ΑΝΑΛΥΣΗ ΚΟΙΝΩΝΙΚΩΝ ΔΙΚΤΥΩΝ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλ. Μηχ. & Μηχ. Η/Υ

9ο Εξάμηνο

1η Εργαστηριακή Άσκηση Ανάλυση & Μελέτη Σύνθετων Τοπολογιών Δικτύου

> Αθανασίου Νικόλαος 03112074 16/12/2015

Α) Δημιουργία και οπτικοποίηση σύνθετων τύπων δικτύου

Για τις τιμές των παραμέτρων που δίνονται και με χρήση των συναρτήσεων Matlab που σημειώνονται στον Πίνακα 2, κατασκευάζονται **REG**, **RG** (**ER**), **RGG**, **SF** (**BA**) και **SW** (**WS**) του Πίνακα 1 με χρήση του πίνακα γειτνίασης (adjacency matrix).

Β) Μελέτη βαθμού κόμβων

1. Να υπολογιστεί ο βαθμός κάθε κόμβου,

Scale free

(1,1) 67	(1,2) 29	(1,3) 17	(1,4) 29	(1,5) 15	(1,6) 23	(1,7) 10
(1,8) 8	(1,9) 22	(1,10) 21	(1,11) 10	(1,12) 5	(1,13) 15	(1,14) 5
(1,15) 4	(1,16) 10	(1,17) 15	(1,18) 5	(1,19) 6	(1,20) 12	(1,21) 6
(1,22) 10	(1,23) 10	(1,24) 9	(1,25) 9	(1,26) 8	(1,27) 11	(1,28) 7
(1,29) 16	(1,30) 5	(1,31) 7	(1,32) 6	(1,33) 9	(1,34) 4	(1,35) 7
(1,36) 11	(1,37) 7	(1,38) 4	(1,39) 8	(1,40) 12	(1,41) 7	(1,42) 8
(1,43) 12	(1,44) 10	(1,45) 9	(1,46) 8	(1,47) 3	(1,48) 7	(1,49) 6
(1,50) 8	(1,51) 6	(1,52) 7	(1,53) 9	(1,54) 5	(1,55) 7	(1,56) 6
(1,57) 6	(1,58) 4	(1,59) 5	(1,60) 4	(1,61) 7	(1,62) 5	(1,63) 5
(1,64) 7	(1,65) 5	(1,66) 7	(1,67) 6	(1,68) 7	(1,69) 8	(1,70) 4
(1,71) 8	(1,72) 6	(1,73) 6	(1,74) 7	(1,75) 4	(1,76) 5	(1,77) 4
(1,78) 6	(1,79) 5	(1,80) 6	(1,81) 4	(1,82) 4	(1,83) 4	(1,84) 5
(1,85) 5	(1,86) 6	(1,87) 6	(1,88) 4	(1,89) 5	(1,90) 5	(1,91) 4
(1,92) 5	(1,93) 5	(1,94) 4	(1,95) 7	(1,96) 5	(1,97) 7	(1,98) 4
(1,99) 4	(1,100) 7	(1,101) 4	(1,102) 4	(1,103) 4	(1,104) 4	(1,105) 5
(1,106) 6	(1,107) 5	(1,108) 4	(1,109) 4	(1,110) 5	(1,111) 4	(1,112) 6
(1,113) 4	(1,114) 4	(1,115) 5	(1,116) 4	(1,117) 4	(1,118) 4	(1,119) 4
(1,120) 4	(1,121) 4	(1,122) 3	(1,123) 4	(1,124) 3	(1,125) 4	(1,126) 4
(1,127) 5	(1,128) 5	(1,129) 4	(1,130) 4	(1,131) 4	(1,132) 4	(1,133) 4
(1,134) 4	(1,135) 4	(1,136) 4	(1,137) 4	(1,138) 5	(1,139) 4	(1,140) 4

Random Erdos

(1,1) 10		(1,2)	12	(1,3)	10	(1,4)	13	(1,5)	11	(1,6)	8	(1,7)	8
(1,8) 17		(1,9)	14	(1,10)	8	(1,11)	11	(1,12)	12	(1,13)	10	(1,14)	11
(1,15) 9		(1,16)	10	(1,17)	9	(1,18)	16	(1,19)	11	(1,20)	12	(1,21)	9
(1,22) 15	5	(1,23)	13	(1,24)	11	(1,25)	16	(1,26)	9	(1,27)	12	(1,28)	12
(1,29) 13	L	(1,30)	7	(1,31)	8	(1,32)	10	(1,33)	5	(1,34)	7	(1,35)	7
(1,36) 6		(1,37)	5	(1,38)	8	(1,39)	12	(1,40)	13	(1,41)	7	(1,42)	9
(1,43) 8		(1,44)	11	(1,45)	11	(1,46)	8	(1,47)	12	(1,48)	11	(1,49)	9
(1,50) 18	3	(1,51)	11	(1,52)	11	(1,53)	17	(1,54)	10	(1,55)	7	(1,56)	14
(1,57) 16	5	(1,58)	11	(1,59)	11	(1,60)	12	(1,61)	15	(1,62)	9	(1,63)	9
(1,64) 7		(1,65)	12	(1,66)	12	(1,67)	10	(1,68)	8	(1,69)	16	(1,70)	15
(1,71) 13	3	(1,72)	7	(1,73)	13	(1,74)	12	(1,75)	13	(1,76)	4	(1,77)	13
(1,78) 5		(1,79)	10	(1,80)	10	(1,81)	14	(1,82)	6	(1,83)	8	(1,84)	5
(1,85) 13	3	(1,86)	15	(1,87)	7	(1,88)	9	(1,89)	11	(1,90)	11	(1,91)	11
(1,92) 10)	(1,93)	10	(1,94)	12	(1,95)	11	(1,96)	11	(1,97)	12	(1,98)	12
(1,99) 8		(1,100)	18	(1,101)	12	(1,102)	9	(1,103)	14	(1,104)	12	(1,105)	10
(1,106) 1	1	(1,107)	10	(1,108)	10	(1,109)	9	(1,110)	5	(1,111)	10	(1,112)	10
(1,113) 1	2	(1,114)	10	(1,115)	10	(1,116)	9	(1,117)	10	(1,118)	10	(1,119)	16
(1,120) 1	2	(1,121)	12	(1,122)	7	(1,123)	12	(1,124)	16	(1,125)	7	(1,126)	10
(1,127) 1	2	(1,128)	11	(1,129)	10	(1,130)	12	(1,131)	10	(1,132)	14	(1,133)	7
(1,134) 1	2	(1,135)	11	(1,136)	17	(1,137)	18	(1,138)	11	(1,139)	6	(1,140)	5

