18-100 Introduction to Electrical and Computer Engineering

Lecture 03
Equivalent Circuits

Schedule (Subject to Change)

ouricadic (odbject to orialige)				
Week		Date	Day	Lecture Topic
	1	10 100	M	LO1. Intro Dhysics

L01: Intro, Physics, EM, Leveling Students 1 13-Jan M

W

М

W

М

W

М

W

М

W

М

W

М

W

15-Jan

27-Jan

29-Jan

3-Feb

5-Feb

10-Feb

12-Feb

17-Feb

19-Feb

24-Feb

26-Feb

3-Mar

5-Mar

4

5

6

7

20-Jan M

22-Jan | W

L02: Circuits Basics

Exam 1

L11: Computers

L12: Op Amps SPRING BREAK

SPRING BREAK

L03: Equivalent Circuits

Martin Luther King Celebration (No Lecture)

L07: Capacitors, RC Time Constants, RC Circuits

L06: Professional Identity, Professional Responsibility, and Ethics

L04: Semiconductors, Diodes, LEDs

L08: Inductors, RL Time Constants, 555

L09: Binary, Logic Gates, Boolean Logic

L10: Latches, Registers, RAM, Flip-Flops

L05: MOSFETs to Simple Gates

Objectives of this Lecture

- Review
- Power
- Equivalent Circuits
- Voltage Division and Current Division

Electrical and Computer Engineering Models

$$\Lambda V = IR$$

$$\sum i_{IN} = \sum i_{OUT}$$

$$\sum v_{UP} = \sum v_{DOWN}$$

Ohm's Law

• Voltage drop (ΔV) across a resistive (R) material is proportional to the flowing current I

$$\Delta V = IR = V_{POS} - V_{NEG} = V_{FROM} - V_{TO}$$

- The current, I, flows into the positive terminal of the voltage drop
- Positive current will flow from a higher voltage to a lower voltage

- Schematics represent **connections between** elements, not necessarily their relative or actual physical locations on a circuit board
- MODEL: Remember, every part of a node is at the same potential
- MODEL: Voltage does not drop across a node, only across circuit elements

18-100 S25 L02 Circuits

Labeling Voltages

- When analyzing circuits, every element generally has a voltage difference across it and a current through it
- For resistors, current enters the positive terminal
- Not sure which way to draw ΔV or I? Guess! It will work out either way!

Kirchhoff's Current Law (KCL) and Voltage Law (KVL)

$$\sum I_{in} = \sum I_{out}$$

What goes in, must come out

KCI

$$\sum V_{up} = \sum V_{down}$$

What goes up, must come down

KVL

Kirchhoff's Current Law (KCL)

$$\sum I_{in} = \sum I_{out}$$

18-100 S25

Kirchhoff's Voltage Law (KVL)

$$\sum V_{up} = \sum V_{down}$$

Independent of ground!

$$12V + 3V = V_5$$

0V

Reference Voltage

(Ground)
$$I = \frac{\Delta V}{\Delta V} = \frac{12V - 4V}{1} = 8mA$$

$$=\frac{\Delta V}{R} = \frac{12V - 4V}{1k\Omega} = 8mA$$

Ground location does not matter

4V

0V

18-100 S25 L02 Circuits Carnegie Mellon

Measuring Voltage with Your Digital Multimeter (DMM)

18-100 S25 L02 Circuits Carnegie Mellon

Measuring Voltage with Your Digital Multimeter (DMM)

Measuring Current with Your Digital Multimeter (DMM)

mA

- Current must flow THROUGH the DMM for it to be measured!
- Break open the circuit

Measuring Current with Your Digital Multimeter (DMM)

- Current must flow THROUGH the DMM for it to be measured!
- Break open the circuit

Measuring Current with Your Digital Multimeter (DMM)

mA

- Current must flow THROUGH the DMM for it to be measured!
- Break open the circuit
- Connect probes

Be Careful When You Are Measuring Current

mA

2474

$$24.74mA = \frac{12V}{1500 + 47000}$$

18-100 S25 L02 Circuits Carnegie Mellon

Be Careful When You Are Measuring Current

Because current travels through the sensitive DMM, excess current can destroy it! :(

