Name:	Date:	

Time: Start End

Marks: 100

DPP JEE Main

Class XII | M | 080

MATHEMATICS

Chapter 21: Three Dimensional Geometry

Topics:

Different Forms of Equation of a Plane, Angle between a Line and a Plane, Angle between Two Planes, Line of Intersection of Two Planes

Instructions:

DPP contains 25 topicwise questions. Each DPP contains Multiple Choice Questions (MCQs) and Numerical Value Type Questions. Each question carries 4 marks. ◆ Mark the correct answer for MCQs and answers to be filled in as a numerical value for Numerical Value Type Questions in the OMR Sheet given at the end of the DPP. The For every incorrect answer deduct 1 mark.

1. Find the acute angle between the planes

$$\vec{r} \cdot (\hat{i} - 2 \hat{j} + 3 \hat{k}) = -4 \text{ and } \vec{r} \cdot (2 \hat{i} + \hat{j} - 3 \hat{k}) = -7$$

- (a) $\cos^{-1}(9/14)$

- (d) $\sin^{-1}(14/9)$
- **2.** Find the angle between the line $\vec{r} = (2\hat{i} 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} \hat{j} + 4\hat{k})$ and to the plane $\vec{r} \cdot (\hat{i} + 5 \hat{j} + \hat{k}) = 5$.

 - (a) $\sin^{-1}\left(\frac{2}{\sqrt{255}}\right)$ (b) $\sin^{-1}\left(\frac{5}{\sqrt{420}}\right)$
 - (c) $\sin^{-1}\left(\frac{5}{\sqrt{450}}\right)$ (d) $\sin^{-1}\left(\frac{5}{\sqrt{650}}\right)$
- **3.** Find the equation of the plane passing through the point $2\hat{i} \hat{k}$ and parallel to the lines

$$\frac{x}{-3} = \frac{y-2}{4} = z + 1$$
 and $x - 4 = \frac{1-y}{2} = 2z$

- (a) $\vec{r} \cdot (8\hat{i} 5\hat{i} 4\hat{k}) 12 = 0$
- (b) $\vec{r} \cdot (8\hat{i} + 5\hat{j} + 4\hat{k}) + 12 = 0$
- (c) $\vec{r} \cdot (8\hat{i} + 5\hat{j} + 4\hat{k}) 12 = 0$
- (d) $\vec{r} \cdot (5\hat{i} + 8\hat{j} + 4\hat{k}) + 12 = 0$
- **4.** If the angle θ between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ is such that $\csc \theta = 6$, the value of
- (a) $-\frac{3}{5}$ (b) $\frac{1}{3}$ (c) $\frac{-4}{3}$ (d) $\frac{3}{4}$
- 5. Find the equation of plane passing through (4, 3, -1) and perpendicular to the planes x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0.

- (a) 17x + y z = 81
- (b) 17x + 2y 7z = 81
- (c) 2x y + z = 61
- (d) 2x + 2y + 7z = 67
- **6.** Find the equation of the plane passing through the points (-1, 1, 1) and (1, -1, 1) and perpendicular to the plane x + 2y + 2z = 5.
 - (a) 2x + 3y + z = 2
- (b) 3x 2y z = 6
- (c) 2x + 2y 3z + 3 = 0
- (d) 2x + y 2z + 3 = 0
- 7. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\vec{r} \cdot (\hat{i} + 2 \hat{j} - 5 \hat{k}) + 9 = 0$.
 - (a) $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} 5\hat{k})$
 - (b) $\vec{r} = (\hat{i} 2\hat{j} 9\hat{k}) + \lambda(\hat{i} + 2\hat{j} 5\hat{k})$
 - (c) $\vec{r} = (\hat{i} + 4\hat{j} + 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} 5\hat{k})$
 - (d) None of these
- **8.** Find the angle between the line $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+1}{1}$ and the plane 2x + y - z = 4.
 - (a) 90°
- (b) 0
- (c) 60°
- 9. Find the equation of the plane passing through the points (2, 1, 0), (5, 0, 1) and (4, 1, 1).
 - (a) x + y + 2z = 3
- (b) x + y 2z = 3
- (c) x y + 2z = 3
- (d) None of these
- 10. The equation of the plane perpendicular to the yz-plane and passing through the points (1, -2, 4) and (3, -4, 5) is
 - (a) y + 2z = 5 (b) 2y + z = 5 (c) y + 2z = 6 (d) 2y + z = 6
- **11.** Find the angle between the planes 3x + y 2z + 3 = 0 and $\vec{r} \cdot (6\hat{i} + 3\hat{i} + 2\hat{k}) = 5.$
 - (a) $\cos^{-1}\left(\frac{17}{\sqrt{12}}\right)$
- (b) $\cos^{-1} \left(\frac{17\sqrt{14}}{98} \right)$
- (c) $\cos^{-1}\left(\frac{17}{\sqrt{14}}\right)$
- (d) $\cos^{-1} \left(\frac{17\sqrt{13}}{91} \right)$

