Исследовать на равномерную сходимость по параметру $y \in \mathbb{R}$ интегралы

$$\int_{0}^{+\infty} e^{-x} \cos(xy) \, dx$$

$$\int_{0}^{+\infty} e^{-xy} \frac{\sin x}{x} dx$$

Для исследования на равномерную сходимость интеграла (1), можно оценить его с помощью критерия Вейерштрасса.

Пусть на множестве $[a;b) \times E$ определена функция $f(x;\alpha)$, такая что при любом $\alpha \in E$ сходится несобственный интеграл $\int_a^b f(x;\alpha) dx$ с особенностью в точке b.

Пусть $\exists g:[a,\ b) \to \mathbb{R}\ \forall x \in [a;b)\ \forall \alpha \in E \mapsto |f(x;\alpha)| \leqslant g(x)$ и интеграл $\int_a^b g(x) dx$ сходится.

Тогда интеграл $\int_a^b f(x;\alpha)dx$ сходится равномерно на E.

Функция $|e^{-x}\cos x\ y| \le e^{-x}$ для всех $x \ge 0$ и $y \in \mathbb{R}$, так как $-1 \le \cos(xy) \le 1$ при любых $\boldsymbol{y} \in \mathbb{R}$ и $x \ge 0$

При этом интеграл $\int_0^{+\infty} e^{-x} dx$ сходится как эталонный.

Таким образом, мы получили сходящийся интеграл с функцией больше, чем функция начального интеграла. Значит, по критерию Вейерштрасса, интеграл (1) сходится равномерно.

В интеграле (2) можно заметить, что при отрицательных значениях у интеграл (2) расходится. Из-за этого данный интеграл не сходится равномерно

$$\lim_{x \to \infty} e^x \frac{\sin x}{x} = \text{ He существует}$$

2

1

Вариант 7 Задача 3

Исследовать на равномерную сходимость по параметру

 $lpha \in [a_0, +\infty)$, $lpha_0 > 0$ интеграл:

$$\int_{0}^{+\infty} e^{-\alpha x^{2}} dx$$

Для исследования на равномерную сходимость интеграла, можно оценить его с помощью критерия Вейерштрасса.

Пусть на множестве $[a;b) \times E$ определена функция $f(x;\alpha)$, такая что при любом $\alpha \in E$ сходится несобственный интеграл $\int_a^b f(x;\alpha) dx$ с особенностью в точке b.

Пусть $\exists g:[a,\ b)\to\mathbb{R}\ \forall x\in[a;b)\ \forall \alpha\in E\mapsto |f(x;\alpha)|\leqslant g(x)$ и интеграл $\int_a^bg(x)dx$ сходится.

Тогда интеграл $\int_a^b f(x;\alpha) dx$ сходится равномерно на E.

Функция $e^{-\alpha x^2} \le e^{-\alpha x}$ при всех $x \ge 0$ и $\alpha > 0$. При этом интеграл $\int_0^{+\infty} e^{-\alpha x} \, dx$ при $\alpha > 0$ сходится как эталонный.

Таким образом, мы получили сходящийся интеграл с функцией больше, чем функция начального интеграла. Значит, по критерию Вейерштрасса, интеграл $\int_0^{+\infty} e^{-\alpha x^2} \, dx$ сходится равномерно.