Solving Linear Programming Problems

Algebraic Sensitivity Analysis and LP Solvers

Mohammed Brahimi

ENSIA/Intelligent Systems Enginnering

March 18, 2023

Outline

Key Takeaways from Last Lecture

TOYCO Production Model

Algebraic Sensitivity Analysis: RHS changes

Algebraic Sensitivity Analysis: Objective function changes

LP Solution with Excel Solver

Revision

Key Takeaways from Last Lecture

- The two-phase method provides a viable approach for finding an initial feasible solution for the Simplex method.
- While executing Simplex, one must consider its numerous special cases such as degeneracy, unboundedness, and infeasibility to prevent potential issues.
- Cycling may occur in LP problems with degeneracy, which requires attention to ensure convergence to an optimal solution.
- Graphical sensitivity analysis is a useful tool for investigating the impact of LP parameter changes on the optimal solution, particularly in two dimensions.

TOYCO Production Model

- TOYCO uses three operations to assemble three types of toys: trains, trucks, and cars.
- Daily available times for the three operations: 430, 460, and 420 mins.
- Revenues per unit:
 - Train: \$3
 - Truck: \$2
 - Car: \$5
- · Assembly times unit:
 - Train: (1, 3, 1) mins at each operation.
 - Truck: (2, 0, 4) mins at each operation.
 - Car: (1, 2, 0) mins at each operation.

TOYCO Production Model

Let x1, x2, and x3 be the daily number of units assembled for trains, trucks, and cars, respectively. The LP model is given as:

Maximize
$$z = 3$$
 $x_1 + 2$ $x_2 + 5$ x_3
Subject to $x_1 + 2$ $x_2 + x_3 \le 430$ (Operation 1)
 $x_1 + 4$ $x_2 \le 420$ (Operation 3)
 $x_1 + 4$ $x_2 \le 420$ (Operation 3)

TOYCO Production Model

The optimum tableau of TOYCO Production Model using simplex is:

Basic	\mathbf{x}_1	x_2	x ₃	x_4	X 5	x ₆	Solution
Z	4	0	0	1	2	0	1350
x_2	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
<i>X</i> ₃	$-\frac{2}{3}$	0	1	0	$\frac{1}{2}$	0	230
<i>x</i> ₆	2	0	0	-2	1	1	20

- The recommended production quantities are:
 - 100 trucks
 - 230 cars
 - 0 trains.
- The associated revenue is \$1350.

• Sensitivity analysis determines the range of values for which the current optimal solution remains optimal.

- Sensitivity analysis determines the range of values for which the current optimal solution remains optimal.
- D_1 , D_2 , and D_3 be changes to the daily manufacturing time of operations 1, 2, and 3.

- Sensitivity analysis determines the range of values for which the current optimal solution remains optimal.
- D_1 , D_2 , and D_3 be changes to the daily manufacturing time of operations 1, 2, and 3.
- The original TOYCO model can be modified to reflect these changes.

- Sensitivity analysis determines the range of values for which the current optimal solution remains optimal.
- D_1 , D_2 , and D_3 be changes to the daily manufacturing time of operations 1, 2, and 3.
- The original TOYCO model can be modified to reflect these changes.

```
      Maximize
      z = 3
      x_1
      +
      2
      x_2
      +
      5
      x_3

      Subject to
      x_1
      +
      2
      x_2
      +
      x_3 \le 430 + D_1
      (Operation 1)

      3
      x_1
      +
      4
      x_2
      +
      2
      x_3 \le 460 + D_2
      (Operation 2)

      x_1
      +
      4
      x_2
      +
      2
      420 + D_3
      (Operation 3)

      x_1
      x_1
      x_2
      x_2
      x_3 \ge 0
```

• Rewrite the starting tableau using the new right-hand sides: $430 + D_1$, $460 + D_2$, and $420 + D_3$.

- Rewrite the starting tableau using the new right-hand sides: $430 + D_1$, $460 + D_2$, and $420 + D_3$.
- Calculate the new optimal solution using the revised simplex method.

