Further Mathematics

S.Olivia

March 2024

目录

1	多元函数的极限与连续 5			
	1.1	基本概念	. 5	
	1.2	二元函数的极限	. 5	
		1.2.1 重极限与累次极限	. 6	
	1.3	二元函数的连续性	. 6	
		1.3.1 复合函数的连续性	. 6	
2	多元	函数微分学	7	
	2.1	可微性	. 7	
		2.1.1 偏导数	. 7	
		2.1.2 全微分	. 7	
		2.1.3 曲面的切平面与法线	. 8	
	2.2	复合函数微分法	. 9	
		2.2.1 复合函数的偏导数	. 9	
		2.2.2 复合函数的全微分	. 9	
	2.3	方向导数与梯度	. 9	
		2.3.1 方向导数	. 9	
		2.3.2 梯度	. 9	
	2.4	泰勒公式与极值	. 10	
		2.4.1 高阶偏导数	. 10	
		2.4.2 中值定理和泰勒公式	. 10	
		2.4.3 极值	. 11	
3	隐函	数定理及其应用	13	
	3.1	隐函数	. 13	
		3.1.1 隐函数定理	. 13	
	3.2	隐函数组	. 13	
	3.3	条件极值	. 14	
4	曲线	·····································	15	
	4.1	第一型曲线积分	. 15	
	4.2	第二型曲线积分	. 15	

4 目录

多元函数的极限与连续

1.1 基本概念

平面: $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x, y) | x, y \in \mathbf{R}\}$

平面点集: $\{(x,y)|(x,y)$ 满足条件 $P\}$

邻域: $U(P_0, \delta) = \{P | |PP_0| < \delta\}$

内点: P_0 是集合D的内点,如果存在 $\delta > 0$,使得 $U(P_0, \delta) \subset D$

外点: P_0 是集合D的外点, 如果存在 $\delta > 0$, 使得 $U(P_0, \delta) \cap D = \emptyset$

(边) 界点: P_0 是集合D的边界点,如果对任意 $\delta > 0$, $U(P_0, \delta)$ 内既有D内的点,也有D外的点

聚点:对任意 $\delta > 0$, $U(P_0, \delta)$ 内有D内的点

开集:集合D中的每一点都是D的内点,如(a,b)

闭集:集合D中的每一个边界点都是D的点,如[a,b]

开域: 联通的开集

闭域: 联通的闭集

有界集:集合D内的点都在某一邻域内无界集:集合D内的点没有界限约束

联通集:集合D内的任意两点都可以用D内的折线连接

1.2 二元函数的极限

称f在D上当P → P₀时以A为极限,记

$$\lim_{P \to P_0} f(P) = A$$

当 P, P_0 分别用坐标 $(x, y), (x_0, y_0)$ 表示时,上式也常写作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$

多元函数的逼近可以沿着任何一条路径进行,但是极限只有一个,与逼近的路径无关。如果极限不相等,则称多元函数在该点无极限。

1.2.1 重极限与累次极限

在上面讨论的 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$ 中, 自变量 (x,y)是以任何方式趋于 (x_0,y_0) 的, 这种极限也称为重极限。

而x与y依一定的先后顺序, 相继趋于 x_0 与 y_0 时 f 的极限, 这种极限称为累次极限。若对每一个 $y \in Y(y,y_0)$,存在极限 $\lim_{x\to x_0} f(x,y)$,它一般与y有关,记作

$$\varphi(y) = \lim_{x \to x_0} f(x, y)$$

如果进一步还存在极限

$$L = \lim_{y \to y_0} \varphi(y)$$

则称此L为f(x,y)先对 $x(x \to x_0)$ 后对 $y(y \to y_0)$ 的累次极限,记作

$$L = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

定理 1.1 如果 f(x,y) 的重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ 与累次极限 $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ 都存在,则两者必定相等。

$\varepsilon - \delta$ 定义

对于任何正数 ε ,都能够找到一个正数 δ ,当x满足 $0<|x-a|<\delta$ 时,对于满足上式的x都有 $0<|f(x)-b|<\varepsilon$ 。

1.3 二元函数的连续性

和一元函数相似,二元函数的连续性也有以下三种定义:

