ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 9

1. Μια σανίδα μήκους 2l και μάζας Μ βρίσκεται πάνω σε μια λεία επιφάνεια. Μια μπάλα μάζας m που κινείται με ταχύτητα υ₀ χτυπά το ένα άκρο της σανίδας. Να βρεθεί η τελική ταχύτητα της μπάλας, υ_f, υποθέτοντας ότι η μηχανική ενέργεια διατηρείται και ότι η υ_f είναι κατά μήκος της αρχικής διεύθυνσης κίνησης. (β) Βρείτε την υ_f υποθέτοντας ότι η σανίδα περιστρέφεται γύρω από το άκρο της το οποίο δεν χτυπήθηκε από την μπάλα.

$$\Rightarrow \mathcal{V}_{f} = \frac{-4m\mathcal{V}_{0} \pm \mathcal{U}_{0}}{(\mathcal{U}_{+} + \mathcal{U}_{m})} \Rightarrow \mathcal{V}_{g} = \begin{cases} \frac{(\mathcal{U}_{-} + \mathcal{U}_{m})}{\mathcal{U}_{+} + \mathcal{U}_{m}} & \mathcal{V}_{0} \\ -\frac{(\mathcal{U}_{+} + \mathcal{U}_{m})}{\mathcal{U}_{+} + \mathcal{U}_{m}} & \mathcal{V}_{0} \\ \mathcal{V}_{f} = \frac{\mathcal{U}_{-} + \mathcal{U}_{m}}{\mathcal{U}_{+} + \mathcal{U}_{m}} & \mathcal{V}_{0} \\ \mathcal{V}_{f} = \frac{\mathcal{U}_{-} + \mathcal{U}_{m}}{\mathcal{U}_{+} + \mathcal{U}_{m}} & \mathcal{V}_{0} \\ \mathcal{V}_{f} = \mathcal{V}_{0} & \mathcal{V}_{f} = \mathcal{V}_{0} \end{cases}$$

$$\forall \alpha \quad \mathcal{U}_{f} = \mathcal{V}_{0} \quad \forall \alpha \quad \forall \alpha \quad \mathcal{U}_{f} = \mathcal{V}_{0}$$

$$\forall \alpha \quad \mathcal{U}_{f} = \mathcal{V}_{0} \quad \forall \alpha \quad \forall \alpha \quad \mathcal{U}_{f} = -\mathcal{V}_{0}$$

$$\forall \alpha \quad \mathcal{U}_{f} = -\mathcal{U}_{0} \quad \forall \alpha \quad \forall \alpha \quad \mathcal{U}_{f} = -\mathcal{U}_{0}$$

$$\forall \alpha \quad \mathcal{U}_{f} = -\mathcal{U}_{0} \quad \forall \alpha \quad \forall \alpha \quad \mathcal{U}_{f} = -\mathcal{U}_{0}$$

$$\forall \alpha \quad \mathcal{U}_{f} = -\mathcal{U}_{0} \quad \forall \alpha \quad \forall \alpha \quad \mathcal{U}_{f} = -\mathcal{U}_{0}$$

(β) Στην περίπτωση αυσή δευ υπάρχει καθαρή μεταφορική ενέρχεια της Gaviδas. Όλη η ενέρχεια πηγαίνει στο να νάνει τη ράθδο να περιστραφεί χίρω από το άλλο άνρο της Υπάρχει ωστό το ένα επιπλίον πρόβλημα. Τώρα έχουμε 2 αχνώστους (τρ και ως). Άρα μιά από της 3 εξισώσεις δευ εσχύει. Στην περίπτωση αυτή ωστόσο δεν πρέπα να χρησιμοπαήσομε διατήργες της ορμής χιατί το σημείο περιστροφής εξασιεί μομοί μια άχνωστη δίναμη, αλλά επειδή το σημείο αυτό βρίσκεται στην αρχή του σικήματος συντεταγμένων δεν εξασιεί καμιά ροπή.

