Stylometry with R aka Stylo in Galway

10Computational01 11 **Group** 011010110

About me

joanna.byszuk@ijp.pan.pl

Twitter: @jbyszuk

Notes from our tutorial: https://github.com/JoannaBy/Stylo-in-Galway

Computational Stylistics Group: https://computationalstylistics.github.io/

Tell me about yourselves.

Are you (why?) interested in stylometry (a specific

problem)?

What's your name?

netry (a specific

What is stylometry?

Stylometry =

use of **quantitative methods**to examine **similarities** and **differences**within **a group of texts**

What do we need stylometry for?

It is a truth NOT generally acknowledged that, in most discussions of works of English fiction, we proceed as if a third, two-fifths, or half of our material were not really there... That third, two-fifths, or half comprises the twenty, thirty or fifty most common words of [the] literary vocabulary. The identity of these words scarcely changes from novel to novel over the twenty years of her mature career. Eight personal pronouns, six auxiliary verb forms, five prepositions, three conjunctions, two adverbs, the definite and indefinite articles, and four other words ('to', 'that', 'for', and 'all'), each of which serves more than a single main grammatical function, almost always find their place and usually about the same place - among the thirty most common words of each novel.

John Burrows, Computation into Criticism: A study of Jane Austen's Novels and an Experiment in Method, 1987

A book or collection of them

The possibility of using frequency patterns of very common words rests upon the fact that words do not function as discrete entities. Since they gain their full meaning through the different sorts of relationship they form with each other, they can be seen as markers of those relationships and, accordingly, of everything that those relationships entail.

in: Wayne McKenna, John Burrows, Alexis Antonia (1999) Beckett's "Molloy": Computational Stylistics and the Meaning of Translation. Variété: Perspectives in French Literature, Society and Culture. Studies in Honour of Kenneth Raymond Dutton. Ed. Marie Ramsland. Peter Lang, Frankfurt, 79-92.

What is used for?

How does it work?

What do we need?

corpus of texts

+

distance measure

+

classification algorithm

+

(visualisation)

	Agnes	Tenant	Emma	Pride	Sense	Jane
the	2511	5929	5204	4330	4105	7835
and	2733	6705	4878	3577	3489	6618
to	2366	5594	5186	4136	4103	5152
of	1602	3734	4292	3609	3571	4359
i	2204	6075	3191	2064	1998	7165
a	1296	2792	3126	1948	2067	4467
in	911	2021	2174	1866	1948	2762
that	776	1909	1800	1577	1383	1655
he	659	2259	1811	1338	1112	1902
was	1000	1835	2400	1847	1861	2525
it	795	2280	2529	1532	1755	2403
you	760	2844	1999	1356	1191	2971
her	750	1760	2483	2224	2543	1714

	Agnes	Tenant	Emma	Pride	Sense	Jane
the	3.67471	3.54285	3.24344	3.55705	3.43227	4.18704
and	3.99959	4.00655	3.04026	2.93847	2.91722	3.53667
to	3.46251	3.34267	3.23222	3.39768	3.43060	2.75324
of	2.34444	2.23124	2.67503	2.96476	2.98579	2.32946
i	3.22543	3.63009	1.98882	1.69556	1.67057	3.82899
a	1.89662	1.66835	1.94831	1.60026	1.72826	2.38717
in	1.33320	1.20764	1.35496	1.53290	1.62876	1.47602
that	1.13563	1.14072	1.12187	1.29549	1.15635	0.88444
he	0.96441	1.34986	1.12872	1.09915	0.92977	1.01643
was	1.46344	1.09650	1.49582	1.51729	1.55602	1.34937
it	1.16344	1.36241	1.57622	1.25852	1.46739	1.28417
you	1.11222	1.69942	1.24589	1.11394	0.99582	1.58771
her	1.09758	1.05168	1.54755	1.82699	2.12625	0.91597

For two texts T and T1, and for a set of n words,

$$\Delta(T,T_1) = \frac{1}{n} \sum_{i=1}^n \left| z(f_i(T)) - z(f_i(T_1)) \right|$$
 Where
$$z(f_x(T)) = \frac{f_x(T) - \mu_x}{\sigma_x};$$

 μ_x = mean frequency of word x in a collection of texts;

 σ_x = standard deviation of frequency of word x.

