DATE 9/08/16

EXPERIMENT NO.2

SHEET NO 12

OBJECTIVE !-

Derification of Maximum power theorem and Reciprocity theory.

Verification of Maximum power theorem when the resistance add

reactance of the load can be varied individually and seperated.

APPARATUS REQUIRED !-

S.No.	Apparatus Name	Quantity	Specifications
1.	Ac Source	1	8V
2.	Resistori	2	100-2001
3.	Inductor	1	248mH.
4.	Variable Capacitor Capacitana box)	1	upto 20 MF
5.	Capacitors	1	she
		1	8µf
		1	lope
		1	21.6µf.
6.	PLC-Multimeter	1	
٦.	Multimeter	1	
9.	Connecting Wins Phrostats	2 3 2	0-85A
		2	0-11801

CIRCUIT DIAGRAM

DATE

SHEET NO. 14

THEORY :-

Maximum power can be transferred from a source of given voltage and an internal impedence to the load impedence Ze in the circuit under three different conditions:

(a) If RL is fixed and XL can be varied:- $I = \frac{Vs}{Ri+jXi+Ri+jXL}$

To maximize proverdissipated in RL, we maximize $I = \frac{V_S}{R_1 + R_2}$ by setting $Xi = -X_L$

(b) If XL is fixed and RL can be varied! - $P = |I^2| RL = \frac{Vs^2 RL}{(R_1 + R_2)^2 + (X_1 + X_2)^2}$

Hence, $\frac{dP}{dR_{1}} = 0 \Rightarrow \frac{-1}{P^{2}} = 0 \Rightarrow \frac{dP^{1}}{dR_{1}} = 0$ Hence, $\frac{d}{dR_{1}} \left\{ \frac{Ri+R_{1})^{2} + (Xi+XL)^{2}}{Vs^{2} + RL} \right\} = 0$ $\Rightarrow \frac{1}{Vs^{2}} \left\{ \frac{-Ri^{2}}{R_{1}^{2}} + \frac{(Xi+XL)^{2}}{Vs^{2}} \left(\frac{-1}{RL^{2}} \right) = 0 \right\}$ $\Rightarrow R_{1} = \sqrt{Ri^{2} + (Xi+XL)^{2}}$

Then both the above solutions are simultaneously valid.

Hence, Xi = - Xz and Right

DATE					SHEET NO. 15
o 1:	AVATIONS: = 248 MH Rin= 60.31 RL=100.21 spected Valu		-Vin/Vs=	8.81V·	$G = 8.35 \mu f$ $G_2 = 10.2 \mu f$ $G_3 = 2.1 \mu f$ $G_4 = 20.2 \mu f$
SI. Ne	(ht)	VI Cv)	V25 (V)	TABLE-I V1 V3 CVOL+2)	Max. Value (VIV3)
1.	10.3	2.158	3.666	9-22-17911 8-746	(Nolti)
3.	12.4	2.360	y.000	9.44	
ч.	13.5	2-420	N-100	09.999	
5.	14.6	2-448	4.153	多型 10.166	
6.	15.6	2,452	4.167	10.217	
7.	16.7	2.458	4.168	10.245	10.84 vall 2.
8.	17.725440	2.440	4.127	10.069	at
9.	18.7	2.444	4.091	9,904	C= 16.7 M.
10.	20.8	2.408	4.067	9,793.	
12.	21.4	2.38	4.06	9.663	
13.		2:255	3.821	8.616	and water ?

		TA	BLE-II		
Sl. No.	RL (A)	V, (V)	V3,	V1 V2=	Max. Value (V/3) (NO(42)
1.	50.3	3.263	2-750	8,973	
2.	50,8	3.045	3.060	9,318	
3.	75.2	2-763	3.513	9,706	
4.	85.0	2.607	3.741	9750	
5	95.0	2.462	3,978	9,794	19.794
6.	96.5	2-442	3.977	9.712	at R1=95.0.
07	98-3	2,405	4,025	9.680	10 132
	90.9	2,402	4.054	9.738	
08	105-1	2.334	4.170	9.733	
	110.1	2.264	4.231	a.579	
10.	119.9	2.164	पःपाप	9,552	
12.	140.0	1,984	4.714	9.352	

Ropic: Graph-2 (Variable R. fixed C) Stale X-mis - 1501 - 0.50 1-0015 - 155ds 0-0148 2 130 90 100 120 Resistance (A) > * 300

