Webpage: cc.gatech.edu/~jballoch6
E-mail: jon.balloch@gmail.com
Mobile: (203) 912-1793

CURRICULUM VITAE

RESEARCH INTERESTS

Interested in developing techniques and algorithms so that intelligent agents and robots to learn continually from visual inputs in the context of the environment. Core focus: is using deep learning and other computer vision techniques that enable robot learning without forgetting and learning from interacting with objects and environments. Experience and areas of interest:

Reinforcement learning, imitation learning, continual learning, deep learning, computer vision, few-shot learning, semantic segmentation, active learning, learning from demonstration, human-robot interaction, visual affordance learning, visual SLAM, geometry-based reasoning, object detection, and object discovery.

EDUCATION

Doctor of Philosophy (in progress) – **Georgia Institute of Technology**, Atlanta, GA 2016-Present

- Major: Robotics
 - Core areas: Reinforcement Learning, Machine Learning Computer Vision, Artificial Intelligence, Human Robot Interaction
 - o Minor: Managing Technology Commercialization
- Advisors: Dr. Mark Reidl, Dr. Irfan Essa, Dr. Sonia Chernova

Masters of Science - University of Pennsylvania, Philadelphia, PA

2011-2013

- Major: Robotics
- Advisor: Dr. Kostas Daniilidis

Bachelors of Science - Georgetown University, Washington, D.C.

2007-2011

• Majors: Physics, Mathematics

REFEREED PUBLICATIONS

- 1. Banerjee, S., Daruna, A., Kent, D., Liu, W., Balloch, J. C., Jain, A., Krishnan, A., Chernova, S., "Taking Recoveries to Task: Recovery-Driven Development for Recipe-based Robot Tasks." *IEEE International Symposium on Robotics Research*, 2019.
- 2. Nair, Lakshmi, **Balloch, J. C.**, Chernova, S. "The MacGyverbot: Tool Construction by Autonomous Agents." *IEEE International Conference on Robotics and Automation*, 2019.
- 3. **Balloch, J. C.**, Chernova, S. "An RGBD segmentation model for robot vision learned from synthetic data." *Robotics Science and Systems (RSS): Workshop on Spatial-Semantic Representations in Robotics*, 2017.

Webpage: cc.gatech.edu/~jballoch6 E-mail: jon.balloch@gmail.com Mobile: (203) 912-1793

- 4. Endo, Y., **Balloch, J.**, Grushin, A., Lee, M.W., Handelman, D. "Landmark-Based Robust Navigation for Tactical UGV Control in GPS-Denied Communication-Degraded Environments." *SPIE Unmanned Systems Technology XVIII*, 2016.
- 5. West, R. A., Ovanessian, A., Turtle, E. P., Ray, T., **Balloch, J.**, Dumont, P., Lavvas, P., Lorenz, R., Rannou, P. "Titan's Detached Haze and Polar Vortex: Large-Amplitude Seasonal Variations." *Lunar and Planetary Science Conference*, *43*, 2012.
- 6. West, R. A., **Balloch, J.**, Dumont, P., Lavvas, P., Lorenz, R., Rannou, P., Turtle, E. P., Ray, T. "The Evolution of Titan's detached haze layer near equinox in 2009." *Geophysical Research Letters*, 38, doi: 10.1029/2011GL046843, 2011.

OTHER PUBLICATIONS

1. **Balloch, J. C.**, Aggraval, V., Essa, I., Chernova, S. "Unbiasing Semantic Segmentation for Robot Perception using Synthetic Data Feature Transfer." *arXiv:1809.03676*, 2018.

PROFESSIONAL RESEARCH EXPERIENCE

Graduate SWE Intern – <u>Google</u>,

2018

- ♦ Worked with the Mobile Vision Research team of Cerebra at the Seattle Fremont office.
- Project was focused on developing a new technique for actively construct mini-batches for better performance in machine learning models optimized with stochastic gradient descent (SGD).
 - Preliminary results showed a 2x reduction in training time to convergence, which if applied to all cloud training could cut the hardware and energy budgets of training models in half.
 - o Currently documenting work and results for conference submission.
- Planned extension of this work would be to apply minibatch construction to lifelong learning on embodied platforms like robots.

Graduate Researcher – Georgia Institute of Technology,

2016-Present

- *Current research project*: continual learning of deep neural networks without catastrophic forgetting using semi-supervised data.
 - Biological creatures learn new concepts in the context of the world around them, neural networks do not and experience more forgetting.
 - Combining concepts from open set outlier detection, continual learning, semi-supervised learning, and statistical learning theory to develop a memory-free solution that performs comparably to methods that memorize examples from prior tasks.

Webpage: cc.gatech.edu/~jballoch6 E-mail: jon.balloch@gmail.com Mobile: (203) 912-1793

