Estimation of Demand Model 2 **BLP** Approach

Yuta Toyama

Last updated: November 26, 2018

Overview

- Last week: Discrete choice model when individual data is available.
- ► This week: Discrete choice model when only market-level data is available.
 - ► So-called "BLP" approach.

Data Structure

- Consumer level data
 - cross section of consumers
 - sometimes: panel (i.e., repeated choices)
 - sometimes: second choice data
- Market-level data
 - cross section/time series/panel of markets
- Combination
 - sample of consumers plus market-level data
 - quantity/share by demographic groups
 - average demographics of purchasers of good j

Consumer-level Data

- See match between consumers and their choices
- Data include:

- consumer choices (including choice of outside good)
- prices/characteristics/advertising of all options
- consumer demographics
- Advantages:
 - impact of demographics
 - identication and estimation
 - dynamics (especially if we have panel)
- Disadvantages
 - harder/more costly to get
 - sample selection and reporting error

Market-level Data

- ► We see product-level quantity/market shares by "market"
- Data include:
 - aggregate (market-level) quantity
 - prices/characteristics/advertising
 - denition of market size
 - distribution of demographics
 - sample of actual consumers
 - data to estimate a parametric distribution
- Advantages:
 - easier to get
 - sample selection less of an issue
- Disadvantages:
 - estimation often harder and identication less clear

Estimation of Discrete Choice Model using Aggregate Data

Rough idea:

- Discrete choice model implies choice probability.
- (Integral of) choice probability = market share
- Key difference: econometric error term:
 - With consumer-level data: ϵ_{ii} as econometric error term
 - With market-level data: ξ_{it} as econometric error term
 - \triangleright ξ_{it} rationalizes the observed market share s_{it} .
- We will see three cases
 - multinomial logit model (Berry 1994)
 - Nested logit model (Berry 1994)
 - Random coefficient logit model (BLP 1995, Nevo 2001)

Berry (1994) Multinomial Logit

▶ The utility for individual i in market t from purchasing product $j = 1, \dots, J_t$:

$$u_{ij} = \underbrace{X_{jt}\beta - \alpha p_{jt} + \xi_{jt}}_{\delta_{jt} + \varepsilon_{ijt}} + \varepsilon_{ijt},$$

$$= \delta_{jt} + \varepsilon_{ijt}.$$

- \triangleright X_{it} : a vector of product characteristics for product j in market t
- \triangleright β : a vector of coefficients
- $ightharpoonup \alpha$: a price coefficient
- p_{jt}: price for product j in market t
- \triangleright ξ_{jt} : consumers' valuation of an **unobserved** product characteristics
- \triangleright ε_{ijt} : i.i.d. utility shock across consumers and choices
- \triangleright δ_{it} : the mean utility of product j
- Normalize $u_{i0t} = \epsilon_{i0t}$ (meaning $\delta_{0t} = 0$)
- Note: No consumer heterogeneity except for ϵ_{ijt}

- Each consumer purchases at most one product which gives the highest utility.
- \blacktriangleright Let M denote the market size (= the number of consumers).
- \triangleright Given the density $f(\varepsilon)$, the market demand for product j is

$$egin{array}{lcl} q_{jt} & = & \mathit{Ms}_{jt} \ s_{jt}(\delta_{jt}) & = & \int_{A_i(\delta)} f(arepsilon) arepsilon. \end{array}$$

where
$$A_i(\delta) = \{\epsilon | \delta_i + \varepsilon_{ij} > \delta_k + \varepsilon_{ik}, \forall k \neq j\}$$

Market shares

- Assume that ϵ_{ijt} follows i.i.d. type I extreme value distribution
- The market share:

$$egin{aligned} s_{jt}(\delta) &= rac{\exp(\delta_{jt})}{1 + \sum_{k=1}^{J_t} \exp(\delta_{kt})} \ s_{0t}(\delta) &= rac{1}{1 + \sum_{k=1}^{J_t} \exp(\delta_{kt})} \end{aligned}$$

Berry (1994)'s Inversion

Take the log of the ratio:

$$\log\left(\frac{s_{jt}}{s_{0t}}\right) = \delta_{jt}$$

$$\iff \log\left(\frac{s_{jt}}{s_{0t}}\right) = \alpha p_{jt} + \beta X_{jt} + \xi_{jt}$$

