Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Michał Garmulewicz

Nr albumu: 304742

L_p -kohomologie f-stożków Riemannowskich.

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem dra hab. Andrzeja Webera Instytut Matematyki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W tej pracy licencjackiej opisane jest obliczenie ${\cal L}_p$ -kohomologii rozmaitości Riemannowskich.

Słowa kluczowe

kohomologie de Rhama, topologia różniczkowa

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.1 Matematyka

Klasyfikacja tematyczna

14 Algebraic Geometry14F (Co)homology theory14F40 de Rham cohomology

Tytuł pracy w języku angielskim

 \mathcal{L}_p -cohomologies of Riemannian f-horns.

Spis treści

1.	Wstęp	-
2.	Podstawy	7
	2.1. Algebra zewnętrzna	7
	2.2. Formy różniczkowe	8
	2.3. Skalowanie norm przestrzeni wektorowych i tensorów	Ć
	2.4. Metryka Riemannowska i forma objętości	
	•	11
	2.6. Przekształcenie indukowane, kohomologie de Rhama oraz formuła homotopii .	12
	2.7. Uogólniona nierówność Hardy'ego	15
3.	Obliczenie	17
	3.1. Co pan Weber kazał mi zrobić	21
Bi	bliography	23

Rozdział 1

Wstęp

W pracy [Weber] prezentowane jest między innymi obliczenie L_p -kohomologii stożka nad pseudorozmaitością Riemannowską.

Na stożku tym określona jest metryka postaci $dt \otimes dt + t^2g$, gdzie g jest metryką na części nieosobliwej wyjściowej pseudorozmaitości. W dalszej części wspomnianej pracy obliczana jest L_p -kohomologia wspomnianej przestrzeni.

W tej pracy licencjackiej przedstawiam drobną modyfikację tych pojęć do e^{-t} -stożków Riemannowskich, czyli przestrzeni będących produktem rozmaitości Riemannowskiej oraz półprostej na której określono metrykę $dt \otimes dt + (e^{-t})^2 g$.

Rozdział 2

Podstawy

W rozdziale tym przytaczam definicje i wyprowadzam podstawowe zależności, które pomogą nam w dalszych obliczeniach.

2.1. Algebra zewnętrzna

W tej sekcji przytaczam definicje form róźniczkowych oraz ich własności. Formy rózniczkowe są ważnym narzędziem, pozwalającym przenieść wiele wyników z analizy rzeczywistej na rozmaitości tak, aby sformułowania nie były zależne od wyboru konkretnych współrzędnych na rozważanej rozmaitości.

Niech V będzie skończenie wymiarową rzeczywistą przestrzenią wektorową. Tensor $T: V \times ... \times V \to \mathbb{R}$ nazwiemy kowariantnym. Bierze on jako argumenty jedynie wektory i konsekwentnie, nie bierze on jako argumentów form. Takie tensory mają wiele nazw: formy formy

Tensor będzie nazwany alternującym, gdy jego wartość zmieni znak w przypadku zmienimy miejscami jego dwa wektory wejściowe. Przestrzeń takich tensorów, które należą do $T^k(V^*)$, a do tego są antysymetryczne, często oznacza się $\Lambda^k(V^*)$.

Przedstawmy teraz kilka podstawowych operacji określonych na takich tensorach. Dla dwóch tensorów kowariantnych $f \in T^p(V^*)$ oraz $g \in T^q(V^*)$ możemy określić produkt (tensorowy) $f \otimes g \in T^{p+q}(V^*)$ za pomoca wzoru:

$$f \otimes g(x_1, x_2, ..., x_p, x_{p+1}, x_{p+2}, ..., x_{p+q}) = f(x_1, x_2, ..., x_p) \cdot g(x_{p+1}, x_{p+2}, ..., x_{p+q}).$$

Dowolny kowariantny tensor możemy przekształcić na tensor alternujący za pomocą przekształcenia *alternatora*, nazywanego także *rzutem alternującym*. Jest on określony w następujący sposób:

$$Alt: T^{k}(V^{*}) \to \Lambda^{k}(V^{*})$$
$$Alt(f)(x_{1}, x_{2}, x_{3}, ..., x_{k}) = \frac{1}{k!} \sum_{\sigma \in S_{p}} \operatorname{sgn} f(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(k)}).$$

Z pomocą alternatora określić można iloczyn zewnętrzny antysymetryczny. Dla elementów $\omega \in \Lambda^p(V^*)$ oraz $\eta \in \Lambda^q(V^*)$, ich iloczyn zewnętrzny zadamy wzorem

$$\omega \wedge \eta = \frac{(p+q)!}{p!q!} \text{Alt}(\omega \otimes \eta)$$

Przytoczmy teraz sposób, w jaki definiuje się bazę potęgi zewnętrznej $\Lambda^k(V^*)$. Niech $v_1, v_2, ..., v_n$ będzie bazą przestrzeni dualnej V^* , która jest dualna do bazy $w_1, w_2, ..., w_n$. Wówczas układ

$$B = \{v_{i_1} \land v_{i_2} \land \dots \land v_{i_k} : 1 \le i_1 < i_2 < \dots < i_k \le n\}$$

jest bazą potęgi zewnętrznej $\Lambda^k(V^*)$. Warto zauważyć, że implikuje to $dim\Lambda^k(V^*) = \binom{n}{k}$ Komentarz: można tu zamieścić dowód, że układ B jest bazą.

Aby uczynić zadość tytułowi tego podrozdziału, zdefiniujmy algebrę zewnętrzną. Jest to suma prosta:

$$\Lambda^*(V) = \Lambda^0(V^*) \oplus \Lambda^1(V^*) \oplus \Lambda^2(V^*) \oplus \dots \ .$$

Stanowi ona algebrę z działaniami dodawania oraz iloczynu zewnęnętrznego.

