Technical verbs: Dnapping Function, domain, Goodomain, Prange Bonto, Oone-to-one Bbijection, Finerse function, Offunction composition

(2) For bijection $A \rightarrow B$, |A| = |B|

-1

10/19/23

 The properties of onto, one-to-one, and invertibility are important in:

· Counting (later this term)

 Hashing, Cryptography, Error-correcting codes, Computational Geometry, ...

Proof: f(x) is one-to-one

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4. **Prove:** *f* is one-to-one.

Goal: Prove logical expression

 $\forall a_1, a_2 \in \mathbb{R}, [f(a_1) = f(a_2)] \rightarrow (a_1 = a_2)$

Let a1, a2 be arbitrary real numbers Assume fear) = fear)

 $2a_1+4 = 1a_2+4$ $2a_1=2a_2$ $a_1=a_2$

So a1=02 Thus f is one-to-one

Prove or Disprove: f(x) is onto

Let $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^3 + 1$. **Prove or Disprove (circle one):** f is onto.

We will try to prove the expression:

3 y 62 such that \text{\text{\$\frac{1}{2}\$, we have \$f(x)\$}\$} \frac{1}{2}y}

Consider b=3 Let a be an arbitrary integer Seeking contradiction, assume that fla) = b So a3+1=3 This contradicts that a \$2.

In other words that only a that solves fca)= 3 is not in the domain of f. Therefore f is not onto.

Which of these exist?

1. $f^{-1} \times f$ not a bijection 2. g^{-1} \sqrt{g} is a bijecton 3. $f \circ g \not \subset \operatorname{codom}(g) \not = \operatorname{dom}(f)$

4. $g \circ f \bigvee \operatorname{codom}(f) \subseteq \operatorname{dom}(g)$

Caution:

Order matters! $(f \circ g)(x)$ is not the same as $(g \circ f)(x)$ Here, $(g \circ f)(x) = g(2x + 3) = 3(2x + 3) + 1 = 6x + 7$

