Matemáticas discretas II Principios básicos del conteo

Facultad de Ingeniería. Universidad del Valle

Mayo 2019

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- 7 Ejercicios

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- **7** Ejercicios

Introducción

Introducción

- La combinatoria nos permite estudiar cómo se pueden organizar un conjunto de elementos
- Esto nos ayuda a estudiar la complejidad de ciertos algoritmos y de algunos juegos. Dejemos esta pregunta para el final ¿Cual es la complejidad computacional de ordenar un arreglo de tamaño n probando todas las posibilidades?
- Esto ha adquirido importancia en estudios como la secuenciación del DNA

¿Cual es la complejidad de ordenar un arreglo de n número probando todas las posibilidades (solución ingenua)

Introducción

Introducción

Al crear una contraseña para su correo electrónico. Han pensado los siguiente: Si nuestra contraseña tiene 8 dígitos alfanuméricos ¿Cuantas posibles combinaciones de contraseñas existen?. ¿Un hacker podría superar la seguridad de mi contraseña?.

https://howsecureismypassword.net

¿Son realmente seguros los accesos a los sistemas informáticos?

Introducción

Introducción

Existen dos principios básicos de combinatoria: **Regla del producto** y **Regla de la suma**. Estos principios los vamos aplicar para realizar el conteo de cuantas formas de puede realizar una tarea.

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- 7 Ejercicios

$$\frac{2}{n_1} \times \frac{1}{n_2} = 2$$

Regla del producto

Supongamos una tarea se puede dividir en dos tareas consecutivas. Si hay n_1 formas de realizar la primera y n_2 formas de realizar la segunda, entonces hay n_1n_2 formas de realizar la tareas.

Tores

Ejemplo 1

Se quiere etiquetar las butacas de un asistente con una letra del alfabeto ingles (26 en total) y un número entero positivo menor o igual a 100. ¿Cual es el máximo número de butacas que se puede asignar con la etiqueta disponible?.

$$T_1 = L_{e} + r_0 \rightarrow 26$$

$$T_2 = N_{umero} \rightarrow 100$$

$$\frac{1}{100} = \frac{1}{100} + \frac{1$$

Solución

El proceso consiste en dos tareas:

- 1 Asignar una de las 26 letras del alfabeto.
- 2 Asignar uno de los 100 posibles números.

Solución

Según la regla de producto:

Existen 26 * 100 = 2600 formas de etiquetar una butaca.

Ejemplo 2

En una sala hay 32 ordenadores. Cada ordenador tiene 24 puertos. ¿Cuantos puertos diferentes hay en la sala?.

Solución

El proceso consiste en dos tareas:

- 1 Seleccionar un ordenador.
- 2 Seleccionar un puerto en dicho ordenador.

Solución

El proceso consiste en dos tareas:

- 11 Hay 32 posibles elecciones de ordenador.
- 2 Hay 24 posibles elecciones de puerto.

Solución

Según la regla de producto:

Existen 32 * 24 = 768 puertos.

Anotación

La regla del producto se puede extender a más de dos tareas. Suponga que una tarea requiere realizar sucesivamente $T_1, T_2, ..., T_m$ veces. Si cada tarea T_i puede realizarse de n_i formas entonces hay $n_1 * n_2 * ... * n_m$ formas de completar la tarea.

Ejemplo 3

¿Cuantas cadenas de bits diferentes hay con longitud 7?.

$$\frac{2}{12} \frac{2}{12} \frac$$

Solución

Analicemos: Cada bit en la cadena puede tener un valor de 0 o 1, es decir que existen 2 formas de elegir cada bit en la cadena.

Solución

Aplicando la regla del producto sucesivamente se obtiene la siguiente relación: $2*2*2*2*2*2*2=2^7=128$ cadenas de bits diferentes con longitud 7.

Ejemplo 4

¿Cuantas matriculas están disponibles si cada una contiene una serie de tres letras seguidas de tres dígitos?.

Solución

Analicemos: Hay 26 posibilidades para cada una de las tres letras y diez posibilidades para cada uno de los tres dígitos.

Solución

Aplicando la regla del producto sucesivamente se obtiene la siguiente relación: 26*26*26*10*10*10=17576000 posibles matriculas.

Ejemplo 5

¿Cuantas funciones se pueden definir de un conjunto de *m* elementos (dominio) a otro conjunto *n* elementos (imagen)?.

