TBM[™] Frameless Motor Selection Guide

KOLLMORGEN

Because Motion Matters™

Because Motion Matters™

Table of Contents

TBM™ Series Frameless Motor	3
TBM(S)™ 60 Series Motor	
TBM(S) 60 Outline Drawings	4
TBM(S) 60 Performance Data and Parameters	5
TBM(S) 60 Performance Curves	6
TBM(S)™ 76 Series Motor	
TBM(S) 76 Outline Drawings	8
TBM(S) 76 Performance Data and Parameters	9
TBM(S) 76 Performance Curves	10
TBM(S) [™] 129 Series Motor	
TBM(S) 129 Outline Drawings	12
TBM(S) 129 Performance Data and Parameters	13
TBM(S) 129 Performance Curves	14
Connection Diagrams	16
Model Nomenclature	17
Available TBM(S) Modifications	17

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we clear obstacles in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen offers complete solutions as well as motion subsystems that combine programming software, engineering services and best-in-class motion components.

Global Footprint

With direct sales, engineering support, manufacturing facilities, and distributors spanning the Americas, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Fortive. A key driver in the growth of all Fortive divisions is the Fortive Business System, which relies on the principle of "kaizen" — or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Kollmorgen: Your partner. In Motion.

TBM™ Series Frameless Motor

The TBM frameless motor is a new series of direct drive torque motors designed for applications that require high power in a small, compact form factor with minimized weight and inertia.

Typical applications include robotic joints, weapon stations, sensor gimbals, sight systems, UAV propulsion and guidance, as well as many others.

TBM(S) Product Features

- 3 frame sizes ranging from 60mm (2.36 inches) up to 129mm (5.08 inches)
- 3 stacks lengths per frame
- 2 standard winding options per frame
- Latching Hall Effects (pre-aligned / factory installed)
- Low Cogging designs
- Stainless Steel Yokes for maximum corrosion protection
- RoHS Compliant
- Banded Rotors
- Laser Marked Armatures

For non-standard requests Kollmorgen provides a variety of standard options and configurations.

If higher levels of customization are required, contact Kollmorgen to help us understand exactly what you need.

TBM 60 Series Outline Drawings

TBM 60 5.08[.200] WINDING MAX. 2 PL -- "A" --STATOR $0.25~X~45^{\circ}$ [0.010] 2 PL Ø 59.06[2.325] MAX. 2 PL "B" — ROTOR Ø 28.70±.0127 Ø 57.78[2.275] [1.130±.0005] WINDING Ø 39.37 [1.550] MAX.2.PL WINDING // 0.10 [0.004] A MIN. 2 PL (2) $\emptyset \stackrel{60.35}{_{60.30}} \stackrel{[2.376]}{_{[2.374]}}$ -A-

TBMS 60

0.89 [.035] MTG. REQ'T.

MOTOR LEADS:

#20 AWG, TEFLON® COATED, PER MIL-W-22759/11 3 LEADS - 400 [15.75] MIN. LONG EACH 1-RED, 1-WHITE, & 1-BLACK MIN. MOTOR LEAD BEND RADIUS 7.62 [0.30]

SENSOR LEADS:

#26 AWG, TYPE "ET", TEFLON® COATED, PER MIL-W-16878 5 LEADS 400 [15.75] MIN. LONG EACH 1-BLUE, 1-BROWN, 1-GREEN, 1-ORANGE, & 1-YELLOW MIN. SENSOR LEAD BEND RADIUS 3.90 [0.15]

- 1. All dimensions are in mm [inches]
- 2. Motor supplied as two separate components: ①armature & sensor assembly and ②field assembly

MODEL NUMBER	"A" mm [inch]	"B" mm [inch]
TBM(S)-6013	12.70 ±0.25 [0.500 ±0.01]	16.76 [0.660]
TBM(S)-6025	25.40 ±0.25 [1.000 ±0.01]	29.46 [1.160]
TBM(S)-6051	50.80 ±0.25 [2.000 ±0.01]	54.86 [2.160]

