Exercícios de Sinais e Sistemas Contínuos

Professor

Dr. Jorge Leonid Aching Samatelo jlasam001@gmail.com

Avaliação

- ☐ Método de Avaliação
 - Cada grupo (2 alunos) apresentara em aula a solução de um problema proposto pelo professor.
 - Cada problema terá um determinado valor em pontos que serão somados a nota da prova parcial correspondente.
 - ❖ Mínimo valor em pontos para um problema: 0,25
 - ❖ Máximo valor em pontos para um problema: 0,5
- ☐ Critérios para a avaliação da apresentação
 - > Solução
 - ❖Correta: 100%
 - ❖Incorreta: 0%
 - ➤ Simulação em MATLAB (plus)
 - **♦** Correta: +0,1
 - ❖Incorreta: 0,0

Indicações

☐ Prazo:

- Envio das soluções: Quarta 11/04/2018 (23:59 hrs)
- Apresentação: Segunda 16/04/2018 (15:00 17:00 hrs)

☐ Procedimento para o envio da solução:

➤ Os slides da solução de cada exercício devem ser enviados ao email <u>jlasam001@gmail.com</u> com o assunto: EXERCICIO_SINAIS_SISTEMAS_CONTINUO_2018_1. O nome do arquivo .PPT (ou PPTX) deve iniciar com o rotulo SINAIS_SISTEMAS_CONTINUO seguido pelo numero do exercício e as iniciais dos nomes dos integrantes de cada dupla (por exemplo, a dupla conformada pelos alunos Pedro Farias e Joao Silva que solucionaram o exercício 3 enviariam o arquivo SINAIS SISTEMAS CONTINUO 3 PF JS.ppt).

☐ Sobre a apresentação:

> Cada dupla terá como máximo 8 minutos.

Recomendações para a elaboração dos slides

O primeiro slide deve conter o numero de exercício e os nomes dos integrantes
de cada dupla.
O segundo slide deve conter o enunciado do problema.
Os slides restantes devem conter os critérios e os procedimentos usados na
solução. É importante indicar que devem ser didáticos na explicação da solução
do problema.
Em relação as equações matemáticas, usar o editor de equações:
➤ MATHTYPE
http://mathtype.softonic.com.br/
No caso, que sejam usados programas editores de equações que trabalham com
notação LATEX, incluir ao final da apresentação, como um anexo, o código
TEX das equações.
IMPORTANTE: Não é aceitável, incluir unicamente as imagens das equações
(menos colar imagens de equações de material de referência).

Exercícios por dupla

Integrantes	N ^{ro} de Exercício
LUCAS BATISTA LEITE & MATHEUS BELOTI MARIANI	10
RHUAN SOUZA CAETANO & FRANCO SCHMIDT ROSSI	4
BRUNO GAMA NUNES DE OLIVEIRA & LUCAS SANTANA DA CUNHA	20
KEVIN BENFIQUES BORGES & ANDRE FELIPE SANTOS PEREIRA	11
MATHEUS DE ABREU BOZZI & MATHEUS BONGIOVANI SATHLER	5
BRUNO FRIGERI PIRAJA & GABRIEL THEBALDI DA SILVA	17
MATHEUS FRANCO GRACIANO & MARCELO SANTOS HONORATO	2
TADEU ALVES HASTENREITER & EITEL ALEX EBONGUE NG	12
ARTHUR LORENCINI & ANATELLI ANNE FAGUNDES HERINGER	9
MATHEUS LIMA DE ASSIS BERNARDINO & FABRICIO NUNES PAIVA	21
DEBORA CRISTINA FORTUNA LOPES & MARIANNE PONTARA MARINHO	1
ISABEL MARIA ROCHA BUSTAMANTE & MATUSALEM MANSUR	22
DIEGO RODRIGO PEREZ PACHECO & TASSIO SANTUCHI	16
ORIEL DILSON FERREIRA & CLEIDSON ALVES FAVALESSA	3
LUCAS VALENTIM VIDOTO & VITOR MONTENEGRO DE OLIVEIRA SABBAGH	24
LUIZ CLAUDIO CAMPISTA JUNIOR & RODRIGO MANZOLI DOS SANTOS	8
RAFAEL FRICKS DOS SANTOS & LUANY TONIATO OLIVEIRA	23
JHEMES PARMA MIRANDA & LEONARDO MARTINS DA SILVA	15
SANDOR FERREIRA DA SILVA & MELINA SCHNEIDER CAMPO	19
JONAS MENDES FIORINI & GUSTAVO DE ANDRADE GARCIA	6
BRENO SCALZER COIMBRA & GABRIEL CARLOS FAVERO CHAGAS	14
HAYLANDER GOMES LOPES & HOZIANNA DE CACIA BRANDAO XIMENES	18
RAYANE NASCIMENTO & BRENO SCALZER COIMBRA	7
BERNARDO FIGUEIREDO DE A CAMPOS & GLAUCIANE SOUZA DA SILVA	13

