

Definition

A set is an unordered collection of objects.

The objects are called the elements or members of the set. The number of distinct elements in a set is the cardinality of the set.

จำนวนสมาชิก

Note:

An empty set (null set) is denoted by \varnothing

>>

Definition

Two sets are equal if and only if they have the same elements. That is, if A and B are sets, then A and B are equal if and only if $\forall x(x \in A) \leftrightarrow x \in B$. We write A = B if A = B if A and B are equal sets.

Definition

The set A is said to be a subset of B if and only if element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of B.

สับเซตแท้

The set A is a proper subset of B if A is a subset of B and $A \neq B$.

Subset

Showing that A is a subset of B

To show that $A \subseteq B$, show that if x belongs to A then x is also belongs to B.

Showing that A is not a subset of B

To show that A $\not\subset$ B, find a single $x \in A$ such that $x \notin B$.

Definition

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integers, we say that S is a finite set and that n is the cardinality (denoted by |S|) of S.

Definition

A set S is said to be infinite if it is not finite.

Theorem

For every set S, (a) $\emptyset \subseteq S$ (b) $S \subseteq S$.

Definition

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by P(S).

$$n(P(S)) = 2$$

>>

 \mathcal{I}

>>

.

>

>>

ر ر

>>

Definition

ผลคุณคาร์ทีเชียน

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all <u>ordered</u> pairs (a, b), where $a \in A$ and $b \in B$. Hence

$$A \times B = \{ (a, b) \mid a \in A \wedge b \in B \}.$$

$$A_1 \times A_2 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) \mid a_i \in A_i \}.$$

>> 3

$$(A \times B) \times C \neq A \times (B \times C)$$

>> 1 >> 2

Set notation with quantifiers

We can restrict the domain of a quantified statement explicitly by making use of a particular notation. For examples,

$$\forall x \in \mathbb{R} (x^2 \ge 0)$$
 For any real $x, x^2 \ge 0$.

$$\exists n \in Z (n^2 = 49)$$
 For some integer $n, n^2 = 49$.

$$A = \{ x \in Z \mid 2x + 5 > 30 \}$$

>>

0

>>

1

>>

2

>>

>

3

>>

4

SET BUILDER NOTATION

```
Q = \{x \in R \mid x = p/q \text{ for some integers p and q } \}
```

EXERCISE

Let U be the universe described by

$$U = \{ x \mid 1000 \le x \le 9999 \}.$$

Let A_i be the set of all numbers in U sur that the ith position is i.

Find the cardinality of the union of A₁ A₂ A₃ and A₄

1

>>

2

>>

>

3

EXERCISE

Let S be the set of all x that x does not contain x

$$S = \{ x \mid x \notin x \}$$

Note that x is also a set.

sets ไม่มีจริง ?

Does S contain S

```
m ses : S € S T→F
```

Russell's paradox
Bertrand Russell (1872-1970)

>>

O

>>

1

>>

2

>>

3

>>

4

OPERATORS

Union
Intersection
Different
Disjoint And = Ø
Complement A=U-A
Power set

Pairwise disjoint
Mutually disjoint
Partition

MUTUALLY DISJOINT

Definition

Sets A₁,A₂, A₃, ...,A_n are Mutually disjoint (pairwise or nonoverlapping)

Iff, any two sets A_i, A_j with distinct subscripts have not any elements in common, precisely $A_i \cap A_j = \text{empty set } \emptyset$.

0

>>

1

>>

2

>>

>

3

SET PARTITION

Definition

A collection of nonempty sets

$$A = \{A_1, A_2, A_3, ..., A_n\}$$

is a Partition of a set A Iff,

$$A = A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$$
 and

 $A_1, A_2, A_3, ..., A_n$ are mutually disjoint.

1

>>

2

>>

3

>>

SET

LOGIC

р	q	r	¬р	q∧r	¬p∨(q∧r)
Т	Т	Т	F	Т	T
Т	Т	F	F	F	F
Т	F	Т	F	F	F
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	Т	F	T	F	T
F	F	Т	Т	F	Т
F	F	F	Т	F	Т

>>

>>

>>

>>

3

MEMBERSHIP

A	В	С	Ac	B∩C	A ^c ∪(B∩C)
T	Т	T	F	Т	T
Т	Т	F	F	F	F
Т	F	T	F	F	F
Т	F	F	F	F	F
F	Т	T	Т	Т	Т
F	Т	F	T	F	T
F	F	Т	Т	F	Т
F	F	F	Т	F	Т

Theorem Given sets A,B and C.

