Cours 8

William McCausland

2022-11-01

Théorème de Bayes, événements de probabilité positive

Un peu de Chapitre 12

- \blacktriangleright μ , ν , λ des mesures boréliennes sur \mathbb{R} , λ Lebesgue.
- ▶ μ est absolument continue s'il existe f mesurable telle que $\mu(A) = \int_A f(x)\lambda(dx)$, A borelien (λ -mesurable).
- ▶ μ est absolument continue par rapport à ν s'il existe f, ν -mesurable, telle que $\mu(A) = \int_A f(x)\nu(dx)$, $A \in \mathcal{B}$.
- μ est discret si $\sum_{x \in \mathbb{R}} \mu(\{x\}) = \mu(\mathbb{R})$.
- $\mu \ll \nu$ signifie $\nu(A) = 0 \Rightarrow \mu(A) = 0$.
- ► Théorème Radon-Nikodym : $\mu \ll \lambda \Leftrightarrow$ il existe f, λ -mesurable, telle que $\mu(A) = \int_A f(x)\lambda(dx)$, A mesurable.
- $f = \frac{d\mu}{d\lambda}$ est la dérivée Radon-Nikodym de μ par rapport à λ .
- $\blacktriangleright \ \mu(A) = \int_A \left(\frac{d\mu}{d\lambda}\right) d\lambda.$

Continuité absolue

Problème:

$$\Pr[[x_{i-2}, x_{i+2}]] \sim \Pr[x_{i-3}] = c$$
 $\max \lambda(\{x_{i-3}\}) = 0$
 $\ker \lambda(\{x_{i-3}\}) = 0$
 $\ker \lambda(A) = 0 \Rightarrow \mu(A) = 0$
 $\ker \lambda(A) = 0 \Rightarrow \mu(A) = 0$

Un peu plus sur la mesurabilité l

- ▶ Soit (Ω, \mathcal{F}, P) un espace de probabilité.
- ▶ Soit $X: \Omega \to \mathbb{R}$ une variable aléatoire sur (Ω, \mathcal{F}, P) .
- ▶ Définer $\sigma(X) \equiv \sigma(\{\{X \leq c\} : c \in \mathbb{R}\}).$
- Notez que $\{X = c\} = \{X \le c\} \setminus (\bigcup_n \{X \le c 1/n\}) \in \sigma(X)$
- Si on sait assez pour répondre à la question suivante pour tout $c \in \mathbb{R}$, on connait la valeur de $X(\omega)$: Est-ce que $\omega \in \{X \le c\}$?
- ▶ Soit $\mathcal{G} \subseteq \mathcal{F}$ une tribu.
- ▶ Si X est \mathcal{G} -mesurable (c.-à-d. $\{X \leq c\} \in \mathcal{G}$, tout $c \in \mathbb{R}$), ▶ $\sigma(X) \subseteq \mathcal{G} \subseteq \mathcal{F}$ (c.-à-d. \mathcal{G} est (faiblement) plus fine que $\sigma(X)$).
- ▶ Une variable aléatoire sur (Ω, \mathcal{F}, P) est \mathcal{F} -mesurable par définition. Une fonction $f: \Omega \to \mathbb{R}$ qui n'est pas une variable aléatoire n'est pas \mathcal{F} -mesurable.

Deux évènements dans $\sigma(X)$

Un peu plus sur la mesurabilité II

- Si une variable aléatoire est $\sigma(X)$ -mesurable, c'est une fonction seulement de X—elle dépend de ω seulement à travers $X(\omega)$.
 - ▶ Supposons que la variable aléatoire Z est $\sigma(X)$ -mesurable.
 - Pour tous $z \in \mathbb{R}$, il existe une unique $B_z \in \mathcal{B}$ tel que $\{Z = z\} = \{X \in B_z\}$. (Notez que $\{X \in B_z\} \subseteq \sigma(X)$.)
 - ▶ Considérez ceci comme la définition de B_z pour tout $z \in \mathbb{R}$.
 - Alors Z = f(X), où la fonction f est définie par : pour tout $z \in \mathbb{R}$ et tout $x \in B_z$, f(x) = z.
 - ▶ $\sigma(Z) \subseteq \sigma(X)$ mais $\sigma(X) \subseteq \sigma(Z)$ n'est pas vrai en général : Si $Z = \max(0, X), \{X \le -3\} \not\subseteq \sigma(Z).$
- ▶ Si $A \in \sigma(X)$ et il n'existe pas $B \subset A$ telle que $B \in \sigma(X)$, X est constante sur A.
 - Mettons que $X(\omega_0) = x_0 < x_1 = X(\omega_1)$ pour $\omega_0, \omega_1 \in A$. Alors $A \cap \{X \le x_0\} \in \sigma(X)$ et $A \cap \{X \le x_0\} \subset A$.

