

CSC2561/24

เอกสารคู่มือการใช้งาน

(User Manual)

การตรวจจับการจอดรถในพื้นที่ห้ามจอดโดยวิธีการแตกเชิงความหมาย
Prohibited Car Parking Area Detection Using Semantic Segmentation
Approach

โดย

รหัสนักศึกษา 583020719-3 นายธีรไนย แซ่ลิ้ม รหัสนักศึกษา 583020734-7 นายรัชชานนท์ เคนชมภู

อาจารย์ที่ปรึกษา : ผศ.ดร.ปัญญาพล หอระตะ

รายงานนี้เป็นส่วนหนึ่งของการศึกษาวิชา 322 499
โครงการวิจัยทางวิทยาการคอมพิวเตอร์ ระดับปริญญาตรี 2
สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์
มหาวิทยาลัยขอนแก่น
(เดือน พฤษภาคม พ.ศ. 2562)

คำนำ

เอกสารนี้เป็นส่วนหนึ่งของรายวิชา 322 499 โครงการวิจัยทางวิทยาการคอมพิวเตอร์ ระดับ ปริญญาตรี 2 สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น โดยรายวิชา 322 499 โครงงานคอมพิวเตอร์ 2 ได้มอบหมายให้นักศึกษาทำโครงงาน โดยให้นักศึกษาศึกษาและนำความรู้ ความสามารถที่ได้ศึกษานำมาใช้ให้เกิดประโยชน์ ก่อนที่จะเริ่มจัดทำบทความวิจัยเรื่องการตรวจจับการจอด รถในพื้นที่ห้ามจอดโดยวิธีการแตกเชิงความหมายต้องปรึกษากับอาจารย์ที่ปรึกษาเพื่อให้ได้ความถูกต้อง ได้มากที่สุด จากนั้นนำความรู้ทางด้าน MATLAB มาใช้ให้เกิดประโยชน์และนำความรู้ทักษะมาต่อยอดให้มี ประสิทธิภาพยิ่งขึ้น

ในการจัดทำโครงงานครั้งนี้ ผู้จัดทำหวังเป็นอย่างยิ่งว่าโครงงานชิ้นนี้จะเป็นประโยชน์และ แนวทางที่ดี ให้แก่ผู้ที่สนใจสามารถนำไปศึกษาหรือพัฒนาต่อไปเป็นองค์ความรู้เพื่อเพิ่มประสิทธิภาพการ แตกเชิงความหมายให้ดียิ่งขึ้น

คณะผู้จัดทำ

นายรัชชานนท์ เคนชมภู นายชีรไนย แซ่ลิ้ม

สารบัญ

	หน้า
คำนำ	ก
สารบัญภาพ	ค
สารบัญภาพ (ต่อ)	
1. การฝึกสอน (Training)	1
1.1 ผังขั้นตอนการฝึกสอน	1
1.2 ขั้นตอนการฝึกสอน	2
2.) การทำงานของระบบ	10
2.1) ผังขั้นตอนการทำงานของระบบ	10
2.2) การทำงานตัวโปรแกรม	10

