Realice una investigación respecto al estado del arte de las aplicaciones actuales de agentes inteligentes usando modelos LLM libres

Introduccion

Los LLMs ya han alcanzado un éxito muy alto en varias tareas, su capacidad para resolver problemas ya están a la altura de poder hacer tareas de forma automática. También se destaca su capacidad de interactuar con otros entornos, como humanos u **otros agentes**, usando interfaces de lenguaje natural.

Estos **sistemas multiagente** han sido propuestos para elevar la inteligencia del conjunto de agentes en sí, ya que las ventajas que ofrece son varias, como especializar LLMs en distintos agentes con distintas capacidades o mejorar la comunicación entre estos agentes, similar a un entorno de trabajo humano.

¿Cómo funciona la comunicación entre varios Agentes?

Hay 4 estructuras típicas

- En capas, con distintos niveles y roles para los agentes.
- Descentralizada, cada uno de los agentes puede operar con cualquier otro, esto es más común en aplicaciones que intentan simular la realidad.
- La centralizada en cambio propone que todos los agentes se comuniquen con uno central, esto mejoraría la eficiencia de la comunicación.
- Mensajes compartidos (MetaGPT), lo que proponen para mejorar la comunicación es una estructura donde los agentes publican mensajes y dependiendo de su perfil toman información de los que les sean relevantes