2.2. Formy różniczkowe

Poniższe definicje są przytoczone w formie opartej na notatkach [Duszenko]. Komentarz: w jaki sposób można ctować takie niepublikowane notatki? Nie wypada ich po prostu nie cytować, skoro z nich korzystam

Rozważamy rozmaitość M. Dla dowolnej przestrzeni kostycznej T_p^*M rozpatrzmy jej potęgę zewnętrzną $\Lambda^k(T_p^*M)$. Otrzymujemy w ten sposób przestrzeń liniową nad każdym punktem $p \in M$. Ich sumę rozłączną oznaczymy $\Lambda^k(T^*M)$. Przestrzenie te, określone nad każdym punktem z osobna, można skleić do wiązki wektorowej, na której można zdefniować formy różniczkowe. Komentarz: może pokazać jak się skleja przestrzenie w wiązkę?

Definicja 2.2.1 (Forma różniczkowa). k-formą różniczkową na rozmaitości M nazwiemy gładkie cięcie wiązki $\Lambda^k(T^*M)$ nad M, czyli gładkie odwzorowanie $\omega: M \to \Lambda^k(T^*M)$, spełniające $\omega(p) \in \Lambda^k(T_p^*)$ dla każdego punktu $p \in M$.

Przestrzeń k-form różniczkowych oznaczać będziemy przez $\Omega^k(M)$

Określimy teraz kluczowe dla dalszych kroków naszego rozumowania pojęcie pochodnej zewnętrznej formy różniczkowej. Operacja ta ma typ $d: \Omega^k(M) \to \Omega^{k+1}(M)$. Pozwala to patrzeć na nią, w dalszej części rozumowania, jako na operator w ciągu łancuchowym, gdzie elementami ciągu są $\Omega^k(M)$ albo podprzestrzenie tej przestrzeni mające szczególne własności.

Aby nadać nieco więcej intuicji definicji, przypomnimy najpierw definicję różniczki funkcji, czyli operację $d: C^{\infty} = \Omega^{o}(M) \to \Omega^{1}(M)$. Niech f będzie funkcją gładką na M, a (x^{i}) -

układem współrzędnych. Na dziedzinie tego układu określimy różniczkę df wzorem

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i}.$$

Dla form o wyższej gradacji określamy pochodną zewnętrzną w następujący sposób. Niech $\omega = \sum_{j \in I} \alpha_{j_1, \dots, j_k} dx^{j_1} \wedge \dots \wedge dx^{j_k}$. Różniczka $d: \Omega^k(M) \to \Omega^{k+1}(M)$ jest dana jako

$$d(\sum_{j\in I} \alpha_{j_1,\dots,j_k} dx^{j_1} \wedge \dots \wedge dx^{j_k}) = \sum_{j\in I} \sum_{i=1}^n \frac{\partial \alpha_{j_1,\dots,j_k}}{\partial x^i} dx^i \wedge dx^{j_1} \wedge \dots \wedge dx^{j_k})$$

Komentarz: tu wypadałoby przytoczyć jakieś własności, co najmniej $d \circ d = 0$.

2.3. Skalowanie norm przestrzeni wektorowych i tensorów

W dalszych obliczeniach będziemy badać wyrażenia typu $r|\cdot|$, gdzie $|\cdot|$ jest normą na skończenie wymiarowej przestrzeni liniowej. Znaczenie będzie miało jak zachowuje się norma na przestrzenii dualnej, gdy skalujemy normę wyjściowej przestrzenii liniowo o czynnik r.

Rozważać będziemy skończenie wymiarową przestrzeń wektorową V z daną metryką $||\cdot||$ i zdefiniujemy na niej nową metrykę $||\cdot||_r \stackrel{\mathsf{def}}{:=} r||x||$. Wtedy w przestrzeni $(V,||\cdot||_r)^*$ dualnej do $(V,|||\cdot|||)$ norma skaluje się przez współcznynnik $\frac{1}{r}$. Oznacza to, że dla $\varphi \in V^*$ otrzymamy skalowanie $||\varphi||_r = \frac{1}{r}||\varphi||$.

Poczynimy tu jeszcze jedną obserwację, która pomoże nam w dalszych obliczeniach. Rozważmy n-wymiarową rozmaitość Riemannowską M oraz jej przestrzeń styczną T_x M i kostyczną T_x^* M w punkcie x. Niech bazami ortogonalnymi tych przestrzeni będą $e_1, e_2, ..., e_n$ oraz dualna $e_1^*, e_2^*, ..., e_n^*$. Chcemy teraz obliczyć w jaki sposób formy z $\Lambda^*(M)$ skalują się ze względu na taką zmainę w normie.

Załózmy że rozważamy przestrzeń k-form na M w pewnym punkcie rozmaitości. Wtedy każda k forma może być lokalnie wyrażona w bazie składającej się z produktów kowektorów należących do bazy dualnej do bazy standardowej. Oznacza to, że każda k-forma w punkcie x może być zapisana, korzystając z lokalnych współrzędnych $(x_1, x_2, ... x_n)$ jako $\sum_{I \in I} a_I dx_i$, gdzie I jest zbiorem k-indeksów postaci $(i_1, i_2, ..., i_k)$, dla $1 \le i_1 < i_2 < ... < i_k \le n$.

Popatrzmy w jaki sposób skalują się wektory bazowe. Przy założeniu ortogonalności zachodzi:

$$\begin{split} ||dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_k}||_t &= ||dx^{i_1}||_t \cdot ||dx^{i_2}||_t \cdot \ldots \cdot ||dx^{i_k}||_t = \\ &\frac{1}{t} ||dx^{i_1}|| \cdot \frac{1}{t} ||dx^{i_2}||_t \cdot \ldots \cdot \frac{1}{t} ||dx^{i_k}||_t = \frac{1}{t^k} ||dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_k}||_t \end{split}$$

Oznacza to, że każda k forma skaluje się przez $1/t^k$ gdy metryka jest skalowana przez czynnik t.

