	ThCl.	373 982	R	820	4.59	
670	ThBr4	551 814		020	5 67	}
	ThS ₂	296 280		d.	6.8	ł
671		280 215			6 14	j
672	Thos	1	34	d.	I .	
673	Th(SO ₄) ₂ .9H ₂ O	602 419	M.	d.	2 77	
674	Th(PO ₃) ₄	548 246	R.		1 08	
675	ThC ₂ .	256 150			8 96	
676	ThSi ₂	288 270			7 (4616	
677	ThO ₂ ,S ₁ O ₂ Thorite	324 210	Tet.		5 3	
678	GaCl ₂	140 636		175		
679	GaCl ₃	176 094	1	75 5	1 2 36%	
680	(NH ₄) ₂ Gn ₂ (SO ₄) ₂ 24H ₂ O	992 147			1 77	89
681	In ₂ O ₃	277 600	Trig.		7 179	- [
682	InCl.	221 174			4 0	
683	In(ClO ₄); 8H ₂ O	557 297		80		1
684	InI	241 732		351		
685	InI ₂ .	368 664	1	212		
686	InI ₁	495 596		199		
687	Ing(SO ₄),	517 795		- · · · ·	3 438	
		346 183	R.		2 281	1
688	(NH ₄) ₂ InCl ₆ .H ₂ O	568 173	R.		3 167	
689	(NH ₄) ₂ InBr ₆ .H ₂ O	1			2 011	88
690	(NH ₄) ₂ In(SO ₄) ₂ .12H ₂ O	541 154	1	200	2 0711	00
691	T1 ₂ O	121 800	}	300	brown 9 65 ²¹	1
692		456 800		759	black 10 194	
693	тон	221 408				Ì
694	TI(OH),	255 423		>340		
695	TIF	223 400				
696	TICI	239 858		430	7.00	
697	TlCl ₃ .4H ₂ O	382 836		37		1
	1	287 858]		5 0479	ł
698	TICIO:	303 858		501	4 89	I
699	TICIO ₄				7 55747 *	
700	TlBr	284 316		460	1 997	1
701	TlBr ₄ .4H ₂ O	516 210		40		
702	TlBr ₂ Cl.4H ₂ O	471 752		40 d.		1
703	TH	331 332	∤ }	440	7.094 7	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{10}	Ref. ind.
704	TI,8	440 865	1	448	8.0	
705	Tl ₂ S ₄	569 125	1	125		- 1
706	TI,87	185.966	1	127		
707	T1,80,	504 865	R.	632		077
		568 930	M.	002		975
708	T12S2O4	1	NI.		5.57	
709	THSO,	301 473		120 d.		1
710	Tl ₂ Se	488 000	ł	340		1
711	Tl ₂ Se,Tl ₂ Se ₃	1134 40		338		į
712	T128eO4	552 000	R.		6 875	991
713	Tl ₂ Te	536 300		412	0 010	881
714	Tl ₂ TeO ₄	600 300		1 412		ŀ
	l .	i i	I	1	5 712	į
715	TIN ₄	246 424		334		
716	TINO:	266 408	γR.	206	5 5564	1053
		•	β Trig.	Tr. 75 (γ to β)		
		1	α C.	Tr. 145 (p to a)		
717	(NH ₄) ₄ TiCl ₆ 2H ₂ O	507 295			2 389	
718	ThPO4	708 224	i	1		1
					6 89	1
719	Tl ₄ P ₂ O ₇	991 648	M.	>120	6 786	l
720	THI2PO2	269 439	M.	190		
721	TIH,PO.	301 439	M.	190	4 723	
722	Tl2H2P2O7	584 863	1	270		
723	TLS.As ₂ S ₄ - Lorandite	686 980	M.	2.0	F 50	
724		636 415	1	1	5 53	1072
	TISbAs ₂ S ₅ Vrbaite.	1	R.	1	5 30	1
725	Tl ₂ CO ₃	468 800	İ	1	7 11	1
726	Tl(C ₂ H ₃ O ₂)	263 423		110	3 68	
			ļ	1	1 3 9	
727	Tl(CHO ₂) ₃ .	339 423	M.	95		
728	TI(C ₁ H ₂ O ₂)	277 439		1	0.0	
720	,	1	1	140	2 8	
	Tl(d-C ₄ H ₄ O ₄)	353 439	R.		3 496	1
730	TI(dl-C ₄ H ₄ O ₄)	353 439	Tri.		3 494	İ
731	Tl(meno-C4H4On) 0.5H2O	362 446	Tri.		3 518	
732	$TH(C_2H_3O_2)_2$	323 454	1	64		1
733	$Tl_2(d-C_4H_4O_4)$	556 831	Trig.	0.	4.00	
734	Tl2(meso-C4H4On)	556 831	1		4 80	558
735		1	Tri.		5 110	899
1	$\text{Tl}_2(dl\text{-}\text{C}_4\text{H}_4\text{O}_6)$	556 831	M.	165	4 66	957
736	$\text{TL}_{4}(d_{\uparrow}\text{C}_{4}\text{H}_{4}\text{O}_{6}).0 \text{ 5H}_{2}\text{O}_{++}$	565 838	M.		4 60	1
738	TIH(Cl ₃ CCO ₂) ₂ .	530 156	Tet.		2 82248	í
739	TlH(CBr ₄ CO ₂) ₂	796 904	M.	1	3 92318	i
740	TlOC ₅ H ₂ (NO ₂) ₄ Pierate	432 440	M. (red)			
		102 110	1 1	1	3 16447	
			Tri.		2 9934	ĺ
	### (A) (A) (A) (A) ## (A) A ## (A)		(yellow)			
741	$Tl(SbO)(d-C_4H_4O_6),H_2O$	508 216	R.		3 990	
742	TICI 2PbCl ₂	796 090	C.	435		ļ
743	TlGa(SO ₄) ₂ ,12H ₂ O	682 435	1		2 477	110
744	ZnO~-Zincite,	81 3800	Н.	>1800		
745	ZnO		11.	71000	5 606	392
746		81 3800	1		5 47	1
1	Zn(OH),	99 3954	R.	d. 125	3 053	1
747	ZnF ₂	103 380	M. Tri. ?	872	4 844	1
748	ZnF ₂ ,4H ₂ O _{1,1,1}	175 442	R.	Tr. 100	$2 \ 535^{12}$	1
749	\mathbf{ZnCl}_2	136 296	C.	365	2.914	1
750	Zu(ClO ₃) ₂ ,4H ₂ O	304 357	1 1	000		1
	Zn(ClO ₄) ₂ 6H ₄ O		1 1	1	2 15	1
		372 388	1 _ 1	j	2 15	1
	ZnBr ₂	225 212	R.	394	4 219	1
	Znl,	319 244	C.	446	4 6664 2 .	
75·t	Zn(1O ₃) ₂	415 244	1 1	d.	4 98	
755	ZnS(a)-Würzite	97.4450	н.	1850 130at		404
	ZnS(\beta) - Sphalerite	1			4 087	404
- 1	ZnSO ₄ Zinkosite	97 4450	C.	Tr. 1020	4 10225	187
1		161 445	R.	d. 740	3 744	860
	ZnSO ₄ ,H ₂ O	179 460	1	d. 238	3 284	1
759	ZnSO4.6H2O	269 537	M.	Tr. 70 0	2 07211	1
760	ZnSO4.7H ₂ O Goslante	287 553	R.	Tr. 39 0	1 97	400
	ZnS ₂ O _{5.6H₂O}	1	1	11.000		490
1	ZnSe	333 602	Tri.		1 915	1
		144 580	Н.		5 424	188.1
Al As Au 53 13 83	B Ba Be Bi Br C Ca Cb Cd Ce	Cl Co Cr Co Cu 4 44 46 85 31	Dy Fr Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H	Hf Hg Ho I In 73 20 68 6 26	Ir K La Li Lu 36 83 58 81 72

index No.	Formula	Mol. wt.	Crystal system	М. Р.	d4**	Ref. ind.
763	ZnSeO4.5H2O	298 657	Tri.	d. >50	2 591	
764	ZnSeO4.6H2O	316 672	Tet.	d.	2 325	252
765	ZnTe	192 880	C,	1238 5	5 541	188.2
766	Zn(NO ₁) ₁	189 396		44 07		
767	$Z_n(NO_4)_4.3H_4O.$	243 442	l	45 5		
768	Zn(NO ₁) ₁ .6H ₁ O	297 488	Tet.	36 4	2 06514	1
769	ZnCl ₂ ,NH ₃	153 377	100.	00 1	* (1004	1
770	ZnCl, 2NH,	170 358	R.	210 8		
771	ZnCl, 2NH Cl	243 290	R.	210 8	1 00	- {
	a cono i anti		IV.		1 82	1
772		300 420		exp. 205	1.84	1
773	ZnBr ₁ .2NH ₄ Br	421 122	1		2 625	1
774	Zn(BrO ₃) ₁ .4NH ₃	389 336		exp. 169	2 27	1
775	$Zn(IO_3)_2.4NH_3.$	483 368		exp. 215	2 82	
776	ZnSO ₄ , (NH ₄) ₂ SO ₄	293 588	1		2 28	
777	ZnSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O	401 680	М.	d.	1 931	516
778	$Zn(SeO_4).(NH_4)_2SO_4.6H_2O$	495 950	M.		2 20	620
779	Zn ₂ P ₂	258 188	C.	>420	1 554	
780	$Zn_4(PO_4)_1$	386 188	R.	900	3 99815	1
781	$Zn_1(PO_4)_2.4H_2O-\alpha$ Hopeite	458 250	R.	Tr. >105	3 04	734
782	$Zn_3(PO_4)_2.4H_2O-\beta$ Hopeite	458 250	R.	Tr. >140	3 03	720
	$Zn_3(PO_4)_3.4H_2O$ —Parahopeite				3 (6)	1
783	1	458 250	Tri.	Tr. >163	1	793
784	$Z_nH_4(PO_4)_2.2H_2O$	295 190	Trı.	100 d.		
785	Zn ₂ (OH)PO ₄ —Tarbuttite	242 792	Trı.		4 13	898
786	Zn ₂ (PO ₄) ₂ Zn(OH) ₂ .3H ₂ O—Spencerite	539 630	М.	d. 100	3 14	755
787	$Zn_{2}P_{2}S_{6}$	$385 \cdot 198$	Н.		2 2	1
788	Zn As ₂	215 300	1	771		
789	Zn,As,	346 060	C.	1015		1
790	$Zn_2As_2O_7$	392 680	l		4 7014	1
791	Zn ₃ As ₂ O ₈	474 060	R.		4 913	1
792	Zn ₁ (AsO ₄) ₂ .8H ₂ O—Koettigite	618 183	M.	d. 100	3 30914	881
	4ZnO. As ₂ O ₄ . H ₂ O—Adamite	573 455	R.	d. >100	4 345	918
793			i	d. 300	1	369
794	ZnCO ₃ —Smithsonite	125 380	Trig.	4. 500	4 44	309
795	ZnC_2O_4	153 380			2 5847.4	
796	ZnC ₂ O ₄ .2H ₂ O	189 411)	d. 100	2 562	i
797	$Zn(CH_3)_2$	95 4262		40	1 1 38610	1
798	$Z_{\rm IR}(C_2H_b)_2$	123 - 457	[- 28	1. 1 1821	
799	$Z_{n}(C_{4}H_{7})_{2}$	151 488	ļ			
800	Zn(180-CbH11)2	207 549	1		1 1 0220	1
801	Zn(CHO ₂) ₂	155 395	ĺ		2 36	
802	Zn(CHO ₂) ₂ 2H ₂ O	191 426	M.		2 205	1
	,	183 426	1	142	1 840	
803	Zn(C ₂ H ₄ O ₂) ₂	219 457	M.	237	1 735	518
804	Zn(C ₂ H ₃ O ₂) ₂ ,2H ₃ O		1	201		313
805	Zn(LC4H5O4)2.2H2O—l-Malate	367 488	Tet.		1 70120	
806	$Zn(C_3H_7CO_2)_2$.	239 488	M.		1	535
807	5ZnO 2CO ₂ .3H ₂ O—Hydrozincite	548 947	M ?		3 7	920
808	Zn(CH ₂ SO ₃) ₂ ,3H ₂ O—Ethane disulfonate	307 - 587	Tri.		2 043	
809	ZnC10H6O6S2.6H2O1, 5-Naphthalene		i			1
	disulfonate	459 649	M.		1 793	791
810	Zn(CN) ₂	117 396	R.	d. 800	1	
811	ZnO.SiO ₂	141 440		1437	3 52	- 1
011	23117.14172				1 3 86 gls	1
610	07. 0.000 11111 4-	222 820	Trig.	1509	3 9	341
812	2ZnO.SiO ₂ —Willemite		i	1000	3 45	780
813	2ZnO.SiO ₂ .H ₂ OCalamine	240 835	R.		1	1
814	ZnStF ₆ .6H ₂ O	315 532	H.		2 104	209
815	ZnSiS	125 - 505			3 41	Į.
816	ZnO.TiO ₂	161 280			3 17	1
817	ZnO.3TiO2	321 080		1	4 924	1
818	3ZnO 2TiO2	403 940		1	3 83	
819	47 O PTO	725 020	1		3.684	
820		774 402	M.	d. 120	3 720	771
	Tl ₂ Zn(SO ₄) ₂ .6H ₂ O.	128 410	C.		8 15	
821	CdO .		• • •	a	8 192	
822	Cd ₂ O	240 820	m.!	d.	4 7011	
823	Cd(OH),	146 425	Trig.	d. 300	4 794	1

ndex No.	Formula	Mol. wt.	('rystal system	М. Р.	d_4^{20}	Ref. i
824	CdF, .	150 410	J C.	1100	6.64	
825	CaCl ₂ .	183 326	C.	568	4 0474	ł
826	CdCl ₂ .2.5H ₂ O .	228 364	M.	Tr. 34	3 327	829
827	Cd(ClO ₁) ₂ 2H ₂ O	315 357		80	1	020
828	CdCl ₂ CdO H ₂ O	329 751	H.	d. 280	4 564	
829	CdBr ₁	272 242	1	1		
830	Cd(BrO ₂) ₂ 2H ₂ O		1 1	583	5.1924	1
		404 273	R.		3.758	- 1
831	CdO CdBr ₂ H ₂ O	418 667	l	1	4.874	
832	$\operatorname{CdI}_2(\alpha)$	366 274	H.	388	5 6704	i
832 1	$\operatorname{Cd} I_i(eta)$	366 274		1	5 3054	
833	$\mathrm{Cd}(\mathrm{IO}_{\mathbf{i}})_{i}$	462 274	1	1	6 48	1
834	$Cd(IO_1)_J.H_JO$	480 289	1	Tr. 160	6 43	- 1
835	CdS -Greenockite	144 475	H.	1750 100 at	4 820	406
836	CdSO ₄	208 475	R.	100o	4 6914	
837	CdSO, ILO	226 490	M.	Tr. 108	3 786	i
838	CdSO, 2 66H ₂ O	256 583	M.	Tr. 41 5	l e e e e e e e e e e e e e e e e e e e	200
839	CdSO4.7H ₂ O			i .	3 090	688
	CdS ₂ O ₄ 6H ₂ O	334 583	M.	Tr. 4	2 48	
- 1		380 632	Tri.	d.	2 272	
	CdSe Custo arro	191 610	II.		5 814	
	CdScO ₄ 2H ₂ O	291 641	R.	d. 100	3 632	1
1	CdTe	239 910	C.	1011	6 20:5	
844	$Cd(NO_3)_2$	236 426	1	350		i
845	$Cd(NO_4)_2.4H_2O$	308 488	ĺ	59 4	2.455_4^{17}	1
846	CdCl ₂ NH ₄ Cl	236 823	R.		2 93	1
847	CdCl2 4NH4Cl	397 313	Trig.	Tr - 20	2 01	000
	CdCl₂ 2NH₂OH	249 388		d. 130		296
,	Cd(ClO ₃) ₂ 6NH ₃	381 513		, ,	2 7218	1
	Cd(BrO ₂), 4NH ₂			exp. 184	1 78	i
		436 366		exp. 192	2 53	1
	Cd(IO _d) ₂ .4NH ₁	530 398		exp.	3 23	1
1	Cd8O4.(NH4)48O4	340 618		d.	3 11	ŧ.
	CdSO ₄ (NH ₄) ₃ SO ₄ .6H ₄ O	448 710	M.	d. 100	2 067	500
	$\mathrm{CdSeO_4}(\mathrm{NH_4})_2\mathrm{SeO_4}2\mathrm{H_2O}$	470 918	Trı.		3 376	
856	CdSeO4.(NH4)2SeO4.6H4O	542 980	М.	d. 20	2 307	
857	Cd ₄ P ₂ O ₇ 2H ₂ O	434 899		900	4 96518	
858	$\operatorname{Cd}_{4}(\operatorname{PO}_{4})_{4}$	527 278		1500	4 0004	
	5CdO.2P ₃ O ₃ 5H ₃ O	1016 22	М.	d. 550	4 4 .15	
	Cd(H₂PO₄) / 2H₂O	342 520	Tri,		4 134	1
	Cd ₃ (PO ₄), 2CdHPO ₄ 4H ₂ O	1		d. 100	2 74245	1
,	3Cd ₄ (PO ₄) ₂ .CdCl ₄	1016 22	М.	d. 60o	4 06	1
		1765 16		1	5 464	1
1	Cd ₄ \s ₂	487 150	C.		6 211	
	Cd ₂ As ₂ O ₇	486 710			5 974	1
	CdIIAsO ₄ H ₂ O	270 393		d. >120	$4 \cdot 164^{16}_4$	1
	$\mathrm{Cd}(\mathrm{H}_2\mathrm{AsO}_4)_2.2\mathrm{H}_2\mathrm{O}$	430 392	Trı.	d. 75	3 24116	
	CdSb	231 180	•	455	~ ~114	
868	Caco _i ,	172 410	Trig.	d. <500	4 950	
	CaC ₂ O ₄	200 410		d. 340	4 258	
	Cd(CH ₃) ₂	112 456	- 1	u. 040	3 3218	1
	('d(CHO ₂), 2H ₂ O	238 456		ĺ		1
	$\operatorname{Cd}(\operatorname{C}_{\pi}\operatorname{H}_{\sharp}\operatorname{O}_{\sharp})$	1 1	М.		2 44	1
		171 433		256	2 341	1
	Cd(C ₂ H ₂ O ₂) 2H ₂ O	207 464	М.		2 01	
	Cd(CH ₂ SO ₄) ₂ ,2H ₂ O	336 602	Tri.		2 570	
	Cd(CN) ₄	164 426	ł	d. >200		1
	'dO SiO ₂	188 470	ŀ	1242	1.93	
	2CdO SiO2	316 880	į	1243		1
878	lgOMontroydite	216 610	R.	d. 100	11 14	1027
	Hg ₂ ()	417 220	[d. 100		1027
	lgF	219 610	C. ?		9.8	
	lgF,	1 . (570	8 73	
	IgCl -Calomel .	238 610	C.	645 d.	8 95	
		236 068	Tet.	302	7.150	390
000	IgCl ₄ Corrosive sublimate	271 526	R.	277	5 44	
	F (1)	1	l		1. 4.44280	
	Ig(' () ₅ B Ba Be Bi Br C Ca Cb Cd Ce 54 79 75 15 5 16 77 51 29 59	284 068	R.	d. 250		
13 Au 13 33						•

index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{2a}	Ref. ind
885	HgClO _{4.6} H ₄ O	408 160		d. 150	4 28	1
886	Hg(ClO ₄) ₂ .7H ₂ O	525 634	}	31 d.	2 78	
887	Hg ₁ ClO—Terlinguaite	452 678	M.	d.	8 725	1070
888	HgCl ₂ .2Hg()	704 746	H	d.	red 8 3	10.0
000	II O OIL OI		M.	d.	black 8 5	
889	HgO.2HgCl ₁	759 662		1	6 42	
890	Hg ₂ O.2HgCl—Eglestonite	889 356	C,		8 33	195
891	HgCl ₂ .3HgO—Kleinite	921 356	H.	d. 260	7 93	1
892 893	Hg('l: 4Hg()	1137 97	Н,	i	9 10	1
894	HgBr HgBr ₂	280 526	i	1	7 307	
094	HgDr ₂	360 412	R.	237	6 05s	
895	HgBrz.4Hg()			1	1. 5 1240	İ
896	HgI	1226 88	R.	d. 230	8 73	1
897	HgI _z (red)	327 542	Tet.	290 d	7 70	j
898	HgI ₂ (vellow)	454 174	Tet	Tr 127	6 283	1
300	Tigi; (venow)	451 171	R	259	6 271	ļ
899	Hg ₂ ('l ₂ I ₂	5 000 000			1. 5 2424	
900	HgSMetacinnabarite	726 000	R.	153		
901	HgS (α)—Cinnabarite	232 675	('		7 50	
902	HgS (\beta)	232 675	Н.		8 10	411
903	HgSO,	232 675	H		7 73	
904	Hg ₂ SO ₄	296 675	R	d	6 47	
904 1	Hg ₂ SO ₄ Cl ₂	497 285	М.	d.	7 56	- 1
904 2	Hg ₂ SO ₄ Br ₄	568 201		270		
904 3	Hg ₂ SO ₄ I ₂	816 949 751 149		d 125		1
905	HgSO ₄ 3HgS	994 700		248		
906	Hg ₂ SeO ₁	528 120		d. 120	6 416	
907	HgNO ₂	246 618		180 d		1
908	HgNO ₃ ,H ₃ O	280 633	M.	d. 140	5 925	- 1
909	Hg(NO ₃) ₂ ,0.5H ₂ O	333 634	141.	70 79	4 7853 *	1
910	$Hg_2(NO)_3$	461 236		d. 100	4 3 7 33	1
911	(HgOH)2.NH2OH.	468 267		d. 100	4 083	[
912	HgCl ₂ , N ₂ H ₄ , HCl	340 039		157	4 000	
913	HgCl, 2NH ₄ Cl H ₂ O.	396 535	R.	101	2 81	ł
914	HgCl ₂ .12NH ₃	475 899		- 9 P.	2 31	ĺ
914 1	$Hg_2(NO_3)_2Cl_4$	667 068		d. 100		
915	HgBr ₂ 2N ₂ H ₄ HBr ₂ H ₄ O	603 475		73		
916	NHg ₂ Br.3NH ₄ Br	789 008	R.	180 d.		1
916 1	$Hg_2(NO_4)_2I_4$	1032 96		250		
917	HgS 2Sb ₂ S ₃ -Livingstonite	912 145	R.		4 81	1029
918	Hg(('H ₃) ₂	230 656			1. 3 069	53
919	$Hg(('_2H_b)_2$	258 687			1. 2 144	54
920	$Hg(C_3H_7)_2$	286 718			1. 2 12416	""
921	Hg(180-C4H9)2	311 718			1 1 83515	
922	$Hg(C_6H_b)_2$	354 687		121 8	2 318	
923	Hg(C ₁₀ H ₇) ₂ —Mercury α-naphthyl	454 718		188	1 929	1
924	$Hg(C_2H_3O_2)_2$	318 656		d.	3 270	
925	$Hg(C_2)f_b(O_2)_2$.	346 687		110		ı
926	$Hg(C_7H_4O_2)_2$	442 687		165		j
927	$Hg(C_{18}H_{33}O_2)_2$ —Oleate	763 118		103		1
928	$Hg_2(C_1H_bO_2)_2$.	547 297		225 d.		
929	HgCH ₄ Cl	251 091		170	4 063	
930	HgC ₂ H ₅ Cl	265 107		193	3 482	1
	Hg('H ₂ I	342 565		143		- 1
	Hg(C ₂ H ₂ S) ₂	322 817		77		
	Hg(CN) ₂	252 626	Tet.		4 (0)	
T I	CuO-Paramelaconite .	79 5700			6-4	
	CuO-Tenorite	79 5700	C,	d. 1026151 mm O ₂	6 40	1078
	Cu ₂ OCuprite .	143 140	C.	1235° 6 mm O ₂	6 0	188
	CuF	82 5700		908		
938	CuF₂.5HF.6H₂O	309 701	М.	d.	2 405	
939	CuCl-Nantokite	99 0280	C.	422	3 53	173

lex No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind
940	CuCl ₂	. 134 486	l l	498	3.054	
941	CuCl, 2H,O	170 517	R	110 d.	2 390** 4	883
942	Cu(ClO ₂) ₂ .6H ₂ O	338 578	C. ?	65		1
943	Cu(ClO ₄) ₂ .7H ₂ O	388 594	1		1 955	
944	3CuO,CuCl ₂ .3H ₂ O - Atacamite	427 242	R.	d. 200	3 94	1033
945	3CuO,CuCl ₂ .3H ₂ O—Paratacamite	427 242	Trig.	d. 200	3 74	172
		523 242	R. M. ?	d.	3 55	11.2
946	4CuO,Cl ₂ O ₄ .3H ₂ O	143 486	C.	504	4 72	İ
947	CuBr .	223 402		l i	7 12	
948	CuBr ₂ .	1	M.	498		1
949	CuBr ₂ .4II ₂ O	295 464	R.	Tr. 30	0.500	ı
950	Cu(BrO ₁) ₂ 6H ₂ O	427 494	C.	d. 180	2 583	
951	CuIMarshite	190 502	C. Tet.	605	5 62	186
952	$\{C_{II}(IO_3)_2$	413 434	M.	d.	5 24116	
953	$Cu(IO_1)_2,H_2O$	431 449	Tri.	d. 240	4 87615	
954	Cu(IO ₃)OH	255 510	R.	d. 290	4 87815	
955	CuSCovellite	95 6350	H. M. ?	Tr. 103	4 6	i
956	Cu ₂ 8 Chalcocite	159 205	R.	1100	5 в	ŀ
957	Cu ₂ S	159 205	C.	1130	5 783	ı
958	CuSO ₄ Hydrocyanite	159 635	R.	200	3 6	
959	CuSO ₄ ,H ₂ O	177 650	"	d. 221	3 17	
		213 681	M.	(1. 221	2 663	1
960	CuSO _{4.3H₂O}	1		J 100	2 2864 6	043
961	CuSO _{4.5H₂O~ Chalcanthite}	219 712	Tri.	d. 20	•	641
962	CuSO _{4.} 7H ₂ O ₇ -Boothite	285 743	М.		1 94421	i
963	Cu ₂ SO ₃ H ₂ O	225 220	Н.		3 8316	1
964	3CuO.SO₃.2H₄O—Antlerite	354 806	R.		3 9	921
965	Cu ₂ SO ₃ ,CuSO ₃ 2H ₂ O	386 871		d. 150	3 57	
966	4CuO.SO ₃ .3H ₂ O—Brochantite	452 391	R.		3 907	944
967	4CuO.SO ₂ .4H ₂ O—Langite	470 407	R.		3 49	939
968	7CuO.2SO ₃ .5H ₂ O	807 197	R.		3 85	1
969	20CuO.SO ₃ .2CuCl ₂ .20H ₂ OConnellite	2300 75	H.		3 4	350
970	Cu ₂ Se	200 340	C,	1113	6 7494	
971	Cu ₂ Se ₂ —Umangite	319 110		*****	5 620	
972	CuO.SeO ₂ .2H ₂ O—Chalcomenite	226 801	M. R. ?		3 76	916
		l .	Tri.			910
973	CuSeO ₄ .5H ₂ O	296 847	In.	114.40	2 559	1
974	Cu(NO ₃) ₂ .3H ₂ O	241 631		114 49	2 047	ļ
975	Cu(NO ₁) ₂ .6H ₂ O	295 678		26 4 d.		1
976	4CuO.N ₂ O ₄ .3H ₂ O—Gerhardite	480 342	R.		3 43	903
977	CuCl₂.2NH₄Cl	241 480		'	1 90511 6	1
978	CuCl ₂ 2NH ₄ Cl.2H ₂ O	277 510	Tet.	d. 110	1 98	354
979	CuCl.3NH ₁	150 121]]	123		1
980	2CuCl.NH ₁	215 087	1	162		ı
981	2CuCl3NH ₁	249 149	1 1	144		
982	3CuCl ₂ .10NH ₄	573 769	1	270		ı
983	Cu(ClO ₂) ₇ .4NH ₂	298 610	(d. 90	1 81	
984	CuBr ₁ 2NII ₁	257 464	1 1	d. 200	4 04	
985	CuBr.3NH ₄	1		ľ		
986	2CuBr.3NH ₄	194 579 338 065		115		
			1	135	0.01	1
987	Cu(BrO ₃) ₂ .4NH ₃	387 526	1	exp. 140	2 31	1
988	Cul.3NII ₁	241 595	}	105		i i
989	2CuL3NH ₄	432 097	}	117		1
990	Cu(IO ₃) ₂ .5NH ₃	498 590	1	exp. 215	2 72	
991	$(NH_4)_2SO_4.CuSO_4$.	291 778			2 348	
992	(NH ₄) ₂ SO ₄ ,CuSO ₄ ,6H ₂ O ₃	399 870	M.	d. 120	1 87	538
993	$(\mathrm{NH_4})_2\mathrm{SeO_4}.\mathrm{CuSeO_4.6H_2O}$	494 140	M.		2 22	639
994	CuP .	94 5940	j l		5 14	1
995	Cu ₂ P	158 164		d.	6 4	
996	Cu ₃ P ₂	252 758	1	ď.	6 67	
997	4CuO.P ₂ O ₃ .H ₂ O—Libethenite .	ì	R.	u.		030
998	4CuO.P ₂ O ₄ .2H ₂ O—Pseudolibethenite	478 343	It.		3 7	932
		496 359	1 1		4 0	000
999	4CuO.P ₂ O ₄ 3H ₂ O—Tagilite	514 374	,,		4 08	968
1000	5CuO.P ₂ O ₄ 2H ₂ O - Dihydrite	575 929	M. Tri.	1	4 2	940
	6CuO.P ₂ O ₄ .3H ₂ OPhosphochalite	673 514	1		4.4	
1001 1002	$Cu(H_2PO_2)_2$	193 649		exp. 90		

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d ²⁶	Ref. ind
1003	CuPO ₄ .CuOH	239 172	R.			931
1004	Cu ₃ As—Domeykite	265 670	H.	830	8 00	į.
1005	3CuO.As ₂ O ₄ .5H ₂ O-Trichalcite	558 707	R.	i l		885
1006	4CuO.A82O4.H2O—Olivenite	566 215	R.		4 3	951
1007	4CuO.As ₇ O ₄ .3H ₇ O—Leucochalcite	602 246	R.			960
1008	4CuO.As ₂ O ₄ .7H ₂ O—Euchroite	674 308	R.	1	3 40	891
1009	5CuO.As ₁ O ₄ .H ₁ O—Erinite	645 785			4 04	964
1010	6CuO.As ₂ O ₄ .3H ₂ O—Clinoclasite	761 386	M.	1	4 37	976
1011	7CuO.As ₁ O ₄ .14H ₂ O—Chalcophyllite	1039 12	Trig.		2 66	306
1012	5CuO.As ₂ O ₅ .9H ₂ O—Tyrolite	789 909	R.		3 05	912
1013	2Cu ₂ S,As ₂ S ₄	564 525			4 289	1
1014	3Cu ₂ S.As ₂ S ₅ —Enargite	787 860	C.		1 40	
1015	3Cu ₂ S.2As ₂ S ₂ —Binnite	969 845	C.	1	4 48	1
1016	Cu ₂ (AsO ₄) ₂ .3NH ₂ .4H ₂ O	591 785	Trı	2.2	3 05	
1017	Cu ₂ Sb (β)	312 480		687	8 51 (g)	ı
	a a	*** 000		Tr. 407 (β to α)	8 48 (a)	1
1018	Cu _s Sb ₁	561 390		830	4 000	1
1019	Cu ₂ S.Sb ₂ S ₂ —Chalcostibite	498 940	R.		4 932	
1020	Cu ₂ S.2Sb ₂ S ₂ —Guejarite	838 675	R.		4 814	1
1021	3Cu ₂ S ₂ Sb ₂ S ₄ —Stylotypite	817 350	.,		5 147	l l
1022	Cu ₂ S.Bi ₂ S ₂ —Emplectite	673 400	R.	1	6 1014	1
1023	5Cu ₂ S.2Bi ₂ S ₂ Wittiehenite	1824 42			5 916	
1024	2Cu ₂ S.Bi ₂ S ₁ 2BiSCl	1385 7	1		6 78	
1025	2Cu ₂ S.Bi ₂ S ₁ .2BiSBr	1474 6	1		0 41	352
1025 1	20CuO.Bi ₂ O ₃ .5As ₂ O ₃ .22H ₂ O—Mixite	3603 34			3 79	302
1026	2CuO.CO ₂ —Mysorine	203 140			4 398 4 0	977
1027	2CuO,CO ₂ ,H ₂ O—Malachite	221 155	M. M.	d. 220	3 88	938
1028	3CuO.2CO ₂ .H ₂ O—Azurite	344 725 153 585	M1.	d. 220	1 831	1000
1029	Cu(CHO ₂) ₂		M		1 795	652
1030	Cu(CHO ₂) ₂ .4H ₂ O	225 647 181 616			1 930	002
1031	$C_{1}(C_{1}H_{2}O_{2})_{2}$.	199 632		115	1 882	667
1032	$C_{\rm U}(C_2H_3O_3)_2,H_2O$			d. 240	1 9	001
1033	Cu(C ₂ H ₂ O ₂) ₂ .2H ₂ O	217 647 323 790	Tri.	u. 240	2 061	
1034	Cu(CH ₂ SO ₂) ₂ .4H ₂ O—Ethane disulfonate	020 (90	111.		2 (7)	İ
1035	CuC ₁₀ H ₆ O ₆ S ₂ .6H ₂ O—1, 5-Naphthalene	457 839	M.	1	1.783	792
1020	disulfonate CuCN.	89 5780	M.	474 5	1 1	1
1036	1	185 632	1	""	$2 \ 305^{74}_4 (\alpha)$	1
1037	CuC ₂ O ₄ .2NH ₄	100 002			2 225 ⁴ (β)	1
1020	C. PON	121 643			2 846%	1
1038	CuSCN .	277 348	R.	d. 20	1 02113	
1039	Cu ₂ (NH ₂) ₂ (SCN) ₂	155 200	14.	11. 20	6 911	1
1040	Cu ₂ S ₁	282 340		850	7 53	
1041	Cu,Si	373 970		775	1 00	
1042	Cu _b Si ₂ CuO.SiO ₂ .H ₂ O—Bisbeeite	157 645	R.			783
1043	CuO.SiO ₂ .H ₂ O—Dispetite CuO.SiO ₂ .H ₂ O—Dioptase	157 645	Trig.		3 05	319
1044	2CuO.2SiO ₂ .H ₂ O—Shattuckite	297 275	M.	1		948
1045 1046	6CuO.5SiO ₂ .H ₂ O—Plancheite	813 751	M.	1	3 36	320
1047	CuSiF ₆ .6H ₂ O	313 722	R.		2 15819	211
	CuCl ₂ .PbO.H ₂ O—Percylite	375 701	C.		4 . 6718 7	176
1048 1049	2CuO.5PbO.3SO ₂ .CO ₂ .3H ₂ O—Linarite	1613 38	M.		5 4	967
1049	CuO.4PbO.P ₂ O ₄ —Tsumebite	1114 42	R.		6	987
1050	Cu ₂ S.2PbS.Bi ₂ S ₃ —Aikinite	1151 93	R.		6 45	
1053	5Cu ₂ S.2ZnS.2As ₂ S ₂ —Tennantite	1483 14	C.		4 4	198
1053	Cu ₂ HgI ₄ .	835 478			6 096	1
1054	CuCl.HgS.	331 703			6 29	
1056	1 "	231 760	C.	d. 300	7 14314 6	
	1	247 760	1	d. >100	7 44	1
1057	Ag ₂ O ₂	126 880	C.	435	5 85214 4	
1058	AgF	143.338	1	455	5.56	177
1059	AgCl—Cerargyrite	191 338	Tet.	230	4.430	***
1060	AgClO ₁	207 338		d. 486	1, 1.70	1
1061	AgClO ₄	187 796	C.	434	6.474	185
1062 Mn Mo N 42 47 11	AgBr—Bromyrite	1171 100			~ · • • •	1 200

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d.**	Ref. ind
1063	AgBrO,	235 796	Tet	d.	5.206	372
1064	AgI—Iodyrite	234 812	H.	d. 552	5.67	400
1065	AgIO ₁	282 812	R.	>200	5 525	1
1066	Ag:S Acanthite	247 825	R.	825	7 326	l
-				Tr. 175		l
1067	Ag ₂ S - Argentite	247 825	C.	Tr. 175	7.317	
1068	Ag ₂ SO ₄	311 825	R.	652	5.4549 1	
1069	Ag ₂ S ₃ O ₈ 2H ₂ O	411 921	R.		3 61	844
1070	Ag ₂ Se - Naumannite	294 960	1	880	8 0	911
1071	Ag ₂ SeO ₃	342 960	1		5 929	
1072	Ag ₂ Te Hessite	343 260	C.	955	8 5	
1073	AgN.	149 904	1	exp. 251-5	9.3	1
1074	AgNO ₂	153 888	R.	d 140	4.45326	İ
1075	AgNO _z	169 888	R.	212	4.3524	1050
			I.	d. 110		1050
1076	Ag ₂ (NO) ₂	275 776		1	5 754	
1077	AgNO ₂ NH ₄	170 919	Tet.	70 d		İ
1078	NII4NO2.AgNO2	249 935	R.	109 6		l
1070	$Ag(NH_3)_2NO_2$	203 950	R.	170 d		
1080	AgCl AgNO ₃	313 226		160		j
1081	2AgCl 3NH ₄	337 769	R.	68 d.		- 1
1082	AgLAgNO ₂	104 700	R.	91		ŀ
1083	AgL2AgNO _z	574 588	R.	119 1		1
1084	$AgBr.NH_4Br.4(NH_4)_2S_2O_4$	878 580	Tet.			336
1085	$\Lambda g_2 P_a$	308 832	į .	d.	4 63	
1086	AgPO ₄	186 904		482	6 370	į
1087	Ag ₃ PO ₄	418 664	C.	849	6 3704	
1088	$Ag_4P_2O_7$	605 568		585	5 3067 5	
1089	Ag ₂ HPO ₄	311 792	Trig.	d. 110		366
1090	Ag ₂ AsO ₂	446 600	- · · · ·	150 d		500
1091	Ag ₂ AsO ₄	462 600	C.	100 4	6 6574	1
1092	Ag ₂ AsBr ₄	638 348		d.	5 5524	
1093	Ag ₂ S.As ₂ S ₄ Smithite	493 940	M.	u.	•	1000
1094	Ag ₂ S.As ₂ S ₂ Trechmannite	493 940	Trig.		4 700	1066
1095	$3Ag_2S_1As_2S_2$ Proustite	1			4 700	422
i	3Ag ₂ S.As ₄ S ₆ —Xanthoconite	989 590	Trig.		5 49	412
1096		1053 72	R.		5 2	1030
1097	Ag ₂ S.Sb ₂ S ₄ - Minrgyrite	587 560	M.		5 3617	1
1098	3Ag ₂ S Sb ₂ S ₄ —Pyrargyrite	1083 21	Trig.		5 76	425
1099	3Ag ₂ S.Sb ₂ S ₃ — Pyrostilpnite	1083 21	M. Tri.		5 79017	}
1100	5Ag ₂ S Sb ₂ S ₃ —Stephanite	1578-86	R.	1	6 з	
	8Ag ₂ S.Sh ₂ S ₃ Polybasite	2322 34	R.		6 1	1031
1102	12Ag ₂ S Sb ₂ S ₃ —Polyargyrite	3313 64	R.	ļ	6 50	
1103	Ag ₂ S.Bi ₂ S ₄ Matildite	762 020	R.		6 9	
1104	AgNO ₂ Bi(NO ₂) ₄ 2NH ₄ NO ₂	629 006			3 05515	İ
1105	Ag ₂ ('() ₃	275 760	1	218 d.	6 077	j
1106	Ag ₂ C ₂ O ₄	303 760		exp. 140	5 0294	
1107	AgC ₂ H ₃ O ₂	166 903		d.	3 25916	
	AgC ₃ H ₃ O ₃ .0 5H ₂ O - Lactate	205 995	[100	5 = 50	
1109	$Ag_3(d-C_4\Pi_4O_6)$	363 791		d	3 43216	- [
1110	$Ag_2(dl-C_4H_4O_6)$	363 791		~	3.77515	1
	AgCN	133 888		320 d.		
,	AgCNO	149 888			3 95	1
	AgCN.NH ₃	150 919	M.	d. 102 d.	4 00	1
1114	$Ag(SbO)(d-C_4H_4O_6).H_2O$		1 1	102 (1.	40 4 (4 6	- 1
1115	4Ag ₃ S GeS ₂ Argytodite	364 886	R.		3 48118 2	1
	4Ag ₂ S.SnS ₂ - Canfieldite	1127 81	C.		6 08515	1
	Ag ₂ 8 2As ₂ 8 ₃ ,6Pb8 - Lengenbachite	1174 13	C.		6 28	1
		2175 65	Tri.		5 8	1
	3Ag ₂ S.4PbS.3Sb ₂ S ₂ —Diaphorite	2719 74	R.	į	5 9	
1119	3Ag ₂ S. 4PbS 3Sb ₂ S ₃ —Freieslebenite	2719 74	М.		6 3	
	$AgNO_2.2TINO_2.Bi(NO_2)_2$	1001 73			4 874	1
	AgCl.HgCl	379 406	l l		6 495	1
	2Agl HgI ₂	924 098	1	Tr. 45	5.998_4^0	
	4AgI.CuI- Miersite	1129 75			5 64	183
124	Ag ₂ S.Cu ₂ SStromeyerite	407 030	R.		6 2	

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d**	Ref. ind.
1125	Au ₂ O	410.400		d. 20s		
1126	Au ₂ O ₂	426 400	1	d. 180		Ì
1127	Au ₂ O ₁	442 400	İ	d. 160		ł
1128	AuCl	232 658	į	d. 289 5	7.4	ł
1129	AuCl	303 574		254 d	3 9	
1130	Au ₂ Cl ₄	536 232	į	d. 250	5 1	ł
1131	AuBr	277 116		d. 115		l
1132	AuBr ₂	436 948		160 d.		1
1133	Au ₂ Br ₄	714 064		d. 115		İ
1134	AuHBr ₄ .5H ₂ O	607 949		27		
1135	AuI	324 132		d. 120		i
1136	Au ₂ S ₂	458 530		d. 140		
1137	Au ₂ S ₂	490 595		d 197	8 754	1
1138	Au ₂ Se ₃	632 000			4 65**	
1139	AuTe-Calaverite	324 700	Tri.		9 04	
1140	Au ₂ Te ₄	904 400		472		
1141	HAu(NO ₂) ₄ .3H ₂ O	500 286		72 d.	2 81	
1142	Au ₂ O ₃ .4NH ₃	510 524		exp. 143		
1143	Au ₂ P ₂	487 472			6 67	
1144	Au(CN)2.3H2O.	329 270		d. 50		
1145	4AuCl ₂ .3AgCl.8NH ₄ Cl	2072 28	R.			159
1146	OsO ₂	222 800			7 91	
1147	OsO4 (yellow)	254 800	M.	41	4 91	
					1 4 4140 1	57
1147 5	OsO4 (white)	254 800		39 5		
1148	OsF ₆	304 800				
1149	OsF _a	342 800		34 5		
1150	(NH ₄) ₂ O ₈ Cl ₆	439 626	C.		2 93	1
1151	(NH ₄) ₂ O ₈ Br ₆	706 374			4 09	ı
1152	IrCl	228 558		d. 798	10 18	
1153	IrCl:	264 016		d. 773		Ì
1154	IrCl ₁	299 474		d 763	5 30	İ
1155	(NH ₄) ₂ IrCl ₆	441 926	C.	}	2 856	1
1156	IrCl.4NH ₁ .H ₂ O	314 698	Trig.			327
1157	[Ir(NH ₁) ₄ Cl]Cl ₂	384 630	R		2 675	
1158	[Ir(NII ₃) ₆ Br Br ₂	518 004	R.		3 245 14 8	
1159	[Ir(NH ₃) ₆ ('I]Br ₂	473 546	R.		3 01	
1160	$[Ir(NH_1)_bI]I_2$	659 052	R.	İ	3 5861-4	- 1
1161	[Ir(NII ₃) ₆ Cl]I ₂	567 578	R.		3 12	
1162	Ir ₂ (SO ₄) ₃ (NH ₄) ₂ SO ₄ .24H ₂ O	1238 91	C.	106		1
1163	PtCl.	266 146		d. 5o1	5 87	- 1
1164	PtCl ₆ 8H ₂ O	481 185	1		2 43	1
1165	H ₂ PtCl ₆ .6H ₂ O	518 086		60	2 431	
1166	PtBr4	514 894		d. 180		
1167	H ₂ PtBr ₆ .9H ₂ ()	838 880	M.	<100 d.		
1168	PtI4.	702 958		d 100		
1169	PtS	227 295			8 897	
1170	PtSe ₂	353 630			7 65	
1171	PtSe ₁	132 830			7 15	}
1172	Pt(NH ₂) ₄ (OH) ₂	297 370	į	110 d.		1
	Pt(NH ₁) ₂ Cl ₂	300 208	R.	d 270		1
1173 1174	(NH ₄) ₂ PtCl ₆	441 056	C.		3 065	
1175	(Pt(NH ₂) ₄)Cl ₂ .H ₂ O	352 286	Tet.	d. 110	2 737	1
1176	(NH ₄) ₂ PtBr ₆	710 804	C,		4 265	
1176	(NH ₄) ₂ PtI ₆	992 900	C.		4 61	
1177	PtP ₂ O ₇ .	369 278		d >600	4 856	
	1	345 150	C.	>800	10 60	
1179		588 292		195		
1180	[Pt(CO)Cl ₂] ₂	616 292	M.	130		
1181	2PtCl ₂ .3CO	766 124	M.	182		
1182	[Pt(CO)Br ₂] ₂	954 188	141.	ca. 150 d.		
1183	[Pt(CO)I ₂] ₂	618 308	M.	210		888
1184	[CH ₄ (C,H ₄) ₂ SCl] ₂ PtCl ₄	1	M.	210		811
1185	[(C ₂ H ₈) ₃ SCl] ₂ PtCl ₄ N _B Nb Nd Ni O	646 339	.31.	Bo Se Si Su Sr Ta T	To To To To To U V 6 10 24 19 27 70 49 50	

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d ₄ ²⁰	Ref. ind.
1186	[C ₂ H ₄ NH ₂] ₂ H ₂ PtCl ₄	500 117	1	218 d.	2 27514	
1187	[(CH _s) _s N] _s H _s PtCl _s	528 148	1	245 d.	2 015	139
1188	[CH ₄ (C ₁ H ₄)NH] ₅ H ₂ PtCl ₄	528 148		208	2 11516	1
1189	[C ₂ H ₇ NH ₂) ₂ H ₂ PtCl ₄	528 148		214	2 218	
1190	[(iso-C ₂ H ₇)NH ₂] ₂ H ₂ PtCl ₄	528 148		228	2 229	
1191	[(CH ₂) ₄ N] ₂ PtCl ₆	556 179	C.	278 d.	1.81116	
1192	[CH ₂ (C ₂ H ₇)NH] ₂ H ₂ PtCl ₆	556 179		200 d.	1 96816	
1193	[(CH ₂) ₄ C ₂ H ₄ N] ₂ PtCl ₆	584 210	C.	266 d.	1.76217	
1194	[(C2H4)C4H7NH]2H2PtCl6	584 210		199	1.89	1
1195	[C2H4(180-C2H7)NH]2H2PtCla	584 210		180	1 885	
1196	[C ₂ H ₆ (iso-C ₄ H ₆)NH] ₂ H ₂ PtCl ₆	612 240		201 d.	1 804	
1197	[(C2H4)2N]2H2PtCl6	612 240		100	1 903	
1198	[(C ₁ H ₇) ₂ NH] ₂ H ₂ PtCl ₄	612 240		175 d.	1 70416	-
1199	[(CH ₁) ₂ C ₁ H ₇ N] ₂ PtCl ₆	612 240	C.	252 d.	1 821	
1200	[(CH ₁) ₁ (iso-C ₁ H ₇)N] ₂ PtCl ₆	612 240	C.	237	1 87114	1
1201	[(C ₄ H ₇)(180-C ₄ H ₆)NH] ₂ H ₂ PtCl ₆	640 271		188	1 70216	
1202	[(CH ₄)(C ₂ H ₆) ₄ N] ₂ PtCl ₆	640 271	C.	250 d.	1 731	į
1203	$[(CH_{\bullet})_2(C_2H_{\bullet})(C_3H_7)N]_2PtCl_{\bullet}$	640 271	C.	256 d.	1 812	
1204	[(CH ₄) ₃ (C ₄ H ₉)N] ₂ PtCl ₆	640 271	C.	259 d.	1 795	i
1205	[(CH ₄) ₄ (180-C' ₄ H ₂)N] ₂ PtC'l ₆	640 271	C.	220	1 75117	
1206	[(CH ₄)(C ₄ H ₇) ₂ N] ₂ H ₂ PtCl ₆	640 271		>200	1 737	
1207	[(C ₂ H ₅) ₄ N] ₂ PtCl ₆	668 302	C.	250 d.	1 776	1
1208	[(ino-C4He)1NH]2H2PtCla	668 302	1	213	1.621	
1200	[(C ₂ H ₄)(C ₂ H ₇) ₂ N] ₂ H ₂ PtCl ₆	668 302	_	175	1.726	į
1210	[(CH ₂) ₂ (C ₃ H ₇) ₂ N] ₂ PtCl ₆	668 302	Tet.	250	1.745	į.
1211	$[(C_2H_4)_4(C_3H_7)N]_2PtCl_6$	696 333	C.	235 d.	1 710	
1212	$[(CH_2)(C_2H_3)(C_3H_7)_2N]_2PtC]_4$	696 333	C.	228 d.	1 712	
1213	$[(C_2H_4)_2(C_3H_7)_2N]_2PtCl_6$	724 364	C.	220 d.	1 677	
1214	[(CH ₄)(C ₂ H ₄)(C ₁ H ₇)(180-C ₄ H ₉)N] ₂ PtCl ₆	724 364		236 d.	1 637	1
1215	$[(C_2H_b)_3(C_4H_9)N]_2PtCl_6$	724 364	C.	220	1 62916	
1216	[(C ₂ H ₅) ₂ (i80-C ₄ H ₉)N] ₂ PtCl ₆	724 364	M.	215	1 602	
1217	$[(C_2H_6)(C_3H_7)_3N]_2PtCl_6$	752 394	Tri.	212	1 57117	
1218	[(C' ₃ H ₇) ₄ N] ₂ PtC'l ₆	780 424	Tri.	199	1 515	
1219	[(CH ₁)(180-C ₄ H ₉) ₃ N] ₂ PtCl ₆	808 456	R. ?	174	1 696	
1220	[(C ₂ H ₄)(180-C ₄ H ₂) ₃ N] ₂ PtCl ₆	836 487	Tet.	170	1 56217	
1221	$[(C_3H_7)(uo-C_4H_9)_3N]_2PtCl_6$	864 518	C.	168	1 509	
1222	$Pt_x(NO_2)_y(C_nH_bS_c)_z$		and Chlopi	n, 93, 82 : 402; 12.		
1223	PtSi	223 290	1	1100	11 6314	
1224	Pt ₂ Si.	418 520			13 818	
1225	Pt ₄ Si ₂	641.810			14 1	
1226	PtPbCl ₆ .4H ₄ O	687 240	C.		3 681	
1227	PtPbBr ₆	881 926	 .	d. >120	6 025	
1228	PtZnCl ₄ 6H ₂ O	581 450	Trig.		2 717	
1220	PtZnBr ₆ .12H ₂ O	956 291	Trig.		2 877	
1230	PtZnI ₄ .9H ₂ O	1184 34	Trig.		3 689	
1231	PtCdCl ₆ .6H ₂ O	628 480	Trig.		2 882	
1232	PtCuCl _{6.} 6H ₂ O	579 964	Trig.		2 734	1
1233	RuO ₄	133 700	Tet.		7 2	
1234	RuO ₄	165 700		25 5	5 77100	
1235	Ru ₂ S ₂ Laurite	299 595	C.	l l	6 99	1
1236	RuSi	129 760	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 000	5 4	
1237	[Rh ₂ (NH ₃) ₁₀ Cl ₂]Cl ₄	588 879	R.	d. 200	2 0791	
1238	[Rh(NH ₄) ₄ Br]Br ₂	427.814	R.		2 65	
1239	[Rh(NH ₄) ₄ I]I ₄	568 862	R.	102	3.1216	115
1240	NH ₄ Rh(SO ₄) ₂ ,12H ₂ O	529 264	C.	103		130
1241	TlRh(SO ₄) ₂ .12H ₂ O	715 625	C.	100		130
1242	RbRh(SO ₄) ₂ .12H ₂ O	596 665	C.	109		
1243	PdO	122 700		d. 877		
1244	PdCl ₂	177 616		500		
1245	Pdl ₂	360 564	1	d. 350		
1246	PdS p.i.e.	138 765		950	7.3	
1247	Pd ₂ 8	245 465	1	800 d. <960	1.0	
1248		185 900	Da F. B. P.		HI He Ho I Is	Ir K La Li 36 83 58 81
Al As Au 55 13 33	B Ba Be Di Br C Ca Ch Cd Ce (1 Co Cr Ca Cu 4 44 46 85 31	Dy Er Eu F F 67 69 64 3 4	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 36	

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d ¹⁰	Ref. ind
1249	Pd(NH ₂) ₃ Cl ₂	211 678	Tet.	Ì	2 5	1
1250	(NH ₄) ₂ PdCl ₄	284 610	Tet.	1	2 17	
1251	(NH ₄) ₂ PdCl ₄	355 526	C.	}	2 418	
1252	(NH ₄) ₄ PdSO ₂ Cl ₄ .H ₂ O	365 268	Trig.			316
1253	Pd(CO) Cl	205 616	1	197		
1254	Pd(CO) ₂ Cl ₂	233 616		142		
1255	2PdCl, 3CO PdSi	439 232	1 i	132		}
1256	ZnPdCl ₄ .6H ₂ O	134 760			7 3114	
1257	MnO-Manganosite	492 920	H.		2 359	
1258	MnO.H ₂ O—Pyrochroite	70 9300	C.	1650	5 18	180
1259 1260	MnO ₁ —Polianite, Pyrolusite	88 9454	Trig.	l	3 25814	349
1261	MnO ₂ .H ₂ O	86 9300 104 945	R.	İ	5 028	1
1262	Mn ₂ O ₁	_	C.		4	171
1263	Mn ₂ O ₂ .H ₂ O—Manganite	157 860	C.	1	4 50	1070
1264	Mn ₁ O ₄ —Hausmannite	175 875	R.		3 258	1058
1265	MnF,	228 790 92 9300	Tet.	650	4 700	121
1266	MnF ₂ .	111 930	1	856	3 98	İ
1267	MnF ₁ .5HF.6H ₁ O	301 061	1		3 54	
1268	MnCl ₂ —Scacchite	125 846	, C.	650	1 021	
1269	MnCl ₂ .4H ₂ O	197 908	M.	58 01	2 977,4	İ
1270	Mn(ClO ₄) _{2.8} H ₂ O	397 969		05 01	2 01 1 99	
1270 1	MnCl ₂ .3MnO ₂ .3H ₂ O—Kempite	440 682	R.	1	2 94	889
1271	MnBr ₂	214 762	1 1.			oov
1272	MnBr, 4H ₂ O	285 820	M.	64 3d	4 385 ⁷⁸ fused	
1273	MnS-Alabandite	86 9950	C.	d.	3 99	197
1274	MnS ₂ —Hauerite	119 060	c.	``	3 463	196
1275	MnSO.	150 995	``	700	3 25	100
1276	MnSO ₄ .H ₂ O~-Szmikite	169 010	M. ?	100	2 954	742
1277	MnSO4.2H2O	187.026			2 526	174
1278	MnSO ₄ .3H ₂ O	205.041			2 356	
1279	MnSO ₄ .4H ₂ O	223 057	M. R.	i	2 107	
1280	MnSO ₄ .5H ₂ O	211 072	Tri.		2 103	
1281	MnS ₂ O ₆ .6H ₂ O	323 152	Tri		1 757	
1282	MnSe	134,130	C.		5 5916	
1283	MnSeO ₄ .2H ₂ O	234 161	R		2 949	
1284	MnSeO ₄ .5H ₂ O	288 207	Tri.		2 334	
1285	Mn ₄ N ₂	302 666			6 63	
1286	$Mn(NO_3)_2.3H_2O$	232 992		34-81		
1287	$M_D(NO_x)_2.6H_2O$	287 038		25 8	1 82	
1288	NH ₄ MnO ₄	136 969	R.		2 20810 1	
1289	(NH ₄) ₂ SO ₄ , MnSO ₄ , 6H ₂ O	391 229	M.	Ţ	1 831	484
1290	(NH ₄) ₂ SO ₄ .2MnSO ₄	434 133	C.	1	2 5614	
1291	(NH ₄) ₂ SO ₄ ,Mn ₂ (SO ₄) ₁	530 196		ì	2 4011	
1292	(NH ₄) ₂ SeO ₄ .MnSeO ₄ .6H ₂ O	485 500	M.		2 093	
1293	Mn ₆ P ₂	391 628		1	4 94	
1294	$Mn_2P_2O_7$	283 908	M.		3 70745	897
1295	3MnO.P2O1.3H2O—Reddingite	408 884	R.		3 1	842
1296	3MnO.P ₂ O ₅ .4H ₂ O ?—Stewartite	426 898	Tri.		2 94	846
1297	5MnO 2P2O4.4H2O-Palaite	710 808	M.		3 17	843
1298	5MnO.2P ₂ O ₅ .5H ₂ O—Hureaulite	728 823	M.		3 18	835
1299	3MnO.As ₂ O ₄ —Armangite	142 710	H. R.		4 23	
1300	4MnO.As ₂ O ₅ .H ₂ OSarkinite, Polyar- senite	531 655	М.		4 15	954
1301	Mn2O2.4MnO.As2O3.4H2O-Flinkite	743 562	R.		3 87	959
1302	6MnO.As ₂ O ₄ .5H ₂ O—Hemafibrite	745 577	R.		3 6	980
1303	7MnO.As ₂ O _b .4H ₂ O—Allactite	798 492	M.	1	3 84	945
1304	MnSb	176 700		1	5 617	
1305	10MnO.Sb ₂ O ₄ —Manganostibite	1032 84	M.	1		989
1306	Mn ₄ C	176 790	l		6 89 ¹⁷	
1307	MnCO ₂ -Rhodochrosite	114 930	Trig.		3 125	368
1308	MnC ₂ O ₄	142 930	-	1	2 4821 7	
1	Mn(CHO ₂) ₂	144 945	1	1	2 205	1

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{10}	Ref. ind.
1310	Mn(CHO ₂) ₂ .2H ₃ O	180 976	R.		1 953	1
1311	$Mn(C_1H_1O_2)_2$	172 976	[1 74	
1312	$Mn(C_2H_4O_2)_2.4H_2O$	245 038	M.		1 589	
1313	MnCl ₂ .2C ₄ H ₄ N.HCl	320 405	l	175		
1314	MnSi	82 9900		1280	5 9015	
1315	MnSi ₂	111 050	I	1	5 2416	1
1316	Mn _z Si	137 920	I	1316	6.2015	
1317	MnO.SiO ₂	130 990	1	1273	3.48^{24}_4	63
1318	MnO.SiO2Rhodonite	130 990	Tri.	1323	3 724	929
1319	2MnO.SiO2-Tephroite	201 920	R.	1300	4 0434	949
1320	3Mn ₂ O ₄ , MnO SiO ₂ Braunite	604 570	Tet.		4 78	
1321	8MnO 7SiO ₂ 5H ₂ O -Bementite	1077 94	R.		2 90	803
1322	12MnO 8SiO ₂ 7H ₂ O—Ectropite	1457 75	M. ?		2 46	1044
1323	MnSiF, 6H2O	305 082	Trig.	d.	1 90417 5	206
1324	5MnO.SiO ₂ As ₂ O ₂ .H ₂ O Dixenite	630 645	H.		4 2	385
1324 1	12MnO 98iO2, As2O4,7H2O- Schallerite.	1747 73			3 368	344
1325	MnO.TiOPyrophanite	150 830	Trig.	1404	4 54	405
1326	2MnO 6PbO.3As ₂ O ₄ .H ₂ O—Trigonite	2188 84	M.	1101	8 28	1004
1327	2Mn ₂ O ₂ 3PbO.3SiO ₂ —Kentrolite	1165 44	R.		6 19	1014
1328	2Mn ₂ O ₄ 3CuO —Crednerite	554 430	1.		5 0	1017
1329	MnPtCl ₆ 6H ₂ O	571 000	Trig.	d.	2 692	
1330	MnPtCl ₆ 12H ₂ O	679 093	Trig.	u.	2 112	
1331	MnPtBr ₆ ,12H ₂ O	1				1
	MnPtls.9H2O	945 841	Trig.		2 759	1
1332	1	1173 89	Trig.	d	3 604	1
1333	FeO Fe ₂ O ₂ Hematite	71 8400		1420		104
1334	1	159 680	Trig.	1560 d	5.12	424
1335	Fe ₃ O ₄ ,H ₃ OGoethite	177 695	R.		4 28	1026
1336	Fe ₃ O ₃ , H ₂ O —Lepidocrocite	177 695	R.		4 09	1013
1337	Fe ₃ O ₄ Magnetite	231 520	C.	1538 d	5 2	
1338	FeF ₁	93 8400		1	4 09	1
1339	FeF,	112 840			3 18	
1340	FeC1, ~ Lawrencite	126 756	H.		2 7	280
1341	FeCl, 4H ₂ O	198 818			1 93	
1342	FeCl ₄ Molysite	162 214	H.	282	2 8]
1343	2FeCl ₃ 2HCl 4H ₂ O	469 421		15 7		1
1344	FeBr ₃	215 672			4.636_4^{24}	1
1345	FeBr _s 6H ₂ O	403 680		27		Ì
1346	Fel ₂	309 704		177		
1347	FeL 4H,O .	381 764			2 87	1
1348	Fe8 -Troilite	87 9050	H.	1193	4-8	1
1349	FeS ₄ -Marcasite	119 970	R.	Tr 450	4 87	1
1350	FeS ₂ Pyrite .	119 970	C.	1	5 0	1
1351	Fe ₂ S ₄	207 875	l		4 3	
1352	Fe ₃ S ₄	295 780			4 55	1
1353	Fe _i S _K - Pyrihotite	647 400	17.	d. >700	4-6	
1354	FeSO ₄ , H ₂ O- ~Szomolnokite	169 920	M.		3 08	
1355	FeSO ₄ .5H ₂ O—Siderotilate	241 982	Tri.		2 2	642
1356	FeSO _{4.} 7H ₂ O Melanterite	278 012	М.		1 89	471
1357	Fe ₂ O ₂ .28O ₄ .7H ₂ OAmarantite	445 918	Tri.		2.11	762
1358	Fe ₂ O ₂ .2SO ₂ .10H ₂ O- Fibroferrite	499 964	R.		1 86	255
1359	Fe ₂ O ₃ 3SO ₃ .9H ₂ O—Coquimbite	562 014	Trig.		2 1	270
1360	Fe ₂ O ₂ .4SO ₂ .9H ₂ O—Rhomboclasite	642 079	R.			675
1361	FeO, Fe ₂ O ₂ , 48O ₂ , 24H ₂ O ₇ Bilinite	984 150	1		1 87	530
1362	2Fe ₂ O ₁ .SO ₁ .6H ₂ O—Glockerite	507 517	1			958
1363	2Fe ₂ O ₁ .5SO ₃ .18H ₂ O—Copiapite	1043 96	R.		2 1	654
1364	3Fe ₂ O ₃ ,4SO ₃ ,10H ₂ O—Carphosiderite	979 454	Trig.		2 6	371
1365	Fe ₂ O ₁ .3TeO.4H ₂ ODurdenite	662 242	R.			990
1366	Fe ₁ N	125 688	1	d.	6 35	1
1367	Fe(NO ₂) ₂ .6H ₂ O	349 956		35		1
1368	(NH ₄) ₂ SO ₄ , FeSO ₄ , 6H ₂ O .	392 140	M.		1 864	513
1369	(NII4),8O4,Fe3(8O4), 24H2O	964 387	C.		1 71	102
1370	(NH ₄)-SeO ₄ FeSeO ₄ .6H ₂ O	486 410	M.	1	2 160	612
1371	FeP	86 8640	\	1	5 2	\ 3.2
Ai Aa Au 85 13 33		1 CO INTRO		1	** **	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d40	Ref. ind. finding No
1372	Fe ₁ P	142.704		1290	5 7	
1373	Fe ₂ P ₃	204 752	İ		4.5	1
1374	Fe ₂ P	198 544	ĺ	1110	6.71	
1375	Fe ₃ P ₄	291 616		1	5 04	1
1376	Fe(PO ₃) ₃	292 912	İ	1	3 02	1
1377	Fe ₂ O ₄ .P ₂ O ₄ .4H ₂ O—Strengite	373 790	R.	1	2 87	917
1378	3FeO.P ₂ O ₄ .8H ₂ O-Vivianite	501 691	M,		2 58	757
1379	2Fe ₂ O ₃ .P ₂ O ₄ .12H ₂ O—Cacoxenite	677 593	H.		3 38	285
1380	3Fe ₂ O ₃ .2P ₇ O ₅ .8H ₂ O—Beraunite	907 259	M.	-	2 9	950
1381	7FeO.2PrOs.9HrO—Ludlamite	949 115	M.		3 72	873
1382	2Fe ₂ O ₃ .P ₂ O ₃ .2SO ₃ .2H ₂ ODestinezite	657 569	Tri		2 1	794
1383	2Fe ₂ O ₁ .P ₂ O ₄ .2SO ₁ .2H ₂ ODiadochite	657 569	1		2 0	142
1384	FeΛs	130 800		1020	7.83	
1385	FeAs ₂ —Arsenoferrite	205 760	C,	990	7 1	
1386	FeAs2-Löllingite	205 760	R.		7	
1387	FeAsO4.4H2O—Secredite	266 862	R.		3 2	941
1388	3FeO.As ₂ O _b .8H ₂ O—Symplesite	589 563	M.		2 96	857
1389	3Fe ₂ O ₂ .2As ₂ O ₂ .13H ₂ O-Pharmacosiderite		M. 2, C		3	874
1390	FeS ₂ .FeAs ₂ —Arsenopyrite	325 730	R.		6 2	1 114
1391	2FeO.Sb ₂ O _b —Tripuhyite	467 220	1 1.		5 82	1015
1392	FeS.Sb ₂ S ₄ —Berthierite	427 640	R.		3 82 4 0	1015
1393	Fe ₄ C	179 520	1.	10	1	
1394	FeCO ₂ .H ₂ OSiderite	133 855	Trig.	1837	7 4	
1395	FeC ₂ O ₄ .2H ₂ O	179 871		1 100	3 8	377
1396	Fe(CO) ₄	167 840	R.	d 160	2 28	
1397	Fe(CO) ₄			d 140	1 99614	1
1398	$Fe_2(CO)_{\mathfrak{g}}$.	195 840 363 680		- 21	1 1 157	
1399	$FeC_{20}H_{14}O_6S_2.6H_2O$ —Naphthalenc- β -sul-	363 680	1	d. 100	2 08518	1
1000		F70 170	1			
1 100	fonate	578 170				1039
1400	(NH ₄) ₄ Fe(CN) ₆ .2NH ₄ Cl.3H ₂ O	445 083	Trig.		1 490	301
1401	$Fe_4(NO)_7S_3N(C_2H_4)_4$.	659 773			1 88319	
1402	FeSi	83 9000	-		6 1	ł
1403	FeSi ₂	111 960			5 4	1
1404	Fe ₂ Si .	139 740			7 0	
1405	Fe ₃ Si ₂	223 640			6.7	
1406	FeO.SiO ₂ —Gruencrite	131 900	М.	1550	3 5	890
1407	2FeO.S ₁ O ₂ —Fayalite	203 740	R.	1255		978
1408	2Fe ₂ O ₃ .2SiO ₂ .3H ₂ O—Iddingsite	493 526	R.		2 8	928
1409	FeSiF _{6.6} H ₂ O	305 992	Trig.			207
1410	FeO.TiO2Ilmenite	151 740	Trig.		1 75	
1411	Fe ₂ O ₃ .3TiO ₂ —Arizonite	399 380	М. У		4 25	1069
1412	2Fe₂O₁ 3TiO₂—Pseudobrookite	559 060	R.		4 7	1061
1413	6FeO.Sb ₂ O₃.5TiO₂Derbyhte	1122 08	R.)	1 53	420
1414	2Fe ₂ O ₃ , PbO.3SO ₃ ,4H ₂ O Vegasite	854-817	H.	ļ		555
1415	3Fe ₂ O ₃ PbO.4SO ₄ .6H ₂ O—Plumbojarosite	1130 59	Trig.	1	3 63	378
1416	3Fe ₂ O ₃ .2PbO,P ₂ O ₅ .2SO ₃ .6H ₂ O—Corkite .	1335 71	Trig.		1 2	383
1417	5Fe ₂ O ₄ .3PbO.6As ₂ O ₄ —Carminite	2847 - 52			1 1	1
1418	FeS.3Sb ₂ S ₃ .4PbS—Jamesonite	1967 98	M.		5 7	
1419	$3 Fe_2O_1\ 2 PbO, As_2O_3.2 SO_3.6 H_2O -\!$					1
	tite	1423 - 58	Trig.		4 1	386
1420	9Fe ₂ O ₁ .4PbO.6As ₂ O ₅ .4SO ₁ .33H ₂ O		1			
1	Lossenite	4622 21	R.			952
1421	2Fe ₂ O ₄ .3PbO.3SiO ₂ —Melanotekite.	1169 14	R.		5 73	1010
1422	TIFe(SO ₄) ₂ .12H ₂ O	668 - 555	C.		2 38	124
1423	Zn(FeO ₂) ₂	241 060	į		5 33	1
1424	Fe ₂ O ₃ .CuO	$239 \ 250$		1458		
1425	Fe8.Cu8—Chalcopyrite	183 540	Tet.		4 2	1
1426	FeS.2Cu ₂ S.CuS—Bornite	501 950	C.		5 0	1
1427	2Fe8.Cu8—Cubanite .	271 415	R.		1 0	
1428	4FeS.Cu ₂ S.2CuS	702 095			5 0	
1429	4FeS.3Cu ₂ S.3CuS	1116 14	1		4 85	1
1430	3Fe ₂ O ₄ .CuO.2P ₂ O ₄ .8H ₂ O—Chalcosiderite	986 829	Tri.		3 1	969
1431	Fe ₂ O ₃ .2CuO.As ₂ O ₃ .2H ₃ O—Chenevixite	584 .771		(3 93	379
Ma Mo N 42 47 11	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 80 37 80		8 8a 8b 8 63 14	So Se Si Sa Sr Ta 7 56 9 18 22 78 52	Ph Te Th Ti Ti Tin U V	W Y Yb Za Ze 48 57 71 28 21

Mg Ma Mo N Na Nb Nd Ni O P Po Pd Pr Pt Ra Rb Rh Ru S Sa Sb So Se Si Sa Rt Ta To Te Th Ti Tim U V W Y Yb Ze Ze 76 42 47 11 82 51 61 45 1 35 12 23 41 60 37 80 84 40 39 8 63 14 56 9 18 22 78 52 66 10 24 19 27 70 49 50 48 57 71 28 31

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d20	Ref. ind.
1400	FeS.Cu ₂ S.SnS _T -Stannite	429 940	Tet.		4.4	050
1432 1433	Fe ₂ O ₄ .CuO.PbO.2SO ₄ .4H ₂ O-Beaverite	694 642	H.		4.36	373
1434	2Ag,Fe(CN),3NH,	1122 15			2.45	
1435	FePtCls.6H2O	571 910			2.7	
1436	FePtla.9H ₂ O	1174 80			3.45	1
1437	FeO. MnOz—Bixbyite	158.770	C.		4.95	1
1438	Fe ₂ O ₂ , MnO—Jacobsite	230 610	C.		4.75	848
1439	Fe ₂ O ₂ .9MnO.4P ₂ O ₄ 14H ₄ O—Salmonsite	1618 46	R.		2.88	329
1439 1	9(MnFe)O.88iO2.MnCl2.7H2O-Friedelite		Trig.		3 1	1 323
1440	CoO	74 9700	C.	d. 800	5 68	i
1441	Co ₂ O ₃	165 940			5 18	i
1442	Co ₁ O ₄	240 970	1	,	6 073 3 59715	
1443	Co(OH) ₂	92 9854		d.	4 43	
1444	CoF ₂	96 9700	M.		2 58324	1
1445	CoF ₂ ,3H ₂ O	151 016			2 045	ŀ
1446	CoF2.5HF.6H2O .	305 101	Trig.		3 356	
1447	CoCl ₂	129 886			2 47726	
1448	('o('l2 2H2O) .	165 917	1		1 92425	
1449	CoCl ₂ .6H ₂ O .	237 978	M.	86	1.92	l
1450	$C_O(ClO_2)_2.6H_2O$	333 978		61	1.02	131
1451	$C_O(ClO_4)_2.6H_2O$	365 978	H.	143	2 075	
1452	Co(ClO ₄) ₂ 7H ₂ O	383 994		į.	4.9094	
1453	CoBr ₂	218 802		100.1	4.5054	
1454	CoBr ₂ 6H ₂ O	326 894		100 d.	5 68	
1455	Col ₂	312 834			3.68921	
1456	$Co(IO_1)_2.6H_2O$	516 926		> 1100	5 45	
1457	CoS Syepoorite	91 0350	6	>1100	4.9	1
1458	Co ₂ S ₄ -Linnacite	305 170	C.		3 71024	1
1459	CoSO ₄	155 035	1	d.	1 92	
1460	CoSO ₄ .H ₄ O	173 050		u.	2 36825	
1461	CoSO4.4H2O	227 096			2 02925	ł
1462	CoSO ₄ ,6H ₂ O	263.127	M.		1.948_{15}^{25}	481
1463	CoSO ₄ .7H ₂ O—Bieberite	281 143	M. ?		7 65	1
1464	CoSe	138 170	Trı.	d.	2 512	
1465	CoSeO ₄ .5H ₂ O	292 247	M.	u.	2 32	599
1466	CoSeO₄.6H₄O	310 262	M.		2.135	
1467	CoSeO4.7114O	328 278 237 032	, I	91		
1468	Co(NO ₁) ₂ .3H ₂ O	291 078	M.	<100	1 88325	
1469	Co(NO ₂) ₂ 6H ₂ O	248 087		100	2 00112	
1470	Co(NO ₂) ₃ .3NH ₄	281 118	R.		1.92217	
1471	$[Co(NH_i)_i(NO_i)_i]NO_i$	285 173	1		1.47326	ı
1472	$Co(NO_3)_3.6NH_4$	1			1.74425	1
1473	CoF ₂ .6NH ₂	199 157 146 917		ca. 321		1
1474	CoCl ₄ NH ₄	163 948		273	2 09724	- [
1475	$C_0Cl_2.2NH_3$ (α)	163 948			2 07324	
1476	CoCl ₁ .2NH ₂ (\$)	198 010		d.	1.593_{25}^{25}	1
1177	CoCl ₂ .4NH ₄	215 042			1 58025	
1478	CoCl ₂ 5NH ₄	250 500	R.		1 81926	1
1479	[Co(NH ₂) ₄ Cl]Cl ₂	232 073	1	d.	1 49724	
1480	CoCl ₂ .6NH ₄	267 531	M.		1 74426	1
1481	CoCl.:6NH.	300 197			1.7125	
1482	CoCl ₂ .10NH ₂	251 484	R.		1.847	
1483	[Co(NH ₂) ₄ (OH ₂)Cl]Cl ₂	261 050	M.		1.6981	
1484	[Co(NH ₂) ₄ (NO ₂)]Cl ₂	287 500	R.		1.800	
1485	$[\mathrm{Co}(\mathrm{NH_3})_{\bullet}(\mathrm{NO_2})](\mathrm{NO_2})\mathrm{Cl}$	252 864	1	260		
1486	CoBr ₂ .2NH ₂	383 874		d.	2.48347.8	
1487	[Co(NH ₂) ₄ Br Br ₄	320 989			1.955	
1488	CoBr ₂ 6NH ₃	294 958	1		2 09516.8	- 1
1489	[Co(NH ₂) ₂ Br]Cl ₂ .	346 896		222		
1490	Col. 2NII.	395 270	M.		1.901	521
1491	(NH ₄) ₂ SO ₄ ,CoSO ₄ ,6H ₂ O	355 255			1 80426	
1492	Co(8O ₄) ₃ .4NH ₄ .2H ₄ O.	336 256			1.703	
1493	$Co(SO_4)_4.5NH_4$	1 000 200	1	1	Hf Hg Ho I In 73 30 68 6 26	Ir K La 1 36 83 58

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d40	Ref. ind.
1494	[Co(NH ₂) ₄ (SO ₄)]SO ₄ H.2H ₂ O	373 294	R.		1 82814	
1495	[Co(NH ₁) ₄ (OH ₂)] ₂ (SO ₄) ₁ .3H ₂ O	666 523	Tet.		1 854	
1496	[Co(NH ₃) ₄]Cl(SO ₄).3H ₂ O.	346 726	R.		1 765	i
1497	(NH ₄) ₂ SeO ₄ .CoSeO ₄ .6H ₂ O	489 540	M.	d.	2 212	623
1498	Co(NH ₄) ₆ Cl(SeO ₄).3H ₇ O	393 861	R.	u .	1.937	020
1499	Co(H ₂ PO ₂) ₂ .6H ₂ O	297 141			1.8094	ı
1500	CoAs ₂ —Safflorite	208 890	1	d.		1
1501	CoAs Smaltite	208.890		d.	6.97	1
1502	CoAs:—Skutterudite	283 850	İ	u.	6 5	1
1503	Co ₂ As ₁	342 820	1	1 .	6.79	1
	Co ₁ As ₁	1	1	d.	7.350	}
1504	Co ₂ (AsO ₄) ₂ ,8H ₂ OErythrite	326 830		d.	7.82"	1
1505	,	598 953	M.		2 9	850
1506	CoAsS—Cobaltite	165 995	C.	d.	6.2	
1507	CoCO ₂ —Spherocobaltite	118 970	Trig.	1	2 8181	375
1508	CoC ₃ O ₄	146 970	1		2.325	1
1509	Co(CO) ₄ .	170 970		51	1 7318	1
1510	Co(CHO ₂) ₁ .2H ₂ ().	185 016		1	2 12922	ł
1511	CoC ₄ H ₂ O ₄ .2H ₂ O—Malonate	197 016			2 279	
1512	Co(C ₂ H ₃ O ₂) ₂ ,4H ₂ O.	249 078	M.		1 7187	651
1513	Co(C ₅ H ₇ O ₂) ₃ —Acetylacetonate	356 132	1	1		
1514	CoC ₁₀ H ₆ O ₆ S ₂ .6H ₂ O-1, 5-Naphthalenc-			1		[
	disulfonate	453 239	M.		1 77	799
1515	Co(CO),NO	172 978		1 05	1. 1 51314	""
1516	Co(NH ₃) ₅ (C ₂ O ₄) NO ₃ .HNO ₃	357 149	1	. ""	1 26415	ľ
1517	CoSi	87 0300	1	1393	6 30	Į
1518	CoSi	115 090	1	1277	5 3*	
		143 150	1	1	0.0"	1
1519		l	1	1307		{
1520	Co ₂ Si	146 000	-	1327	7 117	1
1521	Co₂SiO₄	210 000			4.63	
1522	CoSiF ₆ .6H ₄ O	309 122	Trig.		2.087	413
1523	CoSnCl ₆ .6H ₂ O	498 510	R. Trig.	1	2.699	
1524	CoPtCl ₆ .6H ₂ O	575 040	Trig.	d.	2.699	ļ
1525	CoPtBr ₆ .12H ₂ O	949.881	Trig.		2.762	
1526	CoPtI ₆ .9H ₂ O	1177.93	Trig.	i	3 618	i
1527	CoPtI ₆ .12H ₂ O	1231.98	Trig.		3 048	
1528	NiO-Bunsenite	74 6900	C.		7.45	201
1529	Ni ₂ O ₃	165 380	į.	1	4 83	
1530	Ni ₂ O ₄ .2H ₂ O	258 085	1		3 41232	
1531	NiF ₂	96 6900	1		4.63	1
1532	NiF ₂ .3H ₂ O	150 736	I		2.01419	
1533	NiF ₂ .5HF.6H ₂ O.	304 821	Trig.		2.132	
	NiCl ₂	129 606	1116.	Į.	3 544	
1534			1	60.1	1	1
1535	Ni(ClO ₃) ₂ .6H ₃ O	333 698		80 d.	2 07	
1536	Ni(ClO ₄) ₂ ,6H ₂ O	365 698	H.	149	0.15	132
1537	Ni(ClO ₄) ₂ .7H ₂ O	383 714	1	1	2 15	1
1538	NiBr ₂	218 522	1	1	4 644	
1539	Ni(1O ₁) ₂	408 554		1.	5 07	İ
1540	Ni(IO ₂) ₂ ,4H ₂ O	480 616	H.	d. ca. 100		
1541	NiS-Millerite.	90 7550	Trig.	797	4 60	1
1542	Ni ₂ S	149 445	j		5 52	
1 54 3	Ni ₂ S ₂	240 200		794 Tr. 545		
1544	Ni ₄ S ₄ —Polydymite	304 330	C.	1	4.7	1
1545	NiSO ₄	154 755		1	3.68	1
1546	NiSO ₄ .H ₂ O	172 770		1	1.98	
1547	NiSO4.6H ₂ O	262 847	Tet. M.	Tr. 53 3	2 07	246
1548	NiSO ₄ .7H ₂ O—Morenosite.	280 863	R.	1	1 948	501
		326 912	Tri.	d.	1.908	501
1549	NiS ₂ O ₄ .6H ₂ O		1 11.	u.	i	
1550	NiSe	137 890	Tot		8.46	000
1551	NiSeO ₄ .6H ₂ O	309 982	Tet.		2 31	262
1552	Ni(NO ₁) ₂ .6H ₂ O	290 798	M.	56.7	2.05	
1553	NH ₄ Cl.NiCl ₂ .6H ₂ O	291 195	M.	40-	1 645	1
1554	Ni(ClO ₂) ₂ .6NH ₂	327 793		180	1.52	1
Mn Mo N 42 47 11	Na Nb Nd Ni O O P Pb Pd Pr Pt Ra 82 81 61 45 1 35 12 23 41 60 37 80	Rb Rh Ru 84 40 39	8 8a 8b	8c Se Si Sn Sr Ta T 56 9 18 22 78 52 60	To Th Ti Ti Tim U V 3 10 24 19 27 70 49 50	W Y Yb Zn Ze 48 57 71 28 21

Index No	. Formula	Mol. wt.	Crystal system	M. P.	d40	Ref. inc
1555	Ni(BrO ₁) ₂ .6NH ₂	416 709		exp. 195	1.99	
1556	Ni(10 ₄) ₂ 5NH ₄	493 710	1		2.97	
1557	(NH ₄) ₂ N ₁ (SO ₄) ₂ 6H ₂ O	394 990	M.	1	1 923	539
1558	(NII ₄) ₂ N ₁ (SeO ₄) ₂ .8II ₂ O	489 260	M.	d.	2 22	643
1559	NiP ₁	120 738	1 1		4 6214	- 1
1560	NiP,	151 762	1 1		4 1918	1
1561	Ni ₂ P	148 404		1112	6.315	
1562	Ni ₁ P ₂	238 118	1 1		5 99	1
1563	Ni(H ₂ PO ₂) ₂ 6H ₂ O	296 861	1 1	d.	1 824	ı
- (1	H.	968	7.570	
1564	NiAs—Nicollite	133 650	1 1	900	7.1	1
- 1	NiAs ₂ —Rammelsbergite	208 610	R.			1
	N12As2—Maucherite	325,990	Tet.	000	7 86°	
1567	N1Am2	443 370		998 Tr. 970		
568	Ni ₂ (A _B O ₄) ₂ .	453 990		11. 970	4 982	
3	3NiO As ₂ O ₄ 8H ₂ O Annabergite	598 113	M.		3 0	845
	NiAsS Gersdorffite	165 715			6 3	040
		:	H.	1159	7.70	
- 1	NiSb- Breithauptite	180 460	11.	1158	7.70"	
	Ni ₈ Sb ₂ Ni ₈ Sb ₂ - Ullimanna	536 990	C	1170	0.	
	NiSbS—Ullmannite	212 525	C.		6.6	
- 1	NiC ₂ O ₄	146 690			2.235	
	Ni(CO)4	170 690		-25	1. 1.310	
	3NiO,CO2,H2O Zaratite	286 085			2 6	136, 143
	Ni(CHO ₂), 2H ₂ O	184 736	1		2.154	1
	$N_1(C_2H_2O_2)_2$.	176 736	1	,	1.798	ĺ
	Ni(C ₂ H ₂ O ₂) ₂ 4H ₄ O	248 798	1		1 744157	
1580	N ₁ C ₁₀ H ₆ O ₆ S ₂ .6H ₂ O- 1, 5-Naphthalene					
	disulfonate	452 959	М.		1 79	808
1581	N ₁₂ S ₁	145 440		1309	7 217	
1582	2N ₁ O ₂ ,3SiO ₂ 2H ₂ O Connarite	397 590	H.		2 5	292
1583	NtStFa 6H2O	308 842	Trig.	d.	2 134	210
1584	NtPdCl66H2O	486 230	H.		2 353	İ
1585	3N1O.6CuO.2As2O1.SO1.7H2O-Lindac-]			
	kerite	1367 50	M. ?		2 25	851
1586	NiPtCl ₆ 6H ₂ O .	574 760	Trig.		2 798	
1587	NiPtBrs.6H2O	841 508	Trig.	į	3 715	
589	CrO_s	100 010	R.	190 d.	2 7	
590	('r ₂ () ₂	152 020	H.	190o	5 21	
- 1	Cr ₄ O ₄ .3H ₂ O	310 086			2 90	
- 1	Cr_bO_9	404 050			4	
	CrF ₂	90 0100	-	1100	4 11	
	CrF,	109 010	R.	>1000	3 8	
	CrCl ₂	122 926	**.	71000	2 75	
)	('r('l,	158 384			2 73	1
1	CrO ₂ Cl ₂	154 926	}	- 06 -	1. 1 836	ł
	(CrO ₂) ₄ Cl ₆	1	-	- 96 5		
- 1	CrS	632 798	1		2 5	
		81 0750	- 1		4 1	
	Cr ₂ S ₃	200 215	1		3 7	
	Cr ₂ (SO ₁) ₁	344 215	1		2 2	
	$\operatorname{Cr}_2(\operatorname{SO}_4)_{\mathfrak{g}}$	392 215	1		3 0	1
	$Cr_3(SO_4)_3.17H_2O$	698 476	i		1 7	
	H ₂ CrSO ₇	198 090	1	190 d.		1
	H ₂ CrSeO ₇	245 225	- 1	200		
	(NH ₄) ₄ CrO ₄	152 088	М.		1 8	
	CrO _{4.3NH₄}	167 103	R.		1 96	1
1	$(NH_4)_2Cr_3O_7$	252 098	M.	ļ	2 15	
	$(NH_4)_2(r_3(t)_{10}$	352 108	R.		2 33	1
610	(NII ₄) ₂ Cr ₄ O ₁₂	452 117	1	170	2 34	
611	NH ₄ IO ₂ ,CrO ₃	292 981	R.		3.5	1
	(NH ₄) ₂ CrSO ₇	232 153	i	160		1
	Cr ₂ (SO ₄) ₂ .(NH ₄) ₂ SO ₄ .24H ₂ O	956 727	C.	100 d.	1 72	101
	CrP	83 0340	- 1		5 7	
	Cr(PO ₂) ₄	289.082	1		2.97	1

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d;0	Ref. ind.
1616	$Cr_4(P_2O_7)_1$	730 184	М.		3 2	
1617	Cr ₂ As ₁	328 900			6 2	Ì
1618	4CrO ₃ .As ₂ O ₄ .2(NH ₄) ₂ O.H ₂ O	752 131	ļ	d 175	1 8a	-
1619	Cr ₁ C ₂	180 030		1890	6 68	1
1620	Cr ₄ C	220 040	1	1	6 75	1
1621	Cr ₅ C ₂	284-050	1	1665	6 92	1
1622	CrC ₁ O ₄ ,H ₂ O .	158 025			2 46	
1623	$\operatorname{Cr}(d\operatorname{-C}_4\operatorname{H}_4\operatorname{O}_6)$	200 041			2 33 0	
1624	Cr[CH(COCH ₂) ₂] ₂ —Acetylacetonate	349 172		214		
1625	$[Cr(CON_2H_4)_6]Cl_3.3H_2O$	572 711	İ	150		1
1626	$[Cr(CON_2H_4)_6](CN)_3.5.5H_2O$	589 400		75		1
1627	$[Cr(CON_2H_4)_6](SCN)_4$	586 510	1	90 d.		1
1628	CrSi ₂	108 130			4.4	
1629	Cr ₂ Si	184 090			6 52	1
1630	Cr_2Si_2 .	212 150			5 5	1
1631	PbCrO ₄ —Crocoitite	323 210	M.	841	6.3	1080
1632	3PbO.2CrO _x —Phoenicochroite	869 620		, , , ,	5.75	I
1633	TlCr(SO ₄) ₂ .12H ₂ O	664 725	C.		2 38	122
1634	ZnCr ₂ O ₄	233 400	1		5 3	122
1635	(NH ₄) ₂ C'r ₂ O ₇ .HgCl ₂	523 624	M		3 11	1
1636	Ag ₂ CrO ₄ .	331 770			5 625	1
1637	Ag ₂ Cr ₂ O ₇	131 780	1			
1638	$MnO.Cr_2O_3$	222 950	1		1 770	
1639	FeCr ₂ O ₄ Chromite		C.	1	1 87	
4	NiCr ₂ O ₆ Cl ₂ .9H ₂ O	223 860	1		1.5	181
1641		491 765	m.	17		
,	MoO ₂	128 000	Tet.		4 51619 8	1
1642	MoO ₁	144 000	R.	795	1 5019 8	
1643	Mo ₆ O ₁₄ .6H ₂ O	812 092	1		3 618	
1644	H ₂ MoO ₄	162 015	H	d 115		
1645	H ₄ MoO ₆	180 031	M Tn ?		3 12415	ļ.
1646	MoF ₆	210 000	i	17		
1647	MoO ₂ F ₂	166 000	ŀ		3 494	
1648	MoOF ₄	188 000	1	98	3 001	l
1649	$MoCl_b$.	273 290		194		
1650	Mol ₂	349 864	1		1 3	1
1651	MoS ₁ —Molybdenite	160 130	H	1185	1.8	İ
1652	Mo_2S_3 .	288 195	ł		5 915	}
1653	(NH ₄) ₂ MoO ₄	196 078	M.	ł	2/270	ŀ
1654	$18M_0O_4.14NH_4.3H_2O_2.18H_2O$.	3256 76	M.		2 975	
1655	$Mo_{1}P_{2}$	254 048	İ	1	6 17	1
1656	$Mo(PO_3)_3$	333 072	İ		$3/28^{\circ}$	ł
1658	MoCl _b .POCl _b	426 688		127		
1659	$18MoO_4.As_2O_6.28H_2O$.	3326 35	Tri.		3 088	1
1660	18MoO ₃ , As ₂ O ₅ , 38H ₂ O	3506 51	Tu.	d.	2 822	
	Bi ₂ O ₃ , MoO ₃ —Koechlinite	610 000	R.			1065
1662	MoC	108 000		2570	8 40	
i	Mo ₂ C	204 000		2380	8.9	1
	Mo(CO) ₆	264 000			1 95	1
	3C ₂ H ₄ (NH ₂) ₂ .HSCN.Mo(OH)(SCN) ₃	462 147		128 d.	,	i
1666	MoSi ₂	152 120		12.7	6-1	1
1	TiO ₂ ,12MoO ₃ ,22H ₂ O	2201 21	Tet.	60	".	Ì
	PbMoO ₄ —Wulfemte	367 200	Tet.	1068	6.7	410
	2PbO,MoO ₄	590 400	100	951	" 1	419
	Fe ₂ O ₃ .3MoO ₂ ,7.5H ₂ O—Molybdite	774 796	R.	501	1 5	919, 936,
1671	WO ₃ .H ₂ O ~Tungstite	250 015	R.	1473	5 5 ?	953 1018
	*****	298 000	1	2 5	0.01	1016
	•	276 000	1	1		1
	WOF4		1	110		
	WCl.	361 290	1	248		
	WCl6	396 748	1	275		1
- 1	WO;Cl;	286 916		0.		1
	WOCl4	341 832	}	211		1
1	WBr4	583 580	i .	276		

		Mol. wt.	Crystal	М. Р.	d.º	Ref. in finding l
Index No.	Formula		system	271		
1679	WOBr.	519 664		232		
1680	WCl ₄ 3WBr ₄	2387 24	1 1	j	6 918	ı
1681	W1,	437 864 691 728	l 1		5 211	- 1
1682	WI4	248 130	' 1	1	7 510	1
1683	WS_{i}	215 024	- 1		8 5	1
1684	WP	246 048	- 1		58	1
1685	WP,	798 048	ł		5 21	
1686	W ₄ P ₂	6520 74	C.		4 68	
	24WO ₁ ,P ₂ O ₄ ,45H ₂ O	333 920			6 91	
	WAs ₂	196 000		2777	15 718	1
	WC	380 000	1	2877	16 06 ¹⁸	į.
	W ₂ C W ₂ C	564 000	i	>2700		İ
	WSi ₂	240 120			9 30	
	W ₂ Si ₂	452 180			10 9	1
	PbO, WO ₃ —Raspite	455 200	M.	1123		1023
	PbO.WO ₄ Stolzite	455 200	Tet.		8 23	401
	CuO,WO ₃ Cuprotangstite	311 570	Tet.			1007
1697	MnO WO ₃ Hübnerite	302 930	M.		7 2	1017
	FeO, WO ₁ - Ferberite	303 845	Tet.		6 64	1062
	Fe ₂ O ₃ .WO ₃ .6H ₂ O-Ferritungstite	499 772	Н.			364
1700	NiO.WO ₁	306 690	R.		6 8820 8	
	3Cr ₂ C ₂ .W ₂ C	920 090	[8 422	
	UO ₂ —Uranimte	270 170	R.		10 5	
	UO ₃ .	286 170			5 92	
1704	UO4 2H2O	338 201		d. 115		
	U ₂ O ₄ —Pitchblende	842 510			7 3ı	
	UF.	352 170	М.		4 68	
	(UO ₂)(ClO ₄) ₂ 4H ₂ O	541 148	1	110 d.		
1708	(UO ₂)(ClO ₄) ₄ .6H ₂ O	577 178		90		1
	UBr ₄	557 834	1		4 84	
1710	UI.	745 898		500	5 6	l
1711	$UO_3(IO_3)_1$	620 034	R.	d. 250	5 2	1
1712	$UO_3(IO_1)_2 H_1O$	638 049			5 05	
1713	UO ₂ SO ₄ .3H ₂ O	420 281	75	d. 100	$\begin{array}{c} 3 \ 28 \\ 2 \ 742 \end{array}$	
1714	UO ₂ NO _{3.6} H ₂ O	440 270	R.	59	2 142	
1715	$UO_2(NO_3)_2$ $3H_2O$	448 232	,	120 d. 100	2 81	525
1716	UO ₂ (NO ₃) ₂ .6H ₂ O .	502 278	R.	d. 100	2 78	020
1717	(NH ₄) ₂ (UO ₂)(NO ₃) ₄ .2H ₂ O	590 310	1		3 01	
1718	(NH ₄) ₂ (UO ₂)(SO ₄) ₂ 2H ₂ O	534 408 554 266	R.		3 9	
1719	UO ₂ .2P ₂ O ₄	1060 65	C.			906
1720	3UO ₂ , P ₂ O ₆ , 6H ₂ O—Phosphuranylite	1304 61	M.		3 3	802
1721	3UO ₃ , As ₂ O ₄ , 12H ₃ O—Troegerite Bi ₂ O ₃ 2UO ₂ 3H ₂ O—Uranospherite	1060 39	R.		6 36	993
1722	5Bi ₂ O ₃ 2UO ₂ 3H ₂ O—Uranospherite 5Bi ₂ O ₃ 3UO ₂ ,2As ₂ O ₄ ,12H ₂ O—Walpurgite.	3816 53	Tri.	Į	5 76	997
1723	UC ₂	262 170		2260	11 318	
1724 1725	U_3C_4	512 340		2400	11 28	
1728 1726	UO3, CO3~~Rutherfordine	330 170	Tet.	* '	5 6	935
1727	UO ₂ C ₄ O ₄	358 170			2 98	
1728	UO ₂ (CHO ₂) ₂ ,H ₂ O	378 201		d. 110	3 6919	
1729	UO ₁ (C ₁ H ₁ O ₂) ₂ ,2H ₂ O	424 247	R.	d. 275	2 8915	
1730	(NH ₄) ₄ (UO ₂)(CO ₃), 2H ₂ O.	558 356			2 77	
1731	UO2(C2H2O2)2 NH4C2H2O2	465 278	Tet.			223
1732	USi,	294 290	1		8 0	
1733	12U2O2.581O2.14H2O- Soddite	6844 60	R.		4 627	
1734	U ₅ Pb ₂ O ₁₇ .4H ₂ O—Curite	1949-31			7 19	1
1735	8UO ₃ , 4PbO,3P ₂ O ₃ , 12H ₂ O - Dewindtite.	3824 49			4 8	
1736	UPbSiO ₆ .1.33H ₂ O—Kasolite	593 450	M.		5 96	
1737	Cu(UO ₂) ₂ P ₂ O ₈ .8H ₂ O···Metatorbernite I	938 081	Tet.		3 5	303
1738	CuO.2UO ₃ .P ₂ O ₄ .8H ₂ O—Torbernite	938 081	Tet.		3.5	737
1739	CuO.2UO ₂ As ₂ O ₄ .8H ₂ O—Zeunerite	993.953	Tet.		3 2	317
1740	vo	66,9600			5 75814	
1741	VO ₂	82 9600	1	>1755	4.399 Hf Hg Ho I In 73 30 68 6 26	Ir K In L

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d ? *	Ref. inc
1742	V ₁ O ₂	133 920			3 64	1
1743	V ₃ O ₄	149 920	1 1	1970	4 871*	
1744	V,O,	181 920		800	3 357	
1745	VF ₂	107 960	R.	Coo	3 36319	1
1746	VF4	126 960	1	d. 325	2 97522	1
1747	VF4	145 960	1 1	11. 17217	2 17719	1
1748	VOF2	104 960	1 1	d.	3 39619	1
	VOF,	123 960	1	1		ł
1749	VCl ₂	123 500	1 1	300	2 459	
1750			II.		3 231	1
1751	VCl ₃	157 334	1		3 001#	1
1752	-	192 792	1	- 100	1. 1 81030	
1753	VOCI	102 418	1		2 824	
1754	VOCI:	137 876	1		2 8813	
1755	VOCl ₁	173 334		<-15	1, 1 829	1
1756	V ₂ O ₂ Cl	201 378	1	j	3 64	}
1757	VOBr	146 876	1 1	d. 480	4 (20)18	1
1758	VOBr ₁	306 708			2 93314 1	
1759	V_2S_2	166 050	1		4 200	ı
1760	V_2S_3	198 115	1		4 721	
1761	V ₂ S ₃	262 245	j		3 000	l
1762	V ₂ O ₄ .3SO ₃ .16H ₂ O—Minasragrite	694 361	M. Tri.			619
1763	VN	64.9680		2050	5 630	ł
1764	(NH ₄) ₄ VS ₄	233 336			1 620	ł
1765	(NH ₄) ₄ V ₂ S ₆ O	382 465	1		1 716	
1766	Bi ₂ O ₃ , V ₂ O ₄ -Pucherite	647 920	R.		6 2524 5	1064
1767	VC	62 9600	1	2830	5 4	
		239 840	1 !	2750smm		1
1768		425 407	R.	58		ı
1769	(NH ₄) ₂ VO(CNS) ₄ .5H ₂ O		Λ.	00	4 42	
1770	VSi ₂	107 080	1			
1771	V ₂ Si	129 080	1	1	5 4817	1
1772	PbO.V ₂ O ₆	405 . 120	1	849		1
1773	2PbO.V ₂ O ₅	628 320	1 1	722		1
1774	3PbO.V ₂ O ₄	851 520		952		1
1775	8PbO.V ₂ O ₆ .	1967 52	l i	794		
1776	9PhO.3V ₂ O ₅ .PhCl ₂ Vanadinite	2832 68	H.		6.863	403
1777	TIVO ₃	303 360	1	424		1
1778	TlaVO	728 160	1	560		Į.
1779	$Tl_4V_2O_7$	315 200		454		1
1780	Tl ₂ V ₄ O ₁₂	1638 24			8 5917.6	1
1781	4(PbZn)O.V ₂ O ₅ .H ₂ O-Descloizite		R.		6 0	1021
1782	Cd ₁₀ V ₆ Cl ₂ O ₂₄	1884 78	Н.		5 20416	
1783	Cd ₁₀ V ₆ Br ₂ O ₂₄	1973 69	H.		5 45614	
1784	2PbO.2CuO.V ₂ O ₅ .H ₂ O—Cuprodescloizite.	i	R.		6.1	1020
		645 440	1	383		
1785	Ag ₄ V ₂ O ₇	3810 80	1	000	2 410	1
1786	5(NH ₄) ₂ O.P ₂ O ₆ .3V ₂ O ₆ .15MoO ₁ .39H ₂ O.	4012 67			2 411	
1787	6(NH ₄) ₂ O,P ₂ O ₅ .6V ₂ O ₅ .12MoO ₃ .41H ₂ O.	1			2 80218	1
1788	3(NH ₄) ₂ O,SiO ₂ ,V ₂ O ₄ ,9M ₀ O ₁ ,20H ₂ O	2054 52			2 80418	
1789	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₅ .10M ₀ O ₃ .21H ₂ O	2216 54	1			1
1790	3(NH ₄) ₂ O.S ₁ O ₂ , V ₂ O ₄ , 11M ₀ O ₂ , 27H ₂ O	2468 63	M. ?		2 807	1
1791	3(NH ₄) ₂ O.SiO ₂ , V ₂ O ₅ , 15MoO ₃ , 24H ₂ O	2990 58			2 816	
1792	3(NH ₄) ₂ O.SiO ₂ .V ₂ O ₅ .9WO ₂ .24H ₂ O	2918 58	1		3 40	
1793	3(NII ₄) ₂ O.SiO ₂ .V ₂ O ₆ .10WO ₂ .21H ₂ O	3096 53	1		3 43	
1794	2UO1.3V2O4.15H2O-Uvanite	1388 33	R.			979
1795	Cb ₂ O ₆	266 200		1520	4 604 2	
1796	CbF,	188.100] !	75 5	3 29	
1797	CbCl,	270 390		104	2 75	
1798	CbOCl ₂	215 474				
1799	CbC	105 100				
1800	Cb ₂ FeO ₆ —Ferroniobite	338 040	R.		6 26	1063
1801	Ta ₂ O ₄ .	443 000	R.	1470 d.	8 73541.2	
1802	em - 11	276 500		96 8	4 74	
i	-	358 790		221	3 6827	
1803	TaCl ₆	581 080		240		
1804 Mn Mo N 42 47 11	TaBr ₆ Na Nb Nd Ni O O P Pb Pd Pr Pt Rs 82 51 61 45 1 25 12 23 41 60 37 80		1	So Se Si Sn Sr Ta T	b Te Th Ti Ti Tm U V 5 10 24 19 27 70 49 50	W Y Yb Z

Index N	o. Formula	Mol. wt.	('rystal system	M. P.	d40	Ref. in finding
1805	Ta('	193 500			8.830	
1806	TuSi,				1	1010
1807	Tu ₂ O ₄ , MuO -Manganotantulate	513 930	R.	1	7.03	1019
1808	$\int B_i O_i$	69 6400	/	1 .	l. 1.85 glass	26
1800	B ₂ O ₄ 3H ₂ O ₂ Sassolite	123 686	Tri.	d.	1.49	448
1810	B ₂ H ₆	27 6862	1 1	169	1	1
1811	B ₄ H ₁₀	53 3570	1	-112		1
1812	B16H14	122 308	1 1	99.5	0.94	
1813	BF _a	67 8200	1 1	- 127		
1814	BCl ₄	117 194	1	- 107	l. 1.4344	
1815	BBr ₁	250 568		- 45	1. 2.60	
1816	B ₂ HBr	102 564	1	-104	_	1
1817	BI.	391 616		43	1. 3.350	ì
1818	B_2S_1	117.835	i i	310	1.55	
1819	BN ₂	38 8360				
1820	NH ₄ BF ₄	104 859			1.85117	
1821	CB ₄	76 9200		2350	2.6	1
1822	B(CH ₃) ₃	55.8893		56		
1823	B(C'2H5)2	97.9355	1		1. 0 69623	-
1824	$B(OCH_8)_{8}$	103 889		!	l. 0 915	
1825	$B(\Theta_2\Pi_b)_{a}$	145 936			l. 0.86425 b	11
1826	B(OC ₃ H ₇) ₈	187 982	1		1. 0.86716	
1827	B(OC ₄ H ₉) ₂ Isobutyl, .	230 028	1 1		1. 0.8649	14
1828	$B(OC_bH_{11})_{\pi}$ - Isoamyl	272 - 074	1		1. 0 8720	17
1829	SiB,	60 5200	1		2 52	
1830	SiB ₆	92 9800	1		2 47	
831	Zr ₂ B ₄	316 280			3 7	
833	ThB₄	275 430	1		7 5	
834	ThB ₄	297 070	1 1		6 4	
835	TIBO:	247 220	1	472	• •	
836	Tl ₃ BO ₃	672 020	1	370 d.		
837	Tl ₄ B ₂ O ₄	919 240		434		
1838	B ₂ O ₂ ,CdO	198 050		875		
839	B ₂ O ₂ ,CuO	149 210		d. 875	3 86	
1840	MnB ₂	76 5700		u. 0,0	6.9	
1841	Mn ₂ B ₄ O ₂	352 070	Tri.	1	3 61	(1)22
842	FeB	66 6600			7.15	923
843	Fe ₂ B	122 500			7.15	
844	FeB ₂	77 4800			5 0	
845	Fe ₂ B ₄	165 780		1340	<i>0</i> 0	
846	Fe ₅ B ₂	300 840		1351		
847	CoB	69 7900		1001	7 0-	
	Co ₄ B	112 740			7.25	
1	N ₁ B	69.5100			7.9	
	Ni ₂ B.	128 200		1225	7.4	
1	Ni ₃ B ₃ .	197.710			8.0	
	CrB.	62 8300		1160	£ .	1
_	Cr ₃ B ₁	177.670			5 5	
	Mo ₃ B ₄	i I			6.715	
	WB ₂	331 280			7	1
	B ₂ O ₄ .9WO ₄ .2N ₁ O,18H ₂ O	205 640	M	00	10.8	
858	Al ₂ O ₂ Corundum	2631 30	M.	80	1. 3 6%	
	$\Lambda l_2 O_3$. $H_2 O \sim Dinspore$.	101.920	Trig.	2050	4 00	359
	Al ₂ O ₄ 3H ₂ O—Gubbsite.	119 935	R.	d. 360	3 413	911
	Al(OH) ₁	155 966	M.	d. 200	2.423	692
1	AIF;	77 9831	M.	101		632
	AlF ₃ ,H ₄ O - Fluellite	83.9600	Tri.	1040	3.07	
	AlCl ₄	101 975	R.		2 17	507
	CREAT TRANSPORT	133 334	Н.	194	2.444	
365	AlD.	202 7-2			1. 1.31400	
	AlBr _a	266 708	Trig.	97.5	3 014	1
366	AID- 15H ()	****	1	}	1. 2 64 100	
	AlBr ₃ .15H ₂ O Al(BrO ₂) ₃ .9H ₂ O	536 939		- 7 5 m		
As Au 13 33		572 847		62.3		
	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Lu 36 83 58 81 72

index No.	Formula	Mol. wt.	Crystal system	М. Р.	d20	Ref. i
1868	AlBrCl ₂	. 177.792	1	143	<u> </u>	
1869	AlI ₄	407 756		191	3.98	
					1. 3 20,200	1
1870	Al ₂ S ₄	150 115	H.	1100	2 02	1
1871	Al ₂ O ₃ .SO ₃ .9H ₂ O—Aluminite	344 124	M.	d.	1 705°	453
1872	Al ₂ O ₂ .2SO ₂ —Alumian	262 050	Tug.	1	2.74	286
1873	Al ₂ O ₃ .3SO ₃ .	342 115	1	d. 770	2 71	
1874	Al ₂ O ₃ .3SO ₃ .18H ₂ O—Alunogenite	630 361	M		1 69117	468
1875	2Al ₂ O ₄ .SO ₄ .10H ₂ O-Felsoebanyite	464 059	R		2 33	587
1876	2Al ₂ O ₄ .SO ₄ .15H ₂ O—Paraluminite	554 136				462
1877	AlN	40 9680	R.	215a		
1878	Al(NO ₁) ₁ .9H ₂ O	375 123	R.	73		
1879	AlCl _a .NH ₄ Cl	186 831	1	304		
1880	AlCl ₁ .3NH ₁	184 427		280 d.		
1881	Al ₂ (SO ₄) ₃ , (NH ₄) ₂ SO ₄ ,	474.258			2 039	
1882	Al ₂ O ₂ (NH ₄) ₂ O,4SO ₂ .24H ₂ O Tschermi-		! !			
	gite	906-628	C.	94.5	1 64	81
1883	AlPO4	121 984	Н.		2 59	ì
1884	Al ₂ O ₃ ,P ₂ O ₅ ,4H ₂ O —Metavariscite	316 030	R.	>1500	2 54	680
1885	Al ₂ O ₃ ,P ₂ O ₆ .6H ₂ O— Lucinite	352 060	R		2 566	724
1886	Al ₂ O ₃ , P ₂ O ₅ ,6H ₂ O —Zepharovichite	352 060		> 1500	2 37	664
1887	Al ₂ O ₂ .3P ₂ O ₆	528 064			2 779	
1888	2Al ₂ O ₃ .P ₂ O ₅ .3H ₂ O—Augelite.	399 934	M	d.	2 77	712
1889	5Al ₂ O ₂ .2P ₂ O ₃ .9H ₂ O—Spherite	955 835	R.	d.	2 536	711
1890	Al(AsCl) ₃	358 214			2 854	
1891	Λl ₄ C ₂	143 840			2 36	
1892	Al ₂ O ₃ .C ₁₂ O ₉ .18H ₂ O—Mellite	714 197	Tet.		1 64	260
1893	Al(CH ₃) ₃	72 0293				19
1894	$Al(C_2H_b)_2$	114 076				29
1895	Al(C _b H ₇ O ₂) ₂ — Acetylacetonate	324 122		194		
1896	$Al(OC_6H_5)_2$	306 076		ca. 265	1 23	
1897	$NH_3(CH_3)Al(SO_4)_2.12H_2O$	467 329	C.		1 568	75
1898	Al ₂ O ₂ .SiO ₂ —Andalusite	161 980	R.	d.	3 2	815
1899	Al ₂ O ₃ S ₁ O ₂ Cyanite	161 980	Tri.	d.	3 6	907
1900	Al ₂ O ₃ .SiO ₂ —Sillimanite	161 980	R.	d. <1550	3 23	819
1901	Al ₂ O ₃ 2SiO ₂ .2H ₂ O —Kaolinite	258 071	M	1	2 6	690
1902	Al ₂ O ₃ , 2S ₁ O ₂ , 4H ₂ O—Newtonite	294 102	Tet		2 37	274
1903	Al ₂ O ₃ .4S ₁ O ₂ .H ₂ O- Pyrophyllite	360 175	R.		2 85	727
1904	3Al ₂ O ₃ .2SiO ₂ —Mullite	425 880	R	1810 d.	3 156	
1905	2(AJF)O.SiO ₂ -Topaz .		R		3.58	784
1906	Λl ₃ Ti ₂	176 680	Tet,		3 348	
1907	3Al ₂ O ₃ .2PbO.2P ₂ O ₅ .7H ₂ O- Plumbo-		1			
	gummite	1162 36	11	d.	4 014	325
1908	3Al ₂ O ₃ 2PbO.2SO ₃ .P ₂ O ₅ .6H ₂ O-	i	1			
	Hinsdalite	1162 43	11.		3 65	865
	2Al(OH) ₃ Pb(HCO ₃) ₂ Dundasite	485 182	ļ		3 25	
	$Al_2(SO_4)_3$, Tl_2SO_4 , $24H_2O$	1279 35	C.	91	2 320	107
1911	Al ₂ O ₃ .ZnO—Automolite (Gahnite)	183 300	C.		4 58	161
1912	$3\mathrm{Al_2O_4.6ZnO.2SO_4.18H_2O}$ —Zincaluminite		H.	d	2 26	256
1913	Al ₂ O ₃ .4CuO.SO ₃ .8H ₂ O -Cyanotrichite	644 388	R		2 737	779
1914	(AlCl)O.6CuO.SO ₃ .9H ₂ O—Spangolite		Trig.	d	3 14	340
1915	3Al ₂ O ₃ ,CuO.2P ₂ O ₆ .9H ₂ O~ ·Turquoise	831 565	Trı	d. 300	2 67	782
	4Al ₂ O ₃ .18CuO.5As ₂ O ₄ .55H ₂ O—Liroconite	3980-39	M	d.	2 96	830
1917	Al ₂ O ₃ .MnO.	172 850	(,		4 12	
1918	Al ₂ O ₃ .MnO.4SO ₃ .24H ₂ O—Apjohnite.	925 480	М.		1 782	477
1919	Al ₂ O ₄ .2MnO.P ₂ O ₅ .4H ₂ OEosphorite	457 890	R.		3 13	837
1920	Al ₂ O ₃ .MnO.2S ₁ O ₂ .2H ₂ O—Carpholite	329 001	R.		2 94	801
1921	Al ₂ O ₃ .3MnO.3SiO ₂ —Spessartite	494 890	C.		4 180	167
	Al ₂ O ₂ .7MnO.8SiO ₂ .6H ₂ O -Ganophyllite.	1187 00	М.		2 84	914
1923	Al ₂ O ₃ .FeOHercynite	173 760	C.		3 93	165
1924	Al ₂ O ₂ .FeO.4SO ₂ .24H ₂ O—Halotrichite	926 390	M.		2 01	505
1925	Al2O3.FeO.P2O5.11H2O -Paravauxite	513 977	Tri.	d.	2 3	681
1926	Al2O2.2FeO.P2O4.4H2O—Childrenite	459 710	R.	d.	3.23	876
Mn Mo N 42 47 11	Na Nb Nd Ni O Oa P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80		g 0. gt 0	e He Hi Hn Hr Ta Th		W Y Yb Z 48 57 71 2

1007	W White of the contract of the		system	1		finding
1927	2Al ₂ O ₄ .4FeO.3P ₂ O ₄ .24H ₂ O-Vauxite	1349.71	Tri.		2.45	677
1928	Al ₂ O ₁ .3FeO 3SiO ₂ —Almandite .	497 620	C.		4.04	166
1929	Al ₂ O ₂ .3FeO 2SiO ₂ .3H ₂ O—Daphnite	491 606	M.			826
	5Al ₂ O ₂ .2FeO 4SiO ₂ .H ₂ O—Staurolite	910.528	R.		3.7	930
	Al ₂ O ₂ .CoO	176.890	C.		4 374	j
	3Al ₂ O ₄ .4CoO	605 640			4 80	
	AlB ₁₂	156 800	M.	l	2.5	1
	Al ₂ O ₃ .B ₂ O ₃ —Jeremejevite	171 560	H.		3 3	313
	BO ₂ (AlO) ₂	187.700	R.			758
	C_2B_{12} , $3AlB_{12}$	624 240	Tet		2 615	1
	8Al ₂ O ₂ , B ₂ O ₂ 6SiO ₂ H ₂ O - Dumortierite	1263 38	R.	1	3 3	886
	Se ₂ O ₂	138 200	1 1		3 864	
	SeC1,	151 474	1 1	930		
	SeBr ₄	284 848	1		3 91	
	Se ₂ (SO ₄) ₁	378.395			2 579	
	Sc(NO _i) _i	231 124		150		
	Sc(NO ₂) ₃ .4H ₂ O	303 186		d. 100		1
	Sc ₂ O ₃ .2SiO ₂ Thortveitite	258 320	R.		3 57	946
	Yt ₂ O ₂	226 000		2110	4 84	1
	YtCl.	195 374	1	<686	2 84	
	YtCl ₄ .H ₂ O	213 389		160		
	Yt(BrO ₄) ₄ ,9H ₄ O	634 887		74		!
	Yt ₂ (SO ₄) ₃	466 195	1	Ĭ	2 612	;
	Yt ₂ (SO ₄) ₃ .8H ₄ O	610 318	M.		2.558	661
	Yt ₂ O ₄ , P ₂ O ₅ Xenotime	368 048	Tet.		4 6	348
	$Yt_4(P_2O_7)_3$	878 144			3.059	
	YtC ₂	113 000			4 13	
	Yt(CH ₂ CO ₂) ₂ .4H ₂ O	338 131	Tri.	l	1 696	
	Yt(C ₂ H ₄ SO ₄) ₆ 18H ₂ O	1163 90	H.		1.764^{25}_{4}	238
	2Yt ₂ O ₁ , 4S ₁ O ₂ , H ₂ O Thalenite	710 255	M.		4.23	925
	Yt ₂ Pt ₄ (CN) ₁₂ 21H ₂ O	1453 90	R.		2 376	
	Yt ₂ (MoO ₄) ₃	658 000		1347	4 7916	415
	Lin ₂ O ₂	325 820	1	>2000	6 51	1
	InCla	245 284	1	907	3.947^{18}_{4}	ļ
	InCl ₃ 711 ₂ ()	371 392	1	d. 91		1
	In(BrO ₃) ₃ 2H ₂ O	558 689	1 1	d. 150		
	as(BrO ₁) ₂ 9H ₂ ()	684 797	1 1	37 5		
	ark;	203 040	1 1	d. 650		İ
	m ₂ N ₃	374 015	1		4.911^{11}	
	M2(SO4)2	566 015	1	1	3 600	
	$m_2(SO_4)_1 \ 9\Pi_2O$	728 154	1		2 821	
	NH ₄) ₂ La ₂ (SO ₄) ₄ SH ₂ O	812 281	M.		2 516	
	m ₂ O ₄ 5P ₃ O ₅	1036 06	M.		3.241	İ
	.a(C ₂ H ₀ SO ₄) ₆ 18H ₂ ()	162 910			5 02	
		1213 81	H.	1	1 8454	224
	[lgLat(NO ₃) ₈ ,4H ₂ O	929 812		72 d.	3.318^{0}_{4}	1
	InsLa ₂ (NO ₃) ₁₂ 24H ₂ O	1650 43		98 0	$2 \cdot 161^{\circ}_{4}$	
	m ₂ Pt ₃ (CN) ₁₂ .18H ₂ ()	1499-88	M.	ļ	2 626	
,	dn ₃ Ln ₂ (NO ₂) ₁₂ 24H ₂ O	1619 08		87 2	2.080°_{4}	
	'03La ₂ (NO ₃)12 24H ₂ () St.La ₂ (NO ₃) = 24H ₂ ()	1631 20		101 ×	2 1314	
	Stalm2(NO2)12.24H2O m2(MoO4)2	1630 36		110 5	$2 \cdot 146^{\circ}_{4}$	i
	'eO ₂	757 820	Tet.	1181	4.7716	
1	'cF ₃ Fluocerite	172 250	C.	1950	7 3	
i	'eC'l _a	197 250	11	1324	5 8	298
- 1	ec (3 'e(BrO _x) ₅ ,9H ₂ O	246 624	.,	848	3.92°_{4}	i
	((1103)3.91130 (e ₁ S ₃	686 137	II	49		
	$(e_2(SO_4)_3)$	376 695			5 02011	
	°2(SO4)3.5H2O	568 695			3 912	
1		658 772	M.		3 17	
	'e ₁ (SO ₄) ₃ SH ₂ O 'e ₁ (SO ₄) ₃ ,9H ₂ O	712 818	Tri.	630	2 88617	
1		730 834	Н.		2 831	1
386 I C						
	e ₂ (S ₂ O ₆) ₃ , 15H ₂ O e ₂ SeO ₄	1031 12 423.700	Tri. R.		2 288 4 456	. 560 748

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_{ϵ}^{20}	Ref. ind.
1988	(NH ₄) ₂ Ce(NO ₂) ₃ .4H ₂ O	558.429	M.	74		
1989	$(NH_4)_3SO_4.Ce_2(SO_4)_3.8H_2O$	844 961	M.		2 52s	
1990	CePO	235 274			5 22	ł
1991	$Ce(PO_s)_s$	377 322			3 27	
1992	CeC ₁	164 250			5 2s	1
1993	$Ce(C_1H_1O_2)_2$	258 296	ļ	308 d.		
1994	CeOF.CO ₂ —Bastnäsite	219 250	Н		5 0	346
1995	$Ce(C_2H_4SO_4)_6.18H_2O$	1215 15	H.		1 9304	225
1996	CeSi ₂	196 370			5.6717	1
1997	$Tl_2Ce(NO_3)_4.4H_2O$	931 152		61 5 d.	3 3262	1
1998	Zn ₂ Ce ₂ (NO ₂) ₁₂ .24H ₂ ()	1653 11	Trig	92 8	2 188	1
1999	Ce ₂ Pt ₃ (CN) ₁₂ .18H ₂ O	1502 56	M		2 657	1
2000	Mn ₂ Ce ₂ (NO ₁) ₁₂ .24H ₂ ()	1621 76	1	83 7	2 1024	1
2001	Co ₂ Ce ₂ (NO ₃) ₁₂ .24H ₂ ()	1633-88	(98 5	2 157	1
2002	Ni ₃ Ce ₂ (NO ₃) ₁₂ .24H ₂ ()	1633 04		108 5	2.173°_{4}	1
2002 1	$Ce_2(MoO_4)_1$	760 480	R. Tet.	973	4 83	416
2003	$Ce_2(WO_4)_3$	1024 50	Tet.	1089	6 7716 5	1
2004	Ce ₂ O ₃ .3Al ₂ O ₃ .2P ₂ O ₄ .6H ₂ O—Florencite.	1026 45	Trig	1	3 59	337
2005	Pr ₂ O ₃	329 840			6 87	
2006	Pr ₄ O ₇	675 680			6 715	1
2007	Pr ₁₀ O ₁₈	1697.20	ł		6 704	1
2008	PrCl ₂ .	247 294		818	4 02026	1
	Pr(BrO ₃) ₃	524 668		d, 150	4 0204	1
2009		686 807	11.	56.5		
2010	Pr(BrO ₃) ₃ ,9H ₂ ()		11.	30 3	5.04211	
2011	Pr ₂ S ₃	378.035			i	
2012	Pr ₂ (SO ₄) ₂	570 035			3 72016	
2013	Pr ₂ (SO ₄) ₄ 5H ₂ ()	660 112	M.		3 173	000
2014	Pr ₂ (SO ₄) ₃ .8H ₂ O	714 158	М.		2 82	663
2015	$Pr_2(SeO_4)_4$	711 440			4 3015	1
2016	Pr ₂ (SeO ₄) ₃ .8H ₂ O	855 563			3 094175	
2017	PrC ₂	164,920	1	1	5 1	
2018	Pr(C ₂ H ₆ SO ₄) ₆ ,18H ₂ O	1215 82	11		1 8764	226
2019	$Zn_{3}Pr_{2}(NO_{3})_{12}.24H_{2}()$	1654 45	Trig.	91 5	2 2024	1
2020	$Mn_3Pr_2(NO_3)_{12}.24H_2()$	1623 10		81 0	2 1094	j
2021	Co ₃ Pr ₂ (NO ₃) ₁₂ .24H ₂ ()	1635 22		97 0	2 1764	
2022	$Ni_3Pr_2(NO_3)_{12}.24H_2()$	1634-38		108 0	2 1954	1
2023	Nd_2O_3	336 540			7 24	
2024	NdCl ₂	250 644	1	784	4 1314	
2025	NdCl ₃ 6H ₂ O	358 736	1	124	2 2824 8	
2026	$Nd(BrO_3)_3.2H_2O$	564 049	1	d. 150		1
2027	Nd(BrO ₂) ₃ .9H ₂ O	690 157	l II	66 7		
2028	Nd ₂ S ₃ .	384 735	i	1	5 17911 ?	
2029	Nd2(SO4)3.8H2O	720 858	M.		2 850	668
2030	NdC ₂	168 270			5.15	
2031	Nd(C ₂ H ₆ SO ₄) ₆ .18H ₂ O	1219 17	H.	1	1 8834	227
2032	Zn ₃ Nd ₂ (NO ₃) ₁₂ .24H ₂ O	1661 15		88.5	2 2154	
2033	Mn ₂ Nd ₂ (NO ₂) ₁₂ .24H ₂ O	1629 80		77 0	2 114	
2034	Co ₂ Nd ₂ (NO ₂) ₁₂ .24H ₂ O	1641 92		95 s	2 195	
2035	Ni ₂ Nd ₂ (NO ₂) ₁₂ .24H ₂ O	1641 08		105-в	2 202	
2035 1	Nd ₂ (MoO ₄) ₁	768 540	Tet.	1176	5 1118	414
2036	(NdPr) ₂ (SO ₄) ₄ .8H ₂ O		M.			658
2037	Sa ₂ O ₁	348 860	1	l	7 43	
2038	SaCl ₂	221 346			3 6922	
2039	SaCl ₂	256 804		686	4.4618	
2040	SnCl ₃ .6H ₂ O	364 896	Tri.	1	2 383	
2040	SaOCI	201 888		1	7 02	
		498 270			2 971	1
2042	SaBr ₂ 6H ₂ O	570 209		d. 150	- ""	1
2043	Sa(BrO ₃) ₂ .2H ₂ ()	696 317	II.	75		1
2044	Sa(BrO ₃) ₃ ,9H ₂ O	1	,1.	."	3 7	1
2045	Sa ₂ S ₃	397 055	Nr.		2 930	670
2046	Sa ₂ (SO ₄) ₄ .8H ₂ ()	733 178	M.	1	2 375	010
2047	$Sa(NO_3)_3.6H_2O$	444 546	Tri.	1		1
2048	SaPO4	245 454			5.8317 5	

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d40	Ref. ind finding N
	Sa('2	174 430	<u> </u>		5.86	,
2049	Sa(CHO ₂);	285 453		Į.	3.733	1
2050	Sa(C ₂ H ₄ O ₂) ₃ .4H ₂ O	399 561			1 94	1
2051 2052	Sn(C ₁ H ₂ O ₁) ₄	369 546			1.894	
2053	S6(C ₂ H ₃ O ₂) ₃ .3H ₂ O	123 592			1.786	004
2054	Sa(C ₂ H ₂ SO ₄) ₈ 18H ₂ O	1225 33	H.	ļ	1 9044	234
2055	Zn ₂ Sa ₂ (NO ₃) ₁₂ 24H ₂ O	1673 47		76 5	2 2834	l
2056	Mn ₂ Sn ₂ (NO ₄) ₁₂ 24H ₂ O	1642 12	1	70 2	2 1884	1
2057	Co ₂ Sa ₂ (NO ₂) ₁₂ 24H ₂ O	1654 24		83 2	2 237%	
2058	Ni ₃ Sn ₂ (NO ₄) ₁₂ 24H ₂ O	1653 40	1	92 2	2 2724	-
2059	Sa ₂ O B ₂ O ₃	386 500	1		6 05	
2060	Eu ₂ O ₃	352 000			7 42	200
2061	Eu(C ₂ H ₅ SO ₄) ₅ 18H ₂ O	1226 90	H.		1 9094	239
2062	Gd ₂ O ₂	362 520	1		7 407	
2063	GdCl ₂	263 634		62×	4 524	
2064	GdCl ₂ 6H ₂ O	$^{+}$ 371 726			2 424	
2065	GdBr ₃ .6H ₂ O	505 100	1		2 84413	
2066	$Gd_2(SO_4)_3$	602 715			4 13914 6	1
2067	Gd ₂ (SO ₄), 8H ₂ O	746 838	M		3 01014 6	
2068	Gd(NO ₃) ₃ 5H ₂ O	433 361		92	2 40615	
2009	Gd(NO ₂) ₄ 6H ₂ O	451 376	Trı	91	2 332	
2070	Gd ₂ (C ₂ O ₄) ₄ .10H ₂ O	758 674		110		
2071	Gd(C ₂ H ₄ O ₂) ₄ HH ₂ O	406 391	Tri		1 611	1
	Gd(C ₂ H ₀ SO ₄) ₆ 18H ₂ O	1232 16	H.		1.919_4^{25}	235
2072	Zn ₃ Gd ₂ (NO ₃) ₁₂ 24H ₂ O	1687 13		56 s	2 351%	
2073	Gd ₂ Pt ₃ (CN) ₁₂ 21H ₂ O	1590 63	R		2 563	
2074	Co ₃ Gd ₂ (NO ₄) ₁₂ 23H ₂ O	1667 90		63 2	$2 \ 315^{0}_{4}$	
2075	1	1667 06		72 5	2.356°_{4}	
2076	N ₁₂ Gd ₂ (NO ₂) ₁₂ 24H ₂ O	265 574		588	4 35 ⁰	ł
2077	TbCl ₄	453 316	M	89 3		1
2078	Tb(NO ₃) ₃ 6H ₂ O	373 040			7 81	l l
2079	Dy ₂ O ₄	268 894		680	3 674	
2080	DyCl ₁	1237 12	11.		$1 \cdot 192^{25}_4$	240
2081	Dy(C ₂ H ₃ SO ₄) ₈ 18H ₂ O	383 400	1 "		8 640	l l
2082	Er ₂ O ₃	623 595	1		3 678	
2083	Er ₂ (SO ₄) ₃	767 718			3 180	
2084	Er ₂ (SO ₄) ₃ .SH ₂ O	116 831	Trı.		2 114	1
2085	$\operatorname{Er}(\operatorname{C}_2\operatorname{H}_3\operatorname{O}_2)_3\operatorname{HI}_2\operatorname{O}_2$	1242 60	H.		1 9074	233
2086	Er(C ₂ H ₅ SO ₄) ₆ 18H ₂ O	395 200	1 "		9 17	
2087	Yb ₂ O ₃	388 066			2 575	
2088	YbCl ₁ 6H ₂ O	635 395			3 793	Į.
2089	Yb ₂ (SO ₄) ₄	779 518			3 286	
2090	Yb ₂ (SO ₄) ₃ SH ₂ O		1		4 140	- 1
2001	$Yb_2(SeO_4)_4$	776 800			3 30	ŀ
2092	Yb ₂ (SeO ₄) ₃ 8H ₂ O	920 923	1 1		2 682	1
2093	Yb(NO ₃) ₁ 4H ₂ O	431 686			3 67	
2094	Yb ₂ (CO ₃), 4H ₂ O	599 262	1		2 439	
2095	Yb(C ₂ O ₄) ₃	437 600	1		2 644	
2096	Yb(C ₂ O ₄) ₃ , 10H ₃ O	617 754			2 09	
2097	$Yb(C_2H_3O_2)_3, HLO$	422 731		>916	3.98	
2098	LuCh	281 371	1 1	2812	9 68	
2099	HfO ₂	211 000		2012	0 00	270
2099 5		410 039	1			70
2099 6	The state of the s	366 034	C.	2100	3 025	347
2100	BeO	25 0200	H.	2400	1. 2 115	7
2101	BeF ₂	17 0200			2 3	1
2102	2BeO 5BeF ₄	285 140		110	1 899 ²⁵	1
2103	BeCl ₂	79 9360		140	1 0094	
2104	BeBr ₂	168 852	1	490	4 9015	
2105	BeI ₂	262 884		510	4 2015	
2106	BeSO ₄	105 085	1	1	2 443	910
2107	BeSO ₄ 4H ₂ O	177 147	Tet.		1 71310 5	219 537
2108	BeSeO ₄ 4H ₂ O	224 282	R.	20.	2.03	037
2109	Be ₃ N ₁	. 55 0760	1	2200		1

Index No.	Formula	Mol. wt	Crystal system	M, P.	d ₂₀	Ref. ind.
2110	Be(NO ₃) ₂ .3H ₂ O	187 082		60	1	hmaing 14
2111	Be₂C	30 0400		(//	1 915	
2112	$Be(C_2H_4)_2$.	67 0970	'		1 3"	
2113	$Be(C_2H_7)_2$	95 1278	1		}	
2114	Be(C ₄ H ₂ O ₂) ₂ —Acetylacetonate	207 128	M	108	1 1004	
2115	$BeO.3Be(C_2H_2O_2)_2$	170 126	"		1 1684	
2116	$BeO.3Be(C_1H_3O_2)(C_1H_3O_2)$	448 265	! !	284	1 364	
2117	Be().3Be(('aH _b () ₂) ₂	490 311		127		
2118	BeO.3Be(C ₄ H ₇ O ₂) ₂	574 403	į l	120	Í	
2119	BeO.Be(C ₂ H ₅ SO ₄) ₂ .4H ₂ O	356 309	Tet		1	
2120	BeO.SiO ₄ .	85 0800	161			220
2121	2BeO.SiO ₂ —Phenacite	110 100	w.	>1755		
2122	4BeO.2SiO ₂ , H ₂ O—Bertrandite	238 215	Tu.		3 0	326
2123	BeOH.BeBO2—Hambergite		R.		2 6	764
2124	BeO.Al ₂ O ₃ —Chrysoberyl	93 8677	R.		2 35	733
2125	3BeO.Al ₂ O ₃ .6SiO ₂ —Beryl.	126 940	R.		3 76	933
2126	2BeO. Al ₂ O ₃ .2SiO ₂ .H ₂ O—Euclase	537 340	H.	1410	2 66	284
2127	· ·	290 095	M		3 1	839
	2BeO. Yt ₂ O ₃ . FeO. 2SiO ₂ Gadolinite	468 000	M.		1 3	947
2128	MgO -Periclase	40 3200	C.	2800	3 65	158
2129	MgO.H ₂ O - Brucite	58 3354	Trig		2.4	272
2130	MgF ₂ - Sellaite.	62 3200	Tet	1396	3,0	208
2131	$MgCl_{\tau}$ Chloromagnesite	95 2360	н	712	2 325	335
2132	MgCl ₂ 6H ₂ O—Bischofite.	203/328	M.	118 d	1.56	562
2133	$Mg(ClO_3)_2.6H_2O$	299 328		35	1 80	17
2134	Mg(ClO ₄) ₂	$223 \ 236$		d. 251	2 60%	
2135	$Mg(ClO_4)_2.6H_2O$.	331 328		147	1 970/*	
2136	MgBr ₂	184 152		700	3 72	
2137	$Mg(BrO_x)_2 6H_2O$	388 244	(*	•	" '-	117
2138	MgI ₂	278 184	ì		4 25	111
2139	$Mg(1O_4)_2.4H_2O_1$	446 216	M.		3 3134	ł
2140	MgS	56 3850				1
2141	MgSO ₄	120 385	1	1105	2 80	1
2142	MgO SO ₃ , H ₂ O—Kieserite	1 1		1185	2 66	
2143	MgSO _{4.} 5H ₂ O	138 400	M.		2 57	637
2144	MgSO ₄ .6H ₂ O Hexahydrite	210 162	Tri.		1 718	511
2145	•	228 177	М.		1.76	
2146	MgO.SO ₃ .7H ₂ O- Epsomite	246 493	R.		1 68	447
,	MgS ₂ O ₆ 6H ₂ O	292 542	Tri.		1 666	
2147	MgSeO ₄ .6H ₂ O	275 612	М.		1/928	503
2148	MgO. N ₂ O _b . H ₂ O — Nitromagnesite	166 351				558
2149	$Mg(NO_4)_2.6H_2O$	256 128	1	95	1 464	i
2150	(NH ₄) ₂ O,MgO 2SO ₃ .6H ₂ O		1			İ
- 1	Boussingaultite	360-620	М.	>120	1 70	464
2151	(NH ₄) ₂ O,MgO,2SeO ₃ ,6H ₂ O	454 890	М.		2 04	568
2152	$Mg_2P_2()_7$	222 688	ŀ		2 59822	761
2153	2MgO.P2O5.7H2O -Newberyite	348 796	R.	ĺ	2 10	585
	3MgO.P ₂ O ₅ .8H ₂ O—Bobierite	407 131	Μ.		2 11	595
2155	$Mg(H_2PO_2)_2.6H_2O$	262 491	Tet		1 5911	"""
2156	3MgO.P ₂ O ₅ .MgF ₂ —Wagnerite	325 328	M.		3 12	701
2157	(NH ₄) ₂ O.2MgO.P ₂ O ₅ .12H ₂ O-Struvite	490 950	R.		1 72	522
2158	3MgO.(NH ₄) ₂ O.2P ₂ O ₅ .10H ₂ O	1				1,22
	Hannayite	637 288	Tu		1.89	703
2159	3MgO.As ₂ O ₄ .8H ₂ O—Hoernesite	495 003	M.		45 (4.1	
44	ANTER LANGE AND THE CO.		.,,		2 60	702
!		289 411		001	1 93215	
	· · ·	316 500	1	961		
	Mg ₂ Bi ₂	490 960		715		1
	MgO.CO ₂ —Magnesite	84 3200	Trig	1	3 037	342
	MgO.CO ₂ .3H ₂ O—Nesquehonite	138 366	R		1 850	542
	MgO.CO ₂ .5H ₂ O -Lansfordite	174 397	M	1	1 73	459
a	2MgO,CO ₂ ,4H ₂ O—Artinite	196 702	R.	ļ	2 02	630
	4MgO.3CO ₂ .4H ₂ O—Hydromagnesite.	365 312	R		2 16	622
	$Mg(d-C_4H_4O_6).5H_2O$	262 128	M.		1 67	
	$Mg(d-C_4H_6O_6)_2.4H_2O$	394 459	R.	1	1 72	
2170	$Mg(C_2H_2O_2)_2$	142 366		323	1 42	

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d_4^{20}	Ref. inc
2171	Mg(C ₂ H ₃ O ₂) ₂ ,4H ₂ O	214.428	M.		1.454	512
2172	Mg(CH ₂ SO ₁) ₂ .4H ₂ O Ethane disulfonat	e 284 542	Tri.		1.727	
2173	MgC ₁₀ H ₄ O ₆ S ₂ .6H ₂ O-1, 5-Naphthalene		1			1
	disulforate	418 589	M.		1.64	777
2174	Mg ₂ Si	76 7000		1102		
2175	MgO.SiO ₄ —Clinoenstatite	100 380	M.	1557 d.	3.28	836
2176	MgO SiO ₂ - Enstatite	100 380	R.	d.	3.19	832
2177	2MgO SiO ₂ —Forsterite	140 700	R.	1890	3.26	828
2178	2MgO 3SiO ₂ ,4H ₂ O -Parasepiolite	332 882	R.			557
2179	3MgO 2SiO ₂ .2H ₂ O—-Chrysotile	277 111	R.		2.5	647
2180	3MgO 3SiO2 2H4O -Antigorite	337 171	R.		2 62	545
2181	3MgO 48iO2 H2O ~ Tale	379 215	M.	1	2.75	728
2182	MgS(F ₆ ,6H ₂ O	274.472	Trig.			204
2183	2MgO SiO ₇ Mg(F ₃ OH) ₂ - Prolectite		M.		3 1	861
2184	4MgO 2SiO ₂ Mg(F, OH) ₃ - Chondrodite.		M.		3 15	781
2185	6MgO.3SiO ₂ Mg(F, OH) ₂ -Humite		R.		3 15	790
2186	8MgO 4SiO ₂ Mg(F, OH) ₂ -Clinohumite.		M.		3 1	863
2187	MgO.TiO ₂ -Gerkielite	120 220	Trig.	!	3 98	402
2188	MgSnCl ₈ 6H ₂ O	463 860	Trig.	ĺ	2 08	289
2189	2(MgPb)OSiO2.H2O Molybdophyllite		H.		4.72	367
2190	MgCl, 2CdCl, 12H,O	678 073	R.			629
2191	MgHg2lx7H2()	1313 24	l		3 80	
2192	MgP(Cl ₆ 6H ₂ O	540 390	Trig.		2 437	1
2193	MgPtBrs 12HzO	915 231	Trig.		2 802	ı
2194	MgPdCls 6H2O	451 860	H.		2 12	1
2195	Mg ₂ MnCl ₆ 12H ₂ O	532 503	H.		1 802	1
2196	MgO, Fe ₂ O ₂ Magnesioferrite	200 000	C.		4 6	194
2197	MgO Fe ₂ O ₂ .3SO ₂ 13H ₂ O - Quetenite	674 395	М.		2 12	626
2198	2MgO.Fe ₂ O ₃ 4SO ₃ 15H ₂ OBotryogenite.	830-811	М.		2 1	660
2199	6MgO Fe ₂ O ₂ CO ₂ ,12H ₂ O—Pyroaurite	661 785	H.		2 07	275
2200	6MgO,Fe ₂ O ₂ CO ₂ 12H ₂ O Brugnatellite .	661 785	Н.		2.07	264
2201	3(Fe, Mg)O Fe ₂ O ₂ 2S ₁ O ₂ ,3H ₂ O =			1		
	Cronstedtite .		Trig. ?		3 34	363
2202	MgO,CoO ₂	131 290		1	5 06	000
2203	Mg ₂ Ni ₂ O ₂ 3SiO ₂ .6H ₂ O -Gentlate	486 292	R. ?		2.5	1
2204	MgCrO ₆ 7H ₂ O	266 438	R.		1 695	665
2205	MgO ('r ₂ O ₃	192 340			4 50	
2206	MgCrO ₄ (NH ₄) ₂ CrO ₄ ,6H ₂ O	400 510	M		1.84	813
2207	6MgO Cr ₂ O ₃ CO ₂ ,12H ₂ O —Stiehtite	654 125	Н.		2 16	265
2208	MgW ₄ O ₁₁ 8H ₂ O	1112 44	М.			926
2209	3MgO 5V ₄ O ₆ .28H ₂ O	3407 00	Trı.		2 180	
2210	4MgO,Cb ₂ O ₃	427 480	11		1.4	1
2211	MgO B ₂ O ₃ .3H ₄ O Pinnoite	164 006	Tet.		2 30	277
2212	2MgO, B ₂ O ₃ , H ₂ O—Ascharite	168 295			2 7	666
2213	2MgO B ₂ O ₄ . H ₂ O —Camsellite	168 295	R. ?			1041
2214	3MgO.B ₂ O ₃	190 600	R.		2 99	833
2215	6MgO 8B ₂ O ₃ , MgCl ₂ -Borneite impure	894 276	R. C.	Tr. 265 R. to C.	2.9	856
2216	10MgO, 4B ₂ O ₃ 3H ₂ O -Szaibelyite	735 806			3	321
	6MgO.2B ₂ O ₅ 28O ₅ .9H ₂ O =Sulfoborite	703 469	R.		2 4	650
	3MgO B ₂ O ₃ , P ₂ O ₄ , 8H ₂ O ~ Lueneburgite	176 771	M		2 1	649
	3MgO.B ₂ O ₃ .MnO Mn ₃ O ₃ Pinakiolite	419 390	R.		3 9	999
	3MgO, B ₂ O ₃ , FeO Fe ₂ O ₃ — Ludwigite	422 120	R.		4 0	972
	4MgO,B ₂ O ₃ ,Fe ₂ O ₃ —Magnesioludwigite	390 600	R		4 0	971
	MgO.Al ₄ O ₃ —Spinel	142 240	C,	2135	3 6	156
	MgO Al ₂ O ₃ ,4SO ₂ 22H ₂ O—Pickeringite	858 839	М.		1 85	473
2224	6MgO, Al ₂ O ₄ , CO ₂ , 12H ₂ OHydrotalerte	604 025	H.		2 06	247
	3MgO, Al ₂ O ₄ ,3S ₁ O ₂ —Pyrope	103 060	C,		3 5	154
	4MgO.Al ₁ O ₂ 28 ₁ O ₂ .5H ₂ O ·-Colerainite.	473 397	H.		2.51	273
2227	5MgO, Al ₂ O ₃ , 3SiO ₃ , 4H ₂ O					1
2000	Leuchtenbergite	555 762	M.		2.7	726
	5MgO.Al ₂ O ₂ .6SiO ₂ .4H ₂ O - Zebedassite	735 942			2.19	590
	5MgO 6Al ₂ O ₃ 2SiO ₂ —Sapphirine	933 240	М.		3 45	900
	(FeMg)O. Al ₂ O ₃ , P ₂ O ₅ , H ₂ O -Lazulite		M.		3.1	804
M 6A 1A 84 61 64	B Ba Be Bi Br C Ca Cb Cd Ce Cl	Co Cr Cu Cu	Dy Fr Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 55 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li La 36 83 58 81 71

Index No.	Formula	Mol. wt.	Crystal system	M. P.	d20	Ref. ind.
2231	Mg2Gd2(NO2)12.24H2O	1563 95	Trig.	77.5	2 1634	
2232	CaO-Lime	56.0700	c.	2572	3 40	168
2233	CaH ₂	42 0854	1	d. 675	1 7	100
2234	Ca(OH) ₁	74 0854	R. Trig.	0.0	2 343	210
2235	CaF ₂ —Fluorite.	78 0700	C.	1360	3.180	318
2236	CaCl2-Hydrophyllite	110.986	' È.	772	2.1524 fused	71
2237	CaCl ₁ .6H ₂ O	219 078		1		120
2238	CaF ₁ .CaCl ₂ .	189 056	Trig.	29 92	1 6817	212
	CaBr ₁		ł	d. 737	3 07	Ì
2239		199 902	-	765	3 3534	ł
2240	CaBr ₂ .3H ₂ O	253 948	R	80 5		1
2241	CaBr ₂ .6H ₂ O.	. 307 994	11	38 2		ı
2242	$Ca(BrO_3)_2.H_3O$.	313 917	M	d.	3 329	1
2243	CaF ₂ .CaBr ₂ .	277 972	ĺ		3 1508	1
2244	CaI ₂	293 934		575	3 956	
2245	CaI ₂ .6H ₂ O.	402 026		42	0 0001	
2246	Ca(IO ₃) ₂ —Lautarite	389,934	Tri.		4 59116	
2247	CaS-Oldhamite	72 1350	('	1		
	CaSO ₄ —Anhydrite		1	72 1100	2 813	
2248	CasO4Amryunte	136 135	R. M.	Tr. 1193	2.96	708
			1	(R. to M.)		1
İ				M. 1450		1
2249	CaSO ₄ .2H ₂ O—Gypsum	172 166	M		2 32	600
2250	CaS ₂ O ₆ .4H ₂ O	272 262	Trig.		2 176	269
2251	CaSeO ₄	183 270		!	2 93	
2252	CaSeO ₄ .2H ₄ O	219 301	M.		2 676	1
2253	Ca ₃ N ₂	148 226		900	2 6317]
2254	Ca(NO) ₂	100 086		1	2 5340	1
		1				
2255	Ca(NO ₂) ₂ ,H ₂ O	150 101	Н.	1	2 2334	1
2256	Ca(NO ₂) ₂ .4H ₂ O	204 148			$1 674^{0}_{0}$	
2257	Ca(NO ₃) ₂ —Nitrocalcite	164 086	C.	561	2 36	
2258	Ca(NO ₂) ₂ ,3H ₂ O	218 132		51 1		1
2259	$Ca(NO_3)_2.4H_2O(\alpha)$	236 148	М.	12 7	1 82	526
2260	$Ca(NO_3)_2.4H_2O(\beta)$	236 148		39 7		i
	Ca ₃ P ₂	182 258		> 1600	2 514	
	CaP ₂ O ₆	198 118		975	2 82	ĺ
2263		254 188		1		ŀ
	Ca ₂ P ₂ O ₇	1 1	m:	1230	3 09	
	2CaO, P ₂ O _b , H ₂ O—Monetite	272 204	Tri.	d.	2 75	586
	2CaO.P ₂ O _b .5H ₂ O—Brushite	344 265	М.		2 25	656
	Ca ₃ (PO ₄) ₂	310 258		1670	3 14	
2267	Ca ₄ P ₂ O ₉	366 328	М.	1630	3 06	148
2268	4CaO P ₂ O ₅ .5H ₂ O— Isoclasite	456 405	M.		2 92	698
2269	5CaO.2P ₂ O ₄ .1.5H ₂ O- Martinite	591 469	M. ?		2 89	765
	10CaO.3P ₂ O ₃	986 844		1540	2.89	1
	Ca(H ₂ PO ₄) ₂	234 149	Tri.	d.	2 5464 4	1
	$C_{\rm R}(\rm H_2PO_4)_2$. H_2O	252 164	Tri.	d.	2 220 4	1
			Н.	1630	3 1823	200
	CaF ₂ 3Ca ₂ P ₂ O ₈ —Fluoroapatite	1008 84	11.			309
	Ca _b P ₂ ClO ₁₂ —Chloroapatite	520,880		1530	$3 \cdot 17^{20}$	331
	3Ca ₃ (PO ₄) ₂ .CaFCl—Apatite	1025 30		1270	3 14	308
	(NH ₄)CaPO ₄ .7H ₂ O	279 241	М.	d.	1 561 ¹⁵	l
2277	Ca ₂ As ₂ ,	270 130			2 514	1
2278	2CaO. As ₂ O _b .3H ₂ O- Haidingerite	396 106	R.		2 967	756
2279	2CaO.As ₂ O _b .5H ₂ O—Pharmacolite	432 137	М.		2-535	730
,	2CaO.As ₂ O ₃ .8H ₂ O—Wapplerite	486 183	Tri.		2 48	621
	9CaO.3As ₂ O ₅ .CaF ₂ —Svabite	1272 16	Н.		3 80	345
	5CaO.3Sb ₂ S ₄ —Romeite .	1491 95			5 04	169
		1 1	` '	2200		108
	CnC ₂	64.0700	.,	2300	2 22	
	CaCO ₂ —Aragonite.	100 070	R.	******	2 93	880
	CaCO ₃ Calcite	100 070	H.	13397 19 000mm	$2.711_4^{26.2}$	328
	CaCO ₃ .6H ₂ O	208 162	М.			633
2287	CaC ₂ O ₄	128 070	Ì		2 24	
2288	CaO.C ₂ O ₁ , H ₂ OWhewellite	146 085	М.		2.23	674
	Ca(CHO ₂) ₂	130 085	R.	d.	2.015	577
	CaC ₄ H ₂ O ₄ .H ₂ O—Maleate	172 101	R.		*	706
	CaC ₄ H ₂ O ₊ 2H ₂ O—Fumarate	190 116	R.	1		754
2291						

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. ind.
2292	CaC4H4O23H2O Malate	194 147	R.			676
2293	CaC ₄ H ₄ O ₄ .3H ₂ O—Succinate	210 147	1			648
2294	Cft.(meno-C4H4O6).3H2O.	242 147	Tri.	. 1		609
2295	Ca(d-C ₄ H ₄ O ₆).4H ₄ O?	260 162	R.			638
2296	$C_{\mathbf{B}}(C_2H_2O_2)_2$	158 116	1			683
2297	Ca(C ₁ H ₄ O ₄) ₂ 3H ₂ O -Lactate	218 - 147		100		20-
2298	Ca(C4H5O2)2 Crotonate	210 - 147	}	1		695
2200	CaC ₃ H ₁₀ O ₁₀ 6H ₂ O Acid malate	414 239	R.			561
2300	$C_{\rm fl}(C_{\rm a}H_2CO_2)$ $_{\rm c}3H_2O$	336 193	R.		1 436	1
2301	CaH ₂ (C ₄ H ₄ O ₅) ₂ 2C ₄ H ₅ O ₅		1			Í
	d-Tetratartrate	638 - 239	R.		1 85119	000
2302	Ca ₃ C ₁₂ H ₅ O ₁₂ Aconitate	462 - 256				636
2303	Ca ₃ C ₁₂ H ₁₀ O ₁₄ .2H ₂ O - Citrate	534 318	; 1	130		240
2304	Ca ₂ C ₁₂ H ₁₀ O ₁₄ , 4H ₂ O ~ Citrate	570 349				618
2305	Ca(C4H2O3NO2)2 xH2O Nitrotetromate		M.		1.745	822
2306	Ca(C ₂ H ₃ NO ₃) ₂ 3H ₂ O -Hippurate	450 255	R ?		1.318	210
2307	7CaO,CO2 2P2O Dahllite	720 586	Н.		3 08	310
2308	10CaO CO2 3P2O5 - Podolite	1030/84	H.		3 077	807
2309	10CaO CaF ₂ CO ₂ 3P ₄ O ₄ H ₄ O Francolite	1126 92	Н.	<u> </u>	3 1	304
2310	CaSi	68 1300	1		2 3516	1
2311	CaSi ₂	96 1900			2 5	-
2312	Cn ₃ Si ₂	176 - 330	1		1 64	ŀ
2313	ChaSi ₁₀	521 - 020	1	1200		
2311	CaSiO ₃	116 130	Н.		2 89	299
2315	CaO SiO ₂ -Pseudowollastonite	116 - 130	M.	1540		773
2316	CaO,SiO ₂ Wollastomte	116 130	M.	Tr. 1200	2/9	800
2317	CaO 28iOz HzO Okemte	194 205	R.		2/3	578
2318	2CaO SiO ₂ (α)	172 - 200	M. Tri.	2130		908
2319	2CnO SiO ₂ (β) .	172 - 200	M. R	Tr. 1420 β to α		1049
2320	2CaO,SiO ₂ (γ)	172 - 200	M	Tr. 675 γ to β		824
2321	2CaO,SiO ₂ H ₂ O- Hillebrandite	190 215	R. ?		2 69	772
2322	2CnO.2SiO ₄ 3H ₂ O Riversideite	286 306	1	ļ	2 61	751
2323	3CnO.2SiO2	288 330	R.	1475 d.		1046
2324	4CaO,4SiO ₂ 7H ₂ O - Crestmorite	590 628	1		$2 \ 22$	759
2325	CaS(F ₀ ,211 ₃ O	218 161	Tet.		2 25	1
2326	3CaO,CaF ₂ 3SiO ₂ 2H ₂ O Zeophyllite	462 491	Trig		2.76	276
2327	3CaO,CaF 28iO ₂ H ₂ O - Custerite	365 115	M.		2 96	732
2328	5CaO StO ₂ P ₂ O ₈	482 458	1	1760	3 01	1
2329	3CaO,SiO2,CO2 SO4 15H2O Thaumasite	622 - 566	H.		1 87	243
2330	5CaO 2SiO ₂ CO ₂ Spurrite	411 170	M. ?		3 01	867
2331	CnO.TiO2 Perovskite	135 970	R.		4 10	1025
2332	CaTi(SO ₄) ₃	376 165	C.			91
2333	5CnO.2TiO ₂ 3Sb ₂ O _b - Lewisite	1410-77	C.		4 95	184
2334	CaO, TiO, SiO, Titamite	196-030	M.	1142	3 5	983
2335	CaO SnO ₂ 38 ₁ O ₂ 211 ₂ O Stokesite	422 981	R.		3 2	776
2336	Cn2PbC14H30O12 -Propionate	725 571	Tet.			251
2337	2CaO.PbO 3SiO ₂	515 520	1		3 99	955
2338	4CaO 6PbO 6SiO2 H2O Ganomalite	1902-86	Tet.		5 74	985
2339	4CaO,5PbO PbCl ₂ 68iO ₂ - Nasomte	1978-76	H.		5 7	380, 384
2340	CaO ZnO SiO ₂ H ₂ O—Clinohedrite	215 525	M.		3 33	862
2341	2CaO ZnO SiO ₂ Hardystomte	253 580	Tet.		3 4	332
2312	Callgl.	748 408			3 300	
2343	CaHg ₆ I ₁₂ SH ₂ O	2710 43			4 690	į
2344	Ca ₃ Hg ₄ L ₁₄ 24H ₂ O	3132 07			3 610	i
2345	CaSO ₄ .3Cu(OH) ₂ CuSO ₄ .3H ₂ O = Urvolgvite	574 542	R.		3 132	
2316	2CaO,2CuO AsiO ₅ H ₂ O - Higginsite	519 215	R.		4 33	965
	CaCu(C ₂ H ₂ O ₂) _{4.6} H ₂ O. rugginsne	357 748	Tet.		1 42	213
2347		ŀ	R.		1 12	1045
2348	CaPt(CN) ₄ .5H ₂ O	429 409	Tri.		3 07	823
2349	1	361.149	Tri.		3 671	902
$\frac{2350}{2351}$	2CaO, MnO, As ₂ O ₅ 2H ₂ O Brandtite, CaO, MnO, SiO ₂ Glaucochroite.	449 021 187.060	R.		3.41	910
	1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 174 (88)	ı Pu	1	0.34	1 010

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	∂2 ^u	Ref. inc
2352	4CaO.2Mn ₂ O ₂ .5SiO ₂ .4H ₂ O—Orientite	912 362	R.		3 1	943
2353	4CaSiO ₁ .3MnSiO ₁ —Bustamite	857 490	Tri.		· ·	868
2354	CaO.Fe ₂ O ₄	215 750		1216 d,		408
2355	2CaO.Fe ₂ O ₃	271 820		1436 d		1057
2356	2CaO.FeO.P2O4.4H2O-Anapaite	398 090	Tri.		$2/8_{2}$	778
2357	6CaO.3Fe2O3.4P2O3.19H2O-Calcioferrite	1725 94	M.		2 53	282
2358	3CaO.2Fe ₂ O ₃ .2As ₂ O ₅ .6H ₂ O—				£ 00	202
	Arseniosiderite	1055 50	R.		9 98	270
2359	FeCa ₂ (CN) ₆ .12H ₂ O	508 212	Tri.		3 36	376
2360	CaO.FeO.2SiO2—Hedenbergite	248 030	М.	1100	n 7	718
2361	2CaO.4FeO.Fe ₂ O ₂ .4SiO ₂ .H ₂ O -Ilvaite.	817 435	R.	1100	3 7	922
2362	CaO.Cr ₂ O ₂	208 090			4.0	984
2363	15CaO.8CrO ₃ .7I ₂ O ₅ —Dietzeite	397 818	М.		4 818	070
2364	3CaO.Cr ₂ O ₈ .3SiO ₂ —Uvarovite	500 110	C.		3 70	970
2365	CaMoO4-Powellite	200 070	1 1		3.42	170
2366	CaO.WO ₁ —Scheelite	288 070	Tet.		1 35	388
2367	CaO.8UO ₃ .2SO ₃ 25H ₂ O—Uranopulite		Tet.		6 06	381
	,	2505 56	Tri. ?		3 8	788
2368	CaO.2UO ₃ . P ₂ O ₅ 8H ₂ O—Autumte	914 581	R.		3 1	707
2369	CaO.2UO ₄ , P ₂ O ₆ , 8H ₂ O ₇ Bassetite	914 581	M.		3 10	705
2370	CaO.2UO ₃ . As ₂ O ₅ .8H ₂ O—Uranospinite.	1002 45	R.		3 45	719
2371	2CaO.UO ₂ .4CO ₂ .10H ₂ O—Uranothallite.	738 464	R.		2 8	547
2372	CaO.2UO ₁ 2SiO ₂ .6H ₂ O—Uranophane	856.622	Tri. ?		3 9	855
2373	CaV ₄ O ₁₁	419 910		637		
2374	CaO.3V2Ob.9H2O—Hewettite	763 - 969	R.	1	2 554	1011
2375	CaO.3V ₂ O ₅ .9H ₂ O—Metahewettite	763 969	R.		2 51	1003
2376	2CaO.3V ₂ O ₅ .11H ₂ OPascorte	856 069	M.	1	2 46	961
2377	CaCl ₂ ,Ca ₃ (VO ₄) ₂ .	461 116	R,		1 01	1
2378	CaB ₀	104 990	1	1	2 3	ĺ
2379	CaO,B ₂ O ₃	125 710	R.	1100		841
2380	2CaO.B ₂ O ₃	181 780	1	1304		İ
2381	2CaO.3B ₂ O ₃ .5H ₂ OColemanite	411 137	M.	d.	2 13	739
2382	2CaO.3B ₂ O ₃ .7H ₂ O—Meverhofferite	447 168	Tn.	d.	2 12	635
2383	2CaO.3B ₂ O ₃ .13H ₂ O—Inyoite	555 260	M.	d.	1.875	570
2381	4CaO.5B ₂ O ₃ .9H ₂ O—Pandermite	731 619	M.	d.	2 43	738
2385	5CaO.6B ₂ O ₃ ,9H ₂ OPriceite	860 329	Tri.	***	2 1	735
2386	CaO.2SiO ₂ .B ₂ O ₃ —Danburite	245 830	R.		3 0	806
2387	2CaO.2SiO ₂ ,B ₂ O ₃ ,H ₂ ODatolite	319 915	"	}	3 0	831
2388	4CaO 5B ₂ O ₃ 2SiO ₂ .5H ₂ O—Howlite	782 677	M.	1	2 6	746
2389	8CaO.5B ₂ O ₃ .6SiO ₂ .6H ₂ O -Bakerite	1265 21	"".	1	2 8	721
2390	1	276 410	Trig.	l	1 2	121
2391	CaO.B ₂ O ₃ .SnO ₂ —Nordenskioeldine			1000	1 4	838
2391 2392	CaO,Al ₂ O ₄	157 990	M. ?, Tn.	1600		155
	3CaO.Al ₂ O ₂	270 130	('.	1535 d		1
2393	3CaO.5Al ₂ O ₂	677 810	Tet. ?, R.	1720		300
2394	5CaO.3Al ₂ O ₃	586 110	('.	1155		141
2395	CaF ₂ .Al(F, OH) ₂ .H ₂ O—Gearksutite		M.	1	2 77	415
2396	CaF ₂ 2Al(F, OH) ₂ .H ₂ O—Prosopite		M Tri.		2 88	548
2397	6CaO.Al ₂ O ₃ .3SO ₄ .33H ₂ O—Ettringite	1273/04	11.		1.75	231
2398	CaO.2CaF ₂ .2Al(F, OH) ₃ .SO ₃ 2H ₂ O-					
	Creedite		М.		2 73	470
2399	CaO.2Al ₂ O ₃ .P ₂ O ₅ .5H ₂ O—Crandallite	$492 \ 035$	R.		3 5	294
2100	CaO, Al ₂ O ₃ .2SiO ₂ —Anorthite	278 - 110	Tri.	1551	2.765	723
2401	CaO.Al ₂ O ₃ .2SiO ₂ .2H ₂ OHibschite	314 141	C.		3 05	149
2402	CaO.Al ₂ O ₄ .2StO ₂ .2H ₂ O—Lawsonite.	314 141	R.		3 09	869
2403	CaO.Al ₂ O ₃ .3SiO ₂ .5H ₂ O—Levynite	428 247	Trig.	1	2 1	241
2404	CaO.Al ₂ O ₃ .4S ₁ O ₂ .4H ₂ O—Gismondite	470 292	, ,	1550	2 3	644
2405	CaO.Al ₂ O ₃ .4SiO ₂ .4H ₂ O-Laumontite	470 292	M.	1	2 3	605
2406	CaO.Al ₂ O ₃ .6S ₁ O ₂ .5H ₂ OEpistilbite	608 427	M.	İ	2/25	572
2407	CaO.Al ₂ O ₃ .68iO ₂ .5H ₂ O—Heulandite.	608 427	M.	[2 2	528
2408	CaO.Al ₂ O ₂ .7SiO ₂ .7H ₂ O—Stellerite	704 518	R.		2.12	509
2409	CaO.2Al ₂ O ₃ 2SiO ₂ .H ₂ O—Margarite	398 045	M.	ļ	3 0	820
2410	2CaO.Al ₂ O ₂ .SiO ₂ —Velardenite	274 120	Tet.	1590	3.04	333
2411	2CaO.Al ₂ O ₃ .3SiO ₂ .H ₃ O—Prehnite	412 255	R.	1	2.9	796
2412	2CaO.Al ₂ O ₄ .5SiO ₂ .6H ₂ O—Laubanite	622 452	M. ?	ŀ	2.2	221
Mn Mo N 42 47 11	Na Nb Nd Ni O Os P Pb Pd Pr Pt Ra 82 51 61 45 1 35 12 23 41 60 37 80					

dex No.	Formula	Mol. wt.	Crystal system	М. Р.	d ²⁰	Ref. inding l
2413	2CaO.3Al ₂ O ₄ .9S ₁ O ₂ Didymolite	958.440	M.		2.71	540
2414	3CaO Al ₂ O ₃ .SiO ₂	330.190	R.			1048
2415	3CaO, Al ₂ O ₃ ,3SiO ₂ Grossularite	450 310	C.		3.530	157
2416	3CaO Al ₂ O ₃ 6SiO ₂ H ₂ O Bayenite	648.505	M.		2.72	717
2417	4CaO,3Al ₂ O ₃ 6SiO ₃ - Meionite.	890 400	Tet.		2.74	295
2417.1	4CaO 3Al ₂ O ₃ 6StO ₂ .H ₂ OClinozoisite	908 415	M.		3.36	915
2418	4CaO.3Al ₂ O ₂ 6SiO ₂ H ₂ O—Zoisite	908 415	R.		3.3	896
2419	3CaO 5Ce ₂ O ₃ 6P ₂ O ₅ 24H ₂ O Churchite	3095 37	M.		3.14	785
2420	CaO,2CeOF,3CO ₂ -Parisite	538 570	Trig.		4.32	279
2421	CaPO, BeOH Hydro-herderite	161 122	R.		3.00	774
2422	CaCl ₂ 2MgCl ₂ .12H ₂ O—Tachyhydrite	517 643	II.	> 168 d.	1.665	249
2423	2CnO 2MgO As ₂ O ₅ .H ₂ O—Adelite	440 715	M.	2 1007	3 76	909
2424		425 700	M.		3.28	847
	2CaO, MgO As ₂ O ₄ MgF—Tilasite	1	1	}	2 872	
2425	CaO,MgO,2CO ₂ Dolomite	184.390	Trig.	.1 1400		339
2426	CaO, MgO SiO ₂ Monticellite	156 450	R.	d. 1498	3.2	852
2427	CaO, MgO 28iO ₂ - Diopside	216 510	M.	1391	3.3	864
2428	CaO.3MgO.2SiO ₂ —Merwinite	297 150	M.	1	3.15	901
2429	CaO.3MgO.4SiO ₂ Tremolite	417 270	M.	}	3.0	786
2430	2CaO, MgO,2SiO₂ - Åkermannite	272 580	Tet.	1458	2.944	307
2431	5CaO 2MgO 68iO ₂	721 350	1	d. 1365		797
2432	CaO, MgO 3B ₂ O ₂ 6H ₂ OHydroboracite	413 402	M.	1	2.0	631
2433	CaO, MgO, Al ₂ O ₄ SiO ₂ —Gehlenite	258 370	Tet.	l	3.04	330
2434	Sr()	103 620	R.	2430	4 7	
2435	Sr(OH) ₂	121 635	1 1		3.625	-
2436	Sr(OH), 8H2O	265.758	Tet.		1.90	242
2437	SrF ₂	125 620	C.	1190	2 44	212
2438	SrCl ₂	158 536	c.	873	3.052	140
2439	SrCl ₂ .6H ₂ O	266 628	Trig.	d. 61	1.93	1
2440	Sr(C[O ₂) ₂	254.536	R.	120 d.		257
2441		284.156	. ,	1	3 152	763
2442	SrF ₃ .SrCl ₂		Tet.	962	4 18	324
,	SrBr ₁	247.452	1 1	643	4 2164	1
2443	SrBr ₂ .6H ₃ O	355 544	1 1	d. 20	2.358^{18}	ļ
2444	$Sr(BrO_k)_2, H_2O$	361.467	M.	d.	3.773	ì
2445	SrBr ₂ SrF ₄	373.072	1 1		4.06	1
2446	SrI ₂	341.484	}	402	4.549_4^{26}	1
2447	$Sr(1O_3)_2$	437.484	Tri.		5.04514	
2448	SrI ₂ SrF ₂	467.104	1		4 5	ļ
2449	SrS .	119.685	C.		3.7015	1
2450	SrS, 6H2O	323.972		25		1
2451	SrO.SO _x Celestite	183 685	R.	1580 d.	3.96	789
452	8r8 ₂ O ₂ 5H ₂ O	289 827	M.	d.	2 1717	1
453	SrS ₃ (), 411 ₂ ()	319 812	Trig.		2.373	253
2454	Sr(NO) ₂	147.636			2 683	2.20
2455	Sr(NO) ₂ .5H ₂ O	237 713	1 1		2 17320	
456	Sr(NO ₂) ₂	179.636	1 1		2 86727	1
457	$Sr(NO_2)_2, H_2O$	197.651	1	d.		1
458	$Sr(NO_3)_2$			*	2.4080	
459	Sr(NO ₄) ₂ 4H ₂ O	211 636	C.	570	2.986	135
460		283 698	M.		2 2	1
461	Sr ₂ P ₂	324 908	1		2.68	1
	SrHPO ₄	183 652	R.		3 544	1
	SrC ₃	111 620	1 _ 1		3.2	1
2463	SrO,CO ₂ Strontianite	147 620	R.	1497en at	3.70	853
2464	$Sr(CHO_2)_2$.	177.635	R.	71.9	2 69	704
2465	$Sr(CHO_2)_2, H_2O$	195 651	R.		2 25	
2466	Sr(CHO ₂) ₂ 2H ₄ O	213 666	R.)	2 695	597
2467	$Sr(C_2H_3O_2)_2$	205 666	1 1	1	2.099	
2468	Sr(CH ₂ SO ₂) ₂ ,H ₂ O Ethane disulfonate.	293.796	M.		2.355(a)	
		1	[į	2.453 (b)	1
2469	Sr(C ₂ H ₅ O ₄ S) ₂ 2H ₂ O Ethylsulfate	373 858	M.	1	2 032	554
	Sr(C ₄ H ₂ O ₃ NO ₄) ₄ ×H ₄ O—Nitrotetronate	1	M.	1	2.043	812
	Sr(SbOC ₄ H ₄ O ₆) ₂	627 222	H.	-	#.UKU	426
	9.0.0	163 680	"	1580	3 65	60
	2SrO.SiO ₂	267 300	1 1	>1700	3.84	J 00
.47.1						

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d. 200	Ref. inc
2474	SrSiF.2H.O	265.711	M.	<u> </u>	2 9917 1	1
2475	SrCl, 2CdCl, 7H, O	651 296	M.		2 71824	- 1
2476	SrHg ₄ I ₁₂ .8H ₂ O	2757.98				į
2477	Sr ₂ Cu(CHO ₂) ₄ .8H ₂ O.	562.964	Tri.		4.660	
2479	SrCrO4	203.630				593
	SrCr ₂ O ₇ .3H ₂ O	ł	М.		3 89514	İ
2480	1	357 686	М.	1		905
2481	Sr(OCrO ₂ Cl) ₂ .4H ₂ O	430 618		72		ļ
2482	SrMoO4	247 620	İ	1	4 145	
2483	SrWO.	335 620			6 184	1
2484	Sr ₂ W ₁₂ SiO ₄₀ .16H ₂ O	3339 55	M.			934
2485	SrB6	152 540		1	3 3	1001
2486	SrO.B ₂ O ₂ .	173.260		1100		
2487	SrO.2B ₂ O ₁	1		1100		
		242 900	1	930		
2488	2SrO.B ₂ O ₃	276 880		1130		
2489	2SrO.3Al ₂ O ₃ .2P ₃ O ₆ .7H ₂ O—Goyazite	923.204	Trig		3 2	305
2490	2SrO.3Al ₂ O ₃ .P ₂ O ₃ .2SO ₃ .6H ₂ O	j				
	Svanbergite	923 270	Trig		3 5	314
2491	SrO.Al ₂ O ₃ .2SiO ₃	325 660		>1700		,,,,
2492	3SrO.2Ce ₂ O ₄ .7CO ₄ .5H ₂ O—Ancylite	1365 94	R.	71100	9.05	074
2493	SrCa ₂ C ₁₈ H ₂₀ O ₁₂ —Propionate	ł	1		3 95	974
	•	605 991	Tet.			230
2494	BaO	153 370	C.	1923	5 72	
24 95	BaO2	169 370			4.96	
2496	BaH ₂	139 385		d. 675	4 21"	i
2497	Ba(OH) ₂	171 385	M.		4 495	
2498	Ba(OII)2.8H2O	315 509	M.	77.9	2 13	544
2499	BaF ₂	175 370	C.	1280	4 83	0
		l.	1	1		
2500	BaCl ₂	208 286	M.	Tr. 925	3 8564	
			C.	962		
2501	BaCl ₂ .2H ₂ O	244 317	R.		3.097^{24}_{4}	825
2502	Ba(ClO)2	240 286	1	d. 235		1
2503	Ba(ClO ₂) ₂	304 286	1	414		
2504	Ba(ClO ₃) ₂ .H ₂ ()	322 301	М.	d. 120	3 179	713
2505	Ba(ClO ₄) ₂	336 286		505	0	1
	1	ſ		0(%)	0.74	
2506	Ba(ClO ₄) ₂ .3H ₂ O	390 332	H.		2 71	
2507	BaClF	191 828	Tet.	1008	5 931	315
2508	BaCl ₂ .BaF ₂	383 656		1	4 5118	
25 09	BaBr ₂	297 202		847	4 78174	
2510	BaBr ₂ 2H ₂ O .	333 233	M.	1	3.582^{14}	913
2511	Ba(BrO ₂) ₂ , H ₂ O	411 217	M.	1	3 9911	
2512	l	472 572		1	4 9618	ł
				- 40.1		
2513	BaI ₂	391 234		740 d.	5 151	
2514	BaI2.6H1().	499 326	H,	25.7		
2515	BaI₂.7H₂O.	517 342			3 67	
2516	Ba(IO ₃) ₂	487 234	М.		5 2a	
2517	Ba(IO ₂) ₂ .H ₂ O.	505 249	M.		5 015	
2518	BaI ₂ , BaF ₂	566 604			5 2118	
2519	BaS	169 435	C.		4 2516	
		301 661		1		
2520	BaS ₄ 2H ₂ ()		R.	d.	2 988	1
2521	BaO.SO _z Barite	233.435	R.	Tr. 1149 to M. ?	4 49915	816
				1580		1
2522	BaS ₂ O ₃ , H ₂ O	267 515	R.		3.4516	
2523	BaS ₂ O ₆ .2H ₂ ()	333 531	R. M.		4 53613 5	744
2524	BaS ₂ O ₆ .4H ₂ O	369 562	М.		3 142	1076
2525	BaSeO ₄	280 570	R.	d.	4 75	1 .0.0
			11.	4.	4 4816	1
2526	BaTeO ₄	328 870	7.	1 01	4 40'"	
2527	Ba N ₆	221.418	R.	d. 219		
2528	Ba(NO) ₂	197 386			3.89123	
2529	$Ba(NO_2)_2$.	229 386		217	3 2323	
2530	Ba(NO ₂) ₂ , H ₂ O	247 401			3 17320	
2531	Ba(NO ₁) ₂ —Nitrobarite	261 386	C.	592	3.24422	137
			٥.	1	O.ATT.	191
2532	Ba(NH ₂) ₂	169 417	T)	280	4 114	
2533	Ba ₂ P ₂ O ₁	448.788	R.		4.116	- 1
2534	$Ba_3(PO_4)_2$	602 158	C.	1	4.116	ı

Index No.	Formula	Mol. wt	Crystal system	М. Р.	d420	Ref. ind.
2535	BaHPO ₄	233 402	R.		4 16515	
2536	BaH ₄ (PO ₂) ₂ H ₂ O	285 464	M.	•	2 9017	
2537	BaF ₂ 3Ba ₃ P ₂ O ₄	1981 84	H.	1670		334
2538	BaCl ₂ ,3Ba ₃ P ₂ O ₄	2014 76	Н.	1584	5 949	343
2539	Ba ₁ A ₉₂	562 030	1 1		4 115	1
2540	BaHAsO ₄ H ₂ O	295 353	R M.		3.9314	
	BaC ₁	161 370			3.75	Ì
2541	BaCO ₃ Witherite	197 370	R.	Tr. 811 to α	4.43	875
2542	$B_{\rm B}(C)_{\rm a}(\alpha)$	197 370	H.	Tr. 982 to β		
2543	1	197 370		1740% at		
2544	BuCO ₃ (β)	225 370	1 1		2 658	
2545	BnC ₂ O ₄	227 385	R.		3 21	745
2546	Ba(CHO ₂) ₂	1	I.		2 14718	. 10
2547	BaC ₃ H ₂ O ₄ Malonate	239 385		,	•	
2548	Bu(meso-C ₄ H ₄ O ₈) H ₂ O	303 416			2 98	1051
2549	Ba (dl-C ₄ H ₄ O ₅) 5H ₂ O	375 478	M.		0. 100	1051
2550	Bn(C ₂ H ₃ O ₂) ₂	255 416	1		2 468	
2551	Ba(C ₄ H ₁ O ₂) ₂ H ₂ O	273 432	Trı.		2 19	582
2552	Ba(C ₂ H ₃ O ₂) ₂ 3H ₂ O	309 462	Tri.		2 021	1
2553	Ba(C ₂ H ₅ CO ₄) ₂ H ₂ O	301 162	R.			584
2551	Ba(CH ₂ SO ₃) ₂ Ethane disulfonate	325 531	R.		2 779	
2555	BaC ₅ H ₅ O ₅ S ₂ 1H ₂ O -Phenol-2, 4-disul-		1			1
213.5.1	fonate	461 592	M.			767
		101 002	· · · · · ·			
2556	BaC ₁₀ H ₆ O ₆ S ₂ H ₂ O Naphthalene-1, 5-	441 500	10		2 282	904
	disulfonate	441 562	R.	1004		872
2557	BaSiO ₃	213 430		1604	4 399	
2558	BaSiO, 6H ₂ O	321 522	R.		2 59	659
2559	BaO 28iO ₂	273 490	R.	1420	3.73	775
2560	2BaO SiO ₂	366 800	1	>1755		1052
2561	2BaO 3SiO2	486 920	1	1450	3 93	795
2562	BaSiFs .	279 430	1 1		4 27915	
2563	BaO, TiO2 3SiO2 Benitoite	413 450	H.		3 7	356
2564	BaCdCl ₄ 4H ₂ O	463 674	Tri.		2 968	827
2565	BaCdBr ₄ 4H ₂ O	641 506	Tri.		3 687	894
	BaCd(CHO ₂) ₄ 2H ₂ O	465 842	M.		· · · ·	627
2566	***	2692 60	""	1	4 630	
2567	Ballg J ₁₂	l l			4 06	ł
2568	Ba ₁ Hg ₅ I ₁₆ , 16H ₂ O	3734 32	1 1			1
2569	BaPtBr ₆ .10H ₂ O	992 250	M.		3 713	1047
2570	BaPt(CN) ₄ .4H ₂ O	508 694	M.		3 05	1047
2571	BaO, MnO ₂	240 300	1		5 85	
2572	BaO, FeO, 4SiO ₂ = Gillespite	465 450	Trig.		3 33	302
2573	4BaO, FeO, 2Fe ₂ O ₃ , 10SiO ₂ Taramellite	. 1605 28	R.		3 92	942
2574	BaN12O4	334 750	1 1		4.8	1
2575	BaCrO4	253 380	1 [$4 \cdot 498^{15}$	
2576	Ba ₃ [Cr(C ₂ O ₄) ₃] ₂ .	1044 13	1 1		2.57	
2577	$[Ba_{1}]Cr(C_{2}O_{4})_{3}]_{2} 7H_{2}O$	1170 24			2.896^{28}	i
2578	$Ba_{1}[Cr(C_{2}O_{4})_{3}]_{2}.12H_{2}O$	1260 31	1		$2 \cdot 372^{27}$	ł
	Ba MoO4.	297 370	1	1	1 65	1
2579	I .		1		6 35	
2580	BaWO ₄	385 370	p		4 30	
2581	BaO 4WO ₃ ,9H ₂ O	1243 51	R		4 00	962
2582	Bu ₂ W ₁₂ S ₁ O ₄₀ , 16H ₂ O	3439 05	M			,
2583	BaO 2UO ₅ , P ₂ O ₅ , SH ₂ O - Uranocircite	1011-88	R.		3 53	787
2584	Ba ₂ V ₂ O ₇	488 660		ca. 863		i
2585	3BaO, 10WO ₃ , V ₂ O ₅ SiO ₂ 28H ₂ O	3526 52	}		3 66	!
2586	BaB _n	202 290	1 1		4 36	!
2587	BaO B ₂ O ₃	223 010		1060		1
2588	2BaO B ₂ O ₃	376 380	j	1002		1
2589	3BaO B ₂ O ₃	529 750	1 1	1315		1
	BaCl ₂ 2AlCl ₃ .	474 954		290		•
2590	· · · · · · · · · · · · · · · · · · ·	375 410	M.	>1700	3 37	727
2591	BaO Al ₂ O ₃ 2SiO ₃ Celsian	1	R.	7 1100	2 7	662
2592	BaO Al ₂ O ₃ .3SiO ₂ 3H ₂ O Edingtonite	435 470	1 1		4 03	884
2593	4BaO.Al ₂ O ₃ .7SiO ₂ -Barylite	1135 82	R.			i
2594	BaF ₂ .Ce ₂ O ₃ 3CO ₂ —Cordylite	635 870	II.		4 31	357
2595	BaO, CaO, 2CO ₂ —Barytocalcite	297 440	M.		3 65	828
Ag Al As Au 82 85 13 33	B Ba Be Bi Br C Ca Cb Cd Ce 54 79 75 15 5 16 77 51 29 59	Cl Co Cr Co Cu 4 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li 36 83 58 81

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d 40	Ref. ind. finding No.
	BaCa ₂ C ₁₈ H ₃₀ O ₁₂ —Propionate	655 741	C.			73
2596	BaO.2CaO.3SiO.	445 690	н. °	1320 d.		338
2567	RaCl	296 866	M.	1000	4 91	
2598	Racia.			Tr. 870		
	n. n.	385-782	M.	728	5 79	
2599	RaBr ₂	29 8780	1	>1700	2 0134 1	
2600	Li ₂ O	7 94670	C.	680	0.820	
2601	LiH	23 9467		450	2.51	
2602	LiOH	41 9621			1 83	
2603	LiOH.H₂O	25 9390	c	870	2 29521 4	
2604	LiF	20 0000	,		1. 1. 789 ⁸⁷⁰	
		40 2070	C.	613	2 0684	
2605	LiCl	42 3970	ζ.	129	- •	
2606	L ₁ ClO ₃	90 3970	1	,		
2607	LiClO ₃ .0.5H ₂ O	99 4047		65	2 429	
2608	LiClO ₄	106 397		236	1.841	
	LiClO ₄ .3H ₂ O	160 443	Н.	95	3 46174	
2609	LiBr	86 8550	C.	517	3 1014	
2610		122 - 886		11		
2611	LiBr 2H ₂ O	140 901		3 5		
2612	L ₁ Br.3H ₂ O	133 871		146	1 0614	ļ
2613	LiI	100			1 2 8276734	
		187 917		73		İ
2614	LiI.3H ₂ O				1 66	
2615	Li ₂ S	45 9430	M.	860	2 221	455
2616	Li ₂ SO ₄	109 943	M.	111/11	1. 2 (0)1800	
20.0	1	_			2 06	469
2617	L12SO4 H2O	127 - 958	M		2 158	684
	142S2O6.2H2O	$210 \cdot 039$	R		2 12313	
2618	LaHSO4	104 - 012				
2619		70 9624			1 6150	
2620	LiNO2.H2O	68 9470	Trig.	255	1. 1 774	353
2621	Li NO ₃				2 38	300
		122 993		d 29 6		\
2622	L1NO ₃ .3H ₂ O	22 9624		390	1 17817 5	
2623	LiNH ₂	28 8937			1 30319	
2624	Lt2NH	l .	· •	97		
2625	LiBr.NH ₃	103 886	1 31 / 3		1 201	
2626	LiNH ₄ SO ₄	121 043	M (α)			
2020			Η (β)			- 1
			$+$ M $(\gamma^{(2)})$		2 461	
0007	1:00	85 963	1		2 53717 5	i i
2627	LiPO ₁	115 841	R	837	1 645	
2628	Li ₃ PO ₄	332 026	Trig.	100		
2629	Li ₃ PO ₄ .12H ₂ O	103 978		> 100	2 461	
2630	LiH ₂ PO ₄	159 777		ì	3 07	
2631	L ₁₃ AsO ₄	142 587		>950	3 217	
2632	LasSb	37 8780			1 6514	204
2633	Li ₂ ('2	73 8780		618	2 111117 5	694
2634	Li ₂ CO ₃	13 3730	1		1. 1 765 ^{non}	
			1		2 12117 6	
2635	Li ₂ C ₂ O ₄	101 878			1 46	
2636	LiCHO ₂ .H ₂ O	69 9621	R.	1		682
	LaHC4H4O5 6H2O—Malate	248 070	M	70		533
2637	L ₁ C ₂ H ₃ O ₂ .2H ₂ O	101 993	R.	10	1 817	
2638	$\text{Li}_2(\text{CH}_2\text{SO}_3)_2 \text{ 2H}_2\text{O}$ —Ethane disulfonate	238 070	М.		1 (711	
2639	$L_{12}(CH_2SO_3)_2 2H_2O - CHain Gamma L_{12}C_{10}H_6O_6S_2.2H_2O - Naphthalene 1, 5$	-			1 664	814
2640		336 085	М.	1	1 001	614
	disulfonate	191 024	M.			693
2641	LiNH4(dl-C4H4O6).H2O	191 024	R.			000
2642	LINH4(d-C4H4O6).H2()	97 7540	i		1 12	
2643	1	1 89 9380		1201	1. 2 334	55
2644	1	90 0000	,		2 524	322, 10
				1032 d.	2 45421	
2645	Li ₂ O.2SiO ₂	149 998		1256	2 28	1043
2646	1 =	119 816	!	1200	2 3	
		191 969	М.		3.144	
2647		395 401	Tri.	<u> </u>		UV WYYbZ
2648	TILi(dl-C ₄ 11 ₄ O ₆).211 ₂ O		Ru S Sa 39 8 63	Blo Se Se Si Sa Str	The The The Time	49 50 48 57 71 2

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{20}	Ref. inc
2649	2LiI.HgI ₂ .6H ₂ O	830.308	1		3.260	
2650	2Lal.Hgl ₂ .8H ₂ O	866 339	1 1		2.95	1
2651	Li ₂ O.2MnO.P ₂ O ₄ —Lithiophilite	313 786	R.		3.5	878
2652	Li2O 2FeO.P2O4-Triphylite	315 606	R.		3.55	895
2653	Li(UO2)(C2H2O2)2.3H2O	508 224	M.	[2 28015	
2654	Li ₂ O.B ₂ O ₂	99 5180	1	843		
2655	Li ₂ O.B ₂ O ₂ .16H ₂ O	387 764	Trig.	47	1.38	
2656	Li ₂ O 2B ₂ O ₃ .	169.158		900		
2657	Li ₂ O, Al ₂ O ₃	131.798	1 1	>1625	2.554_4^{26-1}	1
2658	2L4F Al ₂ O ₃ .P ₂ O ₄ —Amblygonite	295.846	Tri.		3.05	740
2659	Li ₂ O.Al ₂ O ₃ .2SiO ₂ —Eucryptite	251.918	H.	1388	2.67	268
2660	Li ₂ O.Al ₂ O ₃ .4SiO ₂ —Spodumene.	372 038	M.	1400	3.2	854
2661	Li ₂ O, Al ₂ O ₃ 5SiO ₂	432 098	1		2.40	
2662	Li ₂ O Al ₂ O ₃ 68iO ₂	492 158	1		2 41	
2663	Li ₂ O.Al ₂ O ₃ .8SiO ₂ Petalite	612 278	M.	1370	2 4	573
2664	2L ₁₂ O 7Al ₂ O ₂ .2B ₂ O ₃ 6S ₄ O ₂ 12H ₂ O =	{	1	1		!
	Manandonite.	1489 02	H.		2 89	749
2665	Na ₂ ()	61.9940	1 (2 27	
2666	Na ₂ O ₂ 8H ₂ O	222 117	Н.	d. 30		1
2667	Nall	24 0047			0 92	ŀ
2668	NaOH	40 0047	1 1	318 4	2 130	
2669	NaOH 3.5H₂O	103.059	1	15.5		ı
2670	NaF Villiaumite	41.9970	Tet.	980	2 79	66
2671	NaCl - Halite	58 4550	C.	804	2.163	129
2672	NaOCl 2.5H ₂ O.	119.494		57 5		1
2673	NaOCL5H ₂ O	164 532	1	24 5		1
2674	NaClO ₃	106 455	C. Trig.	248	2.49015	119
2675	NaClO ₄	122 455	R.	482 d.		1
2676	NaClO ₄ H ₂ O	140 470	H.	d. 130	2.02	
2677	NnBr	102 913	l c.	755	3.205	1
2678	NaBr.2H₂O	138.944	M.	50.7	2 176	
2679	NaBrO ₁	150 913	C.	381	3 33917 4	138
2680	NaI	149 929	C.	651	3 667	
2681	NaIO ₃	197.929	R.	d.	4.277	
2682	NaIO,	213 929	Tet.	d. 300	3 86516	1
2683	NaIO, 3H,O	267.975	Trig.	4.000	3 21918	1
2684	Na ₂ S	78.0590	1		1.856	1
2685	Na ₂ S ₂	110 124	1	445	11000	
2686	Nn ₂ S ₃	142 189	l i	223 5		- 1
2687	Na ₂ S ₄	174 254	C.	275		i
2688	N82S4.6H2O	282 346	1	25		ı
2689	Na ₂ S ₅	206 319	1	251 8		1
2690	Nn ₄ SO ₃ .7H ₄ O	252 167	М.	201 0	1 561	1
2691	Na ₂ SO ₄ (α) Thenardite	142 059	R.	Tr. 100	2 69	466
2692	Na ₂ SO ₄	142 059	R.	Tr. 100 to M.	2 698	100
	***************************************	112 000	M.	Tr. 500 to H	₩ 000	
		l	H.	884		
2693	Na ₂ SO ₄ .10H ₂ O—Glaubers salt	322 213	M.	d. 32 4	1 464	434
2694	Na ₂ SO ₄ .10H ₂ O ₂ Mirabilite	322 213	M.		1 48	428
2695	Na ₂ S ₂ O ₃	158 124	M.	1	1 667	12.0
2696	Na ₂ S ₂ O ₃ 5H ₂ O	248 201	M.	d. 48 0	1 685	564
2697	Na ₂ S ₂ O ₆ 2H ₂ O	242 155	R.		2 189	520
2698	NaH8.3H ₄ O.	110 116	R	22		020
2699	NaHSO ₄	120 070	Tri.	>315	2 742	Ì
2700	2Na ₂ O NaCl.NaF.2SO ₃ —Sulphohalite.	384.570	C.		2 49	76
2701	Na ₂ Se ₄	362 794	''	- 55		
2702	Na ₂ SeO ₄	189 194	R.		3.098	
2703	Na ₂ SeO ₄ .10H ₂ O	369 348	M.		1.58	
2704	NaNO ₂	69 0050	R.	271	2 1680	1
2705	NaNO ₃ Soda-niter	85 0050	Trig.	308	2 257	288
2706	Na ₂ (NO) ₂	106 010	**************************************	300 d.	2 46630	200
2707	NaNH ₂	39.0204	1	210	~ .00	
2708	3Na ₂ O. N ₂ O ₅ 2SO ₃ , 2H ₂ O—Darapskite	490,159	M.		2 2	475
	; vr = vr = vr + v + v × v + a = p + vv + z + i = 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	100,100	444.	1	~ ~	710

ndex No.		Mol. wt.	Crystal system	М. Р.	d ²⁰	Ref. ind.
2709	6NaNO _{1.} 2Na ₂ SO _{4.} 3H ₂ O—Nitroglauberite		R.	1	 	534
2710	NaNH4SO4.2H4O—Lecontite	173 132	R.	d.	1 63	443
2711	NaPO _a	102 021		616 d.	2 476	430
2712	Na ₁ PO ₄	164 015		1340		
2713	Na ₁ PO ₄ .12H ₂ O	380 200	Trig.	d. 73 4	2.53717 5	
2714	(NaPO ₃) ₃ .2H ₂ O	342 094	Tri.	1	1 62	214
2715	Na,P,O,.10H,O	430 190		d.	2.476	
2716	Na ₄ P ₂ O ₇	266 036	M.		1 832	480
2717	Na ₄ P ₂ O ₇ .10H ₂ O			988	2 45	}
2718	NaH, PO, 2.5H, O	446 190	М.	d.	1.82	444
		149.075	М.	42	1	432
2719	NaH ₂ PO ₄ .H ₂ O	138 052	R.	d. 190	2 040	487
2720	NaH ₂ PO ₄ .2H ₂ O	156 067	R.	ca. 60	1 91	450
2721	Na ₁ HPO ₁ .5H ₁ O	216 103	R.			438
2722	Na ₂ HPO ₄ .2H ₂ O	178.057	И.	Ì	1 848	700
2723	Na ₂ HPO ₄ .7H ₂ O.	268 134	M.	d,	(497
2724	Na ₂ HPO ₄ .12H ₂ O	358 211	R. M.	34 6	1.679	437
2725	Na ₂ H ₂ P ₂ O ₆ .6H ₂ ().	314 150	M.	34.0	1.52	433
2726	Na ₂ H ₂ P ₂ O ₇	222 057		1 000	1.849	504
2727	Na ₂ H ₂ P ₂ O ₇ .6H ₂ O	ł	М.	d. 220	1.862	1
2729	Na ₂ HP ₂ O ₆ .9H ₂ O.	330 150	М.		1.848	454
	1	390 185	M.	d. 100	1 743	465
2730	Na ₁ PO ₄ .H ₃ PO ₄ .15H ₂ O	532 293	1	55		1
2731	Na ₃ PO ₄ .NaF.12H ₂ O ₁ .	422 197	C.		2 216	
2732	2Na ₃ PO ₄ NaF.19H ₂ O	712 320	C.		2.217	74
2733	NH4NaHPO4.4H4O-Microcosmic salt.					1
	Stercorite	209 129	M.	ca 79 d.	1 574	436
2734	Na ₄ AsO ₄	207 951			2 835	700
2735	Na ₃ AsO _{4.12} H ₂ O	421 136	Trig.	20. 9		0.0
2736	NaH ₂ AsO ₄ .H ₂ O	181 988	1 1	86-3	1 759	216
2737	NaH ₂ AsO ₄ .2H ₂ O		R.		2 535	672
2738	1	200 003	R.		2 309	546
	Na ₂ HAsO ₄ .7H ₂ O.	312 070	M.		1 871	556
2739	Na ₂ HA ₈ O ₄ .12H ₂ O	402 147	M.	28	1 72	441
2740	2Na ₂ AsO ₄ .NaF.19H ₂ O	800 192	C.		2 8525	90
2741	Na ₃ AsS ₄ .8H ₂ O	116 334	M.	d.		879
2742	2Na ₂ O.As ₂ O ₅ .2SO ₂ .	514 038			2 42521	""
2743	(NH ₄)NaHAsO ₄ ,4H ₂ O.	253 065	M.		1 84517	457
2744	NaSb	144 767	"	465	1 010	707
2745	Na ₃ Sb	190 761	1 1			1
2746	NaSbO ₂ 3H ₂ O		D	856	0.004	1
2747		230 813	R.	d.	2 864	1
	Na ₃ SbS ₄ .9H ₂ O	481 160	C.		1 839	1
2748	Na ₃ Bi	277 991		775		1
2749	Na ₂ C ₂	69 9940			1.57515	1
2750	Na ₂ ('() ₃	105 994	1	851	2 533	
2751	Na ₂ CO ₃ .H ₂ O—Thermonatrite	124 009	R.		1 55	
2752	Na ₂ CO ₃ .7H ₂ O	232 102	R. Trig.	d. 35-1	1 51	
	Na ₂ CO ₃ .10H ₂ O—Natron	286 148	M.		1 46	431
	NaCHO ₂	68.0017	M.	253	1 92	101
	NaHCO ₃	84 0047	M.	2.77	2 20	
1	NaC ₂ H ₃ O ₂	82 0201		324		1
			M	1	1 528	
. 1	NaC ₂ H ₂ O ₁ .3H ₂ O	136 063	M.	58; 78	1 45	452
	NaHC ₃ H ₂ O ₄ .H ₂ O—Acid malonate	144 036	R.			604
	NaH(d-C ₄ H ₄ O ₆).H ₂ O.	190 051	R.			628
	NaC ₄ II ₇ O ₄ -Diacetate.	142 051	C.			79
- 1	NaC ₁₆ H ₃₁ O ₂ —Palmitate	278 236	[ca. 270		
	NaC ₁₈ H ₃₃ O ₂ —Elaidate.	304 251	-	227		1
2763	NaC ₁₈ H ₃₄ O ₂ —Oleate	304 251	ĺ	235		
	Na ₂ (d-C ₄ H ₄ O ₄).2H ₂ O.	230.056	R.		1.818	1
	Na ₂ CO ₃ . NaHCO ₃ .2H ₂ O—Tronite	226 030	M.	1	2 14721 7	563
	Na ₃ C ₆ H ₆ O ₇ .5H ₂ OCitrate	348 107	R.	1	1 857 ^{48 5}	000
		0.10 101	10.	1	1 80/4	1
2101	NaC ₁₀ H ₆ S ₂ O ₆ .2H ₂ O—Naphthalene 1, 5-			İ		1
1700	disulfonate	345 040	М.		1 777	809
2768	Na ₂ (CH ₂ SO ₃) ₂ .2H ₂ O—Ethane disulfonate	270 186	M.		$1.939 (\alpha)$	
		İ		ĺ	1.880 (B)	
769	NaCN.	49 0050	ł	563 7		

Index No	Formula	Mol. wt.	Crystal system	М. Р.	d_4^{2n}	Ref. ind.
2770	Na NH4 (meso-C4H4O6), H2O	207 082	M.		1.740	1074
2771	NnNH4(d-C4H4O4).4H2O.	261 128	R.		1.587	527
2772	NaCaHaNO4 - Glutamate	169 067	M.			574
2773	NaSCN	81 0700	R.	562 3		
2774	NaC ₈ H ₄ (NH ₂)SO · 2H ₄ O—Sulfamlate	231 147	R.			696
2775	NaC 10 HaNO 8 4H2O 1, 4-Naphthyl-					
	amine sulfonate	317 193	M.			747
2776	Nn ₂ O SiO ₂	122 054		1088		1040
2777	Na ₂ O 28 _i O ₂	182 114	R.	874		571
2778	Nn ₂ StF ₈	188 054	H.		2 679	202
2779	Na ₂ O 3T ₁ O ₂	301 694	M.		3 514	-52
2780	Na ₂ O.ZrO ₂ 6SiO ₂ .3H ₂ OElpidite	599 400	R.		2.58	689
2781	Na ₂ O, Pb(OH)CLSO ₃ —Caracolite	401 725	R.		4.5	937
2782	TlNa(dl-C4H4Oa).2H2O	411 459	Tri,		3 289	
2783	TiNa(meso-C4H4O6) 2 5H2O	420 466	Tri.		3.120	
2784	TlNa(d-C ₄ H ₄ O ₆),4H ₂ O	447 489	R.		2 580	İ
2785	NaTl ₃ (d-C ₅ H ₄ O ₆) ₂	932 259	R.		4 145	
2786	ZnNaPO ₄	183 401	R.		3 3	1
2787	Zn(Na ₂ PO ₄) ₂	347 416	C.		2 8	
2788	Na ₂ SO ₄ CdSO ₄	350 534		551		
2789	Na ₂ SO ₄ , CuSO ₄ 2H ₂ O Kroehnkite	337 725	M.		2 061	715
2790	Na ₂ SO ₄ ,Cu(OH) ₂ 3CuSO ₄ 3H ₂ O				- 00	, , , ,
	Natrochalcite	772 596	M.	d. 350	2 33	840
2791	NaCu(CN) ₂	138 583		d. 100	1 013	1
2792	Na ₃ IrCl ₆ 12H ₂ O	691 024		50		
2793	Na ₂ PtCl ₄ ,4H ₂ O	455 118	1	100 d.		
2794	Na ₂ PtCl ₆ 6H ₂ O	562 064	Tri.		2 50	
2795	Na ₂ PtBr ₈ 6H ₂ O	828 812	Tri.		3 323	i
2790	Na ₂ P(I ₆ 6H ₂ O)	1110 91	M. ?		3 707	
2798	Na ₂ Ru(NO ₂) ₈ .2H ₄ O	413 765	M.		9 101	741
2799	Na ₂ MnP ₂ O ₇	271 972			2 9	(47
2800	Na ₂ O.2MnO.P ₂ O ₅ Natrophilite	345 902	R.		3 41	871
2801	Nn ₄ Mn(PO ₄) ₂	336 966			2 7	, 5/1
2802	Na ₂ O.3Fe ₂ O ₃ 4SO ₄ 6H ₂ O —Natrojarosite	969 386	R.		3 2	966
2803	2Na ₂ O Fe ₂ O ₃ 4SO ₃ .7H ₂ O -Sideronatrite.	684 042	R.		2 2	725
2804	3Na ₂ SO ₄ Fe ₂ (SO ₄) ₃ 6H ₂ OFerrmatrite.	934 144	Trig.		2 55	271
2805	Na ₆ Fe ₂ (C ₄ O ₄) ₆ 10H ₂ O	957 816	M.		1 97317 5	-/1
2808	Na ₂ Fe(CN) _s NO 2H ₂ O	297 913	R.	1	1 72	1
2807	Nn ₄ Fe(CN) ₆ 12H ₂ O	520 061	M.	1	1 158	616
2808	Na ₂ O Fe ₄ O ₅ .4SiO ₂ -Aggrate	461 914	M		3 5	956
2809	Na ₄ O.Fe ₃ O ₄ FeO.5S ₁ O ₄ = Riebeckite	593 814	M.		3 44	887
2810	Na ₂ O 2FeO Fe ₄ O ₃ 6SiO ₂ -Crocidolite	725 714	M.		3 2	893
2811	Na _z CrO ₄	162 004	R.	392	2 723	(100
2812	Nn ₂ CrO ₄ , 4H ₂ O	234 066	M.	d. 64 s	- 1-0	
2813	Nn₂CrO₄ 6H₂O	270 096	Trı.	d. 25 9		
2814	Nu ₄ CrO ₄ , 10H ₄ O	342 158	M.		1 483	
2815	Na ₂ Cr ₂ O ₇ 2H ₂ O	298 045	M	320	2 5213	892
2816	Na ₄ O 2CrO ₃ I ₄ O ₅ .2H ₄ O	631 909	1 1		3 21	0.72
2817	Nn ₂ Cr ₂ S ₄	278 274	H	d	2 5514	
2818	NH ₄ NaCrO ₄ 2H ₄ O	193 077	R	d.	1 842%	1
2819	NaCrP ₂ O ₇	249 055	R.		3	
2820	Na ₄ MoO ₄	205 994]	687	1. 2 590 ¹⁰²⁶	
2821	Nn ₂ Mo ₂ O ₇	349 994		612	•	
2822	3Na ₂ O.7MoO ₃ 22H ₂ O	1590-32	M.	ca 700		
2823	3Na ₂ O.5MoO ₃ P ₄ O ₅ .14H ₄ O	1300-25	R.			818
2824	Na ₁ WO ₄	293 994	R.	698	4 179	1
0005	N. Wasan a				l. 3 613496 6	
2825	Na ₂ WO ₄ ,2H ₂ O	330 025	R.		3 245	1
2826	Na ₂ W ₂ O ₆	509 994			7 28	1
2827	Na ₃ W ₃ O ₉	741 994		d.	6 617	1
2828	Na ₂ W ₄ O ₁₂	973 994	1		7 1954	
2829	Na ₃ O.4WO ₃ 10H ₃ O	1170 15	C.	706 6	3 84713	
	Na ₂ W ₅ O ₁₅	1205 99			7 28317	
Al As Au 85 13 83	B Ba Be Bi Br C Ca Cb Cd Ce Cl 54 79 75 15 5 16 77 51 29 59 4	Co Cr Ca Cu 44 46 85 31	Dy Er Eu F Fe 67 69 64 3 43	Ga Gd Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Lu 36 83 58 81 72

idex No.	Formula	Mol. wt.	Crystal system	М. Р.	d.20	Ref. inc
2831	4Na ₂ O.10WO ₁ .23H ₂ O	2982 33	M.	680.8	4 3	1
2832	5Na ₂ O.12WO ₂ .28H ₂ O	3598 40	Tri.	705.8	1 0	1
2833	9Na ₂ O.22WO ₂ .51H ₂ O	6580 73	1		1	i
2834	Na ₂ O.3UO ₃	920 504	12 2	683.3		1
2835	NaU(C2H3O2),	1	R ?		6 912	
	NaVO ₃	438 236	Tet.		2 56	109.
2836		121 957	M "	562	2 79	1
2837	Na ₃ O.V ₂ O ₄ .5V ₂ O ₅	1137 51	, R "	. ca 800 d.		}
2838	Na ₃ VO ₄ .	183 951	1	ca. 866	1	1
2839	Na ₃ VO ₄ .10H ₂ O	364 105	CH	1	1	127, 20
2840	Na ₃ VO ₄ .12H ₂ O	400 136	Trig		Í	245
2841	Na ₄ V ₂ O ₇	305 908	Н	654	1	240
2842	2Na ₃ VO ₄ .NaF.19H ₂ O	752.192	C	0.74		
2843	Na ₄ VSO ₃ ,10H ₂ O	1	1			123
		380 170		18	1 773	1
2844	3Na ₂ O. V ₂ O ₅ .10WO ₅ .SiO ₂ .29H ₂ O	3270 41	C.		3 344	1
2845	Na ₂ CbO ₃	187.094	1		1 19	1
2846	Na ₂ O B ₂ O ₃	131 634		966		1
2847	Na ₂ O 2B ₂ O ₃	201 274		711	1 2 5 glass	45
			1	1	2 37	1
2848	Na ₂ B ₄ O ₇ .10H ₂ O - Borax	381 428	М.	75		100
		1	1 31.	1	1 73	460
2849	Nu ₂ O.4B ₂ O ₃	340 554	1	783		
2850	NaAlO ₂	81 9570	:	1650		1
2851	2NaF,AlF _s —Chiolite	167 954	Tet.		3 0	205
2852	3NaF.AlF. —Cryolyte	209 950	M	1000	2 90	427
					I. 2.1010x3	
2853	Na ₂ O ₂ Al ₂ O ₃ .4SO ₃ .12H ₂ O ₂ -Tamarugite	700 359	M. Tu.		2.03	494
2854	Na ₂ O Al ₂ O ₄ .4SO ₃ 22H ₂ O Mendozite	880 513	M. ?		1.88	449
2855	Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ 24H ₂ O	916 544		61	1	4
				01	1 675	72
2856	Na ₂ O.3Al ₂ O ₃ .4SO ₂ 6H ₂ O—Natroalunite	796 106	Tug. C.		2 6	287
2857	Na ₂ O, Al ₂ O ₃ , P ₂ O ₅ H ₂ O -Fremontite	323 977	M ?		3 01	760
2858	Na ₂ O.2AlOF.As ₂ O ₅ - Durangite	396 834	M		1.0	866
2859	Na ₂ O, Al ₂ O ₃ , 2CO ₂ , 2H ₂ O + Dawsonite	287 944	R		2.4	653
2860	Na ₂ O, Al ₂ O ₃ , 2S ₁ O ₂ - Carnegicite	284 034	Tn. ?	1526	2 57	596
2861	Na ₂ O Al ₂ O ₃ 2S ₁ O ₂ - Nephelite	284 034	11	Tr 1248	2 67	266
2862	Na ₂ O. Al ₂ O ₃ .3SiO ₂ .2H ₂ O—Natrolite	380 125	R		2 25	478
		i		10	1	1
2863	Na ₂ O, Al ₂ O ₃ , 4SiO ₂ — Jadeite	404 154	M	1050	3 34	834
2864	Na 2O. Al ₂ O ₃ .4S ₁ O ₂ .2H ₂ O—Analcite	140 185	C.		2 25	229
2865	Na ₂ O.Al ₂ O ₃ .6S ₁ O ₂ —Albite	521 274	Trı	1100	2 61	615
2866 -	Na ₂ O, Al ₂ O ₃ , 9S ₁ O ₂ , 2NaF — Leifite	788 448	Н.		2 57	248
2867	Na ₂ O.3Al ₂ O ₃ .6S ₁ O ₂ ,2H ₂ O—Paragonite.	761 115	M		2.8	750
2868	2Na ₂ Ω.Al ₂ Q ₃ .6S ₁ Q ₂ .H ₂ Q—Ussingite	601-283	Tu.		2.50	565
2869		((())	• • • •		1 - ""	000
1000	2Na ₂ O.3Al ₂ O ₃ .6S ₁ O ₂ .7H ₂ O	010 010	11			000
	Hydronephelite	916 216	H		2 3	236
2870	3Na ₂ O 3Al ₂ O ₃ 6SiO ₂ .2NaCl- Sodalite	969-012	C.		2 2	99
2871	3Na ₂ O.3Al ₂ O ₃ .18SiO ₂ .2NaCl− Marialite.	1689-73	Tet		2 56	261
2872	3Na ₂ O ₃ .3Al ₂ O ₃ .6SiO ₂ .2Na ₂ S -Lazurite.	1008-22	C.		2 4	108
2873	5Na ₂ O 3Al ₂ O ₃ .6S ₁ O ₂ .2SO ₃ Noselite.	1136 22	C.		2 3	105
2874	Na ₂ La(NO ₃) ₅ .H ₂ O	512 959	M		2 634	
2875	Na ₂ Ce(NO ₃) ₅ .H ₂ O	514 299	. •		2 652	
		251 082	R.		2 85	679
2876	Na ₂ O 2BeO P ₂ O ₅ -Beryllomte					
2877	Na ₂ O.2BeO 68 ₁ O ₂ .H ₂ O -Epididymite	490 409	R		3 55	700
2878	Na ₂ O.2BeO.6S ₁ O ₂ , H ₂ O -Eudidymite.	490 409	M.		2 55	657
2879	Na ₂ SO ₄ MgSO ₄	262 444	R.		2 729	1
2880	Na ₂ O.MgO 2SO ₃ .2.5H ₂ O= Loeweste	307 483	Trig.	Tr. 71	2 37	232
2881	Na ₂ O MgO 28O ₃ .4H ₂ O -Bloedite	334 506	Μ.		2 23	498
2882	3Na ₂ O MgO.4SO ₃ —Vanthoffite	546 562	M. ?		2 69	497
2883		142 341			2 5	1
,	NaMgPO ₄		ا و ب)	
2884	Na ₂ MgP ₂ O ₇	244 362	C. ?		2 2	1
2885	$Na_2Mg(CO_3)_2$	190 314	Tet.		2 729%	
2886	NaCl Na ₂ CO ₃ .MgCO ₃ -Northrupite	248 769	C,		2 3771	118
2887	3Na ₂ O.2MgO 4CO ₂ SO ₃ -Tychite	522 687	C.		2 52	113
	Na ₂ O.CaO.28O ₂ -Glauberite	278 194	М.		2 83	625
	Na ₂ O.CaO.28O ₂ .4H ₂ O-Wattevillite	350 257	M.		1.81	446
)	3Na ₂ O.3CaO.2P ₂ O ₄	638 288	M.		2 1	
2891 🗀						

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d ₄ 10	Ref. ind.
2893	Na ₂ O.CaO 2CO ₂ 2H ₂ O—Pirssonite	242,095	R.	813	2.35	567
2894	Na ₂ O.CaO.2CO ₂ .5H ₂ O-Gaylussite	296 141	M.		1.94	580
2895	Na ₂ O.4CaO.6SiO ₂ .H ₂ O-Pectolite	664 650	M.		2.73	766
2896	Na ₂ O 2CaO.5B ₂ O ₃ .16H ₂ O Ulexite	810 580	M.	d.	1 95	551
2897	NaF CaF, AlF, H2O Pachnolite	222 042	M.		2 98	429
2898	NaF.CaF, AlF, H2O.—Thomsenolite	222 042	M.		2 98	430
2899	Na ₂ O,CaO 2Al ₂ O ₃ 10SiO ₂ 20H ₂ O	1				
	Faujasite	1282 81	C.	1	1 92	92
2900	Nn ₂ O 2CnO.3Al ₂ O ₃ 98iO ₂ 8H ₂ O	1	l			
	Mesolite	1164 56	Tri.		2 27	555
2901	Na ₂ O 2CaO 3Al ₂ O ₄ ,9SiO ₂ ,8H ₂ O					
	Pseudomesolite	1164 56	Tri.		2 22	531
2902	5(Na ₂ , Ca)O 3Al ₂ O ₄ 6SiO ₂ ,2SO ₄	1	1			
2002	Hauvnite	1	C.	ĺ	2 4	106
2903	NaF CaO BeO 2SiO ₂ - Leucophanite	243 207	R.	ĺ	2 96	743
2904	NaF 2CaO.2BeO.3SiO ₂ -Meliphanite	384 357	Tet.	į	3 01	297
2905	NaCaMgAlSi ₄ O ₁₂ —Tuxtlite	418 587	M.	i	3.27	4
2906	Na ₂ SrSO ₇	277 679		280	0.21	870
2907	Na ₂ Sr(CO ₂) ₂			1		
2908		253 614		750		i
	Na ₄ SrCa(CO ₂) ₄	459 678		720		
2000	Na ₂ Ba(CO ₃) ₂	303 364	1	740		ì
2910	2Na ₂ O BaO 2T ₁ O ₂ , 10S ₁ O ₂	1007 70	1 !			1
0011	Leucosphemite	1037 76	M.		3 1	849
2911	Nn ₄ BuCa(CO ₃) ₄	509 428	1 1	660		:
2012	NaLi(dl-C4H4Oa) 2H2O	213.998	M.			506
2913	3NaF.3LiF.2AlF ₄ -Cryolithionite	371 728	C.		2 78	67
2914	K ₁ O	94 1900	1		2 32	
2915	K ₁ O ₄ .	142 190	1 1	>280		į
2916	КН	40 1027		d.	0 80	i
2917	кон	56 1027	1	Tr. 260	2.044	
			1 1	380	l. 1 874	
2918	KF	58 0950		880	2 48	
					1, 1 869412	
2919	KF.2HF	98 1104	1	105	·	
292 0	KF.3HF	118 118	1	100		
2921	KCl Sylvite	74 5530	C.		1 988	103
2922	KClO ₁	122 553	M.	368 4	2 32	579
2923	KClO₄	138 553	R.	d. 400	2 52	
2024	KBr	119 011		730	2.75	134
2925	KBrO ₃	167 011	Trig.	370 d.	3.2717 6	1
2926	KI.	166 027	C.	773	3.123	150
2927	KI,	419 891	M.	45	3.498	1.00
2928	KIO ₃	211 027	M.	560	3 89	i
2929	KIO ₄	230 027	Tet.	582	3 618	
2930	K ₂ H ₃ IO ₆ .3H ₂ O	358 191	Tri.	0.72	0 010	541
2931	KICl:	236 943	M.	60		011
2032	KIBr ₄	325 859	R.	60		
2933	K ₁ 8	110 255	1 1.	471	1 805	1
	•	110 200	1	Tr. 146 4	1 000	
2934	K ₂ 8.5H ₃ O	200 332		1		1
2935	K₂S₃.	1	1	60		
2936	K ₂ S ₄ .	174 385 206 450		252 0		
2937	K ₂ S ₄	238 515		>145		
2938	K ₂ SO ₄ Areamite	174 255	l p	206 0	0 000	510
		114 200	R.	Tr. 588	2 662	519
2939	K ₂ S ₂ O ₃	100.200		1067		
2040	K ₁ S ₁ O ₃ , 0.33H ₂ O	190 320	C.	d. 400	0.00	
2040	** ** **	196 325	M.	1	2 23	0.5
2942	11.0	238 320	Trig	> 1100	2 278	215
2942		254 320		>300	2 277	
	K ₂ S ₂ O ₄ K 3 O	270 320	Tri.	1	3.05	458
2944 2945	K ₂ S ₂ O ₆ K ₂ S ₂ O	270 385	R.	1	2.304	472
- 1	K ₁ S ₄ O ₆	302 450	M.		2.296	
2946	K ₁ S ₅ O ₆ 1.5H ₁ O	361 538		1	2 112	L
Al As Au 85 13 33	B Ba Be Bi Br C Ca Cb Cd Ce 54 79 75 15 5 16 77 51 29 59	(1 Co Cr Cs Cu 4 44 46 85 81	Dy Er Eu F Fe 67 69 64 3 43	On Od Ge Gl H 25 65 20 75 2	Hf Hg Ho I In 73 30 68 6 26	Ir K La Li Li 36 83 58 81 7

ndex No.	Formula	Mol. wt.	Crystal system	М. Р.	410	Ref. ind
2947	KSH	72 1677	l	455		1
2948	KHSO. Misenite	136 168	R. M	210	2 35	
2949	KHS ₂ O ₇	216 233		168	,	
2950	K ₃ SO ₄ ,KHSO ₄	310 423	M.	1(4)	2 5908	508
	4K ₂ SO ₄ .3H ₂ SO ₄		31.	1 -05		000
2951	(•	991 261		d. <25	2 27718	
29 52	KSO ₂ F	138 160		311		
2953	KI.480 ₁ .	422 - 287		0 26		
2954	K ₂ Se	157 - 390	[1	2 851	1
2955	K ₂ SeO ₄	221 - 390	R.	1	3 066	646
2956	K ₂ SeSO ₇	301 455		120		
2957	K ₂ H ₂ TeI ₂ O ₁₀ .2H ₂ O	657 600	Trig.			397
	1	85,1030		297	1 915	
2958	KNO ₂				2 1110 6	556
2959	KNO,—Niter	101 103	R. Trig.	Tr. 129 R. to Trig 333	2 11.00	350
2960	KNH ₂	55 1184	1	338		[
2961	KNO ₃ .2HNO ₃ .	227 134	l	22		
2962	KBr.4NH ₃	187 135	l	45		
	KNO, KHSO,	237 271			2 38	1
2963		1003 42			2 0	440
2964	5K ₂ O.(NH ₄) ₂ O.6SO ₃ —Taylorite		1	150	2 25883	1
2965	KPO ₃	118.119		Tr. 450		
				810	$1/2/068^{900}$	1
2966	K ₄ PO ₄	212 309		1340		
2967	K ₄ P ₂ O ₇	330.428	1	Tr. 278	2/33	1
			1	1090		1
2968	KH ₂ PO ₄	136 134	Tet.	96	2 338	244
		274 284	M.	d.		624
2969	K ₂ H ₂ P ₂ O ₆ .2H ₂ O	ľ	R.	d.		483
2970	K ₂ H ₂ P ₂ O ₆ .3H ₂ ()	292 300	1	1	0.007	278
2971	KH ₂ AsO ₄	180 070	Tet.	288	2 867	210
2972	5K ₂ O, As ₂ O ₄ , 8SO ₃ , 6H ₂ O	1449 48		1	2/289	1
2973	KSb	160 865		605		
2974	K ₃ Sb	239 055	1	812		1
2975	K ₂ CO ₃ .	138 190	1	891	2 29	1
		134 190		78		
2976	(KCO) ₂	ľ	M.	"	2 13	486
2977	K ₂ C ₂ O ₄ .H ₂ O	184 205		1 2000	2 17	476
2978	K ₂ O.2CO ₂ .H ₂ O—Kalicinite	200 205	M.	d. <200		1 110
2979	2K ₂ CO ₃ .3H ₂ O	330 426	M.		2 043	1
2980	КСПО2	84 1027		167 5	1 91	1
2981	KHC ₂ O ₄	128 103	M.		2 0	655
2982	KHC ₂ O ₄ .H ₂ O	146 118	1		2.044	1
	KC ₂ H ₁ O ₂	98 1181	1	292	1.8	1
2983		156 134	M.	242 d.	1 767	
2984	KC.H.OAcid succinate	1	1		1 616	617
2985	KC4H4O4.2H2O—Acid succinate	192 164	R.		1 956	· · ·
2986	KH(d-C ₄ H ₄ O ₆)	188 134	R.			1
2987	KH(dl-C4H4O6)	188 134	M.		1.954	- (
2988	KH(C2H2O2)2.	158 149		142		1
2989	KC. H7O7-Citrate.	230 149	Tri.		1 906	
2990	KC ₂ H ₃ O ₂ .2C ₂ H ₄ O ₂	218 180		112	1 47	
		204 134	R.		1 636	
2991	KHC ₈ II ₄ O ₄ —Acid phthalate	274 180	M.	162	1.56	
2992	KH(C ₄ H ₆ O ₄) ₂ —Disuccinate	1		65		
2993	KC ₉ H ₇ O ₄ .2H ₂ O—Acetylsalicylate	254 180		30		1037
2994	KC18H24O2-Oleate	320 349	1	1	1 504	1001
2995	K2C4H4O4.3H2O-Succinate.	248 267	R.		1.564	
2996	$K_2(d, l-C_4H_4O_6)$	226 221	M.		1.984	
2997	K ₂ (d-C ₄ H ₄ O ₆).0.5H ₂ O	235 229	M.	1	1.98	610
2998	2K ₂ C ₂ O ₄ .H ₂ C ₂ O ₄ .2H ₁ O—Tetraoxalate.	458 426	R.		1 21322	592
		364 851	Tet.		2 00518	
2999	KH(CCl ₃ CO ₂) ₂ .	1	M.		1.843	1
3000	KC2H4O4S—Ethyl sulfate	164 199	1	>260	1 87	770
3001	KC ₆ H ₆ O ₄ S—p-Phenolsulfonate	212 199	R.	> 200	l .	1
3002	KC.H.O.S.2H.O-o-Phenolsulfonate.	248 229	R.	1	1 734	697
3003	KC6H4O7S2.H2O2, 4-Phenoldisulfonate	309 271	R.	1		768
3004	CH.(SO.K),—Methane disulfonate	252 335	M.	1	2 376	645
3004	K ₂ C ₁₀ H ₆ O ₂ S ₂ .2H ₂ O—Naphthalene 1, 5-					OFF
	disulfonate	336 397	М.		1.797	859
	Na Nb Nd Ni O Ou P Pb Pd Pr Pt Rd 82 51 61 45 1 35 12 23 41 60 37 80		8 6a 8 8 63 1	b Se Se Si Se Sr Ta Ti 4 56 9 18 22 78 52 60	b To Th Ti Ti Tim U V	W Y Yb 2 48 57 71 2

Index No.	Formula	Mol. wt.	('rystal system	М. Р.	d_4^{20}	Ref. ind finding N
		65 1030		634.5	1.5216	
3006	KCN	81 1030			2.048	1
3007	KCNO	214 172			1.700	ł
3008	KNH ₄ (d-C ₃ H ₄ O ₈).0.5H ₂ O	253 142	1			1038
3009	KC ₅ H ₂ N ₄ O ₆ - Acid aroxasate	267 134	R		1.852	982
3010	KC ₆ H ₂ O ₇ N ₃ Picrate	97 1680		173.2	1 886	002
3011	KCNS	1		1.0.2		i
3012	K(SbO)(d-C _d H _d O _d) 0.5H ₂ O Tarta	r ;			2 607	1 010
	emetic	333 904	R.	650	2 001	810
3013	$K_{i}O S_{i}O_{i}$	154 250		976		
3014	K₂O 2SiO₂	214 310	R ?	1041		532
3015	$K_2O(4S_1O_2)H_2O$	352 445	R.	d. 100	2 417	634
3016	K ₂ SrF ₄ Hieratite	220/250	C.	1	2 665	- 1
	K ₂ Ti ₂ O ₃	253 990		980		- 1
	K ₂ ZrF ₄	283 190	M.			1037 2
	K ₃ ZrF ₁	341 285	C.			68.2
	K ₂ Sn(OH) ₆	298 936	Trig.		3.197	00.2
		409 638	C.		2.71	147
	K ₂ SnCl ₄	1	٠.			147
	K₂SnBr₄	676 386	1		3.783	
	K ₂ SnS ₄ .3H ₂ O	347 131		11.0	1 8474	
	KPb₂Cl₃	630 785	R.	440		
	K₂PbCl _a	498 138	C.	d 190		
024 1	$KC_2H_3O_2$ Pb1 $(C_2H_3O_2)$	191 273	ļ	208 5		1
025	KGa(SO ₄) ₂ 12H ₂ O	517 130	('		1 895	86
- 1	KyInCl ₆ 2H ₂ O	180 864	Tet		2 483	
	KalmBr ₆ 2H ₂ O	747 612	Tet		3 140	1
	CTICL 2H ₂ O	570 464	Tet		2 859	1
	₹304.ZnSO4.6H2O	143 792	M	d. 121	2 245	482
,		,	i i	u. 121		404
	K ₂ Zn(SeO ₄) ₂ 2H ₂ O	466 001	Tu.	}	3 21	
	K₂Zn(SeO₄)₂ 6H₂O	538 062	М,		2 554	588
	X₂Zn(CN)₄	247 602	C	d. 150		70
033 4	KCl.CdCl₄	181 538	Tug.		2/5	293
034 1	$K_4Cd(NO_2)_4$	374 632	R.			691
035 C	'dKPO ₄	246 529	R.		3.8	
036 I	KCl 2HgCl ₂ 2H ₂ O	653 636	R		4 1115	
037 2	RCI HgCl ₂ H ₂ O	138 647	R		3 5815	877
	KBr. HgBr ₂	179 153			4 40	
	KBr. HgBr ₂ H ₂ O	197 168			3 865	
	KI HgI, H ₂ O	638 516	į	104	0 000	
	PKCN Hg(CN) ₂	382 832	Tet.	101	2 44721 3	
	**	i i	- 1			010
	2KC1 CuCl ₂ 2H ₄ O	319 623	Tet		2 41	312
	K ₂ O,CuO 2SO ₁ 6H ₂ O - Cvanochroite,	111 982	M		$2 \ 2_2$	491
	K ₂ SeO ₄ CuSeO ₄ ,6H ₂ O	536 252	M		2 527	603
	K ₂ CO ₁ CuCO ₄	261 760	1		1 35%	į
	K ₃ Cu(CN) ₄	284 887	Trig.			121
	KNO ₄ AgNO ₅	270 991	М.	125	3 219	
049 2	2KNO ₂ AgNO ₂ Bi(NO ₂) ₃	671 118	1		3 33	
050 1	KAgCO ₁	206 975		d.	3 769	
051 1	KAuCl.	378 127	М.	357		ł
	K ₄ O ₈ (CN) ₆ .3H ₂ O	557 274	M.			769
	KgIrCl6	484 038	C.	d.	3 546	1 '00
,	K ₂ SO ₄ Ir ₂ (SO ₄), 24H ₂ O	1281 02	C	103	0 010	1
1 .	K ₁ I ₁ (C ₂ O ₄), H ₂ O	646 417	Tri.	103	9 51019	
1	KsIrCl ₂ (C ₄ O ₄) ₂ H ₂ O Chloroxalate	!	,	1	2 51013	700
		615 316	М.			736
	K ₃ IrCl ₂ (NO ₂) ₂ C ₂ O ₄ 2H ₂ O Dichloro dini-		. 1	1		
1	tro oxalate	597 348	R.	ļ		716
	K ₂ PtCl ₄	415 252	Tet.	1	3 30	
	K ₂ PtCl ₆	486 168	C.	d 250	3 499	1
060 I	K ₂ PtBr _n	752 916	C.	>400 d.	4 66	1
061 1	K ₂ PtI ₆	1035.01	C.	1	5.18	
,	K ₂ S 3PtS.PtS ₂	1051 50		d.	6 4415	1
(.	Pt(NH _a)Cl.JK.H ₂ O	375 746	R.		· ··	709
1 -	K ₂ Pt(NO ₂₋₂ Br ₂ , H ₂ O	543 283	Tri.	1		858
061 1						
	K ₂ Pt(NO ₂) ₂ I ₄ 2H ₂ O	655 331	Tet.	ı		362

3067 K ₄ I 3068 K ₄ I 3069 K ₄ I 3071 K ₃ I 3071 K ₃ I 3072 K ₈ I 3073 K ₄ I 3073 K ₄ I 3074 K ₃ I 3076 K ₄ I 3076 K ₄ I 3077 K ₄ I 3078 K ₄ I 3080 K ₄ S 3081 K ₄ M 3082 K ₄ F 3083 K ₄ F 3083 K ₄ F 3085 K ₄ O 3086 K ₄ F 3087 K ₄ I 3080 K ₄ F 3087 K ₄ I 3080 K ₄ F 3087 K ₄ I 3080 K ₄ F 3087 K ₄ I 3080 K ₄ F 3090 K ₄ I 3090 K ₄ I 3091 K ₄ I 3091 K ₄ I 3092 K ₄ I 3091 K ₄ I	Pt(C ₁ O ₂) ₂ .2H ₁ O Pt(CN) ₄	485, 451 377, 452 471 451 621, 858 657, 889 904 668 222, 810 468, 174 376 243 326 722 397 638 158 025 310 983 424, 058 408 416 328 695 326, 160 434, 252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303 437 102	system M. R. M. H. M. R. R. Tet. M. M. C. R. Tri, Trig. Tri. M. M. C. R. M. M. M. C. R. M. M. M. M. M. M. M. M. M. M. M. M. M.	d 80 d, 400 vic d <240	3.03 2.45 3.70° 2.342° 3.378° 2.67 2.738 2.703 2.221 2.31 3.07 2.177 2.169 1.831 3.2 1.448° 1.894° 1.894° 1.894° 1.898° 3.22 2.218 2.218 2.218 2.218 2.218 2.219 2.218 2.219 2.218 2.219 2.218 2.219 2.218 2.219 2.218 2.219 2.218 2.219 2.218 2.219 2.218 2.219 2.2	finding No. 817 722 669 291 1055 479 97 370 678 699 714 492 589
3068 K ₄ B 3069 K ₄ I 3070 K ₅ I 3071 K ₅ I 3072 K ₅ I 3073 K ₄ I 3073 K ₄ I 3074 K ₅ I 3075 K ₄ I 3076 K ₄ M 3077 K ₅ M 3079 K ₄ M 3079 K ₄ M 3081 K ₄ M 3082 K ₂ E 3083 K ₂ E 3083 K ₂ E 3084 K ₄ E 3085 K ₄ E 3085 K ₄ M 3085 K ₄ E 3080 K ₄ E 3087 K ₅ M 3089 K ₄ E 3090 K ₅ C 3091 K ₂ C 3096 K ₂ C 3101 K ₂ C 3102 K ₂ C 3103 K ₂ C 3104 K ₂ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3107 K ₅ C 3108 K ₅ C 3108 K ₅ C 3109 K ₅ C 3100 K ₅ C 3107 K ₅ C 3108 K ₅ C 3108 K ₅ C 3108 K ₅ C 3109 K ₅ C 3100 K ₅ C 3107 K ₅ C 3108 K ₅ C 3108 K ₅ C 3109 K ₅ C 3100 K ₅ C	Pt(NO ₃) ₂ C ₄ O ₄ H ₄ O Pt(SCN) ₆ Pt(SCN) ₆ Pt(SCN) ₆ Pt(SCN) ₆ Ru(CN) ₆ Ru(CN) ₆ Ru(CN) ₆ PdCl ₄ PdCl ₄ PdCl ₄ InO ₄ MnCl ₆ -Chloromanganokalite SO ₄ -MnSeO ₄ .2H ₂ O Mn(CN) ₆ Fe(SO ₄) ₂ Fe(SO ₄) ₂ .6H ₂ O Fe ₃ (SO ₄) ₄ Fe ₄ (SO ₄) ₄ .24H ₄ O Jarosite Fe ₂ (CrO ₄) ₆ .6H ₂ O Fe ₄ (SO ₄) ₆ .24H ₄ O. Fe(CN) ₆ Fe(471 451 621.858 657.889 904 668 222.810 468.174 376 243 326 722 397 638 158 025 310 983 424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	R. M. H. M. R. Tet. M M. M. Tri. Trig. Tri. M. M. C. R. M. M. M. M. M. M. M. M. M. M. R.	d, 400 vice d <240	2 45 3,709 2,342% 3,37893 2,247 2,703 2,221 2,31 3,07 2,177 2,169 1,831 3,2 1,448975 1,8949 1	722 669 291 1055 479 97 370 678 699 714
3069 K ₄ 1 3070 K ₅ 1 3071 K ₇ 1 3071 K ₇ 1 3072 K ₇ 1 3073 K ₇ 1 3074 K ₇ 1 3075 K ₇ 1 3076 K ₇ 1 3077 K ₇ 1 3078 K ₇ 1 3079 K ₇ 1 3080 K ₇ 2 3081 K ₇ 2 3083 K ₇ 4 3084 K ₇ 5 3085 K ₇ 5 3086 K ₇ 5 3087 K ₇ 5 3088 K ₇ 5 3089 K ₇ 5 3091	Pt(SCN) ₆ Pt(SCN) ₆ .2H ₄ O Pt(SeCN) ₆ .2H ₄ O Pt(SeCN) ₆ . Ru(CN) ₆ .3H ₄ O Ru(CN) ₆ .3H ₄ O Rh(CN) ₆ . PdCl ₄ PdCl ₄ PdCl ₅ MnCl ₆ —Chloromanganokalite SO ₆ .MnSeO ₄ .2H ₂ O Mn(CN) ₆ Fe(SO ₄) ₂ Fe(SO ₄) ₂ .6H ₂ O Pe(SO ₄) ₂ .6H ₄ O Pe(SO ₄) ₂ .4H ₄ O D.3Fe ₃ O ₃ .4SO ₃ .6H ₂ O.—Jarosite Fe ₂ (CrO ₄) ₄ .6H ₄ O Pe(CN) ₆ Fe(CN	621.858 657.889 904 668 222.810 468.174 376.243 326.722 397.638 158.025 310.983 424.058 408.416 328.695 326.160 434.252 1006.50 1001.58 806.342 329.173 368.268 422.314 213.160 437.382 531.652 316.159 341.191 332.303	M. H. M. R. Tet. M. M. Tri. Trig. Tri. M. C. R. M. M. C. R. M. M. M. M. M. M. M. M. M. M. M. M. R.	d, 400 vice d <240	2 342 ¹⁸ 3 378 ¹² 2 67 2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 448 ¹⁷ 1 894 ¹⁷ 1 898 ¹⁷ 3 22 2 218 2 514 2 .076 2 .234	722 669 291 1055 479 97 370 678 699 714 492
3070 K ₃ I 3071 K ₃ I 3071 K ₃ I 3071 K ₃ I 3072 K ₃ I 3073 K ₄ I 3073 K ₄ I 3075 K ₄ I 3075 K ₄ I 3076 K ₄ I 3077 K ₄ M 3079 K ₄ M 3080 K ₄ S 3081 K ₄ M 3082 K ₄ F 3083 K ₄ F 3083 K ₄ F 3085 K ₄ F 3087 K ₃ F 3088 K ₄ F 3089 K ₄ S 3091 K ₄ S 3091 K ₄ S 3091 K ₄ S 3091 K ₄ S 3090 K ₄ S 3091 K ₄ S	Pt(SCN) ₆ .2H ₄ O Pt(ScN) ₆ .2H ₄ O Pt(ScN) ₆ . RuO ₄ .H ₁ O. Ru(CN) ₆ .3H ₃ O Rh(CN) ₆ . PdCl ₄ PdCl ₅ InO ₄ MnCl ₆ .2H ₂ O MnCl ₆ .2H ₂ O MnScO ₄ .2H ₂ O MnScO ₄ .2H ₂ O MnScO ₄ .2H ₂ O Pet(SO ₄) ₂ Pet(SO ₄) ₂ Pet(SO ₄) ₂ Pet(SO ₄) ₂ Pet(SO ₄) ₂ Pet(SO ₄) ₂ Pet(SO ₄) ₂ Pet(SO ₄) ₃ Pet(SO ₄) ₄ .24H ₃ O D3Fe ₃ O ₃ .4SO ₃ .6H ₂ O Pet(CN) ₆ Pe	657.889 904.668 222.810 468.174 376.243 326.722 397.638 158.025 310.983 424.058 408.416 328.695 326.160 434.252 1006.50 1001.58 806.342 329.173 368.268 422.314 213.160 437.382 531.652 316.159 341.191 332.303	H. M. R. R. R. Tet. M. M. R. Tri. Trig. Tri. M. C. R. M. M. M. M. M. M. M. M. M. M. M. R. R.	d, 400 vice d <240	2 342% 3 378% 2 67 2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 448% 1 898% 3 22 2 218 2 514 2 .076 2 .234	722 669 291 1055 479 97 370 678 699 714 492
3071 K ₁ 1 3072 K _R 3073 K ₄ 1 3074 K ₅ 1 3074 K ₅ 1 3074 K ₅ 1 3076 K ₄ 1 3077 K ₆ 3077 K ₆ 3077 K ₆ 3077 K ₇ 3078 K ₇ 3078 K ₇ 3080 K ₇ 3081 K ₇ 3082 K ₇ 3083 K ₇ 3084 K ₇ 3084 K ₇ 3085 K ₇ 3086 K ₇ 3086 K ₇ 3086 K ₇ 3087 K ₇ 3088 K ₇ 3089 K ₇ 3089 K ₇ 3090 K ₇ 3090 K ₇ 3090 K ₇ 3091 K ₇	Pt(SeCN) ₆ . Ru(O ₄ H ₂ O. Ru(CN) ₆ .3H ₂ O. Ru(CN) ₆ .3H ₂ O. Ru(CN) ₆ . PdCl ₄ PdCl ₅ InO ₄ MnCl ₄ -Chloromanganokalite SO ₄ MnSeO ₄ 2H ₂ O Mn(CN) ₆ Pe(SO ₄) ₂ Pe(SO ₄) ₂ Pe(SO ₄) ₂ Pe(SO ₄) ₂ Pe(SO ₄) ₄ .24H ₂ O JaPe ₃ O ₃ .4SO ₃ .6H ₂ O JaPe ₃ O ₃ .4SO ₃ .6H ₂ O JaPe ₃ O ₄ .4SO ₃ .6H ₂ O Pe(CN) ₆ Pe(C	904 668 222,810 468,174 376 243 326 722 397 638 158 025 310 983 424,058 408 416 328 695 326,160 434,252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	M R R R. Tet. M M M M M.	d, 400 vice d <240	2 342% 3 378% 2 67 2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 448% 1 898% 3 22 2 218 2 514 2 .076 2 .234	291 1055 479 97 370 678 699 714 492
3072 KR 3073 KJ 3074 KJ 3073 KJ 3074 KJ 3075 KJ 3076 KJ 3077 KM 3078 KJ 3077 KM 3078 KJ 3079 KJ 3079 KJ 3079 KJ 3079 KJ 3080 KJ 3081 KJ 3082 KJ 3083 KJ 3084 KJ 3085 KJ 3085 KJ 3087 KJ 3086 KJ 3087 KJ 3087 KJ 3089 KJ 3091 KJ 3092 KJ 3091 KJ 3092 KJ 3091 K	RuO ₄ .H ₃ O. Ru(CN) ₄ .3H ₃ O. Ru(CN) ₄ .3H ₃ O. Rh(CN) ₆ . PdCl ₄ PdCl ₄ MnCl ₄ .2H ₃ O MnCl ₆ —Chloromanganokalite SO ₄ .MnSeO ₄ .2H ₂ O Mn(CN) ₄ Fe(SO ₄) ₂ .6H ₄ O Fe(SO ₄) ₂ .6H ₄ O Fe ₂ (SO ₄) ₄ .24H ₃ O Fe ₃ (SO ₄) ₄ .6H ₄ O Fe ₄ (SO ₄) ₄ .6H ₄ O Fe ₄ (CrO ₄) ₄ .6H ₄ O Fe ₆ (CN) ₆ Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe ₆ (CN) Fe	222.810 468.174 376.243 326.722 397.638 158.025 310.983 424.058 408.416 328.695 326.160 434.252 1006.50 1001.58 806.342 329.173 368.268 422.314 213.160 437.382 531.652 316.159 341.191 332.303	R. Tet. M M M C. R. Tri. Trig. Tri. M. C. R. M. M M. M. M. M. M. M. M. M. R.	d, 400 vice d <240	2 67 2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 44807 h 1 8940 1 8980 3 22 2 218 2 514 2 .076 2 .234	291 1055 479 97 370 678 699 714 492
3073 K ₄ K ₃ 3074 K ₄ K ₃ 3075 K ₄ K ₃ 3076 K ₄ K ₃ 3077 K ₄ M ₃ 3078 K ₄ M ₃ 3079 K ₄ M ₃ 3080 K ₅ S 3081 K ₄ K ₃ 3083 K ₅ F 3083 K ₅ F 3084 K ₇ F 3086 K ₄ F 3085 K ₄ F 3086 K ₄ F 3087 K ₃ F 3088 K ₄ F 3090 2K ₇ S 3091 K ₇	Ru(CN) ₆ .3H ₃ () Rh(CN) ₆ PdCl ₄ PdCl ₄ InO ₄ MnCl ₄ .2H ₃ () MnCl ₆ -Chloromanganokalite SO ₄ -MnSeO ₄ .2H ₂ O Mn(CN) ₆ Fe(SO ₄) ₂ .6H ₂ O Fe(SO ₄) ₂ .6H ₃ O. Fe(SO ₄) ₂ .4H ₄ O. DaFe ₂ O ₃ .4SO ₃ .6H ₂ O.—Jarosite Fe ₃ (CrO ₄) ₄ .6H ₃ O Fe(CN) ₆ Fe(CN)	468.174 376 243 326 722 397 638 158 025 310 983 424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	Tet. M M C. R. Tri. Trig. Tri. M. C. R. M. M. C. R. M. M. M. M. M. M. M. M. M. M. R	d, 400 vice d <240	2 67 2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 448074 1 8980 3 22 2 218 2 514 2 0.076 2 234	291 1055 479 97 370 678 699 714 492
3074 K ₃ I 3075 K ₄ I 3075 K ₄ I 3077 K ₄ M 3078 K ₄ M 3079 K ₄ M 3080 K ₅ S 3081 K ₄ M 3083 K ₅ F 3084 K ₄ F 3085 K ₄ G 3086 K ₄ F 3088 K ₄ F 3088 K ₄ F 3089 K ₄ F 3090 2K ₇ S 3091 K ₂ S 3091 K ₃ S 3091 K ₄ S 3101 K ₄ C 3102 K ₄ C 3103 K ₄ C 3104 K ₄ C 3105 K ₄ C 3106 K ₄ C 3107 K ₄ S 3108 K ₄ C 3108 K ₄ C 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S 3109 K ₄ S	Rh(CN) ₆ . PdCl ₄ PdCl ₄ PdCl ₄ PdCl ₄ InO ₄ MnCl ₆ —Chloromanganokalite SO ₄ MnSeO ₄ .2H ₂ O Mn(CN) ₆ Fe(SO ₄) ₂ Fe(SO ₄) ₂ .6H ₂ O. Pe ₁ (SO ₄) ₄ .24H ₄ O. D.3Fe ₃ O ₃ .4SO ₃ .6H ₂ O.—Jarosite Pe ₂ (CrO ₄) ₄ .6H ₂ O. Pe(CN) ₆ Fe(CN	468.174 376 243 326 722 397 638 158 025 310 983 424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	M M M M M M M M M M M M M M M M M M M	d <240	2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 44807 5 1 8980 3 22 2 218 2 514 2 0.076 2 234	291 1055 179 97 370 678 699 714 492
3075 K ₄ I 3076 K ₄ I 3077 KM 3078 K ₄ M 3079 K ₄ M 3080 K ₅ S 3081 K ₄ M 3082 K ₅ F 3083 K ₄ F 3083 K ₄ F 3085 K ₄ F 3085 K ₄ F 3086 K ₄ F 3087 K ₅ F 3089 K ₅ F 3090 K ₅ S 3091 K ₅ S 3091 K ₅ S 3091 K ₇ S 3092 K ₇ S 3093 K ₇ S 3094 K ₇ C 3095 K ₇ S 3096 K ₇ S 3097 K ₇ S 3097 K ₇ S 3098 K ₇ S 3091 K ₇	PdCl ₄ PdCl ₆ InO ₄ MnCl ₄ MnCl ₄ MnCl ₄ MnCl ₆ MnSeO ₄ .2H ₂ O Mn(CN) ₆ Pe(SO ₄) ₂ Pe(SO ₄) ₂ Pe(SO ₄) ₂ .6H ₂ O Pe(SO ₄) ₄ Pe ₁ (SO ₄) ₄ .49H ₃ O Pe ₁ (SO ₄) ₄ .49H ₃ O Pe ₁ (SO ₄) ₄ .49H ₃ O Pe ₂ (CrO ₄) ₄ .6H ₂ O Pe ₃ (CrO ₄) ₄ .6H ₂ O Pe ₄ (CN) ₆ Pe ₅ (CN) ₆ Pe ₆	376 243 326 722 397 638 158 025 310 983 424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	M C. R. Tri. Trig. Tri. M. C. R. M. M. M. M.		2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 44807 5 1 8980 3 22 2 218 2 514 2 0.076 2 234	291 1055 179 97 370 678 699 714 492
3076 K ₄ H 3077 KM 3078 K ₄ M 3077 KM 3078 K ₄ M 3079 K ₄ M 3080 K ₅ S 3081 K ₄ M 3082 K ₄ F 3083 K ₄ F 3083 K ₄ F 3084 K ₄ F 3085 K ₄ F 3086 K ₄ F 3087 K ₅ F 3089 K ₄ F 3091 K ₅ S	PdCl ₆ . InO ₄ . InO ₄ . MnCl ₄ -2H ₄ O. MnCl ₄ -Chloromanganokalite SO ₄ -MnSeO ₄ -2H ₂ O. Mn(CN) ₆ Pe(SO ₄) ₂ . Pe(SO ₄) ₂ . Pe(SO ₄) ₂ . SPe ₂ O ₃ . SPe ₂ O ₃ +SO ₃ . Pe ₂ (CrO ₄) ₄ -6H ₂ O. Pe(CN) ₆ Pe(CN)	397 638 158 025 310 983 424 058 408 416 328 695 326 160 434 252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	C, R, Tri, Trig, Tri, M, C, R, M, M M, M,		2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 44807 5 1 8980 3 22 2 218 2 514 2 0.076 2 234	291 1055 479 97 370 678 699 714 492
3077 KM 3078 K ₄ M 3079 K ₄ M 3079 K ₄ M 3080 K ₇ S 3080 K ₇ S 3081 K ₇ F 3083 K ₇ F 3083 K ₇ F 3085 K ₇ F 3085 K ₇ F 3087 K ₇ F 3088 K ₇ F 3089 K ₇ F 3090 2KF 3091 K ₇ S 3090 2KF 3091 K ₇ S 3090 K ₇ S 3091 K	InO ₄ MnCl ₄ .2H ₄ O MnCl ₆ —Chloromanganokalite 80 ₄ .MnSeO ₄ .2H ₂ O Mn(CN) ₄ Fe(SO ₄) ₂ .6H ₂ O Fe(SO ₄) ₂ .6H ₄ O Fe ₂ (SO ₄) ₂ .24H ₄ O JaPe ₃ O ₃ .4SO ₃ .6H ₂ O JaPe ₃ O ₄ .4SO ₃ .6H ₂ O Jarosite Fe ₂ (CrO ₄ .6H ₄ O Fe(CN) ₆ Fe(CN) ₆ Fe(CN) ₆ Fe ₄ (CN) ₆ .3H ₂ O Fe ₄ (CN) ₆ .3H ₂ O Fe ₄ (CN) ₆ .3H ₄ O Fe ₄ (CN) ₆ .3H ₄ O Fe ₄ (CN) ₆ .3H ₄ O Fe ₄ (CN) ₆ .3H ₄ O Fe ₄ (CN) ₆ .3H ₄ O Fe ₅ (CN) ₆ .3H ₄ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆ O Fe ₆ (CN) ₆ .3H ₆	397 638 158 025 310 983 424 058 408 416 328 695 326 160 434 252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	R. Tri. Trig. Trig. M. M. C. R. M. M. M. M. M. M. M. M. R.		2 738 2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 44807 5 1 8980 3 22 2 218 2 514 2 0.076 2 234	1055 179 97 370 678 699 714 492
3078 K ₄ M 3079 K ₄ M 3080 K ₅ S 3081 K ₄ M 3082 K ₅ F 3083 K ₅ F 3084 K ₅ F 3084 K ₅ F 3086 K ₅ F 3086 K ₅ F 3087 K ₅ C 3091 K ₅ S	MnCl ₄ .2H ₄ O	158 025 310 983 424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	R. Tri. Trig. Trig. M. M. C. R. M. M. M. M. M. M. M. M. R.		2 703 2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 448 ^{1/4} 1 894 ^{1/4} 1 898 ^{1/4} 3 22 2 218 2 514 2 .076 2 .234	1055 179 97 370 678 609 714 492
3078 K ₄ M 3079 K ₄ M 3080 K ₇ S 3081 K ₄ M 3082 K ₄ F 3083 K ₄ F 3083 K ₄ F 3085 K ₄ F 3085 K ₄ F 3086 K ₄ F 3087 K ₃ E 3089 K ₄ F 3090 2K ₇ S 3091 K ₂ S 3092 K ₄ S 3091 K ₄ S 3100 K ₄ S	MnCl ₆ —Chloromanganokalite O ₄ MnSeO ₄ :2H ₂ O Mn(CN) ₆ Fe(SO ₄) ₂ : Fe(SO ₄) ₂ :6H ₂ O Fe ₂ (SO ₄) ₄ :24H ₄ O D:3Fe ₂ O ₃ :4SO ₃ :6H ₂ O.—Jarosite Fe ₂ (CrO ₄) ₄ :6H ₂ O. Fe(CN) ₆ Fe(310 983 424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	Tri, Trig. Tri, M. M. C. R. M. M. M. M. M. M. R.		2 221 2 31 3 07 2 177 2 169 1 831 3 2 1 4480 ⁴⁵ 1 8980 ⁴⁵ 1 8980 ⁴⁵ 2 218 2 514 2 076 2 234	1055 179 97 370 678 699 714 492
3079 K ₄ M 3080 K ₅ S 3081 K ₄ M 3082 K ₅ F 3083 K ₅ F 3084 K ₅ F 3085 K ₄ F 3085 K ₄ F 3086 K ₄ F 3087 K ₅ S 3089 K ₄ F 3090 2K ₇ S 3091 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S 3110 K ₅ S 3110 K ₅ S 3110 K ₅ S 3110 K ₅ S 3110 K ₅ S 3110 K ₅ S	MnCl ₆ —Chloromanganokalite O ₄ MnSeO ₄ :2H ₂ O Mn(CN) ₆ Fe(SO ₄) ₂ : Fe(SO ₄) ₂ :6H ₂ O Fe ₂ (SO ₄) ₄ :24H ₄ O D:3Fe ₂ O ₃ :4SO ₃ :6H ₂ O.—Jarosite Fe ₂ (CrO ₄) ₄ :6H ₂ O. Fe(CN) ₆ Fe(424.058 408 416 328 695 326.160 434.252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 341 191 332 303	Trig. Tri. M. C. R. M. M. M. M. M. M. M. M. R.	33	2 31 3 07 2 177 2 169 1 831 3 2 1 4480 ¹⁵ 1 894 ¹⁷ 1 898 ¹ 3 22 2 218 2 514 2 076 2 234	179 97 370 678 699 714
3080 K ₂ S 3081 K ₄ M 3082 K ₄ F 3083 K ₄ F 3085 K ₄ O 3086 K ₄ F 3085 K ₄ O 3086 K ₄ F 3087 K ₄ F 3089 K ₄ F 3090 2KF 3091 K ₂ S 3091 K ₄ S 3093 K ₂ C 3096 K ₄ S 3097 K ₂ C 3100 K ₂ C 3100 K ₂ C 3100 K ₂ C 3101 K ₄ C 3102 K ₂ C 3104 K ₄ C 3105 K ₄ C 3107 K ₄ C 3107 K ₄ C 3108 K ₄ C 3108 K ₄ C 3109 K ₄ C 3109 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3101 K ₄ C	SQ ₄ .MnSeO _{4.2} H ₂ O	408 416 328 695 326,160 434,252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	Tri. M. C. R. M. M. M. M. M. M. M. R.	33	3 07 2 177 2 169 1 831 3 2 1 448075 1 8980 3 22 2 218 2 514 2.076 2.234	479 97 370 678 699 714
3081 K ₄ N 3082 K ₅ F 3083 K ₄ F 3083 K ₄ F 3086 K ₄ F 3087 K ₅ F 3088 K ₄ F 3089 K ₄ F 3091 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S 3100 K ₅ S	Mn(CN) ₆ re(SO ₄) ₂ Fe(SO ₄) ₂ Fe(SO ₄) ₂ Fe(SO ₄) ₂ Fe(SO ₄) ₄ O.3Fe ₄ O ₃ O.3Fe ₄ O ₃ O.3Fe ₄ O ₃ O.4CON ₆ re(CN) ₆ re(CN) ₆ re(CN) ₆ re(CN) ₆ re(CN) ₆ O.4CON ₆	328 695 326,160 434,252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	M. M. C. R. M. M. M. M. M. R.	33	2 177 2 169 1 831 3 2 1 448974 1 8949 1 8989 3 22 2 218 2 514 2.076 2.234	479 97 370 678 699 714
3082 K ₂ F 3083 K ₅ F 3083 K ₅ F 3085 K ₇ C 3085 K ₇ C 3085 K ₇ C 3088 K ₄ F 3087 K ₇ E 3090 2KF 3091 K ₂ SC 3092 K ₂ SC 3093 Co 3094 K ₃ C 3095 K ₄ C 3095 K ₄ C 3096 K ₂ SC 3097 K ₂ N 3099 2KC 3100 K ₂ C 3100 K ₂ C 3101 K ₂ C 3102 K ₂ C 3103 K ₂ C 3104 K ₂ C 3105 K ₂ C 3106 K ₂ C 3107 K ₂ SC 3107 K ₂ SC 3108 K ₂ C 3109 K ₂ C 3100 K ₂ C	Fe(SO ₄) ₂ Fe(SO ₄) ₂ .6H ₂ O Fe ₂ (SO ₄) ₄ .24H ₄ O O.3Fe ₂ O ₅ .4SO ₃ .6H ₂ O Jurosite Fe ₂ (CrO ₄) ₄ .6H ₂ O Fe(CN) ₆ Fe(CN) ₆ Fe(CN) ₆ O.(CN ₆ .3H ₂ O C.COF ₂ O.(CSO ₄ .6H ₂ O O.(CSO ₄ .6H ₂ O O.(CSO ₄ .6H ₂ O O.(CN ₆ .3H ₂ O Fe ₂ (CN ₆ .3H ₂ O O.(COSO ₄ .6H ₂ O O.(CN ₆ .3H ₂ O	326, 160 434, 252 1006, 50 1001, 58 806, 342 329, 173 368, 268 422, 314 213, 160 437, 382 531, 652 341, 191 332, 303	M. C. R. M. M. M. M. M. M. R.	33	2 169 1 831 3 2 1 4480 ¹⁵ 1 8940 ¹ 1 8980 ¹ 3 22 2 218 2 514 2 076 2 234	479 97 370 678 699 714
3083	Pe(SO ₄) ₂ ,6H ₂ O Pe ₁ (SO ₄) ₄ ,24H ₄ O O.3Fe ₃ O ₃ ,4SO ₃ ,6H ₂ O.—Jarosite Pe ₂ (CrO ₄) ₄ ,6H ₂ O. Pe(CN) ₆ Pe(CN) ₆ Pe(CN) ₆ Pe(CN) ₆ ,3H ₂ O P.CoF ₂ O.4.CoSO ₄ ,6H ₂ O eO ₄ .CoSO ₄ ,6H ₂ O eO ₄ .CoSO ₄ ,6H ₂ O eO ₅ .CoSeO ₄ ,6H ₂ O Pe(C ₄ ₁ O ₂ (NO ₂) ₄ K Po(C ₄ ₁ O ₄ O ₃) ₄ —Malonate Po(CN) ₆ O ₄ .NiSO ₄ ,6H ₂ O O ₄ .NiSO ₄ ,6H ₂ O	434, 252 1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	C. R. M. M. M. M. M. M. R	33	2 169 1 831 3 2 1 4480 ¹⁵ 1 8940 ¹ 1 8980 ¹ 3 22 2 218 2 514 2 076 2 234	97 370 678 699 714
3084 K ₄ F 3085 K ₄ G 3086 K ₄ F 3086 K ₄ F 3087 K ₄ F 3088 K ₄ F 3089 K ₄ F 3090 2KF 3091 K ₂ S 3093 [Co(3094 K ₃ C 3095 K ₃ C 3096 K ₃ C 3096 K ₃ C 3096 K ₃ C 3096 K ₃ C 3096 K ₃ C 3097 K ₃ C 3097 K ₃ C 3098 K ₃ C 3098 K ₃ C 3100 K ₄ C 3102 K ₄ C 3103 K ₄ C 3103 K ₄ C 3104 K ₄ C 3105 K ₄ C 3107 K ₃ S 3107 K ₃ S 3108 K ₄ C 3109 3168 K ₄ C 31109 316	Fe ₂ (SO ₄) _{4.24H₂O 0.3Fe₂O_{3.4}SO_{3.6}H₂O Jurosite Fe₂(CrO₄)_{4.6}H₂O Fe(CN)₆ Fe(CN)₆ Fe(CN)_{6.3}H₂O F.CoF₂ O_{4.}CoSO_{4.6}H₂O F.CoScO_{4.6}H₂O FO_{4.}CoSO_{4.6}H₂O FO_{4.}CoSO_{4.6}H₂O FO_{6.}CoS_{4.6}H₂O FO_{6.}CoS_{4.6}H₂O Fo_{6.6}CoS_{4.6}H₂O Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.6}CoScO_{4.6}D Fo_{6.}}	1006 50 1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	C. R. M. M. M. M. M. M. R	33	1 831 3 2 1 4480 5 1 8940 1 8980 3 22 2 218 2 514 2 .076 2 .234	97 370 678 699 714
3085 K ₄ O 3086 K ₄ F 3087 K ₄ F 3088 K ₄ F 3089 K ₄ F 3090 2KF 3091 K ₄ SS 3091 K ₄ SS 3093 Co ₁ C 3095 K ₄ C 3095 K ₄ C 3096 K ₄ SS 3096 K ₄ SS 3096 K ₄ SS 3096 K ₄ SS 3097 K ₂ N 3100 K ₂ C	0.3Fe ₂ O ₃ .4SO ₃ .6H ₂ O — Jarosite Pe ₂ (CrO ₄).6H ₂ O Pe(CN) ₆ Pe(DN) ₆ Pe(DN)	1001 58 806 342 329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	R. M. M. M. M. M. M. R.	33	3 2 1 44807 5 1 8980 3 22 2 218 2 514 2.076 2.234	370 678 699 714 492
3086 K ₄ F 3087 K ₅ F 3088 K ₄ F 3088 K ₄ F 3089 K ₄ F 3099 2KF 3091 K ₂ S 3092 K ₂ S 3093	Ce ₂ (CrO ₄) ₄ 6H ₂ O Pe(CN) ₆ Pe(CN) ₆ Pe(CN) ₆ Pe(CN) ₆ 3H ₂ O Pe(CN) ₆ 3H ₂ O Pe(CoSO ₄ 6H ₂ O Pe(CoSeO ₄ 6H ₂ O Pe(NH ₃) ₂ (NO ₂) ₄ K Pe(C(NH ₂ O ₄) ₂ —Malomate Pe(CN) ₆ O ₄ NiSO ₄ 6H ₂ O	806 342 329 173 368 268 422 314 213 160 437 382 531 652 346 159 341 191 332 303	M. M. M. M. M. M. R.		1 448 ⁽⁷⁻⁴⁾ 1 894 ⁽⁷⁻⁴⁾ 1 898 ⁽⁷⁻⁴⁾ 3 22 2 218 2 514 2 .076 2 .234	678 699 714 492
3087 K ₃ F 3088 K ₄ F 3089 K ₄ S 3090 2KF 3091 K ₂ S 3092 K ₂ S 3093 [Co(3095 K ₃ C 3096 K ₃ C 3097 K ₃ N 3096 K ₃ S 3097 K ₂ N 3100 K ₄ C 3100 K ₄ C 3101 K ₄ C 3102 K ₄ C 3103 K ₄ C 3104 K ₄ C 3105 K ₄ C 3106 K ₄ C 3107 K ₄ S 3108 K ₄ C 3109 K ₄ C 3100 K ₄ C	Fe(CN) ₆ Fe(CN)	329 173 368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	M. M. M. M. M. R.		1 894 ¹⁷ 1 898 ¹ 3 22 2 218 2 514 2 .076 2 .234	699 714 492
3088 K ₄ F 3089 K ₄ F 3090 2K ₄ F 3090 2K ₄ S 3091 K ₄ S 3093 Co(3094 K ₂ C 3093 Co(3095 K ₃ C 3096 K ₂ S 3097 K ₂ N 3099 2K ₂ C 3100 K ₄ O 3101 K ₄ C 3101 K ₄ C 3103 K ₂ C 3103 K ₂ C 3104 K ₄ C 3105 K ₄ C 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3107 K ₄ S 3108 K ₄ C 3109 3K ₄ C 3109 3K ₄ C 3109 3K ₄ C 3109 3K ₄ C 3109 3K ₄ C	Ce(CN) ₆ Ce(CN) ₆ .3H ₂ O C.CoF ₂ O ₄ .CoSO ₄ .6H ₂ O eO ₄ .CoSO ₄ .6H ₂ O (CMH ₂ O ₄) ₄ K Co(CMH ₂ O ₄) ₂ Malonate Co(CN) ₆ O ₄ .NiSO ₄ .6H ₂ O	368 268 422 314 213 160 437 382 531 652 316 159 341 191 332 303	M. M. M M. R		1 898) 3 22 2 218 2 514 2 076 2 234	714 492
3089	Ce(CN) _{6.3} H ₂ O F.CoF ₂ O _{4.} CoSO _{4.6} H ₂ O eO _{4.} CoSeO _{4.6} H ₂ O (NH ₃) ₂ (NO ₂) ₄ K co(C ₃ H ₂ O ₄) ₂ Malonate co(CN) ₆ O _{4.} N ₁ SO _{4.6} H ₂ O	422 314 213 160 437 382 531 652 316 159 341 191 332 303	M. M M. R		3 22 2 218 2 514 2 076 2 234	492
3090 2KF 3091 K ₃ SG 3091 K ₄ SG 3092 K ₂ SG 3093 Co ₁ C 3095 K ₃ C 3096 K ₃ C 3096 K ₄ SG 3097 K ₂ N 3098 K ₂ N 3100 K ₄ C 3100 K ₄ C 3101 K ₄ C 3102 K ₂ C 3103 K ₂ C 3104 K ₇ C 3105 K ₄ C 3107 K ₄ C	$\begin{array}{ll} F.CoF_2, & \dots & \\ CoSO_4.6H_2O & \\ eO_4.CoSO_4.6H_2O & \\ (NH_3)_2(NO_2)_4 K & \\ co(C_3H_2O_4)_T-Malonate \\ co(CN)_6 & \dots & \\ O_4.NiSO_4.6H_2O & \\ \end{array}$	213 160 437 382 531 652 316 159 341 191 332 303	M. M M. R		2 218 2 514 2.076 2.234	492
3091 K ₃ 83 3092 K ₃ 83 3093 K ₂ 83 3094 K ₃ C3 3095 K ₃ C3 3096 K ₃ C3 3097 K ₂ N3 3098 K ₂ N3 3100 K ₂ C3 3101 K ₃ C1 3102 K ₃ C1 3103 K ₂ C1 3104 K ₂ C7 3105 K ₃ C1 3107 K ₃ C3 3108 K ₃ C1 3107 K ₃ C3 3108 K ₃ C1 3108 K ₃ C1 3108 K ₃ C1 3109 3K ₃ C3 3110 K ₃ C1	O ₄ .CoSO ₄ .6H ₂ O eO ₄ .CoSeO ₄ .6H ₂ O (NH ₃) ₂ (NO ₂) ₄ K co(C ₃ H ₂ O ₄) ₂ —Malonate co(CN) ₄	437 382 531 652 316 159 341 191 332 303	M M. R		2 218 2 514 2.076 2.234	1
3092 K ₂ Sc 3093 Co 6002 K ₂ C 3093 Co 6002 K ₂ C 3094 K ₂ C 3095 K ₃ C 3096 K ₂ Sc 3097 K ₂ N 3098 K ₂ N 3099 2KC 3100 K ₂ C 3101 K ₂ C 3102 K ₂ C 3103 K ₂ C 3104 KCr 4105 K ₂ C 3105 K ₂ C 3106 K ₂ C 3107 K ₂ Sc 3107 K ₂ Sc 3107 K ₂ Sc 3107 K ₂ Sc 3108 K ₂ C 3109 3K ₂ C 3109 3K ₂ C 3109 3K ₂ C 3109 3K ₂ C 31109 31109 3K ₂ C 31109	eO ₄ -CoSeO ₄ -6H ₂ O (NH ₃) ₂ (NO ₂) ₄]K . Co(C ₃ H ₂ O ₄) ₄ —Malonate Co(CN) ₄ O ₄ -N ₁ SO ₄ -6H ₂ O	531 652 316 159 341 191 332 303	M. R		$egin{array}{c} 2.514 \\ 2.076 \\ 2.234 \end{array}$	1
3093 Co(3094 K ₂ C 3095 K ₃ C 3096 K ₂ S0 3097 K ₂ N 3098 K ₂ N 3099 2KC 3100 K ₂ O(3101 K ₂ C) 3102 K ₃ C(3103 K ₂ C) 3103 K ₂ C(3104 KCr 3105 K ₂ C(3106 K ₂ C(3107 K ₃ C(3	(NH ₃) ₂ (NO ₂) ₄ K . Co(C ₃ H ₂ O ₄) ₂ —Malonate Co(CN) ₆ O ₄ ,N ₁ SO ₄ ,6H ₂ O	316 159 341 191 332 303	R		$\frac{2.076}{2.234}$	589
3094 K ₂ C 3095 K ₃ C 3096 K ₂ S 3097 K ₂ N 3098 K ₂ N 3099 2KC 3100 K ₂ O 3101 K ₂ C 3102 K ₃ C 3104 K ₄ C 3105 K ₂ C 3105 K ₂ C 3106 K ₂ C 3107 K ₂ C 3107 K ₃ C 3108 K ₄ C 3108 K ₂ C 3109 K ₃ C 3100 K ₄ C 3100 K ₂ C 3100 K ₂ C 3100 K ₃ C 3100 K ₄ C 3100 K ₂ C 3100 K ₃ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C 3100 K ₄ C	Co(C ₃ H ₂ O ₄) ₂ —Malonate Co(CN) ₄	341 191 332 303			2.234	
3095 K ₃ C 3096 K ₇ S 3096 K ₇ S 3097 K ₂ N 3098 K ₂ N 3099 2KC 3100 K ₂ C 3101 K ₄ C 3102 K ₂ C 3103 K ₂ C 3104 K ₇ C 3105 K ₂ C 3106 K ₂ C 3107 K ₂ S 3107 K ₂ S 3107 K ₃ S 3108 K ₄ C 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S	Co(CN) ₆ O ₄ .N ₁ SO ₄ .6H ₂ O	332 303	М			1
3096 K ₂ 80 3097 K ₂ N 3098 K ₂ N 3098 K ₂ N 3100 K ₂ O 3101 K ₂ C 3102 K ₂ C 3103 K ₂ C 3104 K ₂ C 3105 K ₂ C 3106 K ₂ C 3107 K ₂ S 3107 K ₂ S 3108 K ₂ C 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S	O4.NiSO4.6H2O	3	M	i	1 ()44)	1
3097 K ₂ N 3098 K ₂ N 3099 2KC 3100 K ₂ O 3101 K ₂ C 3102 K ₂ C 3103 K ₂ C 3104 KCr 43105 K ₂ O 3106 K ₂ C 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S 3107 K ₂ S		437 102		1	1 903	
3098 K ₂ N 3099 2KC 3100 K ₂ O 3101 K ₃ C 3102 K ₂ C 3103 K ₂ C 3104 KCr 3105 K ₂ O 3106 K ₂ C 3107 K ₂ S 3107 K ₃ S 3107 K ₂ S 3108 K ₂ C 3109 3K ₃ C 3109 3K ₄ C	$\mathrm{Gi}(\mathrm{SeO_4})_2.6\mathrm{H}_2\mathrm{O}$.		M	d. <100	2 237	514
3099 2 KC 3100 K ₂ O 3101 K ₂ C 3103 K ₃ C 3102 K ₃ C 3103 K ₂ C 3104 KCr 3105 K ₃ O 3106 K ₃ C 3106 K ₃ C 3107 K ₃ S 3107 K ₃ S 3107 K ₃ S 3108 K ₃ C 31108 K ₃ C 31109 3K ₃ C	· · ·	531.372	М.	d <100	2 539	608
3100 K ₂ O. 3101 K ₂ C. 3102 K ₂ C. 3103 K ₂ C. 3104 KCr. 3105 K ₂ O. 3106 K ₂ C. 3107 K ₂ S. 3108 K ₂ C. 3109 3K ₂ C. 3110 K ₂ O.	Ti(COS) ₄ .	377 140	М.		$2.132_4^{18.4}$	125
3101 K ₂ C; 3102 K ₂ C; 3103 K ₂ C; 3104 KCr; 3105 K ₂ C; 3106 K ₂ C; 3107 K ₂ S; 3108 K ₂ C; 3109 3K ₂ C; 3110 K ₂ C;	N.Ni(CN) ₂ H ₂ O	258 927	М.		1/871145	
3102 K ₂ C ₁ 3103 K ₂ C ₁ 3104 KCr 3105 K ₂ C ₁ 3106 K ₂ C ₁ 3107 K ₂ S ₁ 3108 K ₂ C ₁ 3109 3K ₂ C 3110 K ₂ O	CrO ₃ —Tarapacaite	194 200	R.	975	2 73218	927
3103 K ₂ C ₁ 3104 KCr 3105 K ₂ C ₁ 3106 K ₂ C ₁ 3107 K ₃ SC 3108 K ₂ C ₁ 3109 3K ₄ C 3110 K ₄ O	'r ₂ O ₇	294 210	Tu	398	2 69	924
3104 KCr	'r ₃ O ₁₀	394 220	М.	250	2 648	
3105 K ₂ O 3106 K ₂ C ₁ 3107 K ₂ SC 3108 K ₂ C ₁ 3109 3K ₂ C 3110 K ₂ O.	r ₄ O ₁₃	494 230	M.	215	2 649	
3106 K ₂ C ₁ 3107 K ₂ SC 3108 K ₂ C ₁ 3109 3K ₂ C 3110 K ₂ O.	·ClO ₃	174 563	М.	d.	2 497 9	į.
3107 K ₂ SC 3108 K ₂ C ₁ 3109 3K ₂ C 3110 K ₂ O.	2CrO ₃ ,I ₂ O ₅	628 074	1		3 66	Į.
3108 K ₂ C ₁ 3109 3K ₂ C 3110 K ₂ O.	rŠO ₇ .	274 265		350		
3109 3K ₂ O 3110 K ₂ O.	O_4 , $Cr_2(SO_4)_3$, $24H_2O$	998 840	C	1	1 83	95
3110 K ₂ O.	rSeO ₇	321 400		120		ł
1 -	CrO₄.2(NH₄)₂CrO₄	886 775	1		2 4031	1
3111 K ₃ C ₁	.Cr ₂ O ₃ .2P ₂ O ₅	530 306	М.		$3 \cdot 5^{20}$	
	r(CN)6	325 343	М.	150 d	1.71	607
3112 K₃Cı	r(SCN)6.4H2O	589 795	R.	ŀ	1 71116	
3113 K ₂ Cr	r ₂ O ₇ .HgCl ₂	565 736	R.		3 53111	1
3114 K₂Cr	r ₂ O ₇ .Hg(CN) ₂ .2H ₂ O	582 867	R			1077
3115 K ₂ M	IoO4	238 190	İ	919	1. 2 3427**	
3116 K₂W	⁷ O₄	326 190	2.1	921	3.120^{94}	1
			1	Tr. 388	•	1
3117 K₂W	7 ₂ () ₁ .	558 190	1	555		1
4	.8WO ₁	1950-19			6.53	1
	${\rm eO_4, Cr_2(SeO_4)_3.24 H_2O}$	1187 38			2 07817 5	
	(C ₂ O ₃) ₄ .5H ₂ O	772 627	М		2 563	1
) -	$O_2(C_2H_3O_2)_3.H_2O$	504 350	Tet,		2 396	
1		498 370			1.782	1
	$SO_4)_2.12H_2O$	520 736	- 1		2 144	
	SO ₄) ₂ ,12H ₂ O ₂ S ₄ O.3H ₂ O	960 573	II. R.			988
	2SaO.3H2O	1 2	C.		3 664	200
	2UO ₃ .V ₂ O ₁ .8H ₂ OCarnotite	3240 89				1
3127 NH ₄ I	2SaO.3H2O	3240 89 6257 86	M. Tri.		3.537	

		Mol. wt.	Crystal system	М. Р.	d40	Ref. ind.
ndex No.	Formula		R.		4.56	
3128	2KF.TaFs	392 690 163 830	M.	947		
3129	K ₂ O B ₂ O ₄	125 915	C. R.	500 d.	2.50	İ
3130	KBF,	200 034		872		1
3131	KBO ₂ KPO ₃	258 245		1035		
3132	3KF.AlF ₄	200 240		Tr. 300		1
0.02	l.	948 740	M. C.		1.75	77. 442
3133	K2O Al2O, 4SO3 24H2O - Kalimite	828 302	Trig.		2.60	281
3134	K ₂ O 3Al ₂ O ₃ 4SO ₃ 6H ₂ O= Alumte	568 640	C.		2 001	93
3135	KA1(SeO.), 12H/O	316 230	Н.	> 1745	26	258
3136	K ₂ O Al ₂ O ₃ 2S ₁ O ₄ -Kaliophilite	436 350		>1800	2.47	114
3137	K ₁ O, Al ₂ O ₄ 4S ₁ O ₂ Leucite	556 470	Tri.	1150	2.56	613
3138	K ₂ O Al ₂ O ₄ .6S ₁ O ₂ — Microcline	556 470	M.	1170 d.	2 56	606
3139	K ₂ O, Al ₂ O ₂ , 6S ₁ O ₂ Orthoclase	796 341	M.	d.	2 9	731
3140	K ₂ O.3Al ₂ O ₃ 6S ₁ O ₂ 2H ₂ O—Muscovite	506 950	C.		3 4	151
3141 2	2Al ₂ O ₄ 3B ₂ O ₃ , K ₂ O —Rhodizite		R.	d. 60	2.54°_{4}	1
	K ₂ L ₄ (NO ₄) ₆ .1.5H ₂ O	554 163	R.	d. 180	•	
3143	K _z Ce(NO ₂) ₄ 2H ₂ O	564 511	M.			1037 1
3143.5	Kılıff.	371 19	C.			68.1
3143 6 1	K ₁ HfF ₇	429 285	``		2 8	
3144 1	KMgF ₁	120 415	1		2 7	1
3145 1	K,MgF.	178 510	D	167	1 60	467
3146	KCl, MgCl2 6H2OCarnallite	277 881	R.	101	2 547	1
3147	KI.Mgl ₂ 6H ₂ O .	552 303			2 25	493
3148	K2SO4.MgSO4 4H2O Leonite	366 702	М.	d. 72	2 13	451
3149	K₂O, MgO, 2SO, 6H₂O Picromente	402 732	M.	d. 72	2 83	128
3150	K ₂ SO ₄ .2MgSO ₄ Langbeinite	415 025	C.		2 13	553
3151	KCLMgSO ₄ 3H ₂ O -Kainite	248.984	M.		2 31	527
	$K_2Mg(SeO_4)_2 6H_2O \cdots$	497.002	М.		2 6	92.
	KMgPO ₄	158 439	R.		2 4	
3154	$K_2Mg(P_2O_0)_2$	576 654	M.	1 100	1 98	
	KHMg(CO ₃) ₂ ,4H ₂ O	256 - 484	Tri.	d. 100	2 6015	
3156	K-Mg(('r()4)2 2H2()	370 561	Tri.			611
3157	K ₂ O.4MgO.11B ₂ O ₃ .18H ₂ O -Heintzeite	1345 79	М.		2 1	591
3158	KCl.CaCl ₂ - Chlorocalcite	185 539	C.	754	0.00	581
3159	K₂O,CaO 2SO₃,H₂O—Syngenite	289 310	M. ;		2 60	001
	K ₂ CaP ₂ O ₇	292 308	H.		2 7	1
3161	K ₂ Ca(CO ₃) ₂	238 260	R.	790	0.9-	259
3162	K ₂ O.8C _B O 16S _I O ₂ 16H ₂ O Apophyllite	1791-96	C.		2 35	2.00
3163	K ₄ CrO ₄ ,CaCrO ₄ ,2H ₂ O	386 311	Trı.		2 502	254
3164	K.O.4CaO,2Al ₂ O, 24S ₁ O ₂ H ₂ O-Milarite	1981-77	II.		2 57	685
3165	K.O.2CaO MgO 48O, 2H ₂ O - Polyhalite	602 941	R.		2 78	000
3166	K ₂ SO ₄ 4CaSO ₄ MgSO ₄ 2H ₂ O - Krugite	875 211			2 801	
3167	KCl.2SrCl ₂	391 625		638		
3168	2KCLSrCl ₂	307 642	R.	597	0.0	1
3169	K ₂ SrP ₂ O ₇	339 858	H.		2 9	
3170	KSrCr(C ₂ O ₄) ₃ .6H ₃ O	550 817			2 15512 8	
3171	K ₁ Ba(CO ₁) ₁	335 560		800		
3172	K ₄ BaCa(CO ₃) ₄	573 820	1	758	0.000	218
3173	LiKSO ₄	142 099	H.		2 393	218
3174	2KNO ₂ .LiNO ₂ .Bi(NO ₂) ₃	570 177			3 214	
3175	LiKCO ₃	106 034		515		201
3176	LiK(d-C4H4O6).H2O	212 080	R.			601
3177	KLi(dl-C4H4O6).H2O	212 080	М.		1 610	1075
3178	KLiPt(CN)4.3H4O	399 342	R.			798
3179	K,Lt,Fe(CN),3H,O	358 002	М.			753
3180	KlaMoO.H ₂ O	224 049	R.		2 696	
3181	K ₃ Na(SO ₄) ₃ —Glaserite	332 412	Trig.	<1000	2 696	237
3182	KNaHAsO47H ₂ O	328 168	1		1.884	
3183	KNn(dl-C4H4O4).3H2O	264 169	M.		1.783	
3184	KNnC ₄ H ₄ O ₄ .4H ₂ O=Rochelle sult	282 184	R.		1.790	517
3185	KCl.11Na ₂ O.9SO ₃ .2CO ₂ —Hanksite	1565 07	11.		2.56	222
3186	3KCl.NaCl.FeCl ₁ Rinneite	408 870	Trig.		2 35	290
3187	K ₂ Na(CrO ₄) ₁	372 302	Trig.		2.767	351
3101	1221.10/2 1/14/3	CI Co Cr Ca Ca	Dy Er Eu F F	Go Od Go CH H	Hf Hg Ho I In 73 30 68 6 26	Ir K La L 36 83 58 8

ndex No.	Formula	Mol. wt.	Crystal system	M. P	d.**	Ref. inc
3188 3189	5K ₂ W ₄ O ₁₂ .2Na ₄ W ₄ O ₁₄ . (CaK ₂ Na ₂)O.Al ₂ O ₂ .6SiO ₂ .6H ₂ O—	7534 93			7 117	
	Erionite		R.		2 0	435
3190	Rb ₂ O	186 880	1	d. 400	3 72	100
3191	Rb ₂ O ₂	202 880		u. 400		1
3192	Rb ₂ O ₂	218 880		1	3 65	
3193	Rb.O		1		3 53	
	RbH	234 880	i	280	3 050	
3194		86 4477	1	; d 30o	2	}
3195	RbOH.	102 448		300	3 20311	- 1
3196	RbF.	104 440	1	760	1 2 88990	1
3197	RbCl	120 898		715	2.76	104
			Į.		1. 2 088780	
3198	RbClO ₃	168 898			3 19	ļ
3199	RbClO₄ .	184 898	R		2 9	
3200	RbBr.	165 356	Ĉ	682	3 35	133
		100 000	1	0.52		100
3201	RbBr ₄	205 100	10	1	1. 2 795 ⁷³⁰	l
		325 188	R	d. 140		
3202	RbBrO ₁	213 356		430	3 68	1
3203	RbBrCl ₂	236 272	R	d. 110		
3204	RbBr₂Cl	280 730	R.	76		
3205	RbI	212 372	C	642	3 55	146
			1 .		L 2 87378	1
3206	RbI ₃	466 236	R	190		
3207	RbIO ₃	260 372	M 2, C	d	1 331**	-
3208	RbIO ₄ .	276 372	Tet.	``	3 91816	
3209	RbICl ₂ .	1	R	,	9.916	
1		283 288	1	190		
3210	RbIBr ₂	372 204	R.	225		- 1
3211	RbIBrCl	327 746	R	205		
3212	Rb ₂ S.	202 945	1	j	2 912	
3213	Rb₂S₃	267 075		213		
3214	Rb_2S_4	331 205	1	225	2 6184	
3215	Rb ₂ SO ₄	266 945	R.	1060	3 613	576
				Tr. 653	1. 2 5291100	
3216	Rb ₂ S ₂ O ₆	331 010	H.			217
3217	Rb ₂ S ₂ O ₈	363 010	M.			502
3218	RbHSO ₄ .	1	l		2 89216	;
3219		182 513	1	10.	4 OU4	
	RbI.48O ₂	468 632		13 5	9.00	070
3220	Rb ₂ SeO ₄	314 080	R		3 90	673
3221	RbNO ₁	147.448	H	Tr. 161 4 to C.	3 11	594
	•		(,	Tr. 219 to R.	1. 2 395400	ļ
			R Tri	310		1
3222	RbNO ₃ .HNO ₄	210 464	Tet	62		ļ
3223	RbNO ₃ .2HNO ₄	273 479	1	45		ĺ
3224	Rb ₂ CO ₃	230 880	[[837		1
	$RbH_3(C_2O_4)_2.2H_2O.$	300 494	Tri.		2 12518	İ
	$Rb(dl-C_4H_6O_6)$.	234 479	Tri		2 282	
	$Rb(meso-C_4H_bO_8).0.5H_2O$	243 486	Tn.		2 399	
		1	1 1		1 933	
	RbHC ₈ H ₄ O ₄ —Phthalate	250 479	R			
	$Rb_2(d-C_4H_4O_6)$	318 911	Tug.		2 692	
	Rb ₂ (meso-C ₄ H ₄ O ₆).H ₂ O	336 926	Tu		2 584	560
	Rb ₂ (meso-C ₄ H ₄ O ₆).2H ₂ O	354 942	М.			496
	Rb ₂ C ₆ H ₆ O ₇ —Citrate	360 926	!	212 d.		
3233	RbH(CCl ₃ CO ₃) ₂	411 196	M.		2 15015	
3234	RbSCN	143 513		195		1
	Rb ₂ S ₁ F ₆	312 940			3 332	
	RbTi(SO ₄) ₂ .12H ₂ O.	541 655	C,			199
	RbPbCl ₃	399 014	R.	440		
	RbPb _z Cl _b	677 130	R.	423		1
1		1	C.	,	1 962	87
	RbGa(SO ₄) ₂ .12H ₂ O	563 475	1	1		01
1	Rb ₂ InCl ₄ H ₂ O.	480 985	R.	1	3 087	
	Rb ₂ InBr ₅ .H ₂ O.	703 275		4.7	3 409	
	RbIn(SO ₄) ₂ .12H ₂ O	608 555	C,	42	2 065	83
3243	Rb ₂ TlCl ₆ .H ₂ O	570 585			3 513	1

ndex No.	Formula	Mol. wt	Crystal system	М. Р.	d_4^{20}	Ref. inc
3244	Rb ₄ TlBr ₄ 2H ₂ O.	976 247			4.077	
3245	Rb ₂ Zn(SO ₄) ₂ ,6H ₂ O	536 482	M.		2.591	499
3246	Rb ₂ Zn(SeO ₄) ₂ .6H ₂ O	630 752	M.		2.860	598
3247	Rb ₂ Cd(SO ₄) ₂ .6H ₂ O	583 512		1	2.695	485
3248	2RbCl.CuCl ₂ 2H ₂ O	412 313	!	1	2.895	1.00
3249	Rb ₂ Cu(SO ₄) ₂ 6H ₂ O	534 672	M.		2 57	510
3250	Rb2AgBi(NO2)8	763 808			3 6715	0.0
3251	Rb ₂ SO ₄ ,Ir ₂ (SO ₄), 24H ₂ O	1373 71	C	109	0 01	
3253	RbRh(8O ₄) ₃ ,12H ₂ O	596 665	- i	100		100
3254	RbMnO4		1		9 995104	109
3255		204 370			3 23510 4	
	Rb ₂ Mn(SO ₄) ₂ 6H ₂ O	526 032	M		2 46	474
3256	RbFeCl ₁ 2fl ₂ O	283 685			2 711	1
3257	Rb ₂ FeCl ₄ 2H ₄ O	404 583	1		2 850	j
3258	Rb ₂ Fe(SO ₄) ₂ 6H ₂ O	526 942	М.		2 518	495
3259	RbFe(SO ₄) ₂ ,12H ₂ O	549 595	C,		1 92	98
3260	Rb ₂ FeSe ₂ O ₈ 6H ₂ O	621/212			2 819	1
3261	$\mathrm{Rb_{7}SeO_{4}Fe_{2}(SeO_{4})_{3}24H_{2}O}$	1287 73	- C	4.5	2 13115	111
3262	Rb ₂ Co(SO ₄) ₂ 6H ₂ O	530 072	M	I	2 567	515
3263	Rb ₂ Co(C ₃ H ₂ O ₄) ₂ 4H ₂ OMalonate	505 942		1	2 131	0.0
3264	Rb ₂ SO ₄ N ₁ SO _{4.6} H ₂ O	529 792	M.		2 586	500
3265	Rb ₂ SO ₄ , Cr ₂ (SO ₄) ₃ 24H ₂ O	1091 53	C.	107		523
3266	RbV(SO ₄) ₂ , 12H ₂ O		1 '' 1	107	1 946	96
3267	3RbF,AlF	544 715	1 1	4	1.915^{4}	1
1		397 280	1 1	985		İ
3268	Rb ₂ SO ₄ Al ₄ (SO ₄), 24H ₂ O	1041 43	C.	1	1.8670	78
3269	Rb ₂ La(NO ₂) ₅ 4H ₂ O	691 892	M.	86	2 497	
3270	$Rb_3Ce(NO_3)_5 4H_2O$	693 232	М.	70	2 4970	
3271	Rb ₂ Pr(NO ₃) ₄ 4H ₂ O	693 902		63 5	2 500	
3272	$\mathrm{Rb_2Nd}(\mathrm{NO_4})_{\mathrm{5}}.4\mathrm{H_2O}$	697 252		47	2 560	
3273	$Rb_2Mg(SO_4)_2.6H_2O$	495 422	M.		2 40	461
3274	$Rb_2Mg(SeO_4)_2 6H_2O$	589 692	M		2 684	549
3275	Rb ₂ Mg(CrO ₄) ₂ 6H ₂ O	535 312	M	i	2 466	
3276	RbLa(d-C4H4Oa) H.O	258 425	R	1		805
3277	Rb Na(meso-C ₄ H ₄ O ₆) 2.5H ₂ O	301 506	Tu		2 281	671
3278	Cs ₂ ()	281 620	1 " 1		2 20	
3279	Cs ₂ O ₃	'		46.4	4 36	1
3280	Cs ₂ O ₄	313 620	1	400	$4 - 25^{\circ}$	}
, D. N.	. 21/4	329 620		60a		ŀ
1001	CH			$515 (\text{in } O_2)$	3.68°	1
3281	CaH	133 818	1	į	2 7	
3282	CsOH	149 818		Tr. 223		
				272 3	3 675	
3283	CsF	151 810		683	3 586, 50	
i		Í			1. 2 549	
3284	CsCl	168 268	0	646	3 97	144
			1	0.10		144
3285	CsClO ₁	216 268			1. 2 7324	1
3286	CsClO,	232 268	1		3 5719 5	
	CsBr		1 1	ana	3 327	1
		212 726	C,	636	4 44	152
3288	CsBr.			ļ	1. 3 038_4^{700}	
1		372 558	R	180		
3	CsBrO ₄	260 726		420	4 1019 5	
1	CsBrC1.	283 642		205		
	CsBr ₂ Cl	328 100	1	191		
3292	CsI	259.742	('	621	4 51	163
			1 1	į.	1. 3 114,000	1
1	CsI,	513 606	R.	207 5		
	CalO ₃	307 742	M.		4.85	1
3295	CslO ₄	323 742	R		4 259	1
3296	CsICL	330 658	R.	230		1
	CsIBr ₂	419 574	1	248	3 86	1
	CsI ₂ Br	166 590				
1	CsIBrCl	1	1 1	195 5		1
ī	Cs ₂ S ₂	375 116		235		
arm.	(1 u	329 750	1	460		1
301 - 14						4
301 (1 As Au 13 33	B Ba Be Bi Br C Ca Cb Cd Ce	. 361.815 Cl Co Cr Ca Cu	Dy Er Eu F Fe 67 69 64 3 43	217		

Index No.	Formula	Mol. wt.	Crystal system	М. Р.	d."	Ref. ind.
3302	C83S4	393 880		160	Transport to 1 Victoria and 2	1
3303	Cs ₃ S ₄ .	425 945		210	2 806%	1
3304	C8286	458 010		186		
3305	C82SO4	361.685	R.	Tr. 660 to H.	1 243	687
			1	1010	1 3 03440	
3306	CsHSO ₄	229 883	R.	d.	3 35216	
3307	Cs ₂ SeO ₄	408 820	i R			752
3308	$C_{82}(SeO_4)_2$	552 020	R		1 453	
3309	CsN ₃	. 174 834	1	315		1
3310	CsNO ₃	194 818	11	Tr. 161 to C,	3 685	i
				414	1 2 713,00	1
3311	CsNH ₂	148 833		260		
3312	CsNO ₃ .HNO ₃	257 834	•	100		1
3313	C8NO ₃ .2HNO ₃	320 849	*	35		1
3314	CsHC ₈ H ₄ O ₄ —Phthalate	297 849	R	0.7	2 178	1
3315	CsH(CCl ₃ CO ₂) ₂	458 566	Ni i		2 143	
	C82SiF6	407 680	. "			1
3316	CsGa(SO ₁) ₂ ,12H ₂ O		· C.		3 3721	
3317		610 845			2 113	84
3318	Cs ₂ InCl ₆ .H ₂ O .	575 725			3 350	
3319	Cs ₂ InBr ₅ .H ₂ O	798 015			3 776	
3320	CsIn(SO ₄) ₂ ,12H ₂ O	655 925	, C'.		2 241	85
3321	C82TlCl5.H2O	665 325	1		3 879	
3322	Cs ₃ Tl ₂ Cl ₉ .	-1126/35	H.			361
3323	$\mathrm{Cs_2Zn}(\mathrm{SO_4})_2.6\mathrm{H_2O}$	631 222	M.		2.875	552
3324	$\mathrm{Cs_2Zn}(\mathrm{SeO_4})_2$ 6 $\mathrm{H_2O}$	725 492	М.		3 115	640
3325	$\mathrm{Cs_2Cd}(\mathrm{SO_4})_2.6\mathrm{H_2O}$	678 252	M		2.957	536
3326	CsCd(CNS) ₈ .	419 439		213		l
3327	CsCl.HgCl ₂	139 794	C R.			164
3328	Cs2lfgI4	973 958	M.		4.806	
3329	Cs2Hg3Is	1882 91	M.		5 14	
3330	C83llgI ₄ .	1233 70	R.		4 605	
3331	Cs ₂ Cu(SO ₄) ₂ ,6H ₂ O	629 412	M.		2.858	559
3332	2CsNO ₂ .AgNO ₂ .Bi(NO ₂) ₃	858 548	1		3 8815	
3333	CsSO ₄ .Ir ₂ (SO ₄) ₃ .24H ₂ O	1335 64	C,	110		
3334	CsRh(SO ₄) ₂ .12H ₂ O.	644 035		111		112
3335		251 740	,		3 59710 4	1
	CsMnO ₄	596 055	C.		11 (1.7)	200
3336	CsMn(SO ₄) ₂ .12H ₂ O	1	M.		2 740	524
3337	Cs ₂ Mn(SO ₄) ₂ ,6H ₂ O	620 772	м.		$\frac{2}{2} \frac{710}{907!}$	024
3338	CsFeCl ₃ .2H ₂ O	331 055				1
3339	$Cs_2FeCl_4.2H_2O$	499 323			3 275	100
3340	$CsFe(SO_4)_2.12H_2O$	596 965	C.		2 061	100
3341	$Cs_2Fe(SO_4)_2.6H_2O$	621 682	М.		2 796	550
3342	Cs ₂ FeSe ₂ O ₅ ,6H ₂ O	715 952	М.		3 694	
3343	$\mathrm{Cs_2SeO_4}$, $\mathrm{Fe_2(SeO_4)_5}$, $24\mathrm{H_2O}$	1382 47	C.	60	3 61816	116
3344	$Cs_2Co(SO_4)_2.6H_2O$	624 812	М.		2 844	566
3345	Cs ₂ Co(C ₃ H ₂ O ₄) ₂ .4H ₂ O- ~ Malonate	600 682			2 682	
3346	Cs ₂ Ni(SO ₄) ₂ ,6H ₂ O ₁ .	624 532	M.		2 872	575
3347	CsCr(SO ₄) ₂ ,12H ₂ O	593 135	C.	116	2 043	94
3348	CsV(SO ₄) ₂ ,12H ₂ O	592 085	!		2 0334	
3349	3CsF.AlF ₃	539 390		823		
3350	C82SO4.Al2(SO4)3.24H2O	1136 17	C.		1 8670	80
3351	2Cs ₂ O.2Al ₂ O ₄ 9S ₁ O ₂ .H ₂ O-Pollucite	1325 64	C.		2 9	126
3352	Cs ₂ La(NO ₃), 2H ₂ O.	750 601	M.		2 8270	
3353	C82Mg(SO ₄)2.6H ₂ O	590 162	M,		2 676	488
3354	$Cs_2Mg(SeO_4)_2.6H_2O$	684 432	M.		2 94	583
3355	Cs ₂ Mg(CrO ₄) ₂ .6H ₂ O	630 052	M.		2 747	821
	Cs ₂ Mg(CrO ₄) ₂ .0H ₂ O Cs ₃ Cu ₂ Sr(SCN) ₇	1019 69	Tet.		2 882	374
3356			Tet.		2 92	365
3357	Cs ₂ Cu ₂ Ba(SCN) ₇	1069 45	Tet.		3 026	360
3358 3359	Cs ₂ BaAg ₂ (SCN) ₇	1158 07	101.	356-5	0 020	300
	CsLiCl ₂	210 665	ı	0000		1

Mg Mn Mo N Na Nb Nd Ni O Oa P Po Pd Pr Pt Ra Rb Rh Ru S Sa Sb Se Se Si Sn Sr Ta Tb Tc Th Ti Tl Tm U V W Y Yb Zo Ze 76 42 47 11 82 51 61 45 1 35 12 23 41 60 37 80 84 40 39 8 63 14 56 9 18 22 78 52 66 10 24 19 27 70 49 50 48 57 71 23 21

BOILING POINTS

-			that and an along the		Boiling point under	11	I D III
Con	Boding point un		Boding point under	General	1 atm. (or mm of	General	Boiling point under
Gene index	,			index No.		index No.	1 atm. (or mm of
milea	No Hg indicated 1 superscript)	by index N		I maex no.	superscript)	muex No.	Hg indicated by
I	and the same of th		superscript)			11	superscript)
2		89	#11	204	- 95	294	d. <260
4	19 4	∯ 91 000	339	205	- 75	316	447
6	9 9-11	92	f ₂₁	206	- 40	320	453
7	3 8.44	95	151 0	207	73 5	322	500 d.
•	3 8	96	21/3	208	162	337	-192.0
8		1			1		
9	82 85 0	97	- 89 5	209	180	338	s 78.5
13		98	3.5	210	107 23	339	6 3
17	1615	99	17	211	212	341	2230
21	- 67 0	101	12 5	213	- 8	345	-112.0
21	40**	102	- 33 35	214	172 9	346	- 15
23		1		į			••
26	135 - 35 5 ^{tot}	103	113-5	215	106	347	53
31	-30. 17	101	118 57793	216	193	348	80
34	н. 110	105	37	217	s. 38 8794	349	- 15 2
35	97	109	86	218	137 6	350	- 65180L
•3•3	ca 97	111	56 5	219	ca. 165	351	- 80 2
36	1	ll .					30 Z
30	ca 77 diss	111	diss for	222	s. 61 8708	352	57 57
37	н. 1011ын	118	d 210	223	490	353	139
37 38	ca. 116	120	s ca. 140	224	514	356	213
39	- 10 0	125	56	226	407 5	357	15016
317	11 6	126	· 63 5	227	523	358	1901
40	4.0] }				000	190.
40	s. 10	128	s. 105	228	515	360	197 A
41	- 59 6	129	<71	230	295	361	137 0 200
42 44	74 5		exp 93	232	125	362	153
46	60∞	130	- 55	233	ca. 118	363	ca. 300
40	200	131	5	235	205 s. d.	364	
47						304	- 30
	167	132	s. 520	237	150 d.	365	0
53 54	30 52	139	d. < 100	238	95**	366	8 33
55	1	140	exp. 240	250	12713	367	33 153
57	59	1#1	- 2	251	328 5	368	ca. 240
01	138	142	ca. 32	252	22413	371	2
58				1		0.1	4
50 50	78 8	143	s. 542	253	26213	372	66
60	69 1	1	235 vac	254	25713	373	109
62	153.66	148	s. 551	255	29111	374	04
63	151.5765	1	220 vac	256	s. 150 vac.	376	80
(M)	5.40 11	149	d. 15	263	-55	377	104
64	(5840			1	1		104
65	115 d.	164	s. 135	264	63752	378	140.5
66	115 ф. в. 317	165	357.3	265	- 53	379	290
67	- 41.2	166	s 120	266	122	381	220
68	- 41.2 - 42	170	490	268	221	382	113 5
177	- 13	172	d. 160	269	408	383	172
72	100				ļļ		. 1 4
73	s 39	177	8. 140	271	565	384	235
74	s. = 39 d. 288	181	8. 80 d.	272	707	385	192
76	176 4		d.>- 13	274	ra. 300 d.	386	230 5
77	227	191	9Озия	282	- 17	387	255
		192	s ca. 180	284	149 5	- 1	s. 940 ²⁰
81	183	100		1	1		
82	8. 450	193	8. 347 (a)	285	390	389	9218 #
81	- 18		(4) 000	286	220 2	390	96
87	- 1 8 - 35 5	195	- 87.4	287	9230	391	15018 3
		197	57.5733	291	280	403	s. 2210 diss.
88	324	198	8. 280 d.	292	- 11	100	e. 4410 UISS.

