Insertion Sort

Algoritmo:

- 1. Seleciona-se a cabeça da lista.
- 2. Ordena-se a cauda da lista.
- 3. Insere-se a cabeça da lista na cauda ordenada, de forma a que a lista resultante continue ordenada.

A função insert (que faz a inserção ordenada) é o núcleo deste algoritmo.

isort
$$[3,5,6,2,7,5,8]$$
 \Rightarrow insert 3 (isort $[5,6,2,7,5,8]$)
 $\Rightarrow ... \Rightarrow$ insert 3 $[2,5,5,6,7,8]$
 $\Rightarrow ... \Rightarrow [2,3,5,5,6,7,8]$

69

Insertion Sort

Exemplo: Esquema do cálculo de (isort [5,3,4,8,3,1,9])

Ouick Sort

Algoritmo:

- 1. Seleciona-se a cabeça da lista (como *pivot*) e parte-se o resto da lista em duas sublistas: uma com os elementos inferiores ao pivot, e outra com os elementos não inferiores.
- 2. Estas sublistas são ordenadas.
- 3. Concatena-se as sublistas ordenadas, de forma adquada, conjuntamente com o pivot.

Esta versão do qsort é pouco eficiente ...

Quantas travessias da lista se estão a fazer para partir a lista?

```
qsort [5,3,4,8,3,7,1,9] \Rightarrow

... \Rightarrow (qsort [3,4,3,1])++[5]++(qsort [8,7,9])

\Rightarrow ... \Rightarrow [1,3,3,4] ++ [5] ++ [7,8,9]

\Rightarrow ... \Rightarrow [1,3,3,4,5,7,8,9]
```

71

Ouick Sort

Exemplo: Esquema do cálculo de (qsort [5,3,4,8,3,1,9])

Uma *versão mais eficiente* (fazendo a partição da lista numa só passagem), pode ser:

Merge Sort

Algoritmo:

- 1. Parte-se a lista em duas sublistas de tamanho igual (ou guase).
- 2. Ordenam-se as duas sublistas.
- 3. Fundem-se as sublistas ordenadas, de forma a que a lista resultante fique ordenada.

Esta versão do msort é muito pouco eficiente ...

Quantas travessias da lista se está a fazer para partir a lista em duas ?

73

Merge Sort

Exemplo: Esquema do cálculo de (msort [5,3,4,8,3,1,9])

Uma *versão mais eficiente* (fazendo a partição da lista numa só passagem), pode ser:

Acumuladores

Considere a definição da função factorial.

```
fact 0 = 1
fact n \mid n>0 = n * fact (n-1)
```

O cálculo da factorial de um número positivo n é feito multiplicando n pelo factorial de (n-1). A multiplicação fica *em suspenso* até que o valor de fact (n-1) seja sintetizado.

```
fact 3 \Rightarrow 3*(fact 2) \Rightarrow 3*(2*(fact 1)) \Rightarrow 3*(2*(1*(fact 0)))
\Rightarrow 3*(2*(1*1)) \Rightarrow 6
```

Uma outra estratégia para resolver o mesmo problema, consiste em definir uma função auxiliar com um parametro extra que serve para ir guardando os resultados parciais – a este parametro extra chama-se acumulador.

```
fact n | n >=0 = factAc \frac{1}{n} n
where factAc ac 0 = ac
factAc ac n = factAc \frac{1}{n} (n-1)

fact 3 \Rightarrow factAc 1 3 \Rightarrow factAc (1*3) 2 \Rightarrow factAc (1*3*2) 1
```

 $\Rightarrow \text{ factAc } (1 \circ 2) \Rightarrow \text{ factAc } (1 \circ 2)$

75

Dependendo do problema a resolver, o uso de acumuladores pode ou não trazer vantagens.

Por vezes, pode ser a forma mais natural de resolver um problema.

Exemplo:

Considere as duas versões da função que faz o cálculo do valor máximo de uma lista.

