

CS606- Compiler Construction

Final-Term Papers Solved MCQS with Reference (1 to 45 lectures) by

Arslan Arshad (Zain Nasar)

http://lmshelp.blogspot.com/ Arslan.arshad01@gmail.com

21,2016

AKMP01

FEB

In the Name of Allāh, the Most Gracious, the Most Merciful

Final-Term Papers Solved MCQS with Reference (1 to 45 lectures)

l	convert the relocatable machine	code into absolute machin	ne code by linking library	and relocatable object
files	3.			

- Assembler
- Loader/link-editor
- Compiler
- Preprocessor
- 2. Parsers take ____ as input from lexical analyzer.
 - Linker
 - ➤ Token
 - > Instruction
 - > None of the given

3. The regular expressiondenotes, the set of all strings of a's and b's of length two
> a*
> (a* b*)*
> (a b)(a b)
4 is a regular expression for the set of all strings over the alphabet {a} that has an even number of a's.
> aa*
> (aa)*
> aa*a
> a(aa)*
5 Phase supports macro substitution and conditional compilation.
> Semantic
 Syntax Preprocessing Click Here For More Detail
➤ None of given
7 Ivolic of given
نیا میں سب سے مشکل کام اپنی اصلاح اور سب سے آسان کام دوسروں پر نکتہ چینی کرنا ہے

6. In LL(1) par	rsing algorithm, contains a sequence of g	grammar symbols.	J. 734
> Stack	PG # 62		
Link List			
> Array			
None of the	ne given.		
7. Consider the	e grammar		
	$A \rightarrow B C D$ $B \rightarrow h B \mid \mathcal{E}$ $C \rightarrow C g \mid g \mid C h \mid i$		
> h , g, i			
> g			
> h			
None of the			
8 par	rsers never shifts into an error state.		
> LS			
> LT			
> LR			
> LP			
9. In parser, the	e two LL stand for		
➤ Left-to-rig	tht scan of input		
> left-most o	lerivation		
> Left-to-ri	ght scan of input and left-most derivation	PG # 54	
> None of the	ne given		

10.	is elaborated to produce binding	gs.
>	Declaration (Click Here For More Detail
>	Expression	
>	Command	
>	None of the given	
11.	A lexical analyzer generated by i	s essentially a FSA.
>	→ Dex	
>	→ Mex	
>	→ Fex	
>	· Lex	
12.	A lexical analyzer generated by lex is o	essentially a PDA (Push Down Automaton).
	> True	
	> False	
13.	The actions (shift, reduce) in a SLR(1)	parser depend on a look ahead symbol ().
>	Current input token	
>	Next Input Token	
>	Previous output Token	
>	Previous Input Token.	
		ed and de ed and a
	سے نیک صحبت بہتر ہے	بری صحبت سے تنہائی بہتر ہے اور تنہائی س

14. The following grammar contains a	_ conflict. S \rightarrow A xb
> Shift-Reduce	
First-Reduce	
> Shift-First	
➤ Reduce-Reduce	
15. S \rightarrow A xb	
$A \rightarrow aAb \mid x$	
This grammar contains a c	onflict.
> Shift-Reduce	
➤ First-Reduce	
➤ Shift-First	
> Reduce-Reduce	
16. Considering the following grammar:	
$S \to AB$ $A \to \mathcal{E} \mid aA$	
$B \rightarrow b \mid bB$	
≻ 1	
> 2	
> 3	
> 4	
1 001	1 1007
ر جلدی دور ہو جانا ہے	ایماندار کو غصہ دیر سے آتا ہے اور

