Convolutional Neural Nets: Key Concepts, ImageNet & AlexNet

CNN History

- 1980 Kunihiko Fukushima (Neocognitron)
- 1998 Le Cun (LeNet5, Backpropagation)
- Wining pattern recognition contest
 - 2011& 2014 MINST Handwritten Dataset
 - 201X Chinese Handwritten Character
 - 2011 German Traffic Signs
- ImageNet
 - Alex Net (2012) winning solution of ImageNet benchmarking

ImageNet 2012, 2013, 2014

Examples of AlexNet results on ImageNet (1000 Classes, 1.2M images)

2010-2014

AlexNet 7 layers

GoogLeNet 22 layers 6.7%

VGG net up to 19 layers

What is an Artificial Neural Network

Activation Function:

Activation Function:

$$f(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

Activation Function:

Logistic Regression (Sigmoid Function)

$$f(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

Activation Function Nonlinearity f(z)

Motivation:

Red: ReLU (Rectified Linear Unit)
6 times faster convergence

Green: Logistic Regression
The gradient of Sigmoid close to zero (flat), slow convergence

Activation Function:

Logistic Regression (Sigmoid Function)

$$f(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

(Krizhevsky et al 2012)

Activation Function Nonlinearity f(z)

Figure 1: A four-layer convolutional neural network with ReLUs (**solid line**) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons

An Artificial Neural Network

Contains many weights $W^{(l)}_{ij}$

A complex function of the many weights $\theta = W^l_{ij}$ and the input images, the output predicting the probability of a class label

Model output - the Softmax function

Output (Softmax)

$$f(z_i) = \frac{e^{z_i}}{\sum_{i=1}^{N} e^{z_i}}$$

Propability of a class given the input vector **z**

Softmax function (normalized exponential) – multinomial logistic regression:

$$P(y = j | \mathbf{x}) = \frac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

where y are class labels and x are input vectors (not the images)

Model output – the Softmax function

Output (Softmax)

$$f(z_i) = \frac{e^{z_i}}{\sum_{i=1}^{N} e^{z_i}}$$

Propability of a class given the input vector **z**

Softmax function (normalized exponential) – multinomial logistic regression:

Sum to 1
$$P(y=j|\mathbf{x}) = \frac{e^{\mathbf{x}^\mathsf{T}\mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T}\mathbf{w}_k}}$$

where y are class labels and x are input vectors (not the images)

Model training – the loss function

- Use training data $j=1,...,N_{train}$ to optimize loss function J, sensitive to error
- Use a subset n (minibatch) of the training data for optimization, and random repeats (dropout & data augmentation)

$$-nJ(\theta) = \sum_{i=1}^{n \text{ (Mini Batch Size)}} \text{Cost (loss) of Training example } X_i$$

- How to learn a model: Optimise loss function minimise the negative log likelihood, by either maximum likelihood estimation (MLE), or maximum a posteriori probability (MAP) given (assuming) uniform prior
- Learning objective: Optimal weights from many iterations (epochs) using gradient descent (controlled by α learning rate)

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial J(\theta)}{\partial \theta_i}$$

Back-propagation (the chain rule) is used to calculate the gradient

Gradient Descent (in a parameter space)

Weight parameter space: showing θ_1, θ_2 (just two weights from millions)

- Gradient descent (first order)
- Newton Taylor expansion 2nd order using Hessian

Gradient Descent: Momentum

- Problem with (Stochastic) Gradient Descent are Valleys local minimum.
 The loss function bounces up & down the walls, not descenting the slope.
 - Nesterov Accelerated Gradient (NAG) Added momentum μV_t for faster descent

$$V_{t+1} = \mu V_t - lpha
abla L(W_t)$$

$$V_{t+1} = \mu V_t - lpha
abla L(W_t + \mu V_t)$$

$$W_{t+1} = W_t + V_{t+1}$$

$$W_{t+1} = W_t + V_{t+1}$$
 (SGD) (NAG)

