

Simulation of a Task Scheduler (M1 CSA - Report)

Author(s): Florian Legendre

Contents

Ι			0	2
	1	FIFO.		9
			•	3
			9	4
				5
	2			6
			*	6
				6
				8
	3			9
			*	9
			<u> </u>	9
		3.3	Metrics	.0
	4	RMS.		. 1
		4.1	Implementation	1
		4.2	Scheduling results	1
		4.3	Metrics	2
	5	Compa	rison Table	3
	7	6.2 6.3 RMS . 7.1 7.2 7.3	Implementation 1 Scheduling results 1 Metrics 1 Implementation 1 Scheduling results 1 Metrics 2 rison Table 2	.6 .8 .8 .8
III			erver Energy-aware Scheduling 2	
	9			
			Implementation	
			Scheduling results	
		9.3	Metrics	
	10	EDF .		
			Implementation $\dots \dots \dots$	
		10.2	Scheduling results	16
		10.3	Metrics	27
	11		rison Table	28

Part I Monoserver Scheduling

FIFO

1.1 Implementation

1.2 Scheduling results

 $\textbf{Figure 1:} \ \ \textbf{Output schedule produced by the FIFO scheduling algorithm on one server} \\$

```
 \begin{bmatrix} 0 & 0 & 0.0 & 10.0 & 1.0 \\ 1 & 0 & 10.0 & 15.0 & 1.0 \\ 2 & 0 & 15.0 & 21.0 & 1.0 \\ 3 & 0 & 21.0 & 31.0 & 1.0 \\ 4 & 0 & 31.0 & 41.0 & 1.0 \\ 5 & 0 & 41.0 & 45.0 & 1.0 \\ 6 & 0 & 45.0 & 65.0 & 1.0 \\ 7 & 0 & 65.0 & 75.0 & 1.0 \\ 8 & 0 & 75.0 & 80.0 & 1.0 \\ 9 & 0 & 80.0 & 85.0 & 1.0 \\ 2 & 0 & 85.0 & 91.0 & 1.0 \\ 1 & 0 & 91.0 & 96.0 & 1.0 \\ 7 & 0 & 96.0 & 106.0 & 1.0 \\ 6 & 0 & 106.0 & 126.0 & 1.0 \\ \hline \end{cases}
```

Listing 1: Detail of the scheduling result

```
>> Scheduling Metrics:
- Total Makespan: 126.0
- Nb Deadline Misses: 11
- Max Tardiness: 69.0
- Average Tardiness: 36.63636363636363
- Late Jobs:
[Job: J6\{6.0a/0.0u/30.0rd/36.0ad/100.0p\} | Tardiness: 29.0 ]
[Job: J2{3.0a/0.0u/10.0rd/13.0ad/10.0p} | Tardiness: 8.0 ]
[Job: J2{13.0a/0.0u/10.0rd/23.0ad/10.0p} | Tardiness: 68.0 ]
 Job: J8\{11.0a/0.0u/5.0rd/16.0ad/0.0p\} | Tardiness: 64.0 |
 Job: J4{5.0a/0.0u/30.0rd/35.0ad/0.0p} | Tardiness: 6.0 ]
 Job: J7\{10.0a/0.0u/25.0rd/35.0ad/50.0p\} | Tardiness: 40.0
 Job: J7{60.0a/0.0u/25.0rd/85.0ad/50.0p} | Tardiness: 21.0 |
[Job: J1\{0.0a/0.0u/10.0rd/10.0ad/20.0p\} | Tardiness: 5.0
[\, \text{Job: } J5 \, \{ 6.0 \, \text{a} \, / \, 0.0 \, \text{u} \, / \, 12.0 \, \text{rd} \, / \, 18.0 \, \text{ad} \, / \, 0.0 \, \text{p} \} \ | \ Tardiness: \ 27.0
[Job: J9{11.0a/0.0u/5.0rd/16.0ad/0.0p} | Tardiness: 69.0
[Job: J1{20.0a/0.0u/10.0rd/30.0ad/20.0p} | Tardiness: 66.0 ]
>> Servers Metrics:
- Servers work load:
Server \#0: 126.0
>> Energy Metrics:
- Total Consumption: 2799.99999999999
- Max Consumption: 22.22222222222
- Average Consumption: 2799.99999999995
- Consumption per Server:
Server #0 : 2799.99999999995
```

