CHAPTER

प्रत्यावर्ती धारा और बहुकला प्रणाली (ALTERNATING CURRENT & POLYPHASE SYSTEM)

- प्रत्यावर्ती धारा (Alternating Current) :
- वह विद्यतधारा जिसका मान एवं प्रवाह दिशा एक निश्चित दर पर परिवर्तित होती रहती है, प्रत्यावर्ती धारा या ए.सी. कहलाती है। हमारे देश में A.C. उत्पन्न करने की सामान्य आवत्ति 50 Hz है।

- दिष्ट धारा (Direct Current) :
- वह विद्युत धारा जिसका मान एवं प्रवाह दिशा नियत रहती है, दिष्ट धारा या डी.सी. कहलाती है।
- आवृत्ति (Frequency) :
- प्रत्यावर्ती विद्युत धारा अथवा अन्य किसी प्रत्यावर्ती राशि द्वारा एक सेकेण्ड समय में पूर्ण किये गए चक्रों की संख्या उसकी फ्रीक्वेन्सी कहलाती है।
- इसका प्रतीक ५ होता है।

$$f=rac{1}{T}$$
; जहाँ T समय अंतराल होता है नजदीकी शृंग और गर्त के बीच। या, $\omega=2\pi f$

$$f = \frac{\omega}{2\pi}$$

- $f=rac{\omega}{2\pi}$ आवृत्ति की इकाई cycle per second या Hz (Hertz) होती है।
- $f = \frac{NP}{120}$; जहाँ N =कुण्डली के घूमने की गति प्रति मिनट (rpm) P = ध्रुवों की संख्या
- AC का समीकरण $\Rightarrow I = I_0 \sin \omega t$
- तात्कालिक मान (Instantaneous Value) :
- प्रत्यावर्ती विद्युत धारा अथवा वोल्टता का किसी भी पल पर मान उसका तात्कालिक मान कहलाता है।
- शिखर मान (Peak Value) :
- प्रत्यावर्ती विद्युत धारा अथवा वोल्टता का धन अथवा ऋण दिशा में अधिकतम मान ही उसका शिखर मान कहलाता है।
- वर्ग-माध्य-मूल मान (Root Mean Square Value) :
- आर.एम.एस. मान ए.सी. का वह मान है जो दिए गए समय में उतनी ही ऊष्मा उत्पन्न करता है जितनी कि उतने ही समय में डी.सी. उत्पन्न करती है।

$$I_{r,m.s.} = 0.707.I_{\text{max}}$$
 $E_{r,m.s.} = 0.707.E_{\text{max}}$ $\frac{1}{\sqrt{2}}I_{\text{max}}$ $\frac{1}{\sqrt{2}}E_{\text{max}}$

- प्राय: सभी वैद्यतिक मापक यंत्र ए.सी. का r.m.s. मान ही दर्शाते हैं।
- औसत मान (Average Value) :
- प्रत्यावर्ती विद्यत धारा अथवा वोल्टता के आधे चक्र में तात्कालिक मानों का औसत, उसका औसत मान कहलाता है।

$$I_{ave} = 0.637 I_{max}$$
$$E_{ave} = 0.637 E_{max}$$

- गणनाओं आदि में ए.सी. का औसत मान ही प्रयोग किया जाता है।
- शिखर गुणांक या शृंग गुणांक (Peak Factor or Crest Factor):
- प्रत्यावर्ती विद्यत धारा अथवा वोल्टता के शिखर मान एवं r.m.s. मान के अनुपात के पीक फैक्टर या क्रैस्ट फ्रैक्टर कहते हैं।

पीक फैक्टर =
$$\frac{I_{\text{max}}}{I_{r.m.s.}} = \frac{E_{\text{max}}}{E_{r.m.s.}} = 1.414$$

- रूप गुणांक (Form factor):
- प्रत्यावर्ती विद्युत धारा अथवा वोल्टता के r.m.s. मान तथा औसत मान के अनुपात को फॉर्म फैक्टर कहते हैं। इसे \mathbf{k}_{f} से प्रदर्शित करते हैं।

formfactor =
$$\frac{I_{r.m.s.}}{I_{ave}} = \frac{E_{r.m.s.}}{E_{ave}} = 1.11$$

- यह voltage तथा धारा के लिए समान होता है।
- कुछ महत्त्वपूर्ण तथ्य :

Signals	Sinusoidal	H.W F.W		Rectangular	Triangular	
Wave	2		<u></u>	 	\rightarrow	
rms value	$\frac{I_m}{\sqrt{2}}$	$\frac{I_m}{2}$	$\frac{I_m}{\sqrt{2}}$	I_m	$\frac{I_m}{\sqrt{3}}$	
Average value	$\frac{2I_m}{\pi}$	$\frac{I_m}{\pi}$	$\frac{2I_m}{\pi}$	I_m	$\frac{I_m}{2}$	
Form factor	1.11	1.11 1.57		1.0	1.16	
Peak factor	1.414	2.0	1.414	1.0	1.73	

इन-फेज (In-phase) :

जब दो प्रत्यावर्ती राशियाँ जैसे विद्युत धारा एवं वोल्टता: साथ-साथ बढ़ती-घटती हुई एक ही समय अपने शिखर मान पर पहुँचती हैं तो वे इन फेज राशियाँ कहलाती हैं। यानि उनके बीच का योग 0° होता है।

All: sine waves of the same frequency chich are in phase.

- आउट ऑफ फेज (Out of Phase):
- जब दो प्रत्यावर्ती राशियाँ साथ-साथ बढती/घटती हुई कुछ अंशों के अंतर पर (θ°) अपने शिखर मान पर पहुँचती हैं तो वे आउट ऑफ फेज राशियाँ कहलाती हैं।

- अगर दोनों राशियों के बीच का अंतर 90° हो तो वे क्वाडेचर (quadrature) तथा 180° हो तो एन्टी-फेज (anti-phase) कहलाती हैं।
- अग्रगामी तथा पश्चगामी राशियाँ (Leading and Lagging Quantity):
- वह प्रत्यावर्ती राशि जो दूसरी प्रत्यावर्ती राशि की अपेक्षा पहले अपने शिखर मान पर पहुँचे, लीडिंग राशि कहलाती है।
- वह प्रत्यावर्ती राशि जो दूसरी प्रत्यावर्ती राशि की अपेक्षा बाद में अपने शिखर मान पर पहुँचे, लैंगिंग राशि कहलाती है।
- शृद्ध प्रतिरोधी परिपथ (Pure Resistive Circuit) :
- जिस ए.सी. परिपथ में केवल प्रतिरोधक ही संयोजित होता है, वह शुद्ध प्रतिरोधी परिपथ कहलाता है।
- इसमें विद्यत धारा एवं वोल्टता इन फेज रहते हैं।
- शुद्ध प्रतिरोधी परिपथ में वैद्यतिक शक्ति की गणना, डी.सी. परिपथों की भाँति की जाती है।
- शुद्ध प्रतिरोधी परिपथ का शक्ति गुणांक इकाई होता है।
- इन्डक्टर या चोक (Inductor or Choke) :
- वैसे तो प्रत्येक प्रत्यावर्ती विद्युत धारावाही चालक में इन्डक्टैन्स विद्यमान
- जब चालक तार को कुण्डली के रूप में लपेटकर एक नियत मान का इन्डक्टेंस प्रस्तुत करने के लिए एक पुर्जे का रूप प्रदान कर दिया जाता है जिसे इन्डक्टर या चोक कहते हैं।
- इन्डक्टैंस (Inductance) :
- ए.सी. परिपथों का वह गण, जिसके कारण वह विद्युत धारा मान में होने वाले परिवर्तनों का विरोध करता है इन्डक्टैंस कहलाता है।
- इसका प्रतीक L तथा मात्रक हेनरी (H) होता है।

- प्रतिरोधकों की भाँति. इन्डक्टर्स को भी समहन की जरूरत पडती है जिसका तुल्य इन्डक्टैन्स निम्न विधि द्वारा ज्ञात किया जाता है।
- श्रेणी क्रम में $L_T = L_1 + L_2 + L_3 + \dots L_n$
- समानांतर क्रम में $\boxed{ \frac{1}{L_T} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n} }$
- प्रेरणिक प्रतिघात (Inductive Reactance) :
- प्रत्यावर्ती विद्युत धारा प्रवाह के लिए किसी कुण्डली द्वारा प्रस्तुत किया जाने वाला विरोध ही उसका इन्डिक्टव रिएक्टैन्स कहलाता है।
- इसका प्रतीक X_{I} तथा मात्रक Ω (ओह्म) होता है।

$$X_L = 2\pi f.L$$

f = फ्रीक्वेंसी (Hz में)

. L = इन्डक्टैन्स (Henry में) इन्डक्टर युक्त परिपथ में विद्युत धारा की गणना :

$$I_L = \frac{V}{X_L}$$
 जहाँ $I_L =$ विद्युत धारा (Amp. में)

V = वोल्टता (Volts में)

