ADS - Serie 5

Aufgabe 5.2

Vor.: Seien $f, g, h, f_i : \mathbb{N} \to \mathbb{R}_{>0}, i \in \mathbb{N}$ gegeben.

a) Beh.: $(f \in \mathcal{O}(g) \land g \in \mathcal{O}(f)) \iff (f \in \Theta(g) \land g \in \Theta(f))$

Bew.: ' \Longrightarrow ': Es gelte $f \in \mathcal{O}(g)$ und $g \in \mathcal{O}(f)$.

Also gilt $\exists C_0 \in \mathbb{R}_{>0} : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}_{\geq n_0} : f(n) \leq C_0 \cdot g(n)$

und $\exists C_1 \in \mathbb{R}_{>0} : \exists n_1 \in \mathbb{N} : \forall n \in \mathbb{N}_{\geq n_1} : g(n) \leq C_1 \cdot f(n)$.

Es seien C_0, n_0, C_1 und n_1 entsprechend gewählt.

Sei $C_2 = \frac{1}{C_0}$. Dann gilt für $n \ge n_0$:

$$f(n) \le C_0 \cdot g(n)$$

$$\frac{1}{C_0} \cdot f(n) \le g(n)$$

$$C_2 \cdot f(n) \le g(n)$$

Also gilt für $\max(n_0, n_1)$: $g(n) \ge C_2 \cdot f(n)$ und $g(n) \le C_1 f(n)$. Damit gilt $g \in \Theta(f)$.

Sei $C_3 = \frac{1}{C_1}$. Dann gilt für $n \geq n_1$:

$$g(n) \le C_1 \cdot f(n)$$

$$\frac{1}{C_1} \cdot f(n) \le f(n)$$

$$C_3 \cdot f(n) \le f(n)$$

Also gilt für $n \ge \max(n_0, n_1)$: $f(n) \ge C_3 \cdot g(n)$ und $f(n) \le C_0 \cdot g(n)$. Damit gilt $g \in \Theta(f)$.

'\(\infty\)' folgt direkt aus der Definition von Θ .

b) Beh.: $(f \in \mathcal{O}(g) \text{ und } h \in \Omega(g)) \Longrightarrow f \in \mathcal{O}(h)$

Bew.: Es gelte $f \in \mathcal{O}(g) \land h \in \Omega(g)$.

Dann gilt $\exists C_0 \in \mathbb{R}_{>0} : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}_{\leq n_0} : f(n) \leq C_0 \cdot g(n)$

und $\exists C_1 \in \mathbb{R}_{>0} : \exists n_1 \in \mathbb{N} : \forall n \in \mathbb{N}_{\leq n_1} : h(n) \geq C_1 \cdot g(n)$

Sei $C_2 = \frac{C_0}{C_1}$. Dann gilt für $n \ge \max(n_0, n_1)$:

$$f(n) \le C_0 \cdot g(n)$$

$$f(n) \le C_0 \cdot \frac{C_1}{C_1} \cdot g(n)$$

$$\le \frac{C_0}{C_1} \cdot h(n)$$

Also ist $f \in \mathcal{O}(h)$.

c) Beh.: $(\forall i \in \{1, ..., k\} : f_i \in \mathcal{O}(g)) \Longrightarrow \sum_{i=1}^k f_i \in \mathcal{O}(g)$

Bew.: Induktion über k

IA.: Sei k=1 und es gelte $\forall i \in \{1,\ldots,k\}: f_i \in \mathcal{O}(g)$. Dann ist $\sum_{i=1}^k f_i = \sum_{i=1}^1 f_i = f_1 \in \mathcal{O}(g)$.

IV.: Sei $k \in \mathbb{N}$ und es gelte $(\forall i \in \{1, ..., k\} : f_i \in \mathcal{O}(g)) \Longrightarrow \sum_{i=1}^k f_i \in \mathcal{O}(g)$.

IS.: zz.:
$$(\forall i \in \{1, \dots, k+1\} : f_i \in \mathcal{O}(g)) \Longrightarrow \sum_{i=1}^{k+1} f_i \in \mathcal{O}(g)$$

Es gelte: $\forall i \in \{1, \dots, k+1\} : f_i \in \mathcal{O}(g)$

Dann gilt insbes.: $\exists C_1 \in \mathbb{N} : \exists n_1 \in \mathbb{N} : \forall n \in \mathbb{N}_{>n_1} : f_{k+1}(n) \leq C_1 \cdot g(n)$ und nach IV gilt: $\exists C_0 \in \mathbb{N} : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}_{>n_0} : \sum_{i=1}^k f_i(n) \leq C_0 \cdot g(n)$

