

Projeto Integrador

Sprint 2

FSIAP – Licenciatura em Engenharia Informática

Relatório

Turma 2DM e 2DN

Beatriz Santos - 1211178 (2DM) Daniela Soares - 1211229 (2DM) Sérgio Cardoso – 1210891 (2DN)

Índice

Croqui da estrutura da quinta	2
Estrutura Grande - materiais	3
Constituição das paredes exteriores	3
Constituição do telhado	4
Constituição das janelas	4
Constituição dos portões	4
Paredes (interiores) – materiais	4
Zona A	4
Zona B	5
Zona C	5
Zona D	5
Zona E	6
Portas divisórias (interiores) – materiais	6
Cálculo das Resistências	6
Resistência da estrutura grande	7
Resistência da zona C	14
Resistência da zona D	15
Resistência da zona E	17
Energia necessária para manter as temperaturas das zonas C, D e E	19
Zona C	21
Zona D	21
Zona E	22
Energia total a fornecer a toda a estrutura	22
Para uma temperatura exterior de 20 °C	22
Para uma temperatura exterior de 28 °C	25
Alterações às paredes partilhadas de modo a aumentar a eficiência energética	27
Potência do sistema necessário para o arrefecimento da estrutura total	32
Determinar a potência necessária para arrefecer cada uma das zonas, ou espaços, individualmente ou global	32
Considerar a estrutura para as duas situações de temperatura exterior consideradas	32
Considerar a estrutura sujeita a alterações de melhoramento térmico	32
Otimizar o número de sistemas de arrefecimento para a estrutura total que foi sujeita a alterações de melhoramento térmico	33
Referências	34

Croqui da estrutura da quinta

Fig. 1 – Croqui da estrutura da quinta

Fig. 2 – Identificação das paredes

A estrutura da quinta estará de acordo com a figura 1. Na figura 2 temos a atribuição de números às diferentes paredes de modo a facilitar a identificação das mesmas nos cálculos das resistências.

A estrutura terá um teto falso que irá cobrir toda a estrutura. O telhado é de duas águas, com uma inclinação de 36% e um pé direito com 3,8m de altura.

Fig. 4 – Inclinação mínima do telhado

Estrutura Grande - materiais

Constituição das paredes exteriores

As paredes exteriores serão constituídas por 3 camadas de materiais diferentes e o reboco exterior.

Partindo da camada mais exterior, temos primeiramente o reboco que segue as normas praticadas na indústria de construção civil, terá 2 cm de espessura e possuirá uma condutibilidade térmica de 1,3 W/mK. De seguida teremos o bloco de 15 que é uma excelente solução para sistemas de isolamento térmico pelo exterior, esta camada terá uma espessura de 15 cm e o material possuirá uma condutibilidade térmica aproximada de 0,324 W/mK. Para a camada a seguir optamos por ter uma placa isoladora de 6 cm de poliestireno extrudido (XPS) que é um isolante térmico sintético de elevada qualidade e desempenho, largamente usado na construção civil, possui baixa condutibilidade térmica (k = 0,035 W/mK), contribuindo assim para uma maior eficiência energética do espaço. Por último teremos uma camada de tijolo cerâmico com 11cm de espessura e condutibilidade térmica de 0,6 W/mK.

Constituição do telhado

O telhado terá telhas de PVC (espessura: 0,25 cm e condutibilidade térmica de 0,2 W/mK) por serem de baixo custo, relativamente duráveis, leves e de baixa manutenção. O PVC tem uma menor eficiência comparado com a telha cerâmica e, por isso, decidimos acrescentar uma camada isoladora de poliestireno extrudido de 4cm (condutibilidade térmica de 0,035 W/mK).

O telhado terá também um teto falso de lã de rocha com 4 cm de espessura e condutibilidade térmica de 0,0365 (W/mK) e entre o teto falso e as telhas teremos então uma caixa de ar de modo a aumentar a eficiência térmica do telhado inteiro.

Constituição das janelas

O armazém terá duas janelas exteriores na zona A e na Zona B, escolhemos ter janelas de vidro duplo com caixilharia de alumínio de modo a obter um maior isolamento térmico e consequentemente uma maior eficiência energética.

Constituição dos portões

A estrutura exterior terá dois portões basculantes para a zona A e a zona B. Os portões serão de aço galvanizado de 4 cm de espessura e condutibilidade térmica de 50 W/mK coberta por uma camada de tinta anticorrosiva (espessura: 1mm, condutibilidade térmica: 0,226 W/mK) para evitar danos causados pela humidade do ar, caso o armazém estiver localizado numa área costal e/ou de alta pluviosidade.

Paredes (interiores) – materiais

O espaço interior está dividido em 5 zonas e cada zona suporta temperaturas diferentes, então a escolha dos materiais foi feita para aqueles espaços funcionarem às temperaturas indicadas.

Zona A

A zona A que contém a porta de acesso do armazém e a receção terá um maior contacto direto com o exterior, e está a uma temperatura de 5 °C abaixo da temperatura ambiente considerada, dado que é a zona preferencial de receção e distribuição para os restantes espaços. Logo os materiais escolhidos para a parede foram os seguintes:

- Bloco
- Poliestireno extrudido
- Tijolo

O bloco será a camada mais exterior com uma condutividade térmica de 0,324 W(m/k) e espessura de 0,15m. A seguir será o poliestireno extrudido com uma condutividade térmica de 0,035

W(m/k) e espessura de 0,06m. Por fim será o tijolo com uma condutividade térmica de 0,6 W(m/k) e espessura de 0,11m.

Zona B

A zona B não tem ligação interior às restantes, só tem ligação direta ao exterior e está a uma temperatura de 5 °C abaixo da temperatura ambiente considerada e será associada ao armazenamento de produtos e/ou de excedentes de produção. Logo os materiais escolhidos foram os seguintes:

- Bloco
- Poliestireno extrudido
- Tijolo

O bloco será a camada mais exterior com uma condutividade térmica de 0,324 W(m/k) e espessura de 0,15m. A seguir será o poliestireno extrudido com uma condutividade térmica de 0,035 W(m/k) e espessura de 0,06m. Por fim será o tijolo com uma condutividade térmica de 0,6 W(m/k) e espessura de 0,11m.

Para a parede divisória P15 foram utilizados estes matérias.

Zona C

A zona C é a zona com menor temperatura interior, -10°C, logo foi escolhido um material que permite conservar essa temperatura e que a zona funcione nessas condições. O painel de sanduíche, característico de câmaras de conservação, foi o material escolhido e é composto por três materiais, duas chapas de aço galvanizado e espuma de poliuretano ´PUR´ [1].

