(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

Res'd PCT/PTO 07

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 16. Oktober 2003 (16.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/084933 A2

- C07D 233/00 (51) Internationale Patentklassifikation7:
- (21) Internationales Aktenzeichen:

PCT/EP03/03615

(22) Internationales Anmeldedatum:

8. April 2003 (08.04.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 15 845.2

11. April 2002 (11.04.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; ., 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): ERNST, Hansgeorg [DE/DE]; Bussardweg 62, 67346 Speyer (DE). KOP-PENHÖFER, Jürgen [DE/DE]; Hahnenweg 20, 67435 Neustadt (DE). KLEIN, Daniela [DE/DE]; M 7, 2, 68161 Mannheim (DE).
- AKTIENGE-BASF (74) Gemeinsamer Vertreter: SELLSCHAFT; ., 67056 LUDWIGSHAFEN (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR THE PRODUCTION OF CHIRAL IMIDAZOLIDIN-2-ONES
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON CHIRALEN IMIDAZOLIDIN-2-ONEN

(57) Abstract: The invention relates to a method for producing chiral imidazolidin-2-ones of general formula I. in which R1 represents C1-C8-alkyl, cyclohexyl-, phenyl-, a phenyl radical substituted with C1-C6-alkyl-, halo-, nitro-, C1-C6-alkoxy-, C1-C6-alkylmercapto-, or CF3-, naphthyl-, or a naphthyl radical substituted with C1-C6-alkyl-, halo-, nitro-, C1-C6-alkoxy-, or CF3-, R2 represents C1-C8-alkyl-, C1-C8-alkenyl, cyclohexyl-,

phenyl-, or a phenyl-C1-C6-alkyl radical which can be substituted with a nitro-, C1-C6-alkoxy-, methylendioxi-, or CF3 radical, and R3 represents C1-C12 alkyl-, C1-C8-alkenyl-, cyclohexyl-, phenyl-, or a phenyl radical substituted with C1-C6-alkyl-, halo-, nitro-, C1-C6-alkoxy, methylendioxi-, dialkylamine-, or CF3-, by reacting a compound of general formula II or the salt thereof, R1, R2, and R3 having the meaning indicated above, with urea in the presence of a non-volatile ammonium salt, said reaction being carried out in the presence of an aprotic polar organic solvent.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Herstellung von chiralen Imidazolidin-2-onen der allgemeinen Formel Isiehe PapierexemplarworinR1 für C1-C8-Alkyl, Cyclohexyl-, Phenyl-, einen mit C1-C6-Alkyl-, Halo-, Nitro-, C1-C6-Alkoxy-, C1-C6-Alkylmercapto-oder CF3-substituierten Phenylrest, Naphthyl-oder einen mit C1-C6-Alkyl-, Halo-, Nitro-, Ni oxy- oder CF3-substituierten Naphthylrest steht, R2 für C1-C8-Alkyl-, C1-C8-Alkenyl-, Cyclohexyl-, Phenyl- oder einen Phenyl-C1-C6-alkylrest, der mit einem Nitro-, C1-C6-alkoxy-, Methylendioxi- oder CF3-Rest substituiert sein kann, steht und R3 für C1-C12-Alkyl-, C1-C8-Alkenyl-, Cyclohexyl-, Phenyl- oder einen mit C1-C6-Alkyl-, Halo-, Nitro-, C1-C6-Alkoxy-, Methylendioxi-, Dialkylamine- oder CF3-substituierten Phenylrest steht, durch Umsetzung einer Verbindung der allgemeinen Formel II oder deren Salz siehe Papierexemplarworin R1, R2 und R3 die oben stehende Bedeutung haben, mit Harnstoff in Gegenwart eines nichtflüchtigen Ammoniumsalzes gefunden, indem die Umsetzung in Gegenwart eines aprotischen polaren organischen Lösungsmittels durchgeführt wird.

