3.5 Cartesian products

Definition 3.5.1 (Ordered pair).

If x and y are any objects (possibly equal), we define the ordered pair (x, y) to be a new object, consisting of x as its first component and y as its second component. Two ordered pairs (x, y) and (x', y') are considered equal if and only if both their components match, i.e.

$$(x,y) = (x',y') \iff (x = x' \text{ and } y = y').$$

Definition 3.5.4 (Cartesian product).

If X and Y are sets, then we define the Cartesian product $X \times Y$ to be the collection of ordered pairs, whose first component lies in X and second component lies if Y, thus

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

or equivalently

$$a \in (X \times Y) \iff (a = (x, y) \text{ for some } x \in X \text{ and } y \in Y).$$

Definition 3.5.7 (Ordered *n*-tuple and *n*-fold Cartesian product).

Let n be a natural number. An ordered n-tuple $(x_i)_{1 \leq i \leq n}$ (also denoted (x_1, \dots, x_n)) is a collection of objects x_i , one for every natural number i between 1 and n; we refer to x_i as the i^{th} component of the ordered n-tuple. Two ordered n-tuples $(x_i)_{1 \leq i \leq n}$ and $(y_i)_{1 \leq i \leq n}$ are said to be equal iff $x_i = y_i$ for all $1 \leq i \leq n$. If $(X_i)_{1 \leq i \leq n}$ is an ordered n-tuple of sets, we define their Cartesian product $\prod_{1 \leq i \leq n} X_i$ (also denoted $\prod_{i=1}^n X_i$ or $X_1 \times \dots \times X_n$) by

$$\prod_{i \le i \le n} X_i := \{ (x_i)_{1 \le i \le n} : x_i \in X_i \text{ for all } 1 \le i \le n \}.$$

Lemma 3.5.12 (Finite choice).

Let $n \geq 1$ be a natural number, and for each natural number $1 \leq i \leq n$, let X_i be a non-empty set. Then there exists an n-tuple $(x_i)_{1 \leq i \leq n}$ such that $x_i \in X_i$ for all $1 \leq i \leq n$. In other words, if each X_i is non-empty, then the set $\prod_{1 \leq i \leq n} X_i$ is also non-empty.

Exercises

Exercise 3.5.1

Suppose we define the ordered pair (x,y) for any objects x and y by the formula $(x,y) := \{\{x\}, \{x,y\}\}$ (thus using several applications of Axiom 3.4). Thus for instance (1,2) is the set $\{\{1\}, \{1,2\}\}, (2,1)$ is the set $\{\{2\}, \{2,1\}\},$ and (1,1) is the set $\{1\}$. Show that such a definition indeed obeys the property (3.5), and also whenever X and Y are sets, the Cartesian product $X \times Y$ is also a set. Thus this definition can be validly used as a definition of an ordered pair. For an additional challenge, show that the alternate definition $(x,y) := \{x, \{x,y\}\}$ also verifies (3.5) and is thus also an acceptable definition of ordered pair.

1. Show that $(x,y) := \{\{x\}, \{x,y\}\}$ is a valid definition of an ordered pair.

Proof. First, we need to show that

$$(x,y) = (x',y') \iff (x = x' \text{ and } y = y').$$

Suppose (x,y)=(x',y'). Then by definition, $\{\{x\},\{x,y\}\}=\{\{x'\},\{x',y'\}\}$. If x=y, $\{\{x\},\{x,y\}\}=\{\{x\},\{x\}\}\}=\{\{x\}\}$. Then $\{\{x'\},\{x',y'\}\}$ must also only contain one element. Thus, $\{x'\}=\{x',y'\}$. So x'=y'. Lastly, we have $\{\{x\}\}=\{\{x'\}\}$. So x=x'. Thus, x=x'=y=y'. It is the same thing if we assume x'=y' at first. Now consider the case $x\neq y$. Then $\{x\}$ has one element and $\{x,y\}$ has two elements. And since $\{x'\}$ could only contain one element,

we have the following relations:

$$\begin{cases} \{x\} = \{x'\} \implies x = x' \\ \{x, y\} = \{x', y'\} \text{ and } x = x' \implies y = y'. \end{cases}$$

It would be the same if we assume $x' \neq y'$. Thus, $(x, y) = (x', y') \implies (x = x' \text{ and } y = y')$

Suppose x = x' and y = y'. Then we must have $\{x\} = \{x'\}$ and $\{x, y\} = \{x', y'\}$. Hence, $\{\{x\}, \{x, y\}\} = \{\{x'\}, \{x', y'\}\}$. Thus, $(x = x' \text{ and } y = y') \implies (x, y) = (x', y')$.