Apa: $E_i = E_f \Rightarrow \frac{1}{9}mv_0^2 = \frac{1}{9}mv_0^2 + \frac{1}{9}I\omega_0^2$ $\downarrow_{g} = \downarrow_{i} \Rightarrow mv_0(9l) = -mv_0 2l + I_A\omega_0^2 \Rightarrow \Rightarrow \omega_0^2 = \frac{2ml(v_0 + v_0^2)}{I_A}$ $I_A = I_{CL} + Ml^2 = \frac{1}{3}Ml^2 + Ml^2 = \frac{4}{3}Ml^2$

> Uv2 = Hv2+ 3m v2+ 3mv2+ 6mv6v5 =>

$$\Rightarrow \quad \nabla \rho = \frac{3}{4(u+3m)} \Rightarrow \left[\nabla \rho = \frac{u-3m}{u+3m} \nabla_{\rho} \right]$$

2. Ένας κλόουν η μάζα του οποίου είναι 100.0kg ανεβαίνει στην εξωτερική περιφέρεια ενός δίσκου ακτίνας 20.0m και μάζας 2000kg. Υποθέστε ότι ο δίσκος είναι στερεωμένος σε ένα λείο κατακόρυφο άξονα και αρχικά είναι σε ηρεμία. Αν ο κλόουν αρχίζει να τρέχει πάνω στο δίσκο κατά μήκος της εξωτερικής περιφέρειας και με φορά αυτή των δεικτών του ρολογιού και ταχύτητα v=2.0 m/s, πόσο γρήγορα γυρνά ο δίσκος και ποια είναι η στροφορμή του; $(I_{CM}^{\delta \sigma \kappa o \nu}) = \frac{1}{2} M R^2$

Ano en oreghis - sou su unapxour esureprues ponés - sou acuoi vear eco écerte veloser-sières sus expopers su exposer su apxil su especial est exposer su apxil su especial est exposer su e

Apxilia y expobophy con cucer/haces cira hister (noir out be a will our aco Sieno). Emohimus

και αφού avibu co δίσιο η στροφορμή πρέπα να παραμένα μισδέν

H TEDEUTAIA ESIGNEY has lieu oze ta hitpa tur 2 Gepodophiur einer isa alla Exour aveidety dopa. Energé o ulion tpèxe nos es dopa tur Sereir tou pologioù, o Sienes Don neprespédetar aveideta ers dopas eur Sereir.

A unodécoute ou o ution tinopei na avanapaceatei can utilui citie o reprodoptió con ution es nos cor infora meprocopodis da cira:

Enessi o whom tpique màrus ce unhuis mepidipua autiras V,

Auro einen neu co hérpo ens sepodophis con Sienon.
Alla sépontre den:

Il form a present herablyes has evan a pont asparens con Sieren $I_{\mathcal{S}}$.
Allo has Siveran ou $I_{\mathcal{S}} = \frac{1}{2}MR^2$

Oriore:
$$w_s = \frac{4,000}{\frac{1}{2}200020^2} = \frac{4}{400} = 0.01 \text{ rad/sec}$$
 It spatifican coxicty to

3. Μια ξύλινη σανίδα μάζας Μ και μήκους l_0 στηρίζεται σε δύο ζυγαριές που είναι τοποθετημένες στα δυο άκρα της. Ένα άτομο μάζας m βρίσκεται ακίνητο πάνω στη σανίδα και σε απόσταση l από το ένα άκρο της όπως στο σχήμα. Η σανίδα και το άτομο είναι σε ισορροπία. Ποιο είναι το μέγεθος της δύναμης που εξασκεί κάθε ζυγαριά πάνω στη σανίδα;

