

UNIVERSITAS INDONESIA

IMPLEMENTASI ALGORITMA K-ANT COLONY OPTIMIZATION (K-ACO) UNTUK MENYELESAIKAN MASALAH LOKASI-ALOKASI

TESIS

WIDYA NURCAHAYANTY TANJUNG 1006787565

FAKULTAS TEKNIK
PROGRAM STUDI INDUSTRI
DEPOK
JUNI 2012

UNIVERSITAS INDONESIA

IMPLEMENTASI ALGORITMA K-ANT COLONY OPTIMIZATION (K-ACO) UNTUK MENYELESAIKAN MASALAH LOKASI-ALOKASI

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Teknik.

WIDYA NURCAHAYANTY TANJUNG 1006787565

FAKULTAS TEKNIK
PROGRAM STUDI INDUSTRI
KEKHUSUSAN MANAJEMEN RANTAI PASOK
DEPOK
JUNI 2012

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Widya Nurcahayanty Tanjung

NPM : 1006787565

Tanda Tangan :

Tanggal : 01 Agustus 2012

HALAMAN PENGESAHAN

Tesis ini diajukan oleh:

Nama : Widya Nurcahayanty Tanjung

NPM : 1006787565

Program Studi : Industri

Judul Tesis : Implementasi Algoritma K-Ant Colony Optimization

(K-Aco) Untuk Menyelesaikan Masalah Lokasi-Alokasi

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Teknik pada Program Studi Industri Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing 1 : Prof. Dr. Ir. Teuku Yuri M. Zagloel M.Eng. Sc.

Pembimbing 2 : Ir. Amar Rachman, MEIM

Penguji 1 : Ir. Fauzia Dianawati, M.Si.

Penguji 2 : Ir. Erlinda Muslim, MEE

Penguji 3 : Ir. Isti Surjandari, Ph.D

Penguji 4 : Dr. Akhmad Hidayatno, ST., M.BT

Ditetapkan di : Depok

Tanggal : 1 Agustus 2012

UCAPAN TERIMA KASIH

It would not have been possible to write this master thesis without God Blessing and the help and support of the kind the National Taiwan University Science and Technology (NTUST) and its staff, particularly in the award of Postgraduate scholarship as a double degree student.

First and foremost, I offer my sincerest gratitude to my advisor, Prof. Chao Ou-Yang and Prof. Teuku Yury Zagloel, who has supported me throughout my thesis with his advice, knowledge, and sincerity. His passion in research inspires and enriches my growth as a student and a researcher. All my lecturer in UI and NTUST, who I can not mention one by one. Thank you for all the knowledge has been shared. In my daily work, I have been blessed with friendly and cheerful friends at e-business Laboratory. They gave me encouragement as I hurdle all the obstacles in the completion of this study. I also give many thanks to my dearest classmates and friends for interesting discussion and experiences sharing.

Special Thanks for my lovely parent, Mom and Dad, who always support me and give me their unconditionally love. My love, Anindito Singgih Wicaksono, who has pouring me the bunch of love. I will always love dear. Last but not least, my family for their big concern and keep supporting me throughout my study. I will dedicate this to everyone who has important role to the successful realization of this study, as well as expressing my apology that I could not mention personally one by one.

Jakarta, 01 Agustus 2012

Widya Nurcahayanty Tanjung

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, Saya yang bertanda tangan dibawah ini :

Nama : Widya Nurcahayanty Tanjung

NPM : 1006787565

Program Studi : Industri

Departemen : Industri

Fakultas : Teknik

Jenis karya : Tesis

Demi pengembangan ilmu pengetahuan menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

Implementasi Algoritma K-Ant Colony Optimization (K-Aco) Untuk Menyelesaikan Masalah Lokasi-Alokasi

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (database), merawat dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini Saya buat dengan sebenarnya.

Dibuat di : Taipei

Pada tanggal : 18 Juni 2012

Yang menyatakan

manye

(Widya Nurcahayanty Tanjung)

ABSTRAK

Nama : Widya Nurcahayanty Tanjung

Program Studi : Teknik Industri

Judul : Implementasi Algoritma K-Ant Colony Optimization

(K- ACO) Untuk Menyelesaikan Masalah Lokasi-Alokasi

Ketika kompetitor tumbuh dengan cepat dan pasar menjadi lebih kompetitif, diperlukan fokus yang kuat untuk menambah dan memperbaiki servis yang diberikan kepada pelanggan. Pelayanan terbaik perlu diberikan kepada pelanggan untuk menjaga loyalitas para pelanggan tersebut. Berdasarkan nilai bisnis perusahaan logistik, pelayanan terbaik dapat diukur dari tidak adanya keterlambatan, harga yang kompetitif, dan lokasi depot yang mudah untuk ditemukan. Penelitian ini membahas mengenai masalah untuk penempatan lokasi depot baru untuk perusahaan X-Logistik pada daerah urban, Jakarta, Indonesia. Tujuan dari penelitian ini adalah meningkatkan efisiensi daerah jangkauan depot sebagai upaya untuk menurunkan total konsumsi waktu perjalanan, minimalisasi biaya transportasi, dan meminimalkan total jarak centroid untuk masing-masing kelompok wilayah. Dengan menggunakan algoritma hibrida K- means Ant Colony Optimization (K-ACO) dapat dihitung jumlah depot yang memberikan total biaya paling kecil. Setelah jumlah depot yang akan dibuka ditentukan, dengan menggunakan metode trial dan error, koordinat dari setiap depot yang akan dibuka dapat ditentukan. Kelompok konsumen yang akan dilayani dari setiap depot yang akan dibuka juga dapat ditentukan bersamaan dengan jumlah depot yang terbentuk. Hasil akhir dari penelitian ini adalah rekomendasi keputusan untuk perusahaan X-Logistik mengenai jumlah depot baru yang akan dibuka, koordinat lokasi depot baru akan dibuka, serta kelompok konsumen yang akan dilayani dari setiap depot yang dibuka. Dari seluruh usulan, keputusan yang diambil mengacu kepada jumlah depot yang dapat memberikan total biaya terendah.

Kata Kunci: Lokasi-alokasi, K-ACO, K-Means, *Ant Colony Optimization* (ACO), *uncapacitated*, *Weber problem, Euclidian distance*, metaheuristic.

ABSTRACT

Nama : Widya Nurcahayanty Tanjung

Program Studi : Teknik Industri

Judul : Implementasi Algoritma K-Ant Colony Optimization

(K-ACO) Untuk Menyelesaikan Masalah Lokasi-Alokasi

When the competitor growth rapidly and the market become more competitive, there needs to be a strong focus to enhance and upgrade their service to customer. Best service offers to customer is the only way to keep their customer loyalty. Following the business core value of logistic company, the best service offer can be measured by zero delay, competitive price, and the depot location can be found easily. This study examines the current location set of all depot location X logistic that deploy logistic service in urban area, Jakarta, Indonesia. The goals of this study are to improve the efficiency of coverage in terms of decreasing total travel times, minimize total transportation cost and minimize total cost for a whole. This study employs the proposed methodology of hybrid K-ACO metaheuristic algorithm to solve location allocation problem and will utilize a minimum distance to reach the goals. By using hybrid K-ACO algorithm the number of depot will be open that which gives minimum total cost can be determined. After determining number of depot will be opened, by using trialerror in hybrid K-ACO algorithm the coordinate location to construct new depot and which customers will be served at new depot opened can be known simultaneously. The rest of this study will recommend where the X logistic company should be built the depot and a comparison will be conducted of analyzing the total costs associated with number of depot opened.

Key Words: Location allocation, K-ACO, K-Means, Ant Colony Optimization (ACO), uncapacitated, Weber problem, Euclidian distance, metaheuristic.

DAFTAR ISI

HALAMAN PERNYATAAN ORISINALITASiii
HALAMAN PENGESAHAN iv
UCAPAN TERIMA KASIHv
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR
UNTUK KEPENTINGAN AKADEMISvi
ABSTRAKvii
ABSTRACTviii
DAFTAR ISIix
DAFTAR GAMBARxi
DAFTAR TABELxii
BAB 1. PENDAHULUAN1
1.1 Latar Belakang1
1.2 Motivasi
1.3 Tujuan3
1.4 Batasan Penelitian3
1.5 Sistematika Penulisan4
BAB 2. LANDASAN TEORI5
2.1 Masalah Lokasi Alokasi
2.2 K-Means
2.3 Ant Colony Optimization (ACO)8
2.4 Publikasi Jurnal dan Paper untuk Masalah Lokasi Alokasi
BAB 3. METODOLOGI RISET12
3.1 Level Konsep
3.1.1 Level Desain
3.1.2 Identifikasi Data14
3.1.3 Usulan algoritma K Means – Ant Colony Optimization (K-ACO)15

3.1.4	Design of experiment	20
3.1.5	Applying Hybrid K-ACO in Real Case Pr	oblem20
BAB 4. PE	EMBAHASAN	21
4.1 DC	DE for Tuning parameter	21
4.2 Co	mputational test	23
4.3 Cas	se study	Error! Bookmark not defined.
4.4 Cas	se Study Analysis	Error! Bookmark not defined.
4.4.1	Applying K-Means Algorithm	29
4.4.2	Cluster Number Evaluation	31
4.4.3	Applying ACO Algorithm	32
BAB 5. KI	ESIMPULAN DAN SARAN	35
5.1 Co	nclusion	Error! Bookmark not defined.
5.2 Fut	ture Research	Error! Bookmark not defined.
Daftar Pus	taka	37
Lamniran		40

DAFTAR GAMBAR

Figure 1. Location Allocation Problems Error! Bookmark not of	lefined.
Figure 2. K-Means Clustering Implementation Error! Bookmark not of	lefined.
Figure 3. Ant Colony Optimization Path	9
Figure 4. Conceptual level flowchart	12
Figure 5. Design level flowchart	13
Figure 6. X-Logistic Company existing condition (only 1 depot)	14
Figure 7. Proposed K Means – Ant Colony Optimization (K-ACO)	15
Figure 7. Proposed K Means – Ant Colony Optimization (K-ACO) - Continued	16
Figure 8. Anova result ACO factors	22
Figure 9. Graph cost for each number of depot	30
Figure 10. Location allocation Problem with K-Means	34

DAFTAR TABEL

Table 1. Some published papers for Location Allocation Problems	. 11
Table 2. Initiate ACO factors	. 21
Table 3. Combination for Opttimum Parameters	. 22
Table 4. Average % deviation from the best known value for the 50 customer problem	. 23
Table 5. Average % deviation from the best known value for the 654 customer problem.	. 24
Table 6. X-Logistic Company Customer nodes	. 25
Table 7. Cost Component X-Logistic company	. 28
Table 8. Total Cost comparison for each number of Depots	. 30
Table 9. Cluster Evaluation	. 31
Table 10. Customer allocation for the number of depot will be opened	. 32
Table 11. Total cost reduction from K-Mean to ACO	33

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Perusahaan logistik telah menjadi pemain penting dalam berbagai rantai di industry, karena mereka berkontribusi dalam hal efisiensi biaya, peningkatan produktifitas keuntungan seiring dengan perbaikan dari kualitas servis kepada para pelanggannya [1]. Tingkat kompetitif dari perusahaan logistik dapat dinilai dari desain jaringan yang mereka rencanakan. Perencanaan yang tidak baik mengakibatkan pelayanan yang buruk terhadap pelanggan, waktu pengiriman yang lama, biaya investasi dan perawatan yang tinggi yang berdampak kepada penurunan keuntungan dari kegiatan bisnis yang dijalankan [2]. Untuk menghindari penurunan tingkat kepuasan pelanggan yang berdampak pada hilangnya pelanggan, perencanaan lokasi-alokasi dari depot-depot logistic merupakan keputusan yang penting perencanaan rantai distribusi [3].

Pada area urban, tingkat kepadatan lalu lintas tinggi dan rawan terhadap kemacetan [4]. Dengan demikian, pembukaan depot logistik dan alokasi pelanggan untuk daerah perkotaan akan dipengaruhi oleh sejumlah faktor. Faktor yang paling penting untuk dipertimbangkan adalah tingkat kemacetan. Harga tanah, biaya tenaga kerja, kedekatan dengan pelanggan juga merupakan faktor penting dan harus dipertimbangkan..

