

Utilisation des Descripteurs SIFT pour la Reconnaissance Faciale

M'Hand Kedjar Montréal, le 03 août 2016

Plan

- Introduction
- Contexte et objectifs
- Méthodes
 - Détection
 - Descripteurs SIFT
 - Classification
- Résultats
- Discussion
- Conclusion

Introduction

- But de la reconnaissance faciale (RF): identifier ou vérifier un ou plusieurs individus à partir d'images fixes ou des séquences animées
- Autres techniques biométriques:
 - Iris: très précise, mais dispendieuse sur une grande échelle. Non acceptée généralement
 - Empreintes digitales: fiable et non intrusive. Ne convient pas pour les personnes non collaboratives.
- RF est un bon compromis
- Multitude d'applications: contrôle d'accès, systèmes d'identification, surveillance vidéo,

Source: youtube

Source: wikipedia.org

Reconnaissance Faciale - Difficultés

- Identifier des visages similaires (similarité entre les classes)
- Gérer la variabilité intra-classe:
 - Position de la tête
 - Conditions d'illumination
 - Expression
 - Port d'accessoires: chapeau, lunettes, ...
 - Variations avec l'âge

Source: pottermore.com

Source: cnn.com

Base de données YALE

Contexte

- Bases de données ORL, YALE et Caltech:
 - Parmi les plus utilisées pour évaluer les algorithmes de RF
 - Disponibles gratuitement
 - Toutes les images sont annotées
- Algorithme Viola Jones pour la détection
 - Détecteur très précis
 - Performance temps réel
- Algorithme de David Lowe pour SIFT
 - Développé en C++
 - Interface Matlab
 - Linux, Windows
- Classification par l'algorithme du plus proche voisin

Objectifs

- Concevoir un système de reconnaissance faciale basé sur SIFT
 - Détection du visage
 - Extraction des descripteurs
 - Classification par 1nn
- Comparaison des performances avec 2 autres approches: PCA, HOG+SVM

Méthodes – Schéma du système

Méthodes – Détection

- Filtre multi-échelles de Haar développé par P. Viola et M. Jones
- Les caractéristiques d'un visage sont décrites dans un fichier xml
- Construites à partir d'un échantillon de quelques centaines d'images tests
- Taux de détection très élevé
- Performance temps réel

Source: cbc.ca

Méthodes - SIFT

- SIFT extrait un ensemble de points d'intérêt (descripteurs) à partir d'une image
- Construction de l'espace des échelles

$$L(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}} * I(x, y)$$

(x,y) coordonnées de l'image I, σ: facteur d'échelle

Calcul de la différence de Gaussiennes (DoG)

$$D(x, y, \sigma) = L(x, y, k\sigma) - L(x, y, \sigma)$$

- Détection des extrema dans la DoG
 - Un pixel est sélectionné si sa valeur est plus petite (ou plus grande) que tous les 26 autres qui l'entourent

Méthodes - SIFT

Assignation de l'orientation

$$m(x,y) = \frac{\sqrt{(L(x+1,y) - L(x-1,y))^2}}{+(L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1} \frac{L(x,y+1) - L(x,y-1)}{L(x+1,y) - L(x-1,y)}$$

Un points clé est défini par: (x,y,σ,θ)

Descripteur local type SIFT

- les descripteurs SIFT sont calculés sur une grille de 16
 × 16 points voisins, divisée en 4 blocs de 4 × 4 et des
 histogrammes de 8 orientations
- Vecteur à 128 composantes (4 * 8 *4)

Méthodes - Classification par la méthode du plus proche voisin

• It: image test, Ir: Image de référence

$$K(I_t) = \{k_1^{I_t}, k_2^{I_t}, ..., k_P^{I_t}\}$$
$$K(I_r) = \{k_1^{I_r}, k_2^{I_r}, ..., k_Q^{I_r}\}$$

$$d_i^{min} = \min_i d(k_i^{I_t}, k_j^{I_r}), j = 1, 2, ..., Q$$

- Distance au plus proche voisin: d₁ = d_{min}
- Distance au prochain plus proche voisin: d_2
- Correspondance entre: $k_i^{I_t}$ et $k_j^{I_r}$ ssi $\frac{d_1}{d_2} < d_s$
- Classification finale de l'image It: classe de l'image Ir avec le plus grand nombre de correspondances