- Rewrite the starting tableau using the new right-hand sides: $430 + D_1$, $460 + D_2$, and $420 + D_3$.
- Calculate the new optimal solution using the revised simplex method.
- Obtain sensitivity analysis information such as dual prices and feasibility ranges from the new optimal solution.

- Rewrite the starting tableau using the new right-hand sides: $430 + D_1$, $460 + D_2$, and $420 + D_3$.
- Calculate the new optimal solution using the revised simplex method.
- Obtain sensitivity analysis information such as dual prices and feasibility ranges from the new optimal solution.

							Solution			
Basic	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS	D_1	D_2	D_3
z	-3	-2	-5	0	0	0	0	0	0	0
<i>x</i> ₄	1	2	1	1	0	0	430	1	0	0
x_5	3	0	2	0	1	0	460	0	1	0
x_6	1	4	0	0	0	1	420	0	0	1

Sensitivity Analysis in TOYCO Model

- · The shaded areas are identical.
- The same simplex iterations can be repeated as in the original model.
- The columns in the two highlighted areas will also be identical in the optimal tableau.

							Solution			
Basic	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS	D_1	D_2	D_3
z	4	0	0	1	2	0	1350	1	2	0
<i>x</i> ₂	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100	$\frac{1}{2}$	$-\frac{1}{4}$	0
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230	0	$\frac{1}{2}$	0
x_6	2	0	0	-2	1	1	20	-2	1	1

Sensitivity Analysis in TOYCO Model

The new optimum tableau provides the following optimal solution:

$$z = 1350 + D_1 + 2D_2 + 0D_3$$

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2$$

$$x_3 = 230 + \frac{1}{2}D_2$$

$$x_6 = 20 - 2D_1 + D_2 + D_3$$

- Dual prices can be determined using the optimal solution.
- The objective function can be written as:
 - $-z = 1350 + 1 \times D_1 + 2 \times D_2 + 0 \times D_3.$

- Dual prices can be determined using the optimal solution.
- The objective function can be written as:

$$-z = 1350 + 1 \times D_1 + 2 \times D_2 + 0 \times D_3.$$

- The corresponding dual prices are:
 - 1 (\$/min) for operation 1
 - 2 (\$/min) for operation 2
 - 0 (\$/min) for operation 3

- Dual prices can be determined using the optimal solution.
- The objective function can be written as:

$$-z = 1350 + 1 \times D_1 + 2 \times D_2 + 0 \times D_3.$$

- The corresponding dual prices are:
 - 1 (\$/min) for operation 1
 - 2 (\$/min) for operation 2
 - 0 (\$/min) for operation 3
- The coefficients of slack variables x_4 , x_5 , and x_6 in the optimal z-row are exactly those of D_1 , D_2 , and D_3 , respectively.

- Dual prices can be determined using the optimal solution.
- The objective function can be written as :

$$-z = 1350 + 1 \times D_1 + 2 \times D_2 + 0 \times D_3.$$

- The corresponding dual prices are:
 - 1 (\$/min) for operation 1
 - 2 (\$/min) for operation 2
 - 0 (\$/min) for operation 3
- The coefficients of slack variables x_4 , x_5 , and x_6 in the optimal z-row are exactly those of D_1 , D_2 , and D_3 , respectively.
- The dual prices equal the coefficients of the slack variables in the optimal z-row.

- Dual prices can be determined using the optimal solution.
- The objective function can be written as :

$$-z = 1350 + 1 \times D_1 + 2 \times D_2 + 0 \times D_3.$$

- The corresponding dual prices are:
 - 1 (\$/min) for operation 1
 - 2 (\$/min) for operation 2
 - 0 (\$/min) for operation 3
- The coefficients of slack variables x_4 , x_5 , and x_6 in the optimal z-row are exactly those of D_1 , D_2 , and D_3 , respectively.
- The dual prices equal the coefficients of the slack variables in the optimal z-row.
- Each slack variable is uniquely identified with a constraint, so there is no ambiguity as to which coefficient applies to which resource.

