2019.8.16汇报-王鹏

- 1. 论文阅读
 - 1. Is word segmentation necessary for DL of Chinese representations?
 - 2. COMET: Commonsense Transformers for Automatic Knowledge Graph Construction (ACL2019)
 - 3. Fine-Grained Entity Typing in Hyperbolic Space
- Web Data Mining
- 3. NLP 基础知识
- 4. 参加达观杯NER比赛的体会
- 5. Github: https://github.com/RelativeWang/word2vec-study

Introduction中说明词库稀疏性会导致过拟合并且OOV会限制模型的学习能力;分词标准不同会产生不同分词结果;而且分词后多少语义信息留在词中也并不明确。

arianna_yuan, jiwei_li}@shannonai.com

比较char-based 模型和 word-based 模型在四种应用上的表现,得出charbased模型均优于word-based 模型。

在domain adaptation ability中,有一个问题,在京东评价训练的模型拿到点评上测试时,char-based 模型包括OOV的句子远远多于word-based模型,因为只有两组对比试验,也无法说明,char-based模型词库适应能力一定好于word-based模型。

/	· · · · · · · · · · · · · · · · · · ·		
/	7 tra	in_dianping	
/	model	(acc)	proportion of sen
			containing OOV
	word-based	81.28%	11.79%
	char-based	83.33%	0.56%
\	tra	in_jd_test_d	lianping
ιλ	model	acc	proportion of sen
1.55			containing OOV
1/ x /	word-based	67.32%	7.10%
	char-based	67.93%	46.85%
'			

Table 8: Domain adaptation of the word-based model and the char-based model

去了香侬慧语科技的知乎问了一下,我认为可能是有专有名词的原因,因为点评数据中会出现很多的词是少用到的地名或者菜名,这就远远超出了京东评价的范围了。反过来,京东上的评价词这种专有词的含量就没有那么大了。

然后,文章说明对于词向量模型不如字向量的原因,有稀疏性,库外词, 过拟合三个方面。最后通过一个图形象对比词和字对于语义匹配的不同, 在这例子上,字向量模型更容易准确的揣测文本的意思。

Figure 4: Effects of removing training instances containing OOV words.

左图word-base模型表现先有很大提升,然后下降:因为当frequency bar比较小的时候,对于那些infrequency 但是比较接近frequency bar的词会被归入词库中,从而不被判定为OOV。随着frequency bar的增大,这些词的进入会越来越多地导致data sparsity,使得很多具有词库代表性的词,即【频率低,有特征】的词,被划分到词库外,使参数拟合效果变差。

根据作者的表述, frequency bar = 4时, 有38889个词的词频小于4, 这些词占了词表(vocab)的77.4%, 但是却仅仅是数据集(corpus)的10.1%

从这篇论文:

- 1. 前段时间看fastText时,提到了n-gram的方法,是一种将句子标记为n个单词组合的方法。这篇论文中char-based的在Text classification 上对于不同数据集的表现还可以提升。或许在char和word之间还会存在一个平衡点,这个sub-word应该可能会参与到前后不相等,或者其他的关系上。
- 2. 另外没看到考虑标点,句意的影响,自己这段时间的论文中也没有涉及到,或许通过识别标点,分句子判定会提升词库的表现?这有点像命名实体识别,例如主语,宾语,排名高一些。连词,冠词可以排名低一些。
- 3. 自己在做复现实验的时候,找到的分字工具时transformer。
- 4. CTB-6是, Chinese Tree Bank,来自新闻文章等的用于分词,位置标记等中文词库。
- 5. 各个实验的评价标准还需要了解并且分类。

论文: https://www.aclweb.org/anthology/P19-1470

- 这篇文章介绍了一个用来自动生成常识知识库的Commonsense transformers, 它能够调整语言模型的权重来学习产生新的知识库。
- 并且文章通过在两个知识库(ATOMIC和ConceptNet)上的实验,展示了通过 COMET产生的新知识是可以得到人类的认可(准确率分别77.5%和99.1%)。
- 未来可以通过COMET扩展其他类型的数据库,为构建知识图谱提供了另一种方案。

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction

Antoine Bosselut ♦ Hannah Rashkin ♦ Maarten Sap ♦ Chaitanya Malaviya ♦ Asli Celikvilmaz • Yejin Choi ♦

♦ Allen Institute for Artificial Intelligence, Seattle, WA, USA
Paul G. Allen School of Computer Science & Engineering, Seattle, WA, USA
Microsoft Research, Redmond, WA, USA

