TNO-Defensieonderzoek

AD-A266 752

INO-rapport

PML 1992-72

januari 1993 Exemplear no:-/ Prins Maurits Laboratorium TNO

Lange Kleiweg 137 Postbus 45 2280 AA Rijswijk

Fax 015 - 84 39 91 Telefoon 015 - 84 28 42 DAY 3

Gebruikershandleiding en programmabeschrijving van het Data Acquisitie Systeem van het Laboratorium voor Pulsfysica

Auteur(s):

G.H. Olthof

DO-opdrachtnummer: A87/K/046

Rubriceringen

Rapport:

ONGERUBRICEERD

Tite

ONGERUBRICEERD

Samerivatting

ONGERUBRICEERD

Bijlage(n):

ONGERUBRICEERD

Opinge

28

Aantai pagina's:

(incl. bijlagen, excl. distr. fijst en RDP)

147

Aantal bijlager

13

DTIC

DILECTE

JUL 14 1993

C

TDCK RAPPORTENCENTRALE

Frederikkazerne, gebouw 140 v/d Burchlaan 31 MPC 16A TEL.: 070-3166394/6395

FAX. : (31) 070-3166202

Postbus 90701 2509 LS Den Haag

בשטואו אושע שוג כטע

Alle rechten voorbehouden.
Niets uit deze iiitgave mag worden vermenigvuldigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke andere wijze dan ook, zonder voorafgaande toestemming van TNO.

Indien dit rapport in opdracht werd uitgebracht, wordt voor de rechten en verplichtingen van opdrachtgever en opdrachtnemer verwezen naar de 'Algemene Voorwaarden voor Onderzoeksopdrachten aan TNO'. dan wel de betreffende terzake tussen partijen gesloten overeenkomst.

Het ter inzage geven van het TNO-rapport aan direct belanghebbenden is toegestaan.

TNO

Approved for public release Distribution Unlimited

Nederlandse organisatie voor toegepast-hatuurwetenschappelijk onderzoek

TNO Defensional dezembers bestaat hit not a process on Endough to the about the second two on TNO and the second two on the second t

93-15902

ISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Pagina

3

Samenvatting

Dit rapport beschrijft de hardware en de besturingssoftware van het Data Acquisitie Systeem (DAS), dat het PML-TNO Laboratorium voor Pulsfysica gebruikt voor haar experimenteel onderzoek.

Het eerste deel van het rapport gaat in op de specificaties van de hardware. De manier waarop het DAS wordt ingesteld voor het verrichten van een meting, wordt besproken in het tweede deel van het verslag. Dit deel mag worden beschouwd als de gebruikershandleiding van het DAS. Tenslotte is in het derde deel van het rapport ter documentatie een gedetailleerde beschrijving van de besturingssoftware toegevoegd.

Summary

This report describes the hardware and software of the Data Acquisition System (DAS) used at the TNO-PML Pulse Physics Laboratory for their experimental research.

The first part deals with the hardware specifications. How to set up the DAS for performing measurements, is described in the second part of this report. This part can be used as a user's manual of the DAS. For documentation purposes a detailed description of the software is added at the end of

the report.

+

PML 23349	2002	Pagina 5
INHOUD	SOPGAVE	
	SAMENVATTING/SUMMARY	3
	INHOUDSOPGAVE	5
1	INLEIDING	7
2	SPECIFICATIES VAN DE HARDWARE	10
2.1	De laagfrequent digitizers HP3565	10
2.2	De middenfrequent digitizers HP5183	12
2.3	De hoogfrequent digitizers HP5185	13
3	DE BESTURINGSSOFTWAR!	14
3.1	Programma's om een meting voor te bereiden	14
3.2	Programma's om een meting te verrichten	27
3.3	Programma's om de hard- en software te testen	32
3.4	Programmatuur om de signalen te bekijken	33
4	OPBOUW VAN DE PROGRAMMATUUR	34
4.1	Het programma 'UNIT_MNGR'	34
4.2	Het programma 'CHANNELS'	39
4.3	Het programma 'SETUPS'	42
4.4	Het programma 'DATA_MNGR'	44
4.5	Het programma 'PROGRAM_65'	51
4.6	De programma's 'PROGRAM_83' en 'PROGRAM_85'	59
4.7	Het programma 'OP_VER83'	64
4.8	Het programma 'OP_VER85'	65
4.9	Het programma 'DISPLAY'	66
4.10	Het programma 'MEAS_MASTER'	82
4.11	De programma's PP.OG_83' en 'PROG_85'	82
4.12	Het programma 'PROG_65'	85
4.13	Het programma 'MASTER'	86

t. I

TNO-rapport

Pagina		PML 233492002
6		
5	ONDERTEKENING	88
6	REFERENTIES	88

-4.1

Pagina

7

1 INLEIDING

Voor het meten van signalen in het kader van het verrichten van experimenteel wetenschappelijk onderzoek, beschikt het Laboratorium voor Pulsfysica te Delft over een uitgebreid Data Acquisitie Systeem, kortweg DAS genoemd. Dit DAS valt uiteen in een hardware gedeelte en een software gedeelte.

Het hardware gedeelte bestaat uit een achtendertig computergestuurde meetkanalen. Per twee kanalen kan de bemonsteringsfrequentie worden ingesteld tussen 61 µHz tot 250 MHz. De signalen worden opgenomen met een 8- of een 12 bits resolutie. Elk kanaal heeft een geheugencapaciteit van 64k punten.

Dit systeem wordt bestuurd door een HP 9000/370 computer. De computer heeft 16 Mbyte RAM geheugen. De opslagcapaciteit van het systeem bestaat uit een vaste schijf van 307 Mbyte en een thruput-schijf van 80 Mbyte. Als back-up medium is er een magneto-optische schijf-unit met een opslagcapaciteit van 650 Mbyte per schijf. Verder is er een auto-changer tape-unit voor maximaal acht cartridge tapes. Voor de uitwisseling van gegevens met andere computers is een floppy drive aangesloten op de computer. Voor het uitdraaien van de gegevens is er een printer HP 2563 B op het systeem aangesloten. Verder is nog een plotter aangesloten op het geheel. De hardware communiceert met elkaar via de zogeheten HP-IB bus.

Verder is de mogelijkheid aanwezig om maximaal zes terminals aan te sturen. Via het Local Area Network (LAN) is er een x-terminal en een HP 9000/425 workstation aangesloten op het geheel. Tevens is via een Shiva gateway het Appletalk netwerk aangesloten op het LAN.

De computer heeft twee operating-systemen, namelijk UNIX en HP-BASIC. Wanneer de computer de digitizers bestuurt is het systeem in single-user mode en is het operating systeem HP-BASIC. In multi-user mode is het operating systeem UNIX. De beschikbare programmeertalen zijn C, Fortran-77 en HP-BASIC.

De systeemconfiguratie is weergegeven in figuur 1.

PML 233492002

Figuur 1 De systeemconfiguratie

Pagina

٥

Het software gedeelte bestaat uit een aantal programma-modules. Deze modules zijn onderverdeeld in een laagfrequent-, een middenfrequent- en een hoogfrequent gedeelte. Deze modules worden aangeroepen om een meting voor te bereiden en een meting te verrichten. Na het verrichten van de meting kunnen de signalen worden bekeken. Tevens is er programmatuur aanwezig om de digitizers op juiste werking te controleren (verifiëren).

Dit rapport is geschreven naar aanleiding van het aanpassen van de DAS software, hetgeen recentelijk heeft plaatsgevonden. Dit was noodzakelijk geworden, omdat er door de modulaire opbouw nogal wat overbodige gedeelten in de programmatuur aanwezig waren. De structuur van de software is hierdoor sterk verbeterd, hetgeen er toe heeft geleid, dat de gebruikersvriendelijkheid van het systeem is toegenomen.

Daarnaast moet dit rapport worden beschouwd als een kwaliteitszorgdocument. Kwaliteitszorgaspecten van de data acquisitie vormen een integraal deel van het systeem. In de eerste plaats worden
de digitizers periodiek gekalibreerd. Ten tweede is de besturingssoftware zodanig ontworpen dat alle
voor het betreffende experiment relevante gegevens worden opgeslagen in een database. Per kanaal
zijn hierin de meetcondities en de kalibratiegegevens van de gebruikte digitizers en transducenten
gedocumenteerd. In dit rapport zijn alle handelingen, in aanvulling op het werkvoorschrift voor het
DAS, vastgelegd, die moeten worden verricht om een juiste meting uit te voeren. Het is tevens een
naslagwerk voor onderhoud aan de besturingssoftware.

PML 233492002

10

2 SPECIFICATIES VAN DE HARDWARE

De specificaties van de diverse hardware componenten van het DAS worden in de volgende paragrafen beschreven.

2.1 De laagfrequent digitizers HP3565

Het laagfrequent gedeelte bestaat uit een source-module, zes input modules en een signal-processormodule.

- Source-module Deze module kan signalen genereren, waarmee stimulans/respons-

metingen uitgevoerd kunnen worden. Er zijn vier signalen te genereren: een ruissignaal, een variabel willekeurig burstsignaal, een

impulssignaal en een sinussignaal. Het AC output level is pro-

grammeerbaar van 1.26 mVp (-58 dBVp) tot 10 Vp (20 dBVp). Het

DC offsetniveau is instelbaar van -5V tot 5V. De module is volledig

te besturen door de beschikbare software.

Zes input-modules Deze modules zetten de analoge signalen om in digitale signalen met

een 12 bits nauwkeurigheid.

- Signal-processor-module Deze module bestuurt de source-module en de input-modules. De

signal-processor-module is gekoppeld aan de host computer.

Omdat de LF digitizers geen eigen geheugencapaciteit hebben, is een zogenaamde thruput-schijf op het systeem aangesloten om de data op te slaan. Deze thruput-schijf heeft een opslagcapaciteit van 80 Mbyte. De data transfer-snelheid tussen host computer en de modules bedraagt 930 Kbyte/seconde. Hierdoor is de maximale bemonsteringsfrequentie beperkt. Tabel 1 geeft de maximale bemonseringsfrequentie bij het aantal gebruikte kanalen.

Pagina

11

Tabel 1 Maximale bemonsteringsfrequentie bij het gebruikte aantal kanalen

Aantal kanalen	Maximale bemonsteringsfrequentie
1	51,2 kHz
2	51,2 kHz
3	25,6 kHz
4	25,6 kHz
5	12,8 kHz
6	12,8 kHz

2.1.1 De specificaties van de laagfrequent digitizers

- Bemonsteringsfrequentie: 61 μHz 51,2 kHz;
- Ingangsbereik / Ingangsnauwkeurigheid:

Tabel 2 Ingangsbereik en -nauwkeurigheid bij een ingestelde bemonsteringsfrequentie

Frequentie	Ingangsbereik	Ingangsnauwkeurigheid
30 Hz - 20 kHz	1,26 mVp - 3,16 mVp	± 0,5 dB
	3,98 mVp - 39,8 mVp	± 0,3 dB
20 kHz - 51,2 kHz	1,26 mVp - 3,16 mVp	± 0,75 dB
	3,98 mVp - 39,8 mVp	± 0,65 dB

- Ingangsimpedantie 1 M Ω ;
- Ingangskoppeling AC / DC;
- Triggermogelijkheden

Er zijn drie triggermogelijkheden, namelijk:

- a) Immediate Vanaf het moment dat op de softkey "START" wordt gedrukt, wordt direct een signaal opgenomen;
- b) First block

 Vanaf het moment dat een van te voren geldentificeerd ingangskanaal een
 goede triggerconditie krijgt aangeboden, beginnen alle aangesloten
 kanalen data op te nemen;

+ |

PML 233492002

c) Each block Vanaf het moment dat een van te voren geïdentificeerd ingangskanaal een

goede triggerconditie krijgt aangeboden, beginnen alle aangesloten kanalen data op te nemen, ter grootte van hun block-size. Wanneer het block vol is wacht het systeem totdat het weer een goede triggerconditie

krijgt aangeboden, waarna het block opnieuw gebruikt wordt, enz.

Trigger delay ± block-size;

- Trigger slope + / -;

- Geheugen capaciteit maximaal 80 Mbyte evenredig verdeeld over 6 kanalen;

- Kalibratie interval 2 jaar.

Voor verdere informatie betreffende de specificaties wordt verwezen naar het manual: "System reference for HP 35650 Series Hardware and HP VISTA" [1].

2.2 De middenfrequent digitizers HP5183

Momenteel beschikt het laboratorium voor Pulsfysica over 12 middenfrequent digitizers. Elke digitizer heeft 2 meetkanalen. De digitizers worden volledig software-matig bestuurd. De op de ingang aangeboden analoge signalen kunnen worden bemonsterd met een frequentie tussen 0,25 Hz en 4 Mhz en worden gedigitaliseerd met een resolutie van 12 bit. Elk kanaal heeft 64k geheugen. Indien slechts 1 kanaal per digitizer wordt gebruikt is er de mogelijkheid om voor dit kanaal 128k geheugen te reserveren. Verder kan men alle digitizers synchroon laten werken middels de STA (= Sync, Trigger, Arm) bussen op de achterzijde van de digitizers.

2.2.1 De middenfrequent specificaties

Bemonsteringsfrequentie 0,25 Hz - 4 MHz;

- Ingangsbereik ± 100 mV - ±50V volle schaal in een 1-2-5 volgorde,

- Ingangsimpedantie 1 M Ω | 45 pF;

- Ingangsmode Single / Differential;

- Ingangskoppeling AC / DC;

- Triggermogelijkheden kanaal 1, kanaal 2, beide kanalen of extern;

-(Recordlengte - 1) 16.7 x 10⁶

Triggerpositie bemonsteringsfrequentie tot bemonsteringsfrequentie;

- Triggerslope positief of negatief of allebei;

- Geheugen capaciteit 64 k per kanaal, in te stellen in veelvouden van 1024 punten.

Voor verdere informatie betreffende specificaties wordt verwezen naar het manual "Operating and Programming manual 5183A Waveform Recorder" [2].

Pagina

13

2.3 De hoogfrequent digitizers HP5185

Momenteel beschikt het laboratorium voor Pulsfysica over drie hoogfrequent digitizers. Elke digitizer heeft twee meetkanalen. De digitizers zijn volledig software-matig te besturen. De op de ingang aangeboden analoge signalen kunnen worden bemonsterd met een bemonsteringsfrequentie tussen 2035 Hz en 250 MHz en worden gedigitaliseerd met een 8 bits resolutie. Elk kanaal heeft 64 k aan geheugen.

2.3.1 De hoogfrequent specificaties

- Bemonsterings-frequentie 2035 Hz - 250 MHz;

- Ingangsbereik ± 50 mV - ± 20 V volle schaal in een 1-2-5 volgorde;

- Ingangsimpedantie 1 M Ω | 15 pF of 50 Ω ;

Iragangskoppeling AC / DC;

- Trigger mogelijkheden kanaal 1. kanaal 2, beide kanalen of extern;

- Trigger positie:

a) pré trigger 99% of (Recordlengte - 44) punten;

b) post trigger >1600% of 1 Msample, in te stellen in stappen van 1% of 1 sample;

- Trigger slope positief of negatief of allebei;

- Geheugen capaciteit 64 k per kanaal, in te stellen in veelvouden van 1024 punten.

Voor verdere informatie betreffende specificaties (zoals hysteresis, en dergelijke) wordt verwezen naar het manual "Operating and Programming manual 5185A Waveform Recorder" [3].

Pagina PML 233492002

14

3 DE BESTURINGSSOFTWARE

Voor de besturing van de verschillende digitizers zijn een groot aantal programma's beschikbaar. Deze programma's kunnen worden onderverdeeld in vier soorten:

- programma's om een meting voor te bereiden;
- programma's om een meting uit te voeren;
- programma's om de hardware en de software te testen;
- programma's om de opgenomen signalen zichtbaar te maken.

Het aanroepen van de verschillende programma's gebeurt vanuit het programma 'MASTER'. Na het starten van 'MASTER' komt er een keuzemenu op het scherm. Vanuit dit keuzemenu kunnen de verschillende programma's gestart worden. Na het beëindigen van zo'n programma komt automatisch het keuzemenu weer op het scherm.

3.1 Programma's om een meting voor te bereiden

Om een meting voor te bereiden zijn er een viertal programma's beschikbaar. Dit zijn de programma's 'UNIT_MNGR', 'CHANNELS', 'SETUPS' en 'DATA_MNGR'. De gegevens die hier worden ingevoerd, worden identifiers (IDENTS) genoemd.

3.1.1 Het programma 'UNIT MNGR'

Met dit programma kan het aantal beschikbare kanalen ingesteld worden. Het instellen wordt opgesplitst in drie delen namelijk laagfrequent (LF), middenfrequent (MF) en hoogfrequent (HF).

Tabel 3 Het Front-end Identification Menu

Front-end Identification						
Channel All Units	Front end	Unit #	Channel#	Select Code	Address code	Available
518301	HP5185	1	1	12	24	YES
518502	HP5185	1	2	12	24	YES
518503	HP5185	2	3	12	26	YES
518504	HP5185	2	4	12	26	YES
518505	HP5185	3	5	12	28	YES
518506	HP5185	3	6	12	28	YES

In tabel 3 is het selectiemenu voor de HF digitizers getekend. Het menu voor de LF en de MF digitizers ziet er op soortgelijke wijze uit, zij het dat bij het MF gedeelte 24 kanalen (12 kasten) te selecteren zijn. In dit menu is alleen de kolom 'AVAILABLE' te wijzigen. In de overige kolommen staan het type digitizer (FRONT-END), het kast- en kanaalnummer (UNIT# en CHANNEL#), de selectcode en de adrescode.

3.1.2 Het programma 'CHANNELS'

Met dit programma is het mogelijk om de kanalen van de digitizers, de transducenten en dergelijke te benoemen en te specificeren. Ook dit programma is weer opgesplitst in een LF, een MF en een HF gedeelte. Elk gedeelte is weer opgedeeld in 3 menu's, namelijk het Channel Identification Menu, het Transducers Identification Menu en het Front-enc' Identification Menu. De lengte van de spreadsheets van 'CHANNELS' is gelijk aan het aantal kanalen dat in 'UNIT_MNGR' is ingesteld. In de volgende paragrafen zijn de verschillende menu's voor het HF gedeelte getekend. De menu's voor het LF en het MF gedeelte zijn gelijk aan de menu's voor het HF gedeelte.

3.1.2.1 Het Channel Identification Menu

In dit menu kunnen de volgende parameters worden gewijzigd (zie tabel 4):

- Name Hierin moet de naam ingevuld worden van het op te nemen signaal;
- Id Code Hier moet het volgende ingevuld worden:

LF1 t/m LF 6, MF 1 t/m MF 18, HF 1 t/m HF 6 voor respectievelijk de laag-

frequent, middenfrequent en hoogfrequent digitizers;

- Calibr. date Hier moet de datum ingevuld worden wanneer de digitizers zijn gekalibreerd.

De gegevens, die in dit menu worden ingevoerd, hebben geen invloed op de meting. Ze dienen slechts ter informatie bij de grafieken.

