IN THE CLAIMS:

1. (Currently Amended) An actuator arm assembly for a disk drive, the actuator

arm assembly being stamped from a single flat sheet of material and comprising:

a first actuator arm portion defining a first latch portion;

a second actuator arm portion defining a second latch portion configured to latch with the

first latch portion, and;

an actuator arm-joining portion integrally joining the first actuator arm portion to the

second actuator arm portion, the first actuator arm portion, the second actuator arm portion

and the actuator arm joining portion being a single part made from the single flat sheet of

material, rather than an assembly of sub-parts, and

a flex cable coupled to the first actuator arm portion and to the second actuator arm

<u>portion</u>.

2. (Original) The actuator arm assembly of claim 1, wherein the actuator arm

assembly is configured to pivot about a pivot axis and wherein the actuator arm-joining portion

is configured to bend into an orientation that is substantially parallel to the pivot axis.

3. (Original) The actuator arm assembly of claim 1, wherein the actuator arm

assembly is configured to pivot about a pivot axis and wherein the first latch portion is

configured to bend into an orientation that is substantially parallel to the pivot axis.

4. (Original) The actuator arm assembly of claim 1, wherein the actuator arm

assembly is configured to pivot about a pivot axis and wherein both the actuator arm-joining

portion and the first latch portion are configured to bend into orientations that are substantially

parallel to the pivot axis.

2

Serial No. 10/633,190 Atty. Docket No. K35A1300 (WDC5871) 5. (Original) The actuator arm assembly of claim 1, wherein the first actuator arm

portion includes a first surface defined by a thickness and a length of the first actuator arm

portion and wherein the second actuator arm portion includes a second surface defined by a

thickness and a length of the second actuator arm portion and wherein prior to bending, the first

surface faces and is parallel to the second surface.

6. (Original) The actuator arm assembly of claim 1, wherein the first actuator arm

portion defines a first surface that defines a first through bore, the second actuator arm portion

defines a second surface that defines a second through bore that is configured to align with the

first through bore.

7. (Original) The actuator arm assembly of claim 1, wherein the actuator arm-

joining portion and the first latch portion are configured to bend such that a major surface of the

first actuator arm portion faces and is substantially parallel to a major surface of the second

actuator arm portion.

8. (Currently Amended) A head stack assembly for a disk drive, the head stack

assembly comprising:

an actuator arm assembly stamped from a single flat sheet of material and comprising:

a first actuator arm portion defining a first latch portion;

a second actuator arm portion defining a second latch portion configured to latch

with the first latch portion;

an actuator arm-joining portion integrally joining the first actuator arm portion to

the second actuator arm portion, and the first actuator arm portion, the second actuator arm

portion and the actuator arm joining portion being a single part made from the single flat

3

Serial No. 10/633,190

Atty. Docket No. K35A1300 (WDC5871)

sheet of material, rather than an assembly of sub-parts;

a first head gimbal assembly coupled to the actuator arm assembly, and

a flex cable coupled to the first actuator arm portion, to the second actuator arm

portion and to the first head gimbal assembly.

9. (Currently Amended) The head stack assembly of claim 8, further including a

second head gimbal assembly coupled to the second actuator arm portion and to the flex cable.

10. (Original) The head stack assembly of claim 8, wherein the actuator arm

assembly is configured to pivot about a pivot axis and wherein the actuator arm-joining portion

is configured to bend into an orientation that is substantially parallel to the pivot axis.

11. (Original) The head stack assembly of claim 8, wherein the actuator arm

assembly is configured to pivot about a pivot axis and wherein the first latch portion is

configured to bend into an orientation that is substantially parallel to the pivot axis.

12. (Original) The head stack assembly of claim 8, wherein the actuator arm

assembly is configured to pivot about a pivot axis and wherein both the actuator arm-joining

portion and the first latch portion are configured to bend into orientations that are substantially

parallel to the pivot axis.

13. (Original) The head stack assembly of claim 8, wherein the first actuator arm

portion includes a first surface defined by a thickness and a length of the first actuator arm

portion and wherein the second actuator arm portion includes a second surface defined by a

thickness and a length of the second actuator arm portion and wherein prior to bending, the first

surface faces and is parallel to the second surface.

