Lower Bound Theory

• Lower bound: an estimate of a number of operations needed to solve a given problem

• Tight Lower Bound:

o There exists an algorithm with the same efficiency as the lower bound

• Examples:

Problem	Lower bound	Tightness
sorting (comparison-based)	Ω (nlog n)	yes
searching in a sorted array	Ω (log n)	yes
n-digit integer multiplication	Ω (n)	unknown
multiplication of n-by-n	Ω (n ²)	unknown
matrices		

• Methods of establishing lower bounds:

- o Trivial lower bounds
 - Sorting
- o Information-theoretic arguments (decision trees)
 - Any comparison sorting algorithm (i.e., bubble sort)

- A convenient model of algorithms involving comparisons in which (Like sorting):
- Internal nodes represent comparisons
- Leaves represent outcomes

o Adversary arguments:

- Merging two sorted lists
- It's a game between the adversary and the (unknown) algorithm.
- The adversary has the input and the algorithm asks questions to the adversary about the input.
- The adversary tries to make the algorithm work the hardest by adjusting the input (consistently).
- It wins the "game" after the lower bound time (lower bound proven) if it is able to come up with two different inputs.

• Searching in a sorted list:

- o Objective: A(1) < A(2) < A(3) < ... < A(n)
- o Examples:
 - Comparison-based search algorithms
 - Search list by comparing target element with list elements
 - Sequential search: order n
 - Binary search: order log2n

o Comparison Tree:

- Let us denote TB(n) be the worst case for best algorithm.
- TB(n) = highest of the best tree = Shortest highest of trees
- Each node will have n nodes

o Lemma: A tree of nodes and height h, then $h \ge \lceil \log (n+1) \rceil - 1$

o Then, TB(n) ≥
$$\lceil \log (n+1) \rceil - 1$$

• Finding the Minimum and Maximum

- o Let's consider the complexity of finding the largest and smallest elements. More formally, Given a sequence $X = \langle x_1, x_2, \dots, x_n \rangle$ of n distinct numbers, find indices i and j such that $x_i = \min(X)$ and $x_j = \max(X)$.
- How many comparisons do we need to solve this problem?
 - An upper bound of **2n** -**3** is easy:
 - Find the minimum in n -1 comparisons, and then find the maximum of everything else in n -2 comparisons.
 - Similarly, a lower bound of n -1 is easy, since any algorithm that finds the min and the max certainly finds the max.
 - We <u>can improve</u> both the upper and the lower bound to:

$$[3n/2] - 2$$

- The upper bound is established by the following algorithm:
 - Compare all [n/2] consecutive pairs of elements x_{2i-1} and x_{2i}
 - Put the smaller element into a set S

- Put the larger element into a set L and if n is odd, put x_n into both L and S.
- Then find the smallest element of S and the largest element of L.
- The total number of comparisons is at most:
 - o $\left[\frac{n}{2}\right]$: Build S and L
 - $\circ \left[\frac{n}{2}\right]$ -1: Compute min S
 - o $\left[\frac{n}{2}\right]$ -1: Compute max L
 - $\circ \left[\frac{n}{2}\right] + \left[\frac{n}{2}\right] 1 + \left[\frac{n}{2}\right] 1 = \left[\frac{3n}{2}\right] 2$

• Sorting

o Decision tree for sorting 3 elements (Your textbook)

- o To find the lower bound, we have to find the smallest depth of a binary tree.
- We have n! distinct permutations: n! leaf nodes in the binary decision tree.
- o The balanced tree has the smallest depth which the lowest bound for sorting:

$$\lceil \log(n!) \rceil = \Omega(n \log n)$$

o Method 1:

■
$$\log(n!) = \log(n(n-1)...1)$$

= $\log 2 + \log 3 + ... + \log n > \int_1^n \log x \, dx$

$$= \log e \int_{1}^{n} \ln x dx$$

$$= \log e [x \ln x - x]_{1}^{n}$$

$$= \log e (n \ln n - n + 1)$$

$$= n \log n - n \log e + 1.44$$

$$\geq n \log n - 1.44n$$

$$= \Omega(n \log n)$$

• lower bound for sorting: $\Omega(n \log n)$

o Method 2:

• Using Sterling Approximation $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$ $\log n! \approx \log \sqrt{2\pi} + \frac{1}{2} \log n + n \log \frac{n}{e}$ $\approx n \log n \approx \Omega(n \log n)$

Merging two sorted lists:

- o Merge two sorted sequences A and B with lengths m and n.
- o Binary decision tree:

There are
$$\binom{m+n}{n}$$
 leaf nodes in the binary tree

- o There are $\binom{m+n}{n}$ ways!
- o So the lower bound for merging:

$$\left\lceil \log \binom{m+n}{n} \right\rceil \le m+n-1 \text{ (conventional merging)}$$

 \circ When m = n

$$\log\binom{m+n}{n} = \log\frac{(2n)!}{(n!)^2} = \log((2n)!) - 2\log n!$$

Using Stirling approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log((2n)!) \approx 1/2\log 4p + 1/2\log n + 2n\log(2n/e)$$

 $= 1/2\log n + 2n\log 2 + 2n\log(n/e) + O(1)$

$$log(n!) \approx 1/2logn + nlog(n/e) + O(1)$$

So,

$$\log\binom{m+n}{n} \approx 1/2logn+2nlog2+2nlog(n/e)$$

$$= 2nlog2-1/2logn+O(1) = \Omega((n))$$

Thus,

$$\log\binom{m+n}{n} \approx \Omega((n))$$