

Übung 1: Kombinatorische Logik

Aufgabe: Binär-Hexadezimal-Konverter

Beschreiben Sie einen VHDL-Block, der den vierstelligen Binärwert auf einer 7-Segment-Anzeige darstellt. Dabei sind die Ausgänge aktiv low, d.h. das entsprechende Segment leuchtet, wenn eine '0' anliegt.

Der Eingang der ENTITY ist der Bus "data" vom Typ "std_ulogic_vector(3 DOWNTO 0)", die Ausgänge sind Einzelsignale vom Typ "std_ulogic". Diese Datentypen sind in der LIBRARY ieee.std_logic_1164 definiert.

	Input				Output						
Character	data(3)	data(2)	data(1)	data(0)	a	b	c	d	e	f	g
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0							
3	0	0	1	1							
4	0	1	0	0							
5	0	1	0	1							
6	0	1	1	0							
7	0	1	1	1							
8	1	0	0	0							
9	1	0	0	1							
A	1	0	1	0							
b	1	0	1	1							
С	1	1	0	0							
d	1	1	0	1							
Е	1	1	1	0							
F	1	1	1	1							

- 1. Ergänzen Sie die Wahrheitstabelle
- 2. Beschreiben Sie die bool'sche Funktionsgleichung für Ausgang a (aus der Wahrheitstabelle mit disjunktiver / ODER Normalform, dt1, S.22)
- 3. Beschreiben Sie für Ausgang b die reduzierte bool'sche Funktionsgleichung mithilfe eines Karnaughdiagrammes (dt1, S.23)
- 4. Beschreiben Sie den Binär-Hexadezimal-Konverter in VHDL
- 5. Kontrollieren Sie das Syntheseresultat von Quartus mit Ihrer Lösung von 3.

So starten Sie Quartus

Für DE0:

Family: CycloneIII Device: EP3C16F484C6

Processing > Start Compilation

Aufgabe:

Überprüfen Sie nun anhand Tools > Netlist Viewer > Technology Map Viewer, ob die Kombinatorik stimmt (z.Bsp. für das Signal "c"):

Bevor Sie das Design auf des DE0-Board laden können, müssen Sie noch die Eingänge mappen. Ergänzen Sie also die Signalnamen und FPGA-Pin-Nummern entsprechend Ihren VHDL-Portnamen: (DE0 User Manual, S. 23-26)

VHDL-Entity	Signalname Board	FPGA-Pin-Nummer	Beschreibung
data(3)	SW[3]	PIN_G4	Toggle Switch[3]
data(2)	SW[2]	PIN_H6	Toggle Switch[2]
data(1)	SW[1]	PIN_H5	Toggle Switch[1]
data(0)	SW[0]	PIN_J6	Toggle Switch[0]
a	HEX0_D[0]	PIN_E11	Seven Segment Digit 0[0]
b	HEX0_D[1]	PIN_F11	Seven Segment Digit 0[1]
c	HEX0_D[2]	PIN_H12	Seven Segment Digit 0[2]
d	HEX0_D[3]	PIN_H13	Seven Segment Digit 0[3]
e	HEX0_D[4]	PIN_G12	Seven Segment Digit 0[4]
f	HEX0_D[5]	PIN_F12	Seven Segment Digit 0[5]
g	HEX0_D[6]	PIN_F13	Seven Segment Digit 0[6]

Assignments > Pin Planner

Schliessen Sie ein DE0-Board an die USB-Schnittstelle an. Falls der USB-Treiber noch nicht installiert ist, geben Sie die Files innerhalb des Quartus-Installationsverzeichnisses (muss im USB-Wizard explizit angegeben werden

Laden Sie Ihr Design auf den Altera-Baustein (Tools > Programmer)

Nun können Sie mit den Schaltern SW0 - SW3 eine Binärkombination einstellen, die auf HEX0 hexadezimal dargestellt wird.