

(11)Publication number:

07-043344

(43) Date of publication of application: 14.02.1995

(51)Int.CI.

GO1N 27/447

(21)Application number: 05-183915

(71)Applicant: RIKAGAKU KENKYUSHO

(22)Date of filing:

(72)Inventor: MIZUNO SHOICHI 26.07.1993

NAGAMUNE TERUYUKI

YOUDA MASABUMI

ENDO ISAO

(54) DEVICE AND METHOD FOR ELECTROPHORESIS

(57)Abstract:

PURPOSE: To provide an electrophoresis device and method achieving separation and analysis with higher resolution and speed than conventional device and method.

CONSTITUTION: An upper buffer storage part 3a is provided at the upper part of a capillary 1 and an electrode 4a for DC is laid out within the upper buffer storage part 3a. A lower buffer storage part 3b is laid out at the lower part of the capillary 1 and an electrode 4b for DC is laid out within the lower buffer storage part 3b. The electrodes 4a and 4b for DC are electrically connected to a DC power supply 5. AC electrodes 6a and 6b are provided so that they sandwich the capillary 1 and the electrodes 6a and 6b for AC are connected to an AC power supply 7.

LEGAL STATUS

[Date of request for examination]

22.05.2000

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3342745

[Date of registration]

23.08.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-43344

(43)公開日 平成7年(1995)2月14日

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

GO1N 27/447

7363-2J

G01N 27/26

315

審査請求 未請求 請求項の数7 OL (全6頁)

(21)出願番号

特願平5-183915

(22)出願日

平成5年(1993)7月26日

(71)出願人 000006792

理化学研究所

埼玉県和光市広沢2番1号

(72) 発明者 水野 彰一

愛知県豊橋市北山町字東浦2番地の1

(72)発明者 長棟 輝行

埼玉県和光市広沢2番1号 理化学研究所

内

(72)発明者 養王田 正文

埼玉県和光市広沢2番1号 理化学研究所

内

(74)代理人 弁理士 須山 佐一

最終頁に続く

(54) 【発明の名称】電気泳動装置および電気泳動方法

(57)【要約】

【目的】 従来に較べてさらに高分解能および高速な分離、分析を可能とすることのできる電気泳動装置および電気泳動方法を提供する。

【構成】 細管1の上部には、上部バッファ収容部3aが配設されており、上部バッファ収容部3a内には、直流用電極4aが配置されている。細管1の下部には、下部バッファ収容部3bが配設されており、下部バッファ収容部3b内には、直流用電極4bが配置されている。直流用電極4a、4bは直流電源5に電気的に接続されている。細管1を挟むように、交流用電極6a、6bが配設されており、交流用電極6a、6bが配設されている。

【特許請求の範囲】

【請求項1】 試料を所定の泳動方向に移動させつつ分 離するための泳動手段と、

前記泳動手段の前記泳動方向に直流電圧を印加する直流 電圧印加手段と、

前記泳動手段の前記泳動方向に直交する方向に連続的ま たは間欠的に交番電界を印加する交番電界印加手段とを 具備したことを特徴とする電気泳動装置。

【請求項2】 請求項1記載の電気泳動装置において、 前記泳動手段は細管状に形成され、この細管状の泳動手 段の外側に交番電界を印加するための少なくとも一対の 電極が配置され、この電極と細管状の泳動手段との間に 液状の誘電体が充填されていることを特徴とする電気泳 動装置。

【請求項3】 請求項2記載の電気泳動装置において、 前記細管が比誘電率が10以上の誘電体で作られている ことを特徴とする電気泳動装置。

【請求項4】 請求項1記載の電気泳動装置において、 前記泳動手段は所定間隔を設けて対向配置された一対の に交番電界を印加するための電極となる導電膜およびこ の導電膜の表面を覆う誘電体膜が形成されていることを 特徴とする電気泳動装置。

【請求項5】 請求項1記載の電気泳動装置において、 前記泳動手段は、比誘電率が10以上の誘電体からなる 一対の板体を所定間隔を設けて対向配置することによっ て平板状に形成されており、これらの板体の外側に交番 電界を印加するための電極が形成されていることを特徴 とする電気泳動装置。

