ФЕДЕРАЛЬНОЕ МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СП6ГУТ)

Кафедра экологической безопасности телекоммуникаций

Лабораторная работа 2

ИССЛЕДОВАНИЕ ПРОИЗВОДСТВЕННОГО ОСВЕЩЕНИЯ

Преподаватель: Васильев В.В.

Студент: Громов А.А. Группа: ИКТЗ-83

Номер по списку: 4 Вариант: 4

Санкт-Петербург 2021 г.

ПРОТОКОЛ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЕСТЕСТВЕННОГО ОСВЕЩЕНИЯ

от «25» октября 2021г.

- 1. Наименование объекта, предприятия (заявитель), адрес:
- 2. Место проведения измерений: кабинет информатики и вычислительной техники
- 3. Вид контроля: производственный
- 4. Измерения проводились в присутствии представителя обследуемого объекта: заведующего кафедрой
- 5. Средства измерений: Ю-16, Ю-17
- 6. Нормативно-техническая документация, в соответствии с которой проводились измерения и давалось заключение: СанПиН 2.2.1/2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий».
- 7. Эскиз помещения.
- 8. Результаты измерений (исходных данных) и расчетов

No	Вариант		Е _{изм} ,	
п/	задания	замо	ЛК	
П				
	5	1	$\mathrm{E}_{\mathtt{BH1}}$	520
		2	$\mathrm{E}_{\mathrm{BH2}}$	270
		3	E _{BH3}	100
		4	$\mathrm{E}_{\mathrm{BH4}}$	45
		5	$\mathrm{E}_{ ext{BH5}}$	12
		6	Наружный замер E_{H}	1600

Фамилия и подпись проводившего исследования: Громов А.А.

Руководитель: Горелышев А.Ю.

Лабораторная работа 2 ИССЛЕДОВАНИЕ ПРОИЗВОДСТВЕННОГО ОСВЕЩЕНИЯ

Цель работы

Изучение нормативно-технических требований и принципов нормирования естественного освещения; получение практических навыков экспериментальной оценки качества освещения.

Описания оборудования

Назначение, область применения и технические характеристики прибора для измерения освещенности

Ю16 люксметр фотоэлектрический предназначен для измерения освещённостей, создаваемых лампами накаливания, люминесцентными лампами и естественным дневным светом.

Люксметры Ю17 с отдельным фотоэлементом предназначены для измерения малой освещенности, создаваемой лампами накаливания и естественным светом в производственных, коммунальных, бытовых помещениях, на путях движения транспорта и в других местах.

Принцип работы: преобразование фотоприемными устройствами оптического излучения в электрический сигнал.

Устройство. Светоприемник люксметров состоит из селенового фотоэлемента в пластмассовом корпусе и обнажен двужильным гибким проводом для подключения фотоэлемента к измерителю. Фотоэлемент люксметра Ю-16 прямоугольной формы с рабочей поверхностью 25 см². Со стороны ручки фотоэлемент накладывается подвижная шторка, прикрывающая часть рабочей поверхности, позволяющая регулировать прибор при проверках.

Люксметр Ю-17 имеет предел измерений от 0 до 100 лк Люксметр Ю-16 имеет пределы измерения от 0 до 50 000 лк.

Естественное, боковое, север, северо-запад, северо-восток

Сводная таблица замеров и расчетов

№ п/п	в а р		Іомера точек замера свещенности	Е _{изм} , лк	K 1	K ₂	${\rm E}_{ m \phi a \kappa au}, \ { m m } { m } $	КЕО _{фак}	е _н , %	Коэффициен т светового климата, <i>m</i>	е _н по формул е (4.1), %
	4	1	E_{BH1}	520	1	0,8	416	32,5	1,2	1,1	1,32
		2	E _{BH2}	270	1	0,8	216	16,88			
		3	E _{BH3}	100	1	0,8	80	6,25			
		4	E _{BH4}	45	1	0,8	36	2,81			
		5	E _{BH5}	12	1	0,8	9,6	0,75			
		6	Наружный замер $E_{\rm H}$	1600	1	0,8	1280	100,0			

График зависимости КЕО от расстояния в м от окна, либо от номера точки замера

Основные выводы по лабораторной работе и предложения

В ходе выполненной лабораторной работы были проведены расчеты освещенность и KEO% кабинета информатики и вычислительной техники по формуле KEOфакт = 100 Евн / Ен.

Сопоставив значения КЕО в удаленной точке от окна с $\mathbf{e}_{\scriptscriptstyle H}$ можно сделать вывод, что освещенность ниже требуемой по СанПин. (СанПиН 2.2.1/2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий»)

Необходимо проверить проницательность окон, если проницательность низкая, их нужно заменить. Также следует убрать, если возможно, козырьки над окнами. К тому же, необходимо сделать светлыми стены помещения.