Commutative laws:

 $A \cap B = B \cap A$

 $A \cup B = B \cup A$

Associative laws:

 $(A \cap B) \cap C = A \cap (B \cap C)$

Distributive laws:

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Idempotent laws:

 $A \cap U = A$ $A \cup U = U$

De Morgan's laws:

 $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$

Alternative representation for set difference $A-B = A \cap B'$

Absorption laws:

>>

 $A \cup (A \cap B) = A$

>>

 $(A \cup B) \cap A = A$

SET

```
Question: Prove that (A \cup B)' = A' \cap B'
```

Proof:

```
We show that (A \cup B)' \subseteq A' \cap B' and A' \cap B' \subseteq (A \cup B)'.
```

1) Show $(A \cup B)' \subseteq A' \cap B'$.

 $\forall x \in (A \cup B)'$, then $x \notin (A \cup B)$. Then $x \notin A$ and $x \notin B$.

Since $x \notin A$, then $x \in A'$.

Since $x \notin B$, then $x \in B'$.

It is obtained that $x \in A' \cap B'$.

2) Show A' \cap B' \subseteq (A \cup B)'.

. . . .

.... Q.E.D.

>>

>

Question: Prove that
$$(A \cup B)' = A' \cap B'$$

Proof:
$$(A \cup B)' = \{x | x \notin (A \cup B)\}$$
 Definition of complement $= \{x | \neg (x \in (A \cup B))\}$ Does not belong symbol $= \{x | \neg (x \in A \lor x \in B)\}$ Definition of union $= \{x | \neg (x \in A) \land \neg (x \in B)\}$ De Morgan's law $= \{x | x \notin A \land x \notin B\}$ Does not belong symbol $= \{x | x \notin A \land x \notin B'\}$ Definition of complement $= \{x | x \in (A' \cap B')\}$ Definition of intersection $= A' \cap B'$ Meaning of builder notation

Does not belong symbol Definition of union De Morgan's law Does not belong symbol Definition of complement Definition of intersection Meaning of builder notation

Q.E.D.

EXERCISE

The symmetric difference of A and B, (A⊕B), is the set containing those elements in eith or B, but not in both A and B.

$$(A \oplus (B \oplus C)) = ((A \oplus B) \oplus C)$$

EXERCISE

The symmetric difference of A and B, (A

is the set containing those elements in expectation A or B, but not in both A and B.

$$(A \oplus (B \oplus C)) = ((A \oplus B) \oplus C)$$

Given $A \oplus C = B \oplus C$

Must it be the case that A = B

YES

>>

0

>>

1

>>

2

>>

3

>>

4

>

MULTISETS

A = {1.a,3.b,5.c,2.d} B = {2.b,6.c,3.d} AUB = {1.a,3.b,6.c,3.d} max ANB = {0.a,2.b,5.c,2.d} min A-B = {1.a,1.b} sum A+B = {1.a,5.b,11.c,5.d}

Definition

Multisets are unordered collections of elements where an element can occur as a member more than once.

```
\{ m_1.a_1, m_2.a_2, m_3.a_3, ..., m_r.a_r \}
```

m_i are called the multiplicities of the elements a_i.

OPERATORS: UNION, INTERSECTION, DIFFERENCE, SUM

2

>>

Fuzzy sets

Definition

Multisets are unordered collections of elements where an element can occur as a member more than once.

m_i are called th **Degree of membership** ents a_i.

OPERATORS: UNION, INTERSECTION, DIFFERENCE, SUM

>>

0

>>

1

>>

2

>>

>>

4

Relations & functions

>> 0 >> 1 >> 2 >> 3 >> 4 >>

BINARY RELATION

Definition

Let A,B be sets. A binary relation R from A to B is a subset of the Cartesian product $A \times B$. Given (x,y), ordered pair, in $A \times B$, x is related to y by R, written xRy, iff $(x,y) \in R$.