Listing 2: Metrics for FIFO on a single server

Round Robin

2.1 Implementation

2.2 Scheduling results

 $\textbf{Figure 2:} \ \ \textbf{Output} \ \text{schedule produced by the Round Robin scheduling algorithm on one server} \\$

```
0 \ 0 \ 0.0 \ 2.0 \ 1.0
1 0 2.0 4.0 1.0
0\ 0\ 4.0\ 6.0\ 1.0
2\ 0\ 6.0\ 8.0\ 1.0
3\ 0\ 8.0\ 10.0\ 1.0
1 0 10.0 12.0 1.0
4\ 0\ 12.0\ 14.0\ 1.0
5 0 14.0 16.0 1.0
6 0 16.0 18.0 1.0
0 0 18.0 20.0 1.0
2\ 0\ 20.0\ 22.0\ 1.0
7\ 0\ 22.0\ 24.0\ 1.0
3\ 0\ 24.0\ 26.0\ 1.0
8 0 26.0 28.0 1.0
9 0 28.0 30.0 1.0
1 0 30.0 31.0 1.0
2 0 31.0 33.0 1.0
4\ 0\ 33.0\ 35.0\ 1.0
5 0 35.0 37.0 1.0
6\ 0\ 37.0\ 39.0\ 1.0
1 0 39.0 41.0 1.0
0\ 0\ 41.0\ 43.0\ 1.0
2\ 0\ 43.0\ 45.0\ 1.0
```

```
7\ 0\ 45.0\ 47.0\ 1.0
3\ 0\ 47.0\ 49.0\ 1.0
8 0 49.0 51.0 1.0
9\ 0\ 51.0\ 53.0\ 1.0
2\ 0\ 53.0\ 55.0\ 1.0
4\ 0\ 55.0\ 57.0\ 1.0
6 0 57.0 59.0 1.0
1 0 59.0 61.0 1.0
0 \ 0 \ 61.0 \ 63.0 \ 1.0
7 0 63.0 65.0 1.0
3 0 65.0 67.0 1.0
8 0 67.0 68.0 1.0
9 0 68.0 69.0 1.0
2\ 0\ 69.0\ 71.0\ 1.0
4 0 71.0 73.0 1.0
6 0 73.0 75.0 1.0
7 0 75.0 77.0 1.0
1 0 77.0 78.0 1.0
7 0 78.0 80.0 1.0
3 0 80.0 82.0 1.0
4\ 0\ 82.0\ 84.0\ 1.0
6\ 0\ 84.0\ 86.0\ 1.0
7\ \ 0\ \ 86.0\ \ 88.0\ \ 1.0
7 0 88.0 90.0 1.0
6\ 0\ 90.0\ 92.0\ 1.0
7\ 0\ 92.0\ 94.0\ 1.0
6\ 0\ 94.0\ 96.0\ 1.0
7 0 96.0 98.0 1.0
6\ 0\ 98.0\ 100.0\ 1.0
7 0 100.0 102.0 1.0
6 0 102.0 104.0 1.0
6 0 104.0 106.0 1.0
6 0 106.0 108.0 1.0
6 0 108.0 110.0 1.0
6 0 110.0 112.0 1.0
6\ 0\ 112.0\ 114.0\ 1.0
6 0 114.0 116.0 1.0
6 0 116.0 118.0 1.0
6\ 0\ 118.0\ 120.0\ 1.0
6\ 0\ 120.0\ 122.0\ 1.0
6\ 0\ 122.0\ 124.0\ 1.0
6\ 0\ 124.0\ 126.0\ 1.0
```

