Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Finite Automaton Algorithm

Introduction: Finite Automata¹

- A simple machine for string matching
- \blacksquare Scans text T for all occurrences of pattern P

Fixed

¹Chapter 32, CLRS, Third Edition

Finite Automata²

A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

- \blacksquare Q is a finite set of states
- \blacksquare $q_0 \in Q$ is the start state
- $\overline{A} \subseteq Q$ is the set of accepting states

 Σ is a finite input alphabet $\Sigma = \{\alpha_1, \alpha_2, \alpha_3\}$

lacksquare δ is the transition function of M from $Q \times \Sigma$ into Q

$$\int S(S_1,\alpha_1) = S_2, \ldots$$

²Chapter 32, CLRS, Third Edition

Text T = abababc Pattern P = abc

Algorithm for constructing finite automaton

 $\mathsf{Text}\ T = abababc\ \mathsf{Pattern}\ P = abc$

Text T = abababc Pattern P = abc

Pattern: abc

	State	а	b	С
د	0	1	0	0
0	1	1	2	1
	2	1	2	3
	3	3	3	3

Text T = abababc Pattern P = abc

Pattern: abc

State	а	b	С	
0	1	0	0	
1	1	2	1	
2	1	2	3	
3	3	3	3	

i	-	1	2	3	4	5	6	7
T[i]	-	а	b	а	b	a	b	С
δ	0	1	2	1	2	1	2	3

Finite Automaton Algorithm (for matching T) S: P is offline, Onetime cost= 0 (m3 [21)

```
Algorithm FiniteAutomatonStringMatchingAlgorithm(\underline{T}, \delta, \underline{m}) Input Text T of length n and Pattern P of length m Define s as the shift index to T q=0 for i\in(1...n) do q=\delta(q,T[i]) also occurs at shift" i-m end if end for
```

Figure: Finite Automaton Algorithm

Thank you