Therefore, $(x, y) = (x', y') \iff (x = x' \text{ and } y = y')$. This definition verifies (3.5).

Then, we need to show that whenever X and Y are sets, the Cartesian product $X \times Y$ is a set. Use the definition above: $(x,y) = \{\{x\}, \{x,y\}\}\}$. The powerset of $X \cup Y$ is $\{0, \{x\}, \{y\}, \{x,y\}\}\}$ which contains the elements in (x,y). Then the powerset of the powerset of $X \cup Y$ contains (x,y). The elements in $\mathcal{P}(\mathcal{P}(X \cup Y))$ is a set, thus, the Cartesian product is a set. More specifically,

 $X \times Y = \{z \in \mathcal{P}(\mathcal{P}(X \cup Y)) : z \text{ contains exactly one singleton set and one pair set}\}.$

2. Show that $(x,y) = \{x, \{x,y\}\}\$ is also a valid definition of an ordered pair.

Proof. We need to show that

$$\{x, \{x, y\}\} = \{x', \{x', y'\}\} \iff x = x' \text{ and } y = y'.$$

Suppose $\{x, \{x, y\}\} = \{x', \{x', y'\}\}$. Denote $A = \{x, y\}$, $B = \{x', y'\}$. Then $\{x, A\} = \{x', B\}$. Since sets are objects, $\{x, A\}$ and $\{x', B\}$ are both pair sets. Since $x \in \{x, \{x, y\}\}$ and $x \in \{x, \{x, y\}\}$ $\Longrightarrow x \in \{x', \{x', y'\}\}$. So either x = x' or $x = \{x', y'\}$. Assume $x = \{x', y'\}$. Then the only option left is $x' = \{x, y\}$. As x and x' are both sets, having $x \in x'$ and $x' \in x$ at the

same time violates the statements in Exercise 3.2.2. Therefore, x = x' and $\{x,y\} = \{x',y'\} = \{x,y'\}$. Thus, y = y'.

Suppose x = x' and y = y'. Then clearly we have $\{x, y\} = \{x', y'\}$. So $\{x, \{x, y\}\} = \{x', \{x', y'\}\}$.

Thus,
$$(x, y) := \{x, \{x, y\}\}$$
 verifies (3.5).

Exercise 3.5.2

Suppose we define an ordered n-tuple to be a surjective function $x:\{i \in \mathbb{N}: 1 \leq i \leq n = n\} \to X$ whose range is some arbitrary set X (so different ordered n-tuples are allowed to have different ranges); we then write x_i for x(i), and also write x as $(x_i)_{1 \leq i \leq n}$. Using this definition, verify that we have $(x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n}$ if and only if $x_i = y_i$ for all $1 \leq i \leq n$. Also, show that if $(X_i)_{1 \leq i \leq n}$ is an ordered n-tuple of sets, then the Cartesian product, as defined in Definition 3.5.7, is indeed a set.

1.
$$(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n} \iff x_i = y_i \text{ for all } 1 \le i \le n.$$

Proof. Apparently, x and y have the same domain $\{i \in \mathbb{N} : 1 \le i \le n\}$. Suppose $y : \{i \in \mathbb{N} : 1 \le i \le n\} \to Y$.

Suppose $(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n}$. Since x and y are two functions, we must have X = Y so that they have the same range. And by Definition 3.3.7, we have x(i) = y(i) for all $1 \le i \le n$. Therefore, $(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n} \implies x_i = y_i$ for all $1 \le i \le n$..

