

Universidade do Minho

LEI — Licenciatura de Engenharia Informática

UC8204P1 — Programação Orientada a Objectos

FitnessUM

Grupo 14

Rui Camposinhos - a72625, Rui Oliveira - a67661, André Santos - a61778

Braga, 1 de junho de 2014

Conteúdo

1	Introdução					
	1.1 Objectivos	1				
	1.2 Organização do Relatório	1				
2	Arquitectura e Descrição da Aplicação	2				
	2.1 Packages	2				
	2.2 Diagramas de Classes	2				
	2.3 Funcionalidades da Aplicação	ę				
3	Estruturas de Dados Principais	4				
	3.1 User class	4				
	3.2 Activity class	4				
	3.3 Record interface	4				
	3.4 Event class	5				
4	Cálculo do Consumo de Calorias por Actividade	6				
	4.1 Cálculo Baseado na Frequência Cardíaca	6				
	4.2 Cálculo Baseado no Tipo de Actividade	8				
5	Cálculo da Forma dos Utilizadores	9				
6	Estatísticas dos Utilizadores	10				
7	Simulação de Eventos	11				
8	Conclusões					
Δ	Demo de aplicação	1.4				

Introdução

O presente projecto enquadra-se na unidade curricular de Programação Orientada a Objectos do curso de Licenciatura em Engenharia Informática da Universidade do Minho. O projecto pretende implementar uma aplicação, designada $Fitness\,UM$, para registar e simular actividades desportivas de fitness. A aplicação pretende foi desenvolvida em java e pretende simular um ambiente de rede social.

1.1 Objectivos

(...)

De acordo com o enunciado [1], os principais objectivos definidos para a aplicação são os seguintes (requisitos):

- req1: (...);
- req2: (...);
- (...);

1.2 Organização do Relatório

Arquitectura e Descrição da Aplicação

2.1 Packages

(...) Model-view-controller (MVC) figura 2.1. (...) (...)

De forma a manter uma estrutura de pastas partilhada entre os autores e um controlo de versões eficaz, foi utilizada a ferramenta open source GIT (http://git-scm.com/), com repositório privado no bitbucket (https://bitbucket.org/ruiOliveiras94/fitnessum-poo).

falar também do Manager, Dataset, ...

2.2 Diagramas de Classes

(...) A figura (...) apresenta o grafo de dependências dos vários ficheiros de código, obtido através do BlueJ.

Figura 2.1: Diagrama com a relação típica dos componentes do MVC (ref.:http://en.wikipedia.org/wiki/Model-view-controller).

Figura 2.2: Diagrama com dependências da super classe Activity.

COLOCAR TABELA EXCEL DAS ACTIVIDADES?

2.3 Funcionalidades da Aplicação

 (\ldots) Lista de features da aplicação. (\ldots)

Estruturas de Dados Principais

(...)

3.1 User class

(...)

Código 3.1: Variáveis de instância da classe User (src/model/user).

```
private String email;
private String nome;
private String password;
private Genero genero;
private int altura; /*cm*/
private int peso; /*kg*/
private GregorianCalendar dataNascimento;
private Activity desportoFavorito;
private Permissoes permissoes;
private Map<Class<?>, HashMap<Integer, Activity>> recordes; /*ver documentacao*/
private int fcr; /*frequencia cardiaca em repouso - para calculo das calorias*/
private Manager<String> amigos; /*emails amigos: HashSet com chaves para rede social*/
private Manager<String> convitesAmigos; /*emails de amigos: convites - HashSet*/
private Manager<Activity> actividadesUser; /*Actividades do User:TreeSet -Comp.ByDate*/
```

3.2 Activity class

(...)

3.3 Record interface

Código 3.2: Variáveis de instância da classe User (src/model/user).

```
/*Super Classe*/
private GregorianCalendar mDate;

private long mDuration; /*activity duration [ms]*/
private Weather mWeather;

private int mHearthRate; /*heart rate [1/min] - for calorie burn calculation*/

/*Especializacoes Classe Distance*/
private int mDistance;
private int mMaxSpeed;

/*Especializacoes Classe Contest*/
private int mPointRival;
private int mPointTeam;
private Contest.Result mResult;

/*Especializacoes Classe Skill*/
private int mPoints;
private int mMaxTrick;
```

3.4 Event class

Cálculo do Consumo de Calorias por Actividade

O procedimento de cálculo utilizado para estimar a quantidade de calorias dispendidas por actividade seguiu uma filosofia semelhante à utilizada na rede social *Endomondo* (www.endomondo.com). Na figura 4.1 apresenta-se um diagrama explicativo do mesmo, onde se evidenciam duas vias: uma baseada na frequência cardíaca e outra no tipo de actividade.

