Rolle's Theorem

Simple Definition: If a smooth curve starts and ends at the same height, there's at least one point in between where the curve is flat (horizontal tangent).

Rolle's Theorem: Overview

Definition

Rolle's theorem is a fundamental result in differential calculus that provides a condition under which there exists at least one point on a differentiable curve where the tangent is horizontal (slope = 0).

Statement

Let f(x) be a function that satisfies the following conditions:

- 1. **Continuous** on the closed interval [a, b].
- 2. **Differentiable** on the open interval (a, b).
- 3. f(a) = f(b) (i.e., the function has the same value at the endpoints).

Then, there exists at least one point $c \in (a,b)$ such that:

$$f'(c) = 0$$

In simple terms, if a function starts and ends at the same height and is smooth and continuous, then somewhere in between, its slope (derivative) must be zero.

Definition of Critical Points

Critical points of a function f(x) occur at x = c if:

- 1. f'(c) = 0 (the derivative is zero), or
- 2. f'(c) is undefined.

Critical points are where the function might have a local maximum, local minimum, or an inflection point.

How to Use Rolle's Theorem

- 1. Check the three conditions:
 - Continuity on [a, b].
 - Differentiability on (a, b).
 - Equal function values at the endpoints f(a) = f(b).
- 2. If all conditions are satisfied, find f'(x).
- 3. Solve f'(x) = 0 to find the value(s) of c within (a,b).

Example

Problem

Let $f(x)=x^2-4x+4$ on the interval [2,4]. Verify Rolle's theorem and find the value of c.

Solution

- 1. Check Conditions:
 - f(x) is a polynomial, so it is continuous and differentiable on any interval.

 \downarrow

- $f(2) = 2^2 4(2) + 4 = 0$, $f(4) = 4^2 4(4) + 4 = 0$.
- f(2) = f(4).

All conditions are satisfied.

2. Find f'(x):

$$f'(x)=2x-4$$
.

3. Solve f'(x) = 0:

$$2x - 4 = 0$$
.

$$x=2$$
.

Since $c=3\in(2,4)$, Rolle's theorem is verified, and the value of c is 3.

Example 1: Cubic Function

Verify Rolle's theorem for $f(x)=x^3-3x^2+2x$ on [0,2].

Solution

- 1. f(x) is a polynomial, so it is continuous and differentiable everywhere.
- 2. $f(0) = 0^3 3(0)^2 + 2(0) = 0$, and $f(2) = 2^3 3(2)^2 + 2(2) = 0$. f(0) = f(2).

Find $f'(x): f'(x) = 3x^2 - 6x + 2$. Set f'(x) = 0:

$$3x^2-6x+2=0 \implies x=rac{3\pm\sqrt{3}}{3}.$$

The solutions $x \in (0,2)$ confirm the theorem.

Example 2: Trigonometric Function

Verify Rolle's theorem for $f(x) = \sin(x)$ on $[0,\pi]$.

Solution

- 1. $f(x) = \sin(x)$ is continuous and differentiable.
- 2. $f(0) = \sin(0) = 0$, $f(\pi) = \sin(\pi) = 0$. $f(0) = f(\pi)$.

Find $f'(x): f'(x) = \cos(x)$. Set f'(x) = 0:

$$\cos(x)=0 \implies x=rac{\pi}{2}.$$

Since $\frac{\pi}{2} \in (0,\pi)$, the theorem is verified.

Example 3: Real-World Application (Vehicle Motion)

A car's position is modeled as $f(t)=t^3-6t^2+9t$, where t is time in seconds. Prove that at some moment between t=0 and t=3, the car's velocity is zero.

Solution

1. f(t) is a polynomial, so it is continuous and differentiable.

2.
$$f(0) = 0^3 - 6(0)^2 + 9(0) = 0$$
, $f(3) = 3^3 - 6(3)^2 + 9(3) = 0$. $f(0) = f(3)$.

Find
$$f'(t):f'(t)=3t^2-12t+9.$$

Set $f'(t)=0$:

$$3t^2 - 12t + 9 = 0 \implies t = 1, 3.$$

Since $t=1\in(0,3)$, the car's velocity is zero at t=1.

Prove that the equation $f(x) = x^3 + 3x^2 - 9x + 1$ has exactly one critical point in [-3,1].

Solution

1. Derivative:

Find f'(x):

$$f'(x) = 3x^2 + 6x - 9.$$

2. Solve f'(x) = 0:

$$3x^2 + 6x - 9 = 0 \implies x^2 + 2x - 3 = 0.$$

Factorize:

$$(x+3)(x-1)=0.$$

Hence, x=-3 and x=1.

3. Critical Points in (-3, 1):

Check the endpoints of the interval:

- At x = -3, f'(x) = 0 (a critical point).
- At x = 1, f'(x) = 0.

Conclusion: The critical points are at x=-3 and x=1. Since the derivative changes sign at these points, they represent local extrema.

Real-World Applications of Rolle's Theorem

While Rolle's theorem is primarily a theoretical concept in calculus, its principles indirectly influence various real-world applications:

1. Physics (Motion Analysis)

If a particle starts and ends at the same position over a certain period, Rolle's theorem guarantees that at some moment, the velocity of the particle is zero. This concept is useful in understanding oscillatory motion and equilibrium points.

2. Economics (Optimization)

When analyzing profit or cost functions, if profit starts and ends at the same value over a range of prices or inputs, there must be a point where the marginal profit (derivative) is zero. This helps identify critical points for maximizing or minimizing profit.

3. Traffic Flow

If traffic density at two points along a highway is the same, Rolle's theorem implies that there must be a point in between where the rate of change of traffic density (slope) is zero. This helps in traffic pattern analysis.

4. Engineering (Structural Analysis)

In beam deflection problems, if the deflection of a beam is the same at two points, there must be a point where the slope of deflection is zero. Engineers use this to locate maximum deflection or stress points.

5. Climate Studies

When temperature data is modeled as a continuous function, if temperatures are the same at two times in a day, Rolle's theorem implies a time between those moments when the rate of temperature change is zero (i.e., temperature reaches a local maximum or minimum).

Key Definitions in a Nutshell:

• Local Minimum (Lower Minima):

A point where the function's value is lower than at nearby points (a "valley").

• Local Maximum (Upper Maxima):

A point where the function's value is higher than at nearby points (a "peak").

Global Minimum:

The lowest value of the function over its entire domain.

Global Maximum:

The highest value of the function over its entire domain.

Local Extrema:

Points where the function has either a local maximum or local minimum.

Global Extrema:

The highest or lowest points in the entire domain of the function.