	-: (Hpplied Physics):-
	Semester O1:-
	QN018:-
	Calculate Electric Potential due
x 39;	to quadropole?
	Answer:
	The two electric dipoles arranged
	in such a way that they almost
	cancel electric effects of each
	other at distant points is
	called Quadrupole.
1	Diagrams-
	(-e)
	(40)
	;-e.;
	0. 1 +
	An elementary quadrupole can be
	represented as two dipoles oriented
	antiporallel. The most important uses
	of quadrupole is the characterization
	of nuclici.

	Now take a point P on z-axis	
	having distance 'r' from -2%	
	and Idiameter) distance (r+d) from	
MGE AV	ty charges at B.	
	The electric potential at P due	
	to to at A is:	3
	V1 = K9	
	v-2	
	Similarly due to to at B.	
	V2 = K9	
	V+d	
	due to -20/ charge.	
	$V_3 = K(-2\alpha)$	
	~	
	The total electric potential is:	le le
	V = V1 + V2 + V3	
is	V= K9 + K9 - 2K9	
	v-d r+d r	12 12
	V- Key 1 - 2	
	Y- 1 - 2 / Y-d Y+d Y	
	1-0 1+0	

	V= Kq/ (1+dx+1-dx-2(1-2))	
	\ \(\(r\d)(\(r\d)\)	
	V- KN 25-25+212)	Evi
	(v(r*-d*)	
	V- Ky (222)	
	r(r²-d²)	*
<u> </u>	V= K(202')	
	Y3 1-d3)	
	\ Y ³ /	
	{ ·· P= 9/d }	
	Q=2912	
	V= KQ (1-2")-1	
	γ ³ \ γ ² /	
	By Binomial :-	
	V= KQ (1+1-1)(-22)	
_	y3 \ \ y2 \ \	
	The term (-d') =0 because r>>>d	76
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	V= KQ	
,	γ³	

Topic:-
Equipotential Surfaces:
The family of surfaces that
connect points having same value
 of the electric potential are
called equipotential surfaces.
Due to Uniform field:
Diagram:
E
D E
 C E.
A) B

NAME OF TAXABLE PARTY.	DAY:	0.000
	Explanation:-	
	Consider uniform electric field	
	indicated by horizontal electric	
	lines of force. The perpendicular dech	1
	lines are cross-section of equipotentia	
	Take two points having distance 1.	In I
	$\Delta V = -\int F \cdot ds$	
N. F.		
100	$\Delta V = -EL$	
	Patential difference b/w B and C:	
	Electric potential at B is VB - Kg/	
	· Y _B	
	Electric potential at C is Vc = Key	
EAL	Ye	
	$\Delta V = V_B - V_C$	
	VR-Ve = K9 - K9	7152
	ra re [: ra=re]	
-	VR-Vc - Kg/ - Kg/	
	No ke	I DAY
	VB-Vc = 0	
	(VB = Vc)	60.7

Potential difference blw A and B.
Va-Va - Kay/ 1 - 1)
rn rs
when points A and B lies on the
surface of some sphere Yn = YB
In this case:
VA-VB = Kay (X, - 1)
(ra /ra)
VA-VB = 0
[Va = Va]
TABLE VIS
It means all points at a given
radius have the same potential.
Therefore, the equipotential surface
of a given charge from a
family of concentric sphere.
For a dipole, the equipotential