	В. Р.	No.	В. Р.	No.	В. Р.	No.	B, P.
0	27	488	114 1	716	430	1515	78.6
06		490	620	749	732	1534	973
107	63.5			i	650	1552	136.7
408	107	491	202	752	- 11	1556	78 d.
	96 2	492	50 ·n	7.53	624		43761
109	90	493	65.00	755	s 1185	1575	
410	30 H				l l		
	•	404	6530	760	d. 280	1593	> 1300
411	134752 9	494			500	1597	176
412	122	495	720	769	11	1610	d. 175
1	115 5	496	340	770	d. 271		3800
413	- 11	497	191 d	779	1100	1619	340
414	108		1230	797	16	1624	010
415	142	499	1200		Į)	ļ	
	li	1			118	1646	35
	139 5	508	180	798		1647	в. 270
416		513	78	799	160	1	180
417	132	514	146	800	220	1648	268
418	153 7	1	and the second s	825	970	1649	
419	171	515	181	829	963	1658	170 d.
	172 5	517	> 120	820	,,,,,,		
420						1664	35 (in H.
- 1		510	270 d.	832	713	1	19.5
421	191	518	240	815	132	1672	
422	187	519		870	105	1673	187
	205756	520	210	i i	650	1674	275.6
423	114 3756	521	224	881		1675	346 7
425		522	170	882	383 7	107.7	
426	122	322	•••			1	266
1			201	883	304	1676	
427	154	523	231	1	8, 345	1677	227 5
	153	528	1290	893		1678	333
428		529	950	894	322		327
429	227	11	exp 105	896	310 d.	1679	6000
432	19520	530		1	s. 140	1689	0000
435	100 57657	543	916	1			
490	****				95.	1690	6000
1	4.35	548	954	898	354	1706	(19 2at.
436	125	11	8. 475	901	s. 580	1700	s. 56
437	130	600		915	d. 150		
438	149754 3	619	110	918	96	1714	118
	141 5	621	130761		159	1724	4100
439		622	5314	919	100		
440	154 5		i			1717	111 2
			152785	920	191		480
441	201 5739 4	623		921	135%	1749	148 5784
442	10718	624	70 516	922	> 306 d.	1752	
	230	625	64 514	1	1366	1753	127
443	l .	626	166769	939		1755	127.19
444	314 2	11	7813	940	993	1	
449	. 284	627		1			130
				947	1345	1758	1
450	136 4	628	8314	l .	1290	1767	3900
450	l .	629	7011	951	d. 400	1796	219
451	230	630	99 516	958		1797	240.5
452	154	11	10513	974	170 d.		8, 400
454	>360	631	9613	1032	240 d.	1798	6, 300
459	140	632	70	1		1	1
100	1	11		1050	1550	1799	4300
	100	633	108 218	1059		1802	229.5
460	138		12314	1075	444 d.	1803	242
461	4300	634	12418	1129	s. 265		320
465	- 90	635		1147	134	1804	1
	29	636	12115		203	1805	5500
466	110 5	637	144 513	1148		- 11	1
467	110 5	1			47 9	1810	87.5
		0.00	s. 610	1149	47 3	11	17
468	86 5	670		1180	s. 240	1811	d. 200
469	72		725	1234	100 8183	1812	
	185 9	675	5000		1190	1813	-101
470	1	678	535	1268		1814	12.5
471	375	11	217	1334	s. 1200 diss.	1017	
472	163 5	679	211				90 6
		- 11	1 .	1342	315	1815	
400	416	693	139 diss.	1	102.8749	1817	210
480	1	695	300	1397	1	1819	123094
481	5100	TI TI	806	1447	1049		> 3500
485	5 - 52	696	1	1509	d. 52	1821	110
486	705	700	815	1513	240	1822	1 110
	623	703	824	, 10.0	1		

INTERNATIONAL CRITICAL TABLES

			. D	No.	В. Р.	No.	В. Р.
No.	В. Р.	No.	В. Р.	2500	1560	2921	1416
823	95	2010	d. 100	2601 °	1000	2924	1380
821	65	2044	d. 100		1670	2926	1330
825	120	2105	590	2604	1353	2927	d. 225
826	175	2112	188	2605	d. 270	2931	d. 215
827	212	2113	245	2606	11. 210		
		ļ.	_	2608	d. 410	2932	d. 180
828	255	2114	270	2610	1265	2936	d. 850
858	2210	2115	331	2613	1190	2958	d. 350
864	182 7/42	2116	330	2625	d. > 170	2959	d. 400
1	4 177 8	2117	311	2668	1390	3196	1410
865	268	2118	239^{19}	2000			
			141.	2670	1700	3197	1390
1866	d 7	2131	1112	2671	1413	3200	1340
1869	382	2232	2850 450 diss	2677	1390	3205	1300
1870	$= 1550 \text{ (in N}_2)$	2234	> 1600	2680	1300	3283	1250
1879	600 (m H ₂)		718	2769	1496	3284	1290
1893	130	2244	115			- 1	
			s 898 6	2846	> 1 100	3287	1300
1894	194	2285	795 diss.	2917	1320	3292	1280
1895	315	2495	1400	2918	1500	12	
1953	1600	2499	1 100	1			

^{*} Hattig, 93, 141: 133, 24

REFRACTIVE INDICES

A. LIQUIDS

Serial No.	Gen. index No.	Refractive index no	Serial No.	Gen. index No.	Refractive index n _D	Serial No.	Gen, index No.	Refractive index n _D	Serial No.	Gen. index No.	Refractive index no
1	436	1.83340.8	18	45	1 429	34	625	1 503522 6	50	513	1 5201
2	97	1 19316	19	1893	1 43212	35	627	1 506223 1	51	628	1 521814
3	9	1.256	20	62	1 43714	36	635	1 5081**	52	58	1.52710
4	195	1.31717 6	21	111	1 44023 6	37	623	1 5082**	53	918	1 5327***
5	17	1.32510	22	59	1 444	38	636	1 5097	54	919	1 5399** *
6	102	1.32518 8	23	339	1 454	39	637	1 5118"	55	2644	1 548**
7	95	1 330-90	24	341	1.46	40	633	1 512021 4	56	55	1 55714
8	1	1 333	25	210	1 46025 1	41	631	1 51272	57	1147	1.564
9	426	1.368	26	1808	1 464	42	619	1 5128	58	287	1 60114
10	41	1 374	27	26	1.46612	43	621	1.513219	59	450	1 (31 10.5
11	1825	1 381	28	103	1 47022	44	515	1 5143	60	2472	1.618
12	109	1 39716 4	29	1894	1.4806 5	45	2847	1 515	61	57	1 66614
13	472	1 400	30	629	1 4926	46	624	1 5158243	62	214	1.69726 6
14	1827	1 408	31	634	1.5005	47	207	1 51614	63	1317	1 700
15	38	1 410	32	626	1 5021212	48	622	1 5174	64	63	1 736
16	2	1 41422	33	632	1 5023	49	630	1 51750-7	65	42	1 885
17	1828	1 421	8								

B. SOLIDS

I. Isotropic Group. m. = mean value

	1. isotropic Group. in mean value											
Serial No.	Gen. index No.	Refractive index	Serial No.	Gen. index No.	Refractive index	Serial No.	Gen. index No.	Refractive index	Serial No.	Gen, index No.	Refractive index	
66	2670	1 336	95	3107	1 4814	127	2839	1 5305	160	260	1 7550	
67	2913	1.339	96	3265	1 4815	128	3150	1 5329	161	1911	1 780	
68	398	1.370	97	3084	1 4817	129	2671	1 5442	162	562	1 782	
	3143 6		98	3259	1 4823	130	1211	1 548	163	3292	1 7876	
	1			(1	1 .	1	f.		1	
05 2	3017.6	1 408	99	2870	1 483	131	1451	1 55 (m.)	164	3327	1.792	
69	344	1 41	100	3340	1 4839	132	1536	1 55 (m.)	165	1923	1 800	
70	3032	1 4115	101	1613	1 4842	133	3200	1 5530	166	1928	1 801	
70-1	2099 6	1 426	102	1369	1 4854	134	2924	1 5590	167	1921	1 811	
70 2	478 5	1.433	103	2921	1 4903	135	2458	1.5667	168	2232	1.83	
71	2235	1 4339	104	3197	1 493	136	1576	1.57	169	2282	1 83	
72	2855		il.	2873	1 495	137	2531	1 5717	170	2364	1.838	
73		1.4388	105				2679	1 5943	171	1261	1 862?	
	2596	1 444	106	2902	1 496	1		-	1	ı	1.864 (m.)	
	2732	1 452	107	1910	1 4976	139	1187	1.6000	172	945		
75	1897	1 454	108	2872	1 50	140	2438	<1.6	173	939	1 93	
76	2700	1 454	109	3253	1 5004	141	2394	1 608	174	278	2.0	
77	3133	1 4562	109 5	2835	1 501	142	1383	1,61	175	402	2 05	
78	3268	1.4566	110	743	1 5066	143	1576	1 61	176	1048	2 05	
79	2760	1 457	111	3261	1 507018	144	3284	1 6418	177	1059	2 0710	
	3350	1.4587	112	3334	1 5077	145	132	1 642	178	280	2 087	
81	1882	1 4594	113	2887	1 508	146	3205	1 6474	179	581	2 09?	
			1	l	i i		3019	1 6574	180	1258	2.16	
82	344	1.46	114	3137	1 509	147			i	1639	2.16	
83	3242	1 4638	115	1240	1 5103	148	2267	1 660 (m.)	181	1		
	3317	1 4649	116	3343	1 511618	149	2401	1 67	182	668	2 20	
85	3320	1 4652	117	2137	1 514	150	2926	1 6770	183	1123	2 20	
86	3025	1 4653	118	2886	1 5144	151	3141	1.69	184	2333	2 20	
87	3239	1 4658	119	2674	1 5151	152	3287	1 6984	185	1062	2 253	
88	690	1 4664	120	2236	1 52	153	148	1 7031	186	951	2 346	
89	680	1 4684	1	3047	1 522 (m)	154	2225	1.705	187	756	2 3682	
90	2740	1 4693	122	1633	1 5228	155	2392	1 710	188	936	2 705	
91	2332	1.4736	1	2842	1 5230	156	2222	1.723	1			
	1							1	100 1	l	0.00	
92	2899	1.48	124	1422	1 5236		2415	1.735	188 1	1	2 89	
	3135	1 4801	1	3098	1 54 (m.)		2128	1 7364	188.2		3 56	
94	3347	1 4810	126	3351	5 521	159	1145	1.74 (m.)	189	552	3 912	

MISCELLANEOUS

Serial No	Gen index No.	Refractive index n	Serial Gen index No	Refractive index n	Serial No.	Gen. index No	Refractive index n	Serial No.	Gen. index No.	Refractive index "
190	367	1 579 ^{15 5} (F)	193 232	1 563 ¹¹ (C)	196	1274	2 69 (Li)	1	3236	1.46 (red)
191	266	1 621 ¹⁴ (F)	194 2196	2 35 (Li)	197	1273	2 70 (Li)		3336	1.48 (red)
192	352	1 412 (C)	195 890	2 49 (Li)	198	1053	>2 72 (Li)		1528	2.18 (red)

II. Uniaxial Group

			11. 0111.	axial Group			
Serial No.	Gen. Index	Refrae	etive index	Serial No.	Gen. index No.	Refrac	tive index
	100	ω	•			ω	
202	2778	1 300	1 296	247	2224	1 512	1 498
203	1 1	1 309	1 313	248	2866	1 518	1 522
204	2182	1 3439	1 3602	249	2422	1 522	1.513
205	2851	1 349	1 342	250	243	1 5246	1 4792
206	1323	1 3570	1 3742	251	2336	1.527	1 539
2(8)	1020	1 3070	1 3712	2.71	2.550	1.021	1 009
207	1409	1 3638	1 3848	252	764	1 5291	1 5039
208	2130	1 378	1 390	253	2453	1 5296	1 5252
209	814	1 3824	1 3992	251	3164	1 532	1 529
210	1583	1 3910	1 4066	255	1358	1 533	1 575
211	1047	1 4092	1 4080	256	1912	1 534	1 514
212	2237	1 417	1 393	257	2439	1 5364	1 4866
213	2347	1 436	1 478	258	3136	1 537	1 533
214	2713	1 4458	1 4524	259	3162	1 537	1 535
215	2941	1 455	1 515	260	1892	1 539	1 511
216	2735	1 4567	1 4662	261	2871	1 539	1.537
217	303.50	1 4574	1 5050	500	,,,,	1 8000	
	3216	1 4574	1 5078	262	1551	1 5393	1 5125
218	3173	1 4715	1 4721	263	2839	1 5398	1 5475
219	2107	1 4720	1 4395	264	2200	1 540	1 510
220	2119	1 473	1 435	265	2207	1 542	1 516
221	2412	1 475	1 486	266	2861	1 542	1 538
222	3185	1 481	1 461	267	342	1 544	1 553
223	1731	1 481	1 493	268	2659	1 545	1 000
224	1970	1 482	1 473	269	2250	1 5496	
225	1995	1 482	1 474				
226	2018	1 486		270	1359	1 5519	1 5575
220	2016	1 180	1 479	270 5	2099 5	1 557	1 543
227	2031	1 187	1 479	271	2804	1 558	1 613
228	340	1 487	1 484	272	2129	1 559	1.580
229	2864	1 487	1 486	273	2226	1 56	2,5,5,5
230	2493	1 487	1 496	274	1902	1 560	1.580
231	2397	1 49	1 11.77	274 5	475 5	1 563	1 552
000							
232	2880	1 490	1 471	275	2199	1 565	1
233	2086	1 490	1 480	276	2326	1 565	1 560
234	2054	1 490	1 481	277	2211	1 565	1 575
235	2072	1 490	1 482	278	2971	1 567	1 518
236	2869	1 190	1 502	279	2420	1 5690	1 6700
237	3181	1 4901	1 4996	280	1340	1 57	
238	1955	1 493	1 480	281	3134	1 572	1 592
239	2061	1 494	1 484	282	2357	1 575	1 57
240	2081	1 495	1 480	283	276	1.5766	1 5217
241	2403	1 496	1 491	284	2125	1.5760	1 575

242	2436	1 4991	1 4758	285	1379	1.582	1 645
243	2329	1 507	1 468	286	1872	1 583	1 602
244	2968	1 5095	1 4684	287	2856	1 585	
245	2840	1 5095	1 5232	288	2705	1 5874	1 3361
246	1547	1 5109	1.4873	289	2188	1.5885	1.5970

	Gen. index	Refractiv	ve index	Senal No.	Gen. index	Refractiv	
erial No.	No.	ω	•	Serial No.	No.	ω	
	1	1.589	1.590	346	1994	1 717	1 817
290	3186		1.000	347	2100	1 719	1.733
291	3079	1.59	4 3	1		1 721	1.816
292	1582	1 59	1 56	348	1951		1 681
	3033	1 5906	1 5907	349	1259	1 723	
293	2399	1 595	1 585	350	969	1 724	1.746
294	2000			li .	1		1 7941
	2417	1 597	1 560	351	3187	1 7278	1 7361
295		1.6038	1 6042	352	1025 1	1 730	1 810
296	847		1 593	353	2621	1 735	1 435
297	2904	1 612	1	11	978	1 741	1 724
298	1978	1 613	1 607	354	1	1 755	1 82
	2314	1 6150	1 6360	355	1414	1 (00	
299					3500	1 757	1 804
000	2393	1 617	1 652	356	2563		1 577
300	1	1 6198	1 5922	357	2594	1 760	T .
301	1400		1 619	358	733	1 768	1 812
302	2572	1 621		359	1858	1 773	1 773
303	1737	1.623	1.625	11	3358	1 7761	1 6788
304	2309	1 625		360	90163	• • • • • • •	
JUT				9.01	3322	1 784	1 774
205	2489	1 629	1 639	361	1	1 7909	1 6527
305	1011	1 632	1 575	362	3065		
306		1 633	1 639	363	2201	1 80	1 72
307	2430		1 631	364	1699	1 80	
308	2275	1 634	1	365	3357	1 8013	1 6882
309	2273	1 634	1 632	(100)			
000				366	1089	1 8036	1.7983
310	2307	1 635	1 631	11	2189	1 815	1 761
	556	1 635	1 653	367	1	1 817	1 5973
311	1	1 636	1 615	368	1307	1	1 618
312	3042		1	369	794	1 818	1 715
313	1934	1.640		370	3085	1 820	1 /10
314	2490	1 64					. 70
•••				371	1364	1 82	1.73
315	2507	1 640	1 633	372	1063	1.8466	1 9200
316	1252	1 6430		H	1433	1 85	
	1739	1 643	1 623	373	l l	1 8535	1 6982
317		1.644	1 446	374	3356		1 60
318	2234		1 697	375	1507	1.855	1
319	1044	1 644	1 001	11		1 050	1 792
			1 702	376	2358	1 870	1 633
320	1046	1 644	1	377	1394	1 875	
321	2216	1.65	1 59	378	1415	1 875	1 784
322	2644	1.65	1 67	11	1431	1 88	
	2441	1.651	1 627	379		1 913	1 923
324	1	1.654	1 676	380	2339	1	
325	, 1907	1.004	-	\\	202	1 918	1.934
	2121	1 6542	1 6700	381	2366	1	1.968
326	2121		1 6666	382	483	1 923	
327	1156	1 6576		383	1416	1 93	
328	2285	1.6583	1 4864	384	2339	1 945	1.971
329	1439	1 664	1 629	44	1324	1 96	
	2433	1 666	1 661	385	1	1	1
330	2100		1	200	1419	1 96	
	2274	1 667	1 666	386	483	1 960	2.015
331	1	1 669	1 657	387	1	1 967	1.978
332	2341	1	1 658	388	2365	1	1 936
333	2410	1 669	1 665	389	569	1 970	2.655
334	2537	1 669	1	390	882	1 9733	2.000
335	2131	1 675	1 59	1,50			2 093
00.7			1 0004	391	485	1 997	
336	1084	1 6769	1 6294	392	744	2 008	2 029
	2004	1 680	1 685	11	310	2 01	1.82
337	1	1 681	1 668	393		2 07	2.05
338	2597	1.6817	1 5026	394	666	1	1.94
339	2425		1 641	395	657	2.09	1
340	1914	1 694	1 011	11		0.114	2 140
			1 723	396	658	2 114	
341	812	1 694	l l	397	2957	2 12	2 00
342	2163	1.700	1 500	398	537	2 13	2.21
	2538	1.701	1 699		587	2 135	2.118
343	1	1 704	1 679	399		2.21	2.22
344	1324.1		1.698	400	1064	2.21	,
345	2281	1.706	1 1,000				

		Dofes	Refractive index		Gen. index	Refractive index	
erial No	Gen. index	ω	*	- Serial No.	No.	ω	
401	1695	2 2685	2 182	1 407	445	2.554	2 493
402	2187	2 31	1 95	408	2354	2 58	2 43
403	1776	2 354	2 299	409	447	2 616	2 903
404	755	2 356	2 378	410	403	2 654	2 697
405	1325	2 481	2 210	411	901	2 854	3 201
406	835	2 506	2 529	412	1095	3 0877	2 7924

413	1522	1 3817 (C)	1 3872 (C)	420	1413	2 45 (Li)	2 51 (Li)
414	2035 1	2 005 (667)	2 004 (667)	421	1264	2.46 (Li)	2 15 (Li)
415	1957 1		2 013 (667)	122	1094	2 6 (Li)	
416	2002 1	2 019 (667)	2 007 (667)	123	524	2 665 (Li)	2 535 (Lt)
417	526	2/3 (Li)		421	1334	3 01 (Li)	2 94 (Li)
418	538	2 35 (Li)	2 33 (Li)	425	1098	3 084 (Li)	2 881 (Li)
419	1668	2 402 (La)	2 304 (La)	426	2471	1 683 (red)	1 587 (red)

III. Biaxial Group

					ai Group				
Serni	Gen	_	Refractive inde	·	Serial	Gen.		Refractive ind	ex
No	index No.	α	, d	,)	No	index No.	α	ß	, ,
427	2852		1 364		462	1876	1 462	1 470	1 171
428	2694	1 394	1 396	1 398	463	343	1 469	1 47	1 473
420	2897		1 413		464	2150	1 4716	1 4730	1 4786
430	2898	1 407	1 111	1 415	465	2729	1 4653	1 4738	1 4804
431	2753	1 405	1 425	1 440	466	2691	1 464	1 474	1 485
432	2718	1 4193	1 4309	1 1193	467	3146	1 466	1 475	1 494
433	2724	1 4321	1 4361	1 4373	168	1874	1 474	1 476	1 483
434	2693		1 11		469	2617	1 460	1 477	1 488
435	3189	1 438	1 11	1 452	470	2398	1 461	1 478	1 485
436	2733	1 439	1 441	1 469	471	1356	1 4713	1 4782	1 4856
437	2723	1 4112	1 1121	1 4526	472	2948	1 475	1 480	1 487
438	2721		1 1134		173	2223	1 476	1 480	1 483
439	411	1 4368	1 1458	1 4510	474	3255	1 4767	1 4807	1 4907
440	2964	1 117	1.448	1 459	475	2708	1 391	1 481	1 486
441	2739	1 4153	1 1196	1 4513	476	2978		1 482	
442	3133	1 430	1 452	1 458	477	1918	1 478	1 482	1 482
443	2710	1 440	1 452	1 453	478	2862	1 480	1 482	1 493
444	2717	1 4499	1 4525	1 4604	479	3083	1 4759	1 4821	1 4969
445	2395	1.448	1 151	1 456	480	2715	1 1777	1 4822	1 5030
446	2890	1 435	1 155	1 459	481	1463	1 477	1 483	1 489
417	2145	1 4326	1 4554	1 4609	482	3029	1 4775	1 4833	1 4969
448	1809	1 340	1 156	1 459	483	2970	1 4768	1 4843	1 4870
449	2854	1/432	1 457	t 458	484	1289	1 4801	1 4840	1 4913
450	2720	1 4401	1 4629	1 4815	185	3247	1 4798	1 4848	1 4948
451	3149	1 4607	1 4629	1 4755	486	2977	1 440	1 485	1 550
452	2757		1 161		487	2719	1 4557	1 4852	1 4873
453	1871	1 459	1 164	1 470	488	3353	1 4857	1 4858	1 4916
454	2727	1/4599	1 4645	1 4649	489	138		1 486	
455	2616		1 465		490	760	1 4620	1 4860	1 4897
456	2738	1 4622	1 4658	1 1782	491	3043	1 4836	1 4864	1 5020
457	2743	1 4649	1 4663	1 4791	492	3091	1 4807	1 4865	1 5004
458	2943	1 4609	1 4669	1 5657	493	3148	1 483	1 487	1 490
459	2165	1 456	1.468	1 507	494	2853	1 484	1 487	1 496
460	2848	1 4468	1 4686	1 4715	495	3258	1 4815	1 4874	1 4977
461	3273	1.4672	1 4689	1 4779	496	3231	1 1	1 488	1

Serial No.	Gen. index No.	α		,	Serial			Refractive ind	
		u	β	; n	No	Gen. index No	a	β	γ
497	2882	1 485	1.488	1 489	552	3323	1 5022	1 5048	1,5093
198	2881	1 486	1 488	1.489	553	3151	1.494	1 505	1.516
499	3245	1.4833	1 4884	1 4975	551	2469	1.497	1 505	1.509
500	854	1 4847	1 4887	1 4959	555	2900	1.505	1 505	1.506
501	1548	1 4669	1 4888	1 4921	556	2959	1 3316	1 5056	1 5064
-		1		1	į.				
502	3217	1 4812	1 4888	1.5719	557	2178		1 506	
503	2147	1 4856	1/4892	1 4911	558	2148	1 314	1.506	1 506
504	2725	1.4855	1 4897	1.5041	559	3331	1 5048	1 5061	1 5153
505	. 1924	1	1 49		560	1986		1 507	
506	2912	į	1 490	1	561	2299	1 493	1 507	1.545
				1	į.		1 1		
507	1863	1.473	1 490	1 511	562	2132	1 495	1 507	1.528
508	2950	1 479	1 490	1 526	563	2765	1	1 5073	
509	2408	1 484	1 49	1 495	564	2696	1.4886	1 5079	1.5360
510	3249	1 4886	1 4906	1 5036	565	2868	1 504	1 508	1.545
511	2143	1	1 491		566	3344	1 5057	1 5085	1.5132
		1			li	1			
512	2171		1 491		567	2893	1 5043	1 5093	1.5751
513	1368	1 4870	1 4915	1 4989	568	2151	1 5070	1 5093	1 5169
514	3096	1 4836	1 4916	1 5051	569	3230	1	1 510	
515	3262	1.4859	1 4916	1.5014	570	2383	1.495	1 51	1.520
516	777	1 4888	1 4930	1 4994	571	2777	1 500	1 510	1.515
				1					
517	3184	1 492	1 493	1.496	572	2406	1 502	1 510	1.512
518	804		1 494		573	2663	1 504	1 510	1.516
519	2938	1 4935	1 4947	1 4973	574	2772		1 511	
520	2697	1 4820	1 4953	1 5185	575	3346	1 5087	1 5129	1 5162
521	1491	1 4902	1 4953	1 5032	576	3215	1 5131	1 5133	1.5144
	1								1
522	2157	1 495	1 496	1 504	577	2289	1 510	1 514	1.578
523	3264	1 4895	1 4961	1 5052	578	2317	1 512	1 514	1.515
524	3337	1 4946	1 4966	1.5025	579	2922	1 440	1 515	1 525
525	1716		1 4967		580	2894	1 4435	1 5156	1.5233
526	2259	1 465	1 498	1 504	581	3159	1 500	1 5170	1 5183
	1								1 505
527	2771	1 495	1 498	1 499	582	2551	1 500	1 517	1 525
528	2407	1 498	1 499	1 505	583	3354	1 5178	1 5179	1 5236
529	3152	1 4969	1 4991	1 5139	584	2553		1 518	1.592
530	1361,		1 500		585	2153	1 514	1 518	1 533 1.525
531	2901		1 5		586	2264	1 515	1 518	1.020
						1075	1 510	1.518	1 533
532	3014		1 500	•	587	1875	1 516	1.5181	1 5335
533	2638	1 40	1 50		588	3031	1 5121	1.5195	1.5358
534	2709	1 418	1 500	1 543	589	3092	1 5135	1.5133	1.000
535	806	1 480	1 500	1 530	590	2228 3158		1.52	
536	3325	1 498	1 500	1 506	591	3105	1	1.02	
					592	2998	1 48	1.52	1 55
537	2108	1 4664	1 5007	1 5027	593	2477	1 500	1 520	1.580
538	992	1 4910	1 5007	1 5054	594	3221	1 51	1 52	1.524
539	1557	1 4949	1 5007	1 5081	595	2154	1 510	1 520	1.543
540	2413		1 501		11	1	1 1	1.52	1.520
541	2930		1 501		596	2860	1 516		1
F.40		1.40*	1 501	1 526	597	2466	1 484	1 521	1 538
542	2164	1 495	1 501	1	598	3246	1.5162	1 5222	1.5331
543	179	1 4981	1 5016	1 5866	599	1466		1 5225	1 5227
544	2498	1 4710	1 5017	ca β 1 511	600	2249	1 5205	1 5226	1.5296
545	2180	1 490	1.502 1.5021	1 5265	601	3176	- ,-,,,	1 523	
546	2737	1.4794	1 1/0/41	1 1/2///	1	1	1		
547	9971	1 400	1.503	1 538	602	174	1.5209	1 5230	1.5330
547	2371	1 499	1.503	1 510	603	3045	1.5096	1 5235	1.5387
548 549	2396	1.501	1.5031	1.5135	604	2758	1 407	1 524	1.541
6344.94	3274	1.5011	1.5035	1.5094	605	2405	1 513	1.524	1.525
550	3341	1 5003							

derial	Gen.		Refractive in	dex	Serial	Gen.		Refractive ind	ex
No.	index No.	α	ø	γ	No.	index No.	α	β	γ
607	3111	1 5221	1 5244	1 5373	662	2592	1 538	1 549	1.554
608	3007	1 5199	1 5248	1 5339	663	2014	1.5399	1.5494	1.5607
			1 525	1 555	664	1886	-	1 55	
609	2294	1 470		1 5.75	665	2204	1 5211	1 5500	1 5680
610	2997		1 526	1 550	666	2212	1 53	1.55	1 55
611	3157	1 508	1.526	1 300	000	22.2	. 00	1.00	1 1/1/
612	1370	1 5201	1 5260	1 5356	667	1032	1 545	1.55	
613	3138	1 522	1 526	1 530	668	2029	1 5413	1 5505	1.562
614	2641	,	1 529		669	3074	1 5498	1 5513	1 563
		1 505	1 529	1 536	670	2046	1 5427	1 5519	1 562
615 616	2865 2807	1 525 1 5193	1 5295	1 5436	671	3276		1 552	
010	2001	1 .51,55	1 1/21/1/		1				
617	2985	1 417	1 530	1 533	672	2736	1.5382	1 5535	1 560
618	2304	1 515	1 530	1 580	673	3220	1.5515	1 5537	1 558
619	1762	1 518	1 530	1 542	674	2288	1.491	1 555	1 650
620	778	1 5240	1 5300	1 5385	675	1360	1 533	1 555	1 635
621	2280	1 525	1 53	1 550	676	2292	1 545	1 555	1 575
622	2167	1 527	1 530	1 540	677	1927	1.551	1 555	1.562
623	1497	1 5246	1 5311	1 5396	678	3086		1 556	
624	2969	1 4893	1 5314	1 5363	679	2876	1 5520	1.5579	1.560
625	2889	1 515	1 532	1 536	680	1884	1 551	1 558	1.582
626	2197	1 527	1 532	1 583	681	1925	1 554	1 558	1.573
00#			* ***		000	2027	1 520	1 500	1 590
627	2566	l l	1 533		682	2637	1 530	1 560	
628	2759		1 533		683	2296	1 55	1 56	1.57
629	2190		1 533	1 5769	684	2618	1 5487	1 5602	1.578
630	2166	1 489	1 534	1 557	685	3165	1 548	1 562	1.567
631	2432	1 517	1 534	1 565	686	188	1 5607	1 5630	1.584
632	1861	1 5347	1 5347	1 5577	687	3305	1.5598	1 5644	1 566
633	2286	1 460	1 535	1 545	688	838	1.0000	1 565	1 000
		,		1 040	11	1	1 560		1.574
634	3015	1 495	1 535	1 700	689	2780	1 560	1 565	1
635 636	2382 2302	1 500 1 515	1 535 1 535	1 560 1 575	690 691	1901 3034	1 561	1 565 1 565	1 567 1 608
000	2302	1 .51.5	1 .).).)	1 3/3	0.71	3034		1 (70)	1 000
637	2142	1 523	1 535	1 586	692	1860	1 566	1 566	1 587
638	2295	1 525	1 535 2	1 550	693	2642		1 567	
639	993	1 5213	1 5355	1 5395	694	2634	1 428	1 567	1 572
640	3324	1 5326	1 5362	1 5112	695	2298	1 450	1 567	1 600
641	961	1 5140	1 5368	1 5433	696	2774	1 536	1 567	1 649
642	1355	1 528	1 537	1 543	697	3002	1.527	1 568	1 647
643	1558	1 5291	1 5372	1 5466	698	2268	1 565	1 568	1 580
644	2404		1/539		699	3087	1 5660	1 5689	1 583
645	3004		1 539		700	2877	1 565	1 569	1 569
646	2955	1 5352	1 5390	1 5446	701	2156	1 569	1 570	1 582
647	2179		1.54		702	2159	1 563	1 571	1.596
648	2293	1 160	1 540	1 610	702	2158	1.555	1 572	1 575
		1		1	11			1 574	1 598
649	2218	1 520	1 51	1 545	704	2464	1 559		1 580
650	2217	1 527	1 540	1 544	705	2369	1.56	1 574	1 640
651	1512		1 542		706	2290	1.495	1 575	1 040
652	1030	1 413	1 542	1 557	707	2368	1 553	1 575	1 577
653	2859	1 466	1.542	1 596	708	2248	1 5693	1 5752	1 613
654	1363	1 530	1 543	1 595	709	3063	1 5438	1 5754	
655	2981	1 415	1 545	1 565	710	643	1	1 576	
656	2265	1 539	1 545	1.551	711	1889	1 562	1 576	1 588
657	2878	1 545	1 546	1.551	712	1888	1 574	1 576	1.588
658	2036	1 5392	1.5479	1 5592	713	2504	1 5622	1 577	1 635
659	2558	1 542	1.548	ca. 1 548	714	3089	1	1 5772	
660	2198	1 544	1 548	1.572	715	2789	1 544	1 578	1.601
661	1950	1.5433	1.5490	1.5755	716	3057	1.569	1 579	1.669

Serial	Gen.		Refractive in	dex	Serial	Gen.		Refractive ind	lex
No.	index No.	α	β	γ	No.	index No.	α	ß	γ
717	2416	1.578	1 579	1 583	772	2321	1 605	1 61	1 612
718	2359	1.5700	1 5818	1 5961	773	2315	1 610	1 611	1.654
719	2370	1 560	1 582	1 587	774	2421	1 592	1 612	1 621
720	782	1.574	1 582	1 582	775	2559	1 597	1 612	1 621
721	2389		1 583		776	2335	1 609	1 6125	1.619
722	3073		1 5837		777	2173	1 520	1 613	1 639
723	2400	1.576	1 584	1 588	778	2356	1 602	1 613	1 649
724	1885	1 563	1 585	1 592	779	1913	1 588	1 617	1.655
725	2803	1 508	1 586	1.525	780	813	1 614	1 617	1.636
726	2227	1.585	1.586	1.596	781	2184	1.607	1 619	1.639
							1		
727	1903	1.552	1 588	1.600	782	1915	1 61	1 62	1 65
728	2181	1.539	1 589	1 589	783	1043	1 61	1 62	1 71
729	2591	1.584	1.589	1 594	784	1905	1 619	1 620	1 627
730	2279	1.5825	1 5891	1 5937	785	2419	1 620	1 620	1.654
731	3140	1.561	1.590	1 594	786	2429	1 609	1 623	1 635
				1		į	1		
732	2327	1.586	1.59	1 598	787	2583	1.610	1 623	1 623
733	2123	1 5595	1 5908	1 6311	788	2367	1 621	1 623	1 631
734	781	1 572	1.591	1 59	789	2451	1 6220	1 6237	1.6309
735	2385	1.572	1 591	1 594	790	2185	1 617	1 624	1 652
736	3056		1 592		791	809	1.531	1 625	1.659
									1 000
737	1738	1 582	1.592	1 592	792	1035	1 541	1 625	1 660
738	2384	1 582	1 592	< 1 606	793	783	1 614	1 625	1 637
739	2381	1 5863	1.5920	1 6139	794	1382	1.615	1 625	1 665
740	2658	1.579	1 593	1 597	795	2561	1 620	1 625	1.645
741	2798	1 5889	1.5943	1.7163	796	2411	1 616	1.626	1.649
				1 000	707	0401	1.621	1.627	1 635
742	1276	1 562	1 595	1 632	797	2431		1 6278	2.2916
743	2903	1 571	1 595	1 598	798	3178	1.6237	1 628	1 665
744	2523	1 5860	1 5951	1.6072	799	1514	1 532 1 616	1 629	1 631
745	2546	1.573	1 597	1.636	800	2316 1920	1 010	1 63	1 001
746	2388	1 586	1.598	1 605	801	1020		1 00	
747	2775	1 573	1.599	1 657	802	1721	1.585	1 630	1 630
748	1987	1.5989	1 5999	1 6003	803	1321	1 602	1 632	1.632
749	2664	1.0000	1 6	1 0000	804	2230	1.603	1 632	1.639
750	2867		1 60		805	3275	1 622	1 633	1.644
751	2322	1 595	1.60	1 603	806	2386	1.632	1 634	1 636
7.71	. 2.,22	1 000	1.00	1 000					
752	3307	1 599	1 600	1.600	807	2308		1 635	
753	3179	1 5883	1 6007	1 6316	808	1580	1.541	1 636	1.669
751	2291	1 413	1 602	1 611	809	2767	1 577	1 636	1 639
755	786	1.586	1.602	1 608	810	3012	1 620	1 636	1.638
756	2278	1.590	1.602	1.638	811	1185		1 637	
	1			1	li				
757	1378	1.579	1 603	1 633	812	2470	1 453	1 637	1 707
758	1935	1 586	1.603	1 623	813	2206	1.636	1 637	1.653
759	2324	1.593	1 603	1 607	814	2640	1 507	1 638	1.698
760	2857	1.594	1 603	1 615	815	1898	1 632	1 638	1.643
761	2152	1.602	1 604	1 615	816	2521	1.6369	1 6381	1 6491
				1		ness		1 044	1 700
762	1357	1.51	1 605	1 611	817	3068	1 545	1.641	1 760
763	2440	1 567	1 605	1 626	818	2823	1 596	1 641	1.652
764	2122	1.591	1 605	1 614	819	1900	1 638	1 642	1.653
765	2269		1.606		820	2409	1 632	1 643	1.645
766	2895	1.595	1.606	1 634	821	3355	1.637	1 643	1.655
705	05		1 607	1	822	2305	1.462	1.643	1.722
767	2555		1.607		11	2349	1.636	1 644	1.654
768	3003		1.607		823 824	2349	1.642	1 645	1.654
769 770	3052	1 577	1.6071	1 404	824	2501	1.635	1.646	1.660
770 771	3001	1 571	1.608	1.694	826	1929	1.643	1.649	1.649
771	820	1.617	1.609	1.593	11 020	1 1020	1 1.010	1.010	,

Serial	Gen	ī	Refractive in	idex	Serial	Gen.]	Refractive ii	ndex
No.	index No	a	<u>β</u> –	7	No.	index No.	α	β	γ
			1 651		882	2595	1.525	1.684	1.686
827	2564		1 651	1 670	883	941)	1.685	
828	2177	1 635	1 6513	. 0	881	2593	1.681	1.685	1 695
829	826	1 210	1 652	1 675	885	1005	1 67	1 686	1 698
830	1916	1 612	E	1 669	886	1937	1.678	1 686	1 689
831	2387	1 625	1 653	1 009	1	100.	1.010	- 55	1 000
1				1	887	2809	1	1.687	1
832	2176	1 650	1 653	1 658	11		1 687	1 687	1 704
833	2214	1 6527	1 6537	1 6748	888	1184	,		1 704
834	2863		1 654		889	1270 1	1.684	1 695	1.698
835	1298	1 647	1 654	1 660	890	1406	1 672	1 697	1 717
836	2175	1 651	1 654	1 660	891	1008	1 695	1 698	1 733
					1		1 4010	1 0004	
837	1919	1 633	1 655	1 662	892	2815	1 6610	1 6994	1 7510
838	2391	1 643	1 655	1 663	893	2810		1.70	
439	2126	1 652	1 655	1 671	894	2565		1.702	
440	2790	1 6491	1 6555	1 7143	895	2652		1.702	
441	2379	1 540	1 656	1 682	896	2418	1 700	1.702	1.706
	1005	1 05:	1	1 000	007	1004	1 007	1.704	1 710
442	1295	1 651	1 656	1 683	897	1294	1 695	1 704	1.710
343	1297	1 652	1 656	1 660	898	785	1 660	1 705	1 713
444	1069	1 6272	1 6573	1 6601	899	734		1.707	
345	1569	1 622	1 658	1 687	900	2229	1 705	1.709	1 711
346	1296	1 63	1 66	1 69	901	2428	1 708	1.711	1 718
0.47	0404	1.040	1 000	1 075	000	0050	1.700	1 711	1 704
847	2424	1 640	1 660	1 675	902	2350	1 709	1 711	1.724
148	1439	1 655	1 66	1 670	903	976	1.703	1 713	1 722
349	2910	1 645	1 661	1 688	904	2556	1 614	1 714	1.729
50	1505	1 6263	1 6614	1 6986	905	2480	1 7146	1 7174	1 812
551	1585	1 629	1 662	1 727	906	1720	1 691	1 720	1.720
N52	2426	1 651	1 662	1 668	907	1899	1 712	1 720	1 728
853	2163	1 5155	1 664	1 666	908	2318	1 715	1 720	1 737
854	2660	1 660	1 866	1 676	909	2423	1 712	1 721	1 731
855	2372	1.642	1 667	1 669	910	2351	1 686	1 722	1 735
856	2215	1 662	1 667	1.673	911	1859	1.702	1.722	1 750
057	1900	1 007	1 444					1 1100	
857	1388	1 635	1 668	1 702	912	1012	1 694	1 726	1 730
858	3064	1 626	1 6684	1 757	913	2510	1 7129	1 7266	1.7441
159	3005	1.485	1 669	1 697	914	1922	1 705	1 729	1 730
800	757	1 658	1 669	1 670	915	2417.1	1 724	1.729	1 734
861	2183		1 670		916	972	1.710	1 731	1 732
162	2340	1	1 670		917	1377	1 730	1 732	1.762
863	2186	1 668	1 670	1 690	918	793	1 708	1 733	1 758
464	2427	1 664	1 671	1 694	919	1670	1 720	1 733	1 935
165	1908	1 670	1 671	1 689	920	807	1 640	1 736	1 750
366	2858	1 634	1 673	1 685	921	964	1 730	1 737	1 785
į							1.00		
467	2330	1 640	1 674	1 679	922	2360	1.732	1 737	1 751
468	2353	1 662	1 671	1 676	923	1841	1.617	1.738	1.776
469	2402	1 665	1 674	1 684	924	3101	1 7202	1 7380	1 8197
370	2905	1 666	1 674	1 688	925	1956	1 731	1 738	1 744
71	2800	1 671	1 674	1 684	926	2208		1.74	
172	2557	1 673	1 674	1 678	927	3100		1 74	
373	1381	1 653	1 675	1 697	927	1408	1 71	1.74	1 76
174	1389	. (7/4)	1 676	1 097			1.71		1 744
375	2542	1 529	1 676	1 077	929	1318	1 733	1.740	1
376	1926	1 643	1 678	1 677 1 684	930 931	1930 1003	1.736	1.741 1.743	1.746
	1020	1 040	1.013	1 054	901	1009		1 149	
77	3037	1 648	1 678	1 699	932	997	1.702	1 745	1.789
378	2651	1 676	1 679	1 687	933	2124	1.747	1 748	1 757
379	2741		1 6802		934	2484		1 749	
880	2284	1 5299	1 6809	1 6854	935	1726	1.72	1 75	1.80
881	792	1.662	1 683	1.717	936	1670	1.74	1 75	1.95

	Gen.		Refractive in	dex	9	1 6	Potential in In			
Serial No.	index No.	α	β	γ	Serial No.	Gen.		Refractive inc	lex	
937	2781	1.743	1.754	1 764		index No.	α	B	γ	
	1028	1.730	1.758	1 838	985	2338	1 910	1 91	1.945	
938	967	1.708	1.760	1 798	986	261	1 871	1 92	2.01	
939	1000	1.719	1.762	1 805	987	1050	1 885	1 920	1.956	
940	1387	1.765	1.774		988	3124	1 750	1 925	1 95	
941	1901	1.705	1.774	1.797	989	1305	1 92	1 95	1.96	
942	2573	1.770	1.774	1.783 ?	990	1365	1 702	1 955	1.965	
943	2352	1.758	1.776	1.795	991	712	1 9493	1 9592	1 9640	
944	966	1.730	1.778	1 803	992	663	1 947	1 961	1 968	
945	1303	1.760	1.779	1 779	993	1722	1 955	1 985	2 05	
946	1944	1 757	1 78	1 803	994	401		1 99		
947	2127	1 78	1 78	1.785	995	557	1.93	1 99	2 02	
948	1045	1.752	1 782	1 815	996	660	1.87	2 00	2 01	
949	1319	1.759	1.786	1.797	997	1723	1 90	2 00	2 05	
950	1380	1 775	1.786	1.815	998	576		2 03		
951	1006	1.747	1.788	1 829	999	2219	1 908	2 05	2 065	
952	1420	1.783	1 788	1 818	1000	573	2 042	2 050	2 050	
953	1670	1 78	1 79	2 04	1001	617	1 8037	2 0763	2 0780	
954	1300	1.780	1 793	1.802	1002	329		2 09	2 010	
955	2337		1 795	1	1003	2375	1.70	2 10	2 23	
956	2808	1 763	1 799	1.813	1004	1326	2 08	2 1	2.16	
957	735		1 80		1005	541	1 816	2 102	2.126 ?	
958	1362	1 76	1.8	1.81	1003	539	2 0767	2.1161	2 1580	
	1 1			1	1007	1696	2 0/0/	2.1101	2 1000	
959 960	1301 1007	1.783	1.801 1.807	1 834	1007	535	2 04	2.15	2 15	
961	2376	1.79 1.775	1.815	1 84 1 825	1009	335	2 14	2.15	2.18	
000	0500		1 010		1010	1421	2.12	2 17	2.31	
962	2582	1.74	1 816	1	1010	2374	1.77	2 17	2.35	
963	583	1.74	1 82		1011		2 13	2 18	2.20	
964	1009	1 820	1.826	1 88	1012	473		2 20	2.20	
965	2346	1 800	1.831	1 846	1013	1336	1 94	2.20	2 31	
966	2802	1 750	1.832	1 832	1014	1327	2 10	2.20	2 31	
967	1049	1 8090	1 8380	1 8593	1015	1391	2.19	2 20	2.33	
968	999	1.69	1 84	1 85	1016	529	2.1992	2 2172	2 2596	
969	1430	1 773	1 840	1 845	1017	1697	2.17	2 22	2 32	
970	2363	1 825	1 842	1 857	1018	1671	2 09	2 24	2 26	
971	2221	1.85	1.85	1.99	1019	1807	2 22	2 25	2 29	
972	2220	1 85	1 85	2 02	1020	1784	2 17	2 26	2 32	
973	639	1 789	1 852	1 877	1021	1781	2 18	2 27	2 35	
974	2492		1 865	1	1022	536	2.24	2 27	2 31	
975	707	1 8600	1 8671	1 8853	1023	1694	2.27	2 27	2 30	
976	1010	1 73	1 870	1 91	1024	279	2.18	2 35	2 35	
977	1027	1 655	1 875	1 909	1025	2331		2 38		
978	1407	1 835	1 877	1 886	1026	1335	2 26	2 39	2.40	
979	1794	1 817	1 879	2 057	1027	878	2 37	2 5	2 65	
980	1302	1 87	1 88	1 93	1028	446	2.583	2.586	2.741	
981	553	1 8771	1 8823	1 8937	1029	917		3		
982	3010	1 527	1 903	1 952	1030	1096		3		
983	2334	1 900	1.907	2 034	1031	1101		3		
984	2361		1.91	1 91	1032	296	3 194	4 046	4 303	

MISCELLANEOUS

1033	944	1 831	1.861 (green)	1 880	1037 1	3143.5	1.461		1 449
1034	429	1 3996	"	1 4102	1037.2	3017 5	1 466		1.455
1035	432	1.4057		1.4165	1038	3009	1.4676		1.620
1036	418	1.4248	1	1 4382	1039	1399	1.500	}	1 660
1037	2994	1 452	1	1 465	1040	2776	1.518		1 527

			Refractive 1	nder	Serial	Gen.		Refractive in	ndex
Serial	Gen.		Refractive i	γ	No.	index No	α	β	γ
No.	index No			1 649	1061	1412	2.38	2.39 (Li)	2.42
1041	2213	1 575		1 604	1062	1698	1	2.40 (Li)	
1042	2644	1 584		1	1063	1800		2.40 (Li)	
1043	2646	1 594	1	1 614	1064	1766	2.41	2.50 (Li)	2.51
1044	1322	1 62	1	1 63	1065	1661		2.55 (Li)	1 2.01
1045	2348	1 6226	1	1 7643	1000	1001	1	/	1
1010	2323	1 641	1	1 650	1066	1093	2.48	2.58 (Li)	2.60
1046		1 6704	1	,,,,,	1067	271	2.46	2.59 (Li)	2 61
1047	2570 2414	1 675		1 685	1068	525	2.51	2 61 (Li)	2 71
1048	2319	1 717		1 735	1069	1411		2 62 (Li)	
1049	1075	1 729		1 788	1070	887	2 35	2 64 (Li)	2 66
1050	107.5	1 12:7			1.0.0	*****			
1051	2549			1 789	1071	272		> 2.72 (Li)	
1052	2560	1.810		1 830	1072	723	>2.72	> 2.72 (Li)	
1053	716	1.817			1073	298	2.74(Li)		>2 72 (Li)
1054	582	1 90		1 97	1074	2770		1.473 (red)	
1055	3081	1 553	1 555 (Li)	1 571	1075	3177		1.5226 (red)	
1056	82	2 00	2 18 (Li)	2 35	1076	2524		1 532 (red)	
1057	2355	2 200	2.200 (Li)	2 290	1077	3114		1 591 (red)	
1058	1263	2.24	2.24 (Li)	2 53	1078	935		2.63 (red)	
1059	599	2.30	2 35 (Li)	2 40				(
1060	1631	2 31	2 37 (Li)	2 66					

INDEX OF MINERAL NAMES

Childrenite, 1926

Chichte, 2851

Acanthite, 1066 Acmite 1808 Adamite, 793 Adehte, 2423 Aprilite, 2808 Agricolite, 401 Aikinite, 1051 Akermanite, 2430 Alabandite, 1273 Alamosite, 663 Albite, 2865 Allactite, 1303 Almandite, 1928 Altaite, 560 Alumian, 1872 Aluminite, 1871 Alunite, 3131 Alunogenite, 1874 Amarantite, 1357
Amblygonite, 2658 Analeite, 2864 Ananalta 2356 Anataso, 145 Ancylite, 2402 Andaluate, 1808 Anglesite, 553 Anhydrite 2248 Annabergite, 1569 Anorthite, 2400 Antigorite, 2180 Antiorite, 964 Anatite, 2275 Apiohmte, 1918 Apophyllite, 3162 Aragonite, 2284 Arcanite, 2938 Armentite, 1067 Argyrodite, 1115 Arisonite, 1111 Armangite, 1299 Arsenie siderite, 2357 Arseniesiderite, 2358 Arsenoferrite, 1385 Arsenolite, 260

Arsenopyrite, 1390 Artimite, 2166 Ascharite, 2212 Atacamita 011 Atelestite, 335 Augelite, 1888 Automobite 1119 Autumite, 2368 Azurite, 1028 Buddeleyite, 473 Bakente, 2389 Burito, 2521 Baryhte, 2593 Barymlite, 696 Barytocalcite, 2595 Bassetite, 2360 Bastonate 1994 Baumhauerite, 595 Bavenite, 2416 Beaverite, 1433 Beegerite, 615 Bementite, 1321 Benitoite, 2563 Beraunite, 1380 Berthuerite 1392 Bertrandite, 2122 Beryl, 2125 Beryllonite, 2876 Beudantite, 1419 Bieberite 1463 Bilimite, 1361 Binnite, 1015 Bisbeerte, 1043 Bischofite, 2132 Biamite 310 Bismuthinite, 325 Bismutospherite, C1 Bixbyite, 1437 Blodite (- Bloedite), 288 Bobierrite, 2154 Boothite, 962 Bornette 2215 Borax, 2848

Bornite, 1426

Botryogenite, 2198 Boulangerite, 606 Boussingaultite, 2150 Brandtite, 2350 Braunite, 1320 Breithauptite, 1571 Brochantite, 966 Bromyrite, 1062 Brookite, 446 Brucite, 2129 Brugnatellite, 2200 Brushite, 2265 Bunsemte, 1528 Bustamite, 2353 Cacoxenite, 1379 Calamine, 813 Calaverite, 1139 Calcioferrite, 2357 Calcite, 2285 Calomel, 882 Camsellite, 2213 Canfieldite, 1116 Caracalite, 2781 Carborundum, 403 Curminate 1117 Carnallite, 3146 Carnegierte, 2860 Carnotite, 3124 Carpholite, 1920 Caroboaldente 1364 Cassiterite, 485 Celestite, 2451 Celaian, 2591 Cerargytite, 1059 Cornente, 617 Cervantite, 278 Chalcanthite, 961 Chalcocite, 956 Chalcomenite, 972 Chalcophylhte, 1011 Chalcopyrite, 1425 Chalcosidente, 1430 Chalcostibite, 1019

Chenevixite, 1431

Chiviatite, 612 Chlorapatite, 2274 Chlormanganokalite. 3079 Chlorocalcite, 3158 Chloromagnesite, 2131 Chondrodite, 2184 Chromite, 1639 Chrysoberyl, 2124 Chrysotite, 2179 Churchite, 2419 Cinnabarite, 901 Claudetite, 261 Clausthalite, 558 Clinochlore, 2227 Chnoclaste, 1010 Chnoenstatite, 2175 Chnohedrite, 2340 Chnohumite, 2186 Chnozolaite, 2417 1 Cobaltite, 1506 Colemanite, 2381 Colorsinate 2228 Connarite, 1582 Connellite, 969 Copiapite, 1363 Coquimbite, 1350 Cordylite, 2594 Corkite, 1416 Corundum, 1858 Combite, 611 Cotinnite, 529 Covellite, 955 Crednerite, 1328 Creedite, 2399 Creetmoreite, 2324 Cristobalite, 340 Crocidolite, 2810 Crocoite, 1631 Cronstedtite, 2201 Cryolite, 2852 Cryptohalite, 398

Cubanite, 1427 Cunrite, 936 Cuprodesclouite, 1784 Cuprotungstite, 1696 Custerite, 2327 Cyanite, 1899 Cyanochroite, 3043 Cyanotrichite, 1913 Dahllite, 2307 Danburite, 2386 Daphnite, 1929 Darapskite, 2708 Datolite, 2387 Dawsonite, 2859 Derbylite, 1413 Desclorate, 1781 Destinexite, 1382 Dewindtite, 1735 Diadochite, 1383 Diaphorite, 1118 Diaspore, 1859 Didymolite, 2413 Dietzeite, 2363 Dihydrite, 1000 Dioparde, 2427 Dioptasite, 1044 Dixenite, 1324 Dolomite, 2425 Domeykite, 1004 Domingute, 603 Dufrenoysite, 592 Dumortiente, 1937 Dundaate, 1909 Durangite, 2858 Durdenite, 1365 Durfeidtite, 602 Fodemite 588 Ectropite, 1322 Edingtonite, 2592 Eglestonite, 890 Elpidite, 2780 Emplectite, 1022 Enargite, 1014

Enstatite, 2176

Eosphorite, 1919 Epididymite, 2877 Epistilbite, 2406 Epsomite, 2145 Erinite, 1009 Eriochalite, 940 Errorite, 3189 Erythrite, 1505 Ettringite, 2397 Euchroite, 1008 Euclase, 2126 Eucryptite, 2659 Eudidymite, 2878 Eulytite, 402 Fairfieldite, 2349 Faujasite, 2899 Favalite, 1407 Felsoebanyite, 1875 Ferberite, 1698 Ferrinatrite, 2804 Ferritungstite, 1699 Foregolumbite 180 Fibroferrite, 1358 Fiedlerite, 541 Flinkite, 1301 Florencite, 2004 Fluellite 1863 Fluocente, 1978 Fluorapatite, 2273 Fluorite, 2235 Forsterite, 2177 Francolite, 2309 Freieslebenite, 1119 Fremontite, 2857 Friedelite, 1439.1 Gadohnite, 2127 Gahnite, 1911 Galena, 552 Galenobiamutite, 61 Ganomalite, 2338 Gano-hyllite, 1922 Gaylussite, 2894 Gearksutite, 2395

Gehlenite, 2433

Carkielite, 2187 Genthite, 2203 Geocromite, 605 Georgiadesite, 589 Gerhardtite, 976 tiersdorfite, 1570 Gibbsite 1860 Gillespite, 2572 Granondite, 2404 Closente, 3181 Glaubente, 2889 Glaubers salt, 2693 Glaucochroite, 2351 Glockente, 1362 Goethite 1335 Goslarite, 760 Goyazite, 2489 Greenockite, 835 Grosularite, 2415 Grunerite, 1406 Gunnajuatite, 327 Guerarite, 1020 Contermanite, 597 Gypsum, 2249 Haidingerite, 2278 Hahte, 2671 Halotrichite, 1924 Hambergite, 2123 Hankste 3185 Hannayite, 2158 Hardystonite, 2341 Hauerite, 1274 Hausmannite, 1264 Hananite, 2902 Hedenbergite, 2360 Heintrite 3157 Hemafibrite, 1302 Hematite, 1334 Hercynite, 1923 Hessite, 1072 Heulandite, 2407 Hewettite, 2374 Harabudette 2144 Hibschite, 2401 Hieratite, 3016 Higginsite, 2346 Hillebrandite, 2321 Handalite 1908 Hoernesite, 2159 a-Hoperte, 781 B-Hoperte, 782 Howlite, 2388 Huebnerite, 1697 Humite, 2185 Hureaulite, 1298 Hydroboracite, 2432 Hydrocerusite, 657 Hydrocyamite, 958 Hydroherderite, 2421 Hydromagnesite, 2167 Hydronenhelite 2860 Hydrophilite, 2236 Hydrotalcite, 2224 Hydrosincite, 807 Iddingsite, 1408 limemte, 1410 livaite, 2361 Invoite, 2383 lodyrite, 1064 Isoclasite, 213 Jacobate, 1438 Industa 2883 Jamesonite, 1418 Jarosite, 3085 Jeremejerite, 1934 Jordanite, 594 Kainite, 3151 Kalicinite, 2978

Kalinite, 3133 Kalionhilite, 3136 Kaolinite, 1901 Kasolite, 1736 Kemnite, 1270 1 Kentrolite, 1327 Karmerite 208 Kieserite. 2142 Kilbrickenite, 609 Kleinst 891 Koechlinite, 1661 Koettigite, 792 Kroehnkite, 2789 Krugite, 3166 Lanarkite, 557 Langheinste, 3150 Langite, 967 Lanefordita 2165 Laubanite, 2412 Laumontite, 2405 Laumonite 539 Laurite, 1235 Lautante 2246 Lawrencite, 1340 Lawsomte, 2402 Lambte 2230 Lazunte, 2872 Leadhillite, 660 Lechatcherite, 341 Lecontite, 2710 Leifite 2866

Lengenbachite, 598, 1117 Leonite, 3148 Lepidocrocite, 1336 Leucite, 3137 Leucochaleite, 1007 Leucophanite, 2903 Leucosphenite, 2910 Levynite, 2403 Lewinte 2333 Libethenite, 997 Lillianite 613 Lime, 2232 Linarite, 1049 Lindackerite, 1585 Lannaerte, 1458 Lirocomte, 1916 Litharge, 524 Lithiophilite 2651 Livingstonite, 917 Lollingite, 1386 Lorandite, 723 Lorettoite, 538 Lossenite, 1420 Löweite, 2880 Lucinite, 1885 Ludlanute, 1381 Ludwigite 2220 Lueneburgite, 2218 Magnesioferrite, 219f Magnesioludwigite, 9991 Magnesite, 2163 Magnetite, 1337 Malachite, 1027 Manandonite, 2664

Manganite, 1263 Manganosite, 1258

Manganotantalite,

Marcasite, 1349

Margarite, 2409 Marialite, 2871

Marshite, 951

Martinite, 2269

Mascagnite, 174

1807

Manganostibite, 1305

Massicotite 525 Matildite, 1103 Matlockite, 535 Mauchente, 1566 Maxite 661 Meionite 2417 Melanotekite, 1421 Melantente 1356 Mehphanite, 2904 Mendipite, 536 Mendazita 9851 Meneghunte, 604 Merumite 2128 Mesolite, 2900 Metacinnabarite, 900 Metahowettite 2375 Meta-torbernite, 1737 Meta-variscite, 1884 Meverhofferite 2382 Miargyrite, 1097 Microchne, 3138 Microcosmic sult. 2733 Mierate, 1123 Milante 3164 Millerite, 1541 Mimotite 587 Minasragrite, 1762 Miniumite, 527 Mirabilite, 2694 Musemite, 2048 Mixite, 1025 1 Molybdenite, 1651 Molybdite, 1670 Molybdophillite, 2189 Molyate, 1342 Monetite, 2264 Monumolite, 598 Montante 390 Monticellite, 2426 Montroydite, 878 Morenosite, 1548 Mullamte, 607 Mullite 1904 Muscovite, 3140 Mysorine, 1026 Nadorite, 599 Nantokite, 939 Nasonite, 2339 Natroalumte, 2856 Natrochaleste, 2790 Natrojarosite, 2802 Natrobte 2862 Natron, 2753 Natrophilite, 2800 Naumannite, 1070 Nephelite, 2861 Nesquehomte, 2164 Newberyite, 2153 Newtonite, 1902 Niccolite, 1564 Nater, 2959 Nitrobarite, 2531 Nitrocalcite, 2257 Nitroglauberite, 2709 Nitromagnesite, 2148 Nordenskioeldine, 2390 Northupite, 2886 Noselite, 2873 Okenite, 2317 Oldhamite, 2247 Ohvemte, 1006 Onul 344 Orientite, 2352 Orpiment, 272 Orthoclase, 3139 Pachuolita 2897 Palaite, 1297

Pandermite, 2384

Paragonite 2867 Parahoperte, 783 Paralaurionite, 540 Paraluminite, 1876 Paramelacomte, 9.14 Paraseprolite, 2178 Paravauxite, 1925 Parisite, 2420 Pascoite, 2376 Pertolica 2803 Penneldite, 537 Percylite, 1048 Periclase, 2128 Perovskite, 2331 Petalite 2603 Pharmacolite 2279 Pharmacoarderite, 1380 Phenacite, 2121 Phoenicochroite, 1632 Phosgenite 658 Phosphochahte, 1001 Phosphuranyhte, 1720 Pickeringite, 2223 Picromerite, 3149 Pinakiohte, 2219 Pinnoite, 2211 Pirmonite, 2893 Pitchblende, 1705 Physionite, 808 Plancherte, 1046 Plattnerite 526 Plumbogummite, 1907 Plumbojarosite, 1415 Plumosite, 601 Podohte, 2308 Polamite (Pyrosulite). 1260 Pollmete 3351 Polyargyrite, 1102 Palulianta 1101 Polydymite, 1544 Polyhahte, 3165 Powelhte, 2365 Prehmte, 2411 Pricete 2385 Prolectite, 2183 Prosonite, 2396 Proustite, 1095 Pseudobrookite, 1412 Pseudohbethemte, 998 Pseudomesohte, 2901 Pseudowollastomte, 2315 Pucherite, 1766 Pyrargyrite, 1098 Pyrite, 1350 Pyronurite, 2199 Pyrochroite, 1259 Pyromorphite, 573 Pyrope, 2225 Pyrophanite, 1325 Pyrophyllite, 1903 Pyrostilpnite, 1099 Pyrrhotite, 1353 Ouartz, 342 Quetenite, 2197 Rammelsbergite, 1565 Raspite, 1694 Ruthite 593 Realgar, 271 Reddingite, 1295 Rezbanyite, 614 Rhagite, 336 Rhodizite, 3141 Rhodochrosite, 1307 Rhodomte, 1318

Rhomboclasite, 1360

Riebeckite, 2809

Rinnette, 3186 Hiverndella 2222 Romeste, 2282 Rutherfording 1728 Rutile, 447 Safforite, 1500 Salammoniae 130 Salmonsite, 1439 Supplierre 2 190 Sarkinite, 1300 Sartorite, 591 Samohte, 1809 Scacchite, 1268 Schallerite, 1324 Scheehte, 2306 1 Scorodite, 1387 Sellate, 2130 Separmontite 280 Shattuckite, 1045 Siderite, 1394 Sideronatrite, 2803 Siderotilite, 1355 Sillimanite, 1900 Skutterudite, 1502 Smaltite, 1501 Smithite, 1093 Smithsonite, 794 Sodalite, 2870 Soda-mter, 2705 Soddite 1733 Spangolite, 1914 Spencerite, 786 Speniartite, 1921 Sphalerite, 756 Spherite, 1889 Spherocobaltite, 1507 Spinel, 2222 Spechanope 2660 Spurrite, 2330 Stanuta 1132 Staurolite, 1930 Stellerite, 2408 Stephanite, 1100 Stercorite, 2733 Stewartite, 1296 Stibnite, 296 Stichtite, 2207 Stokente, 2335 Stolette, 1695 Strengite, 1377 Stromeyerite, 1124 Strontianite, 2463 Struvite, 2157 Stylotypite, 1021 Salphoborite, 2217 Sulphobalite, 2700 Symbite, 2281 Evanbergite, 2190 Syepoorite, 1457 Sylvite, 2021 Symplesite, 1388 Syngenite, 3159 Szaibelyite, 2216 Szmikite, 1276 Szomolnokite, 1354 Tachyhydrite, 2422 Tagilite, 999 Tale, 2181 Tamarugite, 2853 Taramellite, 2573 Tarapacaste, 3100 Tarbuttite, 785 Taylorite, 2964 Teallite, 667 Tellurite, 82 Tennanite, 1053 Tenorite, 935 Tephroite, 1319

Terlinguaite, 887 Tetradymite, 330 Thalenite, 1956 Thaumasite, 2329 Thenardite, 2691 Thermonatrite, 2751 Thousanolite 2898 Thorianite, 668 Thorate, 677 Thortvestite, 1944 Tilante, 2424 Titanite, 2334 Topaz, 1905 Torberute, 173. Trechmannite, 1094 Tremolite, 2429 Trichalcite, 1005 Tridymite, 343 Trigonite, 1326 Triphyhte, 2652 Tripuliyite, 1391 Troogerite, 1721 Troubte, 1348 Troute, 2765 Tschermigite, 1882 Taumobite, 1050 Tungstite, 1671 Turquois, 1915 Tuxtlite, 2905 Tychite, 2887 Tyrolite, 1012 Ulexite, 2896 L'Ilmonosto 1573 1 mangite, 971 Uraninite, 1702 Uranoerreite, 2583 Uranophane, 2372 Uranomhte, 2367 Uranospherite, 1722 Propositione, 2370 l'ranothallite, 2371 Denbloarte 2345 Ussingite, 2868 Uvanite, 1794 Uvarovite, 2364 Valentinite, 279 Vanadinite, 1776 Vanthoffite, 2882 Vauxite, 1927 Vegante, 1414 Velardefite, 2410 Villiaumite. Vivianite, 1378 Vrbaite, 724 Wagnerite, 2156 Walpurgite, 1723 Wapplerite, 2280 Wattevillite, 2890 Whewellite, 2288 Willemite, 812 Witherite, 2542 Wittichenite, 1023 Wollastomte, 2316 Wulfanite 1668 Würtzite, 755 Yenthoronite 1096 Xenotime, 1951 Zaratite, 1576 Zebedassite, 2228 Zeophyllite, 2326 Zepharovichite, 1886 Zeunerite, 1739 Zincalummite, 1912 Zincite, 744 Zinkenite, 600 Zinkosite, 757 Zircon, 483 Zoimte, 2418

σ -TABLE

[Compounds of carbon with elements having key-numbers below 16]

Acknowledgement is made to Prof. E. E. Reid for advice in connection with nomenclature and for his reading of the manuscript of this point latm. (or l Hg indi-by super-Table. on of the å Molecular (I C T. a weights.) Index 5 ormula Gen. d. 7 35 Bismutospherite 510 00 ī CB12O 1 8215 143 37 95 Carbonyl bromochloride 1 1 CBrClO 1.95914 4 172 198 29 -21 697 CBrCb. Bromotrichloromethane 2 61 6 2 015 105 99 Cyanogen bromide. 52 CREN 3 Carbonyl bromide 187 83 64 5 9 44 4 CBr_iO 297 76 10 3 127118 2.799 826 CBr2NO2 Bromopiciin 5 α48.4 3 42 331 66 189.5 Carbon tetrabromide 6 CBr $\beta 90.1$ 61 466 13.8 1.186 Cyanogen chlaride -6 CCIN 7 Dichlorodinitromethane $-\mathrm{Cl_2C}(\mathrm{NO}_2)$. 171 93 122 5 CCl₂N₂O₄ 8 8 3 1.392 98 916 Carbonyl chloride (Phosgene) -1040 CCLO 1 50016 111-98 73 5 721 Thiophosgene 10 CCLS Chloropterin Cl₃CNO₂ 112 4 1.6920 161-38 -64 470 CCLNO2 11 1.595 476 _93_0 76.8 Carbon tetrachloride 153 83 CCL 19 CF₄ 88 00 -- 80 -15 Carbon tetrafluoride 13 146 5 152 94 14 CIN Cyanogen indide Iodotrinitromethane CI(NO₂)₃ 276 96 CIN₂O₆ 58 15 Carbon tetraiodide . 519.73 d. 4 32 CI_{\bullet} 16 1 65011 125.7 364 Tetranitromethane C(NO₂)₄ 196 03 13 17 CN₄O₆ 1 24-87 61 065 -48 Carbonyl sulfide -138COS 17 1 84 5 17 2 CSSe Carbon sulfoselenide 123 265 1 26122 CS. Carbon disulfide 76.130 -111.646.3 17 3 163 84 92 1 92516 CHBrCl₂ Bromodichloromethane 17 4 150.4 2 890 772 7 7 CHBr. Bromoform 252.78 18 1 489 417 CHCL Chloroform 119 38 -63.561 2 19 2040 at. CHF 2 53 20 Fluoroform 70 008 1189 393 80 110 4 1 21 CHI Indotorm 0.699 809 CHN Hydrocyanic acid HCN 27 016 -1426 23 CHNO Cyame acid HCNO 43 016 d. 1.140° CHNS Thiocyanic acid HCNS 59.081 5 24 Nitroform CH(NO₂)₃ 151 032 > 100 d. 25 CHN₂O₆ 15 26 CH2Br2 Methylene bromide 173 85 -52 897.8 2 4615 CHICINO Carbamyl chloride ClCONH₂ 50 62 27 79 481 CH₂Cl₂ Methylene chloride 84 931 -96 7 40 1 1 336 273 28 180 d. 3 325 870 Methylene iodide 5 2: 20 CH2I2 267 88 5 7 30 CH2N2 Cyanamide CN.NH₂ . 42 031 44 14019 d. 1 083 1073 42 031 -23Diazomethane H₂C:N₂ -14531 CH₂N₂ Methylmtrolic acid O2NCHNOH 90_031 6.1 32 CH₂N₂O₂ CH₂N₂O₄ Dinitromethane H₂C(NO₂)₂ 106 031 < -15100 d. 33 155 34 CH-N Tetrazole 70 047 0 815-20 CH₂O Formaldehyde HCHO 30 015 -92-21 35 Paraformaldehyde 160 36 (CH₂O)_x $(30 \ 015)_{x}$ 1 220 25 100.5 C112O2 Formic acid HCO2H 46 015 8 4 37 CHAsCL Methylarsine dichloride 160 90 -59 136 1 838 38 CHASO Methylarsmous oxide 105 98 95 30 1 7320 Methyl bromide 04 030 -934 6 40 CHaBr 0.92018 CH₄Cl Methyl chloride 50 481 -97.6-23 741 Methyl hypochlorite CH-OCl 13 4 CH-ClO 66 481 42 Methylsulfone chloride 1 510 CH₃ClO₂S 111 546 160 43 -78 0 Methyl fluoride 44 CH₃F 34 023 2 279 696 CHJ Methyl iodide 141.96 -66142.6 45 CHANO Formamide HCONH, 45 031 -5 193 1.139 995 48 CHANO Formaldoxime H2C NOH 45 031 84 47 Nitromethane CH₁NO₁ 1 139 43 61.031 -29.2101.9 48 CH,NO, 0.99114 -12 CII,NO2 Methyl nitrite CH₂ONO..... 61.031

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
50	CH,NO,	Methyl nitrate CH ₂ ONO ₂	77 031		exp. 65	1 21714	†
51	CH ₄ NS	Thioformamide HCSNH,	61 096	29	Cap. Go	1	
52	CH ₁ N ₁	Methyl azide	57 047		21	0 8694	1
53	CH ₁ N ₁ O ₁	Nitrourea O ₂ NNHCONH,	105 05	150 d.			
54	CH ₄	Methane	16 0308	181	-161 4	0 415-164	1
55	CH ₄ N ₂ O	Urea H ₂ NCONH ₂	60 047	132 7	Ì	1 335	1167
56	CH ₄ N ₂ O ₂	Methylnitramine CH ₂ NHNO ₂	76 047	38		1 24345 6	1077
57	CH ₄ N ₂ S	Ammonium thiocyanate	76 112	149-6	d 160	1 305	
58	CH ₄ N ₂ S	Thiourea H ₂ NCSNH ₂	76 112	182		1 405	
59	CH ₄ N ₄ O ₂	Nitroguanidine H ₂ NC(:NII)N IINO,	104 063	231		1	
60	CH40	Methyl alcohol CH3OH Methylsulfonic acid CH3SO3H	32 031	97 8	64.5	0 792	2
61	CH ₄ O ₃ S	Methyl sulfuric acid CH ₃ SO ₃ H	96 096	200	16714	1 481	1
62	CH ₄ O ₄ S	Methylmercaptan CH ₃ SO ₄ H	112 09	< - 30		0.868	1
63	CH ₄ As	Methylarsine CH ₃ AsH ₂	48 096	121 0	7 6	0 505	
64 64 1	CH _b AsO ₂	Methyl arsenate CH ₃ AsO(OH) ₂	91 999 139 999	161	-		1234
65	CH _b N	Methylamine CH ₂ NH ₂	31 047	92 5	- 6.5	0 699-11	1207
66	CH ₄ NO	N-Methylhydroxylamine CH ₃ NHOH	17 017	12	62.50	1 0003	226
67	CH,NO,	Ammonium formate HCO ₂ NH ₄	63 047	116	\\\\\\\\\	1 266	
67 1	CH,NO,	Ammonium hydrogen carbonate	79 017	d	1	1 573	1223
68	CII,N,	Diazoaminomethane	59 063	- 12	92 × d		1.223
69	CH,N,O	Semicarbazide H ₂ NCONHNH ₂	75 063	96		1	1
70	CH _b N _z O ₄	Urea nitrate Il2NCONH2 HNO3	123 06	153 d	1	1 664	1
71	CH ₅ N ₃ S	Thiosemicarbazide H ₂ NCSNHNH ₂ .	91-128	183			
72	CH,O,P	Methylphosphinic acid CH ₃ PO(OH) ₂	96 063	105		1	1
73	CH ₆ P	Methylphosphine CH ₃ PH ₂	18 063		11	1	1
74	CH ₆ CIN	Methylamine hydrochloride	67 512	226	23014	1	
75	CH ₅ CIN ₅	Guanidine hydrochloride	95 528				1333
76	CH ₆ CIN ₄ O	Semicarbazide hydrochloride	111 53	173 d.			
77	CH ₆ N ₂	Methylhydrazine CH ₃ NHNH ₂	46 062		87.5	1	
78	CH ₅ N ₄	Methyltetrazine CH3NHN:NNH2	71 078		130		
79	CH ₆ N ₄ O ₂	Guamdine nitrite (NH ₂) ₂ C(NH),HNO ₂	106 08	78 5		1	
80	CH ₆ N ₄ O ₄	Guanidine mtrate	122 079	4.3.3	1	1	1333
81	CH ₆ N ₄ O ₄	Semicarbazide nitrate	138 08	123	1		
82	CH ₇ CINH ₄	Aminoguanidine hydrochloride	110 54	163			
83	C ₂ Br ₂	Dibromoacetylene BiCCBr	183 83		76	$\begin{bmatrix} 2 \\ 2 & 304^{15}_4 \end{bmatrix}$	894
84	C ₂ Br ₂ Cl ₂	1, 2-Dibromo-1, 2-dichloroethylene	254 75	4 4	172	2 713	1308
84-1	C ₂ Br ₂ Cl ₄	1, 2-Dibromo-1, 1, 2, 2-tetrachloroethane	325 66 215 83	~ 19 5	101-1	~ 110	1.900
85	C ₂ Br ₂ O ₂	Oxalyl bromide (COBr) ₂	343 66	57 5	227		
86	C ₂ Br ₄	Tetrabromoethylene Br ₂ CCBr ₂ Hexabromoethane Br ₃ CCBr ₃	503 50		210	3 823	1316
87 88	C ₂ Br ₆	Dichloroacetylene ClC;CCl	94 916	~ 50			
89	C ₂ Cl ₂ C ₂ Cl ₂ O ₂	Oxalyl chloride (COCl) ₂	126 916	-12	64	1 4884 4	822
90	C2Cl4	Tetrachloroethylene Cl ₂ C'CCl ₂	165 83	22 4	120 8	1 623	623
91	C2Cl4O2	Trichloromethyl chloroformate	197 83	57	127 5	1 65314	
92	C ₂ Cl ₄	Hexachloroethane ClaCCCla	236 75	185	185	2 091	
93	C,I,	Diiodoacetylene IC.Cl.	277 86	82			
94	C ₂ I ₄	Tetraiodoethylene I2C:CI2	531 73	187		2 983	
95	C ₂ N ₂	Cyanogen CN.CN	52 016	-314	20 5	0 86617 2	
96	C2N2S	Cyanogen sulfide (CN) ₂ S	84 081	60		İ	
97	C2N4O4	Trinitroacetomtrile	176 03	41.5	exp. 220		
98	C2N6O12	Hexanitroethane (O ₂ N) ₃ CC(NO ₂) ₃	300 05	142 d.		1	
99	C ₂ HBr	Bromoacetylene BrCCH	104 924		-2	1 01014	047
100	C ₂ HBrCl ₂	1, 2-Dichloro-1-bromoethylene	175 84	83 5	113 8	1 913 ¹⁴ 2 708	867
101	C2HBr2	Tribromoethylene Br ₂ C:CHBr	264 76		164		778
102	C2HBr2Cl2	1, 2, 2-Tribromo-1, 2-dichloroethane	335 67	6	11216 174	2 6354 2 3016	781
103	C ₂ HBr ₂ O	Bromal BraCCHO.	280 76	130	245 d.	2 00.	1
104	C,HBr,O,	Tribromoacetic acid Br ₂ CCO.H	296.76 424.59	130 57	210300	3 312	1
105	C ₂ HBr ₅	Pentabromoethane Br ₂ CCHBr ₂	131.38	-86 4	88	1 477	525
106	C.HCl.	Trichloroethylene Cl ₂ C:CHCl	147 38	-57 5	98.1	1 512	455
107	C.HCl.O	Chloral Cl ₂ CCHO Dichloroacetyl chloride Cl ₂ CHCOCl.	147 38	""	108	1	
108	C.HCl.O	Trichloroacetic acid Cl ₂ CCO ₂ ll	163.38	57.5	195 3	1.61746	1
109	C,HCl,O,	I richioroacetic acid Clath Coli	100.00	1 01.0	1 1000	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R I No.
110	C,HCl,O,	Dichloromethyl chloroformate .	163 38		116	1.55814	I
111	C,HCl,	Pentachloroethane ClaCCHCla .	202 298	-29.0	162	1.7094	614
112	C.HF.	Trifluoroethylene .	82 008	1	-51	1.26-78	1
112 1	C ₂ HF ₁ O ₂	Trifluoroacetic acid F4CCO2H	114 01	-15.6	72.5	1.5350	
13	C ₂ HI	Iodoacetylene IC.CH	151.94		32		
14	C ₂ HI ₄ O ₂	Truodoacetic acid LCCO2H	437 80	150 d.			1
15	C'2H2	Acetylene HC,CH	26 015	-81.8	-83 6	Liq. 0 613-80 Sol. 0.730-88	1
16	C2H2 A4Cl2	2-Chlorovmylarsine dichloride	207 35		190	1.888	
17	C2H2BrCl	cis-1-Bromo-2-chloroethylene	141 39		84 7	1.797	86
18	C ₂ H ₂ BrCl	trans-1-Bromo-2-chloroethylene	141 39	41	75 4	1 777	86
19	C ₂ H ₂ BrClO	Chloroacetyl bronnde ClCH ₂ COBr	157.39	00.0	135	1.9130	1
20	C ₂ H ₂ BrClO ₂	Bromochloroacetic acid BrClCHCO ₂ H .	183 39	23 8	211 7 s. d.	1.9854	}
21	C ₂ H ₂ BrCl ₂	1-Bromo-1, 2, 2-trichloroethane.	212 31	-21	104 1	2.05540	1
22	C ₂ H ₂ Br ₂	1, 1-Acetylene dibromide CH ₂ :CBr ₂	185 85		92	2 178	
23	CallaBra	1, 2-Acetylene dibromide BrCH:CHBr	185 85		110.2	2 256	719
24	C ₂ H ₂ Br ₂ O	Bromoacetyl bromide BrCH ₂ COBr	201 85	48	$\frac{150}{232}$	2.31721 5	1
25 00	C ₁ H ₂ Br ₂ O ₁	Dibromoncetic acid Br ₂ CHCO ₂ H	217.85 301.22	20 6	232 220 d.	2 65214	780
26 07	C ₂ H ₂ Br ₂ Cl	1, 2, 2-Tribromo-1-chloroethane 1, 1, 1, 2-Tetrabromoethane BrCH ₂ CBr ₃	345 68	0.0	103 513 5	2.875	79
27	C ₂ H ₂ Br ₄	1, 1, 2, 2-Tetrabromoethane BrC 11 ₂ C Br ₃	345 68	0.0	1514	2.964	79
28 29	C ₂ H ₂ Br ₄ C ₂ H ₂ CHO ₂	Chloroiodoacetic acid CHCHCO ₂ H	220.41	90	101-	2.504	10
30	C ₂ H ₂ CINO	Chloromethyl isocyanate ClCH ₂ CNO	91.481	30	81		Ì
32	C ₂ H ₂ Cl ₂	cis-1, 2-Acetylene dichloride	96 931	-50.0	48.4	1 26515	85
33	C ₂ H ₂ Cl ₂	trans-1, 2-Acetylene dichloride	96 931	-80 5	60.3	1.2914	85
34	C ₂ H ₂ Cl ₂ O	Dichloroacetaldehyde Cl ₂ CHCHO.	112 931		90.5		
35	C ₂ H ₂ Cl ₂ O	Chloroacetyl chloride ClCH COCl.	112 931		105	1.4950	
36	C2H2Cl2O2	Dichloroacetic acid Cl2CHCO2H	128.931	10; -4	193.5	1 563	49
37	C2H2Cl2O2	Chloromethyl chloroformate	128.931		108	1 516	1
38	C2H2Cl2NO	Trichloroacetamide Cl ₂ CCONH ₂	162.40	141	240		1
39	C2H2Cl4	1, 1, 1, 2-Tetrachloroethane	167.85		130.5	1.588	52
40	C2H2Cl4	1, 1, 2, 2-Tetrachloroethane	167.85	-43 8	146.3	1.600	56
41	C2H2F2O2	Difluoroacetic acid F2CHCO2H.	96 015	-0.35	134 2766	1.526	l
42	C2H2F3NO	Trifluoroacetamide F ₂ CCONH ₂	113.023	74.8	162 5	1	ł
43	C2H2I2O2	Duodoacetic acid I2CHCO2H	311.88	110			ĺ
44	C ₂ H ₂ N ₄	1, 2, 4, 5-Tetrazine	82 047	99		1	ĺ
45	C ₂ H ₂ O	Ketene CH₂:CO	42 015	-151	-56	1	1
46	C ₂ H ₂ O ₂	Glyoxal CHO.CHO	58 015	15	50 4	1 14	4
47	C ₂ H ₂ O ₄	Oxalic acid HO ₂ CCO ₂ H,	90 015	189		2	119
48	C ₂ H ₃ Br	Vinyl bromide CH2:CHBr	106 939	-137 8	15.8	1 5174	41
49	C ₂ H ₄ BrO	Acetyl brounde CH ₂ COBr	122 939	-96 5	76.7	1 529 5	
50	C ₂ H ₄ BrO ₄	Bromoacetic acid CH ₂ BrCO ₂ H	138 939	50	208	1.934	l
51 50	C ₂ H ₃ Br ₄	1, 1, 2-Tribromoethane BrCH ₂ CHBr ₂	266 77	-26	188 4	2.579	77
52	C ₂ H ₃ Br ₃ O	Tubromoethyl alcohol Br ₂ CCH ₂ OH	282 77	80	9411		199
52 1 53	C ₂ H ₃ Br ₃ O ₄ C ₂ H ₃ Cl	Bromal hydrate	298 77	53	15	Ì	133
54	C ₃ H ₃ ClO	Acetyl chloride CH ₂ COCl	62 481 78 481	-112 0	$-15 \\ 52$	1 104	7
55	C ₂ H ₃ ClO ₂	Methyl chloroformate CICO ₂ CH ₃	94 481	-112 0	71 4	1.23615	
.,,,	1	Willy Charles Charles	<i>31</i> 101	α61 2		1.200	
56	C ¹ H ³ ClO ¹	Chloroacetic acid CH₂ClCO₂H	94.481	β56 3 γ50 1 δ43 8 (?)	189 5	1 3704	109
57	C2H4Cl2NO	Dichloroacetamide Cl ₂ CHCONH ₂	127.947	98	234 6		[
58	C ₂ H ₃ Cl ₃	l, l, l-Trichloroethane CH _z CCl _z	133.397	1	74 1	1 334	35
59	C ₁ H ₃ Cl ₄	1, 1, 2-Trichloroethane ClCH ₂ CHCl ₂	133 397	-36 7	113 5	1.443	50
60	C ₂ H ₃ Cl ₃ O	Tuchloroethyl alcohol Cl ₂ CCH ₂ OH	149 397	17 8	152 2	1 55028 3	
61	C ₂ H ₃ Cl ₃ O ₂	Chloral hydrate Cl ₃ CCH(OH) ₂	183 41	47 4	98 d.	1 908	125
62	C ₃ H ₃ FO	Acetyl fluoride CH3COF	62 023	> -60	20.5	0 99320	1
63	C ₂ H ₃ FO ₄	Fluoroacetic acid CH ₂ FCO ₂ H	78 023	33	165	0 000	1
64 ar	Callal	Vinyl iodide CH ₂ :CHI	153 96	1	56	2 08*	l
65 4143	CHJO	lodoacetaldehyde CH ₂ ICHO	169 96		80 d. 108	1.9817	ł
66 67	C ₂ H ₄ IO C ₂ H ₄ IO ₂	Acetyl iodide CH ₂ COI Iodoacetic acid ICH ₂ CO ₂ H	169.96 185.96	82	100	1.00	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
168	C2H4N	Acetonitrile CH ₄ CN.	41 031	1			No.
169	(',H,N	Methyl isocyanide CH,NC	41 031	-41 -45	82	0 783	6
170	C.H.NO	Glycollic nitrile HOCH2CN	57 031	-43	59 6 183	0 7584	952
172	C ₁ H ₁ NO	Methyl isocyanate CH ₁ N:CO	57 031		43	1 104	902
173	C2H,NO	Nitroethylene CH1:CHNO1	73 031	1	98 5	1 073124	
174	C ₁ H ₁ NO ₁	Oxamic acid HO ₂ CCONH ₂	89 031	210 d.	36.0	1 010	1
175	C ₂ H ₃ NO ₄	Nitroacetic acid O2NCH2CO2H	105 03	89			1
176	C ₂ H ₂ NS	Methyl thiocyanate CH ₂ CNS	73 096	-51	133	1 068	501
177	C ₂ H ₂ NS	Methyl isothiocyanate CH ₁ N ₁ CS ₂	73 096	35	119	1 0694	1052
178	C ₂ H ₄ N ₄	1, 2, 4-Triazole	69 047	121	260		1001
179	C2H1N2O6	1, 1, 1-Trinitroethane (O ₂ N) ₄ CCH ₄	165 05	56	1		1
180	C ₂ H ₄	Ethylene H ₂ C:CH ₂ .	28 0308	169 4	103 8	0 566 102	1
181	C₂H₄BrCl	1-Bromo-2-chloroethane ClCH ₂ CH ₂ Br	143 405	-16 6	103 7	1 79°	1
182	C ₂ H ₄ BrNO	Acetobromoamide CH ₂ CONHBr	137.96	108	j		1
183	C ₂ H ₄ Br ₂	1, 1-Dibromoethane CH ₁ CHBr ₂	187 86		110	2 056	647
184	C ₂ H ₄ Br ₂	Ethylene bromide BrCH2CH2Br	187 86	10-0	131 7	2 182	710
185	C ₂ H ₄ Br ₂ O	Dibromoethyl alcohol Br ₂ CHCH ₂ OH	203 86	1	181	2 350	1
186	C ₂ H ₄ Br ₂ O	symDibromomethyl ether $(Br(H_2)_2()$	203 86	-31	155	2 201	1
187	C ₂ H ₄ ClNO	Acetochloroamide Cll ₃ CONHCl	93 497	110			
188	C ₂ H ₄ ClNO	Chloroacetamide ClCH ₂ CONH ₂	93 497	119 5	225 6		
189	C ₂ H ₄ Cl ₂	1, 1-Dichloroethane CH ₂ CHCl ₂	98 947	-96 7	57 3	1 174	227
190	C ₂ H ₄ Cl ₂	Ethylene chloride ClCH ₂ CH ₂ Cl	98 947	-35 3	83.7	1.257	400
191	C.H.Cl.O	Dichloroethyl alcohol Cl ₂ CHCH ₂ OH	114 947	1	146	1 1451	
$\frac{192}{193}$	C ₂ H ₄ Cl ₂ O	symDichloromethyl ether (ClCH ₂) ₂ ()	114 947		106	1 315	349
194	CH4Cl2OS	Di-(chloromethyl) sulfoxide	117 01	40			
195	C ₂ H ₄ Cl ₂ S C ₂ H ₄ Cl ₁ NO	symDichloromethyl sulfide.	131 012		58 518	1 1144	
196	C2H4I2	Chloral ammonia Cl ₂ CCHO,NH ₃ , 1, 1-Diiodoethane CH ₂ CHI ₂	164 41	74	100 d.	0.040	1
197	C ₂ H ₄ I ₂	Ethylene iodide ICH ₂ CH ₂ I	281.9	82	179	2 840	
199	C2H4N2O2	Oxamide H ₂ NOCCONH ₂	281.9 88 047	419 d.	d.	2 132 ¹⁰ 1 667	
200	C2H4N2O2	Glyoxime NOH:CHCH:NOH	88 017	178		1 007	
201	C ₂ H ₄ N ₂ O ₃	Ethylnitrolic acid CH ₂ C(NO ₂):NOH	101 017	88	d.	1	1
202	C2H4N2O4	1, 1-Dinitroethane CH ₄ CH(NO ₂) ₂	120 047	05	186	1 35023	1
203	C2H4N2O4	Ethylene dinitrite ONOCH2CH2ONO	120 047	37.5	98	1 216°	1
204	C2H4N2O4	Ethylene nitrite nitrate	136 047	d.		1.472	1
205	C2H4N2O6	Dinitroglycol (CH2ONO2)2	152 047	-20	exp. 116	1 49618	ı
207	C2H4N4	Dieyandiamide H2NC(:NH)NHCN	84 063	207	1		1
208	C2H4O	Acetaldehyde CH ₄ CHO	44 031	-123 5	20 2	0.781	3
209	C₂H₄O	Ethylene oxide	41.031	111.3	10.7	0 8874	803
210	C2H4OS	Thioacetic acid CH ₃ COSH	76 096	< -17	93	1 07410	
211	C ₂ H ₄ O ₂	Glycollic aldehyde HOCH₂CHO	60 031	97			1
212	C2H4O2	Acetic acid CH ₂ CO ₂ H	60 031	16.6	118 1	1 049	26
213	C ₂ H ₄ O ₂	Methyl formate HCO _z CH ₂	60.031	-99-8	31 8	0 975	5
214	C2H4O2	Glycollic acid HOCH2CO2H	76.031	β79			
215	C2H4O3	Methyl acid carbonate CH ₃ HCO ₃	76.031	-57			
216	C2H4O3	Ethylene ozonide.	76 031	,	1816	1	
217	C ₂ H ₄ O ₄ S	Sulfoacetic acid HO ₂ SCH ₂ CO ₂ H	140.10	86		1 024	
218	C ₂ H ₄ S	Ethylene sulfide	60 096	150	55	1.034	į
219 220	C ₂ H ₄ AsO ₄	Arsonoacetic acid (OH) ₂ AsOCH ₂ COOH	184 00 108 955	152	20.0	1.430	275
221	C₁H₃Br	Ethyl bromide	106 955	-119 0	38.0 150.3	1.685	555
222	C₂H₅BrO C₂H₅BrO	2-Bromoethyl alcohol BrCH ₂ CH ₂ OH Bromomethyl methyl ether .	124 955		87	1.531123	458
224	C ₂ H ₄ Cl	Ethyl chloride	64 497	-138 7	12 2	0 910	700
225	C ₂ H ₄ ClO ₄ S	Chloromethyl methyl sulfate	160 56	100	9214	1.473	
226	C ₂ H ₄ Cl ₂ N	Ethyl dichloramine C ₂ H ₄ NCl ₂	113 963		89		1
227	C ₂ H ₄ ClO	2-Chloroethyl alcohol ClCH ₂ CH ₂ OH	80 497	-69 0	128 8	1 213	1
228	C ₂ H ₆ ClO	Chloromethyl methyl ether.	80.497	50 0	59 5	1.06310	107
229	C₂H₅ClO	Ethyl hypochlorite	80.497		36 6	1	1
230	C ₂ H ₄ ClO ₂ S	Ethylsulfone chloride CH ₂ CH ₂ SO ₂ Cl	128.562		177 5	1.357	1
231	C ₂ H ₄ ClO ₄	Ethyl perchlorate	128.497		74		1
232	C ₂ H ₄ F	Ethyl fluoride	48.039		-32	1.7	1
		2-Fluoroethyl alcohol FCH2CH2OH	64.039	-26.5	103.4	1	21

, 1	El.	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
No.	Formula		155 97	-108 5	72 2	1.933	614
34	C ₂ H ₄ I	Ethyl iodide 2-Iodoethyl alcohol ICH2CH2OH	171 97	ì	177 s. d.	2.905	
35	C2H4IO	Iodomethyl methyl ether ICH ₂ OCH ₂ .	171 97		125	2.02516	728
36	C'H'IO	Indomethyl methyl ether Torriot III	43 047	1	56	0.832	
37	C₂H₄N	Vinylamine H ₂ C:CHNH ₂	i	§ 81 0	222	1.159	110
	C ₂ H ₄ NO	Acetamide CH ₄ CONH ₄	59 047	69.4			1173
38	1 311410			`			119
		OH OH VOIL	59.047	47	115	0 966	107
39	C ₂ H ₅ NO	Acetaldoxime CH ₂ CH:NOH	75 047	88			
10	CaH6NO2	Acetohydroxamic acid CH-CONHOH	75 047	233 d.		1 161	127
11	C ₂ H ₄ NO ₂	Aminoacetic acid H2NCH2CO2H	75 047	< -50	114-8	1.05615	1 8
12	C ₂ H ₄ NO ₂	Nitroethane CH ₄ CH ₂ NO ₂ .		` "	17	0.90015 5	
43	C ₂ H ₆ NO ₂	Ethyl nitrite CH ₂ CH ₂ ONO	75 047	52	177		1
14	C2H5NO2	Methyl carbamate CH ₁ CONH ₂	75 047			1	
15	C2H5NO2	Glycollicamide HOCH2CONH2 :	75 047	120	193 8	1.2701	1
	C ₂ H ₄ NO ₃	Nitroethyl alcohol O2NCH2CH2OH	91 047	< -80	88 7	1.105	
46	C ₂ H ₅ NO ₂	Ethyl nitrate CH ₄ CH ₂ ONO ₂	91 047	-102 0	00 1	1 556	
47		Ammonium hydrogen oxalate	107 047	_		I .	1
18	C ₂ H ₄ NO ₄ (H ₂ O)	Nitroglycol HOCH2CH2NO2	107 - 047	d.		1 3111	1
49	C ₂ H ₅ NO ₄	Thioacetamide CH ₂ CSNH ₂	75 - 112	108.5			1
50	C ₂ H ₄ NS	Buret NH(CONH ₂) ₂	103 063	193			1
51	C2H5N3O2		30 0462	-172 0	-88.3	0 546-44	1
52	('alla	Ethane CH ₂ CH ₄ .	184 92		130		1
53	C ₂ H ₈ AsBr	Cacodyl bromide (CH ₄) ₂ AsBr	140 464		106 5	> 1	
54	C',HoAsCl	Cacodyl chloride (CH ₂) ₂ AsCl	211 38	50 d.			
55	C ₂ H ₀ A ₈ Cl ₃	Caeodyl trichloride (CH ₃) ₂ A ₃ Cl ₃	231 94	00	160		1
56	C2H6AsI	Cacodyl iodide (CH ₂) ₂ AsI		65	1		1
57	C2H4NO	Aminoacetamide H2NCH2CONH2	74 06	1 000	152 5	1 003	1:
58	$C_2\Pi_4N_2O$	Dimethylnitrosamine (CH ₃) ₂ N NO	74 062	101	1.02	1 204	
59	C ₂ H ₆ N ₂ O	N-Methylurea CH ₂ NHCONH ₂	71 062	101		1.20-	
260	C2H4N4O2	Oxalyl dihydrazide (CONHNH ₂) ₂	118 08	235 d.		1	
261	CallaNaS	Guamdine thiocyanate	118 143	118	50.5	0 789	
	C2H4O	Ethyl alcohol C2H4OH	46 046	-117 3	78 5		- 1
262		Methyl ether CH2OCH2	46 046	-138 0	-249	1 617	
263	C ₂ H ₆ O	Glycol HOCH2CH2OH	62 046	17 4	197 5	1 115	
264	(',H4O2	Dimethyl sulfone (CH ₄) ₂ SO ₂	94 - 111	193	238		
265	C.H.O.S	Methyl sulfite (CH ₄) ₂ SO ₃	110 111		126 5	1.046	
266	C ₂ H ₀ O ₃ S		91 046	30	6321		
267	C ₂ H ₆ O ₄	Acetyl peroxide (CH ₃ CO) ₂ O ₂	126 111		d.	1 31617	-
268	C ₂ H ₆ O ₄ S	Ethylsulfuric acid C ₂ H ₅ SO ₄ H	126 111	-31 8	188-8	1 33315	1
269	C2H6O48	Methyl sulfate (CH ₂) ₂ SO ₄	126 046	101 5		1 64	1
270	C2H5O6	Oxahe acid dihydrate	190 18	104			- 1
271	('2He()e'z'	Ethane-1, 2-disulfonic acid	1	-83 2	36 2	0 849	
272	CaHaS	Methyl sulfide (CH ₃) ₂ S	62 111	-121 0	34 7	0 840	- }
273	CallaS	Ethylmercaptan C₂H₀SH	62 111	-121 0	118	1 046	1
271	C2H6S2	Methyl disulfide CH ₄ SSCH ₄	94 176	1	146	1 123	
275	C ₂ H ₆ S ₂	Ethylenemercaptan HSCH ₂ CH ₂ SH	94 176		i	1 395	
276	C ₂ H ₆ Se	Ethylhydroselende C2H4SeH	109 246		53 5	1 000	
277	C ₂ H ₆ Te	Methyl telluride (CH3)2Te	157 546		82	1 21329	-
278	C2117A8	Dimethylarsine (CH ₃) ₂ AsH	106 014		36		
279	CallaAs	Ethylarsine C2H5A8H2	106 014		36	1.217	
		Cacodylic acid (CH3)2AsO,OH	138 014	200			
280	C.H.AsO.	Ethylarsome acid C2H4AsO(OH)2	154 014			0.000	
281	CaH7AsOa	Dimethylanine (CH ₂) ₂ NH.	45 062	-96 0	7 4	0 6804	
282	C ₂ H ₇ N	Ethylamine C ₂ H ₅ NH ₂	45 062		16 6	0 68915	
283	C ₂ H ₂ N	Acetaldehyde ammonia CH ₂ CHO NH ₂			110 s. d.		
284	C ₂ H ₂ NO	2-Aminoethyl alcohol H2NCH2CH2OH	61 062		171	1 02220	
285	C ₂ H ₇ NO	2-Aminoethyl aiconol Handlige	61 062		42 4		
286	C ₃ H ₇ NO	Dimethylhydroxylamine (CH ₁) ₁ NOH.	61 062		68	0 8837 4	1
287	C ₂ H ₇ NO	α-Ethylhydroxylamine NH ₂ OC ₂ H ₆	61 062			0 908	
288	C ₂ H ₂ NO	β-Ethylhydroxylamine C ₂ H ₄ NHOH				1 073	- 1
289		Ammonium acetate CH,CO2NH4	77 062	1		1	1
290		Taurine H2NCH2CH2SO4H	125 127		92 s. d.		- 1
290		Diazoaminoethane C ₁ H ₄ N.N.NH ₂	73 08	-12	32 8. U.		
291		Methylurea nitrate	137 08	128	1		- 1
292		Dunethylphosphinic acid (CH ₂) ₂ PO.O	H 94 08	76			- 1
4174	C ₁ H ₇ O ₁ P	Ethylphosphinic acid C2H4PO(OH)2.	110.08	44	1	ì	1

o.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
14	C ₁ H ₁ P	Dimethylphosphine (CH ₄) ₂ PH	62 078	r	25	<u> </u>	1
5	C ₂ H ₇ P	Ethylphosphine C,H,PH,	62 078		25	<1	
6	C ₂ H ₃ BrN	Ethylamine hydrobromide	125 986	159 5		1 741	ļ
7	C ₂ H ₄ ClN	Dimethylamine hydrochloride	81 528	171			l
8	C,H,ClN	Ethylamine hydrochloride	81 528	109		1 216	1
99	C ₂ H ₈ IN	Ethylamine hydroiodide C ₂ H ₈ NH ₂ H1.	173 00	188 5		2.100	
10	C ₂ H ₃ N ₂	Ethylenediamine H,NCH,CH,NH,	60 078	8.5	117	0 89246 1	103
11	C ₂ H ₈ N ₂	unsymDimethylhydrazine	60 078		61	0 794	98
)2	C2H4N2	Ethylhydrazine C ₁ H ₄ NHNH ₁	60 078		101-5		1
)3	C2H2N2O4(H2O)	Ammonium oxalate	124 078			1 501	123
)1	C2H4N4	Ethyltetrazine	88 094	< 20	140 d.		1
)5	C ₂ H ₄ N ₄ O ₃	Methylguanidine nitrate	136 09	150			
)6	C2H10Cl2N2	Ethylenediamine hydrochloride	133 01				128
	C2H10N2O	Ethylenediamine hydrate	78 093	10	118	0.963	43
)7 19	C ₂ H ₁₄ N ₈ O ₄ S	Aminoguanidine sulfate	246 24	161			
)8)8 1	C ₃ Cl ₄ N ₄	Cyanuric trichloride	184 40	146		1 32	
	C ₂ Cl ₄	Octachloropropane Cl ₂ CCCl ₂ CCl ₃	319 66	160	269		
9	C ₃ O ₂	Carbon suboxide OC:C:CO	68 00	107	6.3	1 1140	80
0		Trichloroacrylic acid Cl ₂ C CClCO ₂ II	175 38	72 9	223		1
1	C ₃ HCl ₃ O ₃	Heptachloropropane Cl ₄ CHCCl ₂ CCl ₃	285 21	30	248	1 80534	1
2	C ₃ HCl ₇ C ₃ HN	Cyanoacetylene HC:CCN	51 016	5	12.5	0.816	91
3		Dibromocyanoacetamide	245 86	123		2 375	
3 1	C ₃ H ₂ Br ₂ N ₂ O	Malonyl chloride H ₂ C(COCl) ₂	140 93	120	5826	1 450	100
4	C,H,Cl,O;	2, 2, 2-Trichlorolactic nitrile	174 10	61	220	1	
5	C ₃ H ₂ Cl ₃ NO		66 031	32 1	220	1 0194 2	104
6	C ₃ H ₂ N ₂	Malonic nitrile H ₂ C(CN) ₂	114 031	227 d			133
17	C ₃ H ₂ N ₂ O ₃	Parabanic acid CO < (NHCO) ₂ > Propargyl aldehyde HC CCHO.	54 015	221 11	61		1
8	C ₃ H ₂ O	Propiolic acid HC:C.CO ₂ H	70 015	9	144 d	1 13915	1
9	C ₃ H ₂ O ₂		150 94	70			1
0	C ₃ H ₃ BrO ₂	1-Bromoacrylic acid CH ₂ :CBrCO ₂ H	150 94	116			1
1	C ₃ H ₃ BrO ₂	2-Bromoacrylic acid BrCH:CHCO ₂ H	182 94	112 d.	į		
22	C ₃ H ₃ BrO ₄	Bromomalonic acid BrCH(CO ₂ H) ₂	74 481	112 (1.	65	1 045*	
23	C ₃ H ₂ Cl	3-Chloroallylene ClCH ₂ C'CH	90 481		76	1 140	1
23 1	C3H3ClO	Acryl chloride H ₂ C:CHCOCl	106 48	65	100		Į.
24	C ₃ H ₃ ClO ₂	1-Chloroacrylic acid CH ₂ :CClCO ₂ H	106 48	85		1	
25	C3H3ClO3	2-Chloroacrylic acid ClCH:CHCO ₂ H		133			
26	C'H'CIO	Chloromalonic acid ClCH(CO2II)2	138 48	133	149		
27	C ¹ H ¹ Cl ³ O	1, 1, 1-Trichloroacetone CH ₃ COCCl ₁	161 40		172		1
28	C3H3Cl3O	1, 1, 1'-Trichloroacetone .	161 40	-17 5	153 8	1 4891 2	1
29	C ₃ H ₃ Cl ₇ O ₂	Methyl trichloroacetate ClaCCO2CH4	177 40	124	1704		
30	C ₃ H ₃ Cl ₃ O ₃	2, 2, 2-Trichlorolactic acid	193 40	124	198	1 6074	64
31	C,H,Cl,	Pentachloropropane	216 31	- 82 0	79	1 00.4	-
32	C ₂ H ₃ N	Acrylic nitrile CH2:CHCN	53 031	- 62 0	93		
$32 \ 1$	C ₃ H ₃ NO	Pyruvic nitrile CH ₃ COCN	69 04	gg.	1080 15		1
33	C ₃ H ₃ NO ₂	Cyanoacetic acid NCCH2CO2H	85 031	66	116 8	1 198	1
34	C ₃ H ₃ NS	Thiazole	85 096	>360	110 0	1	133
35	C ₃ H ₃ N ₃ O ₃	Cyanuric acid	129 047	>300 145 d.		1	1.00
36	C ₃ H ₄ N ₃ O ₃	Fulminuric acid (CNOH),	129 05		-32		1
37	C,H.	Allene H ₂ C:C:CH ₂ .	40 031	-146	$-32 \\ -27 5$	0.660-12 0	
38	C ₃ H ₄	Allylene HC:CCH ₁	40 031	-104 7	$\frac{-27}{135} \frac{3}{2}$	2 024	9:
39	C3H4Br2	cis-1, 2-Dibromopropylene	199 86	}	135 2	2 024	9
10	C ₃ H ₄ Br ₂	trans-1, 2-Dibromopropylene	199 86	1		1 934	
11	C2H4Br2	2, 3-Dibromopropylene	199 86		142 3	1 202	1
42	C ₁ H ₄ Br ₂ O ₂	1, 1-Dibromopropionic acid	231 86	61	221	1	
43	C ₃ H ₄ Br ₂ O ₂	1, 2-Dibromopropionic acid	231.86	64; 51	160 ²⁰	2.940	1
44	C ₁ H ₄ Br ₄	1, 1, 2, 2-Tetrabromopropane	359.69		230 s. d.	2 65314	
45	C ₃ H ₄ Br ₄	1. 2. 2. 3-Tetrabromopropane	359 69	11	230 d.		
46	C ₄ H ₄ Cl ₂ O	symDichloroacetone (ClCH2)2(C)	126.947	45	173 4	1.3834	-
47	C,H,Cl,O	unsymDichloroacetone	126 947		120	1 23416	
48	C ₂ H ₄ Cl ₂ O ₂	2. 2-Dichloropropionic acid	142.947	56	190		-
49	C.H.Cl.NO.	Chloral formamide Cl.CCHO.HCONH.	192.41	116	255		ı
50	C ₁ H ₄ N ₁	Imidazole	68 047	90	256		
51	C ₁ H ₄ N ₂	Pyrazole	68.047	70	188	1	1
	C.H.N.O	Cyanoacetamide NCCH2CONH2	84.047	120	1	1	1

N'a	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
No.		Pyrazolone - NHCOCH2CH:N	84.047	165			
353	C ₃ H ₄ N ₂ O	Hudantoin - NHCONHCH2CO	100.047	220	115	0.070	
354	C ₂ H ₄ N ₂ O ₂	Propargyl alcohol HC:CCH2OH,	56.031	-17	115 52.5	0.972 0.841	32
355	C.H.O	Acrolein H ₂ C.CH.CHO ···	56.031	-87.7	63	0.041	11
356	C ₃ H ₄ O	Allylene oxide	56 031	19.2	141.9	1.051	00
357 358	C ₁ H ₄ O ₂	Acrylic acid H ₂ CCHCO ₂ H ···	72 031	12.3	165	1.051	26
359	C3H4O3	Pyruvic acid CH3COCO2H · · ·	88.031	13.6 135.6	100	1.201	87
360	C3H4O4	Malonic acid CH ₂ (CO ₂ H) ₂	104 031	54	163.3	1.42254	110
361	C ₃ H ₄ O ₄	Methyl hydrogen oxalate	104 031	158 d.	100.0	1.122	119
362	C ₃ H ₄ O ₄	Tartronic acid HOCH(CO2H)2.	120 031	121		İ	100
363	C ₃ H ₄ O ₄	Mesoxalic acid (HO) ₂ C(CO ₂ H) ₂ .	136 03 120 955	-116.6	60 2	1.428196	45
36-1	C_aH_bBr	1-Bromopropylene CH ₃ CH.CHBr	120 955	-124.8	48.4	1.36220	1
65	C ₄ H ₅ Br	2-Bromopropylene CH ₃ CBr CH ₂	120 955	-119.4	71.3	1.398	48
66	C₃H₃Br	3-Bromopropylene BrCH ₂ CH:CH ₂	136 955	-54	127	1 603	1 "
37	C ₂ H ₄ BrO	Bromoncetone CH ₂ COCH ₂ Br	152 955	25 7	203.5	1.700	52
88	C ₂ H ₆ BrO ₂	dl-1-Bromopropionic acid	152 96	61	200.0	1	"-
80	C ₃ H ₅ BrO ₂	2-Bromopropionic acid	280 79	01	201	2.356	
- 1	C ₁ H _b Br ₃	1, 1, 2-Tribromopropane	280 79		191	2.3312	1
	CaHaBri	1, 2, 2-Tribromopropane	280.79	17	222	2.43623	76
	C ₄ H ₅ Br ₅	1, 2, 3-Tribromopropane	76.497	• •	36		.0
- 1	C ₃ H ₄ Cl	1-Chloropropylene CH ₃ CH:CHCl	76 497	-137 4	22.7	0 9310	
- 1	C _i H _i Cl	2-Chloropropylene CH ₄ CCl:CH ₂	76 497	-136 4	44 6	0.938	22
	C ₃ H ₃ Cl	3-Chloropropylene ClCH ₂ CH:CH ₂	200 51	6 8	12315	1.5415	
	C ₃ H ₄ ClN ₄ O ₆	Chlorodinitrohydrin	92 497	-44 5	121	1 16216	
	C ₃ H ₃ ClO	Chloroacetone CH ₄ COCH ₄ Cl	92 497	-94.0	80	1 065	15
- 1	C ₂ H ₂ ClO	Propionyl chloride C ₂ H ₆ COCl α-Epichlorohydrin	92 497	$-25^{\circ}6$	117	1.184	89
	C ₃ H ₄ ClO	Chloroacetyl carbinol	108 497	74 d.			
-	C ₃ H ₄ ClO ₂	1-Chloropropionic acid.	108.497		186	1.3069	
	C.H.ClO;	2-Chloropropionic acid	108.497	61	204	!	
	C ₂ H ₄ ClO ₂	Ethyl chloroformate ClCO ₂ C ₂ H ₄ .	108 497	-80 6	95	1.13915.2	
	C ₄ H ₄ ClO ₂	Methyl chloroacetate ClCH2CO2CH2	108 497	-32 7	131.5	1.22	1
4	C ₃ H ₄ Cl ₁ C ₃ H ₄ Cl ₁	1, 1, 2-Trichloropropane	147.413		137	1 37226	1
5 6	C ₃ H ₄ Cl ₃	1, 1, 3-Trichloropropane.	147 413		148	1 36216	1
7	C ₃ H ₄ Cl ₃	1, 2, 2-Trichloropropane.	147.413		123	1 31825	
8	C ₃ H ₆ Cl ₃	1, 2, 3-Trichloropropane	147.413	-14.7	156	1.41716	1
80	C'H'Cl'O	1, 1, 1-Trichloroisopropyl alcohol	163 413	50	161.3	1	
0	C'H'I	2-Iodopropylene CH ₄ CI:CH ₂	167.97		103	1.835	
)1	Callal	3-Iodopropylene ICH2CH:CH2	167 97	-99 3	103.1	1.84812	
2	C ₈ H ₄ IO	Iodoacetone CH3COCH2I	183.97		58 411	2 1715	
3	C ₁ H ₄ IO ₂	1-Iodopropionie acid CH2CHICO2H.	199.97	45.5	1050 3		
4	C ₃ H ₄ IO ₂	2-Iodopropionic acid ICH2CH3CO2H	199 97	82			
5	C ₃ H ₄ N	Propionitrile C ₂ H ₅ CN	55.047	-91 9	97.1	0 783	1 3
96	C ₃ H ₄ N	Ethyl isocyanide C2H4NC.	55 047	< -66	79	0 74221 3	1
7	C ₃ H ₅ NO	Ethyl isocyanate C2H4CNO	71 047		60	0 898	
98	C ₃ H ₄ NO	Acrylanude CH2:CHCONH2	71 047	85			
99	C3H4NO	2-Hydroxypropionitrile HOCH ₂ CH ₂ CN	71.047		221	1.059	١.
)()	C ₃ H ₆ NO	Lactonitrile CH ₂ CH(OH)CN .	71.047	-40 0	184 s. d.	0 992	9
)1	C ₃ H ₄ NO ₄	Isonitrosoncetone CH ₃ COCH(:NOH).	87.407	69		0.0550	1
)2	C ₃ H ₆ NO ₂	Allyl mitrite CaHaONO	87.047		44	0.9550	1 .
13	C ₃ H ₄ NS	Ethyl thiocyanate C ₂ H ₄ CNS	87 112	-85 5	144 4	0.996	6
)4	C ₃ H ₄ NS	Ethyl isothiocyanate C ₂ H ₄ CSN	87 112	-5 9	132	0 995	"
)5	C ₃ H _b NS ₂	μ-Mercaptothiazoline	119.177		217	1 29110	
06	C ₃ H ₃ N ₃ O ₆	Glycerol trinitrite	179.06	0.0	154		1
07	C,H,N,O,	Glycerol trinitrate	227.06	2.9	16016	1 60114	1
			40.040	13 2	exp. 260	0 720-7	
)N	C ₃ H ₆	Cyclopropane	42.046	-126.6	-34.4 -47.0	0 609-47	
) ()	Calle	Propylene CH ₄ CH:CH ₄	42.046	-185 2	-47.0 138	0 009 4	
10	C ₃ H ₆ AsN	Cacodyl cyanide (CH ₃) ₂ AsCN	131.014		138		
11	C ₃ H ₆ Br ₂	1, 1-Dibromopropane CH ₄ CH ₂ CHBr ₄	201.88		140	1.933	6
12	C ₃ H ₆ Br ₂	1, 2-Dibromopropane CH ₂ CHBrCH ₂ Br		-55 5	167.0	1 979	6
13	C ₃ H ₄ Br ₂	1, 3-Dibromopropane	201 88	-34.4	114 5	1 783	"
14	C ₃ H ₆ Br ₂	2, 2-Dibromopropane CH ₂ CBr ₂ CH ₂ .	201.88	1	219	2.114	1

-	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
٠		2, 3-Dibromopropyl alcohol	217 88		219	2.168	
	H ₆ Br ₂ O	1, 1-Dichloropropane CH ₁ CH ₂ CHCl ₂	112 962	1	87	1.14310	
\cdot \mid C	,H,Cl,	1, 2-Dichloropropane CH ₃ CHClCH ₂ Cl	112 962	Į.	96 8	1 16614	
, IC	HoCls	1, 3-Dichloropropane ClCH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	112 962		125	1 20116	
) C	H ₆ Cl ₂	2, 2-Dichloropropane CH ₃ CCl ₂ CH ₃	112 962	1	69 7	1 093	177
1 C	3H6Cl2	1, 1-Dichloroisopropyl alcohol	128 96		147.8	1 333	
1 C	H ₆ Cl ₂ O	1, 1'-Dichloroisopropyl alcohol	128 96		174	1 367	532
5 C	H ₆ Cl ₂ O	2, 3-Dichloropropyl alcohol	128.96		183	1 355	1
3 C	H ₆ Cl ₂ O	Dichloromethylal H ₂ C(OCH ₂ Cl) ₂	144 96		166	1 35211	
1 ('3H6Cl2O2	cts-Chloralimide	103 19	155			1
5 (LaHoCloNa	Iodoacetoxime ICH ₂ C(:NOH)CH ₃	198 99	64.5			1
6 ('3H4INO	1, 2-Diiodopropane CH ₃ CHICH ₂ I	295 91		d.	2 490	707
7 (`aH6I2	1, 3-Diiodopropane ICH ₂ CH ₂ CH ₂ I	295 91	13 0	224	2 57614	797
5 (`₃H6I2	2, 2-Diiodopropane (CH ₃) ₂ CI ₂	295 91		148 d	2 4460	
9 C	3H6I2	2, 2-Dinodopropane (C113/2C11	70 062		144	1	1
31	3H6N2	Pyrazoline Ethyleneurea — CH ₂ NHCONHCH ₂	86 062	131		1	1
	O ₂ N ₆ N ₂ O	Ethylideneurea CH ₂ CH:NCONH ₂	86 062	154	160 d	1	1
33	C ₃ H ₆ N ₂ O	Acetylthiourea CH ₃ CONHCSNH ₂	118 13	165	1	1	1
	C3H6N2OS	Acetylthiourea On Controlling	102 062	217			1
	C3H6N2O2	Acetylurea NH(COCH ₃):	102 062	170	1	1	1
	C ₃ H ₆ N ₂ O ₂	Malonamide H ₂ C(CONH ₂) ₂	102 06	153	1		1
	C3H6N2O2	Methylglyoxime.	118 062	171			
	C3H4N2O3	Hydantoic acid	118 06	66		1	1
	C ₃ H ₆ N ₂ O ₃	Propylnitrolic acid	118 06	208			1
40	C3H6N2O3	Methyl allophanate	118 06	76	į.		
11	C3H6N2O3	Propylpseudonitrole	134 06	64			1
12	C3H6N2O4	Nitrourethane C ₂ H ₄ CO ₂ NHNO ₂	182 06	< -30	14815	1 4718	1166
143	C3H6N2O7	Glycerol-1, 3-dinitrate	146 078	d.	1	1 573260	1311
114	C3H6N4O8	Ammonium fulminurate	126 094	<250			204
445	C3H6N6	Melamine (CNNH ₂) ₃	58 046	- 129	97 0	0 855	20
146	C ₃ H ₆ O	Allyl alcohol CH2:CHCH2OH	58 046		48 8	0 807	14
147	C ₃ H ₆ O	Propionaldehyde C ₁ H ₄ CHO	58 046		56.1	1 08220	318
448	C,H,O	Acetone CH ₃ COCH ₃	74 046		146		6
449	CaH ₆ O ₂	Acetyl carbinol CH ₃ COCH ₂ OH	74 046		141.1	0 992	11
450	C ₂ H ₆ O ₂	Propionic acid C2H3CO2H	74 046	-80 5		0.933	11
451	C ₃ H ₆ O ₂	Ethyl formate HCO ₂ C ₂ H ₄	74 046		57 1	1.165	
452	C ₃ H ₆ O ₂	Methyl acetate CH ₃ CO ₂ CH ₃	74 046	3	162 d.	1.100	1
453	C ₃ H ₆ O ₂	Glycide C ₂ H ₃ OCH ₂ OH	90 046		1	1	l
454	C.H.O.	Glyceric aldehyde HOCH-CHOHCHO	90 046	3 75			1
455	C ₃ H ₄ O ₃	Dihydroxyacetone HOCH ₂ COCH ₂ OH	90 046	3 27		1 2494	38
456	CaHeO1	d(l)-Lactic acid CH ₃ CH(OH)CO ₂ H.	90 040		12216	1 06922	
457	C ₃ H ₆ O ₃	d(t)-factic acid CH ₃ CH(OH)CO ₂ H dl-Lactic acid CH ₃ CH(OH)CO ₂ H	90 040		89.7	1 000	1
458	C ₃ H ₆ O ₃	I this at had our houst e (1 1130/2000)	90 04		0	1 1681	- 1
459	C ₃ H ₆ O ₃	levi i said on thought (11) 11 11 13	90 04	6	151.2	1 100.0	1
460	C.H.O.	Methyl glycollate HOCH ₂ CO ₂ CH ₃	90 04	6 61	s. 46		l
461	C ₃ H ₆ O ₃	main admissionet hylene	74 11	1	90	1	١
462	C ₂ H ₆ S	Allyl mercaptan CH2:CHCH2SH	166 01	128	- FO O	1 353	3
463	C ₃ H ₇ A ₈ O ₃	Allylarsonic acid.	122 97	-110		1.310	2
464	C ₃ H ₇ Br	n-Propyl bromide CH ₃ CH ₂ CH ₄ Br	122 97	-89			
465	C ₃ H ₇ Br	Leonword bromide (CIII)2	138 97	7	148	1.537	1
466	C ₃ H ₇ BrO	Bromoisopropyl alcohol	138 97	7	112156	0.890	
467	C ₃ H ₇ BrO	3-Bromopropyl alcohol	78 5	12 - 122		0.860	1
468	C ₃ H ₇ Cl	n-Propyl chloride CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CHCl	78 5	12 -117		1 11520	a
469	C ₃ H ₇ Cl	Leopropyl chloride (C113/2C11)	94.5		126	1 103	
470	C ₃ H ₇ ClO	Chloroisopropyl alcohol.	94.5	12	134 124 5		
471	C ₃ H ₇ ClO	2-Chloropropyl alcohol	110 5				
172	C ₃ H ₇ ClO ₂	2-Chloro-1, 3-dihydroxypropane	110 5		213 d.	1 .,22	ł
473	C ₃ H ₇ ClO ₂	la cui 1 9 dibydroxyDf0Danc	62 0	54	2	1.747	1 (
474	C ₁ H ₇ F	n-Propyl fluoride CH ₃ CH ₂ CH ₂ F	169.9	9 -101			1.
475	C ₃ H ₇ I	L. Deopyl iodide UlliUlli2 1121	169.9		8 89 5	1.703	
476	C ₃ H ₇ I	Leopropyl iodide (CH1)2CH1	185.9		10560	2.3491	
477	C3H4IO	Indoisopropyl alcohol.	185 9	99	225.4	l	•
478	C.H.IO	3-Iodopropyl alcohol Allylamine CH ₂ :CHCH ₂ NH ₂	57.0)62	53.2	0.761	1
	1 (11171)	t cur cuch Nil					

	No.	Formul	a Name	Mol. w	t. M. P.	В. Г	. d	R. I.
-	480	C ₃ H ₇ NO	Aminoacetone CH ₃ COCH ₂ NH ₂	73 06	2	189 d.		
	481	C ₄ H ₇ NO	Acetoxime CH ₃ CH:NOH	73.06	2 61	136.3	0.9710	1.
	482	C ₃ H ₂ NO	Propionamide C ₂ H ₅ CONH ₂	73 06	2 79	213	1.042	1162
	183	C ₄ H ₇ NOS	Thiourethane C ₂ H ₄ COSNH ₂	105.13	108		1.012	1153
	181	C ₃ H ₂ NO ₂	d-Alanine CH₄CH(NH₂)CO₂H	89.06	2	l	i	
	185	C ₁ H ₇ NO ₂	dl-Alanine	89.06	2 295	s. >2	oo	1225
	86	C ₄ H ₂ NO ₂	Sarcosine CH ₅ NHCH ₂ CO ₂ H	89 06:	2 210 d.	.		
	87 /	C ₃ H ₃ NO ₃	1-Nitropropane C ₂ H ₃ CH ₂ NO ₂	89.062	?	131.5	1.01116	100
48 48		$C_1H_7NO_2$	2 -Nitropropane $CH_3CH(NO_2)CH_3$	89 062	:	120	1.0240	136
490		C4H7NO4 ''(H7NO4	Propyl mirrite C ₃ II ₂ ONO	89 062	1	57	0.935	1 10
491		'1H ₇ NO ₂	Isopropyl mtrite (CH ₃) ₂ CHONO	89 062	1	45	0.84426	16
492	1	H ₂ NO ₂	Lactanude CH ₂ CH(OH)CONH ₂	89 062	74	-1	1.1384	1
493		H ₂ NO ₂	Urethane C ₂ H ₃ OCONH ₂	89 062	48	180	1.1120	- 1
493	4	H ₂ NO,	dl-Serine HOCH ₂ CH(NH ₂)CO ₂ H.	105 062	246 d.	1	1	
494	1	aH ₇ NO ₃	d-Serine HOCH ₂ CH(NH ₂)CO ₂ H Isoserine H ₂ NCH ₂ CH(OH)CO ₂ H	105 062	228 d.	1	1	1249
495		H ₂ NO ₃	Propyl intrate C ₁ H ₂ ONO ₂	105 062	242 d.		Ì	14.10
496		H,NO,	Isopropyl nitrate (CH ₅) ₂ CHONO ₂ .	105 062	1	100 5	1.05324	105
497		H ₇ NO ₈	Glycerol-1-mtrate (C115)2CHONO2.	105 062		102	1.036	1.00
498		H ₇ NO ₄	Glycerol-2-nitrate	137 06	58	160	1.40	
499		H ₇ N ₄ O	Acetaldehyde semicarbazone	137 06	54	160	1.40	
500	C,	H,	Propane CH ₃ CH ₂ CH ₃	101 08	162		1	
501		$\Pi_{4}CINO_{2}S$	Cysteine hydrochloride	44.062 157 59	-189 9	-44 5	0 585-44 5	
502		H ₂ N ₂ O	1, 2-Dimethylurea CO(NHCH ₃) ₂	88 078	175			
503		H ₈ N ₂ O	1, 1-Dimethylurea (CH _d)NCONH _a	88 078	102 5	270	1.142	
504	1	H ₈ N ₂ O	Ethylurea C ₂ H ₈ NHCONH,	88 078	182		1.255	
505		H _z O	n-Propyl alcohol C ₂ H ₃ CH ₂ OH	60 062	92 -127	07.0	1.21318	
508		H _* O	Popropyl alcohol (CIL). CHOH	60 062	-85 8	97 8	0.804	59
508 500		H ₂ O	Methyl ethyl ether CH2OC2H,	60 062	60 6	82 3	0 786	37
510		H,08;	1, 2-Dithoglycerol	124 192	130 d.	7 9	0.697	
511		H _h Og H _b Og	1, 2-Propyleneglycol	76 062	100 4.	189	1 34211 4	
512		(1,0)2	Trimethyleneglycol HO(CH ₂),OH	76 062		214 d.	1 03823	
513	1	I _n O ₂	Glycol methyl ether HOCH2CH2OCH3	76 062		124 6	1.053	
514		I _n O ₂ S	Methylal HCH(OCH ₃) ₂	76 062	-104 8	44	0 96915 0.862	
15		I _n O ₃	1-Thioglycerol HOCH_CH ₂ (OH)CH ₂ SH	108 127		d.	1.295144	8
16	f	I _n S _a	Glycerol HOCH(CH2OH)2	92 062	17 9	290	1.260	512
17	C3F		Trithioglycerol HSCH(CH ₂ SH) ₂ Methyl ethyl sulfide CH ₃ SC ₂ H ₃	140 257	d.		1.391114	012
18	Cil		n-Propyl mercaptan C ₃ H ₇ SH	76 127	-104 8	66	0 837	
19	Cil	1,8	Isopropyl mercaptan (CH ₅) ₂ CHSH	76 127	-111 5	68		
20	C311	I.As	Trimethylarsine (CH ₃) ₃ As	76 127	i	60		1
21		I ₂ AsO ₃	Propylarsome acid C.H.AsO.H	120 029	105	52 8	1 12422	
22	C ₂ H		Truncthyl bismuthine (CH3), Ri	168 03	126			1
23		I₃CIN₃O	Lactamidine hydrochloride	254 07 124 54	,-,	110	2 30018	1
24	C'H		n-Propylamine C.H.NH.	59 077	171	40 =		
25 26	CH		Isopropylamine (CH ₃),CHNH ₂	59 077	-83 0 -101 2	48.7	0.719	72
26 27	C'H		Trimethylamine (CH ₂),N	59 077	-101 2	34	0 694	875
: <i>1</i> 28		νΝ4Ο2 4Ο4Ρ	Guanidine acetate	119 09	230	3 5	0 662-52	
29	C,H		Trimethyl phosphate (CH ₃) ₃ PO ₄	140 09		193	1 2200	1
10	C ₃ H		Propylphosphine ('H.PH.	76 093	1	53 5	1 22014	1
1	C,H,		Trimethylphosphine (CH ₃),P	76 093	1	42	.,	
2		inCIN	Trimethylstibine (CH ₄) ₃ Sb	166 84	1	80 6	>1 1 52315	1
3	C,H		Trimethylamine hydrochloride	95 543	275 d.		- 020"	
4	C.H.		dl-Propylenediamine CH ₂ (CH ₂ NH ₂) ₂	74 093	1	119	0 878	
		N ₄ O ₄	Trimethylenediamine H ₂ N(CH ₂) ₃ NH ₂ Guamdine carbonate	74 093	1	135 5		
5	C ₄ Br		Thiophene tetrabromide	180 14	197		1 2514	1169
7	(41)	-	D. 11	399.73	112	İ		1100
	CiCl	10()	Perchloroether (C'Cl) (C					
7 8 9			Perchloroether (C ₂ Cl ₃) ₂ O Trifluoroacetic anhydride (E,CCO) ()	418 58	69	l	1.90014	
7 8 9 0	C ₄ C ₁ C ₄ F ₄ C C ₄ I ₁	0,	Trifluoroacetic anhydride (F ₂ CCO) ₂ O Diiododiacetylene ICCC:CI	210.00	-65	40 5	1.90014	
7 8 9 0	C ₄ C ₁ ; C ₄ F ₄ C C ₄ I ₄ C ₄ H E	O ₃ Br ₄ N	Trifluoroacetic anhydride (F ₂ CCO) ₂ O Diiododiacetylene ICCC:CI	210.00 301.86	-65 101	40 5	1.90014	
7 8 9 0	C ₄ C ₁ C ₄ F ₄ C C ₄ I ₁	03 Br4N 4N	Trifluoroacetic anhydride (E.CCO) O	210.00	-65	40 5	1.90014	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
544	C.H.CIN.O.	5, 5-Dichlorobarbituric acid .	196 95	211 d.			No.
545	C ₄ H ₂ Cl ₂ O ₂	Fumaryl chloride ClOCCH:CHCOCL	152 93	211 u.	160	1.410	938
546	C ₄ H ₄ I ₄ S	Thiophene diiodide	335 94	40	100	1.410	830
547	C,H,N,O,	Alloxan OC(NHCO),CO	142 03	256 d.			1
518	C.H.O.	Maleic anhydride (:CHCO) ₂ ()	98 015	57	202	0 934	
549	C ₄ H ₂ O ₄ C ₄ H ₂ BrO ₄	Acetylenedicarboxylic acid Bromofumaric acid	114 02	179			
550	C ₄ H ₃ BrO ₄	Bromomaleic acid HO ₂ CCBr:CHCO.H	194 94	186		1	ł
$\frac{551}{552}$	C,H,CIN,O,	5-Chlorobarbituric acid	194 94	141			1
553	C.H.NO.S	2-Nitrothiophene	162 50	295 s. d.			1
554	C4H2N2O4	Violurie acid	129 096 157 05	46.5	225	1	1
555	C.H.AsCl.	bis-2-Chlorovinyl chloroarsine	233 36	224 d.	230	1 700	1
556	C4H4BrNS	2-Bromoallyl isothiocyanate	178 02		200	1 702	
557	C4H4Br2O4	1, 2-Dibromosuccinie acid	275 86	255	₽(K)	1	1
558	C4H4Cl2O2	Succinyl chloride (CH2COCI);	154 95	17	192	1 395	872
559	C4H4Cl2O3	Chloroacetic anhydride (ClCH ₂ CO) ₂ O	170 95	46	163116		
560	C4H4N2	Succinyl nitrile (CH2CN)2	80 047	54.5	267	0.9854	1097
561	C ₄ H ₄ N ₂	Pyridazine (1, 2-Diazine)	80 017	-8	208	1 107	1015
562	C,H,N,	Pyrimidine (1, 3-Diazine)	80 047	22	124	1	
563	C ₄ H ₄ N ₂	Pyrazine (1, 4-Diazine)	80 017	53	118	1 031,1	1091
564	CHNO	Uracil —NHCONHCH:CHCO	112 05	338			
565 567	C4H4N2O3 C4H4N4	Barbituric acid OC(NHCO) ₂ CH ₂	128 047	215	260 d.		
568	C4H4O	Hydrocyanic acid (tetramer) Tetrolic aldehyde CH ₄ C(CCHO)	108 063	179 d	107	0 92717	010
569	CHO	Furfural (Furan)	68 031 68 031	-26	107 31	0 937	913 260
570	C4H4O2	Tetrolic acid CH ₃ C:CCO ₂ H	84 031	76.5	203	0 301	200
571	C,H,O,	Succinic anhydride	100 031	119 6	261	1 104	
572	C ₄ H ₄ O ₅	Tetronic acid —OCH2C(OH).CHCO	100 03	141		1	1
573	C4H4O4	Fumaric acid (:CHCO2H)2	116 031	287	290	1 635	-
571	C4H4O4	Maleic acid (:CHCO2H)2	116 031	130-5	135 d.	1 590	1
575	C ₄ H ₄ O ₅	Hydroxymaleic acid	132 03	152			1
576	C ₄ H ₄ S	Thiophene	81 096	40 0	85	1 065	693
577	C ₄ H ₆ BrO ₄	Bromosuccinic acid	196 95	159			l
578	C ₄ H ₄ ClO	Crotonyl chloride CH ₃ CH:CHCOCl	104 497		125	1 091	
579 580	CH ₅ ClO ₂	1-Chloro-α-crotonic acid	120 50	99			
581	C ₄ H ₄ ClO ₂ C ₄ H ₅ ClO ₂	1-Chloro-β-crotonic acid 2-Chloro-β-crotonic acid	120 50 120 50	66 61			1
582	C,H,Cl,O	1, 1, 2-Trichlorobutyraldehyde	175.41	0.	165 4	1 396	523
583	C4H5Cl3O2	1, 1, 2-Trichlorobutyric acid	191 41	60	238	1 3	"
584	C4H4Cl3O2	1, 1, 3-Trichlorobutyric acid	191 41	75			1
585	C4H4Cl3O2	Ethyl trichloroacetate Cl ₃ CCO ₂ C ₂ H ₅	191 41		168	1 383	437
586	C4H6F3O2	Ethyl trifluoroacetate F ₄ CCO ₂ C ₂ H ₅	142 039		61.7	1 195 ¹⁸	1
587	C4H5N	Allyl cyanide CH2:CHCH2CN	67 017		116.1	0 832	212
588	C ₄ H ₅ N	Allyl isocyanide CH ₂ :CHCH ₂ NC.	67 047		106	0.79417	240
589	C ₄ H ₅ N	Pyrrole.	67 047		131	0 948	612
590 591	C ₄ H ₅ NO ₂ C ₄ H ₅ NO ₂	Ethyl cyanoformate NCCO ₂ C ₂ H _b Methyl cyanoacetate NCCH ₂ CO ₂ CH ₃	99 047 99.047		116 200	1 013 1.1234	-
592	C ₄ H _b NO ₂	Succinimide	99 047	124	288	1.41216	1333
593	C ₄ H ₄ NS	Allyl thiocyanate CH2:CHCH2CNS	99 112		161	1.050	100.
594	C ₄ H _b NS	Allyl isothiocyanate CH ₂ .CHCH ₄ CSN.	99.112	-100 0	150.7	1 01020	687
595	C ₄ H ₆	1, 2-Butadiene CH ₂ :C:CHCH ₃	54 046		19		
596	C ₄ H ₆	1, 3-Butadiene CH2:CHCH.CH2	54 046		-26		
597	C₄H ₆	Dimethylacetylene (CH ₁ C·) ₂	54 046		28 9		1
598	C ₄ H ₆	Ethylacetylene C ₂ H ₅ C;CH	54 046	-130	18.5	0.6680	101
599	C ₄ H ₄ As ₂ O ₄	Diarsenodiacetic acid	267 97	205 d.	104	1 000	100
600	C ₄ H ₆ Br ₂ O ₂	Ethyl dibromoacetate Br ₂ CHCO ₂ C ₂ H ₄ .	245 88		194 14510	1.903 2.529	588
601 602	CHBr.	1, 1, 4, 4-Tetrabromobutane	373 71 373 71	19; 39	18160	2 329	782
603	C4H6Br4 C4H6Br4	1, 2, 3, 4-Tetrabromobutane 2, 2, 3, 3-Tetrabromobutane	373 71	39	230		1
604	C4H6Cl2O2	Ethyl dichloroacetate	156 96		158.2	1 282	367
604.1	C ₄ H ₄ Cl ₂ O ₂	Methyl 1, 2-dichloropropionate	156 96		9240	1 328	
605	C,H,Cl,O	1, 2, 2, 2-Tetrachloroethyl ether	211 88		189.7	1 422	
606	C4H4N2	1-Methylimidazole	82.062	-6	199	1.03610	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R L No
607	C ₄ H ₄ N ₂	4-Methylimidazole	82 062	56	262.9	1.008	
808	C ₄ H ₄ N ₂	1-Methylpyrazole	82 062		127	0 99344	828
508 I	C ₄ H ₄ N ₂	3-Methylpyrazole	82 062		1	1 020	898
308 2	C4H4N2	5-Methylpyrazole	82 062		204	1 022	
309	C4H4N4O2	Ethyl diazoacetate	114 062	-22	5912	1.08517.6	927
309 1	C4H6N2O3S	3-Methylpyrazole-4-sulfonic acid	162 22	258		1	1267
310	C4H6N4O3	Allantom	158 08	235			1328
811	C4H6N4O12	Erythritol tetramtrate	302 08	61			
812	C ₄ H ₆ O	Methyl propargyl ether	70 046		62	0 83125	1
313	C ₄ H ₆ O	Vinyl ether (CH ₂ ,CH) ₂ O	70 046		39	n neold	
314	C ₄ H ₆ O	Crotonaldehyde CH4CH.CHCHO	70 046	-75	104	0 8594	361
315	CdIgO	Dimethylketene (CII ₃) ₄ C·CO	70 046	-97 5	34 3		
316	C ₄ H ₆ O ₂	Succinic dialdehyde (CH ₂ CHO) ₂	86 046	=0	5710	1 064	290
817	C ₄ H ₆ O ₂	α-Crotome acid CH ₃ CH:CHCO ₂ H.	86 046	72	185	0 964797	1112
819	C ₄ H ₆ O ₂	β-Crotome acid CH ₂ C(CH ₃)CO ₂ H	86 046	14 6	171 9 d.	1 027	411
820	C ₄ H ₆ O ₂	1-Methylaerylie acid	86.046	16	163	1.015	333
621	C ₄ H ₆ O ₂	Trimethylenecarboxylic acid	86 046	17	182 5	1.088	1
822	C ₄ H ₅ O ₂	Vinylacetic acid CH ₂ :CHCH ₂ CO ₂ H	86 046	-39	163	1.01315	849
323	C ₄ H ₄ O ₂	Allyl formate HCO ₂ C ₃ H ₆	86 046		83	0.9481	1
324	C ₄ H ₄ O ₂	Methyl acrylate CH ₂ :CHCO ₂ CH ₃	86 046		80 5	0.95618	113
825	C ₄ H ₀ O ₂	Diacetyl CH ₃ COCOCH ₃	86 046	79.0	88 120 g	0 975	85
826	C ₄ H ₅ O ₃	Acetic anhydride (CH ₃ CO) ₂ O.	102 046	-73 O	139 6	1.082	81
327	C ₄ H ₆ O ₃	1-Ketobutyric acid C ₂ H ₅ COCO ₂ H	102 046	32	8521	1 1540	
628	C ₄ H ₄ O ₃	Methyl pyruvate CH ₃ COCO ₂ CH ₃	102 046	105	137	1 1540	1990
629	C ₄ H ₆ O ₄	Succinic acid (CH ₂ CO ₂ H) ₂	118 046	185	235	1 562 1 455	1220
830	C ₄ H ₆ O ₄	Isosuccinic acid CH ₃ CH(CO ₂ H) ₂	118 046 118 046	135 54 0	163 3	1 12082	1122
631	C ₄ H ₄ O ₄	Dimethyl oxalate (CO ₂ CH ₃) ₂ . Ethyl hydrogen oxalate HO ₂ CCO ₂ C ₂ H ₆ .	118 046	94 U	11715	1 218	1122
632	C ₄ H ₆ O ₄		134 05	148	1111	1 210	
633	C4H ₆ O ₄	Diglycollic acid O(CH ₂ CO ₂ H) ₂ Glycollic anhydride (CH ₂ OHCO) ₂ O	131 05	130			Ì
634 635	CH ₂ O ₄	I-Malic acid HO ₂ CCH ₂ CH(OH)CO ₂ H	134 05	100	140 d.	1 595	
636	C4H6O5	dl-Mahe acid	134 05	129	150 d.	1 601	
030 637	C ₄ H ₄ O ₅	Isomalic acid CH ₂ C(OH)(CO ₂ H) ₂	134 05	160 d.	100 11.	1 001	İ
638	C4H ₆ O ₆	Mesotartaric acid	150 05	140	ì	1 666	1224
639	C4H ₈ O ₈	d-Tartaric acid	150 05	170	1	1 760	1222
640	C4H ₆ O ₆	dl-Tartarie acid	150 05	206		1.687	
641	C ₄ H ₆ O ₈	Dahydroxytartaric acid	182 05	114		1	
642	C4H ₆ S	Divinyl suifide (CH ₂ ·CH) ₂ S	86 111		101	0 912	
643	C ₄ H ₁ Br	Vmylethyl bromide CH2:CHCH2CH2Br	134 97		99 0		
644	C ₄ H ₇ BrO	Bromomethyl ethyl ketone	150 97		146		ł
645	C ₄ H ₇ BrO ₂	1-Bromobutyric acid C2H5CHBrCO2H	166 97	- 1	11520	1 57415	
646	C ₄ H ₇ BrO ₂	2-Bromobutyric acid	166 97	18	12216		
647	C ₄ H ₇ BrO ₂	3-Bromobutyric acid	166 97	32	1	1	
648	C ₄ H ₇ BrO ₂	1-Bromoethyl acetate	166 97		6339	1 4620	395
648.1	C ₄ H ₇ BrO ₂	2-Bromoethyl acetate	166 97		7027	1 5140	450
648 2	C ₄ H ₇ BrO ₂	Ethyl bromoacetate BrCH ₂ CO ₂ C ₂ H ₅	166 97		159	1 51443	438
648 3	C ₄ H ₇ BrO ₄	Methyl 1-bromopropionate	166 97		68 548	1 4917	436
648 4	C ₄ H _z BrO ₂	Methyl 2-bromopropionate	166 97		7946	1 5192	460
649	C ₄ H ₇ Br ₃	1, 2, 3-Tribromobutane	294 80		11319	2 190	752
850	C ₆ H ₇ Br ₃ O	1, 1, 1-Tribromo-tert -butyl alcohol	310 80	176			
851	C4H₁ClO	Butyryl chloride C ₃ H ₇ COCl	106 51	-89 0	102	1.028	194
652	C ₄ H ₇ ClO	Isobutyryl chloride (CH ₃) ₂ CHCOCl	106 51	-90 0	92	1 017	168
653	C ₄ H ₇ ClO ₂	1-Chlorobutyric acid C ₂ H ₅ CHClCO ₂ H.	122 51		101 316		
654	C ₄ H ₇ ClO ₂	d-2-Chlorobutyric acid	122 51	44	10013	1	0.22
655	C ₄ H ₇ ClO ₂	dl-2-Chlorobutyric acid	122 51	16 5	11622	1 186	386
656	CallaClO2	3-Chlorobutyric acid	122.51	16	19622	1 25010	100
657	C ₄ H ₇ ClO ₂	1-Chloroethyl acetate	122 51		4638	1 1124	190
657.1	C ₄ H ₇ ClO ₂	2-Chloroethyl acetate	122 51		145	1.1780	285
658	C ₄ H ₇ ClO ₂	Ethyl chloroacetate ClCH ₂ CO ₂ C ₂ H ₅ .	122 51		144 2	1.159	267
659	C ₄ H ₇ ClO ₃	Methyl 2-chloropropionate	122.51		148	1.187	
660	C ₄ H ₇ ClO ₂	n-Propyl chloroformate ClCO ₂ C ₃ H ₇	122 51		116	1 08323 1.33014	
661	C4H7Cl3O C4H7Cl3O	1, 2, 2-Trichloroethyl ethyl ether 1, 1, 1-Trichloro-tertbutyl alcohol	177 43 177 43	97	170 166.4	1.000.	1

	Formula	V					
No -		Name	Mol. wt	М. Р.	В. Р.	d	R. I. No.
663	C,H,Cl,O,	Chloral alcoholate Cl, CCHO.C, H, OH	193 43	55	115	1 143**	110.
664	C,H,Cl,O,	1, 1, 2-Trichlorobutyraldehyde hydrate	193 43	78	•••	1 6944	
665	C,H,FO ₁	Ethyl fluoroacetate FCH, CO, C, H,	106 054			1 093	33
666	C ₄ H ₇ IO ₂	Ethyl iodoacetate ICH2CO2C2H4	213 99	1	180	1 817127	618
667	C ₄ H ₇ N	n-Butyronitrile C ₃ H ₇ CN	69 062	-112 6	118	0 794	47
668	C ₄ H ₇ N	Isobutyronitrile (CH ₃) ₂ CHCN	69 062	1	108		
669	C ₄ H ₇ N	Isopropylisocyanide (CH ₃) ₂ CHNC	69 062		87	0.760	
670	C ₄ H ₂ N	Pyrroline	69 062	}	91	0 910	
671	C ₄ H ₇ NO	Acetonecyanhydrin (CH _s) ₂ C(OH)CN.	85 062	19	822	0 9321*	117
672	C ₄ H ₇ NO	a-Pyrrolidone.	85 062	25	250-8	1 116	
673	C ₄ H ₇ NO ₂	Diacetamide NH(COCH ₁);	101 062	78	223 5		
674	C ₄ H ₇ NO ₂	Diacetylmonoxime CH ₃ COC(:NOH)CH ₃	101 062	74	186		
675	C,H,NO,S	Ethyl thiooxamate H2NCSCO2C2H3.	133 13	63	1	1	
676	C.H.NO	Acetylaminoacetic acid Diacetohydroxamic acid.	117 062	206			
677	C.H.NO	Ethyl oxamate H ₂ NCO.CO ₂ C ₂ H ₅	117 06	89		1	1
678	C ₄ H ₇ NO ₂ C ₄ H ₇ NO ₄	l-Aspartic acid	117 06	115			
679 679 1	C ₄ H ₇ NO ₇	[series and a series are a series and a ser	133 06	270		1.661;;;	
680	C ₄ H ₇ NO ₆	Ammonium tetraoxalate	181 06	d. 184		1.684	1190
681	C ₄ H ₇ NS	Propyl isothiocyanate	197 06	130 5		1 607	
682	C4H7N4O	Creatinine.	101 127	000 1	153	0 991	
683	C.H.	Cyclobutane (CH ₂) ₄	113 078 56 062	260 d.	1.0	0 7000	901
684	C ₄ H ₈	1, 1-Dimethylethylene CH ₂ :C(CH ₃) ₂	56 062	- 50	13 -6	0 7034	801
685	C ₄ H ₄	1, 2-Dimethylethylene CH ₃ CH:CHCH ₁	56 062	1	1 4		
686	C ₄ H ₄	Ethylethylene C2H3CH:CH2	56 062	-130	-18	0.6680	102
687	C ₄ H ₅	Methylcyclopropane (CH2)2CHCH4	56 062	-100	5	0 091-10	102
688	C.H.Brs	1, 2-Dibromobutane C2H6CHBrCH2Br	215 89		166	1.820	
689	C4H8Br2	1, 3-Dibromobutane	215 89	1	174	1 807	632
690	C4H8Br2	1, 4-Dibromobutane Br(CH ₂) ₄ Br	215 89	-20	198 d.	1 791	0.02
691	C4H8Br2	2, 3-Dibromobutane CH ₃ (CHBr) ₇ CH ₃ .	215 89		158	1 839	
693	C4H8Brs	1, 2-Dibromo-2-methylpropane	215 89	-70.3	149 0	1 759	639
694	C ₄ H ₈ Br ₂ S	Di-(1-bromoethyl) sulfide	247 - 96		8714	1 742	
695	C4H8Cl2	1, 2-Dichloro-2-methylpropane.	126 98		108	1	
696	C₄H ₈ Cl ₂ O	2-Chloroethyl ether (ClCH ₂ CH ₂) ₂ ()	142 98		178	1 21320	461
697	C ₄ H ₈ Cl ₂ O	1, 2-Dichloroethyl ethyl ether	142.98		145	1 17423	1
697.1	C ₄ H ₈ Cl ₂ O ₂	Dichlorobutylene glycol	158 98	126		1	1177
698	C ₄ H ₄ Cl ₂ S	Di-(1-chloroethyl) sulfide	159 04		67 527	1 1994	
699	C ₄ H ₄ Cl ₂ S	Di-(2-chloroethyl) sulfide (CH ₃ CHCl) ₂ S	159 04	13 5	120**	1 2854	701
700	C.H.Cl2OS	Di-(2-chloroethyl) sulfoxide	175 04	110	14026 d.	1	
701 702	C.H.N.	Di-(2-chloroethyl) sulfone.	191 04	53.5	18116	1	
702	CHNO	2-Methyl-4, 5-dihydroimidazole	84 078	106	198		
704	C ₄ H ₈ N ₂ O ₂ C ₄ H ₈ N ₂ O ₂	1-Acetyl-2-methylurea	116 08 116 08	180 210		1	1
705	C4H4N2O2	Dimethyloxamide (CONHCH ₃) ₂ Dimethylglyoxime	116 08	246		1	1
706	C4H ₈ N ₂ O ₂	Succinamide (CH ₂ CONH ₂) ₂	116 078	243		1	
707	C ₄ H ₈ N ₂ O ₂	Ethyl allophanate H ₂ NCONHCO ₂ C ₂ H ₄	132 08	192			
708	C4H8N2O3	l-Asparagine	132 08	226	235 d.	1 5434	1254
709	C4H8N2O4	d-Tartaramide [CH(OH)CONH ₂] ₂	148 08	195		1	
710	C4H8N2S	Allylthiourea CH2:CHCH2NHCONH2	116 143	78 4		1 21920	
711	C ₄ H ₈ O	Crotonyl alcohol CH3CH:CHCH2OH.	$72 \ 062$	> -30	118	0 854	276
712	C ₄ H ₄ O	Cyclobutanol (CH2)3CHOH	$72 \ 062$		124 1	0.9231	343
713	C4H ₅ O	Cyclopropyl carbinol (CH2)2CHCH2OH	$72 \ 062$		124 3	0 899	850
714	C ₄ H ₄ O	Vinylethyl alcohol CH2:CHCH2CH2OH	$72 \ 062$		114	0.856°	
715	C ₄ H ₆ O	Methyl allyl ether CH2:CHCH2OCH3	72 062		46	0 7711	
716	C ₄ H ₄ O	Vinyl ethyl ether CH2:CHOC2H4	72 062		35.5	0 76314.4	1
717	C ₄ H ₆ O	n-Butyraldehyde C ₃ H ₇ CHO	72 062	99 0	75 7	0.817	50
718	C,H,O	Isobutyraldehyde (CH ₃) ₂ CHCHO	72 062	- 65 9	61	0.794	30
719	C ₄ H ₄ O	Methyl ethyl ketone CH ₃ COC ₂ H ₄	72 062	-86 4	79 6	0.805	40
720	C ₄ H ₄ O ₂	Erythrol	88 062	, ,	196 5	1 047	000
721	C'H'O'	Methylacetyl carbinol (Acctoin)	88.062	15	142 83 ²⁰	1.0024	303
722 723	C4H ₈ O ₂	2-Hydroxybutyraldehyde (Aldol)	88 062 88 062	-7 9		1.103	100
724	C.H.O.	n-Butyric acid C ₁ H ₇ CO ₂ H .	88.062	-7 9 -47.0	163.5 154.4	0.959	109 88
	C ₄ H ₈ O ₂	Isobutyric acid (CH ₁) ₂ CHCO ₂ H	00.002		F. FUL	עציט.ט	1 00

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No
725	C ₄ H ₄ O ₂	Ethyl acetate CH ₄ COC ₂ H ₄	88.062	-83.6	77.1	0.899	29
726	C.H.O.	Methyl propionate C ₂ H ₄ CO ₂ CH ₄	88.062	-87.5	79.9	0.917	36
727	C4H4O2	n-Propyl formate HCO ₂ C ₂ H ₇	88 062	-92.9	81.3	0.901	35
728	C,H,O2	Isopropyl formate HCO ₂ CH(CH ₃) ₂ .	88 062		71.3	0.883	
729	C ₄ H ₄ O ₃	Ethoxyacetic acid C2H4OCH2CO2H	104 062		206		
730	C,H,O,	1-Hydroxybutyric acid	104 062	42 5	260		
731	C ₄ H ₄ O ₃	1-Hydroxyisobutyric acid	104 062	79	212	İ	
732	$C_4H_8O_3$	2-Hydroxybutyric acid	104 062		13014	1 000**	
733	C ₄ H ₄ O ₄	Ethyl glycollate HOCH2CO2C2H5	104 062		160	1.08328	
734	C ₄ H ₄ O ₃	Glycol acetate HOCH₄CH₂OCOCH₁	104 062		182	1 000*7	
735	C ₄ H ₄ O ₃	Methylethyl carbonate CH ₄ (C ₂ H ₅)CO ₃	104 062	-14 5	109.2 7912	1.00227	
736	C ₄ H ₄ O ₃	Methyl hydracrylate	104 062		3	1.118	336
737	C ₄ H ₄ O ₄	Methyl lactate CH ₂ CH(OH)CO ₂ CH ₃	104 062	75	144.8	1.0816	883
738	C ₄ H ₈ O ₄	1, 2-Dihydroxybutyric acid	120 06	75	1904	1 00016	1
739	C ₄ H ₄ O ₄	d-Methyl glycerinate	120 06	110	12014	1.28016	
740	C ₄ H ₄ S ₂	Diethylene disulfide	120 192	112	200	1 075	070
741	C ₄ H ₉ Br	n-Butyl bromide C ₄ H ₉ Br	136 99	-112 4	101 6	1.275	372
742	C ₄ H ₉ Br	Isobutyl bromide (CH ₃) ₂ CHCH ₂ Br	136 99	-118 5	91.5	1.264	352
743	C ₄ H ₄ Br	secButyl bromide C ₂ H ₃ CHBrCH ₅ .	136 99	90	91 3	1 2514	347
744	C ₄ H ₄ Br	tert -Butyl bromide (CH ₃) ₃ CBr	136 99	-20	73 3 128 2	1 222 1 370°	309
745	C ₄ H ₄ BrO	2-Bromoethyl ethyl ether	152 - 99 $92 - 527$	109 1	78 0	0 884	1.20
746	C ₄ H ₄ Cl	n-Butyl chloride C ₄ H ₂ Cl		-123 1	68 9	0 875	132
747	C'HoCl	Isobutyl chloride (CH ₃) ₂ CHCH ₂ Cl	92/527 $92/527$	131 2	l .	1	98
748	C ₄ H ₅ Cl	sec -Butyl chloride C ₂ H ₅ CHClCH ₅		00.5	68	0.840	110
749	C ₄ H ₉ Cl	tertButyl chloride (CH ₃) ₄ CCl	92 527	$-28 \ 5$	51 0	0.840	60
751 750	C ₄ H ₂ ClO	1-Chloroethyl ethyl ether	108 527		98	0.059	Ì
752	C ₄ H ₉ ClO	test -Butyl hypochlorite (CH ₃) ₃ CClO.	108 527		80	0.958	
753	C ₄ H ₄ ClS	2-Chloroethyl ethyl sulfide	124,59 184-00	-103 5	157	1 617	600
754 758	Callal	n-Butyl iodide = C ₄ H ₂ I . Isobutyl iodide = (CH ₂) ₂ CHCH ₂ I	184 00	-93 5	127 120.4	1 605	578
755 750	C4H4I		184 00	-104 0	117 5	1 595	313
756 757	Callato	secButyl iodide C ₂ H ₈ CHICH ₁ 2-Iodoethyl ethyl ether C ₂ H ₈ OCH ₂ CH ₂ I	200.00	-104 0	155	1.670	
758	C ₄ H ₄ N	Crotonylamine CH ₃ CH CHCH ₂ NH ₂	71 077	1	81	1.070	1
759	CaHaN	Tetrahydropyrrole (Pytrolidine)	71 077		88 5	0 87110	
760	C ₄ H ₂ NO	n-Butyramide C ₂ H ₇ CONH ₂	87 077	116	216	1 032	
761	C ₄ H ₂ NO	Isobutyramide (CH ₃) ₂ CHCONH ₂	87 077	129	220	1 013	ĺ
762	C _d H ₀ NO	N-Dimethylacetamide CH ₃ CON(CH ₃) ₂ .	87 077	123	165 7	0 943	365
763	C ₄ H ₆ NO	N-Ethylacetamide CH ₂ CONHC ₂ H ₃	87 077	l	205	0 942	0.70
764	C ₄ H ₄ NO	Methyl ethyl ketoxime	87 077		152	0.923	393
765	C ₄ H ₄ NO ₂	Immoethyl alcohol HN(CHCH ₂ O ₂ H) ₂	103 077	28	270	0.020	0
766	C ₄ H ₉ NO ₂	1-Ammobutyric acid	103 077	285			i
767	C ₄ H ₀ NO ₃	2-Aminobutyric acid	103 077	184			1
768	C4H4NO2	3-Aminobutyric acid	103 08	193			
769	C.H.NO.	1-Ammorsobutyue acid	103 077	1	280		i
770	C4H ₂ NO ₂	Ethylaminoacetic acid	103 08	> 160		j	
771	C ₄ H ₉ NO ₂	Propyl carbamate C ₄ H ₇ OCONH ₂ .	103 077	53	200		
772	C4H4NO2	n-Butyl mitrite C ₃ H ₅ ONO	103 077	1	75	0 9110	
773	C ₄ H ₉ NO ₂	Isobutyl mtrite (CH ₃).CHCH ₂ ONO	103 077		67	0 87716	28
773 1	C ₄ H ₉ NO ₂	Methy urethane CH3NHCO2C2H4.	103 077	ļ	170	1 00948.9	950
774	C ₁ H ₂ NO ₃	n-Butyl intrate C ₄ H ₈ ONO ₂	119 077	İ	136	1 0480	
775	C ₄ H ₂ NO ₃	Isobutyl nitrate (CH ₃) ₂ CHCH ₂ ONO ₂	119 077		122 9	1.01426	137
776	C ₄ H ₂ NO ₅	d-Ammonium hydrogen malate	151 077	170			1205
777	C ₄ H ₉ NO ₅	l-Ammonium hydrogen malate	151.077	161		1 509	
778	C4H9NOs	Ammonium hydrogen tartrate	167.077	d.		1 680	1241
779	C ₄ H ₉ NS	1, 4-Thiazan	103.142	1	169		
780	C4H9N3O1	Creatine	131.093	295			1
781	C4H10CINO2	Ethylammoncetic acid hydrochloride.	139.54	144	1		1
781 1		n-Butane CH ₃ CH ₂ CH ₄ CH ₄ .	58 077	-135 0	0.6	0 601º (liq.)	
781 2		Trimethylmethane (Isobutane)	58 077	-145 0	-10.2		
782	C ₄ H ₁₀ N ₂	Diethylenediamine (Piperazine)	86 093	105 6	146		1156
783	C4H10N2O	Nitrosodiethylamine (C ₂ H ₅) ₂ NNO.	102 093		175 4	0.95117 4	
784	C4H10N2O	Trimethylurea (CH ₃) ₂ NCONHCH ₃ ,	102 093	75 5	232.5		
785	C ₄ H ₁₀ N ₂ S	Propylthiourea C ₂ H ₇ NHCSNH ₂	118 16	110	1	1	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
786	C4H10N4O2	Guanidine lactate	132.10	d.		 	1236
788	C4H10N4S2	Ethylenediamine thiocyanate	178 24	"			1285
789	C,H10O	n-Butyl alcohol C ₄ H ₂ OH	74.077	-89.8	117.7	0 810	116
790	C4H10O	Isobutyl alcohol (CH ₃) ₂ CHCH ₂ OH	74 077	-108	107 3	0 802	99
791	C4H10O	secButyl alcohol C2H4CH(OH)CH,	74 077		99 5	0 808	104
792	C4H10O	tertButyl alcohol (CH3)3COH	74 077	25 5	82 8	0 789	64
793	C ₄ H ₁₀ O	Ether (C ₂ H ₄) ₂ O	74 077		34.5	0 714	7
	i	Methyl propyl ether CH ₃ OC ₃ H ₇		\begin{aligned} \beta - 123 & 3 \end{aligned}			1
794	C4H10O	Methyl isopropyl ether	74 077		38 9	0.738	13
794 1	C ₄ H ₁₀ O		71 077	1	32 5777	0 73520	12
795	C4H10O2	1, 4-Dihydroxybutane (CH ₂ CH ₂ OH), 2, 3-Dihydroxybutane (CH ₃ CHOH).	90 077	16	230	1 020	1
796	C4H10O2	1, 2-Dihydroxyoddane (CH3CHOH)	90 077		184	1 0180	
797	C4H10O2		90 077		177	1 003	1
798	C4H10O2	Glycol dimethyl ether (CH ₃ OCH ₂) ₂	90 077	1	84.5	0 873	1
799	C4H10O2	Glycol ethyl ether HOCH2CH2OC2H5	90 077	}	135.3	0 935	į
800	C,H10O2	Diethyl peroxide (C ₂ H ₅ O) ₂	90 077	}	65	0 827	1
801	C4H10O2	Dimethyl acetal CH ₃ CH(OCH _a) ₂	90 077		61 1	0 866	
802	C4H10O2S	Ethyl sulfone $(C_2H_b)_2SO_2$	122 142	70	248	1 357	
803	C4H10O2S2	Diethyl disulfoxide C2H4(SO)2C2H4.	154-21		140 d.	1 21	
804	C4H10O3	1, 2, 3-Trihydroxybutane	106 077		1362×	1 23217	
805	C4H10O2	Di-(2-hydroxyethyl) ether	106 077	1 1	250	1 132	
806	C4H10O3	Glycerol 1-methyl ether	106 077		197	1.270%	
807	$C_4H_{10}O_3S$	Diethyl sulfite (C2H4)2SO3	138-14		161 3	1 077	811
808	$C_4H_{10}O_4$	dl-Erythritol HOCH2(CHOH)2CH2OH	122/08	126	331	1 451	1174
809	C4H10O4S	Diethyl sulfate (C2H3O)2SO2 .	154-14	-26.0	208 s. d	1 1724	78
810	C4H ₁₀ S	n-Butyl mercaptan C ₄ H ₀ SH	90 142	>-71	98	0 83620	
811	C4H ₁₀ S	Isobutyl mercaptan (CH ₃) ₂ CHCH ₂ SH	90 142	< -79	88	0.836	368
812	C4H ₁₀ S	secButyl mercaptan C ₂ H ₅ CH(SH)CH ₁	90 142		85	0.83017	
813	C4H10S	tertButyl mercaptan (CH _s) ₃ CSH	90 142		67		
814	C4H10S	Ethyl sulfide (C ₂ H ₄) ₂ S	90 142	102 1	91.6	0.837	390
815	C.H.10S2	Ethyl disulfide (C ₂ H ₅ S) ₂ .	122 21		153 5	0.993	630
816	C.H 10Se	Ethyl selenide (CzHs)2Se	137 28		108	1 2304 4	1035
817	C ₄ H ₁₀ Te	Ethyl telluride (C ₂ H ₅) ₂ Te	185 58		138		
818	C ₄ H ₁₁ AsO ₂	Diethylarsonic acid (C2H5)2AsO(OH).	166-05	190			1
819	C4H11AsO3	N-Butylarsonic acid C4H2AsO(OH)2	182 05	159			
820	CHuN	n-Butylamine C ₄ H ₉ NH ₂	73 093	-50.5	76	0 74020	131
821	C ₄ H ₁₁ N	Isobutylamine (CH ₃) ₂ CHCH ₂ NH ₂	73 093	- 85 5	68	0 736	111
822	C ₄ H ₁₁ N	secButylamine C2H6CH(NH2)CH4	73 093	-104 5	63	0 71820	93
823	C ₄ H ₁₁ N	tertButylamine (CH ₃) ₃ CNH ₂	73 093	-67.5	43.8	0 696	39
824	CaHnN	Diethylamine (C2H5)2NH	73 093	-50 0	56 0	0.711	65
825	$C_1H_{11}P$	Diethylphosphine (C ₂ H ₄) ₂ PH	90 109		85		İ
826	CaH12A82	Cacodyl (CH ₃) ₂ As,As(CH ₄) ₂	210 01	-6	170	> 1	i
827	C4H12A82O	Cacodylie oxide [(CH ₃) ₂ As] ₂ O	226 01	-25	120	1 46214	
828	C4H12A82S	Cacodylic sulfide [(CH ₃) ₂ As] ₂ S	242 08	{	211		
829	C _t H ₁₂ BrN	Tetramethylammonium bromide	$154 \ 02$			1 56	
830	C ₄ H ₁₂ BrNO	Diethylbromoacetamide	170 02	67			
831	C ₄ H ₁₂ ClN	Diethylamine hydrochloride	109 56	217	330	1 048	1
832	C ₄ H ₁₂ ClN	Tetramethylammonium chloride	109-56			1 169	1
833	C ₄ H ₁₂ N ₂	Tetramethylenediamine	88 108	27	158		
834	C4H12N2O4	Ammonium succinate	152 11			1 36710	
835	C4H12N2O6	Ammonium d-tartrate .	184-11	d.		1 608	1253
835 1	C4H12N2O6	Ammonium dl-tartrate	184-11			1 601	1323
836	C4H12N4	Tetramethylammonium trinitride	116 124	125 d.			
837	C4H12OS	Dimethylethylsulfonium hydroxide	108 15	-99 5	93	0 837	
838	C ₄ H ₁₃ NO	Tetramethylammonium hydroxide	91 108	63	d.		-
839	C4H16N6O4S	Methylguanidine sulfate	214 24	240			
840	C.HCl.N.	2, 6, 8-Trichloropurine	223 41	187		1	
841	C ₄ HCl ₄ N	2, 3, 4, 5-Tetrachloropyridine	216.85	21	13724		1
842	C.HCIAN	2, 3, 4, 6-Tetrachloropyridine	216 85	75	13520		1
843	C.HCI.N	2, 3, 5, 6-Tetrachloropyridine	216 85	91	13020		1
844	C _b H ₂ Cl ₂ N	2, 3, 5-Trichloropyridine	182 40	50	12016	1	
845	C.H.Cl.N	3, 5-Dichloropyridine	147.95	67			
	1 ~ 3443~1317	1, 1, 1-Tricyanoethane CH ₃ C(CN) ₃	105.05	93 5	l .	0.760	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I
847	C _i H _i BrN	3-Bromopyridine	157.96		173	1.63210	
848	C.H.CIN	2-Chloropyridine	113 50	1	167.5	1.20516	i
849	CHICIN	3-Chloropyridine	113 50		148.5		1
350	C.H.CIN	4-Chloropyridine	113 50		148	1	1
351	C.H.N.	Glutaconic nitrile NCCH2CH:CHCN	92 047	31.5	13012	1	1
52	C ₈ H ₄ N ₂ O ₂	3-Nitropyridine	124 05	41	216	1	1
353	C4H4N2O4	Methylalloxan	156 05	156 d.		1	1
8 5 3.1	C4H4N2O4 (H2O)	3, 5-Pyrazoledicarboxylic acid .	156 05			1.626	1239
354	CallaNa	Purine	120 06	217			ł
855	C ₃ H ₄ N ₄ O	Hypoxanthine	136 06	> 150		1	ļ
357	C ₄ H ₄ N ₄ O ₈	Une acid	168 06	d.		1 893	
158	CHOS	Thiophene-2-aldehyde	112 10		198	1 215	
359	C ₄ H ₄ O ₄	Furfural	96 031	-38 7	161 7	1 159	68.
360	C _b H ₃ O ₂	1, 4-Pyrone	96 031	$32^{\circ}5$	217 7	1 19040 3	106:
861	C ₄ H ₄ O ₂ S	Thiophene-2-carboxylic acid	128 10	126 5	260 d.	1	1
362	C ₄ H ₄ O ₂ S	Thiophene-3-carboxylic acid	128 10	136			İ
863	C _b H _b O ₁	Citraconic anhydride	112 03	7	228	1.245	508
864	C ₆ H ₆ O ₄	Glutacome anhydride	112 03	87	15214		1
865	CaH ₄ O ₄	Itacome anhydride	112 03	68		1	1
866	$C_1H_4O_1$	Pyromecome acid	112 03	117	228		
367	C ₅ H ₄ O ₂	Pyromucic acid	112 03	133		1	
868	C.H.O.	Aconic acid	128 03	164			132
869	C.H.O.	Glutinic acid HO ₂ CC ₁ CCH ₂ CO ₂ H	128 03	146			
870	C _a H _a N	Pyridine	79 047	-42	115-3	0 982	64
871	C _b H _b NO	2-Hydroxypyridine	95 047	107	281		1
872	C ₄ H ₅ NO	3-Hydroxypyridine HOC ₅ H ₄ N .	95 047	129			
873	C _b H _b NO	1-Hydroxypyridine .	95 047	148 5			1
874	C ₅ H ₅ NO	Pyrrole-2-aldehyde CHOC4H4N	95 047	47			1
875	C ₅ H ₅ NO ₂	2, 4-Dihydroxypyridine (HO) ₂ C _b H ₃ N.	111 05	265			
876	C ₅ H ₅ NO ₂	2, 6-Dihydroxypyridine (HO) ₂ C ₆ H ₂ N.	111.05	195			
377	C _t H _t NO ₂	Pyrrole-2-carboxylic acid HO ₂ C,C ₄ H ₄ N.	111.05	191 5			1
878	C _b H _b NO ₃	2, 4, 6-Trihydroxypyridine	127 05	230 d.			1
879	CallaNa	Adenine	135.08	365		i	ì
880	Calla	Cyclopentadiene	66 016		42.5	0.805	90
881	C _b H ₆	2-Methyl-1, 3-butenine (Valylene)	66 046		50		
882	C ₅ H ₆ N ₂	2-Ammopyridine	94 062	56	204		
883	C _b H _n N ₂	3-Ammopyridine	94 062	64	252		1
884	ChH6N2	4-Ammopyridine H₂NC₅H₄N	94 062	157	1		1
886	C _b H _b N ₄	Glutaric nitrile NC(CH ₂) ₅ NC	94 062	-29	287 4	0 9954	100
887	C _b H ₆ N ₂ O	2-Hydroxyglutaric nitrile	110 06		20311	1 181	53
888	CallaN2O2	Thymne	126 06	335 d.		}	
889	CaHaN2O3	Dimethylparabanic acid	142/06	145	277	1	1
890	C _b H ₆ N ₂ O ₃	Pyridine nitrate	142.06		}	1	133
891	C _b H _n O	2-Methylfurfuran	82 046		64 3	0.916	
892	C.H.OS	Thiophene-2-alcohol	114 11	l	207		
893	C _b H ₆ O ₂	Furfuryl alcohol	98.046		170 2	1 136	99
894	C _b H ₆ O ₂	Pentinoic acid	98.046	103		0.05:15	
895	C _b H ₆ O ₂	Ethyl propiolate CH-CCO ₂ C ₂ H ₅	98 046		119 5	0 96815	
896	C _b H ₆ O ₂	Propargyl acetate CH.CCH ₂ O ₂ CCH ₃	98 046		125	1.005	25
897	C _b H _b O _b	Glutarie anhydride	114 05	57	287	1.0.	
898	C _b H ₆ O ₄	Citraconic acid CH ₂ C(CO ₂ H);CHCO ₂ H	130 05	91	1	1 617	
R99	C _b H ₆ O ₄	Glutaconie acid	130 05	134		1 000	
900	C3H4O4	Itacome acid CH ₂ :C(CO ₂ H)CH ₂ CO ₂ H.	130 05	161 d.	950	1 632	
901	C ₅ H ₆ O ₄	Mesacome acid CH ₃ (CO ₂ H)C;CHCO ₂ H	130 05	202	250	ı	
002	C,H,O,	Paraconic acid	130 05	58	01020		
903	C _b H ₆ O ₄	Trimethylene-1, 1-dicarboxylic acid	130 05	175	21030		
904	C,H,O,	Acetone-1-1'-dicarboxylic acid	146 05	135 d.	1	ļ	
905	C _b H ₆ O _b	1-Ketoglutarie acid	146 05	113	1	1	
906	C ₄ H ₄ N ₄ O ₃	1-Methylbarbituric acid	142 06	132	I		
907	C'bHrClaOa	Chloral acetone	205 43	76	115.	0 01:	0.0
908	C ₁ H ₇ N	1-Methylpyrrole	81.062		115.4	0 911	89
909	C ₄ H ₇ N	2-Methylpyrrole	81 062	1	148	0 945	
910	C ₄ H ₇ N	3-Methylpyrrole	81.062	i	143	1	i

No	Formula	Name	Mol. wt	М. Р.	В. Р.	d	R. I. No.
11	C.H.NO.	Ethyl cyanoacetate NCCH ₂ CO ₂ C ₂ H ₅	113 06	-22 5	206	1 063	232
12	C ₄ H ₇ NS	Crotonyl isothiocyanate	113 13		8540	0 993°	202
13	C _i H _i	Cyclopentene	68 062		43.6	0 776	
14	C.H.	2, 3-Pentadiene CH,CH:C:CHCH,	68 082		51	0 702	1
15	C.H.	unsymDimethylallene (CH ₃) ₂ C C CH ₂	68 - 062	- 120	40.5	0 678	1
16	C _b H _b	Isoprene CH ₂ :C(CH ₄)CH:CH ₂	68 - 062	- 120	34	0 679	943
17	C ₅ H ₆	Methylethylacetylene CH3C:CC2H4	68 - 062	E	56	0 687	121
18	C ₆ H ₆	1, 3-Pentadiene CH3CH:CHCH CH2	68/062		44	0 696	90
20	C ₄ H ₄	Propylacetylene C ₃ H ₃ C CH	68 - 062	- 95	40	0 7220	933
21	C _i H _i	Isopropylacetylene (CH ₃) ₄ CHCCH	68 062		29/3	0.0859	1
21 1	C,H,Cl,O,	Ethyl 1, 2-dichloropropionate	170 98	1	184	1 246	42
21 2	C.H.N.	3, 4-Dimethylpyrazole.	96 078	58		0 9334* 3	113
22	C ₁ H ₁ N ₁	3, 5-Dimethylpyrazole	96 078	107	220		
23	C,H,N,O,	Uroxanic acid	220 09	162 d			
24	C _b H _b O	Cyclopentanone	84-062	i	130 6	0.951	35
25	C _b H _b O	Ethyl propargyl ether CH;CCH2OC2H3	81 062		80	0 833	32
26	C ₄ H ₄ O	Tiglic aldehyde CH,CH;C(CH,)CHO	81 062	1	116 5	0 870	43
27	C,H,O	Ethylideneacetone CH ₃ CH:CHCOCH,	81 062	1	124	0 856	37
8	C ₄ H ₄ O ₂	Levulinic aldehyde	100 062		188	1 018	29
9	C _b H ₈ O ₂	Acetylacetone CH ₃ COCH ₂ COCH ₃	100 062	-23 2	137	0 976	43
0	C ₅ H ₈ O ₅	Allylacetic acid CH2:CH(CH2)2CO2H	100 062	< -18	189	0.984	80
31	C ₆ H ₈ O ₂	Angelic acid	100 062	45	185	0 98346.7	106
12	C ₆ H ₈ O ₂	2, 2-Dimethylacrylic acid	100 062	70	195		
13	('bH8()2	1-Ethylaerylic acid CH2 C(C,Hb)CO2H	100 062	45	180		
34	C ₆ H ₆ O ₂	1, 2-Pentenic acid C ₂ H ₅ CH:CHCO ₂ H.	100 062	10	10817	0 990	90
15	C ₅ H ₅ O ₂	2, 3-Pentenic acid	100 062		9516	0.987	94
36	C ₄ H ₈ O ₂	Tiglic acid CH3CH:C(CH3)CO2H	100 062	61	198 5	0 872	112
7	C _b H _b O ₂	Allyl acetate CH ₃ CO ₂ C ₃ H ₅	100 062		105	0 928	14
8	C ₅ H ₈ O ₂	Ethyl acrylate C2H3COC2H6	100 062		99-8	0 924	1
9	C ₄ H ₈ O ₂	Methyl α-crotonate	100 062		120 7	0 9814	90
11	C ₆ H ₅ O ₃	Levulinic acid CH ₃ COCH ₂ CH ₂ CO ₂ H	116 06	33 1	246	1 14317	38
12	C ₄ H ₈ O ₃	Ethyl pyruvate CH3COCO2C2H6	116 06		144	1 0604	88
13	C ₆ H ₈ O ₃	Methyl acetoacetate	116 06	100	170	1 077	24
14	C ₄ H ₄ O ₄	Dimethylmalonic acid (CH ₁) ₂ C(CO ₂ H) ₂	132 06	193	100 1		
15	C ₅ H ₅ O ₄	Ethylmalonic acid C ₂ H ₄ CH(CO ₂ H) ₂	132 06	111 5	160 d	1 192105	115
16	C ₅ H ₈ O ₄	Glutaric acid CH ₂ (CH ₂ CO ₂ H) ₂	132 06	97 5	304	1 411	133
17	C ₅ H ₈ O ₄	Pyrotartaric acid	132 06	111 123		1 111	121
7 1	C _b H _a O ₄	Methyltetronic lactone	132 06	-62	181 5	1 154	20
8	C _b H ₈ O ₄	Dimethyl malonate H ₂ C(CO ₂ CH ₁) ₂	132 06 132 06	62	14721	1 176	30
19	C _b H ₈ O ₄ ,	Ethyl hydrogen malonate.	132 06		173.7	1 156°	"
0	C ₄ H ₄ O ₄	Methyl ethyl oxalate	132 06	}	170	1 100	- 1
1	C ₄ H ₈ O ₄	Methylene diacetate CH ₂ (CO ₂ CH ₂) ₂	148 06	95	1.0		
2	C _i H _i O _i	α-Citramalic acid	148 06	117			-
53	C,H,O,	dl-Citramalic acid .	148 06	123		1	1
54	C ₄ H ₅ O ₅	β-Methylmalic acid	148 06	98	1		1
55	C ₅ H ₈ O ₅	THE BOTH CHOCOL	148 06	53 3			l
56 57	CH ₈ O ₆	Dimethyl tartronate	161 06	76	1		
8	C ₃ H ₃ O ₆ (H ₂ O)	d-Methyl hydrogen tartrate Aposorbinic acid	180 06	110		ł	
9	C ₄ H ₄ O ₇	1-Bromovalerie acid C ₃ H ₇ CHB ₁ CO ₂ H	180 99		10510	l	
50	C.H.BrO ₁	2-Bromovaleric acid	180 99	60			
1	C.H.BrO ₂	3-Bromovaleric acid	180 99	40		ŀ	- 1
2	C _b H ₀ BrO ₂ C _b H ₀ BrO ₂	2-Bromoisovaleric acid	180 99	73 5		İ	Ì
3	C _a H _a BrO ₂	Ethyl 1-bromopropionate	180 99		160	1 393	41
4	C ₄ H ₄ Br ₄	1, 2, 3-Tribromopentane	308 82	1	12821	2 09514	74
5	C,H,Cl	Isoprene hydrochloride	104 53		109	0 933	
10 16	C ₄ H ₃ ClO	n-Valeryl chloride C ₄ H ₂ COCl .	120 53		128	1 01616	22
7	C ₄ H ₆ ClO	Isovaleryl chloride (CH ₃) ₂ CHCH ₂ COC	120 53		113		
8	C ₁ H ₁ ClO ₂	Ethyl 1-chloropropionate	136 53		146	1 087	23
99	C _b H _b ClO _b	Ethyl 2-chloropropionate	136 53		162 5	1.114	23
39.1	C _b H ₂ ClO ₂	n-Butyl chloroformate ClCO ₂ C ₄ H ₇	136 53		138 9	1.078	80
0	C ₆ H ₉ ClO ₂	Isobutyl chloroformate	136 53		130	1.04024	
•	C ₄ H ₄ IO ₂	Ethyl 2-iodopropionate	228 00	1	202	1.67918	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
972	C,H,N	n-Valeryl nitrile C4H2CN	83.077		141	0.801	82
973	C ₄ H ₄ N	Isovaleryl nitrile (CH ₂) ₂ CHCH ₂ CN	83 077		129.3	0.802	1
974	C ₄ H ₄ NO	Piperidone	99.077	40	256		1
975	C ₄ H ₂ NO ₂	Acetylurethane CH ₃ CONHCO ₂ C ₂ H ₅	131.08	78	215	İ	
975 1	C ₄ H ₂ NO ₃	α-Acetylaminopropionic acid	131 08	133		1	1215
976	C ₄ H ₅ NO ₄	dl-Glutamine acid	147.08	198		1.460	1261
977	C ₄ H ₄ NO ₄	d-Glutaminic acid	147 08	208 d.	100	1.538	1266
978	Callans	Isobutyl isothiocyanate	115.14	02.2	162	0.943	
979	C.II10	Cyclopentane CH ₂ <(CH ₂ CH ₂) ₂ >	70 077	-93 3	$\frac{49.5}{21}$	0.754	843
980	C ₄ H ₁₀	1, 1-Dimethyltrimethylene	70 077		42	0.000	1
981	CoH ₁₀	Methyleyelobutane	70 077	-139	36 4	0 651	001
982	C'sH ₁₀	β-Amylene CH ₃ CH CHC ₂ H ₆ .	70 077 70 077	- 100	32	0.667%	921
983	Callio	α -Amylene $C_2H_4C(CH_3):CH_2$ n -Propylethylene $C_3H_7CH:CH_2$	70 077		40	0.0016	880
984	C ₄ H ₁₀	2-Methyl-3-butene CH ₂ :CHCH(CH ₃) ₂ .	70 077	-135	20 1	0 63215	.,1
985	C ₄ H ₁₀	2-Methyl-2-butene CH ₂ CH:C(CH ₃) ₂ .	70 077	-124	38 4	0 66813	
986 987	C _b H ₁₀ C _b H ₁₀ Br ₂	1, 5-Dibromopentane CH ₂ (CH ₂ CH ₂ Br) ₂	229 91	-35	224	1.70618	1
988	C _b H ₁₀ Br ₂	2, 3-Dibromopentane C ₂ H ₄ (CHBr) ₂ CH ₄	229.91		175	1.70870	866
988 1	ChH 10CINO	d(l)-Glutaminic acid hydrochloride	183.54	193			1240
989	C.H.10Cl2	3, 3-Dichloro-2-methylbutane	140 99		145	1 065	1 10
990	CMI ₁₀ Cl ₂	1, 4-Dichloropentane	140 99		6117		
991	C3H10Cl2	1. 5-Dichloropentane CH ₂ (CH ₂ CH ₂ Cl) ₂ .	140.99		178	1	
992	C _b H ₁₀ Cl ₂	2, 3-Dichloropentane C ₂ H ₅ (CHCl) ₂ CH ₃	140.99		139		1
993	C.H. 10 N2	Diethyleyanamide NCN(C ₂ H ₅) ₂	98 093		187 d.	0 854	1072
994	C.H.10N2O2	1-Nitropiperidine	130 09	-5.5	245	1 158	1033
994.1	C.H 10 N 2O2	Dimethylmalonamide	130 09	198		1	1208
995	C ₅ H ₁₀ N ₂ O ₃	dl-Glutamine .	146 09	256		1	
996	C _b H ₁₀ N ₂ O ₄	Amylene nitrosate	$162 \ 09$	99		1	1207
997	C _b H _{1d} O	Cyclopentanol	86.077		141	0 946	1
998	('sH ₁₀ ()	Methylallyl carbinol	86.077		116 4	0 834	
999	C _h H ₁₀ O	Vinylethyl carbinol	86 077	1	114 7	0 837	277
000	C _b H ₁₀ O	2-Pentene-1-ol	86 077	1	6462	0.838	933
1001	C ₅ H ₁₀ O	Ethyl allyl ether C ₂ H ₅ OCH ₂ CH;CH ₂	86 077		67 6	0 765	69
1002	C _b H ₁₀ O	Isovaleraldehyde (CH ₃) ₂ CHCH ₂ CHO	86 077	-51	92 5	0 80317	79
1003	C _b H ₁₀ O	Trimethylacetaldehyde (CH ₃) ₄ CCHO	86 077	3	75	0.793	-0
1004	C ₄ H ₁₀ O	n-Valenc aldehyde C ₄ H ₉ CHO	86 077	40.0	103 4	0 81911	70
1005	C H O	Diethyl ketone (C ₂ H _b) ₂ CO .	86 077	-42.0	101 7	0 814	86 75
1006 1007	$C_{\bullet}H_{10}O$ $C_{\bullet}H_{10}O$	Methyl propyl ketone CH ₃ COC ₃ H ₇ .	86 077	-77.8	101.7 93	0 81215	62
1008	C _b H ₁₀ O	Methyl isopropyl ketone Pentamethylene oxide	86 077 86 077	-92.0	87	0 815 ¹⁵ 0 880 ⁰	%-
1009	C _b H ₁₀ O ₂	3-Acetylpropyl alcohol	102 08		209	1 0169	1
1010	C _b H ₁₀ O ₂	dl-Methylethylacetic acid	102 08	< -80	174	0 941	153
1011	C.H.uO2	Trimethylacetic acid (CH ₃) ₄ CCO ₂ H	102 08	35 5	163-8	0 90550	1050
1012	CbH10O2	n-Valerie acid C _b H ₁₁ CO ₂ H	102 08	-59; -315	187 0	0 942	175
1013	CaH ₁₀ O ₂	Isovalene acid (CH ₃) ₂ CHCH ₂ CO ₂ H	102 08	-37 6	176 7	0 93745	145
1014	C _b H ₁₀ O ₂	n-Butyl formate HCO ₂ C ₄ H ₂	102 08	-90 0	106-8	0 9110	74
1015	C4H10O2	d-sec -Butyl formate.	102 08	1	97	0 882	48
1016	CbH10O2	Isobutyl formate (CH ₃) ₂ CHCH ₂ CO ₂ H	102 08	-95 3	98 - 2	0 875	58
1017	C _b H ₁₀ O ₂	Ethyl propionate C2H6CO2C2H6	102 08	-72 6	99 1	0 891	51
1018	CaH 10O2	Methyl n-butyrate C ₃ H ₇ CO ₂ CH ₃	102 08	< -95	102 3	0.898	68
1019	C _b H ₁₀ O ₂	Methyl isobutyrate (CH ₃) ₂ CHCO ₂ CH ₃	102 08	-84 7	92 6	0 891	49
1020	C _b H ₁₀ O ₃	n-Propyl acetate CH ₃ CO ₂ C ₃ H ₇	102 08	-92 5	101.6	0 887	52
1021	C _b H ₁₀ O ₂	Isopropyl acetate CH3COCH2(CH3)2	102/08	-73.4	89	0 87715 6	
1022	C ₆ H ₁₀ O ₂ S	Ethyl thiocarbonate CS(OC ₂ H ₄) ₂ .	134 . 14		162	1 028	939
1023	C _b H ₁₀ O _x	1-Hydroxyvaleric acid	118 08	31			
1024	C'*H10O2	1-Hydroxyisovaleric acid	118 08	86		1	1
1025	C ₄ H ₁₀ O ₃	2-Hydroxyvalerie acid	118.08	<-32	107.0	0.070	
1026	C ₄ H ₁₀ O ₄	Diethyl carbonate (C ₂ H ₄ O) ₂ CO	118.08	-43.0	125.8	0 979	57
1027	C ₄ H ₁₀ O ₃	Ethyl hydracrylate	118.08		8412	1.064	1
1028	C ₄ H ₁₀ O ₃ C ₄ H ₁₀ O ₃	Ethyl lactate CH ₃ CH(OH)CO ₂ C ₂ H ₅	118.08		154 131	0.998614	892
1028 . 1 1029	CaH ₁₀ O ₂	Methyl l-1-methoxypropionate	118.08		170.5	1.06218	002
1040	C ₄ H ₁₀ O ₄	Propyl glycollate HOCH ₁ CO ₂ C ₃ H ₇ . Ethyl glycerate	118.08 134.08	1	12114	1.19114	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
1031	C,H10O4	Glycerol acetate (Monoacetin).	134.08		158144	1 20	No.
10.32	C _b H ₁₀ O _b	d(l)-a-Arabinose.	150 08	159 5		1 585	1243
10.3.3	C.H.O.	$d(l)$ - β -Arabinose	150 08			1 605	1248
1034	C _b H ₁₀ O _b	dl-Arabinose	150 08	164 5			
1035	C _b H ₁₀ O _b	d-Lyxose	150 08	105	1	1.545	1228
1036	C ₅ H ₁₀ O ₅	d-Ribose	150 08	87			1
1037	C _b H ₁₀ O _b	l-Xylose	150 08	153		1.525	1231
1038	C _b H ₁₀ O _b	dl-Xylose	150 08	131			1
1039	C ₆ H ₁₀ O ₆	Arabonic acid HO ₂ C(CHOH) ₂ CH ₂ OH n-Amyl bromide CH ₃ (CH ₂) ₄ Br	166 08	89		1	
1040	C ₅ H ₁₁ Br C ₅ H ₁₁ Br	Isoamyl bromide (CH ₃) ₂ CHCH ₂ CH ₂ Br	151 00	-	127.9	1 223	401
1041	C _b H ₁₁ Br	tertAmyl bromide (CH ₁) ₂ (C ₁ H ₅)CBr	151 00 151 00	1	121	1 215	378
$\frac{1042}{1043}$	C ₆ H ₁₁ Cl	n-Amyl chloride CH ₃ (CH ₂) ₄ Cl	106 54		109 2	1 190	389 191
1044	C _b H ₁₁ Cl	Isoamyl chloride (CH ₃) ₂ CHCH ₂ CH ₂ CT	106 54	İ	105 7 99 1	0 883	181
1045	C _b H ₁₁ Cl	tertAmyl chloride (CH ₂) ₂ (C ₂ H ₂)CCl	106 54	-72 9	85 7	0 87016	155
1046	C _b H ₁₁ Cl	secAmyl chloride CaH7(CH3)CHCl	106 54	-12 :	105	0.870	157
1017	C ₅ H ₁₁ Cl	3-Chloropentane (C.H.)2CHCl	106 54		105	0.895	10.
1048	C ₄ H ₁₁ ClO	tertAmyl hypochlorite	122 54		76 3	0.855	
1049	C.H.F	n-Amyl fluoride CH3(CH2)4F.	90 085	> -80	62.8	0.788	11
1050	C ₄ H ₁₁ F	Isoamyl fluoride (CH3)2CHCH2CH2F	90 085	<-11	53 5		"-
1051	CiHnI	n-Amyl iodide CH3(CH2)4I	198/02		156	1 517	572
1052	C _z H ₁₁ I	Isoamyl iodide (CH ₃) ₂ CHCH ₄ CH ₄ I	198/02		148	1 510	
1053	C _b H ₁₁ I	tertAmyl iodide (CH3)2(C2H4)CHI	198/02		125	1 49719	
1054	C _b H ₁₁ N	Piperidine	85 093	-9	105-8	0 860	444
1055	C _b H ₁₁ NO	Diethylketoxime (C2Hb)2C:NOH	101 09		168 3	0 914	407
1056	C ₆ H ₁₁ NO	Methylpropylketoxime	101 09		168	0 909	403
1057	C _b H ₁₁ NO	Valeramide C ₄ H ₂ CONH ₂ .	101 09	106		1.023	-
1058	C _b H ₁₁ NO	Isovaleramide (CH ₃) ₂ CHCH ₂ CONH ₂ .	101 09	137	232	0 965	- 1
1059	C _b H ₁₁ NO ₂	1-Aminovaleric acid	117.09	291.5		}	1
1060	C ₆ H ₁₁ NO ₂	3-Aminovaleric acid	117.09	193			
1061	CH NO	4-Aminovaleric acid	117.09	157 217]		1
1062	CH NO	2-Aminoisovaleric acid	117.09 117.09	211	10476	0 853	56
1063 1064	C ₆ H ₁₁ NO ₂ C ₆ H ₁₁ NO ₂	Isoamyl nitrite (CH ₃) ₂ CH(CH ₂) ₂ ONO	117.09	1	99	0 872	67
1065	C _b H ₁₁ NO ₂	tert,-Amyl nitrite (CH ₃) ₂ (C ₂ H ₅)CONO	117 09	1	93	0.903*	"
1066	C _b H ₁₁ NO ₂	n-Butyl carbamate C ₄ H ₉ CO ₂ NH ₂	117 09	51			
1067	C _b H ₁₁ NO ₂	Isobutyl carbamate H ₂ NCO ₂ C ₄ H ₅	117 09	67	206		
1067 1	C ₅ H ₁₁ NO ₂	Ethylurethane C ₂ H _b NHCO ₂ C ₂ H _b	117.09	1	176	0.981	262
1068	C.H.11NO2	Betaine	117 09	273 d		İ	
1069	C _b H ₁₁ NO ₂	dl-Valine (CH ₃) ₂ CHCH(NH ₂)CO ₂ H	117.09	298 d.		ĺ	
1069 1	C ₆ H ₁₁ NÓ ₂	d-Valine	117.09	315		Ì	1327
1070	C _b H ₁₁ NO ₃	Isoamyl nitrate	133 09	1	148	0 996217	200
1070.1	C _b H ₁₁ NO ₃	Bios	133 09	223			1163
1070 2	C ₆ H ₁₁ NO ₄	Methyltetronic amide	149 09	135 d.	l		1218
1071	C _b H ₁₁ NO _b	l-Arabinose oxime	165 09	139	28 0	0 621191	9
1072	C ₆ H ₁₂	2-Methylbutane (Isopentane)	72 - 092 $72 - 092$	-159 7 -131 5	36 2	0.631	10
1073	C.H.	n-Pentane CH ₃ (CH ₂) ₄ CH ₄	72 092	-20	9.5		.0
1074 1075	C ₄ H ₁₂	2, 2-Dimethypropane (CH ₀) ₄ C Piperidine hydrochloride	121 56	237	""	1	
1076	C ₆ H ₁₂ ClN C ₆ H ₁₂ ClNO ₂	Betaine hydrochloride	153 56	235			
1077	C ₆ H ₁₂ N ₂ O	1, 2-Diethylurea CO(NHC ₂ H _a).	116 11	106	263	1.042	
1078	C ₆ H ₁₂ O	n-Amyl alcohol CH ₃ (CH ₂) ₆ CH ₂ OH	88 092	-78 5	137 9	0.817^{20}_{20}	823
1079	C ₅ H ₁₂ O	Isoamyl alcohol* (CH ₃) ₂ CHCH ₂ CH ₂ OH	88 092	-117 2	130 5	0 812	166
1080	C,H12O	Diethyl carbinol (C2H5)2CHOH	88 092	1	115 6	0 8154	179
1081	C4H12()	tertAmyl alcohol (CH ₃) ₂ (C ₂ H ₄)COH	88 092	-11 9	101.8	0 809	158
1082	C _b H ₁₂ O	tertButyl carbinol	88 092	53	114	0.010	1
1083	C,H12O	d-Amyl alcohol CH ₃ (C ₂ H _b)CHCH ₂ OH	88.092	1	128	0.816	100
1084	C ₅ H ₁₂ O	secAmyl alcohol CH ₃ (C ₃ H ₇)CH ₂ OH	88 092		119.5	0.809	165
1084.1	C _b H ₁₂ O	d-secAmyl alcohol	88 092	1	118	0.8103	154
85	C _b H ₁₂ O	Methyl isopropyl carbinol	88.092 88.092		11.4	0.819	106
85.1	C ₄ H ₁₂ O	d-Methyl isopropyl carbinol	88.092 88.092	<-79	61.4	0.313	24
6	C ₁ H ₁₁ O	Ethyl propyl ether C ₂ H ₄ OC ₄ H ₇ . Ethyl isopropyl ether C ₂ H ₄ OCH(CH ₁) ₂ .	88.092	1.0	54	0.7450	~.
7	C ₄ H ₁₂ O mercially known as "A			•		,	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
1088	C ₁ H ₁₂ O	Methyl n-butyl ether CH ₂ OC ₄ H ₂	88 092	İ	70 3	0.7640	
1089	C ₄ H ₁₂ O ₂	Pentane-1, 2-diol C ₁ H ₇ CHOHCH ₂ OH	104 09	1	211 8	0.98020	376
1090	C,H12O2	Pentane-1, 5-diol CH2(CH2CH2OH)1	104 09		239.4	0 99420	432
1091	C,H12O2	Methylene diethyl ether CH2(OC2H4)2	104 09		89	0 851	
1092	C ₃ H ₁₂ O ₃	Glycerol 1-ethyl ether	120 09		230	1 091	1
1093	C ₄ H ₁₃ O ₄	Pentaerythritol	136 09	253		ı	1178
1094	C ₆ H ₁₂ O ₆	Adonitol	152 09	102	İ	1	1333
1095	C ₄ H ₁₂ O ₄	d-Arabitol	152 09	103	100		
1096	C ₄ H ₁₂ S	n-Amyl mercaptan C ₄ H ₁₁ SH	104.16		126	0 85720	396
1097	C.H.s	act -Amyl mercaptan	104.16		118	0 84813	
1098	C ₄ H ₁₂ S	Isoamyl mercaptan	104.16		129 5	0 835	379
099	CaHan	n-Amylamine C ₃ H ₁₁ NH ₂	87.108	-55 0	104	0 76619	1
100	Cillin	Isoamylamine (CH ₃) ₂ CHCH ₂ CH ₂ NH ₂ .	87 108		95	0 751	176
1101	CiHnN	secAmylamine CH ₃ (C ₃ H ₇)CH ₂ NH ₂	87.108	• • • •	91	0 749	
102	C ₄ H ₁₄ N	tert -Amylamine (CH ₂) ₂ (C ₂ H ₄)CNH ₂ .	87.108	-105 0	78		4000
103	C.H.,NO	Ammonium valerate	119 11		170	0.00=11	1333
105 106	C ₄ H ₄₄ N ₁	Pentamethylenediamine	102 12	9	178	0 8851	482
107	C ₀ Br ₄ O ₂	Bromanil OC;(CBrCBr) ₂ CO	423 66	300			1
108	C _B Br ₄	Hexabromobenzene	551.50	306		j	1
109	C ₆ Br ₆ O	"Hexabromophenol".	367 50	128		1	
110	C ₄ Cl ₄ O ₂	Chloraml OC.(CClCCl) ₂ :CO Hexachlorobenzene	245 83	290	200	1 50000	1
111	C ₁ Cl ₁		284 75	226	326 •	1.569236	
111.1	C ₆ Cl ₆ O	"Hexachlorophenol"	300.75	46	,	0.010	
111.2	C ₄ Cl ₄ O	s-Octachlorocyclohexenone	371.67	90		2 016	1292
112	Cala	γ -Octachlorocyclohexenone Hexaiodobenzene	371 67	89		2 058	1305
113	C.HBr.	Pentabromobenzene	833 59 472.59	350 d. 293			1
.114	C _n HBr _s O	Pentabromophenol C(Br _b)OH		295			1
115	C.HCl.O.	Trichloroquinone	488 59 211.38	168		1	1
116	C.HCLNO2	2, 3, 4, 5-Tetrachloronitrobenzene	260 85				1
117	C.HCI.NO.	2, 3, 4, 6-Tetrachloronitrobenzene	260 85	$\begin{array}{c} 64 \ 5 \\ 22 \end{array}$	1	1	1
118	CoHClaNO2	2, 3, 5, 6-Tetrachloronitrobenzene	260 85	99	304 d.	}	ł
119	CallCla	Pentachlorobenzene	250 30	86	277	1 84210	1
120	CaHCI ₂ O	Pentachlorophenol HOC ₅ Cl ₅	266 30	188	1		1
121	Can NaOn	Pentanitrophenol C ₆ (NO ₂) ₄ OH	319 05	190 d.	310 2	1.978	1
122	CaH,BrN,Oa	Picryl bromde 2, 4, 6(NO ₂) ₃ C ₆ H ₂ Br.	291 96	190 d. 123	1		1
122.1	CaH2Br2N2O4	1, 2-Dinitro-4, 5-dibromobenzene	325.86	115		0.919	1
122.2	CaH2Br2N2O4	1, 3-Dimtro-4, 6-dibromobenzene	325.86	117		$2.313 \\ 2.295$	1
123	CoH ₂ Br ₄	1, 2, 3, 5-Tetrabromobenzene	393 68	98.5	329	2.299	ł
124	C ₆ H ₂ Br ₄	1, 2, 4, 5-Tetrabromobenzene	393.68	178	329	3.027	1
125	C ₄ H ₂ Br ₄ O	2, 3, 4, 6-Tetrabromophenol	409 68	120]	3.021	1
126	CaH2BraN	Pentabromoaniline C ₆ (Br ₅)NH ₂	187.60	222		}	1
127	CaHaCIN Oa	Pieryl chloride (NO2)3C6H2Cl	247.50	83		1.797	1
128	CoHgCIN ₃ O ₆	5-Chloro-1, 2, 4-trinitrobenzene	247.50	116	1	1.101	1
129	C ₈ H ₂ Cl ₂ O ₂	2, 5-Dichloroquinone	176.93	161	1	ı	
130	C ₆ H ₂ Cl ₂ O ₂	2, 6-Dichloroquinone	176.93	121	1		1
131	C ₆ H ₂ Cl ₂ NO ₂	2, 3, 4-Trichloronitrobenzene	226.40	56		Í	
132	C4H2Cl3NO2	2, 3, 6-Trichloronitrobenzene	226.40	89	i .	i	
133	C6H2Cl3NO2	2, 4, 5-Trichloronitrobenzene	226.40	57	288	1 790	
134	C ₆ H ₄ Cl ₂ NO ₂	2, 4, 6-Trichloronitrobenzene	226 40	68	- ~	1)
135	C ₆ H ₂ Cl ₄	1, 2, 3, 4-Tetrachlorobenzene	215.85	47 5	254		1
136	C ₆ H ₂ Cl ₄	1, 2, 3, 5-Tetrachlorobenzene	215.85	51	246		}
137	C ₆ H ₃ Cl ₄	1, 2, 4, 5-Tetrachlorobenzene	215.85	138	246	1.73410	1
138	C ₆ H ₂ Cl ₄ O	2, 3, 4, 6-Tetrachlorophenol	231.85	69	16423		
139	C ₆ H ₂ Cl ₄ O ₂	Tetrachlorohydroquinone	247.85	232	1	1	1
140	C ₆ H ₂ Cl ₆ N	Pentachloroaniline C _e (Cl ₄)NH ₂	265.31	232	1	1	1
141	C.H.IN.O.	Picryl iodide (NO ₂) ₃ C ₆ H ₂ I	338.97	165	1	2 28522 6	1
142	C4H4I4N4O4	2, 4-Diiodo-1, 3-dinitrobenzene	419.90	162	1	1	1315
143	CoH,I,N,O	4, 6-Diiodo-1, 3-dinitrobenzene	419.90	168.4	l	2 744	1 -0.0
144	C ₆ H ₂ I ₄	1, 2, 3, 4-Tetraiodobenzene	581.74	136		1	1
145	C ₄ H ₂ I ₄	1, 2, 3, 5-Tetraiodobenzene.	581.74	148		1	1
146	CaHaI4	1, 2, 4, 5-Tetraiodobenzene	581.74	254	1	1	1
147	C ₄ H ₂ N ₄ O ₅	2, 3, 4, 6-Tetranitrophenol.	274.05	140	d.	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
1148	C ₄ H ₂ O ₄	Diacetylenedicarboxylic acid	138 02	178 exp.		ļ	No.
1149	C ₆ H ₄ BrN ₂ O ₄	3-Bromo-1, 2-dinitrobenzene	216 96	101 5	320		1302
1150	C ₆ H ₁ BrN ₂ O ₄	4-Bromo-1, 2-dinitrobenzene	246 96	59 4	020	j	1302
1151	C ₄ H ₃ BrN ₂ O ₄	4-Bromo-1, 3-dinitrobenzene	246.96	75 3			
1152	CH,Br,NO	2, 4-Dibromonitrobenzene	280.86	62		2.356	
1153	C. H. Br. NO.	2, 5-Dibromonitrobenzene	280.86	85		2.368	
1154	C ₆ H ₂ Br ₂ NO ₂ C ₆ H ₂ Br ₂ NO ₂	3, 4-Dibromonitrobenzene	280-86	58	296	2 354	
1155	1	3, 5-Dibromonitrobenzene	280 86	106	İ		
1155.1	C ₆ H ₁ Br ₁	4, 6-Dibromo-2-nitrophenol	296.86	117 5		2 434	
1156 1157	C ₆ H ₁ Br ₁	1, 2, 3-Tribromobenzene 1, 2, 4-Tribromobenzene	314 77	87.4		2 658	
1158	C ₆ H ₆ Br ₃	1, 3, 5-Tribromobenzene	314 77	44	276	1	1
1159	C ₄ H ₃ Br ₃ O	2, 3, 5-Tribromophenol Br ₂ C ₆ H ₂ OH	314.77	119 6	278		1
1160	C ₆ H ₃ Br ₃ O	2, 4, 6-Tribromophenol Br ₃ C ₆ H ₂ OH	330.77	92 5		1	- {
1161	C ₄ H ₃ Br ₃ O ₂	2, 4, 6-Tribromoresorcinol	330.77	96	İ	2 55	1
1162	C.H.CIN.O.	3-Chloro-1, 2-dinitrobenzene	346 77	111		1	-
1102	Cilifornia	3-C moro-1, 2-amtriopenzene	202 50	86 S			
				a 36 3		1	
1163	C ₆ H ₃ ClN ₃ O ₄	4-Chloro-1, 2-dinitrobenzene	202 50	β 37 1	315 d	}	
				γ 38 8			
1164	C6H2CIN2O4	2-Chloro-1, 3-dinitrobenzene	1100 50	8 28	1		
1165	C4H4CIN2O4	α-4-Chloro-1, 3-dinitrobenzene	202 50	87	1	1	
1166	C6H2CIN2O4	β-4-Chloro-1, 3-dinitrobenzene.	202 50	53 4	315	1 697	
1167	C ₆ H ₅ ClN ₂ O ₄	5-Chloro-1, 3-dinitrobenzene.	202 50	43	315	1.680	1
1168	C.H.CIN.O.	2-Chloro-1, 4-dinitrobenzene	202.50	59 60		İ	
1169	C.H.Cl.NO	2, 3-Dichloronitrobenzene.	191.95	62	258	1 72114	
1170	C6H3Cl2NO2	2, 4-Dichloronitrobenzene.	191.95	33	200	1 43980	1
1171	C6H3Cl2NO2	2, 5-Dichloronitrobenzene	191 95	54.5	266	1 66922	
1172	C ₆ H ₂ Cl ₂ NO ₂	2, 6-Dichloronitrobenzene.	191.95	72 5	130*	1 60317	1
1173	C ₄ H ₄ Cl ₂ N() ₂	3, 4-Dichloronitrobenzene.	191.95	43	256	1 45140	
1174	C6H3Cl2NO2	3, 5-Dichloronitrobenzene	191.95	65 4		1 69214	
1174 1	C6H4Cl2NO3	4, 6-Dichloro-2-nitrophenol.	207.95	122		1 822	
1175	C ₆ H ₃ Cl ₃	1, 2, 3-Trichlorobenzene.	181.40	52	219		1
1176	C'H3Cl2	1, 2, 4-Trichlorobenzene	181.40	17	213	1.57410	754
1177	C ₆ H ₃ Cl ₃	1, 3, 5-Trichlorobenzene	181 40	63	208.5		
1178	C4H4Cl3O	2, 3, 5-Trichlorophenol	197 40	53 4	253	j	1
1179	C ₆ H ₄ Cl ₃ O	2, 4, 6-Trichlorophenol	197.40	68	244 5		j .
1180	CeH Cl O	2, 3, 5-Trichlorohydroquinone	213 40	134		1	1
1181	C ₆ H ₄ Cl ₃ O ₂	2, 4, 6-Trichlororesorcinol	213 40	83			1
1182	C ₆ H ₃ Cl ₃ O ₆ S ₄	Benzene-1, 3, 5-trisulfonyl chloride	373 59	184			
1183	C ₆ H ₂ Cl ₄ N	2, 3, 4, 5-Tetrachloroaniline	230 86	118			
1184 1185	C ₆ H ₃ Cl ₄ N	2, 3, 4, 6-Tetrachloroaniline	230 86	88	1		
1186	C ₄ H ₃ Cl ₄ N	2, 3, 5, 6-Tetrachloroaniline	230 86	90	1		1
1187	C,H,I, C,H,I,	1, 2, 3-Triodobenzene	455 82	116		1	-
1188	C.H.I.	1, 2, 4-Triiodobenzene	455.82 455.82	84			
1189	C.H.I.O	2, 4, 6-Triiodophenol I ₃ C ₆ H ₂ (OII)	455 82	181 156		ł	
1190	C ₆ H ₈ N ₂ O ₆	1, 2, 3-Trinitrobenzene	213 05	127 5			}
1191	C ₆ H ₃ N ₃ O ₆	1, 2, 4-Trinitrobenzene	213.05	61	1	1 7315 5	1
1192	C ₄ H ₃ N ₈ O ₆	1, 3, 5-Trinitrobenzene	213.05	121; 61	d.	1 688	1
1193	C.H.N.O.S	Thiopieric acid	245.11	114	exp. 115	1 0.55	1
1194	C ₆ H ₃ N ₄ O ₇	2, 3, 5-Trinitrophenol C ₆ H ₂ (NO ₂) ₄ OH.	229 05	120	1 4	1	
1195	CoH, N,O	2, 3, 6-Trinitrophenol CoH2(NO2)2OII.	229 05	118		ł	i
1196	C ₆ H ₄ N ₄ O ₇	2, 4, 5-Trinitrophenol C ₆ H ₂ (NO ₂) ₂ OH.	229.05	96	1	1	
1197	C.H.N.O.	Pierie acid (NO2)3C6H2OH	229.05	121.8	exp. > 300	1.763	1313
1198	C ₄ H ₂ N ₂ O ₈	Styphnic acid	245 05	180		1 829	
1199	C ₆ H ₂ N ₂ O ₉ S	Picrylsulfonic acid	293.11	100	1	1	
1200	C ₆ H ₂ N ₅ O ₆	2, 3, 4, 6-Tetranitroaniline .	273.06	170	exp 237	1 89	1314
1200.1	C ₆ H ₄ BrCl	o-Bromochlorobenzene	191.40	-12 6	204766	1.65612.5	765
1200.2	C ₆ H ₄ BrCl	m-Bromochlorobenzene	191 40	-21.2	196	1.62714	764
1200.3	C.H.BrCl	p-Bromochlorobenzene	191.40	67.4	196.3	1	
1200.4	C ₄ H ₄ BrI	o-Bromoiodobenzene	282.88	2.1	257.4784	1	
1200.5	C ₆ H ₄ BrI	m-Bromoiodobenzene	282.88	-9.3	252784	i	i

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1200 6		p-Bromoiodobenzene	282 88	92	251.6744	1	1 410.
1201	C4H4BrNO2	o-Bromonitrobenzene	201 96	43.0	261	1.62340	ı
1202	C ₄ H ₄ BrNO ₂	m-Bromonitrobenzene	201 96	56 0	256 5	1.704	777
1203	C ₄ H ₄ BrNO ₂	p-Bromonitrobenzene	201 96	127	256		
1204 1205	C ₄ H ₄ Br ₂	o-Dibromobenzene	235 86	1.8	221	1 9664	787
1206	CaH ₄ Br ₂	m-Dibromobenzene	235 86	-6 9	217	1.955	783
1207	CaH4Br2 CaH4Br2O	p-Dibromobenzene	235 86	86 8	219	1.954	1132
1208	C.H.Br.O	2, 4-Dibromophenol 2, 6-Dibromophenol	251 86	36	239	1	
1209	C ₆ H ₄ Br ₂ O	3, 4-Dibromophenol	251 86 251 86	56 80]	
1210	C ₄ H ₄ Br ₂ O	3, 5-Dibromophenol	251 83	76 5			- 1
1211	CaHaBr2O2	2. 4-Dibromoresorcinol	267 86	92 5			1
1212	CaH4Br2O2	4, 6-Dibromore-ordinol	267 86	112	130 (in CO ₂)		
1213	C ₆ H ₄ Br ₄ N	2, 4, 6-Tribromoandine	329 79	119	300	l	
1214	C ₆ H ₄ Br ₅ N	3, 4, 5-Tribromoamline	329 79	118			
1214 1	CallaCII	p-Chloroiodobenzene	238 42	57	227 67.1		1
1215	C ₆ H ₄ ClNO ₂	o-Chloromtrobenzene	157 50	32 5	245 7	1.365	-
1216	C ₆ H ₄ CINO ₂	m-Chloronitrobenzene	157 50	44 4; 23 7	235 6	1 534	İ
1217	C ₄ H ₄ CINO ₂	p-Chloronitrobenzene	157 50	83 5	242	1.520	
1218	Call CINO3	4-Chloro-2-mtrophenol	173 50	87	1		
1219 1220	Call,CINO ₃	5-Chloro-2-nitrophenol	173 50	38 9		i	
1221	C.H.CINO	6-Chloro-2-mtrophenol	173 50	70			ı
1222	C ₆ H ₄ CINO ₃ C ₆ H ₄ CINO ₄	2-Chloro-3-nitrophenol	173 50	120	i		
1223	C ₅ H ₄ CINO ₅	4-Chloro-3-nitrophenol	173 50	127			1
1224	C _a H _a CINO _a	5-Chloro-3-nitrophenol 6-Chloro-3-nitrophenol	173 50	147			
1225	C.H.CINO	2-Chloro-4-mtrophenol	173 50	118	1		ĺ
1226	C ₆ H ₄ CINO ₃	3-Chloro-4-nitrophenol	173 50	111			
1227	C.H.CINO.S	2-Chloronitrobenzene-5-sulfonic acid	173 50 237 56	133			
1228	Call CINO S	5-Chloronitrobenzene-3-sulfome acid	237 56	>200 d.			1
1229	Call4Cl2	o-Dichlorobenzene	146 95	200 d. 17 6	170	1 000	
1230	C ₅ H ₄ Cl ₂	m-Dichlorobenzene	146 95	$-17 - 6 \\ -24 - 8$	179 173	1.298	731
1231	CallaCla	p-Dichlorobenzene .	146 95	52 9	173	1.288	723
1232	C'aH4Cl2O	2, 3-Dichlorophenol	162 95	57	113	1.458	1101
1233	C ₆ H ₄ Cl ₂ O	2, 4-Dichlorophenol	162 95	45	210		
1234	C ₆ H ₄ Cl ₂ O	2, 5-Dichlorophenol	162 95	58	211 7		
1235	C ₆ H ₄ Cl ₂ O	2, 6-Dichlorophenol	162 95	67	220		İ
1236 1237	CaH4Cl2O	3, 4-Dichlorophenol	162 95	68	253 5		1
1238	C ₆ H ₄ Cl ₂ O	3, 5-Dichlorophenol	162 95	68	233 1		1
1239	$C_6H_4Cl_2O_2$ $C_6H_4Cl_2O_2$	2, 3-Dichlorohydroquinone	178 95	145			1
1240	C ₆ H ₄ C ₂ O ₂	2, 5-Dichlorohydroquinone	178 95	170		1.824	1
1241	$C_6H_4CI_2O_4S$	2, 6-Dichlorohydroquinone	178 95	164			1
1242	C ₆ H ₄ Cl ₂ O ₄ S ₂	2, 5-Dichlorgbenzenesulfonic acid o-Benzenedisulfonyl chloride	227 01	97			ı
1243	C ₆ H ₄ Cl ₂ O ₄ S ₂	m-Benzendsulfonyl chloride	275 08	105			
244	$C_6H_4Cl_2O_4S_2$	p-Benzenedisulfonyl chloride	275 08	63			
245	C ₆ H ₄ Cl ₄ N	2, 3, 4-Trichloroamline	275 08	131			
246	C ₆ H ₄ Cl ₇ N	2, 4, 5-Trichloroanline	196 41	67.5	291.5		1
247	C ₈ H ₄ Cl ₅ N	2, 4, 6-Trichloroandine	196.41 196.41	96	270		
248	CaHaCLiN	3, 4, 5-Trichloroaniline Cl ₂ C ₆ H ₂ NH ₂ .	196 41	77 5 100	262 4		
249	C ₆ H ₄ FNO ₂	o-Fluoronitrobenzene	141.04	-5.9	214.6	1 000	700
	$C_6H_4FNO_2$	m-Fluoronitrobenzene	141.04	1 7	205	1.338	700
251	$C_6H_4FNO_2$	p-Fluoronitrobenzene	141.04	26 5;	205	1.327	688
			111.01	21 5	200	1 326	1084
	C ₆ H ₄ F ₂	m-Difluorobenzene	114.03		83	1.172	384
	CaH ₄ F ₂	p-Diffuorobenzene	114.03	-23.7	88.9	1 164	362
	Callino,	o-Iodonitrobenzene	248.97	49 4		1 8104	302
	CHANO ₂	m-Iodonitrobenzene	248.97	36	280	1 8044.5	
	Callino;	p-Iodonitrobenzene	248.97	171.5		1 809 4 . 4	1
	C4H4INO2 C4H4I2	4-Iodo-6-nitrophenol IC ₆ H ₃ (NO ₂)OH .	264.97	81	1	•	
- 1	C4H4I3	o-Diiodobenzene	329.90	23.4	286.8		1
	C ₁ H ₄ I ₂	m-Diiodobenzene p-Diiodobenzene	329.90	34.2	284.8		
		p-Diodobenzene	329.90	129.4	285		i

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	ď	R. I.
1261	C ₄ H ₄ I ₃ O	2, 4-Diiodophenol.	. 345 90	72	100	1	No.
1262	C.H.I.O	2, 6-Diiodophenol I ₁ C ₆ H ₃ ()H	345 90	68	100		1
1263	C ₄ H ₄ I ₂ O	3, 4-Diiodophenol I, C, H,OH	345 90	83	1		1
1264	C ₆ H ₄ I ₂ O	3, 5-Diiodophenol I ₂ C ₆ H ₃ OH	345 90	104			1
1265	C ₄ H ₄ I ₂ O ₄ S	2, 6-Diiodophenol-4-sulfonic acid	425 96	120	190 d.		1
1266	C ₄ H ₄ I ₄ N	2, 4, 6-Triiodoaniline I ₃ C ₆ H ₂ NH ₂	470 84	185 5			1
1267	C ₄ H ₄ N ₂	Pyridyl-2-cyanide CN.C.H.N	104 05	29			1
1268	C ₄ H ₄ N ₂	Pyridyl-3-cyanide CN.C.H.N	104 05	50		İ	1
1269	C ₆ H ₄ N ₂	Pyridyl-4-cyanide CN.C ₅ H ₄ N	101-05	79			
1270	CHNO	p-Diazophenol	120 05	exp. 38	1		1
1271	C ₆ H ₄ N ₂ O ₄ C ₆ H ₄ N ₂ O ₄	o-Dinitrobenzene m-Dinitrobenzene	168 05	116 5	319	1 59	
1272	C ₆ H ₄ N ₂ O ₄	p-Dintrobenzene	168 05	89 7	302	1 575	1
$\frac{1273}{1274}$	C ₆ H ₄ N ₂ O ₅	2, 3-Dimitrophenol (NO ₂) ₂ C ₆ H _x OH	168 05	172 1	299	1 625	
1274	C6H4N2O6	2, 4-Dinitrophenol	184 05	144	1		ļ
1276	C ₆ H ₄ N ₂ O ₅	2, 5-Dinitrophenol (NO ₂) ₂ C ₆ H ₃ OH	184 05	111 6	1	1 683	1
1277	C6H4N2Ob	2, 6-Dinitrophenol (NO ₂) ₂ C ₆ H ₃ OH	181-05 181-05	104 61 8			
1278	C6H4N2O6	3, 4-Dinitrophenol (NO ₂) ₂ C ₆ H ₄ OH	184 05	134			İ
1279	C6H4N2O5	3, 5-Dinitrophenol	184 05	126 1			1
1280	C6H4N2O6	2, 4-Dinitroresoremol	200 05	148	d.		
1281	C ₆ H ₄ N ₂ O ₆	4, 6-Dinitroresorcinol	200 05	215	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		İ
1282	CoH4N2O7S	2, 4-Dinitrobenzenesulfonic acid	218 11	108			1
1283	CoH4N2S	Benzisothiodiazole	136 11	44	206		1
1284	C ₆ H ₄ N ₄ O ₆	Picramide 2, 4, 6-(NO ₂) ₃ C ₆ H ₂ NH ₂	228 06	188			1
1285	C6H4N4O7	2, 4, 6-Trinitroaminophenol	244 06	178			1
1286	C ₆ H ₄ N ₆	Hexaazobenzene	160 08	83			1
1287	C ₆ H ₄ () ₂	Quinone	108 03	115 7		1 318	1
1288	C ₆ H ₄ O ₄	2, 5-Dihydroxyquinone	140 03	220	1		1
1289	C ₆ H ₄ O ₆	Sarsapic acid	172 03	305	1		1
1290	C ₆ H ₄ O ₈	Ethanetetracarboxylic acid	204 03	169 d.			
1291	C ₆ H ₆ AsCl ₂	Phenyl dichloroarsine	222 92		253		1
1292	C ₆ H ₆ AsO	Phenylarsine oxide	168 00	120			1
1294	C ₆ H ₆ Br	Bromobenzene	156 96	-30 6	156 2	1 497	747
1295	C ₆ H ₆ BrN ₂ O ₂	4-Bromo-2-nitroaniline	216 97	111	105	1 55000	
1296	C ₆ H ₆ BrO	o-Bromophenol .	172 96 172 96	5.6 33	195 236 5	1.553**	
1297 1298	C H BrO	m-Bromophenol. p-Bromophenol	172 96	63.5	238	1 58819	
1299	C ₆ H ₆ BrO G ₆ H ₆ BrO ₂	p-Bromophenol Bromohydroquinone	188 96	115	200	1 '''''	
1300	C ₆ H _b BrO ₂	2(4)-Bromoresorcinol	188 96	91			
1301	C6H5BrO3S	p-Bromobenzene-ulfonic acid	237 02	88	1		
1302	C ₆ H _b Br ₂ N	2, 4-Dibromoanline.	250 88	79.5	1		
1303	C6H6Br2N	2, 5-Dibromoaniline	250 88	52	1		
1304	C ₆ H ₆ Br ₂ N	2, 6-Dibromoaniline	250 88	81	264		1
1305	C6H6Br2N	3, 4-Dibromoaniline	250 88	80-4	1		1
1306	C6H6Br2N	3, 5-Dibromoaniline	250 88	56 5	1		ļ
1307	C ₄ H ₅ Cl	Chlorobenzene	112 50	-45 2	132 1	1.107	681
1308	C6H6ClN2O2	2-Chloro-4-nitroaniline	172 51	105			1
1309	C6H6ClN2O2	2-Chloro-5-nitroanilme	172 51	118			1
1310	C ₆ H ₅ ClN ₂ O ₂	3-Chloro-4-nitroamline	172 51	157			
1311	C ₆ H ₅ ClN ₂ O ₂	3-Chloro-6-nitroamhne	172 51	125		1	
1312	C ₆ H ₄ ClN ₂ O ₂	4-Chloro-2-nitroaniline	172 51	115			1
1313	C ₆ H ₅ ClN ₂ O ₂	4-Chloro-3-nitroamline	172 51	103	179	1 24118.2	1080
1314	C ₆ H ₄ ClO	o-Chlorophenol	128.50	α 7; β 0;	173	1 2411	1058
1015	G II GIG		190 80	γ-4 1	214		1059
1315	C.H.ClO	m-Chlorophenol .	128.50 128.50	32.8 37	214	1.306	1060
1316	C.H.ClO	p-Chlorophenol	144 50	106	263	1.000	1000
1317	C.H.ClOs	Chlorohydroquinone Benzenesulfone chloride	176 56	14.5	247	1.38318	1
1318 1319	C ₆ H ₄ ClO ₂ S C ₆ H ₄ ClO ₃ S	p-Chlorobenzencsulfonic acid	192 56	67	14625	1	
1320	C ₆ H ₅ Cl ₂ N	2, 3-Dichloroamline	161 96	24	252		1
1321	C ₆ H ₄ Cl ₂ N	2, 4-Dichloroaniline	161 96	63	245	1.567	1
1322	C ₆ H ₆ Cl ₂ N	2, 5-Dichloroaniline	161.96	50	251		1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1324	C ₄ H ₄ Cl ₂ N	3, 4-Dichloroanilme	161.96	71 5	272		Ī
1325	C ₄ H ₄ Cl ₂ N	3, 5-Dichloroandine	161 96	50-5	260		
1326	C ₄ H ₄ Cl ₂ OP	Phosphenyl oxychloride	194.98		258	1.375	
1327	C,H,Cl,P	Phosphenyl chloride	178 98	41.0	224 6 86	1 319	804
1328 1329	C ₄ H ₄ FO	Fluorobenzene	96 039	-41 2 16 1	30	1 024	487
1330	Callaro	o-Fluorophenol FC ₈ H ₄ OH	112 04 112 04	13 8	18369	1 222	azo
1331	Callaro	m-Fluorophenol p-Fluorophenol	112 04	28 5;	188	1 18946	652 1083
1001	Carro	p-riuorophenoi	112 (/1	48 2	100	1.1004	1000
1332	C ₄ H ₄ F ₂ N	2, 5-Diffuoroaniline	129 05	13 5	85 830	1 28817 2	
1333	C ₄ H ₄ I	Iodobenzene	203 97	-31 4	188 6	1 832	792
1334	C.H.IO	o-Iodophenol	219 97	40 4	187160	1 876**	
1335	C*H*IO	m-Iodophenol IC,H,OH	219 97	40			Ì
1336	C'H¹IO	p-Iodophenol IC ₆ H ₄ OH	219 97	94		Ì	ł
1337	C ₆ H ₄ IO	Iodosobenzene	219 97	exp. 210			
1338	C4H4IO	Iodoxybenzene	235 97	exp. 238			1
1339	C ₄ H ₄ IO ₂ S	Benzenesulfone iodide C ₆ H ₆ SO ₂ I	268 04	45	1		1
1340	Callalan	2, 4-Duodoaniline I ₂ C ₄ H ₃ NH ₄	344-91	96	1		
1341	CaHaNO	Pyridyl-a-uldehyde	107 05		181	1 126	947
1342	C ₄ H ₄ NO	Pyridyl-β-aldehyde	107 05		9715		
1343	CaHaNO	Nitrosobenzene.	107 05	68	5918	1	
1344	C ₄ H ₄ NO ₄	Picolime acid	123 05	137			
1345 1346	C ₄ H ₄ NO ₂ C ₄ H ₄ NO ₂	Nicotinic acid Bonicotime acid	123 05	232			
1347			123 05	317	210.0	1 007	
1348	C ₆ H ₆ NO ₂ C ₆ H ₆ NO ₂	Nitrobenzene p-Nitrosophenol ONC ₈ H ₄ OH	123 05	5 7	210 9	1.207	736
1349	C ₅ H ₅ NO ₁	o-Nitrophenol	123 05 139 05	$\frac{126}{45}$	214 5	1 447	1
1350	C.H.NO.	m-Nitrophenol	139 05	96	19470	1 485	1
1351	CaHaNO3	p-Nitrophenol	139 05	113	104	1 468	}
1352	C.H.NO.	2-Nitroresorcinol m-(OH) ₂ C ₆ H ₃ NO ₂	155 05	85		1 400	
1353	Callano,	4-Nitroresorcinol m-(OH) ₂ C ₆ H ₃ NO ₂	155 05	115			
1354	CaHaNO.	Nitrohydroquinone	155 05	134			i
1355	C6H5NO6S	2-Nitrophenol-4-sulfome acid	219 11	141		1	
1356	C ₆ H ₅ N ₂	Aziminobenzene	119.06	99		İ	
1357	CaHaNa	Triazobenzene	119 06		73.524	1 09810	991
1358	C ₆ H ₅ N ₃ O ₄	2, 3-Dinitroamline (NO ₂) ₂ C ₆ H ₃ NH ₂	183 06	127			
1359	C ₆ H ₆ N ₃ O ₄	2, 4-Dmitroaniline	183 06	188			1
1360	CallaNaO4	2, 5-Dintroandine (NO ₂) ₂ C ₆ H ₃ NH ₂	183 06	137			1
1361 1362	C ₆ H ₆ N ₃ O ₄	2, 6-Dmitroaniline	183 06	138			1
1363	C.H.N.O.	3, 4-Dinitroaniline (NO ₂) ₂ C ₆ H ₃ NH ₂	183 06	154			
1364	C ₆ H ₈ N ₃ O ₄ C ₆ H ₅ N ₅ O ₅	3, 5-Dinitroaniline (NO ₂) ₂ C ₆ H ₅ NH ₂ Picramic neid	183 06	159			
1365	C.H.	Benzene	199 06	165	70.0	0.050	1320
1366	C.H.	D	78 046 78 046	5.5	79 6	0 878	606
1367	ColloAsCla	/P=1 /0 1.1 1.	259 38	-6	85.4 260	0 805 1 572	380
1368	C ₆ H ₆ BrN	o-Bromoaniline	171 97	31.5	251	1 3/2	1
1369	C ₆ H ₆ BrN	m-Bromoaniline	171 97	18.5	251	1.58716 2	793
1370	C ₆ H ₆ BrN	p-Bromoaniline BrC ₆ H ₄ NH ₂	171 97	66 4	2.71	1.0011	1
1371	CoHoBraNa	3, 4-Dibromophenylhy drazine	265 89	75			1
1372	C ₆ H ₆ Br ₂ N ₂	3, 5-Dibromophenylhydrazine	265 89	95 5			1
1373	C ₆ H ₆ Br ₆	α-trans-Benzenehexabromide	557.54	212			ì
1374	C ₆ H ₆ Br ₆	β-cis-Benzenchexabromide .	557.54	253			1
1375	CaHaCIN	o-Chloroaniline ClC _t H ₄ NH ₂	127.51	0	210.5	1 213	774
1376	C ₆ H ₆ CIN	m-Chloroandine	127.51	-10.4	229.8	1.215	776
1377	C ₄ H ₆ CIN	p-Chloroaniline	127.51	71	231	1.170,0	1
1378	C.H.CINO	2-Chloro-3-aminophenol	143.51	87		ŀ	1
1379 1380	C.H.CINO	2-Chloro-4-aminophenol	143.51	153			1
1381	C ₆ H ₆ ClNO ₁ S C ₆ H ₆ Cl ₁ N ₂	p-Chlorometanilie acid	207.58	280 d.		1	
1382	C6H6Cl2N2	2, 4-Dichlorophenylhydrazine	176.98	94		1	
1383	CaHaClaNa	2, 5-Dichlorophenylhydrazine 3, 5-Dichlorophenylhydrazine	176.98	105		1	1
1384	CaHaCla	α-trans-Benzenehexachloride	176.98 290 79	118 157	288	1.87	1

No.	Formula	Name	Mol wt	M. P	В. Р.	d	R.
86	C ₄ H ₄ Cl ₄	γ-Benzenehexachloride	290.79	112		-	
87	C.H.Cl.	Benzenehexachloride	290-79	129		1	
88	C ₄ H ₄ FN	o-Fluoroaniline	111 05	-34 6	68 514	1 151	71
89	C ₆ H ₆ FN	m-Fluoroanilme	111 05	1	186 3	1 160	72
90	C.H.FN	p-Fluoroaniline	111-05	-19	189	1 152	70
91	C ₆ H ₆ IN	o-Iodoaniline	218 99	56.5	1		1
92	C.H.IN	n-Iodoaniline	218 99	27		ļ	
93	C.H.IN	p-Iodoaniline	218 99	62			1
94	C ₄ H ₄ N ₄ O	p-Nitrosoamline	122/06	174			-
95	C ₆ H ₆ N ₂ O ₂	Phenylnitroamine	138/06	46			- 1
96	C ₆ H ₆ N ₂ O ₂	o-Nitroaniline	138 06	71.5			- 1
97	C ₆ H ₆ N ₂ O ₂	m-Nitroaniline O2NC4H4NH2	138 06	111 8	286	1 430	1
98	C ₆ H ₆ N ₂ O ₂	p-Nitroaniline	138 06	148		1 424	- 1
99	C ₆ H ₆ N ₁ O ₁	Quinonedioxime p-C ₄ H ₄ (NOH) ₂	138 06	240			1
00	C ₆ H ₆ N ₂ O ₂	3-Nitro-2-aminophenol	154 06	136		ŀ	- 1
01	C ₆ H ₆ N ₂ O ₃	4-Nitro-2-aminophenol	154 06	143	1		
02	C ₆ H ₆ N ₂ O ₃	5-Nitro-2-aminophenol	154 06	202			- [
03	C ₄ H ₄ N ₂ O ₂	6-Nitro-2-aminophenol	154 06	111			1
04	C ₆ H ₆ N ₂ O ₃	5-Nitro-3-aminophenol	154 06	165			ı
05	C ₆ H ₆ N ₂ O ₃	2-Nitro-4-aminophenol	154 06	206	1	1	
06	C ₆ H ₆ N ₂ O ₃	3-Nitro-4-aminophenol	154-06	148		l	- 1
07	C ₆ H ₆ N ₂ O ₄	5-Acetylbarbituric acid	170 06	300		ŀ	1
08	C ₆ H ₆ N ₂ O ₄	Dimethylalloxan	170 06	255 d.			1
09	C ₆ H ₆ N ₄ O ₄	1-Methyluric acid	182 08	400 d.	1	1	j
10	C ₆ H ₆ N ₄ O ₃	3-Methyluric acid	182 08	>360 d.		1	- 1
11	CoHoN O	7-Methyluric acid	182 08	370 d.	i		
12	C ₆ H ₆ N ₄ O ₇	Ammonium pierate .	246 08	d.		1.719	13
13	C ₆ H ₆ O	Phenol	94 046	41	182	1.0714	10
14	C ₆ H ₆ O ₂	o-Dihydroxybenzene 1, 2-C ₆ H ₄ (OH) ₂ *	110 05	105	245	1.344	12
15	C ₆ H ₆ O ₂	Resorcinol 1, 3-C ₅ H ₄ (OH) ₂	110 05	110	276 5	1 28514	12
16	C ₆ H ₆ O ₂	Hydroquinol 1, 4-C ₆ H ₄ (OH) ₂	110 05	170-5	286 2	1 33216	111
17	C ₆ H ₆ O ₂	5-Methylfurfural .	$110 \ 05$		187	1 1091	
18	C ₆ H ₆ O ₂ S	Benzenesulfinic acid	142 11	84	100 d.		
19	C ₆ H ₆ O ₃	Pyrogallol 1, 2, 3-C ₆ H ₂ (OH) ₂	126 05	134	309	1.453	13
20	C6H6O3	Hydroxyhydroquinone	$126 \ 05$	140 5			
21	C.H.O.	Phloroglucinol	$126 \ 05$	219			- 1
22	C ₆ H ₆ O ₈	Acrylic anhydride	126 05		9734	1 ()()40	-
23	C ₆ H ₆ O ₃ S	Benzenesulfonic acid	158 11	46	d		- 1
24	C ₆ H ₆ O ₄	Apionol 1, 2, 3, 4-C ₆ H ₂ (OH) ₄ .	142 05	161			- 1
25	C ₆ H ₆ O ₄	1, 2, 3, 5-Tetrahydroxybenzene	142.05	165			i
26	C ₆ H ₆ O ₄	1, 2, 4, 5-Tetrahydroxybenzene	142 05	220	İ	i	ı
27	C ₆ H ₆ O ₄	Muconic acid (CH.CHCO ₂ H) ₂	142 05	320 d.			- 1
28	C ₆ H ₆ O ₆ S	o-Phenolsulfonic acid.	174 11	50			1
29	C ₆ H ₆ O ₆	Aconitic acid	174 05	191		1	
30	C ₆ H ₆ S	Thiophenol CoHoSH.	110 11		169 5	1 074	10
31	C ₆ H ₆ Se	Selenophenol C ₆ H ₆ SeH	157 25		183.6	1 48715	1
32	C ₆ H ₆ S ₂	Dithioresorcinol 1, 3-C ₆ H ₄ (SH) ₂	142 18	27	243		- 1
33	C ₆ H ₆ S ₂	Dithiohydroquinone 1, 4-C ₆ H ₄ (SH) ₂	142 18	98		1	1
34	C ₆ H ₇ A ₈	Phenylarsine C ₆ H ₆ AsH ₂	154 01		148	1	
35	C ₆ H ₇ AsO ₈	Phenylarsonic acid	202.01	158 d.	1	1 840	1
36	C ₆ H ₇ BrN ₂	p-Bromophenylhydrazine	186 99	107	ļ	1	
37	C ₆ H ₇ ClN ₂	4-Chloro-o-phenylenediamine	142.53	72		1	ı
38	C ₆ H ₇ ClN ₂	4-Chloro-m-phenylenediamine	142.53	86	ļ		İ
19	C ₆ H ₇ ClN ₂	o-Chlorophenylhydrazine	142 53	47	Ī	1	
ю	C ₆ H ₇ ClN ₂	p-Chlorophenylhydrazine	142.53	90	7011	1 005	_
1	C ₆ H ₇ ClO	Sorbic chloride	130.51		7816	1.065	7
1 1	C ₆ H ₇ ClO ₄	Methyl chloromaleate	178.51		106.518	1.27828	1
1.2	C ₆ H ₇ ClO ₄	Methyl chlorofumarate	178.51		115.51	1.29026	_
2	C ₆ H ₇ N	Aniline	93.062	-6 2	184.4	1.022	7
3	C ₆ H ₇ N	α-Picoline	93.062	-69.9	128.0	0.950	6
14	C ₄ H ₇ N	β-Picoline	93.062		143.5	0.952	10
5 6	C ₄ H ₇ N	γ-Picoline	93.062	170	143 1	0.957	1
	C ₄ H ₇ NO	La-Aminophenol	109.06	170	1		t

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1447	C ₄ H ₇ NO	m-Aminophenol	109 06	123			
1448	C ₄ H ₇ NO	p-Aminophenol	109 06	184			1333
1449	C ₄ H ₇ NO	Methyl 2-pyrryl ketone	109 06	90	220		
1450	C ₄ H ₇ NO	β-Phenylhydroxylamine	109 06	82			1
1451	C ₆ H ₇ NO ₂	Phloramine 3, 5-(OH) ₂ C _t H ₄ NH ₂	125 06	152			
1452	C ₄ H ₇ NO ₇ S	Benzenesulfoneamide	157 13	156			
1455	C ₄ H ₇ NO ₄ S	p-Andinesulfonic acid	173 13	288	004		1
1458	C ₆ H ₇ NS	2-Ammotluophenol	125 13	26	234		
1459	C4H7N3O2	4-Nitro-o-phenylenediamine	153 08	198			1
1460	C ₈ H ₇ N ₃ O ₂	4-Nitro-m-phenylenediamine	153 08	161	1		
1461	C ₆ H ₇ N ₃ O ₃	2-Nitro-p-phenylenediamine	153 08	135 135 d.	1		
1462	C ₅ H ₇ N ₄ O ₁₄	d-Glucose pentanitrate	405 09 142 08	70			
1463 1464	C ₆ H ₇ O ₂ P C ₆ H ₇ O ₃ P	Phenylphosphenous acid Phenylphosphenic acid	158 08	158	250 d.	1.475	İ
1465	C ₆ H ₇ P	Phenyl phosphine C ₆ H ₆ PH ₂	110 08	1.76	160	1.00115	
1466	CaH	1, 3-Cyclohexadiene	80 062	-98	80.5	0.842	519
1467	C.H.	Diallylene (CH ₂ C:CH) ₂ .	80 062	- 50	70	0.85818 2	919
1468	С.Н.	o-Dihydrobenzene	80 062		78 5	0.848	1
1469	C.H.	m-Dihydrobenzene .	80 062		80 5	0.830	1
1470	C.H.	p-Dihydrobenzene	80 062		85 5	0 848	1
1471	CaHaAsNO	Arsanilic acid p-NH ₂ C ₆ H ₄ AsO(OH) ₂ .	217 03	< 200			
1471.1	C ₆ H ₄ BrN	Aniline hydrobromide	173 99	286	1		
1472	CaHaCIN	Aniline hydrochloride	129 53	198	245	1 2224	1245
1474	CaHaCINO	m-Aminophenol hydrochloride	145 53	229			1
1475	C ₆ H ₆ CINO	p-Ammophenol hydrochloride	145 53	306 d.	1		1333
1476	C ₆ H ₈ Cl ₂ O ₂	Adipyl dichloride	182 98		13218 s. d.		
1477	C ₆ H ₅ N	Piturine	94 070		244		
1478	C ₆ H ₈ N ₂	Adipyldinitrile	108 08	1	295	0 951	471
1479	C ₆ H ₈ N ₂	o-Phenylenediamine	108 08	103 8	252		
1480	CaHaN ₂	m-Phenylenediamine	108 08	62 8	287	1 1074	1086
1481	CaHaN2	p-Phenylenediamme	108-08	139 7	267		
1482	C ₆ H ₈ N ₂	2, 5-Dimethylpyrazine (Ketine)	108 08	15	155	0.990	1017
1483	C ₆ H ₈ N ₂	Phenylhydrazine C ₆ H ₆ NHNH ₂	108 08	19.6	243.5	1 098	784
1484	C ₆ H ₈ N ₂ O	2, 5-Diammophenol	124 08	68			1
1485	C ₆ H ₆ N ₂ O	3, 4-Diaminophenol	124 08	168			
1486	C ₆ H ₈ N ₂ O	3, 5-Diaminophenol	124 08	170			
1487 1488	C ₆ H ₈ N ₂ O ₃	1, 3-Dimethylbarbiturie acid 1-Ethylbarbiturie acid	156 08	123	•		1
1489	C ₆ H ₈ N ₂ O ₂ C ₆ H ₈ N ₂ O ₂	Amline nitrate	156.08	120	100 1	1 0504	
1490	C ₆ H ₈ N ₂ O ₄ S	o-Phenylenediamine-3-sulfonic acid	156.08 188-14	.1	190 d.	1 3584	
1401	C ₆ H ₈ N ₂ O ₈ S	p-Phenylhydrazinesulfonic acid	188 14	d. 286			
1492	C ₆ H ₈ N ₂ O ₄ S ₂	o-Benzenedisulfoneamide	236 21	233			
1493	C ₄ H ₄ N ₂ O ₄ S ₂	m-Benzenedisulfoneamide	236 21	229		İ	1
1494	C4H4N2O4S2	p-Benzenedisulfoneamide	236 21	188			1
1495	CoHaNoOia	Mannitol hexanitrate	452 11	113	İ	18	1
1496	C ₆ H ₈ O	2, 5-Dimethylfuran	96 062		94	0 888	974
1497	('aHaO2	Dihydroresoremol m-(OH) ₂ C ₆ H ₆	112 06	104	"-		"
1498	C ₆ H ₈ O ₂	Sorbic acid CH ₃ (CH;CH) ₄ CO ₂ H	112 06	134 5	228 d.		1333
1499	C ₄ H ₈ O ₄	Dimethyl fumarate .	144 06	102	192		1
1500	C ₆ H ₈ O ₄	Dimethyl maleate	144.06		203	1 15314	382
1501	C ₀ H ₈ O ₄	Ethyl fumarate CO ₂ HCH,CHCO ₂ C ₂ H ₅ .	144.06	70			
1502	C ₆ H ₈ O ₄	Lactide	144.06	125	255	0 862	1
1503	C ₆ H ₈ O ₄	Acetonylmalonic acid	160.06	150			1
1504	C ₆ H ₈ O ₆	Acetylmalic acid	160.06	134			
1504 1	C ₄ H ₅ O ₄	1-Ketoadipic acid	160.06	124	1		
1505	C ₄ H ₄ O ₄	Tricarballylic acid	176.06	166	d.		
1506	C ₆ H ₈ O ₆	Glycerol triformate (Triformin)	176.06	18	266	1 320	373
1507 1508	$C_6H_8O_7$ $C_6H_8O_8$	Citric acid (HO ₂ CCH ₂) ₂ C(OH)CO ₂ H	192.06	153		1 542	1202
1508	C ₆ H ₈ S	Hydroxycitric acid	208.06	160	107	0.004	
	CallaS CallaS	2, 3-Dimethylthiophene 2, 4-Dimethylthiophene	112.13		137	0.994	
	C ₆ H ₆ S	2, 4-Dimethylthiophene	112.13		138	0.996	
	~ p < 4 SP /	i w. o-romethy untophene	112.13		137.5	10 9/0	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
1513	C ₄ H ₄ A ₈ O ₄	Arsenic acetate	252 03	82	17021	-}	110.
1514	C.H,CIN,	Phenylhydrazine hydrochloride	144 54	243	170	1	-
1515	C,H,ClO,	Ethyl chloroacetoacetate	164 53		200	1 179	
1516	C.H.N	1, 2-Dimethylpyrrol	95 077		6511	1 11011	1
1517	C ₄ H ₄ N	2, 3-Dimethylpyrrol	95 077		165		
1518	C ₄ H ₄ N	2, 4-Dimethylpyrrol.	95 077		171	0.9274	829
1519	C.H.N	2, 5-Dimethylpyrrol	95 077		169	0 935	909
1520	C.H.N	1-Ethylpyrrol	95 077		131	0 88814	1
1521	C.H.NO.	Guavacine	127 08	285 d.		1 " " " "]
1522	C ₁ H ₂ NO ₃	Triacetamide (CH ₄ CO) ₄ N	143 08	79		1	1
1523	C,H,NO,S	Ammonium benzenesulfonate	175 14	256		1	1
1524	C,H,NO,S	m-Aminophenol sulfate	207 14	152			ı
1525	C ₄ H ₂ N ₁	1, 2, 3-Triaminobenzene	123 09	103	336		
1526	C ₄ H ₄ N ₄	1, 2, 4-Triaminobenzene	123 09	100	340		
1527	C ₆ H ₆ N ₅ O	2, 4, 6-Triaminophenol	139 09		257		-
1528	C ₆ H ₆ N ₂ O ₂	Cupferron	155 09	164			1
1529	C ₆ H ₉ N ₂ O ₂	Histidine	155 09	253 d.		1	
1530	C ₆ H ₉ N ₃ O ₃	Phloroglucinol trioxime	171 09	155 exp.			1
1531	C ₆ H ₉ N ₄ O ₄	Caffuric acid	187 09	220			- 1
1532	C ₆ H ₁₀	n-Butylacetylene C ₄ H ₉ C;CH	82 077	-150	71.5		-
1533	C ₆ H ₁₀	Diisopropenyl (CH ₂ C CH ₂) ₂	82 077		69-6	0 73116	852
1534	C6H10	1, 5-Hevadiene (CH ₂ CH:CH ₂) ₂	82 077		60	0 688	127
1535	C ₄ H ₁₀	2, 4-Hexadiene (CH:CHCH ₁) ₂	82 077		82	0 718	810
1536	CeH10	Methylpropylacetylene CH ₄ CC:C ₄ H ₇	82 077	l i	81	0 749	0.0
1537	C ₆ H ₁₀	1, 2, 3, 4-Tetrahydrobenzene.	82 077	-103 7	83	0 810	404
1539	C ₆ H ₁₀ ClN ₂ O ₂	Histidine hydrochloride	191 56	251 d.		1 " " "	
1540	C6H10N4O11	Tetranitrodiglycerol	346 11		250*	1 33	1
1541	C6H10O	Cyclohexanone	98 077		156 7	0.949	874
1542	C ₆ H ₁₀ O	1, 2, 3, 4-Tetrahydrophenol	98 077		166 d.	0.030	""
1543	C6H10O	1, 2, 3, 6-Tetrahydrophenol	98 077	1	166	1	
1544	C6H10O	Allyl ether (CH2;CHCH2)2O	98 077		94-3	0 805	
1545	C ₆ H ₁₀ O	1-Ethyl-2-methylacrolein	98 077		137 3	0 858	
1546	C ₆ H ₁₀ O	Allylacetone CH ₂ :CH(CH ₂) ₂ COCH ₃	98 077		129 5	0 846	876
1547	C ₆ H ₁₀ O	Diethylketene (C2H4)2C:CO.	98 077		89 5	0 831	0.0
1548	C6H10O	Mesityl oxide (CH ₂) ₂ C:CHCOCH ₄	98 077	-59.0	135	0 863	899
1549	C6H10O2	Adipyl dialdehyde OCH(CH2)4CHO.	111 08		949		
1550	C ₆ H ₁₀ O ₂	Propionylpropionic aldehyde	114 08	40	166		1
1551	C ₆ H ₁₀ O ₂	Acetonylacetone (CH ₃ COCH ₂) ₂	114 08	-9	194	0 970	428
1552	C ₆ H ₁₀ O ₂	α-Ethylerotome acid	. 114 08	45	209		
1553	C ₆ H ₁₀ O ₂	1, 2-Hexenic acid CallaCH CHCOaH	114 08	32	217	0 965	1055
1554	C ₆ H ₁₀ O ₂	2, 3-Hexenic acid	114 08		208	0 962	953
1555	C ₆ H ₁₀ O ₂	1, 2-Isohexenic acid.	114 08		108^{12}	0 959	885
1556	C ₆ H ₁₀ O ₂	Crotonyl acetate	114-08	1	129	0 9340	
1557	C ₆ H ₁₀ O ₂	Ethyl a-crotonate	114 08		139	0 919	283
1558	C6H10O2	Ethyl isocrotonate	114 08	1	131 2	0 925	
1559	CeH10O	Glyceryl ether	130 08	1	173	1 091	1
560	C6H10O2	Propionic anhydride (CH2CH2CO)2O	130 08	- 45 0	196-0	1 012	142
561	C6H10O2	Ethyl acetoacetate	130 08	< -80	180	1 025	243
562	C6H10O4	Adipic acid HO ₂ C(CH ₂) ₄ CO ₂ H	146 08	151	265100	Ì	
563	C6H10O4	1, 1-Dimethylsuccinic acid	146 08	142	165 d.	•	
564	C6H10O4	Ethylsucemic acid	146.08	98			
565	$C_6H_{10}O_4$	Methylethylmalonic acid	146 08	117 5		1	
566	$C_6H_{10}O_4$	Propylmalome acid C ₂ H ₇ CH(CO ₂ H) ₂	146 08	96		1	
567	C6H10O4	Isopropylmalonic acid	146.08	87			
568	C ₆ H ₁₀ O ₄	Dimethyl succinate (CH ₂ CO ₂ CH ₃) ₂	146 08	19-5	192 8	1 121	942
569	C6H10O4	Dimethyl isosuccinate	146 08		179	1.02826	
570	C4H10O4	Diethyl oxalate (CO ₂ C ₂ H _b) ₂	146 08	-40 6	186 1	1 080	182
571	C ₄ H ₁₀ O ₄	Glycol diacetate (CH ₂ OCOCH ₃) ₂ .	146.08	-31	190 5	1.104	216
572	C ₆ H ₁₀ O ₄	Ethylidene diacetate	146.08	""	169	0.852	210
572.1	C4H10O4	Methyl l-1-acetoxypropionate	146.08	1	172	1.089	1
573	C ₆ H ₁₀ O ₄	Mannide	146 08	1	317	1.000	
574	C4H10O4	Isomannide	146.08	87	274		1
1	C ₄ H ₁₀ O ₄	Lactic anhydride (CH,CHOHCO),	162.08	260 d.		1	ı

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
1576	C ₄ H ₁₀ O ₄	Dimethyl malate	162 08		242	1.233	391
1577	C4H10()4	p-Glucosan	162 08	178	1	1	ł
1578	$(C_4H_{10}O_5)_x$	Glycogen	$(162.08)_x$	240	1		
1578 1	(C4H16O4)x	Starch	(162 08) _x	d.	1	1.5021	1164
1579	C ₄ H ₁₀ O ₄	d-Saccharine	162 08	161	1	1	1
1580	C ₆ H ₁₀ O ₆	Dimethyl dl-tartrate (CH(OH)CO ₂ CH ₂) ₂	178 08	85	282		1
1581	$C_{\bullet}H_{10}O_{\bullet}$	Dimethyl d-tartrate	178 08	48; 61 5	280	1 328	1
1582	C ₄ H ₁₀ O ₄	Ethyl d-tartrate	178 08	90			
1583	C ₄ H ₁₀ O ₄	Allomucic acid	210 08	171 d.			
1584	C ₆ H ₁₀ O ₈	Mucic acid HO ₂ C(CHOH) ₄ CO ₂ H	210 08	206 d.	}		1
1585	C ₆ H ₁₀ O ₈	d(t)-Talomucie acid	210 08	158 d.			
586	C ₄ H ₁₀ O ₄	Isosaccharic acid	210 08	185	120 7	0.00025.5	1.00
1587	C ₆ H ₁₀ S	Diallyl sulfide (CH ₂ ,CHCH ₂) ₂ S	114 14	-83 0	138 7 165 5	0 8884	103-
.588 .589	C ₄ H ₁₁ Br	Cyclohexyl bromide	163 00	154	169-9	1.333	573
590	C ₄ H ₁₁ BrN ₂ O ₁	Bromural C. H.CHB-CO. H.	223 02	154	13110	-	i
591	C ₆ H ₁₁ BrO ₂ C ₆ H ₁₁ BrO ₂	1-Bromocaproic acid C ₄ H ₉ CHBrCO ₂ H.	195 00	35	131.	1	1
592	CaH ₁₁ BrO ₂	2-Bromocaproic acid	195 00	30	179 d.	1 20525	
593	C ₆ H ₁₁ BrO ₂	Ethyl 1-bromobutyrate Ethyl 1-bromoisobutyrate	195 00		164 d.	1 32525	1
595	CaHmCl	1 1	195 00 118 54		142 5	1 31525	45
596	C ₄ H _H ClO	Cyclohexyl chloride n-Caproyl chloride C ₄ H ₁₁ COCl	134 54		153	0 973	451
597	C ₆ H ₁₁ ClO ₂	Isoamyl chloroformate	150 54		156	1 02425	543
598	CaH ₁₁ Cl ₂ N ₂ O ₂	Histidine dihydrochloride	228 03	235 d.	150	1 02425	
590	CaH ₁₁ Cl ₂ O ₂	Trichloroacetal Cl ₂ CCH(OC ₂ H ₅) ₂	221 46	200 (I.	197	1.26615	
600	Call tr ClaO2	Trichloroacetal (solid)	221 46	83	230 d.	1.200	1
601	CHul	Cyclohexyl iodide .	210 02	റം	192	1.626	1
302	Callin	Capronitrile C ₂ H ₁₁ CN	97 09		163	0.809	188
803	C ₆ H ₁₁ N	Isocapronitrile (CH ₃) ₂ CH(CH ₂) ₂ CN	97 09	-51 1	155 5	0.806	159
604	C ₆ H ₁₁ N	Isocaproisonitrile (CH ₂) ₂ CH(CH ₂) ₂ NC	97.09	-01 1	137	0.000	108
605	C.HaNO	Hygric acid	129 09	169	101		
606	CaH11NO	Nitrocyclohexane	129 09	-34	205 5	1 068	
607	C.H.INO.	Adipyl amide HO ₂ C(CH ₂) ₄ CONH ₂	145 09	130	200 0	1 003	j
608	CalliiNS	Isoamyl isothiocyanate	129 16	100	182	1	1
809	Call ₁₁ N ₃ O ₄	Citramide (H2NOCCH2)2C(OH)CONH2	189 11	215	102	1	1
610	CoH12	Butylethylene C4H9CH.CH2	84 092	-98 5	64-1	0.683	44
611	C.H.2	2, 2-Dimethyl-4-butene	84 092	0 ., 1 ,	42 3	0.000	1
812	C6H12	Cyclohexane	84 092	6.5	81 4	0.779	304
813	C6H12	2-Methyl-2-pentene (CH ₃) ₂ C:CHC ₂ H ₄ .	81 092		67 1	0.692	881
315	C'6H12	Methylcyclopentane	81 092	-140 5	73	0.750	
816	C6H12	3-Methyl-2-pentene (isomer 1)	84 092		65 7	0.72216	848
317	Call ₁₂	3-Methyl-2-pentene (isomer 2)	84 092		70.2	0 698	128
818	C ₆ H ₁₂	2, 3-Dimethyl-1-butene	84 092		59	0.680	
819	CaH ₁₂	Tetramethylethylene	84 092		73	0 712	199
620	C.H.12A82	Cacodyl carbide	234 01		84 515	İ	1
321	C.H.12 \83BiO.	Bismuth cacodylate (8H ₂ O).	613 97	82		į	1
622	('aH ₁₂ ('] ₂ () ₂	Dichloroacetal Cl ₂ CHCH(OC ₂ H ₅) ₂	187 01		184	1 13814	
823	C6H12N2O2	Adipic diamide H ₂ NOC(CH ₂) ₄ CONH ₂ .	144 11	220			1
324	Call 12 N 2O2	sym - Diethyloxamide	144 11	190			
825	C ₆ H ₁₂ N ₂ O ₄ S ₂	I-Cystine	240 24	258 d.			1187
326	C ₆ H ₁₂ N ₄	Hexamethylenetetramine	140 12		263		
327	CaHiaO	Cyclohexanol	100.09	23 9	161 5	0 962	1051
328	C ₄ H ₁₃ O	2-Hexene-4-ol	100 09		5927	0 837	1008
329	C'6H12O	Dimethyl propenyl carbinol	100.09		112	0 835	321
30	C ₆ H ₁₂ O	Pinacolin (CH ₃) ₃ CCOCH ₃	100.09	$-52\ 5$	106.2	0 811	1
331	C ₆ H ₁₇ O	Ethyl isocrotonyl ether	100.09		94		1
332	C'H13O	Isopropyl allyl ether	100.09		84 2	0 776	1
833	C ₆ H ₁₂ O	n-Caproic aldehyde C _b H ₁₁ CHO	100.09		129	0 834	1
834	C ₄ H ₁₃ O	Isobutylacetaldehyde	100.09		121.7		
335	C ₆ H ₁₃ O	Methylpropylacetaldehyde	100 09		121		
36	CHO	Ethyl propyl ketone C ₂ H ₄ COC ₃ H ₇	100 09		124	0 81817 6	124
337 338	C H ()	Ethyl isopropyl ketone	100 09	P.C. C	114.5	0 830%	
	C ₆ H ₁₂ O C ₆ H ₁₂ O	Methyl n-butyl ketone CH ₄ COC ₄ H ₉	100 09	-56 9	127.2	0 8300	
-11	C4AlisU	Methyl isobutyl ketone	100.09	-84.7	119	0.803	9

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. L
1640	C.H.12O	Methyl secbutyl ketone	100 09		<u> </u>		No.
1641	C.H12O2	Diacetone alcohol	116 09	ŀ	117.8 106	0.815 0.931**	115
1642	C ₆ H ₁₉ O ₈	tertButylacetic acid	116 09	-11	190	0.031**	
1643	C ₆ H ₁₂ O ₂	Caproic acid C.H., CO.H	116 09	-9.5	202	0 929	207
1644	C ₄ H ₁₃ O ₃	Isocaproic acid	116 09	- 35	207 7	0.925	217
1645	C ₆ H ₁₂ O ₂	Diethylacetic acid (C1H1),CHCO1H	116 09	< 15	197	0 93310 1	201
1646	C ₄ H ₁₁ O ₂	Dimethylethylacetic acid	116 09	-14	187	0 000	
1647	C ₄ H ₁₂ O ₂	Methylpropylacetic acid	116 09		193 5	0 928	
1648	C ₆ H ₁₂ O ₂	n-Amyl formate HCO2C3H11	116 09		130 4	0 9020	-
1649	C ₆ H ₁₃ O ₂	Isoamyl formate	116 09		123 5	0 871	83
1650	C ₆ H ₁₂ O ₂	tertAmyl formate.	116 09		113	0 89614	
1651	C ₆ H ₁₂ O ₂	n-Butyl acetate CH ₂ CO ₂ C ₄ H ₂	116 09	-76 8	126 5	0 882	95
1652	C ₆ H ₁₂ O ₂	Isobutyl acetate CH ₂ CO ₂ CH ₂ CH(CH ₃),	116 09	-98 9	118 3	0 871	118
1653	C ₄ H ₁₂ O ₂	secButyl acetate.	116 09		112 2	0.870	73
1654	C ₆ H ₁₂ O ₂	Ethyl n-butyrate C ₃ H ₇ CO ₂ C ₂ H ₅	116 09	-93 3	121/3	0 879	91
1655	C ₆ H ₁₂ O ₂	Ethyl isobutyrate	116 09	-88 2	111 7	0 871	80
1656	C ₆ H ₁₂ O ₂	Methyl trimethylacetate	116 09	1	102	1 0444	
1657	C ₆ H ₁₂ O ₃	Methyl n-valerate C ₄ H ₉ CO ₂ CH ₂	116 09		127 3	0.910	
1658	C ₆ H ₁₂ O ₂	Methyl isovalerate	116 09	ļ	116 7	0 881	
1659	C ₆ H ₁₂ O ₂	n-Propyl propionate C ₂ H ₄ CO ₂ C ₃ H ₇	116 09	-75 9	123 4	0 883	92
1660	C ₆ H ₁₂ O ₂	Isopropyl propionate	116 09		111 3	0 8930	
1661	C ₆ H ₁₂ O ₃	Phloroglucite	132 09	185		1	
1662	C ₆ H ₁₂ O ₃	Paraldehyde (CH ₄ CHO) ₃	132 09	10 5	124	0.994	244
1663	C ₆ H ₁₂ O ₃	1-Hydroxy-n-caproic acid	132 09	62			
1664	C ₄ H ₁₂ O ₄	1-Hydroxyisocaproic acid	132 09	81		ł	1
1665	C ₆ H ₁₂ O ₃	dl-1-Hydroxyisocaproic acid	132 09	76	1		
1666 1667	C ₆ H ₁₂ O ₈ C ₆ H ₁₂ O ₈	1-Hydroxy-1, 1-diethylacetic acid	132 09	74 5			I
1668		Methyl n-butyl carbonate	132 09		151		
1669	C H 12Os	Fucose	164 09 164 09	145	Ì	1	
1670	C ₆ H ₁₂ O ₅ C ₆ H ₁₂ O ₅	Mannitan		137	}	1.5851	
1671	C6H12O5	1	164,09 164-09	234 174		1.000**	İ
1672	C ₆ H ₁₂ O ₅ (H ₂ O)	l-Quercitol β-Rhamnose.	164 09	126	İ	1.471	1219
1673	C6H12O6 (112O)	Rhodeose	164 09	144		1.471	1219
1674	C ₆ H ₁₂ O ₆	d-Fructose (Levulose)	180 09	104		1.069174	
1675	C6H12O6	d , α -Galactose .	180 09	168		1.000	
1675 1	C ₆ H ₁₂ O ₆	d, β-Galactose.	180 09	168			
1676	C.H.2O.	dl-Galactose	180 09	144			1
1677	C.H12O6	d, α-Glucose	180 09	146		1.54426	
1678	C.H12O.	d, β-Glucose	180.09	150	1	1 - 1 - 1	
1679	C6H12O6	d(l)-Inosite	180 09	247	250 vac.		
1680	C6H12O6	Dambose	180 09	224	d.	1.752	1
1681	C6H12O6	α-Mannose.	180 09	133	205 d.		
1682	C6H12O6	d-Mannose	180 09	132		1.539	1
1683	C6H12O6	dl-Mannose	180 09	133			
1684	C6H12O6	d(l)-Sorbose	180 09	154	!	1.612	
1685	C6H12O6	dl-Sorbose	180 09	154	ļ	1.638	
1686	C6H12O6	d-Tagatose	180 09	124	1		
1687	C6H12S	Cyclohexyl mercaptan	116.16		160		
1688	C ₆ H ₁₂ S ₂	α-Trithioacetaldehyde	$180 \ 29$	101	247		
1689	C ₆ H ₁₂ S ₃	β-Trithioacetaldehyde (C ₂ H ₄ S) ₄	180 29	126			
1690	C6H12S3	γ-Trithioacetaldehyde	180 29	81	100		
1690.1	C ₆ H ₁₂ Se	Hexamethyl selenide.	163 29		172	1.122	
1691	C ₆ H ₁₃ Br	2-Bromo-2, 3-dimethylbutane	165.02	13	132		,
1692	C ₆ H ₁₈ Br	n-Hexyl bromide C _b H ₁₁ CH ₂ Br	165 02		156	1.173	422
1693	C ₆ H ₁₂ BrO ₂	Bromoacetal BrCH ₂ CH(OC ₂ H ₄) ₂	197.02		170	0.022	1
1694	C ₆ H ₁₃ Cl	2-Chloro-2, 3-dimethylbutane	120.56	-10.4	112.1	0.87526	
1695	C ₆ H ₁₃ Cl	n-Hexyl chloride C _b H ₁₁ CH ₂ Cl	120.56	1.50	134	0.872	238
1696	C ₄ H ₁₃ ClN ₄ O ₄	Hexamethylenetetramine perchlorate	240.59	158	100	1, 44.	F00
1697	C ₄ H ₁₁ I	n-Hexyl iodide C _b H ₁₁ CH ₂ I	212.03		180	1.441	560
1698	C ₄ H ₁₂ IO ₂	Iodoacetal ICH ₂ CH(OC ₂ H ₅) ₂	244 03		13290	1.4941	410
1699	C ₆ H ₁₈ N	1-Methylpiperidine	99 108	1	107	0.818 0.844 ^{23.6}	416
1700	C ₄ H ₁₂ N	2-Methylpiperidine (α-Pipecoline)	99.108	ı	119	10.044	1016

INTERNATIONAL CRITICAL TABLES

1702 C.H.N 3-Methylpperidine (β-Pipecoline)	No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
1703 C.H., NO, 4-Methylpperidine (y-Fipecoline). 99 108 129 125 1703 C.H., NO, Isomorpic archamate 131 11 295 186 0 9924 1705 C.H., NO, Isomorpic archamate 131 11 295 186 0 9924 1706 C.H., NO, Isomorpic archamate 131 11 295 186 0 9924 1706 C.H., NO, Isomorpic archamate 131 11 295 186 0 9924 1706 C.H., NO, Isomorpic archamate 131 11 295 186 0 9924 1706 C.H., NO, Isomorpic archamate 131 11 295 186 0 9924 1707 1707 1707 1708 C.H., NO, Isomorpic archamate 131 11 295 1708 1709 17	1701	C ₄ H ₁₃ N	3-Methylpiperidine (β-Pipecoline).	99.108	i	126	0.84524.4	1020
1794 C.H. NO,		1	4-Methylpiperidine (γ-Pipecoline)	99 108		129	0.867	
1705 C.H., NO, Propel arethane C.H., NH(O)C.H. 131 11 295 1.293				131 11	74	215		1
1706 C.H., NO,		-		1	63 5	1	ł	-
1707 C.H., NO, dLeweine				1		186		
1708 C.H., NO, dth-boleume				1	1		1.293	1221
1708 C.H. NO, dc Hode-usine				1	1			1
1700 C.H. S.				1	1	1	1	1
1710			1		i e	1		
1712					•	1	-	
1712				ſ	1		j	
1713			1		4	58.1	O GREIF	20
1714 C.d.	1713			ł.	1	i		38 32
1716 CdH ₁ 2-Methylpentane (CH ₁)CC(H ₁ 86 108 -98 2 49.7 0 649 1717 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1718 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1719 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1710 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1710 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1710 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1710 CdH ₁ NO ₃ d-Glucosame hydronolde 307 05 165 d. 1710 CdH ₁ NO ₃ d-Glucosame hydronolde 308 12 205 1711 CdH ₁ NO ₃ d-Mamonum ettrate 226 12 205 1712 CdH ₁ NO ₄ d-Mamonum ettrate 226 12 205 1712 CdH ₁ NO ₄ d-Mamonum ettrate 226 12 205 1712 CdH ₁ O d-Mamonum ettrate 226 12 205 205 1712 CdH ₁ O d-Mamonum ettrate 226 12 205 205 1712 CdH ₁ O d-Mamonum ettrate 226 12 205 205 205 1712 CdH ₁ O d-Mamonum ettrate 226 12 205 205 205 205 205 1712 CdH ₁ O d-Mamonum ettrate 226 12 205	1714	CaHia		1	1	1		34
1716	1715	C ₆ H ₁₄)				27
1718 Cdf_tNo_1 d-Guessamme hydrocolide 307 05 165 d. 1718 Cdf_tNo_2 d. 2, 5-Dumethylppera.me 114 12 119 162 135 125 1483 1720 Cdf_tNo_0 Discetoneanmecyame 130 12 58 135 125 125 121 122 Cdf_tNo_0 Ammonum citrate 174 14 207 5 d. 1721 Cdf_tNo_0 Ammonum citrate 174 14 207 5 d. 135 0.844 1724 Cdf_tO Arganne Cdf_tO 102 11 155 0.846 47 1724 Cdf_tO Discheyl alcohol 102 11 145 155 0.846 47 1724 Cdf_tO Discheyl alcohol 102 11 14 122 0.823 122 123 1		C ₆ H ₁₄		1	-98 2	\$		23
1720		C ₆ H ₁₄ INO ₅		307 05	1		" " " " " " " " " " " " " " " " " " "	1 -0
1720			α, 2, 5-Dimethylpiperazine	114 12	119	162		
1721 Call_{1,N}O				130 12	58	13517		
1723		1		130 12	1	205		1
1723 C.H. 100 102 11 102 11 105 0.8444 1724 C.H. 1724 C.H. 1725 C.H. 180 102 11 102 11 105 0.8404 1725 C.H.			1.				1 483	
1724					207 5 d.		1	
1725 Calla Dimethylsopropyl carbinol 102 11 -14 122 0 823 1726 Calla Cal					į į	135		1
1726							0 8404	429
1726.1 CdH ₁₄ O			11/41 1 1 1 1 1		-14			
1727 C ₄ H ₄ (0) Ethylsopropyl carbinol 102 11 102 11 128 0 824 1728 C ₄ H ₄ (0) n-Hevyl alcohol C ₄ H ₄ (0)H 102 11 131 0 8032 131.9 0 8032 13730 C ₄ H ₄ (0) Methylbutyl carbinol 102 11 138 0.815 2 80.815 132 C ₄ H ₄ (0) Methylsoc-butyl carbinol 102 11 134 0.831 13732 C ₄ H ₄ (0) Pinacolyl alcohol (CH ₂) ₄ CH ₄ (0)H)CH ₃ 102 11 15 5 121 0 8128 13733 C ₄ H ₄ (0) Pinacolyl alcohol (CH ₂) ₄ CH ₄ (0)H)CH ₃ 102 11 15 5 121 0 8128 13733 C ₄ H ₄ (0) Methyl-3-cthylpropyl alcohol 102 11 120 0 820 2 820 1735 C ₄ H ₄ (0) 3 Methyl-3-cthylpropyl alcohol 102 11 122 6 0 824 2 82 1735 C ₄ H ₄ (0) 3 Methyl-3-cthylpropyl alcohol 102 11 147 9 0 829 2 82 1737 C ₄ H ₄ (0) Ethyl n-butyl ether C ₄ H ₅ (0)C ₂ H ₄ 102 11 147 9 0 829 2 82 1738 C ₄ H ₄ (0) Ethyl n-butyl ether C ₄ H ₅ (0)C ₂ H ₄ 102 11 147 9 0 829 2 82 1738 C ₄ H ₄ (0) Ethyl n-butyl ether C ₄ H ₅ (0)C ₂ H ₄ 102 11 147 9 0 829 2 82 1738 C ₄ H ₄ (0) Methyl n-amyl ether C ₄ H ₅ (0)C ₂ H ₄ 102 11 88 5 0 754 1740 C ₄ H ₄ (0) Methyl n-amyl ether C ₄ H ₅ (0)C ₄ H ₄ 102 11 88 5 0 754 1741 C ₄ H ₄ (0) Hevane-1, 6-diol HOCH ₄ (CH ₂) ₄ CH ₂ (0) 102 11 122 0 89 0 747 1742 C ₄ H ₄ (0) Hevane-1, 6-diol HOCH ₄ (CH ₂) ₄ CH ₂ (0) 118 11 38 172 8 1744 C ₄ H ₄ (0) Hevane-1, 6-diol HOCH ₄ (CH ₂) ₄ CH ₂ (0) 118 11 122 102 2 0 831 1748 C ₄ H ₄ (0) Hevane-1, 6-diol HOCH ₄ (CH ₂) ₄ CH ₂ (0) 118 11 110 122 120		* * *						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					211
1730			1 44 11 11 1		51.0			
1730 1 C ₄ H ₁₄ O					-51 6			100
1732	1730.1		1 . 3					183
1733 C ₃ H ₁₄ O							1	205
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C ₆ H ₁₄ O			5.5		1	245
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_6 H_{14}O$	J. Diam., April 1, 1, 1, 1		0.0		1	214
$ \begin{array}{c} 1735 \\ C_8H_{14}O \\ C_8$			Methyldiethyl carbinol		-22		1	242
$ \begin{array}{c} 1730 \\ 1737 \\ C_8H_{14}O \\ 1737 \\ C_8H_{14}O \\ 1738 \\ C_8H_{14}O \\ 1739 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1740 \\ C_8H_{14}O \\ 1807091ether \\ (C_5H_{12})CO \\ 1741 \\ C_8H_{14}O \\ 1807091ether \\ (C_5H_{12})CO \\ 1742 \\ C_8H_{14}O \\ 1807091ether \\ (C_5H_{12})CO \\ 1742 \\ C_8H_{14}O \\ 1807091ether \\ (C_8H_{14}O) \\ 1807091ether \\ (C_8H_{12})CO \\ 1740 \\ C_8H_{14}O \\ 1807091ether \\ (C_8H_{12})CO \\ 1807091ether \\ (C_8H_{12})CO \\ 1807091ether \\ (C_{11})_2CO \\ 1807091ether \\ (C_{11})_2CO \\ 1807091ether \\ (C_{11})_2CO \\ 1807091ether \\ (C_{11})_2CO \\ 1807091ether \\ 18070$	1			102 11			1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				102 11			1	231
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				102 11	1	91 4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1	80	0 751	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l				Į.	88 5	0 754	53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$: I			,			0 6874	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-122 0			41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					913		0 73516 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	•	38		0.0010	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					49		0 981	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1746	$C_4H_{14}O_2$	Acetal CH ₄ CH(OC ₂ H ₄) ₂	1	42		0 021	42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C4H14O2					0 551	42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	C ₆ H ₁₄ O ₅	[12	1	153	200		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1			ĺ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Dulcitol		1	2953 5	1.46615	1333
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	182.11	166 1	2953 4		1333
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					110		1	1333
1755 C ₆ H ₁₄ S Dusopropyl sulfide [(CH ₃) ₂ CH] ₂ S			d-Tahtol		86			
1756 C ₄ H ₁₄ As Trictly arsine (C ₄ H ₄) ₂ As. 162 08 141 d 1 150 ac			Dipropyl sulfide (C ₁ H ₇) ₂ S				0.814	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Disopropyi suinde [(CH ₃) ₂ CH] ₂ S					
1787 1C H (a) 1 Parat 1 1 24 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		C ₄ H ₁₄ AsO ₂	Triethyl arsine $(C_2H_4)_2A_8$ Triethyl arsenite $(C_2H_4O)_4A_8$	1	I			495
1758 C.H. Auf) Trusted (1179) 100 1.224			Triethyl argonato (C H O) 4-4					
1769 C.H. Rt Trusthal bismosthing (C.D.) D. Loop to L			Triethyl bismuthine (C-HA-Ri	\$			1	
1760 C.H.N D. a manufacture (C.H. N.H. 1997)					-30 a			140
1761 $C_{4H_{14}N}$					00.0			149

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
1762	C ₆ H ₁₆ N	n-Hexylamine C ₆ H ₁₂ NH ₂	101.12	1	-	1	No.
1762.1	C ₆ H ₁₆ N	2-Hexylamine C ₄ H ₉ CH(NH ₂)CH,	101.12	- 19	128		
1763	C ₆ H ₁₆ N	Isohexylamine (CH ₁) ₁ CH(CH ₂) ₁ NH.	101 12	- 10	130°° 123°9	0.767*0.4	1
1764	C ₄ H ₁₄ N	Triethylamine (C ₂ H ₃) ₁ N	101 12	-114 8	89 5	0 728	129
1765	C ₄ H ₁₄ NO ₂	Aminoacetal H2NCH2CH(OC2H3)2	133 12	1,	163	0 728	129
1766	C ₄ H ₁₄ N ₄	Acetaldehydeammonia (trimeric)	129 14	85	'``''		
1767	C ₆ H ₁₆ O ₄ P	Triethyl phosphite (C ₂ H ₄ O) ₃ P	166-14		156 5	1.076114	169
1768	C ₆ H ₁₆ O ₄ P	Triethyl phosphate (C _z H _b O) _z PO	182 14		216	1 07212	150
1769	CH ₁₅ P	Triethylphosphine (C ₂ H ₈) ₂ P	118-14		128	0.800	413
1769 1	C ₆ H ₁₈ PS C ₆ H ₁₈ Sb	Triethyl phosphinesulfide	150 20	94			1182
1770	C ₆ H ₁₆ ClN	Triethyl stibine (('2H3)3Sb . Triethylamine hydrochloride	208 89		159 5	1 32414	
$1771 \\ 1772$	C.H. N.	Hexamethylenediamine H ₂ N(CH ₂) ₆ NH ₂	137 59	254		1 069	
1773	C ₆ H ₁₆ N ₆ O ₄ S	1, 1-Dimethylguanidme sulfate	116 14	39	196		1
1775	C,HCl,O,	Pentachlorobenzoic acid C ₆ Cl ₅ CO ₂ H	270 25	288 d.			1
1776	C ₇ H ₂ Br ₄ O ₂	2, 3, 4, 6-Tetrabromobenzoic acid	294 30 437 68	201			1
1777	C,H,Cl,O2	2, 3, 4, 5-Tetrachlorobenzone acid	259 85	174 186	1		
1778	C7H3Br3O2	2, 3, 4-Tribromobenzoic acid	358 77	198	ļ		
1779	C7H1Br3O2	2, 3, 5-Tribromobenzoic acid	358 77	194			
1780	C7H2Br3O2	2, 4, 5-Tribromobenzoic acid	358 77	196			
1781	C7H2Br3O2	2, 4, 6-Tribromobenzoic acid	358 77	187			
1782	C7H3Br3O2	3, 4, 5-Tribromobenzoic acid	358-77	235			
1783	C7H3Cl3O2	2, 3, 4-Trichlorobenzoic acid	225 40	129			
1784	C7H3Cl3O2	2, 3, 5-Trichlorobenzoic acid	225/40	163			
1785	C7H4Cl3O2	2, 4, 5-Trichlorobenzoic acid	225 40	163			
1786	C7H3Cl3O2	2, 4, 6-Trichlorobenzoic acid	225 40	160			
1787	C7H3Cl3O2	3, 4, 5-Trichlorobenzoic acid	225 40	203	1		
1788	C ₇ H ₈ N ₂ O ₇	2, 4, 6-Trinitrobenzaldehyde	241 05	119	İ		
1789	C7H3N3O8	2, 4, 6-Trinitrobenzoic acid	257 05	190			
1790	C ₇ H ₄ BrClO	o-Bromobenzoyl chloride	219 41		243		1
$\frac{1791}{1792}$	C7H4BrClO C7H4BrClO	m-Bromobenzoyl chloride	219 41	4.5	239		
1793	C ₇ H ₄ BrN	p-Bromobenzoyl chloride	219 41	42	247 s d	1	
1794	C ₇ H ₄ BrN	o-Bromobenzonitrile m-Bromobenzonitrile	181-96 181-96	51	253		
1795	C7H4BrN	p-Bromobenzonitrile	181-96	38 113	225 237		
1796	C ₇ H ₄ Br ₂ O ₂	2, 3-Dibromobenzoic acid	279 86	150	201		
1797	C7H4Br2O2	2, 4-Dibromobenzoic acid	279 86	169			1
1798	C7H4Br2O2	2, 5-Dibromobenzoic acid	279 86	153	1		1
1799	C7H4Br2O2	2, 6-Dibromobenzoic acid	279 86	147			1
1800	C7H4Br2O2	3, 4-Dibromobenzoic acid	279 86	230		1	
1801	C7H4Br2O2	3, 5-Dibromobenzoic acid	279 86	211		İ	1
1802	C7H4Br2O4	2, 6-Dibromo-3, 4, 5-trihydroxybenzoic			l		İ
		acid	327 86	150			1
1803	C ₇ H ₄ ClFO	o-Fluorobenzoyl chloride	158 49		206		
1804	C ₇ H ₄ ClFO	m-Fluorobenzoyl chloride	158 49		189	i	
1805	C ₇ H ₄ ClFO	p-Fluorobenzoyl chloride p-FC ₆ H ₄ COCl	158 49		193	ŀ	
1806	C ₇ H ₄ CINO ₃	o-Nitrobenzoyl chloride	185 50	75	205108		1
1807 1808	C ₇ H ₄ ClNO ₄	m-Nitrobenzoyl chloride	185 50	34	278		1
1809	CHCINO	p-Nitrobenzoyl chloride	185.50 174.95	72 71	15418		1
1810	C7H4Cl2O C7H4Cl2O	2, 4-Dichlorobenzaldehyde 2, 5-Dichlorobenzaldehyde	174 95	58	233	1 23170	1
1811	C ₇ H ₄ Cl ₂ O	3, 4-Dichlorobenzaldehyde	174 95	44	248	1 201	
1812	C ₇ H ₄ Cl ₂ O	o-Chlorobenzoyl chloride	174 95	-4	238		
1813	C7H4Cl2O	m-Chlorobenzoyl chloride	174 95	_	117 526	}	1
1814	C ₇ H ₄ Cl ₂ O	p-Chlorobenzoyl chloride	174 95		11927 5		
1815	C ₇ H ₄ Cl ₂ O ₂	2, 3-Dichlorobenzoic acid	190 95	166	l		
1816	C7H4Cl2O2	2, 4-Dichlorobenzoic acid	190.95	164 2			
1817	C7H4Cl2O2	2, 5-Dichlorobenzoic acid	190 95	154 4	301		
	C7H4Cl2O2	2, 6-Dichlorobenzoic acid.	190.95	143.7			
	C7H4Cl2O2	3, 4-Dichlorobenzoic acid.	190.95	204 1			
	C7H4Cl2O2	3, 5-Dichlorobenzoic acid	190.95	188.1		i	1
	C,H,Cl,NO,	2, 3, 4-Trichloronitrotoluene	240.41	60	260	1.51	1
	C7H4Cl4	2-Chloro-1-trichloromethylbenzene	229.86	30			

4.