Small World

(1,1)	4	(1,2)	5	(1,3)	5	(1,4)	6	(1,5)	5	(1,6)	5	(1,7)	5
(1,8)	4	(1,9)	4	(1,10)	4	(1,11)	4	(1,12)	5	(1,13)	4	(1,14)	5
(1,15)	5	(1,16)	4	(1,17)	4	(1,18)	4	(1,19)	5	(1,20)	4	(1,21)	5

(1,22)	6	(1,23)	4	(1,24) 5	,	(1,25)	4	(1,26)	5	(1,27)	4	(1,28)	4
(1,29)	4	(1,30)	5	(1,31) 4		(1,32)	4	(1,33)	5	(1,34)	5	(1,35)	4
(1,36)	5	(1,37)	5	(1,38) 4		(1,39)	4	(1,40)	4	(1,41)	5	(1,42)	5
(1,43)	5	(1,44)	5	(1,45) 5	,	(1,46)	5	(1,47)	5	(1,48)	5	(1,49)	7
(1,50)	5	(1,51)	4	(1,52) 4		(1,53)	4	(1,54)	5	(1,55)	4	(1,56)	5
(1,57)	5	(1,58)	5	(1,59) 4		(1,60)	4	(1,61)	4	(1,62)	4	(1,63)	5
(1,64)	5	(1,65)	4	(1,66) 4	ļ.	(1,67)	5	(1,68)	6	(1,69)	4	(1,70)	5
(1,71)	5	(1,72)	5	(1,73) 4		(1,74)	7	(1,75)	4	(1,76)	4	(1,77)	5
(1,78)	5	(1,79)	5	(1,80) 4	ļ.	(1,81)	5	(1,82)	5	(1,83)	4	(1,84)	4
(1,85)	5	(1,86)	5	(1,87) 4	ļ.	(1,88)	6	(1,89)	5	(1,90)	6	(1,91)	4
(1,92)	4	(1,93)	5	(1,94) 6	<u>;</u>	(1,95)	5	(1,96)	6	(1,97)	5	(1,98)	5
(1,99)	6	(1,100)	4	(1,101)	4	(1,102)	4	(1,103)	5	(1,104)	4	(1,105)	4
(1,106)	4	(1,107)	7	(1,108)	4	(1,109)	6	(1,110)	5	(1,111)	5	(1,112)	5
(1,113)	4	(1,114)	5	(1,115)	5	(1,116)	5	(1,117)	5	(1,118)	5	(1,119)	5
(1,120)	5	(1,121)	5	(1,122)	4	(1,123)	4	(1,124)	4	(1,125)	4	(1,126)	4
(1,127)	5	(1,128)	4	(1,129)	4	(1,130)	5	(1,131)	5	(1,132)	5	(1,133)	5
(1,134)	5	(1,135)	5	(1,136)	5	(1,137)	4	(1,138)	5	(1,139)	4	(1,140)	4

Lattice

(1,1) 4		(1,2)	4	(1,3)	4	(1,4)	4	(1,5)	4	(1,6)	4	(1,7)	4
(1,8) 4		(1,9)	4	(1,10)	4	(1,11)	4	(1,12)	4	(1,13)	4	(1,14)	4
(1,15)	4	(1,16)	4	(1,17)	4	(1,18)	4	(1,19)	4	(1,20)	4	(1,21)	4
(1,22)	1	(1,23)	4	(1,24)	4	(1,25)	4	(1,26)	4	(1,27)	4	(1,28)	4
(1,29)	1	(1,30)	4	(1,31)	4	(1,32)	4	(1,33)	4	(1,34)	4	(1,35)	4
(1,36)	1	(1,37)	4	(1,38)	4	(1,39)	4	(1,40)	4	(1,41)	4	(1,42)	4
(1,43)	1	(1,44)	4	(1,45)	4	(1,46)	4	(1,47)	4	(1,48)	4	(1,49)	4
(1,50)	1	(1,51)	4	(1,52)	4	(1,53)	4	(1,54)	4	(1,55)	4	(1,56)	4
(1,57)	1	(1,58)	4	(1,59)	4	(1,60)	4	(1,61)	4	(1,62)	4	(1,63)	4
(1,64)	1	(1,65)	4	(1,66)	4	(1,67)	4	(1,68)	4	(1,69)	4	(1,70)	4
(1,71)	1	(1,72)	4	(1,73)	4	(1,74)	4	(1,75)	4	(1,76)	4	(1,77)	4
(1,78)	1	(1,79)	4	(1,80)	4	(1,81)	4	(1,82)	4	(1,83)	4	(1,84)	4
(1,85)	1	(1,86)	4	(1,87)	4	(1,88)	4	(1,89)	4	(1,90)	4	(1,91)	4
(1,92)	1	(1,93)	4	(1,94)	4	(1,95)	4	(1,96)	4	(1,97)	4	(1,98)	4
(1,99)	1	(1,100)	4	(1,101)	4	(1,102)	4	(1,103)	4	(1,104)	4	(1,105)	4
(1,106)	4	(1,107)	4	(1,108)	4	(1,109)	4	(1,110)	4	(1,111)	4	(1,112)	4
(1,113)	4	(1,114)	4	(1,115)	4	(1,116)	4	(1,117)	4	(1,118)	4	(1,119)	4
(1,120)	4	(1,121)	4	(1,122)	4	(1,123)	4	(1,124)	4	(1,125)	4	(1,126)	4
(1,127)	4	(1,128)	4	(1,129)	4	(1,130)	4	(1,131)	4	(1,132)	4	(1,133)	4
(1,134)	4	(1,135)	4	(1,136)	4	(1,137)	4	(1,138)	4	(1,139)	4	(1,140)	4

