直流电源特性

学号: PB22511902 姓名: 王冬雪

实验目的

掌握直流电源特性的测量方法,了解负载对电源输出特性的影响,掌握非线性内阻电源开路电压和短路电流的测量方法。

实验原理

1, 纹波系数

$$K_u = \frac{ \hat{\Sigma} \hat{\Sigma} \in \mathbb{E} = \hat{\Sigma} \hat{\Sigma} \times \hat$$

2, 电源开路电压和短路电流 等效电路或补偿法电路图:

等效电路法测量开路电压和短路电流电路图

实验仪器

信号发生器、数字电压表(直流电压档、交流电压档)、检流计、电阻箱、滑线变阻器、微安表、电源、电池、面包板、整流二极管 4 个、电容、电阻、导线若干。

测量记录及分析与讨论

1,不同负载下纹波系数的测量

电容选 1 μF, 在面包板上连接 π型全波整流滤波电路:

表1 1μ Γ π 型全波整流滤波电路不同负载下的测量										
电阻/欧姆	直流电压/mV	交流电压/mV	功率/ mV^2/Ω	纹波系数/%	电阻/欧姆	直流电压/mV	交流电压/mV	功率/ mV^2/Ω	纹波系数/%	
20	50.905	9.370	129. 57	18.41	1300	1719	41.691	2273. 05	2. 43	
60	148	24. 561	365.07	16.60	1400	1785	39. 433	2275. 88	2. 21	
100	241	35. 592	580. 81	14.77	1450	1817	38. 869	2276. 89	2.14	
300	635	52. 954	1344. 08	8.34	1500	1847	39. 293	2274. 27	2. 13	
500	944	53. 025	1782. 27	5. 62	1550	1874	38. 645	2265. 73	2.06	
700	1193	50.377	2033. 21	4.22	1700	1959	37. 145	2257.46	1.90	
900	1398	47. 336	2171.56	3.39	1900	2059	35. 217	2231. 31	1.71	
1100	1570	44. 315	2240.82	2.82						

单个 10 μF 电容,连接全波整流滤波电路:

表2 10 μ F 单电容全波整流滤波电路不同负载下的测量											
电阻/欧姆	直流电压/mV	交流电压/mV	功率/ mV^2/Ω	纹波系数/%	电阻/欧姆	直流电压/mV	交流电压/mV	功率/ mV^2/Ω	纹波系数/%		
20	467	183	10904. 45	39. 19	500	2490	98. 086	12400.20	3. 94		
40	784	228	15366. 40	29.08	700	2681	78. 984	10268. 23	2.95		
60	1032	226	17750.40	21.90	900	2809	66. 574	8767. 20	2. 37		
80	1220	215	18605. 00	17.62	1100	2903	57. 767	7661. 28	1. 99		
90	1302	210	18835. 60	16. 13	1300	2974	51. 369	6803.60	1.73		
95	1340	207	18901.05	15. 45	1500	3030	46. 355	6120.60	1.53		
100	1297	199	16822. 09	15. 34	1700	3076	42. 498	5565. 75	1.38		
300	2162	131	15580. 81	6.06	1900	3113	39. 353	5100.40	1. 26		

由表 1,

输出功率最大时,负载为1450欧

由表 2,

输出功率最大时,负载为95欧。

2.非线性内阻电源开路电压和短路电流的测定

开路电压: 1.58163V 短路电流: 5.15mA 内阻: 307.113 欧

3.电表改装

图5 测内阻电路图

原理: 电压表示数为真实电压, 电 流表示数为真实电流

微安表: 41.9 微安

电压表: 49.67 毫伏

内阻: 1185.44 欧

中国科学技术大学 直流电源特性 2023 年 6 月 9 日

图6 改装电压表原理图

如图 6 所示,与微安表串联一 18814.56 欧的电阻可改装为 2V 电压表。

4.改装电表的定标

定标方程如下:

设微安表示数为I微安,测量的电压为U伏,则,

$$U = \frac{I}{50}$$

思考题

简述单大电容和小电容 π 型滤波的优劣。

- (1)单大电容滤波电路简单,滤波过程能量损失较少,负载的最大功率更高,但是它在电阻较小时纹波系数很大,滤波效果不好。
- (2)小电容π型滤波在电阻较小时纹波系数仍然较小,滤波效果 好,但是滤波过程中能量损失较大。