Objets d'intérêt

- ▶ Soit $A, B \in \mathcal{F}$, X, Y des variables aléatoires sur (Ω, \mathcal{F}, P) , $\mathcal{G} \subseteq \mathcal{F}$ une tribu.
- Nombres:
 - ▶ P(A|B), (Si P(B) > 0, $P(A|B) = P(A \cup B)/P(B)$).
 - $ightharpoonup E[Y|B]. (Si P(B) > 0, E[Y|B] = E[Y1_B]/P(B)).$
- ightharpoonup Variables aléatoires, \mathcal{G} -mesurables :
 - $ightharpoonup P(A|\mathcal{G}),$
 - \triangleright $E[Y|\mathcal{G}].$
- Variables aléatoires, $\sigma(X)$ -mesurables :
 - $P(A|X) \equiv P(A|\sigma(X)),$

Exemple, probabilités et espérances conditionelles

Définitions de probabilité, espérance conditionnelle

- ▶ Soit X, Y deux variables aléatoires avec $E[|Y|] < \infty$
- ▶ Soit A un évènement : $A \in \mathcal{F}$.
- Une variable aléatoire $P(A|X)(\omega)$ est une probabilité conditionnelle de A sachant X si elle est $\sigma(X)$ -mesurable et pour chaque $S \in \mathcal{B}$,

$$E[P[A|X]1_{X\in S}] = P[A \cap \{X\in S\}].$$

▶ Une variable aléatoire $E[Y|X](\omega)$ est une espérance conditionnelle de Y sachant X si elle est $\sigma(X)$ -mesurable et pour chaque $S \in \mathcal{B}$,

$$E[E[Y|X]1_{X\in\mathcal{S}}]=E[Y1_{X\in\mathcal{S}}].$$

Définitions plus large

- ▶ Soit A un évènement : $A \in \mathcal{F}$.
- ▶ Soit \mathcal{G} une sous-tribu de \mathcal{F} .
- La probabilité conditionnelle $P(A|\mathcal{G})$ est une variable aléatoire, \mathcal{G} -mesurable, telle que pour tout $G \in \mathcal{G}$

$$E[P[A|\mathcal{G}]1_G] = P[A \cap G].$$

- Soit Y une variable aléatoire
- ▶ L'espérance conditionnelle $E[Y|\mathcal{G}]$ est une variable aléatoire, \mathcal{G} -mesurable, telle que pour tout $G \in \mathcal{G}$,

$$E[E[Y|\mathcal{G}]1_G] = E[Y1_G].$$

Notez que la cohérence des définitions : $P[A|X] = P[A|\sigma(X)]$ et $E[Y|X] = E[Y|\sigma(X)]$.

Trouver $P(\Lambda | \mathcal{G}_1)$

Conditions pour
$$P(\Lambda|G_1)$$

• G_1 measurable $(G_1 = \sigma(A_1, A_2, A_3, \Omega))$
 $E[P(\Lambda|G_1)1_{A_1}] = P(\Lambda \cap A_1)$
 $E[P(\Lambda|G_1)1_{A_2}] = P(\Lambda \cap A_2)$
 $E[P(\Lambda|G_1)1_{A_3}] = P(\Lambda \cap A_3)$

Autres éléments de G, par linéanté.

