Manual Técnico del Sistema de Archivos EXT3 Simulado

1. Descripción de la Arquitectura del Sistema

Arquitectura General

La arquitectura del sistema se basa en una estructura cliente-servidor, donde el **frontend** se comunica con el **backend** mediante una API RESTful. El frontend es responsable de mostrar la interfaz de usuario (UI) y de enviar comandos para interactuar con el sistema de archivos. El backend, implementado en Go, gestiona las operaciones del sistema de archivos, como la manipulación de particiones, archivos y bloques, así como el manejo de sesiones y comandos de usuario.

Diagrama de Arquitectura

A continuación se muestra el diagrama que ilustra la conexión entre los componentes del sistema:

Frontend (React)

El frontend está desarrollado utilizando **React.js** y **Vite**. Es responsable de gestionar la interacción del usuario con la aplicación web y de enviar comandos al backend para interactuar con el sistema de archivos EXT3 simulado. Los componentes principales incluyen:

- Consola de Comandos: Permite al usuario ejecutar comandos sobre el sistema de archivos y ver la salida.
- Explorador de Archivos: Proporciona una vista visual de las particiones y archivos disponibles.
- Formulario de Login: Gestiona la autenticación de usuarios.

Comunicación con el Backend

El frontend se comunica con el backend a través de solicitudes HTTP usando la API RESTful. Para cada operación (como crear, eliminar o modificar archivos y particiones), el frontend envía una solicitud POST o GET al backend, que procesa la operación y responde con los resultados.

Backend (Go)

El backend, implementado en Go, gestiona las operaciones del sistema de archivos. Utiliza un modelo de **sesión activa** que se mantiene durante la interacción del usuario con el sistema. Los componentes clave del backend son:

- **Manejo de Particiones**: Se encarga de la manipulación de las particiones (creación, eliminación, montado, desmontado).
- **Sistema de Archivos**: Gestiona el acceso y manipulación de los archivos y directorios en las particiones.
- Autenticación de Usuario: Gestiona el login y logout de los usuarios, asegurando que las operaciones del sistema de archivos solo se realicen con una sesión activa.
- **Journaling**: Lleva un registro de las transacciones realizadas en el sistema de archivos para permitir la recuperación en caso de fallos.

Despliegue en AWS

El sistema se despliega en AWS utilizando **EC2** para la ejecución del backend y **S3** para el almacenamiento de datos. La base de datos del sistema de archivos reside en un archivo binario .mia almacenado en un volumen persistente de EC2.

Diagrama de Despliegue

2. Explicación de las Estructuras de Datos

MBR (Master Boot Record)

El **MBR** es la primera estructura en el disco y se encarga de almacenar información crítica sobre las particiones del disco, como:

- Particiones: Información sobre la ubicación y tamaño de las particiones.
- Identificador de partición: Cada partición tiene un ID único.
- **Arranque**: Sector de arranque para la inicialización del sistema operativo.

En el contexto de este sistema, el MBR es esencial para la gestión de particiones, permitiendo identificar y organizar las particiones disponibles en el sistema.

EBR (Extended Boot Record)

El **EBR** es utilizado para particiones extendidas. En el caso de particiones extendidas, el EBR contiene información adicional sobre las particiones lógicas dentro de esa partición extendida. El EBR tiene:

- Puntero al siguiente EBR: En caso de que haya más particiones lógicas.
- Información de la partición lógica: Ubicación, tamaño y otras propiedades.

Inodos

Los **inodos** son estructuras que almacenan la metadata de los archivos y directorios:

- Número de inodo: Identificador único del inodo.
- **Permisos**: Propietarios, permisos de lectura, escritura, ejecución.
- Tamaño del archivo: Tamaño del archivo en bytes.
- Punteros a bloques de datos: Los bloques donde se almacena el contenido del archivo.

Bloques

Los **bloques** son las unidades de almacenamiento real de los datos. En este sistema se consideran tres tipos de bloques:

- Bloques de archivos: Contienen los datos de los archivos.
- Bloques de directorios: Contienen las referencias a los archivos en un directorio.
- Bloques de contenido: Almacenan los datos reales de los archivos y directorios.

Bitmap de Bloques

El **Bitmap de Bloques** es una estructura que mantiene un registro de los bloques ocupados y libres. Cada bit representa un bloque del disco. Un bit en 0 indica que el bloque está libre, mientras que un bit en 1 indica que el bloque está ocupado.