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0)$$

- 1. 有定义
- 2. 有极限
- 3. 极限等于函数值

几何意义:不断开的曲面。

1.3.1 复合函数的连续性

设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,函数u = g(x,y)在点 (x_0,y_0) 的某邻域内有定义,且f(x,y)在点 (x_0,y_0) 连续,g(x,y)在点 (x_0,y_0) 连续,那么复合函数u = g(f(x,y))在点 (x_0,y_0) 连续。"连续函数的连续函数是连续函数"。

多元函数微分学

2.1 可微性

2.1.1 偏导数

定义 2.1 设函数z=f(x,y)在点 (x_0,y_0) 的某邻域内有定义,当x在 x_0 处有增量 Δx ,y在 y_0 处有增量 Δy 时,相应的函数有增量 $\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$,如果极限

$$\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}$$

存在,则称此极限为函数z = f(x,y)在点 (x_0,y_0) 处对x的偏导数,记作

同理可得函数z = f(x,y)在点 (x_0,y_0) 处对y的偏导数。

怎么求:

- 对x的偏导数:将y看作常数,对x求导;
- 对y的偏导数: 将x看作常数, 对y求导。

关于连续性

- 1. 对于一元函数,可导必定连续
- 2. 对于多元函数,偏导数存在不一定连续

2.1.2 全微分

定义 2.2 设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,且在该点有偏导数,则称函数 z = f(x,y)在点 (x_0,y_0) 处可微分,如果存在常数A和B,使得全增量

$$\Delta z = A\Delta x + B\Delta y + o(\rho)$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,则称 $A\Delta x + B\Delta y$ 为函数z = f(x,y)在点 $P_0 = (x_0,y_0)$ 处的全微分,记作

$$dz|_{P_0} = df(x_0, y_0) = A\Delta x + B\Delta y$$

当 Δx 和 Δy 趋于零时,全微分dz可作为全增量 Δz 的近似值,于是有近似公式

$$f(x,y) \approx f(x_0, y_0) + A(x - x_0) + B(y - y_0)$$

可微性条件

定理 2.1 若二元函数 f 在其定义域内一点 (x_0, y_0) 处可微,则 f 在该点关于每个自变量的偏导数都存在。此时,全微分可写成

$$df(x,y) = f_x(x,y)dx + f_y(x,y)dy$$

定理 2.2 (可微的充分条件) 若函数 z = f(x,y) 在点 (x_0,y_0) 处的偏导数 $f_x(x_0,y_0)$ 和 $f_y(x_0,y_0)$ 存在且连续,则 f 在该点可微。

另外,连续是可微的一个必要条件。

2.1.3 曲面的切平面与法线

定义 2.3 设曲面 z = f(x,y) 在点 (x_0,y_0,z_0) 处可微,且 $f_x(x_0,y_0) \neq 0$,则曲面在该点的切平面方程为

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

同理,有曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处可微,则曲面在该店的切平面方程为

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

定义 2.4 设曲面 z = f(x,y) 在点 (x_0, y_0, z_0) 处可微, 且 $f_x(x_0, y_0) \neq 0$, 则曲面在该点的法线方程为

$$\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_y(x_0, y_0)} = \frac{z - z_0}{-1}$$

同理,有曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处可微,则曲面在该店的法线方程为

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

法向量

设曲面 f(x, y, z) = 0 在点 $P_0(x_0, y_0, z_0)$ 处可微,且 $f_x(x_0, y_0, z_0) \neq 0$,则曲面在该点的法向量为

$$\mathbf{n} = (f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0))$$

定义 2.5 (正交) 若两个向量 $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$ 满足 $a \cdot b = 0$, 则称向量 $a \in b$ 正交。

定义 2.6 (平行) 设曲线或曲面 C_1 和 C_2 在某一点 P 处的切向量分别为 v_1 和 v_2 ,如果 v_1 与 v_2 正交,则称曲线或曲面 C_1 和 C_2 在点 P 处平行。

2.2. 复合函数微分法 9

2.2 复合函数微分法

2.2.1 复合函数的偏导数

定理 2.3 设函数 z = f(u, v) 在点 (u, v) 处可微, 函数 u = u(x, y) 和 v = v(x, y) 分别在点 (x, y) 处可微, 则复合函数 z = f(u(x, y), v(x, y)) 在点 (x, y) 处可微, 且有

