8.1 Linear Momentum and Force

- · Linear momentum (momentum for brevity) is defined as the product of a system's mass multiplied by its velocity.
- In symbols, linear momentum \mathbf{p} is defined to be

$$\mathbf{p} = m\mathbf{v}$$
,

where m is the mass of the system and \mathbf{v} is its velocity.

- The SI unit for momentum is kg·m/s.
- Newton's second law of motion in terms of momentum states that the net external force equals the change in momentum of a system divided by the time over which it changes.
- · In symbols, Newton's second law of motion is defined to be

$$\mathbf{F}_{\text{net}} = \frac{\Delta \mathbf{p}}{\Delta t}$$

 ${f F}_{\rm net}$ is the net external force, $\Delta {f p}$ is the change in momentum, and Δt is the change time.

8.2 Impulse

• Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:

$$\Delta \mathbf{p} = \mathbf{F}_{\text{net}} \Delta t.$$

· Forces are usually not constant over a period of time.

8.3 Conservation of Momentum

• The conservation of momentum principle is written

$$\mathbf{p}_{\text{tot}} = \text{constant}$$

or

$$\mathbf{p}_{tot} = \mathbf{p'}_{tot}$$
 (isolated system),

 $oldsymbol{p}_{tot}$ is the initial total momentum and $oldsymbol{p'}_{tot}$ is the total momentum some time later.

- An isolated system is defined to be one for which the net external force is zero ($\mathbf{F}_{net} = 0$).
- During projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero.
- Conservation of momentum applies only when the net external force is zero.
- The conservation of momentum principle is valid when considering systems of particles.

8.4 Elastic Collisions in One Dimension

- · An elastic collision is one that conserves internal kinetic energy.
- Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities and masses in one dimensional two-body collisions.

8.5 Inelastic Collisions in One Dimension

- · An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).
- A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic energy more than does any other type of inelastic collision.
- · Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

8.6 Collisions of Point Masses in Two Dimensions

- The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into components along perpendicular axes. Choose a coordinate system with the *x*-axis parallel to the velocity of the incoming particle.
- Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction of mass 1 (the x-axis), stated by $m_1v_1 = m_1v'_1 \cos\theta_1 + m_2v'_2 \cos\theta_2$ and along the direction perpendicular to the initial direction (the y-axis) stated by $0 = m_1v'_{1y} + m_2v'_{2y}$.
- · The internal kinetic before and after the collision of two objects that have equal masses is

$$\frac{1}{2}m{v_1}^2 = \frac{1}{2}m{v'_1}^2 + \frac{1}{2}m{v'_2}^2 + m{v'_1}{v'_2}\cos(\theta_1 - \theta_2).$$

• Point masses are structureless particles that cannot spin.

8.7 Introduction to Rocket Propulsion

- Newton's third law of motion states that to every action, there is an equal and opposite reaction.
- Acceleration of a rocket is $a = \frac{v_e}{m} \frac{\Delta m}{\Delta t} g$.
- A rocket's acceleration depends on three main factors. They are
 - 1. The greater the expectative legitive of the greater the greater the excellentia
 - The greater the exhaust velocity of the gases, the greater the acceleration.
 The faster the rocket burns its fuel, the greater its acceleration.
 - 3. The smaller the rocket's mass, the greater the acceleration.