SHEET NO. 17

		P.K.	SUE III			1
Si-	(a)	(HB.)	V ₁	V ₃	V1 V3. (W42)	
4	1000	a) 19·3	2.382	4.145	9.813	
		W 18-7	2:427	4.218	10.237	
		(c) 18-5	2-570	4.136	9,802	
2	97.9	0719-3	2.458	प्रा	10,070	
		THE CE	2-498	4.155	10-379	
		W) 13-15	2-471	4.097	10.129	
	05-1	20 M-R	2-488	4.015	10.014	MAY
3		F) 147	2.544	4.104	10.441	WINZ MOX
		c) 13.5	2-503	4.022	10.067	
		2-F) (a	2.555	3.883	9.921	
4	30-1	6) 16-7	2.588	3.957	10.241	
		C) 13-5	2.536	3.863	9.796	
			2.633	3.784	9,963	
5-	82-1	2-64 (40	2.672	3.854	10.298	
		(c) 135	2.606	3-749	9,769	
					9.769	

SHEET NO. 18

DISCUSSION :-

* Verification of Maximum power theorem:

1. Sources of Error.

- * Contact resistance at joints and multimeter proles.
- A (tresistor of Inductor (due to Skin effect) was not * Loose connections.
- * Measurement of inductor resistance: We passed a de current and measured the transforme across the inductor. However, the method is not award because a circuit resistance diffus from de resistance because of proximity and skin effect, which are frequency dependent.

2. Pre cautions!

* The unductor should be kept at maximum distance from other circuit components at it may effect the pourer source or capacitance, resistance.

DATE

SHEET NO 19

(Î)

Am:-Verification of Reciprocity Theorem.

APPARATUS REQUIRED :-

S-No.	Apparatus Name	Quantity	Range Specification
1.	Voltage Supply (AC)	1	
2.	Auto Transformer	1	270V-3A
3.	Resistor (from Rhustat)	2 1 1	501 1001 1501
ч.	Ammeter	1	400.r AC(MI)
5.	Multimeter/Voltmuter	1.	

DATE

SHEET NO. 21

THEORY :-

het a linear bilateral circuit be composed of mindependent loops, where voltage is given in the input port of loops and current is measured in the output post of loop 2. Let us assume that no other voltage source is present uside the circuit (though the result would remain unchanged, and the additional voltages can be taken care of by superposition.) Hence it follows:

$$\begin{bmatrix} V_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_{2'} \\ \vdots \\ I_{n'} \end{bmatrix}$$

Naw if we apply V_2 in 2nd loop and we observe current I, in the first loop, then it follows:
In the first $\begin{bmatrix} 0 \\ v_2 \end{bmatrix} = Z \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ V_2 \\ 0 \end{bmatrix} = \begin{bmatrix} Z \\ 1 \\ T_1 \end{bmatrix}$$

3 I'= V2 D21

Comparing, $I_2' = I_1'$. Thus the ratio of the response to the existation is invariant to an interchange in position of excitation and invariant to an interchange in position of and response excitation

DATE

SHEET NO. 22

OBSERVATIONS:

Vs(V)	I3(A)	Vs/13(V/A)	Vs'(v)	Ti CA)	Vs' / I,' (MA)
201.3	0,485	415.05	100.2	0.25	400.8

$$\frac{V_S}{I_3} \simeq \frac{V_{s'}}{I_1'}$$

Percentage error =
$$\frac{415.05 - 400.8}{415.05} \times 100 = 3.433\%$$

DATE

SHEET NO. 23

DISCUSSION:-* Verification of Reciprosity Theorem.

-> Sources of Error!-

* The multimeters internal resistance, which needs to be ladded to the circuit across 1-1' at one time & across 2-2" in the other time: flowever, for reciprocity theorem to be valid, the circuit must be unchanged! Only the position of voltage source and current distribution should change. Thus the limit is every neons

* Resistance becomes large at any point of loose contact eg. the probes of multimeter or any loose connection. They, unless the circuit is perfect, the distribution of resistance do not become exact.

Branch Analysis' --

(i) first case.

DATE

SHEET NOQU

$$I_2 = I_1 \times \frac{100}{100 + \frac{17}{2} \times 50}$$

= 0.521 A.

= 0.463A. -> Theoritical

Practically Measured $I_3 = 0.485A$. : Is (theoritical) \approx Is(practical).

(ii) Second case

V= 101.2V

= 136.274.

$$I_2' = I_3' \times \frac{400}{510} = 0.58244 A$$
.

I'(practical) = 0.250 A.

:. I cpractical) & I (theoretical).

DATE 02/09/16

EXPERIMENT No.3.

SHEET NO25

OBJECTIVE:-

To study Transient and frequence response of R-LC series wruit.