Set mu=0, NAG becomes SGD (Stochastic Gradient Descent)

- Caffe Tutorial:
 - http://caffe.berkeleyvision.org/tutorial/solver.html
- Visualization:
 - http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-todetect- facial-keypoints-tutorial/

An early CNN (LeNet5, 1998)

20 Kernels a 5x5 weights to go from one to the next

A recent CNN (AlexNet, 2012) – A Game Changer

Large Scale Visual Recognition Challenge (ILSVRC-2012) ImageNet Competition 26.2% error → 16.5%, significant.

Key:

- Dropout
- ReLU instead of sigmoid (logistic regression)
- Two GPUs implementation (less learning time)
- Local Response Normalization

Too many weights (parameters)

Remedy:

- Weight sharing
 Convolution
- Sparse connectivity ->> Pooling

AlexNet design

- 7 layers (not counting input image & class-label layer), 5 conv layers, 2 FC layers
- Input to 1st conv layer is 224 x 224 x 3 (x, y size & three colour channels); sampled (filtered) by 96 kernels for 3D (11x11x3) convolutions with a stride-4 (4 pixels distance shift between the centre of each 11x11x3 convolution kernel)
- Input to 2nd conv layer is the output from 1st after maxpooling: Filtering by 256 kernels 3D convolution with a feature map size 55x55x48 (48 channels of features), kernel size 5x5x48
- Input to 3rd conv layer is output of 2nd after maxpooling: 384 kernels with feature map size 27x27x128 and the kernel size of 3x3x128; 4th identical to 3rd; 5th with kernel size 3x3x192
- 6th and 7th FC layers have a single vector of 4096 dimensions feeding into a 1000 units output class label layer (1000 dimensions) by softmax (multinomial logistic regression)
- The last (8th) layer represents 1000 object class labels, with a softmax function computing a probability distribution (sum to 1) for class prediction

Going Deeper (GoogLeNet, 2014)

The inception module (convolutions and maxpooling)

22 parameter layers (27 including pooling layers) vs. AlexNet 8 parameter layers

Pro: Fewer parameters

Con: Harder to train

CNN Key Concepts

- Convolution
- Pooling
- ReLU
- Dropout
- Data augmentation
- Normalisation
- Deeper the better, and many epochs

Convolution

The 9 weights W_{ij} are called a Kernel.

The weights are not fixed but learned

Convolution as Kernel Sliding Window – Stride size

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

The *same* weights are "slid" over the image at a fixed displacement distance – stride size

Effect of convolution kernel sliding

Edge enhance Filter

-	_	_		
8 -	0	0	0	8
	-1	1	0	
	0	0	0	
20		X - 5		8

The weights are not fixed but learned

Max-Pooling

- 1. Reduce number of weights / resolution
- 2. More robust to mis-alignment
- 3. At the cost of losing information

Also sliding window (stride)

Subsampling, e.g. 2x2 adjacent pixels in one

Hinton (2014 AMA): "The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster"!

https://www.reddit.com/r/machinelearning/comments/2lmo0l/ama_geoffrey_hinton

Pooling the outputs of replicated feature detectors

- 1. Get a small amount of translational invariance at each level by averaging four neighbouring replicated detectors to give a single output to the next level.
 - This reduces the number of inputs to the next layer of feature extraction, thus allowing us to have many more different feature maps.
 - Taking the maximum of the four works slightly better.
- 2. Problem: After several levels of pooling, we have lost information about the precise positions of things.
 - This makes it impossible to use the precise spatial relationships between high-level parts for recognition.
 - Pooling "works" due to overlapping but this is not optimal.

What replicating the feature detectors achieve?

 Equivariant activities: Replicated features do not make the neural activities invariant to translation. The activities are equivariant.

 Invariant knowledge: If a feature is useful in some locations during training, detectors for that feature will be available in all locations during testing.

