Projeto Final: MLOps na Prática – Previsão de Preço de Imóveis

1. Dataset e Problema

Utilizamos o **Ames Housing** (Kaggle) – um conjunto de 2930 registros com 82 variáveis – para **estimar o preço de venda (SalePrice)** de cada imóvel (tarefa de regressão).

2. Metodologia & Ferramentas

Etapa	Ferramentas		
Experiment tracking e registry	MLflow		
Serving	FastAPI (endpoint /predict)		
Monitoramento de drift	Evidently Al		
Retreinamento automático	Python + scikit-learn + MLflow		
Orquestração	Docker & docker-compose (dois containers: api & monitor)		
Linguagem / outras libs	Python 3.10, pandas, scikit-learn		

Workflow resumido

- 1. Exploração → Pré-processamento (imputação & one-hot)
- 2. Treinamento de 2 modelos (Random Forest & ElasticNet) rastreados no MLflow
- 3. Registro do **melhor modelo** no *Model Registry*
- 4. API containerizada fornece previsões
- 5. Container de **monitoramento** roda *cron* → Evidently gera relatório JSON → script decide se **retreina**
- 6. Novo modelo é logado no MLflow e salvo em models/model.pkl

3. Resultados & Métricas

Modelo	RMSE	MAE	R²
Random Forest	19245	12780	0.89
ElasticNet	26 487	18123	0.81

Modelo em produção: RandomForestRegressor (100 árvores, random_state=42)

4. Estrutura do Repositório

5. Pipeline Completo

MLOps Pipeline

Fluxo detalhado

6. Monitoramento & Retreinamento

- generate_drift_report.py cria JSON com métrica drift_share_detected
- auto_retrain.py abre esse JSON
 - Se drift_share_detected > 0.20 ⇒ treina novo Random Forest, loga no MLflow, grava models/model.pkl
- Cron roda ambos diariamente às 02:00 AM dentro do container monitor

```
0 2 * * * python src/monitoring/generate_drift_report.py &&
python src/monitoring/auto_retrain.py
```

7. Considerações Finais

- Pipeline modular, reprodutível e versionado (Git + MLflow + Docker)
- Adaptativo: identifica drift e atualiza modelo sem intervenção humana
- Fácil de implantar em nuvem (basta apontar N volumes + registrar MLflow remoto)

GitHub: https://github.com/arduinitavares/house-price-mlops · Data: Ames Housing (@ Dean De Cock)