UAI 2011

Symbolic Dynamic Programming for Discrete and Continuous State MDPs

Scott Sanner

Karina Valdivia Delgado Leliane Nunes de Barros

Continuous Domains: Mars Rovers

- Continuous state
 - Time (t), Energy (e), Robot position (x,y,θ)
- Closed-form exact solution?
 - Currently only if 1D or piecewise rectilinear solution exists ☺

Our work: exact for multidimensional nonlinear domains!

Previous Work

Discrete and Continuous (DC-)MDPs

Mixed discrete / continuous state

$$(\vec{b}, \vec{x}) = (b_1, \dots, b_n, x_1, \dots, x_m) \in \{0, 1\}^n \times \mathbb{R}^m$$

- Discrete action set $a \in A$
- DBN factored transition model

$$P(\vec{b}', \vec{x}' | \vec{b}, \vec{x}, a) = \underbrace{\left(\prod_{i=1}^{n} P(b'_{i} | \vec{b}, \vec{x}, a)\right) \left(\prod_{j=1}^{m} P(x'_{j} | \vec{b}, \vec{b}', \vec{x}, a)\right)}_{\text{discrete}}$$

Arbitrary action-dependent reward

$$R_a(\vec{b}, \vec{x}) = x_1 + x_2$$

Value Iteration for DC-MDPs

- Value of policy in state is expected sum of rewards
- Want optimal value $V^{h,*}$ over horizons $h \in 0..H$
 - Implicitly provides optimal horizon-dependent policy
- Compute inductively via Value Iteration for h∈ 0..H
 - Regression step:

$$Q_a^{h+1}(\vec{b}, \vec{x}) = R_a(\vec{b}, \vec{x}) + \gamma \cdot \sum_{\vec{b}'} \int_{\vec{x}'} \left(\prod_{i=1}^n P(b'_i | \vec{b}, \vec{x}, a) \prod_{j=1}^m P(x'_j | \vec{b}, \vec{b}', \vec{x}, a) \right) V^h(\vec{b}', \vec{x}') d\vec{x}'$$

– Maximization step:

$$V_{h+1} = \max_{a \in A} Q_a^{h+1}(\vec{b}, \vec{x})$$

Exact Solutions to DC-MDPs: Domain

- 2-D Navigation
- State: $(x,y) \in \mathbb{R}^2$
- Actions:
 - move-x-2

•
$$x' = x + 2$$

- move-y-2

•
$$y' = y + 2$$

Assumptions:

- 1. Continuous transitions are deterministic and linear
- 2. Discrete transitions can be stochastic
- 3. Reward is piecewise rectilinear

Reward:

$$- R(x,y) = I[(x > 5) (x < 10) (y > 2) (y < 5)]$$

Exact Solutions to DC-MDPs: Regression

Continuous regression is just translation of "pieces"

Exact Solutions to DC-MDPs: Maximization

Q-value maximization yields piecewise rectilinear solution

Previous Work Limitations I

Exact regression when transitions nonlinear?

Previous Work Limitations II

max(.,.) when reward/value arbitrary piecewise?

A solution to previous limitations:

Symbolic Dynamic Programming (SDP)

n.b., motivated by SDP from Boutilier *et al* (IJCAI-01) but here continuous instead of relational

SDP uses Symbolic *Case* Representation

$$P(x'|x,y) = \delta \left(x' - \begin{cases} (x < xy^2) \land (x > y) : & x + y \\ (x \ge xy^2) \lor (x \le y) : & (x - y)^2 + 1 \end{cases} \right)$$

Deterministic transitions represented by δ over (conditional) equation

Logical combinations of inequalities of arbitrary expressions

Arbitrary expressions

Case Operations: ⊕, ⊗

Case Operations: ⊕, ⊗

$$\begin{cases} \phi_1: & f_1 \\ \phi_2: & f_2 \end{cases} \oplus \begin{cases} \psi_1: & g_1 \\ \psi_2: & g_2 \end{cases} = \begin{cases} \phi_1 \wedge \psi_1: & f_1 + g_1 \\ \phi_1 \wedge \psi_2: & f_1 + g_2 \\ \phi_2 \wedge \psi_1: & f_2 + g_1 \\ \phi_2 \wedge \psi_2: & f_2 + g_2 \end{cases}$$

- Similarly for ⊗
 - Expressions trivially closed under +, *
- What about max?
 - max(f₁, g₁) not pure arithmetic expression ⊗

Case Operations: max

$$\max \left(egin{array}{cccc} \phi_1: & f_1 \ \phi_2: & f_2 \end{array}, egin{array}{c} \psi_1: & g_1 \ \psi_2: & g_2 \end{array}
ight) = egin{array}{c} oldsymbol{2} \end{array}$$

Case Operations: max

$$\max \left(\begin{cases} \phi_1 : & f_1 \\ \phi_2 : & f_2 \end{cases}, \begin{cases} \psi_1 : & g_1 \\ \psi_2 : & g_2 \end{cases} \right) =$$

$$\max \left(\begin{cases} \phi_{1}: & f_{1} \\ \phi_{2}: & f_{2} \end{cases}, \begin{cases} \psi_{1}: & g_{1} \\ \psi_{2}: & g_{2} \end{cases} \right) = \begin{cases} \phi_{1} \wedge \psi_{1} \wedge f_{1} > g_{1}: & f_{1} \\ \phi_{1} \wedge \psi_{1} \wedge f_{1} \leq g_{1}: & g_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} > g_{2}: & f_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} \leq g_{2}: & g_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} > g_{1}: & f_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} \leq g_{1}: & g_{1} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} > g_{2}: & f_{2} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} \leq g_{2}: & g_{2} \end{cases}$$

Key point: still in case form!

