eGaN® FET DATASHEET EPC2066

EPC2066 – Enhancement Mode Power Transistor

 V_{DS} , 40~V $R_{DS(on)} \; , \; 1.1~m\Omega \; max \\ I_D \; , \; 90~A$

Revised April 17, 2023

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

Maximum Ratings				
	PARAMETER	VALUE	UNIT	
	Drain-to-Source Voltage (Continuous)		V	
V_{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	48	V	
I _D	Continuous (T _A = 25°C)	90	Δ.	
	Pulsed (25°C, T _{PULSE} = 300 μs)	639	Α	
V _{GS}	Gate-to-Source Voltage	6	.,	
	Gate-to-Source Voltage	-4	V	
TJ	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150		

Thermal Characteristics				
	PARAMETER	TYP	UNIT	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Case TOP)	0.3		
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board (Case BOTTOM)	1.0	°C/W	
$R_{\theta JA_JEDEC}$	Thermal Resistance, Junction-to-Ambient (using JEDEC 51-2 PCB)	51	C/ VV	
$R_{\theta JA_EVB}$	Thermal Resistance, Junction-to-Ambient (using EPC90122 EVB)	29		

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 1.2 \text{ mA}$	40			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 32 \text{ V}$		0.006	1.0	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.006	4.0	mA
I_{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.2	9.0	
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.007	0.3	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 28 \text{ mA}$	0.7	1.2	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 50 \text{ A}$		0.8	1.1	mΩ
V _{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.5		V

Defined by design. Not subject to production test.

Die size: 6.05 x 2.3 mm

EPC2066 eGaN® FETs are supplied in passivated die form with solder bumps.

Applications

- High density DC-DC conversion
- · Motor drive
- · Industrial automation
- Synchronous rectification
- · Inrush protection
- · Point-of-Load (POL) converters

Benefits

- · Ultra high efficiency
- · Higher switching frequency
- Very low $R_{DS(on)}$, Q_{G} , Q_{GD} , Q_{OSS} and $0 Q_{RR}$
- · Small footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2066

EPC2066 eGaN® FET DATASHEET

	Dynamic Characteristics $^{\#}$ (T $_{J}$ = 25 $^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			3539	4523	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 20 V$, $V_{GS} = 0 V$		30		
Coss	Output Capacitance			1670	1919	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 1)	V 0+- 20VV 0V		2431		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 2)	$V_{DS} = 0 \text{ to } 20 \text{ V}, V_{GS} = 0 \text{ V}$		2970		
R_{G}	Gate Resistance			0.4		Ω
Q _G	Total Gate Charge	$V_{DS} = 20 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 50 \text{ A}$		25	33	
Q _{GS}	Gate to Source Charge			8.9		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 20 \text{ V}, I_D = 50 \text{ A}$		3.2		
Q _{G(TH)}	Gate Charge at Threshold	6.7		6.7		nC
Q _{OSS}	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$		59	78	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Typical Transfer Characteristics

Figure 3: Typical $R_{DS(on)}$ vs. V_{GS} for Various Currents

Figure 4: Typical $\rm R_{\rm DS(on)}$ vs. $\rm V_{\rm GS}$ for Various Temperatures

All measurements were done with substrate shorted to source.

Note 1: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 2: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGaN® FET DATASHEET EPC2066

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and $\mathrm{C}_{\mathrm{OSS}}$ Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics

Figure 9: Typical Normalized On-State Resistance vs. Temperatu

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

eGaN® FET DATASHEET **EPC2066**

75

T_J – Junction Temperature (°C)

100

125

150

0.7

0.6

0

25

Figure 11: Safe Operating Area

 $T_J = Max Rated$, $T_C = +25$ °C, Single Pulse

Figure 12: Typical Transient Thermal Response Curves

t₁, Rectangular Pulse Duration, seconds

t₁, Rectangular Pulse Duration, seconds

eGaN® FET DATASHEET **EPC2066**

TAPE AND REEL CONFIGURATION

	Dimension (mm)		
EPC2066 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
c (Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60
h	1.50	1.50	1.75

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Part		Laser Markings	
Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2066	2066	YYYY	ZZZZ

DIE OUTLINE

Solder Bump View

	Micrometers		
DIM	MIN	Nominal	MAX
Α	6020	6050	6080
В	2270	2300	2330
c		1330	
d		720	
e		225	
f		200	
g		400	

(face side down)

Side View

100 ± 20 Seating plane

Pad 1 is Gate;

Pads 2,5,6,9,10,13,14,17,18,21,22, 25, 26, 29, 30 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain

Note: Substrate (top side) connected to source

eGaN® FET DATASHEET **EPC2066**

RECOMMENDED **LAND PATTERN**

(units in μ m)

Land pattern is solder mask defined.

DIM	Micrometers
Α	6050
В	2300
c	1330
d1	700
e	225
f1	180
а	400

Pads 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29. 30 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain

RECOMMENDED STENCIL DRAWING

(units in μ m)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing. Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

DIM	Micrometers
Α	6050
В	2300
c	1330
d	700
e	225
f	180
g	400

Additional Resources Available

- Assembly resources available at: https://epc-co.com/epc/design-support
- Library of Altium footprints for production FETs and ICs: https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.