第五章 留数

—、	选择题:

1.	函数 $\frac{\cot \pi z}{2z-3}$ 在 $ z $	x-i =2 内的者	f点个数为()		
	(A) 1	(B) 2	(C) 3	(D) 4	$\langle \langle \rangle \rangle$
2.	设函数 $f(z)$ 与 g	g(z)分别以z=	a 为本性奇点与m 组	吸极点,则 $z = a$ 为逐	i数 $f(z)g$
的()				
	(A) 可去奇点		(B) 本性奇点		
	(C) m 级极点		(D) 小于 <i>m</i> 级	的极点	
3.	设 $z = 0$ 为函数	$\frac{1-e^{x^2}}{z^4\sin z}$ 的 m 劉	₹极点,那么 <i>m</i> = (>	
	(A) 5	(B) 4	(C) 3	(D) 2	
4.	z=1是函数 $(z-1)$	-1) $\sin \frac{1}{z-1}$ \bowtie		Y	
	(A) 可去奇点		(B) 一级极点		
	(C) 一级零点	Ī	(D) 本性奇点		
5.	z = ∞ 是函数 3	$\frac{+2z+z^3}{z^2}$ 的(
	(A)可去奇点		(B) 一级极点		
	(C) 二级极点		(D) 本性奇点		
6.	设 $f(z) = \sum_{n=0}^{\infty} a_n$	z^n 在 $ z $ < R 内	解析, k 为正整数,	那么 $\operatorname{Res}[\frac{f(z)}{z^k},0] =$	= ()
	(A) a_k	(B) $k!a_k$	(C) a_{k-1}	(D) $(k-1)$	$1)!a_{k-1}$
7.	设 $z = a$ 为解析i	函数 $f(z)$ 的 m	级零点,那么 Re s[=	$\frac{f'(z)}{f(z)},a]=()$	
	(A) <i>m</i>	(B) $-m$	(C) $m-1$	(D) $-(m$	-1)
8.	在下列函数中,	Res[f(z),0] =	= 0 的是()		

$$(A) f(z) = \frac{e^z - 1}{z^2}$$

(B)
$$f(z) = \frac{\sin z}{z} - \frac{1}{z}$$

(C)
$$f(z) = \frac{\sin z + \cos z}{z}$$

(D)
$$f(z) = \frac{1}{e^z - 1} - \frac{1}{z}$$

- 9. 下列命题中,正确的是(
 - 设 $f(z) = (z z_0)^{-m} \varphi(z)$, $\varphi(z)$ 在 z_0 点解析, m 为自然数,则 z_0 为 f(z) 的 m 级 极点.
 - 如果无穷远点 ∞ 是函数 f(z) 的可去奇点,那么 $\operatorname{Res}[f(z),\infty] = 0$ (B)
 - 若z = 0为偶函数 f(z) 的一个孤立奇点,则 Res[f(z),0] = 0(C)
 - (D) 若 $\int f(z)dz = 0$,则f(z)在c内无奇点
- 10. $\operatorname{Res}[z^{3}\cos\frac{2i}{z},\infty] = ()$
 - (A) $-\frac{2}{3}$ (B) $\frac{2}{3}$
- (D) $-\frac{2}{3}i$

- 11. $\operatorname{Res}[z^2 e^{\frac{1}{z-i}}, i] = ($
 - (A) $-\frac{1}{6}+i$ (B) $-\frac{5}{6}+i$ (C) $\frac{1}{6}+i$
- (D) $\frac{5}{6}+i$

- 12. 下列命题中,不正确的是(
 - (A) 若 z_0 (≠∞)是f(z)的可去奇点或解析点,则 $\operatorname{Res}[f(z),z_0]=0$
 - (B) 若P(z)与Q(z)在 z_0 解析, z_0 为Q(z)的一级零点,则 $\operatorname{Res}[\frac{P(z)}{Q(z)}, z_0] = \frac{P(z_0)}{Q'(z_0)}$
 - (C) 若 z_0 为 f(z) 的 m 级 极 点 , $n \geq m$ 为 自 然 数 ,

$$\operatorname{Res}[f(z), z_0] = \frac{1}{n!} \lim_{x \to x_0} \frac{d^n}{dz^n} [(z - z_0)^{n+1} f(z)]$$

(D) 如果无穷远点 ∞ 为 f(z) 的一级极点,则 z = 0 为 $f(\frac{1}{z})$ 的一级极点,并且

 $\operatorname{Re} s[f(z), \infty] = \lim_{z \to 0} z f(\frac{1}{z})$

- 13. 设n > 1为正整数,则 $\int_{|z|=2}^{n} \frac{1}{z^{n}-1} dz = ($)
 - (A) **0**
- (B) 2*mi*
- (C) $\frac{2\pi i}{n}$
- (D) 2n ni

