

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ánalisis Funcional

Semestre curso: 2019-2

${\bf \acute{I}ndice}$

Ι	Espacios de Banach	3
1.	Introducción a los Espacios de Banach	3

Preliminares

Contenidos

- 1) Espacios de Banach: Definiciones Básicas, Hahn-Banach, Consecuencias del Teorema de Bairi
- 2) Espacios de Hilbert: Definiciones, Bases Hilbertianas, Proyección Dual de un Hilbert, Lax-Milgram
- 3) Topologías débiles: Espacios reflexivos
- 4) Teoría Espectral

Textos

- Reed and Simon (Functional Analysis)
- Rudin (Functional Analysis)
- Hain Brenzin

Interrogaciones

3 Interrogaciones + 1 Examen. Si hay exención sería con 6

Fechas

- I1: Semana 23-27/9
- I2: Semana 14-19/10
- I3: Semena 18-22/11

Ex: Semana 2-6/12

Parte I

Espacios de Banach

1. Introducción a los Espacios de Banach

Definición 1.1 (Espacio de Banach). Sea E un e.v., una función $\|\cdot\|$ tq

- $\|x\| \ge 0 \forall x \in E, \|x\| = 0 \iff x = 0$
- $||x + y|| \le ||x|| + ||y||, \forall x, y, \in R$

Ejemplo: 1.1. En
$$\mathbb{C}^n$$
, si $z \in \mathbb{C}^n$, $z = (z_1, \dots, z_n) ||z||_p = \left(\sum_{j=1}^n |z_j|^p\right)^{1/p}$

Ejemplo: 1.2. Si (X, \mathcal{B}, μ) es e. de medida y si $1 \leq p < \infty$, $E = L^p(X)$; La norma es $||[f]|| = (\int_X |f(x)|^p dx)^{1/p}$

Observación 1.1. Si $\|\cdot\|$ es norma en E, entonces $d_E(x,y) = \|x-y\|$ es una métrica o distancia en E.

Definición 1.2 (Espacio de Banach). E e.v. con norma $\|\cdot\|$ se dice espacio de Banach si es completo con respecto a d_E .

Ejemplo: 1.3. Todos los anteriores son Banach

Ejemplo: 1.4. Sea $\Omega \subseteq \mathbb{R}^n$ abierto, y sea $E = \{f : \Omega \to \mathbb{R}, \text{continúa tq } \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty \}$ en E, $||f||_1 = \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty$ es norma

Ejemplo: 1.5. Sea E un e.v. con norma, y sea $x_n \in E$ tal que $\sum_{k=1}^{\infty} |x_n| < \infty$

Q: Si $s_n = \sum_{k=1}^n x_k$, ¿qué podemos decir de s_n ?

Si $1 \le m < n$ entonces $s_n - s_m = \sum_{k=m+1}^n x_k$, luego $||s_n - s_m|| \le \sum_{k=m+1}^n ||x_k|| \le \sum_{k=m+1}^\infty ||x_k||$

De aquí no es difícil ver que, como $\sum_{k=1}^{\infty} ||x_k|| < \infty$. Entonces s_n es de Cauchy. Ciertamente s_n tiene límite en E cuando E es de Banach.

Definición 1.3 (Convergencia Absoluta). Un E e.v. con norma, si $x_n \in E$ es tq $\sum_{k=1}^{\infty} ||x_k|| < \infty$, diremos que la serie es absolutamente convergente

Definición 1.4 (Convergencia en Norma). Si $s_n = \sum_{k=1}^n x_k$ es convergente en E converge respecto a d_E , diremos que s_n converge en norma

Proposición 1.1. Si E es Banach y $\sum_{k=1}^{\infty} ||x_k|| < \infty$, entonces $s = \lim_{n \to \infty} s_n$ converge en norma. (Notación: $s = \sum_{k=1}^{\infty} x_k$) Recíprocamente si E e.v. con norma y si cada serie absolutamente convergente es también convergente en norma, entonces E es Banach.

 $Demostración. \iff : Listo anteriormente.$

 \Longrightarrow : Sea x_n de Cauchy en E. Claramente, basta encontrar x_{n_k} convergente.

