Solovay Contents Letter Gas

I Randomness properties of $\Omega = \sum M(n)$.

Relation of various definitions of randomness.

bef t a weak test if

lin p{x: t(x|p)>m}=0.

Theorem

Each r.c. real fails under some weak lest.

II. H(H(x)|x).

Conjecture $\forall n \exists x \in ^{n}2 \ H(x) \approx n \ , \ H(H(x)|x) \approx \log n$

(In our transpler we may have H(x) < n / log log n)
Why not n / Cog n?

III. Various formulas relating H and K.

Can be approximately summatized in

 $H(x) \times K(x \mid H^2(x)) + H^2(x)$

where $H^2(x) = H(H(x))$.

'IV. The relation of the tests

and $m_k(x) = |x| - k(x)$. $m_{H}(x) = |x| - H(x)$

It is shown that

mH & mk + O(log mk)

mx(x) > m+(x) + O(log_2|x|),

and this is sharp.

I. Upper bounds on H that are sharp infinitely after. (See my dissorbline for a disorbline conveniention)

lin 1 # 2 m = m = n & h (m) = H (m) } > 0.

morlower: we necessary. Pur with $m \in D_n \to m \gg n$. If $\exists x \in D_n$ $h(x) \leq H(x) + C$.

VI On s(m), d(m),

 $D_n = \{x : \ell(x) \in n \ \& \ U(x) \text{ is defined } \}, \text{ and } \Omega_n, \text{ and}$ the acts $\{x : H(x) = n\}$. Here $S(n) = -\log(\sum_{n>n} M(n)),$ $\alpha(n) = \min_{n>n} H(n).$

I think I can prove that $\alpha(n) + s(m) + H(s(m))$

count be substantistly aproved.

thog # Dn × n-H(n), as well as the cardinality of some related sets.

 $H(D_n) \times n$, $H(D_n | \Omega_n) \times 0 \times H(\Omega_n | D_{m+H(n)})$

 \overline{VII} . On $H(\Omega_n)$.

Let gobe remersive, $\sum_{i=1}^{n} 2^{-86(j^2)} = p_0$, g_1 be rec. mon. such that $g_1 \rightarrow \infty$.

Let x be random. In n

1) H(n) > g(n) and

either 20) $H(x) \gg n + g_0(n)$

or 76) H(x") & n+g,(n) (analogous to Martin-Lif's escill result)

H(x) - n -> promotion x, because \(\sum_{\text{const}} \) 2 h - H(x) \\
\[\text{constant} \] this remark many materials graphs when \(\text{constant} \)

For the proof of 2b: let
$$A_n \subset {}^n Z$$
, $Z_{pr}(A_n) = \infty$, $g_{i}(n) = -\log pr(A_n)$, $\bigcap_{n \to \infty} U A_n = \text{the whole space}$

Then
$$M(n) = \frac{\mu_{A_n}(x)}{\mu(A_n)} \leq M(x)$$

For $x \in A_n$, $H(x) \preceq -\log \mu(x) + H(n) + g_2(n)$.

Now for g_1 let g_2 be such that $\sum 2^{n} = \infty$, $\sum z^{(n) + g_2)} < \infty$.

Then $H(x) \preceq -\log \mu(x) + g_1(n)$, for all x, $H(n) \succeq H(x) + \log \mu(x) + g_2(n) \succeq g_2(n)$ for random x.

Def. Ω -like m.e. real: $\exists F(C \forall q \angle \Omega \mid D - F(q)) \leq C(\alpha - q)$ Note: α is Ω -like $|\{f \mid H(\alpha^k) \times H(-\Omega_n)\}|$

III A. I and the within random reals.

A 100 h) <

1) If x is within. random then IC I am

2) H(sen) = n+H(n) - 2(m) + O(log 2(m))

Hen elback State (Engles Similarly, K(ln) = n-x(n)+ O(log x (n)).

- 3) If x is writhm. rendom then $H(x^n) \ge n + \alpha(n) + O(\log \alpha(n))$
- 4) From H(Dn) & m + d'(m) + O (log d'(m)).

For 1) = the function sup inf n+H(h) - H(xh)

is an arithm. test.

- z). Knowing m we know a little segment of Ω .
- 3) $M(x^{n}|y) \gtrsim M(ls(n)y) \cdot M(x^{n}) \cdot 2^{s(n)}$, $n - M(x^{n}|y)$ is an alithm. lest.
- 4) Using a segment of of to compute a length.

 \overline{VIV} . Non-recursive sets with $H(x^n) \times H(n)$.

Notes to Solovery's Chapter VIII. (#Her Gass).

The only thing we want to replace is Lemma VIII 3.

Let . Pe(x) always measure the storage requirement of the computation of feg(x).

We assert that the priority construction will work with $t_i = 6^{\frac{1}{2}}$. To see this, we move a lemma replacing Lemma \overline{VIII} . 3 Let $H(x;t) = \min_{M \in \mathbb{N}} \{ |p| : U(|p|) = x \notin P(p) \le t \}.$ $M(x;t) = \exp(-H(x;t))$ $S(n;t) = -\log(\frac{1}{2} M(x;t))$

 $m(k;t) = min \{n: S(n;t) > k\}$ Note that $m(k;t) \neq m(k;\infty) < \infty$.

Lemma VIII.3' We have for all k and $n \geq m(k;t)$ $H(n;t) - H(n;6t) \geq R - H(k,t;6t)$

Broof of Lemma VIII. 3'
Let $n \ge m(k, t)$.
We give a peogleum of length

 $H(k,t;\beta t) + H(n;t) - k$

computing a within space 6 t.

Let p be a program computing (k,t) within space t. We set off, with the help of p, rix starge wrears of length S_0 ,..., S_5 . We store t, t and a piece of program q of length H(n;t)-k to be specified later in areas S_0 and S_1 . But x_i be an enumeration of the words of length $\leq t$. S_2 will keep track of x_i . S_3 will keep track of the numbers t with $log_T \leq t$. S_4 will keep track of $\Sigma \{z^{-1}x_i\}$: j < i, $P(x_j) \leq t$, $M(x_i) \geq t$. S_5 is overved for the adual computations.

After computing and storing the and ke, we proceed to compute m(k;t). For each whith $\log \tau \le t$ we compute $LS(\tau;t)$ by accumulating the sum mentioned above in S_4 .

We stop when $\lfloor s(r;t) \rfloor \leq k$: then we arrived at r = m(k;t)Now we again begin a commoting, in S_4 , the own $a_i = \sum \{ 2^{-1 \times i + k} : i < i, \ P(x_i) \leq t, \ U(x_i) \geq m(k,t) \}$.

Let $U(x_i) = m$, $P(x_i) \leq t$, $|x_i| = H(n;t)$. We have $a_{i+1} - a_i = M(m;t)$, hence if q localizes the interval (a_i, a_{i+1}) , we will be able to recover m. O.E.D.

Application of Lemma VIII 3'

We must show that with this t_m , and the $\sigma(n)$ defined in Solovary \overline{VH} , for any recursive function $\{e\}(x)$ we have infinitely often $\{e\}(\sigma(m)) \leq m$.

Proof let it be the least i with the following property: For all $j \leq m(k,6)$, $\{e\}(j;3 < i$.

Clearly is is conjutable from k within space 5.6° , since, we we have seen in the proof of Lemma IIIs', $m(k,6^{\circ})$ is. Thus $H(k,6^{\circ}k,6^{\circ}k) \leqslant 2\log k$, and for $n \geqslant m(k,6^{\circ}k)$, $H(k,6^{\circ}k,6^{\circ}k,6^{\circ}k) \leqslant 1$.

