

SCIENCE

Department of Kinesiology

Observational learning KINESIOL 1E03 - Motor control and learning

Laura St. Germain Fall 2022 Week 10 Lecture 19

Review from last lecture

Practice can be organized to promote different amounts of contextual interference

CONTEXTUAL INTERFERENCE¹: refers to the **interference** that results from performing various tasks or skills with the **context** of practice

CONTEXTUAL INTERFERENCE EFFECT: when a **high amount** of contextual interference results in **better** retention and/transfer performance than a low amount of interference

¹This term was introduced by Battig 1979 when he first demonstrated the contextual interference effect; Fig: Magill & Anderson 2017

Why is random more effective than blocked?

ELABORATION HYPOTHESIS

Interleaving tasks gives the learner opportunities to engage in inter- & intra-task processing (i.e., compare and contrast) in working memory, which facilitates the development of more distinct or elaborative motor memories

FORGETTING-RECONSTRUCTION HYPOTHESIS

Interleaving tasks forces the learner to "forget" or dump a given action plan from working memory to plan and execute successive trials. The learner must then (re)construct an action plan on each trial.

Testing between explanations: TMS

Task: Waveform matching

Groups:

- Random groups
 - 1. No-TMS
 - 2. Sham-TMS
 - 3. TMS
- **Blocked** groups
 - 1. No-TMS
 - 2. Sham-TMS
 - 3. TMS

TMS protocol: Suprathreshold TMS during the intertrial interval to modulate elaborative and/or forgetting-reconstruction processes Lin et al. 2008 (https://doi.org/10.3200/JMBR.40.6.578-586)

Testing between explanations: Probe reaction time

Task: Sequence learning (3 patterns)

Probe task: 2-Choice reaction time task (**low** versus **high** tone)

Probe protocol: **Randomly** presented on **some** trials (12 trials for each tone)

Groups:

- Random groups
 - 1. Pre-response interval
 - 2. Inter-trial interval
- Blocked groups
 - 1. Pre-response interval
 - 2. Inter-trial interval

Any questions?

Learning objectives

- 1. Identify various **characteristics** of possible model demonstrations.
- 2. Describe strengths and weaknesses of different models.
- 3. Describe how to select appropriate ways to implement observational learning.

Take-home message:

Observing a model is an effective way to promote motor learning, but the effectiveness of an observation intervention will depend on moderator variables, context and function, and characteristics of the model.

Observational learning

Definition: The use of demonstration(s) to convey information about how to perform a skill.

Another definition: The process by which a learner brings their actions to approximate those of a model.

Observational practice offers learning benefits, but to a lesser extent than physical practice

Task: Keyboard tracking task

Groups:

- Physical practice
- Observational practice
- Control

Moderator variables impact observation intervention outcomes

Task

- Complexity
- Classification
- Goal vs action

Observer

- Age
- Stage of learning
- Imagery ability
- Self-efficacy level

Where: Models are beneficial in a variety of settings

Training

Performance

Why do we observe?

Skill: Improve skill performance and learning

Strategy: Develop and execute sport strategy

Performance: Reach optimal levels of mental arousal

Who should we observe?

Who: Types of models

Unskilled/Novice: Will make errors during the skill

Aids in error detection

Skilled/Expert: Performs the skill with no errors

Aids in error correction

Learning: Will begin at an unskilled level and progress throughout practice towards a skilled level

Expert and learning models are effective; feedback about the learning model must be provided

Task: Free squat

Groups:

- Expert model with feedback
- Learning model with no feedback
- Learning model with feedback
- Physical performance with feedback

Who: Observing yourself

Self-observation: Watching video replay of yourself

Positive self-review: Taking video recordings of yourself and watching the best trials

Feedforward modeling: Editing a video of yourself to show you completing a skill at a level higher than you are currently able to perform

Who: Combining model types

- Often called a mixed-model
- Combining skilled and unskilled: Allows for direct comparisons, which may enhance a learner's error detection and correction mechanism

Combining self-observation with an expert model enhances learning

Task: Gymnastics skills

Conditions:

- Self-observation: watch themselves
- Mixed-model: watch themselves and an expert model

Who: Choosing a model type

- Observational learning is an effective way to improve motor learning
- There is no clear gold standard of who to observe

Learning objectives

- 1. Identify various **characteristics** of possible model demonstrations.
- 2. Describe strengths and weaknesses of different models.
- 3. Describe how to select appropriate ways to implement observational learning.

Take-home message:

Observing a model is an effective way to promote motor learning, but the effectiveness of an observation intervention will depend on moderator variables, context and function, and characteristics of the model.

What questions do you have?

- @_LauraStGermain
- @LauraStGermain
- www.cartermaclab.org