(FILE 'USPAT' ENTERED AT 10:29:32 ON 30 MAY 96)

L1 0 S MEGAKARYOCYTE (W) KINASE

L2 0 S MEGAKARYOCYTE (5A) KINASE

L3 3 S MEGAKARYOCYTE (P) KINASE

=> d 1-3

- 1. 5,491,242, Feb. 13, 1996, Protein kinase C inhibitors; James R. Gillig, et al., 548/455 [IMAGE AVAILABLE]
- 2. 5,481,003, Jan. 2, 1996, Protein kinase C inhibitors; James R. Gillig, et al., 548/455, 312.1 [IMAGE AVAILABLE]
- 3. 5,378,464, Jan. 3, 1995, Modulation of inflammatory responses by administration of GMP-140 or antibody to GMP-140; Rodger P. McEver, 424/143.1; 514/8 [IMAGE AVAILABLE]

L4 O Non-receptor (5A) Tyrosine Kinase

Description Items Set MEGAKARYOCYTE (W) KINASE S1 MEGAKARYOCYTE (3N) KINASE S2 67 (NON(W) RECEPTOR) (5N) (TYROSINE(W) KINASE) S3 S3 AND MEGAKARYOCYTE S4

?d s2/3/all

2 N

Display 2/3/1

DIALOG(R) File 155: MEDLINE(R)

(c) format only 1996 Knight-Ridder Info. All rts. reserv.

09606415 96128015

Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana.

Ems SC; Morden CW; Dixon CK; Wolfe KH; dePamphilis CW; Palmer JD Department of Biology, Indiana University, Bloomington 47405, USA.

Plant Mol Biol (NETHERLANDS) Nov 1995, 29 (4) p721-33, ISSN 0167-4412 Journal Code: A60

Contract/Grant No.: GM-35087, GM, NIGMS

Languages: ENGLISH

Document type: JOURNAL ARTICLE

- end of record -

?

Display 2/3/2

DIALOG(R) File 155: MEDLINE(R)

(c) format only 1996 Knight-Ridder Info. All rts. reserv.

09308492 95238492

The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-Kit.

Jhun BH; Rivnay B; Price D; Avraham H

Department of Medicine, Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.

J Biol Chem (UNITED STATES) Apr 21 1995, 270 (16) p9661-6, ISSN 0021-9258 Journal Code: HIV

Contract/Grant No.: HL51456, HL, NHLBI; HL46668, HL, NHLBI

Languages: ENGLISH

Document type: JOURNAL ARTICLE

- end of record -

DIALOG(R) File 155:MEDLINE(R)

(c) format only 1996 Knight-Ridder Info. All rts. reserv.

09200565 95130565

Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product.

Avraham S; Jiang S; Ota S; Fu Y; Deng B; Dowler LL; White RA; Avraham H Division of Hematology/Oncology, New England Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02215.

J Biol Chem (UNITED STATES) Jan 27 1995, 270 (4) p1833-42, ISSN 0021-9258 Journal Code: HIV

Contract/Grant No.: R01 HL51456, HL, NHLBI; R01 HL46668, HL, NHLBI

Languages: ENGLISH

Document type: JOURNAL ARTICLE

- end of record -

?

Display 2/3/4

DIALOG(R) File 155: MEDLINE(R)

(c) format only 1996 Knight-Ridder Info. All rts. reserv.

09176341 95106341

Identification and characterization of Batk, a predominantly brain-specific non-receptor protein tyrosine kinase related to Csk.

Kuo SS; Moran P; Gripp J; Armanini M; Phillips HS; Goddard A; Caras IW Department of Neurobiology, Genentech, Inc., South San Francisco, California 94080.

J Neurosci Res (UNITED STATES) Aug 15 1994, 38 (6) p705-15, ISSN 0360-4012 Journal Code: KAC

Languages: ENGLISH

Document type: JOURNAL ARTICLE

- end of record -

?

Display 2/3/5

DIALOG(R) File 155: MEDLINE(R)

(c) format only 1996 Knight-Ridder Info. All rts. reserv.

08802408 94117408

Identification and characterization of a novel tyrosine kinase from megakaryocytes.

Bennett BD; Cowley S; Jiang S; London R; Deng B; Grabarek J; Groopman JE; Goeddel DV; Avraham H

Division of Hematology/Oncology, New England Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02215.

J Biol Chem (UNITED STATES) Jan 14 1994, 269 (2) p1068-74, ISSN 0021-9258 Journal Code: HIV

Contract/Grant No.: HL33774, HL, NHLBI; HL42112, HL, NHLBI; HL43510, HL,
NHLBI; +

Languages: ENGLISH

Document type: JOURNAL ARTICLE

- end of display -

**

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

MasPar time 21.94 Seconds 588.464 Million cell updates/sec Fri May 31 09:32:36 1996; Run on:

Tabular output not generated.

>US-08-426-509-6 (1-511) from US08426509.pep 3821 Title:

Description: Perfect Score:

....KLEDYFETDSSYSDANNFIR 511 1 MVSWCMSNICQRLWEYLEPY.... Sequence:

Scoring table:

PAM 150 Gap 11

82306 seqs, 25270970 residues Searched:

Minimum Match 0% Listing first 45 summaries Post-processing:

Database:

pir46

6:unann3 7:unann4 1:annl 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3 8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1 13:unrev2

scale 0.413 Variance 117.818; Mean 48.603; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Query Match Length DB	DB	ID	Description	Pred. No.
1	2032	53.2	505	4	S24550	protein-tyrosine kin	0.00e+00
2	2026	53.0	909	4	524553	protein-tyrosine kin	0.00e+00
က	1801	47.1	509		TVHAST	protein-tyrosine kin	6.43e-281
4	1754	45.9	536	10	533569	protein-tyrosine kin	1.02e-272
S	1754	45.9	536	4	529626	protein kinase vrk (1.02e-272
9	1745	45.7	362	4	524551	protein-tyrosine kin	3.80e-271
7	1734	45.4	537	-	TVHUSY	protein-tyrosine kin	3.15e-269
00	1730	45.3	537	乊	A43806	protein-tyrosine kin	1.57e-268
σ	1726	45.2	537	-	TVHUSR	protein-tyrosine kin	7.82e-268
10	1685	44.1	512	4	A39719		1.10e - 260
11	1680	44.0	512	_	TVHULY		8.15e-260
12	1682	44.0	532	7	B34104		3.65e-260

	.35e-25	.05e-25	.00e-25	1e-2	.49e-25	.71e-25	.71e-25	.28e-25	.15e-25	,57e-25	,02e-25	2e-25	2e-25	.13e-25	3e-25	.56e-	.69e-25	.61e-25	-25	.61e-2	.39e-2	.09e-25	3e-24	9.	6e-2	.35e-24	.54e-	.44e-24	.55e-	.68e-	5.68e-244	•	e-24
US-08-426-509-6.rpr	protein-tyrosine kin	protein-tyrosine kin	protein-tyrosine kin	otein-tyrosine	rotein-tyrosine	otein-tyrosine	n-tyrosine	ein-tyrosine	ein-tyrosine	ein-tyrosine	protein-tyrosine kin	protein-tyrosine kin	ine	in-tyrosine	in-tyrosine	in-tyrosine	protein-tyrosine kin	ein-tyrosine	n-tyrosine	ein-tyrosine	ein-tyrosine	ein-tyrosine	ein-tyrosine	-tyrosine	in-tyrosine	rosine	in-tyrosine	n-tyrosine	n-tyrosine k	protein-tyrosine kin	2v protein -	protein - Ro	protein-tyrosine kin
US-08-42	A34104	TVCHS	A39939	TVFVPR	TVHUHC	3	S24547	TVFVS1	FVS	A23639	TVHUFR	TVHUSC	A43610	TVMSHC	an .	A45501	64	\sim	HΥ	TVHUYS	\Box	O	9	A44991	>	003	64	\sim	1558	Ē	-	S	3277
	Ţ	\rightarrow	4	-	-	4	11	Н	-	7			4	+-4	7	び	11	4	-	-	-	11	-	寸	-	ひ	11	び	7	-	<u>~</u>	-	13
	സ	3	Ç	587	0	\vdash	_	9	2	509	\sim	マ	マ	0	0	$^{\circ}$	マ	0	4	4	0	0	2	Ŝ	2	σ	0	\sim	\sim	\sim	545	マ	~
	•	43.8	•	43.5	43.4	-	-	43.4	43.2	43.1	43.1	43.1	-	42.9	•	42.9	42.9	•	•	•	42.6	•	42.4	42.3	•	42.0	41.8	41.8	41.6	41.6	41.6	41.6	41.5
6 9.72	67	<i>L</i> 9	99	1662	99	65	65	65	9	64	64	64	64	63	63	64	63	63	63	63	62	62	62	61	61	9	59	59	29	28	58	500	58
Aay 31 09.25	13	14	15	16	17	8	19	20	21	22	23	24	25	56	27	28	59	30	31	32	33	34	32	36	37	38	39	40	41	42	43	44	45

ALIGNMENTS

KESULT. 1	
ENTRY	S24550 #type complete
TITLE	protein-tyrosine kinase (EC 2.7.1.112) 1 - freshwater sponge
	(Spongilla lacustris)
ALTERNATE NAMES	src-type tyrosine kinase 1
ORGANISM	fformal name Spongilla lacustris
DATE	07-May-1993 #sequence_revision 07-May-1993 #text_change 28-0ct-1994
ACCESSIONS	\$24550
REFERENCE	\$24550
#authors	Raulf, F.
#submission	submitted to the EMBL Data Library, September 1991
#accession	\$24550
##molecule type mRNA	type mRNA
##residues	_ 1-505 ##label RAU
##Cross-re	##cross-references EMBL:X61601
GENETICS	
#dene	srkl
CLASSIFICATION	#superfamily protein-tyrosine kinase src; protein kinase
	homology; SH2 homology; SH3 homology
KEYWORDS	ATP; phosphotransferase; tyrosine-specific protein kinase
FEATURE	
61-111	#domain SH3 homology #label SH3\
122-214	#domain SH2 homology #label SH2\
238-496	#domain protein kinase homology #label KIN\
246-254	#region nucleotide-binding motif/
268	#active_site Lys #status predicted

 $^{\prime}_{\rm V}$

-1

US-08-426-509-6 mr

KEYWORDS ä sponge 350 407 291 471 467 protein kinase src; protein kinase Gaps change --sk--dtagke--gyipsnyv eqqnyihrdlaarnilvgehgickvadfglarv--id-eeiyeahtgakfpikwtapeaa | :|||||||||||||||| | |||||||| | |:||||: ESRNYIHRDLAARNVLVGEHNIYKVADFGLARVFKVDNEDIYESRHEIKLPVKWTAPEAI 172 RIKRLDEGGFFLTRRRIFSTLNEFVSHYTKTSDGLCVKLGKPCLKIQVPAPFDLSYKTVD freshwater 12; #checksum Length 505 September Indels #superfamily protein-tyrosine kinase src; p
homology; SH2 homology; SH3 homology
ATP; phosphotransferase; tyrosine-specific src-type tyrosine kinase 4
#formal_name Spongilla lacustris
07-May-1993 #sequence_revision 07-May-1993 4 2.7.1.112) #domain SH3 homology #label SH3\
#domain SH2 homology #label SH2\ 92; 57693 Score 2032; DB 4; Pred. No. 0.00e+00; 88; Mismatches 92; to the EMBL Data Library, 509 mldcwredpasrptfetlqwqleeffnseg-yrdpdai ||:|| :| ||||||||:| ||::|::: | |::: 59 yvgkydydsrtdddlsfkkgdlmy-iistdegdwwfar #molecular-weight protein-tyrosine kinase (EC (Spongilla lacustris) complete ##residues 1-506 ##label RAU ##cross-references EMBL:X61604 #type 53.2%; 58.1%; Conservative 28-0ct-1994 505 submitted ##molecule_type mRNA S24553 S24550 Raulf, F. #length Similarity \$24553 srk4 266; ALTERNATE NAMES submission CLASSIFICATION Query Match accession Best Local \sim #authors 122-214 238-496 **ACCESSIONS** 412 232 232 292 292 352 408 468 472 Matches REFERENCE 61 - 111ORGANISM GENETICS KEYWORDS SUMMARY FEATURE RESULT ENTRY TITLE පු 임 Б Š ò g ይ a 9 δ δ δ ð δ Š

#domain protein kinase homology #label KIN\

US-08-426-509-6 rpr May 31 09.25

S

ö attennata the 350 407 411 467 471 yvgkydydsrtdddlsfkkgdlmy-iistdegdwwfar--sk--dtagke--gyipsnyv 111 #superfamily protein-tyrosine kinase src; protein kinase
homology; SH2 homology; SH3 homology
ATP; phosphoprotein; phosphotransferase; transforming
protein; tyrosine-specific protein kinase Gaps change ŗ aeyksldaeewffgqvkrvdaekqlmmpfnnlgsflirdsdttpgdfslsvrdidrvrhy rikklengtyfvtrrltfqsiqelvayytqqadglcvnlkgpcmvmekpqtaglskqane RIKRLDEGGFFLTRRRIFSTLNEFVSHYTKTSDGLCVKLGKPCLKIQVPAPFDLSYKTVD gene - Hydra 13; D.A.; Steele, #text fchecksum Length 506; src-related Indels protein-tyrosine kinase (EC 2.7.1.112) stk formal name Hydra attenuata 31-Mar-1992 #sequence_revision 31-Mar-1992 active_site Lys #status predicted h 506 #molecular-weight 57561 # region nucleotide-binding motif/ 89; Bosch, T.C.G.; Unger, T.F.; Fisher, Mol. Cell. Biol. (1989) 9:4141-4151 DB 4; Structure and expression of STK, a Score 2026; DB 4; Pred. No. 0.00e+00 simple metazoan Hydra attenuata. 505 mmdcwredpasrptfetlswqleeffttgddagykd 503 Pred. No. 0.00e-89; Mismatches MLECWNAEPKERPTFETLRWKLEDYFET--DSSYSD #type complete BOS -:: = 1-509 ##label #cross-references MOID:90066418 ##cross-references GB:M25245 58.1%; 53.0%; Conservative 20-Aug-1994 Plength 506 ##molecule_type mRNA A34094 A34094 A34094 Best Local Similarity 265; ##residues <u>=</u> #gene #accession Query Match \sim #authors **#**journal 246-254 ACCESSIONS 59 172 112 232 292 292 352 412 468 472 112 172 232 408 Matches REFERENCE ORGANISM GENETICS SUMMARY RESULT ENTRY TITLE Ω 임 g පු Ы ብ g a δ δ δ δ Š ð ð ð

5

US-08-426-509-6 pp

6

ORGANISM ENTRY 10; 231 231 468 291 411 471 Sukegawa elevated Gaps 08-Dec-1993 #sequence_revision 03-Aug-1995 #text_change 52 FVALFDYQARTAEDLSFRAGDKKLQVLDTLHEGWWFARHLEKRRDGSSQQLQGYIPSNYV -gyipstyv apeksyeaeewyfgdvkraeaekrlmvrglpsgtflirkaetavgnfslsvrdgdsvkhy 172 RIKRLDEGGFFLTRRIFSTLNEFVSHYTKTSDGLCVKLGKPCLKIQVPAPFDLSYKTVD 112 AEDRSLQAEPWFFGAIGRSDAEKQLLYSENKTGSFLIRESESQKGEFSLSVLDGAVVKHY hkhlvqlyaicsdrepiyivteymsggslldylskgegvnlqlptlidmaaqvasgmafl eaqqyihrdlaarnilvgenyickvadfqlarl--iedde-ytahegakfpikwtapeaa 409 lynrftiksdvwsfgilmaeivtkgripypgmtnagtiaevekgyrmpimpgcpeplyni #checksum 8721 chicken 16;<u>à</u> at Ą |domain protein kinase homology #label KIN\ |region protein kinase ATP-binding motif\ protein-tyrosine kinase (EC 2.7.1.112) yrk - ch.
#formal_name Gallus gallus #common_name chicken Length 509; Sudol, M.; v...
J.; Yamamoto, T.
Oncogene (1993) 8:823-831
" novel Yes-related kinase, Yrk, is expressed novel Yes-related novel Yes-relat predicted expressed #binding_site phosphate (Tyr) (covalent) Indels se active_site Lys #status predicted\ Score 1801; DB 1; L. Pred. No. 6.43e-281; 92; Mismatches 102; domain SH3 homology #label SH3\ #molecular-weight 56885 autophosphorylation) #status SH2 homology #label 505 469 mlqtwnkdpenrptfdylqgvledyfvsteqgyrd ||: ||: ||: ||: |||| |: || 472 MLECWNAEPKERPTFETLRWKLEDYF-ETDSSYSD #type complete 47.1%; Conservative 25-Aug-1995 domain #length 509 Similarity \$33569 ••• Query Match #accession Local # journal
#title ヷ #authors 126-218 238-497 246-254 **ACCESSIONS** 176 116 232 292 292 352 Matches 66-115 REFERENCE ORGANISM FEATURE SUMMARY Best 268 RESULT

a

 δ

임

δ

පු

õ

임

φ

임

δ

δ

8

316 197 375 346 432 406 -gyipsnyv 137 Gaps 52 FVALFDYQARTAEDLSFRAGDKKLQVLDTLHEGWWFARHLEKRRDGSSQQLQGYIPSNYV = = = 1930 19; **f**checksum Indels Length 86 fialydyearteddlsfqkgek-fhiinntegdwwearsls---sgat--:::|::||: || ||||||| |: ||||| |:: | ::|
QFYNIMLECWNAEPKERPTFETLRWKLEDYF-ETDSSYSDANN 508 slhdvmvqcwkrepeerptfeylqsfledyftatepqyqpgdn 535 #molecular-weight 60002 Pred. No. 1.02e-272; 90; Mismatches 108; Score 1754; DB 10; Pred. No. 1.02e-272, #domain SH3 homology #label #superfamily SH3 homology :: ##cross-references EMBL:X67786 phosphotransferase <u>:</u> 45.98; 53.1%; Conservative #length 536 Best Local Similarity 246; CLASSIFICATION Query Match S 467 138 112 376 347 Matches 493 88-137 KEYWORDS FEATURE SUMMARY RESULT В 셤 Š Ş g g 임 g 염 심 ð δ δ ŏλ δ S

Sukegawa ##residues 1-536 ##label SUD
##residues 1-536 ##label SUD
##cross-references EMBL:X67786
CLASSIFICATION #superfamily protein-tyrosine kinase src; protein kinase homology; SH2 homology; SH3 homology change Novel yes-related kinase, yrk, is expressed at elevated Sudol, M.; Greulich, H.; Newman, L.; Sarkar, A.; \$29626 #type complete protein kinase yrk (EC 2.7.1.-) - chicken #formal_name Gallus gallus #common_name chicken 06-Jan-1995 #sequence_revision 06-Jan-1995 #text submitted to the EMBL Data Library, October 1992 and hematopoietic tissues. levels in neural Yamamoto, T. preliminary 12-May-1995 S29626; S29553 ##molecule_type mRNA \$29553 S29626 description #submission ##status accession authors ACCESSIONS REFERENCE

1-536 ##label SUD

##molecule_type mRNA

##status

TITLE ENTRY

DATE

##residues

ð

9

9

5

a

Š

g

δ

g

ð

a

 δ

유

δ

δ

US-08-426-509-6 rpr

00

9

179 238 355 503 444 #superfamily protein-tyrosine kinase src; protein kinase homology; SH2 homology; SH3 homology
ATP; phosphotransferase; proto-oncogene; transforming Gaps change A24314 Semba, K.; Nishizawa, M.; Miyajima, N.; Yoshida, M.C.; SFLIRESESQKGEFSLSVLDGAVVKHYRIKRLDEGGFFLTRRRIFSTLNEFVSHYTKTSD 1 tflvreseskpgdyslsiqdgdnvkhyrirkldeggffitrravfntlkdlvqyyqnesd qqeaqa-1k1pqlidmaaqvaaqmayle1hnyihrdlaarnilvqdnnickvadfqlarl P; phosphotransferase; proto-oncogene; transforming protein; tyrosine-specific protein kinase Y.; Sasaki, M.; Yamamoto, human 9 Proc. Natl. Acad. Sci. U.S.A. (1986) 83:5459-5463 SH2\ KIN\ #text Length 362; title yes-related protooncogene, syn, belongs to the protein-tyrosine kinase family. Indels #domain protein kinase homology #label
#region nucleotide-binding motif\ #domain SH2 homology (fragment) #label protein-tyrosine kinase (EC 2.7.1.112) syn formal name Homo sapiens fcommon name man 31-Mar-1988 fsequence_revision 31-Mar-1988 #active_site Lys #status predicted #length 362 #checksum 2776 63; Score 1745; DB 4; Pred. No. 3.80e-271; Mismatches Sukegawa, J.; Yamanashi, #type complete 1-537 ##label SEM 73; fcross-references GB:M14333 Χ. 45.7%; 61.1%; Conservative 03-Jun-1995 Toyoshima, ##molecule_type_mRNA A24314 A24314 Similarity A24314

0000000000	
040404040404	
\$0\$0\$0\$0\$0\$0\$	

(8)(8)(8)(8)	
(2002)(2003)	
(\$200\$	<u> </u>
9999999 T	(TM)
8888888 #	
(0000000 A	
Matakan E	
200000000	_
88888888 🛥	
400000 T	
988888 #	
9999999 🚘	
4666666 E	
9099999 *	7
30000000 😹	'
393999 - 2	
460(460) - 第一	
9999999	
300000 1	
899999	
0000000 🙀	
9090900 I	1
((((((((((((((((((((((((((((((((((((((1
8000000 📥	
4004000 E	
(000000000000 #	
(000000) 🛥	
6666666 E	
0000000 #	· ,
9999999 =	1 1 + +
mondo I	1 1
	1 1
	1 1
******	1 ' ' 1
MEN (400) #	
2.00000	
** **********************************	1
5200000 <u>=</u>	
4400000 F	
10000000000 -	/
\$200000 E	
(N) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
■ (2000)	1 1/ /
₩ 200000	
	1 1 /
6 4 000000 a	!! /
6 0000000 E	' "
- 2000	
	1
2000000 T	,
N(00000 #	
● 00000 →	
X 00000	
#0.000000	
* (0.000)	
₩000000 II	
H00000 H	
F(4) (4) (4)	1 1 — — I
D000000 II	1 1 1 1
(4. 898) (4.898)	1 1 4 1 1
	1 — — I I
+000000 E	1 1 1
@100000 P	1 1 1
₹60000 –	
1000000	
606668	
999999	
3000000 1	
9999999 *	. .
00000000 4	1
500000000	I 1
·(1000)-100	
20000000 a	1 1 1 1
0000000 L	1 1 1 1
0000000	1 1 1 1
2000000 *	1 (1
	1 '' '
(1000)	_
9000000 🙀	1
(0000000)	
0000000 +	
receive I	
NOONS E	
202020000 H	
4994993 - E	
9999999	1
2000000 🛥	<u> </u>
88888888	
0000000 f	
90000000 🙀	
govodo I	· - 3
3000000 · · · · · · · · · · · · · · · ·	~ · ·
₩ (1000) *	_
N230000 II	
NE0000 = =	
6 3 36666 🙀	1
<u> </u>	<u> </u>
TX-00000 📅	
* (1)(1)(1)	1 !
الله (الأنفانية الأنفانية الأنفانية الأنفانية الأنفانية الأنفانية الأنفانية الأنفانية الأنفانية الأنفانية الأن	' <u> </u>
5506666 🚣	
H ((((()))	

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

MasPar time 10.65 Seconds 397.491 Million cell updates/sec Fri May 31 09:34:38 1996; Run on:

Tabular output not generated.

