```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Creating dataset
data = {
'ID':[1,2,3,4,5,6,7,8,9,10],
'Name':['Paul','Ryan','Ron','Jenny','Mike','Jordan','Angela','Jessica','Harmon','Murphy'],
'Maths':[88,76,99,56,76,9,66,98,12,24],
'Science':[67,87,99,36,98,12,67,29,23,56],
 'Exam_Eligible':['Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes']
df = pd.DataFrame(data)
print(df)
       ID
              Name Maths Science Exam_Eligible
       1
              Paul
                       88
                               67
                               87
    1
        2
              Ryan
                       76
                                            Yes
    2
        3
               Ron
                       99
                               99
                                            Yes
    3
        4
             Jenny
                       56
                               36
                                            Yes
             Mike
    4
        5
                       76
                               98
                                            Yes
            Jordan
    5
        6
                       9
                               12
                                             No
    6
            Angela
                       66
                               67
                                            Yes
        8 Jessica
    7
                       98
                               29
                                            Yes
    8
       9
           Harmon
                       12
                               23
                                            No
    9 10 Murphy
                       24
                                            Yes
```

#Scannig the dataset for any NULL value
df.isnull()

	ID	Name	Maths	Science	Exam_Eligible
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
5	False	False	False	False	False
6	False	False	False	False	False
7	False	False	False	False	False
8	False	False	False	False	False

df.describe().transpose()

	count	mean	std	min	25%	50%	75%	max	1
ID	10.0	5.5	3.027650	1.0	3.25	5.5	7.75	10.0	
Maths	10.0	60.4	34.176665	9.0	32.00	71.0	85.00	99.0	
Science	10.0	57.4	31.535518	12.0	30.75	61.5	82.00	99.0	
Exam_Eligible	10.0	0.8	0.421637	0.0	1.00	1.0	1.00	1.0	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 5 columns):

Data	COTUMITS	(rorar	D (LOTUMNS):	
#	Column		10/	n-Null Count	Dtype
0	ID		10	non-null	int64
1	Name		10	non-null	object
2	Maths		10	non-null	int64

```
3
                         10 non-null
                                         int64
         Science
         Exam_Eligible 10 non-null
                                         uint8
     dtypes: int64(3), object(1), uint8(1)
     memory usage: 458.0+ bytes
#Scan all numeric variables for outliers.
#Consider Highest marks and lowest marks as outliers.
print(type(df['Maths'][0]))
print(type(df['Science'][0]))
     <class 'numpy.int64'>
     <class 'numpy.int64'>
#Searching for outliers in Maths
print('Max :', df['Maths'].max())
print('Min :', df['Maths'].min())
     Max : 99
     Min : 9
#Searching for outliers in Science
print('Max :', df['Science'].max())
print('Min :', df['Science'].min())
     Max : 99
     Min : 12
df['Maths'].value_counts()
     88
           1
     99
          1
     56
           1
     9
           1
     66
          1
     98
          1
     12
     24
     Name: Maths, dtype: int64
df['Science'].value_counts()
     67
     87
           1
     99
          1
     36
          1
     98
           1
     12
           1
     29
           1
     23
           1
     56
     Name: Science, dtype: int64
#Finding student with highest and lowest marks
print('Highets Marks in Maths :')
print(df[df['Maths']==99])
print('Lowest Marks in Maths :')
print(df[df['Maths']==9])
     Highets Marks in Maths :
        ID Name Maths Science Exam_Eligible
                            99
        3 Ron
                   99
     Lowest Marks in Maths :
        ID
             Name Maths Science Exam_Eligible
     5 6 Jordan
                        9
# Vizualizing data(marks) density
sns.kdeplot(data=df['Maths'],label='Maths')
sns.kdeplot(data=df['Science'],label='Science')
plt.xlabel('Marks Out of 100')
plt.legend()
```

<matplotlib.legend.Legend at 0x7faf41f7ba90>

 $\mbox{\#Transforming}$ the data to make the data more usable $\mbox{df.head()}$

	ID	Name	Maths	Science	Exam_Eligible	1
0	1	Paul	88	67	1	
1	2	Ryan	76	87	1	
2	3	Ron	99	99	1	
3	4	Jenny	56	36	1	
4	5	Mike	76	98	1	

We can tranform column "Exam_Eligible" into Numerical Column

because it is a Categorial Column.

df['Exam_Eligible'] = pd.get_dummies(df['Exam_Eligible'],drop_first=True)
df

	ID	Name	Maths	Science	Exam_Eligible
0	1	Paul	88	67	1
1	2	Ryan	76	87	1
2	3	Ron	99	99	1
3	4	Jenny	56	36	1
4	5	Mike	76	98	1
5	6	Jordan	9	12	0
6	7	Ange l a	66	67	1
7	8	Jessica	98	29	1
8	9	Harmon	12	23	0

0 -> Not Eligible

1 -> Eligible

sns.countplot(data=df,x='Exam_Eligible')

sns.boxplot(data=df,x='Maths',color='yellow')

<AxesSubplot:xlabel='Maths'>

sns.boxplot(data=df,x='Science',color='green')

C→ <AxesSubplot:xlabel='Science'>