PML 233492002

Tabel 4 Het Channel Identification Menu

Channel Identification					
Channel All Channel(s)	Name	Id Code	Calibr. Date		
518501	B-dot 1	HF 1	27 jan 1992		
518502	Sw Voltage	HF 2	27 jan 1992		
518503	Sw Current	HF3	27 jan 1992		
518504	VISAR sin	HF4	27 jan 1992		
518505	VISAR cos	HF 5	27 jan 1992		
518506	VISAR bim	HF 6	27 jan 1992		

3.1.2.2 Het Transducer Identification Menu

In dit menu kunnen de volgende parameters worden gewijzigd (zie tabel 5):

- Name Hier moet de naam van de transducent worden ingevuld;
- Id. Code Hier moet de identificatie van de transducent worden ingevuld (Deze identificatie moet ook vermeld staan op de betreffende transducent);
- Calibr. Date Hier moet de kalibratiedatum van de transducent worden ingevuld.
- Calibr. Type Hier moet het kalibratietype worden ingevuld (LINEAR / NON LINEAR);
- Offset Hier moet de offset van de transducent worden ingevuld;
- Trans. Sens. Hier moet de gevoeligheid van de transducent worden ingevuld.

Ook deze gegevens hebben geen invloed op de meting. Ze dienen eveneens slechts ter informatie bij de te meten signalen.

Pagina

17

Tabel 5 Het Transducer Identification Menu

	Transducer Identification					
Channel All Channel	Name	Id. Code	Calibr. Date	Calibr. Type	Offset	Trans.Sens.
518501	ACP	ACP 1	27 jan 1991	LINEAIR	0V	12.5 kT/Vs
518502	Pearson	PFP 1	22 okt 1990	LINEAIR	ov	100 V/V
518503	Rogowski	R3	7 mrt 1991	LINEAIR	0 V	805 kA/V
518504	VISAR	VISAR A	11 apr 1990	LINEAIR	0 V	1 V/V
518505	VISAR	VISAR B	11 apr 1990	LINEAIR	ov	1 V/V
518506	VISAR	BIM	11 apr 1990	LINEAIR	0V	1 V/V

3.1.2.3 Het Front-end Identification Menu

Daar de digitizers worden bestuurd via de HP-IB bus heeft elke kast een eigen adres. Deze adressen kunnen met het onderstaande menu worden ingevoerd (tabel 6). Dit adres is opgebouwd uit 2 onderdelen. Dit zijn:

- Select code

 Hier moet de select code van het apparaat worden ingevuld. Er zijn verschillende select codes omdat er slechts een bepaald maximum aantal apparaten op 1 select code mag worden aangesloten. De codes 7, 10, 11 en 12 zijn beschikbaar voor het besturen van de digitizers. De code 7 is gereserveerd voor het LF gedeelte. De codes 10 en 11 zijn gereserveerd voor het MF gedeelte. De code 12 voor het HF gedeelte;
- Address Code De adrescode is in te stellen van 0 t/m 28. Wordt de adrescode gewijzigd, dan moet dit ook achter op de betreffende kast worden gewijzigd.

Tabel 6 Het Front-end Identification Menu

	Front-end Identification						
Channel All Channels(s)	Front End	Unit#	Channel#	Select Code	Address Code		
518501	HP5185	1	1	12	24		
518502	HP5185	1	2	12	24		
518503	HP5185	2	1	12	26		
518504	HP5185	2	2	12	26		
518505	HP5185	3	1	12	28		
518506	HP5185	3	2	12	28		

3.1.3 Het programma 'SETUPS'

Dit programma is bedoeld om de kanalen van de digitizers in te stellen en bestaat eveneens uit een LF, een MF en een HF gedeelte. Tevens bestaat de mogelijkheid om door middel van een spreadsheet een aantal regels commentaar bij de set-up te voegen. De lengte van deze spreadsheets is gelijk aan het aantal kanalen of het aantal kasten $(=\frac{aantal kanalen}{2})$, dat in UNIT_MNGR is ingesteld.

3.1.3.1 Het instellen van de LF digitizers

Het instellen van het LF gedeelte gebeurt door het invullen van twee invul spreadsheets, namelijk één voor de input channel parameters en één voor de thruput-parameters.

3.1.3.1.1 Het Input Channel Parameter Menu

Per kanaal kunnen de volgende parameters worden gewijzigd (zie tabel 7):

- Input Mode Er zijn drie input modes beschikbaar:
 - a) Voltage mode (VOLT); voor standaard signaal-analyse
 - b) Charge mode (CHARGE); te gebruiken in plaats van een externe ladingsversterker met opnemers;
 - c) Transducer supply mode (ICP); levert nominaal 4 mA voor opnemers met geïntegreerde elementen;
- Coupling Hier bestaat de keuze uit DC of AC;
- Input grounding Dit bepaalt de aarding van de aangeboden signalen. Hier moet grounded (GNDED) of floating (FLOAT) worden ingevuld.

Range

Hier moet worden ingevuld:

- 58 dBVp tot 32 dBVp in stappen van 2 dB, als de INPUT MODE op VOLT is ingesteld (dBVp=gerelateerd aan piekspanning (Vp));
- 18 dBpCp tot 72 dBpCp in stappen van 2 dB, als de INPUT MODE op CHARGE is ingesteld (dBpCp=gerelateerd aan pico Coulomb piek (pCp));
- 18 dBpCp tot 72 dBpCp in stappen van 2 dB, als de INPUT MODE op ICP is ingesteld;
- Trigger Level

Deze moet worden ingevuld in procenten van de range. De minimale waarde is -125% en de maximale waarde is +125%;

- Trigger Slope

Hier bestaat de keuze uit positief of negatief.

Tabel 7 Het HP3565 Input Channel Parameter Menu

HP3565 Input Channel Parameters									
Fran Char All In		Name	Input Mode	Cpling AC/DC	Grounding	Range dBV	Range Volts	Level	Slope
(0	1)	HPG Volt	VOLT	DC	GNDED	10	10	20	+
(0	2)	HPG Curr	VOLT	DC	GNDED	10	10	100	+
(0	3)	Rotor Angl	VOLT	DC	GNDED	0	1	100	+
(0	4)	HPG Speed	VOLT	DC	GNDED	6	3.98	100	+
(0	5)	Sw Volt L	VOLT	DC	GNDED	0	1	100	+
(0	6)	Fuse Volt	VOLT	DC	GNDED	0	1	100	+

3.1.3.1.2 Het Thruput-parameter Menu

Dit menu geldt voor alle LF digitizers. In dit menu kunnen de volgende parameters worden gewijzigd (zie tabel 8):

-	Disc Address	Hier moet het adres van de thruput-schijf worden ingevuld;
-	Disc Unit	Hier moet het unit-nummer van de thruput-schijf worden ingevuld.
		Daar er slechts één thruput-schijf beschikbaar is, is dit nummer
		altijd 0;
_	Disc Volume	Hier moet het volumenummer van de thruput-schiif worden inge-

rtier moet het volumenummer van de thruput-schijf worden ingevuld. Daar er slechts één thruput-schijf beschikbaar is, is dit nummer altijd 0;

20		
-	File Name	Hier moet de naam van de datafile worden opgegeven, waarin de
		data moet komen te staan;
-	Transfer Block Size	Hier moet het aantal samples ingevuld worden, dat per blok opge-
		nomen wordt. Het aantal samples dat ingevuld kan worden is: 4,64,
		128, 256, 512, 1024, 2048, 4096, 8192.
-	Frequency Span in Hz	Negentien bereiken van 195 mHz tot 51.2 kHz. Hiermee kan de
		meetkracht geconcentreerd worden, waar het nodig is;
-	Zoom Mode	Hier moet worden ingevuld on/off. Doordat elke inputmodule een
		digitaal filter heeft zijn zoom-opties te bewerkstelligen in de hard-
		ware;
-	Center Frequency in Hz	Hier moet de helft van de frequentiespan worden ingevuld;
-	Trigger Delay in % blk-size	De pré en post trigger mogelijkheden zijn ± recordsize - 1;
-	Collection Mode	a) Continue → Stop;
		b) Continue → Switch to Block;
		c) Block.
		C) DIOCK.

Tabel 8 Het Thruput-parameter Menu

Pagina

HP 3565 Thrup	ut-Parameters					
Item Value						
Disc Parameters						
Disc Address	4					
Disc Unit	0					
Disc Volume	0					
File Name	E_030291					
Thruput-Parameters						
Transfer Block Size	2048					
Frequency Span in Hz	12800					
Zoom Mode	Off					
Centre Frequency in Hz	6400					
Trigger Delay in % blk-size	-500					
Collection Mode	Cont→Sw to blk					
Spare						

-

3.1.3.2 Het instellen van de MF digitizers

Het instellen van de MF digitizers gebeurt door het invullen van drie spreadsheets, namelijk één voor de Input Channel Parameters, één voor de Trigger parameters en één voor de Timebase parameters.

3.1.3.2.1 Het Input Channel Parameter Menu

Per kanaal kunnen de volgende parameters worden gewijzigd (zie tabel 9):

- Input mode Afhankelijk van de manier van meten kan hier single of differential ingesteld worden;
- Input coupling AC/DC;
- Range Hier kan een bereik worden ingevuld van 100 mV 50 V in een 1-2-5 volgorde;
- Offset Maximaal 200% van de ingestelde range;
- Anti-aliasing filter YES / NO. Dit filter elimineert alle frequenties boven de bemonsterings
 - frequentie;
- Active channel YES / NO. Deze optie maakt het kanaal al dan niet actief.

Tabel 9 Het HP5183 Input Channel Parameter Menu

		HP5183 in	out channel para	meter mer	ານ		
Channel Ali Inputs	Name	Singel/Diff	Coupling AC/DC/NC	Range Volts	Offsett % ring	Anti A- Filter	Active channel
518301	ACP 1,6	SINGLE	DC	5	0	YES	YES
518302	ACP 2,7	SINGLE	DC	5	0	YES	YES
518303	ACP 3,8	SINGLE	DC	5	0	YES	YES
518304	Total Curr	DIFF	DC	0.5	0	YES	YES
518305	Sw Voltage	SINGLE	DC	20	0	YES	YES
518306	Flux Loop	DIFF	DC	1	0	YES	YES

PML 233492002

3.1.3.2.2 Het Trigger Parameter Menu

Per kast zijn de volgende parameters te wijzigen (zie tabel 10):

- Trigger source Elke digitizer kan worden getriggerd op kanaal 1, kanaal 2, beide kanalen of extern;
- Trigger slope Elke digitizer kan worden getriggerd op de positieve, de negatieve, of op beide flanken (bi-trigger) van het triggersignaal;
- Trigger level Wanneer de trigger source op kanaal 1, kanaal 2, of op beide kanalen is ingesteld, bedraagt het trigger level maximaal ±100% van de ingestelde range.

 Wanneer de trigger source op extern is ingesteld is het maximale trigger level
 ±5 v;
- Hysteresis Deze moet worden ingesteld in % van de range (0 100%);
- Delay

 Hier moet een aantal punten worden ingevoerd (zie specificaties §2.2.1). De delaytijd wordt automatisch berekend en is gelijk aan bemonsteringsfrequentie.

Tabel 10 Het HP5183 Triggering Parameter Menu

	,	HP5	283 Triggering Pa	rameters		
Unit Number All Unit(s)	Trigger Source	Slope	Level % Rng/Volt ext.	Hysterisis %Rng	Delay in # pnt	Delay in ms
(1)	EXT	POS	2	0	-6000	-6
(2)	EXT	POS	2	0	-6000	-6
(3)	EXT	POS	2	0	-6000	-6
(4)	EXT	POS	2	0	-6000	-6
(5)	EXT	POS	2	0	-6000	-6
(6)	EXT	POS	2	0	-6000	-6

3.1.3.2.3 Het Timebase Parameter Menu

Met dit menu zijn per kast de volgende parameters te wijzigen (zie tabel 11):

- Sample rate Dit is de bemonsteringsfrequentie en is in te stellen van 0.23845 Hz t/m 4 MHz;
- Sample clock Deze parameter geeft aan welke bemonsteringsklok wordt gebruikt. Er kan gekozen worden uit drie soorten. Dit zijn een interne bemonsteringsklok (INT), een hoge (1,9 4 MHz) externe bemonsteringsklok (HEXT) en een lage (0 2,1 MHz) externe bemonsteringsklok (LEXT);

Pagina

- Reference clock Hier moet ingevuld worden welke referentieklok wordt gebruikt. Hiervoor

kunnen de volgende klokken voor worden gebruikt: een interne (INT), een 1 MHz externe (1 EXT), een 4 MHz externe (4 EXT) of een 10 MHz

externe (10 EXT) referentieklok;

- Sample clock divisor Instelbaar van 1 tot 16777216;

- Record length Dit is het aantal punten dat wordt opgenomen en is in te stellen van

1024 t/m 65536 in stappen van 1024 punten.

Tabel 11 Het HP5183 Timebase Parameter Menu

		F	IP5183 Tin	nebase Paran	ieters		
Unit Number All Unit(s)	ΔT !!s	Sample Rate	Sample Clock	Reference Clock	Smpl Clock Divisor	Record Length	length T
(1)	1	1E6	INT	INT	1	8192	8.192
(2)	1	1 E 6	INT	INT	1	8192	8.192
(3)	1	1 E 6	INT	INT	1	8192	8.192
(4)	1	1 E 6	INT	INT	1	8192	8.192
(5)	1	1 E 6	INT	INT	1	8192	8.192
(6)	1	1E6	INT	INT	1	8192	8.192

3.1.3.3 Het instellen van de HF digitizers

Het instellen van de HF digitizers gebeurd door het invullen van het Input Channel Parameter menu, het Trigger Parameter Menu en het Timebase Parameter Menu. Het Input Channel Parameter Menu wordt per kanaal ingevuld. Het Trigger Parameter Menu en het Timebase Parameter Menu worden per kast ingevuld.

3.1.3.3.1 Het Input Channel Parameter Menu

Hierin kunnen de volgende parameters worden gewijzigd (zie tabel 12)

- Input impedance Afhankelijk van de wijze van meten kan de ingangsimpedantie op 1 $M\Omega$

of 50 Ω worden ingesteld;

- Input coupling AC / DC;

- Range Hier kan een bereik worden ingesteld van 50 mV - 20 V volle schaal in

een 1-2-5 volgorde;

Offset $\pm 1.35 \text{ V voor de bereiken} < 1 \text{ V}$

 \pm 20 V voor de bereiken \geq 1 V;

PML 233492002

- Anti-aliasing filter

YES / NO. Dit filter elimineert alle frequenties boven de bemonsterings-

frequentie;

- Active channel

YES / NO. Deze optie maakt een kanaal al dan niet actief.

Tabel 12 Het HP5185 Input Channel Parameter Menu

		HP5185 Inpu	t Channel Para	meters M	lenu		
Channel All Input	Name	Input Impedance	Coupling AC/DC/NC	Range Volts	Offset % Rng	Anti A-Filter	Active Channel
518301	B-dot 1	HIGH 1MOhm	DC	5	0	YES	YES
518302	Sw Voltage	HIGH 1MOhm	DC	10	0	YES	YES
518303	Sw Current	HIGH 1MOhm	DC	10	0	YES	YES
518304	VISAR sin	HIGH 1MOhm	DC	2	0	YES	YES
518305	VISAR cos	HIGH 1MOhm	DC	2	0	YES	YES
518306	VISAR bim	HIGH 1MOhm	DC	2	0	YES	YES

3.1.3.3.2 Het Trigger Parameter Menu

Hiermee kunnen de volgende parameters worden gewijzigd (zie tabel 13).

- Trigger source De digitizer kan worden getriggered op kanaal 1, kanaal 2 of extern;
- Trigger slope De digitizer kan triggeren op de positieve, negatieve of op beide flanken

van het triggersignaal;

- Trigger level -97% - 98% van de range wanneer de trigger source op kanaal 1 of op

kanaal 2 is ingesteld, -2.56 V - 2.54 V als de trigger source op extern is

ingesteld;

- Hysteresis In te stellen van 0 tot 100 % van de volle schaal;
- Trigger position Instelbaar in % van de recordlengte (-99% tot 12799.4628906%).

Tabel 13 Het HP5185 Triggering Parameter Menu

	_	1	IP5185 Triggers	Parameters		
Unit Number All Unit(s)	Trigger Source	Slope	Level %Rng/ Volt Ext	Hysteresis %RNG	Position %Rec Len	Position in µs
(1)	EXT	POS	2	0	-50	-327680
(2)	EXT	POS	2	0	-50	-8126.4641
(3)	EXT	POS	2	0	-50	-8126.4641

De lengte van deze spreadsheet is eveneens afhankelijk van het aantal kanalen dat in 'UNIT MGNR' is ingesteld en is gelijk aan het aantal kasten (aantal kanalen/2).

3.1.3.3.3 Het Timebase Parameter Menu

Hiermee kunnen de volgende parameters worden gewijzigd (zie tabel 14).

in stappen van 1024 punten).

-	Sample rate	Dit is de bemonsteringsfrequentie en is instelbaar van 0.002035 MHz
		t/m 250 MHz;
-	Sample clock source	Deze parameter geeft aan welke bemonsteringsklok wordt gebruikt. Er kan
		gekozen worden uit twee soorten. Dit zijn een interne bemonsteringsklok
		(INT) of een externe bemonsteringsklok (EXT);
-	Reference source	Deze parameter geeft aan welke referentieklok gebruikt wordt. Er kan
		gekozen worden uit een interne (INT) en uit een externe (EXT) klok;
-	Reference select	Hier moet ingevuld worden welke frequentie de referentieklok heeft (1, 2,
		5 of 10 MHz);
-	Record length	Hier moet het aantal op te nemen punten worden ingevuld (1024 - 65536

Tabel 14 Het HP5185 Timebase Parameter Menu

		ŀ	IP 5185 Time	base Parame	eters		
Unit Number All Unit(s)	ΔT	Sample rate MHz	Sample Clock SRK	Reference Source	Reference Select	Record Length	length T ms
(1)	1	.1	INT	INT	10	65536	655350
(2)	1	4.032258	INT	INT	10	65536	16252
(3)	1	4.032258	INT	INT	10	65536	16252

PML 233492002

3.1.3.4 Het Comment Menu

Dit menu wordt gebruikt om enige regels commentaar bij een meting te voegen. Het menu ziet er als volgt uit (tabel 15):

Tabel 15 Het Comment Menu

	Comment Menu
# COM	description
1	Test: E_270192
2	Test Date: 27 jan 1992
3	Hypervelocity launch experiment
4	250 kA test
5	Copper multi-fibre solid brush armature
6	
7	
8	
9	
10	

3.1.4 Het programma 'DATA MNGR'

Het programma 'DATA_MNGR' is niet bedoeld om een meting voor te bereiden. Het is een programma om de aangemaakte datafiles te manipuleren. Er zijn een zestal manipulaties beschikbaar.

