MOBILE COMPUTING

Prof. Jongwon Yoon

Course description

- This course aims to provide an overview of wireless networking and an indepth knowledge on Internet protocols.
- Students will learn the fundamentals of wireless networking and acquire hands-on experience with various network protocols.
- Prerequisite: Computer Networks
- Textbook: TCP/IP Illustrated, Vol.1, W. Richard Stevens available at http://www.pcvr.nl/tcpip/
 인터넷프로토콜, 김효곤, 홍릉출판사

Reference: TCP/IP Guide, Charles M. Kozierok

available at http://www.tcpipguide.com/free/t_toc.htm

Intro

- Class material will be posted on every Monday @9AM
- About 10 HWs (due next Monday @8:59AM)
- HWs and Exams are usually tough. Think carefully.
- Email: jongwon@hanyang.ac.kr
- Office hours: Every Monday @9:30-10:30AM
- Evaluation: HW 25%

Discussion 10%

Midterm1 (10/4) 20%

Midterm2 (11/13) 20%

Final (12/20) 25%

Total < 40% will FAIL

First photo from a passenger hits Twitter, via Path

David Eun, a Samsung executive was the first passenger to post a photo of the burning wreckage, 18 mins after the crash.

https://path.com/p/1lwrZb

survive San Frans 2013.7.6 11:28AM

2013.7.7 Morning

Mobile computing?

- Mobile computing is a technology that allows transmission of data, voice and video via a computer or any other wireless device without having to be connected to a physical link.
- Mobile computing encompasses a number of technologies and devices, such as wireless LANs, laptops, cell and smart phones, tablet PCs and etc.
- Any electronic device that helps you organize your life, communicate with coworkers or friends, or do your job more efficiently is part of mobile computing.

Historical Maps of Computer Networks

Sending packets from Bob to Alice

Too many network components

Too many components 2

- · Links: copper, fiber, air, carrier pigeon
- Running Ethernet, token ring, SONET, FDDI
- Routers speaking BGP, OSPF, RIP, ...
- Hosts running FreeBSD, Linux, Windows, Mac OS X, ...
- People using Chrome, Mozilla, Explorer, Opera, ...
 and it changes all the time
- Protocols hide this stuff with simple abstractions.

Protocol

- Protocol is the special set of rules that end points in a telecommunication connection use when they communicate.
- **Protocols** specify interactions between the communicating entities.
- Internet Protocol (IP) is the principal communications protocol in the Internet protocol suite for relaying datagrams across network boundaries.
- Its routing function enables internetworking, and essentially establishes the Internet.

Protocols

- An agreement between parties on who communication should take place.
- Protocols may have to define many aspects of the communication.
- Syntax:
 - Data encoding, language, etc.
- Semantics:
 - Error handling, termination, ordering of requests, etc.
- Protocols at hardware, software, all levels!
- Syntax: English, ascii, lines delimited by "\n"

More on Protocols

- Protocols are the key to interoperability.
 - Networks are very heterogeneous:

Computer: x86
Ethernet: 3com
Routers: cisco, etc.
App: Email
Hardware
Hardware/link
Network
Application

- The hardware/software of communicating parties are often not built by the same vendor
- Yet they can communicate because they use the same protocol
- Protocols exist at many levels.
 - Application level protocols, e.g. access to mail, web access, ...
 - Protocols at the hardware level allow two boxes to communicate over a link, e.g. the Ethernet protocol

Interfaces

- Each protocol offers an interface to its users, and expects one from the layers on which it builds
 - Syntax and semantics strike again
 - Data formats
 - Interface characteristics, e.g. IP service model
- Protocols build upon each other
 - Add value
 - E.g., a reliable protocol running on top of IP
 - Reuse
 - E.g., OS provides TCP, so apps don't have to rewrite

Communication Architecture

- The complexity of the communication task is reduced by using multiple protocol layers:
 - Each protocol is implemented independently
 - Each protocol is responsible for a specific subtask
 - Protocols are grouped in a hierarchy
- A structured set of protocols is called a communications architecture or protocol suite

OSI and Protocol Stack

OSI: Open Systems Interconnect

OSI Model	TCP/IP Hierarchy	Protocols				
7 th Application Layer						
6 th Presentation Layer	Application Layer	нттр	SMTP	POP	3 FTP	
5 th Session Layer						
4 th Transport Layer	Transport Layer	TCP			UDP	
3 rd Network Layer	Network Layer	IP ICMP				
2 nd Link Layer		ARF		2		
1 st Physical Layer	Link Layer	Ethernet			PPP	

Link Layer : includes device driver and network interface card

Network Layer : handles the movement of packets, i.e. Routing

Transport Layer : provides a reliable flow of data between two hosts

Application Layer: handles the details of the particular application

TCP/IP Protocol Suite

- The TCP/IP protocol suite is the protocol architecture of the Internet
- The TCP/IP suite has four layers: Application, Transport, Network, and Data Link Layer
- End systems (hosts) implement all four layers.
- Routers (Gateways) only have the bottom two layers.

Functions of the Layers

Data Link Layer

Service: Reliable transfer of frames over a link

Media Access Control on a LAN

Functions: Framing, media access control, error checking

Network Layer

Move packets from source host to destination host Service:

Functions: Routing, addressing

Transport Layer

Service: Delivery of data between hosts

Connection establishment/termination, error Functions:

control, flow control

Application Layer

Application specific (delivery of email, retrieval of documents, reliable transfer of file) Service:

Functions: Application specific

Assignment of Protocols to Layers

Layered Communications

- An entity of a particular layer can only communicate with:
 - 1. a peer layer entity using a common protocol (Peer Protocol)
 - 2. adjacent layers to provide services and to receive services

Service Access Points

- A service user accesses services of the service provider at Service Access Points (SAPs)
- A SAP has an address that uniquely identifies where the service can be accessed

Exchange of Data

- The unit of data send between peer entities is called a Protocol Data Unit (PDU)
- For now, let us think of a PDU as a single packet

- Scenario: Layer-N at A sends a layer-N PDU to layer-N at B
- What actually happens:
 - A's layer-N passes the PDU to one the SAPs at layer-N-1
 - Layer-N-1 entity at A constructs its own (layer-N-1) PDU which it sends to the layer-N-1 entity at B
 - PDU at layer-N-1 = layer-N-1 Header + layer –N PDU

Exchange of Data

Layers in the Example

128.143.137.144

128.143.137.1 00:e0:f9:23:a8:20

128.143.71.1

Layers in the Example

Layers in the Example

Layers and Services

- Service provided by TCP to HTTP:
 - reliable transmission of data over a logical connection
- Service provided by IP to TCP:
 - unreliable transmission of IP datagrams across an IP network
- Service provided by Ethernet to IP:
 - transmission of a frame across an Ethernet segment
- Other services:
 - DNS: translation between domain names and IP addresses
 - ARP: Translation between IP addresses and MAC addresses

Encapsulation and Demultiplexing

 As data is moving down the protocol stack, each protocol is adding layer-specific control information

Parsing the information in the frame

Encapsulation and Demultiplexing

Encapsulation and Demultiplexing: Ethernet Header

Encapsulation and Demultiplexing: IP Header

Encapsulation and Demultiplexing: IP Header

Encapsulation and Demultiplexing: TCP Header

Encapsulation and Demultiplexing: TCP Header

Encapsulation and Demultiplexing: Application data

Demultiplexing

Different views of networking

 Different Layers of the protocol stack have a different view of the network. This is HTTP's and TCP's view of the network.

Network view of IP protocol

Network View of Ethernet

Ethernet's view of the network

Sending packets from Bob to Alice