- **12.** The equation of the plane through intersection of planes x + 2y + 3z = 4 and 2x + y - z = -5 and perpendicular to the plane 5x + 3y + 6z + 8 = 0 is
 - (a) 7x 2y + 3z + 81 = 0
 - (b) 23x + 14y 9z + 48 = 0
 - (c) 51x + 15y 50z + 173 = 0
 - (d) None of these
- 13. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (2\hat{i} - 7\hat{j} + 4\hat{k}) = 3$ and $\vec{r} \cdot (3\hat{i} - 5\hat{j} + 4\hat{k}) + 11 = 0$ and passing through the point (1, 0, 2).
 - (a) $\vec{r} \cdot (15\hat{i} + 47\hat{j} + 28\hat{k}) = 7$ (b) $\vec{r} \cdot (23\hat{i} 119\hat{j} + 60\hat{k}) = 143$
 - (c) $\vec{r} \cdot (15\hat{i} 47\hat{j} + 28\hat{k}) = 0$ (d) $\vec{r} \cdot (52\hat{i} 149\hat{j} + 92\hat{k}) = 0$
- 14. Find the vector equation in scalar product form of the plane that contains the lines

$$\vec{r} = (\hat{i} + \hat{j}) + s(\hat{i} - 2\hat{j} + \hat{k})$$
 and $\vec{r} = (\hat{i} + \hat{j}) + t(-\hat{i} + 3\hat{j} - 2\hat{k})$

- (a) $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 0$
- (b) $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$
- (c) $\vec{r} \cdot (\hat{i} \hat{i} \hat{k}) = 1$
- (d) $\vec{r} \cdot (\hat{i} \hat{j} \hat{k}) = -1$
- **15.** The equation of the plane containing the line 2x 5y + z = 3; x + y + 4z = 5, and parallel to the plane x + 3y + 6z = 1 is
 - (a) x + 3y + 6z = 7
- (b) 2x + 6y + 12z = -13
- (c) 2x + 6y + 12z = 13
- (d) x + 3y + 6z = 9
- **16.** Equation of the line passing through (1, 1, 1) and parallel to the plane 2x + 3y + z + 5 = 0, is

 - (a) $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{1}$ (b) $\frac{x-1}{-1} = \frac{y-1}{1} = \frac{z-1}{-1}$

 - (c) $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-1}{1}$ (d) $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{1}$
- 17. Find the equation of the plane which contains the two parallel

$$\frac{x-4}{1} = \frac{y-3}{-4} = \frac{z-2}{5}$$
 and $\frac{x-3}{1} = \frac{y+2}{-4} = \frac{z}{5}$

- (a) 11x + y 3z + 35 = 0
- (b) 11x y 3z 35 = 0
- (c) 11x y + 3z + 35 = 0
- (d) 11x + y + 3z 35 = 0
- **18.** If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are

coplanar, then the planes containing these two lines are

- (a) $y \pm 2z = -1$
- (b) $y \pm z = -1$
- (c) $y \pm 2z = 1$
- (d) $y \pm z = 1$

Numerical Value Type

- **19.** Let the plane ax + by + cz + d = 0 bisect the line joining the points (4, -3, 1) and (2, 3, -5) at the right angles. If a, b, c, dare integers, then the minimum value of $(a^2 + b^2 + c^2 + d^2)$
- **20.** If the equation of a plane P, passing through the intersection of the planes, x + 4y - z + 7 = 0 and 3x + y + 5z = 8 is ax + by + 6z = 15for some $a, b \in R$, then |a| + |b| is _____.
- **21.** If the angle between the plane x 3y + 2z = 1 and the line $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{-3}$ is θ , then find the value of $\cos^2 \theta$.
- 22. If the plane ax by + cz = 0 contains the line $\frac{x-a}{a} = \frac{y-2d}{b} = \frac{z-c}{c}$, then the value of $\frac{b}{d}$ is
- 23. If the position vector of the point of intersection of the line $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ and the plane $\vec{r} \cdot (2\hat{i} - 6\hat{j} + 3\hat{k}) + 5 = 0$ is $a\hat{i} + b\hat{j} + c\hat{k}$, then $(50a + 60b + 75c)^2$ is equal to
- **24.** The angle between the planes x + y = 0 and y z = 1 is $\frac{\pi}{L}$, where
- **25.** Let the equation of the plane containing line x y z 4 = 0= x + y + 2z - 4 = 0 and parallel to the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2z = 2 be x + Ay + Bz + C = 0. Then find the value of |A + B + C - 4|.

Use HB pencil only and darken each circle completely. Correct marking (b) (c) (d) Wrong marking 🔞 🕼 🕦 Mark only one choice for each question as indicated. 1. abcd 4. abcd 7. abcd 10.abcd 13.abcd 16.abcd 19. 2. @ b c d 5. @ b c d 8. @ b c d 11.@ b c d 14.@ b c d 17.@ b c d 20.___

3. abcd 6. ac	bcd 9. ab	12.0000	15.@b©d	18. a bcd 21	24
	RESULT M 080 -	MATHEMATICS	Check your le	Check your learning! If your score is	
Total Questions	25	Total Marks	100	> 90% EXC	ELLENT WORK!
Attempted		Correct			
Incorrect		Net Score		90-75% GOO	DD WORK!
Net Score = (Correct × 4)	– (Incorrect × 1) =		74-60% SATI	SFACTORY!	
Percentage Score =				< 60% NOT	SATISFACTORY!