Complexity of recognizing Dyck languages of bounded height with quantum query algorithms.

Maxime CAUTRÈS

Faculty of Computing University of Latvia

31/08/2022

Sommaire

- Introduction
 - Quantum query model and complexity
 - Dyck languages of bounded height
 - History and state of the art of the problem
- 2 The progress to reduce the $\mathrm{DYCK}_{k,n}$ QQC
- 3 New idea to get better quantum query complexity bounds

 $a \cdot$

 $\frac{b}{c}$

 $|a\rangle$

 $|b\rangle$

 $|c\rangle$

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A classical bit

Figure: A classical bit

Figure: A quantum bit.

Figure: A classical bit

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Figure: Truth table on 2 bits.

Figure: A quantum bit.

Figure: A classical bit

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Figure: Truth table on 2 bits.

Figure: A quantum bit.

Figure: Unitary matrix on 2 qubits.

$$x = \underbrace{100101...01011}_{n}$$

Figure: Structure of a quantum query algorithm.

Figure: Structure of a quantum query algorithm.

Figure: Structure of a quantum query algorithm.

Figure: Structure of a quantum query algorithm.

Figure: Structure of a quantum query algorithm.

Quantum query model and complexity Dyck languages of bounded height History and state of the art of the problen

Dyck words of bounded height are a natural restriction of Dyck words.

0 0 1 0 0 1 1 0 1 0 1

 $DYCK_k$

A general result that help but not close the $Q(DYCK_k)$ problem.

The Trichotomy theorem:(Aaronson, Grier and Schaeffer [?, 2019])

Star Free Languages
$$\Longrightarrow \tilde{\Theta}(\sqrt{n})$$

A general result that help but not close the $Q(DYCK_k)$ problem.

The Trichotomy theorem:(Aaronson, Grier and Schaeffer [?, 2019])

Star Free Languages
$$\Longrightarrow \Theta(\sqrt{n})$$

Application:

 $DYCK_k \in Star free languages$

A general result that help but not close the $Q(DYCK_k)$ problem.

The Trichotomy theorem:(Aaronson, Grier and Schaeffer [?, 2019])

Star Free Languages
$$\Longrightarrow \tilde{\Theta}(\sqrt{n})$$

Application:

 $D_{YCK_k} \in Star free languages$

Implication:

$$Q(DYCK_{k,n}) = \Theta(\sqrt{n}\log_2(n)^{p(k)})$$

Algorithms:

piece).

```
Require: n \ge 0 and k \ge 1

Ensure: |x| = n

x \leftarrow 1^k x 0^k

v \leftarrow \text{FINDANY}_{k+1}(0, n+2*k-1, \{1, -1\})

return \mathbf{v} = \text{NULL}

Figure: Ambainis' algorithm (small
```

Algorithms:

Require:
$$n \ge 0$$
 and $k \ge 1$
Ensure: $|x| = n$
 $x \leftarrow 1^k x 0^k$
 $v \leftarrow \text{FINDANY}_{k+1}(0, n+2*k-1, \{1, -1\})$
return $\mathbf{v} = \text{NULL}$

Figure: Ambainis' algorithm (small piece).

$$O\left(\sqrt{n}(\log_2(n))^{0.5k}\right)$$

Algorithms:

Require:
$$n \ge 0$$
 and $k \ge 1$
Ensure: $|x| = n$
 $x \leftarrow 1^k x 0^k$
 $v \leftarrow \text{FINDANY}_{k+1}(0, n+2*k-1, \{1, -1\})$
return $\mathbf{v} = \text{NULL}$

Figure: Ambainis' algorithm (small piece).

$$O\left(\sqrt{n}(\log_2(n))^{0.5k}\right)$$

Reductions to:

Figure: A reduction to 2D directed grid connectivity.

Algorithms:

Require:
$$n \ge 0$$
 and $k \ge 1$
Ensure: $|x| = n$
 $x \leftarrow 1^k x 0^k$
 $v \leftarrow \text{FINDANY}_{k+1}(0, n+2*k-1, \{1, -1\})$
return $\mathbf{v} = \text{NULL}$

Figure: Ambainis' algorithm (small piece).

$$O\left(\sqrt{n}(\log_2(n))^{0.5k}\right)$$

Reductions to:

Figure: A reduction to 2D directed grid connectivity.

$$O\left(\sqrt{n}(\log_2(n))^{0.5(k-1)}\right)$$

Second step, one try to prove the optimality with a matching lower bound.

