Data Analytics CS301 Relational Data

Fall 2018
Oliver Bonham-Carter

Let's Talk About Lab 4 For A Moment...

- How do you know if something to prevent sickness is working?
- Are the Vaccines working?
 - Are there fewer people with Measles, mumps, Hepatitis B (and other illnesses) as a result of receiving vaccines in 1966?

History of Vaccines: https://www.historyofvaccines.org/timeline

ALLEGHENY COLLEGE

What Do Others Say About Vaccines?

Blog: Year http://ruleof6ix.fieldofscience.com/2011/10/vaccines-can-you-predict-how-well.html

What Do Others Say About Vaccines?

Comparison of 20th Century Annual Morbidity & Current Morbidity

Disease	20 th Century Annual Morbidity*	2010 Reported Cases [†]	% Decrease	
Smallpox	29,005	0	100%	
Diphtheria	21,053	0	100%	
Pertussis	200,752	21,291	89%	
Tetanus	580	8	99%	
Polio (paralytic)	16,316	0	100%	
Measles	530,217	61	>99%	
Mumps	162,344	2,528	98%	
Rubella	47,745	6	>99%	
CRS	152	0	100%	
Haemophilus influenzae (<5 years of age)	20,000 (est.)	270 (16 serotype b and 254 unknown serotype)	99%	

Sources:

- * JAMA. 2007;298(18):2155-2163
- † CDC. MMWR January 7, 2011;59(52);1704-1716. (Provisional MMWR week 52 data)
- Vox Article: https://www.vox.com/health-care/2014/10/13/6967317/vaccines-work-this-chart-proves-it

What Does Our Data Say About (All) Vaccines of Data?

1940

```
library(tidyverse)
library(dslabs)
library(dplyr)
ggplot(data = us_contagious_diseases) + geom_point(mapping = aes(x = year, y = count, color = year)) + geom_vline(xintercept = 1965, color = "red")
```


year

1980

2000

1960

Cases of Illness

Lab Results

 #1) Use the us contagious disease and dplyr tools to create an object that stores only the Measles data, includes a per 100,000 people rate, and removes Alaska and Hawaii. Note that there is a weeks reporting column. Take that into account when computing the rate.

```
#Add the rate column to the data:
dat_measles_rate <-
filter(us_contagious_diseases, disease ==
"Measles") %>% mutate(rate = (count/population)
* 100000 * (weeks_reporting/52))

# Note: the rate could be one of several
possible calculations to work with the data.
```



```
#Remove the two states (Alaska and Hawaii)
dat_measles_rate_lessTwoStates <-</pre>
filter(dat_measles_rate, state != "Alaska",
state != "Hawaii")
View(dat_measles_rate_lessTwoStates)
# Plot the results across 48 states
ggplot(data = dat_measles_rate_lessTwoStates,
mapping = aes(x = year, y = rate, color =
year)) + geom_point() + geom_vline(xintercept =
1963, color = "red") + labs(y = "Counts of
Measels")
```


year

2000

1980

Plot Across 48 States

```
ggplot(data = dat_measles_rate_lessTwoStates,
mapping = aes(x = year, y = rate, color = year)) +
geom_point() + geom_vline(xintercept = 1963, color
= "red") + labs(y = "Counts of Measels")
```

Code shown on previous slide

Focus On California

```
# Create table to focus on California
dat caliFocus <-
filter(dat_measles_rate_lessTwoStates,
state == "California")
View(dat_caliFocus)
ggplot(data = dat_caliFocus, mapping =
aes(x = year, y = rate, color = count)) +
geom_point() + geom_vline(xintercept =
1963, color = "red") + labs(y = "Counts of
Measles")
```


75000

50000

25000

Data From California, Only

```
ggplot(data = dat_caliFocus, mapping = aes(x = year, y
= rate, color = count)) + geom_point() +
geom_vline(xintercept = 1963, color = "red")
+ labs(y = "Counts of Measles")
```


Transformations Help to Fit the Data

Not transformed

Transformed (using logs)

Transformations Help to Fit the Data

- The square root, x to $x^{\wedge}(1/2) = sqrt(x)$, is a transformation with a moderate effect on distribution shape.
- This approach is weaker than the logarithm and the cube root transformations in its ability to influence the distribution shape.
- Used for reducing right skewness
- Has the advantage that it can be applied to zero values.
- Commonly applied to counted data, especially if the values are mostly rather small