7.00 00	doket kave goyapia nava otil oavioa,
F	Este ote y savida a note lei to societale. Os Suna fues eto societale eivas:
Ja.	(a) H sinopey row aropou maire con sanisa The cival is the co bagos too aropou. mg Mg Mg (b) To bagos rys cavisas Mg (y) Or arrispases F1 kar F2 rur sio fraquior Gry cavisa
,	Trou civar is y he co bagos tou arohov. mg
	Mg 18 (a) To bagos mys cavisas Mg
	(y) Or avrispases F1 non F2 rur Sio Grapuin
	GEY Gavida
9	No remonoiste co cicarta correca piena con existacos, maiprovas
	car apxi au averificares to ina ango ons cavidas. Il employis averi
	giveras que no finduicoupe en pont fuis and es àgnucres Surifiers
	αφού το ωπιείο εφαρμοχώς της δα περνά από τον άξονα περιετροφώς.
	1 1 1 1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	H rejuires eurosius 1600000 ias : IF = 0 => Fi j+ F2j-Ugj-mgj=0 =>
	$\Rightarrow F_1 + F_2 = (U + m)g \qquad (1)$
	Il esiemen avei ser einer apries pa en lien rou noblipacos, adoit igothe l'agrescres suràpies Fi non Fe.
	H Switzpy Gurdius 1609ponies Dia on: IZ= = =>
	=> TE+ TE2+ Tug+ Tmg= p allin 2 ponis zys FI eiver hundir
	Joju endopé ou cercifiaros cureraglieva: $\vec{\tau}_{F_1} = \phi$
	A porin του ατόμου da cira: Time = (lo-l)î x (-mg)ĵ = Zime = - (lo-l)mg k
	It poring tou bapous and Garisas: 7 = laix x40 1 => 7, - lou ?
	H porty του ατόμου δα είναι: $\overline{Z}_{mg} = (l_0 - l_0)\hat{i} \times (-mg)\hat{j} \Rightarrow \overline{Z}_{mg} = -(l_0 - l_0)mg \hat{k}$ H porty του βάρους αις Gανίδας: $\overline{Z}_{mg} = \frac{l_0}{2}\hat{i} \times (mg)\hat{j} \Rightarrow \overline{Z}_{mg} = -\frac{l_0}{2}mg \hat{k}$ H porty της Sivalys F_2 είναι: $\overline{Z}_{F_2} = l_0\hat{i} \times (\overline{F}_2)\hat{j} \Rightarrow \overline{Z}_{F_3} = l_0F_3\hat{k}$
	$\Rightarrow 0 + l_0 F_2 - (l_0 - l) mg - \frac{l_0}{2} Mg = 0 \Rightarrow F_2 = \frac{(l_0 - l) mg + l_0 Mg}{l_0}$
	Ano (1) $\Rightarrow F_1 = (m+\mu)g - F_2 \Rightarrow F_1 = \frac{Q}{Q} mg + \frac{\mu g}{Q}$

4. Δύο ράβδοι κάθε μια μήκους *l* και μάζας m συνδέονται με ένα λείο μεντεσέ. Και οι δυο σχηματίζουν γωνία θ με την κατακόρυφη διεύθυνση. Ένα αβαρές νήμα συνδέει το κάτω άκρο της αριστερής ράβδου με την δεξιά ράβδο ακριβώς κάθετα, όπως δείχνει το σχήμα. Όλο το σύστημα στέκεται σε μια λεία οριζόντια επιφάνεια. (α) Ποια η τάση στο νήμα. (β) Τι δύναμη εξασκεί η αριστερή ράβδος στην δεξιά ράβδο στο σημείο επαφής τους;

(a) Estaforcas us ponés alou con succipiatos as nos co preverse, Blinoupe óciocualteres Twahers oca natu aupa vade pablov eiven Ano IFy = 0 yea olo co sisterfra suproviver òa or ud deces avendpasers sivar ma Or poriés our Sefia tiono pabbo ens ripos co freverse: $mg\frac{l}{2}\sin\theta + Tl\cos 2\theta = mgl\sin\theta \Rightarrow T = \frac{mg\sin\theta}{2\cos 90}$ (B) Efeca portre era Surápera con Seferi pai 650: Il madery Sivatry M escopponei en Sivatry ens bogierras Enotievos y Sivatry F-reiner va escopponei en raisy and co vita, file una auto civar or unispornes 2 Surapers nou acuaircar sey Sefra pabso, Enopievous F = T (ises non aveideres)

And to (a) unospictor $\Rightarrow F = \frac{mg \sin \theta}{2\cos 2\theta}$ non exer Siendones repos ca riàres και extratife juria O fic en opifòrcia Siendones.

