

✓ Congratulations! You passed!

TO PASS 70% or higher

Keep Learning
Retake the assignment in **7h 56m**

grade 100%

Graph Analytics Applications

	TEST SUBMISSION GRADE 00%	
1.	A graph representing tweets would have only "one type" (e.g. label) of node. True False	1 / 1 point
	✓ Correct	
2.	In a network representing the world wide web <u>nodes</u> would likely represent: Hyperlinks Webpages Google search terms Individual computers	1/1 point
	✓ Correct This is the content we would want to document relations between.	
3.	In a network representing the world wide web edges (or links) would likely represent Hyperlinks Webpages Google search terms Individual computers	1/1 point
	✓ Correct Since one webpage links to another using hyperlinks, these edges (or links) would likely be represented by edges between nodes.	
4.	In an email network, which might reasonably be represented by weight on edges? the total number of people who sent an email in a week average number of emails sent from one user to another in a week the total number of emails sent by one user in a week	1/1 point
	✓ Correct	
5.	A loop in a graph is where: when there is a edge from A->B, there is also an edge from B->A. where there is a path in some way from a node, through 1 or more other nodes, back to the original node.	1/1 point
	where there is an edge from a node to itself.	
	✓ Correct	
6.	An example of a loop in a graph could occur when: Someone emails themself Someone emails a friend who replies	1 / 1 point

Someone emails a friend, who emails another friend, who then replies to you	
✓ Correct	
7. When trying to represent a relationship between Maria and Julio who have more than one relationship to each other (etennis partner, co-worker, emergency contact) which of the following would be needed in a graph representing those relationships	.g., 1/1 point
Separate graphs for each kind of relationship Multiple nodes for each of Maria and Julio, to capture the various relationships Multiple edges between Maria and Julio	
✓ Correct	
 8. In many applications paths (where we go from one node to another without repeating nodes) are more useful the walks (where we can repeat a node when going from one node to another). True False 	an 1/1 point
✓ Correct	
 Trails (paths without repeated <u>edges</u>) can be interesting in which of the following problem applications? An email network tracing email replies.	1/1 point
An email network tracing frequency of emails from one person to another. Routing to avoid visiting the same city. Routing to avoid using the same bridge or road.	
✓ Correct	
10. Suppose we have an email network where the edges of a graph represent the number of emails from one user to another. If I was going to ask if Maria had sent any emails that (either directly or through forwarding from others) reached Julio,	1/1 point
would ask if: Julio's node was reachable from Maria node Maria's node was reachable from Julio's node	
✓ Correct	
11. If I want to find the diameter of a graph, I should start by finding the shortest path between each set of nodes. True False	1/1 point
✓ Correct	
12. What is the diameter of this graph?	1/1 point
B-3B-30-30	

. Commit	
Correct	
 13. This question is about "best paths". To find the most discussed email in an email network, would we be looking to minimize a function or maximize a function? Maximize Minimize 	1/1 point
Correct The "optimization function" we would want is to maximize the length of a reply path based off the sending of one email.	
14. Which are the two kinds of constraints on paths discussed in the video on basic path analytics? (check 2) Hint: remember the example of Amarnath needing to get to work by taking his son to school.✓ Inclusion of nodes and/or edges	1/1 point
✓ Correct For example, if one must stop by a given location on your route to someplace else. See this video to review. (The Basic Path Analytics Problem)	
Exclusion of nodes and/or edges	
Correct For example, if one will not use toll-roads. See this video to review. (The Basic Path Analytics Problem)	
Directionality	
15. What are examples of preference constraints in the Google Maps application? Avoid roads under construction	1/1 point
✓ Correct	
Avoid highways	
✓ Correct	
☐ Include son's school	
 16. Which of the statements below is true? Dijsktra's algorithm is computationally efficient (has low computational complexity). Dijsktra's algorithm is computationally inefficient (has high computational complexity). 	1/1 point
✓ Correct	
17. In the video on "Inclusion and Exclusion Constraints" we learn that adding constraints can actually make our analysis job easier. For example, when we require that a given node be included on a path, which of the following impacts now make the analysis job easier? (Choose 2)	1/1 point
Splitting the task into 2 independent shortest path problems	
✓ Correct And these can be solved in parallel at the same time.	
☐ Changing the weights on the edges of the graph and/or subgraphs✓ Reduction of the size of the graph	
 Correct There may be only parts of the complete graph that are relevant, given constraints. 	

O 3