Feasibility range in TOYCO Model

- To keep the solution feasible, simultaneous changes D₁, D₂, and D₃ must satisfy certain inequalities.
- The new optimum solution can be obtained by substituting the values of D_1 , D_2 , and D_3 .
- Feasibility ranges can be determined by finding the range of simultaneous changes D_1 , D_2 , and D_3 that keep the solution feasible.

Feasibility range in TOYCO Model

- To keep the solution feasible, simultaneous changes D₁, D₂, and D₃ must satisfy certain inequalities.
- The new optimum solution can be obtained by substituting the values of D_1 , D_2 , and D_3 .
- Feasibility ranges can be determined by finding the range of simultaneous changes D_1 , D_2 , and D_3 that keep the solution feasible.

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2 \ge 0$$

$$x_3 = 230 + \frac{1}{2}D_2 \ge 0$$

$$x_6 = 20 - 2D_1 + D_2 + D_3 \ge 0$$

Feasibility Ranges Example

- New optimum solution found by substituting values of D_1 , D_2 , and D_3 .
- Manufacturing times: 480, 440, and 400 mins for ops 1, 2, and 3.
- $D_1 = 50(480 430)$, $D_2 = -20(440 460)$, and $D_3 = -20(400 420)$.

Feasibility Ranges Example

- New optimum solution found by substituting values of D_1 , D_2 , and D_3 .
- Manufacturing times: 480, 440, and 400 mins for ops 1, 2, and 3.
- $D_1 = 50(480 430)$, $D_2 = -20(440 460)$, and $D_3 = -20(400 420)$.
- · Feasibility conditions:

$$\begin{aligned} x_2 &= 100 + \frac{1}{2} D_1 - \frac{1}{4} D_2 = 130 \\ x_3 &= 230 + \frac{1}{2} D_1 = 220 \\ x_6 &= 20 - \frac{1}{2} D_1 + D_2 + D_3 = -110 \end{aligned} \qquad \Rightarrow \text{ feasible}$$

Feasibility Ranges Example

- New optimum solution found by substituting values of D_1 , D_2 , and D_3 .
- Manufacturing times: 480, 440, and 400 mins for ops 1, 2, and 3.
- $D_1 = 50(480 430)$, $D_2 = -20(440 460)$, and $D_3 = -20(400 420)$.
- · Feasibility conditions:

$$\begin{aligned} \mathbf{x}_2 &= 100 + \frac{1}{2} \mathbf{D}_1 - \frac{1}{4} \mathbf{D}_2 = 130 \\ \mathbf{x}_3 &= 230 + \frac{1}{2} \mathbf{D}_1 = 220 \\ \mathbf{x}_6 &= 20 - \frac{1}{2} \mathbf{D}_1 + \mathbf{D}_2 + \mathbf{D}_3 = -110 \end{aligned} \qquad \Rightarrow \text{ feasible}$$

• The current solution does not remain feasible because $x_6 < 0$.

Feasibility Ranges example

• Alternatively, if the changes in the resources are such that $D_1=-30$, $D_2=-12$, and $D_3=10$, then

$$\begin{aligned} \mathbf{x}_2 &= 100 + \frac{1}{2} \mathbf{D}_1 - \frac{1}{4} \mathbf{D}_2 = 88 & \Rightarrow \text{ feasible} \\ \mathbf{x}_3 &= 230 + \frac{1}{2} \mathbf{D}_1 = 224 & \Rightarrow \text{ feasible} \\ \mathbf{x}_6 &= 20 - \frac{1}{2} \mathbf{D}_1 + \mathbf{D}_2 + \mathbf{D}_3 = 78 & \Rightarrow \text{ feasible} \end{aligned}$$

The new (optimal) feasible solution is $x_2 = 88$, $x_3 = 224$, and $x_6 = 68$ with $z = 31x_1 + 218x_2 + 512x_3 = 1296 .

• The dual prices D_1 and D_2 can be used to calculate the optimal objective value as $z = 1350 + D_1 + 2D_2 + 0D_3$.