Oual lhe parece mais natural?

```
maximo (x:xs) = maxAc x xs
where maxAc ac [] = ac
    maxAc ac (y:ys) = if y>ac then maxAc y ys
    else maxAc ac ys
```

Em maximo o acumulador guarda o valor máximo encontrado até ao momento.

Em maximum a cabeça da lista está a funcionar como acumulador.

76

Considere a função que inverte uma lista.

```
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

reverse [1,2,3] ⇒ (reverse [2,3])++[1] ⇒ ((reverse [3])++[2])++[1]
```

 $\Rightarrow (((reverse [])++[3])++[2])++[1] \Rightarrow (([]++[3])++[2])++[1]$ $\Rightarrow ([3]++[2])++[1] \Rightarrow (3:([]++[2]))++[1] \Rightarrow (3:[2])++[1]$ $\Rightarrow 3:([2]++[1]) \Rightarrow 3:(2:([]++[1])) \Rightarrow 3:2:[1] = [3,2,1]$

Este é um exemplo típico de uma função que implementada com um acumulador é muito mais eficiente.

```
reverse l = revAc [] l
where revAc ac [] = ac
revAc ac (x:xs) = revAc (x:ac) xs

reverse [1,2,3] ⇒ revAc [] [1,2,3] ⇒ revAc [1] [2,3]
⇒ revAc [2,1] [3] ⇒ revAc [3,2,1] [] ⇒ [3,2,1]
```

Sequência de Fibonacci

O n-ésimo número da sequência de Fibonacci define-se matematicamente por

```
fib 0 = 0
fib 1 = 1
fib n | n>=2 = fib (n-2) + fib (n-1)
```

O cálculo do fib de um número pode envolver o cálculo do fib de números mais pequenos, repetidas vezes.

```
fib 5 \Rightarrow (fib 3)+(fib 4) \Rightarrow ((fib 1)+(fib 2)+(fib 2)+(fib 3))
\Rightarrow (1+((fib 0)+(fib 1)))+((fib 2)+(fib 3)) \Rightarrow ... \Rightarrow 5
```

A sequência de Fibonnacci pode ser definida por

```
seqFibonnacci = [fib n | n \leftarrow [0,1..]]
```

Uma versão mais eficiente dos números de Fibonnacci utiliza um parametro de acumulação.

Neste caso o acumulador é um par que regista os dois últimos números de Fibonnacci calculados até ao momento.

```
fib n = fibAc (0,1) n
where fibAc (a,b) 0 = a
    fibAc (a,b) 1 = b
    fibAc (a,b) (n+1) = fib (b,a+b) n
```

```
fib 5 \Rightarrow fibAc (0,1) 5 \Rightarrow fibAc (1,1) 4 \Rightarrow fibAc (1,2) 3 \Rightarrow fibAc (2,3) 2 \Rightarrow fibAc (3,5) 1 \Rightarrow 5
```

A sequência de Fibonnacci pode ser definida por

```
seqFib = 0 : 1 : [a+b | (a,b) \leftarrow zip seqFib (tail seqFib)]
```

Note que é a lazy evaluation que faz com que este género de definicão seja possível.

79

Funções de Ordem Superior

Em Haskell, as funções são entidades de primeira ordem, isto é, as funções podem ser passadas como parametro e/ou devolvidas como resultado de outras funções

Exemplo: A função app tem como argumento uma função f de tipo a->b.

```
app :: (a-b) \rightarrow (a,a) \rightarrow (b,b)
app f (x,y) = (f x, f y)
app chr (65,70) \Rightarrow ('A','F')
```

Exemplo:

77

78

A função mult pode ser entendida como tendo dois argumentos de tipo Int e devolvendo um valor do tipo Int. Mas, na realidade, mult é uma função que recebe um argumento do tipo Int e devolve uma função de tipo Int->Int.

```
mult :: Int -> Int -> Int | \equiv Int -> (Int -> Int) mult x y = x * y

Em Haskell, todas a funções são unárias!
```

```
mult 2 5 ≡ (mult 2) 5 :: Int
(mult 2) :: Int -> Int
```

Assim, mult pode ser usada para *gerar novas funções*.