Sistemas contínuos

Exercício 1

0,5 PT

☐ Seja o sistema abaixo.

$$y(t) = \frac{e^{x(t)}}{x(t - t_0)} \; ; \; t_0 > 0$$

- ☐ Verifique:
 - ➤ O sistema é linear? Mostre.
 - ➤ O sistema é invariante no tempo? Mostre.
 - ➤ O sistema é estável? Mostre.

Sistemas contínuos

Exercício 2

0,5 PT

 \square Suponha que x(t) seja um sinal de tempo contínuo, e que

$$y_1(t) = x(2t)$$

$$y_2(t) = x(t/2)$$

- ☐ Considere as seguintes afirmações:
 - ightharpoonup Se x(t) é periódico, então $y_1(t)$ é periódico.
 - ightharpoonup Se $y_1(t)$ é periódico, então x(t) é periódico.
 - ightharpoonup Se x(t) é periódico, então $y_2(t)$ é periódico.
 - ightharpoonup Se $y_2(t)$ é periódico, então x(t) é periódico.
- Determine se cada uma das afirmações é ou não verdadeira. Se for, determine a relação entre os períodos fundamentais dos dois sinais considerados na declaração. Se a declaração for falsa, produza um contraexemplo para ela.

Sistemas contínuos

Exercício 3

- ☐ Prove as seguintes relações:
 - ightharpoonup Se $g_1(t)$ e $g_2(t)$ são sinais pares, então:
 - $♣g_1(t) + g_2(t)$ é par.
 - $♣ g_1(t) g_2(t)$ é par.
 - $\diamond g_1(t)g_2(t)$ é par.
 - $Ag_1(t)/g_2(t)$ é par.
 - ightharpoonup Se $g_1(t)$ e $g_2(t)$ são sinais impares, então:
 - $\clubsuit g_1(t) + g_2(t)$ é impar.
 - ❖ $g_1(t) g_2(t)$ é impar.
 - $Ag_1(t)g_2(t)$ é par.
 - $Ag_1(t)/g_2(t)$ é par.

Sistemas contínuos

Exercício 4

0,5 PT

☐ Seja o sistema continuo LTI cuja resposta ao degrau é:

$$s(t) = e^{-t}u(t)$$

☐ Determinar a saída do sistema quando a entrada é:

Sistemas contínuos

Exercício 5

0,5 PT

☐ Seja o sistema continuo LTI descrito pela relação.

$$y(t) = T\{x(t)\} = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\tau) d\tau$$

- ☐ Determinar:
 - \triangleright A) a resposta impulsiva do sistema h(t)
 - ➤ B) o sistema é causal?
- ☐ Dica:
 - Usar as relações

$$x(t) * u(t - t_o) = \int_{-\infty}^{t - t_o} x(\tau) d\tau$$

$$x(t) * h_1(t) + x(t) * h_2(t) = x(t) * (h_1(t) + h_2(t))$$

Sistemas contínuos

Exercício 6

0,5 PT

☐ Seja o sistema mostrado na figura abaixo, cujas respostas ao impulso são dadas. Determine a resposta ao impulso do sistema completo e verifique se o sistema completo é BIBO estável.

Sistemas contínuos

Exercício 7

0,5 PT

☐ Primeiro, calcule via a integral de convolução, usando o método indicado em aula, a saída do sistema LTI

$$x(t) = u(t)$$
 $h_1(t)$ $y(t) = x(t) * h(t)$

$$h(t) = e^{-at}u(t) , a > 0$$

 \square Segundo, usando a propriedade de linearidade de um sistema LTI, determine a saída y(t) quando a entrada é uma onda quadrada.