- Given conditions produce feasibility ranges for changing resources one at a time.
- Change in operation 1: $D_2 = D_3 = 0$.
- Simultaneous conditions reduce to expressions for x_2 , x_3 , and inequality for x_6 in terms of D_1 .

- Given conditions produce feasibility ranges for changing resources one at a time.
- Change in operation 1: $D_2 = D_3 = 0$.
- Simultaneous conditions reduce to expressions for x_2 , x_3 , and inequality for x_6 in terms of D_1 .

$$x_2 = 100 + \frac{1}{2}D_1 \ge 0$$

$$x_3 = 230 - 7D_2 \ge 0$$

$$x_6 = 20 - 2D_1 > 0$$

- Given conditions produce feasibility ranges for changing resources one at a time.
- Change in operation 1: $D_2 = D_3 = 0$.
- Simultaneous conditions reduce to expressions for x_2 , x_3 , and inequality for x_6 in terms of D_1 .

$$x_2 = 100 + \frac{1}{2}D_1 \ge 0$$

$$x_3 = 230 - 7D_2 \ge 0$$

$$x_6 = 20 - 2D_1 \ge 0$$

• Dual price for operation 1 valid in $-200 \le D_1 \le 10$.

- Given conditions produce feasibility ranges for changing resources one at a time.
- Change in operation 1: $D_2 = D_3 = 0$.
- Simultaneous conditions reduce to expressions for x_2 , x_3 , and inequality for x_6 in terms of D_1 .

$$x_2 = 100 + \frac{1}{2}D_1 \ge 0$$

$$x_3 = 230 - 7D_2 \ge 0$$

$$x_6 = 20 - 2D_1 \ge 0$$

- Dual price for operation 1 valid in $-200 \le D_1 \le 10$.
- Feasibility ranges for operations 2 and 3: $-20 \le D_2 \le 400$, $-20 \le D_3 \le \infty$.

Summary of sensitivity for changes in the RHS

			Resource amount (minutes)			
Resource	Dual price(\$)	Feasibility range	Minimum	Current	Maximum	
Operation 1	1	$-200 \le D_1 \le 10$	230	430	440	
Operation 2	2	$-20 \le D_2 \le 400$	440	440	860	
Operation 3	0	$-20 \leq D_3 < \infty$	400	420	∞	

Summary of sensitivity for changes in the RHS

Resource			Resource amount (minutes)			
	Dual price(\$)	Feasibility range	Minimum	Current	Maximum	
Operation 1	1	$-200 \le D_1 \le 10$	230	430	440	
Operation 2	2	$-20 \le D_2 \le 400$	440	440	860	
Operation 3	0	$-20 \leq D_3 < \infty$	400	420	∞	

Dual prices remain valid for feasible simultaneous changes, even if they violate individual ranges.

Algebraic Sensitivity Analysis - Reduced Cost

$$z = 1350 - 4 \times x_1 - x_4 - 2 \times x_5$$

• Optimal solution does not produce toy trains $(x_1 = 0)$.

Algebraic Sensitivity Analysis - Reduced Cost

$$z = 1350 - 4 \times x_1 - x_4 - 2 \times x_5$$

- Optimal solution does not produce toy trains $(x_1 = 0)$.
- **Reason:** A unit increase in x_1 (above its current zero value) decreases z by \$4.

Algebraic Sensitivity Analysis - Reduced Cost

$$z = 1350 - 4 \times x_1 - x_4 - 2 \times x_5$$

- Optimal solution does not produce toy trains $(x_1 = 0)$.
- **Reason:** A unit increase in x_1 (above its current zero value) decreases z by \$4.
- Calculation: $z = 1350 4 \times (1) 1 \times (0) 2 \times (0) = \1346 .