TBM 60 Series Performance Data

TBM(S) 60 Series Performance Data and Motor Parameters

Motor Parameter	Symbol	Units	TOL	TBM(S)-6013-X		TBM(S)-6025-X		TBM(S)-6051-X	
Willow Farailletei	Syllibol	Ullits	IUL	A	В	A	В	A	В
Continuous Stall Torque*	Tc	N-m	NOM	0.415	0.390	0.727	0.694	1.08	0.925
Continuous Stan Torque	10	oz-in	INUIVI	58.8	55.2	103	98.3	153	131
Continuous Current	lc	Adc	NOM	5.51	8.30	5.58	9.33	6.54	9.33
Guittiiuuus Guiteiit	IC	Arms	INOIVI	4.50	6.78	4.56	7.62	5.48	7.62
Peak Stall Torque*	-	N-m		1.39	1.23	2.82	2.56	5.08	3.53
(25°C winding temp)	Тр	oz-in	NOM	197	174	400	363	720	500
D 10		Adc	NONA	19.0	26.9	21.3	33.9	30.0	33.9
Peak Current	lp	Arms	NOM	15.5	22.0	17.4	27.7	24.5	27.7
Rated Cont Power*	P Rated	Watts	NOM	114	103	144	125	159	135
Speed at Rated Power	N Rated	RPM	NOM	4000	3540	2630	2250	2065	1600
. D : VI	Vbus	Vdc	NOM	48.0	24.0	48.0	24.0	48.0	24.0
Design Voltage	Vac	Vrms	NOM	33.9	17.0	33.9	17.0	33.9	17.0
		N-m / Adc		0.079	0.049	0.135	0.078	0.176	0.106
Torque Sensitivity		oz-in / Adc	+/-10%	11.2	7.00	19.1	11.0	24.9	14.9
at Temp*	Kt (hot)	N-m / Arms		0.097	0.061	0.165	0.095	0.215	0.129
		oz-in / Arms	+/-10%	13.7	8.57	23.4	13.5	30.5	18.3
		Vpk / kRPM		8.28	5.18	14.1	8.13	18.4	11.0
Back EMF at Temp*	Kb (hot)	Vrms / kRPM	+/-10%	5.86	3.66	9.99	5.75	13.0	7.81
	Kt (cold)	N-m / Adc	/ 400/	0.087	0.054	0.148	0.085	0.193	0.116
Torque Sensitivity		oz-in / Adc	+/-10%	12.3	7.70	21.0	12.1	27.4	16.4
at 25°C		N-m / Arms	/ 400/	0.107	0.067	0.182	0.105	0.237	0.142
		oz-in / Arms	+/-10%	15.1	9.43	25.7	14.8	33.5	20.1
Back EMF		Vpk / kRPM	. / 100/	9.11	5.69	15.5	8.95	20.3	12.2
DACK EIVIE	Kb (cold)	Vrms/kRPM	+/-10%	6.44	4.03	11.0	6.33	14.3	8.59
Motor Constant at 25°C	Km (cold)	N-m/√watt	+/-10%	0.097	0.091	0.157	0.152	0.230	0.212
IVIULUI GUIISLAIIL AL 20 G		oz-in/√watt	+/-1070	13.7	12.9	22.3	21.5	32.6	30.0
Motor Constant at Temp	Km (hot)	N-m/√watt	+/-10%	0.072	0.068	0.117	0.112	0.164	0.161
iviolor constant at temp	KIII (IIUL)	oz-in/√watt		10.2	9.59	16.5	15.9	23.3	22.7
Resistance at 25°C	Rm	Ohms	+/- 10%	0.804	0.355	0.890	0.318	0.763	0.288
Inductance	Lm	mH	+/- 30%	0.39	0.15	0.60	0.20	0.60	0.22
Inertia*	lm	Kg-m ²		1.41E-05		2.52E-05		4.75E-05	
Пенна	Jm	oz-in-s²		2.00	E-03	3.57E-03		6.72E-03	
Weight*	Wt	grams		22	21	39	18	5	71
vveignt	VVI	OZ		7.	77	14.0		20).1
Max Static Friction	Tf	N-m		0.0)21	0.0	33	0.0	056
IVIAN STATIC FITCHOLL	- 11	oz-in			93	4.6	62		00
Cogging Friction	Tcog	N-m		0.009		0.0			019
(Peak-to-Peak)	1009	oz-in			22	1.71			70
Viscous Damping	Fi	N-m/ kRPM			E-03	5.36			E-02
		oz-in / kRPM		2.88		7.59			62
Thermal Resistance*	TPR	°C / watt			55	3.			72
Number of Poles	Р	-		1	2	1	2	1	2

