Implementing Fast Multipole Methods with High Level Interpreted Languages

Srinath Kailasa

Department of Physics & Astronomy University College London

September 8, 2020

Fast Multipole Methods (FMMs)

PyExaFMM

Research Context

Fast Multipole Methods (FMMs)
Motivation
Analytic FMM
Kernel Independent FMM

PyExaFMM

Research Context

Motivation

Analytic FMM

Kernel Independent FMM

Fast Multipole Methods (FMMs)

PyExaFMM Motivation Goals Outcomes

Research Context

Motivation

[1]

Goals

Outcomes

Fast Multipole Methods (FMMs)

PyExaFMM

Research Context Modern Architectures Low-Rank Compression

Modern Architectures

Low-Rank Compression

References I

L Greengard and V Rokhlin.

A fast algorithm for particle simulations.

Journal of Computational Physics, 73(2):325 – 348, 1987.