- शब्द प्रेरणिक परिपथ (Pure Inductive Circuit) :
- केवल इन्डक्टर अथवा चोकयुक्त परिपथ शुद्ध इन्डिक्टव परिपथ कहलाता है।
- वैसे कोई भी परिपथ शुद्ध इन्डिक्टव नहीं होता क्योंकि परिपथ में प्रयुक्त चालकों में कुछ-न-कुछ प्रतिरोध भी होता है।
- शुद्ध इन्डिक्टव परिपथ में विद्युत धारा, वोल्टता से 90° पिछड जाती है।
- शुद्ध कन्डिक्टव परिपथ का शक्ति गुणांक शून्य होता है।
- संधारित्र (Capacitor) :
- किसी अचालक पदार्थ से पृथक की गई दो चालक प्लेटों से निर्मित ऐसी यक्ति. जो वैद्यतिक आवेश एकत्रित कर सके. संधारित्र या कन्डेन्सर कहलाती है। संधारित्र ऊर्जा को विद्यत क्षेत्र में संचित करता है।
- धारिता (Capacitance):
- ए.सी. परिपथों का वह गण, जिसके कारण वह वोल्टता मान में होने वाले परिवर्तनों का विरोध करता है, धारिता कहलाता है।
- इसका प्रतीक C तथा मात्रक फैरड (F) होता है।
- संधारित्र प्रतिघात (Capacitive Reactance) :
- प्रत्यावर्ती विद्यत धारा प्रवाह के लिए किसी संधारित्र द्वारा प्रस्तत किया जाने वाला विरोध ही उसका कैपेसिटीव रिएक्टैन्स कहलाता है।
- इसका प्रतीक X_c तथा मात्रक ओहम (Ω) होता है।
- कैपेसिटीव रिएक्टैन्स का मान निम्न सूत्र से किया जाता है—

$$X_{c} = \frac{1}{2\pi . f. c}$$
 जहाँ, $f = fy$ क्वेंसी $(Hz \ \ \dot{H})$

c = धारिता (Farad में)

संधारित्र युक्त परिपथ में विद्युत धारा के मान की गणना—

$$I = \frac{V}{X_c}$$
 जहाँ, $I =$ विद्युत धारा (Amp. में)

V = वोल्टता (volts में)

- शद्ध संधारित्र परिपथ (Pure Capacitive Circuit):
- केवल संधारित्र युक्त ए.सी. परिपथ शुद्ध कैपेसिटीव परिपथ कहलाता है।
- वास्तव में कोई भी परिपथ शुद्ध कैपेंसिटीव नहीं होता, क्योंकि चालक तारों में कुछ-न-कुछ प्रतिरोध होता ही है।
- शुद्ध कैपेसिटीव परिपथ में वोल्टता, विद्युत धारा से 90° पिछड़ जाती है।
- शुद्ध कैपेसिटीव परिपथ का शक्ति गुणांक शुन्य होता है।

- प्रतिबाधा (Impedance) :
- किसी ए.सी. परिपथ में विद्युत धारा प्रवाह के लिए विद्यमान कुल अवरोध, इम्पीडेन्स कहलाता है।
- इसका प्रतीक Z तथा मात्रक ओह्म (Ω) होता है।
- इम्पीडेन्स ट्रैंगल इम्पीडेन्स, रेजिस्टेंस तथा रिएक्टेन्स से बनता है।
- श्रेणी R-L परिपथ (Series R-L Circuit) :
- इस परिपथ में प्रतिरोधक तथा इन्डक्टर श्रेणी क्रम में संयोजित होते हैं।

यदि R परिपथ का कुल प्रतिरोध तथा X_{I} इन्डिक्टिव रिएक्टैन्स हो तो इम्पीडैन्स (Z)

$$Z = \sqrt{R^2 + X_L^2}$$

पदि विद्युत के पिछड़ने का कोण φ द्वारा दर्शाया जाए तो,

पावर फैक्टर $\cos \phi = \frac{R}{Z}$ तथा शक्ति व्यय = $P = V.I.cos\phi$

- श्रेणी R-C परिपथ (Series R-C Circuit) :
- इस परिपथ में प्रतिरोधक तथा संधारित्र श्रेणी क्रम में संयोजित होते हैं।

यदि R परिपथ का कुल प्रतिरोध तथा $X_{\mathcal{L}}$ कैपेसिटीव रिएक्टैन्स हो तो इम्पीडेन्स (Z)

$$Z = \sqrt{R^2 + X_c^2}$$

पावर फैक्टर,
$$\cos \phi = \frac{R}{Z}$$
 तथा शक्ति व्यय $P = V.I.\cos\phi$

- श्रेणी R-L-C परिपथ (Series R-L-C Circuit) :
- इस परिपथ में प्रतिरोधक, इन्डक्टर तथा संधारित्र श्रेणी क्रम में संयोजित होते हैं।

यदि प्रतिरोधक R, इन्डिक्टिव रिएक्टैन्स X_L तथा कैपेसिटिव रिएक्टैन्स X_{c} हो तो इम्पीडैन्स (Z)

$$Z = \sqrt{R^2 + (X_L^2 \sim X_c^2)}$$

 $\frac{1}{1}$: उपरोक्त सूत्र में चिह्न (\sim) का तात्पर्य है 'अंतर' अर्थात् बडी संख्या में से छोटी संख्या को घटाकर अंतर प्राप्त करें।

यदि धारा तथा वोल्टता का फेज अंतर ϕ हो तो पावर फैक्टर

$$\cos \phi = \frac{R}{Z}$$
 एवं शक्ति व्यय = P = V.I. $\cos \phi$

- अनुनाद (Resonance) :
- किसी श्रेणी R-L-C परिपथ में वह स्थिति जिसमें $X_{L}=X_{C}$ हो जाए, रेजोनेन्स कहलाती है। और ऐसा परिपथ श्रेणी रेजोनेन्ट पॅरिपथ कॅहलाता है।
- सीरीज रेजोनेन्ट परिपथ में कुल रिएक्टैन्स शून्य हो जायेगा तथा इम्पीडेन्स परिपथ के कुल प्रतिरोध के बराबर होता है।

$$\therefore \qquad Z = \sqrt{R^2 + \left(X_L \sim X_C\right)^2}$$

জৰ,
$$X_L = X_C$$
 \overrightarrow{al} $Z = \sqrt{R^2 + O^2}$ $\overline{Z = R}$ \therefore $X_L = X_C$ \therefore $2\pi f_r L = \frac{1}{2\pi f_r C}$

$$\therefore X_L = X_C \qquad \qquad \therefore 2\pi f_r L = \frac{1}{2\pi f_r C}$$

$$(f_r)^2 = \frac{1}{2\pi \times 2\pi \times LC}$$

$$f_r = \frac{1}{2\pi \sqrt{LC}}$$

- आभासी शक्ति (Apparent Power) : A.C. परिपथों में धारा तथा वोल्टता के वर्ग-माध्य-मूल मानों के गुणनफल V.I. को आभासी शक्ति कहते हैं। इसे VA (वोल्ट एम्पियर) से व्यक्त करते हैं तथा बडी इकाई KVA है।
- वास्तविक शक्ति (True Power) : A.C. परिपथों में आभासी शक्ति तथा शक्ति गुणांक के गुणनफल को वास्तविक शक्ति कहते हैं; जिसे $V.I \cos \phi = W$ से व्यक्त करते हैं। इसकी इकाई W (वाट) या KW (किलोवाट) है।
- प्रतिकारक शक्ति (Reactive Power) : आभासी शक्ति V.I. तथा धारा व वोल्टता के फेज कोण के sin∮ के गुणनफल, VI sin∮ को प्रतिकारक शक्ति कहते हैं।
- इसे वाटहीन शक्ति (Wattless power) भी कहते हैं। इसकी इकाई प्रतिकारक वोल्ट ऐम्पियर VAR या प्रतिकारक किलो वोल्ट ऐम्पियर (KVAR) है।

NOTE: शुद्ध प्रेरकत्व तथा संधारित्र परिपथों में शक्ति व्यय शून्य होता है अर्थात् ऐसे परिपथों में शक्ति व्यय प्रतिरोध के कारण ही होता है।

- प्रतिकारक शक्ति VI sinφ कोई उपयोगी कार्य नहीं करता है।
- पॉवर फैक्टर (Power Factor) :
- ए.सी. परिपथ में वास्तविक शक्ति एवं आभासी शक्ति का अनुपात पावर फैक्टर कहलाता है अर्थात्

पॉवर फैक्टर =
$$\frac{\text{वास्तविक शिक्त}}{\text{आधासी शिक्त}} = \frac{\text{VI}\cos\phi}{\text{VI}} = \cos\phi$$

- दूसरे शब्दों में, ए.सी. परिपथ में वोल्टता एवं विद्युतधारा के बीच बने कोण की कोज्या को पॉवर फैक्टर कहते हैं।
- ए.सी. परिपथ में प्रतिरोध तथा इम्पीडेन्स का अनुपात पॉवर फैक्टर कहलाता है।

$$PF = \cos \phi = \frac{R}{Z}$$

किसी उपभोक्ता के लिए सामान्यत: 0.95 पश्चवर्ती सबसे ज्यादा किफायती शक्ति गुणक है।

 पॉवर फैक्टर का अधिकतम मान इकाई अर्थात् 1 होता है और इसका कोई मात्रक नहीं होता है।

पावर फैक्टर यूनिटी \Rightarrow $X_C = X_L$ लीडिंग \Rightarrow $X_C > X_L$ लैगिंग \Rightarrow $X_C < X_L$

