ELABORAZIONE NUMERICA DEI SEGNALI

DIGITALIZZAZIONE DEI SEGNALI

DIGITALIZZAZIONE DEI SEGNALI

Conversione analogico - digitale

Due operazioni:

Campionamento:

in teoria può non introdurre distorsione sul segnale

Quantizzazione:

introduce comunque un errore (errore di quantizzazione)

L'elaborazione numerica dei segnali consiste nell'applicare una sequenza opportuna di operazioni aritmetiche o logiche (algoritmo) sui numeri che rappresentano i valori x(nT)

Vantaggi

• Flessibilità:

estesa gamma di operazioni e facilità di memorizzazione di numeri (nuove possibilità di elaborazione, es. FFT,...); riprogrammabilità.

• Precisione:

aumenta con il numero di bit usati per la rappresentazione dei numeri

Riproducibilità:
 migliore che in realizzazioni analogiche

Realizzazioni circuitali:

VLSI (Very Large Scale Integration) sia con logica dedicata (hardware dedicato) sia con logica programmabile (DSP)

• Compatibilità:

maggiore con i sistemi già numerici (es. comunicazioni numeriche, dati,...)

 Assenza di invecchiamento dei componenti e ridotti effetti termici

Svantaggi

 Velocità di elaborazione:
 limitata dalla complessità algoritmica e dalla tecnologia

Consumi di potenza
 (che possono essere ridotti con opportuni accorgimenti)

CAMPIONAMENTO IDEALE

Campionamento ideale

Ideale:

tempo istantaneo di chiusura dell'interruttore con passo di campionamento T (frequenza di campionamento f_c)

Relazioni tempo-frequenza (Trasformata di Fourier)

segnale continuo

$$X_{a}(f) = \int_{-\infty}^{+\infty} x_{a}(t) e^{-j2\pi ft} dt$$
 spettro
 $(T.F. directa)$
 $x_{a}(t) = \int_{-\infty}^{+\infty} X_{a}(f) e^{j2\pi ft} df$ (T.F. inversa)

Segnale discreto

$$X_{c}(f) = \sum_{n=-\infty}^{+\infty} x_{c}(nT)e^{-j2\pi f nT}$$

$$= \sum_{n=-\infty}^{+\infty} x_{c}(nT)e^{-j2\pi F n}$$

$$= \sum_{n=-\infty}^{+\infty} x_{c}(F)$$

$$F = fT = \frac{f}{f_c}$$

frequenza normalizzata

T.F. diretta

$$x_{c}(nT) = T \int_{-1/2T}^{1/2T} X_{c}(f) e^{j2\pi f nT} df \qquad T. F. inversa$$

$$= \int_{-1/2T}^{1/2} X_{c}(F) e^{j2\pi F n} dF$$

$$= \int_{-1/2}^{1/2} X_{c}(F) e^{j2\pi F n} dF$$

Osservazioni

- Dimensioni diverse per X_a (f) e X_c(f)
- X_c(f) non sempre esiste (serie non convergente)

Condizione sufficiente:

$$\sum |x_c(nT)| < \infty$$
 (serie assolutamente sommabile)

X_c (f) periodica di periodo f_c = 1/T, ovvero
 X_c (F) periodica di periodo 1

Banda base (o <u>banda utile</u>) del segnale campionato:

per definizione quella compresa fra:

$$|f| \leq \frac{f_c}{2}$$
 ovvero $|F| \leq \frac{1}{2}$

Relazione fra $X_c(f)$ e $X_a(f)$

(Teorema del campionamento)

$$X_{c}(f) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_{a} (f - k f_{c})$$

 $X_c(f)$ somma di un numero infinito di repliche dello spettro di $x_a(t)$, ciascuna traslata di un multiplo della frequenza f_c

N.B.: può presentarsi il fenomeno detto aliasing o sovrapposizione spettrale

Condizione di assenza di distorsioni da aliasing

1) segnale limitato in banda B

$$X_a(f) = 0$$
 per $|f| > B$

2)
$$f_c > 2B$$

(1 e 2) — repliche disgiunte in frequenza

Banda di guardia: f_c - 2B

Se 1 o 2 non sono verificate: parziale o totale sovrapposizione delle repliche (distorsione spettrale dovuta al campionamento)

Esempio

Segue dal teorema del campionamento che campionando a f_c i due segnali continui mostrati:

segnale discreto

E. Del Re – Elaborazione Numerica dei segnali

se

$$f_3 - \frac{f_c}{2} = \frac{f_c}{2} - f_2$$

dopo il campionamento le frequenze f₂ e f₃ sono indistinguibili

Osservazione

tutte le frequenze oltre f_c/2 sono ribaltate nella banda base

Formula di ricostruzione

Per ottenere il segnale continuo dai suoi campioni, nel caso di assenza di distorsione:

$$x_a(t) = \sum_{n=-\infty}^{+\infty} x_c(nT) \frac{\sin \pi f_c(t-nT)}{\pi f_c(t-nT)}$$

che equivale alla realizzazione (ideale):