Aplicaciones de estos sistemas

Motivation	Research Domain & Goals		Work	Agents-Env. Interface	Agents Profiling		Agents Communication		Agents Capabilities Acquisition	
					Profiling methods	Profiles (examples)	Paradigms	Structure	Feedback from	Agents Adjustment
Problem	Software development		[Qian et al., 2023]	Sandbox	Pre-defined, Model-Generated	CTO, programmer	Cooperative	Layered	Environment, Agent interaction, Human	Memory, Self-Evolution
			[Hong et al., 2023]	Sandbox	Pre-defined	Product Manager, Engineer	Cooperative	Layered, Shared Message Pool	Environment, Agent interaction, Human	Memory, Self-Evolutio
			[Dong et al., 2023b]	Sandbox	Pre-defined, Model-Generated	Analyst, coder	Cooperative	Layered	Environment, Agent interaction	Memory, Self-Evolutio
	Embodied Agents	Multi-robot planning	[Chen et al., 2023d]	Sandbox, Physical	Pre-defined	Robots	Cooperative	Centralized, Decentralized	Environment, Agent interaction	Memory
		Multi-robot collaboration	[Mandi et al., 2023]	Sandbox, Physical	Pre-defined	Robots	Cooperative	Decentralized	Environment, Agent interaction	Memory
		Multi-Agents cooperation	[Zhang et al., 2023c]	Sandbox	Pre-defined	Robots	Cooperative	Decentralized	Environment, Agent interaction	Memory
	Science Experiments	Optimization of MOF	[Zheng et al., 2023]	Physical	Pre-defined	Strategy planers, literature collector, coder	Cooperative	Centralized	Environment, Human	Memory
	Science Debate	Improving Factuality	[Du et al., 2023]	None	Pre-defined	Agents	Debate	Decentralized	Agent interaction	Memory
		Examining, Inter-Consistency	[Xiong et al., 2023]	None	Pre-defined	Proponent, Opponent, Judge	Debate	Centralized, Decentralized	Agent interaction	Memory
		Evaluators for debates	[Chan et al., 2023]	None	Pre-defined	Agents	Debate	Centralized, Decentralized	Agent interaction	Memory
		Multi-Agents for Medication	[Tang et al., 2023]	None	Pre-defined	Cardiology, Surgery	Debate, Cooperative	Centralized, Decentralized	Agent interaction	Memory
World Simulation	Society	Modest Community (25 persons)	[Park et al., 2023]	Sandbox	Model-generated	Pharmacy, shopkeeper	-	-	Environment, Agent interaction	Memory
		Online community (1000 persons)	[Park et al., 2022]	None	Pre-defined, Model-generated	Camping, fishing	-	-	Agent interaction	Dynamic Generation
		Emotion propagation	[Gao et al., 2023a]	None	Pre-defined, Model-generated	Real-world user	-	-	Agent interaction	Memory
		Real-time social interactions	[Kaiya et al., 2023]	Sandbox	Pre-defined	Real-world user	-	-	Environment, Agent interaction	Memory
		Opinion dynamics	[Li et al., 2023a]	None	Pre-defined	NIN, NINL, NIL	-	-	Agent interaction	Memory
	Gaming	WereWolf	[Xu et al., 2023b] [Xu et al., 2023c]	Sandbox	Pre-defined	Seer, werewolf, villager	Cooperative, Debate, Competitive	Decentralized	Environment, Agent interaction	Memory
		Avalon	[Light et al., 2023a] [Wang et al., 2023c]	Sandbox	Pre-defined	Servant, Merlin, Assassin	Cooperative, Debate, Competitive	Decentralized	Environment, Agent interaction	Memory
		Welfare Diplomacy	[Mukobi et al., 2023]	Sandbox	Pre-defined	Countries	Cooperative, Competitive	Decentralized	Environment, Agent interaction	Memory
		Human behavior Simulation	[Aher et al., 2023]	Sandbox	Pre-defined	Humans	-	-	Agent interaction	Memory
	Psychology	Collaboration Exploring	[Zhang et al., 2023d]	None	Pre-defined	Agents	Cooperative, Debate	Decentralized	Agent interaction	Memory
	Economy	Macroeconomic simulation	[Li et al., 2023e]	None	Pre-defined, Model-generated	Labor	Cooperative	Decentralized	Agent interaction	Memory
		Information Marketplaces	[Anonymous, 2023]	Sandbox	Pre-defined, Data-Derived	Buyer	Cooperative, Competitive	Decentralized	Environment, Agent interaction	Memory
		Improving financial trading	[Li et al., 2023g]	Physical	Pre-defined	Trader	Debate	Decentralized	Environment, Agent interaction	Memory
		Economic theories	[Zhao et al., 2023]	Sandbox	Pre-defined, Model-Generated	Restaurant, Customer	Competitive	Decentralized	Environment, Agent interaction	Memory, Self-Evolutio
	Recommender Systems	Simulating user behaviors	[Zhang et al., 2023a]	Sandbox	Data-Derived	Users from MovieLens-1M	-	-	Environment	Memory
		Simulating user-item interactions Public	[Zhang et al., 2023e]	Sandbox	Pre-defined, Data-Derived	User Agents Item Agents	Cooperative	Decentralized	Environment, Agent interaction	Memory
	Policy Making	Administration	[Xiao et al., 2023]	None	Pre-defined	Residents	Cooperative	Decentralized	Agent interaction	Memory
		War Simulation Human Behaviors	[Hua et al., 2023] [Ghaffarzadegan et al., 2023]	None Sandbox	Pre-defined Pre-defined,	Countries Conformity	Competitive Cooperative	Decentralized Decentralized	Agent interaction Environment,	Memory Memory
	Disease	to epidemics Public health	et al., 2023] [Williams et al., 2023]	Sandbox	Model-Generated Pre-defined, Model-Generated	Adults aged 18 to 64	Cooperative	Decentralized	Agent interaction Environment, Agent interaction	Memory, Dynamic Generation

Como vemos hay varias aplicaciones, una que nos interesa es la capacidad de que varios agentes puedan establecer un debate y llegar a un resultado entre ellos, esto se puede aplicar al área de medicina para obtener un diagnóstico.

En la problemática que se plantea a resolver tendría al agente médico y de diagnósticos interactuando entre ellos para determinar un diagnóstico o sugerir más pruebas o análisis lo que involucra al agente de logística, también recibieron información que les paso el agente asistente. Por lo que el sistema podría beneficiarse de una arquitectura descentralizada. Dejando que todos los agentes se comuniquen entre sí.

MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning

En el área de medicina se propone un framework de colaboración multidisciplinaria (MC Framework), el cual usa agentes basados en LLMs en un entorno de roles donde la idea es en 5 pasos

- Juntar expertos en el área
- Proponer analisis individuales
- Preparar un reporte de estos análisis
- Hacer una discusión hasta llegar a un consenso
- Tomar una decision

El siguiente esquema sirve para visualizar los pasos que se toman

Un hombre de 66 años con antecedentes de ataque cardíaco y úlceras estomacales recurrentes experimenta tos constante y dolor de pecho, las tomografías recientes indican un posible tumor de pulmón. Diseñar un plan de tratamiento que minimice el riesgo y maximice los resultados es la preocupación inmediata debido al deterioro de su salud y su historial médico.

