Задача №4. Алгоритмы на графах – 2

- 1. Используя граф из задачи №3.1, найдите максимальный поток между вершиной 0 и вершиной с максимальным индексом. Вес рёбер считать пропускной способностью.
- 2. Напишите функцию, решающую задачу о максимальном паросочетании (варианты графов в виде списка рёбер указаны в таблице 4.1).
- 3. Напишите функцию, решающую задачу о закраске графа с помощью жадного алгоритма (используйте граф из задачи №3.1).
- 4. Напишите функцию, решающую задачу о поиске гамильтонова цикла: необходимо вернуть путь (последовательность вершин), составляющих цикл, если он есть (используйте граф из задачи №3.1).

Таблица 4.1. Список рёбер для пункта 4.2 (номер строки соответствует индексу вершины в левой доле, содержимое строки — индексы вершины в правой доле, с которыми соответствующая вершина левой доли связана ребром)

Вариант	Список рёбер
1.	{ 3,
	3, 4, 5,
	4,5,6,7
	}
2.	{ 3, 4
	3, 5,
	5,6,7
	}
3.	{ 3,4,5,6,
	5,
	5,6,7
	}
4.	{ 3, 4
	4, 5,
	5,6,7
	}
5.	{ 3,4,5
	5,

	4,5,6,7
	}
6.	{ 4,
	4, 5, 6,
	4,6,
	5, 7
	}
7.	{ 4,6,
	5, 6,
	4,6,
	5, 7
	}
8.	{ 4,5,6,
	5, 6,
	4,7,
	5, 7
	}
9.	{ 4,5,6,
	5, 6,
	4,6,
	4,6,7
	}
10.	{ 4,5,7,
	5, 6,
	4,
	4,6,7
1.1	}
11.	{ 5, 7,
	5, 6, 4,7,
	4,7,
12.	{ 5, 7,
12.	4, 5, 6,
	4, 5, 6, 4,6,
	4,7
	}
	J

13.	{ 7,
	5, 6,
	4,6,
	4,7
	}
14.	{ 7,
	5, 6,
	4,6,
	7
	}
15.	{ 7,
	5, 6,
	4,6,
	4
1.6	}
16.	{ 7,
	3, 4, 5, 4,5,6,7
17.	{ 3, 7
17.	3, 5,
	5,6,7
	}
18.	{ 3,4,5,7,
	5,
	5,6,7
	}
19.	{ 3, 7
	4, 5,
	5,6,7
	}
20.	{ 3
	5, 7
	4,6
21	}
21.	{ 5,
	4, 5, 6,

	1.6
	4,6,
	5, 6
	}
22.	{ 5,6,
	4, 6,
	4,6,
	5, 7
	}
23.	{ 4,5,7,
23.	5, 6,
	4,7,
	4, 7
	}
24.	{ 4,5,6,
	5, 7,
	4,7,
	4,6,7
	}
25.	{ 4,5,7,
	6, 7,
	4,
	4,6,7
	}
26.	{ 6, 7,
20.	5, 6,
	4,7,
	4,6
27	}
27.	{ 6, 7,
	4, 5, 6,
	5,6,
	5,7
	}
28.	{ 7,
	5, 7,
	4,7,
	4,7
L	l '

	}
29.	{ 6,
	5, 7,
	4,7,
	4
	}
30.	{ 7,
	5, 7,
	5, 7, 5,6,
	4
	}