

CA4141

Profa. Elisa Y Takada

Aula 2 (parte 1) - 10ago21

Teorema fundamental das sequências

ATENÇÃO Assinar presença no App ou no Portal do aluno

CA4141 – Cálculo IV www.fei.edu.br 1

Definição Seja uma sequência numérica (a_n) .

- a) (a_n) é **limitada** se existir um número M>0 tal que $|a_n|\leq M$ para todo $n\geq 1$.
- b) (a_n) é crescente se $a_n < a_{n+1}$ para todo $n \ge 1$.
- c) (a_n) é decrescente se $a_n > a_{n+1}$ para todo $n \ge 1$.
- c) (a_n) é monótona se a sequência é sempre crescente (ou decrescente).

- (b) crescente

(c) decrescente

Teorema fundamental das sequências

Toda sequência monótona limitada é convergente.

 (a_n) é crescente mas limitada superiomente por M, logo é convergente (não necessariamente para M; pela figura, converge para L).

 (a_n) é decrescente mas limitada inferiomente por M, logo é convergente (não necessariamente para M; pela figura, converge para L).

Exemplo Considere a sequência (a_n) definida pela recorrência $a_1 = \sqrt{2}$ e $a_{n+1} = \sqrt{2 + a_n}$ para $n \ge 1$.

a) Determine os 4 primeiros termos da seguência.

$$n = 1 \implies a_1 = \sqrt{2} \approx 1.4142$$

$$n = 2 \implies a_2 = \sqrt{2 + a_1} = \sqrt{2 + \sqrt{2}} \approx 1.8478$$

$$n = 3 \implies a_3 = \sqrt{2 + a_2} = \sqrt{2 + \sqrt{2 + \sqrt{2}}} \approx 1.9616$$

$$n = 4 \implies a_4 = \sqrt{2 + a_3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}} \approx 1.9904$$

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2} + \cdots}}} \implies ?$$

b) Supondo que (a_n) é crescente e limitada, pelo teorema fundamental a sequência é convergente. Calcule seu limite.

$$\lim_{n \to \infty} a_n = A = ?$$

$$a_{n+1} = \sqrt{2 + a_n} \Longrightarrow \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2 + a_n}$$

$$\lim_{n \to \infty} a_{n+1} = \sqrt{2 + \lim_{n \to \infty} a_n}$$

$$\lim_{n \to \infty} a_{n+1} = \sqrt{2 + A} \Longrightarrow A = \sqrt{2 + A}$$

$$A^2 = 2 + A$$

$$A^2 - A - 2 = 0$$

$$A = 2 \lor A = -1$$

Resposta A sequência converge para A=2

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2} + \dots}}} = 2$$

Princípio da indução finita (PIF)

Dada uma afirmativa S_n sobre um número natural n.

Passo 1 Provar que S_1 é verdadeira.

Passo 2 Supor que S_n é válida e provar que S_{n+1} é verdadeira.

Passo 3 Concluir, pelo PIF, que S_n é válida para todo n.

Exemplo Seja (a_n) a sequência tal que $a_1 = \sqrt{2}$ e $a_{n+1} = \sqrt{2 + a_n}$ para $n \ge 1$.

a) Provar, pelo PIF, que $a_n < 2$ para $n \ge 1$.

Hipótese de indução S_n : $a_n < 2, \forall n \ge 1$

Passo 1 S_1 é verdadeira pois $a_1 = \sqrt{2} \approx 1.41 < 2$.

Passo 2 Supor que S_n é válida, isto é, $a_n < 2$.

Rascunho S_{n+1} é válida, então $a_{n+1} < 2$.

$$a_n < 2 \implies 2 + a_n < 2 + 2 \implies \sqrt{2 + a_n} < \sqrt{4}$$

$$\therefore a_{n+1} < 2$$

Passo 3 Concluímos, pelo PIF, que $a_n < 2$ para todo n.