Algebraic Sensitivity Analysis - Reduced Cost

$$z = 1350 - 4 \times x_1 - x_4 - 2 \times x_5$$

- Optimal solution does not produce toy trains $(x_1 = 0)$.
- **Reason:** A unit increase in x_1 (above its current zero value) decreases z by \$4.
- Calculation: $z = 1350 4 \times (1) 1 \times (0) 2 \times (0) = \1346 .
- The **reduced cost** of x_1 is 4.

Algebraic Sensitivity Analysis - Reduced Cost

$$z = 1350 - 4 \times x_1 - x_4 - 2 \times x_5$$

- Optimal solution does not produce toy trains $(x_1 = 0)$.
- **Reason:** A unit increase in x_1 (above its current zero value) decreases z by \$4.
- Calculation: $z = 1350 4 \times (1) 1 \times (0) 2 \times (0) = \1346 .
- The **reduced cost** of x_1 is 4.
- Basic variables have zero reduced costs because increasing their values would violate a constraint.

• We consider the situation when all the objective coefficients are changed simultaneously.

- We consider the situation when all the objective coefficients are changed simultaneously.
- · We need to determine conditions for maintaining optimality.

- We consider the situation when all the objective coefficients are changed simultaneously.
- · We need to determine conditions for maintaining optimality.
- **d**_i is the change in unit revenue for toy i.

- We consider the situation when all the objective coefficients are changed simultaneously.
- · We need to determine conditions for maintaining optimality.
- **d**_i is the change in unit revenue for toy i.

Max
$$z = (3 + d_1) \times x_1 + (2 + d_2) \times x_2 + (5 + d_3) \times x_3$$

- We consider the situation when all the objective coefficients are changed simultaneously.
- · We need to determine conditions for maintaining optimality.
- **d**_i is the change in unit revenue for toy *i*.

Max
$$z = (3 + d_1) \times x_1 + (2 + d_2) \times x_2 + (5 + d_3) \times x_3$$

Basic	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	Solution
z	$-3 - d_1$	$-2 - d_2$	$-5 - d_3$	0	0	0	0

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Solution
z	$4 - \frac{1}{4}d_2 + \frac{3}{2}d_3 - d_1$	0	0	$1 + \frac{1}{2}d_2$	$2 - \frac{1}{4}d_2 + \frac{1}{2}d_3$	0	$1350 + 100d_2 + 23d_3$
<i>x</i> ₂	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
x_6	$-\frac{1}{4}$	0	0	-2	1	1	20

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Solution
z	$4 - \frac{1}{4}d_2 + \frac{3}{2}d_3 - d_1$	0	0	$1 + \frac{1}{2}d_2$	$2 - \frac{1}{4}d_2 + \frac{1}{2}d_3$	0	$1350 + 100d_2 + 23d_3$
<i>x</i> ₂	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
x_6	$-\frac{1}{4}$	0	0	-2	1	1	20

• Simplex with same sequence of entering/leaving variables as original model.

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Solution
z	$4 - \frac{1}{4}d_2 + \frac{3}{2}d_3 - d_1$	0	0	$1 + \frac{1}{2}d_2$	$2 - \frac{1}{4}d_2 + \frac{1}{2}d_3$	0	$1350 + 100d_2 + 23d_3$
<i>x</i> ₂	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
x_6	$-\frac{1}{4}$	0	0	-2	1	1	20

- Simplex with same sequence of entering/leaving variables as original model.
- New optimal tableau is similar to the original one, except for the reduced costs.

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Solution
z	$4 - \frac{1}{4}d_2 + \frac{3}{2}d_3 - d_1$	0	0	$1 + \frac{1}{2}d_2$	$2 - \frac{1}{4}d_2 + \frac{1}{2}d_3$	0	$1350 + 100d_2 + 23d_3$
<i>x</i> ₂	$-\frac{1}{4}$	1	0	1/2	$-\frac{1}{4}$	0	100
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
x_6	$-\frac{1}{4}$	0	0	-2	1	1	20

- Simplex with same sequence of entering/leaving variables as original model.
- New optimal tableau is similar to the original one, except for the reduced costs.
- Objective-function coefficients changes affect the optimality and not feasability.

