Carlingford High School

Advanced Mathematics

Year 12 Assessment Task Three

Time allowed 50 min

a		
Student	numhar	
JUUCII	HUHHDEL	

General Instructions

- o Do not write in columns
- o Marks may be deducted for careless or badly arranged work
- o Only calculators approved by the Board of Studies may be used
- o All answers are to be completed in black pen except graphs and diagrams
- o No lending or borrowing

Q1 Integration	Q2 Logarithmic and Exponentials Functions	Total	
/15	/13	/28	

Answer all questions, starting each page with your **student number** and **question number** at the top of the page.

Question 1 (15 marks)

a. Find
$$\int \left(5x^2 - \frac{1}{x^2}\right) dx$$

b. Find
$$\int 4\sqrt{5x+7}dx$$

c. Find the area between the curve
$$y=(x-1)^3$$
 , the *x-axis* and the lines $x=2$ and $x=0$

- d. The graphs of y = x + 1 and $y = x^2 2x + 1$ are shown
 - i. Find the coordinates of point A
 - ii. Find the area bound by the two functions

2

2

2

2

e. Consider the function

$$y = \sqrt{4 - x^2}$$

i. Copy and complete the following table in surd form.

Х	0	0.5	1	1.5	2
V					

ii. Apply Simpson's rule with 5 function values to find an approximation for

 $\int_0^2 \sqrt{4-x^2}$, correct to 3 decimal places.

Answer all questions, starting each page with your **student number** and **question number** at the top of the page.

Question 2 (13 marks)

- a. Solve for x i. $log_a(4x) log_a 3 = log_a(x+4)$
 - ii. Differentiate ln(5x-1)
- b. i. Find $\int e^{5-2x} dx$
 - ii. Evaluate $\int_0^1 \frac{6x \, dx}{x^2 + 1}$, leave in exact value.
- c. The region beneath the curve $y = e^{-x}$ which is above the x axis and between the lines x = 0 and x = 1 is rotated about the x-axis.
 - i. Sketch the region.
 - ii. Find the volume of the resulting solid of revolution 3
- d. If $y = e^{2x} + e^{4x}$, show that $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 8y = 0$.