- प्रवेश्यता (Admittance) :
- किसी ए.सी. परिपथ में इम्पीडेन्स का विलोम एडिमटेन्स कहलाता है।
- इसका मात्रक म्हों (♂) या साइमन (s) होता है तथा इसे Y से दर्शाया
 जाता है।
- जिस प्रकार इम्पीडेन्स के दो अंश प्रतिरोध तथा रिएक्टेंस होते हैं; उसी प्रकार एडिमिटेन्स के दो अंश कन्डक्टेन्स (G) तथा सस्सेप्टेन्स (B) होते हैं।

$$Z = \sqrt{R^2 + X^2}$$
 $Y = \sqrt{G^2 + B^2}$

- चालकता (Conductance):
- प्रतिरोध का विलोम कन्डक्टैन्स कहलाता है। इसे G से सूचित किया जाता है।
- ullet इसका मात्रक म्हों $(oldsymbol{\sigma})$ या साइमन (s) होता है। $G=rac{1}{R}$
- अनुकार्यता (Susceptance) :
- रिएक्टैन्स (X) का विलोम सस्सेप्टेन्स कहलाता है। इसे B से सूचित किया जाता है।
- इसका मात्रक म्हों (ठ) या साइमन (s) होता है। $B = \frac{1}{X}$
- प्रत्यावर्ती धारा तथा वि.वा. बल का समीकरण :

$$V = V_{\text{max}} \sin \omega t$$
$$I = I_{\text{max}} \sin \omega t$$

जहाँ, V= वोल्टता का तात्कालिक मान I= विद्युत धारा का तात्कालिक मान $V_{max}=$ वोल्टता का शिखर मान $I_{max}=$ विद्युतधारा का शिखर मान $\omega=2\pi f$ (कोणीय वेग rad/sec.) जहाँ f= frequency

ब्रेणी परिपर्श्व के परिणामी की तालिका

	श्रेणी परिपत्नी के पारणीमी की सीलिकी							
परिवय	प्रतिकाश का मान (Value of imperience)	फेब धरा के निषे कोण (Phase angle हिए amenil	शक्ति पुणांक (Power tactor)					
कंगल प्रदेशेष (Qnly resistance)	Z = R	O,	1					
कंत्रस फेकल (Only inductrings)	Z Ib X ii	90 (44-ын (15дэ)	0					
कंक्श संभागित (Only capacitance)	$Z = \frac{1}{\omega C}$	90° अपना (bade)	0					
प्रतिरोध तथा फ्रेंकल	$Z = \sqrt{R^2 - (X_{f_i})^2}$	⊖ व ठ व 90° पर जना	1:व्याधित गुणविक्त 0 परचत					
प्रतिबंध तथा मश्रदिष	$Z = \sqrt{R^2 + \left(-\frac{1}{mC}\right)^2}$	Офора 901 жыл	1:अशब्दित सुर्गवहरू 9 असमा					
	ਯ $Z = \sqrt{R^2 - (X_C)^2}$							
प्रतिरोध, प्रेरकत्व तथा संपादित	$Z = \sqrt{h^2 + (X_L - K_L)^2}$	O तथा २०१ अश कं मध्य परचता च अस्म	0 में 901 अस तथा 1 के मध्य प्राप्त व भवता					

त्रिकला प्रणाली (Three-phase System)

- $1-\phi$ system के समूहन से $3-\phi$ प्रणाली बनती है। लेकिन भारत में $3-\phi$ प्रणाली पर उत्पादन तथा पारेषण सब होता है।
- दो फेज सप्लाई में वाइंडिंग का विद्युतीय विस्थापन 90° होता है जबिक
 3-φ सप्लाई में वाइंडिंग का विद्युतीय विस्थापन 120° होता है।
- 3-φ प्रणाली पर आधारित उपकरण, 1-φ प्रणाली पर आधारित उपकरण की अपेक्षा आकार में छोटे, वजन में हल्के तथा अधिक दक्षता वाले होते हैं।
- फेज बढ़ने से, समान आकार की सिंगल फेज मोटर के लिए समान आउटपुट पर मशीन की रेटिंग बढ़ती है।
- 3-phase system को दो तरीकों से जोड़ा जाता है—
 (a) Star connection (Y)
 (b) Delta connection (Δ)

Star connection

Delta connection

• जब कोई लोड Delta connection में हो तो

$$oxed{V_L = V_{ph}}; \; \mbox{जहाँ} \quad V_L = \mbox{Line voltage} \ V_{ph} = \mbox{phase voltage}$$

तथा
$$I_{ph} = \frac{I_L}{\sqrt{3}}$$
 ; जहाँ $I_L = Line \ current \ तथा$

 $I_{ph} = phase current$

जब कोई लोड star connection में हो, तो

$$oxed{I_L = I_{ph}}; \; \mbox{जहाँ} \hspace{0.5cm} I_L = \mbox{Line current } \mbox{तथा} \ I_{ph} = \mbox{phase current}$$

तथा
$$\boxed{V_{ph} = \dfrac{V_1}{\sqrt{3}}}$$
 ; जहाँ $V_{ph} = ext{phase voltage}$ तथा

 V_1 = line voltage

• जब कोई लोड Star(Y) कनेक्शन में हो तो पावर (P_T)

$$P_{T} = \sqrt{3}V_{L}I_{L}\cos\theta$$

जब कोई लोड Δ कनेक्शन में हो तो पावर (P_T)

$$P_{T} = \sqrt{3}V_{L}I_{L}\cos\theta$$

- 3-ф प्रणाली में तारों का फेज अनुक्रम RYB होता है।
 - R Red
 - Y Yellow
 - B Blue
- $3-\phi$ सप्लाई का फेज अनुक्रम, फेज अनुक्रम इंडिकेटर द्वारा निर्धारित किया जाता है।
- बहफेजीय मोटरें स्वत: स्टार्ट होती हैं।
- $1-\phi$ आल्टरनेटर की तुलना में $3-\phi$ आल्टरनेटर का तुल्यकालन सरल
- $3-\phi$ मोटर की तुलना में $1-\phi$ मोटर का शक्ति गुणांक कम होता है।
- 1-φ संचारण प्रणाली की तुलना में 3-φ संचारण प्रणाली अधिक निर्भर योग्य होती है तथा 3-ф संचारण प्रणाली में ताँबा क्षति कम होती है।
- स्टार कनेक्शन में तीनों तारों के मिलन बिंदु से जो तार जुड़ा होता है उसे न्युट्ल कहते हैं जिसमें धारा का मान शुन्य होता है। इसे ही 3-फेज, 4-वायर प्रणाली कहते हैं।
- दो प्रत्यावर्ती परिमाण सदिश विधि से जोड़े जाते हैं।

- एक आदर्श धारा स्रोत में आंतरिक प्रतिरोध अनंत होना चाहिए तथा आंतरिक चालकता शन्य।
- एक आदर्श वोल्टेज स्रोत का आंतरिक प्रतिरोध शून्य तथा आंतरिक चालकता अनंत होनी चाहिए।
- d.c. circuit का सभी नियम a.c. circuit के लिए लाग होगा जब a.c. circuit केवल प्रतिरोध धारण किया रहेगा।
- विद्युतीय विस्थापन = $\frac{360}{\text{फेजों की संख्या}}$
- किसी भी त्रिफेजी मोटर के दो फेजों को परस्पर बदलने पर उसके घुमने की दिशा बदल जाती है। यदि कोई 3-ф प्रेरण मोटर RYB फेज अनुक्रम में जुड़ी है तब यदि RBY कर दिया जाए तो मोटर के घूमने की दिशा बदल जाएगी।

Note:

- दोलित्र परिपथ में आवृत्ति $\mathrm{f}=rac{1}{2\pi}\sqrt{LC}$ होता है।
- AC के लिए संधारित्र द्वारा किये जाने वाले विरोध को संधारित्र विरोध (कैपेसिटिव रियेक्टेंस) कहते हैं।
- एक संधारित्र में पॉवर फैक्टर का मान शून्य लीडिंग होता है।

Objective Questions

- प्रत्यावर्ती विद्युत धारा अथवा वोल्टता का किसी भी पल का मान क्या 1. कहलाता है ?
 - (A) शिखर मान
- (B) तात्कालिक मान
- (C) r.m.s. मान
- (D) औसत मान
- प्राय: सभी वैद्यतिक मापक यंत्र ए.सी. के किस मान को दर्शाते हैं ? 2.
 - (A) शिखर मान
- (B) तात्कालिक मान
- (C) r.m.s. मान
- (D) औसत मान
- गणनाओं आदि में ए.सी. का कौन-सा मान प्रयोग किया जाता है ? 3.
 - (A) औसत मान
- (B) तात्कालिक मान
- (C) शिखर मान
- (D) r.m.s. मान
- प्रत्यावर्ती राशि के r.m.s. मान तथा औसत मान के अनुपात को क्या 4. कहते हैं ?
 - (A) पीक फैक्टर
- (B) क्रैस्ट फैक्टर
- (C) फार्म फैक्टर
- (D) पावर फैक्टर
- अगर दो प्रत्यावर्ती राशियों के बीच का अंतर 90° हो, तो क्या 5. कहलाती है ?
 - (A) एन्टी फेज
- (B) क्वाड़ेचर
- (C) इन फेज
- (D) इनमें से कोई नहीं
- वह प्रत्यावर्ती राशि जो दुसरी प्रत्यावर्ती राशि की अपेक्षा बाद में अपने 6. शिखर मान पर पहुँचे, क्या कहलाती है ?
 - (A) लैगिंग राशि
- (B) इनफेज राशि
- (C) लीडिंग राशि
- (D) सदिश राशि
- शुद्ध प्रतिरोधी परिपथ में विद्युत धारा एवं वोल्टता— **7**.
 - (A) धारा लीडिंग राशि होती है।
 - (B) वोल्टता लीडिंग राशि होती है।
 - (C) इन फेज रहती है।
 - (D) कोई संबंध नहीं होता है।

