【实验目的】

- 1. 进一步3种 分光计的调整方法
- 2.测量三棱镜顶角,观察录灯色放现象
- 3. 学品最小偏向角的测量方法
- 4. 测定棱镜玻璃对预灯是单光的折射率

【实验原理】(电学、光学画出原理图)

1. 三棱镜 顶角测量原理

原证同"5先计的调整与使用"实验,可得计算式 24= 28 = 125-2621+1262-26221

2. 最小偏向角测生原理 (宏古图).

旋转栽物的,使一光学面Ac与平行光管入射方向基本全直,从平行光管发出平行光射向三接镜光学面AB.社三接镜光学面Ac折射的,从各玻璃面 配后边 函发,涵盖逆时针为问旋转,若可看到清阳折的水单色系列光,说明B经找到折射的光路,转到载物平台,若倾向用向各待到.则器变山,继续转初载物平台直到水单色光实此向左待动,此转折点,即为该水单色光的最小偏向角位置。

把望远镜对准此转折位置,记录此时分光计读数游标窗口数据为 8min1. 8min1. 的in. 确去三棱镜,使望远镜对准入射光,读取读数游标窗口数据为 8ni和 8ni和 8ni和 向南的南沟

8mm = 1/2 (18min2 - 802 | + (8min 22 - 802 |)

3. 折射率测量原设

-中平行早色光从三棱镜一个光学面AB几射,经折射后从另一光学面AC 别出。图:为几射角,1、为出射角,乙、射光和出射光的夹角 S 为偏向角。

明知る=Li-F)+(1'-F') 当 i=1' 根据折射定律有「=「',得

$$: i = \frac{2A + \delta min}{2}$$

· 乃要测过三棱镜顶用A和示单色光波的几射光的最小倾向角 Smin,就可计算三棱镜对该示单色光波的几射光的折射率。

【实验内容】(重点说明)

- 1. 污光计的调整 粉聚行"分光计的调整加使用"中详细学习。
- 2. 反射法测量三棱镜 J5角. 同"万光计的调整与使用"字验, 镇乌 L 散旅记录与秦J中表①.

3.测定三族镜对录单色光入=144.0 nm (绿光)的家小偷向角 放置三棱镜,转动或物色,改变入射角,获得最小偏向角,记录下分先计读数,溶析 数据为8minI和8minII。移去三棱镜,使望远镜对准入射光(平行光管位置),读取读数,济疏、数据为8minI和8minII。移入订算订算得最小偏向角。

Smin = /2(10min] - 0011 + (0min] - 0011)

4. 计算三接统对录灯各单色光的折射率以及绘制色颜曲线. 分别测量各单色光的最小偏向角,利用已经测得的三棱镜顶角值,可由公式算出棱镜对走灯各单色光的折射率,制作几一几关新曲线。

in an the war

15 4 8238 1134 1156

$$R = \frac{\sin i}{\sin i} = \frac{\sin \frac{A + 8 \min}{Z}}{\sin \frac{A}{Z}}$$

【实验器材及注意事项】

实验器材: 分光计、三棱镜、汞灯

注意事项 ① 反射法测量三棱镜顶角时,三棱镜的顶角应在野中心偏上位置 防止备不到反射光。

- ② 三棱镜、应轻等轻放、不要随意触碰光学镜面。
- ③应将狭缝宽度调节为1mm 枯以减小误差,同时仍需要保证高度足够用于观测。
 - @ 梳查每次记录数据 左石浴前是否对称。

Date. / /

	核铁铜的角系验数据记录.							
) /	实验次数			P	b	1 0min] - 8.21	10 min 17-0,72	Smin.
	(英先)	1箇	山街	11	72			
1		130°27 '	310°28'	76 53'	256358'	53°34'	53°30'	53°32'
	2	1310291	3120001	78°17'	21521	53039'	13°10'	53°25'
T	3.	1350091	315 10'	81°34'	261°35'	5335	53°35'	53°35'
	4	136° 7'	316°8'	82°28'	262°30'	33°38'	53°39'	53° 39'
	ţ	136"18"	31621'	82°57'	762°28'	53°23'	53°21'	53°22'

多验次数	Omin		0.		(&min 2-821	[Omin]] - PoII]	Smin
(战九)	頂	刀窗	1萬	旧镇			
. (130 52'	310°54'	76°53'	182,952	13°29'	5356'	53°58
2	132061	312.8'	78°,9'	25f°21'	53°47'	5345'	13°46'
3	135°35'	315°36'	81°34'	261°35'	24001,	t4°01'	5401
4	136°28′	31630	82'28'	262°30'	54°00'	54000	\$4°07'
5	136°421	316°47'	8257'	262°58'	53°45'	532491	53 47'