Verfahren zur Herstellung von chiralen Imidazolidin-2-onen

Beschreibung

5

Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von chiralen Imidazolidin-2-onen der allgemeinen Formel I

10

20

15 worin

für C₁-C₈-Alkyl-, Cyclohexyl-, Phenyl-, einen mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy-, C₁-C₆-Alkyl- mercapto oder CF₃-substituierten Phenylrest, Naphthyl- oder einen mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy- oder CF₃-substituierten Naphthylrest steht,

R² für C₁-C₈-alkyl-, C₁-C₈-Alkenyl-, Cyclohexyl-, Phenyloder einen Phenyl-C₁-C₆-alkylrest, der mit einem Nitro-,
C₁-C₆-alkoxy-, Methylendioxi- oder CF₃-Rest substituiert
sein kann, steht und

25 R³ für C₁-C₁₂-Alkyl-, C₁-C₈-Alkenyl-, Cyclohexyl-, Phenyl- oder einen mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy-, Methylendioxi-, Dialkylamin- oder CF₃-substituierten Phenylrest steht,

30 durch Umsetzung einer Verbindung der allgemeinen Formel II

$$\begin{array}{c}
\text{NHR}^3\\
\\
\text{R1} \\
\text{R}^2
\end{array}$$
(II)

35

mit Harnstoff in Gegenwart eines Ammoniumsalzes.

Die Herstellung von chiralen Imidazolidin-2-onen, welche wichtige 40 Zwischenprodukte in der asymmetrischen Synthese, insbesondere von biologisch aktiven Verbindungen, darstellen, ist an sich bekannt.

Von besonderer Bedeutung sind dabei Phenyl-substituierte Derivate, die durch Kondensation von Ephedrin mit Harnstoff 45 gewonnen werden. So beschreibt Close in J. Org. Chem., <u>15</u>, 1131-1134(1950), die Herstellung von 1,5-Dimethyl-4-phenyl-imidazolidin-2-on durch Kondensation von D,L-Ephedrin Hydrochlorid und Pseudoephedrin mit Harnstoff in der Schmelze. Drewes et al., Chem. Ber., <u>126</u>, <u>5 2663-2673 (1993)</u>, beschreiben die Herstellung des entsprechenden (4R,5S)-Enantiomeren ebenfalls durch Kondensation in der Schmelze von L(-)-Ephedrin mit Harnstoff.

Nachteilig ist an dieser Methode jedoch der relativ hohe Anteil 10 an Oxazolidinon als Nebenprodukt, bei entsprechend unbefriedigenden Ausbeuten für das Imidazolidinon.

Aus der WO 01/04098 ist ein Verfahren zur Herstellung von chiralen Imidazolidin-2-onen durch Kondensation von ß-Amino15 alkoholen mit Harnstoff in Gegenwart eines nichtflüchtigen Ammoniumsalzes bekannt. So kann zum Beispiel L-Ephedrin zu dem entsprechenden 4-Phenyl-Imidazolidin-2-on umgesetzt werden, wie in dem nachfolgenden Reaktionsschema beschrieben.

Dabei werden die Einsatzstoffe zunächst unter Einsatz von 30 Toluol als Durchmischungshilfsmittel vermischt, dann das Toluol abdestilliert und die Reaktion in der Schmelze unter Ammoniakentwicklung durchgeführt.

Nachteilig ist dabei unter anderem die starke Ammoniak-35 entwicklung. Das auf diese Weise erhaltene Rohprodukt lässt außerdem hinsichtlich Reinheit und Ausbeute noch zu wünschen übrig.