- श्रेणी क्रम में जुड़े इन्डक्टर्स का समतुल्य प्रतिरोध— 8.
 - (A) $L_T = L_1 + L_2 + \dots L_n$
 - (B) $L_T = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n}$
 - (C) $\frac{1}{L_T} = L_1 + L_2 + \dots L_n$
 - (D) $\frac{1}{L_T} = \frac{1}{L_1} + \frac{1}{L_2} \dots \frac{1}{L_n}$
- 9. धारा को प्रत्यावर्ती कहते हैं. जब
 - (A) धारा का माप समय के साथ बदलता है।
 - (B) धारा का माप व दिशा समय के साथ बदलती है।
 - (C) पूरे समय में धारा का माप समान रहता है।
 - (D) धारा की दिशा समय के साथ बदलती रहती है।
- धारा को D.C. कहा जाता है जब— **10**.
 - धारा की दिशा समय के साथ बदलती है। (A)
 - धारा की माप समय के साथ बदलती है।
 - (C) धारा की माप व दिशा समय के साथ परिवर्तित होते हैं।
 - (D) माप समय के साथ समान ही रहता है।
- हमारे देश में A.C. उत्पन्न करने के लिए सामान्य आवृत्ति 11. होती है।
 - (A) 10 Hz
- (B) 25 Hz
- (C) 50 Hz
- (D) 100 Hz
- मशीन की आवृत्ति निर्भर करती है। **12**. (A) ध्रुवों के जोड़ों पर

 - (C) मशीन की रेटिंग पर
- (B) ध्रुवों के आकार पर (D) सप्लाई की प्रकृति पर
- 13. वोल्टेज व धारा के बीच का कोण कहलाता है। (A) लोड कोण
 - (B) फॉर्म गुणांक
 - (C) चरम गुणांक
- (D) फेज अंतर

14.	यदि दो प्रत्यावर्ती परिणामों के बीच कोण हो, तो इन दो प्रत्यावर्ती परिणामों को में कहा जाता है।	27 .	ज्यावक्रीय सप्लाई जिसका चर मान 100V है का r.ms. मान
	(A) इनफेज (B) लेगिंग		(A) $100/\sqrt{2}$ (B) $100\sqrt{2}$
	(C) लोडिंग (D) आउट ऑफ फेज		
1 -		00	(C) $200/\sqrt{2}$ (D) 200
15 .	<u>r.m.s.</u> मान औसत मान = ?	28.	$e = 200 \sin 314 t$ की प्रत्यावर्ती वोल्टेज एक लोड पर लगाई जाती है, जिसका प्रतिरोध 20 ओह्म है। परिपथ में प्रवाहित होने वाली
	(A) शिखर (चरम) गुणांक (B) Q गुणांक		ह, जिसका प्रातराव ZO जाह्न हा परिपय में प्रवाहित होने वाला अधिकतम धाराहोगी।
	(C) पॉवर गुणांक (D) फार्म-गुणांक		
1.0	<u>अधिकतम मान</u> = ?		(A) 10 amp. (B) 20 amp.
16 .	r.m.s. मान	29.	(C) 2 amp. (D) 200 amp. दो प्रत्यावर्ती परिमाण विधि से जोड़े जाते हैं।
	(A) चरम गुणांक (B) फार्म-गुणांक	29.	(A) बीजगणितीय (B) आरेखीय
	(C) उपभोग (D) देखभाल गुणांक		(A) बाजनाया (B) आरखाय (C) सदिश (D) ज्यामिति
17 .	यदि औसत मान ज्ञात हो, तो r.m.s. मानसे ज्ञात किया	30.	(D) ज्यामात चित्र में दर्शाए गए आरेखों से संबंधित निम्न में से कौन–सा वक्तव्य
	जा सकता है।	30.	ाचत्र म दशाए गए आरखा स संबाधत निम्न म स कान-सा वक्तळ सही है ?
	(A) 1.2 × अधिकतम मान (B) 1.11 × अधिकतम मान		सहा ह ?
	(C) $1.11 \times$ अधिकतम मान (D) $1.11 \times$ औसत मान		
18 .	यदि चक्र का अधिकतम् मान ज्ञात हो, तो औसत मानसे		
	ज्ञात किया जा सकता है।		(a)
	(A) $0.707 E_{\text{max}}$ (B) $0.606 E_{\text{max}}$		
10	(C) 0.707 तात्कालिक मान (D) 0.606 तात्कालिक मान		
19.	यदि चक्र का अधिकतम मान ज्ञात हो, तो r.m.s. मान ज्ञात किया जा सकता है।		
	(A) 0.707 तात्कालिक मान (B) 0.606 तात्कालिक मान		(b)
	(C) $0.707 E_{\text{max}}$ Hiff (D) $0.707 E_{\text{av}}$ Hiff		
20.	ज्यावक्रीय धारा (sinusoidal current) को $i = 70 \sin 314t$ द्वारा		
20.	व्यक्त किया जाता है, तो आवृत्ति होगी।		(c)
	(A) 25 Hz (B) 50 Hz		
	(C) 314 Hz (D) 100 Hz		
21.	किसी विद्युत परिपथ का शक्ति गुणांक कोण और प्रतिबाधा मान (Z)		(A) आरंख a, A.C. दर्शाता है
	हो तो प्रतिरोध मान (R) का पता किस फार्मूला से करेंगे ?		(B) आरेख b, अर्द्ध तरंग परिशोधित D.C. दर्शाते हैं
	(A) $R = Z \sin\theta$ (B) $R = Z/\cos$		(C) आरंख c, D.C. दर्शाता है
	(C) $R = Z \cos$ (D) $R = Z/\sin$	91	(D) सभी आरेख A.C. दर्शाते हैं
22 .	यदि किसी कुंडली का प्रतिरोध $15~\Omega$ प्रतिबाधा $25~$ ओह्य हो तो	31.	A.C. को द्वारा आसानी से घटाया/बढ़ाया जा सकता है
	प्रेरकीय प्रतिघात क्या होगा ?		(A) कंबर्टर (B) इनवर्टर
	(A) 40Ω (B) 10Ω	20	(C) ट्रांसफॉर्मर (D) रेक्टीफायर
	(C) 20Ω (D) 400Ω	32 .	शुद्ध प्रतिरोधी परिपथ का शक्ति गुणांक होता है।
23 .	वि.बा.ब. का समीकरण $e=10\sqrt{24}\sin\omega$ t दिया है, इसका		(A) शून्य (B) पश्चगामी
	अधिकतम मान होगा।	9.9	(C) अग्रगामी (D) इकाई
	(A) $\sqrt{24}$ (B) $10\sqrt{24}$	33.	शुद्ध इंडिक्टव परिपथ का शक्ति गुणांक होता है।
	(C) $10^{1/2}\sqrt{24}$ (D) $10^{1/2}.24^{1/2}$		(A) शून्य (B) पश्चगामी
24 .	प्रत्यावर्ती धारा का समीकरण है— $i = 35.36 \sin 628 t$. प्रभावी	24	(C) अग्रगामी (D) इकाई
	मान होगा ?	34.	शुद्ध कैपेसिटिव परिपथ का शक्ति गुणांक होता है।
	(A) 27 amp. (B) 25 amp.		(A) शून्य (B) पश्चगामी
	(C) 35.36 amp. (D) 3 amp.	25	(C) अग्रगामी (D) इकाई
25 .	प्रत्यावर्ती धारा का समीकरण है $: i = 42.42 \sin\! 50\pi t$. औसत मान	35.	R-L-C परिपथ (जिसका शक्ति गुणांक $X_L > X_C$ हो) का होता है।
	होगा—		(A) पश्चगामी (B) अग्रगामी
	(A) 30 amp. (B) 42.42 amp.		
	(C) 27 amp. (D) 2.7 amp.	96	(C) शून्य (D) इकाई
26 .	आधे चक्र के लिए धारा का मान निम्न है—	36.	शुद्ध इंडिक्टव परिपथ में धारा— (A) 90° से पश्चगामी होगी।
	धारा (एम्पियर में) : 0 2 3 5 8 10 8 5 3 2 0		(A) 90° स पश्चगामा होगा। (B) 90° से अग्रगामी होगी।
	इसका औसत मान होगा—		(B) 90 स अप्रगामा हागा। (C) फेज में होगी।
	(A) 5.5 amp. (B) 85 amp.		(C) क्रज म होगा। (D) वोल्टेज के साथ कोण बनाएगी।
	(C) 0.46 amp. (D) 4.18 amp.	<u> </u>	الل) आरटण के साथ काण अगरिगा।

