PRINTABLE VERSION

Quiz 4

You scored 100 out of 100

Question 1

Your answer is CORRECT.

Consider the function

$$f: \{1, 5, 0\} \rightarrow \{128, 3, 4, 42\}$$

where
$$f(x) = x^3 + 3$$

Determine the expressions that best complete the following statement:

f sends the element 1 from the domain

to the element ____ in the co-domain $_{_{3}}$

a)
$$\bigcirc \frac{\{1,5,0\}}{1}$$
, $\frac{f(1)=4}{2}$, $\frac{\{1,5,0\}}{3}$

b)
$$\bigcirc \{128, 3, 4, 42\}, \quad \underline{f(1) = 4}, \quad \{1, 5, 0\}$$

c)
$$\bigcirc \frac{\{128,3,4,42\}}{1}$$
, $\frac{f(1)=42}{2}$, $\frac{\{1,5,0\}}{3}$

d)
$$\bigcirc \{1,5,0\}, f(1) = 42, \{128,3,4,42\}$$

Question 2

Your answer is CORRECT.

Recall the the exponential function e^x . Of the options provided below, which is the largest possible domain one can use for this function?

a)
$$0 \{x \in R : x > 0\}$$

b)
$$\bigcirc Z$$

- $c \cap R Z$
- **d)**

 R
- e) $\bigcirc R \{0\}$

Question 3

Your answer is CORRECT.

Recall the "floor function" $\lfloor x \rfloor = :R \to B$. Of the options provided below, which is the smallest possible co-domain, B , one can use for this function?

- a) $\bigcirc N$
- **b)** $\bigcirc \{x \in R : x > 0\}$
- $c) \bigcirc R Z$
- **d)** \bigcirc R $\{0\}$
- e) Z
- f) $\bigcirc R$

Question 4

Your answer is CORRECT.

Which of the following is an example of a function $f: N \times N \to Z$?

- $(a, b, c, d) \mapsto ad bc$
- $\mathbf{h} \cap \mathbf{a} \mapsto (\mathbf{a}^2, 3\mathbf{a}, \arctan(\mathbf{a}))$
- $(c) \bigcirc a \mapsto [a] + [a]$
- $\mathbf{d)} \ \mathbf{0} \ \mathbf{a} \mapsto \ (\mathbf{a}^2, 3\mathbf{a})$
- $e) \bigcirc a \mapsto (a^2, a^3)$
- f) \bigcirc $(a, b, c) \mapsto ac + b$

Question 5

Your answer is CORRECT.

Consider the sequence $\{a_n\} = \{\frac{7}{2^n}\}$ Determine the value of a₃.

$$a) a_3 = 7/8$$

b)
$$\bigcirc$$
 $a_3 = 0$

c)
$$\bigcirc$$
 $a_3 = 7/2$

d)
$$\bigcirc$$
 $a_3 = 7/4$

e)
$$a_3 = 7/16$$

Ouestion 6

Your answer is CORRECT.

Consider the sequence $a_n = 1^n$. Which of the following statements is true?

- a) The terms of this sequence are strictly decreasing (they get smaller as n gets larger.)
- b) The terms of this sequence are strictly increasing (they get larger as n gets larger).
- c) \bigcirc This is a constant sequence! The terms stay the same value for all n.
- d) This sequence is neither strictly increasing nor strictly decreasing. Sometimes the terms increase and at other times they decrease.

Question 7

Your answer is CORRECT.

Recall the recursively defined (and famous!) Fibonacci Sequence F_n ; its recursive structure is present in the defining recurrence relation

$$F_n = F_{n-1} + F_{n-2}$$

 $F_n=F_{n-1}\ +F_{n-2}$ and it satisfies the initial conditions $F_1=F_2=1$. Determine the value of F_6 .

a)
$$\bigcirc$$
 F₆ = 13

b)
$$\circ$$
 $F_6 = 8$

$$(c) \cap F_6 = 5$$

d)
$$\bigcirc$$
 $F_6 = 5 + 4 = 9$

Question 8

Your answer is CORRECT.

Consider the sequence that solves the recurrence relation $a_n = a_{n-1} - 5$ with initial condition $a_0 = 25$. Which term in this sequence, if any, equals 0?

- **a)** $a_5 = 0$
- **b)** On term in this sequence will equal 0.
- **c)** 0 = 0
- **d)** \bigcirc $a_{20} = 0$
- **e)** 0 = 0

Question 9

Your answer is CORRECT.

Consider the sequence that solves the recurrence relation $a_n = 4a_{n-1}$ with initial condition $a_0 = 9$. Find an explicit formula for a_n .

- $\mathbf{a)} \odot \mathbf{a_n} = 4 \cdot 9^{\mathbf{n}}$
- $\mathbf{b)} \bigcirc \mathbf{a_n} = 4^n$
- $\mathbf{c)} \ \mathbf{a}_{n} = 9 \cdot 4^{n}$
- **d)** \bigcirc $a_n = 9^n$
- $e) \bigcirc a_n = 36n$

Question 10

Your answer is CORRECT.

Consider the recursively defined sequence $a_n=a_{n-1}-a_{n-2}$ with initial conditions $a_0=4$ and $a_1=3$. Determine the value of a_4 .

- $a) \bigcirc 4$
- **b)** 0-1
- c) —4
- **d)** 0 1