Osservazione:

i campioni sono una rappresentazione equivalente del segnale analogico

CAMPIONAMENTO DI SEGNALI ALEATORI

- x(t) segnale aleatorio
- x (nT) ha la stessa densità di probabilità di x_a (t)
- segnali stazionari in senso lato

$$E\{x_c(nT)\} = m_x \qquad media$$

 $E\{x_c(nT)x_c(nT + mT)\} = r_x(mT)$

autocorrelazione

 $r_x(mT)$ corrisponde al campionamento della autocorrelazione continua $r(\tau)$ di x(t)

• Spettro di potenza $G_x(f)$ di $x_c(nT)$

 $G_x(f)$ è la Trasformata di Fourier di $r_x(mT)$

Se $G_a(f)$ è lo spettro di potenza di $x_a(t)$, cioè la trasformata di Fourier di $r(\tau)$, si ha

$$G_X(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(f - kf_c)$$

Sequenze stazionarie ed ergodiche

Quelle per cui coincidono le medie temporali e le medie di insieme

Sequenze a spettro bianco

$$r_X(mT) = r_X(0)\delta(mT) \iff G_X(f) = \cos \tan te = r_X(0)$$

Potenza di una sequenza (a media nulla)

$$S_{x} = E\{x_{c}^{2}(nT)\} = r_{x}(0)$$

che coincide con la varianza $\sigma_{\it x}^2$ della sequenza

CAMPIONAMENTO DIRETTO DI SEGNALI IN ALTA FREQUENZA

Possiamo distinguere due casi

ESTENSIONE:

se la banda del segnale $x_a(t)$ è compresa fra

$$k \frac{f_c}{2} \le |f| \le (k+1) \frac{f_c}{2}$$
 k dispari

si ha assenza di sovrapposizione spettrale delle repliche (assenza di distorsione spettrale)

Caso 2

ESTENSIONE:

se la banda del segnale $x_a(t)$ è compresa fra

$$k \frac{f_c}{2} \le |f| \le (k+1) \frac{f_c}{2}$$
 k pari

si ha ancora assenza di distorsione spettrale del segnale campionato

Per questi tipi di segnali si può campionare alla frequenza f_c , senza distorsione

 f_c da scegliere in modo che la banda del segnale sia compresa fra due multipli interi consecutivi di f_c /2

Osservazione

★ Nel caso 1 (*k dispari*) la replica dello spettro in banda base è invertita rispetto a quella nella banda originaria

★ Nel caso 2 (<u>k pari</u>) la replica dello spettro in banda base non è invertita rispetto a quella nella banda originaria

Formula di ricostruzione

$$x_a(t) = \sum_{n=-\infty}^{+\infty} x_c(nT) \frac{sen \pi f_c(t-nT)/2}{\pi f_c(t-nT)/2} \cos 2\pi f_0(t-nT)$$

$$f_0 = \frac{2k+1}{2} \frac{f_c}{2}$$
 frequenza di centro banda

ovvero

filtro passa-banda ideale

$$f_1 = k \frac{f_c}{2}$$

$$f_2 = (k+1) \frac{f_c}{2}$$

CAMPIONAMENTO COMPONENTI I E Q

$$x_a(t) = a(t)\cos 2\pi f_0 t - b(t)\sin 2\pi f_0 t$$

- a(t) componente I
- b(t) componente Q

$$\frac{a(t) \Leftrightarrow A(f)}{b(t) \Leftrightarrow B(f)} \neq 0 \quad per \quad |f| \leq \frac{B}{2}$$

METODO TRADIZIONALE

Problemi:

- filtri identici nei due rami
- moltiplicatori identici (analogici)
- sinusoidi esattamente sfasate di 90° (generate analogicamente)

METODO CON $f_C = 4 f_0$

(MOLTO VANTAGGIOSO!)

$$x_c(nT) = a(nT)\cos 2\pi f_0 \frac{n}{4f_0} - b(nT)\sin 2\pi f_0 \frac{n}{4f_0}$$

$$= a(nT)\cos\frac{n\pi}{2} - b(nT)\sin\frac{n\pi}{2}$$

$$[0,1,0,-1]$$

Realizzazione

Si deve convertire il segnale $x_a(t)$ ad una frequenza intermedia f_0 e poi campionarlo a $f_c = 4f_0$

a(nT) sottosequenza pari a segni alterni b(nT) sottosequenza dispari a segni alterni

