Integral de Riemann

Vamos considerar funções $f:[a,b] \longrightarrow \mathbb{R}$ limitadas, isto é,

$$s(f, P)$$
 – área a cheio $S(f, P)$ – área a tracejado

Definição

Dado um intervalo [a,b], seja $\Upsilon=\{$ partições de $[a,b]\}$. Define-se integral superior de f do seguinte modo:

$$\overline{\int_a^b} f(x) \, dx = \inf_{P \in \Upsilon} \{ S(f, P) \}.$$

Define-se integral inferior de f do seguinte modo:

$$\underline{\int_a^b} f(x) \, dx = \sup_{P \in \Upsilon} \{ s(f, P) \}.$$

Definição

Dados um intervalo [a,b] e uma função $f:[a,b]\longrightarrow \mathbb{R}$, f diz-se integrável em [a,b] se

$$\underline{\int_a^b} f(x) \, dx = \overline{\int_a^b} f(x) \, dx.$$

A este valor comum chama-se integral de f (ou integral definido de f) e denota-se por

$$\int_a^b f(x) dx \quad \text{ou simplesmente} \quad \int_a^b f.$$

Interpretação geométrica do integral de Riemann:

Dada uma função $f:[a,b] \longrightarrow \mathbb{R}$ não negativa, integrável, seja

$$A = \{(x, y) \in \mathbb{R}^2 : \ a \le x \le b, \ 0 \le y \le f(x)\}.$$

Chamamos **área de** \boldsymbol{A} ao valor do integral de f em [a,b], isto é,

área de
$$A=\int_a^b f(x)\,dx.$$

Seja agora $g:[a,b]\longrightarrow \mathbb{R}$ uma função integrável. Sejam

$$B_1 = \{(x,y) \in [a,b] \times \mathbb{R} : g(x) > 0, \ 0 < y \le g(x)\},\$$

$$B_2 = \{(x, y) \in [a, b] \times \mathbb{R} : g(x) < 0, g(x) \le y < 0\}.$$

área de
$$B_1$$
 – área de $B_2 = \int_a^b f(x) dx$

Propriedades do integral definido

Proposição

Sejam [a,b] um intervalo de \mathbb{R} e $f,g:[a,b]\longrightarrow \mathbb{R}$ funções integráveis. Então:

1) Se $c \in]a,b[$, então $f_{|_{[a,c]}}$ e $f_{|_{[c,b]}}$ são integráveis e

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx;$$

2) Para todo o $\lambda \in \mathbb{R}$, $\lambda \cdot f$ é integrável e

$$\int_{a}^{b} \lambda \cdot f(x) \, dx = \lambda \int_{a}^{b} f(x) \, dx;$$

3) f + g é integrável e

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx;$$

Propriedades do integral definido

4) Se $f(x) \leq g(x)$ para todo o $x \in [a,b]$ então

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

Em particular, se $f(x) \ge 0$ para todo o $x \in [a,b]$, então

$$\int_{a}^{b} f(x) \, dx \ge 0;$$

5) |f| é integrável e

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| dx;$$

6) $f \cdot g$ é integrável.

Proposição

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função, $c\in]a,b[$ e suponhamos que $f_{|_{[a,c]}}$ e $f_{|_{[c,b]}}$ são integráveis. Então f é integrável e

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Teorema

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Então f é integrável.

Nota

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função descontínua apenas num número finito de pontos. Então f é integrável.

Teorema

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada e monótona. Então f é integrável.

Nota

Convenção: Por uma questão de comodidade, não queremos estar preocupados com o facto do extremo superior de integração ser ou não maior ou igual ao extremo inferior. Assim, convenciona-se que, se $f:[a,b] \longrightarrow \mathbb{R}$ é uma função integrável,

$$\forall c, d \in [a, b] : c \le d \qquad \int_d^c f(x) \, dx = -\int_c^d f(x) \, dx.$$

As propriedades do integral definido apresentadas anteriormente mantêm-se válidas após esta generalização.

Os Teoremas Fundamentais do Cálculo

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função integrável. Então

$$\forall\,x\in[a,b]\qquad f_{\left|_{[a,x]}\right.}\text{ \'e integr\'avel}.$$

Seja

$$F: [a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f(t) dt.$$

Teorema (Primeiro Teorema Fundamental do Cálculo)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função integrável. Suponhamos que f é contínua em $c\in [a,b]$. Então a função F é derivável em c e F'(c)=f(c).

Corolário

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Então f admite primitiva.

Teorema (Segundo Teorema Fundamental do Cálculo)

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função integrável e F uma primitiva de f . Então

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Nota

O Segundo Teorema Fundamental do Cálculo justifica a utilização do símbolo $\int f(x)\,dx$ para denotar o conjunto das primitivas de uma função f.

Notação: Nas condições do Segundo Teorema Fundamental do Cálculo, se F é uma primitiva de f em [a,b], denota-se

$$\int_a^b f(x) \, dx = \left[F(x) \right]_a^b = F(x) \Big]_a^b \quad = \atop \text{Notação} \quad F(b) - F(a).$$

Teorema

Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções deriváveis tais que f' e g' são integráveis. Então é válida a

fórmula de integração por partes no integral definido

$$\int_a^b f'(x)g(x) dx = \left[f(x)g(x)\right]_a^b - \int_a^b f(x)g'(x) dx.$$

Proposição

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função que admite primitiva, $\varphi:[c,d]\longrightarrow \mathbb{R}$ uma função derivável tal que $\varphi(c)=a$ e $\varphi(d)=b$. Então

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Corolário

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função que admite primitiva, $\varphi:[c,d]\longrightarrow [a,b]$ uma função bijectiva, derivável . Então

$$\forall y \in [a, b]$$

$$\int_a^y f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(y)} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Teorema (Integração por mudança de variável)

Sejam $f:[a,b] \longrightarrow \mathbb{R}$ uma função integrável, $\varphi:[c,d] \longrightarrow [a,b]$ uma função bijectiva com derivada nunca nula no intervalo]c,d[. Então é válida a seguinte

fórmula de integração por substituição no integral definido

$$\int_a^b f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \cdot \varphi'(t) dt.$$

Teorema (do Valor Médio para Integrais)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Então

$$\exists c \in]a,b[$$
 $\int_a^b f(t) dt = f(c)(b-a).$

