Research Design, Fall 2021

05: statistical tests continued; inference and interpretation

probability, probability density functions v. continuous distribution functions — e.g., the standard normal Φ

R's probability functions, probability density (PDF), cumulative distribution (CDF), quantile, random generation

dprobability function name> probability density function pprobability function name> cumulative distribution function (of probability) **q**probability function name> quantile function rprobability function name> random generation function negative binomial normal gamma bernoulli cauchy binomial 100s more poisson

© 2021 Scott Spencer / 🕥 https://ssp3nc3r.github.io

'a zoo of pre-constructed golems known as "tests" '

Richard McElreath

a zoo of tests, a decision tree for selecting one (and not all named or unnamed tests are listed below)

This zoo of tests does share common theories based on probability.

— Casella & Berger 1990; Lehmann & Casella 1998; Lehmann & Romano 2005

zoo & decisions, comparing \bar{x} to μ , $x \in \mathbb{R}$

Recall Student's t test — comparing one sample means to μ where we assume a population normal distribution with unknown standard deviation σ .

$$H_0: \bar{x} = \mu, H_A: \bar{x} < \mu$$

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}, \quad \nu = n - 1, \quad p = F_T(t, \nu)$$

t.test(x, mu, alternative = "less", conf.level = 0.95)

zoo & decisions, **example** — comparing \bar{x} to $\mu, x \in \mathbb{R}$

```
mu1 <- 4
pop1 <- rnorm(1e5, mean = mu1, sd = 2)

# sample from the population
n1 <- 50
x1 <- sample(x = pop1, size = n1, replace = FALSE)

# setup the test to calculate manually
xbar1 <- mean(x1)
s1 <- sd(x1)
nu <- n1 - 1

# pretend we know population mu but not sigma
t <- (xbar1 - mu1) / (s1 / sqrt(n1))

# manually get p-value
p <- pstudent_t(q = t, df = nu)</pre>
```


Recall Student's t test — comparing one sample means to μ where we assume a population normal distribution with unknown standard deviation σ .

$$H_0: \bar{x} = \mu, H_A: \bar{x} < \mu$$

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}, \quad \nu = n - 1, \quad p = F_T(t, \nu)$$

zoo & decisions, comparing locations, data as R

Student's t test — comparing two sample means where we can assume an underlying normal distribution.

$$H_0: \mu_1 = \mu_2, H_A: \mu_1 < \mu_2$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}, \quad \nu = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}, \quad p = F_T(t, \nu)$$

t.test(x, y, alternative = "less", var.equal = FALSE, conf.level = 0.95)

zoo & decisions, example comparing locations, data as \mathbb{R}

```
# second population
mu2 <- 2
pop2 <- rnorm(1e5, mean = mu2, sd = 3)
# sample from the second population
n2 <- 50
x2 <- sample(x = pop2, size = n2, replace = FALSE)
xbar2 <- mean(x2)
s2 \leftarrow sd(x2)
t <- ( xbar1 - xbar2 ) / sqrt( s1 ^ 2 / n1 + s2 ^ 2 / n2)
nu <- ( s1 ^ 2 / n1 + s2 ^ 2 / n2 ) ^ 2 /
      ( ( s1 ^ 2 / n1 ) ^ 2 / (n1 - 1) + ( s2 ^ 2 / n2 ) ^ 2 / (n2 - 1) )
p <- pstudent_t(q = t, df = nu)</pre>
```


Student's t test — comparing two sample means where we can assume an underlying normal distribution.

$$H_0: \mu_1 = \mu_2, H_A: \mu_1 < \mu_2$$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}, \quad \nu = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}, \quad p = F_T(t, \nu)$$

zoo & decisions, comparing locations, data as $\mathbb{R} \in [0,1]$

Proportions are distributed as binomial, which tends to approximate a normal with sufficient *n*

comparing observed proportion to probability

$$H_0: \pi = \pi_0, H_A: \pi \neq \pi_0$$

$$z = \frac{\hat{p} - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}, p = F_{\Phi}(z)$$

comparing two observed proportions

$$H_0: \pi_1 - \pi_2 = \delta, H_A: \pi_1 - \pi_2 \neq \delta$$

$$z = \frac{\hat{p}_1 - \hat{p}_2 - \delta}{\sqrt{p_0(1 - p_0)(\frac{1}{n_1} + \frac{1}{n_2})}} \text{ where } p_0 = \frac{x_1 + x_2}{n_1 + n_2}, p = F_{\Phi}(z)$$

zoo & decisions, comparing locations, data as $\mathbb{R} \in [0,1]$

```
# population proportion
pi <- 0.4
# population of proportions
pop1 \leftarrow rbinom(n = 1e5, size = 1, prob = pi)
# observed proportion (sample or experiment)
p1 <- sample(pop1, size = n1)
phat1 <- mean(p1)</pre>
# calculate test statistic
z <- ( phat1 - pi ) / sqrt( pi * (1 - pi) / n1 )
# get location on cdf of standard normal distribution
p \leftarrow pnorm(q = z)
```


