Úkol

- 1. S použitím spektra rtuti zkalibrujte hranolový spektrometr. Pro vyloučení hrubých chyb vyneste kalibrační křivku ihned do grafu.
- 2. Ověřte vlnové délky sodíkových dubletů (alespoň tří).
- 3. Na základě pozorování sodíkových dubletů diskutujte rozlišovací schopnost spektrometru. Diskutujte přesnost takto určené rozlišovací schopnosti.
- 4. Prohlédněte si spektra výbojek s náplní He, Ne, Ar, N₂ a CO₂. Určete vlnové délky nejjasnějších čar. Porovnejte s tabulkovými hodnotami.
- 5. Změřte vlnové délky čar $H_\alpha,~H_\beta,~H_\gamma$ Balmerovy serie vodíkového spektra. Vypočítejte Rydbergovu konstantu.

Teorie

V této úloze studujeme atomová emisní spektra plynů. Využíváme k tomu hranolový spektrometr Hilgerova typu, jehož detailní popis je uveden ve studijním textu [1]. Tento spektrometr neudává přímo vlnové délky pozorovaných čar, je proto potřeba jej okalibrovat pomocí známých vlnových délek emisního spektra rtuti. Tabulkové hodnoty těchto vlnových délek jsou uvedeny v sekci výsledků měření v tabulce ??.

Pro rozlišovací schopnost R spektrometru platí vztah

$$R = \frac{\lambda}{d\lambda},\tag{1}$$

který určuje minimální rozdíl vlnových délek λ a $\lambda+d\lambda$, který ještě spektrometr dokáže rozlišit. V tomto případě využijeme pro určení rozlišovací schopnosti měření dubletů sodíku.

Ve viditelném emisním spektru vodíku jsou pozorovatelné čtyři čáry H_{α} (červená), H_{β} (modrozelená), H_{γ} (modrá) a H_{δ} (fialová). Tyto čáry jsou součástí tzv. Balmerovy série, pro vlnočty jejíž spektrálních čár platí vztah

$$\sigma = \frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{n^2}\right),\tag{2}$$

kde R je Rydbergova konstanta a n=3,4,5,6 jsou přirozená čísla odpovídající jednotlivým čarám. Rydbergovu konstantu určíme z tohoto vztahu metodou nejmenších čtverců.

Výsledky

Diskuse

Závěr

Reference

[1] Pokyny k měření "Studium atomových spekter", dostupné z https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_415.pdf, 12.11.2019