IOT_PHASE 1

SMART WATER FOUNTAINS

Project Definition:

The project aims to enhance public water fountains by implementing IoT sensors to control water flow and detect malfunctions. The primary objective is to provide real-time information about water fountain status to residents through a public platform. This project includes defining objectives, designing the IoT sensor system, developing the water fountain status platform, and integrating them using IoT technology and Python.

Workflow:

- 1. Designing the IoT Sensor System
- 2. Developing the Water Fountain Status Platform
- 3.Integration Using Python
- 4. Testing and Iteration 5. Documentation and Deployment

Designing IOT sensor system:

Water Flow Sensors: Install flow sensors to measure the rate of water flow through the fountain. This helps in detecting malfunctions and understanding usage patterns.

Water Level Sensors: Use water level sensors to monitor the water level in the fountain, preventing overflow or pump damage.

Temperature and Environmental Sensors: Include sensors to monitor ambient temperature and environmental conditions, ensuring the system adapts to varying weather conditions.

Microcontroller: Choose a suitable microcontroller (e.g., Raspberry Pi) to interface with sensors, process data, and control fountain operations.

Connectivity: Use IoT modules (Wi-Fi, GSM, etc.) to enable communication between the microcontroller and the cloud platform.

Developing the Water Fountain Status Platform:

Cloud Platform: Set up a cloud platform (e.g., AWS, Azure) to store, process, and analyse data from the water fountains.

Database: Design a database to store sensor data, fountain status, and user information.

Web Development: Create a web-based platform using Python frameworks (Django, Flask) for residents to access real-time information and control features.

User Authentication: Implement secure user authentication to ensure authorized access to the platform.

Visualization: Use charts and graphs to visualize water usage patterns, fountain status, and historical data.

Integration Using Python:

IoT Communication: Develop Python scripts to facilitate communication between the microcontroller and cloud platform.

Data Processing: Write scripts to process and analyse sensor data, identify malfunctions, and trigger alerts.

API Development: Create APIs to enable communication between the web platform and the cloud back end.

User Interface Implementation: Integrate Python scripts with the web platform for seamless user interaction.

Testing and Iteration:

Simulation: Simulate various scenarios to test the reliability and effectiveness of the system.

User Feedback: Collect feedback from residents during pilot testing and make improvements based on user experience.

Continuous Improvement: Implement updates and optimizations based on real-world usage and feedback.

Documentation and Deployment:

Documentation: Create comprehensive documentation for system architecture, sensor installation, and platform usage.

Deployment: Deploy the system in a controlled environment initially, and then gradually expand to a larger scale.