Handwritten

b09902004 資工二 郭懷元

4.28

4.28.1

	cycle 1	cycle 2	cycle 3	cycle 4	cycle 5	cycle 6	cycle 7
pc (branch)	IF	ID	EX	MEM	WB		
pc+x (taken)		IF	ID				
pc+4 (not taken)			IF	ID	EX	MEM	WB

When prediction misses, It takes an extra cycle. CPI:

$$0.25 \times (0.45 \times 1 + 0.55 \times 2) + 0.75 \times 1 = 1.1375$$

4.28.2

CPI:

$$0.25 imes (0.55 imes 1 + 0.45 imes 2) + 0.75 imes 1 = 1.1125$$

4.28.3

CPI:

$$0.25 imes (0.85 imes 1 + 0.15 imes 2) + 0.75 imes 1 = 1.0375$$

4.28.4

After conversion, frequency of branch instructions is 12.5%, and prediction accuracy remains the same.

New CPI:

$$0.125 \times (0.85 \times 1 + 0.15 \times 2) + 0.875 \times 1 = 1.01875$$

Speedup:

$$\frac{\mathrm{Execution}\;\mathrm{Time_{old}}}{\mathrm{Execution}\;\mathrm{Time_{new}}} = \frac{\mathrm{CPI_{old}}}{\mathrm{CPI_{new}}} = \frac{1.0375}{1.01875} \approx 1.018 = 101.8\%$$

4.28.5

After conversion, number of instructions is 100%+12.5%=112.5%, frequency of branch is $\frac{12.5\%}{112.5\%}=11.1\%$, and prediction accuracy remains the same.

New CPI:

$$0.111 \times (0.85 \times 1 + 0.15 \times 2) + 0.889 \times 1 = 1.01665$$

Speedup:

$$\begin{split} \frac{Execution \; Time_{old}}{Execution \; Time_{new}} &= \frac{CPI_{old}}{CPI_{new}} \times \frac{\# \; Instructions_{old}}{\# \; Instructions_{new}} \\ &= \frac{1.0375}{1.01665} \times \frac{1}{1.125} \\ &\approx 0.907 \\ &= 90.7\% \end{split}$$

4.28.6

Assume the accuracy on the remaining 20 is p.

$$0.8 \times 1 + 0.2 \times p = 0.85$$

$$\Rightarrow p = \frac{0.05}{0.2}$$

$$= 0.25$$

4.29

4.29.1

Always-taken accuracy: $\frac{3}{5}=60\%$.

Always-not-taken accuracy: $\frac{2}{5}=40\%$.

4.29.2

Branch number	Prediction	Outcome	Correctness	Next prediction
1	NT	Т	X	NT
2	NT	NT	0	NT
3	NT	Т	X	NT
4	NT	Т	X	Т

Accuracy: $\frac{1}{4}=25\%$

4.29.3

Define the state of predictor as this figure:

Branch number	Current state	Outcome	Next state	Correctness
1	s4	Т	s3	X
2	s3	NT	s4	0
3	s4	Т	s3	X
4	s3	Т	s2	X
5	s2	NT	s3	X
6	s3	Т	s2	X
7	s2	NT	s3	X
8	s3	Т	s2	X
9	s2	Т	s1	0
10	s1	NT	s2	X
11	s2	Т	s1	0
12	s1	NT	s2	X
13	s1	Т	s1	0
14	s1	Т	s1	0
15	s1	NT	s2	Х

The predictor enters a loop at 11-th branch. In this loop, the accuracy is $\frac{3}{5}=60\%$. As the pattern repeats forever, the total accuracy approaches 60%.

4.29.4

next state logic works like this:

```
if (is_branch)
   ns = (cs+1)%5
else
  ns = cs
```

Then cs is used to control a multiplexer, which determines the output.

4.29.5

The accuracy would be 0.

4.29.6

next state logic works the same as 4.29.4.

pattern type logic works like this:

```
if (cp != prev_outcome)
   nt = ~ct
else
   nt = ct
```

ct is used to indicate which type of pattern is given.