- Show directory
- Hiermee is te zien:
- a) Welke directories er voor de identifiers zijn aangemaakt;
- b) Welke directories er voor de datafiles zijn aangemaakt;
- Show header
- Hiermee is te zien:
- a) Welke headers er bij de identifiers zijn aangemaakt (dit is hetgeen wat is ingevuld in het COMMENT MENU);
- b) Welke headers er bij de datafiles zijn aangemaakt (dit zijn de gegevens uit de overige menu's uit de programma's 'CHANNELS' en 'SETUP');
- Save data

Hiermee kunnen de identifier-files en de datafiles in een eigen directory worden weggeschreven;

- Recall data

Hiermee kunnen zowel de identifier-files als de datafiles opgehaald worden uit een vooraf geselecteerde directory;

Pagina

27

- Remove datr

Hiermee kunnen zowel de identifier-files als de datafiles in een vooraf geselecteerde directory, verwijderd worden van de schijf;

- Lock Status

Nadat een meting is gedaan, zit op het systeem een "software matig" slot. Dit betekent dat:

- a) De data eerst moet worden opgeslagen op de schijf, voordat een nieuwe meting kan worden gedaan. Hierna wordt het slot automatisch geopend;
- b) Het slot zelf geopend kan worden door op de software knop "open lock" te drukken.

3.2 Programma's om een meting te verrichten

Om een meting met de digitizers te verrichten zijn vijf programma's beschikbaar. Dit zijn de programma's 'SPAM', 'PROGRAM_65', 'PROGRAM_83', 'PROGRAM_85' en 'MEAS_MASTER'. De files die door deze programma's worden aangemaakt zijn de headerfiles en de datafiles.

3.2.1 Het programma 'SPAM'

Het programma 'SPAM' (=Signal Processing Application Manager) kan gebruikt worden om een meting met de LF digitizers te verrichten. Aangezien de LF digitizers zelden of nooit alleen gebruikt worden blijft een bespreking van dit programma achterwege.

3.2.2 Het programma 'PROGRAM 65'

Het programma 'PROGRAM_65' is bedoeld om een meting te verrichten met behulp van de HP 3565 laagfrequent digitizers. Voordat de meting uitgevoerd kan worden moeten er echter eerst een aantal spreadsheets ingevuld worden, namelijk de INPUT SETUP, de SOURCE SETUP en de THROUGHPUT SETUP.

3.2.2.1 Het instellen van de Input Parameters

Het instellen van de Input Parameters gebeurt in het INPUT SETUP menu (zie tabel 16). Dit menu komt overeen met het Input Parameters menu uit het programma 'SETUPS' (zie tabel 7). De kolommen FRAME/CHANNEL en RANGE VOLTS zijn weggelaten. Verder is er een kolom bij gekomen waarin de triggermode ingevuld kan worden (SEND / RECEIVE).

PML 233492002

Tabel 16 De Input Channel Parameters

]	Input Spreadsh	neet			
Channel Name All Input	Input Mode	Cplg	Input Gnding	Range dB	Trigger Level	Trigger Slope	Trigger Mode
HPG Volt	VOLT	DC	GNDED	10	20.01	+	SEND
HPG Curr	VOLT	DC	GNDED	10	100.01	+	RCVE
Rotor Angl	VOLT	DC	GNDED	0	100.01	+	RCVE
HPG Speed	VOLT	DC	GNDED	6	100.01	+	RCVE
Sw Volt L	VOLT	DC	GNDED	0	100.01	+	RCVE
Fuse Volt	VOLT	DC	GNDED	0	100.01	+	RCVE

3.2.2.2 Het instellen van de Source Parameters

Dit is een spreadsheet om de instelling van de source-modules in te voeren. Bij het uitvoeren van een meting waarbij geen signaal hoeft te worden gegenereerd, is dit menu niet van belang. Voor de volledigheid wordt het menu hieronder afgedrukt (tabel 17).

Tabel 17 De Source-module parameters

				Source Setu	p			
Channel Name All Source	Source Mode	DC Offset	AMP (dBVp)	Sine Freq (Hz)	Span (Hz)	Center Freq (Hz)	Trigger Mode	Burst %
Source 1	OFF	0.0000	-58.000	1000.00	51200.0	25600.00	OFF	50

3.2.2.3 Het instellen van de Throughput Parameters

Als laatste moet het THROUGH-PUT MEASUREMENT SETUP menu worden ingevoerd (tabel 18). Dit menu is bijna gelijk aan het Throughput Parameters menu in het programma 'SETUPS' (zie tabel 8). De volgende opties moeten hier extra worden ingevuld:

- Throughput Trigger Mode
- a) Immediately;
- b) First block;
- c) Each block;
- Throughput length
- Vul hier de gewenste meettijd in;
- Number of scans in throughput

Dit wordt automatisch berekend en is afhankelijk van de

frequency-span en de throughput transfer size.

Tabel 18 De Throughput measurement set-up

Through	n-Put Measureme	ent Set-Up
Item		Value
Through-put Disc Info		
Disc HP-IB Address	\rightarrow	4
Disc Unit Number	\rightarrow	0
Disc Volume Number	→	o
Through-put File Name	\rightarrow	E_030291
Setups for All Inputs		
Through-put Transfer Size	\rightarrow	2048
Frequency Span	\rightarrow	12800
Zoom Mode	\rightarrow	OFF
Centre Frequency	\rightarrow	6400.00
Trigger Delay	\rightarrow	-500
Data Collection mode	\rightarrow	Cont→Switch to blk
Through-put Trigger Mode	\rightarrow	First Block
Through-put length (mSec)	\rightarrow	2000
Number of scans in through-put	\rightarrow	32

Na het invullen van deze menu's kan een meting verricht worden, of kunnen de gegevens van een reeds uitgevoerde meting worden bekeken.

3.2.3 De programma's 'PROGRAM 83' EN 'PROGRAM 85'

De programma's 'PROGRAM_83' en 'PROGRAM_85' zijn bedoeld om met behulp van respectievelijk de MF of de HF digitizers een meting uit te voeren. Nadat het programma is geladen worden de digitizers eerst geïnitialiseerd. Vervolgens moeten een aantal menu's ingevuld worden. Dit zijn dezelfde menu's als uit het programma 'SETUPS'. Deze worden hier dan ook niet verder beschreven (§ 3.1.3). Als de menu's correct zijn ingevuld, moeten de digitizers gekalibreerd worden. Deze stap kan eventueel ook worden overgeslagen. Dit is echter niet aan te bevelen. Na het kalibreren kunnen de digitizers gestart worden om een meting te verrichten. Nadat de meting verricht is, kunnen de meetsignalen via de functietoetsen bekeken worden. Tevens kunnen de digitizers met deze programma's geverifieerd worden. Hiervoor wordt bij 'PROGRAM_83' de volgende spreadsheet op het scherm gezet (tabel 19).

Bus A.S.R. Memory Input Ranges Device Address Option Option Ampl. 100 mV 200 mV 500 mV 10 V 2 V 5 V 10 V 1000 N.A. A.A. A.15 pass HP51083 1001 N.A. N.A. A.15 pass pass pass pass pass pass pass HP51083 1002 N.A. N.A. A.15 pass pass pass pass pass pass pass HP51083 1004 N.A. A.A. A.15 pass HP51083 1006 N.A. N.A. A.15 pass pass pass					H	HP5183 Input Channel V	Channel V	Verification			ļ			
1000 N.A. A15 pass	Unid	Bus	A.S.R.	Memory	}	Ranges 100 mV	 200 mV	500 mV		.>	: >	10 V	Device	Venify
1001 N.A. A15 pass HP51083 1003 N.A. N.A. A15 pass pass pass pass pass pass pass HP51083 1004 N.A. N.A. A15 pass pass pass pass pass pass HP51083 1006 N.A. N.A. A15 pass pass pass pass pass pass HP51083 1006 N.A. N.A. A15 pass pass pass pass pass pass HP51083	in the second	9	7	Z	1	Desc	pasa	pass		pass	pass		HP51083	PASS
1002 N.A. A15 pass HP51083 1004 N.A. N.A. A15 pass pass pass pass pass pass pass pass HP51083 1005 N.A. N.A. A15 pass pass pass pass pass pass pass HP51083 1006 N.A. N.A. A15 pass pass pass pass pass pass pass pass pass HP51083	(1 t)	3 3	<u>.</u> 7	2	A15	0.838	25 BC	pass	26.55	Sec	pass	pass	HP51083	PASS
1002 N.A. A.15 pass ppss pass pass pass ppss ppss <th< td=""><td>(0, 2)</td><td>3</td><td>ġ ;</td><td></td><td>818</td><td></td><td>. 6</td><td>98,80</td><td>Dass</td><td>Dass</td><td>pass</td><td>S</td><td>HP51083</td><td>PASS</td></th<>	(0, 2)	3	ġ ;		818		. 6	98,80	Dass	Dass	pass	S	HP51083	PASS
1003 N.A. N.A. A15 pass pass pass pass pass pass pass Pass P	(1° 1)	7001	į į	4 7	¥ 14	****	5860	. 0	Dass	Dass	pass	pass	HP51083	PASS
1004 N.A. N.A. A15 pass pass pass pass pass pass HP51083 1006 N.A. N.A. A15 pass pass pass pass pass pass HP51083 1007 N.A. N.A. A15 pass pass pass pass pass pass pass pas	(1, 2)	1003	Ċ ;	d 4) I		88	5880	Dess	Dass	pass	pass	HP51083	PASS
1006 N.A. N.A. A15 pass pass pass pass pass pass pass HP51083	3	100	ġ Ż Ż	d d	A15		88	\$6.00	Dass	Dess	pass	pass	HP51083	PASS
1000 N.A. N.A. A15 pass pass pass pass pass pass pass pas	(2, 2)	5002	ė ·	Ċ *) i	0888	1 TO	sead	pass	pass	pass	Seed	HP51083	PASS
	€ 6 7 8	2001	¢ ¢	, d	AIS	pess	. S.	pass	pass	pass	pass	pass	ı	PASS

Tabel 19 De HP5183 input channel verification spreadsheet

				HP5185 Input Channel Verification	Input Ch	annel Ve	rification				
Unit	Bus	=>>	<<===== (alib Ranges====>>	Ranores	***	==>	# 10 C #	(SEES 1) (1 mm = 2500)	<trie><</trie>		
		200	500mV 100mV	100шV	10	20V	20V 500 mV 100 mV	100 mV	1 V	Device	Verify
(1,1)	1224	pass	pass	pass	pass	pass	pass	pass	pass	HP51085	PASS
(1, 2)	1225	pass	pass	pass	pass	pass	pass	pass	pass	HP51085	PASS
(2, 1)	1226	pass	pass	Dass	pass	pass	pass	pass	pass	HP51085	PASS
(2, 2)	1227	pass	pass	pass	pass	pass	pass	pass	pass	HP51085	PASS

Tabel 20 De HP5185 input channel verification spreadsheet

PML 233492002

32

3.2.4 Het programma 'MEAS MASTER'

Met dit programma kunnen alle digitizers gestart worden. Allereerst worden de MF digitizers geïnitialiseerd en gekalibreerd. Vervolgens worden ze ingesteld voor de meting. Hetzelfde gebeurt met de HF digitizers. Voor deze twee groepen hoeven verder geen menu's meer te worden ingevuld. Dit is al gebeurd in het programma 'SETUPS'. Als laatste worden de LF digitizers ingesteld voor de meting. Hiervoor moeten dezelfde menu's ingevoerd worden als bij 'PROGRAM_65'. Voordat deze menu's ingevuld kunnen worden moet eerst het soort meting worden ingesteld. Er is hier een keuze uit drie mogelijkheden:

Automatic De MF en de HF digitizers worden gestart, zodra de thruput van de LF digitizers

gestopt is;

Manual De MF en de HF digitizers worden gestart, zodra de gebruiker op functietoets F1

drukt;

Simultaneous De MF en de HF digitizers worden gestart op hetzelfde moment als de LF digiti-

zers.

Na het invullen van de menu's kan de meting met een druk op de knop gestart worden. Nadat de meting verricht is, wordt de data uit de MF en HF digitizer-buffers ingelezen in de computer en kunnen de signalen bekeken worden. De LF signalen komen direct na het inlezen op het scherm. Om de MF en de HF signalen te bekijken is er het programma 'DISPLAY'. Dit wordt in een volgende paragraaf besproken.

3.3 Programma's om de hard- en software te testen

Hiervoor zijn een tweetal programma's aanwezig. Dit zijn 'OP_VER83' en 'OP_VER85'. OP_VER staat voor Operational Verification.

3.3.1 Het programma 'OP_VER 83'

Dit programma is bedoeld om de HP5183 digitizers te testen. De tests die worden uitgevoerd staan beschreven in het manual "Operating and programming manual HP5183 A Waveform recorder" [2].

3.3.2 Het programma 'OP-VER85'

Dit programma is bedoeld om de HP5185 digitizers te testen. De tests die worden uitgevoerd staan beschreven in het manual "Operating and programming manual HP 5185 A Waveform Recorder" [3].

Pagina

33

3.4 Programmatuur om de signalen te bekijken

Om de signalen te bekijken is het programma 'DISPLAY' beschikbaar. In dit programma kan via een menu uit 4 programma's gekozen worden. Vanuit elk programma kunnen de signalen naar de plotter of de printer gestuurd worden. Dit zijn de volgende programma's.

3.4.1 'MULTIPLOT'

Hiermee kunnen een aantal signalen in dezelfde figuur zichtbaar gemaakt worden (maximaal 4). Vervolgens kunnen hiermee bewerkingen (inzoomen, integreren, enz) worden uitgevoerd.

3.4.2 'STATISTICS'

Hiermee kan een histogram of een distributiefunctie van een of meer signalen gemaakt worden.

3.4.3 'SCOPE DISPLAY'

Hiermee worden de signalen per meetkast (2 kanalen) afgebeeld in 2 onder elkaar staande grafieken.

3.4.4 'CURSORS'

Hiermee kan 1 kanaal afgebeeld worden op het scherm. Vervolgens kunnen hier bewerkingen op uitgevoerd worden, zoals bijvoorbeeld inzoomen. Ook kan het signaal met behulp van X-Markers en Y-Markers nauwkeurig worden bekeken.

PML 233492002

4 OPBOUW VAN DE PROGRAMMATUUR

In dit hoofdstuk wordt een beschrijving gegeven van de opbouw van de programmatuur. Van de verschillende programma's zijn structuurdiagrammen getekend in de bijbehorende bijlagen.

4.1 Het programma 'UNIT MNGR'

Met het programma 'UNIT_MNGR' kunnen kanalen geselecteerd of gedeselecteerd worden. Van dit programma zijn structuurdiagrammen getekend in bijlage 1.

Het programma is opgesplitst in drie delen.

Het eerste deel van het programma initialiseert een aantal variabelen, het laadt de bijbehorende softwaremodules en leest enige parameters uit een file in. Tevens wordt een titelscherm op het scherm gezet. Dit gebeurt overigens in elk programma, dat vanuit 'MASTER' kan worden opgestart.

In het tweede gedeelte van het programma wordt ingevuld welke kanalen beschikbaar zijn. Hiervoor zorgt de routine Channel_mngr.

In het laatste gedeelte van het programma worden de ingevoerde gegevens naar disk geschreven en wordt het programma beëindigd en wordt het programma 'MASTER' geladen.

In de softwaremodules die worden geladen, staan universele subroutines die door verschillende programma's worden gebruikt. De modules, die bij het programma 'UNIT_MNGR' horen, zijn de modules 'USER', 'UTIL' en 'OTHER'. Na het laden van de softwaremodules wordt het titelscherm op het scherm gezet. Dit gebeurd in de subroutine Ident_page. Deze routine staat in de module 'OTHER'. Aan deze routine worden de volgende parameters meegegeven:

- Maintitle\$ Dit is de titel van het programma;

- Subtitle\$ Dit is een tweede titel (bijvoorbeeld de datum);

- Off_on\$ Als deze string "ON" is worden graphics aangezet;

Bold_off_on Dit is een OPTIONAL INTEGER. Als deze meegegeven wordt, wordt de

tekst vet afgedrukt op het scherm.

Pagina

Vervolgens worden de functietoetsen geïnitialiseerd en wordt gewacht totdat op één van deze toetsen gedrukt wordt. Het initialiseren van de functietoetsen gebeurd met het commando 'ON KEY <Nr>
GOTO <Line>'. De toetsen worden als volgt gedefinieerd:

FI = EXIT \rightarrow Einde programma F6 = HP3565 \rightarrow LF gedeelte F7 = HP5183 \rightarrow MF gedeelte F8 = HP5185 \rightarrow HF gedeelte

Met de functietoetsen F6, F7 en F8 wordt ingesteld welke set kanalen gekozen is. Dit wordt bijgehouden in de variabele Channel_set. Deze kan 3 waarden aannemen nl. 1, 2, en 3 voor resp. LF, MF en HF. Afhankelijk hiervan wordt het aantal kanalen ingesteld. Dit is het maximaal aantal mogelijke kanalen (LF=6, MF=26 en HF=6). Dit wordt bijgehouden in de variabele N_chan. Vervolgens wordt de routine Ident_page nog een keer aangeroepen en worden de gegevens van de gekozen kanalenset ingelezen. Dit gebeurd in de routine Read_chan_id_m. Hieraan worden de volgende parameters meegegeven:

Channel_set Hierin staat welke set kanalen is gekozen;
 N_chan Dit is het maximaal aantal kanalen.

Deze SUB is als volgt opgebouwd. Allereerst wordt de file geopend, waarin de gegevens staan die bij de gekozen kanalenset horen. Welke file wordt geopend is afhankelijk van de lokale variabele Set no. Dit is in het hoofdprogramma de variabele Channel set.

Set_no=1 \rightarrow File='HP3565' (LF gedeelte)

Set_no=2 \rightarrow File='HP5183' (MF gedeelte)

Set_no=3 \rightarrow File='HP5185' (HF gedeelte)

De files zijn als volgt opgebouwd.

- File 'HP3565' - Record 1 t/m 6 gegevens voor de programma's 'UNIT_MNGR' en 'CHANNELS';

- Record 7 t/m 12 gegevens voor het programma 'SETUPS' (Input Channel Parameters);

- Record 13 gegevens voor het programma 'SETUPS' (Thruput-Parameters);

Pagina		PML 233492002
36		
- File 'HP5183'	- Record 1 t/m 26	gegevens voor de programma's 'UNIT_MNGR' en
		'CHANNELS";
	- Record 27 t/m 52	gegevens voor het programma 'SETUPS' (Input
		Channel Parameters);
	- Record 53 t/m 66	gegevens voor het programma 'SETUPS' (Trigger +
		Timebase Parameters);
- File 'HP5185'	- Record 1 t/m 6	gegevens voor de programma's 'UNIT_MNGR' en
		'CHANNELS';
	- Record 7 t/m 12	gegevens voor het programma 'SETUPS' (Input
		Channel Parameters);
	- Record 13 t/m 16	gegevens voor het programma 'SETUPS' (Trigger +
		Timebase Parameters).

Deze files zijn te vinden in de directory '/APPLICATION/IDENTS'.

Vervolgens worden met het 'ENTER' commando de volgende variabelen ingelezen:

Ch_name\$(I)	→ Hierin staan de kanaainamen;
Ch_id\$(I)	→ Hierin staan de kanaal identificatiecodes;
Ch_date\$(I)	→ Hierin staat de datum van de meting;
Tr_name\$(I)	→ Hierin staan de transducer-namen;
Tr_id\$(I)	→ Hierin staan de transducer-identificatiecodes;
Tr date\$(I)	→ Hierin staan de kalibratiedata;
Tr type\$(I)	→ Hierin staat het kalibratietype;
Dummy\$(*)	→ Hierin staan de offset en de transducer-gevoeligheid;
Fr_name\$(I)	→ Hierin staat het type meetkast;
Unit(I)	→ Hierin staan de kastnummers;
Channel(I)	→ Hierin staan de kanaalnummers;
Sel(I)	→ Hierin staan de selectiecodes;
Addr(I)	→ Hierin staan de adrescodes;
Avail(I)	→ Hierin staat of een kanaal beschikbaar is of niet.

