4.7 1^{re} preuve

$$u_1 = u_1$$

 $u_2 = u_1 + r$
 $u_3 = u_2 + r$
 $u_4 = u_3 + r$
...
 $u_n = u_{n-1} + r$

L'addition de toutes ces équations donne

$$u_1 + u_2 + u_3 + u_4 + \ldots + u_n = u_1 + u_1 + u_2 + u_3 + \ldots + u_{n-1} + (n-1)r$$
 de sorte que $u_n = u_1 + (n-1)r$.

2^e preuve

Montrons la formule $u_n = u_1 + (n-1)r$ par récurrence.

Initialisation : si
$$n = 1$$
, l'égalité $u_1 = u_1 + \underbrace{(1-1)r}_0$ est évidente.

Hérédité : supposons la formule
$$u_n = u_1 + (n-1)r$$
 vraie pour $n \in \mathbb{N}$. $u_{n+1} = u_n + r = u_1 + (n-1)r + r = u_1 + ((n-1)+1)r = u_1 + nr$