PAINEL > MINHAS TURMAS > 2021 2 - TOPICOS ESPECIAIS EM CIENC DA COMPUTAÇÃO - P13

> MÓDULO 04: REDES NEURAIS RECORRENTES > PROVA 4 - REDES NEURAIS RECORRENTES

Iniciado em	sábado, 29 Jan 2022, 15:16
Estado	Finalizada
Concluída em	sábado, 29 Jan 2022, 20:47
Tempo empregado	5 horas 31 minutos
	6,50/8,00
Avaliar	8,13 de um máximo de 10,00(81 %)

Questão **1**Incorreto

...

Atingiu 0,00 de 1,00

Considere as seguintes equações para o GRU e para o LSTM:

GRU: Gated Recurrent Unit

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

LSTM: Long short-term memory

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\; a^{< t - 1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[\ a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{\langle t \rangle} = \Gamma_o * \tanh(c^{\langle t \rangle})$$

Qual das afirmativas abaixo sobre os gates da GRU é incorreta?

- a. Nenhuma das alternativas.
- \bigcirc b. O Γ_u da GRU tem papel análogo ao do update gate Γ_u da LSTM.
- \circ c. $\mathrm{O}(1-\Gamma_u)$ da GRU tem papel análogo ao do forget gate Γ_f da LSTM.
- ullet d. Na GRU, a memória $c^{\langle t-1 \rangle}$ é usada para processar a entrada e para propor o novo estado da memória.
- \odot e. O $a^{\langle t \rangle}$ da LSTM pode estar fora do intervalo [-1,1]

Sua resposta está incorreta.

A resposta correta é:

O $a^{\langle t \rangle}$ da LSTM pode estar fora do intervalo [-1,1].

Considere uma GRU com dois neurônios na camada escondida, cuja entrada em cada tempo é um valor real (escalar). Por simplicidade, assuma que os bias são ().

Dados
$$x^{\langle 1 \rangle} = 3$$
, $\Gamma_r = [1.0, 0.5]^{\top}$, $c^{\langle 0 \rangle} = [1, 1]^{\top}$ e

$$W_c = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$

$$W_u = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 2 & -3 \end{bmatrix}$$

responda (usando pelo menos 3 casas decimais de precisão):

Quanto vale
$$\widetilde{c}^{\langle 1 \rangle}$$
? $(0,999)$

Quanto vale
$$e^{\langle 1 \rangle}$$
? (0,999 \checkmark , 1 \checkmark)^T

Questão 3
Correto
Atingiu 1,00 de 1,00

$y^{\langle t-1 angle}$	$\mid y^{\langle t angle} \mid$	$\log \Pr(y^{\langle t \rangle} y^{\langle t-1 angle})$
Ø	О	-0.0
О	aprendizado	-1.0
О	homem	-0.2
aprendizado	de	-1.0
aprendizado	profundo	-2.0
aprendizado	enobrece	-3.0
de	máquina	-0.9
enobrece	0	-0.1
homem	tem	-0.8
homem	$\langle \mathrm{EOS} \rangle$	-0.0

$y^{\langle t-1 angle}$	$y^{\langle t angle}$	$\log \Pr(y^{\langle t angle} y^{\langle t-1 angle})$
aplicações	$\langle \mathrm{EOS} \rangle$	-0.0
máquina	possui	-1.0
máquina	$ ext{tem}$	-1.1
muitas	aplicações	-0.1
profundo	possui	-1.0
profundo	tem	-1.1
possui	muitas	-1.0
tem	muitas	-0.5
homem	possui	-0.6

Considere o modelo de linguagem neural parametrizado pela tabela acima, onde a probabilidade de uma sentença $s=y^{\langle 1 \rangle},\ldots,y^{\langle T_y \rangle}$ é dada por $\Pr(s)=\Pr(y^{\langle 1 \rangle})\prod_{t=2}^{T_y}\Pr(y^{\langle t \rangle}|y^{\langle t-1 \rangle})$. Note que neste modelo a saída no tempo t depende apenas da saída no tempo t=1 (ou seja, o estado oculto é completamente ignorado). Além disso, todas as transições que não aparecem na tabela tem probabilidade muito baixa.

