GL4 Page 1 sur 2

Théorie des langages et automates Série de TD n°3

Exercice 1

Dessinez le diagramme de transition d'un automate fini qui accepte le langage généré par la grammaire régulière suivante.

Donner l'expression régulière désignant le langage associé à l'automate.

 $S \rightarrow \epsilon$

 $S \rightarrow aA$

 $S \rightarrow bB$

 $A \rightarrow \epsilon$

 $A \rightarrow aA$

 $B \rightarrow \epsilon$

 $B \rightarrow bB$

Exercice 2

A l'aide du lemme d'Arden, extraire une expression régulière associée au langage de l'automate suivant :

Exercice 3

Donner un automate fini non déterministe pour l'expression régulière (ab + aab + aba)* puis déterminiser cet automate.

Exercice 4

On peut prouver que deux expressions régulières sont équivalentes en montrant que leur automates finis déterministes minimaux sont les mêmes, à l'exception peut être du nom des états. En utilisant cette technique, montrer que les expressions régulières suivantes sont toutes équivalentes:

GL4 Page 2 sur 2

- 1. (a+b)* 2. (a*+b*)*
- 3. $((\epsilon+a)b^*)^*$

Exercice 5

Montrer que tout langage fini est régulier.

Exercice 6

En appliquant le théorème de pompage, montrer que

- $\begin{aligned} 1. \quad & L_1 = \{ \ a^nb^m \, | \ m \geq n \ \} \ n'est \ pas \ régulier. \\ 2. \quad & L_2 = \{ \ a^nb^mc^{n+m} \, | \ n, \ m \geq 0 \ \} \ n'est \ pas \ régulier. \end{aligned}$