

IN THE CLAIMS

This listing of the claim will replace all prior versions and listings of claim in the present application.

Listing of Claims

Claims 1-22 (canceled).

23. (currently amended) A public-key cryptographic method implemented in a computer system scheme comprising:

a key generation step of generating a secret-key:

$$\bullet x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$$

and a public-key:

- G, G' : finite (multiplicative) group $G \subseteq G'$
- q : prime number (the order of G)
- $g_1, g_2 \in G$
- $c = g_1^{x_1} g_2^{x_2}$, $d_1 = g_1^{y_{11}} g_2^{y_{12}}$, $d_2 = g_1^{y_{21}} g_2^{y_{22}}$, $h = g_1^z$,
- $\pi : X_1 \times X_2 \times M \rightarrow G'$: one-to-one mapping
- $\pi^{-1} : \text{Im}(\pi) \rightarrow X_1 \times X_2 \times M$

where the group G is a partial group of the group G' , X_1 and X_2 are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \quad (\forall \alpha_1 \in X_1, \forall \alpha_2 \in X_2)$$

where M is a plaintext space;

a ciphertext generation and transmission step of selecting random numbers $\alpha_1 \in X_1$, $\alpha_2 \in X_2$, $r \in \mathbb{Z}_q$ for a plaintext m ($m \in M$), calculating:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad e = \pi(\alpha_1, \alpha_2, m)h^r, \quad v = g_1^{\alpha_1} c^r d_1^{\alpha r} d_2^{mr}$$

where $a = \alpha_1 || \alpha_2$, and transmitting (u_1, u_2, e, v) as a ciphertext; and

a ciphertext reception and decipher step of calculating from the

received ciphertext and by using the secret key, α'_1 , α'_2 , m' ($\alpha'_1 \in X_1$, $\alpha'_2 \in X_2$, $m' \in M$) which satisfy:

$$\pi(\alpha'_1, \alpha'_2, m') = e/u_1^z$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha'_1 y_{11} + m' y_{21}} u_2^{x_2 + \alpha'_2 y_{12} + m' y_{22}} = v$$

outputting m' as the deciphered results (where $\alpha' = \alpha'_1 \parallel \alpha'_2$), whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

24. (currently amended) A public-key cryptographic method implemented in a computer system comprising:

a key generation step of generating a secret-key:

- $x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$

and a public-key:

- p, q : prime number (q is a prime factor of p-1)
- $g_1, g_2 \in \mathbb{Z}_p$: $\text{ord}_p(g_1) = \text{ord}_p(g_2) = q$
- $c = g_1^{x_1} g_2^{x_2} \pmod{p}$, $d_1 = g_1^{y_{11}} g_2^{y_{12}} \pmod{p}$, $d_2 = g_1^{y_{21}} g_2^{y_{22}} \pmod{p}$, $h = g_1^z \pmod{p}$,
- k_1, k_2, k_3 : positive constant $(10^{k_1+k_2} < q, 10^{k_3} < q, 10^{k_1+k_2+k_3} < p)$

a ciphertext generation and transmission step of selecting random numbers $\alpha = \alpha_1 \parallel \alpha_2$ ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$) for a plaintext m ($|m| = k_3$, where $|x|$ is the number of digits of x), calculating:

$$\tilde{m} = \alpha || K$$

selecting a random number $r \in Z_q$, calculating:

$$u_1 = g_1^r \pmod{p}, \quad u_2 = g_2^r \pmod{p}, \quad e = \tilde{m} \cdot h^r \pmod{p}, \quad v = g_1^{\alpha_1} c^r d_1^{\alpha r} d_2^{mr} \pmod{p}$$

and transmitting (u_1, u_2, e, v) as a ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1, α'_2, m' ($|\alpha'_1| = k_1, |\alpha'_2| = k_2, |m'| = k_3$) which satisfy:

$$\alpha'_1 || \alpha'_2 || m' = e / u_1^z \pmod{p}$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_{11} + m' y_{21}} u_2^{x_2 + \alpha' y_{12} + m' y_{22}} \equiv v \pmod{p}$$

outputting m' as the deciphered results (where $\alpha' = \alpha'_1 || \alpha'_2$), whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

25. (currently amended) A public-key cryptographic method/scheme according to claim 423, wherein the public-key is generated by a receiver and is made public.

