Let G a finite group; we consider finite dimensional representations of G on \mathbb{C} -vector spaces.

Previews!

Let L_1, \dots, L_m be the complete list of irreducible representations for the finite group G, and let χ_i be the *character* of L_i .

Next week, we are going to prove the following:

Theorem:

- a. The number m of irreducible representations of G is equal to the number of *conjugacy classes* in G.
- b. χ_1, \cdots, χ_m are an *orthonormal basis* for the space $\mathrm{Cl}(G)$ of $\mathbb C$ -value class functions on G.
- c. For any G-representation V, let χ be the character of V.

Enumerate the conjugacy classes of G, say C_1, \dots, C_m and choose a representative $g_i \in C_i$ for each i.

Consider the $m \times m$ matrix whose rows are indexed by the irreducible characters χ_1, \cdots, χ_m and whose columns are indexed by the conjugacy class representatives g_1, \ldots, g_m , and whose entry in the *i*-th row and *j*-th column is given by $\chi_i(g_j)$. Write $c_i = |C_i|$ for the number of elements in the *i*th conjugacy class.

This matrix is known as the *character table of the group* G.

Remark:

a. The fact that the χ_i form an orthonormal basis for the space $\mathrm{Cl}(G)$ is equivalent to the statement that the above matrix is *unitary*, in the sense that for $1 \leq i, j \leq m$ we have

$$\sum_{k=1}^m c_k \chi_i(g_k) \overline{\chi_j(g_k)} = \delta_{i,j}.$$

b. Since the transpose of unitary matrix is also unitary, we find for $1 \le i, j \le m$ that

$$\sum_{k=1}^m c_i \chi_k(g_i) \overline{\chi_k(g_j)} = \delta_{i,j}.$$

Bibliography