Section 3.4

Linear Independence

Objective

- What is a linearly independent/dependent set?
- How to show that a set is linearly (in)dependent?
- What are some conditions on linearly (in)dependent sets?

What is a redundant vector in span(S)?

Example

$$S_1 = \{ (1,1,1), (1,0,-2) \}$$
 $S_2 = \{ (1,1,1), (1,0,-2), (2,3,5) \}$ equal span (S_1) span (S_2)

all linear combinations a(1,1,1)+b(1,0,-2)

all linear combinations a(1,1,1)+b(1,0,-2)+c(2,3,5)

Adding the vector (2, 3, 5) to S_1 3(1,1,1) + (-1)(1,0,-2) does not change the linear span of S_1

There is a "redundant" vector in the span of S_2

Homogeneous vector equation

$$\mathbf{v}_1 = (1, -2, 3), \ \mathbf{v}_2 = (5, 6, -1), \ \mathbf{v}_3 = (3, 2, 1)$$
 $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_3 = \mathbf{0}$ vector equation
 $\mathbf{v}_1 = (1, -2, 3), \ \mathbf{v}_2 = (5, 6, -1), \ \mathbf{v}_3 = (3, 2, 1)$
 $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_3 = \mathbf{0}$ vector equation
 $\mathbf{v}_1 = (1, -2, 3), \ \mathbf{v}_2 = (5, 6, -1), \ \mathbf{v}_3 = (3, 2, 1)$

Can we find scalars c_1 , c_2 , c_3 that satisfies this vector equation?

Is this the only solution?

$$c_{1} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + c_{2} \begin{pmatrix} 5 \\ 6 \\ -1 \end{pmatrix} + c_{3} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 5 & 3 & 0 \\ 0 & 16 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

homogeneous system in variables c_1 , c_2 , c_3

It has infinitely many solutions

What is linearly independence?

\mathbf{R}^n $\mathbf{u_1}$ $\mathbf{u_2}$ \dots $\mathbf{u_k}$

Definition 3.4.2.1

Let
$$S = \{u_1, u_2, ..., u_k\}$$
 be a set of vectors in \mathbb{R}^n .

If the vector equation

$$c_1 u_1 + c_2 u_2 + \cdots + c_k u_k = 0$$

has only the trivial solution,

"Working"
definition for
linearly
independence

i.e. the <u>only possible</u> scalars are:

$$c_1 = 0, c_2 = 0, ..., c_k = 0$$

We say:

S is a linearly independent set and

 $u_1, u_2, ..., u_k$ are linearly independent

What is linearly dependence?

\mathbf{R}^n $\mathbf{u_1}$ $\mathbf{u_2}$ \dots $\mathbf{u_k}$

12

Definition 3.4.2.2

Let
$$S = \{u_1, u_2, ..., u_k\}$$
 be a set of vectors in \mathbb{R}^n .

If the vector equation
$$c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \cdots + c_k \boldsymbol{u_k} = \boldsymbol{0}$$
 has non-trivial solution, working definition for linearly dependence

i.e. there exists scalars c_1 , c_2 , ..., c_n , not all of them are zero

We say: S is a linearly dependent set and $u_1, u_2, ..., u_k$ are linearly dependent

How to show that a set is linearly (in)dependent?

Example 3.4.3.1

Determine whether the vectors

$$(1, -2, 3), (5, 6, -1), (3, 2, 1)$$

are linearly independent.

Set up the vector equation:

$$c_{1} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + c_{2} \begin{pmatrix} 5 \\ 6 \\ -1 \end{pmatrix} + c_{3} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 augmented
$$\begin{pmatrix} 1 & 5 & 3 & | & 0 \\ -2 & 6 & 2 & | & 0 \\ 3 & -1 & 1 & | & 0 \end{pmatrix}$$

There are infinitely many solutions for c_1, c_2, c_3 .

i.e. There exist non-trivial solutions.

So (1, -2, 3), (5, 6, -1), (3, 2, 1) are linearly dependent.

Chapter 3 13 Vector spaces

How to show that a set is linearly (in)dependent?

Example 3.4.3.2

Determine whether the vectors

$$(1, 0, 0, 1), (0, 2, 1, 0), (1, -1, 1, 1)$$

are linearly independent.