<u>Osservazioni</u>

1. I e Q correttamente campionate a

$$f_c' = \frac{1}{2T} = \frac{f_c}{2} = 2f_0 \ge B$$

2. I e Q <u>non allineate</u> temporalmente (<u>ma</u> possono essere allineate con un'operazione di interpolazione)

Generalizzazione (usata in pratica)

$$f_c = 4 f_0 / (2k+1)$$
, k intero
 $f_c > 2B$

CAMPIONAMENTO REALE

Due contributi:

- 1. Aliasing o ripiegamento dello spettro
- 2. Tempo non istantaneo di campionamento (aperture time del S/H)

1. Ripiegamento dello Spettro e Filtro di antialiasing

Il filtro di antialiasing limita la banda del segnale in modo da ridurre la distorsione spettrale Filtro di antialiasing = passa basso non ideale

E. Del Re – Elaborazione Numerica dei segnali

Distorsione armonica introdotta dal campionamento

in generale

$$D_{c}(f) = \frac{1}{T} \sum_{k \neq 0} G_{a}(f - k f_{c}) \qquad |f| < \frac{f_{c}}{2}$$

Se verificate le condizioni 1) e 2) di assenza di sovrapposizione spettrale

$$D_c(f) = 0$$

Altrimenti $D_c(f) \neq 0$

Si può definire un rapporto segnale/distorsione di campionamento

$$\frac{S}{D} = \frac{Potenza\ dell\ segnale\ utile}{Potenza\ della\ distorsione}$$

$$S = \frac{2}{T} \int_{0}^{f_c/2} G_a(f) df$$

$$D = 2 \int_{0}^{f_c/2} D_c(f) df$$

2. Tempo di campionamento non istantaneo

$$= [x_a(t) * p(t)]_{t=nT}$$

Si campiona un segnale con spettro X_a (f) P(f) [invece di X_a (f)]

Conclusione

Il campionamento di un segnale mediante un impulso di durata non nulla può essere trattato come il campionamento ideale del segnale filtrato dallo spettro dell'impulso di campionamento.

- → Conclusione valida per qualsiasi P(f)
- → Se τ << T effetti trascurabili
 Altrimenti se ne deve tenere conto

OSSERVAZIONE

Questo effetto è più sensibile per il campionamento di segnali in alta frequenza.

Nel caso di impulso rettangolare lo spettro del segnale campionato viene distorto da una funzione

$$P(f) = \frac{\operatorname{sen} \pi f \tau}{\pi f \tau}$$

spesso trascurabile se au piccolo.

Altrimenti si compensa la distorsione con un filtro con risposta nella banda utile del segnale del tipo

$$\frac{1}{P(f)} = \frac{\pi f \tau}{\operatorname{sen} \pi f \tau} \quad | f | \leq B$$

a) prima del campionamento (compensazione analogica)

Filtro analogico (può essere incluso nel filtro di antialiasing)

b) dopo il campionamento (compensazione digitale)

E. Del Re – Elaborazione Numerica dei segnali

RICOSTRUZIONE REALE

Conversione digitale - analogica (D/A)

$$q(t) = \int_{0}^{\tau} \frac{1}{\pi f \tau} dt$$

$$Q(f) = \tau \frac{\sin \pi f \tau}{\pi f \tau}$$

Distorsione che può essere compensata come nel caso del campionamento non istantaneo

COMPENSAZIONE ANALOGICA Includere la funzione 1/Q(f) nel filtro analogico passa-basso di ricostruzione

COMPENSAZIONE DIGITALE

Far precedere al blocco formatore di impulsi
(e quindi al convertitore D/A) un filtro numerico
con risposta in frequenza 1/Q(f)

OSSERVAZIONE

Effetto più sensibile per la ricostruzione di segnali in alta frequenza con filtri passa-banda

QUANTIZZAZIONE

Due operazioni:

QUANTIZZAZIONE

Quantizzazione uniforme

q passo di quantizzazione

Errore di quantizzazione

$$e(nT) = x_c(nT) - x(nT)$$

ovvero

$$x_c(nT) = x(nT) + e(nT)$$

$$|e(nT)| \leq \frac{q}{2}$$
 arrotondamento

$$0 \le e(nT) < q$$
 troncamento

Modello dell'errore di quantizzazione

(comunemente assunto)

e(nT):

- **♦** segnale aleatorio
- ♦ indipendente da x_c (nT) e quindi da x(nT)
- densità di probabilità uniformemente distribuita: es.arrotondamento

♦ bianco

valor medio:

0 arrotondamentoq/2 troncamento

varianza:

$$\sigma_{e}^{2} = \int_{-\frac{q}{2}}^{\frac{q}{2}} e^{2} \frac{1}{q} de = \frac{q^{2}}{12}$$

Potenza dell'errore di quantizzazione

$$N_q = \int_{-\frac{1}{2}}^{\frac{1}{2}} G_e(F)dF = \frac{q^2}{12}$$

Densità spettrale di potenza

$$G_{e}(f) = \frac{q^2}{12}$$
 ovvero $G_{e}(F) = \frac{q^2}{12}$

Valutazione critica del modello

 Controesempi banali di non validità del modello

Es.: - segnale costante

- sinusoide con frequenza sottomultipla della frequenza di campionamento
- onda quadra
- molti segnali deterministici ecc.