26. (currently amended) A public-key cryptographic scheme-method according to claim 423, wherein in said ciphertext transmission step, the random numbers $\alpha_1 \in X_1, \alpha_2 \in X_2$ and $r \in Z_q$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad h^r, \quad g_1^{\alpha_1} c^r d_1^{\alpha r}$$

27. (currently amended) A public-key cryptographic methodscheme according to claim 224, wherein in said ciphertext transmission step, the random numbers α_1, α_2 ($|\alpha_1| = k_1, |\alpha_2| = k_2$), and $r \in \mathbb{Z}_q$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r \bmod p, \quad u_2 = g_2^r \bmod p, \quad h^r \bmod p, \quad g_1^{\alpha_1} c^r d_1^{\alpha r} \bmod p$$

28. (currently amended) A cryptographic communication method implemented in a computer system comprising:

a key generation step of generating a secret-key:

- $x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$

and a public-key:

- G, G' : finite (multiplicative) group $G \subseteq G'$
- q : prime number (the order of G)
- $g_1, g_2 \in G$
- $c = g_1^{x_1} g_2^{x_2}, d_1 = g_1^{y_{11}} g_2^{y_{12}}, d_2 = g_1^{y_{21}} g_2^{y_{22}}, h = g_1^z$,
- $\pi : X_1 \times X_2 \times M \rightarrow G'$: one-to-one mapping
- $\pi^{-1} : \text{Im}(\pi) \rightarrow X_1 \times X_2 \times M$
- E : symmetric encipher function

where the group G is a partial group of the group G' , X_1 and X_2 are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \quad (\forall \alpha_1 \in X_1, \forall \alpha_2 \in X_2)$$

where M is a key space;

a ciphertext generation and transmission step of selecting random

numbers $\alpha_1 \in X_1$, $\alpha_2 \in X_2$, $r \in Z_q$ for key data K ($K \in M$), calculating:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad e = \pi(\alpha_1, \alpha_2, K)h^r, \quad v = g_1^{\alpha_1} c^r d_1^{\alpha r} d_2^{K r}$$

where $a = \alpha_1 \parallel \alpha_2$, generating a ciphertext C of transmission data m by:

$$C = E_K(m)$$

by using a (symmetric cryptographic function E and key data K , and transmitting (u_1, u_2, e, v, C) as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , K' ($\alpha'_1 \in X_1$, $\alpha'_2 \in X_2$, $K' \in M$) which satisfy:

$$\pi(\alpha'_1 \parallel \alpha'_2 \parallel K') = e/u_1^z$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_{11} + K' y_{21}} u_2^{x_2 + \alpha' y_{12} + K' y_{22}} = v$$

where $\alpha' = \alpha'_1 \parallel \alpha'_2$

executing a decipher process by:

$$m = D_{K'}(C)$$

outputting deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

29. (currently amended) A cryptographic communication method according to claim 628, wherein the ciphertext C is generated by:

$$C = E_K(f(\alpha_1, \alpha_2) || m)$$

by using a symmetric cryptographic function E , the key data K and a publicized proper function f , it is checked whether the following is satisfied:

$$\begin{aligned} g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_{11} + K' y_{21}} u_2^{x_2 + \alpha' y_{12} + K' y_{22}} &= v, \\ f(\alpha'_1, \alpha'_2) &= [D_{K'}(C)]^k \end{aligned}$$

where f outputs a value of k bits and $[x]^k$ indicates the upper k bits of x , and if the check passes, a decipher process is executed by:

$$m = [D_{K'}(C)]^{-k}$$

where $[x]^{-k}$ indicates a bit train with the upper k bits of x being removed.

30. (currently amended) A cryptographic communication method
implemented in a computer system comprising:
a key generation step of generating a secret-key:

$$\bullet x_1, x_2, y_{11}, y_{12}, y_{21}, y_{22}, z \in \mathbb{Z}_q$$

and a public-key:

