Modelagem de Sistemas Dinâmicos - Trabalho Nº2

Leonardo Soares da Costa Tanaka - DRE: 121067652 Engenharia de Controle e Automação/UFRJ Rio de Janeiro, Brasil Junho de 2023

Considerando um motor de corrente contínua (DC) controlado por corrente de armadura com entrada de tensão $V_a(t)$ (V), saída de velocidade angular $\omega_m(t)$ (rad/s), representado pelo circuito abaixo:

Figura 1: Circuito

O motor considerado tem as seguintes características dadas pelo fabricante:

• Resistência de armadura: $R_a=10.6\Omega$

• Indutância de armadura: $L_a = 0.82mH$

• Momento de Inércia do Rotor do Motor: $J_m = 1.16 \cdot 10^{-6} kgm^2$

• Constantes do Motor: $K_m = 0.0502Nm/A, K_e = 0.0502Vs$

Tensão máxima: 15 volts

• Massa do disco de inércia: 0.068kg

• Raio do disco de inércia: 0.0248m

1 Modelagem teórica

Organizando as equações do sistema para obter o diagrama de blocos e a função de transferência. Utilizando a Lei de Kirchhoff das Tensões, Equação do Torque, Lei do Motor e Lei do Gerador. Depois, realizando a Transformada de Laplace das equações:

$$R_{a} \cdot i_{a} + L_{a} \frac{di_{a}}{dt} = V_{a} - e_{c}, \quad J_{m} \frac{d\omega_{m}}{dt} = T_{m}, \quad T_{m} = K_{m} \cdot i_{a}, \quad e_{c} = K_{e} \cdot \omega_{m}$$

$$I_{a}(s) = \frac{1/R_{a}}{\frac{L_{a}}{R_{a}}s + 1} (V_{a}(s) - e_{c}(s)), \quad \Omega(s) = \frac{1}{J_{m}s} T_{m}(s), \quad T_{m}(s) = K_{m} \cdot I_{a}(s), \quad E_{c}(s) = K_{e} \Omega_{m}(s)$$
(1)

1.1. Montando um diagrama de blocos do sistema (Desconsiderando o atrito do sistema). O bloco azul é o subsistema elétrico, o bloco laranja é o subsistema mecânico e os blocos verdes são interligações entre o sistema elétrico e mecânico:

1.2. Calculando a função de transferência do motor G(s) de $V_a(s)$ para $\Omega_m(s)$ (Levando em consideração que é um sistema realimentado):

$$G(s) = \frac{\Omega_m(s)}{V_a(s)} = \frac{\frac{K_m}{R_a \cdot J_m} \frac{1}{s(\frac{L_a}{R_a} s + 1)}}{1 + \frac{K_e \cdot K_m}{R_a \cdot J_m} \frac{1}{s(\frac{L_a}{R_a} s + 1)}} = \frac{k_m}{R_a \cdot J_m \cdot s \cdot (\frac{L_a}{R_a} s + 1) + K_e \cdot K_m} = \frac{\frac{k_m}{J_m \cdot L_a}}{s^2 + \frac{R_a}{L_a} s + \frac{K_e \cdot K_m}{J_m \cdot L_a}}$$
(2)

1.3. Representando o sistema no espaço de estados com a realização canónica controlável:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{K_e \cdot K_m}{J_m \cdot L_a} & -\frac{R_a}{L_a} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} \frac{k_m}{J_m \cdot L_a} & 0 \end{bmatrix}$$
(3)