2.4. Metryka Riemannowska i forma objętości

Metryką Riemannowską nazwiemy gładkie, symetryczne kowariantne pole 2-tensorów na rozmaitości M które jest dodatnio określone w każdym punkcie. Mówiąc bardziej intuicyjnie, określenie metryki Riemannowskiej to doczepienie pola iloczynów skalarnych do rozmaitości, które zmienia się w sposób gładki.

W dowolnych lokalnych gładkich współrzędnych (\boldsymbol{x}^i) metryka Riemannowska może być zapisana jako

$$g = g_{ij}dx^i \otimes dx^j = g_{ij}dx^i dx^j$$

gdzie g_{ij} jest dodatnio określoną macierzą (której współrzędne to funkcje gładkie). Ostatnia część równości zapisuje naszą metrykę w terminach produktu symetrycznego. Komentarz: Czy potrzebne jest tu uzasadnienie?

Biorąc pod uwagę, że w głównej części pracy rozważać będziemy rozmaitości Riemannowskie będące produktem dwóch rozmaitości Riemannowskich, zbadajmy w jaki sposób zadana będzie metryka na takiej przestrzeni produktowej. Jeżeli (M,g) oraz (M',g') będą rozmaitościami Riemannowskimi, to na $M\times M'$ możemy zadać metrykę produktową $\hat{g}=g\oplus g'$ w następujący sposób:

$$\hat{g}((v,v'),(w,w')) = g(v,w) + g'(v',w')$$

dla każdego $(v,v'),(w,w') \in T_pM \oplus T_qM' \cong T_{(p,q)}(M \times M')$. Gdy mamy dane jakieś konkretne współrzędne $(x_1,...,x_n)$ dla M oraz $(y_1,...,y_n)$ dla M', to dostajemy prosto lokalne współrzędne $(x_1,...,x_n,y_1,...,y_m)$ na $M \times M'$ i nietrudno sprawdzić, że metryka produktowa jest lokalnie reprezentowana przez macierz blokowo diagonalną

$$\hat{g}_{ij} = \left(\begin{array}{cc} g_{ij} & 0\\ 0 & g'_{ij} \end{array}\right).$$

Warto także zapisać dla lokalnych współrzędnych Riemannowską formę objętości.

Uwaga 2.4.1. Niech (M, g) będzie zorientowaną rozmaitością Riemannowską wymiaru n, z brzegiem lub bez brzegu. W dowolnych zorientowanych gładkich współrzędnych (x_i) , Riemmanowska forma objętości może być wyrażona lokalnie w następujący sposób:

$$\omega_g = \sqrt{\det(g_{ij})} dx^1 \wedge \dots \wedge dx^n$$

Komentarz: a może tutaj dowód tego?

Do naszych dalszych obliczeń potrzebna nam będzie umiejętność całkowania funkcji rzeczywistych pod rozmaitościach Riemannowskich. Zdefiniujmy w tym celu stosowną całkę.

Niech (M,g) będzie zorientowaną rozmaitością Riemannowską. Niech vol $_g$ oznacza jej formę objętości. Jeżeli mamy teraz f - funkcję o zwartym nośniku, rzeczywistą i ciągłą, określoną na M, to fvol $_g$ jest n-formą. Nie odwołując się do ogólnych definicji całek z różnych typów form różniczkowych, w naszym przypadku będziemy mogli zapisać prosto, korzystając z wcześniejszych uwag dotyczących zapisu formy objętości:

$$\int_{M} f d\text{vol}_{g} = \int_{\phi(U)} f(x) \sqrt{\det(g_{ij})} dx^{1} ... dx^{n},$$

zakładając, że rozmaitość jest cała w obrazie jednej mapy ϕ . Jeżeli bowiem tak by nie było, to musielibyśmy korzystać z wielu map $\phi_1, \phi_2...$, które opisywałyby całą rozmaitość biorąc pod uwagę gładki podział jedynki na rozmaitości.

2.5. Norma formy różniczkowej

Przytoczę teraz definicję normy formy różniczkowej w poszczególnych punktach rozmaitości. Niech (M,g) będzie zorientowaną, spójną rozmaitością Riemannowską. Niech M będzie rozmaitością, a x jej punktem. $\Lambda^k T_x M$ jest przestrzenią k-liniowych funkcji alternujących:

$$\alpha_r: T_r^{\star}M \times ... \times T_r^{\star}M \times \to \mathbb{R}$$

Przypomnijmy także, że forma zewnętrzna stopnia k jest zdefiniowana jako sekcja k-tej wiązki kostycznej.

$$\Lambda^k M = \coprod_{x \in M} \Lambda^k T_x^{\star} M \xrightarrow{\pi} M.$$

Stąd w każdym punkcie $x \in M$ mamy funkcję wieloliniową $\alpha_x \in \Lambda^k T_x^* M$. Można ją wyrazić w prostej formie. Jeśli $(e_1, ..., e_n)$ jest bazą $T_x M$, a $(e^1, ..., e^n)$ jest bazą dualną, możem napisać

$$\alpha_x = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_k} e^{i^1} \wedge \dots \wedge e^{i^k}$$

gdzie współczynniki są zadane jako $a_{i_1...i_k} = \alpha_x(e^{i^1},...,e^{i^2}).$

Korzystając z powyższych spostrzeżeń, możemy wyrazić daną formę dla współrzędnych lokalnych $x^1,...,x^n$ na otwartym podzbiorze $U\subset M$. Mamy bazę $\frac{\partial}{\partial x^1},...,\frac{\partial}{\partial x^n}$ dla T_xM dla każdego $x\in U$ wraz ze stowarzyszoną bazą dualną $dx^1,...,dx^n$. Ponadto, dla każdego punktu ze zbioru U możemy napisać

$$\alpha_x = \sum_{1 \le i_1 \le \dots \le i_k \le n} a_{i_1 \dots i_k} dx^{i^1} \wedge \dots \wedge dx^{i^k}.$$

Na rozmaitości Riemannowskiej posiadamy iloczyn sklarany zadany na T_xM dla każdego punktu $x \in M$. Korzystając z niego możemy zdefiniować normę każdej k-formy α . Wprowadźmy proste oznaczenie iloczynu skalarnego na T_xM przez $< u, v>_x = g_x(u,v)$. Wybierzmy bazę $(e_1,...,e_n)$ przestrzeni T_xM z odpowiadającą jej bazą dualną $(e^1,...,e^n)$.

