1 Smoothed Barycenter Stuff

Let λ denote the Lebesgue measure on \mathbb{R}^d .

Proposition 1. $W_p(\mu, \nu)^p$ is convex in (μ, ν) for $p \in [1, \infty)$.

Proof. Fix $\mu_1, \nu_1, \mu_2, \nu_2 \in \mathcal{P}_p(\mathbb{R}^d)$ and $t \in [0, 1]$. Let $\pi_1 \in \Pi(\mu_1, \nu_1)$ be a transport plan achieving $W_p(\mu_1, \nu_1)$, and take $\pi_2 \in \Pi(\mu_2, \nu_2)$ to be a transport achieving $W_p(\mu_2, \nu_2)$. Next, define $\pi = t\pi_1 + (1-t)\pi_2$. Checking marginals, we find $\pi \in \Pi(t\mu_1 + (1-t)\mu_2, t\nu_1 + (1-t)\nu_2)$, so

$$W_p(t\mu_1 + (1-t)\mu_2, t\nu_1 + (1-t)\nu_2)^p \le \mathbb{E}_{X,Y \sim \pi} ||X - Y||^p$$

= $t\mathbb{E}_{X,Y \sim \pi_1} ||X - Y||^p + (1-t)\mathbb{E}_{X,Y \sim \pi_2} ||X - Y||^p$
= $tW_p(\mu_1, \nu_1)^p + (1-t)W_p(\mu_2, \nu_2)^p$.

Proposition 2. Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ with $\mu \ll \lambda$, and let X, Y be an optimal coupling of the pair w.r.t. W_2 . Then,

1. a regular conditional distribution of Y given X = x is supported on a single point, μ -a.s.

2. there exists a measurable mapping $T:D\subset\mathbb{R}^d\to\mathbb{R}^d$ with $\mu(D)=1$ such that Y=T(X) a.s.

3. T is the gradient of a convex function (implies next)

4. $\langle T(x) - T(x'), x - x' \rangle \ge 0$ (can be strengthened to cyclically monotone);

5. $W_2(\mu, \nu)^2 = \mathbb{E}[\|X - T(X)\|^2].$

TODO: Does 2 not imply 1? 2,5 hold for p > 1.

Proposition 3. $W_p(\mu,\cdot)^p$ is strictly convex if $\mu \ll \lambda$ for $p \in (0,\infty)$.

Proof. Fix $\mu, \nu_1, \nu_2 \in \mathcal{P}_p(\mathbb{R}^d)$ with $\mu \ll \lambda$ and let $t \in [0, 1]$. Let T_1, T_2 denote the optimal transport maps from μ to ν_1 and ν_2 with respect to W_p (existence guaranteed since p > 1 and $\mu \ll \lambda$). Let $\nu_t := t\nu_1 + (1-t)\nu_2$ and define on its support the random function

$$T(x) = \begin{cases} T_1(x) & \text{with probability } t \\ T_2(x) & \text{with probability } 1 - t. \end{cases}$$

If X is distributed according to μ , then

$$\Pr[T(X) \in A] = t \cdot T_{1\#}\mu(A) + (1-t) \cdot T_{2\#}\mu(A)$$
$$= t\nu_1(A) + (1-t)\nu_2(A) = \nu_t(A).$$

Hence,

$$W_p(\mu, \nu_t)^p \le \mathbb{E} ||X - T(X)||^p$$

= $t \mathbb{E} ||X - T_1(X)||^p + (1 - t) \mathbb{E} ||X - T_2(X)||^p$
= $t W_p(\nu_1)^p + (1 - t) W_p(\nu_2)^p$,

with strict inequality unless T is an optimal transport plan between μ and ν_t . However, this would force T to be deterministic (almost everywhere), requiring that $T_1 = T_2$ (almost everywhere). In this case, $\nu_1 = T_{1\#}\mu = T_{2\#}\mu = \nu_2$.

Corollary 4. $W_p^{\sigma}(\mu,\cdot)^p$ is strictly convex for $p \in (0,\infty)$.

Proof. Convolution with \mathcal{N}_{σ} is linear and non-singular. (Just requires noise model with non-vanishing characteristic function.)

Proposition 5.