Oscilador armónico cuántico unidimensional en baño térmico

Juan Esteban Aristizabal Zuluaga Instituto de Física, Universidad de Antioquia. (Dated: 31 de marzo de 2020)

Palabras clave:

I. INTRODUCCIÓN

II. CONSIDERACIONES TEÓRICAS Y CÁLCULOS

Consideraremos los sistemas que se traten de tal manera que todas las variables serán adimensionales.

A. Partícula clásica en un potencial armónico

Queremos encontrar la probabilidad (densidad) de que una partícula en un potencial armónico unidimensional y en un baño térmico a temperatura $T=1/\beta$ se encuentre en la posición x. Esta densidad de probabilidad se encuentra al integrar todas las contribuciones de los diferentes momentos de la partícula:

$$\pi(x;\beta) = \int_{-\infty}^{\infty} dp \rho(p,x;\beta), \tag{1}$$

donde $\rho(p,x;\beta)$ es la densidad de probabilidad del ensamble canónico que está dada por

$$\rho(p, x; \beta) = \exp[-\beta H(p, x)]/Z(\beta), \tag{2}$$

donde

$$Z(\beta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dp dx \exp[-\beta H(p, x)]$$
 (3)

es la función de partición canónica. En nuestro caso, para el oscilador armónico tenemos que el hamiltoniano está dado por

$$H(p,x) = \frac{1}{2}p^2 + \frac{1}{2}x^2. \tag{4}$$

La función de partición canónica está dada por

$$Z(\beta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dp dx \exp\left[-\beta \left(\frac{p^2}{2} + \frac{x^2}{2}\right)\right]$$
(5)
$$= \frac{2}{\beta} \int_{-\infty}^{\infty} dy e^{-y^2} \int_{-\infty}^{\infty} dz e^{-z^2}$$

$$= \frac{2\pi}{\beta},$$
(6)

donde usamos los cambios de variable $\frac{\beta}{2}p^2 \to y^2$ $\frac{\beta}{2}x^2 \to z^2$ y el resultdo de la integral gaussiana $\int_{-\infty}^{\infty} dz e^{-z^2} = \sqrt{\pi}$. De este resultado y de la ec.(2) obtenemos para el oscilador armónico

$$\rho(p, x; \beta) = \frac{2\pi}{\beta} \exp\left[-\beta \left(\frac{p^2}{2} + \frac{x^2}{2}\right)\right]. \tag{7}$$
 Usando la ec. (1) en el resultado anterior nos vuelve a

Usando la ec. (1) en el resultado anterior nos vuelve a aparecer una integral gausiana $\int_{-\infty}^{\infty} dp e^{-\beta p^2/2} = \sqrt{\frac{2\pi}{\beta}}$. Simplificando el resultado obtenemos finalmente la densidad de probabilidad en la que estábamos interesados

$$\pi(x;\beta) = \sqrt{\frac{\beta}{2\pi}} e^{-\beta x^2/2}.$$
 (8)

B. Partícula cuántica en un potencial armónico

III. RESULTADOS Y DISCUSIÓN

IV.

AGRADECIMIENTOS

 A. Einstein, Yu. Podolsky, and N. Rosen (EPR), Phys. Rev. 47, 777 (1935).