Set up the vector equation:

$$c_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} + c_{3} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
REF
$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Convert into augmented matrix

There is only one solution $c_1 = 0$, $c_2 = 0$, $c_3 = 0$.

So the vectors are linearly independent.

Intuitive meaning of linear dependence

15

Theorem 3.4.4.1

$$S = \{u_1, u_2, ..., u_k\}$$
 a set with at least 2 vectors

S is linearly dependent if and only if

at least one vector $\mathbf{u_i}$ in S can be written as a linear combination of the other vectors in S

$$\mathbf{u_i} = c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \cdots + c_{i-1} \mathbf{u_{i-1}} + c_{i+1} \mathbf{u_{i+1}} + \cdots + c_k \mathbf{u_k}$$
"redundant" vector
$$\mathbf{u_i} \text{ is absent}$$

Remark 3.4.5.1

S is linearly dependent

⇔ there exists "redundant" vector in span(S)

Show a set is linearly dependent by finding a redundant vector from the set

Example 3.4.6.1 This method is not always easy

$$S_1 = \{(1, 0), (0, 4), (2, 4)\} \in \mathbb{R}^2.$$

(2, 4) is a linear combination of (1, 0) and (0, 4).

$$\rightarrow$$
 (2, 4) = 2(1, 0) + (0, 4)

(2,4) is a "redundant" vector:

$$span\{(1, 0), (0, 4), (2, 4)\} = span\{(1, 0), (0, 4)\}$$

So we can conclude that S_1 is linearly dependent.

Verification:
$$C_1 V_1 + C_2 V_2 + C_3 V_3 = \mathbf{0}$$

$$\rightarrow$$
 (0, 0) = $\frac{2}{2}$ (1, 0) $+$ (0, 4) $\frac{1}{2}$ (2, 4)

non-trivial scalars
Vector spaces

Chapter 3

Intuitive meaning of linear independence

17

Theorem 3.4.4.2

 $S = \{u_1, u_2, ..., u_k\}$ a set with at least 2 vectors

S is linearly independent if and only if no vector in S can be written as a linear combination of other vectors in S

Remark 3.4.5.2

S is linearly independent

⇔ there is no "redundant" vector in span(S)

Show a set is linearly independent by showing there is no redundant vector from the set

Example 3.4.6.2 This is not an efficient method

```
S_2 = \{(-1, 0, 0), (0, 3, 0), (0, 0, 7)\} \in \mathbf{R}^3. (-1, 0, 0) not a lin. comb. of (0, 3, 0) and (0, 0, 7) (0, 3, 0) not a lin. comb. of (-1, 0, 0) and (0, 0, 7) (0, 0, 7) not a lin. comb. of (-1, 0, 0) and (0, 3, 0) We can conclude that S_2 is linearly independent.
```

There is no redundant vector in S_2 :

```
span{(-1, 0, 0), (0, 3, 0), (0, 0, 7)}

*

span{(0, 3, 0), (0, 0, 7)}
```

 $span\{(-1, 0, 0), (0, 3, 0)\}$

 $span\{(-1, 0, 0), (0, 0, 7)\}$

Chapter 3 Vector spaces

A set with one vector

Example 3.4.3.3

The vector equation $c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \cdots + c_k \mathbf{u_k} = \mathbf{0}$ has non-trivial solution/
only trivial solution

Let $S = \{u\}$ be a set with one vector.

Is *S* linearly dependent / independent?

 $c\mathbf{u} = \mathbf{0}$ for some nonzero c / only c = 0

If $\mathbf{u} = \mathbf{0}$, then c can be non-zero. So $S = \{\mathbf{u}\}$ is linearly dependent If $\mathbf{u} \neq \mathbf{0}$, then c must be zero. So $S = \{\mathbf{u}\}$ is linearly independent

A set with two vectors

Example 3.4.3.4

The vector equation

$$c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \cdots + c_k \mathbf{u_k} = \mathbf{0}$$

has non-trivial solution /
only trivial solution

20

Let $S = \{u, v\}$ be a set with two vectors.