左图刻画Atomic和ConceptNet的内部关系和属性;以及如何从已有的数据集推测出新的关系的模型思路,即COMET的思路。实线代表已有,虚线代表生成。

论文: https://www.aclweb.org/anthology/P19-1470

GPT: Language Models are Unsupervised Multitask Learners

GPT2.0: https://zhuanlan.zhihu.com/p/56865533

下图c是Commonsense Transformers的模型,a是b的细节,b是c的细节。模型的输入涉及到了用GPT生成Transformer语言模型的内容,因此还不太明白关于多头Attention的具体的好处,只能从感觉上发现其加入了前面的内容。最后生成的是尾实体。

论文: https://www.aclweb.org/anthology/P19-1470

ConceptNet: http://conceptnet.io/

ATOMIC: https://arxiv.org/pdf/1811.00146.pdf

下图说明了同一个句子在两个不同的数据集中,标注方法不同。 ConceptNet 在subject和relation之间多了一个mask。

ATOMIC Input Template and ConceptNet Relation-only Input Template

s tokens mask tokens		<i>r</i> token	o tokens	
PersonX goes to	the mall [MASK	[] <xintent></xintent>	to buy clothes	

ConceptNet Relation to Language Input Template

s tokens	mask tokens	r tokens	mask tokens	o tokens		
11 (11 (11 (11 (11 (11 (11 (11 (11 (11						

go to mall [MASK] [MASK] has prerequisite [MASK] have money

Score评价原理: https://www.aclweb.org/anthology/P16-1137

			10.000	object	1	-17
Model	\mathbf{PPL}^5	BLEU-2	$N/T sro^6$	N/T 0	N/U o	
9ENC9DEC (Sap et al., 2019)	-	10.01	100.00	8.61	40.77	=
NearestNeighbor (Sap et al., 2019)	-	6.61	-	-	-	
Event2(IN)VOLUN (Sap et al., 2019)	-	9.67	100.00	9.52	45.06	
Event2PERSONX/Y (Sap et al., 2019)	-	9.24	100.00	8.22	41.66	
Event2PRE/POST (Sap et al., 2019)	-	9.93	100.00	7.38	41.99	
COMET (- pretrain)	15.42	13.88	100.00	7.25	45.71	-
COMET	11.14	15.10	100.00	9.71	51.20	

Model	PPL	Score	N/T sro	N/T <i>o</i>	Human
LSTM - s	-	60.83	86.25	7.83	63.86
CKBG (Saito et al., 2018)	-	57.17	86.25	8.67	53.95
COMET (- pretrain)	8.05	89.25	36.17	6.00	83.49
COMET - RELTOK	4.39	95.17	56.42	2.62	92.11
COMET	4.32	95.25	59.25	3.75	91.69

Table 1: Automatic evaluations of quality and novelty for generations of ATOMIC commonsense. No novelty scores are reported for the NearestNeighbor baseline because all retrieved sequences are in the training set.

Table 6: ConceptNet generation Results

左图和右图COMET分别在ATOMIC和ConceptNet上的表现。

左图:表明,在BLEU-2评估上,COMET超过了所有baseline的表现;从 N/T_{sro^6} , N/T_o , N/U_o 三个指标中,出COMET产生的新的元组对象同样超过baseline。

右图: perplexity低,表明COMET对于预测结果的准确性比较高。同时Score高表明其产生的新的语言元组得到了认可。

指标 (%)	PPL	BLEU-2	N/T_{sro^6}	N/T_o	N/U_o	Human
含义	perplexity	自动评估测量法 (双语互译质量评测)	产生的语言元组为新元组	产生的语 言元组含 有新 object	新对象是 生成唯一 的对象集 合的占比	来自AMT 的员工人 工标注

Seed Concept	Relation	Generated	Plausible
X holds out X's hand to Y	xAttr	helpful	✓
X meets Y eyes	xAttr	intense	✓
X watches Y every	xAttr	observant	\checkmark
X eats red meat	xEffect	gets fat	✓
X makes crafts	xEffect	gets dirty	\checkmark
X turns X's phone	xEffect	gets a text	
X pours over Y's head	oEffect	gets hurt	\checkmark
X takes Y's head off	oEffect	bleeds	\checkmark
X pisses on Y's bonfire	oEffect	gets burned	
X spoils somebody rotten	xIntent	to be mean	
X gives Y some pills	xIntent	to help	\checkmark
X provides for Y's needs	xIntent	to be helpful	\checkmark
X explains Y's reasons	xNeed	to know Y	\checkmark
X fulfils X's needs	xNeed	to have a plan	\checkmark
X gives Y everything	xNeed	to buy something	✓
X eats pancakes	xReact	satisfied	\checkmark
X makes at work	xReact	proud	\checkmark
X moves house	xReact	happy	\checkmark
X gives birth to the Y	oReact	happy	\checkmark
X gives Y's friend	oReact	grateful	\checkmark
X goes with friends	oReact	happy	\checkmark
X gets all the supplies	xWant	to make a list	✓
X murders Y's wife	xWant	to hide the body	\checkmark
X starts shopping	xWant	to go home	\checkmark
X develops Y theory	oWant	to thank X	\checkmark
X offer Y a position	oWant	to accept the job	\checkmark
X takes out for dinner	oWant	to eat	✓