- 14. 积分 $\oint_{|z|=\frac{3}{2}} \frac{z^9}{z^{10}-1} dz = ($)
 - (A) 0
- (B) 2*mi*
- (C) 10
- (D) $\frac{\pi}{5}$

- 15. 积分 $\oint_{|z|=1} z^2 \sin \frac{1}{z} dz = ($
 - (A) **0**
- (B) $-\frac{1}{6}$
- (C) $-\frac{\pi i}{3}$
- (D) $-\pi i$

二、填空题

- 1. 设z = 0为函数 $z^3 \sin z^3$ 的m 级零点,那么 $m = \underline{\hspace{1cm}}$.
- 2. 函数 $f(z) = \frac{1}{\cos \frac{1}{z}}$ 在其孤立奇点 $z_k = \frac{1}{k\pi + \frac{\pi}{2}} (k = 0, \pm 1, \pm 2, \dots)$ 处的留数

 $\operatorname{Res}[f(z),z_{k}] = \underline{\hspace{1cm}}.$

3. 设函数 $f(z) = \exp\{z^2 + \frac{1}{z^2}\}$,则 $\operatorname{Res}[f(z),0] = \underline{\hspace{1cm}}$

- 4. 设z = a 为函数 f(z) 的 m 级极点,那么 $\operatorname{Res}\left[\frac{f'(z)}{f(z)}, a\right] = \underline{\hspace{1cm}}$

6. 设
$$f(z) = \frac{2z}{1+z^2}$$
,则 $Res[f(z),\infty] = _____.$

7. 设
$$f(z) = \frac{1 - \cos z}{z^5}$$
,则 $Res[f(z), 0] =$ ______

8. 积分
$$\oint_{|z|=1} z^3 e^{\frac{1}{z}} dz =$$
_______.

9. 积分
$$\oint_{|z|=1} \frac{1}{\sin z} dz = \underline{\qquad}.$$

10. 积分
$$\int_{-\infty}^{+\infty} \frac{xe^{ix}}{1+x^2} dx =$$

三、计算积分
$$\oint_{|z|=\frac{1}{4}} \frac{z \sin z}{(e^z - 1 - z)^2} dz.$$

四、利用留数计算积分
$$\int_0^{\pi} \frac{d\theta}{a^2 + \sin^2 \theta}$$
 $(a > 0)$

五、利用留数计算积分
$$\int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$

六、利用留数计算下列积分:

$$1. \int_0^{+\infty} \frac{x \sin x \cos 2x}{x^2 + 1} dx$$

$$2. \int_{-\infty}^{+\infty} \frac{\cos(x-1)}{x^2+1} dx$$

七、设a为 f(z)的孤立奇点,m 为正整数,试证a为 f(z)的 m 级极点的充要条件是 $\lim_{z\to a}(z-a)^m f(z)=b$,其中 $b\neq 0$ 为有限数.

八、设a为f(z)的孤立奇点,试证:若f(z)是奇函数,则 $\operatorname{Res}[f(z),a]=\operatorname{Res}[f(z),-a]$;若f(z)是偶函数,则 $\operatorname{Res}[f(z),a]=-\operatorname{Res}[f(z),-a]$.

九、设 f(z) 以 a 为简单极点,且在 a 处的留数为 A,证明 $\lim_{z\to a} \frac{|f'(z)|}{1+|f(z)|^2} = \frac{1}{|A|}$.

十、若函数 $\Phi(z)$ 在 $|z| \le 1$ 上解析,当 z 为实数时, $\Phi(z)$ 取实数而且 $\Phi(0) = 0$, f(x,y) 表示 $\Phi(x+iy)$ 的虚部,试证明 $\int_0^{2\pi} \frac{t \sin \theta}{1-2t \cos \theta+t^2} f(\cos \theta, \sin \theta) d\theta = \pi \Phi(t)$,且 (-1 < t < 1)

- **—、**1. (D)
- 2. (B)
- 3. (C)
- 4. (D)
- 5. (B)

- 6.(C) 11. (B)
- 7. (A) 12. (D)
- 8. (D) 13. (A)
- 9.(C) 14. (B)
- 10. (A) 15. (C)

- 二、1. 9
- $2. \frac{(-1)^k}{(k\pi + \frac{\pi}{2})^2}$
- **3. 0**
- 4. -m
- 5. 1

- 6. -2 7. $-\frac{1}{24}$
- 8. $\frac{\pi i}{12}$
- 9. 2π*i*

$$\equiv$$
, $-\frac{16}{3}\pi i$.

四、
$$\frac{\pi}{a\sqrt{a^2+1}}$$
.

五、
$$\frac{5}{12}\pi$$
.