Wintersemester 2023/24

7. Übung zur Vertiefung Analysis - Lösung

29. November 2023

Aufgabe 7.1. (a) Sei $A_n := \bigcup_{j=1}^n E_j$ und $f_n := f \cdot \chi_{A_n}$. Dann ist f_n als Produkt messbarer Funktionen messbar. Außerdem ist (f_n) punktweise konvergent gegen $\chi_E f$ mit $|f_n| \leq |f|$, wobei |f| integrierbar ist. Aus dem Satz über die dominierte Konvergenz folgt

$$\int_{E} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{A_n} f \, \mathrm{d}\mu = \lim_{n \to \infty} \sum_{j=1}^n \int_{E_j} f \, \mathrm{d}\mu = \sum_{j=1}^\infty \int_{E_j} f \, \mathrm{d}\mu,$$

nach Aufgabe 6.2 (b).

(b) Sei $B_n := \{x \in X \mid n-1 \le |x| < n\}$ und $B := \bigcup_{j=1}^{\infty} B_j$. Für alle $n \in \mathbb{N}$ ist dann

$$X = A_n \cup \left(\bigcup_{j=1}^n B_j\right)$$

wobei alle Mengen dieser Vereinigung paarweise disjunkt sind. Nach Aufgabe 6.2 (b) folgt somit

$$\int f \, \mathrm{d}\mu = \int_{A_n} f \, \mathrm{d}\mu + \sum_{j=1}^n \int_{B_j} f \, \mathrm{d}\mu.$$

Außerdem gilt nach (a)

$$\left| \sum_{j=1}^{\infty} \int_{B_j} f \, \mathrm{d}\mu \right| = \left| \int_B f \, \mathrm{d}\mu \right| \le \int |f| \, \mathrm{d}\mu < \infty,$$

womit die Folge $\left(\sum_{j=1}^n \int_{B_j} f \, \mathrm{d}\mu\right)$ konvergiert. Da f integrierbar ist, konvergiert dann auch die Folge $\left(\int_{A_n} f \, \mathrm{d}\mu\right)$ mit

$$\lim_{n \to \infty} \int_{A_n} f \, \mathrm{d}\mu = \lim_{n \to \infty} \left(\int f \, \mathrm{d}\mu - \sum_{j=1}^n \int_{B_j} f \, \mathrm{d}\mu \right) = \int f \, \mathrm{d}\mu - \sum_{j=1}^\infty \int_{B_j} f \, \mathrm{d}\mu$$
$$= \int f \, \mathrm{d}\mu - \int_B f \, \mathrm{d}\mu = 0,$$

da B = X gilt. Dies zeigt die Behauptung.

Aufgabe 7.2. (a) Da (f_k) gleichmäßig gegen f konvergiert, ist diese Konvergenz insbesondere punktweise und f ist nach Folgerung 2.25 messbar. Wegen der gleichmäßigen Konvergenz existiert außerdem ein $K \in \mathbb{N}$, sodass $|f(x) - f_k(x)| \le 1$ für alle $x \in X$ und $k \ge K$.

Dies impliziert $|f(x)| \le 1 + |f_k(x)|$ für alle $x \in X$ und $k \ge K$. Somit folgt

$$\int |f| d\mu \le \int 1 d\mu + \int |f_K| d\mu = \mu(X) + \int |f_K| d\mu < \infty$$

und f ist integrierbar.

Andererseits folgt aus der gleichmäßigen Konvergenz $|f_k(x)| \leq 1 + |f(x)|$ für alle $x \in X$ und $k \geq K$. Definiere die Funktion

$$g: X \to \mathbb{R}, \quad x \mapsto \max\{|f_1(x)|, ..., |f_K(x)|, 1 + |f(x)|\}.$$

Somit gilt $|f_k(x)| \leq g(x)$ für alle $x \in X$ und $k \in \mathbb{N}$. Insbesondere ist g nichtnegativ, messbar und außerdem integrierbar, denn

$$\int g \, d\mu \le \int \sum_{j=1}^{K} |f_j| + 1 + |f| \, d\mu = \sum_{j=1}^{K} \int |f_j| \, d\mu + \mu(X) + \int |f| \, d\mu < \infty,$$

da (f_k) eine Folge integrierbarer Funktionen ist und $\mu(X) < \infty$. Aus dem Satz über die dominierte Konvergenz folgt nun die Behauptung.

