

RESPUESTA EN FRECUENCIA

RESPUESTA EN FRECUENCIA

Se estudia el comportamiento de circuitos cuando se alimentan con una fuente alterna senoidal de frecuencia variable, generalmente entre $0 e \infty$

A partir del estudio analítico de la situación planteada se realizan gráficas que permiten visualizar el mencionado comportamiento en función de la frecuencia o de la pulsación

Dichos estudios se realizan en base al comportamiento de X o B en un circuito frente a la variación de f u ω

¿ Qué pasa si se conecta a un circuito una fuente de tensión alterna senoidal \mathbf{u}_f de amplitud constante pero cuya frecuencia puede variar desde cero hasta infinito?

10 10

Divisor resistivo

No hay dependencia de la frecuencia

Funciones de TRANSFERENCIA

Divisor RL

$$\underline{U}_{s} = \underbrace{\frac{jX_{L}}{(R+jX_{L})}} \underline{U}_{f} = \underbrace{\frac{1}{(1-j\frac{R}{\omega L})}} \underline{U}_{f}$$

Se puede separar el módulo y el argumento de la función y referenciar respecto de \underline{U}_f

$$\left| \frac{\underline{U}s}{\underline{U}_f} \right| = \frac{1}{\sqrt{1 + \frac{R^2}{\omega^2 L^2}}}$$

$$Arg\left(\frac{\underline{U}s}{\underline{U}_f}\right) = -arg(1 - j\frac{R}{\omega L})$$

Y graficando

Módulo

$$\left| \frac{\underline{U}s}{\underline{U}_f} \right| = \frac{1}{\sqrt{I + \frac{R^2}{\omega^2 L^2}}}$$
usL(w) 0.5

$$si \ \omega = \omega_c = \frac{R}{L} \quad \Rightarrow \quad \left| \frac{\underline{U}s}{\underline{U}_f} \right| = \frac{1}{\sqrt{2}} = 0,707$$

Fase

$$Arg\left(\frac{\underline{U}s}{\underline{U}_f}\right) = -arg(1 - j\frac{R}{\omega L})$$

 $si \ \omega = \omega_c = \frac{R}{L} \implies Arg\left(\frac{\underline{U}s}{\underline{U}_f}\right) = \frac{\pi}{4} = 45^\circ$

 ω_c Pulsación de corte

Circuito PASA ALTOS

¿Se podría resolver sin hacer planteos matemáticos?

Divisor LR

Se puede separar el módulo y el argumento de la función y referenciar respecto de $\underline{m{U}}_{\!f}$

$$\left| \frac{\underline{U}s}{\underline{U}_f} \right| = \frac{1}{\sqrt{1 + \frac{\omega^2 L^2}{R^2}}} \qquad Arg\left(\frac{\underline{U}s}{\underline{U}_f} \right) = -arg(1 + j\frac{\omega L}{R})$$

Módulo

$$\left| \frac{\underline{U}s}{\underline{U}_f} \right| = \frac{I}{\sqrt{I + \frac{\omega^2 L^2}{R^2}}}$$
 (8)

$$si \ \omega = \omega_c = \frac{R}{L} \ \Rightarrow \ \left| \frac{\underline{U}s}{\underline{U}_f} \right| = \frac{1}{\sqrt{2}} = 0.707$$

Fase

$$Arg\left(\frac{\underline{U}s}{\underline{U}_f}\right) = -arg(1+j\frac{\omega L}{R})$$

$$si \ \omega = \omega_c = \frac{R}{L} \implies Arg\left(\frac{\underline{U}s}{\underline{U}_f}\right) = -\frac{\pi}{4} = -45^\circ$$

 ω_c Pulsación de corte

Circuito PASA BAJOS

¿Se podría resolver sin hacer planteos matemáticos?

