JL 通话调试手册

版本: v2.4.2

日期: 2021/12/29

珠海市杰理科技股份有限公司 Zhuhai Jieli Technology Co.,LTD 版权所有,未经许可,禁止外传

版本更新

版本	描述		
V2. 4	1、文档整理更新; 2、增加神经网络降噪说明 3、增加算法处理流程图		
V2. 4. 1	更新常见问题章节问题 4 的指引:声音闷的调试指		
V2. 4. 2	增加对 AC701N 系列的支持		

适用 SDK 列表

芯片系列	SDK 类型	备注
AC695N	Soundbox sdk	
AC696N	Soundbox sdk	
AC697N	通用	
AC700N	通用	
AC701N	通用	

目录

— ,	清晰语音处理概述	5
二、	算法模式选择	6
三、	回音消除 AEC	7
四、	非线性压制 NLP	8
五、	自动增益控制 AGC	10
	(一) AGC 参数配置说明	10
	(二) AGC 实现单工通话	11
六、	传统经典降噪 ANS	13
七、	神经网络降噪 DNS	14
八、	音质调节 EQ	16
九、	常见问题 FAQ	17
	(一) 有噪声或者电流声	
	(二) 声音忽 <mark>大忽</mark> 小,不均匀	
	(三) 回音消不掉	
	(四) 远端听到的声音比较闷,不清晰	
	(五) 远端 <mark>听到的</mark> 声音有尾音	19
	(六) 使用 advance 反而回音更加明显	20

一、清晰语音处理概述

1、单 mic 清晰语音处理流程如下:

注:降噪 NS 模块,可以选择传统降噪 ANS,也可以选择神经网络降噪 DNS,二选一。

2、以下是对于端对端通话过程远端和近端的定义,本手册涉及的远端近端概念,遵照以下框图:

我们讨论的回音,是指远端手机讲话,发送到连接蓝牙设备的近端手机,然后声音从蓝牙设备的speaker发出来,又被蓝牙设备的microphone采集到,通过近端手机发送回远端手机,远端可以延时听到自己讲话的声音。

二、算法模式选择

AEC_MODE: advance ▼ (AEC 模式, 默认值: advance)

根据样机的 mic 能采集到的回声大小,决定使用 AEC_MODE_ADVANCE (AEC+NLP) 还是 AEC_MODE_REDUCE (NLP)。关闭算法,通话的时候,远端听到的回音大小,来判定回音大小。严谨的操作,可以通过远端录音,然后用音频分析软件看人声信号和回音的比例,即信回比 SER,当 SER 小于20dB 时,再考虑使用 AEC MODE ADVANCE。

一般来说,音箱都需要使用 AEC_MODE_ADVANCE, 耳机方案的话优先使用 AEC_MODE_REDUCE。AEC_MODE_REDUCE 模式配合 NLP 模块参数的调试如果不能消除回声,再使用 AEC_MODE_ADVANCE, advance 模需要更多的内存和运算量。

三、回音消除 AEC

AEC 主要用来消除回音中的线性部分。参数设置如下:

AEC_DT_AGGRES: 1.0 ♦ (原音回音追踪等级, 设置范围: 1.0 ~ 5.0, 默认值: 1.0)

AEC_REFENGTHR: -70.0 ♣ (进入回音消除参考值, 设置范围: -90.0 ~ -60.0 dB, 默认值: -70.0 dB)

AEC 模块的参数基本不用调试,这里是为了兼容性考虑,所以放到配置工具。如有需要,由原开发人员指导修改。

四、非线性压制 NLP

NLP 主要用来消除回音中的非线性部分,参数设置如下:

ES_AGGRESS_FACTOR: -3.0 • (回音前級动态压制,越小越强, 设置范围: -5.0 ~ -1.0,默认值: -3.0)

ES_MIN_SUPPRESS: 4.0 ♦ (回音后级静态压制,越大越强, 设置范围: 0~10.0,默认值: 4.0)

