```
In [2]: ### Neural Network using sklearn ###
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
In [3]: df=pd.read_csv('C:\\Users\\10526359\\Downloads\\concrete.csv', index_col=None)
```

Exploratory Data Analsyis

ce	ment	slag	ash	water	superplastic	coarseagg	fineagg	age	strength		
	141.3	212.0	0.0	203.5	0.0	971.8	748.5	28	29.89		
	168.9	42.2	124.3	158.3	10.8	1080.8	796.2	14	23.51		
	250.0	0.0	95.7	187.4	5.5	956.9	861.2	28	29.22		
	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.85		
	154.8	183.4	0.0	193.3	9.1	1047.4	696.7	28	18.29		
: df.describe()											
		cemen	t	slag	ash	wate	er super	plastic	coarseag	g fineagg	
ınt	: 1030	0.00000	0 1030	0.000000	1030.000000	1030.00000	0 1030.0	00000	1030.00000	00 1030.000000	
an	28	1.16786	4 73	3.895825	54.188350	181.56728	2 6.2	204660	972.91893	773.580485	
std	I 104	4.506364	4 86	5.279342	63.997004	21.35421	9 5.9	73841	77.75395	80.175980	
nin	102	2.00000	0 (0.000000	0.000000	121.80000	0.0	00000	801.00000	00 594.000000	
5%	197	2.37500	0 (0.000000	0.000000	164.90000	0.0	00000	932.00000	730.950000	
0%	272	2.90000	0 22	2.000000	0.000000	185.00000	0 6.4	100000	968.00000	779.500000	
5%	350	0.00000	0 142	2.950000	118.300000	192.00000	0 10.2	200000	1029.40000	00 824.000000	
	540	0.00000	0 250	9.400000	200.100000	247.00000	0 22.5	200000	1145.00000	992.600000	

In [6]: df.isnull().sum() # if wish to drop nulls then df.dropna(inplace=True)

```
Out[6]: cement 0 slag 0 ash 0 water 0 superplastic coarseagg fineagg 0 age 0 strength dtype: int64
```

In [7]: df.corr()

ut[7]:		cement	slag	ash	water	superplastic	coarseagg	fineagg	age
	cement	1.000000	-0.275216	-0.397467	-0.081587	0.092386	-0.109349	-0.222718	0.081946
	slag	-0.275216	1.000000	-0.323580	0.107252	0.043270	-0.283999	-0.281603	-0.044246
	ash	-0.397467	-0.323580	1.000000	-0.256984	0.377503	-0.009961	0.079108	-0.154371
	water	-0.081587	0.107252	-0.256984	1.000000	-0.657533	-0.182294	-0.450661	0.277618
	superplastic	0.092386	0.043270	0.377503	-0.657533	1.000000	-0.265999	0.222691	-0.192700
	coarseagg	-0.109349	-0.283999	-0.009961	-0.182294	-0.265999	1.000000	-0.178481	-0.003016
	fineagg	-0.222718	-0.281603	0.079108	-0.450661	0.222691	-0.178481	1.000000	-0.156095
	age	0.081946	-0.044246	-0.154371	0.277618	-0.192700	-0.003016	-0.156095	1.000000
	strength	0.497832	0.134829	-0.105755	-0.289633	0.366079	-0.164935	-0.167241	0.328873

In []: sns.pairplot(data=df)

Data Preprossing

```
In [8]: ### remove missing values if there are any
df=df.dropna()

In [9]: ### create taining and testing data subsets
    y = df[['strength']]
    X = df[df.columns.drop(y)]
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2)

In [10]: ### scale (normalize) the data
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaler.fit(X_train) # Don't cheat - fit only on training data
    X_train = scaler.transform(X_train)
    # apply same transformation to test data
    X_test = scaler.transform(X_test)
```