 $f_x(T)$ = raw frequency of word x in text T;

= what's the difference in how two texts use a given feature, compared to its average use

E.g. ...

	Agnes	Tenant	Emma	Pride	Sense	Jane
the	3.67471	3.54285	3.24344	3.55705	3.43227	4.18704
and	3.99959	4.00655	3.04026	2.93847	2.91722	3.53667
to	3.46251	3.34267	3.23222	3.39768	3.43060	2.75324
of	2.34444	2.23124	2.67503	2.96476	2.98579	2.32946
i	3.22543	3.63009	1.98882	1.69556	1.67057	3.82899
a	1.89662	1.66835	1.94831	1.60026	1.72826	2.38717
in	1.33320	1.20764	1.35496	1.53290	1.62876	1.47602
that	1.13563	1.14072	1.12187	1.29549	1.15635	0.88444
he	0.96441	1.34986	1.12872	1.09915	0.92977	1.01643
was	1.46344	1.09650	1.49582	1.51729	1.55602	1.34937
it	1.16344	1.36241	1.57622	1.25852	1.46739	1.28417
you	1.11222	1.69942	1.24589	1.11394	0.99582	1.58771
her	1.09758	1.05168	1.54755	1.82699	2.12625	0.91597

	Agnes	Pride	Jane	David	Mill	Tom	Clarissa
Tenant	0.81	1.07	0.88	0.92	0.98	1.16	1.1
Emma	1.12	0.78	1.28	1.15	1.2	1.25	1.24
Sense	1.14	0.69	1.24	1.16	1.25	1.13	1.21
Professor	1.06	1.21	0.69	0.94	1	1.27	1.3
Villette	1.07	1.26	0.65	0.91	0.96	1.28	1.3
Bleak	1.09	1.18	0.92	0.55	0.87	1.21	1.17
Hard	1.16	1.25	0.96	0.65	0.91	1.26	1.25
Wuthering	1.06	1.31	0.81	0.94	1.01	1.32	1.27
Adam	1.13	1.37	0.95	0.9	0.66	1.42	1.32
Middlemarch	1.01	1.1	0.99	0.87	0.65	1.17	1.12
Joseph	1.2	1.19	1.24	1.18	1.29	0.64	1.11
Pamela	1.15	1.24	1.27	1.19	1.26	1.11	0.67
Sentimental	1.38	1.53	1.23	1.22	1.29	1.42	1.38

Cool, but how to actually analyse this?

Answer: dimension reduction

#1 Cluster analysis

ASmallCollection Cluster Analysis

#2 PCA

PCA – Principal Component Analysis

Problems with dimension reduction

Information loss

Gold standard

Bootstrap consensus tree

ASmallCollection Bootstrap Consensus Tree

Bootstrap consensus tree — how

Let's try to do that!

https://computationalstylistics.github.io/stylo nutshell/#main-functions-stylo

Getting started

Set working directory:

Type: setwd("the/path/to/my/favourite/folder")

OR:

RStudio users: find your directory in the Files panel, then use *Menu > More > Set as Working Directory*

Windows users: use *Menu > File > Change directory*

NEXT:

Type: **library(stylo)**

And then:

stylo()

Stylometry for literary explorations

Cluster analysis and network examinations

For this part follow the exercises. Basic interpretation tips:

In cluster analysis:

- o distance = 0 means the same text in two files, the closer to 0 the texts get on one branch, the more similarities they share
- The distance is relative for the corpus. If you compare texts similar in topic and genre they will get low maximum distance (value on the left), if you throw in programming manual and a cookbook to poetry the distance will skyrocket.

In networks:

• the proximity of the nodes can be manipulated with (e.g. when you try to move overlapping nodes). Trust thickness of the edges. Thicker edges mean more shared similarities between the nodes.

Authorship attribution

Authorship attribution Authorship verification VS We know the author must be one of a few candidates

We don't know if we have the author in our dataset

Still quite difficult Relatively easy e.g. classify(), rolling.classify() e.g. imposters()

That's cool, but I don't study English...

More complex, but not a problem

- Features words vs character n-grams the second better for languages not using Latin or Cyrillic characters
- To lemmatize or not? there is no definite answer
- Might need more data!
- Take care of your diacritics and encoding your files should be encoded in UTF-8 which guarantees they are represented properly.