Лабораторный практикум по теории конечных графов

Лабораторный практикум по теории графов Тема: Основные понятия теории графов. Неориентированные графы

Лабораторная работа 1

№ 1. Дан граф G(V, E) (рис. 1):

Рисунок 1. Исходный граф

Определить:

- 1) Множество вершин ${\bf V}$ и множество ребер ${\bf E}$.
- 2) Пары смежных вершин.
- 3) Инцидентность ребра вершинам.
- 4) Пары смежных ребер.
- 5) Степени вершин.
- 6) Параллельные ребра.
- 7) Наличие петель.
- 8) Количество вершин нечетной степени.
- № 2. Построить неизоморфные графы с пятью вершинами и ребрами, $i = \overline{0.10}$.

Лабораторный практикум по теории конечных графов

Лабораторная работа 2

№ 1. Дан граф $G(\mathbf{V}, \mathbf{E})$.

Найти:

- 1) Множество вершин ${\bf V}$ и множество дуг ${\bf E}$.
- 2) Пары смежных вершин.
- 3) Положительная инцидентность дуг вершинам. Отрицательная инцидентность дуг вершинам.
- 4) Наличие петель.
- 5) Наличие строго параллельных дуг.
- 6) Наличие нестрого параллельных дуг.
- 7) Пары смежных дуг.
- 8) Положительные и отрицательные степени вершин. Степень вершин $\delta(V) = \delta_{(V)}^+ + \delta_{(V)}^-$.
- 9) Количество вершин нечетной степени.

№ 2. Дан граф $G_2(\mathbf{V},\mathbf{E})$.

Лабораторный практикум по теории конечных графов

Найти:

- 1) Множество вершин V и множество дуг E.
- 2) Пары смежных вершин.
- 3) Положительная инцидентность дуг вершинам. Отрицательная инцидентность дуг вершинам.
- 4) Наличие петель.
- 5) Наличие строго параллельных дуг.
- 6) Наличие нестрого параллельных дуг.
- 7) Пары смежных дуг.
- 8) Положительные и отрицательные степени вершин. Степень вершин $\delta(V) = \delta_{(V)}^+ + \delta_{(V)}^-$.
- 9) Количество вершин нечетной степени.

Лабораторный практикум по теории конечных графов

Тема: Метрические характеристики графов. Матрицы смежности и инцидентности

Лабораторная работа 3

№ 1. Построить матрицу смежности **В** и матрицу инцидентности **А** для графов:

a)

б)

B)

<u>Замечание:</u> Если в графе отсутствуют петли и кратные ребра, то для доказательства изоморфизма достаточно сравнить их матрицы смежности или инцидентности.

Лабораторный практикум по теории конечных графов

№ 2. Дан граф $G(\mathbf{V}, \mathbf{E})$.

Найти:

- 1) A матрицу инцидентности.
- B матрицу смежности.

№ 3. Дан граф $G_2(\mathbf{V}, \mathbf{E})$.

Найти:

- 1) A матрицу инцидентности (граф из лабораторной № 2).
- 2) **B** матрицу смежности (граф из лабораторной № 2).

№ 4. Даны матрица инцидентности и матрица смежности для графа. Составить схему графа.

Лабораторный практикум по теории конечных графов

№ 5. Дана матрица инцидентности A_2 .

Построить:

- 1) схему графа.
- 2) матрицу смежности \boldsymbol{B}_2 .

№ 6. Дан граф.

Найти:

- 1) Расстояние между различными вершинами (кратчайшая простая цепь, т.е. все вершины различны, все веса за 1 берем), $d(V_i, V_j) = ?$ $(i \neq j)$.
 - 2) Эксцентриситет каждой вершины $l(V_i) = \max_{V_i \in V} d(V_i, V_j)$.
 - 3) Диаметр графа $d(G) = \max_{V \in \mathbf{V}} l(V)$.
 - 4) Радиус графа $r(G) = \min_{V \in \mathbf{V}} l(V)$.
 - 5) Определить центральные вершины графа $l(V_i) = r(G)$.
 - 6) Определить центр графа.
 - 7) Найти число маршрутов длины 2 для всех вершин графа (т.е. ${f B^2}$).
 - 8) Найти число маршрутов длины 3 для всех вершин графа (т.е. ${\bf B}^3$).
 - 9) Определить список смежности для графа G.

Лабораторный практикум по теории конечных графов

№ 7. Дан граф.

Найти:

- 1) Расстояние между различными вершинами (кратчайшая простая цепь, т.е. все вершины различны, все веса за 1 берем), $d(V_i,V_j)=?$ $(i\neq j)$.
- 2) Эксцентриситет каждой вершины $l(V_i) = \max_{V_i \in \mathbf{V}} d(V_i, V_j)$.
- 3) Диаметр графа $d(G) = \max_{V \in V} l(V)$.
- 4) Радиус графа $r(G) = \min_{V \in V} l(V)$.
- 5) Определить центральные вершины графа $l(V_i) = r(G)$.
- 6) Определить центр графа.
- 7) Найти число маршрутов длины 2 для всех вершин графа (т.е. ${\bf B^2}$).
- 8) Найти число маршрутов длины 3 для всех вершин графа (т.е. ${\bf B^3}$).
- 9) Определить список смежности для графа G.

№ 8. Дан граф.

Лабораторный практикум по теории конечных графов

Найти:

- 1) Расстояние между различными вершинами (кратчайшая простая цепь, т.е. все вершины различны, все веса за 1 берем), $d(V_i, V_j) = ?$ $(i \neq j)$.
 - 2) Эксцентриситет каждой вершины $l(V_i) = \max_{V_i \in V} d(V_i, V_j)$.
 - 3) Диаметр графа $d(G) = \max_{V \in \mathbf{V}} l(V)$.
 - 4) Радиус графа $r(G) = \min_{V \in V} l(V)$.
 - 5) Определить центральные вершины графа $l(V_i) = r(G)$.
 - 6) Определить центр графа.
 - 7) Найти число маршрутов длины 2 для всех вершин графа (т.е. ${\bf B}^2$).
 - 8) Определить список смежности для графа G.

Лабораторный практикум по теории конечных графов

Тема: Алгоритм Краскала

Лабораторная работа 4

№ 1. Дан граф G.

Для графа построить по алгоритму Краскала:

- 1) покрывающее дерево по нумерации;
- 2) минимальное покрывающее дерево и найти вес $w_{T_{\min}}$ полученного дерева;
- 3) максимальное покрывающее дерево и найти вес $w_{T_{\max}}$ полученного дерева.

№ 2. Дан граф G.

Для графа построить по алгоритму Краскала:

- 1) покрывающее дерево по нумерации;
- 2) минимальное покрывающее дерево и найти вес $w_{T_{\min}}$ полученного дерева;
- 3) максимальное покрывающее дерево и найти вес $w_{T_{\max}}$ полученного дерева.

№ 3. Дан граф G.

Лабораторный практикум по теории конечных графов

Для графа построить по алгоритму Краскала:

- 1) покрывающее дерево по нумерации;
- 2) минимальное покрывающее дерево и найти вес $w_{T_{\min}}$ полученного дерева;
- 3) максимальное покрывающее дерево и найти вес $w_{T_{\max}}$ полученного дерева.

Лабораторный практикум по теории конечных графов

Тема: Алгоритм Прима

Лабораторная работа 5

№ 1. Дан граф G.

