COSC 417: Topics in Networking

TOPIC 3: BGP ROUTING

SCHEDULE

- 1. Recap
- 2. Path-vector Routing Protocol
- 3. BGP Messaging
- 4. BGP Path Attributes
- 5. eBGP and iBGP

RECAP — AUTONOMOUS SYSTEMS

- Last week we talked about autonomous systems
- An autonomous system is a collection of routers under common administrative control
- Each AS will have routing policies that are under the control of the administrator

RECAP — INTER-AS ROUTING

- Autonomous systems are connected to each other via interas routing (Border Gateway Protocol)
- BGP allows autonomous systems to share routing information, which in turn allows traffic to flow between autonomous systems

TODAY'S LECTURE

- We're going to dig a bit deeper into how and why the BGP routing protocol works
- Routing tables why they are important, and how they work

PATH-VECTOR ROUTING PROTOCOL

- At it's core, the BGP protocol is a type of path-vector routing protocol
- Path-vector protocols define a route as the collection of autonomous systems (or any points in a graph, to generalize) that must be travelled through from source to destination

PATH-VECTOR ROUTING PROTOCOL

• Remember the AS-Path variable we looked at previously? This is the path-vector routing protocol in action.

 Traffic between AS1 and AS4 could have an AS-Path like this:

1, 3, 4

WHY IS PATH-VECTOR USED?

- As we discussed in the previous lecture, the primary purpose of the AS-Path is to avoid loops in routing
- If a router sees it's own AS Number in a route, it won't use that route, because that implies a loop

NON-PATH VECTOR ROUTING (EGP)

- Interestingly, before BGP became the standard, another routing protocol known as Exterior Gateway Protocol (EGP) existed
- EGP is not based on a path-vector algorithm
- As a result, EGP struggles to prevent loops in it's routes

SO HOW DID THIS COME TO BE?

- Originally, the internet was envisioned as having a more tree-like structure
 - Minimal loops, and with connections always aggregating towards larger and larger "backbone" networks
- Ultimately, the internet developed a much more complicated network structure – full of loops and redundant connections
 - Hence why BGP overtook EGP as the standard routing protocol

IN THE PRESENT DAY

- Currently, BGP is considered the standard for doing inter-AS routing
- Other algorithms (like EGP) exist, but if you want to actually connect your AS to the outside world, you're going to need to use BGP
- Just one of many examples of how increasingly complex networking conditions have driven the need for robust, standardized protocols

THE GENERAL BGP FLOW

- The BGP protocol basically performs the following actions:
 - 1. Listen for paths from internal (intra-AS) and external (inter-as) BGP sources (neighbouring routers)
 - 2. Pick the "best" path and put it into the routing table
 - 3. Advertise that best path to your neighbours

GETTING TO KNOW THE NEIGHBOURS

- When a TCP connection is established between two routers, the first thing sent is an open message (basically, a "hello" between routers)
- They will send to each other:
 - Their own AS Number
 - Their BGP version and router ID
 - The time-out time (heartbeat)

STAYIN' ALIVE

- Assuming the open messages were exchanged successfully, a
 BGP connection can be established between the two routers
- After the connection has been established, the two routers will regularly send each other *keepalive* messages
- These keepalive messages have no data, and just maintain the BGP connection state

TIMEOUT AND KEEPALIVE

- Something important to note here: the timeout (also known as hold-time) must be longer (usually 3-4x) than the keepalive interval
- If the timeout expires without receiving a keepalive message, it is assumed the neighbour has gone offline
- When sharing timeouts in the opening message, the shorter of the two times (one from each router) is used

UPDATING PATHS

- Once a BGP connection has been established, routers can send update messages to each other
- Each update message updates a single path
- An update message will specify the networks reachable through the path (NLRI), the path attributes, as well as withdrawn (no longer valid) routes

NETWORK LAYER REACHABILITY INFORMATION

- In the BGP Update message, the router shares something known as Network Layer Reachability Information (NLRI)
- NLRI is composed of a length, and a prefix, using CIDR IP notation:
 - 255.255.255.240 /28 (16 addresses)
 - 255.255.255.252 /30 (4 addresses)

UPDATE, IN SUMMARY

- So, each update message describes a path that connects to some set of addresses described in NLRI format, the attributes that apply to these addresses, and any routes to these addresses that are no longer valid
- It is the constant sharing of updates that allows the BGP protocol to modify routing behaviour as network conditions change

WHEN THINGS GO WRONG

- The last major type of BGP message is a notification
- A Notification message is sent when an error has been detected,
 and contains error codes and information related to the error
- When a notification message is received, the BGP connection is immediately terminated to prevent further errors and/or loss of traffic due to errors

BGP MESSAGES, IN SUMMARY

- There are four major types of message shared between BGP routers:
 - Open Create a BGP connection
 - Keepalive Heartbeat monitoring messages
 - Update Send out path information to your neighbours
 - Notification Announce errors and close the BGP connection

PATH ATTRIBUTES

- When a BGP-connected router shares a path to some network (NLRI), it includes certain attributes for that path
- Some of these attributes are mandatory and are part of the BGP specification
- Others are used for specific types of routing policy, or by particular router vendors (such as Cisco)

WELL-KNOWN VS MANDATORY VS TRANSITIVE

- Attributes can be broadly classed into a handful of groups:
 - Well-Known attributes must be recognized by all routers
 - Mandatory attributes must be sent with all BGP updates (or an error will result)
 - Transitive attributes must be passed along when a path is readvertised to neighbours

WELL-KNOWN MANDATORY ATTRIBUTES

- There are three well-known, mandatory attributes that must be included in each update message
- If these aren't included, a notification message will be sent and the BGP connection will be terminated
- These three attributes are Origin, AS_Path, and Next_Hop

THE ORIGIN ATTRIBUTE

- The Origin attribute describes how a path for a given prefix was discovered or "learned" by the router
- Three acceptable values:
 - IGP path was learnt from another router in the same AS (Internal Gateway Routing Protocol)
 - EGP Obsolete, no longer used (Exterior Gateway Protocol)
 - Incomplete path was learnt via indeterminate way (manual entry, etc)

IS ORIGIN IMPORTANT?