- \blacktriangleright We can run linear regression to estimate $(\alpha, \beta)!$
- Important note: Endogeneity of p_{it} . Discuss IV later.
- ▶ General idea: Regardless of distributional assumption on ϵ_{it} , there exists a unique $\{\delta_{it}\}_i$ that rationalizes the observed market share $\{s_{it}\}_i$.

$$s_{jt} = s_j(\{\delta_{jt}\}_j) \forall j \Longrightarrow \exists \{s_j^{-1}(\cdot)\} \text{ s.t. } \delta_{jt} = s_j^{-1}(\{s_{jt}\}_j)$$

Recap of Price Elasticity under Logit

Own- and cross- price elasticities are give by:

$$\frac{\partial s_j}{\partial p_k} \frac{p_k}{s_j} = \begin{cases} -\alpha p_j (1 - s_j), & \text{if } k = j, \\ \alpha p_k s_k, & \text{otherwise} \end{cases}$$

Nested Logit

- ▶ The notation is based on Cardell (1991), Econometric Theory.
- \triangleright Group the products into G+1 exhaustive and mutually exclusive sets, $g=0,1,\cdots,G$.
- ▶ Denote the set of products in group g as \mathcal{G}_g .
- \blacktriangleright The outside good, j=0, is assumed to be the only member of group 0.

Setup

Utility for consumer *i* choosing product *j* is given by

$$u_{ijt} = \alpha p_j + \beta X_{jt} + \xi_{jt} + \xi_{igt} + (1 - \sigma)\varepsilon_{ijt},$$

= $\delta_j + \xi_{igt} + (1 - \sigma)\varepsilon_{ijt}$

- For consumer i, ξ_{ig} is common to all products in group g.
- Assuming extreme value distribution for ε_{ij} , $\xi_{ig} + (1 \sigma)\varepsilon_{ij}$ is also an extreme value random variable.
- **Note** Role of σ :
 - As $\sigma \to 1$, the within group correlation of utility levels goes to one.
 - As $\sigma \to 0$, the within group correlation of utility levels goes to zero.

Market Share

▶ The market share of product *j* within the group *g* is given by:

$$s_{j/g}(\delta, \sigma) = \exp(\delta_j/(1-\sigma))/D_g$$

where D_g is given by $D_g \equiv \sum_{i \in G_g} \exp(\delta_i/(1-\sigma))$.

Similarly, the probability of choosing one of the group g products is

$$s_{g}(\delta, \sigma) = \frac{D_{g}^{(1-\sigma)}}{\left[\sum_{k} D_{k}^{(1-\sigma)}\right]}$$

Therefore the market share for product *i* is given by:

$$s_j(\delta, \sigma) = s_{j/g}(\delta, \sigma) s_g(\delta, \sigma) = \frac{\exp(\delta_j/(1-\sigma))}{D_g^{\sigma} \left[\sum_k D_k^{(1-\sigma)}\right]}$$

$$s_0(\delta,\sigma) = 1/\left[\sum_k D_k^{(1-\sigma)}\right].$$

Nested Logit 000000

Berry inversion

$$\ln(s_j) - \ln(s_0) = \delta_j/(1-\sigma) - \sigma \ln(D_g)$$

$$\ln(s_{i/g}) = \delta_i/(1-\sigma) - \ln(D_g)$$

Finally, we have

$$\ln(s_{jt}) - \ln(s_{0t}) = \delta_{jt} + \sigma \ln(s_{jt/g}),
= \beta X_{jt} + \alpha p_{jt} + \sigma \ln(s_{jt/g}) + \xi_{jt}.$$

Estimation

Linear regression model again!

$$\ln(s_{jt}) - \ln(s_{0t}) = \beta X_{jt} + \alpha p_{jt} + \sigma \ln(s_{jt/g}) + \xi_{jt}$$

- Instruments needed for both p_{it} and $\ln(s_{it|g})$
 - p_{it} due to price endogeneity
 - inside-share $s_{it|g}$ depends on ξ_{it} .
- We will discuss instruments later.