Voor elk kanaal wordt zo'n regel ingelezen, vandaar de index T bij elke variabele. Van deze variabelen is echter alleen de array Avail(*) van belang. De variabelen Unit(*), Channel(*) en Sel(*) worden wel in de spreadsheet afgedrukt maar kunnen niet gewijzigd worden (dit zijn respectievelijk

Pagina

37

het kastnummer, kanaalnummer en de Select-code). Als alle gegevens zijn ingelezen, wordt de file weer gesloten en wordt teruggekeerd naar het hoofdprogramma.

Vanuit het hoofdprogramma wordt nu de SUB Channel_mngr aangeroepen. Hieraan wordt de parameter N chan meegegeven. Hiervan is een structuurdiagram getekend in Lijlage 1.

De routine is als volgt opgebouwd. Allereerst worden de titels en de breedte van de kolommen gedefinieerd. Tevens wordt een prompt voor elke konn gedemieerd. Deze gegevens worden vanuit het onderstaande 'DATA' statement, met het 'Rr. D' commando, ingelezen in de variabelen Col_width(C), Title\$(C, 1), Title\$(C, 2), Cmd\$(C) en Prompt\$(C).

DATA <Col_width>, <Title1\$>, <Title2\$>, <Cmd\$>, <Promp\$>

Er zijn evenveel van deze DATA-regels als er kolommen zijn. Voor de kolomnamen zijn drie regels gereserveerd. De eerste regel is voor de naam van de spreadsheet, de volgende twee voor de kolomnamen. De naam van de spreadsheet staat in de variabele Title\$(1,0). Title\$(C,1) en Title\$(C,2) zijn de kolomnamen, Col_width(C) is de kolombreedte in karakters, Cmd\$(C) wordt hier niet gebruikt en Prompt\$(C) is de kolomprompt.

Vervolgens wordt de SUB Channel_fill aangeroepen. In deze SUB worden de kolommen van de spreadsheet gevuld met de waarden die in de SUB Read_chan_id_m zijn ingelezen. Deze SUB heeft als parameters Box\$(*) en Max_row. Box\$(*) is gedefinieerd als Box\$(1: Max_col, 1: Max_row) [20]. Max_col is het aantal kolommen en Max_row is het aantal regels.

Nu de spreadsheet geheel gedefinieerd is, kan de spreadsheet op het scherm gezet worden en wachten op invoer. Dit gebeurd in de SUB User_spread. Deze SUB staat in de module 'USER' en wordt als volgt aangeroepen.

CALL User_spread(Box\$(*), Title\$(*), Prompt\$(*), New_entry\$, Col_width(*), Modify_col, Col, Row, Start_row)

De variabelen Box\$(*), Title\$(*), Prompt\$(*) en Col_width(*) zijn reeds besproken. Modify_col is de eerste kolom die gewijzigd mag worden, Col en Row zijn respectievelijk de kolom en de regel waarop de cursor staat toen iets werd ingevoerd, Start_row is de eerste regel die op het scherm staat. Deze routine wordt verlaten als de gebruiker een nieuwe invoer afaluit met een <CR>. De ingevoerde waarde is in dit geval opgesiagen in de variabele New_entry\$. Deze routine wordt eveneens verlaten als de functie FNUser_key_press waar wordt (in dit geval is er op een functie-

PML 233492002

toets gedrukt). Als er een invoer is geweest wordt er met behulp van de functie FNUser_check_key gecontroleerd welke toets is ingedrukt. Deze functie levert het nummer van de ingedrukte functietoets op, of een '0' indien er een andere toets is ingedrukt.

Als er een andere toets is ingedrukt wordt naar de routine New_entry gesprongen door middel van het GOSUB commando. Hier wordt gecontroleerd of er een geldige invoer is geweest. Is dit het geval dan wordt de invoer ingevuld in de spreadsheet. Is dit niet het geval dan wordt er een foutmelding gegenereerd en wordt er niets gewijzigd.

Als er op een functietoets is gedrukt, wordt afhankelijk van de toets naar een subroutine gesprongen. De volgende acties worden ondernomen:

F1 ≈ MAIN → Einde invoer, terug naar hoofdprogramma;

F5 ≈ Reset → Alle waarden worden op hun oorspronkelijke waarden teruggezet;

F6 ≈ Toggle → Dit is een toggle tussen <YES> en <NO>;

F7 ≈ Previous → Deze selecteert de voorgaande mogelijkheid;

F8 ≈ Next → Deze selecteert de volgende mogelijkheid.

Voor de keuze F5 wordt de al eerder besproken SUB Channel_fill aangeroepen. Voor de keuzes F6 t/m F8 wordt de subroutine Prev_next door middel van het GOSUB commando aangeroepen. Doordat er slechts twee mogelijkheden (<YES> en <NO>) zijn, is dit een toggle tussen <YES> en <NO>. Met de variabele Dir wordt aangegeven of de vorige of de volgende waarde moet worden geselecteerd (-1=vorige, 1=volgende).

Met F1 wordt de SUB Channel_mngr verlaten. Voordat de SUB wordt verlaten, moeten de gewijzigde gegevens teruggezet worden in hun oorspronkelijke variabelen. Dit gebeurt in de SUB Channel_extr. Deze SUB is het tegenovergestelde van de SUB Channel_fill en wordt dan ook met dezelfde parameters aangeroepen. Hierna kan de routine Channel_mngr worden verlaten en kan teruggesprongen worden naar het hoofdprogramma. Hier kan door middel van twee functietoetsen F1 en F8 gekozen worden of de ingevoerde data moet worden bewaard. Het selecteren gebeurd weer met het ON KEY ... commando.

De ingevoerde gegevens worden weggeschreven door de SUB Write_chan_id_m. Deze SUB wordt met dezelfde parameters aangeroepen als de SUB Read_chan_id_m. In deze SUB word allereerst bepaald in welke file de gegevens gezet moeten worden. Vervolgens worden de gegevens met het 'OUTPUT' commando weggeschreven. Het aantal geselecteerde kanalen wordt weggeschreven in de

Pagina

39

file 'NO_OF_CHANNELS'. In deze file staan drie getallen. De getallen komen overeen met het aantal ingestelde kanalen van respectievelijk het LF, het MF en het HF gedeelte. Als laatste wordt het hoofdmenu van het programma 'UNIT' MNGR' geactiveerd.

Met F1 kan het programma worden verlaten. Hiertoe wordt gesprongen naar de regel met het label Exit_level. Hier wordt eerst met behulp van de SUB Ident_page een titelpagina, die het einde van het programma aangeeft, op het scherm gezet. Vervolgens wordt het programma 'MASTER' geladen.

4.2 Het programma 'CHANNELS'

Met het programma 'CHANNELS' worden allerlei gegevens ingevoerd, die geen invloed hebben op de meting. Ze dienen slechts ter informatie bij de grafieken. De gegevens worden ingevoerd door het invullen van een drietal spreadsheets. Dit zijn het Channel identification menu, het Transducer identification menu en het Front-end identification menu. Een uitzondering hierop is het Front-end identification menu. In dit menu worden de adressen van de verschillende digitizers ingevoerd. Dit adres bestaat uit twee delen. Het eerste deel is de zogenaamde select code. Dit is het adres van de HP-IB kaart, waarop de betreffende digitizer is aangesloten. Het tweede deel van het adres is de adrescode. Elk apparaat op dezelfde HP-IB bus heeft een unieke adrescode. Deze code is achterop het apparaat in te stellen.

Het programma 'CHANNELS' kan globaal onderverdeeld worden in drie delen. Het eerste deel is een initialisatie gedeelte. Hier worden een aantal variabelen gedeelareerd en geïnitialiseerd, de nodige software modules geladen en een aantal parameters worden van disk gelezen. Het tweede gedeelte van het programma verzorgt het menugedeelte van het programma. Het derde deel van het programma sluit het programma af. Hier worden de ingevoerde gegevens weggeschreven naar disk en wordt het hoofdmenuprogramma 'MASTER' geladen. Van het programma zijn structuurdiagrammen getekend in bijlage 2.

Aan het begin van het programma worden een aantal variabelen gedeclareerd en geïnitialiseerd. Vervolgens worden de bijbehorende softwaremodulen 'USER', 'UTIL' en 'OTHER' geladen. Hierna wordt het titelscherm op het scherm gezet. Als dit gebeurd is, wordt gewacht tot een keuze gemaakt is uit de drie groepen (LF, MF of HF). Dit alles gebeurt op identieke manier als in het programma 'UNIT_MNGR'. Nadat een keuze is gemaakt, worden de gegevens uit de bijbehorende file gelezen. De files die hier worden gebruikt zijn dezelfde files als in het programma 'UNIT_MNGR'. In de routine Read_chan_id worden de gegevens ingelezen. Deze routine heeft als parameter de variabele Channel_set. Deze kan drie waarden aannemen namelijk 1, 2, en 3 (resp. LF, MF en HF kanalen).

PML 233492002

In deze routine wordt allereerst bepaald welke file ingelezen moet worden en hoeveel kanalen zijn ingesteld in 'UNIT MNGR'. Dit gebeurt in de SUB Read no of chan, die in de module 'UTIL' staat. Deze routine heeft als parameters:

Set no

is gelijk aan Channel set;

Nchannels

hierin staat het aantal kanalen dat beschikbaar is en wordt ingelezen uit

de file 'NO OF CHANNELS';

File\$.

deze bevat de naam van de file waaruit de gegevens gelezen moeten

worden.

Als bekend is hoeveel kanalen er beschikbaar zijn en uit welke file de gegevens moeten worden ingelezen, wordt de betreffende file geopend en worden de gegevens met het 'ENTER' commando ingelezen. Hier worden dezelfde gegevens ingelezen als bij het programma 'UNIT MNGR', behalve de variabele Avail(*). Hierna wordt deze file gesloten en wordt de routine beëindigd.

Nadat de gegevens ingelezen zijn, wordt het Channel identification menu geselecteerd en op het scherm gezet. Met de variabele Level wordt bijgehouden welk menu geselecteerd is. Deze variabele kan de waarden 1, 2 en 3 aannemen voor respectievelijk het Channel identification menu, het Transducer identification menu en het Front-end identification menu. De variabele krijgt de waarde 0 als alle gegevens voor de geselecteerde kanalenset zijn ingevoerd. In dit laatste geval krijgt de variabele Done de waarde 1. Met behulp van de variabele Done wordt getest of de gebruiker klaar is met het invoeren van de gegevens voor de geselecteerde kanalenset.

Het invoeren van de gegevens gebeurt in de SUB's Channel menu 1, Channel menu 2 en Channel menu 3. Dit zijn respectievelijk het Channel identification menu, het Transducer identification menu en het Front-end identification menu. Daar deze menu's op dezelfde manier zijn opgebouwd, wordt slechts het Channel identification menu besproken. De structuur van de andere twee menu's is identiek aan de structuur van dit menu.

Allereerst wordt de geselecteerde spreadsheet gedefinieerd en gevuld met de ingelezen gegevens. Dit gebeurt op identieke manier als bij het programma 'UNIT MNGR'. Na het definiëren van de spreadsheet worden de functietoetsen als volgt gedefinieerd:

Fl = MAIN → Einde invoer, terug naar hoofdprogramma;

F2

= TRANSDUCERS → Selecteer het Transducer Identification Menu;

PML 233492002	Pagina
	41

F3	= FRONTENDS	→ Selecteer het Front-end Menu;
F5	= Reset	→ Alle waarden worden op hun oorspronkelijke waarden
		teruggezet;
F6	= Toggle	→ Dit is een toggle tussen <yes> en <no>;</no></yes>
F7	= Previous	→ Deze selecteert de voorgaande mogelijkheid;
F8	= Next	→ Deze selecteert de volgende mogelijkheid.

In het Transducer Identification Menu worden de functietoetsen op dezelfde manier gedefinieerd, met dit verschil dat met F1 naar het Channel Identification Menu wordt gesprongen en met F2 de invoer wordt beëindigd (MAIN).

In het Front-end Menu zijn eveneens dezelfde functietoetsen actief. Met F3 wordt nu de invoer beëindigd (MAIN) en wordt met F1 naar het Channel Identification Menu gesprongen.

Vervolgens wordt de spreadsheet op het scherm gezet. Hiervoor wordt de al eerder genoemde routine User_spread aangeroepen. Deze routine wordt verlaten als een gebruiker een invoer heeft afgesloten met een <CR>, of op een functietoets heeft gedrukt. Hierna wordt de invoer met de functie FNUser_check_key gecontroleerd. Deze functie staat in de module 'USER'. Als deze functie een '0' oplevert is de variabele New_entry\$ gevuld met nieuwe invoer. Deze variabele wordt op geldigheid gecontroleerd in de routine New entry.

Levert de functie FNUser_check_key de waarde 1, 2 of 3, afhankelijk van het gekozen submenu, dan wordt de invoer van deze spreadsheet beëindigd. De ingevoerde gegevens worden vervolgens weer in hun oorspronkelijke variabelen gezet en de variabele Level krijgt de juiste waarde. De toetsen F5 t/m F8 werken op dezelfde manier als bij het programma 'UNIT_MNGR', zij het dat bij de 'Previous' en de 'Next' toets er meer mogelijkheden kunnen zijn.

Afhankelijk van de variabele Level wordt een andere spreadsheet aangeroepen of wordt de invoer beëindigd. Als er niet meer ingevoerd hoeft te worden, kunnen de gegevens opgeslagen worden in de bijbehorende file. Dit gebeurt in de SUB Write_chan_id. Hierna wordt het hoofdmenu weer geactiveerd.

Met F1 kan het programma worden verlaten. Hiertoe wordt gesprongen naar de regel met het labei Exit_level. Hier wordt het programma 'MASTER' geladen.

PML 233492002

4.3 Het programma 'SETUPS'

Dit programma begint met de gebruikelijke declaratie en initialisatie van een aantal variabelen. Vervolgens worden achtereenvolgens de modulen 'USER', 'UTIL', 'OTHER', 'MENU_65', 'MENU_83' en 'MENU_85' geladen. Nu wordt het titelscherm op het scherm gezet. Vervolgens wordt gewacht tot de gebruiker een keuze maakt uit de drie groepen. Tevens is er hier een vierde mogelijkheid. Dit is het zogenaamde Comment Menu. Het selecteren van de juiste keuze gebeurt op dezelfde manier als in de programma's 'UNIT_MNGR' en 'CHANNELS'. Van dit programma is een structuurdiagram getekend in bijlage 3. Voor de structuur van de verschillende menu's wordt verwezen naar het diagram van de SUB Channel_menu 1 in bijlage 2. Deze is niet opnieuw getekend, omdat alle menu's op dezelfde manier zijn opgebouwd.

4.3.1 Het Command Menu

Als op de functietoets F5 gedrukt wordt, wordt het Comment Menu geselecteerd. Hiervoor wordt naar de routine Setup_comment gesprongen. Hier wordt allereerst de bijbehorende file ingelezen. Dit gebeurt in de routine Comment_setup_r. In deze routine wordt eerst de file geopend. Dit is de file 'COMMENT' en staat in de directory 'APPLICATION/IDENTS'. Vervolgens wordt de file met behulp van het 'ENTER' commando ingelezen. De commentaarregels worden opgeslagen in de array Comment(*). Vervolgens wordt de file weer gesloten.

Hierna wordt het menu op het scherm gezet en kan de gebruiker commentaarregels gaan invoeren. Hiervoor is de routine Comment_menu. Deze routine start weer met de gebruikelijke initialisatie van het menu en de definities van de functietoetsen. De functietoetsen zijn als volgt gedefinieerd:

FI = MAIN

→ Einde invoer, terug naar i100fdprogramma;

F5 = Reset

→ Alle waarden worden op hun oorspronkelijke waarden teruggezet;

F8 = Edit

→ Met deze optie kan de huidige regel gewijzigd worden.

Nu kan de spreadsheet op het scherm worden gezet. Hier zorgt de routine User_spread voor. De invoer wordt op dezelfde manier gecontroleerd als bij de programma's 'UNIT_MNGR' en 'CHANNELS'. Als alles ingevoerd is, wordt de routine verlaten en kan de data opgeslagen worden. Hiervoor wordt de routine Comment_setup_w aangeroepen. In deze routine wordt eerst de file geopend. Vervolgens worden de gegevens met het 'OUTPUT' commando in de file gezet. Hierna wordt de file weer gesloten en wordt teruggesprongen naar het hoofdprogramma.

Pagina

43

4.3.2 Het LF gedeelte

Als op functietoets F6 wordt gedrukt, wordt naar het LF gedeelte gesprongen. Hier worden de LF gegevens ingelezen uit de file 'HP3565'. Hiervoor zijn twee routines beschikbaar, die in de module 'MENU_65' staan. Allereerst worden de kanaalnamen en het aantal ingestelde kanalen ingelezen. Dit gebeurt in de routine Hp3565 chan id. Deze SUB heeft de volgende parameters:

N channels

Dit is het aantal geselecteerde kanalen;

Units

Dit is het aantal geselecteerde kasten;

Channel id65\$(*)

Dit is een array met de kanaalnamen.

Vervolgens worden de Input Channel en de Thruput gegevens ingelezen. Hiervoor is de routine Hp3565_setup_r. Deze SUB heeft als enige parameter N_channels.

Als alle gegevens zijn ingelezen, komt het programma in een lus, waarin de verschillende menu's geactiveerd worden. Bij het LF gedeelte zijn er twee menu's beschikbaar, namelijk het Input Channel Parameter Menu en het Thruput-Parameter Menu. Hiervoor zijn twee SUB's beschikbaar, namelijk Hp3565_menu1 en Hp3565_menu2. Deze SUB's staan in de module 'MENU_65' en hebben de parameters N_channels en Level. Met de variabele Level wordt getest welke van de twee menu's geactiveerd moet worden, of dat de invoer moet worden bežindigd.

Wanneer alles is ingevoerd kan de data opgeslagen worden in de bijbehorende file. Hiervoor is in tegenstelling tot het laden van de gegevens, slechts 1 routine nodig, omdat het aantal kanalen en de kanaalnamen niet opgeslagen hoeven te worden. Deze kunnen immers niet gewijzigd worden in het programma 'SETUPS'. Voor het opslaan van de andere gegevens (Input Channel Parameters en Thruput gegevens) is de routine Hp3565_setup_w. Deze SUB heeft als enige parameter N_channels en staat in de module 'MENU_65'. Hierna wordt naar het hoofdmenu teruggesprongen.

4.3.3 Het MF gedeelte

Met functietoets F7 wordt naar her MF gedeelte van het programma gesprongen. Deze routine begint met het inlezen van de MF gegevens uit de file 'HP5183'. Hiervoor zijn 2 routines beschikbaar in de module 'MENU_83'. Dit zijn de SUB's Hp5183_chan_id en Hp5183_setup_r. In de eerste SUB worden de kanaalnamen en het aantal kanalen ingelezen. Deze SUB heeft als parameters:

N_channels

Het aantal geselecteerde kanalen;

Units

Het aantal geselecteerde kasten;

Channel id83\$(*)

Array met kanaalnamen;

PML 233492002

Hp5183 address

Array met adressen van de kasten (Selectcode * 100 + Adrescode).

