Esame Di Progettazione di Sistemi Digitali -Canale AL 16/02/2021 (A)

Esercizio 1 (3 punti)

La funzione di 4 variabili, $f(x_4, x_3, x_2, x_1)$, vale 1 se $x_4 + x_2x_1 = 0$ mentre risulta non specificata (termini *don't care*) se si verifica la condizione $x_4x_1 = 1$, mentre la funzione $g(x_4, x_3, x_2, x_1)$, vale 1 se x_4 ed x_2 sono uguali. Progettare la rete che realizza le funzioni f e g utilizzando una PLA con il numero minimo di righe.

Tabella della verità:

x4	x3	x2	x1	f	g
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	-	0
1	0	1	0	0	1
1	0	1	1	-	1
1	1	0	0	0	0
1	1	0	1	-	0
1	1	1	0	0	1
1	1	1	1	-	1

 $g(x_4, x_3, x_2, x_1)$ è ovviamente lo XNOR tra x_4 ed tra x_2 .

$$g(x_4, x_3, x_2, x_1) = x_4 \cdot x_2 + \bar{x}_4 \cdot \bar{x}_2$$

PLA:

Esercizio 2 (8 punti)

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri A, B, O nel seguente modo:

x1, x0	carattere
00	A
01	В
11	О

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1=1 quando riceve in ingresso la sequenza BOA o la sequenza BAO e z0=1 quando riceve in ingresso la sequenza BOB. Sono ammesse sovrapposizioni. Realizzare la parte combinatoria con ROM e usare almeno un flip-flop di tipo T.

a) Automa:

b) tabella degli stati, utilizzando un flip-flop T per Q1 e un flip-flop D per Q0

PS	\mathbf{Q}_1	Q_0	x1	x0	NS	Q ₁ '	Q ₀ '	T ₁	z 1	z 0
R	0	0	0	0	R	0	0	0	0	0
R	0	0	0	1	В	0	1	0	0	0
R	0	0	1	0	-	-	-	-	-	-
R	0	0	1	1	R	0	0	0	0	0
В	0	1	0	0	BA	1	1	1	0	0
В	0	1	0	1	В	0	1	0	0	0
В	0	1	1	0	-	-	-	-	-	-
В	0	1	1	1	ВО	1	0	1	0	0
BO	1	0	0	0	R	0	0	1	1	0
BO	1	0	0	1	В	0	1	1	0	1
ВО	1	0	1	0	-	-	-	-	-	-
BO	1	0	1	1	R	0	0	1	0	0
BA	1	1	0	0	R	0	0	1	0	0
BA	1	1	0	1	В	0	1	1	0	0
BA	1	1	1	0	_	-	-	-	-	-
BA	1	1	1	1	R	0	0	1	1	0

c) realizzazione di T_1 , Q_0 ,z1,z0 tramite ROM

Esercizio 3 (5 punti)

Analizzare la macchina a stati mostrata in figura. Scrivere le tabelle degli stati futuri e di uscita e disegnare l'automa (diagramma di transizione degli stati).

Tabella degli stati

\mathbf{Q}_1	\mathbf{Q}_0	X 1	X 0	S	R	T	Q ₁ '	Q ₀ '	Z
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	1	0	1	0
0	0	1	1	0	0	1	0	1	0
0	1	0	0	1	0	0	1	1	0
0	1	0	1	1	0	0	1	1	1
0	1	1	0	1	0	1	1	0	0
0	1	1	1	1	0	1	1	0	1
1	0	0	0	0	1	1	0	1	0
1	0	0	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	0
1	0	1	1	0	1	1	0	1	0
1	1	0	0	0	1	1	0	0	0
1	1	0	1	0	1	1	0	0	1
1	1	1	0	0	1	1	0	0	0
1	1	1	1	0	1	1	0	0	1

PS	X 1	X 0	PS	Z
S 0	0	0	S0	0
S 0	0	1	S0	0
S 0	1	0	S 1	0
S 0	1	1	S 1	0
S1	0	0	S3	0
S 1	0	1	S 3	1
S 1	1	0	S2	0
S 1	1	1	S2	1
S2	0	0	S 1	0
S2	0	1	S 1	0
S2	1	0	S 1	0
S2	1	1	S 1	0
S3	0	0	S0	0
S3	0	1	S0	1
S3	1	0	S0	0
S3	1	1	S0	1

Automa

Esercizio 4 (1+1+1+2 punti)

- ullet Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di *f*
- Scrivere le espressioni minimali SOP e POS di f

$$f = d(a\bar{b} + cb) + (a \oplus c)d(\bar{a}\bar{b} + cb) =$$

$$= a\bar{b}d + cbd + (a \oplus c)d(\bar{a}\bar{b} \cdot \bar{c}b) =$$

$$= a\bar{b}d + cbd + (a \oplus c)d(\bar{a} + b) \cdot (\bar{c} + \bar{b})$$

$$= a\bar{b}d + cbd + (a\bar{c} + \bar{a}c)d(\bar{a} + b) \cdot (\bar{c} + \bar{b})$$

$$= a\bar{b}d + cbd + d(a\bar{c} + \bar{a}c)(\bar{a}\bar{c} + \bar{a}\bar{b} + b\bar{c}) = a\bar{b}d + cbd + d(ab\bar{c} + \bar{a}\bar{b}c)$$

$$= a\bar{b}d + bcd + ab\bar{c}d + \bar{a}\bar{b}cd$$

Tabella della verità:

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Esercizio 5 (2+2+1 punti)

Dati i numeri X=32,25 e Y=-16,75 (a) portarli nella rappresentazione in virgola mobile secondo lo standard IEEE 754, (b) eseguire l'operazione X+Y, e (c) rappresentare il risultato sia in notazione decimale che in esadecimale.

(a) conversione

$$X=32,25_{10}=32+0.25=2^5+2^{-2}=(100000,01)_2=(1,0000001)_2\cdot 2^5$$

segno=+

esponente = 127+5 =132 = 10000100

In esadecimale: 42010000

$$Y=-16,75_{10} = -(16+0.5+0.25) = 2^4+2^{-1}+2^{-2} = (10000,11)_2 = -(1,000011)_2 \cdot 2^4$$

segno= -

esponente = 127+4 =131 = 10000011

In esadecimale: C1860000

(b) somma X+Y

1. allineo gli esponenti, scrivendo

 $Y = -(1,000011)_2 \cdot 2^4 = -(0,1000011)_2 \cdot 2^5$

2. eseguo il complemento a 2 della mantissa

 $m_Y = -(0,1000011) = 1,0111101$

3. eseguo la somma, <u>estendendo</u> il segno

4. normalizzo Z

(c) conversione di Z

segno=+

esponente = $3 \rightarrow 130 \rightarrow 10000010$

In esadecimale: 41780000

Esercizio 6 (4 punti)

Descrivere in SystemVerilog un flip-flop di tipo T con reset asincrono.