BÀI 6

LÝ THUYẾT ĐỒ THỊ

Giáo viên: TS. Nguyễn Văn Hiệu

Email: nvhieuqt@dut.udn.vn

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

Giới thiệu

Lý thuyết đồ thị

- Leohard Euler
- Nghành học lâu đời
- Ngành học có nhiều ứng dụng hiện đại

Úng dụng

- Xây dựng mật điện
- Xác định hai máy tính có kết nối hay không
- Xác định đường đi ngắn nhất giữa hai thành phố
- Phân chia kênh truyền cho đài truyền hình
- Lập lịch thi
-

Khái niệm về đồ thị

Đồ thị vô hướng

$$G = (V, E)$$

trong đó:

- V tập đỉnh
- E tập cạnh
- $\forall e \in E$ liên kết đỉnh u và v (không có thứ tự)
- Minh họa:

Ứng dụng

- ✓ Giữa hai máy tính bất kì có nhiều nhất 1 kênh điện thoại.
- ✓ Kênh thoại cho phép liên lạc hai chiều

Khái niệm về đồ thị

Đồ thị có hướng

$$G = (V, E)$$

trong đó:

- V tập đỉnh
- E tập cung
- $\forall e \in E$ liên kết đỉnh u và v (**có thứ tự**)
- Minh họa:

Ứng dụng

✓ Giao thông một chiều

Đồ thị lót (hay nền)

$$G = (V, E)$$

- V tập đỉnh
- E tập cung
 Nếu thay mỗi cung của đồ thị thành một cạnh

Canh song song

- Nếu có hai cạnh liên thuộc cùng đỉnh u và v thì gọi là cạnh song song
- Nếu cạnh có hai đỉnh liên kết trùng nhau gọi là khuyên

Liên thuộc đỉnh, cạnh

$$\mathbf{e} = (u, v) \in E$$

- e cạnh liên thuộc đỉnh u, v
- u, v đỉnh liên thuộc cạnh
- Nếu e là cung, thì
 - u là đỉnh đầu
 - v là đỉnh cuối

Đỉnh cô lập

Đỉnh không liên thuộc với đỉnh khác

$$G = (V, E)$$

- G Đơn đồ thị, nếu G không có khuyên và cạnh song song
- G Đa đổ thị, nếu G không có khuyên
- G- Giả đồ thị, nếu G có thể chứa khuyên, cạnh song song

ĐÔ THI ĐỒ THỊ VẪ HƯỚNG ĐƠN ĐỔ THỊ ĐA ĐÔ THỊ GIẢ ĐỒ THỊ

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

Bậc đồ thị

$$G = (V, E) - v\hat{o}$$
 hướng

• $v \in V$, có p cạnh khuyên và q cạnh liên thuộc. Số bậc của v - deg(v):

$$deg(v) = 2*p + q$$

- Lưu ý:
 - deg(v) = 0, $v \stackrel{\text{de}}{d} dinh \stackrel{\text{co}}{d} lap$
 - deg(v) = 1, v là đỉnh treo

Nữa bậc vào và nữa bậc ra G = (V, E)- có hướng

- $v \in V$,
 - Nữa bậc ra của v là số cung đi ra từ v
 - Nữa bậc vào của v là số cung đi vào v.

Ví dụ

- Tính bậc của các đỉnh của đồ thì G?
- Xác định đỉnh treo đỉnh cô lập?

Định lý

$$G = (V, E)$$

Định lý 1: Tổng số bậc của G là số chẳn:

$$\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{deg}(\mathbf{v}) = 2 |\mathbf{E}|$$

Định lý 2: Nếu G có hướng, thì tổng bậc vào bằng tổng bậc ra $\sum_{v \in V} deg_0(v) =$

$$\sum_{\mathbf{v} \in \mathbf{V}} deg_1(\mathbf{v}) = |\mathbf{E}|$$

Úng dụng

- Số đỉnh bậc lẽ của G là số chẳn.
- Tính số đỉnh của G, biết G có 10 cạnh, 3 đỉnh bậc 1, 2 đỉnh bậc 2, 1 đỉnh bậc 4 và các đỉnh còn lại bậc 3.