(b) Sei $(X, \mathcal{A}, \mu) := (\mathbb{R}, \mathcal{L}(1), \lambda_1), A_k := [-k, k]$ und definiere $f_k : X \to \mathbb{R}$ durch $f_k := \frac{1}{\lambda_1(A_k)}\chi_{A_k}$. Dann ist f_k für alle $k \in \mathbb{N}$ messbar und integrierbar mit

$$\int f_k \, \mathrm{d}\lambda_1 = \frac{1}{\lambda_1(A_k)} \lambda_1(A_k) = 1.$$

Außerdem konvergiert (f_k) gleichmäßig gegen die Nullfunktion f := 0, denn

$$|f_k(x) - f(x)| = |f_k(x)| \le \frac{1}{\lambda_1(A_k)} = \frac{1}{2k} \to 0$$

für alle $x \in \mathbb{R}$. Es ist also

$$\lim_{k \to \infty} \int f_k \, \mathrm{d}\lambda_1 = 1 \neq 0 = \int f \, \mathrm{d}\lambda_1.$$

Aufgabe 7.3. (a) Da der Maßraum σ-endlich ist, existiert eine Folge $(A_j) \subseteq \mathcal{A}$ mit $\mu(A_j) < \infty$ für alle $j \in \mathbb{N}$ und $X = \bigcup_{j=1}^{\infty} A_j$. Wegen Lemma 1.32 können wir o.B.d.A. annehmen, dass die Mengen A_j paarweise disjunkt sind. Wegen $\mu(X) > 0$ existiert außerdem mindestens ein $j \in \mathbb{N}$ mit $\mu(A_j) > 0$. Da die abzählbare Vereinigung von Nullmengen wieder eine Nullmenge ist, können wir somit o.B.d.A. annehmen, dass $\mu(A_j) > 0$ für alle $j \in \mathbb{N}$ gilt.

Definiere nun $f_n := \sum_{j=1}^n \frac{1}{2^j \mu(A_j)} \chi_{A_j}$ und $f := \sum_{j=1}^\infty \frac{1}{2^j \mu(A_j)} \chi_{A_j}$. Dann ist (f_n) eine Folge nichtnegativer einfacher Funktionen, die monoton steigend punktweise gegen f konvergieren. Somit ist f messbar. Außerdem ist f > 0 auf X und es folgt

$$\int |f| \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \sum_{j=1}^n \frac{1}{2^j \mu(A_j)} \int \chi_{A_j} \, \mathrm{d}\mu = \sum_{j=1}^\infty \frac{1}{2^j} = 1.$$

(b) Betrachte den Maßraum $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \mu)$ mit

$$\mu: \mathcal{P}(\mathbb{R}) \to [0, \infty], \quad A \mapsto \begin{cases} 0, & A = \emptyset, \\ \infty, & A \neq \emptyset. \end{cases}$$

Zunächst ist offenbar jede Funktion $f: \mathbb{R} \to \overline{\mathbb{R}}$ messbar. Sei $f: \mathbb{R} \to \overline{\mathbb{R}}$ nun nicht die Nullfunktion. Dann existiert ein $x \in \mathbb{R}$ mit $f(x) \neq 0$ und somit insbesondere ein $0 < r \in \mathbb{R}$ mit $|f(x)| \geq r$. Es folgt

$$\int |f| \, \mathrm{d}\mu \ge \int r\chi_{\{x\}} \, \mathrm{d}\mu = r\mu(\{x\}) = \infty.$$

Offenbar ist aber die Nullfunktion integrierbar, denn nach Definition ist $\int 0 d\mu = 0 \cdot \mu(\mathbb{R}) = 0 \cdot \infty = 0$. Dies zeigt $\mathcal{L}^1(\mu) = \{0\}$.

Aufgabe 7.4. (a) Es gilt

$$A = (A \setminus B) \cup (A \cap B)$$
 und $B = (B \setminus A) \cup (A \cap B)$.

Somit folgt

$$\mu(A) - \mu(B) = \mu(A \setminus B) + \mu(A \cap B) - \mu(B)$$
$$= \mu(A \setminus B) - (\mu(B) - \mu(A \cap B)) = \mu(A \setminus B) - \mu(B \setminus A)$$

und die Dreiecksungleichung zeigt

$$|\mu(A) - \mu(B)| = |\mu(A \setminus B) - \mu(B \setminus A)| \le \mu(A \setminus B) + \mu(B \setminus A) = \mu(A \triangle B).$$

(b) Sei $x \in X$. Für jede Menge $M \in \mathcal{B}^1(\overline{\mathbb{R}})$ ist

$$(f_x)^{-1}(M) = \{ y \in Y \mid f_x(y) \in M \} = \{ y \in Y \mid f(x,y) \in M \} = \{ y \in Y \mid (x,y) \in f^{-1}(M) \} \in \mathcal{B}$$
nach Aufgabe 4.1 (a), da $f \in \mathcal{A} \otimes \mathcal{B}$ -messbar ist und somit $f^{-1}(M) \in \mathcal{A} \otimes \mathcal{B}$ gilt.