Sei $C_2 = C_0 + C_1$. Dann gilt für $n > \max(n_0, n_1)$:

$$\sum_{i=1}^{k} f_i(n) \leq C_0 \cdot g(n)$$

$$\iff f_{k+1}(n) + \sum_{i=1}^{k} f_i(n) \leq C_0 \cdot g(n) + f_{k+1}(n)$$

$$\iff \sum_{i=1}^{k+1} f_i(n) \leq C_0 \cdot g(n) + C_1 \cdot g(n)$$

$$\iff \sum_{i=1}^{k+1} f_i(n) \leq (C_0 + C_1) \cdot g(n)$$

$$\iff \sum_{i=1}^{k+1} f_i(n) \leq C_2 \cdot g(n)$$

Also ist $\sum_{i=1}^k f_i \in \mathcal{O}(g)$.

d) Beh.: $(\forall i \in \{1, \dots, k\} : f_i \in \Omega(g)) \Longrightarrow \prod_{i=1}^k f_i \in \Omega(g)$

Bew.: Induktion über k

IA.: Sei k=1 und es gelte $\forall i \in \{1,\ldots,k\} : f_i \in \Omega(g)$. Dann ist $\prod_{i=1}^k f_i = \prod_{i=1}^1 f_i = f_1 \in \Omega(g)$.

IV.: Sei $k \in \mathbb{N}$ und es gelte $(\forall i \in \{1, \dots, k\} : f_i \in \Omega(g)) \Longrightarrow \prod_{i=1}^k f_i \in \Omega(g)$.

IS.: zz.: $(\forall i \in \{1, \dots, k+1\} : f_i \in \Omega(g)) \Longrightarrow \prod_{i=1}^{k+1} f_i \in \Omega(g)$

Es gelte: $\forall i \in \{1, \dots, k+1\} : f_i \in \Omega(g)$

Dann gilt insbes.: $\exists C_1 \in \mathbb{N} : \exists n_1 \in \mathbb{N} : \forall n \in \mathbb{N}_{>n_1} : f_{k+1}(n) \geq C_1 \cdot g(n)$ und nach IV gilt: $\exists C_0 \in \mathbb{N} : \exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N}_{>n_0} : \prod_{i=1}^k f_i(n) \geq C_0 \cdot g(n)$

Sei $C_2 = C_0 \cdot C_1$. Dann gilt für $n > \max(n_0, n_1)$:

$$\prod_{i=1}^{k} f_i(n) \geq C_0 \cdot g(n)$$

$$\iff f_{k+1}(n) \cdot \prod_{i=1}^{k} f_i(n) \geq C_0 \cdot g(n) \cdot f_{k+1}(n)$$

$$\iff \prod_{i=1}^{k+1} f_i(n) \geq C_0 \cdot g(n) \cdot C_1 \cdot g(n)$$

$$\iff \prod_{i=1}^{k+1} f_i(n) \geq (C_0 \cdot C_1) \cdot g(n)$$

$$\iff \prod_{i=1}^{k+1} f_i(n) \geq C_2 \cdot g(n)$$

Also ist $\prod_{i=1}^k f_i \in \Omega(g)$.

Aufgabe 5.3

a) Beh.: Sei C = 14 und $n_0 = 1$. Dann ist $7n^6 + 3n^2 \in \mathcal{O}(n^7)$.

Bew.: Es gilt für $n \ge 1$:

$$7n^{6} + 3n^{2} \le 7n^{6} + 7n^{2}$$

$$= 7(n^{6} + n^{2})$$

$$\le 7(n^{6} + n^{6})$$

$$= 14n^{6}$$

$$< 14n^{7} = C \cdot n^{7}$$

b) Beh.: Sei C=1 und $n_0=1$. Dann ist $n^a\in\mathcal{O}(e^n)$ für alle $a\in\mathbb{N}$.

Bew.: Es gilt für $n \ge 1$:

$$n^{a} = a! \cdot \frac{n^{a}}{a!}$$

$$\leq \sum_{k=0}^{a!} \frac{n^{a}}{a!}$$

$$\leq \sum_{k=0}^{\infty} \frac{n^{k}}{k!}$$

$$= e^{n} = C \cdot e^{n}$$

c) Beh.: Sei C = 1 und $n_0 = 3$. Dann ist $n! \in \Omega(2^n)$.

Bew.: Es gilt für $n \ge 3$:

$$n! = \prod_{k=1}^{n} k$$

$$\stackrel{n\geq 3}{\geq} \prod_{k=1}^{n} 2$$

$$= 2^{n} = C \cdot 2^{n}$$

d) Beh.: Sei $C = \frac{1}{\log_b(a)}$ und $n_0 = 1$. Dann ist $\log_a(n) \in \Theta(\log_b(n))$ für alle $a, b \in \mathbb{R}_{>1}$.

Bew.: Es gilt für $n \ge 1$:

$$log_a(n) = \frac{\log_b(n)}{\log_b(a)}$$
$$= \frac{1}{\log_b(a)} \cdot \log_b(n)$$
$$= C \cdot \log_b(n)$$