Trabajo Práctico

MOSFET

Objetivos

Se estudiará un dispositivo MOSFET canal N de la tecnología de fabricación TSMC 180 NM con dimensiones $W=36\,\mu\mathrm{m};~L=3,6\,\mu\mathrm{m}$ y $L_{\mathrm{dif}}=0,5\,\mu\mathrm{m}$ a partir del modelo de simulación provisto en la librería tsmc_scn018.txt.

En el software LTSpice, incluir la librería mencionada con el comando .include tsmc_scn018.txt e instanciar un componente nmos4. Establecer el modelo del transistor CMOSN, así como sus parámetros constructivos ancho del canal (W), largo del canal (L), área de $Drain\ (AD)$, área de $Source\ (AS)$, perímetro de $Drain\ (PD)$ y perímetro de $Source\ (PS)$, siendo el área y el perímetro:

$$A = W \times L_{\text{dif}}$$

$$P = 2 \times (W + L_{\text{dif}})$$

respectivamente.

Los objetivos del trabajo son:

- Simular las curvas características corriente—tensión de un transistor MOSFET canal N.
- Obtener a partir de los resultados de simulación, algunos de los parámetros característicos del transistor.
- Calcular a partir de los parámetros obtenidos y utilizando el modelo de pequeña señal, las figuras de mérito del transistor.
- Obtener a partir de simulaciones, las figuras de mérito del transistor.

Parte 1: Curvas características

El modelo a utilizar es el modelo de carga superficial:

$$I_{\rm D} = \begin{cases} \mu_n \, C'_{ox} \, \frac{W}{L} \, (m-1) V_{\rm th}^2 \, \exp\left(\frac{V_{\rm GS} - V_{\rm T}}{m \, V_{\rm th}}\right) \left[1 - \exp\left(-\frac{V_{\rm DS}}{V_{\rm th}}\right)\right] & V_{\rm GS} \leq V_{\rm T} \quad \text{(Subumbral)} \\ \frac{\mu_n \, C'_{ox} \, \frac{W}{L}}{2m \, L} \, (V_{\rm GS} - V_{\rm T})^2 \left(1 + \frac{V_{\rm DS}}{V_{\rm A}}\right) & V_{\rm GS} > V_{\rm T}; V_{\rm DS} \geq V_{\rm DS(sat)} \quad \text{(Saturación)} \quad \text{(1)} \\ \mu_n \, C'_{ox} \, \frac{W}{L} \, \left(V_{\rm GS} - V_{\rm T} - \frac{m}{2} V_{\rm DS}\right) V_{\rm DS} \left(1 + \frac{V_{\rm DS}}{V_{\rm A}}\right) & V_{\rm GS} > V_{\rm T}; V_{\rm DS} < V_{\rm DS(sat)} \quad \text{(Triodo)} \end{cases}$$

donde

$$V_{\rm DS(sat)} = \frac{V_{\rm GS} - V_{\rm T}}{m} \tag{2}$$

y las dependencias de los parámetros con $V_{\rm BS}$ son:

$$V_{\rm T}(V_{\rm BS}) = V_{T0} + \gamma(\sqrt{-V_{\rm BS} - 2\psi_B} - \sqrt{-2\psi_B})$$
(3)

$$m(V_{\rm BS}) = 1 + \frac{\gamma}{2\sqrt{-V_{\rm BS} - 2\psi_B}} \tag{4}$$

Figura 1: Circuito esquemático para la simulación de las curvas características del transistor.

Curvas de transferencia

Simular en LTSpice el circuito de la figura 1 para $V_{\rm DS}=1.8\,\rm V$, variando la tensión $V_{\rm GS}=\{0\,\rm V;1.8\,\rm V\}$ de a pasos de 1 mV (comando .dc) con $V_{\rm BS}=\{0\,\rm V;-0.9\,\rm V;-1.8\,\rm V\}$ como parámetro y exportar para su procesamiento y análisis la corriente $I_{\rm D}$.

A partir de los resultados de las simulaciones se debe:

- 1. Realizar un gráfico de la curva de transferencia en **escala lineal** para $V_{\rm DS}=1.8\,{\rm V}$ con $V_{\rm BS}$ como parámetro [FIG01].
- 2. Realizar un gráfico de la curva de transferencia en **escala semilogarítmica** para $V_{\rm DS}=1.8\,{\rm V}$ con $V_{\rm BS}$ como parámetro [FIG02].
- 3. A partir de un ajuste lineal de $ln(I_D)$ en régimen subumbral, debe estimarse el valor del **Subthreshold Swing** (S), y el parámetro m para cada V_{BS} .

$$\ln(I_{\rm D}) = \ln(I_0) + \frac{V_{\rm GS} - V_{\rm T}}{m V_{\rm th}} = a V_{\rm GS} + b \tag{5}$$

con $a=(m\,V_{\rm th})^{-1}$ y $b=\ln(I_0)-\frac{V_{\rm T}}{m\,V_{\rm th}}$. Recordar que S se define según $\log(I_{\rm D})$, por lo que $S=\frac{\ln(10)}{a}$. Considerar $T=27\,^{\circ}{\rm C}$ para el cálculo de $V_{\rm th}$. Indicar claramente los rangos de tensión utilizados para cada uno de los ajustes.

