```
In [2]:
import pandas as pd
import numpy as np
import re
import seaborn as sns
import matplotlib.pyplot as plt
import math
In [3]:
df = pd.read csv('Downloads/elevate analytics case data.csv')
C:\Users\Sarvesh Shah\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3049:
DtypeWarning: Columns (6) have mixed types. Specify dtype option on import or set
low memory=False.
  interactivity=interactivity, compiler=compiler, result=result)
In [77]:
df.head()
Out[77]:
   brand_id retailer_id brand_relationship_id brand_relationship_created_at brand_relationship_confirmed_at confirmation_reason
0
     20940
                NaN
                                262526
                                               2019-06-16 23:59:30
                                                                                     NaN
                                                                                                      NaN
1
     20940
                NaN
                                262525
                                               2019-06-16 23:58:26
                                                                                     NaN
                                                                                                      NaN
     19207
                NaN
                                262524
                                               2019-06-16 23:58:08
                                                                                     NaN
2
                                                                                                      NaN
3
     20940
                NaN
                                262523
                                               2019-06-16 23:47:47
                                                                                     NaN
                                                                                                      NaN
     20940
                                               2019-06-16 23:46:54
                NaN
                                262522
                                                                                     NaN
                                                                                                      NaN
5 rows × 21 columns
In [78]:
list(df)
Out[78]:
['brand id',
 'retailer_id',
 'brand_relationship_id',
 'brand relationship created at',
 'brand_relationship_confirmed_at',
 'confirmation reason',
 'normalized referer',
 'outgoing_email_id',
 'email_sent_at',
 'brand_relationship_order_id',
 'retailer signed up at',
 'retailer placed first order at',
 'retailer_placed_first_confirmed_order_at',
 'power retailer converted at',
 'retailer gmv',
 'retailer_business_type',
 'brand stockist count',
 'brand_first_active_at',
 'brand_adopted_elevate_at',
 'power maker converted at',
 'account_owner']
In [79]:
df.describe()
```

Out[79]:

	brand_id	retailer_id	brand_relationship_id	outgoing_email_id	brand_relationship_order_id	retailer_gmv	brand_stocl
count	218538.000000	32925.000000	218538.000000	5.915800e+04	420.000000	32925.000000	1220
mean	11762.567311	104335.204465	127717.487860	2.766829e+15	173303.869048	670.518482	4
std	8053.428540	29486.703843	77628.404937	5.316915e+18	75094.969090	2467.437360	7
min	5.000000	414.000000	1.000000	-9.223306e+18	26044.000000	0.000000	
25%	6913.000000	84371.000000	58978.250000	-4.662382e+18	104336.750000	0.000000	
50%	9935.000000	110802.000000	124190.500000	5.349338e+16	181488.500000	0.000000	2
75%	14074.000000	127710.000000	197126.750000	4.457374e+18	233532.250000	369.250000	5
max	48480.000000	148515.000000	262526.000000	9.222708e+18	303608.000000	126287.810000	100
4							Þ

In [80]:

df.shape

Out[80]:

(218538, 21)

In [81]:

df.isna().sum()

Out[81]:

brand id	0
retailer id	185613
brand relationship id	0
brand_relationship_created_at	0
brand_relationship_confirmed_at	185614
confirmation reason	185614
normalized referer	200120
outgoing_email_id	159380
email_sent_at	159380
brand relationship order id	218118
retailer_signed_up_at	185613
retailer_placed_first_order_at	202168
retailer_placed_first_confirmed_order_at	204534
power_retailer_converted_at	215167
retailer_gmv	185613
retailer_business_type	185689
brand_stockist_count	96454
brand_first_active_at	11
brand_adopted_elevate_at	1239
power_maker_converted_at	67291
account_owner	0
dtype: int64	

In [64]:

df.dtypes

Out[64]:

brand id	category
retailer id	category
_	category
brand_relationship_id	category
brand_relationship_created_at	datetime64[ns]
brand_relationship_confirmed_at	datetime64[ns]
confirmation_reason	object
normalized_referer	object
outgoing_email_id	bool
email_sent_at	datetime64[ns]
brand_relationship_order_id	category
retailer signed up at	datetime64[ns]
retailer_placed_first_order_at	datetime64[ns]
retailer placed first confirmed order at	datetime64[ns]

```
power retailer converted at
                                             datetime64[ns]
                                                    float64
retailer gmv
retailer_business_type
                                                     object
brand stockist count
                                                    float64
brand_first_active_at
                                             datetime64[ns]
brand adopted elevate at
                                             datetime64[ns]
power maker converted at
                                             datetime64[ns]
account_owner
                                                     object
dtype: object
```

Hypothesis 1:

In [4]:

Part 1

Analysis: We ran some t-tests to examine the difference in the sign-up rate between retailers who arrived at the sign-up page using Faire direct link in email (Group 1) vs. retailers who arrived at the sign-up page from a different source (Group 2).

```
In [5]:
```

```
# Generating extra columns for analysis

df['retailer_sign_up'] = df['retailer_id'].notnull()

df['clicked_email'] = df['outgoing_email_id'].notnull()

df['retailer_placed__fc_order'] = df['retailer_placed_first_confirmed_order_at'].notnull()
```

We start out by looking at the effect of email on sign up rate. We randomly sampled 40,000 samples for each of our groups.