Построить минимальное покрывающее дерево по алгоритму Прима и посчитать вес дерева $w_{T_{\min}}$.

№ 2. Дан граф G.

Построить максимальное покрывающее дерево по алгоритму Прима и посчитать вес дерева $w_{T_{\max}}$.

№ 3. Дан граф G.

Лабораторный практикум по теории конечных графов

Построить минимальное покрывающее дерево по алгоритму Прима и найти его вес $w_{T_{\min}}$.

№ 4. Дан граф *G* .

Построить максимальное и минимальное дерево по алгоритму Прима и для каждого посчитать веса $w_{T_{\max}}$ и $w_{T_{\min}}$. Изобразить результаты в виде деревьев с весами.

Лабораторный практикум по теории конечных графов

Тема: Алгоритм Дейкстры

Лабораторная работа 6

№ 1. Дан граф G.

Используя Алгоритм Дейкстры найти минимальный путь и длину:

- 1) от вершины V_1 до вершины V_4 ;
- 2) от вершины V_3 до вершины V_6 ;
- 3) от вершины V_1 до вершины V_6 .

№ 2. Дан граф G.

Используя Алгоритм Дейкстры найти минимальный путь и длину:

- 1) от вершины V_2 до вершины V_4 ;
- 2) от вершины V_1 до вершины V_5 ;
- 3) от вершины V_1 до вершины V_4 .

№ 3. Дан граф G.

Лабораторный практикум по теории конечных графов

Используя Алгоритм Дейкстры найти минимальный путь и длину:

- 1) от вершины $V_{\scriptscriptstyle 1}$ до вершины $V_{\scriptscriptstyle 4}$;
- 2) от вершины $V_{\scriptscriptstyle 1}$ до вершины $V_{\scriptscriptstyle 6}$;
- 3) от вершины V_2 до вершины V_6 .

Лабораторный практикум по теории конечных графов

Тема: Поиск эйлерова цикла

Лабораторная работа 7

 $\ensuremath{\mathbb{N}}_{\!\! 2}$ 1. Построить эйлеров цикл в графе, начиная с вершин V_1 , V_3 , V_4 .

 $\ensuremath{\mathbb{N}}_{\!\!\!2}$ 2. Построить эйлеров цикл в графе, начиная с вершины V_1 .

 $\ensuremath{\mathbb{N}}\xspace$ 3. Построить эйлеров цикл в графе, начиная с вершины V_8 .

 $\ensuremath{\mathcal{N}}\xspace$ 4. Построить эйлеров цикл в графе, начиная с вершины $V_{\ensuremath{\scriptscriptstyle 1}}.$

Лабораторный практикум по теории конечных графов

 $\ensuremath{\mathcal{N}}\xspace$ 5. Построить эйлеров цикл в графе, начиная с вершины V_4 .

Лабораторный практикум по теории конечных графов

Тема: Гамильтоновы графы

Лабораторная работа 8

№ 1. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Из вершины $V_2\,$ найти всевозможные гамильтоновы циклы.

N2. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Найти количество гамильтоновых циклов из вершины $V_{\scriptscriptstyle 2}$ и указать их.

№ 3. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Найти количество гамильтоновых циклов из вершины $\,V_{\scriptscriptstyle 3}\,$ и указать их.

Лабораторный практикум по теории конечных графов

№ 4. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Из вершины V_1 найти всевозможные гамильтоновы циклы.

Лабораторный практикум по теории конечных графов

Тема: Алгоритм Уоршалла-Флойда. Задача транзитивного замыкания

Лабораторная работа 9

№ 1. Используя алгоритм Уоршалла-Флойда, найти минимальное расстояние между всеми парами вершин.

№ 2. Используя алгоритм Уоршалла-Флойда, найти минимальное расстояние между всеми парами вершин.

№ 3. Используя алгоритм Уоршалла-Флойда, найти минимальное расстояние между всеми парами вершин.

№ 4. Построить транзитивное замыкание для графа и найти матрицу связности графа.

Лабораторный практикум по теории конечных графов

№ 5. Построить транзитивное замыкание для графа и найти матрицу связности графа.

№ 6. Построить транзитивное замыкание для графа и найти матрицу связности графа.

Лабораторный практикум по теории конечных графов

Тема: Условие существования потока в графе. Поиск увеличивающей цепи
Лабораторная работа 10

№ 1. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

- 1) Проверить условие существования потока из вершины V_1 в вершину V_4 .
- 2) Найти увеличивающую цепь, если возможно, и увеличить поток.

№ 2. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

- 1) Проверить условие существования потока из вершины V_1 в вершину V_5 .
- 2) Найти увеличивающую цепь, если возможно, и увеличить поток.

N2 3. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Лабораторный практикум по теории конечных графов

- 1) Проверить условие существования потока из вершины V_1 в вершину V_7 .
- 2) Найти увеличивающую цепь, если возможно, и увеличить поток.

Лабораторный практикум по теории конечных графов

Тема: Поиск максимального потока в графе. Стоимость потока минимальной стоимости

Лабораторная работа 11

№ 1. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Найти:

- 1) максимальный поток K_{\max} на графе;
- 2) поток минимальной стоимости для k=2, k=5. Узнать стоимость передачи. Изобразить итоговые графы.

№ 2. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Найти:

- 1) максимальный поток K_{\max} на графе;
- 2) поток минимальной стоимости для k=2, k=5. Узнать стоимость передачи. Изобразить итоговые графы.

Лабораторный практикум по теории конечных графов

№ 3. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Найти:

- 1) максимальный поток K_{\max} на графе;
- 2) поток минимальной стоимости для k=2 , k=5 . Узнать стоимости. Изобразить итоговые графы.

Лабораторный практикум по теории конечных графов

Тема: Задача почтальона для орграфа

Лабораторная работа 12

№ 1. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Построить оптимальный маршрут почтальона из вершины V_3 .

№ 2. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$

Построить оптимальный маршрут почтальона из вершины $V_{\scriptscriptstyle 5}$.

N2 3. Дан граф $G_1 = \langle \mathbf{V}, \mathbf{E} \rangle$.

Построить оптимальный маршрут почтальона из вершины V_2 .

Лабораторный практикум по теории конечных графов

 \mathbb{N}_{2} 4. Дан граф $G_{1}=\left\langle \mathbf{V},\mathbf{E}\right\rangle .$

Построить оптимальный маршрут почтальона из вершины V_1 .

Лабораторный практикум по теории конечных графов

Вопросы для самопроверки и обсуждений по темам

- 1. Найти эксцентриситет, диаметр и радиус графа.
- 2. Составить матрицу смежности и матрицу инцидентности для графа.
- 3. Построить минимальное (максимальное) покрывающее дерево для графа, используя алгоритм Краскала.
- 4. Построить минимальное (максимальное) покрывающее дерево для графа, используя алгоритм Прима.
 - 5. Найти Эйлеров цикл в графе.
- 6. Найти кратчайший путь и длину между заданными вершинами, используя алгоритм Дейкстры.
- 7. Найти минимальное расстояние между всеми парами вершин по алгоритму Уоршалла-Флойда.
- 8. Построить транзитивное замыкание и найти матрицу связности (достижимости) для графа. Представить решение через промежуточные матрицы.
- 9. Найти гамильтоновы циклы в графе из заданной вершины, используя алгоритм поиска гамильтонова цикла в графе.
- 10. Найти поток минимальной стоимости, состоящий из k (например, 5) единиц. (При решении обязательно указывать промежуточные графы и увеличивающие цепи. В ответе изобразить результирующий граф и указать минимальную стоимость потока.)
- 11. Построить оптимальный маршрут почтальона из заданной вершины. (В решении построить симметричный граф, указать потоки минимальной стоимости. В ответе указать результирующий граф и оптимальный маршрут почтальона.)
- 12. Найти максимальный поток на графе. (Увеличивать поток с указанием увеличивающей цепи и количеством единиц, передаваемых по увеличивающей цепи. На каждом шаге изображать новый граф с последующей нумерацией графа.) В ответе указать максимальный поток и результирующий граф.

