A 2025. március 12-i gyakorlat ¹

Kétmintás paraméteres próbák

1. Az Árelhajlásvizsgáló Hivatal összehasonlította két konkurens hipermarket élelmiszerárait. Tíz véletlenszerűen kiválasztott terméket vizsgáltak, melyek árait az alábbi táblázat tartalmazza:

Termék	A	В	С	D	Ε	F	G	Н	I	J
Alfa Hipermarket	464	158	376	112	98	92	38	74	66	38
Beta Hipermarket	432	148	416	104	84	98	36	62	76	34

Az árkülönbségeket normális eloszlásúnak tételezve fel döntsön 5%-os szignifikancia szinten (95%-os megbízhatósági szinten), van-e eltérés a két hipermarket élelmiszereinek árszintje között!

SPSS: Analyze \rightarrow Compare Means \rightarrow Paired-Samples T Test

2. Egy felmérésben 12 azonos életkorú sportoló pulzusát mérik terhelés után azonnal és egy perc múlva. Az eredmények az alábbiak voltak:

Sportoló	1	2	3	4	5	6	7	8	9	10	11	12
azonnal	170	165	148	175	165	140	160	145	160	140	156	140
1 perc múlva	140	160	140	136	160	130	110	125	113	132	150	132

A pulzust normálisnak tételezve fel, döntsön 10%-os szinten arról, igaz-e, hogy terhelés után egy perccel átlagosan 20-szal kevesebb a sportolók pulzusa, mint közvetlenül terhelés után!

SPSS: Transform \rightarrow Compute Variable: kulonbseg = azonnal - egy_perc_mulva

3. Általános iskolai tanulók féléves értékelése során megállapították, hogy Hajdú-Bihar vármegyében a 6. osztályos tanulók irodalom tantárgyból elért átlaga 4.33, szórása pedig 0.64. Egy debreceni általános iskola 6. osztályos diákjainak osztályfőnöke véletlenszerűen kiválasztotta 8 tanítványát és az alábbi irodalom érdemjegyeket jegyezte fel:

Egy hajdúszoboszlói általános iskolában szintén sor került a tanulók féléves értékelésre, amely során 6 véletlenszerűen kiválasztott 6. osztályos diák az alábbi érdemjegyeket szerezte irodalomból:

Hipotéziseit pontosan megfogalmazva döntsön 2%-os szignifikancia szinten (98%-os megbízhatósági szinten), hogy a hajdúszoboszlói diákok átlaga magasabb-e, mint a debrecenieké! A diákok félév során elért érdemjegyéről feltehetjük, hogy normális eloszlást követ, szórása pedig megegyezik a vármegye teljes diákságának körében mért értékkel.

- 4. A Felsődörgicsei Sátorcövekgyár kilenc véletlenszerűen kiválasztott termékének hosszából számolt korrigált tapasztalati szórásnégyzet 63 mm². A konkurens Alsődörgicsei Cövek és Póznagyárban gyártott tizenhárom ugyancsak véletlenszerűen kiválasztott cövek esetén ez az érték 225 mm².
 - (a) Döntsünk 10%-os szignifikancia szinten (90%-os megbízhatósági szinten), van-e különbség a különböző gyárakból származó cövekek szórása között!
 - (b) Milyen, az adatokra vonatkozó feltételekre van szükség, hogy az előző pontbeli hipotézisvizsgálat végrehajtható legyen!

¹A feladatok Dr. Baran Sándor "Feladatok a hipotézisvizsgálat témaköréből" című oktatási segédanyagából, Dr. Pecsora Sándor "Statisztika 2" fóliáiról és korábbi ZH feladatokból származnak.

5. Az angliai New Dumber golflabdagyárában egy újfajta golflabda borítást fejlesztettek ki. A tesztek azt mutatták, hogy ez az új borítás jóval ellenállóbb, mint a hagyományos. Felmerült azonban a kérdés hogy az új borítás nem változtatja-e meg az átlagos ütéstávolságot. Ennek eldöntésére 42 labdát próbáltak ki, 26 hagyományosat és 16 labdát az újak közül. A labdákat géppel lőtték ki, elkerülve ezzel az emberi tényező okozta szóródást. A yardban mért ütéstávolságok összesítő adatait, mely távolságokat mindkét esetben normális eloszlásúnak tételezzük fel, az alábbi táblázat tartalmazza:

Borítás	Mintaelemszám	Mintaátlag	Korrigált empirikus szórásnégyzet
Hagyományos	26	271.4	35.58
Új	16	268.7	48.47

- (a) 10%-os szignifikancia szinten (90%-os megbízhatósági szinten) igazoljuk, hogy nincs különbség az ütéstávolságok szórása között!
- (b) Az (a) pontbeli szinten vizsgáljuk meg, hogy az új borítás megváltoztatja-e az átlagos ütéstávolságot!
- 6. Informatikus hallgatók a Programozás 1. tantárgy keretein belül választhattak a félév elején, hogy melyik nyelven szeretnének megtanulni programozni. A csoport egyik része a Python, a másik fele a Java nyelvet választotta. Az első zárthelyi dolgozat alkalmával ugyanazon feladat elvégzésére képes kódot kellett megírnia a hallgatóknak. Az alábbi táblázat 6 véletlenszerűen kiválasztott Python nyelven programozó és 4 Java-t tanuló hallgató kódjának futási sebességeit tartalmazza:

Programozási nyelv	Futási idő (sec)								
Phyton	0.025	0.03	0.002	0.021	0.011	0.025			
Java	0.001	0.0011	0.00012	0.00012					

Hipotéziseit pontosan megfogalmazva döntsön 5%-os szignifikancia szinten (azaz 95%-os megbízhatósági szinten), hogy a Python nyelven kódoló hallgatók futási idejének átlaga magasabb-e, mint a Java-t preferálóké! A futási időről feltehetjük, hogy normális eloszlást követ. (A szöveg kissé eltér a forrásként használttól, ami a megoldás menetét is befolyásolja.)

SPSS: Analyze \rightarrow Compare Means \rightarrow Independent-Samples T Test