ProbSpace 花粉飛散量予測 3位解法

2023年2月3日 maruyama

目次

- 分析方針を立てるまで
 - トピックを読んで要点を把握する
 - 要点から仮説を立てる
 - 仮説をもとに分析方針を立てる
 - ちゃんとCVしよう……(反省)
- 解法
 - 解法の概要
 - 解法の詳細|特徴抽出
 - 解法の詳細|学習
 - 解法の詳細 | アンサンブル
 - 解法の詳細|後処理

トピックを読んで要点を把握する

参加時点でコンペ開始から3か月が経過しており 議論が進んでいたため、トピックを参考に分析方針を立てていった。

- 花粉飛散量がバーストする時刻がある。
 - <u>"EDA"</u> (@kotrying)
- 乱数シードを変えるだけで大幅に予測精度が変わる。
 - <u>"幸運なseed値?"</u> (@kotrying)
- 2020年は例年より花粉飛散量が少ない。
 - "Model (LightGBM Base)" (@kotrying)
 - <u>"Targetの補正に関して"</u> (@uchs)

宇都宮の花粉飛散量の推移 (kotrying氏のEDAから引用)

要点から仮説を立てる

- 花粉飛散量がバーストする時刻がある。
 - → バースト時刻がMAEを支配しているはず。
- 乱数シードを変えるだけで大幅に予測精度が変わる。
 - "乱数シードを変えるだけで"
 - → 情報が不足している。
 - "大幅に"
 - → バースト時刻の予測を当てたり外している。
 - "予測精度が変わる"
 - → バーストする時刻は当てられているが、花粉飛散量を当てたり外したりしている。
- 2020年は例年より花粉飛散量が少ない。
 - → (素直に「少ないんだなあ」と受け止める)

仮説をもとに分析方針を立てる

- バースト時刻の予測がMAEを支配しているはず。
 - →バーストの予測に注力する。
- バーストする時刻は当てられそうだが、 その時刻の花粉飛散量は情報不足により予測できなさそう。
 - → バーストする時刻を当てるモデルの開発に専念し、 花粉飛散量の予測自体はPublic LBを参考に手動で調整する。
- 2020年は例年より花粉飛散量が少ない。
 - → Public LBを参考に予測結果を低めに手動補正する。

ちゃんとCVしよう……(反省)

Public LBだけを当てに行き過ぎてPrivate LBで撃沈……

目次

- 分析方針を立てるまで
 - トピックを読んで要点を把握する
 - 要点から仮説を立てる
 - 仮説をもとに分析方針を立てる
 - ちゃんとCVしよう……(反省)
- 解法
 - 解法の概要
 - 解法の詳細 | 特徴抽出
 - 解法の詳細|学習
 - 解法の詳細 | アンサンブル
 - 解法の詳細|後処理

解法の概要

- ブートストラップ法で 予測モデルを大量に作り、 予測分布を出す。
- 不確実性の高い時刻を バースト時刻とみなす。 (バースト時刻の予測)
- バースト時刻は予測分布の 上の方の値を予測値とする。 (バースト時刻の花粉飛散量の予測)
- ・非バースト時刻は予測分布の下の方の値を予測値とする。 (2020年の花粉飛散量が 例年より少ない問題への対処)

解法の詳細|特徴抽出

- 降水量・気温・風速
- 降水量・気温・風速の指数移動平均(半減期:1時間・1日・1週間)
- 2週間前の花粉飛散量の指数移動平均(半減期:1週間)
- ・年・月・時間
- 拠点
- ※予測対象拠点の天候情報のみ使用。

解法の詳細|学習

- ・モデル
 - LightGBM
 - 拠点別に予測モデルを作ることはせず、 説明変数に拠点を入れた共通の予測モデルを1つだけ作成。
- 損失関数
 - RMSLE
- ハイパーパラメーター
 - Optunaの LightGBMTunerCV で最適化。

解法の詳細|アンサンブル

- 学習データを2週間ごとのグループに分割し、 グループ単位でランダムにサンプリングしてデータセットを100個作り、 それらのデータセットを用いて予測器を100個作成。
- 100個の予測値の5パーセンタイルを最終的な予測値として出力。
- ただし、花粉飛散量がバーストしていると思われる時刻については、 以下の値を最終的な予測値として出力。
 - ・ 千葉で5パーセンタイルが20を超えている時刻
 - 100個の予測値の最大値
 - ・ 千葉で5パーセンタイルが27を超えている時刻
 - 2019年以前の4月第1週~第2週の花粉飛散量の99パーセンタイル
- ※補正の対象地域や対象時刻はPublic LBのスコアを参考に選定。

解法の詳細|後処理

- 予測値を4の倍数に丸める。
- 負の予測値を0に置換。

予測精度の推移

提出内容	Public LB	Private LB
予測結果の不確実性が高い問題への対処 (バギング)	13.00000	9.65923
2020年の花粉飛散量が例年より少ない問題への対処 (平均値から5パーセンタイルへの変更)	12.10448	8.85130
花粉飛散量バースト補正 (5パーセンタイルが20以上・千葉のみ)	11.03980	8.54399
花粉飛散量バースト補正 (5パーセンタイルが20以上・府中のみ)	12.10448	8.85130
花粉飛散量バースト補正 (5パーセンタイルが20以上・宇都宮のみ)	12.81095	9.40397
花粉飛散量バースト補正 (5パーセンタイルが27以上・千葉のみ)	10.08458	8.19703

まとめ

花粉飛散量予測の以下の問題点を予測分布の推定により解決し、 高精度な花粉飛散量予測 (Public1位、Private3位) を実現した。

- 与えられた天候データだけでは情報が不足している。
 - → 予測の不確実性を考慮するため、ブートストラップ法で予測分布を推定。
- 花粉飛散量がバーストする。
 - → 予測分布をもとにバースト時刻を特定し、予測値を上方修正。
- 2020年の花粉飛散量が例年より少ない。
 - → 予測分布をもとに予測値を下方修正。

所感

CVの設計が難しかった(あまりCVしてないけど……)。

- CVとLBが連動しない。
 - 花粉飛散量がバーストするから。
 - → (対策思いつかず……)
- CVが良くなりすぎる。
 - 時系列データのためi.i.d.が成り立たないから。
 - 対策なしCVで特徴選択すると、 日時を丸暗記する系の特徴量が選ばれがち。
 - → 2週間ごとのグループに切ってGroupKFold
- CVとLBのスケールが合わない。
 - 2020年の花粉飛散量が例年より少ないから。
 - → 各年度の花粉飛散量のスケールを2020年に合わせてからCV (uchs氏の5位解法)

CV V.S. LB (kotrying氏の「幸運なseed値?」から引用)

特徴量重要度 (kotrying氏の「Model (LightGBM Base)」から引用)