Random Geometrical

10	16	6	10	7	12	8
13	3	10	10	5	12	17
5	8	15	13	11	9	11
12	7	5	2	7	18	8
6	18	12	10	9	9	8
10	14	8	17	8	8	11
7	17	14	6	9	7	6
5	10	6	9	9	5	18
13	9	8	7	8	5	10

10	12	11	11	14	5	11
2	9	11	14	11	6	8
13	11	4	8	8	7	11
9	14	14	5	15	15	12
8	7	7	11	7	10	6
6	10	9	8	13	9	7
5	11	7	4	10	10	9
9	8	15	20	10	7	14
12	8	7	13	7	10	7
16	13	12	7	13	10	7
12	6	5	15	8	14	10

2. Να αναπαρασταθεί (plot) η κατανομή βαθμών κόμβων του δικτύου (δηλαδή, για κάθε βαθμό πόσοι κόμβοι έχουν αυτό το βαθμό) καθώς και η συγκεντρωτική κατανομή βαθμού κόμβου (δηλαδή, για κάθε βαθμό πόσοι κόμβοι έχουν το πολύ αυτό το βαθμό

Παρακάτω παρατίθονται τα διαγράμματα συγκεντρωτικής κατανομής κόμβων για κάθε τύπο γράφου το οποίο περιγράφεφται αναλυτικά στους τίτλους των διαγραμμάτων:

3. Να υπολογιστεί ο μέσος βαθμός κόμβου καθώς και η διασπορά των βαθμών κόμβου για κάθε μια από τις εν λόγω τοπολογίες.

Τύπος	Μέση τιμή	Διασπορά	
Lattice	4	0(All zero sparse: 1-by-1)	
Random Erdos	10.7143	8.8818	
Scale Free	7.1286	46.8179	
Random Geometric	9.6857	12.6343	
Small World	4.6857	0.4761	

Σχόλια & Παρατηρήσεις

Για το πλέγμα έχουμε προφανώς μέσο βαθμό 4, καθώς 4 ακμές αντιστοιχούν σε κάθε κόμβο και επομένως η διασπορά είναι 0, καθώς δεν έχουμε απόκλιση από τη μέση τιμή.

Για την τοπολογία Erdos-Renyi έχουμε σταθερό μέσο βαθμό =15, αφού έχουμε συνολικά 750 ακμές για 100 κόμβους. Επίσης, για την διασπορά ισχύει ότι αλλάζει κάθε φορά που τρέχουμε τον κώδικα, ξέρουμε ότι το Erdos-Renyi κάθε φορά επιλέγεται ομοιόμορφα ένα γράφημα από όλα τα γραφήματα G(100,750). Από το ιστόγραμμα κατανομής φαίνεται πως έχουμε μεγαλύτερη συγκέντρωση βαθμών κοντά στο 15, πράγμα αναμενόμενο, καθώς είναι η μέση τιμή.

Η τοπολογία Scale-Free όπως φαίνεται έχει αρκετά μεγαλύτερη διασπορά από τον επίπεδο τυχαίο γράφο RGG , το οποίο είναι λογικό , καθώς έχουμε μεγάλες αποκλίσεις μεταξύ των βαθμών των κόμβων. Επίσης , από τα παραπάνω σχήματα ότι έχουμε πολλές κοερυφές με βαθμό 4 , που είναι λογικό αφού ξεκινάμε από πλέγμα με βαθμό κορυφών=4 και με μία κατανομή που ακολουθεί power law distribution $(P(k) = k^3)$ προκύπτει το δίκτυο .Υπάρχουν κάποιες εξαιρετικά κεντρικές κορυφές που οδηγούν σε ραγδαία αύξηση τη συγκεντρωτική κατανομή του βαθμού κόμβου λόγω της κεντρικότητας τους.

Η τοπολογία Small-World προσεγγίζει περισσότερο από τις υπόλοιπες την πλεγματικη REG , καθώς έχουμε λίγες ακμές που ανακλώνται .Όσο αυξάνεται η πιθανότητα ανάκλασης τόσο η διασπορά μεγαλώνει. Επίσης , από την απεικόνιση της συγκεντρωτικής κατανομής παρατηρούμε και πάλι το φαινόμενο της ανάκλασης ,λόγω μεγάλου βαθμού κόμβου αφού υπάρχουν εμφανείς ανακλώμενες συνδέσεις.

Στον τυχαίο γεωμετρικό γράφο οι περισσότεροι κόμβοι έχουν μεγάλο βαθμό αλλά λόγω της τυχαιότητας που εισάγουμε οδηγούμαστε σε κάποιες μεγάλες αποκλίσεις που αυξάνουν τη διασπορά.

