## Московский государственный технический университет им. Н. Э. Баумана

# Курс «Технологии машинного обучения» Отчёт по рубежному контролю №1 «Технологии разведочного анализа и обработки данных.» Вариант № 18

| Выполнил: | Проверил: |
|-----------|-----------|
|-----------|-----------|

Табахов Е.В. Гапанюк Ю.Е.

группа ИУ5-62Б

Дата: 13.04.25 Дата:

Подпись:

#### Задание (вариант 18):

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Датасет: <a href="https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load\_wine.html#sklearn.datasets.load\_wine">https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load\_wine.html#sklearn.datasets.load\_wine</a>

#### Загрузка и подготовка данных

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load wine
from sklearn.preprocessing import StandardScaler,
MinMaxScaler, LabelEncoder, OneHotEncoder
# Загружаем датасет Wine
wine = load wine()
X = wine.data
y = wine.target
feature names = wine.feature names
target names = wine.target names
# Создаем DataFrame для удобства работы с данными
df = pd.DataFrame(X, columns=feature names)
df['target'] = y
print("Первые 5 строк датасета:")
display(df.head())
# Информация о датасете
print("\nИнформация о датасете:")
display(df.info())
print("\nСтатистика по числовым признакам:")
display(df.describe())
```

| <del></del> | Первы                                                                                                                                                   | е 5 строк                                                                                                                                             | к датасета                                                 |                                     |                                                                                                                                                                                                                                                                                                          |                               |               |            |                      |                 |                 |      |                              |         |        |     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|------------|----------------------|-----------------|-----------------|------|------------------------------|---------|--------|-----|
|             | al                                                                                                                                                      | .cohol m                                                                                                                                              | alic_acid                                                  | ash                                 | alcalinity_of_ash                                                                                                                                                                                                                                                                                        | magnesium                     | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue  | od280/od315_of_diluted_wines | proline | target |     |
|             |                                                                                                                                                         |                                                                                                                                                       |                                                            |                                     |                                                                                                                                                                                                                                                                                                          |                               |               |            |                      |                 |                 |      |                              | 1065.0  |        | 115 |
|             |                                                                                                                                                         |                                                                                                                                                       |                                                            |                                     |                                                                                                                                                                                                                                                                                                          | 100.0                         |               |            |                      |                 |                 |      | 3.40                         | 1050.0  |        |     |
|             |                                                                                                                                                         |                                                                                                                                                       |                                                            |                                     |                                                                                                                                                                                                                                                                                                          |                               |               |            |                      |                 |                 |      |                              |         |        |     |
|             |                                                                                                                                                         | 14.37                                                                                                                                                 |                                                            | 2.50                                | 16.8                                                                                                                                                                                                                                                                                                     |                               | 3.85          | 3.49       | 0.24                 | 2.18            | 7.80            | 0.86 | 3.45                         | 1480.0  |        |     |
|             | 4                                                                                                                                                       | 13.24                                                                                                                                                 | 2.59                                                       | 2.87                                |                                                                                                                                                                                                                                                                                                          |                               | 2.80          | 2.69       | 0.39                 | 1.82            | 4.32            |      | 2.93                         |         |        |     |
|             | <pre><clas: !="" #="" 0="" 1="" 10="" 11="" 12="" 13="" 2="" 3="" 4="" 5="" 6="" 7="" 8="" 9="" :="" data="" dtype:<="" pre="" range:=""></clas:></pre> | s 'pandas' Index: 17 Coolumns ( Columns ( Column alcohol malic_aci ash alcalinit magnesium total_pha flavanoic color_int hue od280/od3 proline target | ty_of_ash m enols ds noid_pheno cyanins tensity 315_of_dil | o, 0 to<br>column<br>ols<br>.uted_w | 2 177 s): Non-Null Cou- 178 non-null | float64<br>float64<br>float64 |               |            |                      |                 |                 |      |                              |         |        |     |

|      | alcohol   | malic_acid | ash      | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue      | od280/od315_of_diluted_wines | proline    | target   |
|------|-----------|------------|----------|-------------------|-----------|---------------|------------|----------------------|-----------------|-----------------|----------|------------------------------|------------|----------|
| ount |           |            |          |                   |           |               |            |                      |                 |                 |          |                              |            |          |
| nean |           | 2.336348   | 2.366517 | 19.494944         |           |               |            |                      | 1.590899        | 5.058090        | 0.957449 |                              | 746.893258 | 0.938202 |
| std  |           |            |          |                   |           |               | 0.998859   |                      |                 |                 |          |                              |            |          |
| min  | 11.030000 | 0.740000   | 1.360000 | 10.600000         | 70.000000 | 0.980000      | 0.340000   | 0.130000             | 0.410000        | 1.280000        | 0.480000 | 1.270000                     | 278.000000 | 0.000000 |
| 25%  |           |            |          |                   |           |               |            |                      |                 |                 |          |                              |            |          |
| 50%  |           |            | 2.360000 | 19 500000         | 98.000000 |               |            | 0.340000             |                 | 4.690000        |          | 2.780000                     | 673.500000 | 1.000000 |
| 75%  |           |            |          |                   |           |               |            |                      |                 |                 |          |                              |            |          |
| max  |           |            |          |                   |           |               |            |                      |                 |                 |          |                              |            |          |

#### 1. Масштабирование числового признака

Для масштабирования выберем признак 'alcohol'. Применим два популярных метода масштабирования: StandardScaler и MinMaxScaler.