Qual das frases seguintes tem maior probabilidade, segundo este modelo?

- o a. O aprendizado profundo tem muitas aplicações.
- ob. O aprendizado enobrece o homem.
- o c. O aprendizado de máquina tem muitas aplicações.
- O d. O aprendizado de máquina possui muitas aplicações.
- o e. O aprendizado profundo possui muitas aplicações.

Sua resposta está correta.

As respostas corretas são:

O aprendizado enobrece o homem.,

O aprendizado de máquina tem muitas aplicações.

Questão **4**

Correto

Atingiu 1,00 de 1,00

Qual das sequências a seguir seria gerada usando beam search com beam width B=2?

- a. O aprendizado de máquina possui muitas aplicações.
- O b. O aprendizado enobrece o homem.
- o c. O homem tem muitas aplicações.
- O d. O aprendizado profundo tem muitas aplicações.
- e. O homem possui muitas aplicações.

Sua resposta está correta.

A resposta correta é:

O homem tem muitas aplicações..

Qual das equações abaixo que relacionam as variáveis indicadas na Figura acima está incorreta?

$$\bigcirc$$
 a. $a^{\langle t
angle} = g(W_a[a^{\langle t-1
angle}, x^{\langle t
angle}] + b_a$

$$\bigcirc$$
 b. $L(\hat{y},y) = \sum_{t=1}^{T_y} L^{\langle t \rangle}(\hat{y}^{\langle t \rangle},y^{\langle t \rangle})$

$$\odot$$
 c. $\hat{y}^{\langle t \rangle} = g(W_{ya}a^{\langle t-1 \rangle} + b_y)$

$$\bigcirc \text{ d. } \quad a^{\langle t \rangle} = g(W_{aa}a^{\langle t-1 \rangle} + W_{ax}x^{\langle t \rangle} + b_a))$$

$$\odot$$
 e. $\hat{y}^{\langle t
angle} = g(W_{ya}a^{\langle t
angle} + b_y)$

Sua resposta está correta.

A resposta correta é:
$$\hat{y}^{\langle t \rangle} = g(W_{ya}a^{\langle t-1 \rangle} + b_y).$$

Questão 6

Parcialmente correto

Atingiu 0,50 de 1,00

Ainda com base na Figura anterior, suponha que cada entrada $x^{\langle t \rangle}$ e cada saída $y^{\langle t \rangle}$ seja uma palavra em *one hot encoding* de um vocabulário de tamanho 5000, e que o número de neurônios na camada oculta seja igual a 200. Ignorando-se os termos de bias, quantos parâmetros devem ser aprendidos? (Não use notação científica).

Resposta:

1040000

 \mathbf{Z}

A resposta correta é: 2040000.

Da esquerda para a direita, as arquiteturas da figura acima podem ser usadas para:

- a. análise de sentimento, geração de texto, tradução automática, reconhecimento de entidades
- O b. POS-tagging, identificação de autor, geração de texto, reconhecimento de fala
- c. geração de música, classificação de proficiência, geração de texto, análise de sentimento
- od. geração de receitas, identificação de autor, reconhecimento de entidades, reconhecimento de fala
- e. geração de receitas, identificação de autor, tradução automática, reconhecimento de entidades

~

Sua resposta está correta.

A resposta correta é:

geração de receitas, identificação de autor, tradução automática, reconhecimento de entidades.

Questão **8**

Correto

Atingiu 1,00 de 1,00

Sobre word embeddings, podemos afirmar que:

- o a. Podem ser treinados de maneira eficaz a partir de um corpus pequeno.
- \odot b. São prontamente interpretáveis, desde que a dimensão do embedding não seja $\gg 8$.
- oc. Nenhuma das alternativas.
- od. Permitem usar pré-treinamento em tarefas de NLP em que há poucos dados rotulados.
- e. São representações esparsas e, portanto, permitem a redução do número de parâmetros a serem aprendidos.

~

Sua resposta está correta.

A resposta correta é:

Permitem usar pré-treinamento em tarefas de NLP em que há poucos dados rotulados..

■ Lista 02 de RNNs - com gabarito

Seguir para...

\$