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. No
1823	C ₇ H ₄ FNO ₄	2-Fluoro-5-nitrobenzoic acid	185 04	139		, , ,	Ī
1824	C ₇ H ₄ FNO ₄	3-Fluoro-4-nitrobenzoie acid · · ·	185 04	122 134 5			
1825	C7H4FNO4	3-Fluoro-6-mitrobenzoic acid	185 04	134 3	1	1	Ì
1826	C ₇ H ₄ FNO ₄	4-Fluoro-2-nitrobenzoic acid	185 04 185 04	121 5	1		1
1827	C ₇ H ₄ FNO ₄	4-Fluoro-3-mtrobenzoic acid	389 90	230 d.	1		1
1828	C ₁ H ₄ I ₂ O ₄	3, 5-Duodosalicylic acid	148 05	109	1	1	
1829 1830	C ₂ H ₄ N ₂ O ₂	m-Nitrobenzonitrile	148 05	118	1	1	1
1831	C7H4N2O2 C7H4N2O2	p-Nitrobenzonitrile	148 05	147		1	
832	C7H4N2O4	2. 4-Dinitrobenzaldehyde	196 05	72		Į.	
833	C ₇ H ₄ N ₂ O ₄	2, 6-Dmitrobenzaldehyde	196 05	123		1	
834	C7H4N2O4	2, 3-Dinitrobenzoic acid	212 05	201		j	
835	C7H4N2O4	2, 4-Dinitrobenzoic acid	212 05	179		1	
836	C7H4N2O4	2, 5-Dimtrobenzoic acid	212 05	177		1	
837	C ₇ H ₄ N ₂ O ₄	2. 6-Dinitrobenzoic acid	212 05	202 d.			
	C7H4N2O4	3, 4-Dinitrobenzoic acid .	212 05	163			
	C7H4N2O4	3, 5-Dinitrobenzoic acid	212.05	205			
	C7H4N2O7	3, 5-Dinitro-2-hydroxybenzoic acid	228 05	174			
	C7H4N4O9	2, 3, 5, 6-Tetranitroanisol	288.06	154; 112			i
842	C7H4O48	o-Sulfobenzoic anhydride	184.10	130			
843	$C_7H_4O_7$	Meconic acid	200.03		d.		133
844	C ₇ H ₄ BrO	Benzoyl bromide C ₄ H ₄ COBr	184 96	0	219	1.570	1
845	C ₇ H ₄ BrO ₂	o-Bromobenzoic acid	200 96	148			
846	C ₇ H _b BrO ₂	m-Bromobenzoic acid	200 96	152			
847	C ₇ H ₈ BrO ₂	p-Bromobenzoic acid	200 96	251			
848	C ₇ H ₄ BrO ₃	3-Bromo-2-hydroxybenzoic acid	216.96	220			
	C ₇ H ₄ BrO ₄	5-Bromo-2-hydroxybenzoic acid.	216.96	165			
	C ₇ H ₄ Br ₄	2, 3, 4-Tribromotoluene	328.79	45			1
1	C ₇ H ₈ Br ₈	2, 3, 5-Tribromotoluene	328.79	54			
	C ₇ H ₄ Br ₄	2, 3, 6-Tribromotoluene	328 79	59			
	C ₇ H ₄ Br ₄	2, 4, 5-Tribromotoluene	328.79	113			
	CH,Br.	2, 4, 6-Tribromotoluene.	328.79	66			
	C ₁ H ₄ Br ₄	3, 4, 5-Tribromotoluene	328.79	89	005	1 50	
	C ₇ H ₄ ClO C ₇ H ₄ ClO	o-Chlorobenzaldehyde	140.50	-3	205	1 252	75
	C ₇ H ₄ ClO	m-Chlorobenzaldehyde	140.50	18	204	1 241 1.196 ⁸¹	75
1	C ₇ H ₄ ClO	Benzoyl chloride C ₆ H ₆ COCl.	140.50 140.50	47.5 -0.8	214 197.2	1.196**	109
,	C ₇ H ₄ ClO ₂	o-Chlorobenzoic acid	156.50	140.7	191.2	1.211	/3
	C ₇ H ₄ ClO ₂	m-Chlorobenzoic acid	156.50	154.9			
	C ₇ H ₄ ClO ₂	p-Chlorobenzoic acid.	156 50	241 5			
	C7H4ClO2	Salicyl chloride o-HOC, H, COCl	156.50	18.0	59¹ º s. d.		
	C7H4ClO1	5-Chloro-2-hydroxybenzoic acid	172.50	167.5	00 5. 4.		1
	C7H4Cl2NO2	m-Nitrobenzal chloride	205.96	65			
	C7H4Cl2NO4S	Halazone	270.03	213			1
368	C7H4Cla	o-Chlorobenzal chloride .	195.41		228.5	1 39915	1
369	$C_7H_4Cl_8$	p-Chlorobenzal chloride.	195.41		234		
370	C'7H4Cl	Benzotrichloride C.H.CCl.	195.41	-4.8	220.7	1 3784]
371	C7H4Cla	2, 3, 4-Trichlorotoluene	195.41	41	234	-	l
	C7H4Cla	2, 4, 5-Trichlorotoluene	195.41	82	232		
	C7H4Cla	3, 4, 5-Trichlorotoluene	195.41	42.5	247		1
	C ₇ H ₄ Cl ₄ O	2, 4, 6-Trichloro-3-hydroxytoluene	211.41	46			1
	C ₇ H ₄ Cl ₄ O	2, 4, 6-Trichloroanisol	211.41	60.5	240.7		1
	C ₇ H ₄ FO	Benzoyl fluoride C.H.COF	124.04		162		1
	C ₇ H ₄ FO ₂	o-Fluorobenzoic acid	140.04	122			1
- 1	C ₇ H ₄ FO ₂	m-Fluorobenzoic acid	140.04	124			1
	C ₇ H ₄ FO ₂	p-Fluorobenzoic acid	140.04	182			1
	C ₂ H ₄ IO	Benzoyl iodide C.H.COI.	231.97	3	13526		1
	C.H.10:	o-Iodobenzoic acid	247.97	162			1
	C ₇ H ₈ IO ₁	m-Iodobenzoic acid	247.97	185			1
	C ₇ H ₄ IO ₂	p-Iodobenzoic acid	247.97	266			1
	C7H4IO4 C7H4N	3-Iodo-2-hydroxybenzoic acid Benzonitrile C ₄ H ₄ CN	263.97	198	190.7	1 000144	1,00
	NATION.	I DED ZONIETHE LATIN IN	103.05	-13.1	1361.7	1.00816.8	102

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
1887	C,H,NO	Anthranil	119 05	>-18			No.
1888	C,H,NO	Benzoxazol	119 05	30 5	215 182 5	1.1874	768
1889	C,H,NO	Phenyl isocyanate C.H.N.(C)	119 05	30 3	165 6	1 000	
1890	C,H,NO	Salicylic nitrile o-OHC.H.CN	119 05	98	100 0	1 095	
1891	C,H,NOS	1-Hydroxybenzothiazole	151 11	136		1	
1892	C,H,NOS	1-Mercaptobenzoxazole	151 11	193		1	
1893	C,H,NO,	o-Nitrobenzaldehyde	151 05	α40.9; β37-9	15614		
1894	C.H.NO.	m-Nitrobenzaldehyde	151 05	58 0	16422		
1895	C,H,NO,	p-Nitrobenzaldehyde	151 05	106 5			
1896	C ₇ H ₄ NO ₄ S C ₇ H ₄ NO ₄	o-Benzoicsulfimide (Saccharm)	183 11	228 d.			İ
1897	1	o-Nitrobenzoic acid	167 05	147 5		1 5754	1
1898	C ₇ H ₄ NO ₄ C ₇ H ₄ NO ₄	m-Nitrobenzoic acid	167 05	141 4		1 4944	
1899	C ₇ H ₄ NO ₄	p-Nitrobenzoic acid	167 05	242 4		1 55012	
1900	C ₁ H ₁ NO ₄	Quinolinic acid	167 05	190 d.		1	i
1901	1	Lutidinic acid	167 05	248			
1902	C ₁ H ₄ NO ₄	Isocinchomeronic acid	167 05	237			İ
1903	C ₁ H ₄ NO ₄	Dipicolinic acid	167 05	226 d		1	
1904	C ₁ H ₄ NO ₄	Cinchomeronic acid	167 05	258 d		1	
1905	C ₁ H ₄ NO ₄	Dinicotinic acid	167 05	323		1	1
1906	C ₁ H ₂ NO ₂	Ammonchelidonic acid	183 05	220 d.		1	
1907	C ₇ H ₄ NO ₄	3-Nitro-2-hydroxybenzoic acid	183 05	144			1
1908	C,H,NO,	4-Nitro-2-hydroxybenzoic acid	183 05	235			
1909	C,H,NO,	5-Nitro-2-hydroxybenzoic acid	183 05	228			1 .
1910	C,H,NO,	6-Nitro-2-hydroxybenzoic acid	183 05	130		ı	
1911	C,H,NO,	2-Nitro-3-hydroxybenzoic acid	183 05	178			1
1912	C,H,NO,	4-Nitro-3-hydroxybenzoic acid	183 05	230			1
1913 1914	C,H,NO,	5-Nitro-3-hydroxybenzoic acid	183 05	167		İ	
1914	C ₇ H ₄ NO ₆	6-Nitro-3-hydroxybenzoic acid	183 05	169			1
	C ₇ H ₄ NO ₄	3-Nitro-4-hydroxybenzoic acid	183 05	185			1
1916 1917	C ₇ H ₆ NS	Benzothiazol	135 11	1 1	230	1.248	
1917	C,H,NS	Phenyl thiocyanate CoH, CNS	135 11		232	1.155	
1919	C ₇ H ₆ NS	Phenyl isothiocyanate C ₆ H ₆ N:CS	135.11	-21	218 5	1.13516 6	798
1920	CHN.	1, 2, 3-Benzotriazin	131 06	75	240	ļ	
1921	C,H,N,O	Chrysanisic acid.	227 06	259			
1922	CHNO	2, 3, 4-Trinitrotoluene	227 06	112	302 d.	1 620	
1923	CHNO	2, 3, 5-Trinitrotoluene	227.06	97	335 d.		
1924	C7H4N4O6 C7H4N4O6	2, 3, 6-Trinitrotoluene	227 06	111	333 d.		1
1925	C7H ₁ N ₂ O ₆	2, 4, 6-Trinitrotoluene (T. N. T.)	227 06	80 7	240 exp	1.654	1
1926	C ₇ H ₄ N ₄ O ₆	3, 4, 5-Trinitrotoluene.	227.06	137 5	313 d.		1
1927	C7H ₄ N ₄ O ₇	3, 4, 6-Trinitrotoluene	227 06	104	291 d.	1.620	
1928	C ₇ H ₄ N ₄ O ₇	2, 3, 4-Trinitroanisol	243 06	155	exp.		
1929	C7H4N4O7	2, 3, 5-Trinitroanisol 2, 4, 6-Trinitroanisol	243 06	104		1.6181	
1930	C ₇ H ₄ N ₄ O ₇	3, 4, 5-Trinitroanisol	243 06 243 06	68.4		1 408	ł
1931	C ₇ H ₄ N ₄ O ₇	3, 4, 6-Trinitroanisol	243.06	120 107			
1932	C7H4N4O7	2, 4, 6-Trinitro-3-hydroxytoluene	243.06	106			
1933	C7H6N6O6	2, 4, 6-Trinitro-5-nydroxy totalene 2, 4, 6-Trinitrophenylmethylnitramine	240.00	100			l
	CHISTISOS	(Tetryl)	287 08	130	exp. 187		
1934	C7H6BrCl	o-Bromobenzyl chloride	205 42	1.50	115 ¹⁴	1	
1935	C7H ₀ BrCl	p-Bromobenzyl chloride	205.42	51	110		
1936	C,H,BrCl	o-Chlorobenzyl bromide	205 42	""	12010	1	
1937	C7H _• BrCl	p-Chlorobenzyl bromide	205.42	48	120	1	
1938	C ₇ H ₆ BrNO	o-Bromobenzamide	199 97	156		1	
1939	C7H ₆ BrNO	m-Bromobenzamide	199.97	150		1	
1940	C ₇ H ₆ BrNO	p-Bromobenzamide	199.97	190		1	
1941	C7H6BrNO	o-Nitrobenzyl bromide	215 97	46		1	
1942	C7H4BrNO2	m-Nitrobenzyl bromide.	215.97	58		1	
1943	C7H6BrNO2	p-Nitrobenzyl bromide.	215.97	100		1	1
1944	C ₇ H ₄ Br ₂	Benzal bromide C.H. CHBr.	249 88	***	14020	1.5116	716.1
1945	C ₇ H ₄ Br ₂	o-Bromobenzyl bromide	249.88	30	- 417	1	110.1
1946	C,H,Br	m-Bromobenzyl bromide	249.88	41		1	
1947	C,HBr,	p-Bromobenzyl bromide	249.88	61		1	1
1948	C ₇ H ₄ Br ₂	2, 3-Dibromotoluene	249.88	31		1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No
1949	C7HaBr2	2, 6-Dibromotoluene.	249.88	5.5	246	1.81222	T
1950	C ₇ H ₄ Br ₂	3, 5-Dibromotoluene	249.88	39			1
951	C ₂ H ₄ CINO	o-Chlorobenzamide	155.51	141		1	i
052	C ₇ H ₄ CINO	m-Chlorobenzamide	155.51	134.5		1	1
953	C7H4CINO	p-Chlorobenzamide	155.51	178.3			
154	C7H4CINO2	3-Chloro-2-nitrotoluene	171.51	23			1
955	C ₇ H ₄ CINO ₂	4-Chloro-2-nitrotoluene.	171.51	38.2	242	1 25650	1
956	C ₇ H ₆ CINO ₂	5-Chloro-2-mtrotoluene	171.51	44	250	į	1
957	C ₇ H ₄ CINO ₂	6-Chloro-2-mtrotoluene	171.51	37	238	1	1
958	C ₇ H ₆ CINO ₂	2-Chloro-3-mtrotoluene	171.51	21.5	263	1 00700	1
959	C7H4CINO2	4-Chloro-3-mtrotoluene	171.51	7	260.5	1.297**	1
)60	C ₇ H ₆ CINO ₂	5-Chloro-3-nitrotoluene	171.51	61			1000
961	C7H4CINO2	o-Nitrobenzyl chloride	171.51	49	10234		1093
10 2	C ₇ H ₆ ClNO ₂	m-Nitrobenzyl chloride	171.51	44 5	18335	1	1094
163	C ₇ H ₄ CINO ₂	p-Nitrobenzyl chloride	171.51	71	014	1 00514	1095
164	('7H4(')2	Benzal chloride C ₆ H ₄ CHCl ₂	160.96	-174	214	1 29516	
965	C7HaCl2	o-Chlorobenzyl chloride	160.96	00	214		
H363	C'7H6C'l2	p-Chlorobenzyl chloride	100.96	29	214		
)67	C7H6CLO	1, 1-Dichloro-2-hydroxytoluene	176 96	82	}		
168	('7Ha(']2()	3, 5-Dichloro-2-hydroxytoluene	176.96	55	İ	}	1
169	C ₇ H ₆ CLO	1, 6-Dichloro-3-hydroxytoluene	176.96	46	070	1	ı
970	C7H6C12O2	4, 5-Dichloro-2-methoxyphenol	192 96	72	270	1	-
971	C7H4FNO	o-Fluorobenzamide	139.05	116			1
072	C7H4FNO	m-Fluorobenzamide.	139.05	130		į	1
73	C7H4FNO	p-Fluorobenzamide	139.05	154 5			1
74	C7H ₆ INO	o-Iodobenzamide .	246 99	183.6			
75	C ₆ H ₆ INO	<i>m</i> -Iodobenzamide	246 99	186.5			
)76	C7H4INO	p-Iodobenzamide	246 99	217.6	<360		127
077	C7H6N2	Benzimidazol	118.06	170	< 300	1	121
978	C7H6N2	Cyamilde CNNHC ₈ H, Indazole	118.06 118.06	$\begin{array}{c} 47 \\ 146.5 \end{array}$	270.6	l	
979	C ₇ H ₆ N ₂	Ricininic acid		298	210.0	1	
)80 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C ₇ H ₈ N ₂ O ₂	o-Nitrobenzamide	150.06 166.06	176 6	317	1 46232	
181	C ₇ H ₆ N ₂ O ₂	<i>m</i> -Nitrobenzamide	166.06	142.7	315	1 1021	1
)82)83	C ₇ H ₆ N ₂ O ₂	p-Nitrobenazmide	166.06	201 4	313		
)84	C7H6N2O3 C7H6N2O4	2, 3-Dmitrotoluene	182.06	59.3	1	1 263111	
)85	C7H6N2O4	2, 4-Dinitrotoluene	182.06	69 6	300 s. d.	1.52115	1297
986	C7H6N2O4	2, 5-Dinitrotoluene	182.06	50 5	000 4.	1.282111	1200
987	C7H6N2O4	2, 6-Dinitrotoluene	182 06	61		1 283111	1300
988	C7H6N2O4	3, 4-Dinitrotoluene	182.06	59 8		1 259111	
989	C7H6N2O4	3, 5-Dinitrotoluene	182.06	93		1.277111	
990	C7H6N4O6	2, 4-Dinitroamsol	198.06	95 2	1	1.341	1
091	C7H6N2O4	2, 5-Dinitroanisol	198.06	97.0	360	1 476	
992	C7H6N2O4	2, 6-Dinitroanisol	198 06	117 5	1	1.319	
093	C7H4N2O4	3, 4-Dinitroanisol	198 06	69 3		1.334110	
994	C7H6N2O6	3, 5-Dinitroanisol	198 06	105.8		1.55812	1
095	C ₇ H ₈ N ₂ O ₈	2, 4-Dimtro-3-hydroxytoluene	198.06	99	1	i	İ
996	C7H6N2O6	3, 5-Dmitro-4-hydroxytoluene.	198 06	85.8		1	
997	C7H6N2O6	4, 6-Dinitro-2-methoxyphenol	214.06	123	1		į
998	C7H4N4O7S	2, 6-Dinitrotoluene-4-sulfonic acid .	262.13	165	1	1	1
999	C ₇ H ₈ N ₄ S	1-Aminobenzothiazole	150.13	127	1	1	
000	C7H6N4O7	2, 4, 6-Trinitro-3-aminoanisol.	258.08	131	1	1	
001	C7H4O	Benzaldehyde C.H.CHO	106.05	-56.0	179 5	1.046	725
002	C7H6OS	Thiobenzoic acid CoH.COSH	138.11	24	1	1	1
003	C7H6O2	Furfuracrolein	122.05	51	200		1
004	C7H6O2	Salicyl aldehyde o-HOC, H,CHO.	122.05	-7	196.5	1.167	759
005	C7H4O2	m-Hydroxybenzaldehyde	122.05	106.0	240	l	
006	C7H6O2	p-Hydroxybenzaldehyde	122.05	116.0		1.129130	1
007	C ₇ H ₆ O ₃	Benzoic acid C ₆ H ₆ CO ₂ H	122.05	121.7	249 2	1.2664	1160
800	C2H4O3	Phenyl formate HCO2C6H4	122 05		173	1.088	
009	C7H6O2	Toluquinone CH ₁ C ₆ H ₂ O ₂	122.05	69	1	1	
2010	C7H6O2S	Thiosalicylic acid o-SHC.H.CO.H	154.11	164	1	i	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2011	C ₇ H ₆ O ₃	2, 3-Dihydroxybenzaldehyde	138 05	108	235		
2012	C,HO	3, 4-Dihydroxybenzaldehyde	138 05	154			
2013	C7H4O2	Salicylic acid o-HOC ₆ H ₄ CO ₂ H	138 05	159	в. 76	1.443	1333
2014	C7H6O8	m-Hydroxybenzoic acid	138 05	201 3		1.4734	
2015	C,HO	p-Hydroxybenzoic acid.	138 05	213		1.4684	į.
2016	C,H,O,	2, 3-Dihydroxybenzoic acid	154 05	204		1	1
2017	C7H4O4	2, 4-Dihydroxybenzoic acid	154 05	206	1		
2018	C7H6O4	2, 5-Dihydroxybenzoic acid	154 05	200	1		1
2019	C7H6O6	2, 6-Dihydroxybenzoic acid	154 05	167 d.		l .	
2020	C7H4O4	3, 4-Dihydroxybenzoic acid	154 05	199		1 542*	1
2021	C7H6O4	3, 5-Dihydroxybenzoic acid	154 05	227		Ì	1
2022	C7H4O4	Pyrogallolearboxylic acid	170 05	200 d.			
2023	C7H6O4	Gallie acid 3, 4, 5-(HO) ₂ C ₆ H ₂ CO ₂ H	170 05	220 d	d	1 6944	1333
2024	C7H6O4S	o-Sulfobenzoic acid	202 11	141	1	İ	1
2025	C7H6O6S	m-Sulfobenzoic acid HO2SC6H4CO2H	202 11	141		1	1
	C7H6O4S	p-Sulfobenzoic acid HO3SC6H4CO2H	202 11	200		İ	
2026	C7H6O6S	Salicylsulfonic acid	218 11	120		1	1
2027		Benzyl arsine dichloride	236 93		17550	1	1
2028	C. H. Br	Benzyl bromide	170 97	-10	199	1 43802	1
2029	C ₇ H ₇ Br		170 97	-28 1	181 8	1 422	738
2030	C,H,Br	o-Bromotoluene	170 97	-39 S	183 7	1 410	734
2031	C ₁ H ₁ Br	m-Bromotoluene	1	28	183 6	1 310	732
2032	C ₇ H ₇ Br	p-Bromotoluene	170 97	64	235	1.0.0	
2033	C ₇ H ₁ BrO	5-Bromo-2-hydroxytoluene	186 97	1	200	l l	1
2034	C ₇ H ₇ BrO	5-Bromo-3-hydroxytoluene	186 97	62		1 54724 4	1
2035	C ₇ H ₇ BrO	3-Bromo-4-hydroxytoluene	186 97	40	214	1 377	1
2036	C7H7BrO2	6-Bromo-2-methoxyphenol	202 97	63		1	1
2037	C7H7BrO2	4-Bromo-2-methoxyphenol	202 97	46	18260		711
2038	C ₇ H ₇ Cl	Benzyl chloride	126 51	-39	179 4	1 1031*	60
2039	C7H7Cl	o-Chlorotoluene .	126 51	-35 1	159 4	1 080	
2040	C7H7C1	m-Chlorotoluene	126 51	-47 8	162 4	1 072	672
2041	C7H7Cl	p-Chlorotoluene	126 51	7.8	162 5	1 07118	666
2042	C ₇ H ₇ ClO	o-Chlorobenzyl alcohol	142 51	72	230	l	
2043	C ₇ H ₇ ClO	m-Chlorobenzyl alcohol .	142 51	1	234	i	
2044	C ₇ H ₇ ClO	p-Chlorobenzyl alcohol	142 51	70.5	235	1	1
2045	C ₇ H ₇ ClO	3-Chloro-2-hydroxytoluene	142 51	86	225	1	1
2046	C ₇ H ₇ ClO	4-Chloro-2-hydroxytoluene	142.51	49	225		
2040		5-Chloro-2-hydroxytoluene	142 51	49	220		1
	C'H'CIO	4-Chloro-3-hydroxytoluene.	142 51	66	235	1	ı
2048	C'7H7CIO	6-Chloro-3-hydroxytoluene	142 51	53	235	1	-
2049	C ₇ H ₇ ClO	2-Chloro-4-hydroxytoluene	142 51		196	1 21126	- {
2050	C,H,ClO		142 51	55	228		İ
2051	C ₇ H ₇ ClO	3-Chloro-4-hydroxytoluene	158 51	< -18	241 5		
2052	C7H7ClO2	4(5)-Chloro-2-methoxyphenol	190 58	10	12621	1 339	1
2053	C7H7ClO2S	Toluene-o-sulfonechloride	190 58	69	14615	ļ	1
2054	C7H7ClO2S	Toluene-p-sulfonechloride	206 58	78	1	l l	}
2055	C7H7ClO3S	2-Chlorotoluene-5-sulfonic acid	240 04	83		1	
2056	C ₇ H ₇ Cl ₂ NO ₂ S	Toluene-p-sulfonedichloroamine	110 05	< -80	114	1 001	50
2057	C_7H_7F	o-Fluorotoluene	110 05	-110 8	116	0 999	50
2058	C ₇ H ₇ F	m-Fluorotoluene	110 05	-110 0	117	1 00115 1	50
2059	C,H,F	p-Fluorotoluene · · ·	1	24 1	d.	1 73325	
2060	C,H,I	Benzyl iodide	217 99	24 1	211	1 697	78
2061	C,H,I	o-Iodotoluene	217 99			1 698	'`
2062	C7H7I	m-Iodotoluene	217 99		204	1 000	1
2063	C7H7I	p-Iodotoluene.	217 99	35	211 5	1 900	
2064	C ₇ H ₇ IO	o-Iodoanisol o-('HaOC', Hal	233 99		240	1.800	-
2065	C,H,1O2	5-Iodo-2-methoxyphenol	249 99	88		1	1
2066	C7H7IO2	4-Iodo-2-methoxyphenol	249 99	43	180 d.	1 5	
		o-Aminobenzaldehyde	121.06	40	ļ		
2067	C ₁ H ₁ NO	m-Aminobenzaldehyde.	121 06	71 5		1	1
2068	C,H,NO	p-Aminobenzaldehyde	121.06	71		1	1
2069	C,H,NO	syn -Benzaldoxime C ₆ H ₆ C:NOH	121.06	130		1	-
2070	C,H,NO	syn - Benzaldoxime CH CNOH	121.06	35	153**	1.111	9
	C ₁ H ₁ NO	anti-Benzaldoxime ColliC:NOH	121.06	130	290	1.3414	
2071 2072	C ₇ H ₇ NO	Benzamide C.H.CONH2					

No.	Formula	Name	Mol. wt.	М. Р.	B. P.	d	R. I. No.
2074	C ₇ H ₇ NO ₂	Anthranilie acid o-H ₄ NC ₆ H ₄ CO ₂ H .		145			1 .10.
2075	C ₇ H ₇ NO ₂	m-Aminobenzoic acid		174	1	1.5114	
2076	C,H,NO2	p-Aminobenzoic acid		187	1	- 1	
2077	C ₁ H ₁ NO ₂	Benzohydroxamic acid	137.06	125		1	
2078	C ₁ H ₁ NO ₂	o-Hydroxybenzamide	137 06	140	270 d.	1	
2079	C ₁ H ₁ NO ₂	m-Hydroxybenzamide	137 06	170.5	1	1	- 1
2080	C,H,NO	p-Hydroxybenzamide	137.06	162	1	1	- 1
2081	C ₇ H ₇ NO ₂	o-Nitrotoluene	137.06	$\alpha = 10.6;$ $\beta = 4.1$	222 3	1.16815	724
2082	C7H7NO2	m-Nitrotoluene	137.06	15.5	991	1 10.11	1
2083	C ₇ H ₇ NO ₂	p-Nitrotoluene	137.06	51.3	231	1.164	729
2084	C ₇ H ₇ NO ₂	Phenylnitromethane	137 06	01.0	238 227	1.098**	1096
2085	C7H7NO	o-Nitrobenzyl alcohol	153 06	74	1	1.160	702
2086	C ₇ H ₇ NO ₂	m-Nitrobenzyl alcohol	153 06	27	16820		1
2087	C ₇ H ₇ NO ₄	p-Nitrobenzyl alcohol	153 06		1803		
2088	C7H7NO.	3-Nitro-o-cresol		93	18512	1	
2089	C ₇ H ₇ NO ₈	14.50	153.06	145	1	1	-
2090	C7H7NO		153 06	94.6			- 1
	C ₇ H ₇ NO ₈	L	153 06	118			
2093	C ₇ H ₇ NO ₂		153.06	69 5	1	ì	1
2094	C ₇ H ₇ NO ₂	4-Nitro-m-cresol	153.06	129	1		ł
2095	C ₇ H ₇ NO ₈	5-Nitro-m-cresol	153 06	91		1	
		6-Nitro-m-cresol	153 06	56		1	
	C ₁ H ₁ NO ₁	3-Nitro-4-hydroxytoluene	153.06	36 5	12522	1 24039	1053
	C ₁ H ₁ NO ₂	o-Nitroanisol	153.06	9.4	277	1.268	749
	C ₁ H ₁ NO ₁	m-Nitroanisol	153.06	38	258	1 373	749
	C ₇ H ₇ NO ₄	p-Nitroanisol	153.06	54	260	1.233	1
	C ₇ H ₇ NO ₂	4-Amino-2-hydroxybenzoic acid	153.06	220		1.200	
	C ₇ H ₇ NO ₃	5-Amino-2-hydroxybenzoic acid	153.06	280 d.	l		
	C ₇ H ₇ NO ₄	6-Nitro-2-methoxyphenol	169.06	62			
	C ₇ H ₇ NO ₄	5-Nitro-2-methoxyphenol	169.06	104		I	ļ
	C ₇ H ₇ NO ₄	3-Nitro-2-methoxyphenol	169.06	103			
	C ₇ H ₇ NO ₄ S	o-Sulfoaminobenzoic acid	201.13	167		1	1
	C ₇ H ₇ NO ₄ S	m-Sulfoaminobenzoic acid	201.13	238		1	1
	C ₇ H ₇ NO ₄ S	p-Sulfoaminobenzoic acid.	201.13				1
2109	C7H7NO ₈ S	p-Nitrotoluene-o-sulfonic acid	217.13	280 d.		l	ļ
2110	C ₇ H ₇ NS	Thiobenzamide ColloCSNH2	137.13	130			1
2111 (C'7H8	Tropylidene	92.062	116			1
2112	C7H∎	1 Toluona			118	0.888	686
114	C7H ₈ BrN	A. Bronno a Autolitus	92.062	-95 1	110.5	0 866	579
115	C7H4BrN	5-Brome a taluation	185.99	32	257 d.		
116	C ₇ H ₈ BrN	5-Rroma m taluidas	185.99	59 5	240	1	
117	C ₇ H ₈ BrN	& Brown of A local	185.99	36	260	1.14419	1
	C ₇ H ₈ BrN		185.99	78.8	240		
	C ₇ H ₈ BrN	19 0	185.99	26	257		1
	C ₇ H ₈ ClN	3-Bromo-p-toluidine 4-Chloro-o-toluidine	185.99	26	240	1.498	
- 1	C ₇ H ₈ ClN		141.53	22	238.5		1
	T ₁ H _s CIN	5-Chloro e toludine	141.53	30	239 2		
	S ₇ H ₆ CIN	6-Chloro-o-toluidine. 2-Chloro-m-toluidine	141.53	İ	245		1
	C ₇ H ₄ CIN	1 Chloro at Auto 1	141.53	1	229		
	H ₆ CIN	1	141.53	30	230		1
	'7H4CIN	5-Chloro- <i>m</i> -toludine	141.53	-	243		
1	7HaCIN	6-Chloro-m-toluidine	141.53	83	241		
	7HaCIN	2-Chloro-p-toluidine	141.53	26	245		i
	7HaN2	3-Chloro-p-toluidine	141.53		219	1.151	1
- 1		Benzalhydrazine CoHoCH2NHNH2	120.08	16	14014		1
	'7H ₈ N ₉	Benzamidine C ₄ H ₄ C(:NH)NH ₄	120.08	80			1
	7H4N2O	o-Aminobenzamide.	136.08	108	1		į
	HaN ₂ O	m-Aminobenzamide	136.08	79	1		
	7H ₈ N ₂ O	p-Aminobenzamide NH ₂ C ₅ H ₄ CONH ₅ .	136.08	183	1		l
1	TH ₄ N ₄ O	Benzoylhydrazine C.H.CONHNH.	136.08	112	- 1		1
	7HaNaO	Nitrosomethylaniline.	136.08	15	995.4	1 10122.7	000
35 C	7HaNgO		136.08	147	225 d.	1 1214	998
36 C	7H4N2O2 7H4N2O2		152.08	34	ļ		1330

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I.
2138	C7H4N4O2	p-Nitromethylaniline	152 08	152	 	1 2011111	No.
2139	C,H,N,O,	3-Nitro-o-toluidine.	152 08	96		1.190100	1
2140	C,H ₄ N ₂ O ₃	4-Nitro-o-toluidine	152 08	105		1.36516	1
2141	C,H,N,O,	5-Nitro-o-toluidine	152 08	127 5		1.3661	
2142	C ₇ H ₄ N ₂ O ₂	6-Nitro-o-toluidine	152/08	91.5		1.3781	1
2143	C ₇ H ₄ N ₂ O ₂	2-Nitro-3-aminotoluene	152/08	53	ŀ		
144	C ₇ H ₈ N ₂ O ₂ C ₇ H ₈ N ₂ O ₂	4-Nitro-3-aminotoluene 5-Nitro-3-aminotoluene	152/08	109	1		İ
2145	C ₇ H ₄ N ₂ O ₂		152/08	98 1			}
2146	C7H ₈ N ₂ O ₂	6-Nitro-3-aminotoluene 2-Nitro-4-aminotoluene	152 08	138	·	1	1
2147 2148	C ₇ H ₈ N ₂ O ₂	3-Nitro-p-toluidine	152 08	77 5	ì		1
2149	C7HeN2O2	5-Nitro-3-amino-4-hydroxytoluene	152 08	117		1.31217	
2150	C7H ₈ N ₂ S	Phenylthiourea C ₆ H ₄ NHCSNH ₂	168.08	110		1	
2151	C7H4N4O2	Theophylline	152.14 180-09	154			
152	C7H ₈ N ₄ O ₂	Paraxanthine		272			
153	C7H8N4O2	Theobromine	180 09	299		i	
154	C7H4N4O3	1, 3-Dimethyluric acid	180-09 196,09	337		•	
155	C7H.N.O.	1, 7-Dimethyluric acid	196 09	410 d.			İ
156	C7H8N4O	1, 9-Dimethyluric acid.	196 09	390 d.			
157	C7H4N4O4	3, 9-Dimethyluric acid	196 09	400 d 340 d.			1
158	C7H4N6O7	Guanidine picrate	288.11	290 d.			
159	C7H8O	Benzyl alcohol C ₆ H ₅ CH ₂ OH	108 06	-15 3	205 8	1.046	713
160	C ₇ H ₀ O	o-Cresol	108 06	30 1	190 8	1 051	727
161	C ₇ H ₈ O	m-Cresol	108 06	10	202 8	1.035	714
162	C7H8O	p-Cresol	108.06	34 8	201 1	1 03944	715
163	C7H4O	Phenyl methyl ether (Anisol)	108.06	-37 3	155 8	0 994	659
164	C ₇ H ₈ O	4, 6-Dihydrobenzaldehyde	108 06	<-20	171 5 d.	1 02014	000
165	C ₇ H ₈ OS	Thioguaiacol CH ₂ OC ₅ H ₄ SH.	140.13	. 20	219	1 020	
166	C7H8O2	o-Hydroxybenzyl alcohol	124.06	86	2.0	1 161	
167	C7H8O2	m-Hydroxybenzyl alcohol	124 06	67	300 d.	1	1
168	C7H8O2	p-Hydroxybenzyl alcohol	124.06	110	0	1	
169	C ₇ H ₄ O ₂	2, 4-Dihydroxytoluene	124 06	104		İ	1
170	C7H8O3	2, 5-Dihydroxytoluene	124.06	125	ł		1
171	C7H8O2	2, 6-Dihydroxytoluene	124 06	66	l		1
172	C7H8O2	Homocatechol 3, 4-(HO) ₂ C' ₆ H ₃ C'H ₁	124.06	65	252	1.12974	1103
173	C7H8O2	Orcinol 3, 5-(HO) ₂ C ₆ H ₂ CH ₂	124.06	108	290	1 2904	
174	C7H8O2	Guaiacol o-HOC, H,OCH,	124.06	28	205 1	1 14314	1179
175	C7H8O2	Resorcinol methyl ether	124.06	<-17 5	244 3	> 1	1
176	C7H8O2	Hydroquinol methyl ether	124.06	53	243		1
176 1	C7H8O2	Dimethyl-γ-pyrone	124 06	132		0 9953137	Ì
178	C7H8O2	Furfurylacetone	124.06	40	229	ì	
179	C7H8O2S	Toluene-o-sulfinic acid	156.13	80			1
180	C7H8O8	2, 5-Dimethylfurfurane-3-carboxylic acid			i		1
		(Uvinie acid)	140.06	135			
181	C7H4O4S	Toluene-o-sulfonic acid .	172.13		128 825		1
183	C7H8O8S	Toluene-p-sulfonic acid	172.13	105	14020	1	
184	C ₇ H ₈ O ₄	Iretol 2, 4, 6-(OH) ₂ C ₆ H ₂ OCH ₂	156 06	186	0.0	1	1
185	C ₇ H ₈ O ₄	Hydrochelidonic anhydride	156 06	69	210	1	
186	C ₇ H ₈ O ₄ S	4-Hydroxytoluene-2-sulfonic acid	188 13	188		1	1
187 188	C7H ₈ O ₄ S	2-Hydroxytoluene-6-sulfonic acid	188 13	118			ł
	C ₇ H ₈ O ₆	Cinchonic acid	188 06	169	195	1 05820	
189	C ₇ H ₈ S	Benzyl mercaptan C ₆ H ₆ CH ₂ SH	124 . 13	15	194 3	1 000-	
190	CH ₄ S	o-Thiocresol o-CH ₄ C ₆ H ₄ SH	124 . 13	15		1 05212	
191 192	CH ₈ S	m-Thiocresol m-CH ₂ C ₆ H ₄ SH . p-Thiocresol p-CH ₂ C ₆ H ₄ SH .	124 . 13 124 . 13	<-20 43	195 4 195	1 0024	1
192	C ₇ H ₈ S C ₇ H ₉ AsO ₂	p-Thiocresol p-CH ₂ C ₆ H ₄ SH. Benzylarsonic acid C ₆ H ₄ CH ₂ AsO(OH) ₂	216.03	167	100		
193		1 •	216.56	101			1333
194 195	C ₇ H ₉ ClN ₄ O ₂	Theobromine hydrochloride			184	0.980	720
195 196	C ₇ H ₉ N	Benzylamine C ₆ H ₆ CH ₂ NH ₂	107.08 107.08		157	0.949	'2
196	C ₇ H ₉ N C ₇ H ₉ N	2, 4-Lutidine	107.08		143	0.942	
197	C ₇ H ₉ N C ₇ H ₉ N		107.08		164 5	0.042	
199	C ₇ H ₉ N C ₇ H ₉ N	3, 4-Lutidine 2-Ethylpyridine	107.08		148.8	0.950	990
	3.771 IA. T	14-Eulyipyridine	101.00	1	1 170.0	1 0.000	1 000

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
2201	C ₇ H ₂ N	1	107.08	1	166	0.936	No
2202	C7H,N	a-Lutidine	107.08	1	156.5	0.947	1
2203	C ₇ II ₂ N	Methylaniline C.H.NHCH.	107.08	-57.0	195.70	0.986	757
2204	C7H,N	o-Toluidine o-CH2CoH4NH2.	107.08	$\alpha - 24 \ 4;$	200 7	0.998	758
				$\beta = 16.3$	ļ		, ,,,
2205	C ₇ H ₆ N	m-Toluidine m-CH ₁ C ₄ H ₄ NH ₂	107.08	-31 5	203 3	0.989	989
2206	C7H ₀ N	p-Toluidine p-CH ₄ C ₆ H ₄ NH ₂	107.08	43 7	200 5	1.046	1087
2207	C ₇ H ₆ NO	o-Aminobenzyl alcohol	123 08	82	280 s. d.		
2208	C ₇ H ₆ NO	p-Aminobenzyl alcohol	123.08	95	l		
2209	C ₇ H ₈ NO	4-Amino-2-hydroxytoluene	123.08	161	ł		
2210 2211	C ₇ H ₂ NO	5-Amino-2-hydroxytoluene 6-Amino-2-hydroxytoluene	123 08	175		1	
2212	C ₂ H ₄ NO C ₂ H ₄ NO	5-Amino-m-cresol	123 08 123 08	128 79	345	1	1
2213	C ₇ H ₂ NO	4-Amino-3-hydroxytoluene	123 08	174	940	}	1
2214	C ₇ H ₂ NO	2-Amino-4-hydroxytoluene	123.08	144 5		}	-
2215	C ₇ H ₂ NO	3-Amino-1-hydroxytoluene .	123 08	135			
2216	C7H,NO	o-Anisidine o-CH ₃ OC ₅ H ₄ NH ₂	123 08	5.2	224	1.10826	Ì
2217	C ₇ H ₉ NO	m-Anisidine m-CH ₃ OC ₅ H ₄ NH ₂	123.08		251	1	1
2218	C ₇ H ₈ NO	p-Anisidine p-CH ₂ OC ₆ H ₄ NH ₂	123 08	57.7	245	1.0714	
2219	C ₇ H ₉ NO	Benzylhydroxylamine C ₆ H ₆ CH ₂ NHOH	123 08		12350		
2220	C ₇ H ₉ NO	Salicylamine o-OHC6H4CH2NH2	123 08	129		j	
2221	C ₇ H ₈ NO	m-Tolylhydroxylamine	123 08	68			
2222	C.H.NO	p-Tolylhydroxylamine	123 08	94			
2223 2224	C ₇ H ₉ NO C ₇ H ₉ NO ₂	4, 6-Dihydrobenzaldoxime	123 08	44			
2225	C ₇ H ₉ NO ₂	6-Amino-2-methoxyphenol Ammonium benzonte = C ₆ H ₆ CO ₂ NH ₄	139 08 139 08	127		1 0/01	
2226	C7H,NO2S	Toluene-o-sulfoneamide.	171.14	198 156-3		1 2624	
2227	C7H2NO2S	Toluene-m-sulfoneamide	171 14	108			
2228	C7H,NO2S	Toluene-p-sulfoneamide .	171 14	137.5		1	
2229	C ₇ H ₉ NO ₃	Ammonium salicylate	155 08				1333
2234.1	C ₇ H ₈ NO ₅ S	Ammonium o-sulfobenzoate	219.14	> 250		1 524	1200
2235	C ₇ H ₈ N ₃ O	1-Phenylsemicarbazide.	151.09	172		ļ	
2236	C ₇ H ₈ N ₄ O	4-Phenylsemicarbazide	151.09	122			1
2237	C7H10	2, 3-Dihydrocycloheptene.	94.077		121		
2238 2239	C ₇ H ₁₀ C ₂ H ₁₀	1, 2-Dihydrotoluene	94.077		108		1
2240	C7H10	10 (1)1 1 (1)	94 077		110.1	0 835	524
2211	C71110	1, 3, 5-Heptatriene	94 077 94 077		106 114	0 827	498
2243	C7H toClN	o-Toluidine hydrochloride	143 54	214 5	242	0.764	
2244	C7H10CIN	m-Toluidine hydrochloride	143.54	228	249 8	1	
2245	C7H10CIN	p-Toluidine hydrochloride	143 54	239	257 5		ł
2247	C7H10N2	Methyl-p-phenylenediamine	122 09	35 5	259 5	1	
2248	C7H10N2	Benzylhydrazine C ₆ H ₆ CH ₂ NHNH ₂ .	122 09	26	10341	l	Į
2249	C7H10N2	2, 3-Diaminotoluene	122 09	62	255		
2250	C7H10N2	2, 4-Diaminotoluene	122 09	99	280		-
2251 2252	C ₇ H ₁₀ N ₂ C ₇ H ₁₀ N ₂	2, 5-Diaminotoluene	122 09	64	274		
2253	C7H10N2	Toluylene-2, 6-diamine	122 09 122 09	105	005		ļ
2254	C7H10N2	3, 5-Diaminotoluene	122 09	88 5	$\frac{265}{285}$		
2255	C7H10N2	1, 1-Methylphenylhydrazine	122 09		227.5	1.040	766
2256	C7H10N2	o-Tolythydrazine o-CH1C0H4NHNH2.	122 09	56	227.17	1.010	1 .00
2257	C7H10N2	m-Tolylhydrazine	122 09	-	224		
2258	C7H10N2	p-Tolythydrazme p-CH ₅ C ₆ H ₄ NHNH ₂	122 09	61			
2259	C7H10N2O3	5-Ethyl-5-methylbarbituric acid	170 09	212			
2260	C7H10N2O3	Trimethylbarbituric acid	170 09	165			1
2260.1 2260.2	C ₇ H ₁₀ N ₄ O ₄	Dimethyl ureindihydroxysuccinate.	234 10	203			1204
2260. Z 2261	C ₇ H ₁₀ N ₂ O ₇ C ₇ H ₁₀ O	Isohydroxydimethylurea	230 11	180	010		1212
2262	C'7H10O2	1, 2, 3, 4-Tetrahydrobenzaldehyde \(\Delta^1\)-Tetrahydrobenzoic acid	110.08	}	212	1.0090	570
2263	C7H10O2	Diacetylacetone CO(CH ₂ COCH ₁) ₂ .	126.08 142.08	49	12110	1.07247.1 1.06840	552 1090
2264	C7H10O4	cis-Pentamethylene-1, 2-dicarboxylic acid	158.08	140	121	1.00040	1080
2265	C7H10O4	Teraconic acid	158.08	161 d.			1
2266	C7H10O4	Terebic acid	158.08	175		0.816	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2267	C7H10O4	Dimethyl citraconate	158 08		210 5	1.110	922
2268	C7H10O6	3-Ketopimelic acid	174 08	143		1	
2269	C ₇ H ₁₀ O ₅	Ethyl mesoxalate (HO) ₂ C(CO ₂ C ₂ H ₃) ₂ .	174 08	< -31	220	1 11920	1
2270	C,H ₁₀ O ₅	Quinic lactone	174 08	187			
2271	C ₇ H ₁₁ BrO ₄	Diethyl bromomalonate.	239 00		235	1 42614	
2272	C ₁ H ₁₁ NO	Nortropinone	125 09	70	1		
2273	C ₂ H ₁₁ NO ₂ C ₂ H ₁₁ NO ₂	Arecaidine	141 (9)	224 d.		1	
2274	C ₁ H ₁₁ NO ₂	n-Amylacetylene C _b H ₁₁ C;CH	141 09	214 d.			
2275	C ₇ H ₁₂	2, 4-Dimethyl-1, 3-pentadiene	96 092	> -70	110 5	0.738	160
$\frac{2276}{2277}$	C ₇ H ₁₂	2, 4-Dimethyl-2, 3-pentadiene	96 092		93 3	0.7494	815
2278	C ₇ H ₁₂	3-Heptine C ₄ H ₇ C;CC ₂ H ₄	96 092		70		
2279	C ₇ H ₁₂	2, 4-Heptadiene	96 092	i	106	0.760	200
2219	C ₇ H ₁₂	2-Heptine CH ₄ CCC ₄ H ₉ .	96 092	1	107	0.731	896
2281	C ₇ H ₁₂	4-Methylcyclohexene	96 092	1	113 3	0 7630	200
2282	C7H11	Δ^{1} -Tetrahydrotoluene.	96 092		102 2	0 800	385
2283	C ₇ H ₁₂	11.00 1 1 1 1 1	96 092		111	0.800	431
2284	C ₇ H ₁₂	Δ'-1 etrahydrotoluene Δ'-Tetrahydrotoluene	96-092 96-092		105	0.805	408
2284.1	C7H12Cl2O2	Isobutyl 1, 2-dichloropropionate	199 01,		103	0 799	394
2285	C7H12N2O	Sinapoline	140 11	100		1 15621	
2286	C7H12N4O	Caffeidine	168 12				
2287	C ₇ H ₁₂ N ₄ O ₃	Caffoline	200 12	94			
2288	C ₇ H ₁₂ O	Diallyl carbinol (CH ₂ :CHCH),CHOH.	112 09	197	151	0.857	1
2289	C ₇ H ₁₂ O	Hexahydrobenzaldehyde	112 09]	161	0.837	1
2289 1	C ₇ H ₁₂ O	o-Methyleyclohexanone	112 (6)		167740	0.930161	842
2289 2	C7H12O	m-Methyleyclohexanone	112 09		6019	0.930	1027
2289.3	C ₇ H ₁₂ O	p-Methylcyclohexanone	112 09		56 410 8	0.912144	1021
2290	C7H12O	Suberone $\langle (CH_2CH_2CH_2)_2 \rangle CO$	112 09		179 5	0 9690	1021
2291	C7H12O2	Pimelic aldehyde OCH(CH ₂) ₆ CHO	128 09		11213	0 303	
2292	C7H12O2	Teracrylic acid	128 09	<-18	218		
2293	C7H12O2	Hexahydrobenzoic acid	128 09	31	233	1 048	1040
2294	C7H12O2	1, 2-Isoheptenic acid	128 09	16 5	227	0 942	442
2295	C7H12O2	Allyl butyrate C ₁ H ₇ CO ₂ CH ₂ CH CH ₂	128 09	1	143		
2296	C7H12O2	Allyl isobutyrate	128 09	l	133 5		
2297	C7H12O2	Cyclohexyl formate HCO ₂ C ₆ H ₁₁	128 09	<0	162 5	1 0100	
2298	C7H12O2	Ethyl angelate	128 09	1	142	0.918	963
2299	C7H12O2	Ethyl tiglate CH ₃ CH ₂ C(CH ₂)CO ₂ C ₂ H ₄	128 09	1	152	0 924	964
2300	C7H12O3	Hexahydrosalicylic acid	144 09	111			
2301	C7H12O3	Ethyl levulinate.	144 09	l	205 3	1 0174	263
2302	C7H12O3	Ethyl methylacetoacetate	144 09		186-8	1 019	239
2303	C7H12O3	Methyl dimethylacetoacetate	144 09	ı	174	0 99924	1
2304	$C_7H_{12}O_4$	Butylmalome acid C ₄ H ₉ CH(CO ₂ H) ₂	160 09	101 5	150 d.	l	
2305	C7H12O4	Isobutylmalonic acid.	160.09	107		ĺ	
2306	C7H12O4	secButylmalonic acid	160 09	76			
2307	C7H12O4	Diethylmalonic acid (C ₂ H ₄) ₂ C(CO ₂ H) ₂	160.09	121	1		
2308	C7H12O4	n-Pimelic acid HO ₂ C(CH ₂) ₅ CO ₂ H	160 09	103	272100	1	
2308.1	$C_7H_{12}O_4$	Trimethylsuccinic acid	160.09	152	100.0	1 242	200
2309	C7H12O4	Diethyl malonate $CH_2(CO_2C_2H_\delta)$.	160 09	-49 9	198 9	1 054	208
2310	C7H12O4	Dimethyl pyrotartrate	160 09	2 90	198	1 078	-
2311	C ₇ H ₁₂ O ₄	Methyl ethyl succinate	160 09 176.09	<-20	208 2 17649	1.093° 1.17818	1
2312	C ₇ H ₁₂ O ₅	Glycerol diacetate (Diacetin)	192 09	163	d.	1.637	1333
2313	C ₇ H ₁₂ O ₆	Quinic acid	192.09	57	200	1.007	1000
2314	C ₇ H ₁₂ O ₆	1 *	237 03	116	2111)		1
2315 2316	C ₁ H ₁₂ BrN ₂ O ₂	Adalin CH ₂ BrCONHCON(C ₂ H ₃) ₂ Ethyl 1-bromo-n-valerate	209 02	'''	192	1 2264	
2317	C ₇ H ₁₂ BrO ₂ C ₇ H ₁₂ BrO ₂	Ethyl 1-bromoisovalerate	209.02	1	186	1 278	
2317	C ₇ H ₁₈ ClO ₂	Amyl chloroacetate ClCH ₂ CO ₂ C _b H ₁₁ .	164 56	1	192	1.055	345
2319	C ₇ H ₁₂ ClO ₂	Isoamyl chloroacetate	164.56		192	1 04124	070
2320	C ₇ H ₁₃ ClO ₂ C ₇ H ₁₃ N	Heptylnitrile C ₆ H ₁₂ CN	111 11		183	0.815	240
2321	C ₇ H ₁₁ NO	Nortropanol	127.11	161		0.019	1 210
2322	C ₇ H ₁₁ NO C ₇ H ₁₁ NO	Suberoxime (CH ₂ CH ₂ CH ₂ C) ₂ C.NOH.	127.11	23	230	1.023	
2323	C ₇ H ₁₂ NO ₂	Stachydrine	143.11	210		1	Ì
-0-0	~/21/21/02	Quinic amide (OH) (CoH) CONH2	191.11	132	1	ı	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2325	C7H14	2, 4-Dimethyl-2-pentene	98.108		84	0.699**	ī
2326	C7H14	3-Ethyl-2-pentene (C ₂ H ₃) ₂ C:CHCH ₃	98.108		98	0.725	192
2327	C7H14	Heptamethylene (Cycloheptane)	98.108	-12	118.1	0.811	405
2328	C7H14	Hexahydrotoluene	98 108	-147 5	103	0 764	910
2320	C7H14	2-Heptene CH ₄ CH:CHC ₄ H ₇ .	98 108		98.5		
2330	C7H14	Methylcyclohexane	98 108	126 4	100.8	0.764	272
2331	C7H14	3-Methyl-2(3)-hexene	98 108		97.4	0 718	186
2332	C7H14	1-Heptene C ₄ H ₁₄ CH,CH ₂ .	98 108		99		
2333	C7H14	2, 2, 3-Trimethyl-1-butene	98 108		80		
2334	C ₇ H ₁₄	2, 3-Dimethyl-2-pentene	98 108		95.1	0.719	
2335	C ₁ H ₁₄ O	Cycloheptanol	114 11		185.2	0.958	1 .
2336	$C_7\Pi_{14}O$	2-Heptene-4-ol	114 11		6311	0.84244	838
2337	C ₇ H ₁₄ O	Hexahydrobenzyl alcohol	114 11		181 2	0 916	816
2338	C ₇ H ₁₄ O	1-Methylcyclohexane-1-ol	114 11	26	168.3	0 9194	1029
2339	C ₂ H ₁₄ O	o-Hexahydrocresol	114 11		169	0.923	478
2340	C ₂ H ₁₄ O	m-Hexahydrocresol	114 11	-47	176	0 914	466
2341	C ₇ H ₁₄ O	dl-m-Hexahydrocresol	114 11		175	0.923	467
2342	C ₇ H ₁₄ O	p-Hexahydrocresol	114 11		174	0 92414	833
2343	C ₂ H ₁₄ O	Heptaldehyde C ₄ H ₁₂ CHO	114.11	45 0	155	0.850	202
2344	C ₇ H ₁₄ O	Dipropyl ketone (C ₁ H ₇) ₂ CO	114 11	-32/6	143.5	0.8214	173
2345	C ₂ H ₁₄ O	Disopropyl ketone [(CH ₂) ₂ CH ₂ CO	114 11		123.7	0.806	
2346	C ₇ H ₁₄ O	Ethyl n-butyl ketone C ₂ H ₆ COC ₄ H ₉	114 11		148.5		1
2347	C ₁ H ₁₄ O	Ethyl isobutyl ketone	114 11		136	0 815	1
2348 2349	C ₂ H ₁₄ O	Methyl n-amyl ketone CH ₂ COC ₅ H ₁₁	114 11		150	0.82214	}
	C ₇ H ₁₄ O	Methyl isoamyl ketone Isoamylacetic acid	114 11		144	0.82117	
$2350 \\ 2351$	C ₇ H ₁₄ O ₂		130 11	10	216 5	0.92618	000
2353	C ₇ H ₁₄ O ₂	Heptylic acid C ₆ H ₁₂ CO ₂ H	130 11	-10	223 5	0.922	269
2354	C ₇ H ₁₄ O ₂ C ₇ H ₁₄ O ₂	n-Amyl acetate CH ₂ CO ₂ C ₅ H ₁₁	130 11		147 6	0 87920	130
2354 1	C7H14O2	Isoamyl acetate	130.11		142 5	0.875	122
2355	C ₇ H ₁₄ O ₂		130 11		131	0 868	100
2356	C ₇ H ₁₄ O ₂	tertAmyl acetate	130 11		124 8	0.87419	1100
2357	C ₇ H ₁₄ O ₂	Ethyl isovalerate	130 11 130 11	660.9	145 5	0.877	1109
2358	C ₇ H ₁₄ O ₂	n-Hexyl formate HCO ₂ C ₆ H ₁₂		-99 3	135	0 866	126
2359	C7H14O2	Isobutyl propionate	130 11 130.11	71 1	153 6	0.8980	100
2359 1	C ₇ H ₁₄ O ₂	d-secButyl propionate.	130.11	-71 4	138 132	0 869 0 8657	108
2360	C7H14O2	Methyl n-caproate C _b H ₁₁ CO ₂ CH ₂	130.11		149.5	0 904	
2361	C ₇ H ₁₄ O ₂	Propyl n-butyrate C ₄ H ₇ CO ₂ C ₄ H ₇	130.11	-95 2	143.3	0.87915	123
2362	C7H14O2	Propyl isobutyrate (CH ₃) ₂ CHCO ₂ C ₃ H ₇	130 11	17.0	135 4	0.884	97
2363	C7H14O2	Isopropyl butyrate C ₂ H ₇ CO ₂ CH(CH ₂) ₂	130.11		128	0.86513	,
2364	C7H14O2	Isopropyl isobutyrate	130 11		120 8	0.8692	
2365	C7H14O1	Di-n-propyl carbonate CO(OC ₃ H ₁) ₂	146 11		168 2	0.96822	}
2366	C7H14O1	Ethyl butyl carbonate	146 11		169	0 300	}
2367	C7H14O4	Glycerol 1-butyrate	162 11		271	1	1
2367.1	C7H14O4	I-Methyl rhamnoside	178.11	109	1	1	1227
2368	C7H14O4	α-Methyl galactoside	194 11	112			1
2369	C7H14O4	s-Methyl galactoside	194 11	176		1	
2370	C7H14O6	α-Methyl glucose	194 11	161	1	1	
2371	C7H14O4	β-Methyl glucose	194.11	135		1	Ì
2372	C7H14O6	α-Methyl glucoside	194 11	168	2000 1	1	1230
2373	C7H14O4	β-Methyl glucoside	194 11	104	1	ì	1171
2373 1	C7H14O4	a-Methyl mannoside	194 11	194			1217
2374	C7H14O4	d-Inosite methyl ether (β-Pinite)	194.11	187		1 52	1
2375	C7H14O4	l-Inosite methyl ether (Quebrachite)	194 11	191	210vac	1 54	
2376	$C_7\Pi_{14}O_7$	d, β-Galaheptose	210.11	199			
2377	$C_7H_{14}O_7$	d, a-Glucoheptose	210.11	215 d.		1	
2378	C ₇ H ₁₄ O ₄	d-Mannoheptonic acid	226.11	175 d.		1	
2379	C ₇ H ₁₄ S	m-Hexahydrothiocresol	130.17		174	1	
2380	C7H15Br	n-Heptyl bromide C7H14Br .	179.03		178 8	1 13316	
2381	C7H14Cl	n-Heptyl chloride C7H14Cl	134.57		159 5	0 88116	
2382	C7H14F	n-Heptyl fluoride C7H18F	118.12	-73	119.2	0.804	61
2383	C7H14I	n-Heptyl iodide C7H18I	226.05		203.8	1.4010	469
2384	C7H14N	Ethylpiperidine	113.12		128	0.8574	1000

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2385	C ₇ H ₁₆ NO	n-Heptylamide C ₄ H ₁₂ CONH ₂	129 12	96	}		140.
2386	C7H16NO	Heptaldoxime CaHarCH:NOH	129 12	55 5	195	0.834	1124
2386 1	C ₇ H ₁ ,NO ₂	Isobutylurethane C.H.NHCO.C.II.	145 12	< -65	9617	0.943	311
2387	C7H16	2, 4-Dimethylpentane CH ₂ CH(CH ₂) ₂ ₂ .	100 12		83 9	0.681	45
2388	C7H10	3, 3-Dimethylpentane	100 12		87	0 7110	"
2389	C7H16	n-Heptane CH ₃ (CH ₂),CH ₃	100 12	90 0	98 4	0 684	55
2390	C7H16	2-Methylhexane (CH ₁) ₂ CHC ₄ H,	100 12		90-4	0 7074	1
2391	C7H16	d, 3-Methylhexane C ₃ H ₇ CH(CH ₃)C ₂ H ₃	100 12	1	92	0 687	1
2392	C7H16	3-Ethylpentane ((',H,),CH	100 12		93.8	0 670	89
2393	C ₇ H ₁₆	2, 2, 3-Trimethylbutane	100/12	- 25	80-8	0 6954	77
2394	C ₇ H ₁₆	2, 2-Dimethylpentane (CH ₂) ₃ CC ₄ H ₇	100 12		78-6	0.674	ł
2396	C ₇ H ₁₆ O	Dimethylbutyl carbinol	116 12		142 2	0 816	224
2397	C ₇ H ₁₆ O	Dimethylisobutyl carbinol	116 12		130	0.816	228
2398	C ₇ H ₁₆ O	Dimethyl-tertbutyl carbinol	116 12	17	132		
2399	C ₇ H ₁₆ O	Dipropyl carbinol (C ₁ H ₇) ₂ CHOH	116 12		155 1	0 820	256
2400	C,H ₁₆ O	Diisopropyl carbinol	116 12	1	140	0 820	265
2400 I	C ₇ H ₁₆ O	d-Ethylbutyl carbinol	116 12		601x	0.823	251
2401	C,H,O	Ethylisobutyl carbinol.	116 12		148 2	0.000	
2402	C ₇ H ₁₆ O	Ethyl-secbutyl carbinol n-Heptyl alcohol C ₇ H ₁₈ OH	116 12		150	0 8520	00#
2403	C ₇ H ₁₆ O C ₇ H ₁₆ O		116 12	-34 6	175 8	0 817**	287
2404	C7H16O C7H16O	2-Hydroxy-3-ethylpentane 1-Hydroxy-2-methylhexane	116 12		152	0.853	000
2405		Isoheptyl alcohol	116.12		162 5	0 8314	266
2406	C ₇ H ₁₆ O C ₇ H ₁₆ O	1	116.12	ĺ	167 2	0 831	291
2407 2407 1	C7H16O C7H16O	Methyl-n-amyl carbinol d-Methylamyl carbinol	116 12	1	158 73 5 ²⁰	0 819	259 253
2407 1	C ₇ H ₁₆ O	Methylisoamyl carbinol	116 12 116 12	1	150	0 81917 4	200
2409	C7H16O C7H16O	Methylethylpropyl carbinol	116 12		141	0 823	270
2410	C ₇ H ₁₆ O	Methylethylisopropyl carbinol	116 12	l	140	0 833	210
2411	C7H16O	Propylisopropyl carbinol	116 12		141	0.82117	215
2412	C7H16O	Triethyl carbinol (C ₂ H ₅), COH	116 12	l	142	0.840	384
2413	C ₇ H ₁₆ O	Ethyl isoamyl ether	116 12	Ì	112	0.76414	90.
2414	C ₇ H ₁₆ O	Propyl butyl ether C ₄ H ₂ OC ₂ H ₇	116.12	•	117 1	0.7770	
2415	C7H16O2	Ethyl orthoformate HC(OC ₂ H _b) ₄ .	148 12	-76.1	145 9	0 897	1
2416	C7H16O4S2	Sulfonal (CH ₃) ₂ C(SO ₂ C ₂ H ₃) ₂	228 25	128	300 d.	:	
2417	$C_7H_{16}O_7$	d-Mannoheptitol	212.12	188			1
2418	C7H16O7	Volemitol	212.12	155	į		
2419	$C_7H_{17}N$	n-Heptylamine C7H16NH2	115.14	-23 0	155 1	0.777	278
2420	C ₈ Cl ₄ O ₃	Tetrachloro-o-phthalic anhydride	285.83	257		1	
2421	C ₈ H ₂ Cl ₂ O ₃	3, 6-Dichloro-o-phthalic anhydride	216.93	191	339		
2422	C ₈ H ₂ Cl ₄ O ₄	Tetrachloro-o-phthalic acid .	303 85	250			
2422 1	C ₈ H ₄ BrNO ₂	m-Bromoisatine.	225 96	255			1
2422.2	C ₄ H ₄ ClNO	Isatine chloride.	165 50	180 d.			
2423	C ₈ H ₄ Cl ₂ O ₂	o-Phthalyl dichloride o-C ₆ H ₄ (COCl) ₂	202 95	0	276 7	1 408	755
2424	C ₄ H ₄ Cl ₂ O ₂	Isophthalyl dichloride m-C ₆ H ₄ (COCl) ₂ .	202 95	41	276		
2425	C ₈ H ₄ Cl ₂ O ₂	Terephthalyl dichloride p-C ₃ H ₄ (COCl) ₂	202 95	78	259		
2426	C ₈ H ₄ Cl ₂ O ₄	3, 6-Dichloro-o-phthalic acid	234 95	185	1814		1
2427	C,H,Cl,O	Trichloromethyl p-chlorophenylketone	257.86 128.05	28 161	101.0	ĺ	1
2428	C ₈ H ₄ N ₂	Isophthalic nitrile m-C ₆ H ₄ (CN) ₂	128.05	222			l
2429	C ₈ H ₄ N ₂	Terephthalic nitrile p-C ₆ H ₄ (CN) ₂	192.05	230			İ
2430 2431	C ₈ H ₄ N ₂ O ₄	Nitroisatine	148.03	130 8	284 5	1.5274	1
2432	C ₁ H ₄ O ₁	Dichloromethyl p-chlorophenyl ketone	223.41	51	1784	1.02.	ı
2433	C ₄ H ₄ Cl ₅ O	2, 3, 4, 6-Tetrachloroacetanilide	272.88	181	1		
2434	C.H.NO	Benzovl cyanide C ₆ H ₆ .COCN	131.05	34	208	1	
2435	C ₁ H ₁ NO C ₁ H ₁ NO ₂	o-Cyanobenzoic acid	147.05	190			1
2436	C ₁ H ₁ NO ₂ C ₁ H ₄ NO ₂	m-Cyanobenzoic acid	147.05	217		1	1
2437	C ₆ H ₆ NO ₂	p-Cyanobenzoic acid	147.05	214		1	
2438	C ₈ H ₄ NO ₂	Isatine	147.05	201			1
2439	C ₈ H ₄ NO ₂	o-Phthalimide o-C ₆ H ₄ (CO) ₂ NH	147.05	238		1	
2440	C _s H _s NO _s	3-Nitro-o-phthalic acid	211.05	220		1	1
	C _s H _b NO ₆	4-Nitro-o-phthalic acid	211.05	164		1	
2441							
	C ₄ H ₄ NO ₄	2-Nitroisophthalic acid 4-Nitroisophthalic acid	211 05 211.05	300 245	Ì		

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2444	C ₄ H ₄ NO ₄	5-Nitroisophthalic acid	211.05	255	1		
2445	C ₄ H ₄ NO ₄	2-Nitroterephthalic acid	211.05	270	1	1	
2446	C ₄ H ₄ NO ₄	Pyridine-2, 3, 4-tricarboxylic acid .	211 05	250 d.		1	ł
2447	C ₈ H ₄ NO ₄	Pyridine 2, 3, 5-tricarboxylic acid	211.05	323	1		
2448	C ₁ H ₁ NO ₄	Pyridine-2, 3, 6-tricarboxylic acid	211.05	100	ļ	1	
2449	C ₁ H ₁ NO ₄	Pyridine-2, 4, 5-tricarboxylic acid	211.05	235	i		
2450	C ₄ H ₄ NO ₄	Pyridine-2, 4, 6-triearboxylic acid.	211 05	227	1		
2451	C ₄ H ₄ NO ₄	Pyridme-3, 4, 5-tricarboxylic acid	211 05	261	100.1	1	1
2452	C ₄ H ₄ N ₄ O ₄	Picryl acetate	271 06	76	120 d.	0.000	000
2453	C ₄ H ₄	Phenylacetylene C ₄ H ₅ C;CH	102 05	1.	143	0.930	820
2454	C ₈ H ₈ BrN	Bromobenzyl cyanide C ₄ H ₅ CHBrCN	195 97	> -17	13416	1.519	1185
2455	C ₄ H ₄ Br ₂	Styrene-1, 2-dibromide	261 88	73 5 109 7	104.0	Ì	1
2456	C ₄ H ₄ Br ₂ O	p-Bromophenacyl bromide	277 88	109 /	240 s. d.		-
2457	C ₁ H ₆ Cl ₂ O ₂	Piperonal chloride	204 96 238 43	122	240 s. u.	1	
2458	C ₄ H ₆ Cl ₄ NO	2, 3, 4-Trichloroacetanilide		190	1		1
2459 2460	CaHaClaNO CaHaClaNO	2, 4, 5-Trichloroacetanilide 2, 4, 6-Trichloroacetanilide	238 43 238 43	204			1
2461	CaHaI2Oa	Methyl 3, 5-duodosalieylate	403 91	110 5		1	1
2462	C _s H ₆ N ₂	Phthalazine	130 06	91	317	1	
2463	CallaN ₂	Quinazoline	130 06	48	243		1
2464	CaHaN,	Quinoxaline	130 06	30 5	226	1 13348	1075
2465	CaHaNaO2	Isatoxime (Nitrosoxindol)	162 06	202	220	1 1004	1075
2466	CaHaNaOs	p-Nitrobenzyl cyanide	162 06	117			
2467	CaHaNaOa	Alloxantin	286 08	170 d.	1		1
2468	C.H.O	Coumarone	118 05	> -18	173	1.091	997
2469	C ₃ H ₄ O ₂	Phenylglyoxal C ₈ H ₈ CO,CHO	134 05	73	142128	1.001	"
2470	CaH6O2	o-Phthalic aldehydo o-CoH4(CHO);	134 05	56	1	1	1
2471	CaH ₆ O ₂	Isophthalic aldehyde m-C ₄ H ₄ (CHO) ₂	134 05	89 5	1		
2472	C ₁ H ₄ O ₂	Terephthalic aldehyde p-CoH ₄ (CHO) ₂	134 05	116	248	1	
2473	CaH ₀ O ₂	Phthalide	134 05	73; 65	290		
2474	C ₂ H ₄ O ₃	Piperonal (Heliotropin)	150 05	37	263		1
2475	CaHaOa	o-Aldehydobenzoie acid	150 05	100 5	ì	1 404	1
2476	CaH ₆ O ₈	m-Aldehydobenzoic acid	150 05	175	1	Í	
2477	C _B H _B O _B	p-Aldehydobenzoie acid	150 05	250			1
2478	C'aH ₆ O ₂	Phenylglyoxylic acid	150 05	66	1486	1	1
2470	C ₉ H₄O₄	o-Phthalic acid ο-C ₆ H ₄ (CO ₂ H) ₂	166 05	191 d.	1	1 593	
2480	C ₈ H ₆ O ₄	Isophthalic acid m-C ₆ H ₄ (CO ₂ H) ₂	166 05	330		1	
2482	C ₈ H ₆ O ₄	Piperonylie acid CH ₂ :O ₂ :C ₆ H ₃ .CO ₂ H	166.05	228	1		1
2483	C _B H ₆ O ₅	2-Hydroxy-o-phthalic acid	182 05	244			1
2485	CallaOa	4-Hydroxy-o-phthalic acid	182.05	181 d.	1		1
2486	C _a H ₆ O _a	2-Hydroxyisophthalic acid	182 05	239	į .	1	
2487	C _n H ₀ O _b	4-IIydroxyisophthalic acid	182 05	306	1	1	İ
2488	C _n H _n O _s	5-Hydroxyisophthalic acid	182 05	288	-		
2489	CaH ₆ O ₄	Noropianic acid	182.05	171	001	1 105	1040
$\frac{2490}{2491}$	CH B		134 11	32	221	1.165	1049
2492	C _a H ₇ Br C _a H ₇ Br	α-Bromostyrene C ₅ H ₅ CBr;CH ₂ ω-Bromostyrene (isomer 1)	182 97	-43 5	16078	1.4057	770
2493	C ₄ H ₇ Br	ω-Bromostyrene (isomer 1) ω-Bromostyrene (isomer 2)	182 97	7 -7 5	221 10826	1	786 992
2493 1	C ₈ H ₇ BrN ₂ O ₂	α-Bromontroacetanilde	182 97 258 99	131	108	1.427 1.765	882
2494	C ₈ H ₇ BrO	ω-Bromoacetophenone	198 97	50	119	1.647	}
2495	C ₄ H ₇ Cl	a-Chlorostyrene C ₆ H ₆ C.Cl CH ₂	138 51	00	199	1.047	1
2496	C ₁ H ₇ Cl	ω-Chlorostyrene C ₆ H ₆ CH.CHCl	138 51	İ	198 8	1.11223	1
2497	C ₄ H ₇ ClO	ω-Chloroacetophenone	154 51	59	247	1.32416	İ
2498	C ₈ H ₇ ClO	p-Chloroacetophenone	154.51	20	232	1.188	
2499	C ₄ H ₂ ClO	Phenylacetyl chloride C.H.CH.COCl	154 51		102.517	1.168	ŀ
2500	C ₈ H ₇ ClO ₂	p-Anisyl chloride p-CH ₃ OC ₆ H ₄ COCl.	170.51	27		1	
2501	CaH7ClO2	Phenyl chloroacetate ClCH2CO2C4H4	170.51	45	235	1	1
2502	C ₅ H ₇ F ₂ NO	2, 5-Difluoroacetanilide	171.06	122.5	1		
2503	C ₈ H ₇ N	Benzyl cyanide C.H.CH.CN	117.06	-23.8	233.9	1.01518	679
2504	C ₈ H ₇ N	Indole	117.06	52.5	254	1	1333
2505	C _n H ₇ N	o-Tolunitrile o-CH ₄ C ₆ H ₄ CN	117.06	1	204	0.99525	1004
2506	C ₈ H ₇ N	m-Tolunitrile m-CH ₄ C ₆ H ₄ CN	117 06	1	214	0.984	
2507	C ₄ H ₇ N	p-Tolunitrile p-CH ₄ C ₆ H ₄ CN	117.06	29.5	217	1	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
2508	C ₄ H ₇ NO	p-Anisonitrile p-CH ₁ OC ₆ H ₄ CN.	133 06	60	256		1 140.
2509	C.H,NO	dl-Mandelonitrile C.H.CH(OH)CN	133 06	-10	d.	1 124	
2510	C ₄ H ₇ NO	Indoxyl	133 06	85	110	1	
2511	C ₄ H ₇ NO	Oxindol	133 06	120			
2512	C ₁ H ₇ NO ₂ C ₁ H ₇ NO ₂	Hydrindic acid (Dioxindol)	149-06	180	195 d.		1
2513	C ₁ H ₇ NO ₁	o-Nitrostyrene o-NO ₂ , C ₆ H ₄ , CH; CH; m-Nitrostyrene m-NO ₂ , C ₆ H ₄ CH; CH;	149-06	13 5			1
$\frac{2514}{2515}$	C ₁ H ₇ NO ₂	p-Nitrostyrene p-NO ₂ .C ₄ H ₄ CH:CH;	149 06	-5			
2516	C ₈ H ₇ NO ₈	Oxanilic acid CO ₂ H.CONHC ₆ H ₅	149-06 165-06	29		İ	
2517	C.H.NO.	o-Phthalamic acid .	165 06	150 149	155 d.		
2518	C ₈ H ₇ NO ₄	Methyl o-nitrobenzoate	181 06	8	269	1 28425	
2519	C ₈ H ₇ NO ₄	Methyl m-nitrobenzoate	181 06	70	279	1 2017	
2520	C ₅ H ₇ NO ₄	Methyl p-nitrobenzoate	181-06	96			
2521	C ₈ H ₇ NO ₄	Uvitonic acid	181-06	274			
2522	C ₈ H ₇ NS	Benzyl isothiocyanate	149-13		243		
2522 1	C ₈ H ₇ NS	Benzyl thiocyanate	149-13	41	235		}
2523	CH7NS	o-Tolyl isothiocyanate	149 13		239	1 10426	
2524	C ₈ H ₇ NS C ₈ H ₇ NS	m-Tolyl isothiocyanate	149 13		245		
$2525 \\ 2526$	C ₈ H ₇ N ₈ O ₄	p-Tolyl isothiocyanate 2, 3-Dinitroacetanilide	149 13	26	237	1 08725	
2527	C ₈ H ₇ N ₂ O ₄	2, 4-Dinitroacetamide	225 08 225 08	186 120			
2528	C4H7N4O4	2, 6-Dinitroacetandide	225 08	197		1	
2529	CoH7NaOb	3, 4-Dinitroacetanilide	225 08	144			
2530	CaH7NaOs	3, 6-Dinitroacetanilide	225 08	121			ì
2531	CaH7NaO6	3, 4, 5-Trinitro-o-xylene	241 08	115			
2532	C ₈ H ₇ N ₂ O ₆	3, 4, 6-Trinitro-o-xylene	241 08	72	1		
2533	C ₈ H ₇ N ₈ O ₆	2, 4, 5-Trimtro-m-xylene	241 08	90	İ		
2534	C ₈ H ₇ N ₂ O ₆	2, 4, 6-Trinitro-m-xylene	241 08	181 5	l		1
2535	C ₈ H ₇ N ₈ O ₆	4, 5, 6-Trinitro-m-xylene	241 08	125	l	į.	1
2536	C ₈ H ₇ N ₃ O ₆	2, 3, 6-Trinitro-p-xylene	211 08	14020		j	1
2537 2538	C ₈ H ₇ N ₈ O ₇	Ethyl picrate Styrene (Phenylethylene)	257 08 104 06	78 5	146	0 903	907
2539	C_8H_8 C_8H_8BrNO	o-Bromoacetanilide	213 99	99	110	0 100	501
2540	C ₈ H ₈ BrNO	p-Bromoacetanilide	213 99	165			
2540 1	C ₈ H ₈ Br ₂	o-Xylenedibromide o-C ₆ H ₄ (CH ₂ Br) ₂	263 89	94.5	d.	1.988	
2540 2	C ₈ H ₈ Br ₂	m-Xylenedibromide m-C ₆ H ₄ (CH ₂ Br) ₂	263 89	77	140	1 959	1
2541	C ₈ H ₈ Br ₂	p-Xylenedibromide p-C ₄ H ₄ (CH ₂ Br) ₂	263 89	144	245	2 1020	i
2542	C ₈ H ₈ ClNO	o-Chloroacetanilide	169 53	88		1	
2543	C'II CINO	m-Chloroacetanilide	169 53	72 5			
2544	C ₈ H ₈ CINO	p-Chloroacetanilide	169 53	172 5	041	1 202	
2544.1	C ₈ H ₈ Cl ₂	o-Xylenedichloride o-C ₆ H ₄ (CH ₂ Cl) ₂	174 98	$\begin{array}{c} 55 \\ 34 \ 2 \end{array}$	241 255	1.393	
2544 2	C ₈ H ₈ Cl ₂	m-Xylenedichloride m-C ₆ H ₄ (CH ₂ Cl) ₂ p-Xylenedichloride p-C ₆ H ₄ (CH ₂ Cl) ₂	174 98 174 98	100 5	12020	1 4170	
$2545 \\ 2546$	C ₈ H ₈ Cl ₂ C ₈ H ₈ INO	p-Todoacetanilide p-CH ₃ CONHC ₆ H ₄ I	261 00	184	120		
2547	C ₈ H ₈ N ₂	Apoharmine	132 08	183			
2548	C ₈ H ₈ N ₂	1-Methylindazole	132 08		10715	1 03249 2	1129
2549	C _t H _t N ₂ OS	Benzoylthiourea CoHoCONHCSNH2	180 14	169	1		
2550	C ₈ H ₈ N ₂ O ₂	Benzoylurea C ₆ H ₆ CONHCONH ₂	164.08	200			
2551	C ₈ H ₈ N ₂ O ₂	o-Phthalic diamide o-C ₆ H ₄ (CONH ₂) ₂	164 08	220		İ	
2552	C ₈ H ₈ N ₂ O ₂	Isophthalic diamide m-C ₅ H ₄ (CONH ₂) ₂	164 08	265			ļ
2553	C ₈ H ₈ N ₂ O ₂	N-Nitrosoacetanilide	164 08 164 08	41 201			1
2554	C ₈ H ₈ N ₂ O ₂	Ricinine	180 08	93		1	1
2555 2556	C ₈ H ₈ N ₂ O ₂ C ₈ H ₈ N ₂ O ₂	o-Nitroacetanilide m-Nitroacetanilide	180 08	150.5			
2557	C ₈ H ₈ N ₂ O ₃	p-Nitroacetamide.	180 08	214			
2558	C ₈ H ₈ N ₂ O ₄	3, 4-Dinitro-o-xylene.	196 08	82			1
2559	C ₈ H ₈ N ₂ O ₄	3, 6-Dinitro-o-xylene	196 08	56			
2560	C ₈ H ₈ N ₂ O ₄	4, 5-Dinitro-o-xylene	196 08	115			1
2561	C ₈ H ₈ N ₂ O ₄	4, 6-Dinitro-o-xylene	196 08	75			1
2562	C ₈ H ₈ N ₂ O ₄	2, 5-Dinitro-m-xylene	196.08	101			
2563	C ₈ H ₈ N ₂ O ₄	4, 5-Dinitro-m-xylene	196 08	132 93		1	
2564	C ₄ H ₄ N ₂ O ₄	2, 3-Dinitro-p-xylene	196-08 196.08	147		1	
2565	C ₂ H ₂ N ₂ O ₄	2, 5-Dinitro-p-xylene	1 190,00	7-21	•	•	'

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2566	C ₄ H ₄ N ₂ O ₄	2, 6-Dinitro-p-xylene	196.08	124		1	T
256 6 1	C ₈ H ₈ N ₂ O ₆	4, 5-Dinitro-1, 2-dimethoxybenzene.	228.08	130.5	1	1.326131	1
2566 2	C ₁ H ₄ N ₄ O	4-Methoxyphenyltetrazole	128 09	228		1	1306
2567	C'H'O	Phenylacetaldehyde C ₆ H ₆ CH ₂ CHO.	120 06		194	1 027	İ
2568	C ₁ H ₁ O	o-Toluic aldehyde o-CH ₂ C ₄ H ₄ CHO	120 06		195 5	1 039	960
2569	C ₄ H ₄ O	m-Toluic aldehyde m-CH ₂ C ₂ H ₄ CHO	120 06		195.5	1.019	971
2570	C _a H _a O	p-Toluic aldehyde p-CH ₄ C ₄ H ₄ CHO.	120.06		204	1 020	814; 906
2571	С"Н"О	Acetophenone CH ₄ COC ₆ H ₅	120 06	19 7	202.3	1 026	705
2572	C _a H _a O	Coumarane	120 06		189 5	1 074	
2573	C ₁ H ₁ O ₂	Phenacyl alcohol C ₈ H ₈ COCH ₂ OH	136 06	86	İ	1 013	1
2574	CaHaO2	5-Hydroxytoluene-2-aldehyde	136.06	108 9		1	
2575	C _t H _t O ₂	4-Hydroxytoluene-3-aldehyde	136 06	55 1	21 8		
2576	(,H,O ₂	6-Hydroxytolucne-3-aldehyde	136 06	117 4			
2577	C ₈ H ₈ O ₂	3-Hydroxytoluene-4-aldehyde	136 06	54	223		İ
2578	C _h H _h O ₂	o-Methoxybenzaldehyde	136 06	35	242	1 133	745
2579	C ₄ H ₄ O ₂	m-Methoxybenzaldehyde	136 06		230	1 118	836
2580	C _B H _b O ₂	p-Methoxybenzaldehyde	136 06	2.5	247	1 123	821
2581	ChHaO2	o-Hydroxyacetophenone	136 06		213		1
2582	C ₃ H ₄ O ₂	m-Hydroxyacetophenone	136 06	95			
2583	C ₁ H ₁ O ₂	p-Hydroxyacetophenone	136 06	109			
2584	C ₁ H ₀ O ₂	Phenylacetic acid C ₆ H ₆ CH ₂ CO ₂ H	136 06	76 7	265 5	1.078*3	
2585	C ₁ H ₁ O ₂	o-Toluic acid o-CH3C6H4CO2H	136.06	102 4	259 2	1 062414 6	1157
2586	C'aHaOa	m-Toluc acid m-CH2C4H4CO2H	136.06	110 5	263	1.0544111 6	640
2587	C _B H ₄ O ₂	p-Toluic acid p-CH ₄ CO ₄ H .	136 06	176.8	275		
2588	C ₁ H ₁ O ₁	Benzyl formate HCO ₂ CH ₄ C ₆ H ₅	136 06		203 4	1.081	
2589	C ₁ H ₁ O ₂	Methyl benzoate CoHoCO2CH2	136.06	-12.5	199 6	1.094	656
2590	C ₄ H ₄ O ₂	Phenyl acctate CH ₄ CO ₂ C ₆ H ₅	136 06		195 5	1.078	610
2591	C ₈ H ₄ O ₂	o-Xyloquinone 1, 2-(CH ₂) ₂ C ₆ H ₂ O ₂ -3, 6.	136 06	55	ł		1
2592	C ₁ H ₁ O ₂	m-Xyloquinone 1, 3-(CH ₃) ₂ C ₆ H ₂ O ₂ -2, 5.	136.06	73			1
2593	C ₁ H ₄ O ₂	p-Xyloquinone 1, 4-(CH ₂) ₂ .C ₆ H ₂ O ₂ -2, 5.	136.06	125			1
2594	C ₁ H ₂ O ₁	Piperonyl alcohol	152 06	51			
2595	C ₄ H ₄ O ₄	Isovanillin 4, 3-CH ₄ OC ₆ H ₄ (OH)CHO.	152.06	116		1.196	1
2596	C ₄ H ₄ O ₄	Vanillin 3, 4-CH ₄ OC ₅ H ₄ (OH)CHO	152.06	81	285		1
2597 2598	C,H,O,	o-Hydroxymethylbenzoic acid.	152.06	120			
2599	C ₁ H ₁ O ₁	m-Hydroxymethylbenzoic acid	152.06	111	19011		
2600	$C_{\mathbf{s}}H_{\mathbf{s}}O_{\mathbf{s}}$ $C_{\mathbf{s}}H_{\mathbf{s}}O_{\mathbf{s}}$	p-Hydroxymethylbenzoic acid	152 06	181	1		1
2601	C ₁ H ₁ O ₁	o-Hydroxyphenylacetic acid	152 06	137			1
2602	$C_1H_1O_1$	m-Hydroxyphenylacetic acid	152.06	129			1
2603	C ₁ H ₁ O ₁	p-Hydroxyphenylacetic acid	152.06	148			1
2604	C ₁ H ₁ O ₁	3-Hydroxytoluene-2-carboxylic acid.	152.06	167	(1
2605	C ₁ H ₄ O ₁	4-Hydroxytoluene-2-carboxylic acid.	152.06	172.4			1
2606	C ₃ H ₄ O ₃	5-Hydroxytoluene-2-carboxylic acid 6-Hydroxytoluene-2-carboxylic acid	152 06	178			1
2607	C ₁ H ₁ O ₁	4-Hydroxytoluene-3-carboxylic acid	152.06	183			1
2608	C ₁ H ₂ O ₁	5-Hydroxytoluene-3-carboxylic acid.	152.06	152 5			1
2609	C ₁ H ₄ O ₁	6-Hydroxytoluene-3-carboxylic acid	152.06	208			
2610	C ₁ H ₁ O ₁	2-Hydroxytoluene-4-carboxylic acid.	152.06	172			}
2611	C ₁ H ₁ O ₁	3-Hydroxytoluene-4-carboxylic acid.	152.06 152.06	207		1	1
2612	C _t H _t O _t	d(l)-Mandelie acid C ₆ H ₄ CH(OH)CO ₂ H.	1	177 8			1
2613	C ₁ H ₁ O ₁	dl-Mandelic acid C ₆ H ₆ CH(OH)CO ₂ H	152.06	133		1 2014	1
2614	C ₁ H ₁ O ₂	In Mathematica (1)	152.06	118	200	1.3614	1
2615	$C_1H_1O_1$	I m Mothavuhangaia aai 1	152 06 152.06	98 100	200	1	1
2616	C ₁ H ₁ O ₁	p-Methyoxybenzoic acid	152.06	184.2	280	1 2054	1999
2617	C ₁ H ₁ O ₁	Phenoxyacetic acid C ₄ H ₄ OCH ₂ CO ₂ H	152.00	99	285 s. d.	1 3854	1333
2618	C ₁ H ₁ O ₂	Methyl salicylate HOC ₄ H ₄ CO ₂ CH ₄ .	152.06	-8.6	283 s. d. 223 3	1.184	708
ı	C ₁ H ₁ O ₁	Danamin al a catat	152.06	-0.0	283	1.104	108
2620	C ₁ H ₁ O ₄	Distance autombone	168.06	284	200	1	1
	C ₁ H ₁ O ₄	Berberonic acid 2, 4, 5-C ₄ H ₄ N(CO ₂ H) ₁	1	285 185	1	1	
	C ₁ H ₁ O ₄	Dehydracetic acid	168.06	165	270		1
	C ₁ H ₁ O ₄	Δ¹. 4-Dihydro-o-phthalic acid	168.06 168.06	109	270	1	1
	C ₁ H ₁ O ₄	las a Dilada and a last	168.06	153 215	1	1	1
		Δ ² -Dihydro-o-phthalic acid	100,00	215	1	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
2626	C.H.O.	Homogentisinic acid	168 06	147	<u>!</u> 		No.
2627	C ₄ H ₄ O ₄	Isovanillic acid	168 06	250		İ	1
2628	C ₁ H ₁ O ₄	Vanillie acid	168.06	207	l		1
2630	C'H'O'	Methyl gallate	184.06	192 d.			1
2631	C ₄ H ₄ O ₄	Tetramethylene-1, 1, 2, 2-tetracarboxylic					
0499	C _s H _s Br	o-Xylyl bromide	232 06	203	ŀ	l	1
$2632 \\ 2633$	C _a H _a Br	4-Bromo-o-xylene	184 99	21	217 7	1 38123	
2634	C _s H _s Br	m-Xylyl bromide	184 99	0.2	214.5	1 369	740
2635	C _a H _a Br	2-Bromo-m-xylene	184 99		215 8 s. d	1.371*3	
2636	C ₆ H ₆ Br	4-Bromo-m-xylene	184 99	> - 10	206		1
2637	C ₈ H ₉ Br	5-Bromo-m-xylene	184 99 184 99	> 00	207		1
2638	C ₄ H ₄ Br	p-Xylyl bromide	184 99	> -20	204 220 7	1 362	1
2639	C ₈ H ₉ Br	2-Bromo-p-xylene	184 99	10	205 7	1 324 1 356	735
2640	C ₀ H ₀ Cl	o-Xylyl chloride	140 53	10	199	1 000	700
2641	C ₆ H ₉ Cl	3-Chloro-o-xylene	140 53	> -20	189 5	l	1
2642	C ₆ H ₆ Cl	4-Chloro-o-xylene	140 53	> -20	191 5	1 06921	1
2643	C ₈ H ₉ Cl	m-Xylyl chloride	140 53	"	196	. 00021	
2644	C ₆ H ₆ Cl	p-Xylyl chloride	140 53		202		
2645	C ₈ H ₉ N	2-Allylpyridine	119 08	1	190	0.959	1
2646	C ₈ H ₉ NO	o-Aminoacetophenone	135 08		252 s. d.		1
2647	C ₈ H ₉ NO	m-Aminoacetophenone	135 08	96.5	290	l	
2648	C ₈ H ₉ NO	p-Aminoacetophenone	135 08	106	295		
2649	C ₈ H ₈ NO	Acetanilide (Antifebrin)	135 08	114.2	303 8	1.214	1
2650	C _s H _s NO	Acetophenoncoxime CH ₄ C(:NOH)C ₆ H ₄	135 08	58		ŀ	1
2651	C ₈ H ₉ NO	Phenylacetamide C ₆ H ₅ CH ₂ CONH ₂	135/08	155	284		1
2652	C ₆ H ₆ NO	o-Toluic amide o-CH ₁ C ₆ H ₄ CONH ₂	135 08	138			
2653	C ₄ H ₄ NO	m-Toluic amide m-CH ₄ C ₆ H ₄ CONH ₂ .	135 08	97			
2654 2655	C _t H ₂ NO	p-Toluic amide p-CH ₄ C ₆ H ₄ CONH ₂ .	135 08	159			1
2656	CHNO	o-Acetoaminophenol .	151.08	203			
2657	C ₈ H ₉ NO ₂ C ₈ H ₉ NO ₂	m-Acetoaminophenol p-Acetoaminophenol	151 08 151 08	149 168			1
2658	C ₁ H ₁ NO ₂	dl-Aminophenylacetic acid.	151.08	256	265		1
2659	C ₈ H ₉ NO ₂	Homoanthranilic acid	151 08	177 d.	200	1	
2660	C ₈ H ₉ NO ₂	N-Methylanthranilic acid	151 08	179	!	1	
2661	C ₈ H ₉ NO ₂	dl-Phenylaminoacetic acid	151.08	127			
2662	C ₈ H ₉ NO ₂	Benzyl carbamate CoHoCH2CO2NH2 .	151.08	86			
2663	CallaNO2	Ethyl nicotinate	151 08		105*	l	1
2664	€8H9NO2	Methyl o-aminobenzoate	151 08	8.2; 24 3	135.514	1.16815	
2665	C ₈ H ₉ NO ₂	Methyl p-aminobenzoate	151.08	112		1	
2666	C ₈ H ₉ NO ₂	3-Nitro-o-xylene	151.08		250 8	1.14715	
2667	C ₈ H ₉ NO ₂	4-Nitro-o-xylene.	151.08	30	258	1.139**	
2668	C ₅ H ₉ NO ₂	2-Nitro-m-xylene	151.08		225 5	1.11218	1
2669	C ₈ H ₉ NO ₂	4-Nitro-m-xylene	151 08	2	246	1.12617.6	1
2670	C ₃ H ₉ NO ₂	5-Nitro-m-xylene	151 08	71	273 7	1 1000	1
2671	C ₈ H ₉ NO ₂	2-Nitro-p-xylene	151.08		239 9	1.13218	1
2672	C ₈ H ₉ NO ₂	α-Anisaldoxime CH ₄ OC ₆ H ₄ CH:NOH	151.08	64		1	1
2673	C ₈ H ₂ NO ₂	β-Anisaldoxime CH ₂ OC ₆ H ₄ CH·NOH	151.08	133 129	ŀ	1	
2674	C ₄ H ₂ NO ₂	o-Methoxybenzamide	151.08 151.08	162.3	1	1	
2675	C ₈ H ₉ NO ₂	p-Methoxybenzamide	167.08	8.5	274 d.	l	1
2676 2677	C.H.NO.	3-Nitro-4-methoxytoluene. o-Nitrophenetol o-C ₂ H ₄ OC ₆ H ₄ NO ₂	167.08	"."	268	1.1901	718
2678	C ₈ H ₉ NO ₂ C ₉ H ₉ NO ₂	p-Nitrophenetol p-C ₂ H ₄ OC ₆ H ₄ NO ₂	167.08	60	283		'''
2679	C _s H _s NO _s	Methyl 3-hydroxy-4-aminobenzoate.	167.08	120		1	
2680	C ₈ H ₉ NO ₂	Methyl 3-mydroxy-4-annholensoate.	167.08	143		1	1
2681	C _a H _a NO ₄	Biliverdic acid	183.08	114		1	1
2682	C ₈ H ₉ NS	Thioacetanilide CH ₄ CSNHC ₅ H ₅	151.14	75	d.		
2682.1	C ₈ H ₈ N ₅ O ₄	2. 4-Dinitrodimethylaniline	221.09	87		1.476	
2683	C ₂ H ₁₀	Ethylbenzene C.H.CH,CH,	106.08	-92.8	136.5774.7	0.868	577
2684	C ₈ H ₁₀	o-Xvlene o-C ₆ H ₄ (CH ₄) ₂	106.08	-27.1	144	0.879	626
2685	C ₈ H ₁₀	m-Xylene m-C ₆ H ₄ (CH ₁) ₂	106.08	-53 6	139.0	0.865	584
2686	C ₀ H ₁₀	p-Xylene p-C ₆ H ₄ (CH ₁) ₁	106.08	13.2	137.7	0.861	573
2687	C ₈ H ₁₀ ClN	o-Chlorodimethylaniline.	155.54	1	208.5	1.107	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
2688	C ₈ H ₁₀ CIN	p-Chlorodimethylaniline	155 54	35.5	231	ı	1
2689	C _n H ₁₀ N ₂ O	N-Acetyl-o-phenylenediamine	150.09	144.8		İ	1
2690	C3H10N2O	N-Acetyl-m-phenylenediamine	150.09	279		1	1
2691	C.H.10 N.2O	N-Acetyl-p-phenylenediamine	150.09	160.5			1
2692	C4H10N2O	Benzylurea C ₆ H ₆ CH ₂ NHCONH ₂	150.09	147.5		1	
2693	ChH10N2O	Hydracetine CH2COHN.NHC4H4	150.09	128			
2694	C ₈ H ₁₀ N ₂ O	1-Methyl-1-phenylurea	150 09	82		Į.	
2 695	C ₄ H ₁₀ N ₂ O	p-Nitrosodimethylamline	150 09	85	17404	1	
2096	C ₈ H ₁₀ N ₂ O ₂	o-Nitrodunethylandine	166 09		15424	1.179	
2697	C4H10N2O2	m-Nitrodimethylamline	166 09	66	285	1 31317	
2698	CaH ₁₀ N ₂ O ₂	p-Nitrodimethylaniline	166 09	163			
2699	C _h H ₁₀ N ₂ O ₃	3-Amino-4-methoxy-6-mitrotoluene	182 09	131 5		1	
2700	C ₈ H ₁₀ N ₂ S	Benzylthourea CoHoCH2NHCSNH2.	166 16	162 237		1.23	
2701	C ₅ H ₁₆ N ₄ O ₂	Caffeine (Theine)	194 11	320 d.		1.20	
2702	C ₄ H ₁₀ N ₄ O ₄	1, 3, 9-Trimethyluric acid	210 11	340 d.			i i
2703	C ₀ H ₁₀ N ₄ O ₃	1, 7, 9-Trimethyluric acid	210.11 210.11	380			
2704	C ₃ H ₁₀ N ₄ O ₄	2, 7, 9-Trimethyluric acid	122 08	75	218		
2705	C ₃ H ₁₀ O	2, 3-Dimethylphenol	122 08	26	211 5	1.036	
2706	C ₃ H ₁₀ O	2, 4-Dimethylphenol	122 08	49	212	1.000	1
2707 2708	(',H ₁₀ () (',H ₁₀ ()	1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	122 08	65	225 1		1
2709	C ₈ H ₁₀ O	3, 4-Dimethylphenol	122 08	68	219 5		ı
2710	C ₈ H ₁₀ O	o-Ethylphenol	122 08	>-18	207 5	1.037°	
2711	CaH ₁₀ O	m-Ethylphenol	122 08	-4	214	1.0250	
2712	C ₄ H ₁₀ O	p-Ethylphenol	122 08	46	219	1.020	
2713	Call toO	Methylphenyl carbinol	122 08	10	205	1.00325	
2713.1	C ₈ H ₁₀ O	d-Methylphenyl carbinol	122 08		10018	1.014	668
2714	C _a H ₁₀ O	2-Phenylethyl alcohol C.H.CH2CH2OH	122 08	1	221	1 02415	677
2715	C ₈ H ₁₀ O	o-Tolyl carbinol o-CH ₄ C ₅ H ₄ CH ₂ OH	122 08	34	223.3	1.02340	1
2716	C _h H ₁₀ O	m-Tolyl carbinol m-CH ₂ C ₆ H ₄ CH ₂ OH.	122.08	>-20	217	1.0360	
2717	C ₈ H ₁₀ O	p-Tolyl carbinol p-CH ₃ C ₅ H ₄ CH ₂ OH.	122.08	59.5	217		1
2718	C _I H ₁₀ O	Benzyl methyl ether CoHoCH2OCH2	$122 \ 08$	1	174	0 98720	1
2719	C _n H _{in} O	o-Cresyl methyl ether o-CH ₂ C ₆ H ₄ OCH ₂	122.08	}	171 3	0.981	619
2720	C _B H ₁₀ O	m-Cresyl methyl ether	$122 \ 08$		177 2	0.9784	627
2721	C ₈ H ₁₀ O	p-Cresyl methyl ether	122 08		176 5	0.970	646
2722	C ₈ H ₁₀ O	Phenetol C ₆ H ₄ OC ₂ H ₅	122.08	-30 2	172	0.965	633
2723	CaH10O2	Anis alcohol p-CH ₂ OC ₆ H ₄ CH ₂ OH	138.08	45	258.8	1.10926	1
2724	CaH ₁₀ O ₂	Caffeol	138 08		197		
2725	C8H10O2	Creosol 3, 4-CH ₃ O(OH)C ₆ H ₃ CH ₂	138.08	5 5	221.8	1 092	709
2726	C ₈ H ₁₀ O ₂	3, 5-Dimethyl-o-dihydroxybenzene	138 08	74			
2727	CaH toO2	4, 5-Dimethyl-o-dihydroxybenzene	138.08	82		Ì	
2728	C ₈ H ₁₀ O ₂	2, 4-Dimethylresoremol	138.08	150		ļ	1
2729	C ₈ H ₁₀ O ₂	2, 5-Dimethylresorcinol	138.08	163	280	1	1
2730	C ₈ H ₁₀ O ₂	1, 5-Dunethylresorcinol	138.08	137	070	1	1
2731	C _B H ₁₀ O ₂	4, 6-Dimethylresoreinol	138 08	125	279	}	1
$2732 \\ 2733$	C ₃ H ₁₀ O ₃	2, 3-Dimethylhydroquinone 2, 5-Dimethylhydroquinone	138.08	221 s. d.			
2734	C ₈ H ₁₀ O ₂ C ₈ H ₁₀ O ₂	1	138 08 138 08	213 151			1
2735	C ₈ H ₁₀ O ₂	2, 6-Dimethylhydroquinone	138 08	105			1
2736	C ₁ H ₁₀ O ₂	Styrolene alcohol HOCH ₂ CH ₂ OC ₅ H ₅	138 08	68	274 2	1	
2737	C ₈ H ₁₀ O ₂	o-Dimethoxybenzene o-C ₆ H ₄ (OCH ₄) ₂ .	138 08	22 5	206	1 08618	
2738	C.H 10O2	o-Ethoxyphenol o-HOC. H4OC. H4	138 08	28	241	1	
2739	C ₈ H ₁₀ O ₂	Hydroquinone dimethyl ether	138.08	56	212.6	1 05355	1
2740	C ₈ H ₁₀ O ₂	Hydroquinone monoethyl ether	138 08	66	247		
2741	C,H10O,	Resorcinol dimethyl ether	138 08	-55 3	215	1 0804	1
2742	C ₈ H ₁₀ O ₂	Resorcinol monoethyl ether .	138 08	1	247		1
2743	C ₈ H ₁₀ O ₂ S	Ethylphenylsulfone C ₂ H ₆ SO ₂ C ₆ H ₆ .	170.14	42	>300	1.01022	1
2744	C ₈ H ₁₀ O ₃	3-Methoxy-4-hydroxybenzyl alcohol	154.08	115	d.		
2745	C ₈ H ₁₀ O ₃	Crotonic anhydride	154.08		247.8	1.040	520
2746	C ₈ H ₁₀ O ₄	Δ¹-Tetrahydro-φ-phthalic acid	170.08	120		ŀ	
2747	C4H10O4	Δ'-Tetrahydro-o-phthalic acid	170.08	215			
2748	C8H10O4	Diallyl oxalate C ₂ O ₄ (C ₂ H ₅) ₂	170 08		217	1.055	1
2749	C.H 10O4	Dimethyl muconate (CH:CH.CO ₂ CH ₂) ₂	170.08	75 u.; 156 st.		1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
2750	C ₀ H ₁₀ O ₀	Succinic peroxide	234 08	127 d.			No.
2751	C ₆ H ₁₁ BrN ₄ O ₂	Caffeine hydrobromide	275 03	127 (1.		1	1333
2752	C ₄ H ₁₁ ClN ₂ O	p-Nitrosodimethylaniline hydrochloride	186 56	177			1000
2753	C ₄ H ₁₁ ClN ₄ O ₂	Caffeine hydrochloride.	230 58	1	1		1338
2753.1	C ₀ H ₁₁ ClO ₄	Ethyl chloromaleate	206 54		125 510	1 191**	.000
2754	C ₀ H ₁₁ Cl ₂ O ₆	α-Chloralose	309 46	230	1200	1	
2755	C ₈ H ₁₁ I ₈ N ₄ O ₂	Caffeine triiodide	575 91	171			
2756	C ₆ H ₁₁ N	Dimethylaniline C ₆ H ₆ N(CH ₂) ₂	121 09	1 67	193 50	0 956	771
2757	C ₈ H ₁₁ N	2, 3-Dimethylaniline	121 09	>15	223 8	0 992	756
2758	C ₈ H ₁₁ N	2, 4-Dimethylaniline	121 09		216	0 974	744
2759	C ₈ H ₁₁ N	2, 5-Dimethylaniline	121 09	15.5	217	0 98011	968
2760	C ₆ H ₁₁ N	2, 6-Dimethylaniline	121 09		216 9	0 979	748
2761	C ₈ H ₁₁ N	3. 4-Dimethylanilme	121 09	49	226	1.076	
2762	C ₈ H ₁₁ N	3, 5-Dimethylaniline	121 09		221	0.972	742
2763	C ₈ H ₁₁ N	N-Ethylaniline C ₄ H ₅ NH,C ₂ H ₅	121 09	-63 5	204 72	0 963	739
2764	C _B H ₁₁ N	o-Ethylaniline o-C ₂ H ₄ C ₅ H ₄ NH ₂	121 09		216	0 98311	
2765	C ₈ H ₁₁ N	m-Ethylandine m-C2H4C6H4NH2	121 09	1	215	0 9900	
2766	$C_8H_{11}N$	p-Ethylaniline p-C ₂ H ₄ C ₆ H ₄ NH ₂	121 09	-5	216 5	0 975**	
2767	C ₈ H ₁₁ N	Methyl-o-toluidine CH ₄ C ₆ H ₄ NCH ₃	121 09		207	0.977	750
2768	$C_8H_{11}N$	Methyl-m-toluidine	121 09		206		}
2769	C ₈ H ₁₁ N	Methyl-p-toluidine p-CH ₃ C ₆ H ₄ NHCH ₂	121 09	İ	206		
2770	C ₅ H ₁₁ N	α-Phenylethylamine C ₆ H ₄ CH(NH ₂)CH,	121 09		187 4	0 94014	
2771	C ₈ H ₁₁ N	ω-Phenylethylamine C ₆ H ₅ CH ₂ CH ₂ NH ₂	121 09		198 2	0 95824 4	761
2772	C _b H ₁₁ N	2-Isopropylpyridine	121 00		159	0 9340	1
2773	C ₆ H ₁₁ N	4-Isopropylpyridine	121 09		178	0 9440	
2774	C ₈ H ₁₁ N	2-Methyl-5-ethylpyridine	121 09		174	0 918**	
2775	C ₈ H ₁₁ N	Nicotoine	121 09		208	0 955	643
2776	C ₆ H ₁₁ N	2-Propylpyridine (Conyrine)	121 09		165		1
2777	C ₆ H ₁₁ N	2, 3, 4-Trimethylpyridine	121 09		188	0 913	
2778	C ₁ H ₁₁ N	2, 4, 5-Trimethylpyridme	121 09		168	0 966	
2779	$C_{\bullet}H_{11}N$	2, 4, 6-Trinethylpyridine	121 09	1	172	0 91716	
2780	C ₈ H ₁₁ NO	Hydroxyethylaniline	137.09	l	286	1 1100	
2781	C ₁ H ₁₁ NO	o-Dimethylaminophenol	137 09	45	200		
2782	C ₁ H ₁₁ NO	o-Ethylaminophenol o-HOC ₆ H ₄ NHC ₂ H ₄	139.09	107 5		1	
2783	C ₁ H ₁₁ NO	m-Ethylaminophenol	137 09	62	17612		1
2784	C ₅ H ₁₁ NO	3-Amino-2-methoxytoluene	137 09	1	223		
2785	C ₄ H ₁₁ NO	5-Amino-2-methoxytoluene	137.09	53			
2786	$C_sH_{11}NO$	o-Phenetidine o-NH2C6H4OC2Hb	137 09	> -21	229 2		
2787	C'sH ₁₁ NO	m-Phenetidine m-NH ₂ C ₆ H ₄ OC ₂ H ₅	137.09	1	248		
2788	C ₈ H ₁₁ NO	p-Phenetidine p-NH ₂ C ₆ H ₄ OC ₂ H ₆	137.09	2.4	254.2	1 061	
2789	C ₈ H ₁₁ NO	Dimethylaniline oxide C6H5N(CH3),O	137 09	153	}		ļ
2790	C ₈ H ₁₁ NO	Tyramine p-HOC ₆ H ₄ CH ₂ CH ₂ NH ₂	137 09	161	1		1
2791	C ₈ H ₁₁ NO ₈ S	m-Dimethylanilinesulfonic acid	201 16	266 d.			1
2792	C ₁ H ₁₁ NO ₄ S	p-Dimethylanilinesulfonic acid	201 16	257	1		1
2793	C,H11NO,8	m-Ethylaniline sulfonic acid	201 16	294 d.			j
2794	C ₈ H ₁₁ N ₈ O	Maretin m-CH ₁ .C ₆ H ₄ NH.NHCONH ₂	165.11	184	1	1	1
2795	C ₈ H ₁₂	Dihydro-o-xylene	108.09		135		1
2796	C ₈ H ₁₂	$\Delta^{1.5}$ -5-Dihydro-m-xylene.	108 00		130	0 823	497
2797	C ₈ H ₁₂	$\Delta^{1,3}$ -3-Dihydro- p -xylene.	108 09		135 6	0.830	529
2798	C ₈ H ₁₂ ClN	ω-Phenylethylamine hydrochloride	157 56	217			1
2799	C.H.12N2	Dimethylketine	136.11	86	189		
2800	C ₈ H ₁₂ N ₂	1, 1-Dimethyl-m-phenylenediamine	136.11		258	0 99525	
2801	C.H.2N2	1, 1-Dimethyl-p-phenylenediamine.	136.11	41	262.3	1.036	1
2802	C ₈ H ₁₂ N ₂	2, 6-Dimethylphenylhydrazme	136.11	46	1		
2803	C4H12N2	1-Ethyl-1-phenylhydrazine	136.11		237	1.01816	1
2804	C ₈ H ₁₂ N ₂	1-Ethyl-2-phenylhydrazine	136 11		240		
2805	C,H12N2O2	Phenylhydrazine acetate	168 11	69	1		İ
2806	C.H., N.O.	n-Butylbarbituric acid	184.11	215			1
2807	C ₁ H ₁₂ N ₂ O ₃	1, 3-Diethylbarbituric acid	184.11	52	16719		
2808	C.H., N.O.	5, 5-Diethylbarbituric acid	184 11	191			
1	C,H12N2O4	Tetraacetylhydrazine [(CH ₄ CO) ₂ N] ₂ .	200.11	86	1		1203
1	C _B H ₁₂ O	Amylpropiolic aldehyde.	124.09		187	0.89	
		Ethyl sorbate CH ₄ (CH:CH) ₂ CO ₂ C ₂ H ₄ .	140.09		76.512	0.936	608

No.	Formula	Name	Mol. wt	. М. Р.	В. Р.	d	R. 1.
2811	C ₄ H ₁₂ O ₄	Terpenylic acid .	172 09	89			
2812	C4H12O4	Diethyl fumarate (.CHCO2C2H4)2.	172 09	0.6	218.5	1.052	222
2813	C ₈ H ₁₂ O ₄	Diethyl maleate (CHCO ₂ C ₂ H _b) ₂ .	172 09		225	1.067	377
2814	$C_4H_{12}O_4$	Ethyl diacetoacetate	172.09		211 s. d.	1.09	37.5 492
$\frac{2815}{2816}$	C ₈ H ₁₂ O ₄	Dimeric diacetyl	172.09	58	1	1.56029.0	1 493
2816 1	$C_8H_{12}O_8$	Ethyl oxalacetate	188 09	1	13224	1.172	90.5
2817	I C ₈ H ₁₃ BrO ₄ C ₈ H ₁₃ N	Diethyl bromorsosuccinate	253 02	1	12213	1 318325	00.5
2818	Callin	Granatic acid Tropidine	123 11	270		1	1
2819	CHuNO	Tropiane	123,11	1	163	0.946	946
2820	CallaNO,	Arecoldine	139.11	41	218 5	0.987***	1111
2821	Callin NO.	Arccoline	155.11	110		ļ	
2822	CaHiaNO2	Scopoline	155.11		220		
2823	CaH ₁₃ N ₃ O ₂	Immodethylbarbiture acid	155 11 183 12	110	243	1.016404	
2824	C _b H ₁₄	n-Hexylacetylene C ₆ H ₁₁ C;CH	110 11	295	1		
2825	C ₃ H ₁₄	d-Laurolene	110 11	1	125	0.770	818
2826	CaH14	Methyl-n-amylacetylene	110.11		120.5	0 797	397
2827	C ₈ H ₁₄	1, 2, 3, 4-Tetrahydro-m-xylene	110 11	İ	134		
2828	C ₃ H ₁₄ BrNO ₂	Arecoline hydrobromide	236 03	168	124	0 801	398
2829	ChHuCINO2	Arecolidine hydrochloride	191 57	98	250 d.		
283()	C _i H ₁₄ O	1, 1-Dimethylevelohexene-3-ol	126 11	"	7516	0.022	
2831	C _a H ₁₄ O	2, 2-Dimethylevelohexanone	126 11	1	172 5	0 933	926
2832	C _i H ₁₄ O	2, 6-Dunethyleyclohexanone	126 11		55 310	0.913 0 914	426
2833 2834	C ₃ H ₁₄ O	Crotonyl ether (CH ₃ CH,CHCH ₂) ₂ O,	126 11		145	0.8900	813
2835	C _B H ₁₄ O	2-Methyl-2-heptene-6-one	126 11	-67 3	174	0.860	
2836	C _n H ₁₄ () C _n H ₁₄ () ₂	Homomesityl oxide	126 11	1	160625	0 863	406
837	C ₈ H ₁₄ O ₂	Allyl isovalerate C ₄ H ₉ CO ₂ C ₃ H ₅	142.11		155	000	100
838	C ₈ H ₁₄ O ₂	Cyclohexyl acetate CH ₂ CO ₂ C ₅ H ₁₁	142 11		177		1
839	C ₈ H ₁₄ O ₈	Methyl hexahydrobenzoate Dialdan	142 11		183	0 9954	
840	C _i H _{ii} O _i	n-Butyric anhydride (C ₄ H ₂ CO) ₂ O	158-11	130		1	
841	$C_8H_{14}O_8$	Isobutyric anhydride $[(CH_3)_2CHCO]_2O$	158 11	-75 0	198 2	0 969	
842	$C_sH_{1s}O_s$	1-Ethyl-3-acetylbutyric acid	158 11	-53.5	182.5	0 950]
843	$C_{i}H_{1i}O_{4}$	n-Amylmalonic acid C _b H ₁₁ CH(CO ₂ H) ₂	158 11		1589		
844	$C_8H_{14}O_4$	2, 2'-Dimethyladipic acid	174 11	82	140 d.	l	1
	$C_8H_{14}O_4$	Suberic acid HO ₂ C(CH ₂) ₆ CO ₂ H.	174.11 174.11	76	321	ļ	
	C ₆ H ₁₄ O ₄	Diethyl methylmalonate	174.11	140	279100		
	C ₈ H ₁₄ O ₄	Diethyl succinate (CH,CO,C,H,),	174 11	-20 8	201 4	1 018	203
	C _B H ₁₄ O ₄	Di-n-propyl oxalate (CO ₂ C ₂ H ₇) ₂	174 11	20 8	216 5 211	1.042	246
	C ₁ H ₁₄ O ₄	Ethyl isopropyl malonate	174.11		211 217 d.	1 01822	
	C ₈ H ₁₄ O ₈	Diethyl malate	190 11		253	$0.987_{28}^{28} \\ 1.128$	955
	C ₈ H ₁₄ O ₈	Diethyl d-tartrate [CH(OH)CO ₂ C ₂ H ₅] ₂ .	206.11	17	280	1 202	355 421
	C ₈ H ₁₈ ClO C ₈ H ₁₈ N	Caprvl chloride C ₇ H ₁₅ COCl	162 57		196	0 975*	421
	C _a H ₁₆ N	n-Caprylonitrile C ₇ H ₁₆ CN	125.12		200	0 82014 3	
	CaH ₁₆ N	α-Coniceme β-Coniceme	125.12	-16	158	0 89316	
	C ₈ H ₁₈ N	γ-Conceine	125.12	41	169		
	C _b H _{1b} N	δ-Coniceine	125.12	> -50	172	0 872	945
	C ₈ H ₁₈ N	Granatinne	125 12		161 5	0 9014	1
	C ₈ H ₁₈ N	Pseudoconiceine	125 12	60	}		1
59 C	C _B H ₁₈ N	Tropane	125 12		172	0 878	
60 6	C _B H ₁₈ NO	Granatoline	125 12	124	167	0 930	975
	C _B H ₁₅ NO	Hygrine .	141 12 141 12	134	105		
	C ₈ H ₁₈ NO	Pelletierine	141.12	!	195	0.935	1
	C _b H ₁₅ NO	Pseudotropine	141 12	108	195 d.	0 9880	
	CaH ₁₆ NO	Tropine	141 12	63	243	1 010100	
	Callia	Cyclooctane (CH ₂),	112.12	14 4	233 150 6	1.016400	1146
	CaH ₁₄	Dusobutylene (CH ₄) ₂ C;CHC(CH ₅),	112 12	***	102 6	0 839 0.715 ¹⁴	
67 0 68 0	C ₈ H ₁₆	σ-Dimethylcyclohexane	112 12	-57 5	1	0.715	217
69	CaH ₁₆ CaH ₁₆	m-Dimethylcyclohexane	112 12	-85	i	0.779	317 288
	. aff (6 . 'aff 16	p-Dimethylcyclohexane	112 12	-86		0.769	257
	CaH16	Ethylcyclohexane C ₄ H ₄ , C ₆ H ₄₁ 2-Methyl-3-ethyl-2-pentene	112 12		128		a-01
			112.12				

No.	Formula	, Name	Mol. wt.	M. P	В. Р.	d	R. I.
2872	C ₀ H ₁₀	2-Methyl-2-heptene (CH ₂) ₂ C:CHC ₄ H ₉ .	112 12		-		No.
2873	C ₆ H ₁₆	4-Methyl-3-heptene	112 12		125.2 120-4	0 816 0.724	310
2874	C ₈ H ₁₆	n-Octylene CH ₂ (CH ₂) ₃ CH:CH ₂	112 12		123	0.724	219
2875	C ₆ H ₁₆ BrNO	Pelletierine hydrobromide	222 05	140	1 2.7	0 122	1
2876	C ₄ H ₁₄ ClNO	Pelletierine hydrochloride	177 59	145			ı
2877	C ₁ H ₁₆ N ₂ O ₄	Ethylidene diurethane	201 14	126			-
2878 2879	C ₈ H ₁₆ O C ₈ H ₁₆ O	1, 2-Dimethylcyclohexanol	128 12		166	0 92614	834
2880	C ₈ H ₁₆ O	d-1, 3-Dimethyleyclohexanol	128 12	72	6914		1
2881	C ₈ H ₁₆ O	dl-1, 3-Dimethyleyclohexanol	128 12		169	0.91114	832
2882	C ₄ H ₁₆ O	1, 4-Dimethylcyclohexanol	128-12	50	170	1	
2883	C ₈ H ₁₆ O	2, 2-Dimethyleyclohexanol 2, 4-Dimethyleyclohexanol	128 12	8	72 20	0 923	496
2884	C ₀ H ₁₆ O	2, 5-Dimethylcyclohexanol	128 12		179	0 912	888
2885	C ₆ H ₁₆ O	2, 6-Dimethylcyclohexanol	128 12		178 5	0.907	887
2886	C ₈ H ₁₆ O	3, 3-Dimethylcyclohexanol	128 12		171 7		ŀ
2887	C ₈ H ₁₆ O	3, 4-Dimethylevelohexanol	128 12	11	99.5%	0 9134	468
2888	C ₈ H ₁₆ O	cis-3, 5-Dimethyleyclohexanol	128 12		189/2	0 907	889
2889	C _b H ₁₀ O	trans-3, 5-Dimethylevelohexanol	128 12		185	0 911	447
890	C ₈ H ₁₆ O	2-Methyl-2-heptene-6-ol	128 12		187 5	0 90214	463
891	C ₈ H ₁₆ O	Isoamyl allyl ether	128 12		176	0 854	434
892	C ₆ H ₁₆ O	n-Caprylic aldehyde C ₇ H ₁₀ CHO	128 12		120		
893	C ₈ H ₁₆ O	Ethyl n-amyl ketone C ₂ H ₃ COC ₈ H ₁₁	128 12 128 12		8132	0 821	261
894	C ₈ H ₁₆ O	Ethyl isoamyl ketone	128 12		168	0 850°	1
895	C ₈ H ₁₆ O	Methylbutyrone.	128 12		163 5		1
896	C ₈ H ₁₆ O	Methyl hexyl ketone CH ₂ COC ₆ H ₁₂	128 12	91.0	180	0 82716	
897	C _b H ₁₆ O	Methyl isohexyl ketone	128 12	- 21 6	172 7	0 818	225
898	C8H16O	Propyl isobutyl ketone	128 12		204 155	0 817	
899	C ₈ H ₁₆ O ₂	n-Caprylic acid CH ₂ (CH ₂) ₅ CO ₂ H	111 12	16	237 5	0 813	1000
900	C ₈ H ₁₆ O ₂	Triethylacetic acid (C ₂ H ₆) ₂ CCO ₂ H	141 12	39.5	202	0 910	296
901	C ₈ H ₁₆ O ₂	Isoamyl propionate	144 12	0.7 .7	160 2	0 870	163
901.1	C ₈ H ₁₆ O ₂	d-β-Amyl propionate	144 12		5816	0.866	133
902	C8H16O2	tertAmyl propionate	111 12		143.5	0 85515	100
903	C ₈ H ₁₆ O ₂	Butyl n-butyrate C ₄ H ₇ CO ₂ C ₄ H ₉	144 12		166 1	0 87220	148
904	C8H16O2	Isobutyl n-butyrate	141 12		156 9	0 86616	140
905	C8H16O2	Isobutyl isobutyrate	144 12	-80-7	148 7	0 875	120
906	C8H16O2	tertButylethyl acetate	144-12		157		1
907	$C_8H_{16}O_2$	Ethyl n-caproate C _b H ₁₁ CO ₂ C ₂ H ₅	144-12		166-6	0 8754	
908	(,8H16()2	Heptyl formate HCO2(CH2)6CH1	144 12		176 7	0 8949	
909	$C_8H_{16}O_2$	n-Hexyl acetate CH2CO2(CH2)5CH2	144 12		169 2	0 8900	
909.1	C8H16O2	d-β-Hexyl acetate	144-12		5720	0.864	139
910	$C_8H_{16}O_2$	Methyl n-heptylate C _b H ₁₁ CO ₂ CH ₃	144 12		172 1	0 88118	187
911	$C_8H_{16}()_2$	n-Propyl n-valerate C ₄ H ₉ CO ₂ C ₃ H ₇	141 12		167 5	0 8899	
912	C ₈ H ₁₆ O ₂	n-Propyl isovalerate .	144-12		155-9	0 863	141
	$C_8H_{16}O_3$	1-Hydroxy-n-caprylic acid	160 12	69 5			
	C ₈ H ₁₆ O ₂	Amyl l-lactate CH2CH(OH)CO2C4H11	160 12		110 521 5	0 9644	
	C ₈ H ₁₆ O ₄	Metaldehyde (C2H4O)4	176 12		150		1172
	C ₈ H ₁₆ O ₄	Paraldol (C ₄ H ₈ O ₂) ₂	176 12	82	1		
	C ₈ H ₁₆ O ₄	Bismethoxyacetal	176 12	127			1238
	C ₈ H ₁₆ O ₆	Dambonite (Inosite dimethyl ether).	208 12	195	210		
918 919	C ₈ H ₁₆ O ₆	2, 3-Dimethyl-α-glucose	208 12	87		1	
	C ₈ H ₁₆ O ₆	2, 3-Dimethyl-β-glucose	208 12	110		1	1
	C ₈ H ₁₆ O ₆	d, \alpha-Ethylglucoside	208 12	114			1197
. 1	C ₈ H ₁₆ O ₇	Ethyl d-gluconate.	224 12	65			1
	C ₈ H ₁₇ Br	n-Octyl bromide CH ₂ (CH ₂) _h CH ₇ Br	193 05		204	1.11616	
	C ₀ H ₁₇ Br	l-2-Bromooctane	193 05		7114	1.09117	1
20	C ₈ H ₁₇ BrN ₄	Hexamethylenetetramine bromoethylate	940.00	000	1		
024	CHO	(Bromalin) .	249.08	200	104.0	0.050	
1	C ₆ H ₁₇ Cl	n-Octyl chloride CH ₂ (CH ₂) ₆ CHCl	148 59		184.6	0.87915	
,	C ₈ H ₁₇ Cl	2-Chlorooctane C ₆ H ₁₂ CHClCH ₂	148 59		173	0.87115	
1	C ₈ H ₁₇ F	n-Octyl fluoride CH ₂ (CH ₂) ₆ CH ₂ F	132 13	47.0	142.5	0 81214 1	94
	C ₈ H ₁₇ I	n-Octyl iodide CH ₂ (CH ₂) ₆ CH ₂ I	240.06	-45 9	225.5	1.3414.5	549
1	C ₄ H ₁₇ N	d-Contine	127.14	-2.5	166.5	0.845	978 954
	C ₈ H ₁₇ N	2, 4, 6-Trimethylpiperidine	127.14	2 .,	147	0.831	

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2942 1	CaH11NO CaH11NO CaH11NO CaH11 CaH11 CaH11 CaH11 CaH11 CaH11 CaH11 CaH11 CaH11 CaH11 CaH11 CaH11	Conhydrine (Hydroxyconiine) a-Pseudoconhydrine 1-Hydroxy-n-caprylic amide 2, 5-Dimethylhexane 2, 3-Dimethylhexane 2, 4-Dimethylhexane 3, 4-Dimethylhexane 1sooctane (CH ₁) ₂ CH(CH ₂) ₄ CH ₂ 2-Methyl-3-ethylpentane 3-Methylheptane C ₂ H ₄ CH(CH ₁)C ₄ H ₄	. 143 14 . 159 14	118 106 150 -91 0	226 236.5 109.2	0.000	No.
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942	C ₄ H ₁₇ NO ₂ C ₄ H ₁₆ C ₅ H ₁₆ C ₄ H ₁₆ C ₄ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆ C ₆ H ₁₆	1-Hydroxy-n-caprylic amide 2, 5-Dimethylhexane 2, 3-Dimethylhexane 2, 4-Dimethylhexane 3, 4-Dimethylhexane Isooctane (CH ₁) ₃ CH(CH ₂) ₄ CH ₂ 2-Methyl-3-ethylpentane	. 159 14 114 14 114 14 114 14 114 14	150	109.2	0.000	
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942	CaH10 CaH10 CaH10 CaH10 CaH10 CaH10 CaH10 CaH10 CaH10	2, 5-Dimethylhexane 2, 3-Dimethylhexane 2, 4-Dimethylhexane 3, 4-Dimethylhexane Isooctane (C'H ₂) ₂ CH(CH ₂) ₄ CH ₂ 2-Methyl-3-ethylpentane	114 14 114 14 114 14 114 14		1	0.000	
2934 2935 2936 2937 2938 2939 2940 2941 2942	C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀	2, 3-Dimethylhexane 2, 4-Dimethylhexane 3, 4-Dimethylhexane Isooctane (CH ₁) ₂ CH(CH ₂) ₄ CH ₂ 2-Methyl-3-ethylpentane	114 14 114 14 114 14	-91 0	1		1
2935 2936 2937 2938 2939 2940 2941 2942	C ₄ H ₁₄ C ₄ H ₁₆ C ₄ H ₁₆ C ₅ H ₁₆ C ₅ H ₁₆ C ₅ H ₁₆ C ₅ H ₁₆ C ₅ H ₁₆ C ₅ H ₁₆	2, 4-Dimethylhexane 3, 4-Dimethylhexane Lisooctane (CH ₁) ₂ CH(CH ₂) ₄ CH ₁ 2-Methyl-3-ethylpentane	114 14 114 14			0.693	87
2936 2937 2938 2939 2940 2941 2942	CaH10 CaH10 CaH10 CaH10 CaH10 CaH10	3, 4-Dimethylhexane Isooctane (CH ₁) ₂ CH(CH ₂) ₄ CH ₂ 2-Methyl-3-ethylpentane	114 14	ł	114 0	0.725	178
2937 2938 2939 2940 2941 2942	C ₄ H ₁₀ C ₄ H ₁₀ C ₄ H ₁₀ C ₅ H ₁₀ C ₆ H ₁₀	Isooctane (CH ₁) ₂ CH(CH ₂) ₄ CH ₁ 2-Methyl-3-ethylpentane	t		109.9	0.70813	138
2938 2939 2940 2941 2942	C ₈ H ₁₈ C ₈ H ₁₈ C ₈ H ₁₈	2-Methyl-3-ethylpentane			116 5 116 0	0.721	156
2940 2941 2942	C ₈ H ₁₀ C ₈ H ₁₀ C ₈ H ₁₀		114 14		114	0.70815	103
2941 2942	CaH1a		114 14		122 2	0.707	134
294 2		4-Methylheptane (C ₁ H ₇) ₂ CHCH ₁	114 14		118 0	0 722	114
	(C.11	n-Octane CH ₁ (CH ₂) ₆ CH ₁ .	114 14	-565	124.6	0 70716	112
2942.1		2-Ethylhexane CH ₄ (C ₂ H ₄)CHC ₄ H ₉	114 14		118 8	0 717	135
00.40	C ₀ H ₁₀	3-Ethylhexane (C ₂ H ₅) ₂ CHC ₃ H ₇	114 14		115	0 715	
2943	C _a H _{1a}	2, 2, 3, 3-Tetramethylbutane	114 14	104	106 8		
2944	C ₄ H ₁₁	2, 2, 3-Trimethylpentane	114 14		110 8	0 7221	233
2945 2946	C ₁ H ₁₄ BrN	d-Coniine hydrobromide	208 06	211			ı
2947	C _B H ₁₈ CIN C _B H ₁₈ CINO	d-Comme hydrochloride	163 61	217	1	1	
2948	C ₄ H ₁₄ IN	Pseudoconhydrine hydrochloride Comme hydroiodide	179 61	213		1	
2949	C ₂ H ₁₂ N ₂ O	Nitrosodiisobutylamine	255 08 158 16	146	001	0.000**	
2950	C ₄ H ₁₃ N ₂ O ₃	Conline nitrate	, ,	5	221	0 89326	1
2951	C _B H ₁₈ O	Dibutyl alcohol	190 16 130 14	83	181 2	0.8400	
2 952	C _B H ₁₈ O	Diethylpropyl carbinol	130 14		160 5	0 8489	339
2953	C ₁ H ₁₁ O	Dimethyl-n-amyl carbinol	130 14		162	0.879	322
2954	C _b H ₁₈ O	Dimethylisoamyl carbinol	130 14		154	0.873	254
2955	C _n H _{1n} ()	Ethylisoamyl carbinol	130.14	-61	166	0 808	247
2956	C ₄ H ₁₄ O	1-Hydroxy-2, 5-dimethylhexane	130 14		179.5	0 828	
2957	C ₁ H ₁₀ O	2-Hydroxy-2, 4-dimethylhexane	130.14		151		
2958 2959	C ₄ H ₁₄ O	4-Hydroxy-3-ethylhexane	130 14		164	0.8350	ì
2960	C _B H _{1B} O C _B H _{1B} O	2-Hydroxy-4-methylheptane	130 14		168		
2961	C ₄ H ₁₈ O	d-6-Hydroxy-3-methylheptane	130 14		169	0 817	1
2962	C ₁ H ₁₄ O	4-Hydroxy-2, 2, 4-trimethylpentane	130 14	-20	147.5	0 8420	
2 963	C ₁ H ₁₁ O	Methyl dipropyl carbinol Methylethylbutylcarbinol	130 14		161 5	0.823	297
2964	C _t H _H O	Methylethylisobutyl carbinol	130 14 130 14		160 6	0 827	298
2965	C ₄ H ₁₄ O	Methylisohexyl carbinol	130.14		152 4	0 83014	308
2966	C ₄ H ₁₄ O	n-Octyl alcohol CH ₁ (CH ₂) ₇ OH	130 14	- 16 3	172 194	0 813	274
2967	C _a H ₁₈ O	d-secOctyl alcohol C6HuCH(OH)CH,	130 14	10.5	8620	0 827 0 822	318
2968	C _B H _{1B} O	dl-secOctyl alcohol CoH12CH(OH)CH1	130 14	-38 6	178.5	0 819	279 357
2969	C _i H _{1i} O	Propylbutyl carbinol	130 14		7110	0 8382	307
2970	C _i H _{ii} O	Propylisobutyl carbinol	130 14		164	0 821	248
2971	C ₄ H ₁₄ O	Isopropylbutyl carbinol	130 14		154	0 825	249
	C ₁ H ₁₁ O C ₂ H ₁ O	Isopropylisobutyl carbinol	130 14		163	0 82015	
1	C _s H _{1s} O C _s H _{1s} O	n-Butyl other C ₄ H ₉ OC ₄ H ₉	130 14		140 9	0 76920	
	CaH ₁₀ O	Isobutyl ether [(CH ₄) ₂ CHCH ₁] ₂ O secButyl ether (C ₂ H ₅ CHCH ₄) ₂ ().	130 14		122.5	0 762	
	C _i H _{ii} O	Ethyl hexyl ether $(C_2H_4CHCH_2)_2O$. Ethyl hexyl ether $(C_2H_4OC_4H_{12})_2O$.	130 14		121	0 75621	1
	C _B H ₁₈ O	Methyl n-heptyl ether CH ₄ OC ₇ H ₁₄	130 14 130 14		137]
	C ₁ H ₁₈ O ₂ S	n-Butylsulfone (C ₄ H ₉) ₂ SO ₂ .	130.14	19 #	149-8	0 795%	1
2979	$C_{\mathbf{i}}H_{\mathbf{i}\mathbf{i}}O_{\mathbf{i}}$	Ethyl orthoacetate CH ₁ CH(OC ₁ H ₁) ₁	162 14	43 5	1.19		
2980	$C_8H_{18}O_4S_8$	Trional $C_2H_4(CH_2)C(S()_2C_2H_4)_2$	242 27	76	142	0.9422	
981	$C_8H_{19}S$	Di-n-butyl sulfide (C4H9)2S	146 20	-79 7	182	0 8520	
	CaH ₁₈ S	Diisobutyl sulfide ((CH ₂),CHCH ₂ I ₂ S.	146.20		171	0 83610	
	C ₈ H ₁₈ S	Di-secbutyl sulfide [C ₂ H ₄ CHCH ₄] ₂ S.	146 20		165	0 83211	
	C _B H ₁₀ N	Di-n-butylamine (C.H.), NH	129.15		161	"	1
	C ₁ H ₁₀ N	Diisobutylamine [(CH ₁) ₂ CHCH ₁] ₂ NH.	129.15	-70 0	138 8	0 745	180
	C _t H ₁₀ N C-H -N	n-Octylamine CaH ₁₇ NH ₂	129.15		180	0 77727	319
	CaHaaN CaHaaAsa	secOctylamine C ₂ H ₁₁ CH(CH ₂)NH ₂	129 15		164	0 771	292
	CaH20A82 CaH21NO	Ethylcacodyl (C ₁ H ₁) ₁ As ₂ (C ₁ H ₁) ₁ .	266 07		190		i
	C ₄ H ₄ O ₄	Tetraethylammonium hydroxide. Phthalonic anhydride	147 17	190 d.			1
	C ₁ H ₁ Cl ₂ N	2, 3-Dichloroquinoline	176 03	186	ļ		ĺ
	C ₁ H ₁ Cl ₁ N	2, 4-Dichloroquinoline.	197.96 197.96	105 67			l

2994 C 2995 C 2995 C 2995 C 2995 C 2996 C 2997 C 2997 C 2998 C 2998 C 2997 C 2998 C 2998 C 2997 C 2998 C	C,H,Cl,N C,H,Cl,N C,H,Cl,N C,H,Cl,N C,H,Cl,N C,H,Cl,N C,H,Cl,N C,H,Cl,C C,H,C,C C,C	5, 6-Dichloroquinoline 5, 7-Dichloroquinoline 6, 8-Dichloroquinoline 7, 8-Dichloroquinoline 7, 8-Dichloroquinoline 7, 8-Dichloroquinoline 6, 8-Dichloroquinoline 7, 8-Dichloroquinoline 6-1, 2-Dibromocinnamic acid 2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 6-Chloroquinoline 7-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chumarine Umbelliferon	197.96 197.96 197.96 197.96 197.96 216.96 216.96 216.96 163.51 163.51 163.51 163.51 163.51 163.51 163.51 164.96 216.96 351.05 174.06 174.06 174.06 174.06 174.06 174.06	85 117 93 104 85 5 100 136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137 58	124° ⁵ 138° ⁶ 275 255 5 260 4 268 262 256 288	1.251	No.
2994	C.H.Cl.N C.H.Cl.N C.H.Cl.N C.H.Br.O: C.H.Br.O: C.H.Br.O: C.H.Br.O: C.H.ClN C.H.ClO: C.H.ClN C.H.ClO: C.H.ClN C.H.ClO: C.H.ClN C.H.ClO: C.H.ClN C.H.ClO: C.H.ClN C.H.ClO: C.H.ClN C.H.ClN C.H.ClN C.H.ClN C.H.Cl	5, 8-Dichloroquinoline 6, 8-Dichloroquinoline 7, 8-Dichloroquinoline cis-1, 2-Dibromocinnamic acid trans-2, 2-Dibromocinnamic acid 2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 6-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 6-Chloroquinoline 6-Nitroquinoline 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chromone Coumarine	197 96 197 96 197 96 197 96 216 96 216 96 163 51 163 51 163 51 163 51 163 51 163 51 163 51 164 96 216 96 216 96 174 06 174 06 174 06 174 06 174 06 174 06 174 06 174 06	117 93 104 85 5 100 136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	138° * 275 255 5 260 4 268 262 256	1.251	
2996	C ₄ H ₂ Cl ₄ N C ₃ H ₄ Cl ₄ N C ₃ H ₄ Cl ₄ N C ₄ H ₄ Br ₄ O ₄ C ₄ H ₄ Br ₄ O ₅ C ₄ H ₄ ClN C ₃ H ₄ ClN C ₄ H ₄ ClN C ₄ H ₄ ClN C ₄ H ₄ ClN C ₄ H ₄ ClN C ₄ H ₄ ClN C ₅ H ₄ Cl ₅ O C ₅ H ₄ N ₅ O ₅ C ₅ H ₄ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₆ C ₆ H ₆ O ₆ C ₆ D ₆ O ₆ C ₆ H ₆ O ₆ C ₆ D ₆ O ₆ C ₆ D ₆ O ₆ C ₆ D ₆ O ₆ C ₆ D ₆ O ₆ C ₆ D ₆	6, 8-Dichloroquinoline 7, 8-Dichloroquinoline cts-1, 2-Dibromocinnamic acid trans-2, 2-Dibromocinnamic acid 2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 6-Chloroquinoline 6-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline cts-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chromone Coumarine	197 96 197 96 216 96 216 96 163 51 163 51 163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	104 85 5 100 136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	138° * 275 255 5 260 4 268 262 256	1.251	
2997	C.H.Cl.N C.H.Br.O: C.H.Br.O: C.H.Br.O: C.H.CIN C.H.CIN C.H.CIN C.H.CIN C.H.CIN C.H.CIN C.H.CIN C.H.C.O: C.H.NO.S C.H.N.O: C.H.N.O: C.H.N.O: C.H.N.O: C.H.N.O: C.H.N.O: C.H.N.O: C.H.O:	7, 8-Dichloroquinoline cis-1, 2-Dibromocinnamic acid trans-2, 2-Dibromocinnamic acid 2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline cis-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 9-Nitroquinoline Chromone Chromone Coumarine	197 96 216 96 216 96 216 96 163 51 163 51 163 51 163 51 163 51 216 96 351 05 174 06 174 06 174 06 174 06 174 06 174 04	85 5 100 136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	138° * 275 255 5 260 4 268 262 256	1.251	
2998	C ₃ H ₄ Br ₃ O ₂ C ₃ H ₄ Br ₃ O ₃ C ₃ H ₄ ClN C ₃ H ₄ ClN C ₃ H ₄ ClN C ₃ H ₄ ClN C ₃ H ₄ ClN C ₄ H ₄ ClN C ₃ H ₄ ClN C ₄ H ₄ ClN C ₄ H ₄ ClN C ₄ H ₄ ClN C ₅ H ₄ Cl ₃ O ₃ C ₄ H ₄ N ₂ O ₃ C ₅ H ₄ N ₃ O ₃ C ₅ H ₄ N ₃ O ₃ C ₅ H ₄ N ₃ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₃ C ₅ H ₄ O ₄ C ₅ H ₄ O ₄ C ₅ H ₄ O ₄ C ₅ H ₄ O ₄ C ₅ H ₄ O ₄	cts-1, 2-Dibromocinnamic acid trans-2, 2-Dibromocinnamic acid 2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 6-Nitroquinoline 6-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chromone Coumarine	216 96 216 96 163 51 163 51 163 51 163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 174 06 174 04	100 136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	138° * 275 255 5 260 4 268 262 256	1.251	
2999 6 6 6 6 6 6 6 6 6	C ₁ H ₄ Br ₃ O ₁ C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CIN C ₄ H ₄ CIN C ₅ H ₄ CIN C ₅ H ₄ CIN C ₅ H ₄ CIO C ₅ H ₄ CIO C ₅ H ₄ CIO C ₅ H ₄ CI ₂ O C ₅ H ₄ NO ₅ S C ₅ H ₆ N ₃ O ₁ C ₅ H ₆ N ₃ O ₁ C ₅ H ₆ N ₃ O ₁ C ₅ H ₆ N ₅ O C ₅ H ₆ O ₁ C ₅ H ₆ O ₂ C ₅ H ₆ O ₁ C ₅ H ₆ O ₂ C ₅ H ₆ O ₄ C ₅ H ₆ O ₆ C ₆ H ₆ O ₆ C ₆ D ₆ C ₆ D ₆ C ₆ D ₆ C ₆ D ₆ C ₆ D ₆ C	trans-2, 2-Dibromocinnamic acid 2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 6-Nitroquinoline 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chromone Coumarine	216 96 163 51 163 51 163 51 163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 174 06 174 04	136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	138° * 275 255 5 260 4 268 262 256	1.251	
2999	C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CIN C ₄ H ₄ CIN C ₃ H ₄ CIN C ₄ H ₄ CIN C ₅ H ₄ CIN C ₄ H ₄ CIN C ₅ H ₄ CI ₂ O ₅ C ₄ H ₄ N ₄ O ₅ C ₅ H ₄ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ N ₅ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₆ C ₆ H ₆ O ₆ C ₆ H ₆ O ₆ C ₆ D ₆ C ₆ H ₆ O ₆ C ₆ D ₆	2-Chloroquinoline 3-Chloroquinoline 4-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 6-Chloroquinoline cts-1, 2-Dichlorocinnamic acid trans	216 96 163 51 163 51 163 51 163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 174 06 174 04	136 38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	138° * 275 255 5 260 4 268 262 256	1.251	
8000 60	C ₁ H ₁ CIN C ₂ H ₁ CIN C ₃ H ₁ CIN C ₄ H ₁ CIN C ₄ H ₁ CIN C ₄ H ₁ CI ₂ O ₁ C ₄ H ₁ CI ₂ O ₂ C ₄ H ₁ CI ₂ O ₃ C ₄ H ₁ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₆ N ₂ O ₃ C ₄ H ₆ N ₂ O ₄ C ₄ H ₆ O ₅ C ₄ H ₆ O ₅ C ₄ H ₆ O ₅ C ₅ H ₆ O ₅ C ₄ H ₆ O ₅ C ₅ H ₆ O ₆ C ₅ H ₆ O ₆	3-Chloroquinoline 4-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline cis-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Coumarine Coumarine	163 51 163 51 163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	38 34 32 41 45 >-20 121 101 d. 72 150 133 89 137	275 255 5 260 4 268 262 256	1.251	
8001 6002 6003 60032 60032 60032 60033 60033 6	C,H,CIN C,H,CIN C,H,CIN C,H,CIN C,H,CIN C,H,CIN C,H,CIO, C,H,CIO, C,H,INO,S C,H,INO,S C,H,INO,S C,H,N,O, C,H,N,O, C,H,N,O, C,H,N,O, C,H,N,O, C,H,O, C,H,O, C,H,O, C,H,O, C,H,O, C,H,O, C,H,O, C,H,O, C,H,O,	4-Chloroquinoline 5-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 6-Chloroquinoline 6-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chromone Coumarine	163 51 163 51 163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	34 32 41 45 >-20 121 101 d. 72 150 133 89 137	255 5 260 4 268 262 256	1.251	
8002 68002 68002 68002 68002 68002 68007 68008 68009 68001	C ₃ H ₄ CIN C ₃ H ₄ CIN C ₄ H ₄ CIN C ₃ H ₄ CI ₂ O ₁ C ₄ H ₄ CI ₂ O ₂ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄	5-Chloroquinoline 6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline 6-Chloroquinoline 6-Chloroquinoline 6-Nitroquinoline 6-Nitroquinoline 8-Nitroquinoline 8-Nitroquinoline Chromone Chromone Coumarine	163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	32 41 45 > -20 121 101 d. 72 150 133 89 137	268 262 256	1.251	
0003 0004 0005 0006 0007 0008 0009 0010 0011	C ₃ H ₄ CIN C ₃ H ₄ CIN C ₄ H ₄ CIN C ₃ H ₄ CI ₂ O ₁ C ₄ H ₄ CI ₂ O ₂ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄	6-Chloroquinoline 7-Chloroquinoline 8-Chloroquinoline 8-Chloroquinoline cts-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid Ctomone	163 51 163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	32 41 45 > -20 121 101 d. 72 150 133 89 137	268 262 256		
0004 0005 0006 0005 0006 0007 0008 0007 0008 0007 0008 0007 0008 0007 0008 0007 0008 0007 00	C ₁ H ₁ CIN C ₂ H ₁ CIN C ₃ H ₄ CIN C ₄ H ₄ CI ₂ O ₁ C ₄ H ₄ CI ₂ O ₂ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ N ₂ O ₃ C ₄ H ₄ O ₃ C ₄ H ₄ O ₄ C ₅ H ₄ O ₄ C ₄ H ₄ O ₅ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄ C ₄ H ₄ O ₄	7-Chloroquinoline 8-Chloroquinoline cts-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₅ H ₅ C;CCO ₂ H. Chromone	163 51 163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	41 45 > -20 121 101 d. 72 150 133 89 137	262 256		
0005 0006 0007 0006 0007 0006 0007 0006 0007 00	C ₃ H ₄ CIN C ₃ H ₄ CIN C ₃ H ₄ CI ₄ O ₁ C ₄ H ₄ CI ₄ O ₁ C ₄ H ₄ CI ₄ O ₁ C ₅ H ₄ INO ₄ S C ₅ H ₄ N ₂ O ₁ C ₅ H ₅ N ₂ O ₁ C ₅ H ₆ N ₂ O ₁ C ₅ H ₆ N ₂ O ₁ C ₅ H ₆ O ₂ C ₅ H ₆ O ₂ C ₅ H ₆ O ₂ C ₅ H ₆ O ₂ C ₅ H ₆ O ₄ C ₅ H ₆ O ₄ C ₅ H ₆ O ₄	7-Chloroquinoline 8-Chloroquinoline cts-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₅ H ₅ C;CCO ₂ H. Chromone	163 51 163 51 216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04	45 >-20 121 101 d. 72 150 133 89 137	256		
\$6000 \$6007 \$6000	C ₃ H ₄ ClN C ₄ H ₄ Cl ₂ O ₃ C ₃ H ₄ Cl ₂ O ₄ C ₄ H ₄ NO ₄ S C ₄ H ₄ N ₂ O ₅ C ₅ H ₄ N ₂ O ₅ C ₄ H ₆ N ₂ O ₅ C ₄ H ₄ O ₅ C ₄ H ₄ O ₅ C ₄ H ₄ O ₅ C ₅ H ₄ O ₅ C ₅ H ₄ O ₄ C ₅ H ₄ O ₄ C ₅ H ₆ O ₄	8-Chloroquinoline cis-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₅ H ₅ C;CCO ₂ H. Chromone	163 51 216 96 216 96 351 05 174 06 174 06 174 06 146 04	>-20 121 101 d. 72 150 133 89 137	1		
0007 6008 60008 60008 60008 60008 6010 6011	C ₁ H ₄ Cl ₁ O ₁ C ₂ H ₄ Cl ₂ O ₂ C ₃ H ₄ Cl ₂ O ₃ C ₃ H ₄ N ₂ O ₃ C ₄ H ₆ N ₂ O ₁ C ₅ H ₆ N ₂ O ₁ C ₅ H ₆ N ₂ O ₁ C ₅ H ₆ O ₂ C ₅ H ₆ O ₂ C ₅ H ₆ O ₂ C ₅ H ₆ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₄ C ₅ H ₆ O ₄ C ₅ H ₆ O ₄	cis-1, 2-Dichlorocinnamic acid trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₅ H ₅ C:CCO ₂ H. Chromone	216 96 216 96 351 05 174 06 174 06 174 06 174 06 146 04 146 04	121 101 d. 72 150 133 89 137			
\$0008 \$6009 \$6000	C ₃ H ₄ Cl ₃ O ₃ C ₃ H ₄ NO ₄ S C ₃ H ₆ N ₃ O ₃ C ₄ H ₆ N ₂ O ₃ C ₄ H ₆ N ₂ O ₃ C ₅ H ₆ N ₂ O ₃ C ₅ H ₆ N ₂ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₄ C ₅ H ₆ O ₄	trans-1, 2-Dichlorocinnamic acid Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₅ H ₅ C:CCO ₂ H. Chromone Coumarine	216 96 351 05 174 06 174 06 174 06 174 06 146 04 146 04	101 d. 72 150 133 89 137			
10009 1000	C ₃ H ₆ INO ₆ S C ₃ H ₆ N ₃ O ₁ C ₃ H ₆ N ₃ O ₂ C ₃ H ₆ N ₂ O ₃ C ₄ H ₆ N ₂ O ₃ C ₅ H ₆ O ₂ C ₅ H ₆ O ₂ C ₅ H ₆ O ₃ C ₇ H ₆ O ₄ C ₇ H ₆ O ₄ C ₇ H ₆ O ₄	Loretin 5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₆ H ₆ C:CCO ₂ H. Chromone Coumarine	351 05 174 06 174 06 174 06 174 06 146 04 146 04	d. 72 150 133 89 137			
100 100	C ₃ H ₆ N ₃ O ₃ C ₄ H ₅ N ₂ O ₃ C ₅ H ₅ N ₂ O ₅ C ₅ H ₆ N ₂ O ₅ C ₅ H ₆ O ₂ C ₅ H ₆ O ₅ C ₅ H ₆ O ₅ C ₅ H ₆ O ₄ C ₅ H ₆ O ₄	5-Nitroquinoline 6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₅ H ₅ C;CCO ₂ H. Chromone Coumarine	174 06 174 06 174 06 174 06 146 04 146 04	72 150 133 89 137			
3011 6012 6013 6014 60	C ₃ H ₄ N ₂ O ₂ C ₃ H ₆ N ₂ O ₂ C ₃ H ₆ N ₂ O ₁ C ₃ H ₆ O ₂ C ₃ H ₆ O ₂ C ₃ H ₆ O ₂ C ₃ H ₆ O ₃ C ₃ H ₆ O ₄	6-Nitroquinoline 7-Nitroquinoline 8-Nitroquinoline . Phenylpropiolic acid C ₄ H ₄ C;CCO ₂ H. Chromone Coumarine	174 06 174 06 174 06 146 04 146 04	150 133 89 137			
8012 6013 6013 6014 6015 6015 6016 6017 6018 6017 6018 6019 60	C ₂ H ₆ N ₂ O ₂ C ₂ H ₆ N ₂ O ₃ C ₃ H ₆ O ₂ C ₄ H ₆ O ₂ C ₄ H ₆ O ₂ C ₅ H ₆ O ₃ C ₅ H ₆ O ₄	7-Nitroquinoline 8-Nitroquinoline Phenylpropiolic acid C ₆ H ₄ C;CCO ₂ H, Chromone Coumarine	174 06 174 06 146 04 146 04	133 89 137			
8013 8014 8015 8016 8017 8018 8019 8021 8021 8022 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8033 8034 8033 8034	$\begin{array}{c} C_{2}H_{4}N_{2}O_{1} \\ C_{2}H_{4}O_{2} \\ C_{2}H_{4}O_{2} \\ C_{3}H_{5}O_{2} \\ C_{3}H_{5}O_{3} \\ C_{3}H_{5}O_{4} \end{array}$	8-Nitroquinoline . Phenylpropiolic acid C ₆ H ₄ C;CCO ₂ H. Chromone Coumarine	174 06 146 04 146 04	89 137			- 1
0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0031 0033 0034 0035	C ₉ H ₆ O ₂ C ₉ H ₆ O ₂ C ₉ H ₆ O ₂ C ₉ H ₆ O ₃ C ₉ H ₆ O ₄	Phenylpropiolic acid C ₆ H ₅ C;CCO ₂ H, Chromone Coumarine	146 04 146 04	137		1	
0015 0016 0016 0016 0018 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0035	C ₉ H ₆ O ₂ C ₉ H ₆ O ₂ C ₉ H ₆ O ₃ C ₉ H ₆ O ₄	Chromone	146 04	1		i	- 1
8016 6 6 6 6 6 6 6 6 6	C ₉ H ₆ O ₂ C ₉ H ₆ O ₃ C ₉ H ₆ O ₄	Coumarine		1 58	(1
8017 6018 6019 6020 60	C ₂ H ₆ O ₃ C ₂ H ₆ O ₄	1				0.005	1
0118	C ₂ H ₆ O ₄	Umbelliferon	146 04	67	301 7	0 935	1
0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0030 0031 0032 0033 0034 0035 0035			162 04	227			ŀ
0020	C ₂ H ₆ O ₄	Daphnetin	178 05	256			i
021		Esculetin	178 05	270 d.			- 1
022 023 024 025 026 027 028 0029 030 031 032 0033 034 0035	C ₉ H ₆ O ₆	Hemimellitic acid 1, 2, 3-C ₆ H ₂ (CO ₂ H) ₁	210 04	190	1	l	- 1
023	G ₉ H ₆ O ₆	Trimellitic acid 1, 2, 4-C ₅ H ₄ (CO ₂ H) ₄	210 05	216	1		- 1
0023	C₀H₀O₀	Trimesic acid 1, 3, 5-C ₅ H ₄ (CO ₂ H) ₃	210 05	350			
3024 6 3025 6 3026 6 3027 6 3028 6 3029 6 3030 6 3031 6 3032 6 3033 6 3034 6 3035 6	CoH6O7	1, 3, 5-Tricarboxyphenol	226 05	180 d.			
3025 6 3026 6 3027 6 3028 6 3029 6 3030 6 3031 6 3032 6 3033 6 3034 6 3035 6	C ₂ H ₇ BrO ₂	cis-Allo-1-bromocinnamic acid	226 97	120	11106	1	- 1
3026 6 3027 6 3028 6 3029 6 3030 6 3031 6 3032 6 3033 6 3034 6	C ₀ H ₇ BrO ₂	cis-Allo-2-bromocinnamic acid	226 97	160	11100		1
0027 0 0028 0 0029 0 0030 0 0031 0 0032 0 0033 0 0034 0	C ₂ H ₇ BrO ₂	trans-1-Bromocinnamie acid	226 97	131	12100		- 1
8028 6 8029 6 8030 6 8031 6 8032 6 8033 6 8034 6 8035 6	C _p H ₇ BrO ₂	trans-2-Bromocinnamic acid	226 97	135	1220 6	i i	1
3029 (3030 (3031 (3032 (3033 (3034 (3035) (3035)))))))))))))))))))))	C ₂ H ₇ ClO	Cinnamyl chloride ColloCH:CHCOCL.	166.51	36	257 5		- [
3030 3031 3032 3033 3034 6035	C ₂ H ₇ ClO ₂	cis-Allo-1-chlorocinnamic acid	182.51	111	990.1		- 1
3031 3032 3033 6034 6035	C ₂ H ₇ ClO ₂	cis-Allo-2-chlorocinnamic acid	182 51	132	970 5		1
8032 8033 8034 8035		trans-1-Chlorocinnamic acid	182.51	137	1090 5		- 1
3033 3034 3035	C ₁ H ₂ ClO ₂	trans-2-Chlorocinnamic acid	182 51	142	1130 5		ł
3034 3035	C ₁ H ₇ ClO ₂	o-Chlorocinnamic acid	182 51	211	1		- 1
035	C ₂ H ₇ ClO ₂	1	253 43	1	178 550	1.3894	6
	C ₂ H ₇ Cl ₂ O ₂	Benzyl trichloroacetate	129 06	11	255	1 0370	`
เกรด เก	C ₉ H ₇ N	Cinnamic nitrile CoHoCH:CHCN		1	243	1 099	10
	C ₉ H ₇ N	Isoquinoline	129 06 129 06	23 -19.5	237 7	1.093	10
	C ₂ H ₇ N	Quinoline		t .	201 1	1.000	۱۳
1	C ₉ H ₇ NO	p-Cyanoacetophenone CN,C6H4COCH4	145 06	61		1	
	C ₉ H ₇ NO	2-Hydroxyquinoline	145 06	200	900		
1	C ₂ H ₇ NO	4-Hydroxyquinoline	145 06	201	300		
041	C ₉ H ₇ NO	5-Hydroxyquinoline	145 06	224	nac		1
042	C ₉ H ₇ NO	6-Hydroxyquinoline	145 06	193	360		
043	C ₂ H ₂ NO	7-Hydroxyquinoline	145 06	238 d.	000	1	
	C ₂ H ₇ NO	8-Hydroxyquinoline	145 06	76	.266 9		Ì
	C,H,NO,	3-Aminocoumarine	161 06	130	1		
1	C ₉ H ₇ NO ₂	Indole-2-carboxylic acid	161.06	203 d.		1	
	C ₂ H ₇ NO ₂	Indole-3-carboxylic acid	161 06	218 d.		1	- 1
	C,H,NO	Indoxylic acid	177 06		123	1	- 1
1	C ₂ H ₇ NO ₃	Kynuric acid	177 06	189		1	- 1
1	C ₁ H ₇ NO ₄	o-Nitrocinnamic acid	193 06	240			
	C ₂ H ₇ NO ₄	m-Nitrocinnamic acid	193.06	197		1	- 1
		p-Nitrocinnamic acid	193 06	286	1	1	- 1
	C ₂ H ₇ NO ₄	Diaphthol	225.13	295	1		1
1			116 06	-2	182 4	1 006	1 8
	C ₂ H ₇ NO ₄ S	- Laurence	116.06	_	185	1 - 300	١٠
3055 G		Phenylallylene C ₆ H ₆ C;CCH ₁		58.5	14330	1	- 1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3057	C ₂ H ₄ Cl ₂ O ₂	Benzyl dichloroacetate	218 98		17960	1.313	684
3058	C ₁ H ₁ L ₁ O ₁	Ethyl 3, 5-diodosahevlate	417 93	132		1	1
3059	C ₁ H ₄ N ₂	2-Aminoquinoline	144 08	129			1
3060	C ₂ H ₂ N ₂	3-Aminoquinoline	144 08	94	1	İ	1319
3061	C ₁ H ₁ N ₂	4-Ammoquinoline	144 08	154		1	
3062	C ₂ H ₄ N ₂	5-Ammoquinoline	144 08	110		1	
3063	C ₂ H ₄ N ₂	6-Aminoquinoline	144 08	114		j	
3064	CoH, Na	7-Aminoquinoline	144 08	189 70		1	
3065	C ₂ H ₄ N ₂	8-Aminoquinoline	144 08 144 08	240		ŀ	1
3000	C ₁ H ₁ N ₂ O	3-Phenylpyrazolone Cyanoacetamlide CNCH ₂ CONHC ₄ H ₅	160 08	200			
3067 3068	CH ₂ N ₂ O	Pyrrone (Dipyrryl ketone)	160 08	160	1		
3069	CHO	Cinnamic aldehyde C ₈ H ₆ CH.CHCHO	132 06	-7.5	251.0	1.049	791
3070	C _i H _i O	α-Hy drindone	132 06	41	244	1.10146	101
3071	C _s H _s O	β-Hydrindone	132 06	61	225 d.	1.07167	1100
3072	C,H,O,	o-Coumarie aldehyde	148 06	133			
3073	C,H,O,	p-Coumaric aldehyde	148 06	134			
3074	C _b H _b O ₂	Allocinnamic acid	148 06	68	12519	1	
3075	C _p H ₄ O ₂	Cinnamic acid C ₆ H ₅ CH,CHCO ₂ H	148 06	133	300	1.2844	
3076	C _s H _s O ₂	Isocinnamic acid	148 06	57	256 d.		
3077	C ₂ H ₃ O ₂	Atropic acid	148 06	107	267 d.		
307N	C ₂ H ₈ O ₂	Mehlotic anhydride .	148 06	25	272	1	
3079	$C_9\Pi_4O_2$	Chromanone	148 06	38 5	16050	1	
3080	C _a H _a O _a	Acetopiperone	164 06	83		1	
3081	C _u H _u O _a	o-Acetylsalicylic aldehyde	164 06	37	253		
3082	C ₁ H ₁ O ₁	Benzoylacetic acid C ₈ H ₈ COCH ₂ CO ₂ H	164 06	104	1		
3083 3084	C ₂ H ₈ O ₂	o-Coumaric acid	164 06 164 06	208			
3085	CyHyO ₂ CyHyO ₂	p-Coumaric acid	164 06	191 206		}	
3086	C ₂ H ₄ O ₂	Phenylpyruvic acid C ₆ H ₆ CH ₂ COCO ₂ H	164 06	200 157		1	
3087	CallaOa	o-Acetylsaheyhe acid (Aspirin)	180 06	133 5			1290
3088	C ₂ H ₃ O ₄	Caffere acid	180 06	195		1	1250
3089	C ₂ H ₃ O ₄	Phenylmalonic acid CoHoCH(CO2H)2.	180 06	153			
3090	C ₂ H ₄ O ₄	Uvitic acid 3, 5(CO2H)2C6H3CH3	180 06	290			
3091	C ₂ H ₃ O ₄	Methyl phthalate o-CO2HC6H4CO2CH4	180 06	82 5			
3092	CoHnO4	Benzoyl acetyl peroxide	180 06	36-6	13019		
3093	C'pH _B O _b	Esculetime acid	196-06	168		1	1
3094	C _p H _a O _a	Myristicinic acid .	196-06	210	300		
3095	C ₂ H ₂ BrO	Indene oxybromide	212 99	130 5		1 .	
3096	C _v H _s ClO ₃	Benzyl chloroacetate	184 53		147.59	1.222	675
3097	C.H.N	Dihydroquinoline	131 08	226			ı
3098	C.H.N	1-Methylindole	131 08	46	242 4	1 0710	
3099 3100	C ₈ H ₈ N C ₈ H ₈ N	2-Methylindole 3-Methylindole (Scatole)	131 08	60	272 3 266 2		
3101	C _b H _b N	5-Methylindole (Seatole)	131.08 131.08	95 58-5	200 2	1	
3102	C _i H _i NO	Cinnamamide C ₈ H ₈ CH·CHCONH ₂ .	147.08	38 3 141.5			
3103	C ₂ H ₂ NO	Hydrocarbostyril	147.08	163	1		1309
3104	C _t H ₂ NO ₂	o-Aminoeinnamic acid	163 08	159 d.	ì		1000
3105	CoHoNO2	m-Aminocinnamie acid	163 08	181		1	
3106	C ₂ H ₂ NO ₂	p=Aminocinnamic acid	163 08	176 d.	1	1	
3107	C ₉ H ₉ NO ₂	Benzoylacetaldehydeoxime	163.08	87		1	1
3108	C ₀ H ₉ NO ₃	o-Acetylaminobenzoic acid	179 08	185		1	
3109	C _p H _p NO ₃	m-Acetylaminobenzoic acid	179 08	250	1	1	-
3110	C ₀ H ₀ NO ₃	p-Acetylaminobenzoic acid	179 08	252	1	1	
3111	C ₂ H ₂ NO ₃	Hippuric acid C ₆ H ₅ CONHCH ₂ CO ₂ H	179 08	187 5	d.	1 371	1256
3112	C ₀ H ₀ NO ₃	Methyl oxamilate C ₆ H ₆ NHCOCO ₂ CH ₃ .	179 08	114	1	1	
3113	C,H,NO,	Acety Isalicy Iamide	179.08	144		1	
3114	C _p H _p NO ₄	Saheyluric acid	195 08	160		1	1
3115	C ₂ H ₂ NO ₄	Ethyl m-nitrobenzoate	195.08	47	298	1	1
3116 3117	C ₃ H ₃ NO ₄	Ethyl p-nitrobenzoate	195.08	57	1	1	1
	CoHoN:	5, 8-Diaminoquinoline	159.09	156	1	1	ı
3118	C,H,N,	6, 8-Diaminoquinoline	159.09	163	1		1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
120	C9H10	Isoallylbenzene C ₄ H ₄ CH.CHCH ₄	118 08		175	0 92414	i i
121	C ₉ H ₁₀	Hydrindene	118 08		176 5	0 965	970
122	C9H10N2	1-Ethylindazole	146 09		12018	1 064	878
123	C.H 10O2	2-Acetamino-4-nitrotoluene	194 09	96			
124	C9H10O	Anol p-(CH ₂ CH;CH)C ₆ H ₄ OH	134 08	93	250 d.	!	1
125	C9H10O	Chavicol p-(CH2:CHCH2)C6H4OH	134 08	> -25	237	1 03314	935
126	C ₉ H ₁₀ O	Cinnamyl alcohol C.H.CH.CHCH2OH	134 08	33	258 5	1 044	1039
127	C ₂ H ₁₀ O	Allyl phenyl ether C ₂ H ₄ OC ₆ H ₅	134 08		192	1	-
128	C ₉ H ₁₀ O	Methyl styryl ether	134 08		213	1 001	877
1129	C ₉ H ₁₀ O	2, 4-Dimethylbenzaldehyde	134 08	8	216		1
130	C ₂ H ₁₀ O	Hydrocinnamaldehyde .	134 08	17	280		i
3131	C ₉ H ₁₀ O	o-Xylene-4-aldehyde	134 08	l	225		
132	C9H10O	Ethyl phenyl ketone C2H4COC6H4	134 08	21	218	1 010	689
133	C ₂ H ₁₀ O	Methyl benzyl ketone CH2COCH2C6H3	134 08	15 1	216 7	1 028	1
3134	C,H10O	p-Methylacetophenone (Melilot)	134 08		222	1 01313	703
	C,H10O	Chromane	134 08		9512	1 064	
135	C ₉ H ₁₀ OS	Ethyl thiobenzoate,	166 14		253761	1 00425	
135 1		o-Coumaral alcohol	150 08	119	2.77		
136	C ₉ H ₁₀ O ₂		150 08	57		-	İ
137	C ₉ H ₁₀ O ₂	Hesperetol		1			1
138	C ₉ H ₁₀ O ₂	2, 3-Dimethylbenzoic acid	150 08	144	17410		ļ
139	C.H 10O2	2, 4-Dimethylbenzoic acid	150 08	126	268	1 000	1
140	C9H10O2	2, 5-Dimethylbenzoic acid	150 08	132	268	1 069	1
141	C9H10O2	2, 6-Dimethylbenzoic acid	150 08	116			1
1142	C ₉ H ₁₀ O ₂	3, 4-Dimethylbenzoic acid	150/08	165			
3143	C ₉ H ₁₀ O ₂	o-Ethylbenzoic acid .	$150 \cdot 08$	68	1	100	
144	C9H10O2	m-Ethylbenzoic acid.	$150 \cdot 08$	47		1 0424	114
3145	C9H10O2	p-Ethylbenzoic acid	150 - 08	113			
146	C9H10O2	Hydratropic acid C2H4(C6H4)CO2H	$150 \cdot 08$		265		1
147	C9H10O2	Hydrocinnamic acid	150 - 08	48 6	279 8	1 0716 7	1
1148	C9H10O2	Mesitylinic acid 3, 5-(CH ₃) ₂ C ₆ H ₃ CO ₂ H	150 08	166			
1149	C ₉ H ₁₀ O ₂	Benzyl acetate CH, CO2CH2C6H5.	$150 \ 08$	- 51 5	213 5	1 058	673
150	C ₉ H ₁₀ O ₂	o-Cresyl acetate o-CH3CO2C4H4CH1.	150 08		208		
151	C ₉ H ₁₀ O ₂	m-Cresyl acetate m-CHaCO2C6H4CH4	150 08		212	1	1
152	C ₉ H ₁₀ O ₂	p-Cresyl acetate p-CH ₄ CO ₂ C ₆ H ₄ CH ₄	150 08		212 5	1.050	59
1154	C ₂ H ₁₀ O ₂	Ethyl benzoate C6H6CO2C2H6	150 08	-31 6	213 2	1 047	62
155	C ₉ H ₁₀ O ₂	Methyl phenylacetate	150 08		220	1 04416	
		Methyl p-toluate p-CH ₂ C ₆ H ₄ CO ₂ CH ₃	150 08	33	217		1
156	C ₉ H ₁₀ O ₂	Phenyl propionate C ₂ H ₆ CO ₂ C ₆ H ₆	150 08	20	211	1 05416	1
157	C _P H ₁₀ O ₃	Acetovanillone	166 08	115	300	1	- 1
1158	C ₂ H ₁₀ O ₃	Paconol 4, 2-CH ₃ O(OH)C ₆ H ₃ COCH ₂	166 08	50	1		1
159	C ₂ H ₁₀ O ₃		166 08	22	1		1
160	C ₉ H ₁₀ O ₈	o-Ethoxybenzoic acid	166 08	137			
161	C ₉ H ₁₀ O ₂	m-Ethoxybenzoic acid	166 08	195	1	i	
162	C ₉ H ₁₀ O ₈	p-Ethoxybenzoic acid.	166 08	91		1	- 1
163	C ₉ H ₁₀ O ₈	dl-Atrolactic acid		111	Į.		- 1
3164	C ₉ H ₁₀ O ₂	m-Hydrocoumarie acid	166 08	83			
3165	C9II10O3	Melilotic acid	166 08	1			1
166	C ₉ H ₁₀ O ₈	d(l)-2-Phenyllactic acid	166 08	125		1	- 1
3167	C ₉ H ₁₀ O ₈	Phloretic acid HOC. H. CH(CH2)CO2H	166 08	129			- 1
168	C ₉ H ₁₀ O ₈	d(l)-Tropic acid	166 08	128		1	- 1
3169	C ₂ H ₁₀ O ₃	dl-Tropic acid	166 08	123	40010		1
3169.1		Anisyl acetate p-CH ₃ OC ₆ H ₄ O ₂ CCH ₃ .	166 08	1	13912	1.101	ا ا
3170	C,H10O,	Ethyl salicylate OHC oH (CO2C2H3.	166 - 08	1 3	231 5	1 131	67
3171	C ₉ H ₁₀ O ₈	Guaiacyl acctate (Eucol)	$166 \ 08$		240	1.138	1
3172	C9H10O3	Methyl anisate p-CH2OCoH4CO2CH2.	166 08	48	256		- 1
3173	C ₉ H ₁₀ O ₃	Methyl o-cresotinate	166 08	30	235	- 1	- 1
3174	C ₉ H ₁₀ O ₃	Methyl p-cresotinate	166 08	ļ	242	1	-
3175	C ₂ H ₁₀ O ₃	Methyl dl-mandelate	166 08	58	14420		- 1
	1	Hydrocaffeic acid	182 08	139	1		- 1
3176	CH ₁₀ O ₄	d(l)-Phenylglyceric acid	182 08	164	1		
3177	C ₂ H ₁₀ O ₄		182 08	141	I	1.451	1
3178	C ₉ H ₁₀ O ₄	dl-Phenylglyceric acid	182 08	105		1.354	1
3179	C ₉ H ₁₀ O ₄	d(l)-p-Methoxymandelic acid	182 08	181	1		1
3181	C ₉ H ₁₀ O ₄	Veratric acid 3, 4-(CH ₂ O) ₂ C ₆ H ₂ CO ₂ H		1	16242	1.20018	- 1
3182	C ₂ H ₁₀ O ₄	Methoxymethyl salicylate	104.00	•	,	1	•

No.	Formula	Name	Mol. wt.	М. Р.	B. P.	d	R.
3183	C ₉ H ₁₀ O ₄	Methyl vanillate	182.08	63	287	Ti Ti	+
3184	C ₀ H ₁₀ O ₄	Glycol salicylate (Spirosal)	182.08	1	17012	1	ı
3185	CoH10Os	Syringic acid	198.08	245		1	- 1
3186	C ₂ H ₁₀ O ₃	Ethyl gallate	198.08	160		1	
3187	C ₉ H ₁₀ O ₄	2, 3, 4, 5-Dimethoxydihydroxybenzoic			1	ì	ı
		acid .	214.08	148			- 1
3 187.1	C ₂ H ₁₀ S ₂	Ethyl dithiobenzoate	182 21		18028	1.143926	-
3188	C ₂ H ₁₁ N	Allyl amline C ₄ H ₄ NHCH ₂ CH:CH ₂	133 09	ı	209	0.98225	ì
3189	C _• H ₁₁ N	Benzylidencethylamine	133 09		195.4		ı
3190	CHnN	Styrylamine CallaCH CHCH2NH2	133 09		237	1	- 1
3191	C _t H _H N	1, 2, 3, 4-Tetrahydroisoquinoline	133 09		233	1.064	10
3192	C ₂ H ₁₁ N	1, 2, 3, 4-Tetrahydroquinoline	133 09	20	251	1.055	10
3193	CHINO	p-Dimethylaminobenzaldehyde.	149 09	75			
3194 3195	C ₁ H ₁₁ NO	o-Acetotoluide o-CH4CONHC6H4CH4.	149 09	110	296		12.
	C ₁ H ₁₁ NO	m-Acetotoluide m-CH ₂ CONHC ₅ H ₄ CH ₃ .	149 09	65 5	303		- 1
	CH _H NO	p-Acetotoluide p-CH ₃ CONHC ₃ H ₄ CH ₄	149 09	153	307	1	127
- 1	C₁H₁₁NO C₃H₁₁NO	N-Benzylacetamide CH ₂ CONHC ₇ H ₇	149 09	61	300		- 1
	C ₂ H ₁₁ NO	N-Ethylbenzamide C ₆ H ₆ CONHC ₂ H ₆	149 09	71	290		
[C _I II _{II} NO	N-Methylacetamlide (Exalgin)	149 09	102	254.7		125
1	C _i H _{ii} NOS	Propionandide C ₂ H ₅ CONHC ₆ H ₅ N-Phenylthiourethane	149 09	104		1	-
- 1	C•H ₁₁ NO ₂		181.16	69	1		
- 1	CoH ₁₁ NO ₂	4-Acetylamino-2-hydroxytoluene	165 09	225	1		
•	C ₂ H ₁₁ NO ₂	3-Acetylamino-4-hydroxytoluene p-Acetylmethylaminophenol	165 09	160	1	1	
	'H ₁₁ NO ₂	1	165 09	240	1	1	
	'sH ₁₁ NO ₂	o-Dimethylanthrandic acid.	165 09	162	ł		İ
	'H ₁₁ NO ₂	m-Ethylaminobenzoic acid.	165 09	175	1	}	1
	H ₁₁ NO ₂	line iii	165.09	101	1		1
	H ₁₁ NO ₂	dl-Phenylalanine	165 09	283 d.	1		126
	"HuNO	o-Tolylaminoacetic acid	165 09	265 d.			
	H ₁₁ NO ₂	p-Tolylaminoacetic acid	165 09	150			1
1	'H ₁₁ NO ₂	2, 4, 6-Trimethylpyridine-3-carboxylic	165 09	118		1	
- 1		acid	107.00				
13 ('H ₁₁ NO ₂	Ethyl p-aminobenzoate	165.09		155		
	'H ₁₁ NO	Ethyl anthramlate	165 09	91	1	1	1
	'H ₁₁ NO ₂	o-Acetaniside o-CH4OC4H4NHCOCH3.	165.09	0.4	260	1	1
	'H ₁₁ NO ₂	p-Acetaniside CH ₁ CONHC ₁ H ₄ OCH ₁	165 09 165 09	84	305	1	
18 C	'H ₁₁ NO ₂	p-Formylphenetidine	165 09	127			1
19 C	H ₁₁ NO ₂	Nitrocumene (CH ₁) ₂ CHC ₆ H ₄ NO ₂	165.09	60	004.1	}	1
20 C	'H11NO2	Nitromesitylene	165 09	-35	224 d.	i	1
21 (H ₁₁ NO ₂	N-Phenylurethane C2H6CO2NHC6H6.	165 09	44	255	1	1
22 C	H11NO	t-Tyrosine	181 09	52 295 d.	238		
23 C	H ₁₂	Cumene (CH ₁) ₂ CHC ₆ H ₅	120.09	295 d.	150 4	1.456	125
	H12	o-Ethyltoluene o-C2H3C6H4CH2	120.09	> -17	153 4	0.864	56
	•H12	m-Ethyltoluene m-C ₂ H ₅ C ₆ H ₄ CH ₂	120 09	/-11	162	0.882	61
	,H12	p-Ethyltoluene p-C ₂ H ₄ C ₆ H ₄ CH ₄	120 09	< -20	162.5	0.867	584
	olf 12	Hemimellitene 1, 2, 3-(CH ₂) ₃ C ₅ H ₃ .	120 09	~ £U	162	0 862	568
	9II 13	Mesitylene 1, 3, 5-(CH ₂) ₃ C ₅ H ₂	120.09	-52.7	176 5 164 6	0.895	650
	9H12	n-Propylbenzene CH ₁ (CH ₂) ₂ C ₅ H ₅	120.09	-32.7 -101.6	157.5	0.863 0.862	580
	•H12	Pseudocumene 1, 2, 4-(CH ₃) ₃ C ₆ H ₃ .	120.09	-61.0	169.8	0.862	550
	H ₁₂ N ₂ O	1-Ethyl-2-phenylurea	164 11	99	100.0	0.01	623
	1H12N2O2	p-Phenetylurea C ₂ H ₄ OC ₄ H ₄ NHCONH ₂	180.11	173			
	H ₁₂ N ₂ O ₂	Pilosinine	180.11	79	30025	İ	}
	H ₁₂ N ₄ O ₃	1, 3, 7, 9-Tetramethyluric acid	224 12	228	d.	j	1000
	H ₁₂ ()	Benzylmethyl carbinol	136 09		212	0.994	1268
	H ₁₂ O	d-Benzylmethyl carbinol.	136 09		12525	0.994	000
	H ₁₈ O	Ethylphenyl carbinol	136 09		219	0.996	660
	H ₁₂ ()	Hydrocinnamyl alcohol	136 09	<-18	237.4	1.008	700
	H ₁₂ O	Mesitol 2, 4, 6-(CH ₄) ₃ C ₄ H ₅ OH	136 09	69	220	1.000	708
	H ₁₂ O	o-n-Propylphenol o-CaHaCaHaOH	136 09	55	226.6	1.0150	1
	H ₁₁ O	m-n-Propylphenol m-C,H,C,H,OH	136.09	26	228	1.010*	
1 C	H ₁₂ O	p-n-Propylphenol p-CaH ₂ CaH ₄ OH	136.09	61	232.6	1.0090	
2 C.	H ₁₁ O	Pseudocumenol 2, 4, 5-(CH ₂) ₂ C ₄ H ₂ OH					

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
243	C ₂ H ₁₂ O	Ethyl benzyl ether C2H4OC7H7	136 09		226	0.99817.4	NO.
244	C ₂ H ₁₂ O	Ethyl m-cresyl ether	136 09		192	0.949	648
245	C ₉ H ₁₂ O	Ethyl p-cresyl ether p-CH ₃ C ₄ H ₄ OC ₄ H ₄	136 09		189 9	0.8749	928
246	C,H12O	Propyl phenyl ether C1H1OC4H4	136 09			0.874	840
247	C ₂ H ₁₂ O	Isopropyl phenyl ether	136 09		190 5		l
248	C,H12O2	Mesorcinol	152 09	150	177 2 275 5	0.9461	
249	C,H12O2	Guaiacyl ethyl ether	152 09	100	213 8		Ι.
250	C,H12O2	Phloroglucinol trimethyl ether	168 09	50			
251	C,H12O2	Pyrogallol trimethyl ether	168 09	52 47	255 5	1 00074	1
252	C,H12O1	Metacrolein (C ₂ H ₄ ()) ₂	168 09		241	1 0997	1
253	C,H,2O,	Caryophyllenic acid.	168 09	46		1 140	1
254	C ₂ H ₁₂ O ₂ S	Mesitylenesulfonic acid				1.140	1
255	C ₂ H ₁₂ O ₄ S	Toluene p-ethylsulfonate	200 16 200 16	77 33	17016		1
	C ₂ H ₁₂ O ₅	Anhydrocamphoronic acid	200 16	L	17316	1 174**	1
256	C ₀ H ₁₀ N	Cumidine p-(CH ₂) ₂ CHC ₆ H ₄ NH ₂		133	005	0.055	
257	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	135 11	63	225	0.957	183
258	C ₂ H ₁₂ N	1 *	135 11	61 0	184 6	0.929	68
259	C ₂ H ₁₂ N	Dimethyl-m-toluidine	135 11		212 5	0 941	73
260	C ₂ H ₁₂ N	Dimethyl-p-toluidine	135 11		211 5	0 937	72
261	C ₀ H ₁₃ N	Ethyl-o-toluidine	135 11		214	0.953114	1
262	C ₉ H ₁₃ N	Ethyl-m-toluidine	135 11		222		1
263	C _P H ₁₂ N	Ethyl-p-toluidine	135 11		217	0 939	1
264	C ₉ H ₁₈ N	Mesidine 1, 3, 5-(CH ₃) ₄ C ₆ H ₁ NH ₂	135 11		233	0.963	i
265	C ₀ H ₁₀ N	ω-Mesitylamine	135.11	1	218 2	0 950	69
266	C ₂ H ₁₂ N	Parvoline	135 11		234		1
267	C ₉ H ₁₈ N	n-Propylaniline CoHoNHCoH7	135 11	İ	222	0 94914	1
268	C ₉ H ₁₃ N	Isopropylamline C ₆ H ₆ NHCH(CH ₄) ₂ .	135 11	1	213	!	1
269	C _p H ₁₂ N	Pseudocumidine	135 11	66	235		
270	C ₉ H ₁₈ NO ₂	Anhydroecgonine	167 11	235 d.		ł	
271	C ₂ H ₁₂ NO ₂	Adrenaline	183 11	207 d.	į	1	
272	C ₉ H ₁₄	Apocyclene	122 11	43	138 9	0.87140	105
273	C ₀ H ₁₄	Santene	122 11		142	0.86918	48
274	C ₂ H ₁₄ ClNO ₂	Anhydroecgonine hydrochloride.	203 57	241	1	0.000	"
275		Ethylpropylbarbituric acid	198 12	146			1
	C ₉ H ₁₄ N ₂ O ₃		138 11	0	209	1	1
276	C ₂ H ₁₄ O	Nopinone	138 11	28	198 5	0 885	59
277	C ₉ H ₁₄ O	Phorone	154 11	20	129114	0 000	0.0
278	C ₉ H ₁₄ O ₂	Lauronolic acid			11118	0 9911	
279	C ₉ H ₁₄ O ₂	Methyl amylpropiolate	154 11	000	111	0 99114	1
280	C ₉ H ₁₄ O ₃	Castelamarin.	170 11	269			1
281	C ₉ H ₁₄ O ₄	cis-Hexahydrohomophthalic acid	186 11	146			ı
282 .	C ₉ H ₁₄ O ₄	trans-Hexahydrohomophthalic acid	186.11	157		4 0001004	١
282.1	C ₂ H ₁₄ O ₄	dl-Pinic acid	186.11	102 5	21610	1 093109 4	118
282 2	C ₃ H ₁₄ O ₄	d-Pinic acid	186 11	136	21610		
283	C ₉ H ₁₄ O ₄	Diethyl citraconate	186 11		230.3	1.062	84
284	C ₉ H ₁₄ O ₄	Diethyl glutaconate	186 11	1	238	1 050	
285	C ₉ H ₁₄ O ₄	Diethyl itaconate	186 11		227.9	1 045	36
286	C ₉ H ₁₄ O ₄	Diethyl mesaconate	186 11		229	1.047	59
287	C ₉ H ₁₄ O ₅	4-Ketoazelaic acid	202 11	102; 109	1		1
288	C ₉ H ₁₄ O ₆	l-Camphoronic acid	218.11	165			1
289	C ₉ H ₁₄ O ₆	Glycerol triacetate	218 11		259	1.161	32
290	C ₉ H ₁₄ O ₇	Trimethyl citrate	234 11	79	287 d.		1
291	C ₂ H ₁₄ NO	Pseudopelletierine	153 12	49	246	1 001***	113
292	C ₂ H ₁₅ NO ₃	d-Ecgonine	185 12	257		1	l
293		l-Ecgonine	185.12	198 d.	1	1.37042	- 1
	C ₉ H ₁₆ NO ₃		185.12	212			ı
294	C ₂ H ₁₈ NO ₃	at Englishment	229 21	290			
294 1	C ₉ H ₁₆ N ₃ O ₂ S	Ergothioneine	124 12	>-20	133	0.803	3
295	C ₉ H ₁₆	Campholene		/ -20	149 5	0.86122	4
296	C ₀ H ₁₆	Nopinane	124 12		1		9
97	C ₉ H ₁₆	Pulegene	124.12	042	139	0.79122	ا ا
98	C ₀ H ₁₀ ClNO ₃	l-Ecgonine hydrochloride	221.59	246	000		-
99	C ₀ H ₁₆ N ₂ O ₆ S ₈	Cheiroline	328.33	48	200 d.	1	1
300	C ₉ H ₁₆ O	Camphorol	140.12	1	8116		1
301	C ₉ H ₁₆ O	α-Nopinol	140 12	102	205		1
	C ₀ H ₁₆ O	dl-Santenol	140.12	98	196	0.987	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3303	C ₃ H ₁₄ O ₂	Amyl l-α-crotonate .	156 12			0.896	360
3304	C ₃ H ₁₄ O ₄	Ethyl hexahydrobenzoate	156 12	1	196.5	0.967	886
3305	C,H1,O2	Methyl cyclohexylacetate	156 12	1	202	0.9900	1
3306	C ₂ H ₁₄ O ₂	Ethyl isopropylacetoacetate	172 12		205 d.	0 96025	
3307	CH14O4	Azelaic acid HO ₂ C(CH ₂) ₇ CO ₂ H	188 12	106.5	360	1.029	1155
3308	C ₂ H ₁₄ O ₄	n-Butyl ethyl malonate	188 12	1	13012	0.97625	284
3809	C ₂ H ₁₄ O ₄	Isobutyl ethyl malonate	188 12	1	120*	0.968	286
3310	C ₃ H ₁₆ O ₄	secButyl ethyl malonate	188 12	ļ	16000	0 98635	310
3311	C ₂ H ₁₆ O ₄	Diethyl dimethylmalonate	188 12	1	196	0 995	196
3312	C ₂ H ₁₀ O ₄	Diethyl glutarate CH ₂ (CH ₂ COC ₂ H ₃) ₂ .	188 12		237	1.025	1
3313	C ₂ H ₁₆ O ₄	Dipropyl malonate CH ₂ (CO ₂ C ₄ H ₇) ₂	188 12		228 3	1.027	
3314	C ₂ H ₁₄ O ₄	Propyl mopropyl malonate	188 12		14342	0 980%	293
3314 1	C ₁ H ₁₇ BrO	l-Amyl bromobutyrate	221 05	0.5	10511	1.19626	
3315	C ₃ H ₁₇ NO	Homotropine	155 14	85	015	1	
3316	C ₃ H ₁₇ NO	Methylpelletierine	155 14	20.0	215	İ	
3317	C ₂ H ₁₇ NO	Tracetoneamine	155 14	39 6	170	0 77015	1
3318	C' ₂ H ₁₈	Cyclononane	126 14	2 20	172	0.7734	1
3319	C ₂ H ₁₀	Ethyleycloheptane C ₂ H ₄ C ₇ H ₁₂ .	126 14	< -30	199	0 952	
3320	C ₃ H ₁₈	Hexahydrocumene (CH ₂) ₂ CHC ₆ H ₁₁	126 14		150	0.787	
3321	C ₁ H ₁₁	2-Methyl-1-octene C ₈ H ₁₂ C(CH ₂):CH ₂	126 14	1	143	0.75414	-
3322	C ₁ H ₁₁	Nonylene C ₆ H ₁₂ CH.CHCH ₄	126 14	1	149 9	0 7541	-
3323	CHI	Propyleyelohexane C ₄ H ₇ C ₆ H ₁₁	126 14	ļ.	149 5	0 767	
3324	C ₁ H ₁₈ O	dl-Pulenol	142 14	1	187 5	0 908	902
3325	C ₁ H ₁₀ O	Pelargonic aldehyde CH ₂ (CH ₂) ₇ CHO,	142 14		93 523	0 82815	280
3326 3327	C _H _B O	Disobutyl ketone [(CH ₂) ₂ CHCH ₂] ₂ CO Isopropyl isoamyl ketone	142 14 142 14		182	0 833	
3328	CHaO	1		10	172	0.007	
3329	(C ₉ H ₁₈ O ₂ (C ₉ H ₁₈ O ₂	Pelargonic acid CH ₂ (CH ₂) ₇ CO ₂ H.	158 14	12	254	0 907	340
3330		Amyl n-butyrate C ₄ H ₉ CO ₂ C ₅ H ₁₁ Isoamyl n-butyrate	158.14		184 8	0.8830	184
3330 1	('9H1n()2 ('9H1n()2	d - β -Amyl n -butvrate	158 14 158 14		178 6	0 8824	
3331	C ₂ H ₁₈ O ₂	Amyl isobutyrate (CH ₄) ₂ CHCO ₂ C ₆ H ₁₁		ĺ	7116	0 869	161
3332	C ₂ H ₁₈ O ₂	Butvl n-valerate C ₄ H ₉ CO ₂ C ₄ H ₉	158 14 158 14	i	155	0 859	167
3333	C ₉ H ₁₈ O ₂	Isobutyl n-valerate	158 14		185 8	0 8850	
3333 1	C ₂ H ₁₈ O ₂	d-secButyl valerate	158 14		167 6718	0 854	104
3334	C ₂ H ₁₂ O ₂	Isobutyl isovalerate	158 14		168 5	0 860	164
3335	C ₉ H ₁₈ O ₂	Ethyl n-heptylate C ₆ H ₁₃ CO ₂ C ₂ H ₅	158 14		187 1	0.87215	162
3336	C ₁ H ₁₈ O ₂	n-Heptyl acetate CH ₂ CO ₂ C ₇ H _{1b}	158 14		191 5	0.874	195 221
3337	C ₁ H ₁₄ O ₂	Methyl caprylate C7H15CO2CH3	158.14	-41	192 9	0.887	221
3338	C ₂ H ₁₃ O ₂	d-β-Octylformate	158 14	- 11	8220	0 87212 6	209
3339	C ₁ H ₁₁ O ₂	Propyl caproate C ₅ H ₁₁ CO ₂ C ₃ H ₇	158.14	1	185 5	0.884	203
3340	C ₂ H ₁₈ O ₂	Parapropionaldehyde (C ₃ H ₆ O) ₃	174 14		170	0.0010	1
3341	C ₂ H ₁₂ O ₂	Di-n-butyl carbonate (C4H2O)2CO	174 14		207.7	0 924	1
3342	C ₂ H ₁₃ O ₃	Dusobutyl carbonate	174 14	}	190.3	0.91918	
3343	C _s H ₁₈ O ₄	1, 2-Dihydroxypelargonic acid	190 14	123	1	0.020	1
3344	C ₂ H ₁₅ O ₇	Galactite	238 14		142	1	1214
3345	CeHuN	I-1-Methyleonine	141.15		175 5	0.83224	1
3346	C ₂ H ₁₀ NO	N-Diethyl-n-valeramide	157.15		210		1
3347	C 9 H 20	2, 4-Dimethylheptane	128 15		133.3	0.716	143
3348	(',11 ₂₀	d-2, 5-Dimethylheptane	128 15		137	0 71516	1
3349	(,11 ⁵⁰	dl-2, 5-Dimethylheptane	128 15		135.9	0.71915	144
	(',11 ₂₀	2, 6-Dimethylheptane	128 15		132 0	0 712	Ì
	C9H20	4-Ethylheptane (C ₃ H ₇) ₂ CHC ₂ H ₅	128 15		139	0.741	170
	('µH₂0	d-3-Methyloctane	128 15	[143.4	0.72117	1
	CPH 30	4-Methyloctane C ₃ H ₇ (CH ₃)CHC ₄ H ₉ .	$128 \ 15$		141 6	0.73216	147
	Callao	n-Nonane CH ₄ (CH ₂) ₇ CH ₄	128 15	-51 \	150 6	0 718	151
1	C ₉ H ₂₀ ()	Butyl-secbutyl carbinol	144 15		180	0 834	335
	C ₂ H ₁₀ O	Dibutyl carbinol (C ₄ H ₉) ₂ CHOH	144.15		194	0 823	320
	C ₁ H ₂₀ O	Dusobutyl carbinol	144.15		174 3	0 81642	271
	('pH ₁₀ ()	Di-secbutyl carbinol	144.15		171	0.836	338
	('pH ₂₀ ()	Diethylisobutyl carbinol	144 15		172	1	
	C ₃ H ₂₀ ()	4, 6-Dimethylheptane-2-ol	144 15		195	0 879	
	C ₁ H ₂₀ O	Methylethylisoamyl carbinol	144 15		175	0 829	329
3362	C _p H ₂₀ O	Methylethyl-tertamyl carbinol	144.15	l	166	0.832	348

No.	Formula	Name	Mol. wt.	M P	В. Р.	d	R. I. No.
3363	C ₉ H ₂₀ O	Methylpropylisobutyl carbinol	144 15		171 3	0 826	330
3364	C ₁ H ₂₀ O	n-Nonyl alcohol CH ₂ (CH ₂) ₃ OH	144 15	-5	215	0 828	344
3365	C.H.20O	Isobutyl-d-amyl ether	144-15		148 2	0 773	125
3366	C ₂ H ₂₀ O	Ethyl n-heptyl ether C ₂ H ₅ OC ₇ H ₁₅	111 15	Į	166-6	0 79016	İ
3367	C,H20O	Methyl n-octyl ether CH ₄ OC ₈ H ₁₇	141-15		173	0 802	
3368	C,H20O1	Propylidene dipropyl ether	136 15		166 2	0 8490	90
3369	C9H20O4	Ethyl orthocarbonate C(OC ₂ H _e) ₄	192 15		159	0 917	1
3370	C ₂ H ₂₀ O ₄ S ₂	Tetronal (C ₂ H ₃) ₂ C(SO ₂ C ₂ H ₃) ₂	256 28	85	195		1
3371	C ₂ H ₂₁ N	n-Nonylamine C ₂ H ₁₉ NH ₂	113 17	-93 5	156	0 757	230
3372	C,H ₁₁ N	Tri-n-propylamine (C ₃ H ₇) ₃ N	143 17 334 76	143	11,00	(
3373	C ₁₀ H ₂ Cl ₆	Hexachloronaphthalene	265 86	130	Į.		
337 4	C ₁₀ H ₄ Cl ₄	α-Tetrachloronaphthalene β-Tetrachloronaphthalene	265 86	194	1	1	1
3375	C ₁₀ H ₄ Cl ₄	γ-Tetrachloronaphthalene	265 86	176			1
3376	C ₁₀ H ₄ Cl ₄	8-Tetrachloronaphthalene	265 86	141	Ì		1
3377	C ₁₀ H ₄ Cl ₄	-Tetrachloronaphthalene	265 86	180	1		
3378	C ₁₀ H ₄ Cl ₄	č-Tetrachloronaphthalene	265 86	160 5			
3379	C ₁₀ H ₄ Cl ₄ C ₁₀ H ₄ Cl ₄	vicTetrachloronaphthalene	265 86	140	1	ł	
3380	C ₁₀ H ₄ N ₄ O ₈	a-Tetranitronaphthalene	308 06	259	exp.		
$\frac{3381}{3382}$	C ₁₀ H ₄ N ₄ O ₈	1, 2, 5, 8-Tetranitronaphthalene	308 06	270 d.			ŀ
3383	C10H4N4Os	1, 2, 6, 8-Tetranitronaphthalene	308-06	<300		1	1
3384	C10H4N4O4	1. 3. 5. 8-Tetranitronaphthalene	308-06	195	1	į.	
3385	C10H4N4O8	1, 3, 6, 8-Tetranitronaphthalene	308-06	203	exp.		
3386	C10H4N4O0	2, 4, 5, 7-Tetranitro-α-naphthol	324 06	180	1		
3387	C ₁₀ H ₅ Cl ₅	1, 2, 3-Trichloronaphthalene	231 41	81	1		
3388	C10H3Cl3	1, 2, 4-Trichloronaphthalene	231 41	92 78		Ì	1
3389	C10H4Cl3	1, 2, 5-Trichloronaphthalene	231 41 231 41	97		}	ł
3390	C ₁₀ H ₆ Cl ₃	1, 2, 6-Trichloronaphthalene	231 41	88			
3391	C ₁₀ H ₅ Cl ₃	1, 2, 7-Trichloronaphthalene	231 41	83.5			
3392	C ₁₀ H ₆ Cl ₈	1, 2, 8-Trichloronaphthalene	231 41	103		į.	
3393	C10H6Cls	1, 3, 5-Trichloronaphthalene	231 41	80.5	1	1	}
3394	C10H6Cl3	1, 3, 6-Trichloronaphthalene 1, 3, 7-Trichloronaphthalene	231 41	113	1	į	1
3395	C ₁₀ H ₆ Cl ₃	1, 3, 7-Trichloronaphthalene	231 41	89.5	1		l l
3396	C ₁₀ H ₆ Cl ₈	1, 4, 5-Trichloronaphthalene	231 41	131	1	l	
3397	C ₁₀ H ₆ Cl ₃	1, 4, 6-Trichloronaphthalene	231 41	66		İ	1
3398	C ₁₀ H ₆ Cl ₃	1, 6, 7-Trichloronaphthalene	231 41	109 5			
3399	C. H. Cl.	2, 3, 6-Trichloronaphthalene	231 41	91		ì	1
3400	C ₁₀ H ₄ Cl ₄ C ₁₀ H ₅ Cl ₄	2, 3, 7-Trichloronaphthalene	231 41	90			1
3401 3402	C10H6NO10	Pyridinepentacarboxylic acid	299 05	220 d.	l	1	1
3403	C10H6N2O6	1. 2. 5-Trinitronaphthalene	263 06	113	l	Į.	
3404	C10H5N3O6	1. 3. 5-Trinitronaphthalene	263 06	123	}	ì	
3405	C10H5N3O6	1. 3. 8-Trinitronaphthalene	263 06	218 247	1		1
3406	C10H6N1O6	1. 4. 5-Trinitronaphthalene	263 06 279 06	189.5			Ì
3407	C10H4N2O7	2, 4, 5-Trinitro-α-naphthol	279 06	145			ı
3408	C10H5N3O7	2, 4, 7-Trinitro-α-naphthol	279 06	175			1
3409	C10H5N2O7	2, 4, 8-Trinitro-α-naphthol .	207 51	84			- 1
3410	C ₁₀ H ₆ ClNO ₂	4-Chloro-1-nitronaphthalene	207 51	116			
3411	C ₁₀ H ₆ ClNO ₂	7-Chloro-1-nitronaphthalene	196 96	37	282	1 31548 4	1076
3412	C10H6Cl2	1, 2-Dichloronaphthalene	196 96	61	289		
3413	C ₁₀ H ₆ Cl ₂	1, 3-Dichloronaphthalene	196 96	68	287 6	1 3004	1104
3414	C ₁₀ H ₆ Cl ₂	1, 4-Dichloronaphthalene 1, 5-Dichloronaphthalene	196-96	107	-		1
3415	C ₁₀ H ₆ Cl ₂	1, 6-Dichloronaphthalene	196 96	48		1 001100	1149
3416	C ₁₀ H ₆ Cl ₂	1, 7-Dichloronaphthalene	196.96	62	286	1 261400	1150
3417	C ₁₀ H ₆ Cl ₂	1, 8-Dichloronaphthalene	196-96	88	d.	1 292400	1100
3418	C ₁₀ H ₆ Cl ₂	2, 3-Dichloronaphthalene	196-96	120	005	1	
3419	C ₁₀ H ₆ Cl ₂ C ₁₀ H ₆ Cl ₂	2, 6-Dichloronaphthalene	196-96	135	285		1
3420 3421	C10H6C12	2. 7-Dichloronaphthalene	196 96	114		1	1
3421	C10H4Cl2O	2, 3-Dichloro-α-naphthol.	212.96	101			
3423	C10H6Cl2O	2. 4-Dichloro-α-naphthol	212 96	108			
3424	C10H6Cl2O	5. 7-Dichloro-α-naphthol	212 96	132 115		}	
3425		5, 8-Dichloro-α-naphthol	212 96	1 110	ı	ı	•

No.	Formula	Name	Mol. wt.	м. Р.	В. Р.	d	R. I. No.
3426	C ₁₀ H ₄ Cl ₂ O	6, 7-Dichloro-α-naphthol	212.96	151			
3427	C ₁₀ H ₄ Cl ₇ O	7 8-Dichloro-a-naphthol	212.96	95	ł		ı
3428	C ₁₀ H ₄ Cl ₂ O	1 3-Dichloro-g-naphthol	212.96	81	i	1	1
3429	C10H4Cl2O	1. 4-Dichloro-8-naphthol	212.96	124	İ	i	1
3429 1	C10H4Cl2O	3. 6-(6. 8)-Dichloro-p-naphthol.	212 96	125	i	1	
8430	C10H6Cl2O4S2	Nanhthalene-1, 5-daulfonechloride	325.09	183		1	İ
3431	C10H4Cl2O4S2	Naphthalene-1, 6-disulfonechloride	325.09	129	1	ı	
3432	C ₁₀ H ₄ Cl ₂ O ₄ S ₂	Naphthalene-2, 6-disulfonechloride	325 09	226 162	Ì	1	
34 33	C ₁₀ H ₆ Cl ₂ O ₄ S ₂	Naphthalene-2, 7-disulfonechloride	325.09 186-06	269		1	
3434	C ₁₀ H ₈ N ₂ O ₂	Pyrocoll	218 06	103		1	1
3435	C ₁₀ H ₄ N ₂ O ₄	1, 2-Dinitronaphthalene	218 06	145	ŀ		
3436	C ₁₀ H ₄ N ₂ O ₄	1, 3-Dimtronaphthalene. 1, 4-Dimtronaphthalene	218 06	129		1	
34 37 34 38	C ₁₀ H ₄ N ₂ O ₄ C ₁₀ H ₄ N ₂ O ₄	1, 5-Dintronaphthalene	218 06	216		1	
34 39	C10HaN2O4	1, 6-Dinitronaphthalene	218 06	162	j	1	
3440	C10H4N2O4	1. 7-Dmitronaphthalene	218 06	156			
3441	C10H4N2O4	1, 8-Dinitronaphthalene	218.06	170		l	1
3442	C10H4N2O4	2, 4-Dimitro-α-naphthol	234 06	138		1	1
3443	C10H4N2O4	4, 5-Dimitro-a-naphthol	234.06	230 d.			
3444	C10H4N2O6	4, 8-Dimitro-α-naphthol	234 06	235 d.	1	1	
3445	C ₁₀ H ₆ N ₂ O ₆	1, 6-Dinitro-s-naphthol	234.06	195	į		}
3446	CtoHaN2Os	1, 8-Dinitro-β-naphthol	234 06	198		1	1
3447	C ₁₀ H _n O ₂	1, 2-Naphthoquinone	158.05	120 d.			
3448 3449	C ₁₀ H ₄ O ₂ C ₁₀ H ₄ O ₂	1, 4-Naphthoquinone	158 05 158 05	125	1		
3450	C ₁₀ H ₆ O ₄	2, 6-Naphthoquinone Mellophanic acid	254 05	135 238			
3451	C ₁₀ H ₆ O ₈	Prehnitic acid	254.05	237 d.		1	
3452	C ₁₀ H ₆ O ₈	Pyromellitic acid	254 05	264	}	1	
3453	C ₁₀ H ₇ Br	α-Bromonaphthalene	206.97	5	281.1	1 476	799
8454	C10H7Br	β-Bromonaphthalene	206 97	59	282	1.6050	1.00
3455	C10H7C1	α-Chloronaphthalene	162.51		258	1.191	795
3456	C ₁₀ H ₇ Cl	β-Chloronaphthalene	162 51	56	264.3	1.13840.7	1102
3457	C ₁₀ H ₇ ClO	2-Chloro-α-naphthol	178 51	70	1		1
3458	C ₁₀ H ₇ ClO	4-Chloro-α-naphthol	178.51	117		1	
3459	C ₁₀ H ₂ ClO	5-Chloro-α-naphthol	178 51	131.5		1	
3460	C ₁₀ H ₇ ClO C ₁₀ H ₇ ClO	6-Chloro-a-naphthol	178 51	94		1	1
3461 3462	C ₁₀ H ₇ ClO	7-Chloro-α-naphthol 1-Chloro-β-naphthol	178.51	123		1	
3463	C ₁₀ H ₇ ClO	5-Chloro-β-naphthol	178.51 178.51	71 128	}	1	
3464	C ₁₀ H ₇ ClO	6-Chloro-β-naphthol	178 51	115			
3465	C ₁₀ H ₇ ClO	7-C'hloro-ø-naphthol	178.51	126.5	l	1	
3466	C ₁₀ H ₇ ClO	8-Chloro-β-naphthol.	178.51	101	308	1	1
3467	C ₁₀ H ₇ ClO ₂ S	Naphthalene-1-sulfonchloride .	226.58	68	19512	1	
3468	C ₁₀ H ₇ ClO ₂ S	Naphthalene-2-sulfonechloride	226 58	76	20113	1	
3469	C ₁₀ H ₇ F	α-Fluoronaphthalene	146.05		216 5	1 1350	1
3470	$C_{10}H_7F$	β-Fluoronaphthalene	146.05	59	212 5	1	1
3471	C ₁₀ H ₇ IO	1-Iodo-β-naphthol .	269.99	94.5		1	1
3472	C ₁₀ H ₇ NO	Cinnamyl cyanide C ₆ H ₅ CH;CH ₂ COCN.	157.06	115			İ
3473 3474	C ₁₀ H ₇ NO ₂ C ₁₀ H ₇ NO ₂	α-Nitronaphthalene β-Nitronaphthalene	173.06	58.8	304	1.3314	
3475	C ₁₀ H ₇ NO ₂	2-Nitroso-a-naphthol	173.06 173.06	$\begin{array}{c} 79 \\ 152 \end{array}$	16516	1	
3476	C10H7NO2	14 N. A	173 06	194			1
3477	CtoH7NO2	1-Nitroso-β-naphthol	173.06	109.5		1	
3478	C10H7NO2	Cinchonime acid .	173 06	254	1		
3479	C10H7NO2	Quinaldinic acid	173.06	156		1	
	C ₁₀ H ₇ NO ₃	Quinoline-3-carboxylic acid .	173 06	275		1	
	C ₁₀ H ₇ NO ₂	Quinoline-6-carboxylic acid	173.06	292	ļ		
	C ₁₀ H ₇ NO ₂	Quinoline-7-carboxylic acid	173 06	249			1
	C ₁₀ H ₇ NO ₃	Quinoline-8-carboxylic acid	173 06	187.5		1	1
3484	C ₁₀ H ₇ NO ₃	α-Kynurenic acid	189 06	283			1
3485 3486	C ₁₀ H ₇ NO ₃ C ₁₀ H ₇ NO ₄	2-Nitro-a-naphthol	189 06	128		1	1
	C ₁₀ H ₇ NO ₂	3-Nitro-α-naphthol	189 06 189.06	168 1 64			
3101	-1024/4103	1	100.00	102	ı	1	•

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3488	C ₁₀ H ₇ NO ₈	5-Nitro-a-naphthol	189 06	171		 	110.
3489	C ₁₀ H ₇ NO ₈	1-Nitro-β-naphthol	189 06	103			
3490	C ₁₀ H ₇ NO ₃	5-Nitro-β-naphthol	189 06	147		1	
3491	C ₁₀ H ₇ NO ₈	6-Nitro-β-naphthol	189 06	158		1	
3492	C ₁₀ H ₇ NO ₈	8-Nitro-β-naphthol.	189 06	145			
3493	C ₁₀ H ₇ NO ₄	Indoledicarboxylic acid	205 06	>250 d			1
3494	C10H1	Naphthalene C ₁₀ H ₈	128 06	80 1	217 9	1 145	1143
3495	C ₁₀ H ₆ Cl ₄	Naphthalenetetrachloride	269 89	182			
3496	C ₁₀ H ₁₀ IN	Quinoline methiodide C ₂ H ₇ N ₁ CH ₂ I	271 02	133			
3497	C ₁₀ H ₈ N ₂	2, 3'-Dipyridyl	156 08	}	289		
3498	C ₁₀ H ₈ N ₈	3, 3'-Dipyridyl	156 08	68	296 5	1.164	
3499	C ₁₀ H ₈ N ₂	4, 4'-Dipyridyl	156 08	112	304-8		
3500	C10H1N2	Nicotelline	156 08	148	< 300		1
3501	C10H8N2O2	3-Nitro-α-naphthylamine	188 08	137		İ	1
3502	C ₁₀ H ₈ N ₂ O ₂	6-Nitro-α-naphthylamine	188 08	143		ĺ	
3503	C ₁₀ H ₈ N ₂ O ₃	7-Nitro-α-naphthylamine	188 08	122			1
3504	C10H8N2O2	1-Nitro-β-naphthylamine	188 08	127		1	
3505	C10H8N2O2	5-Nitro-β-naphthylamine	188 08	143		Ì	1
3506	C ₁₀ H ₈ N ₂ O ₂	8-Nitro-\$-naphthylamine	188 08	105			
3507	C ₁₀ H ₆ O	α-Naphthol C ₁₀ H ₇ OH .	144 06	96	280	1 099***	1126
3508	C ₁₀ H ₆ O	β-Naphthol C ₁₀ H ₇ OH	144 06	122	286	1 2174	1333
3509	C10H8O3	1, 2-Dihydroxynaphthalene	160 06	60			
3510	C ₁₀ H ₈ O ₂	1, 3-Dihydroxynaphthalene	160 06	125	1	1	
3511	C ₁₀ H ₈ O ₂	1, 4-Dihydroxynaphthalene	160 06	176			1
3512	C10H8O2	1, 5-Dihydroxynaphthalene	160 06	258			
3513	C ₁₀ H ₈ O ₂	1, 6-Dihydroxynaphthalene	160 06	138	ļ		
3514	C ₁₀ H ₈ O ₂	1, 7-Dihydroxynaphthalene	160 06	178			
3515	C ₁₀ H ₈ O ₃	1, 8-Dihydroxynaphthalene	. 160 06	140			
3516	C ₁₀ H ₈ O ₂	2, 3-Dihydroxynaphthalene	160 06	159			
3517	C ₁₀ H ₆ O ₂	2, 6-Dihydroxynaphthalene	160 06	216			
3518	C ₁₀ H ₈ O ₂	2, 7-Dihydroxynaphthalene	160 06	190			
3519	C ₁₀ H ₈ O ₂ S	Naphthalene-1-sulfinic acid	192 13	85			
3520	C ₁₀ H ₈ O ₂ S	Naphthalene-2-sulfinic acid .	. 192 13	105 170	1	1	
3521	C ₁₀ H ₈ O ₈	1, 4, 5-Trihydroxynaphthalene	176 06 176 06	97			1
3522	C ₁₀ H ₈ O ₈	1, 3, 6-Trihydroxynaphthalene	176 06	99		1	1
3523	C ₁₀ H ₈ O ₃	2-Benzoylacrylic acid Naphthalene-1-sulfonic acid	208 13	90	1	1	
3524 3525	C ₁₀ H ₈ O ₃ S	Naphthalene-2-sulfonic acid	208 13	102		į	
	C ₁₀ H ₈ O ₂ S	Anemonin	192 06	189 s. d.	300 d.		
3526 3527	C ₁₀ H ₈ O ₄	o-Carboxycinnamic acid	192 06	175		}	
3528	C ₁₀ H ₈ O ₄ C ₁₀ H ₈ O ₄	Furoin	192 06	135		1	
3529	C ₁₀ H ₅ O ₄	β-Methylesculetin	192 06	204		1	1
3530	C10H3O4	Scopoletin	192 06	204	ł	1	
3531	C ₁₀ H ₈ O ₄	1, 4, 5, 6-Tetrahydroxynaphthalene	192 06	154		1	
3532	C ₁₀ H ₈ O ₄ S	α-Naphthol-2-sulfonic acid	224 13	<250			
3533	C ₁₀ H ₈ O ₄ S	α-Naphthol-4-sulfonic acid	224 13	170 d.		1	
3534	C10H8O4S	α-Naphthol-5-sulfonic acid	224 13	120			
3535	C ₁₀ H ₈ O ₄ S	α-Naphthol-8-sulfonic acid	. 224 13	107		1	İ
3536	C ₁₀ H ₈ O ₄ S	β-Naphthol-6-sulfonic acid	224.13	125			-
3537	C10H8O4S	β-Naphthol-7-sulfonic acid	224 13	89			1
3538	C10H8O8	Fraxetin	208 06	227			
3539	C10H4O6S2	Naphthalene-1, 5-disulfonic acid	288.19	d.			1303
3540	C10H4O4S1	Naphthalene-1, 6-disulfonic acid	288.19	125 d.			1271
3541	C ₁₀ H ₈ O ₇	Cotarnic acid	240 06	178			
3542	C10H2S	α-Thionaphthol C ₁₀ H ₁ SH .	160.13		285 d.	1.14633	
3543	C ₁₀ H _a S	β-Thionaphthol C ₁₀ H ₇ SH	160.13	81	288 s. d.	1.550	
3544	C ₁₀ H ₂ Cl ₂ O ₂	Chloralacetophenone	267.44	77	0.50		
3545	C ₁₀ H _• N	3-Methylquinoline.	. 143.08	14	250	1.074	1
3546	C ₁₀ H ₉ N	4-Methylquinoline (Lepidine)	143.08	1	262	1.086	1000
3547	C ₁₀ H ₉ N	6-Methylquinoline	143.08		255	1.066	1003
3548	C ₁₀ H ₉ N	7-Methylquinoline	143.08	1	252.5	1.072	788
3549	C ₁₀ H ₉ N	8-Methylquinoline	143.08		14314	1.073	789
3550	C ₁₀ H ₀ N	α-Naphthylamine C ₁₀ H ₇ NH ₂	. 143.08	50	301	1.131	1080

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3551	+C ₁₀ H ₂ N	B-Naphthylamine C ₁₀ H ₇ NH ₂	143 08	110 2	306.1	1.0614	T
3552	C ₁₀ H ₀ NO	3-Amino-β-naphthol	159 08	234			
3553	C ₁₀ H ₀ NO	7-Amino-β-naphthol .	159 08	163		1	
3554	C to H NO	2-Hydroxyquinaldine	159 08	205		}	1
3555	C ₁₀ H ₈ NO	4-Hydroxyquinaldine	159 08	231	1	1	ì
3556	CadlyNO	6-Hydroxyquinaldine	159 08	213			1
3557	C ₁₀ H ₆ NO	7-Hydroxyquinaldine	159 08	234	007	1	1
3558	C ₁₀ H ₂ NO	8-Hydroxyquinaldine	159 08	74	267	1	Ì
3559	C ₁₀ H ₉ NO	Echinopsine	159 08	152			ŀ
3560	C ₁₆ H ₂ NO ₂	α-Scatolecarboxylic acid	175 08	165		ŀ	ŀ
3572	C ₁₀ H ₀ N ₄ O ₄	Andalloxan	235 09	248 d.	84.516	0.007	1
3573	C10H10	1, 2-Dihy dronaphthalene	130 08	-9	Į.	0.997	
2574	C 10 H 10	1, 4-Dihydronaphthalene	130 08	15 5	212	0.998	844
3575	C16H10	1-Ethyl-2-phenylacetylene	130 08		203	0 923	
3576	Cullin	Phenylerotonylene C ₆ H ₆ CH.CHC ₂ H ₆ .	130 08	100.1	190		
3578	C ₁₀ H ₁₀ Cl ₄ NO ₄	Chloral-p-acetaminophenol	298 46	160 d.			
3579	C ₁₀ H ₁₀ NO ₄	Oxycannabin	208 09	182			1
3580	C 10 H 10 N 2	Naphthylene-1, 2-diamine	158 09	96			
3581	C 10 H 10 N 2	Naphthylene-1, 4-diamine	158 09	120			
3582	C 10 H 10 N	Naphthylene-1, 5-diamine	158 09	189 5		1.1474	1107
3583	CtoHtoN2	1, 6-Naphthylenediamine	158 09	77 5			1137
3584	CaoHaoN,	1, 8-Naphthylenediamine	158 09	66 5	10117	1.1274	1135
3585	C ₁₀ H ₁₀ N ₂ O	N-Phenyl-3-methylpyrazolone	174 09	127	19117	1	1287
3586	C ₁₀ H ₁₀ N ₂ O ₄ S	N-Sulfophenyl-3-methylpyrazolone	254 16	320 d.	000	1 000	1000
3587	C ₁₀ H ₁₀ O	Benzyhdeneacetone	146 08	42	262	1 008	1068
3588	C 10 H 10 O	1, 2-Dihydro ß-naphthol	146 08	35	16428	1 11718	000
3589	C ₁₀ H ₁₀ O ₂	cis-Isosafrol	162 08	>-18	243	1.1174	868
3590	C ₁₀ H ₁₀ O ₂	trans-isosafrol	162 08	.,	248	1 1234	869
3591 35 92	C ₁₀ H ₁₀ O ₂ C ₁₀ H ₁₀ O ₂	Safrol CH ₂ O ₂ C ₅ H ₃ C ₃ H ₆	162 08	11	234 5 244 4	1 096	812
		Benzoylpropionaldehyde	162 08	6,1	1	0 99815	1100
3593 3594	C ₁₀ H ₁₀ O ₂ C ₁₀ H ₁₀ O ₂	Benzoylacetone C ₈ H ₈ COCH ₂ COCH ₃ .	162 08	61	262	1 09060	1106
3595	('10H10()2	1-Benzylacrylic acid CH ₂ ·C(C ₇ H ₇)CO ₂ H 1-Benzylidenepropionic acid	162 08	69	000		1
3596	C10H10O2	2-Benzyhdenepropionic acid	162 08	74	288		
3597	C10111001	3-Phenylcrotonic acid	162 08	86	302		1
3598	C ₁₀ H ₁₀ O ₂	Allyl benzoate $C_6H_6CO_2C_3H_b$	162 08	65	920	1 05016	
3599	C10H10O2	Benzyl acrylate C ₂ H ₄ CO ₂ CH ₂ C ₆ H ₆	162/08 $162/08$		230	1 058 ₁₅ 1 069 ₄ ⁸	
3600	C10H10O2	Methyl cinnamate	162 08	36	259 6	1 0420	973
3601	C10H10O2	Phenylvinyl acetate	162 08	00	12110	1 065	999
3602	C10H10O1	o-Comferylaldehyde	178 08	131	121	1 000	000
3603	C10H10O1	p-Confery laldehy de	178 08	82 5			1
3604	C ₁₀ H ₁₀ O ₃	m-Methoxycinnamic acid	178 08	115	1		1
3605	C ₁₀ H ₁₀ O ₃	p-Methoxycinnamic acid	178 08	169			
3606	C10 H10O2	Methyl benzoylacetate	178 08	100	265 d.	1 158	712
3607	C10H10O4	1-Benzov llactic acid	194 08	112	2007 (1.	1 100	'
3608	C10H10O4	Benzylmalonic acid	194 08	117			1
3600	C ₁₀ H ₁₀ O ₄	Ferulic acid	194.08	169	İ	1	i
3610	C10H10O4	Hesperetinic acid	194 08	228			
3611	C10H10O4	o-Phenylenediacetic acid	194.08	150		1	
3612	C10H10O4	m-Phenylenediacetic acid	194 08	170			1
3613	C10H10O4	p-Phenylenediacetic acid	194 08	241	1		1
3614	C10H10O4	Dimethyl isophthalate	194 08	68			1
3615	C10H10O4	Dimethyl o-phthalate	194 08		282	1 18925	
3616	C10H10O4	Dimethyl terephthalate	194 08	140	>300		
3617	C10H10O4	Ethyl hydrogen o-phthalate	194 08	48	1		
3618	C10H10O4	Hydroquinone diacetate	194 08	124	1	1	
3619	C10H10O4	Methyl acetylsalicylate	194 08	54	1	1	
3620	C10H10O4	Resortinol diacetate	194.08	1	278 s. d.	1	
3621	C10H10O4	Meconin	194 08	101	155	1	
3622	C10H10O4	Salacetol o-HOC ₅ H ₄ CO ₂ CH ₂ COCH ₃	194 08	71	1	1	
3623	C ₁₀ H ₁₀ O ₅	Larivinic acid	210 08	153	1	1	
3624	C10H10O4	Opianic acid	210 08	150	1		1333
3625	C10H10O6	Apiolic acid	226.08	175	1	1	í

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I.
3626	C10H10O6	Hemipinic acid .	226 08	186	1	- 	No.
3627	C10H11NO2	Acetoacetanilide	177 09	85			
3628	C10H11NO2	Diacetanilide (CH ₁ CO) ₁ N ₁ C ₄ H ₅	177 09	37	14211		1
3629	C ₁₀ H ₁₁ NO ₃	p-Diacetylaminophenol	193 09	118		ļ	1
3630	C ₁₀ H ₁₁ NO ₃	Ethyl oxanilate	193 09	67	300		
3631	C10H11NO	Methyl hippurate	193 09	80.5			1
3632	C10H11NO.	dl-Benzoylalanine	193 09	166			1
3635	C ₁₀ H ₁₁ NO ₄	Benzacetin	209 09	205			1
3636	C10H11N1O4	4-Nitro-1, 3-diacetylphenylenediamine	237 11	246		İ	
3637	C ₁₀ H ₁₂	1, 2, 3, 4-Tetrahydronaphthalene	132 09		207 2	0 971	931
3638	C10H12	5, 6, 7, 8-Tetrahydronaphthalene	132 09	- 30	207	0 975	930
3639	C ₁₀ H ₁₂	β-Phenyl-β-butylene	132 09		189	0 90121	966
3640	C ₁₀ H ₁₂ Br ₂ O	2, 4-Dibromothymol	307 92	4	175%	1.65917 4	
3641	C ₁₀ H ₁₂ Br ₂ O ₂	Isoeugenol-1, 2-dibromide	323 92	102			
3642	C ₁₀ H ₁₂ N ₂	Isonicoteine	160-11		293	1 098	760
3643	C ₁₀ H ₁ ,N ₂	Nicoteine	160 11		267	1 07812	ļ
3643 1	C ₁₀ H ₁₂ N ₂ O	1-Allyl-2-phenylurea	176 11	115 5		1	1
3644	C ₁₀ H ₁₂ N ₂ O ₂	Diacetyl-o-phenylenediamine	192 11	186	į	1	1
3645	C ₁₀ H ₁₂ N ₂ O ₂	Diacetyl-m-phenylenediamine	192 11	191	1	1	1
3616	C ₁₀ H ₁₂ N ₂ O ₂	Diacetyl-p-phenylenediamine	192 11	160	1		1
3647	C ₁₀ H ₁₂ N ₂ O ₃	5, 5-Duallylbarbituric acid	208-11	171			
3648	C ₁₀ H ₁₂ O	p-Anethol p-CH ₄ OC ₆ H ₄ CH CHCH ₃	148 09	22 5	235 3	0 986	1044
3649	C ₁₀ H ₁₂ O	1, 2, 3, 4-Tetrahydro-a-naphthol	148 09		14017	1 090	917
3650	C ₁₀ H ₁₂ O	5, 6, 7, 8-Tetrahydro-α-naphthol	148 09	68	265 3		Ì
3651	C ₁₀ H ₁₂ O	1, 2, 3, 4-Tetrahydro-β-naphthol	148 09		265 5	1 071	
3652	C ₁₀ H ₁₂ O C ₁₀ H ₁₂ O	5, 6, 7, 8-Tetrahydro-g-naphthol	148 09	57 5	276	1	1
3653 3654	C ₁₀ H ₁₂ O	Benzyl allyl ether $C_6H_6CH_2OC_3H_6$	148 09		204	0.000	893
3655	C ₁₀ H ₁₂ O	Ethyl styryl ether C ₆ H ₅ CH CHOC ₂ H ₅ . Methyl chavicyl ether	148 09 148 09		226	0.982	676
3656	C ₁₀ H ₁₂ O	Cumic aldehyde (CH ₃) ₂ CHC ₆ H ₄ CHO.	148 09		216 235	0.965	698
3657	C ₁₀ H ₁₂ O	Mesitylinic aldehyde	148 09		237	0 3/6	000
3658	C ₁₀ H ₁₂ O	3, 4, 5-Trimethylbenzaldehyde	148 09	52	201	1	
3659	C ₁₀ H ₁₂ O	Benzyl acetone C ₀ H ₀ (CH ₂) ₂ COCH ₃ .	148 09	02	236	0 98924	
3660	C ₁₀ H ₁₂ O	Ethyl benzyl ketone	148 09		230 2	1.0024	1
3661	C ₁₀ H ₁₂ O	Phenyl isopropyl ketone	148 09		217	0 984	879
3662	C ₁₀ H ₁₂ O	Phenyl n-propyl ketone	148 09	11	232 3	0.988	0,0
3663	C ₁₀ H ₁₂ O	p-Tolylacetone	148 09	51	233	0.000	
3664	C ₁₀ H ₁₂ O	p-Tolyl ethyl ketone	148 09		239763	0 993	690
3665	C ₁₀ H ₁₂ O ₂	3, 5, 6-Trimethyl-2-hydroxybenzaldehyde	164 09	106		1	
3666	C ₁₀ H ₁₂ O ₃	Fugenol	164 09		253	1.07118	841
3667	C ₁₀ H ₁₂ O ₂	Isoeugenol	164 09	- 10	267 5	1.080	936
3668	C ₁₀ H ₁₂ O ₂	Cumic acid (CH ₃) ₂ CHC ₆ H ₄ CO ₂ H	164 09	116 5		1 1634	
3669	C ₁₀ H ₁₂ O ₂	o-Isopropylbenzoic acid	164 09	51	1		
3670	C10H12O2	3-Phenylbutyric acid C.H. (CH2), CO2H	164 09	47 5	290		1
3671	C ₁₀ H ₁₂ O ₂	o-Propylbenzoic acid o-C ₃ H ₇ C ₅ H ₄ CO ₂ H.	164 09	58	273		1
8672	C10H12O2	p-Propylbenzoic acid	164 09	141	1		
3673	C10H12O2	3, 4, 5-Trimethylbenzoic acid	164 06	215	1		1
674	C10H12O2	2, 4, 5-Trimethylbenzoic acid	164 09	149 5	1		
675	C10H12O2	2, 4, 6-Trimethylbenzoic acid	164 09	152	1		1
676	C10H12O2	Benzyl propionate	164 09		220	1 03617 5	
677	C ₁₀ H ₁₂ () ₂	Ethyl phenylacetate C ₅ H ₅ CH ₂ CO ₂ C ₂ H ₅	164 09		226	1 031	589
678	C ₁₀ H ₁₂ O ₂	Ethyl o-toluate CH ₂ C ₆ H ₄ CO ₂ C ₂ H ₅	164 09		221 3	1.033	629
679	C10H12O2	Ethyl m-toluate CH ₂ C ₆ H ₄ CO ₂ C ₂ H ₅ .	164 09		226.4	1.028	624
680	C10H12O2	Ethyl p-toluate CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₄	164 09		228	1.026	636
681	$C_{10}H_{12}O_2$	Isopropyl benzoate	164 09		218 5	1.01715	
681.1	C ₁₀ H ₁₂ O ₂	d-Methylbenzylcarbinyl formate	164 09		11010	1.02722	595
682	C10H12O2	Methyl hydrocinnamate	164 09		239	1.01849	1
683	C10H12O2	Phenyl n-butyrate C ₂ H ₇ CO ₂ C ₆ H ₆	164 09		228	1.02716	1
684	C ₁₀ H ₁₂ O ₂	n-Propyl benzoate C ₅ H ₄ CO ₂ C ₄ H ₇	164 09	-51 6	231 2	1 027	1
685	C ₁₀ H ₁₂ O ₂	Thymoquinone	164.09	45 5	232		
686	C10H12O2	Coniferyl alcohol	180.09	74	1000	1	
687	C10H12O2	Benzyl lactate.	180.09		1304		1025
688	$C_{10}H_{12}O_{3}$	Ethyl anisate p-CH ₂ OC' ₅ H ₄ CO ₂ C' ₂ H ₄ .	180.09	7.8	263	1 106	680

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3689	C10H12O1	Ethyl mandelate	180 09	34	255		1110.
3690	C10H13O1	Propyl salicylate o-HOC, H, CO, C, H,	180 09		240	1.09918	
3691	C10H12O4	Cantharic acid	. 196 09	278	1		
3692	C10H12O4	Ethyl vanillate	196 09	44	293		
3693	C10H12O4	Cantharidin	196 09	212		•	1
3694	C10H12O4	Guaiacyl methyl glycollate	196 09		15615	1.180	1
3695	C10H12O4	Sparassol	196 09	68		Í	
3696	C ₁₀ H ₁₂ O ₄	Asaronic acid	212 09	144	300		
3697	C10H12O4	Glycerol monosalicylate	212 09	76		1.366	
3698	C10H12O4	β-Anemoninic acid	228 09	189		1	
3699	C _{to} H ₁₄ ClO	4-Chlorothymol	184 56	64			1
3700	C ₁₀ H ₁₄ ClO	6-Chlorothymol	184 56	64		1	-
3701	C ₁₀ H ₁₄ N	Kairoline (I-Methyl-1, 2, 3, 4-tetrahydro	-			1	
2700	() 11 h	quinoline)	147 11		245.5	1 021	1005
3702	C ₁₆ H ₁₁ N	5, 6, 7, 8-Tetrahydro-α-naphthylamine	147 11	1	276.8	1 05441	1006
3703	C ₁₆ H ₁₂ N	5, 6, 7, 8-Tetrahydro-β-naphthylamine	147 11	38	278 5	1 02942.2	986
3704	C ₁₀ H ₁₁ NO	o-Acetylmethyltoluidine	163 11	56	1		200
3705	C ₁₀ H ₁₀ NO	p-Acetylmethyltoluidine	163 11	80			
3706	C ₀ H ₀ NO	N-Butyramlide C ₆ H ₅ NHOCC ₅ H ₇	163 11	92	18915		
	C ₁₀ H ₁₁ NO	3, 5-Dimethylacetamlide	163 11	174		1	
	C ₁₀ H ₁₀ NO	ω-Dimethylaminoacetophenone	163 11	59		1	
	C ₁₀ H ₁₁ NO	N-Ethylacetanihde	163 11	54 5	259	0.99440	1
	C ₁₀ H ₁₁ NO	Thalline	163 11	43	283 8	0.004	
	C ₁₀ H ₁₈ NO ₂	1-Andinobutyric acid	179 11	141	2		
1	C ₁₀ H ₁₄ NO ₂	Propyl p-aminobenzoate	179 11	76			
	C ₁₀ H ₁₂ NO ₂	o-Acetphenetidine	179 11	79	<250		
	C ₁₀ H ₁₁ NO ₂	m-Acetphenetidine.	179 11	96	12.70		ł
	C ₁₀ H ₁₁ NO ₁	2-Nitrocymene	179.11	1	15215	1 08518	
	C ₁₀ H ₁₂ NO ₂	Phenacetin C ₂ H ₅ OC ₅ H ₄ NHCOCH ₂	179 11	135	d.	1 000.	1040
	C ₁₀ H ₁₄ NO ₄	Damascenine	195 11	27	168		1246
	C ₁₀ H ₁₁ NO ₁	2-Nitrothymol	195 11	119	100		
	CinHiaNOa	4-Nitrothymol	195 11	142		i	1
	C ₁₀ H ₁₂ NO ₂	Ratanhine	195 11	252			
	l _{io} III ₁₈ NO ₈	Surmamine (N-Methyltyrosine)	195 11	280 d.		1	1
	hoHiaNaO4	2, 4-Dimtro-N-diethylaniline.	239 12	80		ĺ	1
	10H12N4O4	Vernine	283 14	240	1		İ
	10 114	n-Butylbenzene ('H ₁ (C'H ₂) ₄ C ₆ H ₄ ,	134 11	210	180	0 862	l
	10H14	secButylbenzene C ₂ H ₈ (CH ₄)CHC ₄ H ₄	134 11		175	1	554
	10H14	tertButylbenzene (CH ₁) ₂ C.C ₆ H ₅	134 11		168.7	0 860	550
	10H14	o-Cymene o-CH ₄ (CH ₂) ₂ C ₆ H ₄ CH ₄	134.11		157	0 867	582
	10H14	m-Cymene m-CH ₂ (CH ₂) ₂ C ₅ H ₄ CH ₄	134.11	> -25	175	0 85818	601
	10H14	p-Cymene p-CH ₄ (CH ₂) ₂ C ₄ H ₄ CH ₄	134 11	-73 5	1	0 860	559
	`10H14	o-Diethylbenzene o-(CaHa)aCaHa	134 11	<-20	176 184 5	0 857	1022
	10 H 14	m-Diethylbenzene m-(CoHa)oCaHa	134 11	<-20	182	0 866	
	10H14	p-Diethylbenzene p-(C,H _b),C _b H _b	134 11	-35	183	0 860	P00 :
	101114	1, 2, 4, 5-Tetramethylbenzene	134 11	80	195	0 865	569.1
	10 H 14	4-Ethyl-m-xylene C ₂ H ₂ C ₄ H ₃ (CH ₃).	134 11	<-20	183	0 838 1.3	1273
	10H14	5-Ethyl-m-xylene C ₂ H ₅ C ₆ H ₂ (CH ₂),	134 11	<-20		0.878	
	10 H 14	Hexahydronaphthalene	134 11	- 20	185 205 5	0 861	
	10H14	Isobutylbenzene (CH.), CHCH.C.H.	134.11			0 934	
	10 H 14	1, 2, 3, 5-Tetramethylbenzene	134.11	J	171.4	0 85815	562
	10H14	1, 2, 3, 4-Tetramethylbenzene	134 11	-4	197 204	0 8964	000
	10 11 14	Verbenene	134.11			0.901	662
	10H14Br2()	d-α, α'-Dibromocamphor	309 94	61	159	0 88611	593
13 C	10H14ClN	Thermin (Tetrahydro-\beta-naphthylamine	300 04	01			1209
		hydrochloride).	183 57	237			1
	10H14Cl 3 O	α-Dichlorocamphor	221.02	t e	2000	4.0	
	юН₁₄Cl₂O	β-Dichlorocamphor	221 02	96	200 d.	4 2	1
	10H14N2	Isomcotine	162 12	77	2002		
7 C	0H14N2	Nicotine	162 12	78	260 d.		
			104.14		274.3	1.009	695
8 C _i	0H14N2	Nicotimine	169 19	- 1			
	0H14N2 0H14N2O2	Nicotimine 6-Nitroso-3-(diethylamino) phenol	162.12 194.12	84	250		

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3751	C10H14N2O2	Phenocoll p-C ₂ H ₄ OC ₆ H ₄ NHCOCH ₂ NH,	194 12	100 5	 		1
3752	C10H14O	Carvacrol	150 11	0.5	237.9	0 976	678
3753	C10H14O	d-Carvol	150-11	, ,	225	0 960	940
3754	C10H14O .	Cuminal alcohol	150 11		246 6	0 9781	
3754 1	C ₁₀ H ₁₄ O	Methyl d-methylbenzyl carbinol	150 11		8511	0 92727	1
3754 2	C ₁₀ H ₁₄ O	Methyl L-phenylethyl carbinol	150-11		13214	0 9767	658
3755	C ₁₀ H ₁₄ O	3-Methyl-2-hydroxyisopropylbenzene	150 11		226	0 98715.2	669
3756	C ₁₀ H ₁₄ O	Thymol (CH ₃) ₃ CHC ₆ H ₂ (OH)CH ₃	150 11	51.5	231 8	0 969	1170
3757	C ₁₀ H ₁₄ O	5-Methyl-2-hydroxyisopropylbenzene	150 11	36	229	0 98217 #	674
3758	C ₁₀ H ₁₄ O	Benzyl propyl ether C ₆ H ₅ CH ₂ OC ₂ H ₇	150 11		196		
3759	C ₁₀ H ₁₄ O	n-Butyl phenyl ether C6H6OC4H,	150 11		210 3	0 950	
3760	C ₁₀ H ₁₄ O C ₁₀ H ₁₄ O	Isobutyl phenyl ether.	150-11		198	0 93914	
3761	C ₁₀ H ₁₄ O	Myrtenal (Myrtenic aldehyde) Eucarvol	150-11		iΩ10	0 988	616
3762	C ₁₀ H ₁₄ O	Pinocarvol	150 11		10620	0 952	845
3763 3764	C ₁₀ H ₁₄ O	d(l)-Piperitone	150 11		224	0 984	620
3765	C ₁₀ H ₁₄ O	Umbellulone	150 11		235	0 934 vac	542
3766	C ₁₀ H ₁₄ O ₂	o-Diethoxybenzene o-(C2H4O)2C4H4	150 11		220	0 958	551
3767	C ₁₀ H ₁₄ O ₁	Coerulignol	166 11	45			
3768	C ₁₀ H ₁₄ O ₂	Hydroquinone diethyl ether	166 11	~	246	1 04914	
3769	C ₁₀ H ₁₄ O ₂	Resorcinol diethyl ether	166 11	72			
3770	C10H14O2	d-Camphorquinone.	166 11	12 4	235 2		
3771	C ₁₀ H ₁₄ O ₂	Thymohydroquinone	166 11	198			
3772	C ₁₀ H ₁₄ O ₂	Crocetin .	166 11	143	290		
3773	C ₁₀ H ₁₄ O ₃	dl-Camphoric anhydride	166 11 182 11	104 221	070		
3774	C ₁₀ H ₁₄ O ₄	1, 2, 3, 5-Tetramethoxybenzene	198 11	47	270		
3775	C ₁₀ H ₁₄ O ₄	Guaiamar.	198 11	75	271		
3776	C ₁₀ H ₁₄ O ₄	Diethyl muconate	198 11	13; 62	64	0 98329 1	
3777	C10H14O4	Pinoylformic acid	214 11	80	04	0 3004	
3777.1	C ₁₀ H ₁₄ O ₆	Diallyl tartrate	230 11		19120	1 18724-4	
3778	C ₁₀ H ₁₈ BrO	α-Bromocamphor	231 03	78	274	1 449	1252
3779	C ₁₀ H ₁₄ BrO	β-Bromocamphor	231 03	61	13010	1	12.72
3780	C10H14Cl	Myrtenyl chloride	170 57		9012	1 015	586
3782	C10H14C1O	α-Chlorocamphor	186 57	125	220 s d	1	
3783	C10H18ClO	β-Chlorocamphor	186 57	92 5	247		1
3784	C ₁₆ H ₁₈ ClO	γ-Chlorocamphor	186 57	100	237 в d.		
3785	$C_{10}H_{18}N$	n-Butylandine CoHoNHCoHo	149 12		240 9		
3786	C ₁₆ H ₁₈ N	2-Dimethylamino-m-xylene	149-12		196 2	0 915	649
3787	C10H15N	4-Dimethylamino-m-xylene	149 12		232 2	0 939	730
3788	C10H16N	4-Dimethylamino-o-xylene	149-12		205	0 916	663
3789	C10H15N	Diethylanıline C ₆ H ₆ N(C ₂ H ₆) ₂	149-12	-344	216 27	0 934	717
3790	$C_{10}H_{1b}N$	Isobutylaniline C ₆ H ₆ NHCH ₂ CH(CH ₃) ₂	149 12		242	0.940	1
3791	C10H15N	Prehnidine 1, 2, 3, 4-C ₆ H ₂ (CH ₂) ₄	149 12	70	260		
3792	C ₁₀ H ₁₈ NO	m-Diethylaminophenol	165 12	78	278		
3793	C ₁₀ H ₁₆ NO	Ephedrine.	165 12	40	255	1	
3794	C ₁₀ H ₁₈ NO	Hordenine	165 12	118	17411		
3795	C ₁₀ H ₁₄ NO	Pseudoephedrine	165 12	117			
3796 3797	C ₁₀ H ₁₅ NO ₃ S	Diethylaniline-m-sulfonic acid	229 19	270 d.			1333
3800	C ₁₀ H ₁₅ N ₄ O ₅	Pilocarpidine nitrate	257 14	137	147		1000
3801	$C_{10}H_{16}$ $C_{10}H_{16}$	l-Bornylene	136 12	111 50	147	0 822	1116
3802		dl-Camphene	136 12 136 12	42 7	159	0 022	1074
3803	C ₁₀ H ₁₆ C ₁₀ H ₁₆	d(l)-Camphene Camphilene	136 12	72 1	156	0 8711	.014
3804	C ₁₀ H ₁₆	$d(l)$ - Δ^4 -Carene	136 12		167707	0 855	1037
3805	C ₁₀ H ₁₆	Cyclofenchene	136 12		144	0 861	445
3806	C ₁₀ H ₁₆	Dipentene.	136 12		176	0 86514	515
3807	C ₁₀ H ₁₆	d(l)-Fenchene	136 12		150	0 869	955
3808	C ₁₀ H ₁₆	Fenchylene.	136 12		142	0 840	435
3809	C ₁₀ H ₁₆	Geraniene .	136 12		164	0.843	
3810	C ₁₀ H ₁₆	d(l)-Limonene	136 12	96 9	177	0 842	510
3811	C ₁₀ H ₁₆	Myrcene	136 12		167	0 802	503
3812	C ₁₀ H ₁₆	Ocimene	136.12		7421	0.799	835
1	C10H16	cis-β-Octalin	136.12		7316	0.915	984

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	ď	R. I. No.
3814	Callis	trans-\$-Octalin	136 12		190	0.90913	
3815	C16H14	$d(l)$ - α -Phellandrene	136.12		175	0.843	983
3816	C10H14	β-Phellandrene	136 12		171	0.852	527
3817	C10H16	dl-α-Pinene	136 12	55	154	0.878	- [
3818	C10H14	l-β-Pinene	136 12		164	0.87315	824
3819	C10H18	Sabinene.	136 12		165	0.842	914
3820	C 10 H 14	d(t)-Sylvestrene	136 12 136 12		177 175	0.863 0.834	919
3821	C10H10	a-Terpinene	136 12		174	0.840	915
3822	Cullin	β-Terpinene Δ ¹ *-Terpinene	136.12		182	0.855	982
3823 3824	C ₁₀ H ₁₄	1	136 12		185	0.855	541
3825	C10H16	Terpinolene. Terpinylene	136 12		175	0.000	537
3826	C10H14	α-Thujene	136 12		151	0.830	440
3827	CioHia	8-Thuiene	136.12		147.7	0.830	440
3828	C ₁₀ H ₁₆ ClNO	Ephedrine hydrochloride	201.59	210	137.1	0.321	420
3829	C ₁₀ H ₁₀ CINO	α-Limonene nitrosylchloride	201 60	104			1
3830	C ₁₀ H ₁₆ ClNO	Pseudoephedrine hydrochloride	201.59	175	1		
3831	C10H16Cl2	α-Camphordichloride	207 04	148	1	İ	
3832	('10H16('l2	β -Camphordichloride	207 04	178	1		
3833	C10H10N2	p-Aminodiethylaniline	164.14	•••	262		
3834	C10H10N2	o-Tetramethylphenylenediamine	164 14		218		1
3835	C10H16N2	m-Tetramethylphenylenediamine	164 14	-2	262	0 98815 8	1
3836	C10H16N2	p-Tetramethylphenylenediamine	164 14	51	260	0 300	
3837	C10H10N2O2	α-Camphordioxime	196 14	182 d.	-0.7		
3838	C10H16N2O2	γ-Camphordioxime	196 14	132			1
3839	C10H16N2O2	5, 5-n-Butylethylbarbituric acid	212.14	128		i	1
3840	C10H10N2O2	5, 5-secButylethylbarbituric acid .	212 14	157			1
3841	C10H16N2O2	5, 5-Dipropylbarbituric acid	212.14	145	ŀ		
3842	C10H10N2O2	5, 5-Isobutylethylbarbituric acid	212 14	176	1		
3843	C10H14N2O4	5, 5-n-Propylisopropylbarbituric acid	212.14	162	1		
3844	C10H16O	Alantol	152.12		200		
3845	C10H16O	dl-Camphor	152 12	174		1	ì
3846	C10H16O	d-Camphor	152 12	179	209 1	0 99025	İ
3847	C ₁₀ H ₁₆ O	Carvenone	152 12		233	0 926	897
3848	C ₁₀ H ₁₆ O	Caryophyllin	152 12	295		1	1
3849	C'10H16()	α-Citral .	152.12		229	0 89315	920
3850	C10H16O	β-Citral	152.12		10412	0 888	956
3851	C ₁₀ H ₁₀ O	Cyclocitral	152 12		11429	0 957	825
3852	('10H18O)	d-Fenchone	152 12	6	195	0 944	839
3853	C ₁₀ H ₁₆ O	Hartin	152.12	230		1 120	1
3854	C ₁₀ H ₁₆ O	Isopulegon	152 12		9012	0.92117 5	499
3855	C ₁₀ H ₁₆ O	Myristicol	152 12		218	1	1
3856	C ₁₀ H ₁₆ O	Myrtenol	152 12		224	0 976	581
3857	C ₁₀ H ₁₆ O	Phellandral	152 12		230	0 945	553
3858	C ₁₀ H ₁₆ O	Pinol	152 12		184	0 942	507
3859	C ₁₀ H ₁₀ O	Pulegon	152.12		224	0 937	861
3860	C ₁₀ H ₁₆ O	Sabinol	152.12		209	0 943	546
3861	('10H16()	α-Thujone	152.12	0.74	200	0 913	827
3862	[C ₁₀ H ₁₆ O] _x	Urson	[152 12] _x	264	224		
3863 3864	('10H16O2	Acetylmethylheptenone	168.12	6	234	0 94515	860
	C ₁₀ H ₁₆ O ₂	Ascaridol	168.12		845	1 00815	518
3865 3866	C ₁₀ H ₁₆ O ₂	Geranic acid .	168.12		11920	0 952	544
	C ₁₀ H ₁₆ O ₂	Hydroxycamphor	168.12	205	10011		1
3867 3867 1	C H O	d(l)-Pinonie acid	184 12	99	18012	1 010	1
1868 1868	C ₁₀ H ₁₆ O ₃ C ₁₀ H ₁₆ O ₄	dl-Pinonic acid	184.12	105	ł	1.216	1
3869	C ₁₀ H ₁₆ O ₄	1.0	200.12	202	1		1
1870		d-Camphoric acid Cyclohexyl acid succinate	200.12	187	1		1
1871	C ₁₀ H ₁₆ O ₄ C ₁₀ H ₁₆ O ₄	Cyclohexyl acid succinate	200 . 12 200 . 12	44 101	1		-
3872	C ₁₀ H ₁₄ O ₄	d-Methyl pinate	200.12	191	130•	1 055	1
3873	C ₁₀ H ₁₄ O ₄	l-Cincolic acid	216.12	196	130,	1.055	1325
3874	C ₁₀ H ₁₈ O ₆	Diethyl acetylsuccinate	216.12	100	256 d.	1.081	884
~!*	C ₁₀ H ₁₇ Br	d-Pinene hydrobromide	217.05	80	200 u.	1.001	004

	1						
No.	Formula	Name	Mol. wt.	М. Р.	В, Р.	d	R. No
3876	C ₁₀ H ₁₇ Cl	Camphene hydrochloride	172 59	156 5	1	1	+
877	C ₁₀ H ₁₇ Cl	cis-p-Chlorodecalin.	172 59		1121		
3878	C ₁₀ H ₁₇ Cl	Fenchyl chloride	172 - 59		8514	0 983	1
3879	C ₁₀ H ₁₇ Cl	Geranyl chloride	172 59		10314	0 91811	51
3880	C ₁₀ H ₁₇ Cl	Isobornyl chloride	172 59	161-5	1	0.010	"
3881	C ₁₀ H ₁₇ Cl	d-Pinene hydrochloride	172 59	128	207 4	i	
3882	C10H17N	Camphenamine	151 14	1	205 5	0 940	56
3883	C10H17N	Pinylamine	151-14		207	0 940	61
3884	C10H17NO	Camphoroxime	167 14	119.5	249	" ""	"-
3885	C10H17NO	d-Fenchoneoxime	167 14	165	240		1
3886	C10H17NO2	l-Ecgonine methyl ester	199-14		210	1 147	54
8886 1	C10H17NO2	dl-a-Pinone oxime.	199-14	150		1 210	34
8887	C10H17NO6	Phaseolunatin	217 14	144		1 210	
3888	C10H18	Camphane .	138 14	152	160		-
1889	C10H18	Carane	138 14	1.02	i	0 60030	4.5
1890	C ₁₀ H ₁₈	cis-Decahydronaphthalene	138 14	1000	509	0.83810	45
891	C10H18	trans-Decahydronaphthalene	138 14	- 125	193 3	0 898	53
892	C10H18	d-Menthene			185-3	0 872	50
893	C10H18	d-Pinane	138 14		168	1 4481	42
894	C10H18	Pinocamphane	138 14	- 45	169 1	0 839	44
	1	, .	138 14		164-9	0 856	47
1895	C H C N	Thujane	138 14		157	0 814	36
896	C ₁₀ H ₁₈ Cl ₂ N ₂	o-Tetramethylphenylenediamine hydro-					
		chloride	237 07	180			
897	C ₁₀ H ₁₈ ()	Apopinol	154 - 14		199	0.8941#	
899	C ₁₀ H ₁₈ ()	Aurantiol	154 14		9515	0 86920	
900	C ₁₀ H ₁₆ O	dl-Borneol	154 14	210 5			1
901	C ₁₀ H ₁₈ ()	d(l)-Borneol	154 14	208 6	213 5	1.011	1
902	C ₁₀ H ₁₈ O	Cineol	154 14	- 1	176 4	0.90118	47
1903	C10H18()	d-Citronellal	154 14	1	208	0 856	
904	C10H18O	dl-Fenchyl alcohol	154 14	33	204 6	0 953	
905	C10H16O	dl, (d)-Fenchyl alcohol	154 14	42	201	0 93540	
906	C10H18O	dl, (l)-Fenchyl alcohol	154 14	47	201	0 93340	1
907	C10H18O	d, (l)-Fenchyl alcohol	154.14	49	209		
908	C10H18()	Geraniol	154 14	< - 15	229	0 881	53
909	C10H18O	dl-Isoborneol	154 14	212	120	0	00
910	C ₁₀ H ₁₈ O	d(l)-Isoborneol	154 14	216			
911	C ₁₀ H ₁₈ O	dl-Isofenchyl alcohol	154 14	1 210	204	1	1
912	C10H18O	l-Isofenchyl alcohol.	154 14	62	202	0.96116	85
913	C ₁₀ H ₁₈ O		154 14	02	10212	0.907	51
913 1		Isopulegol	154 14	}	9411	•	i
914	C ₁₀ H ₁₈ O	l-Isopulegol			I	0.9110	50
	C ₁₀ H ₁₅ O	Lavendol	154 14		199	0 87315	1 40
915	C ₁₀ H ₁₃ O	d-Linalool	154 14		198 3	0 875	48
916	C ₁₀ H ₁₈ O	l-Linalool	154 14		195	0 86616	98
917	C10H18O	dl-Menthone	154 14		210	0 897	44
918	C ₁₀ H ₁₈ O	l-Menthone	154 14		207	0 896	
919	C ₁₀ H ₁₈ O	Myrcenol	154 14		10110	0 90114 6	84
920	C ₁₀ H ₁₈ O	Nerol	154 14	1	225 2	0 881	
921	C ₁₀ H ₁₈ O	Pinen hydrate (Homopinol)	154 14	59	205		
922	C10H18O	dl, α-Terpineol.	154 14	35	219 8	0 936	53
923	C ₁₀ H ₁₈ O	$d(l)$, α -Terpincol	154 14	40	217 7	0 919	89
924	C10H10O	β-Terpineol	154 14	33	210 3	0 81920	52
925	C10H18O	γ-Terpineol	154 14	70		1	1
926	C10H18()	dl-Terpinen-4-ol	154 14		214	0 929	53
927	C ₁₀ H ₁₈ O	d-Terpinen-4-ol (Origanol)	154 14	ł	212	0 926	52
928	C ₁₀ H ₁₀ O	Thujyl alcohol	154 14		212	0 921	92
929	C10H18O2	Acetylmethyl hexyl ketone	170 14	-6	237 d.	0 90724	-
930	C ₁₀ H ₁₈ O ₂	d(l)-Campholic acid	170 14	107	260		
931	C ₁₀ H ₁₆ O ₂	d-Citronellic acid	170 14		257	0 931	1
932		9, 10-Decylenic acid	170 14	<0	1424	0 001	
	C ₁₀ H ₁₈ O ₂	, ,		t .	1	0.97010.9	10
933	C ₁₀ H ₁₈ O ₂	Fencholic acid	170 14	18	255	0.970.	46
934	C10H18O2	Pinol glycol	186 14	129		0.000	1
935	C ₁₀ H ₁₀ O ₁	n-Valeric anhydride (C ₄ H ₂ CO) ₂ O.	186 14	1	215	0.929	1 .
936	C ₁₀ H ₁₀ O ₂	Isovaleric anhydride	186.14	l	215	0.933	22

INTERNATIONAL CRITICAL TABLES

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
3937	Ciollia();	Ethyl diethylacetoacetate	186 14		158.2	1.282	327
3938	C10H14O4	Sebacic acid HO ₂ C(CH ₂) ₈ CO ₂ H	202 14	127	294.5100		1161
3939	C ₁₆ H ₁₉ O ₄	Isoamyl ethyl malonate	202 14		15020	0.954	306
3940	C ₁₀ H ₁₉ O ₄	n-Butyl isopropylmalonate	202 14		13614	0.9742	331
3941	C ₁₆ H ₁₅ O ₄	Di-n-butyl oxalate (CO ₂ C ₄ H ₉) ₂	202 14		243.4	1.0108	001
3942	C ₁₆ H ₁₈ O ₄	Dusobutyl oxalate	202 14		229	1 00214	
3943 3944	C ₁₀ H ₁₄ O ₄	Dipropyl succinate	202 14	1	250 8	1 00615	1
3945	C ₁₆ H ₁₆ O ₄	Dipropyl malate	218 14	10 5	15110	1.075	366
3945 1	CioHinOa CiuHinOa	Dipropyl d-tartrate [HOCHCO ₂ C ₁ H ₁] ₂ .	234 14		303	1.139	
3946	CioHinOs	Dt-sec,-propyl tartrate	234 14	1	15816	1 11613.7	-
3947	Callact	Arabin	282 14	260			1
3948	C ₁₆ H ₁₉ Cl	secMenthyl chloride	174 60		215	0 941	485
3949	C ₁₀ H ₁₉ N	tert -Menthyl chloride Bornylamine	174 60		9414 5	0 948	488
3950	CinHioN	Camphylamne	153 15	163	200	1	1
3951	CiellieN	t-Fenchylamine	153 15		198	1	1
3952	C ₁₀ H ₁₉ N	Geranylamine	153 15		195	0 91022	
3953	C ₁₀ H ₁₉ NO	Lupinine	153 15	1	10519	0.82925	511
3954	C ₁₀ H ₁₀ NO ₃	Sebamic acid	169 15	68	257		İ
3955	C101120	α-Decylene CH ₂ .CH(CH ₂) ₇ CH ₃	201 15	170			1
3956	C10H20	5-Decylene C ₃ H ₇ CH CHC ₃ H ₁₁	140 15		172	0.7630	912
3957	C 10 H 20	2, 3-Dimethyl-2-octene	140 15		161		1
3958	C'10 11 20	2, 6-Dimethyl-1(2)-octone	140 15		162650	0.748	1
3959	C10 H20	o-Menthane	140 15		169	0.789	993
3960	C10H20	m-Menthane	140 15		171	0.814	965
3961	C10H20	p-Menthane	140 15		168 2	0 790	387
3902	C 10 H 20	2-Methyl-5-ethyl-5-heptene	140 15		170	0 793	358
3963	C 10 11 20	3, 3, 5-Trimethyl-4-heptene	140 15	1	158 4	0 7610	302
3964	C ₁₀ H ₂₀ CINO	Lupinine hydrochloride	140 15	240	157.5	0.788_0^0	1
3965	C10H20N2O6	Lycetol (Dimethylpiperazine tartrate)	205 62	213	1		1244
3966	C ₁₀ H ₂₀ O	α-Carvacromenthol	264 - 17 $156 - 15$	250			
3967	C ₁₀ H ₂₀ O	β-Carvacromenthol			219		
3968	$C_{10}H_{20}O$	d-Citronellol	156-15 156-15		222	0.9180	
3969	C ₁₀ H ₂₀ O	l-Citronellol	156 15		221.7	0 85715	410
3970	$C_{10}H_{20}O$	d-Isomenthol	156 15	60	11415	0 861	464
3971	C ₁₀ H ₂₀ O	o-Menthan-2-of	156 15	83	0.54	1	J
3972	$C_{10}H_{20}O$	p-Menthan-8-ol	156 15	94	9525	1	1
3973	$C_{10}H_{20}O$	l-α-Menthol	156 15	$\begin{array}{c} 36 \\ 42 \ 5 \end{array}$	207 4		1
3974	$C_{10}H_{20}O$	l-β-Menthol .	156 15	35 5	212	0 89016	1168
3974-1	C 10 H 50()	l-Neomenthol	156 15	<-15	212	0 89016	
3975	$C_{10}H_{20}O$	n-Capric aldehyde CH ₃ (CH ₂) ₈ CHO.	156 15	\ -10	10521	0.8995	473
3976	$C_{10}H_{20}O$	Isocapric aldehyde	156 15		209 2	0.82815	307
3977	C 10 H 20O	Isopropyl n-hexyl ketone	156 15		169 6 210	0.828	1
3978	('10 H 20()	Methyl n-octyl ketone CH3COC3H3	156 15	3.5	210	0.84117	I
3978 1	C'10H20()	Propyl hexyl ketone C ₃ H ₇ COC ₆ H ₁₃	156 15	-9	207	0 825 0 824	
3979	C ₁₀ H ₂₀ O ₂	cis-Terpine	172 15	104.7	258	0 024	1
3980	C ₁₀ H ₂₀ O ₂	trans-Terpine.	172.15	158	265		
3981	C ₁₀ H ₂₀ O ₂	n-Capric acid CH ₃ (CH ₂) ₈ CO ₂ H	172.15	31	268 4	0 89530	1038
	C ₁₀ H ₂₀ O ₂	Di-n-buty lacetic acid	172.15		14016	0 898184	1000
	C ₁₀ H ₂₀ O ₂	n-Amyl valerate C ₄ H ₉ CO ₂ C ₅ H ₁₁	172 15		203 7	0 8810	213
	C ₁₀ H ₁₀ O ₂	n-Butyl caproate C ₆ H ₁₃ CO ₂ C ₄ H ₉	172.15		204 3	0 8820	210
	C ₁₀ H ₂₀ O ₁	Ethyl n-caprylate C7H15CO2C2H5	172.15	-44 S	205 8	0 87817	l
3985	C ₁₀ H ₂₀ O ₂	n-Heptyl propionate C ₂ H ₆ CO ₂ C ₇ H ₁₅ .	172.15		208	0 8850	İ
	C ₁₀ H ₂₀ O ₂	Isoamyl isovalerate	172.15		194	0 870	198
	C ₁₀ H ₂₀ O ₂	Methyl pelargonate C ₅ H ₁₇ CO ₂ CH ₂	172 15		214	0 87717 5	
. ($C_{10}H_{20}O_{2}$ $C_{-11}+O_{-1}$	d-γ-Nonyl formate	172.15		9522	0 869	258
	C10H20O2 C10H20O3	n-Octyl acetate CH ₃ CO ₄ C ₈ H ₁₇	172.15	-38.5	210	0.8854	250
	C10H21N	1-Hydroxycapric acid	188.15	70 5		•	
	C to H 21 N	l-Menthylamine	155.17		208 2	0.860	475
	C 1011 22	n-Decane CH _J (CH ₂) ₃ CH ₃	142.17	-32.0	174	0.747	220
ı	C 10 H 22	2, 6-Dimethyloctane	142.17		159	0 734	185
	C10H22	2, 7-Dimethyloctane dl, 3, 6-Dimethyloctane dl,	142.17	-52.8	160	0 722	171
	· 40 * 4 2 2	at, 3, 0-Dimethyloctane	142 17		162		