Úng dụng

✓ Đồ thị tình yêu

Tên	Giới tính	Sở thích
Α	trai	thời trang, thể thao, nấu ăn
В	gái	thời trang
С	gái	nấu ăn,
D	gái	thể thao, nấu ăn, khiêu vũ
Е	trai	khiêu vũ

- ✓ Hai người có ít nhất cùng 1 sở thích thì có thể ghép đôi
- ? Tìm cách ghép đôi sao cho số người cô đơn là ít nhất

Ứng dụng

$$\checkmark$$
 G = (V, E)

$$\checkmark$$
V = {A, B, C, D, E}

✓ E: (u,v) ∈ E nếu u và v có cùng một sở thích

Úng ụng

- ✓ Có n điểm tham gia hội thảo, mỗi điểm phát tính hiệu cho các điểm còn lại
 - ✓ Tổng các điểm phát ra từ v phải nhỏ hơn băng thông của v.
 - ✓ Thời gian trể từ điểm v đến điểm u phải nhỏ hơn một thông số cho trước.
 - ✓ Đảm bảo băng thông được sử dụng tốt nhất

Ứng dụng

Khái niệm về đồ thị

Úng dụng

Úng dụng

- \checkmark G = (V, E)
- ✓V: tập các điểm tham gia hội thảo
- ✓ E: tập tất cả các kết nối có thể có (đồ thị đầy đủ)
- ✓ Tìm một cây phủ: cây thể hiện việc phát tính hiệu từ một điểm

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

Đường đi

G = (V, E)

✓ Đường đi từ u tới v là tập hợp các đỉnh và các cạnh nối tiếp nhau:

$u,e_1,v_1,e_2,v_2,...,e_n,v$

- ✓ Lưu ý: đường đi có thể lặp đỉnh.
- ✓ Đường đi sơ cấp: đường đi không lặp đỉnh
- ✓ Đường đi đơn: đường đi không lặp cạnh

Chu trình

- ✓ Chu trình là đường đi có đỉnh đầu và cuối trùng nhau ($u \equiv v$)
- ✓ Chu trình sơ cấp: chu trình không lặp đỉnh.
- ✓ Chu trình đơn: chu trình không lặp cạnh

Tính liên thông

$$G = (V, E)$$

- Đồ thị gọi liên thông nếu:
 ∀ u, v ∈ V :
 ∃ đường đi giữa u và v
- Đồ thị có hướng gọi là liên thông mạnh nếu
 ∀ u, v ∈ V:
 ∃ đường đi từ u đến v và ngược lại

Tính liên thông

$$G = (V, E)$$

- Đồ thị có hướng gọi bán liên thông nếu
 - $\forall u, v \in V$:
- ∃ đường đi từ u đến v hoặc ngược lại
- Đồ thị có hướng gọi liên thông yếu nếu đồ thị nền là liên thông

ĐỒ THỊ LIÊN THÔNG MẠNH

C
ĐỒ THỊ LIÊN THÔNG YẾU

C
ĐỒ THỊ BẮN LIÊN THÔNG

Cạnh cắt, đỉnh khớp

$$G = (V, E)$$

 $G = G1 \cup G2$, $G1 \neq \bigoplus$, $G2 \neq \bigotimes$,
 $G1 \cap G2 = \bigoplus$

- Nếu G liên thông \Rightarrow G_i thành phần liên thông
- G liên thông $\Rightarrow \exists !$ một thành phần liên thông (chính là G)
- Đỉnh khớp: đỉnh nếu loại bỏ sẽ thu được lớn hơn 1 thành phần liên thông.
- Cạnh cắt: cạnh nếu loại bỏ sẽ được lớn hơn 1 thành phần liên thông.

Ví dụ

Đồ thị vòng - C_n

- ✓ Có n đỉnh
- ✓ Các đỉnh nối với nhau theo vòng tròn
- ✓ Mỗi đỉnh có bậc là 2
- ✓ Hãy vẽ C₃, C₄, C₅, C₆.

Đồ thị bánh xe - W_n

- ✓ n+1 đỉnh
- ✓ 2n cạnh
- ✓ n đỉnh bậc 3 và 1 đỉnh bậc n
- ✓ Hai đỉnh bất kỳ luôn kề nhau
- ✓ Hãy vẽ W₃ W₄

 W_7

Đồ thị lập phương - Q_n

- ✓ 2ⁿ đỉnh
- \checkmark (n-1).2ⁿ⁻¹ canh
- ✓ Các đỉnh đều có bậc n 1
- ✓ Các đỉnh biểu diễn cho các dãy n bit.
- ✓ Hãy vẽ Q_1 Q_2

Úng dụng

- ✓ Mạng LAN
 - ✓ Mạng cục bộ cấu trúc hình sao
 - ✓ Mạng cục bộ cấu trúc vòng
 - ✓ Mạng cục bộ cấu trúc hỗn hợp
- ✓ Xử lý song song

