Guía Nº1 Cálculo II: Sucesiones Profesor Patricio Cumsille Semana 2

- 1. Pruebe que si $s_n \geq 0$ y $\lim_{n \to \infty} s_n = s$ entonces $s \geq 0$. Deduzca que si $u_n \geq v_n$ para n grande y si $\lim_{n \to \infty} u_n = u$ y $\lim_{n \to \infty} v_n = v$, entonces $u \geq v$.
- 2. *a*) Muestre que $\lim_{n\to\infty} s_n = s$ (s finito) si y sólo si $\lim_{n\to\infty} |s_n s| = 0$.
 - b) Suponga que $|s_n-s| \le t_n$ para n grande y que $\lim_{n\to\infty} t_n = 0$. Muestre que $\lim_{n\to\infty} s_n = s$.
- 3. Encuentre $\lim_{n\to\infty} s_n$. Justifique sus respuestas usando la definición de convergencia.

a)
$$s_n = 2 + \frac{1}{n+1}$$

b)
$$s_n = \frac{a+n}{b+n}$$

c)
$$s_n = \frac{1}{n} \sin \frac{n\pi}{4}$$

$$d) \ s_n = \frac{n}{2n + \sqrt{n+1}}$$

e)
$$s_n = \frac{n^2 + 2n + 2}{n^2 + n}$$

$$f) \ s_n = \frac{\sin n}{\sqrt{n}}$$

$$g) \ s_n = \sqrt{n^2 + n} - n$$

4. Use el criterio de convergencia de sucesiones monótonas para mostrar que s_n converge.

a)
$$s_n = \frac{a+n}{b+n}$$

$$b) s_n = \frac{n!}{n^n}$$

c)
$$s_n = \frac{r^n}{1+r^n}$$
 $(r>0)$

d)
$$s_n = \frac{(2n)!}{2^{2n}(n!)^2}$$

5. Suponga que s_0 y a son números reales positivos. Sea $(s_n)_{n\in\mathbb{N}}$ la sucesión definida por la recurrencia:

$$s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right), \quad n \ge 0.$$

1

- a) Muestre que $s_{n+1} \ge \sqrt{a}$ para todo $n \ge 0$.
- b) Muestre que $s_{n+1} \le s_n$ para todo $n \ge 1$.
- c) Concluya que $s = \lim_{n \to \infty} s_n$ existe y encuentre s.

6. a) Determine si la sucesión $(a_n)_{n\in\mathbb{N}}$ definida por la recurrencia:

$$a_0 = \sqrt{2}, \qquad a_{n+1} = \sqrt{2a_n}, \quad n \ge 0,$$

posee límite. Si posee, calcúlelo.

b) Repita el ejercicio anterior para la sucesión $(u_n)_{n\in\mathbb{N}}$ definida por la recurrencia:

$$u_2 = 1,$$
 $u_{n+1} = \sqrt{\frac{4 + u_n^2}{2}},$ $n \ge 2.$

- 7. Para $0 \le a \le b$ sea $x_1 = a$, $x_{n+1} = \sqrt{x_n y_n}$ e $y_1 = b$, $y_{n+1} = \frac{x_n + y_n}{2}$. Demostrar que ambas sucesiones poseen límite, que lím $x_n = \lim y_n$ y que si llamamos l a este último límite, se cumple que $\sqrt{ab} \le l \le \frac{a+b}{2}$.
- 8. Sea $u_1 = a$ y $u_{n+1} = \sqrt{\frac{ab^2 + u_n^2}{a+1}}$ con 0 < a < b. Muestre que $(u_n)_{n \in \mathbb{N}}$ es acotada, que es convergente y calcule su límite.
- 9. Sea $(h_n)_{n\in\mathbb{N}}$ una sucesión nula. Pruebe que la sucesión $\left(\frac{h_n}{1-h_n}\right)$ es también una sucesión nula.
- 10. Sea $u_n = \frac{1}{2}(1+(-1)^n)$. Calcular lím $\frac{u_1+\ldots+u_n}{n}$
- 11. Sea $(h_n)_{n\in\mathbb{N}}$ con $h_n>0$ y $\left(\frac{1}{nh_n}\right)\to 0$. Pruebe que lím $\frac{1}{(1+h_n)^n}=0$.
- 12. Sea $(v_n)_{n\in\mathbb{N}}$ con $v_n\in(0,1)$ y $\left(\frac{1}{nv_n}\right)\to 0$. Pruebe que $\lim(1-v_n)^n=0$.
- 13. Estudie la convergencia de la sucesión $(nq^n)_{n\in\mathbb{N}}$, donde |q|<1. Indicación: se sugiere aplicar la desigualdad de Bernoulli (II) con un h apropiado.
- 14. Dado $k \in \mathbb{N}$, estudie la convergencia de la sucesión $(n^k q^n)_{n \in \mathbb{N}}$, donde |q| < 1. Indicación: reducir al caso del ítem anterior.
- 15. Dado $k \in \mathbb{N}$, estudie la convergencia de la sucesión $(n^k q_n^n)_{n \in \mathbb{N}}$, donde $q_n \to q$ con |q| < 1. Indicación: usar el ítem anterior.