NLP 模块根据回声的大小,进行相应的压制。

ES_AGGRESS_FACTOR: 回声侵略系数,该参数会根据回声大小进行动态自适应压制。

ES MIN SUPPRESS: 回声压制最小压制阈值,偏向静态。

调整步骤:

- (1) 减小 ES_AGGRESS_FACTOR, 直到回声没有, 或者有部分小回声泄露。
- (2) 调整 ES_MIN_SUPRESS, 直到没有回声,该值影响双工效果。
- (3) 测双工效果,如果双工效果不满意,则需要减少回声路径增益(减小ADC 增益,或者减小DAC 增益),并且恢复NLP_AGGRESS_FACTOR与NLP SUPPRESS FACTOR到默认系数,并回到步骤1。

调试 Tips:

ES_AGGRESS_FACTOR参数是让算法自动调整,那如果在ES_AGGRESS_FACTOR

比较小的情况下,还有小小的回声,这个时候建议调整 ES_MIN_SUPPRESS,即以上步骤 2。ES_MIN_SUPPRESS 这个参数的副作用是越大,压制效果越明显,相应的,双工效果越差,甚至没有双工。具体数值根据实际样机的回声大小而定。

五、自动增益控制 AGC

(一) AGC 参数配置说明

```
NDT FADE IN:
             1.3 🖨 dB (单端讲话淡入步进,设置范围: 0.1 ~ 5 dB, 默认值: 1.3 dB)
NDT_FADE_OUT:
             O.7 ♣️ dB(单端讲话淡出步进,设置范围: O.1 ~ 5 dB,默认值: O.7 dB)
DT_FADE_IN:
             1.3 ♣ dB (双端讲话淡入步进,设置范围: 0.1 ~ 5 dB,默认值: 1.3 dB)
DT_FADE_OUT:
             [0.7] ♣ dB(双端讲话淡出步进,设置范围: 0.1 ~ 5 dB,默认值: 0.7 dB)
NDT_MAX_GAIN:
             |12.0 | ♦ (单端讲话放大上限, 设置范围: 0 ~ 24 dB,默认值: 12.0 dB)
NDT_MIN_GAIN:
                   🛊 (单端讲话放大下限, 设置范围: -20.0 ~ 24.0 dB, 默认值: 0 dB)
NDT_SPEECH_THR:
             ├─50.0 🗣 (单端讲话放大阈值, 设置范围: -70.0 ~ -40.0 dB, 默认值: -50.0 dB)
             |12.0 ➡| (双端讲话放大上限, 设置范围: 0 ~ 24.0 dB, 默认值: 12.0 dB)
DT_MAX_GAIN:
                  ➡ (双端讲话放大下限, 设置范围: -20.0 ~ 24.0 dB, 默认值: 0 dB)
DT_MIN_GAIN:
             0.0
             -40.0 🖨 (双端讲话放大阈值, 设置范围: -70.0~ -40.0 dB,默认值: -40.0 dB)
DT_SPEECH_THR:
ECHO_PRESENT_THR: ├─70.0 🔄 (单端双端讲话阈值, 设置范围: -70.0 ~ -40.0 dB, 默认值: -70.0 dB)
```

AGC 调试的是远端听到的声音。该模块是后级数字模块,即在一定的 mic 模拟增益的情况下,做完回音消除处理后,准备送到远端之前做的一个数字放大 AGC。流程如下:

调试 Tips:

(1) 增益单位是 dB;

- (2) 当 mic 采集到的数据人声大于 speech_thr (近端声音放大的阈值) 时放大 MAX GAIN;
- (3) 当 mic 采集到的数据人声小于等于 speech_thr(近端声音放大的阈值) 时放大 MIN_GAIN;
- (4) 最大放大倍数和最小放大倍数之间,是通过 fade_in 和 fade_out 来淡入淡出的。比如单端讲话,这个时候淡入的步进就是: ndt_fade_in,淡出的步进就是: ndt_fade_out。讲话的时候淡入,没说话的时候淡出。双端讲话则用 dt_fade_in 和 dt_fade_out,用法一样;
- (5) speech_thr (近端声音放大的阈值) 这个值根据 mic 采到的声音大小而定,如果太大,声音得不到均匀放大,即一会 放大 max_gain,一会放大 min gain, 听起来有可能忽大忽小。太小则有可能环境声也会一并放大。

