State Diagrams to State Tables

Michael Brodskiy

Professor: S. Shazli

March 1, 2023

- Traffic Light Controller
 - Traffic sensors (T_A, T_B) are true when there is traffic
 - The lights are denoted as L_A, L_B
 - Create an FSM "Black Box" with only inputs and outputs
 - * Inputs: Clock, Reset, T_A , T_B
 - * Outputs: L_A , L_B
 - FSM State Transition Diagram
 - * Moore FSM: Outputs labeled in each state
 - * States: Circles
 - * Transitions: Arcs
- Three-Cycles High Laser Timer
 - Four states
 - Wait in "off" state while b is 0 (b')
 - When b is 1 (and rising clock edge), transition to On1
 - * Sets x to 1
- Vending Machine
 - Releases item after 15 cents are deposited
 - Single coin slot for dimes, nickels
 - No change
 - Suitable Abstract representation
 - * Tabulate typical input sequence
 - · 3 nickels
 - · nickel, dime
 - · dime, nickel
 - \cdot two dimes
 - * Draw state diagram
 - · Inputs: N, D, reset
 - · Output Open chute
 - * Assumptions
 - · Assume N and D asserted for one cycle
 - · Each state has a self loop for N = D = 0 (no coin)
 - * To minimize number of states, reuse states when possible
 - * Also, always uniquely encode states
 - * Then use K-Maps to map to logic
- In summary, keep track of inputs and outputs, minimize number of states through reuse, and use K-Maps to map logic