Γ) Δίκτυα με βάρη

1. να υπολογιστεί η δύναμη κάθε κόμβου,

Lattice

685,373867984436	680,702418907054	659,678076789883	720,458494995106	743,299082206392
725,656511187636	704,367243551741	704,884323714374	738,874483376208	679,748733019589
763,976936258554	701,494639014851	710,988178255218	745,954865518601	690,322840983683
700,292750655677	686,176149780280	723,615103217969	629,738536316234	667,297571712399
655,217845038829	656,387073801577	657,705821958263	670,857171015205	707,899603492247
710,071246315214	670,255563064474	682,184563745613	762,481187976595	644,307766826314
702,551496116131	692,425958242110	737,044270827749	679,111499629937	680,761806178215
771,864727613240	742,650107003790	605,644309160396	742,222533843322	672,982059289952
692,335473397275	689,236026556895	676,828665143058	766,311521511771	711,008215603710
683,271733596196	677,976735272058	712,857471812836	708,081097797806	738,837378094049
757,168398507244	667,793619798714	696,421519711520	687,910201342502	646,495171360545
685,064800809347	728,255197408177	683,789728842514	688,526855504829	679,141137808975
773,819384303727	688,648343582522	724,371218005460	720,922533975427	738,756411996872
745,458064435345	707,730574519959	672,369070441527	705,855532952747	725,670429477707
705,391865266545	626,826275057094	722,171353649265	710,690064946185	676,604826807094
719,502565543436	725,977321724107	700,533146416128	700,660298786264	718,607899935750
759,168001740855	704,262765647250	678,383691043032	625,704191178216	783,424989504626
708,644945747077	647,306445206659	679,590267066998	663,934687802661	717,778042493069
724,006465542907	680,815561954863	687,951029532442	710,679181594056	654,139984537177
692,880618845552	673,228451831087	798,700114103843	692,979447670134	746,318103866309
674,150745382433	644,695230053920	667,045779523895	711,017660915503	675,095780398599
708,488235798829	718,165032436598	662,289891692168	697,549017325376	726,058471725583
684,928504559849	650,075425852687	729,691717197779	636,173094890625	683,789819200344
694,574771923177	717,092264076422	740,827880559632	693,775596403468	775,954613991104
728,156771887958	696,277348607493	706,307035639034	674,070132644161	724,371412183720
733,799605842800	670,546396483360	738,526833090937	677,902834253088	675,622329082410
711,034032787556	678,615076293508	662,791700609074	733,029775143167	722,707839076052
673,121041580455	650,914748495074	683,408079240917	695,406348999572	685,409028427175
		Scala Erca		·

Scale Free

695,320048165459	689,751138455612	748,759752420933	772,829256042598	724,336545659221
690,078589775778	726,803763443862	623,819431598504	658,219162653710	705,177042768131
731,730885823715	691,268318151347	696,195731147440	705,235542942676	608,244940919686
706,215375383829	724,377708626892	669,191030545239	782,319439939579	689,215944879697
700,125481050225	720,802994295014	676,267602577749	695,460344811901	712,150718588436
608,473300771892	631,873278181266	721,177032012070	732,298721844030	670,206188336682
708,011976468583	727,679606300817	683,262884395708	717,981719166008	643,998505333656
740,145321370012	680,447071493485	726,800441270637	696,311639144236	728,833682601341
727,712138111028	688,897584669474	631,517816422851	676,442302818292	713,022990470569
667,418637457849	689,801755460531	748,832266782875	701,597896831929	687,444846067109
713,995837818397	714,437753287732	794,192178882137	713,108362205022	658,638711318314
721,200898420443	747,279458220353	694,878066194826	683,235688966839	654,385732312573
717,097348999951	657,090817465577	678,593498799172	680,946047228078	691,163342908715
742,898968780349	754,579129088928	722,706619263262	773,287171244438	722,468161626735
659,241102056536	731,150211889870	709,490706466874	694,084028587066	704,227400171600
693,511632245388	751,907257885575	733,035691222532	701,998031439311	704,806419996433
682,885474346025	709,568930553825	700,290120083655	692,657999363340	674,992700045050
692,487717916251	697,545549494995	773,283905224764	733,318530690858	664,049233005548
637,050494860465	740,376030692623	726,913336544728	724,095044914880	695,481785659205

735,675746178111	665,081543972720	679,780275767602	713,631504235407	711,990307668896
625,393283154595	705,880534817924	678,691725032365	703,528130575155	625,193638556110
729,142057392617	710,636252031645	695,036940501764	738,442707101244	675,195239095229
740,902569752879	697,583376898629	649,632896786235	722,780699956048	648,304990383736
735,840029811478	745,527530853694	704,846129768295	644,772518562460	703,168302982955
728,358318489989	729,336742540863	662,772177985180	743,045369780943	701,461244161080
768,396842934597	719,848233693455	745,539515237153	743,946314708179	720,126429625879
682,061959259697	701,288592168346	728,646802690952	687,435035093809	740,371120139641
669,842670545041	628,548988276767	676,393858009856	734,048998955300	656,368155293374

Random Erdos

637,792256705820	735,279245967048	652,873340521248	739,890317327741	694,444736032884
725,154449055438	684,555895576779	697,323075884789	650,183192154875	730,820270593126
754,815458048163	726,791854104560	720,538759909006	678,008433570261	714,281310008774
674,251980207203	694,017014323164	717,314516447112	752,194706330050	701,132110719985
676,919430563447	713,894054837322	741,089416498884	709,134508193045	651,953857223620
706,192063382804	674,240844727187	723,292654200917	702,393487130743	739,055415565233
665,330878093934	632,353474810200	742,435328133052	695,962623999388	705,365475179198
746,323446725707	701,101631363295	674,937031839629	686,978947566717	728,292651597509
681,171321815975	691,427608045842	669,400438863183	655,034323701549	681,178674927267
686,694899230618	744,912052756236	714,609372267348	666,844474409198	740,255250266274
744,025225896860	704,259338740140	710,888928810204	647,368926427090	710,703149069557
675,221387202881	715,848192207289	754,416241593474	718,387314576342	694,466803733641
729,975950159817	780,695098194869	680,460667134327	730,037146632992	718,807036472789
662,359104075179	710,746385001447	706,468004949153	704,309528870160	673,259719659463
674,407430893499	687,257687976054	663,138640621152	681,509205273659	642,621820961044
705,266551336021	684,210082830514	699,399160958858	737,263030053476	712,557739292302
685,725715163498	707,830136560910	677,411186764240	718,854502551798	751,738492948789
723,396007351272	695,447969705867	619,778551311775	712,128696228819	650,946371045157
655,099745772405	696,017505224339	665,418391820654	681,815737261710	692,175740047420
679,244181106934	675,492742608703	667,725062177783	723,368746624146	681,597394283244
720,621141762002	663,036947493441	686,847345051825	676,860708449347	701,781456940673
711,767106020119	666,800014888514	740,808471048484	721,421230057769	662,523156459303
728,130937306974	698,253656034577	731,935991224227	667,492926634946	710,653278178005
721,330473715936	720,959664466108	732,680200864596	677,425920610550	690,468406806386
693,186220759006	684,885909626159	681,156768027564	716,039746078767	700,755972033428
708,537972227457	712,552558202723	729,068959868847	698,995234304158	708,591851735665
727,700805267528	703,724209263827	698,244952377237	705,851701754884	655,140511315350
743,432404457292	727,354516443347	728,544605254637	666,754236012865	679,011038982315
·	·			