50. 0.5 H के इंडक्टेंस वाली कॉयल का इंडक्टिव रिएक्टेंस

	(A) 90° से पश्चगामी होगी।		होगा।
	(B) 90° से अग्रगामी होगी।		(A) 15.7Ω (B) 157Ω
	(C) फेज में होगी।		(C) 314Ω (D) 0.314Ω
	(D) वोल्टेज के साथ कोई कोण बनाएगी।	51 .	8Ω प्रतिरोध तथा 6Ω इंडिक्टव रिएक्टेंस वाली कॉयल $250~ ext{V},$
38 .	शक्ति गुणांक = ?		50 Hz सप्लाई से जुड़ी है। कॉयल का शक्ति गुणांक होगा।
	$Z \qquad R$		(A) इकाई (B) 0.6
	(A) $\frac{Z}{R}$ (B) $\frac{R}{Z}$ (C) $\frac{X_L}{Z}$ (D) $\frac{X_C}{Z}$		(C) 0.8 (D) 0
	X_{L} X_{C}	52 .	समांतर परिपथ की दो शाखाओं में ${ m I}_1$ और ${ m I}_2$ धाराएँ हैं। कुल धारा
	(C) $\frac{X_L}{Z}$ (D) $\frac{X_C}{Z}$		होगी।
39 .	निम्न में से कौन-सा कथन सही है ?		(A) $I_1 + I_2$ (B) $\sqrt{I_1^2 + I_2^2}$ (C) $I_1 - I_2$ (D) I_1 और I_2 का सिंदश योग
	(A) $W = V \times I$ (B) $WE = V.I.\sin\phi$		(C) I I (D) I all I at the arm
	(C) $KW = KVA \cos \phi$ (D) $KW = KVA \sin \phi$	53 .	शाखा का कंडक्टेंस (G) द्वारा निर्धारित किया जा सकता है।
40 .	D.C. परिपथ के लिए कौन-सा कथन सही है ?	JJ.	राखि का कड़क्टस (O) द्वारा गियारत किया जा सकता हा
	(A) $W = V.I.$ (B) $W = V.I.\sin\phi$		(A) $\frac{1}{R}$ (B) $\frac{R}{Z}$
	(C) $KW = KVA \cos \phi$ (D) $KW = KVA \sin \phi$		R Z
41.	आवृत्ति के घटने से, परिपथ का इंडिक्टिव प्रतिघात।		(C) $\frac{Z^2}{R}$ (D) $\frac{1}{X}$
	(A) घटेगा (B) बढ़ेगा		$R \longrightarrow X$
	(C) समान रहेगा (D) कोई प्रभाव नहीं	54 .	शाखा का सस्सैपटेंस (b) द्वारा निर्धारित किया जाता है।
42 .	आवृत्ति के बढ़ने से, परिपथ का संधारित्र प्रतिघात।		(A) $\frac{1}{X}$ (B) $\frac{R}{Z}$
	(A) घटेगा (B) बढ़ेगा		X Z
	(C) समान रहेगा (D) इनमें से कोई नहीं		(C) $\frac{X_L}{z^2}$ (D) $\frac{K_C}{z^2}$
43 .	यदि शुद्ध इंडिक्टव परिपथ की आवृत्ति आधी हो, तो परिपथ की धारा		Z Z
		55 .	दिये गये चित्र में दर्शाये गये परिपथ की कुल धारा होगी।
	(A) समान रहेगी (B) दुगुनी हो जाएगी		3A (1990)
4.4	(C) आधी हो जाएगी (D) चार गुना हो जाएगी		
44.	100 c/s आवृत्ति वाली प्रत्यावर्ती धारा पर कैपेसिटर द्वारा 25Ω का		40 mm
	रिएक्टेंस लगाया जाता है। यदि आवृत्ति घटकर 50 c/s हो जाती है, तो रिएक्टेंस होगा।		↓ 1
	(A) 5Ω (B) 10Ω		
	(C) 15Ω (D) 50Ω		
45 .	परिपथ का θ गुणांक = ?		(A) 5 A (B) 7 A
10.			(C) 4 A (D) 1 A
	(A) $\frac{R}{Z}$ (B) $\frac{Z}{R}$ (C) $\frac{X_L}{Z}$ (D) $\frac{X_C}{Z}$	56 .	दिये गये चित्र में दर्शाये गये धारा की कुल शक्ति होगी।
	X ₁ X _C		$I_1 = I_1 = R_{KOS}\phi_1$
	(C) $\frac{X_L}{Z}$ (D) $\frac{X_C}{Z}$		
46 .	0.6 शक्ति गुणांक पर पश्चगामी पर एक A.C. परिपथ का इनपुट		
	10 KVA है। परिपथ द्वारा ली गई शक्ति (KW में)		I_2 I_{12} I_{12} I_{12} I_{12} I_{12} I_{12} I_{12}
	होगी।		Ţ ¹ ;
	(A) 6 (B) 12		V ——•
	(C) 8 (D) 60		(A) $VI_1\cos\phi_1$ (B) $VI_2\cos\phi_2$
47 .	किसी A.C. परिपथ द्वारा ली गई आभासी शक्ति 20 KVA है		(C) $VI\cos\phi$ (D) $VI_1\cos\phi_1 + VI_2\cos\phi_2$
	और रिएक्टिव शक्ति 12 KVAR है। परिपथ में वास्तविक शक्ति	57 .	परिपथ के कुल एडिमटेंस (Y) की गुणना सूत्र द्वारा की
	है।		जा सकती है।
	(A) 20 KW (B) 12 KW		(A) $G^2 + B^2$ (B) $\sqrt{G^2 + B^2}$
40	(C) 16 KW (D) इनमें से कोई नहीं		(C) $\sqrt{G_1^2 + B_2^2}$ (D) $\sqrt{G_2^2 + B_1^2}$
48 .	रिएक्टिव पावर की यूनिट है—		
	(A) arz (Watt) (B) VAR	58 .	V वोल्टेज सप्लाई पर तीन शाखाएँ समांतर में जुड़ी हैं, कौन-सा
40	(C) KW (D) VA		परिमाण समान होगा ?
49 .	एक $R-L-C$ परिपथ का प्रतिरोध 6Ω , इंडिक्टिव रिएक्टेंस 8Ω तथा		(A) प्रत्येक शाखा में धारा (B) प्रत्येक शाखा का शक्ति गुणांक
	Thirtie time in 160 % white an aid in the "		TENT MICHON SHIVER ONE SHOWER HUMON
	कैपेसिटिव रिएक्टेंस 16Ω है। परिपथ का इंपीडेंस क्या होगा ?		
	कंपीसिटिव रिएक्टेस 16Ω है। परिपथ का इपीडिस क्या होगा ? (A) 10Ω (B) 20Ω (C) 8Ω (D) 14Ω		(C) प्रत्येक शाखा का फेज अंतर (D) प्रत्येक शाखा पर वोल्टेज

37.

शुद्ध कैपेसिटिव परिपथ में वोल्टेज—

59 .	दो फेज सप्लाई में वाइंडिंग का विद्युतीय विस्थापन होता है।	72 .	स्टार जोड़ में—	
	(A) 180° (B) 120°			$V_{\rm ph}$
60	(C) 90° (D) 60°		(A) $V_L = V_{ph}$	(B) $V_L = \frac{V_{ph}}{\sqrt{3}}$
60 .	3 फेज सप्लाई में वाइंडिंग का विद्युतीय विस्थापन होता है। (A) 180° (B) 120°		$(C) V_{2} = \sqrt{3}V_{3}$	(D) $\sqrt{3}V_L = V_{ph}$
	(C) 90° (D) 30°	73 .	(C) $V_L = \sqrt{3}V_{ph}$ स्टार जोड़ में—	(D) $\sqrt{3}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$
61 .	फेज बढ़ने से, समान आकार की सिंगल फेज मोटर के लिए समान	70.		(B) $I = \sqrt{2}I$
	आउटपुट पर मशीन की रेटिंग—		(A) $I_L = I_{ph}$	(B) $I_L = \sqrt{3} I_{ph}$
	(A) बढ़ती है (B) घटती है		(C) $I_L = \frac{I_{ph}}{\sqrt{3}}$	(D) $\sqrt{3} I_L = I_{ph}$
60	(C) समान रहती है (D) कहा नहीं जा सकता		V 3	(a) vo-L -pn
62 .	सिंगल फेज संचारणा की तुलना में तीन फेज संचारण की दक्षता होती है—	74 .	डेल्टा-जोड़ में—	
	(A) अधिक (B) कम		(1)	$V_{\rm ph}$
63 .	(C) समान (D) कहा नहीं जा सकता बहुफेजीय मोटरें कम होती हैं।		(A) $V_L = V_{ph}$	(B) $V_L = \frac{V_{ph}}{\sqrt{3}}$
03.	बहुनजान नाटर		(C) $U = \sqrt{2}U$	(D) $\sqrt{3}V_{L} = V_{ph}$
	(B) स्वतः स्टार्ट	75 .	(C) $V_L = \sqrt{3}V_{ph}$ डेल्टा–जोड़ में—	(D) $\sqrt{3}$ $\sqrt{L} = \sqrt{ph}$
	(C) अक्सलरी सहायक वाइंडिंग की आवश्यकता	73.		_
	(D) मेन वाइंडिंग की आवश्यकता		(A) $I_L = I_{ph}$	(B) $I_L = \sqrt{3}I_{ph}$
64 .	3 फेज सप्लाई का फेज अनुक्रम द्वारा निर्धारित किया		$I_{\rm ph}$	(D)
	जा सकता है।		(C) $I_L = \frac{I_{ph}}{\sqrt{3}}$	(D) $\sqrt{3} I_L = I_{ph}$
	(A) टेकोमीटर (B) वोल्टमीटर	76 .	3 फेज लोड की पॉवर किस	। अभिव्यक्ति द्वारा निर्धारित की जा
(-	(C) फेज अनुक्रम इंडिकेटर (D) आवृत्ति मीटर		सकती है ?	
65 .	सिंगल फेज अल्टरनेटर की तुलना में तीन-फेज अल्टरनेटर तुल्यकालन (synchronising) (समांतर ऑपरेशन)—		(Δ) / <u>Σ</u> υ ι	(B) 13V I cosh
	(A) सरल होता है (B) मुश्किल होता है		(A) $\sqrt{3}V_L I_L \sin \phi$	
	(C) समान ही होता है (D) इनमें से कोई नहीं	V	(C) $3V_{L}I_{L}\sin\phi$	$(D) \sqrt{3} V_{ph} I_{ph} \cos \phi$
66.	समान शक्ति के लिए सिंगल फेज संचारण की तुलना में 3 फेज	77.		जुड़े हैं। न्यूट्रल में धार होगी।
	संचारण में ताँबा-क्षति होती है।		(A) बीजगणितीय जोड़	
	(A) समान (B) अधिक		(C) ज्यामितीय जोड	
	(C) कम (D) इनमें से कोई नहीं	78 .		ली गई लाइन धारा 10A है। प्रत्येक
67 .	3-ф मोटर की तुलना में 1-ф मोटर का शक्ति गुणांक		फेज में धारा होगी।	
	(A) अधिक होता है (B) कम होता है (C) समान होता है (D) बदलता रहता है		(A) $10\sqrt{3}$ amp.	(B) 10 amp.
	(C) समान हाता ह (D) बदलता रहता ह		10	
68 .	सिंगल-फेज संचारण प्रणाली की तुलना में 3 ϕ फेज संचारण प्रणाली—		(C) $\frac{10}{\sqrt{3}}$ amp.	(D) 3×10 amp.
	(A) निर्भर योग्य नहीं होती है।	79 .	एक संतलित लोड और एक उ	गसंतुलित लाइटिंग लोड 3థ, 4 वायर
	(B) निर्भर योग्य होती है।		सप्लाई प्रणाली से जुड़ी है। इस	- · · · · · · · · · · · · · · · · · · ·
	(C) अधिक निर्भर योग्य होती है। (D) के समान ही होती है।		(A) सभी चारों वायरों में धा	
60			(B) न्यूट्रल वायर ही धारा ले	
69.	बहुफेजीय प्रणाली में, फेज अनुक्रम द्वारा प्रदर्शित किया जाता है।		(C) न्यूट्रल वायर कोई धारा	
	(A) BYR (B) YRB		=4.	लोड धारा और संतुलित लोड धारा के
	(C) YBR (D) RYB		योग के बराबर धारा हो	•
70 .	स्टार-जोड़ के लिए, वाइंडिंग के टर्मिनल जोड़े जाते हैं—	80.	5 KHz फ्रीक्वेंसी का अवधि	
70.	(A) एक वाइंडिंग का अंतिम सिरा दूसरी वाइंडिंग के पहले सिरे से		(A) 0.4 मिली सेकंड	(B) 0.2 मिली सेकंड
	(B) वाइंडिंग के सिरे एक जंक्शन पर जुड़ते हैं		(C) 5.0 मिली सेकंड	(D) 20 मिली सेकंड
	(C) एक वाइंडिंग का पहला सिरा दूसरे वाइंडिंग के पहले सिरे से	81.	चित्र में दर्शाई गई तरंग की फ्र	
	(D) दो वाइंडिंगों के पहले सिरे तीसरे वाइंडिंग के अंतिम सिरे से		-	
71 .	डेल्टा कनेक्शन के लिए, वाइंडिंग के टर्मिनल जोड़े जाते हैं—		$(1)_{0.1}$	S 1
	(A) एक वाइंडिंग का अंतिम सिरा दूसरी वाइंडिंग के पहले सिरे से		_ i _ i _ i _ i _ i _ i _ i _ i _ i _	<u>-</u> -
	(B) एक वाइंडिंग का अंतिम सिरा दूसरी वाइंडिंग के अंतिम सिरे से		' \	.17
	(C) एक वाइंडिंग का पहला सिरा दूसरी वाइंडिंग के पहले सिरे से		(A) 100 Hz	(B) 5 Hz
	(D) एक वाइंडिंग का पहला सिरा दूसरी वाइंडिंग के अंतिम सिरे से		(C) 10 Hz	(D) 0.1 Hz
	a, ·	Ì		(L) U.III

