

FCC 47 CFR PART 15 SUBPART E INDUSTRY (ISED) CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

WIRELESS ACCESS POINT

MODEL NUMBER: ACWAP0727

FCC ID: WPX-ACWAP IC: 8014A-ACWAP

REPORT NUMBER: 11387322-E2a

ISSUE DATE: 2016-11-01

Prepared for GOGO LLC 111 N. CANAL ST. CHICAGO, ILLINOIS, 60606, USA

Prepared by
UL LLC
12 LABORATORY DR.
RESEARCH TRIANGLE PARK, NC 27709 USA
TEL: (919) 549-1400

NVLAP Lab code: 200246-0

Revision History

Ver.	Issue Date	Revisions	Revised By
1	2016-10-05	Initial Issue.	Ron Reichard
2	2016-10-06	Revised model number.	Jeff Moser
3	2016-10-13	Revised the directional antenna gain calculation for legacy mode (802.11a).	Jeff Moser
4	2016-10-25	Added MCS0 data for 802.11nHT20 and nHT40. Revised model number.	Jeff Moser
5a	2016-11-01	Removed ISED Canada 5.2 GHz data. Note – 5.2 GHz data contained in this report pertains to FCC.	Jeff Moser

DATE: 2016-11-01

IC: 8014A-ACWAP

TABLE OF CONTENTS

1.		ATTESTATION	OF TEST RESULTS	5
2.	. T	TEST METHOD	OLOGY	6
3.	F	ACILITIES AN	ID ACCREDITATION	6
4.		CALIBRATION	AND UNCERTAINTY	7
	4.1	. MEASURIN	NG INSTRUMENT CALIBRATION	7
	4.2	SAMPLE C	ALCULATION	7
	4.3	. MEASUREI	MENT UNCERTAINTY	7
5.	. E	EQUIPMENT UI	NDER TEST	8
	5.1	. DESCRIPTI	TION OF EUT	8
	5.2	. MAXIMUM	OUTPUT POWER	8
	5.3	. DESCRIPTI	TION OF AVAILABLE ANTENNAS	10
	5.4	. SOFTWAR	E AND FIRMWARE	10
	5.5	. WORST-CA	ASE CONFIGURATION AND MODE	11
	5.6	. DESCRIPTI	TION OF TEST SETUP	12
6.	. T	TEST AND MEA	ASUREMENT EQUIPMENT	14
7.	. N	MEASUREMEN	IT METHODS	17
		,		1 <i>1</i>
8.	. 4		RT TEST RESULTS	
8.	8.1	ANTENNA POR		18
8.	8.1 8	ANTENNA POR . ON TIME A. 3.1.1. ON TIM	ND DUTY CYCLE ME AND DUTY CYCLE RESULTS	18 18
8.	8.1 8	ANTENNA POR . ON TIME A 3.1.1. ON TIM 3.1.2. DUTY (ND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS	18 18 19
8.	8.1 8 8 8.2	ANTENNA POR . ON TIME A. B.1.1. ON TIM B.1.2. DUTY (ND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS ODE IN THE 5.2 GHz BAND	18 18 19
8.	8.1 8 8.2 8.8	ANTENNA POR . ON TIME A. 3.1.1. ON TIM 3.1.2. DUTY (2. 802.11a MC 3.2.1. 26 dB E 3.2.2. 99% BA	IND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH	1818192323
8.	8.1 8 8.2 8.8	ANTENNA POR ON TIME A 3.1.1. ON TIM 3.1.2. DUTY (2. 802.11a MC 3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPL	IND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD	1819232323
8.	8.1 8 8.2 8 8 8.3	ANTENNA POR . ON TIME A. 3.1.1. ON TIM 3.1.2. DUTY (2. 802.11a MC 3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPU 2. 802.11n HT	IND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DOE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD	181819232935
8.	8.1 8 8.2 8 8 8 8.3	ANTENNA POR . ON TIME A. 3.1.1. ON TIM 3.1.2. DUTY (2. 802.11a MC 3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPU 3.3.1. 26 dB E 3.3.1. 26 dB E 3.3.2. 99% BA	ME AND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DOE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD F20 MODE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH ANDWIDTH	18192329354450
8.	8.1 8.2 8.8 8.3 8.3	ANTENNA POR . ON TIME A. 3.1.1. ON TIME 3.1.2. DUTY (2. 802.11a MC 3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPU 3.3.1. 26 dB E 3.3.2. 99% BA 3.3.3. OUTPU	ME AND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD BANDWIDTH BANDWIDTH ANDWIDTH BANDWIDTH JT POWER AND PSD	181819232935444450
8.	8.1 8 8 8.2 8 8 8 8.3 8 8 8.4	ANTENNA POR ON TIME A 3.1.1. ON TIM 3.1.2. DUTY (3.2.1. 26 dB E 3.2.2. 99% B 3.2.3. OUTPL 3.3.1. 26 dB E 3.3.1. 26 dB E 3.3.2. 99% B 3.3.3. OUTPL 4. 802.11n HT 3.3.1. 26 dB E 3.3.2. 99% B 3.3.3. OUTPL	ME AND DUTY CYCLE	1819232935445056
8.	8.1 8 8 8.2 8 8 8 8 8 8 8 8 8 8 8 8 8	ANTENNA POR ON TIME A 3.1.1. ON TIM 3.1.2. DUTY (3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPL 3.3.1. 26 dB E 3.3.2. 99% BA 3.3.3. OUTPL 4. 802.11n HT 3.4.1. 26 dB E 3.4.2. 99% BA	ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH JT POWER AND PSD BANDWIDTH ANDWIDTH ANDWIDTH JT POWER AND PSD TO MODE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH ANDWIDTH ANDWIDTH JT POWER AND PSD T40 MODE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH ANDWIDTH	181819232935444450567276
8.	8.1 8 8.2 8 8 8 8.3 8 8 8.4 8 8 8	ANTENNA POR ON TIME A 3.1.1. ON TIME 3.1.2. DUTY (3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPL 3.3.1. 26 dB E 3.3.2. 99% BA 3.3.3. OUTPL 4. 802.11n HT 3.4.1. 26 dB E 3.4.2. 99% BA 3.4.3. OUTPL	ME AND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND BANDWIDTH JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD	18181923293544505672727680
8.	8.1 8 8.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ANTENNA POR ON TIME A 3.1.1. ON TIME 3.1.2. DUTY (3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPL 3.3.1. 26 dB E 3.3.3. OUTPL 4. 802.11n HT 3.3.1. 26 dB E 3.3.3. OUTPL 4. 802.11n HT 3.4.1. 26 dB E 3.4.2. 99% BA 3.4.3. OUTPL 5. 802.11n HT 6.4.1. 26 dB E 6.4.2. 99% BA 6.8.4.3. OUTPL	ME AND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD SANDWIDTH ANDWIDTH ANDWIDTH JT POWER AND PSD	18181923293544505672767679
8.	8.1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ANTENNA POR ON TIME A 3.1.1. ON TIME 3.1.2. DUTY (2. 802.11a MC 3.2.1. 26 dB E 3.2.2. 99% BA 3.2.3. OUTPU 3.3.1. 26 dB E 3.3.2. 99% BA 3.3.3. OUTPU 4. 802.11n HT 3.4.1. 26 dB E 3.4.2. 99% BA 3.4.3. OUTPU 5. 802.11ac V 6. 802.11ac V	ME AND DUTY CYCLE ME AND DUTY CYCLE RESULTS CYCLE PLOTS DDE IN THE 5.2 GHz BAND BANDWIDTH JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND BANDWIDTH JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND JT POWER AND PSD FAO MODE IN THE 5.2 GHz BAND BANDWIDTH ANDWIDTH JT POWER AND PSD	18181923293544505672768092

