Deterministic Finite State Automata

Finite State Automata: TM without a tape

A deterministic finite state automate DFSA is (Σ, Q, δ, F) $\delta: Q \times \Sigma \to Q$ $F \subset Q$ are the accept states

The DFSA accepts if when it finishes reading the input, it is an accepting is state. Otherwise reject. ## Ex L = binary numbers that are divisible by 8, noo leading zeros $\Sigma = \{0, 1\}$

q0: If 0, go to q1, else q3 q1: If end accept, otherwise go q2 (reject) q2: Stay q2, if end reject q3: Make sure ends with 3 0's on q6 to accept basically

Compliments

If L can be decided by DFSA A then \bar{L} can be decided by a DFSA \bar{A} .

 \bar{A} has same Σ, δ, Q as A. But $F_{\bar{A}} = Q - F_A$

In other words, if we end on any state that would accept on A, we reject, otherwise accept.

Union

The union of 2 decidable by DFSA languages is also decidable by DFSA. Let L_1 be decimal numbers divisble by 3 Let L_2 be decimal number with even number of 0's Let $L_3 = L_1 \cup L_2$ L_3 states are $Q_3 = Q_1 \times Q_2$. That is the cross product of the states.

Regular languages

A language L is regular if it can be decided by a DFSA

Theorem

Regular languages are closed under compliment, union, conccatenation, "star" operations

Proof later

Regular Expressions

- ϵ is a regular expression
- $a, a \in \Sigma$ is a regular expression
- $x \cup y$ where x + y are regular expression
- $x \times y$ where x, y are regular expressions (concatenation)
- x* (star operator is repeat 0 or more times) also reg ex

Note ϵ means move without reading the characters

Ex:

A reg ex for binary numbers devisable by 8 (no leading 0's) R = 0 + 1(0 + 1) * 000 # #Theorem A language is regular iff it can be described by a regular expression

Proof

Given a REG EX, build a FSA

- $\epsilon : \delta(q_0, \epsilon) = \text{accept}$
- $a:\delta(q_0,a)=\text{accept}$
- $x \cup y$ assume you have a machine that accepts x and y, run in parallel and accept if one of them accepts
- xy assume you have a machine that accepts x and y, run sequentially and accept if both of them accepts
- x* assume you have a machine that accepts x, we ϵ transition to accept or into our machine. If machine accepts we ϵ to accept. From accept we can ϵ to q_0

Given a FSA, build a REGEX

Repeateedly replace single states with "guarenteed" transitions.

Instead of using single characters for each transition we create REG EX for each transition.

Non Deterministic Finite State Automata

NFSA is
$$(\Sigma, Q, \delta, F)$$

$$\delta:Q\times\Sigma\to P(Q)$$

If there is a choice that will lead to the machine accepting the input the NFSA will make that choice otherwise it chooses at random.

Theorem

Given a NFSA N then there exists a determinstic FSA M that accepts the same language

Proof

$$N=(\Sigma_N,Q_N,\delta_N,F_N)$$

For M:

- $\Sigma_M = \Sigma_N$
- $q_{0M} = \{q_{0N}\}$ $Q_M = P(Q_N)$
- $\delta_M(q_A,\sigma)=q_B$

$$-\ q_B = \{q_{yN} | \delta_N(q_x,x) = q_{yN} \quad \text{for} \quad q_x \in A\}$$

$$\bullet \ \ F_M = \{q_A | \exists q_x \in F_N, q_x \in A\}$$

Regular Languages

All finite languages are regular because we can create a FSA that has all strings hardocded

If $s \in L, |s| > |Q|$ then some state will be repeated.

The Pumping Lemma

If L is a regular language, then there exists a positive integer p such that for all strings in L with |s| > p then s can be divided into s = xyz such that:

- $|xy| \le p$ |y| > 0

Then $xy^kz \in L$ for all $k \in \mathbb{N}$

In other words, we know the string length is larger than the number of states so we have a looping state. So the prefix (x) + loop (y) must be less than or equal to number of states $(z \ge 0)$. Additionally the looping portion must be non empty (y > 0).

EX

Show $L = \{a^n b^m c^{n+m}\}$ is not regular by contradicting the pumping lemma

Proof

Assume L is regular, there exists a p.

Let
$$s = a^p b c^{p+1} = xyz$$

xy is all a's

What is the string xy^2z ? -> $a^{p+|y|}bc^{p+1}$ If $xy^2z\in L$ then p+|y|+1=p+1 \rightarrow |y|=0contradiction!