Neural Network Modeling

```
In [ ]: # sklearn has two NN functions: MLPClassifier for classification tasks and MLPRegresso
         # examples at https://towardsdatascience.com/deep-neural-multilayer-perceptron-mlp-wit
          # https://scikit-learn.org/stable/modules/neural networks supervised.html
          # https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifi
         # https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPRegresse
          # since this problem has a continuous target variable, it is a regression problem, and
          # syntax: MLPRegressor(hidden layer sizes, activation (relu is the default), max iter,
In [11]: from sklearn.neural_network import MLPRegressor
In [12]: # simple model named m with 1 hidden layer of 20 nodes and defaults(relu and alpha)
          m = MLPRegressor(hidden_layer_sizes = (20,), max_iter=10000)
         m.fit(X_train, np.ravel(y_train)) #must use np.ravel() to flatten the array from shape
         MLPRegressor(hidden_layer_sizes=(20,), max_iter=10000)
Out[12]:
In [13]: # predict on the testing data
         y pred = m.predict(X test)
In [14]: # validating model results (for a estimation model - continuous target var)
         from sklearn import metrics
         mae = metrics.mean_absolute_error(y_test, y_pred)
         mse = metrics.mean squared error(y test, y pred)
          rmse = mse**0.5
          r2 = metrics.r2 score(y test, y pred)
          print(f"""
         MAE: \t{mae:.2f}
          RMSE: \t{rmse:.2f}
          r2: \t{r2:.2f}
         MAE:
                 4.36
                 5.75
         RMSE:
         r2:
                 0.88
         # we can also plot this actual vs predictied to visualize model performance
In [15]:
          plt.scatter(y test, y pred)
          plt.xlim(40, 140)
          plt.ylim(40, 140)
          plt.ylabel('Predicted')
          plt.xlabel('Actual')
          plt.plot([40,140], [40,140], 'black') #1 to 1 line
          plt.show()
```



```
In [16]:
         # a more complex model m2 with 3 hidden layers of many nodes
         m2 = MLPRegressor(hidden_layer_sizes = (256, 128, 64), max_iter=10000)
         m2.fit(X train, np.ravel(y train))
         MLPRegressor(hidden_layer_sizes=(256, 128, 64), max_iter=10000)
Out[16]:
In [17]:
         # predict on the testing data
         y_pred2 = m2.predict(X_test)
         # validating model results (for a estimation model - continuous target var)
In [18]:
         from sklearn import metrics
         mae = metrics.mean_absolute_error(y_test, y_pred2)
         mse = metrics.mean_squared_error(y_test, y_pred2)
          rmse = mse**0.5
          r2 = metrics.r2_score(y_test, y_pred2)
          print(f"""
         MAE: \t{mae:.2f}
          RMSE: \t{rmse:.2f}
          r2: \t{r2:.2f}
          """)
         MAE:
                 3.29
                 4.48
         RMSE:
         r2:
                 0.92
In [19]:
         # we can also plot this actual vs predictied to visualize model performance
          plt.scatter(y_test, y_pred2)
```

