Implementation and Visualizing K-Means Clustering

by 蘇拉雅

Introduction

For this project we are going to use the results obtained from a previous project (Data weekly update with cron). This data is already in a Database and correspond to the USD-NTD exchange rate of March and April retrieved from a bank website.[1]

The goal of this project is to find groups in the data (clustering) implementing the K-Means Algorithm, and plot after achieve the result.

What do you need to know?

Programming Language:

PHP and Javascript.

What do you need to make the implementation possible?

Tools:

- K-Means Implementation: PHP class jacobemerick/kmeans
- Visualizing K-Means Clustering: Javascript Highcharts charting library
- A Data resource (Database)

Before continue with the implementation, please take a look to the following text, this will help you to have an idea about what clustering is without knowledge of machine learning.

Introduction to K-means Clustering

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided. Data points are clustered based on feature similarity. The results of the K-means clustering algorithm are:

- 1. The centroids of the K clusters, which can be used to label new data
- 2. Labels for the training data (each data point is assigned to a single cluster)

Rather than defining groups before looking at the data, clustering allows you to find and analyze the groups that have formed organically. The "Choosing K" section below describes how the number of groups can be determined.

Each centroid of a cluster is a collection of feature values which define the resulting groups. Examining the centroid feature weights can be used to qualitatively interpret what kind of group each cluster represents. [2]

K-Means Implementation

1. The data source:

Modify	id	exchange_date	value
edit	1	2017-03-01	30.760
edit	2	2017-03-02	30.795
edit	3	2017-03-03	31.020
edit	4	2017-03-04	例假日
edit	5	2017-03-05	例假日
edit	6	2017-03-06	30.982
edit	7	2017-03-07	30.850
edit	8	2017-03-08	30.865
edit	9	2017-03-09	31.020
edit	10	2017-03-10	31.036
edit	11	2017-03-11	例假日
edit	12	2017-03-12	例假日
edit	13	2017-03-13	30.916
edit	14	2017-03-14	30.966
edit	15	2017-03-15	30.840
edit	16	2017-03-16	30.657
edit	17	2017-03-17	30.626
edit	18	2017-03-18	例假日
edit	19	2017-03-19	例假日
edit	20	2017-03-20	30.527
edit	21	2017-03-21	30.458
edit	22	2017-03-22	30.503
edit	23	2017-03-23	30.488
edit	24	2017-03-24	30.488
edit	25	2017-03-25	例假日
edit	26	2017-03-26	例假日
edit	27	2017-03-27	30.250

edit	28	2017-03-28	30.170
edit	29	2017-03-29	30.285
edit	30	2017-03-30	30.315
edit	31	2017-03-31	30.336
edit	32	2017-04-01	例假日
edit	33	2017-04-02	例假日
edit	34	2017-04-05	30.381
edit	35	2017-04-03	無交易
edit	36	2017-04-04	無交易
edit	37	2017-04-06	30.560
edit	38	2017-04-07	30.601
edit	39	2017-04-08	例假日
edit	40	2017-04-09	例假日
edit	41	2017-04-10	30.652
edit	42	2017-04-11	30.650
edit	43	2017-04-12	30.556
edit	44	2017-04-13	30.325
edit	45	2017-04-14	30.400
edit	46	2017-04-15	例假日
edit	47	2017-04-16	例假日
edit	48	2017-04-17	30.350
edit	49	2017-04-18	30.406
edit	50	2017-04-19	30.418
edit	51	2017-04-20	30.408
edit	52	2017-04-21	30.363
edit	53	2017-04-22	例假日
edit	54	2017-04-23	例假日

Fig. 1: Table exchange_rate

- 2. Retrieve the data and create data set
- Database connection

```
</php
//DB Connection
$servername = "localhost";
$username = "root";
$password = "root";
$dbname = "exchange";

try {
    $db = new PDO('mysql:host='.$servername.';dbname='.$dbname, $username, $password,array(PDO::MYSQL_ATTR_INIT_COMMAND ⇒ "SET NAMES 'utf8'"));
    $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
}catch(PDOException $e) {
    echo $e->getMessage();
}
}
```

Fig. 2: conn.php file

- Create Dataset

Fig. 3: dataset.php file

3. The Result

Because later will be required a JSON object so we store the results as a JSON object (centroids and clusters)

```
require('KMeans.php');
require('dataset.php');
$kmeans = new Jacobemerick\KMeans\Kmeans($dataset);
$kmeans->cluster(2); // cluster into two sets
$clustered_data = $kmeans->getClusteredData();
// $clustered_data =
$centroids = $kmeans->getCentroids();
json_encode($centroids);
foreach ($clustered_data as $key ⇒ $value) {
   //Walk on the array that contains the two sets
     foreach ($value as $subkey => $subvalue) {
//If the set is March
          if(subvalue[0] == 3){
                //Save it to a new array
$march_set[] = $subvalue;
          }elseif ($subvalue[0] == 4) {
                //If the set is April
$april_set[] = $subvalue;
          }
     }
json_encode($march_set);
json_encode($april_set);
$response[0] = $centroids;
$response[1] = $march_set;
$response[2] = $april_set;
echo json_encode($response);
?>
```

