Current State - No control

- Region 4 reaches ≈ 110 veh/km → flow collapses → "Gridlock"
- Average journey time > 1 h.
- Long waiting time: 45 min
- No anticipation of future traffic

Traffic flow with no control leads to gridlock, marked in red.

Failure mode - P controller

- P-controller reduces journey time by 20% yet can't handle late-rush surge.
- Single-region feedback ignores upstream queues.
- Same speed factor broadcast to all five roads
 → sub-optimal.

A drastic reduction in CO2 emissions and travel time can be achieved with a new controller

Traffic flow with P-control still leads to gridlock, marked in red.

MPC

Model Predictive Control

- Predictable behaviour
- Easy to follow DSL changes
- Can anticipate future traffic

Traffic flows freely without gridlock using the MPC controller

Avg travel time –72.5 % • 100 % trips completed

TPC

Transient Predictive Control

- Can deal with closed loop training data
- Fast compilation time
- Fastest average travel time

TPC makes accurate density predictions

Avg travel time -80 % • Solves $\approx 3 \times$ faster than MPC

Traffic flows freely without gridlock using the TPC controller

Deployment

Implementation

Phase	Model-based MPC	Data-driven TPC	Aspect	Model-based MPC
1. Offline preparation	 Identify real world model and linearize around operating point 	 Collect 1-2 weeks of DSL commands, densities and flows from the real network (excite each road a bit to cover the dynamics). 	Up-front effort	Needs a trustworthy phys based model and calibrati → more engineering hour
			Transparency & verification	High: linear model + quadratic cost allow forma proofs of stability and constraint satisfaction.
2. Implementation	 Implement hardware to run the controller Include a Kalman or moving-average state estimator to filter sensor noise. 	 Implement hardware to run the controller No explicit state estimator—uses raw measured inputs/outputs. 	Adaptability to network changes Robustness to unseen	Requires revisiting the model and gains after structural changes. Good if the model covers
3. Monitoring & updates	 Re-identify model yearly or after major roadworks Retune parameters if traffic patterns shift. 	 Retrain predictors monthly with the newest data. No manual gain retuning needed in most cases. 	scenarios	the operating envelope; brittle outside it.

Trade-offs

Aspect	Model-based MPC	Data-driven TPC	
Up-front effort	Needs a trustworthy physics- based model and calibration → more engineering hours.	Minimal modelling; biggest cost is gathering representative data.	
Transparency & verification	High: linear model + quadratic cost allow formal proofs of stability and constraint satisfaction.	Medium-high: predictors are linear and inspectable but still data-driven.	
Adaptability to network changes	Requires revisiting the model and gains after structural changes.	Simply collect new data and retrain; quick to port to other corridors.	
Robustness to unseen scenarios	Good if the model covers the operating envelope; brittle outside it.	Same risk as any data-driven method: edge-case behaviour may be unknown	

Bonus: DeePC

Data-enabled Predictive Control

- Better at capturing complex behaviour
- Uses real SUMO data—no model mismatch.
- More complex DSL changes
- More parameters to tune, requiring extra expertise

DSL changes may be more challenging for human drivers.

Traffic flows freely without gridlock using the DeePC controller