Δύο ράβδοι συνδέονται μεταξύ τους με μεντεσέδες και με ένα τοίχο όπως φαίνεται στο σχήμα. Η γωνία μεταξύ των ραβδών είναι θ και κάθε ράβδος έχει την ίδια γραμμική πυκνότητα ρ, ενώ η οριζόντια ράβδος έχει μήκος l. Να βρεθεί η δύναμη (να δωθούν η οριζόντια και κατακόρυφη συνιστώσα της) που ασκεί η χαμηλότερη ράβδος στην οριζόντια ράβδο.

2 xeoraforte as Surature mon acroirmen (Siapportula anchendranticion ecipacos):

Onus poiveron ero existia, xprochonomico en juminio mepinemen onou Su Pepoulac ma po proche eivar oca su sivatir nou fraccipe eivar oca Sieiduren ann xontur notrepus pablou. Exedia for enotievos zos 2 euvicacioses ens.

Or our jus reopporios: (oprforcia pablos)

$$\begin{aligned}
\widehat{Z} F_{y} &= 0 \Rightarrow F_{1} + F_{y} = mg \Rightarrow F_{1} + F_{y} = plg \\
\widehat{Z} Z &= 0 \Rightarrow F_{1} \left(\frac{l}{2}\right) - F_{y} \left(\frac{l}{2}\right) = 0 \Rightarrow F_{1} \left(\frac{l}{2}\right) \Rightarrow F_{2} = F_{y} \end{aligned}$$
(we roos as viewage the publical)

$$IF_{x} = 0 \Rightarrow | N = F_{x} | (A)$$

Σ χια όλο το σίστημα. Θεωρώ το σημείο επαφής της χαμηλότερης paboou he tor toigo.

$$Zz = 0 \Rightarrow N(\ell tan \theta) = \rho lg(\frac{\ell}{2}) + \frac{\rho lg}{\cos \theta}(\frac{\ell}{2}) \Rightarrow$$

$$\Rightarrow N = \frac{\rho \log \left[1 + \frac{1}{\cos \theta}\right]}{2} \left[1 + \frac{1}{\cos \theta}\right] \frac{1}{\tan \theta} \Rightarrow \left[N = \frac{\rho \log \left[\frac{1}{2} + \frac{1}{\sin \theta}\right]}{2} \left[\frac{1}{\tan \theta} + \frac{1}{\sin \theta}\right]\right]$$

Alla and (A)
$$N = F_{\times} \Rightarrow \left[F_{\times} = \frac{\rho \log \left[\frac{1}{t \text{ and}} + \frac{1}{s \text{ in} \theta} \right]}{2} \right]$$

$$y_{10} \Theta \rightarrow 0 \Rightarrow F_{x} = \infty$$

$$\Theta \rightarrow 90^{\circ} \Rightarrow F_{x} = \frac{p \log p}{2}$$

6. Βρείτε τη μάζα m του αντίβαρου που χρειάζεται ώστε το φορτηγάκι του σχήματος μάζας 1500kg να ισορροπεί στο κεκλιμένο επίπεδο. Υποθέστε ότι οι τροχαλίες είναι αβαρείς και δεν εμφανίζουν τριβές.

Αφού το σύστημα ισορροπεί, η συνισταμένη των δυνάμεων στο φορτηγάνι πρέπω να είναι μηδέν

Η τάκη είναι 2Τ θεωρώντα ο ότι
κάθε εχοινί που θρίεκεται δεβιά
μαι αριετερά της τροχαλίας που
κρατά το φορτηχάκι έχουν τάκη Τ

Dempir co ciccifia curecappieros con exitacos. And co 2º votro con Newton

$$IF_{x} = 2T - mg \sin\theta = \phi \Rightarrow T = \frac{1}{2} Mg \sin\theta$$
 (1)

Οι ροπές στην τροχαδία πρέπει να είχαν συνισταδίκη μιτθέν για να εικανοποιείται η δεύτερη συνθήκη στα τικής ισορροπίας:
Οι δυνάδιεις παι προμαδούν ροπή στην τροχαδία είναι η τάση του νήματος Τ που έχει διοχδοβραχίονα ν ως προς το κέντρο της τροχαδίας και η τάση του νήδιατος Τι με διοχδοβραχίονα 3ν ως προς το

