COM 525000 – Statistical Learning

Lecture 8 – Tree-Based Methods

Y.-W. Peter Hong

Background Concept

General Idea:

- 1. Divide the predictor space (i.e., the set of possible values for X_1, \ldots, X_p) into J distinct and non-overlapping regions $\mathcal{R}_1, \ldots, \mathcal{R}_J$.
- 2. For observation $x \in \mathcal{R}_j$, we make the prediction

$$\hat{y} = \operatorname{avg}(y_i | x_i \in \mathcal{R}_j) \Big(\triangleq \hat{y}_{\mathcal{R}_j} \Big).$$

• For regression problems, find regions $\mathcal{R}_1, \dots, \mathcal{R}_J$ that minimize the RSS

$$\sum_{j=1}^{J} \sum_{i \in \mathcal{R}_j} (y_i - \hat{y}_{\mathcal{R}_j})^2.$$

Examples

 X_1

 X_1

Statistical Learning

2

Recursive Binary Splitting

- Recursive binary splitting determines the regions in a top-down greedy fashion.
 - Starting with all the data, select predictor X_j and cutpoint s such that the splitting $\mathcal{R}_1(j,s) \triangleq \{X|X_j < s\}$ and $\mathcal{R}_2(j,s) \triangleq \{X|X_j \geq s\}$ yields the greatest RSS reduction, i.e., find j and s that minimizes

$$\sum_{i:x_i \in \mathcal{R}_1(j,s)} (y_i - \hat{y}_{\mathcal{R}_1})^2 + \sum_{i:x_i \in \mathcal{R}_2(j,s)} (y_i - \hat{y}_{\mathcal{R}_2})^2.$$

- In the next iteration, repeat the splitting process on all resulting regions and find the best split.
- Repeat until J regions are obtained.
- → This results in a tree structure!

Basic Decision Trees

• Decision trees involve a recursive binary splitting of the predictor space into a number of simple regions.

Example: (Baseball Hitters Data Set)

- Use hitters' number of years and hits to predict salary.

Statistical Learning

5

Five-Region Example

Statistical Learning

Tree Pruning

- Question: How many regions should we have?
- Approach 1: Increase J until RSS decrease is small.
- Approach 2: Tree pruning by cost-complexity pruning.
- Cost complexity pruning finds subtree $T \subset T_0$ that minimizes, for some α ,

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} \sum_{i:x_i \in \mathcal{R}_m} (y_i - \hat{y}_{\mathcal{R}_m})^2 + \alpha |T|.$$

→ The solution lies in the sequence of subtrees obtained by weakest link pruning, which successively collapses the internal node that produces the smallest per-node increase in RSS.

Statistical Learning

7

Weakest Link Pruning

• Starting with the initial full tree T_0 , replace a subtree with a leaf node to obtain a new tree T_1 . Select subtree to prune by minimizing:

$$\frac{\mathrm{RSS}(T_1) - \mathrm{RSS}(T_0)}{|T_0| - |T_1|}$$

• Iterate this pruning procedure to obtain a sequence of subtrees $T_0, T_1, T_2, \ldots, T_M$, where T_M is the tree with a single leaf node.

Statistical Learning

Algorithm and CV

Algorithm 8.1 Building a Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .

Average the results for each value of α , and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Statistical Learning

9

Example

Example (Hitters' Data Set):

- 132 training and 131 testing samples; 6-fold CV.

Classification Trees

• For regions $\mathcal{R}_1, \dots, \mathcal{R}_J$, we define

$$\hat{p}_{mk} = \frac{1}{|\mathcal{R}_m|} \sum_{i: x_i \in \mathcal{R}_m} I(y_i = k)$$

as the proportion of class k observations in \mathcal{R}_m , and classify the observations in region \mathcal{R}_m as

$$k(m) = \arg\max_{k} \hat{p}_{mk}.$$

- Different measures of impurity:
 - ✓ Classification Error Rate: $E = 1 \max_k \hat{p}_{mk}$.
 - ✓ Gini Index: $G = \sum_{k=1}^{K} \hat{p}_{mk} (1 \hat{p}_{mk}).$
 - ✓ Cross-Entropy or Deviance: $D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$.
- → Built using the last two, but pruned using the first.