Suppose $x_i = y_i$ for all $1 \le i \le n$. Since x and y are both surjective and $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\}$, $X = Y = \{x_1, \dots, x_n\} = \{y_1, \dots, y_n\}$. Thus, x and y have the same range. And because they also have the same domain and $x_i = y_i$ for all $1 \le i \le n$, x = y. Therefore, we have proved $x_i = y_i$ for all $1 \le i \le n \implies x = y$.

Thus,
$$(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n} \iff x_i = y_i \text{ for all } 1 \le i \le n.$$

2. If $(X_i)_{1 \le i \le n}$ is an ordered *n*-tuple of sets, then the Cartesian product is a set.

Proof. Denote $A = \{X_1, X_2, \dots, X_n\}$, so every element of A is a set itself and by the union axiom we have $\bigcup A$ being the set consists of all the elements of the elements of A. Denote $I = \{i \in \mathbb{N} : 1 \leq i \leq n\}$. Then, the mapping function x would be partial functions with domain I which is also a subset of I and range being a subset of I. Denote it as I. Thus, by Exercise 3.4.7, the collection of all these partial functions is a set. By Definition 3.5.7, the Cartesian product would be a subset of the set of all these partial functions. Let I be I be I for all I is the same as the Cartesian product. Therefore, the Cartesian product is indeed a set.

Exercise 3.5.3

Show that the definitions of equality for ordered pair and ordered n-tuple obey the reflexivity, symmetry, and transitivity axioms.

• reflexivity

Proof. For the ordered pair (x, y), since x = x and y = y, we have (x, y) = (x, y). For the ordered n-tuple $(x_i)_{1 \le i \le n}$, since $x_i = x_i$ for $1 \le i \le n$, by definition, we have $(x_i)_{1 \le i \le n}$.

• symmetry

Proof. We want to show $(x,y)=(x',y')\iff (x',y')=(x,y)$. Assume (x,y)=(x',y'). Then x=x' and y=y'. By symmetry property of equality, we have x'=x and y'=y. By definition, we have (x',y')=(x,y). Similarly, we can show that $(x',y')=(x,y)\implies (x,y)=(x',y')$. Thus, $(x,y)=(x',y')\iff (x',y')=(x,y)$.

For ordered *n*-tuple, we want to show that $(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n} \iff (y_i)_{1 \le i \le n} = (x_i)_{1 \le i \le n}$. Assume $(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n}$. Then $x_i = y_i$ for every $1 \le i \le n$. By the symmetry property of equality, we have $y_i = x_i$ for every $1 \le i \le n$. Therefore, by definition of ordered *n*-tuple, we have $(y_i)_{1 \le i \le n} = (x_i)_{1 \le i \le n}$. The

approach is the same for the other way around. Thus, $(x_i)_{1 \le i \le n} = (y_i)_{1 \le i \le n} \iff (y_i)_{1 \le i \le n} = (x_i)_{1 \le i \le n}$.

• transitivity

Proof. The proof for ordered pair is omitted since it is only a special case of ordered n-tuple. We need to show that $(x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n}$ and $(y_i)_{1 \leq i \leq n} = (z_i)_{1 \leq i \leq n} \implies (x_i)_{1 \leq i \leq n} = (z_i)_{1 \leq i \leq n}$. Since $(x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n}$, we have $x_i = y_i$ for $1 \leq i \leq n$. Since $(y_i)_{1 \leq i \leq n} = (z_i)_{1 \leq i \leq n}$, we have $y_i = z_i$ for $1 \leq i \leq n$. By transitivity property of equality, we have $x_i = z_i$. By definition of ordered n-tuple, $(x_i)_{1 \leq i \leq n} = (z_i)_{1 \leq i \leq n}$.

Exercise 3.5.4

Let A, B, C be sets. Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$, that $A \times (B \cap C) = (A \times B) \cap (A \times C)$, and that $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

Proof. We need to show that $(x,y) \in A \times (B \cup C) \iff (x,y) \in (A \times B) \cup (A \times C)$.

