- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

Ejemplo 1: Mapa de ciudades

Ciudades conectadas por Rutas

Ejemplo 2: Pre-requisitos de un curso

Ejemplo 3: Redes sociales

Personas conectadas en una red social

Ejemplo 4: red de pases de un partido de fútbol

Red de pases para el Barcelona y el AC Milan de un partido de Liga de Campeones. Las flechas más oscuras y gruesas indican más pases entre cada jugador.

Terminología (1 de 9)

- \square *Grafo* \rightarrow *es una estructura de datos no lineal que consiste de un conjunto finito de vértices y un conjunto finito de aristas.*
- ☐ **Grafo**: Un grafo es un par de conjuntos (V,E), donde V es un conjunto de vértices o nodos y E es un conjunto de pares (u,v), u,v \in V, llamados aristas o arcos.
- ☐ Grafo dirigido: la relación sobre V no es simétrica. Arista \equiv par ordenado (u,v).
- ☐ Grafo no dirigido: la relación sobre V es simétrica. Arista = par no ordenado $\{u,v\}$, $u,v \in V$ y $u \neq v$.

Terminología (2 de 9)

Ejemplos

Grafo dirigido G(V,E)

$$V = \{C,D,E,F,H\}$$

 $E = \{(C,D),(D,F),(E,C),(E,H),(H,E)\}$

Grafo no dirigido G(V,E)

$$V = \{2,3,5,7,9\}$$

$$E = \{\{2,3\},\{2,7\},\{2,9\},\{3,9\},\{5,7\},\{5,9\}\}$$

Dado un grafo G(V,E), v es **adyacente** a u si existe una arista $(u,v) \in E$:

- en un grafo dirigido, $(u,v) \in E$, parte de u e incide en v, $u \rightarrow v$
- en un grafo no dirigido, $\{u,v\} \in E$, incide en los nodos u, v.

GrafosTerminología (3 de 9)

Grado

- ☐ En grafos no dirigidos:
 - El **grado** de un nodo: número de arcos que inciden en él; es el número de vértices adyacentes
- ☐ En grafos dirigidos:
 - existen el grado de salida (outdegree) y el grado de entrada (indegree).
 - ☐ el outdegree es el número de arcos que parten de él y
 - ☐ el **indegree** es el número de arcos que inciden en él.
 - El grado del vértice será la suma de los grados de entrada y de salida.
- Grado de un grafo: máximo grado de sus vértices.

Terminología (4 de 9)

Camino desde $u \in V$ a $v \in V$: secuencia $v_1, v_2, ..., v_k$ tal que $u = v_1, v = v_k, y(v_{i-1}, v_i) \in E$, para i = 2, ..., k.

Camino desde \boldsymbol{a} a $\boldsymbol{d} \rightarrow \langle a,b,e,c,d \rangle$ camino desde \boldsymbol{a} a $\boldsymbol{d} \rightarrow \langle a,b,e,f,b,e,c,d \rangle$

□ Longitud de un camino: número de arcos del camino.

Ejemplos: long. del camino (a) desde \mathbf{a} a $\mathbf{d} \rightarrow 4$ long. del camino (b) desde \mathbf{a} a $\mathbf{d} \rightarrow 7$

Terminología (5 de 9)

Camino simple: camino en el que todos sus vértices son distintos -excepto para caminos que son ciclo, donde el primero y el último son iguales-. P1 es un camino simple desde U a Z.

Ejemplos anteriores: (a) es camino simple, (b) no lo es.

Terminología (6 de 9)

 \square Ciclo: camino desde v_1, v_2, \dots, v_k tal que $v_1 = v_k$

Ej: <2,5,4,2> *es un ciclo de longitud 3*.

El ciclo es simple si el camino es simple.

☐ Bucle: ciclo de longitud 1.

Terminología (7 de 9)

Dado un grafo G=(V, E), se dice que G'=(V', E') es un **subgrafo** de G, si $V'\subseteq V$ y $E'\subseteq E$.

Terminología (8 de 9)

Un subgrafo inducido por $V' \subseteq V:G' = (V',E')$ tal que $E' = \{(u,v) \in E \mid u,v \in V'\}.$

Dado subconjunto de vértices $S' \subseteq S$, el subgrafo inducido por S', es el grafo que tiene como conjunto de vértices a S' y como conjunto de aristas a todas las aristas de G cuyos dos extremos están en S'

GrafosTerminología (9 de 9)

□En un grafo **ponderado, pesado o con costos**, cada arco o arista tiene asociado un valor o etiqueta

Conectividad (1 de 3)

Un grafo no dirigido es **conexo** si hay un camino entre cada par de vértices.

Conexo

No Conexo

Conectividad (2 de 3)

- Un bosque es un grafo sin ciclos.
- Un árbol libre es un grafo sin ciclo y conexo.
- Un **árbol** es un grafo conexo y sin ciclo en el que un nodo se ha designado como raíz.