17. Simple code generation considers one AST node at the time. When the target is a <i>stack</i> machine, the code can be generated in one traversal of the AST.
▶ Depth-first
> Breadth-first
> First-first
➤ Shift-Reduce
18 is a register allocation technique that <i>always</i> finds the minimal number of registers needed for a procedure.
procedure.
Dangling reference
► Graph coloring
➤ Left Factoring
➤ Right Recursion
19. Graph coloring is a register allocation technique that operates at <i>individual</i> basic blocks.
> True
False False
20. Graph coloring is a register allocation heuristic that <i>usually</i> finds the minimal number of registers needed for a procedure.
> True
> False
زندگی میں کامیابی کا یہی راز ہے کہ پریشانیوں سے پریشان مت بنو

21. $S \rightarrow a S Sa c$
This grammar is ambiguous.
≻ True
> False
22. When generating code at the basic block level, the dependency graph must be converted to target code. By
identifying, instruction selection and instruction ordering can be performed efficiently in a single pass.
► Ladder sequences
Physical sequences
➤ Logical sequences
> Token sequences
23 can be considered a small compiler since it transforms a source language (assembly) into a less abstract target language (binary object code)
abstract target language (onlary object code)
> Parser
> Assembler
> Scanner
24. When memory allocator operates on chunks which include some administrative part and a block of user data. The
administrative part includes flag for marking the chunk as free or in-use.
> One
> Two
> Three
> Four

25. A parser transforms a stream of tokens into an
► AST
≻ IST
≽ EST
> ATS
26. The parser generator yacc can handle grammars
► LL(1)
▶ LT(1)
► LS(1)
➤ LF(1)
27. The parser generator yacc can handle LL(1) grammars.
≻ True
> False
28. The yacc parser generator can handle LALR(1) grammars.
> True
> False
29. Simple code generation considers one AST node at a time. If the target is a <i>register</i> machine, the code can be generated in one traversal of the AST, possibly introducing temporaries when running out of registers.
➤ Breadth-first
➤ Depth-second
➤ Breadth-second

30. Attributes whose values are defined in terms of a called	a node's own attributes, node's siblings and node's parent are
➤ Inherited attributes	PG # 100
➤ Physical attributes	
➤ Logical attributes	
➤ Un-synthesized attributes	
31. A linker combines multiple object files into a	executable object.
≻ Single	
> Double	
> Triple	
➤ Quadruple	
32. The notation instructs YACC to push a	computed attribute value on the stack.
> <mark>\$\$</mark>	PG # 106
> &&	
> ##	
>	
33. The following two items	
$A \to P \bullet Q$	
$B \to P \bullet Q$	
can co-exist in an item set	
≻ LR	
> LS	
➤ LT	
➤ PR	

34. When generating a lexical analyzer from a description description description description description of "moves": character moves and € moves.	ption, the item sets (states) are constructed by two
> Character	
➤ Grammar	
≻ Token	
> Sentence	
35. Hybrid IRs combine elements of	
➤ Graphical (structural)	
➤ Linear IRs	
➤ Both graphical and linear IRs PG # 1	08
➤ Non-Linear IRs	
36. x[i] = y This is	
➤ Prefix assignment	
➤ Postfix assignment	
> Index assignment PG # 115	
➤ Non-Index assignment	
	that magaznimas talvana
37. A lexical analyzer generator automatically constructs a	_ that recognizes tokens.
> <mark>FA</mark> PG # 18	
> PDA	
> DP	
➤ Unidirectional Graph	

38. if x relop y goto L Above statement is
➤ Abstract jump
Conditional jump PG # 115
➤ While loop
➤ Unconditional jump
39. In a CFG (Context Free Grammar) the set of terminal and non-terminal symbols must be
➤ Logical
➤ Relational
➤ Joint
$40. S \rightarrow a \mid B$
B → Bb €
The non-terminal B is left recursive.
> True
> False
41. YACC contains built-in support for handling ambiguous grammars resulting in conflicts.
➤ Shift-reduce
> Shift-Shift
➤ Reduce-reduce
➤ Reduce-Shift
عقل مند کہتا ہے میں کچھ نہیں جانتا جبکہ ہے وقوف کہتا ہے کہ میں سب کچھ جانتا ہوں