APPARATUS REQUIRED:-

S.No.	APPARATUS	QUANTITY	SPECIFICATIONS.
1.	FUNCTION GENERATOR	1	
2.	Decade Risistance Box	1	Range: 2K.D
3,	Inductor	1	STATE
4.	Capacitor	1	
5.	Cathode Ray Osulloswpe	1	

DATE SHEET NO 26 CIRCUIT DIAGRAM!-Decade Resistance box 0.14 c 0.1 mf CRO

DATE SHEET NO 27 THEORY :-Nin Lovershoot RISE TIME : It is the time taken by the signal to reach from 101. to 90% of its final value Ruse time tr = 1 (11-tant 1- \frac{11-\xi^2}{\xi}) SETTING TIME: It is the time taken by the signal to reach from 10% of its final value.

Yahu till it settles within 2% error band of it's final value.

ts = - ln(% of error band)

gavo. DATE

SHEET NO 28

OVERSHOOT:

It is the difference between the max value of signal and the final value

% Overshoot = 100 e (FIT)

The differential equation for the circust:

$$\lambda \frac{d^2i}{dt^2} + R \frac{di}{dt} + \frac{i}{c} = \frac{dv}{dt}$$

The characteristic equation is:

GAM:

Loe

DATE

SHEET NO 28

OVERSHOOT:

It is the difference between the max value of signal and the final value.

% Overshoot = 100 e(575)

The differential equation for the circust:

$$\frac{d^{2}i}{dt^{2}} + R \frac{di}{dt} + \frac{i}{c} = \frac{dv}{dt}$$

The characteristic equation is:

GAN:

DATE

SHEET NO 29

100 The contract of the contract (man & Street - 17 - 1 ships Volt div = 2 Volum Time din = 1 ma din (R=200.A, 6:0:1)

DATE

SHEET NO. 30

OBSERVATIONS :-

(=0.14 , L=0.14

Vingut = 2.06 V.

5.No.	E	Rlinn	Voutput (inv)	Overshoot (in V)
1	0.1	2.50	44	2.60
2.	0.2	400	4.4	1.80
3	0.3	600	4.4	1.20
4.	0.5	1000	4.4	0.45
5.	F-0	1400	4.4	0.08
6	0-8	1600	4,4	0.00

S.No	4	Theoritical 1. Overshoot	Actual y. Overhoof
1.	0.1	72.92	59.09
2.	0.2	52.66	40.91
3.	0.3	31.23	27.27
ų.	0.5	16.30	10.23
5.	0-7	4,60	1.82
G.	0.8	1.18	0

-

SHEET NO. 31

FREQUENCY RESPONSE

\$ =05 , Vin=46V.

Salo-	frequency (in Hz)	Vc (inv) (Vout)	Gain.	Phone (in rad).
	50	4.6	1	0
1-	100	4.6	1	0
3-	300	4.6	,	
		4.7	1.02	- 0.377
4	500		1.04	-0.528
2.	700	4.9		-0.830
6-	1000	5.7	1.13	
7-	(050	5.3	1.12	-0.922
4	1100	5.4	1.17	4.037
9	1150	5.5	1:19	-1.084
la	1200	5.4	1-17	-1.056
N	1300	5.0	1.09	-1.225
	1400	45	0.98	-1.319
12-		4.0	0.87	-1.508
15	1200	3.5	0.76	-1,709
14.	1700	2-8	0.61	-2-011
15-	2000			-2.262
1/2	3000	1-2	0.26	-3.016
17.	4000	0.8	0.17	-1:142
18.	5000	0.4	0.09	-31142

DEE

SHEET NO 32

DISCUSSION .

and practical values may not how matched due to lon by precision in the instruments which might have been coursed due to loose connections or use mishaudings

The wolkings acron capacitor about increasing from the supply voltage as we fare from how frequency. It reaches a maxima and then asymptotically decreases to 2000.

The theoritical value of marine is 115.47.1. gain.
The theoritical value of freq- at which marines occurs to well 1252 = 1125. 30 He and it fallies very well with the

The phase angle decreates from 0 to 11 going through "The at the lateral from a transfer of the lateral from 1-1-3 radians of 1900Hz I tracks respectively.

The confirm the prediction

37%

PRX

MATE

SHEET NO 32

DISCUSSION .

* In the percentage overhoot part of the experiment, the theoritical and practical values may not hour matched due to her of precision in the instruments which might have been caused due to loose connections or user mishandlings

* The woltage across capacitor starts increasing from the supply voltage as we start from low frequency. It reaches a maxima and then

asymptotically decreases to zero.

The theoritical value of marina is 115.47.1. gain.

The theoritical value of freq. at which maxima occurs do

wal 1-282 = 1125.39 Hz and it tallies very well with the

experimental values.

The phase angle decreases from 0 to -11 going through "11/2 at two (Natural fig.). Experimentally we obtain a phase angle of 1500 Hz & radians at 1500 Hz & 1000 Hz respectively.

This confirms the predictions.

of plan

PRI