Permasalahan lokasi-alokasi termasuk kedalam jenis permasalahan *Network Planning-hard* [5]. Masalah NP-hard ini sering digunakan untuk menyelesaikan masalah lokasi & alokasi untuk jenis masalah optimasi kombinatorial. Jika jumlah depot logistik berjumlah 3 depot dan jumlah pelanggan kecil, solusi yang optimal dapat ditemukan dengan menggunakan pendekatan pemrograman eksak. Namun, jika skala masalah besar penyelesaian dengan metode eksak dianggap kurang sesuai karena waktu penyelesaian yang panjang. Oleh karena itu, pendekatan metaheuristik perlu dikembangkan untuk menyelesaikan masalah lokasi-alokasi yang besar. Dalam literatur, metode metaheuristik telah menunjukkan kinerja yang lebih baik dibandingkan dengan metode eksak untuk memecahkan masalah NP-Hard dalam skala besar

X-Logistic adalah perusahaan logistik terbesar di Indonesia, melayani pelanggan untuk semua wilayah Indonesia. Untuk meningkatkan jumlah keuntungan, mereka perlu melakukan beberapa efisiensi. Mereka percaya, meminimalkan total biaya dapat meningkatkan keuntungan mereka secara keseluruhan. Karena bisnis inti mereka adalah logistik, mereka akan berfokus pada bagaimana mengurangi biaya transportasi dan meminimalkan biaya tetap untuk depot. Sebagai upaya untuk efisiensi biaya total, X-Logistic memilih jalan untuk membuka beberapa depot baru dan mengatur ulang jumlah pelanggan di setiap depo akan dibuka. Berdasarkan penjelasan diatas dapat disimpulkan bahwa masalah tersebut dapat dipecahkan dengan menggunakan metode lokasi-alokasi sebagai upaya untuk meminimalkan biaya total.

Berdasarkan data historis, Jakarta adalah daerah yang memiliki jumlah konsumen terbesar jika dibandingkan dengan daerah lain. Sehingga, daerah ini akan menjadi prioritas untuk memecahkan masalah di perusahaan X-Logistik. Seperti diketahui, Jakarta adalah daerah perkotaan dan saat ini hanya memiliki satu depo yang terletak di wilayah utara untuk melayani semua pelanggan, dengan pelanggan berjumlah 1016 pelanggan. Jakarta memiliki tingkat kemacetan lalu lintas yang sangat tinggi. Strategi penempatan depot terpusat dapat meningkatkan biaya transportasi serta tingkat keterlambatan yang tinggi dalam pendistribusian layanan kepada pelanggan. Keterlambatan adalah masalah utama yang dapat mengurangi tingkat kepuasan pelanggan dan juga mendorong pelanggan untuk menemukan perusahaan logistik lainnya yang dapat melayani lebih baik.

Ketika mereka merencanakan untuk membuka sebuah depot baru, masalah yang muncul adalah manajemen harus mempertimbangkan berapa banyak depot baru yang akan dibuka, di mana depot baru berada, dan berapa jumlah konsumen yang akan dilayani oleh depot baru. Untuk membantu manajemen dalam membuat keputusan, perlu digunakan pendekatan ilmiah untuk mendukung keputusan tersebut. Pemecahan dari masalah tersebut, penulis mengusulkan untuk menyelesaikannya dengan menggunakan pendekatan metaheuristik yaitu algoritma K-Means Ant Colony Optimization (K-ACO). Hasil dari penerapan metode ini nantinya dapat dijadikan pedoman dasar bagi para manajer untuk membuat keputusan mengenai perencanaan lokasi depot logistik dan alokasi konsumen untuk depot logistik yang dibuka.

1.2 Motivasi

Pada penelitian ini akan membahas mengenai metode hibrida metaheuristik K-ACO untuk menyelesaikan masalah lokasi alokasi pada jaringan logistik. Hibrida metaheuristic K-ACO usulan ini akan diujikan untuk beberapa jenis masalah yang berbeda. Hasil yang diperoleh dari metode usulan ini akan dibandingkan dengan metode yang telah dikembangkan sebelumnya yang tersedia dalam literatur. Selanjutnya, menerapkan hibrida K-ACO dalam penyelesain masalah riil dapat digunakan sebagai pedoman dasar bagi para manajer untuk memecahkan permasalahan lokasi alokasi. Informasi dapat diperoleh dari metode ini adalah jumlah depot yang akan dibuka, lokasi untuk setiap depot yang baru yang akan dibuka, dan pelanggan akan dilayani dari setiap depot baru yang dibuka.

1.3 Tujuan

Tujuan dari penelitian ini adalah:

- 1. Mengembangkan K Means Ant Colony Optimasi (K-ACO) sebagai algoritma metaheuristic usulan untuk menyelesaikan masalah lokasi alokasi.
- 2. Algoritma metaheuristic hybrid K-ACO dapat digunakan dalam kasus nyata untuk memecahkan permasalahan di perusahaan X-Logistik untuk masalah lokasi alokasi. Dengan menerapkan algoritma ini, perusahaan akan mendapatkan informasi mengenai jumlah depot baru yang akan dibuka, lokasi depot baru, dan kelompok pelanggan yang akan dilayani oleh masing-masing depot yang dibuka.

1.4 Batasan Penelitian

Batasan penelitian yang diterapkan dalam masalah ini adalah:

- 1. Jarak di setiap node adalah *rectilinear* yang berarti jarak dari node A ke node B adalah sama dengan jarak dari node B ke node A (jarak AB = jarak BA)
- 2. Biaya pembukaan depot sama untuk setiap lokasi yang akan dibuka. Perbedaan biaya seperti biaya tanah, biaya investasi awal dan perbedaan biaya lainnya diabaikan.
- 3. Jumlah depot baru tidak lebih dari 5% dari node total pelanggan yang ada.

1.5 Sistematika Penulisan

Tata cara dari penulisan tesis ini terbagi menjadi 5 bab. Bab 1 menjelaskan mengenai latar belakang, motivasi, tujuan, batasan penelitian, dan sistematika penulisan. Bab 2 menjelaskan mengenai landasan teori yang berasal dari jurnal-jurnal internasional yang mendukung dan membahas mengenai masalah alokasi lokasi, K-Means clustering, ACO, dan metaheuristik. Bab 3 menjelaskan mengenai metodologi penelitian yang mendeskripsikan langkah-langkah yang dilakukan untuk memecahkan permasalahan yang ada. Bab 4 menjelaskan mengenai pengembangan algoritma usulan dengan pendekatan metaheuristik K-ACO untuk masalah alokasi lokasi tak berkapasitas pada jaringan logistik. Selain itu juga membahas mengenai penerapan K-ACO dalam menyelesaiakan masalah riil yang dialami oleh perusahaan X-Logistik. Bagian akhir dari tesis ini adalah bab 5 yang menjelaskan mengenai kesimpulan dan saran untuk penelitian yang akan datang.

BAB 2 LANDASAN TEORI

2.1 Masalah Lokasi Alokasi

Masalah lokasi-alokasi telah dipelajari sejak Weber membahas mengenai masalah fasilitas lokasi untuk pertama kalinya pada awal abad 20. Tujuan umum dari penyelesaian masalah lokasi-alokasi adalah untuk menempatkan jumlah yang optimal dari pusat-pusat pelayanan, atau fasilitas, di daerah yang dipilih [6]. Masalah multisource klasik Weber mengasumsikan bahwa jumlah fasilitas baru yang akan ditempatkan (m) telah ditentukan terlebih dahulu. Sedangkan dalam prakteknya, menentukan jumlah fasilitas mungkin salah satu elemen utama dari masalah tersebut [7]. Untuk jenis masalah yang kontinyu diperlukan generalisasi dari jumlah m yang diberikan untuk setiap fasilitas yang tersedia pada bidang (\mathbb{R} 2) untuk melayani kebutuhan pelanggan n yang bertujuan untuk meminimalkan total biaya transportasi (atau layanan) [8]. Masalah ini terjadi dalam pengaturan praktis di mana fasilitas memberikan pelayanan yang homogen, seperti lokasi tanaman, gudang, outlet ritel, dan fasilitas umum [9]. Seperti digambarkan dalam Gambar 1, masalah lokasi alokasi bisa menentukan lokasi fasilitas terbaik untuk dibuka yang dapat meminimalkan total jarak antara fasilitas dan pelanggan. Selain itu, angka ini juga dapat menjelaskan pelanggan mana saja yang akan dilayani untuk setiap fasilitas baru yang dibuka.

Gambar 1. Masalah Lokasi Alokasi

Pengaturan dasar lokasi-alokasi masalah dapat diduga terdiri dari fasilitas, lokasi, dan pelanggan dan antar hubungan mereka [10] Penjelasan dari komponen dasar dari masalah alokasi lokasi dapat. Ditampilkan di bawah ini:

1. Fasilitas

Di lokasi-alokasi masalah, fasilitas istilah digunakan untuk menunjukkan obyek yang spasial posisi kami mencoba untuk menentukan untuk mengoptimalkan interaksi dengan objek lain sudah ada sebelumnya [11]. Fasilitas ini biasanya ditandai dengan, antara lain, jumlah mereka, jenis, dan biaya. Lain-lain fasilitas yang terhubung sifat dapat mencakup misalnya, laba kapasitas jangkauan, daya tarik (di mana pelanggan tertarik pada fasilitas), dan jenis layanan yang diberikan [12]. Salah satu sifat karakteristik masalah lokasi-alokasi adalah jumlah fasilitas baru yang akan berlokasi di daerah tertentu [6]. 2. Lokasi

Unsur penting kedua dari lokasi-alokasi masalah adalah ruang fisik, atau lokasi, di mana fasilitas dapat diposisikan [5]. Himpunan lokasi yang memenuhi syarat memiliki dua representasi mungkin, diskrit dan kontinyu. Dalam model diskrit, pembuat keputusan harus menentukan sejumlah situs yang masuk akal untuk lokasi fasilitas dan masalah lokasi terus menerus biasanya dipertimbangkan dalam ruang Euclidean $\mathbb R$ 2or, lebih umum, di ruang n-dimensi $\mathbb R$ n. Untuk alasan geografis jelas, dua-dimensi masalah yang paling populer, namun pengaturan yang lebih abstrak mungkin memerlukan lebih dari dua dimensi [13].

3. Pelanggan

Secara tradisional, pelanggan istilah umum digunakan di lokasi-alokasi masalah untuk menunjukkan orang yang membutuhkan aksesibilitas ke layanan atau pasokan yang baik [12]. Para pelanggan dapat dengan diasumsikan baik seragam didistribusikan ke daerah tertentu atau mereka dapat terletak pada titik-titik tertentu dalam ruang atau di simpul dalam jaringan. Permintaan dinyatakan dengan menetapkan setiap pelanggan berat yang mengekspresikan jumlah layanan yang diperlukan [8]. Pelanggan dapat menjadi pengguna tunggal atau representasi dari daerah yang layanan ini ditakdirkan, seperti masyarakat, distrik, atau wilayah. Pelanggan dapat dicirikan menurut perilaku mereka. Dalam beberapa kasus, pelanggan bebas untuk memilih fasilitas dari mana mereka akan dilayani, dalam aplikasi ini, mereka selalu mungkin lebih memilih fasilitas terdekat atau mungkin ada beberapa kriteria lain untuk mencerminkan preferensi mereka

2.2 K-Means

K-Means clustering adalah clustering data yang biasa digunakan untuk tugas belajar tanpa pengawasan [14]. Pembelajaran terawasi memiliki arti bahwa data yang tidak memiliki atribut target dan data yang dapat dieksplorasi untuk menemukan beberapa struktur intrinsik dalam them. The K-Means masalah digunakan untuk partisi data ke dalam kelompok k sedemikian rupa sehingga jumlah jarak Euclidean squared untuk setiap kelompok rata-rata diminimalkan [15]. K-Means berkaitan erat dengan masalah lokasi, yang tujuannya adalah untuk meminimalkan jumlah jarak ke pusat terdekat [16]. K-Means adalah NP-keras dalam ruang Euclidean umum, bahkan ketika jumlah cluster k adalah dua [17], atau ketika dimensi adalah dua [18].

K-Means proses dibagi menjadi empat langkah. Pertama, K-Means dimulai dengan memilih k pusat klaster awal dan kemudian secara iteratif menyempurnakan mereka sebagai berikut. Kedua, setiap contoh di ditugaskan untuk pusat cluster yang terdekat. Ketiga, masing-masing center cluster Cj diperbarui menjadi rata-rata kasus penyusunnya. Langkah terakhir adalah ulangi langkah 2 dan 3 sampai centroid baru untuk semua kelompok dalam pengulangan setiap mendapatkan konstan [19]. Algoritma konvergen ketika tidak ada perubahan lebih lanjut dalam penugasan contoh untuk cluster [20] Salah satu heuristik yang paling populer untuk memecahkan masalah K-Means didasarkan pada skema iteratif sederhana untuk menemukan solusi lokal yang minimal,. Algoritma ini sering disebut algoritma K-Means [16].