Proportions are distributed as binomial, which tends to approximate a normal with sufficient *n*

comparing observed proportion to probability

$$H_0: \pi = \pi_0, H_A: \pi \neq \pi_0$$

$$z = \frac{\hat{p} - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}, p = F_{\Phi}(z)$$

comparing two observed proportions

$$H_0: \pi_1 - \pi_2 = \delta, H_A: \pi_1 - \pi_2 \neq \delta$$

$$z = \frac{\hat{p}_1 - \hat{p}_2 - \delta}{\sqrt{p_0(1 - p_0)(\frac{1}{n_1} + \frac{1}{n_2})}} \text{ where } p_0 = \frac{x_1 + x_2}{n_1 + n_2}, p = F_{\Phi}(z)$$

prop.test(...)

zoo & decisions, comparing locations,

data as an unknown or skewed distribution

But what if we have no reason to assume the population is normally distributed?

zoo & decisions, comparing locations, data as an unknown or skewed distribution

Some tests, like *Wilcoxon–Mann–Whitney*, do not rely on parametric assumptions. *WMW* assumes independence of observations and outcomes are ordinal or continuous.

 $H_0: P(x_i > y_j) = 1/2$ (*i.e.*, populations have same central tendency) $H_A: P(x_i > y_j) \neq 1/2$ (*i.e.*, central tendencies not same)

Simplified procedure — rank all $(n_1 + n_2)$ observations in ascending order; assign ties their average rank; sum each of the two rankings, T_a and T_b ; calculate the U statistic:

$$U_a = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - T_a$$
, $U_b = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - T_b$

then $U = \min(U_a, U_b)$. For n > 20,

$$z = \frac{U - \mathbb{E}(U)}{\sigma}, \quad \mathbb{E}(U) = \frac{n_1 n_2}{2}, \quad \sigma^* = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}, \quad p = F_{\Phi}(z)$$

zoo & decisions, Wilcoxon-Mann-Whitney, simplified code, simulated example:

```
# simulate samples from experiment, samples from different distributions
n <- 10
set.seed(1)
sample1 <- rbeta(n, 2, 2)
sample2 <- rbeta(n, 2, 5)
```

```
d <-
  data.frame(
    sample = rep(1:2, each = n),
    values = c(sample1, sample2)
  ) %>%
  arrange(values) %>%
  mutate(order = seq(nrow(.))) %>%
  group_by(values) %>%
  mutate(rank = mean(order))
Ta <- filter(d, sample == 1) %>% .$rank %>% sum()
Tb <- filter(d, sample == 2) %>% .$rank %>% sum()
n1 <- with(d, sum(sample == 1))</pre>
n2 <- with(d, sum(sample == 2))</pre>
Ua <- n1 * n2 + (n1 * (n1 + 1)) / 2 - Ta
Ub <- n1 * n2 + (n2 * (n2 + 1)) / 2 - Tb
U <- min(Ua, Ub)
EU <- n1 * n2 / 2
sigma <- sqrt( n1 * n2 * (n1 + n2 + 1) / 12 )
z \leftarrow (U - EU) / sigma
p <- pnorm(z)</pre>
```

```
H_0: P(x_i > y_i) = 1/2 (i.e., populations have same central tendency)
H_A: P(x_i > y_i) \neq 1/2 (i.e., central tendencies not same)
```

Simplified procedure — rank all $(n_1 + n_2)$ observations in ascending order; assign ties their average rank; sum each of the two rankings, T_a and T_b ; calculate the U statistic:

$$U_a = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - T_a$$
, $U_b = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - T_b$

then $U = \min(U_a, U_b)$. For n > 20,

$$z = \frac{U - \mathbb{E}(U)}{\sigma}, \quad \mathbb{E}(U) = \frac{n_1 n_2}{2}, \quad \sigma^* = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}, \quad p = F_{\Phi}(z)$$

zoo & decisions, Wilcoxon-Mann-Whitney, simplified code, simulated example, comparing results with r function

```
a <- wilcox.test(x = sample1, y = sample2,</pre>
             correct = FALSE, exact = FALSE,
            alternative = "greater")
 == a$p.value
```

