문제 1.1. 다음 series가 converge하는지 판단하여라.

$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

문제 1. 2. 아래 series가 converge인지 판단하여라.

$$\sum_{n=1}^{\infty} \sin\left(\left(1 - \frac{1}{n^{2018}}\right)^{n^{2019}}\right)$$

문제 1. 3. 아래 급수가 diverge하는지, absolutely converge인지, conditionally converge인지 구하라.

$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^2 + 1} - n)$$

문제 1.4. 다음 series가 convergent인지 판별하여라.

$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$

문제 1.5. 아래 series가 convergent인지 판별하라.

$$\sum_{n=1}^{\infty} \frac{(\log n)^3}{n^3}$$

문제 1. 6. 아래 series가 convergent임을 보여라.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

문제 1.7. 아래 series가 convergent인가?

$$\sum n^2 \left(1 - \cos \frac{1}{n}\right)$$

문제 1.8. 아래 series가 convergent인가?

$$\sum n \left(1 - \cos \frac{1}{n}\right)$$

문제 1. 9.

$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

는 convergent인가?

문제 1. 10.

$$\sum_{n=2}^{\infty} \frac{\sin \frac{1}{n}}{\log n}$$

은 convergent인가?

문제 1. 11. 다음 series는 convergent인가?

$$\sum_{n=2}^{\infty} \frac{\log n}{n + n(\log n)^4}$$

문제 1. 12. $\sum a_n$ 과 $\sum b_n$ 은 각각 0이 아닌 항들로 이루어진 sequence (a_n) 과 (b_n) 에서 얻은 series이다. 아래 명제들에 대하여, 거짓인 명제를 모두 찾고 반례를 제시하시오.

- $1) \lim_{n \to \infty} a_n = 0$ 이면, $\sum a_n \stackrel{c}{\leftarrow} convergent$ 이다. $2) \lim_{n \to \infty} \frac{a_n}{b_n} = 0$ 이면, $\sum a_n \stackrel{c}{\rightarrow} convergent$ 여부와 $\sum b_n \stackrel{c}{\rightarrow} convergent$ 여부는 같다.
- (a_n) 이 positive term만 가지고 모든 n에 대하여 $\frac{a_{n+1}}{a_n} < 1$ 이면, series $\sum a_n$ 은 수렴한다.
- 4) $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho < 1$ 이 존재하면 $\sum a_n$ 은 absolutely converge다. 5) $\sum |a_n|$ 이 convergent면 $\sum a_n^2$ 은 convergent다.
- 6) $\sum a_n \circ |$ convergent $\mathfrak{P}, \sum a_n^3 \stackrel{\circ}{\leftarrow}$ absolutely convergent $\circ | \mathfrak{P} |$.

문제 1. 13. 아래 급수는 convergent인가?

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5^n}{n!}$$

문제 1. 14. 아래 급수의 convergent 여부를 판단하라.

$$\sum_{n=1}^{\infty} \frac{1}{(n+3)(1+\log(n+2))^2}$$

문제 1. 15. $\sum a_n$ 에 대해 아래가 맞는지 틀린지 확인하여라.

모든 자연수 n에 대하여 $\sqrt[n]{a_n} < 1$ 이면, $series \sum a_n$ 는 convergent이다.

문제 1. 16. 아래 series가 convergent인 양수 p의 범위를 구하시오.

$$\sum_{n=1}^{\infty} \frac{1}{n^p + pn}$$

문제 1. 17. series

$$\sum_{n=1}^{\infty} \sqrt[5]{\sin \frac{1}{n^2}} \sin \left(\sin \frac{1}{\sqrt{n}} \right)$$

의 converge 여부를 판정하시오.

문제 1. 18. *적분*

$$\int_{2022}^{\infty} \frac{\log x}{e^x} dx$$

의 converge 여부를 판별하시오.

문제 1. 19.

$$\sum_{n=1}^{\infty} \frac{(n+1)\sin n}{2^n + n}$$

위 series의 converge 여부를 판단하라.

문제 1. 20.

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} + \frac{1}{n^2} - \frac{1}{n} \right)$$

는 convergent인가?