(二) AGC 实现单工通话

在某些情况下,整个通话回路产生了严重失真,导致算法无法处理好回音,这个时候,就只能选择单工的通话方式。

所谓单工,即远端讲话的时候,听不到近端的声音,远端不讲话,可以 听到近端的声音。而近端,什么时候都可以听到远端的声音。所以可以在 检测到远端有说话,就开始将近端声音淡出,远端没说话,再自行淡入, 就可以实现单工功能。

【注意】ECHO_PRESENT_THR 的值,决定什么时候进入单工处理。考虑到远端讲话的声音一般是比较大的,所以可以适当将该值设置高一点,避免远端环境声或者其他非目标声音稍微一大,就听不到近端声音。比如:远端过来的目标人声集中在-20dB 到-40dB 之间,则可以把 ECHO_PRESENT_THR设置成-45dB。但是也要注意不能设置太大,太大会导致远端说话有些字达不到设定阈值,从而进入不了双端讲话模式,实现不了单工,出现漏回音的情况。

六、传统经典降噪 ANS

1、通用参数说明

ANS_SUPPRESS: 1.25 ◆ (噪声前级动态压制,越大越强,设置范围:1~2.0,默认值:1.25)

ANS_SUPPRESS: 0.09 ◆ (噪声后级静态压制,越小越强,设置范围:0~1.0,默认值:0.09)

注:降噪参数,推荐使用默认配置。如由需要调整,建议不要只调一个值,建议:

- (1)如果要加强降噪效果,先调大一点动态压制 ANS_AGGRESS,还不够,可以尝试调小一点静态压制 ANS_SUPPRESS;
- (2) 如果要减弱降噪效果,先调大一点静态压制 ANS_SUPPRESS,还不够,可以尝试调小一点动态压制 ANS AGGRESS。
 - 2、扩展参数说明(参数没在配置,便需要在程序里面修改):

ANS_NoiseLevel 初始噪声水平,用来加速降噪收敛,跟 mic 信号的信噪比有关。Mic 信号信噪比高,该值可以小一点,反之则需要稍微大一点。如果初始噪声设置过高,则可能导致一开始声音比较小声,如果过小,可能降噪收敛加速不明显。所以这个值需要具体方案如果出现以上可能问题时,适当修改。

七、神经网络降噪 DNS

神经网络降噪:收集大规模的干净语音和噪声数据集,提取干净语音特征和带噪声语音特征,采用深度神经网络技术进行降噪模型的训练。训练出的降噪模型对输入信号实时进行噪声和语音的分类和回归,根据分类和回归的结果对语音信号进行噪声抑制,语音增强,提升信噪比。

对比传统降噪算法,采用深度神经网络进行语音降噪和增强,噪声估计 更准确,语音失真更小,同时也能适应非平稳噪声的降噪处理。

	优点	缺点
ANS	对平稳噪声处理效果好,对 ram 和	适应性差,对动态噪声处理
	mips 要求低	效果欠佳
DNS	噪声估计准确,语音保真度高,适	对 ram 和 mips 要求高
	应性好	

1、通用参数说明

DNS

DNS_GainFloor: 0.10 🗣 (增益最小值控制,越小降噪越强,范围: 0~1.0,默认值: 0.1)

DNS_OverDrive: 1.0 ♦ (降噪强度,越大降噪越强,范围: 0 ~ 6.0,默认值: 1.0)

- (1) DNS_GainFloor 增益平滑系数,该系数主要用于控制降噪增益最小值。如果降噪后底噪较大,可以适当减小该值;如果出现吃音问题,可以适当提高该值,建议设定范围: 0.05 ~ 0.3。
 - (2) DNS OverDrive 降噪强度控制, DNS OverDrive=1 为降噪中间值,即