Лабораторный практикум по теории конечных графов

Тестирование по теории графов

1. Как будет выглядеть матрица инцидентности для графа:

Ответ:

	(V_1,V_2)	(V_1,V_3)	(V_1,V_4)	(V_1,V_5)	(V_2, V_4)	(V_4,V_5)
$\mathbf{V_1}$	1	1	1	1	0	0
\mathbf{V}_{2}	1	0	0	0	1	0
V_3	0	1	0	0	0	0
V_4	0	0	1	0	1	1
V_5	0	0	0	1	0	1

	(V_1,V_2)	(V_1,V_3)	(V_1,V_4)	(V_1,V_5)	(V_2,V_4)	(V_4,V_5)
V_1	4	2	5	1	0	0
V_2	4	0	0	0	2	0
V_3	0	2	0	0	0	0
V_4	0	0	5	0	2	3
V_5	0	0	0	1	0	3

	V_1	V_2	V_3	V_4	V_5
V_1	0	1	1	1	1
V_2	-1	0	0	1	0
V_3	-1	0	0	0	0
V_4	-1	-1	0	0	1
V_5	-1	0	0	-1	0

	V_1	V_2	V_3	V_4	V_5
V_1	0	1	1	1	1
V_2	1	0	0	1	0
V_3	1	0	0	0	0
V_4	1	1	0	0	1
V_5	1	0	0	1	0

Лабораторный практикум по теории конечных графов

2. Как будет выглядеть матрица весов для графа:

Ответ:

	V_1	V_2	V_3	V_4	V_5
V_1	0	2	5	3	0
V_2	2	0	0	1	0
V_3	5	0	0	6	0
V_4	3	1	6	0	4
V.	Ω	Λ	Λ	1	Λ

	V_1	V_2	V_3	V_4	V_5
V_1	0	2	5	3	8
V_2	2	0	∞	1	∞
V_3	5	∞	0	6	8
V_4	3	1	6	0	4
V_5	∞	∞	∞	4	0

	V_1	V_2	V_3	V_4	V_5
V_1	0	2	5	3	∞
V_2	-2	0	∞	1	∞
V_3	-5	∞	0	6	∞
V_4	-3	-1	-6	0	4
V_5	∞	∞	∞	-4	0

	V_1	V_2	V_3	V_4	V_5
V_1	1	-2	-5	-3	∞
V_2	2	1	∞	-1	∞
V_3	5	∞	1	-6	∞
V_4	3	1	6	1	-4
V_5	∞	∞	∞	4	1

Лабораторный практикум по теории конечных графов

3. Маршрут в графе можно задать:

Ответ:

- □ только последовательностью ребер;
- □ только последовательностью вершин;
- □ и последовательностью ребер и последовательностью вершин;
- □ ни последовательностью ребер, ни последовательностью вершин.
- 4. Какие из графов являются связными?

- 5. Выберете правильные утверждения. Неориентированное дерево есть: Ответ:
- \Box связный граф, содержащий *n* вершин и *n* 1 ребер;
- \Box связный граф, содержащий n вершин и n-1 ребер, и не имеющий циклов;
- □ граф, в котором любые две вершины соединены двумя цепями;
- \square любое подмножество n-1 неориентированных ребер и n вершин.
- 6. Для графа, представленного на рисунке, число маршрутов длины 2 для всех вершин равно:

Ответ: □ 14;

0	1	0	1	1
1	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	1	0	0

3	1	3	0	1
1	3	1	2	2
3	1	3	0	1
0	2	0	2	2
1	2	1	2	3

2	7	2	6	7
7	4	7	2	5
2	7	2	6	7
6	2	6	0	2
7	5	7	2	4

Лабораторный практикум по теории конечных графов

7. Какие из утверждений справедливы? Ответ:
□ В конечном графе число вершин нечетной степени нечетно.
□ В неориентированном графе число вершин четной степени четно.
□ В конечном графе число вершин нечетной степени четно.
□ В орграфе число вершин четной степени четно.
8. Алгоритм Краскала может быть применен для: Ответ:
□ построения цикла;
□ поиска минимального дерева;
□ поиска кратчайшего пути между вершинами;
□ поиска радиуса графа.
9. При построении минимального покрывающего дерева по алгоритму Краскала используются: Ответ:
□ букет;
□ матрица инцидентности;
□ матрица смежности;
□ матрица весов.
10. При построении минимального покрывающего дерева по алгоритму Прима используются: Ответ:
□ матрица инцидентности;
□ множество ребер, упорядоченное по возрастанию весов;
□ множество ребер, упорядоченное по убыванию весов;
□ матрица весов.
11. Сколько существует попарно неизоморфных неорграфов (без петель и кратных дуг) с 4 вершинами и 2 ребрами.

Лабораторный практикум по теории конечных графов

12. Какая из приведённых ниже матриц является матрицей смежности орграфа

Ответ:

$$\Box \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\square \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \square \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix}$$

$$\square \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\square \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \square \begin{pmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & -1 & -1 \\ 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

13. Найдите путь наименьшей длины между вершинами a и h по алгоритму Дейкстры

Ответ:

$$\Box a \rightarrow b \rightarrow d \rightarrow f \rightarrow h$$

$$\Box a \rightarrow b \rightarrow d \rightarrow e \rightarrow f \rightarrow h$$

$$\Box a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow h$$

$$\Box a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow g \rightarrow h$$

- 14. Выберете правильное утверждение. Планарным графом называется граф, который Ответ:
- □ можно изобразить на плоскости так, чтобы все пересечения ребер являлись вершинами графа;
- □ нельзя изобразить на плоскости так, чтобы все пересечения ребер являлись вершинами графа;
- □ можно изобразить в пространстве так, чтобы все пересечения ребер являлись вершинами графа;
- □ нельзя изобразить в пространстве так, чтобы все пересечения ребер являлись вершинами графа.

Лабораторный практикум по теории конечных графов

15. для поиска пути в задаче почтальона используется алгоритм: Ответ:
□ Прима;
□ Краскала;
Уоршалла - Флойда;
поиска эйлерова цикла.

Лабораторный практикум по теории конечных графов

Ответы для третьей главы

Ответы для лабораторного практикума

Лабораторная работа 1

№ 1. **1. V** =
$$\{v_1, v_2, v_3, v_4\} = \{v_i\}, i = \overline{1,4}, \mathbf{E} = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\} = \{e_i\}, j = \overline{1,7}$$
.

