ENGR 305 Midterm Notesheet

Chapters 3-5, Homeworks 1-4

Content Summary & Key Formulas

Chapter 3: Semiconductors

Intrinsic Carrier Concentration (n_i)

The concentration of free electrons and holes in pure (intrinsic) silicon, dependent on temperature (T in Kelvin).

$$n_i = B \cdot T^{3/2} \cdot e^{-E_g/(2kT)}$$

- For Silicon (Si): $E_g \approx 1.12 \text{ eV}$; $B = 7.3 \times 10^{15} \text{ cm}^{-3} K^{-3/2}$
- At 300K: $n_i \approx 1.5 \times 10^{10} \text{ cm}^{-3}$

Carrier Concentrations (Doped)

- Mass-Action Law: $p \cdot n = n_i^2$
- n-type (N_D) : Majority $n_n \approx N_D$; Minority $p_n \approx n_i^2/N_D$
- **p-type** (N_A): Majority $p_p \approx N_A$; Minority $n_p \approx n_i^2/N_A$

Conductivity (σ) & Resistivity (ρ)

- Drift Current: $J_{\text{drift}} = q(n\mu_n + p\mu_p)\mathcal{E}$
- Conductivity: $\sigma = q(n\mu_n + p\mu_p)$
- Resistivity: $\rho = 1/\sigma$
- Diffusion Current: $J_p = -q D_p \frac{dp}{dx}; J_n = q D_n \frac{dn}{dx}$
- Einstein Relation: $D/\mu = V_T$

pn Junction Built-in Potential (V_0)

The voltage across the depletion region in thermal equilibrium.

$$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

1

• Thermal Voltage (V_T) : $V_T = kT/q \approx 25.9 \text{ mV}$ at 300K.

pn Junction Depletion Region (W)

- Total Width (with V_R): $W = \sqrt{\frac{2\epsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$
- Individual Widths: $x_n = W \frac{N_A}{N_A + N_D}$; $x_p = W \frac{N_D}{N_A + N_D}$

Chapter 4: Diodes

Exponential Model (Shockley Eq)

$$i_D = I_S(e^{v_D/V_T} - 1)$$

- I_S is the saturation current.
- Finding new V/I: $V_2 V_1 = V_T \ln(I_2/I_1)$

Diode Circuit Models

- 1. Ideal Diode: 0V short circuit (forward), open circuit (reverse).
- 2. Constant Voltage Drop (CVD): 0.7V battery (forward), open circuit (reverse).
- 3. Small-Signal Model: A resistor $r_d = V_T/I_D$ for AC analysis.

Rectifier Circuits

- Half-Wave: Uses one diode. Output $v_O = v_S V_D$ (on positive cycle). $PIV = V_{\text{peak}}$.
- Full-Wave (Center-Tap): Uses two diodes. Output $v_O = V_S V_D$. $PIV = 2V_S V_D$.
- Full-Wave (Bridge): Uses four diodes. Output $v_O = V_S 2V_D$. $PIV = V_S V_D$.

Peak Rectifier (Filter Capacitor)

A capacitor (C) in parallel with the load (R).

- Diode conducts for a short time (Δt) to charge C to V_p .
- C discharges through R, creating a small ripple V_r .
- Ripple Voltage: $V_r \approx \frac{V_p}{fCR} \approx \frac{I_L}{fC}$

Voltage Regulation

- Line Regulation: $\Delta v_O = \Delta V_{\text{supply}} \cdot \frac{r}{r+R}$
- Load Regulation: $\Delta v_O = -(\Delta I_{\text{diodes}}) \cdot r$
- Zener Model: $V_Z = V_{Z0} + r_z I_Z$

Chapter 5: MOSFETs

Key Parameters

- Overdrive Voltage (v_{OV}) : $v_{OV} = v_{GS} V_{tn}$ (NMOS); $|v_{OV}| = v_{SG} |V_{tp}|$ (PMOS).
- Process Transconductance: $k'_n = \mu_n C_{ox}$; $k'_p = \mu_p C_{ox}$.
- MOSFET Transconductance: $k_n = k'_n(W/L)$; $k_p = k'_p(W/L)$.