42. The translation statements can be conveniently specified in YACC.
> Syntax-directed PG # 128
➤ Image-directed
➤ Sign-directed
> Segment-directed
43. When constructing an LR(1) parser we record for each item exactly in which context it appears, which resolves many conflicts present in parsers based on FOLLOW sets.
> SLR(1)
➤ LRS(1)
➤ RLS(1)
➤ SLL(1)
44. Code generation module has to tackle
➤ Memory management
> Instruction selection
➤ Instruction scheduling
> All of the given PG # 129
The code generation module has to tackle a number of issues. Memory management, Instruction selection, Instruction scheduling, Register allocation
45. For convenience, lexical analyzers should read the complete program into memory.
≻ <mark>Input</mark>
> Output
➤ Input and output
> Tokens

46. Considering the following grammar:
$S \to A \mid x$ $A \to aAb \mid x$
The grammar contains a conflict.
▶ Reduce-reduce
➤ First-first
➤ Shift-shift
➤ Shift-reduce
47. SLR (1) parsers only reduce a production rule when the current input token is an element of the FOLLOW set of that rule.
$S \rightarrow A B$
A → € aA
$B \rightarrow b \mid bB$
- FOLLOW (A) contains 2 elements.
> True
▶ False
48. SLR (1) parsers only reduce a production rule when the current input token is an element of the FOLLOW set of that rule.
$S \rightarrow A B$
$A \rightarrow a \mid aA$
B → € bB
- FOLLOW (A) contains 2 elements.
≻ True

> False

49. Th	ne order in which the DAG is traversed can lead to code
>]	Better PG # 143
> 1	Worse
> I	Large
> (Garbage
50. Re	egister allocation problem uses the strategy of
>	Graph coloring PG # 144
	Graph nodding
	Graph edging
	Graph patching
	rpical compilation means programs written in high-level languages to low-level
>	Object code PG # 06
>	Byted code
>	Unicode
>	Object code and byte code
	compilation process, Hierarchical analysis is also called
	Parsing
>	Syntax analysis. Click here for more detail
>	Parsing and syntax analysis
>	None of the given

ایماندار کو غصہ دیر سے آتا ہے اور جلدی دور ہو جاتا ہے

53 IR (Inter	rmediate Representation) stores the value of its operand in
>	Registers PG # 10
>	Memory
>	Hard disk
>	None of the given
54. A lexem	e is a sequence of characters in the source program that is matched by the pattern for a
>	Linker
>	Token
>	Control flow
>	None of the given
55. Parsers	rake as input from lexical analyzer.
>	Linker
>	Token
>	Instruction
>	None of the given
56. What ki	nd of abstract machine can recognize strings in a regular set?
>	DFA
>	NFA
>	PDA
>	None of the given

بری صحبت سے تنہائی بہتر ہے اور تنہائی سے نیک صحبت بہتر ہے

57. In multi	pass compiler, duri	ng the first pass it gathers information about
>	Declaration	
>	Bindings	
>	Static information	
>	None of the given	
58. In DFA	minimization, we co	onstruct one for each group of states from the initial DFA.
>	State	PG # 30
>	NFA	
>	PDA	
>	None of the given	
59	(Lexical Anal	lyzer generator), is written in java.
>	Flex	
>	<mark>Jlex</mark>	PG # 31
>	Complex	
>	None of the given	
60. In Flex	specification file, di	fferent sections are separated by
>	<mark>%%</mark>	PG # 31
>	&&	
>	##	
>	None of the given	
	دانائي	الله کا خوف سب سے بڑی

