Optimisation convexe et combinatoire TD 1

10 novembre 2016

Exercise 1 Application algorithme d'Edmonds pour les couplages

1. Appliquer l'algorithme d'Edmonds au graphe ci dessus.

Exercise 2 Théorème de Gallai

Soit G=(V,E) un graphe, un ensemble stable est un sous ensemble C de V tel que $e\not\subseteq C$ pour toute arete e de G. Une couverture par sommet est un sous-ensemble W de V tel que $e\cap W\neq \emptyset$ pour toute arete e de G. On remarque que pour tout $U\subseteq V$:

U est un ensemble stable si et seulement si $V \setminus U$ est une couverture par sommet.

Un couplage est appelé couplage parfait s'il couvre tous les sommets (|V|/2 sommets). Une couverture par arete est un sous ensemble F de E tel que pour chaque sommet v il existe e dans F tel que $v \in e$. On remarque qu'une telle couverture n'est possible que si G n'a pas de sommet isolé.

On défini:

- $\alpha(G) = \{ \max |C| \text{ tel que } C \text{ est un ensemble stable} \}$,
- $\tau(G) = \{\min |W| \text{ tel que } W \text{ est une couverture par sommet} \}$,
- $-\mu(G) = \{\max |M| \text{ tel que } M \text{ est un couplage}\},$
- $\rho(G) = \{\min |F| \text{ tel que } F \text{ est une couverture par arete} \}.$

vertex	parity	root	pred
1	even	1	Ø
2	even	2	Ø
3	even	3	Ø
4	even	4	Ø
5	even	5	Ø
6	even	6	Ø
7	even	7	Ø
8	even	8	Ø
9	even	9	Ø
10	even	10	Ø
11	even	11	Ø
12	even	12	Ø

Correction 1.

Table 1 – Première étape $M=\emptyset$, liste des aretes à examiner : $\{1-2;2-3;3-4;3-7;4-5;5-6;6-7;5-8;8-9;8-12;9-10;10-11;11-12\}$, on examine 1-2, 1 est pair et 2 aussi alors on applique le second item, comme $root(1) \neq root(2)$ on a trouvé un chemin augmentant : 1-2 alors $M=\{1-2\}$

.

vertex	parity	root	pred
1	even	3	2
2	odd	3	3
3	even	3	Ø
4	even	4	Ø
5	even	5	Ø
6	even	6	Ø
7	even	7	Ø
8	even	8	Ø
9	even	9	Ø
10	even	10	Ø
11	even	11	Ø
12	even	12	Ø

Table $2-M=\{1-2\}$, liste des aretes à examiner : $\{2-3;3-4;3-7;4-5;5-6;6-7;5-8;8-9;8-12;9-10;10-11;11-12\}$, on examine 3-2 3 est pair et 2 est non marqué, alors on applique le premier item : on marque 2 impair, 1 pair et on rajoute 1-2 à examiner. On examine 3-4, tous deux pairs et de racine différente : on a trouvé au chemin augmentant : $M=\{1-2;3-4\}$.

vertex	parity	root	pred
1			
2	even	7	3
3	odd	7	7
4	even	7	3
5	even	5	Ø
6	even	6	Ø
7	even	7	Ø
8	even	8	Ø
9	even	9	Ø
10	even	10	Ø
11	even	11	Ø
12	even	12	Ø

TABLE $3-M=\{1-2;3-4\}$, liste des aretes à examiner : $\{3-7;4-5;5-6;6-7;5-8;8-9;8-12;9-10;10-11;11-12\}$, on examine 3-7 7 est pair et 3 est non marqué, alors on applique le premier item : on marque 3 impair, 2 et 4 pair et on rajoute 1-2,2-3 et 3-4 à examiner. On examine 4-5, tous deux pairs et de racine différente : on a trouvé au chemin augmentant : $M=\{1-2;3-7,4-5\}$.

vertex	parity	root	pred
1			
2			
3	even	6	7
4	even	6	5
5	odd	6	6
6	even	6	Ø
7	odd	6	Ø
8	even	8	Ø
9	even	9	Ø
10	even	10	Ø
11	even	11	Ø
12	even	12	Ø

TABLE $4-M=\{1-2;3-7,4-5\}$, liste des aretes à examiner : $\{5-6;6-7;5-8;8-9;8-12;9-10;10-11;11-12\}$, on examine 6-5 6 est pair et 5 est non marqué, alors on applique le premier item : on marque 5 impair,4 pair et on rajoute 3-4 et 4-5 à examiner. On examine 6-7, 7 impair, 3 pair : on ajoute 3-7. En examinant 3-4 tous deux pairs et de même racine : on obtient un blossom que l'on contracte en c

A partir de ce nouveau graphe on obtient le matching $\{1-2;c-8\}$, jusqu'à $\{1-2;c-8;9-10;11-12\}$ jusqu'à trouver le second blossom. On contracte et obtient :

En décontractant, le matching $\{1-2;c-c'\}$ devient $M=\{1-2;3-4;6-7;5-8;9-10;11-12\}$ En résumé les étapes sont (de 1 à 15 sur les aretes) :

1. Quelle sont ces quantités pour le graphe ci dessous?

- 2. Montrer que $\alpha(G) \le \rho(G)$ et $\mu(G) \le \tau(G)$.
- 3. Prouver le théorème de Gallai : si G = (V, E) est un graphe sans sommet isolé, alors $\alpha(G) + \tau(G) = |V| = \mu(G) + \rho(G)$.

Correction 2. 1. — $\alpha(G) = \{\max | C | \text{ tel que } C \text{ est un ensemble stable} \} = 3, \{2, 4, 7\}$

- $-\tau(G) = \{\min |W| \text{ tel que } W \text{ est une converture par sommet}\} = 4, \{1,3,5,6\},$
- $\mu(G) = \{\max |M| \text{ tel que } M \text{ est un couplage}\} = 3, \{2-3, 4-5, 6-7\}$
- $\rho(G) = \{\min |F| \text{ tel que } F \text{ est une converture par arete} = 4\}, \{1-2, 3-4, 5-6, 3-7\}.$
- 2. $\alpha(G) \leq \rho(G)$: comme une couverture par arete n'est possible que s'il n'y a pas de sommet isolé, pour tout sommet de C on peut trouver une arete ayant pour sommet incident un sommet de C et un sommet hors de C.

- $\mu(G) \le \tau(G)$ Par definition du couplage chaque sommet a au plus une arete incidente d'où au moins un sommet incident à chaque arete d'un couplage doit être pris par la couverture (pour couvrir cette arete).
- 3. La première égalité provient de la première remarque. Pour la seconde égalité, on suppose d'abord que M est un couplage de taille $\mu(G)$. Pour chacun des |V|-2|M| sommets v non matchés par M, on ajoute à M une arete couvrant v. On obtient une couverture par arete F de taille |M|+(|V|-2|M|)=|V|-|M|. D'où $\rho(G) \leq |F|=|V|-|M|=|V|-\mu(G)$.
 - Ensuite, on suppose que F est une couverture par arete de taille $\rho(G)$. On choisit une arete de chaque composante connexe de (V,F), pour obtenir un couplage M. Comme (V,F) a au moins |V|-|F| composantes, on a $\mu(G) \ge |M| \ge |V|-|F| = |V|-\rho(G)$.