>US-08-426-509-6 (1-511) from US08426509.pep 3821 Description: Perfect Score: Title:

1 MVSWCMSNICQRLWEYLEPY......KLEDYFETDSSYSDANNFIR 511 Sequence:

PAM 150 Gap 11 Scoring table:

70887 seqs, 8282111 residues Searched:

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

a-geneseq22

i.part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7
8:part8 9:part9 10:part10 11:part11 12:part12 13:part13
14:part14

scale 0.222 Mean 36.001; Variance 162.251; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		œ					
Result No.	Score	Query Match	Query Match Length DB	DB	OI	Description	Pred. No.
1	3734	97.7		14	R85929	Protein tyrosine-kina	0.00e+00
2	3734	97.7	505	∞	R41941	pTK gene LpTK-2 prod.	0.00e+00
က	1679	43.9		∞	R39706	Human pp60 c-src prot	2.18e-143
4	1674	43.8		ω	R39705	Chicken pp60 c-src pr	6.48e-143
S	1418	37.1		က	R14201	(Beta-qalactosidase N	9.53e-119
9	1343	35.1			R15156	Abelson Related Gene,	1.10e-111
7	\sim	34.8		12	R63088	Breast tumor kinase,	1.84e - 110
œ	1276	33.4			R15157	Abelson Related Gene,	2.21e-105
0	1078	28.2		৩	R32299	Sequence of pp60(c-sr	8.20e-87
10	905	23.6	466	13	R71132	N-terminal truncated	2.17e-70
11	905	23.6		13	R71133	Cytoplsmic tyrosine k	2.17e-70
12	815	21.3	710	13	R75714	Eph-related PTK Cek7'	2.59e-62

US-08-426-509-6 rag May 31 (9.27

2.59e-62	.59e-	.35e-	4.14e-61	1.49e - 60	2.82e-60	٣.	4.32e-60	55e-5	.57e-5	.31e-5	.00e-5	- 1	.05e-5	.18e-5	.18e-5	.99e-5	-5	.89e-5	.77e-5	.14e-5	.14e-5	1.71e-50	.98e-	.39e-4	1.01e-45	1.55e - 45	1.55e-45	1.91e-45	3.59e-45	4.44e-45	e-4	8.35e-45
-related PTK Cek7	-related	polypeptide.	_	-related PTK	Eph-related PTK Cek5.	-related PTK	Protein tyrosine-kina	elk.	EIK PTK.	Eph-related CEK6.	Eph-related PTK Cek9.	Protein tyrosine-kina	pTK gene HpTK5 prod.	related PTK	Eph-related PTK Cek10	n embryonal ki	CDNA	ein p140 cDNA	Tyrosine-kinase Syk.	HER4 with alternate 3	HER4.	Tyrosine kinase domai	Human Syk.	Tyrosine Kinase recep	Chicken basic fibrobl	Human axl receptor (a	Ţ	Fes/fps proto-oncogen	o)	encoded	erminal t	flg receptor protein.
57	75	14	57	57	57	R75706	5	2	4 5	5	5	R85930	8	5	5	8	00	8	92	8	8		9	2	9	27	8575	P70055	8	P70443	R54842	207
13	13	9	13	13	13	13	14	∞	∞	13	13	14	∞	13	13	10	13	13	12	10	10	13	12	ហ	m	14	14	7	m	ന	10	4
722	144	983	1011	983	995	849	986	984	380	951	973	987	1293	973	988	990	993	993	630	1058	1308	246	630	426	819	882	894	211	1370	494	541	822
21.3		21.0	$\overline{}$	20.8	0	0	Ö.	20.5	0	20.3	0	19.5	6	6	σ		9.	9.		18.2		18.0	17.9	16.7	16.6	16.6	•	16.5			16.4	16.4
815	_	$\overline{}$	$\overline{}$	an a	$\boldsymbol{\sigma}$	G)	$\boldsymbol{\sigma}$	α		-		E 11	E H	E H	-	\sim	~	\sim	$\overline{}$	\mathbf{a}	\mathbf{a}	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	$\triangle 1$	$\Delta 1$	\sim 1
13																																

ALIGNMENTS

RESULT	
OI	R85929 standard; Protein; 505 AA.
AC	
DT	14-FEB-1996 (first entry)
DE	Protein tyrosine-kinase LpTK2.
圣	_
KW	differentiation.
0.5	Homo sapiens.
PN	W09527061-A1.
PD	12-0CT-1995.
PF	04-APR-1995; U04228.
PR	
PA	(GETH) GENENTECH INC.
ΡΙ	Bennett BD, Goeddel D, Lee JM, Matthews W, Tsai SP;
ΡΙ	Wood WI;
DR	WPI; 95-366160/47.
DR	_
ΡŢ	Agonist antibodies which activate specific protein tyrosine
ΡŢ	(8)
ΡŦ	domain and Ig constant domain, useful for studying, and therapeutic
ΡŢ	modulation of, cell growth and differentiation
PS	Disclosure; Page 56-58; 125pp; English.
႘	DNA probes based on protein tyrosine-kinase (pTK) sequences were used
ဥ	to screen cDNA libraries to identify novel pTK genes. A LpTK2 gene
ပ္ပ	(T03097) was isolated from lymphocytic and megakaryocytic cell
္ပ	libraries. The encoded novel pTK, LpTK2 (R85929), shows homology to
ပ္ပ	known pTKs, and can be used to design drugs that modulate pTK

May 31 (CC olig	cons	bans O ui	The	nbəs	prot stat	the Sequ	Query M	Best Lo Matches	1	9	61	99	120	126	180	186	240	246	300	306	360	366	450	426	480	486	ULT	R397 R397	23-D Huma	Homo WO93	22-J 05-J
2 88) 	38	පි පි	: B 8	38	္တ တို	O f	ΩĘ	ΩP	Qγ	ΩÞ	Qy	qq	Οy	QQ	Qy	qu	0y	QQ	Qγ	qq	Qy	q 0	Qy	qu	δλ	RESULT	AC ID	70 30	S O M	PD PF
May 31 (9.27 US-08-426-509-furag CC activity. SO Sequence 505 AA:		atcn 97.7%; Score 3/34; DB 14; Length 303; cal Similarity 99.6%; Pred. No. 0.00e+00;	Matches 504; Conservative 0; Mismatches 1; Indels 1; Gaps 1;	rhghyfvalfdygartae	11111111111111111111111111111111111111	psnyvaedrslqae		Db 120 aigrsdaekqllysenktgsfliresesqkgefslsvldgavvkhyrikrldeggffltr 179	Oy 126 AIGRSDAEKQLLYSENKTGSFLIRESESQKGEFSLSVLDGAVVKHYRIKRLDEGGFFLTR 185	Db 180 rrifstlnefvshytktsdglcvklgkpclkiqvpapfdlsyktvdqweidrnsiqllkr 239	- >-	Db 240 lgsgqfgevweglwnnttpvavktlkpgsmdpndflreaqimknlrhpkliqlyavctle 299	IQLYA	Db 300 dpiyiitelmrhgslqeylqndtgskihltqqvdmaaqvasgmaylesrnyihrdlaarn 359	GMAYLESRNY	Db 360 vlvgehniykvadfglarvfkvdnediyesrheiklpvkwtapeairsnkfsiksdvwsf 419	APEA IRSNKF	Db 420 gillyeiitygkmpysgmtgaqviqmlaqnyrlpqpsncpqqfynimlecwnaepkerpt 479	Qy 426 GILLYEIITYGKMPYSGMTGAQVIQMLAQNYRLPQPSNCPQQFYNIMLECWNAEPKERPT 485	Db 480 fetlrwkledyfetdssysdannfir 505	Qy 486 FETLRWKLEDYFETDSSYSDANNFIR 511		3	्यं त	<pre>DE pin gene Lpin-2 prog. KW pTK; protein tyrosine kinase; catalytic domain; c-kit; megakaryocyte; KW lumnhocute; amplification; primer; polumoraes chain reaction; pcp.</pre>	Homo sapiens. W09315201-A.	PD 05-AUG-1993. PF 22-JAN-1993; U00586.	22-JAN-1992; US-826935. (NEWE-) NEW ENGLAND DEACONESS HOSPITAL.	PI Avraham H, Cowley S, Groopman J, Scadden D; DR WPI; 93-320330/40.		5; 60pp; Engli e identified u

US-08-426-509-6 rag May 31 09.27

ည	oligonucleotide primers: a first set which amplifies all pTK DNA
පු දි	(049/43-44), and a second set which amplifies highly
3 5	a sequences presen معرف مسلام (۱۸۵۸)
දු	57 and R41897-02.
පි	LDTKs are expressed in lymphocytic
පු	skarvocytic cells. The partial and
8	are given in 049749 and 049754 respectively. T
ප	equence corresp. to Q49749 is claimed (claim 7)
ខ	s given in the specification,
ဗ္ဗ	the publication.
S S	_
c	Match 97 7%: Score 3734:
* ED)	Similarity 99.6%; Pred. No. 0.00e+00;
2;	es 504; Conservative 0; Mismat
QQ	1 msnicarlwevlepylpclsteadkstvienpgalcspgsgrhghyfvalfdygartaed 60
Qγ	6 MSNICQRLWEYLEPYLPCLSTEADKSTVIENPGALCSPQSQRHGHYFVALFDYQARTAED 65
qu	61 lsfragdk-lqvldtlhegwwfarhlekrrdgssqqlqgyipsnyvaedrslqaepwffg 119
č	
Ž	
qq	
δ	126 AIGRSDAEKQLLYSENKTGSFLIRESESQKGEFSLSVLDGAVVKHYRIKRLDEGGFFLTR 185
qq	180 rrifstlnefvshytktsdglcvklgkpclkiqvpapfdlsyktvdqweidrnsigllkr 239
٥y	186 RRIFSTLNEFVSHYTKTSDGLCVKLGKPCLKIQVPAPFDLSYKTVDQWEIDRNSIQLLKR 245
qu	240 lgsgqfgevweglwnnttpvavktlkpgsmdpndflreaqimknlrhpkliqlyavctle 299
0y	16111111111111111111111111111111111111
ź	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
a A	suu apiyiiteimrngsiqeyiqnatgskinitqqvamaaqvasgmayiesrnyinralaarn 559
٥y	306 DPIYIITELMRHGSLQEYLQNDTGSKIHLTQQYDMAAQVASGMAYLESRNYIHRDLAARN 365
qu	360 vlvgehniykvadfglarvfkvdnediyesrheiklpvkwtapeairsnkfsiksdvwsf 419
ò	366 VINGEHNIYKVADFGLARVFKVDNEDIYESRHEIKIPVKWTAPFAIRSNKFSIKSDVWSF 425
Ž	
qq	420 gillyeiitygkmpysgmtgaqviqmlaqnyrlpqpsncpqqfynimlecwnaepkerpt 479
Qy	426 GILLYEIITYGKMPYSGMTGAQVIQMLAQNYRLPQPSNCPQQFYNIMLECWNAEPKERPT 485
q 0	480 fetlrwkledyfetdssysdannfir 505
Qy	486 FETLRWKLEDYFETDSSYSDANNFIR 511
RES ID	RESULT 3 ID R39706 standard; Protein; 536 AA.
AC	39706;
TO	-1993 (fir
	Human ppou c-src protein. Endothelial: tyrosine kinase protein: pp60 c-src: ss.
00	cytostiie atiidae procetii, ppoo cetal a
PN	W09314193-A.
PD FG	22-JUL-1993, 05TAN-1603: 17900445
rr	

US-08-426-509-6.rag May 31 09.27

R14201 standard; Protein; 417 AA RESULT ID R1 5 316 375 -g---q-tgyipsnyv 140 167 466 cells. Transformed cells produce increased amounts of pp60 c-src and have improved therapeutic properties. They migrate at faster rates than non-transformed counterparts; have an enhanced ability to inhibit the formation of thrombi and/or dissolve thrombi once they have formed and exhibit reduced mononuclear cell adhesion. They can also be used to improve the success of surgical procedures such as coronary angioplasty, heart bypass surgery, vessel graft and stent c-src polypeptide (Given in Q46688) is used to transform endothelial Gaps 201 nvkhykirkldsggfyitsrtqfnslqqlvayyskhadglchrlttvcptsk-pqtqgla -k--daweipreslrlevklgggcfgevwmgtwngttrvaiktlkpgtmspeaflgeagv 407 APEAIRSNKFSIKSDVWSFGILLYEIITYGKMPYSGMTGAQVIQMLAQNYRLPQPSNCPQ Genetically engineered endothelial cells - which exhibit enhanced -VKHYRIKRLDEGGFFLTRRRIFSTLNEFVSHYTKTSDGLCVKLGKPCLKIQVPAPFDLS 347 GMAYLESRNYIHRDLAARNVLVGEHNIYKVADFGLARVFKVDNEDIYESRHEIKLPVKWT 227 YKTVDQWEIDRNSIQLLKRLGSGQFGEVWEGLWNNTTPVAVKTLKPGSMDPNDFLREAQI gmayvermnyvhrdlraanilvgenlvckvadfglarl--iedne-ytarqgakfpikwt ||||:| ||:|||| | |:|||||: : ||||||||: ::::: | :|:|||| the entire pp60 activator activity, 22; cell migration, urokinase-type plasminogen activator activiand reduced mononuclear cell adhesion and fibronectin produ Length 536; Indels 88. R39705; 23-DEC-1993 (first entry) Chicken pp60 c-src protein. Endothelial; tyrosine kinase protein; pp60 c-src; slhdlmcqcwrkepeerptfeylqafledyftstepqyqpgenl 467 QFYNIMLECWNAEPKERPTFETLRWKLEDYF-ETDSSYSDANNF Mismatches 107; Score 1679; DB 8; Pred. No. 2.18e-143; fvalydyesrtetdlsfkkger-lqivnntegdwwlahslst-Disclosure; Page 75-77; 91pp; English. The DNA encoding a portion or (more preferably) Warren SL Madri JA, 97; R39705 standard; Protein; 533 43.9%; 51.3%; Conservative DJ, 06-JAN-1992; US-820011 Bell L, Luthringer WPI; 93-243209/30. Query Match . Best Local Similarity 536 AA; (UYYA) UNIV YALE. P-PSDB; R39705. implantation 238; Sequence 68 52 141 433 493 Matches 260 168 376 RESULT PA PI DR DR PT δ Б g 9 Ω δ δ g 심 Op 8 임 ΡŢ δ ŏ ð δ δ

US-08-426-509-6.rag

O

US-08-426-509-5.rge

SUMMARIES

Biocomputing Research Unit. of Edinburgh, Distribution rights by IntelliGenetics, University 1994, 1995 Collins, Release 2.1D John F. Copyright (c) 1993, 1

1.25e-143 3.57e-131 9.78e-120

MUSBSK SLSRK1 SLSRK4 SLSRK2 SLSRK3 RN02888

1.95e-148

S.lacustris srk1 mRNA

Mus musculus protein

M.musculus mRNA for

0.00e+00

tyrosin

nuclear

Human

HSU00803 HSU22322 RNU09583

2863 2810 4590

2602

94.5 888.8 48.5 41.4 7.0

Rattus norvegicus Spr

Human SRC-like tyrosi

0.00e+00 0.00e+00

Pred. No

Description

10

DB

Length

Match

Score

Query

Result No. 7.77e-118

S.lacustris srk4 mRNA
S.lacustris srk2 mRNA
S.lacustris srk3 mRNA
Rattus norvegicus Spr
Torpedo californica p
H.attenuata src-relat
Human Lyn B protein (
Human lyn mRNA encodi

6.19e-85 2.24e-79

1.10e-75 1.10e-75 2.89e-69 1.94e-67 1.58e-66 1.04e-64

M.musculus c-yes mRNA R.norvegicus FGR mRNA

Torpedo californica p

Human c-yes-1 mRNA.

RNFGR HUMCYES1

U01349 GGYRKA

70

MMCYES

HUMLYN

71 29 50 50 53 58 71

2028 1829 1702 1702 1190 1820 2019 22200 4517 1755 1982 100 100 1852 100

8644460000000

1343 1343 1148 11066 127 127 117 110 110 100 100 100

HUMLYNTK

HYDSTK

G.gallus yrk mRNA. H.sapiens CpG DNA, cl H.sapiens CpG DNA, cl

HS 63F2F HS63F2F

10 79

U U

2770

1.28e-65 2.81e-59

2.81e-59

4.39e-61 3.52e-60 2.24e-58 2.24e-58 2.24e-58 1.40e-56

H.sapiens CpG DNA, cl

Xenopus laevis mRNA

human c-yes-2 gene.

HUMXYES2

52 71 81

XLYES HS57H7R HS57H7R

10

Xenopus fyn mRNA enco

6.83e-54 6.83e-54 6.83e-54 6.83e-54 5.34e-53

Mouse lyn protein mRN

Murine c-fgr mRNA.

MMCFGRMR

MUSLYN

MMCFGR HUMSLK

56 53 53 56 56 56

HUMCSYNA

MUS LYNB MUS LYNA

Mouse neuronal proto

1.77e-57

X.laevis c-fyn protei Xiphophorus c-fyn (Xf Rat lyn protein non-r Rat lyn B protein tyr Rat lyn A protein tyr

RATLYNBTYR RATLYNATYR

601

MUSSRCPP6

RATLYNTYRX

71 71 73 58 58 58 57

2446 2526 3438 1538

XELFYNC

XHCFYN

XLF YNR

2431

34e-53

Murine c-fgr53 proto-Human src-like kinase

n.a. database search, using Smith-Waterman algorithm n.a. MPsrch_nn

1162.552 Million cell updates/sec MasPar time 1686.87 Seconds Fri May 31 11:36:53 1996; Run on:

not generated. output Tabular

Description:

>US-08-426-509-5 (1-2770) from US08426509.seq 2770

Perfect Score:

.....AAGTACCAAAAAAAAAAATTCATGGTTTTTTTTTT GCCTGACCAGCTTTCTGTC.. CCGGACTGGTCGAAAGACAG. Sequence:

default TABLE Gap 6 Scoring table:

Gap

Query Dbase 0; STD Nmatch

× segs, 353985056 bases 264399 Searched:

 \sim

45 % Minimum Match Post-processing:

Listing first

summaries

embl-new11 Database

1:BCT 2:FUN 3:INV1 4:INV2 5:INV3 6:MAM 7:ORG 8:PLN 9:PRI1 10:PRI2 11:PRI3 12:PRO1 13:PRO2 14:ROD 15:SYN

16:UNC 17:VRT 18:VIR

genbank91 Database

20:BCT2 21:BCT3 22:BCT4 23:BCT5 24:BCT6 25:BCT7 27:INV2 28:INV3 29:INV4 30:INV5 31:MAM1 32:MAM2 34:PAT2 35:PAT3 36:PHG 37:PLN1 38:PLN2 39:PLN3 41:PLN5 42:PLN6 43:PLN7 44:PRI1 45:PRI2 46:PRI3 48:PRI5 49:PRI6 50:PRI7 51:PRI8 52:PRI9 53:ROD1 55:ROD3 56:ROD4 57:ROD5 58:ROD6 59:ROD7 60:STR 19:BCT1 54:ROD2 26: INV1 33:PAT1 40:PLN4 47:PR14

62:UNA 63:VRL1 64:VRL2 65:VRL3 66:VRL4 67:VRL5 70:VRT2 68:VRL6 69:VRT1 SYN 61

71:VRT3

genbank-newl] Database

75:INV2 76:MAM 77:PHG 78:PL/ 82:ROD 83:STR 84:SYN 85:UNA 74:INV1 81:PRI3 72:BCT1 73:BCT2 79:PRI1 80:PRI2 86:VRL 87:VRT -emb144 91

78:PLN

u-emb144

is the number of results predicted by chance to have scale 2.361 Variance 5.270; Mean 12.445; Pred. No. Statistics:

and is derived by analysis of the total score distribution.

greater than or equal to the

score

result being printed,

score of the

Eucaryotae; Metazoa; Chordata; Vertebrata; Gnathostomata; Mammalia; 2.50e-50 3.23e-51 1.93e-49 1.93e-49 1.13e-47 1.13e-47 8.63e-47 1.13e-47 8.63e-4 (FRK) mRNA, complete cds Human c-syn protoonco Mouse lyn B protein t Mouse lyn A protein t H.sapiens CpG DNA, cl H.sapiens CpG DNA, cl Mouse hck gene for ty Murine macrophage gen Chicken mRNA for p61 G.gallus mRNA for ye Eutheria; Primates; Catarrhini; Hominidae; Homo. kinase ALI GNMENTS mRNA HS63F2R HS63F2R MUSBMK Human SRC-like tyrosine U00803 2863 bp 1626 2044 2133 2179 2435 2647 2703 2766 805 960 2002 102 1701 Homo sapiens HSU00803 human. DEFINITION ACCESSION KEYWORDS ORGANISM RESULT SOURCE

음

g

임

Š

9

S

g

õ

임

5

δ

Š

qq	524	cgtgattgaaaatccaggggccctttgctctccccagtcacagaggcatggccac	583
Q	442	CAACCGTGATTGAAAATCCAGGGGCCCTTTGCTCTCCCCAGTCACAGAGGCATGG	501
qu	584	gtggctttgtttgattaccaggctcggactgctgaggacttgagcttccgagca	643
Qy	502	TGTGGCTTTGTTTGATTACCAGGCTCGGACTGC	561
QQ	644	gtgacaaacttcaagttctggacactttgcatgagggctggtggtttgccagacacttgg	703
Qy	295	CAAACTTCAAGTTCTGGACACTTTGCATGAGGGCTGGTGGTTTGCCAGACACTTG	621
ОЪ	704	ctacgtg	763
Qy	622	AAGACGAGATGGCTCCAGTCAGCAACTACAAGGCTATATTCCTTCTAACTACG	681
QQ	764	acagaagcetacaggcagagccgtggttetttggagcaatcggaagatcagat	823
٥y	682	GGACAGAAGCCTACAGGCAGAGCCGTGGTTCTTTGGAGCAA	741
qu	824	gaaacaactattatattcagaaaacaagaccggttcctttctaatcagagaaagt	883
Qy	742	ATATTCAGAAAACAAGACCGGTTCCTTTC	801
QQ	884	aaagccaaaaaggagaattctctctttcagttttagatggagcagttgtaaaacactaca	943
Qy	802	CCAAAAAGGAGAATTCTCTTTCAGTTTTAGATGGAGCAGTTGTAAAAACACTACA	861
qq	944	ctggatgaagggggatttttctcacgcgaagaagaatctttcaacac	1003
δy	862		921
qq	1004	tgaacgaatttgtgagccactacaccaagacaagtgacggcctgtgtgtcaagctgggga	1063
Qy	922	CGAATTTGTGAGCCACTACACCAAGACAAGTGACGGCCTGTGTGTCTAAGCTGGGA	981
qq	1064	ttaaagatccaggtcccagctccatttgatttgtcgtataaaaccgtggacc	1123
Qγ	982	ATGCTTAAAGATCCAGGTCCCAGCTCCATTTGATTTGTCGTATAAAACCGTGGACC	1041
qu	1124	aatgggagatagaccgcaactccatacagcttctgaagcgattgggatctggtcagtttg	1183
Qy	1042	SGAGATAGACCGCAACTCCATACAGCTTCTGAAGCGATTGGGATCTGGTCAGTTTG	1101
ηρ	1184	agtatgggaaggtetgtggaacaataccaetccagtagcagtgaaaacatt	1243
δy	1102	TATGGGAAGGTCTGTGGAACAATACCACTCCAGTAGCAGTGAAAAAATAAAA	1161
qq	1244	caaatgacttcctgagggaggcacagataatgaagaacctaagac	1303
Qy	1162	TTCAATGGATCCAAATGACTTCCTGAGGGAGGCACAGATAATGAAGAACCTAAGAC	1221
DÞ	1304	atccaaagcttatccagctttatgctgtttgcactttagaagatccaatttatattatta	1363
δ	1222	AAAGCTTATCCAGCTTTATGCTGTTTGCACTTTAGAAGATCCAATTTATATTATT	1281
qq	1364	aaaa 1	1423
δy	1282	STTGATGAGACATGGAAGTCTGCAAGAATATCTCCAAAATGACACTGGATCAAAA	1341
Ob	1424	tccatctgactcaacaggtagacatggcggcacaggttgcctctggaatggcctatctgg	1483
ò	1342		1401