Como x_n es de Cauchy, existe x_{n_k} tq $||x_{n_k} - x_{n_{k-1}}|| \le \frac{1}{2^k}$ si esto es verdad.

$$x_{n_k} - x_{n_1} = \sum_{j=2}^{k} (x_{n_j} - x_{n_{j-1}})$$

Pero $\sum_{j=2}^{\infty} \|x_{n_k} - x_{n_{k-1}}\| \le \sum_{j=2}^{\infty} \frac{1}{2^k} < \infty$ así que $x_{n_k} - n_{n_1} \to x \implies x_{n_k} \to x + n_{n_1}$. Para ver que $\exists x_{n_k}$ con $\|x_{n_k} - x_{n_{k-1}}\| \le \frac{1}{2^k}$, sea k = 1, para $\varepsilon = \frac{1}{2} \exists n_1$ tq $\|x_n - x_m\| \le \frac{1}{2} \forall n, m \ge n_1$, esto da n_1 . Si $1 \le n_1 < \ldots < n_k$ son tq $\|x_{n_j} - x_{n_{j-1}}\| \le \frac{1}{2^j}$, $j = 1, \ldots, k-1$, $\|x_n - x_m\| < \frac{1}{2^k} \forall n, m \ge n_k$, sea $\varepsilon = \frac{1}{2^{k+1}}$. Sea $n_{k+1} > n_k$ tq $\|x_{n_{k+1}} - x_{n_k}\| \le \frac{1}{2^{k+1}}$. Esto construye x_{n_k} .

Ejemplo: 1.6. $M^n(\mathbb{R})$ matrices de $n \times n$ en \mathbb{R} , $A \in M^n(\mathbb{R})$ entonces $||A|| = (\operatorname{tr}(A^T A))^{1/2}$

Definición 1.5 (Transformación Lineal). Sean E, F e.v. (sobre \mathbb{C} o \mathbb{R}). Una transformación lineal es una función $T: E \to F$ tq $T(x + \lambda y) = Tx + \lambda Ty \forall x, y \in E \forall \lambda$.

Teorema 1.2 (Caracterización de continuidad de funciones lineales). Sean E, F e.v.n., y sea $T: E \to F$ una transformación lineal. Las siguientes proposiciones son equivalentes:

- 1) T es continua en x para todo $x \in E$.
- 2) T es continua en 0_E
- 3) $\sup_{\|x\|_F=1} \|Tx\|_F < \infty$
- 4) $\exists c > 0 \forall x \in E : ||Tx||_F \le c \, ||x||_E$

Demostración. Se demostrará $1 \implies 2 \implies 3 \implies 4 \implies 1$

 $1 \implies 2 \text{ es trivial}$

Para 2 \implies 3, sea $\varepsilon = 1$, y un $\delta > 0$ tq

$$||x - 0_E||_E < \delta \implies ||Tx - T(0)||_F < 1$$

Como T es lineal tenemos que Tx - T(0) = Tx, y además se tiene que $x - 0_E = x$. Luego,

$$\|x\|_E < \delta \implies \|Tx\|_F < 1$$

Ahora, para todo $x \in E$ t
q $\|x\| = 1, \, \|\delta x\| = \delta \, \|x\|.$ Con esto,

$$\left\| \frac{\delta}{2} x \right\| = \frac{\delta}{2} < \delta$$

Así, por lo anterior tenemos que

$$\left\| T\left(\frac{\delta}{2}x\right) \right\| < 1$$

Eso significa que para todo $x \in E$ tq ||x|| = 1 se tiene que

$$||Tx|| < \frac{2}{\delta}$$

Con lo que tenemos lo pedido.

Para $3 \implies 4$, sea $c_0 = \sup_{\|x\|=1} \|Tx\|$, entonces para todo $x \in E$ distinto de cero, tenemos que

$$\left(\left\| \frac{x}{\|x\|} \right\| = 1 \implies \left\| T\left(\frac{x}{\|x\|} \right) \right\| \le c_0 \right) \implies \|Tx\|_F \le c_0 \|x\|_E$$

Con lo que se llega a lo que queríamos.

Por último, para $4 \implies 1$, sea c > 0 tq $||Tx||_F \le c ||x||_E$. Luego,

$$||Tx - Ty||_F = ||T(x - y)||_F \le c ||x - y||_E$$

Por lo que T es Lipschitz, por lo que es continua.