Exemplo (continuação) $a_1 = \sqrt{2}$ e $a_{n+1} = \sqrt{2 + a_n}$ para $n \ge 1$.

b) Provar, pelo PIF, que $a_n < a_{n+1}$ para $n \ge 1 \hspace{0.1cm}$ (isto é, é crescente)

Hipótese de indução
$$S_n$$
: $a_n < a_{n+1}, \forall n \ge 1$

Passo 1 Como
$$2 < 2 + \sqrt{2}$$
, temos $\sqrt{2} < \sqrt{2 + \sqrt{2}}$, ou seja, $a_1 < a_2$.

Passo 2 Supor que S_n é válida, isto é, $a_n < a_{n+1}$.

Rascunho S_{n+1} é válida, então $a_{n+1} < a_{n+2}$.

$$a_n < a_{n+1} \implies 2 + a_n < 2 + a_{n+1} \implies \sqrt{2 + a_n} < \sqrt{2 + a_{n+1}}$$

$$\therefore a_{n+1} < a_{n+2}$$

Passo 3 Concluímos, pelo PIF, que $a_n < a_{n+1}$ para todo n.

Teorema do sanduíche (ou do confronto)

Se $\lim_{n \to \infty} a_n = L$ e $\lim_{n \to \infty} b_n = L$ e, a partir de um índice n, tem-se $a_n \le c_n \le b_n$, então $\lim_{n \to \infty} c_n = L$.

Exercício Calcule o limite de $a_n = \frac{\sin n}{n}$ para $n \longrightarrow \infty$, quando possível, e decida se a sequência (a_n) converge ou diverge.

$$\lim_{n \to \infty} \frac{\sin n}{n} = ?$$

rascunho $-1 \le \sin n \le 1$ $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$

Como
$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$$
 para $n \ge 1$ e
$$\lim_{n \to \infty} -\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

pelo teorema do sanduíche, temos que

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$

Resposta
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$

Exercício Calcule o limite de a_n para $n \longrightarrow \infty$, quando possível, e decida se a sequência (a_n) converge ou diverge.

$$a) a_n = \frac{n^4}{n^3 - 2n}$$

b)
$$a_n = e^{\frac{1}{n}}$$

c)
$$a_n = 3^n 7^{-n}$$

$$d) a_n = \sqrt{\frac{n+1}{9n+1}}$$

$$e) a_n = \frac{4\sqrt[3]{n}}{2 + \sqrt{n}}$$

$$f) a_n = \frac{\cos^2 n}{n}$$

$$g) a_n = \frac{(-1)^n}{n}$$

Exercício Considere a sequência (a_n) dada por recorrência $a_1=1$ e $a_{n+1}=4-a_n$ para $n\geq 1$.

- a) Escrever os 5 primeiros termos da sequência e decidir se a sequência converge ou diverge.
- b) O que se conclui sobre a convergência se $a_1=2$?

Exercício Considere a sequência (a_n) dada por recorrência $a_1=2$ e $a_{n+1}=\frac{a_n+6}{2}$ para $n\geq 1$.

- a) Prove, pelo PIF, que a sequência dada satisfaz $a_n < 6$ para todo $n \ge 1$.
- b) Prove, pelo PIF, que a sequência dada satisfaz é crescente, isto é, $a_n < a_{n+1}$ para todo $n \ge 1$.
- c) Aplicar o teorema fundamental das sequências e calcular o limite de a_n para $n \longrightarrow \infty$.

Exercício (resolução) Considere a sequência (a_n) dada por recorrência $a_1=2$ e $a_{n+1}=\frac{a_n+6}{2}$ para $n\geq 1$.

a) Prove, pelo PIF, que a sequência dada satisfaz $a_n < 6$ para todo $n \ge 1$.

Hipótese de indução S_n : $a_n < 6, n \ge 1$

Passo 1 S_1 é verdadeira pois S_1 : $a_1 = 2 < 6$.

Passo 2 Supor que S_n é válida, isto é, $a_n < 6$ e provar que S_{n+1} é válida.

Rascunho S_{n+1} é válida, então $a_{n+1} < 6$.

$$a_n < 6 \implies a_n + 6 < 6 + 6 \implies \frac{a_n + 6}{2} < \frac{12}{2} \implies \frac{a_n + 6}{2} < 6$$

$$\therefore a_{n+1} < 6$$

Passo 3 Concluímos, pelo PIF, que $a_n < 6$ para todo n.