In de tweede SUB worden de Input Channel Parameters, de Trigger Parameters en de Timebase Parameters ingelezen. Deze SUB heeft als enige parameter N_channels.

Als alles correct ingelezen is, komt het programma in een lus, waarin de verschillende menu's worden geactiveerd. In het MF gedeelte zijn 3 menu's beschikbaar, namelijk het Input Channel Parameter Menu, het Trigger Parameter Menu en het Timebase Parameter Menu. Deze menu's staan respectievelijk in de SUB's Hp5183_menu 1, Hp5183_menu 2 en Hp5183_menu 3. Deze SUB's staan eveneens in de module 'MENU 83' en hebben als parameters:

N channels

Het aantal geselecteerde kanalen;

Level

Geeft aan welk menu geactiveerd moet worden;

(0)

Als deze waarde 1 is worden nog extra controles op de invoer uitgevoerd.

Dit wordt alleen gebruikt bij 'PROGRAM 83'.

Ook hier wordt weer met de variabele Level getest of alles is ingevoerd, of dat een ander menu moet worden geactiveerd.

Als laatste kunnen de gegevens worden opgeslagen. Hiervoor is de routine Hp5183_setup_w. Ook deze SUB staat in de module 'MENU_83'. Nadat alles is opgeslagen, wordt teruggesprongen naar het hoofdmenu.

4.3.4 Het HF gedeelte

Het HF gedeelte is op dezelfde manier opgebouwd als het MF gedeelte. De routines om de gegevens in te lezen heten hier echter Hp5185_chan_id en Hp5185_setup_r De routines die de menu's besturen heten Hp5185_menu 1, Hp5185_menu 2 en Hp5185_menu 3. De SUB om de gegevens op te slaan heet Hp5185_setup_w. Al deze SUB's staan in de module 'MENU_85' en hebben dezelfde parameters als bij het MF gedeelte

4.4 Het programma 'DATA MNGR'

Het programma 'DATA_MNGR' is een programma om de datafiles te manipuleren. Met dit programma zijn de volgende manipulaties mogelijk:

Show directory

Zet een vooraf geselecteerde directory op het scherm;

Pagina

45

- Show header	Zet een vooraf geselecteerde header op het scherm;
- Save data	Zet de data / identifier-files in een aparte directory;
- Recall data	Hiermee kunnen zowel de identifier-files als de datafiles opgehaald
	worden uit een vooraf geselecteerde directory;
- Remove data	Hiermee kunnen zowel de identifier-files als de datafiles in een vooraf
	geselecteerde directory, verwijderd worden van de schijf;
- Lock Status	Hiermee kan het software slot op de datafiles worden geopend.

Van dit programma is in bijlage 4 een structuurdiagram getekend.

Dit programma begint met de gebruikelijke declaratie en initialisatie van een aantal variabelen. Vervolgens worden de modulen 'USER', 'UTIL', 'OTHER' en 'LOCK' geladen. Na het definiëren van de functietoetsen wordt gewacht totdat één van deze toetsen wordt ingedrukt. De toetsen zijn als volgt gedefinieerd:

Fl	SHOW DIRECTORY	→ Zet een directory op het scherm;
F2	SHOW HEADER	→ Laat een header zien;
F3	SAVE DATA	→ Zet gegevens in een aparte directory;
F4	RECALL DATA	→ Haal gegevens terug uit een geselecteerde directory;
F5	REMOVE DATA	→ Verwijder gegevens uit een geselecteerde directory;
F6	LOCK STATUS	→ Geef info over de lockstatus van de huidige datafiles;
F8	EXII	→ Terug naar 'MASTER'.

4.4.1 Show Directory

Na het indrukken van functietoets F1 krijgt de gebruiker de keuze of een IDENTS of een DATA directory moet worden afgebeeld. Ook kan teruggekeerd worden naar het hoofdmenu. De functietoetsen zijn hiervoor als volgt gedefinieerd:

F1	IDENTS	→ Show IDENTS directory;
F2	DATA	→ Show DATA directory;
F3	RETURN	→ Terug naar hoofdmenu.

In de variabele Type\$ wordt bijgehouden welke van de twee keuzes is gemaakt. Type\$ kan twee waarden aannemen, namelijk:

PML 233492002

Type\$

="IDENTS"

Type\$

="DATA"

Na een keuze te hebben gemaakt, moet een keuze worden gemaakt uit files of directory. De functietoetsen zijn hiervoor als volgt gedefinieerd:

F1 FILES

→ Geeft een lijst van files;

F2 DIRECTORY

→ Geeft een lijst van de beschikbare directories.

Met de keuze F2 krijgt de gebruiker een lijst van directories op het scherm te zien. Hiervoor wordt de SUB Show_dir aangeroepen. Deze SUB heeft de volgende parameters:

Option\$

→ Dit is de variabele Type\$ in het hoofdprogramma;

Directory\$

→ Dit is de geselecteerde (sub) directory;

Df opt\$

→ Deze variabele geeft aan of de files of de directories moeten worden afgebeeld. Df_opt\$ kan twee waarden aannemen name-

lijk "F"(iles) of "D"(irectories).

In deze SUB wordt allereerst de directory bepaald, die gelezen moet worden. Hiervoor is de variabele Dir\$. Deze variabele krijgt de waarde "/APPLICATION/IDENTS" of de waarde "/APPLICATION/DATA", afhankelijk van de variabele Option\$. Als de variabele Directory een waarde heeft, wordt deze ook nog aan de variabele Dir\$ gekoppeld. Vervolgens wordt de directory ingelezen in de variabele Cat\$(*).

Hierna worden uit deze array van strings de namen geselecteerd van de files of van de directories. Als laatste word de lijst afgedrukt op het scherm. Hiervoor is de routine Show_list. Deze SUB heeft drie parameters namelijk:

Pagina

Cat\$(*)

→ Dit is een lijst met filenamen of directorynamen;

Nitems

→ Dit is het aantal namen dat bovenstaande lijst bevat;

Title\$

→ Dit is de titel die boven de lijst wordt afgedrukt.

In deze SUB wordt gebruik gemaakt van de routine **User_print_sprd** die in de module 'USER' staat. Deze routine heeft de volgende parameters:

Box\$(*)

→ Dit is de array waarin de totale tabel met de directory staat;

Title\$(*)

→ Dit is de titel;

Col_width(*)

→ Dit is een array met de breedtes van de verschillende kolommen;

Col, Row

→ Positie van de opgelichte cel;

Start row

→ Eerste rij op het scherm.

Deze SUB zet de lijst met filenamen of directorynamen op het scherm. Hierna worden de functietoetsen op de volgende manier gedefinieerd:

F6 Prev

→ Laat vorige pagina zien;

F7 Next

→ Laat volgende pagina zien;

F8 EXIT

→ Terug naar hoofdmenu.

Kiest de gebruiker voor FILES in plaats van voor DIRECTORY in het voorgaande menu, dan moet opnieuw een keuze gemaakt worden door de gebruiker. Hiervoor zijn de functietoetsen als volgt gedefinieerd:

F1 Current FILES

→ Geeft een lijst van de huidige files;

F2 Select DIR

→ Geeft een lijst van files uit een geselecteerde directory.

Met F1 wordt de directory van "/APPLICATION/DATA" of "/APPLICATION/IDENTS" afgedrukt op het scherm. Hiervoor wordt eveneens de SUB Show list gebruikt.

Met F2 kan de gebruiker eerst kiezen uit een directory 'APPLICATION/DATA' of uit een directory 'APPLICATION/IDENTS'. Hiervoor wordt de routine Select_dir gebruikt. Deze SUB heeft de volgende twee parameters, namelijk Type\$ en Select\$. De variabele Type\$ is reeds bekend en in de variabele Select\$ staat welke directory is geselecteerd. In deze routine wordt allereerst een lijst met

PML 233492002

directorynamen gegenereerd. Deze wordt bewaard in de variabele Cat\$(*). Als er één of meerdere directories aanwezig zijn, wordt de SUB Select item met onderstaande parameters aangeroepen:

Cat\$(*)

→ Dit is een lijst met directorynamen;

Nitems

→ Dit is de lengte van voorgaande lijst;

Select flag

→ Deze variabele geeft aan of een directory geselecteerd is.

Vanuit deze SUB wordt de routine Select menu aangeroepen. Deze SUB heeft als parameters:

List\$(*)

→ Gelijk aan Cat\$(*);

1

→ Aantal directories;

Selected

→ Gelijk aan Select flag;

Vanuit deze routine kan een directory geselecteerd worden. Hiervoor wordt de routine User_spread gebruikt. De functietoetsen zijn als volgt gedefinieerd:

F5 Reset

→ Zet alles weer op 'NO';

F6 Toggle

→ Dit is een toggle tussen 'YES' en "NO';

F8 SELECT

LECT \rightarrow Uitvoeren van de selectie.

Met F8 wordt de keus bevestigd en worden de voorgaande routines afgesloten. Hierna wordt de geselecteerde directory op het scherm gezet. Hiervoor wordt weer de routine Show dir gebruikt.

4.4.2 Show Header

Bij deze keuze moet op analoge wijze als bij 'Show directory' een keuze gemaakt worden tussen de headers van de IDENTS en de header van de DATA. De functietoetsen zijn op dezelfde manier gedefinieerd als bij Show Directory. Hierna moet gekozen worden tussen de huidige IDENTS- of DATA-header of een header uit een geselecteerde directory. De functietoetsen zijn op dezelfde manier gedefinieerd als bij Show Directory. Voor het selecteren van een directory wordt de routine Select_dir gebruikt.

Als er geen directory geselecteerd is, wordt voor het afdrukken van de header van de IDENTS de file 'APPLICATION/IDENTS/COMMENT geopend. Is er wel een directory geselecteerd dan wordt de file 'APPLICATION/IDENTS/Selected_dir/COMMENT geopend. Nadat de file is ingelezen en

Pagina

49

afgedrukt, wordt deze weer gesloten. Met functietoets F8 kan teruggesprongen worden naar het IDENTS / DATA keuzemenu.

Moet een DATA header worden afgedrukt, dan wordt allereerst een lijst gegenereerd met headerfiles uit de directory 'APPLICATION/DATA', indien geen directory is geselecteerd, of uit de directory 'APPLICATION/DATA/Select_dir', indien wel een directory is geselecteerd. Vervolgens kan een headerfile geselecteerd worden uit deze lijst. Hiervoor wordt de routine Select_item gebruikt. Als er een headerfile geselecteerd is, wordt deze file geopend en ingelezen in de variabele Header\$(*). Vervolgens wordt de header afgedrukt. Hiervoor zijn een tweetal routines beschikbaar, namelijk Disp_header83 voor de MF kanalen en Disp_header85 voor de HF kanalen. Voor de LF kanalen zijn geen headers beschikbaar. Met functietoets F8 kan teruggesprongen worden naar het IDENTS/DATA keuzemenu.

4.4.3 Save Data

Na het kiezen van Save Data moet ook allereerst een keuze gemaakt worden tussen de IDENTS of DATA. Dit gebeurt op identieke manier als bij de voorgaande keuzemogelijkheden. Vervolgens wordt de routine Get_file_dir_id aangeroepen. Deze routine heeft twee parameters namelijk "D", om aan te geven dat het om een directory gaat en Destination\$. Dit is de naam van de subdirectory van "APPLICATION/IDENTS" of "/APPLICATION/DATA", waarin de datafiles of de identfiles gekopieerd ("gesaved") moet worden. In de SUB get_file_dir_id wordt Destination\$ ingelezen. Vervolgens worden de files gekopieerd met de routine Down_copy_dir. Deze routine heeft de volgende drie parameters:

Type\$

→ Geeft aan of de IDENTS of de Datafiles gekopieerd moeten worden;

Destination\$

→ Subdirectory waarnaar de files gekopieerd moeten worden;

Nfiles

-> Aantal files dat gekopieerd is.

In deze SUB wordt allereerst de directory bepaald, waarin de files staan die gekopieerd moeten worden. Vervolgens wordt de directory, waar de files naar toe moeten worden gekopieerd, aangemaakt. Hierna worden of de IDENTS-files of de DATA-files gekopieerd. Van de IDENTS worden de volgende files gekopieerd: 'COMMENT', 'NO_OF_CHANNELS', 'HP3565', 'HP5183' en 'H5185'. Voor het kopiëren zijn twee variabelen van belang, namelijk From\$ en To\$. In de variabele From\$ staat het volledige pad van de file, die gekopieerd moet worden. In de variabele To\$ staat het pad van de directory waar naartoe de file moet worden gekopieerd. Hierna wordt de file met het 'COPY' commando gekopieerd.

PML 233492002

Voor het kopiëren van de DATA-files wordt per gedeelte (LF, MF of HF) ingelezen hoeveel datafiles (= aantal kanalen) gekopieerd moeten worden. Hierna worden de datafiles en de headerfiles met behulp van de variabelen From\$ en To\$ gekopieerd. Hierna worden nog een aantal files gekopieerd. Dit zijn de files 'CHANN_SET83', 'CHANN_SET85', 'COMM_SET83', 'COMM_SET85', 'TIM_BASE83' en 'SNAP_IM83'. Ook deze files worden met behulp van de variabelen From\$ en To\$ gekopieerd. Na het kopiëren van de files wordt de routine beëindigd.

Als er datafiles zijn gekopieerd, wordt vervolgens de routine Lock_reset in de module 'LOCK' aangeroepen. Deze routine heeft geen parameters. De routine zorgt ervoor dat het softwareslot op de datafiles geopend wordt. In deze routine wordt de file '/APPLICATION/DATA/LOCK_FILE' geopend. In deze file worden vier waarden geschreven nl. Time (niet van belang) en de variabelen Status65, Status83 en Status85. Deze laatste drie variabelen zijn '0', omdat de datafiles overschreven mogen worden. Is één van deze variabelen '1' dan mogen de bijbehorende datafiles niet overschreven worden. Hierna wordt de file weer gesloten en wordt de routine verlaten en wordt teruggesprongen naar het hoofdmenu.

4.4.4 Recall Data

Met de keuze Recall Data kunnen datafiles uit een van tevoren geselecteerde directory gekopieerd worden naar de 'APPLICATION/DATA' of de 'APPLICATION/IDENTS' directory. Voordat dit kan gebeuren wordt allereerst met de routine Lock_avail uit de module 'LOCK' getest of het sofwareslot is geopend. Is dit niet het geval dan kan met behulp van functietoets F1 teruggesprongen worden naar het hoofdmenu.

Vervolgens kan op de gebruikelijke manier gekozen worden tussen de IDENTS of DATAfiles. Hierna wordt de routine Select_dir aangeroepen, waarmee de directory geselecteerd kan worden, die teruggehaald moet worden. Voor het terugkopiëren van de files wordt de routine Up_copy_dir gebruikt. Deze SUB heeft dezelfde parameters als de routine Down_copy_dir, zij het dat in plaats van de parameter Destination\$ nu de parameter Source\$ wordt meegegeven. In deze SUB wordt eerst de directory, die gekopieerd moet worden ingelezen. Vervolgens worden hieruit de BDAT (BASIC datafiles) files en HP-UX (Unix datafiles) files gekopieerd. Hier wordt weer gebruik gemaakt van de variabelen From\$ en To\$. Als alles gekopieerd is, wordt teruggesprongen naar het hoofdmenu.

Pagina

51

4.4.5 Remove Data

In deze routine kan een geselecteerde directory verwijderd worden. Hiervoor moet allereerst weer de keuze gemaakt worden tussen de IDENTS directory en de DATA directory. Vervolgens wordt met behulp van de routine Select_dir een directory geselecteerd. De geselecteerde directory wordt dan met de routine Clean_dir verwijderd. Deze routine heeft als parameters Type\$ en de naam van de geselecteerde directory. In deze SUB worden allereerst de filenamen ingelezen uit de geselecteerde directory. Hierna worden alle BDAT en HP-UX files met het 'PURGE' commando verwijderd van schijf. Als alle files verwijderd zijn, wordt teruggekeerd naar het hoofdmenu.

4.4.6 Lock Status

Hier wordt allereerst de lockstatus ingelezen. Dit gebeurd met de routine Lock_avail. Deze routine heeft de volgende parameters:

Available

→ Geeft aan of de lockfile aanwezig is;

Time

→ De tijd waarop het slot geactiveerd is;

Status65

→ De slotstatus van de LF kanalen;

Status83

→ De slotstatus van de MF kanalen;

Status85

→ De slotstatus van de HF kanalen.

Hierna wordt met de routine Lock_status de status van de drie groepen kanalen afgedrukt. Deze routine heeft dezelfde parameters als de routine Lock_avail. Is het slot gesloten, dan kan het met F1 geopend worden. Met F8 kan teruggekeerd worden naar het hoofdmenu. Moet het slot geopend worden, dan wordt de routine Lock_reset aangeroepen. Al deze routines staan in de module 'LOCK'.

4.5 Het programma 'PROGRAM 65'

Het programma 'PROGRAM_65' kan gebruikt worden om een laagfrequent meting te verrichten. Tevens kan de laagfrequent data hiermee bekeken worden. Als de grafieken op het scherm staan kunnen er zogenaamde markers-functies op de data uitgevoerd worden. Hiermee kunnen de grafieken met een cursor nauwkeurig worden bekeken (tracen van het signaal). Het programma is hiervoor onderverdeeld in vier delen. In het eerste deel van het programma worden een aantal variabelen gedeclareerd en gelnitialiseerd, de digitizers worden gelnitialiseerd, enz. Het tweede gedeelte van het programma is het thruput-gedeelte. Met dit gedeelte van het programma kan een thruput worden. Het derde deel is het post-thruput gedeelte. Hiermee kan de data in de vorm

PML 233492002

van grafieken worden bekeken. Met het vierde deel kunnen manipulaties met de data worden uitgevoerd. Van dit programma zijn structuurdiagrammen getekend in bijlage 5.

Aan het begin van dit programma worden allereerst een groot aantal variabelen gedeclareerd en geïnitialiseerd. Tevens worden de bijbehorende softwaremodulen geladen. Dit zijn de modulen 'HP3565ALL' en 'OTHER'. Vervolgens wordt naar de routine Appl_main gesprongen. Dit is de hoofdroutine van het programma. Deze SUB heeft één parameter. Dit is de variabele Init. Deze geeft aan of de SUB voor de eerste keer wordt aangeroepen.

Allereerst wordt in deze routine de subroutine Appl_main_keys aangeroepen. Hier worden de thruput-functietoetsen geactiveerd. De functietoetsen worden als volgt gedefinieerd:

F1 INPUT SETUP → Selecteer het Input Setup menu;
F2 SOURCE SETUP → Selecteer het Source Setup menu;

F4 MEASUREMENT SETUP → Selecteer het Measurement Setup menu;

F5 POST THRUPUT → Deze functie is actief als er goede data in de opgegeven file staan. Deze functie zet de grafieken op het scherm;

F6 HELP → On-line help functie;

F7 START → Start de meting;

F7 STOP → Stop de meting;

F7 "" → Als de BDAT file niet aanwezig is;

F8 EXIT → Verlaat het programma en laad 'MASTER'.