Effects of Transformations on Values

3 5769.230769 75.95545253 17.93518953 3.761117911 4 7692.307692 87.70580193 19.74023034 3.886056648 5 9615.384615 98.05806757 21.26451851 3.982966661 6 11538.46154 107.4172311 22.59692282 4.062147907

Effects of Transformations on Values Zoom-in

Transformations Help to Fit the Data

- Reduce the Y into a smaller space to see trends.
- Places all points on a similar playing ground
- P < -(x,y)
- Trans(p) <-(x, sqrt(y))

TRANSFORMATIONS OF PREDICTOR VARIABLE

The 1950's, 1960's and 1970's Without Transformation

```
#plot three bars to see what happened
in the 1950's, 1960's and 1970's.

ggplot(data = dat_caliFocus %>%
filter(year == 1950 | year == 1960 |
year == 1970)) + geom_bar(mapping =
aes(x = year, y = count), stat =
"identity")
```

Back to the vaccines lab...

The 1950's, 1960's and 1970's Without Transformation

The 1950's, 1960's and 1970's With Sqrt() Transformation

```
#plot three bars to see what happened
in the 1950's, 1960's and 1970's.

ggplot(data = dat_caliFocus %>%
filter(year == 1950 | year == 1960 |
year == 1970)) + geom_bar(mapping =
aes(x = year, y = sqrt(count)), stat =
"identity")
```


The 1950's, 1960's and 1970's With Sqrt() Transformation

The 1950's, 1960's and 1970's

Without Transformation


```
library(tidyverse)
library(dslabs)
library(dplyr)
dat <- filter(us_contagious_diseases, disease == "Measles") %>% mutate(rate =
(count/population) * 100000 * (weeks reporting/52))
# Filter out all data except in the years 1950, 1960, and 1970
dat_measles_rate_lessTwoStates <- dat %>% filter(year == 1950 | year == 1960 | year == 1970)
#create some "block", containers to hold the data for each year.
dat_measles_rate_lessTwoStates$yearBlock[dat_measles_rate_lessTwoStates$year == 1950]
<-"1950's"
dat measles_rate_lessTwoStates$yearBlock[dat_measles_rate_lessTwoStates$year == 1960]
<-"1960's"
dat measles rate lessTwoStates$yearBlock[dat measles rate lessTwoStates$year == 1970]
<-"1970's"
#Without transformation, Multi-bar per state,
ggplot(data = dat_measles_rate_lessTwoStates) + geom_bar(mapping = aes(x = state, y = count, state))
fill = yearBlock), position = "dodge", stat = "identity") + theme(axis.text.x =
element_text(angle = 90, hjust = 1, vjust=-0.01))
```

The 1950's, 1960's and 1970's

Without Transformation


```
ggplot(data = dat_measles_rate_lessTwoStates) + geom_bar(mapping = aes(x
= state, y = count, fill = yearBlock), position = "dodge", stat =
"identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1,
vjust=-0.01))
```


with sqrt() Transformation


```
ggplot(data = dat_measles_rate_lessTwoStates) + geom_bar(mapping = aes(x
= state, y = sqrt(count), fill = yearBlock), position = "dodge", stat =
"identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1,
vjust=-0.01))
```


Urban Versus Rural

A possible Explanation for the 1950's

Urbanization has occurred in all major areas, yet Africa and Asia remain mostly rural Figure 3.

- Urban: City dwelling
- Rural: Country dwelling
- Vaccinations in Rural Areas:
 - Were there fewer people available in from whom to contract viruses?
 - Less opportunity to see others in country?
- Country areas: you are breathing your neighbour's breath.

Urban population Rural population

Where in the Web? Where in the Book?

- Note the chapter differences!
- Book:
 - Chap 10
- Web:
 - Chap 13

Relational Data

Relational Databases

 A database table is similar to those that we have been using already.

				/an ashumana
	+	-		(or columns)
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	-
12121	Wu	Finance	90000	tuples
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	,
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Let's Look at Some Tables

library(tidyverse)

library(nycflights13)

#show built-in tables

View(airlines)

View(airports)

View(planes)

View(weather)

Relational Databases

The data of these built-in tables is "connected" in the sty

Relational Databases

- Primary Keys: Unique identifier for each row of the table.
 - Ex: planes\$tailnum
- Foreign Keys: Unique identifier for row in another table.
 - Ex: flights\$tailnum
 - Is a foreign key since it exists in the flights table and matches a flight to a unique plane.

