

Chapitre I – Les suites

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES				
I- Q	u'est-ce qu'une suite?			
1.	Définition			
2.	Suites arithmétiques			
3.	Suites géométriques			
II - Ét 1. 2. 3.	Sens de variation 5 Introduction aux limites 5 Représentation graphique 6			

I - Qu'est-ce qu'une suite?

1. Définition

On appelle **suite** une fonction de $\mathbb N$ dans $\mathbb R$: cette fonction va prendre des éléments de l'ensemble de départ $\mathbb N$ et va les amener dans l'ensemble d'arrivée $\mathbb R$.

À RETENIR : DÉFINITION 📍

Il y a plusieurs manières de définir une suite :

- Par récurrence : On donne le premier terme de la suite ainsi que le terme au
- Par son terme général : On donne le n-ième terme de la suite en fonction de

Attention! Bien que ces deux modes de génération soient les principaux, il en existe d'autres : algorithme, motifs géométriques, ...

À LIRE : EXEMPLE 99

On définit les suites (u_n) et (v_n) ainsi :

$$-u_n = n \text{ pour tout } n \in \mathbb{N} \text{ ((}u_n\text{) est définie par son terme général).}$$

$$-(v_n) = \begin{cases} v_0 = 0 \\ v_{n+1} = v_n + 1 \text{ pour tout } n \geq 1 \end{cases} \text{ ((}v_n\text{) est définie par récurrence).}$$

On remarque que bien que définies différemment, (u_n) et (v_n) sont égales.

À ne pas confondre :

- (u_n) qui est la suite (u_n).
 u_n qui est le n-ième terme de la suite (u_n).

Ce ne sont pas les mêmes objets : le premier est une suite, le second est un réel.

2. Suites arithmétiques

À RETENIR : DÉFINITION 📍

Une suite (u_n) est dite **arithmétique** si elle est de la forme $u_{n+1} = u_n + r$ avec $r \in \mathbb{R}$.

À RETENIR : RAISON 💡

Le réel r est la **raison** de la suite (si r > 0, (u_n) est strictement croissante, si r < 0, (u_n) est strictement décroissante et si r = 0, (u_n) est constante).

Il est possible de trouver le terme général d'une suite arithmétique :

À RETENIR : TERME GÉNÉRAL 📍

On note p le rang initial de la suite (celui à partir duquel la suite est définie) :

$$u_n = u_p + (n-p) \times r$$

Et si (u_n) est définie à partir du rang 0 (on a p=0) :

$$u_n = u_0 + (n-0) \times r = u_0 + n \times r$$

DÉMONSTRATION: TERME GÉNÉRAL

On a $u_{p+1}=u_p+r$. Puis, $u_{p+2}=u_{p+1}+r=u_p+r+r=u_p+2\times r$. De même, $u_{p+3}=u_{p+2}+r=u_p+3\times r$ et caetera.

En fait, pour tout k entier plus grand que p, on a $u_{p+k} = u_p + k \times r$.

Donc si on pose n = p + k, alors $u_n = u_p + (n - p) \times r$.

À RETENIR : SOMME DES TERMES 📍

$$1+2+\cdots+n=rac{n(n+1)}{2}$$
 pour tout $n\in\mathbb{N}$.

DÉMONSTRATION : SOMME DES TERMES

On pose pour tout $n \in \mathbb{N}$, $S_n = 1 + 2 + \cdots + n$. On a également $S_n = n + (n-1) + \cdots + 1$ (en écrivant la somme à l'envers).

D'où
$$S_n + S_n = 2S_n = \underbrace{(n+1) + (n+1) + \dots + (n+1)}_{n \text{ fois}} = n \times (n+1)$$
. Et ainsi

$$S_n=\frac{n(n+1)}{2}.$$

On souhaite calculer $S = 24 + 25 + \cdots + 104$.

En fait, $S = 1 + 2 + \cdots + 23 + 24 + 25 + \cdots + 104 - (1 + 2 + \cdots + 23)$. Calculons les deux sommes séparément :

$$-1+2+\cdots+23=\frac{23\times24}{2}=276$$

$$-1+2+\cdots+104=\frac{104\times105}{2}=5460$$

D'où S = 5460 - 276 = 5184.

3. Suites géométriques

À RETENIR : DÉFINITION 🕴

Une suite (v_n) est dite **géométrique** si elle est de la forme $v_{n+1} = v_n \times q$ avec $q \in \mathbb{R}$.

À RETENIR : RAISON 📍

Le réel q est la **raison** de la suite (si q > 1, (v_n) est strictement croissante, si 0 < q < 1, (v_n) est strictement décroissante et si q = 1 ou 0, (v_n) est constante).

Il est possible de trouver le terme général d'une suite géométrique :

À RETENIR : TERME GÉNÉRAL 🞙

On note p le rang initial de la suite (celui à partir duquel la suite est définie) :

$$v_n = v_p \times q^{n-p}$$

Et si (v_n) est définie à partir du rang 0 (on a p = 0):

$$v_n = v_0 \times q^{n-0} = v_0 \times q^n$$

DÉMONSTRATION : TERME GÉNÉRAL

On a $v_{p+1}=v_p\times q$. Puis, $v_{p+2}=v_{p+1}\times q=v_p\times q\times q=v_p\times q^2$. De même, $v_{p+3}=v_{p+2}\times q=v_p\times q^3$ et caetera.

En fait, pour tout k entier plus grand que p, on a $v_{p+k} = v_p \times q^k$.

Donc si on pose n = p + k, alors $v_n = v_p \times q^{n-p}$.

À RETENIR : SOMME DES TERMES 📍

Soit $n \neq 0$ un entier et q un réel, alors :

— Si
$$q \neq 1$$
, alors $1 + q^1 + q^2 + \cdots + q^n = \frac{1 - q^{n+1}}{1 - q}$.

