Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

Учебно-исследовательская работа 1 (УИР 1) 'Обработка результатов измерений: статистический анализ числовой последовательности'

по дисциплине 'Моделирование'

Выполнили Студенты группы Р34151 Ярусова Анна Александровна Шипулин Павел Андреевич

Преподаватель: Алиев Тауфик Измайлович

Санкт-Петербург, 2024

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Выполнение работы

1 Характеристики заданной ЧП

Vanagranuariuga		Количество случайных величин							
Характеристика		10	20	50	100	200	300		
Man auguna	знач	6,571	16,811	19,519	19,627	14,758	16,388		
Мат. ожидание	%	59,900	2,587	19,109	19,766	9,943			
Пор. иит (0,0)	знач	13,722	39,342	52,804	63,060	48,729	55 102		
Дов. инт. (0,9)	%	75,133	28,705	4,310	14,275	11,695	55,183		
Пов. иит (0.05)	знач	16,370	46,933	62,992	75,227	58,131	65,830		
Дов. инт. (0,95)	%	75,133	28,705	4,310	14,275	11,695			
Дов. инт. (0,99)	знач	21,514	61,684	82,790	98,870	76,401	86,519		
	%	75,133	28,705	4,310	14,275	11,695			
Дисперсия	знач	69,754	573,388	1032,912	1473,121	879,634	1128,063		
	%	93,816	49,171	8,435	30,589	22,023	1126,003		
С. к. отклонение	знач	8,352	23,946	32,139	38,381	29,659	33,587		
	%	75,133	28,705	4,310	14,275	11,695	33,367		
V = popyoyyyy	знач	1,271	1,424	1,647	1,956	2,010	2,050		
К-т вариации	%	37,989	30,503	19,662	4,584	1,946	2,030		

Проанализировав данную числовую последовательность, заметим, что дисперсия и среднеквадратическое отклонение достаточно большие, что говорит о том, что значений близких к математическому ожиданию мало.

2 График значений заданной ЧП

По графику заметим, что последовательность не является возрастающей/убывающей, а также периодической.

3 Результаты автокорреляционного анализа

Автокорреляционный анализ										
Сдвиг ЧП 1 2 3 4 5 6 7 8 9								10		
Для исх.	0,050	-0,018	-0,053	0,003	-0,037	0,006	0,056	-0,037	0,013	0,090

Так как значения автокорреляций близки к 0, то можно считать, что нет закономерности между нынешними и следующими значениями в наборе. Набор исходных значений можно считать случайным.

4 Гистограмма распределения для исходной последовательности

Количество значений меньших чем среднее гораздо больше тех, которые больше среднего. При этом, есть значения на порядок больше среднего. Эти отклонения объясняют большое значение дисперсии и с.к.о. для исходного набора.

5 Вид аппроксимирующего закона распределения

Так как значение вариации для исходного набора $v_{300} = 2,05 > 1$, следует подобрать гиперэкспоненциальный закон распределения.

Мат. ожидание исходной последовательности t=16,388

$$q_{max} = \frac{1}{\sqrt{1 + v_{300}^2}} = 0,385$$

$$0 < q < q_{max}$$
, пусть $q = 0$, 28

Мат. ожидания экспоненциальных распределений

$$t_{1} = \left[1 + \sqrt{\frac{1-q}{2q}(v_{300}^{2} - 1)}\right]t = 49,63$$

$$t_{2} = \left[1 - \sqrt{\frac{q}{2(1-q)}(v_{300}^{2} - 1)}\right]t = 3,46$$

6 Описание алгоритма

Пусть r – случайное число в промежутке (0; 1)

$$F(x) = 1 - e^{-\frac{x}{M[X]}} = r$$

$$e^{-\frac{x}{M[X]}} = 1 - r$$

$$ln\left(e^{-\frac{x}{M[X]}}\right) = ln(1 - r)$$

$$-\frac{x}{M[X]} = ln r$$

$$x = -M[X] \cdot ln r$$

Используются два генератора случайных величин с экспоненциальным распределением и мат. ожиданиями t_1 и t_2 :

$$x_1(r) = -t_1 \cdot \ln r$$

$$x_2(r) = -t_2 \cdot \ln r$$

Выбирается случайное значение $q_{\text{случ}}$ в промежутке (0; 1). Следующее случайное значения гиперэкспоненциального генератора $x_{\text{случ}}$ находится следующим образом:

$$q_{\text{случ}} \le q, x_{\text{случ}} = x_1(r)$$
$$q_{\text{случ}} > q, x_{\text{случ}} = x_2(r)$$

7 Выводы по результатам сравнения сгенерированной и исходной последовательностей

По графику видно, что сгенерированная последовательность похожа на исходную, что доказывает, что аппроксимирующая функция подобрана правильно.

Закон распределения: гиперэкспоненциальный										
Vanagranyaryyga		Количество случайных величин								
Характеристика		10	20	50	100	200	300			
Мот ожиломио	знач	16,064	10,473	23,495	22,692	21,593	19,902			
Мат. ожидание	%	1,977	36,094	43,373	38,472	31,764	21,445			
Дов. инт. (0,9)	знач	41,672	30,965	73,352	72,042	69,607	65,605			
	%	24,485	43,886	32,925	30,552	26,140	18,886			
П (0.05)	знач	49,712	36,940	87,504	85,942	83,037	78,262			
Дов. инт. (0,95)	%	24,485	43,886	32,925	30,552	26,140	18,886			
Дов. инт. (0,99)	знач	65,335	48,549	115,006	112,952	109,135	102,859			
	%	24,485	43,886	32,925	30,552	26,140	18,886			
Дисперсия	знач	643,285	355,202	1993,178	1922,637	1794,882	1594,391			
	%	42,974	68,512	76,690	70,437	59,112	41,339			
С. к. отклонение	знач	25,363	18,847	44,645	43,848	42,366	39,930			
	%	24,485	43,886	32,925	30,552	26,140	18,886			
V = popyyoyy	знач	1,579	1,800	1,900	1,932	1,962	2,006			
К-т вариации	%	22,962	12,193	7,287	5,720	4,269	2,107			

Математическое ожидание сгенерированной последовательности схоже с математическим ожиданием исходной последовательности.

Автокорреляционный анализ										
Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
Для исх.	0,050	-0,018	-0,053	0,003	-0,037	0,006	0,056	-0,037	0,013	0,090
Для сген.	0,054	-0,062	-0,007	0,102	0,000	0,044	-0,025	0,115	0,022	-0,023
%	9,168	244,814	86,559	3261,830	99,030	662,196	145,453	413,770	72,577	125,595

Так как значения автокорреляций близки к 0, то можно считать, что нет закономерности между нынешними и следующими значениями в наборе.

Набор сгенерированных значений можно считать случайным. Разброс значений автокорреляций такого же порядка как и для исходного набора.

Расчет коэффициента корреляции между исходным и сгенерированным наборами:

$$r_{XY} = \frac{cov_{XY}}{\sigma_X \sigma_Y} = 0,052$$

Так как значение корреляции близко к 0, можно сказать, что рассматриваемые значения независимы.