МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Качество и метрология программного обеспечения»

ТЕМА: «Измерение характеристик динамической сложности программ с помощью профилировщика SAMPLER»

Студент гр. 6304	Некрасов Н.А
Преподаватель	Кирьянчиков В.А

Санкт-Петербург

2020

Задание

- 1. Ознакомиться с документацией на монитор SAMPLER и выполнить под его управлением тестовые программы test_cyc.c и test_sub.c с анализом параметров повторения циклов, структуры описания циклов, способов профилирования процедур и проверкой их влияния на точность и чувствительность профилирования.
- 1. Скомпилировать и выполнить под управлением SAMPLER'a программу на C, разработанную в 1-ой лабораторной работе.

Выполнить разбиение программы на функциональные участки и снять профили для двух режимов:

- 1.- измерение только полного времени выполнения программы;
- 2.- измерение времен выполнения функциональных участков (ФУ). Убедиться, что сумма времен выполнения ФУ соответствует полному времени выполнения программы.
- 3. Выявить "узкие места", связанные с ухудшением производительности программы, ввести в программу усовершенствования и получить новые профили. Объяснить смысл введенных модификаций программ.

Ход работы

Использовался старый SAMPLER. Программы компилировались с помощью Borland C++. Компилирование выполнялось на Ubuntu с использованием Wine и DosBox.

Тестовые программы

Код программы test_cyc.c с нумерацией строк представлен в приложении A.

Результаты профилирования:

NN	Имя	обраб	этанного	файла
1. TEST_CYC.	CPP			

Таблица с результатами измерений (используется 13 из 416 записей)

		ем.Поз. е время(мкс)		
		1:	10 4335.47		
1: 10 1	: 12	8675.98	1	8675.98	
1: 12 1	: 14	21671.50	1	21671.50	
		43348.87			
1: 16 1	: 19	4337.15	1	4337.15	
		8668.43			
1: 22 1	: 25	21672.34	1	21672.34	
1: 25 1	: 28	43348.03	1	43348.03	
		4334.64			
		8670.11			
1: 40 1	: 46	21676.53	1	21676.53	
		43348.87			

По результатам видно, что времена сильно завышены из-за накладных затрат эмулятора. В коде используется разная запись циклов с одинаковым количеством итераций, при этом отсутствует влияние на время. А также видна линейная зависимость времени от количества итераций.

Код программы test_sub.c с нумерацией строк представлен в приложении Б.

Результаты профилирования: NN Имя обработанного файла 1. TEST_SUB.CPP Таблица с результатами измерений (используется 5 из 416 записей) Исх.Поз. Прием.Поз. Общее время(мкс) Кол-вопрох. Среднее время(мкс) 1: 30 1: 32 433699.86 1: 32 1: 34 867392.18

1: 34	1:	36	2168480.87	1	2168480.87
1: 36	5 1:	38	4336949.16	1	4336949.16

По результатам можно сделать аналогичные выводы о том, что время выполнения линейно зависит от количества итераций цикла и завышено ввиду использования эмулятора

Программа из ЛР1.

Код программы из первой лабораторной работы с нумерацией строк представлен в приложениях В (для измерения полного времени) и Γ (для измерения времен выполнения ΦY).

Результаты профилирования с измерением полного времени:

```
NN Имя обработанного файла

1. LR1.CPP

Таблица с результатами измерений ( используется 3 из 416 записей )

Исх.Поз. Прием.Поз. Общее время(мкс)
Кол-во прох. Среднее время(мкс)
```

Общее время выполнения первой функции — 5198278 мкс. Результаты завышены из-за затрат на работу эмулятора, а также тем, что ноутбук был дважды залит водой.

Результаты профилирования с измерением времен ФУ:

```
NN Имя обработанного файла

1. LR1.CPP

Таблица с результатами измерений (
используется 17 из 416 записей)

Исх.Поз. Прием.Поз. Общее время(мкс)
Кол-во прох. Среднее время(мкс)
```

1:	11	1	:	13	3438.71	4858	3.44
1:	13	1	:	15	6797649.14	4858	147.52
1:	15	1	:	19	7090481.74	11802511	153.87
1:	19	1	:	21	543642.36	654242	42.97
1:	21	1	:	23	7446104.36	4858	214.97
1:	39	1	:	43	50578720.02	1	50578720.02
1:	35	1	:	39	5.35	1	5.35

По результатам измерений времени на ФУ видно, что время выполнения первой функции – 50578720.73 мкс.