NMOS Regions of Operation

- 1. Cutoff:
 - Condition: $v_{GS} < V_{tn}$
 - Current: $i_D = 0$
- 2. Triode (Linear):
 - Condition: $v_{GS} \ge V_{tn} \text{ AND } v_{DS} < v_{OV}$
 - Current: $i_D = k_n \left[(v_{GS} V_{tn}) v_{DS} \frac{1}{2} v_{DS}^2 \right]$
 - Resistor (small v_{DS}): $r_{DS} = 1/(k_n v_{OV})$
- 3. Saturation (Active):
 - Condition: $v_{GS} \ge V_{tn} \text{ AND } v_{DS} \ge v_{OV}$
 - Current (ideal): $i_D = \frac{1}{2}k_n v_{OV}^2 = \frac{1}{2}k_n (v_{GS} V_{tn})^2$

PMOS Regions of Operation

(Uses positive v_{SG} , v_{SD} , and $|V_{tp}|$)

- 1. Cutoff:
 - Condition: $v_{SG} < |V_{tp}|$
 - Current: $i_D = 0$
- 2. Triode (Linear):
 - Condition: $v_{SG} \ge |V_{tp}|$ AND $v_{SD} < |v_{OV}|$
 - Current: $i_D = k_p \left[(v_{SG} |V_{tp}|) v_{SD} \frac{1}{2} v_{SD}^2 \right]$
- 3. Saturation (Active):
 - Condition: $v_{SG} \ge |V_{tp}|$ AND $v_{SD} \ge |v_{OV}|$
 - Current (ideal): $i_D = \frac{1}{2}k_p|v_{OV}|^2 = \frac{1}{2}k_p(v_{SG} |V_{tp}|)^2$

Channel-Length Modulation (Saturation Effect)

As v_{DS} increases past v_{OV} , the channel pinch-off point moves, shortening the effective channel length L_{eff} . This causes i_D to **increase** slightly with v_{DS} .

- Updated Current (NMOS): $i_D = \frac{1}{2} k_n v_{OV}^2 (1 + \lambda v_{DS})$
- Early Voltage: $V_A = 1/\lambda$
- Output Resistance: $r_o = \frac{V_A}{I_D'}$ (where I_D' is the ideal current).

MOSFET DC Circuit Analysis

- 1. Assumptions: $I_G = 0$. For amplifiers, assume SATURATION.
- 2. Find V_G : Use KVL at the gate (e.g., voltage divider).
- 3. Write V_{GS} and I_D Equations:
 - KVL at G-S loop: $V_{GS} = V_G V_S = V_G I_D R_S$
 - Saturation Current: $I_D = \frac{1}{2}k_n(V_{GS} V_{tn})^2$
- 4. Solve for I_D and V_{GS} .
- 5. Find Voltages: $V_D = V_{DD} I_D R_D$; $V_S = I_D R_S$ (or $V_S = V_{SS} + I_D R_S$).
- 6. **VERIFY:** Check if $V_{DS} \ge V_{OV}$ (where $V_{DS} = V_D V_S$).
- 7. If False: Assumption was wrong. Re-solve using the Triode equation.
- 8. **Diode-Connected:** If $V_G = V_D$, the transistor is always in saturation (if on).

Midterm Learning Objectives

- 1. Calculate the intrinsic carrier concentration in a semiconductor.
- 2. Determine minority and majority carrier concentrations (electron and hole concentrations) in a semiconductor.
- 3. Calculate the built-in potential of a pn junction.
- 4. Calculate the depletion region width of a pn junction.
- 5. Given the voltage and current for a forward-biased diode, be able to calculate the current at a different value of voltage (or the voltage at a different value of current).
- 6. Be able to determine voltages and currents at points in a diode circuit, using either the ideal diode model or the constant voltage drop (0.7V) model.
- 7. Understand the operation of half-wave rectifiers.
- 8. Be able to calculate resistivity and conductivity in a semiconductor.
- 9. Perform drain current calculations for NMOS and PMOS transistors. Know the difference between the triode region and the saturation region of operation.
- 10. Discuss/explain the effect in a MOSFET when the channel pinches off and moves away from the drain (Finite Output Resistance in Saturation).
- 11. Be able to design an NMOS circuit with DC voltages. This may require determining resistor values needed or voltages and currents in the circuit.