Aufgabe der vorliegenden Erfindung war es, ein verbessertes 40 Verfahren zu finden, welches auf einfache Weise bei guten Ausbeuten zu Produkten mit hoher Reinheit führt. Demgemäß wurde ein Verfahren zur Herstellung von chiralen Imidazolidin-2-onen der allgemeinen Formel I

5

$$\begin{array}{c}
 & O \\
 & \text{HIN} \\
 & \text{N} \\
 & \text{R}^{2}
\end{array}$$
(I),

10

15

20

worin

für C₁-C₈-Alkyl-, Cyclohexyl-, Phenyl-, einen mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy-, C₁-C₆-Alkyl- mercapto- oder CF₃-substituierten Phenylrest, Naphthyl- oder einen mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy- oder CF₃-substituierten Naphthylrest steht,

 R^2 für C_1 - C_8 -Alkyl-, C_1 - C_8 -Alkenyl-, Cyclohexyl-, Phenyl-oder einen Phenyl- C_1 - C_6 -alkylrest, der mit einem Nitro-, C_1 - C_6 -Alkoxy-, Methylendioxi- oder CF_3 -Rest substituiert sein kann, steht und

R³ für C₁-C₁₂-Alkyl-, C₁-C₈-Alkenyl-, Cyclohexyl-, Phenyloder einen mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy-,
Methylendioxi-, Dialkylamin- oder CF₃-substituierten
Phenylrest steht,

25

durch Umsetzung einer Verbindung der allgemeinen Formel II oder deren Salz

30

$$\begin{array}{c}
\text{NHR}^{3} \\
\text{R1} \\
\text{R}^{2}
\end{array}$$

worin \mathbb{R}^{1} , \mathbb{R}^{2} und \mathbb{R}^{3} die oben stehende Bedeutung haben,

35

45

mit Harnstoff in Gegenwart eines Ammoniumsalzes gefunden, welches dadurch gekennzeichnet ist, dass die Umsetzung in Gegenwart eines polaren organischen Lösungsmittel durchgeführt wird.

40 Bevorzugt wird ein aprotisches polares Lösungsmittel und besonders bevorzugt N-Methylpyrrolidon eingesetzt.

Gemäß einer weiteren bevorzugten Ausführungsform erfolgt die Reaktion in Gegenwart eines Protonenlieferanten. Bevorzugt steht R¹ für Phenyl und R², R³ für Methyl, d.h. bevorzugt werden 1R,2S-Ephedrin, 1S,2R-Ephedrin, 1R,2R-Pseudoephedrin oder 1S,2S-Pseudoephedrin oder Salze davon eingesetzt. Als Salze kommen insbesondere die Hydrochloride in Betracht. Ganz besonders bevorzugt sind 1R,2S-Ephedrin, 1S,2R-Ephedrin und die entsprechenden Hydrochloride.

Die Umsetzung erfolgt in Gegenwart von Ammoniumsalzen. Geeignete Ammoniumsalze sind die der Mineralsäuren, der Mineralsäure10 derivate wie Amidoschwefelsäure oder Amidosulfonsäure oder Ammoniumsalze von gesättigten C₁-C₆-Carbonsäuren.

Als Ammoniumsalze kommen beispielsweise Ammoniumsulfamat,
Ammoniumsulfat, Diammoniumhydrogenphosphat, Ammoniumdihydrogen15 phosphat oder Ammoniumacetat in Betracht, bevorzugt anorganische
Ammoniumsalze, wobei Ammoniumsulfamat besonders bevorzugt ist.
Das Ammoniumsalz wird in Mengen von 0,5 bis 3 Äquivalenten,
bevorzugt 0,9 bis 1,1 Äquivalenten eingesetzt.

20 Harnstoff wird in Mengen von 1 bis 5 Äquivalenten, bevorzugt 2,5 bis 3,5 Äquivalenten, eingesetzt.

Die Umsetzung erfolgt bevorzugt in Gegenwart einer Protonen liefernden Verbindung. Als Protonenlieferanten kommen starke Säuren, bevorzugt mit einem pK_s-Wert ≤ 3, in Betracht, beispielsweise Mineralsäuren wie Schwefelsäure, Phosphorsäure, Salzsäure oder Schwefelsäurederivate wie Amidoschwefelsäure sowie organische Säuren wie Sulfonsäuren oder Carbonsäuren beispielsweise Trichloressigsäure oder Trifluormethansulfonsäure. Es können auch Gemische eingesetzt werden.