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	ď	R. I No.
3997	C10H22	d, 3, 6-Dimethyloctane	142 17		160 8	0.73513	140.
3998	C10H22	2-Methylnonane (CH ₃) ₅ CH(CH ₂) ₆ CH ₃	142 17		160	0.738	17
3999	C10H22	3-Methylnonane C.H.(CH.)CHC.H.	142 17		166 9	0 735	19
4000	C10H22	5-Methylnonane (C ₄ H ₉) ₂ CHCH ₄	142 17	1	166 2	0 732	18
4001	C10H22	Tripropylmethane (C ₁ H ₂) ₃ CH	142 17	1	161 7	0 74014 1	210
4002	C10H22O	n-Decyl alcohol CH3(CH2),OH	158 17	7	231	0 829	
4003	C ₁₀ H ₂₂ O	3, 7-Dimethyl-n-octyl alcohol	158-17	1	11814	0 8492	İ
4004	C10H22O	Methylethylisohexyl carbinol	158 17		8914	0 83414	851
4005	C10H22O	Propyl-n-hexyl carbinol	158 17		211	0 826	1 (10)
4006	C10H22O	n -Amyl ether $(C_bH_{11})_2()$	158 17		190	0 774	-
4007	C10H22O	Isoamyl ether [(CH ₃) ₂ CHCH ₄ CH ₂] ₄ O,	158 17		172 2	0 78311 1	173
4008	C10H22O3	cis-Terpine hydrate	190 15	117 1	1122	0 100	
4009	C10H22O5S2	d-Glucosediethylmercaptal	286 30	128			1210
4010	C10H12S	Disoamyl sulfide	174 23	12.5	216	0 843	443
4011	C10H21N	n-Decylamine CH ₃ (CH ₂) ₉ NH ₂ .	157 19	17	218	0.040	*2*8
4012	C10H21N	Diisoamylamine	157 19	1 11	190	0 767	281
4013	C ₁₀ H ₂₄ Sb	Pentaethyl stibine (C2H4)48b	266 96	1	100	0 707	201
4014	C10H10O	$\alpha(\beta)$ -Lactucerol	166 23	181	100	1	1
4015	C10H20O4	Agarie acid	230 23	142 d.		1	- 1
4016	C11H6O10	Benzenepentacarboxylic acid	298 05	233 d.			1
4017	C ₁₁ H ₇ ClO	α-Naphthoyl chloride C ₁₀ H ₇ COCl	190 51	200 a.	207.5		1
4018	C ₁₁ H ₇ ClO	β-Naphthoyl chloride C ₁₀ H ₂ COCl		4.9	297 5		1
4019	C ₁₁ H ₇ N	α-Naphthyleyanide	190 51	43	306		ł
4020	C ₁₁ H ₇ N	β-Naphthyleyanide	153 06	33 5	296 5	1 117	
4021	C ₁₁ H ₇ NO ₄		153 06	66 5	305	1 09460	
	C ₁₁ H ₇ NO ₄	Quinoline-2, 3-dicarboxylic acid	217 06	130 d.			
4022		Quinoline-2, 4-dicarboxylic acid	217 06	246			
4023	C ₁₁ H ₈ O	α-Naphthaldehyde	156 06	20.5	291 6	1 148	962
4024	C ₁₁ H ₈ O	β-Naphthaldehyde	156 06	60 5	İ	1 07899 4	1133
4025	C ₁₁ H ₈ N ₂ O ₄	Benzoylbarbituric acid	232 08	275		}	
4026	C11H8O2	2-Hydroxy-α-naphthaldehyde	172 06	81	19247		
4027	C ₁₁ H ₈ O ₂	4-Hydroxy-α-naphthaldehyde	172 06	178			
4028	C ₁₁ H ₈ O ₃	8-Hydroxy-α-naphthoic acid	188 06	169	ļ	ļ	1
4029	C ₁₁ H _B O ₂	α-Naphthoic acid	172 06	160	300	1	1
4030	C11H8O2	β-Naphthoic acid .	172/06	185	>300	1 0774	
4031	C ₁₁ H ₈ O ₃	3-Hydroxy-β-naphthoic acid	188 06	219	Ì		
4032	C ₁₁ H ₉ N	2-Phenylpyridine	155/08		270	>1	1
4033	C ₁₁ H ₀ N	3-Phenylpyridine	155/08	1	270 4	>1	
4034	Ç11H ₉ N	4-Phenylpyridine .	155/08	78	275	1	1
4035	C ₁₁ H ₉ NO ₂	Aniluvitonic acid .	187 08	241		1	1
1036	C ₁₁ H ₉ NO ₃	Quininic acid.	203 08	. 280	1	1	
4037	C ₁₁ H ₉ NO ₆	Hydrastininic acid	$251 \ 08$	164			1
1038	C11H10	α-Methylnaphthalene	142 08	-22	243	1 025	790
4039	$C_{11}H_{10}$	β-Methylnaphthalene	142 08	35 1	245	1 029	1062
4040	C11H10I3NO3	Thyroxin.	584 88	250	ļ		
4041	C11H10O	Methyl α-naphthyl ether	158 08	< -10	258	1 0964**	831
4042	C11H10O	Methyl β-naphthyl ether	158 08	72	274	1	
1043	C11H10O2	Ethyl phenylpropiolate	174 08		270 d.	1	
4043.1	C ₁₁ H ₁₁ BrN ₂ O	4-Bromoantipyrine	$267 \ 02$	117			1181
4044	CnHnN	2, 4-Dimethylquinoline	157 09		264	1	-
1045	C ₁₁ H ₁₁ N	2, 6-Dimethylquinoline	157 09	58	261	i	1
1046	CnHnN	2, 7-Dimethylquinoline	157 09	61	265		
1047	C11H11N	3, 4-Dimethylquinoline	157 09	65	291	l	l
1048	CuHuN	4, 6-Dimethylquinoline	157 09	1	256	1	1
1049	C ₁₁ H ₁₁ N	4, 7-Dimethylquinoline	157 09	55	259	1	
4050	CnHnN	Methyl-α-naphthylamine	157 09	1	293		
1051	CnHnNO	Physostigmol	173 09	108		1	
1052	C ₁₁ H ₁₁ NO ₂	Indole-2-propionic acid	189 09	136			
1053	C ₁₁ H ₁₁ NO ₄	Ethyl o-nitrocinnamate	221 09	44	1		
1054	C ₁₁ H ₁₁ NO ₄	Ethyl p-nitrocinnamate	221 09	141			
1055	C ₁₁ H ₁₂ BrNO ₂ S	p-Bromophenylmercapturic acid	318 08	153	1	1	
1056	C ₁₁ H ₁₂ IN		285 03	190		1	
	C ₁₁ H ₁₂ IN	Quinaldine methiodide	285 03	157	d.	ļ	
1057							

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4059	CitHtaNzOs	4, 4-Phenylethylhydantoin	204.11	199			1
4060	C ₁₁ H ₁₂ N ₂ O ₂	1-Tryptophane	204 11	289	j		1
4060 1	CnHnO	Benzylidene methyl ethyl ketone	160 09	37 5	1	0.987**	1061
4061	C11H12O2	Ethyl atropate.	176 09		124.416	1.051	
4062	C11H12O2	trans-Ethyl cinnamate	176 09	6.5	271	1.049	746
4063 4064	$C_{11}H_{12}O_4$	3-Benzoylbutyric acid	192 09	126	970.4		
4065	C ₁₁ H ₁₂ O ₃ C ₁₁ H ₁₂ O ₃	Ethyl benzoylacetate a-Ethyl phenylpyruvate	192 09 192 09	52	270 d. 154 516	1 122	704
4066	C ₁₁ H ₁₂ O ₂	β-Ethyl phenylpyruvate	192 09	52	15216	1	-
4067	C ₁₁ H ₁₂ O ₄	γ-Ethyl phenylpyruvate	192 09	79	102		1
4068	C11H12O2	Eugenol formate	192 09	}	15020		l
4069	CuHuO ₄	Isoeugenol formate	192 09		16020		1
4071	C ₁₁ H ₁₂ O ₄	Benzylsuccime acid	208 09	161	1 - 50	1	1
4072	C11H12O4	α-Hydropiperic acid .	208 09	76	l	1	1
4073	C11H12O4	Sinapic acid	224 09	191			1
4074	CnHnBrNrO	Antipyrine hydrobromide	269 03	150		1	1
4075	C ₁₁ H ₁₃ CIN ₂ O	Antipyrme hydrochloride	224 57	160		1	
4076	C ₁₁ H ₁₄ N	Lilolidine	159 11		15616		
4077	CnH ₁₁ NO ₃	Hydrastinine	207 11	116		}	1
4077 1	CuHaNO,	Ethyl hippurate	207 11	60 5	180	1 04323	
4078	CuHaNO.	Benzacetin	223 11	190		1	1
4079 4080	C ₁₁ H ₁₁ NO ₄	Neurodin	223 11	87	1		
4081	C ₁₁ H ₁₂ N ₂ O C ₁₁ H ₁₂ N ₂ O	4-Aminoisoantipyrine	203 12	109			
4082	C ₁₁ H ₁₄ N ₃ O ₆	Benzylcreatinine	203 12	225	1	Ĭ	
4083	C ₁₁ H ₁₄ ClNO ₄	2, 4, 6-Trintro-tertbutyltoluene Hydrastinine hydrochloride	283 12	97			1
4084	CnH ₁₄ N ₁	Calycanthine	243 57 174 12	210			1
4085	CHH ₁₄ N ₂	Isocalycanthine	174 12	$\frac{243}{235}$	}		ŀ
4086	CuH ₁₄ N ₂ O	Cytisine	190.12	255 153			1000
4087	C11H14N2O2	Antithermine (Acetopropionylphenylhy-	100.12	100	1	1	1333
		drazone)	206 12	108	İ		
4088	$C_{11}H_{14}O$	Butyl phenyl ketone CaHaCOCaHa	162 11	1007	239 5	1	
4089	C11H14O	Isobutyl phenyl ketone	162 11		225	0 967	1
4090	C ₁₁ H ₁₄ O	Isopropyl benzyl ketone .	162 11		237	0 9854	
4090 1	C ₁₁ H ₁₄ O	p-Methylbutyrophenone	162 11		252739	1 026	683
4091	CuHaO	Propyl benzyl ketone	162 11		244	0 984	
4091 1	$C_{11}H_{14}O$	2, 4, 6-Trimethylacetophenone	162.11		240 5736	0 975	661
4092 4093	C ₁₁ H ₁₄ O ₁	Eugenol methyl ether	178 11		249	1 05518	1
4094	$C_{11}H_{14}O_{2}$ $C_{11}H_{14}O_{2}$	Isoeugenol methyl ether	178.11		264	1.055	1
4095	CuH ₁₄ O ₃	p-Isopropylphenylacetic acid	178 11	52			
4096	C11H14O2	n-Butyl benzoate C ₆ H ₄ CO ₂ C ₄ H ₄	178 11	-22 4	250.3	1 00020	
4097	C ₁₁ H ₁₄ O ₂	Benzyl butyrate C ₃ H ₇ CO ₂ CH ₄ C ₆ H ₄ Benzyl isobutyrate	178 11		240	1 01617 4	
4097 1	$C_{11}H_{14}O_1$	d-\$-Butyl benzoate	178.11		228	1.01618	557
4098	C11H14O2	Ethyl hydrocinnamate	178.11 178.11		12020	1 000	563
4099	$C_{11}H_{14}O_2$	Isobutyl benzoate	178.11		249 237	1 015 1.00216	571
4100	C11H14O2	Phenyl isovalerate	178.11		237	1.002**	1
4101	$C_{11}H_{14}O_{3}$	n-Butyl salicylate	194 11	i	15514	1	1
4102	$C_{11}H_{14}O_{2}$	Propyl anisate p-CH ₃ OC ₄ H ₄ CO ₂ C ₄ H ₇	194 11		17645	1 09	653
4103	$C_{11}H_{14}O_3$	Zingerone	194 11	41	18814	1 - 00	300
4104	CuH ₁₄ NO	p-Diethylaminobenzaldehyde	177.12	41	1747	1	1
4105	CultuNO	Isovaleroamlide	177.12	115		1	1
4106	C ₁₁ H ₁₄ NO	n-Valeroanilide	177 12	49	267	1	
4107 4108	CuHuNO ₂	p-Diethylaminobenzoic acid	193 12	193			
	C ₁₁ H ₁₈ NO ₂ C ₁₁ H ₁₈ NO ₂	Isobutyl p-aminobenzoate	193 12	65		1	
	C ₁₁ H ₁₈ NO ₂	Methylacetophenetidine	193 12	40	300	1	
	CitHiaNO	Triphenin.	193 12	120			1
	C ₁₁ H ₁₆ NO ₄	Anhalamine Lactophenine	209 12	188		}	
,	C ₁₁ H ₁₄ NO ₄	Methoxyacetophenetidin	209.12	118			1
	CuHuNO ₇ S	Undanationa 1216 .	209.12	98			1
	CnH ₁₀	n-Amylbenzene CH ₃ (CH ₂) ₄ C ₆ H ₄	305.19 148.12	216	202.1	0 860	514

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. No
1117	C11H10	3, 5-Diethyltoluene	148 12		200	0 879	1 110
1118	C11H10	Isoamylbenzene (CH ₁) ₂ CH(CH ₂) ₂ C ₄ H ₄	148 12	1	194	0 885	1
1119	C ₁₁ H ₁₆	Pentamethylbenzene (CH ₁) ₄ C ₄ H	148 12	53	230	0 847 4	118
120	C11H16	4-Propyl-o-xylene C ₃ H ₇ C ₆ H ₃ (CH ₃) ₂ .	148 12	< -20	209		
121	C11H10	4-Propyl-m-xylene C ₃ H ₇ C ₅ H ₇ (C'H ₇).	148 12	< -20	208 5		
122	C ₁₁ H ₁₄	2-Propyl-p-xylene C ₂ H ₂ (' ₄ H ₂ ('H ₂),	148 12	< -20	207		
123	C ₁₁ H ₁₀ Br ₂ N ₂ O ₃	N-2, 3-Dibromopropyl-5, 5-diethylbarbi-			1		
194	C11H14CINO	turic acid Anhalamine hydrochloride	383 97	125			
124	C ₁₁ H ₁₄ N ₂ O ₂	Pilocarpine	245 59	258			
125	C ₁₁ H ₁₄ N ₂ O ₂	Isopilocarpine	208 14	34			1
126 127	C ₁₁ H ₁₆ O	p-Isoamylphenol .	208 14		26110		
128	C11H16O	Pentamethylphenol.	164 12	93	255	1	1
129	C ₁₁ H ₁₆ O	Benzyl n-butyl ether C ₆ H ₄ CH ₂ OC ₄ H ₉ .	164 12	125	267		
	C ₁₁ H ₁₀ O	Beneul isobutul ather	164 12		216		
130	C ₁₁ H ₁₄ O	Benzyl isobutyl ether	164 12		213	0 92810 1	
131	1	Phenyl isoamyl ether	164 12		225	0 920	54
132	C ₁₁ H ₁₆ O	Thymyl methyl ether	164 12		216 2	0 954	
133	C ₁₁ H ₁₇ BrN ₂ O ₂	Isopilocarpine hydrobromide	289 06	147			
134	C ₁₁ H ₁₇ BrN ₂ O ₂	Pilocarpine hydrobromide	289 06	185			133
135	C ₁₁ H ₁₇ ClN ₂ O ₂	Isopilocarpine hydrochloride	244 61	127			
136	C ₁₁ H ₁₇ ClN ₂ O ₂	Pilocarpine hydrochloride	244 61	196 7			133
137	C11H17N	o-Diethyltoluidine	163 14		206		1
138	C ₁₁ H ₁₇ N	m-Diethyltoluidine	163 14		228		1
139	C ₁₁ H ₁₇ N	p-Diethyltoluidine	163 14		229	0 92414.4	Ì
140	C ₁₁ H ₁₇ N	Isoamylaniline.	163 14		254 5	0 9284	1
141	C ₁₁ H ₁₇ NO ₁	Mescaline	211 14	151			
142	C11H17N3O4	Isopilocarpine nitrate	271 16	159	1		İ
143	C11H17N4O4	Pilocarpine nitrate.	271 16	173	1		13
144	C ₁₁ H ₁₇ O ₂	Citronellyl formate	181 13		9811	0 884	4
145	C ₁₁ H ₁₈ N ₂ O ₃	5, 5-n-Butylisopropylbarbituric acid	226 16	210	1		
146	C11H18N2O2	5, 5-Isoamylethylbarbituric acid	226 16	156			
147	C11H18O2	d-Bornyl formate	182 14	1	230	1.009	8
148	C ₁₁ H ₁₆ O ₂	Geranyl formate	182 14	1	9811	0.909	41
149	C11H18O2	Isobornyl formate	182 14		10014	1.01716	
150	C11H18O2	Methyl geranate	182 14	1	11714	0 922	9
151	C11H18O2	d, α-Terpinyl formate	182 14	ļ.	13640	0 9990	
152	C11H18O4	Ethyl camphorate	214 14	87	1		
53	$C_{\mu}H_{18}O_{8}$	Diethyl ethylacetylmalonate .	230 14	1	137.520	1 053	3
54	C11H19N4O	d-Camphor semicarbazone	209 17	238			
55	C11H20O	Geranyl methyl ether	168 15		212		1
56	C11H20O	Methyl d-bornyl ether	168 15		195 3	0 916	10
157	C11H20O2	l-Menthyl formate	184 15	9	217	0 936	
158	C11H20O2	Undecylenic acid	184 15	24 5	295	0 907	1
59	C ₁₁ H ₂₀ O ₃	Isoamyl ethylacetoacetate	200 15		236 d.	0 951	
160	C ₁₁ H ₂₀ O ₄	Di-n-butyl malonate CH2(CO2C4H9)2.	216 15	1	251 5	1 0050	
.61	C11H20O4	Diethyl diethylmalonate	216 15	1	223	0.990	2
62	C11H20O4	Isoamyl isopropyl malonate	216 15	1	14025	0.95825	3
63	C11H20O5	Glycerol 1, 2-dibutyrate	232 15	1	282		
64	C ₁₁ H ₂₁ NO ₂	Menthyl carbamate	199 17	165	>200 d.		
65	C11H22	α-Undecylene CH ₁ :CH(CH ₁) ₄ CH ₁	154 17	1	188	0 763	
66	C11H22	β-Undecylene CH ₃ CH:CH(CH ₂) ₇ CH ₃	154 17	1	193	0.77415	3
67	C11H22N3O4	Clavine	260 19	263	1	1	1
68	C11H22O	Methyl l-menthyl ether	170 17	1	1	0 861	
69	C ₁₁ H ₂₂ O	Undecylic aldehyde	170 17	4	11718	0 82523	3
70	C11H11O	Diamyl ketone (C ₄ H ₁₁) ₄ CO	170.17	14 6	226 3	0.82620	1
71	C11H22O	Diisoamyl ketone	170 17	1	226		1
72	C11H22O	Methyl n-nonyl ketone	170 17	12 1	228	0.826	3
73	C11H22O2	Umbellulic acid	186.17	23	280		
74	C11H22O2	Undecylic acid CH ₃ (CH ₁) ₁₁ CO ₁ H	186.17	29 3	228160	1	10
75	C11H22O2	Ethyl pelargonate C ₂ H ₁₇ CO ₂ C ₂ H ₆	186.17	-44 5	219	0 86617.8	
76	C11H22O2	Methyl caprate C,H1,CO,CH2	186 17	-18	224		
77	C11H22O2	Diisoamyl carbonate.	202 17	1	228.7	0.91216	
78	C11H14	n-Undecane CH ₃ (CH ₂) ₂ CH ₃	156.18	-26.5	197	0.741	2

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. 1. No.
4178 1	C11H24	-Ethylnonane	156 18	1	7110	0.75119	110.
4179	C11H24O	n-Undecyl alcohol CH ₂ (CH ₂) ₂ CH ₂ OH	172 19	19	14630	0.833	371
4179 1	C11H24O	n-Undecan-6-ol	172 19	16	235754	0.833	"
4180	C11H26N	n-Undecylamine CH3(CH2),CH2NH2	171 20	16 5	234		- 1
4181	C ₁₂ H ₄ N ₇ O ₁₂	Dipicrylamine [2, 4, 6-(NO ₂) ₃ C ₆ H ₂] ₂ NH	439 10	250 d.	İ		ı
4182	C12H6O12	Mellitic acid = C ₆ (CO ₂ H) ₆ .	342 05	286			1
4183	C ₁₂ H ₇ N ₄ O ₇	Phenyl picrate	305 08	153	1		1
4184 4185	C ₁₂ H ₈	Acenaphthylene	152 06	93	275		1192
4185 I	C ₁₂ H ₈ A8N C ₁₂ H ₈ Br ₂	Phenarsazine	241 03	310		1 00=	
4186	C ₁₂ H ₄ Cl ₂	p, p'-Di-(bromophenyl) 1, 2-Dichloracenaphthene	311 89 222 98	164 115		1.897	
4187	C12H4N2	Phenanthroline	180 08	78.5	>360	1	
4188	C ₁₂ H ₄ N ₂	Phenazine	180 08	171	>360	1	
4189	$C_{12}H_4N_2$	Phenazone	180 08	156	>360		
4190	C12H4N2	Pseudophenanthroline	180 08	173	1-000	1	
4191	C12H4N2O4	Dinitroacenaphthene	211 08	206 d.		1	
4192	C12H4N2O4	o, o'-Dintrodiphenyl	241 08	124		1	1
4193	C ₁₂ H ₁ N ₂ O ₄	m, m'-Dinitrodiphenyl	244 08	198		[1
4194	C12H4N4O4	p, p'-Dinitrodiphenyl	244 08	233			
4195	C ₁₂ H ₈ O	Diphenylene oxide	168 06	87	288	ı	1
4196	C ₁₂ H ₄ O ₂	2-Phenylbenzoquinone	184 06	107		ļ	İ
4197 4198	C12H ₈ O ₄	1, 8-Naphthalic acid	$216 \ 06$	270			-
4199	C ₁₂ H ₈ O ₄	Bergaptene	216 - 06	188			
4200	C ₁₂ H ₂ O ₄ C ₁₂ H ₂ O ₄	Paracotom Xanthotoxm	216 06	152			
4201	C12HnN2	Thunthrene	216 06	146			
4202	C ₁₂ H ₉ AsCIN	Phenarsazine chloride	216 19	160	366	1	}
4203	C ₁₂ H ₉ Br	3-Bromoacenaphthene	277 - 50 $232 - 99$	193		413765	
4204	C ₁₂ H ₉ Cl	3-Chloroacenaphthene	188 53	51 2 69 8	336 4 319	1 43745	}
4205	C ₁₃ H ₉ Cl	o-Chlorodiphenyl o-ClCsH4CsH4.	188 53	34	268		1
4206	Calle	m-Chlorodiphenyl m-ClC ₆ H ₄ C ₆ H ₅	188 53	89	200		1
4207	$C_{12}H_9C1$	p-Chlorodiphenyl p-ClC ₆ H ₄ C ₆ H ₅ .	188 52	75 5	282	1	
4208	C ₁₂ H ₉ ClN ₂	m-Chloroazobenzene	216 54	67.5	1		
4209	C14H9CIN2	p-Chloroazobenzene p-ClC ₆ H ₄ NNC ₆ H ₅	216 54	89	1	1	1
4210	('12Hol	3-Iodoacenaphthene .	280 00	65	180 d.	1 67442	
4211	C12H9N	Carbazole	167/08	244 8	354-8		1333
4212 4213	C H NO	o-Nitrodiphenyl o-NO ₂ C ₆ H ₄ C ₆ H ₅	$199 \ 08$	37	320		
4214	$C_{12}H_9NO_2$ $C_{12}H_9NO_2$	m-Nitrodiphenyl m-NO ₂ C ₆ H ₄ C ₆ H ₅	199 08	61		•	
4215	C ₁₂ H ₀ NS	p-Nitrodiphenyl p-NO ₂ C _b H ₄ C _b H ₅ Thiodiphenylamine	199 08	113	310	İ	1
4216	C ₁₂ H ₉ N ₃ O ₂	p-Nitronzobenzene	199 14	180	371 d.		
4217	C12H2N3O5	2, 4-Dimitro-4'-hydroxydiphenylamine	227 - 09 $275 - 09$	129 9		i	
4218	C ₁₂ H ₁₀	Acenaphthene	154 08	190 95	.,	1 00 100 2	
			101 00	3.5	277 5	1 02499 2	1127,
4219	$C_{12}H_{10}$	Diphenyl CaHaCaHa	154 08	69 0	254 9	1 041	1105
4220	$C_{12}H_{10}AsC1$	Diphenyl arsine chloride	264 50	42.8	327 d.	1 58340	1100
4221	C12H10A83	Arsenobenzene C ₈ H ₅ AsAsC ₆ H ₅	304 00	196			
	C ₁₂ H ₁₀ CH	Diphenyhodonium chloride	316 - 47	d. 230		1 67	
4222	C ₁₂ H ₁₀ Cl ₂ N ₂	Dichlorobenzidine [2, 4-Cl(NH ₂)C ₆ H ₃] ₂	$253 \ 01$	163	Į.		1
4223 4224	C ₁₂ H ₁₀ Cl ₂ N ₂	p, p-Dichlorbenzidine	253/01	60			
4225	C ₁₂ H ₁₀ N ₂ C ₁₂ H ₁₀ N ₂	Aribine	182 09	237			
	C ₁₂ H ₁₀ N ₂ O	Azobenzene C ₆ H ₅ NNC ₆ H ₄ Azoxybenzene	182 09	67	297 4	1 203	
4227	C ₁₂ H ₁₀ N ₂ O	p-Hydroxyazobenzene	198 09	36	1	1 246	1031
4228	C ₁₂ H ₁₀ N ₂ O	N-Nitrosodiphenylamine (C ₆ H ₅) ₂ NNO	198 09 198 09	152	1	1	
4229	C ₁₂ H ₁₀ N ₂ O	p-Nitrosophenylamline	198 09	66 5 143	1	1	
4230	C12H10N2O2	o, o'-Azophenol	214 09	172	1		
	C12H10N2O2	m, m'-Azophenol HOC, H4NNC, H4OH	214 09	205	}	1	
	$C_{12}H_{10}N_2O_2$	p, p'-Azophenol	214 09	215	1	1	
4233	C12H10N2O2	o-Nitrodiphenylamine	214 09	75	1	1	1
	C12H 10N 2O2	p-Nitrodiphenylamine	214 09	133			1
	C ₁₂ H ₁₀ N ₂ O ₂ S	Benzidinesulfone	246 16	>350			1
4236	C11H10N2O1	o, o'-Azoxyphenol	288 17	102	1	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	đ	R. I. No.
4237	C12H10N2O2	p, p'-Azoxyphenol	288 17	156; 107			
4238	C19H10O	o-Phenylphenol C ₆ H ₄ C ₆ H ₄ OH	170 08	56	275		1
4239	C12H10O	m-Phenylphenol C ₆ H ₄ C ₆ H ₄ OH	$170 \ 08$	78	>300		
4240	C12H10O	p-Phenylphenol C ₆ H ₅ C ₆ H ₄ ()H	170 08	165	308		1
4241	C12H10O	Phenyl ether CoHoOCoHo.	170 08	26 9	259	1 072	1019
4242	C ₁₂ H ₁₀ OS	Diphenyl sulfoxide (C ₄ H ₄) ₂ S()	202 - 14	70.5	340		1
4243	C12H10O2	o, o'-Diphenol OHC ₆ H ₄ C ₆ H ₄ CH	186/08	109	326		
4244	C ₁₂ H ₁₀ O ₂	o, p'-Diphenol OHC H CH CH	186 08	161	342		
4245	C ₁₂ H ₁₀ O ₂ C ₁₂ H ₁₀ O ₃	m, m'-Diphenol OHC ₆ H ₄ C ₇ H ₄ OH	186 08	123 5		[
4246	C12H10O2	p, p'-Diphenol OHC ₄ H ₄ C ₄ H ₄ OH	186 08	272	İ	I	
4247	C12H10O2	α-Naphthyl acetate CH ₃ CO ₂ C ₁₀ H ₁ β-Naphthyl acetate CH ₃ CO ₂ C ₁₀ H ₁	186 08	44.8		ı	
4248 4249	C ₁₂ H ₁₀ O ₂ S	Diphenyl sulfone (C ₆ H ₆) ₂ SO ₂	186 08	68 5	0== 0	1	
4250	C ₁₂ H ₁₀ O ₂ S	Phenyl benzenesulfonate	218 14	129	377 8	į.	
4251	C12H10O10	2, 2'-Diresorcinol	234 14 218 08	35 268			
4252	C ₁₂ H ₁₀ O ₄	4, 4'-Diresorcinol	218 08	205	1	1	
4253	C12H10O4	5, 5'-Diresorcinol	218 08	310	1		
4254	C ₁₂ H ₁₀ O ₄	Piperic acid .	218 08	217	220 d.		
4255	C12H10O4	Quinhydrone	218 08	171		1	
4256	C12H10O4S	4, 4'-Dihydroxydiphenylsulfone	250 14	239			
4257	C12H10Ob	Paracotoic acid	231 08	108	1		
4258	C12H10O4S2	Benzenesulfonic anhydride	298 21	90	24010 d		
4259	C12H10P2	Phosphobenzene C ₆ H ₅ P.PC ₆ H ₅	216 13	119			
4260	C12H10S	Diphenyl sulfide (C ₆ H ₄) ₂ S	186 14		293	1.11914	948
4261	C12H10S2	Diphenyl disulfide (C ₆ H ₆) ₂ S ₂	218 21	61	310		
4262	C12H10Se	Diphenyl selenide (C _b H _b) ₂ Se	233 - 28		302	1 35615	
4263	С12Н10 Те	Diphenyl telluride (C.H.)2Te	281 58	Į.	320	1 55616	800
4264	C12H11A8	Diphenylarsine (CoHo)2AsH	230 05	1	15537	1	
4265	C12H11A8O2	Diphenylarsonic acid (C ₆ H ₅) ₂ AsOOH	262/05	178	1		
4266	$C_{12}H_{11}N$	o-Aminodiphenyl CaHaCaHaNH2	169 09	45.5	299		
4267	C12H11N	2-Benzylpyridine	169 09		276	l	
4268	C12H11N	3-Benzylpyridine	169 09	34	286		
4269	C12H11N	4-Benzylpyridine	169 09	1	287		
4270	C ₁₂ H ₁₁ N	Diphenylamine (C ₆ H ₆) ₂ NH	169 09	53	302	1 159	1333
4271	C ₁₂ H ₁₁ NO	m-Phenylaminophenol	185 09	82	340		4400
4272	C ₁₂ H ₁₁ NO ₂ S	Benzenesulfamlide	233 - 16	110			1183
4273	C12H11N3	m-Aminoazobenzene	197 11	59	. 000		
4274	C ₁₂ H ₁₁ N ₃	p-Aminoazobenzene C ₆ H ₅ N ₂ C ₆ H ₄ NH ₂	197 11	126	> 360	-	
4275	C ₁₂ H ₁₁ N ₃	Diazoaminobenzene C ₆ H ₆ N ₂ NHC ₆ H ₅	197 11	96	exp.	ţ	
4276	C ₁₂ H ₁₁ N ₈ O ₂	o-Nitrobenzidine	229.11	143			
4277	C ₁₂ H ₁₁ N ₃ O ₃	m-Nitrobenzidine	229 11	190	280	1 0714	
4278	$C_{12}H_{11}P$	Diphenylphosphine (C ₆ H ₅) ₂ PH	186 11	_ 10	264 3	1.016	900
4279	C ₁₂ H ₁₂	1, 4-Dimethylnaphthalene	156 09 156 09	< -18	266	1.010	500
4280	C ₁₂ H ₁₂	2, 3-Dimethylnaphthalene	156 09	111	2.77		
4281	C ₁₂ H ₁₂	2, 6-Dimethylnaphthalene α-Ethylnaphthalene	156 09	<-14	258 d.	1 06414	
4282 4283	C ₁₂ H ₁₂ C ₁₂ H ₁₂	β-Ethylnaphthalene	156 09	-19	251	1 0080	
4283 4284	C ₁₂ H ₁₂ C ₁₂ H ₁₂ ClN	Diphenylamine hydrochloride	205 56	1	1	- 500	1333
4285	C ₁₂ H ₁₂ CIN C ₁₂ H ₁₂ N ₂	p-Aminodiphenylamine	184 11	75	354		
4286	C ₁₂ H ₁₂ N ₂ C ₁₂ H ₁₂ N ₂	Benzidine (p-NH ₂ C ₆ H ₄) ₂	184 11	128 7	401 7		
4287	C ₁₂ H ₁₂ N ₂	β-Benzidine	184-11	45	363		1
4288	C ₁₂ H ₁₂ N ₂	1, 1-Diphenylhydrazine (C ₆ H ₅) ₂ NNH ₂	184 11	36	22050	1	
4289	C ₁₂ H ₁₂ N ₂	Hydrazobenzene C ₆ H ₆ NHNHC ₆ H ₆ .	184-11	131	d.	1	ļ
4290	C ₁₂ H ₁₂ N ₂ O	Harmalol	200 11	212 d.			
4291	C ₁₂ H ₁₂ N ₂ O ₂	Luminal (5,5-Phenylethylbarbituric acid)	232 - 11	173	1		
4292	C12H12N2O6S2)	Benzene-ø, ø'-disulfonic acid	344 24	> 175 d.		1	
4293	C12H12N4	Chrysoidine	212 12	117 5			1333
4294	C12H12N4	p, p'-Diaminoazobenzene	212 12	241			1
4295	C12H12N4O4)	Urocanic acid	276 12	213 d.	}		
4296	C12H12O	Ethyl α-naphthyl ether	172.09	5.5	276.4	1 061	770
4297	C12H12O	Ethyl β-naphthyl ether	172 09	37 5	282	1 064	1071
4297.1	C12H12O	l-Methyl-α-naphthyl carbinol	172 09	47	11611	1 115	
4298	C12H12O2	Benzylideneacetylacetone	188.09	I	18815	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4290	C ₁₂ H ₁₂ O ₂	Allyl cinnamate	188.09		286 d.	1.05225	T
4300	C12H12O1	Benzoylacetylacetone	204.09	35	167**	1.15214	1
4301	C ₁₂ H ₁₂ O ₄	Brasilic acid	252 09	129			1
4302	C12H12O6	Phloroglucinol triacetate	252 09	106			1
4303	C12H12O6	Pyrogallol triacetate	252.09	165			
4304	CiaHiaN	Dimethyl-α-naphthylamine	171.11	1	276	1.04514	810
4305	CiaHiaN	Dimethyl-β-naphthylamine	171 11	46	305	1 0284	1081
4306	CnHnN	Ethyl α-naphthylamine	171 11	1	17615	1 060	871
4307	C12H14N	Ethyl 8-naphthylamine	171 11	40	18315	1 057	969
4308	CallaN	2, 6, 8-Trimethylquinoline	171 11	46	261 4		
4309	C ₁₂ H ₁₁ NO ₃	Pyrantin p, p'-Diaminodiphenylamine	219 11 199 12	155 158			İ
4310	C12H14N2 C12H14A82Cl4N2O2	Arsphenamine .	438 96	160 d.			1
4311 4312		Quinaldine ethiodide	299.05	234		i	1
4313	C ₁₂ H ₁₄ IN C ₁₂ H ₁₄ N ₂ O	p-Tolylantipyrine	202.12	137			1
4314	CirHiaNaOaSi	Benzidme-o, o'-disulfoneamide	342 27	278			1
4315	C ₁₂ H ₁₄ N ₄ O ₆	Desoxyamalie acid	310 14	260 s. d.			
4316	CuH ₁₄ N ₄ O ₄	Amalic acid (Tetramethylalloxantine).	342 14	221 d.			
4317	C11H14O2	n-Propyl cinnamate	190 11		285 1	1.0440	1
4318	C12H14O2	Eugenol acetate	206 11	31	282 4	1 084	665
4318 1	C12H14O1	Ethyl p-methoxycinnamate	206.11	52		1	1232
4319	C ₁₂ H ₁₄ O ₂	Isoeugenol acetate	206 11	80	283	}	
4322	C12H14O4	Apiol	222 11	29 5	294	1 015	1310
4323	C12H14O4	Isoapiol	222 11	56	304	1 19712	817
4324	C12H14O4	Diethyl o-phthalate o-CoH4(CO2C2Hb)2	222.11		296 1	1.122	607
4325	C12H14N	Carbazoline	173 12	99	297		1
4326	C13H14N	Duallylamline C ₆ H ₆ N(CH ₂ CH:CH ₂) ₂	173.12		245	0.954	ĺ
4327	C12H14N	Julolidine	173 12	40	280		1
4328	C12H14NO	Benzoylpiperidine	189 12	48	18417	j	1
4329	C ₁₂ H ₁₄ NO	Naphthalanmorpholine	189 12	63	312		1
4330	C12H14NO2	Dipropionanihde C ₆ H ₅ N(OCC ₂ H ₅) ₂ .	205 12	44	179.5^{30}	1	1
4330.1	C13H14NO3	Ethyl phenaceturate	221 12	79		1	1280
4331	CiaHiaNOs	Anhalonidine	221 12	160		1	1
4332	CuHaNO,	Anhalonine	221 12	85 5			1
4333	CuHnNO ₁	Hydrocotarnine	221.12	55	100 d.	1	1
4334 4335	CHHINO	Cotarnine	237 12	133		1	1
4336	C ₁₂ H ₁₆ N ₂ O C ₁₂ H ₁₆ N ₂ O ₆ S	Methylcytisine (Caulophylline)	204 14	137		1 2774	1
4337	C ₁₂ H ₁₄ O	Andine sulfate (C ₆ H ₆ NH ₂) ₂ H ₂ SO ₄ Isoamyl phenyl ketone	284 20 176 12		040 5	1.3774	ļ
4338	C ₁₂ H ₁₆ O	Isobutyl benzyl ketone	176 12		$242/5 \\ 250/5$	0 969	ł
4339	C ₁₂ H ₁₆ O ₂	Eugenol ethyl ether	192 12		254	1 02195	808
4340	C ₁₂ H ₁₆ O ₂	Isoeugenol ethyl ether	192.12	64	204	1 021	000
4341	C12H14O2	Pentamethylbenzoic acid	192 12	210 5		1	İ
4342	C11H11O1	Amyl benzoate C ₆ H ₄ CO ₂ C ₅ H ₁₁	192.12	1 210 0	d.	0 989	566
4343	C12H16O2	Benzyl isovalerate	192 12		13625	1000	
4344	C12H16O2	Benzyl d-valerate	192 12		250730	0 98222	558
4345	C12H14O2	Isoamyl benzoate	192 12		262	0.993	1
4345.1	C11H14O1	Isopropyl hydrocinnamate	192 12		12611	0.98625	1
4346	C ₁₂ H ₁₆ O ₁	Thymyl acetate	192 12		243	1 0090	1
4347	C11H16O1	n-Amyl salicylate o-HOC ₆ H ₄ CO ₂ C ₅ H ₁₁	208 12		265	1 06515	1
4348	C ₁₂ H ₁₄ O ₃	Butyl anisate p-CH ₃ OC ₄ H ₄ CO ₂ C ₄ H ₉ .	208 12		18340	1 054	635
4349	C ₁₂ H ₁₆ O ₂	Isoamyl salicylate	208 12		273	1 04526	-
4350	C12H16O2	Isobutyl anisate	208 12		170+6	1.052	634
4351	C12H16O2	Guaiacyl valerate C ₄ H ₂ CO ₂ C ₅ H ₄ OMe	208 12		265		1
4352	C12H14O2	Asaron	208 12	67	296	1.165	1333
4353	C11H14O1	Elemicin	208 12		14710	1 063	694
4354	C12H16O4	Aspidinol	224 12	161		1	1
4355	C12H14O4	Diethyl succinylsuccinate	256 12	128			1
4356	C ₁₂ H ₁₆ O ₆	d, β-Phenylglucoside	256 12	175		1	
4357	CuH ₁₆ O ₇	Arbutin	272 12	195		1	1333
4358	C ₁₂ H ₁₇ AsN ₂ O ₄	Aniline arsenate (C ₆ H ₆ NH ₂) ₂ H ₃ AsO ₄	328 11	140	070 -	1	1
4359	C H NO	N-n-Butylacetanilide	191.14	0.	276.5	1	1
4360	C ₁₃ H ₁₇ NO	Caproanilide CH ₃ (CH ₂) ₄ CONHC ₄ H ₄	191 14	95		I	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
	C ₁₉ H ₁₇ NO	C-Diethylacetanilide	191 14	124		-i	1
	C12H17NO2	Ethyl-N-phenacetine	207 14	38	298		
	C ₁₂ H ₁₇ NO ₂	Ethyl-o-tolylurethane	207 14		255		
364	C19H17N6O9	Lysine picrate	375 17	252 d			
365	C12H18	Hexamethylbenzene	162 14	166	265		
365.1	C12H18	1-Methyl-3-tertamylbenzene	162 14		208	0.8673	1
366	C19H18	1, 2, 4-Triethylbenzene	162 14		218	0.882	58
1367	$C_{19}H_{18}$	1, 3, 5-Triethylbenzene	162 14		218	0 863	56
1367 1 (C12H18N2O4	Rhamnose phenylhydrazone	254 16	159	21	10 100	""
367.2 0	C12H18N2O6	d, a-Glucosephenylhydrazone	270 16	160		ļ	l
367 3 0	C12H18N2O8	d, β-Glucosephenylhydrazone	270 16	141		i	1
	C12H18N4O	Phenylhydrazine hydrate	234 17	24			l
	C12H18N4O2	Hexamethylenetetramineresorcinol.	250 17	200 d		i	1
	C13H18O	Benzyl isoamyl ether.	178 14	200 0	237 5	ì	
	C12H16O	Thymyl ethyl ether.	178.14		226 9	0 9338	
	C11H110	Mellithyl alcohol (CH ₂) ₆ C ₆ CH ₂ OH	178 14	160-5	220 0	0 5000	1
	C12H18O2	Phloroglucinol triethyl ether	210 14	43	17524	ĺ	i
	C12H18O2	Pyrogallol triethyl ether	ſ	39	173-		į
	C12H18O2	Cascarillin	210 14 226 14	205			1
1 .	C ₁₂ H ₁₈ O ₆	Trimeric diacetyl	1		000 1		1
	C12H18O6	Diethyl 1, 1'-diacetylsuccinate	258 14	105	280 1	1 000 (-1)	
1368 3 0	C121118()8	Detnyi 1, 1 -diacetyisueemate	258.14	88		1.209 (st.)	110
.000 4	CHO	Whitehall a could be	350.11			1.176 (met.)	
	C13H18O4	Triethyl aconitate	258 14		253780	1.106	45
	C12H18O1	Diethyl diacetyltartrate	290 14	68	17015	1 10971	1
	C ₁₂ H ₁₂ Br ₂ O ₂	Bromal d-borneolate	434 89	109		1 868	
	C12H19ClO2	d-Bornyl chloroacetate	230 60	1	14730		
	C12H19Cl3O2	Chloral-d-borneolate	301 52	56			
	C12H10N	n-Dipropylaniline C ₆ H ₆ N(C ₈ H ₇) ₂	177 15		241	0 910	
1 .	C12H20N2O2	Isoamyhsopropylbarbituric acid	240 17	175			
	C ₁₂ H ₂₀ N ₂ O ₃	Isoamylpropylbarbituric acid .	270 17	132			
369.1	C ₁₂ H ₂₀ N ₄ O ₇	Hexamethylenetetraminemethylene				ı	
		citrate	332 19	175			İ
369.2 0	C12H20O	Ballanophorin	180 15	56			1
	('12H20()	Homophorone	180 15		210*25	0 886	52
371	C ₁₂ H ₂₀ O ₂	Geranylacetic acid	196-15		17919	0 938	51
372	C ₁₂ H ₂₀ O ₂	dl-Bornyl acetate	196-15		11422	0 985	48
373	C12H20O2	d-Bornyl acetate	196 15	29	226	0 99114	99
374	C12H20O2	Geranyl acetate	196 15		242	0 91716	48
375	C12H20O2	Isobornyl acetate	196 15		89*	0 981	101
375.1	$C_{12}H_{20}O_{2}$	Isopulegyl acetate	196 15		10314	0 93518	93
	$C_{12}H_{20}O_{2}$	l-Linalyl acetate	196 15		220	0 895	41
	C12H20O2	Neryl acetate	196 15		13415	0 91614	
	C ₁₂ H ₂₀ O ₂	dl, α-Terpinyl acetate	196 15	< -50	220 d.	0.957	1
1	C ₁₂ H ₂₀ O ₂	d (l), α-Terpinyl acetate	196 15	1	14040	0 983%	1
,	C12H20O4	Diethyl 1-ethyl-1'-acetylsuccinate	244 15		263	1 06417.4	
	C ₁₂ H ₂₀ O ₇	Triethyl citrate	276 15	}	294	1.137	40
	C ₁₂ H ₂₀ O ₁₀	Maltosan	324 15	150 (?)			
- 1	C ₁₂ H ₂₁ ClO ₂	l-Menthyl chloroacetate	232 62	38	13712	1 056	1
- 1	C ₁₂ H ₂₁ N ₂	Kyanpropine	207.19	116	1		1
1	C ₁₂ H ₂₂ ()	Ethyl d-bornyl ether	182 17		205	0.901	10
		Hexenyl ether	182 17	1	118		1
	C12H21O	d-Citronellyl acetate	198 17	i	12115	0 9034	4
	C12H22O1	1	198.17		227	0 919	4
	C11H11O1	l-Menthyl acetate (HOCHCO ₂ C ₄ H ₉) ₂	214.17	77		0.010	*
	C12H22O1	Lanolic acid		87	l .		
	C12H21O1	l-Menthyl glycollate	214 17	01	90.5	0.96811	1
	C12H22O4	Diisoamyl oxalate	230 17	00.5	265	the state of the s	1
	C12H22O6	Di-n-butyl d-tartrate	262.17	22 5	20314	1 0981	1
	C12H22O6	Diisobutyl d-tartrate	262.17	69	325	1 000**	1
L.	C12H22O6	Diisobutyl l-tartrate	262.17	74	18521	1 02979	1
	C12H22O11	Lactose	342.17	201 6	d.	1 525	12
395	$C_{12}H_{22}O_{11}(H_2O)$	Maltose	360 19	1		1.540	13
396	C12H22O11	Saccharose	342.17	186		1.5884	12
397	C12H22O11	Trehalose (2H ₂ O)	342.17	210	1	1	11

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I.
4398	C12H23ClO	Lauryl chloride CH ₄ (CH ₂) ₁₀ COCl	. 218 64	-17	14518		No.
4399	C12H22N	Lauronitrile CH ₄ (CH ₂) ₁₀ CN	181 19	4	198100	0.8271	1
4400	C12H24	n-Dodecylene CH2:CH(CH2)9CH3.	168 19	-31 5	9615	0.762	
4401	C12H24N2O10	d-Glucosealdazine	356 20	100		0024	1
4402	C12H24O	n-Amyl hexyl ketone C ₄ H ₁₁ COC ₄ H ₁₃	184 19	9	1129	1	
4403	C ₁₂ H ₂₄ O	Ethylmenthol	184 19		854	0.90417	
4404 4405	C ₁₂ H ₂₄ O	l-Ethyl menthyl ether	184 19	1	212 9	0.854	918
4406	C ₁₂ H ₂₄ O ₂	Laurie aldehyde CH ₃ (CH ₂) ₁₀ CHO	184 19	44 5	185100		010
4407	C ₁₂ H ₂₄ O ₂	Lauric acid CH ₃ (CH ₂) ₁₀ CO ₂ H	200 19	48 0	225100	0 883	1123
4408	C ₁₂ H ₂₄ O ₂	n-Decyl acetate CH4CO2C10H21	200 19		191 5	1	1082
4409	C ₁₂ H ₂₄ O ₄	Ethyl n-caprate C ₂ H ₁₉ CO ₂ C ₂ H ₃ n-Parabutyraldehyde	200 19		245	0 862	
4410	C ₁₂ H ₂₄ NO		216 19		10035		-
4411	C12H25	Lauramide CH ₄ (CH ₂) ₁₀ CONH ₂ n-Dodecane CH ₂ (CH ₂) ₁₀ CH ₂	199 20	102	20012 5	ļ	
4412	C12H26	5-Propylnonane (C ₄ H ₉) ₂ CHC ₂ H ₇	170 20	-12	216	0 768	255
4413	C12H26	2, 4, 5, 7-Tetramethyloctane	170 20	i	205	0 756	268
4414	C12H26O	n-Amylhexyl carbinol	170 20		210		
4415	C ₁₂ H ₂₈ O	n-Dodecyl alcohol CH ₃ (CH ₂) ₁₀ CH ₂ OH	186 20	30	1199		1
4416	C12H26O	n -Hexyl ether $(C_6H_{13})_2(C)$	186 20	24	259	0.831	
4417	C12H27N	1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	186 20	000	208 8		
4418	C12H27N	Tri-n-butylamine $(C_4H_9)_3N$	185 22	28	13513	1	
4419	$C_{12}H_{27}N$	Trisobutylamine $(CH_1)_1 CHCH_2 _3 N_{\odot}$	185 22		214	0 77820	
4420	C12H28N2O4	Ethylenediamine isovalerate	185 22 264 23	-21 8	191 5	0 76625	294
4421	C13H2Br4O3	Tribromosalol	450 80	129			
4422	$C_{13}H_8Cl_2O$	p, p'-Dichlorobenzophenone	250 98	195			
4423	C12H4N2O4	p, p'-Dinitrobenzophenone	272 08	145			
4424	CiaHaNaOs	o, o', p, p'-Tetramtrodiphenylurea	392 11	190 189			
1425	C ₁₅ H ₈ O	Fluorenone	180 06	84	244 5		
1426	C ₁₃ H ₄ O	Pyrene ketone	180 06	142	341 5	1	
1427	C ₁₃ H ₃ O ₃	Xanthone	196 06	174	351		1
1428	C14H4O4S	Benzophenonesulfone	244 13	187	331	1	
1429	CuH ₀ O ₄	Euxanthone	228 06	240			
1430	C ₁₅ H _p BrO ₂	p-(p-Bromophenyl) benzoic acid	276 99	194			
1431	Callicio	o-Chlorobenzophenone	216 53	45 5	330	İ	
432 433	C _D H ₀ ClO	m-Chlorobenzophenone	216 53	83	330		
434	Callacio	p-Chlorobenzophenone	216 53	78	> 300		1
435	C ₁₃ H ₂ N	Acridine	179 08	108	316	ĺ	İ
436	C13H9N C13H9N	α-Naphthoquinoline	179 08	52	351	1	ł
437	CisH ₀ N	β-Naphthoquinoline	179 08	93	351		-
438	CisHyNO	Phenanthradine	179 08	104	360		
439	Callin	9-Acridone	195 08	354			1
140	C ₁₃ H ₁₀ A ₈ N	Fluorene	166 08	116	295		1
441	C13H10C12	Diphenyleyanoarsme (C ₆ H _b) ₂ AsCN Benzophenone chloride	255 05	30		1	
142	C12H10C12	m, m'-Dichlorodiphenylmethane	236 99		305	1 23518 5	
443	C1aH toCla	p, p'-Dichlorodiphenylmethane	236 99	8	318	1 23421	
144	C ₁₃ H ₁₀ N ₂ O ₃	Benzeneazosalicylic acid	236 99	55	21015	1	
45	C ₁₃ H ₁₀ O	p-Diphenylaldehyde p -C ₆ H ₆ C ₆ H ₄ CHO.	242 09	218 d.	1	1	
46	C13H10()	Fluorenol	182 08	60			
47	C13H10()	α-Benzophenone (C ₆ H ₄) ₂ CO	182 08	156			1
48	C12H10O	ß-Benzophenone	182 08 182 08	48 5	305 4	1 08353 6	
49	C13H10O	γ-Benzophenone	182 08	26.5	306	1 10823	1014
50	('11H10()	δ-Benzophenone	182 08	45 48 51		1	
51	C ₁₃ H ₁₀ O	Xanthene	182 08	100.5	215	1	1
52	('13H10()3	o-Hydroxybenzophenone	198 08	41	315 250***	1	
	C13H10O1	m-Hydroxybenzophenone	198 08	116	200***	1	1
	C11H10O2	p-Hydroxybenzophenone	198 08	134			1
	C ₁₃ H ₁₀ O ₂	o-Phenylbenzoic acid	198 08	111	2.1.1		
	C ₁₃ H ₁₀ O ₂	m-Phenylbenzoic acid.	198 08	161	344	}	
	C11H10()2	p-Phenylbenzoic acid	198 08	219			
- 1	CuHwO ₁	Phenyl benzoate C.H.CO.C.H.	198 08	70	314	1.235**	
	C ₁₃ H ₁₀ O ₃ C ₁₃ H ₁₀ O ₃	2, 5-Dihydroxybenzophenone 2, 2'-Dihydroxybenzophenone	214 08	122	4114	1.400**	1
60							

No.	Formula	Name	Mol wt.	М, Р.	В. Р.	d	R. I. No.
4461	C13H10O3	2, 3'-Dihydroxybenzophenone	214 08	126		i	1
4462	C11H10O1	2, 4'-Dihydroxybenzophenone	214 08	144			
4463	C13H10O3	3, 4'-Dihydroxybenzophenone	214 08	197			
4464	C13H10O3	4, 4'-Dihydroxybenzophenone	214 08	210			
4465	C ₁₃ H ₁₀ O ₃	o-Phenoxybenzoic acid	214 08	114 5	355 d.		1
4466	C13H10O3	Diphenyl carbonate (C ₆ H ₆ ()) ₂ C()	214 08	81	302		
4467	C13H10O4	Salol o-HOC,H,CO,C,H,	214 08	43	17311	1.250	İ
4468	C13H10O4	2, 6, 2'-Trihydroxybenzophenone	230 08	133			
4469	C13H10O4	Pimpinellin	246 08	119	1		i
4470	C ₁₃ H ₁₀ O ₆	Maclurin.	262 08	220 d			
4471	C13H10O1	Sordidin	294 08	210			ļ
4472	C ₁₃ II ₁₀ S	Thiobenzophenone (C _b H _b) ₂ CS	198-14	146 5	1		
4473	CaHaN	Benzylideneamline CoHoN.CHCoH.	181 09	54	300	ĺ	ţ
4474	C ₁₃ H ₁₁ N	5, 10-Dihydroacridine	181 09	169			1
4475	CaHaNO	o-Aminobenzophenone	197 09	108		İ	
4476	CBHnNO	m-Aminobenzophenone	197 09	86	1		1
4477	CallaNO	p-Aminobenzophenone	197 09	124			
4478	C ₁₃ H ₁₁ NO	Benzamlide CoHoNHCOCoHo	197 09	161		1.3214	
4479	CullinNO	Benzophenoncoxime (C ₆ H ₆) ₂ C·NOH	197 09	142			İ
4480	CuHuNO	N-Phenylformanilide (C ₀ H ₄) ₂ NOCH.	197 09	71	220	1 230	
4481	CnHnNO ₂	o-Benzoylaminophenol	213 09	167 d.			
4482	C ₁₃ H ₁₁ NO ₃	m-Benzoylaminophenol	213 09	174			
4483	C13H11NO2	p-Benzoylaminophenol	213 09	227			
4484	C ₁₃ H ₁₁ NO ₂	p-Nitrodiphenylmethane	213 09	31			
4485	C ₁₃ H ₁₁ NO ₂	Salicylamlide o-OHC6H4CONHC6H4.	213 09	135			
4486	C ₁₃ H ₁₁ NO ₃	p-Aminosalol	229 09	$\frac{152}{205}$			
4487 4488	C ₁₃ H ₁₁ NO ₄ C ₁₃ H ₁₁ N ₃	Gallamlide 2, 8-Diaminoacridine	245 09 209 11	284			
4489	C ₁₃ H ₁₁ O ₄	Gelsemic acid	247 09	206			
4490	C ₁₃ H ₁₂	Diphenylmethane (C ₆ H ₆) ₂ CH ₂	168 09	27	262	1.006	1030
4491	C ₁₃ H ₁₂	o-Phenyltoluene CH3C6H4C6H6	168 09		260	}	1
4492	C13H12	m-Phenyltoluene CH3C6H4C6Hb	168 09		277	1.0310	
4493	C13H12	p-Phenyltoluene CH3C6H4C6H5	168 09	-3	267	1 01527	
4494	C ₁₃ H ₁₂ N ₂	Benzaldchyde phenylhydrazone	196-11	156	1		1
4495	C ₁₃ H ₁₂ N ₂ O	1-Benzoyl-1-phenylhydrazine	212 11	70			
4496	C13H12N2O	1-Benzoyl-2-phenylhydrazine	212 11	168			ŀ
4497	C ₁₃ H ₁₂ N ₂ O	o, o'-Diaminobenzophenone	212 11 212 11	135 174			ļ
4498 4499	C ₁₃ H ₁₂ N ₂ O	m, m'-Diaminobenzophenone	212 11	237	1		
4500	C ₁₃ H ₁₂ N ₂ O C ₁₃ H ₁₂ N ₂ O	p, p'-Diaminobenzophenone 1, 2-Diphenylurea CO(NHC ₆ H ₆) ₂	212 11	235	260		1329
4501	C ₁₃ H ₁₂ N ₂ O	1, 1-Diphenylurea (C ₆ H ₆) ₂ NCONH ₂ .	212 11	189			1020
4502	C13H12N2O	Harmine	212 11	257 d.			1
4503	C13H12N2O2	o-Nitrobenzylaniline	228 11	44; 57			
4504	C13H12N2S	1, 2-Diphenylthiourea	228.17	154	d.	1.3214	
4505	C13H12O	o-Benzylphenol CoHoCH2CoH4OH	184 09	21	312		
4506	C11H11O	p-Benzylphenol C ₆ H ₆ CH ₂ C ₆ H ₄ OH	184 09	84	322		
4507	C ₁₃ H ₁₂ O	Diphenyl carbinol (C ₆ H ₆) ₂ CHOH	184 09	68	298.5		-
4508	C ₁₃ H ₁₂ O	Benzyl phenyl ether CollaOCH2Colla	184 09 248.16	39 96	287		
4509	C ₁₃ H ₁₁ O ₃ S	Phenyl-p-tolucnesulfonate	183 11	37	300	1 0384	
4512 4513	C ₁₃ H ₁₄ N C ₁₃ H ₁₄ N	Benzylaniline C ₆ H ₅ NHCH ₂ C ₆ H ₆ N-Methyldiphenylamine (C ₆ H ₅) ₂ NCH ₄ .	183 11	-7 6	293 4	1.04725	
4514	C ₁₃ H ₁₃ NO	m-(o-Tolylamino) phenol	199 11		375		1
4515	C ₁₃ H ₁₃ NO	p-(m-Tolylamino) phenol	199.11	91	350		
4517	C ₁₃ H ₁₃ NO ₂ S	Toluene-p-sulfoneanilide	247 17	103			
4518	C ₁₃ H ₁₃ N ₂	Diphenylguanidine	211 12	148		1	
4519	C13H14N2	o, p'-Diaminodiphenylmethane	198 12	88		1	
4520	C11H14N1	m, m'-Diaminodiphenylmethane	198 12	48			1
4521	C11H14N2	m, p'-Diaminodiphenylmethane	198.12	90		1	
4522	C13H14N3	p, p'-Diaminodiphenylmethane	198 12	89 26	1	1	
4523	C11H14N1	1-Phenyl-2-benzylhydrazine .	198 12				

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
4525	CuHuN ₂ O ₂	Analgen (5-Acetylamino-8-ethoxyquino-					1
	1	line)	230 12	155		1	
4526	CaHaN _* S	1, 2-Di(ρ-aminophenyl) thiourea	258 21	195	17011		1
4526 1	C ₁₂ H ₁₄ O ₂	Isobutyl phenylpropiolate	202 11	050	17612	1.15825	1
4527	C _D H ₁₄ O ₄	Drimme	234 11	256	l		
4528	C ₁₄ H ₁₄ Cl ₄ N ₄ O ₄	Chloralantipyrine	353 51	68 20	300		1
4529	CaHaN	2, 5, 6, 8-Tetramethylquinoline	185 12 313 06	20 225	300	1	
4530	C14H16IN	2, 4-Dimethylquinoline ethiodide	216 14	68	1		
4530 1	C14H16N2O	4-Ethyl antipyrine	i	93	l		1237
4530 2	C11H14N2O	1-Phenyl-2-propyl-3-methylpyrazolone.	216 14 188 12	39.5	İ	0.939**	1263
4530 3	CoH ₁₀ O	Benzalpinacoline	220 12	39.0	290 d.	1 03614	104
4531	CisHi ₀ O ₄	Ethyl benzylacetoacetate	220 12		290 d. 292	1 00016	
4532	C ₁₃ H ₁₆ O ₂	Isocugenol propionate	236 12		285 d.	1 09525	
4533	C ₁₄ H ₁₆ O ₄	Ethyl phenylmalonate	284.12	175	200 u.	1 05025	
4534	C ₁₃ H ₁₆ O ₇	l-Hehein	284 12	195	ļ	İ	
4535	C ₁₃ H ₁₆ O ₇	Salinigrin Thermodin	251.14	88		1	1226
4536	C ₁₃ H ₁₇ NO ₄	Pyramidon	231 16	108		ı	1333
4537 4538	C ₁₄ H ₁₇ N ₃ O C ₁₄ H ₁₄ BrNO ₂	Phenoval	300 06	150	ļ	į	l
4539		Escroline	218.16	127		1	- 1
	C ₁₁ H ₁₈ N ₂ O C ₁ U ₁ N ₁ O ₃		210.10	127		ł	
4541	CnHnN4O68	Hexamethylenetetramine salicylsulfonic	250 04	190 d.		1	
4542	C ₁₁ H ₁₁ O	ncid (Hexal) Phenyl hexyl ketone C6H6COC6H12.	358.24 190.14	150 d.	271 5		
4543	C ₁₁ H ₁₁ O ₂	Eugenol propyl ether	206 14	17	270.5	1 002	1
4544	CuHuO ₂	Phenyl heptylate C ₆ H ₁₃ CO ₂ C ₆ H ₆	206 14		282 3	0 98215	1
4545	CuHuOi	1	200 14		18830	1 040	638
1546	C ₁₃ H ₁₃ O ₇	Isoamyl anisate Methylarbutin	286 14	175	10000	1 040	038
1547	C ₁₃ H ₁₃ O ₇	Salicin .	286 14	201.5	240	1.43426	1
1548	C ₁₁ H ₁₀ O ₄	Calmatambetin	302.14	148	240	1.404	1
4549	C ₁₁ H ₁₀ NO	Heptamilide CH3(CH2),CONHC6H4	205.15	71		1	
1550	CnHnNO2	Benzalamnoacetal	203.15	11	220150	l .	1
1551	CnH ₀ NO ₁	Dioscorine	221 15	43 5	220	1	
552	C ₁₈ H ₁₉ NO ₁	Pellotine	237.15	111		1	1333
1553	C ₁₃ H ₁₉ NO,	Gynocardine	333 15	162	1		1000
4554	C ₁₃ H ₁₀ O ₄	Aucubine	303.15	181			1
1555	CuHmCINO,	Dioscorine hydrochloride .	257.62	204		1	- 1
4556	C13H20CINO	Gujasanol (Diethylaminoacetic acid guai-	201.02	201		}	ì
	01411100111174	acol hydrochloride)	273 62	184	1	1	ı
4557	C13H20N2O2	Novocaine.	236.17	60	}	}	
4558	C ₁₂ H ₂₀ N ₂ O ₂ (2H ₂ O)		272.19	51		1	
4559	CuH ₂₀ O	α-Ionone	192.15	01	147 528	0 930	988
4560	Cullio()	β-Ionone	192.15		14018	0.944	667
	- 1000	, and the second	102.10		110	0.011	951
4561	C ₁₄ H ₂₀ O	Irone	192.15		14416	0.939	603
4562	C ₁₃ H ₂₀ O	Lactucol	192.15	160		0.000	
4563	C ₁₄ H ₂₀ O	Pseudoionone	192.15	100	17028	0 897	100
4564	('18H20()2	Galbanie acid	208 15	156		1 00.	100
45 65	C13H21CIN2O2	Novocaine hydrochloride	272 64	156			
4566	C12H21ClN2O2	Procaine	272 64	155		1	1
4567	CnHnN	N-Ethyl-isoamylaniline	191.17	1.00	262	1	1
4568	CuHnNO4	Meteloidine	255 17	141	1	1	j
4569	C13H22BrNO4	Meteloidine hydrobromide	336 09	250	1	Ì	
4570	C12H22N2O3	Ethylheptylbarbituric acid	254.19	119	1	1	1
4571	C11H12O	Zeorin	194.17	251	1		1
4572	C13H112O2	d-Bornyl propionate	210 27		11011	0.97915	85
4573	C11H22O3	l-Menthyl pyruvate	226.17		14022	0 985	-
1574	C11H21O7	Taxicatin	290.17	171	1		
4575	CuH24NO2	Cuscohygrine	226.19	-	17023	1	l
4576	(C18H24()	Allyl l-menthyl ether	196.19		10413	0.876	l
4577	C ₁₁ H ₁₄ O	Geranylacetone	196.19		13910	1	1
4578	C12H24O2	I-Menthyl propionate	212.19		11815	0 918	1
4579	C11H14O1	l-Menthyl dl-lactate	228.19	32	14214	0.984	1
	C11H14O4	Brassylic acid	1	114		1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
4580.1	C12H24O4	Di-t-amyl malonate	244 19		15413	0.962**	T
4581	C12H26	Tridecylene	182 20		232 7	0.845	1
4582	C11H16O1	Tridecylic acid CH ₁ (CH ₂) ₁₁ CO ₁ H	214 20	51	236100		1
4583	C13H26O2	Isoamyl caprylate	214 20		13610		1
4584	C11H26O2	Methyl laurate C11H22CO2CH3	214 20	5	14818		
4585	C11H18	Dipropylhexylmethane (C ₃ H ₇) ₂ CHC ₆ H ₁ ,	184-22		221 2	0 76544	299
4586	C11H28	Tributylmethane (C ₄ H ₉) ₃ CH	184 22			0.760	300
4587	C ₁₃ H ₃₈	n-Tridecane CH ₂ (CH ₂) ₁₁ CH ₃	184 22	-62	234	0 757	908
4588	C 11 O	Di-n-hexylearbinol (C ₆ H ₁₃) ₂ CHOH	200 22	42		0.00011	
4589	C ₁₈ H ₂₈ O C ₁₈ H ₂₉ N	n-Tridecyl alcohol CH ₃ (CH ₂) ₁₁ CH ₂ OH Tridecylamine CH ₄ (CH ₂) ₁₁ CH ₂ NH ₂	200 22	30 5	15614	0 8224	1
4590 4591	C ₁₄ H ₃ Cl ₅	Octachloroanthracene	199 23	27	265		1
4592	C14H4Cl7	Heptachloroanthracene	453 68 419 23	>350 >350	:	}	
4593	C14H4Cl4O1	1, 2, 3, 4-Tetrachloroanthraquinone.	345 86	191	1		
4594	C ₁₄ H ₄ Cl ₄ O ₂	β-Tetrachloroanthraquinone	345 86	330			
4595	C14H4Cl	Hexachloroanthracene	384 78	330			1
4596	C14H6Cl2O2	α-1, 2-Dichloroanthragumone	276 96	161			
4597	C14H6Cl2O2	β-1, 2-Dichloroanthraquinone	276 96	207		ľ	1
4598	C14H4Cl2O2	1, 4-Dichloroanthraquinone	276 96	187 5			1
4599	C14H6Cl2O2	1, 5-Dichloroanthraquinone	276 96	232	1		1
4600	C14H6Cl2O2	1, 6-Dichloroanthraquinone	276 96	204		ł	•
4601	C14H6Cl2O2	1, 8-Dichloroanthraquinone	276 96	199			
4602	C14H6Cl2O2	2, 3-Dichloroanthraquinone	276 96	267		1	
4603	C14H6Cl2O2	2, 6-Dichloroanthraquinone	276 96	282			1
4604	C14H6Cl2O2	2, 7-Dichloroanthraquinone	276 96	211		1	
4605	C14H6Cl4	1, 2, 3, 4-Tetrachloroanthracene	315 88	149			
4606	C14H6Cl4	α-Tetrachloroanthracene	315 88	220		-	1
4607	C14H6Cl4	β-Tetrachloroanthracene	315 88	152	ļ	İ	
4608	C14H6N2O6	1, 3-Dinitroanthraquinone	298 06	240		1 00711	1
4609	C14H4O8	Ellagic acid	302 05			1.66718	1
4610	C ₁₄ H ₇ ClO ₂	1-Chloroanthraquinone	242 51	162 208	ļ		ł
4611	C ₁₄ H ₇ ClO ₂	2-Chloroanthraquinone	242 51 242 51	204	1		
4612 4613	C ₁₄ H ₇ ClO ₂	3-Chloroanthraquinone 1-Nitroanthraquinone	253 06	230			
4614	C ₁₄ H ₇ NO ₄ C ₁₄ H ₇ NO ₄	2-Nitroanthraquinone	253 06	181			1
4615	C14H7NO4	4-Nitro-α-alizarin	285 06	289		ļ	1
4616	C ₁₄ H ₇ NO ₆	3-Nitro-β-alizarin	285.06	244	1		
4617	C ₁₄ H ₈ Br ₂	9, 10-Dibromoanthracene	335 89	221	1		
4618	C14H8Cl2	1, 2-Dichloroanthracene.	246 98	255			
4619	C14H3Cl2	9, 10-Dichloroanthracene	246 98	209			
4620	C14H8O2	Anthraquinone C ₆ H ₄ :(CO) ₂ .C ₆ H ₄	208 06	285	379.8	1.438	
4621	C14H8O2	Isoanthraquinone .	208 06	212			
4622	C14H4O2	Phenanthraquinone	208 06	207	360	1.405	1
4623	C14H4O2	3, 4-Phenanthraquinone	208 06	133	1		
4624	C14H8O8	2-Hydroxyanthraquinone	224 06	302			1
4625	C14H8O3	Diphenic anhydride	224 06	219	400	1	
4626	C14H8O4	Alizarin	240 06	290	430		
4627	C14H0O4	Anthraflavic acid	240 06	330	1	1	
4628	C14H4O4	Anthrarufin	240.06	280			
4629	C14H8O4	1, 6-Dihydroxyanthraquinone	240 06	272 292			
4630	C14H8O4	1, 7-Dihydroxyanthraquinone	240 06 240 06	191			
4631	C ₁₄ H ₈ O ₄	Chrysazin Hystazarin (2, 3-Dıhydroxvanthraqui-	270.00	1	1		
4632	C14H8O4		240.06	>280	1	1	
4622	CHO	none) Quinizarin.	240.06	195		1	
4633 4634	C ₁₄ H ₄ O ₄ C ₁₄ H ₄ O ₄	Xanthopurpurin	240 06	263	1	i	
4635	C ₁₄ H ₈ O ₄	Anthragallol	256 06	310	s. 290		1
4636	C ₁₄ H ₄ O ₄	Anthrapurpurin	256 06	330	462	1	1
4637	C ₁₄ H ₄ O ₄	Flavopurpurin	256 06	>360	459		1
4638	C ₁₄ H ₄ O ₄	Purpurin	256 06	256		1	1
4639	C ₁₄ H ₄ O ₄	1, 4, 6-Trihydroxyanthraquinone	256 06	>300	1		
4640	C ₁₄ H ₄ Cl	1-Chloroanthracene	212 53	82	1	1.171**.5	1140
4641	C ₁ ,H,Cl	9-Chloroanthracene	212 53	103	1	1	1

No.	Formula	Name	Mol. wt.	М. Р.	B. P.	d	R
4642	C ₁₄ H ₂ NO ₂	1-Aminoanthraquinone	223 08	256	1		+
4643	C14H4NO2	2-Aminoanthraquinone	223 08	302	l	1	-
4644	C14H4NO2	9-Nitroanthracene	223.08	146	ı	ı	-
4645	C14H4NO2	2-Nitrophenanthrene	223 08	99			
4646	C14H4NO2	3-Nitrophenanthrene	223 08	170	j	}	1
4647	C14H4NO2	4-Nitrophenanthrene	223 08	80		[1
4648	C ₁₄ H ₄ NO ₃	9-Nitrophenanthrene	223 08	116		ł	
4649	C14H10	Anthracene C ₆ H ₄ ·(CH) ₂ .C ₆ H ₄	178 08	218	342	1.2547	- 1
4650	C14H10	Diphenylacetylene CoH, CC; CoH,	178 08	60	300	1	-
4651	C14H10	Isoanthracene	178 08	134 5		1	-
4652	C14H10	Phenanthrene	178 08	99-6	340 2	1 025	1
4653	C14H10C12	Dichlorostilbene	248 99	170		1	1-
4654	C14H10Cl2	α-Tolane dichloride	248 99	143	18315	1	
4655	C14H10Cl2	β-Tolane dichloride	248 99	63	17818		
4656	C14H10Cl4	Tolane tetrachloride	319 91	163	1		
4656 1	C14H10N2O2	Phthalylphenylhydrazine	238 09	179	1	1.356	-
4657	C14H10N2O2	α-Diaminoanthraquinone	238 09	236		1.000	1
4658	C14H10N2O2	β-Diaminoanthraquinone	238 09	>300			-
4659	C14H10N2O1	p, p'-Azoxybenzaldehyde	254 09	194	1		1
4660	C14H10N2O4	o, o'-Azobenzoie acid	270 09	237		j	
4661	C14H10N2O4	m, m'-Azobenzoic acid	270 09	340	1		
4602	C14H10N2O4	α -p, p'-Dintrostilbene	270 09		1		
4663	C14H10N2O4	β-p, p'-Dintrostilbene	1 1	285	1	į	-
4664	C14H10N2O5	o, o'-Azoxybenzoic acid	270 09 286 09	216			1
4665	C14H10N2O4	1 '	1 1	240			1
4666	C14H10N2O4	m, m'-Azoxybenzoic acid p, p'-Azoxybenzoic acid	286 09	320	i		-
4667	C14H10O	1	286 09	240 d.	1		-
4668	1	Anthranol	194 08	170 d.			
4669	C ₁₄ H ₁₀ O C' ₁₄ H ₁₀ O	1-Anthrol (1-Hydroxyanthracene)	194 08	153			
		2-Anthrol	191 08	200 d.		1	
4670	C ₁₄ H ₁₀ O	Diphenylketene (C ₆ H ₆) ₂ C;CO	194 08		14612	1.104	
4671	C ₁₄ H ₁₀ O	Phenanthrone	191 08	152			
4672	C14H10O2	Benzil C ₆ H ₆ COCOC ₆ H ₆	210 08	95 2	348	1.5214	1
4673	C14H10O2	Chrysazol	210 08	220 d.			1
4674	C14H10O2	Flavene	210 08	270			-
4675	C ₁₄ H ₁₀ O ₂	3, 4-Dihydroxyphenanthrene	210 08	143	İ	1	Ì
4676	C ₁₄ H ₁₀ O ₁	Benzoic anhydride (CaHaCO)2O	226 08	43	360	1.1994	
4677	$C_1H_{10}O_3$	o-Benzovlbenzoic acid	226 08	127		1	
4678	C14H10Ox	m-Benzoylbenzote acid	226 08	162		1	
4679	C14H10O1	p-Benzov lbenzore acid	226 08	194	į	1	1
4680	C ₁₄ H ₁₀ O ₃	Desoxvalizarin	226 08	208	Ì		1
4681	C14H10O3	Disaheyhe aldehyde	226 08	128			
4682	C14H10O4	Benzoylsalicylic acid	242 08	207		1	
4683	C14H10O4	1, 8-Diphenic acid	242 08	252		1	1
4684	C14H10O4	1, 9-Diphenic acid	242 08	216	į	1	i
4685	C14H10O4	1, 10-Diphenic acid	242 08	228	ĺ	1	1
4686	C14H10O4	2, 9-Diphenic acid	242 08	340	l		1
4687	C14H10O4	Diphenyl oxalate (CO ₂ C ₆ H ₅) ₂	242 08	136 d.	325 s. d.	1	1
4688	C ₁₄ H ₁₀ O ₄	Benzovl perovide (C ₆ H ₅ CO ₂) ₂	242 08	104	d.	ł	1:
4689	$C_{14}H_{10}O_4S_3$	Dithiosalicylic acid	306 21	290			
4690	C14H10O4	Gentianin	258 08	267	400	1	1
4691	C14H10O4	Gentienin	258 08	225		1	1
4692	C14H10O4	Saheylosaheylic acid .	258 08	148		į.	ŀ
4693	C14H10O6	Aponic acid	274 08	252 d.			j
4694	C14H10O9	Tannin	322 08	200 d.			
4695	CuHuN	a-Anthramine CoH4:(CH)2:CoH2NH2	193 09	130	1		
4696	$C_{14}H_{11}N$	B-Anthramine C.H. (CH)2.C.H3NH2.	193 09	238		1	
4697	CullinN	o-Benzylbenzonitrile	193 09	19	314	1	1
4698	C ₁₄ H ₁₁ N	1-Methylacridine	193 09	88	017		
4699	CuHuN	3-Methylacridine	193 09	134			
4700	Cullin	5-Methylacridine	193 09	114	360740		
4701	Cidlin	α-Naphthoquinaldine	193 09	114	> 300		
4702	CidhiiN	β-Naphthoquinaldine	193 09	vo.	1		1
	- (4.111.4	P-raphenodimannine.	139 03	82	> 300	1	ı

No. Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I.
4704 C14H11NO2	a-Benziloxime C ₆ H ₄ COC(:NOH)C ₆ H ₄		-		"	No.
4705 C14H11NO	Dibenzohydroxamic acid	225 09	138		İ	
4706 C14H11NO4	Disalicylamide	241 09 257 09	161			
4707 C14H12	1, 1-Diphenylethylene (C ₆ H ₈), C.CH;	180 09	200 d. 9	027	. anula	
4708 C ₁₄ H ₁₂	Stilbene C ₆ H ₆ CH:CHC ₆ H ₆	180 09	124	277	1 0384	837
4709 C14H12N2	Benzalazine CoHoCH:N.NCH CoHo	208 11	93	307	0 970124	1
4710 C14H12N2	Orexine.	208.11	95		1 2004	
4711 C14H12N2	Tolazone .	208 11	187	>360	1 2904	
4712 C ₁₄ H ₁₂ N ₂ O ₂	α-Benzildioxime (C ₆ H ₆ C:NOH ₂	240 11		237 d.		
4713 C ₁₄ H ₁₂ N ₂ O ₂	β-Benzildioxime.	240 11	105	2.77		
4714 C ₁₄ H ₁₂ N ₂ O ₂	7-Benzildioxime	240 11	165			1
4715 C ₁₄ H ₁₂ N ₂ O ₂ 4716 C ₁₄ H ₁₂ N ₂ O ₄	Oxanilide (CONHC ₆ H ₅) ₂	240 11	250	320		
4717 C ₁₄ H ₁₂ N ₂ O ₄	Di-o-aminophenyl oxalate	272 11	167 5 d.			
4718 C ₁₄ H ₁₂ N ₂ O ₄	Di-m-aminophenyl oxalate Di-p-aminophenyl oxalate	272 11	180 d.			
4719 C ₁₄ H ₁₂ N ₂ O ₄	Hydrazo-o-benzoic acid	272 11	220 d.		ł	
1722 C ₁₄ H ₁₂ N ₂ S	Dehydrothio-p-toluidine	272 11	205		İ	
4723 C ₁₄ H ₁₂ O	Diphenylacetaldehyde	240 17	191	434		
4724 C ₁₄ H ₁₂ O	Phenyl benzyl ketone	196 09		19327	1 100	775
4725 C ₁₄ H ₁₂ O	Phenyl o-tolyl ketone	196 09	60	322		1
1726 C14H12O	Phenyl m-tolyl ketone	196 09	>-18	316		ŀ
4727 C ₁₄ H ₁₂ O	Phenyl p-tolyl ketone	196 09	00	316 5	1 08817 8	1
4728 C ₁₄ H ₁₂ O ₂	Benzoin C ₆ H ₆ COCH(OH)C ₆ H ₅	196 09 212 09	60	326 5		1188
4729 C ₁₄ H ₁₂ O ₂	o-Benzylbenzoic acid	212 09	133	344		
4730 C ₁₄ H ₁₂ O ₂	m-Benzylbenzoic acid	212 09	114 108			
4731 C ₁₄ H ₁₂ O ₂	p-Benzylbenzoic acid	212 09	155			
4732 C ₁₄ H ₁₂ O ₂	Diphenylacetic acid (C ₆ H ₆) ₂ CHCO ₂ H	212 09	148		1	İ
4733 C ₁₄ H ₁₂ O ₂	Benzyl benzoate C ₆ H ₅ CO ₂ CH ₂ C ₆ H ₅	212 09	18.5	324	1 11415 0	
4734 C ₁₄ H ₁₂ O ₂	p-Cresyl benzoate p-CH ₃ C ₆ H ₆ O ₂ CC ₆ H ₆	212 09	71.5	316	1	
4735 C ₁₄ H ₁₂ O ₃	Benzyl salicylate	228 09		21421 6	1	
4736 C ₁₄ H ₁₂ O ₂	m-Cresyl benzoate C ₆ H ₆ CO ₂ C ₆ H ₄ CH ₄	212 09	55		1	1
4737 C ₁₄ H ₁₂ O ₃	Trihydroxydihydroanthracene	228 09	256			
4738 C ₁₄ H ₁₂ O ₈	Benzihe acid (C ₅ H ₅) ₂ C(OH)CO ₂ H	228/09	· 150			
4739 C ₁₄ H ₁₂ O ₈	Amyrolin	228/09	124		1.35114	1312
4740 C ₁₄ H ₁₂ O ₈	Benzosol C ₆ H ₆ CO ₂ C ₆ H ₄ (OCH ₆)=0	228/09	61			
4741 C ₁₄ H ₁₂ O ₈ 4742 C ₁₄ H ₁₂ O ₈	o-Cresyl salicylate	228 09	35			1
	m-Cresyl salicylate	228 09	74			
$\begin{array}{c cccc} 4743 & C_{11}H_{12}O_{3} \\ 4744 & C_{14}H_{12}O_{4} \end{array}$	p-Cresyl salicylate	227 09	39			1
4745 C ₁₄ H ₁₂ O ₄	Cotoin	224 09	129			1
4746 C ₁₄ H ₁₂ O ₄	Guaiacyl salicylate	244 09	162			I
4747 C ₁₄ H ₁₂ O ₆	Gardenin .	244 09	65			
4748 C ₁₄ H ₁₈ NO	N-Benzoyl-o-toluidine	276.09 211.11	164 143		ļ	1000
4749 C ₁₄ H ₁₈ NO	N-Benzoyl-m-toluidine	211.11	125			1296
4750 C ₁₄ H ₁₃ NO	N-Benzoyl-p-toluidine	211 11	158	232		1299 1291
4751 C ₁₄ H ₁₈ NO	o-Benzylbenzamide	211 11	163	2.,2		1201
4752 C ₁₄ H ₁₃ NO	N-Diphenylacetamide	211.11	103			1281
4753 C ₁₄ H ₁₃ NO	Phenylacetanilide.	211.11	117			1201
4754 C ₁₄ H ₁₃ NO ₂	Benzoylanisidine	227 11	154			
4755 C ₁₄ H ₁₃ N ₄ O	m-Acetylaminoazobenzene	239 12	131			-
4756 C ₁₄ H ₁₄	Dibenzyl (C ₆ H ₅ CH ₂) ₂	182 11	52.5	284	0 942	1118
4757 C ₁₄ H ₁₄	1, 1-Diphenylethane (C ₆ H ₅) ₂ CHCH ₃	182.11		272	1 0060	763
4758 C ₁₄ H ₁₄	o, o'-Ditolyl (CH ₃ C ₆ H ₄) ₂ .	182.11	17 8	272	0 95510	ĺ
4759 C ₁₄ H ₁₄	o, m'-Ditolyl (CH ₃ C ₆ H ₄) ₂ .	182 11	Ì	287 5	1	
4760 C ₁₄ H ₁₄	o, p' -Ditolyl (CH ₃ C ₆ H ₄) ₂ .	182.11	_	281	1	
4761 C ₁₄ H ₁₄ 4762 C ₁₄ H ₁₄	m, m'-Ditolyl (CH ₄ C ₆ H ₄) ₂	182.11	7	288	0.999	
	p, p'-Ditolyl (CH ₄ C ₄ H ₄) ₂	182.11	121	295	1	
4763 C ₁₄ H ₁₄ N ₂ 4764 C ₁₄ H ₁₄ N ₂	o, o'-Azotoluene (o-CH ₂ C ₆ H ₄ N) ₂	210 12	55		1	
4765 C ₁₄ H ₁₄ N ₂	p' , p' -Azotoluene m , m' -Azotoluene $(m$ - $(H_4(G_6H_4)_2N_2)$.	210 12 210 12	71			1
4766 C ₁₄ H ₁₄ N ₂	p, p' -Azotoluene $(m-C H_2C_6H_4)_2N_2$	210.12	55			
4767 C14H14N2	o, o'-Diaminostilbene	210.12	144 170			1
4768 C14H14N2	p, p'-Diaminostilbene	210.12	231		1	1

No.	Formula	Name	Mol. wt	t. M. P.	B. P.	d	R. I.
4769	C14H14N2O	Agathin o-OHC4H4CH:N.N(CH2)C6H	226.12	74			No.
4770	C14H14N2O	o, o'-Azoxytoluene	226.12	59	1	1	
4771	C14H14N2O	m, m'-Azoxytoluene .	226 12	37	1	- 1	
4772	C14H14N2O	p, p'-Azoxytoluene	226 12	70	1	- 1	- 1
773 774	$C_{14}H_{14}N_2O_2$	o, o'-Azoanisol (o-CH3OC4H4)2N2	242 12	164 0	1	1	- 1
775	$C_{14}H_{14}N_{2}O_{2}$	p, p'-Azoxyanisol $(p$ -CH ₃ OC ₅ H ₄) ₂ N ₂ .	$\frac{1}{1}$ 258 12	117.4	1	1	-
- 1	C14H14N4 C14H14N4O4	"Cyanaline"	238 14	220	1	1	- 1
1	$C_{14}H_{14}O$	Theobronine salicylate	318 14	1	1	1	1333
- 1	$C_{14}H_{14}O$	Benzyl ether (C ₈ H ₄ CH ₂) ₂ O o-Cresyl ether (CH ₄ C ₈ H ₄) ₂ O	198 11	1	298	1 03616	
	$C_{14}H_{14}O$	m-Cresyl ether $(CH_3C_6H_4)_2()$	198.11	1	278	1.04724 2	1
3	C ₁₄ H ₁₄ O	p-Cresyl ether $(P-CH_3C_0H_4)_2()$	198.11	70	288	1	
i	C14H14O2	dl -Hydrobenzoin $[C_6H_6CH(OH)]_2$	198 11 214 11	50	> 200	1	
	C14H14O2	Guaiacyl benzyl ether	214 11	139 62	> 300		
	C14H14O2	Isohydrobenzoin	214 11	121			
	14H14O2S	Dibenzylsulfone (CoHsCH2)2SO2	246 17	150	290 s. d.	1	1
35 ($\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{O}_{2}\mathrm{S}$	p-Ditolylsulfone (CH ₃ C ₆ H ₄) ₂ SO ₂	246 17	158	405714	1	
	14H14S2	Dibenzyl disulfide (C ₈ H ₈ CH ₂) ₂ S ₂	246 24	72		1	1
	'14H148	Dibenzylsulfide (C ₆ H ₅ CH ₂) ₂ S ,	214.17	49	Ì	1 07150	1
	'i ₄ H ₁₄ Se	Dibenzyl selenide (C ₅ H ₅ CH ₂) ₂ Se	261 31	45 5		. 0.1,00	ł
	'idHiiN	Dibenzylamine (C ₆ H ₆ CH ₂) ₂ NH	197.12	-26 0	300	1 0264 6	976
,	InHaN	o-Ditolylamine (o-CH ₃ C ₅ H ₄) ₂ NH.	197.12	l	313 4		""
	h _t H _{th} N	m-Ditolylamine (m-CH ₁ C ₆ H ₄) ₂ NH	197 12		320		1
- 1	'14H16N '14H16N	p-Ditolylamine (p-CH ₃ C ₆ H ₄) ₂ NH	197 12	79	330 5		
	14II 14N	Ethyldiphenylamine (C _c H _b) ₂ NC ₂ H _b	197 - 12		297		i
	'14H14NO₂S	N-Methylbenzylamline p-Toluenesulfonemethylamilide	197 12	9 2	306		
	'14H 14N a	4-Amino-2, 4'-dimethylazobenzene	261 19	95			1
	'iaHaNa	4'-Amino-2, 3'-dimethylazobenzene	225 - 14 $225 - 14$	127			
- 1	'IaHIaN's	4-Amino-2, 3'-dimethylazobenzene	$\frac{225}{225} \frac{14}{14}$	100			1
	'14H15Na	4-Amino-3, 4'-dimethylazobenzene	225 14	80 127		l	}
0 ('14H16Na	o, o'-Diazoaminotoluene	225 14	51			
	'14H16Na	p, p'-Diazoaminotoluene	225 14	116		1	
	14H16	Hexahydrounthracene	184 12	63	290	1	1
	14H16N2	o-Hydrazotoluene (o-CH ₃ C ₆ H ₄ NH) ₂	212 14	165	200	1	
	14II 16 N 2	p-Hydrazotoluene (CH ₃ C ₆ H ₄ NH) ₂	212 14	126	d.	0.957	
	14H16N2	o-Tolidine [4, 3-H ₂ N(CH ₃)C ₆ H ₃] ₂	212 14	129		0.007	1
	ItHInNs	m-Tolidine [4, 2-H ₂ N(CH ₃)C ₆ H ₃] ₂	212 14	107		1	1
	14H16N2O 14H16N2O2	3-Ethoxybenzidine	$228 \ 14$	139			1
. 1	14H16N4	3, 3'-Dimethoxybenzidine	244 14	172			1
	14H16N4	2, 2'-Diamino-4, 4'-azotoluene 3, 3'-Diamino-2, 2'-azotoluene	240 16	203			
	,,,,,,,,,	o, o - Datamo-2, 2 -azototuene	240.16	a, 145; b, 133;			
2 C	14H16N4O9	Oscine picrate .	204 10	c, 159			Ì
	14H17N	Diethyl-α-naphthylamine	384.16 199.14	238	100 010		1
	14H17N	Diethyl-ø-naphthylamine	199.14		160 618 19219	1 005	937
5 C	14H17NO	Etheserolene.	215 14	48	1921	1 026	977
	14H17NO6	Indican	295.14	57			
		l-Mandelomtrile glucoside	295 14	147			1
		Prulaurasin	295 14	122			l
		Sambunigrin	295 14	152			
		Apocynamarin	234 14	175 d.			1
1 -		Picein .	298 14	194			1
		Methylamino-p-phenol sulfate Isanic acid	344 24	260 d.			
1 -		l-Amyl hydrocinnamate	220 15	41			
- 1 -	1	Helleboretin	220.15	2005	17228	0 9721	
		Nirvanin	236 15	> 200			
, .	1	Thymacetine	316 64	185			
	- 1	1, 2, 3, 4-Tetraethylbenzene	235 17 190.17	136	054		
1 -		1, 2, 4, 5-Tetraethylbenzene	190.17	12	254	0 887	637
		Stovain.	271.64	13 175	250	0 888	609
		Longifolic acid	222 17	110	1		

No.	Formula	Name	Mol, wt.	М. Р.	В. Р.	d	R. I.
4831	C14H31O4	Dicyclohexyl oxalate	254 17	45	19113		1.10.
4831.1	C14H21ClO4	Di-I-amyl chlorofumarate	290 65	-0	18514	1 05226	
4832	C ₁₄ H ₂₂ N	N-Dibutylamline CoHoN(CoHo)2	205 19		262 8		
4832 1	C ₁₄ H ₁₃ N	Diisobutylaniline	205 19		146*1	0 90916	1
4833	C14H14O1	Kersyl alcohol.	224 19	85	15611		
4834	C14H24O2	d-Bornyl n-butyrate.	224 19		1210	0 96614	856
4835	C ₁₄ H ₂₄ O ₂	Geranyl butyrate	224 19		15318	0 901	ļ
4836	C ₁₄ H ₂₄ O ₂	l-Menthyl crotonate	224 19		140 514	0 833	1
4837	C14H24O2 C14H24O4	l-Menthyl acetoacetate	240 19	45	14511	0 98614	
4837 1	C14H14O4	Di-l-amyl maleute	256 19		16526	0 9708**	
4838	C ₁₄ H ₂₄ NO ₂	l-Menthyl acid succinate	256 19	62	300 d.		
4839	C14H26CINO2	Carpaine Carpaine hydrochloride	239 20	121		1	1333
4840 4841	C ₁₄ H ₁₆ O ₁	l-Menthyl n-butyrate	275 67	225		1	İ
4842	C14H26O2	l-Menthyl isobutyrate	226 20		12918	0 911	
4843	C ₁₄ H ₂₆ O ₂	n-Heptylic anhydride $(C_6H_{18}CC)_2C$	226 20		11712	0 906	
4844	C ₁₄ H ₂₆ O ₃	Menthyl ethyl glycollate	242 20	17	258	0 932	332
4845	C14H26O4	Diamyl succinate	212 20		15520		İ
4845 1	C14H16O4	Di-l-amyl succinate	258 20		293	0 9521	
4846	C14H16O4	Diethyl sebacate	258 20		1291	0 95724	
4846.1	C14H26O4	Diisoamyl tartrate	258 20 290 20	1	308	0 96516	
4847	C ₁₄ H ₂₇ ClO	Myristyl chloride CH ₂ (CH ₂) ₁₂ COCl.	1	,	19516	1 00311	
4848	C ₁₄ H ₂₇ N	Myristic nitrile CH ₃ (CH ₂) ₁₃ CN	246 67 209 22	-1	16816 226100	0.000	
4849	C14H28	n-Tetradecylene	1 1	19	1	0 828	
4850	C14H28O	Myristic aldehyde CH ₃ (CH ₂) ₁₃ CHO	196 22 212 22	$-12 \\ 52 5$	246 166 ²⁴	0 775	
4851	C ₁₄ H ₂₈ O ₂	Myristic acid CH ₃ (CH ₂) ₁₃ CO ₂ H	228 22	52 5 58	250 5100	0.85840	1088
4852	C14H28O2	Ethyl laurate C ₁₁ H ₂₃ CO ₁ C ₂ H ₅	228 22	10 7	269	0.868	337
4853	C14H28O1	Hydroxymyristic acid	244 22	51	200	0.0004	007
4854	C14H28O4	Ipurolic acid	260 22	101			
4855	C ₁₄ H ₂₀ NO	Myristic amide CH ₈ (CH ₂) ₁₁ CONH ₂	227 23	103			1
4856	C14H30	n-Tetradecane CH ₈ (CH ₁) ₁₂ CH ₈	198 23	5.5	252 5	0.765	412
4857	C14H80O	n-Heptyl ether (C ₇ H ₁₄) ₂ O	214 23	0.0	260	0 8150	***
4858	C14H20O	n-Tetradecyl alcohol C ₁₃ H ₂₇ CH ₂ OH	214 23	38	16718	0 8244	i
4859	$C_{14}H_{21}N$	Tetradecyl amine C13H27CH2NH2	213 25	37	16213		
4860	C15H8O4	Anthraquinone-a-carboxylic acid	252 06	294			
4861	C15H1()4	Anthraquinone-β-carboxylic acid	252 06	288			
4862	$C_{18}H_8O_4$	Anthraquinone-y-carboxylic acid	252 06	285			
4863	CtsHa()	Alizarin-β-carboxylic acid	284 06	305			
4864	$C_{18}H_8O_7$	Pseudopurpurin.	300 06	220			
4865	$C_{1b}H_{9}N$	Thebenidine	203 08	148			
4866	C16H10	Fluoranthene	190 08	110	25160		
4867	C14H10	Succisterene	190 08	160	300		
4868	C16H10O2	Flavone .	222 08	97			1
4869	C ₁₆ H ₁₀ O ₂	Anthracene-1-carboxylic acid	222 08	260			
4870	C18H10O2	Anthracene-2-carboxylic acid	222 08	280			
4871	C18H10O2	Anthracene-9-carboxylic acid	222 08	206			
4872	C15H10O2	1-Methylanthraquinone	222 08	171			
	C ₁₈ H ₁₀ O ₂	2-Methylanthraquinone	222 08	175			
4874	C ₁₈ H ₁₀ O ₄	Chrysine	254 08	275 193			
4875	C ₁₄ H ₁₀ O ₄	Chrysophanic acid	254.08	229			
	C ₁₈ H ₁₀ O ₄ C ₁₈ H ₁₀ O ₄	α-Methylalizarin β-Methylalizarin	254 08 254 08	179		i	
	C ₁₈ H ₁₀ O ₄	Rumicin	254.08	182		!	
	C16H10O6	Aloe-emodin.	270.08	218			
	C16H10O6	Emodin.	270.08	250	1		1
	C ₁₆ H ₁₀ O ₆	Galangin	270.08	217			
	C16H10O6	Morindon	270.08	275	1	İ	
	C16H10O6	Fisetin.	286 08	360			
	C ₁₆ H ₁₀ O ₆	Kaempferol	286.08	274		1	
	C16H10O6	Luteolin	286.08	320	1	1	
	C16H10O6	Rhein	286 08	314	1	1	
	C ₁₆ H ₁₀ O ₆	Scutellarein	286.08	300 d.		1	
					I .		

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No
4889	C15H10O7	Quercetin	302.08	310			
4890	C14H10O4	Gossypetin .	318 08	230	1		
4891	C14H10O4	Quercetagetin.	318 08	318			
4892	CnHnN	2-Phenylquinoline	205 09	86	363		
4893	CisHiiN	4-Phenylquinoline	205 09	62			1
4894	CuHuN	6-Phenylquinoline	205 09	111	26077	1.195	
4895	ChHnN	8-Phenylquinoline	205 09	1	283187		
4896	Cidlino	Benzoylphenylacetonitrile	221 09	99	220		1
4897	C14H12	a-Methylanthracene	192 09	86	200	1 047***	1134
4898	C ₁₆ H ₁₂	2-Methylanthracene	192 09	207			1
4899	C14H12	9-Methylanthracene	192 09	80	0.00	1 066** 4	1136
4900	CuHuNiOi	Furfuramide	268 11	121	250 d.		1
4901	C ₁₄ H ₁₂ N ₂ O ₃	Furfurne	268 11	116	0.40		
4902	Callao	Benzylideneacetophenone .	208 09	62	348	1.07142	
4903 4904	C ₁₆ H ₁₂ O ₂	Benzovlacetophenone	224 09	81	>200		
4905	C ₁₆ H ₁₂ O ₃	p-Toluyl-o-benzoic acid	240 09	139			
4906	C ₁₄ H ₁₂ O ₄	Chrysophanol Acetylsalol o-CH ₄ CO ₂ C ₅ H ₄ CO ₂ C ₅ H ₅	240 09	204	100		
4907	C14H12O4		256 09	97	198		
4908	C ₁₆ H ₁₂ O ₄	Benzosalin	256 09	85	385		1
4909	C ₁₆ H ₁₂ O ₄	Diphenyl malonate CH ₂ (CO ₂ C ₆ H ₆) ₂	256 09	50	21013 d.		
4910	C ₁₆ H ₁₂ O ₆	Eriodictyol	288.09	267			1
4911	C ₁₆ H ₁₂ O ₆	Methylenedisalicyhe acid Salophen	288 09	238 d.			1
4912	C15H15NO4 C15H14O	1	271.11	188			1
4913	ChH _H O	Benzylacetophenone	210.11	73	360		
4914	CaHaO	Benzyl p-tolyl ketone	210 11	109	360		
4915	C ₁₈ H ₁₄ O	Dibenzyl ketone (C ₈ H ₈ CH ₂) ₂ CO p, p'-Dimethylbenzophenone	210 11	33 9	330 5		1
4916	C ₁₈ H ₁₄ O ₂	Benzyl o-toluate	210 11	92	335.1		1
4917	C16H14O2	•	226,11		315	1 1217	
4918	C16H14O8	Benzyl phenylacetate Benzyl mandelate	226 11		319	1 101	1
4919	C ₁₆ H ₁₄ O ₈	Methyl benzilate	242.11	93		1	
4920	C ₁₈ H ₁₄ O ₃	1	242 11	73	l		
4921	C ₁₈ H ₁₄ O ₄	Lapachol Hydrocotoin	242 11	140			
4922	C ₁₈ H ₁₄ O ₄	Peycedanin	258.11	95 5	1	1	
4923	ChH ₁₄ O ₄	N-Xanthoxyllin	258 11	109	1	}	
4924	C10H14O4	Guaiacyl carbonate (o-CH ₃ OC ₅ H ₄ O) ₂ CO,	258.11	132 5	1		
4925	C ₁₆ H ₁₄ O ₆	Kavann (Methysticm)	274 11	86			
4926	C16H14O4	Phloretin	274 11	137	1	1	
4927	C ₁₆ H ₁₆ NO	p-Dimethylaminobenzophenone	274.11	255 d.			1333
4928	CIoHIONO3	Malakin	225 12	90		1	
4929	CioHiaNO.	Narceinic acid	257 12	92		}	
4930	Calla	Dibenzylmethane (C6H6CH2)2CH2	337 12	184	200		
4931	C16H16N2O	1 15:	196 12	<-20	299	1 007	762
4932	C18H18N2O	symDi-o-tolylurea symDi-m-tolylurea	240 14 240 14	256			
4933	C15H16N2O	symDi-p-tolylurea	240 14	203			
4934	C16H16N2S	1, 2-Di-o-tolylthiourea	256 20	263	010		
4935	C18H18N2S	sym -Di-m-tolylthiourea	256 20	156 111 5	218	ì	1
4936	C18H16O2	Santime acid	228 12	132 5			
4936.1	C16H16O6	Pierotoxinin	292 12	206	1	1	100
4937	C18H16O9	Daphnin	340 12	200			1265
4938	C18H18O9	Esculin	340 12	205		1	
4939	CnH ₁₇ N	Ethylbenzylanilme	211 14	20.0	200	1 024154	
4940	C14H17N4	Di-o-tolylguanidine	239 16	179	298	1 034184	
4941	C ₁₈ H ₁₈	Azulene	198 14	113	168 411	0 988	1
4942	C1.H1.N2	p, p'-Diamino-o, o'-ditolylmethane	226 16	149	105 4	0 900	}
4943	C14H18O1	Santonin .	246 14	170		1 187	1282
4944	C14H14O4	Artemisin	262 14	202		1 10/	1333
4944.1	C ₁₈ H ₁₈ O ₄	Coriamyrtin	262 . 14	202			1333
4945	C ₁₄ H ₁₄ O ₇	Hyenanchin.	310 14	234 d.		1	
4946	C14H14O7	Pierotin .	310.14	254 d. 250	1		
4947	C14H19NO2	Tropacocaine	245 15	49	d.	1.043400	1147
4948	C10H10NO	Lithuric acid	357 15	204 5		1.0204	****
30.70	~ 18 18						

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R.
950	C14H20O2	Alantolactone	232 15	76	19210		-
951	C15H20O1	Perezone .	248 15	105		i	1
952	C14H20O1	Pipitzol .	248 15	141			1
953	C16H20O4	Absinthiin	264 15	68	1	Ì	
954	C14H20O4	Isosantonic acid	264 15	155	1604	1	
955	C14H20O4	dl-Santonic acid	264 15	120 d.		İ	
956	C14H20O4	d(l)-Satonic acid.	264 15	179	2605	1 251	13
957	C14H20O8	Androsin	328 15	220	1		
958	C11H21NO	β-Eucaine	247 17	91		Ì	
959	CuHnNO.	Ajacine	279 17	143	ŧ		1
960	C15H21N3O2	Physostigmine	275 19	105	ì		12
961	C18H21N3O3	Geneserine	291 19	129		ļ.	1
962	C16H22BrN3O2	Physostigmine hydrobromide	356 11			1	13
963	C18H22CINO2	B-Eucaine hydrochloride	283 64	268		1	1
964	C11H22CINO4	Ajacine hydrochloride	315 64	93			
965	C15H22ClN3O2	Physostigmine hydrochloride	311 65	,,,,	\	1	13
	C11H21O1402	Santalic acid	234 17		1959		1
966		Eugenol isoamyl ether	234 17		302 2 d.	0 976	1
967	C ₁₈ H ₂₂ O ₂	•	1		219	0 95918	Ι,
968	C15H22O2	Thymyl isovalerate	234 17	0.4	2117	0 10016	
969	C16H22O3	Alantic (Alantolic) acid	250 17	94		1 040	
970	C ₁₅ H ₂₅ Cl	Santalyl chloride	238 64		15510	1 040	١.
971	C15H24	Atractylene	204 19		1 1 1 1 4 "	0 927	
1972	C15H24	l-Cadinene .	204 19		275	0 918	•
1973	C15H24	Cannibene	204 19		259	0 89715	1
1974	C16H24	α-Caryophy llene	204 19		260	0 906	1
975	C15H24	Cedrene	201 19		264	0 929	
1976	C15H24	Clovene	204 19		263	0 930	1 1
977	C15H24	Guajene	204 19		1249	0 908	
1978	C15H24	Patschoulene	204 19		256	0 930	1
1979	C15H24	α-Santalene	204 19	1	252	0 91315	1 :
1980	CuH24	B-Santalene	204 19		126^{7}	0 894	- -
1981	C15H24	y-Santalene .	204 19		12010	0.936	1
1982	C15H24	α-Selinene	204.19		13516	0 914	1
1983	C16H24	Zingiberene	204.19		270	0.87216	١.
1984	C16H24N2O	d(l)-Lupanine	218 20	44		1	ŀ
		Oxysparteine	248 20	84	20912 5		ł
1985	C ₁₈ H ₂₄ N ₂ O	Betulol	220 19		15813	0 97816	
1986	C15H24O	i i	220 19		300	0.97915	1
1987	C16H24O	α-Santalol	220 19	i	309	0 97315	
1988	C16H24O	β-Santalol	317 11	1	16310	00	1
1989	C15H25BrO2	Bornyl bromoisovalerate	t .	212	1000		-
1990	C18H28NO7	Senecifolidine	331 20	212	11910	0 883	
1991	C16H26	Elemone	206 20		1	0.870	1
1992	C15H26	Ferulene	206 20	1	1267		1
1993	C15H26N2	Isosparteine	234 22	Į.	17916 6	1 02817	
1994	C15H26N2	Sparteine	234 22	1	325 2	1 023	
1995	C15H26N2O	Retamine	250 22	162	Dogs		1
1996	C15H26O	Atractylol	222 20	59	292	1.511	-
1997	C16H26O	Cedrol	222 20	87	294		-
1998	C16H26O	α-Elemol	222 20	46	14310	0 941213	- 1
1999	C15H26O	β-Elemol	222 20		14410	0.94218	
5000	C10H26O	Eudesmol .	222 20	78	15610	0.988	
5001	C15H26O	Farnesol	222 20	İ	1200 2	0 895	1
5002	C ₁₆ H ₂₆ O	Guajol	222 20	93	289 s. d.		1
5003	C ₁₆ H ₂₆ O	Nerolidol	222 20		277	0 880	
5004	C16H26O	Zingiberol	222 20		15714 6		
		Bornyl isovalerate	238 20		260	0 949	1
5005	C ₁₅ H ₂₆ O ₂		238.20		138^{12}	0 95715	1
5006	C16H26O2	Isobornyl isovalerate	238.20	1	13011	0.95618	1
5007	C16H26O2	d-Bornyl n-valerate	238 20	}	14110	1	
5008	C15H26O2	I-Menthyl angelate.	254.20	1	16912	0.977	
5009	C16H26O2	l-Menthyl levulinate	302.20	-75	310	1.027	
5010	C16H26O6	Tributyrin		< -75	310	1.02	;
5011	C15H27ClN2	Sparteine hydrochloride	270 68	1	1	1	;
5012	C15H27IN2	Sparteine hydroiodide	. 362.16	1	1	1	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5013	C14H24O2	I-Menthyl isovalerate	240 22		12711	0.90716	427
5014	('14H24()2	Cimicic acid	240 22	44 2		1	1
5 015	C14H28O2	l-Menthyl n-valerate	240 22	1	14116	0 907	1
5016	C15H30O2	Pentadecylic acid	242 23	54	257100		1
5017	C14H20O2	Methyl myristate	242 23	19	295 3		1
5018	C15H22	n-Pentadecane CH;(CH ₁) ₁₃ CH ₁	212 25	10	270 5	0 772	1
50 19	C18H22O	n-Pentadecyl alcohol CH4(CH2)14OH	228 25	46			1
5020	C14H22N	Pentadecylamine :	227 26	36 5	301	0.70726	-
5021	C15H33N	Triisoamylamine	227 26	000	237	0 78525	1
5022	C ₁₆ H ₀ O ₆	Anthraquinone-1, 3-dicarboxylic acid	296 06	330			1
5023	('16HaO6	Anthraquinone-1, 4-dicarboxylic acid	296 06	300			
5024	C10HuO0	Anthraquinone-2, 3-dicarboxylic acid	296 06	340		į	1
5025	C16H10	Diphenyldiacetylene	202 08	88	> 260	}	1
5026	C16H10	Pyrene .	202 08	150	>360		1
5027	C16H10N2	α; β-Naphthophenazine	230 09	142 5 392 d.	>360	1 35	
5028	C16H10N2O2	Indigotin	262 09	1		1 340	1011
5028 1	C14H10()3	Diphenylmalere anhydride	250 08 266 08	155 330		1 340	1211
5029	C ₁₆ H ₁₀ O ₄	Anthracene-1, 3-dicarboxylic acid	266 08	320		1	
5030 5031	C16H10O4	Anthracene-1, 1-dicarboxylic acid	266 08	345			
5032	C ₁₆ H ₁₀ O ₄	Anthracene-2, 3-dicarboxylic acid	298 08	275			
5033	C19H10O9	Trifolitin Amaron	217 09	240			
5034	C ₁₆ H ₁₁ N C ₁₆ H ₁₁ N	Aminopyrene	217 09	116			
5035	C16H11NO2	Atophan (2-Phenylquinoline-4-carboxylic	211 ().)	110			
0000	016111111172	acid	249.09	209			
5036	C16H11N3O2	Indigoxime	277 11	205			
5037	C16H112	α-Phenylnaphthalene	204 09	200	325		
5038	CteH12	β-Phenylnaphthalene	204 09	102.5	345		
5039	C16H12	Pseudophenanthrene	204 09	115		1	
5040	C14H12CINO2	Chloroxyl (Phenyleinchoninic acid hydro-	201 00	•••			
		chloride)	285 56	223			1
5041	C10H12N2O4	Isatid	296 11	237 5			
5042	C ₁₀ H ₁₂ N ₄ O	Azoxytolunitrile	276 12	182			
5043	C16H12O	Phenyl α-naphthyl ether	220 09	55	340	İ	
5044	CisHinO	Phenyl β-naphthyl ether	220 09	45; 93	335 8	1	
5045	C16H12O2S	Atronylenesulfonic acid	284 16	258			
5046	C16H12O4	α-Ethylalizarin	268 09	189			
5047	C16H12O4	Pratol.	268 09	253		1	
5048	C16H12O8	Physcion (Physcic acid)	284 09	207			
5049	C16H12O6	Chrysoeriol	300 09	>337			
5050	C16H12Oe	Emodine methyl ether .	300 09	195			İ
5051	C16H12O6	Hematein	300 09	250 d.	į.		
5052	C16H12O8	Laccainic acid	332 09		180 d.	1	
5053	CioHioN	Flavoline	219 11	65	375		1
5054	C16H13N	N-Phenyl-α-naphthylamine	219 11	62	335258		
5055	C ₁₆ H ₁₂ N	N-Phenyl-s-naphthylamine	219 11	108	399 5		ł
5056	C ₁₆ H ₁₃ NO ₇	Papaveric acid	331 11	233 d.			
5057	C ₁₄ H ₁₃ N ₁	Galegine	233 12	65			
5058 5050	C ₁₆ H ₁₅ N ₃	Hydrazoindole	247 12	140	200	1	
5059	C16H14	Atronene	206 11		326		1
5060 5061	C ₁₆ H ₁₄	2, 3-Dimethylanthracene	206 11	246			
5062	C ₁₆ H ₁₄ C ₁₆ H ₁₄	2, 4-Dimethylanthracene 2, 6-Dimethylanthracene	206.11	$\frac{71}{231}$	1		
5062 1	C16H14	Distyrene C ₆ H ₆ CH:CHCH:CHC ₆ H ₆ .	206 11 206 11	124		i	
5063	C16H14	9-Ethylanthracene	206 11	59		1 04199 2	1130
5064	C16H14Cl2N2O2	3, 3'-Dichlorodiacetylbenzidine	337 04	302		1 041	1130
5 0 65	CielliaNa	α-Flavamline	234 12	97		1	
5066	C16H14N2	Indolin	234 12	01	245		
5066 1	CiolliaNa	1, 5-Diphenyl-3-methylpyrazole	234 12	63	1 2.0		1199
5067	C ₁₆ H ₁₄ O	Dypnone .	222 11	50	22522	1	1100
5067 1	C ₁₆ H ₁₄ O	Benzylidenc-p-tolyl ketone	222 11	77		i	1289
5068	C16H14O2	Benzyl cinnamate	238 11	34	24416	1	
5069	C10II1002	Diphenacyl C ₈ H ₈ COCH ₂ CH ₂ COC ₆ H ₈	238.11	145	1	į.	i

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5070	C16H16O3	Guaiacyl cinnamate	254 11	130			
5071	C10H14O2	Phenylacetic anhydride	254 11	117 5			
5072	C16H14O1	o-Toluic anhydride (o-CH ₃ C ₆ H ₄ CO) ₂ O	254 11	39	325		
5073	C16H16O4	Dibenzyl oxalate (CO2CH2C6H6)2	270 11	81	23514	į	1
5074	C16H14O4	Diphenyl succinate (CH2CO2C6H3)2	270 11	121	330		i
5075	C16H14O6	Brasilin	286 11	250			1
5076	C16H14O4	Sakuranetin	286 11	150			1
5077	C16H14O6	Diphenyl tartrate (CHOHCO ₂ C ₆ H ₄) ₂	302 11	102			
5078	C16H14O6	Hematoxylın	302 11	140			1333
5079	C16H14O6	Hesperetin	302 11	226		1	
5080	C16H14O6	Homoeriodyctiol	302 11	223			1
5081	C16H16NO2	Anisaldazine	254 12	169	180	1 031188	
5082	C16H16N2O2	Diacetylbenzidine (p-CH,CONHC,H,)2	268 14	331			1
5082 1	C16H16N2O6	o-Aminophenyl tartrate	332 14	211 d.		ł	1
5082 2		m-Aninophenyl tartrate	332 14	175 d.]
5082 3	C16H16N2O6	p-Aminophenyl tartrate	332 11	220 d.			1
5082 4	1	Diacetylhydrazobenzene	268 15	105	1	ł	129
5083	C16H16N2S	Dehydrothioxylidine	268 20		197		1
5084	C16H16N4O10	Damascenine picrate	424 16	159		1	
	C16H16O2	p-Dimethylbenzoin	240 12	89			i
5085	C16H16O2	Anisilic acid	288 12	164			- 1
5086	C16H16O1	Ethyl benzilate	256 12	34	20121		
5087		Amygdophenine	271 14	141			1
5088	C ₁₆ H ₁₇ NO ₃	Lycorine	287 14	235 d.	ł		
5089	C16H17NO4	Phenetidine salicylacetate	287 14	182			- 1
5090	C16H17NO4	Lycorine hydrochloride	323 61	208		1	- 1
5091	C16H18CINO		238 16	46 5	1		
5092	C16H18N2	Azo-o-ethylbenzene	238 16	63	>340		
5093	C16H18N2	Azo-p-ethylbenzene	238 16	111			1
5094	C16H18N2	3, 3'-Azo-o-xylene	238 16	141			
5095	C16H18N2	4, 4'-Azo-o-xylene	238 16	129	į		- 1
5096	C16H18N2	4, 4'-Azo-m-xylene	238 16	47			
5097	C16H18N2	4, 5'-Azo-m-xylene		137			
5098	C16H18N2	5, 5'-Azo-m-xylene	238 16	119	1		
5099	C16H18N2	2, 2'-Azo-p-xylene	238 16	163 5	21220		1
5100	C16H18N2	Diphenylpiperazine	238.16	130	212		1
5101	C16H18N2O	Paricine.	254.16	1	240		
5102	C16H18N2O2	o-Azophenetol (C ₂ H ₆ OC ₆ H ₄ N:) ₂	270 16	131	2117		
5103	C16H18N2O2	p-Azophenetol (C2H4OC4H4N:)2	270 16	160 2		1	
5104	C16H18N2O3	3, 3'-Azoxy-4-methoxytoluene	286 16	149			
5105	C16H18N2O1	p-Azoxyphenetol	286 16	136 9	1		-
5106	$(C_{10}H_{18}N_2O_3)_x$	Bilirubin	[286 16] _x	192 5			1
5107	C16H18N2O3	Carpiline	286 16	185			
5108	C16H18N2O1	Hematoporphyrin	286 16	<100 d.	1		- 1
5109	C16H18N2O8	Pilosine .	286 16	187	000 0	1 011	
5110	C16H18O	Thymyl phenyl ether	226 14		296-8	1 011	- 1
5111	C16H18O2S	Di-m-xylylsulfone	274 20	121			
5112	C ₁₆ H ₁₈ O ₇	Barbaloin .	322.14	148			-
5113	C16H18O7	Benzoylecgonine	289.15	195			- 1
5114	C16H20N2	3-Hydrazo-o-xylene	240.17	141	İ		
5115		4-Hydrazo-o-xylene	240 17	107	ı		
	C ₁₆ H ₂₀ N ₂	4-Hydrazo-m-xylene	240.17	122			
5116	C ₁₆ H ₂₀ N ₂	5-Hydrazo-m-xylene	240 17	125	ŀ	İ	1
5117	C ₁₆ H ₂₀ N ₂	2-Hydrazo-p-xylene.	240 17	145	1		ı
5118	C ₁₆ H ₂₀ N ₂	o-Hydrazophenetol (o-C ₂ H ₄ OC ₆ H ₄ NH) ₂	272 17	89		1	- 1
5119	C ₁₆ H ₂₀ N ₂ O ₂	m-Tetramethyldiaminoazobenzene	268.19	118		1	ļ
5123	C16 II 20 N 4	Phenyl acid camphorate	276 15	100	i		
5124	C16H20O4		356.15	191	1		l
5125	C16H20O9	Gentiopicrin . p-(Tetramethyldiamino)diphenylamine		119	1	Į.	- 1
5126	C16H21N2		275 17	204			1
5127	C16H21NO	Camphoranilic acid	275.17	97.5			13
5128	C16H21NO3	Homoatropine.	275 17	114			
5129	C16H21NO2	Noratropine.	275 17	140 5	1		-
5130	C14H21NO	Norhyoscyamine		212 d.		1	13
5131	C16H22BrNO3	Homoatropine hydrobromide.	. 356.09	, 212 u.	•	•	

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5132	C14H22CINO2	Homoatropine hydrochloride	311.64	217			1333
5133	C14H22N4	m-Hydrazodimethylaniline	270 20	100			
5134	C14H22N4O4S	Caffeine sulfate	486 30				1333
5135	C14H22O4	Di-n-butyl phthalate	278 17		340	1	
5135 1	C14H22O4	Methyl santoate	278 17		86	1.167	1321
5136	C14H22O4	Bilime acid	310 17	190	1		-
5137	C14H22O4	Coniferin	342 17	185			
5138	C16H22O11	d-Glucose pentacetate	390 17	113			- 1
8139	C16H22NO	Bakankosin	357 19	157		1	1
5140	C16 [[24O2	Methyl santalate	248 19		16410	1 002	1
5141	C16H24	Pentaethylbenzene	218 20	<-20	277	0.896	655
5142	C14H24O	Patchoult alcohol	234 20	56	271 d.	0 9944	1
5142 1	C16H24O	Camol	234 20	91	17014		1176
5143 5143 1	C16H26O2	Menthyl I-sorbinate	250 20		17314	1 000411	
5144	C II CIN O	Disobutyl d-diacetyl tartrate	346 20	100	1573.5	1 086417	
5145	C16H27ClN2O2 C16H27N4O6	Alypin hydrochloride Alypin mtrate.	314 68 341 23	169 152			
5146	C16H29N2	Genisteine	248 23	60 5	17822		
5147	C16H25()2	Hydrocarpic acid	252 22	60	170		
5148	C14H24O2	Palmitolic acid	252 22	47	24015		
5149	C14H21O4	Palmitoxylic acid	284 22	67	240.5	-	
5150	C14H10O2	Gaidic acid	254 22	39			
5151	C16H20O2	Hypogaete acid .	254 23	33	23615	1	
5152	C14 II 20 O2	I-Menthyl n-capronate.	254 23	0.5	15316	0 903	
5153	C16H20O2	n -Caprylic anhydride $(C_8H_{15}CO)_2O_c$	270 23	-1	285	0 900	
5154	C16H10O1	7-Ketopalmitic acid .	270 23	7.4	200		
5155	C ₁₄ H ₂₁ N	Palmutonitrile CH ₃ (CH ₂) ₁₃ CH ₂ CN	237 25	29	251.5^{100}	0 8224	
5156	C16H12	α-Hexadecylene CH ₂ :CH(CH ₂) ₁₃ CH,	224 25	4	274	0.789	388
5157	C16H22N2O6S	Pelletierine sulfate	380 33	133	2	0.103	900
5158	C16H12()	Palmitic aldehyde C ₁₅ H ₃₁ CHO	240 25	58 5	20229		1
5159	C16H22O2	Palmitic acid C16H31CO2H	256 25	64	21515	0 85342	1113
5160	C16H12O2	Ethyl myristate C13H27CO2C2H5	256 25	10 5	295	0 0001	1
5161	C16H32O3	Jalapinolic acid	272 25	68			
5162	C16H22O2	Jumperic acid	272 25	95		1	l
5163	('16H32()3	Lanopalmic acid	272 25	88			
5164	CiaHiiI	n-Cetyl iodide C ₁₅ H ₃₁ CH ₂ I	$352 \ 19$	22	212 515	1 123	535
5165	C ₁₀ H _H NO	Palmitic amide C ₁₅ H ₃₄ CONH ₂	255 26	106	236^{12}		
	C16H24	7, 8-Dimethyltetradecane	$226 \ 26$		267 5	0.79214	
5167	C16H34	n-Hexadecane	226 26	20	287 5	0 775	
5168	C ₁₆ H ₄₄ O	Cetyl alcohol C ₁₅ H ₃₁ CH ₂ OH	242 26	49.3	344	0 79848.9	1108
	C ₁₆ H ₁₄ O	n-Octyl ether (C ₃ H ₁₇) ₂ O	242 26		291 8	0.820	1
	C ₁₇ H ₁₀ O	Benzanthrone	230 08	170			1
	C ₁₇ H ₁₁ N	a-Anthraquinoline	229 09	170	446	1	
1	C ₁₇ H ₁₂ O C ₁₇ H ₁₂ O	Phenyl & mark had before	232 09	75 5	385		
1	C ₁₇ H ₁₂ O ₂	Phenyl \$\beta\$-naphthyl ketone Chrysemc acid	232 09	82		1	
	$C_{17}H_{12}O_{2}$	α-Naphthyl benzoate	218 09	186 5			1
	C ₁₇ H ₁₂ O ₂	β-Naphthyl benzoate	248 09	56		1	
	C ₁₇ H ₁₂ O ₃	α-Naphthyl salicylate	248 09 264 09	110			
	C ₁₇ H ₁₈ O ₃	β-Naphthyl salicylate	264 09	83			1
	C ₁₇ H ₁₂ O ₅	Alpinin	296 09	95 174			
	C ₁₇ H ₁₂ O ₆	Pratonsol	296 09	225			1
	C ₁₇ H ₁₁ NO ₂	6-Methyl-2-phenylquinoline-4-carboxylic	250 05	22.0			
		acid	263 11	228		1	
5183	$C_{17}H_{14}$	α-Benzylnaphthalene	218 11	59	350	1 1650	
	C17H14	β-Benzylnaphthalene	218 11	35 5	350	1 176°	1
	C ₁₇ H ₁₄ O	Dibenzylideneacetone	234 11	112	550	1 1,0	
	C17H14O2	Atronic acid .	250 11	164			
	C17H14O2	Isatronic acid	250 11	157		I	
	C17H14O4	Nepalin	282.11	136		1	
	C17H16N6O9	Tryptophane picrate	433 . 16	196 s. d.			
	$C_{17}H_{16}$	1, 2, 4-Trimethylanthracene	220.12	243			1
5191	C17H10	1, 3, 6-Trimethylanthracene	220.12	222		1	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
192	C17H16	1, 4, 6-Trimethylanthracene	220 12	227			+
193	C17H14O2	Eugenol benzoate	268 12	70	360		
19 4	C17H16O1	Isoeugenol benzoate	268 12	104			
195	C17H16O4	Dibenzyl malonate.	284-12		234 . 514 d.		1
196	C17H17NO2	Apomorphine	267 14	170 d.		1	
97	C ₁₇ H ₁₈ ClNO ₂	Apomorphine hydrochloride	303-61	210			133
98	C17H18N2O2	Antipyrine resorcinate	298-16	115			
199	C17H19O	Dibenzylacetone CO(CH4CH4C6H4)2	238 14		22418		1
200	C17H18O3	Eugenol benzyl ether	254 14	30	235 d.		
201	C17H18O2	Isoeugenol benzyl ether	254 14	59			1
202	C17H11NO1	Morphine	285-15	તે.	193 Vac	1 317	127
203	C17H19NO3	α-Isomorphine	285/15	247			
04	C17H19NO	Piperine	285 15	129/5			
05	C ₁₇ H ₂₀ BrNO ₂	Morphine hydrobromide	366 08				133
06	C ₁₇ H ₂₀ ClNO ₂	Morphine hydrochloride	321 62	250 d			134
207	C ₁₇ H ₂₀ N ₂ ()	Tetramethyldiaminobenzophenone	268 17	174	>360 n. d		
808	C ₁₇ H ₂₀ N ₂ O ₂	Nicotine salicylate	300 17	117 5			133
09	C17H20N2O4	l-Arabinose diphenylhydrazone 3, 3-Tetramethyldiaminothiobenzophe-	316 17	218	1		
11	C ₁₇ H ₂₀ N ₂ S	none	284 24	202			
12	C17H20N4O3	t-Arabinosazone	340 19	166	200 d.		
13	C ₁₇ H ₂₀ N ₄ O ₈	d-Xylosephenylosazone	328 19	164	167 d.		
13.1	C17H20O2	Di-(p-dianisyl)dimethylmethane	256 15	60 5		1 150	12
14	C17H20O7	Tutin	336 15	208			1
15	C17H20O10	Patellaric acid	384 15	100		1	
16	C17H21NO2	Apoatropine	271 17	62	1	1	1
17	C17H21NO2	Dihydromorphine	287 17	157		1	- 1
18	C17H21NO4	Atroscine .	303 17	50			-
19	C17H21NO4	α-Cocaine	303 17	88		1	
20	C17H21NO4	dl-Cocaine	303 17	80		1	12
21	C ₁₇ H ₂₁ NO ₄	d(l)-Cocaine	303,17	98 55			13
22	C ₁₇ H ₂₁ NO ₄	Hyoscine	303 . 17 303 . 17	81 5		1 10300 5	11
23 24	C ₁₇ H ₂₁ NO ₄ C ₁₇ H ₂₁ NO ₄	dl-Pseudococnine d-Pseudococnine	303 17	41		1.10209.6	11
25	C ₁₇ H ₂₁ N ₄ C ₁₇ H ₂₁ N ₄	Auramine	267 19	136		1	
26	C ₁₇ H ₂₂ BrNO ₄	Hyoseine hydrobromide	384 09	194	ì		13
27	C ₁₇ H ₂₂ ClNO ₂	Apoatropine hydrochloride	307 64	239			13
28	C17H22CINO4	Cocaine hydrochloride	339 64	187	ŀ		12
29	C17H22CINO4	Hyoscine hydrochloride	339 64		1	1	13
30	C17H22N2	p-(Tetramethyldiamino)-diphenyl-			İ		-
		methane	254 19	91		1	1
31	C17H22N2O	p-(Tetramethyldiamino)-diphenyl carbi-					1
		nol [p-(CH ₈) ₂ NC ₆ H ₄] ₂ CHOH	270 19	96			1
32	C ₁₇ H ₂₂ O ₃	Podocarpic acid	274 17	188			- 1
33	C17H22O4	Guaiacyl acid camphorate	306 17 370 17	112 192		ļ	-
34	C ₁₇ H ₂₂ O ₉	Syringin	289 19	115.5			13
35 36	C ₁₇ H ₂₈ NO ₈	Atropined-Hyoscyamine.	289 19	106			``
37	C ₁₇ H ₂₂ NO ₂ C ₁₇ H ₂₂ NO ₃	Pseudoatropine	289 19	120			
38	C ₁₇ H ₂₄ BrNO ₃	Atropine hydrobromide	370 11	162		1	13
239	C ₁₇ H ₂₄ BrNO ₂	Hyoscyamine hydrobromide	370 11	152		İ	13
40	C17H24CINO	Atropine hydrochloride	325 65	165	İ	1	13
41	C ₁₇ H ₂₄ ClNO ₃	Hyoseyamine hydrochloride	325 65		1		13
42	C17H24N2O4S	Sinapine thiocyanate	368 27	176	1		
43	C17H24N2O6	Atropine nitrate	352 20		-		13
44	C17H24O2	Menthyl benzoate	260.19	54 5	288	0 808	1.
244 . 1	C17H24O4	Ethyl santoate	292 19	89		1.148	1
45	C17H24O10	Verbenalin	388.19	181.6		1	
246	C ₁₇ H ₂₅ NO ₂	Euphthalmine	291 20	113			
247	C ₁₇ H ₂₄ O ₄ C ₁₇ H ₂₄ ClNO ₂	Scillitin Euphthalmine hydrochloride	325 19 327.67	154 183		1	
248							

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I No.
5250	C17H29O	Phellyl alcohol	248 22	100			T
8251	C17H20NO2	Ajaconine	279 23	163		1	l
8252	C17H10O1	Jalapie acid	378 23	120		1	į
5253	C17H12O2	l-Menthyl heptylate	268 25		16515	0 901	
5254	C17H24	8-Heptadecene C ₇ H ₁₅ CH.CHC ₈ H ₁₇	238 26	90	16093	0.79810	
5255	C ₁₇ H ₄₄ O	Margaric aldehyde C ₁₆ H ₂₂ CHO	251 26	36	20426	1	1
5256 5257	C ₁₇ H ₁₄ O ₂	Dature acid	270 26 270 26	60 59 9	227100	0.85260	
5257 5258	C ₁₇ H ₃₄ O ₂ C ₁₇ H ₃₄ O ₂	Margaric acid = C ₁₅ H ₁₁ CO ₂ H = . Methyl palmitate = C ₁₅ H ₃₁ CO ₂ CH ₃	270 26	29 5	19616	0.853**	1110
525 9	C ₁₇ H ₄₄ NO ₂	Sphingosine Castral Ozsaria	285 28	244	250 d.		1119
526 0	C ₁₇ H ₁₆	n-Heptadecane CH ₃ (CH ₂) ₁₄ CH ₃	240 28	22 5	303	0 778	359
5261	C ₁₇ H ₁₈ O	Heptadecane-9-ol C ₈ H ₁₇ CH(OH)C ₈ H ₁₇	256 28	61	000	"	309
5262	C ₁₇ H ₁₇ N	Heptadecylamine C ₁₇ H ₃₈ NH ₂	255 29	49	340		
5263	C18H12	Benzanthrene	228 09	84	1		
5264	C10H12	Chrysene	228 09	251	448		
5265	C18H12	Triphenylene	228 09	198 5			
5266	C18H12	Truxene	$228 \ 09$	>360			
5267	C14H12N2	2, 3'-Diquinolyl	256 11	176			1
5268	C14H12N2	2, 7'-Diquinolyl	256 11	193		1	
526 9	C18H12N2	6, 6'-Diquinoly1	256 11	178			
527 0	C11H12N2	8, 8'-Diquinolyl	256 11	205		ĺ	
527 I	C14H12O2	o-(α-Naphthoyl) benzoic acid	276 09	173 5			
5272	C18H12O4	Calycin	308 09	240			
5273	CiaHiaN	Ammochrysene	243 11	203			
5274	C14H14	p-Diphenylbenzene C ₆ H ₄ (C ₆ H ₅) ₂	230 11	205	427		
5275	C ₁₅ H ₁₄ O ₃	Cinnamic anhydride (C ₆ H ₆ CH:CHCO) ₂ O	278 11	135			1
5276	C ₁₃ H ₁₄ O ₄	Epicarin	294 11	195			
5277	C ₁₅ H ₁₄ O ₇	Xanthoeridol	342 11	258			
5278	C ₁₈ H ₁₄ O ₄	Diaspirin (Succinyldisalicylic acid)	358 11	178			
5279 5280	C ₁₈ H ₁₈ As C ₁₈ H ₁₈ Bi	Triphenylarsine (C ₆ H ₅) ₃ As	306 08	60			
5281	CiaHiaN	Triphenyl bismuthine $(C_aH_b)_aB_1$ Triphenylamine $(C_bH_b)_aN_+$	410 16	78	005	1 58520	
5282	C ₁₈ H ₁₈ O ₃ P	Triphenylamine $(C_{\delta}H_{\delta})_3N$. Triphenyl phosphite $(C_{\delta}H_{\delta}O)_3P$	245 12	126 5	365	0 7740	1
5283	C14H16O4P	Triphenyl phosphate (C ₆ H ₆ O) ₃ PO	310 14 326 14	10.0	22011	1 18418	
5284	C ₁₈ H ₁₆ P	Triphenyl phosphine (C ₅ H ₅) ₃ P	262 14	$\begin{array}{c} 49 \ 9 \\ 79 \end{array}$	24511	1 104	
52 85	CiaHasb	Triphenylstibine (C ₆ H ₅) ₃ Sb	352 89	48	>360 >360	1 194 1 500 ¹¹	1
5286	C18H18NO2	Aporheine	278 13	89	290 d.	1 300-	
5287	CullisN2	Diphenyl-m-phenylenediamine	260 14	95	250 4.		
5288	C1sH16N2	Triphenylhydrazine (C6H5)2NNHC6H5	260 14	142	1	0 86970	
5289	C18H16N2O2	Analgèn	292 14	210		10	
5290	C18H16N2O8	5, 5'-Dibenzylbarbituric acid	308 14	222			
5291	C18H16N2O6S	Chinosol	388 20	177 5			
5292	C18H18O8	Cinnamyl cinnamate	264 12	44	1	1 0851 5	
5293	C1sH1dO4	α-lsatropic acid	296 12	237			
5294	C18H16O4	β-Isatropic acid	296 12	206			
5295	C ₁₈ H ₁₈ O ₄	α-Truxillie acid	296 12	272			1
5296	C ₁₀ H ₁₆ O ₄	Isotruxillie acid	296.12	206	1		1
5297	C ₁₆ H ₁₆ O ₄	7-Truxillic acid	296 12	228	1		1
5298 5299	C ₁₈ H ₁₈ O ₄ C ₁₈ H ₁₈ O ₄	δ-Truxille acid ←Truxillie acid	296.12	174	İ	Į	
5300	C ₁₈ H ₁₆ O ₄	n-Truxillic acid	296 12	192			1
5301	C ₁₈ H ₁₀ O ₄	Dibenzyl fumarate	296 12	260	0111		
5302	C14H16O4	Varadin	296 12	59 5	2115		
5303	C ₁₈ H ₁₈ O ₇	dl-Usnic acid	296 12 344 12	158 193			1
5304	C18H16O7	d(l)-Usine acid	344.12	203			1295
6 305	C18H16O14	Igasurie acid (Chlorogeme acid)	456 12	203			1290
5306	C18H18	Retene	234 14	98 5	394	1 1316	
5307	C18H18	1, 3, 5, 7-Tetramethylanthracene	234 14	280 d.	001	1 1,,	
5308	C18H18N2O4	Antipyrine salicylate	326 16	92			
5308 1	C18H18N8	Vesuvin	346 20	143 5			
5310	C15H18O4	Dibenzyl succinate	298 14	45	23814		
5312	C18H19NO	Berbamine	297 15	200			
5313	C13H19N2O2	Dimazon (Diacetylaminoazotoluene)	309 17	, 75			
5314	C19H20BrNO1	Apomorphine methobromide	362.08	180	1	1 .	1

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I.
5315	C18H20N2O2	Cinchotenine	312.17	198	1	-	No.
5316	C ₁₄ H ₂₁ NO ₂	Bebeerine	299 17	214			1
5317	C ₁₈ H ₂₁ NO ₂	Coderne	299 17	155	179	1 31514	1283,
5318	C18H21NO2	Isobebeerine	299 17	297			1286
5319	C18H11NO3	Isocodeme	299 17	144	d		1288
5320	C ₁₈ H ₂₁ NO ₃	Pseudocodeme	299 17	181	, ,	1 290180	1264
5321	C18H22BrNO2	Codeine hydrobromide	380 09			1.2.0	1333
5322	C ₁₄ H ₂₂ BrNO ₃	Morphine methylbromide	380 09	265 d			
5323	C ₁₁ H ₁₁ ClNO ₁	Bebeerine hydrochloride	335 64	260	1		1
5324	C ₁₄ H ₁₂ ClNO ₃	Codeine hydrochloride	335 64	264	1		1338
5325	C11H21N2O2	Holocaine	298 19	117			
5325 1	C ₁₅ H ₂₂ N ₂ O ₅	Pilocarpine salicylate	346 19	120			1833
5326	C18H22N4O4	Galactosazone	358 20	201	202 d.		
5327	C11H22N4O4	d-Glucosazone	358 20	208 d			
5328	C18H22N4O4	l-Glucosazone	358 20	205 d		1	1
5329	C14H22N4O4	Gulososazone	358 20	168	180 d.		
5330	C ₁₈ H ₁₉ O ₁₀	Murrayin	398 17	170			
5331	C ₁₈ H ₂₈ ClN ₂ O ₂	Holocaine hydrochloride	334-65	189			
5332	C ₁₆ H ₂₁ NO ₆	Cocaine formate	349 19	42	1	1	
5333	C18H24NO7P	Codeine phosphate	397 22	235			1333
5334	C15H26O2	Menthyl phenylacetate	274 20		205 524	1 002	1
5335	C18H26O4	Diamyl phthalate	306-20		344	1	
5336	C18H27NO3	Capsaicin	305 22	65	1	1	1226
5337	C ₁₈ H ₂₇ NO ₈	Senecifoline	385 22	194		1	
5338	C ₁₈ H ₂₈ ClNO ₈	Senecifoline hydrochloride	421 68	260	1		ļ
5339	C18H28O4	Embellic acid .	308 22	142	1	1	
5340	C ₁₈ H ₁₀	Hexaethylbenzene C ₆ (C ₂ H _b) ₆	246 23	129	208	0.83140.4	1159
5341	C18H20()	Sycoceryl alcohol	262 23	90			
5342	C ₁₈ H ₂₀ O ₂	Linolenie acid	278 23		23217	0 914	-
5343	C15H21ClN2O6	dl-Eegonine hydrochloride	406 71	247	1		1
5343.1	C ₁₈ H ₃₂	Fichtelite	248 25	46		1 010	1247
5344	C ₁₈ H ₁₂ O ₂	Chaulmoogric acid	280 25	69	24820	1	
5345	('16H22()2	α-Eleostearic acid	280 25	49	23512		
5346 5347	C ₁₈ H ₃₂ O ₂	Linoleic acid	280 25	< -18	23016	0 903	
5348	C ₁₈ H ₂₂ () ₂ C ₁₈ H ₂₂ () ₂	Stearolic acid C ₈ H ₁₇ C;C(CH ₂) ₇ CO ₂ H Tariric acid.	280 25	48	260	ł	
5349	C ₁₈ H ₁₂ O ₄	Stearoxylic acid	280 25	50 5	1		l
5350	C18H12O4 C18H22O16	Raffinose	312 25 504 25	86	190.4	1 405	
5351	C18H12O16	Procellose	504 25	119 210 ·	130 d.	1 465	
5352	C18H132O16 C18H33N2O12	Piperazine quinate (Sidonal)	469 27	171		1	
5353	C18H84	Hexadecylacetylene C ₁₆ H ₃₃ C;CH	250 26	26	18015	0 79820	
5354	C18H14	1-Methyl-2-pentadecylacetylene	250 26	30	18414	0 802	
5355	C18H24O	Chaulmoogryl alcohol	266 26	36	104	0 002	
5356	C18H34O	Oleic aldehyde	266 26	.,,,	1694	0.85115	456
5357	C18H24O2	Elaidic acid	282 26	51 5	288100	0.8517#4	100
5358	C18H14O2	Gynocardic acid	282 26	67 5	1 2	0 3,01	1
5359	C18H24O2	Oleic acid C ₈ H ₁₇ CH:CH(CH ₂) ₇ CO ₂ H	282 26	14	286100	0 89547 7	929
5360	C18H34O2	Petroselinic acid	282 26	34	1	0.86849	1057
5361	C18H34O2	Rapic acid	282 26	14		0 89715	100.
5362	C18H24O2	l-Menthyl n-caprylate	282.26		17516	0.898	1
5363	C18H24O3	3-Ketostearic acid.	298.26	97	1		
5364	C18H84O2	6-Ketostearic acid	298 26	75	1		1
5365	C13H14O1	8-Ketostearic acid	298.26	83	į		
5366	C18H14O1	9-Ketostearic acid	298 26	76			1
5367	C18H24O3	10-Ketostearic acid	298-26	65	ŀ		1
5368	C18H14()3	Ricinelaidic acid	298 26	53	25014		
5369	C18H24O2	Ricinic acid	298 26	81	25215		1
5370	C18H14O1	Ricinoleic acid	298 26	17	25015	0 94516	1
5371	$C_{18}H_{84}O_{8}$	Oleic acid ozonide	330 26		j	1 022	472
5371.1	C18H24O6	Di-n-heptyl tartrate	346 26	35	23514	0.99941	
5372	C18H24O16	Clavisepsin	506 26	198			1
2070	C ₁₈ H ₃₆ ClO	Stearyl chloride C17H16COCl	302 73	23	21515	1	1
5373 5374	C ₁₈ H ₁₆ N	Stearonitrile C ₁₇ H ₄₄ CN	265 28		1	II.	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	ď	R. I. No.
5375	ChHuNO	Oleicamide	281 28	76			1
5376	CnHaNO	Oleohydroxamic acid	297 28	61		ļ	1
5377	C11H14	n-Octodecylene	252 28	18	17915	0.791	1
5378	CnH ₁₀ O	Stearic aldehyde C ₁₇ H ₄₈ CHO	268 28	63.5	261100		1
5379	C14H14O2	Stearic acid C ₁₇ H ₄₈ CO ₂ H	284 28	69.3	383	0 84769 3	1117
<i>6</i> 380	C19H29O2	Cetyl acetate CH ₄ CO ₂ C ₁₆ H ₃₂ .	284 28	18 5	200 513	0 858	1041
5381	('18][36()2	Ethyl palmitate C ₁₈ H ₃₁ CO ₂ C ₂ H ₄	284 28	24 2	185 510		1043
5382	$C_{18}H_{24}O_2$	Methyl margarate	281 28	29	ļ		
5383	$C_{18}H_{28}O_8$	1-Hydroxystearic acid	300-28	85			
5384	C14H24O2	dl-2-Hydroxystearic acid	300 28	85			1
5385	C18H36O3	9-Hydroxysteanic acid	300 28	81.5			
5386	('14H36()3	10-Hydroxystearic acid	300 28	79	į		
5387	C19H26O3	11-Hydroxystearic acid	300 28	78	İ	1	
5388	C1.H2.O4	4, 9-Dihydroxystearic acid	316 28	136.5	15001		1
5389	ChHarl	n-Octodecyl iodide	380 22	34	1700 5		
5390	C ₁₃ H ₁₇ NO	Stearic amide C ₁₈ H _{et} CONH ₂	283 29	109	25112		
5391	Ciallan	n-Octodecane CH ₂ (CH ₂) ₁₈ CH ₅	254 29	28	317	0 777	1047
5392	Callao	n-Octadecyl alcohol	270 29	58.5	210 518	0 8124	
5394	C10H12O	Benzylideneacenaphthenone	256 09	107	101		
5395	CulluN	9-Phenylacridine	255 11	181	404		1
5396	C ₁₀ H ₁₄ N ₄ O ₆	Tri-p-nitrophenylmethane	379 12	207			1
5397	C ₁₃ H ₁₄ O ₃	Aurine	290 11	> 220		1	
5398	C ₁₉ H ₁₄ O ₈	Oroxylin .	338 11	225	ł		1
5399	CuHi	Triphenylmethyl (C ₆ H ₅) ₃ C	243 12	147	010		1
5400	CuHuCl	Triphenylchloromethane (C ₆ H ₆) ₃ CCl	278 57	112	310		1
5401	C ₁₉ H ₁₄ N ₃	Chrysantine	285 14	270	1 1150 0	1 01 199	
5402	C ₁₉ H ₁₆	Triphenylmethane (C ₆ H ₅) ₃ CH .	244 12	92 5	359.2	1 01449	1128
5403	C15H16N2	Benzophenone phenylhydrazone	272 14	137	> 000	1 100	
5404	C ₁₅ H ₁₆ O	Triphenyl carbinol (C ₆ H ₆) ₃ COH	260 12	162 5	> 360	1 188	i
5405 5406	C ₁₉ H ₁₆ O ₃	Triphenyl orthoformate HC(OC ₆ H ₆) ₃ .	292 12	77	27755		1
5406 5407	C. H. N	m-Aminotriphenylmethane p-Aminotriphenylmethane	259.14	120			1
5408	C ₁₉ H ₁₇ N C ₁₉ H ₁₇ N	Diphenylbenzylamine	259 14	84		1	į
5409	C ₁₉ H ₁₇ N	Tripheny lmethy lamine $(C_{\delta}H_{\delta})_3C.NH_2$	259 14 259 14	87 105			i
5410	C19H17NO2	Novatophan	291 14	76	1		l
5411	CtoH17NO	Cusparidine	307 14	79	1		1
5412	C ₁₉ H ₁₇ NO ₃	Cusparine	307 14	92		1	1
5413	C19H17NO3	Isocusparine	307 14	194		1	1
5414	CullinN.	α-Triphenylguanidine	287 16	145	d.		ł
5415	CuHuNa	β-Triphenylguanidine	287 16	131			1
5416	Cull nCIN,	α-Triphenylguanidine hydrochloride	323 62	241		0 87540	
5417	CiellinNa	p, p'-Diaminotriphenylmethane	274.16	140	1		
5418	CisHisOs	Eugenol cinnamate	294 14	90			i
5419	C19H1MO7	Eriodonol	358 14	199		-	1
5420	C ₁₉ H ₁₈ O ₈	Atranorie acid	374 14	197			
5421	CuHisOn	Euxanthic acid	422 14	162	d.	1	1
5422	C19H19NO2	Ditamine	293 15	75			i
5423	C19H19NO2	Galipidine	309 15	111			1
5424	C19H19NO4	Bulbocapnine	325 15	199			1332
5425	CnHnNO.	Stylopine	341 15	202			1
5426	CaHaN:	o-Leucaniline (NH2CsH4)3CH	289 17	165	1		1
5427	CuHuN:	p-Leucamline (NH ₂ C ₆ H ₄) ₅ CH	289 17	148	1		
5428	C19H19N3O	Pararosaniline (NH ₂ C ₆ H ₄) ₃ C(OH).	305 17	189			1
5428.1	C ₁₉ H ₂₀ N ₂ O	Cinchoninone	292.17	127		1 226	1301
5429	C19H20N2O4	Antipyrine mandelate	340 17	53	1		1
5430	C19H20N2O4	dl-Ornithuric acid	340 17	183		1	
5431	C19H20O4	Diethyl diphenylmalonate	312 15	59	1	1	1
5432	C19H20Os	Guaiaconic acid	328 15	100		1	1
54 33	C ₁₉ H ₂₁ NO ₃	Isothebaine	311.17	204		1	1
5434	C ₁₉ H ₂₁ NO ₃	Oxyacanthine	311 17	210	1	1	1
5435	C ₁₀ H ₂₁ NO ₃	Thebaine	311 17	193		1.305	1
5436	C19H21NO	Eupyrin	343.17	88	1	į.	1
5437	C ₁ ,H ₁ ,N ₁	Desoxycinchonidine	278.19	61	1	1	1

No.	Formula	Name	Mol. wt	м. Р.	В. Р.	d	R. I. No.
5438	C19H22N2	Desoxycinchonine.	278 19	92			<u> </u>
5439	C19H22N2O	Apocinchonine	294 19	228	1	1	
5440	C19H22N2O	Cinchonicine.	294 - 19	59		1	
5441	C1,H32N3O	Cinchonidine	294 - 19			1	1278
5442	C19H21N2O	α-Cinchonine	294 19	1		1	1304
5443	C1.H21N2O	Homocinchonidine	294 - 19				
5444	C1,H21N2O	β-Isocinchonine	294 19	1			
5445	C19H21N2O2	Apoconquinine	310 19	1			İ
5446	C11H22N2O2	Apoquinine	310 19	1			1
5447	C11H21N1O2	Cupreine	310 19				1
5448	C ₁₉ H ₂₂ N ₂ O ₄	Chitenine Cinchonidine hydrochloride	312 19	1	1		
5451	C H CIN O	Cinchoniane hydrochloride	330 65				1333
5452	C ₁₉ H ₂₃ ClN ₂ O	Codethyline	330 65	l l			1555
5453	C ₁₉ H ₂₃ NO ₃ C ₁₉ H ₂₃ NO ₄	Cinnamylcocaine	$-313/19 \\ -329/19$				1
5454	C ₁₉ H ₂₃ NO ₄	Corytuberine	329 19				
5455 5456	C19H23NO4	Porphyroxime	329 19	1	1		
5457	C ₁₉ H ₂₃ NO ₄	Sinomenine	329 19				
5458	C19H23NO	Morphine acetate.	345 19			ļ	
5459	C19H23N3O4	Cinchonine nitrate	357 20	1			1333
5460	C19H24BrNO3	Eucodine (Methylcodeine bromide)	394 11			1	
5461	C19H24CINO3	Dionine	349 65	1	170 d		
0.00	(2H ₂ O)				1		
5462	C19H24N2O	Cinchamidine (Hydrocinchonidine)	296 20	230		1	ļ
5463	C19H24N2O	Cinchonamine	296 20	185			1
5464	C19H24N2O	Cinchotine	296 20	286	i		
5465	C19H24N2O	Pereirine .	296 20	124			
5466	C19H24N2O2	Conquinamine	312 20				1
5467	C19H24N2O2	Geissospermine	312 20			1	
5468	C19H24N2O2	Hydrocupreme	312 20				
5469	C19H24N2O2	Quinamine.	312 20		1	l l	
5473	C19H25N4O4	Ionidine	373 23	1		ļ	
5474	C19H26N2O	Aspidosine	298 22		1		
5475	C19H27NO4	α-Eucaine	333 22				
5476	C ₁₉ H ₂₈ ClNO ₄	α-Eucaine hydrochloride	$\begin{array}{r} 369 \ 68 \\ 288 \ 22 \end{array}$,			1251
5477	C ₁₉ H ₂₈ O ₂	Abietic acid	320 22		Ì		12.71
5478	C ₁₉ H ₂₈ O ₄	Convallaretin Calmatambin	464 22	1	İ		1
5479	C ₁₉ H ₂₈ O ₁₃	Benzyl laurate C ₁₁ H ₂₇ CO ₂ CH ₂ C ₆ H ₅ .	290 23	3	21112	0 94624	540
5480 5481	C ₁₉ H ₃₀ O ₂ C ₁₉ H ₃₄ O ₂	Methyl chaulmoograte	294 20	E	22720	0 91224	
5482	C19H34O2	Methyl ricinolate	312 28		24510	0 924	465
5483	C19H38O2	Nondecylic acid CH ₃ (CH ₂) ₁₇ CO ₂ H	298 29		299100		
5484	C19113802	Ethyl margarate CH ₃ (CH ₂) ₁₆ CO ₂ C ₂ H ₆ .	298 29			1	1
5485	C19H38O2	Methyl stearate C17H36CO2CH3	298 29	1	21514	1	
5486	C19H40	n-Nondecane CH4(CH2)17CH3.	268 31	32	330	0 77742	1045
5487	C20H10I4O4	Nosophen (Tetraiodophenolphthalem)	821-81	225			
5488	C20H12	Perylene	252 09	264	1		
5489	C20H12O2	Fluoran	300 09				
5490	C20H12O4	Fluorescein	332 09	B C	290 d.		
5491	C20II14	α, α'-Dinaphthyl C ₁₀ H ₇ .C ₁₀ H ₇	254 11		360		
5492	C20H14	α, β'-Dinaphthyl	254 11	1	450	j	ì
5493	C20H14	β, β'-Dinaphthyl C ₁₀ H ₇ .C ₁₀ H ₇	254 11		452		1
5494	C20H14	9-Phenylanthracene	254 11		417		Ì
5495	C20H14N2	α, α'-Azonaphthalene.	282.12				
5496	C20H14N2	β, β'-Azonaphthalene	282 12		1		
5497	C20H14N2O	α, α'-Azoxynaphthalene	298.12				
5498	C20H14N2O	β, β'-Azoxynaphthalene	298.12		>360		
5499	C20H14O	α -Naphthyl ether $(C_{10}H_7)_2O$	270.11 270.11		25019		-
5500	C20H14O	β-Naphthyl ether (C ₁₀ H ₇) ₂ O	270.1	l l	26416		1
5501	C20H14O	α, β'-Naphthyl ether	286 1	1	201		
5502	C ₂₀ H ₁₄ O ₂	α-Dinaphthol β-Dinaphthol	286.1		1		-
5503	C20H16O2	β-Dinaphthol	318.1		1	1.27742	1

No.	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R. I. No.
5505	Crall 14O	Fluorescin	334 11	127			1
5506	C20H14O4	Psoromic seid	398 11	264	1	1	- 1
5507	C28H14H	α, α'-Dinaphthyl sulfide (C ₁₀ H ₇) ₂ S	286 17	110	29015	1	1
5508	C20H10N	β, β'-Dinaphthylamine (C ₁₀ H ₇) ₂ NH.	269.12	172 2	471	1	1
5509 5510	C ₁₀ H ₁₀ NO ₄	Sanguinarine	333.12	213 200	1	1	- 1
5510 5511	C20H14NO3 C20H14N3	Berilic acid	397.12 297.14	175	ĺ	1	
5512	CzoH ₁₈ N ₂	p-Amino-α-azonaphthalene Amino-β-azonaphthalene	297.14	156		1	ı
5513	C20H16N2	α, α'-Hydrazonaphthalene	284 14	α 271; β 274			
5514	C20H14N2	β, β'-Hydrazonaphthalene	284 14	164		1	
5515	C20H16N2()	Benzilphenylhydrazone	300.14	134		1	
5516	C20H14N4	Nitron	312 16	189 d.		1	
5517	C20H14O2	Triphenylacetic acid (C4H4)1C.CO2H	288 12	265			
5518	C ₁₀ H ₁₄ O ₃	Rosolic acid	304 12	270	d.		
5519 5520	C20H17N4O2	Rubazonic acid	359 17	181			
5521	$C_{20}H_{18} = C_{20}H_{18}$	Diphenyl-m-tolylmethane 1, 1, 2-Triphenylethane	258 14 258 14	61 5	356	1 0716	1
5522	C20H13CINO	Berberine hydrochloride	371 61	54	349 4	1 207	1000
5523	C20H13N2O	α-Benzoinphenylhydrazone	302 16	155		1 397	1333
5524	C20H18N2O	β-Benzoinphenylhydrazone	302 16	106			
5525	CanHanNaS	Triphenylguanylthiourea	346 24	157			
5526	C20H19N	Dibenzylamine C ₆ H ₄ N(CH ₂ C ₆ H ₆) ₂ .	273 15	70			Ì
5527	C ₂₀ H ₁₉ NO ₄	Chelidonine	353 15	136			
5528	C ₂₀ H ₁₉ NO ₈	Papaveraldine	353 15	210			
5529 5530	C20H19NO3 C20H19NO3	Protopine	353 15	207			
5532	C10H10N2O4	Berberilic acid Antipyrine acetylsalicylate	417 15 368 17	182		1	1
5533	C20H20O4	Cubebinol	340 15	65 92		ł	
5534	C20H20O6	Cubebin	356 15	132			
5535	C30H20O7	Coccelic acid	372 15	178			
8536	C10H10O10	Scoparin	420 15	219 d.			
5537	C20H20O12	Luteic acid	452.15	274			
5538 5530	C ₁₀ H ₁₁ NO ₁	Galipeine	323.17	115			
5539 5540	C20H21NO4 C20H21NO4	L-Canadine Dicentrine	339.17	134		ł	
5541	C ₂₀ H ₂₁ NO ₄	Papaverine	339 17 339 17	169			
5542	C ₁₀ H ₂₁ NO ₄	dl-Canadine	339 17	147 167	d.	1 337	1331
5544	C20H22CINO4	Papaverine hydrochloride	375 64	221 d.			
5545	C20H22N2O	Quinene	306.19	82			
5546	C20H21N2O2	Dehydroquinine	322 19	181			
5547	C ₁₀ H ₁₁ N ₁ O ₁	Jelsemine	322.19	178			
5548 5549	C20H21N1O4 C20H21On	Lysuric acid Populin	354 19	145			
4	C20H23ClN2O2	Jelsemine hydrochloride	390 17	180			
	C10H11NO4	Acetylcodeine	358 65 341.19	300 133.5		1	
	C10H11NO4	Corypalmine	341.19	236			
	C20H22N2O4	Pyramidon salicylate	369 20	70			
	C10H11()4	Naphthyl acid camphorate	327.18	122			
	C ₂₀ H ₂₄ Cl ₂ N ₂ O ₂	Quinene dichloride	395.12	97		İ	
	C20H24N()4 C20H24N2O	Staphisagroine .	342 19	275			
	C10H14N2O2	Desoxyquinine Isoconquinine	308 20	52			
	C10H14N2O1	Isoconquinine	324.20 324.20	142 185		l	
	C20H24N2O2	Quinicine	324 20	60			
	C10H14N1O2	Quinidine	324.20	168			1298
	C10H14N1O1	Quinine	324.20	175			1279
	C ₁₀ H ₂₄ N ₂ O ₂	Quinine (isomer A)	324.20	193 5			1
	C10H14N1O1 CHBrN O	Quinine (isomer B)	324.20	189			
,	C10H14BrN1O1 C10H14ClN1O2	Quinine hydrobromide Quinidine hydrochloride	405.13	200			1
	C20H24ClN2O2	Quinion hydrochloride	360.67 360.67	259 d. 160	259 d.		
	C10H11NO1	Lobelidine	311.20	106	≥oo u.		
		Codamine				•	i .

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. No
572	C10H14NO4	Laudanidine	343 20	177			†
573	CaoHanNO.	Laudanine .	343 20	164-5		1 256	1
575	C20H26N2O6S	Quinine disulfate	422 28	160 તે.			
577	C20H26N2O2	Hydroquinidine.	326 22	167		i	1
578	C20H26N2O2	Hydroquimne .	326 22	172 3			
579	C20H27NO	Diversine	361 22	93			
580	C20H27NO11	Amygdalin	457 22	200			1
581	C20H27N2O4P	Quinine hypophosphite	390 25	181			1
583	C20H28O4	Thymyl acid camphorate	332 22	89			
584	C20H25O4	Eugenol acid camphorate	348 22	116			
585	C20H28O6	Cholanic acid	364 22	285			1
586	C20H28O13	Primeverin .	476 22	206			
587	C20H30N2O4	Quinine hydrate	378 25	57	d.		1
588	C20H20O2	d-Pimaric acid	302 23	212	28210	1	
589	C10H10O4	Onoceric acid	334 23	120	1	1	
590	C20H20O3	Andrographohde	350 23	218		1	1
591	C20H22O4	Andrographolic acid	368 25	188		1	ļ
592	C10H11NO	Myristic anilide	303 26	84		1	l
593	C10H11N1	Ormosine	315 28	87			1
594	C20H24N2	Ormosinine	315 28	205			1
595	C20H24O	Ambrosterol	290 26	147			1
596	C10H14O	Cinchol	290 26	139	i	Ì	1
597	C20H34O	Cupreol	290 26	140	ł	1	ı
598	C ₂₀ H ₂₄ O	Quebrachol	290 26	125		l	
	1 .	Cyclamin	434 26	236	}		13
599	C20H24O10 C20H26N8O14	Vicine	628 34	242 d.		i	
300		Exerctin	292 28	96	ł		1
601	C ₂₀ H ₃₀ O	Eicosinic acid	308 28	69	27015		
302	C ₂₀ H ₃₆ O ₂	Ethyl chaulmoograte	308 28		23020	0 906	10
303	C ₂₀ H ₃₆ O ₂	Eicosenic acid	310 29	50	26716	7	
304	C20H38O2	Ethyl ricinoleate	326 29	00	25813	0 914	
605	C20H28O3	1	296 31		20410	0 856	1.
606	C20H40O	Phytol.	312 31	77	328	" " " " " " " " " " " " " " " " " " "	1
607	C20H40O2	Arachidic acid Ethyl stearate C ₁₇ H ₄₈ CO ₂ C ₂ H ₅	312 31	33 7	224		
608	C20H40O2	1 -	408 25	42	192**		
609	C20H411	n-Eicosyl iodide	282 32	38	20515	0 7784.7	10
610	C20H42	n-Eicosane CH ₂ (CH ₂) ₁₈ CH ₃	298 32	71	2203		
811	C20H42O	Eicosyl alcohol CH ₂ (CH ₂) ₁₈ CH ₂ OH	282 11	135			-
612	C21H14O	α, β'-Dinaphthyl ketone	282 11	а 125 5	1		
813	C21H14O	β , β' -Dinaphthyl ketone	202 11	b 164 5			
			298 11	201			1
614	C21H14O2	Picenic acid.	829 12	135 d.		1	
315	C21H18Bi2O9	Bismuth salicylate	268 12	109	360		Į
816	C21H16	α, α'-Dinaphthylmethane	268.12	95) 000		
817	C21H16	α , β' -Dinaphthylmethane $(C_{10}H_7)_2CH_2$.	268 12	93	1		
618	C21H16	β , β' -Dinaphthylmethane $(C_{10}H_7)_2CH_2$.		275	1		- 1
819	C21H16N2	Lophine	296 14	154	1		1
820	C21H16O11	Methylenecitrylsalicylic acid	444 12	129		}	1
621	C21H18N2	Amarin .	298 16	101	1		- 1
822	C21H18N2	Hydrobenzamide	298.16	200 d.		1	
62 3	C21H18O12	Scutellarin	462.14	200 d. 199			
624	C11H19NO4	Fumarine	349.15		}	1	
825	C21H20	Phenylditolylmethane	272 15	105			
626	C21H20N2O4	Alstonine (Chlorogenine)	364.17	195			1
827	C21H20O6	Curcumin	368.15	183	1	1	- 1 '
628	C21H20O.	Aloin	416.15	147 9	1	1	
629	C21H20O1	1, 2-Dihydro-3, 5-dihydroxy-4-(α, 3, 4-		6:-	1	1	1
	1	trihydroxybenzylbenzofuran)*	416.15	217		1	ĺ
630	C21H20O,	Frangulin	416.15	226	1		
631	C21H20O11	Quercitrin	448.15	185			- 1
632	C21H20O12	Incarnatrin	464.15	245		0.0011	
633	CnHnN	Tribenzylamine (C.H.CH2)1N	287.17	92	1	0.991	
	C ₁₁ H ₁₁ NO ₄	d-Corcycavamine	367 17	149 132	1		
634	Cooffee NUE						

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R. I. No.
5636	C21H21NO	Rhoeadine	383.17	232 d.	1		
5637	C21H21N2	Anhydroformaldehydeaniline	315 19	45.5	185	1	
5638	C21H21O4P	Tri-ρ-cresyl phosphate .	368 19	77			
5639	C ₁₁ H ₁₁ O ₄ P	Triguaiacyl phosphite	400.19	78	1	1	
5 640	C21H21O7P	Triguaiacyl phosphate	416 19	98	1		į
5641	C21H22N2O2	Isostrychnine	334 19	214 5			
5642	C21H22N2O2	Strychnine	334 19	268	2705	1 35918	
5645	C21H21Cl2N1O1	Benzamide hydrochloride	436 12	178			
5646	CnHnNO ₄	Meconidine	353 19	58			
5647	CnHnNO ₄	Cryptopine	369 19	218		1 351	
5648 5649	CnHnNO _i CnHnNO _i	Diacetylmorphine	369 19	172			1260
5650	C21H22NO	α-Homochelidonine	369 19	182			
5651	C21H22NO4	β-Homochelidonine γ-Homochelidonine	369 19	159			1
5652	CnH2NO	Colchiceme	369.19	171			
5653	CaiHa NaOs	Strychine nitrate	385 19 397 20	172	1	1	
5654	C21H24CINO4	Diacetylmorphine hydrochloride	405 65	230		I	1333
5655	C21H24N2O	Paytine	320 20	250 156			1
5656	C11H24N2O	Strychnidine .	320 20	250 5	29514	1	
5657	C21H24N6O10	Geneserine picrate	520 23	175	200	1	
5658	C21H24O3	Glycyphylline	420 19	180	l		
5659	C21H24O10	Phloridzin	436 19	170 d.	Ì	1 430	
5660	C21H24O11	Datisca	452 19	180		1 400	
5 661	C21H24O12	Saponarin	468 19	232		ı	
5663	C21H24NO4	Corybulbine.	355 20	239			1
5664	CnH21NO4	Corydine	355 20	105			1165
5665	C21H24NO4	Glaucine .	355 20	120			1
5666	CaHaNO ₄	Isocorybulbine	355 20	180			
5667 5668	C21H26N4O2 C21H26N2O	Porphyrine	351 22	97			
5669	C21H26N2O2	Desoxystrychnine	322 22	172			
5670	C21H26N2O2	Corynanthine Quebrachine	354 22	242		İ	1
5671	C21H26N2O4	Quinine formate .	354 22	248			1333
5672	C11H27CIN2O1	Quebrachine hydrochloride	370 22	113			
5673	CatHa7NO4	d(l)-Laudanosine .	390 68 357 22	290			
5674	C21H27NO10	d-Cocaine bitartrate	453 22	89 112		ł	
5675	C21H28N2O	Tetraethyldiaminobenzophenone	324 23	96		1	
5676	C2tH2O4	Marrubun	344 22	154.5	29715	1	1
5677	C21H20N2O4	Struxine	374 25	250 d.	231	Ì	
5678	C21H20O2	Cannabinol	314 23	200 d.	315100	1 04218	1
5679	CnHnO4	Euonymol	346 23	250	0.0	1 012	
5680	C21H20O4	Antiarin	410 23	215			İ
5681	C ₂₁ H ₁₄ O	Pyrethrol	302 27	199	290		
5682 5683	$C_{11}H_{14}O_{1}$	Benzyl myristate C12H27CO2CH2C6H5	318 26	20 5	23111	0 93225	536
5684	· C ₂₁ H ₂₄ O ₂ · C ₂₁ H ₂₄ O ₄	Di-d-bornyl carbonate	334.26	216			
5685	C31H4O10	Ipurganol Helleborem	350 26	225			
5686	C ₂₁ H ₂₄ O ₄	Trifolianol	446.26	230 d.			
5687	CnHaOa	Di-l-menthyl carbonate	352 28	300			
5688	C21H28O4	Tricaproin	338 29 386 29	106			1
5689	C11H40O1	Dimentholformal	324 31	-25	007	0 988	392
	C11H42	9-Heneicosene C ₃ H ₁₇ CH: CHC ₁₁ H ₂₄	294 32	57 3	337 20211	0.80514	
5691	C21H42O2	Cluytime acid	326 32	69	202	0.805**	
5692	C11H42O1	Heneicosonic acid CH ₂ (CH ₂), CO ₂ H	326 32	74			
5693	CnHaNO	Heneicosamide C'H ₂ (C'H ₂) ₁₄ CONH ₄	325 34	110			1
	CnH4	n-Heneicosane CH ₁ (CH ₂) ₁₀ CH ₁	296.34	40 4	21516	0.77544.8	1067
	CnH ₁₄	Picene	278 11	364	520	3	1001
5696	C ₃₃ H ₁₄ N ₃ O	Rosindon (Rosindulon)	322.12	262			
	C.H.NO	Colchinine	389.12	146	ı		
	C ₁₁ H ₁₄ N ₄	Rosinduline	321.14	199	ŀ		
	C11H11O4 C11H11O11	o-Cresolphthalein	346.14	216			
	C ₁₁ H ₁₁ O ₁₁	Carminic acid	492 15	136 d.			
2.01	OHITHOU !	Isotrifolin	462.17	250	i		

No.	Formula	Name	Mol, wt.	М. Р.	В. Р.	d	R. I. No.
5702	C22H22O11	Trifolin	462.17	260	estrete section of a company		
5703	C22H22NO7	Gnoscopine	113 19	233			
5704	CmHmNO;	Narcotine.	113 19	175		1 374	
5705	C22H22N2O7	Pyrene picrate	431 12	218			
5706	C22H24O10	Sakuranin .	148 19	212			
5707	C22H25NO4	Corycavidine .	367-20	213			1
5708	C22H26NO6	I-Colchicine	399-20	146			1333
5709	C22H26N2O2	Apoyohimbine	350 22	252		1	ì
5710	C22H26N2O3	Acetylquinine	366-22	108			
5711	C22H26N2O3	Gelsemme .	366-22	178			
5712	C22H26N2O4	Chaimaridine	382 22	128			
5713	C22H26N2O1	Chaimarine	382 22	233			
5714	C42H26N2O4	Conchaimarine	382-22	120			
5715	C22H26N2O4	Conchairamidine	382-22	115			
5716	C22H26N2O4	Mitraversine	382 22	237	i		
5718	C22H26O12	Hesperidin	482 20	171	251 d.		l
5719	C22H27A8NO4	Strychnine methylarsinate	460 18	60 d			
5720	C22H27Br N2O3	Gelseminine hydrobromide	417 14				1333
5721	C22H27ClN2O2	Apoyohimbine hydrochloride	386-68	300			1
5722	C22H27ClN2O3	Gelseminine by drochloride	402-68	330			1333
5723	C22H27NO4	dl-Corydaline	369-22	136	1		
5724	C22H27N2O3	Physostigmine salicylate	413 23	178 9			1333
5725	C22H28N2O2	Aspidosamine	352 - 23	100			ľ
5726	C22H28N2O2	Aspidospermatine	352 23	162	Į.	1	
5727	C22H28N2O4	Ditaine (Echitamine)	384 23	206			1333
5728	C22H28N2O4	Quinine acetate	384-23	126			ł
5729	C22H28N4	Camphorosazone	348 25	55			
5730	C22H28O2	Santalyl salicylate	340 22		126.620	1 07015	
5732	C-21H29IO2	Europhen (Dusobutyl-p-cresol iodide)	452 16	110			
5733	C22H20N2O2	Aspidospermine	354 25	208	220²		
5734	C22H31NO5 (?)	Mitragynine	389 25	106	2405		
5735	C22H22O2	Anacardic acid	344 25	26			
5736	C22H32O4	Digitoxigenin	360 25	230			
5737	C22H32O6	Genin	392 25	206	ļ		1
5738	C22H32O6	Atropine isovalerate	391 26	32			
5739	C32H33NO5	Atropine valerate	391 26	42			1333
5741	C'22H24N4O5S	Pilocarpine sulfate	514-36	132	1		1333
5742	C22H26NO6	Delphinine .	409 28	187 5			
5743	C22H36O4	Bryonol	364.28	212		i e	
5744	C22H36O3	Capsularin	128 28	176			
5745	C22H27NO	Palmitic anilide	331 29	90-5	28417		1
5746	C22H25O	Cholestol	318 29	139	360		1
5747	C22H28O	llicyl alcohol	318 29	175	350		
5748		Citrullol	366 29	290			
5759	C ₂₂ H ₂₈ O ₄ C ₂₂ H ₂₈ O ₄	Di-l-menthyl oxalate	366 29	68	225^{12}		1
		Behenolyl chloride C21H29COC	354 76	29			-
5760	C ₂₂ H ₃₉ ClO	Behenolic acid C21H29CO2H	336-31	57 5			
5761	C ₂₂ H ₄₀ O ₂	Behenolyl amide C ₂₁ H ₂₂ CONH ₂	335 32	90			
5762	C ₂₂ H ₄₁ NO	Brassidic acid	338 32	61 5	28230	0.859571	1085
5763 5764	C ₂₂ H ₄₂ O ₂	Erucic acid	338 32	33 5	28130	0 8604	1
	C22H42O2	14-Ketobehenic acid	354 32	84			
5765 5765 1	C ₂₂ H ₄₂ O ₃	Isobutyl ricinoleate	354 32	1	262*	0 90322	980
5765.1		Erucamide C ₂₁ H ₄₁ CONH ₂	337 34	83		İ	1
5766 5767	C ₂₂ H ₄₂ NO	Erucyl alcohol.	324 34	34 6	2000 2	1	
5767	C ₂₂ H ₄₄ O	Behenic acid	340.34	84	306**		1
5768	C ₂₂ H ₄₄ O ₂	Methyl heneicosate C ₂₀ H ₄₄ CO ₂ CH ₂	340.34	49			
5769	C ₂₂ H ₄₄ O ₂	Docosyl iodide CH ₄ (CH ₂) ₂₀ CH ₂ I	436 28	49			1
5770	C ₂₂ H ₄₆ I	Behenamide C ₂₁ H ₄₂ CONH ₂ .	339 36	112			-
5771	C ₂₂ H ₄₆ NO	1 =	310.35	44 4	224.516	0 77844.4	- 1
5772	C.H.	n-Docosane CH ₄ (CH ₂) ₂₀ CH ₄ Docosyl alcohol CH ₄ (CH ₂) ₂₀ CH ₂ OH.	326 35	74			
5773	C22H46O	Amaric anhydride	328.15	140 5			
5774 5775	C22H20O2 C22H22NO4	Corycavine	409 19	216			

No.	Formula	Name	Mol. wt.	M. P.	В. Р.	d	R N
5777	C23H24N4O2	Methylenediantipyrine	388.22	177			
778	C22H24N4O11	Hyoseine picrate	532.22	188			
779	C21H24O2	o-Cresol orthoacetate	348.19	89			
780	C23H14O3	Picropodophyllin	444.19	227			
781	CnH4O	Podophyllotoxin	444.19	94			
782	C21H25NO4	Lanthopine	379.20	200	ł	1	
783	C21H26CIN4O1	Acom	427 68	178	İ		
784	C22H21N2O4	Aricine	394 22	188 d.	1		1
785	C23H26N2O4	Brucine	394 22	178	İ	1	
786	C24H26N2O4	Concusconine	394 22	208	ł		
787	C21H26N2O4	Cusconine	394 22	110			
788	C21H26N2O4	Allobrucine oxide	410 22	189	1		
5789	C21H27NO6	Homoatropine salicylate	413 22		ĺ	ì	1;
5790	C21H27NO3	Narceme	445 22	170		l	1.
5791	C21H27N3O7	Brucine nitrate	457 23	230 d.	1		
5792	C21H23CINO	Narceine hydrochloride	181 68	192	l		13
5793	CaHanN ₂ O ₄	Vellosine .	396 23	189 d.		1	1.
5794		Lobeline	351 23	131		1	1
	CaH20NO					ł	
5795	C21H16N2O4	Quinine propionate	398 25	111	1		1
5796	C21H10N2O	dl-Quimne lactate	414 25	165.5		ļ	1
5797	C21H10N2O5	d-Quinine lactate	414 25	175	ĺ	1	ı
5798	C24H40N2O5	/-Quinine lactate	411-25	171	ı		
799	C28H31NO2	Atisine .	353 25	85		ŀ	
801	CaHaaNaO4	Quinine ethyl carbonate (Equinine).	401 27	91		1	-
5802	C21H11N1O5	Pyramidon acid camphorate :	431 28	94		1	İ
803	C28H26O2	Lactucon (Lactucol acetate)	344 28	184		I	
804	C21H16O4	Calabarol	376 28	245		İ	
804.1	C21H3nN2	Conessine	342 31	125			1:
805	C21H18O2	Benzyl palmitate	346 29	36	1	0 91428	10
806	C23H23O4	Anonol	378 29	298			-
807	C22H28O4	Grindelol (Phytosterol glucoside)	378 29	257		1	-
808	C221140()	Ambrein	332 31	82			1
809	C22H40O	Xanthosterin	332 31	214		1	
810	C21H40O4	Di-l-menthyl malonate	380 31	62	1701	0.94476	-
811	C21H40O4	Ipuranol	1 1		170.	0.844	İ
812	C21 H 42O2	1 *	380 31	290	ļ	1	
813	C21H4O2	Methyl behenolate C21H22CO2CH2	350 32	22			1
814		Methyl crucate C ₂₁ H ₄₁ CO ₂ CH ₄	352.34		2228	0 870	
	C ₁₁ H ₄₀ O	Laurone (C ₁₁ H ₂₈) ₂ CO	338 35	69	1	0 7894	1
815	C23H46O2	Methyl behenate C21H44CO2CH3	354 35	54 5	225		ı
816	CnH4	n-Tricosane CH ₃ (CH ₂) ₂₁ CH ₃	324.37	47 7	320 7	0 77947 7	1
817	C24H16	Crackene	306.14	308	500		
818	C24H14	1, 3, 5-Triphenvlbenzene	306 14	170		1 206	13
819	C14H18A82N2O	Phenarsazine oxide	500 08	350			
820	C24H18N2	p, p'-Diphenvlazobenzene	334.16	250	1		1
821	C24H18N2O	p, p'-Diphenylazoxybenzene	350 16	205		Ì	
822	$C_{24}H_{20}N_{2}$	p, p'-Diphenvlhydrazobenzene	336 17	247	1		ı
823	C24H20Os	Glycerol tribenzoate	104 15	76.5		1	1
824	C24H20(),	Glycerol trisalicylate	452 15	79	İ	1	
826	C21H26N2O	Benzoylauramine	371 22	179		1	
829	C24H28O6	Diguaiacyl camphorate	412 22	124		1	
830	C24H2xOx	α-Flavaspidic acid	444 22	92		1	1
831	C24H25O5	β-Flavaspidie aeid	444 22	156	l		
832	C24H29NO6	Atropine salicylate	427 23	100	ļ		1.
834	C24H30O4	Elaterone	1 1	200	1		13
835	C24H30O7	Anthamantin	398 23	300 70		1	
836	C14H20O13	i .	430 23	79			1
837		Scopolin	. 558 23	218			
	C 4H ₁₂ N ₂ O ₄	Quinine butyrate	412 26	77.5	1		1
838	C24H12N4O3	Maltosazone	520 28	206		l	1
839	C24H3xN2O	Holarrhenine	370 31	198			1
840	C21H31O4	Di-d-bornyl succinate	390 29	83.7			
841	C24H40N2	Conessine	356 32	125		1	
842	C24H40O4	Choleic acid	392 31	190			1
843	C24H40O4	Cucurbitol	392 31 .	260	1	1	1

No.	Formula	Name	Mol. wt.	М. Р.	В, Р,	d	R. I. No.
5844	C14H40O4	Cholic acid	408-31	195			
5845	C14H41NO	Stearic andide CH3(CH2)16CONHC4H3	359 32	93-6			1
5846	C14H42O4	Di-l-menthyl succinate	394-32	63	220 d	0 9474	
5847	C24H42O4	Di-l-menthyl d-tartrate	126 32	75		1 054	
5848	C24H42O4	Di-l-menthyl l-tartrate	426 32	12		1 04514	
5849	C24H44O4	Lithofellinic acid	412 34	206			
5850	C24H44I3O3	Ethyl diiodobrassidate	618 20	37			
5851	C14H401	Ethyl behenolate C21H29CO2C2H4 Ethyl brassidate	364-34 366-35	15 30-5			1046
5852	C ₂₄ H ₄₆ O ₂	Ethyl crucate C ₂₁ H ₄₁ CO ₂ C ₂ H ₄	366 35	30 3	230	0 865	440
5853	C24H46O2 C24H48O2	Carnaubic acid	368 37	72	200	0 000	1
5854	C14H48O2	Lignoceric acid CaH CO2H	368 37	81			İ
5855 5856	C14H4O1	Paraffinic acid C21H47CO2H	368 37	16		İ	1
5856 5857	C14H41O2	Pisangeerylic acid C22H47CO7H	368 37	72		1	İ
5858	C24H48O2	Tetraconic acid CH ₂ (CH ₂) ₁₂ CO ₂ H	368-37	85.5			
5859	C24H44O2	Ethyl behenate C21H42CO2C2H4	368-37	50-5	231		
5860	C24H60	Isotetracosane .	338 39	51	24318		
5861	C24H60	n-Tetracosane CH ₃ (CH ₂) ₂₂ CH ₃	338 39	51	321 1	0 77941.1	
5862	C14H40O	Carnaubyl alcohol C24H44OH	354-39	69		1	
5863	C16H20	Tetraphenylmethane C(C ₆ II ₈) ₄	320 15	285	431	1	
5864	C28H21N8	Tetraphenylguanidine	363 19	131		İ	į
5865	C26H26O11	Ononin	502 20	210			- 1
5866	C24H28O14	Gentiin	552 22	274			1
5867	C25H29NO8S	Codeine o-guaiacolsulfonate	503 30	165		1	Ì
5868	C26H32O8	Albaspidin	460 25	147 124	Ì	}	
5869	C25H22O8	Aspidin	160 25 558 26	215			
5871	C26H44O14	Loganin	481 31	95			
5872	C26H39NO8	Pseudoaconine	356 31	144		1	
5873	C ₂₈ H ₄₀ O	Fungisterin Homotaraxasterol	356 31	164		1	į
5874	C26H40O	Benzyl oleate	372 31		2377	0 93325	1024
5875	C26H40O2	Benzyl stearate C ₁₇ H ₂₆ CO ₂ CH ₂ C ₆ H ₆	371 32	45 8		0 90826	1078
5876 5877	C ₂₆ H ₄₂ O ₂ C ₂₆ H ₄₄ O ₄	Di-l-menthyl glutarate	408 34		24320		
5878	C28H40Q2	Neocerotic acid	382 39	77.8			
5879	C26H50O2	Hyenic acid.	382 39	78			
5880	C24H40O1	Cerebronic acid	398 39	100			1
5881	C24H42	Pentacosane CH4(CH2)23CH2	352 40	54	28440	0.779	
5882	C26H14	Rubicene	326 11	306	405	1	1
5883	C20H20	Tetraphenylethylene	332 15	221	425	1	
5884	C26H20O	α-Benzopinacoline	348 15	205		1	- 1
5885	C26H20O	β-Benzopinacoline	348 15	181 132		1	ŀ
5886	C26H21NO11	Aconine	523 17 334 17	209	383	1 182	
5887	C26H22	1, 1, 2, 2-Tetraphenylethane	390 20	225	1,7,5	1	
5888	C26H22N4	Benzilosazone	366 17	186 d.			
5889	C26H22O2	Benzopinacone	405 22	136			.
5890	C26H23N6	Tetraphenyldiguanidine	398 22	106			
5891	C26H26N2O2	Benzoyleinchomme Benzoyleinchomme hydrochlomde	434 68	207	1		-
5892 5802	C ₂₆ H ₂₇ ClN ₂ O ₂	Cinchondine salicylate	432 23	70			
5893 5895	C26H28N2O4	Ruberythric acid	564 22	260			1
	C26H28O14	Morindin	564 22	245	247		
5896 5897	C ₂₆ H ₂₈ O ₁₄ C ₂₆ H ₃₀ N ₂ O ₆ S	Quinine phenolsulfonate	498 31				1332
5898	C26H20O4	Bixin	406 23	189			-
5899	C26H32N2O2	Ibogine	404 26	152			
5900	C26H27NO2	Jervine	411 29	241		1	- 1
5901	C26H28	Carotin	350 29	167 8	10570	1.040	
5902	C26H40O	Ergosterin	368 31	154	18520	1.040	
5903	C26H40O7	Laserpitin	464 31	117 5	24010 d.		-
5904	C26H41NO10	Japaconine	527 32 402 32	97 183			1
5905	C26H42O3	Sarsasapogenin	402.32	160 d.			
5906	C26H42O3	Smilacin .	402.32	236	1		1
5907	C26H42NO2	Rubijervine	465 34	134			
5908	Cz6H43NO6	Glycocholic acid	. 100 07	,	1		•

No	Formula	Name	Mol. wt.	М. Р.	В. Р.	d	R I
5909	C24H44O	Caulosterol	372 34	159			-
5910	$C_{28}H_{44}O_{7}$	Onocerm	388 34	232	1	1	
5911	C26H4O4	Gitogenia .	420-34	272	1	1	1
912	C75H44O10	Parillin	516 34	176 - 1	1		1
113	CasHasNO,	Protoveratridine	499-36	265			
111	C28H48O	Mochyl alcohol C26H45OH	371-35	234		1	
915	C20H40O1	Di-l-menthyl adipate	122 35	61			
916	CzallazO:	Cerotic acid	396-40	82 5		0 8364	ì
117	CasHaiOz	Ethyl lignocerate	396-40	56	31020		
118	C26H.4	n-Hexacosane CH ₂ (CH ₂) ₂₃ CH ₃	366-42	60	296^{40}	0 779	1
119	CanHa4	Isohexacosane	366 42	61	207		
20	C ₂₆ H ₆₄ O	CervI alcohol = C26H64OH	382 12	80			
21	C27H28B1 N.O6	Quinne dibromosalicylate	620 06	198			
122	Carlla NaSa	Diphenylguanidine trithiocarbonate	532 46	89			1000
25	C27H20N2O	Quinine salicylate	162 25	187			1333
26	C27H20O15	Apun	594 23	228			
727	$C_{27}H_{20}O_1$	Sophorm	610 23	166	d.		
28	C H O	Rutm	612 25 474 29	183 195	α.		
29	$C_{27}H_{38}O$,	Strophantidin	513 34	195 126			
30	C ₂₇ H ₃₉ N ₅ O ₅	Paucine Cerbern	492 31	192			ł
31 32	$\begin{array}{c} { m C}_{27}{ m H}_{40}{ m O}_{9} \\ { m C}_{27}{ m H}_{42}{ m O} \end{array}$	Ergosterm	382 32	165			1
33	C27H46O	Cholesterm	386 35	148	> 360	1 067	İ
31	C ₂₇ H ₄₆ O	Phytosterol	386 35	136	7 0.27	1 5777	
35	C _H H ₆ O	Sitosterol	386 35	140			
36	C27H46O.	Atropurol	102 35	285			
37	$C_B H_b N$	Cholesterylamine	385 37	104		1	
38	C27H47NO9	Indaconine	529 37	94	}		
39	C27H43O	Coprosterol	388 37	105			
10	C27H80O6	Tricaprylin	470 39	8		0 954	423
41	C27H84O	Myristone (C ₁₃ H ₂₇) ₂ CO	394 42	76		0 79240 9	1 .
12	C27H 56	n-Heptacosane CH ₄ (CH ₂) ₂₄ CH ₂	380 43	59 5	27015	0 7794 5	1 .
133	C28H14	9, 9'-Dianthranyl	351-14	300			
)44	C28H20N2	Amaron (Tetraphenylpyrazine)	384-17	240			
)45	$C_{28}H_{22}N_2O$	Benzovlamarın	402 19	180			
16	$C_{28}H_{22}O_2$	Anthrapinacone	390 17	182 d.			
17	C26H24N2	Benzylamarın	388 20	124			
48	C28H24N+O5	Strychnine salicylate	472 23				1333
149	C28H30O2	Columbin	398 23	182			
)50	C24H34O11	Philbrin	546-26	160	1		
51	C28H36N2O4	Ipecamine	461 29	90	1		1
52	C28H36N2O4	Psychotrine	464 29	138			
053	C28H36O,	Digitogenie acid	181 28	210		1	
051	C28HasN2O4	Cephaeline	466 31	99			
55	$C_{28}H_{38}N_2O_4$ $C_{28}H_{38}O_7$	Hydroipecamine α-Elaterin	466 31 486 29	$\frac{92}{232}$			
)56)57	C28H38O7	β-Elaterin	186 29	195		1	1
58	C28H44O2	Lactucern	112 31	210			
59	C28H44NO	Behenolic anilide C21H29CONHC6H5.	411 36	72		ì	
N5O	C2nH4nNO	Isopyroine .	540-36	160		i	
161	('291146();	Cholesteryl formate	114 35			1	1216
8 12	C28H47NO	Brassidic anilide C21H41CONHC6H6	413 37	78			
63	C2sH47NO	Erucie anilide C21H41CONHC5H4	413 37	66			İ
X64	CgsH4sO10	Gitalin	544 37	253		i	
65	C28H49NO	Behenic andide CH2(CH2)20CONHC6H5	115 39	102			
KIG .	CasHasO2	l-Menthyl stearate	122 42	39			
3 37	Callas	Octocosane CH ₄ (CH ₂) ₂₆ CH ₃	394 45	65	31840	0.779	
68	C28H8NO	Cluytyl alcohol	410 45	82.5	1		
169	C29H24O4	Fortoin (Methylenedicotoine)	500 19	213	1		
70	C29H26O12	Aromadendrin	566 20	216	1		
971	C29H22N2O6	Quinine acetylsalıcylate	504.26	157	1		
072	CasHasNO7	Paniculatine	509 28	263			
973	C29H26N2O4	Emetamine	476.29	156	1	1	1

No.	Formula	Name	Mol wt.	M P	В Р.	d	R. I.
5974	C20H40N1O4	Isoemetine.	180 32	1			No.
5975	C29H42Cl2N2O4	Isoemetine hydrochloride	553 26	98 310 d	1		
5976	C29H42NO7	Pseudojervme	517 34	307			1
5977	C29H43NO8	Sabadenine	533 34	160	197 d		1333
5978	C29H48	Spinacene	396 37	. 20	260°	0 85920	570
5979	C29H48O	Taraxasterol	412 37	222			""
5980	C19H49O3	Phytosterol acetate	115 38	122			
5981	C29H80O6	Cluytianol	478 39	300			
5982	C29H51NO8	Sabadine	541 40	240	1		
5983	C29H62O20	Sapotin	720 40	240			
5984	C29H48O2	Montanic acid	138 45	86.8	1		
5985	C29H60	Nonacosane CH ₃ (CH ₂) ₂₇ CH ₃	108 16	63-6	3484	0.780	
5986	C ₃₀ H ₂₀ NO ₉	Adlumidine	538 16	234			
5987	C ₃₀ H ₂₈ O ₁₀	Santalin	548 22	226	195*		
5989	C ₃₀ H ₃₄ O ₁₃	Pierotoxin.	002 26	200	!		
5990	C ₃₀ H ₃₈ O ₄	Hellesboresin Emetine	462 29	150 d			
5991	C ₃₀ H ₄₀ N ₂ O ₅ C ₃₀ H ₄₂ Cl ₂ N ₂ O ₅	Emetine dihydrochloride	508-32	71			
5993 5994	C30H42L2N2O6	Emetine dihydroiodide	581 26	53			1333
5995	C30H42N2O18S2	Sinalbin	764 20	238	Ì		
599 6	C ₃₀ H ₄₄ N ₆ O ₈ S	Physostigmine sulfate	734 47 648 45	138 5			1
59 97	C20H44O2	Cymarin	548 34	140 138 d			
5998	C10H46O12	Ouabain	598 35	185	İ		
5999	C ₁₀ H ₄₈ O ₂	Echicern	110 37	157			ł
6000	C ₂₀ H ₄₈ O ₂	Mycosterol	110 37	160			
6001	C30H48O8	β-Quinovin	536 37	235			1
6002	C30H50O	α-Amyrin	126 39	185	<i>></i> 300		
6003	C30H80O	β-Amyrin	126 39	195	1		į
6004	C30H50O	Androsterol	126 39	208			1
6005	C30H30O	Stigmasterol	126 39	140			
6006	C30H50O2	Betulin	412 39	252		ł	1
6007	C30H60O2	Cholesterol propionate	142 39	98.7	1		
6008	C30H52O4	Menthyl camphorate	176 40	86			
6009	C ₁₀ H ₅₄ N ₄ O ₄ S	Sparteme sulfate	566 51		1		1333
6010	C30II 60	Melene	120 46	63	380	0 890	1
6011	C ₈₀ H ₆₀ O ₂	Melissic acid CH ₂ (CH ₂) ₂₈ CO H	152 46	91			
6012	C ₃₀ H ₆₀ O ₄	Lanoceric acid	181 46	105		1	
6013	C30H62	Melissane	122 48	71	222" 3	0.700	
6014	C30H62	n-Triacontane CH ₃ (CH ₂) ₂₅ CH ₃	422 48	70	2351 0	0.780	
6015	C ₃₀ H ₆₂ O	Melissyl alcohol	438 48	88		0 777%	1
6016	C ₈₀ H ₆₂ O ₂	Cocceryl alcohol	451 48 465 12	104 156			1
6017	C ₃₁ H ₁₅ NO ₄	Apomorphine dibenzoate	558 20	187	1		
6018	C ₂₁ H ₂₆ O ₁₀	Tephrosin	493 22	190 5	1		
6019 6020	C21H27NO6 C21H28O10	Dibenzoylmorphine Kosin	570 29	142			1333
6021	C ₂₁ H ₄₂ NO ₁₁	Napelline	603 36	165			1000
6022	Ca ₁ H ₄₂ O	Lupeon.	131 33	170			1
6023	C ₁₁ H ₁₀ O	Lupeol	438 39	215			1
6024	C11H62O2	Cholesterol butyrate	456 40	92.8			
6025	C31H62O2	Euonysterol	456 40	138			1
6026	Ca1Ha2O	Palmitone (C ₁₆ H ₂₁) ₂ CO	450 48	83		0.79540.9	1125
6027	C13H62O1	Cocceric acid	482 48	93			
6028	C11H64	n-Hentriacontane CH4(CH2)29CH4	436 49	68 1	30215	0.7814***	
6029	C32H22O10	Heraclin	566 17	185			
6030	C22H26	Pentaphenylethane	410 20	173			
6031	C12H27N2O	Benzacine	469 23	150			
6032	C32H41NO9	Pyraconitine .	583 32	171	ļ		
6032.1	C32H42N2O3	Lappaconitine	598 34	223			
6033	C22H44N2O10S	Homoatropine sulfate	648.42			1	1333
6034	C22H44O10	Quassiin	588 34	211		1	}
6035	Ca2H45NO	Indobenzaconine	587 36	130		· ·	1
6036	C ₁₂ H ₄₆ BrNO ₁₀	Benzaconine hydrobromide	684 28	282	1		1
6037	C ₃₂ H ₄₆ ClNO ₁₀	Benzaconine hydrochloride	639.82	α 217; β 268	I	Į	ſ

No.	. Formula	Name	Mol. wt.	М. Р.	В. Р.	ď	R. I No
6038	C12H45N2O14S	Sinapine sulfate	716 45	193			
6039	C ₁₂ H ₄₉ NO ₅	Veratrine	591 39	205			
6040	C ₁₂ H ₆₁ NO ₁₁	Protoveratrine	625 40	250			
6041	C12H11N2O1	Lycopodine	512 42	115		1	
6042	C11H12O2	Echitm	468 40	170	1	1	1
6043	C ₁₂ H ₁₄ O ₂	Cholesterol valerate	470 42	89 6 30		1	-
6044 6045	C ₁₂ H ₆₄ O ₂ C ₁₂ H ₆₂ O ₂	Phytosterol valerate Palmitic anhydride (C ₁₅ H ₂₁ CO) ₂ O	494 48	64			
6046	C27H62O14	Convolvulin (Rhodeoretin) .	702 48	158	1		1
6047	C12H4O2	Cetyl palmitate C ₁₆ H ₃₁ CO ₄ C ₁₆ H ₂₄	480 49	54		0 83240	-
6048	C12H66	n-Dotriacontane CH ₄ (CH ₂) ₃₀ CH ₄	450 51	75	31015	0 77579.4	1110
6049	C32H40O19	Robinin	740 31	195			1110
6050	CnHaNOn	Anhydroaconitine	629 34	186			
6051	CaaHanNaOa	Septentrionalme	614 37	131			
6052	C22H20O10	Tormentol	606 39	228	1		
6053	CaHaNO ₇	Solangustine	575 42	235 d.	1	İ	
6054	C22H16O2	Cholesterol capionate	484 43	91 2		İ	
6055	C22H26O6	Phytosteroline	548 43	290	1	ļ	
6056	C33H63O6	Tricaprin	554 48	31 1		0 92140	1054
6057	C32H46O2	Psyllostearylic acid	. 494 51	95			1
6058	C12H41()	Psyllostearyl alcohol	. 480 52	69 5			
6059	C14H12O4	Isoeugenol dibenzoate	536 25	161			
6060	C14H16N2O6	Pseudomorphine	568 29	327 d.	Į.		
6061	C34II 16 N2O9	Sekisanme	616 29	200			
6062	C14H40N2O10S	Morphine sulfate	668 39	250 d.		İ	1333
6063	C14H40N2O12S2	Quinine digualacolsulfonate	732 45	130 d.			
6064	C14H44N2OnS	Apoatropine sulfate	640 42				1333
6065	CnHaOs	d-Camphor salicylate	580 34	60		l	
6066	C ₁₄ H ₄₇ NO ₁₀	Indaconitine	629 37	203			
6067 6068	CHH4NO11	Acontine	645 37	195		ŀ	1000
6069	C14H41BrNO11 C14H41CINO11	Acontine hydrobromide	. 726 29 681 84	163	ĺ		1333
6070	C14H41N7O10S	Atropine sulfate	676 45	149		1	1333
6071	C14H48N2O10S	Hyoscyamine sulfate	676 45	194 206			1333
6072	Cathan No	Acontine nitrate	708 39	200			1333
6073	CathaNOn	Japaconitine	647 39	204 2			1000
6074	C14H10CINO11	Japaconitine hydrochloride	683 85	149			l
6075	C14H10O2	Cholesterol benzoate	490 39	145 5			
6076	C14H80O1	Cholesterol salicylate	506 39	180			1180
6077	C14H14O11	Digitoxin	638 12	244	1		1100
6078	C34H36O16	Jalapin	720 43	150	ļ		
6079	Cs4H57NO2	Solanidine	511 45	215	1		1
6080	C'14H70	n-Tetratriacontane	478 54	76 5	2551.0	0 781	- 1
6081	('14H70()	Incarnatryl alcohol	494 54	71			
6082	C14H18O13	Filixic acid	650 29	184		1	1
6083	CasHasNaOa	Ergotinine	609.34	229 d.			1333
6084	C15H41N5O6	Ergotoxine	627 36	164			l
6085	CasH44N6OmP	Ergotoxine phosphate	725 40	187	l		
6086	CasHasO2	Echiretin .	508 43	52	1		1
6087	CasHacO14	Digitalin	700 43	217	1	1	1
6088	CathagOn	Phytosterolene acetate	007 45	160	ł		1
6089	ChH ₆₀ NO ₄	Imperialine	558 47	254 d.		0.700%	
6090 6091	('abH70() ('abH72	Stearone (C ₁₇ H ₃₆) ₄ CO	506 54	88	99111	0 7934	
6092	C16H72 C16H6O6	n-Pentatriacontane Lophopetalm	492 55	74 7	33118	$0.782_4^{74.7}$	
6093	C16H34N2O48	Aporheine sulfate	533 04 654 34	230 75	İ	1	
6094	CaoHaoN2O13	Cynoctonine	702 28	75 137			
6095	Ca6H42O6	Helleborm	570 32	137 > 250 d	!		
6096	C36H42O13	Filicie acid .	682 32	230 d		1	
6097	C16H44N2O108	Codeine sulfate	696 42	278		1	1333
6098	C16H45O10	α-Picrasmin	640 37	204			1000
6099	CasHasOm	B-Picrasmin	640 37	212			1
	1	Pyramidon camphorate	1 0 0.		l .	1	1

No.	Formula	Name	Mol. wt	М. Р.	в Р.	d	R. I. No.
6101	CacHa1NO11	Bikhaconitine	673 40	113		1	1
6102	C16H51NO12	Pseudaconitine	689 40	211			
6104	C26H62O21	Inulin	990 48	178 d		1 35	1
6105	C20H66O2	Oleic anhydride	546-51	22 2			
6106	C36H70O3	Stearic anhydride [CH ₁ (CH ₂) ₁₆ CO] ₂ O.	550 54	72			
6107	C26H14	Hexatriacontane	506-57	76.5	2651.0	0 78276	
6108	C27H26N2O9	Xanthaline .	652 29	208		1	
6109	Ca7Ha1NO11	Taxine	685 40	82 d.			
6110	C27H64O2	Cholesterol caprinate	540 49	82 2			1
6111	C28H44N2O12	Morphine tartrate	720 36	1			1333
6112	C11H44N4O1	Dicinchonine	588 37	10			1
6113	C18H46N1O8	α-Truxilline	658 37	80		· ·	
6114	C18H46N2O8	β-Truxilline	658 37	45			1
6115	C38H46N4O6S	Cinchonidine sulfate	686 45	242			
6116	CasH46N4O6S	Cinchonine sulfate	686 45	198-5			1
6117	CasH46N4OaS	Cupreine sulfate	718 45	257 d.			1
6119	C39H41NO12	Adlumine	715 32	188		1	
6120	Ca9H 62 NO 10	Zygadenine	705 49	200			
6120.1	Ca9H74O6	Trilaurin	638 57	46.5		0 89144	1
6122	C40H40N2O10S2	Quinine-\$-naphtholsulfonate	772 45	186		i	
6124	C40H60N4OBS	Quinine sulfate	746 48	235 2			
6125	CapHanO1a	Strophantin	776 43	179			1
6126	C40H70O2	Homoeuonysterol	582 54	131			
6127	C41H 80 N 4O7	Quinine carbonate	710 42	169			
6129	C42H46N4O8	Strychnine sulfate	766 45	200		1	1
6131	C42H54N2O7	Tritopine	698 43	182		1	1
6133	C42H66O6	Caulosapogenin	666-51	315		1	
6135	C42H70O2	Echitein.	606 54	195			
6136	C43H45N3O24	Quinoline tartrate	987 37	125			
6137	C42H47N4O10P	Quinine glycerophosphate	820 50	181		1	1
6138	C44H54N4O8	Quinine succinate	766 45	192		1	
6139	C44H44N4O4	Quinine malate .	782 45	177 5		1	1
6141	C44H44N4O10	Quinine tartrate.	798 45	202 5			1333
6142	C44H64NO19	Glycyrrhizic acid	910 50	220			
6143	C44H76O20	Sarsasaponin	924 59	248			
6144	C44H82O1	Brassidic anhydride	658-63	64		0.8354	1145
6145	C44H32O2	Erucic anhydride	658-63	48		0.00240	1144
6147	C46H86O6	Trimyristin	722 66	55		0.885	1089
6148	C46H50N4O10	Strychnine d-tartrate	818 42	228		1.420	1000
6150	C46H46N2O20S	Narceine sulfate	988 51			1	1333
6151	C47H64O16	Filmaron	874 42	60			1
6153	C48H92NO9	Phrenosin	827 72	215 s. d.		1	
6154	C49H80O23	Gitonin	1036-6	272 d.			
6155	C50H66O30	Hyssopin	1146 5	275			
6156	C to H 70 () 8	Lupulinic acid	798 54	93		0.00030	1,,,,
6157	CalHasO6	Tripalmitin	806-76	65.1; 46		0.8664	1114
6158	C52H91NO18	Solanine .	1017 7	254 d.		ļ	
6159	C ₅₂ H ₉₂ ClNO ₁₈	Solanine hydrochloride	1054 2	212			1
6160	C52H104O2	Ceryl cerotate.	760 80	84		Į.	
6161	C54H88O17	Caulosaponin (Leontin)	1008.7	255			1
5163	C46H74N4O12S	Psychotrine sulfate	1026 7	217			1
3164	C46H88O9	Caulophyllosapogenin	904.68	315			
3165	C67H104O6	Glycerol trielaidate	884 80	32	2401	0 915	
3166	C67H104O6	Glycerol trioleate	884 80	-17	240.0	0.959	
6167	C67H104O9	Glycerol triricinoleate	932.80	990	1	0.000	-
6168	C67H110N2O16	Pyosin	1062.9	238	!	0 86240	111
8169	C67H110O6	Tristearin.	890 85	54.5; 70 8		0 0024	111
6170	C58H46O23	Fustin	1110 4	219			
6172	C46H104O17	Caullophyllosaponin	1168.8	260			133
6173	C48H96N2O26S	Aconitine sulfate	1388.8	1	1		1 100

REFRACTIVE INDEX

A. LIQUIDS

							A. L	iQuiD:	5						
Serial No.	No No	75	H _B · H _a	No.	Inde	ndex	Dispersion II - II - II - II - II - II - II - II	on Seria No	No	Refrac tive index	$H_{\beta} - H_{\alpha}$	No	No.		$ \begin{vmatrix} D_{18} person \\ H_{\beta} - H_{\alpha} \end{vmatrix} $
1 2 3 4 5	586 60 208 141 213	1 306 1 329 1 3316 1 3419 1 341	0 0045 0 0054 0 0061 0 0051 0 0060	86 87 88 89 90	2933 724 2392 3369	1 3927 1 3929 1 3930 1 393 1 393	0 0080	171 172 173 174 175	3995 4007 2344 3998 1012	1 408 1 408 1 4082 1 408 1 4086	0 0072 0 0068 0 0072 0 0072	258 259 260 261 262	3988 2407 569 2892 1067 . 1	1 421 1.4213 1.4216 1.4217 1.4219	0 0071
6 7 8 9 10	168 793 513 1072 1073	1 3474 1 3526 1 3534 1 355 1 3564	0 0058 0 0061 0 0058 0 0062 0 0040	91 92 93 94 95	1654 1659 822 2926 1651	1 3932 1 3935 1 394 1 3947 1 3951	0 0068 0 0074 0 0066 0 0068	176 177 178 179 180	1100 420 2934 1080 2985	1.4088 1 4093 1 4095 1 410 1 410	0 0074 0 0070 0 0076	263 264 265 266 267	2301 358 2400 2405 658	1 4223 1 4224 1 4226 1 4226 1 4227	0 0076 0 0070 0 0075
11 12 13 14 15	1049 794 1 794 448 451	1 3574 1 3576 1 3579 1 3591 1 3597	0 0056 0 0062 0 0068 0 0063	96 97 98 99 100	1639 2362 747 790 2354 1	1 3959 1 3959 1 3960 1 396 1 3960	0 0074	181 182 183 184 185	1044 1570 1730 3329 3994	1 4103 1 4104 1 411 1 4110 1 411	0 0074	268 269 270 271 272	4412 2351 2409 3357 2330	1 4228 1.423 1 423 1 423 1 4235	0 0075 0 0075 0 0075
16 17 18 19 20	489 262 452 396 447	1 3613 1 361 1 3619 1 363 1 3636	0 6079 0 0061 0 0062 0 0070 0 0067	101 102 103 104 105	598 686 2937 791 495	1 3962 1 3962 1 3964 1 397 1 3972	0 0068 0 0081	186 187 188 189 190	2331 2910 1602 4000 657	1 4114 1 4111 1 4115 1 4116 1 1118		273 274 275 276 277	28 2965 220 711 999	1 4237 1 4238 1 4239 1 4240 1 4240	0 0093
21 22 23 24 25	233 395 1716 1086 37	1 3639 1 3664 1 369 1 3695 1 3714	0 0062 0 0060 0 0064 0 0063 0 0072	106 107 108 109 110	1085 1 228 2359 723 748	1 3973 1 3974 1 3975 1 3979 1 398	0 0073 0 0070	191 192 194 195 196	1043 2326 651 3335 3311	1 4119 1 412 1 4121 1 4122 1 4123	0 0073 0 0090 0 0081 0 0071	278 279 280 281 282	2419 2967 3325 4012 4161	1 424 1 424 1 424 1 424 1 424	0 0078 0 0193 0 0078 0 0073
26 27 28 29 30	212 1715 773 725 718	1 3719 1 372 1 3723 1 3727 1 3730	0 0066 0 0065 0 0078 0 0064 0 0070	111 112 113 114 115	821 2941 624 2910 1640	1 398 1 3980 1 3984 1 398 1 399	0 0074 0 0069 0 0086 0 0070	197 198 199 200 201	3999 3986 1619 1070 1645	1 4126 1 4127 1 4128 1 4129 1 4130	0 0072 0 0118 0 0073	283 284 285 286 287	1557 3308 657 1 3309 2403	1 4242 1 4242 1 4247 1 4248 1 425	0 0106
31 32 33 34 35	984 1713 665 1714 727	1 3758 1 376 1 3767 1 377 1 3771	0 0080 0 0065 0 0051 0 0065 0 0066	116 117 118 119 120	780 671 1652 356 2905	1 3993 1 3996 1 3997 1 3998 1 3999	0 0069 0 0068 0 0127	202 203 204 205 206	2343 2846 446 1730 1 948	1 4131 1 4131 1 4134 1 4135 1 4136	0 0073 0 0073 0 0094 0 0051	288 289 290 291 292	2868 465 616 2406 2987	1 425 1 4251 1 4254 1 4254 1 4254	0 0093 0 0071
36 37 34 39 40	726 506 1712 823 719	1 3779 1 378 1 3783 1 3786 1 3791	0 0065 0 0065 0 0064 0 0070 0 0071	121 122 123 124 125	917 2354 2361 1636 3365	1 4004 1 4005 1 4005 1 4006 1 4008	0 0096 0 0069 0 0069 0 0071	207 208 209 210 211	1643 2309 3338 4001 1726 1	1.4138 1.4138 1.414 1.414 1.4141	0 0074 0 0072 0 0072	293 294 295 296 297	3314 4419 928 2899 2962	1 4259 1 426 1 4263 1 4268 1 427	0 0081 0 0076 0 0073
41 42 43 44 45	1744 1746 48 1610 2387	1 3807 1 3819 1 382 1 3821 1 3825	0 0065 0 0089	126 127 128 129 130	2357 1534 1617 1764 2353	1 4009 1 4010 1 401 1 401 1 4012	0 0070 0 0098 0 0090 0 0081	212 213 214 215 216	587 3982 1733 1 2411 1571	1 4144 1 4145 1 4146 1 4149 1 415		298 299 300 301 302	2963 4585 4586 949 3962	1 4270 1 427 1 427 1 4271 1 4271	0 0075 0 0074
46 47 48 49 50	146 667 1015 1019 717	1 3828 1 383 1 384 1 3840 1 3843	0 0071	131 132 133 134 135	820 746 2901 1 2938 2942	1 401 1 4015 1 4015 1 4016 1 402	0 0075 0 0071 0 0070	217 219 220 221 222	1644 2873 3993 3336 375	1 4150 1 415 1 415 1 4153 1 4154	0 0073 0 0090 0 0075 0 0073 0 0100	303 304 305 306 307	721 1612 264 3939 3975	1 4272 1 4273 1 4274 1 4275 1 4275	0 0075 0 0072
51 52 53 54 55	1017 1020 1739 247 2389	1 3844 1 3844 1 3849 1 385 1 385	0 0068 0 0067 0 0091	136 137 138 139 140	487 775 2935 2909 1 2904	1.4022 1.4026 1.4026 1.4030 1.4035	0.0080	223 224 225 226 227	966 2396 2896 66 189	1.4156 1.4159 1.4161 1.4164 1.4166	0 0081 0 0075 0 0076 0 0080	308 309 310 311 312	2964 744 3310 2386 1 4172	1 4278 1 428 1 4284 1 4288 1 4289	0 0095
56 57 58 59 60	1063 1026 1016 505 749	1 3851 1 3852 1 3858 1 386 1 386	0 0068 0 0068 0 0066	141 142 143 144 145	2912 1560 3347 3349 1013	1 4036 1 4038 1 404 1 4040 1 4043	0 0071	228 229 230 231 232	2397 3936 3372 1736 911	1 4172 1 4174 1 4176 1 4178 1 4179	0 0194 0 0084 0 0044	313 314 315 316 317	1027 4162 449 4153 2867	1 429 1 4293 1 4295 1 4299 1 430	0 0075 0 0076
61 62 63 64 65	2392 1007 450 792 824	1 3861 1 3862 1 3868 1 387 1 387	0 0064 0 0070 0 0008 0 0067 0 0075	146 147 148 149 150	937 3353 2903 1760 1768	1.4045 1.4047 1.4049 1.405 1.405	0 0085	233 234 235 236 237	2944 4178 968 969 479	1.4184 1.4184 1.4185 1.4185 1.4185	0 0075 0 0105 0 0101	318 319 320 321 322	2966 2986 3356 1629 2953	1 430 1 430 1 430 1 4302 1 4303	0 0075 0 0076 0 0074
66 67 68 69 70	269 1064 1018 1001 1004	1 3874 1 3874 1 3879 1 3881 1 3882	0 0074 0 0066 0 0131 0 0072	151 152 153 154 155	3354 378 1010 1084 1 1045	1 405 1 4051 1 4051 1 4053 1 4056	0 0080 0 0071 0 0084	238 239 240 241 242	1695 2302 2320 943 1734	1 4194 1 419 1 4195 1 4196 1 4196	0 0073 0 0091 0 0071	323 324 325 326 327	273 355 925 3289 3937	1 4306 1 4306 1 4306 1 4306 1 4309	0 0102 0 0094 0 0094 0 0077
71 72 73 74 75	468 524 1653 1014 1006	1 3886 1 389 1 389 1 3891 1 3895	0 0065 0 0074 0 0068 0 0071	156 157 158 159 160	2936 1046 1081 1003 2275	1 4058 1 4060 1 406 1 406 1 406	0 0070 0 0089 0 0087	243 244 245 246 247	1561 1662 1732 2847 2955	1 4198 1 4198 1 420 1 420 1 4201	0 0081 0 0081 0 0071	329 330 331 332 333	3361 3363 3940 4843 620	1 4310 1 431 1 4311 1 4312 1 4314	0 0114
76 77 78 79 80	154 2393 809 1002 1655	1 3898 1 390 1 3902 1 3902 1 3903	0 0084 0 0068 0 0060 0 0080 0 0070	161 162 163 164 165	3330 1 3334 2901 3333 1 1084	1 4060 1 4060 1 4065 1 4070 1 4072	0 0071 0 0070	248 249 250 251 252	2970 2971 3989 2400.1 896	1 4203 1 4204 1 4204 1 4206 1 4207	0 0074	337	2412 3355 736 4852 3358	1 4314 1 4317 1 432 1 4321 1 4322	0 0073 0.0076
81 82 83 84 85	626 972 1649 242 628	1 3904 1 3900 1 391 1 392 1 8927	0 0069	166 167 168 169 170	1079 3331 662 1767 3361	1.4075 1.4076 1.4079 1.4079 1.408	0 0071 0.0080 0.0069 0.0071	253 254 255 256 257	2407 1 2954 4411 2399 2869	1 4209 1,4209 1 4209 1 421 1.421	0 0073 0.0076	341	2952 3328 4166 4169 712	1 433 1 4330 1 4333 1 4334 1 4335	0 0073 0 0076

Serial No	Gen. index No.	Refrac- tive index ny	Dispersion H _β – H _α	Senal No	Gen index No	Refrac- tive index nB	Dispersion H _B - H _a	Serial No	Gen index No	Refrac- tive index	Dispersion $H_{\beta} - H_{\alpha}$	Serul No	Gen index No.	Refrac- tive index	Dispersion Hg — Ha
344 345 346 347 348	3364 2318 464 743 3362	1.4338 1.434 1.4341 1.4344 1.4345	0.0092	434 435 436 437 438	2890 3808 618 3 585 648 2	1 4503 1 4505 1 4506 1 4507 1 451	0 0087 0 0092	524 525 526 527 528	2239 106 3927 3816 139	1 4763 1 4777 1 4785 1 4788 1 479		616 617 618 619 620	3761 4081 666 2719 3763	1 5042 1 5042 1 5046 1 505 1 5050	0.0159
349 350 351 352 353	192 158 5010 742 924	1.4346 1.4349 1.4359 1.436 1.436	0 0089 0 0092 0 0080	439 440 441 442 413	929 3826 3917 2294 4010	1.4512 1.4515 1.4521 1.4524 1.4524	0 0176 0 0121 0 0095	529 530 531 532 533	2797 1370 3908 422 3026	1 (792 1 (792 1 (798 1 (798 1 (801 1 (803	0 0110	621 622 623 624 625	475 3230 90 3679 4971	1 5051 1 5051 1 5055 1 5057 1 5057	0 0148 0 0158 0 0137 0 0163
354 355 356 357 358	471 2849 1 258 2968 3961	1 4362 1 4362 1 4364 1 437 1 437	0 0126 0 0074 0 0078	441 445 116 447 118	1054 3805 285 2888 3893	1 4530 1 4532 1 4539 1 4540 1 4540	0 0035	534 535 536 537 538	887 5164 5682 3024 3022	1 4805 1 4806 1 482 1 4825 1 4825	0 0102	626 627 628 629 630	2684 2720 3154 3678 815	1 5058 1 506 1 506 1 506 1 5063	0 0161 0 0161 0 0161 0 0162 0 0130
359 360 361 362 363	5260 3303 614 1258 3895	1 437 1 4371 1 4373 1 4375 1 4376	0 0076 0 0149 0 0126	449 450 451 452 453	5853 648 1 1595 364 4144	1 4543 1 4550 1 455 1 4554 1 4556	0.0054	549 540 541 542 543	3890 5480 3823 3764 1596	1 4829 1 483 1 4849 1 4869	3	6.31 6.32 6.33 6.34 6.34	4972 689 2722 4350 4348	1 5065 1 507 1 507 1 507 1 507 1 508	0 0164
364 365 366 367 368	17 762 3944 604 811	1 438 1 438 1 4380 1 4386 1 4386	0 0096 0 0082 0 0097	454 455 456 457 458	1368 4 107 5356 5813 222	1 4556 1 4557 1 4557 1 4558 1 4562	0 0107	514 545 546 547 548	3865 1131 3860 3886 5001	1 1870 1 1870 1 188 1 188 1 488	1 0 0140	6.36 6.37 6.38 6.39 640	3680 4827 4545 603 2586	1 5081 1 5083 1 5085 1 509 1 509	0 0169 0 0140 0 0127 0 0188
369 370 371 372 373	3285 927 470 741 1506	1 4388 1 4390 1 4392 1 4398 1 4404	0 0092 0 0131 0 0089	459 460 461 462 463	3889 648 4 696 3933 2889	1 4567 1 4570 1 457 1 457 1 457	0 0081	549 550 551 552 553	2927 3725 3765 2262 3857	1 489 1 489 1 480 1 490 1 491	0 5 3 0 0132	641 613 611 645	870 2775 234 331	1 509 1 5105 1 512 1 512 1 512	0.0163
374 375 376 377 378	4179 2813 1089 2812 1041	1 4404 1 4407 1 441 1 4410 1 4412	0 0098 0 0112 0 0083	461 465 466 467 468	3969 5482 2340 2341 2886	1 1579 1 4580 1 4581 1 4590 1 459	0 0082	554 555 556 557 558	3724 221 3229 4097 4344	1 491 1 191 1 492 1 492 1 492	0 0147	616 617 648 649 650	2721 183 3241 3786 3227	1 5128 1 513 1 5131 1 5132	0 0132 0 0171 0 0163 0 0157
379 380 381 382 383	1098 1366 457 1500 941	1 4412 1 4413 1 4414 1 4415 1 4416	0 0091 0 0122 0 0077 0 0103 0 0082	169 470 171 172 473	2383 11 1178 5371 3974 1	1 4594 1 4595 1 4597 1 4602 1 4603	0 0079 0 0084	559 560 561 562 563	3728 1697 3223 3736 4097 1	1	20 0 0125 30 0 0146 3 0 0140	651 652 653 654 655	404 1330 4102 3119 5141	1.5134 1.514 1.514 1.5143 1.516	0.0169
384 385 386 387 388	1252 2281 655 3960 5156	1 4417 1 4419 1 442 1 4420 1 142	0 0131 0 0084 0 0084	474 475 476 477 478	3902 3992 12 3894 2339	1 1606 1 1606 1 1607 1 1609 1 461	0 0097	564 565 566 567 568	3882 4367 4342 140 3226	1 493 1 493 1 49- 1 49 1 49	39 1 12	- 11	2589 5000 3754 2163 3235	1.517	0.0132
389 390 391 392 393	1042 814 1576 5688 764	1 4421 1 4425 1 1425 1 4427 1 1428		479 480 481 482 483	3296 3915 5605 1105 1372	1 4614 1 4626 1 4626 1 463 1 4630	0.0088	569 569 570 571 572	1 3731 5978 4098 1051 2688	1 49- 1 49- 1 49- 1 49- 1 19- 1 19-	5 0 0114 51 0 0133 55 0 0131	665	412 4318	1.5187 1.5201 1.5203 1.5207	0.0131
394 395 396 397 398	2284 648 1096 2825 2827	1.443 1.4433 1.4437 1.4438		481 485 486 487 488	5606 3947 3273 1328 3948	1 4636 1 1641 1 1616 1 4616 1 4619	0 0145	573 574 575 577 578 579	4983 1588 2683 755 2112	1 49 1 49 1 49 1 49 1 49	56 59 0 0104 59 0 0152 60 0 0137	666 667 669 670	4560 2713 3755 3170	1 5226	0.0206
399 400 401 402 403	3295 190 1040 4387 1056	1.4441 1.4443 1.4444 1.4445 1.4450	0 0084	489 490 191 492 493	366 136 4148 2814 4374	1 465 1 465 1 466 1 466 1 466	0 0151	580 581 582 583 584	3228 3856 3726 4366 2685	1 40 1 49 1 49 1 49 1 49	067 0 0113 067 069 072	673 674 673	2040 3149 3757 3096	1.523 1.523 1.523 1.523 1.523	'
404 405 406 407 408	1537 2327 2835 1055 2283	1 4451 1 4452 1 4453 1 4454 1 4454	0 0095	494 195 496 497 498	403 1756 2882 2796 2240	1 166 1 467 1 167 1 167 1 168	5 0 0084	585 586 588 589	3225 3780 600 3677	1 49 1 49 1 49 1 19	975 0 015 976 0 011	7 679	7 2714 8 3752 9 2503 3688	1.523 1.524 1.524 1.524 1.524	0.0187
409 410 411 412	4381 3968 619 4856	1 4454 1 4456 1 4456 1 4456	0 0083	499 500 501 502 503	3854 2058 176 2059	1 469 1 469 1 469 1 470 1 470	7 0 0141 7 0 0112 0 0112	590 591 593 594 595	3286	1 49 1 49 1 49 1 49 1 4	984 986 993 0 011	6 68 68 68 68	2 3258 3 4090 4 3057 5 859	1 526 1 526	0 0.0270
413 414 415 416 417	1769 4376 148 1699 19	1 446 1 446 1 446 1 446 1 446	2 4 0 0120 7 0 0089	504 505 506 507 508	3891 2057 159 3858	1 470 1 470 1 171 1 171 1 471	0 0153 0 0094 5	596 597 598 599 600	3277 3152	1 4 1 4 1 4 1 5 1 5	997 0 005 998 0 021 00	3 68 68	7 594 8 1250 9 3132 0 3664	1.527	6 0.0173 7 0.0232 7 0.0183 71 0.0189
418 419 420 421 422	4388 963 3827 2850 1692 3892	1 446 1 447 1 447 1 447 1 447 1 448	0 1 8 8 0 0088	509 510 511 512	3913 3810 3952 515	1 47: 1 47: 1 47: 1 47: 1 47:	27 0 0111 27 0 0078	601 602 603 604 605	4977 4976 1443	1 5	003 0 011 005 007 01 0 016	(4) (6) (6) (6)	02 3034 03 576 04 4353 05 3747	1 529 1 529 1 529 1 529	62 65 65 66 0.0160
423 424 425 426 427 428	921.	1	2 0 0083 2 0 0082 6 0 0082	514 515 516 517	4115 3806 4371 3879	1 473 1 473 1 473 1 474 1 474	3 0 0118 19 1	600 601 601 601	7 4324 8 2810 9 4828		5014 0 016 5019 0 01 5023 0 02- 5025 0 01	17 69 15 69 19 70	97 2 98 3656 99 3265 (0) 1249	1 53 1 53 1 53 1 53	00 0.0117 01 0.0204 05 11 0.0232
429 430 431 432 433	1724 926 2282 1090	1.449 1.449 1.449 1.449	0 5 6 9	519 520 521 522	1466 2745 3924 368	1.47 1.47 1.47 1.47	15 17 53 0 0105		2 589 3 3883 4 111		5030 5035 5036 504 504 0 01	51 70 04 70	01 696 02 208- 03 313- 04 406- 05 257	1 53 1 53 1 1.53	23 35 38 0 020

Serial No	Gen. index No	Refrac- tive index	$\begin{array}{c} \text{Dispersion} \\ \mathbf{H}_{\pmb{\beta}} - \mathbf{H}_{\pmb{\alpha}} \end{array}$	Serial No	Gen index No	Refrac- tive index	$\begin{array}{c} \text{Dispersion} \\ \text{H}_{\beta} - \text{H}_{\alpha} \end{array}$	Serial No	Gen. index No	Refrac- tive index nB	Dispersion $H_{\beta} - H_{\alpha}$	Serial No.	Gen. index No.	Refrac- tive index nB	$\begin{matrix} \mathbf{D_{ispersion}} \\ \mathbf{H_{\beta}} & \mathbf{H_{\alpha}} \end{matrix}$
706 707 708 709 710	3237 1390 2618 2725 184	1 5357 1 536 1 5369 1 537 1 5379	0 0168 0 0216 0 0222 0 0180 0 0140	731 732 733 734 735	1229 2032 3259 2031 2639	1 549 1 5490 1 5492 1 551 1 551	0.0176 0 0229 0 0189	756 757 758 759 760	2757 2203 2204 2004 3642	1.570 1.5714 1.5728 1.5735 1.5749	0.0217 0.0249 0.0230 0.0315	781 782 783 784 785	102 601 1205 1483 2061	1.6062 1 6077 1.608 1.6081 1.609	0 0217 0 0258 0 0234
711 712 713 714 715	2038 3606 2159 2161 2162	1 539 1 5394 1 5309 1 540 1 540	0 0175 0 0210 0 0173 0 0181 0 0184	736 737 738 739 740	1347 1559 2030 2763 2633	1 5529 1 5537 1 555 1 5559 1 556	0.0252 0.0221 0.0225 0.0182	761 762 763 764 765	2771 4930 4757 1200 2 1200 1	1 575 1 576 1 5761 1 577 1 5814	0 0162	786 787 788 789 790	2492 1204 3548 3549 4038	1.6094 1.611 1.6149 1.616 1.618	0 0296 0 0296 0 0303
716 716 1 717 718 719 720	1388 1944 3789 2677 123 2195	1 5407 1 544 1 5421 1 5425 1 5437 1 5440	0 0213 0 0220 0 0165 0 0175	741 712 743 744 745	1441 2762 964 2758 2578	1 5562 1 558 1 559 1 559 1 5597	0 0375 0 0214 0 0217 0 0270	766 767 768 769 770	2255 372 1887 1442 2491	1.583 1.584 1.5861 1.5863 1.588	0 0248 0.0286 0.0249	791 792 793 794 795	3069 1333 1369 127 3455	1.6195 1.621 1.6260 1.6277 1.633	0 0424 0 0253 0 0265 0 0189 0.0309
721 722 723 724	10 1389 1230 2081 2001	1 5442 1 5455 1 546 1 5462 1 5464	0 0219 0 0202 0 0178 0 0232	747 748 749	1062 1294 2760 2098 2767	1 5598 1 560 1 561 1 5620 1 5649	0 0283 0 0193 0 0214 0 0227 0 0230	771 772 773 774 775	2756 18 151 1375 4723	1 5887 1 589 1 5890 1 5895 1 5921	0 0248 0 0176 0 0162 0 0240 0.0195		128 428 1918 3453 4263	1.638 1.642 1.6509 1.658 1 6913	0.0183 0 0349 0 0325 0 0356
727 728 729	3260 2160 236 2082 3787	1 5469 1 547 1 5472 1 5475 1 5481	0 0185 0 0204 0 0224	752 753 754	1857 619 1856 1176 2123	1 5650 1 567 1 567 1 5671 1 5692	0.0209 0.0230 0.0207 0.0214	778	1376 1202 101 4296 126	1.5931 1.5979 1.5992 1.602 1.603	0.0243 0.0161 0.0193 0.0290 0.0162				

		Tem-	Refractive	1			Tem-	Refractive	·			Tem-	Refractive	
Serial No	Gen index No	pera- ture t°C	index n ^{fo} nD	$\frac{\text{Dispersion}}{H_{\pmb{\beta}}-H_{\pmb{\alpha}}}$	Serial No	Gen index No	pera- ture t°C	index	Dispersion H _B – H _a	Serial No	Gen index No.	pera- ture t°C	index	$\begin{array}{c} \text{Dispersion} \\ \mathbf{H}_{\pmb{\beta}} - \mathbf{H}_{\pmb{\alpha}} \end{array}$
NO1 802 803 804 805	683 310 209 1327 930	0 0 7 7 7 7 7 5	1 3752 1 4538 1 3597 1 6053 1 4341	0 0058 0 0094	858 859 860 861	4572 4147 3912 3863 3859	15 15 15 15 15	1 4644 1 4708 1 4801 1 4849 1 4871	0 0130	912 913 914 915 916	3955 568 3819 3821 4993	17 17 17 17 17	1 4385 1 4467 1 4674 1 4784 1 5332	0 0000
806 807 808 809 810	3054 969 1 4339 22 4304	8 2 8 4 9 5 10 10 8	1 571 1 417 1 5301 1 2675 1 6265	0 0234 0 0171 0 0052 0 0337	862 863 864 865 866	4979 117 118 4986 988	15 15 15 15 15	1.4921 1.4982 1.4998 1.5018 1.5094	0 0233 0 0227 0 0071	917 918 919 920 921	3649 4404 3820 3849 982	17 17.1 17.1 17.1 17.2	1 5671 1 4435 1 4774 1 4895 1 3817	0.0072 0.0116 0.0157 0.0085
811 812 813 814 815	807 3591 2832 2570 2276	11 11 11 9 11 9 12	1 4198 1 5425 1 4519 1 5503 1 4468	0 0077 0 0188 0 0084 0 0229	867 868 869 870 871	100 3589 3590 29 4306	15 15 15 15 15 15	1 5219 1 5632 1 5736 1 7425 1 6477	0 0148	922 923 924 925 926	2267 3928 339 340 2830	17 2 17 2 17 4 17 4 17 4 17 5	1.4511 1.4638 1.5337 1.5369 1.4771	0 0111 0 0085 0.0104
816 817 818 819 820	2337 4323 2824 1535 2453	12 12 12 5 12 5 12 5 12 5	1 467 1 5703 1 1208 1 4559 1 5524	0 0253 0 0089 0 0167 0 0338	872 873 874 875 876	558 359 1541 525 1546	15 2 15 3 15 3 15 4 15 4	1 4735 1 4302 1 4526 1 3770 1 4213	0 0103 0 0084 0 0071 0 0092	927 928 929 930 931	609 3245 5359 3638 3637	17 6 17 6 17 7 17 8 17.8	1 4588 1 5058 1 463 1 4804 1 5451	0 0157 0 0157 0 0092 0.0085 0.0169
821 822 823 824 825	2580 89 1078 3818 3851	12 7 12 9 13 13 13	1 5764 1 4340 1 414 1 479 1 4971	0 0298 0 0101 0 0135	877 878 879 880 881	3128 3122 3661 983 1613	15.5 15.7 15.8 16 16	1 5647 1.5747 1 5196 1.378 1.4013	0 0236 0 0274 0 0000	932 933 934 935 936	920 1000 4375 1 3125 3667	18 18 18 18 18	1 4079 1 4282 1 4565 1 5441 1 5680	0 0094 0.0180 0 0251
826 827 828 829 831	5 3861 608 1518 4041	13 13 6 13 7 13 7 13 9	1 5831 1 4540 1 4786 1 4993 1 6232	0 0083 0 0128 0 0141 0 0312	882 883 884 885 886	942 737 3874 1555 3304	16 16 16 16 16	1 4083 1 4156 1 438 1 4506 1 452	0 0076	937 938 939 940 941	4813 545 1022 3753 3037	18 18 1 18 2 18 2 18 2	1 5933 1 5004 1 4513 1 4999 1 6283	0.0280 0 0168 0.0136 0.0312
832 833 834 835 836	2880 2342 2878 3812 2579	1 6 1 6 1 6 1 6 1 4	1 458 1 462 1 463 1 4883 1 5566	0 0172 0 0248	887 888 889 890 891	2884 2883 2887 3923 5003	16 16 16 16 16	1 455 1.458 1 458 1 4762 1 480		942 943 944 945 946	1568 916 400 2855 2818	18 3 18 3 18 4 18 4 18 4	1 4198 1 4221 1 4058 1 4607 1 4904	0 0148 0 0070 0 0090 0 0124
837 838 839 840 841	4707 2336 3852 3919 3666	14 14 4 14 5 14 5 14 5	1 610 1 4397 1 4647 1 4787 1 5439	0 0092 0 0084 0 0189	892 893 894 895 896	908 3654 84 379 2279	16 16 16 16 16 1 16 3	1 4888 1 5514 1 580 1 1397 1 4554	0 0149 0 0079 0 0159	947 948 949 950 951	1341 4260 935 773 1 4560	18 5 18 5 18 8 18 9 18 9	1 5389 1 635 1 4357 1 4200 1 5198	0 0211 0 0096 0 0195
842 843 844 845 846	2289 1 979 3574 3762 4967	14 6 14 7 14 7 14 8 14 8	1 4505 1 4098 1 5740 1 5104 1 5128	0 0083 0 0071 0 0222 0 0201 0 0153	897 898 809 900 901	3847 608 1 1548 4279 918	16 3 16 3 16 4 16 4 16.5	1 4846 1 4971 1 4458 1 6157 1 4402	0 0126 0 0133 0 0136 0 0296	952 953 954 955 956	170 1554 2929 3807 3850	19 19 19 19 19	1.4117 1.4375 1.4435 1.4724 1.4900	0 0087
847 848 849 850 851	3283 1616 622 713 4004	14 9 15 15 15 15 15	1 4463 1 4065 1 4257 1 4313 1 4372	0 0103 0 0090	902 903 904 905 906	3324 880 934 2816 2570	16.5 16.6 16.6 16.6 16.6	1 4632 1 4470 1 4527 1 4561 1 5469	0 0090 0 0129 0 0127 0 0104 0 0230	957 958 959 960 961	4987 4988 4994 2568 4150	19 19 19 19 19	1.4992 1.5092 1.5289 1.5485 1.4714	0 0111 0 0227 0 0134
852 853 854 855 856	1533 132 133 5007 4834	15 15 15 15 15	1 4421 1 4490 1 4519 1 4628 1 4638	0 0116 0 0101	907 908 909 910 911	2538 4587 1519 2328 313	16.6 16.8 16.8 16.9 17	1.5485 1.4419 1.5077 1.425 1.3870	0 0240 0 0147 0 0076 0 010#	962 963 964 965 966	4023 2298 2299 3959 3639	19 3 19 3 19 5 21 21	1 6546 1.4310 1.4355 1.447 1 5390	0.0409 0.0102 0.0105

14

Serial No	Gen. index No.	Tem- pera- ture t°C	Refractive index	Dispersion $H_{\beta} - H_{\alpha}$	No.	Gen index No	Tem- pera- ture	Refractive index	Dispersion H _β - H _a	Serial No	Gen index No	Tem- pera- ture	Refractive index	Dispersion H _B - H _e
967 965 969 970 971	4998 2759 4307 3121 2569	21.3 21.3 21.3 21.4 21.4	1.4979 1.5591 1.6544 1.5370 1.5407	0 0408 0 0168 0 0223	1032 1033 1034 1035 1036	300 994 1587 816 5603	26 4 26 4 26 4 27 5 30	1 4540 1 4951 1 4877 1 4769 1 1559	0 0005 0 0137 0 0140 0 0126	1007 1098 1099 1100 1101	360 288 156 3071 1231	63 1 63 9 65 66 69	1 4165 1 4152 1 4297 1 5377 1 5266	0 0169 0 0171
972 973 974 975 976	2071 3600 1496 2859 4789	21.4 21.4 21.6 21.6 21.6	1 5637 1 5766 1 4351 1 4766 1 5743	0 0247 0 0311 0 0114 0 0089 0 0193	1037 1038 1039 1040 1041	3804 3981 3126 2293 5380	30 31 33 33 × 33 9	1 474 1 4308 1 5758 1 4561 1 4358	0 0295 0 0082 0 0077	1102 1103 1104 1105 1106	3456 2172 3414 4219 3503	70 7 74 76 77 1 77 8	1 6079 1 5425 1 6228 1 588 1 5678	0.0295 0.0187 0.0303 0.0265 0.0375
977 978 979 980 981	4814 2928 3297 5765.1 3916	21 6 21.9 22 22 22 22	1 6321 1 4512 1 4380 1 4538 1 4604	0.0400	1042 1043 1044 1045 1046	316 5381 3648 5486 5852	34 2 34 3 31 4 31 6 35	1 4146 1 4347 1 5537 1 436 1 4587	0 0076 0 0219 0 0076	1107 1108 1109 1110	238 5168 2356 6018 5814	78 3 78 9 79 70 4 70 5	1 4274 1 4283 1 3732 1 4331 1 4283	0 0098 0.0075 0.0064 0 0077 0 0076
982 983 984 985 986	3822 3815 3813 5005 3703	22 22 22 22 22 2 22 2	1.4754 1.4770 1.4959 1.4600 1.5604	0 0085 0 0081	1047 1048 1049 1050 1051	5391 4530 3 2490 1011 1627	35 2 35 2 36 36 5 37	1 4349 1 5526 1 6332 1 3931 1 4606	0 0075 0 0292 0 0293 0 0070 0 0978	1112 1113 1114 1115 1116	617 5159 6157 6169 8801	79 7 79 8 80 80 80	1 4228 1 4273 1 4381 1 4390 1 4402	0 0126 0 0075 0 0089
987 988 989 990 991	301 4559 2205 2199 1357	22.3 22.3 22.4 22.5 22.5	1 4075 1 4984 1 5711 1 5021 1 5642	0 0093 0 0140 0 0242	1052 1053 1054 1055 1056	177 2096 6056 1553 3272	37 2 35 6 40 40 40	1 5258 1 5763 1 1116 1 1467 1 4511	0 0181 0 0118 0 0150	1117 1118 1119 1120 1121	5379 4756 5258 5816 936	80 2 80 6 80 7 80 8 81	1 4299 1 539 1 4175 1 4236 1 4342	0 0076 0.0187 0 0073 0.0075 0.0123
992 993 994 995 996	2493 3958 4373 46 893	22 5 22 6 22 6 22 7 22 7	1 5990 1 4484 1 4623 1 4453 1 4852	0 0083 0 0113 0 0166	1057 1058 1059 1060 1061	5360 1314 1315 1316 4060 1	40 40 40 40 40	1 4533 1 5473 1 5565 1 5579 1 5726	0 0327	1122 1123 1124 1125 1126	631 4406 2386 6026 3507	82 1 82 1 83 9 93 5 98 7	1 379 1 4183 1 421 1 4297 1 6206	0.0067 0.0074 0.0083 0.0076 0.0324
997 998 999 1000 1001	2468 2134 3601 2384 4563	22 7 22 7 22 9 23 23	1 5645 1 5760 1 5494 1 4531 1 5300	0 0231 0 0268 0 0264	1062 1063 1064 1065 1066	4039 860 1413 5610 4174	40 3 41 42 9 45 2	1 6026 1 5238 1 5425 1 434 1 4294	0 0289 0 0189 0 0075 0 0076	1127 1128 1129 1130 1131	4218 5402 2548 5063 921.2	98 8 99 99 2 99 2 99 3	1 6048 1 5839 1 5522 1 6762 1 4657	0.0298 0.0219 0.0242 0.0556 0.0121
1002 1003 1004 1005 1006	1430 3547 2505 3701 3702	23 23 23 1 23 1 23 1	1 5861 1 6141 1 5272 1 5802 1 5898	0 0231 0 0208 0 0244	1067 1068 1069 1070 1071	5694 3587 931 239 4297	45 3 46 46 7 47 47 3	1 4344 1 5836 1 4434 1 415 1 5932	0 0076 0 0123 0 0098 0 0281	1132 1133 1134 1135 1136	1206 4024 4897 3584 4899	99 4 99 4 99 4 99 4	1 5743 1 6211 1 6803 1 6828 1 6959	0.0204 0.0387 0.0541 0.0591
1007 1008 1009 1010 1011	886 1628 314 4375 4156	23 2 23 3 23 4 23 4 23 4	1 4365 1 4329 1 4597 1 4619 1 4624	0 0147 0 0094 0 0102 0 0082	1072 1073 1074 1075 1076	993 30 3802 2464 3412	48 48 48 48 48 5	1 4126 1 4418 1 4621 1 6231 1 6338	0 0079 0 0085 0 0343 0 0305	1137 1138 1139 1140 1141	3583 3291 5223 4640 2819	90 4 99 5 99 5 99 5 99 6	1 7083 1 4760 1 5021 1 6959 1 4621	0.0515 0.0094 0.0133 0.0561 0.0094
1012 1013 1014 1015 1016	3191 3192 4448 561 1700	23 4 23 4 23 4 23 5 23 6	1 5798 1 5933 1 6060 1 5231 1 4464	0 0302 0 0278 0 0170	1077 1078 1079 1080 1081	56 5876 5805 3550 4305	48 6 50 50 51 2 53 2	1 4616 1 4663 1 4689 1 6703 1 6443	0 0149 0 0424 0 0439	1142 1143 1144 1145 1146	5224 3494 6145 6144 2864	99 6 99 6 100 100 100	1.5022 1.5827 1.4347 1.4366 1.4811	0.0134 0.0257 0.0085
1017 1018 1019 1020 1021	1482 1444 4241 1701 2289 3	23 6 24 24 24 3 24 4	1 4992 1 5043 1 5826 1 4463 1 4432	0 0175	1082 1083 1084 1085 1086	4447 1331 1251 5763 1480	53 5 56 56 57 1 57 7	1 5975 1 5010 1 5150 1 448 1 6339	0 0268 0 0173 0 0225 0 0084 0 0305	1147 1148 1149 1150 1151	4947 3144 3417 3418 946	100 100 100 100 100 106 4	1 5080 1 5345 1 6092 1 6235 1 4188	0.0060 0 0177 0.0291 0.0318 0.0065
1022 1023 1024 1025 1026	3728 1 4385 5875 3687 3036	24 5 25 25 25 25 25 1	1 4877 1 4555 1 1875 1 5252 1.6223	0 0139 0 0080 0 0302	1087 1088 1089 1090 1091	2206 4851 6147 2263 563	59 1 60 60 60 61	1 5532 1 4308 1 4429 1 4787 1 4953	0 0228	1152 1153 1154 1155 1156	4119 482 3282 1 3307 782	107 2 107 8 109 4 110 6 113	1 489 1 4161 1 4482 1 4303 1 446	0.0145 0.0090 0.0085 0.0077 0.0097
1027 1028 1029 1030 1031	2289 2 1885 2338 4490 4226	25 2 25 5 26 26 26 26	1 4431 1 5257 1 4558 1 575 1 6644	0 0082 0 0191 0 0205	1092 1093 1094 1095 1096	1858 1961 1962 1963 2083	61 61 5 61 5 61 5 62 5	1 5553 1 5557 1 5577 1 5647 1 5346	0 0246	1157 1158 1159 1160 1161	2585 4652 5340 2007 3938	114 6 129 130 1 131 9 133 3	1 512 1 6567 1 480 1 504 1 422	0.0187 0.0138 0.0191 0.0078

B. SOLIDS

I. Mean Values

Serial No	Gen index No	Refractive index nB	Serial No	Gen index No	Refractive index	Serial No	Gen index No	Refractive index n ² 8	Serial No	Gen. index No.	Refractive index
1162	481 1070 1	1 4156	1164	1578 1	1 53	1165	5664	1 635	1166	414	1.755

II. Uniaxial Group

Nerial	Gen.	Refractive index	Serial Gen.	Refractive index	Serial	Gen.	Refractive index	Serial Gen.	Refractive index
No.	index No	ω ! •	No index N	ν	No	index No	ω ·	No index No	ω e
1167	55	1 484 1 602	1173 238*	1 54 1 46	1179	2174	1 569 1 666	1184 1416	1 633 1 626
1168	3973	1 497 1 476	1174 808	1 544 1 521	1180	6075 4043.1	1 579 1 540 1 581 1 493	1185 2454 1186 4672	1 646 1.642 1 6588 1.6784
1169 1170	535 3756	1 499 1 49	1175 5002 1176 5142.1	1 545 1 548 1 545 1 548	1182	1769 1	1 590 1 650	1187 1625	1.700 1.640
1171	2373	1 529 1 513	1177 697 1	1 554 1 515	1183	4272	1 600 1.619	1188 4727	1 717 1.563
1172	2915	1 530 1 430	1178 1093	1 559 1 548	11		1 1	1189 21	1 800 1 750

^{*} Stable modification

III. Biaxial Group

Berial	Gen index	Refractive in	de x	Serial	Gen index	1	tefractive ind	ex	Serial	Gen.		Refractive in	dex
No	No	a β	7	, No.	No	a	β	Υ	No	No	α	β	7.
1190 1191 1192 1193 1194	679 1 361 4184 4218 147	1 367 1 409 1 4162 1 4603 1 402 1 463 1 407 1 468 1 410 1 475	1 536 1 5502 1 617 1 620 1 625	1235 1236 1237 1238 1239	1688 786 1530 1 2916 1 853 1	1 545 1 459	1 546 1 547 1 548 1 550 1 555	1 837 1 582	1280 1281 1282 1283 1284	4330 1 4752 4913 5317 306	1 561 1 621 1 590 1 620	1 6.8 1 629 1 630 1 631	1 661 1 640 1 650
1195 1196 1197 1198 1199	4397* 4368-3† 2920 -238† 5066-1	1 471 1 178 1 179 1 181 1 370 1 185 1 188	1 510 1 585	1240 1241 1212 1213 1214	988 1 778 1396 1032 3961	1 546 1 519 1 5376 1 551	1 559 1 561 1 5651 1 567 1 570	1 591 1 5705 1 571	1285 1286 1287 1288 1289	788 5317* 3585 5319 5067 1	1 543 1 607 1 621	1 635 1 636 1 637 1 642 1 613	1 684 1 675 1 618
1200 1201 1202 1203 1204	2234 1 4368 3‡ 1507* 2808 1 2260 1	1 179 1 196 1 193 1 198 1 193 1 198 1 487 1 199 1 1 188 1 501		1245 1246 1247 1248 1248 1249	1472 3716 5313 1 1033 493 1	1 56 1 54 1 544 1 555 1 515	1 57 1 571 1 572 1 573 1 575	1 60 1 59 1 577 1 586	1290 1291 1292 1293 1294	3087 4750 1111 1 5082 1 5213 1	1 505 1 587 1 626 1 612	1 645 1 616 1 616 1 647 1 650	1 655 1 769 1 712 1 662
1205 1206 1207 1208 1209	776 270 996 994 1 3742	1,445 1 503 1 505 1 509 1 510 1 512	1 540 1 607	1250 1251 1252 1253 1254	3199 5477 3778 835 708	1 560 1 510 1 5535 1 55 1 549	1 576 1 578 1 5787 1 581 1 583	1 647 1 618 1 5912 1 625	1295 1296 1297 1298 1299	5304 4748 1985 5561 4749	1.463 1.621 1.442 1.580 1.586	1 653 1 651 1 662 1 665 1 668	1 780 1 691 1 756 1 690 1 680
1210 1211 1212 1213 1214	4008 5028 1 2260 2 947 1 3344	1 505 1 512 1 511 1 512 1 195 1 513 1 500 1 515 1 520	1 524 1 836 1 672 1 535	1255 1256 1257 1258 1259	3194 3111 5228 161 3222	1 556 1 535 1 522 1 538 1 550	1 587 1 592 1 594 1 600 1 600	1 700 1 760 1 616 1 602 1 680	1300 1301 1302 1303 1304	1987 5428 1 1149 3539 5442	1 479 1 529 1 640 1 493 1 570	1 669 1 670 1 670 1 675 1 685	1 734 1 716 1 510 1 739 1 690
1215 1216 1217 1218 1219	975 1 5961 2373 1 1070 2 1672	1 413 1 520 1 524 1 529 1 510 1 530 1 523 1 531	1 589 1 566 1 537 1 566 1 534	1260 1261 1262 1263 1264	5648 976 4530-2 4960 5320	1.560	1 600 1 6015 1 602 1 602 1 602	1 610 1 6187 1 647	1305 1306 1307 1308 1309	1111 2 2566 2 4058 84.1 3103	1.619 1.597 1.5697 1.631 1.479	1 688 1 692 1 6935 1 698 1 710	1 696 1 806 1 732 1 713 1 810
1220 1221 1222 1223 1224	629 1705 639 67 1 638	1 450 1 534 1 525 1 545 1 1955 1 5352 1 1227 1 5358 1 495 1 536	1 610 1 560 1 6045 1 5545 1 605	1265 1266 1267 1268 1269	1936 1 977 609 1 3234 3208	1 526 1 490 1 530 1 538 1 600	1 603 1 605 1 605 1 609 1 610	1 620 1 658 1 754 1 675	1310 1311 1312 1313 1314	4322 445 4739 1197 1200	1 583 1 490 1 464 >1 56 1 650	1 73 1 743 1 748 1 75 1 760	1 872 1 916 >1 95 1 870
1225 1226 1227 1228 1229	484 5336 2367 1 1035 4394*	1 515 1 540 1 520 1 540 1 536 1 540 1 532 1 541 1 517 1 542	1 575 1 580 1 541 1 549 1 553	1270 1271 1272 1273 1274	1977 3540 1414 3732 241	1 609 1 460 1 604 1 495	1 612 1 614 1 614 1 615 1 615	1 616 1 697 1 731 1.650	1315 1316 1317 1318 1319	1142 87 5818 1112 3060	1 763 1 740 1 524 1 508 1 535	1 787 1 847 1 867 1 870 1 873	1 857 1 863 1 873 1 907 1 893
1230 1231 1232 1233 1234	2372 1037 4318 1 303 61 1	1 517 1 513 1 517 1 544 1 545 1 4386 1 5457 1 507 1 540	1 546 1 5042 1 546	1275 1276 1277 1278 1279	1415 3196 5202 5441 5562	1 578 1 495 1 580 1 610 1 620	1 620 1 625 1 625 1 625 1 625	1 627 1 807 1 645 1 675 1 630	1320	1364	1 54	>1 95	1 505
						Miscella	ANEOUS						
1321 1322	5135 1 5244 1	1 529 1 524 (re	(1) (1)	1326 1327	5221 1069 1	1.49 1.495		1 58 1 565	1331 1332	5511 5424	1 625 1 652	1	1 690

1321 5135 1	1 524 (red)	1326 + 5221 + 1.49 + 1	1 1 58 1 1331	5511 1 625 1 690
1322 5244 1 1 529	1 533 (red)	1327 1069 1 1,495	1 565 1332	5424 1 652 1 768
1323 835 1	1 564 (red)	1328 610 1.579	1.660 1333	Bolland, 57, 31: 390, 10, approximate data
1324 868 1 385	1 530	1329 4500 1 583	1.74?	only
1325 3873 1 180	1 522	1330 2135 1 602	1 627	· · · · · · · · · · · · · · · · · · ·

^{*}Hydrated form

†Metastable modification

1Stable modification

INDEX TO C TABLE

Abietic acid, 5477 Abietin, 5137 Abainthiin, 4953 Acenaphthene, 4218 Acetal, 1746 Acetaldehyde, 208 Acetaldehyde ammonia, 284, 1766 Acetaldehydecyanhydrin, 400 Acetaldehyde semicarbasone, 499 Acetaldoxime, 239 Acetamide, 238 Acetamide chloride, 226 Acetaminoethylsalicylic acid, 4078 2-Acetamino-4-nitrotoluene, 3123 e-Acetaminophenetol, 3713 m-Acetaminophenetol, 3714 p-Acetaminophenetol, 3716 e-Acetaminophenol, 2655 m-Acetaminophenol, 2656 p-Acetaminophenol, 2657 Acetanilide, 2649 e-Acetaniaide, 3216 p-Acetaniside, 3217 Acetic acid, 212

Acetic anhydride, 626 Acetoacetanilide, 3627 Acetoacetic ester, 1561 Acetobromoamide, 182 Acetochloroamude, 187 Acetohydroxamic acid, 240 Acetoin, 721 Acetol, 449 Acetone, 448 Acetone alcohol, 449 Acetonebromoform, 650 Acetone chloride, 420 Acetonechloroform, 662 Acetonecyanhydrin, 671 Acetonediacetic acid, 2268
Acetonediacetic anhydride, 2185 Acetone-1, 1'-dicarboxylic acid, 904 Acetone diethylsulfone, 2416
Acetonedi-2-propionic acid, 3287 Acetone salicylate, 3622 Acetonitrile, 168 Acetonylacetone, 1551 Acetonyl chloride, 377 Acetonylmalonic acid, 1503 Acetophenone, 2571

Acetopiperone, 3080 Acetopropionylphenylhydrasone, 4087 Acetopyrine, 5532 o-Acettoluide, 3194 m-Acettoluide, 3195 p-Acettoluide, 3196 Acetvanillone, 3158 Acetoxime, 481 o-Acetphenetidine, 3718
m-Acetphenetidine, 3714 p-Acetphenetidine, 3716 Aceturic acid, 676 Acetylacetone, 929 Acetylaminoacetic acid, 676 m-Acetylaminoazobenzene, 4755 m-Acetylaminobenzoic acid, 3109 p-Acetylaminobensoic acid. 3110 6-Acetylamino-3-ethcxy-4-isopropyltoluene, 4826 5-Acetylamino-8-ethoxyquinoline, 4525 4-Acetylamino-2-hydroxyquinoline, 3202

Acetophenoneoxime, 2650

3203 o-Acetylaminomethoxybensene, 3215 Acetylamino-2-methoxy-4-benzoic acid, 3635 p-Acetylaminophenyl salicylate, 4911 α-Acetylaminopropionic acid, 975.1 Acetyl-o-anisamine, 3215 V-Acetylanthranilic acid. 3108 5-Acetylbarbituric acid, 1407 Acetylbensoylaconine, 6067 Acetyl bromide, 149 Acetyl carbinol, 449 Acetyl chloride, 154 Acetylcodeine, 5551 Acetyl cyanide, 332 1 Acetylene, 115 Acetylene dibromide, 123 Acetylenedicarboxylic acid, 549 trans-Acetylene dichloride, 133 Acetylene tetrabromide, 128 Acetylenetetrachloride, 140 Acetylenyl carbinol, 355 Acetyl-p-ethoxyphenylurethane, 4536

3-Acetylamino-4-hydroxytoluene,

3-Amino-4-methoxy-6-nitrotolueue,

3-Amino-2-methoxytoluene, 2784

2000

Acetyl fluoride, 162 Acetylformic acid, 359 Acetylglycine, 676 Acetylglycocoll, 676 N-(Acetyl-p-hydroxyphenyl)-urethene 4079 Acetyl rodide, 166 Acetylmalic acid, 1504 p-Acetylmethylaminophenetol, 4109 p-Acetylmethylaminophenol, 3204 Acetylmethylheptenone, 3863 Acetylmethyl hexyl ketone, 3929 Acetylmethyl-o-toluidine, 3704 Acetylmethyl-p-toluidine, 3705 1 2-Acetylmethylures, 703 Acetyl peroxide, 267 V-Acetyl-o-phenylenediamine, 2689 N-Acetyl-m-phenylenediamine, 2690 N-Acetyl-p-phenylenediamine, 2691 sym-Acetylphenylhydrazine, 2693 Acetylphenyl salicylate, 4906 3-Acetylpropyl alcohol, 1009
Acetylounine, 5710 o-Acetylanicylaldehyde, 3081 Acetylsaheylamide, 3113 o-Acetylaslicylic acid, 3087 Acetylsulol, 4906 Acetylthiourea, 434 Acetylures, 435 Acetylurethane. 975 Acidol, 1076 Acom. 5783 Aconic acid, 868 Aconine, 5886 Aconstructed 1420 Aconitine, 6067 Acontine hydrobromide, 6068 Acoustine hydrochloride, 6069 Aconitine nitrate, 6072 Aconitine salicylate, 6128 Acontine sulfate, 6173 Acridine, 4434 Aeridinie acid, 4021 9-Acridone, 4438 Acrolein, 356 Acrylamide, 398 Acryl chloride 323 1 Acrylic acid, 358 Acrylic aldehvda, 358 Acrylic anhydride, 1422 Acrylic nitrile, 332 Adahn, 2315 Adenine, 879 Adipic acid, 1562 Adipylamide, 1607 Adıpyl dıaldehyde, 1549 Adıpyl dıamıde, 1623 Adipyl dichloride, 1476 Adipyl dinitrile, 1478 Adinn, 3721 Adlumidine, 5986 Adlumine, 6119 Adonitol, 1094 Adrenaline, 3271 Aesculetinic acid, 3093 Agane and, 4015 Agathin, 4769 Aglycon, 4889 Ajacine, 4959 Ajscine hydrochloride, 4964 Ajaconine, 5251 d-Alanine, 484 dl-Alanine, 485 Alantic acid, 4969 Alantol, 3844 Alantolactone, 4950 Alantolic acid, 4969 Albaspidin, 5868 Aldehydine, 2774 o-Aldehydobensone acid, 2475 m-Aldehydobensoic acid, 2476 n-Aldehydobensois seid, 2477 Aldehydocollidine, 2774

Aldol, 722 Alisann, 4626 Alisarin-6-carboxylic acid 4863 Allantoin, 610 Allene, 337 Allene tetrabrounde 315 cis-Allo-1-bromocunamic acid. 3024 cis-Allo-2-bromocinnamic acd, 3025 Allobrucine oxide, 5788 cis-Allo-1-chlorocinname acid. 3029 cus- Allo-2-chlorocumpume and sum Allocinchonine, 5439 Allocumanue acid, 3074 Allomucie acid, 1583 Alloxan, 547 Allovantin 2467 Allyl acetate, 937 Allyheetic acid, 930 Allylacetone, 1546 Allyl alcohol, 446 Allylamine, 179 Allylamine, 3188 Allylarsonic acid, 463 Allylbenzene, 3119 Allyl benzoate, 3598 Allyl butyrate, 2205 Allyl chloride, 375 Allyl cinnamate, 1299 Allyl evanule 587 Allylene, 338 Allylene hydroiodide, 390 Allylene oxide, 357 Allylene tetrabromide, 311 Allyl ether, 1541 Allyl formate, 623 Allyl mylide 391 Allyl isobutyrate, 2296 Allyl isocyanide, 588 Allyl isothiocyanate, 591 Allyl movalerate, 2836 Allyl I-menthyl ether, 1576 Allyl mercaptan, 462 Allyl mustard oil, 594 Allyl mitrite, 102 p-Allylphenol, 3125 Allyl phenyl ether, 3127 1-Allyl-2-phenylures, 3643 1 2-Allylpyridine, 2645 Allyl sulfocarbamide, 710 Allyl sulfocarbinide, 594 Allyl sulfocyanate, 593 Allyl thiocyanate, 593 Allylthiourea, 710 Aloc-emodin, 4879 Aloin, 5628 Alphol. 5178 Alphozone, 2750 Alpinin, 5180 Alatonine, 5626 Aluminium acetylacetonate, 231895 Aluminum phenolate, 391896 Aluminium triethyl, 391894 Aluminium trimethyl, 231893 Alypin, 5145 Alypin hydrochloride, 5144 Amalic acid, 4316 Amaric anhydride, 5774 Amarin, 5821 Amaron, 5033, 5944 Ambrein, 5808 Ambrosterol, 5595 Aminoacetal, 1765 Aminoacetamide, 257 Aminoacetic seid, 211 Aminoacetone, 480 o-Aminoacetophenone, 2616 m-Aminoacetophenone, 2647 p-Aminoacetophenone, 2648 2-Amino-5-(p-aminophenyl)-acridine, 5401 o-Aminoanisol, 2216 m-Aminoanisol 2217

n-Aminonnial 1918 1- th mounthrammone 4842 2- Aminoanthraquinone, 4643 m-Ammonzobenzene, 4273 p- Ammongohonsena 1771 p-Amino-a-asonaphthalene, 5511 Vmmo-ø-axonaphthalene, 5512 Vmmoazotoluene, 4796 o-Aminoazotoluene, 4797 o- Consideration and a 21 to m-Ammobenzamide, 2131 e-Ammohenzamida 2132 - Amnobenzaldehyde, 2067 m-Annhobenzaldehyde, 2008 p-Annhobenzaldehyde, 2009 e-Ammobenzore acid, 2074 m-Anunobenzoie acid. 2075 p-Atminobenzoic acid, 2076 o-Aminobenrophenoue, 4475 m-Ammobenzophenone, 1476 i - Ammobenzophenone, 1477 1- Ammoberzot lonzolo, 1999 - Ammobenzovi-dibutylamin panol sulfate, 6103 p-Aminobenzoyl-diethylaminoethanol 1557 Ammobenzoyl-diethylaminoethanol hydrochloride, 1566 Anunobenevi alcohol 2207 p-Aminobenzyl alcohol, 2208 d(l)-1-Amino-sec-butylacetic neid, 1707 1-Aminobutyric acid, 766 2-Aminobutyric acid, 767 3-Annobutyric acid, 768 I-1-Ammocaprore acid, 1705 dl-1-Aminocaproie acid, 1706 Ammochrysene, 5273 o-Aminocinnamic acid, 3104 m-Aminocinnamic acid, 3105 p-Aminocinnamic acid, 3106 3-Aminoconfinarine, 3045 4-Amino-o-cresol, 2209 5-Amino-oscresol, 2210 6-Amino-o-cresol, 2211 5-Ammo-m-cresol, 2212 6-Anuno-m-cresol, 2213 2- Anuno-p-cresol, 2214 3-Amino-p-cresol, 2215 p-Ammodiethyla, ihne, 3833 3'-dimethylazobenzene 1-Amino-2. 1798 4'-Amno-2 3'-dimethylazobenzene 1797 4- Amino-2, 4'-dimethylazobenzene 1796 4-Amino-3, 1'-dimethylazobenzene 4700 a-Ammodiphenyl, 4266 p-Ammodiphenylamine, 4285 1-Ammododecane, 4417 2-Ammoethyl alcohol, 285 6-Ammo-5-ethyl-2, 4-dipropyl-1, 3diazine, 4384 dl-1-Ammoglutaric acid. 976 d-1-Ammoglutaric acid, 977 5-Ammoguanacol, 2224 Ammoguanidine hydrochloride, 82 Ammoguandine sulfate, 308 1-Ammo-1-guanidino-n-valeric 1722 1-Ammoheptadecane, 5262 1-Ammo-2-(p-hydroxyphenyl)-propionic acid, 3222 dl-1-Amino-2-hydroxypropionic acid,

2-Amino-1-hydroxypropionic

4-Aminoisoantipyrine, 4080

1-Ammonobutyric acid, 769

Amino-J acid, 3570

p-Aminoisopropylbenzene, 3257 2-Aminoisovaleric acid, 1062 5-Amino-2-methoxytoluene, 2785 4-Amino-1-methylaminobengene, 2247 3- Amino-#-maphthol, 3552 - Amino-# naphthol, 3553 Announce tailman SOM o Ammophenol, 1146 m-Anunophenol, 1447 p-Anunophenol, 1448 m-Ammophenol hydrochloride, 1474 2-Ammophenol hydrochloride, 1475 m-Ammophenol sultate, 1524 II Ammorbious Investor acid 2658 p-Ammophenylarsome acid, 1471 p-Ammophenyl salicylate, 4486 o Amnophenyl tartrate, 5082.1 m Ammophenyl tartrate, 5082.2 p-Ammophenyl tartrate, 5082.3 d-1- Ammopropionic neid, 484 dl-1- Ammopropiome acid. 485 6 Anunopurine, 879 Aminopyrene, 5034 2- Ammopyridine, 882 3 Anmopyridine, 883 1-Ammopyridine, 884 2-Ammogumohne, 3059 3-Annuocumoline, 3060 1-Ammogumoline, 3061 5-Aumnogumoline, 3062 6-Annoquinoline, 3063 7-Ammogumoline, 3064 8-Aminoquinoline, 3065 5-Ammoresoremol, 1451 4-Ammoscheylie acid, 2101 5-Ammosalicylic acid, 2102 v-Amenosalol, 4486 m-Ammotriphenylmethane, 5406 5-Ammo-1, 2, 4-trimethylbensene, 3289 1. Ammotridecane, 4500 3-Ammotoluene-4-carbox ylic 2050 2-Aminothiophenol, 1458 1-Aminotetradecane, 4859 5-Amino-1, 2, 3, 4-tetramethylbensene, 3791 I-Aminovaleric acid. 1059 3-Amnovalene acid, 1060 4-Ammovaleric acid, 1061 3-Ammo-o-xvlene, 2757 4-Amino-o-xylene, 2761 2- Amino-marylana 2760 4-Amino-m-xylene, 2758 5-Amino-m-xylene, 2762 2-Amino-p-xylene, 2759 Ammonchelidonic acid, 1906 Ammonium acetate, 289 d-Ammonium acid malate, 776 L.Ammonium acid malate, 777 Ammomum acid oxalate, 248 Ammonium acid tartrate, 778 Ammonium benzenesulfonate, 1523 Ammonium bensoate, 2225 Ammonium citrate, 1721 Ammonium formate, 67 Ammonium fulminurate, 444 Ammonium hydrogen carbonate, 67.1 d-Ammonium hydrogen malate, 776 l-Ammonium hydrogen malate, 777 Ammonium hydrogen oxalate, 248 Ammonium hydrogen tartrate, 778 Ammonium mtrosophenylhydroxyl-amine, 1528 Ammonium oxalate, 303 Ammonium picrate, 1412 Ammonium salicylate, 2229 Ammonium succinate, 834 Ammonium o-sulfobenzoate, 2234 1 Ammonium tartrate, 835, 835.1 Ammonium tetraoxalate, 680

Amonol 1424

Ammonium thioryanate, 57 Ammonium valerate, 1103 n-Amyl acetate 2353 d-6-Amyl acetate, 2354 1 tert .- Amyl acetate, 2355 a-Amylecetylene 2275 d-act.-Amyl alcohol, 1083 n-Amyl alcohol, 1078 see - Amed alcohol 1084 1084 1 tert -Amyl alcohol, 1081 n-Amylamine, 1099 sec -Amylamine 1101 tert.-Amylamine, 1102 n-Amylbensene, 4115 tert.-Amylbensene, 4116 Amyl bensoate, 4342 n-Amyl bromide, 1040 tert -Amyl bromde, 1042 4-Amyl bromobutyrate, 3314 1 Amyl adultyenta 3320 d-6-Amyl n-butyrate, 3330 1 tert.-Amyl carbinol, 1723 n-Amyl chlonde, 1043 sec.-Amyl chloride, 1046 tert.-Amyl chloride, 1045 Amyl chloroscetate, 2318 Amyl I-a-crotonate, 3303 Amyl cyanide, 1602 a-Amylene, 984 8-Amylene, 982 mAmulana 083 Amylene dibromide, 988 Amylene nitrite, 996 Amylene nitrosate, 996 n-Amyl ether, 4006 n-Amyl fluoride, 1049 n-Amyl formate, 1648 tert.-Amyl formate, 1650 n-Amyl n-hexyl carbinol, 4414 n-Amyl n-heavyl ketone, 4402 t-Amyl bydroeinnamste, 4823 1 tert.-Amyl hypochlorite, 1048 n-Amyl iodide, 1051 tert .- Amyl iodide, 1053 Amyl isobutyrate, 3331 Amyl I-lactate, 2914 n-Amylmalonic acid, 2843 n-Amyl mercaptan, 1096 act.-Amyl mercaptan, 1097 s-Amyl nitrite, 1063 tert .- Amyl nitrite, 1065 Amylpropiolic aldehyde, 2800 d-8-Amyl propionate, 2901 1 tert.-Amyl propionate, 2902 n-Amyl salicylate, 4347 n-Amyl valerate, 3982 Amygdalin, 5580 Amygdophenine, 5088 a-Amyrin, 6002 6-Amyrin, 6003 Amyrolin, 4739 Anacardic acid, 5735 Analgen, 4525, 5289 Anapyralgin, 3629 Andrographolic acid, 5591 Andrographolide, 5590 Androsin, 4957 Androsterol, 6004 Anemonin, 3526 8-Anemonic acid, 3698 Anesthosm, 3213 p-Anethol 3648 Angelic seid, 931 Anhalamine, 4111 Anhalamine hydrochloride, 4124 Anhalondine, 4331 Anhalonine, 1332 Anhydroacomtine, 6050 Anhydrocamphoronic acid, 3256 Anhydroecgonine, 3270 Anhydroecgonine hydrochloride, 3274 Anhydroformaldehydeamline, 5637

Anhydroglucochloral, 2754 Amiallozan, 3572 Andre 1442 Amhne arsenate, 4358 I-Amhnebutyric acid, 3711 Amhne gallate, 4487 Amhne hydrobromide, 1471 1 Amline hydrochloride, 1472 Anthre mitente 1489 Amline sulfate, 4336 te Applinemilforus acid. 1455 1-Amhnopropionic acid, 3205 Amhuvitome acid, 4035 Ama alcohol, 2723 Amenidazine 5081 Annaldehyde, 2580 a-Annaldoxime, 2672 8-Annaldoxime, 2673 Anisic acid, 2616 ... Ameuline 2216 m-Ansadine, 2217 p-Amadine, 2218 Animbe acid 5086 Amsol, 2163 p-Amsonitrile, 2508 Anayl acetate 3169 1 p-Ansyl chloride, 2500 Anol, 3124 Anonol, 5806 Anthamantin, 5835 Anthracene, 1649 Anthracene-1-carboxylic acid, 4869 Anthracene-2-carboxylic acid, 4870 Anthrocene-9-carboxylic acid 4871 Anthracene-1 3-dicarboxylic 5020 Authracene-1. 4-dicarboxylic acid 5030 Anthracene-2. 3-dicarboxylic acid. 5031 Anthraffavio acid, 1627 Anthragallol, 4635 a-Anthranine, 4695 β-Anthramine, 4696 Anthramil, 1887 Anthrambe seid, 2074 Anthranol, 4667 Anthrapmacone, 5946 Anthrapurpurin, 4636 a Anthragunoline 5172 Anthraquinone, 4620 Anthraquinone-α-carboxylic scid, 4860 Anthragunone-A-carboxylic acid 4861 Anthraquinone-y-carboxylicacid, 4862 Authraquinone-1, 3-dicarboxylic acid, 5022 Anthraquinone-1, 4-dicarboxylic acid, 5023 Anthraquinone-2, 3-dicarboxylic acid, Anthrarufin, 4628 1- Anthrol, 4668 2-Anthrol, 4669 Antiarin, 5680 Antifebrin, 2649 Antimony pentaethyl, 4013 Antimony triethyl, 1770 Antimony trimethyl, 531 Antimony triphenyl, 5285 Antipyrine, 4058 Antipyrine acctybalicylate, 5532 Antipyrine hydrobronide, 4074 Antipyrine hydrochloride, 4075 Antipyrine mandelate, 5429 Antipyrine resorcinate, 5198 Antipyrine salicylate, 5308 Antithermine, 4087 Apidosamine, 5725 Apidospermatine, 5726 Apim, 5926

Apiol, 4322

Aprolic acid, 3625

Apoatropine, 5216 Apoatropine hydrochloride, 5227 Apostropine sulfate, 6064
Apocinchonine, 5439 Apoacomune, 6050 Aporonquinine, 5445 Apocyclene, 3272 Apocynamarin, 4820 Apoharmine, 2547 Apomorphine 5196 Apomorphine dibenzoate, 6017 Apomorphine hydrochloride, 5197 Apomorphine methobromide, 5314 Aponic acid, 4693 Apopinol, 3897 Apoquinidine, 5445 Apoquinine, 5146 Aporheme, 5286 Aporheme sulfate 6003 Aposorbinic acid, 958 Apoyohimbine, 5709 Apovohimbine hydrochloride, 5721 Arabin, 3946 I-Arabinosazone, 5212 d(I)-a-Arabanose, 1032 d(l)-β-Arabinose, 1033 dl-Arabinose, 1034 1-Arabinose diphenylhydrazone, 5209 I-Arabinoseoxime, 1071 d-Ambitol, 1095 Arabonic acid, 1039 Arabonic lactone, 955 Arachidic acid, 5607 Arachidic alcohol, 5611 Arbutin, 4357 Arccaidine, 2273 Arccaine, 2274 Arecolidine, 2820 Arecolidare hydrochloride 2829 Arecoline, 2821 Arecoline hydrobromide, 2828 Arginine, 1722 Aribine, 4224 Arienne 5784 Aromadendrin, 5970 Arsambe acid, 1471 Arsenic acetate, 1513 Arsenoacetic seid, 219 Arsenobensene, 1221 Araphenamine, 4311 Artemson, 4944 Asaron, 4352 Asaronic acid. 3696 Ascandol, 3864 l-Asparagine, 708 I Appartic acid, 679 Aspidin, 5869 Aspidinol, 4354 Aspidomne, 5474 Aspidospermine, 5733 Aspirin, 3087 Menne, 5799 Atmine. 5709 Atophan, 5035 Atractylene, 4971 Atractylol, 1996 Atranoric acid, 5420 dl-Atrolactic acid, 3163 Atrolactyltropeme, 5237 Atronene, 5059 Atronic and, 5186 Atronol, 5059 Atronyleneaulfonic acid, 5045 Atropic acid, 3077 Atropine, 5235 Atropine hydrobromide, 5238 Atropine hydrochloride, 5240 Atropine isovalerate, 5738 Atropane mitrate, 5243 Atropine salicylate, 5832 Atropine sulfate, 6076

Atronine valerate 5720 Atropurol, 5936 Atroscine, 5218 Aubenin 2580 Aucubine, 4554 Auramine, 5225 Aurential 3800 Aurine, 5397 Azelaic acid. 3307 Asiminohensene 1356 o. o'-Asonnsol, 4773 p, p'-Asoamsol, 4774 Azobenzene 4225 a a'-Azobenzoic seid 4660 m, m'-Asobensoic acid, 4661 p-Azodiphenyl, 5820 o-Azoethylbenzene, 5092 p-Azoethylbenzene, 5093 g. g'-Azonaphthalene 5498 6 6'-Azonaphthalene, 5496 o-Azophenetol, 5102 p-Azophenetol, 5103 o. o'-Azophenol, 4230 m, m'-Azophenol, 4231 p, p'-Azophenol. 4232 a. a'-Azotoluene. 4763 2, 4'-Azotoluene, 4764 3, 3'-Azotoluene, 4765 4. 4'-Azotoluene, 4766 4, 4'-Azoxyanisol, 4774 p, p'-Azoxybenzaldehyde, 4659 Azoxybenzene, 4226 o, o'-Azoxybenzoic acid, 4664 m, m'-Azoxybenzoic acid, 4665 n. n'-Azoxybenzoic acid. 4666 p-Azoxydiphenyl, 5821 2, 2'-Azo-p-xylene, 5099 3, 3'-Azo-o-xylene, 5094 4, 4'-Azo-o-xylene, 5095 4. 4'-Azo-m-xvlene, 5096 1, 5'- Azo-m-xylene, 5097 5, 5'-Azo-m-xylene, 5098 3. 3'-Azoxv-4-methoxytoluene, 5104 α, α'-Azoxynaphthalene, 5497 8, 8'-Azoxynaphthalene, 5498 »-Asoxyphenetol, 5105 o, o'-Azoxyphenol, 4236 p, p'-Azoxyphenol, 4237 a. a'-Asoxytoluene, 4770 4, 4'-Azoxytoluene, 4772 Azoxytolunitrile, 5042 Azulene, 4941 Bakankosin, 5139 Ballanophorin, 4369 2 Barbalom, 5112 Barbital, 2808 Barbituric acid. 565 Barium acetate, 292550 Barium calcium propionate, 22596 Barium ethane disulfonate, 22554 Barium formate, 32546 Barum malonate \$2547 Barium mesotartrate, \$2548 Barum naphthalene-1, 5-disulfonate, 292556 Barium oxalate, 392545 Barium phenol-2, 382555 4-disulfonate. Barium propionate, 392553 Barium dl-tartrate, 32549 Barosmin, 5928 Beheering, 5316 Bebeerine hydrochloride, 5323 Bebirine, 5316 Behenamide, 5771 Behenandide, 5965 Behenic acid, 5768 Behenolic acid, 5761 Behenolie anilide, 5959 Behenolylamide, 5762 Behenolyl chloride, 5760

Bensacetin, 3635, 4078

Denencine 6081 Bensaconine hydrobromide, 6036 Bensalomine nydrochloride, 6036 Bensaconine hydrochloride, 6037 Bensalaminoacetal, 4550 Bensalamine, 4709 Renaal bromide, 1944 Benzal chloride, 1964 Benzaldehyde, 2001 Benzaldshydephenylhydrazone, 4494 sun-Hensaldoxime, 2070 anti-Bensaldonme, 2071 Rensalhydrasine, 2128 Henzalpinacoline, 4530.3 Benzamide hydrochloride, 5645 Benzamidine, 2129 Denganalgan 5289 Bensanilide, 4478 Bensanthracene, 5263 Bensanthrene, 5263 Benzanthrone, 5171 Benzene, 1365 Benzeneasosalicylic acid, 4444 o-Bensenedisulfonylamide, 1492 m-Benzenedisulfonylamide, 1493 p-Benzenedisulfonylamide, 1494 o-Benzenediaulfonyl chloride, 1242 m-Bensenedisulfonyl chloride, 1243 p-Bensenedisulfonyl chloride, 1244 g-trans-Bensenehexabromide, 1373 β-cus-Benzenehexabromide, 1374 a-trans-Bensenehexachloride, 1381 β-cıs-Benzenehexachloride, 1385 γ-Benzenehexachloride, 1386 &Benzenehexachloride, 1387 Benzenepentacarboxylic acid, 4016 Benzenesulfanilide, 4272 Benseneaulfinie acid, 1418 Bengeneaulfoneamide, 1452 Benzenesulfone chloride, 1318 Benzenesulfone iodide, 1339 Benzenesulfonic acid. 1423 Benzenesulfonic anhydride, 4258 Benzene-1, 2, 3, 4-tetracarboxylic acid, 3451 acid, 3450 Benzene-1, 2, 3, 5-tetracarboxylic acid, 3450 Benzene-1, 2, 4, 5-tetracarboxylic acid, 3452 Benzene-1, 2, 3-triacetate, 4303 Benzene-1, 3, 5-triacetate, 4302 Benzene-1, 2, 3-tricarboxylic acid, 3020 Benzene-1, 2, 4-tricarboxylic acid, 3021 Bensene-1, 3, 5-tricarboxylic 3022 Bensene-1, 3, 5-trisulfonyl chloride, 1182 Benzidine, 4286 6-Benzidine, 4287 Benzidine-o, o'-disulfoneamide, 4313 Benzidine-o, o'-disulfonic acid, 4292 Benzidinesulfone, 4235 Benzil, 4672 a-Benzildioxime, 4712 A-Bensildioxime, 4713 7-Bensildioxime, 4714 Benzilie neid, 4738 Benzilosazone, 5888 a-Benziloxime, 4704 Benzilphenylhydrazone, 5515 Bensimidasol, 1977 Benzisothiodiazole, 1283 Bensocaine, 3213 Bensohydroxamic acid, 2077 Bensoic acid, 2007 Bensoic anhydride, 4676