```
# Выбираем признак для масштабирования
feature_to_scale = 'alcohol'

# 1. Стандартизация (StandardScaler)
scaler_standard = StandardScaler()
df['alcohol_standardized'] =
scaler_standard.fit_transform(df[[feature_to_scale]])

# 2. Нормализация (MinMaxScaler)
scaler_minmax = MinMaxScaler()
df['alcohol_normalized'] =
scaler_minmax.fit_transform(df[[feature_to_scale]])

# Сравнение оригинального и масштабированных признаков
scaling_comparison = df[[feature_to_scale,
'alcohol_standardized', 'alcohol_normalized']].head(10)
print("\nCравнение оригинального и масштабированных
признаков:")
display(scaling_comparison)

# Визуализация результатов масштабирования
```

```
plt.figure(figsize=(15, 5))
# Оригинальный признак
plt.subplot(1, 3, 1)
sns.histplot(df[feature to scale], kde=True)
plt.title(f'Оригинальный признак: {feature to scale}')
plt.xlabel(feature to scale)
plt.ylabel('Частота')
# StandardScaler
plt.subplot(1, 3, 2)
sns.histplot(df['alcohol standardized'], kde=True)
plt.title(f'StandardScaler: {feature to scale}')
plt.xlabel(f'{feature to scale} (стандартизированный)')
plt.ylabel('Частота')
# MinMaxScaler
plt.subplot(1, 3, 3)
sns.histplot(df['alcohol normalized'], kde=True)
plt.title(f'MinMaxScaler: {feature to scale}')
plt.xlabel(f'{feature to scale} (нормализованный)')
plt.ylabel('Частота')
plt.tight layout()
plt.show()
```

| Сра | внение ор | ригинального и масштаб  | ированных признаков: |
|-----|-----------|-------------------------|----------------------|
|     | alcohol   | $alcohol\_standardized$ | alcohol_normalized   |
| 0   | 14.23     | 1.518613                | 0.842105             |
| 1   | 13.20     | 0.246290                | 0.571053             |
| 2   | 13.16     | 0.196879                | 0.560526             |
| 3   | 14.37     | 1.691550                | 0.878947             |
| 4   | 13.24     | 0.295700                | 0.581579             |
| 5   | 14.20     | 1.481555                | 0.834211             |
| 6   | 14.39     | 1.716255                | 0.884211             |
| 7   | 14.06     | 1.308617                | 0.797368             |
| 8   | 14.83     | 2.259772                | 1.000000             |
| 9   | 13.86     | 1.061565                | 0.744737             |



#### 2. Преобразование категориального признака

Поскольку в исходном датасете нет явных категориальных признаков, создадим новый признак на основе 'target' для демонстрации методов кодирования.