plt.xlim(40, 140)
plt.ylim(40, 140)
plt.ylabel('Predicted')

```
plt.xlabel('Actual')
plt.plot([40,140], [40,140], 'black') #1 to 1 line
plt.show()
```



```
# optionally get info on the model
In [20]:
         print("Loss: ", m2.loss_)
         print("Number of Coefs : ", len(m2.coefs_))
         print("Number of Intercepts : ", len(m2.intercepts_))
         print("Number of Iterations for Which Estimator Ran : ", m2.n iter )
         print("Name of Output Layer Activation Function : ", m2.out activation )
         Loss: 6.155926879053878
         Number of Coefs: 4
         Number of Intercepts: 4
         Number of Iterations for Which Estimator Ran : 317
         Name of Output Layer Activation Function : identity
         %%time
In [21]:
         from sklearn.model selection import GridSearchCV
         import itertools
         params = {'activation': ['relu', 'tanh', 'logistic', 'identity'],
                    'hidden_layer_sizes': [(3,), (3,5,), (3,5,3,)],
                    'solver': ['adam', 'lbfgs'],
                    'learning_rate' : ['constant', 'adaptive', 'invscaling']
         # GridSearchCV https://towardsdatascience.com/gridsearchcv-for-beginners-db48a90114ee
         m2_grid = GridSearchCV(m2, param_grid=params, n_jobs=-1, cv=5, verbose=5)
         m2_grid.fit(X_train,np.ravel(y_train))
         print('Train R^2 Score : %.3f'% m2_grid.best_estimator_.score(X_train, y_train))
         print('Test R^2 Score : %.3f'% m2_grid.best_estimator_.score(X_test, y_test))
```

```
print('Best R^2 Score Through Grid Search : %.3f'% m2 grid.best score )
          print('Best Parameters : ', m2_grid.best_params )
         Fitting 5 folds for each of 72 candidates, totalling 360 fits
         Train R^2 Score : 0.873
         Test R^2 Score : 0.881
         Best R^2 Score Through Grid Search : 0.841
         Best Parameters : {'activation': 'logistic', 'hidden_layer_sizes': (3,), 'learning_r
         ate': 'invscaling', 'solver': 'lbfgs'}
         Wall time: 10min 29s
         # Interesting explainer named SHAP https://shap.readthedocs.io/en/latest/index.html#
In [22]:
          import shap
          shap.initjs()
          # rather than use the whole training set to estimate expected values, we summarize wit
          # a set of weighted kmeans, each weighted by the number of points they represent.
         X train summary = shap.kmeans(X train, 100)
          shap explainer = shap.KernelExplainer(m.predict,X train summary)
          # shap_explainer = shap.KernelExplainer(m.predict,X_train) to run against entire datas
          shap values = shap explainer.shap values(X test)
          shap.summary plot(shap values, X test)
```



```
In [23]: # explainer graph for a single row (row 5)
shap.force_plot(shap_explainer.expected_value, shap_values[1, :], X_test[5,:])
```

Out[23]:

Classification NN Problem code (no data)

```
# if this had been a classification problem we would have used MLPClassifier and a cor
from sklearn.nerual network import MLPClassifier
read data
nnclass = MLPClassifier()
nnclass.fit(X train,np.ravel(y train))
y predclass = nnclass.predict(X test)
print('Test Accuracy: %.3f'%mlp_classifier.score(X test, y test)) # Score method defa
# plot fancy confusion matrix
from sklearn.metrics import confusion_matrix
def plot confusion matrix(Y test, y predclass):
    conf mat = confusion matrix(Y test, y predclass)
    #print(conf mat)
    fig = plt.figure(figsize=(6,6))
    plt.matshow(conf mat, cmap=plt.cm.Blues, fignum=1)
    plt.yticks(range(10), range(10))
    plt.xticks(range(10), range(10))
    plt.colorbar();
    for i in range(10):
        for j in range(10):
            plt.text(i-0.2,j+0.1, str(conf mat[j, i]), color='tab:red')
plot_confusion_matrix(y_test, nnclass.predict(X_test))
from sklearn.neural network import MLPClassifier
from sklearn.metrics import confusion matrix
confusion_matrix(y_test,y_predclass)
np.mean(y_predclass == y_test) #accuracy
#Grid Search for Classification model
%%time
from sklearn.model selection import GridSearchCV
params = {'activation': ['relu', 'tanh', 'logistic', 'identity'],
           'hidden_layer_sizes': [(100,), (50,100,), (50,75,100,)],
           'solver': ['adam', 'sgd', 'lbfgs'],
           'learning_rate' : ['constant', 'adaptive', 'invscaling']
mlp_classif_grid = GridSearchCV(MLPClassifier(random_state=123), param_grid=params, n_
```

```
mlp_classif_grid.fit(X_train,Y_train)

print('Train Accuracy : %.3f'%mlp_classif_grid.best_estimator_.score(X_train, Y_train)
    print('Test Accuracy : %.3f'%mlp_classif_grid.best_estimator_.score(X_test, Y_test))
    print('Best Accuracy Through Grid Search : %.3f'%mlp_classif_grid.best_score_)
    print('Best Parameters : ',mlp_classif_grid.best_params_)

In []: def print_accuracy(f):
        print("Root mean squared test error = {0}".format(np.sqrt(np.mean((f(X_test) - y_t time.sleep(0.5)) # to let the print get out before any progress bars
        print_accuracy(m.predict)

In []: # nice reference: https://coderzcolumn.com/tutorials/machine-learning/scikit-learn-skl # another reference: https://towardsdatascience.com/deep-neural-multilayer-perceptron-
```