 $H(n; 6^{ik}) - H(n; 6^{ik+1}) > k - 2 log k > 1$. Hence $\sigma(i_k) < m(k, 6^{i_k})$,

ie. $P_{e}(\sigma(i_{k})) \leq i_{k}$.

Q.E.D.

.

I. Randonness properties of J2.
Recall that the real SR is defined as the
Sum
> \ 2 - 1e1 : U(p) is ditional?
(Chantin uses lower case and but me use that is overnotation to Here U is the universal Charten computer and the non-negative in
1pl is the length of the program p.
It is clear that we is an rie real
in the some of the following definition
Definition 1 A real x is r.e. it
there is a recursive sequence of rationals < x, new>
which is weakly monotone (i.e, m = m -) Xn < Xm)
and has the limit x
Equivalently, x is re. if \qeO:qex} 15 re
Lquivariy, 1 15 F.E. II JET J

(These two definitions are in fect, effectively equipment)
in that we can effectively go from a Godel number
for <x-1-en> to one for 1 gEQ: g<x3,< td=""></x3,<></x-1-en>
and vice vosa.) Note also, that we can aloose the
sequere x m Definition 1 to consider
dysdie rationals
A randomness property of reals is a property
that holds of all reals except for a set of Lesisque
measure zero. (For example, let M be a transitue
model at some suitable tregment of excometic set theory.
We say that x is readon over M, it x lies.
n no Borel set of messure zero which ear be

٠.

encoded by a real in M. (C). Isol 1, Chapte II]
where this motion is discussed and shown to be a rendomness
proporty.
Now obviously almost all reals are not me, and
thus sufficiently strong rendomness properties are not
possessed by D. We are going to investigate
in this chapter the following two guestions.
1) What randomness properties are properties of some
re real?
2) Which of these ere projecties of D2?
Of course these questions are somewhat vague.
Before stating our results precisely, we need some

prelimining définitions. We pick an effective
enumeration of all open intervals with retional
end-points, (I a, I,). Then we say a reconsue
Function h: was gives a recursive
envincention of the open set $U \subseteq R$ it
U = Unew Ihin)
By datas
(U 15 r.e. 194 such on hexists.)
$\langle U_n n \varepsilon \omega \rangle$
By dotation (U is r.e. 1) such on Lexists.) (Un; new) A sequence of open sets is simultaneously r.e.
if there is a recursive map h: w2 -> w such that
Un = Usew Thin,j).
We now proceed to list certain properties
of a real x in Co, 17.

P_(x): Let < Un; new> be a simultaneously
r.e. sequence of opensets. Suppose that the sequence KUILLE
is decreasing lie, men -> Un = Um) and
that M(Un) -0. Then x & Nn Un
P2(x); Let <un; new=""> be a simultaneously</un;>
r.e. sequence et open sets. Suppose further that
(i) ∑ n(Ui) <∞.
Then XE Ui for only finitely many .
P3(x): Similar to 12 except we require the
Ui's to satisfy the following additional requirement:
There is a recursive function h: w -> w such
$\frac{1}{2}$ $\frac{1}$

(I.e. we should have an effective bound on the
rate of convergence in (1).
Pá: Similar to Pa except we require that
$\mu(U_n) < 2^{-n}$
Py(x): This says first (to avoid some trivial eases) and lies in the int that x is not a dyadic retional, Thus the dyadic
expension of x is well-defined. Let x(n) be the
first n-digits of x. Then for some C,
H(x(n)) > N-C
infinitely often in n
We shall see in a moment that P2(x) holds.
for almost all reals x, and that the implications

$P_{\pm}(x) \rightarrow P_{2}(x) \rightarrow P_{3}(x) \Longleftrightarrow P_{3}'(x) \rightarrow P_{+}(x)$
are trivial.
P3(x) is the notion of Mentin-Lot rendominis
(7. [].) Pu(x) is the notion of readonness
proposed by Chartin in []. Schnorr has
announced the theorem: P3(x) => P+(x).
Charlin shows that P4L52) in []. Here
are the main results of this chiepter
Pa(x) holds for no rie real, x.
2) P2 (52) is true. (The results of Chaits
and Schnorr text Py(52) and P3(52)
of course follow.

sets and so satisfy P1.
Next let x satisfy P1. Let (U, I ce w) be
as 12 Pet Wa = Umen Um Than
< Wh new> is simultaneously r.e. and
(Wn Inew) is simultaneously r.e. and
lim p(Wz) < lim Zm=n p(Uz) = 0.
Thu, x & Wn, some m, by P1. Thus XE U., only
for L <n =="" p2<="" setisfies="" td="" x=""></n>
It is ottory trival that P2(x) -> P3(x),
and the proof that P'3(x) -> P3(x) con be
gotton along the lines of the proof that P1 (x) -> P. (x)
just given.
Suppose conversely that x satisfies P's (x)

We-gut-4
Let <un incw=""> be es in P3, and let</un>
h: wow be also is in P3. Detice (Walnew)
¹ / ₂
Wn = Um=hin Um.
Then M(Wn) < 1/2 - & the Wn's ere
simulteneously r.e. By P'3, (x), x & Wa, some a.
But the x & U, for i> h(n), was to be shown.
The proof that P3(x) -> Py(x) is essentially
in Chartin Recall that for some constant C independen
of m, n, H(x(n))
$ML\{x \in \mathcal{X}[q_1]: \overline{H(x)} \leq H(n) + n - k\}$
<u>≤ C·2^{-k}.</u>

15 dg.dn H(x(n)) < H(n)+0(1) << n.)
By - theorem of Chatter, \(\sigma_{n=1}^{\infty} / \frac{1}{2}^{-H(n)} < 1.
J .
This pe (Wa) & C. 2 - 2 & we con epply
P3 to conside x of WK, some k. Whence
$H(x(n)) \ge n-k$, all n
and x satisfies P4.
I.z We turn to the proofs - of our main
results of this emptor. The first is
Theorem I. 1 het x be an rec real Then
Teoria T. A. No.
x does not satisfy P1.
J 1
The proof we present is due to D. A. Muxin,
L 4
and was arrived at at about the same time is the

authors proof. We gresset Ments-'s groot since it
is conceptually simpler.
Let x be an real. We total may
assume $0 \le x \le 1$, and let x_0 be a
monotone incressing toursive segund of reals with
limit x. We define Cor Note that it
× 13 retional, the sequence
$W_{1} = (x - 2^{-1}, x + 2^{-1})$
shows that x does not satisfy Iz. So we assume
X irredient.
Now deline Un = (xn, xn + 2(x-xn)).
It is clear that the Un's are a decreasing

sequence of open sets containing x. Morrover
$m(U_n) = 2 x-x_n \rightarrow 0$ To complete
the proof that x does not setuly P2, we show
that the <ullew> are simultaneously r.e.</ullew>
But this is clear since
$U_n = U_{m>n} (x_n, x_n + 2(x_m - x_n))$
Be I. 3. Theorem I. 2. Let JD be es
7 *
12 Chatha's gager. Than SZ saturfier Pz.
P Proof Again & I would like to Mak
D. A. Martin for making a remark when led to
the present proof.). * My behar it I => Py &
P. 6-> Py &
Charles provis Py(S)

Let then (Un Incw > be a simultaneously me.
sequence of open sets som that petters
$\sum_{r}^{\infty} \rho(U_{r}) \leq C < \infty$
By deleting a finite noise the U.'s, we array issume C= 1. For the moment, let N be any positive integer.
N will be fixed gresontly.) Let
WN= 3x1 xe Un Ion N distinct values of n }
First, what is the measure of the WN. It A is
-y set, let XA be its characteristic function: YA(x)
1 for xCA, e-1 equals 0 otherwise. Let
g: Zn. Zun.
The $\int g = \sum_{n=0}^{\infty} \mu(U_n) = \mathcal{E}_n \cdot 1$.
On the other hand, by the definition of War,

1 24
WN = U d (4,5): a, 5 & Q, 4 < 5 & Te,57 = U,
for at last N is 3.
Where it suffices to see that
$\{(a,b,c): [a,b] \subseteq U, \}$
r.e. Let h: w2 -> w be es in the definition
of simultaneously re. Them, by computus of Ec,5]
[-,5] = U. 17
(In) ([=,5] = U, ". The,,,)
That the expression is perentuses is reconstruction
a. dejoul piece of combinatories that we leave to the
re-dn.