2. а) v_1 и v_2 ; б) v_1 и v_3 ; в) v_2 и v_2 ; г) v_2 и v_3 ; д) v_2 и v_4 ;

е) v_3 и v_4 . **3.** Ребро e_1 инцидентно вершинам v_1 и v_3 . Ребро e_2 инцидентно вершинам v_1 и v_2 . Ребро e_3 инцидентно вершинам v_3 и v_4 . Ребро e_4 инцидентно вершинам v_2 и v_4 . Ребро e_5 инцидентно вершинам v_2 и v_3 . Ребро e_6 инцидентно вершине v_2 . Ребро e_7 инцидентно вершинам v_1 и v_2 . **4.** Смежные ребра: а) e_1 и e_2 ; б) e_1 и e_3 ; в) e_1 и e_5 ; г) e_1 и e_7 ; д) e_2 и e_4 ; е) e_2 и e_5 ; ж) e_2 и e_6 ; з) e_2 и e_7 ; и) e_3 и e_4 ; к) e_3 и e_5 ; л) e_4 и e_5 ; м) e_4 и e_6 ; н) e_5 и e_6 ; о) e_5 и e_7 ; п) e_6 и e_7 ; р) e_4 и e_7 . **5.** $\delta(v_1)=3$; $\delta(v_2)=6$; $\delta(v_3)=3$; $\delta(v_4)=2$; $\sum_{i=1}^4 \delta(v_i)=14$. **6.** Ребра e_2 и e_7 являются параллельными. **7.** e_6 — петля. **8.** Две вершины нечетной степени: v_1 и v_3 .

mapassion bilbilism. At Co. mensis. Of Abe Bepariment no territori e territori

 $\mathbb{N}_{2} = (\emptyset)$:

1) $E = (e_1)$:

2) $E = (e_1, e_2)$:

3) $E = (e_j), j = \overline{1,3}$:

4) $E = (e_j), j = \overline{1,4}$:

Лабораторный практикум по теории конечных графов

5) $E = (e_j), j = \overline{1,5}$:

6) $E = (e_j), j = \overline{1,6}$:

7) $E = (e_j), j = \overline{1,7}$:

8) $E = (e_j), j = \overline{1,8}$:

9) $E = (e_j), j = \overline{1,9}$:

10) $E = (e_j), j = \overline{1,10}$:

Лабораторный практикум по теории конечных графов

Лабораторная работа 2

№ 1. а) Найти графы, они перенесены в лаб 3

	/	$ e_1 $	$ e_2 $	$ e_3 $	$ e_4 $	$ e_5 $	$ e_6 $	$ e_7 $	$ e_8 $	$ e_9 $	$ e_{10} $	$ e_{11}\rangle$
	$/\overline{V_1}$	1		1	_		0		1	0	-	$0 \setminus$
	V_2	1	1	0	1	1	1	0	0	0	0	$\overline{0}$
A =	$\overline{V_3}$	0	0	0	0	0	1	0	1	0	1	0
	V_4	0	0	1	0	1	0	0	0	1	0	0
	$\setminus V_5$	0	0	0	0	0	0	0	0	0	1	2
	$ackslash \overline{V_6}$	0	0	0	1	0	0	1	0	1	0	0

$$\boldsymbol{B} = \begin{pmatrix} & V_1 & V_2 & V_3 & V_4 & V_5 & V_6 \\ \hline V_1 & 0 & 2 & 1 & 1 & 0 & 1 \\ \hline V_2 & 2 & 0 & 1 & 1 & 0 & 1 \\ \hline V_3 & 1 & 1 & 0 & 0 & 1 & 0 \\ \hline V_4 & 1 & 1 & 0 & 0 & 0 & 1 \\ \hline V_5 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline V_6 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

<mark>ნ)</mark>

	/	e_1	e_2	e_3	e_4	e_5	e_6	$e_7 \setminus$
	$/V_1$	2	1	0	1	0	0	0 /
	$\overline{V_2}$	0	1	1	0	0	0	0
A =	$\overline{V_3}$	0	0	1	1	0	0	0
	V_4	0	0	0	0	1	1	0
	V_5	0	0	0	0	0	1	1
	$\setminus \overline{V_6}$	0	0	0	0	1	0	1
	$\sqrt{V_{7}}$	0	0	0	0	0	0	0

$$\boldsymbol{B} = \begin{pmatrix} V_1 & V_2 & V_3 & V_4 & V_5 & V_6 & V_7 \\ \hline V_1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline V_2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline V_3 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline V_4 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ \hline V_5 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline V_6 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \hline V_7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

B)

Лабораторный практикум по теории конечных графов

	/	e_1	$ e_2 $	$ e_3 $	$ e_4 $	$ e_5 $	$ e_6 $	e_7
1						0		
A =	V_2	0	1	0	1	1	2	1
1	V_3	1	0	1	0	1	0	0
	$\setminus V_4$	0	0	1	1	0	0	0 /

$$\boldsymbol{B} = \begin{pmatrix} & V_1 & V_2 & V_3 & V_4 \\ \hline V_1 & 0 & 2 & 1 & 0 \\ \hline V_2 & 2 & 1 & 1 & 1 \\ \hline V_3 & 1 & 1 & 0 & 1 \\ \hline V_4 & 0 & 1 & 1 & 0 \end{pmatrix}$$

№ 2. 1) **V** = $\{v_1, v_2, v_3, v_4, v_5\}$, **E** = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$. 2) v_1 смежна с v_2 ; v_2 смежна с v_3 ; v_3 смежна с v_3 ; v_3 смежна с v_4 ; v_3 смежна с v_4 ; v_3 смежна с v_4 ; v_4 смежна с v_4 ; v_5 смежна с v_6 ; v_8 положительно инцидентна с v_8 и отрицательно инцидентна с v_9 и отрицательно инцидентна с v_9 положительно инцидентна с v_9 и отрицательно инцидентна с v

10)

	/	$ e_1 $	$ e_2 $	e_3	e_4	$ e_5 $	e_6	e_7
	V_1	-1	-1	1	0	0	0	0
	$\overline{V_2}$	0	0	-1	-1	1	0	0
$A_1 =$	$\overline{V_3}$	0	0	0	1	-1	2	1
	$\overline{V_4}$	1	1	0	0	0	0	-1
	$\setminus V_5$	0	0	0	0	0	0	0 \

11)

$$\boldsymbol{B}_{1} = \begin{pmatrix} \begin{vmatrix} V_{1} & V_{2} & V_{3} & V_{4} & V_{5} \\ \hline V_{1} & 0 & 1 & 0 & 0 & 0 \\ \hline V_{2} & 0 & 0 & 1 & 0 & 0 \\ \hline V_{3} & 0 & 1 & 1 & 1 & 0 \\ \hline V_{4} & 2 & 0 & 0 & 0 & 0 \\ \hline V_{5} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Лабораторный практикум по теории конечных графов