5																	
	1543	1461	1603	1663 1581	1723 1641	1783 1701	1843 1761	1903 1821	1963 1881	2023 1941	2083 2001	2143 2061	2203	2263 2179	2319	2379 2299	2439 2359
I 11.56 US-08-426-509-5.rge	attcacagagatctggctgcc	TACATTCACAGAGATCTGGCTGCCAGAAATGTCCTCGTTGGTGAACATA	44 atatctacaaagtagcagattttggacttgccagagtttttaaggtagataatgaagaca 	4 tctatgaatctagacacgaaataaagctgccggtgaagtggactgcgcccgaagccattc 	64 gtagtaataaattcagcattaagtccgatgtatggtcatttggaatccttctttatgaaa	4 tcattacttatggcaaaatgccttacagtggtatgacaggtgcccaggtaatccagatgt 	84 tggctcaaaactatagacttccgcaaccatccaactgtccacagcaattttacaacatca	44 tgttggagtgctggaatgcagagcctaaggaacgacctacatttgagacactgcgttgga	<pre>04 aacttgaagactattttgaaacagactcttcatattcagatgcaaataacttcataagat 11111111111111111111111111111111</pre>	64 gaacactggagaagaatatcaaataataaagtagcaaaacaaattcaaataatccattcc ;	24 aaaatacaatgttatcaaccaactgcacaatcagtttatcctgacatattcaagtgatag 24 lllllllllllllllllllllllllllllllllll	attgactgggcaaca 	44 ctgcaggacagtcaaggtgatatatatttcctcactgcctggtaaaattaagcacacta 2 	ttgtttgaaatgtcg 	64atcaagagaatcaacagatgatagtccaatttttactcagtgactg-t-tgtagcatt 2 	20 ttcctgtttactgattagagtggttattcattattcctcagattgctgaatcccatcagg 2 tll	<pre>0 ctgttattatgaaggaatttgattgctttgctgcacagcaggacctgtgctttgagattt </pre>
77 24	14	14(15.	160	16(172	178	184	19(196	202	206	214	220	226	232	238

д

g

δ

8

g

qq

Q

δy

Оþ

ζ

δŽ

Š

ζ

В

ğ

O iu, E. T. cells Metazoa/Eumycota group; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Vertebrata; Gnathostomata; Osteichthyes; Sarcopterygii; Choanata; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Archonta; Primates; Catarrhini; Hominidae; Homo.

(ance, W.G., Craven, R.J., Bergman, M., Xu, L., Alitalo, K. and Liu, E. Rak, a novel nuclear tyrosine kinase expressed in epithelial cellicell Growth Differ. 5 (12), 1347-1355 (1994) 2559 2419 2479 2619 2539 2679 2599 2739 2659 2798 2719 27-MAR-1995 Eukaryotae; mitochondrial eukaryotes; eukaryote crown group; tttttttttttaaaatatcctgtaactacaatgatggtaaagccatgttaaatgactt gattgtacttggagtaattgcacattttttttctatgcataaaaaatgatgcagctgttg complete cancer Rak mRNA, US-08-426-509-5.rge PRI 2836 protein kinase mRNA nsuzzzz 2810 bp Human nuclear tyrosine p U22322 (bases 1 to 2810) Homo sapiens 95210168 93293373 human. May 31 11 56 7 2360 DEFINITION 2420 2660 ACCESSION KEYWORDS ORGANISM 2440 2500 2560 2740 2620 REFERENCE AUTHORS JOURNAL MEDLINE REFERENCE AUTHORS JOURNAL MEDLINE REFERENCE TITLE TITLE RESULT SOURCE LOCUS g g 9 g δ 염 임 9 ð õ Š Š Q ð

University

Surgery Dept., USA

Cance, 27599,

Direct Submission
Submitted (06-MAR-1995) William G.
of North Carolina, Chapel Hill, NC
NCBI gi: 732527

Cance, W.G.

AUTHORS

JOURNAL

NCBI gi:

conceptual translation supplied by author.

/note="nuclear tyrosine protein

Method:

kinase;

cell line"

cancer

1..2810 /organism="Homo sapiens" /cell_line="BT-20 breast c 410..1927

nos

FEATURES

COMMENT

CDS

BASE CO

d

유

2

ò

임

δ

유

δ

g

õ

q

φ

d

δ

쇰

δ

d

ò

염

ò

δ

US-08-426-509-5.rge

ôy	716 CTTTGGAGG		775
QQ	ttccti	tctaatcagagaaagtgaaagccaaaaaggagaattctctttcagttt	879
δλ	776 CGGTTCCT		835
qq	880 agatggagc	cagttgtaaaacactacagaattaaaagactggatgaagggggatttttct 	939
δ	TGGAG	AGTIGTAAAACACTACAGAATTAAAAGACTGGATGAAGGGGGATTTTTTC	895
qq	940 cacgcgaag	agccactacaccaagacaa	666
δλ	SCGAA	AAGAATCTTTCAACACTGAACGAATTTGTGAGCCACTACACCAAGAC	955
DÞ		gtgtgtcaagctggggaaaccatgcttaaagatccaggtcccagctccat	1059
ργ		GTGTGTCAAGCTGGGAAACCATGCTTAAAGATCC	101
DÞ	ttgt	gtataaaaccgtggaccaatgggagatagaccgcaactccatacagctt	1119
δy	– ტ	GTATAAAACCGTGGACCAATGGGAGATAGACCGCAACTCCATACAG	1075
DÞ	gcgat	gggatctggtcagtttggcgaagtatgggaaggtctgtgggaacaatacca	1179
δy	1076 GAAGCGATT	GGGATCTGGTCAGTTTGGCGAAGTATGGGAAGGTCTGTGGAACAATACCAC	1135
qq	gtag	agtgaaaacattaaaaaccaggttcaatggatccaaatgacttcctgaggg	1239
Qγ	1136 TCCAGTAGC	AGTGAAAACA	1195
qq	1240 ggcacagat	aatgaagaacctaagacatccaaagcttatccagctttatgctgtttgc	1299
Ωy	CAGA	AATGAAGAACCTAAGACATCCAAAGCTTATCCAGCTTTATGCTGTTTGCA	1255
Ωp	1300 tttagaaga	tccaatttatattacagagttgatgagacatggaagtctgcaagaat	1359
Qy	GAAG	TCCAATTTATATTACAGAGTTGATGAGACATGGAAGTCTGCAAGAA	1315
QQ	1360 tctccaaaa	tgacactggatcaaaaatccatctgactcaacaggtagacatggcggcac	1419
δy	CAAA	TGACACTGGATCAAAAATCCATCTGACTCAACAGGTAGACA	1375
Ob	1420 ggttgcctc	tggaatggcctatctggagtctcggaactacattcacagagatctggctg	1479
δ		TGGAATGGCCTATCTGGAGTCTCGGAACTACATTCACAGAGA	1435
ΩÞ	1480 cagaaatgt	cctcgttggtgaacataatatctacaaagtagcagattttggacttgcca	1539
Qy	AATG	CCTCGTTGGTGAACATAATATCTACAAAGTAGCAGATTT	1495
DÞ	1540 agtttttaa	ggtagataatgaagacatctatgaatcaagacacgaaataaagctaccgg	1599
٥y	TTTA	GGTAGATAATGAAGACATCTATGAATCTAGACACGAAATAAAGCTGC	1555
qq	1600 gaagtggac	tgcgcccgaagccattcgtagtaataaattcagcattaagtccgatgtatg]	1659
Qy	TGGA	TGCGCCCGAAGCCATTCGTAATAAATTCAGCATTAAGTCCGATGTAT	1615
qq	1660 gtcatttgg	aatccttctttatgaaatcattacttatggcaaaatgccttacagtggt	1719
Qy	TTTG	AATCCTTCTTTATGAAATCATTACTTATGGCAAAATGCCTTACAGT	1675
qq	1720 gacaggtgg	ccaddtaatccadatdttddctcaaactatadacttccdcaaccatccaa	1779

O.	
35	
20000000000000000000000000000000000000	٠
	•
(1) (1) (1) (1) (1) (1) (1) (1)	
50	٠
	٠
\bullet	
	٠
	•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	٠
100000000000000000000000000000000000000	•
80-S	
	٠
	,
	,
303030300000	٠
	٠
	•
	•
	٠
	Ì
	•
	٠
	•
	ı
1:56	
	•
<b>→</b>	
<b>3</b>	
May 31 11:56	

Qγ	1676	GACAGGIGCCCAGGIAATCCAGAIGIIGGCTCAAAACTAIAGACIICCGCAACCAICCAA 1735
eg G	1780	ctgtccacagcaattttacaacatcatgttggagtgctggaatgcagagcctaaggaac
ò	1736	CTGTCCACAGCAATTTTACAACATCATGTTGGAGTGCTGGAA
ව ද	1840	acctacatttgagacactgcgttggaaacttgaagactattttgaaacagactcttcata 1899 
연	1900	ttcagatgcaaataacttcataagatgaacactggagagaatatcaaataaaagag 195
Qy	1856	TICAGATGCAAATAACTTCATAAGATGAACACTGGAGAAGAATATCAAATAAAATAG 191
<b>QQ</b>	1960	:tcaaataataatccattccaaaatacaatgttatcaaccaac
δ.	1916	CAAAACAAATTCAAATAATCCATTCCAAAATACAATGTTATCAACCAACTGCACAAT 1972
qu	2020	cagtttatcctgacatattcaagtgataggataaagttggccatgtattatgaaaaagat 2079
δý	1973	TGACATATTCAAGTGATAGGATAAAGTTGGCCATGTATTATGAAAAGA
ηq	2080	gacagtcaaggtgatatataatt
Qy	2033	ATTTATTGACTGGGCAACACTGCAGGACAGTCAAGGTCATATAAT
qq	2140	tggtaaaattaagcacactaaaccaagttatttttttttt
Qy	2093	-TCACTGCCTGG-AAAATTAAGCACACTAAACCAAGTTATTTTTTTTTT
QQ	2200	itttattgtttgaaatgtcgatcaagagaatcaacagatgatagtc
۵y	2151	TTATTGTTTGAAATGTCGCGATCAAGAGAATCAACAGATGATA
Dp	2258	gtgactg-t-tgtagcattttcctgtttactgattagagtggttat-c
δλ	2211	STCAGTGATGACTGTGTAGCATTTTCCTGTTTACTGATTAGAGTGGTTATTGA
qq	2315	ittgctgaatcccatcaggctgttattatgaaggaatttgattgctt
Qγ	2271	TATTCCTCAGATTGCTGAATCCCATCAGGCTGTTATTATGAAGGAATTTGATTGCTTTGC 2330
qq	2375	acctgtgctttgagatttttttttctcttttaaaatatcctgtaact
δy	2331	
qq	2435	agccatgttaaatgacttgattgtacttggagtaattgcacattttt
δy	2391	AAGCCATGTTAAA
QQ	2495	
φy	2451	-CTATGCATAAAAAATGATGCAGCTGTTGAGAAACGAAGTCTTTTTCATTTTGCAGAA 2509
qq	2555	aatttttctgtacttcagtatgtgtcaactgagagtcatatacatta
ργ	2510	ATTT
DÞ	2615	ttgagaatcaggttgcaaa-cggatgagttattatctatg
ογ	2570	ATATTGAGAATCAGGTTGCAAAACGGATGAGTTATTATCTA
QQ	2673	gtgagaaatgtctaatagcccataa-gtctgagaaataggtatcaaaatagtttaggaaa 2731

May 31 11:56 US-08-426-509-5.rge

9

Qy		GTGAGAAATGTCTAATAGCCCATAAAGTCTGAGAATAGGTATCAAAATAGTTTAGGAAA 2689
셤	2732	atgagagagaacagtaggattgctgtggcctagacttctg-gtaattaataaagaaaaa 2790
δy	2690	ATGAGAGGAGAACAGTAGGATTGCTGTGGCCTAGACTTCTGAGTAATTAAT
qq	2791	gaagtacc 2798
٥y	2750	GAAGTACC 2757
RESULT LOCUS DEFINI	RESULT LOCUS DEFINITION	3 RNU0950 Rattus
ACCESSIO KEYWORDS	ACCESSION KEYWORDS	complete cds. U09583 U02888
SOURCE	URCE ORGANISM	
		group; metazoa; Eumetazoa; bilateria; Coelomata; Deuterostomia; Chordata; Vertebrata; Gnathostomata; Osteichthyes; Sarcopterygii; Choanata; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Glires; Rodentia: Sciurognathi: Myomorpha: Muridae: Rattus
REFERENCE	FERENCE	1 (bases 1 to 4590)
TIL	TITLE	Characterization of GASK, a novel src related tyrosine kinase
REFERENCE	FERENCE ATTHORS	2 (bases 1510 to 1691)
TI	TITLE	A newly identified tyrosine kinase is preferentially expressed in
100	JOURNAL	Line gastrointestinai tract Biochim. Biophys. Acta (1994) In press
REFERENCE AUTHORS	FERENCE AUTHORS	3 (bases I to 4590) Avigan, M.M.
TIL	TITLE JOURNAL	ission 11-MAY-1994) Mark M.
		3900 Reservoir Road
COMMENT	TNE	NCBI gi: 939624
FEATURES	Source	
		/clone="GASK" /clone lib="RIntTKBS"
		/strain="Sprague-Dawley"
		/organism="Rattus Norvegicus" /sex="male"
		/tissue_type="small intestine"
	CDS	/dev_stage="infant" 4451965
		/note="NCBI gi: 939625"
		/product="src related tyrosine kinase"
,		/translation="MGSVCMRLWAYLQPFLPCWSQEADKSVVIENPGAYCPPEANRSQ GQYFVALFDYEARTAEDLSFHAGDKLQVLDTSHEGWWLARHLEKKGPGLGQQLQGYIP
		SNYVAEDRSLQAEPWFFGAIKRADAEKQLLYSENQTGAFLIRESESQKGDFSLSVLDE GVVKHYRIRRLDEGGFFLTRRKTFSTLNEFVNYYTTTSDGLCVKLEKPCLKIOVPTPF
		DLSYKTVDQWEIDRNSIQLIKRLGSGQFGEVWEGLWNNTTPVAVKTLKPGSMDPNDFL
		REAQIMKSLRHPKLIQLYAVCTLEDPIYITELMRHGSLQEYLQNDGGSKIRLTQQVD MAAQVASGMAYLESQNYIHRDLAARNVLVGEHNIYKVADFGLARVFKVDNEDIYESKH FIXIOLGAMADIA IRMAZHGIYGBANGTOTII VIII MYGANGYGAMGAOHIIMIGON
		EIKLPVKWTAPEAIKTNKESIKSDVWSFGILLYEIITYGKMPYSGMTGAQVIHMLGQN YRLPQPSNCPEQFYSIMMECWNVEPKQRPTFETLHWKLEDYFEPDSSYSDTNNFIN"
BASE	COUNT	1370 a 937 c 999 g 1284 t

					,
-					
				••	
				22	0
				sdi	y 50
				Ü	gct. 
		90;		38;	
		1 45		ဒ္ဓ	:tcc
		ngtl		nde]	ttt 
0) 00		Le		H	= <u>c</u> t
2.1		.69	00:	387;	.cag
US-08-426-509-5 rge		48.5%; Score 1343; DB 59; Length 4590;	0e+(	0; Mismatches 387; Indels 38; Gaps 22;	cctt
Se.			0.0	itch	ata 
7		1343	٠ کو	isma	399c 
Ä		re	д. -	Σ	ttt( 
<b>5</b>		Sco	Pre	0;	aggc 
		••		d)	atga 
		.5	2.5	tiv	tgt.
		4	ω.	rva	igte 
			rity	onse	cago 
			illa	Ŭ	441 caccatgggcagcgtctgtatgaggctttgggcataccttcagccttttctcccctgctg 500
9		<b>-</b> E:	Sin	958;	ccat
		atcl	cal	Ä	Cac
May 31 11:56	<b></b>	Query Match	Best Local Similarity 82.2%;	Matches 1958; Conservative	441
<b>2</b>	ORIGIN	Quei	Best	Matc	
Z	R				Op

38; Gaps 22;	sctgctg 500         CTGTTT 421	tccaga 560          TCCCCA 481		tgaggg 680           TGAGGG 598	.gcaggg 740        ACAAGG 658		Igacggg 860   1	tttaga 920          TTAGA 838	cctcac 980         TCTCAC 898	aagtga 1040          AAGTGA 958	ttttga 1100         ATTTGA 1018	tctcaa 1160            TCTGAA 1078	cactcc 1220          CACTCC 1138	iggaggc 1280          GGAGGC 1198	cacatt 1340 
48.3%; Score 1343; DB 33; Length 43 82.2%; Pred. No. 0.00e+00; vative 0; Mismatches 387; Indels	tctgtatgaggctttgggcataccttcagccttttctcccctgctg 	acaaatcagtggtgattgagaatccaggggcctactgtcctccaga 	ggccaatcgaagccaaggccagtatttgtggctctgtttgattacgaagctcgtactgc 	tccatgccggcgacaagctccaagtcttggacacttctcatgaggg 	gacatttggaaaagaagggacccggcttaggtcagcagctgcaggg 	ctacattecttecaattacgtggcagaggaceggagtetecaggcagaacegtggtttt 	cggagcaatcaaaagagcagatgcagaaaagcaacttctgtattcagaaaaccagacggg 	cgcctttctaatcagagagtgagagccagaagggtgacttctccctctcagttttaga 	tgaaggtgttgtgaaacactacaggataagaaggttggatgaaggtggcttcttcctcac 	caggagaaaaacttttcaaccttgaatgaatttgtgaactactacaccacaacaagtga 	tgggctgtgtgtcaagctggagaagccatgcttaaagattcaggtaccgacccttttga 	tttgtcatataaaactgtggaccagtgggagatagaccgcaactccatacagcttctcaa 	gcgactgggatctggtcagtttggagaagtttgggaaggtctgtggaataataccactcc 	agtggctgtgaaaacgttaaaaccaggttcaatggatccaaatgacttcctcagggaggc 	acagataatgaagagcctaagacaccccaagctcatccagctctatgctgtttgcaca
ery march st Local Similarity tches 1958; Conser	441 caccatgggcagcgtctgtatgagg 	501 gtcccaagaagcagacaaatcagtg                      422 GTCCACGGAGCCAGACTCAACC	561 ggccaatcgaagcc 	621 agaggacctgagcttccatgccggc 	681 ctggtggttggccagacatttggaa 	741 ctacattccttcca              659 CTATATTCCTTCTA	801 cggagcaatcaaaa 	861 cgcctttctaatca 	921 tgaaggtgttgtgaa 	981 caggagaaaaactt              899 GCGAAGAAGAATCT	1041 tgggctgtgtgtca              959 CGCCTGTGTGTCA	1101 tttgtcatataaaa                  1019 TTGTCGTATAAAA	1161 gegaetgggatetg 	1221 agtggctgtgaaaa 	1281 acagataatgaaga

qq

δ

g

g

ò

qq

Qγ

qq

дq

	58
	7
	_
	E
	U
	K
	ن
	T
	Ĕ
	ی
	AŢ
50	L
	Ė
	ŭ
	S
•	ĪC
	4
<b>©</b>	TAAGACATCCAAAGCTTATCCAGCTTTATGCTGTTTGCACTTT 1258
	S
<b>00</b>	A
	S
~~ <b>~</b>	Ş
	A
	AC
	AG
	S
	ຼັວ
	AC
	G
	5
	$\mathcal{G}$
	A
	ACAGATAATGAAGAACCI
	S
	Ř
	X
	1199
**************************************	19
May 31 11:56	-
May	>
	C

1199 ACAGATAATGAAGAACCTAAGACATCCAAAGCTTATCCAGCTTTATGCTGTTTGCACTTT 1258

δ

DÞ	1341	agaagatccaatttatattacagaattgatgagacatggaagtctgcaagaatatc	1400
è	1259		1318
ב ל	1071		-
<u>අ</u>	1401	ccaaaatgatggtgggtcgaaaatccgtttgactcaacaggt	1460
λ	1319	CCAAAATGACACTGGATCAAAAATCCATCTGACTCAAGGTAGACATGGCGGCACAGG	13/8
qq	1461	agcttctggaatggcctatttggagtcccagaactatatccacagagatctggctgcaag	1520
οy	1379	TGCCTCTGGAATGGCCTATCTGGAGTCTCGGAACTACATTCACAGAGATCTGGCTGCCA	1438
90	1521	teettgttggtgaacataatatetataaagtageagattttggaettgeaaga	1580
δ	1439		1498
අු	1581	aaggtggataatgaagacatctatgaatctaaacacgaaataaagctgccagtga	1640
δy	1499	TTTTAAGGTAGATAATGAAGACATCTATGAATCTAGACACGGAATAAAGCTGCCGG	1558
쇰	1641	actgcacccgaagccattcgtactaataaattcagcattaagtctgatgtgtggt	1700
٥y	1559	GIGGACTGCGCCCGAAGCCATTCGTAGTAAATTCAGCATTAAGTC	1618
gg	1701	ggaatectgetetatgaaateattaettatggeaaaatgeettaeagegggatga	1760
ζý	1619	ATTTGGAATCCTTCTTTATGAATCA	1678
QD	1761	gctcaagtaattcatatgttgggtcaaaactacagactaccacagccatctaact	1820
δy	1679	AGGTGCCCAGGTAATCCAGATGTTGGCTCAAAACTATAGACTTCCGCA	1738
20	1821	agcaattctatagcatcatgatggaatgctggaatgtagagcccaagcaacgac	1880
δý	1739	TCCACAGCAATTTTACAACATCATGTTGGAGTGCTGGAA	1798
유	1881	cgagaccetgcactggaaacttgaagactactttgaaccagactettectatt	1940
ζλ	1799	TACATTTGAGACACTGCGTTGGAAACTTGAAGACTATTTTGAAACAGACTCTTCATA	1858
Dþ	1941	acaaacaacttcataaactaaacaacaaggaaaaagaaag	2000
٥y	1859	AGATGCAAATAACTTCATAAGATGAACACTGGAGAAGAATATCAAATAATAAGTAGCAA	1918
qq	2001	geggaacteaceagteeagaaatategtetteteaaceaactgtgaaatea	2060
δý	1919	AACAAATTCAAATAATCCATTCCA-AAATACAATG	1977
අු	2061	gacatattcaggtggtaggatgaactcaaccatgcattctgtatcaaaaa	2120
δ	1978	TATCCTGACATATTCAAGTGATAGGATAAAGTTGGCCATGTATT	2033
Q Q	2121	gtgtattctattgagtaggaaacgctgcaggacagtataagatgatgtgtc	2180
ζ	2034		2091
පු	2181	actgectggtaaaatcaatcacactaaatgaagttatttttttetteetttaa	2240
٥y	2092	TGCCTGG-AAAATTAAGCACACTAAACCAAGTTATTTTTTTTT	2144
Ob	2241	actcctcacatttctatttattgtttgaaatg-c-cgatcaagagaatcaacagatgacg	2298