We you indicate our plan to show IZ & Un for
enly funkly may n. Dis detrad in times
of the universal Charlin competer, U. U must
in term simple ell other Che, tin compres. We
Lell construct a Charter competer C mlose
sole purpose in making its progrems converge is
to insure 52 & WN, so for some value of N
het Cwill compute. We turn to the detects.
First we need as early of the recursion
thrown het h: \(\S*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
recursive. Suppose also that for any y, hl., y.)
is a Christia competer in its first argument.

Then for some Christia compreter C,
<u></u>
C(x) = h(x, Tc)
We may this from the usual records them is
follows. Let s: was Zx -> Zx /2 soul tut
?(e) = TTe, for & the Godd nomber
the complete. By the recorsion treasure, we
any find C sook that Let sz: \(\bar{\pi} = \bar{\pi} \)
such that it e is the months of a Charles complete
es a partial reconsina function, Sales is its GENL
no que Clustic conjuter. By the usual reconsum
therem, find C: C(x) = h(x, S,(S2(e))

where e is a Codel number for x.
We now describe ou c.
Return begins:
We next need a result of Charlin when we
express es follows. Suppose we are given en series
of retionals Xn in [0, 1]. We imagine receiving
the segunu in Xn in real time. Then we can
outpt = sess. prefix fra code < S. Iccw)
which will be generated from the Kis in an
effective festion so that $Z = x$.
This will follow easily from Chartin's
description of the officialize construction of an instruction code.

- Corne
We ensly construt a seguence of dyadic retionals x's
such that x== x== x== x== x==
If yo = xó., y n. = x ó., - x'. A.
y = 1/2 ne , the at stage n, we get
in regrests à la Charles proof for me code words
of light or. This turn on the constructed
code S of 2 - 161 will be = y==
11- x = 12- x=x,
We turn to the construction of C. Cwill First
comprte the length of its prefix code, and pick N> Let VIZ= WN. Note M(W) < 2-e. 2. Now consider D, WN. Since Durance,
2' Now consider Day Wir. Since Durane,
C will proceed in stages. At any stage on,

St is the timit of a segume
C will add a Finite of strings. Also at any
time or, we will have some finite approximation the
Vn to V.
Suppose we come to stage in of the detention
C. We select a time to so longe that is to > to -
C. We select a time to so large that is to >to- For any S A no zo as Atony strings added to the dominant
C et previors stages, the corresponding string TCS
Lus bien compréed by U before time tout,
and so is reflected in the value of Danse.
Let S2' = S2+n, V'= Y+n, It
Sl'& V', we ado - hing. It D'EV', let

- be the least real such that + \$ V'n or
r= 1. Now A r is retired, were since V'a is
a finite vacon of open interests with retional endpoints.
We sould to our string greating program the
request y= (r-52+).21. We essociate to
this request the sosset (52', -) of V.
Signer by & industric Lypothers that
[x] ∑ y; ≤ 2° r (V n [o, S2']). Tm.
ATEL Since
2° ~(V) ≤<1
考1-豆y; ~ 2e ~ (Vn [x', 1])
> yn+1.

S. = Zy; < 1. This we en process the request and insure that Ly the time on is weight, \(\geq \frac{1}{2} - \left| \sigma \frac{1}{2} \ Tuy efter taxa, \$2 mm > 2/+ 2-1 ya So Stari will be about > - This shows that different regrests have different sosi-tweets of V essociated to turn, and shows that (*) continues to hold. Now suppose that 52 & U. for ...f., hig many i. Then DEV. Thus Dy Form satte for some a < Sich, a, se Q, Co, s] ev Pick in so longe that 52 th 3 a, [c, 5] = V2

LPossisty give the good & Ezer Re find

The our construction of C will resure that
52 >> b, e condrediction.
I.4 Finally, we give the of Theorem I.3:
It x schisties P2, then x schisties P2.
Let tun <unlnew> be es in the</unlnew>
student of P2, tet to the con colony
that x & Un for intimitely many on live
shill show x does not satisfy Pz. We may
assume, by doleting finitely my Un's that
2 p(Vv) < 1. Let
Vy= 3x1 x c Um for 27 different volves of m.).
Then the Un's form a decreasing member

sezume of open sets. In the groof of the
orions therem we estillisted that the
prevers theren, we established that the
Ve's are simultineously re and that
<u> </u>
Bot xe Vn, Mn. Whome x fails to setista
D
P ₃ .
This lest port of I is for my own
I di duil not appear in Marginalia
information and will not appear in Marginalia.
T
I signal pages of preliminagements and intended
for the find mes by a # after the
rimber.

Lat the (Un Incus) be example - co-sly
shubdzw
Let then (Un Incw) be esimiltances by subs of 2000 r.e. sequence of open sets, with p(Un) < 2-7. We
can effectively associate to Un, a pretix free code
Sa: xeUzer BSES, SEX. T. d. h.i
let (Silcew) be excessed enough the trings
. Un: = 1x1 57 = x }. We can construct
- prefix code s', -, s'-, -: }-, -1:
y 25, en y 25; som s = t. (7c., ., r.,y.)
Now eggly the Christian simulation lemma to
get e neu code for the s':
$C(y,t) = s_{1}^{2} \cdot x \cdot x \cdot x \cdot y = 1$
fn me t: 1+1 ≤ 15', 1-4

コ	0

The main result of this section is the following
theorem
There is a C>O such that Yn 3 string
and length in with
H(x*1x) > logn - log logn - C.
(All lou's to but 2)
Here H(x y) & logn - log logn - C. (All log's to bise 2) Here H(x y) is the light of the shortest program p
$\Rightarrow U(p,y) = x$
Note that it suffices to prove the theorem
For large n, since we afterwards can adjust C so as to
make it true for the finite set of exceptional values
We shall see that any C>1 will work for
all cofficiently large in. In what follows in is always "sofficiently large"

Our bound in the theorem can be traced back to
this lemma
2. Corollery Suppose that 2 is divided into
d disjoint pieces A, _, Ae. Then for some i
#(A)>ndi
(Else 2°= 2 # (Ac) < M *).
Keeping the situation of the corollary let i
$\sum_{1 \leq j < i} f(A_j) \leq \sum_{1 \leq j < i} n'' c', j =$
$\frac{h^{2}}{h^{2}} = \frac{1}{1} \leq \frac{h^{2}(1-1)}{h^{2}} + O(h^{2})$

.