№ 3. 1) **V** = $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, **E** = $\{\langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle, \langle v_3, v_1 \rangle, \langle v_2, v_3 \rangle, \langle v_3, v_3 \rangle, \langle v_5, v_6 \rangle, \langle v_6, v_5 \rangle\}$. 2) v_1 смежна с v_2 ; v_2 смежна с v_3 ; v_3 смежна с v_1 и v_3 ; v_5 смежна с v_6 ; v_6 смежна с v_5 . 3) e_1 положительно инцидентна с v_1 и отрицательно инцидентна с v_2 ; e_2 положительно инцидентна с v_2 и отрицательно инцидентна с v_3 ; e_3 положительно инцидентна с v_3 ; e_5 положительно инцидентна с v_3 ; e_6 положительно инцидентна с v_5 и отрицательно инцидентна с v_5 и отрицательно инцидентна с v_6 ; e_7 положительно инцидентна с v_6 и отрицательно инцидентна с v_5 . 4) Петля e_5 . 5) Дуги e_2 и e_4 являются строго параллельными. 6) Дуги e_6 и e_7 являются не строго параллельными. 7) Дуга e_1 смежна с e_2 и e_4 ; e_2 с e_3 и e_5 ; e_3 с e_1 ; e_4 с e_3 и e_5 ; e_5 с e_3 ; e_6 с e_7 ; e_7 с e_6 . 8) $\delta^+(v_1) = 1$, $\delta^+(v_2) = 2$, $\delta^+(v_3) = 2$, $\delta^+(v_4) = 0$, $\delta^+(v_5) = 1$, $\delta^-(v_6) = 1$; $\delta^-(v_1) = 1$, $\delta^-(v_2) = 1$, $\delta^-(v_3) = 3$, $\delta^-(v_4) = 0$, $\delta^-(v_5) = 1$, $\delta^-(v_6) = 1$; $\delta(v_1) = 2$, $\delta(v_2) = 3$, $\delta(v_3) = 5$, $\delta(v_4) = 0$, $\delta(v_5) = 2$, $\delta(v_6) = 2$. 9) Количество вершин нечетной степени равно 2.

10)

		e_1	e_2	e_3	e_4	e_5	$ e_6 $	e_7
	$ V_1 $	1	0	-1	0	0	0	0
	V_2	-1	1	0	1	0	0	0
$A_2 = $	V_3	0	-1	1	-1	2	0	0
	$V_{_4}$	0	0	0	0	0	0	0
	V_5	0	0	0	0	0	1	-1
	$igl \overline{V_6}$	0	0	0	0	0	-1	1

11)

$$\boldsymbol{B}_2 = \begin{pmatrix} V_1 & V_2 & V_3 & V_4 & V_5 & V_6 \\ \hline V_1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline V_2 & 0 & 0 & 2 & 0 & 0 & 0 \\ \hline V_3 & 1 & 0 & 1 & 0 & 0 & 0 \\ \hline V_4 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline V_5 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline V_6 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix}$$

<u>№ 4.</u>

Лабораторный практикум по теории конечных графов

<u>№ 5.</u>

	$/$ _ $ V $	$ V_2 $	V_3	V_4	V_5	V_6	$ V_7 $	$ V_8 $
	$ V_1 $	1	0	0	0	0	0	0 \
	$ V_2 0$	0	0	0	0	0	1	0
	$\overline{V_3}$ 1	1	0	1	1	0	1	0
R =	\overline{V}_4 1	0	0	0	0	0	0	0
$\boldsymbol{B}_2 = $	$ V_5 $ 0	0	0	1	0	0	0	0
	$V_6 0$	0	0	0	0	0	0	0
	$ V_7 $ 0	0	0	0	1	0	0	0
	$ V_8 $ 0	0	0	0	0	0	0	1

Лабораторная работа 3

 \mathbb{N}_{2} 1. 1) $d(v_{i},v_{i})=0$, $d(v_{1},v_{2})=1$, $d(v_{1},v_{3})=2$, $d(v_{1},v_{4})=2$, $d(v_{1},v_{5})=2$, $d(v_{2},v_{3})=1$, $d(v_{2},v_{4})=1$, $d(v_{2},v_{5})=1$, $d(v_{3},v_{4})=2$, $d(v_{3},v_{5})=1$, $d(v_{4},v_{5})=1$. 2) $l(v_{1})=2$, $l(v_{2})=1$, $l(v_{3})=2$, $l(v_{3})=2$, $l(v_{4})=2$, $l(v_{5})=2$. 3) $l(v_{5})=2$. 4) $l(v_{5})=2$. 5) $l(v_{5})=2$. 6 Вершина $l(v_{5})=2$. 7 Вершина $l(v_{5})=2$. 8 Вершина $l(v_{5})=2$. 8 Вершина $l(v_{5})=2$. 8 Вершина $l(v_{5})=2$. 9 Вершина l(

7)
$$\mathbf{B}^{2} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 4 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 & 1 \\ 1 & 1 & 2 & 2 & 1 \\ 1 & 2 & 1 & 1 & 3 \end{pmatrix}$$

8)
$$\mathbf{B}^3 = \begin{pmatrix} 0 & 4 & 1 & 1 & 2 \\ 4 & 4 & 6 & 6 & 6 \\ 1 & 6 & 2 & 2 & 5 \\ 1 & 6 & 2 & 2 & 5 \\ 2 & 6 & 5 & 5 & 4 \end{pmatrix}$$

9)
$$u(v_1) = \{v_2\}$$
, $u(v_2) = \{v_1, v_3, v_4, v_5\}$, $u(v_3) = \{v_2, v_5\}$, $u(v_4) = \{v_2, v_5\}$, $u(v_5) = \{v_2, v_3, v_4\}$.

Лабораторный практикум по теории конечных графов

$$\mathbb{N}_{2}$$
 2. 1) $d(v_{1},v_{1})=0$, $d(v_{1},v_{2})=1$, $d(v_{1},v_{3})=2$, $d(v_{1},v_{4})=2$, $d(v_{1},v_{5})=1$, $d(v_{1},v_{6})=1$, $d(v_{1},v_{7})=2$, $d(v_{2},v_{7})=2$, $d(v_{2},v_{3})=1$, $d(v_{2},v_{4})=2$, $d(v_{2},v_{5})=2$, $d(v_{2},v_{6})=1$, $d(v_{2},v_{7})=3$, $d(v_{3},v_{4})=2$, $d(v_{5},v_{7})=1$, $d(v_{3},v_{5})=2$, $d(v_{3},v_{6})=1$, $d(v_{4},v_{5})=1$, $d(v_{4},v_{6})=1$, $d(v_{5},v_{6})=1$, $d(v_{3},v_{7})=3$, $d(v_{4},v_{7})=2$. 2) $l(v_{1})=2$, $l(v_{2})=3$, $l(v_{3})=3$, $l(v_{4})=2$, $l(v_{5})=2$, $l(v_{6})=2$, $l(v_{7})=3$. 3) $d(G)=3$. 4) $r(G)=2$. 5) v_{1} , v_{4} , v_{5} , v_{6} – центральные вершины. 6) $\{v_{1},v_{4},v_{5},v_{6}\}$ является центром G .

7)
$$\mathbf{B}^{2} = \begin{pmatrix} 3 & 1 & 2 & 2 & 1 & 2 & 1 \\ 1 & 3 & 1 & 2 & 2 & 2 & 0 \\ 2 & 1 & 3 & 1 & 2 & 2 & 0 \\ 2 & 2 & 1 & 3 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 & 4 & 2 & 0 \\ 2 & 2 & 2 & 2 & 2 & 5 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

8)
$$\mathbf{B}^{3} = \begin{pmatrix} 4 & 7 & 5 & 5 & 8 & 9 & 1 \\ 7 & 4 & 7 & 5 & 5 & 9 & 2 \\ 5 & 7 & 4 & 7 & 5 & 9 & 2 \\ 5 & 5 & 7 & 4 & 8 & 9 & 1 \\ 8 & 5 & 5 & 8 & 4 & 10 & 4 \\ 9 & 9 & 9 & 9 & 10 & 10 & 2 \\ 1 & 2 & 2 & 1 & 4 & 2 & 0 \end{pmatrix}$$

