Dscrete Math Homework 13

noflowerzzk

2024.11.28

Proof.

- Noiting that $0 = \emptyset$, so $\forall x (x \subseteq A \land \neg x = \emptyset \to \exists y (y \in x \land \forall z (z \in x \to y \in z \lor y = z)))$ (*) is always true. So 0 is \in -well-ordered.
- If $x \subseteq n$, then according to the condition, x satisfies the expression (*). If $x = x' \cup \{n\}$, where $x' \subseteq n$, let y be the \in -least element of x', so $y \in x' \subseteq n \Rightarrow y \in \{n\}$. And for any $z \in x'$, it holds that $y \in z \lor y = z$. In summary, $n \cup \{n\}$ is also \in -well-ordered.

 $\mathbf{2}$

Proof. Obviously Inducive $(u) \to u \subseteq v$, Inducive $(u) \to v \subseteq u$. So $\forall a (a \in v \to a \in u), \forall a (a \in v \to a \in u)$, i.e. u = v.

3

Proof.

- Noting that $\emptyset \in u, \emptyset \in v$, so $varnothing \in u \cap v$.
- $\forall a \in u, a \cup \{a\} \in u, \forall a \in v, a \cup \{a\} \in u, \text{ so } \forall a \in u \cap v, \text{ we have } a \cup \{a\} \in u, a \cup \{a\} \in v, \text{ i.e. } a \cup \{a\} \in u \cap v.$

So $u \cap v$ is also inducive.

4

Let V denote $\{x \in u \mid \forall v (v \subseteq u \land \text{Inducive}(v) \rightarrow x \in v)\}$

- Proof. Given $v \subseteq u \land \operatorname{Inducive}(v)$, we know that $\forall x \in V, x \in v$. Noting that v is inducive, $x \cup \{x\} \in v$. Due to the arbitrariness of $v, x \cup \{x\} \in V$. And obviously $\emptyset \in V$. So $V = \{x \in u \mid \forall v (v \subseteq u \land \operatorname{Inducive}(v) \to x \in v)\}$ is also inducive.
- Proof. If there exists an inducive subset v_0 of u that $v_0 \subseteq V$, we prove that $v_0 = V$. According to the definition of V, for any $x \in V$, due to v_0 is inducive, $x \in v_0$, so $V \subseteq v_0$. So $V = v_0$, V is the smallest inducive subset of u.

5

Proof. Let K denote the set of all inducive sets, T_u denote the smallest inducive subseteq of the inducive

Then we prove that $\bigcap_{u \in K} T_u$ is the smallest inducive set.

According to 3, $\bigcap_{u \in K} T_u$ is an inducive set.

For any inducive set $u' \subseteq \bigcap_{u \in K} T_u$, Inducive(u'). Noting that $u' \in K$, so $T_{u'} \subseteq u'$, so $\bigcap_{u \in K} T_u \subseteq u'$, i.e.

$$u' = \bigcap_{u \in K} T_u.$$

So
$$\bigcap_{u \in K} T_u$$
 is the smallest inducive set.

6

Proof.

- a) Noting that $0 = \emptyset \in X$, so $\emptyset = 0 \in \mathbb{N} \cap X$. Also, for any $n \in \mathbb{N} \cap X$, $n \cup \{n\} \in X$, so $\mathbb{N} \cap X$ is an inducive set.
- b) Noting that $\mathbb{N} \cap X \subseteq \mathbb{N}$, $\mathbb{N} \cap X$ is an inducive set and \mathbb{N} is the smallest inducive set, we have $\mathbb{N} = \mathbb{N} \cap X$, i.e. $\forall n \in \mathbb{N}, n \in X$ always holds.