Fuse

DMMs include a fuse that "blows" or selfdestructs when excess current starts to flow

Schematic Symbol

By giving its life, the \$0.25 fuse can protect the \$10 - \$1,000 DMM

> **Damaged Fuse**

Objectives of this Lecture

- Review
- Power
- Equivalent Circuits
- Voltage Division and Current Division

Power

$$P_{absorbed} = \left(\Delta V_{pos\ to\ neg}\right) \left(I_{into\ pos}\right)$$

$$P_{absorbed} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ positive\ terminal}\right)$$

KCL: What goes in, must come out

$$P_{absorbed} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ positive\ terminal}\right)$$

18-100 S25

$$P_{absorbed} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ positive\ terminal}\right)$$

$$P_{absorbed} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ positive\ terminal}\right)$$

$$I = \frac{+15V}{1\Omega} = +15A$$

$$P_{abs,1\Omega} = (+15V)(+15A)$$

$$=+225W=+225$$
 Joules / second

$$P_{abs,15V} = (+15V)(-15A)$$

= -225W J/s

$$\frac{(-15A)}{I/s}$$

$$P_{gen,15V} = -P_{abs,15V} = +225W$$

(Selectrical & Computer ENGINEERING

$$P_{absorbed} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ positive\ terminal}\right) = -P_{generated}$$

 $\sum P_{abs} = 0W$

For Resistors
$$\Delta V_{pos \ to \ neg \ term} = (I_{into \ pos \ term})(R)$$
 $(I_{into \ pos \ term}) = \frac{\Delta V_{pos \ to \ neg \ term}}{R}$

$$\begin{array}{ccc}
R \\
 & \longrightarrow + \swarrow \swarrow & P_{abs,R} = \left(I_{into \ pos \ term}\right)^2 (R)
\end{array}$$

$$\left(\frac{1}{2}\right)^{2}$$

$$P_{abs,R} = \frac{\left(\Delta V_{pos\ to\ neg\ term}\right)^2}{R}$$

Example: Charging a Cell Phone

$$P_{abs,Cable} = \left(I_{into \ pos \ term}\right)^{2} \left(R\right) = \left(1.2A\right)^{2} \left(0.25\Omega\right)$$
$$= 0.36W = 360mW$$

$$\Delta V_{R,Battery} = (1.2A)(0.5\Omega) = 0.6V = 600mV$$

$$P_{abs,R,Bat} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ pos\ term}\right) = \left(0.6V\right) \left(1.2A\right)$$
$$= 720mW$$

$$P_{abs,Battery} = \left(\Delta V_{pos\ to\ neg\ term}\right) \left(I_{into\ pos\ term}\right) = \left(3.4V\right) \left(1.2A\right)$$
$$= 4.08W$$

The Same as this Circuit?

Objectives of this Lecture

- Review
- Power
- Equivalent Circuits
- Voltage Division and Current Division

Equivalent Circuits

Series Resistors: Same Current Flows Through

- Part of a circuit is replaced with a simpler part
- Resistors in Series: $R_{Equivalent} = R_1 + R_2$ $R_{Equivalent} = 0.25\Omega + 0.5\Omega = 750 \text{m}\Omega$

Equivalent Circuits

Series Resistors: Same Current Flows Through

- Part of a circuit is replaced with a simpler part
- Resistors in Series: $R_{Equivalent} = R_1 + R_2$ $R_{Equivalent} = 0.25\Omega + 0.5\Omega = 750 \text{m}\Omega$
- In general

$$R_{Series,Equivalent} = R_1 + R_2 + R_3 + R_4 + R_5 + \dots$$

Equivalent Circuits (Parallel Resistors)

2025 01 19A

Part of a Circuit Is Replaced with a Simpler Part

- Parallel resistors have the same voltage across them
- No voltage drop across a node
- Same voltage drop, ΔV , across parallel resistors

Equivalent Circuits (Parallel Resistors)

