Lecture 4-1 Intensity Transform

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Outline

- ➤ Histogram (直方图)
 - Definition
 - Property
- ➤ Intensity Transformation (灰度变换)
 - Linear transform
 - Non-linear transform
- Histogram Processing
 - Histogram Equalization
 - Histogram Matching

Outline

- ➤ Histogram (直方图)
 - Definition
 - Property
- ➤ Intensity Transformation (灰度变换)
 - Linear transform
 - Non-linear transform
- Histogram Processing
 - Histogram Equalization
 - Histogram Matching

Definition

$$h(r_k) = n_k$$

Where r_k : the kth intensity value in the level range of [0, L-1]

 n_k : the number of pixels in the image with intensity r_k

Normalized Histogram (归一化直方图)

$$p(r_k) = \frac{n_k}{MN}$$

Where $p(r_k)$: the probability of occurrence of intensity r_k in an image

M,N: the row and column dimensions of the image

Basic Image Type

Properties

The histogram of an image

- describe the number or probability of intensity, NO location (spatial) information
- > can be same as other images

$$> \sum_{0}^{L-1} n_k = M \cdot N$$
 or $\sum_{0}^{1} p(r_k) = 1$

➤ If Region C=A∪B, A and B are disjoint, $H_C = H_A + H_B$

Outline

- ➤ Histogram (直方图)
 - Definition
 - Property
- ➤ Intensity Transformation (灰度变换)
 - Operate on single pixels of an image point processing
 - Contrast manipulation and image thresholding (对比度和阈值处理)
- > Histogram Processing
 - Histogram Equalization
 - Histogram Matching

Intensity Transformation

> Simplest image processing techniques

$$s = T(r)$$

- > Types of Intensity Transformation
 - Image Negatives (图像反转)
 - Log Transformation (对数变换)
 - Power-law (gamma) Transformation (幂律/伽马变换)
 - Piecewise-Linear Transformation (分段线性变换)

Image Negatives

$$s = T(r) = L - 1 - r$$

Contrast Stretching

$$r_1 = r_2$$
, $s_1 = 0$, $s_2 = L-1$

Intensity-level slicing

• What's the function of the transform s = T(r) in the figures below?

Intensity-level slicing

Log Transformation

➤ Log Transformation (对数变换)

$$s = c \log(1+r)$$

➤ Inverse Log Transformation (反对数变换)

$$s = c \cdot 2^r - 1$$

Fourier Spectrum

Gamma Transformation

➤ Gamma Transformation (伽马变换)

$$s = c \cdot r^{\gamma}$$

or

$$s = c \cdot (r + \varepsilon)^{\gamma}$$

Gamma Transformation

Fractured spine

y = 0.6

y = 0.4

Gamma Transformation

Aerial image

y = 3.0

y = 4.0

L-1 $\gamma=0.04$ $\gamma=0.40$ $\gamma=0.67$ $\gamma=1.5$ $\gamma=1.00$ $\gamma=10.0$ $\gamma=25.0$ $\gamma=25.0$ $\gamma=10.0$ Input intensity level, r

y = 5.0

Outline

- ➤ Histogram (直方图)
 - Definition
 - Property
- ➤ Intensity Transformation (灰度变换)
 - Linear transform
 - Non-linear transform
- Histogram Processing
 - Histogram Equalization
 - Histogram Matching

Basis of Histogram Processing

- \triangleright Given intensity transformation s = T(r), where T(r)
 - T(r) is strictly monotonically increasing function (严格单调递增函数, $T(r_2) > T(r_1)$ if $r_2 > r_1$)in the interval $0 \le r \le L-1$
 - $0 \le T(r) \le L 1$ for $0 \le r \le L 1$
- ightharpoonup The inverse transform $r = T^{-1}(s)$

Histogram Equalization

- ➤ Uniform Probability density function : $p_s(s) = \frac{1}{L-1}$
- \succ The probability density function (PDF) of s is

$$p_s(s) = p_r(r) \cdot \frac{dr}{ds} \Longrightarrow p_r(r) \cdot \frac{dr}{ds} = \frac{1}{L-1} \Longrightarrow (L-1)p_r(r) \cdot dr = ds$$