κέντρο της τροχαλίας. Η τοίκη Τι = mag εφαρμόβονταις το θύομοτου Νεωτους στο αντίδαρο το οποίο πρέπει επίσης να 160ρ φοπεί. Η ροπή της Τι είναι τιε φορά αυτή των δειντών του ρολοχού ενώ ν Τ έχει ροπή με φορά αντίδετη των δειντών του ρολοχού

7. Μια ο μοιογενής σκάλα μήκους L και μάζας m₁ είναι στηρίζεται ακίνητη σε ένα λείο τοίχο. Η σκάλα σχηματίζει γωνία θ με την οριζόντιο διεύθυνση. (α) Βρείτε τις οριζόντιες και κατακόρυφες δυνάμεις που ασκεί το έδαφος στην βάση της σκάλας όταν ένας πυροσβέστης μάζας m₂ βρίσκεται πάνω στη σκάλα και σε απόσταση x από τη βάση της. (β) Αν η σκάλα είναι στο σημείο που ετοιμάζεται να ολισθήσει όταν ο πυροσβέστης βρίσκεται σε απόσταση d από τη βάση, ποιος είναι ο συντελεστής της στατικής τριβής μεταξύ του εδάφους και της σκάλας;

√	
(a) Or survives statuts	denomination of the state of th
(a) Or condinues cratius \times $\Sigma \vec{F} = \emptyset$ $\Sigma \vec{z} = \emptyset$.	responses over:
Ha Mas Jung	
William Chill	
OIL Surafres CET	
boicy Eys Guailas eines	z =0 (2)
Mari Space No Ky Tolby	
A Sentepy cording, S	Empires EIS portis
TWY SUNGLEUN WS TO	on on boing on acidas
IZ=0 > - m, g / 2 cos0 - m, g x cos0 + Nw	Lain 0 =0 >
$\Rightarrow N_{w} = \left(\frac{1}{2} m_{1} g + \frac{\times}{L} m_{2} g\right) \cot \theta$	(<u>4</u>)
$\Rightarrow \int = \left(\frac{1}{2}m_1g + \frac{x}{L}m_2g\right)\cot\Theta \stackrel{(g)}{\Rightarrow}$ $N_g = m_1g + m_2g$	n S. M
7 - (2 "13 + 1 "23 (100)	or amahaz 1100
N= m, a +m, a	AVANTU GOVERAL OLINO EO
9 19 39	Edapos Gcy Guala
(b) Av y creata eivar étorfy va gli crojeer	20 TE #= fr M
ORÔTE avrivadictimens la anoteliépara co	u (a) enijous exoute:
(1 m, g + x m, g) cot 0 = h (m, g	+m,q) =>
$\Rightarrow \sqrt{\frac{\left(\frac{1}{2}m_1g + \frac{x}{L}m_2g\right)\cot\Theta}{m_1g + m_2g}}$	¬
= 12 8 2 28/400	
m ₁ g+m ₂ g	

8. Ένας άντρας μάζας Μ στέκεται σε ένα βαγόνι τρένου το οποίο κινείται σε μια οριζόντια κυκλική τροχιά ακτίνας R με ταχύτητα υ. Το κέντρο μάζας του ατόμου βρίσκεται σε ύψος L από το δάπεδο του βαγονιού ενώ κρατά τα πόδια του ανοικτά και σε απόσταση d μεταξύ τους (όπως στο σχήμα). Ο άντρας έχει προσανατολισμό ώστε να βλέπει προς τη φορά της κίνησης. Πόσο βάρος βρίσκεται σε κάθε πόδι του;

