Gamma

이진영

Nonlinearity

- Nonlinear relationship between the actual luminance and its perceived luminance
- Human eye (Nonlinear) ≠ Camera

Human Perception

- Differences between darker values (More sensitive) > Differences between lighter values (Less)
- More sensitive eyes, when it is less bright
- In general, more important for dark regions
- Sometimes problem:
 - Many bits in brightness we cannot see
 - Fewer bits in darkness we can see
- → Bit optimization for efficient image representation

Gamma Encoding

Maximization of visual quality, by optimizing the usage of bits in the encoding

Correction of gamma characteristics of early display devices

Linearly Encoding

Comparison

AlCenterY.bmp

Gamma = 2.5

Gamma = 0.4

Good Example

AlCenterY_Dark.bmp

Gamma = 2.5

Gamma = 0.4

Gamma Correction

Inverse conversion from a gamma encoded image to an original image

Display Gamma

- Nonlinear input and output characteristics of display devices
- Gamma of cathode ray tube (CRT) displays = 1/2.5 = 0.4 (Almost inverse of our eyes)
- Sometimes, display gamma = gamma correction
- For example, monitor setting

Experiment

Considering the characteristic of CRT, please perform gamma encoding