Listing 3: Detail of the scheduling result

```
>> Scheduling Metrics:
- Total Makespan: 126.0
- Nb Deadline Misses: 13
- Max Tardiness: 70.0
- Average Tardiness: 43.07692307692308
- Late Jobs:
                                    Tardiness: 48.0
[Job: J0\{0.0a/0.0u/15.0rd/15.0ad/0.0p\}]
[Job: J9\{11.0a/0.0u/5.0rd/16.0ad/0.0p\}]
                                    Tardiness: 53.0
[Job: J7{10.0a/0.0u/25.0rd/35.0ad/50.0p} | Tardiness: 55.0 ]
Job: J5\{6.0a/0.0u/12.0rd/18.0ad/0.0p\}
                                    Tardiness: 19.0
Job: J8\{11.0a/0.0u/5.0rd/16.0ad/0.0p\} | Tardiness: 52.0
Job: J1\{0.0a/0.0u/10.0rd/10.0ad/20.0p\} | Tardiness: 21.0 |
Job: J3\{4.0a/0.0u/30.0rd/34.0ad/0.0p\}
                                    Tardiness: 48.0
[Job: J4{5.0a/0.0u/30.0rd/35.0ad/0.0p} |
                                    Tardiness: 49.0
[Job: J2\{13.0a/0.0u/10.0rd/23.0ad/10.0p\} | Tardiness: 48.0 ]
[Job: J1{20.0a/0.0u/10.0rd/30.0ad/20.0p} | Tardiness: 48.0 ]
[Job: J2{3.0a/0.0u/10.0rd/13.0ad/10.0p} | Tardiness: 32.0 ]
>> Servers Metrics:
– Servers work load:
Server #0 : 126.0
>> Energy Metrics:
 - Total Consumption: 2799.99999999995
- Max Consumption: 22.222222222222
- Average Consumption: 2799.99999999995
- Consumption per Server:
Server #0 : 2799.99999999995
```

Listing 4: Metrics for Round Robin on a single server

EDF

3.1 Implementation

3.2 Scheduling results

Figure 3: Output schedule produced by the EDF scheduling algorithm on one server

```
0 0.0 5.0 1.0
2\ 0\ 5.0\ 11.0\ 1.0
0 0 11.0 21.0 1.0
8 0 21.0 21.0 1.0
8 0 21.0 26.0 1.0
9 0 26.0 31.0 1.0
5 0 31.0 35.0 1.0
2\ 0\ 35.0\ 41.0\ 1.0
  0 41.0 46.0 1.0
3\ 0\ 46.0\ 56.0\ 1.0
4\ 0\ 56.0\ 56.0\ 1.0
4\ 0\ 56.0\ 66.0\ 1.0
7 0 66.0 76.0 1.0
6 0 76.0 96.0 1.0
7 0 96.0 106.0 1.0
6 0 106.0 126.0 1.0
```

Listing 5: Detail of the scheduling result

```
>> Scheduling Metrics:
- Total Makespan: 126.0
- Nb Deadline Misses: 11
- Max Tardiness: 60.0
- Average Tardiness: 23.363636363636363
- Late Jobs:
[Job: J2{13.0a/0.0u/10.0rd/23.0ad/10.0p} |
                                        Tardiness: 18.0
[Job: J6\{6.0a/0.0u/30.0rd/36.0ad/100.0p\} | Tardiness: 60.0 ]
[Job: J3\{4.0a/0.0u/30.0rd/34.0ad/0.0p\}]
                                      Tardiness: 22.0
 Job: J5\{6.0a/0.0u/12.0rd/18.0ad/0.0p\}
                                      Tardiness: 17.0
 Job: J0\{0.0a/0.0u/15.0rd/15.0ad/0.0p\}
                                      Tardiness: 6.0
 Job: J9\{11.0a/0.0u/5.0rd/16.0ad/0.0p\}
                                      Tardiness: 15.0
 Job: J7\{60.0a/0.0u/25.0rd/85.0ad/50.0p\}
                                      Tardiness: 21.0
[Job: J4\{5.0a/0.0u/30.0rd/35.0ad/0.0p\}
                                      Tardiness: 31.0
[Job: J8\{11.0a/0.0u/5.0rd/16.0ad/0.0p\}]
                                      Tardiness: 10.0
[Job: J7{10.0a/0.0u/25.0rd/35.0ad/50.0p} | Tardiness: 41.0 ]
[Job: J1{20.0a/0.0u/10.0rd/30.0ad/20.0p} | Tardiness: 16.0 ]
>> Servers Metrics:
- Servers work load:
Server #0 : 126.0
>> Energy Metrics:
- Total Consumption: 2799.99999999995
- Max Consumption: 22.22222222222
- Average Consumption: 2799.99999999995
- Consumption per Server:
Server #0 : 2799.99999999995
```