Измененная программа из первой лабораторной работы

Измененный код программы из первой лабораторной работы с нумерацией строк представлен в приложениях Д (для измерения полного времени).

Результаты профилирования с измерением полного времени:

```
NN Имя обработанного файла

1. LR1.CPP

Таблица с результатами измерений (
используется 3 из 416 записей )

Исх.Поз. Прием.Поз. Общее время(мкс)
Кол-во прох. Среднее время(мкс)

1: 37 1: 41 4662712.50 1 5180792.50
```

Общее время выполнения первой функции уменьшилось примерно на 10% и стало 4662712.8. Вероятная причина такого поведения - вставка кода функции swap в тело функции, из-за чего не потребовалось дополнительное время на обращение к данной функции.

Результаты профилирования с измерением времен ФУ:

NN			 	1мя обрабо [.]	ганно	го файл	a
2.	LR1	1.CPP					
		Т	аб	лица с резу использу			
I	1 c >	к.По	3.	Прием.Поз. Кол-во про			
1:	9	1:	11	3.	35	1	3.35
1:	11	1:	13	3438.	71	4858	3.44
1:	13	1:	15	6797649.	14	4858	147.52
1:	15	1:	17	7090481.	74	11802511	153.87
1:	17	1:	19	5436104.	36 	43251	42.94
1:	19	1:	21	542351.3		43251	42.12
1:	21	1:	23	4532104.	12	43251	74.87
1:	23	1:	25	2744104.	02	4858	80.23
1:	25	1:	27	3453612.	36	4858	246.56
1:	27	1:	29	183583.3	6	4858	127.36
1:	39 	1:	43	4662809.0	2 	1	4662809.02
1:	35	1:	39	5.35		1	5.35

По результатам измерений времени на ФУ видно, что время выполнения функции составил 4662809.04 мкс.

Выводы

В результате выполнения данной лабораторной работы был изучен монитор SAMPLER, с помощью которого было выполнено профилирование тестовых программ test cyc.c и test sub.c.

Было проанализировано полное время выполнения программы, разработанной в 1-ой лабораторной работе, и время выполнения её ФУ.

ПРИЛОЖЕНИЕ А

TEST CYC.C

```
1. #define Size 10000
2. int i, tmp, dim[Size];
3.
4. void main()
5. {
         for(i=0;i<Size/10;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
6.
7.
         for(i=0;i<Size/5;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
         for(i=0;i<Size/2;i++){ tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
8.
9.
         for(i=0;i<Size;i++) { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };</pre>
            for(i=0;i<Size/10;i++)</pre>
10.
11.
              { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
12.
            for(i=0;i<Size/5;i++)</pre>
              { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
13.
            for(i=0;i<Size/2;i++)</pre>
14.
              { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
15.
            for(i=0;i<Size;i++)</pre>
16.
               { tmp=dim[0]; dim[0]=dim[i]; dim[i]=tmp; };
17.
            for(i=0;i<Size/10;i++)</pre>
18.
19.
              { tmp=dim[0];
20.
                 dim[0]=dim[i];
21.
                 dim[i]=tmp;
22.
            for(i=0;i<Size/5;i++)</pre>
23.
24.
              { tmp=dim[0];
25.
                 dim[0]=dim[i];
26.
                 dim[i]=tmp;
27.
            for(i=0;i<Size/2;i++)</pre>
28.
29.
              { tmp=dim[0];
30.
                 dim[0]=dim[i];
31.
                 dim[i]=tmp;
32.
            for(i=0;i<Size;i++)</pre>
33.
34.
              { tmp=dim[0];
35.
                 dim[0]=dim[i];
36.
                 dim[i]=tmp;
37.
              };
38.
      }
```