สารบัญภาพ

เรื่อง	หน้า
ภาพที่ 1 ภาพตัวอย่างฝังขั้นตอนการฝึกสอนตัวแบบ	1
ภาพที่ 2 ภาพตัวอย่าง Add-on VGG-16 Network	2
ภาพที่ 3 ภาพตัวอย่างการรันรหัสโปรแกรม vgg16()	2
ภาพที่ 4 ภาพตังอย่างรหัสโปรแกรมการกำหนดที่อยู่ไฟล์ข้อมูลนำเข้า	2
ภาพที่ 5 ภาพตัวอย่างข้อมูลนำเข้ารูปภาพ	3
ภาพที่ 6 ภาพตัวอย่างข้อมูลนำเข้าภาพกำกับป้าย	3
ภาพที่ 7 ภาพตัวอย่างรหัสโปรแกรมการบันทึกข้อมูลภาพ	4
ภาพที่ 8 ภาพตัวอย่างข้อมูลที่ถูกเก็บโดย ฟังก์ชัน imageDatastore	4
ภาพที่ 9 ภาพตัวอย่างรหัสโปรแกรมกำหนดคลาส	4
ภาพที่ 10 ภาพตัวอย่างผลลัพท์การกำหนดคลาส	5
ภาพที่ 11 ภาพตัวอย่างรหัสสี RGB ที่กำหนดให้คลาส	5
ภาพที่ 12 ภาพตัวอย่างรหัสโปรแกรมกำหนดค่าป้ายกำกับ	5
ภาพที่ 13 ภาพตัวอย่างรหัสโปรแกรมการบันทึกข้อมูลภาพ	6
ภาพที่ 14 ภาพตัวอย่างรหัสโปรแกรมปรับขนาดรูปภาพ	6
ภาพที่ 15 ภาพตัวอย่างเตรียมข้อมูลฝึกสอนและชุดข้อมูลทดสอบ	7
ภาพที่ 16 ภาพตัวอย่างผลการนับจำนวนภาพฝึกสอนและทอสอบ	7
ภาพที่ 17 ภาพตัวอย่างรหัสโปรแกรมการสร้างเครือข่าย	7
ภาพที่ 18 ภาพตัวอย่างรหัสโปรแกรมการปรับค่าน้ำหนักคลาส	
ภาพที่ 19 ภาพตัวอย่างผลการปรับค่าน้ำหนักแต่ล่ะคลาส	7
ภาพที่ 20 ภาพตัวอย่างรหัสโปรแกรมการเพิ่มข้อมูลการฝึกสอน	7
ภาพที่ 21 ภาพตัวอย่าง code การตั้งค่าการฝึกสอน	8
ภาพที่ 22 ภาพตัวอย่างรหัสโปรแกรมการฝึกสอนตัวแบบ	8
ภาพที่ 23 ภาพตัวอย่างการฝึกสอน	9
ภาพที่ 24 ภาพตัวอย่างรหัสโปรแกรม semantic segmentation	9
ภาพที่ 25 ภาพตัวอย่างผลลัพธ์การสกัดวัตถุในรูปภาพ จากการฝึกสอนจากตัวแบบ	9
ภาพที่ 26 ภาพตัวอย่างผังขั้นตอนการทำงานของระบบตรวจจับการจอดรถในพื้นที่ห้ามจอด	10
ภาพที่ 27 ภาพตัวอย่างแพ็คเกจ IP Cameras และ ANDROID MOBILE CAMERA CONNECTOR	10
ภาพที่ 28 ภาพตัวอย่างแอปพลิเคชัน IP Webcam	11
ภาพที่ 29 ภาพตัวอย่างหน้าจอเมนูแอพพลิเคชั่น IP Webcam	11
ภาพที่ 30 ภาพตัวอย่างการสตรีมวิดีทัศจากแอพพลิเคชั่น IP Webcam	12

สารบัญภาพ (ต่อ)

รื่อง	หน้า
ภาพที่ 31 ภาพตัวอย่างรหัสโปรแกรมตัวแปร url ในไฟล์ FinalDemo.m	12
ภาพที่ 32 ภาพตัวอย่างรหัสโปรแกรมการกำหนดขอบหน้าต่างการคำนวณในไฟล์ FinalDemo.m	13
ภาพที่ 33 ภาพตัวอย่างผลการทำงานของโปรแกรม	13

จากการศึกษาทฤษฎีและงานวิจัยที่เกี่ยวข้อง สามารถวิเคราะห์และออกแบบระบบตรวจจับการจอดรถในพื้นที่ห้าม จอดได้ข้อส่วนใหญ่ๆ ดังนี้

1. การฝึกสอน (Training)

ในโครงงานนี้ใช้ตัวแบบ VGG-16 CNN และ โปรแกรม Matlab R2018a ในการฝึกสอน

1.1 ผังขั้นตอนการฝึกสอน

ภาพที่ 1 ภาพตัวอย่างฝังขั้นตอนการฝึกสอนตัวแบบ

1.2 ขั้นตอนการฝึกสอน

- 1. ติดตั้ง VGG-16 convolutional neural network
 - 1.1 ดาวน์โหลด Add-on VGG-16 Network ในโปรแกรม matlab

ภาพที่ 2 ภาพตัวอย่าง Add-on VGG-16 Network

1.2 พิมพ์ vgg16() ใน Command Window เพื่อเริ่มการติดตั้ง

```
>> vgg16()

ans =

SeriesNetwork with properties:

Layers: [41×1 nnet.cnn.layer.Layer]
```

ภาพที่ 3 ภาพตัวอย่างการรันรหัสโปรแกรม vgg16()

2. กำหนดที่อยู่ไฟล์ข้อมูลนำเข้า

```
outputFolder = fullfile('D:\MATLAB\R2017a\CamVid'); %กำหนดที่อยู่ใฟล้รูปภาพทั้งหมด
imgDir = fullfile('D:\MATLAB\R2017a\CamVid\imraw'); %กำหนดที่อยู่รูปภาพ
labelDir = fullfile('D:\MATLAB\R2017a\CamVid\imlabel'); %กำหนดที่อยู่ภาพ label
labelFolder = fullfile('D:\MATLAB\R2017a\CamVid\imlabel'); %กำหนดที่อยู่ Folder ของ ภาพ label
```

