Linear regression II

2024-09-02

```
stopifnot(
  require(tidyverse),
  require(patchwork),
  require(httr),
  require(glue),
  require(broom)
)
old_theme <- theme_set(theme_minimal())</pre>
```

- M1 MIDS/MFA
- Université Paris Cité
- Année 2024-2025
- Course Homepage
- Moodle

Objectives

Linear fit using ordinary least squares (OLS)

- Perform linear regression of SAL_ACTUEL with respect to SAL_EMBAUCHE. Store the result in an object denoted by lm_1
- Inspect the numerical summary of lm_1
- Use Environment panel (Rstudio), to explore the structure of lm_1. Try to understand the signification of each element.

```
} else {
  print(glue::glue('File {fname} already exists at {fpath}!'))
}
```

File Banque.csv already exists at ../DATA/Banque.csv!

```
bank <- readr::read_table(fpath,
    col_types = cols(
        SEXE = col_factor(levels = c("0", "1")),
        CATEGORIE = col_integer(),
        NB_ETUDES = col_integer(),
        SATIS_EMPLOI = col_factor(levels = c("non", "oui")),
        SATIS_CHEF = col_factor(levels = c("non", "oui")),
        SATIS_SALAIRE = col_factor(levels = c("non", "oui")),
        SATIS_COLLEGUES = col_factor(levels = c("non", "oui")),
        SATIS_CE = col_factor(levels = c("non", "oui"))
)</pre>
```

- Make the model summary a dataframe/tibble using broom::tidy()
- Make model diagnostic information a dataframe/tibble using broom::glance()
- Preparing for diagnostic plots using broom::augment()

The output of augment may be described as adding 6 columns to dataframe bank. The six columns are built using items from lm_1. Can you explain their meaning and why they are relevant to diagnosing?

Let base R produce diagnostic plots

```
plot(lm_1, which = 1:6)
```

We will reproduce (and discuss) four of the six diagnostic plots provided by the plot method from base R (1,2,3,5).

- Reproduce first diagnostic plot with ggplot using the aumented version of lm_1 (augment(lm_1)).
- Comment Diagnostic Plot 1.
- Compute the correlation coefficient between residuals and fitted values.
- Make your graphic pipeline a reusable function.
- What are standardized residuals?
- Build the third diagnostic plot (square root of absolute values of standardized residuals versus fitted values) using ggplot.
- Why should we look at the square root of standardized residuals?

Make your graphic pipeline a reusable function.

• What is leverage?

• Build the fifth diagnostic plot (standardized residuals versus leverage) using ggplot.

In the second diagnostic plot (the residuals qqplot), we build a quantile-quantile plot by plotting function $F_n^{\leftarrow} \circ \Phi$ where Φ is the ECDF of the standard Gaussian distribution while F_n^{\leftarrow} .

Build the second diagnostic plot using ggplot

Use package patchwork:... to collect your four diagnostic plots

Plot actual values against fitted values for SAL_ACTUEL

Play it again with AGE and SAL_ACTUEL

Redo the above described steps and call the model lm_2.

• ggplot programming: write a function with arguments df, varx and vary where varx and vary are two strings denoting numerical columns in df, that outputs a ggplot object made of a scatterplot of columns vary and vary, a linear regression of vary against varx. The ggplot plot object should be annotated with the linear correlation coefficient of vary and varx and equipped with a title.

Bank dataset

Page 3

Linear regression: SAL_ACTUEL ~ AGE

Inspect rows with high Cook's distance

Discuss the relevance of Simple Linear Regression for analyzing the connection between SAL_ACTUEL and AGE

Compute the Pearson correlation coefficient for every pair of quantitative variable? Draw corresponding scatterplots.

Predictive linear regression of SAL_ACTUEL as a function of age AGE

To perform linear fitting, we choose 450 points amongst the 474 sample points: the 24 remaining points are used to assess the merits of the linear fit.

Randomly select 450 rows in the banque dataframe.

Denote by trainset the vector of of selected indices. Bind the vector of left behind indices to variable testset. Functions match, setdiff or operator %in% may be useful.
 □ Linear fit of SAL_ACTUEL with respect to AGE, on the training set. Call the result lm_3. □ How do you feel about such a linear fit? (Use diagnostic plots)
Inspecting points with high Cook's distance
☐ Use lm_3 to predict the values of SAL_ACTUEL as an affine function of AGE on the testing set testset (broom::augment() with optional argument newdata may be useful). Compare the data frame with the one obtained from augment(lm_3).
 □ Compare training error and testing error □ Analyse residuals (prediction errors) on the testing set. Compare with training set

Expectations under Gaussian Linear Modelling Assumptions

$$(Y) = (\mathbb{Z}) \times \beta + \sigma(\epsilon)$$