1 OHMOV ZAKON

Osnovni princip premikanja elektronov v električnih vezjih je opredeljen z Ohmovim zakonom, ki ga zelo enostavno zapišemo z en. 1:

$$I = \frac{U}{R} \tag{1}$$

Kljub enostavnosti enačbe en. 1 imajo učenci/dijaki/študentje precej težav s samo uporabo enačbe. Saj se količine kot so tok, napetost in upornost v elektrotehniki znajdejo prav povsod po vezju in je potrebno dobro razumevanje področja, za uporabo dotičnih vrednosti.

1.1 Odvisnost električnih količin

Danes lahko enostavno pokažemo linearno odvisnost električnega toka skozi nek prevodnik s konstantno upornostjo (npr. upor). V času Georga Simona Ohma pa je bilo to precej težko, saj v letu 1826 ni razpolagal ne z zanesljivmi napetnostnimi viri, niti s priročnimi merilnimi napravami.

1.1.1 NALOGA: OHMOV ZAKON - MERITVE

Sestavite poljubno vezje, v katerega boste vključili:

• napetostni vir, ki mu lahko nastavljamo izhodno napetost (sestavite po sl. 1),

Slika 1: Preprost nastavljiv vir napetosti.

• 3 ali več uporov različnih upornosti ($R_{1..4}=100\Omega..10k\Omega$),

Na to za vse te upore izmerite: napetost na uporu in tok, ki teče skozi upor pri vsaj petih različnih napajalnih napetostih. Izpolnite tudi tbl. 1.

dr. David Rihtaršič

Tabela 1: Relacija električnega toka in napetosti na uporu.

upor		R_1			R_2			R_3	
	$U_R[V]$	$I_R[mA]$	R_R	$U_R[V]$	$I_R[mA]$	R_R	$U_R[V]$	$I_R[mA]$	R_R

1.1.2 NALOGA: I(U) KARAKTERISTIKA LINEARNEGA UPORA

Na isti grafi narišite vse tri I(U) karakteristike uporov.

Slika 2: I(U) karakteristike uporov.

dr. David Rihtaršič