§ 41. ТЕПЛОТА ЗГОРЯННЯ ПАЛИВА. КОЕФІЦІЄНТ КОРИСНОЇ ДІЇ НАГРІВНИКА

Візьміть коробку із сірниками, витягніть один сірник. Перед вами — два холодних твердих тіла (рис. 41.1). Але якщо потерти головку сірника об коробку, то сірник спалахне. Звідки береться ця енергія? Завдяки виконаній роботі? Але ж якщо навіть довго й із зусиллями терти сірник об коробку другим кінцем, стільки тепла не виділиться. Якщо піднести запалений сірник до ввімкненого газового пальника, то миттєво почне виділятись достатньо велика енергія. Звідки з'явилася ця енергія в газі? Відповіді на поставлені запитання ви знайдете в цьому параграфі.

Знайомимося з різними видами палива У житті ми часто маємо потребу збільшити температуру якогось тіла. Так, щоб у кімнаті стало тепліше, слід збільшити температуру води в батареях опалення, щоб приготувати їжу — температуру повітря в духовці. Здавна людство для збільшення температури використовувало енергію, яка виділяється під час хімічної реакції горіння палива.

З курсу хімії ви вже знаєте, що реакція горіння, — а зазвичай це є реакція взаємодії Карбону або Гідрогену з Оксигеном (рис. 41.2), — екзотермічна реакція, тобто реакція, яка відбувається з виділенням теплоти.

Паливом можуть слугувати як природні речовини (кам'яне вугілля, нафта, торф, дрова, природний газ) (рис. 41.3), так і спеціально одержані людиною (гас, бензин,

Рис. 41.1. Незапалений сірник і коробка — два холодних твердих тіла. Але достатньо потерти сірник об коробку — і сірник спалахне

Рис. 41.2. Реакція окиснення Карбону супроводжується виділенням теплоти: $C+O_2 = CO_2+Q$

Рис. 41.3. Дрова — поширене тверде природне паливо

Рис. 41.4. Гас, бензин, дизельне паливо — рідке паливо, одержане людиною

Рис. 41.5. Для сучасної цивілізації паливо є необхідною умовою існування

порох, деревне вугілля, етиловий спирт тощо) (рис. 41.4). Як бачимо, паливо буває mвердим (кам'яне вугілля, торф, дрова, сухий спирт), pidκим (нафта, гас, бензин, дизельне паливо) і rasonodifhum (природний газ, пропан, бутан).

Для сучасної цивілізації паливо— необхідна умова існування. Для роботи транспорту, різних механізмів у промисловості й сільському господарстві, обігрівання житла та готування їжі людина перетворює енергію палива в інші форми (рис. 41.5).

Вводимо поняття питомої теплоти згоряння палива

Різні види палива відрізняються один від одного за теплотворною здатністю. Переконаємось у цьому за допомогою простого досліду. Поставимо на ліву шальку терезів спиртівку, наповнену спиртом. Над спиртівкою підвісимо металеву банку з водою, перед тим вимірявши температуру та об'єм води. Після того як зрівноважимо терези, покладемо на ліву шальку важок масою 1 г. Рівновага терезів порушиться (рис. 41.6, а). Запалимо спиртівку. У міру згоряння спирту маса спиртівки зі спиртом зменшуватиметься, і через якийсь час рівновага терезів відновиться (це означає, що згорів 1 г спирту) (рис. 41.6, б). У цей момент погасимо спиртівку, після чого виміряємо й зафіксуємо температуру води. Повторимо дослід,

наповнивши спиртівку гасом, і переконаємося, що в цьому випадку вода нагріється більше. Це означає, що під час згоряння 1 г гасу виділилося більше енергії, ніж у ході горіння 1 г спирту.

Для кількісної характеристики теплотвірної здатності палива застосовують фізичну величину, яку називають питомою теплотою згоряння палива.

Питома теплота згоряння палива — це фізична величина, яка характеризує певне паливо і чисельно дорівнює кількості теплоти, що виділяється в процесі повного згоряння 1 кг палива.

Питому теплоту згоряння палива позначають символом q та обчислюють за формулою

$$q=\frac{Q}{m}$$

де Q — кількість теплоти, що виділяється в ході повного згоряння палива масою m.

З формули для визначення питомої теплоти згоряння палива дістанемо одиницю цієї

Рис. 41.6. Дослід, який демонструє якісну відмінність різних видів палива

величини в CI — джоуль на кілограм $\left(\frac{A^{m}}{K\Gamma}\right)$.

Питому теплоту згоряння різних видів палива визначають у лабораторних умовах і заносять до таблиць.