Można argumentować, że możemy zawsze wybrać taką bazę tak aby była ona ortogonalna. Dzieje się tak, ponieważ możemy zawsze zastosować algorytm ortogonalizacji Grama-Schmidta do bazy zadanej przez różniczkowanie lokalnych współrzędnych rozmaitości.

Możemy teraz zdefiniować funkcję $G: \Lambda^k T_x M \times T_x M \to \mathbb{R}$. Dla danych dwóch form

$$\alpha_x = \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1 \dots i_k; x} e^{i^1} \wedge \dots \wedge e^{i^k}$$

oraz

$$\beta_x = \sum_{1 \le i_1 < \dots < i_k \le n} \beta_{i_1 \dots i_k; x} e^{i^1} \wedge \dots \wedge e^{i^k},$$

określimy tę funkcję jako

$$G(\alpha_x, \beta_x) = \sum_{i_1, \dots, i_k} \alpha_{i_1 \dots i_k; x} \beta_{i_1 \dots i_k; x}.$$

Przytoczymy teraz następujący lemat, którego dowód jest dostępny na przykład w [Ducret].

Lemat 2.5.1. Zdefiniowane powyżej przekształcenie $G: \Lambda^k T_x M \to T_x M$ jest liniowe, symetryczne i dodatnio określone. Przez to jest ono iloczynem skalarnym dla każdego punktu $x \in M$. Nie zależy ono od wyboru konkretnej bazy $(e_1, ..., e_n)$ spośród baz ortogonalnych. Dodatkowo, baza $(e^1 \wedge ... \wedge e^n)$ jest ortonormalna dla G.

Komentarz: a może przytoczyć dowód tego lematu.

Gdy określony mamy iloczyn skalarny na przestrzeni form, to zadaje on normę formy w punkcie rozmaitości. Dla $\omega \in \Omega^k(M)$ oraz $x \in M$ napiszemy

$$|\omega|_x = \sqrt{G(\omega_x, \omega_x)}.$$

Warto podkreślić tu prosty, ale istotny wniosek, że po określeniu formy ω norma jest funkcją typu $|\omega|_x: M \to \mathbb{R}$. Jest to warte odnotowania, ponieważ pomaga to w rozumieniu intuicji stojącej za definicją normy na całości rozmaitości Riemannowskiej. Taka norma będzie po prostu całką z normy punktowej rozważanej formy różniczkowej.

Definiujemy p-normę dla formy na całej rozmaitości Riemannowskiej:

$$||\omega||^p = \int_M |\omega|_x^p d\text{vol}_g(x)$$
(2.1)

2.6. Przekształcenie indukowane, kohomologie de Rhama oraz formuła homotopii

Rozważmy przypadek gładkiej funkcji $F:M\to N$, pomiędzy dwoma rozmaitościami (z brzegiem lub bez brzegu). Za pomocą tej funkcji będziemy mogli określić przekształcenie, które pozwoli nam zamieniać formy różniczkowe z rozmaitości N na formy różniczkowe z rozmaitości M. Z różniczką takiej funkcji możemy bowiem stowarzyszyć przekształcenie przeciągnięcia $F^*:\Lambda^pN\to\Lambda^pM$, działające w taki sposób:

$$(F^*\omega)_p(v_1,...,v_n) = \omega_{F(p)}(dF_p(v_1),...,dF_p(v_k)).$$

Przeciągnięcie jest też czasami nazywane cofnięciem.

Pokażemy teraz bardzo interesującą strukturę jaką mają formy różniczkowe na rozmaitości, gdy rozpatrywać je jako kompleksy z działaniem różniczki. W poniższym rozumowaniu, przez

 $\Omega^p(M)$ oznaczać będziemy przestrzeń gładkich k-form. Niech M będzie rozmaitością z brzegiem lub bez brzegu, a p będzie nieujemną liczbą całkowitą. Ponieważ $d:\Omega^p(M)\to\Omega_{p+1}(M)$ jest przekształceniem liniowym, jego jądro oraz obraz są podprzestrzeniami liniowymi. Wprowadźmy oznaczenie:

$$\mathcal{Z}^p(M) = d: \Omega^p(M) \to \Omega_{p+1}(M) = \{p\text{-formy zamknięte na } M \}$$

$$\mathcal{B}^p(M) = d: \Omega^p(M) \to \Omega_{p+1}(M) = \{p\text{-formy dokładne na } M \}.$$

Jako konwencję przyjmuje się, że $\Omega^p(M)$ jest zerową przestrzenią wektorową gdy p < 0 lub $p > n = \dim M$. W związku z tym zachodzi przykładowo $\mathcal{B}^0(M) = 0$ oraz $\mathcal{Z}^n(M) = \Omega^n(M)$.

Sprawdzona wcześniej własność operatora różniczkowania $d \circ d = 0$ oznacza, że każda forma dokładna jest zamknięta. To z kolei implikuje $\mathcal{B}^p(M) \subseteq \mathcal{Z}^p(M)$. Stąd ma sens następująca definicja:

Definicja 2.6.1. Grupą kohomologii de Rhama rzędu p nazwiemy następującą ilorazową przestrzeń liniową:

 $H_{dR}^p(M) = \frac{\mathcal{Z}^p(M)}{\mathcal{B}^p(M)}$

Jest to rzeczywista przestrzeń liniowa i w związku z tym jest ona grupą z działaniem dodawania wektorów. Można także pokazać, że grupy de Rhama są niezmiennicze ze względu na dyfeomorifzmy. Dla każdej domkniętej p-formy ω na M poprzez $[\omega]$ będziemy oznaczać klasę równoważności formy ω w $H_{dR}(M)$. Taką klasę równoważności będziemy nazywać także klasą kohomologii formy ω . Jeżeli dwie formy ω , η należą do tej samej klasy kohomologii, czyli zachodzi $[\omega] = [\eta]$, to różnią się one conajwyżej o formę dokładną. Zachodzi także następujący lemat:

Lemat 2.6.1. (Przekształcenia indukowane kohomologii) Dla każdej gładkiej funkcji $F: M \to N$ pomiędzy dwoma rozmaitościami gładkimi, przeciągnięcie $F^*: \Omega^p(N) \to \Omega^p(M)$ przenosi formy dokładne na formy dokładne, a formy zamknięte na formy zamknięte. W ten sposób indukuje ono przekształcenie liniowe, w dalszym ciągu oznaczane jako F^* z $H^p_{dR}(N)$ do $H^p_{dR}(M)$, które nazywane jest przekształceniem indukowanym kohomologii.