Solución

Analicemos: Una función se corresponde con la elección de uno de los m elementos del conjunto imagen para cada uno de los n elementos del dominio.

Solución

Aplicando la regla del producto sucesivamente se obtiene la siguiente relación: $n * n * n * ... * n * n = n^m$ posibles funciones.

Solución

¿Según lo visto anteriormente cuantas funciones existen desde un conjunto de 4 en otro conjunto de 6 elementos?

Solución

Existen 6⁴ posibles funciones

Solución

¿Según lo visto anteriormente cuantas funciones existen desde un conjunto de 4 en otro conjunto de 6 elementos?

Solución

Existen 6⁴ posibles funciones

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- **7** Ejercicios

Regla de la suma

Definición

Si una primera tarea se puede realizar de n_1 formas y una segunda tarea se puede realizar de n_2 formas, y si las dos tareas son incompatibles, entonces hay $n_1 + n_2$ formas de realizar una de las dos tareas.

Ejemplo 1

Para elegir un representante para la Universidad del Valle Sede Tulua, una comisión puede elegir a un profesor o a un estudiante de doctorado. Existen 37 profesores y 83 estudiantes de doctorado.

Solución

Analicemos: Podemos dividir esta tarea en dos:

- I Se puede elegir un profesor, lo que puede hacer de 37 formas distintas.
- 2 Se puede elegir un estudiante de doctorado, lo que se puede hacer de 83 formas distintas.

Solución

Por lo que aplicando la regla de la suma se puede elegir un representante para Univalle de 37 + 83 formas posibles.

Anotación

La regla de la suma se puede extenderse a más de dos tareas. Suponga que una tarea se puede dividir en $T_1, T_2, ... T_m$ tareas independientes y cada tarea T_i se puede realizar de n_i formas entonces existe $n_1 + n_2 + ... + n_m$ formas de completar la tarea.

Regla la suma

Ejemplo 2

Un estudiante puede elegir un proyecto de trabajo de entre tres listas. Cada una de las listas contiene respectivamente 23,15 y 19 propuestas de trabajo. ¿Cuántos posibles proyectos tiene el estudiante para elegir?.

Regla la suma

Solución

Analicemos: De la primera lista puede elegir 23 formas distintas de trabajo. De la segunda lista puede elegir 15 formas de trabajo y de la tercera lista puede elegir 19 formas de trabajo.

Regla la suma

Ejemplo 2

De acuerdo a la regla de la suma existe 23 + 15 + 19 = 57 proyectos para elegir

Ejercicio

Retomemos

Con lo adquirido en clase, indique: ¿Cual es la complejidad computacional de ordenar un arreglo de tamaño n probando todas las posibilidades?

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- 7 Ejercicios

Definición

Muchos problemas de recuento no se pueden resolver utilizando sólo las reglas de la suma ni del producto. Sin embargo, es posible utilizar ambos principios de forma simultanea de ambos principios para solucionarlos.

Ejemplo 1

En una versión del lenguaje **UV-KILL**, el nombre de una variable es una cadena de **uno o dos caracteres alfanuméricos** y las letras mayúsculas o minúsculas no se distinguen. El nombre de la variable debe comenzar por una letra y debe ser diferente de las cinco cadenas de dos caracteres que esta reservadas en el lenguaje ¿Cuantos nombres de variables distintos son posibles?

$$T_{1} = 1 |_{\text{otn}} \stackrel{\checkmark}{=} 26$$
 $T_{2} = 2 |_{\text{otrg}} \stackrel{\checkmark}{=} 26 \times 36 - 5$

Solución

Sea V el número de variables disponibles. Sea V_1 el número de variables compuestas por sólo un carácter y V_2 el número de variables compuesta por dos caracteres.

Solución

- V_1 es 26 debido a que sólo puede ser una letra.
- V₂ debe ser 26 * 36 debido es la forma de generar el nombre de una variables de dos caracteres.
- Sin embargo, cinco de ellas están excluidas por lo que $V_2 = 26 * 36 5 = 931$

Solución

Entonces el número de variables en el lenguaje es:

 $V_1 + V_2 = 26 + 931 = 957$ nombres posibles de variables.

Ejemplo 2

Cada usuario de un ordenador tiene una contraseña, que tiene una longitud entre seis y ocho caracteres, cada uno de los cuales es un digito o una letra mayúscula. Cada contraseña debe contener al menos un dígito ¿Cuantas contraseñas distintas admite el sistema?