Gambar 2. Implementasi K-Means Clustering

Gambar 2 menunjukkan contoh sederhana dari langkah-langkah dari algoritma K-Means clustering. Dalam Gambar 2, M1, M2, dan M3 adalah titik centroid awal. Titik-titik yang dipilih secara acak. Setelah pelaksanaan K-Means algorithmsteps, Batas akhir ini

menunjukkan pelanggan akhir threeclusters. K-Means algoritma clustering memiliki dua kelemahan: pertama, algoritma K-Means tidak selalu menemukan optimalconfiguration, sesuai dengan tujuan global functionminimum. Kedua, algoritma ini juga secara signifikan sensitif terhadap centroid klaster awal dipilih secara acak. Jadi, mengurangi efek dari kekurangan kedua, K-Means algoritma clustering akan dijalankan beberapa kali, dengan menggunakan centroid awal yang berbeda. Sejak, algoritma di atas centroid awal usesdifferent untuk pengelompokan pelanggan, kriteria ini digunakan untuk membandingkan cluster dan pilih yang terbaik.

Dua fitur utama dari K-Means yang membuatnya efisien sering dianggap sebagai kelemahan terbesarnya: jarak Euclidean digunakan sebagai metrik dan varians digunakan sebagai ukuran menyebarkan cluster. Jumlah cluster k adalah parameter input: sebuah pilihan yang tidak tepat k dapat menghasilkan hasil yang buruk. Itu sebabnya, saat melakukan K-Means, penting untuk menjalankan pemeriksaan diagnostik untuk menentukan jumlah cluster dalam kumpulan data. Konvergensi ke minimum lokal dapat menghasilkan berlawanan dengan intuisi ("salah") hasil. K-Means Clustering telah berhasil digunakan dalam berbagai topik, mulai dari segmentasi pasar, visi komputer, geostatistik, astronomi, pertanian, dan lainlain sering digunakan sebagai langkah preprocessing untuk algoritma lain, misalnya untuk menemukan konfigurasi awal.

2.3 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) merupakan salah satu metode metaheuristik yang digunakan untuk memecahkan masalah optimasi dengan kombinasi yang sulit [21]. Algoritma Semut (*Ant*) terinspirasi dari pengamatan langsung pada koloni semut. Perilaku yang penting dan menarik dari algoritma ini adalah perilaku para semut tersebut dalam mencari rute terpendek antara sumber makanan ke sarang mereka [22]. Berdasarkan kemampuan alami semut untuk menemukan jalur terpendek tersebut membuat para ahli terinspirasi untuk mensimulasikan perilaku ini untuk memecahkan masalah optimasi kombinatorial [23]. Penggunaan Metode ini telah terbukti berkualitas dan fleksibilitas untuk diaplikasikan pada jenis permasalahan optimasi kombinatorial seperti *Traveling Salesman Problem* (TSP), *Vehicle Routing Problem* (VRP) [24]. Selama ini ACO telah banyak diterapkan juga dalam masalah perencanaan *Job-shop* (JSP), masalah penugasan kuadratik (QAP), masalah lokasi alokasi, dll [25].

Perilaku semut dalam berburu makanannya, mereka bekerja dalam koloni (kelompok) dengan beberapa anggota koloni yang buta. Dengan demikian, mereka dapat mengeksplorasi jalan menuju makanan yang menggunakan *pheromone*. *Pheromone* adalah zat kimia dari semut dan digunakan sebagai media komunikasi antar semut [24]. Semut-semut tersebut akan mengikuti satu sama lain dan bergerak mengikuti rute yang memiliki kadar feromon lebih tinggi [26]. Semut yang memiliki rute jalur terpendek akan kembali lebih awal dan meninggalkan kadar feromon dua kali lebih besar (bolak-balik) sehingga menarik semut-semut lainnya untuk melewati jalan yang sama [27]. Kadar feromon juga dipengaruhi oleh tingkat penguapan yang juga sangat dipengaruhi oleh panjangnya rute yang dilalui. Rute jalur yang pendek menyebabkan kadar penguapan terjadi lebih lambat dan feromen yang terbentuk menjadi lebih kental jika dibandingkan dengan rute jalur yang panjang. Aroma feromen yang kental inilah yang akan menarik semut-semut lainnya untuk bergerak mengikuti rute yang sama.

Gambar 3. Ant Colony Optimization Path

Secara garis besar aplikasi metaheuristic ACO akan dijelaskan rinci di sini. Tahap awal yang harus dilakukan adalah inisialisasi parameter seperti jumlah semut, parameter bobot (α dan β), dan laju penguapan (ρ). Parameter-parameter ini sangat diperlukan sebelum kita mulai bekerja dengan algoritma ACO. Setelah inisialisasi parameter dan jejak feromon ditentukan, ACO akan bekerja seperti loop. loop utama terdiri dari tiga langkah utama. Pertama, semut m membangun solusi untuk contoh masalah yang dipertimbangkan. Kedua, membangun bias yang terjadi karena informasi dari feromon. Ketiga, mengumpulkan informasi heuristik tersedia. Setelah semut menyelesaikan solusi mereka, solusi yang telah diperoleh dapat diperbaiki pada fase pencarian local opsional. Langkah terakhir sebelum memulai iterasi berikutnya, jejak feromon yang ada disesuaikan untuk menggambarkan histori pencarian rute yang dilakukan oleh semut [21]. Meskipun ACO memiliki kapasitas yang mendukung untuk

mencari solusi untuk permasalahan optimasi kombinasional, akan tetapi masih terdapat beberapa kendala yaitu masalah stagnasi, konvergensi prematur, rendahnya kecepatan konvergensi. Oleh karena itu, beberapa perbaikan dan penelitian lanjutan mengenai algoritma ACO terus dilakukan dari waktu ke waktu [25].

.

2.4 Publikasi Jurnal dan Paper untuk Masalah Lokasi Alokasi

Selama beberapa tahun terakhir ini banyak sekali penelitian yang menggabungkan beberapa jenis algoritma metaheuristik menjadi satu algoritma baru. Kombinasi algoritma ini dilakukan untuk mendapatkan sistem dengan berperforma yang lebih baik dengan cara menggabungkan kelebihan masing-masing algoritma menjadi satu.

Yang termasuk kedalam kelompok algoritma metaheuristik adalah *simulated annealing* (SA), *tabu search* (TS), *variable neighborhood search* (VNS), *genetic algorithm* (GA), *neural networks* (NN), and *ant colony optimization* (ACO) telah diimplemantikan dalam menyelesaikan masalah lokasi-alokasi. Berdasarkan hasil penelitian terdahulu, VNS memiliki nilai rata-rata deviasi yang paling baik dibandingkan dengan 3 algoritma pembandingnya. GA and TS memiliki nilai rata-rata deviasi yang sama dan terakhir, hasil terburuk diperoleh dari algoritma SA [28, 29]. Berdasarkan penelitian terakhir mengenai lokasi-alokasi, ACO diaplikasikan untuk dibandingkan dengan VNS yang merupakan algoritma yang memberikan hasil rata-rata terbaik dari penelitian sebelumnya. Aplikasi dari ACO berhasil menggambarkan bahwa ACO dapat menghasilkan rata-rata deviasi yang lebih baik dibandingkan dengan VNS. Dengan kata lain, sampai dengan Maret 2011, ACO merupakan algoritma terbaik untuk digunakan dalam menyelesaikan masalah lokasi alokasi [7].

Algoritma clustering dapat digunakan untuk memecahkan permasalahan lokasi alokasi. Dengan menganggap masalah lokasi alokasi sebagai masalah clustering, algoritma clustering memiliki keuntungan dalam penggalian stuktur data input. Seperti algoritma SOFMs, algoritma ini menyediakan pendekatan yang sangat baik saat membuat solusi awal untuk diterapkan pada algoritma heuristik lain atau algoritma eksak [20]. Pengelompokan pelanggan dapat dilakukan berdasarkan jarak bujursangkar (*rectilinear*) menggunakan K-Means, dan kemudian populasi awal dari solusi dihitung berdasarkan pusat-pusat cluster yang terbentuk sehingga metode ini juga dapat dijadikan pendekatan lainnya yang dapat digunakan untuk memecahkan masalah lokasi alokasi [30].

Jenis terakhir dari algoritma yang digunakan adalah algoritma hibrida. Salah satu algoritma hibrida digunakan untuk memecahkan masalah lokasi alokasi adalah menggabungkan tiga unsur dari beberapa metaheuristik yaitu GA tradisional, VNS, dan algoritma pencarian lokal (LS) untuk menemukan solusi yang mendekati optimal solusi. Algoritma hibrida dapat memberikan hasil yang lebih baik dibandingkan dengan metode terbaik lainnya yang telah dijelaskan dalam literatur seperti GA dan VNS [9, 31]. Algoritma hibrida lainnya yang terbukti dapat menghasilkan hasil yang lebih baik adalah Hybrid PSO. Algoritma ini dapat menunjukkan hasil yang lebih baik jika dibandingkan dengan PSO klasik [32].

Tabel 1 menunjukkan perkembangan penelitian yang membahas mengenai masalah alokasi lokasi dalam beberapa jenis algoritma seperti algoritma metaheuristik, algoritma klasterisasi, dan algoritma metaheuristik hibrida.

Tabel 1. Publikasi paper untuk permasalahan lokasi alokasi

Tipe Algoritma	Nama algoritma	Permasalahan	Referensi		
	Simulated Annealing	Uncapacitated	Bischoff and Dächert 2007 [28]		
	Tabu Search	Uncapacitated	Brimberg 2000 [29] Bischoff and Dächert 2007 [28]		
	Variable Neighborhood Search	Uncapacitated	Brimberg 2000 [29] Bischoff and Dächert 2007 [13]		
Metaheuristik	Genetic Algorithm	Uncapacitated	Brimberg 2000 [29] Salhi and Gamal 2003 [31] Bischoff and Klamroth 2007 [13]		
	Neural Network	Uncapacitated	Hsieh and Tien 2004 [33]		
	Ant Colony	Uncapacitated	Bischoff and Dächert 2007 [13] Jean-Paul Arnaout 2011 [23]		
Vlastarias si	Self-organizing feature maps	Uncapacitated	Hsieh, Kuang-Han and Tien, Fang- Chih 2004 [33]		
Klasterisasi	K-Means clustering method	Uncapacitated	Tien, Fang Chih et al 2007 [30]		
Hibrida Metaheuristik	Memetic Algorithm, Hybrid VNS, Hybrid Local Search methods	Uncapacitated	Jabalameli and Ghaderi 2008 [9]		
	Hybrid PSO and local search methods	Uncapacitated	Jabalameli and Ghaderi 2011 [32]		

BAB 3

METODOLOGI RISET

Tujuan utama dari penyelesaian masalah alokasi lokasi dalam penelitian ini adalah menentukan lokasi depo baru yang akan dibuka dan kelompok pelanggan yang akan dilayani oleh setiap depot baru yang dibuka. Penelitian ini dilakukan untuk menyelesaikan masalah lokasi alokasi tak berkapasitas (*uncapacitated*) perusahaan X Logistik yang berencana untuk membuka depot baru yang dapat menghasilkan total biaya minimal untuk setiap pembukaan sejumlah depot baru yang diusulkan. Pada bagian ini penelitian dikelompokkan menjadi dua bagian, yaitu fase konseptual dan fase desain.

3.1 Level Konsep

Untuk meningkatkan keuntungan dan memberikan pelayanan yang efisien kepada pelanggan untuk menjaga kepuasan mereka saat kompetitor tumbuh dengan cepat dan pasar menjadi sangat kompetitif diperlukan adanya fokus yang kuat dalam meningkatkan pelayanan kepada para pelanggan. Memberikan pelayanan yang terbaik kepada pelanggan adalah satusatunya cara untuk menjaga loyalitas para pelanggan. Oleh karena itu, ketika membuka depot baru diyakini dapat menjadi solusi untuk memecahkan masalah ini, keputusan untuk menentukan lokasi depot dan alokasi pelanggan dalam membuka depot baru dirasa sulit untuk dilakukan maka diperlukanlah suatu pendekatan ilmiah untuk memecahkan masalah tersebut. Untuk menyelesaikan masalah ini, lokasi-alokasi dapat digunakan sebagai jawaban terhadap masalah yang dihadapi. Pada Gambar 4 menjelaskan mengenai fase konseptual.