- Practical application: any machine learning system with access to large amounts of unlabeled data and limited labeled data where the number of classes grows through the deployment of the system.
- Prior research project: investigated learning embedded representations of semantic objects by object co-occurrences in 3D context.
 - Explored how these "spatial context object embeddings", learned on data mined from the SUNGC dataset, can be used to quantify the orderliness of a scene; suggest mappings of "out-of-place" objects to new locations.
 - o *Practical application:* an autonomous "tidying-up" robot for to home, hospitals, and disaster zones.
 - Practical application: active workspace management for making human workers more efficient.
- ♦ Prior research project: "Macgyvering" tool construction by visual comparison for robot problem solving.
 - Given a task, a reference tool necessary for solving a task which is not in the environment, and objects in the environment, enable a robot construct a new tool that can also complete the task using the visual geometry of the reference tool.
 - Paper accepted for publication and presentation at the International Conference on Robotics and Automation, 2019.
- Prior research project: ways in which synthetic visual data generated from simulation can benefit real-time semantic segmentation for a robot
 - Investigated the degree to which pretraining on a large amount of synthetic data improves performance on real data
 - Showed that our method of training on synthetic data in a curriculum outperforms both training from scratch and standard data augmentation practices like pretraining on ImageNet.
 - Investigated the importance of the similarity of synthetic data to the real data when being trained in a curriculum, and show that while similarity is beneficial, more data has even greater benefits.
 - Practical application: improving pretraining of features for finetuning on limited application data.
 - Work presented at workshop at 2017 Conference on Robotics: Science and Systems, full paper submitted to ArXiv in 2018.

Robotics Engineer – Intelligent Automation, Inc.,

2013-2016

Webpage: cc.gatech.edu/~jballoch6 E-mail: jon.balloch@gmail.com Mobile: (203) 912-1793

- Specialized in design and development of computer vision, sensor fusion, and control algorithms for robotics.
- Collaborated with UCLA on the DARPA MSEE and SIMPLEX projects
 - Leading the effort working with a Baxter robot for autonomous furniture assembly of IKEA table
 - Developed C++ Windows interface allowing Baxter control over TCP and camera functionality over UDP
- ♦ C++ computer vision research development for Bearing-based Landmark Navigation robotic system for Army in collaboration with Rutgers:
 - Improved contour feature tracking algorithm to object segmentation persistence of 94% using mean shift and optimized code to increase runtime efficiency from 0.4 fps to 3 fps with HD streaming input.
 - Designed omnidirectional camera sensor head from four cameras with IMU and developed API for integration with our robot platform
- Implemented mobility and OCU control systems for dual-manipulator robot and localization for maintainer robot as part of Multi-Arm Robotic Control System program for the Navy as part of the AEODRS effort
 - Led integration effort of our robotic control system, Behavior Development Studio, with the AEDORS 2.0 standard, making it compatible with all five modules
 - Demonstrated ease of use and high-level control with limited operator training at the DARPA Robotic Challenge Trials Expo in Homestead, FL in December 2013

Graduate Student Researcher - GRASP Lab, University of Pennsylvania,

2012-2013

- Worked with team on the DARPA Robotics Challenge Track B "TROOPER" Team in cooperation with Lockheed Martin to simulate and deploy a humanoid rescue robot.
- ◆ Enabled walking and standing stability by implementing impedance control and ZMP algorithms in ROS using C++
- Assisted with the design and implementation of a machine learning/vision assignment to identify and grasp a hose.

Graduate Research Intern - Lockheed Martin Advanced Technology Center,

2012

 Developed a MATLAB package which reduced digital noise and increased accuracy in laser simulations.

Webpage: cc.gatech.edu/~jballoch6
E-mail: jon.balloch@gmail.com
Mobile: (203) 912-1793

 Benchmarked a new high-performance computer (HPC) for radiative transfer plume analysis, and contributed to a real-time radiative transfer analysis
 Python program that increased the HPC efficiency by an order of magnitude.

Planetary Science Intern – NASA Jet Propulsion Laboratory,

2010

- ◆ Funded through the NASA Space Grant. Modeled radiative transfer in Titan's detached haze layer in FORTRAN.
- Discovered and published on the rapid change in the altitude and eccentricity of Titan's atmosphere over time.
- ♦ Published findings in *Geophysical Research Letters*

TEACHING EXPERIENCE

CS7642: Reinforcement Learning (TA) – Georgia Institute of Technology,	2019
CS6476: Computer Vision (TA) – Georgia Institute of Technology,	2017
CS4641: Machine Learning (TA) – Georgia Institute of Technology,	2016
ESE-505: Introduction to Control Systems (TA) – <u>University of Pennsylvania</u> ,	2013
MEAM-510: Mechatronic Systems (TA) – <u>University of Pennsylvania</u> ,	2012
PHYS-252: Electricity and Magnetism (Head TA/Lecturer) – Georgetown University,	2010-2011
PHYS-101/102: Intro to Physics (TA) – Georgetown University,	2009-2011

TECHNICAL SKILLS

Python, SciPy Stack, PyTorch, TensorFlow, LaTeX, ROS/Gazebo/RViz, Linux/bash, C++, Caffe, OpenCV, Boost, C, MATLAB, Arduino, PCL, OpenNI, Blender, GIMP/Inkscape, JAVA, XML, Windows Batch, Qt, Android, EJM, SolidWorks, Mathematica

VOLUNTEER LEADERSHIP EXPERIENCE

Vice President, RoboGrads Student Organization - Georgia Institute of Technology, 2017-Present

- Acted as intermediary between the students and robotics faculty
- Helped facilitate updates to the Robotics Qualifying Exam
- Organized events to enable networking between students and professors interested in robotics and AI across multiple schools and disciplines

FIRST Robotics Mentor – <u>Team 449</u>, Montgomery Blair High School, MD

2014-2016

Webpage: cc.gatech.edu/~jballoch6 E-mail: jon.balloch@gmail.com Mobile: (203) 912-1793

♦ Helped high school students understand engineering process using games played by robots built by the team. I have mainly helped the students understand and learn Java using the WPILib FRC Controls System, mentored the software team on how to debug their code.