Finding Matchings in the Semi-Streaming Model

Kheeran Naidu

kn16063@bristol.ac.uk

Joint work with Dr Christian Konrad

Overview

Motivation

2 Research

Overview

Motivation

2 Research

Lectures

Rooms

 l_1

 r_1

 l_2

 r_2

(I₃)

 r_3

 $\left(I_{4}\right)$

 $\left(r_{4}\right)$

Maximal Matching

Maximum Matching

Bipartite Graph G = (L, R, E):

• Maximal & Maximum Matchings

Bipartite Graph G = (L, R, E):

- Maximal & Maximum Matchings
- |L| = |R| = n vertices
- $|E| \le n^2$ edges, $O(n^2)$

Bipartite Graph G = (L, R, E):

- Maximal & Maximum Matchings
- |L| = |R| = n vertices
- $|E| \le n^2$ edges, $O(n^2)$

Other examples: ride hailing, online advertising, etc.

Classic Algorithms

Finding maximum matchings:

- Edmonds-Karp algorithm
- Dinitz's algorithm
- Hopcroft-Karp algorithm

Classic Algorithms

Finding maximum matchings:

- Edmonds-Karp algorithm
- Dinitz's algorithm
- Hopcroft-Karp algorithm

Limitation: assumes **random access** to the edges of the graph

Random Access Memory (RAM) is expensive. Typically 16GB of RAM in a computer.

Feigenbaum et al. [ICALP04]:

- Only allows **sequential access** to the edges of the graph.
- Algorithms with memory $O(n \text{ polylog } n) = O(n (\log n)^c)$.

Feigenbaum et al. [ICALP04]:

- Only allows **sequential access** to the edges of the graph.
- Algorithms with memory $O(n \text{ polylog } n) = O(n (\log n)^c)$.

Feigenbaum et al. [ICALP04]:

- Only allows sequential access to the edges of the graph.
- Algorithms with memory $O(n \text{ polylog } n) = O(n (\log n)^c)$.

Example: For a dense graph taking 1TB of memory, a semi-streaming algorithm is allowed about 1GB of memory.

Feigenbaum et al. [ICALP04]:

- Only allows sequential access to the edges of the graph.
- Algorithms with memory $O(n \text{ polylog } n) = O(n (\log n)^c)$.
- Ideally with few passes of the sequence of edges (stream).

Example: For a dense graph taking 1TB of memory, a semi-streaming algorithm is allowed about 1GB of memory.

Overview

Motivation

2 Research

One-Pass Algorithm

A simple GREEDY algorithm is the best known algorithm:

- finds a maximal matching
- is always at least 0.5× the size of the maximum matching
- 0.5-approximation

Two-Pass Algorithm

Class of algorithms:

- (first pass) finds a maximal matching *M* using GREEDY;
- (second pass) increases the size of the matching *M*.

Two-Pass Algorithm

Class of algorithms:

- (first pass) finds a maximal matching *M* using GREEDY;
- (second pass) increases the size of the matching *M*.

Two-Pass Algorithm

Class of algorithms:

- (first pass) finds a maximal matching M using GREEDY;
- (second pass) increases the size of the matching *M*.

Our Work

Algorithmic: 0.585-approximation Impossibility: 0.667-approximation

Summary

	Algorithmic	Impossibility
one-pass	0.5 [folklore] (Greedy)	0.667 [SODA12] 0.632 [SODA13]
		0.591 [SODA21]
two-pass	0.519 [APPROX12]	
	0.563 [APPROX17]	
	0.583 [ICDMW16]	$\frac{2}{3} \approx 0.667^{1}$
	0.585 [MFCS18]	
	$2-\sqrt{2}\approx 0.585$	

 $^{^{1}}$ where the first pass runs $\mathrm{GREEDY},$ i.e., finds at least a 0.5-approximation.

Thank You