Maurycy Borkowski

6.10.2020

L1Z2

Weźmy dowolny $x\in U=\{x\in\mathbb{R}^n:x_i>0,i=1,\dots,n\}.$ Ustalmy $r=\min_{x_1\dots x_n}.$ (Oczywiście r>0z definicji U).

Weźmy dowolny $y \in B_r(x)$ okazuje się, $y \in U$.

Gdyby tak nie było to: $y_j \leq 0$ dla pewnego j $r = x_{min} \leq x_k \leq x_k - y_j < ||x_k - y_j|| \leq ||x - y||$ Otrzymaliśmy sprzeczność def. $B_r(x)$.

 $\mathbb{R}^n \setminus U$ nie jest owtarty, ponieważ dla np. $(0, \dots, 0)$ nie znajdziemy r (zawsze będzie np. $(\frac{\sqrt{r}}{\sqrt{2n}}, \dots, \frac{\sqrt{r}}{\sqrt{2n}})$). Więc U nie jest domknięty.