Dica: escrever *a onda quadrada* como a soma de sinais degrau.

Sistemas contínuos

Exercício 8

0,5 PT

☐ Calcule via a integral de convolução, usando o método indicado em aula, a saída do sistema LTI

$$x(t) = e^{at}u(-t) , a > 0$$

$$h_1(t)$$

$$y(t) = x(t) * h(t)$$

$$h(t) = e^{-at}u(t) , a > 0$$

Sistemas contínuos

Exercício 9

- ☐ Para o sistema da Figura:
 - Calcule, via a integral de convolução, USANDO O MÉTODO INDICADO EM AULA, a saída do sistema LTI.
 - > Determine se o sistema é BIBO estável.
 - \triangleright Determine se o sinal de saída y(t) é um sinal de energia ou de potência.

$$h(t) = \begin{cases} 1 & 0 < t < 1 \\ -1 & 1 < t < 2 \\ 0 & caso \ contrario \end{cases}$$

Sistemas contínuos

Exercício 10

- Considere o circuito da figura como um sistema cuja entrada é a tensão aplicada $x(t) = v_g(t)$ e a saída é a tensão no capacitor y(t) = v(t).
- ☐ Encontre
 - > uma equação diferencial que descreva este sistema,
 - \triangleright a *resposta natural* do sistema para t > 0.
 - ightharpoonup a *resposta forçada e completa*, sabendo que, para t > 0, x(t) = 10V, v(0) = 6V, i(0) = 2A.

Sistemas contínuos

Exercício 11

- Considere o circuito da figura como um sistema cuja entrada é a tensão aplicada $x(t) = v_g(t)$ e a saída é a tensão no capacitor y(t) = v(t).
- □ Encontre
 - > uma equação diferencial que descreva este sistema,
 - \triangleright a *resposta natural* do sistema para t > 0.
 - ightharpoonup a resposta forçada e completa, sabendo que, para t > 0, $x(t) = 4\cos(t)V$, v(0) = 6V, i(0) = 2A.

Sistemas contínuos

Exercício 12

0,5 PT

☐ Considere o sistema descrito pela EDO linear de coeficientes constantes:

$$\frac{d}{dt}y(t) + 2y(t) = x(t) + \frac{d}{dt}x(t)$$

- Determinar:
 - a) A função de transferência do sistema H(s).
 - b) A resposta ao impulso h(t), para cada um dos seguintes casos:
 - a) O sistema é CAUSAL.
 - b) O sistema é INSTÁVEL.
 - c) O sistema NÃO É CAUSAL e NÃO É ESTÁVEL.
 - c) A magnitude e a fase da resposta em frequência da função de transferência calculada no item (A).

Transformada Bilateral de Laplace

Exercício 13

- Determinar a Transformada Bilateral de Laplace do sinal x(t) representada na figura abaixo. Encontrar também o valor-limite de X(s) quando a tende a zero.
 - \triangleright *Dica*: escrever x(t) como a soma de sinais degrau.

Transformada Bilateral de Laplace

Exercício 14

- \square Representar a $x_1(t)$ e $x_2(t)$ como uma soma de sinais degrau e calcular:
 - > As correspondentes Transformadas Bilaterais de Laplace.
 - \triangleright A energia dos sinais $x_1(t)$ e $x_2(t)$.

Transformada Bilateral de Laplace

Exercício 15

- Determinar a Transformada Bilateral Inversa de Laplace das seguintes funções (pode-se empregar a tabela de pares de transformada).
 - > A)

$$X(s) = \frac{(s+5)}{s^2(s+2)}, \text{Re}\{s\} > 0$$

$$X(s) = \frac{10s^2}{(s+1)(s+3)}, \text{Re}\{s\} > 0$$

Transformada Bilateral de Laplace

Exercício 16

0,5 PT

- ☐ Determinar a Transformada Bilateral Inversa de Laplace das seguintes funções (pode-se empregar a tabela de pares de transformada).
 - > A)

$$X(s) = \frac{s}{(s-3)(s^2-4s+5)}, \text{Re}\{s\} < 2$$

> B)

$$X(s) = \frac{5s+13}{s(s^2+4s+13)}, \text{Re}\{s\} > 0$$

Transformada Bilateral de Laplace

Exercício 17

0,5 PT

Determinar a Transformada Bilateral Inversa de Laplace das seguintes funções (pode-se empregar a tabela de pares de transformada).