Is S linearly dependent / independent ?

cu + dv = 0 for c, d not both 0 / c, d both 0

$$\mathbf{u} = (-d/c)\mathbf{v}$$
 or $\mathbf{v} = (-c/d)\mathbf{u}$
 $c \neq 0$ $d \neq 0$

If **u** and **v** are scalar multiples of each other, **S** is linearly dependent

If **u** and **v** are not scalar multiples of each other, **S** is linearly independent

A set with the zero-vector

Example 3.4.3.5

Let S be a finite subset of \mathbb{R}^n . If $\mathbf{0} \in S$, then S is linearly dependent

Hint:

Consider the vector equation

$$c_1 \mathbf{0} + c_2 \mathbf{u_2} + \cdots + c_k \mathbf{u_k} = \mathbf{0}$$

Show that this equation can have non-trivial solutions for $c_1, c_2, ..., c_k$

A sufficient condition for linear dependence

Theorem 3.4.7 & Example 3.4.8

Let $S = \{u_1, u_2, ..., u_k\}$ be a set of vectors in \mathbb{R}^n .

If k > n, then S is linearly dependent.

- 1. In **R**², a set of three or more vectors must be linearly dependent.

 {(1,2), (3,4), (5,6)} is linearly dependent
- 2. In **R**³, a set of four or more vectors must be linearly dependent.

 $\{(1,2,3), (3,4,5), (5,6,7), (7,8,9)\}$ is linearly dependent

The proof

Theorem 3.4.7

$$S = \{u_1, u_2, ..., u_k\}$$
 in \mathbb{R}^n

$$c_1u_1 + c_2u_2 + \cdots + c_ku_k = 0$$
 vector equation

$$\begin{pmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1n} \end{pmatrix} \qquad \begin{pmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{2n} \end{pmatrix} \qquad \begin{pmatrix} a_{k1} \\ a_{k2} \\ \vdots \\ a_{kn} \end{pmatrix}$$

$$\begin{cases} a_{11}c_1 + a_{21}c_2 + \dots + a_{k1}c_k = 0 \\ a_{12}c_1 + a_{22}c_2 + \dots + a_{k2}c_k = 0 \\ \vdots & \vdots & \vdots \\ a_{1n}c_1 + a_{2n}c_2 + \dots + a_{kn}c_k = 0 \end{cases}$$

Homogeneous system of n linear equations in k variables $c_1, c_2, ..., c_k$

25

The proof

$\begin{cases} a_{11}c_1 + a_{21}c_2 + \dots + a_{k1}c_k = 0 \\ a_{12}c_1 + a_{22}c_2 + \dots + a_{k2}c_k = 0 \\ \vdots & \vdots \\ a_{1n}c_1 + a_{2n}c_2 + \dots + a_{kn}c_k = 0 \end{cases}$

26

Theorem 3.4.7

$$S = \{u_1, u_2, ..., u_k\}$$

$$c_1u_1 + c_2u_2 + ... + c_ku_k = 0 \quad (*)$$
 $k > n$ \Rightarrow more variables than equations
$$\Rightarrow \text{ the system has non-trivial solutions}$$

$$\Rightarrow \text{ equation (*) has non-trivial scalars}$$

$$\Rightarrow S \text{ is linearly dependent.}$$

Remark 1.5.4.2:

A homogeneous system with more unknowns than equations has infinitely many solutions

Homogeneous system of n linear equations in k variables $c_1, c_2, ..., c_k$

Discussion 3.4.9.1 (for two vectors)

In \mathbb{R}^2 (or \mathbb{R}^3), \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are linearly independent if and only if $\mathrm{span}\{\mathbf{u}, \mathbf{v}\} = \mathbb{R}^2$ two vectors \mathbf{u} and \mathbf{v} are linearly dependent if and only if they lie on the same line.

Chapter 3 Vector spaces

Discussion 3.4.9.2 (for three vectors)

In \mathbb{R}^3 , three vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly dependent if and only if they lie on the same line or same plane.

u, v, w are linearly dependent

First case: same line

Discussion 3.4.9.2 (for three vectors)

In \mathbb{R}^3 , three vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly dependent if and only if they lie on the same line or same plane.

u, v, w are linearly dependent

Second case: same plane

Discussion 3.4.9.2 (for three vectors)

In \mathbb{R}^3 , three vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly dependent if and only if they lie on the same line or same plane.

u, v, w are linearly independent

 \boldsymbol{u} , \boldsymbol{v} and \boldsymbol{w} in \mathbf{R}^3 are linearly independent if and only if $\mathrm{span}\{\boldsymbol{u},\,\boldsymbol{v},\,\boldsymbol{w}\}=\mathbf{R}^3$

Chapter 3 Vector spaces 30

How to extend a linearly independent set?