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}$$

特殊情况:有函数 z = f(u, x, y), u = u(x, y),则

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial y}$$

这里,把f看作u,x,y三个变量的函数,z看作x,y两个变量的函数。

2.2.2 复合函数的全微分

定理 2.4 设函数 z = f(u, v) 在点 (u, v) 处可微, 函数 u = u(x, y) 和 v = v(x, y) 分别在点 (x, y) 处可微, 则复合函数 z = f(u(x, y), v(x, y)) 在点 (x, y) 处可微, 且有

$$dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv$$

2.3 方向导数与梯度

2.3.1 方向导数

定义 2.7 设函数 z=f(x,y) 在点 (x_0,y_0) 的某邻域内有定义,点 $P_0(x_0,y_0)$ 处沿方向 $\boldsymbol{l}=(\cos\alpha,\cos\beta)$ 的方向导数为

$$\frac{\partial z}{\partial l} = \lim_{\rho \to 0} \frac{f(x_0 + \rho \cos \alpha, y_0 + \rho \cos \beta) - f(x_0, y_0)}{\rho}$$

其中 $\rho = \sqrt{(\cos \alpha)^2 + (\cos \beta)^2}$ 。

就是多元函数沿着某个特定方向的变化率。

定理 2.5 函数 z=f(x,y) 在点 (x_0,y_0) 处可微,则函数在该点沿任一方向 $\boldsymbol{l}=(\cos\alpha,\cos\beta)$ 的方向导数存在,且有

$$\frac{\partial z}{\partial l} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta \quad \star$$

2.3.2 梯度

定义 2.8 设函数 z = f(x,y) 在点 (x_0,y_0) 处可微, 定义函数 z = f(x,y) 在点 (x_0,y_0) 处的梯度为

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \quad \star$$

就是多元函数变化率取值最大的方向。

定理 2.6 函数 z = f(x,y) 在点 (x_0,y_0) 处可微,则函数在该点的梯度 $\nabla f(x_0,y_0)$ 就是函数在该点沿各个方向的方向导数的最大值,且有

$$\frac{\partial z}{\partial l} = \nabla f(x_0, y_0) \cdot \boldsymbol{l}$$

2.4 泰勒公式与极值

2.4.1 高阶偏导数

二元函数的二阶偏导数有如下四种形式:

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

$$f_{yx} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

另外,称 $\frac{\partial^2 f}{\partial x \partial y}$ 和 $\frac{\partial^2 f}{\partial y \partial x}$ 这种既有关于 x, 又有关于 y 的高阶偏导数为混合偏导数。

定理 2.7 若函数 z=f(x,y) 在点 (x_0,y_0) 处的二阶偏导数 $f_{xx},f_{yy},f_{xy},f_{yx}$ 都存在且连续,则

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

复合函数的高阶偏导数

设

$$z = f(x, y), x = \varphi(s, t), y = \phi(s, t)$$

若函数 f, φ, ϕ 都具有连续的二阶偏导数,则复合函数 $z = f(\varphi(s,t), \phi(s,t))$ 对 s,t 同样存在二阶连续偏导数。

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \end{split}$$

显然 $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$ 仍然是 s,t 的复合函数,其中 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 是 x,y 的函数, $\frac{\partial x}{\partial s}$, $\frac{\partial x}{\partial t}$, $\frac{\partial y}{\partial s}$, $\frac{\partial y}{\partial t}$ 是 s,t 的函数。继续求… (求不出来了)

2.4.2 中值定理和泰勒公式

定理 2.8 (拉格朗日中值定理) 设函数 z=f(x,y) 在凸开域 $D\in R^2$ 连续, 在 D 的所有内点都可微,则对于 D 内任意两点 $P(a,b),Q(a+h,b+k)\in D,\forall\theta(0<\theta<1)$, 使得

$$f(a+h,b+k) - f(a,b) = f_x(a+\theta h,b+\theta k)h + f_y(a+\theta h,b+\theta k)k$$

2.4. 泰勒公式与极值 11

定理 2.9 (泰勒公式) 设函数 z=f(x,y) 在点 $P_0(x_0,y_0)$ 的某邻域内具有 n+1 阶连续偏导数,则对于任意一点 $(x_0+h,y_0+k), \forall \theta \in (0,1)$,使得

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f(x_0, y_0) + \cdots + \frac{1}{n!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f(x_0, y_0) + R_n$$

其中 R_n 为拉格朗日余项,即

$$R_n = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(x_0 + \theta h, y_0 + \theta k)$$