家旅游	8 min		Po.		10min2-0021	10min12-0227	Smin
(莲光)	陷	12萬	1萬	間齒			À
1	133012'	31394'	76 53	256.28'	56.9'	56° 16'	56°18
.2	134°31'	314° 35'	78° 17'	258°21'	sb°14'	56°12'	56°13'
3.	137291	318002'	81°34'	761°35'	5627'	56°25'	5626'
4	138°23'	318°27'	82°28'	262301	56'07'	tt°ct'	5601'
		319291	82° ±7'	182'585	56°31'	56°32'	56'32'

"你不

黎次数	8 mi	1	O.		1 Omint Ooll	10mill-0017	8 min
(紫光)]海	儿笛	1萬	17萬			
11	133°£9'	31400	76.53	182926	57°06'	5702	57°04'
2	135 "51"	315 51'	7899'	25821	57°32'	57°30'	57°31'
3	139.05	3190101	81°34	261°35'	17°31'	£7°35'	57°33'
4	139°34'	319°36'	8228	262°30'	57°06'	57°06'	57° 6'
3	140.39,	320° 44'	82°57'	26>°58'	17°42'	57°46'	57°44

产产产光波长	2A	Smin	n (折射率)
7=404.7nm1紫)	ho'	57'24'	1.709
2=43.8nm(蓝)	60°	56°18'	1. 699.
ユ= tubonmishe)	60 °	53°54'	1. 676.
7=5]]. nm(黄)	60.	53°31'	1.673

【数据处理与结果】

数据具体记录表见附句·(默认狡镜顶角的)。(张)

在获得 各色光 Ominil商与11商)数据与10。(1商、与11商)数据后,

丽过 8min = 左(10min]-001+10min]-0011) 记算各色光的家小庙向角

$$S_{min} = \frac{580}{5}$$

在获得 Smin后 可根据公司

$$nr = 1.673$$

 $nG = 1.676$
 $nB = 1.699$

根据上述关系可能制心工关系曲线 导体国线风险的

【误差分析】

1. 截,最核心的问题是确定当技统程定时,如何寻找专小偷向用。在实验中,我们通过固定镜筒,强劲我的台的方法以黄绿杂牧的教大在偏重作为最小偷向用的定位,但这样的确定方法经往互配胜过强国而存有极大的判断误差。

2.另一方向.在观察盛荣色光时.我们需要适当增大独立的宽度.以使杂众清晰.特别是紫色光纹)但增大铁缝宽度.必然使高波长线(黄绿色)杂效宽度增加.加大了准确定证光纹位置的测量难度因而也每个几不小的误差。

3.对于一些机械活构 齿轮是否啮后带来的误差影响, 烟微转动张筒时, 游机盘存在未随之转动的情况(治两者铁定状态下), 国为洞室时前能带几团啮合问题造出的相对差值,从向到几误差.

4.长时间从钒野观察、到风积党疲劳、从而影响数据的准确谋取与测量。

【实验心得及思考题】

周老题 -:

摆走楼镜位新 先姐过镜高和野寻找黄绿色光纹使身停时和野靠左侧位道 锁旋鞘筋 台,向右毗做鞋动内侧圆盘 观察黄绿色彩纹的结动分向.若黄绿色条纹为向石移动后到达一程折点,进向负的向左移动.则此程折点附最小的向角8min的测量位置.

月表起二:

在钠光月前加工一块名玻璃,使散射光盛射到接貌AB面上,当散射光从右右间射向AB面时近似认为存在9°的入射光光,其对映折射的ismax 建射知 iimin,若几射角小子9°的,断射角小子i'zmax.出射用以大于i'min。

国此在AC向进行风景时,将且死半晌半暗的初场。 副股积场的交代对映于 i=90°的光光明的向。

由折转起转 n= sinizmax => sin izmax = 元 种 izmax + iz=A

 $\therefore iz' = A - izmax.$ $\therefore N = \frac{\sin i \sin \alpha}{\sin i \alpha} = \frac{\sin i \sin \alpha}{\sin (A - izmax)}$

$$= \frac{\sin i \cdot \min}{2 \sin A \int_{-1}^{2} - \ln A \cdot \ln A}$$

$$\Rightarrow \sin A \cdot \ln A \cdot$$

$$\Rightarrow \sin i \min = \sin A \cdot \sqrt{n^2 - \cos A}$$

$$\Rightarrow n = \sqrt{\frac{\cos A + \sin i \min}{\sin A}} + 1$$

种A为政府。iimin为明战机场场代名近与法线方位的实用。则几乎讨算

新起心得:

何向自还是有趣的问意.从分线时中的白光。我们 终于在光学或验中通过色散看到了黄.旋.蓝紫的四色先 波.也静测得了在色波长光的折射率近似值.收获满满.

同样活活吐槽一下光芒或能离的有三种最低的情况,所以是小部分形式时间不繁后产生的把造板的。原的十分影响军先级的位益确度及大生的数据源取、创证是努尔与加以适应。