Dowód. Jeśli ω jest formą zamkniętą, to $d(F^*\omega) = F^*(d\omega) = 0$, więc $F^*\omega$ także jest zamknięte. Stąd wynika już, że przeciągnięcie to przenosi formy zamknięte na zamknięte, a dokłądne na dokładne. Przekształcenie indukowane jest zadane w prosty sposób. Dla p-formy zamkniętej ω , niech

$$F^*[\omega] = [F^*\omega].$$

Wtedy jeśli $\omega' = \omega + d\eta$, to

$$F^*[\omega'] = [F^*\omega + d(F^*\eta)] = [F^*\omega],$$

a więc przekształcenie jest dobrze zdefiniowane.

Odnotujmy następujący, ważny wniosek.

Uwaga 2.6.1. Rozmaitości gładkie, które są ze sobą dyfeomorficzne, mają izomorficzne grupy kohomologii de Rhama.

Przedstawiony powyżej wniosek jest nieco zaskakujący - grupy de Rhama okazały się być topologicznym niezmiennikiem. Wniosek ten ma daleko idące uogólnienie. Można bowiem udowodnić, że wspomniane grupy są niezmiennikami homotopii. Oznacza to, że homotopijnie równoważne rozmaitości posiadać będą izomorficzne kohomologie de Rhama.

Udowodnijmy więc homotopijną niezmienniczość grup de Rhama. W poniższym rozumowaniu ciekawy jest dla nas zarówno wynik, jak i technika, która wykorzystywana będzie do jego udowodnienia. Wyprowadzimy bowiem równanie, które sprowadzi naszą tezę do udowodnienia istnienia pewnego operatora o żądanych własnościach.

Chcemy najpierw udowodnić, że homotopijne funkcje gładkie indukują to samo przekształcenie kohomologii. Rozważamy w tym celu dwie gładkie funkcje $F,G:M\to N$. Chcemy udowodnić, że ich przekształcenia indukowane są równe $F^*=G^*$. Wyraźmy ten warunek w nieco innych słowach.

Gdy weźmiemy zamkniętą formę p-formę ω na N, aby przekształcenia indukowane były równe, musimy być w stanie wyprodukować taką (p-1)-formę η na M, aby spełnione

$$G^*\omega - F^*\omega = d\eta.$$

Z tego wyniknie bowiem, że $G^*[\omega] - F^*[\omega] = [d\eta] = 0$. Możemy podejść do tego problemu nieco bardziej systematycznie, szukając takie operatora h, który jako argumenty bierze zamknięte p formy na N i działa tak, że spełniona jest zależność

$$d(h\omega) = G^*\omega - F^*\omega.$$

Zamiast definiować $h\omega$ tylko dla przypadku, kiedy ω jest zamknięta, okazuje się, że łatwiej jest określić operator h z przestrzeni wszystkich gładkich p-form na N do przestrzeni wszystkich gładkich (p-1)-form na M, dla którego spełnione jest równanie

$$d(h\omega) + h(d\omega) = G^*\omega - F^*\omega.$$

Gdy warunek ten jest bowiem spełniony to dla formy ω , która jest zakmnięta zajdzie także poprzedni warunek.

Jeśli chcemy być całkowicie dokładni, to musimy zdefiniować rodzinę funkcji, po jednej funkcji dla każdego p, która będzie spełniać stosowny warunek na danym poziomie.

$$H(M \times \mathbb{R}_{>})_{dR}^* = H(M)_{dR}^*$$

(Przytoczyć dowód istnienia operatora homotopii - ale nie ma jak tego zrobić bez definiowania innych rzeczy, np pochodnej Liego w książce Lee).

Niniejsza praca zajmuje się pewną modyfikacją kohomologii de Rhama. Dokładniej, ta praca zajmuje się L_p -kohomologiami. Można patrzeć na nie jak na rozważanie niemal tego samego kompleksu łańcuchowego co w kohomologiach de Rhama, lecz z dodanym warunkiem p-całkowalności form. Głównym obiektem naszego zainteresowania są przestrzenie $L_p^k = \omega \in \Omega^k(M): ||\omega|| < \infty$, gdzie $||\cdot||$ to norma (całka) z formy, która była omawiana w

2.1. Ograniczenie naszych rozważań do form, które są p-całkowalne pozwala nam rozszerzyć klasę przestrzeni, które badamy. Przy dobrym doborze funkcji wagowej, którą ważymy metrykę Riemannowską na części nieosobliwej, możemy bowiem rozważać rozmaitości z osobliwościami.

2.7. Uogólniona nierówność Hardy'ego

Kluczowa w dalszych obliczeniach będzie nierówność, Hardy'ego łącząca całkowalność funkcji z całkowalnościa jej funkcji bazowych.

