마이크로프로세서응용시스템 제안서 발표

누비호

4조 2020099052 김재영 2020063063 김민우 2020028659 이상훈

CONTENTS

1.문제 인식 배경

2.구현 목표

3.예상되는 어려움

4.구매 예정 물품

5.추후 계획

01 문제 인식 배경

산불의 피해

- 산림 피해 면적: 총 10만 4,000헥타르로 잠정 집계되었으며, 이는 서울시 면적의 약 1.7배에 해당
- 인명 피해: 사망자 30명, 부상자 45명 등 총 75명의 인명 피해가 발생
- 이재민: 약 3만 3,000명이 대피하였으며, 이 중 8,000여 명은 아직 귀가하지 못한 상태
- 문화재 피해: 7세기 창건된 고운사 등 다수의 문화재가 피해

문제 인식 배경

산악지형 접근성

산악 지형은 접근이 어려워 인력을 투입하기 힘들고, 이로 인해 진화 작업의 속도가 늦어지는 경우가 많다.

헬기 사용시 문제점

바람이 불 경우, 헬기가 뿌리는 물이 바람에 흩어져 진화 효과가 떨어지고, 헬기에서 발생하는 바람이 오히려 불길을 더 빠르게 확산시킬 수 있다.

누비호의 필요성

필요에 따라 지상과 공중을 모두 다닐 수 있는 누비호는, 헬기의 한계를 보완하고 정확하고 지속적인 진화 작업이 가능한 대안이 될 수 있다.

02 구현목표

구현 목표

육공 양용 기능

하늘 날 때의 모습

지상을 다닐 때의 모습

구현 목표

소방 기능

카메라를 통해 사물 이미지 인식 WI-FI를 통해 컴퓨 터로 송신 컴퓨터에서 이미지 판단 판단 결과 드론으로 송신 불로 판단 후 경고 음과 물 분사

WI-FI 사용 이유

- 이미지 분석을 컴퓨터에서 수행
- 라즈베리파이에서 직접 이미지를 판단하려 했으나, 처리 속도 가 느려 실시간 분석에는 적합하지 않다고 판단

03 예상되는 어려움

예상되는 어려움

기계 설계의 복잡성

• 프로펠러와 바퀴 간의 전환 시스템의 정밀한 기술이 필요

이미지 인식 기술

- 실제 원하는 이미지를 정확히 구분할 수 있는지 의문
- 데이터를 컴퓨터로 보내 컴퓨터가 판단할 수 있도록 계획

드론의 안정성 문제

- 공중에 떠서 움직일 수 있도록 모터 4개를 안정적으로 제 어하기 어렵다 생각
- 드론 모터 제어에 효과적인 추가 프로세서를 구성

환경 조건에 따른 안정성

- 다양한 환경의 영향을 받음
- 안정적인 실내에서 일단 구동 후 점차 보완

04 구매예정물품

구매 예정 물품 (1)

BLDC 모터

- 드론의 프로펠러와 바퀴 돌리는 역 할
- CW, CCW 각각 2개

Flight Controller

- 비행의 두뇌 역할
- 기본적인 자세 제어

멀티 변속기

• BLDC 모터의 회전 속도 제어

ESP32- 캠

- 카메라와 WiFi 통신 기능을 모두 갖 춘 소형 보드
- 드론에 붙여 실시간 영상 전송

구매 예정 물품 (2)

서보모터

- 양쪽 날개를 동시에 접을 수 있도록 구동
- 두 개를 사용하는 것은 무겁기 때문 에, 하나만으로 접을 수 있는 구조로 설계

리튬 이온 전지

• 전력을 공급하는 배터리

프로펠러

• 모터에 직접 연결되어 회전하며 날 개의 역할 수행

바퀴

• 기어박스를 통해 속도를 조절하여 하나의 모터로 지상과 공중 모두 주 행 가능

05 추후계획

📮 댓글 추가

육공 양용 드론

	Role	학번	연락처	메일
김민우	Object Detection, SubSystem	2020063063	010-2241-0780	werkm1214@hanyang.ac.kr
김재영	Motor Control(Land)	2020099052	010-4028-7178	jayok7172@naver.com
이상훈	Motor Control(Aero)	2020028659	010-9783-6650	akdrhaktapfhs1@gmail.com

⊙ 정기 회의 매주 목요일 17시
 □ 250425 회의록

 ● 관련 자료 및 문서

 ● 문서

 ※ 레퍼런스

추후 계획

Week	4/28 ~ 5/5	5/5 ~ 5/12	5/12 ~ 5/19	5/19 ~ 5/26	5/26 ~ 6/2	6/2 ~ 6/9	6/9 ~ 6/16
드론 하드웨어 구현							
모터 제어 (공중)							
모터 제어 (지상)							
소방 기능							
통합 및 테스트							
피드백							

Thank you