-Bensoic sulfimide, 1896 Benzoin, 4728 α-Bensoinphenylhydrazone, 5523 β-Bensoinphenylhydrasone, 5524

Benzoisonutule 1886 Bensonaphthol, 5177 Renconstale 1988 a-Bensophenone, 4447 γ-Bensophenone, 4448 β-Bensophenone, 4448 &Benzophenone, 4450 Bensophenone chloride, 4441 Benzophenoneoxine 1179 Benzophenone phenylhydrazone, 540.4 Benzophenonesulfone, 4428 a-Benzopinacoline, 5884 8-Benzopinacohne, 5885 Benzoninacone 5889 1, 2-Benzopyrone, 3016 1, 4-Benzopyrone, 3015 Benzosalin, 4907 Benzosol, 4740 Reneathwest 1918 1, 2, 3-Benzotriazine, 1919 Benzotrichloride, 1870 Benzovazol 1888 Benzoylacetic acid, 3082 Benzoylacetaldehydeoxime, 3107 Benzoylacetone, 3593 Benzoylacetophenone, 4903 Renzovlacetylacetone 4300 Benzoyl acetyl peroxide, 3092 Benzovlacomne 6021 2-Benzoylacryhe acid, 3523 d-Benzoylalamne, 3632 Benzoylamarın, 5945 Benzoylaminoacetic acid, 3111 p-Benzovlammoamsol, 1754 5-Benzoylamino-8-ethoxyquinoline, o-Benzovlaminophenol, 4481 m-Benzoylaminophenol, 4482 p-Benzoylaminophenol, 1483 dl-1-Benzoylaminopropionic acid, 3632 Benzoylamline, 4478 Benzovlanusidine, 4754 Benzoylauramine, 5826 Benzoylbarbituric acid, 4025 o-Benzoylbenzamide, 4751 o-Benzoylbenzoic acid, 4677 m-Benzovlbenzoic acid. 4678 p-Benzoylbenzoic acid, 4679 Benzovl bromide, 1844 3-Benzoylbutyric acid, 4063 Benzoyl carbinol, 2573 Benzoyl chloride, 1859 Benzoyleinehomne, 5891 hydrochloride. Benzoylemehomne 5892 Benzoyl cyanide, 2434 Bensoyl-1-dimethylamino-1-methyl propanol hydrochloride, 1829 Benzoyleegomne, 5113 Benzoyl fluoride, 1876 1-Benzoylhexahydropyridine, 4328 Benzoylhydrazine, 2133 Bensoyl iodide, 1880 1-Benzoyllactic acid, 3607 Benzoyl peroxide, 4688 o-Benzoylphenol, 4152 Benzoylphenylacetomtrile, 4896 1-Benzoyl-1-phenylhydrazine, 4195 1-Benzoyl-2-phenylhydrazine, 4496 Benzoylpiperidine, 1328 Benzoylpseudotropine, 4947 Bensoylashein, 5549 Benzovlashevhe acid, 1682 Benzoylthiourea, 2549 Benzoyl o-toluste, 1916 N-Benzoyl-o-tolundine, 4718 N-Benzoyl-m-toluidine, 4719 N-Benzoyl-p-toluidine, 4750 Benzoylurea, 2550 V-Benzylacetamide, 3197

Benzyl acetate, 3149

Henzylacetic acid. 3147 Bensylacetone, 3659 Benavlacetophenone 4912 Benzyl acrylate, 3599 1-Benzylaeryhe acid, 3594 Benzyl alcohol, 2159 Benzyl allyl ether, 3653 Renzylamarin, 5947 Benzylamine, 2195 Benzylamhne, 4512 Benzylarsenochloride, 2028 Benrylarsome acid, 2193 Beuryl benzonte, 4733 o-Benzylbenzore acid, 4729 m-Benzylhensone send 1730 p-Benzylbenzoic acid, 4731 ...Benzylbenzomtrile, 4697 Benzyl bromide, 2029 Benzyl n-butyl ether, 4129 Berryl butwente 1008 Benzylcarbamate, 2662 Banes Lablanda 2028 Benzyl chloroscetate, 3000 Benzyl cinnamate, 5068 Benzylerestinine, 1081 Benzyl cyanide, 2503 Benzyl dichloroacetate, 3057 Benzyldichlorosrane, 2028 Benzyl ether, 1777 Benzylethylene, 3119 Benryl formate, 2588 Benevilhydranne 2248 Benrythydroxylamine, 2219 Benzylideneacenaphthenone, 5304 Benzylideneacetone, 3587 Benzylideneacetophenone, 4902 Benzylideneacetylacetone, 4298 1-diethory 2-Benzyhdeneamino-1, othene 4550 Benzylideneamline, 4473 Benzylidene bromide, 1944 Benzylidene chloride, 1964 Benzyhdeneethylamine, 3189 Benzylidenehydrazine, 2128 Benzyhdene methylethyl 4000 1 1-Benzylidenepropionic acid, 3595 2-Benzylidenepropionic acid, 3596 Benzylidene-p-tolyl ketone, 5067 1 Benzyl iodide, 2080 Benzyl monmyl other, 4367 6 Benzyl isobutyl ether, 4130 Benzyl isobutyrate, 4097 Benzyl isothocyanate, 2522 Benzyl inovalerate, 4343 Benzyl lactate, 3687 Benzyl laurate, 5480 Benzylmalome acid, 3608 Benzyl mandelate, 4918 Benzylmenthol, 5249 Benzyl mercaptan, 2189 Benzylmethyl carbinol, 3235, 3235 1 Benzyl methyl ether, 2718 Benzyl mustard oil, 2522 Benzyl myristate, 5682 α-Benzylnaphthalene, 5183 β-Benzylnaphthalene, 5184 Benzyl oleate, 5875 Benzyl palmitate, 5805 a-Benzylphenol, 4505 p-Benzylphenol, 4508 Benzyl phenylacetate, 4917 Benzyl phenyl ether, 4508 Benzyl propionate, 3676 Benzyl propyl ether, 3758 2-Benzylpyridine, 4267 3-Benzylpyridine, 4268 4-Benzylpyridine, 4269 Benzyl salicylate, 4735 Benzylsilicon trichloride, 38442 Benzyl stearate, 5876 Benzylsuccinic acid, 4071

Renaul sulfide, 4787 Henayl thucyanate, 2522.1 Renevithungen 2700 Benayl p-tolyl ketone, 4913 Heneyl trablommostate 9094 Bennylures, 2092 Bensylurethane, 2662 Bennyl valerate, 4344 Berbamine, 5312 Berberine hydrochloride, 5522 Berberlike weid, 5530 Berberome seid, 2621 Bergnotene, 4198 Berilie acid, 5510 Berellium accente \$2115 Beryllium acetate propionate, 22116 Berylhum acetylacetonate, 22114 Berylhum butyrate, 22118 Berellium diethyl, 382112 Berellium directed \$2113 Berylhum ethyl sulfate, 352119 Berylhum propionate, 352117 Betaine, 1068 Betaine hydrochloride, 1076 Betol, 5179 Betulin, 6006 Betulol, 4986 Bikaconitine, 6101 Bilime seid, 5136 Biliphaine, 5106 Bilirubin, 5106 Biliverdic acid, 2681 Bion, 1070 1 Businethoxyncetal, 2916 1 Bismuth ammonium citrate, 1774 Bianuth encodylate, 1621 Bismuth saheylate, 5615 Bismuth triethyl, 1759 Bismuth trimethyl, 522 Bismuth triphenyl, 5280 Bumutospherite, 1 Baret, 251 Bixin, 5898 Borneol, 3900, 8901 dl-Bornyl acetate, 4372, 4373 Bornylamine, 3949 Bornyl bromosovalerate, 4989 d-Bornvl u-butyrate, 4834 Bornyl d-chloroscetate, 4368.6 1-Bornylene, 3800 d-Bornyl formate, 4147 Bornyl isovalerate, 5005 d-Bornyl propionate, 4572 d-Bornyl n-valerate, 5007 Bornyval, 5005 Boron triethyl, 231823 Boron trimethyl, 351822 Branilie acid, 4301 Brasilin, 5075 Brasudic acid, 5763 Brassidie anhydride, 6144 Brandic ambde 5962 Bransylic acid, 4580 Brenzeam, 4782 Bromacetal, 1693 Bromacetol, 414 Bromal, 103 Bromal d-borneolate, 4368.5 Bromal hydrate, 152.1 Bromalin, 2923 Bromanil, 1106 Brometone, 650 3-Bromoscenaphthene, 4203 a Bromoscetandide, 2539 p-Bromoacetanilide, 2540 Bromoscetic seid, 150 Bromoscetone, 367 ω-Bromoscetophenone, 2494 Bromoncetyl bromide, 124 Bromoscetylene, 99 1-Bromoscrylic seid, 320 2-Bromoscrylic acid, 321

2-Bromosllyl mothiocyanate, 556 Bromosllyl mintard oil, 556 o-Bromoandine, 1368 m-Bromoundine 1369 p-Bromoamine, 1370 4-Bromoantipyrine, 1043 1 o-Bromobenzamide, 1938 m-Bromobenzamide, 1939 an Removalum surrodo 1940 Bromobensene, 1294 z-Bromobenseneaulfonic acid. 1301 e-Bromobenzoic acid 1845 m-Bromobenzoic scid, 1846 p-Bromobenzoic acid, 1847 a Beamphonsontella 170 t m-Bromobenzonitrile, 1791 p-Bromobenzomtrile, 1795 a-Bromobonzovi oblogute 1790 m-Bromobenzoyl chloride, 1791 p-Bromobenzoyl chloride, 1792 a Bromolenavi bromute 1915 m-Bromobenzyl bromide, 1946 p-Bromobenzyl brounde, 1917 e-Bromobenzyl chloride, 1931 p-Bromobenzyl chloride, 1935 Bromobensyl cyanide, 2454 1-Bromobutyric acid, 615 2-Bromobutyric acid, 646 3-Bromobutyne acid, 647 a-Bromounnphor, 3778 6-Bromocamphor, 3779 1-Bromo-n-enprois acid, 1590 2-Bromosaprois acid, 1591 Bromochloroscetic acid, 120

Bromochlorobenzene, 1200 1 m-Bromochlorobenzene, 1200 2 p-Bromochlorobensene, 1200 3 1-Bromo-2-chlorouthung 181 cis-1-Bromo-2-chloroethylene, 117 trans-1-Bromo-2-chloroethylene, 118 trans-1-Bromocinnamic acid. 3026 trans-2-Bromocinnamic acid, 3027 3-Bromo-p-cresol, 2035 5-Bromo-o-cresol, 2033 5-Bromo-m-cresol, 2034 Bromodichloromethana 17 (2-Bromo-2, 3-dimethylbutane, 1691 3-Bromo-1, 2-dinitrobensene, 1149 4-Bromo-1, 2-dinitrobenzene, 1150 4-Bromo-1, 3-dimtrobenzene, 1151 p'-Bromodiphenyl-p-carboxylic acid, 4430 1-Bromoethyl acetate, 618 2-Bromoethyl acetate, 648 1 2-Bromoethyl alcohol, 221 Bromoethylene, 148 2-Bromoethyl ethyl ether, 745 Bromoethyl ethyl ketone, 614 Bromoform, 18 Bromofumacic acid 530 8-Bromoguaiscol, 2036 5-Bromogusiacol, 2037 Bromohydrogunone, 1299 8-Bromo-2-hydroxybensoic acid, 1849 5-Bromo-2-hydroxymethoxybenz 2037 3-Bromo-4-hydroxytoluene, 2035 5-Bromo-2-hydroxytoluene, 2033 5-Bromo-3-hydroxytoluene, 2034 1-Bromo-2-hydroxypropane, 466 3-Bromo-1-hydroxypropane, 467 e-Bromoiodobensene, 1200 4 m-Bromoiodobenzene, 1200 5 p-Bromoiodobenzene, 1200 6 m-Bromoisatine, 2422 Bromosopropyl alcohol, 466 2-Bromoisovaleric acid. 962 Bromomaleic acid, 551 Bromomalonic acid, 322 Bromomethyl methyl ether, 222 a-Bromonaphthalene, 3453

8-Bromonaphthalene, 3454

- Resemblitance tambida 2193 I 1-Bromo-2-nitroamline, 1295 -Bromonitrobenzene, 1201 m-Reamanitechanzana 1202 p-Bromomtrobenzene, 1203 I-2-Bromooctane 2022 L p-Bromophenacyl bromide, 2456 -Bromophenol, 1296 m-Bromophenol, 1297 7-Bramardanal 1208 p-(p-Bromophenyl)-benzoic acid, 1130 p-Bromophenylhydramie, 1436 p-Bromophenylmercapturic acid, 4055 Bromopienn, 5 2-Bromopropane, 465 dl-1-Bromopropionie acid, 368 2-Bromopropionic acid, 369 3-Bromopropyl alcohol, 167 1-Bromopropylene, 364 2-Bromopropylene, 365 3-Bromopropylene, 366 3-Bromonyridine 817 Bromogunol, 5921 2(1)-Bromoresoremol. 1300 3-Bromosalicylic acid, 1848 5-Bromosalicylie acid, 1849 a-Bromostyrene, 2491 ω-Bromostyrene, 2492, 2493 Bromosuccinic acid, 577 o-Bromotoluene, 2030 m-Bromotoluene, 2031 p-Bromotoluene, 2032 1-Bromo-e-toluidine, 2114 5-Bromo-e-toluidine, 2115 5-Bromo-m-toluidine, 2116 6-Bromo-m-toluidine, 2117 2-Bromo-p-toluidine, 2118 3-Bromo-p-toluidine, 2119 1-Bromo-1, 2, 2-trichloroethane, 121 Bromotrichloromethane, 2 2-Bromo-1, 3, 5-trimtrobenzene, 1122 1-Bromovaleric acid, 959 2-Bromovaleric acid, 960 3-Bromovaleric acid, 961 Bromovalerylphenetidine, 4538 1-Bromo-o-xylene, 2632 1-Bromo-m-xylene, 2634 1-Bromo-p-xylene, 2638 2-Bromo-m-xylene, 2635 2-Bromo-p-xylene, 2639 4-Bromo-o-xylene, 2633 4-Bromo-m-xylene, 2636 5-Bromo-m-xylene, 2637 Bromural, 1589 Broyalol, 1989 Brucine, 5785 Brucine nitrate, 5791 Bryonol, 5743 Bulbocapmine, 5424 Buphnatine, 5776 1, 2-Butadiene, 595 3-Butadiene, 596 n-Butane, 781 1 1-Butene-3, 4-dol, 720 2-Butinal, 568 2-Butine, 597 3-Butine, 598 N-n-Butylacetanilide, 4359 n-Butyl acetate, 1651 sec-Butyl acetate, 1653 tert-Butylacetic acid, 1642 n-Butylacetylene, 1532 n-Butyl alcohol, 789 sec-Butyl alcohol, 791 tert-Butyl alcohol, 792 n-Butylamine, 820 sec-Butylamine, 822 tert-Butylamine, 823

n-Butylamhne, 3785

n-Butylarsonic acid, 819

n-Butylbarbituric acid, 2806

Butvl anisate, 4348

n-Butylbenzene, 3721 sec-Butvibenzene, 3725 tort Butschangene 3796 n-Butvl benzoate, 4095 d-B-Butyl benzoate, 4097 1 n-Butyl bromide, 741 escaButyl bromide 743 tert-Butyl bromide, 714 Butyl-sec-butyl carbinol, 3355 n-Butyl n-butyrate, 2003 n-Butyl caproate, 3983 n-Butyl carbamate, 1066 tert-Butyl carbinol, 1082 Butyl carbonate, 3341 Butylchloral, 582 Butylchloral hydrate, 664 n-Butyl chloride, 716 sec-Butyl chloride, 748 tert-but vl chloride 740 n-Butyl chlorocarbonate, 969 1 n-Butyl chloroformate, 969 1 n-Butyl cyanide, 972 a-Butylene, 686 B-Butylene, 685 v-Butylene 684 2. 3-Butyleneglycol, 796 n-Butyl ether, 2973 acc-Butyl other 2975 tert-Butylethyl acetate, 2906 5, 5-n-Butylethylbarbitume acid, 3839 5-sec-Butylethylbarbituric acid. n-Butylethylene, 1610 tert-Butylethylene, 1611 n-Butyl formate, 1014 d-sec-Butyl formate, 1015 tert-Butyl hypochlorite, 752 Butyhdeneacetic acid, 1553 n-Butyl rodide, 754 sec-Butyl jodide, 756 5, 5-n-Butylisopropylbarbituric acid, 4145 n-Butyl isopropyl malonate, 3940 n-Butyl malonate, 4160 n-Butyl mercaptan, 810 sec-Butyl mercaptan, 812 tert-Butyl mercaptan, 813 Butylmalonic acid, 2304 sec-Butylmalome acid, 2306 n-Butyl nitrate, 774 n-Butyl nitrite, 772 n-Butyl oxalate, 3941 n-Butyl phenyl ether, 3759 Butyl phenyl ketone, 4088 n-Butyl phthalate, 5135 d-sec-Butyl propionate, 2359 1 n-Butyl salicylate, 4101 Butylsilicon trichloride, 33438 Butyl sulfide, 2981 n-Butylsulfone, 2978 n-Butyl n-valerate, 3332 d-sec-Butyl valerate, 3333 1 n-Butyraldehyde, 717 n-Butyramide, 760 n-Butyramilde, 3706 n-Butyric acid, 723 n-Butyric anhydride, 2840 γ-Butyrolactam, 672 n-Butyromtrile, 667 Butyryl chloride, 651 Buxine, 5316 Cacodyl, 826 Cacodyl bromide, 253 Cacodyl carbide, 1620 Cacodyl chloride, 254 Cacodyl cyanide, 410 Cacodyl rodide, 256 Carodyl oxide, 827 Cacodyl sulfide, 828 Cacodyl trichloride, 255

Cacodylic acid, 280

Cadaverine, 1105

Cadmium acetate, 3872 Cadmium dimethyl, 3870 Cadmium ethanedisulfonate, 2874 Cadmium formate, 3871 Cuffer acid 3088 Caffording 2286 Caffeine, 2701 Caffeine hydrobromide, 2751 Caffeine hydrochloride, 2753 Caffeine sulfate, 5134 Caffeine truodide, 2755 Cuffool 2724 Cuffoling 2287 Caffuric acid, 1531 Cajeputol, 3902 Calabarine, 4960 Calabarol, 5804 Calcium acetate, 332296 Calcum acid malate \$2200 Calcium aconitate, 232302 Calcium benzoate, 232300 Calcium citrate. \$2303 Calcium crotonate, \$2208 Calcium formate, 32289 Calcium fumarate, 332291 Calcium hippurate, \$2306 Calcium lactate, 332297 Calcium lead propionate, 392330 Calcium malate, 392292 Calcium maleate, 32290 Calcium mesotartrate, 32294 Calcium introtetronate, 32305 Calcium oxalate, 32287 Calcium succinate. 282293 Calcium d-tartrate, 232295 Calcium d-tetratartrate, 32301 Calcon, 4902 Calmatambetin, 4548 Calmatambin, 5479 Calveanthine, 4084 Calyein, 5272 Camphane, 3888 Camphenamine, 3882 Camphene, 3801, 3802 Camphene hydrochloride, 3876 Camphilene, 3803 Campholene, 3295 Campholic acid, 3930 Camphor, 3846 dl-Camphor, 3845 Camphoranilie acid, 5127 α-Camphor diehloride, 3831 β-Camphor dichloride, 3832 Camphor di-o-methoxybenzoate, 5829 a-Camphordioxime, 3837 γ-Camphordioxime, 3838 Camphoric acid. 3868, 3869 Camphoric anhydride, 3773
Camphor 6-isopropyl-3-methylben-zoate, 5583 Camphor 3-methoxy-4-allybenzoate, 5584 Camphorol, 3300 I-Camphorome acid, 3288 Camphorosazone, 5729 Camphoroxime, 3884 d-Camphorquinone, 3770 d-Camphor salicylate, 6065 d-Camphor semicarbasone, 4154 Camphylamine, 3950 I-Canadine, 5539 dl-Canadine, 5542 Cane sugar, 4396 Cannabinol, 5678 Cannibene, 4973 Canthane acid. 3691 Cantharidin, 3693 Cantharenc, 2795 n-Capric acid, 3981 n-Capric aldehyde, 3975

n-Caprilonitrile, 2852

Caprylidene..2824 Caproanible, 4860 n-Caproic seid, 1643 n-Caproic aldehyde, 1633 Caprone, 4170 n-Capronitrile, 1602 n-Caproyl chloride, 1596 n-Capryl chloride, 2851 Caprylene, 2874 n Caprylic acid, 2899 n-Caprylic aldehyde, 2892 Caprylic anhydride, 5153 Carasican, 5336 Capsularin, 5744 Carane, 3889 Carbamyl chloride, 27 Carbanil, 1889 Carbasole, 4211 Carbasolne, 4325 Carbolic acid, 1413 Carbon dioxide, 23338 Carbon disulfide, 17 3 Carbon monoxide, 38337 Carbon auboxide, 3339 Carbon sulfoselenide, 17.2 Carbon tetrabromide, 6 Carbon tetrachloride, 12 Carbon tetrafluoride, 13 Carbon tetraiodide, 16 Carbonyl bromide, 4 Carbonyl bromochloride, 1 1 Carbonyl chloride, 9 Carbonyl sulfide, 17 1 Carbostynl, 3039 e-Carboxycinnamic acid, 3527 Δ+Carene, 3804 Carmine acid, 5700 Carnaubic acid 5854 Carnaubyl alcohol, 5862 a-Carophyllene, 4974 Carotin, 5901 Carpaine, 4839
Carpaine hydrochloride, 4840 Carpiline, 5107 Carvacrol, 3752 a-Carvacromenthol, 3966 β-Carvacromenthol, 3967 Carvenone, 3847 d-Carvol, 3753 Carvomenthal 3966 Caryophyllenic acid, 3253 Caryophyllin, 3818 Cascarillin, 1368 1 Castelamarın, 3280 Catachal 1111 Catechol methyl ether, 2174 Caulophyllosaponin, 6172 Caulophylline, 4335 Caulophyllosapogemn, 6164 Caulosapogenin, 6133 Caulosaponin, 6161 Caulosterol, 5909 Cederucamphor, 4997 Cedrene, 4975 Cedrol 4997 Cephaeline, 5954 Cerane, 5919 Cerebrin, 5931, 6153 Cerebronic acid, 5880 Cerin. 5250 Cerotic acid, 5916 n-Ceryl alcohol, 5920 n-Cervl cerotate, 6160 Cesium acid phthalate, 33314 Cesium acid trichloroacetate, 333315 Cesium cobalt malonate, 283345 Cetane, 5167 n-Cetyl acetate, 5380 Cetyl alcohol, 5168 Cetylene, 5156 n-Cetyl iodide, 5164

Cetyl palmitate, 6047 Cevine, 5977 Chaimandine, 5712 Chaimarine, 5713 Champacol, 5002 Chaulmoogne neul 5344 Chaulmoogryl alcohol, 5355 Chavicol, 3125 Cheroline 3200 Chelidanue acid. 1906 Chehdomne, 5527 Chinosol, 5291 Chitemne, 5448 Chloracetol 420 Chloral, 107 Chloral-p-acetaminophenol, 3578 Chloralacetone, 907 Chloralacetophenone, 3544 Chloral alcoholate, 603 Chloramula 319 Chloral ammonia, 195 Chloralantipyrine 4528 Chloral d-borneolate, 4368 7 Chloral cyanohydrin, 315 Chloral formanide 349 Chloral hydrate, 161 cis-Chloralimide, 425 a-Chloralose, 2754 Chloranil, 1109 a-Chlorhydrin, 473 B-Chlorhydrin, 472 3-Chloroacenaphthene, 1201 Chloroacetamide, 188 o-Chloroacetamhde, 2542 m-Chloroscetambde, 2543 p-Chloroacetamlide, 2544 Chloroacetic acid, 156 Chloroscetic anhydride, 559 Chloroncetone, 377 ω-Chloroacetophenone, 2497 p-Chloroacetophenone, 2498 Chlorogetyl bromide, 119 Chlorogetyl carbinol, 380 Chloroacetyl chloride, 135 1-Chloroaeryhe acid, 324 2-Chloroacrylic acid, 325 3-Chloronllylene, 323 2-Chloro-3-ammophenol, 1378 2, 4-Chloroaminophenol, 1379 4-Chloroumline-3-sulfone acid, 1380 o-Chloroamhne, 1375 m-Chloroamline, 1376 c-Chloroundine, 1377 1-Chlorounthracene, 4610 9-Chloroanthracene, 4611 1-Chloroanthraquinone, 4610 2-Chloroanthraquinone, 4611 3-Chloroanthraquinone, 1612 m-Chloronzobenzene, 1208 p-Chloroazobenzene, 4209 5-Chlorobarbituric acid, 552 o-Chlorobenzal chloride, 1868 p-Chlorobenzal chloride, 1809 o-Chlorobenzaldehyde, 1856 m-Chlorobenzaldehyde, 1857 p-Chlorobenzaldehyde, 1858 o-Chlorobenzamide, 1951 m-Chlorobenzamide, 1952 p-Chlorobenzamide, 1953 Chlorobenzene, 1307 p-Chlorobenzenesulfome acid, 1319 o-Chlorobenzoic acid, 1860 m-Chlorobenzoic acid, 1861 p-Chlorobenzoic acid, 1862 o-Chlorobenzophenone, 4431 m-Chlorobenzophenone, 4432 p-Chlorobenzophenone, 4433 o-Chlorobenzoyl chloride, 1812 m-Chlorobenzoyl chloride, 1813 p-Chlorobensoyl chloride, 1811 o-Chlorobenzyl alcohol, 2042 m-Chlorobensyl silcohol, 2043

p-Chlorobensyl alcohol, 2044 -Chlorobenzyl bromde, 1936 p-Chlorobenzyl bromide, 1937 o-Chlorobenzyl chloride, 1965 p-Chlorobenayl chloride, 1966 o-Chlorobenzylidene chloride, 1868 p-Chlorobenzylidene chloride, 1869 1-Chlorobuty me acid. 653 d-2-Chlorobutyric acid, 654 Jl-2 Chlorobutyric acid, 655 3-Chlorobutyric acid, 656 a-Chlorocamphor, 3782 B-Chlorocamphor, 3783 5-Chlorocamphor, 3784 o Chlorocamanne acid, 3033 trans-1-Chloroginnamic acid, 3031 trans-2-Chloroemnamic acid, 3032 2-Chloro-p-cresol, 2050 3-Chloro-o-cresol, 2045 3-Chloro-p-cresol, 2051 1 Chloro-p-cresol, 2046 1 Chloro-m-cresol, 2048 5-Chlorosserord 2047 6 Chloro-m-cresol, 2049 1-Chloro g-crotome acid, 579 1-Chloro-6-crotome acid, 580 2-Chloro-#-erotome weid, 581 Chlorode ahydronaphthalene, 3877 creβ Chlorodecalm, 3877 1 Chloro-1, 2-diaminobengene, 1437 1 Chloro-1, 3-daminobenzene, 1438 2-Chloro-1, 3 dehydroxypropane, 172 3-Chloro-1, 2 dihydroxypropane, 473 " Chlorodimethylamhne, 2687 n. Chlorodynethylambne 2680 2-Chloro-2, 3-dimethylbutane, 1094 g-1-Chloro-1, 3-dimitrobenzene, 1165 8-4-Chloro-1, 3-dimtrobenzene, 1166 2-Chloro-1, 3-dantrobenzene, 1164 2-Chloro-1, 4-directrobenzene, 1168 3-Chloro-1, 2-dimitrobenzene, 1162 t-Chloro-1 2-duntrobenzene 1163 5-Chloro-1, 3-dimitrobenzene, 1167 Chlorodinitrohydrin, 376 o-Chlorodiphenyl, 4205 m-Chlorodiphenyl, 1206 p-Chlorodiphenyl, 4207 1-Chloroethyl acetate, 657 2-Chloroethyl acetate, 657.1 2-Chloroethyl alconol, 227 Chloroethylene, 153
1-Chloroethyl ethyl ether, 751 2-Chloroethyl ethyl sulfide, 753 Chloroform, 19 Chlorogenic acid, 5305 Chlorogenine, 5626 4(5)-Chloroguancol, 2052 4(5)-Chloro-2-hydroxymethoxybenzene, 2052 1-Chloro-2-hydroxypropane, 470 2-Chloro-1-hydroxypropane, 171 Chlorohydroquinone, 1317 2-Chlord-4-hydroxytoluene, 2050 3-Chloro-2-hydroxytoluene, 2045 3-Chloro-1-hydroxytoluene, 2051 4-Chloro-2-hydroxytoluene, 2046 4-Chloro-3-hydroxytoluene, 2048 5-Chloro-2-hydroxytoluene, 2047 6-Chloro-3-hydroxytoluene, 2049 Chloroiodoacetic acid, 129 p-Chloroiodobenzene, 1214 1 Chloroisopropyl alcohol, 470 Chloroisopropylidene chloride, 387 Chloroisalome acid, 326 p-Chlorometamlic acid, 1380 Chloromethyl chloroformate, 137 Chloromethyl isocyanate, 130 Chloromethyl methyl ether, 228 Chloromethyl sulfate, 225 α-Chloronaphthalene, 3455 β-Chloronaphthalene, 3456 1-Chloro-\$-naphthol, 3462

2-Chloro-a-naphthol, 3457 4-Chloro-a-naphthol, 3458 5-Chloro-a-naphthol, 3459 5-Chloro-d-panisthal 3463 6-Chloro-a-naphthol, 3460 the Chloro-department had 3464 7-Chloro-a-naphthol, 3461 7-Chloro-6-naphthol, 3465 8-Chloro-#-naphthol, 3466 2. Chloro-4-nitrospiline, 1308 2-Chloro-5-mtrosmline, 1309 3-Chloro-4-nitroamline, 1810 3. Chlorost nitrosniline, 1311 1 Chloro-2-mtroamline, 1312 t Chloro- 3-mironmiline 1313 o-Chloroutrobenzene, 1215 m-Chloromtrobenzene, 1216 a Chloromtrobensone, 1217 2 Chloroutrobenzene-5-sulfonic acid. 1997 5-Chloronttrobensone-3-sulfonic scid, 1228 4-Chloro-1-nitromaphthalene, 3410 7-Chloro-1-nitronaphthalene, 3411 2-Chloro-3-mtrophenol, 1221 2-Chloro-4-nitrophenol, 1225 3-Chloro-4-mtrophenol, 1226 4-Chloro-2-mtrophenol, 1218 4-Chloro-3 mtrophenol, 1222 5 Chloro-2-atrophenol, 1219 5-Chloro-3-mtrophenol, 1223 6.Chloro-2-nitrophenol 1220 6-Chloro 3-nitrophenol, 1224 2. Chloro 3-mtrotoluene, 1958 3-Chloro-2-nitrotolucne, 1954 4-Chloro-2-mtrotoluene, 1955 4-Chloro-3-nitrotoluene, 1959 5-Chloro-2-mtrotoluene, 1956 5-Chloro-3-mtrotoluene. 1960 6-Chloro-2-mitrotoluene, 1957 2 Chloropentane, 1046 3 Chloropentane, 1047 o-Chlorophenol, 1314 m Chlorophenol, 1315 p-Chlorophenol, 1316 4-Chloro-s-phenylenediamine, 1437 4-Chloro-m-phenylenediamine, 1438 o-Chlorophenylhydrazine, 1439 p-Chlorophenylhydrasine, 1440 Chloropieria, 11 2-Chloropropane, 469 1-Chloropropionie acid, 381 2-Chloropropionie acid, 382 2-Chloropropyl alcohol, 471 1-Chloropropylene, 373 2-Chloropropylene, 374 3-Chloropropylene, 375 1-Chloropropylidene chloride, 385 2-Chloropropylidene chloride, 386 2-Chloropyridine, 848 3-Chloropyridine, 819 4-Chloropyridine, 850 2-Chlorogunoline, 3000 3-Chloroquinoline, 3001 4-Chloroquinoline, 3002 5-Chloroquinoline, 3003 6-Chlorogunoline, 3004 7-Chloroquinoline, 3005 8-Chloroquinoline, 3008 5-Chlorosaltcylic acid, 1864 a-Chlorostyrene, 2495 ω-Chlorostyrene, 2496 1-Chlorothymol, 3699 6-Chlorothymol, 3700 a-Chlorotoluene 2039 m-Chlorotoluene, 2040 p-Chlorotoluene, 2041
2-Chlorotoluene-5-sulfonic acid, 2055 2-Chloro-m-toluidine, 2122 2-Chloro-p-toluidine, 2126 3-Chloro-p-toluidine, 2127

4-Chloro-o-toluidine, 2120

4-Chloro-m-toluidine, 2123 & Chlorocatoludine, 2120 1 5-Chloro-m-toluidine, 2124 6-Chloroustaludine 2121 6-Chloro-m-toluidine, 2125 2-Chloross-trichlorotoluene, 1822 2-Chloro-1, 3, 5-trustrobenzene, 1127 8-Chloro-1, 2, 4-trinitrobenzene, 1128 2-Chlorovinylarsine dichloride, 116 2-Chlorovinyldichlorosisine, 116 Chloroxyl, 5040 1-Chloro-o-xylene, 2640 1-Chloro-m-sylene, 2643 1-Chloro-p-xylene, 2644 3-Chloro-o-xylene, 2641 4-Chloro-o-xylene, 2612 Cholanic acid, 5585 Cholere acid, 5842 Cholesterol, 5933 Cholenterol benzoate, 6075 Cholesterol butyrate 6024 Cholesterol caprinate, 6110 Cholesterol capronate, 6054 Cholesterol formate, 5961 Cholesterol propionate, 6007 Cholesterol salicylate, 6076 Cholesterol valerate, 8043 Cholesterylamine, 5937 Cholestol, 5748 Cholestrophane, 889 Cholic scid, 5844 Chromane, 3135 Chromanone, 3079 Chromium acetylacetonate, 31624 Chromuun ovalate, \$1622 Chromium tartrate, 31623 Chromone, 3015 Chrysandine 5401 Chrysanisie acid, 1920 Chrysatropic acid, 3530 Chrysnain, 4631 Chrysasol, 4673 Chrysene, 5264 Chrysenic seid, 5175 Chrymne, 4874 Chrysoeriol, 5049 Chrysoidine, 4293 Chrysophanic acid, 4875 Chrysophanol, 4905 Ciba, 5850 Cimicie acid, 5014 Cinchamidine, 5462 Cinchol, 5596 Cinchomeronic acid. 1904 Cinchonamine, 5463 Cinchonic acid, 2188 Cinchomeine, 5440 Cinchondine, 5411 Cinchonidine hydrochloride, 5151 Cinchondine salicylate, 5893 Cinchonidine sulfate, 6115 a-Cinchonine, 5442 Cinchonine hydrochloride, 5152 Cinchonine nitrate, 5459 Cinchonine sulfate, 6116 Cinchonine acid, 3178 Cinchomnone, 5428 1 Cinchotemne, 5315 Cinchotine, 5464 Cinchotoxine, 5440 Cincol, 3002 Cincohe acid, 3873 Cinnamal chloride, 3056 Cinnamaldehyde, 3009 Cinnamamide, 3102 Cinnamic acid, 3075 Connamic anhydride, 5275 Cinnamic mtrile, 3035 Cinnamovi chloride, 3028

Cinnamyl alcohol, 3126

Cinnamyleocaine, 5454

Cinnamyl cinnamate, 5292

Cordol, 4421

Commyrtin, 4944 1

Consmyl evanule, 3472 Citraconic acid, 89 Citraconic anhydride, 863 a-Citral, 3849 B-Citral, 3850 d Citempulso and 952 dl-Citramalic acid, 953 Citramide, 1609 Citize and 1507 Citronellal, 3903 Citronellic acid, 3931 Citronellal 3968, 3969 d-Citronellyl acetate, 4387 Citronellyl formate, 1144 Carollol 5748 Clavine, 1157 Claymepsin, 5372 Clovene 4976 Cluytianol, 5981 Cluytime acid, 5691 Cluytyl alcohol, 5968 Cobalt acetate, 331512 Cobalt acetylacetonate, 231513 Cobalt formate, 31510 Cobalt malonate, 231511 Cobalt naphthalene-1, 5-disulfonate, 281514 Cobalt oxalate, 231508 Cocaine, 5221 a-Coentine, 5219 dl-Cocaine, 5220 Cocure formate 5332 Cocaine hydrochloride, 5228 d-Cocaine tartrate, 5674 Coramne, 6113 Cocoche acid, 5535 Cocceric acid, 6027 Cocceryl alcohol, 6016 Codamine, 5571 Codeine, 5317 Codeme o-guancolsulfonate, 5867 Codeme hydrobromide, 5321 Codeme hydrochloride, 5324 Codeme phosphate, 5333 Codeme sulfate, 6097 Codethyline, 5453 Corrubgnol, 3767 Colchicerne, 5652 I-Colchicine, 5708 Colchinine, 5697 Collidine, 2777 Collidine-3-earboxylic acid, 3212 Columbin, 5949 Concharmarine, 5714 Conchairamidine, 5715 Concusconine, 5786 Conessine, 5804 1, 5841 Conhydrine, 2930 a-Concerne, 2853 8-Concerne, 2854 y-Coniceine, 2855 δ-Conferm, 2856 Conferm, 5137 Comfery! deohol, 3686 o-Conferylaldehyde, 3602 p-Comferyl ddehyde, 3603 d-Comme, 2928 Comme by drobromide, 2945 Comme hydrochloride, 2946 Comme hydrorodide, 2918 Conune nitrate, 2950 Conquinanane, 5466 Convallaretia, 5478 Convoyuhn, 6046 Convrine, 2776 sum-Copellidine, 2929 Coposterin, 5939 Copper naphthalene-1, 5-disulfonate, 291035 Coralline, 5397

Compaded 3915 Corybulbine, 5663 d-Corycavamine, 5634 Corycavidine, 5707 Corveavine, 5775 dl-Corydahne, 5723 Corydine, 5664 Coryfin, 4844 Corynanthine, 5669 Corypalmine, 5552 Corntuburing 5455 Cotarnic acid, 3541 Cotarnine, 4334 Coton 4744 o-Coumaral alcohol, 3136 p-Coumarhydrin, 3080 -Coursere seed, 3083 m-Coumaric acid, 3084 p-Coumaric acid, 3085 o-Coumaric aldehvde, 3072 p-Coumaric aldehyde, 3073 Coumarine, 3016 Commirone, 2468 Crackene, 5817 Creatine, 780 Creatinine, 682 Creosol, 2725 Cresulol, 1741 o-Cresol, 2160 m-Cresol, 2161 p-Cresol, 2162 o Cresol orthoacetate, 5779 o-Cresolphthalem, 5699 a-Cresol-6-sulfonic acid. 2187 p-Cresol-2-sulfonic acid, 2186 -Cresyl acetate, 3150 m-Cresyl acetate, 3151 p-Crosyl acetate, 3152 m-Cresyl benzoute, 1736 p-Cresyl benzoate, 4731 -Cresyl ether, 4778 m-Creavl ether, 4779 p-Cresvi ether, 4780 o-Cresyl methyl ether, 2719 m-Cresyl methyl ether, 2720 p-Cresyl methyl ether, 2721 o-Cresyl salicylate, 1711 m-Cresyl salicylate, 4742 p-Cresyl salicylate, 4743 Crocetin, 3772 Crotonaldehyde, 614 a-Crotome acid, 617 β-Crotonic acid, 618 Crotome anhydride, 2745 Crotonyl acetate, 1556 Crotonyl alcohol, 711 Crotonylamine, 758 Crotonyl chloride, 578 Crotonylene, 597 Crotonyl ether, 2833 Crotonyl isothiocyanate, 912 Crotonyl mustard oil, 912 Cryptopine, 5647 Cubebin, 5534 Cubebinol, 5533 Cucurbitol, 5843 Cumarane, 2572 Cumene, 3223 Cumenol, 3656 Cume acid, 3668 Cume aldehyde, 3656 Cumdine, 3257 Cumunal alcohol, 3754 Cupferron, 1528 Cupreine, 5447 Cupreine sulfate, 6117 Cupreol, 5597 Cupric acetate, 281031 Cupric formate, 281029 Cuscohygrine, 4575 Cusconine, 5787 Cusparidine, 5411

Cusparine, 5412 Curcumin, 5627 Cyanamide, 30 Cyananiline, 4775 Cyanic acid 23 Cyundide 1978 Cyanoacetamide, 352 Cyanoacetanilide, 3067 Cyanoscetic acid. 333 n-Cyanoacetophenona 3038 Cyanoacetylene, 313 o-Cyanobensoic acid, 2435 m-Cuanahanzaia and 2426 p-Cyanobensoic acid, 2437 Cyanoform, 543 Cyanogen 95 Cyanogen bromide. 3 Cyanogen chloride, 7 Cyanogen rodide, 14 Cyanogen sulfide, 96 Cyanoguandine, 207 Cvanuero and 335 Cyanuric trichloride, 308 1 Cyclamin, 5599 Cyclobutane, 683 Cyclobutanel, 712 Cyclocitral, 3851 Cyclofenchene, 3805 Cycloform, 4108 Cycloheptadiene, 2237 Cycloheptane, 2327 Cycloheptanol, 2335 Cycloheptanone, 2290 Cycloheptatriene, 2111 1, 3-Cyclohexadiene, 1466 Cyclohexane, 1612 Cyclohexane-1, 3, 5-triol, 1661 Cyclohexanol, 1627 Cyclohexanone, 1541 Cyclohexyl acid succinate, 3870 Cyclohexyl acetate, 2837 Cyclohexyl bromide, 1588 Cyclohexyl carbinol, 2337 Cyclohexyl chloride, 1595 Cyclohexyl formate, 2297 Cyclohexylene, 1537 Cyclohexyl rodide, 1601 Cyclohexyl mercaptan, 1687 Cyclonopane, 3318 Cyclooctane, 2865 Cyclopentadiene, 880 Cyclopentane, 979 Cyclopentanol, 997 Cyclopentanone, 924 Cyclopentylene, 913 Cyclopropane, 408 Cyclopropyl carbinol, 713 Cymarin, 5997 o-Cymene, 3727 m-Cymene, 3728 Cynoctonine, 6094 Cysteine hydrochloride, 501 I-Cystine, 1625 Cystisine, 4086 Damascenine, 3717 Damascenine picrate, 5084 Dambonite, 2917 Dambose, 1680 Daphnetin, 3018 Daphnin, 4937 Datiscin, 5660 Daturic acid, 5256 Datume, 5235 cis-Decahydronaphthalene, 3890 trans-Decahydronaphthalene, 3891 Decaline, 3890 n-Decane, 3993 n-Decyl acetate, 4407 n-Decyl alcohol, 4002 n-Decylamine, 4011 n-Decylic aldehyde, 3977 a-Decylene, 3955

y-Decylene, 3956 9, 10-Decylenic acid, 3932 Dehydracetic acid, 2622 Deliydromorphine, 6060 Dehydroquinine, 5546 Dehydrothio-p-toluidine, 4722 m-Dehydrothioxylidine, 5083 Delphinine, 5742 Desoxyalizarin, 4680 Desoxyamihe acid, 4315 Desoxybenzoin, 4724 Desoxycholic acid, 5842 Desoxycinchonidine, 5437 Desoxycinchonine, 5438 Desoxyquinine, 5557 Desoxystrychnine, 5668 Dextrose, 1677, 1678 Diacetamide, 673 Dacetanilide, 3628 Diacetin, 2312 Discetohydroxamic acid, 677 Dacetone alcohol, 1641 Diacetoneamineoxime, 1719 Dacetyl, 625, 2815, 4368 2 Diacetylacetone, 2263 Diacetylaminoazotoluene, 5313 p-Diacetylaminophenol, 3629 Diacetylbenzidine, 5082 Discetylenedicarboxylic acid, 1148 Diacetylhydrazobenzene, 5082 4 Diacetylmonoxime, 671 Diacetylmorphine, 5648 Diacetylmorphine hydrochloride, 5651 Diacetyl-o-phenylenediamine, 3614 Diacetyl-m-phenylenediamine, 3645 Diacetyl-p-phenylenediamine, 3646 Daldan, 2839 Dallyl, 1534 Diallylandine, 4326 5, 5-Diallylbarbituric acid, 3617 Diallyl carbinol, 2288 Dallylene, 1467 Dallyl oxalate, 2748 Diallyl sulfide, 1587 Diallyl tartrate, 3777 1 sym-Diallylurea, 2285 2. 8-Diaminoacridine, 4188 a-Diamionanthraquinone, 4657 β-Diaminoanthraquinone, 4658

3, 3'-Diamino-2, 2'-azotoluene, 4811 o-Diaminobenzene, 1479 m-Diaminobenzene, 1480 p-Diaminobenzene, 1481 1, 2-Diaminobenzene-3-sulfonic acid, 1490 2, 2'-Diaminobenzophenone, 4497 3, 3'-Diaminobenzophenoue, 1498 4, 4'-Diaminobenzophenone, 4499 3, 3'-Diamino-4, 4'-dihydroxyarsen benzene dihydrochloride, 4311

p. p'-Diaminoazobenzene, 4294

2, 4-Diaminoazobenzene, 4293

2, 2'-Diamino-4, 4'-azotoluene, 4810

4, 4'-Diamino-2, 2'-dimethyldiphenyl

1, 4'-Diamino-3, 3'-dimethyldiphenyl

o, p-Diaminodiphenyl, 4287

p. p'-Diaminodiphenylamine, 4310

2, 4'-Diaminodiphenylmethane, 4519

3. 3'-Diaminodiphenylmethane, 4520

3, 4'-Diaminodiphenylmethane, 4521

p, p'-Diamino-o, o'-ditolylmethane, 4522
p, p'-Diamino-o, o'-ditolylmethane, 4942

1, 5-Diaminopentane, 1105

2, 5-Diaminophenol, 1484

3, 4-Diaminophenol, 1485

3, 5-Diaminophenol, 1486

Di-(p-aminophenylene) sulfone, 4235 1, 2-Di-(o-aminophenyl)-e thylene. 4767

1, 2-Di-(p-aminophenyl)-ethylene

1. 2-Diamino-1, 2-di(phenyhmino)ethane, 4775 Di-o-aminophenyl oxalate, 4716

Di-m-aninophenyl oxalate, 1717 Di-p-aminophenyl oxalate, 4718 1. 2-Di-(p-aminophenyl) through

4526 5, 8-Diaminoquinoline, 3117

6 S-Diaminounnoline 3118 2, 2'-Diaminostilbene, 4767

4 4'-Dammostilhene 4768 2. 3-Diaminotoluene, 2249

4-Diaminotoluene, 2250

2. 5-Documentolnene, 2251 2. 6-Diaminotoluene, 2252

3, 4-Diaminotoluene, 2253

3, 5-Diaminotoluene, 2254
p. p'-Diaminotriphenylmethane, >117 Di-l-amyl chlorofumarate, 4831 1 Diamyl ketone, 4170

Di-l-amyl maleate, 4837 1 Di-l-amyl malonate, 4580 1 Diamyl o-phthalate, 5335

Diamyl succinate, 4845, 4845 1 o-Dianisidine, 4809 Dr-(n-amsyl)dimethylmethane, 52134 Di-p-anisyl-p-phenetylguanidine by

drochloride, 5783 9, 9'-Dianthranyl, 5943 Diapthol, 3053

Diarsenodiacetic acid, 599 Diaspirin, 5278 Dathesin, 2166

1, 2-Diazine, 561 1, 3-Diazine, 562

1, 4-Diazine, 563 Dazoaminobenzene, 4275

Diazonminoethane, 290 1 o, o'-Diazoaminotoluene, 4800 p. p'-Diazoaminotoluene, 4801

Diazomethane, 31

p-Diazophenol, 1270 1. 1-Di(benzalamino)-phenylmethano

5622 Dibenzohydroxamic acid, 4705 sum-Dibenzovlethane, 5089

Dibenzoyl-d-lysme, 5548 Dibenzovimorphine, 6019 Dibenzyl, 4756

Dibenzylacetone, 5199 Dibenzylamine, 4789 Dibenzylamline, 5526

5, 5-Dibenzylbarbituric acid, 5290 Dibenzyl disulfide, 4786 Dibenzyl fumarate, 5301

Dibenzylideneacetone, 5185 Dibenzyl ketone, 4914

Dibenzyl malomate, 5195 Dibenzylmethane, 4930

Dibenzyl oxalate, 5073 Dibenzyl selenide, 4788

Dibenzyl succinate, 5310 Dibenzyl sulfide, 4787 Dibenzyl sulfone, 4781

Di-d-bornyl carbonate, 5683 Di-d-bornyl succenate, 5840 g-Dibromhydrin, 415

8-Dibromhydrin, 416 Dibromoacetic acid, 125

Dibromoacetylene, 83 2, 4-Dibromoambne, 1302 2. 5-Dibromoanline, 1303

2, 6-Dibromoamhne, 1304 3, 4-Dibromoandine, 1305

3. 5-Dibromoaniline, 1306 9, 10-Dibromoanthracene, 4617 o-Dibromobenzene, 1204 m-Dibromobenzene, 1205

p-Dibromobenzene, 1206 2. 3-Dibromobenzoic acid, 1796 2 4-Dibromobangoia and 1507 2. 5-Dibromobengore acid. 1798

2. 6-Dibromobensore seid, 1799

1. I-Dibromobensors and 1800

3, 5-Dibromobensore seid, 1801 1 2-1 bbroughutana 688

3-Dibromobutane, 689 1. 1. Dilliennin lineania atter

C-TABLE: INDEX

2. 4-Dibromobutane, 691

a a'-Dibromocamphor, 3712

s-1, 2-Dibromoeinnamie acid, 2008

t ans-1, 2 Dibromoennamie acid, 2000 Dibromoeyanovectamide, 313-1 1. 2-Dibrono 1. 2 dichloroethylene, 81

1 1 Dibromoethane, 183 1 - 2 Dillienning Charm. 184

2, 2-Dibromoethyl alcohol, 185

1, 1-Dibromoethylene, 122 1. 2. Dibronia thylene 123

Di-(1-bromoethyl) sulnde, 691 Dibromogallie acid, 1802

1. 3-Dibromo 2-hydroxypropane, 115 2, 3-Dibrono 1-hydroxypropane, 416 1, 1'-Dibronoisopropyl alcohol, 415

Dibromomethane, 26 sym-Dibromomethyl ether, 186 2, 4-Dibromo-3-methyl-4-isopropyl

phenol, 3640 2-1hbromo-2-methylpropane, 693 1-Dibromontrobensene, 1152

2.5 Dibromontrobenzene, 1153 3. 4-Dibromonitrobenzene, 1154

5-Dibromontrobenzene, 1155 4. 6-Dibromo 2-mtrophenol, 1155 I

1, 5 Dibromopentane, 987 3 Dibromopentane, 988

2, 4-Dibromophenol, 1207 2, 6-Dibromophenol, 1208 3, 4-Dibromophenol, 1209

3. 5-Dibromophenol, 1210 p, p'-Di-(bromophenyl), 4185 1

4-Dibromophenylhydrazine, 1371 3, 5-Dibromophenylhydrazine, 1372

1, 1-Dibromopropane, 411 1. 2-Dibromopropane, 412

1, 3-Dibromopropane, 113 2. 2-Dibromopropane, 414 1, 1-Dibromopropionic acid, 342

1, 2-Dibromopropionic acid, 343 2 3 Dibromopropyl alcohol, 416 A-2, 3-Dibromopropyl-5, 5-diethyl-

barbiturie acid, 4123 co-1, 2-Dibromopropylene, 339 trans-1, 2-Dibromopropylene, 340 2, 3-Dibromopropylene, 341

2, 4-Dibromoresorcinol, 1211 1, 6-Dibromoresorenol, 1212 1. 2-Dibromosuccime acid, 557

1, 2-Dibromo-1, 1, 2, 2-tetrachloro methane, 81 1

2. 4-Dibromothymol, 3640 2, 3-Dibromotolucne, 1948 2. 6-Dibromotolucue, 1949

3, 5 Dibromotoluene, 1950 2, 6-Dibromo-3, 4, o-trihydroxyben

zore acid, 1802 s, ω'-Dibromo-p-xylene, 2511 Di-n-butylacetic acid, 3981-1

Di-n-butyl alcohol, 2951 Di-n-butylamine, 2984 Di-n-butylamline, 4832

Dr-n-butyl carbinol, 3356 Di-sec-butyl carbinol, 3358 Di-n-butyl carbonate, 3341 Di-n-butyl malonate, 4160 Di-n-butyl oxalate, 3941

Di-n-butyl phthalate, 5135 Di-n-butyl sulfide, 2981 Di-sec-butyl sulfide, 2983 Di-n-butyl d-tartrate, 4392

Dibutynn, 4163 Dicentrine, 5540 13.0mrsl 6048 a-Inchlorhydrin, 422

a. Dichlochyden, 423 1. 2-1hchloroscenaphtl Dichloroacetal, 1622

Dichloroacetaldehyde, 134 Dichloroscetamide, 157

Dichloroscetic acid, 136 1. 1 Dichloroscetone, 346

Dichloroscetyl chloride, 108 Dichloroneetylene, 88 2, 3-Dichloronuline, 1320

1-Dichloroamhne, 1321

2 5-1 heldoroandine, 1322 2 6 Dichloroaniline, 1323 3, 1 Dichloroumhne, 1324

3, 5-Dichlorosnihne, 1325

1, 2 Dichloroanthracene, 4618 9, 10-Dichloroanthracene, 4619

a 1, 2 Dichlorounthraquinone, 4896 \$ 1, 2-Dichloroanthraquinone, 4597

1. 1 Dichloroauthraquinone, 4598 5 Dichloroanthraquinone, 4590

1. 6-Dichloroauthraquinone, 4600 1. 8 Dichlorounthraquinone, 4601

2, 3 Dichloroanthraquinone, 4602 2, 6-Dichlorounthraquinone, 4603

2, 7-Dichloroanthraquinone, 4604 5, 5-Dichloroburbiturio acid, 544 2, 4-Dichlorobensuldehyde, 1809

5 Dichlorobenzaldchyde, 1810 3. 1 Dichlorobenzaldehyde, 1811

a Dichlorobenzene, 1229 m Diehlorobenzene, 1230

p Dichlorobenzene, 1231 5-Dichlorobenzeneaulfonia 1241

2, 2-Dichlorobenzidine, 4222

1, 1-Dichlorobengidine, 4223 2, 3 Dichlorobenzoic seid, 1815

2, 1 Dichlorobensore acid, 1816 2. 5-Dichlorobenzoic seid, 1817

2, 6 Dichlorobenzoic acid, 1818 3. 4-Dichlorobenzoic acid, 1819

3, 5-Dichlorobenzoic acid, 1820 μ_i p'-Dichlorobenzophenone, 4422
 1, 2-Dichloro-1-bromoethylene, 100

Dichlorobutylene glycol, 697,1 a Dichlorocamphor, 3744 g-Inchloroeamphor, 3745

cre-1, 2-Dichloroemnamic scid, 3007 trans-1, 2-Dichlorocinnamic acid, 3008 1, 1-Dichloro-e-cresol, 1967

3, 5-Dichloro-o-cresol, 1968 1, 6-Dichloro-m-cresol, 1969

3-Dichlorodincetylbenzidine, 5064 Inchlorodinitromethane, 8 Dichloro-1, 2-diphenylethylene, 4653

1, 2-Dichloro-1, 2-diphenylethylene, 1654

m, m'-Dichlorodiphenylmethane, 4442 p. p' Dichlorodiphenylmethane, 4443

1, 1-Dichloroethane, 189 1, 2-Dichloroethane, 190 2, 2-Dichloroethyl alcohol, 191

1, 1-Dichloroethylene, 131 1.1. 2-Dichloroethylene, 132 trans-1, 2-Dichloroethylene, 133

Di (2-chloroethyl) ether, 696 1, 2-Dichloroethyl ethyl ether, 697

Di (1-chloroethyl) sulfide, 698 Dis(2-chloroethyl) sulfide, 699 D₁ (2-chloroethyl) sulfone, 701

Di-(2-chloroethyl) sulfoxide, 700 1. 5-Dichlorogumacol, 1970

2, 3 Dichlorohydroquinone, 1238

2, 5-Dichlorohydroquinone, 1239 2. 6-Dichlorohydroquinone, 1240

1, 1-Dichloro-2-hydroxypropane, 421 1. 3-Dichloro-2-hydroxypropane, 422 3-Dichloro-1-hydroxypropane, 423

3. 3-Dichlormeonentane, 980 1, 1-Dichloroisopropyl alcohol, 421 1, 1'-Dichloromopropyl alcohol, 422 Dichloromethane, 28 Dichloromethylal, 424 Dichloromethylarsine, 38
3. 3-Dichloro-2-methylbutane, 989 Dichloromethyl chloroformate, 110 Dichloromethyl-p-c hlorophenyl ketone, 2432 sym-Dichloromethyl ether, 192 1, 2-Dichloro-2-methylpropane, 695 Di-(chloromethyl) sulfide, 191 Di-(chloromethyi) sulfoxide, 193 1, 2-Dichloronaphthalene, 3412 1, 3-Dichloronaphthalene, 3413 1, 4-Dichloronaphthalene, 3111 1. 5-Dichloronanhthalene 3115 1, 6-Dichloronaphthalene, 3116 1, 7-Dichloronaphthalene, 3417 1. 8-Dichloronaphthalene, 3118 2, 3-Dichloronaphthalene, 3419 2, 6-Dichloronaphthalene, 3120 2, 7-Dichloromphthalene, 3421 2, 3-Dichloro-a-naphthol, 3422 2, 4-Dichloro-a-naphthol, 3423 5, 7-Dichloro-a-naphthol, 3424 5, 8-Dichloro-a-naphthol, 3425 6. 7-Dichloro-a-naphthol, 3126 7, 8-Dichloro-a-naphthol, 3127 1, 3-Dichloro-g-naphthol, 3128 1. 4-Dichloro-A-mobile 3129 3, 6-Dichloro B-naphthol, 3129 1 2, 3-Dichloronitrobenzene, 1169 2, 4-Dichloronitrobenzene, 1170 2, 5-Dichloromtrobenzene, 1171 2 A-Dichlorontrobourene 1172 3, 4-Dichloronitrobenzene, 1173 3, 5-Dichloromtrobenzene, 1171 4. 6-Dichloro-2-mitro phenol, 1171 1 1, 4-Dichloropentane, 990 1, 5-Dichloropentane, 991 2, 3-Dichloropentane, 992 2, 3-Dichlorophenol, 1232 2, 4-Dichlorophenol, 1233 2. 5-Dichlorophenol, 1234 2, 6-Dichlorophenol, 1235 3, 4-Dichlorophenol, 1236 3, 5-Dichlorophenol, 1237 2, 4-Dichlorophenylhydrazine, 1381 2. 5-Dichlorophenylhydrazine, 1382 3, 5-Dichlorophenylhydrazine, 1383 3, 3-Dichloro-1-phenylpropene, 3056 3, 6-Dichlorophthalic acid, 2426 3, 6-Dichlorophthale anhydride 9191 1. 1-Dichloropropane, 417 1, 2-Dichloropropane, 418 1, 3-Dichloropropane, 119 2, 2-Dichloropropane, 420 2. 2-Dichloropropione acid, 318 2, 3-Dichloropropyl alcohol, 423 3, 5-Dichloropyridine, 845 2, 3-Dichlorogunohne, 2001 2, 4-Dichlorogunoline, 2992 5, 6-Dichloroquinoline, 2993 5, 7-Dichloroquinoline, 2094 5. 8-Dichlorogunoline, 2005 6, 8-Dichloroquinoline, 2008 7, 8-Dichlorogunoline, 2007 2, 5-Dichloroquinone, 2911 2, 6-Dichloroquinone, 1130 Dichlorostilbene, 4653 Di-(2-chlorovinyl)-araine chloride. 555 ω, ω'-Dichloro-p-xylene, 2515 Dieinchonine, 6112 Dicyandiamide, 207 Dicyclohexyl oxalate, 4831 o, o'-Diethoxyanobennene, 5102

p, p'-Diethoxynzobenzene, 5103

p. p'-Diethoxyazoxybenzene, 5105

o-Diethoxybenzene, 3766 p-Diethoxyethenyldiphenylamidine, 5205 C-Dicthylacetanihde, 4361 Diethylacetic acid, 1645
Diethylacetic acid, 1645 Diethyl acetylsuccinate, 3874 Dicthylamine, 821 Doethylamane hydrochloride, 831 Diethylaminoacetic acid guaiacol hydrochloride, 4556 n-Diethylaminobenzaldehyde, 4104 p-Diethylaminobenzoic acid, 1107 m-Du thylammophenol, 3792 Du thylambne 3789 Diethylandine-m-sulfonic acid, 3796 Diethylarsome acid, 818 a a'-Diethylazobenzene, 5092 p, p'-Du thylazobenzene, 5093 1. 3-Diethylbarbitume acid. 2807 5, 5-Diethylbarbituric acid, 2808 o Diethylbenzene, 3729 m-Diethylbenzene, 3730 p-Diethylbenzene, 3731 Diethylbromoacetamide, 830 V-Diethylbromoaectylurca, 2315 Diethyl bromososuccinate, 2816 1 Diethyl bromomalonate, 2271 Diethyl carbinol, 1080 Diethyl carbonate, 1026 Diethyl chloromaleate, 2753 1 Diethyl citraconate, 3283 Diethyleyanamide, 993 Diethyl diacetyltartiate, 4368-41 Diethyl ducthylmalomate, 4161 Diethyl diphenylmalonate, 5431 Diethyldipropylammonium platinate, 331213 Diethyl disulide, 815 Diethyl disulfoxide, 803 Du thylenedi mine, 782 Dicthylene disulfide, 740 Dicthyleneglycol, 805 Diethyl 1-ethyl-1'-acetyleuccin ite. Diethyl fumarate, 2812 Diethyl glutaconate, 3281 Diethyl glutarate, 3312 Diethylisobutyl carbinol, 3359 Diethylisopropylmethane, 2938 Diethyl staconate, 3285 Diethylketene 1547 Diethyl ketone, 1005 Diethyl ketoxime, 1055 Diethyl mal ite, 2849 1 Diethyl maleate, 2813 Diethyl malonate, 2309 Diethylmalonic acid, 2307 Diethyl mesiconate, 3286 Diethyl mesovalate, 2314 Diethyl methylmalomate, 2846 Diethyl muconate, 3776 Diethyl-a naphthylamine, 4813 Diethyl-B-naphthylamine, 4814 Diethyl oxabite, 1570 Diethyloxamide, 1624 Diethyl peroxide, 800 Diethylphosphine, 825 Diethyl o-phthalate, 4324 Diethylpropyl carbinol, 2952 Diethylpropylmethane, 2942 Diethyl sebicate, 4846 Diethyl selenide, 816 Diethylsihoon dichloride, 28437 Diethyl succinate, 2847 Diethyl succinylsuccinate, 4355 Diethyl sulfate, 809 Diethyl sulfide, 814 Diethyl sulhte, 807 Diethyl sulfone, 802 Diethylaulfonediethylmethane, 3370 Diethylsulfonedimethylmethane, 2416

6. 7-Dihydroxy-1, 2-benzopyrore Diethylsulfonemethylethylmethane, 3019 2080 Diethyl d-tartrate, 2850 7. 8-Dihydroxy-1, 2-benzopyrope 3018 Diethyl telluride, 817 Diethyl thiocarbonate, 1022 1, 4-Dihydroxybutane, 795 2, 3-Dihydroxybutane, 796 3. 5-Diethyltoluene, 4117 o-Diethyltoluidine, 4137 1, 2-Dihydroxybutyric and 73s 3. 4-Dihydroxycinnamic acid 3054 m-Diethyltoluidine 4138 2, 3-Dihydroxycoumarin, 3018 p-Diethyltoluidine, 4139 1, 2-Diethylurea, 1077 4. 5-Dihydroxycoumarin, 3019 V-Dethylvaleranude, 3346 4, 4'-Dihydroxy-8, 8'-dinaphthyl, 550 1, 2-Dihydroxy-1, 2-diphenylethane 2. 5-Diffuoroacetanilide, 2502 Diffuoroacetic seid, 141 4791 4. 4'-Dihydroxydiphenylsulfone. 1256 2. 5-Diffuoroaniline, 1332 m-Diffuorobenzene, 1252 Di-(2-hydroxyethyl) ether, 805 p-Diffuorobenzene, 1253 5, 7-Dihydroxyflavone, 4874 2. 5-Dihydroxy-4-isopropyltoluene. Digitalia 6087 Digitalin, oos. 3771 Digitogenie acid, 5953 Dihydro-o-xylene, 2795 Dihydro-m-xylene 2706 Digitoxigenin, 5736 Δ1, 3-Dihydro-p-xylene, 2797 Digitoxin, 6077 Diglycerol, 1717 Dihydroxymalonic acid, 363 Diglycohe acid. 633 2, 4-Dihydroxymesitylene, 2248 Digunacyl camphorate, 5829 1, 2-Dihydroxy-2-methylpropane, 797 Di-n-heptyl tartrate, 5371 1 1, 2-Dihydroxynaphthalene, 3509 Disposeryl carlinol, 4588 1. 3-Dihydroxynaphthalene, 3510 5, 10-Dihydroacridine, 4471 1, 4-Dihydroxynaphthalene, 3511 1, 6-Dihydrobenzaldehyde, 2161 1, 5-Dihydroxynaphthalene, 3512 1 6-Dihydrobenzaldoxime, 2223 1. 6-Dihydroxynaphthalene, 3513 o-Dihydrobenzene, 1468 1, 7-Dihydroxynaphthalene, 3514 m-Dihydrobenzene, 1469 1, 8-Dihydroxynaphthalene, 3515 2. 3-Dihydroxynaphthalene, 3516 p-Dibydrobenzene, 1470 3, 4-Dihydrobenzopyran, 3135 2, 6-Dihydroxynaphthalene, 3517 Dihydrocumarin, 3078 2, 3-Dihydrocycloheptene, 2237 2, 7-Dihydroxynaphthalene, 3518 1. 2-Dihydroxynonylic acid. 3313 1, 2-Dihydro-3, 5-dihydroxy-4-(a, 3, 1, 2-Dihydroxypelargonic acid, 3313 4-trihydroxybenzylbenzofurun), 5629 3, 4-Dihydroxyphenanthrene, 4675 Dihydroharmine, 4524 2. 5-Dihydroxyohenylacetic acid. 2626 Dihydromorphine, 5217 2-(3, 4-Dihydroxyphenyl)-propionic acid, 3176 1, 2-Dihydronaphthalene, 3573 1, 4-Dihydronaphthalene, 3574 2. 4-Dihydroxypyridine, 875 1, 2-Dihydro-B-naphthol, 3588 2, 6-Dihydroxypyridine, 876 $\Delta^1,$ 4-Dihydro-o-phthalic acid, 2623 2, 6-Dihydroxypyrimidine, 564 Δ², 4-Dihydro-o-phthalic acid, 2624 2. 5-Dihydroxyounone, 1288 Δ2, -Dihydro-o-phthalic acid, 2625 1, 9-Dihydroxystearic acid, 5388 Dihydroquinoline, 3097 Dihydroresoreinol, 1497 Dihydroxytartaric acid, 641 1, 2-Dihydroxy-1, 1, 2, 2-tetraphenyl-1, 2-Dihydrotoluene, 2238 ethane, 5889 2, 4-Dihydroxytoluene, 2169 1, 3-Dibydrotoluene, 2239 2, 4-Dihydrotoluene, 2240 2, 5-Dihydroxytoluene, 2170 Dihydroxyacetone, 455 2, 6-Dihydroxytoluene, 2171 6-Dihydroxy-o-aldehydobenzoie 3, 4-Dihydroxytoluene, 2172 acid, 2489 3, 5-Dihydroxytoluene, 2173 1, 8-Dihydroxyanthracene, 4673 1, 2-Dihydroxytricarballyhe acid, 1508 1, 3-Dihydroxyanthraquinone, 4631 1, 7-Dihydroxyxanthone, 4429 Dundole, 5066 1, 4-Dihydroxyanthraquinone, 1633 , 5-Dihydroxyanthraquinone, 4628 Duodoacetic acid, 143 1. 6-Dihydroxyanthraquinone, 4629 Duodoacetylene, 93 2, 4-Duodoamline, 1340 1, 7-Dihydroxyanthraquinone, 4630 8-Dihydroxyanthraquinone, 4631 o-Duodobenzene, 1258 2. 3-Dibydroxyanthraquinone, 4632 m-Dirodobenzene, 1259 2, 6-Dihydroxyanthraquinone, 4627 p-Duodobenzene, 1260 2, 4-Diiodo-1, 3-dinitrobenzene, 1142 4, 6-Diido-1, 3-dinitrobenzene, 1143 2, 3-Dihydroxybenzaldehyde, 2011 3, 4-Dihydroxybenzaldchyde, 2012 a-Dihydroxybenzene, 1414 Diiododiacetylene, 540 m-Dihydroxybenzene, 1415 1. 1-Duodoethane, 196 p-Dihydroxybensene, 1416 1, 2-Duodoethane, 197 Duodomethane, 29 2, 4-Duodophenol, 1261 o-Dihydroxybensene dimethyl ether, 2737 @Dihydroxybensene ethyl ether, 2738 2, 6-Duodophenol, 1262 2, 3-Dihydroxybenzoic acid, 2016 2, 4-Dihydroxybenzoic acid, 2017 3, 4-Diiodophenol, 1263 3, 5-Diiodophenol, 1264 2, 5-Dihydroxybenzoic acid, 2018 6-Diodophenol-4-sulfonic acid. 2, 6-Dihydroxybenzoic acid, 2019 1265 3, 4-Dihydroxybensoic seid, 2020 1, 2-Duodopropane, 427 5-Dihydroxybenzoic acid, 2021 1, 3-Duodopropane, 428 2. 2'-Dihydroxybensophenone, 4460 2, 2-Duodopropane, 429 2, 3'-Dihydroxybenzophenone, 4461 3, 5-Diiodosaheylic acid, 1828 2. 4'-Dihydroxybenzophenone, 4462 Diiodothiophene, 546

Diisoamylamine, 4012

Discamyl ketone, 4171

Diisoamyl carbonate, 4177

2. 5-Dihydroxybensophenone, 4459

4, 4'-Dihydroxybensephenone, 4464

4'-Dihydroxybenzophenone, 4463

3. 3-Dimethylpentane, 2388

C-TABLE: INDEX

Dimethylenemethane, 337

Dusoamyl oxalate, 4391 Dusoumyl sulfide, 4010 Disoamyl tartrate, 4846.1 Dasobutyl, 2933 Dusobutylamine, 2985 Dusobutylammonium chloroplatinate. W1508 Dusobutylandine, 4832 1 Dusobutyl carbinol, 3357 Dusobutyl carbonate, 3342 Dusobutyl-o-cresol iodide, 5732 Dusobutyl d-diacetyltartrate, 5143 1 Duzobutylene, 2866 Dusobutyl ketone, 3326 Disobutyl oxalate, 3942 Disobutyl sulfide, 2982 Dusobutyl d-tartrate, 4393 Dusobutyl I-tartrate, 4393.1 Dusopropenyl, 1533 Dusopropyl, 1712 Dusopropylamine, 1761 Dusopropyl carbinol, 2400 Dusopropyl ketone, 2345 Dasopropylmethane, 2387 Dasopropyl sulfide, 1755 Dimazon, 5313 Dimercaptoglucose diethyl ether, 4009 Dimentholformol, 5689 Di-l-menthyl adipate, 5915 Di-l-menthyl carbonate, 5687 Di-l-menthyl glutarate, 5877 Di-l-menthyl malonate, 5810 Di-l-menthyl oxalate, 5759 Di-l-menthyl succinate, 5846 Di-l-menthyl d-tartrate, 5847 Di-l-menthyl l-tartrate, 5848 3, 4-Dimethoxyallylbenzene, 4092 2, 2'-Dimethoxyazohenzene, 4773 4, 4'-Dimethoxyazohenzene, 4774 4-Dimethoxybenzene-1, 2-dicarboxylic acid, 3626 3, 3'-Dimethoxybenzidine, 4809 3, 4-Dimethoxybenzoic acid, 3181 Di-(2-methoxynenzoic acid, 5181 2, 3, 4, 5-Dimethoxydihydroxybenzoic acid, 3187 7-Dimethoxy-1-(3, 4-dimethoxybenzoyl)-isoquinoline, 5528
5-Dimethoxy-4-hydroxybenzoic acid. 3185 4-Dimethoxy-6-hydroxydiphenyl ketone, 4921 tym-Di-(o-methoxyphenyl)-hydrazine, 6, 7-Dimethoxyphthalide, 3621 3, 4-Dimethoxypropenylbenzene, 1093 Dimethylacetal, 801 V-Dimethylacetamide, 762 3, 5-Dimethylacetamhde, 3707 Dimethylacetylene, 597 Dimethylacetylene tetrabromide, 603 2, 2-Dimethylacrylic acid, 932 2, 2'-Dimethyladipic acid, 2844 1, 1-Dimethylallene, 915 1, 3-Dimethylallene, 914 Dimethylalloxan, 1408 Dimethylamine, 282 Dimethylamine hydrochloride, 297 ω-Dimethylaminoacetophenone, 3708 4-Dimethylaminoantipyrine, 4537 p-Dimethylaminobenzaldehyde, 3193 p-Dimethylaminobenzophenone, 4927 2-Dimethylamino-1-(p-h y d r o x y phenyl)-ethane, 3794 o-Dimethylaminophenol, 2781 2-Dimethylamino-m-xylene, 3786 4-Dimethylamino-o-xylene, 3788 4-Dimethylamino-m-xylene, 3787 Dimethyl-n-amyl carbinol, 2953 Dimethylamylmethane, 2937

o-Dimethylanthranilic acid, 3206

Dimethylaniline, 2756

2. 3-Dimethylambne 2757 2. 4-Dimethylaniline 2758 2. 5-Dimethylandine, 2759 2, 6-Dimethylamline, 2760 3, 4-Dimethylambne, 2761 3, 5-Dimethylamhne, 2762 Dimethylaniline oxide, 2789 Dimethylamline-m-sulfonic acid, 2791 Dimethylandine-p-sulfonic acid, 2792 2. 3-Dimethylanthracene, 5060. 2, 4-Dimethylanthracene, 5061 2, 6-Dimethylanthracene, 5062 Dimethylarsine, 278
o, o'-Dimethylazobenzene, 4763 2, 4'-Dimethylazobenzene, 1761 3 3'- Daniel hylarobonymia 1765 4. 4'-Dimethylazobenzene, 1766 2, 2'-Dimethylazoxybenzene, 4770 3. 3'-Dimethylazoxybenzene, 1771 4, 4'-Dimethylazoxybenzene, 1772 1, 3-Dimethylbarbiture acid, 1487 2. 4-Dimethylbenzaldehyde, 3129 3-Dimethyllicuzore acid, 3138 2, 4-Dimethylbenzoic acid, 3139 2, 5-Dimethylbenzoic acid, 3140 2, 6-Dimethylbenzoic acid, 3141 3, 4-Dimethylbenzoic acid, 3142 n-Dimethylbenzoin, 5085 p, p'-Dimethylbenrophenone, 4915 3, 5-Dimethylbenrylamine, 3265 2. 3-Dimethyl-1, 3-butadiene, 1533 2-Dimethylbutane, 1716 2. 2. Dimethylliutane, 1712 2. 2-Dimethylbutyl alcohol, 1723 Dimethylbutyl carbinol, 2396 Dimethyl-tert-butyl carbinol, 2398 2. 2-Dimethyl-4-butylene, 1611 3-Dimethyl-1-butylene, 1618 2, 3-Dimethyl-2-butylene, 1619 1, 1-Dimethyl-2-n-butylethylene, 2872 Dimethyl carbonate, 458 Dimethyl chlorofumarate, 1111 2 Dimethyl chloromalcate, 1441 1 Dimethyl citraconate, 2267 o-Dimethylcyclohexane, 2867 m-Dimethylcyclohexane, 2868 p-Dimethylcyclohexane, 2869 1, 2-Dimethylcyclohexanol, 2878 1, 3-Dimethylcyclohexanol, 2879, 2880 1 4-Dimethylevelohexanol, 2881 2, 2-Dimethylcyclohexanol, 2882 2, 4-Dimethyleyclohexanol, 2883 2. 5-Dimethylcyclohexanol, 2884 2, 6-Dimethyleyclohexanol, 2885 3, 3-Dimethylcyclohexanol, 2886 3, 4-Dimethylcyclohexanol, 2887 cis-3, 5-Dimethyleyelohexanol, 2888 trans-3, 5-Dimethyleyelohexanol, 2889 2. 2-Dimethyleyclohexanone, 2831 2, 6-Dimethyleyclohexanone, 2832 1, 1-Dimethylcyclohexene-3-ol, 2830 Dimethylcyclopentamethylene cane, 29411
o'-Dimethyldiazoaminobenzene, 4800p'-Dimethyldiszoaninobenzene, 4801 1, 2-Dimethyl-1, 2-diethylethane, 2936 sym-Dimethyldiethylathylene, 2871 Dimethyldiethylsilicane, 28100 Dimethyldiethylmethane, 2388 5-Dimethyl-o-dihydroxybenzene,

5-Dimethyl-o-dihydroxybenzene.

Dimethyldiisobutylethane, 4413

Dimethyldipropyl silicane, 28415 Dimethyl disulfide, 274

Dimethyldinsobutyietnane, 1113 3, 8-Dimethyldiphenazone, 1711 o, o'-Dimethyldiphenyl, 4758 Dimethyldipropylammonium chloro-platinate, 201210

Dimethyl ether, 263
Dimethylethylacetic acid, 1646 Dimethyl ethyl carbinol, 1081 1, 1-Dimethylethylene, 684 sym-1, 2-Dimethylethylene, 685 sym-1, 2-Dimethy lethy lenegly col. 706 1 1. Demorthy le at hy let hy long 1613 1, 2-Dimethyl-2-ethylethylene, 1614 Directly lethy hisopropyl silicane, 20116 Dina thylethylpropyl scheane, N412 Dimethylethyloiffonium hydroxide. S 17 Dimethal fumorate, 1499 2, 5-Dimethylturan, 1496 2. 5-Dimethylturiurane 3-carboxylo weid, 2180 2, 3-Dimethyl-a glucose, 2018 2. 3-Dimethyl-p-glucose, 2919 Dimethylelyoxime, 705 1, 1-Dimethylguanidine sulfate, 1773 2, 6-Dimethyl 1, 5-heptadiene 1- ildi hyde, 3849 2. 4-Dimethylheptane, 3347 2, 5 Dimethylheptane, 3318, 3319 2, 5 Dimethylheptane, 3318, 3319 2, 4-Dimethylheptane-1-ol, 3363 3, 5-Dimethylheptane-4-ol, 3358 3. 6-Dimethylheptane 3-ol, 3361 1, 6-Dimethy heptane-2-ol, 3360 2, 5-Dimethyllicxam, 2933 2. 3-Dimethylhexane, 2934 4-Dimethylhexane, 2935 3, 4 Dimethylbexane, 2036 1, 1-Dimethylby drazine, 301 3-Dimethylhydroquinone, 2732 2. 5-Dimethylhydroquinone, 2733 2, 6-Dimethylhydroquinone, 2731 4. 4-Dimethyl 1-bydroxybutane, 1721 4-Dimethyl 2-hydroxyhexane, 2957 5-Dimethyl-1 hydroxyhexane, 2956 5-Dimethyl-2-hydroxyhexant, 2954 5-Dimethyl-3-hydroxyhexane, 2972 3, 5-Dimethyl-3-hydroxybexane, 2964 Dimethylhydroxylamine, 286 Dimethylisonmyl carbinol, 2954 Dimethylisobutyl carbinol, 2397 Dimethyl isophthalate, 3611 Dimethylmopropyl carbinol, 1725 Dimethyl isosuccinate, 1569 Dimethylketene, 615 Dimethylketine, 2799 Dimethyl ketol, 721 Dimethyl malate, 1576 Dimethyl maleate, 1500 Dimethylmalonamide, 994 1 Dimethyl malonate, 918 Dimethylmalonic acid, 914 Dimethyl-p-methylhexylearbinol, 3972 Dimethyl muconate, 2749 1, 4-Dimethylnaphthalene, 4279 2, 3-Dimethylnaphthalene, 4280 2, 6-Dimethylmphthalene, 4283 Dimethyl-a-naphthylamine, 4304 Dimethyl-\$-naphthylamine, 4305 1-(5, 8-Dimethyl-2-naphthyl) - p r o pionic acid, 1936 Dunethylmtrosamme, 258 2, 6-Dimethyloctane, 3994 2, 7-Dimethyloctane, 3995

3, 6-Dimethyloctane, 3996, 3997

2, 6-Dimethyl-1(2)-octene, 3958

3, 7-Dimethyl-n-octyl alcohol, 4003

2, 4-Dimethyl-1, 3-pentadiene, 2276

2, 4-Dimethyl-2, 3-pentadiene, 2277

2. 3-Dimethyl-2-octene, 3957

Dimethyloxamide, 704
Dimethylparabanic acid, 889

2. 2-Dimethylpentane, 2394

2, 4-Dimethylpentane, 2387

Dimethyl oxalate, 631

2, 3-Dimethyl-2-pentenc, 2834 2. 1-Dimethyl-2-pentens, 2325 2, 3 Dimethylphenol, 2705 2. 4-Dimethylphenol, 2706 2. 6-Dimethylphenol, 2707 3. 4-Dimethylphenol, 2708 J. 5-Dimethylphenol, 2709 1 Dimethyl-m-phenylenedianune, 28(11) 1-Dimethyl-p-phenylenediamine, 1901 2. d-Dimethylphenylhydrasine, 2802 Dimethylphosphime acid, 292 Dimethyl e phthalate, 3015 rametnyi o patnaiate, 5045 o °, 's-Dimethylpiperazine, 1718 Dimethylpiperazine tartrate, 3985 2, 2 Dimethylpropane, 1074 2, 2-Dimethylpropane-1-ol, 1082 Dunethyl propenyl carbinol, 1629 2, 5 Dimethylpyrazine, 1482 3 4 Dimethylpyrazole, 921 2 3, 5-Dimethylpyrasole, 922 2, 4 Dimethylpyridine, 2196 2. 0-Dimethylpyridine, 2197 3. 4-Dimethylpyridine, 2198 3. 5-Dimethylpyrocatechol, 2726 1. 5-Dimethylpyrocatechol, 2727 Dimethyl-y pyrone, 2176 1 Dimethyl pyrotarirate, 2310 1, 2 Dimethylpyrrole, 1516 2. 3-Dimethylpyrrole, 1517 2, 4 Dimethylpyrrole, 1518 2. 5-Dimethylpyrrole, 1519 Dimethylphosphine, 201 2, 4-Dimethylquinoline, 4044 2, 6 Dimethylquinoline, 4045 2, 7-Dimethylquinoline, 4046 3, 1 Dimethylquinoline, 4047 1. 0-Dimethylquinoline, 4048 1. 7 Dimethylquinoline, 4049 2, 4-Dimethylquinoline methiodide, 4530 1, 2-Dimethylquinone, 2591 1. 3-Dimethylquinone, 2592 1, 5-14 methylquinone, 2592 1, 4-Dimethylquinone, 2593 Dimethyl racemate, 1580 2. 4-Dimethylresorcinol, 2728 5-Dimethylresoremol, 2729 1. 5-Dimethylresorcinol, 2730 1, 6-Dimethylresorcinol, 2731 Dimethylahesne, 28405 Dimethyl succinate, 1568 1, 1-Dimethylsuccinic scid, 1563 Dimethyl sulfate, 269 Dimethyl sulfide, 272 Dimethyl sulfite, 266 Dimethylsulfone, 265 Dimethyl d-tartrate, 1581 Dimethyl tartronate, 956 Dimethyl telluride, 277 Dimethyl terephthalate, 3616
7. 8-Dimethyltetradecane, 5166 2, 3-Dimethylthiophone, 1509 2, 4-Dimethylthiophone, 1510 2, 5-Dimethylthophene, 1511 3, 4-Dimethylthiophene, 1512 o-Dimethyltoluidine, 3258 m-Dimethyltoluidine, 3259 p-Dimethyltoluidine, 3260 Dimethyltriazene, 290.1 1, 1-Dimethyltrimethylene, 980 p, p'-Dimethyltriphenylmethane, 5625 1, 1-Dimethylures, 502 1, 2-Dimethylurea, 503
Dimethyl ureindihydroxysuccinate, 1, 3-Dimethyluric acid, 2154 1, 7-Dimethyluric seid, 2155 1, 9-Dimethyluric seid, 2158 3. 9-Dimethyluric seid, 2157 1, 3-Dimethylxanthine, 2151

tooo

280
1, 7-Dimethylxanthine, 2152
3, 7-Dimethylanthine, 2153
σ-Dinaphthol, 5502 β-Dinaphthol, 5503
a, a'-Draphthyl, 5491
α, β'-Dinaphthyl, 5492
β, β'-Dinaphthyl, 5493 β, β'-Dinaphthylamine, 5508
num-1h-(a-naphthyl-hydrazine, 5513
aym-Di-(#-naphthyl)hydrazine, 5514
α, β'-Dinaphthyl ketone, 5612 β, β'-Dinaphthyl ketone, 5613
α, α'-Dinaphthylmethane, 5616
a, B'-Dinaphthylmethane, 5617
B, β'-Dinaphthylmethane, 5618 α, α'-Dinaphthyl sulfide, 507
Dimentinie aesd, 1905
Dmitroacenaphthene, 4191 2, 3-Dmitroacetamble, 2526
2, 4-Dinitroveetaniide, 2527
2, 6-Dimtroacetambde, 2528
3, 4-Dimtroacetamlide, 2529 3, 6-Dimtroacetamlide, 2530
3, 5-Dinitro-4 ammobinzoic acid, 1920
4, 6-Dinitro-2-ammophenol, 1364
2, 3-Dinitroandine, 1358 2, 4-Dinitroandine, 1359
2, 5-Dimtroandine, 1360
2, 6-Dimtroamline, 1361
3, 4-Dinitroamline, 1362 3, 5-Dinitroamline, 1363
2, 4-Dinitronnisol, 1990
2, 5-Dinitronnisol, 1991 2, 6-Dinitronnisol, 1992
3, 4-Dimtroamsol, 1993
3, 5-Dinitroansol, 1991
1, 3-Dinitroanthraquinone, 4608 2, 4-Dinitrobensaldehyde, 1832
2, 6-Dimtrobenzaldebyde, 1833
o-Dinitrobenzene, 1271
m-Dinitrobenzene, 1272 p-Dinitrobenzene, 1273
1. 3-Dinitrobenzene-4-sulfonic acid,
1282 2, 3-Dinitrobenzoic acid, 1834
2, 4-Dinitrobenzoic acid, 1835
2, 5-Dinitrobenzoic acid, 1836 2, 6-Dinitrobenzoic acid, 1837
3, 4-Dinitrobenzoie acid, 1838
3, 5-Dinitrobensoic scid, 1839
p, p'-Dinitrobenzophenone, 4423 3, 5-Dinitrocresol, 1996
2, 4-Dinitro-m-cresol, 1995
1, 2-Dimitro-4, 5-dibromobenzene,
1122 l 1, 3-Dimitro-4, 6-dibromobenzene,
1122 2
2, 4-Dinitro-N-diethylamline, 3722 4, 5-Dinitro-1, 2-dimethoxybenzenc,
2586 1
2, 4-Dimtrodimethylamine, 2682 1
o, o'-Dinitrodiphenyl, 4192 m, m'-Dinitrodiphenyl, 4193
p, p'-Dinitrodiphenyl, 4194
1, 1-Dimitroethane, 202 Dimitroglycerine, 443
3, 5-Dimtroguancol, 1997
2,4-Dinitro-4'-hydroxydiphenylamine,
4217 Dinitromethane, 33
1, 2-Dimitronaphthalene, 3435
1, 3-Dimitronaphthalene, 3436 1, 4-Dinitronaphthalene, 3437
1, 4-Dinitronaphthalene, 3437 1, 5-Dinitronaphthalene, 3438
1, 6-Dinitronaphthalene, 3439
1, 7-Dinitronaphthalene, 3440 1, 8-Dinitronaphthalene, 3441
1, 6-Dimtro-#-naphthol, 3445
1, 8-Dimitro-8-naphthol, 3446
2, 4-Dimitro-α-naphthol, 3442 4, 5-Dimitro-α-naphthol, 3443
4, 8-Dinitro-α-naphthol, 3144

```
2 3-Dinitrophenol 1274
2, 4-Dimtrophenol, 1275
2, 5-Dimtrophenol, 1276
2 6-Dintrophenal 1277
3, 4-Dantrophenol, 1278
3, 5-Dimtrophenol, 1279
2 4-Directorosoronol 1280
4, 6-Dinitroresorcinol, 1281
3, 5-Dinitrosalicyle acid, 1840
α-p, p'-Dinitrostilbene, 4662
β-p, p'-Dinitrostilbene, 4663
2, 3-Dinitrotohiene, 1984
2 L. Drutentzhione 1985
2, 5 Dimitrotoluene, 1986
2, 6 Dinitrotoluene, 1987
3 4-Directedment 1988
3, 5-Dinitrotoluene, 1989
2, 6-Dimitrotoluene-4-sulfonic acid.
   1998
2, 3-Dimtro-p xylene, 2564
2, 5-Dinitro-m xylene, 2562
2 5-Duntro-a vylene 2565
2, 8-Dinitro-p-xylene, 2566
3. 4-Doutro a-valence 2558
3, 6-Duntro-o-xylene, 2559
1, 5-Dimtro-o-xylene, 2560
1, 5-Dinitro-m xylene, 2563
4, 6-Dinitro o-xylene, 2561
 Di-a-octyl carbinol, 5261
Dioform, 132
Diogonal, 4123
Dionine, 5461
Dioscorine, 4551
Dioscorine hydrochloride, 4555
Diosmin, 5928
Diagondal 9519
Dipentene, 3806
Diphenacyl, 5069
1, 8-Dipheme acid, 4683
1, 9-Diphenic acid, 4684
1, 10-Diphenic acid, 4685
2. 9-Diphenic acid. 1686
Diphenic anhydride, 1625
o, o'-Diphenol, 4243
o, p'-Diphenol, 4244
m, m'-Diphenol, 1245
p. p'-Diphenol, 4246
Diphenyl, 4219
Diphenylacetaldebyde, 47.3
V-Diphenylacetamide, 4752
Diphenylacetic acid, 4732
Diphenylacetylene, 4650
p-Diphenylaldehyde, 1145
 Diphenylamine, 4270
Diphenylamine hydrochloride, 4284
Diphenylammonium chloroplatinate,
   W1198
Dinbenylarane 1261
Diphenylarsine chloride, 4220
Diphenylarsome acid, 4265
p. p'-Diphenylazobenzene, 5820
p, p' Diphenylazoxybenzene, 5821
 p-Diphenylbenzene, 5274
Diphenylbenzylamine, 5408
Diphenyl carbinol, 4507
Diphenyl carbonate, 1466
Diphenylchloroarune, 1220
Diphenyleyanoarsine, 4140
Diphenyldiacetylene 5025
Diphenyl-2, 3'-dicarboxyle acid, 4684
Diphenyl-2, 4'-dicarboxylic acid, 1683
Diphenal disulfide, 1261
Diphenylene disulfide, 4201
Diphenyleneketone, 4425
Diphenylene oxide, 4195
o-Diphenylenemethane, 4439
1, 1-Diphenylethane, 4757
1, 2-Diphenylethane, 4756
1, 1-Diphenylethylene, 4707
1, 2-Diphenylethylene, 4708
Diphenylformamide, 4180
a-Diphenylglyoxime, 4712
```

```
1, 2-Di-m-tolylthioures, 4935
1, 2-Di-o-tolylures, 4931
Diphenylguanidine, 4518
Diphenylguanidine trithiocarbonate,
                                              1. 2-Di-m-tolviurea, 4932
1. 1-Diphenvlhydrazine, 4288
                                               1, 2-Di-p-tolylurea, 4933
1, 2-Diphenylhydrazine, 4289
                                              Diversina 5570
p, p'-Diphenylhydrazobenzene, 5822
Diphenylmide, 4211
                                               Divinyl, 596
                                               Divinyl sulfide, 642
Diphenyhodomum chloride, 4221 1
                                              Di-m-xylylsulfone, 5111
                                              n-Docosane, 5772
Diphenylketene, 1670
                                               Docosanic acid, 5768
Diphenylmaleic anhydride, 5028 1
Diphenyl malonate, 4908
                                               Docosyl alcohol, 5773
                                               Docosyl aconor, 5770
Diphenylmethane, 1490
                                               n-Dodecane, 4411
Diphenylmethane-o-nitrile, 4697
1. 5-D : p h e n y l-3-methylpyrazole,
                                               n-Dodecyl alcohol, 4415
                                              n-Dodecylamine, 4417
  5044 1
Diphenyl-m-phenylenediamine, 5287
Diphenylphosphine, 4278
                                               n-Dodecylene, 4400
                                              n-Dotriacontane, 6048
Drimine, 4527
Diphenylpiperazine, 5100
                                               Dulcin, 3232
Diphenyl selemde, 4262
Diphenyl succinate, 5074
                                              Dulcitol, 1750
Duotal, 4924
Diphenyl sulfide, 1260
                                               Durene, 3732
Diphenylgulfone 1219
Diphenyl sulfoxide, 1212
                                               Dypnone, 5067
                                               Dysprosium ethyl sultate, 232081
Diphenyl tartrate, 5077
Diphenyl telluride 4263
                                               d-Ecgonine, 3292
1, 2-Diphenylthiouren, 4504
                                              I-Ecgomne, 3293
                                               dl-Ecconine, 3294
Diphenyl-m-tolylmethane, 5520
                                               I-Ecgomne hydrochloride, 3298
1 1-Dunkenylures 1501
1, 2-Diphenylures, 4500
                                               dl-Ecgomne hydrochloride, 5343
                                               Ecgonine methyl ester, 3886
Dipicolinic acid, 1903
                                               Echicerin, 5999
Dimerylamine, 4181
                                               Echinopsine, 3559
Echiretin, 6086
Dipropargyl, 1366
Dipropionamhde, 4330
                                               Echitamine, 5727
n-Dipropylamine 1760
Di-n-propylambne, 4368.8
                                               Echitein, 6135
Echitin, 6042
 5, 5-Dipropylbarbitume acid, 3841
                                               n-Eicosane, 5610
Dipropyl carbinol, 2399
                                               Ercosenic acid, 5604
Ercosinic acid, 5602
Di-n-propyl carbonate, 2365
Dipropylhexylmethane, 4585
Dipropyl ketone, 2344
                                               Ercosyl alcohol, 5611
Dipropyl malate, 3914
                                               n-Ercosyl rodide, 5609
                                               Elaidic acid, 5357
Dipropyl malonate, 3313
Dipropylmtrosamine, 1720
                                               α-Elaterin, 5956
                                               β-Elaterin, 5957
Elaterone, 5834
Di-n-propyl oxalate, 2848
Dipropyl succipate, 3913
Dipropyl sultide, 1754
                                               Elemicin, 4353
Dipropyl tartrate, 3915
                                               α-Elemol, 4998
Disser spronyl tartrate, 3945 1
                                               B-Elemol, 1999
2, 3'-Dipyridyl, 3497
                                               Elemone, 1991
                                               Eleomargaric acid, 5345
α-Eleostearic acid, 5315
3, 3'-Dipyridyl, 3198
1, 1'-Dipyridyl, 3199
Dipyrryl ketone, 3068
                                               Ellagie acid, 4609
                                               Embelic and 5339
2, 3'-Diquinolyl, 5267
2, 7'-Diquinolyl, 5268
                                               Emetamine, 5973
                                               Emetine, 5991
Emetine dihydrobromide, 5992
6, 6'-Diquinolyl, 5269
8, 8'-Diamolyl, 5270
2, 2'-Diresoremol, 4251
                                               Emetine dihydrochloride, 5993
                                               Emetine dihydroiodide, 5994
Emodin methyl ether, 5050
4, 4'-Diresoremol, 4252
5, 5'-Diresoremol, 4253
Disalicylamide, 1706
                                               Endermol, 830
Disabeyhe aldehyde, 4681
Displosal, 4692
                                               Ephedrine, 3793
Ephedrine hydrochloride, 3828
Distyrene, 5062 1
Ditaine, 5727
                                               Epicarin, 5276
α-Epichlorhydrin, 379
Ditamine, 5422
                                               Epihydrin alcohol, 453
1, 2-Dithioglycerol, 509
                                               Erbium acetate, 332085
Dithiohydroquinone, 1433
Dithioresoreinol, 1432
                                               Erbum ethyl sulfate. 32086
                                               Ergosterol, 5902, 5932
Dithiosalicylic acid, 4689
Ditolaneszotide, 5033
                                               Ergothioneine, 3294 1
                                               Ergotimne, 6083
o, o'-Ditolyl, 4758
                                               Ergotoxine, 6084
                                               Ergotoxine phosphate, 6085
o. m'-Ditolyl, 4759
a, p'-Ditolyl, 4760
                                               Ericin, 3182
m, m'-Ditolyl, 4761
                                               Eriodictyol, 4909
                                               Eriodictyonone, 5080
Eriodonol, 5419
p, p'-Ditolyl, 4762
o-Ditolylamine, 4790
m-Ditolylamine, 4791
p-Ditolylamine, 4792
                                               Erucamide, 5766
Erucic acid, 5764
 Di-o-tolylguanidine, 4940
                                               Erucic anhydride, 6145
Di-p-tolyl ketone, 1915
Ditolyl sulfone, 4785
                                               Erucic anilide, 5963
Erucyl alcohol, 5767
1, 2-Di-o-tolyl thicures, 4934
                                               Erythrene, 596
```

Ethylisopropyl carbinol, 1727

C-TABLE: INDEX

Ethylene mercantan, 275

dl-Erythritol, 806 Erythritol tetranitrate, 611 Erythrol, 720 1.sculetin, 3019 Leculetime acid, 3093 sculin, 4938 Ladragol, 3655 Liserine, 4960 1 seroline, 4539 Ethane, 252 Ethane-1, 2-disulfonic acid, 271 l'thanetetracarboxylic acid, 1290 Lther, 793 Ltheserolene, 4815 Libocaine, 4557 Ethoxyacetic acid, 729 p-Ethoxy-N-aminoacetylaniline, 3751 m-Ethoxyamline, 2787 p-Ethoxyamine, 2788 3. Ethoxybensidine, 4808 o-Ethoxybenzoic acid, 3160 m-Ethoxybenzoic acid, 3161 p-Ethoxybenzoic acid, 3162 m-Ethoxy-p, p'-diaminodiphenyl, 4808 3-Ethoxy-4-isopropyltoluene, 4367 8 p-Ethoxyphenylsuccinimide, 4309 N-Ethylscetsmide, 763 A'-Ethylacetamilide, 3709 Lthyl acetate, 725 Lthyl acetoacetate, 1561 1-Ethyl-3-acetylbutyne acid, 2812 Lthylacetylene, 598 Lthyl acid carbonate, 459 Ethyl acrylate, 938 1-Ethylacrylic acid, 933 Lthyl alcohol, 262 a-Ethylalizarin, 5046 Ethyl allophanate, 707 Ethyl allyl ether, 1001 Ethylamine, 283 Ethylamine hydrobromide, 296 Ethylamine hydrochloride, 298 Ethylamine hydroindide, 299 Ethylaminoacetic acid, 770 Ethylaminoacetic acid hydrochloride, Fthyl p-aminobenzoate, 3213 m-Ethylaminobenzoic acid, 3207 o-Ethylamiaophenol, 2782 m-N-Ethylaminophenol, 2783 chloroplatinate, I thylanimonium 31186 Ethyl n-amyl ketone, 2893 Ethyl angelate, 2298 o-Ethylandine, 2764 m-Ethylanibne, 2765 p-Ethylaniline, 2766 N-Ethylandine, 2763 Ethylaniline-m-sulfonic acid, 2793 Ethylantipyrine, 4530 1 Fibel amoute 3688 9-Ethylanthracene, 5063 Ethyl anthrandate, 3211 Ethylarsine, 279 Ethylarsome acid, 281 Ethyl atropate, 4061 1-Ethylbarbitume acid, 1488 Ethyl behenate, 5859 Ethyl behandate, 5851 N-Ethylbenzamide, 3198 Ethylbenzene, 2683 Ethyl benzilate, 5087 Ethyl benzoate, 3154 o-Ethylbenzoic acid, 3143 m-Ethylbenzoic acid, 3144 p-Ethylbenzoic acid, 3145 Ethyl bensovlacetate, 4064 Ethyl benzylacetoacetate, 4531 Ethylbenzylandine, 4939 Ethyl bensyl ether, 3243 Ethyl benzyl ketone, 3660 Ethyl borate, 281825

Ethyl d-bornyl ether, 4385 Ethyl brassidate, 5852 Ethyl bromide, 220 Ethyl 1-bromo-n-butyrate, 1592 Ethyl 1-bromosobutyrate, 1593 Ethyl 1-bromosovalerate, 2317 Ethyl 1-bromopropionate, 963 Ethyl 1-bromosus alerate 2316 d-Ethylbutyl carbinol, 2400 1 Ethyl-sec-butyl carbinol, 2402 Ethyl butyl carbonate 2366 Ethyl n-butyl ether, 1737 Ethyl n-butyl ketone, 2316 Ethyl a-butylmalonate, 3308 Ethyl sec-butylmalonate, 3310 Ethyl n-butyrate, 1654 Ethylcacodyl, 2988 Ethyl camphorate, 4152 Ethyl n-caprate, 1408 Ethyl n-caproate, 2907 Ethyl n-caprylate, 3984 Ethyl carbamate, 492 Ethyl carbonate, 1026 Ethyl chaulmoograte, 5603 Ethyl chloride, 224 Ethyl chloroacetate, 658 Ethyl chloroacetoacetate, 1515 Ethyl chlorocurbonate 383 Ethyl chloroformate, 383 Ethyl chloroundeate, 2753 1 Ethyl 1-chloropropionate, 968 Ethyl 2-chloropropionate, 969 Ethyl trans-communite, 1062 Ethyl m-cresyl ether, 3211 Ethyl p-cresyl ether, 3215 Ethyl a-crotonate, 1557 Ethyl B-crotonate, 1558 1-Ethylerotome acid, 1552 Ethyl cyanide, 395 Ethyl cyanoacetate, 911 Ethyl cyanocarbonate, 590 Ethyl cyanoformate, 590 Ethyleycloheptane, 3319 Ethyleyclohexane, 2870 Ethyl diacetoacetute, 2811 Ethyl diazoacetate, 609 Ethyl dibromoacetate, 600 Ethyl dichloroacetate, 604 Ethyl 1, 2-dichloropropionate, 921 1 Ethyl diethylacetoacetate, 3937 Ethyl diodobrassidate, 5850 Ethyl 3, 5-dnodosalicylate, 3058 4-Ethyl-1, 3-dimethylbenzene, 3733 5-Ethyl-1, 3-dimethylbenzene, 3734 Ethyl dimethylmalonate, 3311 Ethyldiphenylamine, 4793 Ethyldipropylammonium chloroplatinate, 201209 Ethyldipropylmethane, 3351 Ethyl dithiobenzoate, 3187 1 Ethylene, 180 Ethylenebromhydrin, 221 Ethylene bromide, 184 Ethylenechlorhydrin, 227 Ethylene chloride, 190 Ethylene chlorobromide, 181 Ethylenecyanhydrin, 399 Ethylene cyanide, 560 Ethylene diacetate, 1571 Ethylene-1, 2-diamine, 300 Ethylenediamine hydrate, 307 Ethylenediamine hydrochloride, 306 Ethylenediamine isovalerate, 4420 Ethylenediamine thiocyanate, 788 Ethylene dibromide, 181 Ethylene dichloride, 190 Ethylene duodide, 197 Ethylene dimitrate, 205 Ethylene dinitrite, 203 Ethylene-ethenyldiamine, 702 Ethylene iodide, 197 Ethylenerodohydrin, 235

Ethylene nitrite nitrate, 204 Uthylana oxula 200 I'thylene osomde, 216 Lthylene sultide, 218 I the longues 432 Uthyl erucate, 5853 I thyl ether, 793 I thylethylene, 686 I thyl fluoride, 232 Ethal fluoroscotate 665 Ethyl formate, 451 I'thyl fumarate, 2812 I that callate 3186 Lthyl J-gluconate, 2921 d-a-I thylglucoside, 2920 I thyl glutaconate, 3284 Uthyl glutarate, 3312 Ethyl glycerate, 1030 Ethylglyeine, 770 Ethylglyeme hydrochloride, 781 I thylglycocoll, 770 Pthylglycocoll hydrochloride, 781 I thel glycolate 7.13 1-Uthylheptane, 3351 Ethyl heptylate, 3335 5. 5-1 thylheptylbarbiture acid, 1 :70 Ethyl a-heptyl ether, 3366 Ethyl hexahydrobenzoate, 3304 2-Ethylbexane, 2942 3-1 thylbexane, 2942 1 I thyl hexyl ether, 2976 I thyl hippurate, 1516 Lthylhydrazine, 302 Libyl hydroactylate, 1027 Lthyl hydrocinnamate, 4098 Lthyl hydrogen fumarate, 1501 I thyl hydrogen malonate, 949 I thyl hydrogen mesoxalate, 2269 Ethyl hydrogen oxalate, 632 Ethyl bydrogen phthalate, 3617 1.thyl hydrogen d-tartrate, 1582 Ethyl hydroselenide, 276 Lthyl 1-hydroxydiphenylacetic acid, 5087 3-Ethyl-3-hydroxyhexane, 2952 4-Ethyl-3-hydroxyhexane, 2958 α-Ethylhydroxylamine, 287 8-Lthylhydroxylamine, 288 Ethyl 1-hydroxy; henylacetate, 3689 Ethyl hypochlorite, 229 Ethyldeneacetone, 927 Ethyldene bromde, 183 Ethylidene chloride, 189 Ethyhdene diacetate, 1572 Ethyldene diethyl ether, 1746 Ethylidene dimethyl ether, 801 Ethylidene diurethane, 2877 Ethylidene iodide, 196 Ethylidene mtrite, 202 Ethylideneures, 433 1-Ethylindazole, 3122 Ethyl jodide, 234 Ethyl iodoscetate, 666 Ethyl 2-iodopropionate, 971 N-Ethylisoamylamline, 4567 Ethylisoamyl carbinol, 2955 Ethyl isoamyl ether, 2413 Ethyl isoamyl ketone, 2894 Ethylisobutylammomum chloroplatinate, 281196 Ethylmobutyl carbinol, 2401 Ethyl isobutyl ether, 1738 Ethyl mobutyl ketone, 2317 Ethyl isobutylmalonate, 3309 Ethyl isobutyrate, 1655 Ethyl isocrotonyl ether, 1631 Ethyl mocyanate, 397 Ethyl isocyanide, 396 Ethyl mopropylacetoscetate, 3306 Ethylisopropylammonium chloroplati nate, 381195

Ethyl isopropyl ether, 1087 Ethyl isopropyl ether, 1087 Ethyl isopropyl ketone, 1637 Ethyl mopropyl malonate, 2849 Ethyl isothocyanate, 404 Ethyl isovalerate, 2357 Fibyl staconate, 3285 I thyl lactate, 1028 Ethyl laurate, 4852 Ethyl levulinate, 2301 Ethyl hgnocerate, 5917 Ethyl mainte, 2849 1 Ethyl malente, 2813 Lthyl malonate, 2309 Ethylmalonic acid, 945 Ethyl mandelate, 3689 Ethyl margarate, 5484 I thylmenthol, 4403 Ethyl I-menthyl ether, 4404 1 thyl mercaptan, 273 Ethyl mesaconate, 3286 Uthyl mountalate, 2314 Lthyl p-methoxybenzoate, 3688 1.thyl p-methoxycunnamate, 4318.1 1.thyl p-methoxycunnamate, 4318.1 1.thyl 3-methoxy-4-hydroxybensoste, I thyl methylacetoscetate, 2302 1-Uthyl-2-methylacrolein, 1545 5-Ethyl-5-methylbarbituric acid, 2259 Lthyl d-methyl-2-phenylquinoline-4carboxylate, 5410 Ethylmorphine hydrochloride, 5461 Ethyl mustard oil, 404 Ethyl muconate, 3776 Ethyl myristate, 5160 a-Lithylmaphthalene, 4282 8-l'thylnaphthalene, 4283 Fthyl-g-naphthylamne, 4306 Ethyl-#-naphthylamine, 4307 Ethyl g-naphthyl ether, 4296 I thyl S-naphthyl ether, 4297 Ethyl meetinate, 2663 Ethyl mtrate, 247 Ethyl minte, 243 Ethyl m-mtrobenzoste, 3115 Ethyl p-mtrobenzonte, 3116 Ethyl o-mitrocinnamate, 4053 Ethyl p-mtrocinnamate, 4054 Ethylmtrohe neid, 201 Ethyl e-mtrophenyl ether, 2677 Ethyl p-mtrophenyl ether, 2678 -Ethylnonane, 4178 1 Ethyl orthoacetate, 2979 Lthyl orthocarbonate, 3369 Ethyl orthoformate, 2415 Ethyl oxalacetate, 2816 Ethyl oxalate, 1570 Ethyl oxamate, 678 Ethyl oxanilate, 3630 Ethyl palmitate, 5381 Ethyl pelargonate, 4175 3-Ethylpentane, 2392 3-Ethyl-2-pentene, 2326 Ethyl perchlorate, 231 Ethyl-N-phenacetine, 4362 Ethyl phenaceturate, 4330.1 a-Ethylphenol, 2710 m-1-thylphenol, 271 p-Ethylphenol, 2712 Ethyl phenylacetate, 3677 t-Ethyl-2-phenylacetylene, 3575 Ethyl a-phenylaerylate, 4061 Ethylphenyl carbinol, 3236 Ethyl phenyl ether, 2722 1-Ethyl-1-phenylhydrazine, 2803 1-Ethyl-2-phenylhydrazine, 2804 Ethyl phenyl ketone, 3132 Ethyl phenylmalonate, 4533 Ethyl phenylpropiolate, 4043 a-Ethyl phenylpyruvate, 4065 8-Ethyl phenylpyruvate, 4066 γ-Ethyl phenylpyruvate, 4067

Ethylphenyl sulfone, 2743 1-Ethyl-2-phenylures, 3231 Ethylphosphine, 205 Ethylphosphinic acid, 293 Ethyl o-phthalate, 4324 Ethyl picrate, 2537 Ethylpiperidine, 2384 Ethyl propargyl ether, 925 Ethyl propiolate, 895 Ethyl propionate, 1017 Ethyl-n-propylacetylene, 2278 Ethylpropylammonium chloroplatinate, 231194 Ethylpropylbarbitume acid, 3275 Ethyl propyl carbinol, 1726, 1726 1 Ethyl propyl ether, 1086 Ethyl propyl ketone, 1636 Ethyl propyl mheon dichloride, 23110 2-Ethylpyridine, 2199 3-Ethylpyridine, 2200 4-Ethylpyridine, 2201 Ethylpyridine-3-carboxylate, 2663 Ethyl pyroracemate, 912 1-Ethylpyrrole, 1520 Ethyl pyruvate, 912 Ethyl rhodanide, 403 Ethyl remoleste, 5605 Ethyl salicylate, 3170 Ethyl santoute, 5244 | Ethyl sebsente, 4846 Ethyl selenide 818 Ethyl silicon trichloride, 29435 Ethyl sorbate, 2810 Ethyl stearate, 5608 Ethyl styryl ether, 3654 Ethyl succinate, 2847 Ethylauccinic acid, 1564 Ethyl sulfate, 809 Ethyl sulfide, 814 Ethyl sulfite, 817 Ethyl sulfocyanate, 403 Ethyl sullone, 802 Ethylaulfone chloride, 230 Ethylaulfuric acid, 268 Ethyl d-tartrate, 2850 Ethyl tellunde, 817 Ethyltotrasene, 304 Ethyl thiobensoate, 3135 1 Ethyl thiocyanate, 403 Ethyl thiooxamate, 675 Ethylthionyl chloride, 230 Ethyl tiglate, 2209 Ethyl e-toluate, 3678 Ethyl m-tolunte, 3679 Ethyl p-toluste, 3680 e-Ethyltoluene, 3224 m-Ethyltoluene, 3225 p-Ethyltoluene, 3226 e-Ethyltoludine, 3261 m-Ethyltoluidine, 3262 p-Ethyltoluidine, 3263 Ethyl o-tolylurethane, 1363 Ethyl trichloroacetate, 585 Ethyl trifluoroacetate, 586 Ethyl 3, 4, 5-trihydroxybenzoate, 3186 Ethyltriisobutylammonium platinate, 231220 chloro Ethyltripropylammonium chloro platinate, 291217 Ethylurea, 504 Ethylurethane, 1067 1 Ethyl n-valerate, 2356 Ethyl vanillate, 3692 4-Ethyl-m-xylene, 3733 5-Ethyl-m-xylene, 3734 a-Eucaine, 5475 6-Eucaine, 4958 -Eucaine hydrochloride, 5176 8-Eucaine hydrochloride, 4963 Eucalyptol, 3902

Eucarvol, 3762

Eucatropine, 5248

Furodine, 5460 Fueral 3171 Eudermol, 5000 Eugenol, 3666 Eugenol acetate, 4318 Eugenol acid camphorate, 5581 Eugenol benzoate, 5193 Eugenol benzyl ether, 5200 Eugenol connamate, 5118 Eugenal ethyl ether, 4339 Lugenol formutt, 4068 Eugenol (soamyl ether, 1967 Eugenol methyl ether, 1092 Eugenol propyl ether, 1543 Euonymol, 5679 Euonysterol, 6025 Fuphthalmine, 5246 Euphthalmine hydrochloride, 5248 Eupophine, 5314 Eupyrin, 5436 Fuguinine, 5801 Lureral 2619 Europhen, 5732 Europeum ethyl sulfate, 392061 Euxanthic seid, 5421 Euxanthone, 1120 Explain, 3199 Exercin, 5601 Farnesol, 5001 Fenchene, 3807 Fencholic seid, 3933 Fenchone, 3852 Fonchone oxime 3885 Fenchyl alcohol, 3904, 3905, 3906, 3007 Fenchylamine, 3951 Fenchyl chloride, 3878 Fenchylene, 3808 naphthalene-B-sulfonate, Ferrous 391399 Ferulene, 4992 Fernic acid, 3609 Fernhealdehyde, 3603 Fightelite 5343 1 Fiestin, 4883 Filiere acid, 6096 Filixie acid. 6082 Filmaron, 6151 α-Flavamline, 5065 α-Flavaspidic acid, 5830 B-Playaspidic acid, 5831 Flavene, 4674 Flavoline, 5053 Flavon, 1868 Flavopurpurin, 4637 Fluoran, 5489 Fluoranthene, 4866 Fluorene, 4139 Fluorene ketone, 4425 Huorenol, 1146 Fluorenone, 1425 Fluorescein, 5490 Fluorescon 5505 Fluoroacetic acid, 163 o-Fluoroamhne, 1388 m-Fluoroandine, 1389 p-Fluoroamline, 1390 o-Fluorobenzamide, 1971 m-Fluorobenzamide, 1972 p-Fluorobenzanade, 1973 Fluorobenzene, 1328 o-Fluorobenzoic acid, 1877 m-Fluorobenzoic acid, 1878 p-Fluorobenzoic acid, 1879 o-Fluorobenzoyl chloride, 1803 m-Fluorobensoyl chloride, 1804 p-Fluorobenzoyl chloride, 1805 Fluoroethyl alcohol, 233 Fluoroform, 20 a-Fluoronaphthalene, 3469 \$-Fluoronaphthalene, 3470 o-Fluoronitrobensene, 1249

m-Fluoronitrobenzene, 1250 p-Fluoronitrobenzene, 1251 2-Fluoro-5-mtrobenzoic acid, 1823 3-Fluoro-4-nitrobenzoic acid, 1824 3-Fluoro-6-nitrobenzoic acid, 1825 1-Fluoro-2-mtrobenzoic acid, 1826 4-Fluoro-3-mtrobenzoic acid, 1827 o-Fluorophenol, 1329 m-Fluorophenol, 1330 p-Fluorophenol, 1331 o-Fluorotoluene, 2057 m-Fluorotoluene 2058 p-Fluorotoluene, 2059 Formal, 513 Formaldehyde, 35 Formaldehyde cyanhydrin, 170 Formaldoxime, 17 Formanilide 2073 Formanude, #6 Formic acid, 37 Formopyrine, 5777 p-Formylphenetidine, 3218 Fortom, 5969 Frangulin, 5630 Fraxetin, 3538 d-Fructose, 1674 Fucitol, 1748 Fucose, 1668 Fulminuric acid, 336 Fumaric acid. 573 Fumarine, 5624 Fumaryl chloride, 545 Fungisterin, 5873 Furan, 569 Furfurvlacetone, 2178 Furfuracrolem, 2003 Furfural, 859 Furfuramide, 1900 Furfuran, 569 Furfurine, 4901 Furfuryl alcohol, 893 Furoin, 3528 Fustin, 6170 Gadohnium acetate, 392071 Gadohmum ethyl sulfate, 382072 Gadolinium oxalate, 232070 Gaidic acid, 5150 Galactite, 3314 Galactosazone, 5326 d-a-Galactose, 1675 d-8-Galactose, 1675 1 dl-Galactose, 1676 d-\$-Galaheptose, 2376 Galangin, 1881 Galbanic acid, 4564 Galegine, 5057 Galipeine, 5538 Galipidine, 5423 Gallamlide, 4187 Gallanol, 4487 Gallie acid, 2023 Gallobromol, 1802 Gardenin, 4717 Geissospermine, 5467 Gelsenuc acid, 4189 Gelsemine, 5711 Gelsemme acid, 3530 Gelsemmne hydrobromide, 5720 Gelseminine hydrochloride, 5722 Geneserine, 4961 Geneserine picrate, 5657 Genin, 5737 Genisteine, 5146 Gentianin, 4690 Gentienin, 4691 Gentiin, 5866 Gentiopierin, 5125 Gentisin, 4690 Geoffroyin, 3721 Geranial, 3849 Geranic acid, 3865 Geraniene, 3809

Geranyl acetate, 4374 Geranylacetic acid. 4371 Geranylacetone, 4577 Geranylamine, 3952 Geranyl butyrate, 4835 Geranyl chloride, 3879 Geranyl formate, 4148 Geranyl methyl ether, 4155 Gitalin, 5964 Gitogenin, 5904 Gitonin, 6154 Glaucine, 5665 d-Glucosamine, 1709 d-Glucosamine hydroiodide, 1717 8-Glucosan, 1577 d-Glucosazone, 5327 L-Chicosazone 5328 d-a-Glucose, 1677 d-β-Glucose, 1678 d-Glucosealdazine, 4401
d-Glucosediethylmercaptal, 4009 Glucose pentascetate, 5138 d-Glucose pentanitrate, 1462 a-Glucose phenylhydragone, 4367 2 B-Glucose phenylhydrazone, 4367 3 d-Glucosimine, 1710 d-Glucosoxime, 1711 Glutacome acid, 899 Glutaconic anhydride, 864 Glutacome mtrile, 851 Glutamine, 995 d-Glutamine acid. 977 d(l)-Glutamic acid hydrochloride, 988.1 //-Glutamine seid. 976 Glutaric acid, 946 Glutaric anhydride, 897 Glutaric nitrile, 886 Glutime seid, 869 Glyceric aldehyde, 454 Glycerol, 515 Glyceryl acetate, 1031 Glyceryl bromde, 371 Glyceryl 1-butyrate, 2367 Glyceryl chloride, 388 Glyceryl diacetate, 2312 Glyceryl-1, 2-dibutyrin, 4163 Glyceryl 1, 3-dimitrate, 443 Glyceryl ether, 1559 Glyceryl 1-ethyl ether, 1092 Glyceryl 1-methyl ether, 806 Glyceryl monosahevlate, 3697 Glyceryl 1-nitrate, 497 Glyceryl 2-mitrate, 498 Glyceryl triacetate, 3289 Glyceryl tribenzoate, 5823 Glyceryl tributyrate, 5010 Glyceryl tricaprate, 6056 Glyceryl tricaproate, 5688 Glyceryl tricaprylate, 5940 Glyceryl triclaidate, 6165 Glyceryl triformate, 1506 Glyceryl trimyristate, 6117 Glyceryl trinitrate, 407 Glyceryl trimtrite, 406 Glyceryl trioleste, 6166 Glyceryl tripalmitate, 6157 Glyceryl triricinoleate, 6167 Glyceryl translicylate, 5824 Glyceryl tristearate, 6169 Glycide, 453 Glycine, 241 Glycocholic acid, 5908 Glycocoll, 241 Glycogen, 1578 Glycol, 264 Glycol acetate, 734 Glycolbromhydrin, 221 Glycolchlorhydrin, 227 Glycol diacetate, 1571

Commiss 2008

Herahydroschecks and 2200

Glycol dimethyl ether, 798 Glycol dinitrate. 205 Olycol ethyl ether, 799 Glycohodohydrin, 235 (ilycoho acid, 214 Glycolic aldehyde, 211 Glycolic amide, 245 Glycolic anhydride, 634 (ilycohe nitrile, 170 (llycol methyl ether, 512 Glycol salicylate, 3184 Glycoluric acid, 438 Glycosal, 3697 Glycyphylline, 5658 Olycyrrhizic acid, 6142 Givoxal, 146 Glyoxaline, 350 Olyonime 200 Gnoscopine, 5703 Gossypetin, 4890 Granatic acid, 2817 Granatinine, 2857 Granatoline, 2860 Grandelol, 5807 Guacamphol, 5233 Guaethol, 2738 Guancol, 2174 Guaiacolaalol, 4746 Guaraconic acid, 5432 Guaracyl acetate, 3171 Guaracyl acid camphorate, 5233 Guaiacyl benzoate, 4740 Guaiacyl benzyl other, 4782 Guaracyl carbonate, 4924 Guaragyl connumste, 5070 Gumacyl ethyl ether, 3249 Guancyl glyceryl ether, 3775 Guanacyl methyl glycolate, 3691 Guancyl salicylate, 4746 Guaracyl valerate, 4351 Guaiadol, 2066 Guaiamar, 3775 Gusiagum, 6063 Guarol, 5142 1 Guaiene, 4977 Guajol, 5002 Guanidine acetate, 527 Guanidine carbonate, 535 Guandine hydrochloride, 75 Guanidine lactate, 786 Guanidine nitrate, 80 Guandine pitrite, 79 Guandine picrate, 2158 Guanidine thiocyanate, 261 Gujasanol, 4556 Gulososazone, 5329 Guvacine, 1521 Gynocardic acid, 5358 Gynocardine, 4553 Gynoval, 5006 Halazone, 1866 Harmaline 4524 Harmalol, 4290 Harmine 4502 Hartin, 3853 Hedonal 1703 Helleborein, 5685 Helleboresin, 5990 Helleboretin, 4824 Helleborin, 6095 Helenin, 4950 I-Helicin, 4534 Heliotropin, 2474 Helmitol, 4369 Hematein, 5051 Hematoporphyrin, 5108 Hematoxylin, 5078 Hemimelitic acid, 3020 Hemimellitene, 3227 Hemipinic acid. 3626 Heneicosamide, 5693

n-Heneicosane, 5694

9-Henercosene, 5690 Heneicosonic acid, 569; n-Hentracontane, 8028 Heptachlorounthracene, 4592 Heptachloropropane, 312 n-Heptadecane, 5260 Hentadeenn-9-ol 5 %) S-Heptadecene, 5254 Heptadecylamine, 5262 Heptadecylic acid. 5257 2, 4-Heptadiene, 2279 Heptaldehyde, 2343 Heptamethylene, 2327 n-Heptane, 2389 Heptane-1, 7-dicarboxylic acid, 4307 Heptamhde, 4549 1, 3, 5-Heptatriene, 2241 α-Heptene, 2332 B-Heptene, 2329 2-Hentene-4-ol 2336 a-Heptine, 2275 R-Henting 9980 3-Heptine, 2278 n-Heptyl acetate, 3336 n-Heptyl alcohol, 2403 n-Heptylamine, 2119 n-Heptyl bromide, 2380 n-Heptyl chloride, 2381 n-Heptylene, 2332 n-Heptyl ether, 4857 n-Heptyl fluoride, 2382 "-Heptyl formate, 2908 n-Heptyhe acid, 2351 n-Heptylic amide, 2385 n-Heptylic anhydride, 4843 n-Heptyle oxime, 2386 n-Heptyl rodide, 2383 n-Heptyl mtrile, 2320 n-Heptyl propionate, 3985 Herachin, 6029 Herome, 5648 Herome hydrochloride, 5654 Hesperetin, 5079 Hesperetime acid, 3610 Hesperetol, 3137 Hesperidin, 5718 Hetralin, 1367 5 Hexaazobenzene, 1286 Hexabromobenzene, 1107 Hexabromoethane, 87 Hexabromophenol, 1108 Heaxehloroanthracene, 4595 Hexachlorobenzene, 1110 Hexachloroethane, 92 Hexachloronaphthalene, 3373 Hexachlorophenol, 1111 n-Hexacosane, 5918 n-Hexadecane, 5167 Hexadecylacetylene, 5353 n-Hexadecyl alcohol, 5168 a-Hexadecylene, 5156 1, 5-Hexadiene, 1531 2 4-Heradiene 1535 Hexaethylbenzene, 5310 Hexabydroanthracene, 4802 Hexahydrobenzaldchyde, 2289 Hexahydrobenzene, 1612 Hexahydrobenzoic acid, 2203 Hexahydrobenzyl alcohol, 2337 Hexabydro-o-cresol, 2339 Hexahydro-p-cresol, 2312 l-Hexahydro-m-cresol, 2340 dl-Hexahydro-m-cresol, 2341 Hexabydrocumene, 3320 Hexahydro-p-cymene, 3961 cis-Hexahydrohomophthalic a cid. 3281 trans-Hexahydrohomophthalie acid,

3282

Hexabydronaphthalene, 3735

Hexahydropyridine, 1054

m-Hexabydrothiocresol, 2379 Hexaby drothophenol, 1687 Hexabydrotoluene, 2330 Hexaiodobensene, 1112 Hexal, 4541 Hexamethylbeurene, 4365 Hexamethyldistleane \$425 Hexamethylenediamine 1772 Hexamethyleneglycol, 1745 Hexamethylenetetranine, 1626 Hexamethy lenetetramine otheler. mide, 2923 Rexam thylenetetrammemethy lene citrate, 4369 1 Hexamethylenetetranine perchlorate MOR Hexamethylenetetramineresoremot, 1267.5 Hexamethylenetetrananesah Alsulfonic acid, 4541 Hexamethylothane, 2943 Hexamethyl selende, 1690 1 Hexamine, 1626 n-Hexane, 1713 Hexane-1 5-dol 1711 Hexane-1, 6 diol, 1745 Hexamtrodyphenylamine, 4181 Hexamtracthone 98 Hexapropoxydisheane ovide, 20132 Hexatracontane 6107 2-Hexene-1-ol, 1628 1, 2-Hexenic acid, 1553 4, 5-Hexenic acid, 1554 Hexenyl alcohol, 1629 Hexenyl ether, 1386 n-Hexine, 1532 n-Hexyl acctate, 2009 d-β-Hexyl acetate, 2009 1 n-Hexylacetylene, 2824 n-Hexyl alcohol, 1728 n-Hexylamine, 1762 2-Hexylamine, 1762 1 n-Hexyl bromide, 1692 Hexylbutylene, 3956 n-Hexyl chloride, 1695 n-Herylene, 1610 n-Hexyl other, 4116 n-Hexyl formate, 2358 n-Hexyl rodide, -697 Hippuric acid, 3111 Histidine, 1529 Histidine dihydrochloride, 1598 Histidine hydrochloride, 1539 Holarrhenme, 5839 Hologuno 5325 Holocaine hydrochloride, 5331 Homosathrambe acid, 2659 Homoatropine, 5128 Homoatropine hydrobromide, 5131 Homoatropine hydrochloride, 5132 Homoatropine scheylate, 5789 Homostronine sulfate, 6033 Homocatechol, 2172 a-Homochehdonine 5649 8-Homochelidonine, 5650 γ-Homochehdonine, 5651 Homocinchonidine, 5443 Homocinchomne, 5112 Homogradyctiol, 5080 Homocuonysterol, 6126 Homogentischie neid, 2626 Homomeutyl oxide, 2835 Homonopinol, 3921 Homophorone, 4370 Homopyrocatechol, 2172 p-Homosaligenin, 2735 Homotaraxasterol, 5874 Homotropine, 3315 Hordenne, 3794 Hydantoic acid. 438 Hydantoin, 354

Hydracetine, 2693 Hydrastine, 5835 Hydrastinine, 4077 Hydrastinna hydrochlorida 4083 Hydrastinine sulfate, 4114 Hydrastimme acid, 4037 Hydratropic acid, 3146 Hydrasobensene, 4280 o-Hydrasobensuse acid, 4719 m Hydrasodimethylaniline, 5133 n-Hydragodinhenyl, 5822 Hydrasomdole, 5058 a a'-Hydrasonanhthalene 5513 β, β - Hydraronaphthalene, 5514 o-Hydrasophenetol, 5119 o-Hydrasotoluene, 4803 p-Hydrazotoluene, 4805 2-Hydrazo-p-aylene, 5118 3 Hydraro-o-xylene, 5114 4-Hydraro-o-xylene, 5115 4-llydraso-m-xylene, 5116 5. Hydrago maylana 5117 Hydrindene, 3121 Hydrindic seid, 2512 α-Hydrindone, 3070 #-Hydrandone, 3071 Hydrobenzamide, 5622 di-Hydrobenzom, 4781 Hydrocaffere acid, 3176 Hydrocarbostyril, 3103 Hydrocarpic acid, 5147 Hydrochehdome acid, 2268 Hydrochalidonie anhydeida 2185 Hydrocinchomdine, 5462 Hydrocinchonine, 5464 Hydrocinnamaldehyde, 3130 Hydrocinnamic acid, 3147 Hydrocinnamyl alcohol, 3237 Hydroconquimne, 5577 Hydrocotarnine, 4333 Hydrocotom, 4921 m Hydrocoumane acid. 3164 Hydrocupreine, 5468 Hydrocyame acid, 22 Hydrocyanic acid (Tetramer), 567 Hydrospecamine, 5955 a-Hydrojuglon, 3521 #-Hydrojuglon, 3522 a-Hydropipene seid, 4072 Hydroquindine, 5577 Hydroquinine, 5578 Hydroguinel, 1416 Hydroquinol discetate, 3618
Hydroquinol diethyl ether, 3768 Hydroquinol dimethyl ether, 2739 Hydrogunol ethyl other, 2740 llydroquinol methyl ether, 2176 Hydrotromlidene 2237 Hydroxyacetamide, 245 Hydroxyacetic acid, 214 Hydroxyacetone, 449 o-Hydroxyacetophenone, 2581 m-Hydroxyacetophenone, 2582 p-Hydroxyacetophenone, 2583 3-Hydroxy-2-amylene-1, 4-naphthequinone, 4920 1-Hydroxyanthracene, 4668 2-Hydroxyanthracene, 4669 9-Hydroxyanthracene, 4667 2-Hydroxyanthraquinone, 4624 p-Hydroxyazobensene, 4227 o-Hydroxybenzaldehyda, 2004 m-Hydroxybenzaldehyde, 2006 p-Hydroxybenzaldehyde, 2006 o-Hydroxybenzamide, 2078. m-Hydroxybenzamide, 2079 p-Hydroxybenzamide, 2080 -Hydroxybenzoic acid, 2013 m-Hydroxybenzoic acid, 2014 p-Hydroxybenzoic acid, 2015 -Hydroxybenzophenone, 4452 m-Hydroxybensophenone, 4453

p-Hydroxybensonhenone, 4454 7-Hydroxy-1, 2-bensopyrone, 3017 1-Hydroxybensothiasole, 1891 e-Hydroxybenzyl alcohol, 2166 m-Hydroxybensyl alcohol, 2167 p-Hydroxybonxyl alcohol, 2168 2-Hydroxybutyraldehyde, 722 1-Hydroxybutyric acid, 730 2-Hydroxybutyric acid, 732 Hydroxycamphor, 3866 1-Hydroxycapric acid, 3991 4-1-Hydroxycaproic acid. 1664 d-1-Hydroxycaprosc acid, 1663 dl-1-Hydroxycapric acid, 1665 1-Hydroxy-n-capryle and, 2013 1-Hydroxy-n-caprylic aimde, 2032 o-Hydroxycinnamic acid, 3083 m-Hydroxyennamic seid, 3081 p-Hydroxycinnamic acid, 3085 ~ Hydroxycinnamyl aldehyde, 3072 a-Hydroxyemmunyl aldebyde 3073 Hydroxycitric acid. 1508 Hydroxyconone 2930 1-Hydroxy-1. 1-diethylacetic acid. 2-Hydroxy-2 3-dimethylbutane 1-Hydroxy-1, 2-dimethylcycloheptana 2876 1-Hydroxy-1, 3-dimethylevelohentane, 2879, 2880 1-Hydroxy-2. 2-dimethylevelohexane. 2-Hydroxy-1, 3-dimethylcyclobexane, 2-Hydroxy-1, 4-dimethylcyclohexane, 3-Hydroxy-1 1-dimethyleveloherane 4-Hydroxy-1, 2-dimethylcyclohexane. 4-Hydroxy-1, 3-dimethylcyclohexane, ORRA cu-5-Hydroxy-1. 3-dimethylevelohexane, 2888 trans-5-Hydroxy-1. 3-dimethylevelohexane, 2889 1-Hydroxy-1, 4-dimethylhexane, 2881 2-Hydroxy-2, 4-dimethylpentane. 2397 3-Hydroxy-2, 3-dimethylpentane, 2410 3-Hydroxy-2, 4-dimethylpentane, 9400 1-Hydroxydiphenylacetic acid, 4738 N-Hydroxyethylamline, 2780 2-Hydroxy-3-ethylpentane, 2404 3-Hydroxy-3-ethylpentane, 2412 9-Hydroxytluorene, 4416 2-Hydroxyglutaric nitrile, 887 2-Hydroxyheptane, 2407 4-Hydroxyheptane, 2399 3-Hydroxyhexane 1798 p-Hydroxyhydratropic acid, 3167 Hydroxyhydroquinone, 1420 4-Hydroxy-3-hydroxymethyltoluene. 3-Hydroxyindole-2-carboxylic 3048 1-Hydroxyisobutyric acid, 731 2-Hydroxyisophtbalic acid, 2486 4-Hydroxyisophthalic acid, 2487 5-Hydroxyssophthalic acid, 2488 2-Hydroxy-4-mopropyl-1-methylhexa hydrobenzene, 3966 1-Hydroxyisovalene acid, 1024 Hydroxymaleic acid, 575 4-Hydroxy-3-methoxypropylbensene. 4-Hydroxy-3-methoxytoluene, 2725

o-Hydroxymethylbenzoic acid, 2597

m-Hydroxymethylbenzoic acid. 2598

INTERNATIONAL CRITICAL TABLES 5-Hydroxytoluene-2-carboxylic acid. p-Hydroxymethylbensoic acid, 2599 1-Hydroxy-2-methylhexane, 2405 2605 6-Hydroxytoluene-3-carboxylic 1-Hydroxy-5-methylhexane, 2406 2-Hydroxy-2-methylhexane, 2396 6-Hydroxytoluene-2-carboxylic 2-Hydroxy-5-methylhexane, 2408 3-Hydroxy-2-methylhexane, 2411 2606 6-Hydroxytoluene-3-carboxylic acid, 3-Hydroxy-3-methylhexane, 2409 2600 3. Hydroxy-4-methylbexane, 2402 3. 2-Hydroxytoluic acid, 2603 3-Hydroxy-5-methylhexane, 2401 3. 4-Hydroxytoluc acid, 2611 3-Hydroxy-2-methylpentane, 1727 1, 2-Hydroxytolme acid, 2604 2-Hydroxy-2-methylaunoline, 3554 1, 3-Hydroxytoluc acid. 2607 1-Hydroxy-1-methylquinoline, 3555 5, 3-Hydroxytoluic acid, 2608 6-Hydroxy-1-methylqumoline, 3556 Hydroxytoluic aldehyde, 2574, 2575, 7-Hydroxy-2-methylaunoline, 3557 Hydroxy-2-methylquinohne, 3558 9578 9577 4-H y drox y-3-methyltetradecane-6-carboxylic acid, 5161 1-H v d r o x y t r i -(p-aminophenyl)methane, 5428 2-Hydroxy-2, 3, 3-trimethylbutane. Hydroxymyristic acid, 4853 2-Hydroxy-a-unphthaldehyde, 4026 2398 4-Hydroxy-a-naphthaldehyde, 1027 1-Hydroxyvaleric acid, 1023 3-Hydroxy-8-narhthore acid. 4031 2-Hydroxyvalene and 1025 8-Hydroxy-a-naphthoic acid, 4028 Hvenanchin, 1945 4-2-Hydroxyoctane, 2067 Hyeme acid, 5879 1-Hydrovyustana 2060 Hygric acid, 1605 9-Hydroxyphenanthrene, 1671 Hygrine 2861 o-Hydroxyphenylacetic acid, 2600 Hyoscine, 5222 m-Hydroxynhonylagatic and 2001 Hyoseine hydrobromide, 5226 p-Hydroxyphenylacetic acid, 2602 Hyoscine hydrochloride, 5229 1 Hydroxyphenylacetic acid, 2612, Hyoseme picrate, 5778 Hyorcyamine, 5236 1-Hydroxyphenylacetonitrile, 2509 Hyosevamine hydrobromide, 5230 2-(p-Hydroxyphenyl)-ethylamine, Hyoscyamne hydrochloride, 5241 Hyoseyamine sulfate, 6071 2-(2-Hydroxyphenyl)-propionic acid, Hynnal, 4528 2185 Hypogaere acid, 5151 2-Hydroxy-o-phthalic acid, 2183 Hypotonin, 1120 3-Hydroxy-o-phthalic acid, 2484 4-Hydroxy-o-phthalic acid, 2485 Hypoxanthine, 855 Hyssopin, 6155 2-Hydroxypyridine, 871 Hystazarin, 4632 Ibogine, 5899 3-Hydroxypyridine, 872 1-Hydroxypyridine, 873 Idryl, 4866 1-Hydroxypyridine-2. 6-diearboxylic Igasuric acid, 5305 acid, 1906 Ilicic alcohol, 6002 B-Hydroxy-2-pyrone, 866 theyl alcohol, 5747 d-1-Hydroxypyrotartaric acid, 952 Imidazale 350 dl-1-Hydroxypyrotartaric acid, 953 Immodethylbarbituric acid 2823 2-Hydroxypropionitrile, 399 Immoethyl alcohol, 765 2-Hydroxyquinaldine, 3554 Immoveronal, 2823 4-Hydroxyquinaldine, 3555 Imperaline, 6089 6-Hydroxygunaldine, 3556 Incarnatrin, 5632 7-Hydroxyqumaldine, 3557 Incarnatryl alcohol, 6081 8-Hydroxyquinaldine, 3558 Indaconine, 5938 Indaconitine, 6066 2-Hydroxyaunoline 3039 4-Hydroxyquinoline, 3040 Indusole 1979 5-Hydroxyquinoline, 3041 Indene, 3054 6-Hydroxyquinoline, 3042 Indene oxybro ude. 3095 7-Hydroxyquinoline, 3043 Indican, 4816 Indigo blue, 5208 8-Hydroxyquinoline, 3044 3-Hydroxyquinoline-2-carboxylic acid, Indigotin, 5208 Indigoxime, 5036 7-Hydroxyquinoline-3-sulfonic Indobenzaconine, 6035 3053 Indole, 2504 Hydroxysantonin, 1941 Indole-2-carboxylic acid, 3046 1-Hydroxysteame acid, 5383 2-Hydroxysteame acid, 5384 Indole-3-carboxylic acid, 3047 Indoledicarboxylic acid, 3493 9-Hydroxystearic acid, 5385 Indole-2-propionic acid, 4052 10 Hydroxysteame acid 5386 Indohn, 5066 11-Hydroxystearic acid, 5387 Indoxvl. 2510 3-Hydroxytoluene-1-aldehyde, 2577 Indoxylic acid, 3048 i-Hydroxytoluene-3-aldehyde, 2575 d(l)-Inosite, 1679 5-Hydroxytoluene-2-aldehyde, 2574 dl-Inosite, 1680 6-Hydroxytoluene-3-aldehyde, 2576 Inosite dimethyl ether, 2917 2-Hydroxytoluene-4-carboxylic d-Inosite methyl ether, 2374 I-Inosite methyl ether, 2375 2610 3-Hydroxytoluene-2-carboxylic acid. Inulin, 6104 3-Iodoacenaphthene, 4210 Iodoacetal, 1698 3-Hydroxytoluene-4-carboxylic Iodoacetaldehyde, 165 p-Iodoacetamhde, 2546 2611 4-Hydroxytoluene-2-carboxylic acid, Iodoscetic scid, 167 1-Hydroxytoluene-3-carboxylic acid, Indoscetol, 429

Iodoscetone, 392

Iodoacetoxime, 426 Iodoacetylene, 113 o-Iodoaniline 1301 m-Iodoaniline, 1392 p-Iodoaniline, 1393 o-Indonnisol 2064 o-Iodobensamide, 1974 m-Iodobenzamide, 1975 p-Iodobenzamide, 1976 Iodobensene 1333 o-Indohensoic seid 1881 m-Iodobenzoic acid, 1882 p-Iodobenzoic acid, 1883 2-Iodoethyl alcohol, 235 Iodoethylene, 164 2-Iodoethyl ethyl ether, 757 Iodoform, 21 4-Iodoguaiacol, 2065 5-Iodoguaiacol, 2066 5-Iodo-2-hydroxymethoxybenzene 2088 1-Iodo-2-hydroxypropane, 477 3-Iodo-1-hydroxypropane, 478 9-lodo-8-hydroxyquinoline-5-sulfonce and 3000 Iodosopropyl alcohol, 477 Lodal 512 Iodomethyl methyl ether 236 1-Iodo-\$-naphthol, 3471 o-Iodomtrobenzene, 1254 m-Iudonitrobenzene, 1255 p-Iodonitrobenzene, 1256 4-Iodo-6-mtrophenol, 1257 o-Iodophenol, 1334 m-Iodophenol, 1335 p-Iodophenol, 1336 Iodonicrin, 15 1-Iodopropionic acid, 393 2-Iodopropionic acid, 394 3-Iodopropyl alcohol, 478 2-Iodopropylene, 390 3-Iodopropylene, 391 3-Indosube vhe seid 1884 Iodosobenzene, 1337 o-Iodotoluene, 2061 m-Iodotoluene, 2062 p-Iodotoluene, 2063 2-Iodo-1, 3, 5-trinitrobensene, 1141 Indotrinitromethane, 15 Iodoxybenzene, 1338 Ionidine, 5473 a-lonone, 4559 β-Ionone, 4560 Ipecamine, 5951 Ipuranol, 5811 Ipurganol, 5684 Inurolic acid. 4854 Iretol, 2184 Irone, 4561 Isame acid. 4823 Isatid, 5041 Isatine, 2438 Isatine chloride, 2422.1 Isatoxime, 2465 Isatronic acid, 5187 α-Isatropic acid, 5293 β-Isatropic acid, 5294 γ-Isatropic acid, 5295 Isoacetonitrile, 169 Isoallylbenzene, 3120 Isoamyl acetate, 2354 Isoamylacetic acid, 2350 Isoamyl alcohol, 1079 sec.-Isoamyl alcohol, 1085 Isoamyl allyl ether, 2891 Isoamylamine, 1100 Isoamylaniline, 4140 Isoamyl anisate, 4545 Isoamylbenzene, 4118 Isoamyl benzoate, 4345 Isoamyl borate, 331828 Isoamyl bromide, 1041

Isonmyl n-butyrate. 8330 Isosmyl caprylate, 4583 Isoamyl carbamate, 1704 Isoamyl carbinol, 1729 Isoamyi carbonate, 4177 Isoamyi chloride, 1044 Isoamyl chloroacetate, 2319 Isoamyl chlorocarbonate, 1597 Isoamyl chloroformate, 1597 Isoamyl cyamde, 1603 8-Isonmylene, 986 Isonmyl ether, 4007 Isoamyl ethylacetoacetate, 4159 5, 5-Isoamylethylbarbituric acid, 4146 I-oamyl ethyl malonate, 3939 Isoamyl fluoride, 1050 Learnyl formate, 1649 Isoamyl todide, 1052 Isoamyl isocyanide, 1604 Isoamylisopropylbarbituric 4369 0 boanvl sopropyl malonate 4162 Isonmyl isothiocyanate, 1608 Isosmyl movalerate 3086 Isoamyl mercaptan, 1098 Isoamyl mustard oil, 1608 Isoamyl nitrate, 1070 Isoamyl nitrite, 1064 Isoamyl oxalate, 4391 p-Isoamylphenol, 4127 Isoamyl phenyl ketone, 1337 Isoamyl phenyl ketone, 1337 Isoamyl propionate, 2901 Isoamylpropylbarbituria acid, 1369 Isoamyl salicylate, 4349 Isoamyl sulfide, 4010 Isosmyl turtrate ANAS 1 Isoanthracene, 4651 Isoanthraquinone, 4621 Isoapiol, 4323 Isobebeerine, 5318 Isoborneol, 3910 dl-Inoborneol, 3909 Isobornyl acetate 4375 Isobornyl chloride, 3880 isobornyl formate, 11.10 Isobornyl isovalerate, 5006 Isobutane, 781 2 Isobutylacetaldehyde, 1634 Isobutyl acetate, 1652 Isobutyl alcohol, 790 Isobutylamine, 821 Isobutyl p-aminobenzoate, 4108 Isobutyl amyl ether, 3365 Isobutylandine, 3790 Isobutyl amsate, 4350 Isobutylbenzene, 3736 Isobutyl benzoate, 1099 Isobutyl benzyl ketone, 4338 Isobutyl bromide, 742 Isobutyl n-butyrate, 2904 Isobutyl carbamate, 1067 Isobutyl carbinol, 1079 Isobutyl carbonate, 3342 Inobutyl chloride, 747 Isobutyl chlorocarbonate 970 Isobutyl chloroformate, 970 Isobutyl cyanide, 973
Isobutyl 1, 2-dichloropropionate 2284 1 Isobutylene, 684 Isobutylene dibromide, 693 Isobutylene dichloride, 695 Isobutyleneglycol, 797 Isobutyl ether, 2974 5, 5-Isobutylethylbarbituric acid, 3842 Isobutyl formate, 1016 Isobutylidene bromide, 693 Isobutylidene chloride, 695 Isobutyl iodide, 755 Isobutyl isobutyrate, 2905 Isobutyl isothiocyanate, 978

Isobutyl isovalerate, 3334 Isobutylmalonic acid, 2305 Isobutyl mercaptan, 811 Isobutyl mustard oil, 978 Isobutyl mtrate, 775 Isobutyl minte, 773 Isobutyl oxalate, 3942 Isobutyl phenyl ether, 3760 Isobutyl phenyl ketone, 4089 Isobutyl phenylpropiolate, 4526 i Isobutyl propionate, 2359 Isobutyi propionate, 2359 Isobutyl ricinoleate, 5765 1 Isobutylahcon trichloride, M439 Isobutyl tartrate, 4393 Isobutylurethane, 2386 1 Isobutyl n-valerate, 3333 Isobutyraldehyde, 718 Isobutyramide, 761 Isobutyric acid, 721 Isobutyrie anhydride, 2811 Isobutyrosomtrde, 669 Isobutyrontrile, 668 Isobutyryl chloride, 652 Isocalycanthine, 1085 Isocamphoric acid, 3871 Isocapric aldehyde, 3976 Isocaproic acid 1611 Isocaproisomtrile, 1604 Isocapromitrile, 1603 Isochrysene, 5265 Isocinchomerome seid, 1902

B-Isocinchomic, 5444 Isocinname acid, 3076 Isocodeme, 5319 Isoconquinine, 5558
Isocorybulline, 5666 Isocorydaline, 5723 Isocotom, 4715 Isocrotome acid, 619 Isocusparine, 5413 Isocyanuric acid, 336 Isodecylic aldehyde, 3978 Isodibutal 2061 Isoduleital, 1672 β-Isodurene, 3739 Isodurylic acid, 3673 Isoemetine, 5974 Isoemetine hydrochloride, 5975 Isoephedrine, 3795 Isoeugenol, 3667 Isocugenol acetate, 4319 Isocurenol benzonte, 5194 Isoeugenol benzyl ether, 5201 Isoeugenol dibenzoate 6059 Isoeugenol 1, 2-dibromide, 3641 Isocugenol ethyl ether, 4340 Isocugenol formate, 4069 Isoeugenol methyl ether, 4093 Isoeugenol propionate, 4532 Isofenchyl alcohol, 3911, 3912 Isoferulie acid, 3610 Isoheptane, 2390 1, 2-Isohepteme acid, 2294 Isoheptyl alcohol, 2406 Isohexacosane, 5919 Isohexane, 1715 1, 2-Isohexeme acid. 1555 Isohexyl alcohol, 1721 Isohexylamine, 1763 Isohydrobenzoin, 4783 Isohydrosorbic acid, 1553 Isohydroxydimethylures, 2260 2 d(l)-Isoleucine, 1707 dl-Isoleucine, 1708 Isomalic acid, 637 Isomannide, 1574 d-Isomenthol, 3970 a-Isomorphine, 5203 Isonicoteme, 3642 Isonicotine, 3746 Isomeotime acid, 1346 Isonitrososcetone, 401

Isomtrosobarbiturie acid. 554 Isoortane, 2937 Isopentane, 1072 Isophthalic acid, 2480 Isophthalic aldehyde, 2471 Isophthalic diamide, 2552 Isophthalic mtrile, 2428 Isophthodyl dichloride, 2424 Isopilocarpine, 4126 Isopilocarpine hydrobromide, 4133 Isopslor irpine hydrochloride, 1135 Isopilocarpine mirate, 4142 Incorrect two Isoprene, 916 Isoprene hydrochloride, 965 Isopropens Lablacida, 172 Isopropyl acetate, 1021 Isopropylacetylene, 921 Isopropyl alcohol, 506 Isopropyl allyl ether, 1642 Isopropylanone, 525 Isopropylammonium chloroplatinata V-Isopropylamline, 3268 p-Isopropy lambne, 3257 p-Isopropylbenzaldchyde, 3656 Isopropylbenzene 3223 Isopropyl benzonte, 3681 o-Isopropylbenzone and, 3669 p-Isopropylbenzoic acid, 3668 p-Isopropully paul alcohol, 3754 Isopropyl benzyl ketone, 4000 Isopropyl borate W1827 Isopropyl brounde, 465 Isopropyllintyl carbonal, 2071 Isopropyl butyrate, 2363 Isopropyl chloride, 469 Isopropyl qyanide, 668 Isopropyl ether, 1742 Isopropylethylene, 985 Isopropyl formate, 728
Isopropylhexaliydrobenzine, 3320 Isopropyl n-hexyl ketone, 3977 Isopropyl hydrocanamate, 4345 i Isopropylidene chloride, 420 Isopropyl iodide, 476 Isopropyl isosinyl ketone, 3327 Isopropylanbutyl curband, 207 Isopropyl isobutyrate, 2364 Isopropyl isocyai ide, 669 Isopropylmalonic acid, 1567 Isopropyl mercaptan, 519 Isopropyl mirate, 496 Isopropyl nitrite, 490
p-Isopropylphonylacetic acid, 4094 Isopropyl phenyl ether, 3247 Isopropyl phenyl ketone, 3661 Isopropyl propionate, 1660 2-Isopropylpyridine, 2772 4-Isopropylpyridine, 2773 Isopropyl sulfide, 1755 m-Isopropyltoluene, 3737 z-Isopropyltoluene, 3738 Isopulegol, 3913, 3913 1 Isopulegon, 3854 Isopulegyl acetate, 4375 1 Isopyrome, 5960 Isoquinine, 5559 Isoquinoline, 3036 Isosaccharic acid, 1586 cts-Inconfect 3580 trans-Isosafrol, 3590 Incantonic and 4954 Isoserine, 494 Isosparteine, 4993 Isostrychnine, 5641 Isosuccinic acid, 630 Instetracosane, 5860 Inothebaine, 5433 Isotrifolin, 5701 laotropylcocaine, 6113

Isotruxillic acid. 5296

laovaleraldehude 1009 Inovaloranide, 1058 Incomberio acid 1018 Isovaleric anhydride, 3036 Isovaleroanilide, 4105 Isovalera I chloride, 967 Isovaleryl mitrile, 973
Isovanille acid, 2627 lsovanilin, 2595 Itaconic acid 000 Itaconic anhydride, 865 Jalanne send 5959 Jalapin, 6078 Jalanunolie and 5161 Japaconine, 5904 Interconting 6072 Japaconitine hydrochloride, 6074 Jelsemine 5517 Jelsemme hydrochloride, 5550 Jeryme 5900 Julolidine, 4327 Jumpene acid. 5162 Kaempferol, 1884 Kairoline, 3701 Kavann, 4925 Kersyl alcohol, 1833 Ketene, 115 Ketine 1482 1-Ivetondiple neid, 1504.1 4-Ketonzelaic neid 3287 11 Ketobehenic acid, 5785 7-K e t o-8-bensylidenessenanhthene 5304 Is Katalantyria said 627 1-Ketoglutaric acid, 905 7-Ketopidnitic acid, 5154 3-Ketopimehr acid, 2268 3-Ketostearic acid, 5363 6-Ketostearic acid, 5364 8-Ketostearic seid, 5365 9-Ketostenrie acid, 5366 10-Ketostearie acid, 5367 μ Ketotricosane, 5814 Kosin, 6020 Kryofine, 1113 Kyanpropine, 4384 Kynureme acid, 3484 Kynurio acid, 3049 Kynumne, 3040 Luccainic acid, 5052 Lactamide 491 Lactamidine hydrochloride, 523 dillal nette and 456 dl-Lactic acid, 457 Lactic aphydride, 1575 Lactide, 1502 Lactophenine, 4112 Lactonitrile, 400 Lactore, 4394 Lacturerin, 5958 Lacturerol, 4014 Lactucol, 4562 Lactucol acetate, 5803 Lactucon, 5803 Lactyl-p-phenetidine, 4112 Lacvoglucosan, 1577 Lanoceric acid, 6012 Lanolic acid. 4389 Lanthanum ethyl sulfate, 291970 Lanthopine, 5782 Lapachol, 4920 Lappaconitine, 6032.1 Larixmic acid, 3623 Larycin, 5137 Laserpitin, 5903 Laudanidine, 5572 Laudanine, 5573 Laudanosine, 5673 Lauramide, 4410 Lauric acid, 4406

Lauric aldehyde, 4405

d-Laurolene, 2825

Laurone, 5814 Lauronitrile, 4309 Lauropolic acid 3278 Laurel chloride, 4398 Lavendol, 3914 Lead scetate W442 Lead caprate, 20051 Lead caproste, 28647 Land diethyl dineanyl 3631 Lead dimethyl diethyl, 3622 Lead dimethyl disoamyl, 28634 Lead dimethyl disobutyl 3632 Lead dimethyl dipropyl, 28627 Lead formate, 28639 Lead hentonte. 2018 Lead laurate, 28652 Lend methyl triothyl 3621 Load mynatate, 2653 Lead nonylate, 28650 Lead octoute 2649 Lead oleate, 28655 Lead oxalate, 28618 Lead palmutate 2054 Load stearate, 28656 Lead tartrate, 28640, 28641 Lead tetrascetate, 2615 Lead tetraethyl, 28628 Load tetramethyl 3619 Lead tetraphenyl, 26638 Lead tetrapropionate, 28616 Lead triethyl amyl. 28636 Load triethyl monmyl, 28637 Lead triethyl inchutyl W633 Lead triethyl propyl, 29630 Lead trimethyl butyl, 38625 Lead trimethyl ethyl. 2821 Lead trimethyl isonmyl, 28629 Lead trimethyl isobutyl, 2626 Lead trimethyl propyl, 28623 Lenopalmic acid, 5163 Leontin, 6161 Lepidine, 3546 o-Leucaniline, 5426 alamounting \$497 I-Leucine, 1705 dl-Leucine, 1706 Leucinic acid, 1664 Levulinic acid, 941 Levulinic aldebyde, 928 Levulose, 1674 Licarcol, 3916 Lignoceric acid, 5855 Lilolidine, 1076 Limonene, 3810 a-Limonene nitrosylchloride, 382) Linalool, 3915, 3916 Linalyl soutate 4376 Linoleic acid, 5346 Linolenie acid, 5342 Languadine 5850 Lithium acetate, 32638 Lathium ammonium tartrate, 382641 2 Lithium ethanedisulfonate, 32639 Lithium formate, 32636 Lithium malate, 382637 Lathium naphthalene-1, 5-desulfonate, *2640 Lithium ovalate \$2635 Lathium thallium tartrate, 32648 Lithofellime acid, 5849 Lithuric acid, 4948 Lobelidine, 5570 Lobeline, 5794 Logania, 5871 Longafolic acid, 4830 Lophine, 5619 Lophopetalin, 6092 Loretin, 3009 Loturine, 4224 Luminal, 4291 Lupanine, 4984 Lupeol, 6023

Lupron, 6022 Lupinidine, 4994 Lucinina 3053 Lupinine hydrochloride, 3964 Lupulinic acid, 6156 Lutain and 3537 Luteohn, 4885 a-Lutidine, 2202 2 4-Lutidine 2196 2, 6-Lutidine, 2197 3. 4-1 atalana 2108 Lutidinic seid, 1901 Lycetol, 1718 Lycopodine, 6041 Lycorine, 5089 Lycorine hydrochloride, 5091 Lyadine 702 Lyaine picrate, 4364 Lysuric acid, 5548 d Lyxone, 1035 Maclurin, 1170 Magnesium acetate, 392170 Magnesium acid d-tartrate, 32167 Magnesum ethanedisulforate, 32172 Magnesonm naphthalene-1 5-dealfonate, 282173 Magnesium d-tartrate, 252168 Malakin, 4928 Maleie acid, 571 Maleic anhydride, 548 I-Mahe acid, 635 dl-Mahe acid, 636 Malananada 138 Malonic acid, 360 Malonic intrile, 316 Malonyl chloride, 314 Malonylurea, 565 Maltonan, 1382 Maltonazone, 5838 Maltone, 1395 dill-Mandaha and 2812 dl-Mandelonitrile, 2509 I-Mandelomtrileglucoside, 1817 Manganese acetate, 201311, 201312 Manganese formate, 231309, 231310 Manganese oxalate, 291308 Mannide, 1573 Mannitan, 1669 d-Manutol 1751 Mannitol hexanitrate, 1495 d-Mannoheptitol, 2117 d-Mannohentonic acid 2378 a-Mannose, 1681 d-Mannose, 1682 dl-Mannose, 1683 Maretin, 2794 Margarie acid 5257 Margarie aldehyde, 5255 Marruban, 5676 Meconic acid, 1813 Meconidine, 5646 Meconin, 3621 Melamine, 115 Melampyrin, 1750 Melandine 1518 Melene, 6010 Mehlot, 3134 Mehlotic acid, 3165 Mehlotic anhydride, 3078 Melissane, 6013 Melissic acid, 6011 Mehssyl alcohol, 6015 Mellithyl alcohol 1367 6 Mellitic acid, 1182 Mellophame acid, 3450 o-Menthane, 3959 m-Menthane, 3960 n-Monthage 3061 Menthanediol, 3975 o-Menthan-2-ol, 3971

p-Menthan-8-ol. 3972

Menthene, 3892

Manthanol 3022 a-Menthol. 3973 6-Menthol, 3974 I-Menthol methylene ether, 5689 Monthone 3917 3918 l-Menthyl acetate, 4388 l-Menthyl acetoacetate, 4837 l-Menthyl adipate, 5915 Menthylamine, 3992 l-Menthyl angelate, 5004 Menthyl benzoate, 5214 l-Menthyl n-butyrate, 4841 Menthyl camphorate, 6008 I-Monthyl n-cuproste 5152 l-Menthyl n-caprylate, 5362 Menthyl carbanate, 4164 I-Menthyl carbonate, 5687 *c-Menthyl chloride, 3947 tert-Menthyl chloride, 3948 I-Menthyl chloroacetate, 4383 l-Menthyl crotonate, 1836 I-Menthyl glutarate 5877 Menthyl ethyl glycollate, 4811 I-Menthyl formate, 4157
I-Menthyl glycollate, 4390 Menthyl heptylate, 5253 l-Menthyl hydrogen succinate, 1838 Menthyl hydroxyacetate, 4390 I-Menthyl pobutyrate, 4812 l-Menthyl isovalerate, 5013 l-Menthyl dl-lactate, 1579 I-Menthyl levulinate, 5009 L-Monthyl malonate 5810 I-Menthyl oxalate, 5759 Menthyl phenylacetate, 5331 I-Menthyl propionate, 4578 I-Menthyl pyruvate, 4573 Menthyl sorbinate, 5143 I-Menthyl stearate, 5966 I-Menthyl succinate, 5846 I-Menthyl tartrate, 5817 S I-Menthyl n-valerate, 5015 1-Mercaptobenzoxazole, 1892 2-Mercantomethoxybenzene 2165 μ-Mercaptothiazoline, 405 Mercuric acetate, 2924 Mercuric benzoate, 3926 Mercurie ethyl chloride, 29930 Moreuric mothyl chloride, 3020 Mercuric propionate, 2925 Mercuric stearate, 29927 Mercurous promonate 302 Mercury d -(ethyl sulfide), 2932 Mercury ethyl, 2919 Mercury isobutyl, 2013 Mercury methyl, 2918 Mercury a-naphthyl, 2923 Mercury phenyl, 2022 Mercury propyl, 39920 Messconic acid. 901 Mescaline, 4141 Meadine 3264 Mentol, 3238 ω-Mesitylamine, 3265 Mentylene, 3228 Mesitylenesulfonic acid, 3254 Mentylinic acid, 3148 Mentylinic aldehyde, 3657 Mesityl oxide, 1548 Mesoreinol 3248 Mesotan, 3182 Mesotartaric acid, 638 Mesoxalic acid, 363 Metacrolem, 3252 Metakichyde, 2915 Metanihe acid, 1454 Meteloidine, 4568 Meteloidine hydrobromide, 4569 Methane, 54 Mathanethial 63 Methoxyacetophenetidine, 4113 4-Methoxy-1-allybenzene, 3655

3-Methoxyallylphenyl 4-acetate, 4315 3-Methoxyallylphenyl 4-benzoate. . 5102 3-Methoxyallylphenyl 4-benzyl ether. 3-Methoxyallylphenyl 4-connamate 5418 3-Methoxyallylphenyl 4-formate, 1008 o-Methoxybenzaldehyde, 2578 m-Methoxybenzaldehyde 2570 p-Methoxybenzaldehyde, 2580 o-Methoxybenzamide, 2674 n-Methoxybenzamide 9875 -Methoxybenzoic acid. 2614 m-Methoxybenzoic acid, 2615 Alethorybanzoic and 2618 p-Methoxybensonitrile, 2508 m-Methoxycinnamic acid, 3604 m Mathoxymnamia said 2005 4-Methoxy-2, 6-dihydroxydiphenylketone, 4744 3- Methoxy-1 7-dihydroxyvanthan 4690 3-Methoxy-4-cthoxypropenylbenzene 4340 3-Methoxy-i-hydroxyallylbenzene. 3-Methoxy-t-hydroxybenzaldehyde 4-Methoxy-3-hydroxybenzaldehyde 3-Methoxy-4-hydroxybenzoic a c i d, 2628 4-Methoxy-3-hydroxybenzoic a c i d, 2627 6-Methoxy-7-hydroxy-1, 2-b e n z opyrone, 3530 3-Methoxy-1-hydroxybenzyl alcohol. 2714 3-M e t h o x y-4-hydroxypropenyl-benzene, 3667 4-Methoxy-3-hydroxyvinylbenzene, 3137 d(l)-p-Methoxymandche acid. 3179 Methoxymethyl salicylate, 3182 a Mathaxyphanal 2174 m-Methoxyphenol, 2175 p-Methoxyphenol, 2176 p-Methoxyphenyl acetate, 3153 → Methoxyphenyl benzoate, 4740 p-Methoxyphenyl benzoate, 1736 o-Methoxyphenyl benzyl ether, 4782 1-Methoxyphenyltetrazole, 2566 2 3-Methoxypropenylbenzene-4-acetate, 3-Methoxypropenylbenzene-4-benzoate. 5194 3-Methoxypropenylbenzene-1-benzyl ether, 5201 3-Methoxypropenylbenze n e - 4 - f o r mate, 4069 3-Methoxypropenylbenzene-i-p r a pionate, 1532 6-Methoxyquinoline-4-carboxylic nerd, 4036 6-Methoxy-1, 2, 3, 4-tetrahydroquinoline 3710 o-Methylacetanılıde, 3191 N-Methylacetamlide, 3199 Methyl acetate, 452 Methyl acetoacetate, 943 p-Methylacetophenone, 3134 Methyl I-1-acetoxypropionate, 1572.1 Methylacetyl carbinol, 721 Methylacetylene, 338 Methyl acetylsalicylate, 3619 Methyl acid carbonate, 215 1-Methylacridine, 4698 3-Methylacridine, 4699 5-Methylacridine, 4700 Methyl acrylate, 624 Methylacrylic acid, 620

propune, 3793
Methylammor-phenol sulfate, 4822
Methyl m-ammophenyl ketone, 2646
Methyl m-ammophenyl ketone, 2647
Methyl m-ammophenyl ketone, 2648
Methyl-n-ammophenyl-q u i n oline, 5065
Methyl-n-amyl alcohol, 1735
1-Methyl-n-amyl alcohol, 1735
1-Methyl-n-amyl alcohol, 2407
Methyl m-amyl carbinol, 2407
Methyl m-amyl ether, 1739
Methyl m-amyl ether, 1739
Methyl n-amyl ketone, 2348
Methyl maylpropiolate, 3279

Methylamine, 2203
Methylanisate, 3172
1-Methylanthracene, 4897
2-Methylanthracene, 1898
9-Methylanthracene, 1898
Methylanthracine, 2664
Methylanthranile acid, 2660
1-Methylanthraquinone, 4872
2-Methylanthraquinone, 1873
Methylanthraquinone, 1873
Methylarsenate, 64.1
Methylarsinie, 64
Methylarsinious oxide, 39
Methylarsinious oxide, 39
Methylarsinious oxide, 39
Methylarsinious oxide, 39
Methylarsinious oxide, 39
Methylarsinie, 3019

Methylatophan, 5182 Methyl azide, 52 I-Methylbdribituric acid, 906 Methyl behenate, 5815 Methyl behenate, 5812 Methyl benzalate, 4919 Methyl benzante, 2589

Methyl benzoylacetate, 3606 Methyl benzoylaminoacetate, 3631 Methyl benzoyleogonine, 5221 N-Methylbenzylamine, 5221 N-Methylbenzylamine, 4794

N-Methylbenzylamline, 4494 d-Methylbenzylcarbinyl for mate, 3681.1 Methyl benzyl ketone, 3133 Methyl borate, 231824 Methyl d-bornyl ether, 4156

Act-Methylbutyl alcohol, 1083
Methylbutyl earbinol, 1730, 1730,1
Methyl-sec-butyl carbinol, 1732
Methyl-sec-butyl carbinol, 1733
Methyl-sec-butyl carbinol, 1733
Methyl n-butyl carbonate, 1007
Methyl n-butyl ether, 1088
1-Methyl-2-butylethylene, 2329
Methyl n-butyl ketone, 1638

1-Methyl-2-butyletnylene, 2229 Methyl n-butyl ketone, 1638 Methyl sec-butyl ketone, 1640 Methyl n-butyrate, 1018 Methylbutyrone, 2895

p-Methylbutyrophenone, 4090.1

Methyl caprate, 4176 Methyl n-caproste, 2360 Methyl caprylate, 3337 Methyl carbamate, 244 Methyl carbonate, 458 Methyl chaulmoograte, 5481 Methyl chavicyl ether, 3655 Methyl chloride, 41 Methyl chlorogeetate 381 Methylchloroform, 158 Methyl chloroformate, 155 Methyl 2-chloropropionate, 659 Methyl cinnamate, 3000 Methyl citraconate, 2267 Methyleodeine bromide, 5460 I-1-Methylcomine, 3345 Methyl o-cresotmate, 3173 Mathyl permetante 3174 Methyl a-crotonate, 939 Methyl cyanide, 168 Methyl cyanoacetate, 591 Methyleyelobutane, 981 Methylcyclohexane, 2330 1-Methyleyclohexane-1-ol, 2338 1-Methylcyclohexane-2-ol, 2339 1-Methyleyclohexane-1-ol, 2342 I-1-Methyleyclohexane-3 ol, 2310 dl-1-Methylcyclonexane-3-ol, 2340 o-Methylcyclohexanone, 2289 1 m-Methylcyclohexanone, 2289 2 p-Methylcyclohexanone, 2289 3 1-Methylcyclohexene, 2281 Methyl cyclohexylacetate, 3305 Methylcyclopentane, 1615 Methylcyclopropane, 687 Methyleytisine, 4335 Methyldichloroarsine, 38 Methyl 1, 2-dichloropropionate, 601 1 Methyl diethyl carbinol, 1731 1-Methyl-2, 2-diethylethylene, 2326 2-Methyl-4, 5-dihydroimidazole, 702 Methyl-3, 5-dinodosaheylate, 2461 Methyl dimethylactoacetate, 2303 A-Methyldiphenylamine, 1513 Methyldipropylammonium e h l o r o-platinate, 201206 Methyldipropyl carbinol, 2962 2-Methyldivinyl, 916 Methylene brounde, 26 Methylene chloride, 28 Methylenecitrylsalicylic acid, 5620 Methylene diacetate, 951 Methylenediantipyrine, 5777 Methylenedicotome, 5969

mate, 20188
Methylethyl-tert-amyl carbinol, 3362
Methylethylburyl carbinol, 2963
Methylethyl carbinol, 791
Methylethyl carbinol, 735
Methylethyl carbinomate, 735
Methylethyldipropylanmonium
chloronlatinate, 201212

chloroplatinate, 351212
Methylethyleneglycol, 510
Methyl ethyl ether, 508
sym-Methylethylethylene, 982
unsym-Methylethylethylene, 983
6-Methyl-3-ethylheptene-2, 3982
5-Methyl-3-ethyl-3-hydroxyhexane,
3359

Methylethylisoamyl carbinol, 3361 Methylethylisobutyl carbinol, 2964 Methylethylisobexyl carbinol, 4004

Methylethylsopropyl carbinol, 2410
Methyl ethyl ketonic, 719
Methyl ethyl ketonic, 764
Methylethylmalouic seid, 1565
Methylethylmalouic seid, 1565
Methyl-3-ethylovalste, 950
2-Methyl-3-ethyl-2-pentenic, 2871
3-Methyl-3-ethyl-2-pentenic, 2871
Methylthylpropyl alcohol, 1735
Methylethylpropyl smmomium chloroplatinate, 284213
Methylethylpropyl sobutylammomium

plstmate, 201213 Methylethylpropylsobutylammonum chloroplatmate, 201214 Methylethylpropyl carbinol, 2109 Methylethylpropylene, 1014 1-Methyl-2-ethyl-1-n-propylethylene 8574

2-Methyl-5-ethylpyridina, 2774 Methyl ethyl succinate, 2311 Methyl ethyl sulfide, 547 Methylethylsulfonum chloroplatinate, 201184 Methyl Borrde, 44

Methyl fluoride, 44 Methyl formate, 213 2-Methylfuran, 891 5 Methyl furfural, 1417 Methyl fumarate, 1490

a-Methylgalactoside, 2368 B-Methylgalactoside, 2369 Methyl gallate, 2630 Methyl granate, 4150

α-Methylglucose, 2370 β-Methylglucose, 2371 α-Methylglucoside, 2372

p-Methylglucoside, 2373 d-Methyl glycerinate, 739 Methylglycine, 186 Methylglycocoll, 486

Methylglyco yannae, 780 Methyl glycollate, 160 Methylglyoxalidine, 702 1-Methylglyoxaline, 606 4-Methylglyoxaline, 607 Methylglyoxaline, 607

Methylgaandineacetic acid, 780 Methylgianidine intrate, 305 Methylgianidine sulfate, 839 Methyl heneicosate, 5709 2-Methylh prane, 2937

3-Methylheptane, 2939 4-Methylheptare, 2940 2-Methyl-2-heptene, 2872 4-Methyl-3-heptene, 2873

4-Methyl-2-heptene-6-ol, 2890 2-Methyl-2-heptene-6-one, 2834 Methyl n-heptylate, 2910 d-Methyl-n-heptyl carbinol, 2967

d-Methyl-n-heptyl carbinol, 2967 Methyl hexahydrobenzoate, 2838 2-Methylhexane, 2390 d-3-Methylhexane, 2391

2-Methylhexan-1-ol, 2405 2-Methylhexan-2-ol, 2396 2-Methylhexan-3-ol, 2411 3-Methylhexan-3-ol, 2409

3-Methylhexan-3-ol, 2402 4-Methylhexan-3-ol, 2402 5-Methylhexan-1 ol, 2406 5-Methylhexan-2-ol, 2408

5-Methylhexan-2-ol, 2408 5-Methylhexan-3-ol, 2401 3-Methyl-2(3)-hexene, 2331 dl-Methyl-n-hexyl carbinol, 2968

dl-Methyl-n-nexyl caronion, 256 Methyl n-hexyl ether, 2977 Methyl hexyl ketone, 2896 Methyl hippurate, 3631

Methylhydrasine, 77 Methyl hydroacrylate, 736 Methyl hydroacnananate, 3682 Methyl hydrogen oxalate, 361 Methyl hydrogen tartrate, 957 Methyl 3-hydroxy-4-aminobenzoste,

2679
2-Methyl-2-hydroxyheptane, 2953
2-Methyl-3-hydroxyheptane, 2971
3-Methyl-3-hydroxyheptane, 2963

3-Methyl-4-hydroxyheptans, 2970 4-Methyl-2-hydroxyheptane, 2962 4-Methyl-4-hydroxyheptane, 2962 6-5-Methyl-2-hydroxyheptane, 2965 6-Methyl-2-hydroxyheptane, 2955 3-Methyl-2-hydroxyheptane, 2955 3-Methyl-2-hydroxyheptane, 2955 3755

5-Methyl-2-hydroxymopropylbensene, 3757 1-Methyl-4-hydroxymmohne, 3559

1-Methyl-4-hydroxyluntome, 66 Methyl hypochlorite, 42 1-Methylimdarole, 606 4-Methylimdarole, 607 1-Methylimdarole, 607 1-Methylindole, 3008 2-Methylindole, 3000 3-Methylindole, 3100

5 Methylandole, 3101 Methylandide, 45 Methylanoamyl carbinol, 2408 Methylanoamyl ether, 1740 Methyl isoamyl ketone, 2349 Methylasobutyl carbinol, 1731

Methylisobutyl carbinol, 1731 Methyl isobutyrate, 1019 Methyl isobutyrate, 1019 Methyl isocyanate, 172 Methyl isobexyl carbinol, 2005 Methyl isobexyl carbinol, 2005 Methyl isobexyl ketone, 2807

Methyl isopethalate, 3104 Methyl isopropyl carbinol, 1085, 1085 1

Methyl isopropyl ether, 794.1 1-Methyl-1-isopropylethylene, 1618 1-Methyl-2 isopropylhexahydrobenzene, 3950

1-Methyl-3-isopropylhexahydrobenzene, 3960

I-Methyl-4-isopropylhexahydrobenzene, 3961 Methyl isopropyl ketone, 1007

Methyl isopropyl ketone, 1007 2-Methyl-5-isopropylphenol, 3752 2-Methyl-6-isopropylphenol, 3755 3-Methyl-6-isopropylphenol, 3756 4-Methyl-6-isopropylphenol, 3757

3-Methyl-6-isopropylphenoxybenzene, 5110 2-Methyl-5-isopropylquinone, 3685

2-Methyl isosuccinata, 1569
Methyl isosuccinata, 1569
Methyl isothiocyanata, 177
Methyl isovalerata, 1658
Methyl lactata, 737
Methyl laurata, 4584
Methyl hurata, 4576

Methyl mainte, 1576 Methyl maleute, 1500 Methyl malonate, 948 Methyl dl-mandelate, 3175

Methyl margarate, 5382 d-1-Methylmuhe acid, 952 dl-1-Methylmulic acid, 953 2-Methylmulic acid, 953

α-Methylmannoside, 2373.1 Methyl meconate, 2749 Methyl I-menthyl ether, 4168

Methylia-methoxy-4-hydroxyphenyl ketone, 3158 Methyl 4-methoxy-2-hydroxyphenyl

ketone, 3159
Methyl I-1-methoxypropionate, 1028.1
Methyl d-methylbenzyl carbinol,

Methyl d-methylbensyl carbine 3754 1 Methyl mustard oil, 177 Methyl myristate, 5017 a-Methylnaphthalene, 4038 b-Methylnaphthalene, 4039 2-Methyl-a-maphthoquinoline, 4701 3-Methyl-b-naphthoquinoline, 4701

Methyl-a-naphthylamine, 4050

l-Methyl-α-naphthyl carbinol, 4207.1

Methyl a-naphthyl ether, 4041 Mathyl Amenhthyl ather 4042 Methyl mtramme, 56 Methyl atrate 50 Methyl minte, 49
Methyl o-nitrohenzoate, 2518 Methyl m-nitrobensoute, 2519 Methyl p-nitrobenzoute, 2520 Methylmtrolic acid, 32 N-Methylmtrosomiline, 2134 2-Mathylnonane 3008 3-Methylnonane, 3909 5-Methylnonane, 4000 2-Methyl-2-nonen-6, 8-dione, 3863 Methyl n-nonyl ketone, 1172 Methylnopinol, 3921 d-3- Mathyloctune 3352 4-Methyloctane, 3353 3-Methyloctane-4-ol, 3355 2-Methyl-1-octene, 3321 Methyl n-octyl ether, 3367 Methyl n-octyl ketone, 3078 Methyl oxalate, 631 Methyl oxamiate, 3112 Methyl palmitute, 5258 Methyl pelargonate 3087 Methylpelletierine, 3316 I-Methyl-2-pentadecylacetylene, 5354 1-Methylpentamethyleneglycol, 1711 2-Methylpentane, 1715 3-Methylpentane, 1714 2-Methylpentan-3-ol, 1727 2-Methyl-2-pentene, 1613 3-Methyl-2-pentene, 1616, 1617 Methyl phenylacetate, 3155 Methylphenyl carbinol, 2713, 2713 1 N-Methyl-p-phenylenednamne, 2247 Methyl I-phenylethyl carbinol, 3754 2 1, 1-Methylphenylhydrazine, 2255 Methyl phenyl ketone, 2571 Methylphenylmitrosamine, 2134 4-Methyl-2-phenylquinohne, 5053 6-M e t h y l-2-phenylquinohne-t-carboxylie acid, 5182 N-Methylphenyltoluene-t-sulfonamide, 4795 1-Methyl-1-phenylurea, 2694 Methylphosphine, 73 Methylphosphinic acid, 72 Methyl phthalate, 3001, 3615 Methyl picrate, 1920 Methyl d-pinate, 3872 1-Methylpiperidine, 1699 2-Methylpiperidine, 1700 3-Methylpiperidine, 1701 4-Methylpiperidine, 1702 Methyl propargyl ether, 612 Methyl propionate, 726 Methylpropylacetaldehyde, 1835 Methylpropylacetic acid, 1647 Methylpropylacetylene, 1536 Methylpropylammonium chloroplatinate, 281192 Methylpropyl carbinol, 1081 Methylpropylearbinolurethane, 1703 Methylpropylene, 681 Methyl propyl ether, 794 2-Methyl-2-propylethyl carbinol, 1736 Methylpropylisobutyl carbinol, 3363 Methyl propyl ketone, 1006. Methyl propyl ketoxime, 1056 1-Methylpyrazole, 608 3-Methylpyrazole, 608 1 5-Methylpyrasole, 608 2 3-Methylpyrasole-1-sulfonic a c i d . 2-Methylpyridine, 1443 3-Methylpyridine, 1444 4-Methylpyridine, 1445 2-Methylpyridine-1, 6-dicarboxylic acid, 2521 Methyl pyrotartrate, 2310

1-Methylpyrrole, 908 2-Methylpyrrole, 906 3-Methylpyrrole, 910 Methyl 2-pyrryl ketone, 1449 Methyl pyruvate, 628 3-Methylaunoline, 3545 4- Methylquinoline, 3546 6-Methylquinoline, 3547 7-Methylquinohne, 3518 8-Methylquinoline, 3549 2-Methylquinoline-1-carboxylic acid, 40.05 2-Methylquinoline ethiodide, 4312 2-Methylquinoline methodide, 4056 Methyl racemate, 1580 1-Methyl rhamnomde, 2367 1 Methyl rhodanide 176 Methyl nemolate, 5482 Methyl salicylate, 2618 Methyl santalate 5140 Methyl santoate, 5135 1 Methylaheane, 28404 Methylsilicane chloride 3133 Methylsulcane dichloride, 23131 Methyl stearate, 5485 Methyl styryl ether, 3128 Methyl succinate, 1568 Methyl sulfate, 269 Mathyl milfida 272 Methyl sulfite, 266 Methyl sulfocyanate, 176 Methylsulfone chloride, 43 Methylaulfonic acid, 61 Methybulfuric acid, 62 Methyl tartrate 1581 Methyl tartronate, 956 Methyl telluride 277 Methyl terephthalate 3616 1-Methyl-1, 2, 3, 4-tetrahydroquinohon 3701 Methyltetramethylene, 981 Methyltetrazene, 78 Mathyltetrome amide 1070 2 Methyltetronic lactone, 947 1 Methylthiocyanate, 176 Methylthionyl chloride, 13 Methyl p-toluate, 3156 N-Methyl-o-toluidine, 2767 N-Methyl-m-toluidine, 2768 V-Methyl-p-toluidine, 2769 Methyl trichloroacetate, 329 Methyltmethylammonium chloroplatinate, 31202 Methyl 3, 4, 5-triby droxybenzonte, Methyl 2, 4, 6-trihydroxyphenyl ketone, 2620 Methyltrusobutylammonium chloroplatinate, 281219 Methyl trimethylacetate 1858 Methyltrimethylene, 687 V-Methyltyronne, 3721 5-Methyluraed, 888 V-Methylures, 259 Methyluren nitrate 201 Methylurethane, 773 1 1-Methylune acid, 1409 3-Methyluric acid, 1410 -Methyluric acid, 1411 Methyl n-valerate, 1657 Methyl vanillate, 3183 Methysticin, 1925 Metol. 4822 Michler's ketone, 5207 Milk sugar, 1394 Mitragynine, 5734 Mitraversine, 5716 Mochyl alcohol, 5914

Monacetin, 1031

Monotal, 3694

Monobutyrın, 2367

Montanie acid, 5984

Morin, 4888 Morindin, 5896 Morindon, 4882 Morphine, 5202 Morphine acetate, 5458 Morphine ethyl ether, 5453 Morphine hydrobromide, 5205 Morphine hydrochloride, 5206 Morphine methyl bromide, 5322 Morphine methyl ether, 5317 Morphine sulfate, 6062 Marshina turtrata 6111 Morphol, 4675 Morphosan, 5322 Muse and 1584 Muconic acid, 1427 Murrayin, 5330 Mark 1082 Mustard gas, 699 Mycosterol, 6000 Mykose, 4397 Myrcene, 3811 Myrcenol, 3919 Myricyl ulcohol, 6015 Myristic acid, 4851 Myristic aldehyde, 1850 Myristic amide, 4855 Myristic amlide, 5592 Myristicinic acid, 3094 Myrighte nitrile 4848 Myristical, 3855 Myristone, 5941 Myristyl chloride, 4847 Myrtenal, 3761 Murtual 3858 Myrtenyl chloride, 3780 Napelline, 6021 Naphthalanmorpholine, 4329 a-Naphthaldehyde, 4023 B-Naphthaldehyde, 1021 Naphthalene, 3494 Naphthalene-1. 8-dicarboxylic acid. 4107 Naphthalene-1, 5-disulfone chloride, Naphthalene-1, 6-disulfone chloride, 3431 Naphthalene-2, 6-disulfone chloride, 2429 Naphthalene-2, 7-disulfone chloride 3433 Naphthalene-1, 5-disulfonic acid, 3539 Naphthalene-1, 6-disulfonic acid, 3540 Naphthalene-1-sulfime acid, 3519 Naphthalene-2-sulfinic acid 3520 Naphthalene-1-sulfone chloride, 3467 Naphthalene-2-sulfone chloride, 3468 Naphthalene-1-sulfonic acid, 3524 Naphthalene-2-sulfonic acid, 3525 Naphthalene tetrachloride, 3495 1. 8- Naphthalic acid. 1197 Naphthionic acid, 3562 o-Naphthore seed, 4020 8-Naphthore acid, 4030 a-Naphthol, 3507 B-Naphthol, 3508 α-Naphthol-2-sulfonic acid, 3532 a-Naphthol-4-sulfonic acid, 3533 a-Naphthol-5-sulfonic acid, 3531 a-Naphthol-8-sulfonic acid, 3535 8- Naphthol-6-sulfonic acid. 3536 β-Naphthol-7-sulfone seid, 3537 α, β-Naphthophenazine, 5207 α-Naphthoguinaldine, 4701 β-Naphthoquinaldine, 4702

γ-Naphthoquinaldine, 4703

a-Naphthoguinohne, 4435

β-Naphthoquinoline, 4436

1, 2-Naphthoquinone, 3447 1, 4-Naphthoquinone, 3448

2, 6-Naphthoquinone, 3449

o-(a-Naphthoyl)-benzoic acid, 6271

α-Naphthoyl chloride, 4017 β-Naphthoyl chloride, 4018 a-Naphthyl acetate, 4247 β-Naphthyl acetate, 4248 Naphthyl acid camphorate, 5554 α-Naphthylamine, 3550 β-Naphthylamine, 3551 a-Naphthyl bensoate, 5176 B-Naphthyl bensoate, 5177 α-Naphthyl cyanide, 4019 β-Naphthyl cyanide, 4020 Naphthylene-1, 2-diamine, 3580 Naphthylene-1, 4-diamine, 3581 Naphthylene-1, 5-diamine, 3582 Naphthylene-1, 6-diamine, 3583 Naphthylene-1, 8-diamine, 3584 α-Naphthyl ether, 5499 a, B'-Naphthyl ether, 5501 4-Naphthyl ether 5500 α-Naphthyl salicylate, 5178 B-Naphthyl salicylate, 5179 Narceine, 5790 Narceine hydrochloride, 5792 Narceine sulfate, 6150 Narceinic acid 4920 Narcotine, 5704 dl-Narcotine, 5703 Neocerotic acid. 5878 Neodymum ethyl sulfate, \$2031 Neoisocodeine, 5320 I-Neomenthol, 3974 1 Nepalin, 5188 Nepodin 5302 Neral, 3850 Nerol, 3920 Nerolidal 5003 Nerolin, 4042 Neryl acetate, 4377 Neurine perchlorate, 1104 Neurodin, 4079 Neuronal, 830 Nickel acetate, \$1578 Nickel formate, 281577 Nickel naphthalene-1, 5-disulfonate, 291580 Nicoteine, 3643 Nicotelline, 3500 Nicotimine, 3748 Nicotine, 3747 Nicotine salicylate, 5208 Vicotinic acid, 1345 Nicotoine, 2775 Nirvanin 4825 Nirvanol, 4059 o-Nitroacetanilide, 2555 m-Nitroacetambde, 2556 p-Nitroacetanilide, 2557 Nitroscetic acid, 175 3-Nitro-8-alizarin, 4616 4-Nitro-α-alizarin, 4615 5-Nitro-3-amino-p-cresol, 2149 2-Nitro-4-aminophenol, 1405 3-Nitro-2-aminophenol, 1400 3-Nitro-4-aminophenol, 1406 1-Nitro-2-aminophenol, 1401 5-Nitro-2-aminophenol, 1402 5-Nitro-3-aminophenol, 1404 6-Nitro-2-aminophenol, 1103 o-Nitroaniline, 1396 m-Nitroaniline, 1397 p-Nitroaniline, 1398 → Nitroanisol, 2098 m-Nitroanisol, 2099 p-Nitroanisol, 2100 9-Nitroanthracene, 4644 1-Nitroanthraquinone, 4613 2-Nitroanthragumone, 4614 p-Nitroszobenzene, 4216 m-Nitrobenzal chloride, 1865 o-Nitrobensaldehyde, 1893 m-Nitrobensaldehyde, 1894 p-Nitrobengaldehyde, 1895

C-TABLE: INDEX

o-Nitrobensamide, 1981 m-Nitrobensamide, 1982 p-Nitrobensamide, 1983 Nitrobensene, 1347 Nitrobenzidine, 4276 m-Nitrobensidine, 4277 o-Nitrobensoio acid, 1897 m-Nitrobensoic soid, 1898 p-Nitrobensoic acid. 1899 o-Nitrobensonitrile, 1829 m-Nitrobensonitrile, 1830 p-Nitrobensonitrile, 1831 o-Nitrobensoyl chloride, 1806 m-Nitrobensoyl chloride, 1807 p-Nitrobenzoyl chloride, 1808 c-Nitrobenzyl alcohol, 2085 m-Nitrobenzyl alcohol, 2086 p-Nitrobenzyl alcohol, 2087 e-Nitrobensylaniline, 4503 o-Nitrobenzyl bromide, 1941 m-Nitrobensyl bromide, 1942 p-Nitrobenzyl bromide, 1943 o-Nitrobensyl chloride, 1961 m-Nitrobenzyl chloride, 1962 p-Nitrobensyl chloride, 1963 p-Nitrobensyl cyanide, 2466 o-Nitroeinnamic acid, 3050 m-Nitrocinnamic acid, 3051 p-Nitrocinnamic acid, 3052 2-Nitro-p-cresol, 2096 3-Nitro-o-cresol, 2088 4-Nitro-o-cresol, 2089 4-Nitro-m-cresol, 2093 5-Nitro-o-cresol, 2090 5-Nitro-m-cresol, 2004 6-Natro-o-cresol, 2091 6-Nitro-m-cresol, 2095 Nitrocresol methyl ether, 2676 Nitrocumene, 3210 Nitrocyclohexane, 1606 2-Nitrocymene, 3715 4-Nitro-1, 3-diacetylphenyl en e d i amine, 3636 2-Nitro-1, 4-diaminobenzene, 1461 4-Nitro-1, 2-diaminobenzene, 1459 4-Nitro-1, 3-diaminobenzene, 1460 o-Nitrodimethylambne, 2696 m-Nitrodimethylamline, 2697 p-Nitrodimarhylemline, 2698 o-Nitrodiphenyl, 4212 m-Nitrodiphenyl, 4213 p-Nitrodiphenyl, 4214 o-Nitrodiphenylamine, 4233 p-Nitrodiphenylamine, 4234 p-Nitrodiphenylmethane, 4484 Nitroethane, 242 o-Nitroethoxybenzene, 2677 p-Nitroethoxybenzene, 2678 Nitroethyl alcohol, 246 Natroethylene 173 Nitroform, 25 Nitroglycerine, 407 Nitroglycerol, 497, 498 Nitroglycol, 249 3-Nitroguniacol, 2103 4-Nitroguaiacol, 2104 5-Nitroguniacol, 2105 Nitroguanidine, 59 Nitrohydroquinone, 1354 2-Nitro-3-hydroxybenzoic acid, 1911 3-Nitro-2-hydroxybenzoic acid, 1907 3-Nitro-4-hydroxybenzoic acid, 1915 4-Nitro-2-hydroxybenzoic acid, 1908 4-Nitro-3-hydroxybensoic acid, 1912 5-Nitro-2-hydroxybenzoic acid, 1909 5-Nitro-3-hydroxybenzoic acid, 1913 6-Nitro-2-hydroxybenzoic acid, 1910 6-Nitro-3-hydroxybenzoic acid, 1914 Nitroisatine, 2430 2-Nitrosophthalic acid, 2442 4-Nitrosophthalic acid, 2443

5-Nitroisophthalic acid, 2444

1-Nitroisopropylbenzene 3219 2-Nitro-4-isopropyltoluene, 3715 Nitromannite, 1495 Nitromesitylene, 3220 Nitromethane, 48 3-Nitro-1-methoxytoluene, 2676 a Nitromethylumbue 21.88 m-Nitromethylamine, 2137 p-Nitromethylamline, 2138 2-Natro-3-methyl-6-reorronyloherol 4-Nitro-3-methyl-6-isopropylphenol. 3710 Nitron, 5516 a-Nitronaphthalene, 3473 8-Natronaphthalene, 3174 1-Nitro-8-naphthol, 3159 2-Nitro-a-naphthol, 3485 3-Nitrogrammhthul, 3486 1-Nitro-a-naphthol, 3487 5-Nitro-a-naphthol, 3488 5-Nitro-8-naphthol, 3490 6-Nitro-B-naphthol, 3491 S-Nitro-β-naphthol, 3492 1-Nitro-6-naphthylamine, 3504 3-Nitro-a-naphthylamine, 3501 5-Nitro-β-naphthylamine, 3505 6-Nitro-a-naphthylamine, 3502 7-Nitro-a-naphthylamine, 3503 8-Nitro-B-naphthylamine, 3506 2-Nitrophenanthrene, 4645 3-Nitrophenanthrene, 1646 4-Nitrophenanthrene, 1647 9-Nitrophenanthrene, 1648 o-Nitrophenetol, 2677 p-Nitrophenetol, 2678 o-Nitrophenol, 1349 m-Nitrophenol, 1350 p-Nitrophenol, 1351 Nitrophenol-4-sulfome acid, 1355 2-Nitro-p-phenylenediamine, 1361 4-Nitro-o-phenylenediamine, 1459 4-Nitro-m-phenylenediamine, 1460 3-Nitro-a-phthalic acid, 2440 4-Nitrophthalic acid, 2441 1-Nitropiperidine, 991 1-Nitropropane, 487 2-Nitropropane, 488 3-Nitropyridine, 852 5-Nitroquinoline, 3010 6-Nitroquinoline, 3011 7-Nitroquinoline, 3012 8-Nitroquinoline, 3013 2-Nitroresorcinol, 1352 4-Nitrorenorcinol, 1353 2-Nitrosalicyhe acid, 1911 3-Nitrosaheyhe acid, 1907 4-Nitrosaheylic acid, 1908 5-Nitrosalicylic acid, 1909 6-Nitrosaheylie acid, 1910 n-Nitrosoacetamlide, 2553 p-Nitrosoaniline, 1394 Nitrosobenzene, 1343 Nitrosodiethylamine, 783 6-Nitroso-3-(diethylamino)-phenol, 3749 p-Nitrosodiethylamline, 3750 Nitrosodusobutylamine, 2949 p-Nitrosodimethylamline, 2695 p-Nitrosodimethylamline h y d r o chloride, 2752 v-Nitrosodiphenylamine, 4228 p-Nitrosodiphenylamine, 4229

Nitrosodipropylamine, 1720 1-Nitroso-β-naphthol, 3477

2-Nitroso-α-naphthol, 3475

4-Nitroso-a-naphthol, 3476 Nitrosooxindol, 2465

p-Nitrosophenylaniline, 4229

p-Nitrosophenol, 1348

o-Nitrostyrene, 2513

m-Nitrostyrene, 2514

Nitrostyrene, 2515 2-Nitroterephthalic seid, 2445 Nitrotetranic and dibydests 479 1 2-Nitrothiophene, 553 2- Natrothemal 3718 4-Nitrothy mol, 3719 o-Nitrotoluene, 2081 m-Nitrotoluene, 2082 p-Nitrotoluene, 2083 a Nitratalus nesasulfame acut 2109 Nitro-m-toluidine, 2143 Natro-p-toluidine, 2117 3- Nitro-a-talunding 2139 3-Nitro-p-toluidine, 2148 4. Netroscatolandone, 2140. 4-Natro-m-toluidine, 2111 5- Nitro-o-toluidine, 2141 5-Nitro-m-toloudine 2145 6-Nitro-o-toluidine, 2112 6-Nitro-m-toluidine, 2146 2-Nitro-1, 3, 5-trimethylbenzene, 3220 Nitrouren, 53 Nitrourethane 412 2-Nitro-m-xylene, 2668 2 Nitro-p-xylene, 2671 3- Nitro-o-xylene, 2006 4- Nitro-o-xylene, 2667 4-Nitro-m-xylene, 2669 5-Nitro-m-xylene, 2670 Nonacosane, 5985 Nonadecine-1-earboxylie acid, 5602 n-Nonane, 3354 n-Nondecane, 5486 Nondecylic acid, 5483 n-Nonvhe acid, 3428 n-Nonvl alcohol, 3364 n-Nonyl aldehyde, 3325 n-Nonylamine, 3371 Nonylene, 3322 d a-Nonyl formate, 3988 Nopinane, 3296 α-Nopinol, 3301 Nopmone, 3276 Noratropine, 5129 Northyoseyamine, 5130 Northyoseyamine, 5130 Northyoseyamine acid, 2489 Nortropanol, 2321 Nortropinone, 2272 Nosophen, 5187 Novaspirin, 5620 Novatophan, 5410 Novocaine, 4557, 4558 Novocaine hydrochloride, 4565 Ocimene, 3812 Octachloroanthracene, 4591 β-Octachlorocyclohexenone, 1111 1 ₂-Octachlorocyclohexenone, 1111.2 Octachloropropane, 309 Octacosane, 5967 n-Octadecane, 5391 n-Octadecyl alcohol, 5392 n-Octadecyl todide, 5389 n-Octadecylene, 5377 08-8-Octalin, 3813 trans-8-Octalin, 3814 n-Octune, 2041 n-Octyl acetute, 3989 n-Octyl alcohol, 2966 d-sec-Octyl alcohol, 2967 dl-sec-Octyl alcohol, 2968 n-Octyl aldehyde, 2892 n-Octylamine, 2986 sec-Octylamine, 2987 n-Octvl bromide, 2922 n-Octyl chloride, 2924 sec-Octyl chloride, 2925 Octylene, 2874 n-Octyl ether, 5169 n-Octyl fluoride, 2926 d-g-Octyl formate, 3338 n-Octyl iodide, 2927 Oenanthaldoxime, 2386

Oenanthol, 2348, Oenanthylic acid, 2351 Oenanthylic aldehyde, 2343 Oenanthylidene, 2275 Oleic acid, 5359 Oleic soid exentide, 5371 Olere aldehyde, 5356 Oleicamide, 5375 Olere anhydride, 6105 Oleohydroxamic acid, 5376 Onceric acid, 5580 Onocern, 5910 Onocol, 5910 Ononin, 5865 Opianie acid, 3624) Orcin, 2173 g-Oremol, 2729 Orasina 4710 Origanol, 3926, 3927 Ormosine, 5593 Ormounine, 5594 dl-Ornithuric seid, 5430 Occavin, 5398 Orthoform, 2679 Orthoform, new, 2680 Oscare, 2822 Oscine pierate, 4812 Ounbain, 5998 Oxalic neid, 147 Oxulio acid dihydrate, 270 Oxulybanthrambe acid, 3049 Oxalyl bromide, 85 Oxalyl chloride, 80 Oxalvldihydraside, 260 Oxalylurea, 317 Oxamic acid, 174 Oxamide, 199 Oxambe seid, 2516 Ozamlide, 4715 Oxudol, 2511 Oxyacanthine, 5434 Oxycannabin, 3579 Oxyquinoline sulfate, 5291 Oxysparteine, 4985 Oxytoluyltropeine, 5128 Paconol, 3159 Palmitic acid, 5159
Pamitic aldehyde, 5158 Palmitic amide, 5165 Palmitic anhydride, 6045 Palmitic anilide, 5745 Palmitolic acid, 5148 Palmitone, 6026 Palmitonitrile, 5155 Palmitoxylic acid, 5149 Paniculatine, 5972 Papaveraldine, 5528 Papaverie acid, 5056 Papaverine, 5541 Papaverine hydrochloride, 5544 Parabanic acid, 317 n-l'arabutyraldehyde, 4409 Paracome scid. 902 Paracotoic acid, 4257 Paracotom, 4199 Paraffinic acid, 5856 Paraformaldehyde, 36 Paraldehyde, 1662 Paraldol, 2016 Param. 207 Paramorphine, 5435 Parapropionaldehyde, 3340 Pararosaniline, 5428 Parasalicyl, 4681 Paratophan, 5182 Paraxanthine, 2152 Paricine, 5101 Parillin, 5912 Parvoline, 3266 Patchouli alcohol, 5142 Patellaric acid, 5215 Patschoulene, 4978

Paucine, 5930 Paytine, 5655 Pelargonic acid, 3328 Pelargome aldehyde, 3325 Pelletrerine 2862 Pelletierine hydrobromide, 2875 Pelletrerine hydrochloride, 2870 Pelletierine sulfate, 5157 Pellotine, 4552 Pelosine, 5316 Pettabromoandine 1126 Pentabromobensene, 1113 Pantabromosthans 105 Pentabromophenol, 1111 Pentachloroamhne, 1140 Pentachlorobensene 1119 Pentachlorobensoic acid, 1775 Pentachloroethane, 111 Pentachlorophenol, 1120 Pentachloropropane, 331 Pentaconane, 5881 n-Pentadecane, 5018 n-Pentadecyl alcohol, 5019 Pentadecyl amine, 5020 Pentadecylic acid, 5016 1, 3-Pentadiene, 918 2. 3-Pentadiene, 911 Pentacrythritol, 1093 Pentacthylbenzene, 5111 Pentahydroxybenrophenone, 1470 Pentamethylbenzene, 1119 Pontamethylbenzoic acid, 1311 Pentamethylbenzyl alcohol, 1367-6 Pentamethylenediamine, 1105
ons-Pentamethylene-1, 2-dicarboxyle acid. 2261 Pentamethyleneglycol, 1000 Pentamethylene oxide, 1008 Pentamethylphenol, 1128 n-Pentane, 1073 Pentane-1, 2-diol, 1089 Pentane-1, 5-diol, 1090 Pentanitrophenol, 1121 Pentaphenylethane, 6030 n-Pentatriacontane, 6091 1-Pentene-3-ol, 999 2-Pentene-4-ol, 1000 2-Pentene-2, 3, 5-tricarboxylic acid 2, 3-imide, 2681 1, 2-Pentenic acid, 934 2. 3-Pentenic acid. 935 3, 4-Pentenic acid, 930 1-Pentine, 920 Pentinoic acid. 894 n-Pentylethylene, 2332 Perbromobensene, 1107 Perbromoethylene, 86 Perchlorobenzene, 1110 Perchloroether, 538 Perchloroethylene, 90 Pereirine, 5465 Perezone, 4951 d-Persentol, 2417 Perviene, 5488 Petronal, 3370 Petroschuie acid, 5360 Peucedanin, 4922 Phascolunatin, 3887 Phellandral, 3857 a-Phellandrene, 3815 5-Phellandrene, 3816 Phellyl alcohol, 5250 Phenacetin, 3716 Phenamine, 3751 Phenanthraquinone, 1622 3, 4-Phenanthraquinone, 4623 Phenanthrene, 4652 Phenanthridine, 4137 Phenanthrohne, 1187

Phenanthrone, 4671

Phenarassine, 4185

Phenaranzine chloride, 4202

Phenarsasine oxide, 5819 Phenazine, 4148 Phenazone, 4189 - Phanatidina 2786 m-Phenetidine, 2787 p-Phenetidine, 2788
Phenetidine salicylacetate, 5000 Phenetol, 2722 Phenetaal 4911 p-Phenetylures, 3232 Phenocame, 5331 Physicaell 3751 Phenecoll salicylate, 5210 Phenol, 1413 Phenolphthalem, 5504 o-Phenolsulfonic acid, 1428 Phenoval, 5080 a-Phenotrazine 1919 Phenoval, 4538 Phenoxyacetic acid, 2617 o-Phenoxybenzoic acid, 4465 Phenylacetaldchyd , 2567 Phonylacetamide 2651 Phonylacetanilide, 4753 Phenyl acctate, 2590 Phenylacetic acid, 2581 Phenylacetic anhydride, 5071 Phenylacetyl chloride, 2199 Phenylacetylene, 2153 Phenyl acid camphorate, 5124 9-Phenylaeridine, 5395 Phenylalanine, 3208, 3209 3-Phenylaflylamine, 3190 Phenylallylene, 3055 Phenylaminoacetic acid, 2661 m-Phenylammophenol, 1271 2-Phenyl-1-aminopropionic acid, 3208, 9-Phenylanthracene, 5494 Phenylatone, 1434 Phenylarsemous oxide, 1292 Phonylaraonic acid. 1435 Phenyl benzenesulfonate, 4250 Phenyl benzoate, 4158 o-Phenylbenzoic acid, 1155 m-Phenylbenzoic acid, 4156 p-Phenylbenzoic acid, 4457 2-Phenyl-1, 1-benzopyrone, 1868 2 Phenylbenzoquinone, 4196 Phonylbenzylamine, 4512 1-Phonyl-1-benzylhydrazine, 4523 Phenyl benzyl ketone, 1721 2-Phenylbutane, 3725 Phenylbutylene, 3639 Phenyl n-butyrate, 3683 3-Phonylbutyric acid, 3670 Phenyl carbonate, 1466 Phenyl chloroacetate, 2501 Phenylchloroform, 1870 Phenyleinchonime acid hydrochloride, 5040 2-Phenylerotome acid, 3596 3-Phenylerotome acid, 3597 Phenylerotonylene, 3576 Phenyl cyanide, 1885 Phenyldichloroarmne, 1291 3-Phenyl-3, 4-dihydroquinazoline, 1710 Phenyldimethylananopyrazolone. 1537 1-Phenyl-2, 3-dimethylpyrazolone, 4058 Phenylditolylmethane, 5625 o-Phenylenediscetic acid, 3611 m-Phenylenediacetic acid, 3612 p-Phenylenediacetic acid, 3613 o-Phenylenediamine, 1479 m-Phenylenediamine, 1480 p-Phenylenediamine, 1481 a-Phenylenediamine-3-sulfonic acid. 1490 Phenyl other, 4241

2-Phenylethyl alcohol, 2714 a-Phenylethylamine, 2770 hydrochloride. ω-Phenylethylamine 2704 5. 5-Phenylethylbarbituric acid, 4291 Phenylethylene, 2538 Phenylethylsilicane dichloride, 23443 N-Phenylformamide, 2073 V-Phenylformanilide, 4480 Phenyl formate, 2008 8-Phenylglucoside, 4356 Phenylglycene acid, 3177, 3178 Phenylglycol, 2736 Phenylglycohe acid, 2612, 2613 Phenylplyoxal 2460 Phenylglyoxylic acid, 2478 Phenyl heptylate, 4544 Phenyl hexyl ketone, 4542 Phenylhydrazme, 1483 Phenylhydrazine acetate, 2805 Phenylhydrazine hydrate, 4367 4 Phenyldrazine hydrochloride, 1514 p-Phenylhydrazincsulfonic acid, 1491 B-Phenylhydroxylamine, 1450 3, 5-Phenylimino-1, 1 diphenyl-4, 5dihydro-1, 2, 4-triazol, 5516 Phenyl (soamyl ether, 4131 Phenyl isocyanate, 1889 Phenyl isocyanide, 1886 Phenyl isothiocyanate, 1918 Phenyl movulerate, 4100 2-Phenyllactic acid. 3166 Phenyl malonate, 1908 Phenylmalome acid, 3089 Phenyl methyl ether, 2163 1-Phenyl-5-methyl-3-methoxypyrazole, 1510 V-Phenyl-3-methylpyrazolone, 3585 Phenyl mustard oil, 1918 α-Phenylnaphthalene, 5037 β-Phenylnaphthalene, 5038 2-Phenylnaphthalene-2-carboxylic acid. 5175 V-Phenyl-α-naphthylamine, 5054 V-Phenyl-\$-naphthylamine, 5055 Phenyl a-naphthyl ether, 5043 Phenyl B-naphthyl ether, 5044 Phenyl a-naphthyl ketone, 5173 Phenyl \$-naphthyl ketone, 5174 Phenylmtrommine, 1395 Phenylnite methane, 2084 Phenyl ox date, 4687 o-Phenylphenol, 4238 m-Phenylphenol, 4239 p-Phenylphenol, 4240 Phenylphosphenic acid, 1464 Phenylphosphenous acid, 1463 Phenylphosphine, 1465 Phenyl picrate, 1183 Phenylpropiolic acid, 3014 Phenyl propionate, 3157 1-Phenylpropionic acid. 3146 Phenyl-sec-propyl alcohol, 3235 3-Phenylpropyl alcohol, 3237 1-Phenylpropyl-3-methylpyrazolone, 4530 2 3-Phenylpyrasolone, 3066 2-Phenylpyridine, 4032 3-Phonylpyridine, 4033 4-Phenylpyridine, 1034 Phenylpyruvic acid, 3088 2-Phenylquinoline, 4892 4-Phenylquinoline, 4893 6-Phenylquinoline, 4894 8-Phenylaumoline, 4895 2-Phenylquinoline-1-carboxylio 8035 Phenyl rhodanide, 1917 Phenyl salicylate, 1467 Phonyl selenide, 4262

1. Phenylesmiourhaeide 2005 4-Phenylsemicarbaside, 2236 Phonylsilicon trichloride, 3441 Phenyl succinate, 5074 Phenyl sulfide, 4260 Phenyl tartrate, 5077 Phonyl telluride, 4263 Phenyl thiocyanate, 1917 Phenylthiourea, 2150 N-Phenylthiourethane, 321 o-Phenyltoluene, 4491 m-Phenyltoluene, 4492 -Phanyltoluana 4403 Phenyl-p-toluenesulfonate, 4509 Phenyl o-tolyl ketone, 4725 Phanyl matelyl ketone 4726 Phenyl p-tolyl ketone, 4727 Phenylures, 2135 N-Phenylurethane, 3221 Phenylvinyl acetate, 3601 Philhrin, 5950 Phloramine, 1451 Phloretic acid, 3167 Phloretin, 4926 Phloridan 5659 Phloroscetophenone, 2620 Phloroglucinol 1421 Phloroglucinol truscetate, 4302 Phloroglucinol triethyl ether, 4387 9 Phloroglucinol trimethyl 3250 Phloroglucinol trioxime, 1530 Phloroghierte, 1661 Phlorone, 2593 Phorone, 3277 Phosgene 9 Phosphenyl chloride, 1327 Phosphenyl oxychloride, 1326 Phosphobenzene, 4259 o-Phthalamic acid, 2517 Phthalazine, 2462 o-Phthalic acid. 2179 o-Phthalic aldehyde, 2170 o-Phthalic anhydride, 2431
o-Phthalic diamide, 2551 Phthalide, 2473 o-Phthalimide, 2439 Phthalome anhydride, 2990 o-Phthalyl dichloride, 2423 Phthalylphenylhydrazine, 4656 1 Phrenosin, 6153 Physeic acid, 5048 Physician, 5018 Physostigmine, 4960 Physostigmine hydrobromide, 4962 Physostigmine hydrochloride, 4965 Physostigmine salicylate, 5724 Physostigmine sulfate, 5996 Physostigmol, 4051 Phytol, 5606 Phytosterol, 5931 Phytosterol acetate, 5980 Phytosterolene acetate, 6088 Phytosterol glucoside, 5807 Phytosteroline, 6055 Phytosterol valerate, 6044 Prazothrole, 1283 Piccin, 4821 Picene, 5695 Picenic acid, 5614 a-Picoline, 1443 B-Picoline, 1444 γ-Picoline, 1445 Preolinic acid, 1344 Pieramie acid, 1364 Pieramide, 1284 a-Pierasmin, 6098 8-Picraamin, 6099 Picric acid, 1197 Picroaconitine, 6021 Picropodophyllin, 5780

Piccotin, 4946

C-TABLE: INDEX

Pierotoxin, 5989 Pierotoxinin, 4936.1 Thered seets to 2452 Piervi bromide, 1122 Picryl chloride, 1127 Piervl iodide, 1141 Pierylaulfonic acid, 1199 Pilocarpidine nitrate, 3797 Pilocarpine, 4125 Pilocarpine hydrobromide, 4134 Pilocarpine hydrochloride, 4136 Dilocarpine nutrate 4143 Pilocarpine salicylate, 5325 1 Pilocarpine sulfate, 5741 Pilomne, 5109 Pilosinine, 3233 d-Pimarie acid. 5588 a-Pimelic scid, 2308 Pimehe aldehyde, 2291 Pimpinellin, 4469 Pinane, 3893 Pinacolin, 1630 Pinacolvi alcohol, 1733, 1733 i Panacolyl chloride, 1694 Pinacone, 1743 a-Pinene, 3817 6-Pinene, 3818 Propos hydrute 3921 d-Pinene hydrobromide, 3875 Pinene hydrochloride, 3881 Pinic acid, 3282.1, 3282.2 Pinite, 2374 Pinocamphane, 3894 Pinocarvol, 3763 Pinol, 3858 Pinol glycol, 3934 dl-a-Pinone oxime, 3886 1 Pinonie acid. 3867, 3867 1 Pinovlformic acid, 3777 Pinylamine, 3883 a-Pipecoline, 1700 8-Pipecoline, 1701 γ-Pipecoline, 1702 Piperazine, 782 Piperazine quinate, 5352 Piperic acid, 4251 Paperdine 1051 Piperidine hydrochloride, 1075 Piperidone. 974 Piperine, 5204 Piperitone, 3764 Piperonal 2474 Piperonal chloride, 2457 Piperonyl alcohol, 2594 Piperonylic acid, 2482 Piperylene, 918 Pipitzol, 4952 Pisangcerylic acid, 5857 Piturine, 1477 Podocarnic acid 5232 Podophyllotoxin, 5781 Populin, 5549 Porphyrine, 5667 Porphyroxime, 5456 Potassium acetate, 392983 Potassium acetylsalicylate, 32993 Potassium acid scetate, 232988 Potassium acid chloroacetate, 352909 Potassium acid oxalate, 32981 Potassium acid phthalate, 332991 Potassium acid succinate, 232981 Potassium acid tartrate, 332986 Potassium acid uroxasate, 23009 Potassium ammonium 33008 Potassium citrate, 232989

Potassium citrate, 32989
Potassium cobalt malonate, 33094
Potassium disuccinate, 32992
Potassium ethylsulfate, 33000
Potassium formate, 32980
Potassium lithium d-tartrate, 33176
Potassium methanedisulfonate, 33004

Potassium naphthalene-1, 5-diaulfonate, 33005 Potassium nickel dithoxalate, 33098 Potassium oleate, \$2994 Potassum oxalate, 252977 Potassium phenol-2, 4-disulfonate. 253003 Potassium o-phenolsulfonate, \$3002 Potassum umbenolaulfonate \$3001 Potassium sodium tartrate, 23183 Potassium succinate, 282095 Potassium tartrate, 282096 Potassum tetraoxalate, 282998 Potasaium uranyl acetate. 283121 Potassium uranyl oxalate, 23120 Praesodymium ethyl sulfate, 282018 Pratensol, 5181 Pratol, 5047 Prehmdine, 3791 Prehmtene, 3740 Prehnitic acid, 3451 Primayarın 5584 Procume, 4566 Procellulose, 5351 Propadiene 337 Propagane, 3712 Propanal, 3841 Propane, 500 Propargyl acetate, 896 Propargyl alcohol, 355 Propargyl aldehyde, 318 p-Propenylamsol, 3648 Propenylbengene, 3120 Propenyl chloride, 374 Propionomitale, 396 Propiolic acid, 319 Proponaldehyde, 447 Proponaldehyde dipropylacetal, 3368 Propionamide, 482 Propionanilide, 3200 Propionic acid, 450 Propionic anhydride, 1560 Propionitrile, 395 Propionyl chloride, 378 Propronylphenetidine, 1110 Propronylproprome aldehyde, 1550 Propine, 338 n-Propylacetanihde, 1106 n-Propyl acetate, 1020 Propylacetylene, 920 n-Propyl alcohol, 505 n-Propylamine, 524 Propyl p-aminobenzoate, 3712 Propyl ammonum chloroplatinate, 251189 n-Propylamiline, 3267 Propyl anisate, 4102 Propylarsome acid, 521 n-Propylbenzene, 3229 Propyl benzoate, 3684 o-Propylbenzoic acid, 3671 p-Propylbenzoic acid, 3672 Propyl benzyl ketone, 1091 Propyl borate, 331826 n-Propyl bromide, 161 Propylbutyl carbinol, 2969 Propyl n-butyl ether, 2114 Propyl n-butyrate, 2361 Propyl caproate, 3339 Propyl carbamate, 771 Propyl carbonate, 2365 n-Propyl chloride, 468 n-Propyl chlorocarbonate, 660 n-Propyl chloroformate, 660 a-Propyl cinnamate, 1317 Propyl cyanide, 667

Propylcyclohexane, 3323

Propylene chloride, 118

α-Propyleneglycol, 510

dl-Propylenediamine, 533

1-Propyleneglycol-2-chlorhydrin, 471

Propylene, 409

Propvi ether, 1741 n-Propylethylene, 984 n-Propel Suonda 474 n-Propyl formate, 727 Propyl glycolate, 1029 Propyl-n-hexyl carbinol, 4005 Propyl hexyl ketone, 3978 1 Propylidenescetic scid, 934 Propylidene chloride, 417 Propylidene dipropyl ether, 3368 n-Propyl iodide, 475 Propylisobutylammonium chloroplatinate, 281201 Propylisobutyl carbinol, 2970 Propylisobutyl ketone, 2898 Propylisobutyrate, 2362
5. 5-n-Propylisopropylbarbituric acid, Propyhaopropyl carbinol, 2411 Propyhsopropyl malonate, 3314 Propyhsopropyl malonate, 3314 Propyhsothocyanate, 681 n-Propyl 1803 algrate, 2912 Propyl malate, 3944 Propyl malonate, 3313 Propylmalome acid, 1566 n-Propyl mercaptan, 518 Propyl p-methoxybenzoate, 4102 3-Propyl-3-methylpropyl alcohol, 1736 Propyl mustard oil, 681 Propyl mtrate, 495 Propyl mirite, 489 Propylmtrolic acid, 439 5-Propylnonane, 4412 3-n-Propylpentane, 2942 o-n-Propylphenol, 3239 m-n-Propylphenol, 3240 p-n-Propylphenol, 3241 Propyl phenyl ether, 3246 Propyl phenyl ketone, 3662 Propylphombus, 529 n-Propyl propionate, 1659 Propylpseudomtrole, 441 2-Propylpyridine, 2776 Propyl salicylate, 3690 Propylaheon trichloride, 28436 Propyl succinate, 3943 Propyl sulfide, 1754 Propyl tartrate, 3945 Propylthioures, 785 o-Propyltoluene, 3727 m-Propyltoluene, 3728 Propyltrusobutylammonium chloroplatinate, 331221 Propylurethane, 1704 1 n-Propyl n-valerate, 2911 2-Propyl-p-xylene, 4122 4-Propyl-o-xylene, 4120 4-Propyl-m-xylene, 4121 Protocatechuic acid, 2020 Protocatechuc aldehyde 2012 Protocatechuic aldehyde methylene ester, 2474 Protopine, 5529 Protoveratridine, 5913 Protoverstrine, 6040 Prolaurasin, 4818 Pseudoacomne, 5872 Pseudoacomune, 6102 Pseudoatropine, 5237 Pseudobutylene, 685 Pseudobutyleneglycol, 796 Pseudococame, 5223, 5224 Preudocodeine, 5320 a-Pseudoconhydrine, 2931 Pseudoconhydrine hydrochloride, 2947 Pseudoconiceme, 2858 Pseudocumene, 3230 Pseudocumenol, 3242 Pseudocumidine, 3289

Pseudoephedrine, 3795

Pseudoronone, 4563

Pseudoephedrine hydrochloride, 3830

udajervine, 5976 Pseudomorphine, 6060 Pacudopelletterine, 3291 Pacudophenanthrene, 5089
Pacudophenanthroline, 4190 Pseudopurpurin, 4864 Pseudotropine, 2863 Psoromic acid, 5508 Paychotrine, 5052 Psychotrine sulfate, 6163 Pavilie acid. 0057 Payllostearyl alcohol, 6058 Pavilouteurylic acid. 6087 Pulegene, 3297 Pulegon, 3859 J. Polanol 8824 Purine, 854 Purpurin, 4638 Putrescine 833 Pyosin, 6168 Pyragonitine, 6032 Pyramidon, 4537 Pyramidon acid camphorate, 5802 Pyranudon camphorate, 6100 Pyranudon salicylate, 5553 Pyrantin, 4300 Pyrazine, 563 Pyrazole, 351 3. 5-Pyrazoledicarboxylic acid, 835.1 Pyrazoline, 431 Persolona 353 Pyrene, 5206 Pyreneketone, 4426 l'yrene pierate, 5705 Pyrethrol, 5681 Pyridazine, 561 Pyridine, 870 Pyridine-2-carboxylic acid, 1344 Pyridine-3-carboxylic acid, 1345 Pyridine-1-carboxylic acid, 1346 Pyridine-2, 3-dicarboxylic acid, 1900 Pyridine-2, 4-dicarboxylic acid, 1901 Pyridine-2, 5-dicarboxylic acid, 1902 Pyridine-2, 6-dicarboxylic acid, 1903 Pyridine-3, 4-dicarboxylic acid, 1904 Pyridine-3, 5-dicarboxylic acid, 1905 Pyridine nitrate, 890 Pyridinepentacarboxylic acid, 3402 Pyridine-2, 3, 4-triesrboxylic acid, 2446 Pyrichne-2, 3, 5-trieurboxylic acid, 2447 Pyridine-2, 3, 6-triearboxylic acid, 2148 Pyridine-2, 4, 5-tricarboxylic acid, 2449 Pyridine-2, 4, 6-tricarboxylic acid, l'yridine-3, 4, 5-tricarboxylic acid. 2151 Pyridyl-2-aldehyde, 1341 Pyridyl-3-aldehyde, 1342 Pyridyl-2-cyamde, 1267 Pyridyl-3-cyanide, 1268 Pyridyl-4-cyanide, 1269 Pyrimidine, 562 Pyrocatechol, 1414 Pyrocatechol diethyl ether, 3766 Pyrocatechol ethyl ether, 2738 Pyrocatechol methyl ether, 2174 Pyrocoll, 3434 Pyrogallol, 1419 Pyrogallolearboxylic acid, 2022 Pyrogallol triacetate, 4303 Pyrogallol triethyl ether, 4368 Pyrogallol trimethyl ether, 3251 Pyroglycerol, 1747 Pyromeconic acid, 866 Pyromellitic acid, 3452 Pyromucic acid. 867 1, 4-Pyrone, 860 Pyroracemic acid. 359

Pyroracemic alcohol 440 Pyrotactaric acid. 947 Pyrotntane acid, 21%) Pyrrole, 589 Pyrrole-2-aldehyde, 874 Pyrrole-2-carboxylic acid, 877 Pyrrolidine, 759 a-Pyrrolidone, 672 Pyrroline, 670 Pyrrolylene, 596 Pyrrone, 3068 Pyruvic acid, 350 Pyruvie nitrile, 332 1 Quassin, 6034 Quebrachine, 5670 Quebrachine hydrochloride, 5672 Quebrachite, 2375 Quebrachol, 5598 Quercetagetin, 4891 Quercetin, 4889 d-Quercitol, 1670 I-Quercitol, 1671 Quercitrin, 5631 Quinaldine ethiodide, 4312 Quinaldine methiodide, 4056 Quinaldinic acid. 3479 Quinalgan, 5289 Quinamine, 5469 Quinasoline 2463 Quinene, 5545 Quinhydrone, 4255 Quinic acid, 2313 Quinic amide, 2324 Quinic lactone, 2270 Quinicine, 5560 Quinide, 2270 Ouinidane 5581 Quinidine hydrochloride, 5507 Quinine, 5562, 5563, 5564 Quinino acetate, 5728 Quinine acetylaahcylate, 5971 Quinine butyrate, 5837 Quinine carbonate, 6127 Quinine citrate, 6175 Opinine dibromosalicylate, 5921 Quintne dichloride, 5555 Quinine diguniscolsulfonate, 6003 Quinine disulfate, 5575 Quinine ethyl carbonate, 5801 Quanine formate, 5671 Quinine glycerophosphate, 6137 Quinine hydrate, 5587 Quinine hydrobromide, 5566 Quinine hydrochloride, 5568 Quinine hypophosphite, 5581 Quinine lactate, 5796, 5797, 5798 Quimne malate, 6139 Quinine \$-naphtholsulfonate, 6122 Quimne nitrate, 5574 Quinne phenolaulfonate, 5897 Quinine propionate, 5795 Quinine salicylate, 5925 Quinine succinate, 6138 Quimme sulfate, 6124 Quinine tartrate, 6111 Quinmie serd, 4036 Oningarin, 4633 Quinoline, 3037 Quinoline-2-carboxylic scid, 3479 Quinoline-3-carboxylic acid, 3180 Quinoline-4-earboxylic acid, 3478 Quinoline-6-carboxylic acid, 3481 Quinoline-7-carboxylic acid, 3482 Qumoline-8-carboxylic acid, 3483 Quinoline-2, 3-dicarboxylic acid, 4021 Quinoline-2, 4-dicarbox; he acid, 4022 Quinoline ethiodide, 4057 Quinoline methiodide, 3496 Quinoline tartrate, 6136 Quinolinic seid, 1900

Quinone, 1287

Quinonedioxime, 1399

Quinoneoxime, 1348 Ounotowne, 5560 #-Quinovin, 6001 Qunozaline, 2464 Raffinose, 5350 Rapic acid, 5361 Ratanhine, 3720 6-Resalgon, 5198 Resoranol, 1415 Resoranol acetate, 2619 Resorcinol antipyrim, 5198 Resortand diacetate, 3620 Resortand diethyl other, 3769 Resortinol directlyl ether, 2741 Resortinol ethyl ether, 2742 Resorting methyl other, 2175 Retamine, 1995 Retene, 5306 Rhammtol, 1749 \$-Rhamnose, 1672 Rhamnose phenylhydrazone, 4367 1 Rheadine, 5636 Rhein, 1886 Rhizocholie seid, 1016 Rhodanie acid, 21 Rhodeoretin, 6046 Dhadaar 1673 Rhodinol, 3908 Rhodinyl acetate, 4374 Rhodinyl butyrate, 1835 d-Ribose, 1036 Riemelaidie neid, 5368 Rieme and 5369 Ricinine, 2554 Ricimme acid, 1980 Ricinoleic acid, 5370 Robigenin, 1884 Robinin, 6049 Rochelle salt, 283184 Roundon, 5696 Roundaline 5698 Rosindulon, 5696 Rosolie acid, 5518 Rubicome acid. 5519 Ruberythric acid, 5895 Rubicene, 5882 Rubidium acid chloroacetate, 33233 Rubidium acid oxalate, 33225 Rubidium acid phthalate, 33228 Rubidium citrate, 33231 Rubidium cobalt malonate, 233263 Robidium bibium d-tartrate, 23276 Rubidium sodium mesotartrate. 783277 Rubidium tartrate, 383229 Rubijervine, 5907 Rumiein, 4878 Rutin, 5928 Sabadenne, 5977 Sabadine, 5982 Sabinane, 3895 Sabinene, 3819 Submol 3860 Saccharin, 1896 d-Saccharine, 1579 Saccharose 4396 Safrol, 3591 Sakuranetin, 5076 Sakuranin, 5706 Salacetol, 3622 Sahem, 1517 Sahein benzoate, 5549 Sahertrin, 5620 Saheylaldehyde, 2004 Salicylaldehyde methylphenylhydrazone, 1769 Salicylamine, 2220 Saheylamlide, 1485 Salicyl chloride, 1863 Salicylic acid, 2013 Salicylic mitrile, 1890 Salicylosalicylic acid. 4692

lalicyl-p-phenetidin, 4928 Salicyl sulfonic acid. 2027 Salicylurio acid, 3114 Saliformin, 4540 Saligenin, 2166 Sahnigrin, 4535 Salipyrine, 5308 Salocol, 5210 Salul. 4467 Salophen, 4911 Saloquinine, 5925 Salvarsan, 4311 Samarium acetate, 32051 Samarium ethyl sulfate, \$2054 Samarum formate, 332050 Samarum propionate, 382052, 382053 Sambunigrin, 4819 Sanguinarine, 5509 - Santalano 4070 8-Santalene, 4980 γ-Santalene, 4981 Santalia and 5087 Santahn, 5987 a-Santalol, 4987 a same lat 1088 Santalyl chloride, 4970 Santalyl sahcylate, 5730 Santene 3273 dl-Santenol, 3302 Santime acid, 4936 Santonic acid. 4956 Santonin, 1913 JI-Santonine acid. 4955 Santyl 5730 Saponarin, 5661 Sapotin, 5983 Sarcosine, 186 Sarsapic acid, 1289 Sarsasapogemn, 5905 Sarsasaponin, 6143 Scatole, 3100 a-Scatolecarboxylic acid. 3560 Seillitin, 5247 Scoparin, 5536 Scopolamine, 5222 Scopoletin, 3530 Scopolin, 5836 Scopoline, 2822 Scutellarem, 4887 Scutelların, 5623 Sebacic acid, 3938 Sebanne acid, 3954 Sekisanine, 6061 Selenophenol 1431 a-Schnene, 4982 Semicarbazide, 69 Semicarbazide hydrochloride, 76 Semicarbazide nitrate, 81 Seminose, 1682 Senecifolidine, 4990 Senecifoline, 5337 Senecifoline hydrochloride, 5338 Septentrinahne, 6051 dl-Serine, 193 d-Serine, 493.1 Sidonal, 5352 Silicon tetraethyl, 38418 Silicon tetraphenyl, 28424 Silver acetate, 231107 Silver lactate, 231108 Silver oxalate, 331106 Silver tartrate, 281109, 281110 Sinalbin, 5095 Sinapic acid, 4073 Sinapine sulfate, 6038 Sinapine thiocyanate, 5242 Smapoline, 2285 Sinomenine, 5457 Sitosterol, 5935 Smilacin, 5906 Sodium acetate, 392756 Sodium acid malonate, 382758

Sodium soid tartrate, 32759 Sodium citrate. 382766 Sodium discetate, \$2760 Sodium elaidate. 32762 Sodium ethanedisulfonate, \$2768 Sodium formate, 32754 Sodium glutamate, 202772 Sodium lithium tartrate, 332912 Sodium naphthalene-1, 5-disulfonate **3**2767 Sodium 1, 4-naphthylaminesulfonate, 32775 Sodium oleate, 392763 Sodium palmitate, 392761 Sodium thallium tartrate, 32782 Sodium sulfanilate. 282774 Sodium tartrate, 32764 Sodium uranyl acetate, 32835 Solangustine, 6053 Molanidina 6070 Solanine, 6158 Solanine hydrochloride, 6159 Sophoretin, 4889 Sophorin, 5927 Sorbic acid, 1498 Sorbia ablanda 1441 d-Sorbitol, 1752 d(l)-Sorbose, 1684 #-Norbose 1685 Sordidin 4471 Sparassol, 3695 Sparteine, 4994 Sparteine hydrochloride, 5011 Sparteine hydroiodide, 5012 Sparteine sulfate, 6009 Sphingosine, 5259 Spinacene, 5978 Spirosal, 3184 Stachydrine, 2323 Stannous acetate, 29519 Stanhisagroine, 5556 Starch, 1578 1 Stearie acid, 5379 Steame aldehyde, 5378 Stearic amide, 5300 Stearic anhydride, 6106 Stearic ambde, 5845 Stearolic acid, 5347 Stearone, 6090 Stearonitrile, 5374 Stearoxylic acid, 5319 Stearyl chloride, 5373 Stercorin, 5939 Stigmasterol, 6005 Stilbene, 4708 Stovaine, 4829 Strontium acetate, 332467 Strontium antimony tartrate, 32471 Strontium calcium propionate, 32493 Strontium ethanedisulfonate. 32468 Strontium ethylsulfate, 32469 Strontium formate, 332464 Strontium introtetronate. 282470 Strophantidin, 5929 Strophantin, 5998, 6125 Struxine, 5677 Stryacol, 5070 Strychnidine, 5656 Strychnine, 5642 Strychnine methylarsinate, 5719 Strychnine nitrate, 5653 Strychnine salicylate, 5948 Strychnine sulfate, 6129 Strychmine d-tartrate, 6148 Stylopine, 5425 Styphnic acid, 1198 Styracin, 5292 Styrene, 2538 Styrene dibromide, 2455 Styrolene alcohol, 2736 Styryl alcohol, 3126 Styrylamine, 3190

26.70

Tetrahydrohushad 4004

2. 3. 4-Tetrahydronaphthalene,

5, 6, 7, 8-Tetrahydronauhthulane

1, 2, 3, 4-Tetrahy dross-nanhthol 3640

1, 2, 3, 4-Tetrahydro-g-naphthol, 3651

5, 6, 7, 8-Tetrahydro-a-naphthol, 3650

Tetramethylhydrourdic acid, 4315

Suberane, 2327 Suberic scid. 2845 Suberone, 2290 Suberoxime, 2322 Subervi alcohol, 2835 Succinamide, 706 Succipic acid. 629 Succinic anhydride, 571 Succinic dialdehyde, 616 Succinic peroxide, 2750 Succinimide, 592 Succinonitrile, 560 o, o'-Succinoxybensene-1-carbox y lic acid, 5278 Successyl chloride, 558 Succinyldisalicyle acid, 5278 Succisterene, 4867 Sucrol, 3232 Sulfanilie acid, 1455 Sulfoscetic acid. 217 o-Sulfoaminobenzoic acid, 2106 m-Sulfoaminobenzoic acid. 2107 p-Sulfoaminobenzoic acid, 2108 o-Sulfohenzore acid, 2024 m-Sulfobensoic scid. 2025 p-Sulfobenzoic acid, 2026 -Sulfobenzoic anhydride, 1842 Sulfonal, 2416 p-Sulfonedichloroaminobenzoic neid, 1566 N-Sulfophenyl-3-methylpyrazolone, 3588 5-Sulfosalicylic acid, 2027 Surmamine, 3721 Sycoceryl alcohol, 5341 Sylvestrene, 3820 Syringic acid, 3185 Syringin, 5234 d-Tagutose, 1686 d-Talitol, 1753 d(l)-Talomucic acid, 1585 Tanacetone, 3861
Tanacetvi alcohol, 3928 Tannic acid, 4691 Tannin, 4694 Taraxasterol, 5979 Tarric acid. 5348 d-Tartaranude, 709 Tartar emetic, 233012 d-Tartario acid 630 dl-Tartaric acid, 640 Tartronic acid, 362 Taurine, 290 Taxicatin, 4574 Taxine 6100 Tephrosin, 6018 Teraconic acid, 2265 Teracrylic acid, 2292 Terebic acid, 2266 Terephthalic and 2481 Terephthalic aldehyde, 2472 Terephthalic mtrile, 2429 Terephthalyl dichloride, 2425 Terpan, 3902 Terpene hydrate, 3922 Terpenylic acid, 2811 cu-Termine 3979 trans-Terpine, 3980 α-Terpinene, 3821 β-Terpinene, 3822 Δ1, Terpinene, 3823 Terpinen-4-ol, 3926 a-Terpineol, 3922, 3923 6-Terningol, 3924 γ-Terpineol, 3925 cia-Terpin hydrate, 4008 Terpinolene, 3824 c-Terpinyl acetate, 4378, 4379 Terpinylene, 3825 d-a-Terpinyl formate, 4151 Tetracetylhydrasine, 2808.1 1, 2, 3, 5-Tetrabromobensene, 1123

1, 2, 4, 5-Tetrabromobenzene, 1124 2, 3, 4, 6- Tetrabromobenzoic acid. 1, 1, 4, 4-Tetrabromobutane, 601 1, 2, 3, 4-Tetrabromobutane, 602 2, 2, 3, 3-Tetrabromobutane, 603 1, 1, 1, 2-Tetrabromoethane, 127 1, 1, 2, 2-Tetrabromoethane, 128 Tetrabromoethylene, 56 2, 3, 4, 6-Tetrabromophenol, 1125 1, 1, 2, 2-Tetrabromopropane, 344 1, 2, 2, 3- l'etrabromopropane, 345 Tetrabromopyrtole, 541 Tetrabromogunone, 1106 Tetrabromothophene, 537 2, 3, 4, 6-Tetrachloroacetandide, 2433 Tetrachloroacetophenone, 2427 2, 3, 4, 5-Tetrachloroamhne, 1183 2, 3, 1, 6-Tetrachloroamhne, 1184 2, 3, 5, 6-Tetrachloroamhne, 1185 α- Fetrachloroanthracene, 1606 β-Tetrachloroanthracene, 1607 1. 2. 3. 4- Fetrachloroanthracene, 460' β-Tetrachloroanthraquinone, 4594 1, 2, 3, 4-Tetrachloroanthraquinone 1, 2, 3, 4-Tetrachlorobenzene, 1135 1, 2, 3, 5-Tetrachlorobenzene, 1136 1, 2, 4, 5-Tetrachlorobenzene, 1137 , 3, 4, 5-Fetrachlorobenyoic acid, 1, 1, 1, 2-Tetrachloroethane, 139 1. 1. 2. 2- Fetrachlorocthane, 140 Tetrachloroethylene, 90 1, 2, 2, 2-Fetrachloroethyl ethyl ether, 605 1, 1, 2, 2-Tetrachloro-1, 2-diphenylethane, 4656 Tetrachlorohy droquinone, 1139 a-Tetrachloronaphthalene, 3374 B-Tetrachloronauhthalene, 3375 γ-Tetrachloronaphthalene, 3376 5-Tetrachloropanhtbalene 3377 -Tetrachloronaphthalene, 3378 ¿-Tetrachloronaphthalene, 3379 r/c-Tetrachloronaphthalene, 3380 2, 3, 4, 5-Tetrachloromtrobenzene, 1116 2, 3, 4, 6-Tetrachloromtrobenzene, 1117 2, 3, 5, 6-Tetrachloromtrobenzene, 1118 2. 3. 4. 6-Tetrachlorophenol, 1138 Tetrachloro-o-phthalic acid, 2422 Tetrachlorophthalic aphydride, 2420 2, 3, 4, 5-Tetrachloropyridme, 841 2, 3, 4, 6-Tetrachloropyridine, 812 2, 3, 5, 6-Tetrachloropyridine, 843 Tetrachlorogumone, 1109 Tetraconic acid, 5858 n-Tetracosane, 5861 n-Tetradecane, 4856 n-Tetradecyl alcohol, 4858 Tetradecylamine, 4859 n-Tetradecylene 1849 Tetraethylammomum chloroplatinate, *41200 Tetraethylammonium hydroxide, 2980 1, 2, 3, 4-Tetraethylbenzene, 4827 1, 2, 4, 5-Tetraethylbenzene, 4828 Tetraethyldiamino ben zophenone. 5675 Tetraethyl germamum, 23472 Tetraethylmheane, 29418 1, 2, 3, 4-Tetrahydrobenzaldehyde, 9981 1. 2. 3. 4-Tetrahydrobenzene, 1537 Δ1-Tetrahydrobenzoic acid, 2262

Tetrahydroberberne, 5542

1, 2, 3, 4-Tetrahydromoquinoline, 3191 3, 4, 8, 9-Tetrahydrojulol, 4327

Tetrahydrogeramol, 4003

5, 6, 7, 8-Tetrahydro-d-naphthol, 3652 5. 6. 7. 8-Tetrahy dro-a-naphthy la-mine, 3702 6, 7, 8-Tetrahydro-β-naphthyla-mine, 3703 Tetrahydro-B-naphthylamine hydroobligado 1713 2, 3, 4- Fetrahy drophenol, 1542 Δ= Fetrahydrophenol, 1542 1, 2, 3, 6-Tetrahydrophenol, 1543 4. Fetrahydrophenol, 1543 Δ'-Tetrahydrophthahe acid, 2746 Δ'-Tetrahydro-o-phthahe acid, 2747 Petrahydropyrrole, 759 1, 2, 3, 1-Tetrahydrogunoline, 3192 Al-Tetrahydrotoluene, 2282 Δ'- l'etrabydrotoluene, 2283 At Petrahydrotoluene, 2284 1, 2, 3, 4-Petrahydroxybenzene, 1424 1, 2, 3, 5-Tetrahydroxybenzene, 1425 1, 2, 4, 5- Petrahydroxybenzene, 1426 2'. 4'- Petrahydroxydinhenyl. 4952 2, 6, 2', 6'-Tetrahydroxydiphenyl, 3, 5, 3', 5'-Tetrahydroxydiphenyl, Fetrahydroxyhexahydrobenzoic acid, 2313 1, 2, 3, 4-Tetrahydro-m-xylene, 2827 1, 4, 5, 6-Tetrahydroxynaphthalene. 3531 1 2 3 4- Petrajodobenzene 1144 1, 2, 3, 5-Tetraiodobenzene, 1145 1, 2, 4, 5-Tetranodobenzene, 1146 Tetranodoethylene, 91 Letrarodophenolphthalein, 5487 Letrarodopyrrole, 512 2, 3, 5-Tetramethoxybenzene, 3774 Tetramethylalloxantine, 4316 Tetramethylallyle >, 2277 Tetramethylammonium bromide, 829 Tetramethylammonium chloride, 832 Tetramethylammonium chloroplatinate, 201191 Tetramethylammonium 538 Tetramethylammomum trinitride, 836 2, 3, 4, 5-Tetramethylamline, 3791 1, 3, 5, 7-Tetramethylanthracene 5307 1 2 3 1-Tetramethylbenzene 3740 1, 2, 3, 5-Tetramethylbenzene, 3739 1 2 1 5-Tetramethylbenzene 3732 2, 2, 3, 3-Tetramethylbutane, 2913 m- l'etramethyldiamnoazobenzene 5193 Tetramethyldiaminobenzophenone 5207 (p, p'-Tetramethyldiamino)-diphenyl carbanal 5231 (p, p'-Tetramethyldiamino)-diphenylamone, 5126 (p, p'-Tetramethyldiamino)-diphenylmethane, 5230 Tetramethyldiaminothiobenzophenone, 5211 Tetramethylene, 683 Tetramethylenediamine, 833 Tetramethyleneglycol, 795 Tetramethylene-1, 1, 2, 2-tetracarboxylic acid, 2631 Tetramethylethylene, 1619 Tetramethylethyleneglycol, 1743

Tetramethylmethane, 1074 2, 4, 5, 7-Tetramethyloctane, 4413 Totramethylphanylanadiamina 3834 m-Tetramethylphenylenediamine, 3635 p-Tetramethylphenylenediamine, 3836

Tetramethylphen y lenediamine hydrochloride, 3896 2. 3. 4. 5-Tetramethylavridine, 8266 2, 5, 6, 8-Tetramethylquinoline, 4529 Tetramethylaheane, 28406 Tetramethyl alleate, 28426 1, 3, 7, 9-Tetramethyluric acid, 3234 2. 3. 4. 6-Tetranttroaniline, 1200 2, 3, 5, 6-Tetranitroanisol, 1841 Tetramtrodurlyoord 1540 o, o', p, p'-Tetranitrodiphenylures. 1191 Tetranitromethane, 17 a-Tetranitronaphthalene, 3381 1, 2, 5, 8-Tetranitronaphthalene, 3382 1, 2, 6, 8-Tetramtronaphthalene, 8383 1, 3, 5, 8-Tetranitronaphthalene, 3384 1, 3, 6, 8-Tetranitronaphthalene, 3385 2 4 5 7-Tetranitro-generation 3386 2, 3, 4, 6-Tetranitrophenol, 1147 Tetraphenylguanidne, 5890 1, 1, 2, 2-Tetraphenylethane, 5887 Tetraphenylethylene, 5883 Tetraphenylguanidine 5864 Tetraphenylmethane, 5863 Tetraphonylpyrasine 5044 l'etraphenylaheane, 28424 Petrapropylammonium nate, 201218 abloroplatia Tetrapropyl siheate, 33429 a Tetratriacontane, 6080 1, 2, 4, 5-Tetrazine, 144 Tetrarole, 34 Tetrol, 569 Tetrohe acid, 570 Tetrohe aldehyde, 568 Tetrome acid, 572 Tetryl, 1933 Thalline, 3710 Thallium acctate, 28726 Thallium acid acetate, 28732 Thallium acid tartrate, 35729, 35730. Thallium acid tribromoscetate, 25739 Thallium acid trichloroscetate, 28738 Thallium antimonyl tartrate, 28741 Thallium formate, 23727 Thallium pierate, 39740 Thallium propionate, 29728
Thallium tartrate, 29733, 29734, 29735, 35736 Thallium trichloroacutate, 29737 Thebaine, 5435 Thebandine 4805 Theine, 2701 Theobromne, 2153
Theobromne hydrochloride, 2194 Theobromme salicylate, 4776 Theophylline, 2151 Therman, 3743 Thermodin, 4536 Thianthrene, 4201 1. 1-Thiazan, 779 Thusole, 334 Thioacetamide, 250 Thioacetambde, 2682 Thioncetic acid, 210 Thioantipyrine, 4511 Thiobenzamide, 2110 Thiobenzoic acid, 2002 Thiobenzophenone, 4472 Thiocarbanilide, 4504 o-Thiocresol, 2190 m-Thiocresol, 2191 p-Thiocresol, 2192 Thiocyanic acid, 24

Thiodiphenylamine, 4215 Thiologmamide, 51 1-Thioglycerol, 514 Thioguaiacol, 2165 Thionaphthene, 2490 a-Thionaphthol, 3542 8-Thionaphthol, 3543 Thiophene, 576 Thiophene-2-alcohol, 892 Thiophene-2-aldchyde, 858 Thiophene-2-carboxylic acid, 861 Thiophene-3-carboxylic acid, 862 Thiophene duodide, 546 Thiophenetetrahromide, 537 a-Thiophenic acid, 861 8-Thiophenic acid, 862 Thiophenol, 1430 Thiophomene, 10 Thiopierie acid, 1193 a-Thomsheyhe acid, 2010 Thosemearbande, 71 Thiosineamine, 710 Thiouren, 58 Thiourethane, 483 Thuisne, 3895 a-Thuiene, 3826 β-Thujene, 3827 a-Thujone, 3861 Thurst alcohol, 3928 Thymacetine, 4826 Thymne, 388 Thymohydroquinone, 3771 o-Thymol, 3755 m-Thymol, 3756 p-Thymol, 3757 Thymoquinone, 3685 Thymyl acetate, 1316 Thymyl acid camphorate, 5583 Thymyl ethyl ether, 1367 7 Thymyl movalerate, 1968 Thymyl methyl ether, 1132 Thymyl phenyl ether, 5110 Thyroxin, 1010 Tighe acid, 936 Tighe aldehyde, 926 Tin diethyl, 38512 Tin dimethyl diethyl, 3514 Tin diphenyl, 2516 Tin oxalate, 2510 Tin tetraethyl, 3515 Tin tetramethyl, 3513 Tin tetraphenyl, 2517 Tip triethyl, 28518 Tolane, 4650 a-Tolane dichloride, 4851 8-Tolane dichloride, 1655 Tolane tetrachloride, 1656 Tolazone, 4711 o-Tolidine, 4800 m-Tolidine, 4807 Toluene, 2112 Toluene-3, 5-dicarboxylic 3000 p-Toluene ethylsulfonate, 3255 Toluene-o-sultime acid, 2179 p-Toluenesulfonanihde, 4517 Toluene-o-sulfoneamide, 2226 Toluene-m-sulfoneamide, 2227 Toluene-p-sulfoneamide, 2228 Toluene-o-sulfonechloride, 2053 Toluene-p-sulfonechloride, 2054 Toluene-p-sulfonedichloroamide, 2056 Toluene-o-sulfome acid, 2181 Toluene-p-sulfome acid, 2183 p-Toluenesulfonemethylandide, 1795 a-Toluic neid, 2584 o-Toluc acid, 2585 m-Toluic acid, 2586 p-Tolure acid, 2587 o-Toluic aldehyde, 2568 m-Toluc aldehyde, 2569

p-Toluic aldehyde, 2570

o-Toluic amide, 2652 m-Toluic amide, 2653 p-Toluc anude, 2654 o-Toluic anhydride, 5072 o-Tolurdine, 2204 m-Toluidine, 2205 p-Tolurdine, 2206 o-Tolurdine hydrochloride, 2243 m-Tolurdine bydrochloride, 2244 p-Tolundine hydrochloride, 2245 o- Folumente, 2505 m- folunitrile, 2506 p- Folunitrile, 2507 p-Tolucin, 5085 p-Tolucin, 5085 p-Tolucinoline, 3549 m-1 oluquinoline, 3548 p-Toluquinoline, 3547 Toloquinone, 2009 1. Labrythenzoic acid. 1901 Lolaylene-2, 3-diamine, 2219 Toluylene-2, 4-diamine, 2250 Toloylene-2, 5-domine, 2251 Toloylene-2, 6-domine, 2252 Foliylene-3, 4-diamene, 2253 Toliylene-3, 5-diamine, 2254 p-Tolylacetone, 3663 o-Tolylammoscetic acid, 3210 p-Tolylaminoacetic acid, 3211 m-to-Tolylamino) phenol, 4511 p-(m-Folyamino)-phenol, 4515 m-Folylaminourea, 2794 p-Tolylantipyrine, 1313 a-Talyl curbinal, 2715. m- Folyl carbanol, 2716 p- Polyl carbinol, 2717 n- Folyldmethylpyrazolone, 1313 p- Polyl ethyl ketone, 3661 o- Folylglycine, 3210 a- Polylglycocoll, 3210 o-Folythydrazine, 2256 m- Folyhydrazine, 2257 p- Folythydrazine, 2258 m-Folylhydroxylamine, 2221 p- Folythydroxylamine, 2222 o- Folyl mothrocyanate, 2523 m- Folyl isothocyanate, 2524 p-Tolyl mothrocyanate, 2525 o-Folyl mustard oil, 2523 m-Tolyl mustard oil 2524 p- Folyl mustard oil, 2525 Formentol, 6052 Tribalose, 4397 Priacetamide, 1522 Priacetin, 3289 Freecetoneamine, 3317 n-Princontane, 6014 Frammoazobenzene, 5311 1, 2, 3-Treammobenzene, 1525 1, 2, 1-Freeminobenzene, 1526 2 4 6-Trammonhenol, 1527 Fit-(o-ammophenyl)-methane, 5426 Fri-(p-ammophenyl)-methane, 5427 Frazobenzene, 1357 1, 2, 4- Frazole, 178 Fribenzylamine, 5633 Fribenzylaheol, 29431 Fribromhydrin, 372 Fribromoacetic acid, 104
Fribromoacetaldehyde, 103 4, 6- Pribromoamline, 1213 3. 1. 5-Pribromoanline, 1211 2, 2, 3-Pribromobenzene, 1156 1, 2, 4-Fribromobenzene, 1157 1, 3, 5-Tribromobenzene, 1158 1, 3, 1-Pribromobenzoic acid, 1778 2. 3. 5- Embromobenzoic acid, 1779 2, 4, 5-Pribromobenzoic acid, 1780

2, 4, 6-Tribromobenzoic acid, 1781

3. 4. 5-Tribromobengoic acid, 1782

Tribromo-tert-butyl alcohol, 650

1, 2, 2-Tribromo-1-chloroethane, 126

1, 2, 3-Tribromobutane, 649

1. 1, 2-Tribromo-1, 2-dichloroethane, Tribromethyl alcohol, 152 Tribromoethylene, 101 1, 1, 1-Tribromo-2-hydroxy-2-methylpropane, 650 4, 1, 2-Tribromoethane, 151 Tribromomtromethane, 5 1, 2, 3-Tribromopentane, 964 2. 3. 5-Tribromophenol, 1159 2, 4, 6-Tribromophenol, 1160 2, 4, 6-Tribromophenyl salicylate, 4421 1, 1, 2-Tribromopropane, 370 1 2 2- Fribromopropane, 371 1, 2, 3-Tribromopropane, 372 2, 4, 6-Tribromoresorcinol, 1161 Tribromosalol, 1121 2, 3, 4-Tribromotoluene, 1850 2, 3, 5-Fribromotoluene, 1851 2, 3, 6-Tribromotoluene, 1852 2, 4, 5-Tribromotoluene, 1853 2 t 6-Tribromotoluene 1854 3. 4. 5-Tribromotoluene, 1855 Tri-n-butylamine, 4418 Tributylmethane, 4586 Tributyrin, 5010 Tricaprin, 6056 Teconomican 5688 Tricaprylin, 5940 Fricarballyhe acid, 1505 1, 3, 5-Trie arboxyphenol, 3023 Frichlorhydrin, 388 Trichloroacetal, 1599 Trichloroacetal (solid), 1600 Frichloroacetanude, 138 2. 3. 4-Trichloroacetamlide, 2458 2. 4. 5-Trichloroacetanilide, 2459 2, 4, 6-Trichloroacetamlide, 2460 Traditoropoutre need 109 1. 1. 1-Trichloroacetone, 327 1, 1, 1'-Trichloroacetone, 328 Truchlorousetophenone 2432 Trichloroscrylic acid, 311 2, 3, 4-Trichloroamline, 1245 2. 1. 5-Trichloroamhne, 1246 2, 4, 6-Trichloroamhne, 1217 3. 4. 5-Trichloroamline, 1948 2. 4. 6-Trichloroanisol, 1875 1, 2, 3-Trichlorobenzene, 1175 1 2 4-Trichlorobenzene 1176 1. 3. 5-Trichlorobenzene, 1177 2, 3, 4-Trichlorobenzoic acid, 1783 2 3 3-Trichlorobenzoic acid. 1784 2. 4. 5-Trichlorobenzoic acid, 1785 2, 4, 6-Trichlorobenzoic acid, 1786 3, 4, 5-Trichlorobenzoic acid, 1787 1, 1, 1-Trichloro-tert-butyl alcohol, 662 1. 1. 2-Trichlorobutyraldehyde, 582 1. 1. 2-Trichlorobutyraldehyde hy 1 1 2 Trueblorobutyric acid 583 1. 1. 3-Trichlorobutyric acid, 581 1, 6-Trichloro-m-cresol, 1874 1. 1. 1-Trichloroethane, 158 1, 1, 2-Trichloroethane, 159 Trichloroethyl alcohol, 160 Trichloroethylene, 106 1, 2, 2-Trichloroethyl ethyl ether, 661 2, 3, 5-Trichlorohydrogumone, 1180 1. 1. 1-Trichloro-2-hydroxy-2-methylpropane, 662 1, 1, 1-Trichloro-2-hydroxyprop a n e , 389 3, 3, 3-Trichloro-2-hydroxypropyl phenyl ketone, 3544 2, 4, 6-Trichloro-3-hydroxytoluene, 1974 1, 1, 1-Trichloroisopropyl alcohol, 389 2, 2, 2-Trichlorolactic acid, 330 2, 2, 2-Trichlorolactic nitrile, 315

Trichloromethyl effloroformate, 91

Trichloromethyl p-chlorophenyl ka tone 2427 1. 2. 3-Trichloronaphthalene, 2387 1. 2. 4-Trichloronaphthalene, 3388 1, 2, 5-Trichloronaphthalone, 3389 1. 2. 6-Trichloronaphthalene, 3390 1. 2, 7-Trichloronaphthalene, 3391 2, 8-Trichloronaphthalene, 3392 1. 3. 5-Trichloronaphthalene, 3393 1, 3, 6-Trichloronaphthalene, 3391 1, 3, 7-Trichloronaphthalene, 3395 1. 3. 8-Trichloronaphthalene, 3396 1, 4, 5-Trichloronaphthalene, 3397 4, 6-Trichloronaphthalene, 3398 1 6 7-Trichloronanhthalane 2200 2, 3, 6-Trichloronaphthalene, 3100 2. 3. 7-Trichloronaphthalene, 3401 2 3 4-Trichloronitrobenzene 1131 2. 3. 6-Trichloronitrobenzene, 1132 2, 4, 5-Trichloronitrobensene, 1133 2. 4. 6-Trichloromtrobenzene, 1134 Trichloronitromethane, 11 2. 3. 1-Trichloronitrotoluene, 1821 2, 3, 5-Trichlorophenol, 1178 2. 4. 6-Trichlorophenol, 1179 1. 1. 2-Trichloropropane, 385 1, 1, 3-Trichloropropane, 386 1. 2. 2-Trichloropropane, 387 1, 2, 3-Trichloropropane, 388 2, 6, 8-Trichloropurine, 840 2. 3. 5-Trichloropyridine, 844 Trichloroquinone, 1115 2. 4. 6-Trichlororesoreinol. 1181 Tri-ω-chlorotoluene, 1870 2, 3, 4-Trichlorotoluene, 1871 2 4 5-Trueblorotoluene 1872 3, 4, 5-Trichlorotoluene, 1873 Tri-(2-chlorovinyl)-arsine, 1367 n-Tricosane, 5816 Tri-p-cresyl phosphate, 5638 1, 1, 1-Tricyanoethane, 846 n-Tridocuno 4587 n-Tridecyl alcohol, 4589 Tridecylamine, 4590 Terdocylene 4581 Tridecylic acid, 4582 Tridecyl ketone, 5941 Trielaidin, 6165 1, 2, 3-Triethoxybenzene, 4368 1, 3, 5-Triethoxybenzene, 4367 9 Triethylacetic acid, 2900 Triethyl acomtate, 4368 4 Triethylamine, 1764 Triethylamine hydrochloride, 1771 Triethylammonium chloroplatinate, **%**1197 Tricthyl arsenate, 1758 Triethyl arsenite, 1757 Triethylarsine, 1756 1, 2, 4-Triethylbenzene, 4366 1 3 5-Triethylbenzene, 4367 Triethylbutylammonium chloroplatinate, 231215 Triothylliutyl silicane, 29421 Triethyl carbinol, 2412 Triethyl citrate, 4381 Triethylisoamyl silicane, 23425 Triethylisobutylammonium chloroplatmate, 331216 Triethylisobutyl silicane, 33422 Triethylmethane, 2392 Triethyl phosphate, 1768 Triethylphosphine, 1769 Triethylphosphine sulfide, 1769 1 Triethyl phosphite, 1767 Triethyl propene-1, 2, 3-tricarboxylate 4368 4 Triethylpropylammonium chloroplatinate, 281211 Triethylpropyl silicane, 33420 Triethylmlicane, 28408 Triethyl silicol ether, 35428

C-TABLE: INDEX

Triethylstibine, 1770 chloroplatinate. Triethylsulfonium 21185 Triethyltin bromide, 3521 Triethyltin chloride, \$520 Triethyltin iodide, 25523 Trifluoracetamide, 142 Trifluoroacetic acid. 112.1 Trifluoroacetic anhydride, 539 Trifluoroethylene, 112 Trifolianol, 5686 Trifolin, 5702 Trifohtin, 5032 Triformin, 1506 Triguaiacyl phosphate, 5640 Trigunacyl phosphite, 5639 1, 2, 10-Trihydroxyanthracene, 4680 2. 3-Tribydroxyanthraqumone, 4635 4-Trihydroxyanthraquinone, 4638 6-Trihydroxyanthraquinone, 1. 2. 4637 1, 2, 4636 7-Trihydroxyanthraquinone. 1, 4, 4639 6-Trihydroxyanthraquinone, 3. 1. 5-Trihydroxybenzanihde, 4487 1, 2, 3-Trihydroxybenzene, 1419 1, 3, 5-Trihydroxybenzene, 1421 2, 3, 4-Trihydroxybenzoic acid, 2022 3, 4, 5-Trihydroxybenzoic acid, 2023 2, 6, 2'-Trihydroxybenzo p h e n o n e 4468 1 2 3-Trihydroxybutane, 801 Tribydroxydibydroanthracene, 4737 1, 3, 4-Tribydroxyflavonol, 4884 1, 3, 5-Trihydroxy-2-methoxybenzene, Trihydroxymethylanthraquinone, 4879 a-Tribydroxymethylene, 461 1, 3, 6-Trihydroxynaphthalene, 3522 1, 4, 5-Trihydroxynaphthalene, 3521 3, 5, 7-Trihydroxy-2-phenyl-1, 4benzopyrone, 4881 2. 4. 6-Trihydroxyphenyl 4-hydroxy-3methoxystyryl ketone, 5080 2, 4, 6-Trihydroxypyndine, 878 Truodoacetie acid, 114 2, 4, 6-Truodosniline, 1266 1, 2, 3-Trnodobenzene, 1186 1, 2, 4-Truodobenzene, 1187 1, 3, 5-Truodobenzene, 1188 2, 4, 6-Truodophenol, 1189 Trinoamylamine, 5021 Trisobutylamine, 4419 Trilaurin, 6120.1 Trimellitic acid, 3021 Tramesic seid, 3022 3, 4, 5-Trimethoxyallylbenzene, 4353 1, 2, 3-Trimethoxybenzene, 3251
1, 3, 5-Trimethoxybenzene, 3250 2, 4, 5-Trimethoxybenzoic acid, 3696 2, 4, 5-Trimethoxypropenylbenzene, Trimethylacetaldehyde, 1003 Trimethylacetic acid, 1011
2, 4, 6-Trimethylacetophenone, 4091 1 1, 3, 6-Trimethylallantoin, 2287

Trimethylamine, 526

Trumethylarsine, 520

201187

Trimethylamine hydrochloride, 532

1, 3, 5-Trimethylambne, 3264

1. 2. 4-Trimethylanthracene, 5190

1, 3, 6-Trimethylanthracene, 5191

1, 4, 6-Trimethylanthracene, 5192

2, 4, 6-Trimethylbenzaldehyde, 3657 3, 4, 5-Trimethylbenzaldehyde, 3658

Trimethylbarbituric acid, 2260

1, 2, 3-Trimethylbensene, 3227

Trimethylammonium chloroplatinate

1, 2, 4-Trimethylbensene, 3230 1, 3, 5-Trimethylbenzenc, 3228 1 3 5-Trimethylbenronesulfone and 2, 4, 5-Trimethylbenzoic acid, 3674 2 4 6-Trimethylhenrose and 3675 3, 4, 5-Trimethylbenzoic acid, 3673 Trimethyl bismuthine, 522 2, 2, 3-Trimethylbutane, 2393 2, 2, 3-Trimethylbutan-3-ol, 2398 2, 3-Trimethyl-3-butene, 2333 Tranethyllutylammonium chloro platinate, 31204 Trimethylbutyl siheane, 2113 Termethyl carbond 792 Trimethyl citrate, 3290 1. 4-Trimethyleyclohexane-2-ol. 3324 Trimethylene, 408 Trimethylenebrombydrin, 467 Trimethyleneearboxylic acid, 621 Trimethylene cyanide, 886 Trimethylenediamine, 531 Trimethylene-1, 1-dicarboxylic acid, Trimethylene dichloride, 419 Tramethyleneglycol, 511 Trimethylenerodohydrin, 478 Trimethylethylammonium chloro platmate, 281193 Trimethylethylene, 986 1, 1, 2-Trimethyl-2-ethylethylene Trimethylethylmethane, 1716 Frimethylethylsilicane, 23107 3, 3, 5-Trimethyl-4 heptene, 3963 3, 4, 4-Trimethyllicxane-3-ol, 3362 3. 5. 6-Trimethyl-2-hydroxybenzalde hyde, 3665 2, 4, 4-Trimethyl-2-hydroxypentane. 2961 Trimethylisoamylsiheane, 3417 Trimethylisobutylammonium chloro platinate, 391205 Trimethylosobutylsilicane, 33414 Trimethylisopropylammonium chloroplatinate, 331200 Trimethylmethane, 781 2 2. 2. 3-Trimethylpentane, 2941 2, 4, 5-Trimethylphenol, 3242 2, 4, 6-Trimethylphenol, 3238 Trimethylphenylmethane, 3726 Trimethyl phosphate, 528 Trimethylphosphine, 530 2, 4, 6-Trimethylpiperidine, 2929 Trimethylpropylammomum platmate, 31199 1, 1, 2-Trimethyl-2-propylethane, 2934 Trimethylpropylmethane, 2394 Trimethylpropylsilicane, 3310 2, 3, 4-Trimethylpyridine, 2777 2, 4, 5-Trimethylpyridine, 2778 2, 1, 6-Trimethylpyridine, 2779 4, 6-Trimethylpyridine-3-carboxy he acid, 3212 2, 6, 8-Trimethylquinohne, 4308 Trimethylsahcol, 28427 Trimethylsuccime acid, 2308 1 Trimethyltin iodide, 25522 Trimethylurea, 784 1, 3, 9-Trimethyluric acid, 2702 , 7, 9-Trimethyluric acid, 2703 3, 7, 9-Trimethylune acid, 2704 Trimethylxanthine, 2701 Trampristin, 6147 Trinitroacetonitrile, 97 2, 4, 6-Trinitro-3-aminoanisol, 2000 2. 4. 6-Trimtroaminophenol, 1285 2, 4, 6-Trimtroambne, 1284 2, 3, 4-Trimtroamsol, 1927

2, 3, 5-Trinitroanisol, 1928

2, 4, 6-Trinitroansol, 1929

3, 4, 5-Trinitroanisol, 1930 3, 4, 6-Truntroamsol, 1931 2, 4, 6-Trimtrobensaldehyde, 1788 1, 2, 3-Trimtrobensene, 1190 1, 2, 4-Trantrobensene, 1191 t 3 5-Transtrobensene 1192 1. 3. 5-Trimtrobensene-2-sulfonic acid 1100 2. 4. 6-Triuitrobengoic acid, 1789 2. 4. 6-Trimtro-feet-butyltoluene, 4082 2 4 6-Trimtro-m-cresol 1932 Trinitro vanomethane, 97 2, 4, 6-Trinitro-1, 3-dihydroxyben-***** 1198 1, 1, 1-Trontroethane, 179 Frimtromethane, 25 1. 2. 5- Frantronaphthalene, 3403 1, 3, 5-Trantronaphthalene, 3404 1 A S- Frontronaphthalene, 3405 1. 4. 5-Prinitronaphthalene, 3406 1, 5-Trimtro-q-naphthol, 3407 1. 7- Frantro-a-naphthol, 3108 2, 4, 8-Trimtro-a-naphthol, 3409 4. 6-Frantrophenetol, 2537 2. 3. 5-Trantrophenol, 1194 2, 3, 6-Trimtrophenol, 1195 2, 4, 5-Trimtrophenol, 1196 2, 4, 6-Trinitrophenol, 1197 Tri-(p introphenyl)-methane, 5396 2. 1. 6-Trimtrophenylmethylmtranune, 1933 2, 4, 6-Trinitrothiophenol, 1193 2, 3, 4-Trimtrotoluene, 1921 3, 5-Trimtrotoluene, 1922 2, 3, 6-Trimtrotoluene, 1923 2, 4, 6-Trimtrotoluene, 1924 4. 5-Trimtrotoluene, 1925 3, 4, 6-Trimtrotoluene, 1926 3, 6-Trimtro-p-xylene, 2536 2, 4, 5-Trimtro-m-xylene, 2533 2, 4, 6-Truntro-m-xylene, 2534 3, 4, 5-Trimtro-o-xylene, 2531 3, 4, 6-Trimtro-o-xylene, 2532 4. 5. 6-Trinitro-m-xylene, 2535 Triolein, 6166 Trional, 2980 Tripalmitin, 6157 Triphenin, 4110
Triphenylacetic acid, 5517 Triphenylamine, 5281 Triphenylarsine, 5279 1, 3, 5-Triphenylbenzene, 5818 Triphenyl carbinol, 5404 Triphenylchloromethane, 5400 Triphenylene, 5265 1, 1, 2-Triphenylethane, 5521 a-Triphenylguamdine, 5111 β -Triphenylguamdine, 5415 a-Triphenylguanidine hydrochloride, Triphenylguanylthiouren, 5525 Emphenylhydrazine, 5288 1, 5-Triphenylimidazole, 5619 Emphenylmethane, 5402 Triphenylmethyl, 5399 Triphenylmethylamine, 5409 Triphenyl orthoformate, 5405 Triphenyl silicol, 39430 Triphenyl phosphate, 5283 Triphenylphosphine, 5284 Triphenyl phosphite, 5282 Triphenylstibine, 5285 Tri-n-propylamine, 3372 Tripropylmethane, 4001 Tripropylsheane, 33419 Trancinolem, 6167 Tristearin, 6169 Tritane, 5402 a-Trithioacetaldehyde, 1688 8-Trithioacetaldehyde, 1689 γ-Trithioacetaldehyde, 1690 Trithoglycerol, 516

Tritopine, 6131 Tropacocaine, 4947 Tropacocaine hydrochloride, 4949 Tropane, 2859 Tropic acid, 3168, 3169 Tropidine, 2818 Tropigemne, 2321 Tropdene, 2261 Propuldene, 2111 Fromuse 2864 Tropine atropate, 5216 Tropolore, 2819 Tropolore, 2321 Truxene, 5266 a Fruxillie acid, 5295 #- Fruxillie neid, 5296 > Fruxillie seid, 5297 5 Pruxillie neid, 5298 c. Fruxillie neid, 5299 n-Truxillie neid, 5300 a Fraxilline, 6113 s-Travelline 6114 I-Tryprophane, 1060 Pryptophane picrate, 5189 Tossol, 5429 Tutin, 5214 Tyramine, 2790 1-1 vronne, 3222 Ulexine, 1086 1 mbelliferon, 3017 Umbelluhe neid, 1173 1 mbellulone, 3765 n-1 ndeenne, 4178 n-t ndecan-6-ol, 4179 1 n-t ndecyl alcohol, 4179 1 n-Undecylamine, 4180 α-Undecylene, 4165 #-Undecylene, 4166 Undecyleme acid, 4158 Undecylic acid, 4174 Undecylic aldehyde, 1169 Urned, 564 Uranyl acetate, 281729 Uranyl formate, 291729 Uranyl formate, 291728 Uranyl oxalate, 291727 Urea, 55 Urea chloride, 27 1 res ustrate, 70 Urea oxalate, 787 Urerdoformanude, 251 Urethane, 492 Une neid, 857 Urocanic acid, 4295 Urotropine, 1626 Uroxanic acid, 923 Urson, 3862 Unnie acid, 5304 dl-Usine seid, 5303 Uvinic acid, 2180 Uvitic acid, 3000 Uvitonic acid, 2521 n-Valeraldehyde, 1004 Valeranide, 1057 n-Valeric acid, 1012 n-Valene anhydride, 3935 n. Valeroamlide, 4106 n-Valeryl chloride, 966 Valerylene, 917 n-Valeryl mtrile, 972 Validol, 5013 #-Value, 1069 Valyl, 3346 Valylene, 881 Valzan, 3232 Vamille acid, 2628 Vanillie alcohol, 2744 Vanillin, 2596 Vellosine, 5793 Veratric acid, 3181 Veratrine, 6039 Veratrol, 2737 Verbenalin, 5245

Verbenene, 3741 Vernine 3723 Vesspyrine, 4906 Venuvin, 5308.1 Vicine 5600 Vinylacetic acid, 622 Vinylamine, 237 Vinyl bromide, 148 Vinyl chloride, 153 Vinyl other 613 Vinylethyl alcohol, 714 Vinylethyl bromide, 643 Vinylethyl carbinol, 999 Vinylethylene, 596 Vinyl ethyl ether, 716 Vinviguancel, 3137 Vinyl jodide, 161 Vinvi trichlande, 159 Violuric acid, 554 Volemital 2418 Weighting 5841 Xanthaline, 6108

Xanthene, 4451 Vanthine, 856 Xanthoeridol, 5277 Xanthone, 4427 Xanthopurpuma, 1634 Vanthosterin 5500 Xanthotoxin, 4200 V-Yanthoxyllin, 1923 -Xylene, 2684 m-X viene. 2655 u-Xvlene, 2086 o-Xylone-1 aldehyde, 3131 m-Xylene-5-earboxylic acid, 3148 o-Xylene dibromide, 2540 1 m-Xylene dibromide, 2540 2 p-Xylene dibromide, 2540 3 o-Xylene dichloride, 2511-1 m-Xylene dichloride, 2511 2 2, 3-Xylenol, 2705 3 9- Nylenol 2707 3. 5-Xylenol, 2709 2. 4-Xylenol, 2708

3, 4-Xylenol, 2706 p-Xylidine, 2759 vic Xylidine, 2757 asym-Xylidine, 2758 m-Xylidine acetate, 3707 p-Xylohydroquinone, 2733 o-Xyloquinone, 2591 m-Xyloquinone, 2592 p-Xyloquinone, 2593 .Xylorem, 2731 Xylososazone, 5213 l-Xylose, 1037 dl-Xylose, 1038 o-Xylylaldehyde, 3131 o-Xylyl bromide, 2632 m-Xylyl bromide, 2634 p-Xylyl bromide, 2638 o-Xylyl chloride, 2640 m Vida Lablanda 2611 n-Xvlvl chloride, 2644 Yara-yara, 4042 Volumbian 5070

Yohimbine bydrochloride, 5672 Ytterbium acetate, \$2097 Vtterhium ovalate \$2005 Yttrium acetate, 281954 Yttrium ethyl sulfate, 381955 Zeorin 4571 Zinc acetate, 2802 Zinc butyrate, \$806 Zine ethanediaulfonute Mane Zinc othyl \$798 Zinc formate, 3801 Zine isoamyl. 3800 Zinc malate, \$805 Zinc methyl, 28797 Zinc naphthalene-1, 5-disulfonate, 28809 Zinc oxalate, 23795 Zine propyl, 28799 Zingerone, 4103 Zingiberene, 4983 Zanasharal MOA Zvgadenine, 6120

PROPERTY-SUBSTANCE TABLES

[All index numbers refer to the C-Tables (p. 176) except those preceded by B, which refer to the B-Table (p. 106)]

I MELTING POINTS

-207: 3337. -189.9: 500, 409, 33345, 54. -172: 252, 180, **≫**1810, ≫465, ≫95. −**160**: ≫204, 1072, ≫404, 145. −**150**: **33485.5.** 1532, **33405.** 2328, 337 -145; 31, 781.2, **33349.** 1615, **25126**, 982, 224, 17.1, 263, 148, 374, 375, 1712. **-135**: 781.1, 985, 25433, 25125, 25366, 25195, 25316, 1073, 747. **-130**: 598, **686**, 446, 331813, 505, 408, 2330. -125: 3890, 365, 526, 986, 208, **793**, **746**, **468**, **33**65, **1741**, **63**, **273**, **-120**; **915**, **916**, **366**, **220**, **742**, **3364**, 9, 262, 1079, **3**347, 469, 364, 793. -114.8: 1764, **3**3263, **667**, 741, 3513, 351811, 154, 35207, 518, 209, 359, 2058. -110: **353**, 464, 351752, 35466, 234, 790, 35339, 351814, 310, 35467. -105: 1102, 513, 517, 338, 822, 351816, 756, 1537, 754, 3597, 814, 3598, 247. **3229**, 475, 525. -100: 3374, 594, 213, 837, 394, 2357, 717, 1652, **1610**, 1716, 452. -98: 1466, 60, 41, 615, 3810, 28, 189, 331597, 149, 282, 1016, 2361, 2112. -95: 920, 1763, 448, 1713, 39371, 378, 3348, 755, 3372, 979, 1654. -93: 35434, 40, 727, 2683, 65, 1020, 35, 1007, 395, 2933, 476 -90: 3342, 33472, 652, 1014, **2389**, 789, 465, 651, 1655 -**88**: 39282, 356, 726, 106, 719, 3917. **2869**, **506**, **403**, **821**. **-85**: 2868, 1019, 1639, 725, 100, 272, 334, **25.205**, 524, 1587, 2541, -82; 332, 115, 147, 2905, 283, 383, 133, **451**. **-80**: 357, 3562, 3572, 35105, 35265, 13, 2981, 1078, 3555. **33107, 1006, 33102**. = **77:** 33113, 33350, 33372, 1651, 2415, 336, 1659. -75: 614, 2840, 3728.1, 1021, 626, 2382, 1045, 3838, 1017, 2359, **693. -70: 3**352, 2985, 1443, 227, 35206, 823, 2834, 35356, 45, **718.** -65: 539, 23130, 2368, 11, 19, 2763, 948, 2955, 3230, 3258 -60: 33238, 38, 1012, 1548, 107, 2867, 91, 215, 459, 2203, 1638, 2941. -56: 2001, 3320, 33141, 412, 2741, 332701, 3352, 1099, 3817, **≫59. -64**: 367, 2685, 2841, **≫**43, 26, 3995, 3228, 1630, 1728, **3684**, 3149, 1603. -51: 33, 176, 1002, 3354, 4450, 3926, 820, **364**, 88, 132, 683, 824, 2300, 33468. -48: 3328, 3384, 2040, 3319, **724, 2340, 29**63, 2927, 1307. -45: 291815, 169, 1560, 2343, 3893, 3984, 377, 4175, 140, 2491, 2916. -43: 2927, 1026, 29109, 870, 1005, 1328, 168, 3337, 1570. -40: 35124, 35142, 35214, 35267, **3797**, 400, 576, 2031, 1760. -39: 33115, 33378, 622, 2038, 3347, 859, 2968, 3989. -38: 33110, 1013, 3360, 2163, 159, 3329, 190, 2039. -35: 20114, 20232, 987, 1644, 3219, 3731, 1388, 2403, 3154, 95, 413, 3789. -34: 33112, 186, 1606, 3360, 384, 2344, 3993, 269, 2205, 4400, 1333. -31: 38192, 1294, 1571, 38488, 2722, 3856, 38237, 38450, 3638, 48. -29: 111, 886, 749, 2030, 38209, 38798, 2619, 2684, 233, 4178, 151, 568, 809, 4789, 379. -25: 2548, **26**1575, 827, 2393, 5688, 1230, **26**12, 2204, 2503, 1253, 929. **-23**: 12, 2419, 911, 90, 4095, 450, 609, 1734, 4038, 4419, 2896, 1200.2. -21: 331397, 2, 121, 1918, 2847, 357, 3590, 35147, 35493, 205, 690,