Solución

Sea P el número total de contraseñas y sean P_6 , P_7yP_8 respectivamente las contraseñas de longitud 6, 7 y 8.

Solución

Para calcular P_6 , P_7 y P_8 , lo mejor es realizar la diferencia entre todas las cadenas válidas de longitud 6,7 o 8 y restarlas con las que no son válidas.

Solución

- $P_6 = 36^6 26^6 = 1867866560$
- $P_7 = 36^7 26^7 = 70332353920$
- $P_8 = 36^8 26^8 = 2612282842880$

Solución

Finalmente, $P_6 + P_7 + P_8 = 2684483063360$

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbo
- 7 Ejercicios

Definición

Cuando dos tareas se pueden realizar simultáneamente, no se puede utilizar la regla de la suma o el producto para contar las maneras en que se pueden realizar las tareas, pues estaremos contando dos veces las tareas.

Definición

Para solucionar este problema de contar las tareas simultaneas, se suman las maneras de realizar cada tarea y luego se restan las formas de realizar las dos formas simultáneamente. Esta técnica es conocida como el **principio de inclusión-exclusión**

Ejemplo 1

¿Cuantas cadenas de bits que tengan longitud ocho y que bien comiencen con un 1 o bien terminen con 00?

Solución

Análisis, las tareas de nuestro problema son:

- Una tarea es construir una cadena de 8 bits que comience en
 1.
- Existe una segunda tarea que consiste en construir una cadena de 8 bits que termine en 00.

Solución

Para la primera tarea se tiene que:

 $1*2*2*2*2*2*2*2*2=2^7=128$ Formas de construir una cadena de longitud ocho que inicia en 1, aplicando la regla de la multiplicación.

Solución

Para la segunda tarea se tiene que:

 $2*2*2*2*2*1*1=2^6=64$ Formas de construir una cadena de longitud ocho que termina en 00, aplicando la regla de la multiplicación.

Solución

Ahora debemos analizar lo siguiente, las dos tareas simultáneamente, es decir construir una cadena que comience en 1 y termine en 00 se puede hacer:

$$1*2*2*2*2*2*1*1 = 2^5 = 32$$
 formas posibles.

Solución

Por lo tanto, el número de cadenas de 8 bits que pueden construir que inician en 1 y terminan en 00 se pude hacer:

128 + 64 - 32 = 160 Formas posibles.

Se tienen actualmente 125 Ayudas estudiantes de ingeniería de sistemas en la sede Tuluá. De cuantas formas:

¿Se puede escoger un comité compuesto por 4 personas? | 25x | 24x | 22

¿Se puede escoger un representante y dos delegados para el comité de programa?

| 25 | 25 | 27

En un país se codifica las cédulas de acuerdo a la siguiente regla

- Cedulas pueden 10 o 11 caracteres alfanumeros.
- Cedulas deben comenzar en A o bien terminar en 456 36+36=>611

¿Cuantas posibles cédulas existen?

un dígito

n digito
$$\frac{1}{9}$$
 $\frac{1}{9} = \frac{1}{36} = \frac{$

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- 7 Ejercicios

Definición

Algunos problemas se pueden solucionar utilizando diagramas de árbol. Un árbol esta formado por una raíz y un determinado número de ramas que parten de la raíz. Los resultados posibles están representados por las hojas del árbol, que son los extremos de las remas.

Ejemplo 1

¿Cuantas cadenas de longitud cuatro no tienen dos unos consecutivos?

Solución Primer bit 1 0 Segundo bit 0 1 0 Tercer bit 1 0 0 1 0 0 1 0 Cuarto bit 0 1 0 1 0 0 1 0

Solución

De acuerdo al anterior árbol las posibles soluciones son: 0101,1001,0001,1010,0010,0100,1000,0000

Ejemplo 2

Un torneo entre dos equipos consiste en lo más de tres partidos, el primer equipo que gane dos partidos resulta vencedor

Ejemplo 3

Supongamos que un modelo de camiseta se fabrica en 3 tallas diferentes: X, XL y XXL. Cada camisa se fabrica en tres colores: Verde, Rojo y Azul. Excepto para la talla XXL que sólo se fabrica en rojo. ¿Cuantas camisetas diferentes debe haber?.