9)
$$u(v_1) = \{v_2, v_5, v_6\}, \ u(v_2) = \{v_1, v_3, v_6\}, \ u(v_3) = \{v_2, v_4, v_6\}, \ u(v_4) = \{v_3, v_5, v_6\}, \ u(v_5) = \{v_1, v_4, v_6, v_7\}, \ u(v_6) = \{v_1, v_2, v_3, v_4, v_5\}, \ u(v_7) = \{v_5\}.$$

$$\mathbb{N}_{2}$$
 3. 1) $d(v_{1},v_{1})=0$, $d(v_{1},v_{2})=1$, $d(v_{1},v_{3})=1$, $d(v_{1},v_{4})=1$, $d(v_{1},v_{5})=1$, $d(v_{1},v_{6})=2$, $d(v_{1},v_{7})=2$, $d(v_{1},v_{8})=1$, $d(v_{2},v_{3})=1$, $d(v_{2},v_{4})=1$, $d(v_{2},v_{5})=1$, $d(v_{2},v_{6})=1$, $d(v_{2},v_{7})=2$, $d(v_{2},v_{8})=2$, $d(v_{3},v_{4})=1$, $d(v_{3},v_{5})=2$, $d(v_{3},v_{6})=1$, $d(v_{3},v_{7})=1$, $d(v_{3},v_{8})=2$, $d(v_{4},v_{5})=2$, $d(v_{4},v_{6})=2$, $d(v_{4},v_{6})=2$, $d(v_{4},v_{7})=1$, $d(v_{4},v_{8})=1$, $d(v_{5},v_{6})=2$, $d(v_{5},v_{7})=3$, $d(v_{5},v_{8})=2$, $d(v_{6},v_{7})=2$, $d(v_{6},v_{8})=3$, $d(v_{7},v_{8})=2$. 2) $l(v_{1})=2$, $l(v_{2})=2$, $l(v_{3})=2$, $l(v_{4})=2$, $l(v_{5})=3$, $l(v_{6})=3$, $l(v_{7})=3$, $l(v_{8})=3$. 3) $d(G)=3$. 4) $r(G)=2$. 5) v_{1} , v_{2} , v_{3} , v_{4} — центральные вершины. 6) $\{v_{1},v_{2},v_{3},v_{4}\}$ является центром G .

Лабораторный практикум по теории конечных графов

7)
$$\mathbf{B}^{2} = \begin{pmatrix} 5 & 3 & 3 & 4 & 1 & 2 & 2 & 1 \\ 3 & 5 & 4 & 3 & 1 & 1 & 2 & 2 \\ 3 & 4 & 6 & 5 & 2 & 2 & 2 & 2 \\ 4 & 3 & 5 & 6 & 2 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 & 1 & 0 & 1 \\ 2 & 1 & 2 & 2 & 1 & 2 & 1 & 0 \\ 2 & 2 & 2 & 2 & 0 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 & 0 & 1 & 2 \end{pmatrix}$$

8)
$$u(v_1) = \{v_2, v_3, v_4, v_5, v_8\}, u(v_2) = \{v_1, v_3, v_4, v_5, v_6\},$$

$$u(v_3) = \{v_1, v_2, v_4, v_6, v_7\}, \ u(v_4) = \{v_1, v_2, v_3, v_7, v_8\}, \ u(v_5) = \{v_1, v_2\}, \ u(v_6) = \{v_2, v_3\}, \ u(v_7) = \{v_3, v_4\}, \ u(v_8) = \{v_1, v_4\}.$$

Лабораторная работа 4

$$No. 1. 1.T = \left\{ \left(v_1, v_2\right), \left(v_1, v_4\right), \left(v_2, v_3\right), \left(v_3, v_5\right), \left(v_4, v_6\right), \left(v_4, v_8\right), \left(v_5, v_9\right), \right\}$$

$$\left(v_{6}, v_{7}\right), \left(v_{4}, v_{6}\right), \left(v_{1}, v_{4}\right) \right\}, \ \ w_{T_{\min}} = 30; \ \ \ T_{\max} = \left\{\left(v_{2}, v_{3}\right), \left(v_{1}, v_{4}\right), \left(v_{1}, v_{4}\right)\right\},$$

$$\left(v_{5}, v_{8}\right), \left(v_{3}, v_{4}\right), \left(v_{4}, v_{6}\right), \left(v_{3}, v_{5}\right), \left(v_{6}, v_{7}\right), \left(v_{4}, v_{2}\right)\right\}, \ \ w_{T_{\max}} = 46.$$

$$\mathbf{N} \underline{\circ} \ 2. \ \mathbf{1.} \ T = \left\{ \left(v_1, v_6\right), \left(v_2, v_3\right), \left(v_2, v_5\right), \left(v_3, v_4\right), \left(v_3, v_7\right), \left(v_4, v_6\right) \right\},$$

$$w_T = 26; \mathbf{2.T_{\min}} = \left\{ \begin{pmatrix} 1 \\ v_1, v_6 \end{pmatrix}, \begin{pmatrix} 1 \\ v_3, v_4 \end{pmatrix}, \begin{pmatrix} 2 \\ v_3, v_7 \end{pmatrix}, \begin{pmatrix} 3 \\ v_3, v_5 \end{pmatrix}, \begin{pmatrix} 7 \\ v_2, v_3 \end{pmatrix}, \begin{pmatrix} 7 \\ v_4, v_6 \end{pmatrix} \right\},$$

$$w_{T_{\min}} = 21; \mathbf{3.}T_{\max} = \left\{ \left(v_{2}, v_{5}\right), \left(v_{2}, v_{3}\right), \left(v_{4}, v_{6}\right), \left(v_{4}, v_{7}\right), \left(v_{5}, v_{7}$$

$$\left(v_1, v_6\right), w_{T_{\text{max}}} = 30.$$

No 3. 1.
$$T = \left\{ \left(v_1, v_2\right), \left(v_1, v_3\right), \left(v_3, v_4\right) \right\}, \ w_T = 10;$$

2.
$$T_{\min} = \left\{ \left(v_1, v_2\right), \left(v_1, v_3\right), \left(v_3, v_4\right) \right\}, \ w_{T_{\min}} = 10;$$

Лабораторный практикум по теории конечных графов

3.
$$T_{\text{max}} = \left\{ \left(v_1, v_2\right), \left(v_2, v_3\right), \left(v_3, v_4\right) \right\}, \ w_{T_{\text{max}}} = 22.$$

Лабораторная работа 5

$$No. 1. T_{\min} = \left\{ \begin{pmatrix} 4 \\ v_4, v_5 \end{pmatrix}, \begin{pmatrix} 6 \\ v_2, v_4 \end{pmatrix}, \begin{pmatrix} 5 \\ v_1, v_2 \end{pmatrix}, \begin{pmatrix} 5 \\ v_2, v_3 \end{pmatrix}, \begin{pmatrix} 9 \\ v_3, v_6 \end{pmatrix} \right\}, \ w_{T_{\min}} = 29.$$

$$No 2. T_{\text{max}} = \left\{ \left(v_{2}, v_{7}\right), \left(v_{2}, v_{6}\right), \left(v_{3}, v_{6}\right), \left(v_{4}, v_{6}\right), \left(v_{1}, v_{6}\right), \left(v_{5}, v_{6}\right) \right\}, \ w_{T_{\text{max}}} = 33.$$

$$\mathbf{N} \underline{\mathbf{0}} \ 3. \ T_{\min} = \left\{ \begin{pmatrix} 1 \\ v_1, v_2 \end{pmatrix}, \begin{pmatrix} 4 \\ v_1, v_4 \end{pmatrix}, \begin{pmatrix} 4 \\ v_3, v_6 \end{pmatrix}, \begin{pmatrix} 4 \\ v_4, v_7 \end{pmatrix}, \begin{pmatrix} 1 \\ v_5, v_7 \end{pmatrix}, \begin{pmatrix} 4 \\ v_6, v_9 \end{pmatrix}, \right.$$

$$\left(v_{7}, v_{9}, v_{9}, \left(v_{8}, v_{9}, v_{9}\right)\right), w_{T_{\min}} = 23.$$

№ 4. Мах-дерево: $w_{T_{min}} = 32$

Min-дерево: $w_{T_{max}} = 11$

Лабораторная работа 6

№ 1. **1.** Путь $v_1 \to v_2 \to v_4$, длина 14; **2.** Путь $v_3 \to v_4 \to v_6$, длина 12; **3.** Путь $v_1 \to v_5 \to v_6$, длина 19.