ภาพที่ 4 ภาพตังอย่างรหัสโปรแกรมการกำหนดที่อยู่ไฟล์ข้อมูลนำเข้า

ภาพที่ 5 ภาพตัวอย่างข้อมูลนำเข้ารูปภาพ

ภาพที่ 6 ภาพตัวอย่างข้อมูลนำเข้าภาพกำกับป้าย

3. บันทึกข้อมูลภาพ

```
imds = imageDatastore(imgDir); %เก็บข้อมูลรูปภาพเป็นชุดข้อมูล
```

ภาพที่ 7 ภาพตัวอย่างรหัสโปรแกรมการบันทึกข้อมูลภาพ

im ds.F	iles
	1
1 D:\MAT	LAB\R2017a\CamVid\imraw\R1.jpg
2 D:\MAT	LAB\R2017a\CamVid\imraw\R10.jpg
3 D:\MAT	LAB\R2017a\CamVid\imraw\R11.jpg
4 D:\MAT	LAB\R2017a\CamVid\imraw\R12.jpg
5 D:\MAT	LAB\R2017a\CamVid\imraw\R13.jpg
6 D:\MAT	LAB\R2017a\CamVid\imraw\R14.jpg
7 D:\MAT	LAB\R2017a\CamVid\imraw\R15.jpg
8 D:\MAT	LAB\R2017a\CamVid\imraw\R2.jpg
9 D:\MAT	LAB\R2017a\CamVid\imraw\R3.jpg
10 D:\MAT	LAB\R2017a\CamVid\imraw\R4.jpg
11 D:\MAT	LAB\R2017a\CamVid\imraw\R5.jpg
12 D:\MAT	LAB\R2017a\CamVid\imraw\R6.jpg
13 D:\MAT	LAB\R2017a\CamVid\imraw\R7.jpg
14 D:\MAT	LAB\R2017a\CamVid\imraw\R8.jpg
15 D:\MAT	LAB\R 201 7a\CamVid\imraw\R9.jpg

ภาพที่ 8 ภาพตัวอย่างข้อมูลที่ถูกเก็บโดย ฟังก์ชัน imageDatastore

4. กำหนดคลาส และ ใส่รหัส RGB แต่ล่ะคลาส

4.1 กำหนดคลาส

```
%ประกาศคลาส
classes = [
"Sky"
"Building"
"Tree"
"Car"
"Road"
"Black-White"
];
```

ภาพที่ 9 ภาพตัวอย่างรหัสโปรแกรมกำหนดคลาส

ใน prototype นี้ ผู้ทำโครงงานได้กำหนดคลาสตามภาพตัวอย่างรหัสโปรแกรมดังนี้ 1.ท้องฟ้า, 2.ตึก, 3.ต้นไม้, 4.รถ, 5.ถนน, 6.เส้นขาว-ดำ

	1	
1	Sky	
2	Building	
3	Tree	
4	Car	
5	Road	
6	Black-White	
7		

ภาพที่ 10 ภาพตัวอย่างผลลัพท์การกำหนดคลาส

4.2 กำหนดรหัสสี RGB ให้คลาส โดยใช้ฟังก์ชัน cmap = HelperFunctions.camvidColorMap()
ผู้ทำโครงงานกำหนด รหัสสี RGB ให้คลาสในฟังก์ชั่นดังนี้

```
cmap = [
185 216 185 % ท้องฟ้า
229 154 11 % ตึก
17 228 11 % ต้น"ไม้
11 11 229 % รถ
76 98 77 % ถนน
0 0 0 % ฆาว-ดำ
];
```

ภาพที่ 11 ภาพตัวอย่างรหัสสี RGB ที่กำหนดให้คลาส

5. กำหนด label ids

```
labelIDs = HelperFunctions.camvidPixelLabelIDs(); %กำหนดค่า id ของ label
```

ภาพที่ 12 ภาพตัวอย่างรหัสโปรแกรมกำหนดค่าป้ายกำกับ

ทำงานของฟังก์ขั่นคล้ายคลึงกับ cmap = HelperFunctions.camvidColorMap() เพียงแต่เปลี่ยนตัว แปรในการเก็บข้อมูล

6. บันทึกข้อมูลภาพกำกับ

```
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);
|
```