EXOMPIC (the congruence modulo 2 relation)
The relation R from Z to Z is defined as follows; for all (x,y) ∈ Z×Z, xRy iff x-y is even.

Example, 6R2, 120R36 etc.

function

Definition

A function F from A to B is a relation from A to B, F : $A \rightarrow B$, that satisfies the following properties:

For every $x \in A$, there exists $y \in B$ such that $(x,y) \in F$. For all $x \in A$, and $y, z \in B$, if $(x,y) \in F$ and $(x,z) \in F$ then y=z.

For (x,y) ∈ F, we usually write y = F (x) = image of x under F, and x is called pre-image of y under F.

A is called domain of F.

>>

B is called co-domain of F.

The set of all images of F is called range of F.

COMPOSITION OF FUNCTIONS

Definition

The composition of the functions f and g, denoted by f o g, is defined as

$$(f \circ g)(x) = f(g(x))$$

ex.
$$f_1, f_2 : \mathbb{R} \to \mathbb{R}$$
 $(f_1 \circ f_2)(x) = f_1(f_2(x))$
 $f_1(x) = x^2 - 5$ $= f_1(x+8)$
 $f_2(x) = x+8$ $= (x+8)^2 - 5$

$$f: B \rightarrow C$$
 $g: A \rightarrow B$

(fog): $A \rightarrow C$
 $A \rightarrow B \rightarrow C$
 $g: A \rightarrow C$

 $f(g(x)) \in C$ $x \in A$

>>

0

>>

>>

>>

>

3

>>

Addition / Multiplication

$$f_1: A \rightarrow B$$

 $f_2: A \rightarrow B$

Addition:

$$(f_1 + f_2)(a) = f_1(a) + f_2(a)$$

 $f_2(x) = x + 8$

Multiplication:

$$(f_1f_2)(a) = f_1(a)f_2(a)$$

ex.
$$f_1, f_2 : \mathbb{R} \to \mathbb{R}$$
 $(f_1 + f_2)(x) = x^2 + x + 3$
 $f_1(x) = x^2 - 5$ $f_1 f_2(x) = x^3 + 8x^2 - 5x - 40$

function

Arrow diagram

A function F from A to B.

$$F(1) = b$$

$$F(2) = a$$

$$F(3) = b$$

$$F(4) = e$$

A

·>

0

>>

>>

>>

>

3

>>

INJECTIVE CUNCTION This function is not One-to-one.

Definition

1 000 1 A function F from A to B is injective (or one-to-one)

iff for all elements x and y in A

if
$$F(x) = F(y)$$
 then $x = y$.

Or, equivalently,

if $x \neq y$ then $F(x) \neq F(y)$.

INJECTIVE FUNCTION

Definition

A function F from A to B is injective (or one-to-one)

iff for all elements x and y in A

if F(x) = F(y) then x = y. Or, equivalently,

if $x \neq y$ then $F(x) \neq F(y)$.

SURJECTIVE FUNCTION

Definition

A function from A to B is surjective (or onto)

iff for any element y in B, it is possible to find an element x in A such that

$$y = F(x)$$

This function is Onto.

BIJECTIVE FUNCTION

Definition

A one-to-one correspondence (or bijection) F from A to B is a function that is both one-to-one and onto.

>>

BIJECTIVE FUNCTION

Definition

A one-to-one correspondence (or bijection) F from A to B is a function that is both one-to-one and onto.

BIJECTIVE FUNCTION

Definition

A one-to-one correspondence (or bijection) from A to B is a function that is both one-to-one and onto.

