Discrete Mathematics Exercise 13

Qiu Yihang, 2020/11/07

1. Solution:

Graph	Directed/Undirected Edges	Multiple Edges or not	Loops or not	Туре
3	Undirected	No	No	Simple Graph
5	Undirected	Yes	Yes	Pseudograph
7	Directed	No	Yes	Directed Graph
9	Directed	Yes	Yes	Directed Multigraph

2. Solution:

Graph 1) has 6 vertices and 6 edges.

In graph 1),
$$\deg(a) = 2$$
, $\deg(b) = 4$, $\deg(c) = 1$, $\deg(d) = 0$, $\deg(e) = 2$, $\deg(f) = 3$.

Graph 2) has 5 vertices and 13 edges.

In graph 2),
$$\deg(a) = 6$$
, $\deg(b) = 6$, $\deg(c) = 6$, $\deg(d) = 5$, $\deg(e) = 3$.

3. Solution:

The graph has 4 vertices and 8 edges.

$$\deg^{-}(a) = 2, \deg^{-}(b) = 3, \deg^{-}(c) = 2, \deg^{-}(d) = 1.$$

$$\deg^+(a) = 2, \deg^+(b) = 4, \deg^+(c) = 1, \deg^+(d) = 1.$$

4. Solution:

21) There exists a partition $(\{a, b, c, d\}, \{e\})$ such that when you assign red to a, b, c, d and blue to e, no two adjacent vertices are assigned the same color.

Thus, graph 21) is bipartite.

24) There exists a partition $(\{a, c, e\}, \{b, d, f\})$ such that when you assign red to a, c, e and blue to b, d, f, no two adjacent vertices are assigned the same color.

Thus, graph 24) is bipartite.

5. Proof:

We can construct a graph G, in which vertices represent men and women and two vertices u, v are adjacent if and only if u is willing to marry v.

Then every vertex in G is adjacent with exactly k vertices since every man is willing to marry exactly k of the women and every woman is willing to marry exactly k of the men.

Since a man is willing to marry a woman if and only if she is willing to marry him, we know every edge in G is undirected.

Thus, G is an undirected graph.

Obviously, (in the exercise) a man is not willing to marry another man and a woman is not willing to marry another woman, i.e. exists a partition $\{M, W\}$ in which M includes all vertices representing men and W includes all vertices representing women and when you assign red to all vertices in M and blue to all vertices in W, no two adjacent vertices are assigned the same color.

Thus, G is a bipartite graph and $\{M, W\}$ is a bipartition.

Firstly, we prove |M| = |W|.

Let n = |M|.

Since G is a bipartite graph with a bipartition $\{M,W\}$ and every vertex in G is incident with k edges, we know there exist nk edges connecting vertices in M and vertices in W.

Considering every vertex in G is incident with k edges and every vertex from W is only adjacent to vertices from M, we know |W| = nk/k = n = |M|.

Now, we prove that for all $A \subseteq M$, $|A| \le |\mathcal{N}(A)|$ holds.

We prove it by contradiction.

Suppose exists some $X \subseteq M$ s.t. $|X| > |\mathcal{N}(X)|$.

We can find an A s.t. $\forall X \subseteq M((|X| > |\mathcal{N}(X)|) \to A \subseteq X)$. (%)

Since $\mathcal{N}(u) \subseteq \mathcal{N}(A)$, $|\mathcal{N}(A)| \ge |\mathcal{N}(u)| = k$.

Thus, $|A| > |\mathcal{N}(A)| \ge k$, i.e. $|A| \ge k + 1$.

From (%) we know for any $u \in A$, $|A \setminus \{u\}| \le |\mathcal{N}(A \setminus \{u\})|$, i.e. $|A| - 1 \le |\mathcal{N}(A \setminus \{u\})|$.

Since $\mathcal{N}(A \setminus \{u\}) \subseteq \mathcal{N}(A)$, $|\mathcal{N}(A)| \ge |\mathcal{N}(A \setminus \{u\})| \ge |A| - 1$.

Meanwhile, $|A| > |\mathcal{N}(A)|$.

Thus, $|\mathcal{N}(A)| = |A| - 1$.

Then there exist |A|k edges connecting vertices from A and vertices from $\mathcal{N}(A)$.

Considering every vertex in $\mathcal{N}(A)$ is adjacent to at most k vertices in A, by pigeonhole principle, since $|A|k - |\mathcal{N}(A)|k = k > 0$, there exist at least one vertex with more than k adjacent vertices. Contradiction.

Thus, for all $A \subseteq M$, $|A| \leq |\mathcal{N}(A)|$ holds.

By Hall's Theorem, we know there exist a complete matching \mathcal{M} from M to W.

Knowing |M| = |W|, \mathcal{M} is also a complete matching from W to M.

Therefore, there exists a matching that everyone is matched with someone that they are willing to marry.

QED

6. Proof: Let a = Max def (A) and def (Ao)=a, i.e. |Ao| - |N(Ao)| = a.

Let n(A) represents the number of vertices of $A(A\subseteq N)$ that are endpoints of a mortding M of G.

First, we prove that $n(V_i) \leq |V_i| - a = |V_i| - |A_0| + |N(A_0)|$.

Obviously, $n(A_0) \leq Min\{|A_0|, |N(A_0)|\}$ $n(V_i \setminus A_0) \leq |V_i \setminus A_0| = |V_i| - |A_0|$ Vi

(Since it is a matching)

Thus, $n(V_i) = n(A_0) + n(V_i \setminus A_0) \leq |N(A_0)| + |V_i| - |A_0|$

Then we prove there exists a matching M_0 s.t. $n(V_1) = V_1 - A_0 + N(A_0) $				
We add a vertices to Vz and connect all of thom to all vertices in VI, and				
me get a new graph H, which is still a bipartite graph with a bipartition (VI, VI).				
Thus, for any $A \subseteq V_1$, $ N_H(A) = N_G(A) + a = N_G(A) + Ao - N_G(Ao) $				
: A - Na (A) < A0 - Na (A) = : Nh (A) > A .				
By Hall's Marriage Theorem, there exists a complete matching from V1 to V2.				
Now we prove all the new vortices to we added, i.e. the vertices from K/1/2,				
are endpoints of the matching M. by contradiction.				
If exists $u \in V_2 \setminus V_2$ and u is not an endpoint of the matching M .				
Then the matching M is also a complete matching from VI to Willy.				
By Hall's Mannage Theorem, we know for any Arent, Mannage				
Let H with the vortex 21 and its incident edges deleted be H1.				
By Hall's Marriage Theorem, we know for any A = VI, NH'(A) A .				
Nevertheless, for $A_0 \leq V_1$, $ \mathcal{N}_{H'}(A_0) = \mathcal{N}_{H}(A_0) - = \mathcal{N}_{G}(A_0) + A_0 - \mathcal{N}_{G}(A_0) - A_0 $				
= Ao -1 < Ao . Contradiction!				

Thus, $\max n(V_1) = |V_1| - |A_0| + |\mathcal{N}(A_0)| = |V_1| - \max_{A \subseteq V_1} \operatorname{def}(A)$.

In other words, the maximal number of vertices of V_1 that are endpoints of a matching of G equals $|V_1| - \mathbf{Max}_{A \subseteq V_1} \operatorname{def}(A)$.

QED