13						•				
May 31 11-56  Oy 2145 GATACTTACATTTATTGTTTGAAATGTCGCGATCAAGAAGAATCAACAGATGATA 2204	2299 gtgtttactctgttactgttgtgg-gcattttcctgtttactgattagactggtt 2352 	2353 attcattattcctcaaattgctgaatcccatcaggctgttattatgaaggaatttgattg 2412 	2413 ctttgctgcacagcaggacctgtgctttgagatatttttttccctctcttttaaaatatc 2472 	2473 ttgtaactacaatgatggcaaagc-atgctaaatgactcgattgtacttgaagtaattgc 2531 	2532 acgtatttttcctgtgcataagaaagcgcaaggctgttgagaaaaagaattaaaatcttc 2591 	2592 ctcattttgtaggaggaaatgatggagtttgctctatacctcagtatgtgtcatcagaga 2651 	2652 atcatctgcattagttttaatctcttaatgtcaggaatcagattgcaaagccgagtaatt 2711 	2712 gttatgtgtgggaatataagggaactaccacactgcctaccaggtctgagaaatagatat 2771 	2772 taaagtggcttagggaagctaacagagagctggaggattgctg 2814 	AMIYKMR 2602 bp RNA ROD 06-JUL-1995  ION M.musculus mRNA for intestinal tyrosine kinase.  ON 248757  S intestinal tyrosine kinase.  house mouse.  ISM Mus musculus
May 3	Db 22 Qy 22	Db 23 Qy 22	Db 24 Qy 23	Db 24 Qy 23	Db 25 Qy 24	Db 25 Qy 24	Db 26 Qy 25	Db 27 Qy 26	0b 27 Qy 26	RESULT LOCUS DEFINITION ACCESSION KEYWORDS SOURCE ORGANISM

Z

US-08-426-509-5.rge

May 31 11:56

/product="intestinal tyrosine kinase"
/translation="MGSVCVRLWAYLQPFLPCWSQEADKSVVIENPGAFCPPEAPRSQ
EPERSHGQYFVALFDYQARTAEDLSFRAGDKLQVLDTSHEGWWLARHLEKKGTGLGQQ
LQGYIPSNYVAEDRSLQAEPWFFGAIKRADAEKQLLYSENQTGAFLIRESETQKGDFS
LSVLDEGVVKHYRIRRLDEGGFFLTRRKVFSTLNEFVNYYTTTSDGLCVKLEKPCLKI QVPTPFDLSYKTADQWEIHRNSIQLLKRLGSGQFGEVWEGLWNNTTPVAVKTLKPGSM DPNDFLREAQIMKSLRHPKLIQLYAVCTLEDPIYIITELMRHGSLQEYLQNDGGSKIH FIQQVDMAAQVASGMAYLESQNYIHRDLAARNVLVGEHNIYKVADFGLARVFKVDNED IYESKHEIKLPVKWTAPEAIRTNKFSIKSDVWSFGILLYEIITYGKMPYSGMTGAQVI QMLSQNYRLPQPSNCPQQFYSIMLECWNVEPKQRPTFETLHWKLEDYFETDCSYSDTN 18; 518 548 578 809 728 638 758 818 848 878 908 938 896 Gaps agccatggccagtattttgtggctctgtttgattaccaagcacgtactgcagaggacctg gccagacatttggagaagggaaccggcttaggtcagcagctacagggctacattcct aaaagagcagatgcagaaaaacaacttctgtattcagaaaaccagacggcgcctttcta GGAAGATCAGATGCAGAGAAACAACTATTATATTCAGAAAACAAGACCGGTTCCTTTCTA 23; Length 2602, others Indels 736264" /function="protein tyrosine kinase"
/citation=[1] 4 Score 1148; DB 54; Pred. No. 0.00e+00; 0; Mismatches 253; . No. 0.00e+uu; Mismatches 253; gi: /tissue_type="mammary gland"
/cell_type="epithelial"
/cell_line="310" ¥ lib="31D-lambda-ZAP NCBI 685 organism="Mus musculus /standard_name="IYK" /note="pid:g736264; g 596 /strain="Balb/c" /clone="IYK" /codon_start=1 /sex="Female" 41.4%; ט 315..1853 Conservative 537 /clone Query Matcn Best Local Similarity Watches 1536; Conser 780 source BASE COUNT 489 549 609 459 519 519 639 699 729 669 759 789 819 849 879 CDS g g ద ζ ŏ Q 염 임 යු ð g Qγ Q δ Š

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Mammalia; Eutheria; Rodentia; Sciurognathi; Myomorpha;

Muridae; Murinae; Mus.

REFERENCE AUTHORS TITLE

JOURNAL MEDLINE REFERENCE AUTHORS

1 (bases 1 to 2602)
Thuveson, M., Albrecht, D., Zurcher, G., Andres, A.C. and Ziemiecki, A.
iyk, a novel intracellular protein tyrosine kinase differentially
expressed in the mouse mammary gland and intestine
Biochem. Biophys. Res. Commun. 209 (2), 582-589 (1995)

(bases 1 to 2602)

Ziemiecki, A.

JOURNAL

TITLE

Direct Submission Submitted (21-MAR-1995) to the EMBL/GenBank/DDBJ databases. Ziemiecki A., Laboratory for Clinical and Experimental Research, Department of Clinical Research, Tiefenaustrasse 120, Berne, SWITZERLAND, CH-3004 NCBI gi: 736263

Location/Qualifiers

FEATURES

COMMENT

***	(TM)
****	
***	
****	''   
****	
医医耳氏性 医医性性性 医医性性性 医医性性性 医性性性 医性性性 医性性性性 医性性性性 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
*****	
***	
***********	<u>                                     </u>

U.K. Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, Distribution rights by IntelliGenetics, Inc.

n.a. database search, using Smith-Waterman algorithm 1 n.a. MPsrch_nn

MasPar time 212.42 Seconds 867.085 Million cell updates/sec Fri May 31 12:05:40 1996; Run on:

Tabular output not generated.

>US-08-426-509-5 (1-2770) from US08426509.seq 2770 Description: Perfect Score: Title:

1 CCGGACTGGTCGAAAGACAG......AAGTACCAAAAAAAAA 2770 GGCCTGACCAGCTTTCTGTC.....TTCATGGTTTTTTTTT Sequence:

TABLE default Gap 6 Scoring table:

Query 0 Dbase 0; STD Nmatch

2 × 84802 seqs, 33246950 bases Searched:

Minimum Match 0% Listing first 45 summaries Post-processing: Minimum Match

Database:

n-geneseq22 1:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7 8:part8 9:part9 10:part10 11:part11 12:part12 13:part13 14:part14 15:part15 16:part16

scale 1.523 Variance 6.608; Mean 10.064; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

# SUMMARIES

16 16 17 18 13 13		•
7607 16 7607 8 149 8 1611 7 1047 2 4550 3 3437 3	) Description	Pred. No.
7607 8 149 8 149 16 1611 7 1047 2 4550 3 3437 3	13097 Protein tyrosine-kina	na 0.00e+00
149 8 149 16 1611 7 1047 2 4550 3 3437 3		0.00e+00
149 16 1611 7 1047 2 4550 3 3437 3		.a 1,76e-60
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3092 Protéin tyrosine-kina	na 1.76e-60
~ m m r		·
m m r		sp 4.63e-38
m c		
c		
CAKCIN C PC21 1.2		p 6.92e-27

200000000000000000000000000000000000000
400000000000000000000000000000000000000
300000000000000000000000000000000000000
200000000000000000000000000000000000000
-50000000000000000000000000000000000000
- 2000 <b>- 1</b> 0000
00000
10000
2000 T-00000
<u> </u>
<b>Q</b>
3
US-08-42
-80-SN
- <del>80-</del> SN
-80-SN
- <del>80-</del> SN
2:00 US-08-
-31 12:00
y 31 12:00 US-08-
ay 31 12:00
y 31 12:00 US-08-

9.92e-26	.81e-1	8e-0	.52e-1	.5	3.52e-10	5	3.52e-10	5.	3.52e-10	3.52e-10	4.21e-08		þ	4	4.39e-07	P	- 1	P	- 1	- 1	1	9		0e-	1.36e-07		1.40e-06	4.41e-06	4.41e-06	4.41e-06	4.41e-06	4.41e-06	4.41e-06	4.26e-05
tic P	pped c	rosine Kinase rec	pTB1283 en	ic FGF receptor	ecepto	ne pTB1284	Human basic fibroblas	Human bFGF receptor	bek receptor protein	N-sam cDNA.	Oligonucleotide probe	Oligonucleotide probe	Base substituted E.co	Human orphan receptor	Base substituted E.co	Protein-tyrosine-kina	Mouse tyrosine kinase	Human JAK1 kinase cod	JAK1 encoding DNA.	Murine tyrosine kinas	Mouse tyrosine kinase	Protein-tyrosine-kina	Protein tyrosine kina	cDNA encoding platele	ብነ	Type B human platelet	cDNA encoding human p	•	-	Human RYK cDNA clone.	Protein-tyrosine-kina	Human mammary carcino	Human mammmary carcin	Human insulin recepto
Q10572 1	081189	027539	Q14851	Q13311	Q21003	Q14850	Q10448	Q20914	Q21004	027658	051746	051746	N81164	055179	N81164	056698	062130	085413	Q26039	Q75334	062129	Q56697	063730	N90355	091999	Q27447	N90388	Q10868	Q14049	052474	084782	092520	092522	Q14379
1047 2	507	73	310	469	662	919	856	328	416	525		91	04	00	04	290	601	429	3540 10	160	175	176	364	544	640	427	719	345	345	690	754	962	962	178
2.6 2.5				1.6							1.5	1.5	1.5	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4					1.3			
73 70	53	44	45	45	45	45	45	45	45	45	41	41	42	42	39	40	40	39	39	40	40	40	40	38	40	38	38	37	37	37	37	37	37	35
10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
ပ												ບ	Ö																					

## ALIGNMENTS

2.00 LiS-08-426-509-5 rng 3	197) was isolated from lymphocytic and megakaryocytic cell aries. The gene can be used to produce recombinant LpTK2, to lify other new pTK genes, or to design drugs, peptides or sense constructs that modulate pTK activity. ance 7607 BP; 1954 A; 1851 C; 1693 G; 2109 T;	<pre>stch sal Similarity 99.6%; Pred. No. 0.00e+00; 2666; Conservative 0; Mismatches 5; Indels 7; Gaps 6;</pre>	ggtacttctttttctttattaattactcagaagtctaggccacagcaatc-tactgttct 1045 	cctctcattttcctaaactattttgatacctatttctcagactttatgggctattagaca 1105 	tttctcacatttccatagataatcatccgttttgcaacctgattctcaatattaag 1165 	agattaaaactaatgtatatgactctcagttgacacatactgaagtacagaaaaattcca 1225 	tcatttccttctgcaaaatgaaaaagacttcgttttctcaacagctgcatcattttttta 1285 	tgcatagaaaaaatgtgcaattactccaagtacaatcaagtcatttaacatggctttac 1345 	catcattgtagttacaggatattttaaaagagaaaaaatctcaaagcacaggtcctg 1405 	ctgtgcagcaaagcaatcaaattccttcataataacagcctgatgggattcagcaatctg 1465 	aggaataatgaataaccactctaatcagtaaacaggaaaatgctaca-acag-tcactga 1523 	gtaaaaattggactatcatctgttgattctcttgatcgacatttcaaacaataaatgg 1581 	aaatgtaagtatctcttaaaaagaaaaataacttggtttagtgtgcttaattttaccagg 1641 	cagtgaggaaattatatatcaccttgactgtcctgcagtgttgcccagtcaataaaatgc 1701 	acaaataatcttttcataatacatggccaactttatcctatcacttgaatatgtcagga 1761 
May 31 12.00	(T03097) wa libraries. identify ot antisense c Sequence	ery Match st Local tches 26	987 ggtact         2757 GGTACT	1046 cctctc         2697 CCTCTC	1106 tttctc         2637 TTTCTC	1166 agatta        2577 AGATTA	1226 tcattt        2517 TCATT	1286 tgcata         2457 TGCATA	1346 catcat         2397 CATCAT	1406 ctgtgc        2337 CTGTGC	1466 aggaat        2277 AGGAAT	1524 gtaaaa         2217 GTAAAA	1582 aaatgt        2157 AAATGT	1642 cagtgar         2098 CAGTGA	1702 acaaat:         2039 ACAAAT
Ma	ខ្លួនខ្លួ	A Be	d d	සු දුර	CP CP	d 90	සු දු	Op Cp	d Cp	0 <b>p</b>	සු දු	Op Cp	Cp Cp	op Cp	g Cb

taaactgattgtgcagttggttgataacattgtattttggaatggattatttgaatttgt 1821

1762

a

US-08-426-509-5.mg May 31 12:00

ĕ

4

S,	1979 1	TAAACTGATTGTGCAGTTGGTTAACATTGTATTTTGGAATGGATTATTTGAATTTGT	1920
qq	1822 t	tttgctactttattatttgatattcttctccagtgttcatcttatgaagttatttgcatc	1881
ď	1919 T	TACTTTATTATTTGATATTCTCCCAGTGTTCATCTTATGAAGTTATTGCAT	1860
qq	1882 t	tetteaagttteeaacgeagtgteteaaat	1941
Ср	1859 T	TATGAAGAGTCTGTTTCAAAATAGTCTTCAAGTTTCCAACGCAGTGTCTCAAATG	1800
QQ	1942 a	gttccttaggctctgcattccagcactccaacatgatgttgtaaaattgctgtg	2001
Ср	1799 A	CGTTCCTTAGGCTCTGCATTCCAGCACTCCAACATGATGTTGTAAAAT	1740
qq	2002 a	acagttggatggttgcggaagtctatagttttgagccaacatctggattacctgggcacc	2061
Cp	1739 A	rggatggttgcggaagtctatagttttgagccaacatctggattacctgggcac	1680
qq	2062 t	tgtcataccactgtaaggcattttgccataagtaatgatttcataaagaaggattccaaa	2121
Ср	1679 T	TACCACTGTAAGGCATTTTGCCATAAGTAATGATTTCATAAAGAAGGATTCCAA	1620
0P	2122 t	tgaccatacatcggacttaatgctgaatttattactacgaatggcttcgggcgcagtcca	2181
СЪ	1619 T	ATACATCGGACTTAATGCTGAATTTATTACTACGAATGGCTTCGGGCGCGCAGTCC	1560
ΩÞ	2182 c	cggcagctttatttcgtgtctagattcatagatgtcttcattatctac	2241
Ср	1559 C	CCGGCAGCTTTATTTCGTGTCTAGATTCATAGATGTCTTCATTATTTAT	1500
Ob	2242 a	cga III	2301
oj.	1499 A		1440
QQ	2302 t	tctggcagccagatctctgtgaatgtagttccgagactccagataggccattccagaggc	2361
СЪ	1439 T	CAGCCAGATCTCTGTAATGTAGTTCCGAGACTCCAGATAGGCCATTCCAGAGG	1380
0P	2362 a	aacctgtgccgccatgtctacctgttgagtcagatggatttttgatccagtgtcattttg	2421
ď	1379 A	GTGCCGCCATGTCTACCTGTTGACTCAGATGTTTTTGATCCAGTGTTTTTG	1320
Ob	2422 g	ttettgeagaetteeatgteteateaaetetgtaataatataaattggatette	2481
СÞ	1319 6	ATTCTTGCAGACTTCCATGTCTCATCAACTCTGTAATAATAAATTGGATCT	1260
QQ	2482 t	taaagtgcaaacagcataaagctggataagctttggatgtcttaggttcttcattatctg	2541
Cp	1259 T	CCAAACAGCATAAAGCTGGATAAGCTTTGGATGTCTTAGGTTCTTCATTATCTG	1200
qq	2542 t	cctcaggaagtcatttggatccattgaacctggttttaatgtttcactgctac	2601
ď	1199 T	CCCTCAGGAAGTCATTTGGATCCATTGAACCTGGTTTTAATGTTTTCACTGC	1140
QQ	2602 t	tggtattgttccacagaccttcccatacttcgccaaactgaccagatcccaatcg	2661
Сp	1139 T	GGTATTGTTCCACAGACCTTCCCA	1080
qu	2662 c	cttcagaagctgtatggagttgcggtctatctcccattggtccacggttttatacgacaa	2721
Ср	1079 C	GAAGCTGTATGGAGTTGCGGTCTATCTCCCATTGGTCCACGGTTTTATACGACAA	1020
ΩP	2722 a I	atcaaatggagctgggacctggatctttaagcatggtttccccagcttgacacacaggcc	2781

2													
	096	2841 900	2901 840	2961 780	3021 720	3081 660	3141 600	3201 540	3261 480	3321 420	3381 360	3441 300	3501 240
	X.												tg 
Si	AGCTTGACA	gaaaagatt 	tgttttaca 	tetetgatt              TCTCTGATT	gatetteeg               GATETTEEG	 	tgtctggca 	cggaagete              CGGAAGCTC	ccatgcctc 	tetgeetee            TCTGCCTCC	atgttgctc 	tetetgega 	atacttogga 
US-08-426-509-5.rng	CTGGATCTTTAAGCATGGTTTCCCCAGCTTGACACACAGGCC	gtcacttgtcttggtgtagtggctcacaaattcgttcagtgttgaaaagattcttcttcg 	cgtgagaaaaatccccttcatccagtctttaattctgtagtgttttacaactgctcc 	atctaaaaactgaaagaagaattctcctttttggctttcactttctctgattagaaagga 	accggtcttgttttctgaatataatagttgtttctctgcatctgatcttccgattgctcc 	aaagaaccacggctctgcctgtaggcttctgtcctcagccacgtagttagaaggaatata 	gccttgtagttgctgactggagccatctcgtctttctccaagtgtctggcaaaccacca 	gccctcatgcaaagtgtccagaacttgaagtttgtcacctgctcggaagctcaagtcctc 	agcagtccgagcctggtaatcaaacaaagccacaaagtagtggccatgcctctgtgactg 	gggagagcaaagggcccctggatttcaatcacggttgacttgtctgcctccgtggacaa 	acaggggagatagggttctaggtactcccagagcctctgacagatgttgctcattgtgcc 	ttggtggggagaagaggagcagggcttctcccttccccttagtctctgcgatccacctt 	atcttccttcaccaggcaactttgaagtcagcaccaactcaccatacttcggagagtatg 
JS-08-42	CTTTAAGCA	cacaaattc             CACAAATTC	cagtcttt              CAGTCTTTT	tectttttg 	tagttgttt 	gettetgte 	atctegtet: 	ttgaagttt          TTGAAGTTT	caaagccac 	ttcaatcaco                 TTCAATCACO	ctcccagag 	cttctcct( 	aagtcagcad 
		:gtagtggct 	cccttcatc 	gagagaatto 	tgaatataa 	tgcctgtag 	jactggagcc 	gtccagaac            GTCCAGAAC	gtaatcaaa 	ccctggatt 	ttctaggta 	iggagcaggg              GGAGCAGGG	gcaacttg            GCAACTTTG
	ATCAAATGGAGCTGGGAC	gtcacttgtcttggtgta 	cgtgagaaaaaatcccc 	aaactgaaag 	accggtcttgttttctga 	accacggct« 	gtagttgctç 	catgcaaagt 	tecgageete 	agcaaagggc                \GCAAAGGG	ggagataggç 	1999agaaga 	cttcaccag 
12.00	ATCAA	gtcac        GTCAC	cgtga        CGTGA	atcta        ATCTA	accgg        ACCGG	aaaga        	gcctt        GCCTT	gecet       GCCCT	agcagi        AGCAG	999a99        	acaggo        ACAGGO	ttggt       TreeT	atctte 
1,31	1019	2782 959	2842	2902	2962	3022	3082	3142	3202 539	3262	3322	3382	3442

ç,

Op

QQ

S O

g

ည

Op Op

Ç

ПЪ

Сp

g

Сp

рр

S d

Db

Ç

pp

S

Ωp

•

Сp

g

Сp

g

Ç

3561

180

caaagtcccgtttcagatcagtccagcagctgggttgcagcaagtcctacctggagagac

3621

3622

g

119

 $^{\mathrm{Cp}}$ 

3562

Db

239

Sp.

3502

qq

Сp

179

Ср

2

RESULT

120

Db 1226 tcatttccttctgcaaaatgaaaaagacttcgttttctcaacagctgcatcatttttta 1285	Db 1106 tttctcacatttccatagat	
	1226 tcatttccttctg 	cttctgcaaaatgaaaagacttcgttttctcaac 
		aaaaaatotocaattactocaaotacaatcaaot

1200 1380 1320 601 1140 1080 1020 81 661 2721 2781 2841 2901 61 3021 900 9 840 80 720 308 314 999 12 9  $\sim$ aaagaaccacggctctgcctgtaggcttctgtcctcagccacgtagttagaaggaatata 509-5.m 426 US-08 60 1439 .1139 2362 9 2422 Φ, 2482 σ 2542 1199 2602 1019 839 119 719 662  $\Phi$ 2722 2782 959 2842 899 902 2962 3022 3082 107 37 31 25  $\overline{\overline{}}$ May  $^{\mathsf{C}_{\mathsf{D}}}$ S g გ a Сp g Сp 유 a 염 임 Ç გ ე S Ç a Ç 원 ე g ე A D გ 임

3201

9

540

3142

엄

99

S

S

 $\boldsymbol{\sigma}$ 

65

ტ

3261

80

4

gactg ||||||| |GACTG

539

S

3202

g

3262

D

2302 tctggcagccagatctctgtgaatgtagttccgagactccagataggccattccagaggc 2361

유

3321

gacaa

gggagagcaaagggcccctggattttcaatcacggttgacttgtctgcctccgtg

00

US-08-426-509-5-mg 31 12.00 May

S G

원

Ç

9

Ç

셤

g

Sp

P

გ

염

ဌ

ID

S

0

g გ S DT DE KW KW OS OS FT FT FT g PS <del>P</del> 요 გ 유 S 3561 300 120 lymphocyte; amplification; primer; polymerase chain reaction; PCR; ss megakaryocyte; segments (Q49743-44), and a second set which amplifies highly conserved sequences present in the catalytic domain of the c-kit subgroup of pTKs (Q49745-46). The pTK genes identified are described in Q49747-57 and R41897-02. GGGAGAGCAAAGGCCCCTGGATTTTCAATCACGGTTGACTTGTCTGCCTCCGTGGACAA acaggggagatagggttctaggtactccagagcctctgacagatgttgctcattgtgcc 419 ACAGGGGAGATAGGGTTCTAGGTACTCCCAGAGCCTCTGACAGATGTTGCTCATTGTGCC oligonucleotide primers: a first set which amplifies all pTK DNA genes and from The Length 149; protein tyrosine kinase genes and proteins encoded by The LpTKs are expressed in lymphocytic cells, as well as megakaryocytic cells. The partial and full-length LpTK2 sequences are given in Q49749 and Q49754 respectively. T protein sequence corresp. to Q49749 is claimed (claim 7) pTK genes were identified using two sets of degenerative missing c-kit; 51 T; Score 131; DB 8; Len Pred. No. 1.76e-60; 3659 <u>1</u>8 pTK gene LpTK2 partial sequence. pTK; protein tyrosine kinase; catalytic domain; D; stated as given in the specification, however 24 G; Scadden 05-AUG-1993. 22-JAN-1993; U00586. 22-JAN-1992; US-826935. (NEWE-) NEW ENGLAND DEACONESS HOSPITAL. 37 C; are of human mega-karyocytic origin Claim 2; Fig 3A; 60pp; English. Groopman J, standard; DNA; 149 BP 37 A; 4.7%; (first entry) Cowley S, 149 BP; Best Local Similarity Matches 138; Conser WPI; 93-320330/40 the publication. Homo sapiens. W09315201-A. 10-MAR-1994 Query Match Avraham 049749 049749; 3322 359 479 3382 3442 3622 New RESULT

gaatteetteeggegeeateeattteaceggeagetttatttegtgtetagatteataga US-08-426-509-5.mg May 31 12:00 <mark></mark>

1522 1581 GAATGGCTTCGGGCGCAGTCCACTTCACCGGCAGCTTTATTTCGTGTCTAGATTCATAGA გ

1461 TATGTTCACCAACGAGGACATTTCT 1437 149 tatgttcaccaacgaggacattcct 125 음

standard; DNA; 149 T03092 RESULT

T03092;

Protein tyrosine-kinase LpTK2 DNA fragment Protein tyrosine-kinase; pTK; LpTK2; agoni (first entry) 14-FEB-1996

LpTK2; agonist; cell growth; differentiation; ss.