^{*}Notes

¹⁾ Continuous Stall Torque and Rated Power assume ambient temperature of 25°C

²⁾ Winding temp = 155°C for Kt and Kb hot

³⁾ Inertia and weight assume max thru-bore

⁴⁾ TPR assumes motor is housed and mounted to a 3.5" x 3.5" x 0.25" heat sink or equivalent

⁵⁾ Some Peak and Continuous Torques may be limited by lead wire gauge

TBM 60 Series Performance Curves

TBM 76 Series Outline Drawings

TBM 76

TBMS 76

MOTOR LEADS:

#18 AWG, TEFLON® COATED, PER MIL-W-22759/11 3 LEADS - 400 [15.75] MIN. LONG EACH 1-RED, 1-WHITE, & 1-BLACK MIN. MOTOR LEAD BEND RADIUS 6.90 [0.27]

SENSOR LEADS:

#26 AWG, TYPE "ET", TEFLON® COATED, PER MIL-W-16878 5 LEADS 400 [15.75] MIN. LONG EACH 1-BLUE, 1-BROWN, 1-GREEN, 1-ORANGE, & 1-YELLOW MIN. SENSOR LEAD BEND RADIUS 3.90 [0.15]

- 1. All dimensions are in mm [inches]
- 2. Motor supplied as two separate components: ①armature & sensor assembly and ②field assembly

MODEL NUMBER	"A" mm [inch]	"B" mm [inch]
TBM(S)-7615	15.24 ±0.25 [0.600 ±0.01]	19.30 [0.760]
TBM(S)-7631	30.73 ±0.25 [1.210 ±0.01]	38.40 [1.370]
TBM(S)-7646	46.23 ±0.25 [1.820 ±0.01]	50.29 [1.980]