Theorem 3.4.10

```
u_1, u_2, ..., u_k are linearly independent u_{k+1} is not redundant. If u_{k+1} is not a linear combination of u_1, u_2, ..., u_k then u_1, u_2, ..., u_k, u_{k+1} are linearly independent.
```

(This result gives us a way to add more vectors to a collection of linearly independent vectors.)

Chapter 3 Vector spaces 31

Outline of proof

Theorem 3.4.10

```
u_1, u_2, ..., u_k are linearly independent (I)
```

If u_{k+1} is not a linear combination of $u_1, u_2, ..., u_k$ (II)

then u_1 , u_2 , ..., u_k , u_{k+1} are linearly independent.

Prove by contradiction

```
Suppose \boldsymbol{u_1}, \, \boldsymbol{u_2}, \, ..., \, \boldsymbol{u_k}, \, \boldsymbol{u_{k+1}} are linearly dependent Then c_1\boldsymbol{u_1} + c_2\boldsymbol{u_2} + \cdots + c_{k+1}\boldsymbol{u_{k+1}} = \boldsymbol{0} --(*) for some c_1, \, c_2, \, \cdots, \, c_{k+1} not all 0 Consider two cases: (i) c_{k+1} = 0 and (ii) c_{k+1} \neq 0 Case (i) (*) becomes c_1\boldsymbol{u_1} + c_2\boldsymbol{u_2} + \cdots + c_k\boldsymbol{u_k} = \boldsymbol{0} This will contradict (I) Case (ii) (*) becomes c_1\boldsymbol{u_1} + c_2\boldsymbol{u_2} + \cdots + c_k\boldsymbol{u_k} = -c_{k+1}\boldsymbol{u_{k+1}}
```

This will contradict (II)
Chapter 3 Vector spaces 32

Exercise (similar to Ex 3 Q27)

Given u, v, w are linearly independent

Are u + v, u + w, v + w linearly independent?

Consider
$$a(u + v) + b(u + w) + c(v + w) = 0$$
 (*)

Does (*) have non-trivial scalars for a, b, c?

Rewrite (*):
$$(a+b)u + (a+c)v + (b+c)w = 0$$
 (**)

→ (**) has only trivial scalars for a+b, a+c, b+c

$$a + b = 0$$

 $a + c = 0$
 $b + c = 0$
Solve: $a = b = c = 0$

33

So (*) has only trivial scalars for a, b, c

So
$$u + v$$
, $u + w$, $v + w$ are linearly independent

Chapter 3 Vector spaces

Linear span VS linear independence

Given that: $S = \{u_1, u_2, ..., u_k\}$ is a subset of \mathbb{R}^n

$$S = \{u_1, u_2, ..., u_k\}$$
 spans \mathbb{R}^n

same as: $span(S) = \mathbb{R}^n$

$$c_1 u_1 + c_2 u_2 + \cdots + c_k u_k = \mathbf{v}$$

v is any general vector in Rⁿ

check whether the system is always consistent

does not span

To Show:

$$S = \{u_1, u_2, ..., u_k\}$$
 spans \mathbb{R}^n $S = \{u_1, u_2, ..., u_k\}$ is lin. indep.

$$c_1 u_1 + c_2 u_2 + \cdots + c_k u_k = 0$$

0 is the zero vector in Rⁿ

check whether the system has non-trivial solution

yes lin.dep

lin.indep

Section 3.5

Bases

Objective

- What is a basis for a vector space?
- How to show that a set is a basis?
- How to find a basis for a vector space?
- What are coordinate vectors?

What is a vector space?

Discussion 3.5.1

A set V is called a vector space if:

- either V = Rⁿ
- or V is a subspace of Rⁿ.

Examples

```
They are vector spaces

R³ is a subspace of R³

{0} is a subspace of R³

span{ (1,2,3) } is a subspace of R³

span{ (1,2,3), (2,1,4) } is a subspace of R³

subspace of R³
```

Color mixing

Three primary colors: Red, Green, Blue (RGB)

Different color shade combination gives "all" colors

e.g. 20% Red + 45% Green + 30% Blue

The three primary colors span the color space:

- span{ Red, Green, Blue} = Color space

None of the three primary colors are redundant:

- {Red, Green, Blue} is linearly independent

What is a basis?