Homo sapiens

Location/Qualifiers 1..60Key CDS

W09527061-A1. /*tag=

04-APR-1995; U04228 12-0CT-1995

GENENTECH INC.
BD, Goeddel D, 04-APR-1994; (CETH)

BD, Bennett

SP

Tsai

3

Matthews

JM,

Rood WI

P-PSDB; R85931

<u>Fee</u> 95-366160/47. WPI; antibodies which activate specific protein tyrosine Agonist

kinase(s) - also activate chimeric proteins of kinase extracellular domain and Ig constant domain, useful for studying, and therapeutic modulation of, cell growth and differentiation Disclosure; Page 36; 125pp; English.

DNA probes based on protein tyrosine-kinase (pTK) sequences

were used

A LpTK2 gene

fragment (T03092) was isolated from lymphocytic and megakaryocytic to screen cDNA libraries to identify novel pTK genes.

cell line libraries and encoded a peptide (R85931) showing homology to known pTKs. The gene fragment can be used to identify other new pTK genes, or to design drugs, peptides or antisense constructs that modulate pTK activity.

51 T; 24 G; 37 C; 37 A; 149 BP; Sequence

Gaps ö Length 149; Indels Score 131; DB 10, nrad. No. 1.76e-60; 4.7%; Conservative Local Similarity 138; Query Match Best Loc Matches

ö

S 1581

tgtcttcattatctaccttaaaaactctggcaagtccaaaatctgctactttgtagatat 65

1521

1462

125

1461

ö

Gaps

**;** 

Indels

Conservative

RESULT

Best

a

δ

9

Š

අ

셤

ò

φ

d

δ

엄

ŏ

õ

US-08-426-509-5.mg

			7,
Q10572; 09-APR-199 Human Natr NPRB; ANP; hyperaldos Homo sapie Key Peptide	/label= signal s Protein /label= mature N Domain /label= extracel /note= "binds na Domain /label= transmem Domain /label= cytoplas /note= "GC and p Modified -site /label= N-glycos Modified -site /label= N-glycos Modified -site /label= N-glycos Modified -site /label= N-glycos Modified -site /label= N-glycos Modified -site /label= N-glycos Modified -site /label= N-glycos	/label= N-Modified -/label= N-Modified -/Nabel= N-Mo9100292-10-JAN-1992-JUN-1992-JUN-1992-JUN-1992-JUN-1992-JUN-1993-JUN-1993-JUN-1993-JUN-1993-JUN-1993-JUN-1993-JUN-PSDB; Q1Natriureti	equence was derived by NPRB, having activity. The nalogues. The procestratic peptide directic pereptide directic pere
<b>ADDXXOFF</b>	ے لئے لئے لئے لئے لئے لئے لئے لیے لیے لئے لئے لئے لئے لئے لئے لئے لئے لئے لئ		របប់បប់បប់បប់បើ

84 avdnknyhdndnnngngcvynaasvarnashwrnnnntagavasgnsakndhyrtnvrtg 143

임

1458 CATAATATCTACAAAGTAGCAGATTTTGGACTTGC 1492

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

MasPar time 27.32 Seconds 624.277 Million cell updates/sec Fri May 31 09:28:01 1996; Run on:

not generated. Tabular output

>US-08-426-509-4 (1-675) from US08426509.pep 4998 Title:

1 MDTKSILEELLLKRSQQKKK.....RPTFQQLLSSIEPLREKDKH 675 Description: Perfect Score: Sequence:

PAM 150 Gap 11 Scoring table:

82306 seqs, 25270970 residues Searched:

Minimum Match 0% Listing first 45 summaries Post-processing:

pir46

Database:

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3 7:unann4
8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1
13:unrev2

scale 0.443 Variance 111.531; Mean 49.410; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		<b>,</b>					
Result No.	Score	Query Match	uery latch Length DB	DB	ID	Description	Pred. No.
-	2059	41.2	659	=	<28912	nrotein-turosine kin	0 000+00
10	2037	7.77		; [	1100 J. T.	protecta cyrocian Atm	000000
<b>1</b> C	1000	) (		1 -	77577	procedurely rostine Alin	00.00
<b>n</b>	9 T N 7	40.3		ΙŢ	P40104	B cell progenitor Ki	0.000+00
4	1978	39.6	630	11	JU0228	protein tyrosine kin	0.00e+00
S	1791	35.8	620	11	533253	protein-tyrosine kin	2.24e-299
9	1762	35.3		13	\$13763	protein-tyrosine kin	6.06e-294
7	_	35.2	619	11	A47333	T-cell-specific tyro	9.33e-294
00	1747	35.0	809	11	JU0227	protein-tyrosine kin	3.90e-291
9	1745	34.9	527	11	A55631	protein-tyrosine kin	9.23e-291
10	1736	34.7		11	JN0472		4.47e-289
11	1719	34.4	625	11	A43030		6.79e-286
12	1686	33.7	602	1	JU0215	tyrosine kinase, tec	1.01e-279

7

4e-2	7.57e-178	.48e-1	e-1	.29e-1	.41e-1	1.89e - 168	4.66e-166	5.92e-165	5.92e-165	4e-1	9e-1	1.45e-162	1.45e-162	5,17e-162	.81e-1	7.90e-162	e-1	e-1	e-1	1.00e-160	e-1	1.93e-159	.43e - 16	.43e-16	1.27e-159	8.29e-160	1.27e-159	4.50e-159	.50e-15		5.69e-158	e-1
protein-tyrosine kin	rotein-ty	ag-abl p	rotein-tyro	otein-t	gag-abl-pol polyprot	inase-related t	protein-tyrosine kin	otein-tyrosine k	rotein-t	otein-t	protein-tyrosine kin	rotein-tyrosine	otein k	~	rosine k	rosine	rotein-tyrosine k	protein-tyrosine kin	otein-tyrosine	ein-t	rosine	rosine	otein-tyrosine	protein-tyrosine kin	otein-t	protein-tyrosine kin	protein-tyrosine kin	rotein-t	protein-tyrosine kin	protein-tyrosine kin	protein-tyrosine kin	pp62v protein - Rous
G	S24553	U	62	51	A26132	96	TVHUA	455	9	معا	HO	33	96	45	36	US	A43806	US	59	A35962	TVFV60	TVCHS	A43610	TVHUSC	TVFVS2	TVFVS1		_	B34104	TVHUHC	TVFVMT	\$52313
-	꺃		10	7	_	7	-	4	4	<b>~</b>		10	47'	4	4		7	-	7	7	-		4	-	-	-	-	乊	7	-	-	7
5	0	981	Ś	$\bar{\sim}$	9	2		0		1520	0	536	$\sim$	9	0	537	ŝ	S	14	$\infty$	~	S	4	Ŋ	5	9	$\infty$	3	3	0	$\sim$	乊
0	5	$\boldsymbol{\vdash}$	$\ddot{-}$	ij	$\rightleftarrows$	Ξ.	ä	μ;	21.4				$\ddot{-}$	;	ij	;	0.	0.	0	0	0	0.	0.	0.	0.	0	0	0	÷	0.	0	O
53	13	60	09	09	9	08	07	90	1068	07	05	05	05	05	04	05	04	04	04	04	04	03	04	04	03	04	03	03	03	03	03	02
13									22																							

## ALI GNMENTS

				•
		ember		28;
hange	J.; n, C.; , D.R.	<pre>ure (1993) 361:226-233 gene involved in X-linked agammaglobulinaemia is a member f the src family of protein-tyrosine kinases. 912 preliminary</pre>	<u>ა</u>	Gaps
uman kt_c	and, Inno	nia 3.	n 94	.60; 60;
- h	olla ; K: Bent	naer aset	ksw	659
<pre>S28912</pre>	<pre>S28912 S28912 Vetrie, D.; Vorechovsky, I.; Sideras, P.; Holland, J.; Davies, A.; Flinter, F.; Hammarstroem, L.; Kinnon, C.; Levinsky, R.; Bobrow, M.; Smith, C.I.E.; Bentley, D.R.</pre>	lobuli ne kin	fchecksum 9489	Length 659; Indels 60
#type complete cein-tyrosine kinase (EC 2.7.1.112) atk rmal_name Homo sapiens #common_name man feb-1994 #sequence_revision 01-Sep-1995 1-Sep-1995	deras, arstro th, C.	yammag :yrosi	type mRNA 1-659 ##label VET phosphotransferase #length 659 #molecular-weight 76281	
2.7. commc	Sic lamma Smit	in-t	bt.	DB 00e4 thes
e (EC is #c	H	3 inke rote	weig	59; . 0. matc
plet ase pien	sky, r, F ow,	6-23 X-1 of P	ET lar-	e 20 . No Mis
<pre>#type complete osine kinase () e Homo sapiens #sequence_rev. 95</pre>	chov inte Bobr	Nature (1993) 361:226-233 The gene involved in X-lir of the src family of prc S28912 preliminary	mRNA 1-659 ##label VET hotransferase th 659 #molecula	Score 2059; DB 11; Pred. No. 0.00e+00; 44; Mismatches 149
type sine Hom	Vore ; F1 R.;	e (1993) 36 ene involve the src fam 2	type mRNA 1-659 ##label phosphotransferase #length 659 #mole	
#t; cein-tyros mal_name   ceb-1994 #i  -Sep-1995	D.; , A. ky,	1993 inv src limi	A 59 # rans 659	41.2%; arity - 48.9%; Conservative
912 tein- rmal Feb-1 1-Sep	12 12 ie, vies	re ( gene the 12 pre	mRNA 1-659 photra gth 65	ty . serv
\$289 prot #for: 25-F	S28912 S28912 Vetrie David	Nature The ger of t	type phos	lari
	·	za.	le_ es_	Query Match Best Local Similarity - 48.9%; Matches 338; Conservative
<b>⊣</b> 50	s H	<pre>#journal #title #accession ##status</pre>	##molecule ##residues DS	Query Match Best Local Matches 3
T. NOIS	EXENCE #authors	#journal #title #accessic	RDS Transfer	Query M Best Lo Matches
RESULT ENTRY TITLE ORGANISM DATE	REFERENCE #autho	ante ante	## ## KEYWORDS SUMMARY	Que Bes Mat
EHFOU A			3C 03	

2

유

g

Š

Б

ò

g

ð

g

δ

Op Op

ò

g

δ

임

ò

g

ð

셤

δ

Б

ð

g

δ

ð

RESULT

TITLE

US-08-426-509-4 mr May 31 (9) 20

(n

GENETICS	THE O
CLASSIFICATION	
KEYWORDS	phosphotransferase
223-271 283-271 283-379	#domain SH3 homology #label SH3\
402-65 552	#domain protein kinase homol #binding_site phosphate (Tyr
SUMMARY	predicted #length 660 #molecular-weight 76577 #checksum 1680
Query M Best Lo Matches	/ Match Local Similarity 47.9%; Pred. No. 0.00e+00; nes 331; Conservative 149; Mismatches 152; Indels 59; Gaps 30
	ilesiflkrsqqkktsplnfkkrlflltvhklsyyeydfergrrgskkgsidvekitcv     ::                     :      :
	ILEELLIKKSQQKKKMSPNNIKEKLFVLIKINLSIIEIU—-KMKKGSKKGSIEIKKIKCV 63
DD 65 Qy 64	etaipeknppperqiprigeessemeqisiieripypiqvvydegplyvispteelikrw 124   :
Db 125	
Qy 103	LKALQKEIRGNPHILVKYHSGFFVDGKFLCCQQSCKAAPGCTLWEAYANLHTAVNEEKHR 162
0v 163	- pgsshrktkkp-lpptpeedqi-wilkkplppeptaapis-tt-elkk 220
	)
Db 270	
Qy 283	:   ::::  : ::::  :  :    :      : :    :     : :  :
Db 330	ggvirhyvvcstpgsgyylaekhlfstipelinyhqhnsaglisrlkypvskqnknapst 389   ::     :::         ::
	<pre>aglgygsweidpkdltflkelgtgqfgvvkygkwrgqydvaikmiregsmsedefieeak 44 :       : :: :     :          :        </pre>
Qy 403	NST'CIN
Db 450	-vmnlsheklvqlygvctkqrpifiiteymangcllnylremrhrfqtqqllemckdvce 508
Qy 463	TMMKI
DP 509	ameyleskqflhrdlaarnclvndqgvvkvsdfglsryvlddeytssvgskfpvrwsppe 568
Qy 523	GMAFI
DP 269	vlmyskfssksdiwafgvlmweiyslgkmpyerftnsetaehiagglrlyrphlaservy 628
0у 583	VEHYE
Db · 629	
Qy 643	QIMYS

O

28

Gaps

54;

Indels

Mismatches 164;

141;

630;

Length

DB 11;

Score 1978; DB 11; Pred. No. 0.00e+00

39.6%;

intermediate)

domain protein kinase homology #label KIN\region protein kinase ATP-binding motif\active_site Asp (aspartylphosphate interme

SH2\

SH3 homology #label SH2 homology #label

domain

유

δ

요

a

ð

심

ð

ð

g

g

8

δ

4354

#checksum

#molecular-weight 73651

119

9

S

119

171

567 SH3 change TMMKLSHPKLVKFYGVCSKEYPIYIVTEYISNGCLLNYLRSHGKGLEPSQLLEMCYDVCE KGTVKHYHVHTNAENKLYLAENYCFDSIPKLIHYHQHNSAGMITRLRHPVSTKANKVPDS vmmnlsheklvqlygvctkqrpifiiteymangcllnylremrhrfqtqqllemckdvce vlmyskfssksdiwafgvlmweiyslgkmpyerftnsetaehiagglrlyrphlaservy 583 VFHYFKYSSKSDVWAFGILMWEVFSLGKQPYDLYDNSQVVLKVSQGHRLYRPHLASDTIY homology; mouse #formal_name Mus musculus #common_name house mous 30-Sep-1993 #sequence_revision 30-Sep-1993 #text 07-Jul-1995 2.7.1.-) tec IV SH2 玉 Yazaki, Y.; Hirai, April 1993 homology; 673 #superfamily protein kinase Mano, H.; Sato, K.; Yazaki, submitted to JIPID, April 1 complete QIMYSCWHELPEKRPTFQQLLSSIEPLREKD timyscwhekaderpsfkillsnildvmdee 1-630 ##label MAN myeloid #type #fexperimental source type DNA JU0228 JU0228 JU0228 JU0228

US-08-426-509-3.rge

# (EL)

U.K. of Edinburgh, Biocomputing Research Unit it (c) 1993, 1994, 1995 University of Ex Distribution rights by IntelliGenetics, Collins, B₁ 1994, 1995 1994, Release 2.1D John F. Copyright (c) 1993,

algorithm using Smith-Waterman n.a. database search, n.a. MPsrch nn

MasPar time 1524.93 Seconds 1160.661 Million cell updates/sec Fri May 31 10:49:54 1996; Run on:

not generated. Tabular output

>US-08-426-509-3 (1-2500) from US08426509.seq 2500 Description: Title:

Sequence: Perfect Score

2500

default TABLE Scoring table

Gap

seqs, 353985056 bases x 264399 Searched:

Query 0

Dbase 0;

STD

Nmatch

 $\sim$ 

0% 45 summaries Minimum Match Listing first Post-processing:

embl-new11 Database:

1:BCT 2:FUN 3:INV1 4:INV2 5:INV3 6:MAM 7:ORG 8:PLN 9:PRI1 10:PRI2 11:PRI3 12:PRO1 13:PRO2 14:ROD 15:SYN 16:UNC 17:VRT 18:VIR

genbank91 Database:

19:BCT1 20:BCT2 21:BCT3 22:BCT4 23:BCT5 24:BCT6 25:BCT7 26:INV1 27:INV2 28:INV3 29:INV4 30:INV5 31:MAM1 32:MAM2 33:PAT1 34:PAT2 35:PAT3 36:PHG 37:PLN1 38:PLN2 39:PLN3 40:PLN4 41:PLN5 42:PLN6 43:PLN7 44:PR11 45:PR12 46:PR13 47:PR14 48:PR15 49:PR16 50:PR17 51:PR18 52:PR19 53:ROD1 54:ROD2 55:ROD3 56:ROD4 57:ROD5 58:ROD6 59:ROD7 60:STR 61:SYN 62:UNA 63:VRL1 64:VRL2 65:VRL3 66:VRL4 67:VRL5

71:VRT3 70:VRT2 68:VRL6 69:VRT1

72:BCT1 73:BCT2 79:PRI1 80:PRI2 genbank-new11 Database

75:INV2 76:MAM 77:PHG 78:PLN 82:ROD 83:STR 84:SYN 85:UNA

74:INV1 81:PRI3 8

86: VRL 87: VRT u-emb144 Database

22-AUG-1995

HSBMXGENE 2456 bp RNA PRI 2 H.sapiens Bmx mRNA for cytoplasmic tyrosine kinase. X83107

Tyrosine kinase.

cytoplasmic;

DEFINITION ACCESSION KEYWORDS SOURCE

RESULT LOCUS ORGANISM

ALI GNMENTS

human. Homo sapiens Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Osteichthyes; Sarcopterygii; Mammalia; Eutheria;

scale 2.049 Variance 6.090; Mean 12.481; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

•	1	۲,	) —	9	00	က	æ	2	0	0	0	0	0	0	9	9	y	<b></b> 4	ტ -	<₽	4	2																						
Pred. No	0.04900	%C 070	77	-2	2.53e-22	σ.	5.85e-17.	4.11e-17	2.83e-160	2.83e - 160	.83e-1	.83e-1	.83e-1	.83e-1	.91e-1	•	.91e-1	.47e-1	.25e-1	.28e-1	_	.52e-1	•	.17e-4	1	•	ت د ا	5.916-44 5.016.44	•	4,13e-40	.03e-	.03e-	8.03e - 38	1.39e - 38	.39e-	.03e-	1	.39e-	1	1.39e - 38	<del>-</del>	1.51e - 35	2.65e-36	8.61e-35
Description	H Ranjens Rmx mRNA fo	one Druton neum	sculus B cell	k mrna f	_		Tec=protein tyrosine	Mouse mRNA for protei	Mus musculus tyrosine	Mus musculus tyrosine	musculus	us tyros.	rest	mRNA for	tlk mRNA	Mouse tyrosine kinase	Mouse T-cell-specific	Œ.	for	mRNA for	_		.melanogaster s	.lacustris srk2	<u>ښ</u> (	ardy-Zuckerman	lacustris srk4	S. Lacustris srki mkna	. nor vegreus inhonhorna	Drosophila melanogast	Murine c-fqr mRNA.	Murine c-fqr53 proto-	Rous sarcoma virus ph	kina	on (P160) muri	sarcoma virus d		Mouse testis-specific	>	murine	Abelson murine leukem	Mouse protein-tyrosin	Chicken c-src gene, c	gallus gene c
SUMMARIES ID	HSRMXCENE	MISPERCONA	MISBPK	HSATK	MUSEMBX	HUMTYRKINA	S53716	MMTECMR	MMU19607	MMU16145	MMU16145	MM16145	MUSRLK	MUSPTKRL18	MUSTIK	MUSTYRKIN	MUSITKA	MUSEMTX	HUMPTKA	HUMLYK	HUMTKTCS	HSU08341	DROSRC28C	SLSRK2	SLSKK3	FCSHZ2A	SLSKK4	SLSKKI	KINF GR	DMSRC4	MMCFGRMR	MMCFGR	ALRPP 60A	MUSCABL	REABMLVA	ALRSRCAC	ASVPR225T	MUSABLTS	ACSCSRC	REAMLV	MLAPRO	MUSPTKG	CHKSRC	GGCSRC
DB	44	, R			55		59	54	54	85	54	14	21	21	51	21	26	22	51	20	25	47	<b>5</b> 8	30	ک د	3 6	200	30 10 10	5 5	27	53	53	63	22	89	63	63	22	63	89	89	21	69	70
Length	2456	V	48	56	2546	ف	2574	2578	1680	2204	2204	2204	2221	2342	4224	4231	$\sim$	2480	65	4366	38	192	2940	1253	1190	2091	70/1	1829	2536	368	2133	<b>-</b>	2241	LO.	$\alpha$	_	4503	5058	5188	5893	5894		1759	1759
% Query Match	ی 📗			12.8			•		•	•	9.3	•	•	9.3	-	9.				-	•	-	5.5	•		•	•	5.6 7		3.5	-	-	3,3	-	-	-	-	-	-	-	-	-	-	
Score	10	5	3 C		┰	2	4	4	$\sim$	3	$\sim$	$\sim$	ርላን	S)	$\leftarrow$	<del></del>		Û	0	0	0	<u> </u>	<b>(1)</b>							85														
Result No.	1	, ,	4 M	4	5	9	7	<b>∞</b>	S																					31														

US-08-426-509-3.rge May 31 11:06

Catarrhini; Hominidae; Homo

Primates;

CO

> eclar Direct Submission Submitted (01-DEC-1994) to the EMBL/GenBank/DDBJ databases. L. Tamagnone, University of Helsinki, Molecular/Cancer Biology Lab., PL21 (Haartmaninkatu 3), 00014 Helsinki, FINLAND Related sequence: U08341. Tamagnone, L., Lahtinen, I., Mustonen, T., Virtaneva, K., Francis, F., Muscatellar Francis, F., Muscatellar Francis, F., Smith, C.I., Larsson, C. and Alitalo, K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2 Oncogene 9 (12), 3683-3688 (1994) 1 (bases 1 to 2456)
Tamagnone, L., Lahtinen, I., Mustonen, T., (bases 1 to 2456) Tamagnone, L. **35060827** REFERENCE AUTHORS AUTHORS JOURNAL REFERENCE JOURNAL TITLE TITLE COMMENT