Adversary methods:

No result yet

Second step, one try to prove the optimality with a matching lower bound.

Adversary methods:

No result yet

• Reduction from:

$$\mathrm{Ex}_{2m}^{m|m+1}(x)=0 \Longleftrightarrow |x|_0-|x|_1=2$$

$$\operatorname{Ex}_{2m}^{m|m+1}(x) = 1 \iff |x|_0 - |x|_1 = 0$$

$$\Omega\left(\sqrt{n}c^k\right)$$

A natural goal is to made the bounds match.

Figure: Representation of the different bounds.

Sommaire

- Introduction
- 2 The progress to reduce the $DYCK_{k,n}$ QQC
 - Why does the problem is not only a grover search
 - Original algorithm and small revisions
 - A new algorithm for k=2
- 3 New idea to get better quantum query complexity bounds

•
$$k = 1$$
:

Figure: A dyck word of height 2.

•
$$k = 1$$
:

Figure: A dyck word of height 2.

$$O\left(\sqrt{n}\right)$$

•
$$k = 1$$
:

Figure: A dyck word of height 2.

$$O(\sqrt{n})$$

•
$$k = 2$$
:

Figure: A substring of height 3.

•
$$k = 1$$
:

Figure: A dyck word of height 2.

$$O(\sqrt{n})$$

Figure: A substring of height 3.

•
$$k = 1$$
:

Figure: A dyck word of height 2.

$$O\left(\sqrt{n}\right)$$

Figure: A substring of height 3.

$$O\left(\sqrt{n\log_2(n)}\right)$$

• $\pm k$ strings:

Figure: Representation of a +k string.

• $\pm k$ strings:

Figure: Representation of a +k string.

• Minimal $\pm k$ strings:

Figure: A non-minimal +2 string.

Minimal decomposition

Figure: A +3 string decomposition.

• $\pm k$ strings:

Figure: Representation of a +k string.

• Minimal $\pm k$ strings:

Figure: A non-minimal +2 string.

• $\pm k$ strings:

Figure: Representation of a +k string.

• Minimal $\pm k$ strings:

Figure: A non-minimal +2 string.

Minimal decomposition

Figure: A +3 string decomposition.

• $\pm k$ strings:

Figure: Representation of a +k string.

• Minimal $\pm k$ strings:

Figure: A non-minimal +2 string.

Minimal decomposition

Figure: A +3 string decomposition.

• $\pm k$ strings:

Figure: Representation of a +k string.

• Minimal $\pm k$ strings:

Figure: A non-minimal +2 string.

Minimal decomposition

Figure: A +3 string decomposition.

Figure: Schema of the idea of the original algorithm.

$$n, k + 1$$

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Figure: Schema of the idea of the original algorithm.

Original QQC:

$$O\left(\sqrt{n}(\log_2(n))^{0.5k}\right)$$

Figure: Schema of the idea of the original algorithm.

Original QQC:

$$O\left(\sqrt{n}(\log_2(n))^{0.5k}\right)$$

Small revision:

$$O\left(\sqrt{n}(\log_2(n))^{0.5(k-1)}\right)$$

small revision

the new algorithm

can be plug in the big one

Sommaire

- 1 Introduction
- 2 The progress to reduce the $DYCK_{k,n}$ QQC
- 3 New idea to get better quantum query complexity bounds
 - lower bounds: try to do reduction from other problem
 - Upper bounds: Trying not do to every node
 - Conclusion

lower bounds: try to do reduction from other problem Upper bounds: Trying not do to every node Conclusion

lower bounds: try to do reduction from other problem Upper bounds: Trying not do to every node

lower bounds: try to do reduction from other problem Upper bounds: Trying not do to every node Conclusion

Conclusion

What as been done:

•

Possible idea to go further:

4

lower bounds: try to do reduction from other problen
Upper bounds: Trying not do to every node
Conclusion