Lemat 2.7.1 (Uogólniona nierówność Hardy'ego). Rozważmy funkcję $f: \mathbb{R}_+ \to \mathbb{R}$, funkcjewagi $\phi, \psi: \mathbb{R}_+ \to \mathbb{R}$ oraz $p, q \in \mathbb{R}$ takie, że $\frac{1}{p} + \frac{1}{q} = 1$. Zachodzi dla nich

$$\int_0^\infty \left| \phi(x) \int_0^x f(t) dt \right|^p dx \le C \int_0^\infty \left| \psi(x) f(x) \right|^p dx$$

 $wtedy\ i\ tylko\ wtedy,\ gdy$

$$\sup_{x>0} \left[\int_x^\infty |\phi(t)|^p dt \right]^{\frac{1}{p}} \left[\int_0^x |\phi(t)|^{-q} dt \right]^{\frac{1}{q}} < +\infty,$$

Dowód. Dowód pomijam. Jest on dostępny w Zacytować paper od pana Webera. \Box

Lemat 2.7.2. Rozważmy pewną funkcję $f: \mathbb{R}_+ \to \mathbb{R}$, gdzie $f \geq 0$ oraz jej funkcję pierwotną $F(x) = \int_0^x f(t) dt$. Dla $\alpha > 0$ warunek $\int_0^\infty f(x)^p e^{-\alpha x} dx < \infty$ implikuje $\int_0^\infty F(x)^p e^{-\alpha x} dx < \infty$.

Dowód. Wykorzystamy uogólnioną nierówność Hardy'ego. Załóżmy $\psi(t) = \phi(t) = e^{-\frac{t}{p}}$. Wtedy jeśli $\frac{1}{p} + \frac{1}{q} = 1$, to $\frac{1}{q} = \frac{p-1}{p}$ oraz $-q = \frac{p}{1-p}$. Zbadajmy teraz, czy spełniony jest warunek, aby zachodzić mogła nierówność Hardy'ego:

$$\sup_{x>0} \left[\int_{x}^{\infty} e^{-t} dt \right]^{\frac{1}{p}} \left[\int_{0}^{x} e^{-t\frac{1}{1-p}} dt \right]^{\frac{p-1}{p}} = \sup_{x>0} C e^{-\frac{x}{p}} \left(e^{\frac{x}{p-1}} - 1 \right)^{\frac{p-1}{p}} = C \sup_{x>0} \left(e^{-\frac{x}{p-1}} e^{\frac{x}{p-1}} - e^{-\frac{x}{p-1}} \right)^{\frac{p-1}{p}} = C \sup_{x>0} \left(1 - e^{-\frac{x}{p-1}} \right)^{\frac{p-1}{p}}.$$

Wyrażenie to jest ograniczone dla p > 1. Po zastosowaniu uogólnionej nierówności Hardy'ego i ewentualnym przeskalowaniu zmiennej x do αx otrzymujemy tezę.

Rozdział 3

Obliczenie

Celem tego rozdziału jest prezentacja obliczenia L_p -kohomologii Riemannowskiego f-stożka z funkcją wagową $f = e^{-t}$. Obliczenie jest wykonane sposobem prezentowanym między innymi w pracach [Cheeger], [Youssin], [Kirwan], [Weber].

Definicja 3.0.1 (f-stożek). Niech M będzie rozmaitością Riemannowską. Rozważmy przestrzeń $\mathbb{R}_{\geq 0} \times M$. Określmy na tym produkcie tensor Riemannowski zadany przez wzór $dt^2 + f^2(t)g$, gdzie g jest metryką na M. Przestrzeń taką nazywamy f-stożkiem. Oznaczać ją będziemy przez symbol $c^f M$.

Definicja 3.0.2. Niech $L_p^k M$ oznacza przestrzeń p-całkowalnych k-form różnikowych z mierzalnymi współczynnikami.

Możemy teraz poczynić obserwację o formach różniczkowych określonych na f-stożku. Przestrzeń styczna do $c^f M$ w punkcie (t,m) to:

$$T_{(t,m)}(\mathbf{c}^f M) = \mathbb{R} \times T_m M.$$

W terminach form różniczkowych powiązanych z rozważanym f-stożkiem oznacza to, że możemy napisać:

$$\Omega^k(\mathbb{R} \times T_m M) = \Omega^{k-1}(M) \oplus \Omega^k(M).$$

Spostrzeżenie to możemy wyrazić także w inny sposób:

Uwaga 3.0.1. Każda k-forma $\omega \in \Omega^k T(\mathbf{c}^f M)$, a w konsekwencji każda forma z przestrzeni form p-całkowalnych $L_k^p(\mathbf{c}^f M)$ może być zapisana jako $\omega = \eta + \xi \wedge dt$, gdzie zarówno η , jak i ξ nie zawierają dt. Zauważmy ponadto, że η jest k-formą, a ξ jest k-1 formą.

Ustalmy także dla klarowności nieco inną notację dotyczącą zapisywania form różniczkowych względem lokalnych współrzędnych, która pozwoli nam lepiej zilustrować istotne dla nas elementy rozumowania. Dowolną k-formę η , która w domyśle nie zawiera czynnika dt, zapisywać będziemy względem lokalnych rzeczywstich współrzędnych $(x_1, x_2, ..., x_n)$ na M jako:

$$\eta(t,x) = \sum_{\alpha \in I(k)} \eta_{\alpha}(t,x) dx^{\alpha},$$

gdzie I(k) jest zbiorem wszystkich multiindeksów $\alpha=(\alpha_1,...,\alpha_k)$ takich, że $1\leq\alpha_1<...<\alpha_i\leq n,$ gdzie

$$dy^{\alpha} = dy^{\alpha_1} \wedge \dots \wedge dy^{\alpha_k}, \tag{3.1}$$

a η_{α} jest gładką funkcją określoną na $(0, \infty) \times M$.