Function Recap

Function: $F:A \rightarrow B / F: a \mapsto b$

domain co-domain

$$F \subseteq A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

AEA F(A) = b bEB

b = image of a

a = pre-image of b

F(A) = Range of F⊆B

<u>สมบัติของ F</u>

- ทุกลมาชิกใน Domain
 ต้องมี image
- 2. แต่ละสมาชิก ต้องมี image แค่ ตัวเดียว 🞖

>>

0

>>

2

>>

3

>>

Inverse of Function

$$f: A \rightarrow B$$
 ; $f^{-1} = B \rightarrow A$

Given f: 1-1 but not onto

* ทุกสมาชิกใน Domain ต้องมี image *

onto:

Given f: onto but not 1-1

f-1: X function

* แต่ละสมาชิก มี image แค่ตัวเดียว *

ex.
$$f_1, f_2 : \mathbb{R} \to \mathbb{R}$$
 $f_1(x) = x^2 - 5$ f_1^{-1} $y = x^2 - 5$ $f_2(x) = x + 8$ $x^2 = y + 5$

$$f_1^{-1} \quad y = x^2 - S$$

$$x^2 = y + S$$

$$x = \pm \sqrt{y + 5}$$

$$f_1^{-1}(x) = \pm \sqrt{x + S} \quad \times \text{ function}$$

$$f_2^{-1}(x)$$
 $y = x + 8$
 $x = y - 8$

$$f_2^{-1}(x) = x - 8$$

$$(f_2^{-1} \circ f_2)(x) = x$$

>>

>>

>>

Floor & Ceiling Function

```
Floor Function [] Ceiling Function []

L]: \mathbb{R} \to \mathbb{Z} \forall r \in \mathbb{R} \exists ! n \in \mathbb{Z} (Lr]=n)

n = \vec{\gamma} \Rightarrow \vec{
```

```
\forall r \in \mathbb{R} \exists ! n \in \mathbb{Z} (\lfloor r \rfloor = n) \text{ iff } (n \leq r) \land (\forall s \in \mathbb{Z} (S \leq r \rightarrow n \geqslant S))
\forall r \in \mathbb{R} \exists ! m \in \mathbb{Z} (\lceil r \rceil = m) \text{ iff } (m \geqslant r) \land (\forall s \in \mathbb{Z} (S \geqslant r \rightarrow S \geqslant m))
```

>>

>>

>>

PROPERTIES

Definition

เป็นเซตเดียวกัน

Let R be a binary relation on A.

R is reflexive iff for all $x \in A$, $x \in A$.

R is symmetric iff for all $x,y \in A$,

if x R y then y R x.

R is transitive iff for all $x,y,z \in A$,

if x R y and y R z then x R z.

```
A = \{a,b,c\}
<u>ex. 1</u>
       R_1 = \{(a,a), (a,b), (a,c)\}
                                  reflextive X
                                  เพราะไม่มี (b,b), (c,c)
                                  symmetric x
                                  เพราะไม่มี (b,a),(c,a)
                                  transitive /
               let n=5
ex. 2
        reflexive
                   Ya e ZL
                    จะได้ว่า a mod # = a mod 5
                    ∴ Va∈Z aRa
                                    congruence modulo n a = b (mod n)
        symmetric
                    \forall a,b \in \mathbb{Z}
                     กำ a R b แปลว่า a mod s = b mod s
                                    · b mod s = a mod s
                                                                        b 2b 3b 4b 5b
                     : bRa
                                                                               a mod b; b ≥ 1
       transitive
                                                                                       a \bmod b : a - b \left\lfloor \frac{a}{b} \right\rfloor
                                                                    -5b -4b -3b -2b -b
                                                                                                  floor function
                                                                       `a mod b
```

3

>>

>>

>>

>>

consider a = b (mod s) on z

let
$$A_i \subseteq \mathbb{Z}, i \geqslant 0$$

 $A_i = \{a \in \mathbb{Z} \mid a \equiv i \pmod{5}\}$

>>

>>

show
$$\mathbb{Z} = \bigcup_{A_i} A_i \cap A_j = \emptyset$$

$$(i \neq j; i \not\equiv j \pmod{5})$$

>>

(0,0),(0,5),(0,10),... (5,0)

$$A_0 = \{0, 5, -5, 10, -10, ...\}$$

$$A_1 = \{1, -4, 6, -9, ...\} = A_5$$

$$A_2 = A_3 = A_4 = A_5 = \{0, 5, -5, ...\}$$

$$a \in A_i$$
, $b \in A_j$ $A_i \cap A_j = \emptyset$
 $\therefore a \not\equiv b \pmod{s}$

3

>>

>>

EQUIVALENCE RELATION

Definition

R is a equivalence relation on A iff

R is a binary relation on A.

>>

R is reflexive.