Thus for an E' < E, we have:
$(\exists \iota) (\#(A_{\iota}) > n^{2+\epsilon'} \geq \#(A_{j}))$
•
3. We now indicate the particular partition of strings
of leight in to which we will apply the theorem
Let 141 < K. We say that y is ective
for x : 7
1) U(y,x) is dofined (and equals 2 say)
2) U(Z)=X
We assume for the remainder of the proof
) mis sufficiently longe. 3) H(x*Ix) < k.
* k es a Leman 1

It. follows that for some pactive for x, U(p,x)=x* There is an enclosers notion of g being active for x at time t. I levely the number of programs active In x (4.12/4/2. is both between 1 and 2"-1. We let Ai = {x | x hes 2K-i active programs (There is an ahalogous notion of At: At = {x | x Lis 2 = i entire programs et time {}} Clarity & x & At, thm. ! A 1'> L x & At' for some j \leq i We apply our corrollery and get an it such +L+ + U A = S. + m # (S.) SXN + 0(n c'(1-1)

Cast of champles.
10g~ + O(logleg~) 5,1,
» i · ≤2k k + O(log k) sits
logloglog -) 5.k.
3) $\#(S_{i}) \leq \frac{1}{2} N^{-(i-1)} + O(n^{c'(i-2)})$
$3)$ $\#(S_{i}) \leq 2$ N $+ 0$ $(N$
log #5, € C'(i-1).log ¬
log by \$5. \leq log:
S. t-405 [C'(1-2)+1] log m 5.15
The upshot is that we condescribe i, n, & # Si mi
(C'((-1) +3) log ~ + O(log 10, ~) S.H.
· · · · · · · · · · · · · · · · · · ·

i

Now proceed as follows
1) Weit fall elts of Ujec Aj to correce (This
uses # Si
2) At this point members of Ai are officiently
recognizable, & when X appoints, we can impose XX
Look for the least x. IXI > C/(i)(log-)
Sil a x i e i i .
The description of x we have given takes
O(1) + C((-1) + 3 / 0, - + O(/ 0, / 0, -))
This it C'>:3, and is sufficiently large, me have
a contradiction.
[So in write-up, take C'=4, C=3.]

II. Relationships between Hand K.
Our goal in the following section is to prove the
Following formula which relates H and K.
1) $H(x) = K(x) + K(K(x)) + O(K^{s}(x))$
$\frac{2) K(x) = H(x) - H(H(x)) + O(H^{3}(x))}{(x) + H^{2}(x) + H^{2}(x)}$
These formula are really equivalent since me
shell elso prove:
3) $K^{2}(x) - H^{2}(x) = O(H^{3}(x))$
4) $H^{3}(x) \sim K^{3}(x)$
(where the ~ stands for " are asymptotically equal.)
Granted 3) and 4), 1) and 2) are electly equivalent
and give a formula for the monder of buts moded to sulf- or the cost the optimal Chatin program make the optimal Kolmogorott program self-delonding
make the optimal Kolmogorott program self-delanding

Our proof will proceed in three stages. We first
get the bord for H(x) is terms of K(x):
s) $H(x) \le K(x) + H(K(x)) + O(1)$
khis is quite easy. Stylty hadon is The inequality
6) $K(x) \leq H(x) - H^{2}(x) + H^{3}(x) + O(1)$
is more difficult. (Here, e.g., H²(x) = H(H(x)).
We shall use a similar notation for iterated logarithms.)
s) and 6) are close to giving i), the difficulty being
that 9 contains HK return the H2. However,
we can bootstrop our estimate on K-H to get one
on H2-HK growing 2). At that point 3) and 4) one
easy though somewhat tedious) to obtain, and with them #).

Follows
Lenne 1 H(x) < K(x) + H(K(x)) + O(1)
Proof. Let U, V be respectively the universal
Chartin competer and the universal Kolmogoroff computer
Define a Chata style computer, C, as follows:
Con upl x, first simulates U. Thus it x = x, xx
with x, e don U, C will comple U(x). It then
reads exactly U(x,) further bits of the imput, if
possible, getting a work ×3, computes V(×3) and gives
it es its output.
het ys be a minimul Kalmagnatt program for x.
and y, a minimal Charles program for 1 yzl. Then

U(π _c γ, γ ₃) = C(y, γ ₃) = V(y ₃) = x
While H(x) < K(x) + H(K(x)) + I TIC
cardinality
Lenne 2 Let Sa be the master of
P {x: x e dom U and x = n }
Then $S_{1} \leq C_{1}2^{n-H(n)}$
Proof We shall use ei Charlan 1 1 for
constructing en instancous code from requests. Each
time that we first recognise that \$ Sn > 2k,
we put in a request for a code for n ob \$ lagte
K=n + 1.7.
Let Nx be the largest k such that # Sa > 2 k
To be able to eite Cheitin's theorem, we need

i

•

$\sum_{n} \sum_{j=1}^{\infty} \frac{1}{2^{-(n-j+2)}} \leq 1.$
$\frac{2}{n} \geq \frac{2}{n} \leq 1.$
We sow verify this. In the first place,
$\sum_{i=1}^{n_{i-1}} 2^{-(n_{i-1}+2)} \leq \sum_{i=1}^{n_{i-1}} 2^{-i} \leq 2^{n_{i-1}}$
$\frac{2}{0\leq j\leq n_{\kappa}} \qquad \leq 2 \qquad \leq 2$ $n-n_{\kappa+2}\leq j<\infty$
On the stor head,
$\sum \{2^{- x } : x \in d_{\infty}(U) \& x = n\} =$
2-7. # Sx \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
<u> </u>
Thus the sum in 7) is less the
$\sum_{i=1}^{N} \left\{ 2^{-i\times i} : \times \epsilon dom(U) \right\} < 1.$
Let C be the Chitic complete that implements.
his code. Let To E m = Trcl. Then
β_{8}) $H(n) \leq m + n - n + 2$

since Cly) = 10 somy Ul Tic 7 y) = Cly)=5
for some you lingth M-Mx+2. From E),
Sx < hx + 4 + ≤ n - H(n) + (m+3)
ron which the lemma Follows
<u>Lenne 3</u> K(x) ≤ H(x) - H²(x) + H³(x) +0(1
Proof We go begin by describing a certain
Kolmogoroff style computer E.M. & will depend on
a Ozapet x, C to be
Fixed presently.
M, on import x, first simulates the universal
Charlie competer U. It U halts on impet x,
we must have $\dot{x} = x, \gamma x_2$ with $x_{2} \in domain (U)$

:

1 & complex U(x,) = d, sig, and lets M=
1xel+d-C. M next interprets x= es =
number in the interest $1 \le j \le 2^{1\times s/2}$ in the obvious
way. Next M proceeds to list the eliments of
donais (U) of length on in some definite order.
/T 1 h
(E.g. by the order in which they are computed by
U using lexicographical ordering to resolve tres.).
It there are jelinists of this set, let y be
J , , , , , , , , , , , , , , , , , , ,
the jt (IX there ex <) elements, Mwill be
undefined at x.) M then outputs U(y).
We claim that one can choose C sufficiently large.
that for every x, there is a Z of length

H(x) - H2(x) + H3(x) + C such that
M(Z) = x From his the learn closely follows,
Let x be given het x, be the
minimal Charter program for X. het Xz be a minimal
Chartin program For 1x,1 = H(x), and let x2 be
a minimal Chritis program for 1x21 = H2(x). The
2 we will construct will here the form x3 W,
where $ w = H(x) - H^2(x) + C$. (So the high of
2 will be lul + 1 x 3 = 1 w1 + H3(x), eschined.). To
construct such a 2, we need to know, with mototions is in Linux
$S_{H(x)} \leq 2 \qquad .$
This is electron Line 2 it we tire C> log_C2.