Gambar 4. Conceptual level flowchart

3.1.1 Level Desain

Menerapkan algoritma hybrid K-ACO untuk masalah lokasi alokasi kedalam kasus nyata, perlu melalui beberapa verifikasi untuk membuktikan bahwa algoritma yang diusulkan cukup baik untuk diterapkan. Kendala terhadap kapasitas dari fasilitas adalah faktor yang penting untuk mempertimbangkan jenis masalah yang dihadapi, berkapasitas atau tak berkapasitas. Selain itu, untuk membuktikan algoritma usulan tersebut lebih baik daripada algoritma sebelumnya juga menjadi faktor penting untuk meyakinkan seberapa baik algoritma ini bekerja. Pada tahap desain, tahap konstruksi menggambarkan model pada Gambar 5.

Gambar 5. Design level flowchart

Dalam versi yang kontinyu dari masalah alokasi lokasi atau disebut juga sebagai masalah Weber multisource, tujuannya adalah untuk menghasilkan sejumlah m fasilitas baru di wilayah R2 untuk melayani kebutuhan sejumlah pelanggan n atau pada titik tetap s dengan sedemikian rupa untuk meminimalkan total biaya transportasi [29]. Pada kasus permasalah tidak berkapasitas (uncapacitated) formula yang dapat digunakan digambarkan pada rumus (1).

Tujuan
$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} \| x_j - a_i \|$$
 Kendala
$$\min \sum_{j=1}^{m} w_{ij} = w_i, \qquad i = 1, ..., n$$
 (1)

Dimana:

$$||x_j - a_i|| = \{(x_{j1} - a_{i1})^2 + (x_{j2} - a_{i2})^2\}^{1/2}$$
, adalah euclidean norm.

 $x_j = (x_{j1}, x_{j2})$ adalah lokasi yang tidak diketahui dari fasilitas $j, j = 1, \ldots, m$.

 $a_i = (a_{i1,}ai_2)$ adalah lokasi yang diketahui dari konsumen i, i = 1, ..., n.

Biaya total adalah jumlah dari seluruh biaya biaya transportasi dan biaya pembukaan depot [23]. Biaya total dapat dihitung dengan menggunakan formulasi (2).

Biaya Total = min
$$\sum_{i=1}^{n} \sum_{j=1}^{m} D_i Z_{ij} T d(i,j) + \sum_{j=1}^{m} k_j F$$

Dimana:

D_i = Permintaan atau jumlah perjalan menuju titik konsumen (permintaan) i.

T = Biaya transportasi per unit jarak.

d(i, j) = Jarak antara titik permintaan i dan fasilitas j (jarak Euclidean).

 k_i = Indek dari fasilitas baru; k_i = 1 jika fasilitas j dibuka, 0 untuk lainnya.

F = Biaya tetap membuka sebuah fasilitas baru.

 Z_{ii} = Kapasitas dari depot j ke komsumen i

3.1.2 Identifikasi Data

ahap pertama dalam penelitian ini adalah menentukan dan memilih cakupan wilayah yang diprioritaskan untuk membuka depot baru, sehingga efisiensi total biaya dapat dicapai. Cakupan ditentukan berdasarkan jumlah konsumen yang paling banyak dari setiap wilayah yang ada. Berdasarkan data historis, wilayah Jakarta memiliki jumlah pelanggan yang paling tinggi yaitu sebesar 1016 pelanggan. Wilayah Jakarta dikelompokkan ke dalam lima wilayah yaitu utara, barat, selatan, timur, dan pusat. Pada tahapan ini dapat diketahui bahwa konsumen tersebar pada 90 titik dan melayani 1016 pelanggan. Gambar 6 menggambarkan kondisi saat ini, dimana perusahaan hanya memiliki satu buah pusat distribusi yang terletak di utara Jakarta dan melayani pelanggan secara keseluruhan.

Gambar 6. X-Logistic Company existing condition (only 1 depot)

3.1.3 Usulan algoritma K Means – Ant Colony Optimization (K-ACO)

Gambar 7. Proposed K Means – Ant Colony Optimization (K-ACO)

Gambar 8. Proposed K Means – Ant Colony Optimization (K-ACO) - Continued

Proses operasi dari algoritma usulan K Means – Ant Colony Optimization (K-ACO) digambarkan pada gambar 7. Algoritma usulan ini dibagi menjadi dua langkah. Langkah pertama untuk mencari solusi awal digunakan algoritma K-means untuk penyelesaiannya. K-Means digunakan untuk menghitung jumlah depot baru yang akan dibuka beserta kelompok konsumen yang akan dilayani dari setiap depot baru yang dibuka. Penjelasan dari algoritma hibrida usulan K-ACO dapat dilihat pada penjelasan dibawah ini:

Stage 1: K-Means Algorithm

- Langkah pertama yang harus dilakukan pada algoritma ini adalah menentukan nilai aval dari parameter-parameter ACO seperti α, β, ρ, Q, jumlah semut, dan jumlah iterasi. α dan β merupakan parameter yang digunakan untuk mengontrol bobot relatif dari rute feromone dan nilai heuristik [27].
- 2. Menentukan jumlah depot yang akan dibuka sejumlah m. jumlah dari m juga mengindikasikan jumlah cluster yang terbentuk pada algoritma K-Means.
- 3. Penentuan lokasi depot awal dilakukan secara random dan anggota setiap depot dibagi berdasarkan diagram voronoi yang terbentuk. Voronoi diagram itu sendiri adalah alokasi inisiasi yang mengelompokkan anggota sepot berdasarkan nilai mean terkecil.
- 4. Setelah seluruh konsumen dialokasikan ke dalam depot selanjutnya adalah menghitung rata-rata untuk setiap depot yang terbentuk menggunakan formulasi (3)

$$\arg\min\sum_{i=1}^{n}\sum_{j=1}^{m} \|a_i - \mu_i\|$$
(3)

Dimana:

 $a_i = (a_{i1}, ai_2)$ merupakan lokasi konsumen yang diketahui dari i, i = 1, ..., n.

 μ_i = merupakan nilai rata-rata dari titik S_k , k = 1, ..., z.

- 5. Terminasi pada algoritma ini jika centroid dari depot tidak berubah lagi setelah iterasi.
- 6. Evaluasi dari hasil klasterisasi menggunakan evaluasi internal menggunakan metode Dunn Index dengan menggunakan formulasi (4).

$$D = \min_{1 \le i \le n} \left\{ \min_{1 \le j \le n, i \ne j} \left\{ \frac{\mathbf{d}_{ij}}{\max_{1 \le k \le n} d'(k)} \right\} \right\}$$

$$\tag{4}$$

Dimana:

d_{ii} adalah jarak antara cluster *i* dan *j*.

d'(k) adalah jarak intra klaster dari klaster k.

Kriteria penilaian internal ini digunakan untuk mencari cluster dengan kesamaan intra cluster yang tinggi dan kesamaan inter klaster yang rendah. Semakin tinggi nilai Dunn Indeks maka cluster yang terbentuk semakin baik [34].

Stage 2: Ant Colony Optimization (ACO)

ACO digunakan untuk mengoptimalkan lokasi depot dan lokasi konsumen yang dekat dengan batas voronoi. Langkah pertama yang harus diakukan adalah ACO menghitung lokasi depot yang optimum. Lokasi depot akan dipindahkan ke titik yang baru jika titik tersebut dapat memberikan solusi yang terbaik (*best solution*), jika tidak maka lokasi depot tetap pada posisi yang dihasilkan pada algoritma K-Means. Setelah lokasi depot optimal ditemukan langkah selanjutnya yang dilakukan adalah mengoptimalkan lokasi konsumen yang dekat dengan batas voronoi. Aturan yang diterapkan untuk memindahkan lokasi konsumen ke depot lainnya yang menghasilkan hasil yang terbaik sama seperti aturan yang diterapkan pada optimalisasi depot. Lokasi depot konsumen dipindahkan jika dan hanya jika nilai terbaik diperoleh. Prosedur yang dilakukan oleh ACO untuk mengoptimalkan lokasi depot dan lokasi konsumen dijelaskan dibawah ini:

- 1. Hasil yang diperoleh dari algoritma K-Means dijadikan sebagai inputan pada algoritma hibrida K-ACO. Langkah pertama yang harus diselesaikan pada algoritma ini adalah menentukan intensitas feromon awal τ_{ij} atau jalur yang akan dilalui dari titik i ke titik j. Intensitas feromon awal diberikan nilai yang sama untuk τ_0 sehingga dapat dikatakan bahwa nilai dari $\tau_{ij} = \tau_0 \operatorname{dan} \Delta \tau_{kij} = 0$.
- 2. Langkah kedua yang harus dilakukan adalah membuat rute perjalan semut. Langkah awal atau titik awal semut mulai bergerak dinotasikan sebagai titik *i* kemudian bergerak ke titik *j* lalu dihitung nilai transisinya mengunakan aturan transisi sesuai dengan formula (5).

$$j = \begin{cases} \arg \max[\tau_{ij}^{\alpha}][\eta_{ij}^{\beta}] & \text{if } q \leq q_0 \\ J & \text{if } q > q_0 \end{cases}$$
 (5)

j adalah titik yang dipilih oleh semut secara acak. Kondisi dari aturan transisi pada formula (5) dapat dihitung dengan menggunakan formulasi probabilitas seperti pada formula (6).

$$p_{ij}^{k} = \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum_{h \in \mathcal{I}} \tau_{ih}^{\alpha} \eta_{ih}^{\beta}}$$
 (6)

Dimana:

 μ_{ij} adalah nilai heuristic yang nilainya sama dengan nilai invers dari panjang d_{ij} dari titik i ke titik j.

 τ_{ij} adalah jumlah feromon dari titik *i* ke titik *j*.

 α dan β merupakan dua jenis parameter yang digunakan untuk mengontrol bobot relative dari kadar feromon dan nilai heuristik.

q adalah nilai dari distribusi random yang dinotasikan dalam $\{0,1\}$.

h adalah titik yang tidak dilewati oleh semut dan dijadikan input pada set j

3. Setelah nilai probabilitas dihitung, proses updet dari jalur feromon dapat dihitung. update feromon secara lokal dan global pun dilakukan. update lokal dari jalur feromon yang ada dihitung dengan menggunakan formula (7).

$$\tau_{ij} = (1 - \rho)\tau_{ij} + \rho\tau_0 \tag{7}$$

Dimana $\rho \in (0,1)$ adalah tingkat penguapan feromon yang digunakan dalam update lokal dan τ_0 adalah nilai awal dari jalur feromon. Pada langkah 1 dari algoritma ACO, $\tau_0 = 1/d_{total}$, dimana d_{total} adalah jarak antara pelanggan dan depot logistik yang berasal dari perjalanan yang dilakukan secara acak dari semut yang menggunakan fungsi jarak tujuan paling pendek dan tanpa kendala kapasitas dari depot logistik yang ada. Dengan menggunakan aturan update ini, kemungkinan bagi semut untuk tetap pada jalur yang sudah dikunjungi dapat dikurangi sehingga kemungkinan terjebak pada optimasi local dapat diminimalisir. Setelah semua semut menyelesaikan perjalanannya, update feromon secara global pun dilakukan. Tujuan dari update feromon secara global adalah untuk meningkatkan kadar feromon dari jalur yang dilalui oleh semut agar menghasilkan kinerja yang terbaik. Update secara global dapat dilakukan dengan menggunakan formula (8).

$$\tau_{ij} = (1 - \rho)\tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}$$
(8)

Dimana $\rho_g \in (0,1)$ adalah evaporasi feromon saat update secara global dan $\Delta \tau_{kij}$ adalah jumlah dari feromon yang diperoleh dari jalur terbaik yang telah ditemukan. Jumlah feromon dari jalur terbaik tersebut dapat dihitung dengan menggunakan formula (9).

$$\Delta \tau_{kij} = \begin{cases} Q/L_k & \text{if ant } k \text{ used edge } i, j \text{ in its tour} \\ 0 & \text{otherwise} \end{cases}$$
 (9)

Dari persamaan di atas dapat diketahui bahwa L_k adalah biaya dari T_k , biaya tur terbaik yang ditemukan dalam penerapan algritma ini. Biaya tur adalah konsumsi jarak perjalanan antara alokasi pelanggan dengan depot logistik, masing-masing berasal dari tur yang dihasilkan secara acak oleh seekor semut dengan menggunakan fungsi jarak tujuan paling pendek dan tanpa kendala kapasitas. Nilai awal $\Delta \tau_{kij}$ sama dengan 0 seperti yang telah disebutkan pada langkah 1 dari algoritma ACO.