TBM 76 Series Performance Data

TBM(S) 76 Series Performance Data and Motor Parameters

Motor Parameter	Symbol	Units	TOL	TBM(S)	-7615-X	TBM(S	-7631-X	TBM(S)-7646-X	
Wotor Parameter	Syllibol	Units	TUL	A	В	Α	В	A	В
O (' O) IIT *	-	N-m	NOM	0.939	0.918	1.65	1.64	2.18	2.13
Continuous Stall Torque*	Tc	oz-in	NOM	133	130	234	232	309	302
0 1: 0 1		Adc	NOM	10.5	14.3	10.9	13.0	11.8	14.4
Continuous Current	lc	Arms	NOM	8.57	11.7	8.90	10.6	9.63	11.8
Peak Stall Torque*		N-m		3.04	2.22	5.37	4.60	6.74	5.51
(25°C winding temp)	Тр	oz-in	NOM	430	315	760	652	955	780
		Adc		36.0	36.0	36.0	36.0	36.0	36.0
Peak Current	lp	Arms	NOM	29.4	29.4	29.4	29.4	29.4	29.4
Rated Cont Power*	P Rated	Watts	NOM	258	208	307	190	335	217
Speed at Rated Power	N Rated	RPM	NOM	3930	2560	2300	1210	1850	1025
	Vbus	Vdc	NOM	48.0	24.0	48.0	24.0	48.0	24.0
Design Voltage	Vac	Vrms	NOM	33.9	17.0	33.9	17.0	33.9	17.0
		N-m / Adc		0.093	0.066	0.156	0.130	0.192	0.153
Torque Sensitivity		oz-in / Adc	+/-10%	13.1	9.36	22.1	18.4	27.1	21.7
at Temp*	Kt (hot)	N-m / Arms		0.113	0.081	0.191	0.159	0.235	0.188
αι ισπρ		oz-in / Arms	+/-10%	16.0	11.5	27.1	22.5	33.2	26.6
		Vpk / kRPM		9.69	6.92	16.3	13.6	20.1	16.0
Back EMF at Temp*	Kb (hot)	Vpk / knrivi Vrms / kRPM	+/-10%	6.85	4.89	11.56	9.62	14.2	11.3
	Kt (cold)	N-m / Adc		0.102	0.073	0.172	0.143	0.211	0.169
Torque Sensitivity			oz-in / Adc +/-10%	14.4	10.3	24.3	20.2	29.9	23.9
at 25°C		N-m / Arms		0.125	0.089	0.210	0.175	0.258	0.206
		oz-in / Arms	+/-10%	17.6	12.6	29.8	24.8	36.6	29.2
	Kb (cold)	Vpk / kRPM		10.7	7.61	18.0	15.0	22.1	17.7
Back EMF		Vrms/kRPM	+/-10%	7.53	5.38	12.7	10.6	15.6	12.48
	Km (cold)	N-m/√watt		0.167	0.169	0.272	0.279	0.360	0.341
Motor Constant at 25°C		oz-in/√watt	+/-10%	23.7	23.9	38.5	39.5	51.0	48.2
	м и з	N-m/√watt		0.124	0.121	0.202	0.200	0.252	0.253
Motor Constant at Temp	Km (hot)	oz-in/√watt	+/-10%	17.6	17.1	28.6	28.3	35.6	35.8
Resistance at 25°C	Rm	Ohms	+/- 10%	0.370	0.200	0.398	0.281	0.387	0.245
Inductance	Lm	mH	+/- 30%	0.40	0.20	0.60	0.42	0.63	0.40
		Kg-m²		3.04	E-05	5.64E-05		8.19E-05	
Inertia*	Jm	oz-in-s²		4.31	E-03	7.98E-03		1.16E-02	
\A/ * 1 · ¥	100	grams		43	35	738		10)79
Weight*	Wt	OZ		15	i.3	26.0		38.0	
Man Charle F 1 11	Tr	N-m			132	0.0)50	0.0	068
Max Static Friction	Tf	oz-in		4.4	49	7.	09	9.	70
Cogging Friction	Took	N-m		0.0	113	0.0)17	0.0	020
(Peak-to-Peak)	Tcog	oz-in		1.	79	2.	35	2.	90
Viscous Damping	Fi	N-m/ kRPM		6.05	E-03	1.60	E-02	2.81	E-02
viscous Dailipiliy	ГІ	oz-in / kRPM		8.57	E-01	2.	27	3.	98
Thermal Resistance*	TPR	°C / watt		2.	11	1.	83	1.	62
Number of Poles	Р	-		1	2	1	2	1	2

^{*}Notes

¹⁾ Continuous Stall Torque and Rated Power assume ambient temperature of 25°C

²⁾ Winding temp = 155°C for Kt and Kb hot

³⁾ Inertia and weight assume max thru-bore

⁴⁾ TPR assumes motor is housed and mounted to a 7.0" x 7.5" x 0.375" heat sink or equivalent

⁵⁾ Peak Torques limited by lead wire gauge

TBM 76 Series Performance Curves

TBM 129 Series Outline Drawings

TBM 129

TBMS 129

MOTOR LEADS:

#16 AWG, TEFLON® COATED, PER MIL-W-22759/11 3 LEADS - 400 [15.75] MIN. LONG EACH 1-RED, 1-WHITE, & 1-BLACK MIN. MOTOR LEAD BEND RADIUS 7.62 [0.30]

SENSOR LEADS:

#26 AWG, TYPE "ET", TEFLON® COATED, PER MIL-W-16878 5 LEADS 400 [15.75] MIN. LONG EACH 1-BLUE, 1-BROWN, 1-GREEN, 1-ORANGE, & 1-YELLOW MIN. SENSOR LEAD BEND RADIUS 3.90 [0.15]

- 1. All dimensions are in mm [inches]
- 2. Motor supplied as two separate components: ①armature & sensor assembly and ②field assembly

MODEL NUMBER	"A" mm [inch]	"B" mm [inch]
TBM(S)-12913	13.33 ±0.25 [0.525 ±0.01]	17.40 [0.685]
TBM(S)-12941	41.28 ±0.25 [1.625 ±0.01]	45.35 [1.785]
TBM(S)-12955	54.61 ±0.25 [2.150 ±0.01]	58.67 [2.310]

