

CLAIM AMENDMENTS

Claim 1 (original). A polybenzoxazole precursor comprising a partial structure selected from the group consisting of

wherein each of A¹ to A⁷ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃;

T is a residue selected from the group consisting of

wherein each of A⁸ to A²¹ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃;

or

wherein X is selected from the group consisting of -CH₂-, -CF₂-, -C(CH₃)₂-, -C(CF₃)₂-, -C(OCH₃)₂-, -C(OCF₃)₂-, -

) C(CH₃)(C₆H₅)-, -C(C₆H₅)₂-, -O-, -(NH)-, -(N-CH₃)- and -(N-C₆H₅)-;

8

or

9

wherein M is selected from the group consisting of residues represented by formulas 10-14

12

14

or

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

15

16

17

18

19

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

Claim 2 (original). The polybenzoxazole precursor of claim 1, further comprising at least one acetylene group.

)
Claim 3 (original). The polybenzoxazole precursor of
claim 2, wherein said acetylene group is present in the
main chain.

Claim 4 (original). The polybenzoxazole precursor of
claim 2, wherein said acetylene group is present in a side
chain.

Claim 5 (original). The polybenzoxazole precursor of
claim 2, wherein said acetylene group is present in a
chain terminating group.

Claim 6 (original). The polybenzoxazole precursor of
claim 2, wherein said acetylene group is present in the
residue of a carboxylic acid selected from the group
consisting of

35

36

37

and

38

) Claim 7 (original). A photoresist solution, comprising a polybenzoxazole precursor of claim 1, a diazoketone photoactive component, and an organic solvent.

Claim 8 (original). The photoresist solution of claim 7, wherein the weight ratio of polybenzoxazole precursor to diazoketone is in the range from 1:20 to 20:1.

Claim 9 (original). The photoresist solution of claim 8, wherein a weight ratio of polybenzoxazole precursor to diazoketone is in a range from 1:10 to 10:1

Claim 10 (currently amended). A polybenzoxazole containing a partial structure selected from the group consisting of

wherein each of A¹ to A⁷ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃; and

) T is a residue selected from the group consisting of the residues represented by the following formulas 5-34 defined above

wherein each of A⁸ to A²¹ is a univalent substituent
independently selected from the group consisting of H, F,
CH₃, CF₃, OCH₃ and OCF₃;

or

wherein X is selected from the group consisting of -CH₂-,
-CF₂-, -C(CH₃)₂-, -C(CF₃)₂-, -C(OCH₃)₂-, -C(OCF₃)₂-,
C(CH₃)(C₆H₅)-, -C(C₆H₅)₂-, -O-, -(NH)-, -(N-CH₃)- and -(N-
C₆H₅)-;

or

wherein M is selected from the group consisting of
residues represented by formulas 10-14

or

in which Q is selected from the group consisting of C-H,
C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCF₃ and N,

) and residues represented by formulas 15-34 shown below:

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

Claim 11 (currently amended). The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A¹ to A³ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃; and

T is a residue selected from the group consisting of the residues represented by the following formulas 5-34 defined above

wherein each of A⁸ to A²¹ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃;

or

wherein X is selected from the group consisting of -CH₂-,
-CF₂-, -C(CH₃)₂-, -C(CF₃)₂-, -C(OCH₃)₂-, -C(OCF₃)₂-, -C(CH₃)(C₆H₅)-,
-C(C₆H₅)₂-, -O-, -(NH)-, -(N-CH₃)- and -(N-C₆H₅)-;

8

or

wherein M is selected from the group consisting of residues represented by formulas 10-14

or

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

15

16

wherein Q is defined as above, provided that at least one
Q signifies N and a maximum of two N atoms are present per
ring.

Claim 12 (currently amended). The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A¹ to A⁷ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCFC₃; and

T is a residue selected from the group consisting of the residues represented by the following formulas 5-34 defined above

wherein each of A⁸ to A²¹ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCFC₃;

or

wherein X is selected from the group consisting of -CH₂-,-CF₂-,-C(CH₃)₂-,-C(CF₃)₂-,-C(OCH₃)₂-,-C(OCFC₃)₂-,-

C(CH₃)(C₆H₅)-, -C(C₆H₅)₂-, -O-, -(NH)-, -(N-CH₃)- and -(N-C₆H₅)-;

8

or

wherein M is selected from the group consisting of residues represented by formulas 10-14

14

or

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCE₃ and N,

and residues represented by formulas 15-34 shown below:

15

16

17

18

19

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

) Claim 13 (original). The polybenzoxazole precursor of claim 1, wherein each of A¹ to A⁷ is H.

) Claim 14 (original). The polybenzoxazole precursor of
claim 1, wherein T is

8

in which each Q is CH and M is

11

) Claim 15 (original). The polybenzoxazole precursor of
claim 1, wherein T is

8

in which each Q is CH and M is

16

) Claim 16 (original). The polybenzoxazole precursor of
claim 1, wherein T is

23

-16-

) in which Q in each outside ring is N and each Q in the middle ring is CH.

Claim 17 (original). The polybenzoxazole precursor of claim 1, wherein T is

5

in which six of the substituents A⁸ to A²¹ are CH₃ and the remainder of the substituents A⁸ to A²¹ are H.

Claim 18 (original). The polybenzoxazole precursor of claim 5, wherein said chain terminating group is a residue of

36

) Claim 19 (original). The polybenzoxazole precursor of claim 18, wherein T is

8

in which each Q is CH and M is

)

11

Claim 20 (original). A process for preparing a polybenzoxazole precursor containing a partial structure selected from the group consisting of

3

4

wherein each of A¹ to A⁷ and T are as defined above, comprising the steps of

providing at least one reactant selected from the group consisting of bis-o-aminophenols and o-aminophenolcarboxylic acids,

causing the reactant to react with at least one dicarboxylic acid compound,

) mixing the reaction mixture with a precipitating agent to precipitate a solid polybenzoxazole precursor,

and isolating the polybenzoxazole precursor from the reaction mixture.