3.1.4 Eksperimental Desain

Percobaan desain adalah desain dari berbagai pengumpulan informasi yang dapat menggambarkan variasi yang terjadi, baik variasi dengan tipe kontrol penuh dari suatu percobaan atau tidak. Desain eksperimen faktorial diperlukan untuk menunjukkan kepentingan relatif dari faktor-faktor yang ada dan memiliki interaksi. Dalam studi ini, jumlah faktor yang berbeda diklasifikasikan menjadi lima faktor (jumlah semut, α , β , ρ , dan Q) pada tiga tingkat yang berbeda (tinggi, sedang, rendah). Desain eksperimental akan dilakukan dengan menggunakan MINITAB untuk menghitung ANOVA, sebagai pendekatan statistik untuk menentukan nilai optimum dari setiap level faktor ACO.

3.1.5 Penerapan Hibrida K-ACO dalam Masalah Riil

Penerapan algoritma hibrida K-ACO pada kasus riil dapat dijadikan dasar oleh para manajer dalam membuat keputusan untuk menyelesaikan masalah alokasi lokasi. Hasil yang dihasilkan dari algoritma ini:

- 1. Lokasi depot akan dibuka yang memberi total jarak minimum
- 2. Para pelanggan yang akan dilayani dari depot dibuka baru yang dibuka
- 3. Total biaya, yang terdiri dari biaya variabel dan biaya tetap untuk semua depot baru yang dibuka

BAB 4 PEMBAHASAN

4.1 Eksperimental Desain untuk *Tuning* Parameter

Kesulitan untuk mengidentifikasi parameter dan interaksi antara faktor-faktor dapat berpengaruh terhadap fungsi tujuan dalam meminimalkan total jarak pada masalah lokasi alokasi. Dalam studi ini, faktor yang dipertimbangkan dalam ekperimental desain ini berjumlah lima faktor (jumlah semut, α , β , ρ , dan Q) pada tiga tingkatan yang berbeda (tinggi, sedang, rendah) sehingga total percobaan yang harus dilakukan berjumlah 243 kombinasi.

Untuk mendapatkan hasil yang lebih akurat, setiap kombinasi diujicoba sebanyak 3 kali. B dan α adalah parameter pembobotan. Biasanya $\beta \geq \alpha$, yang artinya visibilitas merupakan faktor penentu yang lebih besar dibandingkan dengan pheromone. ρ adalah tingkat penguapan dan biasanya nilai yang ditetapkan lebih dari 0,4 dan faktor ini digunakan untuk menghindari solusi terjebak pada lokal optimal [22]. Nilai awal dari faktor-faktor ACO diilustrasikan pada tabel 2.

Jumlah Semut β Level Q ρ 10 0.5 0.1 Tinggi 0.4 Sedang 30 5 2.5 0.5 0.2 9 Rendah 50 4.5 0.6 0.3

Table 2. Initiate ACO factors

Desain eksperimen (DOE) akan digunakan untuk menentukan nilai parameter yang sesuai untuk hibrida K-ACO yang dapat meminimalkan total jarak antara depot dan lokasi pelanggan. Untuk menganalisis pengaruh dari setiap faktor yang ada dalam eksperimen tersebut benar, uji ANOVA dapat digunakan untuk memecahkan masalah ini. Analisis ANOVA dapat menjelaskan kombinasi faktor-faktor mana yang dapat memberikan hasil terbaik untuk mewujudkan tujuan meminimalkan total jarak dari masalah lokasi alokasi. Menggunakan perangkat lunak MINITAB, hasil dari uji ANOVA dapat dilihat pada Gambar 8.

ource	DF	Seg SS	Ady 55	Adj MS	F	P
	2	35320.1	35320.1	17660.0	29.84	0.000
3	2	42799.8	42799.8	21399.9	36.16	0.000
	2	305995.0	305995.0	152997.5	258.52	0.000
)	2	868.9	868.9	434.5	0.73	0.480
5	2	289.7	289.7	144.9	0.24	0.783
1*B	4	16215.2	16215.2	4053.8	6.85	0.000
Y*C	4	15128.0	15128.0	3782.0	6.39	0.000
f*D	4	3274.7	3274.7	818.7	1.38	0.239
raE.	4	525.0	525.0	131.2	0.22	0.926
3*C	4	332448.6	332448.6	83112.2	140.43	0.000
3*D	4	10471.3	10471.3	2617.8	4,42	0.002
3*E	4	980.7	980.7	245.2	0.41	0.798
:*D	4	1156.7	1156.7	289.2	0.49	0.744
*E	4	20.5	20.5	5.1	0.01	1.000
)#E	4	5672.4	5672.4	1418.1	2.40	0.050
L*B*C	8	16247.0	16247.0	2030.9	3.43	0.001
/*B*D	8	4579.8	4579.8	572.5	0.97	0.461
f*C*D	8	2582.9	2582.9	322.9	0.55	0.822
f*B*E	8	3469.4	3469.4	433.7	0.73	0.663
F+C+E	8	2403.2	2403.2	300.4	0.51	0.851
faD aE	8	1016.2	1016.2	127.0	0.21	0.988
3*C*D	8	8986.1	8986.1	1123.3	1.90	0.058
3*C*E	8	4580.4	4580.4	572.6	0.97	0.461
3*D*E	8	3987.6	3987.6	498.5	0.84	0.566
:*D*E	8	3662.8	3662.8	457.9	0.77	0.626
f*B*C*D	16	12370.4	12370.4	773.2	1.31	0.188
L*B*C*E	16	10793.0	10793.0	674.6	1.14	0.315
f*B*D*E	16	5945.8	5945.8	371.6	0.63	0.862
F=C=D=E	16	6033.6	6033.6	377.1	0.64	0.854
3+C+D+E	16	8169.7	6169.7	510.6	0.86	0.613
faBaCaDaE	32	18624.2	18624.2	582.0	0.98	0.496
Treor	486	287627.8	287627.8	591.8		
Total	728	1172246.8				

Gambar 9. Anova result ACO factors

Dari plot interaksional, kombinasi terbaik antar 5 faktor dalam K-ACO dapat dilihat pada tabel 3.

Table 3. Combination for Opttimum Parameters

Factor	Value	Level
Ant	30	Medium
α	0.5	Low
β	5	Medium
ρ	0.4	Low
Q	0.2	Medium

4.2 Tes Komputasi

Langkah selanjutnya setelah melakukan tuning parameter adalah tes komputasi. Komputasional ini digunakan untuk mengukur kinerja yang diusulkan terhadap algoritma yang ada pada literature. Tujuan dari pengembangan algoritma K-ACO ini adalah meminimalkan jarak Euclidian total dari titik tempat fasilitas didirikan menuju titik lokasi konsumen yang diketahui seperti yang telah dijelaskan pada bab metodologi riset.

Dalam kasus ini, usulan algoritma K-ACO akan dibandingkan dengan algoritma tabu search (TS) dan Variable Neighborhood Search (VNS) berdasarkan penelitian yang telah dilakukan oleh Brimberg [29] serta algoritma Ant Colony Optimization (ACO) yang telah dilakukan oleh Arnaout [23]. Data yang digunakan berasal dari TSPLib[35], untuk jumlah konsumen berjumlah 50 pelanggan untuk kasus yang tersedia di Eilon et al (1971) serta 654 pelanggan untuk kasus yang tersedia di Reinelt (1991). Algoritma hibrida usulan K-ACO ini akan dibandingkan dengan TS, VNS and ACO untuk kasus 50 pelanggan. Sedangkan ACO dan VNS akan digunakan untuk dibandingkan untuk kasus 654 pelanggan. Perbandingan antar algoritma ini menggunakan nilai rata-rata deviasi dari nilai optimal yang telah diketahui dari referensi acuan yang digunakan. Nilai rata-rata deviasi tersebut dihitung dengan menggunakan rumus (11).

$$Deviation = \frac{F_{Best} - F^*}{F^*} \times 100\%$$
 (11)

Dimana F_{best} merupakan biaya total yang diperoleh dari algoritma hibrida K-ACO dan F* merupakan nilai optimal atau nilai terbaik yang diperoleh dari referensi [9, 23]. Nilai ratarata persen (%) deviasi untuk kasus 50 pelanggan dan 654 pelanggan akan dihitung menggunakan rumus yang ada pada rumus (11).

Table 4. Average % deviation from the best known value for the 50 customer problem

m	Optimal Value	Min Value	Mean Value	Standard Deviation	K-ACO	ACO	TS	VNS
2	135.5222	135.5222	137.3433	1.6831	0.01	0.02	3.71	3.39
5	72.2369	72.2369	74.5719	2.0880	0.03	0.06	1.09	0.15
9	45.6884	45.7601	52.2778	4.8276	0.14	0.4	4	1.78
16	25.7427	32.2369	37.5747	2.2884	0.46	4.93	16.88	0.76
20	19.356	21.9743	23.2884	0.9440	0.20	5.81	19.87	0.2
23	15.6136	17.0224	19.7652	2.7098	0.27	4.93	23.38	0.42

Table 5. Average % deviation from the best known value for the 654 customer problem

m	Optimal Value	Min Value	Mean Value	Standard Deviation	K-ACO	ACO	VNS
2	815313.296	815313.296	815313.296	1.2271	0	0	0
10	115339.033	530538.061	550165.817	12660.8796	3.77	5.2	19.08
25	52209.5106	147996.9319	166804.3978	12690.133	2.19	4.76	23.84
50	29338.0106	102890.1462	119018.3130	7116.5197	3.06	3.82	19.18
75	20312.9668	73488.3967	75875.6712	1718.1599	2.74	3.98	14.69
100	16087.6846	63137.6654	63909.0027	649.3164	2.97	4.76	14.32

Dari 10 kali percobaan yang dilakukan untuk masing-masing kasus dengan jumlah pelanggan yang diketahui, nilai dari setiap percobaan yang telah dilakukan digambarkan pada Table 4 and Table 5. Pada the Table 4, hibrida K-ACO menunjukkan kinerja yang paling baik jika dibandingkan dengan tiga algoritma lainnya yaitu ACO, TS, and VNS karena nilai ratarata persen deviasi yang dihasilkannya paling rendah jika dibandingkan dengan yang lain. Nilai rata-rata deviasi paling baik diperoleh saat depot baru yang akan dibuka berjumlah 2 depot. Berdasarkan hasil yang diperoleh pada Table 5, algoritma hibrida K-ACO merupakan algorita yang terbaik, sedangkan ACO dan VNS merupakan algoritma yang paling buruk untuk aplikasi pada jumlah konsumen 50 pelanggan.

4.3 Studi Kasus

Perusahaan X Logistik terus mencari cara dan metode untuk meningkatkan keuntungan dan efisiensi layanan untuk menjaga kepuasan pelanggan mereka. Dalam situasi dimana pertumbuhan pesaing cepat dan pasar menjadi lebih kompetitif, perlu ada fokus yang kuat untuk meningkatkan keuntungan dan meningkatkan pelayanan kepada pelanggan. Menawarkan pelayanan yang terbaik kepada pelanggan adalah satu-satunya cara untuk menjaga loyalitas pelanggan mereka. Mengikuti nilai inti bisnis, ayanan terbaik yang ditawarkan dapat diukur dari tidak adanya keterlambatan yang terjadi dalam mengantarkan barang kepada pelanggan (zero delay), harga yang kompetitif, dan depot mudah ditemukan.

Manajer X Logistik telah menemukan solusi untuk memecahkan masalah yang saat ini dihadapi oleh perusahaan. Menambah jumlah depot dapat menjadi solusi untuk memecahkan masalah yang terjadi saat ini karena satu depot untuk melayani seluruh pelanggan dirasakan tidak lagi memadai ketika tingkat kemacetan di Jakarta meningkat dalam beberapa tahun

terakhir. Tingkat kemacetan yang tinggi ini sudah tentu mendorong meningkatnya tingkat keterlambatan yang terjadi serta menimbulkan kenaikan biaya transportasi karena waktu tempuh yang lebih lama dan konsumsi bahan bahan yang lebih banyak. Masalah baru yang muncul jika penambahan depot dilakukan yaitu bagaimana menentukan lokasi depo yang baru dan group pelanggan yang akan melayani oleh depot baru yang dibuka tersebut. Untuk mengatasi masalah ini, masalah lokasi alokasi dapat diterapkan dalam kasus ini.