【請求項6】 請求項2~5いずれか1項記載の電気泳 動装置において、

前記交番電界を印加するための電極は、直流電圧を印加 する方向に複数に分割されていることを特徴とする電気 泳動装置。

【請求項7】 直流電圧を印加して試料を所定の泳動方 向に移動させつつ分離する電気泳動方法において、

前記泳動方向に直交する方向に連続的または間欠的に交 番電界を印加することを特徴とする電気泳動方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、DNA、RNA、蛋白 質、ペプチド、界面活性剤、炭水化物等の分離あるいは 分析に利用される電気泳動装置および電気泳動方法に関 する。

[0002]

【従来の技術】従来から、DNA、RNA、蛋白質、ペ プチド、界面活性剤、炭水化物等の分離、分析に電気泳 動が用いられている。このような従来の電気泳動装置お よび電気泳動方法では、液状あるいはゲル状の媒体が充 填された細管状あるいは平板状の泳動路に直流電圧を印 50

加し、複数種の物質を含む試料をこの直流電圧によって 所定の泳動方向に移動させる。これによって、分子量、 分子構造、電荷量等に依存する各物質の移動速度の差に よってこれらの物質を分解能良く分離することができ る。

[0003]

【発明が解決しようとする課題】しかしながら、このよ うな電気泳動装置および電気泳動方法においても、さら に高分解能および高速な分離、分析を可能とすることが 10 当然要求される。特に、近年研究が進められているDN Aのシークェンスの分野等では、僅かな移動度の差の違 いによっても高分解能で高速に分離、分析することので きる装置および方法の開発が望まれていた。

【0004】本発明は、かかる従来の事情に対処してな されたもので、従来に較べてさらに高分解能および高速 な分離、分析を可能とすることのできる電気泳動装置お よび電気泳動方法を提供しようとするものである。

[0005]

【課題を解決するための手段】すなわち、請求項1記載 板体によって平板状に形成されており、前配板体の内側 20 の電気泳動装置は、試料を所定の泳動方向に移動させつ つ分離するための泳動手段と、前記泳動手段の前記泳動 方向に直流電圧を印加する直流電圧印加手段と、前記泳 動手段の前記泳動方向に直交する方向に連続的または間 欠的に交番電界を印加する交番電界印加手段とを具備し たことを特徴とする。

> 【0006】また、請求項2記載の電気泳動装置は、請 求項1記載の電気泳動装置において、前記泳動手段は細 管状に形成され、この細管状の泳動手段の外側に交番電 界を印加するための少なくとも一対の電極が配置され、 30 この電極と細管状の泳動手段との間に液状の誘電体が充 填されていることを特徴とする。

【0007】また、請求項3記載の電気泳動装置は、請 求項2記載の電気泳動装置において、前記細管が比誘電 率が10以上の誘電体で作られていることを特徴とす

【0008】また、請求項4記載の電気泳動装置は、請 求項1記載の電気泳動装置において、前記泳動手段は所 定間隔を設けて対向配置された一対の板体によって平板 状に形成されており、前記板体の内側に交番電界を印加 40 するための電極となる導電膜およびこの導電膜の表面を 覆う誘電体膜が形成されていることを特徴とする。

【0009】また、請求項5記載の電気泳動方法は、請 求項1記載の電気泳動装置において、前記泳動手段は、 比誘電率が10以上の誘電体からなる一対の板体を所定 間隔を設けて対向配置することによって平板状に形成さ れており、これらの板体の外側に交番電界を印加するた めの電極が形成されていることを特徴とする。

【0010】また、請求項6記載の電気泳動装置は、請 求項2~5いずれか1項記載の電気泳動装置において、

前記交番電界を印加するための電極は、直流電圧を印加

7.

10

する方向に複数に分割されていることを特徴とする。

【0011】また、請求項7記載の電気泳動方法は、直 流電圧を印加して試料を所定の泳動方向に移動させつつ 分離する電気泳動方法において、前記泳動方向に直交す る方向に連続的または間欠的に交番電界を印加すること を特徴とする。

[0012]

"),

【作用】上記構成の本発明の電気泳動装置および電気泳 動方法では、泳動方向と直交する方向に交番電界を作用 させることによって、試料中のDNA、蛋白質等の分子 を交番電界の印加方向に配向させることができる。

【0013】したがって、各分子は、ゲルマトリクス中 を泳動方向に直角な方向に配向した状態で泳動すること となり、配向させない場合に較べて、分子の長さの差を 泳動速度の差としてより鋭敏に反映させることができ、 分解能の向上を図ることができる。また、泳動電圧を上 げて泳動を高速化しても、所望の分解能を維持すること が可能となるので、泳動の高速化を図ることもできる。

