ECE430.217 Data Structures

Heap sort

Textbook: Weiss Chapter 7.5, Chapter 7.8

Byoungyoung Lee

https://compsec.snu.ac.kr

byoungyoung@snu.ac.kr

Outline

This topic covers the simplest $\Theta(n \ln(n))$ sorting algorithm: *heap sort*

We will:

- define the strategy
- analyze the run time
- convert an unsorted list into a heap
- cover some examples

Bonus: in-place sorting

Heap Sort

- Let's use min-heap to implement sorting
 - Inserting *n* objects into a min-heap first
 - Then popping *n* objects will pop in sorted order
- Heap sort strategy
 - Given an unsorted list with n objects, place them into a heap, and take them out

Run time Analysis of Heap Sort

Taking an object out of a heap with n items requires $O(\ln(n))$ time Therefore, taking n objects out requires

$$\sum_{k=1}^{n} \ln(k) = \ln\left(\prod_{k=1}^{n} k\right) = \ln(n!)$$

Q. What is the asymptotic bound of ln(n!)?

Let's step back, and think about the runtime of generic sorting algorithms

- A decision tree
 - Abstract representation of any comparison-based sorting algorithm
 - A decision tree is a binary tree

Each node represents a set of possible ordering

Each edge represents a comparison operation

The right shows the decision tree

for three-element sort (i.e., a, b, and c)

a < b < c

a < c < b b < a < c b < c < a

A decision tree

- Any comparison-based sorting algorithm can be represented with the decision tree
- The depth of a leaf node
 - The number of comparisons to sort
- Worst case: the maximum depth of leaves
- Average case: the average depth of leaves

a < b < c

- Lemma (7.1, Weiss p.324)
 - Let T be a binary tree of depth d. Then T has at most 2^d leaves
- Proof by induction
 - Base case
 - If d = 0, there's at most one leaf, which is true
 - Inductive step
 - Suppose T has two subtrees and the depth of T is d
 - T must have two subtrees, where the depth of each subtree is at most d-1
 - Assuming the induction hypothesis is true for d-1, each subtree has at most 2^{d-1} leaves
 - T has at most 2^d leaves, which proves the lemma.

Lemma (7.2)

- A binary tree with L leaves must have depth at least [log L]
- Proof
 - Easy to proof based on Lemma 7.1

Theorem (7.6)

- Any sorting algorithm that uses only comparisons requires at least $\lceil \log(N!) \rceil$ comparisons in the worst case
- Proof: A decision tree to sort N elements must have N! leaves
 - Q. why does the decision tree have N! leaves?

Theorem (7.7)

- Any sorting algorithm that uses only comparisons requires [NlogN] comparisons
- Proof

•
$$Log(N!) = log\{N(N-1)(N-2)\cdots(1)\}$$

 $= logN + log(N-1) + log(N-2) + \cdots + log1$
 $\geq logN + log(N-1) + log(N-2) + \cdots + log(\frac{N}{2})$
 $\geq \frac{N}{2}log(\frac{N}{2})$
 $\geq \frac{N}{2}logN - \frac{N}{2}$
 $= \Omega(NlogN)$

Recall:
$$f(n) = \mathbf{O}(g(n)) \iff g(n) = \mathbf{\Omega}(f(n))$$

HeapSort: In-place Implementation

Problem:

- The original heap sort solution was out-of-place sorting
- It requires additional memory, a min-heap of size n
- This requires $\Theta(n)$ memory and is therefore not in place

Is it possible to perform a heap sort in-place?

- using at most $\Theta(1)$ memory (a few extra variables)

In-place Implementation

Instead of implementing a min-heap, consider a max-heap:

 A heap where the maximum element is at the top of the heap and the next to be popped

In-place Heapification

Now, consider this unsorted array:

This array represents the following complete tree:

This is neither a min-heap, max-heap, or binary search tree

Goal: In-place conversion of this complete tree into a max heap

In-place Heapification: Two strategies

Two strategies:

Top-down

- Assume 46 alone is a max-heap
- Keep inserting the next element into the existing heap
- Similar to the strategy for insertion sort

Bottom-up

- Assume all leaf nodes are already max heaps
- Make corrections so that previous nodes also form max heaps

Let's work bottom-up: each leaf node is a max heap on its own

Each leaf node alone is a trivial max-heap, so we don't do any.

Then we move up one level.

The subtree with 87 as the root is a max-heap

The subtree with 23 is not a max-heap, but swapping it with 55 creates a max-heap

This process is termed percolating down

The subtree with 3 as the root is not max-heap, but we can swap 3 and the maximum of its children: 86

Starting with the next higher level, the subtree with root 48 can be turned into a max-heap by swapping 48 and 99

Similarly, swapping 61 and 95 creates a max-heap of the next subtree

As does swapping 35 and 92

The subtree with root 24 may be converted into a max-heap by first swapping 24 and 86 and then swapping 24 and 28

The right-most subtree of the next higher level may be turned into a max-heap by swapping 77 and 99

However, to turn the next subtree into a max-heap requires that 13 be percolated down to a leaf node

The root need only be percolated down by two levels

The final product is a max-heap

Run-time Analysis: Bottom-up Heapify

Considering a perfect tree of height *h*:

 The maximum number of swaps which a second-lowest level would experience is 1, the next higher level, 2, and so on

Run-time Analysis: Bottom-up Heapify

- At depth k
 - There are at most 2^k nodes
 - Nodes at depth k percolate down at most h k levels
 - In the worst case, this requires a total of $2^k(h-k)$ swaps
- Writing this sum mathematically, we get:

$$\sum_{k=0}^{h} 2^{k} (h-k) = (2^{h+1} - 1) - (h+1)$$

Recall that for a perfect tree

-
$$n = 2^{h+1} - 1$$
 and $h + 1 = \lg(n+1)$

$$\sum_{k=0}^{h} 2^{k} (h - k) = n - \lg(n+1) = \Theta(n)$$

• So bottom-up heapify takes $\Theta(n)$

Runtime Analysis of Heap Sort

- 1. Heapification runs in $\Theta(n)$
- 2. Popping n items from a heap of size n, runs in $\Theta(n \ln(n))$ time

So the total algorithm will run in $\Theta(n \ln(n))$ time

Run-time Summary

The following table summarizes the run-times of heap sort

Case	Run Time	Comments
Worst	$\Theta(n \ln(n))$	No worst case
Average	$\Theta(n \ln(n))$	
Best	$\Theta(n \ln(n))$	No best case

Summary

We have seen our first in-place $\Theta(n \ln(n))$ sorting algorithm:

- Convert the unsorted list into a max-heap as complete array
- Pop the top n times and place that object into the vacancy at the end
- It requires $\Theta(1)$ additional memory—it is truly in-place

It is a nice algorithm; however, we will see two other $n \ln(n)$ algorithms;

- Merge sort requires $\Theta(n)$ additional memory
- Quick sort requires $\Theta(\ln(n))$ additional memory

References

Wikipedia, http://en.wikipedia.org/wiki/Heapsort

- [1] Donald E. Knuth, *The Art of Computer Programming, Volume 3:* Sorting and Searching, 2nd Ed., Addison Wesley, 1998, §5.2.3, p.144-8.
- [2] Cormen, Leiserson, and Rivest, *Introduction to Algorithms*, McGraw Hill, 1990, Ch. 7, p.140-9.
- [3] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §7.5, p.270-4.