Kinematics

Position

	Cartesian	Cylindrical	Spherical
r	$\chi_{p_c} = egin{bmatrix} x \ y \ z \end{bmatrix}$	$\chi_{p_z} = egin{bmatrix} ho \ heta \ z \end{bmatrix} _{\mathcal{A}} r = egin{bmatrix} ho \cos heta \ ho \sin heta \ z \end{bmatrix}$	$\chi_{p_s} = egin{bmatrix} r \ heta \ heta \ heta \end{bmatrix} _{\mathcal{A}} r = egin{bmatrix} r \cos heta \sin\phi \ r \sin heta \sin\phi \ r \cos\phi \end{bmatrix}$
$\dot{r}=\mathbf{E}_p(\chi_P)\dot{\chi}_P$	$\mathbf{E}_{p_e} = \mathbb{I}$	$egin{aligned} \dot{r}(\chi_{p_z}) &= egin{bmatrix} \dot{ ho}\cos heta - ho\dot{ heta}\sin heta \ \dot{ ho}\sin heta + ho\dot{ heta}\cos heta \ \dot{z} \end{bmatrix} \ \mathbf{E}_{p_z}(\chi_{p_z}) &= egin{bmatrix} \cos heta - ho\sin heta & 0 \ \sin heta & ho\cos heta & 0 \ 0 & 0 & 1 \end{bmatrix} \ \mathbf{E}_{p_z}^{-1}(\chi_{p_z}) &egin{bmatrix} \cos heta\sin heta & 0 \ -rac{\sin heta}{ ho} & rac{\cos heta}{ ho} & 0 \ 0 & 0 & 1 \end{bmatrix} \end{aligned}$	$\begin{split} \mathbf{E}_{p_s} &= \begin{bmatrix} \cos\theta\sin\phi & -r\sin\phi\sin\theta & r\cos\phi\cos\theta\\ \sin\phi\sin\theta & r\cos\theta\sin\phi & r\cos\phi\sin\theta\\ \cos\phi & 0 & -r\sin\phi \end{bmatrix} \\ \mathbf{E}_{P_s}^{-1} &= \begin{bmatrix} \cos\theta\sin\phi & \sin\phi\sin\theta & \cos\phi\\ -\frac{\sin\theta}{r\sin\phi} & \frac{\cos\theta}{r\sin\phi} & 0\\ \frac{\cos\phi\cos\theta}{r} & \frac{\cos\phi\sin\theta}{r} & -\frac{\sin\phi}{r} \end{bmatrix} \end{split}$

Rotation

Quaternion

$$\xi = [\xi_0, \check{\xi}] \in \mathbb{R}^4, \check{\xi} = [\xi_1, \xi_2, \xi_3] \in \mathbb{R}^3$$

$$[x]_{ imes} = egin{bmatrix} 0 & -x_3 & x_2 \ x_3 & 0 & -x_1 \ -x_2 & x_1 & 0 \end{bmatrix}$$

$$ullet$$
 Rotation matrix : $R=(2\xi_0-1)I+2\xi_0{\left[\check{\xi}
ight]}_{ imes}+2\check{\xi}\check{\xi}^{ op}$

$$\bullet \ \ \text{multiplication} : q \otimes p = \begin{bmatrix} q_0 & -\check{q}^\top \\ \check{q} & q_0I + [\check{q}]_\times \end{bmatrix} p = \begin{bmatrix} p_0 & -\check{p}^\top \\ \check{p} & p_0I - [\check{p}]_\times \end{bmatrix} q$$