Đồ thị phân đôi

$$G = (V, E)$$

- G đồ thị phân đôi nếu
 - $V = V_1 \cup V_2,$ $V_1 \neq \bigcirc, V_2 \neq \bigcirc, V_1 \cap V_2 = \bigcirc$
 - $\bullet \quad \forall \ (u, v) \in E \Rightarrow u \in V_i, v \in V_j, i \neq j$
- G đồ thị phân đôi đầy đủ nếu
 - ✓ G là độ thị phân đôi
 - \checkmark $\forall u \in V_1 \text{ và } \forall u \in V_2 \Rightarrow (u,v) \in E$

Ví dụ

Đồ thị phân đôi đầy đủ

$$G = (V, E)$$

- G đồ thị phân đôi nếu

 - $\forall (u, v) \in E \Rightarrow u \in V_i, v \in V_j, i \neq j$
- G đồ thị phân đôi đầy đủ nếu
 - G là độ thị phân đôi
 - $\forall u \in V_1 \text{ và } \forall u \in V_2 \Rightarrow (u,v) \in E$

Đồ thị có phân đổi không?

✓ Không là đồ thị phân đôi

Đồ thị có phân đổi không?

✓ Đồ thị phân đôi

Xác định đồ thị phân đôi

- ✓ Dùng breadth first search
- ✓ Đánh số đỉnh

$$L_{\text{v thuộc V}} = \begin{cases} 0, n\text{\'e}u \text{ v thuộc V1} \\ 1, n\text{\'e}u \text{ v thuộc V2} \\ 2, \text{ chưa duyệt} \end{cases}$$

✓ Đồ thị nào sau là phân đôi?

Xác định đồ thị phân đôi

Bài tập

Đồ thị có phân đôi không?

Tìm đồ thị G

- a. G có 12 cạnh và mọi đỉnhcó bậc 2
- b. G có 15 cạnh, ba đỉnh bậc4, mọi đỉnh còn lại có bậc 3
- c. G có 6 cạnh và mọi đỉnh còn lại có bậc bằng nhau

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

- Máy tính không thể biểu diễn đồ thị dưới dạng hình vẽ thông thường.
- Dồ thị được biểu diễn khác nhau khi tiến hành lưu trữ.

- ☐ Tiêu chuẩn
 - Cấu trúc dữ liệu phải đơn giản,
 - Cấu trúc dữ liệu phù hợp với ứng dụng,
 - Cấu trúc dữ liêu dễ biểu diễn,
 - Cấu trúc dữ liệu dễ cài đặt.

Ma trận kề

$$\mathbf{G} = (\mathbf{V}, \mathbf{E}),$$

$$V = \{v_I, \dots, v_n\}$$

Ma trận kề là ma trận vuông
 A={a_{ij}} cấp n:

$$\mathbf{a}_{ij} = \begin{cases} 1, & n \in u(v_i, v_j) \in E \\ 0, & tr w \partial ng \ h \circ p \ tr \acute{a}i \ l \dot{a}i \end{cases}$$

Ma trận kề

- Đồ thi vô hướng
 - ✓ Có tính chất đổi xứng
 - ✓ Tổng số phân tử trên một dòng hoặc một cột bằng số bậc của đỉnh tương ứng.
 - ✓ G liên thông khi và chỉ khi phần tử ngoài đường chéo chính của T đều lớn hơn 0.

$$T = A^1 + A^2 + \dots + A^{n-1}$$

Ma trận kề

G = (V, E), có hướng

$$V = \{v_I, \dots, v_n\}$$

• Ma trận kề là ma trận vuông $A=\{a_{ij}\}$ cấp n, với **cung**:

$$\mathbf{a}_{ij} = \begin{cases} 1, & n \in u(v_i, v_j) \in E \\ 0, & tr w \circ ng \ h \circ p \ tr \acute{a}i \ l \dot{a}i \end{cases}$$

Ma trận kề

- Đồ thị có hướng
 - ✓ Tổng các phần từ trên dòng i bằng số bậc ra của đỉnh i.
 - ✓ Tổng các phần từ trên cột i bằng số bậc vào của đỉnh i.
 - ✓ G liên thông mạnh khi và chỉ khi phần tử ngoài đường chéo chính của T đều lớn hơn 0.