Example

e.g.
$$(2, 3, -5) = 2\mathbf{e_1} + 3\mathbf{e_2} - 5\mathbf{e_3}$$

Standard basis vectors for **R**³

$$\mathbf{e_1} = (1, 0, 0), \ \mathbf{e_2} = (0, 1, 0), \ \mathbf{e_3} = (0, 0, 1)$$

- span $\{e_1, e_2, e_3\} = \mathbb{R}^3$

building block

- $\{e_1, e_2, e_3\}$ is linearly independent

No redundant vectors

 $S = \{e_1, e_2, e_3\}$ is called a basis for \mathbb{R}^3

S is a smallest possible subset of \mathbb{R}^3 so that every vector in \mathbb{R}^3 is a linear combination of the elements in S.

What is a basis for \mathbb{R}^n ?

Definition 3.5.4

Let $S = \{u_1, u_2, ..., u_k\}$ be a subset of \mathbb{R}^n .

Then S is called a basis for \mathbb{R}^n if

- 1. S is linearly independent no redundant vectors in S
- 2. S spans \mathbb{R}^n . span $\{u_1, u_2, ..., u_k\} = \mathbb{R}^n$

Remark 3.5.6.1

A basis for \mathbb{R}^n contains the smallest possible number of vectors that can span \mathbb{R}^n .

Remark 3.5.6.3

 \mathbb{R}^n has infinitely many bases. $\{(2, 0, 0), (0, 2, 0), (0, 0, 2)\}$

```
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}
{(2, 0, 0), (0, 2, 0), (0, 0, 2)}
{(1, 2, 1), (2, 9, 0), (3, 3, 4)}
```

How to show that a set is a basis (for \mathbb{R}^3)?

Example 3.5.5.1

Show that $S = \{(1, 2, 1), (2, 9, 0), (3, 3, 4)\}$ is a basis for \mathbb{R}^3 .

(i) S is linearly independent:

$$c_{1}\begin{pmatrix} 1\\2\\1 \end{pmatrix} + c_{2}\begin{pmatrix} 2\\9\\0 \end{pmatrix} + c_{3}\begin{pmatrix} 3\\3\\4 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Gaussian Elimination (details skipped)
$$\Rightarrow$$
 $c_1 = 0$, $c_2 = 0$ and $c_3 = 0$

The system only has the trivial solution. So S is linearly independent.

How to show that a set is a basis (for \mathbb{R}^3)?

Example 3.5.5.1

Show $S = \{(1, 2, 1), (2, 9, 0), (3, 3, 4)\}$ is a basis for \mathbb{R}^3 .

(ii) span(
$$S$$
) = \mathbb{R}^3 :

Let (x, y, z) be any (general) vector in \mathbb{R}^3 .

$$C_{1}\begin{pmatrix}1\\2\\1\end{pmatrix}+C_{2}\begin{pmatrix}2\\9\\0\end{pmatrix}+C_{3}\begin{pmatrix}3\\3\\4\end{pmatrix}=\begin{pmatrix}x\\y\\z\end{pmatrix}$$

Gaussian Elimination \Rightarrow system is consistent for (details skipped) any values of x, y, z.

So span $(S) = \mathbb{R}^3$.

By (i) and (ii), we conclude S is a basis for \mathbb{R}^3 .

A set that is not a basis (for \mathbb{R}^4)

Example 3.5.5.3

Is $S = \{(1, 1, 1, 1), (0, 0, 1, 2), (-1, 0, 0, 1)\}$ a basis for \mathbb{R}^4 ?

A basis for **R**ⁿ must have n elements

→ S is linearly independent

$$span(S) \neq \mathbb{R}^4 (|S| < 4)$$

So S is not a basis for \mathbb{R}^4 .

12

span(S) is a subspace of R4

S is a basis for this subspace span(S)

What is a basis for a subspace of \mathbb{R}^n ?

Definition 3.5.4

Let V be a subspace of \mathbb{R}^n

```
Let S = \{u_1, u_2, ..., u_k\} be a subset of V.
Then S is called a basis for V if
```

- 1. S is linearly independent no redundant vectors in S
- 2. S spans V. span $\{u_1, u_2, ..., u_k\} = V$

A set that is a basis for a subspace (of \mathbb{R}^4)

Example 3.5.5.2

Let
$$V = \text{span}\{(1,1,1,1), (1,-1,-1,1), (1,0,0,1)\}$$

and $S = \{(1, 1, 1, 1), (1, -1, -1, 1)\}.$

Show S a basis for V.