744, 1074, 2961, 85, 3037. -19: 671, 1762.1, 4283, 33110.1, 33136. 33266, 4176, 3315, 3311, 1229, 329, 264, 1964. -17: 355, 449, 4398, 6166, 181, 2204, 2966, 2853, 112.1, 3133, 3310, 2159. -15: 3530, 388, 735, 22, 1646, 1725, 1885, 35186, 428, 1200.1, 2589. -12: 68, 89, 290.1, 2327, 4411, 4849, 1081, 3318, 1642, 4852, 2081. 1376, 1694. -10: 2509, 2351, 3667, 1643, 3396, 1200.5, 33914, 1054, 1551, 3573, 3978.1, 2618, -8: 33155, 561, 2518, 3129, 723,4513, \$\)31866, 2493, 3069, 2004, 1205, 1442, 4587. -6: 7, 606, 826, 1366, 3863, 3929, 404, 1249, 994, 33156. -5: 33235, 46, 2514, 2766, 2049, 3364, 1870, 1314, 2081. -4: 645, 1812, 2029, 2711, 3740, 4169, 1856, 4493, 2928. **-2:** 33149, 3054, 3835, 1390, 332. 331515, 3353, 3902, 4847, 5153, 1859, 141. 0: 331, 3340, 127, 1314, 1375, 1844, 2423, 3276, 128, 2633, 352953, 458, 3752, 2812. 1: 33494, 1478, 4846, 33210, 3170, 33103, 2756, 1250, 1204. 2: 3384, 2669, 1200.4, 2788, 331672, 2580, 33287, 407, 1003, 1880, 5690, 32612, 3978. 4: 3640, 4399, 5156, 84, 323, 33100, 3367, 24, 313, 3453, 4584, 29, 2216, 1365, 1733, 1949, 2725, 4296, 4856, 1296, 1347. 6: 102, 3852, 1612, 4062, 3379, 376, 33284, 863, 1314, 1959, 2492, 4002, 4761, 18, 2041, 3688. 8: 3334, 33381, 2882, 4442, 5940, 3576, 300, 37, 2676, 5480, 3546. 9: 319, 1105, 4157, 4402, 4707, 4794, 2098, 35. 10: 136, 184, 307, 934, 2053, 2161, 2639, 5018, 5, 3945, 1662, 3944, 5160, 39135. 11: 39163, 345, 2886, 3035, 3591, 3662, 33121, 3328, 4172, 358, 3769. 13: 3218, 17, 1691, 3776, 4828, 2686, 33219, 699, 1332, 2513, 359, 33146, 1330, 335.1. 14: 3385, 5359, 5361, 2865, 1318, 619, 4170. 15: 25, 146, 721, 1482, 2134, 2190, 5851, 332669, 2082, 2759, 3574. 16: 620, 656, 795, 2128, 2899, 1329, 655, 2294, 4180. 212. 339. 17: 331646, 372, 558, 621, 1176, 2398, 2850, 4011, 4542, 4843, 5370, 160, 4758, 515. 18: 392843, 457, 646, 1506, 1857, 1863, 3933, 5377, 5380, 1369, 4733. 19: 602, 4179, 4697, 4848, 5017, 1568, 1483, 2571. **20**: 3880, 38856, 391039, 392443, 2498, 3157, 3192, 4529, 5167, 5682, 126, 21: 841, 2632, 3132, 4505, 1251, 1958. 22: 33644, 332698, 332961, 562, 1117, 2120, 3160, 5164, 5481, 5812, 6105, 35191, 2737, 3648, 4392, 5260. 23: 1954, 2322, 3036, 4173, 5373, 1258, 120, 1627. 24: 1320, 2002, 4367.4, 4415, 2060, 5381, 392673, 2664, 4158. 25: 3971, 392450, 392688, 672, 3078, 391234, 792, 392514, 368, 391287, 392813. 26: 1458, 2118, 2119, 2126, 2248, 2338, 2525, 2706, 3240, 4523, 5353, 5735, 39470, 39975, 1251, 4448, 4241. 27: 391134, 391345, 456, 833, 1392, 1432, 2086, 2500, 3717, 4490, 4590, 5484, 335. 28: 39158, 392739, 765, 1163, 2032, 2174, 2427, 2738, 3277, 4417, 5391, 1331. 29: 51, 1267, 1966, 2515, 4373, 5155, 5760, 7174, 2507, 4322, 5258, 332622, 2160, 332237. 30: 3399, 33123, 33219, 3331, 32666, 267, 312, 1822, 1945, 2120.1, 2123, 2667, 3173, 4414, 4440,

5200, 5354, 6044, 4321, 1888, 2464, 4589, 5852. 31: 33491, 1023. 1948. 2293, 3981, 4318, 4484, 6056, 851, 1368. 32: 627, 647 1553, 2114, 2490, 3003, 4579, 5486, 5738, 6165, 316, 32693, 860 20268, 1315. 33: 2036, 203084, 163, 1170, 1297, 3126, 3156, 3255 3304, 3924, 5151, 941, 4019, 5764, 5608, 2162, 4914. 34: 3111. NASS. 1807. 2136, 2434, 2715, 3002, 3689, 4125, 4205, 4268 5068, 5087, 5360, 5389, 1259, 2544.2, 31149, 32724, 5767, 31286 **35:** 350, 35200, 351367, 352133, 353313, 177, 1591, 2063, 2071, 2578. 3588, 3922, 4250, 4300, 4741, 5371.1, 392752, 4039, 1011, 2247, 2688, 3974, 5184, 36: 35244, 1207, 1255, 2116, 3028, 3600, 3757, 3979 4226, 4288, 5255, 5355, 5805, 1163, 33768, 2096, 5020, 299, 3009 37: 3607, 1316, 1957, 2474, 3081, 3412, 3628, 4212, 4512, 4771. 4859, 5850, 1163, 281962, 203, 4060.1, 4297, 1893, 38; 28234, 3386, 56, 1270, 1743, 1794, 2099, 2638, 3000, 3703, 4362, 4383, 4858. 5485, 5610, 352241, 1955, 3079, 1163, 1219. 39: 33451, 602, 603 1323, 1772, 1950, 4368, 4508, 4743, 331147.5, 5072, 5150, 5966, 2900, 4530.3. 3317, 352260. 40: 35701, 35702, 193, 546, 961, 974, 1335, 1550, 2067, 2178, 3793, 3923, 4109, 4327, 6112, 331147, 1334, 5694. 1893. 41: 3252, 331147, 118, 852, 1413, 1871, 1946, 2424, 2522 1 2553, 2801, 2819, 2854, 3004, 3070, 4103, 4104, 4452, 4823, 5224, 5374, 97, 3578. **42**: 3537, 352245, 352718, 353242, 35203, 66, 1745, 1792, 2743, 3587, 3905, 4588, 5332, 5609, 5739, 5848, 730, 1873, 3973, 332259, 3802, 4220. 43: 331817, 1166, 1173, 1201, 2066, 2192 3272, 3710, 4018, 4367.9, 4467, 4676, 2978, 4551, 2206, 156, 44; 362611, 30, 293, 654, 1157, 1283, 1811, 1956, 2223, 3220, 3692, 3870, 4053, 4330, 4503, 4984, 5292, 33766, 5014, 1216, 5772, 1962, 4405, 4247. 45: 3349, 332927, 333223, 33261, 346, 931, 933. 1233, 1339, 1349, 1552, 1850, 2501, 2723, 2781, 3005, 3766, 4287, 4449, 4831, 4837, 5044, 5310, 6114, 35767, 393, 3685, 4266, 4131, 4788, 5637, 331343, 5876. 46: 559, 1111, 1395, 1423, 1874. 1941, 1969, 2037, 2712, 2802, 3252, 4305, 4308, 4998, 5019, 5343.1. 5856, 6157, 553, 5092, 6120.1 47: 331640, 332655, 33272, 239, 874, 1439, 1978, 3115, 3144, 3130, 3251, 3774, 3906, 4297.1, 5097, 5148, 161, 1135, 1858, 2073, 3670, 5816. 48: 392696, 125, 1581, 1937, 2463, 3172, 3299, 3617, 3416, 4328, 4406, 4520, 4815, 5285, 5347, 6145, 1331, 6, 4447, 3147. **49**: **3**01980, 492, 1901, 2046, 2047, 2263, 2707, 2761, 3291, 3907, 4106, 4787, 4947, 5262, 5345, 5769, 5770, 5168, 1254, 5283. **50**: 3314, 33498, 331144, 332792, 27, 150, 255, 389, 844, 1268, 1322, 1428, 2494, 2881, 3159, 3550, 3801, 4780, 4908, 5604, 5218, 156, 1325, 1986, 5348, 5859, 32678. 51: 3609, 343, 1136, 1793, 1935, 2003, 2432, 3663, 2594, 3669, 3836, 4558, 4582, 4800, 4853, 5860, 392258, 4203, 2083, 3756, 5357. **52**: 3, 244, 1175, 1303, 2807, 3221, 3250, 3658, 4065, 4094, 4318.1, 4435, 5557, 6086, 2504, 4756, 4850, 1231. 53: 3387, 152.1, 563, 771, 1082, 2049, 2143, 2176, 2785, 4119, 4270, 5368, 5429, 5993, 956, 1165, 1178, 701. **54**: 361, 498, 631, 1066, 1851, 2100, 2577, 3619, 4473, 5016, 5521, 5861, 5881, 6047, 560, 1171, 3709, 5244, 5815, 6169. 55: 33290, 2730, 663, 1968, 2051, 2544.1, 2591, 4049, 4333, 4443, 4736, 4763, 4765, 5043, 5222, 5729, 6147, 2575, 2386, **56**: 33216, 331822, 15, 179, 348, 607, 882, 1131, 1202, 1208, 2095, 2256, 2470, 2559, 2739, 3456, 3704, 4238, 4323, 4368 7, 4369.2, 5142, 5176, 5625, 5917, 156, 392010, 392073, 1306, 1391, 391552 **57:** 3361, 105, 548, 897, 1133, 1214.1, 1232, 2314, 3076, 3116, 3137, 4503, 4816, 5587, 5689, 32672, 86, 109, 3652, 5761, 2218. **58**: 3370, 33508, 331769, 332757, 331269, 497, 902, 921.2, 1154, 1234, 1719, 1810, 1894, 1942, 2650, 2815, 3015, 3175, 3671, 4045, 4851, 5646, 3056, 3101, 5158, 5392, 3473. 59: 351714, 288, 1167, 1852, 2497, 3454, 3470, 3708, 3921, 4273, 4460, 4770, 4996, 5063, 5183, 5201, 5431, 5440, 1984, 3845, 1150, 2115, 2717, 5301, 5942, 1988, 5257. 60: 331165, 331667, 332110, 332720, 332931, 332932, 352934, 353142, 353343, 96, 583, 960, 1168, 1821, 2508, 2678, 2857, 3099, 3218, 3509, 4223, 4445, 4557, 4650, 4724, 4727, 5147, 5256, 5279, 5560, 5719, 5918, 6065, 6151, 1875, 4024, 4516, 5146, 5213.1. **61**: 35220, 351450, 352439, 352855, 315, 342, 369, 382, 481, 581, 611, 1191, 1192, 1947, 1960, 1987, 2258, 3038, 3071, 3197, 3211, 3413, 3593, 3742, 3779, 4046, 4213, 4261, 4740, 5261, 5376, 5437, 5915,

5919, 156, 1581, 5520, 5763, 1277. 62: 283222, 1152, 1169, 1393, 1663, 2034, 2103, 2249, 2783, 3417, 3776, 3912, 4782, 4838, 4893, 4902, 5054, 5216, 5810, 39120, 391867, 1480. 63: 214, 675, 838, 1177, 1243, 1321, 2036, 2864, 3183, 3257, 4329, 4655, 4802, 5066.1, 5003, 5846, 6010, 392075, 393271, 1298, 1704, 5378, 5985, 64; 3455, 3732, 32, 343, 442, 461, 883, 936, 2033, 2251, 2672, 3699, 3700, 4340, 5159, 6045, 6144, 351272, 351997, 426, 432, 1116, 32812 65: 33108, 33119, 33942, 332607, 332093, 257, 324, 1865, 2172, 2473, 2708, 2921, 3597, 4047, 4108, 4210, 4746, 5053, 5057, 5336, 5367, 5532, 5967, 6157, 1174, 3195, 66; 333, 439, 580, 1854, 2048, 2137, 2171, 2478, 2697, 2740, 3269, 3398, 5483, 5968, 1370, 3584, 4020, 4228, 282027. 67: 830, 845, 1067, 1235, 1319, 2167, 2992, 3016, 3630, 4225, 4352, 5149, 1200.3, 1245, 4208, 5358. 68: 201081, 865, 1134, 1179, 1236, 1237, 1262, 1343, 1484, 2221, 2709, 2736, 3074, 3143, 3414, 3467, 3498, 3614, 3650, 3695, 3953, 4368 41, 4507, 4528, 4530 1, 4953, 5161, 5759, 6028, 1929, 4248. 69: 401, 538, 1138, 2009, 2051, 2185, 2805, 3201, 3238, 3594, 4219, 4393, 5344, 5602, 5691, 5814, 5862, 1993, 5379, 238, 2091, 2913, 6058, 1985, 4204. 70; 3908, 391077, 392638, 393270. 320, 351, 802, 932, 1220, 1463, 1501, 2272, 2519, 3065, 3457, 3791, 3925, 4458, 4495, 4772, 5193, 5526, 5553, 5893, 6014, 282056, 2044, 3991, 4242, 33120, 6160. 71: 1377, 1809, 1963, 2069, 2670, 3198, 3462, 3622, 4549, 4764, 5061, 5611, 1324, 1396, 2068, 4734, 352464. 72: 35116, 35275, 351141, 351971, 352481, 253149, 617. 1261, 1437, 1808, 1832, 1970, 2042, 2532, 2879, 3010, 3242, 3768, 4042, 4786, 5854, 5857, 5059, 6106, 332076, 1172, 2543, 311. 78: 23168, 23915, 231878, 232614, 2469, 2473, 2592, 4912, 4919, 23286. 352713, 962, 2455, 35202. 74: 35647, 351948, 351988, 195, 380, 491, 674, 1703, 2085, 2726, 3558, 3595, 3686, 4393.1, 4480, 4742, 4769, 5154, 5692, 5773, 5991, 6013, 6081, 1666, 6091, 142, 75; 35239, 35389, 35643, 35866, 351626, 352044, 352848, 455, 584, 738, 842, 1371, 1806, 1919, 2561, 2682, 2705, 2749, 3193, 3775, 4233, 4285, 5313, 5364, 5422, 5847, 6048, 6003, 1151, 35679, 351796, 784, 4207, 5173. 76: 39270, 393204, 292, 441, 907, 957, 1665, 2306, 2452, 2844, 2980, 3044, 3468, 3697, 3712, 4072, 4950, 5366, 5375, 5410, 5941, 392055, 570, 1210, 5823, 6080, 6107, 2584, 77: 3932, 392033, 2540.2, 3254, 3544, 3745, 4389, 5067.1, 5405, 5607, 5638, 392231, 1247, 2147, 3583, 5837, 5878, 392498. 78: 392757. 32976, 664, 673, 975, 2055, 2425, 3389, 3746, 3778, 3792, 4034, 4239, 4433, 5000, 5280, 5387, 5039, 5879, 5962, 710, 79, 2537, 4187, 2117. 79: 33293, 33909, 332733, 214, 482, 731, 1269, 1522, 2131, 2212, 3233, 3290, 3474, 3713, 4067, 4330.1, 4792, 5284, 5386, 5411, 5824, 5835, 1302. 80: 33139, 33144, 33181, 33655, 3683, 3827, 381535, 381857, 383071, 152, 1209, 2129, 2179, 3705, 3722, 3732, 3777, 3875, 4319, 4647, 4798, 4899, 5220, 5492, 5920, 6113, 3494, 1305, 352240, 3394, 3631, 1924. 81: 352020, 238, 1257, 1664, 1690, 2596, 3387, 3428, 3543, 4026, 4466, 4903, 5073, 5369, 5501, 5855, 5223, 5385. 82: 39245, 39249, 93, 167, 197, 394, 1450, 1513, 1621, 1872, 1967, 2207, 2558, 2694, 2727, 2843, 2916, 4271, 4640, 4702, 5174, 5545, 5808, 6109, 6110, 3091, 3603, 5968, 5916. 83: 1127, 1181, 1263, 1286, 1600, 2056, 2125, 2950, 3080, 3165, 3970, 4432, 5178, 5365, 5766, 6026, 392057, 1217, 3392, 392000, 5840. 84: 1187, 1304, 1418, 3216, 3410, 3749, 3750, 4425, 4506, 1985, 5263, 5407, 5592, 5765, 5768, 6160, 3649. 85: 325, 398, 1153, 1352, 1580, 1766, 2510, 2695, 2993, 3315, 3370, 3519, 3627, 4833, 4907, 5383, 5384, 5799, 35458, 2997, 4332, 5858, 1996. 86: 331449, 33269, 217, 1021, 1119, 1438, 1753, 2045, 2166, 2573, 2662, 2799, 2808.1, 3596, 4476, 4892, 4897, 4924, 5135.1, 5349, 6008, 352735, 1162, 1206, 5984. 87: 864, 1036, 1164, 1218, 1378, 1567, 1574, 2682.1, 2918, 3107, 4079, 4152, 4195, 4390, 4997, 5408, 5593, 331974, 1156. 88: 201, 240, 290, 1184, 1301, 2065, 2542, 3391, 3418, 4368.3, 4519, 4536, 4698, 5025, 5163, 5219, 5436, 6015, 6090, 332032, 2253. 89: 33133, 33375, 175, 677, 1039, 1111.2, 1132, 1855, 2811, 3013, 3537, 4206, 4209, 4522, 5085, 5119, 5244.1, 5286, 5583, 5673, 5779, 5922, 32078, 2471, 3396, 6043, 1272. 90: 33157, 33983, 331002, 331627, 331708, 129, 350,

1111.1, 1185, 1440, 1449, 1582, 2533, 3401, 3524, 4258, 4521, 4927, 5341 5418 5762 5951 6100 5745. 91: 39253, 391468, 391910, **3**1960, 352069, 843, 898, 1300, 2094, 2462, 3163, 3213, 3400, 4515, 4958, 5142.1, 5230, 5801, 6011, 6054, 3648, 32019, 2142. 92: **3**171, 504, 1200 6, 3388, 3706, 4703, 4915, 4928, 5308, 5412, 5438, 5533, 5633, 5830, 5955, 332058, 1159, 1211, 3783, 5402, 351998, 6024. 93: 35391, 1989, 2087, 2555, 2564, 2995, 3124, 4127, 4184, 4436, 4530 2, 5002, 5453, 4709, 4918, 4964, 5044, 5579, 5618, 6027, 6156, 391882, 543, 846, 5845. 94: 391082, 1336, 1381, 1769 1, 2222, 2286, 3060, 3460, 4969, 5781, 5802, 5938, 2540.1, 3471, 2089, 95; 35368, 35650, 35727, 352149, 352609, 39, 281, 952, 2139, 2208, 2582, 3100, 3427, 4218, 4360, 4710, 4795, 5162, 5179, 5287, 5617, 5872, 6057, 1990, 4672, 352034, 1372, 4921 96: 282968, 69, 1160, 1196, 1246, 1340, 1350, 1566, 2139, 2385, 2520, 3123, 3507, 3580, 3714, 3744, 4275, 4509, 5231, 5601, 5675, 2647, 39201, 391802. 97: 392021, 392625, 211, 284, 662, 1241, 1922, 1991, 2653, 3390, 3522, 4082, 4868, 4906, 5065, 5363, 5555, 5667, 5904, 351865, 946, 5128, 98; 351648, 351972, 157, 955, 1433, 1564, 1890, 2614, 2829, 3302, 4113, 5221, 5640, 5974, 2145, 352001, 1123, 5306, 6007, 99: 144, 579, 996, 1118, 1356, 1995, 2250, 2539, 2617, 3231, 3523, 3867, 1325, 4615, 4896, 5954, 351812, 4652. 100: 3522, 35241, 35534, 35563, 35564, 35651, 35784, 35786. 25792, 25796, 25842, 25854, 25860, 25878, 25879, 25910, 25914 1, 251108, 251168, 251197, 251398, 251454, 251540, 251613, 251713. **3**51716, **3**51943, **3**52297, **3**52629, **3**52720, **3**52791, **3**52793, **3**52920. 33155, 33312, 635, 1199, 1248, 1526, 1943, 2285, 2448, 2615, 2998, 3784, 4013, 4401, 4797, 5124, 5133, 5215, 5250, 5132, 5725, 5880, 2475, 2545, 3751, 4451. 101: 259, 540, 1688, 2562, 3008, **3207**, 3422, 3466, 3621, 4854, 5622, 270, 1149, 2304, 331975. 102: 3230, 331113, 1094, 1499, 3199, 3287, 3301, 3525, 3641, 4236, 4410, 5077, 5965, 2585, 502, 3282 1, 5038, 103: 39927, **331240**, **33054**, 894, 1095, 1313, 1525, 2105, 2308, 3393, 3435, 3489, 4517, 4641, 4752, 4855, 5175, 1179. 104: 33122, 33162, 28652, 283040, 271, 1264, 1276, 1197, 1674, 1926, 1928, 2104, 2169, 2373, 2943, 2996, 3082, 3200, 3772, 3829, 4437, 4688, 5194, 5937, 6016, 3979, 105; 33128, 33988, 332919, 72, 1035, 1242, 1308, 1382, 1414, 2140, 2183, 2252, 2735, 2991, 3179, 3506, 3520, **3867.1**, 4368.2, 4713, 4951, 4960, 5082.4, 5409, 5500, 5664, 5939. 6012, 332035, 782, 1994. 106: 33431, 331162, 702, 1057, 1077, 1155, 1317, 1932, 2005, 2648, 2931, 3665, 4302, 5165, 5236, 5524, 8570, 5687, 5734, 5891, 1895, 3307, 107; 29460, 29653, 293265, 871, 922, 1436, 1931, 2305, 3077, 3415, 3535, 3930, 4196, 4237, 4807, 5115, 5394, 2782 108: 32022, 32114, 182, 483, 1282, 2011, 2130, 2173, 2227, 2863, 3423, 4051, 4087, 4257, 4434, 4475, 4537, 4730, 5055, 5710, 392002, 250, 2574. 109: 391242, 393251, 298, 1829, 2114, 2367.1, 2583, 2622, 3287, 4058, 4080, 4243, 4368.5, 4913, 4922, 5390, 5616, 3399, 3477, 331078, 2456. 110: **2930**, 2932, 29106, 29221, 29459, 29533, 29726, 29925, 29941, 29978, 351076, 351089, 351172, 351673, 351707, 351728, 352070, 353203, **33333**, 143, 187, 700, 785, 958, 1415, 1709, 1752, 2149, 2168, 2820, 2822, 2919, 3062, 3194, 4272, 4866, 5177, 5499, 5507, 5693, 5732, 5787, 3551, 291976, 2461, 2586, 111; 293334, 947, 1161, 1225, 1295, 1403, 1923, 2300, 2598, 3029, 3164, 3800, 4281, 4455, 4552, 4894, 5094, 5249, 5423, 5795, 945, 4935, 1275, 1397. 112: 2654, 252990, 322, 537, 740, 1212, 1386, 1841, 1921, 2133, 2368, **2665**, 3499, 3607, 5185, 5233, 5400, 5674, 5771. **113**: 905, 1351, 1495, 1795, 1853, 3145, 3395, 3403, 4058, 4214, 5138, 5246, 5671, 6101. 114: 39250, 289, 641, 1193, 2681, 2920, 3063, 3112, 3421, 4580, 4700, 4729, 5129, 2649, 26974, 4465. 115: 25295, 25985, 251032, 251131, 251133, 251614, 251704, 678, 1122.1, 1299, 1312, 1353, 2531, 2560, 2714, 3158, 3425, 3464, 3472, 3604, 4105, 4186, 5039, 5198, 5538, 5715, 6041, 3643.1, 5235, 1287. 116: 333347, 321, 349, 760, 1128, 1186, 1971, 2006, 2110, 2315, 2472, 2595, 3141, 3411, 4077, 4384, 4439, 4453, 4648, 4801, 4901, 5034, 5584, **1271**, **3668**. **117**: **3**5183, **3**5989, 866, 953, 1122.2, 2148, 2466, 2994, 3458, 3608, 3795, 4043.1, 4753, 5325, 4008, 2576, 4774,

1155.1, 1565, 1992, 4293, 5071, 5208, 5903. 118: 352132, 261 1183, 1195, 1214, 1224, 1309, 1383, 1830, 2090, 2187, 2613, 2930 3211, 3629, 3794, 4112, 5123. 119: 21, 1213, 1718, 1788, 3136. 3718, 4469, 4570, 5099, 5126, 5350, 231083, 188, 3884, 571, 1158 120: 3166, 3179, 3274, 3566, 3709, 3820, 3905, 3992, 31135 351715, 352117, 352440, 352504, 352956, 353108, 245, 352, 1125. 1194, 1221, 1265, 1292, 1488, 1930, 2027, 2511, 2527, 2597, 2679. 2746, 3024, 3419, 3447, 3534, 3581, 4110, 4955, 5237, 5252, 5325 1 5406, 5589, 5665, 5714, 33379. 121: 33029, 178, 363, 1130. 1192, 1749, 2307, 2530, 3007, 4762, 4783, 4839, 4900, 5074, 5111. 5454, 5571, 1827, 2007, 39922, 1197. 122: 313.1, 1174.1, 1824. 1877, 2236, 2458, 3503, 3508, 4459, 4818, 5116, 5554, 5980, 8. 2502. 123: 35242, 35979, 81, 947.1, 954, 1122, 1447, 1487, 1833. 1997 3169 3313 3404 3461 5461 5466 3251 4245 124: 32025, 330, 592, 1686, 1878, 2566, 1504.1, 3429, 3618, 4192, 4361. 4477, 4708, 4739, 5062.1, 5465, 5829, 5869, 5947. 125; 33172. 2656, 26705, 26716, 26904.2, 263048, 836, 1311, 1502, 2077, 2170. 2535, 2593, 2731, 3166, 3429.1, 3448, 3510, 3536, 3782, 4123. 4128, 4749, 5117, 5598, 5804.1, 5841, 6096, 6136, 5613. 126: 3531, 521, 697.1, 808, 1348, 1672, 1689, 2877, 3139, 4063, 4274, 4461, 4805, 5114, 5728, 5930, 1279, 861, 3465, 5281. 127: 33152, 33706, 331658, 332116, 1203, 1222, 1358, 1999, 2224, 2661, 2750, 2916.1, 3217, 3504, 3585, 3938, 4135, 4539, 4677, 4796, 4799, 5428.1, 5497, 5505, 1190, 2141, 128; 351665, 291, 463, 1108, 1710, 2211, 2416, 2693, 3463, 3485, 3839, 3881, 4009, 4355, 4681, 5712, 4286, **129**; 352606, 636, 761, 872, 1387, 1783, 2093, 2220, 2601, 2674, 3059, 3167, 3431, 3437, 3934, 4249, 4301, 4420. 4744, 4806, 4961, 5096, 5340, 5621, 1260, 5204, 4216. 130: 324, 23178, 23848, 231181, 232303, 232676, 104, 634, 1607, 1826, 1842, 1910, 1933, 1972, 2070, 2072, 2109, 2839, 3045, 3374, 4021, 4695, 5070, 5101, 6035, 6063, 574, 680, 2566.1, 3095, 2431. 131: 1038, 1244, 2000, 2493.1, 3026, 3397, 3602, 4289, 4755, 5102, 5415, 5794, 5864, 6051, 2699, 3459. 132: 33140, 33646, 331255, 906, 1682, 2176.1, 2324, 2563, 3030, 3058, 3140, 3424, 3838, 4369, 5534, 5741, 5886, 4923, 4936, 55. 133: 3369, 326, 867, 975.1, 1226, 1681, 1683, 2612, 2673, 3012, 3072, 3075, 3256, 3496, 4234, 4334. 4468, 4623, 4728, 4811, 5157, 3087, 5551. 134: 899, 1180, 1278, 1354, 1419, 1504, 2860, 3073, 4454, 4699, 5515, 5539, 5908, 6126, 1498, 1825, 1952, 4651. 135: 35986, 630, 904, 1070.2, 1461, 1462, 2180, 2215, 2371, 3027, 3420, 3449, 3528, 3716, 4485, 4497, 5275, 5456, 5612, 5615, 360. 136: 862, 1144, 1400, 1891, 2999, 3282.2, 4052, 4687, 4826, 5188, 5225, 5527, 5700, 5723, 5890, 5934, 5388, 5105. 137: 1058, 1344, 1360, 1669, 2600, 2730, 3014, 3031, 3161, 3501, 3797, 4313, 4335, 4925, 5098, 5403, 5445, 6094, 1925, 2228. 138: 454, 1137, 1361, 1711, 2146, 2652, 3442, 3513, 4704, 5952, 5997, 6025, 5995. 139: 1071, 1823, 3176, 4781, 4808, 4904, 5596, 5746, 1481. 140: 35583, 35728, 35907, 35987, 351074, 351106, 231136, 231396, 233201, 638, 1147, 2078, 2264, 2536, 2845, 2875, 3380, 3515, 3616, 4358, 4920, 5058, 5078, 5417, 5597, 5935, 5996, 6005, 1420, 5130, 5774, 1860. 141: 138, 551, 572, 1355, 1951, 2024, 2025, 3178, 3377, 3672, 3711, 4054, 4367.3, 4568, 4952, 5088, 5095, 5114, 1898, 3102, 142; 3539, 3803, 351254, 352988, 98, 1563, 3032, 3344, 3719, 4015, 4426, 4479, 5288, 5339, 5558, 6020, 5027, 1982. 143: 39931, 391142, 391451, 391868, 1401, 2268, 2680, 3373, 3502, 3505, 3771, 4229, 4276, 4654, 4675, 4748, 4959, 39496, 5309, 1818, 39444. 144: 39471, 39981, 391864, 781, 1274, 1673, 1676, 1907, 2529, 2541, 3113, 3138, 3696, 3887, 4462, 4766, 5319, 5479, 5873, 2214, 2689. 145: 336, 889, 1238, 1668, 2074, 2088, 2876, 3408, 3436, 3492, 3841, 4422, 4811, 5069, 5118, 5414, 5548, 6075. 146: 33269, 308.1, 869, 1677, 2948, 3275, 3281, 4200, 4644, 5697, 5708, 14, 1979, 4472, 33170. 147: 332135, 1223, 1799, 1831, 2135, 2565, 2626, 3490, 4133, 4817, 5399, 5541, 5595, 5868, 1897, 2692, 5628. 148: 633, 1145, 1280, 1398, 1406. 1845, 2602, 3187, 3500, 3831, 4518, 4548, 4692, 4732, 4865, 5112, 5427, 5933, 873, 149: 351536, 2517, 2656, 4259, 4605, 4942, 5104, 5634, 6069, 6074, 3674, 57. 150: 39159, 39161, 39454,

2540, 3541, 3885, 3965, 391090, 391183, 391625, 391942, 391961. \$2009. \$2026, \$2043, \$3032, \$3111, 53, 114, 305, 542, 1503. 1678, 1796, 1802, 1939, 2516, 2728, 2932, 3011, 3210, 3248, 3611. 3624. 3886.1, 4074, 4382, 4538, 4738, 4784, 5026, 5076, 5990. 6031, 6078, 2556. 151: 35137, 1562, 2734, 3426, 4141. 152: **30.217**, 70, 219, 575, 1451, 1524, 1846, 2138, 2308.1, 3475, 3559. 3675, 3888, 4199, 4227, 4486, 4607, 4671, 4819, 5145, 5239, 5899 2607. 153: 3899, 437, 1037, 1379, 1507, 1748, 1798, 2623, 2780 3089, 3196, 3623, 4055, 4086, 4183, 4668, 4830, 5494, **164**: 433 1362, 1589, 1684, 1685, 1841, 2012, 2150, 3061, 3531, 4504, 4754, 5247, 5620, 5902, 1817, 1973, 5676, 1861. 155; 34, 425, 1530. 1927, 2418, 2651, 4309, 4525, 4566, 4731, 4954, 5028, 1, 5317, 5523 **156**: 853, 1189, 1452, 1938, 2749, 3117, 3440, 3479, 4146, 4189. 4237, 4446, 4494, 4564, 4565, 4934, 5473, 5512, 5655, 5831, 5973, **6017**, **2226**, 3876. **157**: 35912, 884, 1061, 1310, 1384, 3086, 3282, 3840, 4057, 5139, 5187, 5217, 5525, 5971, 5999, 158; 362, 1435 1464, 1585, 1696, 3491, 3980, 4310, 4750, 4785, 5302, 6046. 159: 577, 819, 1363, 2013, 2654, 3104, 3516, 4142, 4367.1, 4811, 5084, 5650, 5909, 296, 1032. 160: 3885, 331080, 331127, 331132, 331395, 331612, 331947, 333302, 36, 309, 637, 1508, 1786, 3025, 3068, 3114 3186, 3203, 3578, 3646, 4029, 4075, 4201, 4311, 4331, 4367.2 4562, 4867, 5568, 5575, 5906, 5950, 5960, 5977, 6000, 6088, 5103, 2691. 3379. 5491. **161**: 64.1, 308, 777, 900, 1129, 1424, 1460, 1579, 2209, 2265, 2321, 2370, 2428, 2790, 4071, 4244, 4354, 4456, 4478, 4596, 4705, 5457, 5477, 6059, 3880, 162; 3980, 32992 499, 923, 1142, 1881, 2080, 2700, 3205, 3433, 3430, 3843, 4553 4610, 4678, 4745, 4995, 5238, 5421, 5726, 2675, 5401, 163; 82 1784, 1785, 1838, 2313, 2698, 2729, 3103, 3118, 3553, 3949, 4222, 4656, 4751, 5251, 6068, 5100. 164: 868, 1240, 1528, 2010, 2141. 3177, 3487, 4037, 4185.1, 4747, 4773, 5086, 5186, 5213, 5511, 5874. 6084, 1816, 35480, 1034, 5573, 5613. 165: 3581, 35735, **33926**, 353, 434, 1141, 1364, 1404, 1425, 1717, 1849, 1998, 2260, 2540, 2621, 3142, 3288, 3560, 3885, 4164, 4240, 4303, 4714, 4803, 5240, 5426, 5867, 5932, 6021, 5796, 166; 1505, 1815, 3148, 3632. 4365, 5212, 5927, 1751. 167: 33292, 333146, 1913. 2019. 2106, 2193, 2603, 4481, 5498, 5542, 5577, 32980, 1864, 4716, 5901. **168**: 331221, 332949, 1115, 1485, 1675, 1675.1, 2372, 2657, 2828, 3093, 3486, 4496, 5329, 5561, 1143, 169; 35774, 1290, 1605, 1797, 1914, 2188, 2549, 3605, 3609, 4028, 4474, 5081, 5144, 5540, 6127. 170: 33175, 33248, 33288, 3359, 3929, 331079, 331220, **33**1610, 436, 639, 776, 1200, 1239, 1446, 1486, 1977, 2467, 3441, 3521, 3533, 3612, 3954, 4646, 4653, 4667, 4767, 4943, 5171, 5172, 5196, 5330, 5659, 5790, 5818, 6022, 6042, 1416, 2079, **171**; 297, 438, 523, 1583, 2489, 2755, 3488, 3647, 4188, 4255, 4574, 4872, 5352, 5651, 5718, 5798, 6032, 1256. 172: 2235, 2609, 4230, 4809, 5469, 5648, 5652, 5668, 1273, 5508, 5578, 2604, 39226, 2544. 173: 76, 3232, 4143, 4190, 4291, 6030, \$3011, 5271, 174; \$31219, 1394, 1671, 1776, 1840, 2075, 2213, 3707, 3845, 4427, 4482, 4498, 5180, 5207, 5298. 175: 388, 3678, 331198, 331209, 331313, **33**1618, 501, 903, 2210, 2266, 2378, 2476, 3206, 3409, 3527, 3625, 3830, 4356, 4368.9, 4369.1, 4534, 4546, 4820, 4829, 4873, 5082 2, **5489**, **5511**, **5562**, **5657**, **5701**, **5747**, **5797**, **176**; **650**, 2369, 3106, 3376, 3511, 3842, 5242, 5267, 5744, 5912, 1981, 2587. 177: **3**31346, 1836, 2659, 2752, 5572, 5777, 5291, 6139, 2611. **178**: **28**164, 200, 1124, 1148, 1285, 1577, 1911, 2605, 3514, 3541, 3832, 4027, 4265, 5269, 5278, 5535, 5547, 5645, 5711, 5783, 5785, 6104, 1953, 5724. 179: 549, 567, 1835, 2660, 3846, 4656 1, 4877, 4910, 4956, 5826, 6125. 180: 35504, 35544, 35565, 3645, 35906, 35916, 3950, 391126, 391166, 391195, 391554, 393143, 393288, 703, 1198, 2260.1, 2422.2, 2512, 3023, 3378, 3386, 3896, 4215, 4717, 5314, 5549, 5658, 5660, 5666, 5945, 6076. 181: 1188, 2433, 2485, 2599, 3105, 3181, 4014, 4554, 4614, 5320, 5395, 5519, 5546, 5581, 5885, 6137, 2534, 5245. 182: 35519, 351182, 58, 503, 1879, 3495, 3579, 3837, 4878, 5042, 5090, 5530, 5649, 5946, 5949, 6131. 183: 71, 2132, 2547, 2606, 3430, 5248, 5430, 5627, 5905, 5928, 6175, 1974. **184**: 3849, 679.1, 767, 1182, 1448, 2546, 2794; 4556, 4929, 5803,

6082, 2616. 185: 29370, 92, 629, 1586, 1661, 1882, 1915, 2426, 3108, 4030, 4134, 4825, 5107, 5137, 5463, 5559, 5631, 5998, 6002, 6029, 1266, 186; 3397, 33304, 550, 1777, 2184, 2526, 2990, 3626, 3644, 4396, 5889, 6050, 6122, 1975, 5175. 187: 94, 840, 1781, 2076, 2270, 2374, 3869, 4428, 4711, 5109, 5228, 5925, 6018, 6085, 3111, 3483, 4598, 5742, 5493. 188: 3023, 301201, 1120, 1284, 1359, 1750, 2186, 2417, 4111, 4198, 4911, 5232, 5591, 5778, 5784, 6119, 1820, 299, 189; 147, 8049, 3064, 3526, 3698, 4424, 4501, 5046, 5331, 5428, 5467, 5516, 5564, 5788, 5793, 5898, 3407, 3582. 190: 39256, 38639, 39720, 39721, 391589, 391604, 393023, 33206, 33209, 818, 1121, 1624, 1789, 1900, 1940, 2435, 2459, 2989, 3020, 3518, 4056, 4078, 4217, 4277, 4423, 4541, 5136, 5495, 5842, 6019, 191; 251869, 253291, 1429, 2375, 2421, 2479, 2808, 3084, 3645, 3871, 4073, 4593, 4631, 4722, 5125, 877. 192; 3880, 707, 2630, 5234, 5299, 5792, 5931, 6138, 5106. 193: 3930, 251, 265, 768, 944, 988 1, 1060, 1892, 3042, 4107, 4202, 4875, 5268, 5303, 5435, 6038, 5563. 194; 351649, 351797, 351895, 1779, 2373.1, 3375, 3476, 4430, 4659, 4679, 4821, 5226, 5337, 5413, 6070. 195: 331180, 331555, 333234, 709, 876, 2917, 3088, 3162, 3384, 3445, 4357, 4421, 4526, 4535, 4633, 5050, 5113, 5276, 5026, 5844, 5929, 5957, 6003, 6049, 6067, 6135, 263298, 196; 1780, 3873, 1221, 5189, 4136, 201137, 201253, 535, 2287, 2528, 3051, 4463, 5420. 198; 35134, 976, 994 1, 1459, 1472, 1778, 1884, 2225, 3293, 3446, 3770, 4193, 5315, 5372, 5839, 5921, 5265, 6116. 199: 3686, 31194, 31218, 2020, 2376, 4059, 4601, 5419, 5424, 5624, 5681, 5698. **200**: 38185, 38945, 38958, 38984, 381192, 381237, 381605, 381860, 280, 461, 1228, 2018, 2022, 2026, 2550, 2923, 3039, 3067, 4367.5, 4669, 4694, 4706, 4937, 5312, 5458, 5476, 5510, 5566, 5580, 5623, 5782, 5989, 6061, 6120, 6129. **201: 3**91196, 1775, 1834, 2438, 2554, 3040, 5326, 5614, 2014, 1983, 4547, 4394. 202: 901, 1402, 1837, 2465, 3868, 4944, 5211, 5425, 5447, 6141. 203: 1787, 2260 2, 2631, 2655, 3046, 3385, 4810, 4932, 5273, 5304, 6066. 204: 2016, 2460, 3529, 3530, 4555, 4600, 4612, 4905, 5127, 5433, 5496, 6098, 1819, 6073, 4948. 205: 35169, 35772, 351125, 353211, 353290, 599, 1839, 3554, 3635, 3866, 4231, 4368.1, 4487, 4719, 4938, 5036, 5270, 5274, 5328, 5594, 5821, 5884, 6039. **208**: 33716, 332937, 640, 676, 1405, 1584, 2017, 3085, 4191, 4489, 4871, 4936.1, 5294, 5296, 5586, 5727, 5737, 5838, 5849, 6071. 207: 207, 2610, 2628, 3271, 4597, 4622, 4682, 4898, 5048, 5305, ...396, 5529, 5892, 253293, 1722, 5443. 208: 251188, 440, 977, 2608, 3083, 4611, 4680, 5091, 5214, 5327, 5733, 5786, 6004, 6108, 333024, 3901, 4619, 5035, 5887. 210: 33118, 331184, 352707, 352948, 353303, 174, 486, 704, 1337, 2323, 3094, 3828, 4083, 4145, 4397, 4464, 4471, 5197, 5289, 5351, 5434, 5441, 5446, 5528, 5865, 5953, 5958, 3900, 4341, 33770. 211: 331677, 544, 2945, 3033, 4604, 5082.1, 6034, 6102. 212; 35685, 351217, 353232, 1373, 2259, 3294, 3693, 3909, 4290, 4621, 4990, 5131, 5588, 5706, 5743, 6099, 6159. 213: 351208, 353213, 353326, 1866, 2015, 2733, 2947, 3556, 3964, 4295, 5509, 5707, 5969 214: 3889, 351189, 331624, 1801, 2274, 2437, 2557, 5316, 5809, 2243, 5641. 215: 23775, 23990, 231216, 233103, 1281, 1609, 2377, 2624, 2625, 2747, 2806, 3673, 4232, 5680, 5871, 6023, 6079, 6153, 39490. 216: 3021, 3438, 3517, 3910, 4114, 4663, 4684, 5683, 5699, 5775, 5970. 217: 332529, 33301, 435, 831, 854, 1062, 2436, 2798, 2946, 4254, 4881, 5132, 5629, 6037, 6087, 6163, 1976. 218: 3320, 331105, 331186, 3047, 3405, 4441, 4649, 4879, 5209, 5452, 5503, 5590, 5647, 5705, 5836. **219**: 352527, 1421, 4031, 4457, 4625, 5536, 6170. 220: 33153, 33968, 331028, 331205, 331213, 331215, 332726, 354, 1288, 1426, 1531, 1623, 1848, 1906, 2023, 2101, 2440, 2551, 3402, 4170, 4606, 4673, 4718, 4775, 4864, 4957, 5082.3, 6142. 221: 3959, 391803, 2732, 3773, 4316, 4617, 5544, 5883, 391490, 1126, 2429, 4252, 5191, 5290, 5979. 23: 1070.1, 5040, 5080, 6032.1, 352686, 554, 1680, 2273, 3041. 225: 35317, 35928, 353210, 353214, 1114, 3202, 4081, 4530, 4691, 4840, 4944.1, 5181, 5398, 5487, 5684, 5888, 35516. 226: 35517, 74, 708, 1110, 1903, 3097, 3432, 5079, 5630, 5987. **227**: 352762, 317, 2021, 2450, 3017, 3538,

4483, 5192, 5780, 25638. 228: 251190, 251212, 1896, 1909, 2244, **2482**, **2566**.**2**, **3234**, **3610**, **4685**, **5182**, **5297**, **5439**, **5926**, **6052**, **6148**, 1474, 1493, 4876, 6083. 280: 33165, 33299, 33316, 33895, 331060, **253296**, 527, 878, 1800, 1828, 1912, 2430, 2754, 3443, 3853, 4613, 4890, 5462, 5468, 5654, 5685, 5736, 5791, 6092, 231: 59, 3555, 4768, 5062, 331680, 1139, 1140, 1345, 4599, 5636, 5661, 5910, 5956. 283: 33424, 241, 1492, 4016, 4194, 5056, 5703, 5713, 1670, 3552, 3557, 4312, 4945, 5914, 5986. 235; 391211, 392502, 392763, **283299**, 260, 610, 1076, 1598, 1782, 1908, 2449, 3270, 3444, 4085, 4500, 5089, 5333, 6001, 6053, 6124. 236; 331214, 332608, 4657, 5552, 5599, 5907, 29804, 29894, 291200, 1075, 1902, 2701, 3451 3743, 4224, 4490, 4660, 4712, 5293, 5716, 35254, 5041, 238; 36758, 1338, 2107, 2439, 3043, 3450, 4154, 4524, 4696, 4812, 4910. 5994, 6168, 2245, 2486, 4256, 5227, 5663 240: 331033, 331804, 839, 1399, 1578, 3050, 3066, 3204, 3723, 4429, 4608, 4664, 4666, **5033**, **5272**, **5455**, **5776**, **5914**, **5982**, **5983 241**: 3274, 3613, 4035, 4294, 5416, 5900, 1862, 352984, 494, 5451, 5600, 5669, 6115, 1899, 706, 1514, 4084, 5190. 244; 2483, 4616, 5259, 6077, 4211, 25184, 251187, 565, 2443, 3185, 5474, 5632, 5804, 5896, 246; 493, 705, 3298, 3636, 4022, 5060, 35487, 1679, 3106, 5203, 5343, 5822. 248: 331674, 332674, 333297, 904.3, 1901, 3572, 5670, 6143, 3482. 250: 25380, 25884, 25916 1, 251130, 251202, 251207, 251210, 251711, **33059**, **33102**, 541, 2422, 2446, 2477, 2627, 3109, 3965, 4040, 4181, 4569, 4715, 4880, 4946, 5051, 5075, 5206, 5677, 5679, 5701 **5820**, 6040, 6062, 5656, **251**; 392134, 1539, 1847, 4571, 5264, 351073, 352689, 351199, 352935, 3110, 3720, 4364, 4683, 4693, **5709**, **6006**. **253**: 352754, 1093, 1374, 1529, 5047, 5964, 35173, **28**1129, 1146, 1771, 3178, 6089, 6158 **265**: 282021, 557, 1408, 2422.1, 2444, 4618, 4926, 6161, 3872, 391203, 547, 995, 1523, **2658**, 3018, 4527, 4638, 4642, 4737, 4931. **257**: 2420, 2792, 3292, **4502**, **5807**, **6117**, **609**.1, 1625, 1904, 3512, 4124, 5045, 5277. **259**: 3593, 35898, 351204, 1920, 3381, 5567, 35891, 351486, 353311, **682.** 1575, 3946, 4315, 4822, 4869, 5300, 5323, 5338, 5702, 5843, **5895**, **6172**. **261**; 2451, 5460, 5504, 5696, 4167, 4634, 4933, 5972. **3452**, **3862**, **5324**, **5488**, **5506**, **5442**, **265**; **391896**, 875, 2552. **3209**, 5322, 5517, 5913, 391193, 1883, 2791, 4602, 4690, 4909, **268**: 4251, 4963, 5642, 6037, 3280, 3434. **270**: 35722, 35904.1, 3982, 331173, 332761, 679, 2445, 2817, 3019, 3382, 3796, 4197, **4674**, **5401**, **5518**. **271**: **392704**, 4949, 5513, 2151, 4246, 4629. **5295**, **5911**, **6154**, **33282**. **273**: **331475**, 1068, 2521, 4884, 5513. **5537**, 5866. **275**: 331675, 331729, 332687, 532, 1708, 3480, 4025, 4874, 4882, 5032, 5556, 5619, 6155. 276: 35224, 351678, 35883, **25**1679, 251191, 3691, 4314, 6097, 2690. 280; 2591, 25642, 25828, 351880, 352532, 352906, 353193, 1380, 1707, 2102, 2108, 3721, 4036, 4628, 4870, 5307. 282: 351342, 4603, 6036, 3208, 3484, 382115, 4488. 285: 766, 1521, 2620, 1620, 4662, 4862, 4888. 5585, 5863, 5936. 286: 1471 1, 1491, 3052, 4182, 5448, 5464 **28319**, 573, 282971, 1455, 1494, 1773, 2488, 4861, 4060, 4615, 231128. 290: 23223, 23228, 23896, 23954, 232590, 1109, 1706. **2158**, 3090, 3294.1, 4626, 4689, 5672, 5748, 5811, 6055, 1059. **292:** 35283, 352983, 3481, 4630, 1113, 2793, 4860, 485, 552, 780, 1705, 2823, 3053, 3222, 3848. 297: 32958, 5318, 3225, 1069, 1980, 5806, 2152. 300: 325, 3229, 3272, 3549, 3550, 3691. 38794, 38823, 381056, 381749, 381915, 382682, 382706, 383194, **383195**, 1106, 1407, 2442, 4887, 5023, 5502, 5550, 5686, 5721, 5834, 5943, 5981. 302: 3882, 4624, 4643, 5064, 381879, 1289, 4863, 1107, 1475, 2487, 5882, 39271, 5976, 391993, 392705, 5817 **310**: 39227, 391818, 393221, 1385, 4185, 4253, 4635, 4889, 5975, **32**952, 4886. **315**: **36**17, **3**3309, 1069.1, 6133, 6161, 1346, 4891, **3**2668. **320**: **33**15, **3**3495, **3**91111, **3**52815, 1427, 2702, 3586, 4665, 4885, 5030. 321: 331474, 332170, 1905, 2447, 332756, 331746, 6060. 330: 2480, 4594, 4595, 4627, 4636, 5022, 5029, 5722, 5082, 39715, 888, 2153, 39711, 392960, 564, 340; 3966, 36710, 38869, 2157, 2703, 4661, 4686, 5024, 5031. 350: 3561, **33844**, 331245, 32790, 333106, 1112, 3022, 5819, 33684, 4438, **25**3359, **25**182, **25**3051, **360**: **25**1859, 4883, 5695, 25749, 879,

\$1836 \$2922, \$2925, 1411, \$543. **380:** \$92, \$2917, 2704 32679, 331785, 38832, 332623, 2155, 332811, 5028, 33752, 33101 400 - 3657, 32923, 32939, 32959, 33015, 33190, 33279, 1409 2156, 3548, 392446, 2154, 39713, 392503, 393310, 39310, 109 420: 33289, 3939, 33238, 331777, 3696, 33202, 331062, 331837. 35742, 351058, 35322, 35703, 352103, 353022, 353237, 351075, 352685 3753. 32615. 3704. 450: 382, 32602, 31779, 3867, 31059. 392947, 39700, 393300, 392744, 39562, 392933, 391140, 391835, 391036, 480: 391757, 391086, 392675, 391061, 392104, 39948, 25940. 500: 2594. 25529. 25616. 251244. 251710. 253130. 25699 32505, 32105, 33174, 33175, 3535, 3300, 32610. 550; 3296. 3859, 32788, 331064, 33117, 32928, 332257, 332836, 332773. 23193, 231778, 23825, 23880, 232458, 23328, 575; 232244, 231163. 352029, 35829, 351088, 352077, 35303, 352531, 353168. 600: 25861, 253280, 25542, 253006, 25302, 25951, 252973, 25301, 252821 352605, 352711, 352634, 353292, 625; 35326, 352063, 35304. 331984, 35707, 353287, 352373, 353167, 353205, 352442, 3581, 353284. 650: 351268, 351963, 352680, 351068, 352841, 35279, 352911. 675: 352233. 352496. 352080. 352601. 352831. 353200. 352833, 35324, 352039, 351017, 352820, 35536, 352824. 700: 391275, 392136, 392822, 392832, 392829, 39327, 392131, 392162. 33197, 33665, 332908, 331773, 725; 332599, 332924, 332238, 3757, 32513, 32909, 32847, 3664. **750**: 32907, 33158, 32677, 33172, 3692, 351154, 353196, 352239, 35663, 352921, 351873, 35788, 32236, 331153, 32926. 775: 331042, 332748, 33503, 332849, 382024, 393161, 391543, 391775, 391642, 391541, 800: 39567, 39810, 391247, 391440, 391744, 392837, 393171, 39576, 392671, 32965, 32974, 32893, 32008, 3307, 3669, 33349, 3568. 825: 31066, 331004, 331018, 32628, 33224, 32654, 331631, 32509, 331979, 331087, 331772. **850**: 331041, 33528, 331265, 332745, 3309, 3572, 32616, 3501, 3579, 32584, 32838, 32604, 35747, 253131. 252438. 252777. 875: 251838. 251839. 251243. 25499. 351070, 352918, 352692, 35524, 352975. 900: 35780, 35857. 352253. 352656, 351959, 35937, 35560, 353115, 353116, 352487, 351939, 35571, 353129. **950**: 351246, 351669, 351774, 351072, 352161, 32441, 32500, 32846, 331564, 32002.1, 32262, 33100, 33013, 3557, 352670, 353017, 35570, 353267, 352716, 351385, 351567. 1000: 3836, 32598, 32852, 32588, 32507, 33305, 3569, 3789, 331384, 332645, 333132, 331862, 33843, 333014, 33577. 1050: 392863, 392587, 393215, 39558, 392938, 391668, 392776, 392003, 332967. 1100: 33824, 33956, 331223, 331593, 331870, 332360, 392379, 392486, 392865, 392174, 391374, 391561, 39970, 39552, 351694, 35957, 352488, 35587, 352334. 1150: 353138, 35573, 391571, 391851, 39553, 391572, 393139, 392035.1, 391976.1, 391651, 392141, 392437, 391348. 1200: 392313, 392644, 392354, 391850, 392263, 39765, 39876, 39877, 393283, 391407, 392646, 392275, 391317, 351518, 351314, 352499, 351372. 1300: 351319, 352380, 351519, 331581, 332589, 331316, 332597, 331318, 331978, 331520, 331845, 392712, 392966, 39947, 391957.1. 1351: 391846, 392235, 392431, 32663, 32659, 32427, 331517, 32130. 1400: 32660, 331325, 32125, 331333, 332559, 332355, 33811, 332248, 332561, 332394, 351424, 352430, 351801, 351071, 352323, 352426. **1500**: 35858, 35812, 351795, 352860, 352274, 352392, 351337, 352270, 352315, 391406, 392404, 392400, 392175, 391334, 392451, 392472, 392521, 32538, 32410. 1600: 32391, 32557, 32267, 32273, 33447, 331258, 332850, 331621, 33343, 332266, 332537. 1700: 332600, 3340, 32393, 32544, 32328. 1800: 331904, 331393, 33755, 391619, 392177. 1900: 391590, 392494, 391743, 391977, 391763, 391858, 392318, 392222, 391877. 2200: 392109, 391724, 392283, 391821, 391663. 2400: 391725, 392100, 391945, 392434, 391662, 39483, 392232. 2700: 39473, 391689, 391767, 392099, 392128, 39456, 331690. 3000: 33461.

II. BOILING POINTS

-192: 3337, 54, 3595, 35345, 180, 351813. -95: 35204, 35465, 3597, 252, 35195, 369, 115, 35351, 44. -75: 35205, 3517, 35350,

M198. 3841. 38125, 145, 38263, 38265, 38485.5, 112. -48; 17.1. 1 409. 500, 368, 367, 35206, 3573, 3526, 3587, 408, 35102, 232, 337. -30: 353, 3364, 338, 263, 41, 31, 35, 95. -18: 686, 3989 ₩349. ₩346, 13, 153, 73, 49, 781.2. -10: ₩38, ₩213, 65, 684 3130. 596. 3141, 99, 384. 0.6: 781.1, 685, 3371, 64, 474, 398 526. 40. **5:** 35131, 687, 35339, 310, 282, 63, 508, 35365, 9, 1074 10: 3340, 209, 224, 331814, 683, 42, 7, 33149, 148, 283, 331811. 243. 598, 595, 384, 381672. 20.1: 985, 208, 162, 52, 980, 3896. 374. 1.1, 294, 295, 22, 1072, 597, 39466, 921. 31; 39404, 569, 213. 20142, 113, 983, 20366, 525, 916, 615, 793, 273. 35; 201646, 716, 278, 279, 373, 272, 1073, 982, 469, 29105, 220, 986, 794, 613, 40: 920, 28, 984, 539, 915, 530, 981, 1611, 286, 23101, 313, 880, 45. 172. 913, 823. 44: 402, 513, 918, \$39, 375, 490, \$3797, 461, 715, 468. 47: 3399, 331149, 132, 365, 524, 447, 979, 1716, 50: 881, 146, 749, 914, 351509, 154, 356, 520. 53: 3347, 479, 276, 529. 1050, 1087, 451, 55: 218, 164, 237, 824, 917, 448, 25111, 57: 489, 452, 189, 33352, 1712, 3355, 1618, 228, 169, 465. 60: 397, 519, 1534, 1715, 364, 133, 318, 718, 19, 1086, 3, 586 62: 27. 612, 1049, 357, 822, 89, 301, 1714, 3776, 1610, 891, 801, 4, 60 65: 50, 323, 800, 1616, 3372, 517, 773, 813, 1613, 1001, 68: 287. 518, 748, 821, 1742, 747, 1713, 3559, 1533, 420. 70: 2277, 1617, 1088, 464, 366, 728, 155, 1532, 25469, 234, 112.1, 1615, 1619, 744, 33207, 10. 74: 231, 158, 3342, 772, 1003, 118, 717, 83, 323.1, 820, 1048, 149, 12, 725. **78**: 3513, 746, 1102, 262, 1468, 331515, 2394, 3358, 332, 396, 719, 1365, 726, 80; 3348, **3376**, 165, 378, 752, 925, 1738, 2333, 624, 1466, 1469, 531, 2393, 81: 130, 758, 727, 1612, 358, 168, 277, 1535, 506, 792. 83: 623, 1252, 1537, 190, 2387, 47, 1536, 1761, 2325, 1632, 798, 117. 85; 576, 812, 825, 1366, 1470, 1045, 33109, 1328, 33468. 87: 222, 417, 669, 1008, 2388, 201810, 77, 106, 625, 811, 759, 1739, 217, 1253. **89**: 226, 1021, 1091, 1741, 462, 476, 1547, 1764, 458, 2390, 134, 331815. 91: 670, 1101, 1740, 743, 1737, 742, 814, 17.4, 68, 122, 290.1, 652, 2391, 1002, 1019. 93: 171, 210, 332.1, 837, 1007, 1065, 2276, 2392, 1496, 1631, 1544. 95: 383, 1100, 2334, 33390, 3918, 418, 334, 335, 446, 1015, 395, 505, 2331, 26. 98: 161, 203, 751, 810, 2326, 107, 1016, 2389, 173, 2329. 99: 643, 1064, 2332, 1017, 1044, 791, 938. 100: 331, 3372, 33455, 332010, 332044, 33, 195, 1261, 1418, 1690, 4013, 4333, 37, 2330. 101: 642, 302, 741, 1020, 1005, 1006, 1081, 48. **102**: 496, 651, 1656, 1746, 2281, 1018, 475, 2866. 103: 390, 2284, 2328, 391, 233, 1004, 181, 3377, 614, 1099, 121, 85. 105: 35128, 3530, 35870, 135, 937, 1046, 1047, 2283, 1043, 1054. 106; 39215, 192, 588, 2240, 2278, 1630, 254, 1014, 2943, 568, 1699, 2279, 39210, 790. 108: 108, 137, 166, 668, 695, 816, 2238, 965, 735, 1042, 2933, 2935. 110: 3619, 351822, 183, 284, 522, 2510, 2239, 123, 35467, 495, 2112, 2275, 1760, 2944. 111: 2282, 1660, 1655, 1629, 2413, 1694, 1653, 11, 967, 1650, 2280, 23103, 23382, 159, 100. 114: 714, 1082, 1085, 2057, 2241, 2934, 2938, 35488, 414, 1637, 999, 242. 115: 239, 355, 663, 1193, 2942.1, 870, 908, 1080. 116: 337, 67, 110, 205, 590, 660, 2058, 2937, 587, 998, 926, 2936, 1658, 334. 117: 300, 379, 2059, 2414, 2871, 756, 789, 1640. 118: 35233, 35798, **351714**, 274, 563, 667, 307, 711, 1084.1, 1097, 2111, 2940, 4386, 212, 2327, 1652, 2942. 119: 177, 533, 1639, 1700, 2494, 2382, 895, 1084. 120: 351825, 347, 488, 827, 1733.1, 2452, 2891, 1755, 2873, 755, 2825, 2869, 939, 90, 2364. 121: 377, 1011, 1635, 1733, 2237, 2975, 1654, 1634. 122: 33266, 33426, 1725, 2974, 1734, 775. 123: 387, 2874, 3048, 1659, 1649, 2345, 2868, 1763. 124: 562, 927, 1636, 1662, 2827, 712, 713, 512, 2941, 2355. 125: **39232**, 39436, 236, 419, 578, 896, 1053, 2824, 2872, 17, 1026. 126: 340, 470, 1096, 1701, 266, 1651. 127: 33250, 367, 608, 754, 1638, 1657, 91, 1040. 128: 966, 1083, 1443, 1727, 1762, 1769, 2363, 2384, 2870, 745, 227. 129: 1556, 1633, 1702, 973, 2867, 1098, 1546. 130: 351893, 78, 253, 411, 970, 1212, 2397, 2796, 5350, 1648, 139, 924. 131: 589, 1028.1, 1520, 2354.1, 1558, 1079, 384, **487**, **184**, **1730**. **182**: **38**45, 404, 1691, 2359.1, 2398, 3350, 1307, 176, 3295, 3347, 331147, 2296, 471, 1695, 1732, 2826. 135: 3323,

28164, 119, 571, 1548, 1723, 1726, 2357, 2795, 339, 799, 2362, 534, 2797, 3349. 136: 38, 774, 2347, 481, 35450, 351552. 187: 3580, 385, 628, 929, 1509, 1604, 2976, 3348, 1545, 1511, 2683, 2018, 2686, 1078. 138; 257, 25460, 410, 817, 1510, 1730,1, 2359, 1587, 2985, 969.1, 3272. 139: 3353, 3693, 992, 1557, 2685, 3297, 3351, 626. 140: 35120, 35177, 35378, 35459, 304, 412, 635, 803, 2400, 2410, 2843, 2973. 141: 972, 997, 1756, 2409, 2411, 450, 3353, 358. 142; 721, 1754, 2298, 2412, 2979, 3273, 3808, 2396, 341, 1595, 2354, 2926 143; 910, 2197, 2295, 2453, 3321, 1445. 3352, 1444, 2344, 2902, 2361. 144: 319, 431, 942, 2349, 2684, 3805, 658, 403, 737, 145; 657.1, 697, 989, 2833, 2356, 2415, 146: 191, 275, 449, 644, 782, 968, 1512, 2538, 140. 147: 2929, 3800, 2961, 2353, 3827, 421, 1736, 148: 386, 429, 466, 659, 850, 909, 1052, 1070, 1434, 2401, 3365, 849, 2346, 281752, 2905, 2199. 149: 327, 693, 35284, 2360, 3296, 3323, 2977, 3322. 150: 35237, 3915, 124, 636, 2304, 2348, 2402, 2408, 2915, 3320, 3807, 221, 18 2865, 3354, 594, 161; 1667, 2288, 2957, 3826, 460, 2862, 162; 704, 2299, 2404, 352, 1735, 160, 2964, 258, 153; 3560, 1596, 3223, 815, 3362, 3367, 681, 2358, 329. 154: 33452, 406, 1028, 2954, 2971, 3817, 724, 155; 186, 757, 1482, 2343, 2517, 2836, 2898, 3119, 3212, 3331, 3621, 2419, 2399, 1603, 1728, 2163, 2912. 156: 388, 1051, 1597, 1692, 3372, 3803, 1294, 1767, 2202, 1541, 2904. 157: 753, 2196, 2906, 3727, 3895, 3229, 3963. 158: 691, 833, 2407, 2853, 604, 3937, 3962. 159; 3919, 648.2, 2772, 3369, 3741, 3802, 3904, 2039, 1770, 2381. 160: 35799, 43, 256, 438, 497, 498, 545, 733, 945, 963, 1465, 1687, 3801, 3888, 3995, 3998, 2901, 2952, 2963, 3997. 161: 593, 2289, 2984, 3956, 389, 807. 1627, 2856, 2962, 859, 4001. 162: 33208, 111, 453, 978, 1022, 1718, 1876, 2953, 3224, 3226, 3996, 2040, 142, 969, 2041, 2297, 2405, 3225, 163; 620, 622, 1602, 1765, 2818, 2972, 361, 631, 33472, 723, 2894, 1011, 164; 101, 1593, 2958, 2970, 2987, 3809, 3818, 5213, 2198, 3228, 3894, 165; 39219, 163, 359, 1517, 1563, 1724, 2776, 2983, 3819, 2200, 582, 1588, 1889, 762. 166: 424, 688, 1542, 1543, 1550, 1641, 1757, 1886, 2201, 2878, 2955, 3362, 3368, 4000, 662, 2903, 2928, 2907, 3366, 3999. 167: 3547, 413, 2859, 3333, 3811, 2406, 848, 2911, **168**; 585, **1056**, **2778**, **2893**, 2959, 3717, 3892, 2365, 3960, 1055, 2338, 3334, 3726. 169: 779. 1519, 1572, 2339, 2366, 2854, 2880, 2960, 3958, 2909, 3893, 1430, 3976, 3230, 170; 3974, 391658, 661, 773.1, 826, 943, 951, 1693, 2881, 3340, 3961, 893, 1029. 171: 285, 1518, 2982, 3358, 3816, 3959, 2719, 3363, 2164, 619. 172: 3383, 2, 84, 328, 1572.1. 2722, 2779, 2855, 2858, 2965, 3318, 3327, 3369, 3955, 2910, 4007, 2831, 2896, 1743, 35214. 173: 847, 1230, 1231, 1314, 1559, 2008, 2925, 3367, 346, 950, 174; 103, 422, 689, 1010, 2303, 2342, 2379, 2718, 2774, 2834, 3822, 3993, 3357, 3736, 2885. 175: 331610. 988, 2341, 2468, 3120, 3361, 3725, 3728, 3815, 3821, 3825, 783, 3345, 2403. 176; 331597, 1067.1, 2340, 2890, 3728.1, 3806, 3376, 3902, 2721, 3121, 3227, 1013, 2908, 177: 235, 244, 797, 2837, 3810, 3820, 2720, 3247, 230. 178: 696, 991, 1105, 2773, 2884, 2968, 3330, 2380. 179: 196, 1229, 1569, 1592, 2883, 5317. 2038. 2001, 2290, 2956. 180: 33209, 33508, 331648, 332932, 29, 492, 666, 933, 1561, 1697, 2066, 2895, 2986, 3355, 3724, 4210, 4516, 5052, 5081, 5329. 181: 3515, 185, 1341, 2337, 2951, 948, 2030. 182: 734, 1413, 1608, 2981, 3326, 3730, 3823, 3054, 621, 1888, 2841, 331864. 183: 3381, 170, 423, 2320, 2838, 3731, 3733, 1431, 2032, 2031. 184: 400, 796, 921.1, 1622, 2195, 3858, 1442, 3729, 2924, 3258, 3329, 185; 92, 617, 931, 2888, 3055, 3734, 3824, 5637, 2335, 3891, 3339, 3332, 33470. 186: 202, 381, 674, 1704.1, 2317, 1570, 1389, 2302. 187: 351673, 993, 1012, 1417, 1646, 1933, 2809, 3335, 2770, 2889, 3324. 188: 32112, 351, 928, 1331, 2777, 4165, 151, 1333, 269, 189: 480, 510, 930, 1390, 1804, 2799, 3639, 2887, 4116, 6, 156, 2572, 2641, 605, 3245. 190: 116, 348, 1265, 1489, 1642, 2645, 2988, 3576, 3814, 4006, 4012, 3342, 1571, 3246, 1885, 2160. 191: 371, 2642, 3336, 4407, 4419. 192: 3385, 558, 1499, 1601, 2316, 2318, 2319, 3127, 3244, 3303, 1568, 3337. 193: 33216, 46, 528, 1805, 4166, 3890, 136, 1647, 246.

194: 251894, 600, 1551, 2567, 2756, 2966, 3356, 3986, 4118, 2190. 195: 932, 1296, 2189, 2192, 2386, 2512, 2861, 2862, 3360, 3371, 3732, 3852, 3916, 3961, 109, 4156, 2191, 3189, 2568, 2569, 2590. 196: 1200.2, 1560, 1772, 2050, 2643, 2851, 3302, 3311, 3758, 2203, 3786, 1200 3, 720, 2004, 3304. 197: 806, 1599, 1645, 2724, 3739, 4178, 5083, 5977, 1859, 264. 198: 331, 690, 702, 858, 2310, 3760, 3950, 4906, 2771, 2840, 3915, 936, 3277, 2496, 2309. 199: 606, 2029, 2495, 2640, 3319, 3897, 3914, 2589. 200: 3361, 331812, 556, 591, 740, 771, 1515, 2003, 2314, 2614, 2781, 2852, 3299, 3744, 3844, 3861, 3949, 4117, 5212, 4897, 2206, 2204. 201: 370, 3905, **3906**, **2162**, **2846**, **38491**, **548**, 971, 1643, 2644, 2900, 3305, 3912, **5326**, 4115, 2571, 2161, **203**; **23**1148, 570, 1500, 3575, 2205, 2588, **368**, 3982, 2383, 382, 6082, 882, 1857, 2062, 2505, 2570, 2637, 2897, 2922, 3653, 3740, 3911, 3983, 3904. 205: 39235, 763, 1250, **1251**, **1681**, **1720**, **1856**, **2713**, **3301**, **3306**, **3788**, **3921**, **4385**, **4412**, 2174, 2301, 1606, 3735, 2639, 3882, 2159, 3984. 206: 729, 911, 1067, 1283, 1803, 2635, 2737, 2768, 2769, 4137, 2763. 207; 892, **2636**, **2767**, 3638, 3883, 3918, 3978 1, 4122, 3637, 3881, 3972, **2710**, **1644**, 3341. **208**; 150, 561, 809, 1554, 2434, 2775, 3150. 3903, 3985, 4365.1, 2311, 3992, 1177, 2687, 4121, 4416, 209: 1009, 1552, 3188, 3278, 3860, 3907, 3975, 4120, 3846, 210: **331817**, 87, 1233, 2185, 2917, 3346, 3917, 3924, 3977, 3989, 4413, 3759, 1375, 2267, 1317. 211: 828, 2061, 2814, 2848, 3157, 3978, 4005, 2063, 2706, 3260, 120, 1234, 1089. 212; 35211, 351827, 731. 2261, 2707, 3151, 3235, 3574, 3927, 3928, 3973, 3974, 4155, 3152, 3250, 3470, 2739, 4404. 213; 35356, 473, 482, 1176, 2581, 3128, 3249, 3268, 4130, 3154, 3149, 3901, 214: 511, 1315, 1858, 1964 1965, 1966, 2035, 2506, 2711, 3261, 3926, 3987, 4418, 1349, 2633, 1249. 215: 392931, 975, 1703, 1887, 2741, 2765, 3316, 3364, **3935**, 3936, 3947, 2634. **216**: 760, 852, 1768, 2758, 2764, 3129. 3655, 4010, 4129, 4411, 4132, 2350, 2766, 2847, 3469, 3789, 3133, **2760. 217**: **3**679, 405, 1205, 1316, 1553, 2507, 2716, 2717, 2748, **2759**, **2849**, **3156**, **3263**, **3661**, **4157**, **860**, **2632**, **3923**, **3494**. **218**: 2292, 2575, 2705, 3132, 3834, 3855, 4011, 4366, 4367, 4934, 3265, 1918, 2812, 2819, 3681. 219: 391796, 415, 416, 1175, 1206, 1844, 2127, 2165, 2712, 3236, 3922, 3966, 4175, 2709. 220; 3381, 3800. 97, 126, 315, 316, 761, 922, 1235, 1149, 1704, 2047, 2269, 2821, 3155, 3238, 3676, 3765, 3782, 4254, 4376, 4378, 1480, 5846, 29286, 1870, 2638. 221: 35268, 342, 399, 1204, 2490, 2492, 2714, 2762, **2049**, **4585**, 3678, 3968, 2725. **222**: 238, 372, 2081, 3134, 3262. **3267**, 3967, 311, 2577, 2784, 4161, 2618, 2715, 673, 2351, 2757, **224**: 428, 987, 2216, 2257, 3219, 3763, 3856, 3859, 4176, 5608, 1327. 225: 553, 1794, 2045, 2046, 2134, 2813, 3071, 3131, 3257. 3753, 4089, 4131, 5815, 2708, 3920, 478, 2668, 2927, 188, 226; 2464, 2761, 2930, 3243, 3654, 3677, 3755, 4100, 4171, 4373, 4170, 3679, 3239, 4367.7. 227; 86, 2081, 2294, 4388, 331677, 2255, 3285, 863, 866. 228: 1498, 2051, 3240, 3680, 3683, 4097, 4138, 4172, 3313, 1868, 4177. 229: 2122, 2178, 3286, 3757, 3849, 3908 3942, 4139, 2786, 331802, 1376. 230; 33451, 344, 345, 555, 603. 795, 1092, 1600, 1916, 2042, 2123, 2322, 2579, 3857, 4119, 4147, **5853**, **3660**, **3283**, **3386**. **231**: 1377, 2082, 2688, 3170, 4002. 3598, 5859, 3684, 2454, 3756. 232: 125, 1058, 1872, 1917, 2498, 3685, 4750, 3787, 3662, 784, 3241, 4581. 233: 1744, 1810, 2293, 2864, 3191, 3264, 3663, 3847, 1237, 2503. 234; 1458, 1869, 1871. 2043, 3266, 3863, 4180, 4587, 3591, 157. 235; \$384, 629, 708. 2011, 2033, 2044, 2048, 2049, 2271, 2501, 2522 1, 3173, 3242. 3269, 3656, 3764, 5200, 3769, 3648, 1216. 236; 3659, 4159, 1297, 2931, 1200, 1795, 2525, 2803, 3125, 3190, 3312, 3657, 3784, 3929, **4090**, **4099**, **5021**, **3237**, **2899**, **4367.6**, **3037**, **3752 238**; **265**, 583, 1298, 1758, 1812, 1957, 2083, 3221, 3284, 2120, 1207, 1791, 2523, 3682, 2120.1, 1090, 4088, 2671. 240; 3368, 3519, 351032, **3**81180, **3**91513, 138, 1919, 1924, 2005, 2064, 2115, 2117, 2119, 2457, 2804, 3171, 3690, 3885, 4096, 4547, 5033, 5102, 251797, 1875, 3785. 241: 2125, 2544.1, 2738, 3251, 4368.8, 2052, 1217, 1576, 1955, 2243, 2578, 3174, 3790, 4374, 3098, 4337. 243: 1432, 1790, 2124, 2176, 2463, 2522, 2822, 2863, 3036, 3589, 4038,

4346, 5860, 3941, 1483, 244; 1477, 3070, 4091, 2175, 3592, 1179 32113, 104, 994, 1321, 1414, 1472, 2121, 2126, 2218, 2524, 2541 4039, 4326, 4408, 5066, 3701. 246: 941, 1136, 1137, 1949, 2669 3291, 3767, 4849, 3754, 1318, 1688, 1792, 1873, 2497, 2580, 2740. 2742, 3783, 5896, 2745. **248**: 312, 802, 1811, 2472, 2787, 3590. 3884, 4092, 4098, 4968, 2007, 2244. 250: 805, 901, 1464, 1745. 1956, 2829, 3124, 3748, 4828, 4900, 5259, 4095, 4338, 672, 2666, 3943. **251**: 1322, 1368, 1369, 2217, 3069, 3192, 4283, 5718, 4160. 883, 1320, 1479, 2172, 2646, 4856, 4979, 3548. **253**: 1178, 1291 1793, 2849.1, 3081, 3135.1, 3666, 1236, 1135, 2504, 3328, 4339 4827, 2788, 4140, 3199, 4219. **255**: 3387, 331828, 1502, 2249. 2544.2, 3035, 3220, 3547, 3689, 3793, 3933, 4127, 4363, 3001. 3250. 256: 350, 974, 1173, 1203, 2508, 3005, 3172, 3874, 4048, 4978. 1202. 35254, 1527, 2118, 3931, 3953, 2245, 3028. 258: 1169, 1326, 2099, 2667, 2890, 3455, 3979, 4041, 4282, 4843, 3126, 2723, 2425, 3289, 3709, 4049, 4241, 4415, 4973, 5568, 2585, 2247, 3600. **260**: 178, 565, 730, 861, 1325, 1367, 1822, 2100, 2116, 3214. 3746, 3791, 3836, 3930, 4491, 4500, 4974, 4857, 5005, 5347, 3002, 1959. **261**: 571, 1201, 4045, 4308, 39253, 3004, 3546, 3587, 3593, 3833, 3835, 4345, 4490, 4567, 2801, 1247, 4832, 607. **263**: 1077. 1317, 1626, 1958, 2474, 2586, 3688, 4380, 4976, 1304, 4044, 4093, 4975, 3456, 4279. **265**: 331129, 2253, 2658, 3076, 3146, 3606, 3980, 4046, 4347, 4351, 4365, 4391, 4590, 3650, 2584, 3651, 266; 351676, 1171, 1506, 4280, 3100, 3044, 560, 1481, 3077, 3558, 3643, 4128, 4106, 4493, 3667, 5166. **268**: 331649, 331865, 2677, 3003, 3139, 3140, 4205, 3981, 309, 2518, 4852. 270; 332114, 332606, 502, 765, 1246, 1970, 2078, 2622, 3773, 4032, 4043, 4064, 4983, 4033, 4543, 5018, 1979. **271**: 39770, 2073, 2367, 3774, 4062, 4542, 5142, 1324, 3078, 4757, 4758, 3099. **273**: 3671, 4349, 2670, 1574, 2251, 2676, 3778, 4042, 5156, 2736, 3747. 275: 2587, 3000, 4034, 4184, 4238, 4972, 3248, 391674, 1157, 2424, 3652, 4267, 4304, 4296, 1415, 4359, 2423, 3702. 277: 889, 1119, 2098, 4492, 4707, 5003, 5141, 4218, 1158, 1807, 3620, 3792, 4778, 3703, 2519, 2731, 3147. 280: 769, 1255, 1581, 2207, 2250, 2616, 2729, 2850, 3130, 3507, 4173, 4278, 4327, 4368 2. **281**: 871, 4760, 3453, 1580, 3412, 3454, 3615, 4163, 4207, 4297, 4544, 4318, 283; 2619, 2678, 3710, 4319, 2651, 4756, 2431, 1259, 1260, 2254, 2596, 2617, 2697, 3420, 3542, 4533, 5153, 4317. 286: 1397, 2780, 3417, 3508, 4268, 4299, 1416, 1258, 897, 1480, 3183, 3290, 4269, 4508, 886, 4759, 5167, 3414. 288: 3574, 592, 1133, 3006, 4779, 1384, 3543, 3595, 4195, 4761, 5244, 1256, 3113, 3497, 5002. 290: 3546, 3379, 515, 573, 1254, 2072, 2173, 2473, 2647, 3198, 3670, 3771, 4531, 4635, 4784, 4802, 5286, 5490, 5681, 291; 35255, 1926, 4047, 1245, 4023, 5169, 4532, 4996, 3642, 3692, 4050, 4260, 4845, 4513. 294: 4322, 4381, 4997, 35230, 1478, 2648, 4158, 4439, 4762, 5160, 5017. 296: 1154, 3194, 4352, 4324, 3498, 4019, 5110, 4325, 4793, 4225, 4017, 3115, 4362, 4777, 4939, 5340, 4507, 1273, 4266, 4930. 300: 3363, 33695, 1213, 1985, 2167, 2416, 3040, 3075, 3094, 3158, 3197, 3526, 3630, 3696, 4029, 4109, 4473, 4512, 4529, 4650, 4789, 4838, 4867, 4987. 301: 1817, 3550, 5020, 3016, 1272, 1921, 3596, 4262, 4270, 4466, 4967, 3195, 3945, 5260, 2649. 304: 3883, 946, 3473, 4323, 3499, 3216, 4020, 4305, 4441, 4447. 306: 4018, 4448, 4794, 3551, 3196, 4708, 3466, 4240, 4846, 1419, 4988. 310: 3896, 4261, 5010, 5400, 1120, 4329, 4505, 1925, 4790, 38444, 4458, 4697. 315: 331342, 331895, 1163, 1165, 1166, 1982, 4451, 4916, 4725, 4734, 4726. 317: 3566, 1573, 1981, 2462, 5391, 4442, 1271, 4204, 4917. 320: 331804, 1149, 4212, 4263, 4715, 4791, 5816, 2844, 33894, 4506, 4724, 3388, 5861. 325: 4393, 4687, 5037, 5072, 4994, 1110, 4243, 5059, 4727, 391679, 4220, 5607, 33251, 1123. 330: 332116, 831, 4431, 5074, 5486, 4792, 4914, 332115, 331678, 808, 1923. 335: 1922, 4915, 5044, 1525, 4203, 5689, 3991, 2421. **340**: 39496, 391624, 1526, 4214, 4242, 4271, 4460, 5043, 5135, 5262, 4652, 392117, 4425, 4244, 4649, 4455, 4728, 5168, 5335. 345: 2212, 5038, 4434, 331675, 4672, 4902, 5521. 350: 4515, 5183, 5184, 5747, 4427, 4435, 4436, 38898, 4285, 4211, 4465, 5520, 5402. 360: 1991, 3042, 3307, 4137, 4622,

4676, 4912, 4913, 5193, 5491, 5746, 5616, 4287, 4892, 5281, 4012, 371: 4215, 32471, 4514, 5053, 4249, 4620, 6010, 351869, 5370, 5887, 32882, 4907, 5173, 5306, 5055. 400: 3958, 351798, 322559, 4690, 3292, 4286, 5395, 3226, 32608, 389, 3480, 5494. 421: 3992, 5883, 5274, 39716, 4626, 5863, 4722, 351075, 5172, 3316, 5264. 452: 5493, 3320, 4637, 4636, 5508, 351749, 35170, 3223, 500: 3322, 35769, 5817, 3224, 3228, 5695, 3227, 3678, 3271, 32105. 600: 35193, 351879, 35490, 35487, 35753, 35752, 3881, 707: 3272, 3832, 35495, 35749, 3696, 3700, 35703, 32236, 916: 32673, 35495, 3529, 3825, 3940, 3579, 35268, 32613, 3548, 35529, 382610, 3528, 3951, 33284, 32680, 383267, 32917, 32926, 33200, 3947, 32605, 3939, 32924, 32668, 32677, 33197. 1400: 32499, 33196, 32131, 32671, 32921, 32769, 32218, 33197, 31059, 331870, 351619, 351724, 31799, 3481, 351805, 351690, 35413, 35405, 351690, 35413, 35405, 351619, 35479, 35481, 35485, 351690, 35499, 35481, 351805, 351690, 35419, 35481, 351805, 351690, 35419, 35415, 35405, 35419, 35415, 35405, 35469, 35415, 35405, 35410, 354064, 352670, 351850, 351690, 35411, 3800: 351619, 351724, 351799, 35411, 35405, 351690, 35411, 35405, 35469, 35411, 35405, 35469, 35411, 35405, 35469, 35411, 35405, 35469,

III DENSITY

A. Liquids

0.415: **54**, **409**, **35**102, 1072, 1073, **35**406, 1716, 1715, 980, 1713. 1714. **0.670**: 2392, 2394, 915, 916, 2387, 1610, 23407, 2389, 917. 2391, 1534, 0.692; 1613, 2933, 525, 823, 918, 1617, 22, 25410. 914, 2939, 824, 0.712; 1619, 33409, 33414, 822, 1535, 2331, 3354, 524, 2334, 2936, 1761, 2940, 3995. 0.724: 2873, 38425, 1764, 2279, 33412, 1086, 4000, 3994, 794.1, 3999, 821, 794, 1760. 0.740: 820, 23415, 3351, 4178, 396, 23416, 2985, 1741, 3993, 3957, 1101 **0.750**: 1615, 1100, 1738, 1737, 979, 1739, 2975, 4412, 3372, 4587. 0.760: 669, 4586, 479, 2974, 4165, 2211, 2328, 2330, 2413, 1001, 4856, 23418, 1099, 1762.1, 3323, 4012, 4111, 2869, 2973. 0.771: 2868, 2987, 5018, 3365, 33420, 4006, 4849, 5167, 913, 1632, 2419, 4418, 5260, 33421, 1612, 2867. 0.781; 33422, 208, 33423, 168, 395, 506, 3320, 1049, 262, 792, 5156. **0.790**: 3960, 3297, 5377. 60, 1003, 3961, 301, 667, 718, 448, 2825, 2284, 3812. 0.800: 790, 1769, 2281, 972, 1603, 2827, 973, 3811, 1639, 3295, 505, 28111. 2382. 0.805: 719, 880, 1366, 1544, 2283, 2345, 447, 791, 2955, 1081, 1084, 1602, 2282. 0.810: 789, 1537, 1084.1, 1630, 2327. 2898, 2965, 1754, 3895, 3959, 1640, 1730.1, 2320, 2317, 313, 1083, 2396, 2397, 2872. 0.817: 717, 1078, 2403, 2897, 2960, 1005, 1085.1, 1636, 1699, 2896, 1085, 1726, 1733.1, 2407, 2407.1, 2408, 2968. 0.820: 1728, 2399, 5169, 2892, 2970, 3827, 2967, 1725, 2400.1, 2409, 2796, 2954, 2962, 3356, 1727, 1734, 3978.1 **0.825**: 2971, 3978, 4005, 4170, 4172, 4848, 800, 2240, 2963, 2966, 2956, 3364, 1736, 2400, 3361, 4002. 0.830: 1469, 2797, 3826, 1547, 1732, 1746, 2929, 4415, 237, 587, 3362, 925, 2410, 3326, 4179, 4836, 998, 1633, 3355, 3821. 0.835: 1098, 1629, 2239, 810, 811, 3358, 517, 814, 837, 999, 1628, 1000, 2952, 3889, 2865, 3893. 0.840: 273, 749, 2412, 3808, 3822, 356, 1466, 3810, 3809, 3815, 4010, 2928, 1546, 1468, 1470, 272, 0.850; 2343, 1572, 3816, 1063, 711, 993, 2890, 3333, 3334, 446, 1048, 3823, 3824. 0.856: 927, 3894, 3903, 5606, 1096, 2288, 3728.1, 1545, 3727, 5380, 3331, 5978. **0.860**: 469, 1054, 2834, 3333.1, 3725, 3728, 3730, 3992, 4115, 2686, 3734, 3805, 3969, 4168, 513, 3226, 3228, 3724, 4408, **322**9.1. **0.863**: 1548, 2835, 2912, 3820, 4367, 2909 1, 3223, 2685, 3731, 3806, 5853, 2359.1. 0.866: 801, 2112, 2357, 2901.1, 3729, 4175, 3225, 3726, 4365.1, 2354.1, 3229, 3740.1, 3330.1, 3807, 3899, 3988, 2359. 0.870: 926, 1046, 1653, 4992, 5813, 2901, 748, 1649, 1652, 1655, 1064, 1695, 2855, 2903, 3891, 798, 2355, 2683, 747. 0.875: 2354, 3915, 3230, 4576, 2356, 3987, 533, 2858, 3733, 3817, 1654, 2353, 2684, 2953, 4117. 0.880: 1365, 5003, 1658, 3908, 3920, 1015, 1651, 3224, 4366, 1016, 1043, 1659, 3329, 4991. 0.884: 746, 4144, 4118, 4370, 1020, 3337, 4827, 1496, 2111, 3850, 4828. 0.890: 468, 1017, 1019, 3119, 1044, 3897, 4980, 1047, 3227, 4376, 5001, 3303, 3918, 5141, 2415, 3917, 397, 1018, 3890, 5362, 713, 725, 3974.1. 0.901: 727, 3639, 3740, 3902, 4385, 4835, 5253, 2538, 5152, 5346, 451, 4842, 4974, 2884, 3328, 4158, 5015, 3324, 4977, 1056, 4148, 0.910; 670, 2899, 3961, 4368.8, 908, 2888, 3913.1, 4841, 642, 2883, 2777, 3861, 1055, 2340, 4982, 5342, 5605, 0.915: 33429, 331824, 2831, 3786, 3813, 3913, 6166, 891, 2337, 3788, 4156, 726, 3369, 2298, 4578, 4972, 1557, 3923, 3924, 4388. 0.920: 4131, 3854, 3928, 2351, 764, 2339, 2341, 3575, 938, 2299, 3341, 5482, 0.925; 1558, 1644, 2289, 3847, 3927, 4971, 452, 937, 1647, 4130, 1643, 2882, 3258, 3926, 3935, 4975. 0.930; 2153, 2859, 4976, 4978, 3931, 671, 4843, 965, 2830, 3936, 3735, 3764, 3789. 0.935: 489, 799, 1519, 2861, 2201, 2810, 3922, 4157, 1981, 569, 3260, 3787, 3859, 375, 4371, 3263, 4561. 0.94: 2979, 3790, 3882, 3883, 1010, 3259, 3947, 4999, 763, 1012, 2294, 3858, 762, 978, 2386 1, 3860, 3852, 4560. 0.945; 909, 3857, 997, 2818, 589, 623, 3948, 724, 1541, 3244, 3267, 5005, 0.950; 1443, 2199, 2811, 3265, 783, 924, 1478, 1444, 3319, 3762, 3865, 3904, 4132, 1326, 5940. 0.955: 2775, 624, 1445, 2756, 4378, 752, 2335, 3765, 723, 1555, 2200, 6167 0.960; 3753, 1554, 307, 2763, 3264, 2914, 1553, 2722, 3121, 3655, 2778, 4080, 2365, 3246, 2840. 0.970: 1551, 2721, 3933, 3637, 355, 2762, 4823.1, 1595, 2758, 213, 625, 2766, 3638, 4091 1. 0.976; 929, 1511, 3752, 3856, 4967. 35432. 2767, 3754 2, 5009, 3656, 1026, 2760. 0.980: 1089, 2195, 1067.1, 2719, 870, 3654, 4344, 2764, 3878, 930, 3661, 3763, 4579. 0.985: 4372, 4573, 2203, 3648, 935, 2718, 3662, 3761, 4941, 5000, 5688. 1342. 0.990: 934, 1482, 4161, 681, 3235.1, 400, 450, 2757, 162, 815, 3664, 4345, 1090, 1500, 1662, 2163, 3235. 0.995: 3311. 103, 1070, 1510, 3236, 3573, 2204, 3213, 3574, 351, 2058, 4761. 1.000: 4095, 4097.1, 66, 3128, 4513, 5140, 5334, 258, 797, 896, 3134, 3054, 4490, 4757, 4930, 3237, 773.1, 3747, 4147. 1.010: 594, 2743, 3132, 5110, 25197, 1560, 590, 2713.1, 620, 2503, 4098, 3780, 4096, 1097, 1279, 652, 928, 2816, 2848, 2302, 2569. 1.020: 608 1, 795, 2570, 3701, 285, 608.2, 1442, 5371, 2322, 4994, 1328, 1561, 3312, 4038, 4789. 1.026: 2571, 3680, 4090.1, 619, 2567, 3681.1, 3684, 5010, 25426, 651, 1022, 3133, 3679, 3703, 1.08: %104 1028 3677 3125 3678 218 4939 2161 496 2706 3676. 2568. 1.040: 2255, 2745, 4545, 4970, 39440, 2847, 5678, 3285, 266, 274, 2001, 2159, 720, 3154, 3286, 212, 3069, 4062. 1.050: 593, 3152, 3284, 358, 2812, 4350, 511, 4153, 2300, 4348, 2318, 2748, 3192, 3872, 4093, 4383, 2180, 3140, 309, 1.061; 2788, 4296, 1029, 3283, 911, 4353, 616, 3135, 3191, 378, 576, 989, 1441, 3601, 3547, 2813, 176, 1606, 458. 1.071: 2041, 2040, 3548, 3549, 1430, 2572, 5944, 807, 943, 969.1, 2310, 2590. 1.080: 737, 1570, 2039, 3667, 2588, 449, 626, 609, 3546, 968, 621, 2008, 4726, 1572.1. 1.090: 3649, 4102, 578, 1092, 1559, 2468, 2725, 420, 665, 2814, 3037, 2589, 1889, 3591, 1357, 1483, 3642, 3036, 1.100; 4723, 3169.1, 4917, 471, 722, 2038, 154, 170, 1571, 4670, 247, 3688, 4368.4, 561, 1307, 2687, 1417. 1.11: 492, 2267, 2071, 657, 233, 969, 4733, 264, 470, 4297.1, 672, 736, 2579, 2269. 1.121: 1568, 2134, 4064, 4324, 275, 2580, 5164, 520, 2509, 1341, 2669, 2849.1. 1.131: 3170, 805, 2578, 893, 4381, 3171, 46, 48, 383, 3945, 146, 3253, 3886, 4023. 1.150: 1756, 1388, 2127, 1390, 33439, 948, 1917, 994, 2284.1, 3606, 658, 859, 1.160; 2084, 3289, 33438, 1253, 453, 2004, 460, 2499, 1252, 1692, 189, 949, 2696. 1.180: 3694, 887, 33798, 379, 2618, 5282, 655, 659, 2498, 1042, 3455, 334, 1,200: 1031, 2850, 1347, 1859, 227, 696, 1375, 858, 1041, 1376, 279, 632, 710. 1.220: 37, 384, 744, 1040, 2316, 3514, 1576, 4442, 4441, 33435, 803, 1314, 1857, 863, 921.1, 1916. 1.252: 190, 1856, 515, 742, 67, 359, 2098, 741, 604, 3937, 1230, 38442, 1959, 1229. 1.310: 251575, 465, 192, 1327, 1506, 472, 473, 25441, 1251, 1250, 604.1, 1540, 421, 1588, 158, 28, 1249, 2053. **1.840**: 35366, 464, 423, 2639, 230, 365, 2637, 422, 2633, 1326, 3342, 585, 963, 276, 558, 582, 366. 1.400: 497, 2491, 2423, 545, 2031, 605, 2030, 2492, 2493, 364, 3634, 2029, 1697, 392, 159, 396, 39635, 220, 331397. 1.460: 3311, 648, 5350, 1672, 225, 3453, 106, 3310, 61, 3636, 3352, 19, 329, 648.3, 1053, 1294, 2119. 1.500: 1578.1, 3632, 3637, 43, 1052, 1822, 107, 648.1, 137, 1051, 2454, 648.4, 3629. 1.526: 141, 3633, 467, 136, 1844, 1367, 35207, 645, 139, 3630, 12, 756, 1,600; 140, 367, 755, 754, 90, 1601, 3521, 3232, **358**, 2494, 35129, 35512, 35628, 359, 757, 35210, 357, 35100, 221, 2061, 2062. 1.700: 368, 555, 476, 987, 694, 475, 3562, 693, 3513, 414, 35622, 690. 1.800: 2064, 689, 1949, 688, 1759, 1333, 35523, 3545, 390, 351597, 3560, 38, 351808, 116, 35621. 1.901: 35163, 600, 3539, 412, 341, 234, 1205, 413, 35619, 83, 339, 340, 183, 35218, 35522. 2.110: 415, 122, 184, 649, 186, 35488, 123, 35236, 45, 522, 370, 35378, 3576, 3919, 4, 427. 2.629: 601, 20, 151, 351815, 3563, 35142, 345, 3564, 101, 5, 127, 18, 235, 128. 3.022: 35204, 35918, 35497, 35381, 20, 3534, 35206, 87, 35205. 4.49.

B. Solids

0.760: 846, 5881, 5918, 5967, 5985, 6014, 6080, \$2916, 5244, 2266, 332601, 1502, 936, 4406, 6010. 0.919; 332667, 548, 3016, 331812. 3257, 4805, 1058, 239, 3756, 481, 3302, 1.008; 607, 5343.1, 3901, **32791**, 761, 2573, 4322, 1057, 4652, 3307, 760, 2801, 5902, 482, 1077, 2206, 831. 1.051: 2160, 5847, 5933, 1771, 3140, 289, 571, 382643, 3853, 3550, 502, 2116, 3494, 5244.1. 1.150: 5213.1, 238, 4270, 2166, 3498, 4352, 832, 35431, 35430, 352623, 5887, 4943, **5404**, **5284**, 4894, 2595. **1.203**: 4225, 32626, 259, 5818, 3886 1, **332998**, 504, 298, 3867.1, 5428.1, 355, 331896, 2701, 4480, 2308.1 **4226**. **1.250**: 4467, 4956, 503, 5573, 1705, 392624, 5435, 2032, **5202**, **352306**, 1287, 1992, 308.1, 1581, 55, 5541, 5028.1, 1990, 1414. 1.35: 6104, 4739, 5647, 23111, 5028, 4656.1, 802, 3697. 33173, 3111, 5704, 332655, 5522, 1.40: 498, 2475, 58, 4622, 1929, 947, 35134, 352170, 352347, 1398, 6148, 1397, 5659, 352300, 4620, **2013**, 1349, 233086, 3778. **1.45**; 232757, 808, 3178, 1419, 232171 630, 332807, 1231, 332636, 976, 332149, 332693, 1351, 1.47; 382990, 204, 1464, 1991, 2682.1, 392811, 1172, 1350, 391400, **381809**, 38201, 382855. 5.0: 3502, 331328, 331350, 331426. 381428, 381844, 381994, 38289, 381969, 381260, 381375, 382282, 381712 392202, 391539, 39499, 5.10; 39311, 391130, 392017, 39734, 391334, 3994, 352035.1, 353329, 351021, 352030, 352513, 35456, 35507. 3554, 351258, 351441, 353061, 35829. 5.2: 35280, 351096, 351337. 391682, 391711, 391063, 391371, 391590, 391686, 392518, 391990, 351992, 352516, 35618, 35462. 5.3: 35600, 35677, 35716, 35724. 281154, 281634, 28313, 28595, 281423, 28593, 281049, 281236, 281103. **291767**, **29883**, **291457**, **29862**, **29608**, **29715**, **29864**, **29473**, **291095**. **5.50:** 25592, 251630, 251671, 251852, 251542, 251065, 25544, 25723, 28956, 281059, 28708. 5.6: 28306, 28306.1, 281304, 281710, 281726.

2601, 2603, 2603, 2603, 2603, 26051, 26071, 261636, 261763, 261763, 26276 25670. 251064, 251996, 251440, 251455. **5.7**: 25320, 25322, 251379. 331418, 331614, 332339, 33714, 332494, 33473.1, 331421, 33546 32338, 331632, 331098, 331723, 33957, 33582, 332599. 5.8: 35.68 3596, 351117, 351685, 351978, 351391, 352048, 3529, 3574, 352571 32049, 351163, 35541. 5.9: 35602, 351118, 351652, 351703, 35007 391071, 39565, 392507, 39597, 392538, 391736, 391562. 6.0: 39401. 3936, 351050, 351506, 351781, 351227, 35540, 352059, 35894, 352366. 391442, 391105. 6.1: 39594, 391022, 391101, 391402, 391666. 31784, 33402, 33658, 33657, 33548, 331655, 33501, 33606, 32483 251327. 6.2: 25553, 25614, 251124, 251390, 251617, 25863, 25539. 231800, 23898, 231116, 23897, 231055. 6.3: 23604, 23607, 231100. 331119, 331517, 331570, 331631, 331366, 332580, 331722, 35559, 351086. 6.4: 35335, 35605, 35667, 35934, 35935, 35995, 351834, 301025, 3005, 3575, 3616, 3889, 3834, 3672, 301051, 301062, 3503, 3833, 3663, 331121. 6.5: 35609, 35660, 351102, 351501, 331958, 331629, 333118, 33659, 33509, 33598, 6.6; 33611, 33617, 391573, 392827, 391285, 39824, 391698, 39543, 39996, 391143, 391619. 6.7: 391405, 392007, 392006, 39545, 39666, 391374, 391620, 391024. 33719, 331502. 6.8: 33573, 33671, 33327, 3336, 33551, 33576. 3581, 331776, 332005, 33712, 331700, 331306. 6.9: 33610, 33661, 331040, 331103, 331681, 331688, 331840, 332834, 33557, 33612, 331621. 33484. 331235. 7.0: 33485, 33578, 33588, 33613, 33696. 331386, 331404, 331854, 33599, 332041, 331807, 33536, 33584, 7.1: 3586, 3589, 351565, 3585, 35725, 353188, 3587, 35334, 3590. 3882. 391171, 391842, 39681, 391734, 392828. 7.2: 391233, 391697. 3535, 352023, 351847, 35615, 352826, 352830, 3577, 351247, 351977. 33893, 331705, 331067, 331066, 33910, 33325. 7.4: 331128, 331385, 331393, 331843, 331849, 332062, 332060, 332037, 331057, 331528, 7.5: 3305, 3314, 3330, 3552, 3900, 31833, 31041, 35700, 3904, 3538, 331170, 331464, 3324. 7.7: 3328, 3896, 3318, 3902. 332079, 331384, 331848, 331146, 33323, 33891, 33676. 8.0: 33525, 33704, 331004, 331070, 331732, 331850, 33580, 33321, 33558, 33901, 3821, 3560, 3822. 8.2: 3308, 331695, 3528, 331326, 3888, 3890, 331662, 331701, 331550, 33888, 331017, 33309, 331072, 331684, 331780. **8.64**: 332082, 33887, 33880, 33895, 331137, 331806, 331169, 3307, 331663, 33881, 33675. 9.04: 331139, 33527, 33892, 332087. 3526, 3524, 352099, 35668, 3879, 351152, 351702, 351179, 351855. 291693. 11.1: 29878, 291725, 291724, 291224, 291225, 291689, 231690. 16.06.

LIQUID CRYSTALS

H. W. FOOTE

The term "transition temperature" refers in the tables to the temperature at which the solid and crystalline-liquid phases are in equilibrium at a pressure of one atmosphere; by "melting point," is meant the corresponding temperature at which the crystalline-liquid and isotropic liquid phases are in equilibrium. In some cases, more than one stable liquid crystal phase exists, giving an additional transition temperature for each additional liquid crystal phase. These transition temperatures between two liquid crystal phases are indicated by *. In most cases, they are only approximate. Melting points which are quite uncertain, usually due to partial decomposition, have "d" written after the value. No attempt has been made to estimate the accuracy of values obtained by a single investigator, as the methods of determination are the same in nearly every case and the result obviously depends on the skill of the investigator and the purity of the compounds.

A series of apparently good determinations by different observers is apt to vary by considerably more than one degree, and it seems unlikely that any transition temperature or melting point of liquid crystals is known with an accuracy much better than one degree.

For this reason, the weighted average of a number of different determinations is usually given to the nearest whole degree. When the number of determinations is sufficient, the weighted average deviation, usually to the nearest whole degree, is given also.

The melting points of unstable liquid crystals, in monotropic systems, are not included in the tables, and transition temperatures, in the ordinary sense, do not exist in this case. Many observations on monotropic compounds will be found in nearly all the Halle dissertations and in the publications by Vorländer, which are listed at the end of the tables.

For the effect of pressure on the transition temperature and melting point of liquid crystals, see G. Hulett, 7, 28: 629; 99. For approximate data on liquid crystals of alkali salts of higher fatty acids (chiefly) see Vorländer, 25, 43: 3120; 10. For similar data regarding compounds which are optically active, see H. Stoltzenberg, Diss., Halle (1911). For qualitative data regarding liquid crystals, see E. Wolferts, Diss., Halle (09), R. Wilke, Diss., Halle (09); K. Mattenklodt, Diss., Halle (11); and Vorländer, 25, 40: 1415, 19664 07.

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C10H10O2	CH ₄ OC ₆ H ₄ CH:CHCOOH	p-Methoxyeinnamic acid	170 ± 1	186 ± 1	(7, 11, 30
		, action	110 1 1	100 T I	33, 34, 41
					43, 45)
C11H12O2	C ₂ H ₄ OC ₄ H ₄ CH:CHCOOH	p-Ethoxyeinnamic acid .	192	197	(43)
C12H14O1	C ₂ H ₄ OC ₄ H ₄ CCH ₂ :CHCOOH	p-Ethoxy-s-methylemnamic acid)		(37)
C14H10BrNO2	BrC ₆ H ₄ CH:NC ₆ H ₄ COOH	p-Bromobenzal-p-ammobenzoic acid	122 5	159	,
C14H10CINO2	CIC.H.CH:NC.H.COOH		272	274	(12)
C14H10INO1	IC6H4CH:NC6H4COOH	p-Chlorobenzal-p-ammobenzoic acid	200	263	(12)
C14H10O4	HOC,H,COOC,H,COOH	p-Iodobenzal-p-ammobenzoic acid	279	287	(12)
C ₁₄ H ₁₁ NO ₁	C.H.CH:NC.H.COOH	p-(p-Hydroxybenzoxy)-benzoic acid	258	266 上	(45)
C ₁₄ H ₁₂ N ₂ O ₃	O ₂ NC ₆ H ₄ CH:NC ₆ H ₄ OCH ₂	Benzal-p-ammobenzoic acid	183	191	(26)
	CH ₄ OC ₄ H ₄ NONC ₅ H ₄ OCH ₄	p-Nitrobenzalanisidine	135		(26)
C14H14N2O2	OHOOMIA.O.A.C.MACA.II	p-Azoxyanisol .	116 t 1	135 ± 1	(1, 3, 6, 7
	1		1		9, 11, 14
					19, 23, 30
	1		ì		32, 35, 36
			ļ		42, 45)
C14H14N4	CH4NHC4H4CH:NNHC4H4	p-Methylaminobenzalphenylhydra-	1		
	1	zone .	170	190	(34)
$C_{1b}H_{10}N_2O_2$	CNC6H4CH:NC6H4COOH	p-(p-Cyanobenzalammo)-benzoic acid	247	>320	(17)
C14H12N2O	CNC ₆ H ₄ CH:NC ₆ H ₄ OCH ₄	p-Cyanobenzalanisidine	115	125	(17)
C15H12N2O	CH4OC6H4CH:NC6H4CN	Anisal-p-cyanoaniline	103	113 5	(12)
C18H12N2O4	CH4COOC6H4N:NC6H4COOH	p-Acetoxyazobenzoic acid	254	d.	(31)
C15H12O2	C₀H₅C₀H₄CH:CHCOOH	p-Phenyleinnamic acid	221	236	(2)
C15H12O5	CH4OC4H4COOC4H4COOH	p-(p-Methoxybenzoxy)-benzoic acid	223	272	(48)
C15H12NO2	CH ₄ C ₆ H ₄ CH:NC ₆ H ₄ COOH	p-(p-Methylbenzalamino)-benzoic	220	243	(26)
		acid		2.0	, ,
C ₁₈ H ₁₈ NO ₈	CH4OC4H4CH:NC4H4COOH	p-(Anisalamino)-benzoie acid	197	298 d.	(15, 46)
C ₁₆ H ₁₄ N ₂ O ₃	O2NC6H4CH:NC6H4OC2H6	p-Nitrobenzalphenetidine	124	200	(26)
C18H14N2O8	CH ₄ OC ₆ H ₄ NONC ₆ H ₄ OC ₂ H ₅	p-Anisylazoxyphenetol	94 ± 1	149 ± 1	(4, 7, 32)
	1		160	182	,
C ₁₄ H ₁₇ N ₄	C ₂ H ₆ NHC ₆ H ₄ CH:NNHC ₆ H ₆	p-Ethylaminobenzalphenylhydrazone	100	102	(34)
C ₁₆ H ₁₂ O ₆	CH4COOC4H4COOC4H4COOH	p-Hydroxybenzoic acid p-acetoxy-	oou 1	S 070	(45)
0.11.0		benzoate	228 d.	>250	(45)
C ₁₆ H ₁₂ O ₇	CH*OCOOC*H*COOC*H*COOH	p-Hydroxybenzoic acid p-carbometh-			/40
a		oxyoxybenzoate	218 d.	d.	(45)
C ₁₆ H ₁₄ N ₂ O	CNC6H4CH:NC6H4OC2H5	p-Cyanobenzalphenetidine	115	132	(17)
C16H14N2O	C ₂ H ₆ OC ₆ H ₄ CH:NC ₆ H ₄ CN	<i>p</i> -Ethoxybenzal- <i>p</i> -evanoandine	105	124	(12)
C16H14N2O2	O2NC6H4CH:CHCH:NC6H4CH3	<i>p</i> -Nitrocinnamal- <i>p</i> -toluidine	130	141	(26)
C16H14N2O2	O2NC6H4CH:CHCH:NC6H4OCH2	p-Nitrocinnamalanisidine .	155	160	(26)
C16H15NO2	CH ₂ OC ₆ H ₄ CH:NC ₆ H ₄ COCH ₂	Amsal-p-aminoacetophenone	121 5	135	(18)
$C_{16}H_{16}NO_8$	CH ₂ COOC ₆ H ₄ CH:NC ₆ H ₄ OCH ₃	p-Acctoxybenzalanisidine	112	128	(15)
C16H16NO3	CH₂OC₀H₄CH:NC₀H₄OCOCH₃	p-(Anisalamino)-phenol acetate	81.5	108	(15)
U16H16N2O2	CH ₂ COC ₆ H ₄ N:NC ₆ H ₄ OC ₂ H ₅	p-Acetophenoneazophenetol	130		(47)
C16H16N2O2	CH ₄ OC ₆ H ₄ CH:NN:CHC ₆ H ₄ OCH ₄	Anisaldazine	165 ± 3	180 ± 1	(5, 6, 7, 19)
C16H16N2O4	C2H5OC6H4N:NC6H4OCOCH3	p-Phenetolazophenol acetate	121	138	(46, 47)
C16H16N2O4	CH ₂ OC ₆ H ₄ N:NC ₆ H ₄ OCOOC ₂ H ₄	p-Anisylazocarbethoxyphenol .	90	114	(46, 47)
C16H18N2O8	C2H6OC6H4NONC6H4OC2H6	p-Azoxyphenetol	137 + 1	167 ± 1	(3, 14, 19
					23, 30, 32
					35, 42, 45
C16H20N2	C2H6NHC6H4C6H4NHC2H6	Diethylbenzidine	115.5	120 5	(34)
C ₁₇ H ₁₅ NO ₂	CH ₃ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CHCOOH	p-(Anisalamino)-cinnamic acid	208	d.	(15)
C ₁₇ H ₁₆ N ₂ O ₂	O2NC6H4CH:CHCH:NC6H4OC4H6	p-Nitrocunamalphenetidine .	134	137	(26)
		p-Acetophenoneazocarbethoxyphenol	120	126	(47)
C ₁₇ H ₁₆ N ₂ O ₄	CH ₄ COC ₆ H ₄ N:NC ₆ H ₄ OCOOC ₂ H ₆	, ,	99	102	(31)
C ₁₇ H ₁₆ N ₂ O ₄	CH ₄ COOC ₆ H ₄ N:NC ₆ H ₄ COOC ₂ H ₆	Ethyl p-acetoxyazobenzoate p-(Anisalamino)-hydrocinnamic acid	136	162	(45)
C ₁₇ H ₁₇ NO ₃	CH ₂ OC ₄ H ₄ CH:NC ₄ H ₄ CH ₂ CH ₂ COOH		96		(47)
C ₁₇ H ₁₈ N ₂ O ₄	C ₂ H ₄ OC ₆ H ₄ N:NC ₆ H ₄ OCOOC ₂ H ₅	p-Phenetolazocarbethoxyphenol		137	(11, 29)
C14H15ClO4	CH,COOC,H,CH:CCIC,H,OCOCH,	p-Dihydroxychlorostilbene diacetate	125	138	1 ' '
C18H16N2O4	CH,COOC,H,CH:NN:CHC,H,OCO-	Di-(p-acetoxybenzalazine)	185	192	(16, 40)
	CH ₃			1.00	/40 40
C18H17NO3	CH,OC,H,CH:NC,H,CH:CHCOOCH,		156	176	(43, 47)
C17H17N2O3	CH3OC4H4N:NC4H4CH:CHCOOC2H4		116, 123*	143	(46, 47)
C18H18N2O4	C2H4OCOC4H4NONC4H4COOC2H4	p-Azoxyethyl benzoate	114 ± 0.6	121 ± 0.5	(7, 11, 19, 27
					40,42, 45)
C18H18N2O6	C2H4OCOOC4H4N:NC4H4OCOOC2H4	p-Azocarbethoxyphenol	97	118	(15)

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C18H18N2O7	C ₂ H ₄ OCOOC ₄ H ₄ NONC ₄ H ₄ OCOOC ₂ H ₁	p-Azoxycarbethoxyphenol	95	130	(15)
C ₁₄ H ₁₄ O ₃	CH4OC4H4CH:CHCH.CHC4H4OCH4	Di-(p-anisylbutadiene)	225	238	(34)
C18H20N2O2	C ₂ H ₄ OC ₄ H ₄ CH.NN.CHC ₄ H ₄ OC ₂ H ₄	Di-(p-ethoxybenzalazine) .	172	195	(13, 24, 45
C14H20N2O2	CH ₄ OC ₆ H ₄ C(CH ₄):NN:C(CH ₄)C ₆ H ₄ -OCH ₄	Di-(p-methoxyacetophenoneazine)	195	202	(16)
C18H20N2O4	HOC2H4OC4H4CH:NN:CHC4H4- OC2H4OH	Di-(hydroxyethoxybenzalazine)	184	207	(13)
C14H22N2O2	Callocatanon Catao Cata	Di-(p-n-propoxyazoxybenzene)	116	122	(4, 40)
C15H14N2O2	CNC ₈ H ₄ CH:NC ₈ H ₄ CH:CHCOOC ₂ H ₄		131	170	419.
C ₁₃ H ₁₄ N ₂ O ₄	CH ₄ COOC ₄ H ₄ N;NC ₅ H ₄ CH;CHCOO- C ₇ H ₄	mate Ethyl <i>p</i> -acetoxyphenylazocinnamate.	132	179 152	(17) (47)
C ₁ ,H ₁ ,NO ₂	CH₄C₄H₄CH:NC₄H₄CH.CHCOOC₄H₄	Ethyl p-(p-methylbenzalamino)-	96, 107*	118	(46, 47)
C ₁₉ H ₁₉ NO ₃	С ₄ H ₄ OC ₄ H ₄ CH.NC ₄ H ₄ CH:CCH ₄ - COOH	p-(p-Ethoxybenzalamino)-α-methyl- cinnamic acid	180	265	(20)
C ₁₀ H ₁₀ NO ₄	CH4OC4H4CH.NC4H4CH:CH- COOC4H4	Ethyl (p-anisalamıno)-cinnamate.	100, 108*, 117*	138	(9, 43, 46 47)
C11H11NO	C ₂ H ₄ OC ₄ H ₄ CH,NC ₅ H ₄ CH;CH-	\mathbf{M} ethyl p -(p -ethoxybenzalamino)-	100	400	
CHN.O	COOCH	cinnamate	132	187	(43, 47)
C19H22N2O3 C20H12N2O2	C2H4OC4H4N:NC4H4OCOC4H4	p-Phenetolazophenol n-valerate	78.83	125	(47)
	CNC4H4N:NC4H4OCOC4H4	p-Cyanobenzeneazophenol benzoate	181	226	(12)
C20H14Br2N2	BrC ₄ H ₄ N.CHC ₅ H ₄ CH:NC ₅ H ₄ Br	p-Phthalal-di-(p-bromoamline)	208	288	(17)
C20H14Cl2N2	ClC ₄ H ₄ N .CHC ₅ H ₄ CH:NC ₅ H ₄ Cl	p-Phthalal-di-(p-chloroanilme)	176	282	(17)
C20H14I2N2 C20H14N4O4	ICaH4N.CHCaH4CH.NCaH4L O₂NCaH4CH:NCaH4N.CHCaH4NO₂	p-Phthalal-di-(p-iodoaniline) (Di-p-nitrobenzal)-p-phenylenedia-	262	268	(12)
e u va	AND AND IT BY NOT IT AND AND A IT	mine	212	315	(46)
C20H14N2O2	СИ ₂ OC ₂ H ₄ N NC ₃ H ₄ OCOC ₃ H ₅	p-Anisylazophenol benzoate	159 163	178	(47)
C ₂₀ H ₁₇ NO	CH ₄ OC ₄ H ₄ CH:NC ₄ H ₄ C ₄ H ₄	Anisal-p-aminodiphenyl	161	177	(12, 46)
C20H17N2O	CH4OC4H4CH:NC4H4N:NC4H4	Anisal-p-aminoazobenzene	151	182	(15, 39, 46)
C20H18N2O3	CH4OCOCH:CHC4H4NONC4H4CH - CHCOOCH4	Methyl azoxycinnamate	221	257	(40)
C30H30N3O3	CH₄OC₄H₄CH:CHCH:NN:CHCH:- CHC₄H₄OCH₄	Dı- <i>µ</i> -methoxycinnamıcaldazine	210	218	(34)
C ₁₀ H ₁₀ N ₂ O ₄	C₃H₄COOC₅H₄CH:NN:CHC₅H₄OCO- C₃H₄	Di- <i>p</i> -propionylhydroxybenzalazine	160	187	(16)
C20H20N2()	C₃H₄OCOOC₄H₄N:NC₅H₄CH CHCO- OC₃H₄	Ethyl p-carbethoxyphenolazocin- namate	114	152	(47)
CmH21NO	C ₂ H ₂ OC ₃ H ₄ CH;NC ₃ H ₄ CH;CHCOO ₂	Ethyl p-(p-ethoxybenzalamino)-cm-	69, 113,*	159	(43, 45, 46
C ₂₀ H ₂₁ NO ₂	C₄H₄ CH₃OC₄H₄CH∶H₄CH:NC₄CCH₄COO-	namate, Ethyl p-(anisalamino)-α-methylcin-	152*	100	47)
C ₁₀ H ₂₁ NO ₂	C ₂ H ₄	namate	90	93	(20, 43)
0301131.4(73	С ₄ H ₄ OC ₆ H ₄ CH;NC ₆ H ₄ CH;CCH ₃ CO- OCH ₃	Methyl p-(p-ethoxybenzalamino)-α- methylcinnamate	105	1 47	(20, 43)
C20H24N2O2	C ₂ H ₄ OC ₆ H ₄ CCH ₃ :NN:CCH ₄ C ₆ H ₄ O- C ₂ H ₄	Di-p-ethoxyacetophenoneazine	142	163	(16)
C ₁₁ H ₁₄ O ₇	HOC,H,COOC,H,COOC,H,COOH	p-Hydroxybenzoic acid p-(p-hydroxybenzoxy) benzoate	283	d.	(45)
C21H14N2O2 C21H17NO	CH4COC6H4N:NC6H4OCOC6H5 C6H4C6H4CH:NC6H4COCH3	p-Acetophenoneazophenol benzoate, p-(p-Phenylbenzalamino)-a c e t o -	211 d.		(47)
7 H N O	CH OOH NACH HOOOGH	phenone	187 5		(2)
CatH ₁₈ N ₂ O ₃	$C_3H_4OC_6H_4N:NC_6H_4H_4OCOC_6H_5$	p-Phenetolazophenol benzoate	173	193	(46, 47)
CnH ₁₉ NO	C ₄ H ₆ OC ₆ H ₄ CH:NC ₆ H ₄ C ₆ H ₅	p-(p-Ethoxybenzalamino) diphenyl	145	184	(12)
CatHaNO	C ₆ H ₆ C ₆ H ₄ CH:NC ₆ H ₄ OC ₇ H ₅	p-Phenylbenzal-p-phenetidine	164	189 5	(2)
C'21 II 19 N 2O	C4H4OC4H4CH:NC4H4N NC4H4	p-(p-Ethoxybenzalamino)-a z o b e n - zene	131 5	199	(2)
CnHnNO.	C ₂ H ₄ OCOOC ₆ H ₄ CH:NC ₆ H ₄ CH:CH-	Ethyl p-[(p-carbethoxyoxybenzal)-			
CnHaNO;	COOC₂H₃ CH₄OC₅H₄CH:NC₅H₄CH CH-	amino] cinnamate	80 58	151 76	(47) (43)
	COOC4H				
CatHarNOa	C ₂ H ₄ OC ₆ H ₄ CH_NC ₆ H ₄ CH_CCH ₄ CO- OC ₄ H ₄	Ethyl p-(p-ethoxybenzalamino)-α- methylcinnamate.	95	122 ± 2	(9, 19, 20, 39, 43, 46)

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C11H21NO2	CH4OC4H4CH:NC4H4CH:CCH-	n-Propyl p-(anisalamino)-α-methyl-			
	COOC,H,	cinnamate	50	85	(20, 43)
C22H14H4	CNC4H4N:CHC4H4CH:NC4H4CN	p-Phthalal-di-(p-cyanoaniline)	164	209	(12)
C22H17NO4	C ₄ H ₄ CH:NC ₄ H ₄ COOC ₄ H ₄ COOCH ₄	Methyl benzal-p-aminobenzoyl-p-			, ,
		hydroxybenzoate	174	177	(48)
C25H19NO2	C ₄ H ₄ C ₄ H ₄ CH:NC ₄ H ₄ COOC ₃ H ₄	Ethyl p-(p-phenylbenzalammo)-ben-			1
		zoate	121 5	128 5	(2)
C11H20N1	CH ₄ C ₄ H ₄ CH:NC ₅ H ₄ N:CHC ₅ H ₄ CH ₄	Di-(p-tolual)-p-phenylenediamine	194	266	(46)
C12H20N2	CH4C4H4N:CHC4H4CH:NC4H4CH4	p-Phthalal-di-(p-toluidine)	186	238	(17)
C11H20N11	CHOCHCH:NCHAN.CHCHAOCH		210	338	(46)
C11H11N1O1	CNC.H.C:HNC.H.CH:CHCOOC.H.	act-Amyl p-(p-cyanobenzalammo)-			1 ' '
		cinnamate .	95	107	(17, 38, 46)
C33H32N3O4	C ₂ H ₄ OCOCH:CHC ₄ H ₄ N:NC ₄ H ₄ CH ₄ -	Ethyl p-azocinnamate	155	230	(15, 43)
	CHCOOC ₃ H ₄				
C22H22N2O4	C ₂ H ₄ OCOCIL:CHC ₆ H ₄ NONC ₆ H ₄ -	Ethyl p-azoxycinnamate	140 + 1	249 ± 1	(7, 15, 25,
	CH:CHCOOC,H,				40, 43, 45)
C22H22O4	CH ₂ OC ₄ H ₄ CH:C ₆ H ₄ O:CHC ₆ H ₄ OCH ₄	Diamsalcyclohexanone	159	170	(2, 28, 44)
C22H24N2O4	C ₃ H ₇ COOC ₆ H ₄ CH:NN:CHC ₆ H ₄ O-	Di-p-butyryloxybenzalazine	146	181	(16)
	COC ₃ H ₇				
C22H28NO2	CH4OC6H4CH:NC6H4CH:CH-	act-Amyl anisal-p-ammocinnamate	49	90	(43)
	COOC, H ₁₁				
C ₂₃ H ₂₄ NO ₃	CH ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CH-	iso-Amyl anisal-p-aminocinnamate	52	90	(43)
	COOC, H ₁₁				1
C22H24NO3	C ₂ H ₅ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CHCOO-	n-Butyl p - $(p$ -ethoxybenzalamino)-			1
	C ₄ H ₉	emnamate	68, 88*	125	(43)
C ₂₂ H ₂₄ NO ₃	C ₂ H ₆ OC ₆ H ₄ CH:NC ₆ H ₄ CHCOH ₁ COO-	n-Propyl p-(p-ethoxybenzalamino)-			
	C₃H ₇	α-methylcmnamate .	88	121	(20, 43)
C14H16O8	CH ₄ COOC ₆ H ₄ COOC ₆ H ₄ COO-	p-Hydroxybenzoic acid p-(p-acetoxy-			1
	C ₆ H ₄ COOH	benzoxy)-benzoate	248	d.	(48)
C25H19NO2	C6H6C6H4CH:NC6H4CH:CHCOOCH3	\mathbf{M} ethyl p - $(p$ -phenylbenzalamino)-			ļ
		cinnamate	208, 216*	247	(2)
C23H19NO5	CH3OC6H4CH:NC6H4COOC6H4COO-				1
	CH ₄	hydroxybenzoate	217	300	(45)
C22H21NO4	CH ₂ OC ₆ H ₄ CH:NC ₆ H ₄ CH ₂ OC ₆ H ₄ CO-	Methyl p -(anisalamino)benzyl- p -			
	OCH ³	hydroxybenzoate	157	165	(45)
C22H24O2	C ₂ H ₄ OC ₆ H ₄ CH;C ₅ H ₄ O;CHC ₆ H ₄ OC ₂ H ₅		189, 194*	200	(44)
C23H27NO3	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CHCOO-	act-Amyl p-(p-ethoxyr-enzalamino)-	68, 114*	121	(43)
eu	C ₆ II ₁₁	cinnamate			
C21H27NO2	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CHCOO-	180-Amyl p-(p-ethoxybenzalamino)-			1
	C ₃ H ₁₁	cinnamate	81	137	(43)
C23H27NO3	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ CH:CCH ₂ CO-	n-Butyl p-(p-ethoxybenzalamino)-			ł
	OC ₄ H ₉	α-methylcinnamate	55, 65*	82	(20, 43)
C21 H27 NO2	CH ₂ OC ₆ H ₄ CH:NC ₆ H ₆ CH:CCH ₂ COO	1			l .
a	C ₆ H ₁₁	cinnamate	62	69	(46)
C24H18O6	C2H4OCOOC4H4COOC4H4COOC6H4-	p-Hydroxybenzoic acid p-(p-carbeth-			
<i>(</i> 1 • • • • •	COOH	oxyoxybenzoxy) benzoate	215	d.	(45)
C24H20N2O4	C6H5COOC6H4N:NC6H4CH:CHCOO-				
a	C ₂ H ₆	namate.	135	212	(47)
C24H21NO2	C ₆ H ₆ C ₆ H ₄ CH:NC ₆ H ₄ CH:CH-	Ethyl p-(p-phenylbenzalammo)-cin-	145, 180,*	219	(2, 39, 43,
C ** ** 0	COOC ₂ H _b	namate.	205,* 210*		46)
C24H22N2O4	CH ₂ OC ₆ H ₄ CH:NC ₆ H ₄ CONHC ₆ H ₄ -	Ethyl p-(anisalamino)-benzoyl-p-			
	COOC ₂ H ₅	aminobenzoate	212, 220*	247	(45, 46)
C24H24Br2N2O4	C ₂ H ₆ OCOCCH ₂ :CB ₇ C ₆ H ₄ NONC ₆ H ₄ -	Ethyl p-azoxy-α-methyl-β-bromein-			
O II N 0	CBr:CCH ₂ COOC ₂ H ₅	namate	110, 132*	138	(20)
C24H24N2O2	C ₂ H ₄ OC ₆ H ₄ CH:NC ₆ H ₄ N:CHC ₆ H ₄ O-	Dı-(p-ethoxybenzal)-p-phenylenedi-	005		1
0 H N 2	C ₁ H ₅	amine	200		(2)
C24H24N2O2	C ₂ H ₆ OC ₆ H ₄ N:CHC ₆ H ₄ CH:NC ₆ H ₄ O-	p-Phthalal-di-(p-phenetidine)	197	324	(17)
O # 11 A	C ₁ H ₆				
C24H24N2O4	C ₁ H ₆ OCOCH:CHC ₆ H ₄ NONC ₆ H ₄ -	Allyl p-azoxycinnamate	124	235	(40)
0 H N 0	CH:CHCOOC,H	7341 1	100 1011		
C24H24N2O5	C.H.OCOCCH,:CHC,HANONC,H,-	Ethyl p-azoxy-a-methylcinnamate.	109, 134*	140	(20, 21)
	CH:CCH,COOC,H,			l	Ţ

Index formula	Formula	Name	Trans. temp.	М. Р.	Lat.
C24H24N2O4	C ₁ H ₂ OCOCH.CHC ₄ H ₄ NONC ₄ H ₄ - CH:CHCOOC ₄ H ₂	180-Propyl p-azoxycinnamate	150	184	(40)
C14H24N1O4	C ₁ H ₂ OCOCH CHC ₄ H ₄ NONC ₄ H ₄ - CH CHCOOC ₃ H ₂	n-Propyl p-azoxycinnamate	123	243	(40)
$C_{14}H_{14}O_{1}$	C ₂ H ₅ OC ₅ H ₄ CH C ₅ H ₅ O·CHC ₆ H ₄ - OC ₂ H ₅	Di-(p-ethoxybenzal)-cyclohexanone.	146	176	(44)
$C_{14}H_{18}N_{2}O_{4}$	C4H ₂ COOC ₃ H ₄ CH.NN:CHC ₄ H ₄ - OCOC ₄ H ₄	Di-(p-valerylhydroxy)-benzalazine	145	160	(16)
C34H21N1O4	Call COOC at CHENN CHC at a COCC at a	Di-(p-isovalerylhydroxy)-benzalazme	131	156	(16)
C24II29NO1	C ₂ H ₃ OC ₄ H ₄ CH NC ₅ H ₄ CH CCH ₃ - COOC ₅ H ₁₁	act-Amyl p-(p-ethoxybenzalamino)- α-methyleinnamate	86	100	(20, 43)
C34H29NO3	C ₂ H ₃ OC ₈ H ₄ CH NC ₈ H ₄ CH CCH ₂ - COOC ₅ H ₁₁	iso-Amyl p-(p-ethoxybenzalamino)- α-methylemnamate	83	90	(20, 43)
C14H14N2O2	CallaCallaN · NCallaOCOCalla	p-Diphenylazophenol benzoate	194	240	(12)
C24 H14N4 C24 H20O4	CaHaCaHaCH NCaHaN NCaHa CHaCOOCaHaCOOCaHaCOOCaHa-	p-(p-Phenylbenzalamino)-azobenzene Ethyl p-hydroxybenzoate p-(p-acet-	207	252	(2)
C26H21NO4	COOC ₂ H ₆ C ₆ H ₆ COOC ₆ H ₄ CH NC ₆ H ₄ CH:-	oxybenzoxy) benzoate Ethyl p-(p-benzoxybenzalamino)-	112	282	(45)
CnH _H NO ₁	CHCOOC₂H₄ C₄H₄C₄H₄CH∶NC₄H₄CH CCH₄-	cinnamate Ethyl = p-(p-phenylbenzalamino)-α-	125	217	(47)
# W N S	COOC ₂ H ₅	methy leinnamate	120, 148*	175	(20, 43)
C ₁₆ H ₁₆ N ₂ O ₆	C4H2OCOCCH4 CHC4H4NONC4H4- CH.CHCOOC4H7	n-Propyl p-azoxy-α-methylcinnamate	70, 125*?	128	(20)
CasHinBraNa	BrC,H,CH NC,H,C,H,N CHC,H,Bi	Di-(p-bromobenzal)-benzidine	285	312	(12)
CasHasClaNa CasHasClaNaO	CICARACH NCARACARAN CHCARACI	Di-(p-chlorobenzal)-benzidine	265	318	(12)
CashialaNa	CICaHAN.CHCaHANONCAHACH. NCAHACH	p-Azoxybenzaldı-m-chloranılıne	174, 181,* 198*	213	(46)
	TC4H4CH.NC4H4C4H4N.CHC4H4I	Di-(p-iodobenzal)-benzidine	>300		(12)
C10H10N2O4 C10H10N2O6	C ₀ H ₀ COOC ₀ H ₄ N.NC ₀ H ₄ OCOC ₀ H ₆	p-Dibenzoylazophenol	208	250	(15, 39)
C ₁₀ H ₁₀ N ₄ O ₆	C ₈ H ₄ COOC ₈ H ₄ NONC ₈ H ₄ OCOC ₈ H ₄ O ₂ NC ₄ H ₄ CONHC ₈ H ₄ C ₈ H ₄ NHCO- C ₈ H ₄ NO ₂	p-Dibenzoylazoxyphenol Di-(p-nitrobenzoyl)-benzidine	192 365	280 d.	(15) (45)
C14H14O4	C'H'OCOC'H'C'H'COOC'H'	Diphenyl p, p'-diphenylcarboxylate	213	245	(45)
C16H10N2	CaHaCH:NCaHaCaHaN.CHCaHa	Dibenzalbenzidene	234	260	(6, 24)
CzaHzoNz	CaHaCaHaCH:NN.CHCaHaCaHa	Di-p-phenylbenzalazine	245	271	(2)
C14H21N1	CHC.H.CH.NC.H.N CHC.H.CH.	Di-p-tolual-1, 5-naphthylenediamine	210	230	(46)
C14H11N1O1	CH4OC6H4CH:NCmH6N:= CHC4 H4OCH3	Dianisal-1, 5-naphthylenediamine	206	313	(46)
C36H32N4O2	H2NC4H4CONHC4H4C4H4NHCO- C4H4NH2	Di-(p-aminobenzoy I)-benzidine	312	d.	(45)
C24H24N2O4	$C_6H_4(CH\cdot NC_6H_4COOC_2H_5)_2$	Ethyl p-phthalal-di-(p-aminobenzo- ate)	189	000	(17)
C16H25NO1	CaHaCaHaCH:NCaHaCH:- CHCOOCaHa	n-Butyl p-phenylbenzal-p-aminocin- namate	167	230	(17)
C14H14N2(),	C ₃ H ₄ OCOCCH ₄ .CHC ₄ H ₄ NONC ₆ H ₄ - CH:CCH ₄ COOC ₃ H ₅	Allyl p-azoxy-α-methyleinnamate.	75	203 115	(20)
C16H16N1();	C ₄ H ₄ OCOCH ₂ OCOCH CHC ₅ H ₄ - NONC ₄ H ₄ CH-CHCOOCH ₂ - COOC ₂ H ₄	p-Azoxyemnamic neid ethyl glycolate ester	148	235	(40)
C34H30N3O3	C4H4OCOCH_CHC8H4NONC4H4- CH:CHCOOC4H4	n-Butyl p-azoxycinnamate	111	214	(40)
CmHmNO2	C ₈ H ₄ C ₄ H ₄ CH:NC ₆ H ₄ CH:- CHCOOC ₄ H ₁₁	act-Amyl p-(p-phenylbenzalamino)- cinnamate	115, 153*	180	(43)
C ₁₇ H ₁₇ NO ₂	CHCOOC ₃ H ₁₁	iso-Amyl p - $(p$ -phenylbenzalamino)-cinnamate .	164, 188*	197	(43)
	C ₆ H ₄ C ₆ H ₄ CH:NC ₆ H ₄ CH:- CCH ₄ COC ₄ H ₉	n -Butyl p - $(p$ -phenylbenzalamino)- α -methylcinnamate	99, 137*	149	(20, 43, 46)
	CC ₃ H ₃ COOC ₃ H ₇	n-Propyl p-(p-phenylbenzalamino)- α-ethylcinnamate	119	135	(20, 21, 43)
		Di-p-oxytolanedibenzoate	214	254	(41)
C24H20N2O4	C4H4COOC4H4CH:NN:CHC4H4- OCOC4H4	Di-p-benzoxybenzalazme	227	290	(16, 40)

C11H14N1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1O1 (C C11H14N1 (C C(C C11H14N1 (C C(C C11H14N1 (C C(C C11H14N1 (C C(C C11H14N1 (C C(C C11H14N1 (C C(C C11H14N1 (C C(C C(C C11H14N1 (C C(C C(C C(C C(C C(C C(C C(C C(C C(C	C ₄ H ₄ N:CHC ₄ H ₄ CH ₁) ₁ C ₄ H ₄ N:CHC ₄ H ₄ OCH ₂) ₂ C ₄ H ₄ COOC ₄ H ₄ N:N:NC ₄ H ₄ CH:CCH ₂ -COOC ₄ H ₄ N:CHC ₄ H ₄ NONC ₄ H ₄ -CH:CHCOOC ₄ H ₄ N:CHC ₄ H ₄ NONC ₄ H ₄ -CH:CH ₂ COOC ₄ H ₄ C ₄ H ₄ OCOCCH ₂ :CHC ₄ H ₄ NONC ₄ H ₄ -CH:CCH ₂ COOC ₄ H ₄ c ₄ H ₄ OCOCCH ₂ :CHC ₄ H ₄ NONC ₅ H ₄ -CH:CCH ₂ COOC ₄ H ₄ c ₄ H ₄ OCOCCH ₂ :CHC ₄ H ₄ NONC ₅ H ₄ -CH:CCH ₂ COOC ₄ H ₅ c ₄ H ₄ COCCCH ₂ :CHC ₄ H ₄ NONC ₅ H ₄ -CH:CCH ₂ COOC ₄ H ₅ c ₄ H ₄ COCH ₂ CH ₄ CH ₄ NONC ₅ H ₄ -CH:CCH ₂ COOC ₄ H ₅ c ₄ H ₄ COCH ₂ CH ₅ CH ₄ CH ₄ CH ₄ CH ₄ CH:CHC ₆ CH ₄ CH ₄ CH ₄ CH ₄ CH:CHC ₆ CH ₄ CH ₄ CH ₄ CH ₄ CH:CHCOCC ₄ H ₅ c ₄ H ₄ CH:CHC ₆ CH ₄ CH ₄ CH:CHCOCC ₄ H ₅ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCC ₂ CH ₄ c ₄ H ₄ COCCC ₂ CH ₄ c ₄ H ₄ CCOCC ₂ CH ₄ c ₄ H ₄ CCOCC ₂ CH ₄ c ₄ H ₄ CCOCC ₂ CH ₄ c ₄ H ₄ CCOCC ₂ CH ₄ c ₄ H ₄ CCOCC ₂ CH ₄ c ₄ H ₄ CCOCC ₂ CH ₄ c ₄ H ₄ CCCCCC ₄ CH ₄ CH ₄ CH ₄ c ₄ H ₄ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		224 231 258 88 144 86, 110* 60 213 248 171 174, 270* 97 + 2 83 96 4 99 284 206	285 d. >300 120 186 125.5 100 >300 >300 310 112 ± 2 103 5 107 3 101 >300 245 d.	(41) (6.24) (46) (20) (40) (20) (47) (13) (13) (17) (6, 10, 18, 20) (8) (18) (8) (2) (16)
C21H24N2O2 C21H24N2O4 C21H24N2O4 C21H24N2O4 C21H24N2O4 C21H24N2O4 C21H24N2O4 C21H24N2O2 C20H21N2O2 C21H24N2 C21H24N2 C21H24N2 C21H24N2 C21H24N2O4 C22H24N2O4 C22H24N2O2 C22H24N2O2 C22H24N2O2 C22H24O2 C22H24O2 C22H24O2 C22H24O2 C22H24O2 C22H24O3	CaH4N:CHC4H4OCH3)2 SH4COOC4H4N:NC4H4CH:CCH3- COOC4H4N:NC4H4CH:CCH3- COOC4H4N:NC4H4CH:CCH3- CHCHCOOC4H4N SH4GOCOCH3:CHC4H4NONC4H4- CH:CCH3COOC4H4 SH4GOCOCH3:CHC4H4NONC4H4- CH:CCH3COOC4H4 SH4GOCOCH3:CHC6H4NONC4H4CH3- CHCCCH3COOC4H4 SH4COCH:CHC6H4NONC4H4CH3- CH4AN:CHC4H4CH3- CH4AN:CHC4H4CH3- CH4AN:CHC3H4GC3H3)2 C4H4N:CHC4H4CH3- C4H4N:CHC4H4CH3- C4H4NCCOCC2H44 SH4GCOOC22H44 SH4GCOOC32H44 SH4GCOOC32H44 SH4GCOOC32H44 SH4GCOOC32H44 SH4GCOOC32H44 SH4GCOCCH3CH3O23H44 SH4GCOOC34H4 SH4GCOCCH3CHCOOC4H4- COOC4H4COOC4H4COOC4H4- COOC4H4CCAH4CAH4- CAH4CAH4CH3CAH4- CAH4CAH4CAH4- CAH4CAH4CAH4- CAH4CAH4CAH4- CAH4CAH4-	Dianisalbenzidene act-A m y 1 p-benzoylazophenol-α- methyleinnamate iso-Amyl p-azoxyemnamate iso-Bu t y 1 p-azoxyemnamate i-Butv1 p-azoxy-α-methyleinnamate n-Butv1 p-azoxy-α-methyleinnamate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-o-methylbenzal)- benzidine Et h y 1 p-phthalal-di-(p-animocin- namate) Cholesterol propionate Cholesterol n-butviate Cholesterol n-bropyl earbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl-	231 258 88 144 86, 110* 60 213 248 171 174, 270* 97 + 2 83 96 4 99 284 206	>300 120 186 125.5 100	(46) (20) (40) (20) (20) (47) (13) (13) (17) (6, 10, 18, 30) (8) (18) (6) (2) (16)
C28H21N2O4 C28H21N2O4 C28H21N2O4 C38H21N2O4 C48H21N2O5 C48H21N2O3 C58H22N2O3 C58H22N2O3 C58H22N2O3 C58H21N2O3	CHICOOC 6H 4N : NC 6H 4CH : CCH 2- COOC H 11 CHI 11 O COCH : CHC 6H 4 NO NC 6H 4- CHI CHCOOC 6H 11 CHI COCC H 2: CHC 6H 4 NO NC 6H 4- CH : CCH 2 COOC 6H 11 CH 6 COCC H 2: CHC 6H 4 NO NC 6H 4- CH : CCH 4 COOC 6H 4- CH CCH 4 COOC 6H 4- CH 6 CCH 2 CHC 6H 4 NO NC 6H 4- CH 6 CCH 2 CHC 6H 4 NO NC 6H 4 CH 2 CH 6 CCH 2 CHC 6H 4 NO NC 6H 4 CH 2 CH 6 CCH 2 CHC 6H 4 CH 2 CH 2 CH 6 CH 7 CHC 6H 4 CH 2 CH 2 CH 6 CH 7 CHC 6H 4 CH 2 CH 2 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 4 CH 6 CH 7 CHC 6H 6 CHC 7 CHC 7 CH 7 CH 7 CHC 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CHC 7 CH 7 CHC 7 CHC 7 CH 7 CH 7	act-A m y 1 p-benzoylazophenol-α-methyleinnamate 180-Amyl p-azoxyemnamate 180-Bu t y 1 p-azoxyemnamate 180-But t y 1 p-azoxyemethyleinnamate 18-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-ω-methyleinnamate E t h y 1 p-phthalal-di-(p-aminocunnamate) Cholesterol ethyl carbonate Cholesterol n-butyrate Cholesterol n-bropyl carbonate Di-(p-p h e n y 1 h e n z a h)-p-phenyl-enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p-acetoxybenzoxy)benzoate,	88 144 86, 110* 60 213 248 171 174, 270* 97 + 2 83 96 4 99 284 206	186 125.5 100 >300 >300 310 112 + 2 103 5 107 3 101 >300 245 d.	(20) (40) (20) (20) (47) (13) (13) (17) (6, 10, 18, 30) (8) (18) (8) (18) (2) (16)
C ₁₁ H ₁₄ N ₁ O ₃ C C ₁₁ H ₁₄ N ₁ O ₃ C C ₁₁ H ₁₄ N ₁ O ₃ C C ₂₀ H ₁₂ N ₃ O ₃ C C ₂₀ H ₁₂ N ₃ O ₃ (C C ₂₀ H ₁₂ N ₃ O ₃ (C C ₂₀ H ₂₁ N ₃ O ₃ (C C ₂₀ H ₂₁ N ₃ O ₃ (C C ₂₀ H ₂₁ N ₃ O ₃ (C C ₂₀ H ₂₁ N ₃ O ₄ C C ₂₀ H ₃₀ O ₃ C C ₁₁ H ₃₁ O ₃ C C ₂₁ H ₃₂ O ₃ C C ₂₁ H ₂₄ O ₁₀ C C C ₂₁ H ₂₄ O ₁₀ C C C ₂₁ H ₂₄ O ₁₀ C C C ₂₁ H ₂₄ O ₁₀ C C C ₂₁ H ₂₄ O ₁₀ C C C ₂₁ H ₂₄ O ₁ C C C ₂₁ H ₂₄ O ₁ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C ₂₁ H ₂₄ O ₃ C C C C ₂₁ H ₂₄ O ₃ C C C C ₂₁ H ₂₄ O ₃ C C C C C C C C C C C C C C C C C C C	COOC ₃ H ₁₁ ² ₃ H ₁₀ COCH:CHC ₄ H ₄ NONC ₄ H ₄ - CH:CHCOOC ₄ H ₁₁ ² ₄ H ₆ OCOCCH ₅ :CHC ₄ H ₄ NONC ₆ H ₄ - CH:CCH ₂ COOC ₄ H ₁ ² ₂ H ₆ OCOCCH ₅ :CHC ₆ H ₄ NONC ₆ H ₄ - CH:CCH ₂ COOC ₄ H ₆ ² ₂ H ₆ OCOC ₆ H ₆ ² ₄ H ₆ OCOC ₆ H ₆ ² ₄ H ₆ OC ₆ CH ₆ + ² ₄ H ₆ COCC ₂ H ₄ ² ₄ H ₆ COOC ₂ H ₄ ² ₄ H ₆ COOC ₂ H ₄ ² ₅ H ₆ COOC ₂ H ₄ ³ ₆ H ₆ COOC ₂ H ₄ ³ ₆ H ₆ CH:CHCOOC ₄ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ ³ ₆ H ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ³ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COOC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COOC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCC ₆ H ₆ COCC ₆ H ₆ ⁴ ₆ COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	methylcinnamate 180-Amyl p-azoxyemnamate 180-But y 1 p-azoxyemnamate n-Butxl p-azoxyem-ethylcin- namate n-Butxl p-azoxyem-ethylcin- namate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-o-methylbenzal)- benzidine E t h y 1 p-phthalal-di-(p-animocun- namate) Cholesterol propionate Cholesterol n-butyriate Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-enimamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoate,	88 144 86, 110* 60 213 248 171 174, 270* 97 + 2 83 96 4 99 284 206	186 125.5 100 >300 >300 310 112 + 2 103 5 107 3 101 >300 245 d.	(20) (40) (20) (20) (47) (13) (13) (17) (6, 10, 18, 30) (8) (18) (8) (18) (2) (16)
C11H14N1O4 C C11H14N1O4 C C11H14N1O4 C C11H14N1O4 C C11H14N1O3 C C10H111N1O3 C C10H11N1O3 C C10H11N1O3 C C10H11N1O4 C C10H11N1O4 C C10H10O1 C C10H10O1 C C11H11O3 C C C11H11O3 C C11H11O3 C C C C11H11O3 C C C11H11O3 C C C C11H11O3 C C C C11H11O3 C C C C11H11O3 C C C C11H11O3 C C C C C11H11O3 C C C C C C C C C C C C C C C C C C C	Callatocochichechealanonealachechecochia Chechecochia Chechecochia Chechecochia Chechacoochia Chechacoochia Chechacoochia Chechacoochia Callatichechalanonealachia Callatichechacochia Callatichechacochia Callatichechachacochia Callatichechachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia Callatococallachia	180-Amyl p-azoxycmnamate 180-Bu t y 1 p-azoxycm-methylcin- namate n-Butyl p-azoxy-α-methylcinnamate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-α-methylbenzal)- benzidine E t h y 1 p-phthalal-di-(p-animocun- namate) Cholesterol propionate Cholesterol propionate Cholesterol n-butyinte Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-cunnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoate.	86, 110* 60 213 248 171 174, 270* 97 + 2 83 96 4 99 284 206	186 125.5 100 >300 >300 310 112 + 2 103 5 107 3 101 >300 245 d.	(40) (20) (20) (47) (13) (13) (6, 10, 18, 30) (8) (18) (8) (2) (16)
C ₁₁ H ₁₄ N ₁ O ₄ C ₁₂ H ₁₄ N ₂ O ₅ C ₂₂ H ₁₂ N ₂ O ₃ C ₂₄ H ₁₂ N ₃ O ₃ C ₂₆ H ₁₂ N ₃ O ₃ C ₂₆ H ₁₂ N ₃ O ₃ C ₂₆ H ₁₃ N ₃ O ₃ C ₂₆ H ₁₄ N ₃ O ₄ C ₂₆ H ₁₆ O ₃ C ₂₇ H ₁₆ O ₅ C ₂₇ H ₁₆ O ₅ C ₂₇ H ₁₆ O ₆ C ₂₇ H ₂₆ O ₁₀ C ₂₈ H ₂₆ O ₁₀ C ₂₉ H ₃₆ O ₁₀ C ₂₉ H ₃₆ O ₁₀ C ₂₉ C ₂₉ C ₂₉ C ₂₉ C ₂₉ C ₂₉ C ₂₉ C ₂₉	CH:CHCOOC ₄ H ₁₁ ZH ₂ OCOCCH ₂ :CHC ₆ H ₄ NONC ₆ H ₄ - CH:CCH ₂ COOC ₄ H ₃ ZH ₂ OCOCCH ₃ :CHC ₆ H ₄ NONC ₆ H ₄ - CH:CCH ₂ COOC ₄ H ₃ ZH ₃ COCCH ₂ :CHC ₆ H ₄ NONC ₆ H ₄ - CH:CCH ₂ COOC ₄ H ₃ ZH ₄ COCH:CHC ₆ H ₄ NONC ₆ H ₄ CH:- CHCOC ₆ H ₄ ZH ₄ CH:CHC ₄ H ₄ OC ₅ H ₅) ₂ ZH ₄ (CH:NC ₆ H ₄ CH:CHCOOC ₂ H ₄) ₂ ZH ₄ COOC ₂ :H ₄₆ ZH ₅ COOC ₂ :H ₄₆ ZH ₆ COCC ₂ :H ₄₆ ZH ₆ COCC ₄ :H ₆ CH ₆ CH NN:CH- CH ₆ COCC ₆ H ₆ COOC ₆ H ₆ COOC ₆ H ₆ - COOC ₆ H ₆ COOC ₆ H ₆ COOC ₆ H ₆ - COOC ₆ H ₆ COOC ₆ H ₆ COOC ₆ H ₆ - COOC ₆ H ₆ - COOC ₆ - COOC ₆ H ₆ - COOC ₆ H ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC ₆ - COOC	180-B u t y 1 p-a z o x y-α-methylcin- namate n-Butyl p-azoxy-α-methylcinnamate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-α-methylbenzal)- benzidine E t h y 1 p-phthalal-di-(p-aminocin- namate) Cholesterol propionate Cholesterol propionate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-{p-(p- acetoxybenzoxy)benzoate,	86, 110* 60 213 248 471 174, 270* 97 + 2 83 96 4 99 284 206	186 125.5 100 >300 >300 310 112 + 2 103 5 107 3 101 >300 245 d.	(20) (20) (47) (13) (13) (17) (6, 10, 18, 30) (8) (18) (8) (18) (2) (16)
C11H14N1O4 C11H14N1O4 C11H14N1O4 C21H14N1O3 C21H11N1O3 C22H11N1O3 C22H11N1O3 C23H11N1O3 C23H11N1O4 C33H110O3 C31H14OO4 C31H14OO	C.H.OCOCCH3:CHC6H4NONC6H4- CH:CCH4COOC4H- CH:CCH4COOC4H- CH-CCH4COOC4H- CH-CCH4COOC4H- CH-CCH4COOC4H- CH-CCH4COOC4H- CH-CCH4CH4NONC6H4CH:- CHCOC6H4 C4H4N:CHC6H4OC4H4NONC6H4CH:- C4H4N:CHC6H4CCH-CHCOOC4H4) C4H4N:CHC6H4CH4CH4CH4) C4H4CCOCC22H46 C4H4OCOOC22H46 C4H4OCOCC22H46 C4H4OCOCC22H46 C4H4OCOCC22H46 C4H4OCOCC22H46 C4H4CCHCHCCHCCHACOC6H4COOC6H4- COOC4H4COOC4H4COOC6H4- COOC4H4COOC6H4COOC6H4- COOC4H4COOC6H4COOC6H4- COOC4H4COOC6H4COOC6H4- COOC4H4COOC6H4COOC6H4- COOC4H4COOC6H4COOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4- COOC4H4CAOC6H4-	namate n-Butyl p-azoxy-\alpha-methylcimamate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-\alpha-methylbenzal)- benzidine Et h yl -p-phthalal-di-(p-aminocim- namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y l h e n z a h)-p-phenyl- enediamine Di-(p-cimamylhydroxy)-benzalazine Ethyl -p-hydroxybenzoate -p-[p-(p- acetoxybenzoxy)benzoate,	86, 110* 60 213 248 471 174, 270* 97 + 2 83 96 4 99 284 206	>300 >300 310 112 + 2 103 5 107 3 101 >300 245	(20) (20) (47) (13) (13) (17) (6, 10, 18, 30) (8) (18) (8) (18) (2) (16)
C ₃₅ H ₁₄ N ₂ O ₅ C ₃₆ H ₁₂ N ₂ O ₃ C ₃₆ H ₁₂ N ₂ O ₃ C ₃₆ H ₁₂ N ₂ O ₃ C ₃₆ H ₁₃ N ₃ O ₃ C ₃₆ H ₁₃ N ₃ O ₄ C ₃₆ H ₁₄ N ₃ O ₅ C ₃₆ H ₁₆ O ₃ C ₃₆ H ₁₆ O ₃ C ₃₇ H ₁₆ O ₅ C ₃₇ H ₁₆ O ₅ C ₃₇ H ₁₆ O ₅ C ₃₇ H ₁₆ O ₅ C ₃₇ H ₁₆ O ₅ C ₃₇ H ₁₆ O ₅ C ₃₇ H ₂₄ O ₁₀ C ₃₇ C ₃₇ H ₃₄ O ₂ C ₃₇ H ₃₄ O ₃ C ₃₇ C ₃₇ H ₃₇ O ₃ C ₃₇ C ₃₇ H ₃₇ O ₃ C ₃₇ C ₃₇ H ₃₇ O ₃ C ₃₇ C ₃₇ C ₃₇ C ₃₇ C ₃₇ C ₃₇ C ₃₇ C ₃₇	CH:CCH ₂ COOC ₄ H ₄ SH ₅ OCOCCH ₂ :CHC ₆ H ₄ NONC ₆ H ₄ CH:CCH ₂ COOC ₄ H ₅ SH ₄ OCOCCH ₃ :CHC ₆ H ₄ NONC ₆ H ₄ CH:CCH ₂ CHCOC ₄ H ₅ C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₅) ₂ C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₅) ₂ C ₆ H ₄ N:CHC ₆ H ₄ CH:CHCOOC ₂ H ₆) ₂ C ₇ H ₅ COOC ₂ :H ₄₆ C ₇ H ₅ OCOOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₂ :H ₄₆ C ₇ H ₇ COOC ₄ :H ₇ COOC ₄ :H ₇ COOC ₆ :H ₇	namate n-Butyl p-azoxy-\alpha-methylcimamate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-\alpha-methylbenzal)- benzidine Et h yl -p-phthalal-di-(p-aminocim- namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y l h e n z a h)-p-phenyl- enediamine Di-(p-cimamylhydroxy)-benzalazine Ethyl -p-hydroxybenzoate -p-[p-(p- acetoxybenzoxy)benzoate,	60 213 248 471 174, 270* 97 + 2 83 96 4 99 284 206	>300 >300 310 112 + 2 103 5 107 3 101 >300 245	(18) (13) (13) (147) (13) (13) (14) (15) (18) (18) (18) (18) (18) (18)
C ₁₀ H ₁₄ N ₁ O ₄ C ₁₀ H ₁₂ N ₁ O ₃ C ₁₀ H ₁₂ N ₁ O ₃ C ₁₀ H ₁₄ N ₁ O ₃ C ₁₀ H ₁₄ N ₁ O ₃ C ₁₀ H ₁₄ N ₁ O ₄ C ₁₀ H ₁₆ O ₂ C ₁₀ H ₁₆ O ₃ C ₁₁ H ₁₆ O ₃ C ₁₁ H ₁₆ O ₃ C ₁₂ H ₁₄ O ₁₀ C ₁₂ H ₁₄ O ₁₀ C ₁₂ H ₁₄ O ₁₀ C ₁₃ H ₁₄ O ₂ C ₁₄ H ₁₄ O ₃ C ₁₄ H ₁₄ O ₃ C ₁₄ H ₁₄ O ₃ C ₁₄ H ₁₄ O ₃ C ₁₄ H ₁₄ O ₃ C ₁₄ H ₁₄ O ₄ C ₁₅ H ₁₄ O ₆ C ₁₆ C ₁₆ H ₁₆ O ₆ C ₁₇ H ₁₆ O ₆ C ₁₆ C ₁₆ H ₁₆ O ₆ C ₁₇ H ₁₆ O ₆ C ₁₆ C ₁₆ H ₁₆ O ₆ C ₁₆ C ₁₆ H ₁₆ O ₆ C ₁₆ C ₁₆ H ₁₆ O ₆ C ₁₆ C ₁₆ H ₁₆ O ₆ C ₁₆ C ₁₆ C ₁₆ C ₁₆ C ₁₆ C ₁₆ C ₁₆ C ₁₆	CH40COCCH4:CHC6H4NONC4H4- CH:CCH4COOC4H4 CH:CCH4COOC4H4 CH4CCCH6 CH4CCCH6 CH4CCCH6 CH4CCCH6 CH4CCCH6 CH4CCCH6 CH4CCCH6 CH4CCCH6 CH4CCCCH6 CH4CCCCH6 CH4CCCCCH6 CH4CCOCC2 CH4 CH4CCOCC2 CH4 CH4CCOCC2 CH4 CH4CCOCC2 CH4 CH4CCOCC4 CH4CCOCC4 CH4CCOCC4 CH4CCOCC4 CH4CCOCC4 CH4CCOCC4 CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CH4CCOCC4 CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCC	namate n-Butyl p-azoxy-\alpha-methylcimamate p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-\alpha-methylbenzal)- benzidine Et h yl -p-phthalal-di-(p-aminocim- namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y l h e n z a h)-p-phenyl- enediamine Di-(p-cimamylhydroxy)-benzalazine Ethyl -p-hydroxybenzoate -p-[p-(p- acetoxybenzoxy)benzoate,	60 213 248 471 174, 270* 97 + 2 83 96 4 99 284 206	>300 >300 310 112 + 2 103 5 107 3 101 >300 245	(18) (13) (13) (147) (13) (13) (14) (15) (18) (18) (18) (18) (18) (18)
C ₃₀ H ₃₁ N ₃ O ₃ C ₃₀ H ₃₁ N ₃ O ₃ C ₃₀ H ₃₁ N ₃ O ₂ C ₃₀ H ₃₁ N ₃ O ₂ (C C ₃₀ H ₃₁ N ₃ O ₃ C C ₃₀ H ₃₀ O ₃ C C ₃₁ H ₃₀ O ₃ C C ₃₁ H ₃₀ O ₃ C C ₃₁ H ₃₁ O ₃ C C ₃₁ H ₃₄ O ₄ C C ₃₂ H ₃₄ O ₁₀ C C ₃₂ H ₃₄ O C C ₃₁ H ₃₄ O C C ₃₁ H ₃₄ O C C ₃₁ H ₃₄ O C C ₃₁ H ₃₄ O C C ₃₁ H ₃₄ O C C C ₃₁ H ₃₄ O C C C ₃₁ H ₃₄ O C C C ₃₁ H ₃₄ O C C C ₃₁ H ₃₄ O C C C C ₃₁ H ₃₄ O C C C C C ₃₁ H ₃₄ O C C C C C C C C C C C C C C C C C C C	CH:CCH ₂ COOC ₄ H ₄ ³ ₃ H ₄ COCH:CHC ₆ H ₄ NONC ₆ H ₄ CH:- CHCOC ₆ H ₄ C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₅) ₂ C ₆ H ₄ N:CHC ₇ H ₄ CH:CHCOOC ₂ H ₄) ₂ ³ ₄ H ₄ COOC ₂ H ₄ ³ ₂ H ₄ COOC ₂ H ₄ ³ ₄ H ₄ OCOOC ₂ H ₄ ³ ₆ H ₄ COOC ₂ H ₄ ³ ₆ H ₄ COOC ₂ H ₄ ³ ₆ H ₄ COCOC ₂ H ₄ ³ ₆ H ₄ COCOC ₂ H ₄ ⁴ ₆ H ₄ COCOC ₂ H ₄ ⁵ ₆ H ₄ COC ₄ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ ⁵ ₆ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ ⁵ ₆ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ ⁵ ₆ H ₄ C ₆ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ ⁵ ₆ H ₄ C ₆ H ₄ COOC ₄ H ₄ ⁵ ₆ H ₄ C ₆ H ₄ COOC ₄ H ₅ ⁵ ₆ H ₄ C ₆ H ₄ COOC ₄ H ₄ ⁵ ₆ H ₄ C ₆ D ₆ C ₆ H ₄ COOC ₄ H ₆	p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-o-methylbenzal)- benzidine E t h y l	60 213 248 471 174, 270* 97 + 2 83 96 4 99 284 206	>300 >300 310 112 + 2 103 5 107 3 101 >300 245	(18) (13) (13) (147) (13) (13) (14) (15) (18) (18) (18) (18) (18) (18)
C ₂₀ H ₁₂ N ₂ O ₃ C ₂₀ H ₁₂ N ₃ O ₃ C ₂₀ H ₁₂ N ₃ O ₂ C ₂₀ H ₁₃ N ₃ O ₃ (C C ₂₀ H ₁₃ N ₃ O ₃ C ₂₀ H ₁₃ N ₃ O ₄ C C ₂₀ H ₂₀ O ₃ C ₃₁ H ₂₀ O ₃ C ₃₁ H ₂₀ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₄ C ₃₂ H ₃₄ O ₄ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₂ H ₃₄ O ₃ C ₃₃ H ₃₄ O ₃ C ₃₄ C ₃₄ O ₄ C ₃₅ C ₃₄ H ₃₄ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆	CallaCOCH:CHCallaNONCallaCH:- CHCOCalla CallaN:CHCallaOCalla) CallaN:CHCallaOCalla) CallaCH:NCallaCH:CHCOOCalla) CallaCOOCarlas CallaCOOCarlas CallaCOOCarlas CallaCOCCallaCH:NN:CH- CallaCOOCarlas CallaCOOCarlas CallaCOOCarlas CallaCOOCallaCH:COOCalla- COOCallaCOOCallaCOOCalla- COOCallaCOOCallaCOOCalla- COOCallaCOOCallaCOOCalla- COOCallaCOOCallaCOOCalla- COOCallaCOOCallaCOOCalla- COOCallaCOOCallaCOOCalla- CallaCOOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCalla- COOCallaCOOCAlla- COOCallaCOOCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAllaCAllaCAllaCAlla- CAllaCAllaCAllaCAllaCAllaCAllaCAllaCAll	p-Azoxybenzalacetophenone Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-o-methylbenzal)- benzidine E t h y l	248 171 174, 270* 97 + 2 83 96 4 99 284 206	>300 >300 310 112 + 2 103 5 107 3 101 >300 245	(47) (13) (13) (17) (6, 10, 18, 30) (8) (18) (4) (2) (16)
C ₁₀ H ₂₁ N ₂ O ₂ (C C ₁₀ H ₂₁ N ₂ O ₂ (C C ₁₀ H ₂₁ N ₂ O ₃ (C C ₁₀ H ₂₁ N ₂ O ₄ C C ₁₁ H ₂₁ O ₃ C C ₁₁ H ₂₁ O ₃ C C ₁₂ H ₂₄ N ₂ C C ₁₂ H ₂₄ N ₂ C C ₁₂ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C C ₂₁ H ₂₄ O C	CHCOC ₆ H ₄ C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₅) ₂ C ₆ H ₄ N:CHC ₆ H ₄ CH ₂ CH ₃ OCH ₄) ₂ C ₆ H ₄ (CH:NC ₆ H ₄ CH:CHCOOC ₂ H ₆) ₂ C ₇ H ₆ COOC ₂₇ H ₄₅ C ₇ H ₆ OCOOC ₂₇ H ₄₆ C ₇ H ₇ OOC ₂₇ H ₄₆ C ₇ H ₇ OOC ₂₇ H ₄₆ C ₇ H ₇ OCOOC ₂₇ H ₄₆ C ₇ H ₇ OCOC ₂₇ H ₄₆ C ₇ H ₇ COCC ₂₇ H ₄₆ C ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COCC ₇ H ₇ COOC	Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-o-methylbenzal)- benzidine E t h y 1 - p-phthalal-di-(p-aminocin- namate) Cholesterol propionate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-einnamylhydroxy)-benzalazine Ethyl - p-hydroxybenzoate - p-[p-(p- acetoxybenzoxy)benzoate.	248 171 174, 270* 97 + 2 83 96 4 99 284 206	>300 310 112 + 2 103 5 107 3 101 >300 245	(13) (13) (17) (6, 10, 18, 30) (8) (18) (8) (18) (9)
C ₁₀ H ₁₂ N ₁ O ₂ (C C ₂₀ H ₁₂ N ₁ O ₂ (C C ₂₀ H ₁₂ N ₁ O ₄ C C ₂₀ H ₂₀ O ₅ C C ₃₀ H ₂₀ O ₅ C C ₁₁ H ₂₂ O ₅ C C ₂₁ H ₂₄ O ₁ C C ₂₂ H ₂₄ O ₁₀ C C ₂₂ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O ₁₀ C C ₂₂ H ₂₄ O ₁₀ C C ₂₁ H ₂₄ O ₁₀ C	C ₆ H ₄ N:CHC ₆ H ₄ OC ₂ H ₅) ₂ C ₆ H ₄ N:CHC ₇ H ₂ CH ₂ OCH ₂) ₂ C ₆ H ₄ (CH:NC ₆ H ₄ CH:CHCOOC ₂ H ₆) ₂ C ₂ H ₄ COOC ₂ :H ₄ ₅ C ₃ H ₄ OCOOC ₂ :H ₄ ₆ C ₃ H ₇ OCOOC ₂ :H ₄ ₆ C ₃ H ₇ COOC ₂ :H ₄ ₆ C ₃ H ₇ COOC ₂ :H ₄ ₆ C ₃ H ₇ COCC ₂ :H ₄ ₇ C ₃ H ₄ CN:CHCCHC ₇ H ₅ C ₃ H ₄ CN:CHCCHC ₇ H ₅ C ₃ H ₄ COOC ₄ H ₄ COOC ₆ H ₄ - COOC ₄ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ - COOC ₄ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ C ₃ H ₄ C ₄ H ₆ CH:C ₄ H ₅ O CHC ₇ H ₅	Di-(p-ethoxybenzal)-benzidine Di-(p-m e t h o x y-o-methylbenzal)- benzidine E t h y 1 - p-phthalal-di-(p-aminocin- namate) Cholesterol propionate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-einnamylhydroxy)-benzalazine Ethyl - p-hydroxybenzoate - p-[p-(p- acetoxybenzoxy)benzoate.	248 171 174, 270* 97 + 2 83 96 4 99 284 206	>300 310 112 + 2 103 5 107 3 101 >300 245	(12) (13) (17) (6, 10, 18, 30) (8) (18) (8) (8) (16)
C ₁₀ H ₁₄ N ₁ O ₂ (C C ₁₀ H ₁₆ N ₁ O ₄ C C ₁₀ H ₁₆ O ₂ C C ₁₀ H ₁₆ O ₂ C C ₁₁ H ₁₆ O ₃ C C ₁₁ H ₁₆ O ₃ C C ₁₁ H ₁₆ O ₃ C C ₁₁ H ₁₆ O ₃ C C ₁₂ H ₁₆ O ₄ C C ₁₂ H ₂₄ N ₁ O ₄ C C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₆ O C ₁₂ H ₂₆ O C ₁₂ H ₂₆ O C ₁₂ H ₂₆ O C ₁₂ H ₂₆ O C ₁₂ H ₂₆ O C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C C ₁₂ H ₂₆ O C C C ₁₂ H ₂₆ O C C C ₁₂ H ₂₆ O C C C C ₁₂ H ₂₆ O C C C C C ₁₂ H ₂₆ O C C C C C C C C C C C C C C C C C C C	CaH4N:CHCrH2CH2OCH2)2 CaH4(CH:NCaH4CH:CHCOOC2H5)2 CaH4(CH:NCaH4CH:CHCOOC2H5)2 CaH4COOC22H46 CaH4COOC22H46 CaH4COOC22H46 CaH4COOC22H46 CaH4COOC42H46 CaH4COOC4H4CAH4COOC4H4 CAH4COOC4H4COOC4H4 COOC4H4COOC4H4 COOC4H4COOC4H4 COOC4H4COOC4H4 CAH4CAH4CH:CAH4COCCH4	Di-(p-m e t h o x y-o-methylbenzal)-benzadine E t h yl p-phthalal-di-(p-aminocun-namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-britylate Cholesterol n-propyl carbonate Di-(p-p h e n y l h e n z a l)-p-phenyl-enediamine Di-(p-cunnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p-acetoxybenzoxy)benzoate.	171 174, 270* 97 + 2 83 96 4 99 284 206	>300 310 112 + 2 103 5 107 3 101 >300 245	(13) (17) (6, 10, 18, 30) (8) (18) (8) (2) (16)
C ₃₀ H ₃₆ N ₃ O ₄ C C ₃₀ H ₄₀ O ₂ C C ₃₀ H ₄₀ O ₃ C C ₁₁ H ₃₂ O ₃ C C ₁₁ H ₃₂ O ₃ C C ₂₁ H ₃₄ O ₃ C C ₂₂ H ₂₄ N ₃ O ₄ C C ₃₂ H ₂₄ O C C ₃₂ H ₃₆ O C C ₃₂ H ₃₆ O C C ₃₄ H ₃₆ O C C ₃₄ H ₃₆ O C C ₃₄ H ₃₆ O C C ₃₄ H ₃₆ O C C C ₃₄ H ₃₆ O C C C ₃₄ H ₃₆ O C C C C ₃₄ H ₃₆ O C C C C C C C C C C C C C C C C C C C	C ₄ H ₄ (CH:NC ₆ H ₄ CH:CHCOOC ₂ H ₄) ₂ C ₂ H ₄ COOC ₂ ;H ₄ ₆ C ₃ H ₄ COOC ₂ ;H ₄ ₆ C ₃ H ₅ COOC ₂ ;H ₄ ₆ C ₃ H ₅ COOC ₂ ;H ₄ ₆ C ₃ H ₅ COOC ₂ ;H ₄ ₆ C ₃ H ₅ COCOC ₂ ;H ₄ ₆ C ₃ H ₅ CH:CHCOOC ₂ H ₄ CH NN:CH-CAH ₆ CH:CHCOOC ₄ H ₄ COOC ₄ H ₄	Di-(p-m e t h o x y-o-methylbenzal)-benzadine E t h yl p-phthalal-di-(p-aminocun-namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-britylate Cholesterol n-propyl carbonate Di-(p-p h e n y l h e n z a l)-p-phenyl-enediamine Di-(p-cunnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p-acetoxybenzoxy)benzoate.	171 174, 270* 97 + 2 83 96 4 99 284 206	>300 310 112 + 2 103 5 107 3 101 >300 245	(13) (17) (6, 10, 18, 30) (8) (18) (8) (2) (16)
C ₁₀ H ₁₀ O ₂ C ₂₀ H ₁₀ O ₃ C ₂₁ H ₁₂ O ₃ C ₂₁ H ₁₂ O ₃ C ₂₂ H ₁₄ N ₂ C ₂₂ H ₂₄ N ₃ O ₄ C ₃₂ H ₂₄ O ₁₀ C ₃₂ H ₂₄ O ₁₀ C ₃₂ H ₂₄ O ₁₀ C ₃₂ H ₃₄ O ₂ C ₃₁ H ₃₄ O ₂ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ H ₃₄ O ₃ C ₃₁ C ₃₁ H ₃₄ O ₃ C ₃₁ C ₃₁ H ₃₄ O ₃ C ₃₁ C ₃₁ C ₃₁ C ₃₁ C ₃₁ C ₃₁ C ₃₁ C ₃₁	C ₂ H ₄ COOC ₂ ;H ₄₅ C ₂ H ₄ OCOOC ₂ ;H ₄₆ C ₃ H ₅ COOC ₂ ;H ₄₆ C ₃ H ₅ COOC ₂ ;H ₄₆ C ₃ H ₅ COOC ₂ ;H ₄₆ C ₃ H ₅ CH:CHCCHC ₄ H ₄ CH NN:CH-CH ₅ CH:CHCOOC ₄ H ₄ CH NN:CH-CH ₄ COOC ₆ H;CHCOOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ COOC ₆ H ₆	benzidine Ethyl p-phthalal-di-(p-aminocinnamate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butyrate Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- caediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoate.	174, 270* 97 + 2 83 96 4 99 284 206	310 112 + 2 103 5 107 3 101 >300 245	(17) (6, 10, 18, 30) (8) (18) (8) (2) (16)
C ₁₀ H ₁₀ O ₂ C ₂₁ H ₁₀ O ₃ C ₂₁ H ₁₂ O ₁ C ₂₁ H ₁₂ O ₃ C ₁₂ H ₁₄ O ₁ C ₂₂ H ₂₄ N ₁ O ₄ C ₂₂ H ₂₄ N ₂ O ₁ C ₂₃ H ₂₄ O ₁₀ C ₂₄ H ₂₆ O C ₂₅ H ₃₄ O ₂ C ₂₅ H ₃₄ O ₃ C ₂₅ H ₃₄ O ₃ C ₂₅ H ₃₄ O ₃ C ₂₆ C ₃₆ H ₃₄ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₃ C ₃₆ C ₃₆ H ₃₆ O ₄ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆ C ₃₆	C ₂ H ₄ COOC ₂ ;H ₄₅ C ₂ H ₄ OCOOC ₂ ;H ₄₆ C ₃ H ₅ COOC ₂ ;H ₄₆ C ₃ H ₅ COOC ₂ ;H ₄₆ C ₃ H ₅ COOC ₂ ;H ₄₆ C ₃ H ₅ CH:CHCCHC ₄ H ₄ CH NN:CH-CH ₅ CH:CHCOOC ₄ H ₄ CH NN:CH-CH ₄ COOC ₆ H;CHCOOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₆ H ₄ COOC ₄ H ₄ COOC ₄ H ₄ COOC ₆ H ₆	namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butvinte Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoay]benzoate.	174, 270* 97 + 2 83 96 4 99 284 206	310 112 + 2 103 5 107 3 101 >300 245	(17) (6, 10, 18, 30) (8) (18) (8) (2) (16)
C ₃₀ H ₃₀ O ₃ C C ₁₁ H ₁₂ O ₃ C C ₁₁ H ₁₂ O ₃ C C ₂₁ H ₁₄ N ₁ C C ₃₂ H ₂₄ N ₁ O ₄ C C ₃₂ H ₂₄ O ₁₀ C C ₃₂ H ₂₄ O C C ₃₂ H ₂₄ O C C ₃₂ H ₃₂ O C C ₃₁ H ₃₂ O ₃ C C ₃₁ H ₃₄ O ₃ C C ₃₁ H ₃₄ O ₃ C C ₃₁ H ₃₄ O ₄ C C ₃₁ H ₃₄ O ₅ C C ₃₁ H ₃₄ O ₅ C C ₃₁ H ₃₄ O ₅ C C ₃₁ H ₃₄ O ₆ C	C ₂ H ₄ OCOOC ₂ :H ₄ 6 C ₃ H ₇ COOC ₂ :H ₄ 6 C ₃ H ₇ COOC ₂ :H ₄ 6 C ₃ H ₇ COOC ₂ :H ₄ 7 C ₃ H ₄ (N:CHCC ₃ H ₄ C ₄ H ₅) C ₃ H ₄ CH:CHCOOC ₃ H ₄ CH NN:CH-CAH ₄ COOC ₄ H ₄ COOC	namate) Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butvinte Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoay]benzoate.	97 + 2 83 96 4 99 284 206	112 + 2 103 5 107 3 101 >300 245	(6, 10, 18, 30) (8) (18) (2) (16)
C ₃₀ H ₃₀ O ₃ C C ₁₁ H ₃₂ O ₃ C C ₁₁ H ₃₂ O ₃ C C ₂₁ H ₃₄ O ₃ C C ₃₂ H ₂₄ O ₁₀ C C ₃₂ H ₂₄ O ₁₀ C C ₃₂ H ₃₂ O C C ₃₂ H ₃₂ O C C ₃₂ H ₃₂ O C C ₃₂ H ₃₄ O ₂ C C ₃₂ H ₃₄ O ₃ C C ₃₂ H ₃₄ O ₃ C C ₃₂ H ₃₄ O ₃ C C ₃₁ H ₃₄ O ₄ C C ₃₁ H ₃₄ O ₄ C C ₃₁ H ₃₄ O ₃ C C ₃₁ H ₃₄ O ₅ C C ₃₁ H ₃₄ O ₅ C	C ₂ H ₄ OCOOC ₂ :H ₄ 6 C ₃ H ₇ COOC ₂ :H ₄ 6 C ₃ H ₇ COOC ₂ :H ₄ 6 C ₃ H ₇ COOC ₂ :H ₄ 7 C ₃ H ₄ (N:CHCC ₃ H ₄ C ₄ H ₅) C ₃ H ₄ CH:CHCOOC ₃ H ₄ CH NN:CH-CAH ₄ COOC ₄ H ₄ COOC	Cholesterol propionate Cholesterol ethyl carbonate Cholesterol n-butviate Cholesterol n-propix earbonate Di-(p-p h e n y 1 h e n z a h-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoate.	97 + 2 83 96 4 99 284 206	112 + 2 103 5 107 3 101 >300 245	(6, 10, 18, 30) (8) (18) (2) (16)
C ₁₁ H ₁₂ O ₁ C C ₁₁ H ₁₄ O ₃ C C ₁₂ H ₁₄ N ₁ O ₄ C C ₁₂ H ₂₄ N ₁ O ₄ C C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₆ O ₁₀ C C ₁₂ H ₂₆ O ₁ C C ₁₂ H ₂₆ O ₂ C C ₁₂ H ₃₄ O ₂ C C ₁₂ H ₃₄ O ₃ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₃ H ₃₄ O ₄ C C ₁₄ H ₃₄ O ₄ C	CallaCOOC 22H 44 SallaCOOC 22H 44 SallaCNCOOC 22H 45 SallaCN: CHCOLC CallaCH NN: CH- CallaCOCCH: CHCAlla 2HaCOOC AHACOOC CallaCOOC Ca	Cholesterol ethyl carbonate Cholesterol n-butviate Cholesterol n-propyl carbonate Di-(p-p h e n y 1 h e n z a 1)-p-phenyl- enediamine Di-(p-emnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoxy]benzoate.	83 96 4 99 284 206	103 5 107 3 101 >300 245	(8) · (18) (2) (16)
C ₁₁ H ₁₂ O ₁ C C ₁₁ H ₁₄ O ₃ C C ₁₂ H ₁₄ N ₁ O ₄ C C ₁₂ H ₂₄ N ₁ O ₄ C C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₆ O ₁₀ C C ₁₂ H ₂₆ O ₁ C C ₁₂ H ₂₆ O ₂ C C ₁₂ H ₃₄ O ₂ C C ₁₂ H ₃₄ O ₃ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₃ H ₃₄ O ₄ C C ₁₄ H ₃₄ O ₄ C	CallaCOOC 22H 44 SallaCOOC 22H 44 SallaCNCOOC 22H 45 SallaCN: CHCOLC CallaCH NN: CH- CallaCOCCH: CHCAlla 2HaCOOC AHACOOC CallaCOOC Ca	Cholesterol n-butviate Cholesterol n-propyl carbonate Dr-(p-p h e n y 1 h e n z a h-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoate.	96 4 99 284 206	107 3 101 >300 245	(8) · (18) (2) (16)
C ₁₁ H ₁₂ O ₁ C C ₁₁ H ₁₄ O ₃ C C ₁₂ H ₁₄ N ₁ O ₄ C C ₁₂ H ₂₄ N ₁ O ₄ C C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₆ O ₁₀ C C ₁₂ H ₂₆ O ₁ C C ₁₂ H ₂₆ O ₂ C C ₁₂ H ₃₄ O ₂ C C ₁₂ H ₃₄ O ₃ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₂ H ₃₄ O ₄ C C ₁₃ H ₃₄ O ₄ C C ₁₄ H ₃₄ O ₄ C	CallaCOOC 22H 44 SallaCOOC 22H 44 SallaCNCOOC 22H 45 SallaCN: CHCOLC CallaCH NN: CH- CallaCOCCH: CHCAlla 2HaCOOC AHACOOC CallaCOOC Ca	Cholesterol n-butviate Cholesterol n-propyl carbonate Dr-(p-p h e n y 1 h e n z a h-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoate.	96 4 99 284 206	107 3 101 >300 245	(18) (8) (2) (16)
C ₁₁ H ₁₂ O ₃ C C ₂₁ H ₂₄ N ₁ O ₄ C C ₁₂ H ₂₄ N ₁ O ₄ C C ₁₃ H ₂₄ O ₁₀ C C ₁₄ H ₂₆ O C C ₁₄ H ₂₆ O C C ₁₄ H ₂₁ O ₂ C C ₂₄ H ₃₄ O ₂ C C ₂₄ H ₃₄ O ₃ C C ₃₄ H ₃₄ O ₄ C C ₃₄ H ₃₄ O ₄ C C ₃₄ H ₃₄ O ₄ C C ₃₄ H ₃₄ O ₄ C	SH5OCOOC2:H45 SH4(N:CHCOOC4H4CH NN:CH- C4H4(CHCOOC4H4CH NN:CH- C4H4OCOCH:CHC7H5 SH4COOC4H4COOC4H4- COOC4H4COOC2H4- COOC4H4COOC2H5 SH4C4H4CH:C4H50 CHC7H4CH1	Cholesterol n-propyl carbonate Di-(p-p h e n y l h e n z a l)-p-phenyl- enediamine Di-(p-emnamylhydroxy)-benzalazme Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoay]benzoate.	99 284 206 187 d	101 >300 245 d.	(\$) (2) (16)
C ₁₂ H ₂₄ N ₂ C C ₁₂ H ₂₄ N ₂ O ₄ C C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₆ O C C ₁₂ H ₂₆ O C C ₁₂ H ₂₁ O ₂ C C ₂₁ H ₃₄ O ₃ C C ₂₁ H ₃₄ O ₄ C C ₁₂ H ₂₄ O ₄ C	%H4(N:CHC,H4;C,H4); %H5CH:CHCOOCaH4CH NN:CH- C5H4OCOCH:CHC,H5 %H5COOC6H4COOC4H4COOC6H4- COOCaH4COOC4H4 %H5CAH4CH:C,H50 CHC,H4;C,H1	Di-(p-p h e n y 1 h e n z a h-p-phenyl- enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p- acetoxybenzoxy)benzoay]benzoate.	284 206 187 d	>300 245 d.	(2) (16)
C ₁₂ H ₂₄ N ₂ O ₄ C ₁ C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₆ O C ₁ C ₁₂ H ₂₆ O C ₂ C ₁₂ H ₂₄ O ₂ C ₂ C ₂₁ H ₃₄ O ₂ C ₂ C ₂₁ H ₃₄ O ₃ C ₂ C ₂₁ H ₂₄ O ₄ C ₂ C ₁₂ H ₂₄ O ₄ C ₂ C ₁₂ H ₂₄ O ₄ C ₂ C ₁₂ H ₂₄ O ₄ C ₂ C ₁₂ H ₂₄ O ₄ C ₂ C ₁₂ C ₂₄ C ₃₄	CaHaCH:CHCOOCAHaCH NN:CH- CaHaCOOCH:CHCAHa THaCOOCAHACOOCAHACOOCAHa- COOCAHACOOCAHa CaHaCaHaCH:CAHaO CHCAHaCaHa	enediamine Di-(p-cinnamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p-acetoxybenzoxy)benzoay]benzoate.	206 187 d	245 d.	(16)
C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₄ O C C ₁₂ H ₂₁ O C C ₁₂ H ₂₁ O ₂ C C ₁₂ H ₂₄ O ₂ C C ₁₂ H ₂₄ O ₃ C C ₁₂ H ₂₄ O ₃ C	CaH4OCOCH:CHCaH4 CH4COOCaH4COOCaH4COOCaH4 COOCaH4COOCaH5 CaH4CaH4CH:CaH4O CHCaH4CaH4	Dr-(p-cumamylhydroxy)-benzalazine Ethyl p-hydroxybenzoate p-[p-(p-acetoxybenzoxy)benzoxy]benzoate.	206 187 d	245 d.	(16)
C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₄ O C C ₁₂ H ₂₁ O C C ₁₂ H ₂₁ O ₂ C C ₁₂ H ₂₄ O ₂ C C ₁₂ H ₂₄ O ₃ C C ₁₂ H ₂₄ O ₃ C	CaH4OCOCH:CHCaH4 CH4COOCaH4COOCaH4COOCaH4 COOCaH4COOCaH5 CaH4CaH4CH:CaH4O CHCaH4CaH4	Ethyl p-hydroxybenzoate p-[p-(p-acetoxybenzoxy)benzoxy]benzoate.	187 d	d.	
C ₁₂ H ₂₄ O ₁₀ C C ₁₂ H ₂₅ O C C ₁₃ H ₁₄ O ₂ C C ₁₄ H ₁₄ O ₂ C C ₁₄ H ₁₄ O ₃ C C ₁₄ H ₂₄ O ₄ C C ₁₄ H ₂₄ O ₄ C	:H₄COOC₅H₄COOC₅H₄COOC₅H₄- COOC₅H₄COOC₂H₅ '₅H₅C₅H₁CH:C₅H₅O-CHC₁H₁C₅H₅	acetoxybenzoxy)benzoxy]benzoate.			(45)
C ₁₁ H ₂₆ O CC C ₁₁ H ₁₁ N ₂ O ₂ CC C ₁₁ H ₁₄ O ₂ CC C ₁₁ H ₁₄ O ₃ CC C ₁₁ H ₂₄ O ₄ CC	COOC6H4COOC2H5 '6H6C6H4CH:C6H6O CHC7H4C7H5	acetoxybenzoxy)benzoxy]benzoate.			(45)
C ₁₂ H ₂₆ O CC C ₃₁ H ₃₁ N ₂ O ₂ CC C ₃₁ H ₃₄ O ₂ CC C ₃₂ H ₃₄ O ₃ CC C ₃₁ H ₃₄ O ₄ CC C ₃₁ H ₃₄ O ₄ CC	CHCCAH4CH:CAH6O CHCCH4CCH6				
C ₁₁ H ₁₂ N ₂ O ₂ C ₁ C ₁₁ H ₁₄ O ₂ C ₂ C ₂₁ H ₁₄ O ₃ C ₂ C ₂₁ H ₂₄ O ₄ C ₂			236.5	237 5	(2)
C ₂₂ H ₂₄ O ₂ CC C ₂₂ H ₂₄ O ₃ CC C ₂₂ H ₂₄ O ₄ CC	$C_2H_4OCH_4C_6H_4CH:NC_6H_4C_6H_4N\cdot C$	Di(-p-ethoxy-o-m e t h v l b e n z a l)-	2.77	201 0	(-)
$\begin{array}{cccc} C_{12}H_{14}O_2 & & C_2\\ C_{22}H_{14}O_3 & & C_3\\ C_{12}H_{24}O_4 & & C_4\\ & & & & & & & \\ \end{array}$	HC ₆ H ₃ CH ₃ OC ₂ H ₅	benzidme	167	>300	(13)
C ₃₂ H ₃₄ O ₃ C, C ₃₂ H ₂₄ O ₃ C,	H ₂ COOC ₂₇ H ₄₆	Cholesterol valerate	91.8	99.2	(18)
C ₁₂ H ₂₄ O ₄ C ₁	CH ₉ OCOOC ₂₇ H ₄₅	Cholesterol u-butyl carbonate	78	90	(8)
, (LH,COOC,H,CH:C,H,O:CHC,H,O-	Di-(p-benzoxybenzal)-c y e l o p e n -	•.,	00	(-)
	COC _a H _b	tanone	234	236	(44)
	LH 11COOC 27 II 45	Cholesterol capronate	91.2	100	(18)
	LH*COCH*OCOCH CHC*H*NON-	Phenacyl p-azoxycinnamate	231	238	(40)
	C ₄ H ₄ CH:CHCOOCH ₂ COC ₄ H ₄	Thenacyt p-aboxyemnamaee	2.51	2.5.7	(,
	H ₁₇ OCOCH:CHC ₆ H ₄ NONC ₆ H ₄ -	n-Octyl p-azoxycinnamate	91	175	(40)
	CH:CHCOOC H ₁₇	n-octyr p-azoxyciimamate	., ,	11.5	(15)
	6H6COOC27H46	Cholesterol benzoate	146 ± 1	178.5 ± 0.3	(18, 22, 30,
Citibooi	511800000 271145	Choice for Denisorate	140 1	110.0 ± 0.0	35, 42, 45)
CasH40N2O4 C	GH4(CH:NC6H4CH:CHCOOC6H111)2	act-Amyl p-phthalal-di-(p-aminocin-		1	33, 12, 13,
01111011101	siii(CiiCosii(CiiCiiC CAA Siii)) 2	namate)	133, 195*	268	(17)
CasHaoNaOa C	H17OCOCCH4:CHC6H4NONC6H4-	n-Octyl p-azoxy-α-methylcinnamate	41, 62*	85	(20)
	CH:CCH ₃ COOC ₈ H ₁₇	n-cocyt p-azoxy-u-meeny tennamate	11, 112	(44)	(30)
	9H ₁₉ COOC ₂₇ H ₄₆	Cholesterol caprinate	82 2	90.6	(18)
	6H4(CH:NC6H4CH:CCH4COO-	act-Amyl p-phthalal-di-(p-amino-α-	174 4	90.0	()
	C ₄ H ₁₁) ₂	methylcinnamate)	144, 211*	248	(17)
		Di-(m-nitrobenzal-p-aminobenzoyl)-	177, 211	240	()
C40112811606 (1.	C6H4NHCOC6H4N:CHC6H4NO2)2	, .,.	> 270		(48)
C40H24N4 C6	H CHNC H CH NHC H C H N	benzidine . Di-p-(benzalaminobenzyl)-benzidine .	>370	d. 246 d.	(45) (46)
	6H6CH:NC6H4CH2NHC6H4C6H4N-	121-1-(12) HERIRIHMORCHEY 17-DCHERUMC.	217	240 u.	(44)
	HCH₂C₄H₄N:CHC₄H₄ C₄H₄NHCH₂C₄H₄N:CHC₄H₄OCH₃);	Di-p-(anisalaminobenzyl)-benzidine	202 d.	d.	(45)
				i	
	16H12OCOCH:CHC6H4NONC6H4-	n-Cetyl p-azoxycinnamate	105	141	(40)
_	CH:CHCOOC ₁₄ H ₂₄	. Catul a agove a mathedaine and	77	0.4	(20)
ž .	16H22OCOCCH2:CHC6H4NONC6H4-	n-Cetyl p-azoxy-α-methylcinnamate	77	84	(20)
	THEORY COOK II		177	235	(8)
	CH:CCH ₂ COOC ₁₆ H ₃₃	Chalastaral combanata		1 400	(8)
C ₁₄ H ₁₂ ClHgNO CI	27H46OCOOC27H46	Cholesterol carbonate p-Anisalaminophenylmercury chlor-	177		l

Index formula	Formula	Name	Trans. temp.	М. Р.	Lit.
C14H12CIHgN C14H14HgNO3	CaHaCH:CHCH:NCaHaHgCl CHaOCaHaCH:NCaHaHgOCOCHa	p-Cinnamalaminophenylmercury chlo- ride	255 177	265 180	(46) (46)
C24H14HgN4O4 C24H26HgN2 C24H26HgN2 C24H24HgN2O2 C24H24HgN2O2	O ₂ NC ₄ H ₄ CH:NC ₄ H ₄ HgC ₄ H ₄ N:CHC ₄ - H ₄ NO ₂ C ₄ H ₄ CH:NC ₄ H ₄ HgC ₄ H ₄ N.CHC ₄ H ₄ Hg(C ₄ H ₄ N:CHC ₄ H ₄ CH ₄) ₂ Hg(C ₄ H ₄ N:CHC ₄ H ₄ OCH ₃) ₂ Hg(C ₄ H ₄ N:CHC) CHC ₄ H ₄) ₂	phenyl) Mercury di-(benzalaminophenyl) Mercury di-(p-tolualaminophenyl) Mercury di-(anisalaminophenyl) Mercury di-(cinnamalaminophenyl)	236 180 217 209 208	241 184 229 285 269	(46) (46) (46) (46) (46)
$C_{10}H_{24}HgN_2O_2$	Hg(C ₆ H ₄ N;CHC ₆ H ₄ OC ₂ H ₄) ₂	Mercury di-(p-ethoxybenzalamino-	204	272	(46)

LITERATURE

(For a key to the periodicals see end of volume)

- (For a key to the periodicals see end of volume)

 (1) Auwers, 7, 28: 30, 00 (2) Bertleff, Diss, Halle, 08 (2) Bogojawlensky and Winogradow, 7, 60: 433, 07 (4) Bogojawlensky and Winogradow, 7, 64: 229, 08 (8) Bree and Corrat, 45, 9: 164, 08 (6) Breelig and v Schukowsky, 25, 27: 3419, 04 (7) Bühner, Diss, Marburg, 06 (8) Damer, Diss, Halle, 12 (9) Dischensched, Diss, Marburg, 06 (12) Froblich, Diss, Halle, 10 (13) Gatterman, 14, 357: 313, 07 (4) Gatterman and Ritchke, 25, 28: 1738, 90 (18) Hainen, Diss, Halle, 07 (14) Huline, Diss, Halle, 07 (14) Huline, Diss, Halle, 07 (15) Huline, Diss, Halle, 07 (15) Huline, Diss, Halle, 07 (15) Huline, Diss, Halle, 07 (15) Huline, Diss, Halle, 07 (16) Huline, Diss, Halle, 07 (17) Huth, Diss, Halle, 10 (18) Jaeger, 44P, 9: 78, 00 70, 28: 334, 00. (19) Jaeger, 43, 101: 1, 17
- (20) Kasten, Diss., Halle, 09. (21) E. Lehmann, Diss., Halle, 10 (22) Leh-Kasten, Diss., Halle, 09. (21) E. Lehmann, Diss., Halle, 10 (22) Lehmann, 7, 4: 402, 89 (23) Lehmann, 8, 40: 401; 90 (24) Lehmann, 8, 2: 619, 00 (24) Lehmann, 8, 19: 22, 06. (24) Meye, Diss., Halle, 08, (27) Meyer and Dahlem, 13, 236: 331, 03. (28) Müller, 25, 54: 1481; 21 (29) Münch, Diss., Marburg, 03.
 Prins., 7, 67: 680, 09 (21) Reichardt, Diss., Halle, 09. (23) Rising, 25, 37: 13, 04. (23) v. Romburgh, 64V, 9: 9, 01. (24) Rotarski, 25, 41: 1994, 08 (28) Schenk, 7, 25: 337, 98. (38) Schenk, 7, 28: 280; 99 (37) Schreeter, 25, 41: 5, 08 (38) Stumpf, 65, 11: 780; 10 (38) Sultze, Diss., Halle, 08.
- Halle ON
- Halle, 08
 (40) Vorländer, 25, 29: 803, 06. (41) Vorländer, 25, 40: 4527, 07 (42)
 Vorländer, 196, 12: 321, 07 (42) Vorländer, 25, 41: 2033, 08. (44) Vorländer, 25, 54: 2201, 21 (48) Vorländer, 7, 105, 211, 23 (48) 1) Vorländer, Chem Kristalloy der Flüssigkeiten, 1924 (47) Wilke, Diss. Halle, 09

CRYSTALLOGRAPHY OF COMPOUNDS OF CARBON

GEORGE L. KEENAN AND RAYMOND M. HANN

Standard arrangement. For abbreviations, see p. 100. Literature, p. 338

33-TABLE

		3-1AB			2\	2E	Orientation	L
Formula	Name	System	Class	Sign	21	217	t Cylentation	
6 Nee C-Table					17° 40′		Ax pl b (010); XAc = 271°	(G
8 BiC14H14N4	Silico tetraphenylamide	M	Bı		17, 40.		in obtuse $\angle B$,,
			١.,			83° 30′	Ax. pl 1b(010)	(0
SiCalla	Tetra-p-tolylsilicane	М.	Bı	-		83" 30"	Ax. pl \perp b(010) Ax. pl \perp b(010); $Z \wedge c = 19^{\circ}$	ic
SnC14HmN3Cla	p-Toluidine tin chloride	М.	Bı.	' '	77°			,,
			١	[in obtuse ∠β	(6
3 PbC ₁ H ₁ O ₄	Lead formate	R	Bı	-	70° 34′		Ax. pl. b(010), X c	(
PbC4H4O43H4O	Lond acctate	M	Bı		83° 55′		Ax. pl b(010), ZAc = 55° 18'	, ,
			l				in obtuse \(\beta \beta \)	١,
PbC14H14O10S1 6H1O	Lead sulfocamphylate	R	Bı	i - I		78° 17′	Ax. pl b(010), X c	(
7 TIC1HO4	Thailium acid oxalate	M	Bı	+		74° 5′	Ax. pl 1b(010)	(
				1		(red)		١.
TIC:HO: HI:O	Thallium acid oxalate	M	Bı	+		106° 5′	Ax pl b(010), ZAc = 79° 36'	(
			İ			(red)	(red) in obtuse ∠\$	١,
ThC4H4O4	Thailium mesotartrate	Tri	Bi	+	73° 54′			(
ThCallate JHiO	Thallium tartrate	R. (7)	Bı.	-		69°	Ax pl b(010), X c	(
TIC+H ₁ O ₇ N ₄	Thallium picrate	M	Bi.				Ax pl. b(010)	(
TlgCaHaOa	Thallium dl-tartrate	M	Bı	+	88° 22′		Ax pl. b(010), $Z \wedge c = 84^{\circ} 44'$	(
				1			in obtuse ∠β	١.
ThC ₄ H ₄ O ₄	Thallium tartrate	True	Un	+				(
TIC4H4O:8b.H4O	Thallium antimonyl tartrate	R	Bi	-	! !	20°~25°		0
8 ZnC4H4O4.3H1O	Zine nectate	M	Bi.	+	84° 30′		Ax pl b(010), $Z \wedge e = 54.75^{\circ}$	(
				i	1		in acute ZB	Ι.
ZnC4H4O4	Zinc butyrate	М.	Bı.	+	1	Large		(
ZnCmHasOs	Zinc methylethylvalerate	?	Bı.		1			(
ZnCaHaOaBr.8HaO	Zine bromomesaconate	M	Bi	-	71° 21′	118° 15′	Ax. pl \perp b(010); $X \wedge c = 14^{\circ}$	(
							in obtuse ∠β	1
ZnCiella()oSz.6Hz()	Zinc naphthalene-1, 5-disulfonate	M.	Bi	i	58° 16′		Ax. pl. $\ (010); \eta_{\alpha} \wedge 0 = 74^{\circ}$	(
ZnCmHasNzI4	Phenyldimethylethylammonium zinc	M	Bi.	+	86° 52′		Ax. pl $\pm b(010)$; $Z_{\land 0} = 43^{\circ}$	(
	todide			1		Ì	in acute ∠β	1
ZnC+H+1ON+Cl+.3H1O	Triacetonediamine hydrochloride zinc	М.	Bi.	+	36° 14'	58° 20′	Ax pl ⊥b(001); Z∧c = 49°	(
	chloride		1	1			in obtuse ∠β	1
0 HgC:H:NI:	1. 1-Dimethylammonium mercuric iodide	M.	Bi	-	Large		1	(
HgCaHoNIa	1, 1-Trimethylammonium mercuric iodide	R.	Bi.		Large			(
HgC4H11NI	1. 1-Diethylammonium mercurie chloride	R.	Bi.	+	Very large		1	1
CuC ₁ H ₁ O ₄ ,4H ₁ O	Cupro formate .	M.	Bı.	-	34° 54′	55° 6′	Ax. pl. b(010); $X \wedge c = 23^{\circ} 35'$	1
0401110411110	•		1	1			in obtuse ∠β	
CuCtoHaOoSs,6H2O	Copper naphthalene-1, 5-disulfonate	M.	Bi.	1	i	1	Ax. pl $\ (010), \eta_{\alpha} \wedge c = 75^{\circ}$	1
An Al An Au B Ba B				Eu F Fe		M Ge Gl H	Hf Hg Ho I In Ir K I	- 1

Formula	Name	System	Class	Bign	2V	2E	Orientation	Ĺ
AgC4H4O4N4	Ethylene dicyanide silver nitrate	R	Bi	:	42° 36 5'		Az. pl. e(001); X b	(
AgC4H4O11N4	Ethylene dicyanide silver nitrate	R	Bı	-	42" 41"		Az. pl. c(001); X a	(
AuC14H148Cl	Gold dibensylsulfine chloride (meta-	Tet	l n					(
	stable form)		1					
AuC.HizNCla	Piperidine chlorosurate	R	Bı	+		70° 40′	Az pl. b(010); Z o	(
AuCaH1102NCla.H10	-Aminovalene acid chlorosurate	M	Ri	-		70°	Az pl 1 b(010); XAo = 91 5°	(
	1					(appra)	in obtune ZB	
AuC ₂ H ₁₄ NCl ₄	3, 4, 5, 6-Tetramethyl-1, 2-dihydro-	M	Bi	+		1/1°	Az. pl _b(010)	(
	pyridine hydrochloride chloroaurate					(apprx)		
KaIrCrOaCla.HrO	Iridium tetrachloro tripotassium oxalate	R	Bi	-		94" 40"	Ax pl (010), Bxa 1 (001)	(
PtCsH1sNsCle	Methylammonium chloroplatmate	C.	l			1		(
PtC10H11N1Cle	Pyridine chloroplatinate	Γm	Bi			59° 54′	Ax pl nearly Le-axis	- (
PtC10H11O1N1Cls	Choline chloroplatinate	M	Pt.	+		25" 52"	Ax pl 1 b(010); ZAc = 75° 12'	(
- 0 11 11 01			1				in acute 28	
PtC11H14N1Cl4	α-Picoline chloroplatinate	M	133	-		935 13 57	Ax pl b(010)	(
PtC11H21N4Cl4	1-Phenyl-3-mano-5-methyl trazoline							
PtC11H14O4N1Cl4 2H1O	chloroplatinate	M	Bi				1x pl b(010); Z nearly 1c(001)	- (
PtC11H10ONK II 21110	Pipecolinic acid chloroplatinate	M	Bi]		66° 56′	Ax pl b (010)	- (
ACHINOLNICII	a-Homobetaine chloroplatinate	M	Bi	1	88° 12′]	1x pl b(010), ZA0 = 99° m	
NC H.N.Cl.	Polar maritiments of the second	١	١.,				obtune ∠β	
PtC14HmN1Cla	Ethyl pyridine chloride chloroplatinate	R	Bi			44°	Ax pl a(100), X#o	(
PtC14H#NrCla	Dipropyl carbinol amine chloroplatinate	M	Bı			72° 40′	Ax pl 1b(010); X nearly 1c	(
NO HONG	70	١	١	1		ļ	(001)	
PtC10H21O2N1Cl0	Tropanine chloroplatinate	M	Bi	l . !	52° 12′		Ax pl 1 b(010)	1
PtC1sH4sN1Cls	Tropidine chloromethylate chloroplati-	R	Bi.	+		70°	Ax pl b(010); Z o	1
PtC11H@N1Cl	hate	111	p.			410	4	
TOTAL PART I	Ethyldipropyl ammonium chloroplati-	R	Bi.	1		61° 26′	Ax pl c(001); Z a	. 1
PtCmHasNeCle	Anhudraluminum ahlamanlatunata (atalah	١.,.		1		38°	1	١.
POMIT BOLISCIA	Anhydrolupinin chloroplatinate (stable	M	Bi	Į l		I	Ax pl ±b(010)	,
PtC11H14N1Cl4	mod) Diethyl-p-toluidine chloroplatinate	R	Bi	[.]	63° 0′	(apprx)	A 1/100\ 2.01	
tuNsH100Cls			1	+			1x pl a(100), Z∥b	1
MnC11H4O14N4 5H2O	Ruthenium ammonium chloral hydrate	M	Bi		56° 20′	1.0000	1 11 1/010) 3/1-	(
FeC13H4O14N4 5H4O	Manganese pierate	R	Bi	-		15° 30′	Ax pl. b(010); X e	١.
FeC14H21O4	Ferriacetylacetone	1	Bi.			24° 48′	Ax pl a(100); X 0	1
ecimio.	remacetymortone .	R	Bi	1		50°	Ax pl a(100); X a	
FeCmH14O4S1.6H2O	Ferrous naphthalene-\$-sulfonate		В			(ubbix)	1	
CoC4H4O4.4H2O	Cobalt acetate	٠.	1	+	30° 13′	400 104	1 1/010\ Y 1 - 10 80	
00411404.41140	CODAIC RECEASE	M	Bi.		30. 13	48° 12′	Ax pl b(010); XAc = 53 5°	
CoC4H24N4I4.H1O	d-Luteo triethylenedianine cobalt rodide	R	Bı			Small	in acute ∠β Ax pl (001); Bxa = b-axis	١,
CoCeH14Nela.H10	dl-Luteo triethylenediamine cobalt iodide	R	Bi	+		Small		ľ
CoC10H4O4S2.6H2O	Cobalt naphthalene-1, 5-disulfonate	M	131	ļ	61° 40′	Sman	Ax pl (010), Bx ₈ = c-axis	
N1C10H4O4S2 6H2O	Nickel naphthalene-1, 5-disulfonate	M	Bi	l '	59° 56′	i	Ax pl $\ (010); \pi_{\alpha} \wedge c = 72^{\circ} 0.5'$	ľ
UC4H14O4N	Ammonium uranyl acetate	Tet	Un	ĺ	.,,,	1	Ax pl $\ (010); \eta_{\alpha} \wedge o = 74^{\circ}$	Ι΄
UCdCaH12O10 6H2O	Cadmum uranylacetate	R	Bi			57° 54′	Ax. pl. a(100)	
cueminon on io	Cadillain dianymeetice	i "	'''	1		(red)	742. Jr. 16(100)	
UMnCsH12O10.6H2()	Manganese uranyl acetate	R	Bi		i	31°	Ax pl. a(100)	,
UU1)2CoC12H11O12 7H1O	Cobalt diuranyl acetate	R	Bi			103° 30′	Ax. pl. c(001)	
MaC11011 18H10	Mellite	Tet	Un.	1	ĺ	100 00	112. [11. 5(552)	١
tC12HmO24S4 18H2O	Yttrum ethyl sulfate	11	Un	1	1	1		ľ
C18H12O18N4S4 7H2O	Yttrium m-mitrobenzenesulfonate	VI	Bı.	+			Ax pl b(010); ZAc = 85° in	
	Terrum m-mercon na menerone	"	1		l		obtuse $\angle \beta$	1
aC12H20C14S4 18H2O	Lanthanum ethyl sulfate	11	t'n	1	1			
CeC11HaO14St 18H2O	Cerium ethyl sulfate	H	l n	1	ĺ			١
PrC12H20O24S4 18H2O	Praseodymum ethyl sulfate	ii	Un	1	1		1	l
VdC12H20O24S4 18H2O	Neodymum ethyl sulfate	11	t'n	ł	1	1		
8.C12H20O24S6 18H2O	Samarium ethyl sulfate	н	Un	1	1	1	1	
EuC12H20O24Se 18H2O	Europium ethyl sulfate	H	Un	1	1	1	1	l
3dC ₁₂ H ₂₀ O ₂₄ S ₄ .18H ₂ O	Gadolinium ethyl sulfate	n	Un	1	1	1	1	
DyC ₁₂ H ₂₀ O ₂₄ S ₄ 18H ₂ O	Dysprosium ethyl sulfate	н	Un	1	1		1	
ErC12H20O24St 18H2O	Erbium ethyl sulfate	н	Un	1		1		
CmC12HmO24St 18H2O	Thuhum ethyl sulfate	н	Un	1	l	i		
'bC₁1H2074S4 18H.O	Neoytterbium ethyl sulfate	н	Un	1	1	1		l
BeC4H4O4N2	Ammonium beryllium oxalate	M.	Bı	1	1	27° 47′	Ax. pl. b(010), $Z \wedge e = 37.5^{\circ}$	١
	January Sergman Vanner		1	1		- "	in obtuse $\angle \beta$	1
BesC4H10OsS1 4H1O	Diethyl beryllium sulfate (basic)	Tet	Un	1		1	000440 24	1
MgC ₄ H ₄ O ₄ 4H ₂ O	Magnesium acetate .	M	Bi		56° 34′	89° 54'	Ax. pl b(010); $X \wedge c = 48.25^{\circ}$	l
-BOHMON TIME			1		01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	in soute $\angle \beta$	1
4eC.H.O. 2.5U.O	Magnesum dilactets	М	Bi	+	1	79°	Ax. pl. b(010)	1
fgC ₄ H ₄ O ₄ ,2,5H ₄ O	Magnesium dilactate.	, " "	1"	"	1	1	AL. pl. b(olo)	1
A-C-U-O- AU O	Mannasum di tanta-t-	м	B _L	_		(apprx) 102°	Uma 4 a = 200 i=4- /4	1
MgC ₄ H ₃ O ₄ 6H ₃ O	Magnesium dl-tartrate		Bi.	1	52° 20′	102	Bxa \wedge c = 30° in acute $\angle \beta$	
MgC10H4O481 6H2O	Magnesium naphthalene-1, 5-disulfonate			1 .		1	Ax pl. $\ (010); \eta_{\alpha} \wedge 0 = 73^{\circ} 0.5'$	
CaC ₁ O ₄ .H ₁ O	Calcium oxalate	М.	Bı	-1	80°	1	Ax pl. b(010); $Z_{\land 0} = 64\ 25^{\circ}$	l
		-	p.		000	4.0.04	in acute ∠β	1
CaC ₂ H ₂ O ₄	Calcium formate	R.	Bi	+	26° 47′	41° 2′	Ax. pl. b(010); Z a	
CaCaH2O4.2H2O(?)	Calcium malonate	7	Bi.	+	000 0:1	moderate		ŀ
CaC4H2O4.2H2O	Calcium fumarate	R.	Bi.	-	22° 24′	37°	X = a, $Y = b$, $Z = c$	
200000	1 a 	-	ļ ,	1		(apprx)	l, , .	1
CaC4H2O4 H2O	Calcium maleate	R	Bi	-	77° 36′	1640	X = c, $Y = a$, $Z = b$	
	1	I .	1	1	(calc.)	(calc)	t	1

Formula		Name	; System	Class	Sign	2V	2E	Orientation	1
CONTRACTOR OF THE PARTY OF THE		FIG. 1100-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	R	Bi.	+	T		Az. pl. b(010); Z#a	10
CaCiHiO; 3H;O		leium malate		Bi	'	i	Very large	1	10
CaC ₂ H ₄ O ₂ 3H ₂ O		lcium succinste	7	1 .	/*\		Very large	Ax. pl b(010)	(G
CaCaHaOa.3HaO		deium mesotartrate	M	Bı.	-(?)	i	1017 11180	112. p. 5(555)	
CaCaHinOa		leium crotonate	(7)	Bı.	-		109° 6′	Ax. pl. a(100); Z o	(
CaC+H10Opt.6Hr() Ca	lcium acid malate	R	В	+		(red)	At. pl. 1(100), 240	(
Ca ₂ C ₁₂ H ₄ O ₁₂	Ca	leium aconitate	7	Bı			100°		(4
			?	Bi			(apprx.)		1 (3
Cac ₁ H ₁₀ O ₁₄ 4H CaC ₄ H ₄ O ₁₀ N ₂ (7)		leium citrate lcium nitrotetronate(*)	Ní.	Bi.		32° 26′		Ax pl. \(\pm\)b(010); Z nearly \(\pm\)a (100)	
CasPbC1sHmO12	10.	esicium lead propionate	Tet	t'n	+				10
CaPbC12H101O16	12H ₁ O Te	tracalcium butyrate pentalead propi-	C						(
CaCuCaH12()a.61		leium cupric acetate	Tet	t n					
SrCilliO4		ontium formate	R	Bi	+	74° 14′	143° 36′	Ax pl. a(100); Z∥b	(
SrCaHaOa 2HaO		contium formate	R	Bi		66° 59.33′	114° 8′	Ax. pl. b(010), X∥c	(
8rCiH ₄ O ₄ 8 ₁ H ₂ O		ontium disulfonate	M	Bi		i	Large	Ax. pl \(\pm(010)\)	1 (
BrC4H10OaSt 2H2		ontium ethyl sulfate	M.	Bı		75° 4′	-	Ax. pl. ±b(010); ZAc = 70° in	
			l			000.000		acute ∠β	١.
BrC+H ₂ O ₁₀ N ₂ (7)		rontium nitrotetronate	M	Bı Un	_	30° 23′		Ax pl b(010); X ±a(100)	19
SrCiHiOu8bi		rontium antimonyl tartrate	H		-	700 **			1.5
SriCuCiHiOi 8H	10 Ci	prie strontium formate	Tri	Bi		72° 4′			(L
BrCn2C1sH10O11		calcium strontium propionate	Tet	l n	+		1		
BaC2H2O4	180	rium formate	R	Bi	+	77° 54 33′		Ax. pl. b(010); Z a	1
BaC4H4O4 5H1O		rium dl-tartrate	M	Bi	+	93° 1′		Ax. pl. \(\pm\)b(010)	1
BuCaHaOa HaO		righ acetate	Tri	Bi			1		10
			R	Bi	_	81° 36′		Ax. pl. a(100); X b	16
BaCaH10Oa H1O		rium propionate				171 30	77° 37′		
BaC12H22O14 (?)I		rium d-galactonate	M.	Bi		1	11.31	Ax. pl. ±b(001); Z b	
BaCtaHtaOa.1Ht		rium methyluvinate	R.	Bı.		88° 12′		Ax. pl. a(100), Z#b	1
BaCcHcOcS; 2Hr) Bu	rium m-benzenedisulfonate	R	Bı.		62° 19′		Ax pl. a(100); Z e	1
BaCiHiOiSi tHi) Bu	rium phenol-2, 4-disulfonate	М	Ві	-	(red) 61° 58′		Ax pl a(100), X \(\Lambda\)e = 5° 20'	İ
BaC ₁ H ₂ N _{6.3.5} H ₂	D Bu	rium tetrazole	R	Bı,			40°	in acute ∠β Ax pl a(100); Zge	
BaCaHrOaNaN 3,	5H2O Ba	rium dimitrophenol sulfonate	М	Bı			(apprx) 72° 13′	Ax pl b(010); X \(c = 77^{\circ} \) in	
BaCaHaOaNa.2H	O Ba	rium methyloxaminate	M.	B ₁ .	,		40°	acute $\angle \beta$ Ax pl. b(010), $\mathbb{Z} \wedge c = 8^{\circ}$ in	١,
	1			1.			(apprx)	obtuse ∠β	1
BaCinHioO4N4 1		rium methylpyrazole carbonate	Trı	Bı		56° 42′	ļ	Ax pl ±b(010)(apprx)	(
BaCulluOaPr 21 BaCulluOaNr8r		rium discetonephosphinate rium p-amidobenzophenone-p-sulfo-	R. M.	Bı	+		122° 44′	Ax pl b(010), Z e Ax pl (010)	1
BaCdCaHaOa 2H		ate rium cadinium formate	M.	R ₁	+	67° 36′	117°	$Ax pl \pm b(010), Z \wedge c = 46^{\circ}$, ,
BagCuCeHeO12	n.	rium copper formate	R.	Bı	+	i	79°	23' in acute ∠β Ax pl b(010)	1
				131	+		1 10	Ak in p(010)	
BaCa2C11HauO11		calcium barium propionate	C.	l					(
LiC _t H _t O _t 5H _t O		onolithium malate	M,	B_1			100°	Ax pl b(010)	1
LigCtoHeOoSt 2H		hrum naphthalene-1, 5-disulfonate	М.	B_1		230		Ax. pl. ±(010)	1 (
LiC ₄ H ₄ O ₄ N H ₄ O	A	nmonium lithium tartrate	R.	Bi	+	87° 6′		į.	
LiC ₄ H ₄ O ₄ N H ₄ O	Lat	thium ammonium dl-tartrate	M,	Bi	ŧ	81° 42′		Ax. pl. b(010); $Z \wedge c = 76.5^{\circ}$ in obtuse $\angle \beta$	' l '
LiTiC ₄ H ₄ O ₄ .H ₄ O	1.4	hium thallium tartrate	R	Bı,	+		21° 40′ (red)	Ax. pl. c(001)(red); Z b	
LigCrgCtgOn 18(?	1860 L.	hium chromic oxabite	R	Bi		1	95° 26′	Ax pl. b(010); X#e	Ι,
LivorC.H.O. 5H		hum uranyl acetate	M	Bi	-		65° 14′	Ax pl. $b(010)$; $X \wedge c = 12^{\circ}$ in obtuse $\angle \beta$	
LisAlsC1sOn.12H	,O I	mum aluminum oxalite	Tri	Bı	_	I	100° 30′	Ax pl ±b(010)	
NaCiHiO, 3HiO		dium acetate	M	Bi	_	62° 50′	100 00	Ax pl. $\pm b(010)$; XAc = 44°	
			1					in acute ZB	
NaCiHiOi RiO		dium acid malonate	R	Bı	-	39° 20′	55° 21′	Ax pl. a(100), X c	1
NaCiHiOa.HrO	No	dium di-tartrate	R	B_1	+	51° 31′	83° 34′	Ax. pl. a(100); Z∥c	
	ı		1	1	1	(red)	(red)	1	1
NaC4H1O4		dium discetate	C			1	1		
NaC ₄ H ₄ O ₄	So	dium citraconate	M	Bı.	-	53° 25′ (red)		Ax. pl. b(010)	
NaCiHiO4	So	dium seid phthalate.	R	Bı		(164)	30°	Ax. pl. c(001)	
N=C. H - O. 9 #11	یما ام	dium santonate	,,	p.	_		(apprx.) 51° 46'	Ax, pl. a(100); X b	1
NaCuHatO4 3 5H NaCuHatO4.3Hat		dium mattonate dium hydrosantonate	R	Bi.	+		37° 24′	Ax. pl. a(100); X 0 Ax. pl. a(100); Z e	
NaCsH ₃ O ₄ S 2H ₃ C	So	dium p-phenolsulfonate	М	Bı,	+	69° 58′	(red) 125° 47'	Ax pl. b(010); Z \(\circ = 9^\circ \) in	
NaCiHaOaS 2HaO	. ا	dium m-sulfobenzonte	T-	p.			86° 7′	cbtuse Z\$	
			Tri	Bi.	-			X±b(010)	
NaCaHaOaS		dium p-xylenesulfonate	R	Bi.	-	1	27° 46′	Ax. pl. c(001); X b	
Na ₂ C ₂ H ₄ O ₄ S ₂ 2H		dium ethane disulforate	M	Bt.		l .	Large	Az. pl (010)	1
		dium naphthalene-1, 5-disulfonate	M	Bi.	-	24° 0 5′	1	Ax pl. ±(010)	
NasCasHaOa8a 2H						1 000 004	1	1 + 1 1 (010) W + 10 000	•
NasCtaHaOaSs 2H NasCHsOaNs	So	dium diisonitramidomethane	M	Bi.	_	89° 20′	l	Ax. pl. $b(010)$; $X \wedge c = 43.66^{\circ}$	1

Ag Al As Au B Ba Be Bi Br C Ca Cb Cd Ce Cl Co Cr Ca Cu Dy Ex Eu F Fe Ga Gd Ge Gl H Hf Hg Ho I In Ir K La Li La 35 85 13 33 54 79 75 15 5 16 77 51 29 59 4 44 46 85 31 67 69 64 3 43 25 65 20 75 2 73 30 66 6 26 36 83 58 81 72

CRYSTALLOGRAPHY

Formula	Name	System	Class	Sten	2V	2E	Orientation	Li
NaCiHiOin.HiO	Sodium aspartate	M	Bi	1		31° 30'	Az pl. b(010); ZA e = 51° in	(0)
	la "					" "	noute 48	
InCiHrOiN.HrO InCiHrOiN.4HrO	Sodium ammonium dl-tartrate Sodium ammonium tartrate	M R	H ₁	-	44° 20′		Ax. pl. ±b(010)	(0)
TICiHiOi.4HiO	Sodium thalhum tartrate	R	B ₁	-	59° 52′	96° 30′ 75° 49′-	Az. pl. a(100); X#c Az. pl. a(100); X#c	(G) (G)
•••••••			131.	_		76° 47'	As pi. a(1007; Age	(0)
an an	0.4			1		(red)	_	
C ₆ H ₂ O ₄ N C ₆ H ₂ O ₄ NS 2H ₂ O	Sodium acid glutamate Sodium sulfamlate	M R	Bi	١.	63° 3 5′		Az. pl. ±b(010), Z±γ(102)	(0)
CiaHiOiNS 4HiO	Sodium naphthalenesulfonate (stable)	M	B ₁	++	65° 24′ 69° 10′	115° 24′	Ax pl b(010), $Z^{\dagger}e$ Ax pl b(010), $Z \wedge e = 3^{\circ} 35'$	(O) (O)
-,			1	' '		l	in scute Z#	(0,
ThC.H.O.	Sodium trithallium tartrate	R	Bı	+		75° 40′	Ax pl c(001); Z b	(G)
aCuC1sH2rO3s 9H2O saFe2C12O3s 10H2O	Sodium cupric triuranyl acetate Sodium ferric oxalate	M M	B ₁ B ₁	1 +	0.00.01	90° 50′	Ax pl _Lb(010)	(0)
MI GICTION TOTAL	Todam ferri Ozalate	.11	131	-	30° 0′	46° 53′	Ax pl b(010), X \(c = 12^o \) in obtuse \(\alpha \beta \)	(G)
aCraCiaHiaOnNa 7HaO	Sodium ammonium chronic oxalate	M	Bi	-		95° 20′	Ax pl. ⊥(010)	(G)
aUCiHiOi	Sodium uranyl acetate	C						(G)
UaMnC11H27O24 9H2O	Sodium manganese triuranyl acetate	M	Bi	-		105° 30′	Ax pl _b(010), X A c = 70 5°	(G)
aAltCaHirOirNa 7HrO	Sodium ammonium aluminium oxalate	М	131			134°	in obtuse $\angle \beta$ Ax pl $\pm b(010)$; $X \wedge c = 76^{\circ}$	(G)
inito in in			• • • • • • • • • • • • • • • • • • • •	1		1.31	in obtuse $\angle \beta$	(6)
AltCuHuOnNa 7HzO	Sodium ammonium aluminium oxalate	M	151					(31)
4AlrC13O24 10H2O	Sodium aluminium oxalate	M	Bi	-		83° 30′	Ax pl b(010); $X \wedge c = 7.5^{\circ}$ in	(G)
MAlasCatH200OsvNes	Ammonium sodium sluminium oxalate	r	Bi	l		1200	obtune 28	/211
LiCiHiOi 2HiO	Sodium lithium dl-tartrate	Γrι M	Bi	-	68° 57′	138"	Ax pl $\pm (001)$; Bx ₈ $\pm (001)$ Ax pl $\pm (010)$; X $\pm e = 34.5^{\circ}$	(#1) (G)
anc tarting and a				1	(red)		in obtuse 48	(0,
C104 1110	Potassium oxalate	M	Bi	l	82°	156°	Ax pl b(010), X \(e = 40^\circ 45' \)	(G)
				1			in obtuse ∠#	
C:HO: C:HO: H:O	Potassium acid oxalate Potassium acid oxalate	M R	Bi		40°	61' 75° 10'	Ax. plLb(010), X _Le(100) Ax. pl _c(001); X _lb	(G)
SallaOa	Potassium acid succinate	M	Bi	_		113"	Ax pl (001); A pl	(G)
4H4O4.2H2O	Potassium acid succinate	R	$\mathbf{B}_{\mathbf{I}}$				Ax pl c(001), Z a	(G)
4H₃O€	Potassium acid tartrate	R	351			161° 10′	Ax pl e(001); X b	(G)
H11O	Potassium acid disuccinate	M	Bi			122° 50′	1x pl Lb(010); XA c = 44°	(G)
'.H.O. JHrO	Potassium tartrate	M	Bi		62°	102° 16′	in obtune ZB Ax pl ±b(010)	(G)
	Total and the control of the control				,, <u>-</u>	(red)	1. 2.1(0.10)	(0,
C4H4O4 2H2O	Potassium dl-tartrate	71	Bi	-		130° 2′		(G)
4H ₂ O ₁₂ 2H ₂ O	Potassium tetraoxalate	R	Bi	١.		(red)	13x _a ±(001)	(12)
C12O12 9H1O	Potassium mellitate	R	Bi	-		73" 30"	Ax pl b(010); X e	(G)
H ₄ O ₄ S	Potassium formaidehyde sulfite	M	Bi			98° 18'	Ax pl. b(010)	(G)
H ₁ O ₄ S	Potassium phenolsulfonate	R	Bi	+	69° 4′		Ax pl e(001), Z#b	(G)
H O P OH O	D	R	131	+	(apprx)	1	A al. a (100), 7%	(G)
₆ H ₄ O ₄ S 2H ₂ O ₆ H ₃ O ₄ S	Potassium phenolsulfonate Potassium phenylsulfate	R	Bi	-		87° 58′	Ax pl κ(100); Z e Ax pl b(010), Z e	(6)
H ₇ O ₃ S H ₂ O	Potassium p-toluenesulfonate	R	Bi		67° 4′		Ax pl a(100), X b	(G)
CH2O6S2	Potassium methanedisulfonate	M	Bi	ļ	72°	ì	1x pl _b(010), Z \c = 41°	(G)
							in obtune Z#	
C6H4O6S2 H2O	Potassium m-benzenedisulfonate	М	Bi,	İ		1860	Ax pl ±b(010)	(G)
C4H4O782 H2O	Potassium phenoldisulfonate	R	Bi	_	65° 35′	(apprx)	Ax pl. b(010); X a	(G)
H ₄ O ₄ SCl	Potassium p-chlorobenzenesulfonate	M	Bi		81° 25′		Z b	(G)
		_			(red)		1	
C10H4O4S2 2H2O	Potassium napthalene-1, 5-disulfonate	M	Bi		38° 50′	010.00	Ax pl. $\pm (010)$; $\eta_{ct} \wedge c = 78^{\circ}$	(41)
ьН6О2N гН1О6N2	Potassium phthalaminate. Potassium 3, 5-dinitrobenzoate	R M	Bi			21° 2′ 55° 25′	Ax pl b(010); X a Ax pl, b(010); $X \wedge c = 65^{c}$ in	(G) (G)
44476-13	. Ocamium o, o-amitropenzoare	••	"			1,,,,	acute 28	(3)
4H2O7N2	Potassium picrate	R	Bi	-	33° 34′	67° 39′	Ax pl a(100), X e	(G)
4H2N4O4	Potassium acid uroxanate		Bi		400 000	700 • 0:	1 1 . (001) . W. III	(81)
CH4OrSb.H2O	Potassium antimonyl tartrate Potassium iridium chloroxalate	R M	Bi Bi		42° 34′ 76° 23′	72° 50′	Ax pl. c(001), X b $Ax. pl. b(010); Z \land c = 13° 53'$	(G) (G)
IrC4O4Cl2 H2O	rotamium iridium emoroxamie	.11	""	1	10 20	1	In obtune $\angle \beta$	(3)
PtC2O4N2 H2O	Potassium platino mitrito oxalate	M	Bi	i	89° 40′	-	Ax pfb(010)	(O)
Fe ₂ C ₁₂ O ₂₄ 6H ₂ O	Potassium ferric oxalate	M	Bı	-	80° 4'	İ	Ax pl b(010), $X \wedge c = 1.25^{\circ}$	(G)
		M	1.		(red)		in obtuse Zß	(27)
NiC4O4S4 CaC3H4O17Sb2N H2O	Potassium nickel dithioxalate Calcium antimonyl tartrate potassium	R	Bi	ŀ	İ	64° 1′	Ax. pl a(100); Z b	(G)
acinaliania na	nitrate				1	"''		(-,
C1H4O4S2 H2O	Lithium potassium ethanedisulfonate	M	Bi			82°	Ax pl. (010); Bx _B ±(001) =	(*)
		P	l p	_	73° 58′		41° in obtuse ∠β	(0)
JiC4H4O4 H2O NaC4H4O4 4H2O	Lithium potassium tartrate Sodium potassium tartrate	R R	B ₁	+	73° 58' 69° 40'	117° 2′	Ax pl b(010); X a Ax pl, b(010); Z a	(G) (G)
NaCiHiOi iHiO NaCiHiOidSbN HiO	Potassium antimonyl tartrate sodium	R	Bi	-	, 1 0	90° 45′	Ax pl c(001), X a	(G)
	nitrate			1				
NaCiaHiaOzaSbN 2HiaO	Potassium antimonyl tartrate sodium	R	Bi.	-		88° 37′	Ax pl b(010); X c	(G)
aNaIrCaOaCla 2HaO	nitrate Potassium sodium iridium chloronitrito	R	Bi.	+	1	63° 24'	Ax. pl a(100); Z[b	(G)
	oxalate		1	1 1	I	1	1	1

	Name	Hystem	Class	Sign	2V	2E	Orientation	Lit
Formula 84 Rb ₂ C ₄ H ₄ O _{6.2} H ₇ O	Rubidium dl-tartrate	M	Bi	-	56° 6′		1	
RbiCiHiOi HiO RbiAliCiiOii 6HiO RbliCiHiOi HiO	Rubidium mesotartrate Rubidium sluminium oxalate Lithium rubidium tartrate	Tri M R	Bi Bi Bi	-	75° 18′ 80° 22′ 57° 10′ (red)		Ax. pl. 19° with c-axis Ax. pl. (010) Ax. pl. (001); X a	(G) (G) (G)
Rb ₁ Nn ₂ Cr ₂ C ₁₂ O ₂₄ 7H ₂ O Rb ₁₂ Nn ₂ ALC ₁₄ O ₂₄ 23H ₂ O	Nodium rubidium chromic oxalate Nodium rubidium aluminium oxalate	M M	Bi Bi	-	(lea)	56° 24° 30′		(G:

C-TABLE

Index No	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lit
21	CHI	Iodoform	Н	l n					(G)
55	CH ₁ ON ₁	I rea	Tet	l n					(G)
58	CHANAS	Thioures	R	Bı			69° 51'-	Ax pl a(001); X b	(G)
							70° 59′		l
64.1	CH _i O _i A _i	Methyl arsenate	M	Bı	-	11° 21′		Ax. pl. ⊥b(010); X∧c =	(G)
								53° 20' in acute ∠β	1
70	CH _i O _i N _i	Urea mitrate	М	Bi.	-		23° 10′	Ax pl. b(010), X ±c(001)	(G)
	CH ₁₀ O ₄ N ₁ S	Ammonium methanedisulfonate	M	Bı		79° 34′		Ax. pl. \perp b(010), $X \wedge c =$	(G)
								39° in obtuse ∠β	1
84 1	C2Cl4Br2	1, 2-Dibromo-1, 1, 2, 2-tetrachloroethane		Bı			87° 45′	Ax. pl a(100); X c	(G)
87	CzBre	Hexabromoethane	R	Bi			79° 30′	Ax. pl. a(100); X c	(G)
92	C:Cla	Hexachloroethane	R	Bi	-		66° 28'	Ax. pl. a(100)	(G)
	C ₂ O ₂ N ₃ I ₃	Duodofuroxane	R	Bı		63° 34′		Ax pl. c(001); Z a	(G)
147	CiHiOi	Oxalic acid	R	Bı	+			Ax. pl. c(001); Z b	(G)
	CaHaOc 2HaO	Oxahe acid	M	Bi	-	68°		Ax. pl. ⊥b(010), X b	(G)
161	CallaOaCla	Chloral hydrate	M	Bi	-	20° 48′	35°	Ax. pl b(010); X \(c =	(G)
			_				(upprx)	58° 45′ in obtuse ∠β	
238	CalliON	Acetamide (Unst. mod.)	,	Bı,			120°		(37)
				١			(apprx)		١
238	Callion	Acetamide (St. mod.)	Trig	Un	-				(G)
24N	C ₁ H ₁ O ₄ N H ₁ O	Ammonium hydrogen oxalate	R	Bi	-		22° 32′	Ax. pl. a(100); X c	(G)
	C ₂ H ₄ O ₂ NCI	Glycocoll hydrochloride	R	Bı	-		63° 50′	Ax pl. a(100); X b	(G)
3 03	C ₂ O ₄ H ₄ N ₃ ,H ₃ O	Ammonium oxalate	R	Bı	-	61° 44′	110° 8′	Ax pl a(100); X c	(G)
306	CallioNaClo	Ethylenediamine hydrochloride	M	Bı.	-	81° 4′		Ax. pl b(010); X \(\rangle\) e = 6°	(G)
								in acute ∠β	
308 1	C ₁ N ₄ Cl ₄	Cyanuric trichloride	M	Bı			28°	Ax pl. 1b(010)	(G)
813.1	C _i H _i ON _i Br _i	Dibromocyanacetamide	M	Bı	+		29° 52′	Ax. pl ±b(010); Z∧ c =	(G)
					İ			31° in obtuse ∠β	
	C'H'N'CI	4-Chloropyrazole	R	Bi	+		100°	Ax. pl. a(100)	(G)
				l			(apprx)		1
	CilliOiBri HiO	Dibromopyroracemic acid	M	Bı	+		34° 9′	Ax pl _1b(010)	(G)
	CalliON ₃ 8	Pseudothiohydantoin	R	Bi	-		81° 30′	Ax pl a(100), X b	(G)
	CilliOiNi8	Pyrazol-t-sulfonic acid	Tet	Un.					(L-B
486	CilliOiNi	Malonamide (metast mod.)	Tet	Un.	-				(G)
444	CilliOiN _t	Ammonium fulminurate	M	Bi					(G)
	C ₁ H ₇ O ₁ N	β- Alamne	R	Bı	-		70°	Ax. pl. c(001); X b	(G)
	CH ND	100					(apprx)		۱.,
	CaH10NBr	Trimethyl ammonium bromide	M	Bı	+		50°	Ax. pl. (010)	(G)
	C ₄ H ₁₀ NI	T- 11 1			i .		(apprx)		(G)
	CINIONI	Trimethyl ammonium iodide	M	Bi	+	ì	53°	Ax. pl. (010)	(6)
835	0 11 0 11	Guanidine carbonate		١			(apprx)		
030	CaHaOaNe CaHaOaNBra	Dibromosuccinimide	Tet	Un					(G)
	Ciliatianni	Dibromosuccinimide	М	Bı	+		20° 50′	Ax. pl. b(010); $Z \wedge c = 8^{\circ}$	(G)
679.1	C4H4O4N 2H4O	Nitrotetrome acid				ł		in obtuse ZB	1 (0)
019.1	C ₄ H ₄ O ₄ Br ₁	trans-a-\$-Dibromocrotonic acid	M	Bı	ŀ	ļ	****	Ax pl. b(010)	(G)
	C ₄ H ₄ O ₁ N ₁	Mesotartarie acid nitrile	M	Bi	١.	1	56° 1′ 50°	Ax. pl. \(\perp\) b(010)	(G)
ļ	Cincini	Mesotariarie acid nitriie	M	Bı	+	ĺ			(6)
	C ₄ H ₄ O ₇ Cl	a-Chlorocrotome acid	M			i	(apprx.)	1 11(010) 75	1
1	Cturosci	a-C morecrotonic acid	VI	Bi.	+		68° 17′	Ax pl _b(010), Z \c =	(G)
592	C.H.O.N(St mod)	Succemende		D.	ł	}	990	35° in obtuse ∠β	(28)
602	CaHaBra	Butadiene tetrabromide	R	Bi.	١.	İ	57°	Ax pl. (010); Bxa 1 (010)	(G)
602	Cition	Buttagiene tetrapromide	R	Bı.	+			Ax pl. a(100); Z o	(6)
l	C ₄ H ₃ O ₂ NCl ₃	Ammonium trichloroisobutyrate	R	Bi	1 .	1	(apprx)	Ax pl. c(001)	(G)
1	C ₁ H ₄ O ₂ N ₂ S	3-Methylpyrasole-4-sulfone need		Bi	+	53°	96°		(G)
610	C ₄ H ₄ O ₂ N ₄	Allantoin	M		l	100	92	Ax. pl. ⊥b(010); Z∥b	(21)
910	C4H4O4Se	Selenodiglycohe acid	H M	Un Bi	1	78° 30′	İ	Ax. pl b(010); Z \(c = 41^\circ\)	(G)
l	C 41161 4090	cerenougly cone neta	M	131	1	15. 90,	1	Ax. pi $b(010)$; $2 \wedge c = 41^{-1}$ in obtuse $\angle \beta$	'''
640	C ₄ H ₄ O ₄ H ₂ O	dl-Tartaric acid	T	p.	[67° 10'	ł	In obtuse 25 Ax. pl. p(110)	(G)
	CaHrOaN	dl-Aspartic acid	Tri M	B ₁	}	81° 44'	1	Ax. pl. p(110) Ax. pl. \(\pm\beta\beta(010)\)	(6)
	CaHrOaN	Acetamide oxalate	R	Bi	1	91. 44,	25°	Ax. pl. ±5(010) Ax. pl. a(100); X c	(6)
	C ₄ H ₄ O ₃ Cl ₃	Dichlorobutylene glycol	Trig	Un	1 -		20	Az. pl. 8(100); A c	(6)
807 1				i in	1			1	
697 1					l _	l .	1300 441	Ar pl c(001): Xilb	
697 1 708	C ₄ H ₄ O ₇ NSb H ₄ O C ₄ H ₄ O ₄ N ₁ H ₄ O	Ammonium antimonyl tartrate Asparagine	R. R.	Bi. Bi.	-+	1. 86° 40′	130° 46′	Ax. pl c(001); X b Ax pl. b(010); Z c	(G)

CRYSTALLOGRAPHY

ndex No.	Formula	Name	System	Class	Sign	2V	3E	Orientation	Lit.
709	C ₄ H ₂ O ₄ N ₂	Tartramide	R	Bi	- 1	•	43°	Ax. pl. b(010); X a	(G)
	C ₁ H ₂ O ₄ N	Ethylamine dioxalate	M	Bi			(apprs.)		(0.
76	C _i H _i O _i N	Ammonium hydrogen malate			-		89° 20'	Az. pl. b(010)	(0)
	C _i H _i O _i N	Ammonium hydrogen tartrate	R	Bi	-	47° 54'	75° 24′	Ax. pl. b(010); X#e	(0)
78	C _i H _i N _i O _i		R	131	-	79° 54'		Ax. pl. c(001); X b	(G
86		Guandine lactate	R	Bı	+	79° 12′		Ax. pl. a(100), Z b	(0
88	CeH 10 NaBs	Ethylenediamine thiocyanate	M	Bı.	-	51°	89° 20'	Ax pl b(010), X Λ e = 64° 30′ in obtuse ∠β	(G)
08	C4H10O4	t-Erythrite	Tet	Un				of 30 fd obtaine 2p	(G
	C ₄ H ₁₂ NI	Diethyl ammonium iodide	R	Bı	4		52° 15′	Az pl (001); Zla	(0
	C ₄ H ₁₀ O ₅ N ₁	Ammonium malate	R	Bi		47° 34'	(appra.)		(L-E
			, ,	, ···		(red)			(2,-2
35	C ₄ H ₁₂ O ₄ N ₂	Ammonium tartrate	M	Bı.	-	39° 36	64° 46′	Ax pl b(010); X A a =	(0
35.1	C ₄ H ₁₂ O ₄ N ₂	Ammonium racemate	М	Bı		00° 54		18° 41' in obtuse ∠β Ax. pl, b(010)	(G
	C _i H _i O _i Cl	Chlorocitraconic acid	R	Bi		46° 24′	75° 5′	Ax pl b(010), Z e	ίō
	CaH4O4N2.H4O	Donas de la constante de la co		١		(blue)	(blue)		
	CaHaOaNs.HsO	Pyrazole dicarboxylic acid	M	131		77°		Ax pl. 1b(010); Z apprx 1s(403)	(G
68	C ₄ H ₄ O ₄	Aconic acid	R	111	-			Ax pl a(100); X b	(G
77	C _i H _i O _i N	Pyrrole-2-carboxylic acid	M	Bi	1	62° 7′		Ax pl. b(010); Z \(\cdot n =	(G
	C _i H _i O _i N ₁	Urimidosuccinic acid	R	Bı		78° 14'		23° 45' in obtuse ∠β Ax pl. a(100); Z c	(G
00	C ₄ H ₄ O ₄	Itacome acid	R	Bı	;	l	07° 40′	Ax pl. b(010); Z a	(0
	a w a n						(red)		
	C ₄ H ₇ O ₄ Br	Citrabromopy rotartane acid	М	Bı	İ	76°		Ax pl \perp b(010), $\mathbb{Z} \wedge e =$ 62° in acute $\angle B$	(0
	C ₆ H ₇ O ₃ N ₃	Urimidosuccime acid amide	11	Bi		79° 35'		Ax pl b(010)	(G
47 . 1	C ₄ H ₄ O ₄	Methyltetrome acid lactone	R	Bı	+	Ì	120° 10′		(14
57	CaHaOa HaO	Methyl hydrogen d-turtrate	R	Bı		600		Ax pl a(100); Z c	(G
	CaH OzBr	Bromohydrotighe acid	М	Bi	1	(ubblx)	150°		(G
	C ₁ H ₁ O ₂ N	Hydroxypiperidone	M	Bi	١,		92° 33′	Ax pl _b(010); Z nearly	(6
		,	1	1	j '			In(100)	, ,
75 1	C _i H ₂ O ₁ N	α-Acetylaminopropionic acid	R	Bi	-	36° 9′		Ax pl a(100); X e	(0
77	C _i H _i O _i N	d(l)-Glutaminic acid	R	Bi		40° 27′	66° 35'	Ax pl. b(010); X a	(G
88.1	C ₄ H ₁₀ O ₄ NCl	d(l)-Glutamic acid hydrochloride	R	Bi	+	70° 44′		Ax pl. a(100); Z b	(G
94.1	C.H10O1N1	Dimethylmalonamide	R	Bi	1 +	l	58° 27'	Ax. pl b(001); Z c	(G
96	CaH10OaN2	Amylene mitrosate	M	Bi	1	62° 65'	103° 53′	Ax. pl _b(010); Z \ c =	(a
00	0.1111001111	7 my cm m 170mm			'	"-		7° in obtuse ∠β	`~
35	C ₃ H ₁₀ O ₃	d-Lyxose	M	Bi				Ax pl b(010)	l (G
70.2	C _i H ₁₁ O _i N	Methyltetronamide	Not det	Bi	+	i	Large		l à
	C ₁ H ₁₁ NBr	Piperidine hydrobromide	R	Bı	! '	ļ	35°	Ax pl b(010); Z a	l (G
						ì	(apprx)		
75	C ₄ H ₁₁ NCl	Piperidine hydrochloride	R	Bı	-	l	52° 56′	Ax pl c(001); X a	(G
93	C _b H ₁₂ O ₄	Pentaerythritol	Ditet	Un	1	1	i	}	(G
	C _i H ₁₂ NBr ₂	Trimethyl-bromoethylammonium bro-	M	Bi	1 +	1	40° 2′	Ax pl. \(\pm(010)\); \(Z \wedge c =	(G
		mide		1		1	l	39° 30' in acute ∠β	
	C ₆ O ₄ N ₂ Br ₄	1, 2, 3, 5-Tetrabromodimitrobenzene	M	Bi	-		45° 54'	Ax pl b(010); $X \perp r(201)$	(0
	CiOCli	β-Octochlorocyclohexenone	R	Bi	1		l l	Ax pl b(010); Z n	(G
	C ₆ OCl ₈	γ-Octochlorocyclohexenone	M	Bı		37° 38′	65° 59′	Ax pl. b(010); X \ c =	(G
20	C'HCPO	Pentachlorophenol (\$\beta\$-mod).	M	Bı	+	1	65° 23 5′	about 93° in obtuse β Ax pl. $\pm b(010)$, $\mathbb{Z} \wedge c =$	(a
ρŪ	Circio	rentaemorophenoi (p-mosi).		'''	'			3° in acute ∠β	``
	C6H2O6N2Br2	1, 3-Dimtro-4, 6-dibromobenzene (St	R	Bı	+	1	56° 52'	Ax. pl. a(100); Z c	(G
	CaH2O4N2Br2	mod) 1, 3-Dinitro-4, 6-dibromobenzene	R	Bi	_	İ	73° 5′	Az pl. 1b(010); X 1a(100)	(G
		(metast_mod_)							1
	C ₄ H ₂ O ₄ N ₂ Br ₂	1, 2-Dinitro-4, 5-dibromobenzene	R	Bi	-	211 -	88° 22'	Ax pl. a(100); X [c	(
	C ₆ H ₂ O ₂ NBr ₂	2, 4, 6-Tribromonitrobenzene	M	Bi		i	90° 13′	Ax pl _Lb(010)	(0
42	C ₄ H ₂ O ₄ N ₂ I ₂	1, 3-Dinitro-2, 4-duodo-benzene	R	Bi	+	63° 26′		Ax pl. a(100); Z e	(0
49	C ₆ H ₄ O ₄ N ₂ Br	3-Bromo-1, 2-dimitrobenzene	R	Bı	+	51° 30′		Ax. pl. b(010); Z o	1 "
55	C ₆ H ₂ O ₂ NBr ₂	3, 5-Dibromonitrobenzene	M	B		(red)	72° 19′	X Λ c = 20° in obtuse ∠β	(0
55.1	C ₆ H ₄ O ₄ NBr ₂	Nitrodibromophenol	M	Bi	1	l	70° 73°	Ax pl. 1b(010)	10
63	C ₄ H ₂ O ₄ N ₂ Cl	4-Chloro-1, 2-dimitrobenzene	M	1	-	1	45° 31′	Az pl. 1b(010)	10
65	C ₄ H ₄ O ₄ N ₂ Cl	α-4-Chloro-1, 3-dimtrobenzene (St. mod.)		Bı			102° 46′	Ax. pl. b(010), Z c	10
							(red)		
65	C ₄ H ₂ O ₄ N ₂ Cl	α-4-Chloro-1, 3-dimitrobenzene (metast	R	Bı	+		94° 15′	Ax pl. n(100); Z b	(
~. ·	CHONG	mod)	M	Bı	_		62° 29'		10
74.1	C ₄ H ₂ O ₂ NCl ₂	4, 6-Dichloro-2-nitrophenol			1 -	l .		1	
	C ₄ H ₂ O ₂ NI ₂	2, 6-Duodo-4-nitrophenol	Tri	Bi	į .	1	55° 30′	1	0
00	C ₆ H ₄ O ₈ N ₆	Tetranitroaniline	M or	Bı.	_	1	120° (at		1,
			Tri	n.	1	I	least)	41 -/100): *#-	١,
16	C ₆ H ₄ O ₂ NCl	m-Chloronitrobensene	R	Bi.	-	1	91° 23′	Ax. pl. a(100); X a	1 %
	C ₄ H ₄ O ₄ NSCl	p-Nitrobensenesulfonyl chloride	M	Bı.	-		65°	Ax. pl. b(010); X ∧ c = 33° 36' in obtuse ∠β	1 "
	5		i .	1	1	i	(apprx)	1 00 00 IN ODIUME ZB	1
43	C _t H _t O _t S _t Cl _t	m-Benzenediaulfonyl chloride	M	Bi.	1	1	80° 85'	Az. pl. b(010); X \ c =	1 (0

No. 274 1 277 277 277 277 277 377 377 374 412 414 415 416 448 44	Callaoina Callaoina Callaoina Callaoina Callaoine Callaoine Callaoine Callaoine Callaoine Callaoine Callaoine Callaoina Callaoina Callaoina Callaoina Callaoina	2, 3-Dimtrophenol 2, 6-Dinitrophenol 3, 4-Dinitrophenol 3, 4-Dinitrophenol p-Bromoniline Nicotinio acid hydrochloride Preolima acid hydrochloride Preolimanole 2-Methylpyranine-5-carboxylic acid p-Nitrobenzenexulfamele Ammonium pierate o-Dihydroxylienzene	M. R. Tri. R. R. M M	Bi. Bi Bi Bi Bi Bi	+ - + + + +	41° 16′	16° 95° 40′ 65° 26° 57.5′ 96° 22′ 73° 52′ 62° 2′	Ax. pl. ± (010) Ax. pl. b(010); Z a Ax. pl. c(001); Z a Ax. pl. a(100); X c Ax. pl. b(010); X c	(1)
277 278 377 394 412 414 415 416	Calidons Calidons Calidons Calidons CalidonCl CalidonCl CalidonCl CalidonNel Calidons	2. 6-Dinitrophenol 3. 4-Dinitrophenol p-Bromoamline Nirotanio acid hydrochloride Picolinic acid hydrochloride astrana-Benzenehexachloride Picolinamode 2-Methylpyranne-5-carboxylic acid p-Nitrobenzenesulfamide Ammonain picrate	Tri. R. R. M M	Bı Bı Bı Bı Bı	+ - - +	41° 16′	65° 26° 57.5′ 96° 22′ 73° 52′	Ax pl. c(001); Z#a Ax. pl. a(100); X#c	0
278 377 384 412 414 415 416	CaHaOna CaHaOnCi CaHaOnCi CaHaOnCi CaHaOna CaHaOna CaHaOana CaHaOna CaHaOna CaHaOna CaHaOna	3, 4-Dintrophenol p-Bromoanline Nicotinio acid hydrochloride Picolinic acid hydrochloride a-trans-Benzenchexachloride Picolinamide 2-Methylpyranine-5-carboxylic acid p-Nitrobenzenexulfamide Ammonain picrate	Tri. R. R. M M	Bi Bi Bi Bi	- +	41° 16′	26° 57.5′ 96° 22′ 73° 52′	Ax. pl. a(100); X c	
377 394 412 414 415 416	CaHan Br CaHao an Cl CaHao Ch CaHao Ch CaHao An CaHao An B CaHao An B CaHao An B CaHao An B CaHao An C	p-Bromoanilme Nicotinio acid hydrochloride Picolinio acid hydrochloride a-trans-Bensenchexachloride Picolinamode 2-Methylpyrazine-5-carboxylic acid p-Nitrobenzenesulfamide Ammonium picrate	R. R. R M	Bi Bi Bi Bi	- +	41° 16′	96° 22′ 73° 52′	Ax. pl. a(100); X c	
384 412 414 415 416	C4H4O4NCI C4H4CI4 C4H4CI4 C4H4O4N4 C4H4O4N4 C4H4O4N4 C4H4O3N4 C4H4O3	Nicotinio acid hydrochloride Picolinic acid hydrochloride a-trans-Benzenchexachloride Picolinamode 2-Methylpyraxine-5-carboxylic acid p-Nitrobenzenexulfamide Ammonium picrate	R. R M M	Bi Bi Bi	- +	41° 16′	73° 52′	Ax. pl. a(100); X c	
112 114 115	Callionnel Callioni Callioni Callioni Callioni Callioni Callioni Callioni Callioni Callioni Callion Callion	Picolime acid hydrochloride a-trans-Benzenchexichloride Picolinamide 2-Methylpyranine-5-carboxylic acid p-Nitrobenzenexulfamide Ammonium picrate	R M M R	Bi Bi Bi	+	41° 16′	73° 52′		16
112 114 115 116	CallaCla CallaClNa CallaClNa CallaClNa CallaClNa CallaClNa CallaClNa CallaClNa CallaClNa CallaClNa CallaCln CallaCln	a-trans-Henzenéhezachloride Picolinamide 2-Methylpyranne-5-carboxylic acid p-Nitrobenzenezulfamide Ammonium picrate	M M R	Bi Bi	۲	41 10			1
12 14 15	CallaON1 CallaON1 CallaOaN28 CallaOaN4 CallaO1 CallaO1	Produnamede 2-Methylpyranne-5-carboxylic acid p-Nitrobenzenesulfamide Ammonium pictate	M R	Ві				Ax. pl. b(010); Z \ c =	
14 15 16	CaHaO2Na CaHaO2N28 CaHaO7Na CaHaO2 CaHaO2	2-Methylpyranne-5-carboxylic acid p-Nitrobenzenesulfamide Ammonium pierate	R		1		02 2	42° 25' in obtuse ∠β	1
14 15 16	C4H4O4N38 C4H4O5N4 C4H4O3 C4H4O2	p-Nitrobenzenezulfamide Ammonium pierate		Bı			73° 20' (red)	Ax. pl. b(010)	(
14 15 16	CaHaO7Na CaHaO2 CaHaO2	Ammonum perate	M	1			35° (apprx)	Az. pl. a(100); Z c	
14 15 16	CaHaOa CaHaOa		i .	Bı		59°	()	Ax. pl. b(010); ZΛ c = 70° in acute ∠β	
14 15 16	CaHaOa CaHaOa		It	Bı			56°		l
16			M	Bı	+		58° (apprx)	Ax. pl. ⊥b(010); Z∧c =	
16			١.,	D.	-	46° 14'	76° 6′	Ax. pl. c(001); X a	
	Callana	Resorcinol	R	Bı	_	40 14	100	AL. pl. c(001), A a	1
18		Hydroquinonol	Trig	Un					1
18	CaHaOa 2HaO	Phloroglucinol	R	Bı	-		63° 49′	Ax pl c(001); X a	1
18	CellaOa	a-Methyl-β-hydroxy-γ-pyrone (β-mod)	R	131	1		Small	Ax pl (001) ; Bx ₀ = b-axis	1
10			R	Bi	-		47° 37′	Ax pl c(001), X a	1
	C ₄ H ₂ ON	p-Amnophenol	R	Bi	+		43° 29′	Ax pl. c(001); Z a	1
	C ₄ H ₇ O ₄ N8	Phenylsulfohydroxanac acid					35°	Ax. pl. a(100)	1
1	C ₄ H ₄ NBr	Andine hydrobromide	R	Bı	-				1
	CaHaOaBra	Tetrabromocaproic acid	M	Bı.	+		21° 52′	Ax pl. \perp b(010); $\mathbb{Z} \wedge e \Rightarrow$ 100° in obtuse $\angle \beta$	
	CaH ₁ O ₂ N ₂ Cl ₂	1, 4-Dichloro-1, 4-dimtrosocyclohexane	М	Bı.	+	61° 58′ (blue)	100° 15′ (white)	Ax pl b(010); $\mathbb{Z} \wedge c = 40^{\circ} 30'$ in acute $\angle B$	
	CaHaOaNCla 2HaO	Ammonium trichlorodihydroxycyclopen-	R	Bı		(17146-7	81°	Ax pl. (100)	
	CaHaN ₂	tane carboxylate 2, 6-Dimethylpyraxine	М	Bı			(apprx) 86°	Ax. pl. b(010); Z \(\circ \) =	
				İ			(apprx)	20° in obtuse ∠β	1
77	C ₄ H ₄ O ₇ H ₂ O	Citrie acul	R	Bi	+	65° 42′	105° 40′	Ax pl a(100), Z#a	1
23	C ₄ H ₂ O ₄ NS	Ammonium benrenesulfonate	R	Bi	1		33° 36′	Ax pl a(100); Z'le	1
		Trunorpholine	M	Bı		802		Ax pl b(010)	1
	C ₄ H ₄ O ₄ N					l ''''	69° 20′	1. 5(010)	1
	C ₀ H ₀ O ₀ N	Acetamide dioxalate	Trı	Bı			09 20	1 1 (010) 77	1
	CaH10O4Bru	Inoute dibromby drin	R	Bı	+	67° 30′		Ax. pl b(010); Z a	1
	CaH10CINOs	Trimorpholine hydrochloride	M	Bı			50° 60′	Ax. pl 1b(010) (red)	1
62	CaHtnO4	Adipie acid	M	Bı			47° 30′	Ax pl b(010)	1
13	CaH10O4	1, 1-Dimethylauccinic acid	M	Bı		16° 12′	41° 28′	Bxa nearly ± (001), Ax pl (010)	
	CaH10Os	1-Glycosan (1-Glucose anhydride)	R	Bı	i		71° 45′	Ax pl a(100); X c	1
	CaH10Oa	dl-Dilactylic acid	R	Bi	ļ		65°	Ax pl (010), Bxa ± (001)	Н
	CellioOs	Dilactylic acid	R	Bi	-		65°	Ax pl b(010); X e	
	C ₆ H ₁₀ O ₆	Leonaccharine	М.	Bi.	4.		(apprx) 25° 19'	Ax. pl. 16(010), ZAC =	1
	C ₄ H ₁₁ O ₇ N	Acetamide ditartrate	M	Bı	_		70° 30′	Ax pl b(010), $X \wedge c =$.
	CaHuOaNa	Pyrrolidine-a, a-dicarboxylic acid dia-	R	Bi	+		63° 30′	30° in acute ∠β Ax pl. b(010), Z¦c	1
	CellinOrNiSi HiO	mide Ammonium phenol-2, 1(2)-disulfonate.	M	Bı	+		(apprx) 113° 45'	Ax. pl b(010); Z \(c = \)	1
	}						1	25° 21' in obtuse ∠β	l
•	CaH12O1 CaH12O1	cis-o-Dihydroxy hexahy drobenzene a-Methylxyloside	R. M.	Bı Bı.	+	35° 14′	53° 10′ 54° 55′	Ax pl b(010); $Z \parallel c$ Ax pl b(010); $X \wedge c = 30^{\circ}$	۰
70	C ₀ H ₁₂ O ₀	d-Quercitol	M.	Bi.	+		58° 1′	In acute $\angle \beta$ Ax pl b(010); $\mathbb{Z} \wedge c = 11^{\circ}$	١,
72	C4H12O4 H3O	8-Khaninose	М	Bı	_	58° 5′	1	46' in acute ∠β Ax pl b(010)	1
						0.00	42° 30′		- 1
	C ₆ H ₁₂ O ₆ 2H ₄ O C ₆ H ₁₂ O ₆ 2H ₂ O	d(l)-Inosite Damboso ("meso"-inosite)	R M	Bi Bi	+		42° 30° 47° 20′	Ax. pl a(100); $\mathbb{Z}\parallel c$ Ax. pl $\perp b(010)$; $\mathbb{Z}\wedge c =$	١
	CaHuoaN HaO	Ammonium hydrogen ethoxysuccinate	R	Bi			20°	17° in obtuse ∠β Ax pl c(001); Z b	
	CH ON	2 Prope lanton we		,		t 00 t 01	(apprv)		
	C ₆ H ₁₀ ON ₁	2-Propylantipyrine	M	Bi	1	52° 50′		1	.1
	CoH10O4S1N1Cla	Cystine by drochloride	M	Bi	+		3° 16′	Ax pl _b(010); Z _s(101	1
50	C ₁ H ₁₄ O ₄	Dulcitol	M.	Bı	-		151° 10′ (red)	Ax. pl ±b(010); X b	
51	CaH14Os	d -Manmtol (α -mod)	R.	Bi	-		100°	Ax pl c(001); X b	l
	Large	1	1 .	1	1	1	(apprx)	1	1
51	CiRiiOi	d-Manmtol (β-mod) Sorbitol	R	Bi	-	1	71° 30′	Ax pl a(100); X b Ax pl b(010); Z nearly	.
52.1	C ₆ H ₁₆ O ₆ ½H ₂ O	Somitol	M.	B1.	-	I	100°		1
	1	1	1	1	1		(apprx)	⊥e(001)	ı
69 I	C ₄ H ₁₀ P8	Triethylphosphine sulfide	H.	Un	1	1	I	1	Ì
	C ₆ H ₁₆ N ₂ Br ₂ H ₂ O	β-2, 5-Dimethylpiperszine hydrobromide		B ₁ ,	+		720	Ax. pl. a(100); Z c	
	la 11 211	Demonstrat Lordert	l	- m	1	1	(apprx)	7.5-	1
	CilliaNI	Dimethyl diethyl ammonium iodide	R	Bi.	1	1	820	Zije	1
	C ₂ H ₄ O ₃ Cl ₄	1-Methyl-1, 3, 3, 5, 5-pentachlorocyclo- hexan-2, 4, 6-trione	R	Bi	+	1	15° (apprx)	Ax pl a(100), Z'e	1

· CRYSTALLOGRAPHY

index	Formula	Name	System	Class	Sign	21	218	Omenanalan	Lit.
No. 1789	C ₁ H ₂ O ₂ N ₃	2, 4, 6-Trimtrobensoic acid		1	Sign	. 21		Orientation	1
1108	C ₁ H ₁ O ₃ Cl ₁	3, 5-Dichlorosalicy is used	R R	B ₁	1		H4° 36'	Ax. pt. c(001), Z b	(0)
1885	C:HiOiN:	2, 4-Dimitrobensor acid	M	Bi	+		29° 15′ 18°	Ax pi b(010); Zke Ax, pl (010); Bxa nearly	(11)
	`			'''			10	1 (101)	(**)
1837	CrH4OtN1	2, 6-Dinitrobengoic acid	R	Bı	+		103°	Az pl. (100), Bza 1(010)	(11)
1839	C1H4O4N1	3, 5-Dinitrobensoic acid	М	Bı			80° 16′	Az. pl. b(010); X A o =	(G)
					į			48° in acute ∠#	
	C7H4O4	Chelidonic seid	M	Bı	-		40°	Az. plb(010); X nearly	(G)
1843	C1H1O13H1O	Mecome acid		i			(apprx.)	r(101)	
1881	C ₁ H ₁ O ₁ I	o-Iodobenzoie acid	R	Bi	_		48° 55′	Ax pl b(010); X e	(0)
		Today Carolic acid	М	Ri			70°	Ax. plb(010); Bxa c-	(G)
1903	C1H1O4N 2H1O	Dipicolinic acid .	R	Bi			(apprx)	1x pl (001); Bx 1(010)	(88)
1909	C ₇ H ₄ O ₄ N	5-Nitro-2-hydroxybenzoic acid	M	Bı	١,		105° 38′	((0)
1977	C ₇ H ₄ N ₄	Benzimidazol	R	Bı		86° 45'		Az pl c(001); Z b	(G)
1979	C ₇ H ₆ N ₅	Indazole	M	Bi		50°		Ax pl b(010); ZA 0 =	(G)
1985	C ₁ H ₄ O ₄ N ₁	2, 4-Dimitrotoluene	١	Bı		(apprx)		18° in obtune ∠β	(0)
1000	Chinoth	· · · · · · · · · · · · · · · · · ·	M	151				Ax pl ±b(010); XΛ c = 32° in acute ∠β	(G)
1987	CrH4O4N1	2, 6-Dinitrotolucne	R	Bı.	~		İ	Ax pl n(100); X 0	(4)
1989	C1H4O4N1	3, 5-Dimitrotoluene	M	131	- 1		98° 4'	Ax pl _b(010)	(G)
	C:H4ON4 H2O	c-Phenythy droxytetrazole	R	Ri		60° 70°	1	Ax pl a(100); Z o	(0)
2074	C ₇ H ₇ O ₄ N	Anthrambe acid	R	Bı			78° 30′ (Hg.	Ax pl c(001); Z a; Bxa	(0)
	C ₇ H ₇ O ₂ N	Benzohydrovanue acid	١,,	R ₁			yellow) 50° 2'	L(100)	(0)
	CiHiOiN HiO	Pyridinebetaine	R M	Bi	+	25° 16′	00. 2	Ax pl в(100); Z∥b Ax, pl b(010); X∧c =	(6)
				"		• • • • • • • • • • • • • • • • • •		12° 45′ in obtuse ∠β	'-'
	C1H1O1N3	3, 5-Dinitro-p-toluidine	R	Bi					(3)
	C.H.ONCI	Isobenzaldoxime hydrochloride	R	131			1(N)°	Ax pl a(100); Z b	(G)
	C ₇ H ₈ O ₂ NCl	Pyridinebetaine hydrochloride		Bı	,	52° 3′	(npprx)	Ax pl ±b(010); Z ∧ c = 9°	(6)
	Cillination	Tyriane Name ay area may a	M	171	' '	32.3	88° 8'	27' in acute 28	(0)
	C:H:O:N: H:O	Benzenylamidine mtrite	M (2)	Bı			78° 55′	Ax pl d(010)	(0)
2174	C7H4O2	Guanacol	Trig	Un			ļ		(G)
2185	C7H4O4	Hydrochehdome anhydride	R	Bı	- 1		120°	Az. pl c(001); X a	(G)
	C ₇ H ₉ O ₅ Br	Bromo-slukimilactone	.,	1			(apprx)		(n)
	C ₇ H ₉ N ₇ Cl 2H ₂ O	Benzenylamidine hydrochloride	H R	Un Bi	1		35°	Ax pl n(100); Z c	(G) (G)
			1	1 .,,			(apprx)	AL IN MINON, ENG	(0)
	C:H:O:Cl 2H:O	α, α-Dimethyl-γ-pyrone hydrochloride	R	Bı			90°	Ax pl a(100); X b	(0)
		1					(apprx)		
	C:H ₉ ON C:H ₉ ON 3H ₂ O	3-Amino-p-cresol 2, 6-Dimethyl-4-hydroxypyridine	R	Bi Bi	+-		14° 40′	Ax pl a(100); Z c	(G)
2225	C:H ₂ O ₂ N	Ammonium benzoate	M R	B ₁	,		110° \$1' 67°	Ax, pl. b(010) Ax pl u(100); Z e	(G) (G)
2233	C _e H ₉ O ₄ NS	p-Tolurdine-2-sulfone acid	M	B ₁ ,	4		87° 54′	Ax pl b(010); ZAc = 8°	(6)
	1							in obtuse ZB	`-'
2234.1	C ₇ H ₄ O ₄ NS	Ammonium o-sulfobenzoate	R	Bı		53° 29′	84° 39′	Ax pl b(010); X a	(0)
	C ₇ H ₁₀ NBr	Tolumbne hydrobromide	R	Bi Bi	 +-	82° 37′		Ax pl c(001); X b	(6)
	C7H10O4Br2	Dibromotrihydroxy tetrahydrobenzoic acid	R	151	7	76° 32′		Ax. pl c(001)	(G)
2260.1	C1H10O1N2	Mono-uriendihydroxy dimethyl succi-	It	Bi		72° 15 5′		Ax. pl. b(010); Z 0	(6)
		nate			1				
2260 2	C7H10O6N4	Isohydroxydimethylurea	M	Bi	+	40° 9 5′	62° 34 25′	Ax. plb(010); Z ^ e =	(G)
	C:H:±04N48.2H±0	2, 4-Toluylendiamine sulfate.	м	Ві			100°	2° 15' in acute ∠β	(G)
	C 71111704.1480.214107	2, 4-1 oldytendskinne sankte.		171			(apprx)		(6)
	C7H12O4	Trimethyl succinic acid	R	Bı		84° 11′		Ax pl (100); Bxa ±(001)	(38)
	C7H14O4	l-Methylrhamnoside	R	Br	-	36° 11′	57° 8′	Ax pl b(010), X e	(G)
	C7H14O4	α-Methyl mannoside	R	Bi	t .	46° 58′	75°	Ax pl b(010), Z A	(0)
2372 2373	C ₇ H ₁₄ O ₄	a-Methyl glucoside	R	B _i Un	+	85° 18′		Ax. pl. b(010); Z c	(0)
.013	C ₇ H ₁₄ O ₈ C ₇ H ₁₁ O ₈ H ₂ O	β-Methyl glucoside dl-α-Methyl galactoside	Tet R	Bi	+	53° 5′	85° 45′	Ax pl a(100); Z c	(G) (G)
1	C ₁ H ₄ O ₄ N ₂ Cl ₂	2, 4, 6-Trichloro-3-mtrobenzoie acid	M	Bi	'	.,,, ,,	42°	Ax. pl _b(010); X Ac =	(0)
		methyl mtramide					(apprx)	69° in acute ∠β	
	C ₄ H ₄ O ₄ N	Isatoic acid anhydride	M	Bı			90°	Ax. pl. ±b(010)	(G)
	a no v	max		ъ.			(apprx)		
452	C ₁ H ₄ O ₁ N C ₂ H ₄ NBr	Phthaloxime Bromobenzyl cyanide	M Tng	B ₁ Un					(26) (L-B)
	C _t H _t O _t N _t Br	1-Nitro-3-bromo-4-acetamide (St. mod.)	M	Bi	-		124° 10′	Ax. pl. ±b(010)	(G)
-	C ₁ H ₄ O ₁ Cl ₄	Tetrachlorophloroglucinol dimethyl ether	R	Bi	+		90°	Ax. pl. a(100)	(G)
							(apprx)		
	C ₄ H ₇ O ₄ N ₂ Br	Nitrobromoacetamhde (a-mod)	M	Bi.	-		124° 10′	Ax. pl. \(\pm(010)\); Bxa nearly	(2)
	C. H.O.Y.C.	Dichloroacetamlide	M	Bi.	+	83° 35′		1 (001)	(0)
	C ₁ H ₇ ONCl ₂	Diemoroacetaninge	A)	ы.	*	Q+3 -3-3		Ax pl _b(010); ZΛc == 61° in obtuse ∠β	(G)
2536	C ₆ H ₇ O ₆ N ₃	2, 3, 6-Trinitro-p-xylene	M.	Bi.		61° 32′	1	Ax pl b(010), $X \wedge c = 28^\circ$	(0)
							I .	in obtuse ∠β	

lex ;	Formula	Name	System	Class	Sign	2V	2E	Orientation	L
n		1 No. 1 No.	R	Bi.			27° 41′	Ax. pl c(001); Z b	(
	Callionel	Methylphenylures chloride Methoxyphenyltetrazole	Tri	Bi	-	74° 48′	000	Ax. plb-axis	(
	Cillion	m-Nitroacetanilde	M	Bı			80°	Az. pl. \(\pm\)b(010)	(
6	C ₁ H ₁ O ₁ N ₁	M41croacetaining				1	(apprx.)	Az. plb(010)	١.
4	C ₁ H ₁ O ₁ N ₁	2, 3-Dinitro-p-xylene	M	Bı	+		105° 8′	AL DE LEGOTO	(1
•	CallaOaNa	9-Allyluric send		Un			53°	Az. pl. b(010); Z a	١,
	C.H.O.	Hematime acid anhydride	R	Bı	+	1	(apprx)	112. pi. 5(010), 2 4	١,
				1 .	_	71° 2′	120° 10′	Ax. pl. a(100); X e	
	C ₄ H ₄ O ₇	Acetyleitne anhydride	R	Bi	+			Ax. pl _b(010), Z \c =	
	C _t H _t N _t Cl H _t O	Phenyliminotriazoline hydrochloride	M	131	1	1		44° in acute ∠β	1
		and the state of t	R	Bi	,	1 1	110°	Ax. pl. b(010); Z c	١,
	C ₂ H ₂ O ₂ 8Cl	Chloromethyl p-tolyl sulfone	"	1	1	1 1	(apprx)		
	a a cu	Acetamilide	R	181	+	88° 36′		Ax. pl b(010); Z;e	
9 7	Callion Callion	Acetamilide p-Acetaminophenol	M	Bi	-		90°	Ax. pl. ⊥b(010); Xib	
1	Cathorn	Biliverdic acid	M	Bi			31°	Ax. pl $\pm b(010)$; $X \wedge c = 1$	1
•	11111/4/1	Thirting in the			l		(apprx)	55° in obtuse ∠β	
	CallaOaNa	2, 4-Dinitrodimethylamine	R	Bi	-		23° 30′	Ax. pl c(001); X a	
	C ₈ H ₁₀ O ₂ NCl	Phenylglycocoll hydrochloride .	R	Bi		18° 9′		Ax. pl b(010); X a	
	CaH10O2	p-Hydroxyphenylethyl alcohol (Tyrosol-	R	Bı			84° 30′		1
	CalligOs	Dimethylpyrogailol	M.	Bı			53° 47′	Ax pl	
	CaH12NBr	Xylidine hydrobromide	R	Bi	1	1	55° 19′	Ax. pl b(010); X a	1
	C ₈ H ₁₇ O ₂ NBr	Tetramethylaucenne bromoimide,	R	Bi			62° 15′	Ax. pl (100); Bxa ±(001)	
				1			(Hg,		
	1			}	ł		yellow)		1
	C ₄ H ₁₃ O ₂ NCl	Tetramethylsuccime chlorounide	R	Bi	-		47° 29′	Ax. pl (010), Bxa ±(001)	1
		·					(Hg.		1
	į.				1		yellow)		1
	C ₄ H ₁₃ O ₂ NCl	Vanillylamine hydrochloride	M	Bi			70°	1 (100) 7 11-	1
	Callant	Ethylanthue hydroiodide	R	Bı	-	1	65°	Az. pl. a(100); X c	
			1	1	1		(apprx)		1
1	CiH11OiN1	Tetrancetylhydrazine .	R	Bi	1 1	47° 5′	79° 33′	Ax. pl c(001); Z b	l
	CaH taOa	trans-Hexabydroterephthalic acid	M	Bı	1		65°	Ax. plb(010)	1
	į		l	1.	1		(apprx)	1	1
	CaH11O4	Norpime seid	M	Bı	1 1		7°	Ax pl. 1b(010)	1
			l	1			(apprx)	11 (1)(010) 7 A A -	1
	C ₁ H ₁₂ O ₄	Isopropylisoparacome acid	М	Bı	1 *	1	51° 12′	Ax pl. $\pm b(010)$, $Z \wedge c =$	1
			١.,	۱.,	1	000.11	1	83° in obtuse $\angle \beta$ Ax. pl b(010); X \(\Lambda\) c = 30°	,
	C ₁ H ₁₄ O ₄ N ₁	Lymdine d-ditartrate	M	Bı		80° 1′	ì	in obtuse $\angle \beta$	1
				l	ł	68° 8′		in obtune 2p	1
	CaHaOa NaSha HaO	Ammonium antimonyl tartrate	R	Bi		000		i ^{ll}	Г
5	Call ₁₆ O ₄	Metaldchyde	Tet	Un		1	ŀ	Ax. pl ±b(010)	1
8 1	Cill 100	bis-Methoxyacetol	M R	B ₁	_	51° 14′	!	Ax pl b(010), X a	1
)	Call 10Os	d, a-Ethyl glucoude	1	Bi	_	56°	94° 40′	Ax pl b(010); $X \wedge c = 21^{\circ}$	
	C ₄ H ₁₇ N ₃ Cl	4, 4-Dimethyl-5-isopropylpyrazoline hy-	1	1"	_	"	"" ""	in obtuse ∠β	1
	G 11 N CI	drochloride Isobutyraldazine hydrochloride	M	Bı	_	569	94° 11′	Ax pl b(010); X \(\hat{c} =	1
	C ₈ H ₁₇ N ₃ Cl	Inobutyraidazine nydrocmoride	.*1	""		1 ""		21° in obtuse ∠β	ı
	C II NIN-	d-Comme by drobrounde	R	Bi	4	1	45° 50′	Z',c	
5 5	CalluNBr	d-Comine hydrochloride	R	Bi	1		20° 0′	Ax pl c(001); Z[b	
i	CHUNCI	d-Comme hydroiodide	M	Bı	1 -	1	107° 30′	Ax pl b(010)	1
•	CalliaNl	u-c omine ny aronana			1	1	(apprx)		1
	CaHroPI	Tetraethyl phosphonium iodide	Trig	t'n		ŀ			١
	C.H.OBrs	Dibromohydrindone	R	Bi			36° 29′	Ax pl b(010), X a	١
	C ₂ H ₂ OBr	Phenyl-a-bromoscrolem	R	Bı	+		39°	Ax pl b(010); Z e	١
	C.H.OCl	Phenyl-a-chloroacrolem	R	131		1	229	Ax pl. a(100); Z c	ı
	CaHaOaBra	Phenyldibromopropionic acid	M	Bı	1 +	1	57°	Ax pl \(\pm\)b(010)	1
	(1111 / 11 / 11 / 11 / 11 / 11 / 11 /	,,,	1	1	ļ	1	(apprx)	1	1
	CallaOaCla	Ethyl dichlorosalicylate	R	Bi.	-		İ	Ax pl. b(010); X c	
)	C ₆ H ₈ N ₂	3-Aminoquinoline	R	Bi.			45°	Ax pl. c(001); X b	ł
	Cillio	Acetylsaheyhe acid	Tri	Bi.	-	Small	i	Sections 1 Bxa; clongation	1
			1	1	1	1	1	- Z	1
	CaHaOtaNa	Pentacrythritol intrate	Tet	Un.	1	1			1
	C ₂ H ₂ O ₄ N ₁ Br	Bromodinitromesitylene	M	Bı		12° 19′	88° 13′	Ax. pl. \(\pm b(010)\); X\(\pm b\)	1
	CelleBra	Tribromomentylene	Tm	Bı.		1	24° 3′		1
	C _t H _t O _t Cl _t	1, 3, 5-Trimethyl-1, 3, 5-trichlorocyclo-	M	Bı.		1	60°	Ax. pl. b(010)	1
		hexan-2, 4, 6-trione	ì	1		1	(apprx)		ļ
1	C ₆ H ₆ ON	Hydrocarbostyrd	R	Bı.	-	60°		Ax pl a(100); X c	
			1	1		(apprx)	1	1 1 1 V(010): V	1
	Cillioin	Benzoylacetohydroxamic acid	М.	Bi.	-	47° 10′		Ax. plb(010); X \ c =	1
				1 -	1 .	1 050 101	Į.	66° in acute ∠β	
1	C ₂ H ₂ O ₂ N	Hippurie acid	R	Bi.	+	65° 49′		Ax pl c(001)	
	CeHeONa	1-Phenyl-3-methylpyrrodiazoline	R.	Bı.	-	1	64°	Ax. pl b(010); X c	١
			1			1	(red)	A= =1 a(100): X#a	
	CyH10ON1	Isonitrosoanilacetone	R.	Bi.	-		41° 40′	Ax. pl a(100); X c	1
	CaHtaOaNa	Dinitromesitylene	R.	Bi.	-		50°	Ax. pl. a(100); X c	
					1 .	74° 45′	(apprx.)	Ax. pl b(010); $Z \wedge c = 5^{\circ}$	
	CoH-nO	D hydrodiacetyllevulinic acid	M.	Bi.	+	1 /4" 45"	1	Twe bi n(nin); w/ c = 3	1

CRYSTALLOGRAPHY

Index No.	Formula	Name	System	Class	Sign	2V	3E	Orientation	Lit.
8177	C ₀ H ₁₀ O ₄	d(l)-Phenylglyceric acid	M.	Bı	+		19°	Ax. pl b(010); ZA c = 47°	(0)
3178	C ₀ H ₁₀ O ₀	dl-Phenylglyceric acid	М.	Bı.			10°	in scute 🚜	(10)
3179	C ₀ H ₁₀ O ₄	d(l)-p-Methoxymandelic acid	M.	Bi.			76° 30'	Ax. pl. (010) Ax. pl. b(010)	(0)
	C ₂ H ₁₁ O ₂ Br ₂	Tribromocincolic anhydride	R.				(apprx)		
			A.	Bi.	+		75° (appre)	Ax. pl a(100); Z c	(G)
	C ₀ H ₁₁ O ₄ Cl	β-Anhydrocamphoronyl chloride	R.	Ri	†		75°	Ax μl e(001), Z‼e	(G)
3194	C ₂ H ₁₁ ON	o-Acetotoluide	R	Bi		58° 28′	(apprx)	Az pl b(010), Z n	(0)
3196 3199	CollinON CollinON	p-Acetotoluide	M	Bi	1	88° 30′		Ax pl b(010)	(0)
3100	C ₁ H ₁₁ O ₂ N	N-Methylacetamhde Methyl p-toluohydroxamic acid	R M	Bi		51° 11'	87° 8′	Ax pl b(010); Z c	(0)
	C ₀ H ₁₁ O ₂ N	Phenyl-s-anunopropiome acid	M	Bi	+		77° 37′	Ax pl _1b(010); X b Ax pl _1b(010), Z \land c =	(0)
3220	C.H.O.N	Nitromesitylene	R	B			65° 32′	54" m obtuse ∠# Ax pl s(100), X∦s	(G)
	CeH11O2Na	ω'-Methyl-ω-phenyl buret	11	Un				12 14 1(100) 1210	(8.8)
	C ₁ H ₁₁ O ₁ NS H ₂ O	Tetrahydroquinoline-5-(ana)-sulfonie	R	B1.			110° 39′	Ax pl b(010); Z a	(G)
	C ₁ H ₁ ON ₁	acid (St. mod.) Benzenylaminooxime ethyl ether	R.	Bi		S3" 21'	(appra)	11 -(001) ##s	(G)
	C.H.10.N. H.O	Benzenylamidine acetate	M.	Bi		10 21	53° 59'	Ax pl c(001); Z∥a Ax pl b(010), X∧c =	(G)
	a a.v.			1				15° in obtuse ∠β	
3232	C ₀ H ₁₇ O ₂ N ₄	1, 3, 7, 9-Tetramethyluric acid	М.	Bı	•	75° 19′		Ax pl _ 1b(010); ZΛ c == 10° 30′ in acuto ∠β	(G)
	C ₂ H ₁₇ O ₂ S	Ethyl-p-tolyl sulfone	R	Bı		819		Zhe	(G)
	C ₂ H ₁₇ O ₂ S	n-Propylphenyl sulfone	М	Bı	1		30° 10′	Ax pl b(010); ZAc = 0°	(G)
	C ₂ H ₁₇ O ₂ 3H ₂ O	Trimethylphloroglucinol	M	Bı	l		80°	in obtuse ∠β Ax pl b(010); X ±c(001)	(G)
					1		(apprx)		' '
3251	C ₂ H ₁₂ O ₂	Pyrogallol trimethyl ether	R	Bi			(apprx)	Ax pl b(010), Z e	(G)
	C ₂ H ₁₂ O ₄	Anhydroeumphorome acid	R	В1.	+		76°	Ax pl. b(010); Z e	(G)
	G 11 0			١.			(apprx)		
	C _t H ₁₂ O _t C _t H ₁₂ NBrCl	Methanetetranectic acid m-Chlorophenyltrimethyl ammonium	Tet R	Un Bi			3° 35′	Ax pl. κ(100); X σ	(19) (G)
		bromide	••				0 00	// Jn. 4(100), 74 0	(0)
	C ₁ H ₁₁ NCl ₂	m-Chlorophenyltrimethyl ammonium chloride	R	Bi			24° 59′	Az pl. b(010); X 0	(G)
	C ₄ H ₁₃ O ₄ NS	Tetrahydrogunoline sulfate	M	Bı			71° 2′		(0)
	C ₂ H ₁₂ O ₂ N ₂	Nitrodiaminomesitylene	M	Bi.	+		4()°	Ax pl. b(010)	(G)
	C ₆ H ₁₈ O ₆ N ₈	m-Nitrophenyltrimethyl ammonium	R	Bı			(apprx) 43° 7'	Ax pl c(100); Z c	(G)
		nitrate	, ,					// [// c(100/, 2] 0	\``
	C ₁ H ₁₁ O ₇ NS	Tyrosine sulfate	M	B ₁ .			860	Ax pl b(010)	(G)
	C ₂ H ₁₄ O ₂ NCl C ₂ H ₁₄ O ₇ N ₂	Veratryl amine hydrochloride Mono-uriendihydroxy diethyl succinate	M R	B ₁	_	84° 1.5′	About 60°	Ax pl b(010); Z e	(33) (G)
	C ₂ H ₁₄ O ₇	β-Oxycamphorome acid (?)	М	Bi	1	80° 17′		Ax pl b(010); ZAc=	(G)
	a	XX (1.2)			١.		78° 49′	41° 45' in obtuse ∠#	
3293 1	C ₂ H ₁₂ ON C ₂ H ₁₂ O ₂ N H ₂ O	N-Methylgranatonine 1-Ecgonine	R M	Bi Bi.	+-		78° 40°	Ax pl b(010); Z∦c Ax pl ⊥b(010)	(G)
			ł	1			(apprx)		
	C ₁ H ₁₀ O ₁ N	a-Aminocthylidene diethyl succinate	R R	Bi Bi.			83° 53′ 79°	Ax pl b(010), Z a	(G)
	C ₂ H ₁₄ O ₂ N ₂ SCl 2H ₂ O C ₂ H ₁₄ O ₂ N ₃ Sl 2H ₂ O	Ergothonine hydrochloride Ergothionine hydroidide	R	Bi.	+		70°	Ax pl c(001), X b Ax pl b(010); Z a	(G)
				1	1		(apprx)		
	C ₂ H ₁₆ O ₂	3, 3, 5-Trimethylhexan-ol-olid N-Methylpyrrolidine-α, α-dicarboxy	R M	B ₁ B ₁	_	57° 16′	93° 14′ 110°	Ax pl c(001); X a Ax pl b(010)	(G)
	C ₈ H ₁₇ O ₂ N ₂	methylamide		131	_		(apprx)	Ax pr b(oto)	(6)
3344	C9H14O7	Galactite	R	Bı.		69° 46′		Ax pl b(010); X a	(G)
	C10H4OCla	Hexachloro-a-ketohydronaphthalene	M	Bi		742 11'		Ax pl	(6)
	C10H4OCl4	Hexachloro-\$-ketohydronaphtbalene	R	Bı	+	91° 6′		Ax pl. a(100), Z b	(G)
	aa	- I		D.		(at axis c)	1100 000	1 1 11 (010) YA	۱.,
	C10H4OCla	Trichloro-α-ketonaphthalene	M	Bı		1	113° 20′	Ax pl $\pm b(010)$; $X \wedge c = 66^{\circ}$ in scute $\angle \beta$	(G)
	C10H3OCla	α-Trichloro-β-ketonaphthalene	R	Bı		57° 6′	93° 34′	Ax pl a(100); Z c	(G)
	C10H3OCla	α-Pentachloro-β-ketohydronaphthalene	M	Bi	-			Ax pl _b(010); X \ c =	(G)
3404	C10H5O4Na	1, 3, 5-Trinitronaphthulene	R	Bı			94° 14′	17° 57' (?) in acute ∠β Ax pl c(001); X∥a	(G)
3495	C10H4Cl4	Naphthalene tetrachloride	M	Bi			84°	Ax. pl. 1b(010)	(G)
	CW.O.N.	Dusonitrosoisosafrol anhydride	R	Bı			(apprx) 62° 14'	Ax pl c(001); X b	(0)
	C10H2O2N2 C10H2O2	Pinastrine acid	R.	Bi	+	1	02 14	Ax. pl. a(100); Z c	(G)
3539	C10H4O4S2.4H2O	Naphthalene-1, 5-disulfonic acid	M	Bi	-	55° 34′		Ax pl. ±(010), nαΛ σ =	(41
3540	C H. O. S. AT O	Northholone I. A. dessifered and	M.	Bi.		(calc.) 79° 0.5'		84° 0.5' in acute $\angle \beta$ Ax pl. \pm (010); n $\beta \wedge c =$	/41
0040	C10HpO6S2 4HpO	Naphthalene-1, 6-disulfonic acid		131.		1000		72°-76° in scute 28	(41)
	C10H9O1Br	Phenylisobromo butyro lactone	M.	Bi		l	57° 12′	Ax. pl. \(\pm\b(010)\); \(\begin{align*} \blue \cdot \\ \cdot \end{align*}	(G)
		i e	r	1	1	į.	ı	8° 45' in obtuse ∠β	1