Listing 6: Metrics for EDF on a single server

RMS

4.1 Implementation

4.2 Scheduling results

Figure 4: Output schedule produced by the RMS scheduling algorithm on one server

```
1 0 0.0 3.0 1.0
2 \ 0 \ 3.0 \ 9.0 \ 1.0
1 0 9.0 11.0 1.0
7\ \ 0\ \ 11.0\ \ 13.0\ \ 1.0
2 0 13.0 19.0 1.0
7 0 19.0 20.0 1.0
1\ 0\ 20.0\ 25.0\ 1.0
7\ 0\ 25.0\ 32.0\ 1.0
  0 32.0 52.0 1.0
0\ 0\ 52.0\ 60.0\ 1.0
7 0 60.0 70.0 1.0
0\ 0\ 70.0\ 72.0\ 1.0
8 0 72.0 77.0 1.0
9 0 77.0 82.0 1.0
5 0 82.0 86.0 1.0
3 0 86.0 96.0 1.0
4 0 96.0 106.0 1.0
6\ 0\ 106.0\ 126.0\ 1.0
```

Listing 7: Detail of the scheduling result

```
>> Scheduling Metrics:
- Total Makespan: 126.0
- Nb Deadline Misses: 8
- Max Tardiness: 71.0
- Average Tardiness: 50.25
- Late Jobs:
[ \mbox{Job: } \mbox{J4} \{ 5.0 \mbox{a} / 0.0 \mbox{u} / 30.0 \mbox{rd} / 35.0 \mbox{ad} / 0.0 \mbox{p} \} \ | \ \mbox{Tardiness: } 71.0
[Job: J1\{0.0a/0.0u/10.0rd/10.0ad/20.0p\} | Tardiness: 1.0
[Job: J6\{6.0a/0.0u/30.0rd/36.0ad/100.0p\} | Tardiness: 16.0 ]
[Job: J8{11.0a/0.0u/5.0rd/16.0ad/0.0p} | Tardiness: 61.0
 Job: J5\{6.0a/0.0u/12.0rd/18.0ad/0.0p\}
                                         Tardiness: 68.0
 [Job: J9{11.0a/0.0u/5.0rd/16.0ad/0.0p}]
                                         Tardiness: 66.0
[Job: J0\{0.0a/0.0u/15.0rd/15.0ad/0.0p\} | Tardiness: 57.0
[Job: J3\{4.0a/0.0u/30.0rd/34.0ad/0.0p\} | Tardiness: 62.0 ]
>> Servers Metrics:
– Servers work load:
Server \#0: 126.0
>> Energy Metrics:
- Total Consumption: 2799.99999999995
- Max Consumption: 22.22222222222
- Average Consumption: 2799.99999999995
- Consumption per Server:
Server #0 : 2799.99999999995
```

Listing 8: Metrics for RMS on a single server

Comparison Table

Algorithm	Pros	Cons	Possible Uses
FIFO	 Easy to implement and debug Corresponds to the expected behavior of many applications (e.g. printers, chains of tasks such as piped commands, etc.) 	 Risks of starvation if a task is blocked Risks of heavy tardiness if a task takes an exceptionally long amount of time to complete 	When the application requires tasks to exe- cute in a consecutive order (could be made safer with a timeout me- chanic)
Round Robin	 Prevents starvation Still rather easy to implement and debug 	• Tends to even more increase the number of deadline misses and average tardiness of tasks if the quantum is short	With a reasonable quantum and if a strict sequence in the order of treated tasks isn't needed as in FIFO, it can be a fair way to run tasks while being starvation-free.
EDF	Lowest tardiness of tasks (but not necessarily low- est number of deadline misses)	 A bit more complex to implement and maintain Not starvation free as if no new arrival with higher priority comes then priorities are fixed and a blocked running task can block all the other tasks 	Useful if we want highly responsive applications
RMS	• Lowest number of dead- line misses	 A bit more complex to implement and maintain (but once you have implemented EDF it's rather straightforward and reciprocally) Not starvation free for the same reasons than with EDF 	Probably the best algorithm for hard real-time operating systems where deadline misses isn't an option