【0014】また、本発明の電気泳動装置において、泳 動手段として細管状の例えばキャピラリーを用いた場 合、このキャピラリーとキャピラリーの外側に配置され た交番電界を印加するための電極との間に液状の誘電体 を充填し、これらの間にエアギャップが生じないように すると、交番電界を効率良く印加することができる。こ の場合、細管は、比誘電率が10以上の誘電体によって 構成し、細管壁での電圧低下を抑制して細管内部に交番 電界を形成し易くすることが好ましい。

【0015】また、泳動手段として平板状の例えばスラ ブゲルを用いた場合、スラブゲルの両側面を支持するガ ラス板等の内側に交番電界を印加するための電極となる 導電膜およびこの導電膜の表面を覆う誘電体膜が形成す ると、交番電界を効率良く印加することができる。この ように、平板状のスラブゲル等を用いた場合、スラブゲ ルの両側面を支持する平板を比誘電率が10以上の誘電 体によって構成し、平板での電圧低下を抑制するように して、平板の外側に交番電界を印加するための電極を設 けることもできる。

【0016】さらに、本発明の電気泳動装置において、 交番電界を印加するための電極は、直流電圧を印加する 方向に複数に分割して配置することが好ましい。このよ うにして交番電界を印加するための電極を複数に分割配 置することにより、絶縁破壊が生じ難くなり、安全性の 向上を図ることができる。

[0017]

【実施例】以下、本発明の一実施例を図面を参照して説 明する。

【0018】図1は、本発明の一実施例の電気泳動装置 の構成を示すもので、同図において符号1は細管(キャ ピラリー)を示している。この細管1は、厚さの非常に 薄い(例えば十乃至数十ミクロン程度)硝子等の誘電体 50 る電界Eaが形成され、DNA分子は、電界Eaの方向

を用いて円管状に構成されており、細管1内には、担体 として、ポリアクリルアミド等からなるゲル2が充填さ れている。なお、本実施例では、長さが30cmのゲル 2を収容可能なように、細管1の長さが設定されてい

【0019】上記細管1の上部には、上部パッファ収容 部3aが配設されており、この上部バッファ収容部3a 内には、直流用電極4aが配置されている。一方、細管 1の下部には、下部パッファ収容部3bが配設されてお り、この下部パッファ収容部3b内には、直流用電極4 bが配置されている。そして、直流用電極4a、4bは 直流電源5に電気的に接続されている。

【0020】また、上記細管1を挟むように、交流用電 極6 a 、6 b が配設されており、これらの交流用電極6 a、6bは、交流電源7に接続されている。図2に示す ように、これらの交流用電極6a、6bは、電極支持部 材8によって支持されており、交流用電極6a、6bお よび電極支持部材8によって囲まれた細管1の周りに は、高誘電率の液体(例えば、グリセリン、純水等) 9 20 が充填されており、交流用電極6a、6bと細管1との 間に交番電圧印加の妨げとなるエアギャップが形成され ない構成となっている。なお、細管1は、比誘電率が1 0以上の誘電体によって構成し、細管壁での電圧低下を 抑制して細管1内部に交番電界を形成し易くすることが 好ましい。

【0021】また、図3に示すように、交流用電極6 a、6bは、細管1の長さ方向に複数に分割(本実施例 では4分割) されており、それぞれ直流成分を遮断する ためのコンデンサ10を介して交流電源7に接続されて 30 いる。これは、例えばDNA等の電気泳動を行う場合、 直流電源5から印加する直流電圧としてゲル2の長さ1 cmあたり300V程度、例えばゲル2の長さが30c mの場合9000V程度の電圧を印加するため、交流用 電極6a、6bを一体とすると絶縁破壊を起こす可能性 があるためである。

【0022】上記構成のこの実施例の電気泳動装置で は、例えばDNAの分析を行う場合、上部パッファ収容 部3aおよび下部バッファ収容部3bに泳動用のバッフ ァを収容し、細管1の上部に試料を装填して、直流電源 40 5から直流用電極4a、4bに9000V程度の電圧を 印加する。また、これとともに、交流電源7から、交流 用電極6a、6b間に交流電圧を印加する。

【0023】なお、上記交流電圧としては、例えば周波 数100KHz~10MHz、電圧10~500 (V/ 100 µm) の範囲が好ましい。また、通常の交流電圧 に限らず、矩形状波形の交番電圧であってもよい。

【0024】これによって、図4に示すように、ゲル2 内に、その長さ方向に沿って直流電圧による電界Edが 形成されるとともに、その径方向に沿って交流電圧によ J.