ภาพที่ 13 ภาพตัวอย่างรหัสโปรแกรมการบันทึกข้อมูลภาพ

การทำงานของฟังก์ขั่นนี้คล้ายคลึงกับ imageDatastore

7. ปรับขนาดภาพ

HelperFunctions.prepareData(imgDir,labelDir); %ปรับขนาดรูปภาพ กับ รูปภาพ label

ภาพที่ 14 ภาพตัวอย่างรหัสโปรแกรมปรับขนาดรูปภาพ

ฟังก์ชั่นนี้จะปรับขนาดภาพ เป็น 360 x 480

8. เตรียมข้อมูลฝึกสอนและชุดข้อมูลการทดสอบ

```
[imdsTrain, imdsTest, pxdsTrain, pxdsTest] = HelperFunctions.partitionCamVidData(imds,pxds,labelIDs);
```

ภาพที่ 15 ภาพตัวอย่างเตรียมข้อมูลฝึกสอนและชุดข้อมูลทดสอบ

ฟังก์ชั่นนี้จะแบ่งชุดข้อมูลไว้สำหรับการฝึกสอน 60% และ แบ่งไว้สำหรับการ Test 40%

ในตัวอย่างนี้มีภาพทั้งหมด 15 ภาพ จึงสามารถแบ่งภาพได้เป็น ภาพที่ใช้ฝึกสอน 9 ภาพ ภาพที่ ใช้ test 6 ภาพ

ภาพที่ 16 ภาพตัวอย่างผลการนับจำนวนภาพฝึกสอนและทอสอบ

9. สร้างตัวแบบเครือข่าย

```
imageSize = [360 480 3]; %กำหนดขนาดรูปภาพ
numClasses = numel(classes); %น้บจำนวนคลาส
% segnetLayers returns SegNet network layers, lgraph, 1
lgraph = segnetLayers(imageSize,numClasses,'vgg16');
```

ภาพที่ 17 ภาพตัวอย่างรหัสโปรแกรมการสร้างเครือข่าย

segnetLayers เป็นฟังก์ชั่นสร้างเครือข่าย โดยใช้ น้ำหนักเริ่มต้น ของตัวแบบ vgg16 และทำการแปลงค่า น้ำหนักอัตโนมัต และ เพิ่มเลเยอร์ที่จำเป็นในการสร้างตัวแบบ

10. ปรับค่าน้ำหนักคลาส

```
imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq
```

ภาพที่ 18 ภาพตัวอย่างรหัสโปรแกรมการปรับค่าน้ำหนักคลาส

```
classWeights =

12.1241
0.8027
1.3258
1.5077
0.0032
0.6807
```

ภาพที่ 19 ภาพตัวอย่างผลการปรับค่าน้ำหนักแต่ล่ะคลาส

11.เพิ่มข้อมูลการการฝึกสอน

```
augmenter = imageDataAugmenter('RandXReflection',true,...
'RandXTranslation', [-10 10], 'RandYTranslation',[-10 10]); %
datasource = pixelLabelImageSource(imdsTrain,pxdsTrain,...
'DataAugmentation',augmenter);%ข้อมูลและส่วนเสริมในการเทรนเก็บรามกั
```

ภาพที่ 20 ภาพตัวอย่างรหัสโปรแกรมการเพิ่มข้อมูลการฝึกสอน

ฟังก์ชั่นจะทำการทำการสุ่มค่า ตั้งแต่ -10 ถึง 10 พิกเซล สุ่มแกน x แกน y และ สุ่มค่าทางซ้ายหรือ ทางขวา เพื่อเพิ่มข้อมูลในการฝึกสอน ทำให้ตัวแบบมีความแม่นยำมากขึ้น

12. ตั้งค่าการฝึกสอน

```
options = trainingOptions('sgdm', ...

'Momentum', 0.9, ...
'InitialLearnRate', 1e-2, ...
'L2Regularization', 0.0005, ...
'MaxEpochs', 1000,...
'MiniBatchSize', 1, ...
'Shuffle', 'every-epoch', ...
'Verbose', false,...
'Plots','training-progress'); %no
```

ภาพที่ 21 ภาพตัวอย่าง code การตั้งค่าการฝึกสอน

อัลกอริธีมที่ใช้ในการฝึกสอน คือ SGDM อัลกอริธีมนี้จะสุ่มการไล่ระดับสีแบบโมเมนตัม

อัตราการเรียนรู้อยู่ที่ 0.01

กำหนดการฝึกสอน 1000 รอบ

13. เริ่มฝึกสอน

```
%เริ่มเทรน
tic
[net, info] = trainNetwork(datasource,lgraph,options);
toc
save('TestMyCNN3.mat','net','info','options'); %save โมเดลเทรน
disp('NN trained');
```