$$X(s) = \frac{2s+4}{s^2+4s+3}, \text{Re}\{s\} > -1$$

$$X(s) = \frac{2s+4}{s^2+4s+3}, \text{Re}\{s\} < -3$$

$$X(s) = \frac{2s+4}{s^2+4s+3}, -3 < \text{Re}\{s\} < -1$$

Transformada Bilateral de Laplace

Exercício 18

- \square Determinar a saída y(t) do sistema LTI usando a Transformada Bilateral de Laplace, quando:
 - > A)

$$h(t) = 5e^{-4t}u(t)$$

$$x(t) = u(t)$$

$$h(t) = 5e^{-4t}u(t)$$

$$x(t) = u(-t)$$

$$h(t) = 5e^{4t}u(-t)$$

$$x(t) = u(t)$$

$$h(t) = 5e^{4t}u(-t)$$

$$x(t) = u(-t)$$

Transformada Bilateral de Laplace

Exercício 19

0,5 PT

 \square Considere o sistema LTI para o qual a entrada x(t) e a saída y(t) estão relacionadas:

$$\frac{d^2}{dt^2}y(t) + \frac{d}{dt}y(t) - 2y(t) = x(t)$$

- \triangleright A) Determinar a função de transferência do sistema H(s).
- \triangleright B) Determinar a resposta ao impulso h(t), para cada um dos seguintes casos:
 - ❖O sistema é causal.
 - ❖O sistema é estável.
 - ❖O sistema não é causal e não é estável.

Transformada Bilateral de Laplace

Exercício 20

0,5 PT

☐ Considere o sistema descrito pela EDO linear de coeficientes constantes:

$$\frac{d}{dt}y(t) + 2y(t) = x(t) + \frac{d}{dt}x(t)$$

 \square Usando a transformada de Laplace, determine a resposta ao impulso h(t) do sistema.

Transformada Bilateral de Laplace

Exercício 21

0,5 PT

- ☐ Usando a transformada unilateral de Laplace, solucione as seguintes EDOs:
 - > A)

$$\frac{d}{dt}y(t) + 10y(t) = u(t), y(0^{-}) = 1$$

> B)

$$\frac{d^2}{dt^2}y(t) - 2\frac{d}{dt}y(t) + 4y(t) = u(t), \ y(0^-) = 0, \frac{d}{dt}y(0^-) = 4$$

> C)

$$\frac{d}{dt}y(t) + 2y(t) = \sin(2\pi t)u(t) , y(0^{-}) = -4$$

Transformada Bilateral de Laplace

Exercício 22

0,5 PT

☐ Considere o sistema descrito pela EDO linear de coeficientes constantes:

$$\frac{d^{2}}{dt^{2}}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = 5x(t) + \frac{d}{dt}x(t)$$

- Determine
 - \triangleright Função de transferência H(s)
 - > A magnitude e a fase da resposta em frequência.
 - \triangleright A resposta ao impulso unitário h(t) do sistema.
 - \triangleright O sinal de saída y(t) se o sinal de entrada é:

$$x(t) = 20\sin(3t + 35^{\circ})$$

Transformada Bilateral de Laplace

Exercício 23

0,5 PT

☐ Seja a seguinte função de transferência

$$H(s) = \frac{s^2 + 2s + 17}{s^2 + 4s + 104}$$

- ☐ Determinar:
 - ➤ A magnitude e a fase da resposta em frequência.
 - \triangleright A resposta ao impulso unitário h(t).
 - \triangleright A resposta ao degrau unitário s(t).

Transformada Bilateral de Laplace

Exercício 24

0,5 PT

☐ Seja a resposta em frequência de um sistema

$$||H(w)|| = \frac{1}{\sqrt{1+w^6}}$$

- ☐ Determinar:
 - \triangleright A função de transferência H(s) do sistema.
- □ Dica
 - > Usar a seguinte propriedade

$$H(s)H(-s) = ||H(jw)||^2|_{w^2=-s^2}$$

Bom Trabalho!!!

