	Utech
Name:	
Roll No.:	A dame of Executing and Explana
Invigilator's Signature :	

CS/B.Tech(CE)/SEM-8/CE-802/3/2012 2012

WATER RESOURCES MANAGEMENT & PLANNING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) Belman's princple of optimality involves a solution of wate allocation procedure which is
 - a) forward process
 - b) backward process
 - c) any of these.
- ii) In case of analysis of generation the stream flows, the data are generally distributed
 - a) normally
- b) log-normally
- c) gamma
- d) any of these.

8131 [Turn over

CS/B.Tech(CE)/SEM-8/CE-802/3/2012

- iii) In three parameter log normal distribution, an extra parameter is introduced which is called as
 - a) location parameter
- b) mean
- c) standard deviation
- d) skewness.
- iv) The objective function for water allocation of j users is actually obtained from the curve of
 - a) net benefit vs. water allocation
 - b) net benefit vs. users
 - c) water allocation vs. users
 - d) all of these.
- v) In dynamic programming the cost function is given by (a) $c_i x_i^{dj}$ where d_i
 - a) < 0

b) > 0

c) < 1

- d) > 1.
- vi) The net benefit is given by after the end of time period t, where pv = present value of the assets
 - a) $(1+r)^t pv$
- b) $(1+r)^{-t} pv$
- c) $(1+r)^t NB$
- d) $(1+r)^{-t} NB$.
- vii) The non-negativity condition in case of water allocation system, is given by
 - a) $x_i \ge Q$

b) $x_j \leq Q$

c) $x_i \le 0$

d) $x_j \ge 0$,

where $x_j \varnothing$ water allocated to j th user.

viii) In the recursive equation

 $f_2(s_2) = \operatorname{Max}^m \cdot [R_2(x_2) + f_3(s_2 - x_2)],$ where the value of $f_3(s_2 - x_2)$ depends on

- a) water allocation
- b) state
- c) No. of users
- d) all of these.

CS/B.Tech(CE)/SEM-8/CE-802/3

- ix) NBP $_t$ in water resources system means
 - a) net benefit of project p after time period t
 - b) net benefit is p after time t
 - c) net benefit of project p after end of 1 year
 - d) net benefit is p after one year.
- x) The equations are used to analysis a water allocation system, called (In Dynamic Programming)
 - a) series of equation
 - b) recursive equation
 - c) state equation
 - d) forward/backward equation.

GROUP - B

(Short Answer Type Questions)

Answer *all* the following.

 $3 \times 5 = 15$

- 2. Discuss dyamic programming for analysis the water allocation to the different users.
- 3. Write difference between two parameter Log normal models and three parameter log normal models.
- 4. Show that if compounding occurs at the end of m equal length periods within a year in which the nominal annual interest rate is r, then the effective annual interest rate r will yield the value equals to $(1 + r/m)^m 1$.

CS/B.Tech(CE)/SEM-8/CE-802/3/2012

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 5. Consider two alternative water resource projects A & B. Project A will cost Rs. 2,533,000 and return Rs. 4,000,000 at the end of design life 10 years. Project B will cost Rs. 4,000,000 and return Rs. 2,000,000 at the end of design life 15 years. Assume interest rate of 0.1 per year.
 - a) What is the present value of each project?
 - b) What is each project's annual net benefit?
- 6. Calculate the optimum allocation to three users to get the maximum net benefit for the following problem for a discharge of 5 units.

Values of user net benefit function- $R_i(x_i)$

x_{j}	$R_1(x_1)$	R	R
0	0	2 (7 2)	3 (🖔 3)
1	- 0.5	6.5	- 6.9
2	3	- 10·1	0
3	6.6	10.9	5.3
4	10	9.6	11.8
5	13.1	7.5	17.5

- 7. Write in detail the Langrange's multiplier's method for calculating the net benefit objective function for a particular project to allocate the water to different users.
- 8. Derive the equations for calculating the mean, standard deviation for generating the stream flows in two parameter log normal models.

8131 4