O aço galvanizado será a camada mais exterior com uma condutividade térmica de 52 W(m/k) e espessura de 0,7mm. A seguir será a espuma de poliuretano com uma condutividade térmica de 0,035 W(m/k) e espessura de 173,5mm. Por fim será outra chapa de aço galvanizado com uma condutividade térmica de 52 W(m/k) e espessura de 0,7mm.

Zona D

A zona D tem uma temperatura interior de 0°C e os materiais escolhidos são iguais à da zona C. Apesar da diferença de temperaturas destas zonas, os materiais podem ser os mesmos porque o painel de sanduiche tem a particularidade de funcionar para temperaturas negativas e positivas. A diferença está na espessura, ou seja, para temperaturas negativas maior espessura e para temperaturas positivas menor conforme os limites definidos [1].

O aço galvanizado será a camada mais exterior com uma condutividade térmica de 52 W(m/k) e espessura de 0,7mm. A seguir será a espuma de poliuretano com uma condutividade térmica de 0,035 W(m/k) e espessura de 100mm. Por fim será outra chapa de aço galvanizado com uma condutividade térmica de 52 W(m/k) e espessura de 0,7mm.

Zona E

A zona E tem uma temperatura interior de 10°C e os materiais escolhidos são iguais aos materiais das zonas C e D, sendo que as espessuras são iguais às da zona D porque a temperatura interior de ambas as zonas é positiva e a suas áreas são semelhantes.

[1] Os painéis de sanduíche são constituídos por um núcleo isolante de poliuretano (PUR) e as faces do painel costumam ser chapas de aço galvanizado. As chapas possuem uma grossura mínima de 0,5mm de até 0,7mm no máximo. As espessuras dos painéis oscilam entre 100 e 125mm (em temperaturas positivas) e entre 175 e 200mm (em temperaturas negativas). Os painéis são utilizados em câmaras frigoríficas e em galpões industriais de elaboração de alimentos, tanto em faixas positivas (em temperaturas de 0°C a 10°C) quanto em negativas (câmaras de conservação de produtos congelados, que normalmente estão a -25°C).

Portas divisórias (interiores) – materiais

No armazém existem três portas interiores, uma na zona C que permite a ligação à zona A, D e E; outra na zona D que permite a ligação à zona A, C e E; e por fim outra na zona E que permite a ligação à zona A, C e D.

A porta da zona C é constituída com os mesmos matérias das paredes dessa zona, ou seja, tem duas folhas de aço galvanizado com 7mm cada uma e é injetada com espuma de poliuretano com 70mm.

A porta da zona D é constituída com os mesmos matérias das paredes dessa zona, ou seja, tem duas folhas de aço galvanizado com 7mm cada uma e é injetada com espuma de poliuretano com 50mm.

A porta da zona E é constituída com os mesmos matérias das paredes dessa zona, ou seja, tem duas folhas de aço galvanizado com 7mm cada uma e é injetada com espuma de poliuretano com 40mm.

Cálculo das Resistências

Fórmula 1:
$$R = \frac{\Delta x}{k \times A}$$

Fórmula 2:
$$R_{Total} = \sum R_{material constituinte}$$

Fórmula 3:
$$\frac{1}{R_{Total}} = \frac{1}{R_{Parede}} + \frac{1}{R_{Porta}}$$

Resistência da estrutura grande

Fig.5 – Esquema da estrutura grande (excl. Telhado)

Para calcular a resistência da estrutura grande, primeiramente calculamos a resistência de cada secção que envolve as restantes divisões e a resistência total do telhado.

Fórmula do cálculo de uma resistência: $R = \frac{\Delta x}{k \times A}$

Fórmula do cálculo de resistências em série: $R_{eq} = R_1 + R_2 + \cdots + R_n$

Fórmula do cálculo de resistências em paralelo: $R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)^{-1}$

Resistência térmica da secção 1 (P1)

A secção 1 é constituída pelas paredes P5, P6, P7, parte da parede 1 associada à zona B e também por um triângulo formado pela junção do telhado e da parede.

Áreas de cada parte constituinte da secção 1:

Área da parede P5 (Zona C) =	15	m2
Área da parede P6 (Zona D) =	25	m2
Área da parede P7 (Zona E) =	35	m2

Área da parede 1 associada à zona B =	25 m2
Área do triângulo acima da parede=	38 m2

Especificações dos materiais das partes constituintes da secção 1:

		k		
Material	Δx (m)	(W/mK)	Parede	Resistência (m² * K / W)
aço galvanizado (2				
chapas)	0,0007	52		8,97436E-07
poliuretano 'PUR'	0,1736	0,035		0,330666667
reboco	0,02	1,8	P5	0,000740741
bloco	0,15	0,324		0,030864198
tijolo	0,11	0,6		0,012222222
poliestireno extrudido	0,06	0,035		0,114285714

		1		
aço galvanizado (2	0.0007	F.2		F 20F 07
chapas)	0,0007	52	-	5,38E-07
poliuretano 'PUR'	0,1	0,035	-	1,14E-01
reboco	0,02	1,8		4,44E-04
bloco	0,15	0,324	Р6	1,85E-02
tijolo	0,11	0,6		7,33E-03
				6,86E-02
poliestireno extrudido	0,06	0,035		
aço galvanizado (2				3,85E-07
chapas)	0,0007	52	-	
poliuretano 'PUR'	0,1	0,035		8,16E-02
reboco	0,02	1,8		3,17E-04
bloco	0,15	0,324	P7	1,32E-02
tijolo	0,11	0,6	Ī [5,24E-03
				4,90E-02
poliestireno extrudido	0,06	0,035		
			I I	
reboco	0,02	1,8		4,44E-04
bloco	0,15	0,324		1,85E-02
tijolo	0,11	0,6	Parede 1 associada	7,33E-03
			à zona B	6,86E-02
Poliestireno extrudido	0,06	0,035		
			1	
reboco	0,02	1,8		2,92E-04
bloco	0,15	0,324		1,22E-02
tijolo	0,11	0,6	Triângulo acima da	4,82E-03
			parede 1	4,51E-02
Poliestireno extrudido	0,06	0,035		

Tabela 1 – Especificações dos materiais das paredes que constituem a secção 1

Os materiais em cada parede estão em série por esta razão a resistência de cada parede é a soma das resistências dos materiais que a compõem:

Resistência parede P5 =	4,89E-01	$[m^2 * K / W]$
Resistência parede P6 =	2,09E-01	$[m^2 * K / W]$
Resistência parede P7 =	1,49E-01	$[m^2 * K / W]$

Resistência da parede P1 associada à 9,49E-02
$$[m^2 * K / W]$$

zona B = Resistência do triângulo acima da $[m^2 * K / W]$
parede 1 = 6,24E-02

As paredes acima descritas que constituem a secção 1 estão posicionadas em paralelo entre si, logo utilizamos a fórmula do cálculo de resistências em paralelo para determinar a resistência total da secção 1 (P1).

