Національний університет «Львівська політехніка» Кафедра програмного забезпечення

Організація комп'ютерних мереж

к.т.н., ст.викл. Тушницький Р.Б. ruslan4yk@lp.edu.ua

Лекція 5.

7. Технології Fast Ethernet та Gigabit Ethernet.

- 7.1. Фізичний рівень технології Fast Ethernet. Специфікації 100Base-FX/TX/T4. Правила побудови сегментів Fast Ethernet за наявності повторювачів.
- 7.2. Історія та проблеми технології Gigabit Ethernet. Специфікація фізичного середовища стандартів 802.3z та 802.3ab.

8. Технології Token Ring та FDDI.

- 8.1. Доступ з передачею маркера. Фізичний рівень технології Token Ring.
- 8.2. Основні характеристики технології FDDI. Відмовостійкість технології FDDI.

9. 100VG-AnyLAN

10Base-T vs 100Base-T vs 100VG-AnyLAN

Характеристика	10Base-T	100VG-AnyLAN	100Base-T				
Топология							
Максимальный диаметр сети	2500 м	8000 M	412 M				
Каскадирование концентраторов	Да; 3 уровня	Да; 5 уровней	Два концентратора максимум				
Кабельная система							
UTP Cat 3,4	100 M	100 M	100 M				
UTP Cat 5	150 M	200 m	100 M				
STP Type 1	100 M	100 M	100 M				
Оптоволокно	2000 м	2000 M	412 M				
Производительность							
При длине сети 100 м	80% (теоретическая)	95% (продемонстрированная)	80% (теоретическая)				
При длине сети 2500 м	80% (теоретическая)	80% (продемонстрированная)	Не поддерживается				
Технология							
Кадры ІЕЕЕ 802.3	Да	Да	Да				
Кадры 802.5	Нет	Да	Нет				
Метод доступа	CSMA/CD	Demand Priority	CSMA/CD + подуровень согласования (Reconciliation sublayer)				

Gigabit Ethernet: проблеми та характеристики

1998 – IEEE 802.3z Gigabit Ethernet

На рівні протоколу не підтримує:

- 1. Якість обслуговування.
- 2. Надлишковість зв'язку.
- 3. Тестування працездатності вузлів і засобів.

Реалізують комутатори.

Характеристики:

- 1. Збережені формати кадрів Ethernet.
- 2. Є напівдуплексна версія протоколу, що підтримує CSMA/CD.
- 3. Підтримують всі основні види кабелів що і у Ethernet/Fast Ethernet: волокно, UTP5, STP.

Gigabit Ethernet: задачі

1. Забезпечення прийнятного діаметра мережі для роботи на розділюваному середовищі.

25м, потреба min 200м

2. Досягення бітової швидкості 1000 Mbps на оптоволокні.

оптоволокно = 800 Mbps

3. Використання в якості кабеля – витої пари.

100 Mbps -> кодування

Вирішення — зміни у фізичний рівень + рівень МАС.

Gigabit Ethernet: вирішення задач

- 1. Мінімальний розмір кадру збільшено (без врахування преамбули) з 64 до 512 b або до 4096 b.
- 2. Час обороту збільшено до 4096 бітових інтервалів => d мережі $= \{200 + 1 \text{ повторювач}\}$

Збільшення довжини кадру:

Доповнення до 448 біт розширенням – поле { 0 }.

Поміщається після поля FCS = контрольна сума кадра.

Не бере участь при обчисленні довжини поля даних.

Необхідне для коректного знаходження колізій.

Для зменшення витрат при малих кадрів — дозволено передавати декілька кадрів підряд без передачі середовища іншим станцій = режим пульсацій.

Станція може передати не більше 65 536 b = 8192 B

8192 = довжина пульсацій.

1984 - IBM

1985 - IEEE 802.5

4 Mbps, 16 Mbps

Фізична топологія - зірка, логічна – кільце.

a)

4, 16 Mbps - змішані не допускаються

Володіє властивостями відмовостійкості: процедури контролю роботи мережі – надісланий кадр вертається відправнику.

Активний монітор — контроль мережі => при ініціалізації, max mac-address. Кожні 3 с => спеціальний кадр, > 7 с відсутній -> вибір активного монітора. контроль наявності в мережі 1 токена.

Станція отримує дані від 1 станції – попередня в кільці, передає сусіду.

Токен -> захоплення -> передача даних -> отримання -> підтвердження отримання.

Підтвердження: А – розпізнавання адреса, С – копіювання пакета в буфер.

Час володіння середовищем = час утримання токена = 10мс.

Max кадр 4Mbps = 4 kB, 16Mbps = 16 kB

16Mbps:

Алгоритм раннього звільнення токена — передає токен доступу одразу після закінчення передачі останнього біта кадра, не очікуючи A + C.

