Harmonic Analysis of Inverter-Based Resources Subject to Unbalance

Rabi Kar, Zhixin Miao, Lingling Fan

Presenter: Rabi Kar

Overview

Introduction

Space Vector Representation

Process of space vector analysis

Outcome from EMT testbed

Results

Conclusion

Introduction

- There are multiple ways to analyze an unbalanced system.
- The types of analysis of an unbalanced system in a wind turbine can be broadly classified into,

Space Vector Representation

Fig: System under observation

Under unbalance condition, voltages and current can be represented as,

$$\begin{split} \vec{v}_{grid} &= \overline{V}_{grid}^{(+)} e^{j\omega_0 t} + \overline{V}_{grid}^{(-)*} e^{-j\omega_0 t} \\ \vec{v}_{conv} &= \overline{V}_{conv}^{(+)} e^{j\omega_0 t} + \overline{V}_{conv}^{(-)} e^{-j\omega_0 t} + \overline{V}_{conv}^{(3)} e^{j3\omega_0 t} \\ \vec{\iota}_{conv} &= \overline{I}_{conv}^{(+)} e^{j\omega_0 t} + \overline{I}_{conv}^{(-)} e^{-j\omega_0 t} + \overline{I}_{conv}^{(3)} e^{j3\omega_0 t} \end{split}$$

Process of space vector analysis

Equivalent circuit for the system in Negative sequence and 3rd Harmonic Component

Equivalent circuit in negative sequence seen from the AC side

Equivalent circuit in positive sequence 3rd harmonics circuit seen from the AC side

Equivalent circuit in 2nd Harmonics seen from the DC side

Outcome from EMT testbed

Instantaneous grid voltage and current plot showing unbalance event at 0.3 secs

FFT plot of grid voltage showing the existence of positive and negative sequence voltage

Comparison of the analysis with the EMT testbed on AC side with $m = 1 \angle 1.57$

FFT plot for converter current showing			
the ex	sistence of 180Hz and negative		
	equence 60Hz component		
$I_{conv}^{(-)}$			
¹ conv	,		

	EMT Testbed	Analysis
$\overline{V}_{\rm conv}^{(3)}$	0.0062∠2.9776	0.0056∠3.04
$\overline{V}_{\rm conv}^{(-)}$	$0.0061 \angle - 0.155$	0.0056∠ — 0.09
$\bar{I}_{conv}^{(3)}$	0.0049∠ − 1.42	0.0054∠ − 1.63
$\bar{I}_{conv}^{(-)}$	0.143∠ − 1.67	0.1092∠ – 1.66

The table shows the comparison of the EMT model output with the analysis results

Comparison of the analysis with the EMT testbed on DC side with $m = 1 \angle 1.57$

Instantaneous DC side voltage and current plot showing 120Hz oscillation after the unbalance

120Hz component for DC voltage and current

	EMT Testbed	Analysis
$\overline{V}_{dc}^{(2)}$	0.0243∠ − 1.46	0.0227∠ − 1.663
$\overline{I}_{dc}^{(2)}$	0.1113∠3.043	0.1017∠3.045

The table shows the comparison of the EMT model output with the analysis results

Comparison of the analysis with the EMT testbed on AC side with $m = 0.8 \angle 1.57$

	EMT Testbed	Analysis
$\overline{V}_{\rm conv}^{(3)}$	0.0037∠3.02	0.0035∠3.05
$\overline{V}_{\rm conv}^{(-)}$	$0.0037 \angle - 0.25$	$0.0037 \angle - 0.13$
$\bar{I}_{conv}^{(3)}$	$0.0029 \angle - 1.42$	0.0029∠ − 1.63
$\bar{I}_{conv}^{(-)}$	0.135∠ — 1.673	0.135∠ — 1.66

The table shows the comparison of the EMT model output with the analysis results

Comparison of the analysis with the EMT testbed on DC side with $m = 0.8 \angle 1.57$

Instantaneous DC side voltage and current plot showing 120Hz oscillation after the unbalance

current

	EMT Testbed	Analysis
$\overline{V}_{dc}^{(2)}$	0.018∠ − 1.4664	0.0173∠ − 1.66
$\overline{I}_{dc}^{(2)}$	0.083∠3.0366	0.0787∠3.05

The table shows the comparison of the EMT model output with the analysis results

Conclusion

 The approach is using a space-vector modeling technique to do the steady state circuit analysis for an unbalance system

 The problem formulation is validated with the EMT simulation and the current and voltage has a close match with the output of EMTtestbed.

Thank you

