

LEDs

LEDs et circuits d'émission

Kingbright

High Efficiency Red

SPATIAL DISTRIBUTION

L-53ID

Caractéristiques électriques d'une LED

Forward Voltage(V)
FORWARD CURRENT Vs.
FORWARD VOLTAGE

Kingbright

High Efficiency Red

L-53ID

Caractéristiques électriques d'une LED

Idéalement : source de courant

Absolute Maximum Ratings at T_A=25°C

Parameter	High Efficiency Red			
Power dissipation	105	mW		
DC Forward Current	d Current 30			
Peak Forward Current [1]	160	mA		
Reverse Voltage	5	V		
Operating/Storage Temperature	-40°C To +85°C			
Lead Solder Temperature [2]	260°C For 5 Seconds			

Notes:

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.

Kingbright

High Efficiency Red L-53ID

Photodétection

Photodiode, une diode mais...

Photodiode, une diode mais...

Photocurrent/Open-Circuit Voltage

$$I_{P} (V_{R} = 5 V) / V_{O} = f (E_{v})$$

Photodétection

Montage simple

Montage de photodétection

Montage de photodétection

Etude expérimentale

Modélisation

Bande passante réduite (à cause du système de mesure)

Photodétection

Montage transimpédance

Montage transimpédance

A A/W W

$$I_{photo} = S_{\lambda} \cdot \eta \cdot \Phi_{photo}$$

Sensibilité spectrale

Rendement quantique

$$V_{S} = R_{T} \cdot I_{photo}$$

Etude expérimentale

$$V_S = R_T \cdot I_{photo}$$

Modélisation

DC BW BC BW A DC BW G 1.50Vpp 0mv

ALI / Passe-bas

Figure 6-41. Maximum Peak Output Voltage vs Frequency

Produit Gain-Bande-Passante constant

INPUT C	APACITANCE				'
Z _{ID}	Differential			MΩ pF	
Z _{ICM}	Common-mode			6 1	TΩ pF
OPEN-LO	OOP GAIN				
A _{OL}	Open-loop voltage gain	$V_S = 40 \text{ V}, V_{CM} = V_S / 2,$ $(V_{CC-}) + 0.3 \text{ V} < V_O < (V_{CC+})$ -0.3 V	118	125	dB
A _{OL}	Open-loop voltage gain	$V_S = 40 \text{ V}, V_{CM} = V_S / 2, R_L = 2 \text{ k}\Omega, (V_{CC-}) + 1.2 \text{ V} < V_O < (V_{CC+}) - 1.2 \text{ V}$	115	120	dB
FREQUE	NCY RESPONSE				•
GBW	Gain-bandwidth product			5.25	MHz
SR	Slew rate	V _S = 40 V, G = +1, C _L = 20 pF		20	V/µs

ALI asservi / Modélisation

Figure 6-41. Maximum Peak Output Voltage vs Frequency

$$A(j\omega) = \frac{A_{MAX}}{1 + j\frac{\omega}{\omega_c}}$$

$$V_s = \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} V_E$$

Transimpédance / Modélisation

$$\frac{\boldsymbol{V}_{S}}{\boldsymbol{I}_{Phd}} = \frac{\boldsymbol{R}_{T} \cdot \boldsymbol{A}_{0}}{(1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{0}}) \cdot (1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{c}}) + \boldsymbol{A}_{0}}$$

$$V_S = \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} V_E$$