चित्र में दर्शाई गई तरंग का प्रभावी मान क्या है? **82**.

- (A) 380 V
- (B) 440 V
- (C) 537 V
- (D) 660 V
- 83. वोल्टेज के सापेक्ष इंडिक्टव परिपथ में धारा होती है—
 - (A) फेज में
- (B) लीडिंग में
- (C) लैगिंग में
- (D) विपरीत फेज में
- एक श्रेणी R-L परिपथ का प्रतिरोध 5Ω तथा इंडिक्टव प्रतिघात 12Ω 84. है, तो उसकी प्रतिबाधा (इंपीडेंस) है—
 - (A) $2.4~\Omega$
- (C) 13 Ω
- (D) 17Ω
- 85. प्रतिरोध तथा प्रतिघात युक्त परिपथ की प्रतिबाधा (इंपीडेंस) ज्ञात करने के लिए प्रयुक्त सुत्र है—
 - $(A) \quad Z = \sqrt{R^2 + X^2}$
- (B) $Z = R^2 + X^2$
- (C) Z = R X (D) $Z = \sqrt{R^2 X^2}$
- कैपेसिटिव प्रतिघात का मान परिवर्तित होता है— 86.
 - (A) फ्रीक्वेंसी के अनुक्रमानुपाती
 - (B) फ्रीक्वेंसी के व्युत्क्रमानुपाती
 - (C) आरोपित वोल्टेज के अनुक्रमानुपाती
 - (D) आरोपित वोल्टेज के व्युत्क्रमानुपाती
- 16 पिको फैरेड मान प्रत्येक के दो संधारित्र श्रेणीक्रम में संयोजित किए 87. जाते हैं। उनकी कुल धारिता होगी—
 - (A) 8 पिको फैरेड
- (B) 4 पिको फैरेड
- (C) 14 पिको फैरेड
- (D) 16 पिको फैरेड
- कैपेसिटिव A.C. परिपथ में— 88.
 - (A) धारा, वोल्टेज से आगे चलती है।
 - (B) धारा, वोल्टेज के पीछे चलती है।
 - (C) धारा, वोल्टेज के साथ-साथ चलती है।
 - (D) वोल्टेज, धारा से आगे रहता है।
- यदि P_T = वास्तविक शक्ति तथा P_A = आभासी शक्ति हो, तो 89. शक्ति घटक (पॉवर-फैक्टर) के लिए कौन-सा संबंध सही होगा?
 - आभासी शक्ति (A) $PF = \frac{3.1.1}{\text{altaGaa yillan}}$
 - PF = आभासी शक्ति × वास्तविक शक्ति
 - वास्तविक शक्ति PF = -आभासी शक्ति
 - (D) $PF = \frac{}{\text{SHHIRTHER STATES }}$
- निम्नलिखित में से कौन-सा संबंध सही है, जबिक $P_{A}=$ आभासी 90. शक्ति, $P_{\mathrm{T}}=$ वास्तविक शक्ति एवं $P_{\mathrm{R}}=$ प्रतिघाती शक्ति (रिएक्टिव
 - (A) $P_A = P_T + P_R$ (B) $P_A = P_T P_R$
 - (C) $P_A = \sqrt{P_1^2 + P_R^2}$ (D) $P_A = P_T^2 P_R^2$
- S.I. प्रणाली में आवृत्ति का मात्रक है— 91.
 - (A) हर्ट्ज
- (B) हर्ट्ज/सेकंड
- (C) साइकिल्स
- (D) एंग्स्ट्रम

- A.C. धारा की समयाविध 0.02 सेकंड है। इसकी आवृत्ति कितनी 92. होगी?
 - (A) 25 Hz
- (B) 50 Hz
- (C) 100 Hz
- (D) 200 Hz
- 93. एक विद्युत प्रेस पर 230 V, 500 W लिखा है, 230V प्रदर्शित करता है—
 - (A) r.m.s. मान
- (B) औसत मान
- (C) अधिकतम मान
- (D) तात्कालिक मान
- फॉर्म फैक्टर अनुपात होता है-94.
 - (A) औसत मान तथा r.m.s. मान का
 - (B) r.m.s. मान तथा औसत मान का
 - (C) अधिकतम मान तथा औसत मान का
 - (D) अधिकतम मान तथा r.m.s. मान का
- शुद्ध प्रतिरोधी परिपथ के लिए निम्न में से कौन-सा कथन सही है ? 95.
 - (A) पॉवर फैक्टर का मान 1 है
 - (B) खर्च हुई शक्ति शून्य है
 - (C) उत्पन्न ऊष्मा शून्य है
 - (D) पॉवर फैक्टर का मान शून्य है
- जब X_I , X_C के बराबर हो तो-96.
 - (A) Z = R
- (B) $Z = X_C$
- (C) $Z = X_L$
- (D) इनमें से कोई नहीं
- कैपेसिटिव प्रतिघात (X_C) आवृत्ति के बढ़ने पर— 97.
 - (A) बढ़ता है
- (B) घटता है
- (C) स्थिर रहता है
- (D) इनमें से कोई नहीं
- एक स्टार संयोजित भार की फेज धारा 100A है। लाइन धारा का 98.
 - (A) $100\sqrt{3}$
- (B) $100\sqrt{2}$
- (C) 100
- 100 $\sqrt{3}$
- A.C. संकेतक का r.m.s. मान 10V है। इसका चरम मान होगा—
 - (A) 6.37 V
- (B) 14.14 V
- (C) 141 V
- (D) इनमें से कोई नहीं
- 100. साइन तरंग का फार्म factor निम्न के समतुल्य है—
 - (A) I_{rms}/I_{av}
- (B) $I_{av}/2$
- (C) $I_{rms}/2$
- (D) इनमें से कोई नहीं
- 101. एक आदर्श धारा स्रोत में होना चाहिए—
 - (B) अनंत आंतरिक प्रतिरोध
 - (A) शून्य आंतरिक प्रतिरोध
 - (C) emf का विशाल मान (D) इनमें से कोई नहीं
- 102. उच्च आवृत्ति पर प्रेरक प्रतिघात का मान-
 - (A) बढ जाता है
 - (B) घट जाता है
 - (C) वैसा ही रहता है
 - (D) वोल्टताओं पर निर्भर करता है
- 103. एक आदर्श धारा स्रोत का है शुन्य—
 - (A) आंतरिक चालकता
- (B) आंतरिक प्रतिरोध
- (C) शून्य भार पर वोल्टता
 - (D) ऊर्मिका
- 104. अच्छे सुचालक का विशिष्ट प्रतिरोध—
 - (A) तापमान पर निर्भर नहीं करता है।
 - (B) क्रॉस सेक्शन क्षेत्रफल एवं चालक की लम्बाई पर निर्भर करता है।
 - (C) सभी तापमान पर स्थिर रहेगा
 - किसी निश्चित तापमान पर स्थिर रहता है और सुचालक के पदार्थ पर निर्भर करता है।