Fig. 4: clusteringall.php [3]

 $[[[4,30.3899444444],[3,30.658826087]],[[3,30.336],[3,30.315],[3,30.285],[3,30.17],[3,30.25],[3,30.488],[3,30.488],[3,30.503],[3,30.458],[3,30.527],[3,30.626],[3,30.657],[3,30.84],[3,30.966],\\[3,30.916],[3,31.02],[3,30.85],[3,30.85],[3,30.85],[3,30.85],[3,30.85],[3,30.795],[3,30.795],[3,30.795],[4,30.156],[4,30.151],[4,30.152],[4,30.152],[4,30.272],[4,30.363],[4,30.408],[4,30.418],[4,30.406],\\[4,30.35],[4,30.4],[4,30.325],[4,30.256],[4,30.652],[4,30.652],[4,30.651],[4,30.56],[4,30.381]]]$

Visualizing K-Means Clustering

1. Highchart Implementation Script: The results (centroids and clusters) are stored in different variables to add it to the highchart configuration.

```
<script type="text/javascript">
$(document).ready(function(){
Highcharts.setOptions({
  colors: ['#058DC7', '#50B432', '#ED561B', '#DDDF00', '#24CBE5', '#64E572', '#FF9655',
'#FFF263', '#6AF9C4']
});
$.getJSON("clusteringall.php", function(json){
     Centroids = json[0];
                                               Obtaining the
     clusterMarch = json[1];
                                                results with
     clusterApril = json[2];
                                                   JSON
Highcharts chart('container', {
  title: {
     text: 'USD-TW Exchange Rate Variation',
  },
  subtitle: {
     text: 'K-Means Clustering'
  xAxis: {
     categories: ['','Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'],
     gridLineWidth: 1,
     title: {
       enabled: true,
       text: 'Month'
     },
     startOnTick: true,
     endOnTick: true,
     showLastLabel: true
  yAxis: {
     title: {
       text: 'Exchange Rate'
  plotOptions: {
     line: {
       dataLabels: {
          enabled: true
       enableMouseTracking: false
},
```

```
legend: {
     layout: 'vertical',
     align: 'right',
     verticalAlign: 'right'
  },
  series: [
     name: 'Centroids',
     type: 'scatter',
     color: Highcharts.getOptions().colors[1],
     data: Centroids
                                                          To plot the centroids
  },
     name: 'Cluster 1 (March)',
     type: 'scatter',
     color: Highcharts.getOptions().colors[2],
     data: clusterMarch_
                                                          Cluster for March
     name: 'Cluster 2 (April)',
     type: 'scatter',
     color: Highcharts.getOptions().colors[3],
     data: clusterApril
                                                         Cluster for April
  tooltip: {
     headerFormat: '<b>{series.name}</b><br>',
     pointFormat: '{point.x} Month, {point.y} NTD'
});
});
  });
</script>
```

Fig. 6: Highchart Script [4]

```
<!DOCTYPE html>
<html>
<title>USD-TW Exchange Rate Variation</title>
<script src="https://code.highcharts.com/highcharts.js"></script>
<script src="https://code.highcharts.com/highcharts-more.js"></script>
<script src="https://code.highcharts.com/modules/exporting.js"></script>
<script src="https://code.highcharts.com/modules/exporting.js"></script>
<script src="scripts/jquery.min.js"></script>
</script>
</script>
</script>
</script>
</script>
</script>
```

Fig. 7: Highchart HTML code

2. The result:

Fig. 8: The centroids

Fig9: Cluster 1 (March)

Fig. 10: Cluster 2 (April)

Fig. 11: K-Means Clustering Complete Result

For further references of implementation please review the the attached source code:

References

[1]"歡迎來到中央銀行全球資訊網 — 新臺幣/美元 銀行間收盤匯率", Cbc.gov.tw, 2017. [Online]. Available: http://www.cbc.gov.tw/

lp.asp?CtNode=645&CtUnit=308&BaseDSD=32&mp=1&nowPag e=1&pagesize=50. [Accessed: 24- May- 2017].

[2]A. Trevino, "Introduction to K-means Clustering", Datascience.com, 2017. [Online]. Available: https://www.datascience.com/blog/introduction-to-k-means-clustering-algorithm-learn-data-science-tutorials. [Accessed: 24- May- 2017].

[3]"jacobemerick/kmeans", GitHub, 2017. [Online]. Available: https://github.com/jacobemerick/kmeans. [Accessed: 24- May- 2017].

[4]"Highcharts API Reference", Api.highcharts.com, 2017. [Online]. Available: http://api.highcharts.com/highcharts/. [Accessed: 24- May- 2017].