Index No	Formula	Name	System	Class	Sign	2V	2E	Orientation	, 1
	CtoHoOaN	Phthalylethylhydroxylamine	R	Bi.	-	1	91° 17′	Ax. pl. a(100); X c	1 (
	CtsHsOaN	Phthaloxime ethyl ether	R.	Bi.		1	70° (apprx.)	Bza ⊥(001)	(
	C ₁₀ H _y O ₆ N	Dimethylmtroterephthalate	Tri.	Bı.	_		95° 30'	X 1b(010)	İ
	CiaHoO.Na	Nitrodusonitrosoani thol peroxide	M.	B ₁ .		73° 48′	35 00	Ax. pl. b(010); $Z_{\Lambda} c = 38^{\circ}$. (
	1,111,111	, , , , , , , , , , , , , , , , , , , ,					i	in scute 48	, (
1585	CultioOs	V-Phenyl-3-methylpyrazolone	M	Bi			72° 56′	Ax. pl. 1b(010); Zib	1
	CtoHtmO:No	Disontrosounethol anhydride	М.	Bi				Ax. pl. 1b(010); ZAc=	
		1	١				į.	40° in acute ∠β	1
	CiullioO4	Phenylisooxybutyrolactone	M	Bı				Ax. pl b(010); $Z \wedge c = 96^{\circ}$	۱,
	CullioOs	2, 4-Dihydroxyeinnamic acid	M.	Bi.	_		106° 20′	in obtune ∠β Ax pl. ⊥b(010)	
	10111011	2, 1 Tolly though limation in the		171.	-		(red)	AX pl. 15(010)	1
	Collino N.Cl	Distrochlorocymene	?	Bı.	+		120°	1	1
	CiaHirOrN.Cl	2-Chloro-5, 6-dimitrocymene	M.?	В1.	-		70°	į.	
	CallaON	B-B-Dimethyl-a-indolinone	R.	Bı	-	46° 39′	81° 48′	Ax pl. c(001); X a	
	C ₁₀ H ₁₁ ON	β-1 thyl-α-indolinone	М.	B ₁ .	-		38°	Ax. pl. \(\pm\)b(010)	
	CoHoOO	Nitrocume acid				000 504	(apprx)		1
	10001111111	.vitrocumic acid	М.	Bı,	-	36° 58′	64° 25′	Ax. pl. b(010); X \ c =	
	C10H15O1N2	p-Aminophenaceturic acid	M.	Bi	_		102° 30′	14° 11' in acute ∠β Ax pl. ⊥b(010); X nearly	
							102 00	le	
	CuHu/OiNz	a-Dusonitrosonnethol	М.	Bı	+		30° 45′	Ax. pl. ⊥b(010)	
	CioHi2O4Na	Ethyl N∞-phenyl allophomate		Bi					
	CinHi2O2	p-Methoxyliydroatropic acid	М.	Bı	+	77° 58′		Ax pl b(010), $Z \wedge c = 57^{\circ}$	
	CmH12O.	Construenton			į			in acute ZB	
	CoHoOs	Cantharidin a-Phenylsulfonebutyric acid	R. R.	Bı. Bı		89° 7′		Ax. pl c(001); Z b	1
	C10H12O6	Methyl 4-hydroxy-3, 5-dimethoxyben-	M	Bi	-	46° 45′	63°	Ax pl. b(010); X a	1
		zoate	. 11	131			(apprx)	Ax pl. b(010); X \(\pm\r(101)\)	1
	Cull taBra	Tribromocamphene	R	Bı	_	80°	(арргх)	Ax. pl. c(001); X b	
						(apprx)		114. 14. 0(001), 11 0	ì
0	CultuON	N-Ethylacetanilide	R	Bı.	+		103° 27′	Ax. pl. b(010); Z#c	1
.6	CioHiaOrN CioHiaOrN	Phenacetin	M	\mathbf{R}_1	i	62° 14′		Ax pl b(010)	1
	(1011/10/10	p-Tolyl urethane	М.	Bı	-		59° 46′	Ax pl b(010); X A c = 27°	,
	CiuHiiO4N	Vanillyl acetamide	М	Bi.			110° (115°	in acute ∠β	
		The state of the s		131.	-1-		cale)		
32	C10H14	1, 2, 4, 5-Tetramethylbensene	м	Bi.		87° 22′	(and)	Ax pl. b(010); X \(c = 0^{\circ}	,
								$54'$ in obtuse $\angle \beta$	1
	CioHi4OaBr	d-Bromopseudonitrocamphor	R.	Bı	+	79°		1x pl c(001); Z a	1
12	CuHuOBra	d-a, a'-Dibromocamphor		. 1	1	(apprx)			1
	Culliolita	d-a, #-Dibromocamphor	R. R	Bi Bi	-	56° 5′	90° 38′	Ax pl a(100); X#b	
	CioHi4OCl2	d-α, π-Dichlorocamphor	R	Bi	+	77° 51′	62° 18′	Av pl b(010), X [c	
	CtoHttiOtSCI2	d-α-Chloro-π-exmphosulfonic chloride	R	Bi,	-	59°	62° 18'	Z"c	
- 1				-74.	- 1	(apprx.)	[Ax pl a(100); Z b	ı
_	CtoHtteOnNaSt	Ammonium naphthalene-1, 5-dasulfonate	М	Bı	- 1	49° 40′		Ax. pl. ±(010)	l
6	CtoH ₁₄ O	Thymol	Trig	₹n.	+				
- 1	C10H14O1	d(l)-Camphoric anhydride	R.	Bı	-		31° 20′	Ax pl a(100), X [c	
- 1	C10H14O4	Tetramethylapionol					(red)		1
- 1	CioHitOs	Methyl a-anhydrocamphoronate	R R,	B ₁	+	49° 13′	80° 1′	Ax pl a(100), Z#c	
		and the state of t	π.	Bı	-		120°	Ax pl a(100), X b	1
[C10H14Oa	Methyl 8-anhydrocamphoromate	R.	Bi.	_ [(apprx) 33°	Ax pl a(100); X b	ı
- 1				- "			(apprx)	.x m a(100), X p	
9	C10H14O4	Dimethyl diacetylracemate	R	Bı	+	62° 36′	103° 29'	Ax. pl. c(001); Z b	-
•	C ₁₀ H ₁₀ OBr	d-#-Bromocumphor	R.	Bı	+	76°		Ax. pl a(100); Z[c	
- 1	CioHisO2N2Re	a-Bromopermtrosocamphor	. 1	.	- 1	(apprx)			ı
1	CioHioOrNaBr	β-Isobromopermirosocamphor	R R	B ₁	+ +		99° 28′	Ax. pl b(010); Z e	l
- 1	CioHisOBrs	d(t)-Dihydrocaryone tribromide	R.	Bi	+		69° 20′ 59° 45′	Ax pl n(100); Z;c	
- {	C10H14O4SB7	d-r-Camphoricsulfonyl brounde	R.	Bi	+		35°	Ax. pl (100); Z e	
	C10H13O3SCI	d-π-Camphoriesulfonyl chloride	R.	Bı	+ 1		4.5°		l
- 1	CHON	j	1				(apprx)		l
	C10H14O7N	l-Ratanhin sulfate	R.	Bı	- 1		7.5°	Ax pl c(001)	
- 1	CtoHtoNBr	Diethylamline by drobromide					(apprx)	1	
			М.	Bı.	-	77° 33′		Ax pl ⊥b(010); X∧c =	
	C10H14OBre	Pinol dibromide	R.	Bı	_		131° 21′	70° in obtuse ∠β Ax pl a(100), X#c	
	CtoH10NI	p-Tolyltrimethylammonium iodide	R.	Bi	+		20° 36′	Ax pl a(100), A c Ax pl b(010); Z e	
7.1	C10H14O2	dl-Pinome acid	M.	Bi	.	88° 32′	"	Ax pl b(010); $Z_{\Lambda} c = 57^{\circ}$	
	CtO.	d Th	1		1		1	in acute Zβ	
	C10H10O2 C10H10O4	d-a-Thugene ketonic acid	R.	Bi	+		74° 14′	Ax. pl. a(100); Z e	(
	(01E)4V/8	Isoketocamphoric acid	M,	Bı	+	- 1	80°	Ax pl. b(010); Z nearly	(
	CtoHtoOs.HgO	I-Cincohe acid	R.	D.	1	050 001	(apprx.)	±c(001)	
	C10H11OaN			Bı.	+	25° 30′		Ax. pl b(010); $X \parallel c$ Ax pl b(010); $Z \wedge c = 10^{\circ}$	(
6 1	CIGITIFULA	dl-a-Pinoneoxime	М.						(

Index No.	Formula	Name	System	Clase	Sign	30	2E	Orientation	Tat.
	C10E12O1	2-Hydroxy-\(\Delta'\), 3-p-menthenone.	M	Ri.	-			XAc = 63° 6' in obtuse	(G)
	C10H10O0	a, a'-Methylisopropyl-a, a'-dihydroxy-						48	
		adipie acid	7	Bi.	_		759		(87)
	C10H10ON	Δ . 8-Methylnonenyl annde		Bı	+		60°		(88)
3964	C16H16ONC1	Lupimne hydrochloride	R.	Bı,	+	50° 18′	102° 10′	Az. pl. c(001), Z[a	(G)
	C10H10O6N13H1O	α-2, 5-Dimethylpiperagine tartrate	М	Ri			80°	Ax pl. ⊥b(010)	(G)
	C ₁₀ H ₁₀ NP8	Triethylallylphosphothioures					(apprx)		
	Cimina	The aylany throsphot moures	M.	Bi	-	72° 30′		Ax pl. b(010), $X \land c = 24^{\circ}$	(0)
	C10H20O2	cis-Terpine hydrate	R	Rı	+	77° 27′		in acute ∠# Ax pl b(010), Z∦a	(G)
3980	C10H20O2	trans-Terpine	М	Bi	+	'' -'	74° 15′	Ax pl _b(001); Z \c =	(0)
								5° 6° in neute ZB	(-,
	C11H0O10 5H1O	Benzenepentacarboxylic acid .	R	Bı	-		57° 30′	4x pl b(010), X∦c	(G)
	Cull, N _i O ₁	9-Phenyluric acid		1 n					(4.8)
	CuH ₂ O ₄ Br	Phenylbromoparacome acid	R	Bı		56° 50'		Ax pl b(010); Z a	(G)
	CuHiOiN CuHuOiCli	Citraconami	M	Bi	1		14" 56"	Ax pl b(010)	(0)
	Christia	Trichloromethyl-o-methox y p h e n y 1- carbinol acetic ether	M	Bi	-		75° 11′	Ax pl. ±b(010)	(G)
	CnHnOzN	Glutaric ambine	M	Bı			90"	Ax pl. (010)	(24)
4043 1	CuHuON:Br	4-Bromountipyrine	Ditrig	l n	ĺ		,,,,	(x pi. (010)	(0)
	CuHuO ₂ N	#-Benzyl malimide	R	Bi		62° 66°		Ax pl b(010); X#c	(0)
4053	CaHuO ₆ N	Ethyl o-mtrocinnamate	R	Bi	l		57° 10′	Ax pl c(001); X a	(0)
	CnHnON2	4-Iodoantipyrine	Trig	Un					(G)
	C11H12O2Br2	Ethyldibromocinnamate	M	Bi		Mis		Ax pl b(010); $X \wedge c = 7^{\circ}$	(G)
4058	CuHuON1	Antipyrine	?	Bi	1	(apprx)	103° 21′	in scute Z#	(L-B
4000	C11H12O1N1	4-Hydroxyantipyrine	M.	Bi		54° 20′	116° 23′	Ax pl b(010); Z ±c(001)	(G)
	C11H12O1N	Methyl phenaceturate	R	Bi				Ax pl b(010)	(0)
4086	CuHuON:	Cytisine	R	Bi	+ -	61° 36 5′		Ax pl a(100); Z c	(G)
	C11H14O2N2	Ethyl α-phenylhydrazine pyroracemate	M	Bi		i	ł	Ax pl _ 1b(010); X \(\hat{c} =	(0)
	C11H14O4	Methyl 3, 4, 5-methoxybenroate	M	Ri.			113° 13′	47° 1' in acute ∠β Ax pl. ⊥b(010)	(G)
							(wlute)		
	CuHnON2Br H2O	Cytisine hydrobromide	M	Bı	-	(apprx)		Ax pl b(010)	(G)
	C11H16O5NCl	Methyl 3, 4, 5-trimethoxy-2-aminoben- zoate	R	Bi	-		70° (apprx)	Ax pl c(001); X a	(G)
	CuHuON2Cl H2O	Cytisine hydrochloride	M,	Bi		720	(11)	Ax. pl b(010); ZA c = 55°	(G)
	C11H16O2N	Vanillyl propionamide	R	Bi	_	(apprv)	1000	ın obtuse ∠β	(24)
	C11H15O2N	Pyrocatechol carboxyl diethylamide	M.	Bı	+		(98° cale) 7° 56'	Ax. pl. b(010); Z \(c = 55^\circ\)	(0)
	†				"			in obtuse ∠β	
	CnHiiOrN	s-Benzylhydroxylamine ditartrate	R	Bı			(apprx)	Ax pl. a(100); Z b	(G)
	CitHisOzNa	Nitrososmylene mtroamline	R.	Bı	+	82° 51′	l	Ax pl. b(010); Z c	(G)
	CuHaO4Na HaO	Cytisine nitrate	M.	Bi	1 !	38° 49′	1	Ax pl b(010)	(6)
	C11H16ON2 C11H16O6	Amylene mtramline Dimethyl camphoronate	R R.	Bi Bi,	1 -	88° 21′	50°	Ax pl a(100); Z c Ax pl, b(010); X a	(G) (G)
	Cillian	17/metayr campion onais	,	1	1		(apprx)	I	``'
	C11H12ON2Cl	Amylene mtramline hydrochloride	М.	Bı	+	75° 41′		Ax pl. ±b(010)	(G)
	C ₁₁ H ₁₂ NBr	Diethyl-p-toluidine hydrobromide	М.	Bi	+	69° 41.5′		Ax plb(010)	(G)
	C11H18O8	Ethyl camphoronate	M	Bı	1		56° (apprx)	Ax pl. 1b(010)	(G)
	C11H100	Triethyl desoxalate	M	Bı	_		61° 59'	Ax pl _b(010)	(G)
	C11H20ON2	Terpinene mitrolmethylamine	M	Bi	1	55° 20′	93° 56′	Ax pl. \(\pm\)b(010); \(\mathbb{Z}\)\(\ph\) c =	(G)
			i		ļ			31° in obtune ∠β	
	CnHnO _i N	N-Methyl-2, 2, 6, 6-tetramethyl-4-hy- droxypiperidine carboxylic acid	R	Bı	-	82° 31′		Ax. pl. a(100); X b	(G)
4184	C17He	Acenaphthylene	R	Bı	+	70° 16′	114° 46′	Az. pl. a(100); Z b	(G)
4185 1	C12HaBr2	p, p'-Dibromodiphenyl	М.	Bi	İ	50° 60°		Ax pl. ±b(010)	(G)
4010	G "		R	Bı	١,	(apprx) 70° 26'	115° 40′	Ax pl. a(100); Z∦b	(G)
4218 4221.1	C12H10 C12H10ICl	Acenaphthene Diphenyliodonium chloride	M.	Bi	+	10 20	Large	4x. pl. b(010)	(0)
4225	C12H10N2	Azobenzene	M.	Bı	+		59° 5′	Ax pl. 1b(010); ZAc =	(G)
				1		1		62° in acute ∠β	
	C12H10ON2	a-Benzoylpyridine oxime	R.	Bi.	1	66°		Ax pl. b(010); Z a	(G)
	C12H10ON2	γ-Benzoylpyridine oxime	M	Bı	1	28°		Ax pl b(010); $Z \wedge c = 62^{\circ}$ in obtuse $\angle \beta$	(G)
	C12H10O4S4	Benzenesulfone trisulfide	Tet	Un.			1	, Olicumo 2.p	(0)
4261	C12H10O484	Diphenyl disulfide	R.	Bı.	-		85°	Ax. pl. b(010); X e	(G)
-				1	1		(apprx)		
ĺ	C11H11O1SBr	Ethyl 1, 5-bromonaphthalene sulfonate	R.	Bi		4.00	29° 52′	Ax pl. a(100); Z b	(0)
	C11H11O1SCI	Ethyl 1, 5-chloronaphthalene sulfonate.	M.	Bı.	I	42°	1	Ax pl b(010)	(G)
	Chillionsei		i	1	1	(apprx)			1

Index No.	Formula	Name	System	Class	Bign	2V	2E	Orientation	Lit
4272	C12H11O1NB	Bensenesulfamilide	Tet	Un		i	1 .,		(G)
	CiaHiaOaN	Vanillyl n-butyramide	Tn	Bı.	+		Very		(24
	0 11 0 11	and the second	ь	Bı.	_		large 18°		
	CuHuO ₂ N	Vanillyl isobutyramide	R.	Di.	_		(17° 48'		(84
	1	i i		-	1		calc.)		1
	CisHist)a	Ethyl 3-methylcoumaniate	R	Bı	1		72° 34′	Az. pl b(010); Zije	(G)
	CuH ₁₃ O ₂	cus-Dimethylauceinie acid	R	Bı		1	124° 4′	Ax. pl. (010); Bx0 ± (001)	(28
				1		İ	(Hg,		' '
					1		yellow)		1
	CirHirOs	Acetotetrahydrocinchommic acid	R	Bi		1	12° 24′	X b	(G)
	Cullini	Tetrapropyl ammonium todide	R	Bi	-	23° 48′	30° 1′	Ax pl. (100); X b	(G)
	CulliaNI	1, 3, 3-Trimethyl-2-methylene indoline hydriodide	R	Bi	-	(red)	57° 16' (red)	Ax pl. c(110); X b	(G)
	CirHiiON2	I-P h e n y l-3-methyl-1-dmethylpyra-	. M	Bi		74° 2′	(red)	Ax. pl. 1b(010)	(G)
		zolone	•					2.(010)	(0,
	CiaHiaONa	4-Methylantipyrine	M	Bi		86°		Ax. pl. b(010); Z \(c = 47^\circ\)	(G)
				1	İ	(apprx)		in acute ∠β	1
4318 1		Lthyl p-methoxycinnamate	М	Bı				Ax, pl. b(010)	(G)
	Cirthio04	Dimethyl phonylsuccinate	M	Bı	+		10°	Ax. plb(010)	(G)
	C. II C.N. I				i	H.00	(apprx)		
	CuHuONaI	1-Phenyl-3-methyl-5-methoxypyrazole	M	B ₁ .	-	72°		Ax pl. b(010); $X \wedge c =$	(G)
	CuHuONiI	2 methodide Antipyrine pseudomethodide			,	75° 41′		73° in obtuse ∠β	
	CirHisONal	Antipyrine pseudoethiodide	М	Bi		74° 45′		Ax. pl b(010); Z \ c =	(L-B
		, and pyrine particular and			1	11 10		84° 30' in obtuse \(\mathcal{B}\)	(G)
	CuRisON	7-Isopropylhydrocarbostyni	R	Bi		61° 51′		Ax pl b(010); Z a	(G)
4330.1	CuHuOiN	Ethyl phenaceturate	R	Bı				Ax pl. b(010)	(G)
	C12H16O4N	Vamillyl crotonylamide	It	В.	+	1	Large		(24)
	C12H1aO2	2, 5-Dioxyacetophenone diethyl ether	Tn	Bı			85°	Ax pl ±e(001)	(G)
			_]		(apprx)		}
	CoHoOoNs	Nitrosonmylenemitrol p-toluidine	R	Bı	1	77° 50′	167° 37′	Ax pl _b(010); Z e	(G)
	CuHuONiCl	Amylenemtrol p-tolundine hydrochloride	M	Bı	i i	59° 26′	97° 30′	Ax pl _Lb(010); Z \(c = \)	(G)
	CirllioNs	Amylenenitrol-p-toluidine	М	131	_		72° 40′	12° in obtune ∠β	
		Amy to the antiton-p-voluments			_		72 40	Ax pl b(010); $X \wedge c \Rightarrow 35^{\circ}$ in acute $\angle \beta$	(G)
	CuHu04	Dimethylcantharidin	R	Bi	+		116°	Ax pl. b(010)	(G)
4368.3	CirllinOs	Diethyl 1, 1-diacetosuccinate	M.	Bi	-	640		Ax pl b(010)	(G)
						(apprx)		P. 5()	(,
	CuH ₁₀ O	Matico camphor	Trig	Un.					(G)
	CisHaoONa	Methyl I-bornyl xanthate	R	Bı	-	33° 24′		Ax. pl. b(010); X a	(G)
	C12H11ON1	Terpinene nitrolethylamine	M	Bı.		70° 53′	128° 32′	Ax pl. \(\pm b(010)\); \(\bar{Z} \wedge c = \)	(G)
4394	C11H11O11.H1O	Lactose						26° in obtuse ∠β	
	(11111111111111111111111111111111111111	1 actore	M	Bı.	-		33° 35′	Ax pl. \(\pm\)b(010); X\(\lambda\) =	(G)
4396	CullinOn	Saccharose	M	Bı		48° 0′	79° 7′	10° 11° in obtuse ∠β	(C)
				***		40 0	10 1	Ax pl b(010); XΛc = 67° 45′ in obtuse ∠β	(G)
4397	CuHuOu 2HiO	Trebalose	R	131		50° 16′	78° 56′	Ax pl b(010), Z c	(G)
	CuHnOrN 2HrO	d-Comme ditartrate	R	Bı	+		43° 33′	Ax pl. a(100); Z c	(G)
	CirHiiOirNi 9HrO	Ammonium mellitate	R	Bi	-		17°	Ax. pl b(010) (red), X c	(G)
		l					(apprx)		
4434	CuHiOiCh	Phenyl 3, 5-dichlorosalicylate	R	Bı			70° 35′	Ax pl. a(100); X le	(G)
4404	CuHeN	Acridine	R				117°	Ax pl. c(001); Z a	(G)
	C11H10N1	Benzenyl-o-phenylenediamine	М	.,			(apprx)		
		12 na oyeo-paenytenedamine	м	B ₁	+		63°	Ax. pl. b(010); Z nearly	(G)
4454	C18H1nOs	p-Hydroxybenzophenone	R	Bı			96° 20′	⊥c(001) Ax. pl b(010); X∥a	(G)
	CtaHaOaBr	Phenyl m-bromobenzoate	R	Bi	+		41° 4′	Ax pl. b(010), Z c	(G)
	CuHnO ₄ NS	p-Aminobensophenone-p'-sulfonic acid	M	Bi				Ax. pl. (010); Z = c	(5)
	CulluOaBra	Ethyl dibromohydroxydimethylisocou-	M	Bı			80°	Ax pl b(010); ZAc = 30°	(G)
	a o a.	marslate		1			(apprx)	ın obtuse ∠β	
	C11H12O4Cla	Ethyl dichtorohydroxydimethylcouma-	M	Bı			75°	Ax. pl. \(\pm\)b(010); \(\mathbf{Z} \wedge \mathbf{c} = \end{array}	(G)
4500	C11H12ON1	p-Hydroxy-p'-methylazobenzene					(apprx)	30°-35° in obtuse ∠β	
		2 3 10xy - p - meeny material general file	М.	Bı	~		52° 30′	Ax pl b(010); X ∧ c =	(G)
	CuH11OaN4	1, 3-Dimethyl-9-phenyluric acid		Bi			(apprx)	57° in obtuse ∠β	(21)
		1, 3-Dimethyl-9-phenylpseudouric acid		Bı			Large Large		(21)
	C11H11O1N4		R	Bı			84° 19′	Ax. pl. a(100); X b	(G)
4509	CiaHirOa8	Phenyl p-toluene sulfonate		Bı			86° 2′	Ax. pl. \(\pm\)(010); \(\begin{align*} align	(G)
1509	C14H14O48 C14H14O4N	Acetamlinopyrotartaric anhydride	M.			1			
4509	CiaHirOa8		M. R	Bı	+		65°	Ax. pl. c(001); Z a	(G)
	C14H11O48 C14H14O4N C14H11O4	Acetamhnopyrotartaric anhydride Ethyl hydroxydimethylisocoumarilate .	R	Bı	+		(apprx)		(G)
	C14H14O48 C14H14O4N	Acetamlinopyrotartaric anhydride			+		(apprx) 30°	Ax. pl. b(010); Z \(c = 40^\circ\)	(G) (G)
45 3 0.1	C12H12O28 C12H12O4N C12H14O4 C12H14ON1	Acetamhnopyrotartaric anhydride Ethyl hydroxydimethylisocoumarilate . 4-Ethylantipyrine	R M.	Bı Bı	+		(apprx) 30° (apprx)	Ax. pl. b(010); Z∧ c = 40° in obtuse ∠β	(G)
45 3 0.1	C11H11O18 C11H11O4N C11H11O4 C11H11ON1 C11H11ON1	Acetamilnopyrotartaric ambydride Ethyl hydroxydimethylisocoumarilate 4-Ethylantipyrine 1-Phenyl-2-propyl-3-methylpyrasolone	M. M.	Bı Bı Bi		52° 50′	(apprx) 30° (apprx) 79° 59'	Ax. pl. b(010); Z ∧ c = 40° in obtuse ∠β Ax pl. ⊥b(010); Z∥b	(G) (G)
45 3 0.1	C12H12O28 C12H12O4N C12H14O4 C12H14ON1	Acetamhnopyrotartaric anhydride Ethyl hydroxydimethylisocoumarilate . 4-Ethylantipyrine	R M.	Bı Bı	+	52° 50′	(apprx) 30° (apprx) 79° 59' 55°	Ax. pl. b(010); $\mathbb{Z} \wedge c = 40^{\circ}$ in obtuse $\angle \beta$ Ax pl. $\pm b(010)$; $\mathbb{Z} \parallel b$ Ax. pl. b(010); $\mathbb{X} \wedge c =$	(G)
4530.1 4530.2	C11H11O18 C11H11O4N C11H11O4 C11H11ON1 C11H11ON1	Acetamilnopyrotartaric ambydride Ethyl hydroxydimethylisocoumarilate 4-Ethylantipyrine 1-Phenyl-2-propyl-3-methylpyrasolone	M. M.	Bı Bı Bi		52° 50′	(apprx) 30° (apprx) 79° 59'	Ax. pl. b(010); Z ∧ c = 40° in obtuse ∠β Ax pl. ⊥b(010); Z∥b	(G) (G)

adex No	Formula	Name	System	Class	Sign	2V	2E	Orientation	1.
	C14H+NCl	2-Methyl-3, 3-diethyl 2, 3-dihydroindol	M	Bı	-	81° 51′			(0
	C11H10NI	hydrochloride Methylethylallyl-j⊱t olyla m moni um							
	Chinasi	sodide	R	Bı			MO ₂	Ax pl c(001), Z c	(0
	C12H20O2	Pentaerythritol tetrancetate	Tet	l n			(apprx)	• 1	(t
	C12H2rOS2	Ethyl dl-bornylxanthate	R	Bi			51° 16′	Ax pl b(010)	(0
	C14H7O4N4Cla	Dinitrodichlorodiphenyltrichloroethane	M	Bi	- '		58°	Ax pl b(010); X \ c =	6
		,					(apprx)	28° 30' in obtuse \$\mathcal{B}\$	١,
	CuHaClaBra	1, 1-Di(bromophenyl)-2-dichtoroethylene	R	Bi	,		34° 22′	Ax. pl. c(001), Z a	(
	CuH _s Cl ₄	1, 1-Di(chlorophenyl)-2-dichloroethylene		Bi	-		34° 26′	Ax pl b(010), Z a	i
	CuHrCliBr:	1, 1-Di(bromophenyl)-2-trichloroethane	R	i Bi	;		620 121	Ax pl c(001), Z b	(
50	Cullio	Diphenylacetylene	M	Bi	'		42°	Ax pl _b(010)	ì
							(red)	tt pr ±1/(//o/	١`
	C14H10Cl:	1, 1-Diphenyl-2-dichloroethylene	М	Bı			30" 50'	Ax pl _1b(010)	l۷
36 1	C14H10O2N2	Phthalylphenylhy drazine (orange vellow)	М	Bi			85°	\x pl. ⊥b(010)	lè
							(apprx)		
72	C14H10()2	Benzil	Frig	l n	1				(
81	C14H10O1	Disaheylaldehyde	M	Bi	İ		1		(
88	C14H10O4	Benzoyl peroxide	R	Bi	i]	Ax pl. a(100); Z b	1
05	C14H11Br3 C14H11O2N	Diphenyltribromoethane	M	Bi	1 :		110"	Ax pl b(010)	! !
,,,	Chamban	Dibenzohydroxamie acid	lŧ	Bi	+		54° 35′	Ax pl a(100); Z b	'
98	C14H1:	Stilbene	M	Bı	١,		(red) 91° 33′	A (1)(010) 7 A. a	١,
,,,	C111111	Transaction of the state of the	''	101	'		31 33	Ax pl ±b(010), ZΛ α = 60° in acute Zβ	Ι'
	C14H12N4	1, 5-Diphenyl-3-immotriazoline	M	Ri				Ax pl b(010)	١,
	CiellinO	Phenyl p-tolyl ketone	M	181	-		35° 15′	Ax pl 1b(010), XAc -	
				1	i			36° 57' in acute 48	
	CidHiaN	o-Immodibenzyl	M	Bı			69° 58 5′	Ax pl _1b(010)	l
8	CidHuON	V-Benzoyl-o-toluidine	R	Bi	,	87° 33′	1	Ax pl a(100)	
19	CidHuON	N-Benzoyl-m-toluidine	M	Hı		ĺ	35° 10′	Ax pl ±b(010)	
50	CidlioN	V-Benzoyl-p-toludine	R	Bi	1	73° 43′		Ax pl c(001), Z b	
52	C14H19ON	N-Diphenylacetamide	R	Bi	! !	52° 2′		Ax pl c(001), Z a	
	C14H14O2N2	o-Nitrobenzyl-o-toluidine	it.	Bi	1		49°	Ax pl a(100), Z∥b	
	C14H13O2N1	ω, ω'-Diphenylburet		1,,	l		(red)		1
	C ₁₄ H ₁₄ ON ₂	Phenyl-o-phenetol	M	B ₁		680	154°	As all theorem Yang	1 1
	Chillion	r nenyi-a-pheneroi		1 "	1	0.5	(apprx)	Ax plLb(010); X ∧ c == 39° in acute Zβ	
63	C14H14O2	Isohydrobenzoin	M	Bi		84° 59′	(appra)	Ax pl _Lb(010)	
30	C14H14O2	1, 2-Dihydroxyphenylethane	R	Bi	1	31 .5"	1220 117	Ax. pl (100)	1
	CiellisO:	o, o'-Dimethoxydiphenyl	R	Bi	l '	i	5°	Ax pl (010); Bxn ±e(001)	
	CidHi4OiSi	Tolyl p-toluol throsulfonate	M	Bi	1	1	19° 29′	Ax pl _b(010); Z b	l
	CuHuO4St	p-Toluenesulfone trisulfide	Tet	l t n	1				l
57	Callas	Dibenzyl sulfide	R	Bi	-	67° 38′	1	Ax pl. b(010); X e	ĺ
	C14H15NO4Br H3O	Dipyridinebetaine hydrobronide	R	Bı	+	87° 30′	1	Ax pl c(001); Z b	l
	C14H16O4NCl H2O	Dipyridinebetaine hydrochloride	R.	Bi	1	83° 52′	Ī	Ax pl e(001); Z b	l
	C14H16ONCI	Diphenylhydroxyethylamine hydro	H	t n			į		١
		chloride		1		i			
	C14H13O4	8-Methyltetramethoxycinnamic acid	М.	Bı	! !	740 14	102° 4′	Ax pl \(\pm\)(010); \(\begin{align*} \begin{align*}	
	C14H19O7N	Thallin tartrate.	R M	Bi Bi,	+	78° 11′	65° 70′	Ax pl a(100)	l
	C14H20O2N1	Ethyl tetrahydroquinoline-N-acetate methiodide	N1	I M.	l		63-70	Ax. pl. 16(010)	ı
	C15H10O2	Phenylcoumarin	M	Bı				Ax. pl b(010); Z \ c =	ı
	C151110(72	1 nenyteodinarii		1"	1	!	Ì	30° 15' in acute ∠β	1
	C15H12N2	3, 5-Diphenylpyrazole	M	Bı			43° 30′	Ax pl _b(010); Z \c =	1
		, , , , , , , , , , , , , , , , , , , ,		1				44° in acute ∠β	ŀ
	C16H13O4N	syn-Benzoylbenzohydroxume methyl	R	Bı		70° 10′		Ax pl. a(100); X e	1
		ether		}		1			ł
	CuH ₁₃ O ₃	o-Hydroxydibenzoylmethane	M	Bı	+		75°	Ax. pl (010); Bxalle-axis	l
19	CnH ₁₄ O ₃	Methyl benzilate	M	Bi	-		74° 52′	Ax. pl. ±b(010)	İ
	C16H16O4N	Vamilyl benzoyl annde	R	Bi	-		85°		
			·	١	1		(89° cale)		
	Cı _b Hı _b O₄NS H₂O	p-Dimethylaminobenrophenone sulfonie	Trı	Bi	Ì		79°	Ax pl. m(110)	ı
	0 11 0	acid	R	Bı		79° 11′	(apprx)	A (100) . 7 lb	l
	C15H16O5	2, 6, 2', 5'-Tetrahydroxydiphenylmethyl ethyl ether	, n	1"		"" "	ļ	Ax pl. a(100); Z∥b	ı
36 1	C15H16O6 H2O(")	Picrotoximin	R.	Bi			1	Ax pl c(001)	ı
,,,,	ChH 1002	Hyposantonin	R	Bı			46°	Ax pl b(010); Z b(?)	1
	S.13.418.72	1.5 postateonia		1	İ		(apprx)	1. 2(0.0), alla(1)	1
4 3	CisHisOz	Santonin	R	Bı	1 +		41° 17′	Ax. pl. a(100); Z b	
-			· ·		1	1	43° 33′		
	C14H14O2	Santonide	R	Bı	+	67° 1′		Az. pl. a(100); Z c	1
			1	1	1	(red)			1
	C14H14O2	Parasantonide	R	Bı	-	l	59° 25′	Ax pl a(100); X o	1
		1		1	1	1	(red)	1	1
	C14H14O4	Triethyl trimesate	Н	Un	-	1		I	1
	CnHnO2N2Cl2	Butyl chloral antipyrine	Trı	Bı	l -		110°		
	C16H20O4	Hydrosantonide	R	Bı	+	55° 10′	93° 43′	Ax. pl a(100); Z c	1

Index	Formula	Name	System	Class	Sign	2V	2E	Orientation	Lat
No.	CuHnO4 CuHnO4	Santonic acid Metasantoic acid	R R.	Bı. Bı.	+	87° 40′	68° 25′	Ax. pl. a(100) Ax. pl. a(100); Z c	(G
	C18H20()4	Parasantoic acid	R.	Bi	-	85° 13′ (red)	(red)	Ax. pl. a(100); X#c	(G
	CuHnO ₂ N	g-Isopropylglutarandic and	R	Bı.	+	(1(4)	117° 15′	Ax. pl. b(010); Z c	(G
960	CuH ₂₁ O ₂ N ₄	Physostigmine	R	Bı	-	77° 42′		Ax. pl. b(010); X e	(G
	Culta0.	Hydrosantoic acid	R	Bı	+		100°	Ax. pl в(100); Z∦c	(G
	CuH22O4	Photosantonic acid	R.	Bı	-	•	(red) 107° 25′ (red)	Ax pl. a(100); X c	(G
	CuH2O2N	Vamilyl n-heptoylamide	М.	Bı.			110° (107° calc.)		(24
	C11H24O(*)	Jumperol	Tn (*)	Bi.	-	34° 46′	cuic.)	Ax. pl. nearly $\ b(010)$; $X \wedge c = 72^{\circ}$ in acute $\angle \beta$	(G
	CuHnO _i N	Sesquiterpene nitrate	R.	Bı	j		18° 32′	Ax pl. a(100) (red)	(0
	ChHaCla	I-Cadinene dihydrochloride	R.	Bı	+		50°	Ax pl. b(010); Z e	(3
				Ві	+		(apprx) 61° 30′	Ax pl. b(010); Z a	1,0
997	CuHnO CuHnO	Cypress camphor Cedrol	R. R.	Bi	+		64° 45′	Ax. pl. b(010); Z a	(G
991	CuHaOs	Triscetone mannite	M	Bı	+	77° 4′	138° 13′	Ax. pl \perp b(010); $\mathbb{Z} \wedge c =$	(6
								26° 54′ in obtuse ∠β	
D28.1	CiaHioOa	Diphenylmaleie anhydride	R.	Bi	+		Small	Ax. pl. a(100); Z c	(0
	CuH11O2Br	2. 3-Diphenyl-3-bromo-A'-crotono lac-	М	Bı.			55° (apprx)	Ax. pl. ⊥b(010)	(0
	CtoH17O1	tone Diphenylsuccime anhydride	R.	Bı			166° (Li) (apprx)	Ax. pl. b(010); Z a	(G
	CioHiaNa	Di-p-dicyanobenzylamine	Tri.	Bi		69° 39′		Ax. pl. e(001)	(0
	CiaHiaOaN	a-Bensoyl-g-acetylbenzoylhydroxy-	М.	Bı	+	75° 20′		Ax pl. ±b(010)	(0
066 1	C16H14N2	lamine 1, 5-Diphenyl-3-methyl pyrazole	М	Bı	1	68° 22′		Ax pl b(010); Z \ c = 7°	100
0000 1	CHILIAN	1, 5-17 phenyi-5-methyi pyrazote		***		00 22		in obtune $\angle \beta$	"
067 1	CuHuO CuHuCli	Benzylidene-p-tolyl ketone Di-p-tolyltrichloroethene	R. M.	Bı Bı	+ +	36° 4′	61° 7′ 85° 5′	Ax. pl c(001); $Z b$ Ax. pl. b(010); $Z \wedge c = 4^{\circ}$	(0
				1	.			in acute ∠β	1
	CidHisOaN CidHisOaN	Ethyl benzohydroxamie benzoate anti-Benzoyl benzohydroxamie ethyl	R Tri.	Bı Bı.	+		94° 55′ 18° 30′	Ax. pl. a(100); Z c	(0
	CaHaO4N	ether	м	B ₁ .	+	63° 49′	(apprx.) 113° 6'	A = -1 1-(010), 7 1 -(001)	100
	ChHaO4N	Anisoyl p-toluohydroxamic acid p-Toluyl smsohydroxamic acid	M	Bi.	+	50° 10′	82° 52′	Ax. pl b(010); $\mathbf{Z} \perp c(001)$ Ax pl b(010); $\mathbf{Z} \wedge c = 40^{\circ}$ in acute $\angle \beta$	1 %
	CuHuON1	Phenyl styryl ketone	R. (*)	Bi					10
	Cull uN2	Acetophenone methylphenylhydrazone	M.	Bi.	1		Large	Ax pl. b(010); Z \pma(100)	(
82.4	CuHuO2N2	Discetylhydrasobenzene	R	Bı.	-	88° 45′		Ax. pl b(010); X a	(
	CitHitOtN:	2-Phenyl-1-allybenziumdazohum sulfate	М	Bı	+		56° 48′	Ax pl _b(010); ZΛ c = 33° 51′ in obtuse ∠β	1 "
	C16H16O1N4	2. 3-Dinitro-p-xylene + 2, 6-dinitro-p-xylene	R.	Bı	-		38° 36 5′	Ax. pl a(100); X c	(
	CuHuOaN 4HrO	l-Benzoylecgomne tetrahydrate.	R.	Bı.			45° (apprx)	Ax pl. a(100); Z b	(
31	C16H2rOaNBr	Homstropine hydrobronide	R.	Bı	-		69°-70°	Ax pl c(001); X b	10
	CuH12OaN1	Antipyrine isovalerianste	М.	Bi.		68°		Ax pl c(001); $Z \wedge c = 17^{\circ}$	0
85 1	C14H11O4	Methyl santonte	ъ.			(apprx)	134° 12′	in obtuse $\angle \beta$,, ا
30 1	Church	Methyl suntoste	R.	Bı	-	74° 24′ (red)	(red)	Ax pl. a(100); X c	1 "
	C14H22O4	Methyl metasantoate	M.	Ri		90°	(""")	Ax pl. 1b(010)	0
	CuHmO4	Methyl parasantoate	R.	Bı	-		58° 25′	Ax pl. a(100); X c	(
	C10H10O4Br	8-Bromoacetyltetracthylphloroglucinol	М.	Bi.	+		(red) 50°	Ax. pl. 1b(010)	10
1	C	p received by the control of the con		.,	7		(apprx)	A1. pl. 15(010)	١,
	C16H22OcN H2O	I-Phenyl-α'-methylpiperidine d-tartrate	R	Bi.			55° 42′	Ax. pl. b(010); X c	((
42.1	CuHnO	Gusiol (Champacol)	Trig	Un.	. 1				9
ı	CirHirO4N CirHirO4N	Ethyl amsohydroxamic benzoate sun-Anisoylbenzohydroxamic ethyl ether	М. М.	Bi Bi	+	71° 55′	66° 13′	Ax. pl $\pm b(010)$; Z b Ax. pl $\pm b(010)$; X \wedge c =	(0
	Charlotti	www.timesyroca.comy trozamine ernyr erner	м.	***			00 13	55° 30' in acute ∠β	"
	CtrHtrO4N	anti-Bensoylanishydroxamic ethyl ether	M	Bi	-		63° 7′	Ax. pl. \(\pm\)b(010)	(0
02	C ₁₇ H ₁₀ O ₁ N.H ₂ O	Morphine	R.	Bı	-		125°	Ax. pl. 1 to elongation	(3
	C ₁₇ H ₁₀ NBr	a-Benzylphenyldlylmethylammonium	R.	Ві		30°-40°	(apprx)	Ax. pl. c(001); Z b	(
	C ₁₇ H ₁₀ NCl	bromide a-Benaylphenylallylmethylammonium	R.	Bi.		(apprx)	100°	Az. pl. c(001); Z b	(4
l	6 W 6W	chloride	ا ا	_			(apprx.)	1 11/0:0:	١.,
	C17H20N2 C17H20N2	Oxymethylenecamphor phenylpyrazole Pseudoephedrine phenylthiourea	M. R	Bi.	+		26° 40′ 76° 15′	Ax. pl. \(\pm\)b(010) Ax. pl. c(001); \(\begin{align*} \begin{align*} \Delta \text{s} \\ \Delta \text{s} \end{align*}	(0
}	CITARMUNI			Bi.	++	66° 25′	89° 43′	Ax. pl. c(001); Z a	6
		Enhedrine phenylthioures							
13.1	Car Mas ON as	Ephedrine phenylthiourea (p-Dianisyl)dimethylmethane	R. R	Bi.	_	89° 54 5′		A1. pr c(001), 24a	
13.1 26					-		101° 12′	Ax pl b(010); X e Ax. pl. (010)	0000

Index No.	Formula	Name	System	Class	Sign	27	31.	Orientation	Lit.
	CuH10OsBr	Ethyl d(l)-bromosantonigate	R.	Bi	+		123° 26'	4x pl a(100); Z c	(0)
	CnHuO4N	Menthyl-o-mtrobensonte	R.	Br	-	30° 32′	47" 24"	Ax pl b(010), X#e	(G)
	CnHnOsNs	2-Keto-6-methyl 4-(p-isopropyl phenyl)-	M	Bı	+	110	1	Ax pl b(010)	(G)
		1, 2, 3, 4-tetrahydropyrmudme-5-ethyl carboxylate.				(apprx.)			
	C ₁₇ H _M ON ₃	a-Dipentene nitrolbenzylamine	M	Bi					
		a tripezioni initotia najianine	.,,	151	1	1	108" 147	Ax pl b(010); Z∧c = 18° in scute ∠s	(0)
	CuH4ON;	d(l)-Pinene mtrolbenzylamine	R	Bi	1	1	89* 0*	Ax pl c(001); Z a	(G)
	C17H14O1	1, 1, 2-Trimethyl-2-phenylcy clopentane-	M	Bi	1	65° 20′	70 0	Ax pl b(010); $\lambda \wedge c = 50^\circ$	(0)
		3-ethyl carboxylate.		• "				in scate Z#	(**
5244	C ₁₇ H ₂₄ O ₂	Menthyl benzonte	R	131		l	70°	Ax pl c(001); Z b	(G)
		1)				(apprx)		
5244 1	C17H14O4	Ethyl santoute	R	H ₁	١.	64° 6′		Ax pl a(100); Z∥e	(G)
	l	I	1		ļ	(red)			
	C17H24O4	Ethyl parasantoate	R	H ₁	ļ		35° 35′	Ax pl a(100); X le	(G)
	CirHsaO10	Ethyl tetrascetylgunate	١.,	١.,			(red)		
	C11H12O15N181B1 7H2O	Bismuth m-mitrobenzene sulfonate	R M.	B _i	١.	79° 58′		Ax pl. a(100); X e	(0)
	Chillion to the control of the contr	and the manufacture and the second	A1.	"	+	1		Ax pl b(010); ZAc =	(G)
	C10H11OaN4	γ-Benzoylpyridine picrate	M	Bi	l	620	1	about 93° in obtuse ∠β Ax pl ±b(010), Z∧ c =	(G)
	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, action product		l '''	ł	1 "2"		65° in obtuse 28	(0)
	C1aH1aO7Na	a-Benzylpyridine pierate	М	Bi	1	100		4x pl. b(010)	(G)
	C14H14O7N4	7-Benzylpyridine picrate	Tri	Bi	1	28°			(6)
	C18H16O4	Discetyl dihydroxy stilbene	M	Bi	-	81° 39′		Ax pl. 1b(010); XAc =	(G)
]			1	1	1		13° in acute 28	,-,
304	C18H16Or	d(I)-Usnio serd	R	Bi.	1]		Ax pl. a(100); Z∥e	(G)
	C ₁₈ H ₁₈ O	Diethylanthrone	R	Bi.	1		60°	Ax pl c(001); Z a	(G)
		1	1	1	1]	(apprx)		-
	C18H18O4	Hydrobenzom diacetate	M	Bı	l	85°		Ax pl b(010); Z \(c = 12^\circ\)	(G)
		1	١.		1	(apprx)		in obtuse ZB	
	C14H14O4	Isohydrobenzom discetate	R	Bi	-	80° 54'		Ax pl b(010); X e	(G)
	C18H10	sym-Tetramethylanthracene hydride	R	Bi	-	l	79° 63°	Ax pl b(010) (blue); X c	(G)
	C18H20	Tetramethyl-p-stilbene	M	Bı	1 +	1	240	Ax pl b(010), Z \ a = 90°	(G)
	C T O	B	١.,		l	}	(apprz)	in obtune ZB	
317	C14H20O2 C14H21O4N	Benzoyl-p-tert,-amyl phenol Codeme	R	Bı Bı,	١,		58° 47′	Ax pl b(010); X a	(G)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Chinion	Codeme	١ "	131.	١ '	!	125°		(39)
5317	C10H21O2N H2O	Codeine	Ì	Bi.		I	(apprx) 130°		(89
.011		Codeme		,	l		(apprx)		(
319	C10H11O2N	Inocodeine	R	Bi	-	1	(,.,	Ax. pl b(010); X c	(0)
320	C14H21O4N	Pseudocodeine	M	Bi	+			Ax pl. 1b(010); ZAc=	(0)
					· ·		i	22° in scute Z\$	``
	C18H24O4N2	Tetraethyl-p-diaminopyromellitate	M	Bi.	1	85°-90°	1	4x pl. b(010)	(G)
53 36	C11H2O1N	Саревісіп		Bi.					(25
	C14H104N	Hydrocapsaicin		Hı	l		l		(25)
	C11H101N	Vanillyl n-decoylanude	R	Bı	+		23°		(84)
	_			l	ł		(rale.)		_
343.1		Fichtelite (Retene perhydride)	M	Bi.				Ax pl b(010), X#s-axis	(G)
	C18H21O16 2H2O	Melezitose	R	Bi		}	850	X = a, $Y = b$, $Z = c$	(36)
	C ₁₁ H ₁₄ O ₁	Methyl pulvinate	M	Bi.		400	1	Ax. pl b(010); X [c	(G)
	C19H14O4NS	ms-Phenylacridonium hydroxulfate	Trı	Bı.	-	42°	Í	1	(G)
	C.H.O.NS	(green mod)	M.	Bı,	+			Ax pl b(010); Z \ c =	(G)
	C10H10O4N8	ms-Phenylacridonium hydrosulfate (red mod)		'''.	, ,		1	Ax pi b(010); ZΛ e = 78° 30′ in obtuse ∠β	رق)
5414	C19H17N2	a-Triphenylguanidine	R	Bı	1-	1	38° 3′	Ax. pl c(001); Z a	(G)
	C ₁₀ H ₁₀ N ₂ I	Phenyldisllylbenzimidazohum iodide	M.	Bi	+	85° 40.5′	\	Ax pl	(6)
			1					38° 52' in obtuse ZB	۱ ``
3424	C19H19O4N	Bulbocapnine	R	Bi	-			Ax. pl. a(100); X b	(G)
	C19H20N1	Cinchene	R	Bı	1	1	100° 56′	Ax. pl. c(001); Z b	(G)
	C19H20ON2	Phenyldiallylbenzimidazolium bydroxide		Bı	1	1	60° 21′	Az. pl. b(010); Z ±c(001)	(G)
1428	C19H20()N2	Cinchoninoue	R	Bi	1	65° 20′	1	Ax pl. c(001); Z b	(G)
	C19H11N2Cl 2H2O	Cinchonine chloride	R	Bı	1		13°	Ax. pl. a(100); Z c	(0)
		1	١	l		1	(apprx)	l	
344£	C19H22ON2	Cinchonidine	R	Bi.	+	1	100° ± 10°	Z - b	(40
	C10H12ON2 C6II6	Cinchonidine	R	Bı	1 '	1	Large	l	(40
3442	C ₁₉ H ₁₉ ON ₂	a-Cinchomne	M	B ₁		1	38° ± 2°	A. al INCOME V.	(40
442	C10H21ON2	a-Cinchonine	М	Bı	_	l	35° 52′	Ax pl. \pm b(010); $X \wedge c =$ 57° in obtuse $\angle B$	(G
	CHO	d-Connemalidana semplica	R	Bi	+	1	28°	Ax pl b(010), Z a	(G
	C19H21O	d-Cinnamalidene camphor	۱ ، ۱	,"	T .	1	(apprx)	A prototo, aga	(6)
	C19H22ON2Br H2O	Cinchonine hydrobromide	R.	Bı.	1	1	150°		(G
	C10H20N2Br H20	Cinchonne hydrobromide	R.	Bi.	1	1	155°		(G
	C ₁₉ H ₁₀ ON ₁ Br ₃ (2)H ₂ ()	Cinchonidine hydrobromide	R	Bi.	+		140°	Ax pl a(100); Z c	(G
	CisHisONiCl.2HiO	Cinchonine hydrochloride	M	Bi	J _		1020	Ax pl 1b(010); X \c =	(6)
	CHRISTONICI.ZEIN)	Care nomine nyurocinorius	·"	"	}			35° in obtuse 2\$, ,
	C19H32ON2CL (C2H4O	Cinchonine hydrochloride	R	Bı	+	1	147°	Ax. pl. b(110); Z c	(G
	C11H11ON1L1.5CH4O	Cinchonne hydrorodide	R	Bi,	+	1	147° 40′	Ax. pl. c(001); Z b	(30
	C11H2O2N.H2O	Codethyline	R	Bi	+		About 125°	,	(0
	C10H20O1N28.5H2O	Cinchonidine sulfate	M.	Bi.	+		115° 36′	Ax pl _b(010); ZAc =	(6)

Index No	Formula	Name	System	Class	Sign	2V	2E	Orientation	I at
	CirHziOiNz8e 5HzO	Cinchonidine selenate	М.	Bı	+		156° 40′	Ax. pl. \perp b(010); $Z_{\wedge c} = 59^{\circ}$ in obtuse $\angle \beta$	(G)
5477	C10H20O2	Abietic acid	M	Bı.	-		65°	Ax pl. b(010); $X \wedge c = 13$ in scute $\angle \beta$	(G)
	CoHnOaN	Vanillyl undecenoylamide	R.	Bı Bı	-		Very large 110° (106°		124
	CnHnO ₂ N	Vamilyl n-undecoylamide	Trı	151	+		rale)		124
	CzuH14 CzuH16O4	Benzal fluorene 2, 4-Dihydroxytriphenylacetic acid	R M	Bi. Bi	+ -	77° 18′	13°	Ax pl. a(100); $\mathbb{Z} \parallel c$ Ax pl $\pm b(010)$; $X \wedge c =$ 7° in obtuse $\angle \beta$	(G
	CmH ₁₇ O ₄ N8	α-Naphylamine naphthalene-α-sulfonate		Bı Bı					(1)
	CnHuOiNS CnHuOiNS	β-Napthylamine naphthalene-β-sulfonate α-Napthylamine naphthalene-β-sulfonate		Bi					(1)
	CaHaOANS	B-Napthylamine naphthalene-a-sulfonate		Bi	+		85° 5′		(i)
	C28H14O6	Pulvime acid (thyl alcoholate	R	Bı		114°	61° 6′	Ax. pl. a(100); Z b	(G
	CadhaOs CadhaON	Atranoric acid Benzoyl-β, β-diethylmethylindolemne	R M	Bi. Bi	+		41° 25′	Ax pl. c(001); $Z \parallel a$ Ax, pl. b(010); $X \wedge c = 30^{\circ}$	(G
	Cull nOtN	d(l)-Bulbocapaine methyl ether	Tet	Մո				in acute ZB	(G
	C20H23O4N	Corydin	Tet	Un					(G
5561	CzoHziOzNz	Quindine	R	Bı	-		100° ± 10°	A (100) 7%	(40
	CmH29O4N4	Diethyl dihydroxysuccinate y osazone	R	Bi Bi	†		143° 28′ 80° ± 5°	Ax pl. a(100), Z∥b	(G
	C10H2tO2N2 C2H4O C10H4O2N2 [CeH4	Quindine Quindine	R	Bi	' '		85° ± 2°		(40
5567	CmHnO ₄ N ₄	Quinte	R (")	Bi	'				140
	Call HO2N2 Calla	Quanae	R	Bi	+		Large		(40
	CallaO2N2 Calla	Quimne (1 nst_mod)	R	Bı			110° ± 10°		(41
	CadhaONaBr IIaO	Bromomethylemehonine	М	Bı			80° (apprx)	Ax. pl	(G
	C10H26OkN2S 7H-O	Quinine sulfate	R	Bı			19° 15′	1x pl. a(100); X∥e	(G
	CmHmOsNiSe 7HiO	Quinine selenate	R	Bı	-		77° 15′	λx pl. a(100), X∦e	(G
	CroHatO4N2Br	Cinchonidine hydrobronide methyl alco- holate	R	Bı			142°		(G
	CanHarOaNaBr	Cinchonine hydrobromide methyl alco- holate	R	Ri	+		40° 40′	Ax, pl, b(010); Z c	(0
	C10H11O1N1Cl	Cinchonidine by drochloride methyl alco- holate	R	Bi	t		140°	Ax. pl. a(100); Z c	(0
	C20H27O2N2Cl	Cinchonine by drochloride methyl alco- holate	R	Bı	+		157°	Ax. pl. b(010), Z e	(G
	CtoHttO2N2I	Cinchoning by drouodide methyl alcoholate	R	Bı	+		126° 50′	Ax. pl. b(010); Z e	(G
	C201121N4	Diethylamline azyline	М	Bı					(G
8868	CanHanO1	d-Prinarie word	R	Bı	+		76° 36′	Ax pl a(100); Z c	(G
	C20H30O2	I-Pimarie acid	R	Bi	+ (*)	61° 45′	110° 22′ 126° 50′	Ax pl a(100), Z b	(0
	C20H40O4 C20H42O2N4Cl2	Cumphorpinacone $d(l)$ - α -Lamonene introsochloride	R M	Bı Bı	+		99° 34′-	$Ax pl a(100) Ax pl b(010); Z \land c = 4^{\circ}$	
	C ₁₀ H ₂₄ O ₄ N	Vamilyl n-dodecoylanade	M	Bı.	+		100° 15′ 100° (calc.)	50' in acute ∠β	(2
	C20H24O4N	Methylcapsmein	М,	Bı			i		(2
	CnHisOs	Benzil benzilate	М.	Bı	-	74° 10′	149° 46′	Ax pl, b(010); X Λ c = 104° in obtuse ∠β	(0
	CnHuNiBr	Amarine hydrobromide	Trig	Un					(0
	CnHoN/Cl	Amarine by drochloride	Trig.	Un.			1		(0
	C21H20 C21H21O2N2Br	Diphenyl-p-xylylmeth me a-Bromostrychnine	M R.	Bi. Bi.	+	57° 43′	58°	Ax. pl n(100), X e	(0
5642	CatHarOaNa	Strychnine	M. (2)	Bi.	_		.,,,	A. pr k(100), 2010	(3
	CnHnO ₄ N ₂	Fribenzylamine mtrate	R	Bi			15° 20′	Ax pl c(001), X a	ì
5648	CnHuO ₆ N	Diacetylmorphine	R	Βι	-		(red) 110°		(3
	C11H14O7N4	β, β-Truethyl α methylenemdoline pic-	М	Bı	-		(apprx) 16° 7'		(G
	C1(H17ON1Br H-O	rate Cinchonine ethobromide	R	Bi		87° 50′		Ax pl. b(010), Z c	(G
	CnHnONaCla	Dichloromaleic-p-tolyl-dipiperidide	M	Bı	+		44° 40′	Ax pl b(010)	. (0
	CnHaONda HaO	Cinchonidine hydroiodide ethiodide	M	Bı			90°	1x pl ⊥b(010)	(0
	CnHnOsNs	Quandine methyl alcoholate	R	B ₁	+		78° 19°	Ax pl a(100); Z e	(0
	CnHnOrNd CnHnOr	Cinchonne by droiodide ethyl alcoholate d-Bornyl methylene ether	R R	B ₁	+	75° 44′	195	Ax. pl b(101); X e Ax. pl b(010), Z e	(G
	C11H16O1	p-Cresolphthalem	R	Bi	+	39°		Ax. pl. c(001); Z a	(0
	CnH ₁₇ ON	α, β-Dibensoyleinnamenimide	R	Bi	'	82° 10′	1	Az, pl b(010); Z a	(0
	CnHirO _s N	Benzoyl benzohydroxamic amsate (a-mod)	M	B1.	-		86° 30′	- "	ic
	C22H12O4N	Amsoyl benzohydroxamic p-toluate (β- mod)	М	Bı	+	56° 24′	100° 44′	Ax pl. b(010)	(0
	CirllioNi C. H. O.N.	1, 3, 4-Triphenyltetrahydropyrazine Bisantipyrine	R M	Bi Bi	۲	66° 4′ 60° 52′	98° 4′	Ax pl a(100); Z c Ax pl b(010); Z c = 37°	(0
	CnHnO ₁ N ₄			i		00 02		in obtuse ∠β	
	CnHnO7N	Narcotine	R.	Bi.	-	l .	50°	Ax. pl. a(100); X [c	(G

Index No.	Formula	Name	System	Clus	Nign	2V	2E	Orientation	Lit
	CnHaO4	Bensyl santoate	R	Bı	+-	85° 57'		Ax pl. u(100); Z e	(G)
	CnHaON1I1.2H1O	Cinchonidine ethiodide methiodide	R	Ri		(red) 73° 36'		Ax pl. b(010); Z a	(G)
	C22H20O2N2	Quandine ethyl alcoholate	R	Bı		1	78° 30′	pa, 5(0.00), 5 (0.00)	(0)
	CnHaiOi8i	Menthyl thoxanthic anhydride	R	Bi		85% 6'		Ax pl. b(010); X n	(0)
	C10H10ONBr	Bromomethyltriphenyl pyrrolone	M	Hı	+	70° 15′	122° 55'	Ax pl 1 b(010); Z apprx 1 s(101)	(G)
	C11H100N	p-Toluyl amsohydroxamic benroate (a-	M	Bi	,	64" 32 5"	120° 38′	Ax pl	(G)
	0 11 0 31	mod)						about 60° in obtuse Z#	
	C11H10OsN	Anisoyl benzohydroxamie p-toluate (a- mod.)	M	Bi	1	78° 59′		Ax pl. \(\(\phi(001) \); Z\(\pa \)	(G)
	C11H11O1N	Anisoyl p-toluhydroxamic benzoate	M	in		\$4° 55'		X+6	(0)
	C24H10O4N	Benzoyl p-toluohydroxamic amsate	M	Bi		689.327	1452	Ax pl b(010), X A c = 33°	(G)
	CuH10OtN	Benzoyl amsohydroxamic p-toluate	M	Ri	,	71" 12"		in obtuse 23 Ax pl b(010)	
	C11H11OcN	Bensoyl amsohydroxamic anisate	M	Bi	•	11 12	16° 42′	1x pl 1 b(010), ZAc -	(G) (G)
		l						53° 50′ in obtuse ∠#	
	C11H21O1N1 H1O	Methylene bisantipyrine	M	Bı		76" 30"		Ax pl b(010), Z \(c = 56^\circ\)	(G)
	C12H2gO4NI H2O	Methyl trimethylcolchidimethinate	R	Bi		7.2"		in obtuse \(\mathcal{B}\) Ax pl s(100), Z\(\frac{1}{2}\)	(G)
		methodide		1		(apprv)		, , , , , , , , , , , , , , , , , , ,	(0,
5818	Callin	1, 3, 5-Triphenylbenzene	R	Bi		9" 50"	18° 25′	Ax pl b(010), X (c	(G)
	ChHnON	Ethyltriphenylpyrrolone (\$\beta\$-mod)	М	Ri		1	17" 20'	Ax pl _1 b(010), X \ c ==	(0)
	C16H11ON	Propyltriphenylpyrrolone (a-mod)	R	Ri	,	: ! 65° 50′	135" 30'	53° in obtuse ∠β Ax pl a(100); Z∥e	(G)
	CnH40O10	Lepranthine	M	Bi				Ax pl b(010)	(G)
	CaH ₁₆ O	Tetraphenylenepinacoline	М	Bi		50°		Ax pl b(010); $X \wedge a = 50^{\circ}$	(G)
	CaH11OiN	d-Benzoylbulbocapnine	R	Bi	İ	(apprx.) 78° 31'	108° 58′	(apprx) in obtuse ∠β Ax pl c(001), X∥b	(G)
	CallinOsNa	Strychnine ethyl carbonate	;	Bi	,	/ * **	30 '	CX pr C(mi), San	(37)
						ļ	(apprx)		
	C ₂₇ H ₂₀ O ₄ N ₂ C ₂₇ H ₄₄ Br ₂	Cinchonine phenylglycolate Cholestene dibromide (St. mod.)	R R	Bi Bi			153	\x pl b(010), Z c	(0)
	C11H10O4	Stilbeneglycol dibenzoate	M	Bi		850 587	10	Ax pl a(100); Z#c Ax pl. 4 b(010), Z#b	(G) (G)
	C21H2006N2 3H2O	Brucine valerianate	M	16	ı.		862	\x pl \(\pm\)(010)	(G)
							(apprx)		
5961	C28H46O2 C28H46O2	Gurjum resin Cholesteryl formate	Tri M	Bi Bi		56° 6′		Ax pl b(010), Z∧e -	(G) (G)
3501	Childe	Cholestery formate		""	'			21° 30′	(6)
	C10H26O4N2S2	 α-Napthylamine naphthalene-1, 5-disul- 		Bı					(1)
	C20H2sO4N2S2	fonate α-Napthylamine naphthalene-1, 6-disul-	Μ,	Bı			Large		(1)
	C 2011 36 C 6 1 7 2 1 3	fonste	٧٠,	101			rarge		(•)
	C40H26O6N2S2	a-Napthylamide naphthalenc-2, 6-disul-		В1.	-		Large		(1)
	0 11 0 11 11	fonate		Bı					
	C30H36O6N3S3	α-Napthylamine naphthalene-2, 7-disul- fonate		101	+				(1)
	C10H200N2S1	β-Napthylamine raphthalene-1, 5-disul-		Bı	+		75° 5′		(1)
		fonate (normal salt)					(obs.)		1
							77° 6′ (cale)		
	C10H206N2S2	8-Napthylamine naphthalene-1, 5-disul-		Bı			Large		(1)
		fonate (acid salt)							
	C10H24O4N2S2	β-Napthylamine naphthalene-1, 6-disul-		Bı.			Large		(1)
	C10H21O4N2S2	fonate 6-Napthylamine naphthalene-2, 6 disul-		Bi	+		70° 5′		(1)
	Christofich	fonate							` ′
	C10H26O6N2S2	β-Napthylamine naphthalene-2, 7-disul-		Bi	-		Large	Bxo 1 plates	(1)
	C10H4	fonate d-a-Amyrilene	R	Bı		72' 12'		Ax pl c(001), Z a	(G)
	C101144 C10H44	d-β-Amyrilene	R.	Bi		22° 21 5′	352 26 57	\x pl c(001), Z b	(G)
	C ₁₂ H ₂₆ O	a-Isodypnopinacoline	R	Bı	1			1x pl a(100), Z#c	(G)
	C12H20	Tetraphenylethanebenzene	M	Bı			(50)°	Ax. pl ±b(010)	(G)
	C22H20O2	Dypnopinscone	M	Bi			(apprx) 26°		(G)
	Cilino	,,,,					(apprx)		
	C22H22O12	Tetrarin	Tri	Bi			3.30	Ax pl. ±a(100)	(G)
6062 1	C24H49O10N2S.7H2O	Morphine sulfate	R.	Bi	_		(apprx) 69° 37′	Ax, pl, b(010); X a	(G)
	CHILDOIDINGS./III	arorpune sunace	۸۰.				(red)	p.,	(5)
8067	CatH47O11N	Aconitine	R.	Bi	+		56° 10′	Ax. pl. b(010); Z a	(G)
8075	СыНыОз	Cholesterol benzonte	Tet.	l'n D.			77° 40′		(G)
	C40H42O7N4Se C42H44O4N4S 3 5H2O	Cinchonne selenate ethyl alcoholate Amarine sulfate	M. M	Bi. Bi.	+		60° 57′	Ax. plb(010); Z_{ \(\) c =	(G) (G)
	O-144 18 O-140 19 19 19 17 17 1		•					80° in obtuse ∠β	\`-'
	CatHatOaNaSe 5HrO	Strychnine selenate	М.	Bi.	+-		14°	Ax pl. 1b(010); ZAc =	(G)
	a n a nama	Standard sulfate	М.	Bı.	+-		16° 30′	34° in acute $\angle \beta$ Ax. pl. \perp b(010); $\mathbb{Z} \wedge c =$	(G)
	CarHarOaNaS.5HaO	Strychnine sulfate	.11.	121.	1"		117 1917	32° 43' in obtuse \$\mathcal{L}\beta\$	(0)
			11	Un		1	1	1	

LITERATURE

(For a key to the periodicals see end of volume)

(G) Groth, Chemische Krystallographie, 5 vols 1906-1919 (L-B) Landolt-Börnstein-Roth-Scheel, Physikalisch-Chemische Tabellen, 5th Ed., 1923
(1) Ambler, 45, 43: 1041, 20. (*) Artin, 72, 46: 475, 13. (*) Artin, 22, 36 I: 392; 17. (*) Beckenkamp, 94, 40: 597, 05. (*) Beger, 94, 87: 303, 22. (*) Bleicher, 94, 81: 594, 13. (*) Drugman, 94, 50: 579, 12. (7.5) Duffour, 9, 30: 109, 13. (*) Ehrlich and Pistachimuka, 25, 45: 2436, 12

(4.8) Gatewood, 1, 47; 411, 25; (*) Gitta, 27; 31; 250, 22
 (10) Goldachmidt, 94; 58; 123, 15; (*1) Gossner, 94; 58; 488, 14; (*1) Hartley, Drugman et al., 4, 100; 751, 13; (*1) Heilbron and Wilson, 4, 101; 1489, 12; (*1) Hudson and Chernoff, 1, 40; 1007, 18; (*1) Jaeger, 447, 13; 49; 15; (*1) Jameson and Wherry, I, 43; 136, 20; (*7) Jungfleisch, 54, 186; 801, 12; (*1) Keenan, 0; (*1) Kagger, I, 132, 77, 23

(20) Mieleitner, 94, 55: 51; 19. (21) Moore and Gatewood, 1, 45: 144 23 (22) Moller, 4, 107: 874; 15. (23) Nelson, 1, 41: 1115; 19. (24) Nelson, 1, 41: 2122; 19. (24) Nelson and Dawson, 1, 45: 2180; 23. (24) Orindoff and Pratt, 11, 47: 95; 12. (27) Robinson and Jones, 4, 101: 64; 12 (11) Stefi, 94, 54: 343; 14. (29) Steinmetz, 94, 54: 467; 15.

Steft, 94, \$4: 243; 14. (29) Stenamets, 94, 94: 407; 10. (20) Stenamets, 94, \$5: 375; 16 (31) Stortenbeker, 70, 32: 226; 13. (21) Thoma, 67, 33: 403; 12. (24) Wahl, 6, 87A: 371; 13. (25) Wherry, 16, 8: 321; 18. (26) Wherry, 1, 42: 126; 20. (27) Wherry, 0. (38) Wherry and Hann, 128, 13: 291; 22. (29) Wherry and Yanovsky, 128, 9: 507, 19. (40) Wherry and Yanovsky, 1, 40: 1065; 18. (41) Widmer, 94, 60: 181, 21. (42) Hayman, Wagner and Holden, 284, 14: 388: 25.

Extensive data are given in Fedorow, "Das Krystallreich, Tabellen zur krystallochemischen Analyse," 1920, this is vol 36 of Mémoirces de l'Académie des Scicuces de Russie (VIII series)

X-RAY DIFFRACTION DATA FROM CRYSTALS AND LIQUIDS

R. W. G. WYCKOFF

4Di

20

Introduction.—To find a given substance, consult Table A for all elementary substances, \mathfrak{B} for all elementary substances, \mathfrak{B} for all elementary substances, \mathfrak{B} for all alloys which are not definite chemical compounds, \mathfrak{T} for all liquids, and \mathfrak{T} for solid solutions of salts

Except for the spacing observations given in Tables C' and T, there are recorded below only such observations as can be made to yield dimensions for at least a possible unit cell. The structure types of some of the simpler unit cells are shown in Figs. 1-11. The mode of designating these structures and other coordinate groups giving atomic positions is that described in Wyckoff, "The Structure of Crystals," Chemical Catalog Co., New York, 1924.

ABBREVIATIONS

2a, 4b, 8f, (4b, 4c), (4b, 4d), (32b, 48c), etc. refer to the correspondingly numbered coordinate groups in Wyckoff, 1c. and Analytical Expression of the Results of the Theory of Space Groups (Washington, 1922).

 a_0, b_0, c_0 Edge length of unit cell along the a-, b-, and c-crystallographic axes, respectively.

The angle between the three equivalent axes of a rhombohedral unit, in a trichine crystal, the angle between the b- and c-axes.

B.-c. Body-centered type of structure. The cubic B-c. arrangement (2a) is shown in Fig. 1.

β Angle between the α- and α-axes

C.-p. The hexagonal close-packed type of atomic arrangement (d) (see Fig. 3).

7 Angle between the a- and b-axes m a trichmic crystal 2Ci Holohedral symmetry class, monochnic system. 2Ci-m (C_{sb}^m) as under T.

3Ci Second sort hexagonal tetartohedral symmetry class, rhombohedral division, hexagonal system 3C1-m (Cⁿ_{ki}) and 3Ci-m (n) as under T.

4C Tetartohedral symmetry class, tetragonal system. 4C-m (C_4^m) as under T.

6Ci Paramorphic hemihedral symmetry class, hexagonal division, hexagonal system. 6Ci-m (C^m_{6h}) as under T.

Dia. Diamond type (8f.) of atomic arrangement (see Fig. 4).

2D Enantiomorphic hemihedral symmetry class, orthorhombic (rhombic) system. 2D-m (V^m), as under T.

2Di Holohedral symmetry class, orthorhombic system.
2Di-m (V_n^m) and 2Di-m (n) as under T.

3D Enantiomorphic hemihedral symmetry class, rhombohedral division, hexagonal system. 3D-m (D₃") and 3D-m (n) as under T.

Holohedral symmetry class, rhombohedral division, hexagonal system. 3Di-m (D_{3d}^{m}) and 3Di-m (u) as under T.

4d Second sort hemihedral symmetry class, tetragonal system. 4d-m (V_m^H) and 4d-m (n) as under T.

4D Enantiomorphic hemihedral symmetry class, tetragonal system. 4D-m (D_m) as under T.

Holohedral symmetry class, tetragonal system. 4Di-m (D_{Ah}^{m}) and 4Di-m (n) as under T.

6Di Holohedral symmetry class, hexagonal division, hexagonal system. 6Di- $m(D_{6h}^m)$ and 6Di-m(n) as under

Hemimorphic hemihedral symmetry class, orthorhombic system. 2e-m (C_{2v}^m) as under T.

3e Hemimorphic hemihedral symmetry class, rhombohedral division, hexagonal system. 3e-m (C_{3y}^m) and 3e-m (n) as under \tilde{T} .

6e Hemimorphic hemihedral symmetry class, hexagonal division, hexagonal system. 6e-m ($C_{\theta v}^{m}$) and 6e-m (n) as under T.

F.-c. Face-centered type of structure. Cubic F.-c. arrangement (4b) shown in Fig. 2.

Oi Holohedral symmetry class, cubic system. Oi-m (O_k^m) and Oi-m (n) as under T.

P. S. Possible structure. Used to designate those atomic arrangements which may be correct but for which additional results are needed or desirable.

P. U. C. Possible unit cell. Used to designate those crystals for which the selected unit cells may be correct but which require additional experimental or theoretical treatment.

S. P. Sample compressed.

Tetartohedral symmetry class, cubic system. T- $m = m^{th}$ space group having this symmetry $(= T^m)$. T-m $(n) = n^{th}$ atomic arrangement under T-m. For instance T-3(c) is seen by reference to Wyckoff (Analytical expression, p. 122), to be arrangement 8a. Similarly 4Di-7 (c) is the coordinate pair $0\frac{1}{2}u$; $\frac{1}{2}00$ (thid., p. 93).

Te Hemimorphic hemihedral (tetrahedral) symmetry class, cubic system. Te-m (T_d^m) and Te-m (n) as under T

Ti Paramorphic hemihedral (pyritohedral) symmetry class, cubic system. Ti-m (T_k^m) and Ti-m (n) have meanings analogous to those of similar symbols under T.

u, or v Variable x, y or z parameter.

X-RAY DIFFRACTION DATA

Fig. 1.—The unit cube of the body-centered cubic arrangement (2a). The coordinates of the atomic positions associated with this cell are 000; $\frac{1}{2}\frac{1}{2}\frac{1}{2}$.

Fig. 2.—The unit cube of the face-centered cube arrangement (4b) The coordinates of the atomic positions associated with this cell are 000 $\frac{1}{2}\frac{1}{2}0$; $\frac{1}{2}0\frac{1}{2}$; $0\frac{1}{2}\frac{1}{2}\frac{1}{2}$.

Fro. 3.— The unit cell of the hexagonal close-packed arrangement (d) The coordinates of the atomic positions associated with this cell are 000, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{4}$ 2.

Fig. 4.—The unit cube of the diamond cubic arrangement (§f). The coordinates of the atomic positions associated with this cell are 000, $\frac{1}{2}\frac{1}{2}\frac{1}{2}0,\frac{1}{2}\frac{$

Fig. 5.— The unit cube of the NaCl-arrangement (4b, 4c). The atoms in positions 4b are shown as annuli; those in 4c as black circles. The coordinates of 4c are $0\frac{1}{2}0$; $\frac{1}{2}200$; $00\frac{1}{2}$; $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$

Fig. 6.—The unit cube of the CsCl-arrangement (1a, 1b). Atoms of one sort, in 1a, are shown as annuli; the other kind of atom, in 1b, appears as a black circle.

Fig. 7. The unit cube of the Zn8-arrangement (4b, 4d). The atoms in position 4d appear as black circles; their coordinates are $\frac{1}{4}\frac{3}{4$

Fig. 8.—The unit cell of the ZnO-arrangement (e'). The coordinates of equivalent atomic positions are 000, 2s by 4s and 00e; 2s , by *s + by.

Fig. 9 — The unit cell of the CaF-arrangement (4b, 8c). The atoms in positions 8c, shown as black circles, have the coordinates 141414; 143434, 341414; 143414.

Fig. 10. The unit cube of the CuiO-arrangement (2a, 4d). The atoms in positions 4d are shown as annuli, those in 2a appear as black circles.

Fig. 11—The unit cell of the hexagonal $Mn(OH)_2$ arrangement (h). The coordinates of the equivalent atomic positions in the unit are 000 and $\frac{1}{2}$ $\frac{2}{3}u_i$; $\frac{3}{3}$ $\frac{1}{3}u$.

A-TABLE.—ELEMENTS

					BLE.—EL	MENTS		
Chemical	hemical Crystal Structure Space Unit cell Calculat							
symbol	system		Space	Size,	Å	Mole-	density	Lit. and remarks
by intoxi	system	type	group	110	Co	cules	density	
A	('.	Fc (4b)	1	5 43		4	1 645	(227) (temp. ca253°)
Ag	C.	Fc.(4b)		4 079		4	10.49	(82, 142, 165, 218, 235, 240, 241, 2 329, 371)
Al	C.	F -c.(4b)		4 043		4	2.692	(84, 127, 128, 141, 197, 206, 216, 2 329, 366, 361)
Ая	H.	3D ₁ -5(c)	3D ₁ -5	4 142; 54° 7′		2	5 75	(43, 366) u. = 0.226, probably a
Au	C.	F,-c,(4b)		4 064		1	19-4	(82, 84, 142, 165, 218, 241, 329, 3
Be	H.	Cp (d)	6Di-12	2 283	3 607	2	1 828	(163)
Bi*	H.	3D ₁ -5(c)	3D ₁ -5	4 726; 57° 16		2	9.86	(82, 118, 139, 140, 142, 166, 193)
C-din.	C.	Dia.(8f)	O1-7	3 56		8	3 51	(52, 59, 60, 128)
Graph.	ìi.	6e-4(a, b)	6e-4?	2 46	6 79	4		
Ca.	Ċ.	F -c.(4b)	(A)	1	0.79		2 22	(14, 88, 89, 105, 119, 128, 262, 31
ca	H.		arx 12	5 56		1	1 538	(134, 135)
Ce	C.	C -p.(d)	6D ₁ -4?	2 98	5 63	2	8 56	(134, 136, 229)
	н.	F -c. (4b)	gr. 49	5 12		4	6.90	(137)
C.		Cp (d)	6Di-1?	3 65	5 96	2	6 73	(137). Existence (?) (224)
Co	C.	F -c (4b)		3 554		1	8 67	(131, 136), cf. (224)
	H.	C -p (d)	6Di-4?	2 514	4 105	2	8 66	(131, 136), cf. (224)
Cr	C.	B -c (2a)	1	2 875		2	7 22	(131, 136, 201, 206)
Cu	C.	Fc.(4b)	1	3 603	1	1	8 95	(46, 82, 84, 141, 145, 196, 197, 1
_			1					199, 200, 329, 374, 371)
Fc-a	С,	Be (2a)		2 855		2	7.92	(82, 84, 122, 128, 131, 168, 196, 2 253, 254, 255, 256, 362)
Fe-#	C.	B - $c/(2a)$		2 90 at 800°		2	7 55	ĺ
Fe-y	C.	Fc (4b)		3 63 at 1100°		4 [7 70 at 1100°	No structural inversion, α to β (2)
	1	•	1	3 68 at 1425°		I "il	7 40 at 1425°	253, 254, 255, 256, 257)
Fr-8	C.	Bc (2a)	l	2 93 at 1425°		2	7.33	ĺ
Ga			Sym	metry said to	be not cul:	ie		(285)
Ge	C.	Dia (8f)	O ₁ -7	5 62	1	8	5 38	(14, 138)
Hf	Н.	C,-p (d)	6Di-4?	3 32	5 46	2	11 3	(324, 379)
Hg		Two dif	Terent struc	tures have bee	n deduced		•	(2, 170)
In	Tet.?	?	1	4 58	4 86	4	7 43	(134, 136) P. U. C.
Ir	C.	F -c (4b)		3 823		4	22 8	(134, 136, 284)
K	C.	B -c. $(2a)$		5 20 at -150°		- 1	0 917 at -150°	(162). Approximate only
Li	C.	Bc (2a)		3 50	1	2	0 534	(32, 33, 128)
Mg	H.	Cp.(d)	6Di-4?	3 22	5 23	2	1.709	(36, 128, 129, 196)
Mn (a)	C.?			8 89	. 20	56?	7 21	(350) P. U. C.
Mn (β)	C.?		1	6 289		20?	7 29	* *
$\mathbf{M}\mathbf{n} \; (\boldsymbol{\gamma}) \mid$	Tet.?		ł	3 774	3 533	4	7 21	(350) P. U. C.
Mo	C.	Be.(2a)	1	3 143	0 003	2	10 20	(350, 368) P. U. C.
Na	C.	Be.(2a)	l	4 30	l	$\frac{2}{2}$		(82, 136, 236, 329 ₎ (128)
Nb	C.?		1	1 19		1	0 954	
Ni	C.	Fc. (4b)		3 499	1		0.04	(366) P. U. C. Impure
1	1	, ,	1	0 1.75		4	9 04	(36, 82, 84, 128, 131, 136, 168, 2
Os I	H.	$C_{r-p_{r}}(d)$	l l	2 714	1 20			260, 299, 329, 360, 361)
(black)	Н.	1.1(.1)	ł	5 96; 60° 16′	1 32	2	22.8	(137)
Pb	C.	Fc, (4b)		1 920	l	8		(392) P. S. like As
Pd	c.	Fc. (4b)	!			4	11 48	(82, 84, 156, 196, 206, 241, 329, 34
Pt	c.	Fc.(4b)		3 859	1	4	12 25	(134, 136, 164, 167, 329, 393)
Rh	\ddot{c}	Fc.(4b)		3 913	ĺ	1	21 5	(82, 134, 136, 142, 329, 393)
Ru	H.	C,-p.(d)	6D: 12	3 820		4	12 2	(136, 393)
S	R.	Cp.(a)	6Di-4?	2 686	1 272	2	12 6	(134, 136)
Sb		9T): #7.3	2Di-24	10 61	24 56	128	2 02	$(61, 314) b_0 = 12.87$
	H.	3Di-5(c)	3Di-5	1 500; 56° 37′		2	6 73	(140, 193) u. = 0.231
Se	н.	3D-4(a)	3D-4 or	4 34	4 95	3	4 86	(42, 232, 308, 366) u. = 0 2
o:		(or 3D-6(a))	3D-6	1		i		P. S.
Si	C.	Dia. (8f)	Oi-7	5 42		8	2 32	(88, 107, 108, 127, 128, 153, 154)
(gray)	C.	Dia. (8f)	Oi-7	6 46		8	5.81	(29, 30, 31), cf. (206)
white)	Tet.	4Di-19(a)	4Di-19?	5 824	3.165	4	7.30	(29, 30, 31, 172, 173, 174, 206, 238
Ta	C.	Bc.(2a)						

Chemical	Crystal	Structure	Space		nit cell	1			
symbol	system	type	group	Size	X	Mole-	Calculated	Lit. and remarks	
B) 111.001	-3	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Brank	ao	· (°	cules	density		
Те	Н.	3D-4(a) or 3D-6(a)	3D-4 or 3D-6	4.44	5.90	3	6 26	(42, 232, 308, 366) u = 0.26u, P. S.	
Th	C.	Fc. (4b)		5.04		4	12 o	(36, 137)	
Ti	H.	Cp.(d)	6Di-4?	2 92	4.67	2	4.58	(36, 137, 201)	
Tl	H.? Tet.(?)	Cp.(d)?	6Di-4(?)	3 47 4 75	5.52 5.40	2	11.7	(28, 156). Correct unit uncertain	
U	1		1 1	Said to be a				(25)	
V	C,	Bc.(2a)		3 04	1	2	5.98	(138)	
W	C.	Be.(2a)	1	3.155		2	19 s	(67, 82, 84, 87, 136, 374)	
Zn	Н.	Cp.(d)	6Di-4?	2 657	4 948	2	7 04	(134, 136, 206, 229, 346)	
Zr	H.	Cp.(d)	6Di-4?	3 23	5 14	2	6 47	(137, 379)	

[•] u = 0.237. (142, 61 early editions) give incorrect structures tu for 6e-4 (a) = 0. u for 6e-4 (b) $-\frac{1}{14}$

Chemical symbol	('rystal	Structure	Space group	Unit cell, size	s, Å		Calculated	ī .	Additional data and remarks
(BCOSCE Dy MOS.	system	tvpe	opace group	Go	C.	M	density	lat	
H _r O	Н			4 52	7 32	. 4	0 916	(\$4,90, 114, 210, 213)	P. U. C. Atomic arrangement not yet known with certaints.
HCI	C	F -c 1		5.50, 16h"C		4	1 45	(224)	,
1 N ₁ O	C	(4))	T-4	5 77		4	1 51	(233, 266)	uo - 0 22s, distance O-N = 1.06A P. S.
NH _a	C	[4f, T-4(b)]	T-4	5 19(ca NO^)		4	0.81	(338)	u = 0 22
NH ₄ Cl (high)	C	NaCl-hke		6 53(250°)]	4	1 27	(10)	l .
NH ₄ Cl (low)	C	CeCl-like		J 566		1	1 52 m	(30, 120, 244, 280)	
N2H Cl2	C.	FeSrlike (8h, 8h)	T1-6	7 89		4	1 41	(281)	u _N - ra. 0.04, u _{Cl} - 0.27
NH ₄ Br (high)	C	NaCl-hke		6 90(250°)	1	4	1 97	(20)	
NH ₄ Br (low)	C	CeCl-like		4 047	1	1	2 43a	(30, 120, 244))
NHA	C.	NaCl-like		7 244		4	2 517	(20, 120, 242)	
(NH ₄) ₂ SO ₄	R.		21)1-16	5 95	7 73	4	1.80	(188)	be = 10.56
2 PHJ	Tet.	4D1-7(a, c)	4Di-7	6 34	4 62	2	2 88	(94)	u _~ 0 40 ± 0.01
(NH4)H2PO4	Tet.		4d-12	7 48	7 55	4	1 80	(342)	N atoms at 4d12(a); P at 4d-12 (b)
Aa ₂ O ₃	C.	(32b, 48c)	O ₁ -7	11 06		16	3 86	(41)	u 0.898, so - 0.21
Sh ₂ O ₂	C.	(326, 48c)	O1-7	31 14	ĺ	16	5 57	(41)	unb - 0.886, vo - 0.23
8 CO ₁	С	(4b, 8h)	T1-6	5 62		4	1 64	(317, 316, 388, 362)	uo uncertain. Liquid air-ten perature
For other carbo	n compou	nds belonging h	ere v. the C-	Table infra					
SiO ₂ (β-quarts)	H.	(c, j)	6D-4 & 6D-5	5 01	5 47	3	2 50	(331, 332, 380)	u = 0 197
SiO ₂ (low quarts)	н		3D-3 & 3D-5 or 3D-4 & 3D-6	4 903	5 39:	3	2 64 m	(21, 48, 169, 227, 231)	P. U. C. a ₀ -spacing for quart very accurately determined.

SiO ₂ (β-quarts)	Н.	6D-4 6D-5 (c, j)	6D-4 & 6D-5	5 01	5 47	3	2 50	(331, 332, 389)	u = 0 197
SiO ₂ (low quarts)	Н	05-07	3D-3 & 3D-5 or	4 903	5 39:	3	2 64 8	(21, 48, 169, 227, 331)	P. U. C. a ₀ -spacing for quarts very accurately determined.
00.44			3D-4 & 3D-6						
SiO ₂ (β-cristobalite)	C.	(8/, 16b)	01-7 7	7 12(290°)		8	2 20	(268, 377, 380)	
(NH ₄) ₃ S ₁ F ₆		(4b, 8e, 24a)	Oi-5	× 38		4	2 00	(38)	u _p = 0.205
8 ₁ C, I	H.	1		3 09 5	37 9	15	3 15	(283)	Complex structure assigned
8 ₁ C, 11	Н.		6(*-6 7	3 09 s	15 17	6	3 15	(347, 348)	C at $0C-6(a)$ if $u = 0$ and $6C-6-(b)$, if $u = \frac{1}{2}$ and $\frac{1}{2}$. Si at $6C-6(a)$ if $u' = \frac{1}{2}$ and $6C-6(b)$ if $u' = 0.29$ and 0.95 P. S.
8 ₁ C, 111	Н.		•	3 09 6	10 10	1	3 16	(190)	C at 000; 00\(\frac{1}{2}; \fra
TiO2 (rutile)	Tet.	4D1-14(a, f)	4Di-14	4.58	2 98	2	4 21	(83, 113, 241, 263)	
TiO ₂ (anatase)	Tet.	1	1	5 27	9 37	н	4 05	(242)	P. U. C.
Ti ₂ O ₂	Н.	3D1-6(c, e)	31)1-6	5 37, 56° 48'		2	4 67	(351)	
TiN	C.	NaCl(4b, 4c)		4 237		4	5 40?	(13, 306)	The later determination gives $a_0 = 4.40$
TiC	c.	NaCl(4b, 4c)		4 297		4	5 01?	(13, 304)	The later determination gives $a_0 \sim 460$
l ZrO₂	C.	CaF ₂ (45, 8e)	O1-5	5 08		4	6 10	(13)	P S, Other data (**) conflict. 2 modifications?
Zr82	Н.	Mn(OH)2(A)	3D1-3	3 68	5 85	1	3 73	(13)	P. S. u = ca 0.25
ZrBe ₂	H.	Mn(OH)a(h)	3D1-3	3 79	6 18	1	5 3 6	(13)	P. S. $u = ca, 0.25$
ZrN	C	NaCl(4b, 4c)	1 1	4 61		4	7 1	(13, 306)	P. 8
(NH ₄) ₂ ZeF ₇	C.	(4d, 4e, 12a, 24u)	0,4	9 35		4	2 25	(13)	$0.15 < u_N < 0.21; 0.42 < u_p < 0.48, 0.23 < v_p < 0.28$
Z _r C	c.	NaCl(4b, 4c)	1 1	4 78		4	6 4	(13, 306)	P. S.
Zr9104	Tet.		1	9 20	5 87	8	4 85		P. U. C.

Chemical symbol	Crystal	Htructure type	Space group	Unit cell, a	ise, Å	- м	Calculated		4180
8nO	system	1	. pace group	0.0	l co	- M	denanty	Lit.	Additional data and remark
8eO₁	Tet. Tet	41) 7(a, c)?		3 77	4 77	2	6 56	(300)	
BaL.	C.	Ti-6(c, d)		4 72	3 16	2	7 07	(83, 241, 263)	P. U. C.
•		11-0xc, a)	Tì-6	12 28		8	4 52	(96, 175)	$u_{\rm sn} = 0.120, u_{\rm r} = 0.25 s.$
(NH ₄)#InCl ₄	C.		1		1	1			0.009, y = 0.001, z = 0.25a
13 РьО		(4b, 8e, 24a)	Oi-5	10 0		4	2 39	(92)	$u_{c1} = 0.248$ and < 0.25
	Tet	4D1-7(a, c)		3 99	5 01	2	9 2 8	(97, 300)	$u_{\rm pb}[4D_1-7(c)] = 0.24$
PbO ₂	Tet.	4D1-14(a, f)	4Di-14	4 97	3 40	2	9 40	(345, 388)	-PB(121 /(c)) - 0.24
PhFs(8)	C.	CaF2(4h, He)	O1-5	5 93	" "	4	7 76	(340)	j.
Ph8	С	NaCl(4b, 4c)	1	5 97	1	4	7 42	(61, 76, 184, 340, 38	7)
PhSe	C.	NaCl(4h, 4c)	İ	6 14	1	4	8 17	(357, 366)	7
PbTe	C	NaCl(46, 4c)		6 34	i	1 4	8 67	(357)	ł
Ph(NO ₄) ₃	C,	(46, 84, Ti-6(24))	Ti-6	7 84	1	4	4 54	(191, 245)	1
Тьо	C.	Calt 2(46, 8e)	(h-5	5 59		1	9 98	(13, 83, 111)	Another determines
Ga ₂ O ₂	l		1		1			, , ,	Another determination of (288) varies widely from this
IngO ₂	H.	3D1-6(c, e)	3D1-6	5 281, 55° 35'	1	2	6 62	(351)	(varies widely from the
(Ca, In) ₂ O ₂	C		Ot-10	10 12	1	16	7 07	(381)	
TisOs	C.		O1-10	9 76		16		(381)	39 mol. % IngOa
TICI	C		Ot-10	10 57		16	10 2	(351)	or mor. /s info
TiBr	1 6	CaCl(1a, 1b)	O ₁ -1	3 84		1	6 9a	(85, 239, 369)	
Zn()	н	CaCl(1a, 1b)	(h-1	3 97	1	1	7 44	(239, 369)	1
Zn(BrOa)2.6H2O	l c	ZnO(e')	fir-4	3 25	5 23	2	5 61	(4, 7, 81, 61, 121,241	nl
a-ZnB (wurtaite)	H.	(46, 84, Ti-6(24))	T1-6	10 31	1	4	2 59	(278)	1
6-ZnH (blende)		ZnO(e')	6e-4	3 84	6 28	2	4 01	(9, 61, 381)	$u_n = ca.$
p-zna (blende) Znäe	C.	ZnS(4b, 4d)	Te-2	5 43		4	4 02	(47, 103, 108, 154)	
ZnCO ₀	C	ZnS(4b, 4d)	Te 2	5 65		4	5 29	(80)	
CdO	H.	3D1-6(a, b, e)	31h-6	5 62, 48° 23'	1 1	2	4 54	(160)	
Car	C	NaCl(4b, 4c)	1	4 72	1 1	4	8 0s	(86, 217)	1
Cdl	2	CaF2(4b, 8e)	O ₁ -5	5 40	1 1	4	6 30	(340)	ĺ
···	H.	Mn(OH)s(h)	3Di-3	4 24	6 84	1	5 67	(29)	$0.23 < u_{_{\rm f}} < 0.253$
a-Cd8	Н	Zn()(e')	6e-4	4 14	6 72	- 1	4 78	(\$1,381)	
p-Cd8	C	Zn8(4b, 4d)	Te-2	5 82	' '-			1''	u = ca }
HgsCl ₁	Tet	4D1-17(e)		4 47	10 89	4	4 84	(381)	1
HgaBry	Tet	4D1-17(a)			1	2	7 16	(344)	$u_{\rm Rg} = 1$, $u_{\rm cl} = 1$ P. S.
Hgf:	Tet	12.17(0)		4 65	11 10	2	7 71	(344)	$u_{\rm Hg} = 1$, $u_{\rm Hf} = 1$ P. S.
Hasis	Tet.	4D1-17(e)		4.35€	12.34	2	6.40	(397)	og - nr
HgS (metacinnabarite)		1	i	4 92	11 61	2	7 68	(344)	$u_{Hg} = \frac{1}{2}, u_1 = \frac{1}{2}$ P. S.
sello (manacimiamente)	C.	ZnS(4b, 4d)	Te-2	5 84		4	7 71	(150, 151, 184, 336,	"Hg 8, "1 - 8 1:55
Hg8 (cinnabar)	[" i							337, 368, 366)	
CuO	II Tri		3D-4 & 3D-6	4 16	9 54	3	8 12	(180, 387, 365, 366)	P S suggested
· · ·	16			3 74	4 67	4	6 4 8	(188)	P S This suggested structur
						1			resembles NaCl. $b_0 = c_0 \alpha =$
Cu ₀ O	C	Cu2O(2a, 4d)	Ot-4			i	1		65° 21', β = 86° 25'; γ = 93° 35
CuCl	e l	ZnS(46, 4d)	Te-2	4 2N		2	6 02	(61, 113, 188)	
CuBr	c	ZnS(4b, 4d)	Te-2	5 40		4	4 15	(76, 293 ₎	
Cul	c	ZnS(4b, 4d)	Te-2	5 76	i	4	4 98	(⁷⁶ , 293)	i
Custe		CaFs(4b, 8e)	O1-5	6 07 5 75	1	4	5 62	(8, 76, 293 ₎	
CusZne	C.	,	0,-0	5 /3 4 01	- 1	4	7 le	(80)	
AgaO (C.	Cu ₂ O(2a, 4d)	0:4	4 72		.		(34) cf (197)	Correctness in doubt
AgCI		Na('l(46, 4c)		5 54	1	2		(76, 88, 161, 277)	
AgBr	C,	NaCl(4b, 4c)		5 77	- 1	4		(76, 264, 265)	
AgI	H.	ZnO(e')	6e-4	4 59	7 5e	4		(76, 264, 265)	
AgI .	C.	ZnS (46, 4d)	Te-2	6 49	1 00	2		(6, 8, 265)	
ApPO ₄		(2a, 6f, 8a)	Te-4	6 00	1	4 2		(76, 264, 265 ₎	
NgsAsOs		(2a, 6f, 8a)	Te-4	6 12	1	2		(267)	
4AgI:CuI) micraite	C.	ZnS(4b, 4d)	Te-2	6 35	1			(287)	
NT I DO			1		- 1	4	- 19	(*)	A solid solution of AgI and Cul.
NH ₄) ₈ PtCl ₆		46, 8e, 24a)	01-5	9 84		4	3 08	292)	Exact composition unknown
Alas (sperrylite)	C.	Frith(46, 8A)	T1-6	5 94	•	f		· '	0 22 < u _{cl} < 0.24
NH4)sPdCl4		IDi-1 (a, e, j)	4D1-1	7 21	4 00	4		387)	Composition unknown
4nO		NaCl(46, 4c)		1	4 26	1	2 12	95)	u _{c1} = 0.23
dnO₃	Tet		- 1	4 40		4		157)	
	-	1	1	4 44	2 89	2	5 04 (214)	Pyrolusite gives the same pattern
An(OH)	н !	Mn(OH) ₂ (A)	3Di-3	,,		.	1		as polianite
1	- 1		"DI-0	3 34	4 6a	1	10	3)	Dimensions of this unit calculated
1			1	1	- 1		- 1	1	from the density $\rho = 3.26$.
InS	C. N	ia(1(45, 4c)	- 1	5 21	1	.		1	u ₀ = ca.0 22
inS _e		eSe(46, 8A)	Ti-6	6 1s	ĺ	•		172)	
]	- 1			0.19	l	4	[(1	104, 106)	. = 0 40. Size of unit cell
l	- 1		1	i	- 1		- 1		calculated from the best avail-
InCO ₂	н. з	De-6(a, b, e)	27.4		- 1		- 1	i	able density, $[p = 3.38(162)]$
0	1.	nCl(46, 4c)	3D1-6	5 84, 47° 45′		2	3 79 (4	17, 270)	atoms at (a); $u_0 = 0.27$
erOs		Di-6(c, e)	21.4	4 294		4		(22)	
	3	(e, e)	3D1-6	5 42; 55° 17′	1	2	5 28 (1, 81, 181, 205, 351) M	re = 0.105 ± 0.001; se = 0.292
n _t O ₄		(14. 201)	_	1	1		- 1	1	± 0.007
e8 (troilite)		(f, 16c, 32b)	Ot-7	R 37	1	8	5 21 (5		± 0.007 o == ca.0.37
(a center)	H. 6	⊶4(a, b)	İ	3 43		2		. / I =	
1		į		Ì	- 1	Ι.		· 1•	$u_{re} = 0$, $u_s = ca. \frac{1}{4}$. If $u = \frac{1}{4}$ exactly, the space group is

Chemical aymbol	Crystal	Structure type	Space group	Unit cell, au	10, Å	M	Calculated		1.44.4
	ayetem	1		40	۲0	M	density	lat.	Additional data and remarks
FeSs (pyrite)	C.	FeSe(46, 84)	Ti-6	5 38		4	5 0a	(47, 104, 106, 387)	u _a = 0.380
FeB + 8	H.	6e-4(a, b)		3 43	8 68	2	ł	(356, 291)	Artificial and natural pyrrhot
D.C.	H.	4.4/- 15			1		1		containing excess sulfur
FeSe + Se,	Н.	6e-4(a, b) 6e-4(a, b)		3 61	5 87	2	1	(266)	39.4% Fe (weight)
Fe(B, Se)	H.	60-4(a, b)		3 51	5 55	2	ŀ	(384)	35 0% Fe (weight)
re(ix ix)	1 ***	(u, v)		3 54	5 91	2		(356)	49.8% (weight) Fa, 120%
(NH ₄) ₄ FeF ₄	c.	(46, 4c, 8c, 24a)	O1-5	0 10			1 96	(203)	38,2% Se
•	1					'	1 1/0	(,	N atoms at (4c) and (8e). 0. < u _p < 0.217, best around 0
NH4Fe(8O4)2-12H2O	c	(46, 4c, 8A, 8A, Ti-6	Tı-6	12 14	1	4	1.81	(248)	Cap Court, best around o
	1	(24))				'	1	()	1
Fe ₂ C	R.	1		4 52	6 74		7 67	(8, 6, 7, 254, 261)	Cementite and cobenite are id
		1			1			,	tical in structure. Atomic
P-00.	l				İ			1	rangement unknown. be = 8
FeCO ₀	H.	3D1-6(a, b, e)	3D1-6	5 82, 47° 45′		2	3 86	(47, 270)	C atoms at (s); u = 0.27 ps
FeSi	l c.								ably
		1		4 48		4	6 16	(207)	Probably tetartohedral; ato
FeSta	Tet.	1		2 69	5 05	1	5 02	(207)	arrangement unknown
FeCuS _e	Tet	4d-5(r, a, g)?	4d-5 7	5 23	5 15	1	3 02	(45, 115)	P. U. C., structure unknown
			*** ** *		"			(***,*)	Fe atoms at (c). u ₀ = cs. 0 Probably correct structure.
C ₀ O	C.	NaCl(4b, 4c)		4 24		4	6 49	(381)	Trobably correct act donard.
CoS	H.	Ge-4(a, b)		3 37	5 11	2	5 94	(354)	1
CoAnd	C.	FeSr-like(4f)	T-4	5 65		4	6 07	(183, 387)	Reflection microscopic res
	1			1				[` ′	(161) suggest that this struct
(D) (D) (D) (D) (D)				i					may not be correct
(Fe, Co)S (synthetic)	H.	6e-4(a, b)		3 36	5 29	2	į	(386)	Composition - ca. 50 atoraia
NiO					1		1		FeS
MIO	C.	NaCl(46, 4c)		4 172	1	4	6 7 n	(74, 86, 299, 381, 353	•
NiS (synthetic)	Н.	6e-4(a, b)		2.0			١	360)	
NiS (millerite)	1	1		3 42	5 30	2	5.58	(356)	un - ca. taking uni - 0
NES (Millerite)	H.	3e-5(b, b)	3c-5	5 64, 116° 36′		3	1	(356)	Possible atomic positions
NiaSa	C?			4.08		١.	l		euggested
NiSe	н	6e-4(a, b)		3 66	5 33	1	!	(356)	P. U. C.
Ni(NO ₂) ₂ 6NH ₂	c.	(46, 8h, T1-6(24))	T1-6	10 94	3 33	2	1 43	(278)	
	0.	(10, (11-0/247)	11-0	10 94	i i	4	1 43	(,	u_N in $(8A) = ca.1$, y_N and s_1
NiCla.6NHa	c.	(4b, 8e, 24a)	O ₁ -5	10 09		4		(274)	ca. 0, so and so = ca
NiBra6NHa	c.	1			1 1		1 49		u _N = 0.24
Nile6NH:	C.	(4b, 8e, 24a) (4b, 8e, 24a)	O ₁ -5	10 4*		4	1.84	(\$74)	1
NiAs	1	1	O ₁ -5	11 01		4	2 05	(274)	u _N = 0.24
NiAsS (gersdorffite)	H. C.	6e-4(a, b)	T.	3 61	5 03	2		(8, 356, 391)	Niccolite from Eisleben.
NiSb	H.	FeS-like(4f) 6e-4(a, b)	T-4	5 68 3 92	5 11	4 2		(357, 366) (356, 391)	ln a 11.0a.
,	11.	UC-1(4, 0)		0 92	3 11	2	× 7=	(****, ***)	For the mineral breithaup
]	1							from Andreasberg ap = 3 90, = 5,09
NiSbS (ullmanite)	C.	FoS-like(4/)	T-4	5 91		4		(387)	Composition unknown
Ni, Fe)S (synthetic)	H.	6e-4(a, b)		3 404	5 540	2		(366)	S - 37.8%, Fe - 33.9%, N
					1 1			l` '	28.3% (weight)
Nı, Fe)S (synthetic)	H.	6e-4(a, b)		3 40a	5 434	2		(356)	8 - 38.4%, Fe - 28 7%, N
								}	32.8% (weight)
[Ni, Fe)S (pentlandite)	C.	1	O1-5 ?	10 0o		32		(354)	(81, 24a, 32a) with upo (24a
								1	ca. } and ug = ca. } gives
									agreement. Various com
			-						aitions
CraOa	Н.	3D1-6(c, e)	3Dr-6	5 3s; 54° 58'	1 1	2	5 28	(351)	
408	н	6D1-4(c, f)	₽-i(18	3 15	12 30	2	5 00	(99, 311)	$u_0 = 0.62_1$
NH4)2MoO2F4	C.	(4b, 4c, 8e, 24a)	O1-5 7	9 10		4	2 23	(203)	N atoms at (4c) and (8s). F
						ļ		1	O at (24a). 0.194 < up.0
		1			i l				0.220
PbMoO4	Tet.		I	3 85	6 02	1		(91)	P. U. C.
gaMoOa	C.	(8f, 16c, 32b)	Oı-7	9 26		8	6 2 5	(276)	$0.34 < u_0 < 0.40$
IO ₂ NO.), 4H.O	C,	CuFz(4b, 8e)	01-5	5 47	l l	4	10 ×9	(13, 111)	<u> </u>
O ₂ (NO ₂) ₂ .6H ₂ O	R.		2D1-17	13 15	11 42	4	2 75	(48, 204)	U atoms probably at 2Di-17
2Os	н.	3D1-6(c, e)	3Dı-6	5 43, 53° 53′			8 A-	(351)	with u = 0.13. bo = 8.02
N ·		NaCl(4b, 4c)	9191-0	5 43, 53 53 4 28		4	5 09 5 47	(306)	1
ë l		NaCl(4b, 4c)	1	4 30		4	5 28	(306)	1
bN		NaCl(4b, 4c)	1	4 41		4	8 28	(306)	
ьс	c.	NaCl(4b, 4c)	i	4 40		4	8 14	(304)	Í
aN		ZnO(e')	6 0-4	3 05	4 94	2	16 2	(13)	P. S. Cf. (307) which gives c
			l						flicting results
aC		NaCl(4b, 4c)	i	4 5a		4	13 7	(12, 306)	1
.H.	H.	1	1	4 54	8 69	2	0 589	(349)	B atoms probably at 6D:-4
	l	1	ſ			- 1			with u = ca. 0.10. Temp
l ₀ O ₀	.,	2Di 44 A	ans c	E 10 E-4 -7/		,		.41 41 181	ature not stated
4 √1	н.	3Di-6(c, e)	8Di-6	5 12, 55° 17′		2	3 96	(61, 81, 181, 205, 351)	A.
		1 .	-		1	ł			0.001; we = 0.303 ± 0.003

(NHa)aAIPa NHaAI(BOa)a 12HrO Alish (NGa) topas CuAl CuAl CuAl CuAl CuAl CuAl CuAl CuA	Structure type	Space group	Unit cell,	size, A	- M	Calculated density	Lit.	Additional data and remarks
Al8B AlsFi(8iOa) topas CuAl CuAl CuAl CuAl CuAl CuAl CuAl CuA	(((c') , 4c, 8e, 24a)	00-4 Or-5	3 11 8 40	4.98	1 2	3 24 2 17	(195) (203)	u = 0.38 ± 0.01 N atoms at (4c) and (8c). 0.1
Alsh AlsFi(8)Os) topas CuAl CuAl CuAl CuAl CuAl CuAl (Pr', Mn'')s Als(8)Os's (garnet) NiAl SosOs SosOs Sos Sos (Se, Ini)Os (Al, 80)Os C Y14Os CC(Y, Bla)Os C Y14Os CCOS H CCOSO H CCOSO H CCOSO H CCOSO H CCOSO H CCOSO C C CACO(alse) C CACO(alse) C C C CACO(alse) C C C CACO(alse) C C C CACO(alse) C C C CACO(alse) C C C C CACO(alse) C C C C CACO(alse) C C C C C C C C C C C C C C C C C C C	4c, 84, 84, Ti-0	Ti-6	12 00		1.	1 76	(248, 282)	< u _p < 0.200
AlaFi(8rOa) topas CuAl CuAl CuAl CuAl CuAl CuAl CuAl Cia (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ba'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn'')a Ala(8rOa)a (Ca'', Mn''')a (Ca'', Mn''')a Ala(8rOa)a (Ca'', Mn''')a Ala(8rOa)a (Ca'', Mn''')a Ala(8rOa)a (Ca'', Mn''')a Ala(8rOa)a (Ca''', Mn''')a (Ca''', Mn''')a Ala(8rOa)a (Ca''', Mn''')a Ala(8rOa)a (Ca''', Mn''		Te-2	6 13				(298)	
CuaAl CubAl CubAl CubAl CubAl (garbet) NiAl Solob (garbet) NiAl Solob (garbet) NiAl Solob (garbet) NiAl Solob (Gal (Be, Ini)On (Gal, Se)Ob (Cal (Be, Ini)On (Gal, Se)Ob (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Be, Ini)On (Cal (Gal (Cal (Cal (Cal (Cal (Cal (Cal (Cal (C	(40, 42)	2D1-16	4 64	8 37	4	4 26	(156	Topas from San Luis Potos Mexico; bo = 8.78
CuAh (Fa'', Ma'')a Ala(SiOn)a (garnet) NiAl Second Secon	,	1	3 89, 94° 36'	i	4		(141, 197, 258)	This structure may be incorrect
(Fa'', Mn'')a Ala(8Ooia C. (garnet) NiAl C. NiAl C. Co'Cit SeN C. C. SeN C. C. SeN SeN C. SeN SeN SeN SeN SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C. SeN SeN C.			3 47	1	4		(24) cf. (141)	Probably incorrect
(garnet) NiAl 56 SecOs SecN (Se, InixOs) (Al, Se)db Yt4Os Yt4Os Yt4POs (Tt, ThyOs (Tt, ThyOs) (Tt, Th	1		6 05	4 88	4	4 35	(141, 197, 258)	Atomic arrangement unknown
NĀĀI C. CaCICI 86 SerOs C. SerOs 86. Int-Os C. CaCICI 86. Int-Os CaCICI 86. Int-Os CaCICI 87. Int-Os CaCICI 87. Int-Os CaCICI 88. Int-Os		O _F -10	11 40	1	8		(190)	67 atomic % of ferrous iron
56 SeO) SeN SeO) SeN (C) SeN (C) (Al. 8e)-(D) YisOn YisOn YisOn YisOn Tet. (Yt, Th-O) Cyt, Bh)-(D) LaeOv CeOh Ceoh		- 1		1			l	1
SeN C NaCl(4	10, 10) (Oi-10	2 82	1 1	1	6.25	(24)	More work needed
(Be, In)(b) (C) (AI, So)(b) (C) (Y1(C	(45, 4e)	(%-10	9 79 4 44]	16	3 89	(351) (306)	
YtsOr C YtsOr C Tet. YtsOr C Tet. C CYI, BirsOr CLAyCo C C. C C. Core Or H. C C. D PryOr H. H. D PryOr H. H. D PryOr H. H. NaGOr C. C. NaGOr C. C. GdoOr C. C. GdoOr C. C. DryOr C. C. TreOr? C. C. TreOr? C. C. LasCo C. C. TreOr? C. C. LasCo C. C. BeOC(CaHyOr) C. C. MgO C. C. MgO H. AD-144 MgO H. AD-144 MgO H. AD-144 MgO H. AD-144 MgO H. AD-144 <	(,,	O ₁ -10	9 90		16	4 44	(351)	86 9 mal or 0 - 0
Y1PO, (Yt, Thi-to) (Yt, B) μ0 (Yt, B) μ0 (Yt, B) μ0 (Yt, B) μ0 (Yt, B) μ0 (Yt, B) μ0 (Yt, B) μ0 (Yt, B) μ1 (ļ	O ₁ -10	9 22		16		(351)	66.8 mol. % Sc ₂ O ₃ Composition unknown
(Yi, Ti)-(b) (Yi, B) (Yi, B)-(b) (Yi, B) (Yi,	i	O ₁ -10	10 56	1	16	5 07	(351)	Composition unknown
(Yt, B)ylob Lacob Lacob Cool Depole Profit Profit Profit Profit Profit Profit Coll C		1	9 60	5 94	8	4 44	(242)	P. U. C.
LasCo		(h-10	10 53	1 1	16		(351)	50 weight % YtaOa
CeOb Ceob Ceob Ceob Ceob Ceob Ceob Ceob Ceo		(h-10	10.72		16		(351)	37.4 mol % BigOs
CeyOb CeyOb CeyOb CeyOb CeyOb CeyOb CeyOb CeyOb NelCOB NelCOB NelCOB CeyOb Cey	44.00		3 94 5	6 151	1	6 48	(³⁵¹)	
10 Pr-Ot H. Pr-Ot H. Pr-Ot C. NolcOt H. NolcOt H. NolcOt H. NolcOt H. NolcOt C. EurOt C. C. EurOt C. C. EurOt C. C. EurOt C. C. C. EurOt C. EurOt C. EurOt Eurot	10, 20)	O1-5	5 41		4	7 18	(83, 111)	
Pr gO1		-	3.88e 3.851	6 057	1	6.86	(351)	
Ni-lob H Ni-lob C C C C C C C C C		1	10 98	5 99 s	1 7	7.07	(361)	
Euro Godob C. Godob C	i i		3 841	6 00 9	i	7.28	(352) (351)	P. U. C.
GdcO ₂ GdcO ₃ GdcO ₅ GTbcO ₇ C DycO ₄ C HovO ₈ C HovO ₈ C HovO ₈ C C HovO ₈ C C C C C C C C C C C C C C C C C C C		Oi 10	10 85	1 000	16	7 21	(351)	
15 TheOr C TheOr C TheOr C TheOr C TheOr C HosOs C Erros Erros E	l	Oi-10	10 84		16	7 20	(361)	
Tb-60-1	}	O1-10	10 79	1	16	7 62	(351)	
DysOs C HosOs C HosOs C C ExyOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C TusOs C BesOs(CaHaOs) C BesOs(CaHaOs) M MgO M M MgO M M MgO M M MgSi C MgsNi C MgsNi C MgsNi C CaFy48 MgsNi C CaFy48 CaFy48 CaFy48 C CaFy48 CaFy48 C CaFy48 CaFy48 C CaFy48 CaFy48 C CaCaOB CaCaOB C CaCaOB CaSocaBaO Tri CaSe C Ca(NOs) Ca(Caclete) H Capto CaCoCa (aragonite) R CaDo C CaCaCO CaCCO CaCa		O1-10	10 70		16	7 90	(351)	
Hoso C. Rayo C. C. Rayo C. C. Rayo C. C. Rayo C. C. C. C. C. C. C. C. C. C. C. C. C.	1		10 55		7		(352)	P.U.C. "Brown terbium oxide"
Engle Theolo Theolo Theolo Lauch (NHa)hHffy C S Bed (NHa)hHffy C S Bed CC,HaOh)e C C BedO(ChHaOh)e C C Mg(OH)e MgC MgO C MgCO H MgCO C C C C C C C C C C C C C C C C C C		Oi-10	10 63		16	8 2o	(351)	02.00
Tuch Ybr(h) C Ybr(h) C C (NH4)HIF7 C C (NH4)HIF7 C C Bed C Bed(CaH4Oh)e Bed(CaH4Oh)e Bed(CaH4Oh)e Bed(CaH4Oh)e Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg		O1-10	10 58	1 1	16	8.35	(351)	
Ybylo C Listo C Listo C Listo C C Listo C C C Listo C C C Listo C C C C C C C C C		O1-10 O1-10	10 54 10 52		16	8 64	(351)	
(NH ₀)aH(F ₇ 18 BeO II ZnO(s') Beo(J(C ₃ H ₃ O ₃) ₀ C. Beo(J(C ₃ H ₃ O ₃) ₀ M. MgO C. Mg(OH) ₀ M. MgF ₁ Tet. John John John John John John John John		O1-10	10 32		16 16	8 77	(381)	
7 CaO C. NaCl(4	1	O1-10	10 37		16	9 3o 9 4a	(351) (351)	Ì
Bed CaH Ch C Bed CaH Ch C Bed CaH Ch C Mg Ch C Mg Ch C Mg Ch C Mg Ch C Mg Ch C Mg Ch C Mg Ch C Mg Ch C Mg Ch Mg C Mg Ch Mg C Mg Ch Mg C Mg Ch Mg C	, 12a, 24u)	01-4	9 40	ŀ	4	9 13	(117)	Contain How OVE 1 IS IN
Be-O(CaH +On) o		6e-4	2 70	4 39	2	2 98	(109, 163, 333, 364)	Contains 15% (NH4)3ZrF7
MgO C. NaCl(44 Mg(OH)* H. Mn(OH MgF* Tet. MgB C. NaCl(44 MgCO* H. 3D-44 MgSN C. CaF+44 MgsN C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 MgsPb C. CaF+44 CaCaOH C. NaCl(44 CaF C. CaBO CaBO C. NaCl(44 CaBC CaBC CaBC CaBC CaC(Calcide) H. 3Di-8 (44, 84, 84, 84, 84) CaCO(Calcide) H. 3Di-8 (64) CaCO(Calcide) H. 3Di-8 (64) CaCO(Calcide) R. 2Di-16(c		1	15 73		8	1 38	(56, 62)	u ₀ ca. §. A possible atomic arrangement
MgO Mg(OH) Mg(OH) MgF MgB MgB MgCO MgsN MgsN C. CaF+48 MgsP MgsP C. CaF+48 C. MgANO4 C. MaCl(41 CaP CaBO Tri. CaBC CaBO CaBC CaBC CaC(40, (caleite) H. 3Di-8 (a CaCO(a (aragonite) R. 2Di-16(c		i i					` ,	suggested
Mg(OH)₀ Mg(OH)₀ Mg(OH)₀ Mg(F) Mg(F) Mg(F) Mg(CO₀ Mg(CO₀ Mg(CO₀ Mg(F) Mg(F) Mg(F) C CaFy(40) Mg(F) C CaFy(40) Mg(F) C CaFy(40) Mg(H) C CaFy(40) Mg(H) C CaFy(40) Mg(H) C CaFy(40) Mg(H) C CaFy(40) Mg(H) C CaFy(40) Mg(H) C CaFy(40) Mg(H) C CaFy(40) C Ca(OH)₀ C CaFy(40) C CaFy		1	16 Oe	9 1 5	2	1 26	(62)	P. U. C. bo = 9.7 a B = 116° 7°
MgF Tet. 4D-14(MgCO MgCO H. 3D-4(MgCO MgSS C. CaFv48 C. CaFv48 MgSSc C. CaFv48 C. CaFv	90, 9C)	1	4 20a	i	4	3 59	(86, 107, 109,110,121,	.,
MgF Tet. 4D-14(MgCO MgCO H. 3D-4(MgCO MgSS C. CaFv48 C. CaFv48 MgSSc C. CaFv48 C. CaFv	FD-(A)	3D1-3					132, 222, 271, 287)	
MgB MgB C NaCl(4) MgCOa H. 3Da-6a MgSN C. CaF448 MgsPa C. CaF448 MgsPa C. CaF448 MgsPa C. CaF448 AlaMga C. C. MgAHO4 C. C. V CaO C. NaCl(4) CaGOBa C. CaF448 CaB C. CaF448 CaBO4 R. CaBC464 CaBC6 C. NaCl(4) CaBC6 C. NaCl(4) CaBC6 C. NaCl(4) CaBC6 C. NaCl(4) CaBC6 C. NaCl(4) Cal(NOa)a C. (4b, 8b, 8b, 8b, 8b) CaCOa (calcite) H. 3Di-6 (a CaCOa (caragonite) R. 2Di-10(c		4D1-14	3 11 4 66	4 73 3 08	1		(3, 5, 159)	
MgsRi MgsBi MgsBi MgsBi MgsBi MgsBi C. CaFy48 CaFy48 CC MgABO C. (8/, 16c, MgABO C. CaO(H) CaC Ca(OH) CaFy CaB CaB CaB CaBO CaBo CaBo CaBo CaBo CaC(H) CaC(H) CaC(H) CaC(H) CaC(H) CaC(H) CaC(H) CaBo CaBo CaBo CaBo CaBo CaBo CaBo CaBo			5 08	. 00	2 4		(328, 345, 367) (125)	u _p = 0.30
Mgs/Bc C		3D1-8	5 61, 48° 12'		2		(160)	
MgsPb C R		O1-5	6 39		4		(298)	İ
(Mg, Fe')siiOs olivine AlaMga C. MgAhOs C. (8/, 16c, C' (8/, 16c, C' (8/, 16c, C' (8/, 16c, C' (8/, 16c, C' (8/, 16c, C' (8/, 16c, C' (8/, 16c, C' NaCl(si Mn(OH CaF, C. CaF, C' CaF, C' CaE, C' CaE, C' CaE, C' CaE, C' CaC(si CaE, C' CaC(si CaE, C' CaC(si CaC	lb, 8e)	O1-5	6 78		4		(202, 370)	İ
AlaMga	1	1	6.75		4		(370)	Structure probably CaF2(4b, 8e)
MgAHO4 C (8/, 16c, 16c, 16c, 16c, 16c, 16c, 16c, 16c		2D1-5	4 77	6 00	4		(28, 212)	14 atomic % of ferrous iron.
MgAHO4 C (8/, 16c, 16c, 16c, 16c, 16c, 16c, 16c, 16c		1		i	j			be = 10.28
7 CaO C. NaCl(4) CaF ₃ C. NaCl(4) CaB C. NaCl(4) CaBO ₄ R. CaBO ₄ C. NaCl(4) CaBo ₆ 6H ₂ O Tri. CaBe C. NaCl(4) Ca(NCh) ₂ C. (4b, 8b, 8b, 2apatte CaCO ₆ (caleite) H. 3Di-6 (a	e 39h)	0.7	4 80		1		(24)	More work needed
Ca(OH)		017	8 07		8		(50, 189)	ue = 0.37. Value of ae calcu-
Ca(OH)e	İ	į.			1			lated from the best available
CaFs C. CaFr(4) CaB C. CaFr(4) CaBO4 R. NaCl(4) CaSe C. NaCl(4) CaCe CaCe NaCl(4) Ca(F) C. (40, 8A, H. apatite CaCCh (calcite) H. 3Di-8 (a CaCO6 (aragonite) R. 2Di-16(c	4b, 4c)		4 79		4	3 37	(79, 66, 107, 109)	density ($\rho = 3.57$)
CaS C. CaBO4 R. NaCl(46 R. CaBO4 GH;O Tri. CaBo C. (40, 84, 41, 42) H. apatate CaCOa (calegorite) R. 2Ds-16(c	H)g(Å)	3D1-3	3 52	4 93	i		(158)	
Ca8O4 R. Ca8eOa 6HpO Tri. CaSe C Ca(NOa)e C. Ca(F, Cl)Cae(POa)e H. apatite H. CaCOa (caleite) H. 3Di-6 (a CaCOa (aragonite) R.		O1-5	5 46		4		(47, 76, 107, 108)	
Ca84Oa 6HgO	10, 1c)		5 68		4		(79, 128)	
CaSe C NaCl(4t Ca(NO _b)* C Ca(F, Cl)Ca*(PO _b)* H apatite CaCO _b (calcite) H 3Di-6 (a CaCO _b (aragonite) R 2Di-16(calcite) CaCO _b (aragonite) R 2Di-16(calcite) CaCO _b (aragonite) R 2Di-16(calcite) CaCO _b (aragonite) R 2Di-16(calcite) CaCO _b (aragonite) R 2Di-16(calcite) CaCO _b (aragonite) R 2Di-16(calcite) CaCO _b (aragonite)		2D1-17	6 21	6 96	4		(326)	Anhydrite, not analyzed. be -
CaSe				1		1		6.95
Ca(N(A)) Ca(F, Ch)Ca(POs) apartite CaCOs (calcite) R. (46, 88, H. apartite H. 3Di-6 (a CaCOs (aragonite) R. 2Di-16(c	ŀ	1	1	1	1	- 10	(18)	Some unreduced measurements
Ca(NCa)** Ca(F, Ct)Ca*(PO4)* apartite CaCOa (calcite) H. 3Di-6 (a CaCOa (aragonite) R. 2Di-16(c	10.40)	1		- 1				have been recorded for this salt
Ca(F, Cl)Ca ₀ (PO ₀) ₂ apatite CaCO ₀ (calcite) H. 3Di-6 (a CaCO ₀ (aragonite) R. 2Di-16(c	Ti-6(24))	T1-6	5 91	ļ	4		(79)	
apatate CaCO _b (calcite) H. 3Di-8 (a CaCO _b (aragonite) R. 2Di-16(c		6C1 2	7 60 9 41	4 00	4		(245)	
CaCO ₆ (calcite) H. 3Di-6 (a CaCO ₆ (aragonite) R. 2Di-16(c	1		y 41	6 88	2	10	(123)	Composition unknown
CaCO ₀ (aragonite) R. 2Dr-16(c	a, b, e)	3D1-6	6 36; 46* 6*	- 1	2	١,	47, 49, 179, 221, 270)	O
		- 1	,		•	10	,,, 221,270)	C atoms at (a). we = 0.25. A
CV/HCOOL B	(c, c, c, d)?	2D1-16	4 94	5 72	4	2 94 (58, 284)	wave length standard
	1		I		-		' '	A possible atomic arrangement has been suggested. $b_0 = 7.94$
	1	2D1-5 ?	10 16	6 20	8	2 03 (223)	P. U. C.
Cution C.1	I	i	7.68	1	8	10	343)	P. U. C. (?) More work neces-
CaWOs Tet.	1	- 1	8.64	5.64	1		91)	M TY

Chemical symbol	Crystal system	Structure	Space group	Unit cell, suse		M	Calculated	Lat	. Additional data and remarks
CaMg(CO ₀) ₂ (dolomite)	H.	3C1-2(a, b, c, f)	3('1-2	4,	٠.		density	\$	
CaMg(SiOa); (diopside)	M.	001-8(4, 0, 0,))	2C1-6	6 02, 47° 7′		1	2 84	(61, 249, 313)	
	11.	3C1-2(a, b, c, f)	3Ci-2	9 71	5 24	4	3 28	(201)	ho - 8.89, # - 74° 10'
Ca(Mg, Fe)(COs)s	C.	NaCl(4b, 4c)	34.1-2	6 02, 47" 7"	1 1	1		(189)	30 stome % of ferrous iron
8.0				5 10		4	5 1s	(107, 109)	
SrF1	C.	CaFr(46, 8e)	01-5	5 86		4	4 12	(12)	
SeC1s	C	CaF2(4b, 8e)	On-5	7 00	1 1	4	3 05	(341)	
8rB	C.	NaCl(46, 4c)		5 87		4	3 90	(138)	
SrSe	C.	NaCl(4b, 4c)		6 23	1 1	4	4 55	(230, 231, 304)	
Sr(NOs)s	C.	(4b, 8h, T1-6(24))	T1-6	7.81		4	2 93	(191, 245)	
BaO	C.	NaCl(4b, 4c)		5 50			6 0#	(107, 109)	
	C	CaF2(4b, 8e)	O1-5	6 20		- ;	4 86	(76)	1
BaFs	ċ	NaCl(4b, 4c)	1.1-0		1			(125)	
BaS		VRC 1(40, 40)		6 35		4	4 37		
BaNO ₄	R.		2171-16	8 89a	7 170	4	4 43 2	(1, 290, 134, 327, 334,	ho ~ 5 448
		1				İ		335)	
BaSe	C.	NaCl(46, 4c)		6 62		4	4 93	(231, 308)	1
Ba(NOz)2	C.	(4b, 8h, T1-6(24))	T1-6	8 11		4	3 23	(191, 245)	Approx atomic positions are so
									to be un, zo and yo - co.
					1 1				to = ca. 0
	C.	CaF 2(4b, 8e)	O1-5	4 41			2 01	(26)	10 - 0.0
1 Li ₂ O			OI-9	4 61		4			1
LaH	C.	NaCl(4b, 4c)		4 10		4	0.76	(34)	ł
LaF	(,	NaCl(46, 4c)		4 01	1 1	4	2 65	(78, 68, 132, 367)	1
LiCl	С.	NaCl(4b, 4c)		5 14	1 1	4	2 06	(78, 194, 219)	1
LaBr	C.	NaCl(4b, 4c)		5 49	1 1	4	3 46	(76, 194, 219)	
Li	ď	NaCl(4b, 4c)		6 (N)		4	4 00	(76, 194, 219, 294)	1
LigS	è	CaF2(4b, 8c)	Oi-5	5 70		i	1 64	(339)	1
		(811(10, 00)	(4-0		0.01			(18)	1 - 774 P.H.C
Li ₂ C ₂ O ₄	R?	1		6.5%	6 61	4	2 15		160 - 774. PUC.
LiCHO ₁	Mt	1		7 61	4 87	4	1 53	(25)	$b_0 = 6.03, \beta = 95^{\circ} 42'$. P. U.
							1	1	8. P.
L _i C ₂ H ₂ O ₂	R ?			12 So	7 43	12	1 17	(15)	h ₀ → 11 68 P. U. C., S. P.
LaCaHaOz	R?	1 1		16 94	9 45	16	1.08	(25)	b ₀ = 12 15. P. U. C., S. P.
LiCaHaO2 crotonate	Н?	1		24 8	10 7	48	1 27	(25)	P. U. C., S. P.
LiC4H7O2 butyrate	н ?			27 7	10 1	48	1 07	(25)	P. U. C., S. P.
					9 25	24	1 01	(25)	P. U. C., S. P.
L ₁ C ₄ H ₇ O ₂ isobutyrate	Tet ?	1		19.75					
LiC ₄ H ₉ O ₂ valerate	Tet ?			24 5	9 4	32	1 01	(25)	P. U. C., 8. P.
LaCaH pO2 isovalerate	R?			11 70	6 93	4	1 00	(25)	bo = 870. P. U. C., 8. P.
LiCaH Otrimethylacetate	C:	1		18.56	1	36	1 00	(25)	P. U. C., 8, P.
LiC7H11O2 heptylate	Tet?	1		27 4	9 3	32	1 02	(25)	P. U. C., S. P.
LiCaH11O2 caprylate	Н?	1		42 1	10 9	72	1 05	(25)	P. U. C., S. P.
	Tet?	1		36 6	9 3	48	1 04	(25)	P U. C., S P.
L ₁ C ₂ H ₁₇ O ₂ nonylate		1 1		52 6	9 5	72	0.99	(25)	P. U. C., S. P.
LiCuH19O2 undecylenate	Н?							(25)	P. U. C., S P.
LaC11H21O2 undecylate	Tet ?	1		41.8	9 2	48	0.04		
L ₄ C ₁₂ H ₂₂ O ₂ laurate	Tet?	1		28.3	11 7	24	0.87	(25)	P. U. C., S. P.
L ₁ C ₁ sH ₂ O ₂ oleate	H ?	1 1		64 6	9.5	72	0.99	(25)	P. U. C., S. P.
LiC1sH25O2 stearate	Н?	i I		62.5	9.8	72	1 04	(25)	P. U. C
2 NaF	C.	NaCl(4b, 4c)		4 62		4	2 81	(75, 78, 209)	
NaHF2	H.	31h-5(a, b, c)?	3D ₁ -5	5 17, 39° 44'	1	1	2 01	(211)	Na at (a), up = 0.42. P. S.
	1	1	01/1 "	4	1	ı		(44, 45, 47)	One of the fundamental wa
NaC1	C.	NaCl(4b, 4c)		5 628		4	l	(44, 45, 41)	
	1					į.	1		length standards
NaClO ₂	c.	(4f, 4f, T-4(12))	T-4	6 56	1	4	2 49	(98, 143, 144,147,148	$u_{NB} = ca. 0.00, u_{cl} = ca. 0.$
	1				1	ł	ì	149, 246, 247, 286)	Different positions have be
	Ì				1	l .	1	· ·	suggested for the O atoms
				5 94		4	3 24	(75, 78, 273)	
NaBr	C.	NaCl(4b, 4c)			1		3 30	(98, 143,148,149,163	0.00 11 0
NaBrO _s	C	(4f, 4f, T-4(12))	T-4	6 71		4	3.30	1.	
	İ			}				246, 247)	Different positions have b
	l			1	1			1	suggested for the O atoms
NaI	c.	Na('1(4h, 4c)		6 46	1	4	3 67	(78, 78, 273)	1
			O ₁ -5	6 53	1	4	1 85	(339)	1
Na ₂ S	C	CaF2(4b, 8e)			1	i	1.838	(396)	u = 0.42s
NaN ₃	H.	3D1-5(a, b, c)	3Di-5	5 481, 38° 43′	1			(47, 267)	
Na NO ₃	H	3D1-6(a, b, e)	3D1-6	6 32 48 6	1	2	2 19		N stoms at (a). $u_0 = 0.25$
NaH(C2H2O2)2	C.	1	T1-7?	15 9a	1	24	1 38	(279)	į.
NaC H,Oz v. Table C'.		1			1	ł	1		1
	c.				1	İ	1	(202)	Apparently very complicated
NaCd ₂		6D1-4(a or b, d, f, etc)	6Di-4	5 40	8 81	2	1	(10)	u _{Al} <0 10; O positions not kno
NaSb(AlO ₃) ₃	Н.	!	5471· T		1	1	0.00	(78, 78, 132, 273)	1 "
3 KF	С	NaCl(4h, 4e)		5 33	1	4	2 53		0 14 + 0 01 ML- 77 .
KHF ₁	Tet.	4D1-18(a, h)	41h-18	5 67	6 81	4	2 35	(40)	$u_p = 0.14 \pm 0.01$. The H at
-	1	1		1	1		1	1	may have arrangement 4D
	l	1		1	1	1	1	1	(d)
	1	N. OV. (1		6 280	1	4	1 987	(44, 75, 78, 120)	1 ' '
KCI	C.	NaCl(4b, 4c)						(44, 75, 120, 273)	1
KBr	C	NaCl(4b, 4c)		6 578	1	1	2 760	(69, 70, 71, 78, 78	
KI	C.	NaCl(4b, 4c)		7 052		4	3 124		
	1			1		1	1	120, 132, 273, 262	'·
	1	1			1	1	1	366)	1
VI.	M.			9 36	1	4	1	(69, 70, 71)	P. U. C. bo and co approx
KI.		1		1	į.	1	1	1	and β approx. = 90°.
		1	atv: +a	5 73	7 42	4	2.70	(192, 276)	bo = 10.01
K ₂ 8O ₄	R.	1	2Di-16			4		(356)	u = 0135
KN ₂	Tet	4D1-18(a, d, h)	4Di-18	6 094	7.056	1	2.045		
KH ₂ PO ₄	Tet.		4d-12	7 40	6 96	4	2.36	(342)	K atoms at 4d-12(a); P
	I	1 i	•	1	1	1	1 53		4d-12(b)
								(37, 72, 73)	

Chemical symbol	Crystal			Unit cell, a	se, Å		Calculated	•	
Comment symbol	system	Structure type	Space group	ae	Co	М	density	Lit.	Additional data and remarks
KCNO	Tet.	l i		6.07●	7.030	4	2.06s	(396)	Structure similar to KN.
KH,C,O,CI	R.	1	2D-16(?)	7.62	10.95	8	}	(398)	be = 15.74
(H chloromaleste)				Į.	1		ĺ		
KCallyOn a Table &'.	_				1	1		i	1
Ka6nCla	C.	(4b, 8e, 24a)	Oi-5	9 96	İ	4	2 74	(92)	$u_{\rm cl} = 0.24s$ and < 0.25
K ₂ Zn(CN) ₄	C.	(8/, 16c, 32b)	O ₁ -7	12 54		8	1 66	(93)	$u_{\rm C} = ca. 0.34, u_{\rm N} = ca. 0.4$
				1				1	$\frac{1}{2}(u_c + u_w) = 0.37$
K ₄ Cd(CN) ₄	C.	(8/, 16c, 32b)	Oi-7	12 84	Ì	8	1 84	(93)	$\frac{1}{2}(u_C + u_N) = 0.37$
KaHg(CN)4	c	(8f, 16c, 32h)	O ₁ -7	12 76	1	8	2 43	(93)	$\frac{1}{2}(u_C + u_N) = 0.37$
K ₂ PtCL	Tet.	4D1-1(a, e,))	4D1-1	6 99	4 13		3 40	(98)	0.233 < u _{cl} < 0.238
KaPtCla	C.	(4b, 8e, 24a)	O1-5	9 7		4	3 5	(219, 220)	
•		(,,	00			•		(4.10,420)	Assigned value, u _{Cl} = 0 16, prol
K ₂ PdCl ₄	Tet.	4D1-1(a, e, j)	4D1-1	7 04	4 10		2 65	(98)	ably incorrect
KCr(80a)s 12HaO	c	(46, 4c, 84, 84, T)-6	Tı-6	11 98	1 10		1 97	(248)	u _{cl} = 0.23
		(24))	11-0	11 98	1 1	•	1 97	(240)	
KAI(8O4)a, 12Ha()	C	(46, 4c, MA, MA, T)-6	T)-6	12 0a		4	1 81	(186, 237, 248, 282)	
		(24))				- 1		(,,,	
KAlSig()e (adularia)	М		2C ₁ -3	8 57	7 23	4		(314)	b ₀ = 13.01, β = 116° 7′ Com
KLi8O4	.,		_		1 1	}			position unknown
пыни	H.		6C 6?	5 13	8 60	2	2 39	(330)	P U. C. An atomic arrangemen
RbF	C†	CaCl(1a, 1b)?		3 667					is suggested
RbCt	C.	Na(1(46, 4c)		6 571	1 1	17	2 812	(78, 209, 294)	Structure probably incorrect
RbBr	c c	Na('1(4b, 4c)		6 86a		•	3 369	(78, 102, 273, 366) (74, 78, 120)	
RЫ	C.	NaCl(4b, 4e)		7 32 5		4	3 566	(77, 78, 120, 273)	
Rb ₀ 8O ₄	R.	1	2Di-16	5 95	7 78	4	3.66	(192)	$b_0 = 10.39$
CaF CaCl	C.	Na('l(4b, 4c)		6 01		4	4 62	(78, 209)	10.35
CaBr	C. C.	C#C1(1a, 1b)	O ₁ -1	4 110		1	3 999	(78, 85, 120)	
Cal		CeCl(1a, 1b)	Oi-1	4 29		1	4 45	(77, 78, 273)	
Cala	R.	CoCl(1a, 1b)	O ₁ -1	4.562		1	4 514	(69, 70, 71,75,78,273)	
CeClaI		3D1-5(a, b, c)	3D1-5	6 82	11 01	4	4 51	(177, 178, 179, 328 ₎	bo = 9.9s
CaBral	R.	0101-01 4 , 7, 17		5 46; 70° 42′		1	3 88	(246)	I probably at (b); $u_{C1} = 0.31$
CastO ₄	R.		2D1-16	6 57	10 66	4		(177, 178, 179, 325)	bo = 9.18
Tourmaline	H.		2D1-16 3e-1	6 22	8 20	4	4 30		$b_0 = 10.8s$
			3e-1 3e-2	16 2a	7 26	j	1	(152)	P. U. C. Composition unknow
R'AlSigOs and R"AlsSigOs T	l'ri. and M	Į				1	i		
					1	- 1		(116)	Unreduced powder- and Laue
						1		ľ	photographs have been prepared from various feldspars

C-Table.—The C-Arrangement. See also Table C' infra

Chemical	Name	Crystal	Um	t cell, size	, À		Calculated	1	
formula		system	a.	b ₀	Co	M	density	Lat.	Remarks
CH4N ₁ O	Urea	Tet	5 63		4 70	2	1 33	(25, 178)	Space group 4d-3
C1H1O4	Oxalie acid	R	6.46	7 79	0 02	4	1 96	(315)	
C _s H _e	Ethane	H	4 46	l	8 19	2	0 701	(349)	Space group 2Di-15
		l		1	"	-	0.00	(333)	C atoms probably at 6Di-4(f) with
C.H.N.O	N-Methylurea .	R.	5 63	5 64	4 70	4?	1	(171)	u = ca. 0 10 Temperature not stated
C ₁ H ₁ NO	Acetaldehyde ammonia	И.	8 18, a =			6	i	(171, 316)	Space group 2D-4?
	1	1	84° 50′	İ	1	v	ŀ	(,,	Space group 3Di-5?
DaHeOe	Ozalic acid dihydrate	M	6 05	3 57	11.0	2	1.68	(315)	10
AHAN1O	1, 2-Dimethylurea	R	4 53	10 9	5 14	2	1.08	(171)	Space group 2Ci-5. \$ = 106° 12'
C.H.O.	Maleic anhydride	R	6 58	11 48	5 90	4		, ,	Space group 2e-7?
CaH1Oa	Acetylenedicarboxylic acid	M?	7.88	9 04	6 62	4	1.44	(25)	P. U. C. S. P
AHANIO:	Iodosuccinimide	Tet	6 29	3 01	15 5a	4		(25)	8 - 111° 6'. P. U. C. S P
	1	1			10 08	•	2.41	(388)	P. U C. Space group 4C-2 and
'.H.O.	Succinic anhydride	R	6 95	11 64	5.41				4C-47
AH ₁ O ₁	Maleic acid .	M	7 49	10 14	7.12	4	1 51	(296)	P. U C, cf. (28)
H.NO.	Succinimide	R	7 50	9 60		4	1 46	(25, 299)	β = 117° 7'. Space proup 2Ci-5(?)
H ₄ O ₄	Fumaric acid	T.	7 56	15 00	12.75	8	1.42	(296)	P. U.C. Space group 2Di-1?
AH ₀ O ₄	Succinic acid	M	5 07	8 92	6.20	6		(399)	$\alpha = 90^{\circ} 40'$, $\beta = 88^{\circ} 30'$, $\gamma = 89^{\circ} 48'$
aHeOs	dl-Tartaric acid.	Tri	14 82	9 74	5 53	2		(294)	β = 91° 20'. P. U. C., cf (25)
		1	-1 02	17 /4	4.99	4		(17)	$\alpha = 82^{\circ} 20'; \beta = 122^{\circ} 56'; \gamma = 111^{\circ}$
H ₀ O ₀	d-Tartario acid.	M	7.70		1 1				52'. P. U. C.
HaNaO1	Pentacrythritol tetramirate	Tet	13.2	6 04	6 20	2	1 76	(10)	$\beta = 100^{\circ} 17', cf (28)$
aH 12Ot	Pentaerythritol.	Tet.	6 16		6.66	4	1 80	(363)	Space group 4Di-7
aHaNaOa	o-Dinitrobensene	M.	7 95		8.76	2		(28, 176, 308)	Space group 4e-9
H ₄ O ₂	Quinone	M.		13 0	7.45	4	1	(**)	$\beta = 112^{\circ} 7'$. P. U. C.
Ha	Bensene.	R.	11 40	6 43	6.85	4	1 40	(25)	β = 93° 20′. P. U. C., S. P.
H ₀ O ₁	Resortinol .	R R	9 76	7 39	6.85	4	104	(64, 101, 378)	P. U. C., measurements at -20°C
H ₀ O ₂		M	9 56	10 28	5 64	4	l	(52, 25)	P U C., cf. (25)
	Hydroquinol	H	13 58	5 22	8 13	4		(53)	$\beta = 107^{\circ}$. P. U. C.
C(#04)x	Cellulose and starch		10 92		7 55	6	1 39	(25)	P. U. C., Latter S. P.
I POP / A	Commisse and starch	Lowder	photographs we been sug	have be	en obtaine	d and	possible	(124, 224)	= . = .

Chemical	Name	Crystal	Un	it coll, size	. λ		Calculated		
formula	<u> </u>	system	G e	b.	٠,	М	density	Lit.	Remarks
CeH18Ne	Hexamethylenetetramine	C.	7.02		1	2	1.334	(100, 112)	u _N = ca. 0.12, u _C = ca. 0.23s. Strue
	100.30	_		1	1	1	1		ture type (8a, 12a); space group To-
СьНыОь	d(l)-Mannitol	R.	10 36	8 1	4 58	2	1.55	(27)	P U.C
C ₁ H ₀ O ₂	Benzoic acid	M.	5.44	5 18	21 6	4		(88)	B = 97° 5', P U C.
C ₄ H ₇ NO ₄	Ammonium hydrogen fuma-	T.	7 00	7 44	6 56	2		(386)	$\alpha = 107^{\circ} 1', \beta = 117^{\circ} 58', \gamma = 69'$
C.H.CIN:O.	Ammonium chlorofumarate.	M.	9 30	6 70	6 73s	2	1 1	(398)	β = 108° 25′, Space group 3C-2(?).
C1H4O4	Salicylic acid .	M.	11 5a	11 22	4 93	1	1.58	(55)	8 = 91° 22′. P. U. C
C1H10Os	a-Methyl glycoside .	R.	10.80	14 60	5 61	1	1.46	(85)	P U C
C.H.O.	o-Phthalic anhydride	R	7 74	13 60	5 86	1	1.54	(2.5)	P. U. C., 8. P.
C ₆ H ₆ O ₆	o-Phthalic acid	M.	9.33	7.13	5 10	2	1.60	(25) of (81)	β = 94° 86'. P. U. C. S. P.
CaH 10Os	Metaldehyde	Tet.	10 36	4.10	1	8	1	(171, 316)	Space group 4C-5?
C.H.O.	trans-Cinnamic acid	M.	11 6s	14 10	4 26	ا لا	1 40	(28)	β = 98° 86′. P. U. C., S. P.
CeH10Os	Hydrocinnamic acid	M	12 9e	9 20	6 98	1	1 23	(28)	β = 108° 86'. P. U C, S. P.
CieHe	Naphthalene .	M.	8 34	5 98	8 68	2		(83, 67)	β = 122° 44′. P U. C., cf. (28)
C10H0O	a-Naphthol	M	13 1	4.9	13 4	4	1 22	(63)	P. U. C. 8 = 117° 10'
C1eH O	8-Naphthol	M	11.70	4 28	17 4	1	1 22	(83)	P U. C. 8 = 119° 48'
CuHie	Acenaphthene	R.	8 32	14 18	7 26	1	1 19	(63)	P. U. C.
C18H10N8	Asobensene	M	12 50	5 28	8 38	2	1 23	(26)	8 - 110° P. U. C.
CuHnNs	Hydrazobenzene	R.	11 10	9.93	9 33	4	1 17	(28)	P U. C., 8 P.
CuHmOu	Sacoharose.	M	10 6s	8.70	N ()o	2	1 57	(27)	8 - 105° 44′ P. U. C.
C12H24O2	Lauric acid	Tet.?	28.3		11 4	24	0.86	(28)	P U C., S. P. See Table C'.
C14H4O1	Anthraquinone .	R	12.04	15 04	2 69	2	1.40	(28)	P U C, 8, P.
CuH10	Anthracene	M	8 58	6 02	11.18	2	1 25	(83, 87)	8 = 125°. P. U. C. of. (28)
CiaHio	Phenanthrene	M.	9.56	6 72	7 55	2	1 18	(25)	8 = 92°. P. U. C., S. P.
CidHipOn	Benzil	11	8.15		13 46	3	1 41	(27)	P U, C.
CiaHis	Stilbene	M	9 6	8.9	12.6	4	1 25	(27)	8 = 118° 40', P. U. C.
СиНи	Dibensyl	M	12.7	6.1	7.4	2	1 18	(27)	8 - 119°. P. U. C.
CuHmOs	Myristic send	Н?	57 4		11 4	72	0.83	(25)	P U C., ace Table C'.
CuH ₁₀ N ₀ O ₀	Indigotin	H.	20 2		12 16	12	1 20	(28)	P U C, Measurements also on S. P.
C10H10O1	Palmitic acid	H.?	60.0	i	11 0	72	0 88	(25)	P. U. C., see Table C'.
СыНыОв	Elaidic acid	Tet?	26.5	1	10	16	0.98	(25)	P. U. C. S. P., see Table C'.
C10HasO2	Stearic acid	H.7	62.0	1	10.7	72	0.94	(25)	P. U. C., S. P., see Table C'.
CuHu	Triphenylmethane	R.	14.52	25.62	7.42	4	0.04	(23, 26) cf.	A. O. O., O. I , see I mule W.
		"				1		(177, 178)	
C10H16O	Triphenylcarbinol	H.	16.5	1	8.8	6	1 23	(27)	P. U. C.
CmHnOs	a, a'-Distearin.	н,	81.5	1	10.8	48	0.82	(25)	P.U.C.S.P

C'-TABLE.—LONG CHAIN COMPOUNDS Arrangement by Classes

1. Aliphatic Hydrocarbons (320, 401)

Formula	Maximum spacing, Å	Spacings of broad lines, Å									
	d_1	<i>d</i> ₂	d ₃	d4	d,	d ₆	d ₁				
C17H36	24.3	4 25	3 93		2.54	2.32					
C18H 1967	25.9		4.0			ł					
C18H18	23.9	4 58	3.80	3.66	2.61		2 05				
C19H40	26.9	4 22	3 84		2 52	2 25					
C20H4201	28.0		39								
C20H42B	26.2	4.63	3.82	3.61	2 59	2 12	2 03				
C21H44	29.45	4.17	3.77	3 01	2 50	2 25					
C11H4	32.2										
C24H 80	33.05	4 18	3 80	3 02	2.50	2 25					
C27H 16	37.1	4.17	3.77	3 01	2 51	2 25					
C11H64	43.0	4.14	3 74	2.99	2.49	2 21					
C16H72	47.7										

Formula	Max. spacing	Formula.	Max. spacing
C22H46(?)	30.6	C30H62	40 4
C24H 80	32.9	$C_{21}H_{64}$	41 6*
C26H42	34.3		42 9†
C26H24	35 6	C12H66	42.7
C28H44	37.7	C34H70	45.3
C29H60	39 4		1

Specimens for (320) pressed, those for (401) melted on glass plates only.

† Pressed.

2. Aromatic Hydrocarbons

 $C_{14}H_{42}$, Octadecylbenzene, $d_1 = 49.2 \cdot (225)$

3. Aliphatic Acids

a. Monobasic Maxi-Broad line spacing, mum Formula Name īāt. spacing, Å $d_1 \mid d_1 \mid$ d_4 d, d_1 CH₂O₂ (309) Formie 5 19 C2H4O2 Acetic 6.66 (309) C₁H₆O₂ Propionic 6.75 4.03 3.43 (309) 3.45 (309) C4H4O2 Butyric 9.65 4.093.65 (309) C.H 10O2 Valeric 10.1(?) 3.47 (309) C6H12O2 Caproic 14.6 4.143.65 4.29 3.75 3.97 3.49 4.14 3.65 3.48 C7H14O2 Heptoic 16.4 (309) (309, C8H16O2 Caprylic 19.0 354) C9H18O2 Nonylic 22.9 4.22 3.71 3.97 3.48 (309) C10H20O2 Capric 23.3 4.143.73 (354, 300, 274) C11H22O2 Undecylic 25.8 (188) C12H24O2 Lauric 27.0 4.11 3.68 (184, 354) C14H28O2 (184, Myristic 32.2 4.12 3 72 354) C16H20O2 Pentadecylic 36.2 4.00 3.76 (185) 4.08 3.65 (184, $C_{16}H_{12}O_{2}$ Palmitic 34.7 354) 4.05 3.77 C17H14O2 Margaric 39.2 (188) 36.2(?) (188) C18H14O2 Oleic C18H14O2 Isoleic 35.9 (185) C18H14O2 Elaidic 48.3 4.033.65 (188)

2	Alimbatic	Anida	Monohavio	-(Continued)

Formula	Name	Maxi- mum spac-	muth Broad line spacing					
		$ \operatorname{ing}_{l_1} \hat{\mathbf{A}} $	d_2	d,	d_4	ds	ı	
C18H16O2	Stearie	38.7	4 05	3 62	-	1 1	(184,	
					. 1	1 1	354)	
C22H42O2	Erucic	46 3	4 22	3 72	. 1		(185)	
C22H42O2	Brassidic	59-9	1 25	3.72	. 1	1 1	(185)	
C12H44O2	Behenic	47 8	4 10	3 66		1	(184)	
		b. Dibasic	•					
C.H.O.	Succinic	4 5	Ī	1	1		(354)	
C4H10O4	Adipic	7.0			1		(354)	
C7H12O4	Pimelic	7 6		1	-		(354)	
C4H14O4	Suberic	9 3)	1	(354)	
C ₆ H ₁₆ O ₄	Azelaic	9 6				i	(354)	
C ₁₀ H ₁₁ O ₄	Sebacic	11 4			1	1	(354)	

4. Salts

Formula	Name	Maxi- mum spacing Å Broad l			e spacin g	Lit
		d_1	1 12	d_3	$d_4 \mid d_6$	
PbC11H11O4	Caproate	20 0	i i		1	(355)
PbC16 II 10O4	Caprylate	25 4	1 1			(355)
PbC20H28O4	Caprate	30-6	1			(355)
PbC24H46O4	Laurate	35.8				(355)
PbC ₁₀ H ₁₄ O ₄	Myristate	41.2	1 1	1		(355)
PbC12H12O4	Palmitate	46 3		Ì		(355)
PbCHH404	Oleate	37.5;	1 1			(355)
	1	29 8				` '
PbC _H H ₆₀ O ₄	Elaidate	50 0	1 1			(355)
PbC ₈₆ H ₇₀ O ₄	Stearate	51 3				(355)
NaC11H11O2	Laurate	33.5	1 22	1.88		(208)
NaC14H27O2	Myristate	38 5	4 18	4.9		(208)
NaC16H11O2	Palmitate	43 5	4 15	4.9		(208)
NaC ₁₈ H ₂₂ O ₂	Oleate	43 5				(63)

Similar results obtained with K and NH4 oleates

5. Esters

C ₁₇ H ₄₄ O ₂	Methyl pal- mitate	22.0	4 07 3 72	(225)
C ₁₈ H ₁₈ N ₂ O ₈	Ethyl p-az- oxybenzoate	16 2	$d_1 = 19.9$ in the "smectic" state	(321)
C ₁₈ H ₁₆ O ₁	Ethyl palmi- tate	23 2	4 07 3 67	(225)
C ₁₉ H ₂₆ O ₂	Methyl stear- ate	24 0	1 07 3 74	(225)
C ₂₀ H ₄₀ O ₂	Ethyl stear- ate	25 2	4 113 69	(225)
C24H46O2	Octyl palmi- tate	30.4	4 16 3 72	(225)
C12H44O2	Cetyl palmi- tate	40-4	4 05 3 69	(225)
C44H104O6	Glycerol mar- garate	48 0		(355)

6. Ketones (319)

Formula	Name	Maximum spacing Å
C ₁₂ H ₂₆ O	Di-n-hexyl	18 7
C16H20O	Methyl-n-tridecyl	42.4
$C_{17}H_{34}O$	Methyl n-pentadecyl	47.6
C ₁₈ H ₂₆ O	Methyl n-hexadecyl	50.0
$C_{18}H_{36}O$	Ethyl n-pentadecyl	25.2
$C_{18}H_{36}O$	Hexyl n-undecyl	25.2
$C_{19}H_{28}O$	Methyl n-heptadecyl	52.9
$C_{19}H_{38}O$	Propyl n-pentadecyl	26.3
C20H40O	Ethyl n-heptadecyl	27 3
C21H42O	Propyl n-heptadecyl	28.9
$C_{22}H_{44}O$	Hexyl n-pentadecyl	31.1
C22 H46O	Di-n-undecyl	31.6
C24H48O*	Hexyl n-heptadecyl	33.6
$C_{27}H_{b4}O$	Di-n-tridecyl	37.0
C21H62O	Di-n-pentadecyl	41.1
('26H70()	Di-n-heptadecyl	47.2

*A few orders of 30.8Å also present.

7. Phenols (225)

C22H28O	p-Hexadecyl	46.5
C24H42O	p-Octadecyl	51.3

TABLE D.-ALLOYS

(a) Non-ferrous. Standard Arrangement. All Compositions in Atomic %

Pb-Sn.—0 to 3.6% Sn alloys are F.-c. cubic (like Pb) with a_0 decreasing to 4.931Å, taking a_0 for Pb as 4.942Å. 10% – 95% Sn alloys are mixtures of the Pb-like and Sn structures. 95% – 100% Sn alloys show no measurable distortion in size or shape of the Sn unit cell (206).

Hg-Sn.—The structure varies, as follows, with the atomic % of Hg: 0 to ±2%, Tet.-Sn structure I; 2% I, with traces of "Hexagonal" amalgam, (composition unknown) structure II; 5%, I and II; 6%, trace of I with II; 6 to ±17%, II; ±17 to 33%, II and liquid alloy (229).

Hg-Pb.—A 20% Hg alloy had the F.-c. cubic structure (4b) of Pb, with a unit cell length 1.6% less than that of Pb (229).

Hg-Zn.—Two structures, the hexagonal Zn structure (d), and an "hexagonal" structure belonging to an amalgam of unknown composition. The relative intensities of the patterns of these two phases are as follows (229):

Atomic % Hg	0	10	20	35
Zn structure	strong	medium	weak	absent
"Amalgam" structure	absent	medium	strong	strong

Hg-Cd.—An 18% Hg amalgam gave a pattern substantially the same as that of Cd; 37 and 50% Hg amalgams yield a different pattern (229).

Cu-Si.—Though Si has the smaller atomic volume the unit cube of Cu which has dissolved Si is larger than that of pure Cu. No data available (84).

Cu-Sn.—Figure 12a. Black circles: metal melted in air; open circles: metal melted in vacuum (18, 372).

Cu-Zn.—Figure 13. Unless otherwise stated on the figure these data are from (198). Cf. (12, 199, 258, 375, 371) which gives a different structure for γ -brass.

Ag-Sn.—Solution of Sn increases the Ag unit though its atomic volume is less. No data available (84).

Ag-Zn.—The observed phases are the same as those for Cu-Zn alloys (371),

Phase	Composi- tion wt. % Zn	Symmetry	Struc- ture	a ₀ Å	Ȱ	No. atoms in unit cell
B	38 25	Cubic	(1a, 1b)	3.156		2
·γ	50 3	Cubic		9.327		52 37
	∫ 60 5	Hexagonal	Mg-like	2 818	4 456	2
•	78 1	Hexagonal	Mg-like	2 815	4 382	2
ŋ	Hexas	gonal close-p	acked wit	h Zn-li	ke str	ucture

Ag-Cu.—Broken series of solid solutions. Both components F -c cubic (4b) (370).

At. % Cu	0	4	9	2				100	_
a_0	4 06	4	054	03	Superimposed	3	61	3	61
	1		1		patterns of				
	j				Ag and Cu	1			

Au-Zn.—These alloys show all the phases of Cu-Zn alloys and two additional (371).

Phase	Composition wt. % Zn	Symmetry	Struc- ture	a _n Å	Co Å	No atoms in unit cell
β	30 2	Cubic	(1a, 1b)	3 146		2
•	∫ 36 9	Cubic		9 268		52 97
γ	41 1	Cubic		9 223		51.96
	67 5	Hexagonal	Mg-like	2 809	1 377	2
•	₹72 3	Hexagonal	Mg-like	2 809	1 369	2
η	95 0	Hexagonal	Zn-like	2 674	1 887	2
γ' (AuZn ₃)?	50 2	Cubic	9	7 880		32
γ''	1	may	be cubic		1	

Au-Cu.—Figure 12 (18, 145, 361).

Au-Ag.—Data conflicting. Probably an unbroken series of solid solutions, though marked variations from this relation have been reported. Figure 16 (18, 165, 239, 372).

Ir-Os.—A single alloy of unknown composition was found to be C.-p. Hex. (11).

Pd-H.—Data conflicting. One result (295, 376) shows that the Pd unit is swelled by an amount proportional to the quantity of occluded H (79). The other study (164) shows a discontinuous absorption of H in the sense that some crystals may be saturated though others in the same material have not begun to absorb gas. The length, a₀, of the edge of the unit cube of the saturated solution was found to vary between 4.000Å and 4.039Å with values usually not less than 4.023Å.

Pd-Cu and Pd-Au.—Figures 20 and 19 (301).

Pd-Ag.—(15) Figure 17 (165).

Mn-Cu.—67% Cu is F.-c. cubic, like Cu, and has $a_0 = 3.615 \text{\AA}$, taking a_0 for Cu as 3.60Å (18). 70% Cu is said to give $a_0 = 3.70 \text{\AA}$ (200, 384).

Ni-Cu.-Figure 15 (18, 197, 361, 370).

Cr-Ni.—100% to 40% Ni alloys are F.-c. cubic (like Ni) with values of a₀ which change proportionately to the % of Cr added from 3.521Å (for Ni) to 3.576Å (206).

W-Mo.—(67) Said to show an unbroken series of solid solutions. No numerical data available (18). No lines (86) have been found from a 1:1 alloy to indicate the existence of a compound W-Mo (239).

Al-Za.—0 to 20% Zn alloys are F.-c. cubic (like Al), a₀ changing from 4.043Å (for Al) to 4.034Å. 20%—95% Zn alloys show mixtures of cubic Al and hexagonal Zn structures. 95%—100% Zn alloys are C.-p. hexagonal with no measurable distortion from size or shape of the Zn unit cell (206).

Al-Cu.—Figure 14. The data on this figure are from (22, 141, 197, 258)

Al-Ag.—The dissolving of Al in Ag increases the unit cube in the latter, though Al has a smaller atomic volume. No numerical data available (\$4).

Al-Mn-Cu.—Heussler Alloys. Alloy 15.9% Al, 23.9% Mn, 60.3% Cu is said to be F.-e. cubic with $a_0 = 3.70$ Å. Alloys 14.3% Al, 28.6% Mn, 57.1% Cu is said to be a mixture of the preceding structure with a smaller amount of a B.-c. cubic phase having $a_0 = 2.98$ Å (12.227).

Mg-Sn.—0 to 67 % Mg give the superimposed patterns of Sn and Mg₂Sn; 67 - 100 % Mg yield the superimposed patterns of Mg₂Sn and Mg.—No evidence of solid solution (379).

Mg-Pb.-0 to 67% Mg give the superimposed patterns of Pb and PbMg₂; 67-100% Mg yield the superimposed patterns of PbMg₂ and Mg. No evidence of solid solution (370).

Mg-Al.—91.2 % Al is F.-e cubic (1b) with $a_0 = 4.106\text{\AA}$, taking a_0 for Al as 4.05Å. 7.3 % Al is C.-p. hexagonal (d) with $a_0 = 3.151\text{\AA}$, $c = 5.23\text{\AA}$, taking a_0 for Mg as 3.17Å and $c_0 = 5.17\text{\AA}$ (197).

(b) Ferrous Allous

Fe-C Steels. -(1) Austenitic Steels. Structure that of γ -Fe, F.-c. cubic (4b) (250–259)

Composition, wt. %	a, m Å	Remarks
 (1) 1.25 °c C, quenched at 750°C (2) 1.98 °c C, quenched at 	3 601	Contains also martensite.
1100°C	3 629	Contains also martensite.
(3)* 1.34 ° C, 12.1 % Mn, 0.52 ° Si, 0.1 % P	3 621	
(2) quenched at 750°C	3 606	A mixture of austenite and martensite.
(4) 1.18% C, 24.3% Ni, 6.05% Mn quenched		
from 1000°C	3 64	
(5) 0.24% C, 25.2% Ni, quenched from 1000°C	3 56	

* Density calculations thought to indicate that C is present in interstitud solid solution in steel No. (3)

(2) Martensite Steels. Structure that of α -Fe, B.-c. cubic (2a) (19, 122, 250–258).

(=, (/ ·		
(5) Chilled su liquid air	bsequently in	2.8	Partly martensite and partly austenite.
(2)		2 9	Martensite lines very dif- fuse.
(1)		2.8	8 Martensite lines very dif- fuse.
(6) 0.80 % C q from 750°C		2.8	9 Martensite lines very dif- fuse.
(7) 0.80% C, 0.35% Mn	0.14% Cr, 0.19% Si	2.8	51 Broad lines, less intense than from Fe.
(8) 1.31 % C, 0.24 % Mn		2 8	Density calculations from this steel thought to indicate that C isomorphously replaces Fe unless martensite is annealed when it is a mixture of α-Fe with cementite.

Fe-Si.-(207, 252, 389).

Weight % Si	0-15	17-30	33	40		75-100
Phases	Fe	Fe + FeSi	FeSi	FeSi + FeSi:	FeSi ₂	FeSi, +

Fig. 12. - The diffraction data on Cu-Au alloys.

Fig. 12a.- The diffraction data on Cu-Sn alloys.

Fig. 13.—The diffraction data on brasses.

Fig. 14.—The diffraction data on Cu-Al alloys.

Fig. 15.—The diffraction data on Cu-Ni alloys.

Fig. 16,—The diffraction data on Ag-Au alloys.

Fig. 17.-The diffraction data on Ag-Pd alloys.

Fig. 18. - The diffraction data on Fe-Ni alloys.

Fig. 19.—The diffraction data on Au-Pd alloys.

Fig. 21a.—The diffraction data on solid solutions of the alkali halides

Fe-Mn.—These alloys are said to have the following structures

No numerical data available (18).

Atomic % Mn.	0-30	30 60	60 100
Structure	B -c. cubic (2a)	Fc. cubic (4b)	Complex Mn

Fe-Co.—No numerical data available (12).

Weight % Co	0-80	85	90-98	98-100
Structure.	Bc. cubic (2a)	Bc.(2a) with Fc. (4b)	Fc. cubic (4b)	F -c (4b) with C -p, hex

Fe-Ni.—The best available data are shown in Fig. 18—The fused alloys were swaged, drawn and rolled into thin tapes. Spacings from photographs of these specimens without further treatment are shown as open circles, results after (1) annealing at 900-950°C followed by slow cooling, black circles; (2) after a additional heating to 600°C followed by rapid cooling in the air, crosses; and (3) after cooling for a time in liquid air following (1), triangles (12, 168).

Fe-Cr.—Interpretation of data uncertain (18).

Fe-W and Fe-Mo.—It is said that Fe dissolves a few atomic percents of each of these metals without apparent alteration in the size of the unit cell. In each case a 1:1 compound is formed. No numerical data available (18).

Fig. 20.—The diffraction data on Cu-Pd alloys.

Fig. 21b,---The diffraction data on solid solutions of the alkali halides.

T-Table.—The Positions of X-ray Diffraction Bands from Liquids

Angle of Deviation and Wave Length, λ, of X-rays Used

Liquid	A		N ₂	O ₂	
Angle, deg	13 0; 18.9	27	0 712	12 5; 19.5	27
λ, in Å	0 712	1 54		0 712	1.54
Lit .	(304)	(303)		(303)	(303)

Liquid	Hz	()	CS ₂	исоон	CH ₂ CHO Acetaldehyde
Angle, deg	13.4 0 712 (304)	29	13 2	24	22.7
λ , in \mathring{A}	0 712	1 54	0 712	1 54	1 54
Lit .	(304)	(303)	(304)	(303)	(373)

Liquid	Съньон	C ₄ H ₄ O ₂ Butyric scid	C4H4O2 Ethyl acetate	O _z ((₄ 11 ₄ '))
Angle, deg λ, in Å.	$\frac{22}{1.54}$	20 7; 36 5	20 7	19 1 54
Lit	(303)	(373)	(373)	(303)

Liquid	C ₆ H ₆		C ₄ H ₄ CHO Benzaldchyde	
Angle, deg	8 5 18	23 3	19 3; 44 4	
λ, m Å	0 712 1 54	1 54	1.54	
Lit	(301) (302, 303)	(373)	(373)	

Liquid	СъНъ	C₃H₁₂ Mesitylene	C ₁₄ H ₁₂ O ₂ Benzyl benzoate
Angle, deg	8 1	4 1; 6 2	18 3; 42 7; 65 8 1 54 (373)
Angle, deg λ, in Λ	0 712	0 712	1 54
Lit .	(301)	(301)	(373)

J-Table. - Data on Solid Solutions of Salts Alkali Halides .-- For data on the solutions NH4I-NH4Br, NH4I-KI, NH4Br-KBr, RbCl-NH4Cl, NH4Cl-KCl, KCl-RbCl, KCl-KBr, CsCl-NH₄Cl, NH₄Br-NH₄Cl, RbCl-NH₄Cl see Fig. 21 (120). For additional data on KBr-K(1 see (387, 388).

AgCl-NaCl (387),-Broken series of solid solutions. Quenched preparations: Both patterns present together.

	Composition mol % AgCl	
Annealed	100	5 53
	75	5.51
	50	5 57
	1	

AgCl-AgBr (402) - Both structures like NaCl (4b, 4c). Unbroken series of solid solutions

Composition mol % AgCI	ao Å
0	5 77
20	5.72
40	5-68
50	5 65
60	5 63
80	5 59
100	5 54

AgBr-AgI (402),—Broken series of solid solutions

C			a_0		
Com- position mol ***	l .	nd slowly oled	Fused and	quenched	Precipi- tated
AgI	Structure (4b, 4c)	Structure (4b, 4d)	Structure (4b, 4c)	Structure (4b, 4d)	Structure (4b, 4c)
0	5 76s		5.768		5 768
10	5.814		5 816		5 806
20	5 842		5 851		5 84
30	5 86		5 876		5 878
40	5 896	(6 47)	5 90%		
50	5 912	(6.47)	5 932		
60	5 918	6 47	5 96	(6.48)	
	6 014				i
70	5 946	6 48	5 956	6.48	1
	5 994				1
80	5.916	6.47	(5.892)	(6.48)	
90		6.472	5.898	6 483	1
95		6 481		6 487	
100		6 49 3		6 493	

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Allison. 12. 8: 261; 24. (2) Alsen and Aminoff, 207, 44: 124; 22 (1) Aminoff, 207, 41: 407; 19 (4) Aminoff, 94, 56: 495; 21 (5) Aminoff, 94, 56: 506, 21. (6) Aminoff, 94, 57: 180; 22. (7) Aminoff, 94, 57: 204, 22. (8) Aminoff, 207, 44: 444; 22. (9) Aminoff, 94, 58: 203; 23.
- (10) Aminoff, 94, 60: 262; 24. (11) Aminoff, 94, 56: 510; 21. (12) Andrews 107A: 390, 23 (1) Astoury, 0, aven. 210, 20. (1) Dam, 00, ac 21, 578, 23 (1) Bain, 80, preprint; Feb, 24.
 (20) Bartlett and Laugmur, 1, 48: 84; 21. (21) Beckenkamp, 95, 110: 200, 20
- Bartlett and Langmur, 1, 48: 3+; 21.
 (**) Becker, θδ, 15: 303; 23.
 (**) Becker, θδ, 24: 65; 24.
 (**) Becker and Ebert, θδ, 16: 165; 23.
 (**) Becker and Jancke, 7, 99: 242; 21.
 (**) Becker and Rose, θθ, 17: 351; 23.
 (**) Becker and Rose, θθ, 16: 369, 23.
- Becker and Rose, θθ, 17: 351; 23. (2*) Bocker and Rose, θθ, 14: 300, 23 (2*) Berndt, 211, 38: 1,21 (2*) Bul and Kolkmeijer, 176, 18: 1264, 18 (2*) Bul and Kolkmeijer, 64P, 21: 405, 19 (2*) Bul and Kolkmeijer, 64P, 21: 494, 501, 19 (2*) Buyeset, 70, 42: 859, 23. (2*) Biyeset and Karssen, 64P, 28: 1365; 21 (2*) Biyeset and Karssen, 64P, 28: 27: 22 (3*) Buyeset and Karssen, 70, 42: 880; 24. (2*) Bohlin, 8, 61: 421; 20 (2*) Bozorth, 1, 44: 317; 22. (2*) Bozorth, 1, 44: 1066; 22. (2*) Bozorth, 1, 44: 317; 24. (2*)
- 44: 2232, 22.
 (49) Boxorth, f. 48: 1621; 23.
 (41) Boxorth, f. 48: 1621; 23.
 (42) Bradley, β. 47: 657; 24.
 (44) Bragg, δ. 89: 248; 13.
 (45) Bragg, δ. 89: 248; 13.
 (45) Bragg, δ. 89: 248; 13.
 (45) Bragg, δ. 89: 248; 13.
 (45) Bragg, δ. 89: 248; 13.
 (46) Bragg, δ. 89: 551; 15.
 (47) Bragg, δ. 89: 561; 15.
 (47) Bragg, δ. 89: 647; 20.
 (48) Bragg, δ. 89: 647; 20.
 (49) Bragg, δ. 89: 647; 20.
 (49) Bragg, δ. 89: 647; 20.
 (49) Bragg, δ. 89: 647; 20.
 (48) Bragg, δ. 89: 647; 20.
 (49) Bragg, δ. 89: 647; 20.
 (48) Bragg, δ. 89: 167, 23.
 (48) Bragg, δ. 111; 532; 23.
 (47) Bragg, δ. 89: 167, 23.
 (48) Bragg, δ. 108A: 16; 24.
 (49) Bragg and Bragg, δ. 108A: 16; 24. Bragg, 58, 91: 557, 13.
- (60) Bragg and Bragg, 5, 89: 277; 13. (61) Bragg and Bragg, X-rays and Crystal Structure, 4th ed., (London, 24) (62) Bragg and Morgan, 5, 104A: (**) brings and Morgan, 5, 1042. (437, 23 (*4) de Broghe and Friedel, 34, 176; 738, 23. (*4) Broomé, 33, 24; 124, 23 (*5) Burdick and Ellis, 107, 3: 644; 17. 1, 39; 2518, 17 (*6) Burdick and Owen, 1, 40; 1749; 18. (*7) Burger, 208, 2; 114; 22 (*8) Clark, 1, 46; 372, 24. (*8) Clark and Duane, 2, 30; 85; 22.
- (79) Clark and Duane, 28, 71, 485; 22.
 (79) Clark and Duane, 28, 71, 455; 23.
 (71) Clark and Duane, 28, 71, 455; 23.
 (72) Cooper, 58, 107; 745, 21.
 (73) Cooper, 58, 110; 544; 22
 (74) Davey. 2, 17: 402; 21 (78) Davey, 2, 18: 102; 21 (78) Davey, 2, 19: 248; 22 (77) Davey, 2, 19: 538; 22 (78) Davey, 2, 21: 143; 23 (78) Davey, 2,
- [81] Davey, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] [\$\frac{1}{2}\$] Davey, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] Davey, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] Davey, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] Davey, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] Davey and Wick, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] (\$\frac{1}{2}\$] Davey and Wick, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] (\$\frac{1}{2}\$] Davey and Wick, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] Davey and Scherrer, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] [\$\frac{1}{2}\$] Debye and Scherrer, \$\mathre{\ell}_{2}\$ [\$\frac{1}{2}\$] [\$\frac{1}{2}\$] (89) Debye and Scherrer, 63, 18: 291, 17
- (**) Debye and Scherrer, 63, 18; 291, 17
 (**) Denmson, 2, 17; 20, 21 135, 132; 54; 21 (**) Dickinson, I, 42; 85; 20
 (**) Dickinson, I, 44; 276; 22 (**) Dickinson, I, 44; 774; 22. (**) Dickinson, I, 44; 1489; 22 (**) Dickinson, I, 44; 2404, 22. (**) Dickinson, I, 48; 958; 23 (**) Dickinson and Friauf, I, 48; 2457; 24 (**) Dickinson and Goodhue, 1, 48: 2045; 21. (**) Dickinson and Pauling, 1, 45, 1466, 23
- (100) Dickinson and Raymond, I, 45: 22, 23. (101) Eastman, I, 46: 917; 24 (102) Espig, 211, 38: 52; 21 (103) Ewald, 8, 44: 257; 14. (104) Ewald, 63, 18: 339, 14 (105) Ewald, 213, 1914: 325. (106) Ewald and Fredrich, 8, 44: 1183, 14 (107) Gerlach, 63, 22: 557; 21 (108) Gerlach, 63, 23: 114. 22 (100) Gerlach, 96, 9: 184, 22
- (14) 22 (149) Geriach, 90, 9: 184, 22
 (119) Gerlach and Paul, 96, 7: 116, 21 (111) Goldschmidt and Thomassen, 214, No 2: 5, 23 (112) Gonell and Mark, 7, 107: 181, 23 (113) Greenwood, 3, 48: 054, 24 (114) Gross, 189, 1919: 201 (115) Gross and Gross, 190, 48: 113, 23 (114) Hadding, 215, 117: No. 6, 20 (117) Hassel and Mark, 96, 27: 89; 24 (115) Hassel and Mark, 96, 27: 89; 24 (115) Hassel and Mark, 96, 23: 269; 24. (115) Hassel and Mark, 96, 25; 317: 24.
- (120) Havighurat, Mack and Blake, 1, 46: 2368; 24. (121) Hedvall, 18, 8: No. 11: 22. 93, 130: 327; 22. (122) Hendlhofer, 2, 34: 426; 24. (132) Hentschel, 189, 1923: 609. (124) Hersog, Jancke and Polanyi, 96, 3: 196, 343, 20. (124) Holgersson, 95, 126: 179; 23. (124) Hull, 2, 9: 84; 17. (127) Hull, 2, 9: 564; 17 (128) Hull, 2, 10: 661; 17. (128) Hull, 197, 8: 470: 17.
- (130) Hull, #, 18: 292; 19 (131) Hull, #, 14: 540; 19 (138) Hull, 119, 38: 1171; 19. (133) Hull, \$, 18: 545; 20. (134) Hull, 186, \$2: 227; 20. (134) Hull, \$, 17: 42; 21. (134) Hull, \$, 17: 571; 21. (137) Hull, \$, 18: 88; 21
- 148) Hull, \$\psi, 181-182; 21. (1-2) Hull, \$\psi, 181-183; 21 Bijvoet and Karssen, 64P, 23: 644; 21 (148) Kolkmeijer, Bijvoet and Karssen, 96, 14: 291; 23. (149) Kolkmeijer, Bijvoet and Karssen, 96, 28:

- (***) Kolkmeijer, Bijvoet and Karssen, 70, 43: 677; 24. (***) Kolkmeijer, Bijvoet and Karssen, 70, 43: 804; 24. (***) Kulasewski, 211, 33: 81, 21 (***) Kustner and Remy, 63, 24: 25; 23. (***) Lehmann, 94, 66: 379; 24 (***) Leonhardt, 189, 1933: 641. 94, 89: 216; 24. (***) Levi, 69, 1: 137, 24. (***) Levi, 73, 57: 619; 24. (***) Levi, 818, 6: 333, 24. (***) Levi, and Ferrari, 28, 38: 397; 21.
- ann retrati, 22, 33: 516; 24. (161) Levi and Quilico, 36, 54: 154; 24 (163) McKeehan, 197, 8: 254; 22. (163) McKeehan, 197, 8: 270, 22. (164) McKeehan, 19, 50: 82; 22. (165) McKeehan, 1, 20: 424; 22. (165) McKeehan, 1, 20: 424; 22. (165) McKeehan, 1, 21: 334; 23. (165) McKeehan, 1, 21: 334; 23. (165) McKeehan, 2, 21:
- han, 143, 1981 501; 23. (***) McKeehan, 2, 21: 344; 23. (***) McKeehan, 2, 21: 402; 23. (***) McKeehan, 2, 21: 503; 23. (***) McKeehan, 2, 21: 503; 23. (***) McKeehan, 2, 21: 503; 23. (***) Mark and Polyani, 96, 12: 75; 23. (***) Mark and Polyani, 96, 12: 200, 24. (***) Mark, Polyani and Schmid, 2:8, 11: 236; 23. (***) Mark and Weissenberg, 96, 18: 1; 23. (***) Mark and Weissenberg, 96, 18: 1; 23. (***) Mark and Weissenberg, 96, 17: 301; 23. (***) Mark and Weissenberg, 96, 18: 13: 24. (***) Mark and Weissenberg, 96, 18: 13: 24. (***) Mark and Weissenberg, 96, 24. (***) Mauguin, 54, 178: 1331; 23.
- (189) Mauguin, 54, 176: 1483; 23 (181) Mauguin, 54, 178: 785; 24. (182) Mauguin, 54, 178: 1913, 24 (183) Meching, 211, 38: 37, 21 (184) Müller, 4, 138: 2043, 23 (185) Müller and Shearer, 4, 132: 3156; 23 (186) Niggli, 65, 19: 225, 18 (187) Niggli, 94, 56: 213, 22 (188) Niggli, 64, 87: 253; 22 (189) Nishikawa, 219, 8: 199; 15 (199) Nishikawa, 219, 8: 199; 15
- (199) Nishikawa, 219, 9: 194: 17 (191) Nishikawa and Hudinuki, 219, 9 197; 17. (193) Ogg and Hopwood, 5, \$2: 518, 16. (193) Ogg, 3, \$2: 103, 21. (194) Ott, 63, \$4: 200, 23. (195) Ott, 67, 201, 24. (194) Owen and Preston, 67, \$5: 101; 23. (197) Owen and Preston, 67, \$6: 14; 23. (199) Owen and Preston, 67, \$6: 49; 23. (199)
- (200) Patterson, 45, 16: 689; 24
 (201) Patterson, £, 25: 581, 25
 (202) Pauling, I, 46: 2777; 23
 (203) Pauling, I, 46: 2738; 24.
 (204) Pauling and Dickinson, I, 46: 1615; 24
 (204) Pauling and Hendricks, I, 47: 781, 25
 (204) Phebus and Blake, £, 25: 107; 25
 (207) Phragmen, £€0, 1923: 121
 (208) Piper and Grindley, 67, 38: 209; 23
 36: 31; 23.
 (209) Posnjak and Wyckoff, 158, 18; 248, 22.
- (210) Runne, 221, 69: 57, 17. (211) Runne, Hentschel and Leonhardt, 94, 58: 629; 23. (212) Rinne, Leonhardt and Hentschel, 94, 59: 581; 24 (212)
 8t John, 197, 4: 193; 18. (214) St John, 2, 21: 389, 23 (215) Search, 222, 1: 187; 90. (215) Search, 63, 19: 23, 18 (217) Scherrer, 94, 57: 186; 22. (218) Seherrer, B66; 387 (219) Scherrer and Stoll, 93, 121: 310, 29.
- (220) Scherrer and Stoll, 149, 4: 232; 22. (221) Schnebold, 211, 36: 65; 19 (221) Schnebold, 94, 56: 430, 21. (223) Schnederholm, Mikroscopusche Bestimmung von Erzen, p. 196 (Berlin, 22) (224) Schumacher and Lucas, 1, 46: 1167; 24. (224) Scherrer, 4, 123: 3152, 23. (224) Siegbahn and Dolejack, 96, 10: 159; 22. (227) Simon and von Simson, 96, 25: 160, 24. (228) Simon and von Simson, 96, 21: 168, 24. (228) von Simson, 7, 109: 183; 24.
- (220) Slattery, 2, 20; 84; 22. (231) Slattery, 2, 21; 213, 23. (232) Slattery, 2, 21; 378, 23. (233) de Smedt and Keesom, Bill. 117, 24. (234) Sponsier, 225, 5; 757; 23. (235) Stemberg, 2, 21; 22, 23. (235) Stoll, 140, 3; 546, 21. (232) Terada, 219, 7; 292; 14. (243) van Arcl., 64V, 32; 197; 23. 64P, 27; 97; 24. (243) van Arcl., 268, 4; 33. 24.
- 96, 18: 379; 23. (248) Vegard, 8, 84: 146, 18. (248) Weber, 94, 57: 398; 22 (258) Westgren, 140, 108: 303; 21. (251) Westgren, 220, 108: 401, 21. (252) Westgren, 220, 108: 401, 21. (253) Westgren and Lindh, 7, 98: 181; 21. (254) Westgren and Phragmen, 140, 106: 241; 22. (255) Westgren and Phragmen, 7, 108: 1; 22. (246) Westgren and Phragmen, 220, 1923: 449. (253) Westgren and Phragmen, 140, 109: 159; 24. (253) Westgren and Phragmen, 68, 113: 122: 24. (253) Westgren and Phragmen, 68, 113: 12
- (246) Wever, 226, 3: 17; 22. (241) Wever, 226, 4: 67; 22. (242) Wever, 226, 4: 81; 22. (243) Williams, 5, 93: 418; 17. (244) Wilsey, 5, 43: 262, 21. (245) Wilsey, 5, 46: 487; 23. (245) Wilfi, 94, 57: 190; 22. (247) Wyckoff, 0. (245) Wyckoff, 1, 43: 1100; 20. (245) Wyckoff, 2, 15: 149, 20
- (27) Wyckoff, 18, 48: 1100; 20. (28) Wyckoff, 2, 16: 149, 20 (27) Wyckoff, 18, 48: 1100; 20. (28) Wyckoff, 2, 16: 149, 20 (270) Wyckoff, 18, 50: 317; 20. (371) Wyckoff, 18, 11: 38; 21 (272) Wyckoff, 18, 239; 21. (373) Wyckoff, 188, 11: 429; 21. (374) Wyckoff, 1, 44: 1239; 22. (375) Wyckoff, 1, 44: 1260; 22 (376) Wyckoff, 1, 44: 1994, 22 (377) Wyckoff, 18, 2: 184; 22. (378) Wyckoff, 18, 4: 188; 22 (378) Wyckoff, 18, 4: 103, 22.
- (***) Wyckoff, 12, 4:469; 22. (***) Wyckoff, 12, 5:15; 23 (***) Wyckoff, 12, 5: 209; 23. 94, 67: 595; 23. (***) Wyckoff, 12, 6: 277; 23 (***)

- (2*9) Wyckoff and Merwin, 12, 9: 286, 23. 94, 61: 5; 25. (28): Wyckoff and Merwin, 12, 9: 370; 25. (2*2) Wyckoff and Ponjak, 1, 48: 2202; 21. (2*3) Wyckoff and Ponjak, 1, 48: 2202; 21. (2*3) Wyckoff and Ponjak, 1, 48: 30: 22. (2*4) Wyckoff and Ponjak, 1, 58: 13: 393, 23. (2*3) Yamada, 5, 48: 241, 23. (2*4) Yardioy, 5, 1983, 151; 24. (2*7) Young, 5, 46: 201; 23. (2*3) Owen and Preston, 67, 36: 341, 24. (2*5) Levi and Tacchin, 56, 46: 28.
- (31) 24. (***) Levis and Tacchins, 36, 36; 29; Owen and Preston, 67, 36;
 (31) Lev., (3*9) Lev. and Tacchins, 36, 36; 28; 25.
 (3*9) Lev., 59, 1; 33.5, 24. (3*9) Holgersson and Sedstrom, 8, 75; 143; 24.
 (3*9) Hewlett, 2, 30; (38), 22. (3*3) Debye and Scherrer, 188, 18; 12.
 (3*9) Keesom and DeSmedt, 64P, 36; 118; 22. (3*9) Reacom and DeSmedt, 64P, 36; 112, 23. (3*9) Becker and Ehert, 66, 31; 268; 25. (4*7) Havighurt. Mack and Blake, 1, 47; 20, 25. (3*9) Slattery, 2, 38; 333; 25. (3*9) Glibbs, 4, 138; 262; 242.
- (219) Hanol, J., 139: 2012, 24
 (211) Bernal, J. 106A: 719, 24
 (211) Bernal, J. 106A: 719, 24
 (213) Behehold, 94, 87: 579; 25.
 (313) Schehold, 94, 87: 579; 25.
 (314) Mark and Wigner, 7, 111: 398; 24
 (315) Hoffman and Mark, 7, 111: 357; 24
 (317) Hassel and Mark, 7, 111: 357; 24
 (317) Kerson and Delmedt, 47, 33: 571; 24
 (318) Mark and Pohland, 94, 61: 293; 25
 (319) Saville and Shearer, 4, 137: 591; 25.
- (339) Bradley, 3, 48: 1225, 25. (331) Wyckoff, 103, 68: 496: 25. (333) Glibbs,
 5, 107A: 561, 25. (333) Zachariasen, Norsk peologisk tidsskrift, 8: 189: 25. (334) James and Wood, 815, 69: 24-25. (334) Wyckoff and Merwin, 94,
 61: 452, 25. (334) Mineijer, Bijvoet and Karssen, 64P, 27: 847; 24. (337) Kolkmeijer, Bijvoet, and Karssen, 64V, 38: 327, 24. (338) Mark and Pohland, 24, 61: 532, 25. (339) Claassen, 70, 46: 700, 25.
- Politind, 94, 91; 332, 25. (****) Chansen, 10, ws. 100, 45. (341) Mark and Tolksdorf, 96, 33; 681, 25. (342) Hassel, 136, 49; 405, 25. (342) Lavi and Natta, 22, 3; 39, 25. (344) Havighurst, 12, 10; 15, 25. (343) van Arkel, 208, 5; 102; 25. (344) Petree, Anderson, and Van Dyck, 145, 300; 303; 25, (347) Ott, 218, 13; 76, 25. (348) Ott, 94, 61; 515; 25. (349) Mark and Politind, 92, 48; 103; 25.
- (389) Westgren and Phragmen, 98, 38; 77; 25 (388) Goldschmidt, Barth and Lunde, Skrifter Norske Videnskaps Akademi, No. 7; 25. (388) Goldschmidt, Ulrich and Barth, Skrifter Norske Videnskaps Akademi, No. 5, 25. (388) Brentano, 37, 37; 52, 25 (384) Trillat, 54, 180; 1839; 25. (388) Trillat 54, 180; 1838, 25 (388) Alsen, 207, 47; 10; 25 (387) Ramsdoll, 528, 10; 281, 25. (388) de Smedt and Keeson, 64V, 33; 888; 24 (389) Bragg, 103, 9; 272, 25
- (3*8) Clark, Asbury and Wack, I. 47: 2661, 25 (3*1) Lange, B, 76: 476; 25.
 (3*2) Blake, 2, 36: 60, 25 (3*2) Knagge, 269, 30: 346; 25. (3*4) Aminoff, B4, 63: 113, 25 (3*4) Buckley and Vernon, 269, 30: 382; 25. (3*4) Olshausen, B4, 61: 463, 25 (3*7) Ferrari, 22, 1: 664; 25. (3*8) Bradley, 5, 50: 1018, 25 (3*9) Lunde, 7, 117: 51: 25
- 3, 50: 1018, 25 (48*) Lunde, 7, 117: 51; 25 (270) Sucklowski, 8, 77: 211, 25 (371) Westgren and Phragman, 5, 50: 311; 25 (372) Wess, 5, 105A: 643, 25 (373) de Smedt, 186, 10: 360; 24. (374) Davey and Wilson, Proc. Am. Phys. Soc., Nov. 27, 1925 (378) Nakamura, 210, 2: 287, 25 (374) Ösawa, 169, 14: 43, 25. (277) Wyckoff, 94, 48: 180; 25 (378) Broomé, 94, 48: 325; 25. (279) Noethling and Talkadorf, 94, 48: 255, 25
- (300) Nelyakov, Strutinsku and Krasnikov, 90, 33: 53; 25.
 (201) Ulrich and Zacharinsen, 94, 63: 200; 25.
 (202) Structural and Keesom, 94, 63: 312; 25.
 (302) Oli, 94, 63: 201, 25.
 (203) Platterson, 2, 32: 552; 24.
 (303) (304) Structural and Keesom, 94, 63: 312; 552; 24.
 (304) Structural and
- (3**) Ott, 218, 13: 644; 25. (3**) Jong, 208, 5: 104; 25. (3**) Linck and Jong, 23, 147: 288; 25. (3**) Goldachmidt, Barth and Lunde, Skrifter Norske Videnskaps. Akad. Ohlo 1, Mat. Nat. K1: No. 7; 25. (3**) Wyckoff and Crittenden, 1, 47: 2866; 25. (3**) Huggins and Hendricks, 1, 48: 104; 26. (3**) Hendricks and Pauling, 1, 47: 2904; 25. (3**) Havighurat, 12, 10: 556, 25. (3**) Yardley, 5, 80: 864; 25. (3**) Yardley, 4, 137: 2207, 25
- (200) Wyckoff, 12, 11: 101; 26 (401) Piper, Brown and Dyment, 4, 127; 2104; 20. (402) Wilsey, 143, 200; 739, 25.

SOME NUMERICAL DATA PERTAINING TO DISPERSOIDOLOGY

P. P. VON WEIMARN

From the large and heterogeneous mass of numerical data recorded in the literature of "Colloids," it seems desirable to present here only some selected illustrative examples of results of physical measurements which meet the following requirements:

(1) The composition of the system is definite, reproducible, and exactly known; (2) all of the essential variables which affect the system are understood and are accurately controlled or measured; (3) the system, its behavior, and the resulting quantitative data are reproducible in the hands of any investigator working under these same controllable conditions; and (4) the examples selected shall be illustrative of some general law describing the behavior of dispersed systems.

As meeting the above conditions, the following examples have been selected and are presented in graphical form. Concise explanations are given in connection with the graphs. For a detailed description, explanation, discussion, and bibliography, the reader is referred to von Weimarn, Chem. Rev. 2: 217; 25.

THE PRECIPITATION LAWS

Figures 1-9 illustrate the following precipitation laws: With increasing concentration of the reacting solutions, the average size of the precipitated crystalline individuals (not their aggregates) (1) passes through a maximum during, and (2) decreases continually after the completion of, the process of direct crystallization; (3) for the same absolute concentration of the reacting solutions (other conditions being equal), with decreasing solubility of a substance (Fig. 4; cf. Fig. 13), the average size of the precipitated crystals also decreases.

Figures 10-13 show that, if the aggregation of the individual ultramicrocrystals has not proceeded too far, the second law of precipitation remains valid; and besides they illustrate the law: (4) With increasing viscosity of the dispersion medium, the average size of the particles decreases (Fig. 12) (3-4); cf. (1).

The following general remarks apply to the figures: (1) The dispersion medium is indicated thus (60 vol. % C_2H_0OH); (2) mixing was brought about in all cases by pouring and shaking. The direction of pouring is indicated by the arrow. (3) In Figs. 1-9, the volumes mixed in each experiment satisfied the relation, concentration \times volume = a constant (approx.), for a given dispersion medium; (4) the time, t_6 , represents the period (ca. 10-15 min) required for the operations of sampling and photomicrographing; (5) all data shown are the averages of at least two independent experiments.

1. Precipitation of Ag_1SO_4 —Reaction.— $2AgNO_3 + MnSO_4 = Ag_1SO_4 + Mn(NO_4)_2$ (Figs. 1-7). In Figs. 4-5, per liter of final

solution, $C = Ag_2SO_4$ produced by the reaction and S = its solubility, both in g-equivalents (8).

- 2. Precipitation of AgC₂H₃O₂.—Reaction.—AgNO₃ + KC₂H₃O₂ = AgC₂H₄O₂ + KNO₃ (Figs. 8-9) (6). These curves show the effect of time; the periods of time for the four curves are the same in both figures.
- 3. Precipitation of Se.—Reaction.—(a) 5 cc of aniline (an.) containing m mg of Se are poured into 100 cc of 93.5 wt. % C_2H_3OH (alc.) or (Fig. 13) mixtures thereof with an. or (Fig. 12) glycerol (gl.). $t=20^\circ$ (Figs. 10-13 a curves) (7). (b) As in (a) but with quinoline (q.) instead of aniline and using 90 wt. % C_2H_3OH (Figs. 10-13 b curves) (7).
- 4. Effects of Salts Dissolved in the Dispersion Medium on the Duration of Life of Dispersoidal Solutions.—(a) BaSO₄ Reaction.—50 cc (2a + 2x equiv.) BaR₂ + 50 cc (2a equiv.) MnSO₄ = 1 equiv. BaSO₄ + 1 equiv. MnR₂ + x equiv. BaR₂ Dispersion medium, 63 wt. % C₂H₂OH (Figs. 14-17) (*).
- (b) S.—Dispersoidal solution of sulfur prepared by the method of grinding with grape-sugar. Ca. 25 mg S per liter of H_2O , particles ca. $85\mu\mu$ (Figs. 18-23). C= millimols salt per liter. The dotted horizontal is for C=0. To the right of the dotted vertical (Fig. 23) the disperse phase begins to dissolve by chemical action (10); cf. (2).
- (c) $Al(OH)_3$.—Prepared as in (b) supra. Ca. 55 mg $Al_2O_4.3H_2O$ per liter of H_2O ; particles ca. $90\mu\mu$ (Fig. 24). The dotted horizontal is for C=0. Dissolving begins at points marked with crosses (11); cf. (2).
- 5. Adsorption and Solubility of Salts.—Adsorbent used—BaSO₄ extra pure; 20 g used per 100 cc of the salt solution. After shaking the solution with the adsorbent for 10 min, 24 hr. were allowed for the precipitate to settle. Fifty cc of the upper clear layer were used for analysis. Because partial dispergation occurred in the case of BaCl₂ in dilute C_2H_4OH solutions, these were centrifuged before analysis (Fig. 25) (*).

LITERATURE

(For a key to the periodicals see end of volume)

- Odén, 55, 26: 120; 20.
 Ontwald, 55, 26: 28, 69; 20.
 von Weimarn, 55, 38: 267, 624; 06.
 von Weimarn, 55, 38: 933, 1400; 06. 55, 2: 76; 07. 287, 12: 44; 23.
 von Weimarn, Aoki and Kataoka, O. In part in von Weimarn and Hori, O.
 von Weimarn and Morishima, O. In part in von Weimarn 55, 38: 10; 25.
 von Weimarn and Otsuka, O. In part in von Weimarn, 55, 38: 234; 23.
 von Weimarn, Schochara and Takashige, O. In part in von Weimarn, 55, 38: 234; 23.
- (10) von Weimarn and Utsino, 55, 36: 265; 25. (11) von Weimarn and Utsino,

SWEETENING AGENTS. RELATIVE SWEETENING POWER

C. F. WALTON, JR.

The relative sweetness of various substances is usually cited in comparison with sucrose as unity. Since the concentration of the standard sucrose solution employed by different investigators has varied from 1 to 10%, and since the degree of sweetness does not decrease proportionately with dilution, the values reported in the literature vary accordingly, and are difficult to arrange accurately in numerical order. The following table, therefore, indicates only the approximate degree of sweetness, as reported by different investigators employing a variable procedure.

Relative Degree of Sweetness (Sucrose = 1.0)

Name	Formula	Degree of sweet- ness	Lit.	
Lactose	C ₁₂ H ₂₂ () ₁₁	0.27-0.28	(26)	
Dulcitol .	CaH14Oa	0.41	(26)	
Mannitol	C ₆ H ₁₄ O ₆	0.45	(26)	
Sorbitol	C6H16O6	0.48	(26)	
Glycerol	C ₁ H ₁ O ₁	0.48	(26)	
Glycol	C2116O2	0.49	(26)	
Dextrose (d-glucose)		0.50-0.60	(10, 26, 29)	
Maltose	C12H22O11	0.60	(26, 29)	

Dar	Dagaan	~=	SWEETNESS	(Continued)

Name	Formula	Degree of sweet- ness	Lit.	
Invert sugar (dex- trose + levulose)	$C_6H_{12}O_6 + C_6H_{12}O_6$	0 78-0.95	(10 26, 29)	
Sucrose	C ₁₂ H ₂₂ O ₁₁	1 00	(10, 26, 29)	
Levulose (d-fructose)	C ₆ H ₁₂ O ₆	1 03-1.50	(10, 26, 29)	
p-Anisylures	CH4OC4H4NHCONH2	18	(5)	
Chloroform		40	(31)	
Glucin	Mixture	100	(11)	
p-Methylsaccharin	CH ₂ C ₄ H ₄ COSO ₂ NH	200	(19)	
Dulcin (p-phenetyl- urea)	C ₂ H ₄ OC ₄ H ₄ NHCONH ₂	70-350	(11, 26)	
6-Chlorosaccharin	CIC4H4COSO4NH	100-350	(19)	
n-Hexylchloromalon- amid	n-C ₄ H ₁₄ CCl(CONH ₁) ₁	300	(11)	
Saccharin (o-benzo- sulfonimid)	C ₄ H ₄ COSO ₄ NH	200-700	(11, 26)	
Perillaldehyde α- anti-aldoxime (peryllartine)	C ₆ H ₈ C(CH ₈)CH ₂ CHNOH	2000	(16)	

LITERATITRE

(For a key to the periodicals see end of volume)

The following list contains certain general references on methods of testing relative aweetening power, etc.

- (1) Auerbach, 218, 10: 710; 22. (3) Barral and Ranc, 271, 56: 712; 18 (3) Barral and Rane, 285, 17: 16; 20. (4) Becker and Hersog, 203, 82: 496. Barral and Ranc, 285, 17; 10; 20. (7) Bocker and Raversog, 2007, (2) Boedecker and Rosenbuch, 275, 30; 251; 20. (4) Braun and Rawies, 25, 49; 799; 16. (7) Cohn, Die Organischen Geschmackstoff. (Siemanroth, Berlin, 1914). (2) Cohn, 196, 32; 1; 16. (3) Cohn, 274,
- (10) Deerr, 275, 24: 481; 22. (11) Dox and Houston, 1, 48: 1278: 24 (12) Deerr, 275, 24: 481; 22. (11) Dox and Houston, 1, 48: 1278; 24. (11)
 Dyson, 276, 11: 572; 24. (13) Foerster, 282, 28: 400; 11. (14) Frânkel,
 Arsneimittelsynthese (Springer, Berlin, 1921): 134-53. (18) Furukawa,
 Japanese Patent 35332; 19. (18) Furukawa, 41, 41: 706, 979; 20 (17)
 Hermann, 15, 439: 163; 22. (18) Holleman, 70, 40: 446; 21. (19) Holleman 70 49 : 839 : 23
- (20) Holleman and Choufoer, 64V, 33: 307; 24. (21) Kionka and Stratz, 277 [3*] Holleman and Chouloer, 4V. 38: 307; 24.
 [4*] Alonka and Stratz, 27, 98: 241; 222.
 [4*] Kodama, 4I. 41: 495; 20.
 [2*] Lasver, 278, 142: 288, 22.
 [4*] Oertley and Myers, I, 41: 855; 19.
 [4*] Ogilvie, 275, 24: 288, 22.
 [4*] Pauli, 270, 43: 137; 22.
 [4*] Pauli, 260, 38: 010; 22.
 [4*] Pauli, 260, 418: 97; 21.
 [4*] Sale and Skinner, 45, 14: 522; 22.
 [4*] Speckam, 273, 28: 83; 22.
 [4*] Sternberg, 281, 38: 272; 05.
 [4*] Zuntz, 273, 28: 83; 22.
- 98. 28: 385: 10.

ODORIFEROUS MATERIALS

H. ZWAARDEMAKER

The unit used for expressing odor is the olfacty, the normal stimulus threshold for a given odor.

The characteristic grouping giving rise to odor is termed odoriphore (*), also called aromatophore (Klimout, 1897) and osmophore (Rupe, 1900). The principal odoriphores are: -C(:O)()-Alkyl, esters; ←C(:O)H, aldehydes; ↓CO, ketones; Alkyl O-Alkyl, ethers; C=OH, alcohols; -C(:O)OH, acids; NO, nitrites; -CN, nitriles; -, terpenes; -, pinenes; ←S-S→, sulfides; ←As-As-→ arsenides; ←As-O-As → cacodyls; ←Hal., halogens; N, pyridine; NH, pyrrole.

CLASSIFICATION LINNE, MODIFIED BY ZWAARDEMAKER

Туре	Key letter
Odores aetherei Lorry (Ethereal)	A
Odores aromatici Linné (Aromatic):	1
1. Almond	В
2. Camphoric	C
3, Citric	D
Odores fragantes Linné (Balsam):	1
1. Floral	E
2. Lilylike	F
3. Vanillin	G
Odores ambrosiae Linné (Musk)	Н
Allyl	I
Cacodylic	J
Odores empyreumatic Haller (Empyreumatic)	К
Odores hircini Linné (Caprylic)	L
Odores tetri Linné (Narcotic)	M
Odores nauseois Linné (Nauseous).	N

Intensity.—The intensity of the odor of an odorivector (5) depends on (1) its volatility from dilute solution, (2) its rate of diffusion, (3) its absorption by a humid surface and (4) its solubility in liquids. (All odorous substances are soluble in oil (2).) The significance of an odor as a reflex stimulus depends on physiological, its pleasing or repulsive value on psychological conditions.

VOLATILITY OF ODOR FROM PARAFFINIC SOLUTIONS (4)

Substance	Conen. per- cent	Volatility 10 ⁻⁶ g per min
Ethyl sulfide (I).	1	0.14
Scatole (N).	1	0.18
Valeric acid (L)	0.1	0.28
Guaiacol (K).	1	0.5
Pyridine (M)	10	0.93
Isoamyl acetate (A)	5	3.6
Terpineol (C)	25	7.5
Nitrobenzene (B)	50	9.2

DIFFUSION IN FREE AIR IN NEIGHBORHOOD OF SOURCE (10)

	cc per		cc per sec
Eugenol (C) Camphor (C)	1.3	Ethyl ether (A)	4.4
	2 1	Ethylacetone (A)	10

Extremes—ethyl acetate (A) and naphthalene (K). The anemodispersibility of odors depends on the size of the cloud and the velocity of the wind.

Spray Electricity.—All odorous substances lower the surface tension of water and therefore produce static electricity by spraying an aqueous solution of the odorivector against a disc well insulated with amber and paraffin. The value is expressed as 10⁻¹⁰ coulomb per cc of a saturated solution.

Substance	10 ⁻¹⁶	Lat.
('umidine (K)	0.2	(12)
Aniline (K)	0.4	(6)
Toluidine (K)	0.4	(6)
Xylidine (K)	0.9	(6)
Scatole (N)	1.0	(12)
Trinitroisobutyltoluene (H)	1 1	(12)
Pseudocumene (K)	3 4	(2)
Ethyl acetate (A).	3 5	(2)
Xvlene (K)	3 8	(6)
Aniline (K)	4.8	(2)
Toluene (K)	5.1	(2)
Thymol (C)	6.5	(2)
Benzene (K)	7.5	(2)
Toluidine (K)	7 9	(2)
Xylidine (K).	9 3	(2)
Nitrobenzene (B)	9.6	(2)
Vanillin (G)	10	(2)
Dimethylaniline (K)	11 6	(6)
Benzaldehyde (B)	12 4	(2)
Anisaldehyde (G)	14.8	(2)
Phenol (K)	15 2	(2)

Substance	10 ⁻¹⁰ coulombs	Lit.
Xylenol (K).	17	(2)
Ethyl alcohol (A)	17.2	(2)
Cresol (K)	19 1	(12)
Camphor (C)	20.3	(12)
Heliotropin (F)	44	(2)
Vamilin (G)	47	(12)
Heliotropin (F)	52	(12)
Acetone (A)	60	(12)
Guaiacol (K)	81.1	(2)
Carvaerol (C)	82.3	(2)
Terpineol (E)	89.1	(2)
Amyl acetate (A)	96.4	(2)
Ethyl acetate (A)	122	(12)
Guaincol (K)	289	(12)
Terpineol (E)	296	(12)
Citral (D)	360	(12)
Methyl anthramlate (E)	602	(12)

Relation between Spray Electricity and Concentration of Aqueous Solutions (12)

	CHARGE IN 10 ⁻¹⁰ COULOMBS PER CO								
Degree of saturation	1	ł	0 5	1	(18	1,1	sts		
Coumarin	6.5		0.5	0	1				
Heliotropin	52	22	10	2	1.4	1.4	0		
Vanillin	72	32	6	2	0.5	0			

Adsorption of Odors by Surfaces Expressed as the Duration of the After Effect Following an Exposure to a Continuous Stream of Odoriferous Air for 5 Minutes (11). The Term see Denotes a Few Seconds, in - Minute, d - Day, h = Hour, min - Some Minutes

	Alumin- ium	Copper	Glass	Gold	Iron	Lead	Nickel	Porce- lain	Silver	Steel	Tin	Zinc
Ethyl disulfide Guaiacol Ionone Isoamyl acetate Muscon Nitrobenzene Pyridine Scatole	1 m 15 m 2 5 d 0 1 d sec 0 9 d	sec 3 m 2 d 0 4 d sec 2 m 3 d	sec 1 m sec 0 1 d sec 0	sec 12 m 0 2 d sec 0 1 5 d	sec 8 m 4 d sec min sec 45 m 10 d	1 m sec 1 d 0 12 d sec sec 10 d	sec 5 m 2 d sec 4-9 d sec sec 3 5 d	2 m 5 m sec 15 m sec 8 m 5 m 0 5 m	вес 0 вес 0 2 d вес 0 1 d	8ec 7 m 4 d 2 m 8ec 8ec 30 m 20 d 4 m	sec 8 m min 0 4 d sec 0.5 m 7 d	sec 25 m sec 3 d sec 2.5 m 14 d 0
Terpineol Valeric acid	0 3 m	sec 0	0 30 m	0 sec	800 ()	0	sec	0	5 m	0	2 m	ő

Destruction of Odors by Ultraviolet Light.—The values are expressed as number of minutes required to reduce the odor in air from 2 to 1 olfacty by the radiation from a quartz increury lamp (7).

Substance	Time	Substance	Time
Apiol (C)	0 10	Methyl salicylate (C)	0 30
	0 10	Trimethylamine (J)	0 30
		Methyl nonyl ketone (C)	0 35
Ethyl sulfide (1)			0 40
Carvacrol (C)			0 45
Bornyl acetate (C)			0 45
Caproic acid (L)			0 45

Substance	Time	Substance	Time
Safrol (C) .	0.50	Methylheptenone (A)	2.30
Salicylaldehyde (C)	0 50	Eugenol (C)	3
Scatole (N)	0 50	Styrone (F)	3
Citral (D)	0 55	Coumarin (G)	3.30
	10	Ethyl isovalerate (A)	4
Aniline (K)	1 40	Cresol (K)	5
Methyl anthranilate (E).	1 45	Ethyl butyrate (A)	5
		Terpineol (E)	
Vanillin (G)			6
		Ethyl succinate.	6
Eucalyptol (C)	2 30	Anethol (C)	6.30
Isobutyl alcohol (K)			7

ODORIMETRY

The olfacty of an odor is the threshold or minimum perceptible concentration expressed in gms per cc which multiplied by $6.06\times10^{21}/\mathrm{M}$, where M is the molecular weight, gives molecules

per cc.

The authorities quoted are: Backman (1); Berthelot (2); Fischer and Peuzoldt (3); Henning (4); Hermanides (5); Huyer (6); Ohma (7); Passy (8); Tempelaar (9); van Wartenberg (10); Zwardemaker (11).

	Molec	ules			
Compound		per c		Author-	
•		A ·	102	ity	
Name	Formula	A	x		
Ionone (F).	C11H20O	{ 16	5	4 9	
		15	5 6	9	
Ethyl bisulfide (I)	C4H ₁₀ S	15	6	5	
Scatole (N)	C ₂ H ₂ N	18	6	9	
Vanillin (G)	C ₈ H ₈ O ₈	20	6	8	
Trinitroisobutyltoluene (H)	CulluN ₂ O ₄	21	6	9	
Coumarin (G)	C ₁ H ₆ O ₂	33	6	9	
	C10H16O	40	6	8	
Valeric acid (L)	C4H10O2	47	6	4	
Butyric acid (L).	C ₄ H ₃ O ₂	69	6	8	
Isoamyl alcohol (K)	C _b H ₁₂ O	69	6	- 8	
Vanillin (G)	C,H,O,	72	6	9	
Valeric acid (D)	C ₁ H ₁₀ O ₂	12	7	9	
Heptylic acid (C)	C7H14O2	16	7	8	
		[18	7	5	
Guaiacol (K)	C ₇ H ₈ O ₂	20	7	9	
Citral (D)	C10H16O	20	7	8	
Methyl anthranilate (E)	C.H.NO2	24	7	9	
Nitrobenzene (B)	C.H.NO.	32	7	4	
Heliotropine (F)	C ₁ H ₆ O ₃	40	7	4	
Coumarin (G)	C ₂ H ₆ O ₂	41	7	8	
Iodoform	CHI3	42	7	2	
Bromoform	CHBr ₂	48	7	8	
Osmium tetroxide	OsO ₄	48	7	10	
Oenanthyl alcohol (C)	C7H16O	52	7	8	
Valeric acid (D)	('4H10()2	59	7	8	
Cinnamaldehyde (C)	C ₂ H ₈ O	64	7	9	
Nonylic acid (E)	C ₂ H ₁₈ O ₂	77	7	8	
Isobutyl alcohol	C ₄ H ₁₀ O	82	7	8	
Thymol (C)	C ₁₀ H ₁₄ O	15	8	9	
Capric acid (L)	C10H20O2	18	8	8	
Heliotropine (F)	C.H.O.	20	8	8	
Nitrobenzene (B)	C ₆ H ₆ NO ₂	20	8 8	5 9	
	CHO	20	8	9	
Borneol (C)	C ₁₀ H ₁₈ O	20	8	8	
Coumarin (G)	C ₁₀ H ₄ O ₂ C ₁₀ H ₁₈ O	22	8	9	
Eucalyptol (C)	C10H16O	25	8	9	
Citral (D)		29	8	9	
Linalyl acetate (D)	C ₁₂ H ₂₀ O ₂ C ₁₂ H ₂₄ O ₂	30	8	8	
Laurie acid (C).	C _i H _i N	31	8	9	
Pyridine (M)	C10H16O	33	8	9	
Pulegon (M)		39	8	7	
Eucalyptol (C)		40	8	8	
Carvacrol (C)	CuHuO	40	8	9	
Propionic acid	C.H.O.	41	8	8	

		Molec			
Compound		per c		Author	
		A ·	10"	ity	
Name	Formula	A 1	r		
Durol (K)	C10H14	41	8	1	
Isoamyl acetate (A)	C7H14O2	{ 42	8	5	
isomity! accounce (11)	1	1 42	8	9	
Safrol (C)	C10H10O2	48	8	7	
Citral (D)	C ₁₀ H ₁₆ O	52	8	7	
Anethol (C)	C ₁₀ H ₁₂ O	57	8	9	
Methyl butyrate (A)	C ₄ H ₁₀ O ₂	58 79	8 8	9	
Terpineol (E).	C ₁₀ H ₁₈ O C ₁₀ H ₁₂ O ₂	85	8	7	
Eugenol (C) Pseudocumene (K).	C ₁₀ H ₁₂	10	9	í	
Bornyl acetate (C)	C ₁₂ H ₂₀ O ₂	14	9	9	
Methylheptenone (A).	CAH12O	15	9	9	
Ethyl butyrate (A)	C6H12O2	15	9	9	
Methyl acctate (A)	C,HO2	16	9	11	
Carvone (C)	C10H14O	22	9	9	
Caproic acid (L)	C6H12O2	27	9	8	
Ethyl succinate (A).	C4H14O4	28	9	9	
Methyl salicylate (C)	C ₈ H ₈ O ₈	39	9	9	
Xylene (K)	C8H10	46	9	1	
Cresol (K)	C7H8O	50	9	9	
Methylnonyl ketone (C)	C11H22O	61	9	9	
Ethyl ether (A)	C ₄ H ₁₀ O	61	9	4	
Aniline (K)	. C ₆ H ₇ N	63	9	9	
Camphor (C)	C10H16O	64	9	8	
Amyl alcohol (K)	C6H12O	69	9	8	
Safrol (C).	C10H10O1	75	9	9	
Phenol (K)	C ₆ H ₆ O	77	9	4	
Butyl alcohol (K)	C4H10O	82	9	8	
Ethyl ether (A)	C ₄ H ₁₀ O	82	9	8	
Fenchone (C)	C ₁₀ H ₁₆ O	92	9	9	
Acetaldehyde (A)	C2H4O	96	9	9	
Citronellol (E)	C10H20O	11	10	9	
Valeric acid (L)	C4H10O2	12	10	5	
Toluene (K)		13	10 10	9	
Ethyl isovalerate (A)	C ₇ H ₁₄ O ₂	21	10	9	
Trimethylamine (J)	C ₁ H ₂ N	22 26	10	9	
Phenol (K)	C ₆ H ₆ O	41	10	1	
Benzene (K)	C ₄ H ₆ O	42	10	11	
Acetone (A) Acetic acid (L)	C ₂ H ₄ O ₂	50	10	8	
Acetic acid (L)	C ₃ H ₄ O ₃	51	10	8	
Propyl alcohol (K)	C ₁ H ₄ O ₂	71	10	9	
Acctic acid (L) Toluidine (K)	C7H9N	79	10	6	
Toluidine (K) Xylidine (K)	C ₀ H ₁₁ N	10	11	6	
		∫ 15	11	6	
Toluidine (K)	C ₇ H ₂ N	16 26	11	6 9	
Menthol (C)	C ₁₀ H ₂₀ O C ₆ H ₇ N	30	11	6	
Aniline (K)	CH ₂ O ₂	33	11	8	
Formic acid	C ₁₀ H ₁₈ O	73	11	5	
Terpineol (E)		12	12	5	
Pyridine (M) Ethyl alcohol (A)	1	(04	12	4	
	i .	33	12	9	
Formic acid		84	12	9	
Methyl alcohol	. CH ₄ O	11	13	8	
Methyl alcohol		17	15	9	
Apiol (C)	. C ₁₂ H ₁₄ O ₄	1 17	1 10	1 9	

VALUE OF AN OLFACTY EXPRESSED AS DEGREE OF SATURATION OF AIR WITH THE ODORIVECTOR

Substance	% Satu- ration	Substance	% Satu- ration
Lucalyptol	0.058	Methyl alcohol	1.388
L'ugenol	0.144	Toluidine	1.515
Toluene	0.158	Ethyl alcohol	2 5
Renzene	0 169		

VALUE OF AN OLFACTY IN CM OF THE ZWAARDEMAKER OLFACTOMETER

The constants of Zwaardemaker ôlfactometer are; width of cylinder, 0.8 cm; length, 10 cm; contents, 50 cc; air contact per cc of cylinder, 2.5 cm²; velocity of air in the air tube, 100 cc per sec (exposure, 0.33 sec).

MINIMUM PERCEPTIBLE IN CM OF OLFACTOMETER SCALE Saturated solutions (9)

Substance	cm	Substance	cm
Terpineol—H ₂ O	0 01	Caproic acid—H ₂ O Trinitroisobutyltoluene -	0.10
Ethyl propionate—H ₂ O Ionone—H ₂ O	0 02	H ₂ O Guaia c ol—H ₂ O	0 10 0 20
Camphor—H ₂ O	0 07	Guaiacol—112O Trimethylamine—Paraffin	

Aqueous solutions (10)

Substance								$\left \begin{array}{c} { m Concentra-tion~Wt.~}^{c_{t}} \end{array} \right { m cm}$						
Pyridine														0 05 0 1
Ethyl disulfide														0 02 0 5
Citral														0 01 0 2

Aqueous solutions (10),--(Continued)

Si	ubstance	Concentra- tion Wt. %	
Scatole		 0.01	0.4
Valeric acid		0.01	0.5
Isoamyl acetate		0.01	0.7
Guaiacol		0 0007	1 0

Paraffin solutions (11)

			()		
Substance	Concentra-	сm	Substance	Concentra- tion Wt. %	E S
Borneol.	10	0 001	Citral	1.0	0.09
Cadaverine	0.1	0 001	Isonmyl acetate.	0.5	0.29
Scatole	0.1	0 002	Guaiacol .	0.1	0.62
Ethyl sulfide	0 01	0 01	Ionone	0.0004	0.62
Pyridme	1 0	0 03	Safrol	3.0	1.12
Valeric acid	0 01	0.01	Terpineol	2.5	1.60
Nitrobenzene	5.0	0.06	•		1

LITERATURE

(For a key to the periodicals see end of volume)

Alhson and Katz, 45, 11: 336; 19 (*) Backman, 278, 168: 351; 17. (*)
 Henning, Der Geruch, 1924 (*) Hermanides, Thesis, Utrecht, 1907. (*)
 Heymix, Thesis, Brussels, 1919. (*) Huyer, Thesis, Utrecht, 1917. (*)
 Tempelant, Thesis, Utrecht, 1913 (*)
 Zwaardemaker, Physiol. des Geruchs, 1998: 247 (*)
 Zwaardemaker, Arch. Anat. Physiol., Physiol. Abt., 1908:

Zwaardemaker, In Abderhalden, Handb biol. Arbeitsm. 8, pt. 7: 485; 28.
 Zwaardemaker, In Tigerstedt, Handb Physiol. 3, pt. 1: 49; 14.
 Zwaardemaker, Arch. Neerl. Physiol., 1: 347; 17.

RADIOACTIVITY

S. C. LIND, SPECIAL EDITOR

P	AGE
International Table of the Radioactive Elements and their	
Constants	362
Physical Properties of Radioactive Elements, Georg Hevesy	364
Artificial Disintegration of the Elements. G. Rudorf	365
Electron Emission Produced by Radiations from Radioactive	
Substances. Pierre Auger	365
Energy of Radioactive Processes. Stefan Meyer	366
Chemical Effects of α-Particles. S. C. LIND AND D. C.	
BARDWELL	366
Saturation Current. Absorption in Liquids and Solids.	
STEPAN MEYER	367
Radioactive Radiation in Gases. R. D. KLEEMAN	369
Beta Rays: Absorption and Diffusion in Liquids and Solids.	
PIERRE AUGER	370
Wave Lengths of Gamma Rays. E. von Schweidler.	371
Ionizing Radiations from Ordinary Substances. R. B.	
MOORE	372
Distribution of Radioactive Materials in the Atmosphere,	
the Hydrosphere and the Lithosphere. HERMAN SCHLUNDT	373
Ages of Minerals and Rocks Based on Radioactive Changes.	
ROGER C. WELLS	381

862

1923 INTERNATIONAL TABLE RADIOACTIVE ELEMENTS AND THEIR CONSTANTS

 λ (sec)⁻¹ is the radioactive constant of transformation.

$$dQ = -\lambda Q dt$$
, $Q = Q_{ob}^{-\lambda t}$, $\log_{10} Q_o = 0.4343\lambda t$,

in which Q_0 is the initial quantity and Q the quantity remaining after a time t (seconds).

after a time t (seconds). $\lambda = -\frac{dQ}{Q}\frac{1}{dt}$ represents the fraction of the element transformed, reduced to the unit of time.

In the case of a double transformation, the values between brackets [] refer to the constants corresponding with the separate branches; the constant for both branches not being put between brackets.

The sign (?) indicates that the value has been indirectly deduced from the range of the a-rays expelled.

 $\theta = \frac{1}{\lambda}$ is the average life of the radioactive atoms.

T is the half period, i.e., the time in which the quantity of radioelement is diminished to one half:

$$\lambda T = -\log_{\theta} 0.5 = 0.69315 \text{ and } \theta = 1.443T$$

Radiation.—The brackets () indicate that the radiation is relatively feeble.

REMARKS CONCERNING THE NOMENCLATURE

It is desirable that the nomenclature adopted by the international commission should be accepted universally but that now put forward for the present year is provisional, to serve as a basis of discussion with the view to the adoption ultimately of a standard nomenclature.

The most important points are:

- 1. The three radioactive emanations have been given the names radon, actinon, and thoron, with the symbols Rn, An, Tn, to suggest both their origin and their chemical character as members of the family of the rare gases of which the valency is zero;
- 2. In the branches which occur at the C members the sign (') has been used to indicate the products resulting from the emission of β-rays (isotopes of polonium) and the sign (") to indicate the products resulting from the emission of α-rays (isotopes of thallium);
- 8. The ultimate products have been indicated by the letter Ω .

EXPLANATION OF THE NOTES

NOTE 1.—Uranium 1.—The value given for θ is that obtained from the equation:

$$\theta - \frac{1}{\lambda} = 2440 \times 0.97 \times 3 \times 10^{6} \times \frac{226}{238} = 6.75 \times 10^{9}$$

in which the number 2440 represents the average life of radium in years, the number 0.97 the branching coefficient and $3\times10^8\times\frac{226}{238}$ is the ratio between the numbers of atoms of uranium and radium in equilibrium in minerals.

If the actinium series is independent from that of uranium 1, a cannot be calculated by this method.

The value of λ obtained by the direct counting of the α -particles from a compound of uranium is 4.57×10^{-18} from which $\theta = 7 \times 10^9$ years and $T = 4.8 \times 10^9$ years.

Note 2.-Uranium X2 is also called brevium.

NOTE 3.—Radon replaces the names radium emanation and niton (the latter of which was proposed by Sir William Ramsay).

Note 4.—Radium C undergoes a double disintegration: 99.97% of the atoms emit β -rays and produce the substance Ra-C' which gives α -rays, and 0.03% of the atoms emit α -rays and produce the substance Ra-C' which gives β -rays.

 a_0 is the range in cm of the α -rays in air at 0°C and a pressure of 760 mm of mercury.

The range at τ° C. and under p mm of mercury is

$$a = \frac{a_0(273 + \tau)760}{273p}$$

V is the velocity of α or β -rays relatively to that of light.

To convert to cm per sec multiply by 3 × 1010.

For the a-rays:

$$V = 0.0342 a^{\frac{1}{2}}$$

 $\mu_{\beta Al}$ is the absorption coefficient of the β -rays in aluminium, the thickness being measured in cm.

 $\mu_{\gamma Al}$ and $\mu_{\gamma Pb}$ are the absorption coefficients of the γ -rays in aluminium and lead respectively, the thickness being measured in cm; the latter is only given for the most penetrating type of γ -rays.

If I_0 is the initial intensity and I the intensity after the rays have traversed x cm of the absorbent:

$$I = I_0 e^{-\mu x} \qquad \log_{10} \frac{I_0}{I} = 0.4343 \mu x$$

If D is the thickness corresponding with the absorption of-one-half of the rays:

$$\mu D = 0.693$$

Note 5.—Radium D is also called radiolead.

NOTE 6.-Radium C" is also called radium C2.

NOTE 7.—Uranium Y is the first known member of the actinium series. It may be derived from Uranium I or Uranium II. In this case, 3% of the atoms of Uranium produce the actinium family, and 97% the radium family.

The hypothesis has also been put forward that the actinium series may be produced independently from a third (hypothetical) isotope of Uranium for which the name actinouranium has been proposed.

Note 8.—Protoactinium is also called eka-tantalum.

Note 9.—A new radioactive substance named uranium Z, and isotopic with protoactinium, accompanies uranium in minute quantity. (26, **54B**: 1131; 21). Its period is from 6 to 7 hours. It emits a β -radiation for which DAI varies from: 0.0014 to 0.012. Its parent is an isotope of thorium, but it cannot yet be placed in the series.

Note 10 .- Actinon is also called actinium emanation.

Note 11.—Actinium C. 0.2% of the α -rays emitted by this substance have a range $a_0 = 6.10$, instead of 5.12. From this it has been concluded that 0.2% of the atoms undergo a transformation by the emission of β -rays as is the case in the radium C and thorium C branches (8, 27:690; 14. 28:818; 14). Confirmatory evidence appears to be desirable.

Note 12.—Actinium C" is also called actinium D.

Note 13.—Thorium. The value given for λ is that obtained from the direct counting of the α -particles emitted by a compound of thorium. All the other values are less; the smallest being 0.55 of that given in the table and giving $\theta=3.45\times 10^{10}$ years (63, 19: 259; 18).

NOTE 14.—Thoron is also called thorium emanation.

NOTE 15. --Thorium C undergoes a double disintegration: 65% of the atoms emit β -rays and produce the substance Th-C' which gives α -rays, and 35% emit α -rays and produce the substance Th-C" which gives β -rays.

The C'' which gives β -rays.

Note 16.—Thorium C. The value $a_0 = 4.69$ is that corresponding with V = 0.0572 which has been directly measured.

NOTE 17 .- Thorium (" is also called thorium D.

Note 18.—Potassium and rubidium emit β-rays but show no other evidence of radioactivity.

	. 2
	4
	- ,

т	$\theta = \frac{1}{\lambda}$	λ (sec) ⁻¹	Name	Symbol	Ato	mie	lao-	h						
	λ .	(2-5)		3,200	Wt.	No.	tope	Radiation	4,	V	#ØAl	# y Al	^ቀ ን Pb	No
			1		SERIE	a or	URAN	IUM AND RAI	DIUM					
67 × 10° yrs	6 75 × 10° ym	4.7 × 10 ⁻¹⁴	Uranium I	V1	238	92	υ	a	2 37	0 0456				
24 6 days	35.5 days	3 26 × 10 ⁻⁷	Uranium Xi	U-X ₁	234	90	Th	8			463	1		1
1 15 min	1.65 mm	0.010 10 ⁻¹⁴ (?)	Uranium X ₂ Uranium II	U-X1	234	91	Pa	B (3)			14 4	24; 0 7, 0 14	0 72	
2 × 10 ⁶ yrs	3 × 10° yrs 10° yrs	3.2 × 10 ⁻¹³	Ionium	Un	234	92	U	a	2 75	0 0479		1		
9 × 10 ⁴ yre	2440 yrs	1 30 × 10-11	Radium	Io Ra	230 226	90 88	Th	a	2 85	0 0485				
1890 yrs 3 85 days	5 55 days	2 085 × 10 ⁻⁴	Radon	Rn	222	86	Ra Rn	$a(\beta + \gamma)$	3 13	α 0 0500, β 0 52, 0 65 0 0540	312	354, 16; 0 27		
3 0 min	4.32 min	3 85 × 10-a	Radium A	Ra-A	218	84	Po	ar ar	4 50	0 0565				1
26 8 min	38.7 min	4.30 × 10 ⁻⁴	Radium B	Ra-B	214	82	Рь	B (2)	1	0 36, 0 41; 0 63, 0 70;	18 1, 80	230, 40, 0 51		l
										0 74	,	350, 10, 0 01		1
19 5 min	28 1 min	5 92 × 10 ⁻⁴	Radium C	Ra-C	214	83	Bı	99 97 <i>℃ β</i> and γ		0 786, 0 862, 0 949, 0 957	13 2; 53	0 115	0 80	l
10 ⁻⁶ sec	10 ⁻⁴ sec	104 (†)	Radium C'	Ra-C'	214	84	Po	anuy	6 57	0 0641				1
16 5 yrs	23 8 утв	1 33 × 10→	Radium D	Ra-D	210	82	Pb	(Bandy)		0 33, 0 39	5500	45; 0 99]
5 0 days	7 2 days	1 61 × 10⁻⁴	Radium E	Ra-E	210	83	Bı	β			43 3	,		l
136 days	196 days	5 90 × 10 ⁻¹	Radium F	Ra-F	210	84	Po	a (7)	3 5H	0 0523		585		ĺ
			(Polonium)	(Po)										1
		•	Radium ()	Ra Ω'	206	82	Ръ							l
	1 :	[1.0.1.0.1]	(Lead)	Pbsos	l		_							
1 4 min	2 0 min	[1 8 × 10 ⁻⁷] 8 3 × 10 ⁻³	Radium C Radium C''	Ra-C Ra-C"	214 210	83 81	Bı Ti	0 03% a	1					
1 e min	20	83710	Radium U"	Ra Ω"	210	82	Pb	"						
			(hypothetical)				- "	ľ						
	1		<u> </u>		1	SER	ILES O	Actinium	1					ل
					1				Ī -					Τ
			Uranium ?		!	92	t:	a	İ					1
1 04 days	1 5 days	7 8 × 10 •	Uranium Y	U-Y	!	90	Th	β		0 0510	About 300	1		
2 × 104 yrs	1 7 × 104 yrs 28 8 yrs	1 9 × 10 12 1 1 × 10 12	Protoactinium Actinium	Pa Ac	1	91 89	Pa Ac	a	3 314	0 0510				ľ
20 ym 19 5 dayn	28.1 days	4 11 × 10 ⁻⁷	Radioactinium	Rd-Ac	,	90	Th	a (\$)	4 36	a 0 0559; \$ 0 38, 0 43,	About 170	25, 0 19		1
IV 5 CENT	20.1 Umys	411 × 10	reactioncumum	Nu-ne	'	"		u (p)		0 49, 0 53, 0 60, 0.67;	71.77	30, 5		1
									1	0.73				1
11 4 days	16 4 days	7 06 × 10 ⁻⁷	Actinium X	Ao-X	7	88	Ra	a	4 17	0 0550				1
8 9 sec	5 6 sec	0 178	Actinon	An	1 .	86	Rn	ar a	5 40	0.0600				1
X 10 ⁻¹ sec	2 9 × 10 * sec	345	Actinium A	Ac-A	7	84	Po	α	6 16	0 0627				
36 1 min	,52 1 min	3 2 × 10 ⁻⁴	Actinium B	Ac-B	7	82	Pb	(β and γ)			Very large	120; 31; 0.45		
2 15 min	3 10 mm	5 37 × 10 *	Actinium C	Ac C	7	8.3	Bı	a .	5 12	0 0589		2 400		1
4 71 min	6 83 min	2 44 × 10 ⁻¹	Actinium C"	Ac-C"	7	81	TI	β and γ			28 5	0.198	1.2 to 1 8	
			Actinium Ω" (hypothetical)	Ac Ω"	7	82	Pb							1
			(hypertheucal)					_					~ ~~~~~~	L
	1	1				ERIE	8 OF	Тнович	1	<u> </u>	ı	1		_
1 × 10 ¹⁰ yrs	1.89 × 10 ¹⁰ yrs	1 68 × 10 ⁻¹⁸	Thorium	Th	232	90	Th	æ	2 58	0 0469				
6.7 yrs 6 2 hrs	9 67 yrs	3 28 × 10 ⁻¹	Mesothorium 1 Mesothorium 2	Ma-Th1 Ma-Th2	228 228	HH H9	Ra Ac	β and γ		0 37, 0 39, 0 43; 0 50;	20 2 to 38 5	26; 0 116	0 62	1
o z hre	8 9 hrs	3 12 × 10-4	Mesothorium 2	M8-112	220	nar T	Ac	<i>p</i> ,		0 57; 0 60; 0 66 and	20 2 10 00	30,000	1 11	
	,			1						>0 70		1		1
2 02 yrs	2 91 yrs	1 09 × 10⁻⁴	Rachothorium	Rd-Th	228	90	Th	α (β)	3 67	a 0 0527; \$ 0 47; 0 51		1		
3 64 days	5 25 days	2 20 × 10 ⁻⁴	Thorium X	Th-X	224	88	Ra	a	4 08	0.0546 0.574	j	1	l	ı
54 sec	78 sec	0 0128	Thoron	Tn	220 216	86	Rn Po	a	5 40	0.874	ļ	1	1	
0 14 sec	0 20 sec	5.0 1 82 × 10 ⁻⁴	Thorium A Thorium B	Th-A Th-B	210	84 82	Pb	β and γ	1. 40	0 63; 0 72	110	160; 32; 0 36	1	
10 6 hrs 60 min	15 3 hrs 87 min	1 82 × 10 ⁻⁴	Thorium C	Th-C	212	63	Bi	65% ₿		(C + C") 0 29, 0 36;	14 4	1	l	
A mil	01 111111	1 62 × 10	I II OI IUIII C	1						0 93 to 0 95				
10 ⁻¹¹ sec	10 ⁻¹¹ sec	1.25 × 10 4	Thorium C'	Th-C'	212	84	Po	а	8 16	0 0688		ł	l	ı
	į į	1011 (7)	Thorium \(\Omega'\)	Th Ω'	208	82	Pb				1	1	1	
]	(a = 1, -= .3	(Lead)	Pb208	210		Bı	35% α ∫	4 55	0 0572	1	l	1	1
		[6.7 × 10 +]	Thorium C	Th-C	212	h3	131	30,4	14 69	1)	1	İ	1	1
	4.5 mm	3 70 × 10 1	Thorium C"	Ть-С"	208	81	TI	β and γ		(See Th-C)	21 6	0 096	0 46	1
3 1 mer	1 2 0 mm	2 10 × 10 .	Thorium Ω"	Th 12"	208	82	Pb							
l min			(Lead)	Phase					1			ì		1
3 1 mm				Pt/see	39 1	19	к	β			22 to 38 308 to 347			-

PHYSICAL PROPERTIES OF THE RADIOELEMENTS AND THEIR COMPOUNDS (Except Ra, Th, U and Rn)

GEORG HEVESY

- 1. Atomic Weights.—Io (mixture of Io + Th), 231.51 (2). $Ra\Omega (= U-Pb), 206.04 (2).$ Th $\Omega (= Th-Pb), 207.97.$
- 2. Molecular Weights.—An (=Ac-Em), 220-232 (4). Th (=Th-Em), 201-210 (4). Rate of effusion method.
 - 3. Density (5),--RaΩ, 11.273 g cm⁻² at 19.94°C.
 - 4. Melting Point (26).—Rati', differs from Pb < 0.05°.
 - 8. Boiling Point (32). -Ra-FH₂, 37°C.
 - 6. Solubility.— $S' = \text{solubility mol } l^{-1}$. $\alpha' = \frac{C \text{Air}}{C_{\text{HgO}}}$. An (14),

 $\alpha' = 2$ at 18°. To (15), $\alpha' = 1$ at 18°. Ro (16), S = 1.7989(18b) in H₂O at 25°. $S[Ra\Omega'(NO_2)_2] = S[Pb(NO_2)_2] < 10^{-4}$.

RELATI	VE SOL	BILITY	or A	N IN	Diffe	RENT	SOLVE	NTS .	AT 18°
н,о	Sat. KCl soln.	Conc. H,SO.	с,н,он	С,Н,1ОН	с,н,сно	C,H,	с,н,сн,	Kerosene	S.
1	0.9	0 95	1 11	1.6	17	1 7	1.8	1.9	2 1

7. Rate of Solution.

PERCENT DISSOLVED FROM SURFACE AT 18°

By H₂SO₄	in 15 s	ec (17	')		
H ₂ SO ₄ , equiv. per liter =	,	10 -	10 2	10 1	1 1
Ra-B from glass		80	80	97	88
Ra-C from glass		28	60	88	99
By IINO _a	m 60 s	ec (18	1)		
HNO ₁ , equiv. per liter = 0	10 6	10-4	10-3	10 2	10 1 1
Th-B from quartz 66	61	60	80	81	83 84
Th-C from quartz 37	38	35	61	72	77 87

PERCENT RA-B AND RA-C DISSOLVED FROM GLASS SURFACE (17)

		By H ₁ O in	5 mm							
1	Ra-B	Ra-C	t	Ra-B	Ra-C					
0° 17°	0 29 0 47	0 19 0 35	42° 70°	0 78 0 97	0 67 0 91					
	By H ₄ 8O ₄ in 15 sec									
ı	Ra-B	Ra-C	1	Ra-B	Ra-C					
0° 17°	0 74 0 80	0 52 0 60	42° 70°	0 895 0 96	0 71 0 81					

- 8. Adsorption.—Ratio of molal cone, in gas at equilibrium to moles adsorbed per liter of charcoal at 18°, An (19) 0.05, Tn (20) 0.02. Percent of initial amount present (per 50 cc of solution) adsorbed by 1 g of adsorbent (21). (a) By BaSO₄, from 0.1 N HCl, Th-B 81, Th-C 32; from 0.1 N KOH, Th-B 20, Th-C 64; from 0.1 N NH₁, Th-B 100, Th-C 86. (b) By Cr₂O₃, from 0.1 N HCl, Th-B 2.5, Th-C 69. (c) By AgBr, from 0.1 N HBr, Th-B 81, Th-C 34. (d) By BaSO₄, from 1 N HCl, Ra 80. (e) By Cr₂O₂, from 1 N HCl, Ra 0. (f) By AgCl, from 1 N HCl, Ra 0.
- 9. Vapor Pressure. $-p_{700^0}$ for Ra Ω' is 2% greater than for Pb
- 10. Temperature of Volatilization.—Depends on nature of surface and chemical state of the radioactive element. v. (23, 24, 25).

11. Coefficient of Diffusion.

An, in	Air	1	H ₂	CO ₂	SO ₂	A
Δ, cm ² sec ⁻¹		0.123 0 33 3, 9) (7)				20.10
Tn, in .			Air		A	
Δ , cm ² sec ⁻¹ .		0.085-0.103 (6, 7, 9)				
(b) The Cations	B IN WATE	er (10)	ат 18°		
lon	UX, Io	Ra-D'	Ra-E	** Ra-	F**	Ac
∆, cm ⁻² dny ⁻¹		0 65				0 46
lon	AcX · · Re	_{I-Th} !! T	'nΧ **	Th-B	T	h-C''
Δ, cm ⁻² day ⁻¹ .	0 69	0 33	0 66	0.67		0.5

Th-CCl₃ in $\frac{1}{12}$ N NH₃, $\Delta = 0.37$. Ra-FCl₂ in $\frac{1}{12}$ N NH₄, $\Lambda = 0.19$

(c) In Metals.	(c) In Metals. Δ in cm ⁻² Day ⁻¹								
	t	Δ							
Th-B in Pb	343°	2.2 (11)							
Ra-D in Pb	280°	<10-4 (12)							
Ra-F in Pb	280°	< 10-4 (12)							
Ra-F in Au	470°	ca. 10 ⁻⁹ (13)							
Ra-B + Ra-C in Ag	. 470°	$3.8 \times 10^{-7} (13)$							
Ra-B in Au	470°	8.2×10^{-7}							
Ra-B in Pt	470°	3.4×10^{-7}							

In re diffusion of Th-B in single crystals, in lead foils and in thallium foils v. (35).

- 12. Refractive Index (27).— n_D^{76} for cryst. Ra $\Omega'(NO_3)_2 =$
- 13. X-ray Spectra.—All lines of the L series and the Ma and $M_{\rm d}$ lines of Ra Ω' differ by less than 5×10^{-12} cm from the same lines for Pb (28).
- 14. Relative Ionic Mobilities (10).—In capillary tubes by comparison against Ra ($\Lambda = 57.3$ mhos).

Cation	Ra	Ra-C Ra-D	Ra-E Ra-F	AcX ThX	Th-B Th-C
Λ	57 3	54.5 61.9	61.9 68.8	56.1 58.0	55.4 54 0

- 15. Emf.—Ra Ω' / N Ra Ω' (NO₁)₂ // N Pb(NO₂)₂ / Pb. millivolt (31)
- 16. Deposition Voltage.—From 1/10 N HNO2 containing 10-8 mole Ra-F, cathodic deposition occurs on Au electrodes at E_{Hq} = 0.35 volt, anodic at $E_{Hy} = 1.05$ volt (30).

LITERATURE AND REMARKS

(For the key to periodicals see end of volume)

(1) Hömgschmid, 9, 22: 21; 16. This mixture contained about 30% Io and) Hömgschmid, 9, 33: 21; 16. This mixture contained about 30% to and 70% Th and was probably contaminated with some Th not present in the pure pitchblende (cf. Soddy and Hitchins, 5, 47: 1148; 24. Meyer and Ulrich, 75, 133: 279; 23). (3) Lowest value found. Higher values probably due to presence of lead. Richards and Lembert, 1, 36: 1329; 14. 9, 36: 329; 14. Hömgschmid and Horowits, 75, 133: 2407; 14. 9, 36: 319; 14. Curie, 54, 146: 1676; 14. 198, 34: 586; 23. Richards, Ann. Rep. Smithsonian Inst. 1918: 205. Richards and Putseys, 1, 46: 2954; 23. Highest value found. Lower values probably due to presence of lead and RaΩ. Hönigachmid, θ, 26: 91; 10. Soddy, 4, 105: 1402; 14. 68, 94: 615; 15. 98: 469; 17. 99: 244; 17. (*) Leslie, 4, 24: 637; 12. 34, RADIOACTIVITY

153: 328; 11. Marsden and wood, 4, 251: 948; 13. (*) Richards and Wadsworth, 1, 251: 221, 1658; 16. Cf. Soddy, 58, 107: 41; 21 Egerton and Lee, 5, 163: 487; 23. (*) Rutherford, "Radioactivity," Cambridge, 1913, p. 387. (*) Russ, 4, 17: 540; 09. (*) B Bruhat, 199, 6: 67, 00 (*) Debierne, 199, 6: 213; 07. McLennan, 2, 30: 660; 10. Eckimaun, 200, 9: 177; 12. Thomsen, 201, 18: 377; 09. Hevesy, 200, 10: 198; 13. (*) Leslie, 34, 153: 328; 11. Rutherford, I.c. (*) Hevesy, 63, 16: 49, 1202; 13. 4, 26: 586; 14. Paneth, 75, 122: 1636. 13. The radioelements probably present in colloidal state. (*11) Gróh and Hevesy, 8, 63: 85; 20. Diffusion rate of a muxture of Th-B and Pb in lead. Th-B used as indicator. (*12) Gróh and Hevesy, 8, 63: 218, 21. Liftuson rate of a muxture of Ra-D and Pb in lead. (*14) Werksandam.

Diffusion rate of a mixture of Ra-D and Pb in lead (13) Wertenstein and Dobrowolska, 51, 4: 324; 23. Diffusion rate of active deposit (prob-10. α of short-hved An and Tn determined by making assumptions only partly justified. α of An and Tn probably practically identical with that of Rn. (16) Richards and Schumb, I, 40: 1403; 18. The Ran' used conof Rn. (**) Richards and sending, 7: 1705, 1705, 1707, 1 1913 C. Fujama and temoert, 30, 30, 130, (**) Rainstedt, 147, 11. No. 31; 13. Cf. Arrhenius, 199, 7: 228, 10 Gollewski, 199, 10: 250; 13. Schräder, 4, 34: 131; 12. Heveny, 9, 19: 201; 13 (**) Heveny and Rona, 7, 89: 294; 15. In re Ra-F, of Paneth and Hevesy, 75, 123:

1050; 13. (1*) Hevesy, 63, 12: 9; 12. 50, 14: 420; 12) Boyle. 4. 17: 380; 09. Ra-B and Th-B between Pb amalgam and Hg(NO₂)₂; cf. Z. Klemensievicz, 34, 158: 1889; 14. (21) Paneth, 63, 15: 924,

14 Horowits and Paneth, 75, 129: 1819, 14 In readsorption UX of Ebles 13 norowit and raneth, 75, 139; 1819, 14
 14 re adsorption UX cf. Ebler and Rhyn, 56; 64; 2806, 21
 A C Brown, 4, 132; 1783; 22
 Froundlish and Wreschner, 7, 106; 360; 23
 Adsorption of Ra-B, Ra-C, Th-B and Th-C Hevesy, 75, 137; 1787, 18
 Cranaton and Burnett, 4, 119; 2036; 21
 131; 2800, 22
 Paneth and Vowerk, 7, 101; 445; 22
 Esjans and Frankenberg, 7, 106: 255, 23 Absorption of Ra-F, Paneth, 55, 18: 1, 288; Lachs and Wortheasten, 45, 23; 318; 22 Eacher, 34, 177; 3, 172; (22) Egerton, 5, 103; 409; 23 (23) Russoll, 4, 24; 134; 12. cf. Schräger der, 4, 24: 125, 12. (24) St. Lona, 63, 27: 6, 16 (25) Wood, 5, 22: 543, 15 Cf. Barrat and Wood, 67, 26: 218; 14 Wood, 4, 28: 808; 14. In re volatilization of Tn of Fleck, 4, 29: 337; 15 and St. Loria, 75, 129; 829; 15 Volatilization of RaFH₁ and of the hydrides of Ra-B, Th-B and Fh-C, Paneth, 25, **51**; 1704; 18 **53**; 1603, 20. 3, **36**; 452; 20. (**) Richards and Hall, 1, **42**; 1550, 20. cf. Lembert, 9, **36**; 59, 20. (**) Richards and Schumb, I, **40**: 1403; 18 For Ph(NO₂)₂, $n_D^{20} = 1.7815$, (2*) Siegbahn and Steinström, 63, **18**: 547, 17. Cf. Duane and Shimlau, 197, 5: 198; 19 Cooksey and Cooksey, 2, 16: 327; 20. In re slight difference in the wave length of optical spectrum of ordinary Pb and mixtures of RaΩ and ordinary Pb, cf. Aronberg, 197, 3: 710; 17. 41, 47: 96; 18. Harkins and Aronberg, 1, 42: 1328; 20. Merton, 5, 99; 87; 21. 100: 81, 21. (**) Hereey, 4, 28: 40; 13. 65, 14: 40; 13. (**) Hereey and Paneth, 75, 128: 161; 14. Mertner, 63, 12: 1004; 11. Heveey,

4, 23 . 628, 12 Wertensteinowa, 256, 10: No 6, 771; 17. On the deposition of Th-B and Ra-E, Paneth and Hevesy, 75, 128: 1037; 13. (21) Hevesy and Paneth, 25, 124: 381, 15 (32) Paneth, O (33) Fajans and Lembert, 93, 95: 297, 16 (34) Richards and Schumb, Iv. (38) Hevesy and Obrutaheva. 58, 115; 674, 25,

ARTIFICIAL DISINTEGRATION OF THE ELEMENTS

G. Rudorf

Disintegration by the splitting off of positively charged hydrogen nuclei by the action of rapidly moving α -particles.

- (a) Disintegration obtained with B, N, F, Ne, Na, Mg, Al, St, P. S. Cl. A. K (1, 2, 3, 5).
- (b) No disintegration obtained with H, He, Li, C, O, Ni, Cu, Zn, Sc, Kr, Mo, Pd, Ag, Sn, X, Au, U (2, 3, 5).
 - (c) Doubtful, Be (4, 5).

Chas

Iβ

LITERATURE

(For a key to the periodicals see end of volume)

(1) Rutherford, 3, 27: 581: 19 5, 97: 374: 20 (2) Rutherford and Chadwick, 3, 42; 809; 21 (3) Rutherford and Chadwick, 3, 44; 417, 22, also Rutherford, 4, 121: 400; 22. (4) Kirsch and Petterson, 75, 132: 209, 24 3, 47: 500; 24. (5) Rutherford and Chadwick, 67, 36: 417; 24

RANGE OF EMITTED HYDROGEN NUCLEI (2, 3, 5)

Element	Forward range in cms	Backward range in ems
В	58	38
N	40	18
F	65	48
Na	58	36
Al	90	67
P	65	49
Mg, St, S, Cl, A, K	18-30	
Ne	16	

The values for B. F. Na. P are possibly somewhat in error (2) but are certainly

ELECTRON EMISSION PRODUCED BY RADIATION FROM RADIOACTIVE SUBSTANCES

PIERRE AUGER

6 28 | 2 12

5.11

RELATIVE IONIZATION OF GASES BY PO α-RAYS HAVING A 3.8 CM RANGE(1)

1 | 1 12 | 0 97 | 1 23 |

Air | O₂ | N₂ | CO₂ | Illuminating gas

LATIVE	MoL	ECULA	ar los	TAXI	ION (of Ga	SES BY	β ANI) γ Κ 4	18
Gas	Air	II2	O ₂	NH ₂	N ₂ O	CO2	C_2N_2	$\mid SO_2 \mid$	CS ₂	(' _b
Ιβ	1	0.16	1.17	89	1.55	1.60	1 86	2 25	3 62	4
I_{γ}	1	.16	1 16	90	1 55	1.58	1 71	2 27	3 66	ŧ

	ľγ	3.94	1 75	3 81		5.37	6 33	2 17
	Gas	C ₂	H _s Cl C	₂ H _b Br	C ₂ H ₅ I	(C ₂ H _b)	₂ ()	Ni(CO)
	Ιβ	3	.24	4.41	4.39	5.90		
_	I_{γ}	3	19	4 63	4.29	6.47	'	5 98

3 73 | 4 94 |

1.69

3 95

RESIDUAL IONIZATION AS DEPENDENT ON THE PRESSURE

Ionization from the walls (a secondary radiation) in air confined for 10 days. $N_I = \text{number of ions per cm}^3 \text{ per sec } (3)$.

P. atm.	0	10 20	27	40	46 50	60
λ'-	10	17 30	38	46	50 50	50

NUMBER OF ELECTRONS (δ-RAYS) LIBERATED BY α-RAYS L = thickness of metal traversed. $N_E = \text{electrons emitted per}$ incident particle (4).

10 ⁵ l (g cm ³) 81 162 243 324 410 402 570 28.5, 501 12.3 1223 N _E		In Al	In Ag In Au
The state of the s	105 l (g cm 2)	81 162 243 324 410 492 570	28.5, 591 12.3 1223
	N _E		

PAIRS OF IONS PRODUCED BY G-RAYS

If R_0 cms is the range of the α -particle in air, it will produce npairs of ions. $n = n_0 R_0^{35}$, where $n_0 = 6.233 \times 10^4$. Direct measurement for Ra-C' gives $n = 2.20 \times 10^5$ (5).

ENERGY

Energy of electrons (Sec. β-rays) emitted by metals subjected to the action of γ -rays from Ra(C + E). Three groups of rays (6).

Metal	Pb	Pt	W	U	Ba
Atomic number	82	78	74	92	56
Energy of the secondary rays. Volts × 10 ⁻⁴ .	1.49 2.03 2.60	1.58 2.12 2.69	1 66 2.20 2 76	1.22 1.74 2.31	2.53

366

SECONDARY 6-RAY VELOCITIES

Pb subjected to the action of 7-rays from Ra-B has been found to emit the following secondary β -rays:

mus $RH = \frac{mu^2}{e(1-\beta^2)} = 3610, 3250, 2990, 2735, 2225, 2130, 2000,$ 1935, 1825, 1750, 1620, 1560, 1400, 1240, 1150, 1010, 950, 820, 800 (8).

ARSORPTION

Absorption of the secondary β -rays emitted by metals when subjected to the radiation from Ra(B + C). μ_b for the hard rays, μ_s for the soft rays. Absorbing screen, Al (7).

Metal							
μ _s , cm ⁻¹ μ _e , cm ⁻¹	69	14	118	35	41	52	118
μ _e , cm ⁻¹	207	52.5	345	105	165	165	345

LITERATURE

(For a key to the periodicals see end of volume)

(1) F. Hess and M. Horngate, 75, 139: 7; 20. (2) Klemann, 5, 79: 220, 07 (3) K. Melvina Downey, 2, 20: 186; 22. (4) H. Becker, 5, 75: 3, 217; 24. (5) H. Fonovita-Smereker, 75, 131: 355; 22. (5) Ellis, 5, 99: 251; 21 (7) A. Enderle, 75, 181: 9; 22. (8) Rutherford, Robinson and Rowlinson # 98: 281: 16

ENERGY OF RADIOACTIVE PROCESSES

STEFAN MEYER

HEAT PRODUCTION OF RADIOACTIVE SUBSTANCES

Joules per hour per gram of the radioactive element and the decay products in equilibrium therewith. (1 Joule = 0.2390 g-cal.)

Substance	Rays	Meyer & Hess(4)	Hess(2)	Ruther- ford & Robinson (7)
Ra	α and recoil α and recoil α and recoil α and recoil α and β , γ	573	105 5	105 0 119 7 127 6 211 3
Total		573	573	565

Substance	Heat	Lit.	
Th	10.0 × 10 ⁻⁶	(5)	
U	4×10^{-4}	(6)	
Pitchblende (ca. 64% U)	27×10^{-6}	(6)	

Ellis and Wooster (1) have determined the \gamma-heat effect of Ra-B to be 3.6; Ra-C. 32.2; total, 36 joules/h. Calculations of the heat effect of β - α and γ -rays have been made by Meitner (3) and Thibaud (8).

LITERATURE

(For a key to the periodicals see end of volume)

(1) Ellis and Wooster, 201, Feb. 2, 1925. (2) Heas, 75, 121: 1419; 12. (3) Meitner, 218, 13: 1146; 24. (4) Meyer and Hess, 75, 121: 603; 12. (5) Pegram and Webb, 2, 27: 18; 08. 199, 5: 271; 08. (*) Poole, 3, 19: 314; 10. 21: 58; 11. 23: 183; 12. (7) Rutherford and Robinson, 75, 121: 1491, 12 5, 25; 312; 13 (8) Thibaud, 54, 180; 1166, 25.

CHEMICAL EFFECTS OF «-PARTICLES

S. C. LIND AND D. C. BARDWELL

M is the total number of molecules reacting (on the left hand of the equation, first column); N is the total number of ion pairs produced in the reactants by α-particles.

$$\frac{M}{N} = \frac{\binom{k_{\mu}}{\lambda}' \cdot V}{D \cdot F \cdot G \cdot H} \times 1.66 \times 10^{3}$$

 $V = \text{volume in cm}^3 \text{ of, and } D = \text{diameter in cm of, the reaction}$ sphere.

F = average intensity of ionization (1). G = specific molecular ionization (air = 1).

 $H = (\alpha + R)/\alpha$ where α and R are α -ray and recoil atom effects resp. (2).

$$\left(\frac{k\mu}{\lambda}\right)' = \left(\ln\frac{P_1}{P_2}\right) + \left[E_o(e^{-\lambda}t_1 - e^{-\lambda}t_2)\right] (3)$$

where E_{\bullet} = initial radon (in curies), P = pressure (mm Hg), λ = decay constant of radon (in reciprocal days) and t = time (in days).

Where the quantity of gas in the reaction vessel at atmospheric pressure exceeds the air equivalent of a bulb 2.5 cm in diameter, the ionization is calculated by equations developed by W. Mund (17), slightly modified:1

¹The modified equation is derived by correcting the integration of Mund's function $\varphi(r)=\int_0^r 2R(r-x)^{\frac{n}{2}kx^ndx}$ (equation 5, p. 340). In the large bulbs used by Mund no error was introduced by employing his equation since 2R>r.

$$\begin{split} I &= N_0 \; (1 \text{-}\mathrm{e}^{-\lambda t}) k \bigg[\, r^{25} + \frac{1}{2} \, r'^{35} + \frac{1}{2} \, r''^{35} - \frac{3}{20R} \, \bigg\{ 3 r^{55} + r'^{55} + r''^{55} \\ &- 3 \; (r - 2R)^{55} - (r' - 2R)^{55} - (r'' - 2R)^{55} \bigg\} + \frac{81 r^{155}}{3520R^3} - \\ &\frac{27}{160} (r - 2R)^{35} \; \bigg\{ \, \bigg(\frac{r - 2R}{R} \bigg)^{3} + \frac{3}{22} \bigg(\frac{r - 2R}{R} \bigg)^{3} \, \bigg\} \, \bigg] \\ I &= \text{Number of ions produced by the three sets of α-particles in} \end{split}$$

the time t.

 N_1 = Number of atoms of radon present initially (t = 0) (1 curie = 1.772 × 1016 atoms Rn)

R =Radius of reaction bulb in cms.

 λ = Decay constant of radon (as above)

 $k = 6.67 \times 10^4 \frac{\rm ions}{\rm cm^3 i}$ = ionization constant per α -particle as a function of the range (5); $i = kr^{36}$ or kr'^{36} or kr''^{36} for Rn, Ra-A, and Ra-C, resp. (air at 760 mm and 0°C)

r, r', r'' = ranges of α -particles from Rn, Ra-A, and Ra-C, resp. Wourtzel's (13) M/N values are recalculated by the Mund equation

The values adopted for the number of a-particles per sec per g of radium, and the total ions from one a-particle of Ra-C in its completed path in air are respectively, for column (a) 3.72 × 1010 (4) and 2.37×10^5 (5), and for (b) 3.40×10^{10} (6, 7) and 2.20×10^5 (8). Other combinations of these numbers give intermediate values of M/N.

Reaction			I	Lit.	
l = liquid, g = gas, s = solid		(a)	(b)	Lat.	
2H _s g + O _s g→2H _s Ol Dry or moist; at 25°C to −75°C		5.13	6.05	(9, 10)	
2H ₂ Ol→2H ₂ g + O ₂ g		∫ 0.86	1.01	(11)	
		1.05	1.24	(11)	
2H ₃ O _g →2H ₃ g + O ₃ g 2H ₃ O ₈ →2H ₂ g + O ₃ g		<0.01 0.05	<0.01	(11)	
2H ₁ Os→2H ₂ G + Osy CO ₂ G→1% disappearance of gas,		0.00	0.06	(11)	
decomposition products		5 × 10-4	6 × 10-3	(18)	
$CO_g \rightarrow CO_{sg} + C_nO_{ms} + C_s$		1.85	2.18	(18)	
2COg + Og→2COg at room tem	per-			()	
ature		5.7	6 7	(18)	
2COq + O₂q→2CO₂s at liquid air t		>3.1	>3.7	(18)	
$C(g + H_2g \rightarrow carbohydrate s$		3.13	3.7	(18)	
$CO_{sg} + H_{sg} \rightarrow carbohydrate s + I$		1.44	1.70	(18)	
$CO_{sg} + CH_{sg} \rightarrow carbohydrates + 1$		0.76	0.90	(10)	
$CH_{ig} \rightarrow H_{ig} + hydrocarbons g,l$ and		2.0	2.4	(10)	
$C_1H_{eg}\rightarrow H_{eg}$ + hydrocarbons g,l ar		1.7	2.0	(10)	
$C_1H_2g \rightarrow H_2g + \text{hydrocarbons } g,l \text{ are}$		1.5	1.8	(10)	
$C_4H_{10}g + H_2g + hydrocarbons g, ls$		1.4 4.4	1.6	(10)	
$CH_{4g} + 2O_{2g} \rightarrow CO_{2g} + H_{2}Ol$ $CH_{4g} + 2O_{2g} + [1 \text{ mol } \% (C_{2}H_{5})_{2}S]$		4.4	5.2	(10)	
$CO_{2}g + H_{2}Ol \dots \dots$		5.7	6.7	(10)	
$2C_0H_0g + 7O_0g \rightarrow CO_0g + H_0Ol$		6.8	8.0	(10)	
$(CN)_{2g} \rightarrow \begin{cases} 5\% \text{ to } N_{2g} \text{ and } Cs \\ 95\% \text{ to paracyanogen } s \end{cases}$]	1		, ,	
(CN) 19 → 95% to paracyanogen s		7.8	9.2	(12)	
((18°	1.01	1.19	(13)	
	25°	1.0	1 2	(10)	
2NH ₂ g→N ₂ g and 3H ₂ g	108°	2.0	2 35	(13)	
	220°	2.92	3.44	(13)	
] .	315°	3.15	3.80	(13)	
	18°	3.40	4.00	(13)	
$H_1Sg \rightarrow H_2g + Ss \dots $	95°	2.80	3.30	(13)	
· ·	220°	2.38 3.?	2.80 4.?	(13)	
• • • • • • • • • • • • • • • • • • • •	190° - 78°	2.74	3 23	(13) (13)	
$N_2Og \rightarrow \left\{ \begin{array}{l} N_2g' + O_2g \\ N_2g + NOg \end{array} \right. \qquad \left. \begin{array}{c} - \\ \end{array} \right.$	18°	2.74	2.61	(13)	
$N_{2g} + NO_{g} \dots$	220°	2.95	3.48	(13)	
$H_{2g} + Cl_{2g} \rightarrow 2HCl_{g}$		4000	4700	(14)	
	- 1	10.76	0.90	(15)	
$2HClg \rightarrow H_{\mathfrak{s}g} + Cl_{\mathfrak{s}g} \dots \dots$	• • • • • •	1.24	1 46	(10)	
$H_{g} + Br_{g} \rightarrow 2HBrg$		0 54	0.64	(16)	
2HBrl→H ₂ g + Br ₂ g		2.6	3 1	(16)	
KI in acid soln.→free I	l	0.76	0.90	(16)	

Reaction $l = \text{liquid}, g = \text{gas}, s = \text{solid}$	1	M N			
	(a)	(b)	Lit.		
xHCN→(HCN) _x s + 5% N _x g	10.5	12.4	(12)		
$C_{t}N_{sg} + O_{sg} \rightarrow \begin{cases} 63\% \rightarrow (CNO)_{sd} \\ 37\% \rightarrow CO_{sg} + N_{sg} \end{cases}$	7.2	8.5	(10)		
$\begin{array}{c} C_{1}N_{1}g + \begin{cases} 67\% C_{1}N_{1} \rightarrow (HCN)_{2}g \\ H_{2}g \rightarrow \end{cases} & 33\% C_{1}N_{1} \rightarrow (C_{2}N_{1})_{2}g \end{cases} \end{array}$	6.8	8.0	(10)		
$C_2H_4g\rightarrow H_2g$ + hydrocarbons g , l , and s	5.0	5.9	(10)		
$C_1H_2g \rightarrow (C_1H_1)_2s + 2\% H_2g \dots$	19.5	23.0	(10)		
$C_2H_2g \rightarrow (C_1H_2)_{x8} + 1 + \% H_2g \dots$	20 5	24.2	(19)		
C ₂ H ₂ g + H ₂ g → (C ₁ H ₂) _e s (11 % H ₂ re-			1 ` '		
acted)	19.6	23.1	(10)		

Catalytic Effect of Inert Gases (10, 20, 21)

The -M/N values in the table below give the total number of molecules of reactants disappearing for each ion pair of both catalyst and reactants. Example: $\frac{1-c_0n_1}{N(c_0n_0+n_0)}$ = 18.7, means that 18.7 molecules of C₂H₂ polymerize to (C₂H₂), s for each ion pair whether formed in the reactant or in the catalyst. With the increasing ratio of catalyst to reactant, a decrease in the -M/Nis indicated-probably attributable to exhaustion effects. Values by the (a) method only are given.

	Catalysts											
Reactants	Pure gas	N,	н	Ne	A	Xe	CO ₁	H ₂				
C ₁ H ₁	19 5	18 7 to	20 1 to 17.0	to	to	18.5	17.4	19.6				
C ₂ N ₂ HCN .	7 2 10 8	7 2 10 0		.0.0	10 0	7.2 10.0		reacts				
$\begin{array}{c} 2H_1 + O_2 \dots \\ 2CO + O_2 \end{array}$	5 13 5 7	5.0			3 9		reacts none					

LITERATURE

(For a key to the periodicals see end of volume)
(1) Lind and Bardwell, 1, 48: 2085; 23. (2) Lind and Bardwell, 1, 48: 2008; 24. (2) Lind, 50, 18: 502; 12. (4) Hass and Lawson, 75, 127: 405; 18. (5) Geiger, 5, 83A: 486; 09. (6) Rutherford and Geiger, 5, 81A: 141; 08. (1) Geiger and Werner, 96, 31: 187; 24. (8) Fonovits-Smersker, 75, 181:

(*) Geiger and Werner, 26, 21: 187; 24. (*) Fonovits-Smereker, 76, 181; 355; 23. (*) Lind, 1, 41: 531; 19. (*) Lind and Bardwell, 0. (*) Duane and Scheuer, 199, 19: 33; 13. (*2) Lind, Bardwell and Perry, 0. (*) Wourtsel, 199, 289; 332; 19. (*) Bodenstein and Taylor, 1, 27: 24; 15. (*) Cameron and Ramsey, 4, 38; 965; 08. (**) Lind, 199, 8: 289; 11. (*) Mund, 257, 44: 336, 25. (**) Lind and Bardwell, 1, 47: 2675; 25. (*) Mund, and Koob, 26, 242; 25. (**) Lind and Bardwell, 1, 46; 43; 442, 25. (**) Jbid, 196, 42; 593; 25.

SATURATION CURRENT. ABSORPTION IN LIQUIDS AND SOLIDS

STEFAN MEYER

SATURATION CURRENT AND NUMBER OF IONS FOR a-RADIATORS

The saturation current is $I_* = Zke$ where Z = number of α -particles per sec per unit mass, $k = \text{number of ion-pairs per } \alpha\text{-particle}$ and $e = 4.774 \times 10^{-10}$ es.

Number of Ions, k

Based on the values of Ra-C' and the following alternative Z values for 1 g of Ra: (a) $Z_{Ra} = 3.72 \times 10^{10} \ (19.25)$; (b) $Z_{Ra} =$ $3.45 \times 10^{10} (12)$.

$$k = A \times 10^{4} (9, 11, 13, 18, 45, 47)$$

Element	1	1	Element	A				
raement	(a)	(b)	Liement	(a)	(b)			
$\overline{\mathrm{U_I}}$	1.16	1.25	An	1.95	2.10			
U11	1.27	1.37	Ac-A	2.12	2.28			
lo	1.31	1.41	Ac-C	1.88	2.03			
Ra	1.36	1.47	Ac-C'	(2.09?)	(2.25?)			
Rn	1.55	1.67	Th	1.23	1.32			
Ra-A	1.77	1.83	Rd-Th	1.53	1.64			
Ra-C	(1.47?)	(1 58?)	Th-X	1.61	1.78			
Ra-C'	2.20*	2.37*	Tn	1.78	1.92			
Po	1.50	1.62	Th-A	1.92	2.07			
Pa	1.44	1.55	Th-C	1.71	1.85			
Rd-Ac	1.69	1.82	Th-C'	2.54	2.73			
AcX	1.61	1.74						

^{*} Basic values.

The value of $Z_{\rm U}$ = $Z_{\rm U_{\rm I}}$ + $_{\rm U_{\rm II}}$ may be obtained from $Z_{\rm Ra}$ and the basic equilibrium ratio $Z_{\rm Ra}/Z_{\rm U}=3.4\times 10^{-7}$.

The value of Z_{Th} may be calculated from the decay constant of Th. For the following assumed values of the half-life, Tis, of Th we find for $Z_{\rm Th}$: 1.25×10^{10} yrs, 4.5×10^{4} α sec⁻¹; $1.65 \times$ 10^{10} , 3.4 α sec⁻¹; and 2.2 \times 10^{10} , 2.6 α sec⁻¹.

Saturation Current

1. (In Electrostatic Units) (2,3, 4, 5, 6, 7, 8, 20, 26, 31, 32, 34, 43)

Element	v ₁ v ₁₁	lo	Rn	Rn	Ra-A	99 96 % Rn-C'	Po
- 1	1 41	0 79	0 82	0 94	1 00	1 38	0.91
대 전 전 1. × 10 4	4 32	2 31	2 12	2 7	3 02	3 91	2 64

2. On the basis of a branching ratio of 3% for the Ac family In equilibrium with 1 g Ra (1, 2, 10, 15, 16, 17, 23, 30, 33, 38, 41).

Element =	Pa	Rd-Ac	Ac-X	An	Ac-A	99-7% Ac-C
/ × 10-4 w	7 09	0 00	N Na	10.7	11 7	10.4

- **8.** 1 g U in ores [i.e. U + 97% (Io \rightarrow Ra-G) + 3% (Pa \rightarrow Ac-D)] is equivalent to $I_* = 7.30$; 1 g (U₂O₈-Ra-G) to $I_* = 6.2$; and 1 g average ore with 50% U_2O_8 to $I_4 = 3.1$.
- **4.** 1 curie Rn is equivalent to $I_* = 2.75 \times 10^4$ and 1 curie $Rn + \frac{1}{2}(Ra-A + Ra-C')$ to $I_4 = 6.22 \times 10^6$.
- 5. In equilibrium with 1 g Th and based on the following alternative Z values for 1 g Th: (a), $Z_{\text{Th}} = 4.5 \times 10^3 \,\alpha \,\text{sec}^{-1}$ and (b), $Z_{\rm Th} = 3.4 \times 10^3 \, \alpha \, {\rm sec}^{-1}$.

Element	;		Th	R	d-Th	ľ	h-X		Tn	7	h-A	3 T	5% h-C	6 T	5% h-C'
<i>I.</i> =	(a)	0	264	0	329	0	346	0	382	0	413	0	129	0	355
	(b)	0	200	0	248	0	261	0	289	0	312	0	097	0	26s

RANGE OF a-PARTICLES IN LIQUIDS AND SOLIDS

All values in microns, $\mu = 10^{-4}$ cm

A. In Liquids

From Po (38)								Fre	From Ra-(" (37, 48)			
Liquid	C.H.OC.H.	Саньон	is:	C,H,	СИСЪ	C,H,NH;	н,о	C.H. (OH)	C,H,OH	C,H,	C, H, N	Н,0
R150	43 0	37.1	36 7	36 3	34 3	33 0	32 0	27 9	7 05	70	63 9	60,059 5

B. In Solids

From Ra-C' (49, 50, 51)

Solid	 Li	Mg	Al	Ca	Fe	Nı	Cu	Zn
Riso	129 1	57.8	10 6	78 8	18 7	18 4	18 3	22.8
Solid	 	Λg	Cd	8n	Pt	Au	TI	Pb
Riso	 	19 2	24.2	29 4	12 8	14 0	23 3	24 1

C. In Photographic Plates

Source	Ra-A	1	Ra-C'		Th-C	Po		
Type of plate	Ilford	Sigurd (Jahr)	11	ford		Sig	urd	
R ₁₁ ° Lit	34.8 (21)	50.0 (36)	50.7 (21)	54 (21)	48.2 (22)	27 7 (36)	23 (35)	

D. PLEOCHROITIC HALOES v. (53)

STOPPING POWER EQUIVALENTS OF AIR AND METALS AT DIFFERENT PARTS OF THE PATH OF AN a-RAY

Milligrams per cm2 of foil equivalent to 1 cm air lying between the distances given, measured from end of range. 15°C and 1 atm (29).

Distances ems							
Al	1 90	1 71	1 65	1 64	1.63	1.62	1 62
Λg	3 805	3 28	3 10	3.01	2.93	2.86	2 81
Au	6 10	4 84	4.44	4 25	4.06	3.96	3 91

INITIAL VELOCITIES OF RECOIL ATOMS

 $\mu = \Lambda \times 10^7 \text{ cm sec}^{-1}$

From	То	A =	From	То	Λ =
Uı	UXI	2 39	An	Ac-A	3.36
$\mathbf{U_{11}}$	lo	2.54	Ac-A	Ac-B	3.58
Io	Ra	2 62	Ac-C	Ac-C"	3.44
Ra	Rn	2 72	Ac-C'	Ac-D	3.61
Rn	Ra-A	2 96	Th	Ms-Th ₁	2 40
Ra-A	Ra-B	3 16	Rd-Th	Th-X	2.86
Ra-C	Ra-C"	2 99	Th-X	Tn	2 99
Ra-("	Ra-D	3 66	Tn	Th-A	3 20
Po	Ra-G	3 08	Th-A	Th-B	3 39
Pa	Ac	2 74	Th-C	Th-C"	3 26
Rd-Ac	Ac-X	3 02	Th-C'	Th-D	3.97
Ac-X	An	3 01	1		

RANGES (PENETRATION) OF RECOIL ATOMS

Ra-A to Ra-B, 0.14 mm in air; 0.83 mm in H₂; ca. 20µµ in Ag (52).

Rn to Ra-A-Ra-C, ca. 10μμ in Cu and Ni (14, 40).

Th-C to Th-C", at 15° and 1 atm., 0.55s mm in H2; 0.129 mm in air (24).

Th-C to Th-D, 15° 1 atm., 0.963 mm in H2; 0.224 mm in air (24).