8.6. 802.11a MODE IN THE 5.8 GHz BAND	
8.6.1. 6 dB BANDWIDTH	
8.6.2. 99% BANDWIDTH	
8.6.3. OUTPUT POWER	
8.6.4. MAXIMUM POWER SPECTRAL DENSITY (PSD)	122
8.7. 802.11n HT20 MODE IN THE 5.8 GHz BAND	129
8.7.1. 6 dB BANDWIDTH	129
8.7.2. 99% BANDWIDTH	135
8.7.3. OUTPUT POWER	
8.7.4. MAXIMUM POWER SPECTRAL DENSITY (PSD)	144
8.8. 802.11n HT40 MODE IN THE 5.8 GHz BAND	157
8.8.1. 6 dB BANDWIDTH	
8.8.2. 99% BANDWIDTH	
8.8.3. OUTPUT POWER	
8.8.1. MAXIMUM POWER SPECTRAL DENSITY (PSD)	168
8.9. 802.11ac VHT80 MODE IN THE 5.8 GHz BAND	177
8.9.1. 6 dB BANDWIDTH	
8.9.2. 99% BANDWIDTH	
8.9.3. OUTPUT POWER	
8.9.4. MAXIMUM POWER SPECTRAL DENSITY (PSD)	
9. RADIATED TEST RESULTS	193
9.1. LIMITS AND PROCEDURE	193
9.2. TRANSMITTER 1-18 GHz	194
	194
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND 9.2.2. 1-18 GHz, 802.11n HT20 MODE IN THE 5.2 GHz BAND	
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	215
 9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	215 227
 9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	215 227 237
 9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	215 227 237 244
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	215 227 237 244 258
 9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	215 227 237 244 258
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	
9.2.1. 1-18 GHz, 802.11a MODE IN THE 5.2 GHz BAND	

SETUP PHOTOS......286

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: GOGO,LLC

111 N. CANAL ST.

CHICAGO, IL, 60606, USA

EUT DESCRIPTION: Wireless Access Point

MODEL: ACWAP0727, p/n P33206

SERIAL NUMBER: ENG001

DATE TESTED: 2016-06-20,

2016-08-20 to 2016-10-24

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E

Pass

DATE: 2016-11-01 IC: 8014A-ACWAP

INDUSTRY (ISED) CANADA RSS-247 Issue 1

Pass

INDUSTRY (ISED) CANADA RSS-GEN Issue 4

Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC Bv:

Prepared By:

Jeffrev Moser

EMC Program Manager

UL – Consumer Technology Division

Ronald Reichard WiSE Project Lead

UL – Consumer Technology Division

Page 5 of 293

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10:2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Suite B, Perimeter Park Drive, Morrisville, NC 27560.

12 Laboratory Dr., RTP, NC 27709
☐ Chamber A
☐ Chamber C
2800 Suite B Perimeter Park Dr.,
Morrisville, NC 27560
Chamber SOUTH

The onsite chambers are covered under Industry (ISED) Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at http://www.nist.gov/nvlap/

UL LLC

FORM NO: 03-EM-F00858

DATE: 2016-11-01 IC: 8014A-ACWAP

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Total RF power, conducted	± 0.45 dB
RF power density, conducted	± 1.50 dB
Spurious Emissions, conducted	± 2.94 dB
All emissions, radiated up to 40 GHz	± 5.36 dB
Temperature	± 0.07 °C
Humidity	± 2.26% RH
DC and low frequency voltages	± 1.27%
Conducted Emissions (0.150 – 30 MHz)	± 3.65 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n/ac 3x3 SDM Wireless Access Point for Commercial Aircraft that operates in the 2.4/5.2/5.8 GHz bands. Note – Does not operate in the 5.2 GHz band for ISED Canada.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

FCC

Frequency Range	Mode	Total Output	Total Output
(MHz)		Power (dBm)	Power (mW)
5.2 Band		(ubiii)	(IIIVV)
	002.44-	47.24	F2.60
5180 - 5240	802.11a	17.21	52.60
5180 - 5240	802.11n HT20 (CDD)	18.63	72.95
5180 - 5240	802.11n HT20 (SDM)	18.96	78.70
5190 - 5230	802.11n HT40 (CDD)	18.71	74.30
5190 - 5230	802.11n HT40 (SDM)	19.09	81.10
5210	802.11ac VHT80 (CDD)	18.76	75.16
5210	802.11ac VHT80 (SDM)	18.94	78.34
5.8 GHz Band			
5745 - 5825	802.11a	20.44	110.66
5745 - 5825	802.11n HT20 (CDD)	20.09	102.09
5745 - 5825	802.11n HT20 (SDM)	20.49	111.94
5755 - 5795	802.11n HT40 (CDD)	19.88	97.27
5755 - 5795	802.11n HT40 (SDM)	20.12	102.80
5775	802.11ac VHT80 (CDD)	19.17	82.60
5775	802.11ac VHT80 (SDM)	19.68	92.90