In [186]:

```
dfclick = df[(df.clicked email)].sample(40000)
dfnclick = df[(df.clicked email==False)].sample(40000)
temp =
dfclick.append(dfnclick).groupby(['clicked email','retailer sign up','retailer placed fc order'])
[['brand_id']].count()
display(temp)
n1 = float(temp.loc[False,:,:].sum())
n2 = float(temp.loc[True,:,:].sum())
p1 = float(temp.loc[False,True,:].sum()/n1)
q1 = float(1 - p1)
p2 = float(temp.loc[True, True,:].sum()/n2)
q2 = float(1 - p2)
print('p1=',p1,'\np2=',p2,'\nq1=',q1,'\nq2=',q2,'\nn1=',n1,'\nn2=',n2)
t = (p1 - p2) / math.sqrt((p1*q1/n1)+(p2*q2/n2))
print('\nT-score:',t)
if t>=1.96 or t<=-1.96:
    print('\nP-value p < 0.05, Significant')</pre>
else:
    print('\nP-value p > 0.05, Not Significant')
```

brand id

clicked email	retailer sign up	retailer placed	fc order

False	False	False	36313
	True	False	2155
		True	1532
True	False	False	27708
	True	False	7004
		True	5288

```
p1= 0.092175

p2= 0.3073

q1= 0.907825

q2= 0.6927

n1= 40000.0

n2= 40000.0

T-score: -79.00875621841654

P-value p < 0.05, Significant
```

Part 2:

Analysis: We evaluated the difference in the acquisition rate by also conducting a t-test with the significance level (α) of 0.05. We randomly sampled 6,000 samples for each of our groups.

In [34]:

```
dfclick = df[(df.clicked_email)&(df.retailer_sign_up)].sample(6000)
dfnclick = df[(df.clicked_email==False)&(df.retailer_sign_up)].sample(6000)
temp =
dfclick.append(dfnclick).groupby(['clicked email','retailer sign up','retailer placed fc order'])
[['brand id']].count()
display(temp)
n1 = float(temp.loc[False,True,:].sum())
n2 = float(temp.loc[True, True,:].sum())
p1 = float(temp.loc[False,True,True]/n1)
q1 = float(1 - p1)
p2 = float(temp.loc[True,True]/n2)
q2 = float(1 - p2)
print('p1=',p1,'\np2=',p2,'\nq1=',q1,'\nq2=',q2,'\nn1=',n1,'\nn2=',n2)
t = (p1 - p2) / math.sqrt((p1*q1/n1)+(p2*q2/n2))
print('\nT-score:',t)
if t>=1.96 or t<=-1.96:
   print('\nP-value p < 0.05, Significant')
else:
   print('\nP-value p > 0.05, Not Significant')
```

brand_id

clicked_email retailer_sign_up retailer_placed__fc_order

False	True	False	3477
		True	2523
True	True	False	3442
		True	2558

```
p1= 0.4205
p2= 0.426333333333333334
```

```
q1= 0.5/95
q2= 0.573666666666667
n1= 6000.0
n2= 6000.0
T-score: -0.6466510264780151
P-value p > 0.05, Not Significant
```

Supporting data: we performed a year by year analysis of the acquisition rate, which shows that the rate has decreased from 14.3% (2018) to 12.5% (2019) even though the sign-up rate is consistent, 30.18% (2018) vs. 30.97% (2019).

```
In [36]:
```

```
df['email_sent_year'] = df['email_sent_at'].dt.year
```

In [187]:

```
df_brand = df.groupby(['email_sent_year'])[['brand_relationship_id','retailer_id']].count()
df_brand['conversion_rate'] = df_brand['retailer_id']*100/df_brand['brand_relationship_id']
df_brand.sort_values(by=['brand_relationship_id'])
```

Out[187]:

brand_relationship_id retailer_id conversion_rate

email sent vear

2018.0	23799	7183	30.181940
2019.0	35357	10949	30.966994

In [188]:

```
df_brand =
df.groupby(['email_sent_year']).agg({'brand_relationship_id':'count','retailer_placed__fc_order':'
sum'})
df_brand['acquisition_rate'] =
df_brand['retailer_placed__fc_order']*100/df_brand['brand_relationship_id']
df_brand.sort_values(by=['retailer_placed__fc_order'])
```

Out[188]:

brand_relationship_id retailer_placed__fc_order acquisition_rate

email_sent_year

2018.0	23799	3403.0	14.29892
2019.0	35357	4426.0	12.51803

Hypothesis 2: Decay in brand's number of referrals over years

In [150]:

```
# Pre processing
df = df[df['brand_first_active_at'].notnull()]

df['brand_joined_year'] = df['brand_first_active_at'].dt.year
df['brand_adopted_elevate_at_year'] = df['brand_adopted_elevate_at'].dt.year
df['email_sent_at_years'] = df['email_sent_at'].dt.year
```

Brand effort in inviting retailers by email

Brand effort metric:

No. of emails sent for the given year/no. of brands adopted faire elevate for the same year = % email sent

```
In [185]:
```

```
temp = df.groupby(['brand_adopted_elevate_at_year','brand_joined_year']).agg({'brand_id':'count','
email_sent_at':'count'})
temp['perc_email_sent'] = temp['email_sent_at']*100./temp['brand_id']
temp[['perc_email_sent']]
```

Out[185]:

perc_email_sent

brand_adopted_elevate_at_year brand_joined_year

2018.0	2017	35.658350
	2018	22.679501
2019.0	2017	47.361013
	2018	33.593787
	2019	30.555808