THE McCOY NUMBER

The McCov number is the ratio of the total a radiation to the uni-directional radiation per cm2 from a U2O8 surface of a-saturated thickness. McCoy (27, 28) found 793 with $I_* = 1.74 \times 10^{-3}$ es per cm2 U2O3 and St. Meyer and Paneth (34) found 790 with $I_* = 1.73 \times 10^{-3}$. These numbers are smaller than the theoretical.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Antonoff, 3, 26: 1058; 13. 199, 10: 406; 13. (2) Boltwood, 18, 25: 269;
- (1) Antonoff, 3, 26: 1058; 13. 199, 10: 406; 13. (2) Boltwood, 18, 28: 269; 08. (3) Boltwood and Johnstone, 3, 40: 50; 20. (4) Brössler, 75, 129: 47; 20. (3) I Curie, 34, 176: 1462; 23. (4) Flamm and Mache, 76, 121: 227; 12. (7) Flamm and Mache, 76, 122: 535, 1539, 13. (4) Fonovits, 75, 128: 761; 19. (5) Fonovits-Smereker, 76, 121: 355; 22. (10) Fussler, 2, 9: 142, 17. (11) Geiger, 5, 28: 486; 09. 28: 555; 10. (12) Geiger and Werner, 36, 21: 187; 24. 88, 5: 12; 24. (13) Girard, 199, 10: 195; 13. (14) Goidlewski, 75, 125: 137; 16. (15) Guy and Russell, 4, 123: 2618; 23. (14) Hahn and Mettner, 63, 20: 520; 19. 283, 7: 611. 25, 52: 1812, 19. (17) Hahn and Mettner, 25, 54: 69; 21. 36, 8: 202; 22. (18) Henderson, 3, 42: 538; 21. (19) Heas and Lawson, 75, 127: 405, 461, 535, 599; 18. 36, 244, 402; 24, 25, 48: 200; 24. (22) Hornyak, 75, 120: 135; 21. (21) Ikeuti, 5, 32: 120; 16. (22) Kinoshita and Ikeuti, 3, 32: 420; 15. (23) Kirsch, 75, 129: 309; 20. (24) Kolbörster, 36, 3: 257; 20. (48) Kovark, 2, 32: 550; 24. (48) Maracineanu, 34,
- 96, \$1:57; 20. (**) McCoy, \$2. 381; 559; 24. (**) Maracineanu, \$4, 177; 682; 23. (**) McCoy, \$2. 381; 05. \$4: 124; 07. \$5, 11: 177; 08. (**) McCoy and Ashman, \$12, 26: 521; 08. \$190, \$5: 302; 08. (**) Maraden
- (4*) McCoy and Ashman, Iz, 26: 521; 08. 199, 8: 362; 08. (4*) Marsden and Ruchardson, J., 36: 148; 13.
 (30) Meyer, 75, 139: 483, 20. (31) Meyer and Hess, 75, 130: 1187; 11. (32) Meyer and Hess, 75, 131: 603; 12. (32) Meyer and Hess, 75, 138: 900; 19. (34) Meyer and Paneth, 75, 138: 1403; 12. (33) Mehl, 75, 138: 1595; 1965; 14. (34) Muhlesten, 149, 4: 38; 22. (37) Philipp, 96, 17: 23; 23. (38) Piccard and Kessler, 149, 8: 491; 23. (39) Ruchter, 75, 138: 539; 19. (40) Rie, 75, 130: 283; 21. (41) Rona, 25, 36: 294; 22. (43) Russell and Widdowson, S₂ 46: 915; 23. (48) Rutherford, "Radioactive Substances,"

96, 5: 396; 21.
) Traubenberg, 65, 21: 588; 20. (\$1) Traubenberg, 96, 2: 268; 20. (\$1) Wertenstein, Thesis Parss, 13. (\$2) Duane, 241, \$1: 286; 22. Gudden, 218, 13: 940; 24. Diss Götingen, 19. 24, 36: 422; 21. 96, 36: 110; 24 Hirrechi, 94, 12: 939; 24. 248, 84. 65; 19. 86: 209; 20. Hovermann, Diss. Götingen, 12. 190, Bed., 34: 321; 12. Joly, Congr. intern. Rad

Bruxelles (1910) 1: 370; 11. "Helley Lecture." Oxford, Clarendon Press; 24. 88, 99: 456, 476, 17. 109: 517, 578, 711; 32. 114: 100; 24. 94, 12: 603; 24. 5, 12: 381; 07. 12: 327; 10. 5, 182: 682; 23. Joly and Fletcher, 5, 12: 630; 10. Joly and Poole, 88, 164: 92; 10. Joly and Rutherford, 5, 32: 644; 13. Mennell, 58, 32: 68; 09. Mugge, 188, 11: 123. 10: 78; 19. 11: 110, 22. 189, 71; 65, 113, 142; 00. 69: 307; 07. Rudge, 58, 32: 167; 11. Rutherford, 5, 12: 102; 10. Rayleigh, 58, 102: 279; 21. Schmidhuber, Mitt Oberthein gool. Ver. N.F., 8: 35; 15. Weber, 189, 78: 188: 92

RADIOACTIVE RADIATIONS IN GASES

R. D. KLEEMAN

I. RANGE AND VELOCITY OF α -RAYS IN GASES AT 1 ATMOSPHERE

At t° and 1 atm., $R_t = R_0 \frac{T}{273.1}$ Range in Air at 0° and 1 Atm. (13)

	From	U	Un	Io R	n R	n Ra-A
Ro, cms .		2 53	31 2 910 3	028 3 2	12 3 9	07:1-476
From	Ra-C'	Ra-C' ₁ *	Ra-("2*	Ra-F, Po	Pa	Rd-Ac
Ro, ems.	6 608	8.8	10.6	3 721	3 482	4 432

*Two new a-rays from Ra-C' by the scintillation method (24)

From	Ac-X An Ac-A Ac-C Th Rd-T
Ro, ems	4 141 ₁ 5 487 ₁ 6 241 5 224 ₁ 2 749 3 810
From	Th-X Tn Th-A Th-C Th-C
Re, cms	4 127 4 799 5 387 4 538 8 168

MEASURED RANGES IN OTHER GASES

		rom R	From Po					
Gas	Air	();	H ₁	He	Air	();	И,	
R ₁₀	6 93 to 6 97	6.26	30.93	32.54	3 76 to 3 95	3 43	16 8	
Lit	(12, 15, 17, 27)	(27)	(27)	(27)	(9, 12, 14, 16, 18, 19, 20, 21, 22, 23, 27)	(11, 27)	27)	

	Ti	From Po							
Gas	He	Nt	CH ₄	CO	CO ₂	NO	804	CHaBr	
R.,	17 62	3 82	4 18	3 70	2 49	3 41	2 08	1 86	
Lat	(27)	(21)	(21)	(21)	(21)	(21)	(21)	(21)	

For range of recoil atoms, see p 368

Distribution of Ranges.—This follows a probability law. Thus the most probable range for a Ra-F (=Po) α -ray is 3.85 cm at 15° and 1 atm.; 90% lie between 3.75 and 3.95, and 60% between 3.8 and 3.9 (8). For long range particles from Th-C, Ac-C, and Ra-F, v. (2). I. Curic (8.5) found for a very narrow beam for Po, the range $R_{18}^{700} = 3.87$ cm, as against the much greater value of H. Geiger, $R_{18}^{700} = 3.925$ cm.

Velocity of α -particles.—The velocity, u, of any α -ray may be computed from the relation $u^s = aR$ where α is a constant and R the left of the remaining path (11). Taking $u = 1.922 \times 10^9$ cm sec⁻¹ (25) as the initial velocity of the α -particles from Ru-C', at 0^9 and 1 atmosphere in air, this becomes $u = 1.0246 \times 10^9 R^{15}$ where R is the range.

Example: R_0 for Th-C' in air is 8.168 cm (Table 1, supra). Hence $u = 1.0246 \times 10^9 \times \sqrt[4]{8.168} = 2.064$ cm sec⁻¹, the initial velocity.

The following values of $u \times 10^{-9}$ at 0° and 1 atm. have been directly measured: Ra-A, 1.690 (28); Ra-C', 1.922 (28); Po, 1.593 (7); Th-C, 1.714 (30); Th-C', 2.060 (30). S. Rosenblum (22.5) determined directly the ratio of the initial velocities of the α -particles from Th-C—Th-C' = 1.209.

For velocity of recoil atoms see p. 368.

II. NATURE OF PATH

The path of an α -particle may undergo sudden bends (4, 26, 29). The table gives the number of bends (whose angles lie between the limits $\theta_1 - \theta_2$) for path-lengths (between bends) within the limits $l_1 - l_2$, for 281 Ra-F α -rays in air containing 75% A. The unit of l is l_{126} cm. 0° and 1 atm (3).

θ_1	θ1		_	20° 30°	; 30° 40	1	40° 50°	50	. 00	" 1	io" 70°	70°-80°	но° -90°	90°-180°
ı	3	7	1	11	20	1	22	1	ĸ		13	7	6	8
	7-	15	ļ	21	17	1	16	1	5	1		7		5
	15	30	l	12	8	1	7	ł	3	1			5	
- 1					20° 30									

The ionization along the path of a β particle varies inversely as the square of the velocity of the particle (28.5). The table gives the number, $N_{\rm D}$ of ions produced by a ray per first cm of path (13.5). $e = 4.774 \times 10^{-10}$ es.

Source	Ac-C"	Th-C"	Ra-B	Ra-C	Ra-E	U
n 1000	-					
N_1	132	132	130	105	67	76

Coefficients of absorption, λ_i of β rays in air and CO₁ at 1 atm. and 22° (18.5).

Substance			Th-C"	
Air, λ in cm ⁻¹ Air, λ in (g/cm ²) ⁻¹ CO ₂ , λ in cm ⁻¹	0 0152	0.0091	0.0068	0.0065
Air, λ in (g/cm ²) 1	. 12 70	7 60	5.68	5.43
CO_2 , λ in cm ⁻¹	0 0297	0 0175	0.0129	0.0114
CO_2 , λ in $(g/cm^2)^{-1}$. 16 31	9 62	7 08	6.26

Substan e	U-X ₁	Ra-D	Ra-D very soft	Th-B	Ac-B
Air, λ in em ⁻¹ Air, λ in $(g/cm^2)^{-1}$ CO_2 , λ in em ⁻¹ CO_3 , λ in $(g/cm^2)^{-1}$	100 0 23	81	535	75	260

Coefficient of absorption λ in em 1 of γ rays from Ra-C' in air at 1 atm. and 22° is $0.447 \times 10^{-4}~(^{17.5})$.

IV. STOPPING POWER OF GASES

Rose for the same temperature and pressure (6).

1. Ionisation method (5). 2. Track-condensation method using Ra-F (31), 3. Scintillation method. Grays of Ris 6.15 cm (1).

Gas	8	Method	Gas	S	Method
A	0 951 Ra-C'	1	CO	985 Ra-C'	1
	.934 Ra-A	1		976 Ra-A	ł
A	.930	3	CO	1 02 Ra-F	2
н,	.24	1	CO,	1.505 Ra-C'	1
H,	.22 Ra-F	2		1.488 Ra-A	
He	.201	1	CO ₂	1.52 Ra-F	2
He	. 1757	3	СН₄	0.860 Ra-C'	1
Kr	1.330	3		.880 Ra-A	
N,	.989 Ra-C'	1	CH.	.91 Ra-F	2
	.982 Ra-A	1 1	CCI	4 00	1
N,	.99 Ra-F	2	CS_2	2.18	1
Ne	.586	3	CHCl ₂	3.16	1
0,	1.064 Ra-C'	1	CH ₄ Br	2 03	1
-	1.057 Rn-A		CH ₁ Br	2 04 Ra-F	2
0,	1 08 Ra-F	2	CHI	2 58	1
Χe	1 804	3	C ₁ H ₂	1 118 Ra-C'	1
Air	1.00	1		1 121 Ra-A	
H ₁ O	.77 Ra-F	2		1 122 Rn + Ra	
80,	1 82 Ra-F	2	C_2H_4	1 349 Ra-C'	1
N ₁ O	1.46	1		1 369 Ra-A	1
N ₂ O	1.11 Ra-F	2		1 379 Rn	

Gas	s	Method	Gas	S	Method
	1 405 Ra		C ₂ H ₄ O	2.00	1
C,H,Cl	2 371 Ra-C'	1	C ₄ H ₁₀ O	3.437 Ra-C'	1
	2.385 Ra-A	1 1		3.471 Ra-A	
C ₂ H ₄ I	3 12	1	C,H,	3.544 Ra-C'	1
C ₂ H ₄	1.514 Ra-C'	1		3.595 Ra-A	ŀ
•	1 526 Ra-A		C ₄ H ₄	3.33	1

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Bates, 5, 106: 622; 24. (2) Bates and Rogers, 5, 106: 97; 24. (3) Black-
- (1) Bates, 5, 106: 622; 24. (2) Bates and Rogers, 5, 106: 97; 24. (2) Blackett, 5, 106: 622; 23. (4) Bragg, 5, 16: 617, 60. 5, 18: 333; 07. Studies in Radioactivity, p. 65, (Macmillan, London) (4) Bragg and Kleeman, 5, 10: 318; 05. (7) Curie, 34, 176: 20; 22 (8) Curie, 54, 176: 434; 23. 51, 4: 170; 23. (8.8) Curie, 350, No. 218; 25. (8) Dawson, 75, 124: 509; 15. (10) Geiger, 5, 32: 486; 00. (11) Geiger, 5, 32: 505; 10. (12) Geiger, 95, 32: 486; 00. (11) Geiger, 5, 32: 604; 11. (14) Geiger and Nuttall, 5, 23: 613; 11. (18) Geiger and Nuttall, 5, 24: 647; 12. (14) Hahn, 57, *1412, 456, 557; 06. 5, 11. 793; 13: 82, 244; 06. (17) Henderson, 5, 42: 538; 21. (17.8) Hess, 65, 12: 1000; 11. (15) Kovarak, 199, 11: 60; 14. 2, 2: 148; 14. (18.5) Kovarak, 2, 4: 419; 15. (14) Kupers and Manak 63, 7: 337, 630, 650; 06.
- (18) Kovarik, 199, 11: 69; 14. 2, 3: 148; 14. (18.8) Kovarik, 2, 6: 419;
 (19) Kucera and Masek, 65, 7: 337, 630, 650; 06.
 (20) Levin, 63, 7: 519; 08. (21) Van der Merwe, 3, 45: 379; 23. (22) Meyer, Hess and Paneth, 76, 133: 1459; 14. (22.8) Rosenblum, 34, 130: 1332;
 25. (22) Rothesteiner, 75, 138: 1257; 16. (24) Rutherford and Chadwick, 3, 45: 509; 24. (24) Rutherford and Robinson, 5, 38: 552; 14. (24) Shimizu, 5, 99: 425, 432; 21. (27) Taylor, 5, 36: 402; 14. (28) Tunstall and Markower, 5, 38: 250; 15. (23.6) Wilson, 6, 38: 240; 11. (29) Wilson, 6, 38: 240; 11. (29) Wilson, 5. 87: 277: 12.
- (30) Wood, 3, 30: 702; 15.

ABSORPTION AND DIFFUSION OF 8-RAYS IN LIQUIDS AND SOLIDS

PIERRE AUGER

the intensity after screen thickness x is traversed, $I_x = I_0 e^{-x\mu}$ where u. the absorption coefficient, varies slightly with the thickness traversed. d = density.

ABBORPTION BY AL

Source	Ra-D	Th-A	Ra-E	Ac-C	Th-D Ra-C
μ, cm ⁻¹	130	111.0	43 3	28 5	16 3 13 5
Lit			(12)	

Source	Ra-D very		-В	Rb	Ra	U-X ₁	U-X,
	soft	Soft	Hard	l			
μ, cm ⁻¹	5500	91	13	347	312	500	15
Lit	(13)	(6)	(10)	(9)	(5)	(5)

Absorption of β -rays from U-X (11)

Screen material.	Ag	Al	C	Ca	Cd	Fo	Ir	Mg	Ni	Pb
μ/d , cm ² g ⁻¹	7.31	4.1	3.75	6.3	7.4	6 61	9.5	4.0	6.35	9.75
Screen material	Rh	S	Sb	Sn	Ta	Zn	NH4	'l Ca	80, 8	3r8O4
μ/d, cm ¹ g ⁻¹	7.0	4.52	7.74	7.6	8.9	6 4	5 2	4	95	6 50
Screen material										
u/d, cm ² g ⁻¹	8.	07	7.7	4	. 68	4.	8 4	88	6.1	7.8

Absorption of β -rays of Ra-E (7)								
Screen	C	Al	Cu	Mo	Ag	Sn		
μ/d	15.8	16.9	19.2	21.0	21.7	22.1		

If N is the atomic number of the acreening element, $\mu/d = 15 + 0.142 N$.

Absorption Coefficients.—If I_0 be the initial intensity, and I_a | Range in Aluminum of β -rays of Various Velocities (Linear EXTRAPOLATION)(15)

RH	1380	1930	2535	3170	3790	4400
Range in em	0 018	0 064	0.124	0.189	0.279	0 360
RH	50	26 (3230	7490	8590	11 370
Range in cm	0.	440 0	580	0 785	0.925	1.36

Velocity Decrease.— $R = \text{Radius of curvature of the } \beta$ -ray in a magnetic field of N units and field force H gauss. ΔRH is the change in RH due to a screen of 0.01 g cm⁻² and is proportional to the velocity. According to Bohr, $\frac{\Delta RH}{c^4}u^2=a$ constant, K. u = the velocity of the particle, and c that of light (14).

DECREASE OF VELOCITY FOR \$\beta\$-RAYS FROM RA-B AND RA-C

RH	ΔRH	K	ΔRH	K	ΔRH	K
No screen	Mica s	creen	Sn sc	reen	Au so	reen
1392	138.1	34.8	89.2	22.8		
1660	101.4	34.7	67.4	23.4		
1925	78	33 1	56.8	24.1		
2235	72.6	36 2		1 1		1
2960	66.7	43 5		1		į.
3260	59 2	41		1		1
4840	47.3	39.9	37.6	31.7	32.2	27.3
5255	49 3	42.2	37.8	32.5		1
5880	43.1	38	32.2	28.6	32.6	29
6160	41	36.7				1
7060	38.4	35.4	30.2	27.8		

Dispersion of \$\beta-rays (2, 3, 8).

RADIOACTIVITY

LITERATURE

(For a key to the periodicals see end of volume)

(1) von Bouyer, 63, 23: 485; 12. (2) Bothe, 96, 6: 368; 23. (3) Crowther and Schonland, 5, 160: 526; 22. (4) Danyes, 51, 3: 949; 13. (5) Fajans and Göhring, 63, 14: 877; 13. (6) Fajans and Makower, 5, 23: 292; 12

(7) Fournier, 34, 180: 284; 25. (8) Geiger and Boths, 86, 6: 205; 21. Hahn and Meitner, 65, 10: 741: 00

Hahn and Meitner, 65, 10: 741; 00.

(10) Hahn and Rothenback, 65, 20: 197; 19. (11) Jungenfeld, 65, 14: 507; 18. (13) Kovarik, 5, 20: 849; 10. (13) Meitner, 65, 16: 273; 15. (14) Rawhnson, 5, 30: 627; 15. (16) Varder, 5, 20: 725; 15. (16) Wilson, 5, 36: 141: 10.

WAVE LENGTHS OF ~-RAYS

E. VON SCHWEIDLER

GENERAL RELATIONS

A wave length of λ milli-Ångstroms (10⁻¹ Å = 10⁻¹¹ cm = 1 X-unit), corresponds to:

A Frequency $(r) = 2.9986 \times 10^{31}/\lambda \text{ sec}^{-1}$ An Energy $(E = h\nu) = 1.9653 \quad 10^{-1}/\lambda \text{ ergs}$

A Potential $\left(P = \frac{h\nu}{e}\right) = 1.2344$ $10^{7}/\lambda \text{ volts}$

The equivalent electron velocity as a fraction of the velocity of light.

 $(\beta) = \sqrt{1 - \frac{1}{\left(1 + \frac{24.288}{\lambda}\right)^2}}$ $h_V = \frac{hc}{\lambda} = E = Pc = c^2 m_0 \left[\frac{1}{\sqrt{1 - d^2}} - 1 \right].$

See p. 17 for values of basic constants.

WAVE LENGTHS DETERMINED WITH CRYSTAL GRATINGS

 φ = angle of reflexion, d = grating space = 2.814 Å for rock salt = 3.028 Å for calcite. $\lambda = 2d \sin \varphi$. Intensity indicated thus g = small m = moderate, g = great, vg = very great.

thus, s = small, m = moderate, g = great, vg = very great.

(a) Soft Radiations from Ra-B. Using rock salt (2, 3). Corresponding to L-series of elements of atomic Nos. 82 and 83, according to Swinne (5) and Wagner (6).

λ, in 10 ⁻³ Å	1365 m	1349 m	1315 s	1286 в	1266 в	1219 s	1196 m
φ, deg. min	14° 00′	13° 52′	13° 31′	13° 14′	13° 00′	12° 31′	12° 16′
λ , in 10^{-3} Å φ , deg. min	12° 03'	11° 42′	11° 17′	11° 00′	10" 48"	10° 32	10, 19
λ, in 10 ⁻³ Å	982 g 10° 03′	953 m 9° 45′	917 s 9° 23′	853 m 8° 43′	838 m 8° 34′	809 m 8° 16′	793 m 8° 06′

(b) Hard Radiations from Ra-B + Ra-C, Sec. 1. Radiations from Ms-Th and its products, Sec. 2.

110111 1112 111 0111								
λ, in 10 · λ	428	(393)	(324)	296	262	242	229	196
φ, deg. min .	4° 22'	4° 00′	3° 18′	3° 00′	2° 40′	2° 28'	2° 20′	2° 00'
Remarks	Probably 2nd order spec- trum to 196 and 159		К-встіев					
λ, in 10 ⁻³ Å	169 g	159 g	137	116	99 g	71	72	66
e, in deg. min	11	1° 37′	1° 24'	1º 11'	1° 06′	43'	41'	37.5
Remarks .		line		<u>'</u>				g cal- (18)
	8 48	3 87	28		168	145 6	62 8	52 m
e, deg. min . 3		calcite		2. Me-Th		to Rd- Th		to Th

WAVE LENGTHS CALCULATED FROM THE ENERGY OF $extstyle{eta}$ -RAYS

Primary γ -rays of energy E_{γ} produce in the disintegrating atom itself, or in other atoms, secondary β -rays of energy $E_{\beta} = E_{\gamma} - A$, where A is the work of removal and depends upon the level from

which the β -rays originate. Sometimes it is assumed that the β -rays are primary and produce secondary γ -rays of energy $E_{\gamma} = E_{\beta}$. The energy of the β -rays is obtained from their magnetic deflections.

magnetic denec	IUIIA.							
λ, in 10 * Å Lit	Ra	66 (14, 28)	Ra-B	230 (26)	174 (24)	155 (26)	51.9	51.8 m (84, 20)
λ, in 10 • Å Lit	48 0	mar -	42 0	4	38	(1.2 g	200	
λ, in 10 * Å Lit	49.		28 G			.5 32		
λ, in 10 ⁻³ Å Lit	24.9	24 3	21 2	20.6	20.4	20.3	16.27	10.98 g
λ, in 10 ⁻¹ Å			93 g (**)	7 00			56? g 89)	209 (13)
λ, in 10-• Å Lit	- :	171 (22)	59.7			***		
λ, in 10 • Å. Lit	Rd-Th	147 (12) g	52 (2)			10)		45.2 8
λ, in 10 ⁻⁸ Å .	24		13.6		.5 g 1:	2.8 m	7 4. 1 4. 1 (3	

EFFECTIVE WAVE LENGTHS CALCULATED FROM ABSORPTION AND SCATTERING

The ordinary or "apparent" absorption coefficient, $\mu' = \mu + \sigma$, where μ is the "true" or "fluorescent" absorption coefficient, and σ the coefficient of scattering. For dependence on wave length σ . (locker (8); Compton (12); Wingardh (23); Warburton and Richtmyer (24); Jauncy (28); and Allen (30).

γ-RAYS FROM RA-C

, -					
$\lambda_{\rm eff}$, in 10^{-3} Å		<63	<60	120-60	80-30
Cale, from		Abs.	Abs.	Scat.	Abs.
Lit		(7)	(9)	(124)	(10b)
λ _{eff} , in 10 ⁻³ Å	30	-25 21	24 8	19	19.5
Calc. from	. 80	at. Abs.	Abs.	Scat.	Scat.
Lit	(1	2b) (31)	(33)	(320	, 32b)

LITERATURE

(For a key to the periodicals see end of volume)

Shaw, 5, 38: 190; 13.
 Rutherford and Andrade, 58, 92: 297; 13.
 Rutherford and Andrade, 5, 27: 854; 14.
 Rutherford and Andrade,

5, 28: 263; 14. (*) Swinne, 63, 17: 481; 16. (*) Wagner, 63, 18: 405, 432, 461, 468; 17. (*) Rutherford, 3, 24: 153; 17. (*) Glocker, 63, 19: 66; 18: 49, 38: 421; 19. (*) Kohlrausch, 63, 19: 345; 18. (*) Trestel, Diss. Heidsberg, 20. (*) Prehinger, 75, 120: 279; 21. (*) Ellis, 5, 99: 261; 21. (*) Compton, 2, 18: 296; 19. 3, 41: 749; 770, 21. (*) Meitner, 96, 9: 131, 145; 22. (*) Meitner, 2/8, 10: 381; 22. (*) Smekal, 98, 10: 275; 22. (14) Ellis, 5, 101: 1, 22. 201, 31: 121; 22. 26, 10: 303; 22. (17) Mettner, 99, 11: 35; 22. (18) Kovarik, 2, 19: 433; 22 (16) Madawick, 248, 6: 136, 21.

(\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitex{\$\text{\$\texititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\tex

de Broglie and Cabrera, 84, 174: 939; 22. 84, 176: 295; 23. (\$^3\$) Wingardh, 96, 30: 315; 23. (\$^4\$) Warburton and Richtmyer, 2, 23: 33: 291; 24. (\$^3\$) Jauncy, 2, 23: 233; 23. (\$^4\$) Ellis and Skinner, 6, 2, 23: 291; 24. (**) Jauncy, z, 23: 230; 25. (**) Eilis and Skinner, 5, 108: 60, 165, 185; 24. (**) Smekal, 96, 28: 265; 24. (**) Hahn and Mettner, 96, 28: 169; 24. (**) Thibaud. 34. 178: 1706: 24. 34. 179: 165, 815, 1052, 1322; 24. 34. 180: 138: 25 250, 309: 8; 24.

250, 309: 8; 24.
(39) Allen, 2, 23: 291; 24.
(31) Owen, Fleming and Fage, 67, 36: 355; 24.
(324) Ahmad, 5, 105: 507; 24.
(325) Ahmad and Stoner, 5, 106: 8; 24.
(32) Gray, 58, 115: 13, 86; 25.
(34) Black, 58, 115: 226; 25.

RADIOACTIVE RADIATIONS FROM ORDINARY METALS

R. B. MOORE

1. POTASSIUM AND RUBIDIUM

B-rays only are emitted spontaneously, the emission being an atomic property independent of the temperature

ACTIVITY OF K IN ABBITHARY UNITS (4)

Salt						KClO ₄ KNO ₄
%K	. 44 91	23 58	32 87	52 48	67 32	28.91 28 69
Activity	. 37 8	21	27 8	42 2	54 0	25 5 30 6
K/Act .	118	112	118	124	123	110 126

ADSORPTION OF THE B-RADIATION (6)

 $\lambda =$ absorption coefficient cm⁻¹, d = density of absorbent

λ/d for β -rays from	K	λ/d for β -rays from R	h
		2 By Rb ₂ SO ₄ By paper (90% of the rays) By paper (10% of the rays)	96 7 162 950

ABSORPTION OF B-RAYS FROM RB BY PAPER (5)

W = wt. paper/cm2. Io, intensity of the initial radiation; Ip, that of the emergent radiation.

W	00	00153	0	00305	0	00458.0)	00764	0	0107.0	01530	0198
In/L	10	725	h	545	0	422 (ì	260	0	159 0	087 0	034

2. CAESIUM, SODIUM, LEAD, IRON AND ZINC

Cs and Na are not radioactive (8, 9, 10). Ordinary Pb shows a slight, very old Pb only a trace of activity. On account of their exceptionally small activity Fe and Zn are recommended for

TABLE OF CONTENTS

construction of sensitive instruments for radioactive measurements Ca. Ba, Sr, C, Cl, Br, Cu, Fe, Pb, Mg, Mn, Ni, Ag, Zn, W, Ta, La. Se. As. Sn. Au. Sb. Al and Hg are inactive (10).

3. NOTES

() Hahn and M. Rothenbach (3) compared Rb salts of various ages but no difference in activity was detected. The Rb rays were found to be more penetrating than the \beta-rays of UX1, but not so penetrating as those of Ra. The ratio of the intensity of the Rb rays to those of UX, is 1:15. The half-life of rubidium is calculated to be 10¹¹ years and that of potassium 3 to 7 times greater. The absorption coefficient in Al of K is from 39.6 to 55.4 as foil thickness increases from 0.0135 to 0.0405 cm. Rb decreases from 593 to 522 as foil increases from 0.0017 to 0.0051 cm.

According to Bergwitz (1) the velocity of the Rb rays is 1.85 × 10° 16° cm - sec-1

Ringer (7) states that pure K and Rb give off homogeneous 3-rays, the K rays having 10 times the penetrating power of the Rb rays. Harkins and Guy (10) give this figure as from 10 to 15 and state that the radiation from Rb is slightly heterogeneous.

Geiger (2) found that the saturation current from RbCl is the same at room temperature and at liquid-air temperatures.

LITERATURE

(For a key to the periodicals see end of volume)

(1) Bergwitz, 63, 14: 655; 13 (2) Geiger, 75, 132: 69; 23. (3) Hahn and Rothenbach, #3, 20: 191; 19 (4) Henrot, #4, 151: 1751; 10. (5) Henrot, #4, 152: 1384; 11. (6) Henrot, Thesis, Paris, 1912. (7) Ringer, Onders Physiol Schekunde 1: 24; 21. (5) Ringer, Arch. Neerland, physiol. 7: 431; 22. (6) Zwaardemaker, 64P, 26: 575; 23. (19) Harkins and Guy, 197, 10: 11. 25.

DISTRIBUTION OF RADIOACTIVE MATERIALS IN THE ATMOSPHERE, THE HYDRO-SPHERE AND THE LITHOSPHERE

HERMAN SCHLUNDT

380

380

372 The Atmosphere The Hydrosphere Springs and well waters and gases 373 The Lithosphere Minerals... 377 Rocks 377 Igneous Rocks Metamorphic Rocks 370 Sedimentary Rocks, Earthy Materials, Coals, Salt 379 Oceanio Oozes, etc Rocks from Tunnels 379 Spring Deposits..... 380

Meteorites

Natural Gases.....

RADON IN THE ATMOSPHERE

Method A: Rn absorbed in charcoal.

Method B: Rn condensed with liquid air.

Method C: Rn directly determined in large ionization chamber. Method D: Rn computed from active deposit on negatively charged wire.

Place	Micro-micro Curies (10 ⁻¹² Curies) Rn per cubic meter	Meth- od	Number of determina- tions	Lit.
Montreal, Can	24-127, Mean, 80	A		(21)
Montreal, Can	Mean, 60	A	50 during 1907-8	(22)
Cambridge, Eng	35-350, Mean, 105	A	60 during 6 mos	(93)

Place	Micro-micro Curies (10-12 Curies) Rn per cubic meter	Meth- od	Number of determina- tions	Lit.
Chicago, U. S. A	45-200, Mean, 100	В	6	(1)
Manila, P. I	71	A	30 during 1 year	(136)
Freiburg, Switzerland	54-305, Mean, 131	A or B		(78)
Innsbrück, Austria	40-1110, Mean, 433	C	49	(137)
Seeham, Austria	1	C		(116)
Tokyo, Japan	5	D		(49)
Pacific Ocean	1 3	D	Mean of 169, 1915–21	(66)
Atlantic Ocean	1 7		Mean of 79	(66)
Indian Ocean	1 3		Mean of 37	(66)
Southern Ocean S. of				
lat. 50°. All accessible ocean	0.3		Mean of 48	(66)
	1 2	1	Mean of 333	(66)
areas. High seas	2 6		Mean of ca.	(66)

^{*} Includes some made relatively near large bodies of land

RADIOACTIVITY OF SPRING AND WELL WATERS AND SPRING GASES

 $m_{\mu}Cl^{-1} =$ Millimicrocuries (10⁻⁹ Curies) per liter Ra, $\mu\mu gl^{-1} =$ Dissolved radium, micro-micro-grams (10⁻¹² g) per liter

NORTH AMERICA

	t°C	mµ(1	<u> </u>	Ra,	Lit.	
Source	,,,	Water 0	Cins	μμgl		
Canada						
Quebec	_	0.070	950	0.5	(99)	
Maskinonge	8	0 07.	250	• •	(99)	
Radnor Forges	10	0 345		0 3	(99)	
St. Benoit.	11	0.028		0.0	(99)	
St. Leon (Lupien)	8	0.20.	46	0.8	(99)	
St. Hyacinthe (Philudor).	8	0 106		46	, ,	
St. Severe	8	0 087		2 8	(99)	
Varennes	9	0 224 0	81	9 2	(99)	
Ontario	1					
Borthwick, near Ottawa	11	0 140		8.1	(99)	
Sulfur Spring, Caledonia Spr.	. 8	0 073		5 6	(99)	
				15 0	(23)	
Duncan Spring, Caledonia				1		
Spr	9	0 053 (201	5 6	(99)	
Duncan Spring, Caledonia	1					
Spr	9	1 1	42	18 0	(23)	
Gas Spring, Caledonia Spr	8	0.000	D 306	- 1	(99)	
Gas Spring, Caledonia Spr	8		0 62	15	(23)	
White Sulfur Spring, Cars-					1	
bad	9	0.09		0.8	(99)	
Magic Spring	9	0.087		25	(99)	
Soda Spring	9	1	0 23	1 1	(99)	
Russell Lithia, Bourget	10			5 9	(99)	
Alberta (Banff)	.,					
Upper Hot Spring.	46	0 221		8 6	(99)	
Kidney Spring	39			8.5	(99)	
	30		3 34		(99	
Cave Spring	35		2.37		(99	
Basin Spring	1	9.2		23.5	(99)	
Auto Road Spring	. 19	10.040	•	, 20.0	1) /	

.,	.0.	mµC	1-1	Ra,	T 14
Source	t,C	Water	Gas	μμ χ l-1	Lit.
British Columbia			i		
Fairmont Springs	1	3 5	1	100	(11)
Sinclair	ļ	4.0	1	tr.	(11)
UNITED STATES			1		
Arlington, R. I.			l		ļ
Graphite Mine Spr		8.78	1	}	(79)
Villiamstown, Mass.			1	1	1
Wampanoag	22	0.22	7.3		(118)
Sherman Spring		0.04	1		(118)
Saratoga Spr., N. Y.			1	1	1
Emperor	10	0 07	0 22	68	(71)
Hathorn No. 1	10	0 142	0 21	1	(71)
	10	0 039	0 034	1	(71)
Geyser	12	0.231	0 67	1	(71)
Pump Well No. 4	10	0.88	0.84		(71)
Crystal Rock	10	0.00	0.0	']	` '
Indiana		0.75		1	(89)
Mean of 27 sprs	cold	0.75		1	\-
French Lick				1	(5)
Pluto Spring	13	0 54		1	
Bowles Spring	10	1 78		1	(8)
Illinois				1	
Dixon Spr. No. 2	1	2 93	1		(118
Creal Spr. No. 3		0 84			(118
Well, Joliet		0 39			(115
Mt, Vernon Spring		0.18	1	1	(118
Yellowstone Nat Pk			1	1	1
Mammoth Hot Spr.,		1	1		1
Hot River	51	1 44		2.5*	
Main Spring	71	none	non	e 3 8*	(104
	9				(104
Apollinaris Spr	"	0 23	6.5	1	(104
Nymph Spring, Tower Falls		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1
Upper Geyser Basin, Bench	80	0 22	12	۱ ا	(104
Spring	1 00	1 7 22	41	1	(104
Fish Cone, West Thumb	.		'']	1,
Lower Geyser Basin, Firehole	. 81	0 28	20	4	(104
Lake	N	0 25	20	1	1
Missouri	1	1000			(10
Sweet Springs		0.81			(10
Rollins Spring, Columbia	1	0 15			1,
Hot Springs, Ark.	1		. 1	1	/0
Imperial Spring	6		1	1	(9)
Palace Spring	6			1	(9
Avenue Spring.	62		1		(9
Twin Spring	6:				(9
Arsenic Spring	5	1 0 49)		(9
Horseshoe Spring	6	0.18	3	-	(9
Liver Spring		8 0 59)		(9
Kidney Spring	1	1	- 1	i	(9
	1.			i	
Madison, Wisconsin		0.49)	1	(10
Merrill Springs		"."			1
Manitou, Colo.	,	5 3 3	3 12	7	(10
Shoshone Spring	1		- 1	.	(10
Manitou Soda	i i			.62	(5
Manitou Soda	1	$\begin{bmatrix} 5 & 0 & 2 \\ 1 & a \end{bmatrix}$		52	(5
Shoshone		1 6	- 1		(5
Iron Soda Spring	1	5 0.2	1 .	. 15	(10
Iron Soda Spring	1	5 1 5		.07	,
Navajo Spring		1.3		4	(10
Navajo Spring.	2	2 1.2	1 3	.3	(5
Steamboat Springs, Colo.					
Soda	1	5 0.1	8 1	.42	(1)
					(8

[•] Ra in 10-12 g per g of residue.

Source	ℓ°C	m _µ C		Ra,	Lit.
Dource	PC	Water	Gas	μμ g l ⁻¹	LAL.
UNITED STATES (Cont'd)					
Steamboat Springs, Colo		1			
(Cont'd)	l	l	1		!
Bath House	40	0 08	0.54		(102)
Bath House	40		0.79	•	(54)
Iron	24	0 99	3.71		(102)
Iron	24	0.91	3.50		(54)
Craddock, Glenwood					
Springs, Colo		2 21			(54)
Virginia					
Mean of 11 springs		0 21			(120)
Ohio					
Mean of 9 springs.	cold	0.34			(89)
Bloomington, Ind.					
Hottle Spring*.		0.806			(90)

^{*} Mean of 37 tests during 9 months.

EUROPE

Source		lnμ	Lat.	
Andree	ℓ° C	Gas	Water	LAT.
AUSTRIA		1		
Tauern Tunnel		3 81*		(62)
Böckstein Valley		3.20†		(62)
Near Vienna				
Johannesbad	30	1 86	6.8	(63)
Haupt Quelle, Vöslau	23	0 29	1 07	(63)
Tyrol				
Magenquelle, Froy	- 6	17 6		(2)
Eisenquelle, Froy	8	4.5		(2)
Badequelle, Steinhof	9	0.8		(2)
Herrenbadquelle, Fischau	19	0 23	0.80	(63)
Gastein		1 1		, ,
Grabenbäckerquelle	36	55 5		(60, 61)
Elisabethstollen, Hauptquelle	47	53 3		(61)
Nordquelle	44	90	1	(61)
Rudolfsstollen	47	21.3	ļ	(61)
Franz Josephstollen	41	34 6		(60, 61)
Reissacherstollen	36	84	1	(61)
Teichquelle, Tanbach		21 3		(61)
Melaniequelle, Radegund.		5 3		(132)
Annenquelle, Mariatrost		0 36		(132)
Johannesbrunnen, Semmering	5	1 27		`(3)´

^{*} Mean of 101 springs; highest 23.7. † Mean of 3 springs.

Source	mμ	T ···	
Bource	Gas	Water	Lit.
Belgium			
Delcor Spa	1.45		(34)
Marie-Henriette Spa	1.45		(34)
Prince de Conde I. Spa	1.44	1 74	(34)
Tounelet, Spa	1 67	2 58	(34)
La Fraincuse Spa	2.43		(34)
Claire-Fagne Spa	2 1	1	(34)
Salmon E. superieure Spa	3.31		(34)

Source	t°C	$m\mu C^{1-1}$		
Boulee	, ,	Water	Gas	
CEECHO-SLOVAKIA (20, 51, 63, 139)				
Loimannsquelle, Franzenbad	11	0.39	0 27	
Salsquelle, Fransenbad	11	0.05		
Mine water, St. Joachimsthal 60 m			1	
depth	6	13.5	1	
875 m depth	14	75.9		
500 m depth		163.8	448.0	

Source	ℓ°C	mμC1-1		
Source	• • •	Water	Gas	
Bernhardsbrunnen, Karlsbad	61	0.65	1.14	
Mühlbrunnen, Karlsbad	39	12.9	38.6	
Schlossbrunnen, Karlsbad	30	7.1	20.6	
·		. 3.61		
Hospitalquelle, Karlsbad	12	0.96	l	
Sprudel, * Karlsbad	71	0.16	0.36	
Eisenquelle, Karlsbad	8	15.7		
• /		19.5		
Ferdinandsbrunnen, Marienbad	10	0.27		
Kreuzbrunnen, Marienbad	8	1.75	3.56	
Marienquelle, Marienbad		0.71	-100	
Waldquelle, Marienbad	7	1.87	4.47	
Augenquelle, Teplitz Schönau	22	1.28		
Riesenquelle, Dux		3.58		
Urquelle, Dux	46	2.03	9.0	

* 55 \times 10⁻¹³ Ra per liter

Source	mμ		
Bource	Water	Gas	Lit.
ENGLAND			
Nine Wells, Cambridge	0.130		(94)
Well, Dale's Brewery, Cambridge	0.196	1	(94)
King's Well, Bath	1.73	33.65	(88)
Cross Spring, Bath	1.19		(88)
Hetling Spring, Bath	1.70		(88)
Hospital Natural Baths, Buxton	0.83	7.70	(64)
Gentlemen's Natural Baths, Buxton.	1.10		(64)

9		mμ	Cl ⁻¹	
Source	t°C	Gas	Water	Lit.
France		1 000	17 1000	
Choussy, La Bourboule		22.9	141.5	(52)
		20.5	161.4	(53)
Choussy, La Bourboule		1		
de la Grange, Beaucens		3.03	10 36	(52)
Chaude, Audinac		0.14	0.59	(52)
Rivière, Chaudeau		6.51	39.5	(12)
Dames, Plombières		10.76		(12)
Lambinet, Plombières		15.96		(12)
Savonneuse, No. 2, Plombières		7.47	35.1	(12)
Vauquelin, Plombières		4.83	86.4	(12)
Chaudes-Fontaines, Reherry		4.1	19.8	(12)
Celestins, Vichy	44	0.653	1	(52)
Chomel, Vichy	44	0.653		(52)
Boussange, Vichy	42	0.103		` '
Hôpital, Vichy	34	0.022		(52)
Condanny, Usson		0.563	34.5	(65)
Plaies, Usson		0.663	1.9	(65)
d'Alun, Aix-les-Bains		4.1	25.8	(16)
Le Lymbe, Bourbon-Lancy		1.5	14.6	(16)
Pavillon, Coutreville		0.51		(16)
Bordeu (Grande Source), Luchon	43	16.1	134.8	(73)
Main Spring (Saline and H ₂ S), Uri-				
age-les-Bains		0.113		(8)
Gasseng, Columbières-sur Orb			6.69	(18)
Cabanel, Columbières-sur Orb			2.22	(18)
Crémieu, Columbières sur Orb		1	1.49	(12)
Viguerie, Ax		!	16.8	(72)
Savonneuse, Bains-les-Bains			25.6	(72)
Vielle, Eaux-Bonnes			3.7	(72)
La Chaldette			93.7	(72)
Romaine, Maisières			10.8	(72)
Souveraine, Vals-les-Bains		1.047	5.08	(6)
Dominique, Vals-les-Bains		8.80		(6)

Source	rС	mμ			
Source	10	Gas	Water	Lit.	
Caroline, Mont-Doré		0.34	2 49	(57)	
Lepape, Bagnères-de-Luchon		41.5		(53)	
Providence, Vernet-les-Bains	38	15.7	115.9	(83)	
Santé, Vernet-les-Bains	37	2.7	1	(53)	
Pastural, Les Escalades	27	3 5		(53)	
Bassin Carré, Thuès-les-Bains	74	1.04	17.7	(53)	
Saint-Victor, Royat	21	15.35	35 2	(53)	
Hamel, Sail-les-Bains	34	11 5	50 2	(53)	
Rouge, Saint-Nectair	21	0.54	2.2	(53)	
Grande Source, Bagnoles-de-l'Orne.		0 74	1 1	(56)	
Chaude fontaine, Antoigny		3.86	1	(56)	
Saint-Ursin, Lignières		1 57		(56)	
Fontaine Minerale, St. Michel		0 44		(56	

	ℓ°C	mµCl ⁻¹	7 '.
Source	PC	Water	Lit.
GERMANY			
Schwarzwald Region			
Antoniusquelle, Antogast	cold	6.6	(20)
Büttquelle, Baden-Baden	24	51.3	(20)
Murquelle, Baden-Baden	59	98	(20)
Kirchenquelle, Baden-Baden.	56	1 35	(20)
Hauptquelle, Badweiler	28	3 1	(20)
Gemeindequelle, Badweiler	23	4 2	(20)
Badquelle, Griesbach	cold	10 6	(20)
Sofienquelle, Petersthal	cold	1 76	(33)
Wenzelquelle, Rippoldsau	cold	0 86	(33)
Warme Quelle, Wildbad	36	1 35	(20)
Kalte Quelle, Wildbad	cold	0 08	(20)
Well, Heidelberg	27	2.15*	(7)
Wurttemberg			
Göppinger, Sauerbrunnen		1 27	(50)
Göppinger, Staufenbrunnen		0.57	(50)
Kursaal, Kanstatt		0 22	(50)
Karlsquelle, Mergentheim		0.98	(50)
Hirchquelle, Feinach		0 42	(50)
Wildbad		0.76	(50)
Hessen and Adjoining Regions		1	
Sprudel XII, Bad Nauheim.	33	5 8†	(105)
Karlsbrunnen, Bad Nauheim	15	9 6†	(105)
Bad Homburg, Elizabethbrunnen	11	1 46†	(105)
Luisenbrunnen	- 11	0 84†	(105)
Wilhelmsbrunnen, Bad Soden	14	6 62†	(105)
Solbrunnen, Bad Soden	16	1 56†	(105)
Inselquelle, Kreuznach	13	7 42†	(105)
Theodorshalle, Kreuznach	7	3 06†	(105)
Hauptbrunnen, Münster am Stein.	31	8 5†	(105)
Kochbrunnen, Wiesbaden	68	0 43‡	(39)
Adlerquelle, Wiesbaden	64	2 23‡	(39)
Schützenhofquelle, Wiesbaden	50	0 29‡	(39)
Racoczy, Kissingen		1.04†	(41)
Maxquelle, Kissingen		1 58†	(41)
Maxquelle, Dürkheim a.d. Haardt	20	0.69	(7)

^{*} 1620×10^{-12} g Ra per liter of water. † Values obtained by multiplying Mache units by 3 64 \times 10^{-16} ‡ Values obtained by multiplying Mache units by 4.1 \times 10^{-16}

Source	mµCl-1 water	No. of samples	
Epprechstein and env	1.17	2 spr., 7 w., 2 reservoirs	(\$8)
Fichtelgebirge, Neubau	1.55	5 spr., 8 w.	(88)
Leinleiterthal	0.36	21 spr., 5 w.	(**)
Leupoldsdorf and env	25.0	6 spr., 2 w., 5 reservoirs	(##)
Schwarzenfeld and env .	0.64	3 spr., 6 w.	(88)
Weisenthau	1.32	15 spr., 6 w.	(38)
Wolsenberg and env	4.87	17 springs	(38)
Wundsiedel and env	7 7	13 spr., 6 w., 1 reservoir	(88)
Saxony	1		İ
Wettingquelle, Brambach	826 2 650 to 754		(81) (89)
Trinkquelle, Oberschlema.	688 to 920	1	(89)
Marx Semler Stollen, Ober- schlema.	288 to 330 at 10°C		(97)
Himmelfahrtstollen, Georgen- thal	24 1		(97)
Olga Brunnen, Schneeberg	13.1	1	(97)
Rockelmann Quelle, Schwar- zenberg	12 3		(07)

	*00	mµCl-1		Lit.	
Source	t°C	Water	Gas	LAU.	
Hungary					
Budapest. Rakocsy, St. Lucasbad	42	7.40 3.35	9.08	(134)	
Composite, 17 spr. Lucasbad Trinkquelle, Kaiserbad	60	0.31	8.00	(134)	
Grosse Quelle, Ritzenbad	43 20	3 16 0.11		(134) (32)	
Arpadquelle	23	0 046	0.624	(32)	

Source	t°C	m _# Cl ⁻¹ Water	Lit.
ITALY			
Sorgente Montirone, Abano near Padua	87	2.05*	(20)
Upper Sulfur Therm, Aqui Piemont	72	0.28*	(20)
Fiuggi, Anticoli		8.02*	(20)
Surgonne Grotta, Battaglia near Padua.	74	3.34*	(20)
Acidola, Castellamare	13	9.27*	(20)
Domenico Tricarico, Bagnoli near Naples.	52	0.79*	(20)
Purgativo, Agnano near Naples	90	0.79*	(20)
Stabilimento, Porto d'Ischia	65	1.93*	(20)
Manzi I, Cassamicciola, Ischia	85	0.57	(20)
Old Roman Spring, Lacco Ameno, Ischia	57	152 5*	(20)
	12	3.01	(77)
Tonte at Gasterio, married	12	1.85	(77)
Fonte della Casella, Casteldelpiano.	14	3.29	(77)
Acqua dei Bagnoli, Acidoso.	00	1.52	(77)
Polla di Sotto, Bagnore	١ .	2.08	(77)
Sambuco, Montagna	1	1.09	(75)
Baleno Carcaiole, Uliveto	1		, ,
	1	Gas = 8.6	
Pozzo delle Saline, Salsomaggiore		4.41	(76)
Bagni di Casciana	1	0.0	(77)
-	1	Gas = 1.8	
Parlanti, Monsummano	31	0.064	(92)

^{*} Values obtained by multiplying Mache units by 4.1 \times 10⁻¹⁰.

Source	t°C	mµCl ⁻¹ Water
Norway (86)		
Nasodden.		17 9
Sandsvar		12 9
Jellum, near Modum		31.2
Tandberg estate, Simoa Valley		67.4
Portugal (*1)		
Babroso, Sabroso (Vidago)		3.29
Fonte Romana, Fonte Romana		2.05
Da Bica, Ferez		8 20
Das Lamas, Cucos		10.4
RUMANIA (58)		j
Orsova		
Hercules, Baile Herculane	46	0 19*
Regina Maria, Baile Herculane	60	0 22
Russia (68)		
Essentuky No. 6, Caucasus		3.5
Batalinsky, Caucasus		0.6
SPAIN (15)		
Rivas, Gerona		0.33
Buitre, Seirra de Fuensante, Murcia		0 05
Garganton y Pianolon, Sierra de Guadarrama		12 5
La Raja, Mazarron, Murcia		0.46
El Tubo, Mazarron, Murcia		0.48
Posa de Levante, Mazarron, Murcia		0.36
Medica Catalan, Mazarron, Murcia		0.68
Sweden (91, 119)		1
Slottskallan, Upsala	7	1.8
Bourbrum, Upsala	6	1 55
Birjerjarlsg No. 120, Stockholm	6	14 6
Gamla (spring), Porla	7	1 77
Sofia (spring), Helsingborg	10	3 00
Villastaden (drilled well), Lidingon	8	17 06
Norrb, L. (well), Bodens fastning	5	70-6
Stockh I. (well), Vinterviken	10	67 2
Hermelinsgruf (well), Malmberget	3	2 75
Kalmar, I. (spring), Sodra Vi	6	14 1
Sanatorie parken (spring), Mosseberg	7	0.90

* Emanation content	t changes with season a	and oven on same day.

Rock formation of source	No. samples	mμCl ⁻¹ Water
Sweden.—(Continued)		
Boulders, morainal deposits	. 110	2 40
Diabase	10	0.70
Granite (Archean)	53	13 24
Granite (gneissic)	20	5 66
Granulite	14	10 2
Gray gneiss with granite intrusives.	6	6 11
Gneiss (granitic)	20	2 99
Iron-bearing gneiss .	12	9 31
Limestone	42	0.78
Peat	16	1.18
Quartz porphyry	5	2 09
Sandstone	37	2 91
Slate	42	1 11
Syenite and granulitic syenite	15	15 46

Source	t°C	mμCl ⁻¹ Water	Lit.
SWITZERLAND			
St. Placidus Spring, Disentis		4 66	(127)
Val Lunpegnia, Disentis	8	3.75	(117)

Source	ℓ° C	m _µ Cl ₋₁ Water	Lit.
Leuk	51	0.12	(127)
Waadt, Lavey		4.51	(117
Paracelsusquelle, Engadine, St. Moritz.	5	0.57	(117)
Stollenquelle, Pfafers-Ragaz.	36	0.29	(117)
Sotsassquelle, Schuls		0.42	(117
Carolaquelle, Tarast	7	0.46	(117
Kurhaus, Acquarossa.	25	1.24	(117
Thomas, Val Sinestra	8	0.26	(117
Les Trois Pigeons, Valangin		0.24	(80)
Come Girard, Locle		0.26	(80)
Vioulou, Paturage, Locle		0.37	(80)
Eplatures .		0.15	(80)

Asia		
Source	t°C	mµCl-1, Water
India (122)		
Kaira District, Bombay	İ	
Hot Spring	67	33.0 to 62.1
Cold Spring	28	33.9

Source	t°C	mμCl -1			
Source	100	Water	Gas		
JAPAN (42)					
Kami-no-yu, Tamatsukuri	64	1 08	10.18		
Kami-no-yu, Misasa	71	51 69			
Kabu-yu, Misasa	45	3.72	22.82		
Kaminoyu, Dogo	47	1.45	8.5		
Tama-no-i, Dogo	cold	0.39			
Hirano, Tansan-sen	26	0.07	0.21		
Gosho-no-yu, Kinosaki	60	3.06			
Ko-no-yu, Kinosaki	57	0.94	1		
Furosen, Beppu	58	0.07			
Kamigawara No. 1, Masutomi.	22	301.2			
Kuridaira No. 1, Masutomi	16	214 7	550 6		
Yunosawa-Onsen, Innai-Yunosawa	41	0.43			
Takinoyu, Noboribetsu	72	0.074			
Yojo-Kwan-no-yu No. 1, Togo.	50	1.12			
Jizo-no-yu, Kusatsu	57	0 057	0.06		
Akakura-Onsen, Akakura.	62	0.43			
Ji-no-yu, Isobe	9	1 55	0.74		
Arima-Onsen, Arima	52	0 92			
Maruyama-Kosen, Arima	19	3.01			
Zui-hoji-Onsen, Arima	31	13 8			
Arifuku-Onsen, Arifuku	43	0.80			
Kizu-no-yu, Asama	44	0.51			
О-уц, О-уц	57	1.13	trace		
Kami-no-yu, Oyu	58	0.4			
Shimo-jyaya-no-yu, Sekigane .	44	10.95			
Soto-no-yu, Katsura	29	0.31			
Yuatsumi-no-yu, Atsumi		0.40			
Awazu-Onsen, Awazu	54	0.35			
Kami-no-moto-yu, Bobata	14	4.35			
Goshiki-Onsen No. 2, Goshiki	39	0.80			
Tsubatava-uchi-yu, Shibu.	48	0.11			
Hie-no-yu, Kaminoyana	62	0.86	5.5		
Shiotsu-no-Tsubo, Katayamazu	79	0.47	8.79		
Gosho-no-yu A, Kinosaki	63	2 67			
Koyabara-Onsen, Koyabara.	38	1 37	2.95		
Murasugi-Kosen No. 1	26	18.04			
Osakaya-no-yu, Musashi.	45	1.17	11.8		
Shirataki-no-yu, Nakabusa	60	0.59			
Tsuru-no-yu, Mikko-Yumoto	62	0.85			
Shin-yu, Unzen	38	0.85			

9	t°C	mμCl ^{−1}			
Source	, ,	Water	Gas		
Ogawa-Onsen No. 2	49	1.01			
Omaki-Onsen, Omaka	49	0 48			
Taki-no-yu, Onogawa	70	2 37			
I meka-no-yu, Owani.	62	4 21			
Shigaku-Onsen, Shigaku	47	0 43	0 64		
Ena-Kosen, Takayama	10	102 2			
Takarazuka-Tansan-sui, Takarazuka	19	1 20	0.72		
Tochiomata-no-yu, Tochiomata	39	9 40			
Wakazaki-no-yu No. 1, Wakura	93	2 52	33 9		
Yamanaka-Onsen, Yamanaka	45	0 62			
Yamashiro-Onsen	69	0 25			
Tottori-Onsen, Yoshikata	48	1 19			
Kasuga-Onsen, Teramadu	29	0 22	0.88		
Kabu-yu, Yudani	32	1 54	8 65		
Sento, Yukiku	67	0 23	3 34		
Kabu-yu, Yummra	91	0 31			
Sagi-no-yu, Yunogo.	38	0 31	1 95		
Taki-no-yu, Yunokawa.	50	0.74	8 23		
Shinyu, Yunotsu	4	1.8	0 19		

Source	t°C	mμCl ^{−1} Water	Lit.
PHILIPPINE ISLANDS	1		
Sibul Springs, Bulacan		1 28	(135)
Pansol Springs, Laguna		none	(135)
Bambangan Spr., Laguna		0 15	(135)
Adukpung Spr., Kiangan	1	1 33	(37)
Artesian Well, Batangas.		2 11	(135)
Sinaba Spring, Laguna.		1 3	(37)
Mairut Salt Spr., Bontoe	100	none	(37)
Salinas Salt Spring, Nueva Vizcaya	31	0 095	(37)

AFRICA		
Source	t°C	mμCl⁻¹ Water
ALGERIA (85) Bains de la Reine, near Oran Louige, A Hammam Bou Hadjar Hotel de Vichy, A Bou Hanifia d'Alma T'zoumoulal	. 50 14 55	13 1 22 4 1 3 5 3

Aunia

THE LITHOSPHERE

Uranium and Thorium Radioactive Minerals

The numbers following the name of the mineral represent weight percent of U, resp. Th. The qualitative chemical composition is indicated in parentheses (), the locality in brackets [], R = "rare earths;" aq. = "hydrous."

- A. Aeschynite: U 0.3, Th 0-20 (RNbTiO_x). Auerlite: Th 61 (ThSiPO_x). Autunite: U 50 (UCaPO_xaq.).
- B. Becquerelite: U 70 (UO₁aq.) [Belg. Congo] (111). Blomstrandite: U 22 (TaNbUO_x).
- C. Calciothorite: Th 53 (RCaSiO_xaq.), Carnottic: U 53 (KUVO_xaq.), Chalcolte: (See Torbernite), Clewite: U 60; Th 4 (UThYO_x), Curite: U 73 (UPbO_xaq.) [Belg. Congo] (106).
- D. Dewindtite: U 50 (PbUPO_xaq.) [Belg. Congo](108). Dumontite: U 56 (PbUPO_xaq.) [Belg. Congo] (114).
- E. Ebigite: Flutherite (See Uranothallite). Eliaste: also Pittinite (See Gummite). Erdmanite: Th 9 (FeCaThBSiO_x). Euxenite: (Polycrase) U 5-15 (RNbTaO_xaq.).
- F. Fergusonite: (Bragite, Tyrite, Yttrotantalite) U 1-7, Th 2-5 (RNbTaO_x). Freyalite: Th 24 (RThSiO_xaq.). Fritzscheite: (UMnVO_xaq.).
- G. Gadolinite: Th < 1 (RO_{x.}SiO_y). Gummite: (Eliastite, Pittinite) U 60 (UPbCaSiO_xaq.).

- H. Hatchettolite: U 13 (UCaNbTaO_x). Hokutolite: (PbBa8O₄)
- I. Iohannite: U 56 (CuUSO.au.).

RADIOACTIVITY

- K. Kasolite: U 40 (PbU8iO_xaq.) [Belg. Congo] (107). Kock-clite: (See Ferrusonite).
 - L. Liebigite: U 31 (UCaCOma.).
- M. Mackintoshite: U 20; Th 42 (RUThSiOzaq.). Medicidis: (A variety of Uranopilite). Mendeleeffile: U 20 (UNbTiOz.) [Transbatkalia] (129). Microlite: U 1.6 (CaTaOz.). Monastis: Th 7-20 (RPOz.).
- N. Naegite: U 2 5; Th 45 (ZrRSiO_x) [Japan] (42). Niventie: (See Uraninite). Noblite: (See Samarskite).
 - O. Orangite: U 1-10; Th 65 (A variety of Thorite).
- P. Parsonite: U 32 (PbUPO_x) [Belg. Congo] (112). Phosphuranylite: U 60 (UO₂PO₄nq). Pilbarite: (PbUThSiO_xaq.). Plumboniobate: U 12 (PbUYNbO_x). Pitchblende: (See Uraninite). Polycrase: (See Euxenite). Priorite: (See Blomstrandite). Pyrochlore: Th 0-6 (RCaNbO_x).
- R. Randite: (See Voglite). Rowlandite: U 0.4 (YSiO_x). Ruther-fordine: U 65 (UO₂CO₁). Rutherfordite: (A variety of Fergusonite).
- S. Samarskite: U 1-3 (RUNbTaO_x). Schoepite: (UO₁CO₁) [Belg. Congo]. Schrockingerite: (A variety of Voglite). Sipplite: U 3 (ErNbO_x). Soddite: U 71 (USiO_xaq.) [Belg. Congo] (110). Stasite: U 50 (PbOPO_xaq.) [Belg. Congo] (109). Skaldowskite: U 55 (MgUSiO_xaq.) [Belg. Congo] (113).
- T. Thorogummite: U 18; Th 36 (UThPhSiO_x). Thorianite: U 12; Th 65 (RThUO_x). Tritomite: Th 5-8 (Th, Ce, Ca, Ta, B, F, SiO_x). Torbernite: U 50 (UCnPO_xaq.). Trögerite: U 53 (UAsO_xaq.). Tscheffkinite: Th 1-17 (RFeSiTiO_x). Thysonite: U 55 (U(OH)_xSO₄).
- U. Uraninite: (Pitchblende) U 65-80; Th 1-8 (UO₄RUPbO_x). Uranochalcte: (A variety of Uranopolite). Uraconite: (A variety of Uranopolite). Uranochalcte: U 47 (BaUPO_xaq.). Uranophane: U 55 (UCa-SiO_xaq.). Uranophane: U 55 (UCa-SiO_xaq.). Uranophane: U 42 (UO₂BiOUO_xaq.). Uranospite: U 49 (UCa-So-Saq.). Uranothallite: U 32 (CaUCO₂aq.). Uranothorite: U 8; Th 52 (ThSiO_x).
- V. Voglianite: (A variety of Uranopolite). Voglite: U 34 (CaCull(XO):q.).
- W. Walpurgite: U 16 (BiUAsOxaq.).
- X. Xenotime: U 3; Th 0-2 (YPO₄).
- Y. Yttrocrasite: U 2; Th 0.8 (YTiO_x). Yitrotantalite: U 0.8-2 (YNbTaO_x).
 - Z. Zuenerite: U 50 (CuUAsOxaq.).

RADIOACTIVITY OF ROCKS

Ra unit = 10^{-12} g Ra (element) per g. Th unit = 10^{-6} g Th (element) per g

Igneous Rocks			
Name and locality	No. speci- mens	Ra mean	Lit.
Acidic Intrusives	.,		
Charnockite Mysore State, India	3	0.09	(121)
Granite Mysore State, India.	11	1.03	(121)
Dutch East Indies.	5	4.9	(13)
Eisenach, Germany	1	3.5	(67)
Germany	7	9.8	(13)
France(1) Holland(2)	3	8.8	(13)
St. Francois Co., Mo., U. S. A		1.5	(100)
Ireland	10 28	2.0	(28)
Leinster, Ireland Th mean =	28	7.0	

Name and locality	No. speci- mens	Ra mean	Lit.	Name and locality	No. speci- mens	Ra mean	Lit.
Antartic region	2	0 4	(29)	Acid Extrusives			'
Th mean =	2	26	1 ' '	Ash		1	1
South Sea Islands	2	1 76	(26)	Krakaton near Sumatra Th mean =	1	9.0	(82)
Sumatra(1) Bohemia(1)	2	26 1	(35)	Kenyte			` '
Loetschberg Tunnel, Switz	7	2 3	(83)	Antartic region	4	2 29	(29)
Various localities	63	2 7	(48)	Th mean =	4	12.0	(,
Various iocanties	1	1 63	(62)	Lavas		12.0	
	1 -	2 56	(123)	Various localities	18	9.4	
	11		(82)	Th mean =	1	3.4	(43)
Th mean =	86	20 5	(02)		15	24.0	
Monsonite			(1.0)	Liparite	2	4.7	(13)
Bella Monte, Tyrol, Austria	1	3 5	(13)	Phonolite	١.,		
Pegmatite	l i			Kirchberg, Germany	1	0.9	(13)
Mysore State, India	2	4 17	(121)	Pitchstone			1
Porphyry				Auckland Island, New Zealand	1	1.9	(26)
Campbell Is., New Zealand	1	2 8	(26)	Dutch East Indies	2	0.6	(13)
Various localities	10	28	(13)	Isle of Eigg, Scotland	1	1.53	(123)
Quartz				Meissen, Germany	1	3.0	(13)
Germany	3	16 0	(13)	Rhyolite			` '
Sumatra	i	1 3	(13)	Yellowstone Park, U. S. A	6	2 21	(104)
Syenite	'		′	Trachite		1	(===+)
Borneo and Molucca Island	13	1 58	(13)	Mt. Erebus, Antartic region	3	2.16	(29)
Mount Royal, Canada	13	1 1	(25)				(49)
Vonges, France	1	13 2	(36)	Th mean =	3	13.0	
		2.46	' '	Continental Europe	2	3.4	(13)
	3		(123)	New Zealand	3	2.11	(26)
Various localities	8	8.3	(13)	Transandine Tunnel	7	0 58	(27)
	23	3.9	(48)	Th mean =	7	4.4	
Tinguaite				Various localities	18	3.0	(48)
Mount Royal, Canada	2	3 65	(25)	Tuff	2	29	(46)
Tinguaite porphyry				Transandine Tunnel	12	0.92	(27)
Germany	2	8 2	(13)	Th mean =	10	5 87	` ′
				Basic Extrusives			
Basic Intrusives				Anamesite	. 1		
Diabase			r	Germany	2	1.8	(13)
Borneo	2	0.85	(13)	Andesite	-	1.0	()
Diabases and dolerites	8	1.0	(48)	Borneo and Molucca Is	13	1.58	(13)
				Basalt	13	1.58	(13)
New Zealand	1	0 43	(26)				
Diabase and gabbro	_	_		Deceans and Antartic	14	2.0	(48)
Germany	5	2.8	(13)	Mt. Erebus, Antartic region	1	2 13	(29)
Diorite				Th mean =	1	14 5	
Borneo and Sumatra	4	0.78	(13)	Hebrides (mainly)	11	05	(48)
Various localities	8	16	(48)	New Zealand	2	1.21	(26)
Dolerite				Various localities	6	0.47	(123,
Isle of Canna, Scotland	1	0 57	(123)				125)
New Zealand	2	0 66	(26)		6	2 2	(46)
Dunite	i		` ′		4	0.35	(126)
Loch Scavaig, Scotland	1	0 31	(123)	Lava	-	0.00	()
Essexite	•	٠.,	(- /	Antartic region	7	0.58	(29)
Mount Royal, Canada	1	0.26	(25)	Th mean =	7	4.7	(3-)
Gabbro	•	0.20	()	Vesuvius (1631–1906)	7	12.6	(43.
New Zealand	2	0 34	(26)	**************************************	'	14.0	46)
Sabbro and Norite	5	1.3	,	Th mean =	6	FO 4	,
Greenstone	o	1.3	(48)	Limburgite	O	53.4	(82)
	. !			1			,
Garrick Du, St. Ives, Eng	1	0 52	(123)	Germany	1	2.9	(67)
Typersthenite	1	0 08	(121)	Melaphyre	i		
Peridotite	- 1			Oberstein, Germany	1	1.9	(13)
Isle of Rum, Scotland	1	0.63	(123)	Tepharite	3	8.7	(67)
orphyry				Trap	I		
New Zealand	1	0 99	(26)	Mysore State, India	43	0.21	(121)

ì.	f			MIC	D.	~~-
	BET	AMC	LEF	MIC.	KΩ	

	R	la i	Т	h	
Name and locality	No. speci- mens	Mean	No. speci- mens	Mean	Lit.
Amphibolite India Mysore State	1	0.82			(121)
Gneiss Freiburg, Ger	1	2.9			(67)
Various localities	14	2 1	14	8 7	(48. 82)
Gneiss (granitic)	11	3.41	7	17.7	(62)
Tauern Tunnel Gneiss (porphyritic)	11	3.41	′	11.1	(02)
Tauern Tunnel	9	4.34	9	41 0	(62)
Quartsite	l				
Various localities			6	3 4	(45)
Villnos Gulch, Austria	1	54.7	1	5.79	(133)
Schist			1		
Lustre, Simplon Tunnel			ı	10 4	(45)
St. Gothard Tunnel	33	3.4	33	11.6	(47)
Schist (chlorite)	ļ				
Mysore St., India	1	0 27	l		(121)
Schist (hornblende)	1		1		
Mysore St., India	11	0.19	i	ļ	(131)
From mines, Mysore St.,	1	1	1	1	
India		0.25		ı	(121)
Slate					
England	. 2	1.17			(124)
European			10	13.5	(45)
Germany		1.3			(13)
Tauern Tunnel	. 3	2.53	3	24 3	(62)
Slate (mica)					1
From well boring, Beach					
ville, Can	1	1 6			(25)

SPRIMENTARY	Rocks

· Name and locality	No. speci- mens	Ra mean	Th mean	Lit.
Clay				
Montreal, Canada	2	1 17		(24)
England	3	0.79		(124)
England(1), Germany(1)	2		10 2	(45)
Coal				
Alabama, U. S. A	11	0 166		(55)
Lens, France		0 97	3 3	(74)
Frankenholz		0 04	0.3	(74)
Coal ash			İ	
Alabama coals	11	2.15		(55)
Lens, France		8.8	30.	(74)
Frankenholz	1 -	2 0	15.	(74)
Flint	1	- "		
Terling, Essex, Eng	1	0.49		(124)
Grauwacke	1	0.0	1	` ′
	1		24.	(45)
Wipperfurth, Germany	1	1		` ′
Limestone	6	1 02	}	(25)
Beachville, Ont., Can	1	0 91	1	(25)
Montreal, Canada	1 -	0.25	ŀ	(124)
Deccan, India	1 -	1.13		(124)
England		1.13	2 3	(44)
Germany(2), Ireland(1)		0.05	23	(26)
New Zealand		0.37		, ,
Various localities	30	1	0.4	(44)

Name and locality	No. speci- mens	Ra mean	Th mean	Lit.
Limestone (oölithic)		1		
Yellowstone Park, U. S. A	2	2.9		(104)
Marble and limestone				Ì
Various localities	8	1.3	1	(18)
Sand (Saxicava)			1	1
Montreal, Canada	1	0.16	1	(34)
Sandstone	2	1.04		(184)
From 850 ft. borehole, Baarlo,		Ì		ì
Limburg, Holland.	8	1.66		(13)
Beachville, Canada	1	0.50		(25)
Various localities	8	1	6.3	(48)

OCEANIC DEPOSITS

Name and locality	No. speci- mens	Ra mean	Lit.
Blue mud			
1240 fa. E. coast N. Amer	1	3.1	(188)
Calcareous mud			
2225 fa. E. of Society Islands	1	22.2	(138)
Globergina ooze	1		
1990 fa. Middle S. Atlantic.	2	6.5	(136)
1825 fa. Pacific W. of South America	1	7.4	(138)
570 fa. W. coast Ireland	2	6.3	(138)
2042 fa. Central Pacific	2	7.6	(188)
Radiolarian ooze	1		
Central Pacific	4	43.9	(136)
Red clay			
2740 fa. N. Atlantic, coast of Africa	4	17.6	(138)
2350 fa. Central Pacific.	3	47.4	(138)
"Salt Lime" (gypsum from evap. sea water)	1	0.016	, ,
Sea Salt		0.07	(124)
From evap. water of high seas	15	none	(40)

Soils

Gravel—fine siftings Terling, Essex, Eng	2	0.65	(124)
Surface loams 7 localities in E. and S. parts of U. S The mean =	7 5	1.97	(69) (69)
Subsoils of above	7	1.52	(69)

Highest value for surface soils, 2.88; Lowest, 0.93	(69)
Highest value for subsoil, 3.8; Lowest 0.93	(69)
Loess, Heidelberg, 10.4 × 10 ⁻⁴ g Th per g	(⁴⁵)
Mark, Ireland, 1.4 × 10 ⁻⁶ g Th per g	(45)

Mark, Ireland, 1.4×10^{-6} g Th pe		(45)	
Rocks From T t	INNELS		
		Un	its
Rock and section of tunnel	No. of speci- mens	10 ⁻¹³ g Ra per g	10 ⁻⁴ g Th per g
The St. Gothard (47)			
Granites and gneiss Finsternarhorn Massif	. 20	6.7	21.5
Altered sediments Unsernmulde	18	3.8	13.4
Tessinmulde	18	2.7	4.8
Schists, etc. St. Gothard Massif	33	3.4	11.6
The Tauern, Austria (62) Granitic gneiss	Ra 10, Th 7	3.41	17.7
Pornhyritic granitic gneiss		4.34	41.0

Rocks From Tunnel	s.—(Continuea		
			iits
Rock and section of tunnel	No. of speci- mens	10 ⁻¹² g Ra per g	g Th
Slate .	Ra 3, Th 3	2 53	24 3
The Loetschberg, Bernese Oberland, Switzerland(*3)			
Anhydrite	2	3 4	
Aplete	2	2 5	
Granite	7	2 3	
Limestone .	16	1.5	
Quartz porphyry	1	2.5	
Quartz sandstone	i	4 3	
Schists	!		
Feldspathic	3	27	
Hornblende .	2	3 1	
Lustre	2	3 4	
Mica	2	2 1	
Quartz	12	2 4	
Tale	16	1.5	
(Unclassified).	16	2 5	
The Transandine, Argentine-Chile (27)		-	
Andesites	Ra 2, Th 1	0 71	4 1
Mean Ratio, Th-Ra = 7 × 10°	,	0 79	5 6
Feldspathic Tuff	2	1 24	3 0
Trachytes	7	0.58	4.4
Tuff .	Ra 8, Th 7	0.90	6.94

SPRIN	(G	DEPO	SITS		· · · · · · · · · · · · · · · · · · ·
Country, name of spring, location	No. of	Ra con-	Th con- tent t	Remarks	Lit.
Austria		,		1	
Elizabethstollen, Gastein	1	2920	3970	Reissacherite	(62)
Rudolphstollen, Gastein	1		1988		(62)
		300),		()
Vilnos Gulch	1	1	i .	A sinter	(133)
England	-	'"		At milet	(100)
Hot Springs, Bath	1	381			(124)
France			İ		()
Chomel, Vichy	1	250	!!!	Ferruginous	(52)
Hôpital, Vichy	1	700		Black	(52)
Carnot, Santenay	1	1500	İ	Dia K	(52)
Neria	1	950	5100	Black	(52)
Luxeuil.	1			Manganous	(52)
Germany			1100		()
Badochquelle .	1	4		Surface scum	(67)
Ems, Hessen-Nassau.	4	0 63	35		(133)
Johanngeorgenstadt, Sax-	3	681	89	Mainly hy-	(4)
ony.				dromor-	(-)
				phite;	
			ĺ	Range of Ra	
				content, 10-	
				1300	
Italy					
Fiuggi	1	5	- 1	Tufa	(84)
Russia	2	13 9	147		(14)
Borshom Spring	2	13.9	147		(14)
United States					(-)
Hatborn No. 1, Saratoga					
Springs, N. Y	1	769			(71)

	7 -				
Country, name of spring, location	No. of specimens	Ra con-	Th con-	Remarks	Lit
Geyser, Saratoga Springs,			1		
N. Y	1	17	ĺ		(71
Pump Well No. 4, Saratoga				1	1
Springs, N. Y	1	63	1	1	(71
Palace Spring, Hot Springs,					` `
Arkansas	1	1724			(99
Avenue Spring, Hot				l	()
Springs, Arkansas	1	140		}	(99
Horseshoe Spring, Hot					`
Springs, Arkansas .	1	2.3			(99
Various springs, Hot					1
Springs, Arkansas	11	175			(99
Main Springs, Mammoth					1
Hot Springs, Yellow-					
stone	1	8.8		Travertine	(104
Hot River, Mammoth Hot		li			(
Springs, Yellowstone	1	8.1			(104
Bench Springs, Upper					1
Geyser Basin, Yellow-					
stone	1	0.95	i		(104
Fish Cone, West Thumb,					Ì .
Yellowstone	1	0 19	- 1		(104
Fire Hole Lake, Lower					Ì .
Geyser Basin, Yellow-			- 1		
stone	1	6 7	- 1		(104
Doughty Springs, Delta					
Co., Colorado	2	1654			(100

^{*} Unit, 10⁻¹¹g Ra per g. † Unit, 10⁻¹g Th per g.

METEORITES

Class and locality	Ra in 10 ⁻¹² g per	Remarks	Lit.
Stony			1
Dhurmsala, India	0 53		(123)
Coahuila, Coahuila, Mex.	7 69	Normal hexahy- drite	(87)
Toluca, Xiquepelco, Mex.	0 21	Medium octahe- drite	(87)
Iron			
Augusta Co., Va., U. S. A.	0 0022		(125)
	none	2 specimens	(123)
Stone		- Promise	()
Various localities	0 75	Mean of 16	(87)
Iron		Range 2.17-0.073	
Various localities	0 69	Mean of 2	(87)
	none	Mean of 3	(87)

NATURAL GASES

Source and Locality	No. sam- ples	Milli- micro- Curies (10 ⁻⁹ Curies) Ra per liter	Lit.
Canada Medicine Hat, Alberta Suffield-Brooks Calgary	3 6	0.064 0.064	(97) (97)

Source and Locality	No. sam- ples	Milli- micro- Curies (10-• Curies) Ra per liter	Lit.
3 British Columbia wells		0 47	(97)
Brant, Anondoga, Ontario	4	0 42	(97)
Tilbury, Ontario	ł	0 016	(97)
England			
Marsh gas, environs of Cambridge	10	03	(95)
France			
Alsace	}	7 1	(17)
Germany			
Nuengamme, Hamburg		0 24	(17)
Hungary			
Well No. 14, Bazna		0 043	(17)
Japan			
Well No. 22, Takiya		0 035	(42)
Rumania Well No. 103, Campina			(17)

LITERATURE

(For a key to the periodicals see end of volume)

- Ashman, 12, 26; 119; 08
 Bamberger, 75, 116; 1473; 07
 Bamberger, 75, 117; 1055; 08
 Bamberger and Weissenberger, 75, 123; 2005; 14
 Barnard (Schlundt), 246, 15; 228, 13
 de Beaujen, 34, 123; 244; 11
 Poltwood, 12, 20; 128; 05
- Borne, 200, 2, 77, 142, 05
 Borne, 200, 2, 77, 142, 05
 Boyle and McIntosh, 69, 7; 163; 13
 Brochet, 34, 150; 145, 291, 10.
 Brichner, 200, 10; 516, 23
 Burkser, 53, 47; 21, 14
 Burkser, 53, 47; 21, 14
 Burkser, 53, 47; 21, 14
 Burkser, 63, 47; 21, 14
 Burkser, 63, 47; 21, 14
 Burkser, 13, 142
 Burkser, 14, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 142
 Burkser, 15, 143
 Burkser, 15, 142
 Burkser, 15, 143
 Burkser, 15, 143
 Burkser, 15, 143
 Burkser, 15, 143
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 145
 Burkser, 15, 14
- (20) Engler and Steveking, 93, 53: 1; 07 (21) Eve, 3, 14: 721; 07 (22) Eve, 5, 16: 622; 08. (23) Eve, 69, 4: 55; 10. (24) Eve and McIntosh, 3, 14: 23; 07. (25) Eve and McIntosh, 69, 4: 69; 10. (26) Farr and Florance, 5, 18: 812; 09. (27) Fletcher, 3, 20: 36; 10 (28) Fletcher, 5, 21: 102, 11. (28) Fletcher, 3, 21: 70; 11.
- (20) Fletcher, 3, 23: 279, 12.
 (31) Fremus and Czapski, 136, 35: 722, 11
 (23) Frohner, 144, 30: 387, 12.
 (32) Frohner, 144, 30: 387, 12.
 (33) Gockel, "Die Radioaktristical Boden und Quellen" (1914).
 (38) Gockel, "Die Radioaktristical Boden und Quellen" (1914).
 (38) Gockel, 200, 7: 487; 10.
 (37) Hense, 207, 12: 293, 17.
 (38) Henrich, 63, 8: 112, 07.
 (39) Henrich, 92, 33: 512, 20.
- (40) Hewlett, 208, 22: 173; 17. (41) Ishizu, "The Mineral Springs of Japan" (1915), 209, 16: 362; 13. (42) Jentzsch, 63, 8: 887, 07. (43) Joly, 3,

- (**) Koch, 63, 7; 806; 06.
 (*1) Kulhorster, 80, 14; 356; 12.
 (**) Laborde and Lepape, 34, 188; 1902; 12.
 (**) Lepape, 54, 188; 1902; 12.
 (**) Lepape, 54, 178; 1703; 25.
 (**) Loisel, 74, 178; 921; 21.
 178; 890; 22.
 (**) Loisel and Castelnau, 54, 178; 1300; 21.
 (**) Loisel, 54, 178; 921; 21.
 178; 890; 22.
 (**) Loisel, 34, 178; 1004; 22.
 (**) Ludway, 63, 28; 180, 24.
- Mache, 75, 133: 1329, 04.
 Mache, 75, 133: 207; 24.
 Mache, 26, 133: 1329, 04.
 Mache and Bamberger, 75, 133: 325; 14.
 Mache and St. Meyer, 75, 134: 335; 05.
 Mache and St. Meyer, 75, 136: 135; 12.
 Mache and St. Meyer, 75, 136: 135; 12.
 Mache and St. Meyer, 180: 135; 12.
 Mache and St. Meyer, 190, 1: 184; 16.
 F10, 1: 184; 16.
 F10, 1: 184; 16.
 F10, 1: 184; 16.
 F10, 1: 184; 16.
- (79) Moore and Kithil, 26, No. 70; 13. (71) Moore and Whittemore, 48, 6; 552, 14. (72) Moureu, 271, 16; 65; 11. (73) Moureu and Lepape, 34, 148; 834, 00. (74) Moureu and Lepape, 34, 158; 598; 14. (78) Nasini, Marino, Ageno and Porlessa, 36, 48, 321, 13. (75) Nasini and Porlessa, 24, 76; 725; 17. (77) Nasini, Porlessa and Shorgi, 24, 78; 1572; 14. (78)
- 24, 78: 725; 17 (71) Nasum, Porlessa and Sborgi, 24, 78: 1572; 14. (**) Olupe, 260, 18: 158; 18 (**) Perkins, 166, 26: 806; 15. (**) Perret and Jacquerod, 149, 48: 277, 336, 418, 18. (**) Pinto, C. R. Cong Int Radiol and Elect, 1: 70, 11. (**) Poole, 5, 99: 483; 15. (**) Poole, 5, 40: 466, 20. (**) Porlessa and Norsi, 22, 20: 935; 11. (**) Poules and Chouchak, 54, 177; 1112, 1319, 23. (**) Pouleson, 157, No. 8; 14. (**) Quirke and Finkelstein, 12, 44: 237; 17. (**) Ramsay, 153, 108: 134, 12. (**) Ramsay, 12, 40: 309; 15. (**) Ramsay, 5, 30: 815, 25. (**) Saliboni, 19, 6: 1; 16. (**) Salvadori,
- (**) Ramssy, 3, 30; 815, 25
 (**) Salabom, 19, 6; 1; 16.
 (**) Salaterly, 5, 30; 1, 10.
 (**) Satterly, 5, 30; 1, 10.
 (**) Satterly, 801, 18; 50; 1, 10.
 (**) Satterly, 801, 18; 50; 1, 10.
 (**) Satterly, 801, 18; 50; 1, 10.
 (**) Satterly and Elworthy, Dept. of Mines, Canada, Bull. 18 (1917).
 (**) Satterly and McLennan, 69, 13; 153, 18.
 (**) Schiffner, Weidig and Friedrich, "Radioactiven B daser in Sachsen" (1912).
 (**) Schlundt, 78, 13; 247; 07.
 155, 98; 199
- (100) Schlundt, 78, 26: 103, 14. (101) Schlundt, 272, 16: 1245; 09. (108) Schlundt, 20, 18: 662, 14. (103) Schlundt and Moore, 20, 9: 320; 05. (104) Schlundt and Moore, 182, No. 395; 09. (103) Schlundt and Kurs, 25, 7, 209, 06. (104) Schloep, 34, 173: 1186, 21. (107) Schoep, 34, 174: 023, 22. (107) Schoep, 34, 174: 623, 22. (107) Schoep, 34, 174: 675; 22.
- (164) Schlundt and Moora, Idd., No. 396; 091. (**) Schlundt and Kurs.
 43, 7, 209, 06. (166) Schoep, 34, 173; 1180, 21. (167) Schoep, 34, 174; 1923, 22. (169) Schoep, 34, 174; 1875; 22.
 (110) Schoep, 54, 174; 1066, 22. (111) Schoep, 34, 174; 1240; 22. (112) Schoep, 54, 176; 171, 23. (113) Schoep, 54, 176; 131; 24. (114) Schoep, 54, 179; 693, 24. (115) Scholl, U. of Ill. Bul., Water Survey Series, 16; 111, 17. (116) Schweidler, 75, 139; 910, 20. (117) Schweidler, 74, 237; 256; 00. 30; 40; 10. (115) Shrader, 2, 3; 339; 14. (115) Sjögren and Schlopm, 19, 3; 1. (18
- and Sahbom, 10, 3: 1, 08
 (129) Skinner and Sale, 45, 14: 049; 22. (121) Smeeth and Watson, 5, 35: 206, 18 (122) Struthen, 5, 21: 401, 16 (123) Strutt, 5, 77A: 472; 06, (134) Strutt, 5, 75A: 150, 06, (135) Strutt, 6, 30A: 572; 08, (136) Strutt, 5, 34A: 377; 10, (127) de Sury, 149, 34: 101; 07, (138) Ssilard, 54, 134: 982, 12. (128) Versadsky, 54, 176: 993; 23.
- 34, 188; 1962, 122. (***) versatisky, 74, 178; 1913; 25.
 (130) Wade, 7, 29; 61; 107. (*13) Wateon and Pal, 3, 28; 44; 14. (*138) Wellsk, 7*, 117* 1191; 08. (*123) Welssenberger, 189, 1914; 481. (*134) Werzelarky, 144, 30; 345; 12. (*134) Wright and Hosse, 267, 13; 145; 17. (*134) Wright and Smith, 2, 8; 159, 15. (*127) Zlatarovic, 75, 139; 50; 20. (*13) Joly, 3, 18; 190, 18. (*139) Behounek, 51, 6; 48; 25.

AGES OF MINERALS AND ROCKS BASED ON RADIOACTIVE CHANGES

ROGER C. WELLS

There are a number of ways of estimating the ages of minerals by combining chemical and radioactive data, all based on the assumption that the law of each radioactive change is expressed by its constant, \(\lambda\), over the periods and for the quantities of each element involved. The two principal methods employ the ratios of helium to uranium and thorium and of lead to uranium and thorium. The helium ratio is admitted to give minimum values on account of the loss of helium with lapse of time; and the lead ratio involves the assumption, or actual proof by means of an atomic weight determination, that the lead is wholly of radioactive origin. Associated rocks are generally assumed to be as old or older than the minerals found in them. Attempts have also been made to calculate the ages of rocks from determinations on bulk samples (Russell).

For the two methods mentioned the fundamental changes and

 $U(238.17) \rightarrow Pb_{U}(206.06) + 8He(4.00)$ $Th(232.15) \rightarrow Pb_{Th}(208.00) + 6He(4.00)$

One gram of uranium in equilibrium with its products gives 9.4×10^4 alpha particles per sec (15) or 1.96×10^{-11} gram He and 1.26×10^{-10} gram Pbu per year.

One gram of thorium in equilibrium with its products gives 2.7×10^4 alpha particles per sec, or 5.5×10^{-12} gram He and 4.8×10^{-11} gram Pb_{Th} per year.

The ages of minerals may be calculated from the analytical data and the preceding information by simple proportion in the case of helium (equation 1) and also in the case of lead with sufficient accuracy for most purposes (equation 2), but if the percentage of lead is relatively large the theoretical relation is given by equation 3, where U, Th, Pb = percentage U, Th, Pb in the mineral.

(1) Age =
$$\frac{\text{cm}^3 \text{ He/g}}{\overline{\text{U}} + 0.28 \text{Th}} \times 910 \text{ million years}$$

(2) Age =
$$\frac{Pb}{II + 0.38Th} \times 7900$$
 million years

(3) Age =
$$\frac{\log (U + 0.38\text{Th} + 1.156\text{Pb}) - \log (U + 0.38\text{Th})}{6.5 \times 10^{-4}}$$

million years

Thorium minerals with Th/U greater than 3 are secondary

and younger than uranium minerals from the same geola horizon (19). Low lead ratios have little significance on accou of the case with which certain minerals abstract lead from cir. lating natural waters. The atomic weight of the lead should determined whenever possible in order to make certain that lead is of radioactive origin. In general, only primary minerals suitable for age determinations.

Ages of Minerals from Helium Ratios by Equation (1)

(The values in parenthesis are calculated from the lead ratios for comparison) Th He H Age Lit Mineral Geologic horizon Percent | million years Percent cm³/g 1.7×10^{-6} 0.021 n 0.07 (23 Phosphatic shark's teeth, Florida Pliocene 1.6×10^{-6} 0.013 0 0.11 (23 Pliocene Phosphatic shark's teeth, Felixtowe, Eng. (23 1.0×10^{-6} 0.0041 O 0.22 Phosphatic nodules, Felixtowe, Eng. Phocene 'n 3.6 (23 0.01 2.53 Post Tertiary Carnotite, Montrose Co., Colo. . . . 8.1×10^{-4} (23 0.029 0.071.5 Tertiary Zircon, Campbell I. New Zealand 0 107 62 4 (23 1.6 Pitchblende, Joachimsthal..... (23 1.65×10^{-6} 0.00015 0.00017 7.6 Sphaerosiderite, Germany. Oligocene (23 1.14×10^{-4} Tertiary 0.0108 0.00073 9.4 Zircon, Mayen, Eifel... (23 1.21×10^{-6} 0.000220.00073 26 Hematite, Co. Antrim, Ireland Eocene 2.12×10^{-4} 6 2 (23 0.031 0 Zircon, Auvergne.... Tortiory 3 0 × 10-4 (23) 0.0091 0 3 0 Phosphatic nodules, Cambridge, Eng. Upper Cretaceous 3.9 (23) 2.1×10^{-8} Phosphatic nodules, Bedfordshire . Lower Cretaceous 0.0049Λ Paleozoic 0.0193 0.109 0.10 128 (23) Zircon, Chevenne Canon, Colo 1.6×10^{-4} 0.0011 130 (28) Above Carboniferous Hematite, Cumberland, Eng. 0 (23) 1.5×10^{-4} 0 00043 Limonite, Forest of Dean. 0.00087140 Carboniferous (23) Carboniferous (?) 0.59 2 42 4 33 147 Sipilite, Little Frier Mt., Va 210(1240) (23) Euxenite Arendal Norway Pre-Cambrian 0.73 2 41 2 39 Samarskite, Mitchell Co., N. C 1 98 160 (23) Carboniferous (2) 1.5 8 73 1.5×10^{-4} (23) Phosphatic nodules, Bala, England. Silurian 0.00280 40 Phosphatic limestone, Chirbury, Shropshire, (23) 5.6×10^{-6} 0.0067 n 76 Eng Silurian Uraninite, Katanga... Pro-Silurian 8 88 77 7R Λ 104(665) (4) Zircon, Brevig, Norway 0.288 (23) Post-Devonian 0.0099 0 113 46 9.8×10^{-6} 0.0013 120 (23) Hematite, Caen..... Devonian 0.00037 (23) Zircon, Green River, N. C. 0 0255 0 264 126 Paleozoic 0.11 Zircon, Ural Mts. (23) 0.0538 0.408 160 Paleozoic 0.030 Uraninite, Colo. Tertiary 0 15 72 62 18(58) (11) Uraninite, N. C. Post-Cambrian 2.96 77 0 34(380) (11)Thorianite, Sab. Province, Cevlon Permatite in Charnokite 9.87 63 54 50(460) (5) 1.5 Spring Thorianite, Galle Province, Ceylon Pegmatite in Pre-Cam-9.3 20.6 57.55 230(400) (23) bruan Uraninite, Annerod Pre-Cambrian (2) 9 4 66 2 5 27 120(890) (11)Uraninite, Portland, Conn... (11) Devonian (?) 19.2 72.0 8 79 230(290) Uraninite, Branchville, Conn... Silurian (?) 21 0 74 3 5 72 250(400) (11) Microlite, Amelia Court House, Va (23) Carboniferous (?) 0 05 1 60 O 280 Cuprouranite, Cornwall..... (23) Devonian 0.10 50.9 0 1.8 Orangite, Brevig, Norway..... 0.85 42 6 7.9(22)(23) Middle Devonian 0 11 Zircon, Ural Mts..... (23) Paleozoic 0 030 0 053 0 409 160 Thorianite, Ceylon...... (23) Balangoda series 8 9 11 0 67 7 270(500) Zircon, Kimberly..... 0 032 0 091 (23) 0.012 Paleozoic 310 Phosphatic nodules, Loch Broom. (23) Pre-Cambrian 8.3×10^{-6} 0.0840 9.0 7 56 Gadolinite, Ytterby Pre-Cambrian (?) 2 43 2 50 480 (23) (23) Aeschynite, Ural Mts 0 98 2.12 7 19 210 Cyrtolite, Llano Co., Texas (23) Pre-Cambrian (?) 240 1 15 3 11 4 44 (4) 59(540) Uraninite, S. Dak..... Pre-Cambrian (?) 4 35 66.90 1 89 Zircon, Ceylon..... Ancient 0 0283 0.086 0.010 290 (23)Zircon (?), Renfrew Co., Ontario. Archaean 0 0114 0.0155 0.0008 660 (23) 1200 Aeschynite, Hitteroe, Norway..... 7.98 1 11 1.09

AGES OF MINERALS FROM LEAD RATIOS BY FOUNTION (3)

Ages of M	INERALS FROM LEAD RATIO	в ву Еог	ATION (3)				
Mineral	Geologic horizon	Pb Percent	U Percent	Th Percent	Th/U	Age million years	Lit.
Carnotite, Montrose Co., Colo	Tertiary	0.17	45.6			29	(12)
Johannite, Colo	Tertiary	0.76	47 2			123	(18)
Brannerite, Idaho	Tertiary	0.18	46 97	4.1	0.11	29	(*)
Uraninite, Gilpin Co., Colo	Tertiary	0 65	72 60			69	(11)
Thorite, Ceylon	Young mineral in pegma-	2 86	72.00	8.79	0.12	280	(11)
	tite in Pre-Cambrian						
Hatchettolite, Hybla, Ont	Pre-Cambrian (?)	0 50	13 72	0.46	0 03	270	(24)
Polycrase, Brasil	Pre-Devonian	0.59	5 49	4 59	0.84	600	(8)
Allanite, Blueberry Mtn., Mass	Young mineral in pegma- tite	0 036	0 11	2 01	18 3	310	(17)
Freyalite, Brevig, Norway.	Post-Devonian (Lawson)	0 0028	0 0526	6 330	120.3	8.8	(19)
Tritomite, Brevig, Norway.	Post-Devonian (Lawson)	0 0026	0 0631	5 150	81.6	9.9	(19)
Thorite, Brevig, Norway	Post-Devonian (Lawson)	0 0196	0 4072	29 20	71 7	13.3	(10)
Thorite, Brevig, Norway	Post-Devonian (Lawson)	0 0810	0 7200	49 43	68.6	32.0	(10)
Thorite, Brevig, Norway.	Post-Devonian (Lawson)	0 0760	0.7000	47 25	67.5	31 4	(19)
Orangite, Brevig, Norway	Post-Devonian (Lawson)	0 0570	1 2437	49 14	39 7	22.1	(19)
Orangite, Brevig, Norway.	Post-Devonian (Lawson)	0 0542	1.1825	45 03	38 1	22.8	(19)
Homolite, Brevig, Norway	Post-Devonian (Lawson)	0 0121	0 2442	2 900	11.9	69.1	(19)
Mosandrite, Brevig, Norway	Post-Devonian (Lawson)	0 0024	0 0432	0 287	6 64	112 230	(19)
Eudidymite, Brevig, Norway	Middle Devonian	0 0007	0 0000	0 036	7 00	280	(19)
Eucolite, Brevig, Norway	Middle Devonian	0 0012	0 0170	0 040	2.35	210	(19)
Thorite, Brevig, Norway	Middle Devonian	0 4279	10 1040	14 20	0.78	220	(19)
Zircon, Brevig, Norway	Middle Devonian	0 0055	0 1460	0 114	0 42	280	(19)
Zircon, Brevig, Norway	Middle Devonian	0.0085	0 1941 0 1855	0 082	0.40	330	(19)
Pyrochlore, Brevig, Norway	Middle Devonian	0 0093	0 0253	0 007	0.40	400	(10)
Aegerine, Brevig, Norway	Middle Devonian Middle Devonian	0 0370	0 9310	0 141	0 15	280	(19)
Zircon, Brevig, Norway	Middle Devonian	0 0069	0 1602	0.017	0 11	310	(19)
Biotite, Brevig, Norway	Post-Cambrian (?)	3 90	77 01	2 44	0.03	380	(11)
Uraninite, Spruce Pine, N. C	Pegmatite in Pre-Cambrian	1	24.13	55 95	2 32	400	(19)
Thorianite, Galle Province, Ceylon	Pegmatite, uncertain	0 35	22 58	0 98	0.04	120	(16)
Betafite, Madagascar	Pegmatite in Pre-Cambrian	1	9 87	63 54	6.45	460	(5, 19)
Thorianite, Sa. Province, Ceylon Uraninite, Branchville, Conn	Silurian (?)	4 03	73 00	6 09	0.81	400	(11)
	Pre-Silurian	6 51	77 76	0	1	620	(4)
Uraninite, Katanga Polycrase, Slättåkra, Sweden	110-1-110-1	0.85	8 45	3 08	0.36	650	(2)
Uraninite, Ånneröd, Norway	Pre-Cambrian (Moss dis- trict)	8.39	66.21	5 28	0.08	890	(11)
Uraninite, Elvestad	Pre-Cambrian (Moss district)	9.35	65.82	7.46	0.11	970	(11)
Ånnerödite	Pre-Cambrian (Moss district)	2 22	15 25	2.08	0.14	990	(2)
N. 11 . 11 . C	Pre-Cambrian (?)	3.47	19 75	39.83	2.02	730	(1)
Mackintoshite, Llano Co., Tex	Pre-Cambrian (?)	0 45	2 28	7.69	3 38	640	(1)
Yttrocrasite, Llano Co., Tex	Pre-Cambrian	9 43	56 45	6 65	1.18	1130	(1)
Uraninite, Llano Co., Tex	Pre-Cambrian	9 35	55.18	5 88	1.07	1150	(1)
Uraninite, Llano Co., Tex Yttrialite, Llano Co., Tex	Pre-Cambrian	0 74	1 45	9 53	6.5	1040	(1)
2 volume of 2	Pre-Cambrian	0 79	0 69	10.55	15.3	1190	(1)
Yttrialite, Llano Co., Tex	Middle Pre-Cambrian	0 18	1 06	1		1200	(1)
Gadolinite, Ytterby, Sweden	Middle Pre-Cambrian	0 36	2 41			1100	(1)
Zircon, Ceylon	Pre-Cambrian	0 092	0.56	0 01	0.02	1150	(14)
Uraninite, Villeneuve, Quebec	Middle Pre-Cambrian	10.46	64.74	6 41	1 00	1110	(11)
Uraninite, Parry Sound, Ontario	Middle Pre-Cambrian	10 83	69.19	2 83	0.04	1090	(6)
Uraninite, Arendal, Norway	Pre-Cambrian (Arendal	10 16	61.27	3 65	0.06	1150	(11)
Uraninite, Black Hills, S. Dak	Pre-Cambrian	15.24	66.90	1 89	0 03	1540	(4)

LITERATURE

(For a key to the periodicals see end of volume)

- Barrell, 356, 38: 745, 17 (2) Blomstrand, in Dana's Mineralogy, p. 741. (4) Boltwood, 12, 23: 77; 07. (4) C. W. Davis, U. S. Bureau of Mines, 0. (8) Dunstan and Blake, 5, 76A: 253, 05. (4) Ellsworth, 12, 9: 127, 25. (7) Geiger and Rutherford, 5, 20: 601, 10. (8) Hess and Henderson, 143, 260: 235, 25. (9) Hess and Wells, 143, 189: 225; 20. (10) Hidden and Markintosh, 12, 38: 481, 89.
- Hillebrand, 12, 48: 390, 91
 Höllebrand, 12, 48: 120, 00
 Höllebrand, 12, 13: 120, 10
 Hölmes, 5, 881: 248; 11.
 Holmes
- and Lawson, 3, 28: 823; 14. (18) Kovarik and McKeehan, 337, No. 81; 25. (18) Lacrolx, Mineralogie, V: 93. (17) Lane, Trans. Lake Superior Mining Inst., Aug., 1925. (18) Larsen and Brown, 328, 2: 75; 17 (18) Lawson, 75, 126: 721; 17. (20) Russell, Introduction to the Chemistry of Radioactive Substances, Murray, London, 1922.
- Radioactive Substances, Murray, London, 1922.

 (21) Rutherford, Radioactive Substances and Their Radiations, Putnam's Sons, New York, 1913. (22) Soddy and Hyman, 4, 108: 1402, 14 (23) Strutt, 5A, 76: 88, 05. 80: 572, 08 81: 272; 08. 82; 166, 09. 83: 277; 10 (24) Walker, Univ. Toronto Studies, No. 18; 23. (25) Wells, Bibliography on the relation of radioactivity to prological problems. National Research Council, 1924.

SELECTED PHYSICAL PROPERTIES OF STARS AND NEBULAE

ALFRED H. JOY

CONTENTS.—(A) Classification of stellar and nebular spectra; (B) Stellar temperatures, masses, and densities; (C) Stellar diameters. (Data pertaining to the solar spectra will be found with other spectroscopic data; consult index)

A. CLASSIFICATION OF STELLAR AND NEBULAR

The system¹ is that developed at Harvard College Observatory, as used by Miss Cannon in the Henry Draper Catalogue. Except where the exact nature of the spectral changes is not fully understood, decimal sub-classes, representing progressive steps toward the succeeding class, are used. In denoting objects by their catalogue numbers, the following abbreviations are used: B. D. = Bonn Durchmustering; C. D. M. = Cordoba Durchmustering; I. C. = Dreyer's Index Catalogue of nebulae and clusters; N. G. C. = New General Catalogue by Dreyer. The number, or numbers, following the abbreviation is the catalogue designation of the object.

Class P includes practically all the gaseous nebulae. Its unique characteristic is the appearance of lines from an unknown origin (nebulium). In addition there are many lines of H, He, C, He+, C+, and N+. All lines are bright and usually sharp. (The order of the Harvard (3) subdivisions should probably be reversed to indicate decreasing intensity of radiation)

Class	Typical object	Spectral criteria
Pa	I. C. 418	$\lambda 5007$ and $\lambda 1959$ faint, $\lambda 3869$ not seen
Pb	Orion nebula	λ5007 and λ4959 stronger
Pc	I. C. 4997	λ4363 conspicuous
Pd	N. G. C. 6826	λ5007 and λ4959 strong
Pe	N. G. C. 7662	λ4686 present
Pf	N. G. C. 40	λ4686 strong

Wright (11) has divided these spectra into three classes: Class I, having λ4686 present, Class II, with λ4686 absent but λ3869 present, and Class III with both λ4686 and λ3869 absent.

Class O is distinguished by the presence of the Pickering series of ionized helium, upon a strong continuous spectrum with maximum intensity far in the violet. The elements present are H. He, He+, C+, N+, Mg+, O+, CHI, NHI, SiHI, OHI, SiIV. Broad emission bands occur in the earlier subdivisions. Few absorption lines are found in sub-classes Oa, Ob, Oc, which make up the group known as Wolf-Rayet stars. (The Harvard subclasses Od, Oe, and Oc5 which have absorption lines and in some cases narrow emission lines as well, are included in the subclasses O5 to O9 as suggested by H. H. Plaskett (7), the basis of classification being the absorption lines.)

¹ Adopted by International Astronomical Union. It defines a temperature scale which is linear within the present errors of measurement

Class	Typical object	Spectral criteria
Oa	B D. +35° 4013	Band \$4648 stronger than \$4686
Ob	B. D. +35° 1001	λ4686 stronger than λ4648
Oc	C. D. M41° 10972	Bands narrower. λ4686 twice λ4638
O5	B. D. +1° 1302	Pickering series very strong. H lines weak, λ4634 and λ4640 (NIII) present
O6	B D. +44° 3639	Neutral helium appears
07	9 Sagittae	$\lambda 4471 \text{ (He)}, 1.4 \times \lambda 4541, \lambda 4089 \text{ (SiIV)}, 0.8 \times \lambda 4097 \text{ (NIII)}$
Os	λOrionis	λ4481 (Mg+) appears
O9	10 Lacertae	II stronger, He weak. \(\lambda4471\),
		$2.7 \times \lambda 4541$. $\lambda 4089$, $1.4 \times \lambda 4097$

Class B is characterized by the presence of helium, which has its maximum intensity in B2. The principal elements are those of class O, with the addition, in the later sub-classes, of lines of the ionized atom of several of the metals, such as Sr, Ba, and Fe. The H and K lines of calcium are found in increasing strength in this class. The hydrogen lines increase through the sub-classes, reaching a strong maximum at Ao of the following class.

Class	Typical object	Spectral criteria
Во	§ Orionis	Pickering series weak, λ4649 (OII), λ4116 (SiIV), and λ4089 (SiIV) maxi- mum intensity
B1	B Canis Majoris	He more prominent than O and Si.
B2	γ Orionis	λ4116 not seen. λ4089 and λ4649 faint
B3	7 Aurigae	Strongest lines are helium
B5	q Tauri	$\lambda4128$ and $\lambda4131$ (SiII) stronger than $\lambda4121$ (He). $\lambda4481$, $0.7 \times \lambda4471$
B8	β Orionis	λ4481 equal to λ4471
B9	λ Aquilae	H strong. He weak. Several prominent enhanced metallic lines

Classes A, F, G, K and M, which contain the largest numbers of the stars, show a gradual increase in the number and intensity of the lines of neutral metallic elements of the lower atomic weights, and a decrease in the intensity of lines due to ionized elements. Compounds produce bands in the later classes. The sun's spectrum is Go, and is intermediate between that of the white and the red stars.

Class	Typical object	Spectral criteria					
Ao	a Lyrae	H maximum strength. Very few other					
A5	ρ Sagittarii	H maximum strength. Very few other lines except λ4481 (Mg+) K (Ca+) stronger than Hδ. λ4290 well marked. λ4481 weaker K 3.0 × Hδ and equal to H + Hϵ					
Fo	σ Bootis.	K $3.0 \times H\delta$ and equal to $H + H\epsilon$					

Class	Typical object	Spectral criteria				
F5	α Canis Minoris	Fraunhofer band G first seen. Numer- ous solar lines				
Go	α Aurigae	Solar type. H not conspicuous. (a band well defined, H $\delta = \lambda 4226$.				
G5	n Piscium	Hγ fainter than λ4325				
Ko	α Bootis	G band conspicuous, λ4226 strong. Hydrogen weaker				
K5	a Tauri	λ4226 very wide. λ4254 and λ4274 (Cr) strong. Titanium bands very faint				
Mo	β Andromedae	Titanium bands well marked				
M5	α Herculis	Titanium bands very stong Metallic lines fewer				

Class R and N stars show the carbon bands in increasing strength. The more advanced stars of class N have very little light in the violet or blue portions of the spectrum. They are the reddest stars known. Typical stars: Class R. B. D. -10° 5057: Class N. 19 Piscium.

Class S spectra resemble those of class K5 except for the presence of bands of zirconium, and other peculiarities in the region near λ4650. The line λ4554 of Ba + is conspicuous

Class Q stars are the novae. Near maximum of outburst their spectra are characterized by numerous wide emission bands of hydrogen and helium, and by absorption lines of ionized elements, especially titanium and iron. As the star decreases in light, both absorption and emission lines of N and O become more prominent In the later stages, bright nebular bands appear; these are ultimately superseded by the bright bands of the Wolf-Rayet spectrum.

B. STELLAR TEMPERATURES, MASSES, AND DENSITIES

Giant stars are characterized by large mass, low density, and great total luminosity. Dwarf stars have smaller mass, higher density, and less total luminosity. Both are found in all classes. but the greatest contrasts between the two are found in the cooler stars of classes K and M. The continuous spectrum of dwarfs has its maximum shifted towards the violet, as compared with that of giants of the same spectral class, indicating that their absolute temperature is about 15% higher than that of the giants. Even with small dispersion, pronounced differences between giants and dwarfs may be noticed in the distribution of intensity in their line spectra. These differences probably arise from differences in the density gradients; they show a correlation with the absolute magnitude and mass of the stars. The low densities of giants favor the enhancement of those lines (absorption) which are produced under conditions of high excitation, such as the spark lines of the metals; the high density of dwarfs favor those produced by low excitation, such as the resonance lines of neutral atoms. The lines \$4077, \$4215 (ionized Sr) are much strengthened in giants, and weakened in dwarfs; the reverse is true of $\lambda4226$ (Ca), $\lambda 4454$ (Ca), $\lambda 4607$ (Sr).

STELLAR TEMPERATURES, MASSES AND DEVELTERS Units: Temperature, 1000°C abs.; Mass, Mass of Sun; Density. g/cm².

	Fil	ective (g	ten	•	ture	Me man		Mean density		
Class	A+	P:	\$ U	ž.	2	Giants	Dwarfs	Giants	Dwarfs	
Oa		23		23	1		<u>.</u>	† 		
O5					30	50	(6)			
Bo	1	20	13	18	19	10			1	
B3		1			16	9		0.	22	
B8	16		1			7	3	0.	24	
Ao	14	11	8	12	10	7 0	6 0	0.16	0 36	
A5		9	i		1	5 6	4 0	0.071	0.40	
Fo		7.5	1	9	7 5	4 3	2 5	0 025	0 40	
F5	6	7 2	6	1		3 2	1.5	0 0078	0.39	
Go	5.8	6.5	6	7	6	2 6	10	0 0025	0 68	
G5	1	4.5		1		2.8	0 76	0 000 87	1 2	
Ko	1	3 7	4		4 5	3 0	0 68	0.00018	1 3	
K5	3	3.5	3.7	;	3 9	2 6	0 62	0.000 026	1 4	
Mo	1	3	3	5	3	2 0	0 59	0.000 0098	5.4	
M5	2.5	2 95	ì	4					ĺ	
N		2 3					į		1	

^{*} Temperatures of dwarfs are 10 % to 20 % higher than giants of same class (indirect methods)

Potadam observations Wilsing et al. (10)

§ Coblentz (3) By thermocouple

| Saha (*) | Calculated from unitial appearance of certain spectral lines under

pressure of 0.1 atmosphere (See note %)

% Fowler and Milne (4) Calculated from maximum intensity of certain spectral lines under pressure of 1.31 \times 10 $^{\circ}$ atmospheres, assuming 10 000° corresponds to maximum of Balmer lines of H. These temperatures, and those of Saha, are for the reversing layer, true effective temperature is somewhat higher

STELLAR DIAMETERS

Unit: Linear Diameter 106 km

134		1 11	Diameter			
Star	Class	Parallax	Angular*	Linear		
α Tauri	K5	0.055''	0 022"	60		
α Orionis	M2	0 019	0 044	347		
α Bootis	Ko	0.088	0 022	37		
α Scorpu	M1	0 017	0.040	353		

^{*} Measured by means of interferometer (8)

LITERATURE

(For a key to the periodicals see end of volume)

(1) Abbot, 21, 60, 105, 24, (2) Cannon, Harvard College Obs. Annals, 76; 19, 16, (3) Coblents, 31A, 17; 725; 22. (4) Fowler and Milne, Monthly Notices, R. A. S. 33; 403, 23.
 (5) Michelson and Pesse, 21, 33; 240; 21.
 Pesse, Publ. Ast. Soc. Parific, 33; 171, 204, 21.
 34; 346; 22. (5) J. S. Plaskett, Publ. Domin. Astrop. Obs., 2: 298; 24. (7) H. H. Plaskett, Ibid., 1: 366, 22. (8) Sala, 5, 99: 151, 21. (9) Searcs, 21, 55: 202, 22. (19) Wilsing, Scheiner and Münch, Publ. Astrop. Obs. Potsdam, 24: 21; 19. (11) Wright, Publ. Lack Obs., 13: 282; 18.

DISTRIBUTION OF STARS

FREDERICK H. SEARES

Restriction.—No account is here taken of globular starclusters nor of stars included in spiral nebulae, many of which contain objects whose essentially stellar character can no longer be doubted.

Apparent Distribution and Number.-Statistically considered, the stars are distributed over the face of the sky with a high degree of regularity, their numbers gradually increasing as the Milky

Way is approached from either side. The Milky Way defines what is very nearly a plane of symmetry, and for a first approximation, systematic difference between the two hemispheres, progressive changes in galactic longitude, and all local irregularities can be ignored. The resulting mean distribution, as found by Seares and van Rhijn, is shown in Table 1.

[†] Abbot (1). By radiometer

To apparent magnitude (see p. 39) m=13.5 the results depend on data covering a large portion of the sky. From m=13.5 to 18.5 they are derived from counts of stars on photographs of the 139 Selected Areas of Kapteyn between the North Pole and declination -15° . For still higher values of m, the values of $\log N_m$ are extrapolated, but the uncertainty consequent to the extrapolation itself is probably small. Excepting in low galactic latitudes, there is little or no systematic uncertainty arising from the particular choice of fields used for the counts. To m=16 the magnitude scale is the mean of several closely accordant determinations made at different observatories, and is probably accurate within a few hundredths of a magnitude. Below this limit the scale depends wholly upon observations made at the Mount Wilson Observatory. Although this part of the scale has not been confirmed by independent measures made clsewhere, it

has been established by methods successfully used for the brighter stars.

The indicated total, to the twenty-first photographic magnitude, of all stars in the sky is 890 000 000, and to the twentieth visual magnitude, 1 000 000 000. Barring losses of light by absorption, scattering etc., the increase in log $N_{\rm m}$ for a uniform distribution of stars throughout space would be 0.6 per unit of magnitude. The observed increase nowhere attains this value; the stars thin out with increasing distance from the sun, and at great distances they thin out more rapidly than near the sun; these changes are most pronounced in the direction of the poles of the Milky Way. If the law of decreasing space density indicated by the stars accessible to observation holds for those beyond present telescopic reach, the total number of luminous stars in the galactic system must be of the order of 3×10^{10} .

Table 1.—Logarithms of Numbers (N_m) of Stars, of Magnitudes Less than m, per Square Degree in Different Galactic Latitudes (1)

Units: Last column; m = visual magnitude; average $N_m = 1$, if m = 8. Other columns; m = international photographic magnitude (2); $N_m = 1$, if m = 8, Lat. = 0. Galactic pole: R. A. $12^k41^m20^n$, Dec. $+27^n21^n$ (Gould).

tude	(~); 2¥ a	1,		O, 1A1	0				. A. I.		0,,,,,,	. ,			(1-0 11-11				
	l					Log	0 N _m 1	it latit	ude	7.7						(average			
773	00		100	1.50	000	25°	200	35°	40°	50°	60°	70°	80°	90°	0°-	20°-	40°-	0°-	0° -
	0°	5°	10°	15°	20°	25	30°	30	40	ου	00	10	ου	90	20°	40°	90°	90°	90° (v)
40	2.19	2 17	2 12	2 05	3 99	3 93	3 87	3 82	3 78	3.74	3 71	3 69	$\bar{3} = 67$	3 66	2.12	3.88	$\bar{3}.73$	3.94	$\bar{2}.11$
4.5	2.42				$\bar{2}$ 22	$\overline{2}$ 16				$\bar{3}$ 97		$\bar{3}$ 92	$\bar{3}$ 90	3 88	$\bar{2} \ 35$	2 11	3.96	2.17	2 35
5.0	2.65							١ ١		$\bar{2} 20$	$\tilde{2}$ 17	$\bar{2}$ 15	ž 13	$\overline{2}$ 12	2 58	2.34	2 19	2 40	2.60
5.5	2.88	2.86					2 56				$\bar{2}$ 40			$\bar{2}$ 34	2.80	2.57	2 41	2.63	2 83
6 0	T. 11	Ĩ 08			$\bar{2} 90$	2 84	2 79	2 74	2 70	$\bar{2}$ 65	2.62	$\tilde{2}$ 60	$\tilde{2}$ 58	2.57	1 03	2.80	2.64	2.85	1.07
6.5	I.33	1 31					1 01	2 97	$\tilde{2}$ 92	2.88	$\tilde{2}$ 85	$\bar{2}$ 83	$\bar{2}$ 80	$\bar{2}.79$	1.26	ī 03	2.86	1.08	1.31
7.0	T.56	1 53				1 29	Î 21	1 19	1 15	Ĩ.10	ĭ 07	1 05	$\tilde{1}$ 02	ī 01	1.48	1.25	Ï.09	1.30	Ī 54
7.5	1.78	1 76	1 70	1 64	1 57	1 52	1 46	1 41	ĩ 37	ī 32	1 29	ĩ 27	$\bar{1}$ 24	ī 23	ï.70	1.47	Ϊ.31	Ĭ.52	Ī 77
8.0	0 00	I.98	1 92	T 86	1 79			1 64	1 59	Ĩ 54	Ĩ 51	1.48	1 46	Ĩ 44	ī 92	ī 69	1.53	Ĩ.74	0.00
8.5	0.23	0 20	0 14	0 08	0 01	T 95	Ĩ 90	1 85	1.81	ī 76		1 69	1 67	Ĩ 65	0.14	1.91	1.74	1.96	0 23
9.0	0 45	0.42	0 36	0 29	0 22	0 17	0 12	0 07	0 03	1 98	1 94	ī 90	$\bar{1}.88$	1 86	0 36	0.13	1.96	0 18	0.45
9.5	0.67	0 64	0 57	0.50	0 44	0.38	0 33	0.28	0 24	0 19	0 15	0 11	0.08	0.06	0.58	0.34	0 16	0 39	0 68
10.0	0 89	0.85	0.79	0.72	0 65	0 59	0.54	0.50	0.45	0.40	0.35	0 30	0.28	0 26	0 79	0 55	0.37	0 60	0.90
10.5	1 10	1.07	1.00	0 93	0.86	0 80	0.75	0.70	0.66	0 60	0 55	0.50	0 47	0.45	1.00	0.76	0.57	0.81	1.11
11.0	1.32	1.28	1 21	1.14	1 06	1 01	0.96	0 91	0.86	0.80	0 74	0 69	0 65	0.64	1.22	0 96	0.76	1.02	1.32
11:5	1.53	1 49	1 42	1.34	1 27	1 21	1 16	1 11	1 06	0 99	0 92	0.87	0.84	0.82	1.43	1.17	0.95	1.22	1.53
12.0	1.74	1.70	1 63	1 54	1 47	1 41	1 36	1 30	1 25	1.18	1 11	1 05	1 01	1.00	1.63	1.36	1.14	1 42	1.74
12.5	1 96	1 91	1 83	1 75		1 61	1 55	1 49	1 41	1 36	1.28	1.23	1 18	1.17	1.84	1.56	1.32	1.62	1.94
13.0	2.16	2.12				1.80	1 74	1 68	1 62	1.54	1 46	1 39	1 35	1.33	2 04	1.75	1.50	1.82	2.14
13.5	2.37					1 99						1 56		1 49	2.24	1 93	1 67	2 01	2 34
14.0	2.57				2 24	2 17			1 97			1.72	1 67	1 65	2.44	2.11	1.83	2.20	2.52
14.5	2.77	2.72		2 52								1 87	1.82	1.80	2 63	2 29	1.99	2.38	2.71
15 .0	2.96	2 91		2 71	2 60				2 30			2 01	1.96	1 94	2.82	2.45	2.14	2.56	2.89
15.5	3.15	3: 10		2 89		2 68			2.45			2 15		l .	Į.	2 62	2.29	2.73	3.07
16 .0	3.33	3.28		3 07	2 94	2 81			2 60			2 29		2 21	3.19	2 77	2.43	2.90	3.24
16.5	3.51	3.46		3.24	3.10				2 74	2 61		2 42	2.36	1	1	2 92	2.56	3.07	3.40
17.0	3.68	3.64		3 41	3 26	3 14			2 87		2 63	2 54	1	2.46	1	3.07	2.69	3.23	3.56
17.5	3.85	3.81		3.57	3 41				3 00			2 66				3 20	2 81	3.39	3.71
18.0	4.01	3.97	- (3 73					3 12	2 98		2.77				3.34	2.93	3.54	3.86
18.5	4.16	4.12	4.03	3 88	3 70	1		1	$3 \ 23$			2 88			1	3.46	3 04	3.68	4.00
19.0	4 32	4.28	4.18	4.02		1		- 1		3 19		2 98				3.59	3.14	3.82	4.13
19 5	4.46	4.42	4.32	4.16				3 53		3 29		3.07		i	i	3.70	3.24	3.96	4.26
20.0	4.60	4 56	4.46	4 29	4 00				3 53	3 38		3.16		1	1	3 81	3.33	4.09	4.38
20.5	4.74	4.69	4 59	4.42	4 21		3 85		3 62			3 25		1	1	3.91	3.42	4.21	
21.0	4.87	4.82	4.72	4 54	4 33	4 11	3 94	3 81	3 70	3 54	3 42	3.33	3.26	3 22	4 71	4.01	3.50	4.33	

Distribution of Intrinsic Brightness.—The range in intrinsic brightness among stars is enormous—at least twenty magnitudes, corresponding to an intensity ratio of 100 000 000 to 1. A knowledge of the frequencies of different luminosities among the stars in a given volume of space is essential (unless questionable assumptions are to be introduced) for the calculation of the space distribution of the stars. It is, however, difficult to obtain, and,

at present, the frequencies are but imperfectly known. By assuming that the mean parallaxes of stars of apparent magnitude m and proper motion μ can be represented by a linear function of m and $\log \mu$ supposed to be valid for all magnitudes and proper motions, Kapteyn and van Rhijn derived for the distribution of the absolute magnitudes a Gaussian error curve whose ordinates are given in the second column of Table 2. Seares (4) has shown

that their adopted mean parallax formula does not represent the distances of the stars of large motion and faint apparent magnitude, all of which are of low luminosity. A revision of the parallax formula, still only provisionally determined, and a recalculation of the luminosity function from about 500 stars of large proper motion leads to the frequencies in the third column of Table 2

TABLE 2.—APPROXIMATE LUMINOSITY FUNCTION

 $\phi(M)$ = number of stars, absolute magnitude M, per cubic parsec in the neighborhood of the sun. Unit of distance for M is 10 parsecs. 1 parsec = 3.26 light years = $30.8 \times 10^{12} \text{km}$.

	10 + Log	g10 φ(M)	
M	Kapteyn v. Rhijn (3)	Seares (4)	Diff.
-4.64	2.61		1
-3.64	3.42		
-2.64	4.17		
-1.64	4.85		
-0.64	5.46	5 58	0 12
+0.36	6.00	6.16	0.16
1.36	6 47	6.66	0.19
2.36	6.88	7.05	0 17
3.36	7.21	7.34	0.13
4.36	7.47	7.58	0 11
5.36	7.67	7.74	0 07
6.36	7.80	7.84	0 04
7.36	7.85	7.87	0 02
8.36	7.84	7.86	0 02
9.36	7.76	7.88	0.12
10.36	7.61	7.92	0 31
11.36	7.39	8.06	0 67
12 36	7.10	8.11	1 01
13 36	6.75	8.11	1 36
14.36	6 3	8 13	1.8

For the stars of low luminosity, the departure of Scares' curve from the error curve, shown by the differences in the fourth column, is important and must be accepted as real, although quantitatively the results are still very uncertain. The possibility of a maximum within the range of absolute magnitude considered is not excluded, but any such maximum must be well below the Kapteyn-van Rhijn limit, M=7.7. Since the frequencies of stars of very low luminosity are still unknown, it is impossible at present to express the luminosity function as a true frequency function.

Space Distribution of Stars.—The space distribution is defined by a density function, preferably in a form expressing the total number of stars per unit volume at different distances from the sun. At present, however, we must be content with so expressing the number of stars which are brighter than some limit of absolute magnitude.

Analytically, the problem is to determine the density function,

$$\Delta(\rho)$$
, from the integral equation
$$\frac{\mathrm{d}N_m}{\mathrm{d}m} = \omega \int_0^\infty \phi(M)\Delta(\rho)\rho^2\mathrm{d}\rho$$

where the left hand member can be found from the data in Table 1; ω is a constant, ρ = distance from sun. Since $\phi(M)$, for M>8, is still very uncertain, the general solution cannot be found at present. Values of the density for the neighborhood of the sun (Table 3) can, however, be calculated incidentally in deriving the data in Table 2. Results in the second column of Table 3 (M=7.86) are in good agreement with similar results by Kapteyn and van Rhijn; the other tabular values indicate what is to be expected for lower limiting values of M. The uncertainty of the luminosity function for M>8 scarcely justifies the effort required to complete the table.

Table 3.—Average Number of Stars, Brighter than Absolute
Magnitude M, per Cubic Parsec at Distance p from Sun (4)

Unit of ρ is 1 parsec; of distance for M, 10 parsecs. 1 parsec = 3.26 light years = 30.8 \times 10¹⁴ km.

	- 00		- H. 1111.					
Log 100	7.86	8 86	9 86	10.86	11.86	12 86	13.86	14.86
0.9	0 028	0 035	0.042	0.050	0.060	0.073	0.087	0.098
1 1	.026	033	.040	.048	.058	.069	.078	
1 3	.024	030	035	.041		1		
1.5	.023	.028	033					
1 7	.022	l	1	ĺ	1	ĺ	ĺ	
1.9	.020					1		
2 1	.017			1				
2 3	014		l	ĺ	1		!	
2.5	.011			l	1			
2 7	.008							
2 9	004					İ		

(Values based upon $\phi(M)$ for stars near the sun, and on the assumption that the relative frequencies of M are the same at all distances.)

Average densities for the whole sky give a very imperfect picture of the real distribution in space, as the latter varies greatly with galactic latitude. Broadly speaking, the surfaces of equal space density are concentric, and approximately similar, ellipsoids of revolution, similarly situated, with axes in the ratio of about 5 to 1. See Table 4.

TABLE 4.-RADII OF EQUIDENSITY ELLIPSOIDS(6)

 $\Delta(\rho)$ = number of stars per cubic parsec at distance ρ from sun. (Values require revision for recent star counts (Table 1) and for error in luminosity function (cf. Table 2)).

Unit of radius = 1 parsec. 1 parsec = 3.26 light years = 30.8 × 10¹² km. Latitude is galactic.

4/)	Latit	ude
$\Delta(ho)$	90°	0°
1.00	0 1	0
0.63	118	602
0.40	198	1010 `
0 25	296	1510
0 16	413	2106
0 100	553	2820
0 063	717	3656
0 040	902	4600

Size of the Galactic System.—At present we have no certain indication as to the distance of the most remote stars belonging to the galactic system; but if ordinary blue stars of absolute magnitude zero occur among the faintest objects listed in Table 1, the diameter of the system cannot be less than a million light years. Such objects are not to be expected in high galactic latitudes, where the stars of very faint apparent magnitude are almost certainly all dwarfs; but their occurrence in the Milky Way is by no means excluded. We have, indeed, strong, though not conclusive, evidence of the existence in the Milky Way of stars of zero absolute magnitude among those of the sixteenth apparent magnitude. The corresponding diameter of the system is a hundred thousand light years. This value may be accepted with some assurance as a lower limit for the size of the system in the plane of the Milky Way, exclusive of such objects as globular star clusters and spiral nebulae, whose relation to the general stellar system about us is not yet clearly defined.

Position of the Sun.—The symmetrical distribution of stars adopted in Table 1 tacitly assumes the sun to be at the center of the system. This is not actually the case, as is shown by systematic deviations from the adopted mean distribution. Shapley's (*)

value for the distance of the sun from the galactic plane is about 60 parsecs, to the north, which is certainly of the right order of magnitude. The sun's distance from the center is much less certain, and different estimates range from a few hundred to many thousand parsecs, according to the underlying assumptions and the method of attack. The question is much complicated by the fact that the sun lies within a local cluster whose members form a considerable fraction of the stars of the brighter apparent

magnitudes, and a final answer must await the detailed discussion of the distribution of faint stars in galactic longitude.

LITERATURE

(For a key to the periodicals see end of volume)

(1) Scarce and van Rhijn, 197, 11: 358; 25; a more detailed account appears in £1, 62: 320; 25. (3) Trans. Internat. Astronomical Union, 1: 69; 22. (Standard magnitudes of stars.) (3) Kapteyn and van Rhijn, £1, 52: 23; 20 (4) Scarce, £1, 59: 310; 24. (5) Shapley, £1, 49: 333, 19. (6) Kapteyn, £1, 53: 302, 22.

DISTRIBUTION OF NEBULAE

FREDERICK H. SEARES

The term nebula is applied to objects of such diversity of form, size, distance, and physical characteristics that any study of their distribution presupposes a consideration of the question of classification. The following general classification by Hubble provides for two mutually exclusive divisions, characterized by position in the sky as well as by physical peculiarities, and five sub-classes representing physical differences.

A GENERAL CLASSIFICATION OF NEBULAE

- I. Galactic nebulae, characterized by (1) tendency to concentrate about the Milky Way, (2) conspicuous association with individual stars from which they probably derive their luminosity, (3) early-type spectra, either emission or absorption, depending upon the spectral type of the associated stars, and (4) smooth and cloudy or wispy texture. They include
 - (a) Planetaries, distinguished by symmetrical distribution of nebulosity about central stars, sharply defined edges, and emission spectra.
 - (b) Diffuse nebulae, clouds in low galactic latitudes, usually associated with early-type stars. This type ranges from luminous to dark and from semi-transparent to opaque. Subdivided into predominantly luminous, predominantly obscure, and conspicuously mixed.
- II. Non-galactic nebulae, characterized by (1) tendency to avoid the Milky Way, (2) no conspicuous association with stars, (3) late-type absorption spectra, and (4) usually a rotational symmetry about dominating non-stellar nuclei. They include
 - (a) Elliptical nebulae, amorphous objects whose forms can be represented as successive stages of an original globular mass flattening under the influence of increasing totation
 - (b) Spirals of two kinds, logarithmic and barred, which, once formed, appear to develop along parallel lines, the arms unwinding and the granulation of the material becoming more and more conspicuous.
 - (c) Irregular nebulae, including a few non-galactic objects having no dominating nuclei and, significantly, showing no rotational symmetry.

Physically, the planetaries and diffuse nebulae, Ia and Ib, are distinct and apparently without genetic relationship, except that the planetaries, which, in some cases at least, seem to be late stages in the development of novae, may represent the catastrophic consequences of the penetration of a star within a nebulous cloud of the diffuse sub-class. The spirals IIb, on the other hand, are apparently an evolutionary development from elliptical nebulae, IIa, although it does not follow that all elliptical nebulae will necessarily become spirals. The few irregular nebulae, IIc, present features that might be expected in the case of spirals in the absence of or through the neutralization of dominating dynamical characteristics.

The distribution of the various classes of nebulae is not in general easily shown in tabular form. The following summary for each of the important sub-classes includes, however, references to diagrams which exhibit the main features of the distribution.

Ia. Planetary Nebulae.—In the whole sky only about 150 of these objects are known, many of which are so small as to be recognizable only from their gaseous emission spectra. The smallest objects are closely associated with the Milky Way, and show a marked concentration in the Aquila-Sagittarius region. With increasing size the mean galactic latitude increases, and the largest known objects, to the extent of a dozen or so, are scattered over the sky with some approach to uniformity (3, 6, 11). This suggests that the linear distances of planetaries from the galactic plane are relatively small and that their angular diameters are correlated with their distances from the sun. Very small nebulae thus appear in low galactic latitudes because their distances from the sun are many times their distances from the galactic plane.

The actual distances of planetary nebulae are still very uncertain. Van Maanen (18) has measured the parallaxes of about 20 of these objects and finds distances ranging from 50 to a few hundred parsecs; but, as he points out, these values are in conflict with the fact that the radial velocities average about 30 km/sec, while the proper motions are apparently small, of the order of the parallaxes themselves.

Ib. Diffuse Nebulae.—The distant star clouds of the Milky Way define the galactic circle. A secondary galaxy, inclined some 12° to the galactic circle proper, is outlined by the bright belium stars of the much-flattened local cluster immediately surrounding the sun, most of whose members are within 500 parsecs (14). The diffuse nebulae outside the Magellanic Clouds, some hundreds in all,1 are closely associated with the primary and secondary galactic circles (7). Since the mean galactic latitude of those following the primary galaxy is only about 2°, and since the space within the two circles is not well filled, the inference is that these nebulae are directly connected either with the Milky Way star clouds or with the local cluster, and that few are to be found in the intervening regions. We thus have a group of diffuse nebulae whose members are within a few hundred parsecs of the sun; the others, forming a widely scattered group associated with the Milky Way, are at distances probably to be counted in thousands of parsecs (10). Both groups include both luminous and dark nebulae: the luminous members of the two groups present somewhat different physical characteristics, most marked in their spectra, which may be either emission, or predominantly continuous or absorption in type. The continuous and absorption spectra occur mostly among the nearer objects connected with the local cluster. The luminous diffuse nebulae are conspicuously associated with stars of high temperature from which they derive their luminosity, either by excitation or reflection.

II. Non-galactic Nebulae.—The members of this class, consisting chiefly of the related sub-classes, elliptical nebulae (IIa) and spirals (IIb), are far more numerous than the galactic nebulae. On the whole, the elliptical nebulae out number the spirals many times; but if only bright objects are considered, the spirals are the more numerous. The distribution in galactic latitude is shown in

¹ Less than 200 luminous ones known; no complete list published (p. ⁷, ⁸). Most complete list of dark nebulae (182 small objects) is given by Barnard (*).

Table 1, which gives to limiting magnitude 18.6 on the international photographic scale the average number per square degree at various latitudes in each hemisphere. The data are compiled from Fath's list (4), based on Mount Wilson photographs (exposure time 1 hour with 60-inch reflector) of the 139 Selected Areas between the North Pole and declination —15°. That part of the northern galactic hemisphere within which nebulae are frequent is wholly covered. About one-half the southern hemisphere is included, but not the south pole itself. Fath's counts have been corrected for losses caused by poor definition in the corners of the negatives (13).

Table 1.—Non-galactic Nebulae: Number per Square Degree(4)

Average number; international photographic magnitude $\angle 186$; cf. Table 2.

(1.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Hemisphere				
Galactic latitude -	N	S			
5°	0 2	0.0			
15	0.8	0.4			
25	2 5	5 4			
35	13 2	8 2			
45	10 3	5 8			
55	12 2	7.0			
65	22 2	11 9			
74	31				
83	(68)	ļ			

Fath's list includes all classes of nebulae, but the galactic nebulae are relatively so infrequent that it is practically one of non-galactic nebulae alone. These objects begin to appear at about 20° latitude and increase rapidly in the interval 20° to 35°. From 40° to 70° the numbers increase slowly. The concentration near the north galactic pole is very pronounced. Below latitude 70° the numbers in the southern hemisphere average about three-fourths those of the northern. The assumption of a similar ratio for the regions 70° to 90° leads to integrated totals of 170 000 and 128 000 for the northern and southern hemispheres, a round total of 300 000 for the whole sky (limiting phot, mag, for stars 18 6).

The summary in Table 2 emphasizes the dependence of the distribution on galactic latitude. The uncertainty in the average number per square degree in the region 70°-90° is considerable, and since the number of nebulae in this region is large (29% or 50 000 in the northern hemisphere), the total given for the whole sky is in doubt by many thousand. Curtis (2) has estimated the total (to an undetermined limiting magnitude) to be over 700 000. The difference in the estimates may arise from a difference in magnitude limits or from the fact that the fields counted by Curtis are not certainly representative of the sky as a whole

TABLE 2.- DISTRIBUTION OF NON-GALACTIC NEBULAR

Lat. = interval in galactic latitude. Sky = % area of sky. Neb. = % number of nebulae. N = northern, S = southern hemisphere.

Lat.	Sky	N Ne	b. 8
030°	50	7	15
30 70	44	64	56
70 90	6	29	29

The distribution of non-galactic nebulae is not, however, simply one of galactic latitude. Data collected by Hardeastle and Hinks (5) and by Reynolds (12) show marked irregularities in longitude, which seem to depend on the angular diameters of the nebulae. Thus objects with diameters > 10' are almost all in the hemisphere including galactic longitudes 50" to 230". For diameters 5' to 10' the northern galactic hemisphere shows high frequencies in longitude 110" and 260" 270", which become even more marked for diameters 2' to 5'. For still smaller nebulae, the distribution is again different. Fath's counts, including mostly very small and faint nebulae, show a band of high frequency crossing the northern galactic hemisphere approximately in longitudes 50° and 220", with other irregularities suggesting a very complicated distribution

Nothing is known directly of the distances of elliptical nebulae, but their relationship with the spirals is so intimate that the distances of the two sub-classes must be regarded as of the same order. Van Maanen's measures (16) of internal motion in spirals suggest distances of the order of 3000 to 30 000 light years. The application of Shapley's period-luminosity relation by Hubble (9) to numerous typical Cepheid variables discovered by him in the spirals Messier 31 (the Andromeda nebula) and Messier 33 leads to distances of about a million light years for these two objects. The applicability of the period-luminosity relation is assumed, but several lines of corroborative evidence strongly support the larger value of the distance. It is probable, however, that the zero point of the period-luminosity relation requires revision by an amount which would reduce these distances by about 40%.

LITERATURE

(For a key to the periodicals see end of volume)

- Barnard, 21, 49: 1, 19 (also consult index of other volumes).
 Curtis, Publ. Lat. Obs. 13: 15; 18. (2) Curtis, Had. 13: 60, 18. (4) Fath, Astronom. Jour. 38: 75, 14. (4) Hardenstle and Hinks, Monthly Notices, R. A. 74: 699, 14. (5) Hinks, Had. 71. 694; 11. (7) Hubble, 21, 56: 162; 22. (8) Hubble, 21, 56: 400, 22. (9) Hubble, Pop. Astronomy. 33: 252; 25. Observative, 48: 130, 25.
- (1º) Landmark, Publ. Astron. Soc. Pacific, 34: 40; 22. (11) Perrine, 21, 46: 177, 17 (1²) Reynolds, Monthly Notices, R. A. S. 31: 129, 20. 43: 147; 23. 84: 76, 23. (1³) Searce, 21, 63: 108, 25. (1⁴) Shapley, 21, 49: 311; 19. (1⁵) van Mannen, Mt. Wilson Contribs. Nos. 237 (1922), 270 (1923), 280 (1925). (1⁴) van Mannen, 21, 37: 274; 23.

MOTIONS OF THE STARS AND NEBULAE

GUSTAF STROMBERG

The proper motion of a star is defined as the angular motion, per year, referred to a certain fundamental system of apparently bright stars distributed uniformly over the sky. The radial motion is determined by the Doppler shift for spectral lines of known wave-length. If the distance to a star is known, the three velocity-components of its space-velocity can be determined. Proper motions and radial velocities are in general referred to the sun as origin, by correction for the periodic changes due to the earth's motion. The proper motions are in general very small; for the majority of the stars they are below 0.1" per year. The largest proper motion is that of Barnard's star R. A. 17h

53 0^m, Dec. + 4° 28′, (1900 0), which moves 10.27″ per year. The radial velocities are mostly below 40 km/sec, the largest being that of the variable star V X Herculis, which approaches the sun with a velocity of 390 km/sec. The spiral nebulae have even higher velocities, the highest being 1800 km/sec, recession, (N. G. C. 584).

SOLAR MOTION

The sun's motion relative to the stars can be determined either from proper motions, from radial velocities, or from space-velocities. The point in the sky towards which the sun is moving is called the sun's apex.

TABLE 1.—SOLAR APEX AND THE SUN'S VELOCITY (Referred to apparently bright stars. Unit velocity, km/sec)

R. A. 190		1900 Dec. Velo- 1900 city		Method	No. of stars	Lit.
18h	03 m	+34.3°		Proper Motions P. G. C.*	5413	(2)
18	11	+31.6		Proper Motions m < 6.0†	4041	(5)
17	56	+32.3		Proper Motions P. G. C.	5943	(8)
17	54	+25.3	19.5	Rad. Vel. Lick Obs.	1193	(3)
18	2	+28 6	19.8	Rad. Vel. B to M	1596	(6)
18	4	+29.2	21.5	Rad. Vel. F to M	1405	(9)
18	11	+36.9	18.8	Space Vel. Giants	800	(10)
18	43	+29.5	31 7	Space Vel. Dwarfs	415	(10)
18	40	+32	29	Space Vel. of nearby stars	83	(7)

^{*} Preliminary General Catalogue by L. Boss, Washington, 1910

Although the agreement between the different determinations is fairly good, a detailed study shows that the sun's motion can not be regarded as a constant vector. The A stars and giant stars in general give a small velocity for the sun; and dwarf stars, a much higher velocity.

AVERAGE PECULIAR MOTIONS OF THE STARS

After the effect of the sun's motion has been removed, the residual or "peculiar" velocities show certain regularities. The average peculiar velocities are different for stars of different spectral types, and vary also with the intrinsic brightness of the stars.

Table 2.—Average Residual Radial Velocities (θ) of Stars of Different Spectral Classes (Sp) and Absolute Magnitides (M)

Uni	it e)f	θ	we .	1	km.	/нес

Sp	M·	θ	Lit.	Sp	M·	θ	Lit.
O5 to O9	-3	20 7	(11)	K	+1	18 4	(1)
В	-1	6.5	(3)	К	+6	27 0	(1)
A	+1	11 0	(11)	M	+1	21.6	(1)
, F	+2	15.8	(1)	M	+9	29.6	(11)
Ğ	+1	18 0	(1)	Met	0	40 1	(11)
G	+5	26 3	(1)	P;		28 6	(11)

^{*} The apparent magnitude as observed from a distance of 10 parsecs † Contains M stars with bright hydrogen-lines, all are variable stars of long

PREFERENTIAL MOTION

The peculiar velocities of the stars are not distributed at random. In general the stars show a tendency to move parallel to the galactic plane. To describe the distribution of the peculiar velocities, a distribution-function is adopted, which gives the relative numbers of stars moving in different directions and with different velocities. The simplest distribution-function is the spherical distribution-law,

$$F(xyz) = \frac{N}{(2\pi)^{\frac{3}{4}}\sigma^3} e^{-\frac{z^2 + y^2 + z^2}{2\sigma^2}}$$

where x, y, and z are the velocity-components referred to the "centroid" of the group. N is the number of stars in the group, and σ is the dispersion or the square-root of the mean of the squares of the velocity-components. The number of stars of velocity-components between $x \pm \frac{1/2}{2} dx$, $y \pm \frac{1}{2} 2 dy$, $z \pm \frac{1}{2} dz$ is then given by $F(xyz) \, dx dy dz$. In a spherical distribution, the frequency of a velocity is independent of its direction and only dependent upon its size. Spherical velocity-distributions occur for several classes of stars, but in general the distribution in

velocity-space is either flattened (B stars) or elongated (A, F, and dwarf stars). Two functions have been used to describe the elongated distribution. Kapteyn and Eddington have used a sum of two spherical functions and have regarded the stars as belonging to two intermingled systems, "two stream hypothesis." Schwarzschild has introduced the ellipsoidal distribution defined by the distribution-function

$$F(xyz) = \frac{N}{(2\pi)^{\frac{1}{2}}abc} e^{-\frac{x^2}{2a^2} + \frac{y^2}{2b^2} + \frac{z^2}{2c^2}}$$

with three principal dispersions a, b, and c, which define the three axes of the "velocity-ellipsoid." The velocity-components x, y, and z are here projected on the principal axes of this ellipsoid. The major axis of the velocity-ellipsoid corresponds to the line joining the two centers in the two stream theory. The direction of this fundamental axis, which is common in the two theories, is about R. A. $6^{\rm h}$ $6^{\rm m}$, Dec. $+9^{\circ}$, (true vertex). The dwarf stars give a somewhat higher declination for the true vertex.

In the analysis of proper motions, the two stream theory gives two vertices, which correspond to the directions of motion of the two streams relative to the sun. The coordinates of these vertices are R. A. 6^h 14^m, Dec. -13° (first stream) and R. A. 19^h 16^m, Dec. -60° (second stream).

Analyzing stellar motions on the basis of the two stream theory, we find a number of stars which cannot be regarded as belonging to either of the two streams. The B stars and stars of spectral class M, for instance, have a group-motion intermediate between the two streams. For this reason Halm has introduced a third stream (0 stream). But these streams taken together can be fairly well represented by an ellipsoidal distribution using a smaller number of parameters.

Charlier (4) has introduced a generalization of the ellipsoidal theory which makes it possible to take into account deviations from a strictly ellipsoidal distribution, but it is only when these deviations are small that this generalization is practicable.

MOVING CLUSTERS OR GROUPS

Several stars move nearly parallel to one another, the best known example being 5 of the 7 bright stars in the constellation Ursa Major. Another moving group or cluster is the Hyades in the constellation Taurus (Taurus Group). The proper motions of the stars belonging to such a group converge towards a point in the sky, the "convergent point," whose position in the sky gives the direction of motion of the group relative to the sun. The convergent point for 17 stars belonging to the Ursa Major Group is R. A. 20h 30m, Dec. -40° ; for the Taurus Group (39 stars) R. A. $6^{\rm h}$ $7^{\rm m}$, Dec. $+7^\circ$. A number of other moving groups are known.

THE GENERAL DISTRIBUTION OF COSMIC VELOCITIES

When the sun's motion is referred to different clases of objects it has been found that this motion is not a constant vector but varies greatly, from about 12 km/sec for the A stars and the Cepheids of long period up to 300 km/sec for the fast moving objects, the globular clusters and the spiral nebulae. A general relationship between group-motion and dispersion exists, which, according to Strömberg (11), holds for all classes of objects, but with a small deviation for the B star system. This variation in groupmotion produces an asymmetry in the velocity distribution, in such a way that all fast moving objects move, relative to the sun, towards the same hemisphere. This asymmetry defines an axis along which the group-motion increases with increasing internal velocity-dispersion. The direction of this axis is R. A. 8h 39m, Dec. -57° , and the motion of objects with small velocity-dispersion relative to those of high velocity-dispersion is about 300 km/sec in the opposite direction. The group-motion of objects

f Stars brighter than the fith magnitude (apparent).

period.

2 Bright-line nebulae.

with high velocity-dispersion is approximately the same as that of the globular clusters and spiral nebulae

The general distribution of cosmic velocities can be approvimately represented by a product of two symmetrical distributions S, and S. The first of these is a sum of concentric and co-axial ellipsoidal distributions, the velocity of the sun relative to the center of the distribution S₁ being 14.8 km/sec in the direction R. A. 17^h 43^m, Dec. +22°. The sun's motion relative to the second distribution, S₂, is 300 km/sec in the direction R. A. 20th 28^m. Dec. +56°. The first distribution can be regarded as the velocity-distribution in our local system of stars, the second as a velocity-restriction in a universal world-frame of enormous dimensions. Other interpretations, however, may be possible.

LITERATURE

(For a key to the periodicals see end of volume)

 Adama, Strömberg and Joy, \$1, \$4: 9; 21.
 Bosa, \$20, \$8: 111; 10.
 Campbell, Leck Obs. Bull. No. 196; 11.
 Charlier, Lund Observatorium, Mediclanden, II: No. 13; 15.
 Charlier and Wioksell, Ibid., II: No. 12; 15.
 Li No. 12; 15.
 Li No. 13; 15.
 Li No. 13; 15.
 Li No. 13; 15.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 16.
 Li No. 13; 17.
 (*) Strömberg, 21, 45; 7, 18, (*) Strömberg, 21, 56; 265; 22 (*) Strömberg, 21, 56; 265; 22 (*) Strömberg, 21, 61; 363; 25,

TIME

CHRONOLOGICAL ERAS Gregorian Calcudan

Era	Year	Begins, 1925 A. D		
Byzantine¶	7434	September 14		
Diocletian¶	1642	September 11		
Grecian*¶	2237	September 14 October 14		
Hegira	1344‡	July 21		
Japanese	2585†	January 1		
Jewish	5686‡	September 18		
Julian calendar	1925	January 14		
Julian period	6638§	January 14		
Mohammedan	13441	July 21		
Nabonassar¶	2674	May 12		
Rome¶	2678	January 14		
Seleucidae¶	2237	(See Grecian)		

^{*} In present-day usage of Syrians, begins in September or October depending upon the sect. In ancient usage of Damaseus and Arabia Petraca, began with vernal equinox.

- † The 14th year of period Taisho
- I Begins at sunset.
- § Julian day number of January 1, 1925 (Gregorian) is 2 424 152
- Since foundation of Rome, according to Varro
- ¶ Based upon Julian calendar.

TIME

Interval .	Days*		
Year:			
Tropical†	365 2422		
Sidereal	365 2564		
Anomalistic	365 2596		
Month:			
Synodical†	29 530 59		
Tropical	27 321 58		
Sidereal	27 321 66		
Day:			
Sidereal	0 997 2696		

^{*} Mean solar days

† Ordinary

EQUATION OF TIME* $(\Delta = mean - apparent)$ Unit of Δ is minute. Time is Greenwich mean noon

Unit	or 7 is min	iute. 11me	e is Greenw	ich mean n	oon
Date	Δ	Date	Δ	Date	Δ
I 1	+ 3 4	V 11	-38	IX 18	- 5.6
6	5.8	16	-38	23	- 7.8
11	7.8	21	37	28	- 9.0
16	9 7	26	-3.3	X 3	-10.7
21	11 3	31	-26	8	-12.2
26	12 6	VI 5	-1.8	13	-13.5
31	13 6	10	-10	18	-14.6
II 5	14 1	15	0.0	23	-15.5
10	14 4	20	+1.1	28	-16.1
15	14 3	25	2.2	XI 2	-16.3
20	14 0	30	3.2	7	-16.3
25	13 3	VII 5	4.2	12	-15.9
III = 2	12 4	10	5.0	17	-15.1
7	11.4	15	5.6	22	-14.0
12	10 0	20	6.1	27	-12.5
17	87	25	6.3	XII 2	-10.7
22	7 2	30	6.3	7	- 8.8
27	5.7	VIII 4	6.0	12	- 6.5
IV 1	42	9	5.4	17	- 4.1
6	2.7	14	4.7	22	- 1.6
11	12	19	3.7	27	+ 0.9
16	+00	24	2.5	31	+ 2.8
21	- 12	29	+11		
26	- 22	1X 3	-04		
V 1	- 29	8	-2.1		
6	- 3 4	13	-3.8		

^{*}A is the amount by which mean time exceeds apparent time when it is noon at Greenwich, it is the excess of the right sacension of the actual sun over that of the mean aun at that matant. It varies continuously with the time, and does not exactly repeat its values in successive years; those given are average values for Greenwich mean noon of an ordinary year, and will seldom differ from the actual values for that time by as much as 0.2 min., except in January and December, when the difference may amount to 0.3 min. In leap years, all dates in the table after February must be reduced by one day.

SOLAR SYSTEM

ORBITAL DATA: SOLAR SYSTEM (1925)

Units: Distance, 10° km; period, tropical year

# N		Distance* Eccentricity		Mean lo	Sidereal	
Planet	Distance*			Node‡	Perihelion	period
Mercury	57 9	0 2056	7" 0' 12.0"	47° 26′ 32 1″	76° 17′ 18.9′′	0.24085
♥ Venus .	108-1	0 0068	3 23 38 0	76 0 16 7	130 30 56.8	0.61521
Earth .	149 5	0 01674			101 39 2 3	1.00004
o Mars	227 8	0 0933	1 51 0 6	48 58 45.0	334 40 42.2	1 88089
4 Jupiter	778	0 0484	1 18 26 4	99 41 26 3	13 6 51.4	11 862
2 Saturn	1426	0.0558	2 29 28 7	113 0 5 7	91 34 42.0	29.458
ð Uranus.	2869	0 0471	0 46 22 1	73 36 57 7	169 26 56.8	84.015
Ψ Neptune	4 196	0.00855	1 46 36 7	130 57 13 3	43 58 27.9	164 788

- * Mean distance
- † Angle between plane of orbit and plane of ecliptic
- I Ascending node

CHARACTERISTICS OF MEMBERS OF SOLAR SYSTEM

Units: Linear diameter, 1000 km; density, g/cm3; time, mean solar

Name	Dia	meter	Mass $\dagger \times 10^6$	Density	Sidereal	Number
Name	Linear	Angular*	Mass sun	Density	rotation	satellites
Mercury	4.84	10 90"	0 1670	5 6	***************************************	0
Venus	12 19	1' 0 80	2.451	5 1		0
Earth	12 76\$		3 0361	5 52	23 hr 56,07 min	i
Mars	6.78	17.88	0 3233	3 9	24 37 4	0
Jupiter	112 78	46 868	951-8	1.4	9 8 hr	7
Saturn	120 84	19 528	285 6	0.7	10 2 hr	9
Uranus	49.7	3 76	43 7	13+		4
Neptune	53 0	2 52	50-8	1.3		li
Sun	1391	31 59 26	1 001 341	1.4	25 3 da	1 *
Moon	3 48	31 5 16¶	0 037**	3.3	27.32 da	

* At distance - difference mean distance sun to object and mean distance sun to Earth, nearly at distance of nearest approach to Earth,

Hyr

- *At distance directoric mean distance sum to impere and mean distance and in mass of any tenders astellite (or planetary) system, if any tender and tender and tender tender and tender a
- At mean distance of Earth, gravitational acceleration due to Sun is k2 = 2.9592 < 10°4 (mean distance) per day2 = 0.5926 cm per sec2. For solar spectrum etc., sec index
- ¶ At mean distance from Earth Apparent diameter varies, with distance, from 29.5' to 33.5'

 ** Moon alone. | Mass Moon = 0.01227 mass Earth |

PODA PAIN	
Inclination of equator to ecliptic, about	7"
Longitude of ascending node of equator	74.5
Period of rotation, about	28 da*
Sun spot period, about	11 \r

Saran Dimi

TERRESTRIAL AND LUNAR DATA!

General precession (retro-

grade) ... -50/2564'' + 0/000222''(t - 1900) per yr Obliquity of the ecliptic . 23° 27′ 8 26″ - 0 4684 ′(t - 1900)

Constant of notation. Constant of aberration Solar parallax	9 21" 20 47" 8 80"
From parallax measurements	8.806"
From velocity of light	8 781
From mass of Earth.	8.762
From motion of Moon	8 773
Equatorial horizontal parallax of	Moon* 57' 2 70" (Brown)
Mean distance Earth to Moon	384 403 km
Inclination of Moon's equator to	ecliptic 1° 32 1"
Inclination of Moon's orbit to ecl	liptic, about 5°
Eccentricity of Moon's orbit (ave	erage) 0 055
Revolution of Moon's nodes (retr	rograde) . 18.6 yr

* Mean of greatest and least values; actual values vary from 53' to 61' ca.

^{*} From observations of sun spots near latitude 45°, spots near equator rotate in about 24 da; those near lat 80°, in 30 da

[†] For geodetic and geophysical data, see p. 393.

COMPOSITION OF THE ATMOSPHERE

W. J. HUMPHREYS

TABLE 1.—Composition of Dry Air at Sea-Level (4, 5) v = v volume of the gas in volume V of dry air

		-				•			
Gas	 N,	0,	A	CO ₂	H,*	Ne	He	Kr	Xe
1040/V.	 7803	2099	94	3	1	0 123	0 04	0 005	0 0008

[•] Values found by analysis vary; the one here given is that accepted by Hann and the Recueil de Constantes Physiques.

Table 2.—Composition of Atmosphere at Various Level.s Computed from data of Table 1 on the assumptions: (1) at surface, H₂O vapor supplies 1.2% of the total number of gas molecules, (2) absolute humidity decreases rapidly to a negligible amount at about 10 km, (3) temperature = 11°C at sea-level, decreases normally (6°C per km) to -55°C at 11 km, remains constant above 11 km, (4) relative proportions of the gases, water vapor excepted, remains constant up to 11 km, (5) above 11 km, distribution is in accordance with their molecular weights (3). The amount of H₂ is in doubt (see note Table 1), especially above 11 km; it may become oxidized to H₂O before reaching the upper atmosphere.

r = volume of the gas contained in volume V of atmosphere. Unit of height = 1 km = 0.621 m.; of pressure = 1 mm of Hg

Height		Total pres-						
31(1)	N ₂	()2	1120	Ä	('()2	Π_2	He	sure
140	0 01]		1	99-15	0.84	0.0010
130	0 04					99-00	0.96	0 0046
120	0 19					98 74	1 07	0.0052
110	0 67	0 02	0 02			98 10	1 19	0 0059
100	2 95	0 11	0 05			95 58	1 31	0 0067
90	9 78	0.49	0.10			88 28	1 35	0 0081

Height				100e/	l'			Total pres-
	N2	()1	H ₂ O	A	('()2	i π. [He	sure
80	32 18	1.85	0 17			64 70	1.10	0.0128
70	61 83	4 72	0 20	0 03		32 61	0 61	0.0274
60	81 22	7 69	0 15	0 03		10 68	0 23	0 0935
50	86 78	10 17	0 10	0 12		2 76	0 07	0 408
40	.86 42,	12/61	0.06	0 22		0 67	0.02	1.84
30	81/26	15 18	0 03	0 35	0.01	0.16	0 01	8 63
20	81 24	18-10	0 02	0 59	0.01	0 04		40 99
15	79 52	19-66	0 01	0 77	0.02	0 02		89 66
11	78/022	20 99	0 01	0 94	0.03	0 01		168 00
5	77 89 :	20 95	0.18	0 94	0.03	0.01		405.
()	77 08 :	20.75	1 20	0 93	0.03	0 01		760.

TABLE 3 MASSES OF THE ATMOSPHERE AND ITS CONSTITUENTS

Based upon Table 1, the assumptions of Table 2, and the assumption that the average atmospheric pressure at the surface of the earth $\sim 73.7\,$ cm and at base of stratosphere $\sim 14.5\,$ cm (1, 2). Area of earth is taken as $51\times 10^{17}\,$ cm².

Total mass $M = m \times 10^n \text{ kg}$; 1000 kg + 1.102 tons (of 2000 lb.)

Gas	All	N ₂	(),	Α	H ₂ O	CO^{z}	Н,	Ne	Kr	He	Xe
m	511	387	116	624	133	217	129	171	64	63	116
n	16	16	16	14	. 14	13	12	11	11	11	10

LITERATURE

(For a key to the periodicals see end of volume)

Hann, Lehrbuch der Meteorologie (3rd ed.)
 Humphreys, Monthly Weather Review, 48: 311, 21 (2) Humphreys, Physics of the Air, p. 69; 20.
 Ramsay, 5, 80: 599; 98 (3) Various authorities

MISCELLANEOUS GEODETIC DATA

W. D. LAMBERT

With certain exceptions which are especially noted, those of the following data which depend upon the dimensions of the earth have been calculated strictly in accordance with the INTER-NATIONAL ELLIPSOID OF REFERENCE, adopted by the Section of Geodesy of the International Geodetic and Geophysical Union, meeting at Madrid, October 6 and 7, 1924. This ellipsoid is based upon the results obtained by J. F. Hayford (Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy, Washington, 1910), but is not absolutely identical with Hayford's ellipsoid. (For some of the other spheroids that are used for geographical purposes, see Special Publication #100, U. S. Coast and Geodetic Survey. Recent attempts have been made to show that the actual figure of the earth can be represented more closely by an ellipsoid of three unequal axes, than by one of revolution, systematic departures from the latter being of the order of 100 to 200 meters in elevation and depression.)

If the positions of the two ends of a line are determined geodetically for any assumed spheroid of reference, the uncertainty in the length of the line as measured along the earth depends almost entirely upon the errors in the survey; for geodetic surveys of the highest class, the uncertainty is a little less than one in 100 000 and for an ordinary fair survey it is about four times as great. The proportional error in the straight-line distance is greater, mainly because the geoid does not coincide with the ellipsoid; these additional errors are not serious for a short line, but for two points almost diametrically opposite may amount to 100 or 200 meters.

If the end points are determined astronomically, the principal error in the computed length is due to the difference in the deflection of the plumb-line at the two points; unless the measured line is short, the accuage uncertainty so introduced is of the order of 200 meters, but may be much more, especially in rugged country.

Latitude.—The latitude of a place is defined as the angle which some line of reference makes with the equatorial plane. Four lines of reference, defining four distinct kinds of latitude, are used. Three of these lines pass through the place considered; viz., (1) The plumb-line, defining the astronomical latitude, (2) the normal to the spheroid of reference, defining the geographical latitude, and (3) the line to the center of the earth, defining the geocentric latitude. The fourth line of reference passes through the center of the earth and that point which is upon the circumscribed sphere (radius = equatorial radius of the spheroid) and at the same distance from the axis of rotation as is the point on the spheroid representing the place considered; this defines the parametric, or reduced, latitude.

Gravity.!—If the earth's sea-level surface were accurately represented by the International Ellipsoid of Reference, and if no attracting matter projected above this surface, then the variation of gravity at sea-level (γ_n) would be represented by the equations

$$\gamma_o = \gamma_s (1 + 0.005 \ 288 \sin^2 \varphi - 0.000 \ 006 \sin^2 2\varphi)$$

= $\gamma_{45} (1 - 0.002 \ 637 \cos 2\varphi + 0.000 \ 006 \cos^2 2\varphi)$

¹ The resultant acceleration arising from the gravitational attraction and the rotation of the earth.

where φ is the geographic latitude, and γ_s , γ_{ss} are the values of γ_s at the equator and at latitude 45°, respectively. These equations differ elightly from that used in computing the table on p. 396; the latter corresponds to an ellipticity of 1/297.4.

TABLE 1 .- FORM AND SIZE OF THE EARTH

Based upon International Ellipsoid of Reference: accepted constants, from which the others are computed, are a = 6378388meters, ellipticity l = (a - b)/a = 1/297. The indicated uncertainties are estimates, by Lambert, based upon a consideration of evetematic errors on well as of internal discordances

d = semi-major axis	- 6 378 388(±60)m
b = semi-minor axis	- 6 356 911 946 m
Radius of sphere of same area	- 6 371 227 7 m
Radius of sphere of same volume	
Length of equatorial quadrant	
Length of meridonal quadrant.	
- ·	
$f = \text{ellipticity} = \begin{pmatrix} a - b \\ a \end{pmatrix} \dots$	- 0 003 367 0034
7 - reciprocal of ellipticity	- 297 0(±0 4)
$e^{\pm} = (\text{eccentricity})^{\pm} = f^{\pm} \begin{pmatrix} 2 \\ f = 1 \end{pmatrix} = \frac{a^{\pm} = b^{\pm}}{a^{2}}$	- 0 006 722 6700
Area of the ellipsoid	= 510 100 934 km ²
Land area	- 148 847 000 km [‡]
Ocean area	
	- 1 083 319 78 < 104 km ³
Mass of the ellipsoid* $(d = 5.527 \text{ g/cm}^3, \text{ p. }395)$	$-3.988 \times 10^{24} \text{ kg}$
Principal moments of inertia $(A = B < C)$. , , ,
A\$ - B\$	- 0 332 35 Ea*
C:	= 0 333 44 Ea ³
C - A .	= 0 001 0921 Ea ²
$\binom{c-A}{c}-\binom{1}{30512}$	- 0 003 2774

- * For discussion of variation of density with denth below surface are Adams and Williamson, Smithsonian Annual Report, 1923, p. 241
- t E = mass of earth.
- ‡ Computed values vary but little with any admissible assumption regarding the constitution of the interior of the earth. Values are based upon computations of De Sitter (64V, 27: 233, 24); ellipticity taken as 1/296 92
- I Deduced from precession of equinoxes, involves no hypothesis regarding constitution of interior of earth

TABLE 2.- DISTANCES UPON SURFACE OF THE INTERNATIONAL ELLIPSOID OF REFERENCE

 $M = \text{length of meridian from equator to geographic latitude } \omega$: $S_m = \text{length of meridian from latitude } (\varphi - \frac{1}{2}\Delta\varphi) \text{ to } (\varphi + \frac{1}{2}\Delta\varphi);$ S_p = length of arc of parallel for 1° of longitude at latitude φ . These may be computed by means of the equations: $M = a\varphi$ $b \sin 2\varphi + c \sin 4\varphi - d \sin 6\varphi$; $S_m = a\Delta\varphi - b \sin \Delta\varphi \cos 2\varphi + c$ $\sin 2\Delta\varphi \cos 4\varphi - d \sin 3\Delta\varphi \cos 6\varphi$; S_m (for $\Delta\varphi = 1^\circ$) = a - qb cos $2\varphi + c$ cos $4\varphi - d$ cos 6φ ; $S_p = a \cos \varphi - b \cos 3\varphi +$ c cos 5\varphi; where the coefficients and their logarithms have the following values:

Unit of length = 1 meter; of angle = 1°

П	A	ı.	, ,	" *
	Value	logio	Value	log ₁₀
a	111 136.537	5.045 856 86	111 136 537	5 045 856 86
b	16 107 035	4 207 015 6	32 214 069	4 508 045 6
c	16.976	1.229 84	33 952	1 530 87
d	0.022	2 348	0 045	2.649

	Sm* for	$\Delta \varphi = 1^{\circ}$	1	S, *
	Value	log ₁₀	Value	logio
a	111 136.537	5.045 856 86	111 417.657	5.046 954 02
ь	562.213	2.749 901	93.904	1.972 686
c	1.185	0 073 7	0.119	1.074 6
d	0 002	3 37		

* Owing to uncertainty regarding the actual size of the earth, actual distances upon the earth at sea-level may differ from these computed distances by about 2 in 100 000 near the equator or the poles, by somewhat less in middle latitudes

TABLE 3.-EXCESS OF GEOGRAPHIC LATITUDE (6) OVER GEO-CENTRIC (Q') AND PARAMETRIC (0) LATITUDES

$$\varphi - \varphi' = a \sin 2\varphi - b \sin 4\varphi + c \sin 6\varphi$$

$$= a \sin 2\varphi' + b \sin 4\varphi' + c \sin 6\varphi'$$

$$\varphi - \theta = a' \sin 2\varphi - b' \sin 4\varphi + c' \sin 6\varphi'$$

$$= a' \sin 2\theta + b' \sin 4\theta + c' \sin 6\theta'$$

where the coefficients and their logarithms have the following values.

Unit of coefficients = 1"

	Value	log ₁₀	:	Value	log ₁₀
a	695 6635	2 842 3992	a'	347 8327	2 541 3704
b	1.1731	0 069 34	b'	0 2933	Ĩ 467 29
c	0 0026	$\bar{3}.421$	c'	0 0003	4 52

	0 0026	3.421	c	<u>′ </u>	0 0003	4 52	
	TABLE 4.	-Miscella	NEOUS	TER	RESTRIAL I	Олта	
Angul	ar velocity	of rotation		72 9	21 × 10⁻⁴ r	adians/sec*	
Rotati	ional energy			2 16	0 × 1036 er	79	

Rotational energy lost by tidal friction...... 1.1 × 1019 ergs/sec†

Work required to dissipate the material of the earth to infinity . 2.46 × 1029 ergs

Mean elevation of land above sea-. 825 m level.....

Mean depth of the oceans 3681 m

Mean effective viscosity is not known, but perhaps between..... 1020 and 1025 poises:

- * Mean solar second.
- † Jeffreys, 62, 221A: 239, 20; The Earth, Its Origin, History and Physical
- T JOHNS N. 125, Bake: 259; co; I no parin, 110 Origin, History and Layerus Constitution, 205-237; 24 Heiskanen, 175, 18A: 1; 21

 \$ Schweylar, Veröfentl des Preuss Geodat I not, No 78; 10; Jeffreys, Monthly Notices, Roy Ast Soc., 78: 648; 15. 76: 84, 16 77: 449, 17; also The Earth, its Origin, History, and Physical Constitution, 222, 1924

Rigidity (μ) . From the yielding of the solid portions (revealed by observations with horizontal pendulums), and on assumption of incompressibility. Schwevdar (Zentralbureau Int. Erdmes... Neue Folge No. 38, 1921) deduces $\mu = 30.8 (1 - 0.90r^2/a^2) \times 10^{11}$ dynes/cm², and mean effective rigidity = 17.6 × 1011 dynes/cm² (r = distance from center, a = mean radius). To allow for compressibility, these values must be increased by about 20% (Lambert, preliminary, unpublished computations); even then the value computed for the outer shell of half-radius thickness is much less than that deduced from carthquake data. (See Adams and Williamson, Smithsonian Annual Report, 1923.) The discrepancy may arise from Schweydar's assumption of high rigidity in the central portions, which may possibly behave as a fluid. (See Knott, 68, 39: 157; 19; Sieberg, Geologische, physikalische und angewandte Erdbebenkunde, 364; 23.)

GRAVITY DATA

CLARENCE H. SWICK

This section includes: (A) The value of the gravitation constant; (B) the absolute determination upon which the tabulated values of the acceleration of gravity 'rest; (C) values of the acceleration of gravity (g) at numerous stations well distributed over the surface of the earth, together with a table giving the values of g at sea-level and at various latitudes; and (D) means for computing the variation in g with the distance of the station above, or below, either the surface of the earth or sea-level. In preparing the data, valuable assistance was received from several colleagues. In particular should be mentioned Mr. W. D. Lambert's assistance with section D, and Miss Sarah Beall's and Mr. H. S. Rappleye's assistance with section C.

A. GRAVITATION CONSTANT

The best determinations of the gravitation constant (G)² are considered to be those by C. V. Boys (7) and by K. Braun (8) Each used an improved form of the Cavendish apparatus; and they obtained almost identical results, the final values of the two determinations being the same to the fourth significant figure. They found

$$G = 6.658 \times 10^{-8} \,\mathrm{cm}^{\,3} \, q^{-1} \,\mathrm{sec}^{-2}$$

which requires that the mean density of earth = 5.527 g/cm³.

B. BASIS OF REFERENCE

The observed values of gravity in Tables 1 and 2 are relative determinations in the Potsdam system, that is, they are based on

the value of 981,274 cm/sec³ for the pendulum room of the Geodetic Institut in Potsdam, Germany. This value for Potsdam is the result of a large number of careful absolute determinations extending over a series of years. The degree of uncertainty in such absolute determinations is well illustrated by the fact that a similar series of absolute determinations at Vienna, Austria, gave a value 0.016 cm/sec³ greater than the one above when referred to Potsdam by relative determinations.

All determinations of gravity should be based on the Potsdam system by means of relative determinations with some station already accurately based on that system. A table of 20 base stations on the Potsdam system is given in Comptes Rendus PAssociation Geodesique Internationale for 1909, III:25. Most of these stations are included in Table 1.

C. ACCELERATION OF GRAVITY AT SELECTED STATIONS

The stations included in Table 1 are grouped (1) in the order America, Europe, Asia, Africa, Australia, and Oceanic; (2) generally, alphabetically according to countries (United States of America, first); (3) in each subdivision, the stations are arranged alphabetically. Numerals in parentheses, following the name of a subdivision or station refer to the bibliography, and indicate the source from which the data were obtained. If the effect of topography and of isostatic compensation has been computed on the uniform basis of compensation extending to a depth of 113.7 km, the amount of this computed effect is given in the column TC. This effect is the amount by which the actual value of the acceleration would exceed that obtained from Table 2, after correction for elevation by means of equation (1), if there were complete isostatic compensation and if the local distribution of matter were not anomalous.

¹ Throughout this section the term acceleration of gravity, or, briefly, gravity, is used, in its commonly accepted sense, to denote the resultant acceleration arising from the gravitational attraction and the rotation of the earth — It is this resultant which is denoted by g.

resultant which is denoted by gThe force (f) of gravitational attraction between two masses (m, m_1) acpurated by the distance r is $f = \mathbf{G} \xrightarrow{m_1 m_1}$.

Table 1.—Acceleration (g) of Gravity, Potsdam System

(The effect of topography and of isostatic compensation = TC)

Units: Elevation (h), meters: g, cm/sec²; TC, cm/sec²

Station	Latitude	Longitude	h	ı a	TC	Station	Latitude	Longitude	h	0	TC
AMERICA	I.ALITUMP	- ramgitude			• • • • •	Madison, Wis (Uni-		1			
United States (5, 6)	1		1			versity of Wisconsin)	43° 4 6'	89° 24 0'	270	980.365	+0 003
Albany, N. Y. (Public			į			Minneapolis, Minn			1		
School No. 24)	42° 39 1'	73° 46 1′	61	9NO 311	-0 006	(University of Min-	44 58.7	93 13.9	256	000 507	
Apalachicola, F I a	20 42 3	. 84 58 8	. 4	979 322	LO 015	nesota) . Mount Hamilton,	44 35.7	55 15.5	2.70	980.597	-0.005
(Weather Bureau) Asheville, N.C. (Post-	29 43 5	, 20 00 0	•	310 322	F0 010	Calif (Lick Observ-		Í			
office)	35 35 9	82 33 3	670	979 603	FO 026	atory)	37 20 4	121 38 6	1282	979 660	+0 120
Atlanta, Ga. (State			i	1		New Orleans, La (City		20 4 2		0.00	
Capitol)	33 45 0	81 23 3	324	979 524	+0 014	Hall) New York, N. Y.	29 57 0	90 4 2	2	979 324	+0 013
Austin, Tex (Univers- ity)	30 17 2	97 44 2	189	979 283	-0 001	(Columbia Univers-	Ì	i			
Baltimore, Md (Johne		1	•	+		ity) .	40 48 5	73 57 7	38	980 267	+0.011
Hopkins University	39 17 ×	76 37 3	30	980 097	+0 006	Norris Geyser Basin,	ĺ		1		
Bismarck, N Dak	40 40 5	100 19 0	516	980 625	0.00	Wyo (Yellowstone Park)	44 41 2	110 42 0	2276	979 950	
(Will School) Boise, Idaho (High	48 48 5	100 47 0		1 1 1	(7 ()(),)	Pembina, N. Dak	11 11 2	110 42 0	2210	818 8.80	+0 031
Hehool)	43 37 2	116 12 3	521	980-212	- 0 042	(Public School)	48 58 1	97 14 9	243	980 917	-0 009
Calain, Mo (High				1	ì	Philadelphia, Pa					
Heliool) Cambridge, Mass	45 11 2	67 16 9	38	980 631	+ 0 010	(l'niversity of	39 57 1	75 11 7	16	000 100	. 0. 000
(Harvard College					1	Pennsylvania) Pierre, S. Dak. (High	33 37 1	/3 11 /	10	980 196	+0 009
Observatory)	42 22 8	71 7 ×	14	980 398	+0 010 l	School)	41 21 9	100 20 8	454	980 427	-0 013
Charleston, W Va		1	1			Pittsburgh, Pa (Sec-					
(High School) .	38 20 9	81 37 7	144	979 936	-0 010	ond Ward School)	40 27 4	80 0 6	235	980 118	
Charleston, S. C. (S. C. Military Academy)	32 47 2	79 56 0	6	979 516	0 016	Point Isabel, Tex Portland, Oreg. (Cus-	26 4 7	97 12 4	8	979 076	+0.015
Charlottesville, V a .		1	,,	1		tom House)	45 31 4	122 40 7	8	980 646	-0 016
(University of Vir-		1		ì	1	Potsdam, NY.					
ginia) Chicago, III. (Univ of	38 2 0	78 30 3	166	979 935	0 002	(Clarkson School of					
Chicago)	41 47 4	87 36 1	182	980 278	-0.007	Technology) Princeton, N. J.	11 40 1	74 58 8	130	980 571	-0 004
Cincinnati, Ohio (Cin-		, , ,			, ,, ,,,,,	(Princeton Univer-				1	
sinnati Observ-	1	i	ĺ			nity)	40 21 0	74 39 5	61	980 178	+0.013
Atory) .	39 × 3	84 25 3	245	980 001	0 002	Richmond, Vs. (Post-					
Cleveland, Ohio (Adel- bert College)	11 30 1	81 36 6	210	980-211	0.000	office) St Louis, Mo (Wash-	37 32 2	77 26 1	30	979 960	+0 010
Colorado Springs,		1 30 0	211)	930 -11	0 0.0	ington University)	38 38 0	90 12 2	154	980 001	+0.001
Colo. (Colorado Col-		'	!			Salt Lake City, Utah			191	000 000	10 001
loge)	38 50 7	104 49 0	1811	979 490 -	-0 007	(Temple Block)	40 46 1	111 53 8	1322	979 803	-0 041
Denver, Colo (Uni- versity of Denver)	39 40 6	101 56 9	1638	979 609	0.015	San Francisco, Cahf.					
Dover, Del (Wilming-	30 40 0	101 30 8	1000	779 000	-0 013	(Davidson Observa- tory)	37 47 5	122 25 7	111	979 965	±0.045
ton Conference				!	ĺ	Sandpoint, I d a h o				1.75 50.7	, 0.0.0
Academy) .	39 9 7	75 32 0	12	980 099	F0 013	(Farmington Cen-		i			
El Paso, Tex (High School)	31 46 3	106 29 0	1146	979 124	. 0 001	tral School) Scattle, Wash (Wash-	48 16 4	116 33 3	637	980 680	-0 044
Galveston, Tex. (Ball	0	100 20 0			001	ington State Uni-					
High School)	29 18 2	94 47 5	.3	979 272	⊢0 007	versity)	47 39 6	122 18 3	58	980 733.	-0.020
Georgetown, Tex (South western					1	Springfield, Ill. (Ed-					
University).	30 38 0	97 40 1	231	979 298	-0.009	wards Public School)	20 47 7	00 20 5	100	000 000	10.005
Goldfield, Nev (High	1.5 5 0			1	.,	School) State College, Pa.	39 47 7	89 39 5	183	980.089	⊕0.003
School)	37 12 2	117 14 5	1716	979 456 -	FO 027	(Chemistry Physics					
Hartford, Conn (Jar- vis Laboratory of				1	I	Building)	10 47 9	77 51 8	358	980.124	+0.010
Trinity College)	41 11 8	. 72 41 8	37	950 336	-0.008	Terre Haute, Ind (Rose Polytechnic					
Hinedale, Mont (Pub-		1			, , ,,,,,,	Institute)	39 28 7	87 23 8	151	980 072	+0 001
lie School)	48 23 8	107 5 3	661	980 739	-0 017	Washington, D C					
Hoboken, N J (Stev- ens Institute of		·		1 '		(USC. and GS,	90 to 0			000 115	
Technology)	40 41	71 2	11	980 269	F0 003 ¹	base station) Washington, D C	38 53 2	77 0 5	11	980 112	+0.004
Indianapolia, I n d						(Bureau of Stand-					
(Postoffice)	39 45 9	88 8 4	217	980 090	⊦0 003 ₁	ards)	38 56.3	77 4 0	103	980 095	+0.012
Ithaca, N Y (Cornell University)	42 27 1	76 29 0	217	080 200		Wilmington, N. C			_	070 000	
Kansas City, Mo		10 20 0	211	980-300	FO 003	(Court House) Worcester, Mass.	34 14 2	77 56 6	9	979 663	+0.023
(Franklin School).	39 58	94 35 4	278	979 990 -	-0 001	(Worcester Poly-					
Key West, Fla. (Post-		1	!		1	technic Institute) .	42 16 5	71 48 5	170	980 324	+0.018
office) Lancaster, N. H. (High	21 33 6	81 48 4	1	978 970	⊦0 0 3 5	Yavapai, Aris (Yava-	04 00		4170	070 -05	
School)	44 29.5	71 34 3	261	980 186	-0.007	par Point) Alaska (4)	36 3 9	112 7.1	2179	979 192	+0.034
Las Vogas, N Mex				1 10	0 007	Fort Egbert, Eagle					
(Normal School).	35 35.8	105 12 1	1960	979 204	-0 017	City	64 47.4	141 12.4	269	982.183	-0.042
Little Rock, Ark.	94 48 0	02 14 4	vn	070 70		Percy Islands, South-					
(Postoffice)	34 43.0	92 16.4	80	979.721	FU.001	east Alaska	54 55.8	131 35.3	4	981.524	-0.013

Station South	Latit	uge	Long	gitude	<u>h</u>				rc _	Station	1.	atitude	Lor	gitude	; h	۱ ر	, ,	Te
Point Young, South-	58° 11	1.5'	1349	33 4'	7	951	757	_ ^	054	Karlowitz		21 9		18 71	510	980	890	
Quiet Harbor, South-			1.0.			1001	1.51	- ()	0.34	Mount Hora Rosenau		10 3		42 4 1		980		
cast Alaska	56 14			39 6	4	951	624	-0	034	Denmark (2)	18	39 1	20	32 F	281	080	871	
St. Michael	68 28			2 4	1				004	Copenhagen (Stern-	į							
St. Paul Island Canada (4, 26, 21, 22)	57 7	3	170	16 6	10	981	726	+0	011	warte, base station)	55	41 2	. 12	34 7 1	14	981	559	
Arotic Red River, N						1							10	32 2 F	15	981	740	
W. Ter	67 26	3 6	133	44 2	41	982	434	-0	026	. Magleby Peders Kirke		47 3		43 0 F	1	180		
Banff, Alta	51 10			34 5	1376				012		35	1 6 15 2	14	58 8 F		180		
Calgary, Alta	51 2		114	38	1044				022	Vinding		40 3	10	9 5 F		981		
Charlottetown, P E. I	46 13		63	7 5	8				013	Deutschland, we Ger-	00			01 01	' '''	ì		
Chipewyan, Alta.	58 42	? 7	111	8 8	229	981	723	-0	012	many	1					í	- 1	
Good Hope, N. W.	66 15		199	38 2	59	000	240	١ ,	000	England, see Great						i	- !	
Halifax, N. 8	44 40		63	33 S	9		340		008	Britain	l				ł	1	- 1	
Kenora, Ont	49 46			30 0	330				018	Bapagna, see Spain						1	- 1	
Kingston, Ont. (City			1			1		, -		Finland (2)			1			1	1	
Hall)	44 14			28 8	79	980	530	+0	008	Helangfors (Observa-			į			1	- 1	
Lard River, B. C	59 58			17.5	160				059		60	9.7	24	57 3 F	20	981.	912	
Moose Jaw, Sask Norman, N. W. Ter.	50 23 64 54			31 8 31 2	511				003	Uleaborg	6.5	1 2		29 1 1		982		
Ottawa, Ont. (Domin-	04 04	1.0	123	31 2	57	992	214	- 0	036	Viborg (Viipurin)		12 9		43 7 F	12	981		
i o n Observatory,			į			i				Fiume (2) France (2, 3)	45	20 0	14	25 8 E	10	080	030	
base station)	45 23	6	75	43 0	83	980	618	0	(10)		11	39-6	1	10-4	24	080.	SHA	
Peace River, Alta	56 14			17 2	324				038	Aurillac, Lyceum		56 8		26 6 E		980.		
Port Arthur, Ont.			1			1				Bayonne		29 7	1	28 0	3	980.		
(Masonic Building)	48 26	0	. 89	13 0	189	950	820	- 0	014	Bordeaux (Observa-							1	
Providence, N W	61 21	9	. ,,,,	20. 2	150		0		010	toire)		50 1		31 4	72	980.		
Ter Resolution, N W Ter	61 10			39 2 40 5	156 152		955		009	Coutras Jonzae	15	2 5 26 7	0	7 9 26 0	13	980 . 980		
Revelstoke, B. C	50 59			11 8	453		903			Langon		32 7		15 3	35 25	980		
St Jérôme (Chateau	_				1		- 1	J		Lahons		50 0		15 F		981		
Larose)	45 46	6	74	0.0	107	980	681	+0	006	Lyon	15	41 0	1	47 F	286	980	629	
St. John, N. B. (Mete-			1		1					Marseille (Observa-					1		- 1	
orological Observa-	45 10		0.0	5 0	22	000	00.1			torre)	1	17 9		23 F		980		
tory) Sault Ste. Marie, Ont	45 16	U	66	3 0	33	980	663	10	016	Metz - Meudon (Observa-	49	7 0	. "	10 7 1.	175	980	907	
(City Hall)	46 30	4	81	19 2	186	980	680	-0	005	torre)	48	18 3	9	13 9 1	. 130(*)	980.	919	
Suppon, N. W. Ter	61 51			20 8	132	1	004			Mont Blane (Observa-		,			1000			
Sydney, N S	46 8	4	60	11.8	12		731			torre)		50	0	52 E	4807	979	401	
Vancouver, B C	49 16		123	6.8	6		949			Mont-Louis		31 0	2	7 I		979		
Winnipeg, Man	49 54	. 1	97	8 0	231	980	990	+0	002	Nice (Observatoire)	43	42 8	7	18 E	367	980	471	
Woodstock, N B (Armoury)	46 9		a7	31.5	.56	i nen	400	1.0	008	Paris (Observatoire, base station)	40	50.2	2	20 3 F	61	980.	043	
Woodstock, O n t .	10 0	U	04	31 .7	.,0	330	000	Τ ()	1,77	Port-Vendres		50 9	3	6 i		980		
(Market)	43 8	6	80	17 0	299	980	352	()	002	Rosendael-les-Dunk	51	2 0	2	24 F		981.		
Central and South						İ	j			Soulac	45	31 0	1	7.4	8	980	655	
America (2)					}	1	i			Strasbourg (base sta-			_				}	
Bahia Blanca, Argen-										tion)		35 0	7	46 1 F			904	
tina . Buenos Aires, Argen-	38 47	18	62	15 9	2	980	061			Valence Germany (2, 6)	41	194)	- 4	53 I	125	980	002	
tina	34 36	5.8	58	22 2	2	979	669			Alter Bruch	50	45.7	15	44 6 1	917	980	. 930	+0
Bahia, Brazil	12 58		ì	31 0	4	978				Bremen	53	5.0	8	49 2 l		981		
Panama, Canal Zone	8 51		79	31 9	6	978	243			Brocken		48 0	10	37 I	1		015	+0
Valdıvia, Chile	39 53			28 3	10	979				Coburg	50	16 0	10	58 F	290	981.	.015	
Valparaiso, Chile		88		38 5	60	979				Gottingen (Stern-	6.1	32 0	0	57 1	162	981	170	
Callao, Peru Acajutla, Salvador	12 4 13 34	18		15 8 50 4	12	978 - 978				warte) Grimmen	54	6.9	13	271		981		
Montevideo, Uruguay	34 54			12 9	12	979				Hamburg (Seewarte)	53	32 8		58 3 I		981		
anada see Canada,	J. UT		30	,			1				54	10.8	7	53 1 k		981		1
EUROPE										Immenstand	47	40 0	0	22 1 F		980		i
llemagne, see Germany		1								Jena Kadan La	50		11	35 2 F		980 980		ì
ingleterre, see Great					}					Karlsruhe ' Kiel (Sternwarte)	49 54	0 7 20 5	10	24 7 F		980		i
Britain,		}					1			Kirchhain	51	38 3		33 5 F		981		ı
	47 0	3	11	30.5 E	1372	980	353			Kolberg		11 3		35 8 1			453	ı
Dalass	17 8	- 1		59 E	838	980				Kömgsberg (Stern-	l		1			1	- 1	,
Grafenstein	46 37	ļ	14	28 E	417	980	614			warte)		42 H		29 8 1			.477	
	47 19		15		445	980				Leipzig		20.1		23.51			180	1
Ober-Drauburg	46 45	1	12	58 E	617	980	555			Lüdenhausen Munich	52 48	4 3 8 7		0.0 f			242 733	!
Stilfserjoch (Stelvio Pass) .	46 31		10	27 4 E	2760	980	035	Δ	152			57.9		37.91			233	
	46 31			27 4 E 21.5 E	183	980		U	4.72	Neumünster		4.4		0 I			.427	
	47 57			46 7 E	352	980				Potedam (Geodetic	1		'	•	1	1		
	48 12			21 5 E	183	980				Institute, base sta-						1	1	
Wolfsthal	48 8			0 5 E	146	980	904			tion)		22 9		4.11			. 274	
Belgium (2)		, 1								Scharfenstein .		50.0		36.0 I			. 130 . 776	
Brussels Czechoslovakia (2)	50 51	0	4	22 E.	102	981	112			Schneckoppe Sehlsgrund .		44 2 52 8		44.6 I 48.0 I			.776 278	
						1												
	49 40	1 .	19	59 3 E.	537	980	9211			Stuttgart	48	46 9	1 59	10.5 I	217	111750	901	

INTERNATIONAL CRITICAL TABLES

Bistion	Latitude	Longitude	h	0	TC	Station	Latitude	Longitude	<u>h</u>	
ireat Britain (*)	1	1			1	Norway (2, 6)	60° 23.9'	5° 18.3′E.	38	981.922
Edinburgh, Scotland						Rergen (Sternwarte) . Christiansund	63 6.6	7 44.2 E.	20	982.175
(Observatory)		3° 9 4'	104	981 584		Dambass	62 4.6	9 8.3 E.	643	981.892
Glasgow, Scotland				001 805		Floro	61 35.8	5 2.4 E.	10	982.071
	55 51 5	4 14 0	61	981.605		Langenace	69 1 2	15 8.7 E.	8	982.640
Greenwich, England (Observatory)	51 28 6	0 0 0	419	981 184	,	Laredal	61 6.3	7 27.9 E.	7	981.942
Kew, England (Ob-		0 00	***	301 101		Mehavn	71 1.3	27 47 E.	10	982.688
servatory)	51 28 1	0 19	. 5	981 144		Osla (Christiania)				1 1
Plymouth, England		4 8 4	43	981 148	1	(Sternwarte, base		į i		1 1
Iolland, see Netherland		1				station)	59 54 7	10 43.5 E.	28	981.927
lungary (3)	1					Oxŏ	58 4 3	8 3.5 E.	10	981.763
Budapest	47 29 5	19 3 6 E	108	980.852		Rörvik .	64 51 9	11 14 3 E.	10	982.313
Kis-Komárom .	46 32 9	17 10 7 E	115	980.745	1	Sand .	59 29 1	6 15.7 E.	14	981 853
mly (2, 4)	1		1	1		Hannesjöen	66 1 3	12 38.8 E.	12	982.351
Alba	44 42 0	8 2 3 E	169	980 444		Sörvaagen	67 53 6	13 2 E.	19	982.622 +
Arona	45 45 N	8 34 1 E	210	980 629		Stavanger	58 58	5 44.3 E.	11	981.845
Bologna (Università).	44 29 8	11 21 3 E	51	950 450		Triset	50 25.8	8 10.8 E.	115	981.795
Brenner (see Austria)					1	Österreich, and Austria				
Catania, Hielly	37 30.2	15 4 7 E	43	980 065	1	Olanda, see Netherlands Paési Bássi, see Netherla	a da			
Castellammare di	10 11 0	14 28 7 E	١.	980 321	1	Pays-Bas, see Netherland				
Stabia Domo d'Ossola	40 41 5	8 18 4 E	276	980 598		Poland (2)	45			
Florence	43 46 N	11 15 2 E	48	980 510		Bedsin	50 19.3	19 8.7 E.	256	981.058
Genea (Institute Idro-		1. 1.7 & F.	1.0	, 1007-0110		Kraków (Sternwarte)	50 3 9	19 57 6 E.	205	981.054
grafico)	44 25 1	8 55 3 E	93	980.573		Lwów (Lemberg)	49 50 2	24 0.0 E.	314	980.911
Livorno (Leghorn)	43 32 0	10 18 5 E	6		-0 018	Tuchla	48 55.2	23 29 E.	540	980.789
Milan (Omervatorio)	45 28 0	9 11 5 E	141	980 569		Portugal (18)				1 1
Padua (Omervatorio,		1				Camposancos	41 53 2	8 49 0	9	980.383
base station)	45 24 0	11 52 3 E	19	980 658		Liebon	38 42 5	9 11 3	75	980.088
Palermo, Sicily	38 6 9	13 22 0 E	20	980 069		Oporto	41 8 2	8 36.1	94	980 290
Pola	44 51 8	13 50 7 E	28	980 626		Prais da Rocha	37 7 0	8 32 7	17	980.005
Pracchia	44 80	10 54 3 E	627	980 378		Rumania (2)		_		1 1
Romagnano	45 3N 1	8 23 8 E	266	980 620	1	Восяв	46 56.9	22 42 E.	379	980 711
Rome	41 53 5	12 20.7 E	49		-0 012	Bucharest (Bucuresti)		26 6.8 E.	83	980.553
San Remo	43 49 1	7 16.5 E	23	980 505	1	Elend	47 2 5	22 22 E.	225	980.794
Stilfeerjoch, see Aus-	1		i			Maros-Ludas (Ludos)	46 28 1	24 6 E.	281	980.715
tria				00 010		Russia and Siberia (2.	1	1		
Stromboli, Lipari Is .	38 48.2	15 14.1 E	48	980 212 980 549		11)	40 47 0	43 49 7 E	1519	979.785
Turin	43 4 1	7 41 8 E	233	1980 340	1	Alexandropol . Archangel	64 34	40 31 0 E	1319	982.278
ugoslavia, eee Yugo- alavia	i			ļ	}	Astrakhan	46 21.0	48 2 7 E.	-21	980.774
letherlands (24)	1		1			Byelgorod	50 36.1	36 35 9 E	203	981.038
Amaterdam (Univers-	1		ĺ			Dagarskoje (Lake	l .	00 00 0 12	200	331.000
114)	52 21 9	4 54 7 E	0	981 288	d	Baikal), Siberia	55 42 2	109 54 E	465	981 32
Bergen op Zoom			-			Erivan	40 10 7	44 32 8 E	990	979.880
(Cathédrale)	51 29 7	4 17 3 E	10	981 212		Gorjatschinskoi, Si-		1 11 11 11		
Breds (Académie Mili	-			i	}	beria	52 59.4	108 18 0 E	470	981.178
taire)	51 35 5	1 16 5 E	1	981 213	ı	Irkutsk, Siberia (Me-		ľ	l	1 1
De Bilt (Institut		ı	1			teorological Obser-			1	1 1
Météorologique	.	i	1			vatory)	52 16 5	104 16 5 E.	470	981.096
base station) .	52 6 2	5 10 7 E	2	981.267	ĺ	Kazan (Observatory)	55 47.4	49 7 3 E	70	981.572
Delft (Institut Géo-	1		1	1		Kingisepp	59 22.5	28 35.7 E.	16	981.858
désique)	52 0 6	4 22.1 E	2	981 264	1	Leningrad, see St			1	
Gronigen (Université)	53 13.2	6 34.0 E	- 5	981 348	1	Petersburg.				1
Hollander (Sanator-		4 05 5 5	١	001.000		Lenkoran .	38 45 6	48 51 5 E	-20	980.092
ium Hellendoorn)	52 24.2	6 25 0 E	11	081 296	1	Listvinichnoe, Siberia	51 51 0	104 52.5 E.	465	981.051
Leeuwarden (Friesche	53 12 3	f 40 0 **	١.	001 0	1	Moscow (Observatory)		37 34.3 E	139	981.562
Levensversekering)		5 48 3 E 4 29 1 E	1 2	981 348 981 273		Novgorod	58 31 4	31 17.3 E	48	981.780
Leiden (Observatoire) Masstricht (Hôtel de	52 9 4	4 20 1 1.	1 -	951 21d	1	Odcesa Pulkova (base station	46 26 4 59 46 3	30 46 4 E 30 19.7 E.	43	980.769
Ville)	50 51.2	5 41 6 E	19	981 140	1	St. Petersburg (Lenin-	00 40 3	30 19.7 E.	71	981.899
Ville) Middelburg (Étata	00 01.2	, o ares	•"	801 IM	7	grad)	59 56 5	30 17 7 E	3	981 929
Prov.)	51 30 0	3 36 S E	6	981 215	1	Schaitanskij	56 54 8	59 57.0 E	310	981 929
Oldenzaal (Église Ple-	J. 50 0	1 500 511	"			Simbirsk	54 19.0	48 24.2 E		981.469
chelmi)	52 18 8	6 55.8 E	47	981 282	ļ	Staraya Russa	57 59 4	31 22 E.		981.747
Schoorl (École prim-					1	Tartu (Dorpat, Yur-	3. 30	J. 22 E.	20	001.111
aire)	52 42.1	4 11 6 E.	Ð	981 312		iev), (Observatory)	58 22 8	26 43.2 E.	50	981.793
Sittard (Ambachts-					1	Tiflis (Physical Ob-		70.2 E.	"	301.100
school)	50 59.8	5 51 6 E.	48	981 148		servatory)	41 43.1	44 47.8 E	412	980.176
	52 46.5	6 48.1 E	16	981 318	1	Tver	56 51.2	35 50.9 E.		981 607
Siren	32 10.3	0 48.1 F.	10	901 318	1	Verevye	58 40.8	32 42 0 E		981.794
Terschelling (Ecole				00. 05-	l	Volkhovo .	59 1.2	31 46.2 E.	21	981.826
Navale)	53 21 6	5 12.9 E	6	981 376		Vyshniy Volochok	57 35.1	34 33.1 E.		981.695
Ubagaberg	50 51 0	5 57 2 E.	101	981 108		Vologda	59 13	39 53.0 E.		981.837
Utrecht (Observatoire)	52 5.2	5 78E.	5	981 263		Schweden, see Sweden		1	l	
Weert (Église catho-	1					Schweiz, see Switzerland	1		l	
lique)	51 15.3	5 42.5 E.	33	981 161	İ	Scotland, see Great Brit-		1	1	
Winschoten	53 8 7	7 2.4 E.	0	981.346	ď	ain	i .	1	I	1 1

GRAVITY DATA

SUSTAIN S
3.4
ीरा≆
1 1

Station	Latitud	Longitude	h	. 0	TC	Station	Latitude	Longitude	h p.	TY
lpain (18)						Ungarn, see Hungary				
Alcásar de San Juan	39° 24.0	3° 12.0′	648	979 933		Ungheria, see Hungary.			1 1	
Andájar	38 3.0	4 30	207	979 943		Yugoslavia (2)			1 1	
Aranda de Duero	41 40.0	3 40.0	801	980 086				4.0001		
Arbes		5 45 0	1329	980 132		Marburg (Maribor)	46° 84″		70 980.708	
Badajos		6 58 0	188	980 050		Ragues (Dubrovnik)	42 38 6		47 980.394	!
Barcelona	41 25.0	2 7.0 E		980 240		Berajevo CTA	43 48.2	18 19.7 E. 5	11 980.389	
						ASIA		1 1) 1	
Basa			858	979 669		Giappone, see Japan]	1 1	
Cortegana	87 54.0	6 47.0	765	979 895		China (2)	1	1	1 1	i
Daroca		1 25 0	770	980 038		Hankow	30 35.5	114 17.5 E	73(1) 979.869	ĺ
Lérida		0 38 O E	165	980 260		Hongkong	22 18 2	114 10 5 E.	33 978.771	ĺ
Llansá	42 22.0	3 9 0 E	. 6	980 431		Port Arthur	38 47 9	121 22.8 E.	1 980.128	
Málaga		4 25 2	61	979 918		Shasi	30 18 1		22(1) 979 308	
Plasencia	40 2.0	6 3 0	369	980 073		Wesharwer	37 30 0	122 11 0 E.	1 979.993	
Puigcerdá		1 54 7 E	1190	980 055		Zikawei, Observatory	31 11 6	121 25.8 E.	4 979.487	
Roncal		0 59 6	675	980 228		India (4, 9)	"" ""	121 -5.8 2.	1 010.301	ĺ
Salamanca		5 39 0	805	980 057		Agra	07 10 2			١.
Balou	41 4 0	1 00E		980 268		Allahabad	27 10 3		63 979.058	
San Fernando	1	6 12 3	44				25 25 9	81 55 E.	88 978.948	
	1	· ·		979 843		Badnur	21 54 2		41 978.609	
Bantander		3 49 0	10	980 503		Chatra.	24 12 7	88 23.4 E.	20 978.880	-0.
Beville	37 23 0	5 59 0	11	979 965		Colaba	18 53 8	72 48.8 E	10 978.638	0
Parits	36 0 0	5 37 0	29	979 748		Cuttack .	20 20 1	85 52 0 E.	28 978.661	0
Toledo	39 51 0	4 1 0	520	980 015		Dehra Dun .	30 19 5	78 3 2 E. 6	82 979.065	
Torrejón	38 0 1	0 39 1	2	980 032		Dolhpur	26 42 0	77 54.8 E. 1	76 979.001	
Valencia .	39 20 0	0 23 0	6	980 127		Gesupur	28 33 0		11 979.127	
Valladolid		4 43 0	695	980 111		Jacobabad	28 16 6	68 27.1 E.	A6 979.188	
Vivero		7 35 0	12	980 553		Jalpaiguri .	26 31 3	88 44.2 E.	82 978.924	
	•	• • •	,	,	•	Jubbulpore	23 8.9		47 978.721	
ede, see Sweden						Kalianpur	24 7.2			
isse, see Switserland.						Madras	13 4.1			
ézia, see Sweden.						Majhauli		1	6 978.281	
izzera, see Switzerland							26 17.8		67 978.930	
issers, see Switseriand						Mian Mir	31 31.6		16 979.385	
	,	,	i		,	Moghal Sarai	25 17 0		78 978.921	
reden (2)	1		}	1		Montgomery	30 39 8	73 6.8 E	70 979.323	-0.
Haparanda.	65 49 7	24 9.6 E		982 337		Mussoorie (Camel's	1	! !		1
Hernösand	62 37 H	17 57 0 E	25	982 082		Back)	30 27 6	78 4.5 E. 21	10 978.795	+0
Lund (Sternwarte)	55 41 9	13 11 3 E	32	981 564		Musefferpur	26 7 1	85 25 E.	55 978.936	-0.
Stockholm (Stern-	l	1	1			Quetta	30 12 2	67 0.7 E. 16	82 978.858	
warte, base station)	59 20 6	18 3.5 E	45	981 813		Raipur	21 13 9		04 978.614	
Upsala (Sternwarte) .	59 51 5	17 37 6 E		981 910		Rajpur	30 21 2		12 979.004	
witzerland (6, 23)	1					Sandakphu Peak	27 6 1		86 978.192	
Basel (base station)	47 33 6	7 34 8 E	277	980 788		Yeroaud .	11 46 9		69 977.910	
Bern (Landestopo-		1	1	100		Japan (2, 4)	1	1 " "		, ,
graphie)	46 56 5	7 26 8 E	522	980 622		Aomori .	40 49	140 45 E.	1 980.325	ı
Bironico	46 7 4	8 55 7 E		980 580		Chofu	34 0	181 0 E.	6 979 691	ı
	46 15.3	10 7.7 E		980 129			37 45	140 27 E.	67 980.022	i
	40 1.5.3	10 7.7 E	1 '2'	120		Fukushima .				ı
Burgdorf (Techni-						Fukuyama	34 30	133 22 5 E.		١.
kuma)	47 3 5	7 37.2 E		980 633		Hachinohe .	40 31	141 30 E.	21 980.359	
Chanrion (Klubhütte)	45 56.3	7 22.9 E	2435	980 107	+0 113	Hamada .	34 54	132 6 E.	3 979.768	ĺ
Eggishorn (Hotel		(1	1 1		Hamamatsu	34 42 9	137 43 E.	31 979.750	ĺ
Jungfrau)	46 25 2	8 6.8 E	2187	980 169	+0 086	Himen	34 50 1	134 42 E.	16(?) 979.754	ĺ
Frauenfeld (Kantons-	1	1	1	1 1	. 1	Kamakura	35 19.2	139 34 E.	13 979.779	i
schule)	47 33 3	8 54 2 E	431	980 703		Kofu	35 39	138 35 E. 2	70 979 719	ĺ
Fribourg (Universität)		7 9.4 E		980 584		Kurume	33 19.3		11 979 618	i
Gornergrat	45 59.0	7 46 8 E		979 992	+0 165	Kyoto	35 1 6	135 47.1 E.	55 979.727	í
Grand St. Bernard	45 52 1	7 10 4 E		980 072		Matsue	35 30	133 3 E.	23 979.812	i
Geneva (Sternwarte)	46 12 0	6 9 2 E	402	980 592	, 5 101	Matauyama	33 50	132 45 E.	19 979.607	i
	10 12 0	0 0 2 F.	102	700 302		Mizusawa	39 8.1	141 8 E.	61 980.159	ĺ
	10 00 0	7 10 0 11	1108	Javo 20.1	0.001		32 44 7	129 52.3 E	30 979.594	i
Sanetsch)	46 23.2	7 56 2 E	1185	980 396	-0.001	Nagasaki				ı
Landquart (Schul-		1		Jan 1		Nagoya	35 10.4	136 53 E		1
haus)	46 57.8	9 32.6 E	520	980 523		Nikko .	36 44		49 979.780	ĺ
Lausanne (Ecole de	1	1	1	1 1		Okazaki .	34 57.4	137 10 E.	25 979.764	Í
Chimie et de Physi-	l	1	1		1	Shizuoka	34 58.4	138 23 E	23 979.753	
que)	46 31.5	6 38 2 E	531	980 599		Tokyo (base station)	35 42 6	139 46 OE	18 979 80	*
Les Verrières	46 54 3	6 28 8 E	928	980 573		Taukuba	36 13 4	140 5 8 E. 5	70 979.781	
Lungern (Schulhaus)	46 47.1	8 9.6 E		980 515		('wajima	33 13	132 34 5 E.	2 979.597	
Lusern (Kantons-	l	1	1	1 "		Wakayama	34 14 2	135 11 0 E.	3 979.704	1
schule)	47 3.0	8 18.2 E	434	980 626		Yamada	34 29 6	136 42.8 E.	4 979.727	
	1. 5.0	0 10.2 F	104	020		Yamagata	38 15	140 16 E.	153 980.027	
Neuchatel (Stern-	.,		407	000 000	0.004		1 3.1.13	1.10 10 10.1		1
warte)	47 0.1	6 57.3 E.		980 653	-0 026	Siam (2, 2, 6)	12 42 0	100 20 4 15	7 978.278	ĺ
Rivera	46 7.4	8 55.7 E	473	980 580		Bankok .	13 43.9	100 29.4 E.	1 218.278	ĺ
St. Maurice (Hotel du			1		1	Siberia, (see Russin, p.	ł			1
Simplon)	46 13.0	7 0.2 E	422	980 512		398).	{	1	1 1	(
Simplonhospia.	46 14.9	8 19E.		980 202		Turkestan (2, 6)	1	1		ı
Sion (Collège)	46 14.1	7 21.5 E.		980 480		Derbent, Bokhara	88 12 0	67 3.2 E.	012 979.672	ı
Stilfserjoch, see Aus-	·• ···•	1	1	1500		Kala Khum, Bokhara	38 27 3		345 979.462	
		1	1	1 1	-	Samarkand	39 39 1	66 58 7 E.	719 979 883	
tria.			000	000 10-	1					
Truns (Schulhaus)		8 59 4 E.		980.432		Sultan-Bend	37 7 5	62 28 0 E.	272 979 798	
Zermatt		7 45.0 E.		980 250	-0.007	Tashkent.	41 19.5	69 17 7 E.	478 980.086	1
Zernes (Schloss)	46 42.0	10 5.8 E.	1473	980.308		Chardshui (Interna-	1	1		1
Zarich	47 22.7	8 33.1 E.		980 676		tional Latitude Sta-	1	1 1	1	ı

Station	T	Lati	tude	l.o	ngitude	. T)ı		,	, TC	Station	-	atitude		ngitu		h	Q	1 70
AFRICA	+			1				= = 		1	Perth		° 57.1′8.		° 50.		, -	979 3	
Egypt and Anglo-Egypt-	.			1		- 1		1	- 1	!	Sydney	33	51.7 8.	151	12.	7 E	43	979 6	NO.
ian Sudan (10)	1			1		- 1			- 1	į	OCEANIC	1		l			1	1	1
Abu Hamed	19	• 3:	2 0'	33	° 19 9′	E 33	9	978	53H		Atlantic Ocean a n d	1					1	1	
Aswan	24				53 1			978		1	Mediterranean Sea	1		1			l	1	
Atbara		41			58 0			97×			(2, 3, 6,18)	١	41.0		07	Е			
Helwan	1	51			20 4			979			Bastia, Corsica		41 2		27 36.5		20	980 5	
Khartum		36			32 9			078		1	Bridgetown, Barbados		4 3 30 2		4.7		43	978 3	
Luxor	25				39 3			978		i	Catania, Sicily Fornella, Balcaric Is-	31	30 2	13	4.7	E	13	980 0	iā
Minia	2H		×		45.5			979 978		1	lands	40	3 4	4	7.9	E	7	980.2	, ,
Wadi Haifa Red Sea (2)	21	55	^	31	19 9	E 12	"	010	120	i	Ibiza, Balearie Islands	1	54 3		26.1		3	980 1	
Aden	12	47	3	1 44	59 3	p	5	978	327		Jamestown, St Helena		55 B		43.7		10		2 +0.17
Harmil Island, Dah-	١	•	.,	''		·	.			1	Karajak Glacier,						1		
lak Archipelago Eri-				1		İ	1			j	Greenland	70	26 9	50	19 8		20	982 5	14
trea	16	28	8	40	8 7	E	4	978	465	i	Kingston, Jamaica	17	57 7	76	47 3	1	2	978 5	
Ht. John Island (Zeb-	1					1	ł		1	1	Las Palmas, Canary						İ	l	
irget)	23	35	8	36	12 0	E	6	979	026		Islands	28	70		26.0		8	979 3	15
Mersa Dhiba	25	20	2		11 3			979			Palermo, Sicily	38	6 9	13	22 0	E	20	980.0	59
Sherm Sheikh (Sinai)		51			16 9			979		ļ	Palma de Mallorca,						1		
Huna	20	56	0	32	33 4		3	979	307	j	Balcaric Islands .	4	34 5		39.1		23	980 1	
ludan, see Egypt	1									Ì	Ponta Delgada, Azores	1	43 8		40 8		4	980 1	
discellaneous (2, 3)				_			. 1			İ	Reykjavik, Iceland	64	8 5		0.3	١.	39	982 2	
Algiers (Observatory)		44		3		E 21		979		1	St George, Bermuda	32	21	64	40		2	979.8	6 + 0 21
Hiserta, Tunisia Biskra, Algeria		16 50			52 5 1 13	E 13		979 979			Santa Cruz de la								1
Cape Town, U.S. Af	34	.,,,,	v	"	1.3		' ˈ	010	""		Palma, Canary Is- lands	20	41 0	17	46 0	.	12	979.4	
(Observatory)	33	50	18	18	28.7	D 1	, ,	979	657		Stromboli, Lipari Is-	200	11 0	''	40 0	'	''	313.4	"
Dar-ca-Salaam, Tan-			• • • •			' l	. [''''	1	lands	38	18 2	1.5	11 1	ь.	48	980 2	9
ganyika Ter	15	49	0.8	39	19.0	1:1	7	978	117	Í	Whales Point, Spits-			1	•••	-	• • • • • • • • • • • • • • • • • • • •		-
Domjo Ndorobbo	3	ON	8.8		13 2			977		ŀ	bergen	77	30 4	20	58 8	E	458(2)	982 8	10
Freetown, Sierre Leone	8	20	1		11.3	6		97×		j	Valetta, Malta		53.8		31 3		62	979 8	
E Useso Nyiro, Kenya	1	53	1.8	36	8 2	E 67	6	977	737		Indian Ocean, see Pacific								
Johannesburg, U. S.	İ					-	- 1		1		Ocean,	1		l				l	1
Af (Observatory)	26	10	0.8	28	\$ 5 !	E 180	5	978	553		Mediterranean Sea, we							i	1
Kampo, Cameroons,						İ			- 1	İ	Atlantic Ocean	1		1				1	1
Fr Equat. Af		21		1	19 6	1	- 1	978			Pacific and Indian			1			ŀ	l	
Laghwat, Algeria		47			53			979		1	Oceans (2, 3, 6)	1					İ	İ	1
Langenburg, U.S. Af Libreville, Gabon, Fr	שו	35	8 8	31	8 6	E 47	7	977	907		Auckland, New Zea-	l							.1
Equat Af	۸	22	•		27.2		2	977	000		land	36	50 9 S	174	46 2	: E	3	979.9	52
Loands, Angola, Por-	۳		3	יי	21.2		-		ויות	-	Batavia, Java (Ob- servatory)	١.,	11 0 0	100	40. 0		_		
tuguese W Af	×	48	6.8	13	14 1	H.	1	978	212		Hobart, Tasmania	0	11 0 S	100	49 8	ъ.	7	978.1	8
Lourence Marques,				'''		.	. [(Observatory)	12	53 6 S	147	22 0	12	58	980 1	
Mozambique, Por-						1			- 1	į	Honolulu, Territory of		00, 01,			•	,,,	030 1	"
tuguese E Af (Ob-						1	1			1	Hawaii (Observa-	ļ		1					
mervatory)	26	2	5.8	32	19.8	5	5	979	068		tory)	21	18 1	157	51.8		-6	978 9	6 + 0 16
Luderits Bay, South-				1		1			į	į.	Kudat, British North								
west Af			8.8		9 7			979		į	Borneo	- 6	53 0	116	50 7	E	2	978.1	19
Monrovia, Liberia	-6	19	0	10	18.8	1	1 1	978	165	1	Makassar, Celebes		7 3 S		24 5		2	978 1	18
Mosambique, Portu-						.				1	Manila, Philippines	14	31.7	120	38 (E	3	978 3	60
guese E. Af	10	2	18	35	25 1	1	3	078	151	ĺ	Marau-Sound, Solo-							Ì	
Ouled Rhamoun, Al-	•	10		١.,			.			İ	mon Islands	9	19 1 8	160	48 5	E	3	978.3	19
geria Pangani, Tanganyika	90	10		0	41 1	68	' "	979	109	į	Mauna Kea, Hawanan	1	10.0		00 -	.			
Ter	5	25	8.8	34	58 8 1		7	978	030	1	Islands Numea, New Cale-	10)	49 2	155	28 8	•	3981	978.0	+0.46
Rio del Rey, Nigeria		43			38 3 1			979		į	doma New Cale-	.,.,	16 6 S	100	27 8	, ,	2	070 0	
Tangier, Morocco		46			48 6	6		179		1	Singapore, Straits	122	10 0 8	100	21 8	1.	2	978.8	1
USTRALIA (2, 3, 19)				ľ	,	'"	- l'				Settlements	1	16 5	102	50 3	ı,	21	978.0	19
Brisbane (Observa-							- !				Port Vila, Sandwich	١.	,	103		. 15	-1	.,,0.0	-
tory).	27	28	0.8	153	1.61	3 40	0 9	179	114	ŀ	Island, New Heb-								1
Hobart, Tanmania							i		j	ĺ	rides	17	45 0 S	168	19 0	E	3	978.6	17
(Observatory)	42	53	6.8	147	$22 \cdot 0 \cdot l$	3 3	4	180	111		Winter Quarters,	1	,			•	"		``I
Melbourne (Observa-							- 1		- i	-	Kaiser Wilhelm II	1					į		
tory)	37	49	8.6	141	58 5 F	0 20	i .	179	957	į	Land	66	2 2 8	80	38 1	11	1	982 3	e l

TABLE 2.—Acceleration of Gravity at Sea-level (go)

 $g_0 = 978.039 \ (1 + 0.005294 \ \sin^2 \varphi - 0.000 \ 007 \ \sin^3 2\varphi)^*$; Bowie (6). $\varphi = \text{latitude}$. Unit of g_0 is cm/sec². Basis: Potsdam system

g. =	978.039	(1 + 0.0)	005294 ai	in³φ-	- 0.000 0	07 sin	$(2\varphi)^*;$	Bowie (6). φ =	- latitu	de. Unit	of go is c	m/eec ^a . I	Basis: Pots	dam s	yatem
•	g, cm/sec ²	•	ge cm/sec²	φ	ge cm/sec ¹	•	ge cm sec ³	٠	ge cm_kec [†]	Ŷ	gs cm,/sec ³	em,		## #### ##############################	•	cm/sece
0° 00 10 20 30 40		10° 00′ 10 20 30 40 50	978 194 199 205 .210 215 .221	20° 00′ 10 20 30 40 50	978 642 -652 -661 -671 -681 -691	30° 00′ 10 20 30 40 50	979,328 341 354 368 381 .394	40° 00′ 10 20 30 40 50	980 172 186 201 216 231 246	10 20 30 40	086 100 , 115	10 981 20 30 40 50	917 70° 00 930 10 943 20 958 30 969 40 982 50	.018 .628 637 .647	90° 00′ 10 20 30 40 50	983.060 .965 .070 .075 .080
1 00 10 20 30 40	.041 .042 .043		978.227 232 .238 .244 .250 256	21 00 10 20 30 40 50	978 701 711 721 .731 742 .752	31 00 10 20 36 40 50	979 407 .420 434 .447 .460 .474	10 20 30 40	980 261 276 291 306 321 336	10 20 30 40	.174 .189 .204 .218		995 71 00 008 10 020 20 033 36 046 46 058 56	.675 .684 .693 .702 .711	81 00 10 20 30 40 50	983,089 ,094 ,099 ,103 ,107 ,112
2 00 10 20 34 44 5	0 .046 0 .048 0 .049 0 .050	10 20 30 40	978 262 .268 .274 .280 .287 .293	22 00 10 20 30 40 50	794 804	32 00 10 20 30 40 50	979 487 501 517 529 541 551	10 20 30 2 40	397 410	5 10 20 5 30 6 10	262 277 292 .306	62 00 982 10 20 30 40 50	083 10 083 22 006 22 108 3 121 4 133 5	720 738 746 755 764	82 00 10 20 30 40 50	983.116 .120 .124 .128 .132 .136
3 0 1 2 3 4 5	0 055 0 .056 0 .058 0 .060	10 20 3 3 40	978 300 306 313 320 327 334	23 00 10 20 30 40 50	837 848 859 870	33 00 10 20 30 40 50		3 10 7 20 1 30 4 10	153 47 186 1 50	5 10 1 20 6 30 1 40	350 364 379 393	63 00 983 10 20 30 40 50	206 5	780 0 .789 0 .797 0 .805 0 .813	83 00 10 20 30 40 50	.150 .153 .157
4	0 .06	8 20 1 30 3 40	978 341 .348 .355 362 369 377	10 20 30	903 914 926 937	34 00 10 20 30 40 50	66 68 69 70	6 10 0 20 4 30 8 40	54 56 57 57 59 59 59	6 16 1 26 6 30 1 46 6 56	1 436 1 450 0 165 9 179 0 193	10 20 30 40 50	.241 253 265 276	0 .829 0 .837 0 .845 0 .853 0 .861	84 00 10 20 30 40 50	.163 .166 .169 .172 .175
3	978 07 0 98 0 08 0 08 0 08 0 08 0 08	1 10 3 20 6 30 9 40	.392 399 407 .415	10 20 30 40	971 983 994 979 006	10 20 30 40	75 76 77 77 78	1 10 55 20 79 30 13 10	1 63 0 65 0 66 0 68	16 1: 51 2: 56 3: 51 4: 56 5	0 521 0 536 0 550 e 564 0 578	10 20 30 40 50	300 311 322 334 315	00 982,868 0 ,876 0 883 30 891 10 ,898 50 ,905	85 00 10 20 30 40 56	.180 .182 .185 .187 .189
	978 09 00 09 20 10 30 .10 40 10 50 .11	8 10 2 20 5 30 8 40	438 446 455 463	10 3 20 5 30 8 40	0 012 0 054 0 065 0 077	2 10 20 5 30) 80 0 80 0 80	36 1 50 2 35 3	0 72 0 71 0 73 0 75	26 1 11 2 57 3 72 1	0 608 0 620	10 20 30 40 50	368 379 390 401 412	00 982,912 10 ,919 20 926 30 ,933 40 ,940 50 ,947	10 20 30 4 5	0 .193 0 .195 0 .197 0 .199 0 .201
	978.11 10 .11 20 .12 30 .12 40 .13	19 10 23 20 27 30 31 40	.488 .496 .505 .514	1 2 3 4 4	0 979 102 0 .114 0 .126 0 .138 0 .151 0 .163	1 10 3 20 8 3 1 4	0 9: 0 9: 0 9:	22 1 37 2 51 3 66 4	0 8 0 83 0 8 0 8	17 1 32 1 47 3 62 4	00 981 675 689 20 703 30 .716 40 730 50 .744	10 20 30 40	42 423 77 434 .444 455 166 .478	00 982,953 10 .960 20 .967 30 .976 40 .976 50 .986	1 2 3 3 4 5 5	0 .204 0 .205 0 .207 0 .208 0 .209
8		13 10 17 20 52 30 56 40	.540 0 .549 0 .558 0 .567	0 1 9 2 8 3 7 4	00 979 173 00 200 00 213 00 226 00 23	8 1 0 2 3 3 6 4	0 980 0 0 0 0 0	10 1 24 1 39 7	9 20 9 80 9	07 22 37 52	00 981 757 10 771 20 .784 30 798 40 811 50 825	10 20 30 40	82,487 78 ,497 ,508 ,518 ,528 ,539	00 982,992 10 .998 20 983 003 30 .010 40 016 50 022	1 2 0 3 3 4	00 983.210 .211 .20 .212 .30 .213 .00 .214 .215
9	00 978.10 10 .1' 20 .1' 30 .1' 40 .1'	85 19 00 70 10 74 20 79 30 84 40	0 978,585 0 .594 0 .604 0 613 0 .623	5 29 0 4 1 4 2 3 3 4	00 979.25 10 26- 20 27 30 .29 10 .30 50 .31	1 39 0 4 1 7 2 0 3 2 4	0 1 0 1	13 27 42	10 9 20 981 0 30 0 40 0	96 111 126 141	00 981 838 10 851 20 865 30 878 40 891 50 904	10 20 30 1 40	549 79 559 569 579 589 598	00 983 02 10 .03 20 03 30 04 40 .04 50 .05	3 1 8 2 4 3 9 4	983.215 .216 .20 .216 .30 .216 .40 .217 .50 .217
	50 .1	00 04	032											table simile	90	

^{*} This formula differs slightly (not over one in 100 000) from that proposed by Helmert (14) and quite extensively used. A table similar to this, but based on Helmert's formula is given by Albrecht (1)

D. VARIATION OF GRAVITY WITH ELEVATION AND DEPTH

Elevation; Free Air Method.—If there were no matter projecting above the good and the good were a smooth ellipsoid of revolution, then the value (g_H) of the acceleration of gravity (cm/sec^2) at a height H meters above the surface would be related (15, 16) to that (g_s) at the surface, as indicated by equation (1), in which φ is the latitude.

$$q_H = q_0 - (0.000\ 308\ 55 + 0.000\ 000\ 22 \cos 2\varphi)H + 0.000\ 072$$

$$\left(\frac{H}{1000}\right)^2$$
 (1)

This is known as the free air correction. For most purposes it is sufficient to use the approximate formula (2).

$$q_H = q_0 - 0.000 \ 3086 \ H \tag{2}$$

If g_0 is taken from Table 2, the value of g_H obtained for any station by the use of equation (1) will agree fairly well with the true acceleration, if the surrounding topography is not too rugged. In a fairly flat country, the difference will be considerably less than 0.1 cm/sec¹, except in very rare cases; and even in a mountainous country, the difference will ordinarily be less than 0.2 cm/sec². For stations below sea-level, but not below the surface of the earth, the same formulae apply; but for such stations, H is negative.

More Exact Methods.—In mountainous country, the computed value will be practically as close to the true value as in flat country if an additional term is added to the right hand side of equation (1), to take account of the elevation of the place above or below the general level of the topography within a radius of, say, approximately 160 km. For every 10 m the place in question is above the general level, this term amounts to 0.001 cm/sec², and for every 10 m below the general level, it amounts to -0.001 cm/sec². In computing the height of a coast station above the general level, the water must be considered replaced by an equal mass of rock, of average surface density, resting on the bottom of the ocean.

If it is desired to obtain a somewhat better value for the computed gravity at a place, the correction term just mentioned must be replaced by a correction for topography and isostatic compensation, computed by the method of John F. Hayford (12).

A somewhat larger error should be expected in the computed values of gravity on oceanic islands than on the continents. The rocks forming these islands are evidently somewhat heavier than normal in many cases, or the ocean is over-compensated, and the observed values of gravity are therefore usually larger than the computed values. In such cases, an error of 0.3 cm/sec², or possibly even 0.4 cm/sec² in computed values may be expected.

Depth.—As the density of the crust is less than two-thirds the mean density of the earth, the acceleration of gravity increases as we advance into the crust. The mean rate of increase is 0.000 0851 cm/sec² per meter of depth. The actual rate at any place depends upon the density of the crustal material in that locality, and is approximately given by the formula (13, 17)

 $g_d = g_0 + (0.000 \ 3086 - 0.000 \ 0837\rho)d$ (3) where g_d = acceleration of gravity (cm/sec²) at the depth of d m, and ρ = density (g/cm²).

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Albrecht, Formeln u. Hülfstafeln f geog. Ortsbestimmungen, 296; 08. (2) Borrass, C. R. 16th Conf. Gen. Assoc. Geodesique Internat. 3: 201; 19. (3) Borrass, C. R. 17th Conf. Gen. Assoc. Geodesique Internat. 3: 201; 12. (4) Bowie, 217, No. 13: 12. (5) Bowie, 217, No. 99: 15. (6) Bowie, 217, No. 40: 17. (7) Boys, 62, 136: 1; 95. (8) Braun. 228, 64: 187; 96. (8) Couchman, Surrey of India, Prof. Paper, No. 18: 15.
- (1º) Curry, Survey Dept. of Egypt, Paper No. 18: 13. (11) Gigitsky and Yachontow, Bull. Astronomic Inst., No. 5: 28; 24. (12) Hayford and Bowie, 217. No. 10: 12. (12) Hellmert, Höhrer Geodasie, 2: 46, 492: 84. (14) Helmert, 76, 336; 01. (18) Helmert, 76, 651; 03. (18) Helmert, Encyklop math. Wiss, 6 (1B): 97; 10. (17) Ibid., p. 160. (18) Huelin, Trav. d l'Entire Peaanteur en Espagne, 24. (19) Love, 251, 28: 20; 22.
- (20) McDiarmid, Publ. Dominson Observatory, 2: 201; 15. (21) Ibid., 3: 357; 18. (22) Miller, Jour. Roy. Astron. Soc. Canada, 17: 10, 197; 23. (22) Niethammer, Astronomischpeodatische Arbeit. in d Schweiz; Schweizerischen geodat Komm 12, 13, 15, 16; 1910, 1911, 1910, 1921 (24) Vening Meinesz, Obs. Pendule dans Pays-Bas Publ. Com. Geod. Neerlandaise. 23.

AERODYNAMICS

L. J. BRIGGS AND H. L. DRYDEN

Problems in aerodynamics cannot be idealized with the same readiness as problems in mechanics. The side of a building may not be regarded as a thin, flat plate for the purpose of computing the force of the wind, and data for a cylinder of a particular length cannot be directly applied for computing the wind force on a cylinder of some other length. Nearby objects exert an influence which cannot be neglected.

Results obtained for a particular object can be applied strictly only to geometrically similar (definition 6) objects in similar aurroundings. Many of the apparent discrepancies among the results of different experimenters are to be attributed to departures from geometrical similarity of the models, to the effects of the supports or other nearby objects, and to differences in the fine structure (turbulence) of the approximately steady air streams, rather than to errors in measuring the force or wind speed. It is not possible to discuss these matters in detail here, and there is no complete discussion available for reference.

SYMBOLS

A	Some apecified area	CM	Moment coefficient (see
A,	Aspect ratio		paragraph on air foils)
C	A coefficient	C_N	Coefficient of force nor-
C.,	Coefficient of center of		mal to the plane of reference
C ₄	Coefficient of drag	CP	Coefficient of power
C_1	Coefficient of lift	-	(input)

CPo	Coefficient of power	N. A.	Natio
	out-put	C. A	. m
CQ	Coefficient of torque		108
('Qı	Coefficient of torque	n	Num
	load (output)		pe
C_T	Coefficient of force par-	P_{0}	Powe
	allel to the plane	_	pu
a	of reference	P_1	Powe
c_1	Coefficient of thrust	PR.	Pitch
CP.	Center of pressure	p	Press
c	Length of chord of air-		sui
	foil	p.	Stati
D	Diameter	Q	Torq
F	Resultant wind force	Q.	Torq
Fa	Drag - Component of	q	Dyne
	F parallel to wind		inc
F_f	Frictional force		tul
F_l	Lift - Component of F	Qe .	pV2/
	normal to wind and		col
	to W	R	Reyn
F_N	Component of F normal	S	That
	to the plane of refer-		pla
	ence		wh
FT	Component of F parallel		to
	to the plane of refer-	\boldsymbol{r}	Tem
	ence	i	Thiel
F_{t}	Thrust of propeller	v	Air
F,	Any component of P		poi
L	Some linear dimension	V_{ϵ}	India
M	Moment of F about for-	W	Widt
	ward (leading) edge		sio

N. A.	National Advisory Com-
C. A.	mittee for Aeronaut-
	1cs, U. S. A.
n	Number of revolutions
	per second
P_{0}	Power developed (out- put)
P_1	Power input to propeller
PR.	Pitch ratio
p	Pressure at a point on a surface
p_{\bullet}	Static pressure of the air
Q	Torque
Q_{\bullet}	Torque load (output)
q	Dynamic pressure, as
	indicated by Pitot
	tube (Fig. 1)
Q0	$\rho V^2/2$ = q if there is no
	compression of the air)
R	Reynold's number
S	That dimension of the
	plane of reference
	which is at right angles
	to the wind = Span
\boldsymbol{r}	Temperature
t	Thickness
\boldsymbol{v}	Air speed relative to
	point considered
V_i	Indicated air speed
H*	Width - That dimen-
	sion of plane of ref-

ance which is normal to S; i.e., makes least angle with wind Distance in the plane of reference, from the leading edge, or its projection to C. P.

Efficiency

Angle of attack

Viscosity
Density of air when undisturbed by bodies
moving relatively to it.
Conventionally chosen
"standard" value of \(\rho \)
A definite but unspecified mathematical function

DEFINITIONS

- 1. Angle of Attack (θ_A) is the angle which the direction of the wind makes with the plane of reference; it is positive if the wind strikes what is the under side of this plane when the body is in its usual position.
 - 2. Aspect ratio $(A_r) = S/W$.
- 3. Center of pressure (C. P.) of a body is that point, in the plane of reference, about which the resultant moment of the pressures is zero.
 - 4. Chord (c). See paragraph on airfoils.
 - 5. Coefficient of center of pressure (C_{cn}).

 $C_{ep} = x_c/W$; for airfoil, $C_{ep} = x_c/c$.

Fig. 1.—Standard Pitot-static tubes.

- 6. Geometrically similar systems. If two bodies together with their surroundings, are so related geometrically that one system corresponds exactly with a uniformly magnified image of the other, the two systems are said to be geometrically similar.
- 7. Indicated air speed (V_i) is defined by the relation $q = \rho V^2/2 = \rho_0 V_i^2/2$, where ρ_0 is the "standard" air density.
- 8. Mean temperature (T_m) of atmospheric air column below Z is that temperature for which the pressure at height Z in an isothermal column of air, pressure at bottom = 760 mm of mercury, would be that actually observed in the atmosphere at Z.
- 9. Pitch ratio $(P. R.)_x$ at any point of the blade of a propeller or of a wind-mill distant x from the axis of revolution is $(P. R.)_x = 2\pi x/D$ tan θ_x , where D is the diameter of propeller or mill wheel, θ_x = angle which face of blade makes with plane of revolution. If $(P. R.)_x$ is independent of x, propeller has a constant pitch ratio; if θ_x is independent of x, it has a constant blade angle.
- 10. Reynold's number $(R) = VL_{\rho}/\mu$, where L is some specified linear dimension. The choice of L depends upon the form of the object, and the problem. R is dimensionless.

CONSTANTS ASSUMED

Standard air density is $\rho_0=1.2255\,\mathrm{kg/m^4}(=0.002\,377\,\mathrm{slug/ft.^3}),$ which is essentially that of dry air, with normal CO₂ content, at 15°C and one atmosphere.

 $\mu/\rho = 1.427 \times 10^{-6} \,\mathrm{m}^2/\mathrm{sec}$ (= 1.535 \times 10⁻⁴ ft.²/sec).

For geometrically similar systems $F_x = qL^2\phi(R) = CAq$ (43), where ϕ is independent of the actual size of the system, and q is the value of the dynamic pressure at some specified point. (' is a function only of R and of the geometrical form of the system; its value is the same in every self-consistent system of units, and is independent of the actual size of the system. The data in the following tables and graphs apply when all surrounding bodies

are so far removed from the one considered that they produce me effect upon F.

Reduction of Observations.—To obtain true air speed from speed recorded by cup anemometer, use Table 1. Aerodynamic data are usually reduced to a standard air density (ρ_0) . For q, this reduction can be effected by replacing the true air speed (V) by the indicated air speed (V) (definition 7), and in most cases the same procedure is amply sufficient for C. Example: If V = 100 ft./sec in are at 30° C and 754 mm of mercury, $V/V_{*} = 1.030$ (Fig. 2); hence $V_{*} = 97.1$ ft./sec and $q_0 = 11.20$ lb./ft.* (Table 2). Owing to isentropic compression of air at this speed, the actual dynamic pressure (q) in 11.20/0.998 (Table 3) = 11.22 lb./ft.* = 54.78 kg/m*.

As a basis for the calibration of altimeters, and for use in the comparison of the performances of aircraft, it is assumed that (1) below a certain altitude (Z_i) , the rate of decrease (a) of the temperature (T) with the altitude is a constant; (2) above Z_i , a=0; (3) at Z=0, pressure $=p_0$, temperature $=T_0$. The temperature at $Z_i=T_i$; the mean temperature below Z is T_m . All temperatures are reckoned from absolute zero. Then, if $Z < Z_i$, $T_m = aZ_i \log_2(T_0/T_i)$; if $Z > Z_i$, $T_m = Z_i / {1 \choose a \log_2 T_i} + {1 \choose i \choose i}$, and for any value of Z_i , $Z_i = K_i / {T_0}$, ${1 \choose p}$.

The values of these constants define what is called the "standard" atmosphere. There is not entire agreement regarding the values which best represent the average atmospheric condition (28). Those adopted by the governmental aeronautic organizations of the U. S. A. and by many of those of Europears $T_0 = 288^{\circ}\text{C}$, $T_c = 218^{\circ}\text{C}$, $p_0 = 760$ mm of mercury, $a = 6.500 \times 10^{-19}\text{C/m}$ (= 1.9812 × 10⁻¹⁹C/ft.), $Z_i = 10760$ m (= 35332 ft.), K = 19413.3 m (= 63601.8 ft.). These differ slightly from those adopted by the Intermational Commission for Aerial Navigation (see p. 72).

Table 1. -Robinson Cup Anemometer*

True air speed = V; recorded speed = V_r . If unit is 1 mi./hr, $\log_{10} V = 0.079 + 0.9012 \log_{10} V_r$.

Unit is 1 mi./hr = 1.407 ft./sec = 0.4470 m/sec

	Unit i	я 1 mi./	hr = 1.40	7 It./800	, - 0.4410	111/1500	
1,	1	V.	V	V,	V	V,	V
	1 20	26	22 6	51	41 5	76	50.4
1	2.24	27	23 4	52	42 2	77	60.1
2	3.23	28	24.2	53	42.9	78	60.8
3	4 18	29	24 9	54	43.7	79	61.5
4	5 12	30	25 7	55	44.4	80	62.2
5	6 03	31	26 5	56	45.1	81	62.9'
6	6 93	32	27 3	57	45.9	82	63.6
8	7.81	33	28 0	58	46.6	83	64.8
1	8 69	34	28 8	59	47.3	84	65.0
9	9 55	35	29.5	60	48 0	85 🕳	65.7
10 11	10 4	36	30.3	61	48 7	86	-, 66 . 4
	11.3	37	31 1	62	49.5	87	67.1
12 13	12 1	38	31 8	63	50.2	88	67.8
	12.9	39	32.6	64	50.9	89	68.5
14 15	13.8	40	33.3	65	51.6	90	69.2
16	14.6	41	34.1	66 -	52 3	91	69.9
17	15.4	42	34 8	67	53 0	92	70.6
18	16 2	43	35.6	68	53.8	93	71.3
19	17.0	44	36.3	69	54.5	94	72.0
	17.8	45	37.1	70	55.2	95	72.7
20 21	18.6	46	37.8	71	55.9	96	73.4
22	19.4	47	38.5	72	56.6	97	74.0
23	20 2	48	39.3	73	57.3	98	74.7
1	21.0	49	40 0	74	58.0	99	75.4
24	21.0	50	40.7	75	58.7	100	76.1
25	41 0	1 00		4			al oune a

• U. S. Weather Bureau type; diameter of cups = 4 in.; centers of cups are 6 72 in. from axis; $V_r = 3$ times linear speed of centers of cups $^{(3_1,83_1,83_2)}$

Table 2.—Dynamic Pressure $(q=q_0)$ for Indicated Air Speed V_i Air compression is negligible, and $q=q_0=\rho_0V.^2/2$ if $V_i<30$ m/sec (=100 ft./sec); for greater speeds, q exceeds q_0 , see Table 3. Metric units are m, kg, sec. English units are ft., lb., sec. 1 lb./ft.² = 4.882 kg/m²; 1 ft./sec = 0.3048 m/sec.

Metric	1	English	Metric	1	English	1			E	nglish			
q.	- V.	70	q ₀	V.	q 0	V,	90	V.	q ₀	V_{i}	90	V_{\bullet}	q_0
0.063	1 1	0.00119	42 25	26	0 8038	. 51	3.093	76	6.868	101	12.13	126	18 88
0 250	2	0 00476	45 56	27	0 8668	52	3 215	77	7.050	102	12.37	127	19 18
0.562	3	0 01070	49 00	28	0.9322	53	3 340	78	7.234	103	12.61	128	19 48
1.00	4	0 0190	52 56	29	0 9999	54	3 467	79	7.421	104	12.86	129	19 79
1.56	5	0 0297	56 25	30	1 070	55	3 597	80	7.610	105	13.11	130	20 09
2.25	6	0.0428	60-06	31	1 143	56	3 729	81	7.801	106	13.36	131	20.40
3.06	7	0 0583	64 00	32	1 218	57	3 863	82	7.995	107	13.61	132	20.72
4.00	8	0 0761	68 06	33	1 295	58	4 000	83	8.191	108	13.87	133	21 03
5 06	9	0 0963	72 25	34	1 374	59	4 139	84	8.390	109	14.13	134	21 35
6 25	10	0 1189	76 56	35	1 457	60	4.280	85	8.591	110	14.39	135	21 67
7 56	11	0 1438	81 00	36	1.511	61	4 421	86	8 794	111	14.65	136	21.99
9 00	12	0 1712	85 56	37	1 628	62	4 571	87	9.000	112	14 91	137	22 32
10.56	13	0.2009	90-25	38	1 717	63	4 719	88	9 208	113	15 18	138	22 61
12 25	11	0 2330	95 06	39	1 808	64	4 870	89	9.418	114	15 45	139	22 97
14 06	1.5	0.2675	100 0	40	1 902	65	5 024	90	9.631	115	15.72	140	23 30
16 00	16	0 3044	105 1	11		66	5 179	91	9 846	116	16.00	141	23 64
18 06	17	0 3436	110-3	12	2 097	67	5 337	92	10 06	117	16.28	142	23.97
20 25	18	0 3852	115-6	43	2 198	68	5 498	93	10 28	118	16 56	143	24.31
22 - 56	19	0 4292	121-0	-11	2.302	69	5.661	94	10 51	119	16 84	144	24 66
25 (0)	20	0 4756	126-6	45	2 408	70	5 826	95	10 73	120	17 12	145	25.00
27 56	21	0 5243	132 2	46	2 516	71	5 991	96	10 96	121	17.41	146	25.34
30.25	22	0 5755	138.1	17	2 627	72	6 164	97	11 18	122	17.70	147	25 69
33.06	23	0 6290	111 0	18	2 739	73	6.336	98	11 42	123	17.99	148	26.04
36 00	21	0 6849	150 1	49	2 855	71	6 511	99	11 65	124	18.28	149	26.40
39 06	25	0 7431	156 3	50	2 973	75	6 688	100	11 89	125	18.58	150	26.40

Fig. 3.—Air force: flat plates normal to wind.

Fig. 2.—Ratio of true air speed (V) to indicated air speed (V_i) ,

Table 3. -Correction for Isentropic Compression (63) Metric (M) unit of V = 1 m/sec; English (E) = 100 ft sec

Į.	,	$\rho v^2/2q$		1.	$\rho v^2/2q$
E	M	$= q_0/q$	E	V	$= q_0/q$
1	30	0 998	6	183	0 931
2	61	0 992	7	213	0 907
3	91	0.982	8	244	0.881
4	122	0.969	9	274	0 852
5	152	0 951	10	305	0 822

Table 4. Wind Pressure on Structures Reference plane (see below) is normal to wind. $F_N = C_N Aq;$

 $A={
m area}$ of projection of object upon reference plane
 Unit of $F_{
m V}/A=1$ lb./ft. $^2=4.88$ kg/m 2 Object
 $|C_N||F_N/A^*$

	Object		C_N	F_N/A^*
1. Long flat plate			2	30
2. Square flat plate			1 1	16
3. Rectangular prism	(1:1:5) (75)		1.6	24
4. Long cylinder .			08	12
Short cylinder			0.7	10

^{*}For V = 76 mi per hr (=34m /per sec) true speed = 100 mi, per hr recorded by Robinson anemometer.

Fig. 4. -Pressure distribution oblong, rectangular plate, inclined (12, 13).

Wind Pressure on Structures .- One must consider (1) maximum wind speed to which the structure will be subjected, (2) the value of the coefficient C_{Λ} , and (3) the effective exposed area. The first and the third depend upon local conditions; in the third, shielding effects are very important. The value of Cy should be determined from observations upon a model of the actual structure, as experiments upon flat plates are of little value for this purpose. Opinions differ regarding whether, in gusty winds, the maximum value of F_N is determined by the average or by the maximum value of V(20, 52). Approximate values of C_N for certain typical cases are given in Table 4, where reference plane for flat plate is surface of plate; for prism, its largest face; for cylinder, the plane through axis and normal to that which contains axis and direction of wind. Object (1) is comparable to such structures as wireless masts and long narrow bridge girders; (2) to thin square signboards; (3) to tall buildings; (4) to chimneys; (5) to cylindrical water tanks.

Table 5.—Surface Friction (F_f) on Thin Flat Plates (Standard density and viscosity)

 F_f (= $\int f dA$) = 0.0375 $AqR^{-0.16} = F_0AK_uK_v$. (5.61) where A = total area (both sides) exposed to air stream, F_0 is a factor depending upon the density and viscosity of the air and upon the units employed, and K_v are numerical factors determined, respectively, by the width (W) of the plate in the direction of the stream, and by the speed (V). F_0 is independent of the ratio S/W, provided 0.5 < (S/W) < 2; if S/W = 30, F_0 is 10% loss than the value given in the table. For effect of roughness (it is great), and for variation of f from point to point see (22, 24, 32, 53, 54, 55, 62).

m³;	m² l == 1	g; of A	$F_{v} = 0.03$		ft. ⁷ A = 1 ft. ² ;	lb.; of	$F_0 = 0.04$	Unit o
v	К	V	K _w	W	К,	V	K _w	w
. 000	1.	10	1 000	1	0 014	10	1,413	1
605	3.	20	0.901	2	0 051	20	1 273	2
. 633	7.	30	0.848	3	0 108	30	1 198	3
.00	13.	40	0 812	4	0 184	40	1 147	4
. 64	19.	50	0.786	5	0 277	50	1 110	5
. 52	27	60	0 764	6	0 389	60	1 080	6
60	36	70	0 747	7	0 517	70	1 055	7
. 85	46	80	0 732	8	0 662	80	1 034	8
. 26	58	90	0.719	9	0 823	90	1 016	9
.80	70	100	0.708	10	1.000	100	1 000	10
45	84	110	0.698	11	1 193	110	0.986	11
. 19	99	120	0.689	12	1 401	120	0.973	12
.0	115	130	0 681	13	1 625	130	0 961	13
. 9	131	140	0.673	14	1 864	140	0 951	14
. 9	149	150	0 666	15	2 117	150	0.941	15
. 9	168	160	0 638	20	2 386	160	0.901	20
9	188	170	0.600	30	2 669	170	0.848	30
.0	210	180	0 575	40	2 967	180	0.812	40
. 1	232	190	0 556	50	3 279	190	0.786	50
. 2	255	200	0.501	100	3 605	200	0.708	100

Fig. 5.—Pressure distribution: thin circular disc normal to wind. Fig. 7.—Coefficients: inclined, rectangular plates, $A_r = 3$. (See Table 6.)

Fig. 8.—Coefficients: inclined rectangular plates, $A_r=6$. (See Table 6; for notation, v. Fig. 7.)

Table 6.—Experimental Data; Figures 6, 7, 8 Unit of S and W=1 cm; of t=1 mm; of TD=1 m; of $R^{\dagger}=1000$

	Fig. 6				Fig. 7		Fig. 8				
		×	+	0		×	+	. 1	×	+	()
S	25 25	30.5 30.5		12 12	45 15	7.6 2.5	36 12	90 15	30 5 5 08	72 12	30.5 5.08
t TD* R	3 1.5 210	3.18 ∞ 382	1.7 2.0 55	1.2 42	3 1.5 126		1.7 2.0 55	3 1 5 126	1 17 1.37 64	1 7 2 0 55	1.29 1.37 64

^{*} TD = tunnel diameter.

The flow about a sphere is extremely sensitive to slight changes in the method of support, and to the condition of turbulence of the air stream. Changes in C are associated with changes in the locus of the points at which the smooth flow leaves the surface, forming a highly turbulent region to the rear. The location of this locus is determined solely by the irregularities in the air stream, as there are no sharp edges or other geometrical feature which might serve to fix it.

Airfoils.—Aerodynamical characteristics are specified in the same manner as are those of plates. An airfoil's area and angle of attack are conventionally defined with reference to some specified plane. The area of the airfoil is defined as that of its normal projection upon this plane of reference. The length (c) of

the projection upon this plane of any fore-and-aft section of the airfoil is called the chord of that section; it is the unit in terms of which all dimensions of that section are expressed. The form of the section is specified by the rectangular coordinates of points upon its boundary; the choice of axes is immaterial, although usually one axis is in the plane of reference. The aspect ratio (A_r) of the airfoil is defined as the ratio of length of span (S) to length of the chord. In addition to the coefficients considered for plates, the moment coefficient $C_M = M/(qAc)$, and the lift-drag ratio (F_1/F_d) are also of importance.

Data are usually given for $A_r = 6$. If $A_r > 3$, then for a given C_1 , $\theta_A = \theta'_A + C_1/\pi A_r$ radians, and $C_4 = C'_4 + C^2_1/\pi A_r$, θ'_A and C'_4 are values of θ_A and C_4 when $A_r = \infty$; $C_1/\pi A_r$, and $C^2_1/\pi A_r$ are called the induced angle of attack and the induced coefficient of drag, respectively (25, 26, 42, 72).

For airfoils, C_t increases slightly, and C_d decreases very appreciably, as R is increased; C_{cp} remains unchanged. The difference between the values of the coefficients for airfoils of the size used on aircraft and those for models of the size generally employed in laboratory tests, depends upon the form of the airfoil; for a thin, low cambered section (RAF 15), it is small; for a highly cambered section, it is large.

For the effects produced by placing one airfoil near another, as in a biplane combination see (26, 27, 36, 42, 74).

For a complete airplane, the drag introduced by the body, and the moment of tail lift, both vary appreciably with the size of the airplane (6.67, 73).

[†] R is dimensionless.

Fig. 11.—Air force: non-rotating circular cylinders.

Fig. 13.—Air force: rotating circular cylinders (Magnus effect).

Fro. 14.—Direction of air force: rotating circular cylinders (Magnus . effect).

Fig. 15.- Pressure distribution; airfoil (30).

Fig. 16.—Air force on long struts (40, 64, 78, 79).

Fig. 17.—Air force on strut 4Z: inclined (**), see also (4).

· TABLE 7.—CHARACTERISTICS OF AIRPOIL SECTIONS

 $A_r = 6$; model 36 in. by 6 in.; V = 40 mi./hr; $R(=\rho V c/\mu) = 181\,000$; tunnel diameter = 7.5 ft. (\$7). θ_A is measured from reference plane AB (see Figs. 22, 23, 24); x and y are rectangular coordinates of points on surface of airfoil (y_u , y_i refer to upper and lower surface, respectively); x is measured in plane AB. Unit of x and of y is 1% of chord. For additional data for these and other sections see (12, 13, 14, 34, 37, 68, 69, 70, 73, 80, 81).

other sections see (12, 13, 14, 34, 37, 68, 69, 70, 73, 80, 81).								
	Form		Ī	Aerody	ynamica	l charac	teristics	1
x	1 2.	l yı	1 84	Cı	Ca	F_t/F_d	I xe/c	C'M
	1				PAT 15			
0.00	0.30	+0.30	A.S.		****	••••		
1.25	1.90	-0.35	i		Fic	3. 22.		
2.50		-0.70		-0 18			-	-
5.00		-1.05		-0 04		-2.8	_	-
7.50		-1.15		+0.03		+2.6	0.966	
10.00		-1.20		0.14		10.7	0.479	
15.00		-0.85		0 24		18.8	0.407	0.098
20.00		-0.55	1 .	0.32		20.0	0.367	0.117
80.00	1	-0 10	1 -	0.46	1 1	20.0 18.4	0.321	0.148 0.185
40.00 50.00		-0.03 -0.24		0.61	1	16.4	0.302	
60.00		-0.24		0.10		14.7	0.288	0.260
70.00		~0.65		1 00	i i		0.281	
80.00		-0.65	14°	1.02		8.2	0.298	
90.00		-0.30		1.02	0.121	٠,٠.٠	0.200	0.010
95.00		0.00						
100.00								
0.00	1 1	0.00	/		T-MBEN 387		_	
1.25	2.02	-1.65	۸.	401	T-HEEN 387			
2.50 5.00		-2.45 -3.46			Fra.	93		
7.50	4.47		4° [-0.26			1	
10.00		-4.57	-2°	-0.10		-8 8		_
15.00		-5.27	0°	+0.04	, ,	+3.1	0.197	0.008
20.00		-5 58	20	0.01	, ,	12.4	0.13	0.040
30.00		-5.69	4°	0 33		17.2	0.229	0.076
40.00		-5.27	в°	0.50		17.5	0.241	0.121
50.00		-4.52	8°	0.65	, ,	16 2	0.242	0.159
60.00		-3.56	10°	0.78		14 6	0.244	0.193
70.00	2.61	-2.39	12°	0.88	0.076	11.6	0.246	0 220
80.00	1.60	-1.44	14°	0.73	0.170	4.3	0 234	0.181
90.00	0.69	-0.74	16°	0.70	0.239	2.9	0.382	0.293
95.00	0.37	-0.43	1					
100.00	0.16	-0.16	- 1					
			_			-		
			^<	.00111	NOEH 429			w— B
	3,61	3.61			12.	0.4		
1.25	6.74	1.35	00.1	0.05	Fig.			
2.50	7.98	0 80	-8°	-0.07		-0.9		-
5.00	9.86	0.35	-6° -4°	+0.08	0.031	+2 6	1.410	0.109
7.50		0.18	-4°	0.22 0.37	0 024	9.4 14.3	0.684	0.150 0.188
10.00		0.00	-2 0°	0.51	0.020	16.4	0.436	0.100
15.00 20.00		0.07	2°	0.66	0.039	16.9	0.430	0.261
30.00		0.21	40	0.81	0.051	15.9	0.369	0.300
40.00		0.37	6°	0.96	0.067	14.3	0.348	0.336
50.00		0.54	8°	1.10	0.084	13.0	0.337	0.374
60.00		0.54	10°	1.23	0.104	11.8	0 323	0.403
70.00		0.54	12°	1.33	0.125	10.6	0.307	0.416
80.00		0.49	14°	1.42	0.148	9.6	0.312	0.454
90.00	3.61	0.27	16°	1.43	0.182	7.9	0 315	0.466
95.00	1.99	0.16	18°	1.42	0.213	6.7	0.327	0.486
100.00	0.36	0.00	20°	1.41		!		

Table 8.—Form of Struts; U. S. Navy 3, British 4Z (See Fig. 16) (These struts give as small a C_d as any)

Unit = axial length of section

	2	y		2	y		2	v
r	U.S.N. 3	4Z	x	U.S.N. 3	4Z	x	U.S.N. 3	42
0	0	0	0.250	0.240		0.700	0.184	0.182
0.025	0.092		0.300	0.247	0.250	0.750	0.164	
0 050	0.132	0.122	0.350	0.250		0.800	0.142	0.142
0 075	0 159		0.400	0 250	0.246	0.850	0.116	
0 100	0.180	0 182	0.450	0 250		0.900	0.085	0.094
0 125	0.197		0.500	0.240	0.234	0.950	0.049	
0 150	0 210		0.550	0.230		1.000	0.000	0.000
0.175	0 220		0.600	0.215	0.212			
0 200	0 229	0 240	0 650	0 201	- 1			

Fig. 18.—Durand's $F:A_1S_1P_1$ propeller family. Pitch ratio constant. (Members differ only in pitch ratio.)

Fig. 19.—Characteristics of Durand propellers at a fixed point (8, 18).

Elongated stream-line solids of revolution have a small resultant drag, which varies greatly with turbulence of air stream, position of neighboring bodies, and slight changes in form. The area entering into the expression F = CAq, is generally taken either as the area of maximum section normal to the length, or as (volume). C varies with the Reynold's number. When $A = (\text{volume})^{34}$, the minimum value of C for large values of R, and for bodies which are 4 to 5 diameters long, is of the order of 0.014. When $A = (\text{volume})^{34}$, the minimum value of C is of the order 0.03, and sobtained with bodies shorter than 4 diameters. Their equilibrium when parallel to the air stream is unstable; adding fins gives stability and greatly increases their drag (23, 35, 39).

611

Propellers.-Propellers are usually divided into families in which nitch-ratio and diameter are the only variables. Blade thickness and outline are usually determined largely by structural considerations: if the average thickness and width of blade are fixed other variations have small effect upon attainable efficiency (8, 9, 18, 19, 65, 66, 71, 76, 77).

The characteristics of a propeller working at a fixed point may be expressed by two dimensionless coefficients, C, and Cp. defined by the equations $F_i = C_i \rho n^2 D^4$ and $P_i = C_{\rho \rho} n^2 D^3$. For most propellers, there is, between C, and CP, a functional relation which is nearly independent of the design, provided large blade angles are not used (33). In Fig. 19, the curve indicates the most favorable results; marked departures from the curve occur mainly with propellers of high pitch ratio, or of constant blade angle.

Fig. 20.—Characteristics of advancing Durand FiAiSiPi propeller family (*).

The characteristics of propellers at various forward speeds (V)and speeds of rotation may be expressed by curves showing the relationships between three parameters. In Fig. 20, the parameters used are C_t , C_P , and s or η , defined by the equation $F_t =$ $C_{i\rho}V^{2}D^{2}$, $P_{i}=C_{P\rho}n^{2}D^{3}$, s=V/Dn; $\eta=C_{i}s^{3}/C_{P}$, and D= diameter of the propeller. Useful range of C_{i} is 0.05 to 0.25; of CP is 0.04 to 0.16. Data given are for propellers of two blades; increasing the number of blades, displaces the curves upwards and to the right.

Wind mills.—Quite different principles control the designing of wind mills which derive power from natural winds, and of those (such as the small wind mills used on airplanes for driving fuel pumps, etc.) which derive their power from the motion of a power driven craft. In the former, the controlling factor is the cost per unit of power developed; in the latter, it is the power consumed per unit of power, or torque load, developed.

TOTTA CUTT

(For a key to the periodicals see end of volume)

(1) Allen, 5, 50; 323, 510; 00. (2) Racon and Reid, 297, No. 186. (3) Brad-Alien, S, 80; 323, 310; 100. (*) Hacon and Reid, 897, No. 388. (*) Briell, 898, No. 712. (*) Cowley, et. al., 500, No. 886. (*) Diehl, 888, No. 103. (*) Diehl, 897, No. 111. (†) Direc, 5, 48; 233; 90. (*) Durand and Lealey, 297, No. 30. (*) Ibid, No. 141.

Durand, et al., 298, No. 4, apps. (11) Dryden, St. No. 894; 20. r sourmus, et at , zero, No. e, apps. (**) Dryden, 31, No. 396; 39. (**) Effel, Resistance de l'air et l'ariation (Paris, Dunod et Pinat), 3nd ed., 9. 42. (*) Ibid., p. 150. (**) Ibid., p. 231. (**) Effel, Noucelle recherches va. (**) 1010, p. 100. (**) 1010, p. 201. (**) 1110, Novelle Feet sur la resistance de l'air et l'aviation (Paris, Duond et Pinat), p. 87. Eistel, Travaux Laboratorie aerodynamique Mysl, 1918-18, p. 80. (**) (18) Fage, 500, No. 106. (19) Fage, Airscrews in Theory and Experiment (London Constable and Co.), 1920.

naperimens (London, Comando and Co.), 1920.

Fleming, Wind Preserve on Structures, 1915. (21) Foppl, 201, 4: 51;10.

(22) Froude, 155, 1872: 118. 1874: 249. (23) Fuhrmann, 201, 5: 65; 11. (84) Gibbons, 297, No. 6, pt. 1. (15) Glauert, #89, No. 728. (16) Ibid. No 889. (27) Ibid., No. 901. (28) Gregg, 207, No. 147. (29) Humanior, 308 49: 4: 77: 16

303, 63: 4: 77; 16.
 Jones and Paterson, 500, No. 78.
 Janes and Paterson, 500, No. 148.
 (23) Lanchester, 500, No. 148.
 Margoulis, Les helicopteres.
 (24) Morre, U. S. Air Service, Inf. Circ. No. 478.
 Morre, U. S. Air Service, Inf. Circ. No. Bason, 507, No. 188.
 Pannell, 500, No. 180.
 Pannell, 500, No. 190.
 Pannell and Jones, 500, No. 190.

-Characteristics of two blade windmill (17).

(40) Powell, 500, No. 416. (41) Ibid, No. 899. (42) Prandtl, 297, No. 116. (42) Rayleigh, 300, No. 39. (44) Reid, 898, No. 309. (45) Reif, 300, No.

(42) Rayleigh, 300, No. 32.
(43) Rein, 398, No. 300.
(44) Reif and Powell, 300, No. 307.
(47) Risbouchinaki, 308, No. 46.
(48) Ibid., 4:113; 12.
(49) Ibid., 5:73; 14.
(19) Risbouchinaki, 208, No. 46.
(49) Risbouchinaki, 208, No. 46.
(41) Risbouchinaki, 208, No. 46.
(42) Risbouchinaki, 208, No. 46.
(43) Riston, 115.
(49) Riston, 115.
(49) Riston, 115.
(40) Riston, 115.
(40) Riston, 115.
(41) Riston, 115.
(41) Riston, 115.
(42) Riston, 115.
(43) Riston, 115.
(44) Riston, 115.
(45) Riston, 115.
(45) Riston, 115.
(46) Riston, 115.
(47) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(49) Riston, 115.
(41) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(49) Riston, 115.
(49) Riston, 115.
(40) Riston, 115.
(41) Riston, 115.
(41) Riston, 115.
(41) Riston, 115.
(42) Riston, 115.
(43) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(48) Riston, 115.
(Warner, E. P., O. (**) Weinelnberger, Z. Flugtschnik Motorluftschiffahri, 8: 140: 14. (**) Ibid. 6: 127: 15.

297, No. 98. (69) Ibid , No. 124.

897, No. 98. (**) Ibid., No. 18a. (1) Ibid., Nos. 14, 64, 89, 109, 168, *17s, 177, 183, 186, 196, 307, (**) Zahm., 304, 1: 37; 21. (**) Ibid., \$1.9, 10, 11; 23. (**) Ibid., \$1.9; 10, 11; 23. (**) Ibid., \$1.9; 20, 11; 23. (**) Zahm., 308, \$1.3; 90, (**) Ibid., \$1.9; 20; 21. (**) Zahm. 26s. Ber. Fluqseugmeisterei, \$1. No. 4: 119; 17. (**) Ibid., \$2, No. 1: 15; 18.

No. 4; 119; 17. (**) Iost., 2; No. 1; 10; 10.

8; Zahm, Tech. Ber. Flupseupmeistere; 1, No. 5; 148; 17. (*1) Ibid., 1, No. 6; 204; 17. (*2) Zahm, Anemometry (3rd ed.) U. S. Weather Bureau, Inst. Div., Circ. D. (*2) Zahm, 306, 37; 288; 97. (*4) U. S. Bureau of Standarda, O. (*2) The National Physical Laboratory, O.

LITERATURE REFERENCES

LITERATURE REFERENCES

In all literature references cited in International Critical Tables the name of the journal or publication is indicated by means of a Key Number corresponding to the list given below. The numbers which follow this key number in a literature citation are, in the order named: (1) the volume, (2) the page, and (3) the last two figures of the year. Thus, 64V, 31: 253; 22, indicates Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, Vol 31, page 253, 1922. Series numbers are not given. Key Numbers referring to books and other non-serial publications are preceded by the letter B, and the volume number is given in Roman numerals. Thus, B10, IV: 191; 18 indicates Doelter, Handbuch et Mineralchemie, page 191 of Vol. 4 of the 1918 edition. The Key Number O is used to indicate "private communication from."

RÉFÉRENCES BIBLIOGRAPHIQUES

Le nom du journal ou de la publication de toutes les références bibliographiques citées dans les Tables critiques internationales est indiqué au moyen d'un nombre-clé correspondant à la liste donnée ci-dessous. Les nombres qui suivent ce nombre-clé dans un renvoi bibliographique indiquent dans l'ordre suivant: (1) le volume, (2) la page, et (3) les deux derniers chiffres de l'année. Ainsi 64V, 31: 253; 22, indique Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, vol. 31, page 253, 1922. Les numeros des séries ne sont pas donnés. Les nombres-clés arapportant à des livres ou à des publications non périodiques sont précédés de la lettre B et le numéro du volume est donné en chiffres romains. Ainsi, B10, IV: 191; 18 indique Doelter, Handbuch der Mineralchemie, page 191 du volume 4 de l'édition de 1918. Le nombre-clé O est employé pour indiquer "communication privée de."

DAS LITERATURVERZEICHNIS

In allen Literaturstellen, die in I. C. T. verzeichnet sind, ist der Name der Zeitschrift oder der Publikation mit Hilfe einer Schlusselnummer, entsprechend der unten folgenden Liste, angegeben. Die Zahlen, welche diesen Schlüsselnummern bei einem Literaturzität folgen, bedeuten der Reihe nach: (1) der Band, (2) die Seite und (3), die letzten zwei Zahlen des Jahrganges. So bedeutet z. B. 64V, 31: 253; 22, Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, Band 31, Seite 253, 1922. Serien-Nummern werden nicht angegeben. Der Schlüsselzahl wird ein B vorausgesetzt, wenn sie Bücher, oder eine andre nicht periodische Veröffentlichung bezeichnet. Die Bandnummer wird durch römische Ziffern angegeben. Es bedeutet z. B. also B10, IV: 191; 18, Doelter, Handbuch der Mineralchemie, Seite 191, des 4. Bandes, der Auflage des Jahres 1918. Die Schlüsselzahl Null wird gebraucht, um anzuzeigen, dass es eine private Mitteilung ist.

INDICAZIONI BIBLIOGRAFICHE

In tutte le indicazioni bibliografiche che si incontrano nele "Tabelle Critiche Internazionali" il nome del giornale o della pubblicazione è espresso con un numero chiave riportato nell'elenco dato più oltre. I numeri che, nella citazione, vengono dopo il numero chiave sono disposti con l'ordine seguente: (1) il volume, (2) la pagina, e (3) le ultime due cifre del millesimo. Cosi 64V, 31: 253; 22, indica la Verslag Koninklijke Akademie van Wettenschappen te Amsterdam, Vol. 31, pagina 253, 1922. I numeri di serie non vengono dati. Quando un numero chiave è preceduto dalla lettera B si riferisce a libri o ad altre pubblicazioni non periodiche, e il numero del volume viene allora seritto in cifre romane. Cosi B10, IV: 191; 18 indica Doelter, Handbuch der Mineralchemie, pagine 191 del IV° volume dell'edizione 1918. Il numero chiave O indica "Comunicazione privata da"

KEY TO THE PERIODICALS

Data regarding the libraries which receive many of these penodicals may be found through the following sources:

United States and Canada: "Periodicals Abstracted by Chemical Abstracts, 1926" (Chemical Abstracts, Ohio State Univ. ('olumbus, Ohio); "Union List of Serials in the Libraries of the United States and Canada, 1925- " (H. W. Wilson & Co., New York City); "A Catalogue of Scientific Periodicals in Canadian Libraries, 1924" (McGill Univ., Montreal, Canada).

Great Britain: "A World List of Scientific Periodicals Published in the Years 1900-1921" (Oxford Univ. Press, London, 1925)

Holland: "Chemisch Jaarboekje tevens Jaarboekje der Nederlandsche Chemische Vereeniging, vol. 3." (Amsterdam, D. B. Centen, 1920.)

- 1. Journal of the American Chemical Society.
- 2. Physical Review.
- 3. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science.
- 4. Journal of the Chemical Society, London
- 5. Proceedings of the Royal Society (London). A Mathematical and Physical Sciences.
- 6. Annales de chimie et de physique. See also Nos 14 and 16
- Zeitschrift für physikalische Chemie, Stochiometrie und Verwandtschaftslehre.
- 8. Annalen der Physik. [Journal der Physik, 1790-1794. Neues Journal der Physik, 1795-1796. Annalen der Physik, 1799 1819: Annalen der Physik und der physikalische Chemie, 1819-1824 (Gilbert). Annalen der Physik und Chemie, 1824 -1899 (Poggendorff, Wiedemann). Annalen der Physik. (Drude, Wien and Planck). 1900-
- 9. Zeitschrift für Elektrochemie und angewandte physikalische Chemie.
- 11. American Chemical Journal. Combined with No. 1 in 1914
- 12. American Journal of Science.
- 13. Annalen der Chemie, Justus Liebig's.
- 14. Annales de chimie.
- 16 Annales de physique.
- 18. Archives Néerlandaises des sciences exactes et naturelles. Series III A. Sciences exactes
- 19. Arkiv for Kemi, Mineralogi och Geologi
- 21. Astrophysical Journal.
- 22. Atti della reale accademia nazionale dei Lincei. (Rendiconti classe di scienze fisiche, matematiche e naturali)
- 24. Atti del reale istituto Veneto di scienze, lettere ed arti.
- 25. Berichte der deutschen chemischen Gesellschaft
- 26. Berichte der deutschen physikalischen Gesellschaft. See also No. 96.
- 27. Bulletin de la société chimique de France.
- 28. Bulletin de la société chimique de Belgique.
- 29. Bureau of Mines, Bulletins.
- 31. Bureau of Standards, Scientific Papers
- 31A. Bureau of Standards, Bulletin
- 32. Bureau of Standards, Technologic Papers.
- 33. Chemical and Metallurgical Engineering.
- 34. Comptes rendus hebdomadaires des séances de l'académie des sciences, de l'institut de France.
- 36. Gazetta chimica italiana.
- 38. Journal of the American Ceramic Society.

- 41. Journal of the Chemical Society of Japan (Nippon Kwagaku Kwai Shi)
- 42. Journal de chimie physique.
- 15 Industrial and Engineering Chemistry
- 17. Journal of the Institute of Metals, London.
- 48, Journal of the Optical Society of America and Review of Scientific Instruments.
- 50. Journal of Physical Chemistry.
- 51. Journal de physique et le radium. See also No. 199.
- 53. Journal of the Russian Physico-Chemical Society.
- 54. Journal of the Society of Chemical Industry.
- 55, Kolloid-Zeitschrift (Formerly Zeitschrift für Chemie und Industrie der Kolloide)
- 57. Monatshefte für Chenne und verwandte Teile anderer Wissenschaften.
- 58. Nature, London.
- 59. Nuovo Cimento.
- 62 Philosophical Transactions of the Royal Society of London.
- 63 Physikalische Zeitschrift
- 64P Proceedings of the Royal Academy of Sciences of Amsterdam
- 64V. Verslag komnklijke Akademie van Wetenschappen te Amsterdam
- 65 Proceedings of the American Academy of Arts and Sciences.
- 67. Proceedings of the Physical Society of London.
- 68. Proceedings of the Royal Society of Edinburgh.
- 69. Proceedings and Transactions of the Royal Society of Canada.
- 70. Recueil des travaux chimiques des Pays-Bas.
- 72 Rendiconti reale istituto Lombardo de scienze e lettere
- 75. Sitzungsberichte Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse.
- 76. Sitzungsberichte der preussischen Akademie der Wissenschaften.
- 77. Stahl und Eisen.
- 78. Transactions of the American Electrochemical Society.
- 80. Transactions of the American Institute of Mining and Metallurgical Engineers
- 83. Transactions of the Faraday Society.
- 88. Verhandlungen der physikalischen Gesellschaft zu Berlin, See also No. 96
- 89. Wissenschaftliche Abhandlungen der physikalisch-technischen Reichsanstalt.
- 91. Zeitschrift für analytische Chemie.
- 92. Zeitschrift für angewandte Chemie.
- 93. Zeitschrift für anorganische und allgemeine Chemie.
- 94. Zeitschrift für Krystallographie. (Name changed in 1921 from Zeitschrift für Kristallographie und Mineralogie.)
- 95. Zeitschrift für Metallkunde.
- 96. Zeitschrift für Physik. (Verhandlungen der physikalischen Gesellschaft zu Berlin, 1882–1898; Verhandlungen der deutschen physikalischen Gesellschaft, 1809–1902; Berichte der deutschen physikalischen Gesellschaft, 1903-1919; Zeitschrift für Physik, 1920 -
- 98. Zeitschrift des Vereines deutscher Ingenieure.
- 101. Elektrotechnische Zeitschrift
- 105. Journal of the Society of Glass Technology.
- 112. Dinglers polytechnisches Journal.
- 115. Engineering.
- 1 119. Proceedings of the American Institute of Electrical Engineers.

- 128. Journal of the Washington Academy of Sciences.
- 182. Anales de la sociedad española de física y química.
- 133. British Association for the Advancement of Science, Reports.
- 135. Chemical News and Journal of Industrial Science. (Name changed in 1921 from Chemical News and Journal of Physical Science.)
- 136. Chemiker Zeitung.
- Kongelige Danske Videnskabernes Selskab, Mathematiskfysiske Meddelelser.
- 138. Societas scientiarum fennica. Commentationes physicomathematicae.
- 139. Ferrum.
- 140. Journal of the Iron and Steel Institute, London,
- 141. Journal of Biological Chemistry.
- 143. Journal of the Franklin Institute.
- 144. Mathematikai ès Természettudomanyi Ertesitő, Budapest.
- 147. Meddelanden från K. Vetenskapakademiens Nobelinstitut.
- 149. Archives des sciences physiques et naturelles. (Bibhothèque brittanique, 1790-1815; Bibhothèque universelle des sciences, belles-lettres et arts, 1816-1835; Bibhothèque universelle de Genève, 1836-1845; Supplément à la bibhothèque universelle de Genève. Archives des sciences physiques et naturelles, 1846-1847; Bibliothèque universelle de Genève. Archives des sciences physiques et naturelles, 1848-1857; Bibliothèque universelle, rovue susse et étrangère. Archives des sciences physiques et naturelles, 1858-1861, Bibliothèque universelle et rovue suisse. Archives des sciences physiques et naturelles, 1862-1877; Bibliothèque universelle. Archives des sciences physiques et naturelles, 1878-
- 152. Carnegie Institution of Washington Publications.
- 153. Minutes of Proceedings of the Institution of Civil Engineers.
- 156. U. S. Geological Survey, Bulletin.
- 159. Science Reports of the Tohoku Imperial University.
- 166. Science.
- 168. Communications from the Physical Laboratory of the University of Leiden.
- 173. Analyst, London.
- 175. Annales academiae scientiarum fennicae.
- 176. Chemisch Weekblad, Amsterdam.
- 186. Bulletin de la classe des sciences, académie royale de Belgique
- 187. Metall und Erz, Zeitschrift für Metalhuttenwesen und Erzbergbau, einschl. Aufbereitung.
- 188. Nachrichten von der komglichen Gesellschaft der Wissenschaften zu Göttingen. Geschaftliche Mitteilungen; mathematisch-physikalische Klasse.
- 189. Centralblatt für Mineralogie, Geologie und Palaontologie
- 190. Neues Jahrbuch für Mineralogie, Geologie und Palaontologie.
- 196. Sammlung chemischer und chemisch-technischer Vortrage.
- 157. Proceedings of the National Academy of Sciences.
- 198. Revue générale des sciences pures et appliquées
- 199. Le Radium. (Merged into No. 51 in 1920)
- 200. Jahrbuch der Radioaktivität und Elektronik.
- 201. Proceedings of the Cambridge Philosophical Society.
- 202. Zeitschrift für physiologische Chemie.
- 205. Biochemische Zeitschrift.
- 207. Geologiska Föreningens i Stockholm Förhandlingar.
- 208. Physica, Nederlandsch Tijdschrift voor Natuurkunde,
- 209. Japanese Journal of Chemistry.
- Scientific Papers, Institute of Physical-Chemical Research, Tokyo.
- Abhandlungen der mathematisch-physischen Klasse der sächsischen Akademie der Wissenschaften zu Leipzig.
- 212. Transactions of the American Society for Steel Treating.
- Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München

- 214. Kongelige Danske Videnskabernis Selskab, Skrifter natur. videnskabelig og mathematisk Afdeling.
- 215. Lunds Universitets Årsskrift.
- 216. Giornale di chimica industriale ed applicata. (Annal di chimica applicata, 1914; cantinued as Giornale di chimica applicata; combined with Giornale di chimica industriale, March, 1920, to form Giornale di chimica industriale ed applicata.)
- 217. U. S. Coast and Geodetic Survey, Special Publications.
- 218. Naturwissenschaften.
- 219. Proceedings of the Physico-Mathematical Society of Japan.
- 220. Jern-Kontorets Annaler, Stockholm.
- Berichte über die Verhandlungen der sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-physische Klasse
- 222. Giornale di mineralogia, cristallografia e petrografia.
- 223. Journal of General Physiology,
- 224. Kosmos, Stockholm.
- Mitteilungen aus dem Kaiser-Wilhelm Institut für Eisenforschung zu Düsseldorf.
- Proceedings of the Society for Experimental Biology and Medicine.
- Denkschriften der kaiserlichen Akademie der Wissenschaften zu Wien, mathematisch-naturwissenschaftliche Klasse.
- 229. Journal of Bacteriology.
- 230. Biochemical Journal.
- 231. U. S. Public Health Service, Public Health Reports.
- 232. Soil Science.
- 233. Pharmaceutisch Weekblad.
- 234. Journal of the South African Chemical Institute. (Name changed in 1922 from Journal of the South African Association of Analytical Chemists.)
- 235. Comptes-rendus des travaux du laboratoire Carlsberg.
- 236. Ergebnisse der Physiologie.
- 237. Fortschritte der Chemie, Physik und physikalischen Chemie.
- 238. Travaux et mémoires du bureau international des poids et mesures.
- 239. Nouveaux mémoires de l'académic royale des sciences, des lettres et des beaux-arts de Belgique, Brussels.
- 240. Bibliothèque universelle des sciences, belles-lettres et arts. (Continued as No. 149.)
- 241. Proceedings of the American Philosophical Society.
- 242. Vierteljahrsschrift der naturforschenden Gesellschaft, Zürich.
- 243. Zeitschrift für Instrumentenkunde.
- 244. Journal of the Society of Automotive Engineers.
- 245. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen.
- 246. Ice and Refrigeration.
- 247. Chemist-Analyst.
- 248. Proceedings of the University of Durham Philosophical Society.
- 249. Fortschritte auf dem Gebiete der Röntgenstrahlen.
- 250. Bulletin de la société française de physique.
- 251. Proceedings of the Royal Society of Victoria, Melbourne.
- 252. Chemische Umschau auf dem Gebiete der Fette, Oele, Wachse und Harze. (Before 1916 Chemische Revue über die Fett- und Harz Industrie.)
- 253. Lubrication
- Zeitschrift für Beleuchtungswesen, Heisungs- und Lüftungstechnik.
- Bulletin of the American Institute of Mining and Metallurgical Engineers. (Continued as No. 329.)
- 256. Comptes rendus de la société scientifique, Warsaw.
- 266. Indianapolis Medical Journal. 267. Philippine Journal of Science.
- 267. Philippine Journal of Science
- 268. Terrestrial Magnetism.

KEY TO THE PERIODICALS

- 209. Mineralogical Magazine and Journal of the Mineralogical Society.
- 270. Berichte der naturforschenden Gesellschaft zu Freiburg, im Breisgau,
- 271. Revue scientifique.
- 272. Transactions of the Wisconsin Academy of Sciences, Arts and
- 273. Berichte der deutschen pharmazeutischen Gesellschaft.
- 274. Pharmaseutische Zentralhalle für Deutschland.
- 275. International Sugar Journal.
- 276. Chemical Age, London.
- 277. Archiv für experimentelle Pathologie und Pharmakologie.
- 278. Archiv für die gesamte Physiologie des Menschen und der Tiere. (Pflüger.)
- 279. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel sowie der Gebrauchsgegenstande.
- 280. Umschau.
- 281. Zeitschrift für Psychologie und Physiologie der Sinnesorgane.
- 282. Wochenschrift für Brauerei.
- 283. Journal de psychologie normale et pathologique.
- 284. Journal of the American Pharmaceutical Association.
- 285. Journal of Mathematics and Physics.
- 286. Chemical Reviews, Baltimore.
- 287. Kolloidchemische Beihefte.
- 288. Revue générale des colloides.
- 297. National Advisory Committee on Aeronautics. Technical Reports.
- 298. National Advisory Committee on Aeronautics. Technical Notes
- 299. British Aeronautical Research Committee. Reports and Memoirs.
- 300. British Advisory Committee on Aeronautics. Reports and Memoirs.
- 301. Jahrbuch der Motorluftschiff-Studiengesellschaft.
- 302. Smithsonian Institution Publications. Miscellaneous Collection.
- 303. Bulletin de l'institut aérodynamique de Koutchino,

 *Petrograd.
- 304. Aerodynamische Versuchsanstalt zu Göttingen Ergebnisse.

- 805. Transactions of the American Society of Civil Engineers,
- 815. Memorial des poudres. (Farmerly Memorial des poudres salpètres.)
- 326. Astronomical Journal.
- 327. Annales de la société scientifique de Bruxelles.
- 328. American Mineralogist.
- 329, Mining and Metallurgy.
- 330. Psychological Monographs.
- 331. Archives of Psychology.
- 332. Philosophische Studien.
- 333. Psychological Review.
- 334. Journal of Experimental Psychology.
- 335. American Journal of Pseyhology.
- 336 Bulletin of the Geological Society of America.
- 337. Bulletin of the National Research Council.
- B60. Fourth International Congress of Refrigeration Reports.
 Papers presented by the President. Leiden, 1jdo, 1924.
- B61. Ullmann, Enzyklopädie der technischen Chemie. Berlin, Urban, 1914-1923.
- B62. Henning, Die Grundlagen, Methoden und Ergebnisse der Temperaturmessung. Braunschweig, 1915.
- B63. Holborn, Scheel and Henning, Warmetabellen. Braunschweig, Vieweg und Sohn, 1919.
- B04. Ostwald and Luther, Hand- und Hilfsbueh sur Ausführung 'physikochemischer Messungen. 3rd ed. Leipzig, Akad. Verslagsges. m. b. H, 1922.
- B65. Stähler, Handbuch der Arbeitsmethoden in der anorganische Chemie. 5 volumes. Berlin and Leipzig, de Gruyter & Co., 1920.
- B66. Zagmondy, Kolloidchemie; em Lehrbuch. 4th ed. Leipzig, Spamer, 1922.
- B69. Helmholtz, Physiological Optics, translated from the 3rd German edition by Southall. Optical Society of America, 1924.
- B70. Pat-son, An Introduction to the Study of Color Vision. Cambridge Univ. Press, 1915.

OR OF IN

IMPORTANT NOTICE

ANNUAL TABLES OF CONSTANTS AND NUMERICAL DATA CHEMICAL, PHYSICAL AND TECHNOLOGICAL

Published by an International Committee, under the authority of the International
Research Council and the International Union of
Pure and Applied Chemistry

THE data given in International Critical Tables are based upon determinations published previous to January 1924.

In order to keep always up to date with future progress in physical measurements, the purchaser of International Critical Tables should become a regular subscriber to International Annual Tables, which will bring to his desk each year a volume in which he will find assembled and classified all of the data which has appeared in the world's literature, for the year covered by the volume.

Thus, Annual Tables, Volume VI, will contain all the data published in the literature of 1923-1924; Volume VII will contain the data published in the literature of 1925; Volume VIII, the data to be found in the literature of 1926, etc.

The older volumes of Annual Tables go back to 1910 and contain all of the original determinations published during that period and which served as all or part of the basis of selection of the "best" values recorded in Inter-

national Critical Tables. These older volumes thus constitute a handy and accessible source of reference to the original determinations.

Through special arrangements made with the International Commission in charge of Annual Tables, all purchasers of International Critical Tables will be given special discounts on all purchases of International Annual Tables, as follows:

- 1. Volumes I, II, III, IV, V (data for 1910-1922), cloth, \$52.50 (regular price, \$71.00).
- 2. 25% discount on Volumes VI to X inclusive, covering the period 1923-1928.
- 3. 25% discount on the index to Volumes I-V, which will be published in 1927.

These discounts apply only on subscriptions addressed to Dr. C. Marie, 9 rue de Bagneux, Paris VI, France.

All subscriptions should be accompanied by draft or money order payable at Paris.

SPECIMEN SECTIONS

Free copies of any of the following specimen sections may be obtained on application to the above address.

Spectroscopy. Electricity, Magnetism, Electrochemistry. Radioactivity. Crystallography, Mineralogy. Biology. Engineering, Metallurgy. Colloids. The following identification form should be filled out and transmitted with the first subscription.

Name	 	
Address		

·		