Resistência total da secção 1 (P1) é igual a soma das resistências das paredes P5, P6, P7 e P1 associada à zona B (em paralelo) = 0,024947604 [m² * K / W].

Resistência térmica da secção 2 (P2)

A secção 2 (P2) é constituída pela parede P8, parte da parede 2 associada à zona A e um portão de acesso nesta mesma zona.

Áreas de cada parte constituinte da secção 2:

Área da parede P8	9 m²
Área da parede 2 associada à zona A	25 m ²
Área do Portão	16 m²

Especificações dos materiais das partes constituintes da secção 2:

Material	Δx (m)	k (W/mK)	Parede	Resistência (m² * K / W)
aço galvanizado				5,38E-07
(2 chapas)	0,0007	52		
poliuretano 'PUR'	0,1736	0,035		1,98E-01
reboco	0,02	1,8	P8	4,44E-04
bloco	0,15	0,324	РО	1,85E-02
tijolo	0,11	0,6		7,33E-03
poliestireno				6,86E-02
extrudido	0,06	0,035		

reboco	0,02	1,8		0,001709402
bloco	0,15	0,324	Parede 2	0,013020833
tijolo	0,11	0,6	associada à zona B	0,19047619
poliestireno extrudido	0,06	0,035		0,02037037

	aço galvanizado				0,00005
	(2 chapas)	0,04	50	Dortão	
Ī	Tinta			Portão	0,000276549
	anticorrosiva	0,001	0,226		

Tabela 2 – Especificações dos materiais das paredes que constituem a parede 2

Os materiais em cada parede e do portão estão em série por esta razão a resistência de cada secção é a soma das resistências dos materiais que a compõem:

Resistência da parede P8: 2,93E-01 $[m^2 * K / W]$ Resistência da parede P2 0,225576796 $[m^2 * K / W]$

associada a zona B =

Resistência do portão = 0,000326549 [m² * K / W]

As paredes e o portão que constituem a secção 2 estão posicionadas em paralelo entre si, logo utilizamos a fórmula do cálculo de resistências em paralelo para determinar a resistência total da secção 2.

Resistência total da secção 2 (P2) (as paredes e o portão estão em paralelo) = 0,000325714 [m² * K / W].

Resistência Térmica da secção 3 (P3)

A secção 3 (P3) é uniforme e constituída pelos mesmos materiais ao longo do seu comprimento, possui uma janela, um portão de acesso à zona B e também um triângulo formado pela junção do telhado e da parede.

O triângulo resultante da junção do telhado e da parede é do mesmo material que a parede então a podemos calcular uma única resistência para esta parte.

Áreas de cada parte constituinte da secção 3:

Área da parede	72 m²
Área do triângulo acima da parede	38 m²
Área total da parede (parede + triângulo)	110 m ²
Área do portão	16 m²
Área total da janela	12 m²
Área do vidro	11,31 m²
Área da caixilharia de alumínio	0,69 m²

Especificações dos materiais das partes constituintes da secção 3:

Materiais usados na parede e as suas resistências:

Materiais	Reboco	Bloco (15)	Poliestireno extrudido (XPS)	Tijolo (11)
Condutibilidade				
térmica (k) (W/mK)	1,3	1,28	0,035	0,6
Espessura (m)	0,02	0,15	0,06	0,11
	0,00013			
$R [m^2 * K / W] =$	986	0,001065341	0,015584416	0,001666667

Resistência da parede (parede + triângulo) = 0,018456283 [m2 * K / W]

Materiais usados na janela e a suas resistências:

Materiais	Alumínio	Vidro 1	Vidro 2
Condutibilidade térmica			
(k) (W/mK)	204	0,8	0,8
Espessura (m)	0,045	0,006	0,004
R [m ² * K / W] =	0,000319693	0,00066313	0,000442087

Resistência do ar por convecção (caixa de ar entre os vidros)

Materiais	Ar
hc [W/m²*K]	1,77
$R [m^2 * K / W] =$	0,049953

Cálculo da resistência total da janela:

O vidro 1, 2 e a caixa de ar estão posicionados em série, e a caixilharia de alumínio esta posicionada em paralelo em relação a esse sistema.

Resistência dos vidros e da caixa de ar = 0,05105851 m² * K / W]

Resistência total da janela = 0,000317704 [m² * K / W]

Materiais usados no portão e as suas resistências:

Materiais	Aço Galvanizado	Tinta anticorrosiva
Condutibilidade térmica (k)		
(W/mK)	50	0,226
Espessura (m)	0,04	0,001
$R[m^2 * K / W] =$	0,00005	0,000276549

Resistência do portão = 0,000326549 [m² * K / W]

Resistência total da secção 3 (P3)

A parede, a janela e o portão que constituem a secção 3 (P3) estão posicionadas em paralelo entre si, logo utilizamos a fórmula do cálculo de resistências em paralelo para determinar a resistência total da secção 3 (P3).

Resistência total da secção 3 (P3) = 0,00015964 [m² * K / W].

Resistência Térmica da secção 4 (P4)

A secção 4 (P4) é uniforme e constituída pelos mesmos materiais ao longo do seu comprimento e possui somente uma janela.

Áreas de cada parte constituinte da secção 4:

Área da parede	38 m2
Área da janela	12 m2

Materiais usados na parede e as suas resistências:

Materiais	Reboco	Bloco (15)	Poliestireno extrudido (XPS)	Tijolo (11)
Condutibilidade				
térmica (k) (W/mK)	1,3	1,28	0,035	0,6
Espessura (m)	0,02	0,15	0,06	0,11
	0,00040			
$R [m^2 * K / W] =$	4858	0,003083882	0,045112782	0,004824561

Os materiais que constituem a parede estão posicionados em série.

Resistência da parede = 0,053426083 [m² * K / W]

Materiais usados na janela e as suas resistências:

Materiais	Alumínio	Vidro 1	Vidro 2
Condutibilidade térmica (k)			
(W/mK)	204	0,8	0,8
Espessura (m)	0,045	0,006	0,004
$R [m^2 * K / W] =$	0,000319693	0,00066313	0,000442087

Resistência do ar por convecção (caixa de ar entre os vidros)

Materiais	Ar
hc [W/m²*K]	1,77
R [m ² * K / W] =	0,049953294

Cálculo da resistência total da janela:

O vidro 1, 2 e a caixa de ar estão posicionados em série, e a caixilharia de alumínio esta posicionada em paralelo em relação a esse sistema.