/translation="MDTKSILEELLIKRSQQKKKMSPNNYKERLFVLTKTNLSYYEYD KMKRGSRKGSIEIKKIRCVEKVNLEEQTPVERQYPFQIVYKDGLLYVYASNEESRSQW LKALQKEIRGNPHLLVKYHSGFFVDGKFLCCQQSCKAAPGCTLWEAYANLHTAVNEEK NSKKIYGSQPNFNMQYIPREDFPDWWQVRKLKSSSSSEDVASSNQKERNVNHTTSKIS VSSVGTKFPVKWSAPEVFHYFKYSSKSDVWAFGILMWEVFSLGKQPYDLYDNSQVVLK VSQGHRLYRPHLASDTIYQIMYSCWHELPEKRPTFQQLLSSIEPLREKDKH" 1 495 c 549 g 607 t HRVPTFPDRVLKIPRAVPVLKMDAPSSSTTLAQYDNESKKNYGSQPPSSSTSLAQYDS **WEFPESSSSEEEENLDDYDWFAGNISRSQSEQLLRQKGKEGAFMVRNSSQVGMYTVSL** FSKAVNDKKGTVKHYHVHTNAENKLYLAENYCFDSIPKLIHYHQHNSAGMITRLRHPV STKANKVPDSVSLGNGIWELKREEITLLKELGSGQFGVVQLGKWKGQYDVAVKMIKEG SMSEDEFFQEAQTMMKLSHPKLVKFYGVCSKEYPIYIVTEYISNGCLLNYLRSHGKGL **EPSQLLEMCYDVCEGMAFLESHQFIHRDLAARNCLVDRDLCVKVSDFGMTRYVLDDQY** NCBI gi: 951235" /clone lib="endothelial cell cDNA" /tissue_type="bone marrow" /organism="Homo sapiens" /note="pid:e128520; Location/Qualifiers /chromosome="X" start=1 /map="p22.2" /gene="bmx" 34..2061 1..2456 951234 /codon gi: NCBI source CDS FEATURES

Gaps ---Length 2456; Indels 13; Score 2397; DB 44; Pred. No. 0.00e+00; Mismatches ; 0 95.98; 99.48; Conservative Similarity 2416; Query Match Best Local S Matches

þ

ø

805

BASE COUNT ORIGIN

1; 191 251 84 132 144 192 204 9 a g d δ ð δ

311

gtacccatttcagattgtctataaagatgggcttctctatgtctatgcatcaaatgaaga 323

264

g

252

δ

US-08-426-509-3.rge May 31 11:06

1283	aaqqtccccqactctqtqtccctqqqaatqqaatctqqqaactqaaaaqaqaaqaa		7 8
1223	4 tcaacacaattcagcaggcatgatcacacggctccgccaccctgtgtcaacaaaggccaa	1164 t	q ₀
1211	SAAATTATACCTGGCAGAAACTACTGTTTTGATTCCATTCCAAAGCTTATTCATTATC		8
1163	4 caaattatacctggcagaaaactactgttttgattccattccaaagcttattcattatca 		ă
1151	SGCTGTGAATGATAAAAAGGAACTGTCAAACATTACCACGTGCATACAAATGCTG		õ
1103	gctgtgaatgataaaaaaggaactgtcaaacattaccacgtgcatacaaatgctgaga 		ă
1091			δ
1043	agcatttatggttagaaattcgagccaagtgggaatgtacacagtgtccttatttagt		ŭ
1031			Ø
983	-gctggtaacatctccagatcacaatctgaacagttactcagacaaaagggaaaagaaag		ă
971	SGAATTCCCTGAGTCAAGTTCATCTGAAGAAGAGGAAAAACCTGGA		õ
923	ggaatteectgagteaagtteatetgaagaagaggaaaacetggatgattatgaetggt		ă
911			Q
863	cgttgcaagcagtaaccaaaaagaaagaaatgtgaatcacacctcaaagatttcat		ă
851	GGAAGACTICCCIGACTGGTGGCAAGTAAGAAAACTGAAAAGTAGCAGCAGCAGTGAAGA		6
803	ggaagacttccctgactggtggcaagtaagaaaactgaaaagtagcagcagcagtgaag		ă
791			6
743	pagcaactcaaagaaaatctatggctcccagccaaacttcaacatgcagtatattccaa		ă
731			Ø
683	atcaaagaaaaactatggctcccagccaccatcttcaagtaccagtctagcgcaatatg		ă
671	1		8
623	tectgtteteaaaatggatgeaceatetteaagtaecaetetageecaatatgaeaaeg		ā
611	1		õ
563	tgaagagaaacacagagttcccaccttcccagacagagtgctgaagatacctcgggcag		ā
551	11111111111111111111111111111111111111		õ
503	taaagcagccccaggatgtaccctctgggaagcatatgctaatctgcatactgcagtca		百
491			6
443	ggtcaagtaccatagtgggttcttcgtggacgggaagttcctgtgttgccagcagagct		$\Box$
431			õ
383	gagccgaagtcagtggttgaaagcattacaaaaagagataaggggtaacccccacctg		
371	2 GTACCCATTTCAGATTGTCTATAAAGATGGGCTTCTCTATGTCTATGCATCAAATGAAGA		Ŏ.

11.06 US-08-426-509-3.rgc 5		4 taccttgttgaaggaagtgggccagtttggagtggtccagctgggcaagtggaa 1343 	4 ggggcagtatgatgttgctgttaagatgatcaaggaggctccatgtcagaagatgaatt 1403 	<ul> <li>4 ctttcaggaggcccagactatgatgaaactcagccatcccaagctggttaaattctatgg 1463</li> <li>2 ctttcaggaggcccagactatgatgaaactcagccatcccaagctggttaaattctatgg 1463</li> <li>3 ctttcaggaggcccagactatgatgaaactcagccatcccaagctggttaaattctatgg 1511</li> </ul>	<ul> <li>4 agtgtgttcaaaggaataccccatatacatagtgactgaatataaagcaatggctgctt 1523</li> <li>2 AGTGTTCAAAGGAATACCCCATATACATACATATATAAGCAATGCCTCCTT 1571</li> </ul>	4 gctgaattacctgaggagtcacggaaaaggacttgaaccttcccagctcttagaaatgtg 1583 	4 ctacgatgtctgtgaaggcatggccttcttggagagtcaccaattcatacaccgggactt 1643 	<ul> <li>4 ggctgctcgtaactgcttggtggacagagtctctgtgtgaaagtatctgactttggaat 1703</li> <li>2 GCTGCTCGTAACTGCTGGACAGATCTCTGTGAAAGTATCTGACTTTGGAAT 1751</li> </ul>	4 gacaaggtatgttcttgatgaccagtatgtcagttcagt	4 gtggtcagctccagaggtgtttcattacttcaaatacagcaagtcagacgtatgggc 1823 	4 atttgggatcctgatgtgggaggtgttcagcctggggaagcagccctatgacttgtatga 1883 	<ul> <li>4 caactcccaggtggttctgaaggtctccagggccacaggctttaccggccccacctggc 1943</li> <li>2 CAACTCCCAGGTTCTGAAGGTCTCCCAGGGCCACAGGCTTTACCGGCCCCACCTGGC 1991</li> </ul>	4 atcggacaccatctaccagatcatgtacagctgctggcacgagcttccagaaaagcgtcc 2003 	4 cacatttcagcaactcctgtcttccattgaaccacttcgggaaaaagacaagcattgaag 2063. 	4 aagaaattaggagtgctgataagaatgaatatagatgctggccagcattttcattca	
May 31 1	127	128	134	140	146 151	152	1584	1644	170	176	182	188	194 199	200	b 2064 y 2112	,
	ð	Ub Qy	Db Qy	Db Qy	DP Qy	Db Qy	Db Qy	Db Qy	Db Qy	Db Qy	Db Qy	d Q	do Qy	do Ay	do y	1

2184 tctattatttagaaatgaacaaggcaggaaacaaaagattcccttgaaatttagatcaaa 2243

Db

δ

a

US-08-426-509-3.rge May 31 11:06

.

Ø

Qy 2232	TCTATTATTTAGAAATGAACAAGGCAGGAACAAAGATTCCCTTGAAATTTAGGTCAAA 2291
Db 2244	ttagtaattttgttttatgctgctcctgatataacactttccagcctatagcagaagcac 2303
Qy 2292	TTAGTAATTTTGTTT-ATGCTGCCCTGATATAACACTTTCCAGCCTATAGCAGAAGCAC 2350
_	attttcagactgcaatatagagactgtgttcatgtgtaaagactgagcagaactgaaaaa 2363
Qy 2351	ATTTTCAGACTGCAATATAGAGACTGTGTTCATGTGTAAAGACTGAGCAGAACTGAAAAA 2410
Db 2364	ttacttattggatattcattcttttctttatattgtcattgtcacaacaattaaatatac 2423
Qy 2411	TTACTTATTGGATATTCATTCTTTTTTATATTGTCATTGTCACAATTAAATATAC 2470
Db 2424	taccaagtacagaaatgtggaaaaaaaaa 2453
Qy 2471	TACCAAGTACAAAAAAAAAAAAAAAAA 2500
RESULT	
LOCUS DEFINITION	MUSB
MOTOOTOO K	te cds.
ACCESS 10N KEYWORDS	129788 Bruton agammaglobulinemia tyrosine kinase.
SOURCE ORGANISM	Mus musculus cDNA to mRNA. M Mus musculus
	Eukaryotae; mitochondrial eukaryotes; Metazoa/Eumycota group;
	Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Vertebrata; Gnathostomata; Osteichthyes; Sarcopterygii; Choanata;
	Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Glires; Rodentia; Sciurognathi; Myomorpha; Muridae; Murinae; Mus,
REFERENCE	1 (bases 1 to 2468)
AUTHORS	Sideras, P., Muller, S., Shiels, H., Jin, H., Khan, W.N., Nilsson, L.,
	Rosen, F.S., Alt, F.W., Vetrie, D., Smith, C.I.E. and Xanthopoulos, K.G.
TITLE	Genomic organization of mouse and human Bruton's agammaglobulinemia
JOURNAL	J. Immunol. 153 (12), 5607-5617 (1994)
Z	95081608
COMMENT FEATURES	NCB1 g1: 625143 Location/Qualifiers
- 14	မ
	/organism="Mus musculus" /dermline
i i	/sequenced_mol="cDNA to mRNA"
SCDS	1332112 /qene="Btk"
	/note="NCB1 gi: 625144"
	/codon_start=1 /product="Bruton_agammaglobulinemia_tyrosine_kinase"
	/translation="MAAVILESIFIKRSQQKKKTSPINFKKRLFLLTVHKLSYYEYDF
	ERGRRGSKKGSIDVEKITCVETVIPEKNPPPERQIPRRGEESSEMEQISIIERFPYPF OVVYDEGPLYVFSPTEFIRKRWIHOLKNVTRYNSDLVOKYHPCFWIDGOYLCCSOTAK
	NAMGCQI LENRNGS LKPGSSHRKTKKPLPPTPEEDQI LKKPLPPEPTAAP I STTELKK
	VVALYDYMPMNANDIQIERKGEEYFILEESNIPWWRARDKNGQEGYIPSNYITEAEDSI EMYEWYSKHMTRSOAEOLIKOEGKEGGFIVRDSSKAGKYTVSVFAKSTGEPOGVIRHY
	VVCSTPQSQYYLAEKHLFSTIPELINYHQHNSAGLISRLKYPVSKQNKNAPSTAGLGY
	GSWEIDPKDLTFLKELGTGQFGVVKYGKWRGQYDVAIKMIREGSMSEDEFIEEAKVMM NISHFKIVOLYGVCTKORDIFITTFYMANGGILNYIRFMPRRFOTOOLLFMCKDVGFA
	MEYLESKQFLHRDLAARNCLVNDQGVVKVSDFGLSRYVLDDEYTSSVGSKFPVRWSPP

US-08-426-509-3 rge May 31 11:06

ö Gaps ctcgaagtc 935 CTGAAGAAGAGGAAAACCTGGATGATTATGACTGGTTTGCTGGTAACATCTCCAGATCAC GCCAAGTGGGAATGTACACAGTGTCCTTATTTAGTAAGGCTGTGAATGATAAAAAGGAA Ö 2468 Indels Length RVYTIMYSCWHEKADERPSFKILLSNILDVMDEES 559 c 602 g 594 t Score 329; DB 55; L Pred. No. 6.86e-243; 0; Mismatches 394; 13.2%; larity 64.7%; Conservative 1 Similarity 723; Conser đ Query Match Best Local S Matches 72 COUNT 941 995 1241 1235 1301 1175 1541 1061 11115 1295 1361 1415 1475 1535 1601 1661 1655

g

ð

임

δ

유

ğ

Q

g

⋧

δ

g

Š

US-08-426-509-3.rge

00

1775 AGTATGTCAGTCGGAACAAGTTTCCAGTCAAGTGGTCAGCTCCAGAGGTGTTC agtacaccagctctgtaggctccaagtttccagtccggtggtctccaccagaagtgctta 1781 δ

tgtatagcaagttcagcagcaaatctgacatctgggcttttgggggttttaatgtgggaga 1841 <del>Q</del>

1835 S

tctactccctggggaagatgccgtatgagagatttactaacagtgagacagcagaacaca 1901

1895 ð

ttgctcaaggcttacgtctctacaggcctcatctggcatcagagagggtatataccatca 1961 임

2014 TCTCCCAGGGCCACAGGCTTTACCGGCCCCACCTGGCATCGGACACCATCTACCAGATCA 1955 δ

tgtacagctgctggcacgagaaagcagatgaacgtcc 2057 2021 심

임

ð

유

ð

<del>Q</del>

₹

g

Š

2015 TGTACAGCTGCTGCCACGAGCTTCCAGAAAGCGTCC 2051

17-MAR-1993 (BPK) mRNA, Mus musculus B cell cytoplasmic tyrosine kinase 800 **PRNA** ďq 2485 MUSBPK  $\mathcal{C}$ DEFINITION RESULT LOCUS

complete cds. T08967 ACCESSION

CDNA cellpre-B Mus musculus (strain C57BL/6 x DBA/2) tyrosine kinase KEYWORDS SOURCE

to mRNA

Mus musculus ORGANISM

Vertebrata; Mammalia; Theria; Eukaryota; Animalia; Chordata;

REFERENCE

Eutheria; Rodentia; Myomorpha; Muridae; Murinae.
1 (bases 1 to 2485)
Tsukada, S., Saffran, D.C., Rawlings, D.J., Parolini, O., Allen, R.C.,
Klisak, I.J., Kubagawa, H., Mohandas, T.K., Quan, S., Belmont, J.W,
Cooper, M.D, Conley, M.E and Witte, O.N. AUTHORS

Deficient expression of a B-cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia Cell 72, 279-290 (1993) 93145329 JOURNAL TITLE

MEDLINE

Location/Qualifiers 192233 NCBI gi: FEATURES COMMENT

/strain="C57BL/6 x DBA/2" /cell_line="70 z/3" /dev_stage="pre-B cell" /organism="Mus musculus 1..2485 source

/sequenced_mol="cDNA to mRNA" 137..2116 /note="NCBI gi: 192234" /codon start=1 gene="BPK" CDS

NAMGCQILENRNGSLKPGSSHRKTKKPLPPTPEEDQILKKPLPPEPTAAPISTTELKK VVALYDYMPMNANDLQLRKGEEYFILEESNLPWWRARDKNGQEGYIPSNYITEAEDSI EMYEWYSKHMTRSQAEQLLKQEGKEGGFIVRDSSKAGKYTVSVFAKSTGEPQGVIRHY VVCSTPQSQYYLAEKHLFSTIPELINYHQHNSAGLISRLKYPVSKQNKNAPSTAGLGY GSWEIDPKDLTFLKELGTGQFGVVKYGKWRGQYDVAIKMIREGSMSEDEFIEEAKVMM ERGRRGSKKGSIDVEKITCVETVIPEKNPPPERQIPRRGEESSEMEQISIIERFPYPF NLSHEKLVQLYGVCTKQRP IF I I TEYMANGCLINYLREMRHRFQTQQLLEMCKDVCEA /translation="MAAVILESIFLKRSQQKKKTSPLNFKKRLFLLTVHKLSYYEYDF QVVYDEGPLYVFSPTEELRKPWIHQLKNVIRYNSDLVQKYHPCFWIDGQYLCCSQTAK MEY LESKQF LHRD LAARNC LVNDQGVVKVSDFGLSRYV LDDEYTSSVGSKFPVRWSPP EVLMYSKFSSKSDIWAFGVLMWEIYSLGKMPYERFTNSETAEHIAQGLRLYRPHLASE RVYTIMYSCWHEKADERPSFKILLSNILDVMDEES" /product="tyrosine kinase"

•

Biocomputing Research Unit.

University of Edinburgh, U.K. Release 2.1D John F. Collins, Biocomputing Resea Copyright (c) 1993, 1994, 1995 University of Ed Distribution rights by IntelliGenetics, protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

MasPar time 22.53 Seconds 568.777 Million cell updates/sec Fri May 31 09:24:13 1996; Run on:

Tabular output not generated.

Title:

Description: Perfect Score:

.. PASVSGQDADGSTSPRSQEP 507 >US-08-426-509-2 (1-507) from US08426509.pep 3727 1 MAGRGSLVSWRAFHGCDSAE...... Sequence:

PAM 150 Gap 11 Scoring table:

82306 seqs, 25270970 residues Searched:

Post-processing:

Minimum Match 0% Listing first 45 summaries

Database:

pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3 7:unann4
8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1
13:unrev2

scale 0.414 Variance 117.759; Mean 48.751; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

#### SUMMARIES

Result No.	Score	Query Match	ery tch Length DB	99	ID	Description	Pred. No.
	3727	100.0	507 1		S43533	protein-tyrosine kin	0.00e+00
2	3727	100.0	507 1		A55625		0.00e+00
m	3423	91.8	527 1	[]	A49865	protein-tyrosine kin	0.00e+00
な	3182	85.4	465 1		B55625	protein-tyrosine kin	0.00e+00
5	1871	50.2	450	4	A41973	protein-tyrosine kin	4.28e-294
9	1860	49.9	450 1	13	519024	protein-tyrosine kin	3,63e-292
7	1860	49.9	450		JH0559		3.63e-292
<b>∞</b>	1860	49.9	450 1	13	S19025	protein-tyrosine kin	3.63e-292
6	1859	49.9	450	<del>,</del> 1	S15094	protein-tyrosine kin	5.44e-292
10	1019	27.3	507	4	A39939		5.79e-146
11	1011	27.1	509	-	OKHULK	protein-tyrosine kin	1.37e-144
12	1001	26.9	509	4	A23639	protein-tyrosine kin	7.09e-143

200200000000000000000000000000000000000
100000000000000000000000000000000000000
880088888888
5555555555
200000
1000000 <del>1000</del> 00000
<b>《《阿拉斯·斯</b> 斯斯》
10000 700000
(0)000 (10000)
266666 <b>1</b> 066666
10000 1000000
93000
3000000 <b>2</b> 000000
00000 <b>11.00</b> 00000
60004233 <b>3</b> 00000
100000000000000000000000000000000000000
***************
#@#@#@#@#@#@#@#@#@#@#@#@#@#
*************
0.000.000.000.000.000.000
0.000.000.000.000.000.000
0.000.000.000.000.000.000
0.000.000.000.000.000.000
0.000.000.000.000.000.000
1 09.15
1 09.15
731 09.15
731 09.15
ıy 31 09.15
ıy 31 09.15
ıy 31 09.15
ıy 31 09.15
ıy 31 09.15
ıy 31 09.15
May 31 09.15

4.78e-143 3.44e-142	<u> </u>	9.	Ξ.	.03e-1	6,20e-139	.20e-1	e-1	2.03e - 138	2.03e - 138	-1	e-1	.37e-1	.37e-1	7	•	.61e-1	5e-1	7			e-1	.75e-13	.41e-1	.05e-13	e-13	5.05e-136	φ.	2.60e-134	9.	1.86e - 133	1.25e-133
protein-tyrosine kin	rotein-tyrosine	otein-tyrosine	n-tyrosine	n-tyrosine	protein-tyrosine kin	protein-tyrosine kin	otein-t	te	n-tyrosine	otein-tyrosine	rosine	otein-t	otein-tyrosine	rosine	-tyrosine	sine	otein-tyrosine	otein-tyrosi	gag-abl-pol polyprot	rotein-tyrosine	n-tyrosine	otein-tyr	2v protein -	62v prot	gag-abl polyprotein	nase-relat	ein-tyrosine	protein-tyrosine kin	n-tyrosine	ein-tyrosine k	protein-tyrosine kin
TVEFA	SS	TVHUHC	CH	455	S20808	S32774	FV6	64	S20 <i>676</i>	B34104	A34104	TVFVS2	TVFVPR	524553	OKFVYR	TVFVR	TVFVMT	S15582	2613	S08519	3596	A35962	23	\$52314	MVG	A39962	TVHULY	JQ1321	TVHUSY	TVMSHC	TVHUSC
٦ ٦		-	1	4	4	13	-	_	7	4	4	-	-	Ā	-	1	-	Ā	_	ħ.	4	4	_	7	7	ላ		な	<b>-</b>		
1520	9		3	0	$\sim$	2	2		$\sim$	$\sim$	S	S		0	$\sim$	2	N	$\sim$	697	3	<b>V</b>	$\infty$	7	V		2		0	$\sim$	503	ಶ
26.9	; ;	9	•	٠.	•	9	9	•		٠.	26.2	6.	•		26.1	26.1	S.	25.9	<u>.</u> ک	25.9	2	25.9	S.	•	5	25.8	ت	25.5	-:	25.4	25.4
1002	9	$\infty$	<u></u>	~	~		7	~	7	~		_	<u></u>	<u></u>		<u></u>	9	9	9	9	Q	Q	9	ø	9	9	S	2	S	T	マ
13																															

## ALI GNMENTS

translation Dowler change intracellular protein kinase homology; #text  $\mathbf{\alpha}$ Avraham, S.; Jiang, S.; Ota, S.; Fu, Y.; Deng, L.L.; White, R.A.; Avraham, H. J. Biol. Chem. (1995) 270:1833-1842
Structural and functional studies of the intractyrosine kinase MATK gene and its translated conceptual #tormal_name Homo sapiens #common_name man 24-Feb-1995 #sequence_revision 24-Feb-1995 protein-tyrosine kinase (EC 2.7.1.112) megakoryocyte-associated - human compared with name Homo sapiens #common #superfamily SH2 homology; complete 1-507 ##label AVR preliminary; not #type 07-Jul-1995 homology type DNA #formal A55625 A55625 ##molecule #residues ##status CLASSIFICATION #accession 2 #authors #journal **ACCESSIONS** #title REFERENCE ORGANISM RESULT ENTRY TITLE DATE

