

"An expert is a person who has made all the mistakes that can be made in a very narrow field."

- Niels Bohr

Agenda for today

- Quick Recap
- What are actuators?
- Basic Actuators
 - LED, Buzzer, Motor, etc.
- Advanced Actuators
 - Displays
 - Addressable LEDs
 - Servo Motors
 - Stepper motors
 - etc.
- Hands-on with actuators
- Daily Challenge
- Prized challenge 3

Actuators

Adding legs and mouth to devices

What are actuators?

- A device that does actions
- Human beings have Mouth, Legs, Hands, etc.
- Machines also require actuators to indicate, display, move, or tell something.

Basic Actuators

LEDs

- A simple actuator to indicate
- Combination of blink patterns and colors can be used to indicate a lot of stuff
- For a few LEDs, we do not require any driver
- Increasing number of LEDs will require a driver to provide required amount of current

Buzzers

- A simple actuator to indicate
- Combination of sound patterns indicate a lot of stuff
- Does not require any driver while using it with ESP8266

DC Motors

DataTurtles
Connect - Build - Inspire

- Converts electrical signal into a rotational motion
- Can be used for different types of actions, for ex; opening doors, moving a robot, lifting things, etc.
- A driver is required to drive a motor

Advanced Actuators

LED Matrix displays

- Can be used to display text and certain patterns
- Requires a driver to integrate with ESP8266
- If the display is bigger, you might require a separate power-supply as well.

DataTurtles
Connect - Build - Inspire

- Can be used for displaying images, videos, text, etc.
- Most of time the display comes with its own driver. Sometimes, we might need to use external driver.

OLED displays

DataTurtles
Connect - Build - Inspire

- Most of the cheap one are single colored.
 That means, they are good for displaying texts, icons, and some patterns.
- Come with inbuilt driver.
- Sometimes, you might need to add pull-up resistors to the I2C lines.

E-Paper displays

- Use the e-ink technology to display information
- Very useful for the battery powered applications where we want the device to run for many days.
- Requires a driver board to interface with ESP8266

- We can connect multiple LEDs to a single GPIO pins
- Very useful for the application where we need multiple LEDs but do not have free GPIOs
- Works over a proprietary protocol, information regarding which can be found in datasheet
- Micropython has a built in package to use it.

Servo Motors

- Come in 2 variants
 - Constrained angles
 - Continuous rotation
- Useful for the applications where we need accurate angular control
- They do not require a separate driver.
 However, if we add more of these, we will require a separate power-supply

Stepper Motors

- Converts electrical signal into a rotational motion
- Can be used for different types of actions, for ex; opening doors, moving a robot, lifting things, etc.
- A driver is required to drive a motor

Audio over Speakers

- Converts electrical signal into a rotational motion
- Can be used for different types of actions, for ex; opening doors, moving a robot, lifting things, etc.
- A driver is required to drive a motor

Hands-on

Get your hands dirty

Interfacing Basic Actuators

Connect a Buzzer to ESP8266

Hint: Use the LED blinking code and replace LED with a buzzer in the circuit

Try replacing buzzer with a Motor

Interfacing Advanced Actuators

Interfacing WS2812 LED with ESP8266

Import necessary modules

from machine import Pin

from neopixel import NeoPixel

from time import sleep

Define number of LEDs and the Pin

Define the RGB color value to put on LED

$$color = (126 , 1 , 0)$$

Create an object of NeoPixel Class

pixels = NeoPixel(Pin(DIN_pin), num_pixels)

Assign color to the LED and display it

Try interfacing LED Ring with ESP8266

Daily Challenge

Problem Statement:

Use Wokwi to integrate servo motor with ESP8266. Move the motor hand to different angles

Hint:

• Sample code for integration is already available in the documentation

Prized Challenge 3

Problem Statement:

- . Build an end-to-end IoT system with following features:
 - a. A device with actuators and sensors
 - b. Data collection on a cloud platform
 - C. Visualize the data in graphical form in an application running on your local system

Constraints:

- Overall system should be wireless
- Firmware code should be in python. Visualization application can be on any platform for language.

Resources required:

- I WiFi enabled Development boards
- A WiFi router/access point to connect the devices

Thank you

GROUP VENTURES

