UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

SEL318 – Laboratório de Circuitos Eletrônicos III Sensor do Volume de Combustível do Carro Baja

Autor: Bruno Caceres Carrilho 7656508

São Carlos

2017

LISTA DE FIGURAS

Figura 1: Sensor de Nível Capacitivo
Figura 2: Configuração astável do CI 555
Figura 3: Configuração monoestável do CI 55514
Figura 4: Visão do fundo do tanque
Figura 5: Visão do corte no tanque apresentado pela Figura 4
Figura 6: Esquema elétrico do circuito de detecção de nível
Figura 7: Fluxograma do programa de detecção de nível
Figura 8: Medidas dos sensores individuais25
Figura 9: Nível estimado
Figura 10: Truncamento pela Média x Filtro de Média27

LISTA DE TABELAS

Tabela 1: Valores mínimos de capacitância dos sensores	4
--	---

SUMÁRIO

1. Introdução	9
2. Embasamento teórico	11
2.1. Sensor de Nível Capacitivo	11
2.2. Circuito Integrado 555	12
2.2.1 Configuração Astável	13
2.2.2. Configuração Monoestável	14
3. Métodos	17
3.1. Tanque de Combustível	17
3.2. Circuito de Detecção de Nível	18
3.3 Fluxograma do Programa de Cálculo do Nível	21
4. Resultados e Discussão	23
4.1. Capacitância	23
4.2. Circuito Detector	24
4.3. Simulação da Detecção de Nível	25
5. Conclusões	29
Anexo 1	31

1. Introdução

O projeto Baja SAE consiste na construção de protótipos de carros para competições offroad por universitários, envolvendo várias etapas de projeto. A Equipe EESC USP Baja SAE possui subsistemas dedicados à partes especificas do projeto do carro, e o objetivo deste trabalho é a construção de um sensor para a captação do volume de combustível do tanque do carro para o subsistema da eletrônica.

Para solucionar este problema cogitou-se diversas soluções, como utilização de boias, entretanto, por restrição de segurança não é permitido que fios elétricos saiam do tanque de combustível. Portanto, pensou-se em outras duas soluções, uma utilizando fibras ópticas, que entrariam pela tampa percorreriam toda a extensão do tanque e retornariam para a tampa, assim fazendo-se possível a detecção do volume pela variação da quantidade de luz detectada, uma vez que a variação do volume de combustível causa uma variação no índice de refração do meio externo à fibra, assim variando a quantidade de luz dispersada pela fibra. Entretanto, como não possuímos o detector de luz para fibra ópticas essa ideia foi posta de lado.

A outra solução, a qual foi realizada neste projeto, funciona pelo princípio da variação de capacitância pela variação do dielétrico entre as placas do capacitor, ou seja, foi proposto que o combustível seja o dielétrico do capacitor. Mas como dito anteriormente não é permitido que fios elétricos saiam do tanque, porém aproveitando detalhes construtivos do tanque de combustível pode-se empregar esse capacitor externo ao tanque de tal modo que o combustível seja o dielétrico.

2. Embasamento teórico

2.1. Sensor de Nível Capacitivo

Levando-se em consideração um capacitor de placas paralelas podemos equacionar a variação de capacitância em relação a variação do dielétrico do capacitor.

$$C = \frac{\varepsilon A}{d} \tag{1}$$

Expandindo a equação do capacitor em dois capacitores de áreas variáveis, um para o dielétrico do ar, e o outro para o dielétrico do liquido, teremos:

$$C = \frac{\varepsilon_o w(L - h)}{d} + \frac{\varepsilon_l wh}{d} \tag{2}$$

$$C = \frac{w(\varepsilon_o(L-h) + \varepsilon_l h)}{d} \tag{3}$$

$$C = \frac{w(\varepsilon_o(L-h) + \varepsilon_l h)}{d} \tag{4}$$

$$C = \frac{(\varepsilon_l - \varepsilon_o)wh}{d} + \frac{\varepsilon_o wL}{d}$$
 (5)

Observando a equação (5) nota-se um comportamento linear da variação do liquido com a variação da capacitância.

Figura 1: Sensor de Nível Capacitivo.

Com isso pode-se montar circuitos para estimar a capacitância, e portanto, o nível de liquido.

2.2. Circuito Integrado 555

O circuito integrado 555 possui diversas configurações, entre elas duas importantes para este projeto, são elas: configuração astável e configuração monoestável.

2.2.1. Configuração Astável

A configuração astável produz uma oscilação (no pino 3) de saída do CI. Pode-se observar essa configuração na Figura 2.

Figura 2: Configuração astável do CI 555.