算法评估出来的降噪强度。大于1的时候,即为加强降噪强度,小于1的时候,即为降低降噪强度,建议调节范围: 0.2° 3。

2、常见问题调试指引

(1) 出现吃音或者一句话某个字某个字变得很小声问题

出现该问题时,首先要确认所处环境是不是信噪比很低(如小于-5db), 即噪声比人声大很多,这种情形下,优化空间有限,调试步骤如下:

步骤1:通过调节mic的增益来缓解:如果mic的增益比较小(小于10db),可以适当提高mic增益来缓解吃音问题,建议调节范围不要超过15db;提高mic增益可能会导致噪声增大,据实际情况调节。

步骤 2: 调节 DNS_GainFloor 和 DNS_OverDrive 参数: 适当提高 DNS_GainFloor 或 适当减小 DNS_OverDrive, 可以通过配合 gain_floor 和 over drive 适度调节。

(2) 远端听到声音不均匀,忽大忽小

如果后处理开启了 AGC 模块, 出现该问题时, 请参照"章节十:常见问题 FAQ"第二个问题进行确认调整。

八、音质调节 EQ

考虑到有些MIC 物理特性,或者腔体声学设计缺陷,导致MIC 采集到的声音比较低沉,这种情况可以适当的对声音做 EQ 处理。通话的 EQ 通常最多 3 段,就可以基本满足需求。具体什么 EQ 参数合适,根据实际情景进行配置。场景情景如下:

情景 1: 声音低沉,闷,不够透亮

- (1) 适当提高 MIC 的模拟增益;
- (2) 使用 high-pass 的滤波器做简单的处理, 低频适当衰减。

情景 2: 声音听起来有唇齿音

如果使用 msbc, 有些 mic 灵敏度比较高, MIC 可以采到 6.8k 左右的**唇** 齿音, 如果介意, 这个时候可以做一个 high-shelf 的滤波器处理。

九、常见问题 FAQ

(一) 有噪声或者电流声

关闭回音消除, 听 mic 的原始声音是否有噪声或者电流声, 如果有, 则优 先处理源头的噪声, 因为干扰声会 严重影响通话效果。可以做以下尝试:

- (1) 通话的时候切换成 LDO
- (2) 降低发射功率

如果以上操作无效,再检查 pcb 是否合理

(二) 声音忽大忽小, 不均匀

(1) AGC 放大参数是否合理(详细参考本文档"自动增益控制 AGC"章节) 由于 mic 灵敏度差异,这里可以讲 max_gain 和 min_gain 设置成一样, 确认是否是 AGC 原因:

NDT_MAX_GAIN:	12.0	单端讲话放大上限,	设置范围: 0 ~ 24 dB,默认值: 12.0 dB)
NDT_MIN_GAIN:	12.0	(单端讲话放大下限,	设置范围: -20.0~24.0 dB,默认值: 0 dB)
NDT_SPEECH_THR:	-50.0 🕏	(单端讲话放大阈值,	设置范围: -70.0~-40.0 dB,默认值: -50.0 dB)
DT_MAX_GAIN:	12.0	⑺双端讲话放大上限,	设置范围: 0 ~ 24.0 dB,默认值: 12.0 dB)
DT_MIN_GAIN:	12.0	(双端讲话放大下限,	设置范围: -20.0 ~ 24.0 dB,默认值: 0 dB)
DT_SPEECH_THR:	-40.0	(双端讲话放大阈值, ——	设置范围: -70.0 ~ -40.0 dB,默认值: -40.0 dB)

