

Pontificia Universidad Católica de Chile DEPARTAMENTO DE CIENCIAS DE COMPPUTACIÓN Matemáticas Discretas- IIC1253

## Guía 3 – teoría de conjuntos

**Problema 1** Dar ejemplos de conjuntos a, b tal que

- a)  $a \notin b, a \not\subseteq b$
- b)  $a \notin b, a \subseteq b$
- c)  $a \in b, a \not\subseteq b$
- d)  $a \in b, a \subseteq b$

**Problema 2** Mostrar que  $a \subseteq b, b \subseteq c \implies a \subseteq c$  para todos los conjuntos a, b, c, pero  $a \in b, b \in c \implies a \in c$  no es cierto siempre.

**Problema 3** ¿Es cierto que para todos los conjuntos a, b, c, tenemos

a)  $a \in b, b \subseteq c \implies a \in c$ ?
b)  $a \subseteq b, b \in c \implies a \in c$ Problema 4 Muestre que no existe un conjunto x tal que

$$\forall y \ (y \in x) \leftrightarrow \neg (x \in y).$$

Problema 5 Usando la axioma de regularidad:

$$AR = \forall x \ \Big( (\exists y \ y \in x) \to (\exists z \ (z \in x) \land \neg (\exists w \ w \in x \land w \in z)) \Big).$$

demuestre que no existe un conjunto x de todos los conjuntos de la forma  $\{y\}$ .

**Problema 6** Sean  $a_1, a_2, a_3$  3 conjuntos, y b el conjunto de todos los x's que pertenecen por lo menos a dos conjuntos entre  $a_1, a_2, a_3$ . Expressar b a través de  $a_1, a_2, a_3 y \cap, \cup$ .

Problema 7 Mostrar la igualdad

Problema 9 A través del axioma de separación, demuestre que para cada conjunto A existe su subconjunto B que consiste en todos los elementos de A con no más de un elemento.

**Problema 10** Sean a, b, c 3 conjuntos tal que  $a \in \mathcal{P}(b), b \in \mathcal{P}(c), c \in \mathcal{P}(a)$ . Mostrar que a = b = c. a se se sa

Problema 11 Mostrar que  $\{a\} \notin \mathcal{P}(a)$  para todos los conjuntos a.

Problema 12 Hemos mostrado que el conjunto de los números naturales satisface el principio de inducción: para cada  $A \subseteq \mathbb{N}$  tal que

- a)  $0 \in A$ ;
- b) si  $n \in A$ , entonces  $S(n) \in A$  para todos los números naturales n;



PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIAS DE COMPPUTACIÓN MATEMÁTICAS DISCRETAS- IIC1253

## tenemos $A = \mathbb{N}$ .

Ahora, definimos el orden en los números naturales: n < m para dos números naturales n, m si y sólo si  $n \in m$ . Mostrar las siguientes propiedades de orden, usando (si necesario), el principio de inducción:

- a)  $\neg (n < n)$  para todos los números naturales n;
- b) n < S(n) para todos los números naturales n;
- c) 0 < n o 0 = n para todos los números naturales n;
- d)  $((n < m) \land (m < k)) \rightarrow (n < k)$  para todos los números naturales n, m, k;
- e)  $(n < m) \lor (m < n) \lor (n = m)$  para todos los números naturales n, m;
- f) no existen dos números naturales n, m tales n < m < S(n).