Resistência dos vidros e da caixa de ar = 0,05105851 [m² * K / W]

Resistência total da janela = 0,000317704 [m² * K / W]

Resistência total da secção 4 (P4)

A parede, a janela que constituem a secção 4 (P4) estão posicionadas em paralelo entre si, logo utilizamos a fórmula do cálculo de resistências em paralelo para determinar a resistência total da secção 4 (P4).

Resistência total da secção 4 (P4) = 0,000315826 [m² * K / W].

Resistência Térmica do telhado

Fig.6 – Perspetiva frontal do telhado

Fig.7 – Esquema indicativo da altura recomendada para o telhado.

O telhado é constituído por 3 partes: as telhas (telha + isolamento), o teto falso e a caixa de ar entre as telhas e o teto falso.

Hipotenusa = 10,6976633 m

Áreas de cada parte constituinte do telhado:

Área do teto falso	200 m ²
Área de uma inclinação do telhado	106,976633 m ²
Área total do telhado	213,9532659 m²

Materiais usados para as telhas e as suas resistências:

Materiais	Telha de PVC	Poliestireno extrudido (XPS)
Condutibilidade térmica (k) (W/mK)	0,2	0,035
Espessura (m)	0,0025	0,04
R [m ² * K / W]	5,8424E-05	0,00534162

Material usado para o teto falso e a sua resistência:

Materias	Lã de Rocha
Condutibilidade térmica (k)	
(W/mK)	0,0365
Espessura (m)	0,04
R [m ² * K / W]	0,005479452

Resistência do ar por convecção (caixa de ar)

Materiais	Ar
hc [W/m²*K]	1,77
R [m ² * K / W] =	0,002824859

Resistência total do telhado

As partes que constituem o telhado (telha + isolamento, teto falso, caixa de ar) estão em série.

A resistência total do telhado é de 0,013704355 [m2 * K / W].

Resistência total da estrutura grande

A resistência total da estrutura grande é igual a soma das resistências das 4 secções (P1, P2, P3, P4) e a resistência total do telhado.

Com os materiais escolhidos e as especificações acima indicadas, o resultado da resistência total da estrutura grande é de 0,039453139 [m2 * K / W].

Resistência da zona C

Fig. 8 – Paredes Zona C

Fig. 9 – Medidas das Paredes Zona C

	Parede	Comprimento (m)	Largura (m)	Área (m²)
	P5	5	3	15
	porta	2,5	1	2,5
P11	parede c/ porta	5	3	15
	parede s/porta	-	-	12,5
	P14 e P10	5	5	25

Tabela 3 – Áreas Zona C

Material	Δx (m)	k (W/mk)	Parede	Resistência (m² * K / W)
aço galvanizado (2 chapas)	0,0007	52		8,97436E-07
poliuretano 'PUR'	0,1736	0,035		0,330666667
reboco	0,02	1,8	P5	0,000740741
bloco	0,15	0,324		0,030864198
tijolo	0,11	0,6		0,012222222

poliestireno extrudido	0,06	0,035		0,114285714	
aço galvanizado (2 chapas)	0,0007	52	D14 o D10	5,38462E-07	
poliuretano ´PUR´	0,1736	0,035	P14 e P10	0,1984	
aço galvanizado (2 chapas)	0,0007	52	P11 s/	1,07692E-06	
poliuretano ´PUR´	0,1736	0,035	porta	0,3968	
aço galvanizado (2 chapas)	0,0007	52	D11 porto	5,38462E-06	
poliuretano 'PUR'	0,07	0,035	P11 - porta	0,8	

Tabela 4 – Resistência dos materiais que constituem as paredes da zona C

*Para o cálculo da resistência de cada material foi utilizada a fórmula 1.

P11	Resistência (m² * K / W)
Porta	0,800010769
Parede s/ porta	0,396802154
Total	0,265242788

Tabela 5 – Resistência Parede que contém a porta

Para o cálculo da resistência da porta utilizou-se a fórmula 2. Assim como para o cálculo da parede retirando a área ocupada pela porta.

Para juntar as resistências acimas referidas, obtendo a resistência total da parede 11, aplicámos a fórmula 3.

Paredes	Resistência (m² * K / W)			
P5	0,488781336			
P11	0,265242788			
P10	0,198401077			
P14	0,198401077			

Para o cálculo das resistências das restantes paredes (P5, P10 e P14) aplicámos apenas a fórmula 2.

Tabela 6 – Resistência Paredes Zona C

Resistência da zona D

Fig. 10 - Paredes Zona D

Fig. 11 – Medidas das Paredes Zona D

	Parede	Comprimento (m)	Largura (m)	Área (m²)
	P6	5	5	25
	porta	2,5	1	2,5
P12	parede c/ porta	5	5	25
	parede s/porta	-	-	22,5
	P9 e P10	5	5	25

Tabela 7 – Áreas Zona D

		T .		1
Material	Δx (m)	k (W/mk)	Parede	Resistência (m² * K / W)
aço galvanizado (2 chapas)	0,0007	52		5,38462E-07
poliuretano ´PUR´	0,1	0,035		0,114285714
reboco	0,02	1,8	DC	0,000444444
bloco	0,15	0,324	- P6	0,018518519
tijolo	0,11	0,6		0,007333333
poliestireno extrudido	0,06	0,035		0,068571429
			•	
aço galvanizado (2 chapas)	0,0007	52	DO - D10	5,38462E-07
poliuretano ´PUR´	0,1736	0,035	P9 e P10	0,1984
			•	
aço galvanizado (2 chapas)	0,0007	52	D42 - /	5,98291E-07
poliuretano 'PUR'	0,1736	0,035	P12 s/ porta	0,22044444
aço galvanizado (2 chapas)	0,0007	52	D12	5,38462E-06
poliuretano 'PUR'	0,05	0,035	P12 - porta	0,571428571

Tabela 8 – Resistência dos materiais que constituem as paredes da zona D

P12	Resistência (m² * K / W				
Porta	0,571439341				
Parede s/ porta	0,220445641				
Total	0,159077789				

Tabela 9 – Resistência Parede que contém a porta

Para o cálculo da resistência da porta utilizou-se a fórmula 2. Assim como para o cálculo da parede retirando a área ocupada pela porta.

Para juntar as resistências acimas referidas, obtendo a resistência total da parede 12, aplicámos a fórmula 3.

^{*}Para o cálculo da resistência de cada material foi utilizada a fórmula 1.

Paredes	Resistência (m² * K / W)				
P6	0,209154516				
P12	0,159077789				
P10	0,198401077				
P9	0,198401077				

Para o cálculo das resistências das restantes paredes (P6, P10 e P9) aplicámos apenas a fórmula 2.