Industry (ISED) Canada

Frequency Range	Mode	Total Output	Total Output
		Power	Power
(MHz)		(dBm)	(mW)
5.8 GHz Band			
5745 - 5825	802.11a	20.44	110.66
5745 - 5825	802.11n HT20 (CDD)	20.09	102.09
5745 - 5825	802.11n HT20 (SDM)	20.49	111.94
5755 - 5795	802.11n HT40 (CDD)	19.88	97.27
5755 - 5795	802.11n HT40 (SDM)	20.12	102.80
5775	802.11ac VHT80 (CDD)	19.17	82.60
5775	802.11ac VHT80 (SDM)	19.68	92.90

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes 3 omni-directional dome antennas, each with a maximum gain of:

Frequency Range (MHz)	Antenna Gain (dBi)
2400 - 2700	+6
4900 - 5935	+8

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was ArubaOS version 6.4.2.0.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission was performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. Line conducted emissions was not performed since the EUT is intended for installation on an aircraft.

The fundamental of the EUT chassis with terminated antenna ports was investigated in three orthogonal orientations X,Y,Z, it was determined that X (flat) orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Additionally, the fundamental of the EUT antenna was investigated in two orthogonal orientations Horizontal and Vertical, it was determined that the horizontal orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT antenna in horizontal orientation.

Note – The antennas are omni-directional, therefore only horizontal and vertical orientations were investigated.

Based on the baseline scan, the worst-case data rates were:

802.11a mode: 6 Mbps 802.11n HT20 CDD: MCS0 802.11n HT20 SDM: MCS16 802.11n HT40 CDD: MCS0 802.11n HT40 SDM: MCS16

802.11ac VHT80 CDD: MCS0 (Nss = 1) 802.11ac VHT80 SDM: MCS0 (Nss = 3)

Note – 802.11n and 802.11ac Power, Radiated Band Edge and Radiated Spurious were performed at both CDD (MCS0 Nss = 1) and SDM (MCS16 or MCS0 Nss = 3) modes. All other tests were performed at SDM (MCS16).

Power will be limited as follows:

Nss < Nant: max power per chain constrained by CDD 3x3 MIMO, Nss = 1 power per chain. Nss = Nant: max power per chain constrained by SDM 3x3 MIMO power per chain.

Radiated emissions for EUT with antenna was performed and passed; therefore, restricted band antenna port spurious was not performed.

FORM NO: 03-EM-F00858

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List					
Description	Manufacturer	Model	Serial Number	FCC ID	
Laptop	Lenovo	T440	N/A	N/A	
Power Brick	Lenovo	ADLX65NLC2A	N/A	N/A	

I/O CABLES

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	Power	1	Proprietary	Proprietary	1.5		
2	Antenna	3	RF	Coaxial	1		
3	USB	1	USB	USB	1	Not permanently connected in the field	
4	Ethernet	1	Quadrax	Shielded	35	Connected to laptop outside of chamber	

TEST SETUP

The EUT connected to a laptop to execute software to exercise the radio card.

FORM NO: 03-EM-F00858

DATE: 2016-11-01 IC: 8014A-ACWAP

SETUP DIAGRAM FOR TESTS

Conducted Measurements

Radiated Measurements

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Equip.	ent Osed - Nadiated Distuib				,
ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	0.009-30MHz	(Loop Ant.)			
AT0079	Active Loop Antenna	ETS-Lindgren	6502	2015-12-08	2016-12-31
	30-1000 MHz				
AT0074	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2016-06-07	2017-06-30
	1-18 GHz				
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2016-03-07	2017-03-31
	18-40 GHz				
AT0076	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2016-09-06	2017-09-30
AT0077	Horn Antenna, 26-40GHz	ARA	MWH-2640/B	2016-09-06	2017-09-06
	Gain-Loss Chains				
S-SAC01	Gain-loss string: 0.009- 30MHz	Various	Various	2015-10-07	2016-10-31
S-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2016-06-26	2017-06-30
S-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2015-08-22, 2016-08-28	2016-08-31, 2017-08-28
S-SAC04	Gain-loss string: 18- 40GHz	Various	Various	2016-08-28	2017-08-28
	Receiver & Software				
SA0025	Spectrum Analyzer	Agilent	N9030A	2016-03-17	2017-03-31
SA0026 (18- 40GHz RSE)	Spectrum Analyzer	Agilent	N9030A	2016-02-24	2017-02-28
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
HI0078	Temp/Humid/Pressure Meter	Springfield Precision	PreciseTemp	2016-06-13	2017-06-13

Note – This test area was used from 2016-08-20 to 2016-09-30.

FORM NO: 03-EM-F00858

DATE: 2016-11-01

IC: 8014A-ACWAP

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - North Chamber)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	0.009-30MHz	(Loop Ant.)			
AT0079	Active Loop Antenna	ETS-Lindgren	6502	2015-12-08	2016-12-31
	30-1000 MHz				
AT0073	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2016-06-27	2017-06-30
	1-18 GHz				
AT0072	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2016-03-07	2017-03-31
	Gain-Loss Chains				
N-SAC01	Gain-loss string: 0.009- 30MHz	Various	Various	2015-10-07	2016-10-31
N-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2016-06-26	2017-06-30
N-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2015-09-29, 2016-08-28	2016-09-30 2017-08-28
	Receiver & Software				
SA0027	Spectrum Analyzer	Agilent	N9030A	2016-02-08	2017-02-08
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
139844	Temp/Humid/Pressure Meter	Control Co./Fisher	14-650-118	2016-02-19	2017-02-19

Note – Fundamental checks of the chassis were performed on 2016-06-20. All other testing in this test area was performed from 2016-08-23 to 2016-10-24.

Test Equipment Used - Wireless Conducted Measurement Equipment

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 1				
72822 (SA0019)	Spectrum Analyzer	Agilent Technologies	E4446A	2016-08-25	2017-08-25
PWM002	RF Power Meter	Keysight Technologies	N1911A	2016-06-22	2017-06-22
PWS002	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	N1921A	2016-06-22	2017-06-22
UL139843	Temp/Humid/Pressure Meter	Fisher Scientific	14-650-118	2016-02-19	2017-02-19
	Conducted Room 2				
SA0020	Spectrum Analyzer	Agilent Technologies	E4446A	2016-03-22	2017-03-31
PWM003	RF Power Meter	Keysight Technologies	N1911A	2016-06-21	2017-06-21
PWS004	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2016-06-22	2017-06-30
UL139843	Temp/Humid/Pressure Meter	Fisher Scientific	14-650-118	2016-02-19	2017-02-19

7. MEASUREMENT METHODS

Duty Cycle: KDB 789033 D02 v01r03, Section B.