Conectividad (2 de 3)

Sea G un grafo no dirigido con n vértices y m arcos, entonces:

$$\sum_{v \in G} grado(v) = 2*m$$

y siempre: $m \le (n*(n-1))/2$

Si G es un árbol: m=n-1

Si G es conexo: m≥n-1

Si G es un bosque: m≤n-1

Componentes conexas

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga. Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.

Componentes conexas

En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga. Es un subgrafo conexo maximal.

Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.

Conectividad

- U v es alcanzable desde u, si existe un camino de u a v.
- ☐ Un grafo dirigido se denomina **fuertemente conexo** si existe un camino desde cualquier vértice a cualquier otro vértice del grafo.

Fuertemente Conexo

No Fuertemente Conexo Débilmente Conexo

☐ Si un grafo dirigido no es fuertemente conexo, pero el grafo subyacente (sin sentido en los arcos) es conexo, el grafo es **débilmente conexo**.

Componentes Conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

No Fuertemente Conexo

Fuertemente Conexo

Componentes Conexas

En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

No Fuertemente Conexo

Fuertemente Conexo

Componentes Conexas

En un grafo dirigido, una **componente fuertemente conexa**, es el máximo subgrafo fuertemente conexo.

Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

No Fuertemente Conexo

Fuertemente Conexo

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos

Agenda - Grafos

- Representaciones
 - Matriz de Adyacencias
 - Lista de Adyacencias

Representaciones Matriz de Adyacencias

- G = (V, E): matriz A de dimensión $|V| \times |V|$.
- \square Valor a_{ij} de la matriz:

$$a_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{en cualquier otro caso} \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5 6	0	0	0	1	0	0
6	0	0	0	0	0	1

Representaciones Matriz de Adyacencias

 \square Costo espacial: $O(|V|^2)$

- □ Representación es útil para grafos con un número de vértices pequeño, o grafos densos $(|E|\approx|V|\times|V|)$
- □ Comprobar si una arista (u,v) pertenece a $E \rightarrow$ consultar posición A(u,v)

Costo de tiempo: T(|V|, |E|) = O(1)

Representaciones Matriz de Adyacencias

- Representación aplicada a Grafos pesados
- □ El peso de (i,j) se almacena en A (i, j)

$$a_{ij} = \begin{cases} w(i,j) & \text{si } (i,j) \in E \\ 0 & o \infty \end{cases}$$
 en cualquier otro caso

	1	2	3	4	5	6
1	0	10	0	8	0	0
2	0	0	0	0	7	0
3	0	0	0	0	-1	15
4	0	12	0	0	0	0
5	0	0	0	9	0	0
6	0	0	0	0	0	9

Representaciones Lista de Adyacencias

 $\square G = (V,E)$: vector de tamaño |V|

 \square En la posición **i** de $V \rightarrow$ referencia a una lista enlazada de elementos (lista de adyacencia)

Los elementos de la lista representan los vértices adyacentes al vértice que está en **i**

Representaciones Lista de Adyacencias

 \square Si G es dirigido, la suma de las longitudes de las listas de adyacencia será |E|

 \square Si G es no dirigido, la suma de las longitudes de las listas de adyacencia será 2|E|.

 $\square Costo espacial: O(|V|+|E|)$ -sea dirigido o no-

 \square Representación apropiada para grafos con |E| menor que $|V|^2$.

Desventaja: si se quiere comprobar si una arista (u,v) pertenece $aE \Rightarrow buscar v$ en la lista de adyacencia de u.

Costo de tiempo: T(|V|, |E|) será $O(Grado G) \subseteq O(|V|)$

Representaciones Lista de Adyacencias

□Representación aplicada a Grafos pesados

□El **peso de (u,v)** se almacena en la lista de adyacencia de **u**.

El señor H es un guía de turismo de la ciudad de Buenos Aires. Su trabajo consiste en mostrar a grupos de turistas diferentes **puntos de interés** de la ciudad.

Estos puntos de interés están **conectados por rutas en ambos sentidos**. Dos puntos de interés vecinos tienen un servicio de bus que los conecta, con una limitación en el **número máximo de pasajeros** que puede transportar. No es siempre posible para el señor H transportar de una única vez a todos los turistas a un destino en particular.

Por ejemplo, consideremos el siguiente mapa con 7 puntos de interés, donde las aristas representan las rutas y el peso de ellas representa el límite máximo de pasajeros a transportar por el servicio de bus. Su misión es indicarle al Sr. H cuál es el menor número de viajes que deberá realizar para llevar al grupo de turistas de un origen a un destino.

El señor H es un guía de turismo de la ciudad de Buenos Aires. Su trabajo consiste en mostrar a grupos de turistas diferentes **puntos de interés** de la ciudad.

Estos puntos de interés están **conectados por rutas en ambos sentidos**. Dos puntos de interés vecinos tienen un servicio de bus que los conecta, con una limitación en el **número máximo de pasajeros** que puede transportar. No es siempre posible para el señor H transportar de una única vez a todos los turistas a un destino en particular.