```
# Создаем категориальный признак на основе целевой переменной df['wine_type'] = pd.Categorical.from_codes(y, categories=target_names)

# Выводим информацию о новом категориальном признаке print("\nPаспределение категориального признака 'wine_type':")
display(df['wine_type'].value_counts())

# Визуализация распределения категориального признака plt.figure(figsize=(10, 5))
sns.countplot(data=df, x='wine_type')
plt.title('Pаспределение типов вина')
plt.xlabel('Тип вина')
plt.ylabel('Количество')
plt.show()
```



#### 2.1. Label Encoding

```
le = LabelEncoder()
df['wine type label'] = le.fit transform(df['wine type'])
# Выводим результаты Label Encoding
print("\nРезультаты Label Encoding:")
mapping = {i: label for i, label in
enumerate(le.classes ) }
print(f"Cooтветствие меток: {mapping}")
display(df[['wine type',
'wine type label']].drop duplicates())
# Визуализация результатов Label Encoding
plt.figure(figsize=(10, 5))
sns.barplot(data=df, x='wine type', y='wine type label')
plt.title('Label Encoding для типов вина')
plt.xlabel('Тип вина')
plt.ylabel('Encoded значение')
plt.show()
```



#### 2.2. One Hot Encoding

```
for i, cat in enumerate(ohe.categories_[0]):
    plt.subplot(1, 3, i+1)
    sns.barplot(data=df_with_ohe, x='wine_type',
y=f'wine_type_{cat}')
    plt.title(f'One-Hot: wine_type_{cat}')
    plt.xlabel('Тип вина')
    plt.ylabel('Епсоded значение')
plt.tight_layout()
plt.show()
```



### 3. Сравнение методов преобразования и их применимость

```
df['alcohol standardized'].mean(),
df['alcohol standardized'].std()],
    'MinMaxScaler': [df['alcohol normalized'].min(),
df['alcohol normalized'].max(),
                    df['alcohol normalized'].mean(),
df['alcohol normalized'].std()]
})
print("\nСтатистические показатели до и после
масштабирования:")
display(scaling stats)
# Визуализация распределения исходного и преобразованных
признаков
plt.figure(figsize=(15, 10))
plt.subplot(2, 1, 1)
df melt = pd.melt(df[['alcohol', 'alcohol standardized',
'alcohol normalized']])
sns.boxplot(data=df melt, x='variable', y='value')
plt.title('Сравнение распределений после
масштабирования')
plt.xlabel('Метод масштабирования')
plt.ylabel('Значение')
# Scatter plot для сравнения Label Encoding и One Hot
Encoding
plt.subplot(2, 1, 2)
scatter df = df[['wine type', 'wine type label']].copy()
scatter df = pd.concat([scatter df,
wine type encoded df], axis=1)
# Создаем scatter plot для визуализации Label Encoding vs
One Hot
for i, cat in enumerate (ohe.categories [0]):
    plt.scatter(scatter df['wine type label'],
                scatter df[f'wine type {cat}'],
                label=f'wine type {cat}')
plt.title('Сравнение Label Encoding и One Hot Encoding')
plt.xlabel('Label Encoding')
```

```
plt.ylabel('One Hot Encoding')
plt.legend()
plt.grid(True)

plt.tight_layout()
plt.show()
```

| Ста | тистические показатели | до и после масштабирования: |                |              |  |  |  |  |  |
|-----|------------------------|-----------------------------|----------------|--------------|--|--|--|--|--|
|     | Статистика             | Исходный (alcohol)          | StandardScaler | MinMaxScaler |  |  |  |  |  |
| 0   | Минимум                | 11.030000                   | -2.434235e+00  | 0.000000     |  |  |  |  |  |
| 1   | Максимум               | 14.830000                   | 2.259772e+00   | 1.000000     |  |  |  |  |  |
| 2   | Среднее                | 13.000618                   | -8.382808e-16  | 0.518584     |  |  |  |  |  |
| 3   | Стандартное отклонение | 0.811827                    | 1.002821e+00   | 0.213639     |  |  |  |  |  |