Berdasarkan data historis dari perusahaan X-Logistic, pelanggan tersebar kedalam 90 titik. Nilai Euclidian dari setiap titik yang ada dapat dilihat pada Tabel 6. Karena masalah yang akan dipecahkan adalah tak berkapasitas (uncapacitated) jumlah permintaan pelanggan dapat diabaikan. Maksud dari tak berkapasitas (uncapacitated) ini berarti depot baru yang akan dibuka tidak menjadikan permintaan pelanggan sebagai kendala. Jadi, semua jumlah permintaan pelanggan yang masuk harus dilayani dan tidak boleh ditolak. Data historis dalam bentuk titik longitude yang akan digunakan dalam penelitian ini digambarkan pada tabel 6. Titik longitude ini sangat diperlukan untuk menentukan lokasi depot baru dan kelompok konsumen yang akan dilayani untuk setiap depot baru yang dibuka.

Table 6. X-Logistic Company Customer nodes

No	Kode Pos	Jumlah Pelanggan	x	y
1	10120	5	-6.161676	106.831183
2	10150	1	-6.169228	106.816421
3	10160	6	-6.171404	106.825261
4	10210	37	-6.170593	106.824918
5	10220	8	-6.20336	106.826763
6	10230	5	-6.193249	106.826763
7	10270	37	-6.20929	106.809211
8	10310	2	-6.197686	106.844444
9	10330	3	-6.18911	106.8488
10	10350	8	-6.189153	106.837149
11	10410	8	-6.172086	106.850538
12	10450	5	-6.18079	106.857834
13	10560	7	-6.183094	106.866546

Table 6. X-Logistic Company Customer nodes (Continued)

15 10640 6 -6.165388 106.873884 16 10710 1 -6.159926 106.842813 17 10720 13 -6.145504 106.850195 18 10730 2 -6.140555 106.838694 19 11110 1 -6.136245 106.81951 20 11120 12 -6.145547 106.81715 21 11410 5 -6.192609 106.804533 22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.184235 106.78654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.791401 26 11510 1 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.786382 <	14	10610	10	-6.155659	106.850452
17 10720 13 -6.145504 106.850195 18 10730 2 -6.140555 106.838694 19 11110 1 -6.136245 106.81951 20 11120 12 -6.145547 106.81715 21 11410 5 -6.192609 106.804533 22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.230019 106.756382 31 11730 1 -6.150625 106.729259	15	10640	6	-6.165388	106.873884
18 10730 2 -6.140555 106.838694 19 11110 1 -6.136245 106.81951 20 11120 12 -6.145547 106.81715 21 11410 5 -6.192609 106.804533 22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.791401 26 11510 1 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.186294 106.7880415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259	16	10710	1	-6.159926	106.842813
19 11110 1 -6.136245 106.81951 20 11120 12 -6.145547 106.81715 21 11410 5 -6.192609 106.804533 22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.77372 27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.801331 34 12130 8 -6.246321 106.801701 <	17	10720	13	-6.145504	106.850195
20 11120 12 -6.145547 106.81715 21 11410 5 -6.192609 106.804533 22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.17247 106.791401 28 11530 54 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.2449947 106.8080982	18	10730	2	-6.140555	106.838694
21 11410 5 -6.192609 106.804533 22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.77372 27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.246321 106.801701 35 12160 1 -6.246321 106.801701 35 12170 1 -6.244944 106.818609	19	11110	1	-6.136245	106.81951
22 11420 1 -6.184801 106.807623 23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.791401 26 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.226825 106.816378	20	11120	12	-6.145547	106.81715
23 11450 2 -6.162145 106.801615 24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.77372 27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.244947 106.809082 36 12170 1 -6.226825 106.816378 38 12310 32 -6.270253 106.774235	21	11410	5	-6.192609	106.804533
24 11460 1 -6.148235 106.788654 25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.77372 27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235 <td>22</td> <td>11420</td> <td>1</td> <td>-6.184801</td> <td>106.807623</td>	22	11420	1	-6.184801	106.807623
25 11480 3 -6.191073 106.791401 26 11510 1 -6.171276 106.77372 27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.2449947 106.809082 36 12170 1 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	23	11450	2	-6.162145	106.801615
26 11510 1 -6.171276 106.77372 27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.2444444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	24	11460	1	-6.148235	106.788654
27 11520 12 -6.17247 106.761189 28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	25	11480	3	-6.191073	106.791401
28 11530 54 -6.186294 106.780415 29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.2444444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	26	11510	1	-6.171276	106.77372
29 11620 4 -6.193121 106.738873 30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.2444444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	27	11520	12	-6.17247	106.761189
30 11630 4 -6.203019 106.756382 31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	28	11530	54	-6.186294	106.780415
31 11730 1 -6.150625 106.729259 32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	29	11620	4	-6.193121	106.738873
32 11740 1 -6.161718 106.738014 33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	30	11630	4	-6.203019	106.756382
33 12110 1 -6.235741 106.813331 34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	31	11730	1/1/1/	-6.150625	106.729259
34 12130 8 -6.246321 106.801701 35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	32	11740	1	-6.161718	106.738014
35 12160 1 -6.249947 106.809082 36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	33	12110	1	-6.235741	106.813331
36 12170 1 -6.244444 106.818609 37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	34	12130	8	-6.246321	106.801701
37 12190 51 -6.226825 106.816378 38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	35	12160	1	-6.249947	106.809082
38 12310 32 -6.270253 106.788311 39 12330 2 -6.268717 106.774235	36	12170	1	-6.244444	106.818609
39 12330 2 -6.268717 106.774235	37	12190	51	-6.226825	106.816378
	38	12310	32	-6.270253	106.788311
40 12430 7 -6.288681 106.803761	39	12330	2	-6.268717	106.774235
	40	12430	7	-6.288681	106.803761
41 12440 2 -6.300966 106.788826	41	12440	2	-6.300966	106.788826
42 12510 1 -6.268205 106.847706	42	12510	1	-6.268205	106.847706
43 12520 7 -6.298578 106.84556	43	12520	7	-6.298578	106.84556

Table 6. X-Logistic Company Customer nodes (Continued)

	•			
44	12550	1	-6.305445	106.827707
45	12560	125	-6.290302	106.820498
46	12710	6	-6.236722	106.831226
47	12720	1	-6.249606	106.82672
48	12730	4	-6.264451	106.827021
49	12740	1	-6.263044	106.843371
50	12760	1	-6.258052	106.845882
51	12770	2	-6.248582	106.862082
52	12780	2	-6.248497	106.850195
53	12810	3	-6.238578	106.855967
54	12870	4	-6.233309	106.844273
55	12910	66	-6.206986	106.834102
56	12920	7	-6.214389	106.832964
57	12930	15	-6.225332	106.824918
58	12940	231	-6.223284	106.838565
59	12950	40	-6.235592	106.837084
60	13210	8	-6.172129	106.892338
61	13220	6	-6.196064	106.897659
62	13320	2	-6.219572	106.872339
63	13330	1	-6.236466	106.877704
64	13340	1	-6.239111	106.884162
65	13440	5	-6.232541	106.921005
66	13450	1	-6.247132	106.942291
67	13610	1	-6.279297	106.906157
68	13620	2	-6.256858	106.915298
69	13650	1	-6.255066	106.886158
70	13910	13	-6.16479	106.951389
71	13920	6	-6.185355	106.930361
72	13930	66	-6.206901	106.93006
73	13950	1	-6.201483	106.970615
	1			

Table 6. X-Logistic Company Customer nodes (Continued)

74	14110	3	-6.099249	106.93285
75	14130	3	-6.125236	106.941648
76	14150	1	-6.113331	106.962118
77	14140	33	-6.147126	106.955037
78	14230	1	-6.125706	106.909504
79	14250	9	-6.16479	106.927013
80	14240	24	-6.156427	106.906586
81	14260	2	-6.128949	106.920919
82	14310	16	-6.10676	106.874485
83	14320	1	-6.120244	106.891694
84	14340	2	-6.12498	106.874056
85	14350	14	-6.148534	106.883068
86	14430	2	-6.123316	106.82745
87	14440	7	-6.125535	106.803675
88	14450	40	-6.118196	106.78535
89	14470	1 6	-6.101298	106.730633
90	15111	4	-6.177932	106.837149

Data historis lainnya yang mendukung penelitian ini adalah biaya tetap untuk membuka depot baru dan biaya variabel. Rincian biaya-biaya tersebut dapat dilihat pada tabel 7. Faktorbiaya ini digunakan untuk menghitung total biaya yang diperlukan untuk menbuka depot baru.

Table 7. Cost Component X-Logistic company

Direct		Cost	Fixed	Cost
in Rupiah (Rp)			in Rupiah (Rp)	
Fuel/Km	665			
Toll cost/Entrance	15.000		Equipment cost/Day	4.316.058
Parking cost/ Entance	6.000		Equipment cost 2 uj	1.510.050
Man Power/ Hour	22.074			

4.4 Analisis Studi Kasus

Menerapkan metode hibrida K-ACO kedalam kasus riil harus mengikuti urutan pekerjaan dengan benar untuk mendapatkan hasil terbaik. Urutan pekerjaan harus dimulai dari input nilai Euclidian ke program hibrida K-ACO yang dijalankan menggunakan MATLAB. Kedua, menentukan jumlah depo yang optimal dapat dilakukan dengan cara *trial* and *error* untuk setiap jumlah depot yang tersedia. Jumlah depot yang menghasilkan total jarak minimum akan dipilih sebagai keputusan akhir. Pada bagian ini, jumlah depo juga menunjukkan pelanggan yang akan dilayani di depot masing-masing secara bersamaan. Untuk menguji algoritma K-ACO hibrida dapat memberikan solusi terbaik untuk masalah alokasi lokasi, masing-masing jumlah depot (m) akan diujikan sebanyak 5 kali untuk masing-masing jumlah depot (m) yang berbeda. Mengikuti kebijakan perusahaan, jumlah depot akan dibuka tidak lebih dari 5% dari jumlah titik pelanggan yang tersedia.

4.4.1 Penerapan Algoritma K-Means

Algoritma ini dimulai dengan K-Means untuk menentukan jumlah depot baru yang akan dibuka. Setelah itu, ACO diterapkan untuk mengoptimalkan lokasi depot dan lokasi pelanggan. Ringkasan untuk setiap depot dapat dilihat pada Tabel 8. Tabel tersebut menggambarkan mengenai jumlah depo (m), total jarak minimum yang ditetapkan sebagai fungsi tujuan dalam algoritma K-Means, biaya variabel, biaya tetap dan biaya total yang diperlukan oleh perusahaan untuk membuka depot baru. Jarak total minimum seperti yang diilustrasikan pada Tabel 8 adalah jarak total rata-rata yang dihasilkan dari lima kali percobaan yang dilakukan pada algoritma K-Means. Faktor ini digunakan untuk menghitung biaya variabel yang terkait dengan konsumsi bahan bakar. Selain itu, faktor ini juga diperhitungkan untuk menghitung waktu yang dibutuhkan untuk perjalanan dari depot ke pelanggan depot itu. Waktu perjalanan yang dibutuhkan untuk biaya tenaga dihitung per jam.

Dengan menggunakan algoritma K-Means, jumlah depo yang memberikan nilai terbaik diketahui saat jumlah depot adalah tiga. Jumlah depot tiga dianggap memberikan hasil yang paling baik karena memberikan biaya total yang paling minimum jika dibandingkan dengan jumlah depot usulan lainnya. Dari hasil di atas, Analisis yang dapat dilakukan adalah saat jumlah depot sedikit, konsumsi waktu untuk mengantarkan barang kepada pelanggan lebih panjang jika dibandingkan depot berjumlah banyak. Kekurangan yang muncul ketika jumlah

depot banyak adalah biaya tetap untuk membuka depot secara keseluruhan meningkat secara drastic sebanding dengan jumlah depot baru yang dibuka. Dengan demikian, kombinasi jumlah depot terbaik yang menghasilkan total biaya minimum adalah tiga depot. Sebagai catatan, biaya tetap yang digunakan dalam penelitian ini hanya mempertimbangkan biaya untuk pembukaan depotnya saja. Biaya lainnya setelah depot dibuka seperti biaya pemeliharaan, tenaga kerja, dan sebagainya dapat diabaikan.