No circuito astável pode-se alterar o tempo Tm, e Ts. Quando o capacitor carrega até $\frac{1}{3}$ Vs, o trigger do 555 dispara e a tensão no pino de saída para tensão Vs, e quando a tensão no capacitor chega a $\frac{2}{3}$ Vs, o 555 corta a saída e o pino de saída para Vd, que no caso é o terra (0V).

Pode-se calcular o duty cycle, período e frequência pelas seguintes equações:

$$T_m = 0.7(R_1 + R_2)C_1 (6)$$

$$T_{s} = 0.7R_{2}C_{1} \tag{7}$$

$$T = 0.7(R_1 + 2R_2)C_1 \tag{8}$$

$$f = \frac{1.4}{(R_1 + 2R_2)C_1} \tag{9}$$

2.2.2. Configuração Monoestável

A configuração monoestável do CI 555 é a configuração que apenas o estado logico baixo '0' é estável, com isso pode-se criar um circuito que permaneça no estado logico alto '1' por tempo predeterminado, utilizando-se um capacitor na configuração apresentada pela Figura 3.

Figura 3: Configuração monoestável do CI 555.

No circuito monoestável quando o trigger é disparado (nível lógico baixo '0') a saída do CI (pino 3) vai para nível logico alto, e permanece em nível logico alto até que a tensão no capacitor atinja $\frac{2}{3}$ Vs, então a saída do circuito ira para nível lógico baixo, e permanecerá baixo até que o trigger seja disparado novamente. A equação da temporização do pulso em nível logico é apresentado pela equação (10).

$$t = 1,1RC \tag{10}$$

3. Métodos

3.1. Tanque de Combustível

Como dito na introdução o capacitor utilizado como sensor deve ficar na parte externa do tanque, pois devido a questões de segurança não se permite que fios saiam de dentro do tanque, e o posicionamento dos capacitores externo ao tanque foram favorecidos pelo aspecto construtivo do tanque, que possui três cavidades na parte inferior do tanque, apresentado pelas Figuras 4 e 5.

Figura 4: Visão do fundo do tanque.

As medidas das cavidades do tanque foram realizadas por aproximação, resultando em aproximadamente 7cm de profundidade e 3cm de diâmetro, e uma distância entre as cavidades de 3cm.

Figura 5: Visão do corte no tanque apresentado pela Figura 4.

3.2. Circuito de Detecção de Nível

Para a detecção de nível foi proposto a utilização do circuito integrado 555 na configuração monoestável em conjunto com os sensores capacitivos, assim a cada nível do liquido o circuito apresentará um tempo em nível logico alto proporcional ao nível de combustível presente no tanque. Portanto, montou-se três osciladores monoestáveis, um para cada capacitância disposta entre as três cavidades do tanque.

Para realizar a contagem de tempo em nível logico alto utilizou-se a contagem de tempo por software. Uma vez com a janela de tempo é definida pela capacitância do tanque, assim gerando uma determinada medida de tempo equivalente ao nível de combustível no tanque, que entrara em um dos pinos do microcontrolador do Arduino UNO, e através da multiplexação realiza-se a leitura dos três sensores.

Uma vez que calculado o nível do tanque o microcontrolador retorna a saída para três LEDs conectados ao microcontrolador por um conjunto de potência, formado por transistores, para que o microcontrolador não forneça mais corrente do que é capaz. Poderia utilizar mais LEDs, porem o carro possui uma limitação de consumo de corrente, portanto preferiu-se utilizar apenas seis, cinco para indicação do volume e um para indicação de alerta. Pode-se observar o esquema elétrico do circuito de detecção na Figura 6.

Figura 6: Esquema elétrico do circuito de detecção de nível.

3.3. Fluxograma do Programa de Cálculo do Nível

Para o fluxograma de cálculo de nível devemos considerar duas hipóteses, a primeira quando o carro esteja parado, assim devemos considerar a possibilidade de abastecimento do carro, a segunda, o carro em movimento, assim devemos considerar que não é possível o aumento de combustível no tanque, portanto, podemos eliminar ruídos na medição caso a medida colhida apresente um nível de combustível maior que as medidas anteriores, outra consideração importante é a possibilidade de vazamento, assim deve-se verificar caso as medidas sequencialmente resultem em níveis de combustíveis menores do que se espera. O fluxograma do programa desenvolvido para a estimação do nível de combustível no tanque pode ser visto na Figura 7.

Figura 7: Fluxograma do programa de detecção de nível.

