Lecture 10.3: The cross produced in 3D

The **cross product** is defined in 3D space only:

 $\implies \vec{u} \times \vec{v}$ is a vector such that

- $\vec{u} \times \vec{v} \perp \vec{u}$ and $\vec{u} \times \vec{v} \perp \vec{v}$
- $|\vec{u} \times \vec{v}| = |\vec{u}| \cdot ||\vec{v}| \cdot \sin \theta \Longrightarrow$
 - if $\vec{u} \parallel \vec{v}$, i.e., $\theta = 0$ or $\theta = \pi \Longrightarrow \vec{u} \times \vec{v} = \vec{0}$
- The orientation of the vector $\vec{u} \times \vec{v}$ is determined by the right hand rule:

Curl your right hand such that your fingers indicate the direction in which \vec{u} can be rotated to \vec{v} by the shortest angle \Longrightarrow your thumb will point the orientation of $\vec{u} \times \vec{v}$

Properties of the cross product:

- $\vec{u} \times \vec{u} = \vec{0}$
- $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$
- $(k \cdot \vec{u}) \times \vec{v} = k \cdot (\vec{u} \times \vec{v})$
- $\vec{u} \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\vec{u} \times \vec{v}) = \vec{0}$, since $\vec{u} \times \vec{v} \perp \vec{u}$ and $\vec{u} \times \vec{v} \perp \vec{v}$

Example 1: Consider the basis vectors

- $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{i} = -\hat{k}$
- $\bullet \ \hat{j} \times \hat{k} = \hat{i} \,, \qquad \hat{k} \times \hat{j} = -\hat{i}$
- $\bullet \ \hat{k} \times \hat{i} = \hat{j} \,, \qquad \hat{i} \times \hat{k} = -\hat{j}$
- $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$

Example 2: Compute $(3\hat{i} - \hat{k}) \times (\hat{i} + \hat{j})$:

$$(3\hat{i} - \hat{k}) \times (\hat{i} + \hat{j}) = 3\hat{i} \times (\hat{i} + \hat{j}) - \hat{k} \times (\hat{i} + \hat{j}) = 3 \cdot \hat{i} \times \hat{i} + 3\hat{i} \times \hat{j} - \hat{k} \times \hat{i} - \hat{k} \times \hat{j} = 3 \cdot \vec{0} + 3\hat{k} - \hat{j} + \hat{i} = \hat{i} - \hat{j} + 3\hat{k}$$

Theorem: if $\vec{u} = u_1 \hat{i} + u_2 \hat{j} + u_3 \hat{k}$ and $\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$ then

• following the same procedure as in example 2,

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2) \hat{i} + (u_3v_1 - u_1v_3) \hat{i} + (u_1v_2 - u_2v_1) \hat{k}$$

• better to compute the cross product using determinant formula:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Example 3: Compute $\underbrace{(3\hat{i} - \hat{j} + 2\hat{k})}_{\vec{i}} \times \underbrace{(\hat{i} + \hat{j} - 3\hat{k})}_{\vec{i}}$:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 1 & -3 \end{vmatrix} = \hat{i} \cdot \begin{vmatrix} -1 & 2 \\ 1 & -3 \end{vmatrix} - \hat{j} \cdot \begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix} + \hat{k} \cdot \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix}$$
$$= \hat{i}(3-2) - \hat{j}(-9-2) + \hat{k}(3+1) = \hat{i} + 11\hat{j} + 4\hat{k}$$

Area of a parallelogram from the cross product:

 \implies Consider a parallelogram OBCA with formed by vectors \vec{v} and \vec{u} :

• the area
$$A_{OBCA} = OA \times \underbrace{h}_{=OB\sin\theta} = |\vec{u}| \cdot |\vec{v}| \cdot \sin\theta = |\vec{u} \times \vec{v}|$$

• area
$$A_{OBA} = \frac{1}{2}OA \times \underbrace{h}_{=OB\sin\theta} = \frac{1}{2}|\vec{u}| \cdot |\vec{v}| \cdot \sin\theta = \frac{1}{2}|\vec{u} \times \vec{v}|$$

The scalar triple product

 \implies Given three vectors \vec{u} , \vec{v} , \vec{w} the scalar triple product is

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Using properties of the determinants:

- $\bullet \ \vec{u} \cdot (\vec{v} \times \vec{w}) = \vec{v} \cdot (\vec{w} \times \vec{u}) = \vec{w} \cdot (\vec{u} \times \vec{v})$
- if any two of these vectors are collinear, i.e., \parallel to each other $\implies \vec{u} \cdot (\vec{v} \times \vec{w}) = 0$ (since determinant will have two rows that are proportional)
- if one of the vectors is a linear combination of the other two, the triple product vanishes \implies again from the properties of the determinants: one row is a linear combination of the other two
- Three vectors are called coplanar if they are in the same plane. They are necessarily linear dependent $\implies \vec{u} \cdot (\vec{v} \times \vec{w}) = 0$

Triple product in 3D geometry:

 \implies the volume of the parallelepiped formed by vectors \vec{v} , \vec{w} , \vec{u} is

$$V_{OABCDEFG} = |\vec{u} \cdot (\vec{v} \times \vec{w})|$$

Further applications in engineering/physics:

• angular momentum

$$\vec{L} = \vec{r} \times m \cdot \vec{v}$$

• electromagnetic force

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

• torque

$$\vec{\tau} = \vec{r} \times \vec{F}$$