Automotive embedded system redesign

Jean-Baptiste Laurent

August 28, 2020

Presentation plan

- Introduction and abstract
- Research content and impact
- Administrative details, and research timeline

Section 1

Introduction and abstract

Presenting myself first

Jean-Baptiste Laurent

- 1 year teaching
- 3 years in research, static analysis
- 5 years in cyber-security
- 10 years in software development

Current status

- LR-Technology consultant, working for Faurecia
 - First, 6 months on the RAPIDE platform ^a
 - Now, exclusively working on the following research topic

^aGeneric software platform for car embedded systems

Involved Parties

RICHEFEU Julien

- Faurecia Clarion Electonics, Platform Software Manager
- PhD Director

MENSUEZ Bruno

- ENSTA Paris-Tech, Teacher
- PhD Co-Director

Objective of the presentation

- Presenting
 - The new project content
 - Who is involved
 - The work I will brought in
- Precising
 - How this project could impact you in the long run
- Get the time to exchange on this

Definitions and wording

EN -> FR

- **ECU**: Unité de controle
- Socket suppliers: Fournisseur de micro processeur
- OEMs: Les assembleurs
- Car maker: Le fabricant
- **The model**: L'ensemble de l'architecture, du microprocesseur à l'application haut niveau.

Section 2

Research content and impact

Subsection 1

Presentation of the current model

Reminder of the main constraints

- We will get back to them next
 - Mostly when comparing pros and cons
 - And also why this project

Model explanation, let's start small

A brief, brief model representation

- The model is composed of
 - An orchestrating component
 - Individual and isolated sub-systems

External parties

Subsection 2

Current model growing issues

Afterthought

• Do we have any **issues** with that model ?

First issues

- Third parties involved ?
 - Proprietary code
 - Uncontrolled TTM and quality standard

Cars become more and more complex

Let's focus on that for a minute, and see why it's really a problem within the current model

Current model, a complexity issue

Exponential communication complexity, stage 1

- Flat sub-system architecture
 - Good so far

Exponential communication complexity, stage 2

- Flat sub-system architecture
 - Things start to get messy

Exponential communication complexity, stage 3

- Flat sub-system architecture
 - Game over

Small parenthesis on OEMs

Car makers <--- OEMs <--- ECU suppliers

A parenthesis on a published standard

- AUTOSAR relies on
 - A network of components (see Simulinktm)
 - Regrouped and abstraction of sub-systems as features
- AUTOSAR is also providing
 - A communication architecture in-between ECUs
 - A micro system allowing a normalized API on ECUs
- It is also generating code to automatically handle communications

Technical solutions do exists, yet

- Potential multiplication of licenses (like AUTOSARtm)
- Each OEM has to be dealt with individually still
- Mandatory design coordination between OEMs

Other limitations do exist

Design wise

- Lack of dynamism
 - No easy software redundancy
 - Deep component have to be recompiled in if changed
- Heavily tied components
 - Dependencies issues
 - Forces old patchworks to run along new code

Development cycle complexity

- Difficulties to build a replay environment
 - Increased release cycle, less coverage
- Difficulties to optimize the whole system
 - More computing power required
 - Less predictable requirements
- Difficulties to validate OEMs deliveries
 - Need to be done by hand, each time
 - Error prone, leads to un-diagnosed issues being brought in

Break n°2, before presenting the new model

Subsection 3

Introduction to the concept model

Incremental list of modifications

- 1 Appropriation of sub-systems
 - First, we learn how those sub-components work

This requires to handle more, but

1.1 OEMs are not in the loop anymore

- More flexibility regarding sub-systems development
- Intern communication, can be made on peer to peer
- Cheaper, no more overhead cost, nor licenses

1.2 Sub-systems can be worked on directly

- The orchestrator can manage sub-systems completely
- Sub-systems can be reworked to work with each-others

1.3 Resources can now be shared

- Development resources, libraries
- Physical resources, ECUs, computing power, disk space

2. Isolation of every components

3. Truly exploiting the benefits of the model

Finally, we capitalize on that and start to do real things

3.1 With technical features like

- Load balancing | Dynamic management | Security
- Static optimizations | A/B benchmarks | Redundancy

3.2 And a motivation boost

• It is always rewarding to work on challenging features

Investigations to do next on virtualization

Status

Virtualization is a mature technology

Some questions on the subject

- 1 Is it compatible with automotive real-time systems constraints?
- 4 How much does it cost ? performance wise ?
- In practice, does it fit well?
- 4 Is it easy enough to manipulate? debug? configure?
- [X] This will have to get analyzed further down the research

Last point, project timeline & costs differences

Everyone good so far ?

Any questions before we go to the last part of the presentation ?

- ☑ Part 1/3: Introduction
- \boxtimes Part 2/3: Research description and models
- ☐ Part 3/3: Administrative details, timeline and future work

Section 3

Administrative details, and research timeline

A research as part of a thesis

- 3 years PhD in the industry
- Publishing and hosting conferences
- Sharing knowledge

Research goals

Short term

- Digging sub-systems incorporation
- Introducing low level virtualization
- Challenging a simplification of the hardware interface
- Challenging the existing model deeper

Mid term

Macro goals

- Standalone prototype realization
- Answering a client project call
- Maybe even a small team to boost the results
- Submitting Patents

Technical goals

- Extend virtualization
- Incorporate other sub-systems
- Crushing that complexity issue

External parties, and sub-contractors

- Providing new needs and constraints
- Establishing the work with ECU suppliers

Long term

Macro goals

- Publishing results
- Founding a new project
- Having a production opportunity

Technical goals

- Fleet of VMs
- Development of a VMs orchestrator
- Designing generic ECUs
- Compatibility with other models

Final goal

- Releasing a fully fledged product!
- And validating my PhD :)

A wide, yet focused research

- Milestones are clear
- Possibility to iterate step by step
- Known technologies, less deviation risks
- Expertise do exist on the subject

What's now?

Work to be done

- Research on the state of the art
- Bibliographic work
- Testing the virtualization
- Validating all the show stoppers
- Submitting a project proposal

Thank you for attending

• Any questions ?

