Data Set - Company_Data 1. Import Necessary libraries	
<pre>import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns from sklearn import datasets from sklearn.metrics import classification_report import warnings warnings.filterwarnings('ignore')</pre>	
2. Import Data In [2]:	
2 10.06 113 35 10 269 80 Medium 59 12 Yes Yes 3 7.40 117 100 4 466 97 Medium 55 14 Yes Yes 4 4.15 141 64 3 340 128 Bad 38 13 Yes No	
399 9.71 134 37 0 27 120 Good 49 16 Yes Yes 400 rows × 11 columns 3. Data Understanding 3.1 Initial Analysis:	
In [3]: Company_details.head() Out[3]: Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US 1 11.22 111 48 16 260 83 Good 65 10 Yes Yes 1 11.22 111 48 16 260 80 Medium 59 12 Yes Yes 1 7.40 117 100 4 466 97 Medium 55 14 Yes Yes 4 4.15 141 64 3 340 128 Bad 38 13 Yes No	
In [4]: company_details.shape Out[4]: (400, 11) In [5]: company_details.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 400 entries, 0 to 399 Data columns (total 11 columns): # Column Non-Null Count Dtype</class>	
0 Sales 400 non-null float64 1 CompPrice 400 non-null int64 2 Income 400 non-null int64 3 Advertising 400 non-null int64 4 Population 400 non-null int64 5 Price 400 non-null int64 6 ShelveLoc 400 non-null object 7 Age 400 non-null int64 8 Education 400 non-null int64 9 Urban 400 non-null object 10 US 400 non-null object	
<pre>dtypes: float64(1), int64(7), object(3) memory usage: 34.5+ KB In [6]:</pre>	
Education 0 Urban 0 0 Us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
min 0.000000 77.000000 21.000000 10.000000 25.00000 10.000000 25% 5.39000 115.00000 42.75000 0.00000 139.00000 100.00000 39.75000 12.00000 50% 7.49000 125.00000 69.00000 5.00000 272.00000 117.00000 54.50000 14.00000 75% 9.32000 135.00000 91.00000 398.50000 131.00000 66.00000 16.00000 max 16.27000 175.00000 29.00000 509.00000 191.00000 80.00000 18.00000	
Sales Tloat64 CompPrice int64 Income int64 Advertising int64 Population int64 Price int64 ShelveLoc object Age int64 Education int64 Urban object US object dtype: object	
<pre>In [9]: company_details.columns Out[9]: Index(['Sales', 'CompPrice', 'Income', 'Advertising', 'Population', 'Price',</pre>	
3.2 Correlation Matrix : In [11]: plt.figure(figsize = (12,8))	
CompPrice - 0.064 1 - 0.081 -0.024 -0.095 0.58 -0.1 0.025 Income - 0.15 -0.081 1 0.059 -0.0079 -0.057 -0.0047 -0.057 Advertising - 0.27 -0.024 0.059 1 0.27 0.045 -0.0046 -0.034 Population - 0.05 -0.095 -0.0079 0.27 1 -0.012 -0.043 -0.11 -0.2	
Price - 0.44 0.58 -0.057 0.045 -0.012 1 -0.1 0.012 -0.0 Age - 0.23 -0.1 -0.0047 -0.0046 -0.043 -0.1 1 0.00650.2 Education - 0.052 0.025 -0.057 -0.034 -0.11 0.012 0.0065 10.4 Sales CompPrice Income Advertising Population Price Age Education	
3.3 Label Encoder: In [12]: from sklearn import preprocessing In [13]: label_encoder = preprocessing.LabelEncoder() label_encoder Out[13]: LabelEncoder() In [14]: company_details['ShelveLoc'] = label_encoder.fit_transform(company_details['ShelveLoc']) company_details['Urban'] = label_encoder.fit_transform(company_details['Urban'])	
Company_details['US'] = label_encoder.fit_transform(company_details['US']) In [15]: Company_details Out[15]: Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US 0 9.50 138 73 11 276 120 0 42 17 1 1 1 1 11.22 111 48 16 260 83 1 65 10 1 1 2 10.06 113 35 10 269 80 2 59 12 1 1 3 7.40 117 100 4 466 97 2 55 14 1 1	
4 4.15 141 64 3 340 128 0 38 13 1 0	
In [16]: sns.pairplot(company_details) plt.show() In [16]: sns.pairplot(company_details) plt.show()	