Why Deep – Replicated features

- Use many different copies of the same feature detector with different positions.
 - Could also replicate across scale and orientation (tricky and expensive)
 - Replication greatly reduces the number of free parameters to be learned.
- Use several different feature types, each with its own map of replicated detectors.
 - Allows each patch of image to be represented in several ways.

The red connections all have the same weight.

Encoding Priors: Architecture vs. Data

- Encode human prior knowledge about the task into the network by designing appropriate:
 - Connectivity.
 - Weight constraints.
 - Neuron activation functions
- Encoding priors less intrusive than hand-designing the features.
 - But it still prejudices the network towards the particular way of solving the problem as we want (task driven).

- 2. Alternatively, use prior knowledge to create more training data.
 - This may require a lot of work (Hofman&Tresp, 1993)
 - It may make learning to take much longer.
- The optimization process discovers optimal ways of using the network that we did not know (so cannot design).
 - And we may never fully understand how it does it.

Avoid overfitting by random repeats

- 1. Train on random 224x224 patches from the 256x256 images to get more data. Also use left-right reflections of the images (data augmentation)
 - At test time, combine the opinions from ten different patches: The four 224x224 corner patches plus the central 224x224 patch plus the reflections of those five patches.
- 2. Use "dropout" to regularize the weights in the globally connected layers (which contain most of the parameters).
- Dropout half of the hidden units in a layer are randomly "removed" (weights frozen) for each training example.
- This stops hidden units from relying too much on other hidden units nearby.

Avoid Overfitting – Dropout

Model overfitting: Small training size to learn large parameter space results in poor model generalisation

At each mini-batch remove random nodes "dropout"

(a) Standard Neural Net

(b) After applying dropout.

Insight: Averaging over many different configuration (exact in case of linear). Typically 10% performance increase

Dropout: Average Many Network Models

- Consider a neural net with one hidden layer.
- Each time we present a training example, we randomly omit each hidden unit with probability 0.5.
- Randomly sampling from a total of 2^{\text{U}}
 different "thinned" architectures (U=number
 of total units in a network)
 - All architectures share weights (training time: "omit" implies reduced weight,
 e.g. 0.5, rather than removes a unit;
 test time: use all the weights of different models model averaging)

Two Ways to Average Models (test time)

 MIXTURE (arithmetic mean): Combine models by averaging n models output probabilities

Model A: .3 .2 .5

Model B: .1 .8 .1

Combined .2 .5 .3

2. PRODUCT (geometric mean):
Combine models by taking the *n*-th root of the product of *n* models output probabilities

Model A: .3 .2 .5

Model B: .1 .8 .1

Combined
$$\sqrt{.03}\sqrt{.16}\sqrt{.05}$$

- 3. Use all the hidden units but halve their outgoing weights (each hidden layer)
 - This computes the geometric mean of the predictions of all 2<sup>\text{U}</sub> possible "thinner" models from U number of units in a network
 </sup>

Dropout Average of Many Hidden Layers (test time)

- Use dropout of 0.5 in every hidden layer.
- At test time, use the "mean net" that has all the outgoing weights halved.
 - This is not exactly the same as averaging all the separate dropped out models, but a good approximation, and fast.
- Alternatively, run the stochastic model several times on the same input.
 - This gives an idea of the uncertainty in the answer.
- Good news: Dropout helps overfitting significantly (10% improvement on error rate)
- Bad news: Takes much longer to train a model
- Insight: If a model is not overfitting given the available data, design a "bigger model" (deeper) and deploy dropout and data augmentation to overcome overfitting.

Avoid Overfitting: Data Augmentation

- Expand "new training" data through "label preserving transformation"
- Introduce simulated data variance under translation, rotation, scaling

Pre-processed images (left) and augmented versions of the same images (right).

Taken from the winning solution of the plankton challenge. http://benanne.github.io/2015/03/17/plankton.html