北京师范大学 2010 ~ 2011 学年第二学期期末考试试卷(A卷)

课程名称:	复变团	数		任课老师	萨姓名:			- 1 3 7 7 7
卷面总分: 100	分	考试时长	= 120 5}	钟步	号试类别	射卷 ◎ 开	卷口 其他	0
院(系): 数学科				数学与应用			E级: 2016	-级
姓名:		4	47				219	
[题号]		= 1	1 1	DA	I Ii	六	总分	
得分								
阅卷老师(签字)),							HARRING.
一. (13 分) 叙述 祭曼 (Cauchy-R	函数 f(z icmann)) = u(x,y 条件且讨;) + iv(x,y) 论函数 f(:	在点的 $z) = y^3 + i$	(复) 可微和 r ³ 在何处(以解析的定 复)可微,在	义以及柯西	4 - -
二. (20 分) (1)								
/			$\frac{1}{z^2-2}$	$\frac{1}{z + 17}$				
按主-1的幂展	出. 炸指针	当其收敛半	1900 5	NI ST				
(2) 叙述罗即(1								
		The Country of			$\frac{z}{-1}$), $0 <$			
三(20分)叙述 孤立奇点各属于					辽平庙 C(不	含∞点)「	中的孤立奇	72 64
					(c) -	$\frac{1}{\sin\left(\frac{1}{z}\right)}$.		1250
(2) 求(a) 和(b)	中函数在	E孤立奇点	0点的密封	X			20	121=21-1
四 (20.分)(1) 彩	(述	理力用留	数定理计算	定积分: sin rdr 4 + r ²	121-107	< 2 er =	szt	121=21-1 1-125-11 <159<201 有名作
(2) 叙述儒歌 (R	ouché) 五	理并求方	リー× 程 z ⁸ - 5z ⁵	+ 1 = 0 6	[圆环1<	< 2 4 根	1的个数点	37 h.
五 (15 分) 叙述 i 和 - i 关于圆k	两点关于	园周对称印	的定义. 证出	明集 $ C = $	$\{z: z-i $	=2 z+i	} 是一个债	1141.
六 (12 分)说: 解析分支、求:	明多值由 l;在[0.1]	数 ³ √z²(1 的上沿取	- z)3 在書	点线段[0	.1] 的 z 平 析分支 gn(面上可以· 2) 在点 2	分出五个 ⁹ = -1 处 0	中值的值
$(g_0(-1) = {}^2)$. if	4 1C 1V 1)		$\int_{0}^{1} \frac{\sqrt[5]{x^{2}}}{(1)}$	$\frac{(1-x)^3dx}{(1+x)^3}$	= [