61. Recu	arsive parsing is done for LL(1) grammar.
>	Decent
>	Ascent
>	Forward
>	None of the given
62. Alter	rnative of the backtrack in parser is Look ahead symbol in
	> Input
	> Output
	> Input and output
	➤ None of the given
63. Parse	er takes tokens from scanner and tries to generate
	➤ Binary search tree
	> Parse tree
	➤ Binary search tree and parse tree.
	➤ None of the given
64. In pr	edictive parsing table, the rows represents
	> Terminals
	> Both non-terminal and terminal
	> Non-terminal PG # 62
	None of the given

زننگی میں کامیابی کا یہی راز ہے کہ پریشانیوں سے پریشان مت بنو

65. A predic	ctive parser is a top-do	own parser.
>	True	
>	False	
66. In LL(1)	parsing algorithm,	contains a sequence of grammar symbols.
>	Stack	PG # 62
>	Link list	
>	Array	
>	None of the given	
67. Bottom-	up parsing uses only	kinds of actions.
>	Two	PG # 71
>	Three	
>	Four	
>	Five	
Bottom-up par	rsing uses only two kind	ds of actions: 1. Shift, 2. Reduce
68. Bottom-	up parsers handle a	class grammars.
>	Large PG#	49
>	Small	
>	Medium	
>	None of the given	
40		a 40 /2 00 /2
ہلر ہے	اللى صحله ا	بری صحبت سے تنہائی بہتر ہے اور تنہائی سے

69. The shift actio	n a terminal on the stack.
> Push	es PG # 73
> Pops	
> Both	push and pops
> None	e of the given
70. Reduce action	zero or more symbols from the stack.
> Push	es
> Pops	PG # 73
> Both	push and pops
> None	e of the given
71. In compilers, l	inear analysis is also called
> Lexic	cal analysis
> Scan	ning
> Lexic	cal analysis and scanning
> None	e of the given
72. Back End of tw	vo-pass compiler uses algorithm.
> O(n)	
➤ O(n l	
	<mark>Complete</mark>
> None	e of the given
م چینی کرنا ہے	دنیا میں سب سے مشکل کام اپنی اصلاح اور سب سے آسان کام دوسروں پر نکث

73. The Back End of a compiler consist of
> Instruction selection
> Register allocation
➤ Instruction scheduling
➤ All of the given
74. In Back End module of compiler, optimal register allocation uses
> O(log n)
\triangleright O(n log n)
▶ NP-Complete
➤ None of the given
75. A lexeme is a sequence of characters in the source program that is matched by the pattern for a
➤ Linker
≻ <mark>Token</mark>
➤ Control flow
➤ None of the given
76 is a regular expression for the set of all strings over the alphabets {a} that has an even number of a's.
➤ aa*
➤ (aa)*
≻ <mark>aa*a</mark>
➤ a(aa)*
یماندار کو غصہ دیر سے آتا ہے اور جلدی دور ہو جاتا ہے
<u></u>

77		_algorithm is used in DFA m	ninimization.
	>	James's	
	>	Robert's	
	>	Hopcroft's	PG # 25
	>	None of the given	
78		is an important compor	nent of semantic analysis.
	>	Code checking	
	>	Type checking	PG # 39
	>	Flush checking	
	>	None of the given	
79. In _		, certain checks are perfo	ormed to ensure that components of a program fit together meaningfully.
	>	Linear analysis	
	>	Hierarchical analysis	
	>	Semantic analysis	
	>	None of the given	
80	:	read the input character and	produce sequence of tokens as output.
	>	Lexical analyzer	
	>	Parser	
	>	Symbol table	
	>	None of the given	
كتا		شورہ نہیں دے	خود کو تمہیں سے بڑھ کر کوئی اچھا م

81		of a two-pass compiler is consist of instruction selection, Register allocation and instruction
S	cheduli	ing.
	>	Backend Backend
	>	Frontend
	>	Start
	>	None of the given
82		is evaluated to yield a value.
	>	Command
	>	Expression
	>	Declaration
	>	None of the given
83. A	parse	r transforms a stream of tokens into an AST (Abstract Syntax Tree).
>	Tru	<mark>e</mark>
>	> false	
84. A	parse	r transforms a stream of characters into a stream of tokens.
>	> True	
>	Fals	e <mark>e</mark>
85. A	lexica	al analyzer transforms a stream of characters into a stream of tokens.
	TT.	

