5

5

5

5

5

Bachelor of Science (B.Sc. I.T.) Semester–I Examination APPLIED MATHEMATICS–I

Paper-VI

Time: Three Hours] [Maximum Marks: 50

N.B.:—All questions are compulsory and carry equal marks.

EITHER

- 1. (a) What are logical connectives? Explain negation, conjunction and disjunction connectives with example.
 - (b) What is truth table? Write steps to construct the truth table.

OR

- (c) Write and explain law of duality.
- (d) Without constructing the truth table prove the following is Tautology.

$$((P \lor Q) \land \neg (\neg P \lor (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$$

EITHER

- 2. (a) Discuss the types of normal forms.
 - (b) Find the Disjunctive Normal Form (DNF) of the following:

$$\exists (\exists (P \rightleftharpoons Q) \land R)$$

OR

(c) Obtain the cunjunctive normal form of

$$\exists (P \lor Q) \rightleftarrows (P \land Q)$$

(d) Obtain the PDNF and PCNF of the formula using truth table method:

$$(P \to Q) {\wedge} (R \rightleftarrows Q)$$

EITHER

- 3. (a) Determine whether conclusion C is valid for the set of premises H1, H2 and H3. H1 : $P \lor Q$, H2 : $P \to R$, H3 : $Q \to R$ and C : R
 - (b) Discuss validity of arguments using truth table.

OR

- (c) What is theory of inference for statement calculus? What are the rules of inference?
- (d) Show that $R \to S$ can be derived from the premises $P \to (Q \to S)$, $\exists R \lor P$ and Q.

EITHER

- 4. (a) Explain free and bound variables with respect to predicate calculus.
 - (b) Show that $(\exists x)$ M(x) follows logically from the premises (x) H(x) \rightarrow M(x) and $(\exists x)$ H(x). 5

	(c)	Show that (x) $(H(x) \rightarrow M(x)) \land H(s) \Rightarrow M(s)$	5
	(d)	Symbolize the expression "x is the father of the mother of y".	5
5.	(a)	Negate and simplify the statement $(P \lor Q) \land \neg (\neg P \land Q)$	21/2
	(b)	Define min-term and max term.	21/2
	(c)	Show $\exists Q, P \to Q \Rightarrow \exists P$	21/2
	(d)	Identify the free and bound occurrences of the following statements.	
		(i) $(x) (P(x) \rightarrow (\exists y) R(x,y))$	
		(ii) $(x) (P(x) \rightarrow Q(x))$	21/2