Méthode – visualisation des descripteurs

Exemple d'images avec les descripteurs SIFT extraits

31 correspondances

1 correspondance

Exemple de correspondances entre deux images

Résultats - Précision

- 3 bases de données: ORL, YALE, Caltech
- Génération aléatoire des sousensembles d'apprentissage et de test
- Varier la proportion entres les deux sous-ensembles: de 0.1 à 0.9

$$r = \frac{N_{train}}{N_{total}} = \frac{N_{train}}{N_{train} + N_{test}}$$

• 10 répétitions

$$prec_i = \frac{VP_i}{N_{total}}, i = 1, 2, ...10$$

Mesurer la précision finale

$$prec = \frac{1}{10} \sum_{i=1}^{10} prec_i$$

Et la variance, pour chaque valeur de r

TABLE I CARACTÉRISTIQUE DES BASES DE DONNÉES UTILISÉES

	BD	n_p	n_i	n_{min}	n_{max}	format et taille
	ORL	40	400	10	10	PGM, 112 × 92
	YALE	15	165	11	11	GIF, 116 × 98
	Caltech	31	450	1	29	JPEG, 896×592

TABLE II RÉSULTATS: PRÉCISION ET VARIANCE

BD	(ORL	Y.	ALE	CA	LTECH
	prec	var	prec	var	prec	var
SIFT	0.98	$2.8e^{-4}$	0.85	$19e^{-4}$	0.96	$2.6e^{-4}$
PCA	0.96	$4e^{-4}$	0.70	$34e^{-4}$	0.31	$27e^{-4}$
HOG+SVM	0.91	$25e^{-4}$	0.85	$21e^{-4}$	0.90	$8e^{-4}$

Résultats – temps de calcul

Le temps de calcul est estimé pour la phase d'apprentissage et de test

TABLE III RÉSULTATS: TEMPS DE CALCUL

BD	ORL	YALE	CALTECH	
SIFT	441.51	202.02	2329.19	
PCA	1.89	0.48	48.36	
HOG+SVM	469.43	189.78	519.96	

r = 0.8

Discussion

- SIFT présente plusieurs avantages: descripteurs invariants par rapport aux transformations dans l'image: rotation, translation, facteur d'échelle, ...
- C'est le descripteur le plus utilisé, et plusieurs autres sont basés sur SIFT
- Article 1: [3] Cong Geng and X. Jiang, "SIFT features for face recognition,"
 - 2 approches: KPSIFT et PDSIFT
 - Images rognées à 50x57
 - Classification: Similarité Cosinus.
 - Précision: 97% sur ORL
- Article 2: [4] T. Liu, S. H. Kim, H. S. Lee and H. H. Kim, "Face recognition base on a new design of classifier with SIFT keypoints".
 - Descripteur SIFT avec MLP
 - Classification: nombre de descripteurs assignés à une classe
 - Précision: 98% sur ORL pour r = 0.8, 92% pour r = 0.6
- Article 3: [5] D. Liu, D. m. Sun and Z. d. Qiu, "Bag-of-Words Vector Quantization Based Face Identification,"
 - Descripteurs SIFT avec un modèle Bag-of-words
 - Classification: SVM
 - Précision: 93%
- Aucun des systèmes n'a atteint 100% de classification
- Systèmes combinant descripteurs locaux avec les descripteurs globaux (texture, couleur, ...) seraient à explorer.

Conclusion

- Le système de RF basé SIFT est le plus robuste en termes de précision et de stabilité des résultats
- Celui basé sur PCA est le plus rapide en termes de temps de calcul.
- Les résultats pour YALE DB sont moins bons par rapport aux autres bases de données: conditions d'illumination
- Combinaison des méthodes locales et globales donnerait un meilleur résultat

Perspectives:

- Identification automatique de l'âge et du sexe d'une personne à partir d'une photo de son visage
- Application à la personnalisation de l'écran en fonction de l'utilisateur

Références

- [1] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol.60, no.2, pp. 91–110, 2004
- [2] Paul Viola, Michael Jones. 2001. "Rapid Object Detection using a Boosted Cascade of Simple Features". Conference On Computer Vision And Pattern Recognition 2001
- [3] Cong Geng and X. Jiang, "SIFT features for face recognition," Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on, Beijing, 2009, pp. 598-602.
- [4] T. Liu, S. H. Kim, H. S. Lee and H. H. Kim, "Face recognition base on a new design of classifier with SIFT keypoints," Intelligent Computingand Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on, Shanghai, 2009, pp. 366-370.
- [5] D. Liu, D. m. Sun and Z. d. Qiu, "Bag-of-Words Vector Quantization Based Face Identification," Electronic Commerce and Security, 2009. ISECS '09. Second International Symposium on, Nanchang, 2009, pp. 29-33

Merci de votre attention!

Questions?