M	D'avepas crèveras et bazòve to orio hiveicas. Le pre caxòtyta et se pre croody antivas R
1ª 9	To Scappatifia antiendeputières cirpaces de ciron:
PL PR	Ano ey creghis nou uneien se nondruis cooxoà, n surseratièm Sivatur mon edaphistern son anonnes Sieidoner da eine n neverotiodos, Sndas;:
PL PR	
Mg	$\int_{\Gamma} F = M\alpha_{\Gamma} = M\alpha_{\mu} = M\frac{\sigma^{2}}{R} $ (1)
.00	$\int_{a}^{a} \int_{R}^{F_{r}} = \int_{L}^{L} + \int_{R}^{L} + \int_$
	ver Ser éxer entraximen nou enopières: 5€=03! Mg=N,+N,
	repierpédetai vai enofièvos y ouvierations rur éforépair
	repierpédetai vai enofièvos y ouviecations rur éforépains pos ro KM rou Da évai fussiv:
	τεριοτρέφεται ναι επομένως η συνισταφένη των εβωτεριών pos το KM του θα είναι μηθέν:
Enicys Sev or portion ws n	TEQUES PÉRÉSAL VAU ENOPLÈVOUS η GUVICCORRÈUN TOUN ESUTERION POS TO KM TOU DA ÉVAU LUSÈN: $ \Sigma_{\mathcal{I}} = I \propto = 0 \Rightarrow \frac{1}{2} N_{R} - \frac{1}{2} N_{L} - L (f_{R} + f_{L}) = 0 = 0 \Rightarrow 0 $ $ \Rightarrow N_{R} - N_{L} = 2 \frac{L}{d} (f_{L} + f_{R}) \qquad (3) $ $ \Rightarrow N_{R} - N_{L} = 2 \frac{L}{d} H \frac{\sigma^{2}}{R} \Rightarrow 0 $ $ \Rightarrow N_{R} - (H_{Q} - N_{R}) = 2 \frac{L}{d} H \frac{\sigma^{2}}{R} \Rightarrow 0 $
Enicys Sev or poricin ws no	Tepicrpédetai vai enofièvos η συνιεταφένη των εβωτεριών pos το KM του θα είναι μηθέν: $ \Sigma_{\mathcal{I}} = I \propto = 0 \Rightarrow \frac{1}{2} N_{R} - \frac{1}{2} N_{L} - L (f_{R} + f_{L}) = 0 = 0 $ $ \Rightarrow N_{R} - N_{L} = 2 \frac{L}{d} (f_{L} + f_{R}) \qquad (3) $ $ \Rightarrow N_{R} - N_{L} = 2 \frac{L}{d} H \frac{\sigma^{2}}{R} \Rightarrow 0 $

9. Μια συμπαγής σφαίρα ακτίνας R και μάζας M είναι τοποθετημένη σε ένα αυλάκι όπως φαίνεται στο διπλανό σχήμα. Οι εσωτερικές επιφάνειες του αυλακιού δεν παρουσιάζουν τριβές. Προσδιορίστε τις δυνάμεις που ασκεί το αυλάκι στη σφαίρα στα δύο σημεία επαφής.

	Ovoháforhe cis máches Stráfeis Asima (148) Bsimb To audix: Gar A mai B Experien yuries a mai b he cyr na tamópupo.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
· .	$\Rightarrow A(\cos a \sin b + \sin a \cos b) = M_0 \sin b \Rightarrow A = M_0 \frac{\sin b}{\sin(a+b)}$ $A = M_0 \frac{\sin b}{\sin(a+b)}$ $A = M_0 \frac{\sin b}{\sin(a+b)}$ $A = M_0 \frac{\sin b}{\sin(a+b)}$

10. Ένα πεινασμένο αρκουδάκι βάρους 700N περπατάει πανω σε ένα δοκάρι προσπαθώντας να πιάσει μερικά «γλυκά» που κρέμονται στην άκρη του δοκαριού, όπως στο σχήμα. Το δοκάρι είναι ο μοιογενές, ζυγίζει 200N και έχει μήκος 6m. Τα γλυκά ζυγίζουν 80N. (α) Σχεδιάστε το διάγραμμα απελευθερωμένου σώματος για το δοκάρι. (β) Όταν το αρκουδάκι βρίσκεται στη θέση x=1m, βρείτε την τάση του σύρματος και τις συνιστώσες της δύναμης της αντίδρασης στο σημείο στήριξης του δοκαριού στο τοίχο. (γ) Αν το σύρμα μπορεί να αντέξει μια μέγιστη τάση 900N, ποια είναι η μέγιστη απόσταση που μπορεί να περπατήσει το αρκουδάκι πριν σπάσει το σύρμα;

$$I7 = 0 =$$
 $86 \times 1m + 8 \times 3m + 8g \times 6m = 59h66x$
 $700 \times 1 + 200 \times 3 + 80 \times 6 = 5\frac{13}{2} \times 6$
 $900 + 600 + 480 = 73.6
 $1780 = 73.6
 $9 = 342.6$ N