4. Con los valores de m, a partir de un ajuste lineal de $\sqrt{I_{\rm D}}$, estimar los parámetros $k'_n = \mu_n C'_{ox}$ y $V_{\rm T}$ para cada valor de $V_{\rm BS}$. Suponiendo despreciable el efecto de modulación del largo del canal:

$$\sqrt{I_{\rm D}} = \sqrt{\frac{\mu_n \, C'_{ox}}{2m} \frac{W}{L}} \, (V_{\rm GS} - V_{\rm T}) = a \, V_{\rm GS} + b$$
(6)

con
$$a=\sqrt{\frac{\mu_n\,C'_{ox}}{2m}\frac{W}{L}}$$
y $b=-\sqrt{\frac{\mu_n\,C'_{ox}}{2m}\frac{W}{L}}\,V_{\rm T}.$

Indicar claramente los rangos de tensión utilizados para cada uno de los ajustes.

- 5. En la figura [FIG01], graficar con distintas líneas punteadas las curvas de ajuste correspondiente a cada $V_{\rm BS}$.
- 6. Realizar un gráfico de $\sqrt{I_{\rm D}}$ mostrando los resultados de la simulación junto con las curvas de ajuste correspondiente a cada $V_{\rm BS}$ en línea punteada [FIG03].

7. Para $V_{\rm BS}=0$ calcular el parámetro g_m a partir de las diferencias finitas de la corriente $I_{\rm D}$:

$$g_m = \frac{\partial i_{\rm D}}{\partial v_{\rm GS}} \approx \frac{\Delta I_{\rm D}}{\Delta V_{\rm GS}}$$

y realizar dos gráficos:

- Un gráfico de g_m vs. I_D [FIG04].
- Un gráfico de g_m/I_D vs. I_D en escala semilogarítmica para la corriente [FIG05]. Analizar en qué región el valor se mantiene constante y en qué valor. ¿Cómo se relacionar con el TBJ?

Con los parámetros estimados:

- 8. Realizar un gráfico de $V_{\rm T}$ en función de $V_{\rm BS}$ [FIG06].
- 9. Realizar un gráfico de m en función de $V_{\rm BS}$ [FIG07].
- 10. Realizar un gráfico de k'_n en función de $V_{\rm BS}$ [FIG08]. Discutir si la movilidad se mantiene constante.

Curvas de salida

Simular en LTSpice el circuito de la figura 1 para $V_{GS} = \{0.6 \text{ V}; 1.0 \text{ V}; 1.4 \text{ V}; 1.8 \text{ V}\}, V_{BS} = 0$, variando la tensión $V_{DS} = \{0 \text{ V}; 1.8 \text{ V}\}$ de a pasos de 1 mV (comando .dc) y exportar para su procesamiento y análisis la corriente I_D .

- 1. Realizar un gráfico [FIG09] de la corrientes $I_{\rm D}$ en función de $V_{\rm DS}$ para todos los valores de $V_{\rm GS}$.
- 2. A partir de [FIG09], estimar los valores de $V_{\rm DS(sat)}$ para cada valor de $V_{\rm GS}$.
- 3. Para cada valor de $V_{\rm GS}$, se debe obtener el parámetro $V_{\rm A}$ a partir de un ajuste lineal de la corriente $I_{\rm D}$ en régimen de saturación considerando que:

$$V_{\rm A} + V_{\rm DS} = I_{\rm D} \left(\frac{\partial I_{\rm D}}{\partial V_{\rm DS}} \right)^{-1}$$

$$\Rightarrow I_{\rm D}(V_{\rm DS} = 0) = \frac{\partial I_{\rm D}}{\partial V_{\rm DS}} V_{\rm A}$$

$$\Rightarrow I_{\rm D} = I_{\rm D}(V_{\rm DS} = 0) + \frac{\partial I_{\rm D}}{\partial V_{\rm DS}} V_{\rm DS} = I_{\rm D}(V_{\rm DS} = 0) \left(1 + \frac{V_{\rm DS}}{V_{\rm A}} \right) = a V_{\rm DS} + b$$
(7)

con $a = \frac{\partial I_{\rm D}}{\partial V_{\rm DS}}$ y $b = I_{\rm D}(V_{\rm DS} = 0)$, entonces

$$V_{\rm A} = \frac{I_{\rm D}(V_{\rm DS} = 0)}{\frac{\partial I_{\rm D}}{\partial V_{\rm DS}}} = \frac{b}{a}$$
 (8)

Además:

$$r_o = \frac{V_{\rm A} + V_{\rm DS}}{I_{\rm D}} = \frac{V_{\rm A}}{I_{\rm D}(V_{\rm DS} = 0)} = \frac{1}{a}$$
 (9)

Indicar claramente los rangos de tensión $V_{\rm DS}$ utilizados para cada uno de los ajustes.