Definición 1.6 (Norma de operador/Funcional Acotado). Para E, V e.v.n $T: E \to F$ que cumple 1-2-3-4 se llama funcional acotado (u operador lineal acotado); se define $||T||_{E,F} = \sup_{||x||_E=1} ||Tx||_F = \inf\{c>0: ||Tx|| \le c \, ||x|| \, \forall x \in E\}$

Definición 1.7. Para E, V e.v.n. sea $\mathcal{L}(E, F) = \{T : E \to F \text{ lineal, acotado}\}$

Proposición 1.3. $\|\cdot\|_{E,F}$ es norma en $\mathcal{L}(E,F)$

Demostración. Claramente cumple todo en base a la definición

Proposición 1.4. Si F es Banach, entonces $\mathcal{L}(E,F)$ es Banach con respecto a $\|\cdot\|_{E,F}$

Demostración. Sean $T_n: E \to F$ lineales continuas, Cauchy con respecto a $\|\cdot\|_{E,F}$. Observemos que, para cada $x \in R$ fijo, $y_n = T_n x$ es Cauchy en F; pues $\|y_n - y_m\|_F = \|T_n x - T_m x\|_F = \|T_n$

Si x = 0, y_n es constante, por lo que es Cauchy.

Si $x \neq 0$, sea $\varepsilon > 0$. T_n es Cauchy $\implies \exists n_0 : \|T_n - T_m\| < \frac{\varepsilon}{\|x\|} \forall n, m \geq n_0$. Así: $y_n = T_n x$ es

de Cauchy en F, como F es completo, $y_n \to y \equiv Tx$. En otras palabras, $T_n x \to Tx$.

Vamos a ver que $T \in \mathcal{L}(E, F)$ y que $||T_n - T|| \xrightarrow{n \to \infty} 0$.

<u>Primero</u>: $\forall x \in R \forall n \in \mathbb{N}$ se tiene que $T_n(x + \lambda y) = T_n x + \lambda T_n y \to T(x + \lambda y) = Tx + \lambda Ty$.

Segundo: (Ejercicio) Como T_n es Cauchy, $\sup_{n\in\mathbb{N}} ||T_n|| = C < \infty$. Entonces $||T_nx|| \le ||T_n|| \, ||x|| \le C \, ||x|| \to ||Tx|| \le C \, ||x||$.

<u>Último</u>: Verificar que $||T_n - T|| \xrightarrow{n \to \infty} 0$, sea ε, n_0 tq $||T_n - T_m|| < \varepsilon \forall m, n \ge n_0$. Entonces $||T_n(x) - T_m(x)|| \le \varepsilon ||x|| \ \forall n, m \ge n_0 \forall x \in E$. Así $||Tx - T_n x|| \le \varepsilon ||x|| \ \forall n \ge n_0 \forall x \in E$ por lo que $||T - T_n|| \le \varepsilon \ \forall n \ge n_0$

Definición 1.8 (Dual). Si E es e.v.n., definimos su dual (topológico) como:

$$E^* = \mathcal{L}(E, \mathbb{C}) \circ \mathcal{E}, \mathbb{R}$$

Ejemplo: 1.7. Tomemos $E = \mathbb{R}^n$, y sean $S, T \in \mathcal{L}(E)$.

$$||S \circ T(x)|| = ||S(Tx)|| \le ||S|| \, ||Tx|| \le ||S|| \, ||T|| \, ||x||$$

por lo que

$$||S \circ T|| \le ||T|| \, ||S||$$

Entonces $||T^k|| \le ||T||^k$

Proposición 1.5. Si E es Banach, $T \in \mathcal{L}(E)$, ||T|| < 1, I - T es invertible, con inversa continua, entonces $(I_T)^{-1} = \sum_{k=0}^{\infty} T^k$

Demostración. Sale con truco tipico

Ejemplo: 1.8. Sea $\Omega \subseteq \mathbb{R}^n$ abierto, y sea $\kappa \in L^2(\Omega \times \Omega; \mathbb{R})$. Definamos $T_{\kappa} : L^2(\Omega) \to L^2(\Omega)$ donde $f \mapsto T_{\kappa}(f)(x) = \int_{\Omega} \kappa(x, y) f(y) \, \mathrm{d}y$ T_{κ} es lineal. Veamos que $T_{\kappa}(f) \in L^2(\Omega)$

$$\int_{\Omega} \left| \int_{\Omega} \kappa(x, y) f(y) \, \mathrm{d}y \right|^2 \mathrm{d}x \le \int_{\Omega} \int_{\Omega} \kappa^2(x, y) \, \mathrm{d}y \int_{\Omega} f^2(y) \, \mathrm{d}y \, \mathrm{d}x$$

O sea, ya que $\int_{\Omega} |T(f)(x)|^2 dx = ||T_{\kappa}f||_{L^{2}(\Omega)}^2$

$$||T_{\kappa}f|| \le ||\kappa|| \, ||f||$$