Categorical Data Plots

- swarmplot() and stripplot() that show each observation at each level of the categorical variable.
- boxplot() and violinplot() that show an abstract representation of each distribution of observations.
- barplot(), pointplot() and countplot() that apply a statistical estimation to show a measure of Central Tendency and Confidence Interval
- fatorplot() is the most general form of a categorical plot. It can take in a kind parameter to adjust the plot type.

```
In []: import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import pandas as pd
    import warnings
    %matplotlib inline
    # warnings.filterwarnings("ignore")
    sns.set(rc={"figure.figsize": (5, 3)})
    sns.set_style('whitegrid')
```

swarm plot

This plot is a scattered representation of non-overlapping points of the three species of Iris flower with difference in values of their sepal length, sepal width, petal length and petal width.

strip plot

 It displays the distribution of a continuous variable for each category by placing individual data points along a axis.

```
In []: tips = sns.load_dataset("tips")
    sns.stripplot(x=tips["total_bill"], size=4, color="green")

In []: sns.stripplot(x="day", y="total_bill", data=tips,palette='rocket')

In []: sns.stripplot(x="day", y="total_bill", data=tips, jitter=True, hue='sex', pale
    split the dots by category

In []: sns.stripplot(x="day", y="total_bill", data=tips, jitter=True, hue='sex', pale

In []: iris = sns.load_dataset("iris")
    iris = pd.melt(iris, "species", var_name="measurement")
    sns.stripplot(x="measurement", y="value", hue="species",data=iris, palette="ic")
```

box plot()

depicts group of numerical data through their quartiles in Descriptive statistics

```
In [ ]: # Plotting basic Box Plot:
    sns.boxplot(x="day", y="total_bill", data=tips)

In [ ]: sns.boxplot(x='day', y='total_bill', hue='smoker', data=tips, palette='viridis')
    box plot and stripplot together

In [ ]: sns.boxplot(x="day", y="total_bill", data=tips,palette='Set3')
    sns.stripplot(x="day", y="total_bill", data=tips, color='b')
```

violin plot

it combines boxplot and kde

```
In [ ]: # Plotting basic Violin Plot horizontally:
sns.violinplot(x = tips["total_bill"], palette="coolwarm")
```

- thick bar in the centre is the interquartile range
- the thin line represents the confidence interval
- · the white dot is median
- the spread forms the violin shape is kde which shows distribution- wider means higher probability

```
In [ ]: # Loading built-in Tips dataset:
    tips = sns.load_dataset("tips")
    # Draw a vertical violinplot grouped by a categorical variable:
    sns.violinplot(x='day', y='total_bill', data=tips)
```

```
In [ ]: # Draw split violins to compare the across the hue variable:
    sns.violinplot(x='day', y='total_bill', hue='sex', data = tips, palette='muted
    plt.legend()
```

scale on basis of count

```
In [ ]: # Scale the violin width by the number of observations in each bin:
sns.violinplot(x ='day', y='total_bill', hue='sex', data = tips, palette='mute
```

drawing quartiles

```
In [ ]:
sns.violinplot(x='day', y='total_bill', hue='sex', data=tips, inner='quartile'
```

reduce bandwidth to reduce smoothning

```
In [ ]: sns.violinplot(x="day", y="total_bill",data=tips, bw=.2)
```

Bar Plot

```
In [ ]: # Loading built-in Tips dataset:
    titanic = sns.load_dataset("titanic")
    sns.barplot(x="class", y="fare", data=titanic)
    # the lines repesent confidence interval
```

adding standard deviation

```
In [ ]: sns.barplot(x="embark_town", y="age", data=titanic, hue="sex", errorbar="sd",c
```

count plot

A Count Plot can be thought of as a Histogram across a Categorical variable, instead of a Quantitative variable.

```
In [ ]: sns.countplot(x='class', data=titanic)
```

point plot

A point plot represents an estimate of central tendency for a numeric variable by the position of the dot and provides some indication of the uncertainty around that estimate using error bars.

```
In [ ]: sns.pointplot(x="sex", y="survived", hue="class", data=titanic, palette="rocke")
In [ ]:
```