TBM 129 Series Performance Data

TBM(S) 129 Series Performance Data and Motor Parameters

Motor Parameter	Cumbal	Unito	TOL	TBM(S)	-12913-X	TBM(S)-	-12941-X	TBM(S)	-12955-X
Motor Parameter	Symbol	Units	TUL	A	В	A	В	Α	В
O .: O. II.T *	_	N-m	NOM	2.87	2.89	8.30	7.66	10.4	9.88
Continuous Stall Torque*	Tc	Lb-Ft	NOM	2.12	2.13	6.12	5.65	7.69	7.29
0 .: 0 .		Adc	NONA	12.5	20.8	17.0	18.3	16.3	18.1
Continuous Current	lc	Arms	NOM	10.2	17.0	13.9	14.9	13.3	14.8
Peak Stall Torque*	_	N-m	11014	11.0	7.36	27.1	24.4	36.2	31.0
(25°C winding temp)	Тр	Lb-Ft	NOM	8.12	5.43	20.0	18.0	26.7	22.8
2.10		Adc		57.0	57.0	57.0	57.0	57.0	57.0
Peak Current	lp	Arms	NOM	46.5	46.5	46.5	46.5	46.5	46.5
Rated Cont Power*	P Rated	Watts	NOM	505	505	865	830	920	585
Speed at Rated Power	N Rated	RPM	NOM	2490	2505	1520	580	1190	625
D = = : == \/= t = = =	Vbus	Vdc	NOM	100	48.0	100	48.0	100	48.0
Design Voltage	Vac	Vrms	NOM	70.7	33.9	70.7	33.9	70.7	33.9
		N-m / Adc		0.241	0.145	0.509	0.437	0.666	0.572
Torque Sensitivity		Lb-Ft / Adc	+/-10%	0.178	0.107	0.376	0.322	0.492	0.422
at Temp*	Kt (hot)	N-m / Arms		0.296	0.177	0.624	0.535	0.816	0.701
·		Lb-Ft / Arms	+/-10%	0.218	0.131	0.460	0.394	0.602	0.517
		Vpk / kRPM		25.3	15.2	53.3	45.7	69.8	59.9
Back EMF at Temp*	Kb (hot)	Vrms / kRPM	+/-10%	17.9	10.7	37.7	32.3	49.3	42.4
	Kt (cold)	N-m / Adc	/ 400/	0.265	0.159	0.560	0.480	0.733	0.629
Torque Sensitivity		Lb-Ft / Adc	Lb-Ft / Adc +/-10%	0.196	0.117	0.413	0.354	0.541	0.464
at 25°C		N-m / Arms	. / 100/	0.325	0.195	0.686	0.588	0.898	0.771
		Lb-Ft / Arms	+/-10%	0.240	0.144	0.506	0.434	0.662	0.569
Back EMF	Kb (cold)	Vpk / kRPM	+/-10%	27.8	16.7	58.6	50.3	76.8	65.9
DACK EIVIF		Vrms/kRPM	+/-10%	19.7	11.8	41.5	35.6	54.3	46.6
Motor Constant at 25°C	Km (cold)	N-m/√watt	+/-10%	0.443	0.460	1.12	1.10	1.35	1.33
IVIULUI GUIISLAIIL AL 20 G		Lb-Ft/√watt	+/-10%	0.327	0.339	0.826	0.811	1.00	0.980
Motor Constant at Temp	Km (hot)	N-m/√watt	+/-10%	0.328	0.329	0.831	0.769	1.02	0.968
Motor Constant at Temp	KIII (IIUL)	oz-in/√watt	+/-10 /0	0.242	0.243	0.613	0.567	0.75	0.714
Resistance at 25°C	Rm	Ohms	+/- 10%	0.360	0.129	0.250	0.215	0.286	0.233
Inductance	Lm	mH	+/- 30%	0.60	0.22	0.92	0.68	1.2	0.88
1 ¥		Kg-m ²		2.71	E-04	7.21E-04		9.37E-04	
Inertia*	Jm	Lb-Ft-s ²		2.00	E-04	5.32E-04		6.91E-04	
Weight*	Wt	Kg		1.3	32	3.	17	4.	05
vveignt	VVI	Lbs		2.	90	7.00		9.14	
Max Static Friction	Tf	N-m		0.1	27	0.3	346	0.4	150
IVIAX STATIC FITCHOLL	- 11	Lb-Ft		0.0	938	0.2	255	0.3	332
Cogging Friction	Tcog	N-m		0.0	171	0.2	16	0.2	285
(Peak-to-Peak)	rcog	Lb-Ft		0.0	521	0.1	59		210
Viscous Damping	Fi	N-m/ kRPM		4.24	E-02	2.71	E-01	4.06	E-01
		Lb-Ft / kRPM		3.12		0.20		0.30	
Thermal Resistance*	TPR	°C / watt		1.55		1.20			14
Number of Poles	Р	-		1	2	1	2	1	2

