

Laboratorio de Microcontroladores - 86.07

Rotación de LEDs

Profesor:			Ing. Guillermo Campiglio							
Cuatrimestre/Año:			1°/2020							
Turno de las clases prácticas			Miercoles 19 hs							
Jefe de trabajos prácticos:			Pedro Ignacio Martos							
Docente guía:			Pedro Martos, Fabricio Baglivo, Fernando Pucci							
Autores			Seguimiento del proyecto							
Nombre	Apellido	Padrón								
Leonel	Mendoza	101153								

Observaciones:				

Fecha	ı de aprob	oación	Firma J.T.P

Coloquio			
Nota final			
Firma profesor			

1. Objetivo

El objetivo de este trabajo es manejar de manera independiente los pines de los puertos usados. De las hojas de datos ver las características DC del microcontrolador, analizando cuanta corriente debería entregar a los distintos dispositivos conectados, si es capaz de entregar esa corriente, y si se corresponde con los valores reales.

2. Descripción

Se conectarán 6 LEDs como se indicará en el circuito esquemático. El microcontrolador será programado para prender de a un LED por vez, desplazando cual se enciende de derecha a izquierda y viceversa. Solo habrá un LED prendido a la vez. Luego se calculará el consumo teórico de corriente por pin, y corriente total suministrada por el microcontrolador; comparándose con el consumo real.

3. Diagrama en bloques

4. Esquemático

5. Listado de componentes

- Microcontrolador *ATmega328p* y programador USBasp (Arduino UNO) [AR\$ 950]
- 6x LED [AR\$ 60]
- \bullet 6x Resistencia (220 $\Omega)$ [AR\$ 24]

6. Diagrama de Flujo

7. Código de programa

CBI DATA_PORT, PORTD6


```
dec @1
                                  ; cuento 256 veces con @1
        brne loop2
        {\rm dec} \ @2
                                  ; cuento 256 veces el conteo de @1 (256*256)
        brne loop1
        dec @0
                                  ; cuento "@0" veces el conteo de @2 (@0*256*256)
        brne delay
.ENDMACRO
. CSEG
        JMP MAIN
.ORG INT_VECTORS_SIZE
main:
        LDI R20, (1<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7)
        OUT DD_PORT, R20
start:
        SBI DATA_PORT, PORTD2
                                  ; prendo y apago de a un LED
        LDI R22, DELAY
        D10ms R22, R23, R24
                                          ; uso este delay (~200 ms)
        CBI DATA_PORT, PORTD2
        SBI DATA_PORT, PORTD3
        LDI R22.DELAY
        D10ms R22, R23, R24
        CBI DATA_PORT, PORTD3
        SBI DATA_PORT, PORTD4
        LDI R22, DELAY
        D10ms R22, R23, R24
        CBI DATA_PORT, PORTD4
        SBI DATA_PORT, PORTD5
        LDI R22, DELAY
        D10ms R22, R23, R24
        CBI DATA_PORT, PORTD5
        SBI DATA_PORT, PORTD6
        LDI R22, DELAY
        D10ms R22, R23, R24
        CBI DATA_PORT, PORTD6
        SBI DATA_PORT, PORTD7
        LDI R22, DELAY
        D10ms R22, R23, R24
        CBI DATA_PORT, PORTD7
                                  ; de aca regreso al primer pin
        SBI DATA_PORT, PORTD6
        LDI R22, DELAY
        D10ms R22, R23, R24
```


SBI DATA_PORT, PORTD5 LDI R22,DELAY D10ms R22,R23,R24 CBI DATA_PORT, PORTD5

SBI DATA_PORT, PORTD4 LDI R22,DELAY D10ms R22,R23,R24 CBI DATA_PORT, PORTD4

SBI DATA_PORT, PORTD3 LDI R22,DELAY D10ms R22,R23,R24 CBI DATA_PORT, PORTD3

JMP start

; reinicio el tren de leds

8. Resultados

Se logró encender los LEDs de a uno y se observó que la intensidad de estos era constante. El micro puede entregar 40~mA por pin (I/O), y se esperaba que por cada LED circulen de 10~a~15~mA. Teniendo en cuenta la fuga de corriente de cada I/O pin en 0 (al ser muy baja), sigue estando debajo del consumo máximo por pin según las hojas de datos.

9. Conclusiones

Mediante el manejo de pines de forma independiente en un puerto, se logro el control de 6 LEDs y una idea del consumo del circuito, además de la capacidad del microcontrolador de entregar la corriente necesaria para el funcionamiento de los LEDs (analizando los valores absolutos máximos de CC en las hojas de datos).