

Description

Image

Caption

Al-SiC brake disc.

The material

Metal matrix composites are metals reinforced with ceramic particles. The most widely used are based on aluminum reinforced with particles of silicon carbide or alumina. The reinforcement increases the stiffness, strength and maximum service temperature without seriously increasing the weight. Production now exceeds 10,000 tonnes per year, at a cost of $2 - 5 \, \pounds/kg$.

Composition (summary)

AI/10-40% SiC

General properties

Density	2.66e3	-	2.9e3	kg/m^3
Price	* 6.22	-	8.29	USD/kg
Date first used	1982			

Mechanical properties

Young's modulus	81	-	100	GPa
Shear modulus	* 30.4	-	38.5	GPa
Bulk modulus	68	-	83	GPa
Poisson's ratio	0.29	-	0.31	
Yield strength (elastic limit)	280	-	324	MPa
Tensile strength	290	-	365	MPa
Compressive strength	280	-	325	MPa
Elongation	1	-	5	% strain
Hardness - Vickers	70	-	140	HV
Fatigue strength at 10^7 cycles	50	-	110	MPa
Fracture toughness	15	-	24	MPa.m^0.5

Mechanical loss coefficient (tan delta)	* 0.001 - 0.009
Thermal properties	
Melting point	525 - 627 ℃
Maximum service temperature	227 - 367 ℃
Minimum service temperature	-273 °C
Thermal conductor or insulator?	Good conductor
Thermal conductivity	100 - 160 W/m.℃
Specific heat capacity	800 - 900 J/kg.℃
Thermal expansion coefficient	15 - 23 µstrain/℃
Electrical properties	
Electrical conductor or insulator?	Good conductor
Electrical resistivity	5 - 12 μohm.cm
Optical properties	
Transparency	Opaque
Critical Materials Risk	
High critical material risk?	No
riigh chilodi matchar hok.	140
Processability	
Castability	3 - 4
Formability	1 - 3
Machinability	1 - 3
Weldability	2
Durability: water and aqueous solutions	
Durability: water and aqueous solutions Water (fresh)	Excellent
	Excellent Acceptable
Water (fresh)	
Water (fresh) Water (salt)	Acceptable
Water (fresh) Water (salt) Soils, acidic (peat)	Acceptable Unacceptable
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine	Acceptable Unacceptable Excellent
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine Durability: acids	Acceptable Unacceptable Excellent Excellent
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine Durability: acids Acetic acid (10%)	Acceptable Unacceptable Excellent Excellent Limited use
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine Durability: acids Acetic acid (10%) Acetic acid (glacial)	Acceptable Unacceptable Excellent Excellent Limited use Unacceptable
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine Durability: acids Acetic acid (10%) Acetic acid (glacial) Citric acid (10%)	Acceptable Unacceptable Excellent Excellent Limited use Unacceptable Acceptable
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine Durability: acids Acetic acid (10%) Acetic acid (glacial) Citric acid (10%) Hydrochloric acid (10%)	Acceptable Unacceptable Excellent Excellent Limited use Unacceptable Acceptable Acceptable
Water (fresh) Water (salt) Soils, acidic (peat) Soils, alkaline (clay) Wine Durability: acids Acetic acid (10%) Acetic acid (glacial) Citric acid (10%)	Acceptable Unacceptable Excellent Excellent Limited use Unacceptable Acceptable

Nitric acid (70%)	Limited use
Phosphoric acid (10%)	Unacceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Unacceptable
Sodium hydroxide (60%)	Unacceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Acceptable
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Acceptable
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Acceptable

Durability: halogens and gases

Chlorine gas (dry)	Limited use
Fluorine (gas)	Acceptable
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Acceptable

Durability:	built	environments
-------------	-------	--------------

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability Non-flamm	nable
------------------------	-------

Durability: thermal environments

Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Geo-economic data for principal component

Annual world production, principal component	3.69e7	tonne/yr
Reserves, principal component	4.99e7	tonne

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 827	-	914	MJ/kg
CO2 footprint, primary production	* 48.6	-	53.7	kg/kg
Water usage	* 250	-	750	l/kg

Material processing: energy

Casting energy	* 9.74	-	10.8	MJ/kg
Non-conventional machining energy (per unit wt removed	127	-	140	MJ/kg

Material processing: CO2 footprint

Casting CO2	* 0.73	-	0.807	kg/kg
Non-conventional machining CO2 (per unit wt removed	9.5	-	10.5	kg/kg

Material recycling: energy, CO2 and recycle fraction

Recycle	✓			
Embodied energy, recycling	* 29.1	-	32.2	MJ/kg
CO2 footprint, recycling	* 2.29	-	2.53	kg/kg
Recycle fraction in current supply	2.5	-	3.5	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	✓			

Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

The production of MMCs is energy intensive, but not otherwise damaging. Those based on aluminum can be made from part-recycled material, and the product itself can, in principle, be recycled.

Supporting information

Design guidelines

The attraction of metal matrix composites such as Duralcan is their stiffness-to-weight and strength-to-weight ratios, allowing weight saving in automobiles and sports equipment.

Technical notes

Metal matrix composites ('MMCs') are made by stirring finely divided silicon carbide (SiC) or alumina (Al2O3) particles into the molten metal, which is then cast ('Stir-casting'), or by mixing metal and ceramic powders and sintering, followed by forging or extrusion. The most widely used are the DURALCAN range of alloys based on the 6061 grade of aluminum alloy, with 10 to 30% silicon carbide or alumina.

Typical uses

Pistons, engine parts, brake discs, drums and calipers, drive shafts, precision instruments and sports equipment such as mountain bike frames and golf club shafts.

Links
Reference
ProcessUniverse
Producers