PHYS 234:

Quantum Physics I

Norbert Lütkenhaus

Institute for Quantum Computing & Dept. Physics and Astronomy

Richard Feynman:

"I think I can safely say that nobody understands quantum mechanics."

John Wheeler:

"If you are not completely confused by quantum mechanics, you do not understand it."

But what does it mean to "understand"?

"Understanding" Formulation of rules → correct prediction of What are the underlying principles outcomes of experiments of these rules? → prediction of new effects (minimal assumptions) → simplification of rules Why are the rules → formulate new theories **Classical Mechanics:** the way they are? Newton's law + ... Variational Principle (Lagrange & Hamiltonian Formulation) Interesting philosophical → Field Theory question **Quantum Mechanics (QM):** Formalism of QM clear → works great! Research in Progress → attempt to formulate principles without reference to math structure Interesting philosophical question ...

Quantum Mechanics vs. Classical Physics

Many notions of classical physics will become obsolete in quantum physics

→ they emerge only in some limit (classical limit)

classical physics:

objects have always well defined position and momentum

quantum physics:

no simultaneous position and
momentum measurement
→ cannot put one particle into one spot

a measurement does not simply reveal a pre-existing value ...

Nils Bohr:

"For those who are not shocked when they first come across quantum theory cannot possibly have understood it."

Course Outline

Background:

1) Going beyond classical physics:

Particles behaving as Waves & Waves behaving as Particles

Basic Formalism

2)Experimental observation of prototype quantum mechanical system: Stern-Gerlach Set-Up

- 3) Developing Mathematical Framework that explains observations
- 4) Applications: Bomb detection & Zeno effect
- 5) Dynamics in Quantum Mechanics

simple differential equations

Advanced Formalism

- 6) Infinite dimensions: particle on a line
- 7) particle in step-function potential & harmonic potential
- 8) Applications in Semi-conductors and Tunneling Microscopy

Analysis involving complex-valued functions

Statistics:

- probability distributions, expectation values
- Linear Algebra:
- finite dimensional complex vector spaces
- operators/matrices
- eigenvalues & eigenvectors

Course Components

1) Lectures

- Lecture Notes become available the day of the lectures (afternoon/evening)
- use of Clickers (mandatory)

2) Text book

- required: McIntyre Quantum Mechanics
- recommended: (see syllabus)

3) Tutorial groups

- deepen understanding of material
- led by a TA, who also marks the assignments

Tutorial group 105 will be divided up onto other groups (levelling out of remaining groups on Wednesday)

4) Assignments

- weekly assignments
- published Wednesdays
- due following Wednesday in lectures
- will be returned Fridays in Tutorial groups

Learning groups encouraged

make sure you hand in the solution that YOU understand after your discussions with your peers!

Marking Scheme

Scheme 1:

20% Assignments
5% Clicker Participation
30% Midterm Exam
45% Final Exam

Scheme 2:

20% Assignments
5% Clicker Participation
20% Midterm Exam
55% Final Exam

the better grade counts!

NOTE:

if you achieve less than 50% of the total of all assignment points, your assignment mark will be set to 0%!

For more details:

check syllabus on the LEARN homepage of our course!

Midterm date:

Tuesday, March 5, 7:00- 9:30 pm

Office hours:

Mondays, 12- 1, and 6-7 pm QNC 4129

Email communication:

How to reach me and my office:

lutkenhaus.office@uwaterloo.ca

TWO people who can help you
Lisa David
Norbert Lütkenhaus