4. Resultados e Discussão

4.1. Capacitância

Para o cálculo da capacitância dos sensores, por simplificação levou-se em consideração o formato mais simples de capacitor, o de placas paralelas. Com isso calculou-se as capacitâncias máximas e mínima as quais correspondem respectivamente ao tanque cheio e ao tanque vazio. Realizou-se uma pesquisa sobre o dielétrico da gasolina, encontrou-se o valor do dielétrico relativo, o qual possui valor igual a 2, assim com o tanque cheio a capacitância será o dobro de quando o tanque estiver vazio.

O cálculo realizado para a capacitância utilizou-se as seguintes medidas para o cálculo da área: 7cm x 2,5cm; e uma distância entre as placas de 3cm. Para o cálculo desprezou-se o dielétrico do tanque. Resultando assim para o tanque cheio: 1,0325pF; e para o tanque vazio 0,516pF.

Para estimar a capacitância mínima para um bom funcionamento do programa e circuito, deve-se fazer algumas considerações, como um bom valor de tempo para a janela de tempo de tal modo que gere valores de tempo significativos para se distinguir o ruído e possuir uma boa resolução de variação. Então, levando-se em consideração o valor máximo de clock do microcontrolador utilizado, que é 16MHz, podemos contar o tempo em microssegundos, que fornece um bom fundo de escala para realizar cálculos mais precisos e eliminar ruídos da capacitância fazendo um simples cálculo da média dos valores dos sensores.

Estimando uma resolução de contagem mínima de 5000 microsegundos para o tanque vazio, portanto 10000 para o tanque cheio, e considerando a frequência de variação do nível do tanque seja consideravelmente menor que a de geração de tempo, uma vez que a variação mecânica de nível é mais lenta que a contagem mínima de tempo, temos os tempos das janelas: 5ms para o

tanque vazio e 10ms para o tanque cheio. Com esses valores, podemos recorrer a equação 10, e estimar a capacitância mínima (caso para o tanque vazio, pois quando cheio a capacitância sempre será maior) para o devido funcionamento do sistema. A Tabela 1 apresenta os valores de capacitância mínima para o devido funcionamento do circuito.

Resistencia	Capacitância
$47\mathrm{k}\Omega$	96,71nF
100kΩ	45,45nF
220kΩ	20,66nF
470kΩ	9,67nF
$8.8~\mathrm{G}\Omega$	0,516pF

Tabela 1: Valores mínimos de capacitância dos sensores.

Como podemos observar na Tabela 1, os valores de capacitância estão cerca de dez mil vezes superior ao calculado para o capacitor de placas paralelas máximo (utilizando-se valores de resistências a baixo de mega) capaz de encaixar nas cavidades do tanque (último valor da tabela). Entretanto, existe uma solução simples, pode-se utilizar um maior valor de tempo para as estimações para dez vezes maiores, assim pode-se utilizar uma resistência de $880 \mathrm{k}\Omega$ para a capacitância mínima do tanque. Uma outra solução seria utilizar um circuito multiplicador de capacitância e assim escalar para um valor de capacitância funcional.

4.2. Circuito Detector

Realizou-se testes no circuito montado no protoboard, o circuito apresentou a resposta esperada. Entretanto, o protoboard apresenta capacitâncias parasitas, além de trilhas defeituosas

que causaram em ocasiões oscilações indesejadas, offset de tensão e atenuação de sinal. Para efeito de teste utilizou-se capacitores eletrolíticos de 4,7µF para simular os sensores.

4.3. Simulação da Detecção de Nível

O software desenvolvido não chegou a ser posto a teste de pratica, entretanto realizou-se simulações do software utilizando-se a ferramenta MATLAB.

Figura 8: Medidas dos sensores individuais.

Pode-se observar na Figura 8 os valores de tempo medidos em cada medida para cada sensor, cada conjunto de medidas de um determinado sensor apresentado por uma cor diferente,

azul, vermelho e preto. A Figura 8 apresenta os valores medidos de capacitância incluindo ruídos na capacitância e a variação de nível devido à movimentação do carro.

Figura 9: Nível estimado.

A Figura 9 apresenta em verde a média dos três sensores a cada medida realizada, em preto observa-se o nível estimado pelo algoritmo de truncamento pela média desenvolvido, em azul observa-se um algoritmo simples, um filtro de média. Para uma melhor visualização pode-se observar na Figura 10, um zoom da Figura 9, as diferentes respostas.

Figura 10: Truncamento pela Média x Filtro de Média.

Em preto observa-se uma medição de nível claramente mais suave, evitando variações indesejadas, entretanto o algoritmo apresenta uma resposta de nível ligeiramente mais baixa que a resposta apresentada pelo Filtro de Média, porém o algoritmo desenvolvido apresenta uma resposta mais realista do nível verdadeiro.