Recap on Price Elasticity

Remember that

$$\frac{\partial s_j}{\partial p_k} \frac{p_k}{s_j} = \begin{cases} -\alpha p_j (1 - \sigma s_{j/g} - (1 - \sigma) s_j) / (1 - \sigma), & \text{if } k = j, \\ -\alpha p_k (\sigma s_{j/g} + (1 - \sigma) s_k) / (1 - \sigma), & \text{if } j, k \in g \\ \alpha p_k s_k, & \text{otherwise} \end{cases}$$

Overview of BLP approach

- ▶ In a nutshell: Estimation of random coefficient logit model with consumer heterogeneity using market-level data
- Difficulty
 - 1. Inversion is non-linear. Because

$$s_j = \int \int P(j|x_i, \nu_i) dF(x_i) dG(\nu_i),$$

so that parametric transformation does not give us linear regression equation.

- Identification. More on this later.
- ▶ I will follow the notation by Nevo (2001). Next week, I will talk about the empirical results of BLP (1995).

Setup

Consider the random coefficient logit model

$$u_{ijt} = \alpha_i p_{jt} + \beta_i X_{jt} + \xi_{jt} + \epsilon_{ijt}$$

Random coefficient

$$\left(\begin{array}{c} \alpha_i \\ \beta_i \end{array}\right) = \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) + \Pi D_i + \Sigma \nu_i$$

- \triangleright D_i is observed demographic characteristics
- $\nu_i \sim N(0, I)$
- \triangleright Coefficients have both observed and unobserved heterogeneity (ΠD_i and $\Sigma \nu_i$)

Rewrite the model

$$u_{ijt} = \delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2) + \epsilon_{ijt}$$

where

$$\delta_{jt}(\theta_1) = \alpha p_{jt} + \beta X_{jt} + \xi_{jt}$$

$$\mu_{ijt}(\theta_2) = (\Pi D_i + \Sigma \nu_i)(p_{jt}, X_{jt})$$

- $\theta_1 = (\alpha, \beta)$: linear parameters
- $\theta_2 = (\Pi, \Sigma)$: non-linear parameters
- The market share

$$s_{jt} = \int \int \underbrace{\frac{\exp((\delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2))}{1 + \sum_{j=1}^{J} \exp(\delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2))}}_{=Prob(j|D_i,\nu_i)} dF(D_i)dG(\nu_i)$$

$$= \sigma_{jt}(\{\delta\}; \theta_1, \theta_2)$$

Naive idea for estimation

 \triangleright Estimate (θ_1, θ_2) by minimizing the distance between observed and predicted market share

$$\min_{(heta_1, heta_2)} \sum_t \sum_j \left(s_{jt} - s_{jt}^{pred}(heta_1, heta_2)
ight)^2$$

- Issues:
 - Computation. All parameters enter in a non-linear way.
 - More importantly: Price p_{it} correlated with error term ξ_{it} . Standard IV methods do not work.

Moment Conditions

• We form moment conditions w.r.t. ξ_{it}

$$E\left[\xi_{jt}\left(\begin{array}{c}x_{jt}\\z_{jt}\end{array}\right)\right]=0$$

where z_{it} is a vector of instruments

▶ In logit/nested logit, ξ_{it} can be appeared in a linear way:

$$\ln(s_{jt}) - \ln(s_{0t}) = \beta X_{jt} + \alpha p_{jt} + \sigma \ln(s_{jt/g}) + \xi_{jt}$$

so that you can runs linear 2SLS.

In random coefficient logit, we do not have such analytical inversion.

Inversion in a nonlinear setting

► The model

$$\sigma_{jt}(\{\delta_{jt}\}_j, \{x_{jt}\}, \{p_{jt}\}; \theta_2) = \int \int \frac{\exp((\delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2)))}{1 + \sum_{j=1}^J \exp(\delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2))} dF(D_i) dt$$

▶ Under weak conditions, there exists a unique vector of $\{\delta_{jt}\}_j$ that rationalizes the observed share $\{s_{jt}\}_j$

$$\delta_t = \sigma_t^{-1}(\{s_{jt}\}_j, \{x_{jt}\}, \{p_{jt}\}; \theta_2)$$

Thus,

$$\xi_{jt} = \sigma_t^{-1}(\{s_{jt}\}_j, \{x_{jt}\}, \{p_{jt}\}; \theta_2) - (\alpha p_{jt} + \beta X_{jt})$$

- ▶ We can form moment conditions!!
 - Note: σ_t^{-1} () is numerically calculated (more on this later).