Contenido

- 1 Introducción
- 2 Regla del producto
- 3 Regla de la suma
- 4 Problemas de recuento más complicados
- 5 El principio de inclusión-exclusión
- 6 Diagramas de árbol
- 7 Ejercicios

Ejercicios

Ejercicio 1

En Univalle hay 18 estudiantes de matemáticas y 325 de Ingeniería de Sistemas

- ¿De cuantas formas se pueden escoger dos representantes, uno de ellos sea estudiante de matemáticas y el otro sea de Ingeniería de Sistemas?
- ¿De cuantas maneras se puede escoger un representante que sea estudiante que sea estudiante de matemáticas o Ingeniería de Sistemas?.

Solución

- Para la primera pregunta, la elección se puede tratar como dos tareas separadas: T_1 elegir representante matemáticas y T_2 elegir representante Ingeniería de Sistemas, por lo que aplicamos regla del producto: 18*325=5850 formas de elegir los dos representantes.
- Para la segunda pregunta, la elección se puede tratar como una tarea dependiente, es decir se puede aplicar regla de la suma 18 + 325 = 343.

Ejercicio 2

Un cuestionario tiene diez preguntas, cada una tiene cuatro posibles respuestas:

- ¿De cuantas formas puede contestar un estudiante al cuestionario si responde todas las preguntas?
- ¿De cuantas formas puede contestar un estudiante al cuestionario si puede dejar preguntas sin contestar?. → 5

Solución

 Para la primera pregunta, se aplicar regla del producto al cuestionario por lo que tendríamos

$$4*4*4*4*4*4*4*4*4*4*4=4^{10}$$
.

Para la segunda pregunta, se aplica que el estudiante puede responder cada pregunta con 4 posibles respuestas o no contestar, por lo que serían 5 formas. Por ende tendríamos: $5*5*5*5*5*5*5*5*5*5*5=5^{10}$.

Ejercicio 3

¿Cuantas cadenas de letras minúsculas existen de longitud cuatro o menor?. Existen 26 letras.

$$26^{4} + 26^{3} + 26^{2} + 26 + 1$$

Ejercicio 4 Dado el siguiente código. ¿Que valor toma k al final? for(int i=1; i <= n; i++|) { for i2 := 1 to n2for(int j=1; j <= n; j++) { a++: end end for(int i=1; i<=n;i+ \mp) (x = n)a+=n

Ejercicio 4

Dado el siguiente código. ¿Que valor toma k al final?

```
\begin{array}{l} k \; := \; 0 \\ \text{for } \; i1 \; := \; 1 \; \; to \; \; n1 \\ k \; := \; k \; + \; 1 \\ \text{end} \\ \\ \text{for } \; i2 \; := \; 1 \; \; to \; \; n2 \\ k \; := \; k \; + \; 1 \\ \text{end} \\ \\ \dots \\ \text{for } \; im \; := \; 1 \; \; to \; \; nm \\ k \; := \; k \; + \; 1 \\ \text{end} \\ \end{array}
```

Solución

Es necesario examinar el número de cadenas de 0,1,2,3 y 4 de longitud que corresponden a P_1, P_2, P_3, P_4 por lo que seria:

- $P_0 = 1$
- $P_1 = 26$
- $P_2 = 26 * 26 = 676$
- $P_3 = 26 * 26 * 26 = 17576$
- $P_4 = 26 * 26 * 26 * 26 = 456976$
- $P_0 + P_1 + P_2 + P_3 + P_4 = 475255$

Ejercicios

De los enteros entre 100 y 999, ambos inclusive:

- ¿Cuantos son impares?
- ¿Cuantos tienen los tres dígitos iguales?
- ¿Cuantos no son divisibles por 4?
- ¿Cuantos son divisibles por 3 o 4?
- ¿Cuantos bien no son divisibles por 3 o bien no son divisibles por 4?.
- ¿Cuantos son divisibles por 3, pero no son divisibles por 4?
- ¿Cuantos son divisibles por 3 y por 4?

Ejercicios

¿Cuantos son divisibles por 7? Se realiza esta operación $\lfloor \frac{900}{7} \rfloor = 128$. Observe que hay 900 números entre 100 y 999.