105.	त्रिकला स्टार संयोजनों में वोल्टता नीचे वर्णित जितनी होती है—	117.	त्रि-कला आपूर्ति तंत्र में कलाओं	के मध्	य कोणीय विस्थापन होता है—
	(A) कला वोल्टता (B) $1/\sqrt{3}$ कला वोल्टता				120° elect.
	(C) √3 कला वोल्टता (D) 3 कला वोल्टता		(C) 270° eelct.		
106.	यदि 5 mH, 4.3 mH और 0.6 mH के तीन प्रेरित्र श्रेणी में जुड़े	118.	A.C. परिपथ में शक्ति केवल		
	हों तब कुल प्रेरकत्व होगा—				धारिता में
	(A) 9.9 mH				सभी में
	(B) 5 mH से अधिक	110	220 वोल्ट A.C. की शिखर		
	(C) 9.9 mH या 5 mH से अधिक	119.		AIC CIII	61.11—
	(D) 0.6 mH से कम		(A) $\frac{1}{2}$ CV ²	(B)	CV^2
107 .	इमपैडेन्स ट्रैंगिल बनता है, द्वारा—				
	(A) इमपैडेन्स, पावर और करेन्ट		(C) $\frac{1}{4}$ CV ²	(D)	शून्य
	(B) इमपैडेन्स, रेजिस्टैन्स और रीएक्टैन्स	100	<u> </u>		
	(C) इमपैडेन्ड, पावर और फ्रीक्वेन्सी	120.	दो प्रत्यावर्ती परिमाण किस विधि		
	(D) इमपेडैन्स, वोल्टेज और पावर		(A) बीजगणितीय		
108.	लाइन वोल्टेज के बराबर फेज वोल्टेज में होता है—		(C) सदिश		ज्यामितीय
	(A) स्टार कनेक्शन (B) डेल्टा कनेक्शन	121.	$R-L-C$ परिपथ ($X_L < X_C$)		
	(C) शॉर्ट सर्किट कनेक्शन (D) ओपेन सर्किट कनेक्शन		(A) पश्चगामी	(B)	अग्रगामी
109.	आदर्श वोल्टेज स्रोत का आंतरिक प्रतिरोध होता है—				इकाई
	(A) अनंत (B) शून्य	122 .	Power = √3VI cos\phi. यह सृ	त्र 3-पे	ज परिपथ में लागू होता है जब
	(C) स्थिर (D) 100Ω		परिपथ—		
110.	अनुकम्पन (रिसोनेंस) घटित होने के लिए निम्न में से किस घटक का		(A) इनमें से कोई भी नहीं	(B)	डेल्टा कनेक्शन
	होना आवश्यक है ?		(C) स्टार कनेक्शन	(D)	दोनों कनेक्शन में
	(A) R (B) L (C) C (D) (B) और (C) दोनों	123.	R – L परिपथ का प्रतिरोध 6Ω	तथा	इन्डिक्टव रिएक्टैंस 8Ω है।
	(C) C (D) (B) और (C) दोनों		इसका इन्पीडेंस क्या होगा?		
111.	जब एक कैपेसिटिव लोड में धारा प्रवाहित किया जाता है, तब धारा		(A) 6Ω	(B)	10Ω
	और वोल्टेज—	7	(C) 8Ω		80Ω
	(A) लीड करती है	124.	एसी परिपथ में धारा की दिशा-		
	(B) इनफेज होती है		(A) पॉजीटिव से निगेटिव की		ोती है
	(C) लैंग करती है		(B) हमेशा एक दिशा में होती		
110	(D) फेस में कोई सम्बन्ध नहीं होता		(C) पल से पल में बदलती रह		
112.	जब वैद्युत सामर्थ्य की एक निश्चित मात्रा को संचरित (transmitted) किया जाता है, तो संचरण (transmission) की क्षमता कब बढ़		(D) के लिए कुछ कहा नहीं उ		ता
	जाती है—	125.	अधिष्ठापन (Induction) की		
	(A) पॉवर फैक्टर (power factor) स्थिर रहता है और वोल्टेज घट		(A) वैबर [`]		
	जाता है।			(D)	
	(B) दोनों पॉवर फैक्टर और वोल्टेज बढ़ जाता है।	126	एक संधारित्र ऊर्जा को		
	(C) पॉवर फैक्टर और वोल्टेज दोनों में कमी आती है।	120.	(A) चुम्बकीय क्षेत्र में		
	(D) वोल्टेज स्थिर रहता है और पॉवर फैक्टर घट जाता है।		(C) विद्युतचुम्बकीय क्षेत्र में		
113.	परिपथ का शक्ति गुणक, परिपथ में किसको सम्मिलित करने पर उन्नत	197			-
	किया जा सकता है ?	127.	एक उपभोक्ता के लिए सामान्यत	:	सबस ज्यादा किफायता
	(A) संधारित्र (B) प्रतिरोधक		शक्ति गुणांक है।	/D\	0.75 2
	(C) प्रेरक (D) ऊपर का कोई भी नहीं		(A) 0.95 पश्चवर्ती		
114.	d.c. circuit का सभी rule एवं law a.c. circuit के लिए लागू		(C) 0.4 अग्रवर्ती		0.5 पश्चवर्ती
	होगा जब a.c. circuit धारण किया रहेगा—	128.	विशुद्ध प्रेरक का पावर फैक्टर	होता है	<u>—</u>
	(A) सभी (B) प्रतिरोध केवल		(A) इकाई		शून्य
	(C) इंडक्टेंस केबल (D) संधारित्र केवल		(C) अनंत	(D)	0.707
115.		129.	तीन-फेज इन्वर्टर के प्रचालन क	ो विधा	₹—
	(A) चालक अनुनाद में होंगे		(A) 64°	(B)	120°
	(B) दोनों चालकों के बीच वोल्टता बढ़ेगी		(C) 240°	(D)	300°
	(C) चालक एक-दूसरे को प्रतिकर्षित करेंगी	130.	किसी प्रत्यावर्ती धारा परिपथ का		
	(D) चालक एक-दूसरे को आकर्षित करेंगे		X _C 60 ओह्म है। यदि यह स		
116.	RC सर्किट का शक्ति गुणक होता है—		होगी ?	•	
	(A) पश्च (B) अग्र		(A) 50 ओह्म	(B)	70 ओह्म
	(C) एकक (D) शून्य		(C) 110 ओह्म		190 ओह्म
			` '	·- /	`