№ 2. **1.** Путь $v_2 \to v_3 \to v_4$, длина 3; **2.** Путь $v_1 \to v_2 \to v_3 \to v_5$, длина 12; **3.** Путь $v_1 \to v_2 \to v_3 \to v_4$, длина 10.

№ 3. **1.** Путь $v_1 \to v_2 \to v_3 \to v_5 \to v_4$, длина 15; **2.** Путь $v_1 \to v_2 \to v_3 \to v_6$, длина 20; **3.** Путь $v_2 \to v_3 \to v_6$, длина 13.

Лабораторная работа 7

 N_{2} 1. 1. $v_{1}v_{5}v_{4}v_{2}v_{5}v_{6}v_{3}v_{2}v_{1}$; 2. $v_{3}v_{6}v_{5}v_{4}v_{2}v_{5}v_{1}v_{2}v_{3}$; 3. $v_{4}v_{5}v_{6}v_{3}v_{2}v_{5}v_{1}v_{2}v_{4}$.

№ 5. $v_4v_2v_7v_1v_6v_2v_5v_1v_3v_2v_1v_4$.

Лабораторная работа 8

Лабораторный практикум по теории конечных графов

- № 1. becdab.
- № 2. 3 гамильтоновых цикла: bcdaeb, bcdeab, bdaceb.
- № 3. 2 гамильтоновых цикла: cdbeac, cdeabc.
- № 4.2 гамильтоновых цикла: abcdefa, afedcba.

Лабораторная работа 9

№ 1.

№ 2.

№ 3.

$$D^{(3)} \quad v_1 \quad v_2 \quad v_3 \\ v_1 \quad 4 \quad 3 \quad 7 \\ v_2 \quad 1 \quad 2 \quad 4 \\ v_3 \quad 1 \quad 4 \quad 8$$

$$\text{No. 4. } E^* = \left(\left\langle v_1, v_2 \right\rangle, \left\langle v_1, v_3 \right\rangle, \left\langle v_1, v_4 \right\rangle, \left\langle v_2, v_2 \right\rangle, \left\langle v_2, v_3 \right\rangle, \left\langle v_2, v_4 \right\rangle, \left\langle v_3, v_2 \right\rangle,$$

$$\langle v_3, v_3 \rangle, \langle v_3, v_4 \rangle, \langle v_4, v_2 \rangle, \langle v_4, v_3 \rangle, \langle v_4, v_4 \rangle, \langle v_5, v_1 \rangle, \langle v_5, v_2 \rangle, \langle v_5, v_3 \rangle, \langle v_5, v_4 \rangle);$$

 $N_{2} 5. E^{*} = E;$

Лабораторный практикум по теории конечных графов

$$D^{(4)}$$
 v_1 v_2 v_3 v_4

$$v_1 = 0 \quad 1 \quad 0 \quad 0$$

$$v_3 = 0 \quad 1 \quad 0 \quad 0$$

$$v_4$$
 1 1 1 0

$$\mathbb{N}\underline{\circ} 6. \ E^* = (\langle v_1, v_1 \rangle, \langle v_1, v_2 \rangle, \langle v_1, v_3 \rangle, \langle v_1, v_4 \rangle, \langle v_1, v_5 \rangle, \langle v_2, v_1 \rangle, \langle v_2, v_2 \rangle,$$

$$\langle v_2, v_3 \rangle, \langle v_2, v_4 \rangle, \langle v_2, v_5 \rangle, \langle v_3, v_1 \rangle, \langle v_3, v_2 \rangle, \langle v_3, v_3 \rangle, \langle v_3, v_4 \rangle, \langle v_3, v_5 \rangle, \langle v_4, v_1 \rangle)$$

$$\langle v_4, v_2 \rangle, \langle v_4, v_3 \rangle, \langle v_4, v_4 \rangle, \langle v_4, v_5 \rangle, \langle v_5, v_1 \rangle, \langle v_5, v_2 \rangle, \langle v_5, v_3 \rangle, \langle v_5, v_4 \rangle, \langle v_5, v_5 \rangle);$$

$$D^{(5)}$$
 v_1 v_2 v_3 v_4 v_5

$$v_1$$
 1 1 1 1 1

$$v_{*}$$
 1 1 1 1 1

$$v_{\varepsilon}$$
 1 1 1 1 1

Лабораторная работа 10

№ 1. **1.** Поток сувуществует. **2.** Увеличивающие цепи: $E' = \{\langle v_1, v_3 \rangle, \langle v_2, v_3 \rangle, \langle v_2, v_4 \rangle\}$,

$$E'' = \left\{ \left< v_1, v_3 \right>, \left< v_3, v_2 \right>, \left< v_2, v_4 \right> \right\}$$
; Увеличенный поток:

№ 2. **1.** Поток сувуществует. **2.** Увеличивающие цепи: $E' = \{\langle v_1, v_3 \rangle, \langle v_3, v_4 \rangle, \langle v_4, v_5 \rangle\}$,

 $E'' = \{\langle v_1, v_2 \rangle, \langle v_4, v_2 \rangle, \langle v_4, v_5 \rangle \}$; Увеличенный поток:

$$G = \left\{ \begin{pmatrix} 3,3 \\ v_1,v_2 \end{pmatrix}, \begin{pmatrix} 4,4 \\ v_1,v_3 \end{pmatrix}, \begin{pmatrix} 4,6 \\ v_2,v_3 \end{pmatrix}, \begin{pmatrix} 8,8 \\ v_3,v_4 \end{pmatrix}, \begin{pmatrix} 1,4 \\ v_4,v_2 \end{pmatrix}, \begin{pmatrix} 7,8 \\ v_4,v_5 \end{pmatrix} \right\}.$$

