Wochenplan Ganzrationale Funktionen

Wochenplan Nr.: 15

Erledigt:

Zeitraum: 15.04 - 21.04

Pflicht: Sie bearbeiten pro Teil jeweils eine Aufgabe.

Wahl: Zur Vertiefung und Festigung stehen ihnen die übrigen Aufgaben zur Verfügung.

Teil 1: Markieren Sie die Wendestelle sowie den dazugehörigen Wendepunkt im Graphen und geben Sie an, um welchen Typ von Wendepunkt es sich handelt.

Markieren Sie zudem die Intervalle, in denen der Graph der Funktion f(x) linksgekrümmt bzw. rechtsgekrümmt ist.

Teil 2: Ermitteln Sie die Wendepunkte und geben Sie die Intervalle an, in denen der Graph von f(x) eine Linkskurve bzw. eine Rechtskurve ist.

Kontrollieren Sie ihr Ergebnis mit GeoGebra.

(I)
$$f(x) = -x^2 + 2x + 4$$

(II)
$$f(x) = x^5 - x^4 + x^3$$

(III)
$$f(x) = x^3(\frac{1}{20}x^2 + \frac{1}{4}x + \frac{1}{3})$$

Teil 3: Begründen oder widerlegen Sie folgende Aussagen:

- Der Graph einer ganzrationalen Funktion vom Grad 4 kann drei Wendepunkte haben.
- Der Graph einer Ganzrationalen Funktion von Grad 5 hat immer 4 Extremstellen.
- Der Graph einer ganzrationalen Funktion von ungeradem Grad hat immer den Ursprung als Wendepunkt

Teil 4: Untersuchen Sie die Funktionen im Hinblick auf Wendestellen.

(I)
$$f(x) = x^3 - 2x^2 - 3x$$
 (II) $f(x) = \frac{1}{4}x^4 - \frac{1}{4}x^3 - 2x^2 + 3x$

(III)
$$f(x) = -x^6 + 6x^4 - 9x^2 + 4$$

Zusatzaufgabe

Teil 5: Von der Funktion $f(x) = \frac{1}{4}x^4 - x^3 - 9x^2 + 40x - \frac{3}{2}$ kennen Sie bereits den Tiefpunkt TP(5|4,75).

- a) Bestimmen Sie zunächst weitere Extrempunkt
- b) Untersuchen Sie die Funktion auf Wende- bzw. Sattelpunkte.
- c) Ermitteln Sie das Symmetrieverhalten, das Globalverhalten sowie die Achsenschnittpunkte.
- d) Skizzieren Sie den Graphen der Funktion.

(1)
$$f(x) = -x^2 + 2x + 4$$

 $f'(x) = -2x + 2$
 $f''(x) = -2$
Keine wendestelle, da $f''(x)$ niemals o wird.
Dawe Raft rechtszekrommt (nach unter geöffnete Parabel)

(III)
$$f(x) = x^5 - x^4 + x^3$$

 $f'(x) = 5x^4 - 4x^3 + 3x^2$
 $f''(x) = 20x^3 - 12x^2 + 6x = x(20x^2 - 12x + 6)$
 $0 = x(20x^2 - 12x + 6) = x = 0$
 $0 = 20x^2 - 12x + 6$ 1:20

$$0 = x^2 - \frac{3}{5}x + \frac{3}{10}$$
 pq-formel

$$X_{1/2} = -\frac{3}{5} \pm \sqrt{\left(\frac{3}{2}\right)^2 - \frac{3}{10}}$$

$$= \frac{3}{10} \pm \sqrt{\left(\frac{3}{2}\right)^2 - \frac{3}{10}}$$

$$=\frac{3}{10}\pm\sqrt{-\frac{21}{100}}$$

$$f''(-1) = 20 \cdot (-1)^3 - 12 \cdot (-1)^2 + 6 \cdot (-1) = -38$$

$$f''(1) = 20 \cdot (1)^3 - 12 \cdot (1)^2 + 6 \cdot 1 = 14$$

(III)
$$P(x) = x^3 \left(\frac{1}{20}x^2 + \frac{1}{4}x + \frac{1}{3}\right)$$

= $\frac{1}{20}x^5 + \frac{1}{4}x^4 + \frac{1}{3}x^3$

$$f'(x) = 4x^4 + x^3 + x^2$$

$$f''(x) = 16x^3 + 3x^2 + 2x = x(16x^2 + 3x + 2)$$

$$0 = \chi(16x^2 + 3x + 2)$$
 =) $\chi_1 = 0$

$$0 = 16x^2 + 3x + 2$$
 |: 16

$$0 = x^2 + \frac{3}{16}x + \frac{1}{8}$$
 pq - rarmel

$$X_{1/2} = -\frac{3}{16} + \sqrt{\left(\frac{3}{16}\right)^2 - \frac{1}{8}}$$

$$= -\frac{3}{32} + \sqrt{\left(\frac{3}{32}\right)^2 - \frac{1}{8}} = -\frac{3}{32} + \sqrt{-\frac{119}{1024}}$$

