CubeSat

By
Soufiane BAGHOR <baghorsoufiane@gmail.com>
Jérôme SKODA <contact@jeromeskoda.fr>

Contents

- 1. What is CubeSat?
- 2. On-Board Computer
- 3. Ground station Conclusion

What is CubeSat?

What is CubeSat?

- For space research
- Miniaturized
 - Simple 1U: 10 × 10 × 10 cm
 - Double 2U: 10 × 10 × 20 cm
 - Triple 3U: 10 × 10 × 30 cm
 - Etc 12U: 10 × 10 × 120 cm

- Lowcost
 - Rapid development
 - Modular design
 - COTS hardware

What is CubeSat?

Composition:

- Attitude Determination and Control system (ADCS)
- On-Board Computer
- Communication system
- Power system
- Payload

Figure 2: Interior (QB50 precursor)

On-Board Computer

1

- Controls all subsystems
- Power efficient Microcontroller
 - STM32 family chips
 - ARM cortex M4/M7 processor
- Language: C/C++
- FreeRTOS
 - Taskscheduling
 - Semaphore
 - Queue operations
- Use Finite-state machine
 - Good for debug, test and validation

Figure 3: System Block Diagram

Figure 4: State Transition Diagram

On-Board Computer

- Autonomous system
- Power efficient software coding
 - No unnecessary action in background
 - Handling Sleep Transitions Seamlessly
 - Scale Behavior Based on Machine Power State
- Space contraints
 - Phantom Commands (PC)
 - Random Part Failures (RPF)
 - Single event upset (SEU)

Figure 5: Single event upset

Ground station

1

- Send Telecommand
- Receive telemetry (Whole Orbit Data)
- Language: Java
- Antenna Tracking
 - Change elevation and azimuth position
 - Increased or reducing the frequency (Doppler shift)

Figure 6 :
Antenna bande X
(CNES Toulouse)

Figure 7:
Antenna UHF/VHF
(Ecole Polytechnique)

Ground station

1

- Control command centers
 - Attitude handling

- Satellite tracking
 - Orbit determination

Figure 8: Satellite tracking (Gpredict)

Conclusion

CubeSats facilitate access to space and offer more opportunities to innovation

Figure 9: PlanetLabs CubeSat Constellation

References

- «CubeSat: A new Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation», H Heidt, J Puig-Suari, A Moore, S Nakasuka, R Twiggs, 2000
- «The cubesatapproach to space access», A Toorian, K Diaz, S Lee, 2008
- «Design and Qualification of On-Board Computer for Aalto-1 CubeSat »ElyasRazzaghi,
 2012
- « CubeSatsgetbig», www.thespacereview.com. 2012.
- « Small Spacecraft Technology State of the Art », NASA 2015
- « Satellite communication», Henning Vangli2010

Image

2nd Workshop CubeSat (2017)

Special thanks

Spacelab of IUT de Cachan

Thanks for your keen interest! Any questions?

Contact

Soufiane BAGHOR

baghorsoufiane@gmail.com>
Jérôme SKODA <contact@jeromeskoda.fr>