BLP Estimation Algorithm (Nested Fixed Point Algorithm)

- ▶ Preliminary 1: Given δ and θ_2 (and observed covariates x_{it} and p_{it}), compute the market share $\sigma_{it}(\{\delta\}_i, \{x_{it}\}, \{p_{it}\}; \theta_2)$.
- **E**stimation: Given θ_2 ,
 - Step 1 (inversion): search for δ that equates $\sigma_{it}(\delta)$ to the observed market share s_{it} for all j and t.
 - ▶ Step 2 (objective function): use the computed δ_t to compute ξ_{it} and form the GMM objective function.
 - \triangleright Search for the value of θ that minimizes the GMM objective function.

Preliminary: Computation of Market Share

The market share

$$\sigma_{jt}(\{\delta_{jt}\}_j;\theta_2) = \int \int \frac{\exp((\delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2)))}{1 + \sum_{i=1}^{J} \exp(\delta_{jt}(\theta_1) + \mu_{ijt}(\theta_2))} dF(D_i) dG(\nu_i)$$

Nested Logit

- Use simulation to calculate the integrals
 - Let $r=1,\cdots,R$. Consider the draw (D^r,ν^r) from $F(D_i)$ and $G(\nu_i)$
 - ▶ $F(D_i)$ is observed demographic distribution. $G(\nu_i)$ is Normal distribution.
- Then,

$$\sigma_{jt}(\{\delta_{jt}\}_{j},\theta_{2}) = \frac{1}{R} \sum_{r=1}^{R} \frac{\exp((\delta_{jt} + \mu_{ijt}(D^{r}, \nu^{r}, \theta_{2})))}{1 + \sum_{j=1}^{J} \exp(\delta_{jt} + \mu_{ijt}(D^{r}, \nu^{r}, \theta_{2}))}$$

- Note:
 - Other simulations (importance sampling, Halton sequence, etc).
 - Quadrature.

Step 1: Inversion

Given θ_2 , we want to obtain $\{\delta_{it}\}_i$ such that

$$s_{jt} = \sigma_{jt}(\{\delta_{jt}\}_j, \theta_2) \ \forall j$$

Generally, can use a contraction mapping for each market t

$$\delta_t^{h+1} = \delta_t^h + \log(S_t) - \log(\sigma_t(\delta_t, \theta_2))$$

- repeat this untill $||\delta_t^{h+1} \delta_t||$ is sufficiently small (like 1e 12)
- Note: In logit/nested logit, this inversion can be done analytically!

The error term

$$\xi_{jt}(\theta_1, \theta_2) = \sigma^{-1}(S_t, \theta_2) - \beta x_{jt} - \alpha p_{jt}$$

Nested Logit

- Note: $\theta_1 = (\alpha, \beta)$ enters in a linear way, while θ_2 non-linear.
- Moment conditions

$$E\left[\xi_{jt}\left(\begin{array}{c}x_{jt}\\z_{jt}\end{array}\right)\right]=0$$

where z_{it} is a vector of instruments

The GMM objective function

$$\xi(\theta)'ZWZ'\xi(\theta)$$

where

- \blacktriangleright $\xi(\theta)$ is $(JT \times 1)$ vector,
- $ightharpoonup Z = (JT \times L)$ matrix (including instruments and exogenous variables)
- W: weight matrix

Search for Parameters

- The search is non-linear.
 - Try different initial values / Use different optimizers
- \triangleright Trick: Concentrate out the linear parameters θ_1
 - ▶ Given $\sigma^{-1}(S_t, \theta_2)$, can estimate (α, β) in a linear regression (with instrument for p_{it})
- Computationally demanding
 - \triangleright For each evaluation of θ , we have to do a contraction mapping to back out δ .
 - Structural estimation methods require a similar kind of computation.
 - There is an alternative approach to reduce computation costs: MPEC (Dube, Fox, and Su 2012 EMA)

Next Week

- ► Instruments (identification)
- ► Applications:
 - ► BLP (1995, EMA)
 - ► Nevo (2001, EMA)