SDK 例程使用说明 - SPI DMA

一、功能描述

SPI master使用DMA方式与SPI slave进行数据收发

- 1. SPI master使用dma方式将数据发送给SPI slave
- 2. SPI slave将收到的数据发送回SPI master
- 3. SPI master使用dma方式接收SPI slave发送回来的数据并校验

二、使用环境

- I. 硬件环境:
 - 1. 开发板: WTMDK2101-X3 (两电或三电)
- Ⅱ. 软件环境:
 - 1. IDE工具: SEGGER Embedded Studio for RISC-V V5.60
 - 2. 输出信息查看工具: 串口助手

三、系统配置

- I. 系统时钟:
 - 时钟源:内部24M时钟
 - AHB时钟: 24M外设时钟: 24M
- II. UART:
 - 引脚复用:
 - UARTO_TX -> GPIO_4
 - UARTO RX -> GPIO 5
 - 参数配置:
 - 波特率: 9600
 - 停止位: 1 bit
 - 。 数据位: 8 bits
 - 。 奇偶校验: 无
- III. SPI:
 - 引脚复用:
 - SPIM_MOSI -> GPIO_0
 - SPIM CS -> GPIO 1
 - SPIM_CLK -> GPIO_2

- SPIM_MISO -> GPIO_3
- SPIS_MOSI -> GPIO_16
- SPIS_CS -> GPIO_14
- SPIS_CLK -> GPIO_15
- SPIS_MISO -> GPIO_17

频率: 2M数据宽度: 8bit片选: CS0

IV. DMA:

 DMA_CHANNELO: SPI Master数据发送 MEM_TO_PER_FLOW_CTOL_DMA SRC_ADDRESS_INCREASE DST_ADDRESS_NO_CHANGE DMA_WIDTH_8Bit

 DMA_CHANNEL1: SPI Master数据接收 PER_TO_MEM_FLOW_CTOL_DMA SRC_ADDRESS_NO_CHANGE DST_ADDRESS_INCREASE DMA_WIDTH 8Bit

V. 中断:

无

四、步骤和现象

- 1. 参考硬件接线图1连接各个跳线(包含参考供电, JLink, SPI等连接) 将J32排针的BOOT0与GND, IOVDD与1.8V, AVDD与3.3V相连接; DVDD通过跳线接到 1.1V,将J33的PERIV与1.8V相连接,将J32的32K与XTAL相连接;将J30排针的P00与J32的 P16,P01与P14,P02与P15,P03与P17相连接;将J30排针的P04与TXD,P05与RXD相连接;
- 2. 开发板供电——通过Micro-USB线将WTMDK2101-X3板和PC相连接。并拨动拨码开关至ON;
- 3. 编译后下载程序并运行;
- 4. 使用PC串口终端观察打印信息,观察终端打印"pass"为验证通过"failed"为失败。

图1. 硬件连接参考图

WITHIEM CONTRIBUTION OF THE PARTY OF THE PAR

五、注意事项

MIMEN

• SPI发送FIFO深度为8,接收FIFO深度为16。