26 dB Emission BW: KDB 789033 D02 v01r03, Section C.

99% Occupied BW: KDB 789033 D02 v01r03, Section D.

Conducted Output Power: KDB 789033 D02 v01r03, Section E.3.b (Method PM-G).

Power Spectral Density: KDB 789033 D02 v01r03, Section F (Method SA-2).

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v01r03, Sections G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v01r03, Sections G.3, G.4, and G.5

General Radiated Emissions: ANSI C63.10:2013 Sections 6.3-6.6

FORM NO: 03-EM-F00858

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

8.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
					Correction	Minimum
	В		x	Cycle	Factor	VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 3Tx	2.064	2.161	0.955	95.51%	0.20	0.484
802.11n HT20 3Tx (CDD)	1.920	2.020	0.950	95.05%	0.22	0.521
802.11n HT20 3Tx (SDM)	0.675	0.773	0.872	87.25%	0.59	1.482
802.11n HT40 3Tx (CDD)	0.944	1.042	0.906	90.62%	0.43	1.059
802.11n HT40 3Tx (SDM)	0.677	0.776	0.873	87.28%	0.59	1.476
802.11ac VHT80 3Tx (CDD)	0.458	0.557	0.823	82.32%	0.84	2.182
802.11ac VHT80 3Tx (SDM)	0.191	0.290	0.660	66.02%	1.80	5.230

Test Performed: Niklas Haydon / Jeff Cabrera, Mark Learner

Test Date: 2016-08-30, 2016-10-19

FORM NO: 03-EM-F00858

8.1.2. DUTY CYCLE PLOTS

8.2. 802.11a MODE IN THE 5.2 GHz BAND

8.2.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only. Tested per FCC §15.403 (i)

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5180	20.49	20.36	20.46
Mid	5200	20.55	20.36	20.49
High	5240	20.46	20.43	20.43

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-06, 2016-10-04

26 dB BANDWIDTH, Chain 0

26 dB BANDWIDTH, Chain 1

26 dB BANDWIDTH, Chain 2

8.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only. Measured per ANSI C63.10:2013 Section 6.9.3.

RESULTS

Channel Frequency		99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5180	16.74	16.69	16.81
Mid	5200	16.75	16.67	16.79
High	5240	16.73	16.67	16.62

Worst-Case

				Does Ch.
			Maximum	Freq. Fall in
Channel	Frequency	99% Bandwidth	Ch Freq	UNII 2A?
	(MHz)	(MHz)		Y/N
Low	5180	16.8100	5188.405	N
Mid	5200	16.7900	5208.395	N
High	5240	16.7300	5248.365	N

Test Performed: Niklas Haydon / Jeff Cabrera Test Date: 2016-09-15

FORM NO: 03-EM-F00858

99% BANDWIDTH

99% BANDWIDTH, Chain 0

This report shall not be reproduced except in full, without the written approval of UL LLC.

99% BANDWIDTH, Chain 1

99% BANDWIDTH, Chain 2

This report shall not be reproduced except in full, without the written approval of UL LLC.

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.2.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FORM NO: 03-EM-F00858

DATE: 2016-11-01

IC: 8014A-ACWAP

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11a. Per KDB 662911, no array gain is added for power when $N_{ANT} </=$ 4. Therefore, the directional gains are as follows:

802.11a Mode

Output Power

Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00
	Antenna Gain (dBi)	Antenna Antenna Gain Gain (dBi) (dBi)	(dBi) (dBi) (dBi)

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-06, 2016-10-03

RESULTS

OUTPUT POWER RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	8.00	12.77	28.00	10.23
Mid	5200	8.00	12.77	28.00	10.23
High	5240	8.00	12.77	28.00	10.23

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

- Catpat i	output i ovoi reouto						
Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	12.29	12.68	12.31	17.20	28.00	-10.80
Mid	5200	12.06	12.74	11.87	17.01	28.00	-10.99
High	5240	12.39	12.65	12.27	17.21	28.00	-10.79

Note - The above data represents gated average power measurements, as described in method PM-G.

PSD RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	8.00	12.77	28.00	10.23
Mid	5200	8.00	12.77	28.00	10.23
High	5240	8.00	12.77	28.00	10.23

Duty Cycle CF (dB) 0.20	Included in Calculations of Corr'd PSI)
-------------------------	--	---

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	2.88	3.76	3.65	8.42	10.23	-1.81
Mid	5200	2.92	3.71	3.42	8.33	10.23	-1.90
High	5240	3.37	3.61	3.69	8.53	10.23	-1.70

DATE: 2016-11-01

IC: 8014A-ACWAP

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

DATE: 2016-11-01 IC: 8014A-ACWAP

8.3. 802.11n HT20 MODE IN THE 5.2 GHz BAND

8.3.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only. Tested per FCC §15.403 (i)

RESULTS

802.11n HT20 SDM (MCS16)

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5180	21.09	20.58	20.70
Mid	5200	20.96	20.55	20.65
High	5240	21.09	20.65	20.77

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-06

26 dB BANDWIDTH

26 dB BANDWIDTH, Chain 0

26 dB BANDWIDTH, Chain 1

26 dB BANDWIDTH, Chain 2

8.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only. Measured per ANSI C63.10:2013 Section 6.9.3.

RESULTS

802.11n HT20 SDM (MCS16)

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5180	17.76	17.58	17.76
Mid	5200	17.60	17.74	17.84
High	5240	17.84	17.77	17.81

Worst-Case

			Maximum	Does Ch. Freq. Fall in
Channel	Frequency	99% Bandwidth	Ch Freq	UNII 2A?
	(MHz)	(MHz)		Y/N
Low	5180	17.7600	5188.880	Ν
Mid	5200	17.8400	5208.920	N
High	5240	17.8400	5248.920	N

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-16

99% BANDWIDTH

99% BANDWIDTH, Chain 0

This report shall not be reproduced except in full, without the written approval of UL LLC.