Pomiędzy rozmaitościami M oraz c fM istnieją kanoniczne przekształcenia projekcji oraz inkluzji. Żeby dobrze zilustrować w sposób w jaki działają one na formy różniczkowe na poszczególnych rozmaitościach, przypomnijmy ich typy. Inkluzja to funkcja:

$$i_r: M \to \mathbf{c}^f M$$

$$i_r(x) = (x, r).$$

Możemy za jej pomocą przeciągać formy z c^f M do M. Przeciągnięcie takie oznaczymy jako $\omega_r = i_r^*(\omega) = i_r^* \eta$ dla formy $\omega = \eta + \xi \wedge dt$. Projekcja (rzutowanie) zadane jest jako:

$$\pi: \mathbf{c}^f M \to M$$

$$\pi(x,t) = x.$$

Rozważamy formę $\omega \in L_p^k(\mathbf{c}^f M)$, gdzie $\omega = \eta + \xi \wedge dt$. Zauważmy, że metryka Riemannowska na $\mathbf{c}^f M$ jest określona w taki sposób, że stosowne normy spełniają następujące zależności:

$$|\eta(t,x)|^2 = (e^{-t})^{-2k} |\eta(t,x)|_M^2 + (e^{-t})^{-2(k-1)} |\xi(t,x)|_M^2$$

gdzie $|\cdot|_M$ jest normą form różniczkowych indukowaną przez metrykę Riemannowską na rozmaitości M. Czynnik $(e^{-t})^{-2k}$ pojawia się ponieważ forma η należy do k-tej potęgi zewnętrznej przestrzeni kostycznej do rozmaitości $c^f M$ w punkcie (t,x). Zauważmy ponadto, że Riemannowska forma objętości na $c^f M$ w punkcie (t,x) różni się od formy objętości na M w punkcie x o czynnik $(e^{-t})^n$. Policzmy więc normę ω jako elementu przestrzeni $L_k^p(c^f M)$.

$$||\omega||^p = \int_{c^f M} |\omega|^p d\mathrm{vol}_{c^f M} = \int_0^\infty (e^{-t})^{n-pk} \int_M |\omega|^p d\mathrm{vol}_M dt =$$
$$= \int_0^\infty (e^{-t})^{n-pk} ||\omega_t||_M dt = \int_0^\infty ||\omega||_t^p dt,$$

gdzie

$$||\omega||_r \stackrel{\mathsf{def}}{:=} ||\omega_{|M \times \{r\}}|| = \mathrm{e}^{-r \cdot (\frac{n}{p} - k)}||\omega_r||_M.$$

Przypomnijmy, że $\omega_r = i_r^*(\eta)$.

Zauważmy teraz w jaki sposób zachowywać się będzie norma formy, która została przeciągnięta z podstawy, czyli rozmaitości M. Dla $\eta \in L_p^*(M)$ możemy napisać

$$||\eta||_r \stackrel{\text{def}}{:=} ||\pi^*||_r = e^{-r \cdot (\frac{n}{p} - k)} ||\eta||_M.$$

W badanym przypadku rozmaitości $\mathbf{c}^f M$ fakt, że spełniona jest formuła homotopii wymaga szczegółowego uzasadnienia. Motywacja stojaca za formułą homotopii została przestawiona we wcześniejszym rozdziałe.

Będziemy starać się dowieść, że zachodzi formuła (i istnieje stosowny operator I_r):

$$\omega - \pi^*(\omega_r) = dI_r\omega + I_r d\omega$$

W tym celu ponownie posłużymy się rozbiciem k-formy ω , określonej na c^f M na

$$\omega = \eta + dt \wedge \xi$$
.

Możemy teraz dla η określić na c^f M k-formę $\partial \eta/\partial t$ zadaną w lokalnych współrzędnych $(x_1, x_2, ..., x_n)$ jako

$$\frac{\partial \eta}{\partial t}(t,x) = \sum_{\alpha \in I(k)} \frac{\eta_{\alpha}}{\partial t}(t,x) dx^{\alpha}.$$

Wykorzystujemy tutaj notację z 3.1. Na tej samej podstawie możemy zapisać dla formy ξ (k-1) formę $\partial \xi/\partial t$ jako:

$$\frac{\partial \xi}{\partial t}(t,x) = \sum_{\alpha \in I(k-1)} \frac{\xi_\alpha}{\partial t}(t,x) dx^\alpha.$$

Definiujemy na stosownym kompleksie form różnikowych

$$d_M \omega(t, x) = \sum_{1 \le j \le m} \sum_{\alpha \in I(k)} \frac{\partial \eta_\alpha}{\partial x_j}(t, x) dx_j \wedge dy^\alpha$$

$$+ \sum_{1 \le j \le m} \sum_{\alpha \in I(k-1)} \frac{\partial \xi_{\alpha}}{\partial x_j}(t, x) dx_j \wedge dt \wedge dy^{\alpha}.$$

Możemy wtedy określić różniczkę formy najpierw na podstawie f-stożka:

$$d_M\omega = d_M\eta - dt \wedge d_M\xi,$$

a następnie na całym badanym f-stożku:

$$d\omega = d_M \omega + dt \wedge \frac{\partial \eta}{\partial t} = d_M \eta + dt \wedge \left(\frac{\partial \eta}{\partial t} - d_M \xi\right).$$

Możemy teraz postarać się zdefiniować operator homotopii. Dla ustalonego $r \in (0, \infty)$ określimy operator

$$I_r: \Omega^k(\mathbf{c}^f M) \to \Omega^{k-1}(\mathbf{c}^f M),$$

który w lokalnych współrzędnych $(x_1, x_2, ..., x_n)$ jest zadany wzorem:

$$(I_r\omega)(t,x) = \sum_{\alpha \in I(k-1)} \left(\int_s^t \xi(\tau,x) d\tau \right) dy^{\alpha}.$$

Dla klarowności kolejnych wzorów wprowadzimy oznaczenie. Będziemy mianowicie pisać

$$(I_r\omega)(t,x) = \int_s^t \xi.$$

Możemy teraz zbadać wyrażenia $dI_r\omega$ oraz $I_rd\omega$, które występują w formule homotopii. Napiszemy:

$$dI_r\omega = d_M \int_r^t \xi + dt \wedge \frac{\partial}{\partial t} \int_r^t \xi =$$
$$= \int_r^t d_M \xi + dt \wedge \xi$$

