Lois de probabilité en actuariat

Gabriel Crépeault-Cauchon

Dernière date de mise à jour : 10 septembre 2018

0.1 Lois discrètes

Loi	Pr(X = x)	$F_X(x)$	E[X]	Var(X)	$M_X(t)$	$P_X(t)$
Uniforme	$\begin{cases} \frac{1}{b-a+1} & x = a, a+1,, b \\ 0 & \text{ailleurs} \end{cases}$	$ \begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a + 1} & a \le x \le b \\ 1 & x \ge b \end{cases} $	<u>a+b</u> 2	$\frac{(b-a+1)^2-1}{12}$	$\frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$	N/A
Bernouilli	$\begin{cases} 1 - p & x = 0 \\ p & x = 1 \\ 0 & \text{ailleurs} \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x \le 1 \\ 1 & x \ge 1 \end{cases}$	p	p(1-p)	$(1-p) + pe^t$	$(1-p)+p^t$
Binomiale	$\begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, 1, 2, \dots \\ 0 & \text{ailleurs} \end{cases}$	$\sum_{k=1}^{\lfloor x\rfloor} \binom{n}{k} p^k (1-p)^{(n-k)}$	np	np(1-p)	$((1-p)+pe^t)^n$	$((1-p)+p^t)^n$
Poisson	$\begin{cases} \frac{\lambda^x e^{-\lambda}}{x!} & x = 0, 1, 2, \dots \\ 0 & \text{ailleurs} \end{cases}$	$\sum_{k=1}^{\lfloor x \rfloor} \frac{\lambda^k e^{-\lambda}}{k!}, x \ge 0$	λ	λ	$e^{\lambda(e^t-1)}$	$e^{\lambda(t-1)}$
Géométrique	$\begin{cases} p(1-p)^{(x-1)} & x = 0, 1, 2, \dots \\ 0 & \text{ailleurs} \end{cases}$	$\begin{cases} 0 & x < 1 \\ 1 - (1 - p)^{\lfloor x \rfloor} & x \ge 1 \end{cases}$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{pt}{1-(1-p)t}$
Binomiale négative	$\begin{cases} \binom{x-1}{r-1} p^r (1-p)^{x-r} & x = r, r+1, \dots \\ 0 & \text{ailleurs} \end{cases}$	N/A	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^t}{1 - (1 - p)e^t}\right)^r$	$\left(\frac{pt}{1-(1-p)t}\right)^r$
Hypergéométrique	$\begin{cases} \frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}} & x = 0, 1,, \min(m, n) \\ 0 & \text{ailleurs} \end{cases}$		$n\frac{m}{N}$	$\frac{nm}{N} \left(\frac{(n-1)(m-1)}{N-1} + 1 - \frac{nm}{N} \right)$		

0.2 Lois continues

Loi	$f_X(x)$	$F_X(x)$	$F_X^{-1}(x)$	E[X]	Var(X)	$M_X(t)$
Uniforme	$\begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{ailleurs} \end{cases}$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$	$a+(b-a)\cdot u$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$
Normale	$\begin{cases} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} & x \in \mathbb{R} \\ 0 & \text{ailleurs} \end{cases}$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	$\mu + \sigma\Phi^{-1}(u)$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
Lognormale	$\begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2} & x \in \mathbb{R} + \\ 0 & \text{ailleurs} \end{cases}$	$\Phi\left(\frac{\ln x - \mu}{\sigma}\right)$	$e^{\mu+\sigma\Phi^{-1}(u)}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	N/A
Exponentielle	$\begin{cases} \lambda e^{-\lambda x} & x > 0, \lambda > 0 \\ 0 & \text{ailleurs} \end{cases}$	$1 - e^{-\lambda x}, x > 0$	$\frac{-\ln(1-u)}{\lambda}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}, t < \lambda$
Gamma	$\begin{cases} \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} & x > 0, \lambda > 0\\ 0 & \text{ailleurs} \end{cases}$	$ si \alpha \notin \mathbb{Z} $ $ \frac{\Gamma(\alpha; \lambda x)}{\Gamma(\alpha)} $ $ x > 0, \lambda > 0, \alpha < 0 $	$ si \alpha \in 1 - \sum_{k=0}^{\alpha - 1} \frac{(\lambda x)^k e^{-\lambda x}}{k!} $	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}, t < \lambda$
Khi-carré	$\begin{cases} \frac{x^{\frac{n}{2}-1}e^{-\frac{n}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} & x > 0\\ 0 & \text{ailleurs} \end{cases}$	$\frac{\Gamma\left(\frac{n}{2};\frac{x}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$		n	2 <i>n</i>	$\left(\frac{1}{1-2t}\right)^{\frac{n}{2}}, t < \frac{1}{2}$
Beta	$\frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}}{0 < x < 1, \alpha > 0, \beta > 0}$	$\frac{\beta(x;\alpha,\beta)}{\beta(\alpha,\beta)}$		$rac{lpha}{lpha+eta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Pareto	$\begin{cases} \frac{\alpha \lambda^{\alpha}}{(\lambda + x)^{\alpha + 1}} & x > 0, \alpha > 0, \lambda > 0 \\ 0 & \text{ailleurs} \end{cases}$	$1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$	$E[X^k] = rac{\lambda^k k!}{\prod_{j=1}^k (lpha - j)}, lpha > k$	$\frac{\lambda}{\alpha-1}$	$\frac{\alpha\lambda^2}{(\alpha-1)^2(\alpha-2)}$	N/A