Estrutura de Dados I

Ivairton M. Santos

UFMT Ciência da Computação

November 14, 2016

Outline

Estrutura de Dados I - Introdução

- O que é um Algoritmo?
- O que é uma estrutura de dados?
- Porque pensar sobre isso?

Análise de algoritmos

- Porque analisar um algoritmo?
- O que podemos analisar?
- Um modelo de computador:

Axioma 1: Tempo de recuperação e armazenamento na memória são constantes: π_{rec} , π_{arm}

Para o código: $y = x \rightarrow \pi_{rec} + \pi_{arm} = 2$

$$y = 1 \rightarrow \pi_{rec} + \pi_{arm} = 2$$

Axioma 2: Operações aritméticas elementares possuem tempos constantes: $\pi_+, \pi_-, \pi_\times, \pi_{\dot{-}}, \pi_<$, *etc.*..

$$y = y + 1 \rightarrow 2\pi_{rec} + \pi_{+} + \pi_{arm} = 4$$

Axioma 3: A chamada de uma função e o retornon dela também são constantes: π_{call} , π_{return}

Análise de algoritmos

int resultado = 0;
for (i=1: i<=n: i++) {</pre>

Código:

```
\label{eq:resultado} \begin{array}{l} \text{resultado = resultado + 1;} \\ \text{} \\ \text{return resultado;} \\ \text{Resulta em:} \\ \pi_{rec} + \pi_{arm} \\ \pi_{rec} + \pi_{arm} + \{(2\pi_{rec} + \pi_{<=}) \times (n+1)\} + \{(2\pi_{rec} + \pi_{+} + \pi_{arm}) \times n\} \\ (2\pi_{rec} + \pi_{+} + \pi_{arm}) \times n \\ \pi_{rec} + \pi_{return} \end{array}
```

T(n) é o tempo de processamento do programa, que é t_1+t_2n

 $= (5\pi_{rec} + 2\pi_{arm} + \pi < + \pi_{return}) + (6\pi_{rec} + 2\pi_{arm} + \pi < + 2\pi_{+}) \times n$

Exercício

Calcule o tempo para um programa que soma os primeiros n inteiros positivos pares.

Análise de algoritmos

Axioma 4: O tempo para cálculo do endereço de vetor é constante:

```
 \begin{aligned} &\pi_{\text{[.]}}\\ &y = a[i] \rightarrow 3\pi_{rec} + \pi_{\text{[.]}} + \pi_{arm} \end{aligned}
```

Calcule T(n) para o algoritmo de Horner ($\Sigma_{i=0}^n a_i n^i$):

```
int resultado = a[n];
for (i=n-1; i<=0; i--) {
    resultado = resultado * x + a[i];
}
return resultado;</pre>
```

Análise de métodos recursivos

Analisando a performance do algoritmo recursivo para cálculo do fatorial, considere:

$$n! = \left\{ \begin{array}{ll} 1 & n = 0\\ \prod_{i=0}^{n} & n > 0 \end{array} \right\}$$

Recursivamente temos:

$$n! = \left\{ \begin{array}{ll} 1 & n = 0 \\ n \times (n-1)! & n > 0 \end{array} \right\}$$

Análise de métodos recursivos

```
int fatorial(int n) {
                    if (n == 0)
                                     return 1;
                    else
                                     return n * fatorial(n-1);
       }
Temos para n=0:
2\pi_{rec} + \pi_{-}
\pi_{rec} + \pi_{return}
Temos para n > 0:
2\pi_{rec} + \pi_{-}
3\pi_{rec} + \pi_{-} + \pi_{arm} + \pi_{*} + \pi_{call} + \pi_{return} + T(n-1)
T(n) = \left\{ \begin{array}{ll} t_1 & n=0 \\ T(n-1) + t_2 & n>0 \end{array} \right\} (Relação de recorrência)
```

Análise de métodos recursivos

Resolvendo a relação de recorrência:

$$T(n) = T(n-1) + t_2$$

$$= (T(n-2) + t_2) + t_2$$

$$= T(n-2) + 2t_2$$

$$= (T(n-3) + t_2) + 2t_2$$

$$= T(n-3) + 3t_2$$
(...)

Identificando o padrão emergente, neste caso é óbvio:

$$T(n) = T(n-k) + kt_2$$

Modelo simplificado

- Podemos facilitar a análise, apesar de perder precisão.
- Considere uma constante de tempo para todos os parâmetros, por conta dos ciclos.
- Vamos retomar os exemplos anteriores para ver como fica...

Problemas

Determine o tempo de processamento preditos pelo modelo detalhado e modelo simplificado para os seguintes fragmentos de código:

```
(a)
for (i=0; i< n; i++)
        k++:
(b)
for (i=n-1; i!=0; i--)
        k++;
(c)
for (i=0; i< n; i++)
        if (i\\%2 == 0)
             k++:
(d)
for (i=0; i< n; i++)
         for (j=0; j< n; j++)
```

Porque fazer algoritmos eficientes?

