MATH 335 Homework 3

Chris Camano: ccamano@sfsu.edu

September 15, 2022

- 1. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$.
 - a) Determine $A \times B$.

$$AB = \{(a,1), (a,2), (a,3), (a,4), (b,1), (b,2), (b,3), (b,4), (c,1), (b,2), (b,3), (b,4)\}$$

b) Draw $B \times \mathbb{R}$.

c) Prove that if C and D are finite sets then $|C \times D| = |C| \cdot |D|$.

Proof. By the definition of the cartesian product for any fixed $c_o \in C$ there exist |D| corresponding ordered pairs of the form $(c_0, d), d \in D$.

Since there are |C| possible choices for c_0 and |D| corresponding ordered pairs of the form (c_0,d) then this implies $\exists |C| \cdot |D|$ unique ordered pairs, thus $|C \times D = |C| |D|$ as the cartesian product is the set of all unique ordered pairs between two sets.

- 2. Determine which one of the following are equivalence relations. Justify.
 - a) $x \sim y$ in \mathbb{R} if $x \geq y$.
 - (a) Reflexivity

Proof. Prove: $x \sim x$ if $x \sim x$ then:

$$x > x \rightarrow x = x$$

So we have shown the relation satisfies Reflexivity.

(b) Symmetry

Proof. Prove $x \sim y \rightarrow y \sim x$

if $x \sim y$ then $x \ge y$ from this inequality alone we cannot show that y > x however it could be the case that x = y in which case the statement $y \ge x$ would hold true staisfying symmetry.

However, we cannot conclude if it is the case that y = x given $x \ge y$ and thus we cannot prove the symmetritricity of the relation.

(c) Transitivity

Proof. Prove if $x \sim y$ and $y \sim z$ then $x \sim z$ if $x \sim y$ then $x \ge y$, if $y \sim z$ then $y \ge z$ then:

$$x \ge y \ge z$$

$$x \ge z$$

Therefore $x \sim z$

This relation is not an equivilance relation.

b) $m \sim n$ in \mathbb{Z} if mn > 0.

(a) Reflexivity

Proof. Prove: $m \sim m$ if $m \sim m$ then this implies

$$m^2 > 0$$

Consider the case of m = 0, then this relation implies:

Which is not true, thus since Reflexivity fails for this relation this implies that the relation is not an equivilance relation. \Box

(b) Symmetry

Proof. Prove $x \sim y \rightarrow y \sim x$ If $x \sim y$ then :

by commutatitivty of integer multiplication this also gives:

and thus we have that $y \sim x$ so y is related to x

This relation is not an equivilance relation.

c) $x \sim y$ in \mathbb{R} if $|x - y| \le 4$.

(a) Reflexivity

Proof. Prove: $x \sim x$

if $x \sim x$ then this implies :

$$|x-x| \le 4$$

$$|0| \le 4$$

$$0 \le 4$$

(b) Symmetry

Proof. Prove $x \sim y \rightarrow y \sim x$ if $x \sim y$ then :

$$|x-y| \le 4$$

if $y \sim x$ then :

$$|y-x| \leq 4$$

For all x, y in the real numbers |x - y| = |y - x| therefore by this reason y is symmetric to x.

(c) Transitivity

Proof. Prove if $x \sim y$ and $y \sim z$ then $x \sim z$ Consider the following hypothetical: given $x,y,z \in \mathbb{R}$ with x=4 y=8, z=12Then if $x \sim y$ this implies:

$$|4-8| \le 4$$
$$4 < 4$$

$$|8-12| \le$$
 "4" $4 \le 4$

$$|4 - 12| \le 4$$
$$8 < 4$$

so we have shown that the relation does not satisfy Transitivity.

This relation is not an equivilance relation.

- 3. Define the relation $(x_1, y_1) \sim (x_2, y_2)$ in \mathbb{R}^2 if $x_1^2 + y_1^2 = x_2^2 + y_2^2$. Show that this is an equivalence relation. Then describe the equivalence classes.
 - (a) Reflexivity

Proof. Prove: $x \sim x$

if $x \sim x$ then we have that:

$$x_1^2 + y_1^2 = x_1^2 + y_1^2$$

Which is true.

(b) Symmetry

Proof. Prove $x \sim y \rightarrow y \sim x$ if $x \sim y$ then we have that:

$$x_1^2 + y_1^2 = x_2^2 + y_2^2$$

which by the symmetric property of equality proves that $y \sim x$

(c) Transitivity

Proof. Prove if $x \sim y$ and $y \sim z$ then $x \sim z$

if $x \sim y$ then

$$x_1^2 + y_1^2 = x_2^2 + y_2^2$$

if $y \sim z$ then we have:

$$x_2^2 + y_2^2 = x_3^2 + y_3^2$$

performing a substitution gives:

$$x_1^2 + y_1^2 = x_3^2 + y_3^2$$

and thus $x \sim z$

This allows us to conclude that this relation is an equivilance realtion. The equivilance classes of this relation take the following structure:

$$[a = (x_1, y_1)] = \{b \in \mathbb{R} : a \sim b\} = \{(x_2, y_2) \in \mathbb{R}^2 : (x_1, y_1) \sim (x_2, y_2)\}$$

so for some fixed ordered pair in \mathbb{R}^2 the equivilance class is the set of all other ordered pairs satisfying the relation. These relations consitute circles formed by the points related centered at (x_1, y_1) or rather (x_i, y_i) for some arbitrary location in \mathbb{R}^2

In other words each equivilance class is a circle in \mathbb{R} centered at the point you are drawing a relation with with radius: $x_2 + y_2$

4. Define a relation on $\mathbb{R}^2 \setminus \{(0,0)\}$ by letting $(x_1,y_1) \sim (x_2,y_2)$ if there exists a nonzero λ such that $(x_1,y_1)=(\lambda x_2,\lambda y_2)$. Prove that \sim defines an equivalence relation on $\mathbb{R}^2 \setminus \{(0,0)\}$. What are the equivalence classes ?

(a) Reflexivity

Proof. Prove: $x \sim x$

If $x \sim x$ then we have the following relation:

$$(x_1, y_1) = \lambda(x_2, y_2)$$

which is true for the case of $\lambda=1$ proving Reflexivity.

(b) Symmetry

Proof. Prove $x \sim y \rightarrow y \sim x$

If $x \sim y$ then:

$$(x_1,y_1) = \lambda_1(x_2,y_2)$$

Solving for (x_2, y_2) we obtain:

$$\frac{1}{\lambda_1}(x_1, y_1) = (x_2, y_2)$$

So we have shown that for $\lambda_2 = \frac{1}{\lambda_1}$ that $y \sim x$ and thus have proven symmetritricity.

(c) Transitivity

Proof. Prove if
$$x \sim y$$
 and $y \sim z$ then $x \sim z$ If $x \sim y$ then :
$$(x_1, y_1) = \lambda_1(x_2, y_2)$$
 If $y \sim z$ then:
$$(x_2, y_2) = \lambda_2(x_3, y_3)$$
 substituting for (x_2, y_2) :
$$(x_1, y_1) = \lambda_1 \lambda_2(x_3, y_3)$$
 so we have that $(x_1, y_1) \sim (x_3, y_3)$ for $\lambda_3 = \lambda_1 \lambda_2$ Proving Transitivity. \square

The equivilance classes are the set of all scalar multiples of the vector formed by the original selection of (x_1, y_1) . This is to say that each equivilance class is a line in \mathbb{R} where the elements on the line represent the span of the original vector chosen.