Modelling the Environments and the Robots

Final Presentation

Elif Erbil, Eesha Kumar

Software Engineering in Robotics
Summer Semester 2019

Timeline

Basic models for the warehouse and its components

Basic models for the Kiva robots

Midterm Presentation

Core functionality of Kiva robots

A fixed warehouse model to test the functionality of Kiva robots

Second Status Update

Parametrization of the properties of the warehouse and creating a warehouse according to these parameters

Adding ids to items on the shelves to create realistic simulations

Final Presentation

Setup ROS to control warehouse parameters and the movement of the robot

Adding meshes to the robot and warehouse objects

Milestones

- Modelling the Kiva robots with sensor, actuator and transmitter functions
- Modelling a simple warehouse
- Controlling the robots for some basic tasks in a static warehouse model
- Adding sensors to robots for collision detection
- Pub-sub & server-client to retrieve and publish commands to warehouse and robots
- Adding ids to items in the storage units to control which items are being carried
- Parametrization of warehouse attributes (size of the warehouse, number of kiva robots and conveyor belts)

Functionality

Warehouse

- Spawn Shelves
- Spawn Robots
- Spawn Items

Kiva Robot

- MoveToCoordinates
 - Rotate
 - Orient
 - Move
- o Lift

Move to Coordinates

- Kiva States
 - o Idle
 - Busy
 - Rotating
 - MovingOnX
 - MovingOnY
 - Blocked

Gazebo

- Subscriber
 - /kiva/mov to listen for next coordinates
 - /kiva/lift to listen for lifting
 - /pose/info to get world information
- Publisher
 - /kiva/status to publish robot (0: idle 1: busy 2: blocked)
- Sensors
 - Publisher
 - /kiva_{id}/chassis/laser/scan to get distance information for collision detection

ROS

- Service
 - /warehouses/create_warehouse_models spawn storage units, items and robots
 - /get model state get model state at a point in time
- Client
 - /warehouses/create warehouse models input for warehouse creation
- Subscriber
 - /model_states get current state of world
- Publisher
 - /items/item_{id}/pose publish item_id with pose to locate in world
 - /storage_units/storage_unit_{id}/pose publish storage units' pose in world
- Nodes
 - create_warehouse_service_node spawn and manage models
 - create_warehouse_topics initialize warehouse topics
 - track_items_node track items in warehouse with pose
 - track_storage_units_node track storage units in warehouse

Gazebo - ROS communication

Implicit

- /spawn_sdf_model -> /gazebo/SpawnModel
- /get_model_state -> /gazebo/GetModelState

Explicit

- /kiva/mov -> /kiva/mov control movement of robots
- /items/item_{id} -> /get_model_state get pose of items
- /storage_units/storage_unit_{id} -> /get_model_state get pose of storage units
- /lift -> /lift control lift for robots and storage units

Demo

Demo

Final Steps

- Adding meshes to robots and warehouse objects
- Refactoring our code
- Expose Low Level APIs moveOnX(), moveOnY(), rotate()

Questions