T(n)	1.000s	10.000s	Ganho
100n	10	100	10×
$5n^2$	14	45	$3,2 \times$
$0,5n^{3}$	12	27	$2,3 \times$
2^n	10	18	$1,3 \times$

Suponha 2 algoritmos A e B. Se temos a análise dos tempos de processamento $T_A(n)$ e $T_B(n)$, em que n é uma medida do tamanho do problema, então basta comparar os resultados das funções para determinar qual deles é melhor.

Infelizmente não é assim tão simples...

Temos a possibilidade de conhecermos, **a priori**, o tamanho do problema. Por exemplo: para n_0 e $T_A(n_0) < T_B(n_0)$, então o algoritmo A é melhor para o tamanho de problema n_0 .

No caso geral não temos o conhecimento, a priori, do tamanho do problema. Se pudéssemos demonstrar que $T_A(n) \leq T_B(n)$ para qualquer $n \geq 0$, então o algoritmo A seria melhor que o algoritmo B, independente do tamanho do problema.

Infelizmente, no geral, não temos conhecimento anterior do tamanho do problema e também não é verdade que uma das funções seja menor ou iguala outra para qualquer que seja o tamanho do problema.

Para resolver esse impasse, consideramos o comportamento **assintótico** das funções, para tamanho de problemas arbitrariamente grandes.

A notação Θ caracteriza o comportamento assintótico de uma função, estabelecendo um limite superior quanto à taxa de crescimento da função em relação ao crescimento de n.

Notação ⊖

Considere uma função f(n) não negativa para todos os inteiros $n \geq 0$. Dizemos que "f(n) é $\Theta(g(n))$ " e escrevemos $f(n) = \Theta(g(n))$, se existe um inteiro n_0 e uma constante c>0 tais que para todo inteiro $n>n_0$, $f(n) \leq cg(n)$.

Exemplo: Considere f(n)=8n+128. Queremos mostrar que f(n) é $\Theta(n^2)$. Portanto é necessário encontrar um inteiro n_0 e uma constante c>0 tais que para todo $n>n_0$, $f(n)\leq cn^2$.

Notação ⊖

Suponha escolher c=1, então:

$$f(g) < cn^2 \rightarrow \quad 8n+128 \le n^2 \\ 0 \le n^2-8n-128 \quad \text{Uma vez que } (n+8) > 0 \forall \text{ os } \\ 0 \le (n-16)(n+8)$$

valores de n > 0, concluímos que $(n_0 - 16) \ge 0$, ou seja, $n_0 = 16$.

Assim, para c=1 e $n_0=16$, $f(n)\leq cn^2\forall$ os inteiros $n>n_0$. Portanto, $f(n)=\Theta(n^2)$.

Propriedades de ⊖

- Quanto ao comportamento assintótico da soma: Se $f_1(n) = \Theta(g_1(n))$ e $f_2(n) = \Theta(g_2(n))$, então: $f_1(n) + f_2(n) = \Theta(max(g_1(n), g_2(n)))$
- Quanto ao comportamento assintótico da multiplicação: Se $f_1(n) = \Theta(g_1(n))$ e $f_2(n) = \Theta(g_2(n))$, então: $f_1(n) \times f_2(n) = \Theta(g_1(n) \times g_2(n))$

Convenções para as expressões de Θ

- É prática comum escrever a expressão de Θ sem os termos menos significativos. Assim, ao invéz de $\Theta(n^2 + nlogn + n)$, escrevemos simplesmente $\Theta(n^2)$.
- É prática comum desconsiderar os coeficientes constantes. Em lugar de $\Theta(3n^2)$, simplesmente $\Theta(n^2)$. Um caso especial dessa regra é se a função é constante, por exemplo: $\Theta(1024)$, fica simplesmente $\Theta(1)$.

Algumas funções são tão frequentes que recebem denominações:

$\Theta(1)$	Constante	$\Theta(nlogn)$	nlog de n
$\Theta(logn)$	Logarítmica	$\Theta(n^2)$	Quadrática
$\Theta(log^2n)$	Log quadrado	$\Theta(n^3)$	Cúbica
$\Theta(n)$	Linear	$\Theta(2^n)$	Exponencial

Análise assintótica de algoritmos

Como vimos, a análise detalhada de algoritmos é confusa e cansativa. Podemos então aplciar a análise assintótica. Exemplo:

```
int func_Horner(int a[], int n, int x) {
          int resultado = a[n];
          for (int i = n-1; i >= 0; i--)
                resultado = resultado * x + a[i];
      5 \rightarrow \Theta(1)
      4 \rightarrow \Theta(1)
3n+3 \rightarrow \Theta(n)
                      16n + 14 \rightarrow \Theta(n)
    4n \rightarrow \Theta(n)
    9n \to \Theta(n)
      2 \rightarrow \Theta(1)
```