Ejercicios

¿Cuantos son impares? Son aquellos que no son divisibles por 2 entonces, primero calculamos los divisibles por 2, es decir $\lfloor \frac{900}{2} \rfloor = 450$. Y luego restamos esto al total de números: 900-450=450.

Ejercicios

¿Cuantos tienen los tres dígitos iguales?

En este caso se realiza de la siguiente manera: Tenemos tres dígitos, si incluyes un dígito los otros deben ser iguales, entonces al tener 9 posibles dígitos debido a que el 0 no es una posible solución obtenemos 9*1*1=9.

Ejercicios

¿Cuantos no son divisibles por 4? Son aquellos que no son divisibles por 4 entonces calculamos los divisibles por 4 $\lfloor \frac{900}{4} \rfloor = 225$. Entonces: 900 - 225 = 675.

Ejercicios

¿Cuantos son divisibles por 3 o 4?

Se parte en dos tareas, lo que se realiza es calcular los divisibles por 3 y 4, luego sumar los que son divisibles por ambos y luego restar los que son divisibles por ambos al tiempo. Divisibles por 3 $\lfloor \frac{900}{3} \rfloor = 300$, divisibles por 4 $\lfloor \frac{900}{4} \rfloor = 225$ y por ambos $\lfloor \frac{900}{12} \rfloor = 75$. Entonces finalmente se tiene 300 + 225 - 75 = 450.

¿Cuantos son divisibles por 10 o por 15?

Ejercicios

¿Cuantos bien no son divisibles por 3 o bien no son divisibles por 4?.

En este caso calculamos los que no son divisibles por 3, luego lo que no son divisibles por 4 y luego los que no son divisibles por ellos. Como estamos contando dos veces los que no son divisibles por 3 y 4 es necesario restar de la cuenta a los que no son por ambos.

- No divisibles por 3: 900 300 = 600
- No divisibles por 4: 900 − 225 = 675
- No divisibles por 12: 900 − 75 = 825. Se toma el mínimo común múltiplo entre 3 y 4 que es 12.
- Finalmente 600 + 675 825 = 450

Ejercicios

¿Cuantos son divisibles por 3, pero no son divisibles por 4? Se calcula los que son divisibles por 3, luego los que son divisibles por 3 y 4, los valores son respectivamente 300y75 la formula a calcular es 300-75=225 ya que son excluyentes.

Ejercicios

¿Cuantos son divisibles por 3 y por 4?.

En este caso se calcula los divisibles por 3 y 4 es decir con 12 por lo que se tiene un total de 75 número de acuerdo a los datos anteriores.

Ejercicios

De cuantas maneras puede un fotógrafo de boda ordenar un grupo de 6 personas sí:

- A) ; Los novios deben salir juntos en la foto?
 - : Los novios no nuedon solir iuntos en la foto
 - ¿Los novios no pueden salir juntos en la foto?
 - La novia sólo puede salir a la izquierda del novio?

Para entender el problema, intenta ubicar las personas sin restricciones

9)
$$5\frac{4}{3}$$
 $2\frac{1}{5}$ $\times 2$
6) $6\frac{1}{5}$ $6\frac{1}{5}$ $-2x5$!

Ejercicios

Para ubicar las personas tomamos las posiciones que puede tomar cada persona, la primera que ingresa puede ubicarse de 6 formas, la que sigue en 5 y la siguiente en 4 y así sucesivamente, por lo que las formas posibles para ubicar la foto es: 5*4*3*2*1 = 720.

Ejercicios

¿Los novios deben salir juntos en la foto? En este caso se considera el novio y la novia como un sola persona por lo que existen 5*4*3*2*1=120 formas de ordenar las personas en la foto, sin embargo es necesario considera el orden en que están los novios, entonces multiplicamos por 2 este valor obteniendo 240 formas de ordenar las personas en la foto.

Ejercicios

¿Los novios no pueden salir juntos en la foto? En este caso restamos los casos donde los novios salen juntos, con el total posibles formas de acomodar las personas en la foto:

Ejercicios

¿La novia sólo puede salir a la izquierda del novio? Si se analiza detenidamente en todas las formas posibles la novia esta a la derecha o izquierda del novio, si solo se toma la izquierda hablamos de la mitad del total de posibilidades entonces existen 720/2 = 360 formas de que la novia salga a la izquierda del novio.

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011.

Chapter 6.

Gracias

Próximo tema:

Estrategias avanzadas: Combinatorias y permutaciones.