Probabilités conditionnelles de l'événement $\Lambda \in \Omega$

ightharpoonup Par rapport à la sous-tribu \mathcal{G}_1 :

$$P(\Lambda|\mathcal{G}_1) = \begin{cases} p_{13}/P(A_1) & \omega \in A_1\\ (p_{21} + p_{22})/P(A_2) & \omega \in A_2\\ p_{32}/P(A_3) & \omega \in A_3 \end{cases}$$

Par rapport à la variable aléatoire X

$$P(\Lambda|X) = P(\Lambda|\sigma(X)) = \begin{cases} \frac{p_{13} + p_{21} + p_{22}}{P(A_1 \cup A_2)} & \omega \in A_1 \cup A_2 = \{X = 1\} \\ p_{32}/P(A_3) & \omega \in A_3 = \{X = 2\} \end{cases}$$

ightharpoonup Par rapport à la sous-tribu minimale $\{\emptyset,\Omega\}$:

$$P(\Lambda | \{\emptyset, \Omega\}) = P(\Lambda) = p_{13} + p_{21} + p_{22} + p_{32}$$
, tous $\omega \in \Omega$

lackbox Par rapport à la sous-tribu maximal $\mathcal F$ (ou par rapport à $\mathcal G$) :

$$P(\Lambda|\mathcal{F}) = 1_{\Lambda}(\omega) = P(\Lambda|\mathcal{G}).$$

Vérification de $P(\Lambda | \mathcal{G}_1)$

ightharpoonup À vérifier : $E[P(\Lambda | \mathcal{G}_1)1_A] = P(\Lambda \cap A)$, $A \in \mathcal{G}_1$.

$$E[P(\Lambda|\mathcal{G}_1)1_{A_1}] = E\left[\frac{p_{13}}{P(A_1)}1_{A_1}\right] = \frac{p_{13}}{P(A_1)}E[1_{A_1}] = p_{13} = P(\Lambda \cap A_1)$$

$$E[P(\Lambda|\mathcal{G}_1)1_{A_2}] = E\left[\frac{p_{21} + p_{23}}{P(A_2)}1_{A_2}\right] = \frac{p_{21} + p_{22}}{P(A_2)}E[1_{A_2}]$$
$$= p_{21} + p_{22} = P(\Lambda \cap A_2)$$

$$E[P(\Lambda|\mathcal{G}_1)1_{A_3}] = E\left[\frac{p_{32}}{P(A_3)}1_{A_3}\right] = \frac{p_{32}}{P(A_3)}E[1_{A_3}] = p_{32} = P(\Lambda \cap A_3)$$

Le reste $(A_1 \cup A_2$, etc.) par linéarité de l'espérance, additivité de probabilité

Construction de $P(\Lambda|\mathcal{G}_1) = \frac{d\nu}{dP_0}$

▶ La mesure ν : $\nu(A) \equiv P(\Lambda \cap A)$, $A \in \mathcal{G}_1$

$$\nu(A_1) = P(\Lambda \cap A_1) = p_{13}$$

$$\nu(A_2) = P(\Lambda \cap A_2) = p_{21} + p_{22}$$

$$\nu(A_3) = P(\Lambda \cap A_2) = p_{32}$$

▶ La mesure P_0 : $P_0(A) \equiv P(A)$, $A \in \mathcal{G}_1$.

$$P_0(A_1) = p_{11} + p_{12} + p_{13}$$

 $P_0(A_2) = p_{21} + p_{22} + p_{23}$
 $P_0(A_3) = p_{31} + p_{32} + p_{33}$

- Notez que $P_0(A)=0 \Rightarrow \nu(A)=0$, $A \in \mathcal{G}_1$: c-à-d $\nu \ll P_0$.
- ► Si $P_0(A) > 0$, $P(\Lambda | \mathcal{G}_1)(\omega) = \nu(A)/P_0(A)$, $\omega \in A \in \mathcal{G}_1$.

Trouvez $E[Y|\mathcal{G}_1]$

Les conditions sur $E[Y|\mathcal{G}_1]$

- ▶ Doit être \mathcal{G}_1 -mesurable, où $\mathcal{G}_1 = \sigma(\{A_1, A_2, A_3\})$.
- $E[E[Y|\mathcal{G}_1]1_{A_1}] = E[Y1_{A_1}] =$
- $ightharpoonup E[E[Y|\mathcal{G}_1]1_{A_2}] = E[Y1_{A_2}] =$
- $E[E[Y|\mathcal{G}_1]1_{A_3}] = E[Y1_{A_3}] =$
- ▶ Autres éléments de G_1 par linéarité.