Part of a Circuit Is Replaced with a Simpler Part

$$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \dots$$

$$\frac{1}{5\Omega} = \frac{1}{5\Omega} + \frac{1}{1\Omega} = \frac{0.2}{\Omega} + \frac{1}{\Omega} = \frac{1.2}{\Omega}$$

 $R_{\parallel,Equivalence} \frac{1}{(1.2/\Omega)} = \frac{5}{6}\Omega \approx 0.833\Omega = 833m\Omega$

Are These Two Circuits Equivalent Same $P_{abs,L} = \Delta V_L I_L$ from the Perspective of the Load Resistor (R_L) ?

$$V_L = (58.3mA)(100\Omega) = 5.83V$$

Are These Two Circuits Equivalent Same $P_{abs,L} = \Delta V_L I_L$ from the Perspective of the Load Resistor (R_I) ?

$$V_L = (58.3mA)(100\Omega) = 5.83V$$

Are These Two Circuits Equivalent Same $P_{abs,L} = \Delta V_L I_L$ from the Perspective of the Load Resistor (R_I) ?

Thevenin and Norton Equivalent Circuits

Finding the Thevenin Equivalent for R_L

Finding the Thevenin Equivalent for R_L

Another Way to Find the Thevenin Equivalent for R_{I}

1) Disconnect the
$$R_{LOAD}$$

- 2) Find the Open Circuit voltage, V_{OC} , across where R_{LOAD} was $(V_{Thevenin} = V_{OC})$
- 3) Zero independent sources (0V short, 0A open)
- 4) Use a 1A source to calculate $R_{Theyenin}$:

$$R_{Thevenin} = V_{Forced} / 1A$$

Another Way to Find the Thevenin Equivalent for R_L

 $V_{OC} = (1.33A)(6\Omega) = 8.00V$

- 1) Disconnect the R_{LOAD}
- 2) Find the Open Circuit voltage, V_{OC} , across where R_{LOAD} was $(V_{Thevenin} = V_{OC})$
- 3) Zero independent sources (0V short, 0A open)
- 4) Use a 1A source to calculate $R_{Thevenin}$: $R_{Thevenin} = V_{Forced} / 1A$

$$\begin{array}{c|c}
\hline
7\Omega & + \\
\hline
2\Omega & 1A & V_{Forced} = 9V \\
\hline
\frac{1}{3\Omega} + \frac{1}{6\Omega} = \frac{1}{2\Omega} & R_{Thevenin} = 9\Omega
\end{array}$$

Objectives of this Lecture

- Review
- Power
- Equivalent Circuits
- Voltage Division and Current Division

Voltage Division

- CAN (never need to) combine Ohm's Law and KCL to simplify SOME calculations
- Works for one voltage drop across two resistors in series (same current flows through)

- · KCL: What goes in, has to go out
- Series: Same current goes through components
 - Current flows into ΔV positive terminal
- Ohm's Law: $I = \frac{V_{IN}}{R_1 + R_2} = \frac{\Delta V_1}{R_1}$

$$I = \frac{V_{IN}}{R_1 + R_2} = \frac{\Delta V_2}{R_2}$$

$$\Delta V_2 = V_{IN} \left(\frac{R_2}{R_1 + R_2} \right)$$

 $\Delta V_1 = V_{IN} \left(\frac{R_1}{R_1 + R_2} \right)$

Current Division

- CAN (never need to) combine Ohm's Law and KVL to simplify SOME calculations
- Works for one current flowing into two resistors in parallel (same voltage drop across)

- No voltage drop across each node
- Same voltage drop, $\Delta V_{top ext{-}to-bottom}$
- · Current flows into positive terminal
 - KCL: $I_{IN} = I_1 + I_2$
 - Ohm's Law

$$\Delta V = I_1 R_1 = I_2 R_2 = I_{IN} (R_1 \parallel R_2)$$

$$\Delta V = I_1 R_1 = I_2 R_2 = I_{IN} \left(\frac{R_1 R_2}{R_1 + R_2} \right)$$

Objectives of this Lecture

- Review
- Power
- Equivalent Circuits
- Voltage Division and Current Division