- Si può supporre valido se il segnale è sufficientemente "complicato": per esempio se da campione a campione attraversa diversi livelli di quantizzazione ed in modo "apparentemente" non deterministico
- Modello adeguato nella maggior parte dei segnali di interesse
- Modello matematicamente trattabile

Rapporto segnale - rumore di quantizzazione

B bit (compreso il segno): 2^B livelli

Dinamica quantizzatore
$$2(\pm 1) \Rightarrow q = \frac{2}{2^{B}}$$

$$SNR_q = \frac{S}{N_q} = \frac{Potenza\ del\ segnale}{Potenza\ err.di\ quantizzazione} =$$

$$= \frac{S}{q^2 / 12} = 3 S 2^{2B}$$

$$(SNR_q)_{dB} = 6.02 B + 4.77 + S_{dB}$$
 (dB)

Ogni bit aggiunto fa aumentare SNR_q di 6.02 dB

Segnale sinusoidale (val. max = 1, S=1/2)

$$(SNR_q)_{dB} = 6.02 B + 1.76$$
 (dB)

Segnale gaussiano

Semi-Dinamica quantizzatore =
$$4 \sigma = 4 \sqrt{S}$$

[Prob{| $x_c(nT)$ | > 4σ } $\approx 6.3 \cdot 10^{-5}$]

$$S = \frac{1}{16}$$

$$(SNR_q)_{dB} = 6.02 B - 7.27$$
 (dB)

Esempi numerici

В	sin <i>usoide</i> (dB)	gaussiano
2	13.8	4.77
4	25.8	16.8
6	37.9	28.9
8	49.9	40.9
10	62.0	52.9
12	74.0	65.0
14	86.0	77.0
16 E. Del Re – Els	98.0 aborazione Numerica dei segnali	89.0

Degradazione del rapporto segnale/rumore

Segnale + rumore

Segnale + rumore + err. quantizz.

Ipotesi: rumore ed errore di quantizzazione incorrelati

$$\frac{1}{\mathsf{SNR}_{uq}} = \frac{1}{\mathsf{SNR}_i} + \frac{1}{\mathsf{SNR}_q}$$

degradazione

$$\Delta_{dB} = (SNR_i)_{dB} - (SNR_{uq})_{dB}$$

- ullet Dati SNR_i e B, si determina Δ_{dB}
- ullet Dati SNR_i e Δ_{dB} si determina SNR_q e quindi B.

Esempio

Segnale con un dato rapporto segnale-rumore. Possiamo considerare SNR_i come "equivalente" ad una ipotetica quantizzazione.

Domanda: quanti bit aggiuntivi rispetto a questa ipotetica quantizzazione devo aggiungere nel quantizzatore per avere una degradazione Δ_{dB} ?

$\Delta_{ extit{dB}}$	bit aggiuntivi "rispetto all'ingresso"		
3	0		
1	+1		
0.27	+2		
0.067	+3		
0.016	+4		
0.004	+5		
0.001	+6		

Osservazione

La codifica dei livelli quantizzati deve essere fatta associando a ciascun livello il numero binario proporzionale al valore (ampiezza) del livello stesso (codifica lineare)

Quantizzazione uniforme + codifica lineare = quantizzazione lineare

L'elaborazione numerica dei segnali richiede una quantizzazione lineare

Per esempio nella codifica CCITT PCM della voce a 64 kbit/s questo non e' vero: la quantizzazione è di tipo logaritmico.

Se si deve elaborare il segnale vocale PCM occorre prima transcodificarlo in una quantizzazione lineare

8 bit PCM ← 13 ÷ 14 bit quant. lineare

Rappresentazioni binarie più usate

- Virgola fissa modulo e segno complemento a 2
- Virgola mobile

Caratteristiche delle rappresentazioni binarie

	Virgola fissa frazioni	Virgola fissa interi	Virgola mobile
Traboccam. con moltiplic.	NO	SI	Improbabile
Traboccam. con somme	SI (spesso ininfluente)	SI	Improbabile
Errore nelle moltiplic.	SI	NO	SI
Errore nelle somme	NO	NO	SI
Dinamica	moderata	moderata	enorme
Realizzazione	semplice	semplice	complessa

Generalmente in virgola fissa si usa la rappresentazione frazionaria perché non ha traboccamento nelle moltiplicazioni