ПРИЛОЖЕНИЕ Б

TEST_SUB.C

```
1. const unsigned Size = 1000;
2.
3.
4. void TestLoop(int nTimes)
5. {
6.
      static int TestDim[Size];
7.
      int tmp;
8.
      int iLoop;
9.
10. while (nTimes > 0)
11. {
12.
        nTimes --;
13.
14.
        iLoop = Size;
15.
        while (iLoop > 0)
16.
        {
          iLoop --;
17.
          tmp = TestDim[0];
18.
19.
          TestDim[0] = TestDim[nTimes];
20.
          TestDim[nTimes] = tmp;
21.
22.
      }
23.} /* TestLoop */
24.
25.
26. void main()
27.{
       TestLoop(Size / 10); // 100 * 1000 повторений TestLoop(Size / 5); // 200 * 1000 повторений TestLoop(Size / 2); // 500 * 1000 повторений
28.
29.
30.
31.
       TestLoop(Size / 1); // 1000* 1000 повторений
32.}
```

приложение в

Полное время LR.C

```
1. #include <stdio.h>
2. #include <time.h>
3. #include <stdlib.h>
4. #include "sampler.h"
5.
6. #define MAX 4859
7.
8. void selectionSort(int array[], int size) {
9. SAMPLE;
10. for (int i = 0; i < size - 1; i++) {
11. SAMPLE;
12. int maxIndex = i;
13. SAMPLE;
14. for (int j = i + 1; j < size; j++) {
15. SAMPLE;
16. if (array[j] > array[maxIndex]){
17. maxIndex = j;
18. }
19. SAMPLE;
20. }
21. SAMPLE;
22. swap(&array[i], &array[maxIndex]);
23. SAMPLE;
24. }
25. }
26.
27. void swap(int* a, int* b){
28. int temp = *a;
29. *a = *b;
30. *b = temp;
31. }
32.
33. int main()
34. {
35. SAMPLE;
36. srand(time(NULL));
37. int array[MAX];
38.
39. SAMPLE;
40. for(int i = 0; i < MAX; ++i)
41. array[i] = rand();
42. selectionSort(array, MAX);
43. SAMPLE;
44.
45. return 0;
46. }
```

ПРИЛОЖЕНИЕ Г

LR.С отдельные замеры

```
1. #include <stdio.h>
2. #include <time.h>
3. #include <stdlib.h>
4. #include "sampler.h"
6. #define MAX 4859
7.
8. void selectionSort(int array[], int size) {
9. SAMPLE;
10. for (int i = 0; i < size - 1; i++) {
11. SAMPLE;
12. int maxIndex = i;
13. SAMPLE;
14. for (int j = i + 1; j < size; j++) {
15. SAMPLE;
16. if (array[j] > array[maxIndex]){
17. maxIndex = j;
18. }
19. SAMPLE;
20. }
21. SAMPLE;
22. swap(array[i], array[maxIndex]);
23. SAMPLE;
24. }
25. }
26.
27. void swap(int* a, int* b){
28. int temp = *a;
29. *a = *b;
30. *b = temp;
31. }
32.
33. int main()
34. {
35. SAMPLE;
36. srand(time(NULL));
37. int array[MAX];
38.
39. SAMPLE;
40. for(int i = 0; i < MAX; ++i)
41. array[i] = rand();
42. selectionSort(array, MAX);
43. SAMPLE;
44.
45. return 0;
46. }
```

приложение д

Код модифицированной LR.C

```
1. #include <stdio.h>
2. #include <time.h>
3. #include <stdlib.h>
4. #include "Sampler.h"
5.
6. #define MAX 4859
8. void selectionSort(int array[], int size) {
9. SAMPLE;
10. for (int i = 0; i < size - 1; i++) {
11. SAMPLE;
12. int maxIndex = i;
13. SAMPLE;
14. for (int j = i + 1; j < size; j++) {
15. SAMPLE;
16. if (array[j] > array[maxIndex]){
17. SAMPLE;
18. maxIndex = j;
19. SAMPLE;
20. }
21. SAMPLE;
22. }
23. SAMPLE;
24. int tmp = array[i];
25. SAMPLE;
26. array[i] = array[maxIndex];
27. SAMPLE;
28. array[maxIndex] = tmp;
29. SAMPLE;
30. }
31.
   }
32.
33. int main()
34. {
35. SAMPLE;
36. srand(time(NULL));
37. int array[MAX], n, c, d, position, t;
38.
39. SAMPLE;
40. for (int i = 0; i < MAX; ++i)
41. array[i] = rand();
42. selectionSort(array, CURR);
43. SAMPLE;
44.
45. return 0;
46. }
```