Als besonders bevorzugte Protonenlieferanten werden p-Toluolsulfonsäure oder Amidoschwefelsäure oder deren Gemische eingesetzt.

Der Protonenlieferant kann in Mengen von 0,05 bis 0,6 Äquivalenten, bevorzugt 0,1 bis 0,5 Äquivalenten, bezogen auf die Verbindung II, eingesetzt werden.

40 Die Reaktion erfolgt in Gegenwart eines polaren organischen Lösungsmittels, wobei als Lösungsmittel beispielsweise Dimethylsulfoxid, Dimethylformamid, N,N'-Dimethylimidazolidinon oder Ethylenglykol in Betracht kommen, vorzugsweise sind aprotische polare Lösungsmittel. Als besonders bevorzugtes Lösungsmittel wird N-Methylpyrrolidon (NMP) eingesetzt.

Es empfiehlt sich das Lösungsmittel in solchen Mengen einzusetzen, dass das Wertprodukt mit guter Ausbeute und hoher Reinheit direkt aus der Reaktionsmischung auskristallisiert werden kann, ohne dass das Lösungsmittel vorher abdestilliert werden 5 muß, um die Reaktionsmischung aufzukonzentrieren.

5

Bevorzugt werden pro Mol der Verbindung II 150 bis 250 ml Lösungsmittel zugegeben.

10 Die festen Ausgangsstoffe können in dem Reaktionsgefäß vorgelegt werden und dann mit dem Lösungsmittel versetzt werden.

Anschließend wird das Gemisch auf Temperaturen im Bereich von 170 bis 190°C, bevorzugt 175 bis 180°C erhitzt. Dabei bildet sich eine klare Lösung.

Im allgemeinen arbeitet man bei Normaldruck. Es kann sich aber auch empfehlen bei erhöhten Drücken zu arbeiten.

20 Die Reaktionszeit richtet sich nach den eingesetzten Mengen. Das Ende der Reaktion kann durch HPLC-Analytik bestimmt werden.

Anschließend wird die Reaktionsmischung auf Temperaturen im Bereich von 130°C abgekühlt und Wasser zu dem Reaktionsgemisch 25 gegeben. Hierbei bilden sich zwei Phasen. Bei 90 bis 100°C wird dann die Phasentrennung vorgenommen.

Die Menge an zugesetztem Wasser wird so gewählt, dass sich mit dem Reaktionsgemisch zwei Phasen bilden. Die Menge kann je nach 30 verwendetem organischen Lösungsmittel differieren.

Vorzugsweise wird im Falle von NMP soviel Wasser zugesetzt, dass das Verhältnis von NMP zu Wasser 1:1,5 bis 1:3 beträgt, besonders bevorzugt 1:1,8 bis 1:2,3.

Die obere Phase wird weiter gekühlt, wobei im Bereich von 65° C Kristallbildung einsetzt. Man kühlt weiter auf Temperaturen $10\pm5^{\circ}$ C ab, wobei es sich empfiehlt, die kristalline Masse noch nachzurühren.

Anschließend können die Kristalle über ein Filter abgesaugt und mit kaltem Wasser gewaschen werden. Die Trocknung des kristallinen Produkts kann dann im Vakuum erfolgen.

35

40

Das so erhaltene Rohprodukt weist im allgemeinen Reinheiten von >90 Gew.-% auf.

Wird eine größere Reinheit gewünscht, so kann das Produkt aus 5 einem geeigneten Lösungsmittelgemisch) rekristallisiert werden. Als Lösungsmittel eignen sich beispielsweise Acetonitril/Wasser-Gemische.