00 160 160 170 170 170 170 170 170 170 170 170 17	
400 100 100 1175 125 125 100 75	
	<u>-</u>
4. Train Test Split In [17]: from sklearn.model_selection import train_test_split In [18]: x = company_details.iloc[:,0:6]	- 0
y = company_details['ShelveLoc'] In [19]: Sales CompPrice Income Advertising Population Price 0 9.50 138 73 11 276 120 1 11.22 111 48 16 260 83 2 10.06 113 35 10 269 80 3 7.40 117 100 4 466 97	
4 4.15 141 64 3 340 128	
In [20]: y Out[20]: 0 0 0 1 1 1 2 2 2 3 2 2 4 0 395 1 396 2 397 2	
398 0 399 1 Name: ShelveLoc, Length: 400, dtype: int32 In [21]: company_details['ShelveLoc'].unique() Out[21]: array([0, 1, 2]) In [22]: company_details.ShelveLoc.value_counts() Out[22]: 2 219 0 96 1 85	
Name: ShelveLoc, dtype: int64 In [23]: list(company_details.columns) Out[23]: ''CompPrice',	
'Urban', 'Us'] In [24]: x_train, x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2 , random_state = 40) 5. Building Model for Decision Tree Classifier using Entropy Criteria In [25]: from sklearn.tree import pecisionTreeClassifier from sklearn import tree	
<pre>In [26]: model = DecisionTreeClassifier(criterion = 'entropy', max_depth = 3) model.fit(x_train, y_train) Out[26]: DecisionTreeClassifier(criterion='entropy', max_depth=3) In [27]: tree.plot_tree(model);</pre> <pre>In [27]: tree.plot_tree(model);</pre>	
In [28]: f_n = ['Sales', 'CompPrice', 'Income', 'Advertising', 'Population', 'Price'] c_n = ['Bad', 'Good', 'Medium']	
<pre>In [29]: fig, axes = plt.subplots(nrows = 1, ncols = 1, figsize = (4,4), dpi = 300) tree.plot_tree(model, feature_names = f_n, class_names = c_n, filled = True);</pre> Sales <= 6.165 entropy = 1.462 samples = 320	
Value = [83, 67, 170] class = Medium Sales <= 3.33 entropy = 1.0 Sales <= 10.425 entropy = 1.384	
samples = 108 value = [55, 0, 53] class = Bad samples = 212 value = [28, 67, 117] class = Medium	
Income <= 56.0 entropy = 0.503 samples = 18 value = [16, 0, 2] class = Medium Price <= 151.5 entropy = 0.987 samples = 160 entropy = 1.281 samples = 160 value = [39, 0, 51] class = Medium Price <= 197.5 entropy = 1.281 samples = 160 value = [35, 104] class = Medium value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Medium value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 52 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 samples = 160 value = [35, 36, 13] class = Good Price <= 106.0 entropy = 1.281 entropy	
entropy = 0.971 samples = 5 value = [3, 0, 2] class = Bad entropy = 0.0 samples = 84 value = [3, 0, 0] class = Medium entropy = 0.0 samples = 6 value = [3, 0, 2] class = Medium entropy = 0.178 samples = 127 value = [14, 1, 18] class = Medium entropy = 1.178 samples = 127 value = [14, 1, 18] class = Medium entropy = 1.18 samples = 127 value = [14, 1, 18] class = Medium entropy = 1.18 samples = 127 value = [14, 1, 18] class = Medium entropy = 1.18 samples = 127 value = [14, 1, 18] class = Medium entropy = 1.18 samples = 31 value = [3, 16, 12] class = Good	
5.1 Predicting on Test Data In [30]: pred = model.predict(x_test) pd.Series(pred).value_counts() Out[30]: 2 63	
Out[31]: array([2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	
<pre>1 0 8 10 2 3 5 41 In [33]:</pre>	
Out[34]: array([0.74692591, 0. , 0.02920061, 0. , 0. , 0. , 0.2387348]) In [35]: feature_imp = pd.Series(model.feature_importances_,index = f_n).sort_values(ascending = False) Out[35]: Sales	
