

Model Development Phase Template

Date	15 July 2024	
Team ID	739874	
Project Title	Telecom Customer Churn Prediction	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:


```
0]], dtype=int64)
   [54]: #logistic Regression
         from sklearn.linear_model import LogisticRegression
         model=LogisticRegression()
         model.fit(x_train,y_train)
         accuracy_score(model.predict(x_test),y_test)
   [54]: 0.807
56]: #Decision Tree classifier]
      from sklearn.tree import DecisionTreeClassifier
      classifier= DecisionTreeClassifier(criterion='entropy', random_state=42)
      classifier.fit(x train, y train)
      pred=classifier.predict(x_test)
      dtc_acc=accuracy_score(pred,y_test)
      dtc_acc
56]: 0.7835
8]:
    #random forest classifier
     from sklearn.ensemble import RandomForestClassifier
     rc=RandomForestClassifier(random_state=42)
     rc.fit(x train,y train)
     pred=rc.predict(x test)
     rfc_acc=accuracy_score(y_test,pred)
     rfc_acc
```

3]: 0.864


```
#kNeighborsClassifier
[67]:
      from sklearn.neighbors import KNeighborsClassifier
      knn=KNeighborsClassifier()
     knn.fit(x_train,y_train)
[68]:
[68]: * KNeighborsClassifier
      KNeighborsClassifier()
      knn_acc=accuracy_score(knn.predict(x_test),y_test)
[69]:
      knn acc
      0.8345
[69]:
      #naive bayes classifier
[71]:
      from sklearn.naive_bayes import GaussianNB
      gnb = GaussianNB()
      gnb.fit(x_train, y_train)
      nb_acc=accuracy_score(gnb.predict(x_test),y_test)
      nb_acc
[71]: 0.8275
```

CINCENSION OF STATE

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix

svm		[83]: confusion_matrix(sm_pred,y_test) [83]: srrsy([1355, 881],
Logistic		80
regression	[84]: print(classification_report(model.predict(x_test),y_test)) precision recall f1-score support 0 0.96 0.88 0.92 1733 1 0.49 0.75 0.60 267 accuracy 0.86 2000 macro avg 0.73 0.82 0.76 2000 weighted avg 0.90 0.86 0.88 2000	<pre>[85]: confusion_matrix(model.predict(x_test),y_test) [85]: array([[1528, 285],</pre>
Decision Tree	[88]: print(classification_report(pred,y_tost))	[87]: confusion_matrix(pred,y_test) [87]: array([[1528, 205],
Random		86
Forest	[88]: print(classification_report(pred,y_test)) precision recall f1-score support 0 0.96 0.88 0.92 1733 1 0.49 0.75 0.60 267 accuracy 0.86 2000 macro avg 0.73 0.82 0.76 2000 weighted avg 0.90 0.86 0.88 2000	[61]: rfc_con=confusion_matrix(pred,y_test) rfc_con [61]: array([[1528, 205],
knn	[89]: print(classification_report(knn.predict(x_test),y_test)) precision recall f1-score support 0 0.94 0.87 0.90 1728 1 0.43 0.64 0.51 272 accuracy 0.83 2000 macro avg 0.68 0.75 0.71 2000 weighted avg 0.87 0.83 0.85 2000	[78]; km_consconfusion_matrix(km.predict(x_test),y_test) km_con [78]; array([[1496, 232],

					82	
90]: print(classification_report(gnb.predict(x_test),y_test))				st),y_test))		
F	recision	recall	f1-score	support		
0	0.97	0.84	0.90	1846		
1	0.26	0.69	0.38	154		
accuracy			0.83	2000		[72]: nb_con=confusion_matrix(gnb.predict(x_test),y_test)
macro avg						nb_con
weighted avg	0.92	0.83	0.86	2000		[72]: array([[1548, 298], [47, 107]], dtype=int64)
	0 1 accuracy	1 0.26 accuracy macro avg 0.62	0 0.97 0.84 1 0.26 0.69 accuracy macro avg 0.62 0.77	0 0.97 0.84 0.90 1 0.26 0.69 0.38 accuracy 0.83 macro avg 0.62 0.77 0.64	0 0.97 0.84 0.90 1846 1 0.26 0.69 0.38 154 accuracy 0.83 2000 macro avg 0.62 0.77 0.64 2000	0 0.97 0.84 0.90 1846 1 0.26 0.69 0.38 154 accuracy 0.83 2000 macro avg 0.62 0.77 0.64 2000