99% BANDWIDTH, Chain 1

99% BANDWIDTH, Chain 2

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.3.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FORM NO: 03-EM-F00858

DATE: 2016-11-01

IC: 8014A-ACWAP

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11n. Per KDB 662911, no array gain is added for power when $N_{ANT} < = 4$. Therefore, the directional gains are as follows:

802.11n CDD Mode

Output Power

Chain 0	Chain 1	Chain 2			
Antenna	Antenna	Antenna	Directional		
Gain	Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)	(dBi)		
8.00	8.00	8.00	8.00		
	Antenna Gain (dBi)	Antenna Antenna Gain Gain (dBi) (dBi)	(dBi) (dBi) (dBi)		

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11n SDM Mode

Output Power and PSD

Chain 0	Chain 1	Chain 2				
Antenna	Antenna	Antenna	Directional			
Gain	Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)	(dBi)			
8.00	8.00	8.00	8.00			

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-06, 2016-10-19

FORM NO: 03-EM-F00858

RESULTS

OUTPUT POWER - 802.11n HT20 CDD (MCS0)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	8.00	12.77	28.00	10.23
Mid	5200	8.00	12.77	28.00	10.23
High	5240	8.00	12.77	28.00	10.23

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power	
		Meas	Meas	Meas	Corr'd	Limit	Margin	
		Power	Power	Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5180	13.46	14.09	13.75	18.55	28.00	-9.45	
Mid	5200	13.68	13.93	13.97	18.63	28.00	-9.37	
High	5240	13.74	13.68	14.15	18.63	28.00	-9.37	

Note - The above represents gated average power measurements, as described in method PM-G.

FORM NO: 03-EM-F00858

PSD - 802.11n HT20 CDD (MCS0)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	8.00	12.77	28.00	10.23
Mid	5200	8.00	12.77	28.00	10.23
High	5240	8.00	12.77	28.00	10.23

Duty Cycle CF (dB) 0.22	Included in Calculations of Corr'd PSD
-------------------------	--

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	0.61	2.07	2.57	6.82	10.23	-3.41
Mid	5200	1.94	2.83	1.69	7.17	10.23	-3.06
High	5240	1.89	2.42	2.28	7.19	10.23	-3.04

OUTPUT POWER - 802.11n HT20 SDM (MCS16)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	8.00	8.00	28.00	15.00
Mid	5200	8.00	8.00	28.00	15.00
High	5240	8.00	8.00	28.00	15.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power			
		Meas	Meas	Meas	Corr'd	Limit	Margin			
		Power	Power	Power	Power					
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)			
Low	5180	13.66	14.18	14.25	18.81	28.00	-9.19			
Mid	5200	13.91	14.55	14.09	18.96	28.00	-9.04			
High	5240	13.70	14.45	13.49	18.67	28.00	-9.33			

Note - The above represents gated average power data, as described in method PM-G.

FORM NO: 03-EM-F00858

PSD - 802.11n HT20 SDM (MCS16)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	8.00	8.00	28.00	15.00
Mid	5200	8.00	8.00	28.00	15.00
High	5240	8.00	8.00	28.00	15.00

Duty Cycle CF (dB) 0.59 Included in Calculations of Corr'd PSD
--

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	1.94	2.81	2.37	7.75	15.00	-7.25
Mid	5200	1.91	2.76	2.48	7.76	15.00	-7.24
High	5240	2.32	2.83	2.51	7.92	15.00	-7.08

DATE: 2016-11-01 IC: 8014A-ACWAP

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

DATE: 2016-11-01 IC: 8014A-ACWAP

8.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND

8.4.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only. Tested per FCC §15.403 (i)

RESULTS

802.11n HT40 SDM (MCS16)

Channel	Frequency	26 dB BW	26 dB BW	26 dB BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5190	40.55	40.26	40.20
High	5230	40.57	40.02	40.26

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-06

26 dB BANDWIDTH

8.4.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only. Measured per ANSI C63.10:2013 Section 6.9.3.

RESULTS

802.11n HT40 SDM (MCS16)

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5190	36.34	35.80	36.32
High	5230	36.35	36.32	36.33

Worst-Case

				Does Ch.
			Maximum	Freq. Fall in
Channel	Frequency	99% Bandwidth	Ch Freq	UNII 2A?
	(MHz)	(MHz)		Y/N
Low	5190	36.3400	5208.170	N
High	5230	36.3500	5248.175	N

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-16

99% BANDWIDTH

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.4.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FORM NO: 03-EM-F00858

DATE: 2016-11-01

IC: 8014A-ACWAP

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11n. Per KDB 662911, no array gain is added for power when $N_{ANT} </=$ 4. Therefore, the directional gains are as follows:

802.11n CDD Mode

Output Power

o atpati. o			
Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11n SDM Mode

Output Power and PSD

Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

Test Performed: Niklas Haydon / Jeff Cabrera Test Date: 2016-09-06, 2016-10-19 to 2016-10-20

FORM NO: 03-EM-F00858

RESULTS

OUTPUT POWER - 802.11n HT40 CDD (MCS0)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	(MHz) 5190	(dBi) 8.00	(dBi) 12.77	(dBm) 28.00	(dBm) 10.23

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
	((abiii)	(abiii)	(abiii)	(abiii)	(abiii)	(ab)
Low	5190	13.57	13.95	14.27	18.71	28.00	-9.29

Note – The above data represents gated power measurements, as described in method PM-G.

FORM NO: 03-EM-F00858

PSD - 802.11n HT40 CDD (MCS0)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	8.00	12.77	28.00	10.23
High	5230	8.00	12.77	28.00	10.23

Duty Cycle CF (dB)	0.43	Included in Calculations of Corr'd PSD
, -, c. c. (/	0	

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-2.32	-1.16	-1.42	3.60	10.23	-6.63
High	5230	-1.07	-0.33	-0.83	4.47	10.23	-5.76

 REPORT NO: 11387322-E2a
 DATE: 2016-11-01

 FCC ID: WPX-ACWAP
 IC: 8014A-ACWAP

OUTPUT POWER - 802.11n HT40 SDM (MCS16)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	8.00	8.00	28.00	15.00
	0.00	0.00	0.00	_0.00	

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	13.92	14.69	14.30	19.09	28.00	-8.91
High	5230	13.96	13.15	14.47	18.66	28.00	-9.34

Note – The above data represents gated power measurements, as described in method PM-G.