ภาพที่ 22 ภาพตัวอย่างรหัสโปรแกรมการฝึกสอนตัวแบบ

ภาพที่ 23 ภาพตัวอย่างการฝึกสอน

14. บันทึกการฝึกสอนตัวแบบ

```
Model = load('TestMyCNN3.mat'); %โหลดโมเดล

pic_num = 1; %กำหนดรูป

I = readimage(imds, pic_num); %อำหรูป

% Show the results of the semantic segmentation

C = semanticseg(I, Model.net); %นำรูปที่อำหมา semantic segmentation กับ โมเดล

CB = labeloverlay(I, C, 'Colormap', cmap, 'Transparency',0.8); %ใส่สีให้ผลลัพธ์ตาม class

figure

imshow(CB)

HelperFunctions.pixelLabelColorbar(cmap, classes); %แสดง Colorbar

title('Result')
```

ภาพที่ 24 ภาพตัวอย่างรหัสโปรแกรม semantic segmentation

ภาพที่ 25 ภาพตัวอย่างผลลัพธ์การสกัดวัตถุในรูปภาพ จากการฝึกสอนจากตัวแบบ

2.) การทำงานของระบบ

2.1) ผังขั้นตอนการทำงานของระบบ

ภาพที่ 26 ภาพตัวอย่างผังขั้นตอนการทำงานของระบบตรวจจับการจอดรถในพื้นที่ห้ามจอด

2.2) การทำงานตัวโปรแกรม

2.2.1) การติดตั้งเครื่องมือก่อนการทำงาน

1. ติดตั้งแพ็คเกจ MATLAB Support Package for IP Cameras และ ANDROID MOBILE CAMERA CONNECTOR

	Name	Type	Author	Install ▼	
	MATLAB Support Package for IP Cameras version 18.1.0	Hardware Support Package		20 May 2019	÷
â	ANDROID MOBILE CAMERA CONNECTOR version 1.0	Toolbox	Bala murugan	20 May 2019	:

ภาพที่ 27 ภาพตัวอย่างแพ็คเกจ IP Cameras และ ANDROID MOBILE CAMERA CONNECTOR

2. ติดตั้งแอพพลิเคชั่น IP Webcam บนโทรศัพท์มือถือ

ภาพที่ 28 ภาพตัวอย่างแอปพลิเคชัน IP Webcam

3. ตั้งค่า URL จาก IP Webcam

เริ่มแรกทำการเปิดแอพพลิเคชั่น IP Webcam และทำการกดเมนู Start server เพื่อทำการสตรีม (การ ถ่ายทอดสด) วีดีทัศน์

ภาพที่ 29 ภาพตัวอย่างหน้าจอเมนูแอพพลิเคชั่น IP Webcam

นำหมายเลข ip ที่อยู่ด้านล่างของหน้าจอโทรศัพท์ นำมาใส่ในตัวแปร url ในไฟล์ FinalDemo.m บรรทัดที่ 20

ภาพที่ 30 ภาพตัวอย่างการสตรีมวิดีทัศจากแอพพลิเคชั่น IP Webcam

```
url = ('http://192.168.2.87:8080/shot.jpg?rnd=350264');
```

ภาพที่ 31 ภาพตัวอย่างรหัสโปรแกรมตัวแปร url ในไฟล์ FinalDemo.m

4.การกำหนดขอบหน้าต่างการคำนวณหารถในพื้นที่ห้ามจอด กำหนดขอบหน้าต่างการคำนวณหารถในพื้นที่ห้ามจอดโดยมีตัวแปรดังนี้

LMAX ค่าเริ่มต้นของแกน x

RMAX ค่าสิ้นสุดของแกน x

BMAX ค่าเริ่มต้นของแกน y

HMAX ค่าสิ้นสุดของแกน y

```
LMax = 50;
RMax = 400;
HMax = 150;
BMax = 225;

boxA = LMax;
boxB = HMax;
boxC = RMax - LMax;
boxD = BMax - HMax;
bbox = [boxA,boxB,boxC,boxD];
```

ภาพที่ 32 ภาพตัวอย่างรหัสโปรแกรมการกำหนดขอบหน้าต่างการคำนวณในไฟล์ FinalDemo.m

2.2.2) เริ่มการทำงาน

- 1. เปิดเปิดแอพพลิเคชั่น IP Webcam และทำการสตรีมวีดีทัศ
- 2. ทำการรันรหัสโปรแกรม FinalDemo.m ด้วยโปรแกรม matlab

ภาพที่ 33 ภาพตัวอย่างผลการทำงานของโปรแกรม