Komentarz: wypadałaoby pewnie wcześniej zaargumentować że możemy z d wejść pod całkę oraz

$$I_{r}\omega = I_{r} \left(d_{M}\eta + dt \wedge \left(\frac{\partial \eta}{\partial t} - d_{M}\xi \right) \right)$$
$$= \int_{r}^{t} \left(\frac{\partial \eta}{\partial t} - d_{M}\xi \right)$$
$$= \eta - \pi^{*} \left(\eta^{(r)} \right) - \int_{r}^{t} d_{M}\xi,$$

gdzie $\eta^{(r)} \in \Omega^k(M)$ jest zadane w lokalnych współrzędnych $(x_1, x_2, ..., x_n)$ jako

$$\eta^{(s)}(x) = \sum_{\alpha \in I(k)} \eta_{\alpha}(t, x) dx^{\alpha}.$$

W związku z tym, zachodzi wzór:

$$dI_r\xi + I_r d\xi = dt \wedge \xi + \eta - \pi^* \left(\eta^{(r)}\right) = \omega - \pi^*(\eta^{(r)}).$$

Spróbujemy teraz zbadać, kiedy dla p-całkowalnej formy ω forma $I_r\omega$ także jest całkowalna. Fakt, że forma jest p-całkowalna oznacza innymi słowy, że

$$||\omega||^p = \int_{c^f M} |\omega|^p d\mathrm{vol}_{c^f M} = \int_0^\infty \int_M \left((e^{-t})^{-2k} |\eta^{(t)}|_M^p + (e^{-t})^{-2(k-1)} |\xi^{(t)}|_M^p \right) (e^{-t})^m dt < \infty$$

 $I_r\omega$ jest (k-1) formą. Napiszemy

$$||I_r\omega||^p = \int_{c^f M} |I_r\omega|^p d\mathrm{vol}_{c^f M} = \int_0^\infty \int_M (e^{-t})^{n-p(k-1)} \left| \int_r^t |\xi^{(\tau)}|_M^p d\tau \right|.$$

Wykorzystamy teraz lemat, który udowodniony został w dodatku, przyjmując funkcję $f = |\xi^{(\tau)}|^p$, a za jej funkcję pierwotną $F = \int_r^t |\xi^{(\tau)}|$.

Lemat możemy wykorzystać, tylko wtedy gdy wspołczynnik przy e^{-t} , nazwijmy go α , jest większy od zera. Ten współczynnik to: $\alpha = -p(k-1) + n$. Zbadajmy warunek:

$$-p(k-1) + n > 0$$
$$-k+1 + \frac{n}{p} > 0$$

$$k < \frac{n}{n} + 1.$$

Warunek pozwalający na wykorzystanie lematu jest więc spełniony dla $k \leq \frac{n}{n}$.

Gdy warunek ten jest spełniony, stosujemy Lemat2.7.1, wykorzystujący nierówność Hardy'ego i uzyskujemy rezultat, że $I_r\omega$ jest formą p-całkowalną.

Pokazaliśmy więc, że jeśli ω jest k-formą p-całkowalną, to $I_r\omega$ jest p-całkowalna i zachodzi wzór

$$\omega = dI_r \omega + I_r d\omega + \pi^* \left(\eta^{(s)} \right).$$

Stąd jeśli $d\omega = 0$, to

$$\eta \in d(L^{i-1}c^f M) + \pi^*(L^i * M),$$

więc

$$\pi^*: H(M) \to H(\mathbf{c}^f M)$$

jest operatorem suriektywnym.

Komentarz: z tego co rozumiem, oznacza to że dla $k \leq \frac{n}{p}$ operator I_0 jest ciągły. Podejrzewam, że ma z tego wyjść podobnie, że I_{∞} jest ciągły dla $k \geq \frac{n}{p} + 1$, ale nie rozumiem dokładnie jak to ma wyjść. Pewnie musimy zmieniać w $F = \int_{r}^{t} |\xi^{(\tau)}|$ granice całkowania na \int_{t}^{r}

3.1. Co pan Weber kazał mi zrobić

Ten fragment, który Pan kontempluje: Chodzi o to, że zamiast form gładkich trzeba rozważać formy o mierzalnych współczynnikach z różniczką w sensie "prądów" (currents), czyli funkcjonałów na formach. Być może to troche zbyt obszerny temat na licencjat. Moim zdaniem wystarczy by Pan oszacował operator I (odcałkowanie form) w normie L^p i powiedział że, tak jak np w mojej pracy pozwoli to dowieść znikanie kohomologii w jakichś gradacjach.

Czyli twierdzenie główne pracy by było: Operator

$$I_0: A^k \to A^{k+1}$$

jest ciągły w normie L^p dla k....

Operator

$$I_{\infty}: A^k \to A^{k+1}$$

jest ciągły w normie L^p dla k...., gdzie A^k oznacza k-formy o mierzalnych współczynnikach.

Jesli chodzi o ostatni rozdzial, to moze Pan heurystycznie powiediec co by było gdyby kazda odcalkowana forma $I_\infty\omega$ była gladka.

Bibliografia

- [Weber] Andrzej Weber, An isomorphism from intersection homology to L_p -cohomology, Forum Mathematicum, de Gruyer, 1995.
- [Cheeger] Jeff Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. of Symp. in Pure Math. vol.36,
- [Duszenko] , Kamil Duszenko, Formy różniczkowe, notatka
- [Kirwan] Frances Kirwan, Jonathan Woolf, An Introduction to Intersection Homology Theory, Taylor & Francis, LLC.
- [Bott] Raou Bott, Differetial forms in algebraic topology, Springer Verlag, 1982.
- [Youssin] Boris Youssin, L_p cohomology of cones and horns J. Differential Geometry, Volume 39, Number 3, 1994.
- [Lee] Lee, Introduction to Smooth Manifolds
- [Ducret] Stephen Ducret, $L_{q,p}$ -Cohomology of Riemannian Manifolds and Simplical Complexes of Bounded Geometry, Ecole Polytechnique Federale de Lausanne, Doctor Thesis, Lausanne, 2009