4

Serial No. 10/633,190 Atty. Docket No. K35A1300 (WDC5871) 14. **(Original)** The head stack assembly of claim 8, wherein the first actuator arm portion defines a first surface that defines a first through bore, the second actuator arm portion defines a second surface that defines a second through bore that is configured to align with the first through bore.

15. **(Currently Amended)** A disk drive, comprising:

a disk:

a head stack assembly for reading and writing to the disk, the head stack assembly comprising:

an actuator arm assembly stamped from a single flat sheet of material and comprising:

a first actuator arm portion defining a first latch portion;

a second actuator arm portion defining a second latch portion configured to latch with the first latch portion;

an actuator arm-joining portion integrally joining the first actuator arm portion to the second actuator arm portion, and the first actuator arm portion, the second actuator arm portion and the actuator arm joining portion being a single part made from the single flat sheet of material, rather than an assembly of sub-parts;

a first head gimbal assembly coupled to the actuator arm assembly, and

a flex cable coupled to the first actuator arm portion, to the second actuator arm portion and to the first head gimbal assembly.

16. (Currently Amended) The disk drive of claim 15, further including a second head gimbal assembly coupled to the second actuator arm portion and to the flex cable.

17. (Original) The disk drive of claim 15, wherein the actuator arm assembly is

configured to pivot about a pivot axis and wherein the actuator arm-joining portion is configured

to bend into an orientation that is substantially parallel to the pivot axis.

18. (Original) The disk drive of claim 15, wherein the actuator arm assembly is

configured to pivot about a pivot axis and wherein the first latch portion is configured to bend

into an orientation that is substantially parallel to the pivot axis.

19. (Original) The disk drive of claim 15, wherein the actuator arm assembly is

configured to pivot about a pivot axis and wherein both the actuator arm-joining portion and the

first latch portion are configured to bend into orientations that are substantially parallel to the

pivot axis.

20. (Original) The disk drive of claim 15, wherein the first actuator arm portion

includes a first surface defined by a thickness and a length of the first actuator arm portion and

wherein the second actuator arm portion includes a second surface defined by a thickness and a

length of the second actuator arm portion and wherein prior to bending, the first surface faces

and is parallel to the second surface.

21. (Original) The disk drive of claim 15, wherein the first actuator arm portion

defines a first surface that defines a first through bore, the second actuator arm portion defines a

second surface that defines a second through bore that is configured to align with the first

through bore.

22. (Currently Amended) A method of making an actuator arm assembly for a disk

drive, comprising the steps of:

6

Serial No. 10/633,190

Atty. Docket No. K35A1300 (WDC5871)

providing a flat sheet of material;

stamping the actuator arm assembly from the provided sheet of material such that the

stamped arm assembly includes:

a first actuator arm portion defining a first latch portion;

a second actuator arm portion defining a second latch portion configured to latch

with the first latch portion, and

an actuator arm-joining portion integrally joining the first actuator arm portion to

the second actuator arm portion, the first actuator arm portion, the second actuator arm

portion and the actuator arm joining portion being a single part made from the single flat

sheet of material, rather than an assembly of sub-parts, and

providing a flex cable and coupling the flex cable to the first and second actuator

arm portions.

23. (Original) The method of claim 22, further including a step of bending the

actuator arm-joining portion such that a major surface of the first actuator arm portion faces and

is substantially parallel to a major surface of the second actuator arm portion.

24. (Original) The method of claim 22, further including a step of bending the first

latch portion such that the first latch portion latches with the second latch portion.

25. (Original) The method of claim 22, wherein the stamping step creates a first

through bore in the first actuator arm portion and a second through bore in the second actuator

arm portion.

7

Serial No. 10/633,190 Atty. Docket No. K35A1300 (WDC5871) 26. **(Original)** The method of claim 25, wherein after the bending step, the first through bore is configured to align with the second through bore and wherein the method further includes a step of fitting a collar within the first and second through bores to stiffen the actuator arm assembly.