Tabela 10 – Resistência Paredes Zona D

Resistência da zona E

Fig. 12 – Paredes Zona E

Fig. 13 – Medidas das Paredes Zona E

	Parede	Comprimento (m)	Largura (m)	Área (m²)
	P5	5	3	15
	porta	2,5	1	2,5
P11	parede c/ porta	5	3	15
	parede s/porta	-	-	12,5
	P14 e P10	5	5	25

Tabela 11 – Áreas Zona E

		k		
Material	Δx (m)	(W/mk)	Parede	Resistência (m² * K / W)
aço galvanizado (2 chapas)	0,0007	52		3,84615E-07
poliuretano 'PUR'	0,1	0,035		0,081632653
reboco	0,02	1,8	P7	0,00031746
bloco	0,15	0,324	P7	0,013227513
tijolo	0,11	0,6		0,005238095
poliestireno extrudido	0,06	0,035		0,048979592

aço galvanizado (2 chapas)	0,0007	52		5,38462E-07
poliuretano 'PUR'	0,1736	0,035		0,1984
reboco	0,02	1,8	P8	0,000444444
bloco	0,15	0,324		0,018518519
tijolo	0,11	0,6		0,007333333

poliestireno extrudido	0,06	0,035		0,068571429		
aço galvanizado (2 chapas)	0,0007	52	P9	5,38462E-07		
poliuretano ´PUR´	0,1736	0,035	P9	0,1984		
		•				
aço galvanizado (2 chapas)	0,0007	52	P13 s/	4,14201E-07		
poliuretano ´PUR´	0,1736	0,035	porta	0,152615385		
aço galvanizado (2 chapas)	0,0007	52	D12 norta	5,38462E-06		
poliuretano ´PUR´	0,05	0,035	P13 - porta	0,457142857		

Tabela 12 – Resistência dos materiais que constituem as paredes da zona E

*Para o cálculo da resistência de cada

material foi utilizada a fórmula 1.

P13	Resistência (m² * K / W)
Porta	0,457153626
Parede s/ porta	0,152616213
Total	0,114418672

Para o	cálculo	da	resisté	ència	da	porta	utiliz	ou-se	a
fórmula	2. Ass	sim	como	para	0	cálculo	da da	pared	le
retirand	o a área	ocu	upada p	oela p	orta	a.			

Para juntar as resistências acimas referidas, obtendo a resistência total da parede 13, aplicámos a fórmula 3.

Resistência (m² * K / W)
0,149396083
0,114418672
0,198401077
0,293268802

Tabela 14 – Resistência Paredes Zona E

Para o cálculo das resistências das restantes paredes (P7, P9 e P8) aplicámos apenas a fórmula 2.

Energia necessária para manter as temperaturas das zonas C, D e E

Considerando a estrutura criada, sabendo que as zonas C, D e E encontram-se às respetivas temperaturas -10°C, 0°C e 10°C e assumindo que a temperatura exterior está na ordem dos 15°C, então a temperatura das zonas A e B estão na ordem dos 10°C (a temperatura destas zonas está 5°C abaixo da temperatura exterior/ambiente) e também a temperatura do telhado é 10°C.

Temperatura	°C
Exterior	15
Zona C	-10
Zona D	0
Zona E	10
Zona A e B	10
Telhado	10

Tabela 15 – Temperatura das zonas da estrutura e do exterior

Para determinar a energia necessária a fornecer a cada zona foram aplicadas as seguintes fórmulas:

(1)
$$q = \frac{\Delta T}{R}$$

(2) $E = q\Delta t$

 ΔT : diferença de temperatura R: resistência de cada parede q: potência/fluxo de cada parede Δt : intervalo de tempo

E: energia necessária para cada zona

O fluxo de calor através das paredes entre as zonas C, D e E com as restantes zonas e o exterior está representado na tabela abaixo. O fluxo entre as zonas C e D e o telhado é representado de cima para baixo, ou seja, como essas zonas estão a uma inferior à temperatura do telhado pode imaginar, à semelhança da tabela abaixo, como sendo uma seta que atravessa o teto falso a apontar para essas zonas. No caso da zona E em que está à mesma temperatura do telhado não existe fluxo, logo estão em equilíbrio térmico, $\Delta T = 0$.

Fig.14 – Representação do fluxo de calor das zonas C, D e E com as zonas A e B e o exterior

Para cada parede de uma zona foi determinado a potência/fluxo (1) através do cálculo da diferença de temperatura e através do valor da resistência de cada parede. O mesmo aconteceu para a área de teto falso de cada zona. Depois somou-se as potências das paredes e da área de teto da zona em questão para determinar a energia necessária aplicando (2), sabendo que o intervalo de tempo é igual a 3600 s, pois é a energia necessária por cada hora de funcionamente, logo 1h*3600 segundos.

O cálculo das resistências de cada parede foi determinado anteriormente. Para determinar a resistência da área de teto falso foi aplicada a *fórmula do cálculo de uma resistência (página 7)*. Como o comprimento de todas as paredes das zonas C, D e E é o mesmo e é igual a 5m, então a área de teto é igual a 25m e é a mesma para as três zonas. Logo, a resistência do teto é igual para as três zonas.

Teto falso (material)	Lado (m)	Área (m)	k (W/mk)	Δx (m)	Resistência (m² * K / W)
Lã de rocha	5	25	0,0365	0,04	0,043836

Tabela 16 – Características e resistência da área de teto falso

Nota: Para cada zona foram efetuados os mesmos cálculos.

<u>Nota:</u> Para o cálculo da diferença de temperatura, Δt , considerou-se a temperatura final como sendo a temperatura interior de cada zona. A temperatura não foi convertida para kelvin (K) porque a diferença de temperatura em kelvin, $\Delta T(K)$, é igual à diferença de temperatura em graus celsius, $\Delta T(C)$.

A seguir estão representados os valores dos cálculos para cada parede e área de teto falso de cada zona assim como o valor final da energia para cada zona. É importante salientar que o sinal negativo não está a representar um número negativo, mas sim a perda de energia, ou seja, "o calor" recebido do exterior, que acaba por afetar a temperatura de cada zona, aumentando-a.

Zona C

Paredes	Resistência (m² * K / W)	ΔT (K)	q (W)
P5	0,4888	-25	-51,1476
P11 (c/ porta)	0,2652	-20	-75,4026
P10	0,1984	-10	-50,4030
P14	0,1984	-20	-100,8059
Teto falso	0,04384	-20	-456,25

Tabela 17 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona C

Zona	q total (W)	Δt (s)	E total (J)
С	-734,0091	3600	-2642432,72

Tabela 18 – Potência total da zona C e energia a fornecer, por cada hora, de funcionamento para manter a temperatura daquela zona

Conclui-se que é preciso fornecer 2642432,72 J para a temperatura se manter igual -10°C.