Seed	Relation	Completion	Plausible
piece	PartOf	machine	✓
bread	IsA	food	✓
oldsmobile	IsA	car	✓
happiness	IsA	feel	✓ ✓
math	IsA	subject	✓
mango	IsA	fruit	
maine	IsA	state	✓
planet	AtLocation	space	✓
dust	AtLocation	fridge	
puzzle	AtLocation	your mind	
college	AtLocation	town	✓
dental chair	AtLocation	dentist	✓
finger	AtLocation	your finger	
sing	Causes	you feel good	✓
doctor	CapableOf	save life	√
post office	CapableOf	receive letter	✓
dove	SymbolOf	purity	✓
sun	HasProperty	big	· /
bird bone	HasProperty	fragile	✓
earth	HasA	many plant	✓
yard	UsedFor	play game	✓
get pay	HasPrerequisite	work	✓
print on printer	HasPrerequisite	get printer	✓
play game	HasPrerequisite	have game	✓
live	HasLastSubevent	die	·
swim	HasSubevent	get wet	·
sit down	MotivatedByGoal	you be tire	· /
all paper	ReceivesAction	recycle	· /
chair	MadeOf	wood	· /
earth	DefinedAs	planet	· ✓

左图和右图的第三列分别是COMET在ATOMIC和ConceptNet上生成的新知识的随机取样,最后一列都是人工识别的结果,可以看到这几个例子的意思还是非常接近真实情况的意思。

之所以看这篇文章,是因为自己最近参加的比赛中需要NER的相关知识,正好ACL2019出现了一些这些方面的相关研究,从这个文章中,只能看到了扩展知识库,扩展知识图谱的作用,对于实体关系识别没有看到相关的方法。

今天发现COMET的实现: https://github.com/atcbosselut/comet-commonsense

这篇文章,主要介绍了在双曲空间上的属性分类问题。由于投影在双曲空间上的距离被放大,相对于欧几里得空间投影来讲,导致在训练集合中频繁共现的属性距离更近,提升了基于最近邻策略的属性的预测效果。

Fine-Grained Entity Typing in Hyperbolic Space

Federico López*

Benjamin Heinzerling

Michael Strube

*Research Training Group AIPHES Heidelberg Institute for Theoretical Studies

firstname.lastname@h-its.org

[1] 原文:

https://arxiv.org/abs/1906.02505

[2] Ultra-Fine Entity Typing:

定义论文链接

[3] 庞加莱圆盘:

<u> 论文链接</u>

从下图可以看出,经过微调的WordNet具有层级结构的名词,通过细粒度的属性分类,投影到两个空间上的效果,其中Hyperbolic Space是采用的庞加莱圆盘模型。

在图(b)中,属性更加靠近边界,使得不同的属性区分更加明显。这意味着,从层级结构上讲,在图中离得越近的元素越会共享同一个父节点,并且会越靠近其中心位置,反之,在层级上更低的元素会远离中心位置。

(a) Euclidean Space.

(b) Hyperbolic Space.

[1] 原文:

https://arxiv.org/abs/1906.02505

[2] Ultra-Fine Entity Typing:

定义 论文链接

[3] 庞加莱圆盘:

论文链接

层级结构表示如下,对于person属性来讲,如果有politician属性,那么还会存在其子节点的属性,diplomat。

从层级结构的上往下,粒度由粗到细,即coarse, fine, ultra-fine。一个模型学习到了diplomat便可以将这个知识联系到politician。

Sentence	Annotation
when the	politician,
president said	president
during the	politician,
negotiation, he	diplomat
after the last	politician,
meeting, she	president
the president	politician,
argued	president

[1] Ultra-Fine Entity Typing:

定义论文链接

(a) Projection layers.

(b) Incorporation of hierarchical information.