.

So we conclude Now Mon upot 2 w will compete
the value of m to be $H(x)$. Since $q)$ holds, we
con choose w so hot X, is the who menter of
fy Edom U: 171 = H(x)}
3 of then M will enducte y to be the and will
Finally output X as its conser. This M(2) = x, and the
lenne es proved.
Lenne 4 H(x,) -H(x2) \le H(1x, -x21) + O(1
Dr C
Proof Given stor We can construit ensily a
CL 1: to that a met to person to see to
Chartin congeter that an import by true to parse by as
of the with the ye go a don (U) and trem.
ortgets U(y,) + U(y). It follows that

$H(a+b) \leq H(a) + H(b) + O(1)$
-d similarly if a > b, H(c-b) \le H(c) + H(b) + O(1)
From this the learne follows easily.
hema 5 H(x) = K(x) + H²(x) + O(H³(x)
$\frac{P_{root} + D(x) = H(x) - K(x) + H^2(x)}{P_{root} + P_{root}}$
Lennis 1, $D(x) \leq H(K(x)) - H^2(x)) + O(1)$
By Linn 2, $-H^3(x) \leq D(x)$.
By Lenne 4, H(K(x)) - H2(x) <
$H(K(x) - H(x)) + O(1)) \leq$
$H(D_0+H^2(x)) + O(1) \leq$
$H(D(x)) + H^3(x)^{\frac{3}{2}} + O(d)$
Potting the results of the first two per-graphs together

i

10) $|D(x)| \le H^3(x) + H(|D(x)|) + O(1)$ I say that from 10) it follows that $|D(x)| \leq 2H^3(x)$ for all but intely many x interce D = O(H3) as claimed (Note that H(x) > 1, all x e/se φε don (U) & range (U) his 1 element.) Sig (D(x2)) > 2 H3(x2) where x2-1000 4-100. The ID(x_) I -> 00 with a Where $H(|D(x_n)|) \leq \log(|D(x_n)|) = o(D(|x_n|))$ Dividing 10) by |D(x_1)), we get. $\frac{1}{1} \leq \frac{H^{3}(x)}{|D(x_{-1})|} + \frac{H(|D(x_{-1})|)}{|D(x_{-1})|} + O\left(\frac{1}{|D(x_{-1})|}\right)$

The last two times are of 1) and the first his
a lin of 1/2. This is issued, so we must have
D(x) <2H3(x) for all sot frontely many x.
In the following me will need estimates
In $Hf(x)$ where $f = O(g)$, We still
use the estimate $Hf(x) = O(\log g(x))$, which is
clear since $HA(x) \leq \log A(x) \leq \log g(x) + O(x)$
(1) + (1) = O(g(x)).
We have now established 2). Note First that by
applying H to both sides of 2), we get
12) $HK(x) = H^2(x) + O(\frac{1}{2} H^3(x))$
Next substitute Kx for x is 2). We get

 $K^{2}(x) = HK(x) - H^{2}K(x) + O(H^{3}K(x))$ Now HER way Leman 4 on 12), we get $H^2 K(x) = H^3(x) + O(\log H^3(x))$ 1. H2 K (x) 15 O(H3(x)). It follows that the two right hand terms in 13) are O(H3(x)) Thus K2(x) = HK(x) + O(H3(x)) ==/ from this and 12), 3) follows. Finally to Z, we know K~H ~ Luce, since H²→∞, K3 ~ HK2 But Frances, egglying H to 3) HK2 - H3 = O(log H3) Where HK2 ~ H3, establishing 4). we suppress mention of x.

T. Relations to between Haradonness and Karadonness
of finite sequences
In this section we study two related questions.
First, Kolnogoroff and Chartin have proposed two
related notions of randomness for finite sequences of
O's and 1's, which we will define precisely in a
few moments. We prove that every to Charlies random
finite string is Kolmogorott random but that the
converse is false.
The refutation of the constant converse involves
a procedure for constructing counterexamples. These
also shill light on the question touch discussed
in the preceding section of formulae that compute

H(x) from K(x) or conveniency. The formulae of
the last section have an error term OCH3(x)).
We show in this section that the error term is, in
a certain sense, best possible.
Let us recall the notion of Kolmogoroff randomais
For Finite strings. It is based on two facts:
1) $K(x) \leq x + C_0$, for all $x \in \Sigma^x$.
We define $m_K(x) = x + C_o - K(x)$
Then 0 ≤ mk(x) ≤ 1x1+Co. Roughly spicking,
MK (x) messures the deque of son-randomness of x,
and Kolmogoroff random strings are those for which Mx(x)

is small.
The analogous facts in the Charles context are as follows:
$ '\rangle: H(x) \leq x + H(x) + C_1$
2'): #{x: x =n & H(x) < n + H(x) + C1-1}
$= O(2^{n-j}).$
We put my (x) = 1x1 + H(1x1) + C1 - H(x).
We put my (x) = 1x1 + H(1x1) + C1 - H(x).
The intuitive interpretation of my is similar to that of
m _K .
We shall prove
(1) m _H (x) > m _K (x) + O(log_m _K (x) + 1).
It follows from (1) that if my is small
mk must be small, and this is the sense in which

every Chatin rendom real is Kolmogoratt random.
It is easy to prove, using the formulae relating
tand K of the last section that
$m_K(x) \notin m_H(x) + O(\log^2 x)$
Thus if my (x) >> log2/x1, mx(x) > 1. However,
we shall construct an infinite series of strings Wa
with the following properties:
a) $ W_n \rightarrow \infty$ as $n \rightarrow \infty$.
b) K(wn) = 1wn1 + 0(1)
(Thus the Wa's are K-roadon, for a large.)
c) (in MH (Wn) = 1.
It is in this sense that we show that Kircadomae

loes not entil H-randomness.
Suppose that A is a finite set of integers. The
tremeter of A = max (A) = min (A). It A is empty,
Historia (A) = of
We remark that it would be easy to modify the
proof of the preceding section to show
T. U(.) V() - U(U(.))
$\frac{1}{1} \frac{H(n) - K(n) - H(H(n))}{1} \leq 1.$
H3(n)
It follows from the example promised in the
preceding paregraph that this lim sup is = 1.
Ti
The same method provides a counterexempk
to various improvements in the error term of the
formulae relating H and K.
J

•

H(v) = K(v) + H(K(v)) + O(1)

We shall prove the following: there are
intimate seq. of storys yn, 27, Wn:
+ Ty I = IZaI = IWaI
ョ ハ K(yn) = K(2n) + O(1)
-(lim H(y_)- H(z_) =-1.
2) H(y2) = H(w2) + O(1)
1 m K(yn) - K(wn) = 1.
3) lim H(yn) = 00.
To see how this rules out improvements

in the results of the presiding section, say we
show that the relation
$H(x) = K(x) + K^{2}(x) + K^{3}(x) + O(K^{2}(x))$
15 false. Indeed, it his were true, since Klyn) = Klent
O(1), we would have
H(y_) = H(z_) + O(K*(y_))
A fortioni,
H(y_) = H(2_1) + O(log3 H(y_1)).
Hence I.m H(y_)-H(2-) =0,
contray to our promised example.
We complete themande the introducting remarks strays
by indicating how the example of the Karandon meds

that are not Harandon are concould. To start with, let la be en inmusing sequence et indigers with H(l) = O(log l). (Soct sories is any to constant = (We shall show presently that some a series is easy to construct.) Pick xn so that i) Ixal= la 2) H(xx1xn) = logen + O(loglogen). (700) is the min risult of Chipter I guarantes soul xn's.). Let yn be the minimal Kolmogorott program for Xx given xn. Let Z be a southbly rendom string of high x. The was your 2 will turn out to be K-readom, but not H-readom.