Random Geometric

706,241519684997	718,115068722981	672,118512432208	713,031843730323	782,970674757191
658,416953739659	706,849542863049	726,009300363655	678,510754328833	696,417141245543
727,314269301120	680,064045307623	724,191565589642	721,317413496368	668,511189565042
672,206417353487	684,166867159533	748,711701303513	691,347694258385	699,155638918675
646,890019901373	678,364855546775	680,394733964898	686,898356927032	750,961209806853
658,126935626789	691,465006593888	706,567438219981	746,347701152330	664,566519579984
665,753203657490	723,296423536080	754,984744559078	683,603224971337	688,141768274915
675,285132844433	679,927842444672	706,787066899894	710,460382013013	735,993751616371
714,072864318586	699,013182429251	643,895284741343	691,592468513986	669,466699669449
681,080694218435	655,454737144196	705,930536026204	685,056200882253	628,257280689436
675,141014109283	721,177574823497	659,595627222273	715,085548803019	762,626385893432
698,069062952080	667,285900441745	675,525167865609	703,126671775006	693,495821795154
705,686651510782	662,811006480527	711,344830692693	701,011160372742	699,741090679465
: 55,555551510,62	1 22=,2==230 100327	, ,,, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		1 222,: :2220073 103

723,444705099004	697,216036474032	690,657552307399	721,152192613032	663,430024654543
647,201086569481	736,534759075754	692,189394974816	704,105366766151	665,242824282664
666,055671145292	655,781218534805	745,263211532935	767,299663206103	693,851362502038
735,048700688945	725,515673771102	634,888465698428	682,466756751555	676,005840348490
683,717680984394	702,286790336197	688,070315410970	660,964391777664	639,294545214220
703,726085804747	739,944141983963	720,640605647129	702,382601143027	710,747924519740
786,618534810205	702,747536877326	716,895612195182	655,790625108719	727,456194338274
712,028540411101	641,886540154904	673,945588656039	708,911113146390	728,138494457650
682,855205784543	693,237788265179	689,142777406177	593,787261913998	657,527495818510
695,800703381929	721,646026019564	700,957724214601	757,010178840502	658,081086697806
679,842228613583	695,913916651154	717,864464033392	726,153206944833	696,396189284684
699,386022416910	728,200511116443	709,124538101466	674,317535638233	708,921854813793
656,006742757844	665,601323913455	665,263114150871	702,515504184575	682,286010201537
717,314343054270	679,730930885919	646,833067376911	691,591443356154	764,259273115114
623,114774531544	721,964412463206	716,145634591582	701,500692168368	731,959466220006

Small World

692,315928937905	685,023884870659	728,681203182424	640,392158113714	712,565033792845
728,460214523566	772,861946980797	681,774434878291	681,426870150967	673,328534662919
658,650214146457	694,065301198077	696,130603890671	658,969594518033	695,823741041578
720,975563849368	684,037380444422	709,000301132729	633,634634605792	749,513434160720
785,188327764335	674,775076376474	754,333095534291	732,890170441054	683,961378348650
681,016539168366	671,210696780784	697,630782750627	708,865296546732	703,068633628722
685,239510954608	750,258647048852	694,167615333510	727,398178293291	709,331094742896
715,860746797606	757,652005688711	679,945542439996	667,775264237464	685,981669171770
669,423553861640	762,765197218966	699,875777352863	670,542957105766	663,855284672515
747,199189897765	637,764755215622	720,107493429042	639,433565245170	729,946149052404
683,758990707919	745,028482357057	717,175685274672	705,937771745234	689,799725215866
656,566570213773	653,372601529680	605,031761004616	679,041838971863	738,840972063673
721,380580965686	683,817380534074	710,684836085608	684,258178925042	680,875715994208
631,688867645861	736,114711891715	691,519384324157	715,640246618837	684,713431782720
705,594867729836	637,638213565223	703,087930547039	740,384432189764	672,585170396571
691,695581365172	670,686200717334	725,347125115760	661,835099009609	693,048835948945
701,727181432567	669,893580716852	656,408365605323	759,718270747153	705,982125529941
765,980229499944	687,593894372640	675,349869063177	742,242227780180	714,114818066977
676,083785186172	673,127288456420	693,055434718422	710,109588124728	673,953531179674
759,004284049029	679,185599913618	690,039892504080	655,293831813516	705,473397899837
753,693946752463	777,124183322088	684,383937150168	682,740274502272	782,992263389312
736,342508966353	661,923470998653	641,484770183135	670,872599080963	688,572717720520
684,452184703156	704,107523980840	709,837536599072	700,969567871009	694,856152496993
662,317867231782	748,279194875348	746,301527894409	718,234374431916	723,877634410750
696,567935464745	653,942979882521	696,240365165513	687,718981915633	738,736781556090
697,286610500447	774,995666819580	741,887856812757	678,026414200513	668,782886799721
703,830775112370	665,521307180678	702,648575393530	706,943900269188	661,864629735294
660,040696865944	686,754828937352	712,961096640103	700,271725544660	679,822357672670

2. να αναπαρασταθεί η συγκεντρωτική κατανομή δύναμης (cumulative strength distribution) των κόμβων του δικτύου (σε κάθε τιμή δύναμης αντιστοιχίζεται το πλήθος τον κόμβων με δύναμη μικρότερη ή ίση από αυτή)

Παρακάτω παρατίθενται τα διαγράμματα κατανομής κόμβων για τους διάφορους τύπους δικτύων με τους τύπους για τα αντίστοιχα διαγράμματα να αναφέρονται στους τίτλους των παρατιθέμενων διαγραμμάτων:

3. να υπολογιστεί η μέση δύναμη για όλους τους κόμβους.

avgstrengthLAT	699.5626
avgstrengthRerdos	699.6665
avgstrengthSCALEfree	702.2373
avgstrengthRG	695.8416
avgstrengthSmallworld	698.6057