Zona D

Paredes	Resistência (m² * K / W)	ΔT (K)	q (W)
P6	0,2092	-15	-71,7173
P12 (c/ porta)	0,1591	-10	-62,8623
P10	0,1984	10	50,4030
P9	0,1984	-10	-50,4030
Teto falso	0,04384	-10	-228,125

Tabela 19 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona D

Zona	q total (W)	Δt (s)	E total (J)
D	-362,7046	3600	-1305736,71

Tabela 20 – Potência total da zona D e energia a fornecer, por cada hora, de funcionamento para manter a temperatura daquela zona

Conclui-se que é preciso 1305736,71 J para a temperatura se manter igual 0°C.

Zona E

Paredes	Resistência (m² * K / W)	ΔT (K)	q (W)
P7	0,1494	-5	-33,4681
P13 (c/ porta)	0,1144	0	0
Р9	0,1984	10	50,4030
P8	0,2933	-5	-17,0492
Teto falso	0,04384	0	0

Tabela 21 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona E

Zona	q total (W)	Δt (s)	E total (J)
E	-0,1143	3600	-411,60

Tabela 22 – Potência total da zona D e energia a fornecer, por cada hora, de fornecimento para manter a temperatura daquela zona

<u>Nota:</u> Na parede P13 (com porta) o valor da potência é igual a zero porque a diferença de temperatura também é igual a zero e isso deve-se ao facto de as temperaturas entre essa parede serem iguais, ou seja, 10° C, logo não existe fluxo de calor daí não estar representado na **figura 13**. Como temperatura da zona E é igual à temperatura do telhado, então não existe fluxo, logo estão em equilíbrio térmico, $\Delta T = 0$.

Conclui-se que é preciso 411,60 para a temperatura se manter igual a 10°C.

Energia total a fornecer a toda a estrutura

Para determinar a energia necessária a fornecer a toda a estrutura de modo a manter as temperaturas das suas divisões internas à temperatura de trabalho, foram aplicadas as fórmulas já referidas acima: (1) e (2).

Os cálculos de cada zona foram efetuados como foi explicado no ponto anterior. Para saber a energia total da estrutura fez-se a soma da energia de cada umas das zonas.

Para uma temperatura exterior de 20 °C

Temperatura	°C
Exterior	20
Zona C	-10
Zona D	0
Zona E	10
Zona A e B	15
Telhado	15

Tabela 23 – Temperatura de cada zona, para uma temperatura exterior de 20 °C.

Zona C

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P5	0,4888	-30	-61,3771
P11	0,2652	-25	-94,2533
P10	0,1984	-10	-50,4030
P14	0,1984	-25	-126,0074

Tabela 24 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona C (temp. ext. = 20 °C)

Zor	na	q total (W)	Δt (s)	E total (J)
С		-332,0407	3600	-1195346,67

Tabela 25 – Potência total da zona C e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Zona A e B

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P1 (Parte associada a zona B)	0,0949	-5	-52,6870
P4	0,0003	-5	-16666,6667
Р3	0,0002	-5	-31320,4711
P2 (Parte associada a zona A)	0,2256	-5	-22,1654
P11	0,2652	25	94,2533
P12	0,1591	15	94,2935
P13	0,1144	5	43,6992
P14	0,1984	25	126,0074

Tabela 26 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede das zonas A e B (temp. ext. = 20 °C)

Zona	q total (W)	Δt (s)	E total (J)
A e B	-47703,7369	3600	-171733452,71

Tabela 27 – Potência total das zonas A e B e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

<u>Nota:</u> Uma vez que as zonas A e B têm a mesma temperatura o fluxo de energia da parede 15 é 0.

Zona D

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P6	0,2092	-20	-95,6231
P12	0,1591	-15	-94,2935
P10	0,1984	10	50,4030
P9	0,1984	-10	-50,4030

Tabela 28 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona D (temp. ext. = 20 °C)

Zona	q total (V	V) Δt (s)	E total (J)
D	-189,916	3600	-683699,67

Tabela 29 – Potência total da zona D e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Zona E

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P7	0,1494	-5	-33,4681
P13	0,1144	0	0,000
P9	0,1984	10	50,4030
P8	0,2933	-5	-17,0492

Tabela 30 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona E (temp. ext. = 20 °C)

Zona	q total (W)	Δt (s)	E total (J)
E	-0,1143	3600	-411,60

Tabela 31 – Potência total da zona E e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Telhado

Resistência (Ω)	ΔT (K)	q (W)
0,013704355	-5	-364,8475

Tabela 32 – Resistências, diferença de temperatura e potência (fluxo de calor) do telhado (temp. ext. = 20 °C)

Zona	q total (W)	Δt (s)	E total (J)
Telhado	-364,8475	3600	-1313451,09

Tabela 33 – Potência total do telhado e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Temp. Ext.	E total (J)
20	-174926361,74

Tabela 34 – Energia a fornecer, por cada hora de funcionamento, a toda a estrutura de modo a manter a temperatura de todas as zonas interiores, com uma temperatura exterior de 20 °C

Conclui-se que a energia total a fornecer à estrutura é igual a 175282738,51 J.

Para uma temperatura exterior de 28 °C

Temperatura	°C
Exterior	28
Zona C	-10
Zona D	0
Zona E	10
Zona A e B	23
Telhado	15

Tabela 35 – Temperatura de cada zona, para uma temperatura exterior de 28 °C.

Zona C

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P5	0,4888	-38	-77,7444
P11	0,2652	-33	-124,4143
P10	0,1984	-10	-50,4030
P14	0,1984	-33	-166,3297

Tabela 36 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona C (temp. ext. = 28 °C)

Zona	q total (W)	Δt (s)	E total (J)
С	-418,8914	3600	-1508008,99

Tabela 37 – Potência total da zona C e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Zona A e B

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P1 (Parte associada a zona B)	0,0949	-5	-52,6870
P4	0,0003	-5	-16666,6667
Р3	0,0002	-5	-31320,4711
P2 (Parte associada a zona A)	0,2256	-5	-22,1654
P11	0,2652	33	124,4143
P12	0,1591	23	144,5834
P13	0,1144	13	113,6178
P14	0,1984	33	166,3297

Tabela 38 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede das zonas A e B (temp. ext. = 28 °C)

Zona	q total (W)	Δt (s)	E total (J)
A e B	-47513,0449	3600	-171046961,77

Tabela 39 – Potência total das zonas A e B e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Nota: Uma vez que as zonas A e B têm a mesma temperatura o fluxo de energia da parede 15 é 0.