- p, q : prime number (q is a prime factor of $p-1$)
- $g_1, g_2 \in \mathbb{Z}_p$: $\text{ord}_p(g_1) = \text{ord}_p(g_2) = q$
- $c = g_1^{x_1} g_2^{x_2} \pmod p$, $d_1 = g_1^{y_{11}} g_2^{y_{12}} \pmod p$, $d_2 = g_1^{y_{21}} g_2^{y_{22}} \pmod p$, $h = g_1^z \pmod p$,
- k_1, k_2, k_3 : positive constant $(10^{k_1+k_2} < q, 10^{k_3} < q, 10^{k_1+k_2+k_3} < p)$
- E : symmetric encipher function

a ciphertext generation and transmission step of selecting random

numbers $\alpha = \alpha_1 || \alpha_2$ ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$) for key data K ($|K| = k_3$, where $|x|$ is a the number of digits of x), calculating:

$$\tilde{m} = \alpha || K$$

selecting a random number $r \in Z_q$, calculating:

$$u_1 = g_1^r \pmod{p}, \quad u_2 = g_2^r \pmod{p}, \quad e = \tilde{m} h^r \pmod{p}, \quad v = g_1^{\alpha_1} c^r d_1^{\alpha r} d_2^{K r} \pmod{p}$$

and generating a ciphertext C of transmission data by:

$$C = E_K(m)$$

by using a (symmetric) cryptographic function E and the key data K , and transmitting (u_1, u_2, e, v, C) as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1, α'_2, K' ($|\alpha'_1| = k_1, |\alpha'_2| = k_2, |K'| = k_3$) which satisfy:

$$\alpha'_1 || \alpha'_2 || K' = e / u_1^z \pmod{p}$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_{11} + K' y_{21}} u_2^{x_2 + \alpha' y_{12} + K' y_{22}} \equiv v \pmod{p}$$

where $\alpha' = \alpha'_1 || \alpha'_2$,

executing a decipher process by:

$$m = D_{K'}(C)$$

outputting deciphered results, whereas if not satisfied, outputting as the

decipher results the effect that the received ciphertext is rejected.

31. (currently amended) A cryptographic communication method according to claim 830, wherein the ciphertext C is generated by:

$$C = E_K(f(\alpha_1, \alpha_2) || m)$$

by using a symmetric cryptographic function E, the key data K and a publicized proper function f, it is checked whether the following is satisfied:

$$\begin{aligned} g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_{11} + K' y_{21}} u_2^{x_2 + \alpha' y_{12} + K' y_{22}} &\equiv v \pmod{p}, \\ f(\alpha'_1, \alpha'_2) &= [D_{K'}(C)]^k \end{aligned}$$

where f outputs a value of k bits and $[x]^k$ indicates the upper k bits of x, and if the check passes, a decipher process is executed by:

$$m = [D_{K'}(C)]^{-k}$$

where $[x]^{-k}$ indicates a bit train with the upper k bits of x being removed.

32. (currently amended) A cryptographic communication method according to claim 628, wherein the public-key is generated by a receiver and is made public.

33. (currently amended) A cryptographic communication method according to claim 628, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($\alpha_1 \in X_1$, $\alpha_2 \in X_2$) and $r \in Z_q$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad h^r, \quad g_1^{\alpha_1} c^r d_1^{\alpha r}$$

34. (currently amended) A cryptographic communication method according to claim 628, wherein in said ciphertext transmission step, the random numbers α_1, α_2 ($|\alpha_1| = k_1, |\alpha_2| = k_2$) and $r \in \mathbb{Z}_q$ are selected beforehand and the following is calculated and stored beforehand:

$$u_1 = g_1^r \bmod p, \quad u_2 = g_2^r \bmod p, \quad h^r \bmod p, \quad g_1^{\alpha_1} c^r d_1^{\alpha r} \bmod p$$

35. (currently amended) A cryptographic communication method implemented in a computer system comprising:
a key generation step of generating a secret-key:

- $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$

and a public-key:

- G, G' : finite (multiplicative) group $G \subseteq G'$
- q : prime number (the order of G)
- $g_1, g_2 \in G$
- $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, h = g_1^z,$
- $\pi : X_1 \times X_2 \times M \rightarrow \text{Dom}(E)$: one-to-one mapping
($\text{Dom}(E)$ is the domain of the function E)
- $\pi^{-1} : \text{Im}(\pi) \rightarrow X_1 \times X_2 \times M$
- H : hash function
- E : symmetric encipher function

where the group G is a partial group of the group G' , X_1 and X_2 are an infinite set of positive integers which satisfy:

$$\alpha_1 \parallel \alpha_2 < q \quad (\forall \alpha_1 \in X_1, \forall \alpha_2 \in X_2)$$

a ciphertext generation and transmission step of selecting random numbers $\alpha_1 \in X_1, \alpha_2 \in X_2, r \in Z_q$, calculating:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad v = g_1^{\alpha_1} c^r d^{\alpha_2 r}, \quad K = H(h^r)$$