Δ) Υπολογισμός μέσου μήκους μονοπατιού

Туре	Variance of Average Path Length in Network	Average Path Length
Lattice	17,8776978417266	102,192713913975
Random Erdos	2,33432682425488	0,419628146375581
Scale Free	2,45447070914697	0,438494633732899
Random Geometric	Inf	NaN
Small World	4,65919835560123	2,48508768148352

Το πλέγμα έχει τη μεγαλύτερη διασπορά μονοπατιού και το μεγαλύτερο μέσο μονοπάτι αφού οι βαθμοί των κόμβων είναι προκαθορισμένοι και δεν υπάρχουν τυχαίες συνδέσεις.Οι Random Erdos και Scale Free έχουν παρόμοια χαρακτηριστικά λόγω τυχαιότητας ο ένας και κεντρικών κόμβων που χαρίζουν σε όλους γρήγορη πρόσβαση ο άλλος.Ο τυχαίος γεωμετρικός δείχνει μεγάλη απόκλιση από τη μέση τιμή λόγω πλήρους τυχαιότητας και μικρό μονοπάτι λόγω πολλών συνδέσεων.Ο small world έχει μικρό μέσο μονοπάτι αλλά λόγω πολλών μη κεντρικών κόμβων μια πιο μεγάλη διασπορά

Ε) Υπολογισμός συντελεστή ομαδοποίησης (ΣΟ)

Ε.1 Αναλυτικός υπολογισμός του ΣΟ

Ο επίσημος ορισμός για τον υπολογισμό του ΣΟ κάθε κόμβου είναι:

$$G = (V, E)$$

$$N_i = \{v_j : e_{ij} \in E \lor e_{ji} \in E\}.$$

$$C_i = \frac{2|\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i - 1)}.$$

Με πιο απλά λόγια είναι

$$\Sigma O = \frac{\alpha \rho \iota \theta \mu \delta \varsigma \, \varsigma e s \varsigma e \omega \nu \, \rho e \iota \omega \varsigma \, \epsilon \iota \omega \nu \, \gamma e \iota \iota \tau \delta \nu \omega \nu \, \tau o \nu \, i}{\alpha \rho \iota \theta \mu \delta \varsigma \, \delta \lambda \omega \nu \, \tau \omega \nu \, \pi \iota \theta \alpha \nu \dot{\omega} \nu \, \zeta e \dot{\nu} \xi e \omega \nu \, \mu e \tau \alpha \xi \dot{\nu} \, \tau \omega \nu \, \gamma e \iota \tau \dot{\delta} \nu \omega \nu \, \tau o \nu \, i}$$

Για τον πρώτο γράφο δεν έχει νόημα να υπολογιστεί ο ΣΟ για τους περιφερειακούς κόμβους αφού αυτοί έχουν μόνο ένα γείτονα.

Για τον κεντρικό κόμβο έχουμε ΣΟ=0/4*3/2=0

Και ΜΣΟ=0

Για τον δεύτερο γράφο για όλους τους περιφερειακούς κόμβους εφόσον έχουν δύο γείτονες ο καθένας οι οποίοι είναι συνδεδεμένοι μεταξύ τους ΣΟ=1/2*1/2=1/1=1

Και για τον κεντρικό κόμβο ο οποίος έχει 4 γείτονες ΣΟ=2/(4*3/2)=1/3=0,333

Mε MΣO=(4+1/3)/5=13/15=0,86666

Για τον τρίτο γράφο για όλους τους περιφερειακούς εφόσον αυτοί έχουν όλοι από 3 γείτονες με 2 συνδέσεις μεταξύ των γειτόνων ΣΟ=2/3*2/2=2/3=0,666

Για τον κεντρικό κόμβο ο οποίος έχει 4 γείτονες με 4 συνδέσεις μεταξύ τους $\Sigma O=4/(4*3/2)=2/3=0,666$ Με $M\Sigma O=5*0,666/5=0,666$

Ο δεύτερος γράφος είναι εμφανώς πιο ομαδοποιημένος και ο πρώτος λιγότερο ενώ ο τρίτος είναι ομαδοποιημένος αλλά κάθε κόμβος έχει αρκετούς γείτονες οι οποίοι δεν έχουν τόσο πολλές συνδέσεις μεταξύ τους ώστε να ξεπεράσει τον δεύτερο.

Туре	Average Clustering Coefficient
Lattice	0.5000
Erdos-Renyi	0.0848
Random Geometric	0.7747
Scale Free	0.2003
Small world	0.3876

Το Lattice έχει σταθέρο και ίσο με ½ συντελεστή ομαδικότητας αφού όλοι οι κόμβοι έχουν βαθμό 4 και οι γείτονες όμοια οπότε ο ΣΟ προκύπτει σταθερός και ίσος για όλους σε μια μέση τιμή πράγμα που φάινεται και από το διάγραμμα.

O Erdos Renyi έχει χαμηλό ΣΟ αφού η σύνδεση μεταξύ δύο κόμβων δεν εξασφαλίζει τις συνδέσεις μεταξύ των γειτόνων του και αυτό φαίνεται και από την πορεία του διαγράμματος.

To Scale Free επίσης έχει μικρό ΣΟ και πολύ πιο πριν συγκεντρωμένο στο διάγραμμα απ' ότι ο erdos.

O Random Geometric έχει το μεγαλύτερο από όλους αφού οι τυχαίες ακμές εισάγονται συχνά αυξάνοντας έτσι τον ΣΟ από ένα κατώφλι και μετά άρδην.

O Smallworld έχει το δεύτερο μεγαλύτερο ΣΟ πράγμα που επιβεβαιώνει το γεγονός ότι όλοι φτάνουν σε όλους με μικρό αριθμό βημάτων έχοντας κάποιες απότομες μεταβάσεις σε κάποια συγκεκριμένα σημεία του διαγράμματος που αποτελούν τις πλήμνες-hubs-που προσφέρουν ομαδικότητα στους λιγότερο ομαδικούς κόμβους αυξάνοντας έτσι απότομα τη συγκεντρωτική κατανομή.