Part II Multiserver Scheduling

\mathbf{EDF}

6.1 Implementation

6.2 Scheduling results

Figure 5: Output schedule produced by the EDF scheduling algorithm on multiple servers

```
0 0.0 5.0 1.0
4\ 0\ 5.0\ 6.0\ 1.0
2\ 1\ 3.0\ 9.0\ 1.0
5 0 6.0 10.0 1.0
0 2 0.0 10.0 1.0
 1 9.0 11.0 1.0
  2 10.0 11.0 1.0
  0 10.0 13.0 1.0
3 \ 3 \ 4.0 \ 14.0 \ 1.0
8 1 11.0 16.0 1.0
9 2 11.0 16.0 1.0
2 0 13.0 19.0 1.0
4\ 0\ 19.0\ 25.0\ 1.0
 2 16.0 25.0 1.0
  3 20.0 25.0 1.0
 1 16.0 34.0 1.0
7 0 60.0 70.0 1.0
6\ 0\ 106.0\ 126.0\ 1.0
```

Listing 9: Detail of the scheduling result

```
>> Scheduling Metrics:
Total Makespan: 126.0Nb Deadline Misses: 0
- Max Tardiness: 0.0
- Average Tardiness: 0.0
- Late Jobs:
>> Servers Metrics:
- Servers work load:
Server #0 : 55.0
Server \#1: 31.0
Server \#2: 25.0
Server #3 : 15.0
>> Energy Metrics:
- Total Consumption: 4077.7777777775
- Max Consumption: 144.444444444446
- Average Consumption: 1019.4444444444488
- Consumption per Server:
Server \ \#0 \ : \ 1222.22222222222208
Server #1 : 1550.0
Server #2 : 555.555555555555
Server #3 : 750.0
```

Listing 10: Metrics for EDF on multiple servers

RMS

7.1 Implementation

7.2 Scheduling results

Figure 6: Output schedule produced by the RMS scheduling algorithm on multiple servers

```
0 0.0 5.0 1.0
4\ 0\ 5.0\ 6.0\ 1.0
3 3 4.0 6.0 1.0
2\ 1\ 3.0\ 9.0\ 1.0
0 2 0.0 10.0 1.0
5 3 6.0 10.0 1.0
3 3 10.0 11.0 1.0
    11.0 13.0 1.0
9 3 11.0 16.0 1.0
2\ 1\ 13.0\ 19.0\ 1.0
7\ \ 2\ \ 10.0\ \ 20.0\ \ 1.0
8\ 1\ 19.0\ 22.0\ 1.0
3 3 16.0 23.0 1.0
1 \ 2 \ 20.0 \ 25.0 \ 1.0
6\ 0\ 6.0\ 26.0\ 1.0
4 0 26.0 35.0 1.0
7 0 60.0 70.0 1.0
6\ 0\ 106.0\ 126.0\ 1.0
```

Listing 11: Detail of the scheduling result

```
>> Scheduling Metrics:
- Total Makespan: 126.0
- Nb Deadline Misses: 1
- Max Tardiness: 6.0
- Average Tardiness: 6.0
- Late Jobs:
[Job: J8\{11.0a/0.0u/5.0rd/16.0ad/0.0p\} | Tardiness: 6.0 ]
>> Servers Metrics:
- Servers work load:
Server #0 : 65.0
Server #1 : 17.0
Server #2 : 25.0
Server #3 : 19.0
>> Energy Metrics:
- Total Consumption: 3799.99999999997
- Max Consumption: 144.4444444444446
- Average Consumption: 949.99999999999
- Consumption per Server:
Server #0 : 1444.444444444425
Server #1 : 850.0
Server \#2: 555.5555555555555
Server #3 : 950.0
```