Os dados básicos necessários para o cálculo das calorias dispendidas estão relacionados com o individuo e são:

- Género;
- Características físicas peso, altura;
- Idade;
- Frequência cardíaca em repouso (no caso da via de cálculo baseada na frequência cardíaca).

Os dados complementares são:

- Duração da actividade;
- O tipo de actividade (no caso da via de cálculo baseada no tipo de actividade);
- Frequência cardíaca média durante a actividade (no caso da via de cálculo baseada na frequência cardíaca).

4.1 Cálculo Baseado na Frequência Cardíaca

As formulações expostas na presente secção tiveram por base a aplicação web "Heart Rate Based Calorie Burn Calculator", da página http://www.shapesense.com/fitness-exercise/calculators/. Por uma questão de completitude apresentam-se todas as referências originais. No cálculo pela via da frequência cardíaca um dos parâmetros fundamentais é o $VO2_{max}$, que é a capacidade máxima do corpo de um indivíduo em transportar e fazer uso de oxigênio durante um exercício físico incremental. Este parâmetro pode ser estimado de acordo com [5], com base

Figura 4.1: Diagrama com o procedimento de cálculo adoptado para a estimativa do consumo de calorias por actividade (ref. [3]).

na frequência cardíaca máxima (MHR) e em repouso (RHR) — equação 4.2. A frequência cardíaca máxima pode ser estimada com base na idade de acordo com [6] — equação 4.1. As calorias brutas dispendidas (GCB) foram estimadas de acordo com [7] — equação 4.3. Por fim, para se determinar o número de calorias efectivas (NCB) calculou-se a taxa metabólica basal (BMR) e a taxa de actividade (RMRCB) A estimativa das calorias efectivas foi realizada de acordo com [4] — equações 4.4, 4.5 e 4.6.

$$MHR = 208 - 0.7 \times Idade \quad [1/\min] \tag{4.1}$$

$$VO2_{max} = 15.3 \times \frac{MHR}{RMR} \quad [ml/(kg.min)] \tag{4.2} \label{eq:4.2}$$

Homens:
$$GCB = \frac{-55.0969 + 0.6309 \times HR + 0.1988 \times W + 0.2017 \times A}{4.184} \times 60 \times T \text{ [kcal]}$$
Mulheres:
$$GCB = \frac{-20.4022 + 0.4472 \times HR + 0.1263 \times W + 0.074 \times A}{4.184} \times 60 \times T \text{ [kcal]}$$
onde:
$$HR = \text{frequência cardíaca [1/min]}$$

$$W = \text{Peso [kg]}$$

$$A = \text{Idade [anos]}$$

$$T = \text{Duração exercício [h]}$$

$$NCB = GCB - RMRCB \quad [kcal] \tag{4.4}$$

METS	Activity
1	sitting quietly and watching television
2	walking, less than 2.0 mph, level ground, strolling, very slow
3	loading /unloading a car
4	bicycling, < 10 mph, leisure, to work or for pleasure
()	()
11	running, 6.7 mph

Tabela 4.1: Valores típicos do índice MET (ref. http://www.my-calorie-counter.com/mets_calculation.asp)

$$RMRCB = \frac{BMR \times 1.1}{24} \times T \quad [kcal] \tag{4.5}$$

Homens:
$$BMR = (13.75 \times W) + (5 \times H) - (6.76 \times A) + 66 \text{ [kcal/24h]}$$
 Mulheres:
$$BMR = (9.56 \times W) + (1.85 \times H) - 4.68 \times A) + 655 \text{ [kcal/24h]}$$
 onde:
$$H = \text{altura [cm]}$$
 restantes referências na eq. 4.3

