Lab report 10

Fall 2021

CSE422L Data Analytics Lab

Submitted by: Ayaz Mehmood

Registration No.:18PWCSE1652

Section: A

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Student Signature: _____

Submitted to:

Engr. Mian Ibad Ali Shah

Last date of Submission:

24 February 2022

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

TASKS

Try and understand the provided code and dataset. Increase the accuracy using same dataset and algorithm. Make changes in this code. Make a

proper lab report with screenshots and details about how have you achieved the increase in accuracy.

Import Relevant Libraries:

Importing the relevant libraries

Reading a csv file

In [3]:
Out[3]:

Loading the raw data

```
1 raw_data = pd.read_csv('CarSelling Portal Data.csv')
           2 raw_data.head()
Out[2]:
                    Brand
                            Price
                                      Body Mileage EngineV Engine Type Registration Year
                                                                                               Model
                    BMW
                           4200.0
                                     sedan
                                               277
                                                         2.0
                                                                   Petrol
                                                                                yes 1991
          1 Mercedes-Benz
                           7900.0
                                               427
                                                         2.9
                                                                                yes 1999 Sprinter 212
                                       van
                                                                  Diesel
                                               358
                                                         5.0
          2 Mercedes-Benz 13300.0
                                     sedan
                                                                    Gas
                                                                                yes 2003
                                                                                               S 500
                     Audi 23000.0 crossover
                                                         4.2
                                                                   Petrol
                                                                                yes 2007
                    Toyota 18300.0 crossover
                                               120
                                                        2.0
                                                                   Petrol
                                                                                yes 2011
                                                                                               Rav 4
```

descriptive statistics of the variables

1 ra	raw_data.describe(include='all')								
	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.000000	4345
unique	7	NaN	6	NaN	NaN	4	2	NaN	312
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	NaN	E-Class
freq	936	NaN	1649	NaN	NaN	2019	3947	NaN	199
mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.550058	NaN
std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.719097	NaN
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.000000	NaN
25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.000000	NaN
50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.000000	NaN
75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.000000	NaN
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.000000	NaN

Dropping non important variables:

Determining the variables of interest

```
In [4]:
          1 data = raw_data.drop(['Model'],axis=1)
          2 data.describe(include='all')
```

Checking Null values of variables:

Dealing with missing values

```
In [5]:
        1 data.isnull().sum()
Out[5]: Brand
        Price
                         172
        Body
                           0
        Mileage
                           а
        EngineV
                         150
        Engine Type
                           0
                           0
        Registration
        Year
                           0
        dtype: int64
```

Dropping Null values:

```
In [9]:
           1 data_no_mv = data.dropna(axis=0)
In [10]: 1 data_no_mv.isnull().sum()
Out[10]: Brand
         Price
                         0
         Body
                         0
         Mileage
                         0
         EngineV
         Engine Type
                         0
         Registration
         Year
         dtype: int64
```

Checking outlier using PDF:

Exploring the PDFs

```
In [12]: 1 sns.distplot(data_no_mv['Price'])
               C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a d d will be removed in a future version. Please adapt your code to use either `displot` (a figure-level func xibility) or `histplot` (an axes-level function for histograms).
                  warnings.warn(msg, FutureWarning)
Out[12]: <AxesSubplot:xlabel='Price', ylabel='Density'>
                                   50000 100000 150000 200000 250000 300000
```

Dropping outlier:

Dealing with outliers

Transforming the data to suit for LR:

Transforming the data to suit Linear Regression

Taking log of price variable:

Relaxing the assumptions

```
In [27]: 1 log_price = np.log(data_cleaned['Price'])
2 data_cleaned['log_price'] = log_price
3 data_cleaned
```

Checking the data to suit for LR:

Checking Multi collinearity and dropping variable having higher VIF value:

Creating dummy variables for multiclass values:

Create dummy variables

```
In [34]: 1 data_with_dummies = pd.get_dummies(data_no_multicollinearity, drop_first=True)
In [35]: 1 data_with_dummies.head()
Out[35]:
```

Declaring input features and output label:

Declare the inputs and the targets

```
In [39]: 1 targets = data_preprocessed['log_price']
2 inputs = data_preprocessed.drop(['log_price'],axis=1)
```

Scaling the data using standard scaler:

Scale the data

Train Test Split:

Train Test Split

Linear Regression Model and training the Model:

```
In [43]: 1 reg = LinearRegression()
2 reg.fit(x_train,y_train)
```

Out[43]: LinearRegression()

Checking the model (actual Result and Predicted result):

Residuals PDF:

Checking accuracy of the model:

```
In [47]: 1 reg.score(x_train,y_train)
Out[47]: 0.76295052810071
```

Finding weights and bias:

Finding the weights and bias

Testing the model on test dataset:

Testing

```
In [52]: 1  y_hat_test = reg.predict(x_test)

In [53]: 1  plt.scatter(y_test, y_hat_test, alpha=0.2)
    plt.xlabel('Targets (y_test)',size=18)
    plt.ylabel('Predictions (y_hat_test)',size=18)
    plt.ylim(6,13)
    plt.ylim(6,13)
    plt.show()

13

14

15

17

18

19

19

10

10

10

11

12

13

13

Targets (y test)

14

15

16

17

18

19

10

11

12

13

Targets (y test)

Targets (y test)
```

What I did to increase the accuracy:

Instead of dropping 1% quartile I dropped 0.5% quartile in the price variable.

Did the same in Mileage variable and got an increase accuracy of 2.1% Previously the model accuracy was 74% and now it is 76.2%.

I tried some other method to increase the accuracy but that did not work according to my requirement. Instead of dropping the null variables I tried to fill it using the mean of that variables but that did not increase my accuracy.