Espérances conditionnelles de Y

ightharpoonup Par rapport à la sous-tribu \mathcal{G}_1 :

$$E[Y|\mathcal{G}_1] = \begin{cases} (4(p_{11} + p_{13}) + 5p_{12})/P(A_1) & \omega \in A_1 \\ (4(p_{21} + p_{23}) + 5p_{22})/P(A_2) & \omega \in A_2 \\ (4(p_{31} + p_{33}) + 5p_{32})/P(A_3) & \omega \in A_3 \end{cases}$$

Par rapport à la variable aléatoire X

$$E[Y|X] = \begin{cases} \frac{4(p_{11} + p_{13} + p_{21} + p_{23}) + 5(p_{12} + p_{22})}{P(A_1 \cup A_2)} & \omega \in A_1 \cup A_2 = \{X = 1\} \\ (4(p_{31} + p_{33}) + 5p_{32})/P(A_3) & \omega \in A_3 = \{X = 2\} \end{cases}$$

Par rapport à la sous-tribu minimale $\{\emptyset, \Omega\}$:

$$E[Y|\{\emptyset,\Omega\}]=E[Y]$$

ightharpoonup Par rapport à la sous-tribu maximal $\mathcal F$:

$${\it E}[Y|{\cal F}] = Y(\omega)$$

Espérance conditionnelles : une illustration

Vérification de $E[Y|\mathcal{G}_1]$

- ightharpoonup À vérifier : $E[E[Y|\mathcal{G}_1]1_A] = E[Y1_A], A \in \mathcal{G}_1$:
- Pour $A = A_1$:

$$E[E[Y|\mathcal{G}_1]1_{A_1}] = \frac{4(p_{11} + p_{13}) + 5p_{12}}{P(A_1)}E[1_{A_1}] = 4(p_{11} + p_{13}) + 5p_{12}$$

$$E[Y1_{A_1}] = 4(p_{11} + p_{13}) + 5p_{12}$$

- $ightharpoonup A = A_2$, $A = A_3$ semblables
- Le reste par linéarité de l'espérance

Construction de $E[Y|\mathcal{G}_1]$:

- ▶ En général, $E[Y|\mathcal{G}_1](\omega) = E[Y^+|\mathcal{G}_1](\omega) E[Y^-|\mathcal{G}_1](\omega)$.
- ▶ Mêmes cas ∞ , $-\infty$, fini, indéfini, événement par événement
- lci, $Y = Y^+$, alors $E[Y|\mathcal{G}_1] = E[Y^+|\mathcal{G}_1] = \frac{d\rho^+}{dP_0}$, où

$$\rho^+(A) \equiv E[Y^+1_A], \quad P_0(A) \equiv P(A), \quad A \in \mathcal{G}_1,$$

et notez que $\rho^+ \ll P_0$ alors $\rho^+(A) = \int_A E[Y|\mathcal{G}_1]P_0(dx)$.

- Pour $A = A_1$,

 - $P_0(A_1) = P(A_1) = p_{11} + p_{12} + p_{13}$
- Les cas $A = A_2$, $A = A_3$ sont semblables.
- ▶ Pour chaque $\omega \in A \in \mathcal{G}_1$, $E[Y^+|\mathcal{G}_1](\omega) = \rho^+(A)/P_0(A)$.
- ▶ Pour $\omega \in A_1$, par exemple,

$$E[Y^+|\mathcal{G}_1](\omega) = \frac{4(p_{11}+p_{13})+5p_{12}}{p_{11}+p_{12}+p_{13}}.$$

Exercice 13.2.3

- ▶ Soit G_1 et G_2 deux sous-tribus de F.
- (a) Si Z est \mathcal{G}_1 -mesurable et $\mathcal{G}_1\subseteq\mathcal{G}_2$, Z est \mathcal{G}_2 mesurable :
 - Pour tous $z \in \mathbb{R}$, $\{Z \le z\} \in \mathcal{G}_1$ alors $\{Z \le z\} \in \mathcal{G}_2$.
- (b) Si Z est \mathcal{G}_1 -mesurable et \mathcal{G}_2 -mesurable, Z est $(\mathcal{G}_1 \cap \mathcal{G}_2)$ -mesurable :
 - Pour tous $z \in \mathbb{R}$, $\{Z \le z\} \in \mathcal{G}_1$ et $\{Z \le z\} \in \mathcal{G}_2$, alors $\{Z < z\} \in \mathcal{G}_1 \cap \mathcal{G}_2$.