Checking For Your Keys

```
# If something is unique: there is only one of it. Here each tailnum entry is unique
```

planes %>% count(tailnum)

Try setting up a test to see if there are any more than one of an entry (necessary to be a primary key)

planes %>% count(tailnum) %>% filter(n > 1)

A key could be a combination of things

weather %>% count(year, month, day, hour, origin) %>% filter(n > 1)

flights %>% count(year, month, day, flight) %>% filter(n > 1)

Find Some Keys!

- Baby-name Data
- First: install.packages("babynames")
- library(babynames) and tidyverse too!
- Then find the primary keys in,
 babynames:babynames
- Baseball data:
- First: install.packages("Lahman")
- library(Lahman)
- Then find the primary keys in,

Lahman::Batting

Possible Solutions: Find Some Keys!

- Baby-name Data
- babynames::babynames %>% count(name, year, sex)
 - Note: filter the added counter column (nn)
- babynames::babynames %>% count(name, year, sex) %>% filter(nn >1)
- Baseball data:
- Lahman::Batting %>% group_by(playerID, yearID, stint) %>% filter(n() > 1) %>% nrow()


```
library(stringr)
library(babynames),
View(babynames)
#Want to Select all names beginning with "A"
#Use regular expressions!
    #Names beginning A : "^A"
str_subset(c(babynames$name), "^A")
```


	year [‡]	sex [‡]	name [‡]	n [‡]	prop [‡]
1	1880	F	Mary	7065	0.072384329
2	1880	F	Anna	2604	0.026679234
3	1880	F	Emma	2003	0.020521700
4	1880	F	Elizabeth	1939	0.019865989
5	1880	F	Minnie	1746	0.017888611
6	1880	F	Margaret	1578	0.016167370

Names Beginning With 'A'

str_subset(c(babynames\$name), "^A")

	year [‡]	sex [‡]	name [‡]	n [‡]	prop [‡]
1	1880	F	Mary	7065	0.072384329
2	1880	F	Anna	2604	0.026679234
3	1880	F	Emma	2003	0.020521700
4	1880	F	Elizabeth	1939	0.019865989
5	1880	F	Minnie	1746	0.017888611
6	1880	F	Margaret	1578	0.016167370

> str_subset(c(babynames\$name),"^A")

[1]	"Anna"	"Alice"	"Annie"	"Ada"	"Agnes"	"Alma"	"Addie"	"Amanda"
[9]	"Amelia"	"Amy"	"Augusta"	"Anne"	"Ann"	"Allie"	"Alta"	"Alberta"
[17]	"Abbie"	"Adelaide"	"Adeline"	"Adele"	"Angie"	"Artie"	"Alvina"	"Annette"
[25]	"Adella"	"Alpha"	"Angeline"	"Adah"	"Adaline"	"Almeda"	"Aurelia"	"Antoinette"
[33]	"Adelia"	"Annetta"	"Antonia"	"Alida"	"Alva"	"Agatha"	"America"	"Anita"
[41]	"Arminta"	"Adda"	"Avis"	"Aimee"	"Annabel"	"Ava"	"Abigail"	"Aline"
[49]	"Altha"	"Anastasia"	"Adela"	"Althea"	"Amalia"	"Amber"	"Angelina"	"Annabelle"
[57]	"Anner"	"Arie"	"Adline"	"Almira"	"Alvena"	"Arizona"	"Albertina"	"Albina"
[65]	"Alyce"	"Amie"	"Angela"	"Annis"	"Abby"	"Aileen"	"Alba"	"Alda"

str_subset(c(babynames\$name), "^Amel")

> str_subset(c(babynames\$name),"^Ameli")

[1]	"Amelia"	"Amelia"	"Amelia"	"Amelia"	"Amelia"	"Amelia"
[8]	"Amelie"	"Amelia"	"Amelie"	"Amelia"	"Amelia"	"Amelia"
[15]	"Amelie"	"Amelia"	"Amelia"	"Amelia"	"Amelia"	"Amelia"
[22]	"Amelia"	"Amelia"	"Amelia"	"Amelie"	"Amelia"	"Amelia"
[29]	"Amelie"	"Amelia"	"Amelie"	"Amelia"	"Amelie"	"Amelia"
[36]	"Amelie"	"Amelia"	"Amelie"	"Amelia"	"Amelie"	"Amelia"
[43]	"Amelie"	"Amelia"	"Amelia"	"Amelio"	"Amelia"	"Amelie"
[50]	"Amelia"	"Amelie"	"Amelio"	"Amelia"	"Amelie"	"Amelio"
[57]	"Amelie"	"Amelio"	"Amelia"	"Amelie"	"Amelio"	"Amelia"
[64]	"Amelio"	"Amelia"	"Amelie"	"Amelita"	"Amelio"	"Amelia"
[71]	"Amelita"	"Amelio"	"Amelia"	"Amelie"	"Amelio"	"Amelia"
[78]	"Amelita"	"Amelio"	"Amelia"	"Amelita"	"Amelio"	"Amelia"