(i) S is linearly independent:
$$c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Gaussian Elimination \Rightarrow $c_1 = 0$ and $c_2 = 0$ (details skipped)

The system only has the trivial solution. So *S* is linearly independent.

Alternatively:

Just observe that (1, 1, 1, 1) and (1, -1, -1, 1) are not scalar multiple of each other, hence S is linearly indep.

A set that is a basis for a subspace (of \mathbb{R}^4)

Example 3.5.5.2

```
Let V = \text{span}\{(1,1,1,1), (1,-1,-1,1), (1,0,0,1)\}
and S = \{(1, 1, 1, 1), (1, -1, -1, 1)\}.
 Show S is a basis for V.
                                                       show this vector
                                                         is redundant
(ii) \operatorname{span}(S) = V: \leftrightarrow \operatorname{span}\{u_1, u_2\} = \operatorname{span}\{u_1, u_2(u_3)\}
   Just need to show (1,0,0,1) is a linear combination of
   (1, 1, 1, 1) and (1, -1, -1, 1)
 We can easily get
     (1,0,0,1) = \frac{1}{2}(1,1,1,1) + \frac{1}{2}(1,-1,-1,1)
 So (1,1,1,1), (1,-1,-1,1), (1,0,0,1) \in S_{2}
 By Theorem 3.2.12,
 span\{(1,1,1,1), (1,-1,-1,1), (1,0,0,1)\} \leq span\{(S)\}
```

A set that is not a basis for a subspace (of \mathbb{R}^3)

Example 3.5.5.4

```
Let V = span(S) where S = \{(1, 1, 1), (0, 0, 1), (1, 1, 0)\}
Is S a basis for V?
S is linearly dependent (1, 1, 1) = (0, 0, 1) + (1, 1, 0)
So S is not a basis for V though span(S) = V
```

In general,

- if S is linearly dependent,
 then S is not a basis for span(S)
- if S is linearly independent, S spans span(S) then S is a basis for span(S).

How to find a basis for a subspace?

Example

 $V = \{(a, a + b, b) \mid a, b \text{ in } \mathbb{R} \} \text{ is a subspace of } \mathbb{R}^3$ Find a basis for V.

Write V in linear span form

$$\begin{pmatrix} a \\ a+b \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 Express a general vector in V as a linear combination

17

- (1) $V= \text{span}\{(1, 1, 0), (0, 1, 1)\}$
- (2) {(1, 1, 0), (0, 1, 1)} is linearly independent the two vectors are not scalar multiples of each other

So $\{(1, 1, 0), (0, 1, 1)\}$ is a basis for V

Chapter 3 Vector Spaces

How to show that a set is a basis for a subspace?

Example

```
V = \{(a, a + b, b) \mid a, b \text{ in } \mathbb{R} \} \text{ is a subspace of } \mathbb{R}^3
Show that S = \{(1, 3, 2), (1, 2, 1)\} is a basis for V
 Check S is linearly independent
          (1, 3, 2) and (1, 2, 1) are not scalar multiples of each other
Check span(S) = V V = span\{(1, 1, 0), (0, 1, 1)\}
span\{(1,3,2), (1,2,1)\} = span\{(1,1,0), (0,1,1)\} (*)
To show (*), refer: Example 3.2.11
           egin{pmatrix} 1 & 1 & 1 & 0 \ 3 & 2 & 1 & 1 \ 2 & 1 & 0 & 1 \end{pmatrix}
```

Chapter 3

Basis for the zero space

Remark 3.5.6.2

What is a basis for the zero space $\{0\}$?

```
\{\mathbf{0}\} = \operatorname{span}\{\mathbf{0}\}
```

{0} is linearly dependent

So {**0**} is not a basis for the zero space

We regard the empty set \emptyset as the basis for $\{0\}$.