Small World

Random Geometrical

Scale Free

Ζ) Υπολογισμός κεντρικότητας κόμβων

Ζ.1 Αναλυτικός υπολογισμός της κεντρικότητας

$$C_D(v) = \deg(v)$$
 Degree Centrality

$$C(x) = \frac{1}{\sum_{y} d(y,x)}$$
. Closeness Centrality

$$C_B(v) = \sum_{s \neq v \neq t \in V} rac{\sigma_{st}(v)}{\sigma_{st}}$$
 Betweness Centrality όπου σ_{st} είναι ο συνολικός αριθμός των συντομότερων μονοπατιών από τον

κόμβο S στον

κόμβο t και $\sigma_{st}(v)$ είναι ο αριθμός αυτών των μονοπατιών που περνάνε από τον v. Παρακάτω παρατίθονται οι ζητούμενοι υπολογισμοί με το Normalized Score να προκύπτει από διαίρεση με το n-1

Degree Centrality

Node	Score		Normalized Score
1		3	1
2		1	1/3
3		1	1/3
4		1	1/3

Closeness Centrality

Node	Score	Normalized Score
1	1/3	1
2	1/5	3/5
3	1/5	3/5
4	1/5	3/5

Betweeness Centrality

Node	Score	Normalized Score
1	3	3/3=1
2	0	0
3	0	0
4	0	0

Degree Centrality

Node	Score	Normalized Score	
1	3	1	
2	3	1	
3	3	1	
4	3	1	

Closeness Centrality

Node	Score	Normalized Score
1	1/3	1
2	1/3	1
3	1/3	1
4	1/3	1

Betweeness Centrality

Node	Score	Normalized Score
1	1/2	1/6
2	1/2	1/6
3	1/2	1/6
4	1/2	1/6

Για την κανονικοποίηση του betweeness centrality διαιρέσαμε με το C $_{max}$ =(n $_2$ -3n+2)/2=3 . Παρατηρούμε για το πρώτο δίκτυο το normalized betweenness centrality1 είναι 1 και των υπολοίπων 0 , καθώς πρόκειται για το δίκτυο Star(αστέρας). Παρατηρούμε ότι ο 1 κατακτά και τις τρεις κεντρικότητες .

Για το δεύτερο δίκτυο παρατηρούμε ότι και οι 4 κόμβοι είναι ισοδύναμοι , καθώς το δίκτυό τους είναι **κλίκα** .

Lattice

- Degree Centrality
- Closeness Centrality
- Betweeness Centrality
- Eigenvector Centrality

Όλες οι κεντρικότητες συγκεντρώνονται γύρω από την ίδια τιμή πράγμα που σημαίνει ότι όλοι οι κόμβοι για όλες τις μετρικές είναι ισοδύναμοι δε θέματα κεντρικότητας.

Erdos Renyi

- Degree Centrality έχει σχεδόν ομοιόμορφη αύξηση με λίγους κόμβους να έχεουν λίγους γείτονες
- Closeness Centrality έχει μεγάλο average path άρα λίγοι κόμβοι είναι κοντά με άλλους
- Betweeness Centrality είναι αρκετά μεγάλο εξ'αρχής λόγω των πολλών ενδιάμεσω κόμβων
- Eigenvector Centrality αυξάνεται οομοιόμορφα από μία τιμή και μετά γιατί πάνω από τους μισούς κόμβους έχουν σημαντικούς για τις συνδέσεις τους γείτονες

Random Geometrical

- Degree Centrality έχει σχεδόν ομοιόμορφη αύξηση με λίγους κόμβους να έχεουν λίγους γείτονες
- Closeness Centrality έχει μεγάλο average path άρα λίγοι κόμβοι είναι κοντά με άλλους
- Betweeness Centrality είναι αρκετά μεγάλο εξ΄αρχής λόγω των πολλών ενδιάμεσω κόμβων
- Eigenvector Centrality αυξάνεται οομοιόμορφα από μία τιμή και μετά γιατί πάνω από τους μισούς κόμβους
 έχουν σημαντικούς για τις συνδέσεις τους γείτονες

Small World

- Degree Centrality έχει απότομη αύξηση σε κάποια σημεία(κόμβους) καθώς συγκεκριμένοι κεντρικοί κόμβοι έχουν πολλούς περισσότερους γείτονες από άλλους
- Closeness Centrality αυξάνεται ομοιόμορφα από τη μέση και μετά γιατί η απόσταση έχει ομοιόμορφη κατανομή στο δικτυο
- Betweeness Centrality είναι αρκετά μεγάλο εξ'αρχής λόγω των πολλών ενδιάμεσω κόμβων
- Eigenvector Centrality αυξάνεται οομοιόμορφα από μία τιμή και μετά γιατί πάνω από τους μισούς κόμβους έχουν σημαντικούς για τις συνδέσεις τους γείτονες

Scale Free

- Degree Centrality έχει εξ΄ αρχής μεγάλες τιμές αφού πολλοί είναι γείτονες με πολλούς(έχουν μεγάλο βαθμό)
- Closeness Centrality έχει απότομη μετάβαση σε υψηλές τιμές αφού έχει αρκετούς κόμβους που συνδέονται σχεδόν αμέσως με τον οποιονδήποτε
- Betweeness Centrality ειναι το μεγαλύτερο απ'όλους αφου έχει πολλούς ενδιάμεσους που ενώνουν τους πιο κεντρικους με τους λιγότερο κεντρικούς
- Eigenvector Centrality είναι και πάλι το μεγαλύτερο αφού σχεδόν για όλους τους κόμβους υπάρχουν αρκετοί κρίσιμοι γείτονες

Lattice

Degree Centrality

Closeness Centrality

Betweness Centrality

Eigenvector Centrality

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

100

120

20

0.1

Closeness Centrality

Eigenvector Centrality

Degree Centrality

Closeness Centrality

Betweness Centrality

Eigenvector Centrality

Η) Μελέτη συνεκτικότητας και συμπεριφορά κατωφλίων

- Σε ποιές περιπτώσεις εμφανίζονται φαινόμενα κατωφλίου?
- Ποιές είναι οι κρίσιμες τιμές για κάθε τύπο δικτύου οι οποίες οδηγούν σε μετάβαση φάσης (phase transitions)?
- Ποιες μεταβάσεις φάσης είναι απότομες (sharp) και ποιές ομαλές (smooth)?