- You might wonder if it really matters how we learnt about a given path?
- The answer is that it doesn't, in terms of how the actual path itself works, but it is important for choosing a path
- The origin attribute is used to help calculate the best path (IGP is preferable to Incomplete, for example)

THE AS PATH ATTRIBUTE

- The AS Path is a mandatory, well-known attribute
- As we've previously discussed, the AS Path contains the AS numbers for each autonomous system in the path
- When a router re-advertises a path, it appends itself to the AS Path
- If a router encounters a path that contains it's own ASN, it ignores that path and will not re-advertise (loop prevention)

AS PATH AS A POLICY DEVICE

- Besides avoiding loops, the AS Path attribute gives us an idea of how long a route is, in terms of autonomous systems that must be traversed
- A longer AS Path indicates the traffic must travel over more autonomous systems
- As a result, AS Path length can also be used as a metric for selecting the best path
- Some networks artificially increase the size of the AS Path to discourage the network being used for transit purposes

THE NEXT HOP ATTRIBUTE

- The last major attribute is the Next Hop
- The Next Hop attribute usually contains the IP address of the neighbouring router (in a different AS), that is the next transit point for that path
- When a router sends an update message to another external gateway router via BGP, it updates the next-hop with it's own IP

WHAT ABOUT THE OTHERS?

- There are many other attributes available, such as local_pref, community, aggregator, etc
- Some of them are transitive (must be passed along if received), others are well-known but optional
- Many serve primarily to express routing policies to provide weighting or describe preferences for certain paths over others, depending on the routing policies set by the administrator

WHAT ARE EBGP AND IBGP?

- Up until now, we've been discussing BGP entirely in the context of inter-AS communication, with routers on the edges of an autonomous system conversing with each other
- This is actually known as eBGP, or external BGP
- BGP can also be used internally within an AS, in which case it is known as *iBGP*, or *internal BGP*

HOW ARE THEY DIFFERENT?

- In broad strokes, eBGP and iBGP follow the same rules same attributes, same message types
- In the finer details, there are some differences
 - Differences in what information is shared
 - Differences in how the Next-Hop attribute works

EBGP VS IBGP, AS PATH

- Recall that a router will prepend it's own ASN to the AS Path when it readvertises a path
- This is only done when performing eBGP, i.e. only when a router is a gateway router advertising to a gateway router in a different AS (external connection)
- Internal routing via iBGP does not prepend the ASN!
- If it did, it would be impossible to share routes internally, due to the anti-looping mechanism

EBGP VS IBGP, NEXT HOP

- In eBGP, a router sets the next-hop to it's own IP address (usually) when advertising a path
- This works because the external gateway routers have direct connections to each other, and as such are reachable
- Problem: How can a path be shared internally, when the internal router probably doesn't have a direct connection to the router specified in the next-hop?

THE PROBLEM

- Consider that R3 advertises a path to AS2 to R2 via eBGP
- R3 sets the next-hop to it's own IP address (the IP of R3)
- R1 knows of this route, but the next-hop is still the IP of R3, which R1 is not connected to!

THE SOLUTION

- First, as a rule, routes shared via iBGP will not update the next-hop attribute, i.e. the next hop remains the same as it was when the path was first shared with the AS via the external router
- An Internal Gateway Protocol (IGP) is used to distribute internal routing information instead, allowing internal routers to determine where traffic needs to go

HOW THE IBGP/IGP SOLUTION WORKS

- A gateway router learns of a path, and then advertises that path internally in the AS via iBGP
- An internal router learns the path from iBGP it knows traffic destined for a given prefix goes to a certain external IP in a different AS
- The internal router uses an IGP-based routing table to determine the path to the gateway router, allowing communication between the internal router, the gateway router, and the external destination router

A FINAL, IMPORTANT CAVEAT

- Remember how iBGP doesn't prepend to the AS Path?
- Well, while it avoids traffic being thrown out due to the ASN appearing multiple times, it means that iBGP lacks a proper loopdetection system
- As a result, certain constraints must be put on iBGP that aren't placed on eBGP, in order to maintain the integrity of the routing system

IBGP ADVERTISING RULES AND FULL MESH

- The major constraints are:
 - Routes learnt via iBGP cannot be re-advertised via iBGP (RFC 4271).
 - As a result, the internal BGP network in the AS must be full mesh all nodes are connected to every other node
 - Every iBGP router is networked with every other iBGP router, advertisements only make a single trip between router-router, no readvertising necessary

SCHEDULE

- 1. Recap
- 2. Path-vector Routing Protocol
- 3. BGP Messaging
- 4. BGP Path Attributes
- 5. eBGP and iBGP

SO LONG, FOLKS!