where $\alpha = \alpha_1 \parallel \alpha_2$, generating a ciphertext C of transmission data m by

$$C = E_K(\pi(\alpha_1, \alpha_2, m))$$

by using a (symmetric) cryptographic function E; and transmitting (u_1, u_2, v, C) as the ciphertext; and

a ciphertext reception and decipher step of calculating:

$$K' = H(u_1^z)$$

by using the secret key, calculating from the received ciphertext, α'_1, α'_2 (where $\alpha'_1 \in X_1, \alpha'_2 \in X_2$) which satisfy:

$$\pi(\alpha'_1, \alpha'_2, m') = D_{K'}(C)$$

if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha'_2 y_1} u_2^{x_2 + \alpha'_2 y_2} = v,$$

where $\alpha' = \alpha'_1 \parallel \alpha'_2$

outputting m' as the deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

36. (currently amended) A cryptographic communication method

implemented in a computer system comprising:

a key generation step of generating a secret-key:

- $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$

and a public-key:

- p, q : prime number (q is a prime factor of $p-1$)
- $g_1, g_2 \in \mathbb{Z}_p$: $\text{ord}_p(g_1) = \text{ord}_p(g_2) = q$
- $c = g_1^{x_1} g_2^{x_2} \pmod{p}$, $d = g_1^{y_1} g_2^{y_2} \pmod{p}$, $h = g_1^z \pmod{p}$,
- k_1, k_2, k_3 : positive constant ($10^{k_1+k_2} < q$, $10^{k_3} < q$, $10^{k_1+k_2+k_3} < p$)
- H : hash function
- E : symmetric encipher function (the domain of E is all positive integers)

a ciphertext generation and transmission step of selecting random numbers $\alpha = \alpha_1 || \alpha_2$ ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$, where ($|x|$ is the number of digits of x)), selecting a random number $r \in \mathbb{Z}_q$, calculating:

$$u_1 = g_1^r \pmod{p}, \quad u_2 = g_2^r \pmod{p}, \quad v = g_1^{\alpha_1} c^r d^{\alpha r} \pmod{p}, \quad K = H(h^r \pmod{p})$$

transmitting the ciphertext (u_1, u_2, v, C) ; generating a ciphertext C of transmission data m by:

$$C = E_K(\alpha_1 || \alpha_2 || m)$$

by using a (symmetric) cryptographic function, and transmitting (u_1, u_2, v, C)

as the ciphertext; and

a ciphertext reception and decipher step of calculating:

$$K' = H(u_1^z \pmod{p})$$

by using the secret key, calculating from the received ciphertext, α'_1 , α'_2 ($|\alpha'_1| = k_1$, $|\alpha'_2| = k_2$) which satisfy:

$$\alpha'_1 \parallel \alpha'_2 \parallel m' = D_{K'}(C)$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_1} u_2^{x_2 + \alpha' y_2} \equiv v \pmod{p}$$

outputting m' as the deciphered results (where $\alpha' = \alpha'_1 \parallel \alpha'_2$), whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

37. (currently amended) A cryptographic communication method according to claim 4335, wherein the public-key is generated by a receiver and is made public.

38. (currently amended) A cryptographic communication method according to claim 4335, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($\alpha_1 \in X_1$, $\alpha_2 \in X_2$) and $r_e Z_q$ are selected beforehand and the u_1 , u_2 , e and v are calculated and stored beforehand.

39. (currently amended) A cryptographic communication method according to claim 4336, wherein in said ciphertext transmission step, the random numbers α_1 , α_2 ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$), and $r_e Z_q$ are selected beforehand and the u_1 , u_2 , e and v are calculated and stored beforehand.

40. (currently amended) A cryptographic communication method

implemented in a computer system comprising:

a key generation step of generating a secret-key:

- $x_1, x_2, y_1, y_2 \in \mathbb{Z}_q$
- sk : (asymmetric cryptography) decipher key

and a public-key:

- G : finite (multiplicative) group
- q : prime number (the order of G)
- $g_1, g_2 \in G$
- $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}$,
- $\pi : X_1 \times X_2 \times M \longrightarrow \text{Dom}(E)$: one-to-one mapping (Dom(E) is the domain of the function E)
- $\pi^{-1} : \text{Im}(\pi) \longrightarrow X_1 \times X_2 \times M$
- $E_{pk}(\cdot)$: (asymmetric cryptography) encipher function

where the group G is a partial group of the group G' , X_1 and X_2 are an infinite set of positive integers which satisfy:

$$\alpha_1 || \alpha_2 < q \quad (\forall \alpha_1 \in X_1, \forall \alpha_2 \in X_2)$$

where M is a plaintext space;

a ciphertext generation and transmission step of selecting random numbers $\alpha_1 \in X_1, \alpha_2 \in X_2, r \in \mathbb{Z}_q$, calculating:

$$u_1 = g_1^r, \quad u_2 = g_2^r, \quad v = g_1^{\alpha_1} c^r d^{\alpha_2 r}$$

where $\alpha = \alpha_1 || \alpha_2$, generating a ciphertext C of transmission data m by:

$$e = E_{pk}(\pi(\alpha_1, \alpha_2, m))$$

by using an (asymmetric) cryptographic function E_{pk} , and transmitting (u_1 , u_2 , e , v) as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1 , α'_2 , m' ($\alpha'_1 \in X_1$, $\alpha'_2 \in X_2$, $m' \in M$) which satisfy:

$$\pi(\alpha'_1, \alpha'_2, m') = D_{sk}(e)$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha' y_1} u_2^{x_2 + \alpha' y_2} = v$$

where:

$$\alpha' = \alpha'_1 || \alpha'_2$$

outputting m' as the deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

41. (currently amended) A cryptographic communication method
implemented in a computer system comprising:

a key generation step of generating a secret-key:

- $x_1, x_2, y_1, y_2 \in \mathbb{Z}_q$
- sk : (asymmetric cryptography)
decipher key

and a public-key:

- p, q : prime number (q is a prime factor of $p-1$)
- $g_1, g_2 \in \mathbb{Z}_p$: $\text{ord}_p(g_1) = \text{ord}_p(g_2) = q$
- $c = g_1^{x_1} g_2^{x_2} \pmod p$, $d = g_1^{y_1} g_2^{y_2} \pmod p$,
- k_1, k_2 : positive constant ($10^{k_1+k_2} < q$)
- $E_{pk}(\cdot)$: (asymmetric cryptography) encipher function
(the domain is all positive integers)

a ciphertext generation and transmission step of selecting random numbers $\alpha = \alpha_1 || \alpha_2$ ($|\alpha_1| = k_1$, $|\alpha_2| = k_2$, where $|x|$ is the number of digits of x), selecting a random number $r \in Z_q$, calculating:

$$u_1 = g_1^r \pmod{p}, \quad u_2 = g_2^r \pmod{p}, \quad v = g_1^{\alpha_1} c^r d^{\alpha_2 r} \pmod{p}$$

generating a ciphertext C of transmission data m (positive integer) by:

$$e = E_{pk}(\alpha_1 || \alpha_2 || m)$$

by using the secret key, and transmitting (u_1, u_2, e, v) as the ciphertext; and

a ciphertext reception and decipher step of calculating from the received ciphertext and by using the secret key, α'_1, α'_2, m' ($|\alpha'_1| = k_1$, $|\alpha'_2| = k_2$, m' is a positive integer) which satisfy:

$$\alpha'_1 || \alpha'_2 || m' = D_{sk}(e)$$

and if the following is satisfied:

$$g_1^{\alpha'_1} u_1^{x_1 + \alpha'_2 y_1} u_2^{x_2 + \alpha'_2 y_2} \equiv v \pmod{p},$$

where:

$$\alpha' = \alpha'_1 || \alpha'_2$$

outputting m' as the deciphered results, whereas if not satisfied, outputting as the decipher results the effect that the received ciphertext is rejected.

42. (currently amended) A cryptographic communication method according to claim 1840, wherein the public-key is generated by a receiver and is made public.

43. (currently amended) A cryptographic communication method according to claim 1840, wherein in said ciphertext transmission step, the random numbers a_1 , a_2 ($a_1 \in X_1$, $a_2 \in X_2$) and $r \in Z_q$ are selected beforehand and the u_1 , u_2 and v are calculated and stored beforehand.

44. (currently amended) A cryptographic communication method according to claim 1941, wherein in said ciphertext transmission step, the random numbers a_1 , a_2 ($|a_1| = k_1$, $|a_2| = k_2$), and $r \in Z_q$ are selected beforehand and the u_1 , u_2 and v are calculated and stored beforehand.