1 The Embedding Theorem in Hurwitz-Brill-Noether Theory

joint with Kaelin Cook-Powell, Dave Jensen, Eric Larson, and Isabel Vogt.

Definition 1.0.1. $W_d^r(C) = \{L \in \text{Pic}^d(C) \mid h^0(C, L)r + 1\}$ line bundles with enough sections to give nondegenerate map to \mathbb{P}^r of degree d. These fit together to a universal Brill-Noether stack,

$$_{d}^{r}\rightarrow\mathcal{M}_{a}$$

Definition 1.0.2. Let $\rho(g, r, d) = g - (r + 1)(g - d + r)$.

Remark. When we say a "general map" to \mathbb{P}^r we mean a general line bundle in $\frac{r}{d}$.

Theorem 1.0.4 (Eisenbud-Harris). Assume $\rho \geq 0$. If $r \geq 3$ then a general degree d map $C \to \mathbb{P}^r$ is an embedding.

Remark. Also necessary away from,

(a)
$$(g, r, d,) \in \{(0, 1, 1), (0, 2, 2), (1, 2, 3), (3, 2, 4)\}$$

Definition 1.0.5. We say that \mathcal{L} is p-very ample if for all divisors $D \subset C$ of degree p+1,

$$h^0(L(-D)) = h^0(L) - (p+1)$$

Remark. (a) base-point free \iff 0-very ample

(b) very ample \iff 1-very ample.

Remark. Geometrically, this means the span of the image of D is dimension p.

Theorem 1.0.6 (Farkas). A general $L \in_{d}^{r}$ is p-very ample if $r \geq 2p + 1$.

We want to extend this to Hurwitz Brill-Noether Theory,

$$\vec{e} o \mathscr{H}_{k,q}$$

where $\mathscr{H}_{k,q}$ parametrizes degree k genus g covers $C \to \mathbb{P}^1$.

1.1 Hurwitz-Brill-Noether Theory

If $f: C \to \mathbb{P}^1$ has degree k. Then $W_d^r(C)$ is often reducible (meaning for varying over curves of fixed gonality I guess). But we can refine the space as follows. If L is a line bundle on C, then f_*L is a rank k vector bundle so we can decompose it,

$$f_*L = \mathcal{O}(e_1) \oplus \cdots \oplus \mathcal{O}(e_k)$$

with $e_1 \leq \cdots \leq e_k$.

Definition 1.1.1. We say that \vec{e}' specializes \vec{e} if,

$$e_1' + \dots + e_j' \le e_1 + \dots + e_j$$

for all j. Then,

$$W^{\vec{e}}(C) = \{ L \in \text{Pic}(C) \mid f_*L \cong \mathcal{O}(\vec{e}) \text{ or a specialization } \}$$

Proposition 1.1.2. We see,

$$W_d^r(C) = \bigcup_{h^0(\mathcal{O}(\vec{e}) \ge r+1//e_1 + \dots + e_k = d-g+1-k} W^{\vec{e}}(C)$$

Definition 1.1.3. $\rho'(g, \vec{e}) = g - \sum_{i,j} \max\{0, e_i \cdots e_j - 1\}.$

Remark. Given \vec{e} we recover the pair (r, d) as,

$$r = h^0(\mathcal{O}(\vec{e})) - 1$$
 and $d = e_1 + \dots + e_k + g - 1 + k$

Theorem 1.1.4. If $\rho'(g, \vec{e}) \geq 0$ then \vec{e} has a unique irreducible component dominating $\mathcal{H}_{k,g}$. Call it \vec{e} .