Uniqueness expression in terms of basis

Theorem 3.5.7

S a basis for V

Let $S = \{u_1, u_2, ..., u_k\}$

S spans V

S lin. indep.

be a basis for a vector space V. \longrightarrow subspace of \mathbb{R}^n

Every vector **v** in V

can be expressed in the form

consequence of S spans V

$$\mathbf{v} = \mathbf{c_1} \mathbf{u_1} + \mathbf{c_2} \mathbf{u_2} + \cdots + \mathbf{c_k} \mathbf{u_k}$$

in exactly one way. consequence of S is linearly indep.

i.e. there is a unique set of values for $c_1, c_2, ..., c_k$.

Example Suppose $\{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 .

Then
$$3u_1 + 5u_2 + 2u_3 \neq 2u_1 + 4u_2 + 6u_3$$

Proof of uniqueness

Theorem 3.5.7

Every vector \mathbf{v} in V can be expressed in the form

$$\mathbf{v} = \mathbf{c}_1 \mathbf{u}_1 + \mathbf{c}_2 \mathbf{u}_2 + \cdots + \mathbf{c}_k \mathbf{u}_k$$

in exactly one way.

Express **v** as two linear combinations:

$$\mathbf{V} = \mathbf{C_1} \mathbf{U_1} + \mathbf{C_2} \mathbf{U_2} + \cdots + \mathbf{C_k} \mathbf{U_k}$$
 (1)

(1) - (2):
$$\mathbf{v} = \mathbf{d_1} \mathbf{u_1} + \mathbf{d_2} \mathbf{u_2} + \cdots + \mathbf{d_k} \mathbf{u_k}$$
 (2)

$$\Rightarrow (c_1 - d_1)u_1 + (c_2 - d_2)u_2 + \cdots + (c_k - d_k)u_k = 0$$

Given S is linearly independent

$$\Rightarrow$$
 $c_1 - d_1 = 0$, $c_2 - d_2 = 0$, ..., $c_k - d_k = 0$

$$\Rightarrow c_1 = d_1, c_2 = d_2, ..., c_k = d_k.$$

So the expression is unique.

What are coordinate vectors?

$\begin{array}{c|c} \mathbf{R}^n \\ V = \operatorname{Span}(S) \\ \mathbf{v} & \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_k \end{array}$

Definition 3.5.8 fixed order

 $S = \{u_1, u_2, ..., u_k\}$: a basis for a vector space V \mathbf{v} : a vector in $V \in \mathbb{R}^n$ $\mathcal{V} = \mathbf{c}_1 u_1 + \mathbf{c}_2 u_2 + \cdots + \mathbf{c}_k u_k$ (unique expression) $(\mathbf{v})_S = (c_1, c_2, ..., c_k) \in \mathbb{R}^k$

 $c_1, c_2, ..., c_k$ are called the coordinates of \boldsymbol{v} relative to the basis S > Drden is two stant Form the vector $(c_1, c_2, ..., c_k)$ in \mathbf{R}^k This is called the coordinate vector of \boldsymbol{v} relative to S

Denote this vector by $(\mathbf{v})_S$

depends on basis S Vector Spaces

How to find coordinate vectors?

Example 3.5.9.1

Let
$$S = \{(1, 2, 1), (2, 9, 0), (3, 3, 4)\}.$$

S is a basis for \mathbb{R}^3 .

(a) Find the coordinate vector of $\mathbf{v} = (5, -1, 9)$ relative to S.

$$\mathbf{v} \longrightarrow (\mathbf{v})_S$$
?

(b) Find a vector \mathbf{w} in \mathbf{R}^3 such that $(\mathbf{w})_S = (-1, 3, 2)$.

$$\mathbf{w}$$
 ? \leftarrow $(\mathbf{w})_S$

How to find coordinate vectors?

Example 3.5.9.1

$$\mathbf{w} \longleftarrow (\mathbf{w})_{S}$$

(a) Solving the equation

$$a(1, 2, 1) + b(2, 9, 0) + c(3, 3, 4) = (5, -1, 9)$$

set up LS and use GE etc

we obtain a = 1, b = -1, c = 2.

i.e.
$$\mathbf{v} = \mathbf{1}(1, 2, 1) - (2, 9, 0) + \mathbf{2}(3, 3, 4)$$
.

So
$$(\mathbf{v})_S = (1, -1, 2)$$
.