Table 8. Total Cost comparison for each number of Depots

m	Minimum Total Distance	Variable cost	Fixed cost	Total cost
2	11.76881569	51,985,793.75	8,632,116.00	60,617,909.75
3	10.46881569	46,245,689.25	12,948,174.00	59,193,863.25*
4	9.784450841	43,223,900.23	17,264,232.00	60,488,132.23
5	8.917092157	39,394,108.32	21,580,290.00	60,974,398.32

Dari hasil perhitungan dapat diketahui bahwa ketika depot baru berjumlah tiga depot, jarak dari depot ke pelanggan tidak terlalu jauh dan biaya untuk membuka depot baru tidak terlalu mahal. Perbandingan biaya untuk setiap jumlah depot diilustrasikan pada Gambar 9.

Gambar 10. Graph cost for each number of depot

4.4.2 Evaluasi Jumlah Klaster

Evaluasi dari hasil pengelompokan kadang-kadang disebut sebagai validasi klaster. Terdapat berbagai macam metode untuk mengukur kesamaan antara dua klaster. Evaluasi klaster ini dilakukan untuk membandingkan seberapa baik klaster yang terbentuk dengan menggunakan serangkaian data yang tersedia. Pengukuran yang dilakukan ini sangat berguna untuk menilai kualitas dari metode clustering yang digunakan. Ketika hasil clustering dievaluasi berdasarkan data yang ada didalam kelompok klasternya sendiri, evaluasi ini disebut sebagai evaluasi internal. Metode ini biasanya menetapkan skor terbaik untuk algoritma yang menghasilkan berdasarkan pada tingkat kesamaan yang tinggi dalam cluster dan tingkat kesamaan yang rendah antar cluster. Metode Dunn dapat digunakan untuk menilai kualitas algoritma clustering yang digunakan berdasarkan pada kriteria internal. Perhitungan Dunn indeks ini bertujuan untuk mengidentifikasi kepadatan setiap klaster dan jarak yang terbentuk antar klaster. Hal ini didefinisikan sebagai rasio antara jarak minimal antar-cluster untuk memaksimalkan jarak intra-cluster. Untuk setiap bagian klaster, indeks Dunn dapat dihitung dengan rumus (4). Hasil dari Dunn indeks dapat dilihat pada tabel berikut:

Table 9. Cluster Evaluation

Number of Cluster	Dunn Index
2	0.699538
3	0.758089*
4	0.484555
5	0.742758

Berdasarkan nilai yang dihasilkan pada Dunn indeks dengan menggunakan kriteria internal yang memberikan nilai terbaik adalah saat jumlah dari cluster adalah tiga. Keputusan yang diambil berdasarkan Dunn indeks ini adalah klaster yang menghasilkan nilai paling baik jika dibandingkan dengan jumlah kluster lainnya.

4.4.3 Penerapan Algoritma ACO

Setelah jumlah depot ditentukan, masalah lokasi alokasi ini juga dapat memberikan informasi mengenai kelompok pelanggan yang akan dilayani untuk setiap depot yang dibuka. Karena jumlah depot yang optimal untuk dibuka berjumlah tiga depot, maka pelanggan juga akan dikelompokkan menjadi tiga alokasi grup. Kelompok alokasi pelanggan tersebut dapat dilihat pada Tabel 10.

Table 10. Customer allocation for the number of depot will be opened

Depot (-6.145043; 106.870571) 80, 60, 61, 72, 65,66, 73, 71, 79, 77, 70, 76, 74, 75, 81, 78, 83, 82, 84, 85, 13, and 15 Depot	Depot Number	Depot member (Customer Allocation)	Total depot Member
Depot 2 41, 39, 38, 34, 35, 36, 47, 46, 59, 58, (-6.273946; 106.736015) 56, 55, 33, 37, 57, 53, 54, 62, 64, 63, 69, 68, and 67 Depot 3 12, 8, 10, 6, 7, 5, 9, 11, 90, 22, 21, 25, 28, 26, 27, 30, 29, 32, 31, 89, 88, 87, and 86		70, 76, 74, 75, 81, 78, 83, 82, 84, 85,	22
Depot 3 12, 8, 10, 6, 7, 5, 9, 11, 90, 22, 21, 25, (-6.165087; 106.766486) 28, 26, 27, 30, 29, 32, 31, 89, 88, 87, and 86	1	41, 39, 38, 34, 35, 36, 47, 46, 59, 58, 56, 55, 33, 37, 57, 53, 54, 62, 64, 63,	33
Total Customers node 90	(-6.165087; 106.766486)	12, 8, 10, 6, 7, 5, 9, 11, 90, 22, 21, 25, 28, 26, 27, 30, 29, 32, 31, 89, 88, 87,	

From the Table 10, the locations for each depot are known. Depot 1 is located in coordinate (-6.145043; 106.870571) with number of customers will provide services to 22 customers. Depot 2 is located in coordinate (-6.273946; 106.736015) will provide services to 33 customers and depot 3 is located in coordinate (-6.165087; 106.766486) will provide services to 35 customers. Data in column depot member in Table 10, represents coordinated customer nodes are mentioned in Table 6. Using MATLAB software, customer's distribution can be seen in Figure 10 and Figure 11. The Figure 10 depicts the depot location using K-Means and the Figure 11 represent the depot location optimization by applying ACO. As a note, hybrid K-ACO algorithm changed the depot location if the total distance produced from hybrid K-ACO is lower than K-Means result, otherwise the depot position is fixed. The aim

from applying ACO is optimize the location and minimize the total cost for whole. From Table 11, can be shown the total cost for K-Means and ACO.

Table 11. Total cost reduction from K-Mean to ACO

Factor	K-Means	ACO
m	3	3
Minimum Total	10.46881569	9.728221853
Distance	10.1000120)	<i>y.,, 2</i> 0221000
Variable cost	46,245,689.25	42,975,623.11
Fixed cost	12,948,174.00	12,948,174.00
Total cost	59,193,863.25	55,923,797.11

Dari Tabel 11 dapat diketahui bahwa penerapan algoritma K-ACO dapat mengurangi biaya total dari 59,193,863.25 rupiah menjadi 55,923,797.11 rupiah. Dengan kata lain, dengan menerapkan K-ACO penghematan yang dapat dilakukan sebesar 3,270,066.14 rupiah atau sama dengan 6% dari total biaya awal yang digunakan saat hanya menggunakan algoritma K-Means. Klaster yang terbentuk digambarkan pada Gambar 10 dan Gambar 11. Gambar 10 mengambarkan solusi masalah lokasi depo dan alokasi pelanggan menggunakan algoritma K-Means dan Gambar 11 mengambarkan solusi alokasi lokasi menggunakan K-ACO. Dari dua gambar di tersebut dapat diketahui bahwa lokasi depot sedikit berpindah dan pelanggan disetiap klaster yang terbentuk tetap karena tidak ada perubahan nilai yang terjadi saat konsumen yang mendekati daerah batas dipindahkan ke depot lain selain depot asalnya.

Gambar 11. Location allocation Problem with K-Means

Figure 11. Location Allocation Problem using K-ACO

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Tesis ini membahas mengenai masalah lokasi alokasi tak berkapasitas pada jaringan logistik. Dengan demikian, batasan kapasitas dari depot yang akan dibuka dapat diabaikan. Masalah alokasi lokasi ini dapat dikategorikan ke dalam dua sub-masalah. Pertama, masalah mengenai lokasi fasilitas logistik harus dibuka dan jumlahnya. Kedua, masalah alokasi, yaitu bagaimana melakukan alokasi pelanggan untuk setiap depot logistic yang dibuka untuk memastikan bahwa layanan yang diberikan kepada pelanggan tepat waktu. Berdasarkan tujuan yang ingin dicapai sesuai yang telah dijelaskan pada bagian pendahuluan, kesimpulan yang dapat diambil adalah:

1. Penelitian ini membahas mengenai usulan algoritma hibrida K-ACO untuk menyelesaikan masalah lokasi alokasi. Algoritma ini cocok untuk digunakan dalam menyelesaikan masalah ini karena memiliki nilai persen deviasi rata-rata yang lebih baik jika dibandingkan dengan algoritma lain yang telah dikembangkan dalam penelitian sebelumnya. Setelah hasil dari algoritma hybrid K-ACo diperoleh, algoritma ini dapat diterapkan dalam kasus riil untuk membantu para manajer dalam mengambil keputusan dalam memecahkan masalah lokasi alokasi

Dengan menggunakan algoritma Hybrida K-ACO untuk menyelesaikan masalah pada perusahan X-Logistik dapat diketahui bahwa:

- a. Jumlah fasilitas baru harus openedis 3 depot, karena ini jumlah depot dapat memberikan meminimalkan total biaya dibandingkan dengan nomor lain dari depot.
- b. Lokasi Depot akan dibuka di koordinat (-6,145043, 106,870571) untuk Depot 1. Depot 2 terletak di koordinat (-6,273946, 106,736015) dan depot 3 terletak di koordinat (-6,165087, 106,766486). Tanah bergeser seseorang koordinat akan berdampak secara total jarak dan itu juga mempengaruhi dengan biaya transportasi.
- c. Jumlah simpul pelanggan yang akan dilayani di depot 1 adalah 22 pelanggan. Depot 2 akan memberikan layanan kepada 33 pelanggan dan depot 3 akan menyediakan layanan sampai 35 pelanggan. Pelanggan anggota tidak dapat mengubah satu sama lain karena masing-masing koordinat customerhasa unik. Mengubah depot mempengaruhi dalam jarak euclidiean dan biaya transportasi.

5.2 Penelitian Lanjutan

Untuk penelitian lanjutan yang dapat dilakukan dalam tesis ini adalah:

- 1. Lokasi rute masalah dapat diterapkan sebagai ekstensi dalam penelitian ini. Menerapkan metode routing akan membuat manajer lebih mudah untuk memutuskan keputusan yang berkaitan dengan masalah logistik. Dengan menggunakan metode ini routing, titik awal dan berakhir titik perjalanan kendaraan dapat ditentukan dari awal. Dengan demikian, upaya untuk meminimalkan biaya transportasi dapat dicapai.
- 2. Kendaraan routing masalah dapat diterapkan juga untuk mempertimbangkan kendaraan yang dibutuhkan dalam masalah logistik dan berapa banyak memakan waktu untuk setiap kendaraan per hari.
- 3. Hybrid K-ACO algoritma mungkin dapat diterapkan di tempat lain data kasus nyata dengan jumlah yang lebih besar dari simpul pelanggan.

Daftar Pustaka

- [1] Aguezzoul, A., "The Third Party Logistics Selection: A Review of Literature," International Logistics and Supply Chain Congress, pp. 1-9, 2009.
- [2] Ren, Y., "Metaheuristics for Multiobjective Capacitated Location Allocation on Logistics," Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Canada, 2011.
- [3] Ambrosino, D. and Scutella, M. G., "Distribution Network Design: New Problems and Related Models," *European Journal of Operational Research*, Vol. 165, pp. 610–624, 2004.
- [4] Crainic, T. G., Ricciardi, N., and Storchi, G., "Advanced Freight Transportation Systems for Congested Urban Areas," *Transportation Research*, Vol. 12, pp. 119-137, 2004.
- [5] Azarmand, Z. and Jami, N. E., "Location Allocation Problem," *Physica-Verlag Heidelberg*, pp. 93-110, 2009.
- [6] Bischoff, M. and Dächert, K., "Allocation Search Methods for A Generalized Class of Location–Allocation Problems," *European Journal of Operational Research*, Vol. 192, pp. 793-807, 2009.
- [7] Brimberg, J., "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," *Annals of Operations Research*, Vol. 136, pp. 99-115, 2005.
- [8] Brimberg, J., Hansen, P., Mladenović, N., and Salhi, S., "A Survey of Solution Methods for The Continuous Location-Allocation," *International Journal of Operations Research*, Vol. 5, pp. 1-12, 2008.
- [9] Jabalameli, M. S. and Ghaderi, A., "Hybrid algorithms for the uncapacitated continuous location-allocation problem," *The International Journal of Advanced Manufacturing Technology*, Vol. 37, pp. 202-209, 2007.
- [10] Goodchild, M. F., "A Location-Allocation Model for Retail Site Selection," *Journal of Retailing*, Vol. 60, pp. 84-101, 1984.
- [11] Scaparra, M. P. and Scutella, M. G., "Facilities, Locations, Customers: Building Blocks of Location Model A Survey," 2001.
- [12] Suomalainen, E., "Multicriteria Analysis and Visualization of Location-Allocation Problems," Master Degree, Department of Engineering Physics and Mathematics, Helsinki University of Technology, 2006.

