Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 12 Martie 2011

CLASA a VIII-a

Problema 1. a) Demonstrați că $3a^2 - 2a + 3 \ge \frac{8}{3}$, pentru orice număr real a.

b) Determinați numerele reale x și y cu proprietatea că

$$(x^2 - x + 1)(3y^2 - 2y + 3) - 2 = 0.$$

(x - x + 1)(3y - 2y + 3) - 2 = 0.
Soluţie. a) Inegalitatea se scrie $3a^2 - 2a + \frac{1}{3} \ge 0 \iff 9a^2 - 6a + 1 \ge 0$ 1 punct
echivalent cu $(3a-1)^2 \ge 0$, ceea ce este adevărat.
b) Avem $x^2 - x + 1 = (x - \frac{1}{2})^2 + \frac{3}{4} \ge \frac{3}{4}$.
Conform punctului anterior, $3y^2-2y+3\geq\frac{8}{3}$. Rezultă că $(x^2-x+1)(3y^2-2y+3)\geq\frac{3}{4}\cdot\frac{8}{3}=2$, oricare ar fi numerele reale x,y .
Egalitatea se obține pentru $(3y-1)^2=0$ și $(x-\frac{1}{2})^2=0$
de unde $x = \frac{1}{2}$ şi $y = \frac{1}{3}$.
1 punct
Problema 2. a) Arătați că numărul m^2-m+1 aparține mulțimii $\{n^2+n+1\mid n\in\mathbb{N}\}$, oricare ar fi m număr natural nenul. b) Fie p un pătrat perfect, $p>1$. Demonstrați că există numerele naturale nenule r și q astfel încât $p^2+p+1=(r^2+r+1)(q^2+q+1)$.
Soluţie. a) Avem $m^2 - m + 1 = (m - 1)^2 + (m - 1) + 1$
Cum $m-1 \ge 0$, rezultă $m-1 \in \mathbb{N}$, deci $m^2-m+1 \in \{n^2+n+1 \mid n \in \mathbb{N}\}$.
b) Fie k număr natural astfel încât $p=k^2$. Avem $k \geq 2$, deoarece $p>1$
Cum $p^2 + p + 1 = k^4 + k^2 + 1 = (k^2 + 1)^2 - k^2$
rezultă că $p^2 + p + 1 = (k^2 - k + 1)(k^2 + k + 1)$
Alegem $r = k$ și $q = k - 1$. Cum ambele sunt numere naturale nenule, cerința este demonstrată.

Problema 3. Fie ABCA'B'C' o prismă triunghiulară dreaptă cu bazele triunghiuri echilaterale. Un plan α ce conține punctul A intersectează semidreptele (BB') și (CC') în punctele E și F astfel încât aria ΔABE + aria ΔACF = aria ΔAEF . Determinați măsura unghiului format de planul (AEF) cu planul (BCC').

Soluţie. Fie M mijlocul segmentului BC .	
Triunghiul MEF este proiecția triunghiului AEF pe planul (BCC') .	
1 punct	
Notăm cu u măsura unghiului format de planele (AEF) și (BCC') .	
$\Delta_{\text{rem. acces}} = [MEF]$	
$Avem \cos u = \frac{[MEF]}{[AEF]} =$	
punct	
$=rac{[BCFE]}{2[AEF]}=rac{[BCFE]}{2([ABE]+[ACF])}=$	
2[AEF] $2([ABE] + [ACF])$	
[BCFE] [BCFE] 1	
$= \frac{[BCFE]}{4([MBE] + [MCF])} = \frac{[BCFE]}{2[BCFE]} = \frac{1}{2}.$	
2 puncte	
Rezultă că $u = 60^{\circ}$.	
1 punct	
Problema 4. Determinați numerele naturale m pentru care $\{\sqrt{m}\} = \{\sqrt{m+2011}\}.$	
$Notă. \{x\}$ este partea fracționară a numărului real x .	
(w) www. Ferrore	
Soluţie.	
Ecuația se scrie $\sqrt{m} - [\sqrt{m}] = \sqrt{m + 2011} - [\sqrt{m + 2011}]$, adică	
$\sqrt{m+2011} - \sqrt{m} = [\sqrt{m+2011}] - [\sqrt{m}] = p \in \mathbb{N}.$	
Din $\sqrt{m+2011} = p + \sqrt{m}$, rezultă prin ridicare la pătrat $2011 = p^2 + \sqrt{m}$	
$\sqrt{m} \in \mathbb{N}, \text{ deci } m = k^2, k \in \mathbb{N}^*$	
Prin urmare $2011 = p(p+2k)$ și cum 2011 este număr prim, obținem	
Prin urmare $2011 = p(p + 2k)$ şi cum 2011 este numar prim, obţinem = 1 şi $p + 2k = 2011$	