Ex. 14.4.13 Let $G_0 \subset GL(2, \mathbb{F}_p)$ be solvable. Prove that the subgroup generated by G_0 and $\mathbb{F}_p^*I_2$ is also solvable.

Proof. The subgroup
$$N = \mathbb{F}_p^* I_2$$
 is a normal subgroup of $G = \mathrm{GL}(2, \mathbb{F}_p)$:
 If $A \in G$, and $H = \lambda I_2$, then $AHA^{-1} = A\lambda I_pA^{-1} = \lambda AA^{-1} = \lambda I_2 \in H$.

Therefore G_0N is a subgroup of G. This implies that G_0N is the smallest subgroup containing G_0 and N, so that G_0N is the subgroup generated by G_0 and $\mathbb{F}_n^*I_2$.

By the Second Isomorphism Theorem (see the beginning of Exercise 12),

$$G_0N/N \simeq G_0/N \cap G_0$$
.

By hypothesis, G_0 is solvable, thus its subgroup $N \cap G_0$ is solvable, and the quotient group $G_0/N \cap G_0$ is solvable (Proposition 8.2.4).

N is cyclic, thus N is solvable. Using Proposition 8.2.4 anew, G_0N is solvable.

We have proved that if $G_0 \subset GL(2,\mathbb{F}_p)$ is solvable, the subgroup generated by G_0 and $\mathbb{F}_p^*I_2$ is also solvable.