4. En la figura [FIG09], graficar con distintas líneas punteadas las curvas de ajuste correspondiente a cada uno de los V_{GS} .

Realizar una tabla [TAB01] comparativa para cada valor de $V_{\rm GS}$ indicando los valores correspondientes de $I_{\rm D}$ [FIG01]; g_m [FIG04]; $V_{\rm DS(sat)}$ estimado; $V_{\rm DS(sat)}$ calculado a partir de la ecuación 2; $V_{\rm A}$ y r_o [FIG09].

Figura 2: Circuito esquemático para la simulación de las de la ganancia intrínseca.

Figura 3: Circuito esquemático para la simulación de las de la respuesta en frecuencia.

Parte 2: Modelo de pequeña señal

A partir del modelo de pequeña señal, se calcularán los parámetros intrínsecos del transistor: ganancia intrínseca (a_v) y la máxima frecuencia de trabajo (f_T) .

- 1. A partir de los datos calculados en la Parte 1, calcular la ganancia intrínseca del transistor (a_v) para cada valor de I_D de la tabla [TAB01].
- 2. Realizar una simulación del tipo transitorio (comando .tran) del circuito de la figura 2 para cada valor de $V_{\rm GS}$ e $I_{\rm D}$ de la tabla [TAB01]^[1]. Utilizar una fuente de señal de tensión senoidal con amplitud 1 mV y frecuencia $f=1\,{\rm kHz}$.
- 3. Realizar un gráfico temporal [FIG07] de las señales $v_{\rm gs}(t)$ (común para toda $I_{\rm D}$) y de cada $v_{\rm ds}(t)$ correspondiente a cada $I_{\rm D}$. A partir de los valores picos de las señales, calcular la ganancia intrínseca para cada valor de $I_{\rm D}$.
- 4. Simular el circuito de la figura 3 para cada valor de $V_{\rm GS}$ de la tabla [TAB01] y para $V_{\rm DS}=1.8\,\rm V$. Utilizar una fuente de tensión en AC de amplitud 1, en un rango de frecuencias $f=\{1\,\rm kHz;100\,\rm GHz\}$ simulando 100 puntos por década. Al observar la relación de las corriente $i_{\rm d}/i_{\rm g}$ se obtiene como resultado $\beta(f)$.
- 5. Realizar un gráfico de Bode (escala logarítmica en ambos ejes) mostrando la variación de $\beta(f)$ [FIG08]. Determinar el valor de la frecuencia de trabajo (f_T) a partir de la frecuencia a la cual se obtiene $\beta = 1$.

 $^{^{[1]}}$ Acomodar el valor de $I_{\rm D}$ de forma tal que la tensión $V_{\rm DS}\approx 1.8\,{\rm V}.$

DISPOSITIVOS SEMICONDUCTORES

Carrera de Especialización en Microelectrónica - 2025

6. Repetir la simulación anterior, pero cambiando el tamaño del transistor a $W=1.8\,\mu\text{m};\ L=0.18\,\mu\text{m}$. Volver a realizar un gráfico de Bode de $\beta(f)$ [FIG09], y determinar los nuevos f_T . Relacionar el cambio en la frecuencia f_T con el cambio en la longitud de canal.

Realizar una tabla [TAB02] comparativa para cada valor de $V_{\rm GS}$ indicando los valores correspondientes de $I_{\rm D}$ [FIG01]; a_v calculado; a_v simulado [FIG07], f_T [FIG08] y f_T para el tamaño mínimo [FIG09].

Condiciones de entrega

- La entrega debe ser a través del Aula Virtual en el Campus Posgrado FIUBA (https://campusposgrado.fi.uba.ar) en la fecha y horario publicadas en la misma Aula Virtual.
- La entrega debe ser un único documento .pdf.
- La entrega debe ser exclusivamente a través del Aula Virtual en el Campus Posgrado FIUBA. Ante cualquier inconveniente, deben comunicarse por correo electrónico a ds_v02@cursoscapse.com No se recibirán informes en casillas de mail personales.