P.1 Let wippone We show now that
m + (x) > m (x) + O (log m (x) + 1).
T-deed, let L = mk(x).
$K(x) \notin = x + C_1 - L$
Th., H(K(x)): H(1x1) + O(10, L+1)
So H(x) ≤ 目 K(x) + H(K(x))+O(1)
< x1 + H(1x1) + O(L) + O(log L+1) - L.
S. m + (x) = L + O(log L + 1)
es wis to be proved.
IE. 2. The following technical lemma will play a key role
in our construction of countinexamples:
Lenne (Hj)(JE)(Yy): T4

> 191-j, K(y|n) ≤ is then 121 g K(g^2) 2 < 1 $\begin{cases} 2 \varepsilon^{-2} & | \langle (y^{-2}) | \leq |y| + n - L \end{cases}$ $\begin{cases} |y| + |y|$ So, roughly specking, it y is K-rendom over n then for many Z's of longth n, y ~ Z is K-rendom Our proof will proceed by denying the conclusion and the showing that y has a short K-projum. Consider the following special purposes Kolmogorald computer M. On inpots x n M first true to purk x es

K'. X* X X X X X X X X X X X X X X X X X X	
when X, Xe, X3 en	e in don U. It so, it sets
J = U(x,)	
l= U(xe)	
m = U(x3)+	- [X4]
M now proceeds	to enumerate those y's such that
i) lyl=m	
e) F at	le-st 2 ⁷⁻³ 2 ³ 3,
	$2) \leq m + n - L$ $positive virtue \leq 2$ $1x+1$
end outputs the 18	& X, the soul y it it exists.
Let Co = s;	¬ М.

Now there are at most 2 pairs (y, 3) and that
K(y^2) < n+m-L. Thus there are it must
2 m+j-k y's which occur in this way with 2 ?
類. Thus if we let x, xe, xs, xy more
respectively j, l, = l-j, and the position of the same
perturber y se control whom his 2 no. 3 2's essounder
in the hist of all some y's, we get a most display
K-program for y of leigh
Simm + m - l + j + H(e) + H(j) + H(1-s) ≤
m-l+O(j)+O(lojl+1).
where the constants are independent of my on We non
select los tet l > j + O(s) + O(lo, l+ L) + 1.

<u> </u>
Then we get a p K-program of y of light
A R
< m-j. So. + K(y) > 141-1, & mik
h.,
this purtuelor La just chosen me must have
< 2 ^{n.j} 2's s t 121=n
K(y^2) ≤ A 1y1+n-L.
IV.4. We now begin our construction of the We's
which are K-random byt not H-random. To start off,
let le = 22. Thin closely H(le) =
H(i)+O(1) = O(10,3 l.). By the
main result of chipter II, select Ne so ket
i) [n,] = e;
2) H(n,* n,) > by

Now by Christian's work H(nx In.) = H (H(n.) In.) = 10, H(m) + O(H2(m) + O(1) ≤ 1[al) + H(e,)] = log (+ O(to, 3e.) H (0(0,1)) = (H(0(0,1)) = log le + O(log=le). So es en le stupened de recd * 3) H(*n,*In.) = loge, + O(log=l.) Let ye be the minimal K-program for competing n' from mi The lyd= K(n'11ml) = FI (n: In.) + D (10, FI (n: In.)) by K = H+O(1) = K+HK+O(1)

So y. = log l. + O (log `l.).
Morrow, K(y, In,) = 14,1 +0(1)
since ye is the Kominimol groupon that compotes
N. 1 vi
We now goote the Irane of IV. 3 and
get pht me an aloose Z, so hat
) z.l = h.
2) K(yi^z.) = lagle + ne + O(log2 1.)
141+ n, + O(1)
3) $H(z_1) = n_1 + H(n_1) + O(1)$.
We pt w= 4,22.
Then a) of the preceding paragraph says that We is
K-radon, and it is evident that Iwal -> 00 with 1.

We next compute Hawl). Indud H(M) = H(\$191+n+0(1)) = H(n:) + O(H(1y-1)) + O(1)B+ H(19-1) = H(log (+ O(log 2 (-)) = H(loger) + O(log3lr) = # H(2')+O(10,1 = O(log c) = O(log3 lc). This H(W1) = H(n) + O(10,31.) Next, we are going to estant a upper sound m H(w.): H(w) < H(w, 12,) + H(2,) +0(1) ≤ H(y, 12,) + n, +0(1) Now we have no = 12.1, so H(no 120) = O(1).

Also H(n*171) = O(1), so H(n*121) = H(n*191) +41712-)+0(1) = 0(1). Now by an easy relativisation of a result of Chartin's, there are O(1) programs of le-gt 1 yoil for n' From no. When Hly, 12,) & H(y, 1 n², n,) +0 (1) ≤ H(14.112, n.) +0(1) < 0 log 19-1 + () O (log 10, 17-1) = log-l; + O (log3 l.) The upshot is that

 $H(w_i) \leq H(w_i) +$ logili + n. + H(n.) + O(5), log 37.) S。 甘 1w1++(1w1) - H(w1) > \$ log l, + n, + O(log2l.) + H(n.) -[O(10,-10) + h. + H(n.)] = log l. + O (10, ~ l.). This my (wi) > log li + 0 (log 1) > loglog M. + O (log 3 M.).
> loglog Mul + O (log 3 low)
Which provis the claim that that 1,m m_H(w₁) > 1.

As we remarked earlier, it is every to get a bound
on MH is he oher direction, using the methods of proof
of III. LIn revised version of I Ans should be employed
stited. Mso in record occurs of I, should stite
upper Soud on H (72 12) that follows from
Chitian mk.)
The upshale is
H(w.) = 1W:1 + H(1w.1) + Rog Q. whe
Q: ~ log² lw.l.
Now it Ze is H-medon of logh I wel,
then & since 20 will also be K- radon,
$K(z_i) = w_i + O(1), H(z_i) = w_i + H(w_i) + O(1)$

This gives Ze with K(Ze) = Https:) 10/19/2 / do(1) &
H(30) - H(40)
We need a lemm to get Ue sig:
H(v) = H(v) + O(1)
Ic: Lenna Let n>0. The 3 m:
lm + H(m) -·n ≤ C.
Prost We know
H(x+D) - H(x) \le H(D) + Co.
Thus if Distance manys, D72log D1 Co >
H(D) + Co. Fix D. Let now f(x) = A + H(x).
By what we have said , \$\(\pi\D) \rightarrow \((x+D) \rightarrow \forall (x).