 $H_0: P(x_i > y_i) = 1/2$ (i.e., populations have same central tendency) $H_A: P(x_i > y_i) \neq 1/2$ (i.e., central tendencies not same)

Simplified procedure — rank all $(n_1 + n_2)$ observations in ascending order; assign ties their average rank; sum each of the two rankings, T_a and T_b ; calculate the U statistic:

$$U_a = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - T_a$$
, $U_b = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - T_b$

then $U = \min(U_a, U_b)$. For n > 20,

$$z = \frac{U - \mathbb{E}(U)}{\sigma}, \quad \mathbb{E}(U) = \frac{n_1 n_2}{2}, \quad \sigma^* = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}, \quad p = F_{\Phi}(z)$$

zoo & decisions, Wilcoxon-Mann-Whitney, graphing the example distributions and test results

 $H_0: P(x_i > y_i) = 1/2$ (i.e., populations have same central tendency) $H_A: P(x_i > y_j) \neq 1/2$ (i.e., central tendencies not same)

Simplified procedure — rank all $(n_1 + n_2)$ observations in ascending order; assign ties their average rank; sum each of the two rankings, T_a and T_b ; calculate the U statistic:

$$U_a = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - T_a$$
, $U_b = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - T_b$

then $U = \min(U_a, U_b)$. For n > 20,

$$z = \frac{U - \mathbb{E}(U)}{\sigma}, \quad \mathbb{E}(U) = \frac{n_1 n_2}{2}, \quad \sigma^* = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}, \quad p = F_{\Phi}(z)$$

zoo & decisions, goodness of fit

Tests can suggest whether a whole probability distribution fits some count of categorical outcomes.

 H_0 : distribution fits data

 H_A : distribution doesn't fit data

 $k \in \{1,...,K\}$ outcome categories

 O_k observed counts for category k

 p_k probability of category k

 $E_k = n \cdot p_k$, expected counts for category k

w test statistic, variations from expected counts

$$w = \sum_{k=1}^{K} \frac{(O_k - E_k)^2}{E_k}, \quad \nu = K - 1, \quad p = F_{\chi^2}(w, \nu)$$

Example — test equality of proportions of male and female applicants to Berkeley

```
data(UCBAdmissions)
UCBAdmissions %>% as.data.frame() %>%
 group_by(Gender) %>%
  summarise(0 = sum(Freq)) %>%
  ungroup() %>%
  mutate(E = mean(0)) %>%
 summarise(w = sum((0 - E)^2 / E),
           nu = n_distinct(Gender) - 1) %>%
 mutate(p = pchisq(w, nu, lower.tail = FALSE))
```

zoo & decisions, independence

Tests can suggest whether variables are independent.

$$H_0: P(Y|X) = P(Y) \text{ and } P(X|Y) = P(X)$$
 $H_A: P(Y|X) \neq P(Y) \text{ or } P(X|Y) \neq P(X)$
 $k \in \{1,...,K\} \text{ categories}$
 $j \in \{1,...,J\} \text{ different levels in each category}$
 $O_{jk} \text{ observed counts for each level } j \text{ in category } k$
 $p_k \text{ probability of category } k$
 $E_k = n \cdot p_k$, expected counts for category k
 $w \text{ test statistic, variations from expected counts}$

$$w = \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{(O_{jk} - E_{jk})^2}{E_{jk}}, \quad \nu = (J-1)(K-1), \quad p = F_{\chi^2}(w, \nu)$$

describing variation in our tests: confidence intervals

confidence intervals

$$\left[(\bar{X} - \bar{Y}) + t_{\alpha/2}\sigma, (\bar{X} - \bar{Y}) + t_{(1-\alpha)/2}\sigma \right]$$

References

Blitzstein, Joseph K., and Jessica Hwang. Introduction to Probability. Second edition. Boca Raton: Taylor & Francis, 2019.

Casella, George, and Roger L. Berger. Statistical Inference. 2nd ed. Australia; Pacific Grove, CA: Thomson Learning, 2002.

Gelman, Andrew, Jennifer Hill, and Aki Ventari. Regression and Other Stories. S.l.: Cambridge University Press, 2020.

Lehmann, E L, and George Casella. *Theory of Point Estimation*. Second. Springer, 1998.

Lehmann, E. L., and Joseph P. Romano. Testing Statistical Hypotheses. 3rd ed. Springer Texts in Statistics. New York: Springer, 2005.

McElreath, Richard. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 2nd ed. CRC Texts in Statistical Science. Boca Raton: Taylor and Francis, CRC Press, 2020.