Suppose $(x,y) \in A \times (B \cup C)$. By definition, we have $x \in A$ and $y \in (B \cup C)$. $y \in B \cup C \iff y \in B$ or $y \in C$. Therefore, $(x,y) \in (A \times B)$ or $(x,y) \in (A \times C)$. Hence, $(x,y) \in (A \times B) \cup (A \times C)$.

Suppose $(x,y) \in (A \times B) \cup (A \times C)$. Then we have either $(x,y) \in A \times B$ or $(x,y) \in A \times C$. $(x,y) \in A \times B \implies x \in A$ and $y \in B$. $(x,y) \in A \times C \implies x \in A$ and $y \in C$. Therefore, we have $x \in A$ and $y \in B \cup C$. Hence, $(x,y) \in A \times (B \cup C)$.

Thus,
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

Proof. We need to show that $(x,y) \in A \times (B \cap C) \iff (x,y) \in (A \times B) \cap (A \times C)$.

Suppose $(x,y) \in A \times (B \cap C)$. Then $x \in A$ and $y \in B \cap C$. $y \in B \cap C \iff y \in B$ and $y \in C$. Then we have $(x,y) \in A \times B$ and $(x,y) \in A \times C$. Hence, $(x,y) \in (A \times B) \cap (A \times C)$.

Suppose $(x, y) \in (A \times B) \cap (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \in A \times C$. $(x, y) \in A \times B \implies x \in A$ and $y \in B$. $(x, y) \in A \times C \implies x \in A$ and $y \in C$. Overall, we have $x \in A$ and $y \in B \cap C$. Hence, $(x, y) \in A \times (B \cap C)$.

Thus,
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

3. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

Proof. We need to show that $(x,y) \in A \times (B \setminus C) \iff (x,y) \in (A \times B) \setminus (A \times C)$. Suppose $(x,y) \in A \times (B \setminus C)$. Then $x \in A$ and $y \in B$ and $y \notin C$. $x \in A$ and $y \in B \implies (x,y) \in A \times B$. $y \notin C \implies (x,y) \notin A \times C$. Therefore, $(x,y) \in (A \times B) \setminus (A \times C)$.

Suppose $(x, y) \in (A \times B) \setminus (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \notin A \times C$. $(x, y) \in A \times B \implies x \in A$ and $y \in B$. $(x, y) \notin A \times C$ and $x \in A \implies y \notin C$. Therefore, we have $x \in A$ and $y \in B$ and $y \notin C$. Hence, $(x, y) \in A \times (B \setminus C)$.

Thus,
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C)$$
.

Exercise 3.5.5

Let A, B, C, D be sets. Show that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. Is it true that $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$? Is it true that $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D)$?

Proof. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D) \iff ((x,y) \in (A \times B) \cap (C \times D) \iff (x,y) \in (A \cap C) \times (B \cap D)$. Suppose $x \in (A \times B) \cap (C \times D)$. $(x,y) \in A \times B \implies x \in A$ and $y \in B$. $(x,y) \in C \times D \implies x \in C$ and $y \in D$. Therefore, we have $x \in A \cap C$ and $y \in B \times D$. Thus, $(x,y) \in (A \cap C) \times (B \cap D)$. Suppose $(x,y) \in (A \cap C) \times (B \cap D)$. Then $x \in A \cap C$ and $y \in B \cap D$. $x \in A \cap C \implies x \in A$

and $x \in C$. $y \in B \cap D \implies y \in B$ and $y \in D$. $x \in A$ and $y \in B \implies (x, y) \in A \times B$. $x \in C$ and $y \in D \implies (x, y) \in C \times D$. Hence, $(x, y) \in (A \times B) \cap (C \times D)$. Thus, $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

 $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$ is not true. Assume $(x,y) \in (A \cup C) \times (B \cup D)$. And suppose $x \in A$ and $y \in D$. Then $(x,y) \in A \times D$ and $(x,y) \notin A \times B$ and $(x,y) \notin C \times D$. Hence, $x \notin (A \times B) \cup (C \times D)$. Thus, $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$ is not true.