(b)
$$(\mathbf{w})_S = (-1, 3, 2)$$
 substitution
 $\mathbf{w} = \mathbf{a}(1, 2, 1) + \mathbf{b}(2, 9, 0) + \mathbf{c}(3, 3, 4)$
 $= (11, 31, 7).$

Geometrical meaning of coordinate vectors

Example 3.5.9.2

$$S_1 = \{(1, 0), (0, 1)\}$$

Non-standard bases

$$S_1 = \{(1, 0), (0, 1)\}$$
 $S_2 = \{(1, -1), (1, 1)\}$ $S_3 = \{(1, 0), (1, 1)\}$

$$S_3 = \{(1, 0), (1, 1)\}$$

Chapter 3 **Vector Spaces**

$S_1 = \{(1, 0), (0, 1)\}$

Example 3.5.9.2(a)

$$v = (2, 3) = 2(1, 0) + 3(0, 1) \Rightarrow (v)_{S_1} = (2, 3)$$

29

Chapter 3 Vector Spaces

$S_2 = \{(1, -1), (1, 1)\}$

Example 3.5.9.2(b)

$$\mathbf{v} = (2, 3) = -\frac{1}{2}(1, -1) + \frac{5}{2}(1, 1) \Rightarrow (\mathbf{v})_{S_2} = (-\frac{1}{2}, \frac{5}{2})$$

Chapter 3

Vector Spaces

$S_3 = \{(1, 0), (1, 1)\}$

Example 3.5.9.2(c)

$$\mathbf{v} = (2, 3) = -(1, 0) + 3(1, 1) \Rightarrow (\mathbf{v})_{S_3} = (-1, 3)$$

Chapter 3 Vector Spaces

31

Coordinate vectors with respect to standard basis

Example 3.5.9.3 (Standard Basis for \mathbb{R}^n)

If S is the standard basis for \mathbb{R}^n , then $(\mathbf{u})_S = \mathbf{u}$

$$\mathbf{e_1} = (1, 0, 0, ..., 0, 0)$$

$$\mathbf{e_2} = (0, 1, 0, ..., 0, 0)$$

$$\mathbf{e_n} = (0, 0, 0, ..., 0, 1)$$
For a vector $\mathbf{u} = (u_1, u_2, ..., u_n)$ in \mathbf{R}^n

$$\mathbf{u} = u_1 \mathbf{e_1} + u_2 \mathbf{e_2} + \cdots + u_n \mathbf{e_n}$$

$$(\mathbf{u})_S = (u_1, u_2, ..., u_n)$$

Chapter 3 Vector Spaces 32

Properties of coordinate vectors

\mathbb{R}^3 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^2

Remark 3.5.10

Some useful rules about coordinate vectors:

Let S be a basis for a vector space V.

1. For any $\mathbf{u}, \mathbf{v} \in V$, $\mathbf{u} = \mathbf{v}$ if and only if $(\mathbf{u})_S = (\mathbf{v})_S$.

2. For any
$$\mathbf{v}_1$$
, \mathbf{v}_2 , ..., $\mathbf{v}_r \in V$ and c_1 , c_2 , ..., $c_r \in \mathbf{R}$, $(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + ... + c_r\mathbf{v}_r)_S$
= $c_1(\mathbf{v}_1)_S + c_2(\mathbf{v}_2)_S + ... + c_r(\mathbf{v}_r)_S$.

coordinate vector of linear combination = linear combination of coordinate vectors

Some preserving properties of coordinate vectors

Theorem 3.5.11

S be a basis for a vector space V with |S| = k. Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r \in V$. Then

- 1. \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r are linearly dependent (resp. independent) in V if and only if $(\mathbf{v}_r)_{r=1}^{r}$ (\mathbf{v}_r), are linearly dependent
 - $(\mathbf{v}_1)_S$, $(\mathbf{v}_2)_S$, ..., $(\mathbf{v}_r)_S$ are linearly dependent (resp. independent) in \mathbf{R}^k ;

 \mathbf{R}^{k}

- 2. $span\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\} = V \text{ if and only if } span\{(\mathbf{v}_1)_S, (\mathbf{v}_2)_S, ..., (\mathbf{v}_r)_S\} = \mathbf{R}^k.$
 - $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ is a basis for V if and only if $\{(\mathbf{v}_1)_S, (\mathbf{v}_2)_S, ..., (\mathbf{v}_r)_S\}$ is a basis for \mathbf{R}^k