Size blowup? We'll get to that...

Symbolic Dynamic Programming

- In a nutshell
 - R(.), P(.|.) defined as case statements
 - Value iteration uses case operations
 - ⊕, ⊗, max
 - Then provably:
 - Vh(.) is also in case form for all horizons h!
- Only "tricky part" is continuous regression

SDP Regression Step

- Binary variables b_i
 - Factored $\sum_{bi \in \{0,1\}}$ (e.g, SPUDD: Hoey *et al,* UAI-99)
- Continuous variables $\mathbf{x}_{\mathbf{j}}$ $-\int \delta[x-y]f(x)dx = f(y) \text{ triggers symbolic } substitution, \text{ so}$

$$\int_{x'_{j}} \delta[x'_{j} - g(\vec{x})] V' dx'_{j} = V' \{x'_{j} / g(\vec{x})\}$$

– e.g.,

$$\int_{x_1'} \delta[x_1' - (x_1^2 + 1)] \left(\begin{cases} \underline{x_1'} < 2 : & \underline{x_1'} \\ \underline{x_1'} \ge 2 : & \underline{x_1'^2} \end{cases} \right) dx_1' = \begin{cases} \underline{x_1^2 + 1} < 2 : & \underline{x_1^2 + 1} \\ \underline{x_1^2 + 1} \ge 2 : & \underline{(x_1^2 + 1)^2} \end{cases}$$

If g is case: need conditional substitution, see paper

Case → XADD

SDP needs an efficient data structure for

- compact, minimal case representation
- efficient case operations

XADDs

Extended ADD representation of case statements

XADD Maximization

Maintaining XADD Orderings I

Max may get variables out of order

Maintaining XADD Orderings II

Substitution may get vars out of order

Correcting XADD Ordering

Build ordered XADD from unordered XADD

XADD Pruning

Node unreachable – x + y < 0 always false if x > 0 & y > 0

If **linear**, can detect with feasibility checker of LP solver & prune

Empirical Results

Problem Domains

- Knapsack problem (high-dimensional toy problem)
 - Transfer continuous resources to knapsack
 - Subject to capacity constraints
 - · Reward for amount transferred
 - Can solve for optimal ∞-horizon solution
- Mars Rover (variants of Bresina et al, UAI-02)
 - Linear
 - take pictures with linear time/energy constraints
 - Nonlinear
 - move to target (x,y) position, taking pictures along way
 - · reward is truncated quadratic
- All problem domains / code online:
 - http://code.google.com/p/xadd-inference/

Results: Time and Space for Mars Rover

Results: XADD Pruning vs. No Pruning

Summary:

- without pruning: superlinear vs. horizon
- with pruning: linear vs. horizon

Worth the effort to prune!

Obligatory 3D Value Function Gallery

Exact value functions in case form:

- linear & nonlinear piecewise boundaries!
- nonlinear function surfaces!

Conclusions

- First exact, closed-form solutions to subset of multidimensional, nonlinear DC-MDPs
- Key insights
 - Symbolic case representation
 - DP in terms of case ⊗, ⊕, max
 - $-\int \delta$ triggers (conditional) substitution
- Need compact case, efficient operations
 - Case → Extended ADD (XADD)
 - − ⊗, ⊕ technique for efficient decision reordering
 - Advantages of pruning

Future Work

- Efficiency
 - XADD pruning in nonlinear case
 - XADD Approximation?
 - Extend APRICODD (St-Aubin et al, NIPS-00)
- Expressivity
 - Full continuous stochastic extension
 - Currently, continuous transitions are mixture of δ 's
 - Ideally want Gaussian noise, etc.
 - Continuous actions?
 - Partial observability?

Thank you!

Questions?

Extra Slides

XADD: Details

- The XADD is an ADD allowing
 - Arbitrary expressions at leaves
 - Arbitrary expression inequalities at decision nodes
 - If expressions polynomial, decisions & leaves have canonical form
 - Enforce ordering on all decision tests: (x < y) before (x < 3)
- Operations same as XADD
 - But leaf operations may produce XADDs themselves!
 - May also require introduction of new decisions
 - E.g., maximization
- Can introduce support for substitution
 - Needed for SDP regression

1D: Boyan and Littman (1999)

- Exact Solutions to Time-dependent MDPs
 - Assume actions / transitions as follows

Action = bus:

$$t' = t + 30$$

$$R(s,t) = -2 - t + 20*I[s'=office]$$

Action = taxi:

$$t' = t + 10$$

$$s' = office$$

$$R(s,t) = -15 - t + 20*I[s'=office]$$

1D: Boyan and Littman (1999)

- Continuous transitions are δ -functions
 - Regressions just sums & translations of value

1D: Boyan and Littman (1999)

Value max is just piecewise partitioning