Intersection des tribus

Proposition 13.2.6

▶ Rappel, définition de la v.a. $E[X|\mathcal{G}]$: pour tout $G \in \mathcal{G}$,

$$E[E[X|\mathcal{G}]1_G] = E[X1_G].$$

- Soit X, Y des variables aléatoires, X est \mathcal{G} -mesurable, $E[Y] < \infty$, $E[XY] < \infty$.
- ▶ Proposition : $E[XY|\mathcal{G}] = XE[Y|\mathcal{G}]$ avec probabilité 1.
- Preuve :
 - ▶ Soit G_0 , $G \in \mathcal{G}$, $X = 1_{G_0}$. Alors

$$E[XE[Y|\mathcal{G}]1_G] = E[E[Y|\mathcal{G}]1_{G \cap G_0}] = E[Y1_{G \cap G_0}] = E[XY1_G].$$

$$E[E[XY|\mathcal{G}]1_G] = E[XY1_G].$$

- ▶ G est arbitraire, alors $XE[Y|\mathcal{G}] = E[XY|\mathcal{G}]$ avec probabilité 1, pour $X = 1_{G_0}$.
- $ightharpoonup G_0$ est arbitraire, alors la même chose tient pour X simple (linéarité), positive (convergence dominée), générale.

Proposition 13.2.7 (espérances itérées)

- ▶ Définition de $E[X|\mathcal{G}]$: $E[E[X|\mathcal{G}]1_G] = E[X1_G]$, tous $G \in \mathcal{G}$.
- ▶ Proposition : Si $\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{F}$, $E[E[Y|\mathcal{G}_2]|\mathcal{G}_1] = E[Y|\mathcal{G}_1]$.
- ▶ Preuve : fixez $G \in \mathcal{G}_1 \subseteq \mathcal{G}_2$,

$$E[\ E[E[Y|\mathcal{G}_2]|\mathcal{G}_1]\ 1_G\]=E[E[Y|\mathcal{G}_2]1_G]=E[Y1_G]$$

$$E[E[Y|\mathcal{G}_1]1_G] = E[Y1_G]$$

alors

$$E[E[Y|\mathcal{G}_2]|\mathcal{G}_1] = E[Y|\mathcal{G}_1]$$
 avec probabilité 1.

► Cas spécial, espérance conditionnelle comme projection :

$$E[E[Y|\mathcal{G}]|\mathcal{G}] = E[Y|\mathcal{G}]$$

- Deux autres cas spéciaux :
 - ► E[E[X|Y]] = E[X] pour $\mathcal{G}_1 = \{\emptyset, \Omega\} \subseteq \mathcal{G}_2 = \sigma(Y)$.
 - ► E[E[X|Y,Z]|Z] = E[X|Z] pour $\mathcal{G}_1 = \sigma(Z) \subseteq \mathcal{G}_2 = \sigma(Y,Z)$.

Loi de covariance total

La loi de covariance totale :

$$\mathrm{Cov}[X,Y] = E[\mathrm{Cov}[X,Y|Z]] + \mathrm{Cov}[E[X|Z],E[Y|Z]]$$

Preuve: soit $m_X \equiv E[X] = E[E[X|Z]]$, $m_Y \equiv E[Y] = E[E[Y|Z]]$. Alors

$$Cov[X, Y] = E[E[(X - m_X)(Y - m_Y)]|Z]$$

$$= E[E[(X - E[X|Z] + E[X|Z] - m_X)$$

$$(Y - E[Y|Z] + E[Y|Z] - m_Y)|Z]].$$

Puisque $E[(E[X|Z] - m_X)(Y - E[Y|Z])|Z] = 0]$,

$$Cov[X, Y] = E[Cov[X, Y|Z]] + E[(E[X|Z] - m_X)(E[Y|Z] - m_Y)]$$

= $E[Cov[X, Y]|Z] + Cov[E[X|Z], E[Y|Z]].$

Apérçu du cours 9 (Casella et Berger)

- Statistiques exhaustives (sufficient), complètes, minimales, libres (ancillary)
- Estimation ponctuelle, méthode des moments et maximum de vraisemblance
- L'approche bayésienne et les lois a priori, conjointe et a posteriori
- Estimation ponctuelle bayésienne