改完如果正常,则逐步加小相应的阈值 SPEECH_THR,小于该阈值的当成噪声不放大。

改完依旧不正常可能是"ANS参数设置不合理"。

(2) ANS 参数是否合理

如果 mic 本身(或者由于电路干扰)采到的声音信噪比比较低,经过降噪模块,则可能会损耗比较多的人声部分,说话小声的部分会变得比较小

声。这个时候可以参数减弱 ANS 的强度,优先调 ANS_Suppress,步进不要超过 0.1。注意不要调太弱,降噪太弱,声音听起来也会不那么干净。

如果当前没有回音问题,也可以尝试提高一些 mic 的增益,提高声音信噪比,提高 ANS 的降噪空间,再尝试通话,根据文档解决剩下的问题。

(三) 回音消不掉

(1) 使用 aec 高级模式

- (2) 硬件检查
 - A. 查看各个电源配置电压差是否满足要求,
- B. 排查是不是硬件干扰过去的回音:可以将喇叭 or 麦换成等效电阻, AEC_MODE 选择 disable,如果这时候还存在回声,可能回音有部分来自于硬件的电路干扰,严重程度听回音大小。

如果暂时无法修改硬件环境,可通过降低 DAC 增益或者 MIC 增益, 减小回音程度。

(四) 远端听到的声音比较闷, 不清晰

(1) 确认麦的供电是否满足要求

具体查看的麦对应的 datasheet 关于电源的供电范围说明,调整偏置电压到合适的范围内。

- (2) 大声或者对着麦克风说话,看是否有改善如果有,则考虑 MIC 的增益设置不合理,加大 MIC 增益试试。
- (3) 拆开样机外壳, 试听声音效果

如果拆开样机外壳,声音明显改善,则怀疑是 MIC 的是声学设计影响了 拾音效果。

注1: MIC 和外壳孔隙尽量小,有 MIC 套防震处理

注 2: MIC 开孔朝向尽量对着发声源 (嘴巴)

注3: MIC 内部有独立腔体,减少声音回荡抵消部分频率成分

(4) 声音大, 不清晰, 浑浊

录制 MIC 原始信号(通过 spp 导出或者关闭算法,远端手机录音),分析具体的 MIC 信号频率成分(频响/频谱),注意底噪情况。使用 EQ 模块,对声音进行修饰处理:

UL_EQ_EN: enable ▼ (上行 EQ 使能)

一般处理是加一段高通处理,常用是 100~200Hz 截止。如果中高频不够, 再加一个带通处理,比如 800 到 1200H 的增强处理。

(五)远端听到的声音有尾音

- (1) 可能 mic 本身(或者由于电路干扰)采到的声音信噪比比较低,目前的 ANS 参数无法压制 mic 的噪声,可以调整 ANS 参数(详细参考本文档"ANS 参数"章节)。
- (2) 如果调节 ANS 参数会带来忽大忽小问题,那么还原 ANS 参数。降低 AGC 的效果,逐步减小相应的放大上限 MAX_GAIN,至声音比较干净,再轻微提高 MIC 的增益,对声音的大小进行补偿。

(单端讲话放大上限, 设置范围: O ~ 24 dB,默认值: 12.O dB) NDT_MAX_GAIN: 12.0 NDT_MIN_GAIN: 0.0 🛊 (单端讲话放大下限, 设置范围: -20.0 ~ 24.0 dB, 默认值: 0 dB) NDT_SPEECH_THR: ─50.0 🛊 (单端讲话放大阈值, 设置范围: ─70.0 ~ ─40.0 dB,默认值: ─50.0 dB) DT_MAX_GAIN: 【双端讲话放大上限, 设置范围: O ~ 24.O dB,默认值: 12.O dB) 12.0 DT_MIN_GAIN: 0.0 (双端讲话放大下限, 设置范围: -20.0~24.0 dB,默认值: 0 dB) DT_SPEECH_THR: (双端讲话放大阈值, 设置范围: -70.0 ~ -40.0 dB, 默认值: -40.0 dB)

(六) 使用 advance 反而回音更加明显

当回音本来就很小的时候,如果打开了 advance,即使能了 AEC_EN,有可能近端说话的时候,干扰到回音处理,导致回音非但没有消除,反而变大的情况。这种可以先把算法直接 disable,判断回音大小。如果回音不明显,就使用 reduce,即 NLP_EN + ANS_EN,再优化参数。