507

481

õ

SH31\

#domain SH3 homology #label

55-105

phosphotransferase

KEYWORDS

FEATURE

US-08-426-509-2.中 May 31 (9, 15

≺

ö 240 180 240 300 四耳 120 300 360 420 480 420 480 9 9 Gaps change tyrosine Bennett, B.D.; Cowley, S.; Jiang, S.; London, R.; Deng, Grabarek, J.; Groopman, J.E.; Goeddel, D.V.; Avraham, J. Biol. Chem. (1994) 269:1068-1074

Identification and characterization of a novel tyrosine  $\verb|magrgsluswrafh| gcdsaeelprvsprflrawhpppvsarmptrrwapgtqcitkeeht|$ 1 MAGRESLVSWRAFHGCDSAEELPRVSPRFLRAWHPPPVSARMPTRRWAPGTQCITKCEHT grapypkmslkevseavekgyrmeppegcpgpvhvlmsscweaeparrppfrklaeklar 6051 human ÷ **f**text #label KIN #checksum 507 Indels Length #label A49865 #type complete protein-tyrosine kinase (EC 2.7.1.112) math megakaryocyte-associated tryosine kinase #formal_name Homo sapiens #common_name man 30-Jun-1995 #sequence_revision 30-Jun-1995 SH2 homology #label SH2\ protein kinase homology #molecular-weight 56469 ö DB 11; Score 3727; DB 11; Pred. No. 0.00e+00; Mismatches kinase from megakaryocytes 507 BEN ; 0 1-527 ##label ##cross-references GB:L18974 SH2 preliminary 100.0%; Best Local Similarity 100.0%; Conservative 21-Jul-1995 domain #domain #length 507 ##molecule_type mRNA A49865 A49865 **F4**9865 507; ##residues NAMES ##status Query Match accession  $\sim$ #authorg journal 122-211 233-485 ACCESSIONS 121 _ 61 61 241 ALTERNATE 181 241 301 121 181 301 361 361 421 421 481 Matches 481 REFERENCE ORGANISM SUMMARY RESULT ENTRY * 원 ò ద 유 g 엄 원 පු 유 임 Š δ δ ò ò ò δ δ

ļ conceptual translation 120 120 180 180 240 300 300 360 419 420 Dowler 9 9 Gaps #formal_name_Mus_musculus #common_name house mouse 24-Feb-1995 #sequence_revision 24-Feb-1995 #text_change yivmehvskgnlvnflrtrgralvntaqllqfslhvaegmeyleskklvhrdlaarnilv product sedlvakvsdfglakaerkgldssrlpvkwtapealkhg-ftsksdvwsfgvllwevfsy SEDLVAKVSDFGLAKAERKGLDSSRLPVKWTAPEALKHGKFTSKSDVWSFGVLLWEVFSY 1630 intracellul <del>--</del> #checksum 527 translated Deng, IndelsLength . . × the SH3 homology; SH2 homology Avraham, S.; Jiang, S.; Ota, S.; Fu, Y
L.L.; White, R.A.; Avraham, H.
J. Biol. Chem. (1995) 270:1833-1842
Structural and functional studies of thyrosine kinase MATK gene and it #label SH31\ protein-tyrosine kinase (EC 2.7.1.112) sнz homology #label SH2 #molecular-weight 58473 DB 11; 00e+00; not compared with 0.00e+00 megakoryocyte-associated - mouse Mismatches SH3 Score 3423;
Pred. No. 0.
2; Mismatc homology; #domain SH3 homology complete 1-465 ##label AVR phosphotransferase phosphotransferase preliminary; #type SH2 SH2 91.8%; 99.1%; Conservative 07-Jul-1995 #superfamily #domain #superfamily #length 527 mRNA B55625 A55625 B55625 Similarity type 462; ##molecule ##residues CLASSIFICATION CLASSIFICATION ##status Query Match #accession Local ₹J* #authors #journal 122-211 **ACCESSIONS** 61 61 121 121 241 241 301 301 361 420 55-105 Matches 181 181 361 421 #title REFERENCE KEYWORDS ORGANISM KEYWORDS SUMMARY FEATURE Best RESULT ENTRY TITLE DATE  $Q_{\mathbf{y}}$ g 임 셤 ò ŏ 염 Š a Q 엄 õ 염 ð ద ð

US-08-426-509-2 mr May 31 00 15

S

S

δ 691 465; **f**checksum Length SH3 homology #label SH31\ SH2 homology #label SH2 #molecular-weight 51585 DB 11; Score 3182; DB 11; Pred. No. 0.00e+00; SH3 homology SH2 homology No. 85.4%; 89.7%; #domain #length 465 #domain Similarity Query Match Best Local 80-169 SUMMARY 13-63 FEATURE

Gaps : Indels 10; Mismatches 37; Conservative 418; Matches

ä

101 σ 42 g õ

120 셤

162 ð

281 180 222 셤 Š

299 240 <del>a</del>

282

359 300 유

401 342 δ

465 420 d

62

4

Q

chicken SX 2.7.1.112) <u>일</u> fragment kinase (E A41973 #type protein-tyrosine S RESULT ENTRY TITLE

change #formal_name Gallus gallus #common_name chicken 31-Dec-1993 #sequence_revision 31-Dec-1993 #text (fragment) #formal ORGANISM DATE

12-Apr-1995 A41973 A41973 **ACCESSIONS** REFERENCE

S.; Nakagawa, M.; Nada, Sabe, H.; Knudsen, B.; Okada, Hanafusa, H. #authors

Sci. U.S.A. (1992) 89:2190-2194 and expression of chicken C-terminal Stable association with c-Src protein. Molecular cloning kinase: lack of Proc. Natl ournal title

Src

MUID: 92196083 preliminary A41973 #cross-references ##status accession

##cross-references NCBIN:88058; NCBIP:88059 1-450 ##label SAB #molecule_type ##residues

#superfamily protein-tyrosine kinase src; protein kinase sequence extracted from NCBI backbone CLASSIFICATION ##note

US-08-426-509-2 rpr May 31 09 15

00

8131 #checksum #molecular-weight 50704 EMBL: X60114 450 ##cross-references #length

4; Gaps 5; Indels Length 98; Score 1860; DB 13; Pred. No. 3.63e-292; Mismatches .86 49.98; Conservative Similarity 236; Query Match Local Matches Best

65 wpsgteciakynfhgtaeq-dlpfckgdvltivavtkdpnwykaknkv-gregiipanyv œ

105 õ

Б δ

d

δ 245 g

226 AGWLLNLQHLTLGAQIGEGEFGAVLQGEYLGQKVAVKNIKCDVTAQAFLDETAVMTKMQH δ

305 snlvqllqviveekgglyivteymakgslvdylrsrgrsvlggdcllkfsldvceameyl 246

286 ENLVRLIGVILHQ--GLYIVMEHVSKGNLVNFLRTRGRALVNTAQLLQFSLHVAEGMEYL 8

365 306 임

403 344 ò

442 daamrpsflqlreqleh 426 g

Š

480 EPARRPPFRKLAEKLAR <u>:</u> 464 ð

RESULT ENTRY

- human #text JH0559 #type complete protein-tyrosine kinase (EC 2.7.1.112) CSK #formal_name Homo sapiens #common_name man 30-Jun-1992 #sequence_revision 20-Aug-1994 JH0559; S38818 05-May-1995 ACCESSIONS ORGANISM TITLE

change

REFERENCE

2 Strebhardt, Braeuninger, A.; Holtrich, U.; Ruebsamen-Waigmann, H. #authors

Gene (1992) 110:205-211

#journal

gene that new subclass of protein tyrosine kinases accession JH0559 a human oĘ Isolation and characterization #title

encodes

1-450 ##label BRA cross-references EMBL:X59932 #molecule_type mRNA #residues #accession

T.; Strebhardt, = Braeuninger, A.; Karn, ntal source lung \$38818 ##experimental #authors REFERENCE

ĸ

Characterization of the human CSK locus Oncogene (1993) 8:1365-1369 Ruebsamen-Waigmann, #journal #title

(TM)

U.K. Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, Distribution rights by IntelliGenetics, Inc.

n.a. database search, using Smith-Waterman algorithm n.a. MPsrch_nn

MasPar time 1229.82 Seconds 1151.342 Million cell updates/sec Fri May 31 10:10:52 1996; Run on:

not generated. output Tabular

(1-2000) from US08426509.seq 2000 >US-08-426-509-1 Description: Perfect Score: Title:

Sequence:

2000

1 CTCGCTCCAAGTTGTGCAGC......ATTCTAAGGACTCTAAAAA GAGCGAGGTTCAACGTCG......TAAGATTCCTGAGATTTTT Comp:

default TABLE Gap 6 Scoring table:

0 Query Dbase 0; STD Nmatch

2 × seqs, 353985056 bases 264399 Searched:

0% 45 Minimum Match Post-processing:

Listing first

summaries

embl-new11 Database:

1:BCT 2:FUN 3:INV1 4:INV2 5:INV3 6:MAM 7:ORG 8:PLN 9:PRI1 10:PRI2 11:PRI3 12:PRO1 13:PRO2 14:ROD 15:SYN 16:UNC 17:VRT 18:VIR

genbank91 Database:

19:BCT1 20:BCT2 21:BCT3 22:BCT4 23:BCT5 24:BCT6 25:BCT7 26:INV1 27:INV2 28:INV3 29:INV4 30:INV5 31:MAM1 32:MAM2 33:PAT1 34:PAT2 35:PAT3 36:PHG 37:PLN1 38:PLN2 39:PLN3 40:PLN4 41:PLN5 42:PLN6 43:PLN7 44:PR11 45:PR12 46:PR13 47:PR14 48:PR15 49:PR16 50:PR17 51:PR18 52:PR19 53:ROD1 54:ROD2 55:ROD3 56:ROD4 57:ROD5 58:ROD6 59:ROD7 60:STR 61:SYN 62:UNA 63:VRL1 64:VRL2 65:VRL3 66:VRL4 67:VRL5 68:VRL6 69:VRT1 70:VRT2 71:VRT3

Database:

genbank-new11

72:BCT1 73:BCT2 74:INV1 75:INV2 76:MAM 77:PHG 78:PLN 79:PRI1 80:PRI2 81:PRI3 82:ROD 83:STR 84:SYN 85:UNA 86:VRL 87:VRT

u-emb144 91 Database:

88:part1

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution. scale 2.370 Variance 4.979; Mean 11.799; Statistics:

US-08-426-509-1.rge May 31 10.22

S
ŒĴ
$\vdash$
$\alpha$
~
5
7
$\equiv$
$\tilde{c}$
•

Pred. No.		0.00e+00 0.00e+00	•	-	•	0.00e+00	0.00e+00	0.00e+00	+	-30	-30 -30	-27	7-	-2	٠ ب	Ĭ	4	1.91e-39	7.84e-37	4.22e-35	4.22e-35	4.22e-35	4.22e-35	4.22e-35	4.22e-35	e-3	.22e-3	.22e-3	, 22e-3	.22e-3	.22e-3	.22e-3	.22e-3	.22e-3	2.22e-33	.2	2.22e-33			2.22e-33	2.22e-33	2.22e-33	2.22e-33	2.22e-33
Description	osine	H.saplens HYL tyrosin		mRNA for	Mouse mRNA for ctk.	Mus musculus protein	VNK=nonreceptor prote	$\supset$		CT.	is cyl mRNA	cken src k	mKNA tor protei	c-Src k	sapien	tus yrk mkn/	tibroblast gr		custris s	sarcoma	sarcoma virus	a virus	Xiphophorus c-fyn (Xf	n sarcoma virus	sarcoma	Rous sarcoma virus ge	mRNA fragment	Avian sarcoma virus S	uman mutant	H.sapiens ltk mRNA.	(D)	l.	Human T cell-specific	Human T-lymphocyte sp	ymphocyte	U		Human mRNA for leukoc	Rous sarcoma virus (r	Rous sarcoma virus de	_	Avian sarcoma virus p	Human c-abl mRNA enco	sarcoma viru
ID	HUMMATK	HSHYLTK	MMCTK	MUSCTK	MUSCTK	MMU 05210	577473	RATBATK	S77473	HSCSRCKIN	HSCYLCTK	CHKSRCKA	RPTYKI	MMU 0524 /	HSCSKPTK	GGYKKA	HUMFGFR3	HUMFGFLR	SLSRK3	RSVPP62V8	RSVSRCHM	ALRVSRC	XHCFYN	REASV5	ALRDA2	D10652	HSPTKJUR	RSVSRC	HSU07236	HSLTKM	CHKSRC	HUMLCKAA	HSTCPTK		HSU23852	HUMFGR	HSLTK	HUMLTKLP2	ALRDRM144	ALRSRCAC	ASVPR225T	ACSCSRC	HSABL	RERSV6
DB	50	45 57	14	55	82	54	14	57	5. 6.	44	44	69	ى بى	54	44	2;	4.9	49	30	89	89	63	71	89	63	63	46	89	47	46	69	20	47	6	47	49	46	20	63	63	63	63	44	89
Length		1968						1838	1656	2187	2420	1353	2172	1//9	1000	7861	2520	3829	1190	1638	1641	1801	2526	3107	3256	9317	852	1581	1589	1680	1759	2032	2041	2129	2129	S	<	3046	_	4413	4503	5188	5527	
% Query Match	95.9	, o	·	$\infty$	٠ 00	_; ∞	.; ∞ 0	 ∞ ·	7	<u> </u>	<u>.</u>	٠. د	T.		•	•	•	•	•	•	3,5	•	•	3.5			3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Score		1914 999	-	( <del>-</del>	( -		w L	י כע	συ,	ໆ '	♥ :	_ ,	J) (	$\boldsymbol{x}$	7.5	, Q	_ :	٠ ت	7.7	70	70	70	70	70	70	70	89	89	89	89	89	89	89	89	89	89	89	89	89	<b>68</b>	89	89	89	89
Result		7 (5	7	5	9	<u> </u>	œ <b>‹</b>	σ ;	10	11	12	13	7 .	T.	<b>9</b> [	7	œ ç	5 0	5.0 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	32	36	37	38	39	40	41	42	43	44	45

## ALI GNMENTS

94	••
11-MAR-1994	Theria
11-	lia; nidae
cds.	famma. Homil
PRI complete	e. ebrata; Marria; A
mRNA,	kinas i; Vert ii; Cat
mRNA (MATK)	tyrosine nRNA. Chordata aplorhir
1987 bp ine kinase	plasmic protein; tyrosine kinase. sapiens cDNA to mRNA. sapiens yota; Animalia; Chordata; Vertebrata; Mammalia; 'yota; Primates; Haplorhini; Catarrhini; Hominidae
HUMMATK 1987 bp mRNA Human tyrosine kinase (MATK) mRNA, complete cds. L18974	cytoplasmic protein; tyrosine kinase. Homo sapiens cDNA to mRNA. Homo sapiens Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria; Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
RESULT 1 LOCUS DEFINITION ACCESSION	

23

10

4 23  $\mathbf{z}$ 

***** 

1020 1080 1145 40 1200 65 60 85 545 006 1025 20. 425 420 540 605 900 665 999 725 720 785 780 845 905 9 9 80 12 12 3 マ œ  $\boldsymbol{\varphi}$ σ GGCACC gtatca |||||||| ctctgc getggcagetggggcgetgcgggacgggaggccetetccgcagace p - qo - oattacagcaaggacaaagggcgctatctgcaccaagctggtgagaccaaagcggaaacacg ggaccaagtcggccgaggaggagctggccagggcgggctggttactgaacctgcagcatt ည ccctcccgtctcagccaggatgccaacgaggcgctgggccccgggcacccagt gaacaccg gcaccaggggctgtacattgto

S

2

셤

9

δ

셤

Š

Š

셤

 $\delta$ 

9

Š

LΩ.

S

132

cgacctggccg

cctggagagcaagaagcttgtgcaccg

US-08-426-509-1  $31 \cdot 10 \cdot 22$ ** May

a

g

 $\delta$ 

유

Š

g

Q

유

õ

엄

₹

g

ð

a

δ

a

δ

심

Q

g

Š

Š

Š

δ

5

Homo sapiens

Eukaryotae; mitochondrial eukaryotes; Metazoa/Eumycota group;

Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata;

Vertebrata; Gnathostomata; Osteichthyes; Sarcopterygii; Choanata;

Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Archonta; Primates; 1562 1560 1622 1620 1680 1740 1800 500 1798 1860 1918 920 1858 980 1741 1681 38 10-0CT-1994 ccgagaagctggcccgggagctacgcagtgcaggtgccccagcctccgtctcagggcagg ACCTGGCCGAGGGCATGGAGTACCTGGAGAGCAAGAAGCTTGTGCACCGCGACCTGGCCG kinase RI tyrosine mRNA protein 1968 bp RNA tyrosine kinase nonreceptor 1968 HYL dene; attctaagg 198 198 HSHYLTK H.sapiens | X77278 HYLTK gene ATTCTAAGG 2 DEFINITION ACCESSION KEYWORDS SOURCE ORGANISM 1261 1326 1386 1446 503 1563 1799 1381 1441 1859 1919 1979 1321  $\mathbf{c}$ 1682 1981 1501 1561 1742 1861 1921 1621 1681 1741 1801 162 RESULT LOCUS

US-08-426-509-1.rge

O

REFERENCE AUTHORS	<pre>1 (bases 1 to 1968) Sakano, S., Iwama, A., Inazawa, J., Arivama, T.,</pre>	f. and
TITLE	Molecular cloning of a novel non-receptor tyr	kinase, HYL
JOURN	(nematopoletic consensus tyrosine-lacking kinase) JOURNAL Oncogene 9 (4), 1155-1161 (1994)	(6)
MEDLINE	94181267	
AUTHC	ewI Iwa	
TITLE	Direct Submission	
JOUR	ted (14-JAN-1994) to the EMBL/GenBank/I	databases.
	Genetics, Kumamoto University School of Medicine	ı Embryology w e, 2-2-1 Honjo,
PINDIMOO	Kumamo	
FEATURES	NCB1 g1:	
S	rce	
	library"	
	/chromosome="19p13"	
祖	mRNA 11968	
5	CDS 2081731	
	1	
	/note="NCBI gi: 557272"	
	start=1 t="HYI.	
	"MAGRGSLVS	/SPRFLRAWHPPVSARMPT
	RRWAPGTQCITKCEHTRPKPGELAFRKGDVVTILEACENKSWYRVKHHTSGQEGLLAA	<b>KSWYRVKHHTSGQEGLLAA</b>
	GALREREALSADPKISIMPWFHGKISGQEAVQQIQPPEDGIFLVRESARHPGDYVLCV SFCRNVIHYRVIHRDGHITIDFAVFFCNIMDMVFHYSKNKGAICTKIVRDKRKHGTKS	OCLF LVRESARHPGDYVLCV
	AEEELARAGWLINLOHLTLGAOI GEGEFGAVLOGEYLG	KVAVKNIKCDVTAQAFIDE
•	TAVMTKMQHENLVRLLGVILHQGLYIVMEHVSKGNLVNFLRTRGRALVNTAQLLQFSL	LRTRGRALVNTAQLLQFSL
,		JAKAERKGLDSSRLPVKWTA KEVSEAVEKGYRMEPPEGCP
	GPVHVIMSSCWEAEPARRPPFRKIAEKLAREIRSAGAPASVSGODADGSTSPRSOEP"	ASVSGODADGSTSPRSQEP"
BASE CO	COUNT 391 a	t t
Query	/ Match 95.7%; Score 1914;	n 1968;
Best Match	Local Similarity 99.7%; Pred. nes 1945; Conservative 0; N	S
યુ	to a second to the second seco	. 9
3		.gagcagaaaa oo
Х	52 cccAccc	GAGCAGAAAA 109
QQ	61 caggaagaaccaggctcggtccagtggcacccagctccctacctctgt	gccagccgact 120
Qy 1	110 CAGGAAGAACCAGGCTCGGTCCAGTGGCACCCAGCTCCCTACCTCTGTGCCAGCCGCCT	
	121 gacctatagesagesattessageatossagetatassasttastsa	tatacetete 180
Qy 1	170 GCCTGTGGCAGGCCATTCCCAGCGTCCCCGACTGTGACCACTTGCTCA	rerecerere 229
Db 1	181 acctgcctcagtttccctctggggg-cgatggcgggggggggctcttg	jtttcctggcg 239
Qy 2	230 ACCTGCCTCAGTTTCCCTCTGGGGGGGGGGGGGGGGGGG	STITCCTGGCG 289
0b 2	240 ggcatttcacggctgtgattctgctgaggaacttccccggggtgagcccc	sgcttcctccg 299
Qy 2	290 GCCATITCACGCCTGTGATTCTGCTGAGGAACTTCCCCGGGTGAGCCCCCGCTTCCTCCG	
Db 3	300 agcetggcacccctcccgtctcagccaggatgccaacgaggcgctgggccccggggcac	acccdddcac 359

1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
- 86660000000000000000000000000000000000
10000 Bar 10000
- 3300 340 3000
- 75000000000000000000000000000000000000
-3300000000000
-00000000000000000000000000000000000000
*****
- 0000000000000000000000000000000000000
- 2000 (2000)
- 8000000000000000000000000000000000000
- 6000000000000000000000000000000000000
- \$25,000,000,000,000,000,000,000
-50000000000000000000000000000000000000
300000000000000000000000000000000000000
-20000000000000000000000000000000000000
- 1000 (100 <b>- 100 - 100</b> (100 - 100 )
- 100 (100 (100 (100 <del> </del> 100 (100 (100 (100 (100 (100 (100 (100
-0000 <del>4444</del> 0000
•
8
9
20
6-50
36-50
26-50
426-50
426-50
3426-50
8-426-50
08-426-50
08-426-50
-08-426-50
S-08-426-50
IS-08-426-50
US-08-426-50
) US-08-426-50
2 US-08-426-50
ZZ US-08-426-50
22 US-08-426-50
1.22 US-08-426-50
0.22 US-08-426-50
10.22 US-08-426-50
10.22 US-08-426-50
L 10.22 US-08-426-50
1 10.22 US-08-426-50
31 10.22 US-08-426-50
31 10.22 US-08-426-50
y 31 10:22 US-08-426-50
ıy 31 10.22 US-08-426-50
lay 31 10:22 US-08-426-50

00

δ	350	AGCCTGGCACCCCCCTCCCGTCTCAGCCAGGATGCCAACGAGGCGCTGGGCCCCGGGCAC	409
40 S	360	ccagtgtatcaccaaatgcgagcacaccgcccaagccaggggagctggccttccgcaa [	419
ر م	420	gggcgacgtggtcaccatcctggaggcctgcgagaacaagagctggtaccgcgtcaagca	-
ð	470	GGCGACGTGGTCACCATCCTGGAGGCCTGCGAGAACAAGAGCTGGTACCGCGTCAAGCA	529
QQ	480	ccacaccagtggacaggagggctgctggcagctgggggggg	$\sim$
δ ₂	530	CCACACCAGTGGACAGGGGGTGCTGGCAGCTGGGGCGCTGCGGGAGCGGGAGCCCCT	$\infty$
දුය රු	540 590	ctccgcagaccccaagctcatgccgtggttccacgggaagatctcgggccagga	599 - 649
qq	009	ggctgtccagcagctgcagcctcccgaggatgggctgttcctggtgcgggagtccgcgcg	629
δy	650	GCTGTCCAGCAGCTGCAGCCTCCCGAGGATGGCCTGTTCCTGGTGCGGGGGGGCGCG	607
90 v	660	ccaccccggcgactacgtcctgtgcgtgagctttggccgcgacgtcatccactaccgcgt	719
رة بر	720	ant anaconconstructions at one transmission to the total cast one and the same and	, –
}	770	gergedecyclogical control of the state of th	- 2
0p	780	catggtggagcattacagcaaggacaagggcgctatctgcaccaagctggtgagaccaaa	839
δy	830	CATGGTGGAGCATTACAGCAAGGACAAGGGCGCTATCTGCACCAAGCTGGTGAGACCAAA	688
QQ	840	gcggaaacacgggaccaagtcggccgaggaggagctggccagggcgggc	668
ζ	8 90	GCGGAAACACGGGACCAAGTCGGCCGAGGAGGTGGCTGGC	646
Op	006	cctgcagcatttgacattgggagcacagatcggagagagggagagtttggagctgtcctgca	959
ζλ	950	CCTGCAGCATTTGACATTGGGAGCACAGAGGGAGGGAGGTTTGGAGCTGTCCTGCA	1009
ପୁ	096	gggtgagtacctggggcaaaaggtggccgtgaagaatatcaagtgtgatgtgacagccca	01
ζ		GGGTGAGTACCTGGGGGGAGGTGGCGGGAAAAGATATCAAGTGTGATGTGACAGCCCA	90
අධ (	1020	ggccttcctggacgacggccgtcatgacgaagatgcaacacgagaacctggtgcgtct	07
δ δ	1070	GGCCTTCCTGGACGACGGCCGTCATGACGAAGATGCAACACGAGAACCTGGTGGTGTTCTT	12
9 2		cctgggcgtgatcctgcaccaggggctgtacattgtcatggagcacgtgagcaagggcaa	1139
<u>,</u> 4		coldedes to the total source to the source t	10
<u>a</u> ,	1140		1 3
∂	190	CCTGGTGAACTTTCTGCGGACCCGGGGTCGAGCCCTCGTGAACACCGCTCAGCTCCTGCA	24
අ		gtttctctgcacgtggccgagggcatggagtacctggaggagcaagaagcttgtgcaccg	1259
δ	1250	GTTTTCTCTGCACGTGGCCATGGAGTACCTGGAGGAGCAAGAAGCTTGTGCACC	1309
g G	1260	cqaectqqccqccqcaacatcctqqtctcaqaqqaectqqtqqccaaqqtcaqcqactt ]	1319

1379 1559 1429 1439 1489 1499 609 1679 1969 549 1669 1729 1739 1789 1857 1909 1917 1369 9 1797 φ 161 184 cds _ -30-JUN-19 ccgcaaactggccgagaagctggcccgggagctacgcagtgcaggtgccccagcctccgt complete mRNA, ROD (Ntk) n US-08-426-509-Lige kinase 2000  $\infty$ **—** 1734 bp mRNA tyrosine protein 31 10.  $^{\circ}$ 1970 1320 1370 1380 1430 1440 1550 1310 1490 1500 1560 1610 1620 1670 1680 1730 1790 1798 1850 1740 1858 1910  $\infty$ 191 RESULT May LOCUS 원 δ 임 d δ g <del>P</del> 임 ά ò 8 g 유 셤 g d δ Q δ ð ò δ Š

₽ and fetus brain ø 16 Theri day in G expressed Ŀ ė domesticus) Gervais, Mammali 4975-4979 (1994) Murinae thymus cDNA to mRNA.