Πίνακας 3 - Εύρος παραμέτρων για τη μελέτη συνεκτικότητας δικτύου

Τοπολογία		Εύρος Παραμέτρων		
REG		<i>d</i> ∈[2,10] με βήμα 2		
ER-RG		Μ ∈[100,800] με βήμα 100		
RG		ρ ∈[0.1,0.9] με βήμα 0.1		
RGG	$n = \{100, 200\}$	<i>R</i> ∈[25,250] με βήμα 25	<i>L</i> = 1000	
BA-SF		<i>d</i> ∈[2,10] με	βήμα 2	
			<i>g_p</i> ∈[0.1,0.7] με	
ws-sw		<i>d</i> ∈[2,10] με βήμα 2		
			βήμα 0.1	

Σχολιασμοί-Παρατηρήσεις

Regular(Lattice)

Το πλέγμα παρουσιάζει απόλυτη συνεκτικότητα για κάθε τιμή του degree των κόμβων και για όλες τις τοπολογίες.

Gilbert

Το γράφημα του Gilbert όπως όλοι οι τυχαίοι γράφοι παρουσιάζει απότομες μεταβάσης φάσης και για 100 και για 200 κόμβους με κρίσιμο σημείο που δεν είναι τόσο εμφανές για αυτό και έχει γίνει μεγέθυνση του γραφήματος. Η μετάβαση είναι εξαιρετικά απότομη και η τιμή της συνεκτικότητας άμεσα σταθεροποιείται στο 100% παρουσιάζοντας ένα κατώφλι.

Erdos Renvi

Όμοια και αυτός ο τύπος ττυχαίου δικτύου παρουσιάζει απότομες μεταβάσεις αλλά αισθητά πιο ομαλές από του Gilbert και φαίνεται ότι στο άπειρο(n) οδηγείται σε ακόμα πιο απότομα thresholds. Δηλαδή όσο αυξάνουμε τον αριθμό των κόμβων οδηγούμαστε σε φαινόμενα κατωφλίου με κρίσιμα σημεία αυξανόμενα πάνω από το 0,6 της παραμέτρου.

Small world

Ακολουθεί τη συνεκτικότητα του πλέγματος και πολύ γρήγορα με ομαλή και σχεδόν μηδαμινή μετάβαση οδηγείται σε απόλυτη συνεκτικότητα.

Scale Free

Εδώ επίσης δεν έχουμε φαινόμενα κατωφλίου παρά μια αρχική απότομη μετάβαση και σταθεροποίηση σε απόλυτη συνεκτικότητα για 200 κόμβους και για 100 έχουμε μηδενική συνεκτικότητα με μετάβαση στην τιμή 1 όταν η παράμετρος μας φτάσει στο 1 απότομη και πάλι.

Random Geometrical

Όπως είναι σύνηθες σε τυχαίους γράφους εμφανίζει φαινόμενα κατωφλίου το οποίο όσο αυξάνουμε τον

αριθμό των κόμβων συμβαίνει για μικρότερο κρίσιμο σημείο της παραμέτρου R.Οι μεταβάσεις είναι απότομες και έχουν γραμμική αύξηση της συνεκτικότητας μέχρι τη μονάδα από την κρίσιμη τιμή και μετά

Θ) Μελέτη μοντέλων τυχαίων γράφων

Ο παρακάτω πίνακας συμπληρώνετε με βάση τις παρακάτω σχέσεις μεταξύ των δύο μοντέλων των τυχαίων γράφων

Μοντέλο Gilbert

Συμβολίζεται με G(n,p) και στον οποίο κάθε ακμή λαμβάνει χώρα ανεξάρτητα από την άλλη με πιθανότητα 0 . Η πιθανότητα να πάρουμε ένα τέτοιο τυχαίο γράφο με <math>m ακμές είναι $p^m(1-p)^{N-m}$ με σημείωση ότι $N=\binom{n}{2}$

Μοντέλο Erdos-Renyi

Συμβολίζεται με G(n,M) επιλέγει ομοιόμορφα -με ίδια πιθανότητα σε κάθε γράφο- από γράφους με ακριβώς M ακμές.

Σχέση που συνδέει τα δύο μοντέλα $M=\binom{n}{2}p$

Όταν $pn^2 \rightarrow \infty$, οG(n,p) συμπεριφέρεται όπως ο G(n,M) με

Τοπολογία	<i>n</i> = 100	n=10 ³	$n = 10^4$	$n = 10^5$	n=10 ⁶
RG (G)	p = 0.1	p=10 ⁻²	$p = 10^{-3}$	p=10 ⁻⁴	$p = 10^{-5}$
RG (ER)	M=495	M = 4995	M=49995	M = 499995	M = 4999995

Ι) Μελέτη της εξελικτικής μετατροπής δικτύου REG σε δίκτυο SW και RG (ER)

g p	Average Clustering Coefficient	Average Path Length
0	0,50000000000000	17,8776978417266
0.1	0,463571428571428	7,29403905447071
0.2	0,444591836734694	5,80554984583762
0.3	0,403163265306122	4,71798561151079
0.4	0,367040816326530	4,16803699897225
0.5	0,335068027210884	3,96279547790339
0.6	0,324795918367347	3,81027749229188
0.7	0,301989795918367	3,67615621788284
0.8	0,291094104308390	3,47348406988695
0.9	0,247329931972789	3,28807810894142
1	0,238951247165533	3,22261048304214

Ουσιαστικά παρατηρώντας τις παραμέτρους και τα αποτελέσματα των προηγούμενων ερωτημάτων προκύπτει ότι για g=0 το δίκτυο είναι ένα πλέγμα(ουσιαστικά το πλέγμα είναι sw με μηδενική όμως πιθανότητα ανασύνδεση άρα είναι ένα large world δίκτυο) μέχρι την τιμή 0,5 συμπεριφέρεται σαν small world δίκτυο και όσο αυξάνει το g δηλαδή η τυχαιότητα τείνει στο να γίνεται όλο και πιο τυχαίος ο γράφος μέχρι που για g=1 μοιάζει με τυχαίο γεωμετρικό γράφο.