5. Conclusão

O circuito apresentou a resposta esperada e satisfatória atendendo às expectativas de resposta, portanto pode-se dar continuidade ao projeto utilizando o esquema proposto por este trabalho. Para a continuidade do projeto deve-se recalcular as capacitâncias utilizando equações para o formato adequado da cavidade do tanque, e com isso ajustar o software para valores de janela de tempo para que se possa utilizar valores de resistências menores, ou analisar a possibilidade de se projetar um multiplicador de capacitância que atenda aos requisitos mínimos desse projeto.

Deve-se colocar o software de detecção em teste e analisar o seu comportamento e calibrar seus valores para o devido funcionamento do sistema de detecção de nível de combustível.

ANEXO

Anexo 1

Os programas abaixo foram utilizados para a estimação de nível utilizando o microcontrolador Arduino UNO e a simulação do algoritmo utilizando o software MATLAB.

Nivel.ino

```
int trigger = 12;
int movimento = 11;
int led1 = 10;
int led2 = 9;
int led3 = 8;
int led4 = 7;
int mux0 = 6;
int mux1 = 5;
int ledR = 4;
unsigned long started at time = 0;
unsigned long mean, H_mean, aux;
unsigned long Sensors response[3], Means[200];
unsigned long Aux = 1\overline{000};
unsigned int counter = 0;
int cnt = 0;
int ok = 0;
int i = 0;
int index = 0;
int fail = 0;
int verif = 0;
int dspl = 0;
void interrupt process();
void mean_function();
void higher_mean();
void higher mean verification();
void Trigger();
void mux();
```

```
void leds display();
void setup() {
  Serial.begin(9600);
 pinMode(trigger,OUTPUT);
 pinMode(movimento, INPUT);
 pinMode(led1,OUTPUT);
  pinMode(led2,OUTPUT);
  pinMode(led3,OUTPUT);
  pinMode(led4,OUTPUT);
 pinMode(ledR,OUTPUT);
 pinMode(mux0,OUTPUT);
 pinMode(mux1,OUTPUT);
  attachInterrupt(0,interrupt process,FALLING); //interrupcao no pino 2
  digitalWrite(trigger, HIGH);
  digitalWrite(mux0, LOW);
  digitalWrite(mux1, LOW);
  digitalWrite(led1, LOW);
  digitalWrite(led2, LOW);
  digitalWrite(led3, LOW);
  digitalWrite(led4, LOW);
  digitalWrite(ledR, LOW);
  unsigned long time = micros();
 Trigger();
}
void loop() {
  unsigned long time = micros();
  if(ok == 1) {
   higher mean();
    leds_display();
    if(digitalRead(movimento)) {
     higher mean verification();
    else {
     Means[index] = mean;
     dspl = 1;
      index++;
    if(dspl == 1){
      dspl = 0;
```

```
else{
      if(index > 1){
        Means[index] = Means[index - 1];
        index++;
      }
      else{
        Means[index] = Means[199];
       index++;
      }
    }
    if(index == 200) {
      index = 0;
    ok = 0;
    Trigger();
}
void interrupt process() {
  Sensors response[i] = micros() - started at time;
  i++;
  cnt++;
  mux();
  if(i = 3) {
    mean function();
   cnt = 0;
    mux();
    i = 0;
    ok = 1;
  else{
    Trigger();
void mean function() {
 mean = \overline{0};
  for(int j = 0; j < 3; j++)
    mean = mean + (1/3) *Sensors response[j];
void higher mean() {
  H mean = 0;
  for (int k = 0; k < 200; k++)
     H mean = H mean + (1/200)*Means[k];
```

```
}
void higher_mean_verification() {
  aux = H_mean - Aux;
  if(mean < H mean) {</pre>
      if(mean > aux) {
          dspl = 1;
          Means[index] = mean;
          index++;
          fail = 0;
      }
      else {
          fail++;
  }
  if(fail > 20) {
      Means[index] = mean;
      dspl = 1;
      index++;
      verif++;
      if(verif == 200) {
          fail = 0;
          verif = 0;
      }
  }
}
void Trigger() {
  started at time = micros();
  digitalWrite(trigger, LOW);
  delayMicroseconds(100);
  digitalWrite(trigger, HIGH);
}
void mux() {
  if(i == 0) {
    digitalWrite(mux0, LOW);
    digitalWrite(mux1, LOW);
  }
    if(i == 1) {
    digitalWrite(mux0, HIGH);
    digitalWrite(mux1, LOW);
  }
    if(i == 2) {
    digitalWrite(mux0, LOW);
    digitalWrite(mux1, HIGH);
```

```
void leds display() {
 if(H mean > 8750){
   digitalWrite(led1, HIGH);
   digitalWrite(led2, HIGH);
   digitalWrite(led3, HIGH);
   digitalWrite(led4, HIGH);
 if (H mean < 8750 \&\& H mean > 7500) {
   digitalWrite(led1, LOW);
   digitalWrite(led2, HIGH);
   digitalWrite(led3, HIGH);
   digitalWrite(led4, HIGH);
 if(H mean < 7500 \&\& H mean > 6250){
   digitalWrite(led1, LOW);
   digitalWrite(led2, LOW);
   digitalWrite(led3, HIGH);
   digitalWrite(led4, HIGH);
 if (H mean < 6250 \&\& H mean > 5650) {
   digitalWrite(led1, LOW);
   digitalWrite(led2, LOW);
   digitalWrite(led3, LOW);
   digitalWrite(led4, HIGH);
 if(H mean < 5650){
   digitalWrite(led1, LOW);
   digitalWrite(led2, LOW);
   digitalWrite(led3, LOW);
   digitalWrite(led4, LOW);
//-----
 if(H mean > 5650){
   digitalWrite(ledR, LOW);
 if(H mean < 5250){
   digitalWrite(ledR, HIGH);
```