زندگی میں کامیابی کا یہی راز ہے کہ پریشانیوں سے پریشان مت بنو

> False

92. A recursive descent parser is based on a PDA (Push Down Automaton).
> True
> False
93. A bottom-up parser creates the nodes in the AST in pre-order.
> True
> False
94. A top-down parser creates the nodes in the AST (Abstract Syntax Tree) in preorder.
➤ True
False
95. A parser creates the nodes in the AST in preorder.
➤ Bottom – Up
➤ Middle – Ware
> Straight
96. The stack used in a bottom-up parser contains an alternating sequence of states and grammar symbols.
≻ <mark>True</mark>
> False
97. The following two items
$A \rightarrow P \cdot Q$
$B \rightarrow PQ \bullet$
Can coexist in an LR item set.
> True
False

98. The following two items
$A \rightarrow x \cdot B$
$B \rightarrow \bullet y$
Can coexist in an LR item set.
➤ True
> False
99. The following two items
$A \rightarrow P \cdot P$
$B \rightarrow Q \cdot Q$
Can coexist in an LR item set.
> True
False
100. $S \rightarrow A \mid xb$
$A \rightarrow aAb \mid x$
This is an LALR(1) grammar.
► <mark>True</mark>
> False
101. A linker combines multiple object files into a single executable object.
≻ <mark>True</mark>
> False
102. Data-flow equations can be solved efficiently by using bitwise boolean instructions (AND, OR, etc.).
≻ <mark>True</mark>
> False

103. Data-flow equations operate with IN, OUT, GEN, and KILL sets.
≻ True
➤ False
104. When threading an AST it might be necessary to introduce additional (join) nodes to ensure that each language
construct has a single exit point.
≻ True
> False
105. An iterative interpreter operates on a threaded AST.
≻ True
➤ False
106. $S \rightarrow A \mid B$
$A \rightarrow \epsilon \mid aA$
$B \rightarrow b \mid bB$
FIRST(S) contains elements.
> 2
> <mark>3</mark>
> 4
> None
عقل مند اپنے عیب خود دیکھتا ہے اور بیوقوفوں کے عیب دنیا دیکھتی ہے

107. The following set

$$S \rightarrow A \times \{\$\}$$

$$A \rightarrow \bullet a \{x\}$$

$$A \rightarrow \bullet a A \{x\}$$

is a valid LR(1) item set

- > True
- > False

108. S \rightarrow Ab

FIRST(S) contains 3 elements.

- > True
- > False

109. The regular expressions $\mathbf{a}(\mathbf{b}|\mathbf{c})$ and $\mathbf{ab}|\mathbf{ac}$ describe the same set of strings.

- > True
- > False

110. $S \rightarrow a \mid B$

$$B \rightarrow Bb \mid E$$

The non-terminal ______ is left recursive.

- > E
- > 2
- > E
- None of the given

111. In PASCAL represent the inequality test.
≻ :=
> =
➤ None of the given
112. In parser the two LL stand(s) for
➤ Left-to-right scan of input
➤ left-most derivation
➤ All of the given
➤ None of the given
113. Consider the grammar
A →B C D B → h B epsilon C → C g g C h i D → A B epsilon
First of C is
g, I look down for reference
▶ g
▶ h, i
≽ i
خوبصورتی علم و ادب سے ہوتی ہے لباس و حسن سے نہیں

114. Three-address codes are often implemented as a ______.

> Set of quadruples

PG # 104

- > Set of doubles
- Set of Singles
- None of the given
- 115. What does following statement represent? x[i] = y
 - Prefix assignment
 - Postfix assignment
 - indexed assignment PG #107
 - None of the given

116. ____ convert the reloadable machine code into absolute machine code by linking library and reloadable object files.

