ENG 4550 – Introduction to Control Systems Lab 5

Lab 5: SRV02 Position Control -Ramp Response with No SteadyState Error

What we have done in Lab 4

Ramp Response Using PV Controller

- 1. Simulation
- 2. Experimental test

$$V_m(t) = k_p \left(\theta_d(t) - \theta_l(t)\right) - k_v \left(\frac{d}{dt} \theta_l(t)\right)$$

Steady-state error

- 1. x label, y label (Variable name & unit)
- 2. Legend
- Different colors and line style (solid, dashed, or dotted)

Lab 5

$$P(s) = \frac{K}{s\left(\tau s + 1\right)}$$

$$V_{m}(t) = k_{p} \left(\theta_{d}(d) - \theta_{l}(t)\right) + k_{i} \int \left(\theta_{d}(t) - \theta_{l}(t)\right) dt - k_{v} \left(\frac{d}{dt} \theta_{l}(t)\right)$$

$$V_{m}(t) = k_{p} \left(\theta_{d}(d) - \theta_{l}(t)\right) + k_{i} \int \left(\theta_{d}(t) - \theta_{l}(t)\right) dt - k_{v} \left(\frac{d}{dt} \theta_{l}(t)\right)$$

Try to eliminate the steady-state error when tracking a ramp

input. (PIV)

- 1. Simulation
- 2. Experimental test

Submission of next lab

1. Lab report (Lab 5)

 Finish your lab report according to the template in Section 2.5.3 and tips in Section 2.5.4.

II. RESULTS

Do not interpret or analyze the data in this section. Just provide the results.

- 1. Response plot from step 5 in Section 2.3.3, Simulated controller with ramp input
- 2. Response plot from step 5 in Section 2.3.3, Implemented controller with ramp input
- 3. Provide applicable data collected in this laboratory (from Table 2.1).

Submission of next lah

	Section / Ques-	Description	Symbol	Value	Unit
	tion				
1	Question 4	Pre-Lab: Model Parameters			
\checkmark		Open-Loop Steady-State Gain	K		
		Open-Loop Time Constant	au		
1	Question 4	Pre-Lab: PV Gain Design			
\checkmark		Proportional gain	k_p		
		Velocity gain	k_v		
	Question 5	Pre-Lab: Control Gain Limits			
		Maximum proportional gain	$k_{p,max}$		
	Question 6	Pre-Lab: Ramp Steady-State Error			
		Steady-state error using PV	e_{ss}		
1	Question 7	Pre-Lab: Integral Gain Design			
7		Integral gain	k_i		
	2.3.1.1	Step Response Simulation			
		Peak time	t_p		
		Percent overshoot	PO		
		Steady-state error	e_{ss}		
	2.3.1.1	Filtered Step Response Using PV			
		Peak time	t_p		
		Percent overshoot	PO		
		Steady-state error	e_{ss}		
	2.3.1.2	Step Response Implementation			
		Peak time	t_p		
		Percent overshoot	PO		
		Steady-state error	e_{ss}		
	2.3.2.1	Ramp Response Simulation with PV			
		Steady-state error	e_{ss}		
	2.3.2.2	Ramp Response Implementation with			
		PV			
		Steady-state error	e_{ss}		
1	2.3.3	Ramp Response Simulation with with			
$\sqrt{}$		no steady-state error			
,		Steady-state error	e_{ss}		
1	2.3.3	Ramp Response Implementation with			
$\sqrt{}$		with no steady-state error			
		Steady-state error	e_{ss}		

Submission of next lab

1. Pre-lab Questions in Section 3.2

 \bullet Questions 1 – 5.

Typos:

All terms $\frac{PO}{100}$ in Section 3.1 should be PO.

Lab 5

- In 'ENG4550 control systems' on desktop, unzip 'Lab MatlabSimulini Software-20181001.zip' to a NEW DIRCTORY. All files you need in Lab 5 are in .../NEW DIRCTORY/Position Control (Labs 3-5)
- When complete,
 DELETE/REMOVE your files and
 the FOLDER you created.

Lab 5: steps in Section 2.3.3

- How can the PV controller be modified to eliminate the steady-state error in the ramp response? State your hypothesis and describe the anticipated cause-and-effect leading to the expected result. Hint: Look through Section 2.
- 2. List the independent and dependent variables of your proposed controller. Explain their relationship.
- Your proposed control, like the PV compensator, are model-based controllers. This means that the control
 gains generated are based on mathematical representation of the system. Given this, list the assumptions you
 are making in this control design. State the reasons for your assumptions.

Give a brief, general overview of the steps involved in your experimental procedure for two cases: (1) Simulation, and (2) Implementation.