Statistical Learning

1:

Example (1/2)

Example (Heart Data Set):

303 patients; 13 predictors (e.g., Age, Sex, Cholesteral, ... etc);
binary response (i.e., heart disease or not)

Example (2/2)

Statistical Learning

13

Tree vs Linear Models

Statistical Learning

Pros and Cons of Decision Trees

- Pros:
 - Easy to interpret and explain.
 - Mirrors human decision-making process. (?)
 - Easily handles qualitative predictors.
- Cons:
 - Bad predictive accuracy.
 - Non-robust to variations in data set.

Statistical Learning

15

Bootstrap Aggregation – Bagging

- Bootstrap aggregation, or bagging, is a general purpose procedure for reducing the variance of statistical learning methods through averaging.
- Ideally, with B different data sets, we can get the average prediction

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x).$$

• In bagging, we generate B bootstrapped training data sets to get $\hat{f}^{*1}, \dots, \hat{f}^{*B}$, and compute

$$\hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

→ For classification, we can instead apply majority vote.

Out-of-Bag Error Estimation

- The *i*-th observation is an out-of-bag (OOB) observation for data set \mathcal{D}^{*b} if $(x_i, y_i) \notin \mathcal{D}^{*b}$.
- The probability that $(x_i, y_i) \notin \mathcal{D}^{*b}$ is
- Let $\mathcal{B}^{(-i)} \triangleq \{b|(x_i,y_i) \notin \mathcal{D}^{*b}\}$. For each i, we can obtain OOB prediction

$$\hat{f}_{\text{avg}}(x_i) = \frac{1}{|\mathcal{B}^{(-i)}|} \sum_{b \in \mathcal{B}^{(-i)}} \hat{f}^{*b}(x_i)$$

and OOB test error estimate

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{\text{avg}}^{(-i)}(x_i))^2.$$

Statistical Learning

17

Example

Example (Heart Data Set):

Remark: In bagging, predictions of different trees are often correlated (e.g., split strong predictors first).

Random Forests

- Random forest is like bagging but decorrelates the trees by allowing each split to consider only a random m out of p predictors. (Typically, $m = \sqrt{p}$.)
- Also useful when applied to a large number of correlated predictors.

Example (Cancer Data Set):

- Expressions from 500 genes of 349 patients.
- Classification between 15 classes, namely, normal (class 1) and 14 different cancer types (classes 2 to 15)
- Error rate of a single tree is 45.7%; and the null rate is 75.4%.

Statistical Learning 19

Remark: Bagging and random forest both involve fitting of trees *independently* to different bootstrap data sets.

Statistical Learning

Boosting

- **Boosting** also involves combining a large number of decision trees $\hat{f}^1, \dots, \hat{f}^B$ that are grown sequentially (rather than independently thru bootstrap sampling).
 - → See algorithm on next page.
- <u>Key Idea:</u> Fit each tree to the current residuals of the responses (rather than the original responses).
- Three tuning parameters:
 - 1. Increasing B may result in overfitting (but slowly).
 - 2. The shrinkage parameter λ controls learning rate.
 - 3. Small trees are sufficient (e.g., with d=1, boosting essentially is fitting to an additive model).

Statistical Learning

2:

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1 terminal nodes) to the training data (\mathbf{X}, \mathbf{r}) .
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x). \tag{8.10}$$

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

Adaboost for Classification

- Boosting for classification problems can be done with Adaboost. (Let output variable be $Y \in \{-1, +1\}$).
- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Statistical Learning

23

Example

Example (Cancer Data Set):