- > Assembler
- > Loader/link-editor
- Compiler
- > Preprocessor

117.	Consider the following grammar,
	$A \rightarrow B C D$
	B → h B episilon
	$C \rightarrow C g g C h i$
	D → A B episilon
	First of A is
>	<mark>h, g, i</mark>
>	
>	
>	None of the given
118.	One of the core tasks of compiler is to generate fast and compact executable code.
>	True PG # 14
>	False
119.	Compilers are sometimes classified as.
>	Single pass
>	Multi pass
>	Load and go All of the given Click here for more detail
120.	In multi pass compiler during the first pass it gathers information about
>	Declaration Click here for more detail
A	Bindings Static information
>	None of the given

121.	We can get an LL(1) grammar by
>	Removing left recurrence
>	Applying left factoring
>	Removing left recurrence and Applying left factoring Click for more detail
>	None of the given
	Consider the following grammar, S> aTUe T> Tbc/b U> d And suppose that string "abbcde" can be parsed bottom-up by the following reduction steps: (i) aTbcde (ii) aTde (iii) aTUe
	(iv) S
	So, what can be a handle from the following?
>	The whole string, (aTUe) PG # 68
>	The whole string, (aTbcde)
>	The whole string, (aTde)
>	None of the given
	When generating a lexical analyzer from a token description, the item sets (states) are constructed by two types of "moves": character moves and moves.
>	E (empty string) P # 18
>	#
>	@
>	none of given
124.	Which of the following statement is true about Two pass compiler.
7	Front End depends upon Back End
>	PG # 5
>	Both are independent of each other
7	None of the given

125.	avoid hardware stalls and interlocks.
	Register allocation
	► Instruction scheduling PG #10
	➤ Instruction selection
	None of given
126	Front end of two pass compiler takes as input.
	Source code PG # 5
7	* · · · · ·
>	Machine Code
7	None of the Given
127.	In Three-pass compiler is used for code improvement or optimization.
>	Front End
>	Middle End PG # 10
>	Back End
>	Both Front end and Back end
128. I	of a two-pass compiler is consists of Instruction selection, Register allocation and instruction scheduling.
>	Back end PG # 9
>	Front end
>	Start
>	None of given
129.	NFA is easy to implement as compared to DFA.
>	True
>	False PG # 19

130.	In a transition table cells of the table contain the state.
>	Reject state
>	Next state PG #18
>	Previous state
>	None of the given
131.	The regular expressions a* b* and (a b)* describe theset of strings.
>	Same
>	Different
>	Onto
132.	A canonical collection of sets of items for an augmented grammar, C is constructed as
>	For each set / in C and each grammar symbol X where goto (C, X) is empty and not in C add the set goto (C, X to C.
>	The first set in C is the closure of $\{[S'> .S]\}$, where S' is starting symbol of original grammar and S is the starting non-terminal of augmented grammar. PG # 72
>	The first set in C is the closure of $\{[S'> .S]\}$, where S is starting symbol of original grammar and S' is the Starting non-terminal of original grammar.
133.	Thetranslation statements can be conveniently specified in YACC
>	Syntax-directed PG # 120
>	Image-directed
>	Sign-directed
>	None of the given.

اپنی مرضی اور الله کی مرضی میں فرق کا نام غم ہے

	Attributes whose values are defined in terms of a node's own attributes, node's siblings and node's parent are lled
>	Inherited attributes PG # 92
>	Physical attributes
>	Logical attributes
>	Un-synthesized attributes
135.	Consider the grammar
	$A \rightarrow B C D$
	B → h B epsilon
	$C \rightarrow C g g C h i$
	$D \rightarrow A B \mid epsilon$
Follow	of B is
>	
	g, h, i, \$
>	
>	
136.	Consider the grammar A> B C D
	B> h B epsilon
	$C \longrightarrow C g \mid g \mid C h \mid i$
	D> A B epsilon
Follow	of C is
>	g <mark>, h, i, \$</mark> PG # 47
	g, h, \$
	h, i, \$
>	h, g, \$