Por ejemplo, consideremos el siguiente mapa con 7 puntos de interés, donde las aristas representan las rutas y el peso de ellas representa el límite máximo de pasajeros (capacidad del ómnibus). Su misión es indicarle al Sr. H qué camino debe tomar para llevar un grupo de turistas de un origen a un destino y haciendo el menor número de viajes.

Supongamos que el señor H debe transportar a **99 turistas** del punto **1** al punto **7**. Cuáles son los recorridos posibles? Cuál implica realizar el menor número de viajes?

Puntos de interés			nter	és	Cant turistas x viaje	Cant. viajes	
1	2	4	3	6	7	20	6
1	2	4	7			25	5
1	2	5	7			20	6
1	3	4	2	5	7	15	8
1	3	4	7			15	8
1	3	6	7			15	8
1	4	2	5	7		10	11
1	4	3	6	7		10	11
1	4	7				10	11

Puntos de interés			nter	és	Cant turistas x viaje	Cant. viajes	
1	2	4	3	6	7	20	6
1	2	4	7			25	5
1	2	5	7			20	6
1	3	4	2	5	7	15	8
1	3	4	7			15	8
1	3	6	7			15	8
1	4	2	5	7		10	11
1	4	3	6	7		10	11
1	4	7				10	11

Entonces, para transportar a los 99 turistas del punto 1 al punto 7, se necesitarán 5 viajes, eligiendo la ruta: $1 \rightarrow 2 \rightarrow 4 \rightarrow 7$

Recorrido en profundidad: DFS

Generalización del recorrido preorden de un árbol

Estrategia:

- Partir de un vértice determinado v.
- Cuando se visita un nuevo vértice, explorar cada camino que salga de él
- Hasta que no se haya finalizado de explorar uno de los caminos no se comienza con el siguiente
- Un camino deja de explorarse cuando se llega a un vértice ya visitado -o sin adyacentes-.
- Si existían vértices no alcanzables desde v el recorrido queda incompleto; entonces, se debe seleccionar algún vértice como nuevo vértice de partida, y repetir el proceso.

Recorrido en profundidad: DFS

Si tomamos como vértice de partida a D

Se Muestra:

DCRHTAB

Recorrido en profundidad: DFS

Esquema recursivo: dado G = (V, E)

- 1. Marcar todos los vértices como no visitados.
- 2. Elegir vértice **u** como punto de partida.
- 3. Marcar **u** como visitado.
- 4. \forall v advacente a u,(u,v) \in E, si v no ha sido visitado, repetir recursivamente (3) y (4) para v.
- Finalizar cuando se hayan visitado todos los nodos alcanzables desde u.
- Si desde **u** no fueran alcanzables todos los nodos del grafo: volver a (2), elegir un nuevo vértice de partida **v** no visitado, y repetir el proceso hasta que se hayan recorrido todos los vértices.

Recorrido en profundidad: DFS

```
dfs (grafo)
  inicializar marca en false (arreglo de booleanos);
  para cada vértice v del grafo
       si v no está visitado
       dfs(v);
dfs (v: vértice)
  marca[v]:= visitado;
  para cada nodo w adyacente a v
         si w no está visitado
         dfs(w);
```

Recorrido DFS: Tiempo de ejecución

- □ El método dfs(v) se aplica únicamente sobre vértices no visitados
 → sólo una vez sobre cada vértice.
- □ **dfs(v)** depende del número de vértices adyacentes que tenga (longitud de la lista de adyacencia).
 - \rightarrow el tiempo de todas las llamadas a **dfs(v)**: O(|E|)
- \square añadir el tiempo asociado al bucle de main_dfs(grafo): O(|V|)
 - \Rightarrow Tiempo del recorrido en profundidad es O(|V|+|E|).

Recorrido en amplitud: BFS

→ Generalización del recorrido por niveles de un árbol.

Estrategia:

- Partir de algún vértice **u**, visitar **u** y, después, visitar cada uno de los vértices adyacentes a **u**.
- Repetir el proceso para cada nodo adyacente a **u**, siguiendo el orden en que fueron visitados.

Recorrido en amplitud: BFS

Si tomamos como vértice de partida a D

Se Muestra:

DCHBRTA

Cola:

DCHBRTA

Recorrido en amplitud: BFS

Esquema iterativo: dado G = (V, E)

- 1. Encolar el vértice origen u.
- 2. Marcar el vértice u como visitado.
- 3. Desencolar u de la cola
- 4. \forall adyacente a $u,(u,v) \in E$, si v no ha sido visitado encolar y visitar v

Si desde **u** no fueran alcanzables todos los nodos del grafo: volver a (1), elegir un nuevo vértice de partida no visitado, y repetir el proceso hasta que se hayan recorrido todos los vértices

Costo T(|V|, |E|) es de O(|V| + |E|)