EXAMEN DE LICENȚĂ Proba orală – 2021 Specializarea Informatică

Evaluarea cunostintelor fundamentale si de specialitate se va face prin examen oral care va consta în:

- 6 probleme (cu răspuns liber):
 - o 2 din domeniul Sisteme de Operare
 - o 2 din domeniul Baze de date
 - o 2 din domeniul Algoritmică și Programare
 - 1 din tematica de Algoritmică
 - 1 din tematica de Programare
- Timp gândire pentru rezolvarea celor 6 probleme: 20 minute
- Timp pentru prezentarea raspunsului: 10 minute
- Notarea se va face astfel:
 - o notă (1-10) pentru fiecare domeniu (include 1 punct din oficiu)
 - o nota finală se va obține ca media aritmetică a notelor acordate pentru cele 3 domenii

Notă

- 1. Pentru fiecare întrebare se va acorda un punctaj pentru răspunsul corect și un punctaj pentru justificarea răspunsului.
- 2. Exemplele de cod din domeniul Algoritmică și Programare se dau și se cer în limbajul C++.

Model de subiect

SISTEME DE OPERARE

a. Stabiliți valoarea de adevăr a afirmațiilor de mai jos, referitor la comanda dată. Justificați răspunsul.

```
grep -E -i '^[aeiou] \{2,3\}.*[^0-9]$' a.txt
```

- i. Afișează numai liniile din a.txt care încep cu "a" sau "A".
- ii. Nu se va afișa nicio linie din a.txt mai scurtă de 3 caractere.
- **b.** Stabiliţi valoarea de adevăr a afirmaţiilor de mai jos, referitor la fragmentul de cod dat. Justificaţi răspunsul.

```
1 if(fork() == 0) {
2    fork();
3    fork();
4 }
```

- i. Linia 2 este executată de 2 procese.
- ii. Evaluare condiției din IF este executată doar de procesul părinte

BAZE DE DATE

P1 Se dă mai jos instanța unei relații cu schema R[Cod1, Cod2, Cod3, C1, C2, C3, C4, C5]. {Cod1, Cod2, Cod3} este cheie primară.

Cod1	Cod2	Cod3	C1	C2	С3	C4	C5
1	1	1	10	5	2	10	1
1	1	2	10	6	3	20	1
1	1	3	20	7	2	15	2
2	1	1	20	1	4	20	1
2	1	2	30	2	5	10	1
2	2	1	30	3	5	30	2
3	1	1	40	4	5	25	2
3	1	2	40	4	5	20	1

Cât este diferența între cardinalitatea rezultatului primei interogări și cardinalitatea rezultatului celei de a doua interogări? Justificați răspunsul.

SELECT C1, COUNT(*), MIN(C4) FROM R WHERE C3 IN (2, 5) GROUP BY C1, C2

SELECT Cod1, COUNT(*), MAX(C5) FROM R GROUP BY Cod1 HAVING COUNT(*) > 2

P2 Se dau dependențele funcționale $\{A, B\} \rightarrow \{D, E\}$ și $\{CodP, B\} \rightarrow \{D\}$. Precizați, pentru fiecare dependență în parte, dacă este satisfăcută sau nu de datele din relația de mai jos. Justificați răspunsul.

CodP	CodQ	A	В	С	D	E	
1	1	1	1	9	2	2	
1	2	2	2	6	3	1	
1	3	2	2	4	3	1	
2	1	3	3	9	4	5	
2	2	4	4	3	2	3	
3	1	1	1	5	2	3	
3	2	4	3	3	1	2	

ALGORITMICĂ ȘI PROGRAMARE

P1 [ALGORITMICĂ] Ce calculează subalgoritmul recursiv de mai jos, la apelul *Calcul* (x, n, 1, 1, 0), în condițiile în care x[1], x[2]..., x[n] este un șir de numere naturale? Justificați răspunsul.

```
Funcția Calcul\ (x,\ n,\ i,\ y,\ j) este

Dacă n < i atunci

Dacă j = n atunci

Calcul \leftarrow 0

altfel

Calcul \leftarrow y * (n - j)

SfDacă

altfel

Dacă (x[i] \ge 10) și ((x[i] \mod 100) \mod 11 = 0) atunci

Calcul \leftarrow Calcul\ (x,\ n,\ i+1,\ y * x[i],\ j)

altfel

Calcul \leftarrow Calcul\ (x,\ n,\ i+1,\ y,\ j+1)

SfDacă

SfDacă
SfFuncție
```

P2 [PROGRAMARE] Care este efectul compilării și execuției programului următor? Justificați răspunsul.

```
#include <iostream>
using namespace std;
class Vehicle{
     protected:
        double speed;
     public:
        Vehicle(double ms) {speed=ms;}
        virtual void go() {cout<<"Vehicle going ..."<<endl;}</pre>
        void accelerate() {cout<<"Vehicle accelerating..."<<endl;}</pre>
};
class Scooter:public Vehicle{
      public:
        Scooter(double s) { speed=s; }
        void go() {cout<<"Scooter going ..."<<endl;}</pre>
        void accelerate(int s) {cout<<"Accelerating with "<<s<"..."<<endl;}</pre>
};
int main(){
    Scooter s(1);
    Vehicle& v=s;
    v.go();
    v.accelerate();
    return 0;
```