Exercise 2.5

Ql. Evaluate

(i)
$$i^{2}$$

$$= i^{6} \cdot i$$

$$= (i^{2})^{3} \cdot i$$

$$= (-1)^{3} \cdot i$$

$$= -1 \cdot i$$

$$= -i$$

$$= (i^{3})^{25}$$

 $=(-1)^{25}$

=-1

(iii)
$$i^{12}$$

$$= (i^2)^5$$

$$= (-1)^6$$

$$= 1$$

$$(iv) \quad (-i)^8$$

$$= i^8$$

$$= (i^2)^4$$

$$= (-1)^4$$

$$= 1$$

$$(v) \quad (-i)^5$$

$$= -i^{5}$$

$$= -(i^{4}.i)$$

$$= -((i^{2})^{2}.i)$$

$$= -((-1)^{2}.i)$$

$$-(i)$$

$$= -i$$

(vi)
$$i^{27}$$

$$= i^{26} \cdot i$$

$$= (i^2)^{13} \cdot i$$

$$= (-1)^{13} \cdot i$$

$$= (-1)i$$

$$= -i$$

Q2. Write the conjugate of the following numbers.

(i)
$$2+3i$$

Let $z=2+3i$
then $z=2-3i$

(ii)
$$3-5i$$

Let $z=3-5i$
 $\overline{z}=3+5i$

(iii)
$$-i$$

Sol: Let
$$z = 0 - i$$

then $\overline{z} = 0 + i = i$

(iv)
$$-3+4i$$

Let $z=-3+4i$
then $z=-3-4i$

(v)
$$-4-i$$

Let $z=-4-i$
then $z=-4+i$

vi)
$$i-3$$

Let $z=-3+i$
then $z=-3-i$

Q3. Write the real and imaginar part of the following numbe

(i)
$$1+i$$

Let $z=1+i$
Re $(z)=1$, Im $(z)=1$

(ii)
$$-1+2i$$

Let $z = -1+2i$
Re $(z) = -1$, Im $(z) = 2$

(iii)
$$-3i+2$$

Let $z = 2-3i$
Re $(z) = 2$, Im $(z) = -3$

(iv)
$$-2-2i$$

Let $z = -2-2i$
Re $(z) = -2$, Im $(z) = -2$

(v)
$$-3i$$

Let $z = 0-3i$
Re $(z) = 0$, Im $(z) = -3$

(vi)
$$2+0i$$

Let $z = 2+0i$
Re $(z) = 2$, Im $(z) = 0$

Q4. Find the value of x and y if x+iy+1=4-3i

Sol:
$$x+iy+1=4-3i$$

 $x+iy=4-1-3i$
 $x+iy=3-3i$

Two complex numbers are equal if the real and imaginary parts are equal So x=3 and y=-3