№ 3. **1.** Поток сувуществует. **2.** Увеличивающие цепи: $E' = \{\langle v_1, v_4 \rangle, \langle v_4, v_6 \rangle, \langle v_6, v_7 \rangle\}$,

$$E'' = \{\langle v_1, v_2 \rangle, \langle v_2, v_3 \rangle, \langle v_3, v_5 \rangle, \langle v_5, v_7 \rangle\}, E''' = \{\langle v_1, v_3 \rangle, \langle v_3, v_5 \rangle, \langle v_5, v_7 \rangle\},$$

$$E^{''''} = \left\{ \left\langle v_1, v_3 \right\rangle, \left\langle v_2, v_3 \right\rangle, \left\langle v_5, v_2 \right\rangle, \left\langle v_5, v_7 \right\rangle \right\}, \ E^{'''''} = \left\{ \left\langle v_1, v_3 \right\rangle, \left\langle v_2, v_3 \right\rangle, \left\langle v_5, v_2 \right\rangle, \left\langle v_5, v_6 \right\rangle, \left\langle v_6, v_7 \right\rangle \right\}; \ \mathbf{Y}$$
величенный поток:

$$G = \left\{ \begin{pmatrix} 4,4 \\ v_1,v_2 \end{pmatrix}, \begin{pmatrix} 5,6 \\ v_1,v_3 \end{pmatrix}, \begin{pmatrix} 4,4 \\ v_1,v_4 \end{pmatrix}, \begin{pmatrix} 5,7 \\ v_2,v_3 \end{pmatrix}, \begin{pmatrix} 0,2 \\ v_3,v_4 \end{pmatrix}, \begin{pmatrix} 10,10 \\ v_3,v_5 \end{pmatrix}, \begin{pmatrix} 4,4 \\ v_4,v_6 \end{pmatrix}, \begin{pmatrix} 10,10 \\ v_3,v_5 \end{pmatrix}, \begin{pmatrix} 10,10 \\ v_4,v_6 \end{pmatrix}, \begin{pmatrix} 10,10 \\ v_$$

$$\left(\begin{matrix} 1.5 \\ v_5, v_2 \end{matrix}\right), \left(\begin{matrix} 1.2 \\ v_5, v_6 \end{matrix}\right), \left(\begin{matrix} 8.8 \\ v_5, v_7 \end{matrix}\right), \left(\begin{matrix} 5.5 \\ v_6, v_7 \end{matrix}\right)\right\}.$$

Лабораторный практикум по теории конечных графов

Лабораторная работа 11

№ 1. **1.**
$$G = \left\{ \begin{pmatrix} 3,1,3\\ s,a \end{pmatrix}, \begin{pmatrix} 4,2,4\\ s,b \end{pmatrix}, \begin{pmatrix} 6,3,6\\ s,c \end{pmatrix}, \begin{pmatrix} 0,2,3\\ a,b \end{pmatrix}, \begin{pmatrix} 2,1,3\\ b,c \end{pmatrix}, \begin{pmatrix} 3,2,4\\ a,t \end{pmatrix}, \begin{pmatrix} 2,3,2\\ b,t \end{pmatrix}, \begin{pmatrix} 8,4,8\\ c,t \end{pmatrix} \right\}, \quad K_{\max} = 13 \ ; \ \textbf{2.} \ \text{Для} \ k = 2 \ :$$

$$G = \left\{ \begin{pmatrix} 2,1,3 \\ s,a \end{pmatrix}, \begin{pmatrix} 0,2,4 \\ s,b \end{pmatrix}, \begin{pmatrix} 0,3,6 \\ s,c \end{pmatrix}, \begin{pmatrix} 0,2,3 \\ a,b \end{pmatrix}, \begin{pmatrix} 0,1,3 \\ b,c \end{pmatrix}, \begin{pmatrix} 2,2,4 \\ a,t \end{pmatrix}, \begin{pmatrix} 0,3,2 \\ b,t \end{pmatrix}, \begin{pmatrix} 0,4,8 \\ c,t \end{pmatrix} \right\}, \ P = 6;$$

Для k=5:

$$G = \left\{ \begin{pmatrix} 3.1.3 \\ s, a \end{pmatrix}, \begin{pmatrix} 2.2.4 \\ s, b \end{pmatrix}, \begin{pmatrix} 0.3.6 \\ s, c \end{pmatrix}, \begin{pmatrix} 0.2.3 \\ a, b \end{pmatrix}, \begin{pmatrix} 0.1.3 \\ b, c \end{pmatrix}, \begin{pmatrix} 3.2.4 \\ a, t \end{pmatrix}, \begin{pmatrix} 2.3.2 \\ b, t \end{pmatrix}, \begin{pmatrix} 0.4.8 \\ c, t \end{pmatrix} \right\}, \ P = 19.$$

$$\mathbb{N}_{2} \ 2. \ \mathbf{1.} \ G = \left\{ \begin{pmatrix} 3.3.3 \\ s,a \end{pmatrix}, \begin{pmatrix} 5.4.5 \\ s,b \end{pmatrix}, \begin{pmatrix} 3.1.5 \\ s,c \end{pmatrix}, \begin{pmatrix} 5.4.6 \\ b,d \end{pmatrix}, \begin{pmatrix} 0.2.5 \\ b,c \end{pmatrix}, \begin{pmatrix} 3.3.6 \\ c,d \end{pmatrix}, \begin{pmatrix} 3.1.3 \\ a,t \end{pmatrix}, \begin{pmatrix} 8.3.8 \\ d,t \end{pmatrix} \right\}, \ K_{\max} = 11; \ \mathbf{2.} \ \text{Для} \ k = 2:$$

$$G = \left\{ \begin{pmatrix} 2,3,3 \\ s,a \end{pmatrix}, \begin{pmatrix} 0,4,5 \\ s,b \end{pmatrix}, \begin{pmatrix} 0,1,5 \\ s,c \end{pmatrix}, \begin{pmatrix} 0,4,6 \\ b,d \end{pmatrix}, \begin{pmatrix} 0,2,5 \\ b,c \end{pmatrix}, \begin{pmatrix} 0,3,6 \\ c,d \end{pmatrix}, \begin{pmatrix} 2,1,3 \\ a,t \end{pmatrix}, \begin{pmatrix} 0,3,8 \\ d,t \end{pmatrix} \right\}, \ P = 8;$$

Для k=4:

$$G = \left\{ \begin{pmatrix} 3,3,3 \\ s,a \end{pmatrix}, \begin{pmatrix} 0,4,5 \\ s,b \end{pmatrix}, \begin{pmatrix} 1,1,5 \\ s,c \end{pmatrix}, \begin{pmatrix} 0,4,6 \\ b,d \end{pmatrix}, \begin{pmatrix} 0,2,5 \\ b,c \end{pmatrix}, \begin{pmatrix} 1,3,6 \\ c,d \end{pmatrix}, \begin{pmatrix} 3,1,3 \\ a,t \end{pmatrix}, \begin{pmatrix} 1,3,8 \\ d,t \end{pmatrix} \right\}, \ P = 19.$$

№ 3. **1.**
$$K_{\text{max}} = 13$$
; **2.** Для $k = 2$:

$$G = \{(s,a),(a,b),(b,t)\}, P = 14;$$

Для k=4:

$$G = \{(s,a),(a,b),(b,t)\}, P = 21.$$

Лабораторная работа 12

N ○ 1. $v_3v_2v_1v_4v_3v_2v_1v_5v_2v_1v_5v_3$.

 $N_{2} 2. v_{5}v_{3}v_{4}v_{1}v_{2}v_{3}v_{4}v_{1}v_{3}v_{4}v_{5}.$

 $N_{\underline{0}} 3. v_{2}v_{5}v_{1}v_{2}v_{5}v_{1}v_{3}v_{4}v_{2}v_{5}v_{1}v_{3}v_{4}v_{6}v_{2}v_{5}v_{6}v_{2}$.

 $N_{\underline{0}} 4. \ v_1 v_2 v_3 v_5 v_4 v_1 v_2 v_3 v_6 v_5 v_4 v_1 v_5 v_4 v_1 v_6 v_5 v_4 v_1$