CMPS 224/396AA: GPU COMPUTING ASSIGNMENT 5

In this assignment, you will implement a histogram operation using atomic operations, and optimize it using privatization, shared memory, and thread coarsening.

Instructions

- 1. Place the files provided with this assignment in a single directory. The files are:
 - main.cu: contains setup and sequential code
 - kernel.cu: where you will implement your code (you should only modify this file)
 - common.h: for shared declarations across main.cu and kernel.cu
 - timer.h: to assist with timing
 - Makefile: used for compilation
- 2. Edit kernel . cu where TODO is indicated as follows:
 - Histogram with privatization and shared memory only:
 - o Implement the kernel (histogram private kernel):
 - Declare a private copy of the histogram in shared memory and initialize it to 0
 - Have each thread load a single image pixel and atomically update the corresponding histogram bin count in shared memory
 - Commit the non-zero bin counts to the global copy of the histogram in parallel
 - o Implement the host code (histogram gpu private):
 - Launch the grid (Note: the image has already been copied to global memory for you and the global bins have already been initialized to 0)
 - Histogram with privatization, shared memory, and thread coarsening:
 - o Implement the kernel (histogram private coarse kernel):
 - Similar to the previous implementation, but each thread loads multiple image pixels based on a coarsening factor (make sure the loads are coalesced)
 - o Implement the host code (histogram gpu private coarse):
 - Similar to the previous implementation, but remember to take the coarsening factor into consideration when selecting the number of thread blocks in the grid
- 3. Compile your code by running: make
- 4. Test your code by running: ./histogram
 - If you are using the HPC cluster, do not forget to use the submission system. Do not run on the head node!
 - For testing on different input sizes, you can provide your own values for the input dimensions as follows: ./histogram <height> <width>
- 5. You are also provided with a file called questions.txt which contains questions about the assignment. Answer the questions in the file after implementing your kernel.

Submission

Submit your modified kernel.cu and questions.txt files via Moodle by the due date. Do not submit any other files or compressed folders.