Form 4: Results and conclusion

- 1. Team Number: 20
- 2. Project Title: Multi-Modal Assistive System for people with disabilities
- **3. Experiment Environment:** The platform employed for the creation and execution of the code in visual studio code, google colab, jupyter notebook. Flask, HTML, CSS and JavaScript has been used in the creation of the web interface.

Libraries Used: Flask, SQLAlchemy, Tensorflow, speech_recognition, keras,gtts, pillow, pytesseract.

4. Parameters:

1. Sign language translation:

- 1. The feature extraction in TSM is calculated with the following equation: $Ht = \sum j \sum kWi[j,k]At[a-j,a-k] \setminus$
- 2. The feature map Z in TSM is calculated with Equation:

 $:Z=Ht+Ht+1=\sum j\sum kWA[j,k]At[a-j,a-k]+WB[j,k]At+1[a-j,a-k]3$. The feature map Y in TSM is calculated with Equation

(3): $Y = OutputTSM = \sum l = 1c - lZi \& \sum c - lcHt$

2. Visual Question Answering on Images:

- 1.Learning rate decay: $w_i^{(t+1)} w_i^{(t)} \alpha^* \nabla L(w) / \nabla w_i^{(t)}$
- 2.Adam optimizer: $w_{t+1} = w_t \alpha * m_t / (\sqrt{v_t + \epsilon})$

3.OCR- powered image-to-speech and speech-to-text:

- 1.Kernel Function : $f(x) = sgn(X \mid i=1 \text{ aiyi}K(xi, x) + b)$
- 2. Finding the probability of nearest sample : $p(y|q) = P k \in K Wk .1(ky=y)/P k$

5. a) Experiment 1:

I. Visual question and answering

Input: Image, String.

Output: String generated by VQA model

Experiment Analysis:

	Existing Method	Proposed Method
Accuracy	58%	61%

Graph:

Findings: The proposed method has highest accuracy with best confidence.

II. Text/Speech to Sign:

Input: String.

Output: A video consisting sign language

Experiment Analysis:

	Existing Method	Proposed Method
Completeness	80%	100%
Time	2 sec	1 sec

Graph:

Findings: The proposed method is both completeness and time efficient compared to existing system

III. Image to Speech:

Input: Image consisting of written or typed text.

Output: Audio consisting of recognized text from image.

Experiment Analysis:

	Existing Method	Proposed Method
Accuracy	75%	80%

Graph:

Findings: The proposed method accuracy is increased as we used Pre-processing the Input Image and combination of pytesseract with deep learning for text recognition.

4. Parameter comparison table

Parameter	Previous methods	Proposed method
Accuracy (VQA)	In the previously used	The accuracy is increased
	method, the accuracy is	as we used transformers
	low	with customized learning
		rate and regularization
Accuracy (image to speech)	In the previously used	The accuracy is increased
	method, the accuracy is low	as we used Pre-processing
		the Input Image
		combination of pytesseract
		with deep learning for text
		recognition
Time	In the previously used	The generation time of
	method, the generation time	video is fast as we load the
	of video is low	videos from the existence
Completeness	In the previously used	Our method can
	method, for some	completely generate any
	sentences they could not	sign video for any
	generate the complete	sentence as we generate
	sign representation	video by combining the
		individual letters or
		words of the sign
		representations

5. Final Conclusion Statements:

In summary, the project integrates visual question answering, sign language recognition, and text/image-to-speech conversion to enhance accessibility for individuals with visual and auditory impairments. Compared with existing systems, notable improvements in accuracy have been achieved across individual advancement holds promise for modules. This communication barriers and improving the overall user experience for the blind and deaf community. Moving forward, continued refinement and optimization of these technologies are essential to furthering accessibility standards and empowering individuals with disabilities to participate more fully in society.

> Signature Supervisor G. Kiran Kumar (Asst Professor)