Exemplo: dobro = mult 2 Qual é o seu tipo? triplo = mult 3

Os operadores infixos também podem ser usados da mesma forma, isto é, aplicados a apenas um argumento, gerando assim uma nova função.

81

map

Considere as seguintes funções:

```
distancias :: [Ponto] -> [Float]
distancias [] = []
distancias (p:ps) = (distOrigem p) : (distancias ps)

minusculas :: String -> String
minusculas [] = []
minusculas (c:cs) = toLower c : minusculas cs

triplica :: [Double] -> [Double]
triplica [] = []
triplica (x:xs) = (3*x) : triplica xs

factoriais :: [Integer] -> [Integer]
factoriais [] = []
factoriais (n:ns) = fact n : factoriais ns
```

Todas estas funções têm um *padrão de computação* comum:

aplicam uma função a cada elemento de uma lista, gerando deste modo uma nova lista.

map

Podemos definir uma função de ordem superior que aplica uma função ao longo de uma lista:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

Note que (map f lista) é equivalente a [fx | x < -lista]

Podemos definir as funções do slide anterior à custa da função map, fazendo:

```
distancias lp = map distOrigem lp
minusculas s = map toLower s
triplica xs = map (3*) xs
factoriais ns = map fact ns
```

83

filter

factoriais = map fact

Considere as seguites funções:

Todas estas funções têm um *padrão de computação* comum:

dada uma lista, geram uma nova lista com os elementos da lista que satisfazem um determinado predicado.

filter

filter é uma função de ordem superior que filtra os elementos de uma lista que verificam um dado predicado (i.e. mantém os elementos da lista para os quais o predicado é verdadeiro).

Note que (filter p lista) é equivalente a $[x \mid x \leftarrow lista, px]$

Podemos definir as funções do slide anterior à custa da função filter, fazendo:

Ou então,

filtraDigitos = filter isDigit

85

Funções anónimas

Em Haskell, é possível definir novas funções através de *abstrações lambda* (λ) da forma:

representando uma função com argumento formal x e corpo da função e (a notação é inspirada no λ -calculus aonde isto se escreve $\lambda x.e$)

Exemplos:

Funções com mais do que um argumento podem ser definidas de forma *abreviada* por:

Além disso, os argumentos p1 ... pn podem ser padrões.

Exemplos:

Note que: $\xy \rightarrow x+y \equiv \xy \rightarrow (\yy \rightarrow x+y)$ Justifique com base no tipo.

Como ao definir estas funções não lhes associamos um nome, elas dizem-se **anónimas**.

Funções anónimas

É possível utilizar funções anónimas na definição de outras funções.

Exemplos:

$$cauda = \(:xs) \rightarrow xs$$

10 > cauda [9,3,4,5] [3,4,5]

As funções anónimas são úteis para evitar a declaração de funções auxiliares.

Exemplos:

```
trocaPares xs = map troca xs
where troca (x,y) = (y,x)
trocaPares xs = map ((x,y)->(y,x)) xs
primOuad = filter ((x,y) -> 0 < x & 0 < y)
```

Os operadores infixos aplicados apenas a um argumento são uma forma abreviada de escrever funções anónimas.

Exemplos:

$$(+y) \equiv \langle x - \rangle x + y$$

$$(x+) \equiv \langle y -> x+y \rangle$$

$$(*5) \equiv \langle x -> x*5 \rangle$$

87

foldr

Considere as seguintes funções:

$$sum [] = 0$$

$$sum (x:xs) = x + (sum xs)$$

sum
$$[3,5,8] \Rightarrow 3 + (5 + (8+0))$$

Todas estas funções têm um *padrão de computação* comum:

aplicar um operador binário ao primeiro elemento da lista e ao resultado de aplicar a função ao resto da lista.

O que se está a fazer é a extensão de uma operação binária a uma lista de operandos.

foldr

Podemos capturar este padrão de computação fornecendo à função foldr o operador binário e o resultado a devolver para a lista vazia.