^{*}Notes

¹⁾ Continuous Stall Torque and Rated Power assume ambient temperature of 25°C

²⁾ Winding temp = 155°C for Kt and Kb hot

³⁾ Inertia and weight assume max thru-bore

⁴⁾ TPR assumes motor is housed and mounted to a 7.0" x 7.5" x 0.375" heat sink or equivalent

⁵⁾ Peak Torques limited by lead wire gauge

▶ TBM 129 Series Performance Curves

Connection Diagrams

Excitation Sequence Table

	Power Connection							
STEP	Phase "A" Red	Phase "B" White	Phase "C" Black					
1	\oplus	Θ						
2	\oplus		Θ					
3		\oplus	Θ					
4	Θ	\oplus						
5	Θ		\oplus					
6		Θ	\oplus					

CW viewed from lead end

Hall Sensor Wiring Diagram

R = 1.5k Ohms (Customer Supplied)

Hall Sensor Output

CW viewed from lead end

V-AB, V-BC, and V-CA is back EMF of motor phases AB, BC and CA respectively, aligned with sensor output as shown for CW rotation only

TBM Frameless Motor Nomenclature

TBM Frameless Motor

Available TBM(S) Modifications

Speed/Torque Changes	Generally Available Capability
 Winding Gauges 	#00 – #48 AWG (includes lead wire change)
 Stack Lengths 	Dependent on frame size
Installation Features	
• Rotor Hub Geometry	Round, hollow, flanged, keyway, flat Thru bores from 5 mm (0.20 in) up to max published (refer to outline drawing)
 Mounting 	Bolt hole diameter and circumferential pattern (customer specified)
• Lead Length	400 mm (15.75 in) min <i>(base model)</i> 150 mm (5.90 in) to 1200 mm (47.0 in) <i>(customer specified)</i>
• Lead Colors	Red / White / Black (base model) Other colors to be specified by customer
• Thermal Sensor	KTY or PTC type devices (embedded in motor slot only)

About Kollmorgen

Since its founding in 1916, Kollmorgen's innovative solutions have brought big ideas to life, kept the world safer, and improved peoples' lives. Today, its world-class knowledge of motion systems and components, industry-leading quality, and deep expertise in linking and integrating standard and custom products continually delivers breakthrough motion solutions that are unmatched in performance, reliability, and ease-of-use. This gives machine builders around the world an irrefutable marketplace advantage and provides their customers with ultimate peace-of-mind.

For assistance with your application needs in North America, contact us at: 540-633-3545, support@kollmorgen.com or visit www.kollmorgen.com for a global contact list.

KOLLMORGEN

Because Motion Matters™

Kollmorgen 203A West Rock Road Radford, VA 24141 USA Phone: 1-540-633-3545 Fax: 1-540-639-4162 Kollmorgen Europe GmbH Pempelfurtstraße 1 40880 Ratingen Germany

Phone: +49 (0) 2102 9394 0 Fax: +49 (0) 2102 9394 3155 Kollmorgen Asia Floor 4, Building 9, No. 518, North Fuquan Road, Changning District, Shanghai 200335, China Phone: + 86 400 661 2802 Kollmorgen Aerospace and Defense 501 West Main Street Radford, VA 24141 USA Phone: 1-540-731-5668 Fax: 1-540-731-5679