dtype: float64 In [36]: sns.barplot(x = feature_imp, y = feature_imp.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.show() Visualizing Important Features Sales Price	
Price - Income - CompPrice - Advertising -	
Population - 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Feature Importance Score	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [37]: model_1 = DecisionTreeClassifier(criterion = 'gini', max_depth = 3) model_1.fit(x_train, y_train) Out[37]: DecisionTreeClassifier(max_depth=3) In [38]: tree.plot_tree(model_1);	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [37]: model_1 = DecisionTreeClassifier(criterion = 'gini', max_depth = 3) model_1.fit(x_train, y_train) DecisionTreeClassifier(max_depth=3)	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [37]: model_1 = DecisionTreeClassifier(criterion = 'gini', max_depth = 3) Out[37]: DecisionTreeClassifier(max_depth=3) In [38]: tree.plot_tree(model_1);	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [37]: model_1 = DecisionTreeClassifier(criterion = 'gini', max_depth = 3) model_1_s.fit(x_train, y_train) Out[37]: DecisionTreeClassifier(max_depth=3) In [38]: tree.plot_tree(model_1); In [38]: tree.plot_tree(model_1); In [39]: f_n = ['sales', 'CompPrice', 'Income', 'Advertising', 'Population', 'Price'] c_n = ['bad', 'Cood', 'Medium'] In [48]: fig, axes = plt.subplots(nrows = 1, ncols = 1, figsize = (4,4), dpl = 308)	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [37]; model_1 = DecisionTreeClassifier(criterion = "gini", max_depth = 3) model_1.filtx_train, y_train) DecisionTreeClassifier(max_depth = 3) In [38]; tree.plot_tree(model_1); In [39]: f_n = ["Sales", "CompPrice", "Income", "Advertising", "Population", "Price"]	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [37]	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria In [201] read_1 = section/reclassifier(contarion = gine*, ecc.depth = 3) In [202] read_1 = section/reclassifier(contarion = gine*, ecc.depth = 3) In [203] vee piod_1/req/rod1_3/ In [203]	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria 1. [20] [and 3. **Action rectalization classes = [and 1. Face decision = 2] [and 3.	
6. Building Model For Decision Tree Classifier (CART) using Gini Criteria 16. [23]	
6. Building Model For Decision Tree Classifier (CART) using Sini Criteria (a) Compared to the control of the c	
5. Predicting on Test Data 5. 10 Predicting on Test Data 5. 10 Predicting on Test Data 5. 20 Predicting on Test Data 5. 30 Predicting on Test Data 6.	
Building Model for Decision Tree Classifier (CART) using Gini Criteria Section Se	
6. Butting Whole First Decision Tree Classifier (CART) using Girl Criteria 3. (a) Septiming Whole First Classifier (CART) using Girl Criteria 3. (a) Septiming Whole First Classifier (CART) using Girl Criteria 3. (a) Septiming Whole First Classifier (CART) using Girl Criteria 3. (b) Septiming Whole First Classifier (CART) using Girl Criteria 3. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria 4. (c) Septiming Whole First Classifier (CART) using Girl Criteria	
6. Building would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Criteria 6. Southing Would For Decision Tree Classifier (CART) using Ciril Crit	
6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Classifier (CART) using Ciril Criteria 6. Subtiting Model For Decision Tree Carteria 7. Decision Tree Carteria 8. Subtiting Model For Decision Tree Carteria 8. Subtiting Model F	