Reduce the List of Names Beginning With Chars

unique(str_subset(c(babynames\$name), "^Ameli"))

```
> unique(str_subset(c(babynames$name),"^Ameli"))
[1] "Amelia" "Amelie" "Amelio" "Amelita" "Amelinda" "Ameliah" "Amelia"
[8] "Amelina" "Ameliya" "Ameliana" "Ameliyah" "Amelianna" "Ameliagrace" "Ameliarose"
[15] "Ameline"
```

unique(str_subset(c(babynames\$name), "^0li"))

```
> unique(str_subset(c(babynames$name),"^0li"))
                                   "Olie"
     "Olive"
                    "Olivia"
                                                  "Oliver"
                                                                 "Olin"
                                                                                "Olivine"
                                                                                               "Olinda"
                                                  "01 i a"
     "Oline"
                    "Oliva"
                                   "Olivette"
                                                                 "Olita"
                                                                                "Olimpia"
                                                                                               "Olivene"
     "Olis"
                    "Olida"
Γ157
                                   "Olindo"
                                                  "Olice"
                                                                 "Olivet"
                                                                                "Olivea"
                                                                                               "Olif"
     "Olivett"
                    "Olivier"
                                   "Olivama"
                                                  "Olivio"
                                                                 "Oliverio"
                                                                                "Olivera"
                                                                                               "Olisa"
[29]
     "Olinka"
                    "Olisha"
                                   "Olibia"
                                                  "Olina"
                                                                 "Olicia"
                                                                                "Oliviah"
                                                                                               "Oliwia"
[36]
     "Olivya"
                    "Oliviagrace" "Oliviana"
                                                  "Oliviya"
                                                                 "Oliviarose"
                                                                                "Oliana"
                                                                                               "Oliveah"
     "Oliviyah"
                    "Olivianna"
                                                  "01i"
                                                                 "Oliyah"
                                                                                "Olisaemeka"
                                                                                               "Oliviaann"
Γ437
                                   "Oliviamarie"
     "Olivyah"
                                                  "Olivija"
                                                                 "Oliber"
                                                                                "Oliverjames"
[50]
                    "Olijah"
                                   "Olianna"
```


Mutating Joins

- A *mutating join* allows to combine variables from two tables (into one).
- How works:
 - Matches observations by particular keys

Copies entries across variables from one table to the other.

1 x1 2 x2 2 x3 3 x4

Left Join

- The *left* side with the x's is used to determine a column.
- Missing data (y3) from the right-side is shown to be missing.

key	val_x	val_y
1	x1	у1
2	x2	y2
3	х3	NA

Right Join

- The *right* side with the *y*'s is used to determine a column.
- Missing data (x3) from the left-side is shown to be missing.

Full Join

- The *left and right* sides are used to determine a column.
- Missing data from either the left-side or the right-side is shown to be missing.

key	val_x	val_y
1	x1	у1
2	x2	y2
3	х3	NA
4	NA	у3

Show Me Some Joins

```
# Create two small tables to experiment on
x <- tribble(\sim key, \sim val_x, 1, "x1", 2, "x2", 3, "x3")
y <- tribble(~key, ~val_y, 1, "y1", 2, "y2", 4, "y3")</pre>
# Note where the location of missing entries
lj <- left_join(x, y, by="key")</pre>
rj <- right_join(x, y, by="key")</pre>
fj <- full_join(x, y, by="key")</pre>
```


Mutating Joins

```
View(flights)
# First we must reduce the data set to
flights2 using the select() feature
flights2 <- flights %>%
select(year:day, hour, origin, dest,
tailnum, carrier)
View(flights2)
```



```
# The left side with the x's is used to determine
a column.
# To add the full airline name to the
flights2 data table, we combine the
airlines and flights2 data frames with
left_join()
# First, remove the origin and dest columns
flights3 <- flights2 %>% select(-origin, -
dest) %>% left_join(airlines, by =
"carrier")
```