Este proceso a medida que vaya interactuando va a ganar mayor capacidad de razonamiento.

Los autores de MedAgents usaron varios datasets incluidos MedQA y PubMedQA y encontraron que usando el método de Zero-Shots tenían la mejor performance.

En nuestra aplicación al área de medicina, tomando el centro médico / hospital, podríamos reemplazar al agente simple que está entrenado con conocimientos sobre medicina por este sistema multiagente, teniendo un sistema multiagente siendo parte de otro sistema multiagente, el cambio sería que el agente asistente le pasa la información del paciente a este nuevo agente, el cual se encarga de todo el proceso del paciente, evitando la necesidad del agente de diagnósticos.

Los profesionales médicos en este nuevo caso ya podrían hasta llegar a tener un diagnóstico y un procedimiento a realizar tal vez antes de ver al paciente.

Plantee una problemática a solucionar con un sistema multiagente.

Defina cada uno de los agentes involucrados en la tarea.

Para este caso se plantea usar la aplicación de LLMs multiagentes en el área de medicina, vamos a contar con 4 agentes:

- 1) Asistente: Un agente que interactúa con el paciente, es el primer contacto con el mismo, ya que entabla una conversación en la cual va a juntar información sobre el historial médico del paciente, síntomas e información útil para dar contexto.
- 2) Médico: este agente agente se entrenó con conocimientos sobre medicina, desde literatura, papers y datos clínicos, además sigue siendo actualizado con los descubrimientos recientes.
- Logística: Es la parte logística del sistema, se encarga de agendar turnos dependiendo de la disponibilidad del paciente tanto como la urgencia del mismo, además este agente es el que coordina al resto.
- 4) Diagnósticos: Este será el agente que está encargado de los procesos de diagnóstico, es una combinación de conocimientos médicos y el historial del paciente. De esta manera se pueden sugerir análisis o pruebas que sean más útiles, esto contribuirá a una toma de decisiones bien informadas.

Destacar con ejemplos de conversación y la interacción entre los agentes involucrados.

Interacción con el paciente

Llega un paciente e inicia una conversación con el <u>asistente</u>, donde describe sus síntomas, en este caso son persistentes dolores de cabeza y fatiga.

El asistente tendrá un diálogo con el paciente, donde se harán una serie de preguntas para juntar detalles sobre estos síntomas y que podría llegar a estar asociado a estos.

El asistente al haber juntado esta información inicial se "comunica" con el agente <u>médico</u>, el cual va a analizar los síntomas del paciente teniendo el cuenta el contexto provisto, en base a esto pasará a sugerir potenciales causas o condiciones.

En el caso que estos resultados/síntomas requieran una investigación en mayor profundidad se involucra el agente de <u>logística</u>, este coordinará con el agente asistente un turno con el profesional médico necesario, dependiendo el estado de urgencia del paciente tanto como sus preferencias.

Antes del turno el agente de <u>diagnósticos</u> va a revisar tanto los síntomas del paciente como su historial médico, y provee al profesional médico con mayor contexto y un diagnóstico o pruebas/análisis que puedan ser relevantes para evaluar al paciente.

Durante el turno el profesional será asistido en tiempo real por el agente de diagnósticos.

Ventajas

- Estos sistemas al basarse en datos individuales de un paciente proveen una asistencia médica totalmente personalizada y ajustada a las necesidades del usuario.
- El agente logístico al hacer una organización eficiente optimiza el trabajo de los profesionales y acortará los tiempos de espera para los pacientes.

Desventajas

- Privacidad, ya que estos datos quedarían disponibles en una base de datos de un hospital/mutual, lo que necesitaría una alta seguridad, de la mano también el paciente tendría que estar de acuerdo a que sus datos puedan ser almacenados y usados por la empresa.

Fuentes

<u>GitHub - gersteinlab/MedAgents</u>

https://arxiv.org/abs/2402.01680

https://arxiv.org/abs/2308.00352

https://arxiv.org/abs/2311.10537