Sim.m

```
t1 = 50*randn(1,5000);
t2 = 50*randn(1,5000);
t3 = 50*randn(1,5000);
t = 0:1:4999;
```

```
x1 = t1 + t;
x2 = t2 + t;
x3 = t3 + t;
p1 = 300*randn(1,5000) + 3800;
p2 = 300*randn(1,5000) + 3800;
p3 = 300*randn(1,5000) + 3800;
Pcnte = 5000;
for i=1:5000
   y1(i) = p1(i) - x1(i);
   y2(i) = p2(i) - x2(i);
   y3(i) = p3(i) - x3(i);
end
for i=1:5000
   if (y1(i) > 5000)
      y1(i) = 5000;
   end
   if (y2(i) > 5000)
      y2(i) = 5000;
   end
   if (y3(i) > 5000)
      y3(i) = 5000;
   end
   if (y1(i) < 0)
      y1(i) = 0;
   end
   if (y2(i) < 0)
       y2(i) = 0;
   end
   if (y3(i) < 0)
      y3(i) = 0;
   end
end
for i=1:5000
   y1(i) = y1(i) + Pcnte;
   y2(i) = y2(i) + Pcnte;
   y3(i) = y3(i) + Pcnte;
end
%-----
H mean = 3800 + Pcnte;
aux = 230;
index = 1;
fail = 0;
verif = 0;
dspl = 0;
mean = [];
```

```
Means = [];
R mean = [];
dspl = 0;
N = 200;
for i=1:N
    Means(i) = 3800 + Pcnte;
end
for i=1:5000
    mean(i) = (1/3)*(y1(i) + y2(i) + y3(i));
    H mean = 0;
    for k=1:N
        H mean = H mean + (1/N) *Means(k);
        R mean(i) = H mean;
    end
    Ax = H_{mean} - aux;
    if(mean(i) < H mean)</pre>
        if(mean(i) > Ax)
            Means(index) = mean(i);
            dspl = 1;
            index = index + 1;
            fail = 0;
        else
            fail = fail + 1;
        end
    end
    if(fail > 20)
        Means(index) = mean(i);
        dspl = 1;
        index = index + 1;
        verif = verif + 1;
        if(verif == N)
            fail = 0;
            verif = 0;
        end
    end
    if(dspl == 1)
        dspl = 0;
    else
        if(index > 2)
            Means(index) = Means(index - 1);
            index = index + 1;
```

```
else
           Means (index) = Means (100);
           index = index + 1;
       end
   end
   if(index > N)
       index = 1;
   end
end
8______
index = 1;
M mean = [];
for i=1:N
   Means(i) = 3800 + Pcnte;
end
for i=1:5000
   mean(i) = (1/3)*(y1(i) + y2(i) + y3(i));
   H mean = 0;
   Means(index) = mean(i);
   index = index + 1;
   for k=1:N
       H mean = H mean + (1/N) *Means(k);
       M \text{ mean(i)} = H \text{ mean;}
   end
   if(index > N)
       index = 1;
   end
end
figure(1);
plot(t,y1,'blue')
hold on
plot(t,y2,'red')
hold on
plot(t, y3, 'black')
figure(2);
plot(t, mean, 'green')
hold on
plot(t,R mean,'black')
hold on
plot(t,M_mean,'blue')
```