Hands-On E-learning Course on Cyber Defence for System Administrators

Praktilise küberkaitse e-kursus süsteemiadministraatoritele

Master's thesis

Author: Margus Ernits

Supervisor: Rain Ottis, Ph.D

Tallinn, June 3rd 2013

Presentation Outline

- Introduction and current situation
- Problem statement
- Considerations
- Methodology and the ADDIE model
- Analysis
- Solution
- Developed hands-on labs
- Evaluation of the e-learning course
- Conclusions
- Future research

Introduction

- Estonian IT College (EITC) focuses on applied higher education with the following curricula: IT System Administration, IT Development, IT System Analysis.
- Author is a lecturer of EITC:
 - Operating System Administration (6ECTS)
 - Linux administration (4ECTS)
 - Scripting languages (Bash, Python) (4ECTS)
 - IT infrastructure services (5ECTS)
 - Instructor of robotics club
 - Digital image processing C++
- Curricula development is held in cooperation with universities, private companies, graduates and students.

PROBLEM STATEMENT

- Insufficient numbers of skilled and security aware system administrators (in Estonia):
 - EITC courses did not cover the needs of industry for practical security field.
 - Many system administrators are self-taught and do not have required qualification.
 - Practical component of studies was not sufficient for configuring IT infrastructure services securely.
- Solution was to develop a practical hands-on e-learning course.

Considerations

- Developing the new hands-on e-learning course:
 - focused on defence of the IT systems;
 - securing services is part of configuring the services;
 - lab intensive, *command dojo* (follow the master);
 - playful, motivating (badges, competition);
 - suitable for students and for continuous education.
- Not for teaching offense or cyber security specialists!
 - The target audience is system administrators and students.

METHODOLOGY

- Investigating the problem and similar research (Kasak, HyneSim, defensive and offensive courses/trainings/exercises).
- Instructional design models:
 - behaviorist, suitable for trainings;
 - cognitivist, suitable for exploring, group-works;
 - prescriptive models:
 - ADDIE model used in Estonia.

CHOSEN METHOD - THE ADDIE MODEL

ANALYSIS

- Instructional goals
- Learner analysis
- Learning outcomes
- Course module list
- How to make the course playful?
- Which technical environment is needed?

SOLUTION

• Developing labs:

- learning objectives;
- hands-on laboratory materials and learning material;
- virtual machine (templates) and interactive scripts for feedback.
- Developing virtual environment:
 - the existing environment does not meet all expectations;
 - development can be done during summer.

Developed Hands-On Practical Classes

- Preliminary courses (GNU/Linux, Bash, Python and PowerShell scripting).
- Hands-on labs and materials (**6 ECTS**, tested with 56 students):
 - NTP/DNS/DHCP;
 - Securing web application:
 - Caching varnish;
 - Application firewalls:
 - Hardening web server installation;
 - SQL firewall (GreenSQL);
 - Mod Security firewall;
 - Offload HTTPS using nginx.

THE DISTANCE LABORATORY USED FOR HANDS-ON PRACTICAL CLASSES

Student

- @ home
- @ work
- @ classroom

Configured virtual infrastructure for each student

Sometimes several virtual machines are used in practical class

50%

Student does practical work

Student sees screen of virtual lab

Interactive feedback

Feedback scripts

Sample Lab - Securing Insecure Web Application the Beginning

Sample Lab – end Securing Insecure Web Application

EVALUATION OF THE E-LEARNING COURSE

- Feedback from 17 students (collected via Study Information System):
 - average grade for course 4.9 from distance learners and 4.6 from students (on 5-point scale);
 - the lecturer (the author of the thesis) was graded with 4.9 on 5-point scale.
- Feedback from continuous education students (50 system administrators):
 - the course was graded with 2.9 and the lecturer with 2.9 points, both on 3-point scale.
- Feedback from two lecturers:
 - too intensive for so limited time;
 - too much work (preparing for lab needs work prior to every course).

Conclusions

- The quality of studies will improve (improved) due to increased amount of practical hands-on classes
 - (piloted 2012/2013 56 students).
- System administrators are more security aware due to continuous education
 - more than 80 attendees in courses during 2012-2013.
- The new E-learning course Protecting IT Infrastructure has been developed and piloted.

FUTURE RESEARCH

- Evaluate new course and gather more feedback.
- Design a new, interactive module (expert system) for distance study system to provide real-time feedback to the student (interactive suggestions what went wrong etc).
- Develop distance laboratory system to support new methodology (rewarding, badges, instant feedback and different network setups).
- Integrate and test new learning materials and lab scenarios (logging, fire-walling, central management).

THANK YOU

EXPLOITS OF A MOM...CAN BE STOPPED

Source: Exploits of a Mom http://xkcd.com/327/