Opmerking: Functietoets F7 wordt niet in de routine Appl_main_keys geactiveerd, maar pas in de hoofdlus van het programma.

Als de variabele Init=1 dan wordt de SUB Appl_init aangeroepen. Deze SUB initialiseert alle modulen en de bijbehorende spreadsheets. Tevens worden de waarden in de measurement spreadsheet en de ICODE programma's in de 35651A controller module geïnitialiseerd. De icode programma's zijn gecompileerde BASIC programma's. Er zijn twee icode programma's beschikbaar. Dit zijn het Thruput icode programma en het Read_disc icode programma. De SUB Appl_init wordt aangeroepen als de configuratie is veranderd en tijdens het opstarten van het programma.

Vervolgens wordt de routine Thru_check_disc aangeroepen. Deze routine leest parameterblokken van disk en controleert op goede thruput-data. De routine heeft de volgende parameters:

Pagina

Disc present

→ Geeft aan of de BDAT-file bestaat die in de measurement spreadsheet is

zespecificeerd:

Good disc data

→ Geeft aan dat er goede data in de thruput-file staat;

Thruput_set65\$(4) → Dit is de filenaam uit de measurement spreadsheet.

De parameter Thruput_set65\$(4) is optioneel.

Vervolgens komt het programma in de hoofdlus van programma. Deze lus bestaat uit twee delen. Het eerste deel wordt doorlopen als de thruput-toetsen actief zijn. Dit is het geval tijdens het opstarten van het programma. Allereerst wordt hier F7 actief gemaakt. Vervolgens wordt, als Disc_present=1 en Setup_changed=1, de routine Thru init parm aangeroepen. Hierna wordt de variabele Setup changed weer '0'. De variabele Setup changed wordt '1' als er in één van de menu's iets wordt veranderd.

De SUB Thru init parm heeft geen parameters. Deze SUB initialiseert de array, die gebruikt wordt als parameter block voor het Thruput icode programma. Dit blok wordt tevens bijgewerkt door het icode programma en wordt bewaard op disk, nadat de thruput compleet is. Dit blok moet weer worden ingelezen om de plot-parameters te bepalen. Deze SUB moet telkens worden aangeroepen als er iets in de set-up verandert.

Als Disc_present=1 en Restart meas=1, dan wordt de routine Appl start aangeroepen. Deze routine heeft als parameter de variabele Good disc data. Deze routine start een thruput en bewaart de data op disk. Als Disc present≠1 en Restart meas=1 dan wordt een foutmelding gegenereerd. Restart meas wordt 'l', zodrs op 'START' gedrukt wordt.

Vervolgens wordt de routine Appl do main aangeroepen. Deze routine heeft als parameters:

Restart meas

→ Geeft aan dat op 'START' is gedrukt;

Setup changed

→ Geeft aan dat er iets is veranderd in de menu's;

Disc present

→ Geeft aan dat de gespecificeerde BDAT file aanwezig is;

Good_disc_data → Geeft aan dat er goede data in de file staat;

New disc data

→ Wordt "geset" als de thruput-file wordt veranderd;

Keys_changed

→ Geeft aan dat de POST-THRUPUT toetsen actief moeten worden;

Leave me

→ Geeft aan dat het programma moet worden verlaten.

PML 233492002

Vanuit deze routine worden de diverse spreadsheets aangeroepen. Voor het invullen van de input setup wordt de routine Inpt_spread aangeroepen. Voor het invullen van de source set-up wordt de
routine Srce_spread aangeroepen en voor het invullen van de measurement set-up wordt de routine Meas_spread aangeroepen. Als er in de measurement spreadsheet iets is veranderd, moet ook
de routine Thru_check_disc worden aangeroepen. Voor de on-line help functie wordt de routine
Appl help aangeroepen. Deze routines zet de help pagina's op het scherm.

Als de variabele Keys_changed=1, dan wordt de routine Appl_other_keys aangeroepen, is Keys_changed≠1 dan wordt de routine Appl_main_keys aangeroepen. Met de routine Appl_other_keys worden de post-thruput-toetsen actief gemaakt. Als deze toetsen actief zijn, wordt het tweede gedeelte van de lus doorlopen. In dit gedeelte worden, als New_disc_data=1 of First_time=1, de volgende routines doorlopen. Allereerst wordt de routine Thru_check_disc_doorlopen. Vervolgens wordt de routine Thru_post_init aangeroepen. Deze routine initialiseert de post-thruput spreadsheet gebaseerd op de gegevens, die gelezen worden van de thruput-schijf. Deze routine moet telkens worden aangeroepen als een thruput is verricht en na het lezen van de thruput-parameters met Thru_check_disc.

Vervolgens wordt de routine Thru_init_pp aangeroepen. Deze routine initialiseert de plotparameters met default waarden, nadat de thruput-parameters zijn geladen van disk. De routines Thru post init en Thru init pp worden aangeroepen zonder parameters.

Vervolgens worden als Display_changed=1 en Good_disc_data=1 de routines Thru_update_pp, Appl_update en Thru_read_disc aangeroepen. De SUB Thru_update_pp wordt aangeroepen, voordat de gegevens, die nodig zijn om de plotparameters van de andere spreadsheets te "updaten", van disk worden gelezen. De SUB Appl_update wordt aangeroepen als de display-configuratie is veranderd. Het gebruikt de parameters die in het POST spreadsheet zijn ingevuld en de thruput-parameters van disk om de DISP subprogramma's te "updaten". De routines Thru_update_pp en Appl_update worden zonder parameters aangeroepen. Als laatste wordt de SUB Thru_read_disc aangeroepen. Deze SUB download het Disc_parm common blok met de aangepaste parameters, voert het Read_disc icode programma uit en laadt de data in de plot databuffer. Deze SUB heeft als parameter de variabele New_data. Deze variabele is 'l' als er goede data in de thruput-file staat. Voor meer informatie over het programmeren van de LF digitizers wordt verwezen naar het manual "Introduction to Programming The HP 35650 Series Hardware" [4].

Vervolgens wordt getest of de grafieken moeten worden getekend. Hiervoor zijn 3 variabelen van belang. Allereerst moet Good_disc_data=1 waar zijn. Ten tweede moet of Display_changed=1 of

Pagina

Repaint=1 waar zijn. Wordt aan deze voorwaarden voldaan, dan worden allereerst de assen van de grafieken getekend. Hiervoor wordt de routine Disp plot axis aangeroepen. Deze SUB plot de grids, labels en de assen voor alle grafieken. Deze SUB heeft geen parameters. Vervolgens wordt de routine Disp plot data aangeroepen. Deze routine heeft als parameters de array's Data array(*) en Data header(*). Hierin staat respectievelijk de data en de bijbehorende headers.

Vervolgens wordt de routine Appl do other aangeroepen. Deze routine heeft als parameters:

Mod all plots

→ Definieert de functie van de PREV REC en NEXT REC toetsen;

Display changed → Geeft aan dat de plotparameters zijn veranderd;

Repaint

→ Geeft aan dat de grafieken opnieuw getekend moeten worden;

Keys changed

→ Geeft aan dat de THRUPUT toetsen actief moeten worden.

Vanuit deze routine worden de verschillende functies aangeroepen. Hiervoor zijn de functietoetsen als volgt gedefiniëerd:

FI <PREV REC

→ Teken het vorige blok van de grafieken;

F2 ALL PLOTS/FIRST PLOT → Toggle of bij PREC REC en NEXT REC alle of slechts

één grafiek opnieuw getekend moet worden;

F3 **NEXT REC>** → Tekent het volgende blok van de grafieken;

F4 **DISPLAY SETUP** → Selecteer het DISPLAY set-up menu;

THRUPUT F5

→ Activeert de thruput-toetsen;

F6 MARKER -> Activeert de markers-functie;

PLOT BLKSIZE

→ Hierna kan een nieuwe blokgrootte ingevoerd worden.

Voor het tekenen van het vorige blok van de data wordt de functie Post prev rec aangeroepen. Deze routine heeft als parameters Mod all plots en Disp modified. Deze routine wijzigt de postparameters, zodat het voorgaande blok data van disk wordt gelezen. Met de variabele Mod all plots wordt aangegeven of van alle grafieken het voorgaande blok moet worden gelezen of dat slechts van de eerste grafiek het voorgaande blok moet worden gelezen. De routine controleert tevens of het huidige blok het eerste blok data van de thruput is. De variabele Disp modified geeft aan dat de grafieken opnieuw moeten worden getekend.

PML 233492002

Met functietoets F2 wordt de variabele Mod_all_plots 'l' of '0' gemaakt. Is deze variabele 'l' dan worden bij de functies F1 en F3 van alle grafieken het vorige of het volgende blok getekend. Is Mod all plots=0, dan wordt bij deze functies slechts de eerste grafiek opnieuw getekend.

Met functietoets F3 wordt het volgende blok van de data getekend. Hiervoor is de routine Post_next_rec. Deze SUB heeft dezelfde parameters als de SUB Post_prev_rec. Deze routine wijzigt de post-parameters zo, dat het volgende blok data van de eerste grafiek of van alle grafieken, afhankelijk van de variabele Mod_all_plots, van disk wordt gelezen. Tevens wordt gecontroleerd of het huidige blok het laatste blok data van de thruput is.

Met functietoets F4 kan de display set-up worden gewijzigd. Hiervoor wordt de functie Post_spread aangeroepen. Deze functie heeft als enige parameter de variabele Disp_modified. Na afloop van de procedure wordt tevens de variabele Repaint "geset". Functietoets F4 krijgt nu de betekenis 'EXIT DISPLAY'. Hierdoor kan de display set-up weer worden verlaten. De routine Post_spread kunnen de display-parameters worden gewijzigd. Hiervoor wordt een spreadsheet op het scherm gezet. In deze spreadsheet kunnen grafieken actief of inactief worden gemaakt, de assen kunnen opnieuw worden geschaald, enz. Hiervoor wordt een invulmenu op het scherm gezet. Deze routine heeft dezelfde structuur als de routines voor de menu's, die bij de overige programma's worden gebruikt.

Met functietoets F5 worden de thruput-toetsen actief gemaakt. Hiervoor wordt de variabele Keys_changed "geset".

Door het drukken op functietoets F6 worden de markers-functies actief gemaakt. Hiervoor wordt de functie Disp_do_mkr aangeroepen. Deze routine heeft als parameters de array's Data_array(*) en Data_header(*). Deze routine verzorgt de markers-functies. In deze routine worden de functietoetsen op onderstaande manier gedefinieerd:

F1 Marker to X → Verplaatst de marker naar een in te voeren X-positie;

F3 Marker to Max -- Verplaatst de marker naar de maximale X-positie;

F4 Store Trace → Bewaard het signaal in een ASCII file;

F7 Previous Trace → Selecteer de voorgaande grafiek;

F3 Next Trace

Selecteer de volgende grafiek.

Vervolgens wordt in de subroutine New_mkr_plot de array Plot_array(*) gevuld met data. Hierna komt het programma in een lus. Deze lus wordt verlaten, zodra een niet gedefinieerde func-

PML 233492002 Pagina

tietoets wordt ingedrukt. In deze lus wordt allereerst de routine Plot_set_viewp aangeroepen. Deze SUB heeft als parameters:

Total_num_plots

→ Dit is het totaal aantal grafieken op het scherm;

→ Dit is het huidige grafieknummer;

→ Aantal karakters waarvoor ruimte is in de titel van de grafiek;

Y_units_len

→ Aantal karakters waarvoor ruimte vrij moet zijn links van de viewport;

→ Aantal pixels waarmee de viewport moet worden gekrompen om binnen het frame te blijven.

Deze SUB wordt aangeroepen voor het plotten. Dit is nodig om de viewport in te stellen voor de grafiek.

Vervolgens wordt de routine Plot_do_mkr aangeroepen. Deze routine activeert de marker en de bijbehorende markers-functies in de geselecteerde grafiek. De routine wordt verlaten, zodra op een functietoets wordt gedrukt. Deze SUB heeft de volgende parameters:

Plot array(*) → De plotarray met XY paren, die klaar zijn voor plotcommando's; X unit\$(P) → Dit is de dimensie langs de X-as; Y unit\$(P) → Dit is de dimensie langs de Y-as; X min(P) → Minimale X-waarde; X max(P) → Maximale X-waarde; Y min(P) → Minimale Y-waarde; Y max(P) → Maximale Y-waarde; Offset → De offset van het signaal; Scale factor → Dit is de schalingsfactor; → Geeft aan of de Y-as een logaritmische schaalverdeling heeft. Do log y(P)

Hierna wordt gecontroleerd op welke functietoets is gedrukt. Wordt op functietoets F1, F2 of F3 gedrukt (Marker to ...), dan wordt de routine Plot_move_mkr aangeroepen. Deze routine heeft de volgende parameters:

Pagina PML 233492002 58

Plot array(*) → De plotarray met XY paren, die klaar zijn voor plotcommando's;

X_unit\$(P) → Dit is de dimensie langs de X-as;
 Y unit\$(P) → Dit is de dimensie langs de Y-as;

 $X_min(P)$ \rightarrow Minimale X-waarde; $X_max(P)$ \rightarrow Maximale X-waarde;

Y_min(P) → Minimale Y-waarde;

Y_max(P) → Maximale Y-waarde; Offset → De offset van het signaa

Offset

→ De offset van het signaal;

Scale factor

→ Dit is de schalingsfactor;

Do log $y(P) \rightarrow$ Geeft aan of de Y-as een logaritmische schaalverdeling heeft.

Deze SUB verpiaatst de marker naar de opgegeven positie.

Wordt op functietoets F4 gedrukt (Store trace) dan wordt de routine **Disp_store_tr** aangeroepen. Deze routine schrijft de grafiek weg in een ASCII file volgens HP's implementatie van het zogenaamde Neutral File Format. Deze SUB heeft de volgende parameters:

Plot_array(*) → De plotarray met XY paren, die klaar zijn voor plotcommando's;

P → Grafieknummer;

Overload

Geeft aan of er een overload van het signaal is geweest;

Offset

De offset van het signaal;

Scale foctor

Dit is de orbeitsenformer

Scale_factor → Dit is de schalingsfactor.

Met functietoets F7 en F8 wordt respectievelijk de vorige of de volgende grafiek geselecteerd. Hiervoor wordt de variabele Mkr_plot met 1 opgehoogd of verlaagd. Hierna wordt de subroutine New_mkr_plot aangeroepen. Deze subroutine selecteert de vorige of de volgende grafiek. Hier wordt onder andere de array Plot_array(*) gevuld met de waarden van de nieuwe grafiek.

Met functietoets F5 worden de thruput-toetsen weer actief gemaakt.

Nadat een van de hiervoor genoemde functies is uitgevoerd, wordt de SUB Appl_do_other verlaten en wordt teruggesprongen naar de hoofdlus van het programma. In de hoofdlus van het programma worden, als de variabele Keys_changed=1, de thruput-toetsen actief gemaakt. Is Keys_changed=0 dan blijven de poer-rhruput-toetsen actief.

Pagina

De hoofdlus wordt verlaten indien de variabele Leave_me=1. In het hoofdprogramma wordt vervolgens het programma 'MASTER' geladen en wordt het programma 'PROGRAM 65' beëindigd.

4.6 De programma's 'PROGRAM 83' en 'PROGRAM 85'

Met deze twee programma's kan een meting worden verricht met respectievelijk de MF en de HF digitizers. Daar dit twee nagenoeg identieke programma's zijn, wordt volstaan met de bespreking van PROGRAM_83'. Het programma kan globaal worden onderverdeeld in drie delen. In het eerste deel van het programma worden een aantal variabelen gedeclareerd en geïnitialiseerd. Tevens worden de bijbehorende softwaremodulen geladen. Dit zijn voor 'PROGRAM_83' de modulen 'MENU_83', 'USER', 'UTIL', 'OTHER', 'SCOPE', 'SETUP_83', 'MEASURE_83', 'VERIFY_83' EN 'LOCK'. Voor 'PROGRAM_85' zijn dit de modulen 'MENU_85', 'USER', 'UTIL', 'OTHER', 'SCOPE', 'SETUP_85', 'MEASURE_85', 'CALIB_85', 'VERIFY_85' EN 'LOCK'. Vervolgens wordt de lock_status van de betreffende kanalenset gecontroleerd. Na het initialisatie gedeelte van het programma kan gekozen worden tussen een verificatie van de digitizers of het verrichten van een meting. Als er een meting is verricht kunnen de opgenomen signalen worden bekeken. Van 'PROGRAM_83' zijn structuurdiagrammen getekend in bijlage 6.

Aan het begin van het programma worden allereerst een aantal variabelen gedeclareerd en geïnitialiseerd. Vervolgens worden de bijbehorende software-modulen geladen. Nadat de software-modulen zijn geladen, worden de kanaalgegevens ingelezen. Hiervoor wordt de SUB Hp5183_chan_id aangeroepen. Deze SUB staat in de module 'SETUP_83'. De SUB wordt aangeroepen met de volgende parameters:

N channels

→ Het aantal ingestelde kanalen;

Units

→ Het aantal kasten (aantal kanalen / 2);

Channel_id83\$(*)

→ Dit zijn de kanaalnamen;

Hp5183_address(*)

→ Dit zijn de bijbehorende HP-IB adressen.

Hierna wordt de lockstatus van de digitizers gecontroleerd. Hiervoor wordt de SUB Lock_avail aangeroepen. Is het slot van de MF digitizers gesloten, dan wordt de lock-status op het scherm gezet met de SUB Lock_status. Vervolgens wordt een foutmelding op het scherm gezet en wordt het programma verlaten.

PML 233492002

Is het slot niet gesloten, dan kan gekozen worden of er een meting verricht moet worden, of dat de digitizers moeten worden geverifieerd. Hiervoor worden de functietoetsen op onderstaande manier gedefinieerd:

FI ABORT

→ Verlaat het programma;

F7 VERIFY

→ Verificatie van de digitizers;

F8 PROCEED

→ Verrichten van een meting.

4.6.1 Verificatie van de digitizers

Met functietoets F7 kunnen de digitizers worden geverifieerd. Hiervoor wordt de SUB Hp5183_verlfy aangeroepen. Deze SUB staat in de module 'MENU_83'. Deze SUB heeft de volgende parameters:

Units

→ Het aantal ingestelde kasten;

Hp5183_address(*)

→ De HP-IB adressen van de kasten;

Hp5183 status(*)

→ Geeft aan of de verificatie goed is verlopen.

In deze SUB worden allereerst een aantal variabelen gedeclareerd en geïnitialiseerd. Tevens wordt de spreadsheet gedefinieerd. Hierna kan met de functietoets F8 de verificatie gestart worden. Nadat op F8 is gedrukt, komt het programma in een 'FOR / NEXT' lus terecht, waarin alle kasten worden geverifieerd. Hier wordt eerst de SUB Hp5183 report met de volgende parameters aangeroepen:

Hp5183 address(Unit) → Het HP-IB adres van kastnummer Unit;

Status byte

→ Status van de geselecteerde kast;

Device type

→ Geeft device-type aan;

InfoS

→ Naam van het device.

Device_type krijgt hiervoor de waarde '1' als het een HP5183. In dit geval krijgt de variabele Info\$ de waarde "HP 51083A". De variabele Device_type krijgt de waarde '2' als het een ander soort device is. De variabele Info\$ krijgt in dat geval de waarde "OTHER".

