CLAIMS

We claim:

1	1.	A process for treating a wastewater stream, including removing substantially all
2		fluoride ions contained in the wastewater stream, comprising:
3		a. exchanging cations in the wastewater stream with hydrogen ions by
4		passing the wastewater stream through a strong acid cation resin;
5		b. removing hexafluorosilicates from the wastewater stream by passing the
6		wastewater stream through a strong base anion resin in sulfate form;
7		c. removing acids from the wastewater stream by passing the wastewater
8		stream through a weak base anion resin, having tertiary amine groups in
9		free base form;
10		d. removing hydrofluoric acid from the wastewater stream by passing the
11		wastewater stream through a weak base anion resin in free base form.
1	2.	The process of claim 1 wherein the acids other than hydrofluoric acid are selected
2		from the group consisting of HNO ₃ , HOAc, HCl, and H ₂ SO ₄ .
1	3.	The process of claim 1 wherein the strong acid cation resin contains sulfonic acid
2		moieties.
1	4.	The process of claim 1 further comprising monitoring the wastewater stream
2		passing through the strong acid cation resin to test for ammonium ion
3		breakthrough.
1	5.	The process of claim 4 wherein said monitoring comprises monitoring the
2		differential pH of the wastewater stream entering and exiting the resin.
1	6.	The process of claim 1 further comprising regenerating the strong acid cation resin
2		by passing through the strong acid cation resin, at least one of sulfuric acid or
3		hydrochloric acid.

7. 1 The process of claim 1 wherein the strong base anion resin contains quaternary 2 amine groups. 1 8. The process of claim 1 wherein part b further comprises monitoring the 2 wastewater stream passing through the strong base anion resin to test for silica 3 breakthrough. 1 9. The process of claim 1 wherein part b further comprises regenerating the strong base anion resin by passing through the strong base anion resin, hydrochloric acid 2 3 followed by sulfuric acid. 1 10. The process of claim 1 wherein part c further comprises monitoring the 2 wastewater stream passing through the strong base anion resin to test for chloride 3 breakthrough. The process of claim 1 wherein parts c and d further comprise regenerating the 1 11. weak base anion resin having tertiary amine groups in free base form with a 2 3 sodium hydroxide solution. The process of claim 1 wherein part d further comprises monitoring the 1 12. 2 wastewater stream passing through the weak base anion resin to test for electrical 3 resistance. The process of claim 1 further comprising monitoring the wastewater stream 1 13. 2 passing through the strong base anion resin to test for fluoride breakthrough. The process of claim 1 further comprising regenerating the weak base anion resin 1 14. 2 by passing hydrochloric acid through the weak base anion resin. 15. The process of claim 1 further comprising adding to the removed hydrofluoric 1 acid, at least one of Ca(OH)2 at a concentration below solubility limits or CaCl2. 2

- 1 16. A process for treating a wastewater stream including removing substantially all fluoride ions contained in the waste water stream, comprising:
- a. exchanging hydrogen ions in a strong acid cation resin containing hydrogen ions with aluminum ions by passing a solution of aluminum salt through the strong acid cation resin;
- 6 b. rinsing the strong acid cation resin with water;
- 7 c. removing hydrofluoric acid from the wastewater stream by passing the
 8 wastewater stream through the aluminum ion exchanged strong acid cation
 9 resin.
- 1 17. The process of claim 16 wherein the aluminum salt is at least one of aluminum chloride or aluminum sulfate and the corresponding acids are hydrogen chloride or hydrogen sulfate respectively.
- 1 18. The process of claim 16 further comprising collecting the total runoff from said exchanging and rinsing in a tank.
 - 1 19. The process of claim 16 further comprising adding the mixture of mineral acid 2 and total runoff from said exchanging and rinsing to the strong acid cation resin.
 - 1 20. The process of claim 16 further comprising monitoring the wastewater stream passing through the strong acid anion resin to test for fluoride breakthrough.
 - The process of claim 16 further comprising regenerating the strong acid cation resin by passing through the strong acid cation resin, a concentrated mineral acid corresponding to the aluminum salt passed through the strong acid cation resin.