Zona D

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P6	0,2092	-28	-133,8723
P12	0,1591	-23	-144,5834
P10	0,1984	10	50,4030
P9	0,1984	-10	-50,4030

Tabela 40 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona D (temp. ext. = 28 °C)

Zona	q total (W)	Δt (s)	E total (J)
D	-278,4557	3600	-1002440,42

Tabela 41 – Potência total da zona D e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Zona E

Paredes	Resistência (m2 * K / W)	ΔT (K)	q (W)
P7	0,1494	-18	-120,4851
P13	0,1144	0	0,000
P9	0,1984	10	50,4030
P8	0,2933	-13	-44,3279

Tabela 42 – Resistências, diferença de temperatura e potência (fluxo de calor) de cada parede da zona E (temp. ext. = 28 °C)

Zona	q total (W)	Δt (s)	E total (J)
E	-114,4101	3600	-411876,25

Tabela 43 – Potência total da zona E e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Telhado

Resistência (m2 * K / W)	ΔT (K)	q (W)
0,013704355	-5	-364,8475

Tabela 44 – Resistências, diferença de temperatura e potência (fluxo de calor) do telhado (temp. ext. = 28 °C)

	Zona	q total (W)	Δt (s)	E total (J)
I	Telhado	-364,8475	3600	-1313451,09

Tabela 45 – Potência total do telhado e energia a fornecer, por cada hora de funcionamento para manter a temperatura daquela zona

Temp. Ext.	E total (J)
28	-175282738,51

Tabela 46 – Energia a fornecer, por cada hora de funcionamento, a toda a estrutura de modo a manter a temperatura de todas as zonas interiores, com uma temperatura exterior de 28 °C

Conclui-se que a energia total a fornecer à estrutura é igual a 175282738,51 J.

Alterações às paredes partilhadas de modo a aumentar a eficiência energética

De modo a diminuir a quantidade de energia a fornecer a toda a estrutura, iremos modificar os materiais que constituem as paredes partilhadas das divisões que funcionam a uma temperatura menor.

As paredes que irão sofrer alterações são as paredes que constituem as zonas C, D e E da nossa estrutura que são comuns a duas zonas diferentes.

De acordo com o croqui da nossa estrutura (fig. 14) essas paredes são: a P8, P9, P10, P11, P12, P13 e a P14.

Originalmente a parede P8 possuía duas componentes, uma componente exterior constituída pelo reboco, bloco, tijolo e poliestireno extrudido e uma componente interior constituída por um painel de sanduíche, característico de câmaras de conservação, composto por três materiais, duas chapas de aço galvanizado e a espuma de poliuretano 'PUR'. As paredes P9, P10, P11 eram constituídas somente pelo painel de sanduíche composto também pelas duas chapas de aço galvanizado e a espuma de poliuretano. Por fim as paredes P11, P12 e P13 eram também constituídas pelo mesmo painel de sanduíche e uma porta de acesso também constituída pelo mesmo material.

Com o intuito de aumentar a eficiência energética sem alterar as dimensões das paredes decidimos que a solução mais eficiente seria de aumentar a resistência térmica do painel de sanduíche uma vez que é comum a todas as paredes consideradas. Por isso, adicionamos uma camada de lã de rocha de 8 cm (condutividade térmica de 0,04 W/mK) ao painel de sanduíche, passando a ser constituída por 2 chapas de aço galvanizado, com a camada de espuma de poliuretano "PUR" e a camada de lã de rocha entre as chapas.

Nova constituição das paredes consideradas e as suas resistências:

Material	Δx (m)	k (W/mk)	Parede	Resistência (W/mk)
aço galvanizado (2 chapas)	0.0007	52		5.38462E-07
poliuretano 'PUR'	0.1736	0.035		0.1984
reboco	0.02	1.8		0.000444444
bloco	0.15	0.324	P8	0.018518519
tijolo	0.11	0.6		0.007333333
poliestireno extrudido	0.06	0.035		0.068571429
Lã de Rocha	0.08	0.04		0.08
aço galvanizado (2 chapas)	0.0007	52	P9, P10 e P14	5.38462E-07
poliuretano 'PUR'	0.1736	0.035		0.1984
Lã de Rocha	0.08	0.04		0.08
aço galvanizado (2 chapas)	0.0007	52		1.07692E-06
poliuretano 'PUR'	0.1736	0.035	P11 s/ porta	0.3968
Lã de Rocha	0.08	0.04		0.16
aço galvanizado (2 chapas)	0.0007	52		5.98291E-07
poliuretano 'PUR'	0.1736	0.035	P12 s/ porta	0.220444444
Lã de Rocha	0.08	0.04		0.08888889
aço galvanizado (2 chapas)	0.0007	52	P13 s/ porta	4.14201E-07

poliuretano 'PUR'	0.1736	0.035	0.152615385
Lã de Rocha	0.08	0.04	0.061538462

aço galvanizado (2 chapas)	0.0007	52		5.38462E-06
poliuretano 'PUR'	0.04	0.035	P11,12,13 - porta	0.457142857
Lã de Rocha	0.08	0.04		0.8

Tabela 47 – Nova constituição das paredes partilhadas das zonas com temperaturas inferiores (Zona C, D e E).

Cálculo da energia total a fornecer a estrutura após a introdução das alterações

(1)
$$q = \frac{\Delta T}{R}$$

(2) $E = q\Delta t$

(2)
$$E = q\Delta t$$

△T: diferença de temperatura **R**: resistência de cada parede q: potência/fluxo de cada parede **∆**t: intervalo de tempo

Temperaturas das diferentes zonas da estrutura:

Temperatura	°C
Exterior	20
Zona C	-10
Zona D	0
Zona E	10
Zona A e B	15

Tabela 48 – Temperatura exterior e temperatura das diferentes zonas da estrutura.

A temperatura exterior considerada é de 20°C. A temperatura da zona A e B esta sempre 5°C abaixo da temperatura exterior.

Potência/ fluxo das paredes cuja composição foi alterada:

Paredes	Resistência (W/m²K)	ΔT (K)	q (W)
P8	0.373268263	10	26.79038371
P9	0.278400538	10	35.91947076
P10	0.278400538	10	35.91947076
P14	0.278400538	25	89.79867689
P11 + porta	0.182983208	25	136.6245584
P12 + porta	0.182983208	15	81.97473505
P13 + porta	0.182983208	5	27.32491168

Tabela 49 – Potência/fluxo das paredes partilhadas das zonas com temperaturas inferiores (Zona C, D e E).