PSD - 802.11n HT40 SDM (MCS16)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	8.00	8.00	28.00	15.00
High	5230	8.00	8.00	28.00	15.00

Duty Cycle CF (dB)	0.59	Included in Calculations of Corr'd Power & PSD
, -, (/	0.00	

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-1.14	-0.25	-0.78	4.65	15.00	-10.35

DATE: 2016-11-01 IC: 8014A-ACWAP

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

DATE: 2016-11-01 IC: 8014A-ACWAP

8.5. 802.11ac VHT80 MODE IN THE 5.2 GHz BAND

8.5.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only. Tested per FCC §15.403 (i)

RESULTS

802.11ac VHT80 SDM (MCS0, Nss = 3)

Channel Frequency		26 dB BW	26 dB BW	26 dB BW	
			Chain 0	Chain 1	Chain 2
ı		(MHz)	(MHz)	(MHz)	(MHz)
	Mid	5210	83.92	83.54	82.88

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-07

26 dB BANDWIDTH, Chain 0

8.5.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only. Measured per ANSI C63.10:2013 Section 6.9.3.

RESULTS

802.11ac VHT80 SDM (MCS0, Nss = 3)

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5210	75.08	75.09	75.64

Worst-Case

				Does Ch.
			Maximum	Freq. Fall in
Channel	Frequency	99% Bandwidth	Ch Freq	UNII 2A?
	(MHz)	(MHz)		Y/N
Mid	5210	75.6400	5247.820	N

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-16

99% BANDWIDTH, Chain 0

99% BANDWIDTH, Chain 1

Page 96 of 293

REPORT NO: 11387322-E2a

DATE: 2016-11-01 FCC ID: WPX-ACWAP IC: 8014A-ACWAP

8.5.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-topoint operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FORM NO: 03-EM-F00858

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11ac. Per KDB 662911, no array gain is added for power when $N_{ANT} </=$ 4. Therefore, the directional gains are as follows:

802.11ac CDD Mode

Output Power

Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00
	Antenna Gain (dBi)	Antenna Antenna Gain Gain (dBi) (dBi)	(dBi) (dBi) (dBi)

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11ac SDM Mode

Output Power and PSD

Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-10-20 to 2016-10-24

FORM NO: 03-EM-F00858

RESULTS

OUTPUT POWER - 802.11ac VHT80 CDD (MCS0, Nss = 1)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBi)	(dBi)
Mid	5210	8.00	12.77	28.00	10.23

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	14.21	13.79	13.96	18.76	28.00	-9.24

Note – The above data represents gated power measurements, as described in method PM-G.

PSD - 802.11ac VHT80 CDD (MCS0, Nss = 1)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBi)	(dBi)
Mid	5210	8.00	12.77	28.00	10.23

Duty Cycle CF (dB)	0.84	Included in Calculations of Corr'd PPSD
--------------------	------	---

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	-6.34	-5.55	-5.50	-0.17	10.23	-10.40

 REPORT NO: 11387322-E2a
 DATE: 2016-11-01

 FCC ID: WPX-ACWAP
 IC: 8014A-ACWAP

OUTPUT POWER - 802.11ac VHT80 SDM (MCS0, Nss = 3)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBi)	(dBi)
Mid	5210	8.00	8.00	28.00	15.00

Duty Cycle CF (db) 0.00 included in Calculations of Conf d Power		Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--	--	--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	13.70	14.35	14.43	18.94	28.00	-9.06

Note – The above data represents gated power measurements, as described in method PM-G.

PSD - 802.11ac VHT80 SDM (MCS0, Nss = 3)

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBi)	(dBi)
Mid	5210	8.00	8.00	28.00	15.00

Duty Cycle CF (dB)	1.80	Included in Calculations of Corr'd PPSD
--------------------	------	---

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	-6.91	-5.20	-5.18	0.88	15.00	-14.12

FORM NO: 03-EM-F00858

PSD, Chain 1

DATE: 2016-11-01

IC: 8014A-ACWAP

8.6. 802.11a MODE IN THE 5.8 GHz BAND

8.6.1. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	5745	16.40	16.40	16.45	0.5
Mid	5785	16.38	16.50	16.43	0.5
High	5825	16.40	16.43	16.45	0.5

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-08

8.6.2. 99% BANDWIDTH

LIMITS

RSS-Gen Clause 6.6

RESULTS

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5745	16.49	16.64	16.61
Mid	5785	16.67	16.68	16.53
High	5825	16.74	16.66	16.69

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-15

99% BANDWIDTH

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

DATE: 2016-11-01 IC: 8014A-ACWAP

8.6.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11a. Per KDB 662911, no array gain is added for power when $N_{ANT} < 1$ 4. Therefore, the directional gains are as follows:

802.11a Mode

Output Power

Output i owei						
Chain 0	Chain 1	Chain 2				
Antenna	Antenna	Antenna	Directional			
Gain	Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)	(dBi)			
8.00	8.00	8.00	8.00			

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-08-30

FORM NO: 03-EM-F00858

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	8.00	28.00
Mid	5785	8.00	28.00
High	5825	8.00	28.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power	
		Meas	Meas	Meas	Corr'd	Limit	Margin	
		Power	Power	Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5745	15.05	14.51	15.54	19.82	28.00	-8.18	
Mid	5785	15.22	13.87	15.78	19.80	28.00	-8.20	
High	5825	15.90	14.15	16.60	20.44	28.00	-7.56	

Note – The above data represents gated power measurements, as described in method PM-G.

