МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение» Тема: Предобработка данных

Студент гр. 8304	·	Холковский К.В
Преподаватель		Жангиров Т. Р.

Санкт-Петербург 2021

Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

Ход работы

1) Загрузка данных

Рис 1 – гистограммы признаков

2) Стандартизация данных

Рис 2 – Гистограммы стандартизированных данных по 150

Изменился диапазон и теперь среднее значение является нулем.

Таблица 1 – Сравнение данных стандартизации

таолица т Сравнение данных стандартизации							
		age	creatinine phosphokinase	ejection fraction	platelets	serum creatinine	serum sodium
До	МатОж	60.83	581.84	38.08	263358	1.39	136.63
	СКО	11.87	968.66	11.82	97640.5	1.03	4.41
[150]	МатОж	-0.1697	-0.0213	0.0105	-0.0352	-0.1086	0.0379
После	СКО	0.9538	0.8142	0.9061	1.0151	0.8854	0.9704
[150]	МатОж	62.95	607.15	37.95	266746.	1.52	136.45
Scaler	СКО	12.45	1189.74	13.04	96191.7	1.166	4.538
[299]	МатОж	0	0	0	0	0	0
После	СКО	1	1	1	1	1	1
[299]	МатОж	60.83	581.84	38.08	263358	1.39	136.63
Scaler	СКО	11.87	968.66	11.82	97640.5	1.03	4.41

Стандартизация проводилась по формуле: x-mean

std

3) Приведение к диапазону

MinMaxScaler

Рис 3 – Гистограммы мин макс

Данные приводятся к диапазону, где min это 0, а max это 1.

Таблица 2 – Данные в полях min и max

Tuosinga 2 Adminie is nosinx min n max									
	age	creatinine	ejection	platelets	serum	serum			
		phosphokinase	fraction		creatinine	sodium			
max	95	7861	80	850000	9.4	148			
min	40	23	14	25100	0.5	113			

MaxAbsScaler

Рис 5 – гистограмма макс абс

Данные приводятся к диапазону, где max_abs_ берется как 1

Таблица 3 – Данные max_abs_

	age	creatinine	ejection	platelets	serum	serum
		phosphokinase	fraction		creatinine	sodium
МаксАбс	95	7861	80	850000	9.4	148

RobustScaler

Рис 6 – Гистограмма Робус

Удаляет медианное значение и масштабирует данные в соответствии с квартильным диапазоном.

Таблица 4 – Данные center_

	age	creatinine	ejection	platelets	serum	serum
		phosphokinase	fraction		creatinine	sodium
центер	60	250	38	262000	1.1	137

Рис 7 – Гистограммы для диапазона [-5; 10]

4) Нелинейные преобразования

Рис 8 – Гистограмма преобразованных данных

Рис 9 - Гистограмма преобразованных данных в нормальном распределении

Рис 10 — Нормальное распределение при использовании PowerTransformer

5) Дискретизация признаков

Рис 11 - Гистограммы дискретизации

Рис 12 – Диапазоны для каждого признака