Пріоритет кадру : 0 – 7 (найвищий) – встановлює передаюча станція.

Захоплення токена можливе якщо

пріоритет кадру який хоче передати >= пріоритету токена.

Концентратори = пристрої багатостанційного доступу = Multi-station Access Unit = MAU = MSAU.

Пасивні = з'єднює порти + забезпечення обходу порта вимкненого РС. max відстань 100 м = STP1, 45 м = UTP3.

Активні = регенерація сигналу -> повторювач max відстань 730 м = STP1, 365 м = UTP3.

Підсилення — кожний мережевий адаптер Синхронізація — мережевий адаптер активного монітора кільця

Порти **Ring In** (RI) + **Ring Out** (RO).

STP1, UTP3, UTP6, оптоволокно

Мах довжина кільця = 4000 м.

Рис. 14.2. Физическая конфигурация сети Token Ring

	IBM token ring	IEEE 802.5
Швидкість передачі даних	4 або 16 Мбіт/с	4 або 16 Мбіт/с
Кількість станцій	260 (STP1, 100м), 72 (UTP, 45м)	250
Топологія	Зірка	Не спеціалізовано
Кабель	Вита пара	Не спеціалізовано

FDDI = Fiber Distributed Data Interface — розподілений інтерфейс передачі даних по оптоволокну

CDDI = Copper Distributed Data Interface = UTP, STP, 200 м.

~1988 р. проблемна група ХЗТ9.5

100 Mbps по подвійному оптоволоконному кільцю довжиною до 100 км.

<u>Цілі розробників стандарту:</u>

- 1.Бітова швидкість до 100 Mbps.
- 2. Підвищення відмовостійкості
- 3. Максимально використовувати потенціальну пропускну здатність для асинхронного і синхронного (чутливого до затримок) трафіків.

Два оптоволоконні кільця – основний + резервний шлях передачі даних.

Реалізовано **кодування 4B/5B + NRZI**.

Нормальний режим =транзитний - дані через всі вузли по 1 кільцю

відмова => об'єднання обох кілець = **режим згортання колець** (концентраторами + мережеві адаптори)

Рис. 14.3. Реконфигурация колец FDDI при отказе

FDDI може відновити свою працездатність у випадку відмови 1 елемента.

Станції FDDI застосовують **алгоритм раннього вивільнення токена**

Відмінності від Token Ring:

- 1. Час утримання токена
 - синхронний трафік (чутливий до затримок) **фіксований** асинхронний трафік **не фіксований** —> від завантаження кільця.
- 2. Відсутній пріоритет кадрів.
 - 2 класи = синхронний (*завжди обслуговується*) і асинхронний трафік.

Рівень адміністрування станції = Station ManagemenT = SMT - моніторинг і адміністрування інших рівнів стека протоколів FDDI. Обмін SMT кадрами

FDDI vs відмовостійкість

- 1. Два кільця = первинне і вторинне
- 2. Два типа кінцевих вузлів = станція і концентратор.

Клас A = Подвійне підключення = Dual Attachment = DA — одночасне підключення до первинного і вторинного кілець => *станція двійного підключення = DAS, концентратор двійного підключення = DAC.*200 Мбіт/с або резервування кабелю мережі

роз'єми А, В

Клас В = Одинарне підключення = Single Attachment = SA — тільки до первинного => SAS, SAC.

роз'єми М

Переважно станції — одинарне підключення = **SAS**, концентратори — подвійне = **DAC**.

FDDI vs відмовостійкість

Рис. 14.5. Подключение узлов к кольцам FDDI

FDDI vs відмовостійкість

Рис. 14.6. Реконфигурация сети FDDI при обрыве

Характеристики технологій FDDI Ethernet, Token Ring

Характеристика	FDDI	Ethernet	Token Ring
Бітова швидкість	100 Мбіт/с	10 Мбіт/с	16 Мбіт/с
Топологія	Подвійне кільце дерев	Шина/зірка	Зірка/кільце
Метод доступу	Частка від часу оберту маркера	CSMA/CD	Пріоритетна система резервування
Середовище передачі даних	Оптоволокно, UTP 5	Товстий коаксіал, тонкий коаксіал, кручена пара категорії З	Екранована і неекранована кручена пара
Максимальна довжина мережі (без мостів)	200 км (100 км на кільце)	2500 м	4000м
Максимальна відстань між вузлами	2 км (не більше 11 дБ втрат між вузлами)	2500м	100m
Максимальна кількість вузлів	500	1024	260 для екранованої кручений пари, 72 для неекранованої кручений пари
Тактування і відновлення після відмовлень	Розподілена реалізація тактування і відновлення після відмовлень	Не визначені	Активний монітор