Питома теплота згоряння деяких видів палива

Паливо	$q_* = \frac{M \Pi \pi}{\kappa r}$	Паливо	q , $\frac{ ext{MДж}}{ ext{кr}}$
Дрова сухі	10	Дизельне паливо	42
Буре вугілля	12	Природний газ	44
Солома	14	Нафта	44
Торф	15	Бензин	46
Тротил	15	Гас	46
Кам'яне вугілля	27	Пропан	46
Спирт	27	Ацетилен	50
Антрацит	30	Водень	ı 120

Рис. 41.7. Різноманітні нагрівальні пристрої, використовувані людиною в різні часи: примус (a); газова плита (δ); паяльна лампа (ϵ); газовий котел (ϵ).

Знаючи питому теплоту згоряння й масу палива, легко обчислити кількість теплоти, яка виділяється під час повного згоряння цього палива: оскільки $q=\frac{Q}{m}$, то

$$Q = qm$$

Обчислюємо коефіцієнт корисної дії нагрівника Для спалювання палива використовують різні нагрівники:

печі та комини, газові пальники й спиртівки, примуси, паяльні лампи та інше (рис. 41.7).

Тип нагрівника залежить від виду палива, яке в ньому згоряє, і від того, для чого використовують теплоту. Наприклад, якщо потрібно опалювати помешкання, а паливом є газ, то доцільно придбати газовий котел (див. рис. 41.7, г); для фізичних дослідів, під час яких паливом буде спирт, як нагрівник слід обрати спиртівку. Проте навіть за допомогою найсучасніших нагрівників неможливо повністю використати всю енергію, що «накопичена» в паливі. По-перше, жодне паливо не може в реальних умовах згоріти повністю. По-друге, якась частина енергії витрачається марно (наприклад, виноситься з продуктами згоряння, йде на нагрівання навколишнього середовища).

Коефіцієнт корисної дії нагрівника — це фізична величина, яка характеризує ефективність нагрівника й дорівнює відношенню корисно зужитої теплоти до всієї теплоти, яка може бути виділена в процесі повного згоряння палива.

Математично це записують так:

$$\eta = \frac{Q_{\text{top}}}{Q_{\text{mann}}}$$
,

де η — коефіцієнт корисної дії (ККД) нагрівника; $Q_{\text{кор}}$ — корисно зужита теплота; $Q_{\text{повна}}$ — теплота, яка може бути виділена в процесі повного згоряння палива.

Зазвичай ККД подають у відсотках:

$$\eta = \frac{Q_{\text{pop}}}{Q_{\text{max}}} \cdot 100 \%$$

Учимося розв'язувати задачі

Задача. Туристи зупинились на перепочинок біля струмка й вирішили приготувати чай. Яку кількість дров їм треба заготовити, щоб закип'ятити 10 кг води? Вода одержує 15 % енергії, що виділяється під час повного згоряння дров. Температура води в струмку дорівнює 15°C.

Дано:
$$m_{\text{води}} = 10 \text{ кг}$$

$$\eta = 15\% = 0.15$$

$$t_1 = 15 \text{ °C}$$

$$t_2 = 100 \text{ °C}$$

$$c_{\text{води}} = 4200 \frac{\text{Дж}}{\text{кг} \cdot \text{°C}}$$

$$q_{\text{дров}} = 1 \cdot 10^7 \frac{\text{Дж}}{\text{кг}}$$

$$m_{\text{води}} = - ?$$

Аналіз фізичної проблеми, пошук математичної моделі, розв'язання та аналіз результатів

Для розв'язання задачі скористаємося формулою для обчислення ККД нагрівника:

$$\eta = \frac{Q_{\text{sop}}}{Q_{\text{noses}}} . \tag{1}$$

Кількість теплоти, яка виділяється під час повного згоряння дров:

$$Q_{\text{nonea}} = q_{\text{apos}} m_{\text{apos}} \,. \tag{2}$$

Кількість теплоти, яку необхідно витратити на нагрівання води:

$$Q_{\text{kop}} = c_{\text{mons}} m_{\text{mons}} \left(t_2 - t_1 \right). \tag{3}$$

Підставивши формули (3) і (2) у формулу (1), дістанемо:

$$\begin{split} \eta = & \frac{c_{\text{\tiny MODE}} m_{\text{\tiny MODE}} \left(t_2 - t_1\right)}{q_{\text{\tiny ADOS}} m_{\text{\tiny ADOS}}} \Longrightarrow & \eta q_{\text{\tiny ADOS}} m_{\text{\tiny ADOS}} = c_{\text{\tiny BODE}} m_{\text{\tiny MODE}} \left(t_2 - t_1\right) \Longrightarrow \\ & \Longrightarrow m_{\text{\tiny ADOS}} = \frac{c_{\text{\tiny SODS}} m_{\text{\tiny MODE}} \left(t_2 - t_1\right)}{\eta q_{\text{\tiny ADOS}}} \,, \end{split}$$

При нормальному атмосферному тиску вода кипить за температури 100°С. Питому теплоємність води й питому теплоту згоряння дров знайдемо в таблицях (див. с. 194 і с. 205).