前面的中值定理是泰勒公式的特殊情况,即 n=0。

若只要求 $R_n = o(\rho^n)$, 此时 n 阶泰勒公式为

$$f(x_0 + h, y_0 + k) = \sum_{n=1}^{n} \frac{1}{p!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right)^p f(x_0, y_0) + o(\rho^n)$$

实际优化问题的目标函数往往比较复杂。为了使问题简化,通常将目标函数在某点附近展开为泰勒(Taylor)多项式来逼近原函数。

一元函数在点 x_k 处的泰勒展开式为:

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 + o^n$$

二元函数在点 (x_k, x_u) 处的泰勒展开式为:

$$f(x,y) = f(x_k, y_k) + (x - x_k) f_x(x_k, y_k) + (y - y_k) f_y(x_k, y_k)$$

$$+ \frac{1}{2!} [(x - x_k)^2 f_{xx}(x_k, y_k) + 2(x - x_k)(y - y_k) f_{xy}(x_k, y_k) + (y - y_k)^2 f_{yy}(x_k, y_k)] + o^n$$

2.4.3 极值

定义 2.9 设函数 z = f(x,y) 在点 (x_0,y_0) 的某邻域内有定义,如果存在这个邻域内的任意一点 (x,y),使得 $f(x,y) \leq f(x_0,y_0)$,则称 $f(x_0,y_0)$ 是函数 z = f(x,y) 的一个极大值点;如果存在这个邻域内的任意一点 (x,y),使得 $f(x,y) \geq f(x_0,y_0)$,则称 $f(x_0,y_0)$ 是函数 z = f(x,y) 的一个极小值点。

定理 2.10 (极值的必要条件) 设函数 z = f(x,y) 在点 (x_0,y_0) 处有极值, 且在该点处有偏导数, 则有

$$f_x(x_0, y_0) = 0, f_y(x_0, y_0) = 0$$

定义 2.10 (稳定点) , 即驻点若函数 z=f(x,y) 在点 (x_0,y_0) 处有偏导数,且在该点处有偏导数 $f_x(x_0,y_0)=0, f_y(x_0,y_0)=0$,则称点 (x_0,y_0) 为函数 z=f(x,y) 的一个稳定点。

- 稳定点不一定是极值点;
- 极值点一定是稳定点。

定理 2.11 (极值的充分条件) 判断驻点是否等于极值点

设函数 z=f(x,y) 在点 $P_0(x_0,y_0)$ 处有连续偏导数,且在该点处有偏导数 $f_x(x_0,y_0)=0, f_y(x_0,y_0)=0$,则有

- - 若 $f_{xx}(P_0) > 0$, 则 P_0 是函数 z = f(x, y) 的一个极小值点;
 - 若 $f_{xx}(P_0) < 0$, 则 P_0 是函数 z = f(x, y) 的一个极大值点。
- 若 $f_{xx}(P_0)f_{yy}(P_0) f_{xy}^2(P_0) = 0$,则无法判断 P_0 是否为函数 z = f(x,y) 的一个极值点。

隐函数定理及其应用

3.1 隐函数

定义 3.1 设方程 F(x,y)=0 在点 (x_0,y_0) 的某一邻域内恒有解 y=f(x),且 $f(x_0)=y_0$,若 f(x) 在点 x_0 处可微,则称 y=f(x) 为方程 F(x,y)=0 在点 (x_0,y_0) 处的隐函数。

3.1.1 隐函数定理

定理 3.1 (隐函数存在唯一性定理) 设函数 F(x,y) 满足下列条件

- 1. $F(x_0, y_0) = 0$;
- 2. F(x,y) 在点 (x_0,y_0) 的某一邻域内有连续偏导数 $F_y(x,y)$;
- 3. $F_{\nu}(x_0, y_0) \neq 0$.

则在点 (x_0,y_0) 的某一邻域内,方程 F(x,y)=0 有且仅有一个连续可微的隐函数 y=f(x),满足 F(x,f(x))=0,且 $y_0=y(x_0)$,并有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'} \tag{3.1}$$

定理 3.2 (隐函数可微性定理) 设函数 F(x,y) 满足隐函数存在唯一性定理的条件,在 D 内还存在连续的 $F_x(x,y)$ 则由方程 F(x,y)=0 所确定的隐函数 y=f(x) 在 I 内有连续的导函数,且

$$f'(x) = -\frac{F_x'(x,y)}{F_y'(x,y)}$$
(3.2)