The Theory: Left Joins

	year [‡]	month [‡]	day [‡]	hour [‡]	origin [‡]	dest [‡]	tailnum [‡]	carrier [‡]
1	2013	1	1	5	EWR	IAH	N14228	UA
2	2013	1	1	5	LGA	IAH	N24211	UA
3	2013	1	1	5	JFK	MIA	N619AA	AA
4	2013	1	1	5	JFK	BQN	N804JB	B6
5	2013	1	1	6	LGA	ATL	N668DN	DL
6	2013	1	1	5	EWR	ORD	N39463	UA

	carrier [‡]	name
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	B6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.

Flight2 (left)

Airlines (right)

	year [‡]	$\mathbf{month}^{ \oplus}$	day [‡]	hour ‡	tailnum [‡]	carrier [‡]	name				
1	2013	1	1	5	N14228	UA	United Air Lines Inc.				
2	2013	1	1	5	N24211	UA	United Air Lines Inc.				
3	2013	1	1	5	N619AA	AA	American Airlines Inc.				
4	2013	1	1	5	N804JB	В6	JetBlue Airways				
5	2013	1	1	6	N668DN	DL	Delta Air Lines Inc.				
6	2013	1	1	5	N39463	UA	United Air Lines Inc.				

Flight3 (left join)

Connecting Keys: Left Joins

	year [‡]	month [‡]	day [‡]	hour ‡	origin [‡]	dest [‡]	tailnum [‡]	carrier [‡]
1	2013	1	1	5	EWR	IAH	N14228	UA
2	2013	1	1	5	LGA	IAH	N24211	UA
3	2013	1	1	5	JFK	MIA	N619AA	AA
4	2013	1	1	5	JFK	BQN	N804JB	В6
5	2013	1	1	6	LGA	ATL	N668DN	DL
6	2013	1	1	5	EWR	ORD	N39463	UA
	1	1	1	1		1		

	carrier [‡]	name [‡]
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	В6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.

Flight2

airlines

	year ‡	month [‡]	day [‡]	hour ‡	tailnum [‡]	carrier [‡]	name [‡]	
1	2013	1	1	5	N14228	UA	United Air Lines Inc.	
2	2013	1	1	5	N24211	UA	United Air Lines Inc.	
3	2013	1	1	5	N619AA	AA	American Airlines Inc.	
4	2013	1	1	5	N804JB	В6	JetBlue Airways	
5	2013	1	1	6	N668DN	DL	Delta Air Lines Inc.	
6	2013	1	1	5	N39463	UA	United Air Lines Inc.	

Flight3

Another Way To Left Join

```
# Another way to make a left join is to
use the mutate() method
flights2 %>% select(-origin, -dest) %>%
mutate(name = airlines$name[match(carrier,
airlines$carrier)])
```

Verify that this alternative way works to produce the same table (flight3) as before.

The Theory: Right Joins

	year [‡]	month [‡]	day [‡]	hour [‡]	origin [‡]	dest [‡]	tailnum [‡]	carrier
1	2013	1	1	5	EWR	IAH	N14228	UA
2	2013	1	1	5	LGA	IAH	N24211	UA
3	2013	1	1	5	JFK	MIA	N619AA	AA
4	2013	1	1	5	JFK	BQN	N804JB	B6
5	2013	1	1	6	LGA	ATL	N668DN	DL
6	2013	1	1	5	EWR	ORD	N39463	UA

	carrier [‡]	name ÷
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	B6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.

Flight2 (left)

Airlines (right)

	carrier [‡]	name	year [‡]	$\mathbf{month}^{ \oplus}$	day [‡]	hour [‡]	tailnum [‡]
1	UA	United Air Lines Inc.	2013	1	1	5	N14228
2	UA	United Air Lines Inc.	2013	1	1	5	N24211
3	AA	American Airlines Inc.	2013	1	1	5	N619AA
4	B6	JetBlue Airways	2013	1	1	5	N804JB
5	DL	Delta Air Lines Inc.	2013	1	1	6	N668DN
6	UA	United Air Lines Inc.	2013	1	1	5	N39463
7	В6	JetBlue Airways	2013	1	1	6	N516JB
8	EV	ExpressJet Airlines Inc.	2013	1	1	6	N829AS

Flight3 (right join)