8.1) Correlated Random Effects (CRE)

Vitor Kamada

August 2019

Reference

Wooldridge (2010). **Econometric Analysis of Cross Section and Panel Data.** Ch 10.7

https://ebookcentral.proquest.com/lib/wayne/detail.action?docID = 33391968 and the state of th

2 / 11

Vella and Verbeek (1998)

$$Log(wage)_{it} = \beta_0 + \beta_1 Union_{it} + X_{it} + u_{it}$$

import pandas as pd
file="https://github.com/VitorKamada/ECO7110/raw/master/Data/w
data = pd.read_stata(file)
data[1:10]

	nr	year	agric	black	bus
1	13	1981	0	0	0
2	13	1982	0	0	1
3	13	1983	0	0	1
4	13	1984	0	0	0

 ✓ □ ▷ ✓ ⓓ ▷ ✓ ඕ ▷ ✓ ඕ ▷ ඕ
 ✓ ℚ ▷

 Vitor Kamada
 ECO 7110 Econometrics II
 August 2019
 3 / 11

Set Index

```
year = pd.Categorical(data.year)
nr = pd.Categorical(data.nr)
data = data.set index(['nr', 'year'])
data['year'] = year
data['nr'] = nr
```

		agric	black	bus	year	nr
nr	year					
13	1981	0	0 0 1	1981	13	
	1982	0	0	1	1982	13
	1983	0	0	1	1983	13
	1984	0	0	0	1984	13

Compare OLS, RE, and FE

```
from linearmodels.panel import PooledOLS
import statsmodels.api as sm
exog vars = ['black', 'hisp', 'exper', 'expersq',
           'married', 'educ', 'union', 'year']
exog = sm.add constant(data[exog vars])
OLS = PooledOLS(data.lwage,
 exog).fit(cov type='clustered', cluster entity=True)
from linearmodels.panel import RandomEffects
RE = RandomEffects(data.lwage,
 exog).fit(cov type='clustered', cluster entity=True)
from linearmodels.panel import PanelOLS
FE = PanelOLS(data.lwage, exog, entity effects=True,
 drop absorbed=True).fit(cov type='clustered', cluster entity=True)
```

	FE	OLS	RE
exper	0.1321	0.0672	0.1058
·	(11.014)	(3.4338)	(6.4674)
expersq	-0.0052	-0.0024	-0.0047
	(-6.4051)	(-2.3543)	(-5.9780)
married	0.0467	0.1083	0.0638
	(2.2243)	(4.1615)	(3.3651)
union	0.0800	0.1825	0.1059
	(3.5205)	(6.6540)	(5.0813)
black		-0.1392	-0.1394
		(-2.7580)	(-2.7390)
hisp		0.0160	0.0217
		(0.4103)	(0.5453)
educ		0.0913	0.0919
		(8.2496)	(8.2501)
year.1987		0.1738	0.1348
		(2.0418)	(1.5901)

6/11

Hausman Test (1978)

$$H = (\hat{\delta}_{FE} - \hat{\delta}_{RE})'[Avar(\hat{\delta}_{FE}) - Avar(\hat{\delta}_{RE})]^{-1}(\hat{\delta}_{FE} - \hat{\delta}_{RE})$$

 $H \sim \chi_M^2$, where M is the vector of regressors varying across i and t

Conventional Hausman Test has no power under violation of assumption homoscedasticity

Vitor Kamada ECO 7110 Econometrics II August 2019 7/

hausman FE RE

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
exper	.1321464	.1057545	.0263919	
expersq	0051855	0047239	0004616	.0001443
married	.0466804	.063986	0173057	.0073414
union	.0800019	.1061344	0261326	.0073572
year				
1981	.0190448	.040462	0214172	
1982	011322	.0309212	0422431	•
1983	0419955	.0202806	0622762	
1984	0384709	.0431187	0815896	
1985	0432498	.0578155	1010653	
1986	0273819	.0919476	1193295	

b = consistent under Ho and Ha; obtained from xtreq B = inconsistent under Ha, efficient under Ho; obtained from xtreq

Test: Ho: difference in coefficients not systematic

ECO 7110 Econometrics II Vitor Kamada 8/11

Correlated Random Effects - Mundlak (1978)

$$y_{it} = x_{it}\beta + c_i + u_{it}$$
$$x_{it}\beta = z_i\gamma + w_{it}\delta$$
$$c_i = \psi + \bar{w}_i\xi + \alpha_i$$

$$y_{it} = x_{it}\beta + \bar{w}_i\xi + \alpha_i + u_{it}$$

$$\hat{\beta}_{CRE} = \hat{\beta}_{FE}$$

```
data['experbar'] = data.groupby(nr)['exper'].transform('mean')
data['expersqbar'] = data.groupby(nr)['expersq'].transform('mean')
data['marriedbar'] = data.groupby(nr)['married'].transform('mean')
data['unionbar'] = data.groupby(nr)['union'].transform('mean')
```

K	amada	a	ECO 7	'110 Econometrics II		August 2019	0 10 / 11
		1981	7.5	61.5	0.0	0.000	₹ ୬ ९७
	17	1980	7.5	61.5	0.0	0.000	
		1987	4.5	25.5	0.0	0.125	
		1986	4.5	25.5	0.0	0.125	
		1985	4.5	25.5	0.0	0.125	
		1984	4.5	25.5	0.0	0.125	
		1983	4.5	25.5	0.0	0.125	
		1982	4.5	25.5	0.0	0.125	
	13	1981	4.5	25.5	0.0	0.125	
	nr	year					

experbar expersqbar marriedbar unionbar

	Parameter	Std. Err.	T-stat	P-value
const	0.5102	0.2255	2.2624	0.0237
black	-0.1388	0.0505	-2.7513	0.0060
hisp	0.0048	0.0386	0.1237	0.9016
exper	0.1321	0.0120	11.005	0.0000
expersq	-0.0052	0.0008	-6.3999	0.0000
married	0.0467	0.0210	2.2225	0.0263
educ	0.0946	0.0112	8.4107	0.0000
union	0.0800	0.0227	3.5176	0.0004
experbar	-0.1826	0.0467	-3.9091	0.0001
expersqbar	0.0103	0.0028	3.6211	0.0003
marriedbar	0.0970	0.0448	2.1658	0.0304
unionbar	0.1907	0.0474	4.0200	0.0001