 $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D)$ is not true. A counterexample: $x \in A \cap C$ and $y \in B \setminus D$. Then $(x, y) \in (A \times B) \setminus (C \times D)$ but $(x, y) \notin (A \setminus C) \times (B \setminus D)$. Thus, $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D)$ is not true. \Box

Exercise 3.5.6

Let A, B, C, D be non-empty sets. Show that $A \times B \subseteq C \times D$ if and only if $A \subseteq C$ and $B \subseteq D$, and that $A \times B = C \times D$ if and only if A = C and B = D. What happens if the hypotheses that the A, B, C, D are all non-empty are removed?

1. $A \times B \subseteq C \times D \iff A \subseteq C \text{ and } B \subseteq D$.

Proof. Suppose $A \times B \subseteq C \times D$, that is $(x,y) \in A \times B \implies (x,y) \in C \times D$. Since A, B, C, D are non-empty, we have two conditions: $x \in A \implies x \in C$ and $y \in B \implies y \in D$. Thus, $A \subseteq C$ and $B \subseteq D$.

Suppose $A \subseteq C$ and $B \subseteq D$. Then we have $x \in A \implies x \in C$ and $y \in B \implies y \in D$. Combining these two conditions, $(x,y) \in A \times B \implies (x,y) \in C \times D$. Hnece, $A \times B \subseteq C \times D$.

Thus,
$$A \times B \subseteq C \times D \iff A \subseteq C \text{ and } B \subseteq D$$
.

2. $A \times B = C \times D \iff A = C \text{ and } B = D$.

Proof. Suppose $A \times B = C \times D$. Then $(x, y) \in A \times B \iff (x, y) \in C \times D$. Since A, B, C, D are non-empty, we have $x \in A \iff x \in C$ and $y \in B \iff y \in D$. Therefore, A = C and B = D.

Suppose A = C and B = D. Then $x \in A \iff x \in C$ and $y \in B \iff y \in D$. Therefore, $(x, y) \in A \times B \iff (x, y) \in C \times D$. Hence, $A \times B = C \times D$.

Thus,
$$A \times B = C \times D \iff A = C \text{ and } B = D.$$

If the hypotheses that the A, B, C, D are all non-empty are removed, the equalities will not hold any more. A counterexample would be A is non-empty, $B = \emptyset$, $C = \emptyset$, and D is non-empty. $A \times B \subseteq C \times D$ but A is not a subset of C. $A \times B = C \times D$ but $A \neq C$.

Exercise 3.5.7

Let X, Y be sets, and let $\pi_{X \times Y \to X} : X \times Y \to X$ and $\pi_{X \times Y \to Y} : X \times Y \to Y$ be the maps $\pi_{X \times Y \to X}(x, y) := x$ and $\pi_{X \times Y \to Y}(x, y) := y$; these maps are known as the co-ordinate functions on $X \times Y$. Show that for any functions $f : Z \times X$ and $g : Z \times Y$, there exists a unique function $h : Z \to X \times Y$ such $\pi_{X \times Y \to X} \circ h = f$ and $\pi_{X \times Y \to Y} \circ h = g$. This fuctions h is known as the direct sum of f and g and is denoted $h = f \oplus g$.

Proof. First, prove the existence of h. Let h be h(z) := (f(z), g(z)). Then f and $\pi_{X \times Y \to X} \circ h$ both have domain Z and range X. And g and $\pi_{X \times Y \to Y} \circ h$ both have domain Z and range Y. Consider an arbitrary $z \in Z$. $(\pi_{X \times Y \to X} \circ h)(z) = \pi_{X \times Y \to X}(h(z)) = \pi_{X \times Y \to X}(f(z), g(z)) = f(z), (\pi_{X \times Y \to Y} \circ h)(z) = \pi_{X \times Y \to Y}(h(z)) = \pi_{X \times Y \to Y}(f(z), g(z)) = g(z)$. Thus, there exists a function $h: Z \to X \times Y$ such that $\pi_{X \times Y \to Y} \circ h = f$ and $\pi_{X \times Y \to Y} \circ h = g$. Then, prove the uniqueness of h. Suppose there exists $h': Z \to X \times Y$ such that $\pi_{X \times Y \to X} \circ h' = f$ and $\pi_{X \times Y \to Y} \circ h' = g$. Assume h'(z) = (f'(z), g'(z)) where $f': Z \to X$ and $g': Z \to Y$. Then h and h' both have domain Z and range $X \times Y$. Consider an arbitrary $z \in Z$, we have $\pi_{X \times Y \to X}(h'(z)) = f'(z) = f(z)$ and $\pi_{X \times Y \to Y}(h'(z)) = g'(z) = g(z)$. Therefore, f' = f and g' = g. So h' = h. Hence, there exists a unique function $h: Z \to X \times Y$ such $\pi_{X \times Y \to X} \circ h = f$ and $\pi_{X \times Y \to Y} \circ h = g$.