$$f''(-1) = 16 \cdot (-1)^3 + 3 \cdot (-1)^2 + 2 \cdot (-1) = -15$$

$$f''(1) = 16.1^3 + 3.1^2 + 2.1 = 21$$

Rechts-Links-Wechsel

Teil 3

- (1) Die Aussage ist falsch, Eine gaugrationale Funktion 4. Grades hat inder zweiten Ableitung Grad 2. Somit kaun diese höchstens zwei Wullstellen und somit zwei Wendestellen besitzen
- (11) Dre Aussage ist falsch. Gegenbeispiel: P(x) = x5 P'(x) = 5x4 hat eine Extremstelle bei x = 0

(III) Die hexage ist falsely.

Geographispiel:
$$f(x) = x^3 + 3x^2 + 3x + 1$$
 $f'(x) = 3x^2 + 6x + 3$
 $f''(x) = 6x + 6$
 $0 = 6x + 6$
 $-6 = 6x$
 $-1 = x_1$

Besitzt bei $x_1 = -1$ eine wendedelle. Frotz ungeraden Grads.

Teil 4

(II) $f(x) = x^3 - 2x^2 - 3x$
 $f''(x) = 3x^2 - 4x$
 $f''(x) = 6x - 4$
 $0 = 6x - 4$
 $1 + 4$
 $4 = 6x$
 $1 = 6$

(III) $f(x) = x^3 - 2x^2 - 3x$
 $f'''(x) = 6x - 4$
 $f''(x) = 6x - 4$
 $f'''(x) = 6x - 4$

$$0 = 3x^{2} - \frac{6}{4}x - 4 | 1:3$$

$$0 = x^{2} - \frac{1}{2}x - \frac{1}{3} \quad pq - tarmel$$

$$X_{1/2} = -\frac{1}{2} \pm \sqrt{(-\frac{1}{2})^{2} + \frac{1}{3}} = \frac{1}{4} \pm \sqrt{(\frac{1}{4})^{2} + \frac{1}{3}}$$

$$X_{1} = \lambda_{1} \cdot 43 \qquad X_{2} = -9.93$$

(III)
$$f'(x) = -x^6 + 6x^4 - 9x^2 + 4$$

 $f''(x) = -6x^5 + 24x^3 - 18x$
 $f'''(x) = -30x^4 + 72x^2 - 18$
 $0 = -30x^4 + 72x^2 - 18$ [Substitution $7 = x^2$
 $0 = -30x^2 + 72x - 18$ [Substitution $7 = x^2$
 $0 = 2^2 - 214x + 016$ pq-termel
 $7 = -\frac{214}{2} + \sqrt{(24)^2 - 016}$
 $7 = 212$ $7 = 212$ $7 = 212$ Rocksbetitution

$$7_1 = 2,12$$
 $7_2 = 0,28$ Rocksubstitution $7_1 = 2,12$ $7_2 = 0,28$ $7_3 = 0,28$

$$X_1 = \sqrt{2,12}$$
 $X_2 = -\sqrt{2,12}$ $X_3 = \sqrt{0,28}$ $X_4 = -\sqrt{0,28}$

$$f'''(x) = -120x^{3} + 144x$$

$$f'''(\sqrt{212}) = -160,74 < 0 =) LR$$

$$f'''(-\sqrt{212}) = 160,74 > 0 =) RL$$

$$f'''(\sqrt{028}) = 58,42 > 0 =) RL$$

$$f'''(-\sqrt{0128}) = -58,42 < 0 =) RL$$

$$0 = 3(x^2 - 2x - 6)$$

$$X_{4/5} = -\frac{-2}{2} + \sqrt{\left(\frac{-2}{2}\right)^2 + 6}$$

$$= 1 \pm \sqrt{1+6}$$

Punkte:

$$f(3,65) = 20,42$$
 $W_{1}(3,65|20,42)$ $f(-1,65) = -85,42$ $W_{2}(-1,65|-85,12)$

c) <u>Symmetrie</u>: Keine Symmetrie da sowohl geade wie auch ungerade Exponenten Vorhanden sind.

Verhalten: a,x" = 1x4

au positiv, n gerade

$$f(x) \xrightarrow{x \longrightarrow -\infty} \infty$$

$$f(x) \xrightarrow{x \longrightarrow \infty} \infty$$

Achsenschnittpunkte:

Nullstellen:

TP2

$$0 = 4x^4 - x^3 - 9x^2 + 40x - \frac{3}{2}$$

- ohne Rechnung, mit Geogebra

$$X_6 = -6.14$$
 $X_7 = 0.04$

-200