- Si
$$q \neq 1$$
, alors $1 + q^1 + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$.
- Si $q = 1$, alors $1 + q^1 + q^2 + \dots + q^n = \underbrace{1 + 1 + 1 + \dots + 1}_{n \text{ fois}} = n$.

Le cas q=1 étant donné juste au-dessus, on supposera $q \neq 1$. On pose pour tout $n \in \mathbb{N}, \ \dot{S}_n = 1 + q^1 + q^2 + \cdots + q^n.$

On a :
$$qS_n = q^1 + q^2 + q^3 + \cdots + q^{n+1}$$
, puis : $S_n - qS_n = 1 + q^1 + q^2 + \cdots + q^n - q^1 - q^2 - q^3 - \cdots - q^{n+1} = 1 - q^{n+1}$.

Donc on a en factorisant par $S_n: (1-q)S_n = 1-q^{n+1} \iff S_n = \frac{1-q^{n+1}}{1-q}$.

À LIRE : EXEMPLE 99

On souhaite calculer $S = 3^5 + 3^6 + \cdots + 3^{10}$.

En fait, $S = 1 + 3 + \dots + 3^4 + 3^5 + 3^6 + \dots + 3^{10} - (1 + \dots + 3^4)$. Calculons les deux

$$-1+3+\cdots+3^4=\frac{1-3^5}{1-3}=121$$

- 1 + 3 + ··· + 3⁴ =
$$\frac{1 - 3^5}{1 - 3}$$
 = 121
- 1 + 3 + ··· + 3¹⁰ = $\frac{1 - 3^{11}}{1 - 3}$ = 88573

D'où S = 88573 - 121 = 88452.

II - Étude des suites

1. Sens de variation

À RETENIR : DÉFINITION 📍

Soit (u_n) une suite.

- (u_n) est **croissante** si on a $u_{n+1} \ge u_n$ (ou $u_{n+1} u_n \ge 0$) pour tout $n \in \mathbb{N}$. (u_n) est **décroissante** si on a $u_{n+1} \le u_n$ (ou $u_{n+1} u_n \le 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est dite **constante** s'il existe $c \in \mathbb{R}$ tel que $u_n = c$ pour tout $n \in \mathbb{N}$.

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite monotone.

2. Introduction aux limites

Quand on souhaite s'intéresser à la limite d'une suite (u_n) , on étudie le comportement de ses termes quand" n devient très grand". On préfère dire alors que n tend vers $+\infty$.

À RETENIR : DÉFINITION 📍

Soit (u_n) une suite.

- Si (u_n) tend vers un réel quand n tend vers $+\infty$, on dit qu'elle **converge**.
- Si (u_n) tend vers une limite infinie quand n tend vers $+\infty$, on dit qu'elle **diverge**.

À LIRE : EXEMPLE 99

On définit la suite (u_n) pour tout $n \in \mathbb{N}$ par $u_n = \frac{1}{n}$. On souhaite trouver la limite possible de cette suite en $+\infty$.

Pour cela, regardons les valeurs que prend cette suite pour des valeurs de n très grandes :

100	0,01
1000	0,001
100000	0,00001
100000000	0,00000001

Il semble que cette suite converge vers 0.

À savoir que si une suite a une limite, alors cette limite est unique. Mais il est également possible pour une suite de ne pas admettre de limite.

On définit la suite (u_n) pour tout $n \in \mathbb{N}$ par $u_n = (-1)^n$. On souhaite trouver la limite possible de cette suite en $+\infty$.

100	1
101	-1
1000000	1
1000001	-1

En fait, si n est pair cette suite vaut 1 et si n est impair elle vaut -1. Cette suite n'admet donc pas de limite : elle diverge.

3. Représentation graphique

Il est possible de représenter graphiquement une suite. Cela peut aider, par exemple dans le but de chercher sa limite.

À RETENIR : MÉTHODE POUR UNE SUITE DÉFINIE PAR RÉCURRENCE 📍

Soit (u_n) une suite définie par récurrence. Pour représenter (u_n) dans un graphique :

- 1. On trace la droite d'équation y = x.
- 2. Comme cette suite est définie par récurrence, pour tout entier n on a une relation du type $u_{n+1} = f(u_n)$. Il s'agit de tracer la courbe représentative C_f de la fonction f.
- 3. On place le point A de coordonnées $(u_0; 0)$
- 4. On trace une droite verticale passant par A, son intersection avec C_f donne un point $B = (u_0; u_1)$.
- 5. À l'aide du point B, on place le point $C = (0; u_1)$.
- 6. On trace une droite horizontale passant par C, son intersection avec la droite y = x donne un point $D = (u_1; u_1)$.
- 7. Une fois le point D obtenu, on place le point $(u_1; 0)$.
- 8. On recommence l'opération en remplaçant u_0 par u_1 et u_1 par u_2 , puis on recommence, etc.

Représentation des trois premiers termes de la suite $(u_n)=\begin{cases}u_0=3\\u_{n+1}=\frac{u_n}{2}\end{cases}$

Il est cependant plus facile de représenter graphiquement une suite dont on connaît le terme général.

À RETENIR : MÉTHODE POUR UNE SUITE DÉFINIE PAR SON TERME GÉNÉRAL 📍

Soit (v_n) une suite définie par son terme général. Pour représenter (v_n) dans un graphique :

- 1. On place le point de coordonnées $(0; v_0)$.
- 2. On place le point de coordonnées $(1; v_1)$.
- 3. On place le point de coordonnées $(2; v_2)$. Etc.

Représentation des trois premiers termes de la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = 2^n$.