- [13] Bischoff, M. and Klamroth, K., "Two Branch & Bound Methods for A Generalized Class of Location-Allocation Problems," pp. 1-17, 2007.
- [14] Ding, C. and He, X., "K-means Clustering via Principal Component Analysis," Proceedings of the 21st International Conference on Machine Learning, pp. 1-9, 2004.
- [15] Wang, H. and Song, M., "Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming," *The R Journal*, Vol. 3/2, pp. 29-34, 2011.
- [16] Kanungo, T., Netanyahu, N. S., and Wu, A. Y., "An Efficient K-Means Clustering Algorithm: Analysis and Implementation," *IEEE Transaction on Pattern Analysis and Machine Intelligence*, Vol. 24, pp. 881-893, 2002.
- [17] Aloise, D. e. a., "NP-Hardness of Euclidean Sum-of-Squares Clustering," *Machine Learning*, Vol. 75, pp. 245-248, 2009.
- [18] Mahajan, M., Nimbhorkar, P., and Varadarajan, K., "The Planar k-means Problem is NP-hard," *Proceedings of the 3rd International Workshop on Algorithms and Computation*, Vol. 3, pp. 274–285, 2009.
- [19] Sahraeian, R. and Kaveh, P., "Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm," *Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management*, pp. 1-6, 2010.
- [20] Wagstaff, K. and Cardie, C., "Constrained K-means Clustering with Background Knowledge," *Proceedings of the Eighteenth International Conference on Machine Learning*, pp. 557-584, 2001.
- [21] Dorigo, M. and Stutzle, T., "Ant Colony Optimization: Overview and Recent Advances," *Handbook of Metaheuristics*, Vol. 146, pp. 227-264, 2010.
- [22] Dorigo, M. and Caro, D. G., "Ant Algorithms for Discrete Optimization," *Artificial Life*, Vol. 5, pp. 137-172, 1999.
- [23] Arnaout, J.-P., "Ant Colony Optimization Algorithm for The Euclidean Location-Allocation Problem With Unknown Number of Facilities," *Journal of Intelligent Manufacturing*, 2011.
- [24] Khandre, H. S., "Review of Application of Ant Colony Optimization," *International Journal of Engineering Science and Technology*, pp. 41-47, 2011.
- [25] Hlaing, Z. and Khine, M. A., "An Ant Colony Optimization Algorithm for Solving Traveling Salesman Problem," *International Conference on Information Communication and Management*, Vol. 16, pp. 54-59, 2011.

- [26] Qiong, Z. e. a., "An Ant Colony Optimization Model for Parallel Machine Scheduling with Human Resource Constraints," *DET2009 Proceedings*, AISC, Vol. 66, pp. 917-926, 2010.
- [27] Dorigo, M. and Stutzle, T., "Ant colony Optimization," *The MIT Press*, pp. 153-221, 2004.
- [28] Bischoff, M. and Dächert, K., "Allocation Search Methods for A Generalized Class of Location-Allocation Problems," 2007.
- [29] Brimberg, J., Hansen, P., Mladenović, N., and Taillard, E. D., "Improvements and Comparison of Heuristics for Solving The Uncapacitated Multisource Weber Problem," *Operations Research*, Vol. 48, pp. 444-460, 2000.
- [30] Tien, F. C., Hsieh, K. H., and Cheng, C. Y., "Using Hybrid Genetic Algorithms to Solve Discrete Location Allocation Problems with Rectilinear Distance," *Journal of the Chinese Institute of Industrial Engineers*, Vol. 24 No. 1, pp. 1-19, 2007.
- [31] Salhi, S., "A Genetic Algorithm Based Approach for The Uncapacitated Continuous Location–Allocation Problem," *Annals of Operations Research*, Vol. 123, pp. 203-222, 2003.
- [32] Ghaderi, A., Jabalameli, M. S., Barzinpour, F., and Rahmaniani, R., "An Efficient Hybrid Particle Swarm Optimization Algorithm for Solving the Uncapacitated Continuous Location-Allocation Problem," *Networks and Spatial Economics*, pp. 1-19, 2011.
- [33] Hsieh, K.-H. and Tien, F.-C., "Self-Organizing Feature Maps for Solving Location—Allocation Problems With Rectilinear Distances," *Computer & Operations Research*, Vol. 31, pp. 1071 1031, 2004.
- [34] Pham, D. T., Dimov, S. S., and Nguyen, C. D., "Selection of K in K-Means Clustering," *Proc IMechE* Vol. 219, pp. 103-120, 2005.
- [35] Reinelt, G., "TSPLIB A Traveling Salesman Problem Library," *ORSA Journal on Computing*, Vol. 3, pp. 376 384, 1991.

Lampiran

Lampiran A1. Ujicoba MATLAB untuk 50 pelanggan dengan jumlah depot m=2

m	No	Optimal Value	Best Known Value	% Deviation
	1		136.0416	0.00
	2		135.9109	0.00
	3		137.6362	0.02
	4		140.5819	0.04
2	5	135.5222	139.3643	0.03
2	6	133.3222	135.5222	0.00
	7		136.1276	0.00
	8		138.5936	0.02
	9		136.5116	0.01
	10		137.1428	0.01
Average	Average		137.3433	0.01
Deviation Standard		1.6831	135.5222	

Lampiran A2. Ujicoba MATLAB untuk 50 pelanggan dengan jumlah depot m=5

m	No	Optimal Value	Best Known Value	% Deviation
	1		73.1804	0.01
	2		75.7992	0.05
	3		74.6625	0.03
	4		74.1046	0.03
5	5	72.2369	78.4641	0.09
3	6	12.230)	72.2369	0.00
	7		72.4693	0.00
	8		73.8075	0.02
	9		77.5284	0.07
	10		73.4657	0.02
Average			74.5719	0.03
Deviation Standard		2.088080151	72.2369	

Lampiran A3. Ujicoba MATLAB untuk 50 pelanggan dengan jumlah depot m=9

M	No	Optimal Value	Best Known Value	% Deviation
	1		58.6994	0.28
	2		53.0105	0.16
	3		48.5499	0.06
	4		53.4508	0.17
9	5	45.6884	59.0638	0.29
9	6	43.0004	47.5529	0.04
	7		45.7601	0.00
	8		47.9109	0.05
	9		51.7574	0.13
	10		57.0224	0.25
Average	Average		52.2778	0.14
Deviation Standard			4.827612418	45.7601

Lampiran A4. Ujicoba MATLAB untuk 50 pelanggan dengan jumlah depot m=16

M	No	Optimal Value	Best Known Value	% Deviation
	1		39.3669	0.53
	2		38.5042	0.50
	3		36.2059	0.41
	4		32.2369	0.25
16	5	25.7427	37.7893	0.47
10	6		37.6931	0.46
	7		36.8416	0.43
	8		37.3919	0.45
	9		38.9572	0.51
	10		40.7598	0.58
Average		37.5747	0.46	
Deviation S	Deviation Standard		2.288355324	32.2369

Lampiran A5. Ujicoba MATLAB untuk 50 pelanggan dengan jumlah depot m=20

m	No	Optimal Value	Best Known Value	% Deviation
	1		23.8634	0.23
	2		24.9677	0.29
	3		22.6292	0.17
	4		23.7785	0.23
20	5	19.356	22.7846	0.18
20	6		24.4129	0.26
	7		21.9743	0.14
	8		22.6047	0.17
	9		23.2748	0.20
-	10		22.5939	0.17
Average		23.2884	0.20	
Deviation S	Deviation Standard		0.944001101	21.9743

Lampiran A6. Ujicoba MATLAB untuk 50 pelanggan dengan jumlah depot m=23

m	No	Optimal Value	Best Known Value	% Deviation
	1		19.5222	0.25
	2		17.0585	0.09
	3		18.1804	0.16
	4		20.1223	0.29
23	5	15.6136	23.8416	0.53
23	6		17.0224	0.09
	7		17.1428	0.10
	8		18.5284	0.19
	9		23.8416	0.53
	10		22.3919	0.43
Average		19.7652	0.27	
Deviation S	Deviation Standard		2.709777449	17.0224

Lampiran B1. Ujicoba MATLAB untuk 654 pelanggan dengan jumlah depot m=2

m	No	Optimal Value	Best Known Value	% Deviation
	1		815313.2962	0.00
	2		815313.2962	0.00
	3		815313.2962	0.00
	4		815313.2962	0.00
2	5	815313.296	815313.2962	0.00
	6		815313.2962	0.00
	7		815313.2962	0.00
	8		815313.2962	0.00
	9		815313.2962	0.00
	10		815313.2962	0.00
Average	Average		815313.2962	0.00
Deviation Standard		1.22713E-10	815313.2962	

Lampiran B2. Ujicoba MATLAB untuk 654 pelanggan dengan jumlah depot m=10

m	No	Optimal Value	Best Known Value	% Deviation
	1		565737.6878	3.90
	2		530538.4179	3.60
	3		556723.4239	3.83
	4		561715.6460	3.87
10	5	115339.033	551851.0986	3.78
10	6	113337.033	530538.0615	3.60
	7		544771.8172	3.72
	8		545737.6972	3.73
	9		549682.1748	3.77
	10		564362.1470	3.89
Average	Average		550165.8172	3.77
Deviation	Deviation Standard		12660.87958	530538.0615

Lampiran B3. Ujicoba MATLAB untuk 654 pelanggan dengan jumlah depot m=25

M	No	Optimal Value	Best Known Value	% Deviation
_	1		161715.8857	
	2		151851.6413	1.91
	3		167265.1151	2.20
	4		189981.4230	2.64
25	5	52209.5106	164135.3346	2.14
23	6		147996.9319	1.83
	7		177681.0859	2.40
	8		179681.0463	2.44
	9		164247.1171	2.15
	10		163488.3967	2.13
Average	Average		166804.3978	2.19
Deviation S	Deviation Standard		12690.133	147996.9319

Lampiran B4. Ujicoba MATLAB untuk 654 pelanggan dengan jumlah depot m=50

M	No	Optimal Value	Best Known Value	% Deviation
	1	3/1/6	119041.4284	3.06
	2		129682.9941	3.42
	3		117446.1065	3.00
	4		102890.1462	2.51
50	5	29338.0106	119519.8631	3.07
30	6	27336.0100	122923.0862	3.19
	7		124506.6178	3.24
	8		113575.6608	2.87
	9		119606.8677	3.08
	10		120990.3589	3.12
Average		119018.3130	3.06	
Deviation Standard		7116.519722	102890.1462	

Lampiran B5. Ujicoba MATLAB untuk 654 pelanggan dengan jumlah depot m=75

m	No	Optimal Value	Best Known Value	% Deviation
	1		74771.4050	2.68
-	2		78078.1125	2.84
	3		73890.1462	2.64
	4		77265.1151	2.80
75	5	20312.9668	74247.1171	2.66
13	6		73488.3967	2.62
	7		77262.7680	2.80
	8		76253.5609	2.75
	9		77907.3001	2.84
	10		75592.7902	2.72
Average		75875.6712	2.74	
Deviation St	Deviation Standard		1718.159856	73488.3967

Lampiran B6. Ujicoba MATLAB untuk 654 pelanggan dengan jumlah depot m=100

m	No	Optimal Value	Best Known Value	% Deviation
	1		64488.3967	3.01
	2		63982.1748	2.98
	3		64893.2513	3.03
	4		63137.6654	2.92
100	5	16087.6846	63575.6608	2.95
100	6	10007.0040	63681.0859	2.96
	7		64893.2513	3.03
	8		63137.6654	2.92
	9		63529.4702	2.95
	10	1	63771.4050	2.96
Average		63909.0027	2.97	
Deviation Standard		649.3163794	63137.6654	

Lampiran C. Ujicoba MATLAB kasus riil dengan 5 kali percobaan untuk setiap jumlah depot yang berbeda

Attempt No	Number of Dep	oot						
	m=2	m=3	m=4	m=5	m=6	m=7	m=8	m=9
1	10.81481138	9.661734715	8.91481138	8.330799288	8.460285421	7.995803824	7.412126516	7.675498812
2	10.47099158	9.661734715	8.583787056	8.244065919	8.046802006	7.829245804	7.712135346	7.944833089
3	10.78752103	9.661734715	9.287521032	8.318284171	8.083785871	7.816134387	7.637587093	7.462088016
4	10.8292458	9.994170408	8.94367244	8.204448408	8.282888012	7.818366082	8.111094398	7.329735182
5	10.73853947	9.661734715	9.270991578	8.330799288	8.220453518	8.045811985	7.753934103	7.329642196
Average	10.72822185	9.728221853	9.000156697	8.285679415	8.218842966	7.901072416	7.725375491	7.548359459