Mus musculus

Eukaryota; Animalia; Chordata; Vertebrata; Ma

Eutheria; Rodentia; Myomorpha; Muridae; Murin

1 (bases 1 to 1734)

Chow, L.M.L., Jarvis, C.D., Hu, Q., Nye, S.H., Ge
Veillette, A. and Matis, L.A.

Ntk: A Csk-related protein-tyrosine kinase ex species 91,  $\operatorname{gnp}$ MUSNTK 1734 bp mRNA Mus musculus tyrosine protein L27738 tyrosine protein kinase. Mus musculus (strain BALB/c, s Sci. U.S.A. lymphocytes Proc. Natl. Acad. DEFINITION ACCESSION KEYWORDS ORGANISM REFERENCE AUTHORS JOURNAL TITLE SOURCE

May 31 10:25

US-08-426-509-Ling

#	
*	TM)
* *	E)
*	
#	
#	
*	
#	1
*****	
#	,-, ,-,
Ŧ	
#	''
*	''
*	
#	
#	
*	''
*	''
****	
*	
***	''
*	'' ''
经济的 医医疗 医医疗 医医疗 医医疗 医医疗 医皮肤	
#	
**	
*	
*	
ŧ	
#	<u></u>
*	\
*	<b>'</b> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
****	
#	
#	
#	
*	

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

n.a. database search, using Smith-Waterman algorithm n.a. MPsrch_nn MasPar time 153.63 Seconds 865.626 Million cell updates/sec Fri May 31 10:32:00 1996; Run on:

Tabular output not generated.

>US-08-426-509-1 (1-2000) from US08426509.seq 2000 Description: Perfect Score:

1 CTCGCTCCAAGTTGTGCAGC......ATTCTAAGGACTCTAAAAA GAGCGAGGTTCAACACGTCG.....TAAGATTCCTGAGATTTTT Sequence:

2000

TABLE default Gap 6 Scoring table:

Gap

~ 84802 seqs, 33246950 bases x Searched:

Query 0

Dbase 0;

STD

Nmatch

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database:

n-geneseq22 1:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7 8:part8 9:part9 10:part10 11:part11 12:part12 13:part13 14:part14 15:part15 16:part16

scale 1.503 Mean 9.640; Variance 6.412; Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

#### SUMMARIES

No.	00+	-50	-50	-38	-30	-29	-23	-23	-21
Pred. No	0.00e+00	4.14e-50	4.14e-50	3.58e-38	1.50e-30	8.26e-29	4.47e-23	4.47e-23	2,236-21
Description	DNA encoding cytoplsm	pTK gene SAL-D4 parti	Protein tyrosine-kina	Human Natriuretic Pep	Human Natriuretic Pep	Human pp60 c-src qene	Lck gene fused with p	Chicken pp60 c-src qe	Turnsine Kinase recen
ID	Q84888	049748	T03091	010572	Q10572	046688	013983	046687	027539
DB	15	œ	16	7	7	_	က	_	4
ery tch Length DB	1942 15	147	147	1047	1047	1611	1254	1602	1739
% Query Match	95.3	5.1	5.7	4.7	4.1	3.9	3.4	3.4	3.2
Score	1906	114	114	94	81	78	89	89	65
Result No.	1	7	m	4	2	9	1	<b>∞</b>	6
Re	Ì				Ų				

US-08-426-509-1.mg May 31 10.25

CY

e-2	2.97e-	2.97e-2	2.97e-2	s 3.91e-1	, 8.14e-1	3.51e-1	.22e-1	1.45e - 1	. 1.45e-1	4.22e-1	in 4.22e-13	7	7	-1	eq 4.22e-13	4.22e-1	. 4.22e-1	4.22e-1	.45e-1	5e-1	5e-1	4.96e-1	7	7	7	6e-1	4.96e-1	o 4.96e-1	s 4.96e-1	.71e-1	e 5.71e-1		.n 5.71e-11	.71e	5.71e-11
Basic FGF receptor.	flg receptor protein	an bFGF r	N-sam cDNA.	Human basic fibrobla	Breast tumour kinase	Tyrosine-kinase syk	l tyrosine	suce	P	Murine flk-2 coding	Flk2 receptor protei	Murine flk-2 cDNA.	Mouse flk-2 cDNA.	자-	-2 cDNA s	Human TYK2 kinase cod	related PTK Cek	lated PTK Cek	encoding plate	platel		ase	/fps proto-oncog		Porcine TrkC gene.	trkC clone in pFL19.	adult po	Porcine TrkC K2 isof	ryc	Mouse flk-1 cDNA.		flk-1 cDNA sequence.	eceptor	Murine flk-1 cDNA.	Murine flk-1 cDNA.
013311	21	2091	2765	Q10448	8118	7303	3072	3451	65	24	01	91	90	20	Q29954	085414	099067	090657	N90355	027447	338	811	7006	5403	6902	3458	9987	6903	24	7907	3525	2995	810	091	5350
7	m	ന	乊	7	13	13	S	9	15	9	13	_	13	6	S	14	15	15	<del>,</del> 1	4	<del></del> 1	<del>, - 1</del>	7	σ	12	ø	S		11	13	9	2	13	_	6
Z)	2662	32	52	$\infty$	50	89		13	S	45	<b>V</b>	45	45	45	45	96	4	δ	S	2	71	0	856	8	52	S	52	S	_	40	40	40	0	40	5406
•	3.2	•	•	•	2.8	5.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	•	2.5	•	•	2.4	2.4	2.4	•		•		•			•	2.3	2.3	2.3
	63																																		
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	97	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
																						ပ													

#### ALI GNMENTS

DNA encoding cytoplsmic tyrosine kinase. cytoplasmic; tyrosine kinase; blood; cell differentiation; screening; anticancer agent; ds. /*tag= d /note= "encodes tyrosine kinase domain (see R71131)" SH3 domain (see R71129) * 571..795 SH2 domain (see R71130) 7 904..1641 Q84888 standard; cDNA to mRNA; 1942 BP /product= cytoplasmic_tyrosine_kinase /note= "see R71133" Location/Qualifiers 208..1731 Q84888; 26-OCT-1995 (first entry) 349..540 /*tag= b /note= "encodes /*tag= c /note= "encodes misc_feature misc_feature misc feature Homo sapiens đ /*tag= Key CDS RESULT 

331..1728

misc_feature

May 31 10-25 US-08-426-509-1 rng		May 31 10.	20000 <u>340</u> 300
	q0	540	್ ಕ :
encodes N-terminally cruncated enzyme (see R71132)"	Qy	2 06S	= 5
306113-A. MAR-1995.	qa	009	<u>6</u> 6-
25-AUG-1994; JU1411. 25-AUG-1993; JP-210403.	δδ	9 059	= 8
-1994; ASAH)	qa	099	S =
WPI; 95-106842/14.	Qy	710	= 8
Cytoplasmic tyrosine kinase and antibody recognising it - for	qq	720	&=
ited substances for tyrusine kindse fivity for use as cancer therapy	Qy	770 G	<del>-</del> 8
This DNA encodes a cytoplasmic tyrosine kinase which has enha	qu	780	ි පි =
isolated from the human UT-7 blood cell line. The DNA sequential bodies raised against the engage are usful for screen	Qy	830	~ (4)
for inhibiting or activating activity on the tyrosine kinase, for	qa	840	8=
uence 1942 BP;	Qy	5 068	– <u>C</u>
3%; Score 1906; DB 15	qq	006	S =
hes 1938; Conservative 0; Mismatches	Qy	950 C	= 8
b legaagecetectgggggggggggggggggggggggggggg	qa	096	96
)))))	Qγ	1010 G	- <del>8</del>
61 caggaagaaccaggctcggtccagtggcacccagctccttacctcctgtgccagccgact 120	qa	1020	&= &=
110 CAGGAAGAACCAGGTCGGTCGACCCAGCTCCTTACCTCCTGTGCCAGCCGCCT 169	Qy	1070 G	: 25
121 ggcctgtggcaggccattcccagcgtccccgactgtgaccacttgctcagtgtgcctctc 180	qa	1080	8 =
170 GGCCTGTGGCAGGCCATTCCCAGCGTCCCGACTGTGACCACTTGCTCAGTGTGCTCTC 229	Qy	1130 C	- <u>S</u>
acctgcctcagtttccctctggggg-cgatggcgggggggaggctctctggtttcctggcg	Ob	1140	8 =
230 ACCTGCCTCAGTTTCCCTCTGGGGGGGGGGGGGGGGGCTCTCTGGTTTCCTGGCG 289	Q	1190	$\mathbf{g}$
ggcatttcacggctgtgattctgctgaggaacttccccgggtgagcccccgcttcctccg	qa	1200	ゟニ
290 GGCATTICACGGCTGTGATTCTGCTGAGGAACTTCCCCGGGTGAGCCCCCCGCTTCCTCCG 349	Qy	1250 G	CI
300 agcctggcacccccctcccgtctcagccaggatgccaacgaggcgctgggccccgggcac 359	qa	1260	<u> 5</u> =
350 AGCCTGGCACCCCCTCCCGTCTCAGCCAGGATGCCAACGAGGCGCTGGGCCCCGGGCAC 409	Qy	1310	: 8
b 360 ccagtgtatcaccaaatgcgagcacacccgcccaagccaggggagctggccttccgcaa 419	qa	1320	tg  -
AGCACCCCCCCAAGCCAGGG	Qy	1370 T	- <u>C</u>
b 420 gggcgacgtggtcaccatcctggaggcctgcgacaacaagagctggtaccgcgtcaagca 479	qa	1380 99	_ —
470 GGCGACGTCGTCACCATCCTGGAGGCTGCAAGAGCTGGTACCGCGTCAAGCA 529	Qy	1430 Ġ	- 0
b 480 ccacaccagtggacaggagggctgctggcagctgggggcgctgcgggagcgggaggccct 539	qu	1440 gg	_ნ~
530 ccacacregregacagegerrecregerecregegecrecregegegecrer 589	Qy	1490 G	- ဟု

셤

δ

q

Q

g

Š

 $\delta$ 

Š

 $\boldsymbol{\sigma}$ φ δ σ S) S) <del>1</del>0 S // idetgtecageagetgeagectecegaggatgggetgttectggtgeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgeggeggagtecgeggeggagtecgegeggeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgegeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgeggagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtecgagtec cacccggcgactacgtcctgtgcgtgagctttggccgcgacgtcatccactaccgcgt gacctggccgccgcaacatcctggtctcagaggacctggtggccaaggtcagcgactt **BIII** 426-S

Φ

S

a y	1500 agag       1550 AGAG	agaggtgtcggaggccgtggagaaggggtaccgcatggaacccccgagggctgtccagg 1559 
원 장	1560 cccc        	ccccgtgcacgtcctcatgagcagctgctggggaggcagagcccgccggccg
24 24	1620 ccgc:       1670 ccgc;	ccgcaaactggccgagaagctggcccgggagctacgcagtgcaggtgccccagcctccgt 1679 
සු දු	1680 ctcad       730 CTCA	ctcagggcaggacgccgacggctccacctcgccccgaagccaggagccctgaccccaccc 1739 
දුරු	1740 ggtgo        1790 GGTGO	ggtggccttggccccagaggaccgagagtggagagtgcggcgtgggggcactgac 1797 
3y 2y	1798 caggo        1850 CAGGO	caggoccaaggagggtccagggggaagtcatcctcggtgcccacaggagggtgg 1857 
සි දි	1858 cccad        1910 CCCAG	cccacgtagggggctctgggcggcccgtggacaccccagacctgcgaaggatgatcgccc 1917 
90 54	1918 gata:        1970 GATA	gataaagacggattctaaggactct 1942 
RESULT ID Q4	2 49748	standard; DNA; 147 BP.
S T	Q49748; 10-MAR-19	94 (first entry)
E	pTK gene S pTK; prote fibroblast	-D4 partial sequence. tyrosine kinase; catal prowth factor receptor;
ES SS	Ē O	PCR; ss.
H 6	Key CDS	Location/Qualifiers
• E !	/*tag= a	
E→ E→ (s, (s.	misc_feature /*taq= b	ure 121
E E	/note= "pTK1 misc feature	"pTK1/3 primers" sature 122147
	/*tag= c /note= "pTKKW r	orimer"
N. C	W09315201-	-A.
G E	22-JAN-1993;	93; U00586.
# &	22-JAN-199 (NEWE-) NE	.992; US-826935. NEW ENGLAND DEACONESS HOSPITAL.
7. K	Avraham H, WPI; 93-32	H, Cowley S, Groopman J, Scadden D; 1-320330/40.
æ.	P-PSDB; R	95.
	New protein are of human	tyrosine kir : mega-karyod
တ္လ ည	Claim 2; Fig pTK genes wer	2; 60pp; English. e identified using two sets of
္လ	oligonucle	eotide primers: a first set which amplifies all pTK DNA

May 31 10.25 CC segments (049743-44), and a second set which amplifies highly

8888	conserved sequences present in the catalytic domain of the c-kit subgroup of pTKs (Q49745-46). The pTK genes identified are described in Q49747-57 and R41897-02.
3000g	throid cell lines. The SAL-D4 expression prod. exhibited icant sequence homology with known protein tyrosine kins FGF receptor family.
A Ma	Query Match 5.7%; Score 114; DB 8; Length 147; Best Local Similarity 92.5%; Pred. No. 4.14e-50; Matches 124; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
QQ	10 cacagagacctagcagcaacatcctggtctcagaggacctggtaaccaaggtcagc 69
δy	ວອວວາ
qq.	70 gactttggcctggccaaagccgagcggaaggggctagactcaagccggctgcccgtcaaa 129
à	1365 GACTTTGGCCTGGCCAAAGCCGAGGGGGCTAGACTCAAGCCGGCTGCCCGTCAAG 1424
qq	130 tggatggctcccga 143 
٥ý	GGAC
RESULT	LT 3 T03091 standard: DNA: 147 RP.
AC	
DI F	1996 (first entry)
3 ∑ 2 ∑	<pre>Protein tyrosine-kinase &gt;AL-D4 DNA iragment. Protein tyrosine-kinase; pTK; SAL-D4; agonist; cell growth;</pre>
KW 6	iation; ss.
OS N	Homo sapiens. WO9527061-A1.
	on c
r	04-APR-1993; U0422616.
PA PT	ETH ) GENENTECH INC.
PI	occured by the control of the sale
8 8 8	WPI; 95-366160/47. P-PSDB: R85923.
PT	ntibodies which activate specific protein tyro
PT PT	<ul><li>also activ</li><li>fo constant</li></ul>
PT	tion of, cell growth and differentiation
ဌ ည	, raye 33-30, 123pp, Emgissi. based on protein tyrosine-kina
ည	con libraries to identify novel pTK genes. A SAI
38	agment (103091) was isolated from several megakaryocytic cell braries and encoded a protein (R85923) related to the CSK fami
გ გ	can be used to ide
S S S	onstructs that modulate pTK activity.
x i	watch 6 76. Green 114. pn 16. T
Bes Mat	Local Similarity 92.5%; Pred. No. 4.14e-50; es 124; Conservative 0; Mismatches 10;
qq	10 cacagagacctagcagcacgcaacatcctggtctcagaggacctggtaaccaaggtcagc 69

φ

ద

δ

00

305 CACCGCGACCTGGCCGCAACATCCTGGTCTCAGAGGACCTGGTGGCCAAGGTCAGC 1364	ິນ	114 952)
	33	iuret
70 gactttggcctggccaaagccgaaggggctagactcaagccggctgccgtcaaa 129	<b>ઝ</b>	affinity ch
	ည လ	also be prep Sequence
130 tggatggctcccga 143 	C) E E	Query Match Best Local Simi Matches 97;
	0p	29 vvnnnhr
10572 standard; DNA; 1047 BP.	Qy	868 GCACCA
1991 (first entry)	qq	89 nyhdndr
luman Natriuretic Peptide Receptor B. PRB; ANP; BNP; CNP; kidney failure; heart failure; protein kinase; Woeraldosteronism: glaucoma: guany} cyclase.	Oy.	:::: 928 ccAGGGG
ation/Onalifiers	qo	149 ngnnvvt
tide hal- gignal g	Qy	988 -GAGAG
Signar	qq	209 gnnnath
mature NFBK 234!	Qy	l 1047 ATCAAGI
= extracel "binds na	qu	269 atgrnwr
omain 456456  abel= transmembrane domain	ô	: : 1106 GCAACAC
479	7 6	
of and project	Q ·	
-site N-glyco	Q _y	1166 CATGGAC
odified site 3537	<b>q</b> 0 -	388 rntdnvr
N-glycu  -site	0y	1226 CGTGAAC
<pre>label= N-glycos_site lodified -site 195197</pre>	ΩP	448 cdktnns
label= N-glycos_site odified -site = 244.,246	ò	: :: 1285 TGGAGAG
label= N-glycos site	ž	
-glycos	QQ.	
,	δ	1345 ACCTGGT
odified -site 600602	qa	568 nkhmrdv
09100292-A.	δ	1403 CTCAAGC
2-JUN-1990; U03586.	qq	628 vkgmann
1	γ	: :  1460 CACCAGO
hang M, Goeddel D, Lowe $\nu_i$ PI; $91-036711/05$ .	qa	688 annnnsg
receptor B - for diagnosis and treatment	Qy	l : 1520 ACGGCT
wey rallure, heart rallure, hyperaldosteronism, glaucoma m 3; Fig 1; 49pp; English.	QO	748 nrnsndr
derived having	ò	: : 1580 CCGCATG
യ	qa Qa	
The protein has a mal of 115 bn (ealon)		

May 31 10.25 US-08-426-509-1.mg

12; AAGTCGGATGTCTGGAGTTTTGGGGTGCTGTCTGGGAGGTCTTCTCATATGG 1519 CAAGAAGCTTGTGCACCGCGACCTGGCCGCCGCAACATCCTGGTCTCAGAGG 1344 GAACCCCCCGAGGGCTGTCCAGGCCCCGTGCACGTCCTCATGAGCAGCTGCTG 1639 CGGCTGCCCGTCAAGTGGACGCCCC--CGAGGCTCTCAAACACGG-GAAGTT 1459 447 507 807 867 Gaps ınsyawawnrvgnavanavnangrannvdnrnvssnnngacsnynannsavdnk nnngngcvynaasvarnashwrnnnntagavasgnsakndhyrtnvrtgnsank Idnrtrnnananrnanntvn-vntyrnnnnnnynnnnnrnnrarndngvnngn stnanvangtgntnnmngvssnnnnrknmanknnasmnwrnrwnnnnngnsnry The protein (or variants) can be used in treatment of peptide disorders, and also to isolate peptides using comatography. Antibodies with affinity for NPRB can AGCTGGTGAGACCAAAGCGGAAACACGGGACCAAGTCGGCCGAGGAGGAGCTGG nnnrangrnvyncgnnnmnhnnnnnanrnnntngdyvnnyndvngnsnragntr 'GTGATGTGACA-GCCCAGGCCTTCCTGGACGAGGCGGCCGTCATGACGAAGAT agcnydgnnnyanvnnntnnnggtrndgnrnvnkmngrryhgvtgnvvmdknnd nhnsnnsshgsnkssncvvdsrnvnkntdygnasnrstannddnnanyakknnt tnnnnnnvnnmnrcwandnanrndngnnkgnnrrnnknggtsnndnnnrmnn nvnnrtnaynnnkrkanannynnnnhsvannnkrgntvnanandsvtnynsdn CGGCCTGGTTACTGAACCTGCAGCATTTGACATTGGGAGCACAGATCGGAGGG nwamgdndsgdnnnaahysganknnwwtgrnnnwvkgannsdnnncandnddns SCACGTGAGCAAGGGCAACCTGGTGAACTTTCTGCGGACCCGGGGTCGAGCCCT nnnhntrnngacndnnnncnvtnycnrgsnndnnnndsnnndwmnrysnnndn 13; 4.7%; Score 94; DB 2; Length 1047; 9.5%; Pred. No. 3.58e-38; 289; Mismatches 618; Indels 51 T; 83 G; 15 C; 87 A; <u>:</u> Conservative 1047 BP;

<del>::</del>