No need to carry out simplex row operation for computing new reduced costs.

-		d_1	d_2	d_3	0	0	0	
	Basic	x_1	x_2	x_3	x_4	x_5	x_6	Solution
1	z	4	0	0	1	2	0	1350
d_2	x_2	$-\frac{1}{4}$	1	0	1/2	$-\frac{1}{4}$	0	100
d_3	x_3	3/2	0	1	0	1/2	0	230
0	x_6	2	0	0	-2	1	1	20

No need to carry out simplex row operation for computing new reduced costs.

		d_1	d_2	d_3	0	0	0	
	Basic	x_1	x_2	x_3	x_4	x_5	x_6	Solution
1	z	4	0	0	1	2	0	1350
d_2	x_2	$-\frac{1}{4}$	1	0	1/2	$-\frac{1}{4}$	0	100
d_3	x_3	3/2	0	1	0	1/2	0	230
0	x_6	2	0	0	-2	1	1	20

Reduced cost for
$$x_1=\begin{bmatrix} 4 & -\frac{1}{4} & \frac{3}{2} & 2 \end{bmatrix}\begin{bmatrix} 1 & d_2 & d_3 & 0 \end{bmatrix}-d_1$$

Reduced cost for
$$\quad x_1=4-\frac{1}{4}d_2+\frac{3}{2}d_3-d_1$$

 The current BFS remains optimal if the new reduced costs remain nonnegative (maximization case).

- The current BFS remains optimal if the new reduced costs remain nonnegative (maximization case).
- We thus have the following simultaneous optimality conditions corresponding to nonbasic x₁, x₄, and x₅:

$$4 - \frac{1}{4}d_2 + \frac{3}{2}d_3 - d_1 \ge 0$$
$$1 + d_2 \ge 0$$
$$2 - \frac{1}{4}d_2 + \frac{1}{2}d_3 \ge 0$$

Simultaneous objective function changes example

• Objective function of TOYCO is changed from $z = 3x_1 + 2x_2 + 5x_3$ to $z = 2x_1 + x_2 + 6x_3$.

Simultaneous objective function changes example

- Objective function of TOYCO is changed from $z = 3x_1 + 2x_2 + 5x_3$ to $z = 2x_1 + x_2 + 6x_3$.
- Substitution in the given conditions yields:
 - $4-\frac{1}{4}d_2+\frac{3}{2}d_3-d_1=6.75\geq 0\Rightarrow$ satisfied $1+\frac{1}{2}d_2\geq 0\Rightarrow$ satisfied

 - $-2 \frac{1}{4}d_2 + \frac{1}{2}d_3 = 2.75 \ge 0 \Rightarrow$ satisfied

Simultaneous objective function changes example

- Objective function of TOYCO is changed from $z = 3x_1 + 2x_2 + 5x_3$ to $z = 2x_1 + x_2 + 6x_3$.
- Substitution in the given conditions yields:
 - $4-\frac{1}{4}d_2+\frac{3}{2}d_3-d_1=6.75\geq 0\Rightarrow$ satisfied $1+\frac{1}{2}d_2\geq 0\Rightarrow$ satisfied

 - $-2-\frac{1}{4}d_2+\frac{1}{2}d_3=2.75\geq 0 \Rightarrow \text{satisfied}$
- The proposed changes will keep the current solution $(x_1 = 0, x_2 = 100, x_3 = 230)$ optimal with a new value of $z = 1350 + 100d_2 + 230d_3 = 1480$.

Simultaneous objective function changes example

- Objective function of TOYCO is changed from $z=3x_1+2x_2+5x_3$ to $z=2x_1+x_2+6x_3$.
- · Substitution in the given conditions yields:
 - $-4 \frac{1}{4}d_2 + \frac{3}{2}d_3 d_1 = 6.75 \ge 0 \Rightarrow \text{satisfied}$
 - $1+rac{1}{2}d_2\geq 0 \Rightarrow$ satisfied
 - $-2 \frac{1}{4}d_2 + \frac{1}{2}d_3 = 2.75 \ge 0 \Rightarrow$ satisfied
- The proposed changes will keep the current solution ($x_1=0, x_2=100, x_3=230$) optimal with a new value of $z=1350+100d_2+230d_3=1480$.
- If any condition is not satisfied, a new solution must be determined.

