Combinatorics, 2018 Fall, USTC Homework4

- The due is on Thursday, Oct. 18.
- Please sign your name and student number.
- Please solve as many problems as you can.

1. Let
$$P(n) = \prod_{k \in [n] \atop (k,n)=1} k$$
. Prove $P(n) = n^{\varphi(n)} \prod_{d \mid n} (\frac{d!}{d^d})^{\mu(\frac{n}{d})}$

2. Let
$$\alpha \in \mathbb{R}$$
, define $\varphi_{\alpha}(n) = \sum_{k \in [n] \atop (k,n)=1} k^{\alpha}$. Prove

$$(1) \sum_{d \mid n} \frac{\varphi_{\alpha}(d)}{d^{\alpha}} = \frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^{\alpha}.$$

(2) when $n \geq 2$, let $n = p_1^{a_1} \cdots p_m^{a_m}$ be the standard decomposition of n. Show

(i)
$$\varphi_1(n) = \frac{n\varphi(n)}{2}$$

(ii)
$$\varphi_2(n) = \frac{1}{3}n^2\varphi(n) + \frac{n}{6}\prod_{i=1}^m (1-p_i).$$

3. Given a poset P, a chain in P is any subset $C \subseteq P$ such that any two elements in C are comparable, that is, for any $x, y \in C$, we have either $x \leq y$ or $y \leq x$.

For any $a, b \in P$, define a function η by:

$$\eta(a,b) = \zeta(a,b) - \delta(a,b).$$

Show that $\eta^k(a,b)$ is equal to the number of chains of length k with the smallest element a and the largest element b.

[say the length of a chain $a < a_1 < \cdots < a_{k-1} < b$ is k.]

[Hint: use the matric representation of functions]

4. Show that for any invertible function $f \in \mathbb{A}(P)$, the inverse f^{-1} can be written as $f^{-1} = a_0 \delta + a_1 f + \cdots + a_k f^k$ for some integer k and $a_i \in \mathbb{R}$, $i \in [k]$. Here f^i means the Dedekind convolution of i functions f

[Hint: use the matric representation of functions]

- 5. A simple poset consists of a top element a and a bottom element b and n incomparable elements z_1, \dots, z_n between. i.e. $b \le z_i \le a, i \in [n]$. Calculate its $M\ddot{o}bius\ function$.
- 6. Show that $N \odot (N\mu) = I$, and $\varphi \odot (N\mu \odot e) = I$