Vervolgens wordt de lus gesplitst in twee delen. Het eerste deel wordt gevolgd indien het aangesloten apparaat op een bepaald adres geen HP 5183 is aangesloten. In dit geval worden de diverse kolommen van de spreadsheet gevuld met '--'. De laatste kolom van de spreadsheet wordt gevuld met

Pagina

'FAIL'. Hierna wordt de spreadsheet op het scherm gezet met de routine User_print_sprd uit de module 'USER'.

Het tweede deel van de lus wordt doorlopen, als het aangesloten apparaat een HP 5183 is. Hier worden ook eerst een aantal kolommen van de spreadsheet gevuld en afgedrukt op het scherm met de routine User_print_sprd. Hierna worden de twee kanalen afzonderlijk getest op zeven bereiken. Hiervoor wordt de routine FNOpver_test gebruikt. Deze routine heeft de volgende parameters:

Hp5183_address(Unit) → Het HP-IB adres van kastnummer Unit;

Unit

→ Het nummer van de geselecteerde kast;

@Dma_buffer

→ Pointer naar de databuffer Data_a(*);

@Dmb_buffer

→ Pointer naar de databuffer Data a(*);

Data_a(*)

→ Databuffer, waarin de golfvorm opgeslagen wordt (kanaal 1);

Data_b(*)

→ Databuffer, waarin de golfvorm opgeslagen wordt (kanaal 2);

Range

→ Index naar het te verifiëren bereik;

Info\$

→ Naam van het device;

Channel

→ Het kanaalnummer van de geselecteerde kast ('1' of '2').

Deze functie levert de waarde '1', als de verificatie goed is verlopen. Is er iets mis gegaan met de verificatie, dan levert deze functie een '0'. In het eerste geval wordt de variabele Passcount1 voor kanaal 1 of Passcount 2 voor kanaal 2 opgehoogd. Deze variabelen houden bij hoeveel bereiken (maximaal 7) succesvol geverifieerd zijn. Als alle bereiken geverifieerd zijn, wordt de spreadsheet afgedrukt op het scherm. Hierna wordt getest of alle bereiken succesvol geverifieerd zijn. Vervolgens wordt de routine User_print_sprd nogmaals aangeroepen. Hierna wordt functietoets F8 (CONTINUE) gedefinieerd en geactiveerd. Na het drukken op F8 wordt de routine Hp5183_verify verlaten en wordt teruggesprongen naar het hoofdprogramma.

4.6.2 Het verrichten van een meting

Nadat op functietoets F8 is gedrukt, kan een meting worden verricht. Hiervoor moeten de digitizers eerst worden geïnitialiseerd. Hiervoor wordt de routine Hp5183_initial met onderstaande parameters aangeroepen.

Units

→ Het aantal geselecteerde kasten;

Hp5183_address(*)

→ De HP_IB adressen van de geselecteerde kasten;

Hp5183_status(*)

→ Status van de geselecteerde kasten.

PML 233492002

Nadat de digitizers geïnitialiseerd zijn, worden de gegevens, die in het programma 'SETUPS' zijn ingevoerd, ingelezen met de routine Hp5183_setup_r uit de module 'MENU_83'. Hierna kunnen de gegevens eventueel worden gewijzigd. Hiervoor worden dezelfde routines gebruikt als in het programma 'SETUPS'. Als alle gegevens zijn ingevoerd, worden de digitizers gekalibreerd. Voor het kalibreren van de digitizers wordt de routine Hp5183_calibr aangeroepen. Deze SUB wordt met dezelfde parameters aangeroepen als de SUB Hp5183_initial. Na het kalibreren van de digitizers moeten de ingevoerde gegevens worden weggeschreven in de file 'HP5183'. Dit gebeurd in de SUB Hp5183_setup_w in de module 'MENU_83'. Hierna worden de functietoetsen op onderstaande manier gedefinieerd.

F1 to SETUP → Terug naar het begin van het programma

F7 ABORT ALL → Verlaat het programma

F8 START HP5183 → Start de meting

Door het drukken op functietoets F8 kan de meting worden gestart. Voordat een meting gestart kan worden, moeten eerst de ingevoerde gegevens vertaald worden naar HP5183 registerwaarden. Dit omzetten gebeurt in 2 routines. In de routine Hp5183_fill_com, met als parameter het kastnummer, wordt de ingevoerde gegevens in de array Common_setup83(*) gezet. Vervolgens worden deze gegevens en de gegevens uit de array Channel_setup83(*) (kanaalgegevens) omgezet naar HP5183 registerwaarden in de routine Hp5183_bitgen. Ook deze routine heeft als enige parameter het kastnummer. Deze registerwaarden worden opgeslagen in de array Snap_image83(*). Nadat deze waarden bepaald zijn wordt de meting vanuit een 'FOR/NEXT' loop voor elk van de geselecteerde digitizers gestart. Het starten van een meting met een bepaalde digitizer gebeurt in de routine Start_meas. Deze SUB heeft als enige parameter de variabele Unit. Deze variabele bevat het nummer van de kast, waarvoor de meting gestart moet worden.

Als de meting is verricht, worden achtereenvolgens de files 'CHANN_SET83', 'COMM_SET83', 'TIM_BASE83' en 'SNAP_IM83' in de directory 'APPLICATION/DATA' aangemaakt. In deze files worden de ingestelde gegevens van de meting opgeslagen.

Als de gegevens opgeslagen zijn, wordt de opgenomen data per kast ingelezen. Hiervoor wordt de routine Complete_meas in de module 'MEASURE_83' met de volgende parameters aangeroepen:

Pagina

Unit

→ Het nummer van de kast, die uitgelezen moet worden;

@Dma buffer

→ Pointer naar de databuffer Data_a(*);

@Dmb buffer

→ Pointer naar de databuffer Data_b(*);

Sweep mode Sweep delay

→ Deze twee variabelen geven aan hoelang op een trigger wordt

gewacht.

Als Sweep_mode=1, dan wacht het programma, totdat er een trigger is geweest. Heeft de variabele Sweep_mode een andere waarde, dan wordt de tijd gewacht die de variabele Sweep_delay aangeeft.

Na het inlezen van de data wordt voor elk kanaal een headerfile aangemaakt. Dit gebeurt in de SUB Data header83 met de volgende parameters aangeroepen:

Time_stamp

→ Tijd en datum van de meting;

Unit

→ Het nummer van de kast, die uitgelezen is;

Channel

→ Het kanaalnummer van de geselecteerde kast;

Header\$(*)

-> Hierin staat de header, zoals hij in de headerfile wordt

opgeslagen;

File name\$

→ Dit is de naam van de headerfile.

Als de header aangemaakt is, wordt de ingelezen data en de aangemaakte header opgeslagen in een file. De ingelezen data wordt opgeslagen in de file 'DATA83_x' en de aangemaakte header in de file 'HEAD83_x', waarbij 'x' het kanaalnummer voorstelt.

Als alle data opgeslagen is in de juiste files, wordt de routine Lock_dump aangeroepen. Met deze routine wordt het software-slot gesloten. Aan deze routine wordt als parameter de variabele Time_stamp meegegeven. Verder worden drie getallen aan deze SUB meegegeven. Deze getallen geven de status van het software-slot aan. Dit zijn de getallen '0', '1' en '0' voor respectievelijk de LF, MF en de HF kanalen.

Nadat het software-slot gesloten is, kan de data bekeken worden. De manier waarop de functietoetsen worden gedefinieerd is afhankelijk van het aantal geselecteerde kasten. Elke toets komt overeen met een kastnummer (F1 \rightarrow UNIT 1, F2 \rightarrow UNIT 2, enzovoorts). Zijn er meer dan zeven kasten geselecteerd, dan worden via F8 (NEXT UNITS) de functietoetsen gedefinieerd voor de overige kasten (F1 \rightarrow UNIT 8, F2 \rightarrow UNIT 9, enzovoorts). Functietoets F8 is nu EXIT. Hiermee

PML 233492002

kan het programma worden verlaten. Dit is eveneens het geval als er minder dan zeven kasten geselecteerd zijn.

Als er een kast geselecteerd is, wordt voor elk kanaal van de geselecteerde kast de header uit de headerfile ingelezen. Vervolgens wordt de header met de routine Show_header83 afgedrukt op het scherm. Deze routine heeft als enige parameter de variabele Header\$(*). Dit is de array met de ingelezen header. Als de header is ingelezen, wordt de bijbehorende DATAfile ingelezen in de variabele Data_a(*) of Data_b(\$) voor respectievelijk kanaal 1 en 2.

Als alle benodigde data is ingelezen, wordt de SUB Scope_display uit de module 'SCOPE' aangeroepen. Deze SUB zet de data van de twee meetkanalen in een grafiek op het scherm. Aan deze routine worden de volgende parameters meegegeven:

Header 1\$(*) → Header behorende bij kanaal 1;

Header 2\$(*) → Header behorende bij kanaal 2;

(5183) → Type aanduiding van de meetkast;

Data_a(*) → Data ingelezen uit kanaal 1 van de geselecteerde meetkast;

→ Data ingelezen uit kanaal 2 van de geselecteerde meetkast.

Nadat de grafieken op het scherm zijn gezet, kunnen de grafieken afgedrukt worden via de printer, of er kan een volgende kast geselecteerd worden. De functietoetsen zijn hiervoor als volgt gedefinieerd:

F1 COPY TO PRINTER → Druk grafieken af op printer;
 F8 CONTINUE → Selecteer een volgende kast.

Met functie toetst F1 kunnen de grafieken worden afgedrukt op de printer. Dit gebeurt met het commando 'DUMP GRAPHICS'. Met functietoets F8 kan een nieuwe kast worden gekozen, of het programma kan worden beëindigd. In het laatste geval wordt het programma 'MASTER' geladen, waarna 'PROGRAM 83' wordt beëindigd.

4.7 Het programma 'OP_VER83'

Met het programma 'OP_VER83' kunnen de MF digitizers geverifieerd worden. Het programma is hiervoor opgesplitst in twee delen. Het eerste deel verifieert de digitizers op selectcode 10. Het tweede deel verifieert de digitizers op selectcode 11. Van het programma zijn structuurdiagrammen getekend in bijlage 7

Pagina

Voor het testen van de digitizers worden twee routines aangeroepen. In de routine Report_devices, die zonder parameters wordt aangeroepen, wordt bepaald op welke adressen een HP5183 is aangesloten. Dit wordt bijgehouden in de array Device_array(*).

Voor het verifiëren van de digitizers wordt de routine **Report_hp51083s** met de volgende parameters aangeroepen:

@Dma buffer

→ Pointer naar de databuffer Data a(*);

@Dmb buffer

→ Pointer naar de databuffer Data b(*);

Data a(*)

→ Data ingelezen uit kanaal 1 van de geselecteerde meetkast;

Data_b(*)

→ Data ingelezen uit kanaal 2 van de geselecteerde meetkast.

Vanuit deze SUB wordt voor elke aangesloten HP5183 de functie FNOpver_test aangeroepen In deze functie vindt de eigenlijke verificatie plaats. Het algoritme dat gebruikt wordt om de functionaliteit van de digitizers te testen is het initialiseren van een HP5183 meetcyclus en daarna de uitvoer te analyseren. Elke meetcyclus heeft als signaalbron één van de precisie spanningsreferenties van de HP5183 + een negatieve offset van hetzelfde niveau, zodat het signaalniveau bijna nul is. Vervolgens wordt een meetcyclus gestart en de gedigitaliseerde data wordt vergeleken met de waarden, die gemeten moeten worden met deze ingangsspanning. Komen de gemeten waarden overeen met de juiste waarden, dan wordt verondersteld dat de hoofdonderdelen van de HP5183 werken en wordt de digitizer functioneel verklaard.

4.8 Het programma 'OP_VER85'

Met het programma 'OP_VER85' kunnen de HF digitizers worden geverifieerd. Hiervoor worden een tweetal routines aangeroepen. De eerste routine die wordt aangeroepen is de routine Test_mode. Deze routine wordt zonder parameters aangeroepen. In deze routine wordt ingevoerd of de test moet stoppen na een fout, of de trigger-functionaliteit getest moet worden en of de testresultaten naar het scherm of de printer gestuurd moeten worden. Van dit programma zijn structuurdiagrammen getekend in bijlage 8

De tweede routine, die aangeroepen wordt, is de routine Report_devices. Ook deze routine wordt zonder parameters aangeroepen. Deze routine controleert of het aangesloten apparaat een HP5185 digitizer is. Is dit het geval dan wordt de routine Report_hp51085 aangeroepen. Vanuit deze SUB wordt de eigenlijke verificatie van de digitizer gestart. Dit gebeurt door de functie FNOpver_test

66

PML 233492002

aan te roepen. In deze functie worden de beide kanalen van de digitizer op vijf bereiken getest. Eventueel wordt ook de trigger-functionaliteit getest.

4.9 Het programma 'DISPLAY'

Met het programma 'DISPLAY' kunnen de gemeten signalen worden bekeken. Het programma is verdeeld in vier delen. Elk deel geeft het meetsignaal op een andere manier weer. De vier onderdelen zijn:

MULTIPLOT Hiermee kunn

Hiermee kunnen een aantal signalen tegelijk worden bekeken;

STATISTICS

Maakt histogrammen of distributiefuncties van de signalen;

SCOPE DISPLAY

Zet twee signalen in twee grafieken op het scherm;

CURSORS

Tekent één signaal, hierop kunnen 'markers-functies' worden uitgevoerd.

Van het programma 'DISPLAY' zijn structuurdiagrammen getekend in bijlage 9. Aan het begin van het programma worden eerst een aantal variabelen gedeclareerd en geInitialiseerd. Tevens worden de software-modulen 'USER', 'UTIL', 'OTHER', 'SCOPE' en 'ANALYSIS' geladen. Vervolgens wordt het aantal ingestelde kanalen van het LF, het MF en het HF gedeelte ingelezen uit de file 'NO_OF_CHANNELS'. Hierna moet gekozen worden uit het MF of het HF gedeelte. Ook kan men kiezen om alle grafieken automatisch af te drukken op de printer. De functietoetsen zijn hiervoor als volgt gedefinieerd:

FI EXIT

→ Verlaat programma;

F6 COPY TO PRINTER

→ Afdrukken grafieken op printer;

F7 MF chan HP5183

→ Selecteer het MF gedeelte;

F8 HF chan HP5185

→ Selecteer het HF gedeelte.

Door het drukken op F6 worden alle grafieken (inclusief headers) afgedrukt op de printer. Hiervoor worden twee lussen doorlopen, namelijk één voor de MF grafieken en één voor de HF grafieken. Allereerst wordt de lus voor het MF gedeelte doorlopen. Hier worden eerst de headers ingelezen. Dit gebeurt in de routine Read_header83. Deze routine wordt met de volgende parameters aangeroepen:

Pagina

67

Unit

→ Het huidige kastnummer;

Channel

→ Kanaalnummer van de huidige kast;

Header\$(*)

→ Array waarin de header komt te staan;

File name\$

→ Dit is de naam van de headerfile;

Print

→ Geeft aan of de header geprint moet worden (optionele

parameter).

De routine Read_header83 wordt twee keer aangeroepen, namelijk één keer voor de header van kanaal 1 en één keer voor de header van kanaal twee. Vervolgens wordt de routine Read_data83 voor elk kanaal aangeroepen. In deze routine wordt de datafile van het huidige kanaal ingelezen. De routine wordt met de volgende parameters aangeroepen:

Unit

→ Het huidige kastnummer;

Channel

→ Kanaalnummer van de huidige kast;

Data block(*)

-> Array waarin de data komt te staan;

File name\$

→ Dit is de naam van de headerfile.

Vervolgens wordt naar de routine Fili_vars gesprongen. In deze routine worden een aantal variabelen gevuld met waarden uit de header. Hierna kan de grafiek op het scherm worden gezet. Hiervoor wordt de SUB Scope display uit de module 'SCOPE' met de volgende parameters aangeroepen;

Header1\$(*)

→ De header van kanaai 1;

Header2\$(\$)

→ De header van kanaal 2;

Type

 \rightarrow Type meting (5183 of 5185);

Data a(*)

→ Data van kanaal 1;

Data_b(*)

→ Data van kanaal 2;

Exp\$

→ Het experimentnummer.

Nadat de grafieken op het scherm zijn gezet, worden ze afgedrukt op de printer. Hiervoor wordt het commando 'DUMP GRAPHICS' gebruikt.

Voor het afdrukken van de HF kanalen wordt eenzelfde soort lus gebruikt. De routines om de headers en de data in te lezen heten echter Read_header85 en Read_data85.

PML 233492002

Door het drukken op F7 of F8 wordt respectievelijk het MF en het HF gedeelte geselecteerd. Hierdoor krijgt de variabele Type de juiste waarde (5183 voor MF en 5185 voor HF). Tevens wordt het aantal kanalen ingesteld op het aantal actieve kanalen van het betreffende gedeelte. Hierna wordt een lus opgestart, van waaruit de verschillende onderdelen van het programma gekozen kunnen worden. Hiervoor wordt een keuzemenu op het scherm gezet door de routine Processing_menu. Deze SUB heeft als parameter de variabele Option. Deze variabele geeft de gemaakte keuze uit het menu weer. In dit menu kan gekozen worden uit vier programma's. Dit zijn de programma's 'MULTIPLOT', 'STATISTICS', 'SCOPE DISPLAY' en 'CURSORS'.

4.9.1 MULTIPLOT

Indien het programma 'MULTIPLOT' wordt gekozen uit het menu, dan heeft de variabele Option de waarde '1'. In dit gedeelte van het programma wordt allereerst naar de subroutine Select_channels gesprongen. Hier wordt een keuze gemaakt uit de beschikbare kanalen (maximaal vier kanalen). In deze subroutine wordt vervolgens de routine Select_chan met de volgende parameters aangeroepen:

Chan\$(*)

→ Hierin staan de kanaalnamen;

Nchannels

→ Aantal beschikbare kanalen;

Sel channels(*)

→ Hierin wordt bijgehouden welke kanalen geselecteerd zijn;

Max channels

→ Maximale aantal kanalen dat geselecteerd kan worden;

N channels

→ Aantal kanalen dat geselecteerd is.

Als er één of meerdere kanalen geselecteerd zijn, wordt voor elk kanaal de header en de data ingelezen met de routines Read_header83 en Read_data83 voor het MF gedeelte. De header en de data worden voor het HF gedeelte ingelezen door de routines Read_header85 en Read_data85. Als de gegevens zijn ingelezen, wordt getest of het aantal opgenomen datapunten niet groter is als 16384. Is dit wel het geval dan moet een gedeelte van de data gekozen worden. Hiervoor is het datablok verdeeld in maximaal vier blokken van 16384 punten (totaal 64k punten). Hierna wordt de subroutine beëindigd en wordt teruggesprongen naar het hoofdprogramma. Vervolgens wordt van hieruit de SUB Multiplot menu met de volgende parameters aangeroepen:

N channels

-> Aantal geselecteerde kanalen;

Menu\$(*)

→ Hierin staan het kanaalnummer, de grafiektitel en de X-as

schaal.

Pagina

69

Deze routine zet het Multiplot menu op het scherm. In dit menu kunnen de gegevens voor de array Menu\$(*) ingevoerd of gewijzigd worden.

