CAVITY CARVING OF ATOMIC BELL STATES

Junseok Han

Journal Club 2017/10/10

contents

- Lab info
- Introduction
- Theory
- Experimental set up
- Result
- Conclusion

Cavity Carving of Atomic Bell States

Stephan Welte,* Bastian Hacker, Severin Daiss, Stephan Ritter, and Gerhard Rempe Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany (Received 27 January 2017; published 26 May 2017)

- Prof. Gerhard Rempe
- Honorary Professor at the Technical University of Munich
- Director at Max Planck Institute of Quantum Optics

Research Interest

- Cavity Quantum Electrodynamics
- Quantum Information Processing
- Bose Einstein Condensation (BEC)
- etc.

Introduction

Bell states: maximally entangled states

$$\Psi^{+} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \ \Psi^{-} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$\Phi^{+} = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle), \ \Phi^{-} = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle)$$

- Advantages
 - Fast protocol, time limited only by the duration of the atomic state rotation and the light pulses
 - Focusing and pointing errors of the laser suppressed by the technique
 - No dependence on atomic distance

 $|R\rangle$: right circular polarization couples $|\uparrow\rangle$ and $|e\rangle$ atomic state $|R\rangle|\uparrow\rangle\longleftrightarrow|0\rangle|e\rangle$

 $|L\rangle$: left circular polarization uncoupled reference with the corresponding atomic transition far off resonant

Linear Polarizations

$$|A\rangle = (|R\rangle - i|L\rangle)/\sqrt{2}$$

$$|D\rangle = (|R\rangle + i|L\rangle)/\sqrt{2}$$

General Scheme of Carving

Figure: Husimi Q distribution of states

Why So Efficient?

- Any light that is not matched to the geometric cavity mode will remain in its original polarization mode & create no heralding signal in the detector.
 - → Enhances entangling fidelity significantly and makes the scheme robust against wave front imperfections of the incident light

Carving Schemes

- Double carving
 - Rotate and carve twice to make precise bell states.
 - All four of them can be produced
- Single carving
 - Rotate a little bit and carve once to make bell states approximately
 - $|\Psi^-\rangle$ cannot be produced

- (a)Double-carving scheme
- (b) Single-carving scheme

Carving Schemes

Double-carving scheme

$$|\downarrow\downarrow\rangle \xrightarrow{R_y^{\pi/2}} \frac{1}{2} (|\uparrow\uparrow\rangle - |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle + |\downarrow\downarrow\rangle) \xrightarrow{|A\rangle} \frac{1}{\sqrt{3}} (|\uparrow\uparrow\rangle - |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \xrightarrow{R_y^{\pi}} \frac{1}{\sqrt{3}} (|\downarrow\downarrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

$$|A\rangle \longrightarrow |\Psi^+\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$
with 61% probability
$$(3/4 \text{ for ideal cavity})$$

Single-carving scheme

$$|\downarrow\downarrow\rangle \xrightarrow{R_y^{\alpha}} sin^2 \frac{\alpha}{2} |\uparrow\uparrow\rangle - \frac{1}{2} sin\alpha(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) + cos^2 \frac{\alpha}{2} |\downarrow\downarrow\rangle \xrightarrow{|A\rangle} sin^2 \frac{\alpha}{2} |\uparrow\uparrow\rangle - \frac{1}{2} sin\alpha(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \simeq |\Psi^+\rangle$$

$$\begin{cases} R_{x/y}^{\alpha/2} & |\Phi^-\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle) \\ |\Phi^+\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle) \end{cases}$$

Cavity environment

- Length 486µm mode waist 30µm
- Use asymmetric cavity, transmission 4.0×10^{-6} , 9.2×10^{-5} each
- Coupling factors: $(g, \kappa, \kappa_{out}, \gamma) = 2\pi(7.8, 2.5, 2.3, 3.0)$
- κ : total decay rate, κ_{out} : outcoupling cavity mirror decay rate

Atom: rubidium 87

- Distance: 2 μm~12 μm
- Trapped in 3D blue-detuned optical lattice in cavity mode 780 nm
- $|\uparrow\rangle = |F = 2, m_F = 2\rangle, |\downarrow\rangle = |F = 1, m_F =$

Figure 2: ^{87}Rb D₂ transition hyperfine structure, with frequency splittings between the hyperfine energy levels. The excited-state values are taken from [6], and the ground-state values are from [16]. The approximate Landé g_{ν} -factors for each level are also given, with the corresponding Zeeman splittings between adjacent magnetic exhaustic.

State detection

– Use fluorescene, the protocol consists of two successive measurements on two atoms with an interleaved π -pulse -> able to distinguish between $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$, $|\uparrow\downarrow\rangle/|\downarrow\uparrow\rangle$

Rotation

- Use Raman laser with beam waist 35μm to make initial state to coherent spin state $|\theta, \varphi\rangle = \bigotimes_{j=1}^{2} \left[\cos\left(\frac{\theta}{2}\right)|\uparrow\rangle_{j} - e^{i\phi}\sin\left(\frac{\theta}{2}\right)|\downarrow\rangle_{j}\right]$ where θ and φ can be adjusted by Raman laser power, duration, detuning, phase

Double carving scheme

- Use pulse with average photon number = 0.33
- Distinguish states with parity oscillation
- Rotate state with π/2 and φ in bloch sphere and calculate parity $\Pi(\varphi) = P_{\uparrow\uparrow} + P_{\downarrow\downarrow} (P_{\uparrow\downarrow} + P_{\downarrow\uparrow})$ and investigate its dependence on φ
- Perform experiment scanning ϕ from 0 to 2π in 750 times and measure probabilities
- Experiment repeated at a rate of 1kHz with 180 µs being used for optical pumping and 740 µs for cooling between each experiment

■ Single carving scheme

- Measure fidelity through manipulating α from 0 to 0.63 π
- Average photon number of the pulse is 1.2

Result

Distinguishing states through Parity Oscillation

Husimi Q distribution (= $(3/4\pi\langle\theta,\phi|\rho|\theta,\phi\rangle)$) of $|\Phi^-\rangle$ state in theoretical and experimental data

Result

- Double-carving scheme
 - Measure fidelity $F = \langle \psi | \rho | \psi \rangle$, ($| \psi \rangle$: ideal state) with previously measured probabilities
 - Lifetime measured via measuring the fidelities after various waiting intervals

$ \psi\rangle$	$P_{\uparrow \uparrow}$	$P_{\downarrow\downarrow}$	$P_{\uparrow\downarrow}+P_{\downarrow\uparrow}$	F	$\tau(\mu s)$
$ \Psi^{-}\rangle$	06(2)%	09(2)%	84(2)%	83.4(1.4)%	204(26)
$ \Psi^{+}\rangle$	02(2)%	15(5)%	83(5)%	81.9(2.8)%	134(17)
$ \Phi^{-}\rangle$	40(3)%	54(3)%	06(1)%	89.9(1.7)%	90(19)
$ \Phi^+ angle$	44(5)%	43(5)%	13(4)%	82.4(3.1)%	

Result

■ Single-carving scheme

Conclusion

- Carving is a fast, efficient method to create an entangled state
- Experiment showed that carving is reasonable method to gain high enough fidelity

Q&A