Ejercitación

Se propone resolver SIN HACER PLANTEOS MATEMÁTICOS la situación propuesta por los siguientes circuitos y comparar los resultados con los vistos anteriormente; luego realizar la verificación matemáticamente

Estudio del circuito serie RLC

La función de **TRANSFERENCIA** entre \underline{U}_f e \underline{I} es la **IMPEDANCIA** del circuito que, si la pulsación de la fuente es variable, resulta:

$$\underline{Z}(\omega) = R + j\omega L + \frac{1}{j\omega C} = R + j(\omega L - \frac{1}{\omega C})$$

$$si \ \omega = \omega_0 = \frac{1}{\sqrt{LC}}$$
 $\underline{\underline{Z}}(\omega_0) = R$ y $|\underline{\underline{I}}(\omega_0)|$ es máxima

$$\underline{Z}(\omega_0) = R$$

$$|\underline{I}(\omega_0)|$$
 es máxima

Luego
$$|\underline{I}(\omega)| = \frac{|U_f|}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

 ω_0

 ω_0 suele denominarse:

PULSACIÓN NATURAL DE OSCILACIÓN

Análisis de la variación del módulo de $\underline{I}(\omega)$

Cuando la corriente es máxima, la potencia es máxima

$$P_{m\acute{a}x} = I_{m\acute{a}x}^{2} R$$

Para que la potencia sea la mitad de $P_{m\acute{a}x}$

$$\frac{P_{m\acute{a}x}}{2} = \frac{I_{m\acute{a}x}^2 R}{2} = \frac{I_{m\acute{a}x}^2}{2} R = \left(\frac{I_{m\acute{a}x}}{\sqrt{2}}\right)^2 R$$

$$I\left(\frac{P_{m\acute{a}x}}{2}\right) = \frac{I_{m\acute{a}x}}{\sqrt{2}} \iff \text{No es valor eficaz}$$

Los valores de ω que definen los dos valores de $I_{max}/\sqrt{2}$ dan lugar al denominado ANCHO DE BANDA

RESONANCIA

Se dice que un circuito como el visto en las condiciones de $\omega = \omega_0$ se encuentra en RESONANCIA

Es decir, para cualquier ω de la tensión de la fuente el circuito "suena", pero si la tensión de la fuente tiene $\omega = \omega_0$, donde ω_0 es la **pulsación natural de oscilación** del circuito, el mismo "re-suena"

Esto significa que, al ser la pulsación de la fuente igual a la **pulsación natural de** oscilación del circuito, puede ocurrir que las amplitudes de las señales resultantes sean eventualmente muy grandes

En dicha condición

corriente máxima

Pues la fuente "ve" una impedancia equivalente mínima ($\underline{Z}(\omega_0)=R$)

Y podría ocurrir que

 $|\underline{U}_C| \ge |\underline{U}_f|$ y/o $|\underline{U}_L| \ge |\underline{U}_f|$

SOBRETENSIÓN

Si se calculan $|\underline{U}_{C}(\omega)| y |\underline{U}_{L}(\omega)|$

$$\left| \underline{U}_{C} \right| = \left| \underline{I} \right| \cdot \left| -jX_{C} \right| = \frac{\left| \underline{U}_{f} \right|}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} X_{C} \qquad \qquad \left| \underline{U}_{L} \right| = \left| \underline{I} \right| \cdot \left| jX_{L} \right| = \frac{\left| \underline{U}_{f} \right|}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} X_{L}$$

$$\left|\underline{U}_{L}\right| = \left|\underline{I}\right| \cdot \left|jX_{L}\right| = \frac{\left|\underline{U}_{f}\right|}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} X_{I}$$

Según los valores de los elementos, las gráficas en función de la pulsación pueden ser

Si se dan diferentes valores para **R** pueden resultar las siguientes familias de curvas

Variación de Z, R, X en función de ω

R es grande

 $|U_L| \ y \ |U_C| \le |U_f| \ siempre$

Pues $X_L y X_C < R a \omega_\theta$

No hay sobretensiones

R es chica

 $|U_L| \ y \ |U_C| \ge |U_f|$ en ciertos rangos

Pues $X_L y X_C > R a \omega_\theta$

Hay sobretensiones

EJERCITACIÓN

Repetir **todo lo visto** para circuito paralelo **GLC** con fuente de corriente (recordar DUALIDAD)

RESUMEN

Respuesta en frecuencia

Se estudió el comportamiento de circuitos cuando se alimentan con una fuente alterna senoidal de frecuencia variable

Aparecieron los filtros y se estudió la representación gráfica del comportamiento de su módulo y su argumento en función de ω

Conceptos de resonancia, sobretensión, sobrecorriente, frecuencia de corte, ancho de banda