Exercise 3.5.8

Let X_1, \ldots, X_n be sets. Show that the Cartesian product $\prod_{i=1}^n X_i$ is empty if and only if at least one of the X_i is empty.

Proof. We need to show that $\prod_{i=1}^n X_i$ is empty \iff at least one of the X_i is empty. Suppose $\prod_{i=1}^n X_i$ is empty and assume each of X_i is non-empty. Then we can find an object $x_i \in X_i$ for all $1 \le i \le n$. Therefore, there exists $(x_i)_{1 \le i \le n} \in \prod_{i=1}^n X_i$. Thus, $\prod_{i=1}^n$ is non-empty. Contradiction. Hence, at least one of the X_i is empty.

Suppose at least one of the X_i is empty. Assume X_i is empty for some $1 \le i \le n$. Then there does not exist an object x_i such that $x_i \in X_i$. By definition of the Cartesian product, being an obejet of $\prod_{i=1}^n$ requires $x_i \in X_i$ for all $1 \le i \le n$. Thus, such a set of X_i can not fulfill the requirement. Hence, $\prod_{i=1}^n$ is empty.

Thus,
$$\prod_{i=1}^n X_i$$
 is empty \iff at least one of the X_i is empty.

Exercise 3.5.9

Suppose that I and J are two sets, and for all $\alpha \in I$ let A_{α} be a set, and for all $\beta \in J$ let B_{β} be a set. Show that $(\bigcup_{\alpha \in I} A_{\alpha}) \cap (\bigcup_{\beta \in J} B_{\beta}) = \bigcup_{(\alpha,\beta) \in I \times J} (A_{\alpha} \cap B_{\beta})$.

Proof. We need to show that $x \in (\bigcup_{\alpha \in I} A_{\alpha}) \cap (\bigcup_{\beta \in J} B_{\beta}) \iff x \in \bigcup_{(\alpha,\beta) \in I \times J} (A_{\alpha} \cap B_{\beta}).$

Suppose $x \in (\bigcup_{\alpha \in I} A_{\alpha}) \cap (\bigcup_{\beta \in J} B_{\beta})$. Then for some $\alpha \in I$, $x \in A_{\alpha}$, and for some $\beta \in J$, $x \in B_{\beta}$. By the definition of ordered pair, we have for some $(\alpha, \beta) \in I \times J$, $x \in A_{\alpha} \cap B_{\beta}$. Hence, $x \in \bigcup_{(\alpha, \beta) \in I \times J} (A_{\alpha} \cap B_{\beta})$.

Suppose $x \in \bigcup_{(\alpha,\beta)\in I\times J}(A_{\alpha}\cap B_{\beta})$. Then for some $(\alpha,\beta)\in I\times J$, $x\in A_{\alpha}\cap B_{\beta}$. By the definition of ordered pair, there exists some $\alpha\in I$ such that $x\in A_{\alpha}$ and some $\beta\in J$ such that $x\in B_{\beta}$. Therefore, $x\in (\bigcup_{\alpha\in I}A_{\alpha})\cap (\bigcup_{\beta\in J}B_{\beta})$.

Thus,
$$x \in (\bigcup_{\alpha \in I} A_{\alpha}) \cap (\bigcup_{\beta \in J} B_{\beta}) \iff x \in \bigcup_{(\alpha,\beta) \in I \times J} (A_{\alpha} \cap B_{\beta}).$$