137.	. The test of string is described b	y a rule called a	, associated with token.
>	Character		
>	Loader		
>	Pattern		
>	None of the given		
138.	B. Bottom up parsing is also calle	d	
>	LR Parsing PG #	70	
>	LT Parsing		
>	LS Parsing		
>	None of the given		
			-up parsers handle a large class of grammars. It is
the pre	referred method in practice. It is a	ulso called LR parsing:	
	referred method in practice. It is a		not mation similar to one wood for
			onstruction, similar to one used for
	. A DFA can be reconstructed fr		onstruction, similar to one used for
139.	O. A DFA can be reconstructed free Lexical Analysis	om NFA using the subset co	onstruction, similar to one used for
139.	D. A DFA can be reconstructed from Lexical Analysis Physical Analysis	om NFA using the subset co	onstruction, similar to one used for
139.	D. A DFA can be reconstructed from Lexical Analysis Physical Analysis	om NFA using the subset co	onstruction, similar to one used for
139.	 D. A DFA can be reconstructed from Lexical Analysis Physical Analysis Logical Analysis Parsing 	om NFA using the subset co	
139. > > > 140.	D. A DFA can be reconstructed from Lexical Analysis Physical Analysis Logical Analysis Parsing Which of the following system	om NFA using the subset co	
139. >	D. A DFA can be reconstructed from Lexical Analysis Physical Analysis Logical Analysis Parsing Which of the following system Text editor	om NFA using the subset co	
139. >	Lexical Analysis Physical Analysis Logical Analysis Parsing Which of the following system Text editor Assembler	om NFA using the subset co	
139. >	Lexical Analysis Physical Analysis Logical Analysis Parsing Which of the following system Text editor Assembler Linker	om NFA using the subset co	
139. >	Lexical Analysis Physical Analysis Logical Analysis Parsing Which of the following system Text editor Assembler Linker	om NFA using the subset co	

141 plays an important role in code optimization.	
▶ DAG PG # 143	
➤ Lexical Analyzer	
➤ AGD	
➤ Memory Management	
142. LR parsers can handle grammars.	
► Left-recursive PG # 63	
➤ file-recursive	
➤ End-recursive	
> Start-recursive	
143. Performing common sub expression elimination on a dependency graph requires the ide with the same operator and operands. When using a hash table (with a hash function base operands) all nodes can be identified in linear time.	
> Common	
> Uncommon	
> Next	
> Previous	
144. Linear IRs resembles pseudo-code for same	
➤ Automated Machine	
➤ Mechanical machines	
> Token machines	
> Abstract machine PG # 100	

145. S → A B
A → € aA
B → € bB
- FIRST(S) contains elements
> 3 PG # 46
$\overline{First{S}} = \{e,a,b\}$
 146. Dotted items (T→ α • β) record which part of a token has already been matched. Integer? ([0-9])+ • this is a item. ▶ Reduced
147. A is a top down parser.
> Predictive Parsing PG # 46
 148. Dotted items (T→ α • β) record which part of a token has already been matched. There are two kinds of basic items: shift items and reduce items. Integer! (•[0-9])+ This is a shift item. ► True ► False
ایماندار کو غصم دیر سے آتا ہے اور جلدی دور ہو جاتا ہے

Note: Give me a feedback and your Suggestion also If you find any mistake in mcqz please mail at above mentioned email address. And tell me your answer with references.

Winning is not everything, but wanting to win is everything.....
Go Ahead..... Best Of Luck!

1933350007530,5910

please pray for me and I will pray for you too

Campus (AKMPO1)

ARSLAN ARSHAD
Arslan.arshad01@gmail.com