

9/10 points (90%)

Congratulations! You passed!

Next Item

1/1 point

1

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

True

False

Correct

9/10 points (90%)

	Quiz, 10 questions					
2. In bear	n search, if you increase the beam width B , which of the following would you expect to be true? Check all that apply.					
	Beam search will run more slowly.					
Corre	Correct					
	Beam search will use up more memory.					
This should be selected						
	Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)					

Correct

Beam search will converge after fewer steps.

Un-selected is correct

1/1 point

3.

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

Sequence models & Attention mechanism Quiz, 10 questions

9/10 points (90%)

Correct

False

1/1 point

4.

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

0

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Correct

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN. Sequence models & Attention mechanism 9/10 points (90%) Quiz, 10 questions

1/1 point

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

True.

Correct

False.

1/1

point

Consider the attention model for machine translation.

Sequence models & Attention mechanism

9/10 points (90%)

Quiz, 10 questions

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t,t'>} = \frac{\exp(e^{< t,t'>})}{\sum_{t'=1}^{T_{x}} \exp(e^{< t,t'>})}$$

Which of the following statements about $lpha^{< t, t'>}$ are true? Check all that apply.

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

Correct

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

Un-selected	ికోల్ఫోట్లోnce models & Attention mechanism
•	Ouiz 10 questions

9/10 points (90%)

 $\sum_t lpha^{< t,t'>} = 1$ (Note the summation is over t.)

Un-selected is correct

 $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

Correct

1/1 point

7.

The network learns where to "pay attention" by learning the values $e^{\langle t,t'\rangle}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

0

True

Correct

False

1/1

Sequence models & Attention mechanism

9/10 points (90%)

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

Quiz, 10 questions

Correct

The input sequence length T_x is small.

1/1 point

9.

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

__c_oo_o_kk___b_ooooo__oo__kkk

- cokbok
- cookbook

Correct

- cook book
- coookkbooooookkk

¹/Sequence models & Attention mechanism Quiz, 10 questions

9/10 points (90%)

10.

In trigger word detection, $x^{< t>}$ is:

igcup Features of the audio (such as spectrogram features) at time t.

Correct

(The t -th input word,	represented as eit	ther a one-hot vector	or a word	embedding
١) The ι -th input word,	represented as en	ther a one-not vector	or a word	embedding.

Whether the trigger word is being said at time t.

Whether someone has just finished saying the trigger word at time t.