Nach dem modifizierten Herstellungsverfahren wird das Imidazoli-10 dinon mit einem deutlich vereinfachten Verfahren mit einer verbesserten Reinheit und Ausbeute hergestellt.

Vorteilhaft ist unter anderen, dass eine Ammoniakentwicklung nahezu vollständig vermieden wird. Ebenso wir auch eine Sublimation 15 des Harnstoffs, wie sie bei der Umsetzung in der Schmelze auftritt, deutlich verringert.

Wegen der guten Reinheit des Rohprodukts ist eine weitere Umkristallisation in der Regel überflüssig.

20

Beispiele

Allgemeine Vorschrift

25 Herstellung von 1,5-Dimethyl-4-phenylimidazolidin-2-on

1 Mol eines Ephedrins, 1,025 mol Ammoniumsulfamat, 3 mol Harnstoff und die Protonen liefernde Verbindung wurden in 200 ml NMP vorgelegt. Es wurde auf 175 bis 180°C erhitzt und 2,5 h bei 30 dieser Temperatur gerührt. Danach wurde das Reaktionsgemisch auf 130°C abgekühlt und bei dieser Temperatur Wasser zum Reaktionsgemisch getropft. Es bildeten sich zwei Phasen. Die Unterphase wurde bei 95°C abgetrennt. Die Oberphase wurde weiter auf zunächst 65°C abgekühlt. Bei dieser Temperatur bildeten sich Kristalle. Es wurde weiter auf 10°C abgekühlt und noch 1 h bei dieser Temperatur nachgerührt. Die Kristalle wurden über ein Filter abgesaugt und noch zweimal mit kaltem Wasser gewaschen. Der Feststoff wurde im Vakuum bei RT über Nacht getrocknet.

40 Die Reinheit des kristallinen Produkts wurde durch HPLC bestimmt.

Weiter Einzelheiten sind der nachstehenden Tabelle zu entnehmen

,	Beispiel Nr.		Protonenlieferant	Wasser [ml]	Ausbeute [% d.Th.]	Gehalt [Gew%]
5	1	(-)-Ephedrin	10 mol-% p-Tos-OH	360	56	98,2
	2	(+)-Ephedrin	10 mol-% p-Tos-OH	560	65	96,4
10	3	(+)-Ephedrin x HCl	10 mol-% p-Tos-OH	360	63	98,1
	4	(+)-Ephedrin x HCl	10 mol-% Amidoschwefels.	360	72	98,9
	5	(-)-Ephedrin	50 mol-% Amidoschwefels.	360	72	98,6
	6	(+)-Ephedrin x HCl	10 mol-% p-Tos-OH 40 mol-% Amidoschwefels.	360	76	98,5
	7	(-)-Ephedrin	10 mol-% Amidoschwefels.	360	70	99,6
	8	(+)-Ephedrin	10 mol-% Amidoschwefels.	360	67	96,5
15	9	(+)-Ephedrin x HCl		360	71	99,4

Vergleichsbeispiel 1 (gemäß WO 01/04098)

- In einem Rührreaktor wurden 1 eq (-)-Ephedrin, 3 eq Harnstoff und 1,025 eq Ammoniumsulfamat in 0,410 l Toluol vorgelegt. Es wurde auf Rückfluss erhitzt und das Lösungsmittel abdestilliert. Danach wurde die verbleibende Schmelze 1,5 h auf 175 bis 180°C erhitzt. Man beobachtete eine deutliche Ammoniakausgasung und Harnstoffsublimation. Zur Aufarbeitung des Reaktionsgemisches wurde die Reaktionsmischung auf 105°C heruntergekühlt und 0,31 l Wasser hinzugegeben. Es wurde weiter auf 57°C abgekühlt und 0,034 l Ethanol zum Reaktionsgemisch hinzugegeben. Anschließend wurde noch für 4 h bei Raumtemperatur gerührt und der Feststoff dann abfiltriert. Der Feststoff wurde nochmals mit Wasser gewaschen und dann bei RT über 14 h im Vakuum bei 15 mbar getrocknet. Man erhielt ein Rohprodukt mit einer Ausbeute von 69 %. Die Reinheit des Rohproduktes lag bei 84 Gew.-%.
- Das Rohprodukt wurde aus einem Wasser/Acetonitrilgemisch umkristallisiert. Danach wurden Reinheiten von > 98 Gew.-% erzielt, wobei die Ausbeute für die Kristallisation bei 75 % lag, was einer Gesamtausbeute von 49 % entspricht.

