jeudi le 19 novembre 2015; durée: 08h30 à 09h20; aucune documentation permise; 7.5% de note finale

Problème 1 (20 point sur 100)

A. Est-ce que ces systèmes sont linéaires et invariant en temps?

y(t) + 3y'(t) = x(t) + 3x'(t) - 5x''(t)	OUI	NON
$y(t_0) = \frac{1}{C} \int_{-\infty}^{t_0} x(z) dz$	OUI	NON
$y(t) = \frac{1}{1 - x(t)}$	OUI	NON

B. En supposant que ces systèmes sont linéaire et invariants en temps (SLIT) avec une réponse en fréquence de $H(\omega)$,

$\delta(t) - \frac{\text{SLIT}}{H(\omega)} = \frac{1}{\text{Rect}(\omega)}$ Rect(t)	VRAI	FAUX
$x(t)=x(t+T_0)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad$	VRAI	FAUX
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VRAI	FAUX

Nom: Matricule: .

Problème 2 (30 points sur 100)

• (15 points) Trouvez la réponse en fréquence du circuit suivant

• (15 points) Trouvez la sortie quand R=1, C=1, L=1/2 et l'entrée est une fonction périodique avec ω_0 = 1, et les coefficients de Fourier :

$$F(1)=1$$
; $F(10)=1$; $F(n)=0$ ailleurs.

Nom:

Matricule:

Problème 3 (50 points sur 100)

Trouvez la convolution de $f(t) = \begin{cases} 1-t & 0 < t < 1 \\ 0 & ailleurs \end{cases}$ et $g(t) = \text{Rect}\left(\frac{t}{2}\right)$

g(t)

1 - ½ 1

-1 -

avec la méthodologie suivante :

a. (20 points) Pour chaque région de définition de la convolution donnez

i) une esquisse de f(u) et g(t-u) et ii) l'intervalle de t, i.e. a < t < b

b. (15 points) Donnez <u>les intégrales</u> à évaluer pour <u>chaque région</u> de définition de la convolution; spécifiez clairement les <u>bornes d'intégration</u> pour chaque région.

c. (15 point) Evaluez les intégrales et donnez une équation du produit de convolution.

Nom: Matricule: .