131 .	धारा का औसत मान उसके RMS मान से सदैव होता है।	144.	यदि स्टार संयुक्त 3 फेज परिपथ का फेज करंट 100 एम्पियर हो तो
	(A) बराबर (B) कम या बराबर		लाइन करंट क्या होगा ?
	(C) ज्यादा (D) कम		(A) 100 एम्पियर (B) 173 एम्पियर
132 .	किसी दोलित्र परिपथ में आवृत्ति ज्ञात करने का सूत्र होता है—		(C) 300 एम्पियर (D) 57.8 एम्पियर
	$\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	145.	किसी प्रेरिकय परिपथ (इंडिक्टिव सर्किट) में प्रयोग किया गया वोल्टेज
	(A) $f = -\frac{\pi}{4}\pi^{-}L^{-}C^{-}$ (B) $f = -\frac{\pi}{4}\pi LC$		और प्रवाहित करेंट के बीच फेज रिलेसनशिप क्या है?
	(A) $f = \frac{1}{4}\pi^2 L^2 C^2$ (B) $f = \frac{1}{4}\pi LC$ (C) $f = \frac{1}{2}\pi\sqrt{LC}$ (D) $f = \frac{1}{3}\sqrt{LC}$		(A) करेंट, वोल्टेज से आगे है
	(C) $f = \frac{1}{2}\pi\sqrt{LC}$ (D) $f = \frac{1}{2}\sqrt{LC}$		(B) करेंट, वोल्टेज से पीछे हैं
133	AC के लिए संधारित्र द्वारा दिये जाने वाले विरोध को क्या कहते हैं ?		(C) करेंट वोल्टेज के साथ फेज में हैं
100.	(A) अवरोध (इम्पिडेंस)		(D) वोल्टेज, करंट से पीछे है
	(B) संधारिता विरोध (कैपेसिटिव रियेक्टेंस)	146.	अनुनाद (resonance) आवृत्ति पर प्रेरक प्रतिघात मान निम्नलिखित
	(C) प्रतिरोध		में से किसके समान होगा ?
	(D) धारिता (कैपेसिटेंस)		(A) परिपथ का प्रतिरोध (B) परिपथ की प्रतिबाधा
194	(D) वारता (कपासटस) एक संधारित्र में पॉवर फैक्टर का मान होता है।		(C) कुंडली का प्रतिघात (D) संधारित्रों का प्रतिघात
134.		147.	कौन सा समीकरण एक किसी दोलन की कोणीय आवृत्ति ω व्यक्त
	(A) असीमित (B) इकाई		करता है ?
105	(C) शून्य लेगिंग (D) शून्य लीडिंग		(A) $\omega = f/2\pi$ (B) $\omega = 2\pi \times f$
135.			(C) $\omega = f/\pi$ (D) $\omega = 2\pi/f$
	(A) पॉली वोल्टेज क्लोराइड (B) पॉली वोल्टेज करेन्ट	148.	स्टार कनेक्टेड 3 फेज सर्किट का लाइन वोल्टेज 415 V है। इसका
	(C) पॉली वोल्गा क्लोराइड (D) पॉली विनाइल क्लोराइड		फेज वोल्टेज कितना होगा ?
136.	ų ir		(A) 220 V (B) 415 V
	द्रव्य को कहते हैं—	4.00	(C) 230 V (D) 210 V
	(A) वाहक (कंडक्टर)	149.	किसी AC परिपथ में जब प्रेरक प्रतिघात, धारिता प्रतिघात में ज्यादा
	(B) विद्युतरोधी (इंस्युलेटर)		होता है, तो कौन सा कथन सत्य होगा ?
	(C) अर्धवाहक (सेमी-कंडक्टर)		(A) विद्युत प्रवाह फेज में हैं (B) विद्युत प्रवाह फेज से बाहर है
40=	(D) अतिवाहक (सुपर कंडक्टर)		(C) विद्युत प्रवाह क्या स बाहर ह
137.	एक संतुलित त्रि-कला तारा संयोजित प्रणाली में कला वोल्टता और		(C) विद्युत प्रवाह वाल्टज स ज्यादा ह (D) विद्युत प्रवाह वोल्टेज से कम है
	लाइन वोल्टता के बीच का संबंध है—	150	AC के माध्य मान तथा AC के शिखर मान में क्या संबंध है?
	(A) $V_{ph} = \sqrt{3} \ V_{L}$ (B) $V_{L} = \sqrt{3} \ V_{ph}$ (C) $V_{ph} = V_{1}/\sqrt{2}$ (D) इनमें से कोई नहीं	130.	_
	(C) $V_{ph} = V_1/\sqrt{2}$ (D) इनम स काई नही		(A) $I = \sqrt{2}I_0$ (B) $I_0 = \sqrt{2}.I$
138.	रिएक्टेन्स की यूनिट को कहा जाता है—		(C) $I = \frac{2I_0}{\pi}$ (D) $I_0 = \frac{2I}{\pi}$
	(A) हर्ट्ज (B) फैरेड		$(C) = \frac{\pi}{\pi}$
	(C) हेनरी (D) ओह्म	151.	AC परिपथ में धारा का माप 4 Amp है तो उस धारा के अधिकतम
139.	ट्रेगुलर वेव का पीक फैक्टर होता है-		तात्कालिक परिणाम होगा—
	(A) 2 (B) 1.414		(A) 4×2 Amp. (B) $3 \times \sqrt{2}$ Amp.
	(C) 1.00 (D) 1.73		(C) $4 \times \sqrt{2}$ Amp. (D) 4 Amp.
140.	एक केडेंसर 280 V, 50 Hz पर 4.4 Amp. धारा लेता है केडेंसर	152.	एक चोक कुण्डली का व्यवहार परिपथ में धारा को नियंत्रित करने के
	का मान है ?		लिए किया जाता है—
	(A) $70 \mu\text{F}$ (B) $65 \mu\text{F}$		(A) केवल A.C परिपथ में
	(C) $50 \mu F$ (D) $50.50 \mu F$		(B) केवल DC परिपथ में
141.	$140~\mu\mathrm{F}$ संधारित्र को जब $250~\mathrm{V},50~\mathrm{Hz}$ से जोड़ा जाता है तब		(C) दोनों AC तथा DC परिपथ में
	धारा का मान होगा ?		(D) किसी में नहीं
	(A) 11 एम्पीयर (B) 12 एम्पीयर	153 .	AC परिपथ में औसत शक्ति व्यय होती है—
	(C) 12.5 एम्पीयर (D) 10.57 एम्पीयर		(A) प्रेरकत्व में (B) धारिता में
142 .	शुद्ध प्रेरक (इंडक्टर) में वोल्टता और करेंट के बीच फेज अंतर क्या		(C) प्रतिरोध में (D) सभी में
	होता है ?	154.	AC परिपथ की औसत शक्ति होती है—
	(A) 180° (B) 90° লੀड		(A) $E_{v}.I_{v}$ (B) $E_{v}.I_{v}.\cos\phi$
4	(C) एक (D) 90° लेग		(C) $E_{\nu}.I_{\nu}\sin\phi$ (D) $\pi = 2$
143.	किसी प्रत्यावर्ती धारा परिपथ (AC सर्किट) के लिए वाटमापी (वॉट	155	शुद्ध AC में r.m.s. मान तथा शिखर मान का अनुपात होता है—
	मीटर) द्वारा मापी जाने वाली पावर क्या होती है ?	100.	1
	(A) अधिकतम पावर (Peak Power)		(A) $\sqrt{2}$ (B) $\frac{1}{\sqrt{2}}$
	(B) आभासी पावर (Apparent Power)		$\sqrt{2}$
	(C) सक्रिय पावर (Active Power)		(C) $\frac{1}{2}$ (D) इनमें कोई नहीं
	(D) प्रतिघाती पावर (Reactive Power)		2
THE	PLATFORM Join online test series : w	ww.platfo	rmonlinetest.com ITI TRADE THEORY, VOL2 ■ 57

- **156.** AC का समीकरण $I = 50 \sin 100 t$ है तो धारा की आवृत्ति होगी---
 - (A) $50\pi \, \text{Hz}$.
- (B) $\frac{50}{\pi}$ Hz.
- (C) $100\pi \text{ Hz}$.
- 157. ज्यावक्रीय सप्लाई जिसका चरम मान 100 V है; rms मान क्या होगा—
 - $\sqrt{2}$
- (B) $100\sqrt{2}$
- (D) $50\sqrt{2}$
- 158. एक शुद्ध प्रेरकत्व की औसत शक्ति व्यय होगा—
- (C) $2 LI^2$
- शुन्य
- 159. निम्न चित्र के लिए सत्य कथन है—

- (A) धारा I_1 धारा I_2 से lead करती है। (B) धारा I_2 धारा I_1 से Lead करती है।
- (C) धारा I_1 व धारा I_2 समान है।
- (D) कुछ स्पष्ट नहीं कर सकते

- **160.** वोल्टैज $12 \sin (800\pi t + 0.125 \pi) V$ का आवर्तकाल—
 - (A) 1.33 m sec.
- (B) 50 Hz 250 A
- (C) 0.025 m sec.
- (D) 13.3 m s
- 161. शक्ति गुणक cos∮ तुल्य है—
 - (A) GY
- (C) VY
- 162. एक ज्यावक्रीय तरंग का शिखर से शिखर तक का मान 400 वोल्ट है। धारा का वर्ग माध्य मूल मान-
 - 200 (A) $\sqrt{2}$
- 400
- 100
- (D) 300
- 163. निम्न में किस आवृत्ति का आवृत्तिकाल सबसे कम होगा-
 - (A) 1 Hz
- (B) 10 MHz
- (C) 200 MHz
- (D) 1 MHz
- 164. AC परिपथ में सदा होती है—
 - (A) Apparent Power > Actual Power
 - (B) Reactive Power > Apparent Power
 - (C) Actual Power > Reactive Power
 - (D) Reactive Power > Actual Power
- किस परिपथ का Power factor शन्य होता है— 165.
 - (A) प्रतिरोध
- (B) इण्डक्टैन्स
- (C) कैपेसिटेन्स
- (D) B एवं C दोनों

	ANSWERS KEY									
1. (B)	2 . (C)	3. (A)	4. (C)	5. (B)	6. (A)	7 . (C)	8. (A)	9 . (B)	10 . (D)	
11. (C)	12 . (A)	13 . (D)	14 . (D)	15. (D)	16 . (A)	17 . (D)	18 . (B)	19 . (C)	20 . (B)	
21 . (C)	22 . (C)	23 . (B)	24 . (B)	25 . (C)	26 . (D)	27 . (A)	28 . (A)	29 . (C)	30 . (D)	
31 . (C)	32 . (D)	33 . (A)	34 . (A)	35 . (A)	36 . (A)	37 . (A)	38 . (B)	39 . (C)	40 . (A)	
41 . (A)	42 . (A)	43 . (B)	44 . (D)	45 . (A)	46 . (A)	47 . (D)	48 . (B)	49 . (A)	50 . (B)	
51 . (C)	52 . (D)	53 . (A)	54 . (A)	55 . (B)	56 . (C)	57 . (B)	58 . (D)	59 . (C)	60 . (B)	
61 . (A)	62 . (A)	63 . (C)	64 . (C)	65 . (A)	66 . (C)	67 . (B)	68 . (C)	69 . (D)	70 . (B)	
71 . (A)	72 . (C)	73 . (A)	74 . (A)	75 . (B)	76 . (B)	77 . (D)	78 . (C)	79 . (C)	80 . (B)	
81 . (C)	82 . (A)	83 . (C)	84 . (C)	85 . (A)	86 . (B)	87 . (A)	88. (A)	89 . (C)	90 . (C)	
91 . (A)	92 . (B)	93 . (A)	94 . (B)	95 . (A)	96 . (A)	97 . (B)	98 . (C)	99 . (B)	100 . (A)	
101 . (B)	102 . (A)	103 . (A)	104 . (D)	105 . (C)	106 . (A)	107 . (B)	108 . (B)	109 . (B)	110 . (D)	
111 . (A)	112 . (B)	113 . (A)	114 . (B)	115 . (D)	116 . (B)	117 . (B)	118. (C)	119. (C)	120 . (C)	
121 . (B)	122 . (D)	123 . (B)	124 . (C)	125 . (D)	126 . (B)	127 . (A)	128 . (B)	129 . (B)	130 . (A)	
131 . (D)	132 . (C)	133 . (B)	134 . (D)	135 . (D)	136 . (C)	137 . (B)	138 . (D)	139 . (D)	140 . (C)	
141 . (A)	142 . (D)	143. (C)	144. (A)	145 . (B)	146 . (D)	147 . (B)	148. (C)	149 . (D)	150 . (C)	
151 . (C)	152 . (A)	153 . (C)	154 . (B)	155 . (B)	156 . (B)	157 . (A)	158 . (D)	159 . (B)	160 . (C)	
161 . (B)	162 . (A)	163 . (C)	164 . (A)	165 . (D)						