$A_{i,o} f(x) \geq f(x) + 2D.$
Now given m, puk n: 14(n)-m1 13 minuel.
The charg \$10) 1 \le 2 D else one of
F(n+0), F(n-0) wold be closer to m.
Now pick + Un: 0 Un is H-radom. T.e
·) H(u_)= u_1 + H(u_1)+0(1)
2) + H(= H(W) + O(2)
So of course H(U_) = H(W_) + O(L)
Now K(un) = un + 0(1).
It rimeins to compute 1001.
10-1 + H (10-1) = 1w-1 + H(M-))+ 1-1-1-1-1

Write lugl= 1 wal + Rg
H(10,1) = H(10,1) + O(10, 2)
This Ry+O (log Ry) = ~ log 2 lwal.
It follows that R_~ log2 14~1
TL., K <u>(tu.</u>)
K(1m1) - K(1u1) = R, ~ 10,2/m1!
So all the results claimed in the introduction to
Lis section are now proved.
•

weakly manahare. Thus the conclusion is self excepturing to
$\overline{I_{n}} \left(H(n) - \overline{I_{n}} \right) = \infty.$
This remark also shows that any recurseive 1.0. lower
bound can be infinitely of the improved Chy replacing thy
f + g es esone.)
We show that the situation in the upper bound
cese is guite different. We shall construct a
recursive function h: 40 -> 60 such that
i) h(n) > H(n) for ~11 n
$2) h(n) = H(n) \qquad for intervely many n.$
In fact, by an easy argument, 2) can be
strangtuned to

2*) lim 1/2#{m: m = n & h(m) = H(m)} > 0
Our construction of he and over proof of 2) will be
quite mon-constructive, end in some sense, {n/ h(n) ≤ H(n)+
15 quite spirse. We still prove, in this direction that
there is no effective procedure which given in gives a
finite set Dn such that a) me Dn -> m>n
J) (∃x ∈ Dn) L(x) ≤ H(x)+C] [+ + + + + + + + + + + + + + + + + +
(Our proof will hold for any recursive upper some
for H.) It will follow easily that
lim /n # {m: m ≤ n & h(n) ≤ H(m)+C }=
The basic idea behindown construction is to chook
I so that \(\sigma 2^{-\fig } \) converges "as slowly" as easible

One by product is the construction of an recursive convergent
segre-re of positive reals (a, Incw) > it < 5-17cw)
s any recursive sequence of positive reals, the
Tim ai > 0.
We remark that with a little extre work we can
-range that I be monotone increasing. We sketel
his modification nitrost giving complete ded. 15.
V. 1. We begin by giving the construction of the
slowest growing conveyed seguence, and Since there is no sort
slowest growing conveyed sequence, and Since there is no sort "minimity of variables proved, we should roully say marrially slew growing"
but we point omsetted ourseles to be sloppy.

Let us reconsincly enumerate all poins constiting of
1) a partial fuestion recorning function mapping was into the
positive retionals h.
2) A positive retract s:
2) 2 1 3 > \(\(\frac{1}{2}\)
Such an enumeration is easy to construct by exact theking
the fift she land annuation of gradul recognic trustions T
and slotting off the gential reconsine function it it
is about to violate so 2)
We define à reconsive fundion a: W -> Q + "s
follows: Cixe 1 N= 2'3'5', h. (j) Lyndber.

is that computed in executing & steps. Then
$a_{j} = 2^{-(i+2)} \cdot h_{i}(j)$
5 Cyc 2 Ottomuse Suy Cyc 2 is occurring at stage on for
he mt time. Put
$a_{-}=2^{-(m+1)}$
We claim first $\sum a_n < 1$.
Indeed Case 2 contributes at most 1/2 to the
sum. Numbins of the form 2'3' 5' for each fixed
i contribute at most
2-1-2. 5 h.(1) < 2-1-2.
Thus Cisc 1 10-4-15-45 -1-4 /2, + 1/8 + = 1/2
to the con So Z and 1

Suppose < bilius) is requesive and \(\frac{1}{2} \) \(\frac{1}{2} \).
Byselly Pick DEQ: Ellis < 1.
Nou la stroit in de la limber.
Thus, without loss of generality, we my essure
乙、養いく1 .
So bi = h_(i) for some fixed n.
I) lim +====================================
then $a_i < 2$ by for a logarithm is
We now define en infinite sories en:
Ln+1 = 2 3 27 3 5 37
where halin) is complete in excelly ja steps.

By condition $a_{n_1} = 2^{-n_2}b_{n_1}$
b. > 2 h+3) a., > 2 b.
Bot ten Zby divinges exponently worderly
ove essemption that \(\sum_{\text{t}} \) is convergent.
I. 2. Our construction of f will be similar to the
of the a.is. Agrin Frat virios styre will
be imitating H at earlier stages, and if H too
closely initable f, we would get \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
contrary to find.
Let <1, 1, > be an enumeration without in so
repetitions of all pains <1,j>: j > H(i), = Let

stay fette $g(n) = \int_{n+2}^{n+2} \frac{8.2}{5.2}$ We claim first $\sum_{j=0}^{2-9(n)} \frac{2^{-9(n)}}{j} < 1$. Indeed

 $\frac{2}{\sum_{j=0}^{2}-g(-j)}=\sum_{i=0}^{\infty}\sum_{j\geqslant H(i)}2^{-j-2}=$

 $\sum_{i=0}^{\infty} 2^{-H(i)*i} \le 1/2 < 1$

It follows that g(n) > H(n)-C

For some gositive C, by the result of Charting recolled

at the start of this section.

I say that g(n) < H(n)+3 for infinitely many n

Suppose to the contany that the g (a) > H(a) +3 for

1> Loso Detine en intimelle series of intiger la, ja is

4-11---

 $J_{n} = H(L_{n});$ Las, is the stage of which < La, ja > is losted. The 1, < 1, & $\xi g(\iota_n) = H(\iota_n) + 2.$ Thus H(1,1) < g(1,1)-32 < H(1,1)-1. So H(1) is in intimate decreasing sequence of non-neg the integers, and we have reved an absording This $H(x) \leq g(x) + C$ for M(x)L+ H(n) > 9(n)-3 for intimely any. 1. ok C' minimal sout that H(n) < g(n) + C'

[So -2 < C'.) Pot = 1 = 2 = Evidently, H(n) = g(n) + C' to- intinkly may n. (Elic

C'cold be replace by C'- 1.) Non p-1 h(-)=
gla) + C'. Then h: warw is recorsive and
setudios 1) 8 2) of the introduction.
(I) we desired to get h monotone, we would
(II) we desired to get homomotory we would construct a muncher of and arrange to easign to each pair <1,1> = 6/ock
Bij so tu
$0 \sum_{\gamma \in B, j} 2^{-g(\gamma)} = 2^{-\frac{1}{2}j-2}$
(2) The Byj's are pairwise disjoint &
c < min (B,j)
We would them construct assuming
H(n) < g(n)-3, an infinit series of blocks Si:

Thus to- some just when they may on,
{n<2"++: h, (n) = H(m)+j }> 1/8c.2"
This establishes 2") with he replied by he
(We my chiefs erroge that 2) holds as well by
replaine L* if necessary by h*-C.
I.4. We now let h: was be in
erbitrery recursive apportant for H. We still
assume that we have an effective procedure that
assigns to earl in a citate finite set Da
so that i) min Da >n
u) ∃ x ∈ Dn: h(x) -C ≤ H(x).

