Chapter 2.

Projectiles and Charged Particles

Section 2.1. Air resistance

Section 2.2. Linear air resistance

Read Section 2.1.

Aerodynamic forces

When an object moves through air, it experiences a force.

The force is exerted by the air on the object; the reaction force is exerted by the object on the air.

The force on the object can be resolved into two components:

"drag" = component in the direction of -v

"*lift*" = component in the direction of -g

Air resistance

Forget about lift.

Here we are concerned with the drag force; we'll denote it by **f**.

Figure 2.1

The force of air resistance

f(v)

The direction of f is parallel to -v.

The magnitude of **f** depends on v (speed) and other properties of the object.

We'll write $f = f(v) (-e_v)$ with magnitude

$$f(v) = b v + c v^2 = f_{lin} + f_{quad}$$

• f_{lin} = b v comes from viscosity; for a sphere,

$$b = \beta D$$
 (D = diameter)
 $β = 3π η$ (η = viscosity)

• f_{quad} = c v^2 comes from the inertia of the air; for a sphere,

c = 0.25
$$\rho$$
 A = γ D²
 $\gamma \propto \rho$ (ρ = density)

Example 2.1 BASEBALLS AND LIQUID DROPS

\$\$ comparing the relative importance of f_{quad} and f_{lin}, consider 3 cases

For a sphere moving through air at STP,

$$f_{lin} = \beta D \sigma & \beta = 1.6 \times 10^{-9} \text{ Ns/m}^2$$

$$f_{quad} = \gamma D^2 \sigma^2 & \gamma = 0.25 \text{ Ns}^2 / m^4$$

in MKS units.

	D	v [m/s]	f _{quad} / f _{lin}	dominant
1. baseball	7 cm	5	600	cv ²
2. small raindrop	1 mm	0.6	1	comparable
3. tiny oil drop (Millikan expt)	1.5 μm	5x10 ⁵	10 ⁻⁷	bv

2.2 Linear air resistance

Now we'll specialize to c = 0.

Assume the force of air resistance on a projectile is

Then the equation of motion for the projectile moving through air is

Cartesian components

x = horizontal coordinate;

y = vertical coordinate (*positive upward*)

$$m \dot{v}_{x} = -b v_{x}$$

$$m \dot{v}_{y} = -mg - bv_{y}$$

This is very nice, because the x and y coordinates *separate*; so we can solve their equations separately.

Recall from PHY 183, we do the same thing if we *neglect* air resistance:

$$x'' = 0$$
 so $x(t) = x_0 + v_{0x} t$
 $y'' = -g$ so $y(t) = y_0 + v_{0y} t - \frac{1}{2} g t^2$

But today we are introducing frictional force components; so $x(t) \neq x_0 + v_{0x}t$ and $y(t) \neq y_0 + v_{0y}t^{-1/2}gt^2$.

Horizontal motion with linear drag

Figure 2.3

Figure 2.3 A cart moves on a horizontal frictionless track in a medium that produces a linear drag force.

Figure 2.4

Figure 2.4 (a) The velocity v_x as a function of time, t, for a cart moving horizontally with a linear resistive force. As $t \to \infty$, v_x approaches zero exponentially. (b) The position x as a function of t for the same cart. As $t \to \infty$, $x \to x_\infty = v_{x_0} \tau$.

$$dx = U_{x} dt$$

$$\int_{x_{0}}^{x} dx' = x - x_{0} = \int_{0}^{t} U_{x}(t')dt'$$

$$= U_{0x}(-n_{x})e^{-bt/m}$$

$$= \frac{mV_{0x}}{b} \left[1 - e^{-bt/m}\right]$$

Vertical motion with linear drag

We want to solve this equation (*):

The solution may be obtained in several ways ...

- ▶ trial and error; see page ??
- ► separation of variables; see problems 2.x
- ► particular + homogeneous; MTH 234 the third method only works for linear equations.

(*) I'm letting the y axis point upward; so $F_g = -mg$. See Taylor for y axis pointing downward. Solution of differential equations
by separation of variables
Suppose we have an equation of this

 $\frac{df}{dx} = K(f(x)) \tag{1}$

Separate the variables x and f,

form,

$$\frac{dS}{K(S)} = dx \tag{2}$$

Now integrate both sides of the equation,

$$\int_{f_0}^{f} \frac{df'}{K(f')} = \int_{\chi_0}^{\chi} d\chi' = \chi - \chi_0$$
 (3)

Eq. (3) gives x as a function of f. But what we want is f as a function of x. So finally use algebra to solve (3) for f. \Rightarrow f(x) = the solution (4)

Vertical motion with linear drag

We want to solve this equation:

Separation of variables:

$$m dv = (-mg - bv) dt$$
 $\frac{dv}{mg + bv} = \frac{dt}{m}$

The prote:

 $\int_{v_0}^{v} \frac{dv'}{mg + bv'} = \frac{1}{b} \ln (mg + bv') |_{v_0}^{v_0}$
 $= \frac{1}{b} \ln \frac{mg + bv}{mg + bv'} = \frac{1}{m} \int_{0}^{t} dt = \frac{-t}{m}$

Solve:

 $\frac{mg + bv}{mg + bv'} = e^{-bt/m} - \frac{mg}{b}$
 $v = (v_0 + \frac{mg}{b}) e^{-bt/m} - \frac{mg}{b}$

Figure 2.6

"Terminal velocity" and "time constant"

$$V_{ter} = -\frac{m_3}{b}$$

$$\tau = m_b$$

$$e^{-bt/m} = e^{-t/\tau}$$

Determine y(t) by integration.

Example 2.2

TERMINAL SPEEDS OF SMALL LIQUID DROPS

Related: this homework problem [16] ...

The terminal velocity of a drop of water (diameter = D) is the velocity at which

$$F = mg - bv - cv^2 = 0.$$

The parameter values for air at STP are

$$b = (1.6 \times 10^{-4})D$$
 and $c = (0.25)D^2$, in MKS units;

also,
$$m = (0.52 \times 10^6) D^3$$
 in MKS units.

Determine v_{ter} as a function of D. Plot an accurate graph of v_{ter} versus D, from D = 0.1 mm to 3 mm. (Use a computer to make the plot.) [The result shows why water droplets in a cloud do not fall as rain.]

Test yourself:

For a sphere moving in a fluid w/ density ρ ,

$$f_{quad} = 0.25 \rho A v^2$$
. (A = Area)

Show that in air,

$$f_{quad} = [0.25 \text{ Ns}^2 \text{m}^{-4}] D^2 v^2 \quad (D = Diameter)$$

Homework Assignment #3

due in class Friday, September 23

[11] Problem 2.2

[12] Problem 2.3

[13] Problem 2.10

[14] Problem 2.18

[15] Problem 2.26

[16] Assigned problem

Use the cover sheet.