Utiliser le théorème de Thalès

13 octobre 2016

Sommaire

- I. Homothéties
- II. Théorème de Thalès
- III. Réciproque du théorème de Thalès

Définition

Le point M' est l'image du point M par l'homothétie de centre O et de rapport k (k est un nombre différent de 0) lorsque :

- si k est positif : $M' \in [OM)$ ou si k est négatif : $O \in [MM']$
- $OM' = k \times OM$ si k est positif, $OM' = -k \times OM$ si k est négatif.

Remarque

• Si k > 1 ou k < -1,

Remarque

• Si k > 1 ou k < -1, la figure est un agrandissement de la figure initiale.

Remarque

- Si k > 1 ou k < -1, la figure est un agrandissement de la figure initiale.
- Si -1 < k < 0 ou 0 < k < 1,

Remarque

- Si k > 1 ou k < -1, la figure est un agrandissement de la figure initiale.
- Si -1 < k < 0 ou 0 < k < 1, la figure est une réduction de a figure initiale.

Propriétés

Par une homothétie de rapport k, l'image :

- d'une droite est une droite qui lui est parallèle;
- d'un segment [MN] est un segment [M'N'] de longueur $k \times MN$ (si k > 0) ou $-k \times MN$ (si k < 0)

Sommaire

- I. Homothéties
- II. Théorème de Thalès
- III. Réciproque du théorème de Thalès

Propriété

Si deux droites (BM) et (CN) sécantes en A sont coupées par deux droites parallèles (BC) et (MN), alors :

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Configurations de Thalès

Le triangle AMN est l'image du triangle ABC par une homothétie de centre A.

Sommaire

- I. Homothéties
- II. Théorème de Thalès
- III. Réciproque du théorème de Thalès