We shall proceed to derive a contradiction.
recomme Seguere
We shall proceed to derive a contradiction. recognic sequence First, we define on intende some End
finite sets by priting Eo = Do,
En+1 = Dm, where m, = mex (En).
Thus, in addition to 2), the En's setusty
3) $l < j \Rightarrow E_l \cap E_j = \emptyset$
Let Y = \(\sum_{-\frac{1}{2}}\)
$\frac{N_{ow}}{J} = \frac{\sum_{i=1}^{J} 2^{-H(i)}}{J} < 1$
S_ 3) ent-1/4 lim 8=0.
We now define a Charling marking M.
that runs es follows:

1) M secretes untill it finds am n such that
- log, 8n > sin M+&C+1.
(Note that by a standard use of the recommin
Theorem, M may be allowed to know its similation
20st. Since F, E. en mousing so is 87. Since
Yn → 0 m + wo, M's sevel will societ.
2) M now constructs as a instances
instantaneous code for En so that the
code and for x his high A(x) - sin M-C-1
This is possible by (x) & Chartist Ream Engle
En stant de ising the Holden code.)
3) M now exercises its reget y. It y is me of the

code words of S, then M ortgots the corresponding element of E It follows that In xs E-,
$H(x) \leq h(x) - A - 1$
contrag to our essemption 2).
Now it
lin 1/42 m < n: h(n)-4 < H(n) } > c,
then we could take Dn = [n, \n] where
I is alone so that the term
just proved. This ell claims made in the
introduction to the section have been established.

Enclosed is a prelimin revised version of Chapter II.

I should note that precisely this result was published in a Russian journal (by Gac, I believe). Offhand, I don't know the reference; Greg Chartin, (IBM Wet Labs), probably would have it.

Some background to put the result in perspective (See also the remark at the end of this letter.)

Let $\phi(n) = \sup_{x \in \mathbb{R}} \{H(x^*|x) : |x| = n\}$. Chartin had previously shown that $\phi(n) \to \infty$, as $n \to \infty$.

His proof was non-constructive, and did not get a recurred lower bound tending to ∞ .

It is not hard to show $\widetilde{H}(x^{x}|x) \leq \log n + \log \log n + O(\log \log \log n)$ (if |x| = n). (The our lower bound is fairly sharp.) In fact let w = n

but finitely many n.

Cont Continuity Let C_1 be chosen with $2 < C_1$; $\log C_1 < C_2$ Let $k = \lfloor \log n - \log \log n - C \rfloor$. Let $l = 2^k$.

Let M = \(\sum_{1 \le i \le R} n \, c' \cdot i. \) Then \(M \le 2^{n} - 1 \), for

all sufficiently large M.

Hence if the set of strings of length N is partitioned into L pieces, then for some $i \le l$, $\#(A_i)$?

It is least such, then

(U; A;) < \(\sum_{1<i} \in \c'.)

≤ 2. n c'(i-1) (for n sufficiently large.)

Hence, it we pick E>O sufficiently small,

then

(1) n2+6 # (Uj (Aj) < # (Ai)

Next I wish to describe the particular partition of strings of light in that I will apply these remarks to. Let x be a string of length in. By our assumption that $\widetilde{H}(x^*Ix) < k$, for some p with $IpI \leq k$, we have $U(pIx) = x^*$; $U(x^*) = x$.

Definition. Let |x| = n, $|y| \le k-1$. Then

y is active for x if U(y|x) is defined $(a = 2 \le n)$ and U(a) = x.

Let $0 \le j \le 2^k$. Then $A_j = \{x : There are precisely <math>2^k - j$ programs active for $x \}$.

At a given stage t, we can define an analogous notion of active for x at stage t, and get a

corresponding nation partition A. Note that x & A implies that for all S>t, x & A; for some i

Also Azic = & since X* gives time las remerked earlier) to at least one program active for X.

Let i be least such that #(Ai) > n c'.i.

We code finite sequences of integers into integers in some standard way. << x0,..., xn-1 >> is the seq. no. of the sequence < x0,..., xn-2 >> Let S; = Uj < i Aj

Lemma H(«n,i, #(S,)>> <

[C'(i-1)+2]·logn+O(loglogn).

 $\frac{\text{Proof}}{\text{Not}}$ 1. $H(n) \leq \log n + O(\log \log n)$

2) H(xn; >>) < +(n) + H(iIn) <

 $H(n) + \widetilde{H}(1) + O(1)$

(Recall: H(xly) = min z: U(zly*) = x; H(xly) = min z U(zly) = x) $\widetilde{H}(i|n) \leq \widetilde{H}(i|k) + \widetilde{H}(k|n) + O(1)$ Since clearly $\widetilde{H}(k|n) = O(1)$, $\widetilde{H}(i|n) \leq \widetilde{H}(i|k)$ 3) Since $i \leq 2^k$, clearly $\widetilde{H}(i|k) \leq k + O(i)$

So H («n,i>>) ≤ 2 logn + O(log log n)

#S; $\leq 2 \cdot n^{C' \cdot (i-1)}$

Thus H ((<n, i, #S; >>) <

 $\widetilde{H}(\#S; | 2 \ll n, i >>) + H(\ll n, i >>) + O(1)$ $\leq \widetilde{H}(\#S; | 2 \cdot n^{c'(i-2)}) + \widetilde{H}(2 \cdot n^{c'(i-2)}) \ll n$ $+ H(\ll n, i >>)$

 $\leq C' \cdot (\frac{1}{2}i-1) \cdot \log n + 1 + O(1) +$ 2\log n + O(\log \log \log n) + O(\log 1) \quad The remainder of the argument can be summarized as follows. We will describe a uniform recursive procedure Ψ with the following property. Suppose 1) n is sufficiently large, 2) $\phi(n) < k$. Then $\Psi(\langle \langle n, i, \#S; \rangle)$ will be a string of length n, x, such that $H(x) > L(\cdot, i) \log n J$.

On the other hand, $H(x) \le H(\langle \langle n, i, \# S_i \rangle)$ $+O(1) \le [C' \cdot (i-1) + 2] \log n + O(\log \log n).$ This gives a contradiction for a sufficiently large.

Here is our description of 4:

1) Wait for a time to so large that a) $A_{2k} = \emptyset$;
b) # $S_{i}^{to} = \# S_{i}$. (Recall that Ψ is given as input the parameters n, i, $\# S_{i}$.)

At any time $t > t_0$, $S_i^{\dagger} \supseteq S_i^{\dagger 0}$ (recall that numbers tend to migrate downward in our partition). Since $S_i^{\dagger 0} \triangleq S_i^{\dagger} \equiv S_i = S_i^{\dagger 0} = \#S_i$, we have

Sto = St = Si.

2) Hence it $x \in A_i^*$ for some $t \ge t_0$, then $x \in A_i$. (For otherwise, $x \in S_i$, $x \notin S_i^*$, contradicting i) $t \ge t_0$.

3) Suppose $x \in A_i^*$, Then we can compute x^* by the following procedure. Let $y_{i,--}$, $y_{i,-}$, those strings active for x at time t. Since $x \in A_i$, these are the only strings ever active for x. Let $z_i = U(y_i)$

Then since $\phi(n) < k$, some $z_1 = x^*$. Since $U(x^*z_1) = x$,

en effectively comple H(x) (from the detax, n, i, #S;).

4) Since #A; > n

4) Since # Ai > n C'i, some XEAi has

H(x) > LC'i·logn 1. Let < Xi, to > be the

lend pair > i) ti > to

z) X, E Ati

3) $H(x_i) > LC' \cdot i - log - 1$

Thin X1 is the original the procedure 4.

As indicated earlier, this completes the proof.

Note that $\widetilde{H}(x^*|x)$ is of intenset in the Charles theory as the difference between the more conceptual $\widetilde{H}(x|y)$ $\widetilde{H}(y|x)$ and the correct H(y|x) (= $\widetilde{H}(y|x^*)$). I.e. the identity

 $H(\langle \langle x, y \rangle \rangle) = H(x) + H(y|x) + O(1)$ world not be with H(y|x) replaced by $\widetilde{H}(y|x)$ (and in the case $y = x^{y}$ world be off by the term $\widetilde{H}(x^{y}|x)$.)

as even, Bob.