FORM NO: 03-EM-F00858

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.6.4. MAXIMUM POWER SPECTRAL DENSITY (PSD)

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11a. Therefore, the TX chains are correlated and the antenna gain is the same for each chain. The directional gain is:

Antenna	10 * Log (3 chains)	Correlated Chains
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-08

DATE: 2016-11-01

IC: 8014A-ACWAP

RESULTS

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	12.77	23.23
Mid	5785	12.77	23.23
High	5825	12.77	23.23

Duty Cycle CF (dB)	0.20	Included in Calculations of Corr'd PSD

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	1.29	0.70	1.94	6.31	23.23	-16.92
Mid	5785	1.40	0.20	2.47	6.43	23.23	-16.80
High	5825	2.14	0.66	3.40	7.18	23.23	-16.05

PSD, Chain 0

PSD, Chain 1

PSD, Chain 2

8.7. 802.11n HT20 MODE IN THE 5.8 GHz BAND

8.7.1. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

802.11n HT20 SDM (MCS16)

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	5745	17.58	17.60	17.60	0.5
Mid	5785	17.58	17.60	17.63	0.5
High	5825	17.55	17.66	17.66	0.5

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-08

DATE: 2016-11-01

IC: 8014A-ACWAP

8.7.2. 99% BANDWIDTH

LIMITS

RSS-Gen Clause 6.6

RESULTS

802.11n HT20 SDM (MCS16)

Channel Frequency		99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5745	17.81	17.91	17.76
Mid	5785	17.84	17.72	17.82
High	5825	17.79	17.78	17.76

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-16

99% BANDWIDTH

99% BANDWIDTH, Chain 0

This report shall not be reproduced except in full, without the written approval of UL LLC.

8.7.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11n. Per KDB 662911, no array gain is added for power when $N_{ANT} </=$ 4. Therefore, the directional gains are as follows:

802.11n CDD Mode

Output Power

9 34 9 34 1 9 11 9 1					
Chain 0	Chain 1	Chain 2			
Antenna	Antenna	Antenna	Directional		
Gain	Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)	(dBi)		
8.00	8.00	8.00	8.00		

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11n SDM Mode

Output Power and PSD

Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-08-30, 2016-10-21

Page 141 of 293

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

DATE: 2016-11-01

IC: 8014A-ACWAP

RESULTS

802.11n HT20 CDD (MCS0)

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	8.00	28.00
Mid	5785	8.00	28.00
High	5825	8.00	28.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	14.66	14.37	15.30	19.57	28.00	-8.43
Mid	5785	14.74	13.95	15.73	19.64	28.00	-8.36
High	5825	15.21	14.19	16.30	20.09	28.00	-7.91

Note – The above data represents gated power measurements, as described in method PM-G.

802.11n HT20 SDM (MCS16)

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)		(dBm)
Low	5745	8.00	28.00
Mid	5785	8.00	28.00
High	5825	8.00	28.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	15.20	14.54	15.62	19.91	28.00	-8.09
Mid	5785	15.38	14.15	15.34	19.76	28.00	-8.24
High	5825	15.76	14.55	16.60	20.49	28.00	-7.51

Note – The above data represents gated power measurements, as described in method PM-G.

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.7.4. MAXIMUM POWER SPECTRAL DENSITY (PSD)

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11n. Per KDB 662911, no array gain is added for power when $N_{ANT} < /=$ 4. Therefore, the directional gains are as follows:

802.11n CDD Mode

Output Power

Output i owei					
Chain 0	Chain 1	Chain 2			
Antenna	Antenna	Antenna	Directional		
Gain	Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)	(dBi)		
8.00	8.00	8.00	8.00		

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11n SDM Mode

Output Power and PSD

output : ono: una : ob					
Chain 0	Chain 1	Chain 2			
Antenna	Antenna	Antenna	Directional		
Gain	Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)	(dBi)		
8.00	8.00	8.00	8.00		

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-08, 2016-10-21

Page 144 of 293

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

DATE: 2016-11-01

IC: 8014A-ACWAP

This report shall not be reproduced except in full, without the written approval of UL LLC.

RESULTS

802.11n HT20 CDD (MCS0)

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	12.77	23.23
Mid	5785	12.77	23.23
High	5825	12.77	23.23

Duty Cycle CF (dB)	0.22	Included in Calculations of Corr'd PSD
--------------------	------	--

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	0.09	-0.36	-0.23	4.83	23.23	-18.40
Mid	5785	-0.22	-1.17	0.65	4.81	23.23	-18.42
High	5825	0.11	-1.01	1.80	5.45	23.23	-17.78

802.11n HT20 SDM (MCS16)

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5745	8.00	28.00
Mid	5785	8.00	28.00
High	5825	8.00	28.00

Duty Cycle CF (dB)	0.59	Included in Calculations of Corr'd PSD
--------------------	------	--

PSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	0.64	-0.01	0.97	5.91	28.00	-22.09
Mid	5785	0.71	-0.40	1.53	6.04	28.00	-21.96
High	5825	1.27	-0.01	2.48	6.73	28.00	-21.27

8.8. 802.11n HT40 MODE IN THE 5.8 GHz BAND

8.8.1. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

802.11n HT40 SDM (MCS16)

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	5755	36.03	36.36	36.36	0.5
High	5795	36.08	36.36	36.36	0.5

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-08

8.8.2. 99% BANDWIDTH

LIMITS

RSS-Gen Clause 6.6

RESULTS

802.11n HT40 SDM (MCS16)

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Low	5755	36.31	36.23	36.32
High	5795	35.30	35.80	36.38

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-16

99% BANDWIDTH

99% BANDWIDTH, Chain 0

This report shall not be reproduced except in full, without the written approval of UL LLC.

DATE: 2016-11-01

IC: 8014A-ACWAP

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.8.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11n. Per KDB 662911, no array gain is added for power when $N_{ANT} < /=$ 4. Therefore, the directional gains are as follows:

802.11n CDD Mode

Output Power

Output i O	WCI		
Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11n SDM Mode

Output Power and PSD

output to the familia to ob					
Chain 0	Chain 1	Chain 2			
Antenna	Antenna	Antenna	Directional		
Gain	Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)	(dBi)		
8.00	8.00	8.00	8.00		

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-08-30, 2016-10-20

Page 165 of 293

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

DATE: 2016-11-01

IC: 8014A-ACWAP

RESULTS

802.11n HT40 CDD (MCS0)

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
	(IVITIZ)	(ubi)	(ubiii)
Low	5755	8.00	28.00

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd Power
--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	14.84	14.21	15.08	19.50	28.00	-8.50
High	5795	15.03	14.02	16.03	19.88	28.00	-8.12

Note – The above data represents gated power measurements, as described in method PM-G.

802.11n HT40 SDM (MCS16)

Antenna Gain and Limit

Channel	Frequency	Directional Gain	Power Limit	
	(MHz)	(dBi)	(dBm)	
Low	5755	8.00	28.00	
High	5795	8.00	28.00	

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	<i></i>	/ ID \	(ID)	/ ID \	(alDeas)	(alD)	(-ID)
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5755	15.17	14.61	15.46	19.87	28.00	-8.13

Note – The above data represents gated power measurements, as described in method PM-G.