Superblock

El **Superblock** contiene la información crucial sobre el sistema de archivos, como:

• Tamaño del sistema de archivos.

- Número de inodos.
- Número de bloques.
- Estado del sistema de archivos.

3. Descripción de los Comandos Implementados

FDISK

El comando **FDISK** permite gestionar particiones en el sistema:

- **Crear Partición**: Se utiliza con el parámetro -size para definir el tamaño de la partición.
- Eliminar Partición: Permite eliminar particiones con -delete.
- Agregar y Quitar Espacio: Modifica el tamaño de las particiones con -add o -resize.

Ejemplo de uso:

fdisk -add=100 -unit=M -path=/home/Disco1.dk -name=Particion2 fdisk -delete=fast -name=Particion2 -path=/home/Disco1.dk

UNMOUNT

El comando **UNMOUNT** desmonta una partición del sistema, asegurando que no se realicen operaciones sobre ella.

Ejemplo de uso:

unmount -id=141A

MKFS (FS)

El comando **MKFS** formatea una partición, pudiendo especificar el tipo de sistema de archivos (EXT2 o EXT3).

Ejemplo de uso:

REMOVE

El comando **REMOVE** elimina archivos o directorios. Verifica que el usuario tenga permisos de escritura antes de eliminar cualquier archivo.

Ejemplo de uso:

remove -path="/home/user/docs/a.txt"

EDIT

El comando **EDIT** permite modificar el contenido de un archivo.

Ejemplo de uso:

edit -path="/home/user/docs/a.txt" -contenido="/root/user/files/a.txt"

RENAME

El comando **RENAME** cambia el nombre de un archivo o directorio.

Ejemplo de uso:

rename -path="/home/user/docs/a.txt" -name="b1.txt"

COPY

El comando COPY realiza una copia de un archivo o directorio en otra ubicación.

Ejemplo de uso:

copy -path="/home/user/docs" -destino="/home/images"

MOVE

El comando MOVE mueve un archivo o directorio a una nueva ubicación.

Ejemplo de uso:

move -path="/home/user/docs/a.txt" -destino="/home/images"

FIND

El comando **FIND** permite buscar archivos o carpetas dentro de una ruta dada.

Ejemplo de uso:

```
find -path="/home" -name="*.txt"
```

CHOWN

El comando **CHOWN** cambia el propietario de un archivo o directorio.

Ejemplo de uso:

chown -path="/home/user/docs/a.txt" -usuario="newuser"

CHMOD

El comando **CHMOD** cambia los permisos de un archivo o directorio.

Ejemplo de uso:

chmod -path="/home/user/docs" -ugo=764

4. Manejo del Sistema de Archivos EXT3

Journaling en EXT3

El sistema de archivos EXT3 introduce el concepto de **journaling**, que actúa como un registro de las transacciones realizadas en el sistema de archivos. Cada operación, como la creación de archivos o la modificación de directorios, se registra en el **journal** antes de que los cambios se realicen en el sistema de archivos. En caso de fallo del sistema, el journaling permite recuperar el sistema a un estado consistente.

Estructura del Journal

La estructura del journal incluye:

- Operación: Tipo de operación (creación, modificación, eliminación).
- Ruta: Ruta del archivo o directorio afectado.
- Contenido: Datos modificados.

• Fecha y Hora: Momento en que se realizó la operación.

5. Pérdida y Recuperación del Sistema de Archivos EXT3

Simulación de Pérdida

La simulación de pérdida de datos se realiza al eliminar información clave de los bloques del sistema, como:

- Bitmap de Inodos
- Bitmap de Bloques
- Área de Inodos
- Área de Bloques

Recuperación del Sistema de Archivos

La recuperación del sistema se basa en el **journaling** y el **superblock**. Al detectarse una inconsistencia, el sistema puede restaurar el estado anterior utilizando la información registrada en el journal.

Comando de recuperación:

recovery -id=061Disco1

Journaling

El comando **journaling** muestra las transacciones registradas en el journal, brindando una herramienta para monitorear las operaciones realizadas.

Comando de journaling:

journaling -id=061Disco1

Conclusión

Este manual técnico proporciona una descripción detallada del sistema de archivos **EXT3** simulado, incluyendo su arquitectura, estructuras de datos, comandos implementados y manejo de recuperación. El sistema está diseñado para ofrecer una experiencia de

administración de archivos robusta y eficiente, con un enfoque en la estabilidad y la recuperación ante fallos mediante el uso de **journaling** y la estructura de bloques.