6

に配向した状態で、電界Edの方向に泳動される。したがって、DNA分子が配向していない場合に較べて、DNA分子の長さによる移動度の相違が実際の泳動速度により鋭敏に反映し、高分解能および高速な分離、分析を行うことができる。

【0025】なお、上記実施例では、ガラス製の細管1を用いた場合について説明したが、図5に示すように、フォトエッチング等の技術により、平板状の誘電体20に溝21を形成し、この溝21の両側に電極22を形成した後、蓋体23によって溝21を封止して、細管状の泳動機構を構成することもできる。この場合、板状の基体に平行に多数の泳動機構を配設することが可能となる。

【0026】また、上記実施例では、ガラス製の細管1の外側に交流用電極6a、6bを配設し、細管1と交流用電極6a、6bとの間に、グリセリン、純水等の液体9を充填したが、細管1の外壁部分に導電膜を蒸着等により形成し、交流用電極とすることもできる。

【0027】次に、本発明をスラブゲルに適用した実施 例について説明する。

【0028】図6は、本実施例の電気泳動装置の要部構成を示すものである。同図に示すように、一般に、スラブゲルを用いた電気泳動装置では、厚さ数ミリ程度の2枚のガラス板30a、30bを、所定厚のスペーサ(図示せず)等を用いて所定間隔に保持し、これらの間にスラブゲル31を作成する。この場合、ガラス板30a、30bの厚さが厚いため、ガラス板30a、30bの外から交流電圧を印加すると効率が悪い。

【0029】このため、本実施例の電気泳動装置では、ガラス板30a、30bの内側(スラブゲル31側)に銀あるいはアルミニウム等の導電性薄膜からなる交流用電極32a、32bが形成されており、これらの交流用電極32a、32bが形成されており、これらの交流用電極32a、32bの表面を覆うように、誘電率の大きな物質、例えば、BaTiO,の粉末を含む樹脂あるいはその他誘電率の大きな樹脂等からなる誘電体膜33a、33bが形成されている。図7に示すように、これらの交流用電極32a、32bは、直流電圧印加方向(同図において上下方向)に複数に分割して配設されている。

【0030】なお、ガラス板30a、30bの上下には、周知のスラブゲル電気泳動装置と同様に、直流用電極を備えたバッフア収容部(図示せず)が配置され、上

下方向に直流電圧が印加される。

【0031】このように構成されたスラブゲルを用いた 電気泳動装置においても、直流電圧印加方向と直交する 方向に交流電圧を印加して泳動を行うことにより、前述 した実施例と同様な効果を得ることができる。

【0032】なお、この実施例のように、平板状のスラブゲル31等を用いた場合、図8に示すように、スラブゲル31の両側面を支持する平板(ガラス板30a、30b)を比誘電率が10以上の誘電体によって構成し、平板での電圧低下を抑制するようにして、平板の外側に

10 平板での電圧低下を抑制するようにして、平板の外側に 交番電界を印加するための交流用電極32a、32bを 設けるようにしてもよい。

[0033]

【発明の効果】以上説明したように、本発明の電気泳動 装置および電気泳動方法によれば、従来に較べてさらに 高分解能および高速な分離、分析を行うことが可能とな る。

【図面の簡単な説明】

【図1】本発明の一実施例の電気泳動装置の構成を示す 20 図。

【図2】図1の電気泳動装置の縦断面の構成を示す図。

【図3】図1の電気泳動装置の電気的接続を説明するための図.

【図4】図1の電気泳動装置の細管内の電場の様子を説明するための図。

【図5】図1の電気泳動装置変形例の構成を示す図。

【図6】他の実施例の電気泳動装置の要部構成を示す 図

【図7】図6の電気泳動装置の交流用電極の構成を示す 図

【図8】他の実施例の電気泳動装置の要部構成を示す図。

【符号の説明】

- 1 細管 (キャピラリー)
- 2 ゲル
- 3 a 上部バッファ収容部
- 3 b 下部パッファ収容部
- 4 a 、4 b 直流用電極
- 5 直流電源
- 40 6 a 、6 b 交流用電極
 - 7 交流電源

【図5】

【図7】

フロントページの続き

(72) 発明者 遠藤 勲

埼玉県和光市広沢2番1号 理化学研究所

内