#### REDES NEURAIS SEM PESO

Utilizando de redes neurais sem peso para predição de cargas de trabalho em clusters

Stanley C. de Sousa

PESC/COPPE - UFRJ

10 de julho de 2020

#### Roteiro

- Contexto
- 2 Dados
- Modelagem
  - Pré-processamento
  - Codificação
- Modelos e Parâmetros
- Resultados
- Conclusão

#### Contexto

- Clusters e Computação em Nuvem
- Alta Disponibilidade e Escalabilidade
- Auto escalonamento: Reativo x Pró-Ativo
- Predição, Aprendizagem de Máquina, Regressão
- Exemplo

#### **Dados**

Logs de requisições HTTP dispiníveis em:

```
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html\\
```

Os logs contém uma requisição por linha conforme exemplo a seguir:

Cada linha contém os seguintes dados, em ordem:

- Hostname (endereço do solicitante)
- Timestamp com resolução de segundo
- Requisição (ação e recurso solicitado)
- Código HTTP de estado da resposta
- Tamanho da resposta em bytes

## Pré-processamento: Extração de dados

Dados de 2 meses foram agrupados em janelas 1, 5, 15, 30 e 60 minutos. Estapas do processamento dos arquivos brutos:

- Extração do timestamp de cada linha do log
- Agregação dos tempos de acordo com as diferentes janelas, contando as ocorrências
- Conversão do timestamp para o padrão ISO
- Escrita dos registros agregados em um novo arquivo

Foi gerado um arquivo para cada janela de tempo.

# Pré-processamento: Visualização da série (janela de 60 minutos)



## Codificação

Comportamento periódico. Caputrar variações intra-dia e intra-semana em um número inteiro para utilização no termômetro:



Data codificada:44800

#### Modelos e Parâmetros

Utilizamos a janela de 30 minutos para explorarmos os parâmetros dos seguintes modelos:

- Regression WiSARD(ReW)
- ClusRegression WiSARD(CReW)
- KNN (K Nearest Neighbors)
- Linear SVM (Support Vector Machine)

|        | AddressSize | Mean          | RMSE                |
|--------|-------------|---------------|---------------------|
| ReW:   | 10          | SimpleMean    | 552.525±0.000       |
| INCVV. | 20          | SimpleMean    | $580.119 \pm 0.000$ |
|        | 10          | GeometricMean | 553.381±0.061       |

#### Modelos e Parâmetros

|      | Neighbors | Weights  | Power | RMSE          |
|------|-----------|----------|-------|---------------|
| KNN: | 5         | Distance | 1     | 570.973±0.000 |
|      | 5         | Uniform  | 2     | 522.033±0.000 |
|      | 10        | Uniform  | 2     | 748.078±0.000 |

|      | Epsilon | Tolerance | RMSE                |
|------|---------|-----------|---------------------|
| SVM: | 0.5     | 0.01      | 746.812±0.000       |
|      | 2.0     | 0.0001    | $611.198\pm0.000$   |
|      | 3.0     | 0.0001    | $611.592 \pm 0.000$ |

## Resultados: Requisições em intervalos de 5 minutos



## Resultados: Requisições em intervalos de 60 minutos



## Resultados: Acurácia da predição (RMSE)

Neste trabalho a CReW apresentou tendência em superestimar o valor de sua predição em períodos de variações bruscas, apresentando inércia apenas para descida da curva. No intervalo de menor frequência a CReW se ajustou bem à curva base.

| Janela | ReW(10, SimpleMean) | CReW(10, 5 75)    | KNN(5, Uniform, 2)   | LinearSVM(2, 000.1) |
|--------|---------------------|-------------------|----------------------|---------------------|
| 1min   | 23.714±0.193        | 23.375±0.070      | 24.955±0.000         | 28.954±0.000        |
| 5min   | 103.219±0.204       | $101.735\pm0.059$ | 107.864±0.000        | 130.038±0.000       |
| 15min  | 291.730±1.385       | 289.226±0.799     | 330.338±0.000        | $376.280\pm0.000$   |
| 30min  | $560.319 \pm 0.000$ | 548.575±2.920     | 748.078±0.000        | $747.082 \pm 0.000$ |
| 60min  | 1024.333±0.000      | 980.816±3.777     | $1479.846 \pm 0.000$ | 1491.327±0.000      |

### Resultados: Tempos

A tabela abaixo apresenta os tempos em segundos (treinamento / predição) de cada modelo.

|       | ReW CReW      |               |               | LinearSVM     |  |
|-------|---------------|---------------|---------------|---------------|--|
|       |               | 7.263 / 3.788 |               |               |  |
| 5min  | 0.023 / 0.024 | 1.499 / 0.810 | 0.011 / 0.184 | 0.006 / 0.002 |  |
|       |               | 0.499 / 0.272 |               |               |  |
| 30min | 0.004 / 0.004 | 0.242 / 0.006 | 0.003 / 0.033 | 0.001 / 0.000 |  |
| 60min | 0.002 / 0.002 | 0.115 / 0.067 | 0.002 / 0.017 | 0.001 / 0.000 |  |

#### Conclusão

Para realizarmos uma avaliação mais consistente, incluímos os resultados apresentado por Kirchoff et al. 2019 (Apreliminary study of machine learning workload prediction techniques for cloud applications) onde o mesmo dataset foi utilizado para os seguintes modelos:

- Multi Layer Perceptron(MLP)
- Gated Recurrent Unit(GRU)
- Auto Regressive Integrated Moving Average(ARIMA)

| Janela | CReW    | KNN      | LinSVR   | MLP    | GRU    | ARIMA  |
|--------|---------|----------|----------|--------|--------|--------|
| 1min   | 23.375  | 24.955   | 28.954   | 16.26  | 16.51  | 14.27  |
| 5min   | 101.735 | 107.864  | 130.038  | 54.34  | 53.04  | 47.86  |
| 15min  | 289.226 | 330.338  | 376.280  | 136.36 | 132    | 135.08 |
| 30min  | 548.575 | 748.078  | 747.082  | 249.55 | 242.86 | 237.73 |
| 60min  | 980.816 | 1479.846 | 1491.327 | 544.08 | 521.66 | 493.90 |

#### Conclusão

Neste trabalho foi utilizado uma série não-estacionária, neste contexto, a CReW obteve melhor acurácia em comparação com técnicas simples de regressão. Entretanto, modelos autoregressivos ou que abordarm o problema de dissipação de gradiente apresentaram resultados melhores.

Em trabalhos futuros podemos buscar verificar se a observada dificuldade da CReW em ajustar para baixo a predição, diante de variações alta frequencia, se confirma e quais são os fatores que mais influenciam este corportamento.