4.2 Cálculo Baseado no Tipo de Actividade

fire fighter, general

 $\overline{12}$

Na ausência de dados relativos à frequência cardíaca do individuo, o cálculo do número de calorias dispendidas (CB) é efectuado com base no índice MET ("The Metabolic Equivalent of Task"). Este índice é uma medida fisiológica do custo energético de um dado exercício físico. Com base nesta abordagem mais simplificada, as calorias dispendidas podem ser calculadas de acordo com a equação 4.7.

$$CB = MET \times W \times T \quad [kcal] \tag{4.7}$$

Os índices MET foram definidos de acordo com o "Compendium of physical activities" [2], da autoria do "Healthy Lifestyles Research Center", "School of Nutrition and Health Promotion" da Arizona State University https://sites.google.com/site/compendiumofphysicalactivities/. Na tabela 4.1 apresentam-se alguns valores típicos dos índices MET. De forma a adaptar os valores dos índices MET a cada índividuo (peso, altura e idade), foram aplicadas correções de acordo com [4] — valor corrigido CMET (eq. 4.8), para mais detalhes ver https://sites.google.com/site/compendiumofphysicalactivities/corrected-mets.

$$CMET = MET \times \frac{3.5 \text{ ml/kg/min}}{RMRCB[\text{ ml/kg/min}]}$$
(4.8)

Cálculo da Forma dos Utilizadores

A forma é um valor de 0 a 1. (Pode ser mudado alterando as variáveis MAX_FORMA e MIN_FORMA).

O cálculo da forma assume um número de dias nos quais todas as actividades feitas nesse intervalo têm influência para a forma (variável DIAS_RELEVANTES). Se DIAS_RELEVANTES=24, significa eu só as actividades nos últimos 24 dias têm influência para a forma. Isto serve para simular o facto de só as actividades mais recentes deverem ter influência na forma actual e quanto mais recentes as actividades, maior a influência na forma.

A cada dia é atribuído um "peso", o quanto esse dia vai valer para o cálculo final da forma. No entanto, não é feita uma distribuição equitativa dos pesos pelos dias. Dias mais distantes no tempo têm menos influência e portanto, menos peso. Essa "menos influência" é dada por uma taxa (variável TAXA) que representa o decréscimo na forma resultante de ficar 1 dia sem fazer nenhuma actividade. Se TAXA=0.05, significa que cada dia que se ande para trás, tem -5% de influência no cálculo da forma. A contribuição para a forma de cada dia é calculado multiplicando o peso desse dia pelo quociente entre o número de minutos que o utilizador fez de uma actividade e o número de minutos recomendado para essa actividade (número de minutos recomendado para 1 actividade = Intensidade). Somadas todas as contribuições de cada dia, tem-se a forma final.

Estatísticas dos Utilizadores

Simulação de Eventos

Conclusões

Bibliografia

- [1] Ribeiro AN. Projeto prático de programação orientada aos objectos, lei e lcc. 2014.
- [2] Ainsworth BE; Haskell WL; Herrmann SD; Meckes N; Bassett Jr DR; Tudor-Locke C; Greer JL; Vezina J; Whitt-Glover MC; Leon AS. 2011 compendium of physical activities: a second update of codes and met values. *Medicine and Science in Sports and Exercise*, 43(8):1575–1581, 2011.
- [3] Endomondo. Calories calculation method. http://gsfn.us/t/4183d. [Acedido em maio de 2014, publicado em maio de 2013].
- [4] Harris J.A.; Benedict F.G. A biometric study of human basal metabolism. *Proceedings of the National Academy of Sciences USA*, 4(12):370–373, 1918.
- [5] Uth N.; Sørensen H.; Overgaard K.; Pedersen PK. Estimation of vo2max from the ratio between hrmax and hrrest—the heart rate ratio method. *European Journal of Applied Physiology*, 91(1):111 5, 2004.
- [6] Tanaka H.; Monahan K. D.; Seals D. R. Age-predicted maximal heart rate revisited. *Journal of the American College of Cardiology*, 37(1):153 156, 2001.
- [7] Keytel L.R.; Goedecke J.H.; Noakes T.D.; Hiiloskorpi H.; Laukkanen R.; van der Merwe L.; Lambert E.V. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. *Journal of Sports Sciences*, 23(3):289 97, 2005.

Apêndice A

Demo da aplicação