北京邮电大学 2022—2023 学年第二学期

《数学分析(下)》期末考试试题(A卷)

☆ 二、书本、参考资料、书包等物品一律放到考场指定位置。

意 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违纪或 事 作弊行为者,按相应规定严肃处理。

_前 │ 四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。

一、填空题(本大题共10小题,每小题3分,共30分)

1.常数项级数
$$\sum_{n=1}^{\infty} n^2 \tan \frac{\pi}{4^n}$$
 ______ (收敛或发散).

2.幂级数
$$\sum_{n=1}^{\infty} \frac{1}{n[2^n + (-1)^n]} x^n$$
 的收敛域为______.

3.设
$$f(x) = \begin{cases} x^2, 0 \le x \le \frac{\pi}{2}, \\ 0, \frac{\pi}{2} < x < \pi, \end{cases}$$
 它的以 2π 为周期的余弦级数的和函数为 $s(x)$,则

$$s(\frac{3\pi}{2}) = \underline{\hspace{1cm}}.$$

4. 极限
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2+x^4} = \underline{\hspace{1cm}}$$
.

5. 设 f(u,v) 具 有 二 阶 连 续 偏 导 数 , z=f(x,xy) , 则

$$\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}.$$

6. 曲 线
$$C:\begin{cases} x^2+y^2+z^2=6\\ 2x+z=0 \end{cases}$$
 在 点 $(1,1,-2)$ 处 的 切 线 方 程

为______

7.设曲面
$$\Sigma: x^2 + y^2 + z^2 = R^2$$
, $z \ge 0$, 则 $\iint_{\Sigma} (x + y + z)^2 dS =$ ______.

8. 设 曲 线 $C: x^2 + y^2 = 1, y \ge 0$, 方 向 为 点 A(1,0) 到 B(-1,0) , 则

$$\int_C (y^3 e^x - 2y) dx + (3y^2 e^x - 2) dy = \underline{\hspace{1cm}}.$$

9.设函数 f(x,y) 连续,二次积分 $\int_{-1}^{0} dy \int_{1-y}^{2} f(x,y) dx + \int_{0}^{1} dy \int_{1}^{1+\sqrt{1-y^2}} f(x,y) dx$ 交换积分次序后可化为______.

10.设闭曲线
$$C: \begin{cases} x^2 + y^2 + z^2 = a^2(a > 0) \\ x + y + z = 0 \end{cases}$$
,则曲线积分 $\oint_C y^2 ds =$ _______.

二 (10 分) 设平面区域
$$D: x^2 + y^2 \le R^2$$
, $f(x,y) = \begin{cases} \frac{1}{1+x^2+y^2}, & y \ge |x| \\ 0, & y < |x| \end{cases}$, 求以 D 为

底, z = f(x, y) 为顶的曲顶柱体的体积.

三(12 分)设Ω是由曲面
$$z-1=\sqrt{1-x^2-y^2}$$
 与 $z=\sqrt{x^2+y^2}$ 所围成的区域,求(1)

三重积分
$$I = \iiint_{\Omega} \frac{1+xz+yz}{\sqrt{x^2+y^2+z^2}} dV$$
 的值;(2) Ω 的表面积.

四(10 分) 在曲面 $z = 2 - x^2 - y^2$ 位于第一卦限的部分上求一点,使该点的切平面与三个坐标平面围成的四面体的体积最小.

五 (12 分) 计算曲线积分
$$I = \oint_C \frac{ydx - (x-1)dy}{(x-1)^2 + y^2}$$
,其中 C 为圆周 $x^2 + y^2 = R^2$ $(R \neq 1)$ 的正向.

六 (10 分) 计算曲面积分 $I = \iint_{\Sigma} xy^2 dy \wedge dz + yz^2 dz \wedge dx + zx^2 dx \wedge dy$, 其中 Σ 是曲面 $y = \sqrt{4 - z^2 - x^2}$ 的右侧.

七(10 分) 设 f(x) 在($-\infty$, $+\infty$) 上一阶导数连续, C 是上半平面(y > 0) 内的有向光滑曲线,其起点为(1,4),终点为(4,1),记

$$I = \int_{C} \left[\frac{1}{y} + y f(xy) \right] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy ,$$

(1) 证明曲线积分I与路径无关; (2) 求出I的值.

八 (6 分) 设级数 $\sum_{n=1}^{\infty} a_n$ 及 $\sum_{n=1}^{\infty} c_n$ 均收敛,且 $a_n \leq b_n \leq c_n$, $n=1,2,\cdots$,问:级数 $\sum_{n=1}^{\infty} b_n$ 收敛还是发散?请给出理由.