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f z [1 = z]
foldr f z (x:xs) = f x (foldr f z xs)
```

```
Note que (foldr f z [x1,...,xn]) é igual a (f x1 (... (f xn z)...))
ou seia. (x1 \hat{f} (x2 \hat{f} (... (xn \hat{f} z)...)))
                                                       (associa à direita)
```

Podemos definir as funções do slide anterior à custa da função **foldr**, fazendo:

```
sum xs = foldr (+) 0 xs
product xs = foldr (*) 1 xs
and bs = foldr (&&) True bs
concat ls = foldr (++) [] ls
```

Exemplos:

```
(product [4,3,5]) \Rightarrow 4 * (3 * (5 * 1)) \Rightarrow 60
(concat [[3,4,5],[2,1],[7,8]]) \Rightarrow [3,4,5] ++ ([2,1] ++ ([7,8]++[]))
                                       \Rightarrow [3,4,5,2,1,7,8]
                                                                                   89
```

fold1

Podemos usar um padrão de computação semelhante ao do foldr, mas associando à esquerda, através da função foldl.

```
fold1 :: (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
```

```
Note que (foldl f z [x1,...,xn]) é igual a (f (...(f z x1) ...) xn)
ou seja, ((...(z \hat{f} x1) \hat{f} x2)...) \hat{f} xn) (associa à esquerda)
```

Exemplos:

```
sum xs = foldl (+) 0 xs
                 concat ls = foldl (++) [] ls
                 reverse xs = foldl (\t h \rightarrow h:t) [] xs
sum [1,2,3] \Rightarrow ((0+1)+2)+3 \Rightarrow 6
concat [[2,3],[8,4,7],[1]] \Rightarrow (([]++[2,3]) ++ [8,4,7]) ++ [1]
                                \Rightarrow [2,3,8,4,7,1]
reverse [3.4] \Rightarrow ((\t h \rightarrow h;t) ((\t h \rightarrow h;t) [1 3) 4)
                 \Rightarrow 4: ((\t h -> h:t) [] 3) \Rightarrow 4:3:[] \Rightarrow [4.3]
```

foldr vs foldl

Note que (foldr f z xs) e (foldl f z xs) só darão o mesmo resultado se a função f for comutativa e associativa, caso contrário dão resultados distintos.

Exemplo:

```
foldr (-) 8 [4,7,3,5] \Rightarrow 4 - (7 - (3 - (5 - 8))) \Rightarrow 3
foldl (-) 8 [4.7.3.5] \Rightarrow (((8 - 4) - 7) - 3) - 5 \Rightarrow -11
```

As funções foldr e foldl estão formemente relacionadas com as estratégias para contruir funções recursivas sobre listas que vimos atrás.

foldr está relacionada com a recursividade primitiva. foldl está relacionada com o uso de acumuladores.

Exercício: Considere as funções sumR xs = foldr (+) 0 xssumL xs = foldl (+) 0 xs

Escreva a cadeia de redução das expressões (sumR [1,2,3]) e (sumL [1,2,3]) e compare com o funcionamento da função somatório definida sem e com e acumuladores.

91

Outras funções de ordem superior

```
Composição de funções
                           (.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c
                            (.) f g x = f (g x)
Trocar a ordem dos
                           flip :: (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c
argumentos
                           flip f x v = f v x
                           curry :: ((a,b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c
Obter a versão
curried de uma função
                           curry f x y = f (x,y)
Obter a versão
                           uncurry :: (a \to b \to c) \to (a,b) \to c
uncurried de uma função
                           uncurry f(x,y) = f x y
Exemplos:
               sextuplo = dobro . triplo
               reverse xs = foldl (flip (:)) [] xs
               quocientes pares = map (uncurry div) pares
   sextuplo 5 → dobro (triplo 5) → dobro 15 → 30
   quocientes [(3,4),(23,5),(7,3)] \Rightarrow [0,4,2]
```