Визначимо значення шуканої величини:

$$[m] = \left(\frac{\mathcal{A}_{m}}{\kappa_{\Gamma} \cdot {}^{\circ}C} \cdot \kappa_{\Gamma} \cdot {}^{\circ}C\right) : \frac{\mathcal{A}_{m}}{\kappa_{\Gamma}} = \frac{\mathcal{A}_{m \cdot \kappa_{\Gamma}}}{\mathcal{A}_{m}} = \kappa_{\Gamma}.$$

$${m} = \frac{4200 \cdot 10 \cdot (10 - 15)}{0.15 \cdot 10^7} = 2.38; m = 2.38 \text{ kg}.$$

Проаналізуємо результат. Щоб нагріти воду, туристам потрібно 2,38 кг сухих дров. Для сухих дров результат є цілком реальним.

Відповідь: необхідно заготовити 2,38 кг дров.

Підбиваємо підсумки Хімічна реакція горіння палива— екзотермічна, тобто відбувається з виділенням теплоти.

Кількість теплоти, яка виділяється під час повного згоряння палива, обчислюють за формулою Q=qm, де q — питома теплота згоряння палива; m — маса згорілого палива.

Питома теплота згоряння палива дорівнює кількості теплоти, яка виділяється в процесі повного згоряння 1 кг палива. Ця фізична величина є характеристикою теплотворної здатності палива й вимірюється в джоулях на кілограм $\left(\frac{Дж}{кr}\right)$.

Згоряння палива відбувається в нагрівниках. ККД нагрівника ка позначають символом η і обчислюють за формулою $\eta = \frac{Q_{\text{кор}}}{Q_{\text{повна}}}$. Зазвичай ККД подають у відсотках: $\eta = \frac{Q_{\text{кор}}}{Q_{\text{повна}}} \cdot 100 \,\%$.

Контрольні запитання

1. Які види палива ви знаєте? 2. Опишіть дослід, який підтверджує, що під час горіння різних видів палива виділяється різна кількість теплоти. 3. Яким є фізичний зміст питомої теплоти згоряння палива? У яких одиницях її вимірюють? 4. Як обчислити кількість теплоти, що виділяється в процесі повного згоряння палива? 5. Дайте означення ККД нагрівника.

Вправа № 41

?

- 1. Питома теплота згоряння дров $q=10\,$ МДж/кг. Що це означає?
- 2. Питома теплота згоряння пороху набагато менша за питому теплоту згоряння дров. Чому ж якщо у вас у руках горить сірник, то це є досить безпечним, а коли спалахує така сама маса пороху, то можна серйозно постраждати?
- 3. Яка кількість теплоти виділиться під час повного згоряння кам'яного вугілля масою 10 кг?
- 4. У процесі повного згоряння гасу виділилося 92 кДж теплоти. Якою була маса згорілого гасу?
- На спиртівці нагріли 300 г води від 15 до 75°С. Визначте ККД нагрівника, якщо на нагрівання витрачено 8 г спирту.
- 6. У чайник налито 2 кг води, яка має температуру 20°С. Скільки природного газу потрібно для того, щоб закип'ятити чайник, якщо вода одержує 40% тепла, яке може бути виділене під час повного згоряння газу?

ФІЗИКА ТА ТЕХНІКА В УКРАЇНІ

Науково-технологічний комплекс (НТК) «Інститут монокристалів» НАН України (Харків) розпочав свою історію у 1955 р. Сьогодні до складу НТК входять декілька наукових інститутів та завод хімічних реактивів. У сфері наукових інтересів учених комплексу — фундаментальні дослідження процесів росту кристалів та взаємодії випромінювання з речовиною; розроблення технології одержання детекторів і створення приладів на їх основі. Останнім часом велика увага приділяється розробленню тест-систем для діагностики хвороб людини та тварин (ВІЛ/СНІД, вірусні гепатити В і С тощо).

НТК «Інститут монокристалів» має тісні творчі зв'язки з багатьма провідними науковими центрами й університетами Росії, Білорусі, Ізраїлю, Китаю, Індії. Японії, США та країн Західної Європи.