> Transformation function : $s = T(r) = (L-1) \int_0^r p_r(w) dw$

Complementary prove

$$p_s(s) = p_r(r) \cdot \frac{dr}{ds}$$

 \triangleright Since S = T(r) is strictly monotonically increasing function

 \implies We have s = T(r), v = T(w), if v < s then we have $v < s \iff w < r$

$$\Rightarrow P(v < s) = P(w < r)$$

$$\Longrightarrow (\int_{-\infty}^{s} P_{s}(v)dv)' = (\int_{-\infty}^{r} P_{r}(w)dw)'$$

$$\implies P_s(s)ds = P_r(r)dr$$

$$\Rightarrow p_s(s) = p_r(r) \cdot \frac{dr}{ds}$$

- 1) If f(x) is continuous on [a,b], then $F(x) = \int_a^x f(t)dt$ is differentiable, and F'(x) = f(x).
- 2) If f(x) is continuous on [a,b], and $\varphi(x)$ is differentiable, then $(\int_{a}^{\varphi(x)} f(t)dt)' = f[\varphi(x)]\varphi'(x).$

Histogram Equalization

- ➤ Uniform Probability density function : $p_s(s) = \frac{1}{L-1}$
- \succ The probability density function (PDF) of s is

$$p_s(s) = p_r(r) \cdot \frac{dr}{ds} \Longrightarrow p_r(r) \cdot \frac{dr}{ds} = \frac{1}{L-1} \Longrightarrow (L-1)p_r(r) \cdot dr = ds$$

> Transformation function : $s = T(r) = (L-1) \int_0^r p_r(w) dw$

Histogram Equalization

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = (L-1) \sum_{j=0}^k p_r(r_j) = (L-1) \sum_{j=0}^k \frac{n_j}{MN} = \frac{L-1}{MN} \sum_{j=0}^k n_j k$$
$$= 1, 2, \dots, L-1$$

r _k	n _k	p _r (r _k)	S _k		S _k	p _s (s _k)
0	790	0.19	1.33	1	0	0
1	1023	0.25	3.08	3	1	0.19
2	850	0.21	4.55	5	2	0
3	656	0.16	5.67	6	3	0.25
4	329	0.08	6.23	6	4	0
5	245	0.06	6.65	7	5	0.21
6	122	0.03	6.86	7	6	0.24
7	81	0.02	7.00	7	7	0.11

Example

Example

Example

Transformation Function

Histogram Matching

Generate a processed image with a specified histogram

For input :
$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

For output :
$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

Therefore
$$z = G^{-1}(s) = G^{-1}[T(r)]$$

Histogram Matching

\mathbf{r}_{k}	$p(r_k)$	$s_k = T(r_k)$	$\mathbf{Z}_{ ext{q}}$	$p(z_q)$	$\mathbf{s}_{\mathbf{k}}$ $=\mathbf{G}\left(\mathbf{z}_{\mathbf{q}}\right)$	$s_k \rightarrow z_k$	$r_k \rightarrow z_k$	\mathbf{z}_{k}	p(z _k)
0	0. 19	1	0	0	0	0→ 0, 1, 2	0→ 3	0	0
1	0.25	3	1	0	0	1→3	1→4	1	0
2	0.21	5	2	0	0	2→ 4	2 → 5	2	0
3	0.16	6	3	0. 15	1		3→ 6	3	0. 19
4	0.08	6	4	0.20	2		4→ 6	4	0. 25
5	0.06	7	5	0.30	5	5 → 5	5 → 7	5	0.21
6	0.03	7	6	0.20	6	6→6	6 → 7	6	0.24
7	0.02	7	7	0. 15	7	7→7	7 → 7	7	0.11

Histogram Matching

Histogram Matching Application

Take home message

- ➤ 1. Histogram describes intensity property of image, NO location (spatial) information.
- > 2. Simplest image processing technique- intensity transform.

$$s = T(r)$$

- > 3. The main purpose of intensity transform is to modify image histogram, to make the image contrast looks more comfortable.
- ➤ 4. Common intensity transform: contrast stretching, log, gamma, histogram equalization, histogram matching.