40 Vergleichsbeispiel 2

Analog zu Vergleichsbeispiel 1 wurde (+)-Ephedrin Hydrochlorid umgesetzt. Die Rohausbeute betrug 59 %, bei einer Reinheit von 78 Gew.-%

Patentansprüche

Verfahren zur Herstellung von chiralen Imidazolidin-2-onen
 der allgemeinen Formel I

$$\begin{array}{c}
 & O \\
 & N \\
 & R^3
\end{array}$$
(I),

worin

10

15

20

25

40

für C₁-C₈-Alkyl, Cyclohexyl-, Phenyl-, einen mit C₁-C₆Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy-, C₁-C₆-Alkylmercaptooder CF₃-substituierten Phenylrest, Naphthyl- oder einen
mit C₁-C₆-Alkyl-, Halo-, Nitro-, C₁-C₆-Alkoxy- oder
CF₃-substituierten Naphtkylrest steht,

für C_1 - C_8 -Alkyl-, C_1 - C_8 -Alkenyl-, Cyclohexyl-, Phenyl-oder einen Phenyl- C_1 - C_6 -alkylrest, der mit einem Nitro-, C_1 - C_6 -alkoxy-, Methylendioxi- oder CF3-Rest substituiert sein kann, steht und

für $C_1-C_{12}-Alkyl-$, $C_1-C_8-Alkenyl-$, Cyclohexyl-, Phenyl- oder einen mit $C_1-C_6-Alkyl-$, Halo-, Nitro-, $C_1-C_6-Alkoxy-$, Methylendioxi-, Dialkylamine- oder CF3-substituierten Phenylrest steht,

durch Umsetzung einer Verbindung der allgemeinen Formel II oder deren Salz

$$\begin{array}{c}
\text{HO} & \text{NHR}^3 \\
\text{P1} & \text{R}^2
\end{array}$$

worin R¹, R² und R³ die oben stehende Bedeutung haben,

mit Harnstoff in Gegenwart eines Ammoniumsalzes, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines polaren organischen Lösungsmittels durchgeführt wird.

 Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein aprotisches Lösungsmittel verwendet wird.

Verfahren nach einem der Ansprüche 1 oder 2, dadurch
 gekennzeichnet, dass als organisches Lösungsmittel N-Methylpyrrolidon eingesetzt wird.

- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass \mathbb{R}^1 für Phenyl und \mathbb{R}^2 und \mathbb{R}^3 für Methyl stehen.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart von Protonenlieferanten durchgeführt wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Protonenlieferant eine Säure mit einem pKs Wert ≤ 3 verwendet wird.
 - 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Protonenlieferant para-Toluolsulfonsäure eingesetzt wird.

15

- 8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Protonenlieferant Amidoschwefelsäuresäure eingesetzt wird.
- 20 9. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Protonenlieferant in Mengen von 0,05 bis 0,6 Äquivalenten, bezogen auf die Verbindung der allgemeinen Formel II, eingesetzt wird.
- 25 10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Verbindung der allgemeinen Formel II (1S,2R)-Ephedrin oder ein Salz davon eingesetzt wird.
- 11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekenn30 zeichnet, dass als Verbindung der allgemeinen Formel II
 (1R,2S)-Ephedrin oder ein Salz davon eingesetzt wird.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Umsetzung in Lösung bei Temperaturen von 170 bis 190°C erfolgt.