27/06/21
Instituto Lederal de Goián (27/06/21)
Disciplina: Probabilidade e Eastatistica.
Professor: Chiago Vedovotto
Aluna: Daniella do Amaral
- X28 - 28,0,5 (VX v) 1
Semana 10
- transferred in the last of the second
05. As amostras de mitocondrias rejuvenescidas são
mutantes (defeituras) em 1% dos casos Buponha que
15 samostras sejam estudados e que elas porsam ser
consideradas independentes para mutação. Determine a
sequintes probabilidades: 1,0 = (1 = 1)
Membuna amostra sé muitante.
Se n = 15 amostras;
p = 1/100 mutantes (probabilidade);
X = númeror de amostros mutantes (K=0).
Eontao, $P(X=K) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$
$P(x=0) = \begin{pmatrix} 15 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 100 \end{pmatrix}^{0} \cdot \begin{pmatrix} 99 \\ 100 \end{pmatrix}^{15}$
$P(\chi = 0) \approx 0.86 = 86\%$.
de Mo máximo uma samostra é mutante.

spiral

27/06/21 $\mathcal{P}(\chi \leq 1) = \mathcal{P}(\chi = 0) + \mathcal{P}(\chi = 1)$ $P(X \le 1) = (15) \cdot (1)^{0} \cdot (98)^{15} + (15) \cdot (1)^{1} \cdot (99)^{14}$ 0 / 100 / 100 / 1 / 100 / 100 / $P(X \le 1) \cong 0.86 + 0.13$ $P(\chi \leq 1) \approx 0.99 = 99\%$. Mais da metade das amostras é mutante. $P(X \ge 8) = 1 - P(X \le 7)$ $P(x=0) \cong 0.86$ $P(x=1) \cong 0.13$ $P(\chi = 2) = 0.009$ $P(X=3) \cong 0,0004$, when $P(X \subseteq I) = I$ P(X=i) = 1. P(x=4)=12.10-5 $P(\chi = 5) = 2.4 \cdot 10^{-4}$ $P(X=6) \cong 4.5.10^{-9}$ $P(X=4) = 5.9.10^{-11}$ Então, $P(x \ge 8) = 1 - T P(x = i) = 1 - 1 = 0$. Wash Valley Com Com