11. Ένας γερανός μάζας 3000kg σηκώνει ένα βάρος 10000kg όπως στο σχήμα. Ο βραχίονας του γερανού περιστρέφεται γύρω από λείο άξονα στο σημείο Α και στηρίζεται σε λείο υποστήριγμα στο Β. Να βρεθούν οι δυνάμεις αντίδρασης στο Α και Β.

Από τη στιγμίο που το σεώριγμα στο σημείο Β είναι θείο δευ υπάρχει τριβή με το ματακόρυφο τοίχωμα και εποβένως υπάρχει μόνο οριβόντια δίναμα.

I to Gapiero A, (o i favos neproposos)

unapper per Sivater opfdre un pra matamoperpos or onoies un conscier en aveispacy stor a fora ano to faziona tur jepanoi. Ano to 2 rope tou Newton:

Il Seirepro Gardin Gopponias fran Die oa II=0.

Osmpoique sa entreio que ous pones co entreio A, onore tundevijoute as pones ano Fax le Fay. Enotieves exoutre:

$$\mathcal{I}_{T} = 0 \Rightarrow F_{Bx} \cdot (AB) - W_{y} \cdot 2m - W_{g} \cdot 6m = 0 \Rightarrow F_{Bx} = \frac{(9.3000 + 6.10,00)}{1}$$

$$\Rightarrow F_{Bx} = 72,000 \cdot 9$$

12. Μια σκάλα αμελητέας μάζας είναι συναρμολογημένη όπως στο σχήμα. Ένας ελαιοχρωματιστής μάζας 70kg στέκεται πάνω στη σκάλα σε ύψος 3.0m από το έδαφος. Υποθέτοντας ότι το έδαφος είναι λείο να βρεθούν, (α) η τάση στην ορζόντια ράβδο που συνδέει τα δυο «πόδια» της σκάλας. (β) Την κάθετη αντίδραση στα σημεία Α και Β και (γ) τις συνιστώσες της δύναμης της αντίδρασης στο μοναδικό «μεντεσέ» C που ασκεί το αριστερό μέρος της σκάλας στο δεξί μέρος. (Υπόδειξη: Δουλέψτε την άσκηση σα να είναι η σκάλα ένα σώμα, αλλά θα πρέπει σε κάποιο σημείο να πάρετε κάθε μισό της σκάλας ξεχωριστά

Ano on youtherpia tou outracos

Bléroupe où n yavia
$$\Theta$$
 siva :

 $COSO = \frac{AB/2}{l_{Gliologs}} = \frac{1m}{Am} = \frac{1}{4} \Rightarrow$

A β (Το τρίγωνο είναι τω το αριστερό μέρος της σιώλας (ελουοχρωματισώς επείνω) έχουμε για 160pportia ;

$$Z = 0 = B_{\epsilon_3} \cdot (4m \cdot \omega s 75.5^\circ) - N_A \cdot (k \omega s 0) + T \left(\frac{l}{2} \cdot s \ln 0\right) = 0.$$

(Or ponès unalgriposas us nos to C)

Tra co Sefi hépos ens suitas da éxorte availgre:

Nivovers to cocentra zour 6 eficioseur égoupe:

[T = 133M] | N = 429 N | NB = 257N |

[NC × = 133N] | NC = 257N |

[apricipo tre cualar coo de fi ciral

Enopievos y Sivatur nou acuei to sefituipos tre cualar coo de fi ciral

600 Sefia (auxi nipaque sa deuni dopa) was nos ca màcu.