$$T = A^1 + A^2 + + A^{n-1}$$

- ✓ Biểu diễn đồ thị bên phải bằng ma trận kề và kiểm tra các tính chất?
 - ✓ Sẽ sắp xếp theo: a,b,c,d,e,f.

$$\{v_i, v_j\}$$
 hàng cột

- G đồ thị có trọng số
 - ✓ Mỗi $(v_i, v_j) \in E$ gán một giá trị c_{ii}
 - ✓ C ={C[i,j]: ∀i,j∈ V}- Ma trận trọng số
 - ✓ C[i,j]= $\begin{cases} c_{ij} & \text{n\'e} u (v_i, v_j) \in E \\ O & \text{tr\'ai l\'ai.} \end{cases}$
 - ✓ O có thể 0 hoặc ∞

✓ Xây dựng ma trận trọng số của đồ thị bên dươi

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề, ma trận trọng số
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

Ma trận liên thuộc

$$G = (V,E)$$

$$V = \{v_1, ..., v_n\}, E = \{e_1, ..., e_m\}$$

• Ma trận liên thuộc là ma trận $A=\{A[i,j]\}_n^m$:

$$A[i,j] = \begin{cases} 1: v_i \text{ là đỉnh đầu của ej} \\ 0: v_i \text{ không là đỉnh đầu của ej} \end{cases}$$

 A là ma trận liên thuộc giữa đỉnh và cạnh

Ma trận liên thuộc

- Đồ thị vô hướng
 - Số lượng các phần tử khác không trên một dòng chính là bậc của đỉnh tương ứng với dòng đó.

Ma trận liên thuộc

$$G = (V,E) - co hướng$$

$$V = \{v_1, ..., v_n\}, E = \{e_1, ..., e_m\}$$

Ma trận liên thuộc của G là
 ma trận A={A[i,j]}^m_n trong đó

$$A[i,j] = \begin{cases} 1: \ v_i \text{ là đỉnh đầu của ej} \\ -1: v_i \text{ là đỉnh cuối của ej} \\ 0: \ \text{ngược lại} \end{cases}$$

 Ma trận A là ma trận liên thuộc giữa đỉnh và cung

Ma trận liên thuộc

- Đồ thị có hướng
 - Số lượng các **phần tử 1** trên dòng chính là bán bậc ra của đỉnh tương ứng với dòng đó.
 - Số lượng các phần tử -1 trên dòng chính là bán bậc vào của đỉnh tương ứng với dòng đó.

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

Danh sách cạnh (cung)

- Dùng với đồ thị: |E| < 6|V|</p>
- Danh sách cung(cạnh) của G sẽ bao gồm hai mảng 1 chiều có kích thước |E|:
 - Mảng Đầu lưu các đỉnh đầu của các cung
 - Mảng Cuối lưu đỉnh cuối của các cung

Danh sách cung

- Đồ thị có hướng
 - Số lần xuất hiện của một đỉnh trên mảng Đầu, chính là bán bậc ra của đỉnh đó.
 - Số lần xuất hiện của một đỉnh trên mảng Cuoi, chính là bán bậc vào của đỉnh đó

Đầu	Cuối
1	3
4	1
3	4
2	4
4	2

Nội dung

- Giới thiệu
- Khái niệm cơ bản
 - Đồ thị có hướng và đồ thị vô hướng
 - Bậc, nửa bậc vào, nửa bậc ra
 - Đường đi chu trình, tính liên thông
- Biểu diễn đồ thị
 - Ma trận kề
 - Ma trận liên thuộc
 - Danh sách cạnh (cung)
 - Danh sách kề

Danh sách kể

$$G = (V, E)$$

$$V=\{v_1,\ldots,v_n\},$$

- Đồ thị G có thể được biểu diễn bằng n danh sách liên kết, trong đó
 - ✓ Mỗi danh sách liên kết thứ i sẽ biểu diễn các đỉnh kề với đỉnh v_i

Danh sách kể

$$G = (V,E)$$

$$V=\{v_1,\ldots,v_n\},$$

- Đồ thị G có thể được biểu diễn bằng n danh sách liên kết, trong đó
 - ✓ Mỗi danh sách liên kết thứ i sẽ biểu diễn các đỉnh kề với đỉnh v_i

Bài tập

- Lập trình nhập đồ thị với các cấu trúc dữ liệu đã mô tả.
- Lập trình cho phép chuyển đổi từ cấu trúc dữ liệu biểu diễn đồ thị dưới dạng ma trận kề sang danh sách kề và ngược lại

What NEXT?