模型结构如上。

在Mention Encoder,通过将char-based CNN和Glove两种方法的得到的特征用 similar self-attention encoder合并。

在Context Encoder上,改进了[1]中的方法,即用一个词位置嵌入来反映低i个词和entity mention得距离,可以减少attention层得偏差,从而使得特征更多得关心mention而不是context。最后用Bi-LSTM和self-attentive encoder得到context representation。

这篇文章提出了三层模型,就是用三种不同粒度的layer预测三种不同的标签。 模型损失函数是最小化节点间距离的方差,因为cosin作为距离在庞加莱圆盘中 也即是双曲空间中同样适用。

Model	Space	Coa	ırse	Fi	ne	Ultra	-fine	Coa + U		Varia	ation
	•	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1
MULTITASK	-	60.6	58.0	37.8	34.7	13.6	11.7	-	-	-	-
WORDNET	Hyper	45.9	44.3	22.5	21.5	7.0	6.7	41.8	37.2	-4.1	-7.1
WORDINET	Euclid	56.1	54.2	26.6	25.3	7.2	6.5	56.6	48.5	0.6	-5.7
WORDNET	Hyper	54.6	52.8	18.4	18.0	11.3	10.8	46.5	40.6	-8.0	-12.2
+ FREQ	Euclid	56.7	54.9	27.3	26.0	12.1	11.5	55.8	49.1	-0.9	-5.8
EREO	Hyper	56.5	54.6	26.8	25.7	16.0	15.2	59.7	53.5	3.2	-1.1
FREQ	Euclid	56.1	54.2	25.8	24.4	12.1	11.4	60.0	53.0	3.9	-1.3
DMI	Hyper	54.7	53.0	26.9	25.8	16.0	15.4	57.5	51.8	2.8	-1.2
PMI	Euclid	56.5	54.6	26.9	25.6	12.2	11.5	59.7	53.0	3.2	-1.5

⁽a) Results on the same three granularities analyzed by Choi et al. (2018).

模型测试了四个具有层级结构的数据集上的最细粒度表现,在双曲空间上的模型,经过特征上的调整,网络结构的调整,在MaF1和MiF1两个指标,FREQ(type co-occurrence frequency)和PMI(pointwise mutual information)都好于原来的工作MULTITASK以及欧几里得空间上的测试。

但是在另外两个粒度上,表现并没有明显的提升,作者认为是模型的回归有问题,1998个实例中仅有1318个fine的标签,Ultra-fine有7511个,Coarse也有1904个

Split	Coarse	Fine	Ultra-fine
Train	2,416,593	4,146,143	3,997,318
Dev	1,918	1,289	7,594
Test	1,904	1,318	7,511

模型在表(b)合并了粗粒度和最细粒度,发现双曲空间MaF1改善,MiF1反而下降。

⁽b) Comparison to previous *coarse* results.

2 Web Data Mining

这本书是刘兵写的,其个人主页<u>个人主页</u>和<u>书籍主页</u>(第二版)。 该书两个版本差别主要在11.12章,体现在观点挖掘上。

现在正在看前五章基础内容,目前大概以每天五到六页,大概两到三个算法的速度进行学习,目前进度到了第三章用类联系规则进行分类。在看的过程中,自己逐渐从看理论,到尽可能实现代码或者参考相关代码,来加深各个算法的理解,通过看效果也更容易明白。

3 NLP基础知识

4 达观杯

前段时间搜索了一个比赛, 想要在比赛场景下, 快速成长一下, 但是......

这个比赛是关于命名实体分类的比赛,官方给的CRF++,我测试官方模型效果不是很好。CRF主要关注整体的影响。

不过,看群里同学们有用BiLSTM + CRF这个方案,我稍微学习了一下,还没有进行测试。

还有同学分享了一个BERT的使用,本来自己想尝试用会议上新出的RoBert,即具有鲁棒特性的Bert,但是训练时间感觉要很久,20hours可能还不够。我打算先把一些参数的利弊分清,再去做测试。

这个比赛也是我之所以想学习一下前面两篇COMET以及实体分类的原因,想试试能不能用新模型方法做一下这个实验。

4 Github: https://github.com/RelativeWang/word2vec-study

目录

- 语料预处理
 - 。环境
 - 。下载语料包
 - 。 解压
 - 。 繁体转简体
 - 删除非中文字符
 - 。分词
 - 。 测试截图
- 训练模型
 - Word2Vec
 - 环境
 - 过程
 - Glove
 - FastText
- 测试
 - 。环境
 - 相似度测试
 - 。 类比测试
 - 通过类比测试看一些变化
 - 。可视化
 - PCA二维
 - PCA三维
- 参考&感谢

整理了Github,更加系统清晰,主要是将一些词向量可视化的内容加入进去,给词向量降维,观察词之间的关系。左侧是整理完后的目录。