3.2 隐函数组

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

$$(3.3)$$

定理 3.3 (雅可比行列式) 设函数 F(x,y,u,v) 和 G(x,y,u,v) 在点 (x_0,y_0,u_0,v_0) 的某一邻域内有连续偏导数 $F_x,F_y,F_u,F_v,G_x,G_y,G_u,G_v$,且

$$J = \frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} \neq 0$$
(3.4)

则在点 (x_0,y_0,u_0,v_0) 的某一邻域内,方程组 F(x,y,u,v)=0 和 G(x,y,u,v)=0 有且仅有一个连续可微的隐函数组 u=f(x,y) 和 v=g(x,y),满足 F(x,y,f(x,y),g(x,y))=0 和 G(x,y,f(x,y),g(x,y))=0,且 $u_0=u(x_0,y_0)$ 和 $v_0=v(x_0,y_0)$,并有

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{1}{J} \frac{\partial (F,G)}{\partial (x,v)} = -\frac{\begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \end{vmatrix}}, \frac{\partial v}{\partial x} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,x)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_x & F_v \end{vmatrix}} \\
\frac{\partial u}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (y,v)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_x \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} \\
\frac{\partial v}{\partial x} = \frac{1}{J} \frac{\partial (F,G)}{\partial (y,v)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_x \end{vmatrix}} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_x \end{vmatrix}} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v$$

3.3 条件极值

定理 3.4 (拉格朗日乘数法) 设函数 z=f(x,y) 在条件 $\varphi(x,y)=0$ 下取得极值,则可以构造拉格朗日函数

$$L(x, y, \lambda) = f(x, y) + \lambda \phi(x, y)$$
(3.6)

其中 λ 为拉格朗日乘子。则z = f(x,y)在条件 $\varphi(x,y) = 0$ 下取得极值的必要条件是

$$\begin{cases} L'_x = 0 \\ L'_y = 0 \\ \varphi(x, y) = 0 \end{cases}$$

$$(3.7)$$

即

$$\begin{cases} f'_x + \lambda \varphi'_x = 0 \\ f'_y + \lambda \varphi'_y = 0 \\ \varphi(x, y) = 0 \end{cases}$$
(3.8)

曲线积分

4.1 第一型曲线积分

第一型曲线积分是对弧长的积分,它是曲线积分的最简单形式。 计算步骤:

- 1. 画出所积曲线的示意图,并转化为定积分的形式: $\int_L f(x,y) \, \mathrm{d} s$
- 2. 确定积分区间 $[x_1, x_2]$ 或 $[y_1, y_2]$ 或 $[t_1, t_2]$
- 3. 计算 ds:

$$ds = \sqrt{1 + (\frac{dy}{dx})^2} dx = \sqrt{1 + (\frac{dx}{dy})^2} dy = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

4. 将 ds 代入积分式中, 计算积分

4.2 第二型曲线积分

第二型曲线积分是对向量场的积分,它是曲线积分的一般形式。 计算步骤:

1. 画出所积曲线的示意图,并转化为定积分的形式:

$$\int_{L} P(x,y) dx + \int LQ(x,y) dy = \int_{L} P(x,y) dx + Q(x,y) dy = \int_{L} \vec{F}(x,y) \cdot d\vec{r}$$

- 2. 确定积分区间 $[x_1, x_2]$ 或 $[y_1, y_2]$ 或 $[t_1, t_2]$ (注意有方向)
- 3. 计算 dx 和 dy:

$$\begin{cases} dx = \frac{dx}{dt} dt \\ dy = \frac{dy}{dt} dt \end{cases}$$

4. 将 dx 和 dy 代入积分式中, 计算积分

性质:

1. 线积分与路径无关:

$$\int_{L} \vec{F}(x,y) \cdot d\vec{r} = \int_{L_{1}} \vec{F}(x,y) \cdot d\vec{r} = \int_{L_{2}} \vec{F}(x,y) \cdot d\vec{r}$$

2. 线积分与参数化无关

$$\int_L (\alpha \vec{F}_1(x,y) + \beta \vec{F}_2(x,y)) \cdot d\vec{r} = \alpha \int_L \vec{F}_1(x,y) \cdot d\vec{r} + \beta \int_L \vec{F}_2(x,y) \cdot d\vec{r}$$

3. 线积分与方向有关

$$-\int_{L} \vec{F}(x,y) \cdot d\vec{r} = \int_{-L} \vec{F}(x,y) \cdot d\vec{r}$$