Individual changes in objective function example

• Optimality ranges for a single variable's coefficient can be derived from simultaneous optimality conditions by setting changes in other variables to 0.

Individual changes in objective function example

 Optimality ranges for a single variable's coefficient can be derived from simultaneous optimality conditions by setting changes in other variables to 0.

$$\left. \begin{array}{l}
4 - \frac{1}{4}d_2 \ge 0 \Rightarrow d_2 \le 16 \\
1 - \frac{1}{2}d_2 \ge 0 \Rightarrow d_2 \ge -2 \\
1 - \frac{1}{4}d_2 \ge 0 \Rightarrow d_2 \le 8
\end{array} \right\} \Rightarrow -2 \le d_2 \le 8$$

• Similarly, changing x_1 's coefficient by $(3+d_1)$ and x_3 's coefficient by $(5+d_3)$ result in optimality ranges of $d_1 \le 4$ and $d_3 \ge -\frac{8}{3}$.

Individual changes in objective function example

• Optimality ranges for a single variable's coefficient can be derived from simultaneous optimality conditions by setting changes in other variables to 0.

$$\begin{vmatrix}
4 - \frac{1}{4}d_2 \ge 0 \Rightarrow d_2 \le 16 \\
1 - \frac{1}{2}d_2 \ge 0 \Rightarrow d_2 \ge -2 \\
1 - \frac{1}{4}d_2 \ge 0 \Rightarrow d_2 \le 8
\end{vmatrix} \Rightarrow -2 \le d_2 \le 8$$

- Similarly, changing x_1 's coefficient by $(3+d_1)$ and x_3 's coefficient by $(5+d_3)$ result in optimality ranges of $d_1 \le 4$ and $d_3 \ge -\frac{8}{3}$.
- Allowable individual ranges of d_1 , d_2 , and d_3 may not necessarily satisfy the simultaneous conditions, and vice versa.

- Input all the coefficients:
 - Objective function coefficients.
 - Constraint coefficients.

- Input all the coefficients:
 - Objective function coefficients.
 - Constraint coefficients.
- Write the formulas for the totals based on values of the decision variables.

- Input all the coefficients:
 - Objective function coefficients.
 - Constraint coefficients.
- Write the formulas for the totals based on values of the decision variables.
- Use Excel Solver to find the optimal values of the decision variables that maximize/minimize the objective function, and satisfy the constraints.

- Input all the coefficients:
 - Objective function coefficients.
 - Constraint coefficients.
- Write the formulas for the totals based on values of the decision variables.
- Use Excel Solver to find the optimal values of the decision variables that maximize/minimize the objective function, and satisfy the constraints.
- Solver provides the optimal values for the decision variables.
- Check the Solver results for feasibility and sensitivity analysis to see how the optimal solution would be affected by changes in the input parameters.

LP Solution with Excel Solve example

```
Maximize z = 3 x_1 + 2 x_2 + 5 x_3

Subject to x_1 + 2 x_2 + x_3 \le 430 (Operation 1) x_1 + 4 x_2 + 2 x_3 \le 460 (Operation 2) x_1 + 4 x_2 + 3 \le 420 (Operation 3) x_1 + 4 x_2 + 3 \ge 0
```

Excel Formulas

- Total = SUMPRODUCT(Coefficients array, decision variables array)
 - Total profit = SUMPRODUCT(B2:D2,\$B\$10:\$D\$10)
 - Total operation 1 = SUMPRODUCT(B3:D3,\$B\$10:\$D\$10)
 - Total operation 2 = SUMPRODUCT(B4:D4,\$B\$10:\$D\$10)
 - Total operation 3 = SUMPRODUCT(B5:D5,\$B\$10:\$D\$10)

Excel Solver

Revision