FORM NO: 03-EM-F00858

8.8.1. MAXIMUM POWER SPECTRAL DENSITY (PSD)

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11n. Per KDB 662911, no array gain is added for power when $N_{ANT} </=$ 4. Therefore, the directional gains are as follows:

802.11n CDD Mode

Output Power

Output 1 0	VV C1		
Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11n SDM Mode

Output Power and PSD

o atpatilio	Wor aria i	<u> </u>	
Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-08, 2016-10-20

TEL: (919) 549-1400

FORM NO: 03-EM-F00858

RESULTS

802.11n HT40 CDD (MCS0)

Antenna Gain and Limit

Channel	Frequency Directional		PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	(MHz) 5755	(dBi) 12.77	(dBm) 23.23

Duty Cycle CF (dB)	0.43	Included in Calculations of Corr'd PSD

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	/a \				(ID)	(15)	(15)
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5755	-2.97	-4.13	-2.71	1.98	23.23	-21.25

802.11n HT40 SDM (MCS16)

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Low	5755	8.00	28.00

Duty Cycle CF (dB)	0.59	Included in Calculations of Corr'd PSD
--------------------	------	--

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5755	(dBm) -2.21	(dBm) -3.20	(dBm) -2.15	(dBm) 2.87	(dBm) 28.00	(dB) -25.13

FORM NO: 03-EM-F00858

8.9. 802.11ac VHT80 MODE IN THE 5.8 GHz BAND

8.9.1. 6 dB BANDWIDTH

LIMITS

FCC §15.407 (e)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

802.11ac VHT80 SDM (MCS0, Nss = 3)

Channel	Frequency	6 dB BW	6 dB BW	6 dB BW	Minimum
		Chain 0	Chain 1	Chain 2	Limit
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5775	75.81	76.36	75.70	0.5

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-07

FORM NO: 03-EM-F00858

Page 178 of 293

8.9.2. 99% BANDWIDTH

LIMITS

RSS-Gen Clause 6.6

RESULTS

802.11ac VHT80 SDM (MCS0, Nss = 3)

Channel	Frequency	99% BW	99% BW	99% BW
		Chain 0	Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)	(MHz)
Mid	5775	75.73	75.73	75.56

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-09-16

99% BANDWIDTH, Chain 0

99% BANDWIDTH, Chain 1

Page 181 of 293

DATE: 2016-11-01

IC: 8014A-ACWAP

99% BANDWIDTH, Chain 2

REPORT NO: 11387322-E2a FCC ID: WPX-ACWAP

8.9.3. OUTPUT POWER

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11ac. Per KDB 662911, no array gain is added for power when $N_{ANT} < /= 4$. Therefore, the directional gains are as follows:

802.11ac CDD Mode

Output Power

<u> </u>						
Chain 0	Chain 1	Chain 2				
Antenna	Antenna	Antenna	Directional			
Gain	Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)	(dBi)			
8.00	8.00	8.00	8.00			

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11ac SDM Mode

Output Power and PSD

Chain 0	Chain 1	Chain 2	
Antenna	Antenna	Antenna	Directional
Gain	Gain	Gain	Gain
(dBi)	(dBi)	(dBi)	(dBi)
8.00	8.00	8.00	8.00

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-10-24

Page 183 of 293

DATE: 2016-11-01

IC: 8014A-ACWAP

RESULTS

802.11ac VHT80 CDD (MCS0)

Antenna Gain and Limit

Channel	Frequency	Directional	Power
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Mid	5775	8.00	28.00

Duty Cycle CF (dB) 0.0	00	Included in Calculations of Corr'd Power
------------------------	----	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	13.86	13.98	15.22	19.17	28.00	-8.83

Note – The above data represents gated power measurements, as described in method PM-G.

FORM NO: 03-EM-F00858

802.11ac VHT80 SDM (MCS16)

Antenna Gain and Limit

Channel	Frequency	Directional	Power	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
Mid	5775	8.00	28.00	

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd Power
--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	14.55	14.00	15.95	19.68	28.00	-8.32

Note – The above data represents gated power measurements, as described in method PM-G.

8.9.4. MAXIMUM POWER SPECTRAL DENSITY (PSD)

LIMITS

FCC §15.407 (a) (3)

IC RSS-247 (6.2.4 [1])

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

This EUT mode is 802.11ac. Per KDB 662911, no array gain is added for power when $N_{ANT} < /= 4$. Therefore, the directional gains are as follows:

802.11ac CDD Mode

Output Power

odipat i ono.						
Chain 0	Chain 1	Chain 2				
Antenna	Antenna	Antenna	Directional			
Gain	Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)	(dBi)			
8.00	8.00	8.00	8.00			

PSD

Antenna	10 * Log (3 chains)	
Gain		Directional Gain
(dBi)	(dB)	(dBi)
8.00	4.77	12.77

802.11ac SDM Mode

Output Power and PSD

output one and ob						
Chain 0	Chain 1	Chain 2				
Antenna	Antenna	Antenna	Directional			
Gain	Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)	(dBi)			
8.00	8.00	8.00	8.00			

Test Performed: Niklas Haydon / Jeff Cabrera

Test Date: 2016-10-24

RESULTS

802.11ac VHT80 CDD (MCS0)

Antenna Gain and Limit

Channel	Frequency	Directional	PSD	
		Gain	Limit	
	(MHz)	(dBi)	(dBm)	
Mid	5775	12 77	23.23	

	2.24	
Duty Cycle CF (dB)	0.84	Included in Calculations of Corr'd PSD

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	-7.32	-8.07	-5.58	-1.25	23.23	-24.48

PSD, Chain 0

802.11ac VHT80 SDM (MCS16)

Antenna Gain and Limit

Channel	Frequency	Directional	PSD
		Gain	Limit
	(MHz)	(dBi)	(dBm)
Mid	5775	8.00	28.00

Duty Cycle CF (dB)	1.80	Included in Calculations of Corr'd PSD
--------------------	------	--

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5775	-7.66	-8.57	-6.48	-0.91	28.00	-28.91

PSD, Chain 0

Page 191 of 293