Listing 12: Metrics for RMS on multiple servers

Comparison Table

Algorithm	Pros	Cons	Possible Uses
EDF	 With several servers (or cores): lowest number of deadline misses and lowest average tardiness Best workload share among servers 	 What if the deadline is superior to the period of the task? Rather hard to implement and maintain on several servers (lot of lists sorting) 	May be the best algorithm for hard real time OS if the deadline is inferior to the period of the task
RMS	Very low number of deadline misses and av- erage tardiness	 Rather hard to implement for the same reasons than with EDF Not the best algorithm for hard real time OS if the deadline of the tasks is inferior to their periods? 	• May still be the best algorithm for hard real time OS if tasks' deadlines are equal or superior to their periods

Part III

Multiserver Energy-aware Scheduling

FIFO

9.1 Implementation

9.2 Scheduling results

Figure 7: Output schedule produced by the FIFO scheduling algorithm on multiple servers and trying to use the smallest amount of power (with a power cap) while trying to not miss any deadline

Listing 13: Detail of the scheduling result

```
>> Scheduling Metrics:
Total Makespan: 126.0Nb Deadline Misses: 0
- Max Tardiness: 0.0
- Average Tardiness: 0.0
- Late Jobs:
>> Servers Metrics:
- Servers work load:
Server #0 : 60.0
Server #1 : 20.0
Server \#2: 21.0
Server #3 : 17.0
>> Energy Metrics:
- Total Consumption: 5833.3333333333485
- Max Consumption: 361.11111111111111
- Average Consumption: 1458.333333333371
- Consumption per Server:
Server \ \#0 \ : \ 1333.333333333333333337
Server #1 : 1000.0
Server #2: 999.99999999998
Server \#3: 2500.0
```

Listing 14: Metrics for FIFO on multiple energy aware servers

\mathbf{EDF}

10.1 Implementation

10.2 Scheduling results

Figure 8: Output schedule produced by the EDF scheduling algorithm on multiple servers and trying to use the smallest amount of power (with a power cap) while trying to not miss any deadline

```
1 0 0.0 5.0 1.0
4\ 0\ 5.0\ 6.0\ 1.0
2 1 3.0 9.0 1.0
5 0 6.0 10.0 1.0
0 2 0.0 10.0 1.0
6 1 9.0 11.0 1.0
7\ 2\ 10.0\ 11.0\ 1.0
4 0 10.0 13.0 1.0
3 \ 3 \ 4.0 \ 14.0 \ 1.0
8 1 11.0 16.0 1.0
9\ \ 2\ \ 11.0\ \ 16.0\ \ 1.0
2\ 0\ 13.0\ 19.0\ 1.0
4 0 19.0 25.0 1.0
7 2 16.0 25.0 1.0
  3\ 20.0\ 25.0\ 1.0
    16.0 34.0 1.0
7 0 60.0 70.0 1.0
6\ 0\ 106.0\ 126.0\ 1.0
```

Listing 15: Detail of the scheduling result

```
>> Scheduling Metrics:
Total Makespan: 126.0Nb Deadline Misses: 0
- Max Tardiness: 0.0
- Average Tardiness: 0.0
- Late Jobs:
>> Servers Metrics:
- Servers work load:
Server #0 : 55.0
Server \#1: 31.0
Server \#2: 25.0
Server #3 : 15.0
>> Energy Metrics:
- Total Consumption: 4077.7777777775
- Max Consumption: 144.444444444446
- Average Consumption: 1019.4444444444488
- Consumption per Server:
Server \ \#0 \ : \ 1222.22222222222208
Server #1 : 1550.0
Server #2 : 555.555555555555
Server \#3: 750.0
```

Listing 16: Metrics for EDF on multiple energy aware servers

Comparison Table

Algorithm	Pros	Cons	Possible Uses
FIFO	Still easy to implement and maintain even across multiple servers	 Respecting the deadlines requires a lot of energy Workload across servers isn't very well balanced Still not starvation-free (but also the case for EDF) 	• If energy isn't a problem it's still the best algorithm to deal with tasks in their order of arrivals
EDF	 Lowest energy consumption as there was no deadline misses in the first place Best servers workload balance 	Same as those mentioned in the multiserver part of this report	• Same as those mentioned in the multiserver part of this report