R is symmetric.

R is transitive.

TRANSITIVE CLOSURE

Definition

Let R be a binary relation on A.

The transitive closure of R is the binary relation R^t on A

That satisfies the following three properties:

R^t is transitive.

 $R \subset R^t$.

S is any other transitive that contains R then $R^t \subset S$.

MUTUALLY DISJOINT

Definition

Sets A₁,A₂, A₃, ...,A_n are Mutually disjoint (pairwise or nonoverlapping)

Iff, any two sets A_i, A_j with distinct subscripts have not any elements in common, precisely $A_i \cap A_j = \text{empty set } \emptyset$.

0

>>

>

>>

>>

Δ.

SET PARTITION

Definition

A collection of nonempty sets

$$A = \{A_1, A_2, A_3, ..., A_n\}$$

is a Partition of a set A lff,

$$A = A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$$
 and

 $A_1, A_2, A_3, ..., A_n$ are mutually disjoint.

0

>>

1

>>

2

>>

>

>>

SET PARTITION

Definition

Given a partition of $A = \{A_1, A_2, A_3, \dots, A_n\}$.

The binary relation induced by the partition, R,

is defined on A as follows:

for all $x,y \in A$, x R y Iff,

there is a subset A_j of the partition such that both x and y are in A_i .

>>

0

>>

>>

>

3

>>

4

SET PARTITION

Theorem

Let A be a set with a partition and

Let R be the relation induced by the partition.

Then R is reflexive, symmetheorem? transitive. to prove the and

EQUIVALENCE CLASS

Definition

Suppose A is a set and R is a equivalence relation on A.

For each a ∈A, the equivalence class of a, denoted [a],

is the set of all elements x in A such that x is related to a by R.

$$[a] = \{x \in A \mid x \in A \}.$$

0

>>

1

>>

2

>>

>>

: >

THEOREM

Lemma 1

Let R be an equivalence relation on A, a b $\in A$.

If a
$$\mathbb{R}$$
 b then $[a] = [b]$.

Lemma 2

Let R be an equivalence relation on A, $a b \in A$, then either $[a] \cap [b] = \emptyset$ or [a] = [b].

Theorem

A is a nonempty set and R is an equivalence relation on A,

then the distinct equivalence classes of R form a partition of A; that is, the union of the equivalence classes is all of A and the intersection of any two distinct classes is empty.

>>

 \mathcal{C}

>>

>>

2

>>

>

3

>>

ANTISYMMETRIC

Definition

A relation R on a set A such that (a,b) and (b,a) are in R only if a=b, for all a,b in A, is called antisymmetric.

```
A = {1,2,3}

R<sub>1</sub> = {(1,1),(1,3),(2,3)} Antisymmetric

R<sub>2</sub> = {(1,1),(2,2),(3,3)} symmetric

Antisymmetric \checkmark

R<sub>3</sub> = {(1,1),(2,3),(3,2)} symmetric

Antisymmetric \times 2 \neq 3
```

$$(a,b),(b,a)$$
 only if $a=b$
 $a \neq b \longrightarrow (a,b) \land (b,a)$

>>

0

>>

>

>>

>

3

>>

EXERCISE

Let R be a relation on the set A

$$R = \{ (a,b) | a < b \}$$

Find the inverse relation R⁻¹ and the complementary relation R.

0

>>

>>

2

>>

>>

MPORTANT

SET is an unordered collection of objects.

DEFINITIONS

- ✓ Subset
- ✓ Proper subset
- ✓ Cardinality
- ✓ Power set
- ✓ Order n-tuple
- ✓ Cartesian product
- ✓ Union, intersection, difference, complement, and symmetric difference

FUNCTIONS

Additive & multiplicative

- Injective function
- Surjective function
- Bijective function
- Strickly increasing and decreasing
- Inverse function
- Composite function
- Floor/ceiling functions
- Factorial function

RELATIONS

- Reflexive
- > Symmetric
- Transitive
- Anti-symmetric
- > Equivalence relations

>>

>>

- Mutually disjoint
- set partition

KEYWORDS

>>

Venn diagram, membership table, congruence modulo relation, arrow diagram,.

>>

You can find many more detail and examples on many websites.