Energia total a fornecer por zona

Zona A e B

	Resistência (m2 * K /		
Paredes	W)	ΔT (K)	q (W)
P1 (Parte associada a zona B)	0,0949	-5	-52,68703899
P4	0,000315826	-5	-15831,50216
P3	0,00015964	-5	-31320,47106
P2 (Parte associada a zona A)	0,225576796	-5	-22,16540038
P11	0,385888121	25	64,78561691
P12	0,248249623	15	60,4230526
P13	0,182983208	5	27,32491168
P14	0,278400538	25	89,79867689

Zona	q total (W)	Δt (s)	E total (J)
A e B	-46984,4934	3600	-169144176,2

Zona C

	Resistência (m2 * K /		
Paredes	W)	ΔT (K)	q (W)
P5	0,488781336	-30	-61,37713896
P11	0,385888121	-25	-64,78561691
P10	0,278400538	-10	-35,91947076
P14	0,278400538	-25	-89,79867689

Zona	q total (W)	Δt (s)	E total (J)
С	-251,8809	3600	-906771,25

Zona D

	Resistência (m2 * K /		
Paredes	W)	ΔT (K)	q (W)
P6	0,209154516	-20	-95,62308467
P12	0,248249623	-15	-60,4230526
P10	0,278400538	10	35,91947076
P9	0,278400538	-10	-35,91947076

Zona	q total (W)	Δt (s)	E total (J)
D	-156,0461	3600	-561766,09

Zona E

	Resistência (m2 * K /		
Paredes	W)	ΔT (K)	q (W)
P7	0,149396083	-5	-33,46807963
P13	0,182983208	0	0
P9	0,278400538	10	35,91947076
P8	0,373268263	-5	-13,39519185

Zona	q total (W)	Δt (s)	E total (J)
Е	-10,9438	3600	-39397,68

Telhado

Resistência (Ω)	ΔT (K)	q (W)
0.013704355	-5	-364.8475

Zona	q total (W)	Δt (s)	E total (J)
Telhado	-364.8475	3600	-1313451.09

Com base no cálculo acima apresentado das potências/fluxo das paredes é possível agora calcular a energia total a fornecer a estrutura após as alterações efetuadas nas paredes partilhadas das zonas com temperaturas inferiores (Zona C, D e E).

Energia total a fornecer a estrutura

E total estrutura (J) =	-171965562,35	J
-------------------------	---------------	---

Tabela 51 – Energia total a fornecer a estrutura após as alterações.

Considerando um intervalo de tempo de 3600 segundos, ou seja, uma hora, e uma temperatura exterior de 20°C, a energia total a fornecer a estrutura é de aproximadamente $1,72\times10^8$ Joules.

A diferença de energia a fornecer à estrutura após as alterações é de 2960799,39 Joules.

Potência do sistema necessário para o arrefecimento da estrutura total

Determinar a potência necessária para arrefecer cada uma das zonas, ou espaços, individualmente ou global

$$q = \frac{E}{\Delta t}$$
 q : potência E : energia Δt : intervalo de tempo

A <u>potência do sistema de arrefecimento necessária será igual à quantidade de calor a ser</u> <u>retirada da estrutura dividida pelo tempo de funcionamento (</u>fórmula acima), neste caso 1 hora.

Considerar a estrutura para as duas situações de temperatura exterior consideradas

Temperatura Exterior = 20°C

Como a quantidade da energia total a fornecer a toda a estrutura é 174926361.74 J, como se observa na *tabela 34*, então a quantidade de calor a ser retirada é esse valor de energia por hora de funcionamento, logo a **potência do sistema é igual a** $1,75 \times 10^8$ J/h.

Temperatura Exterior = 28°C

Como a quantidade da energia total a fornecer a toda a estrutura é 175282738.51 J, como se observa na *tabela 46*, então a quantidade de calor a ser retirada é esse valor de energia por hora de funcionamento, logo a **potência do sistema é igual a** $1,75 \times 10^8$ J/h.

Considerar a estrutura sujeita a alterações de melhoramento térmico

Como a quantidade da energia total a fornecer a toda a estrutura após todas as alterações é 171965562.35 J, como se observa na *tabela 51*, então a quantidade de calor a ser retirada é esse valor de energia por hora de funcionamento, logo a **potência do sistema é igual a 1**, 72×10^8 J/h.

Otimizar o número de sistemas de arrefecimento para a estrutura total que foi sujeita a alterações de melhoramento térmico

As nossas zonas do armazém vão sempre ter tendência a aumentar significativamente a temperatura devido ao fluxo de calor ser do exterior para o interior por as temperaturas exteriores serem 15°C, 20°C e 28°C, ou seja, sempre superiores às temperaturas interiores. Nas zonas A e B como a temperatura se encontra apenas 5°C abaixo da exterior e por ser uma zona de entrada/saída não se considera necessário implementar um sistema de arrefecimento. No entanto para as zonas C, D e E as quais se encontram respetivamente às temperaturas -10°C, 0°C e 10°C, e não são de grandes dimensões considera-se necessária a aplicação de um sistema de arrefecimento que ajude a manter as diferentes temperaturas em cada zona. O sistema que se aconselha a implementar, neste caso, é por ventilação natural que consiste na utilização de ventiladores e dutos de ar para dissipar o calor acumulado no interior da estrutura. Estes sistemas são mais económicos, sustentáveis e costumam não ser eficazes com condições climatéricas extremas nem com estruturas de grande porte. Como a quinta é ecológica a parte da sustentabilidade é adequada e como essas três zonas são de pequenas dimensões e as temperaturas são mais amenas, então considera-se uma boa escolha.

Em conclusão, o número de sistemas de arrefecimento para a estrutura total que foi sujeita a alterações de temperatura deve ter o mesmo número de sistemas de arrefecimento para a estrutura total sem modificações visto que as energias totais de ambas têm valores muito próximos. Logo são 3 sistemas um para cada zona, C, D e E.

Referências

https://www.mecalux.com.br/artigos-logistica/isolamento-termico-nas-camaras-frigorificas

https://core.ac.uk/download/pdf/55613748.pdf

https://www.homify.pt/livros_de_ideias/331128/como-proteger-a-sua-casa-contra-o-frio-extremo

https://www.dippanel.com/pt-pt/camaras-frigorificas/portas-refrigeradas/portas-de-separacao-de-ambientes/porta-batente-em-pvc/

http://www.protolab.com.br/Tabela-Condutividade-Material-Construcao.htm

https://www.artebel.pt/produtos/blocos-termicos/termicoproetics

http://www.fibrosom.com/ficheiros/pdfs/Poliestireno Extrudido Xps.pdf

https://accept.uc.pt/storage/W1siZiIsIjlwMjAvMDgvMTkvOHE5OWNkdDcwZl9FVDA0MF9CbG9jb19 UX3JtaWNvX0lzb2xQYXZfY29tX2Fzc2luYXR1cmFfLnBkZiJdXQ?sha=48e4c1af4da01eae

https://www.itecons.uc.pt/projectos/siac17074/index.php?module=sec&id=170

http://www.protolab.com.br/Tabela-Condutividade-Material-Construcao.htm