Hierna worden de grafieken door de routine Multi_plot op het scherm gezet. De routine wordt met de volgende parameters aangeroepen:

Menu\$(*)

→ Hierin staan de kanaalnummer, de grafiektitel en de X-as

schaal;

Data(*)

→ Hierin staat de data voor de grafieken;

Ch_label\$(*)

→ Hierin staan de kanaalnamen.

In deze SUB worden eerst een aantal variabelen gedeclareerd en geïnitialiseerd. Hierna worden de grafieken op het scherm gezet. Hiervoor wordt naar de subroutine Graph gesprongen. Nadat de grafieken op het scherm zijn gezet, worden enige gegevens uit de header en een keuzemenu, waarin kanalen aan of uit gezet kunnen worden, op het scherm gezet. Vervolgens worden de functietoetsen geactiveerd. Hiervoor wordt naar de subroutine Activate_select gesprongen. Er worden twee functietoetsenmenu's op onderstaande manier geactiveerd:

FI HRD COPY

→ Maak afdruk op printer of plotter;

F2 REPLACE

→ Vervang geselecteerde grafiek door een andere grafiek;

F3 REMOVE

→ Verwijder de geselecteerde grafiek;

F4 RESCALE

→ Pas de schaal aan voor de geselecteerde grafiek;

F5 UPDATE

→ Tekent de grafieken opnieuw;

F7 OTHER MENU

→ Activeer menu 2;

F8 endPLOT

→ Einde MULTIPLOT.

Met de <up> en <down> cursortoetsen wordt een grafiek geselecteerd. Met de <left> en <right> cursortoetsen krijgt de geselecteerde grafiek een ander nummer. Dit nummer varieert van 1 tot en met het aantal geselecteerde grafieken in Select_channels en komt overeen met de volgorde, waarin de grafieken zijn geselecteerd in Select_channels. Tevens kunnen met deze toetsen grafieken gedeselecteerd worden.

De tweede set functietoetsen is als volgt gedefinieerd:

F9	WINDOW	→ Hiermee kan het window worden verkleind (inzoomen);
F10	ZOOM OUT	→ Hiermee kan het window worden vergroot (uitzoomen);
F11	FULL VIEW	→ Geef de volledige grafiek weer;
F12	UPDATE	→ Teken de grafieken opnieuw;
F13	TRACE	→ Hiermee kunnen functies op de geselecteerde grafiek worden
		uitgevoerd;
F15	OTHER MENU	→ Activeer menu 2;
F16	endPLOT	→ Einde MULTIPLOT.

Nadat de toetsen gedefinieerd zijn, wordt er gewacht totdat op een toets wordt gedrukt. Wordt er op een toets gedrukt en is dit geen functietoets, dan wordt naar de routine Kbd_chan_select gesprongen. In deze routine wordt bijgehouden, welke grafiek geselecteerd is (bijgehouden in de variabele Plot_number) en welk nummer hier bij hoort (bijgehouden in de variabele Chan_number).

Met functietoets F1 wordt naar de routine Hard_copy gesprongen. Hier wordt een nieuw keuzemenu op onderstaande manier geectiveerd:

Fl	PRINTER	→ Maak afdruk op printer;
F3	PLOTTER	→ Maak afdruk op plotter;
F7	CANCEL	→ Annuleer afdrukken;
F8	endPLOT	\rightarrow Beëindig MULTIPLOT.

Pagina 70

Met functietoets F1 wordt een afdruk op de printer gemaakt. Dit gebeurt in de routine Printer_plot. Met functietoets F2 wordt een afdruk op plotter gemaakt. Dit gebeurt in de routine Plotter_plot. In beide routines wordt eerst de SUB Check_graphics met onderstaande parameters aangeroepen:

Prt_dev	→ Dit is het printeradres;
Plt_dev	→ Dit is het plotteradres;
Prt_ok	→ Status van de printer;
Plt_ok	→ Status van de plotter.

Is het geselecteerde device goed ingesteld, dan wordt de afdruk gemaakt en wordt het hoofdmenu weer actief.

Indien in het hoofdmenu op functietoets F2 (REPLACE) wordt gedrukt, dan wordt naar de routine Add gesprongen. In deze routine wordt eerst de oude grafiek gewist. Dit gebeurt door de subroutine Picture aan te roepen. In deze routine wordt de oude grafiek met een zwarte 'pen' opnieuw getekend. Vervolgens wordt het nieuwe kanaalnummer bepaald en wordt de subroutine Picture opnieuw aangeroepen, waarna de nieuwe grafiek wordt getekend. Nadat de grafieken getekend zijn wordt het hoofdmenu weer actief gemaakt.

Indien op functietoets (REMOVE) F3 wordt gedrukt, dan wordt naar de routine Delete gesprongen. In deze routine wordt de geselecteerde grafiek gewist. Hiervoor wordt weer de subroutine Picture gebruikt.

Indien op functietoets F4 (RESCALE) gedrukt wordt, wordt de routine Rescale aangeroepen. In deze routine worden eerst de minimum- en maximumwaarden van de geselecteerde grafiek bepaald. Dit wordt bijgehouden in de variabelen Mini_y en Maxi_y, voor respectievelijk de minimum- en de maximumwaarde van de grafiek. Vervolgens worden alle grafieken getekend op dit bereik. Hiervoor wordt de subroutine Graph aangeroepen. Hierna wordt de bijbehorende tekst opnieuw getekend en wordt het hoofdmenu weer actief gemaakt. Dit gebeurt in de routine Chan_menu.

Wordt op functietoets F5 (UPDATE) gedrukt, dan wordt naar de routine **Update** gesprongen. In deze routine worden alle grafieken opnieuw getekend. Hiervoor wordt allereerst de subroutine **Graph** aangeroepen. Vervolgens wordt naar de routine **Chan_menu** gesprongen.

Met functietoets F7 wordt het tweede menu actief gemaakt. Via F1 (WINDOW) van het tweede menu wordt naar de routine Window gesprongen. In deze routine worden de functietoetsen op onderstaande manier gedefinieerd:

TOP → Verplaats bovenas; F1 BOTTOM → Verplaats onderas; F2 F3 LEFT → Verplaats linkeras; → Verplaats rechteras; RIGHT F4 F7 CANCEI. → Annuleer inzoomen; → Voer zoomfunctie uit. EXECUTE F8

Met de functietoetsen F1 en F2 wordt in de y-richting ingezoomd. Met de functietoetsen F5 (UP) en F6 (DOWN) wordt de geselecteerde as bewogen in de y-richting.

72

PMI. 233492002

Met de functietoetsen F3 en F4 wordt in de x-richting ingezoomd. Met de functietoetsen F5 (LEFT) en F6 (RIGHT) wordt de geselecteerde as bewogen in de x-richting.

Met functietoets F7 wordt de zoomfunctie geannuleerd. Met F8 wordt de zoomfunctie uitgevoerd. Het gedeelte dat binnen de vier assen ligt wordt op de volle schermgrootte getekend. Hiervoor krijgen de variabelen Mini_x, Mini_y, Maxi_x en Maxi_y de waarden die door de vier assen worden aangegeven. Als de grafiek opnieuw getekend is, wordt het hoofdmenu weer geactiveerd.

Met functietoets F2 (ZOOM OUT) van het tweede menu wordt de uitzoomfunctie geactiveerd. Hiervoor wordt naar de routine Zoom_out gesprongen. Hier worden de variabelen Mini_x, Mini_y verlaagd met de helft van het huidige bereik. De variabelen Maxi_x en Maxi_y worden verhoogd met de helft van het huidige bereik. Het huidige bereik van de x-as staat in de variabele X_width. Het bereik van de y-as staat in de variabele Y_width. Het tweede menu blijft geactiveerd na het gebruik van de ZOOM OUT functie.

Met functietoets F3 (FULL VIEW) wordt naar de routine Plot_all gesprongen. Hier krijgen de variabelen Mini_x, Mini_y, Maxi_x en Maxi_y hun oorspronkelijke waarden weer terug, zodat de grafiek in het geheel op het scherm komt. Hierna wordt het eerste menu actief gemaakt.

Na het drukken op functietoets F4 (UPDATE) uit het tweede menu worden alle grafieken opnieuw getekend. Hiervoor wordt naar de al besproken routine Update gesprongen.

Met functietoets F4 (TRACE) uit het tweede menu wordt naar de routine Trace gesprongen. Hier wordt allereerst de geselecteerde grafiek opnieuw getekend. De grafiek wordt zodanig getekend, dat de minimale en de maximale waarde van de y-as overeenkomen met de minimale en maximale waarde van de grafiek. Vervolgens wordt het Trace menu geactiveerd. In dit menu zijn de functietoetsen op onderstaande manier gedefinieerd:

F1 CURSOR → Activeer cursorfuncties;

F2 SCROLL → Activeer scrollfuncties (werkt alleen op ingezoomde grafieken);

F3 MATH

Activeer mathematische functies;

F4 DELTA → Activeer delta-functies;

F8 endTRACE

→ Verlaat het Trace menu en activeer het eerste menu.

Met functietoets F1 wordt het Cursormenu geactiveerd. Hiermee kunnen de signalen nauwkeurig bekeken worden. De functietoetsen worden in dit menu op onderstaande manier gedefinieerd:

FI	< HOME	→ Cursor naar het begin van de grafiek;
F2	< CURSOR	→ Cursor naar links;
F3	CURSOR >	→ Cursor naar rechts;
F4	HOME >	→ Cursor naar het einde van de grafiek;
F5	hardCOPY	→ Hardcopy van de grafiek op de printer;
F6	PRINT	→ Druk cursorwaarden af op de printer;
F8	end CURSOR	→ Verlaat het Cursormenu en activeer het Trace menu.

Met functietoets F2 uit het Tracemenu wordt, indien de grafiek in de X-richting is ingezoomd, het Scrollmenu geactiveerd. In dit menu zijn de functietoetsen op de volgende manier gedefinieerd:

Fl	to BEGIN	→ Scroll naar het begin van de grafiek;
F2	<left< td=""><td>→ Scroll naar links;</td></left<>	→ Scroll naar links;
F3	RIGHT>	→ Scroll naar rechts;
F4	to END	→ Scroll naar het einde van de grafiek;
F5	CANCEL	→ Annuleer scrollen;
F6	EXECUTE	→ Voer scroll-functie uit;
F8	end SCROLL	→ Verlaat het Scrollmenu en activeer het Trace menu.

Met functietoets F3 uit het Trace menu worden de mathematische functies geactiveerd. De functietoetsen zijn als volgt gedefinieerd:

Fl	INTEG	→ Integreren van de grafiek;
F2	MOVING AVERAGE	\rightarrow Teken de grafiek van de gemiddelde waarde;
F3	RESTORE ORIGINAL	→ Teken de originele grafiek;
F4	end MATH	→ Activeer het Tracemenu.

Nadat één van deze functies is uitgerekend en er een grafiek van is getekend, wordt het Trace menu weer actief gemaakt.

Met functietoets F4 (DELTA) worden de functies actief gemaakt die verschillen tussen twee grenswaarden berekenen. In dit programma zijn deze functies echter (nog) niet beschikbaar. Met functietoets F8 worden deze functies verlaten en wordt het Trace menu weer actief.

PML 233492002

Met functietoets F7 (OTHER MENU) wordt menu 1 actief gemaakt. Met functietoets F8 (endPLOT) wordt de SUB Multi_plot verlaten en wordt teruggesprongen naar het hoofdprogramma. Hier wordt de al eerder besproken subroutine Select_channels aangeroepen. Nu kunnen andere kanalen worden gekozen of kan er worden teruggesprongen naar het processing menu.

4.9.2 'STATISTICS'

Indien in het processing menu 'STATISTICS' wordt gekozen, dan heeft de variabele Option de waarde '2'. Hier wordt eerst naar de subroutine Select_channels gesprongen. Zijn er één of meerdere kanalen geselecteerd (maximaal 4), dan wordt de routine Statsplot_menu aangeroepen. Deze routine heeft de volgende parameters:

N channels

→ Het aantal geselecteerde kanalen;

N scans

→ Het aantal opgenomen punten;

Menu\$(*)

→ Hierin staan de in het menu ingevoerde gegevens.

In de variabele Menu\$(*) staan onder andere de volgende gegevens: het kanaalnummer waarop de distributiefunctie op uitgevoerd wordt, het bereik van de distributiefunctie, de intervalbreedte, de soort grafiek die getekend wordt (histogram of cumulatief) en de plottitel. De gegevens kunnen via een invulmenu worden gewijzigd in deze routine.

Nadat deze gegevens zijn ingevoerd, wordt de routine Statsplot aangeroepen. Deze routine heeft de volgende parameters:

Menu\$(*)

→ Hierin staan de in het menu ingevoerde gegevens;

Data(*)

→ Hierin staat de ingelezen data;

Ch label\$(*)

→ Hierin staan de namen van de geselecteerde kanalen.

In deze routine worden eerst een aantal variabelen gedeclareerd en geïnitialiseerd. Vervolgens worden de printer instellingen gecontroleerd in de routine Check_graphics. Hierna wordt het histogram of de cumulatieve distributiefunctie berekend. Welke grafiek berekend wordt, is afhankelijk van hetgeen is ingevuld in het voorgaande menu. Als de grafiek getekend is, worden de functietoetsen gedefinieerd. Voor het histogram worden de functietoetsen op onderstaande manier gedefinieerd:

PML 233492002 Pagina

CURSOR → Met cursor de grafiek nauwkeurig bekijken; Fl NEW INTS → Voer nieuw interval in; → Teken de cumulatieve distributiefunctie; F4 CDF → Kies een nieuw kanaal uit de geselecteerde kanalen; F5 NEW CHAN → Kies een nieuwe scan uit de grafiek; F6 NEW SCAN F7 HRD COPY → Maak een afdruk van de grafiek; endSTAT → Verlaat 'STATISTICS'. F8

Met functietoets F1 (CURSOR) wordt het cursor besturingsmenu geactiveerd. Hiervoor worden de functietoetsen als volgt gedefinieerd:

F1 <<- → Beweeg de cursor naar links;
F2 offCURSR → Verlaat het cursormenu en activeer het histogram-menu;
F3 → Beweeg de cursor naar rechts;
F7 HRD COPY → Maak een afdruk op papier.

Met functietoets F2 (NEW INTS) uit het histogram-menu wordt een nieuw interval tussen twee kolommen gedefinieerd. Het nieuwe interval wordt afgedrukt op de afbeelding van functietoets F2. Met functietoets F4 wordt de grafiek met het nieuwe interval berekend. Hierna wordt menu 1 weer actief.

Met functietoets F5 (NEW CHAN) wordt uit de geselecteerde kanalen een ander kanaal gekozen. De kanalen hebben een nummer, dat overeenkomt met de volgorde waarin de kanalen gekozen zijn in het Channel Selection menu. Het nieuwe kanaalnummer wordt aangegeven op de afbeelding van functietoets F2. Met functietoets F4 wordt de grafiek van het gekozen kanaal getekend.

Met functietoets F6 (NEW SCAN) wordt een nieuwe 'scan' gekozen. De nieuwe scan wordt afgedrukt op de afbeelding van functietoets F2. Met functietoets F4 wordt de grafiek met de nieuwe scan getekend. De drie voorgaande functies worden met de muis ingesteld. De bewegingen van de muis worden uitgelezen met het 'ON KNOB ...' commando.

Met functietoets F7 (HRD COPY) wordt een afdruk van de grafiek gemaakt op de printer of op de plotter. Dit gebeurt op dezelfde manier als bij het programma-onderdeel 'MULTIPLOT' en wordt hier verder niet besproken.

Pagina PML 233492002

Door het indrukken van functietoets F4 (CDF) wordt de cumulatieve distributiefunctie getekend. Na het berekenen van de grafiek worden de functietoetsen op onderstaande manier gedefinieerd:

F1 CURSOR → Met cursor de grafiek nauwkeurig bekijken

F4 HISTO → Teken het histogram

F6 NEW SCAN → Kies een nieuwe scan uit de grafiek

F7 HRD COPY → Maak een afdruk van de grafiek

F8 endSTAT → Verlaat 'STATISTICS'

De functies CURSOR, NEW CHAN, NEW SCAN en HRD COPY werken op dezelfde manier als deze functies bij het histogram. Met functietoets F4 (HISTO) wordt het histogram getekend. Met functietoets F8 wordt teruggesprongen naar het hoofdprogramma. Hier wordt de subroutine Select_channels aangeroepen, waarin andere kanalen gekozen kunnen worden. Het onderdeel 'STATISTICS' kan verlaten worden door het indrukken van functietoets F1.

4.9.3 'SCOPE DISPLAY'

76

Indien in het processing menu 'SCOPE DISPLAY' wordt gekozen, dan heeft de variabele **Option** de waarde '3'. Met het onderdeel 'SCOPE DISPLAY' worden de signalen per kast geselecteerd. Er worden dus twee headers ingelezen en afgebeeld op het scherm. Ook worden er twee datafiles ingelezen en komen er twee grafieken tegelijk op het scherm. Dit alles werkt op dezelfde manier als besproken is bij de programma's 'PROGRAM 83' en 'PROGRAM 85'.

4.9.4 'CURSORS'

Indien in het processing menu 'CURSORS' wordt gekozen, dan heeft de variabele Option de waarde '4'. Met het programma-onderdeel 'CURSORS' kan slechts één signaal tegelijk bekeken worden. Het signaal wordt geselecteerd met de al bekende subroutine Select_channels. De variabele Max_channels heeft nu de waarde '1'. Hierna wordt de routine Cursor_l met de volgende parameters aangeroepen:

Header 1\$(*) → De header van het geselecteerde kanaal;

Block(*) → De ingelezen data;

Exp\$

Het experimentnummer.

In deze SUB worden eerst een aantal variabelen gedeclareerd en geïnitialiseerd. Vervolgens wordt de grafiek getekend. Hiervoor wordt naar de subroutine Draw curve gesprongen. Nadat het plaatje is

getekend, wordt naar de subroutine Trace_cursor gesprongen. Alle bewerkingen, die op de grafiek kunnen worden uitgevoerd vinden in deze routine plaats. Allereerst wordt menu 1 actief gemaakt. Het menunummer wordt bijgehouden in de variabele Menu_no. De functietoetsen worden in menu 1 op de volgende manier gedefinieerd:

Fl	CURSOR MOVES	→ Activeer cursor verplaatsingsfuncties;
F2	X-MARKERS	→ Activeer een cursor langs de X-as;
F3	Y-MARKERS	→ Activeer een cursor langs de Y-as;
F4	MARKER FUNCTS	→ Activeer de 'markers' functies;
F5	GRID on/off	→ Toggle om het grid aan of uit te zetten;
F6	SCALE WINDOW	→ Inzoomen;
F7	COPY TO PRINTER	→ Maak een afdruk van de grafiek;
F8	EXIT	→ Verlaat 'CURSORS'.

Na het drukken op F1 (CURSOR MOVES) kan de cursor verplaatst worden met behulp van functietoetsen (werkt alleen als de functie X-markers actief is). Hiervoor wordt naar de subroutine Move_cursor gesprongen. In deze routine wordt menu 2 (Menu_no=2) actief gemaakt. Hierna wordt teruggesprongen naar de routine Trace_cursor. De functietoetsen worden hier op onderstaande manier gedefinieerd:

Fl	< HOME	→ Verplaats de cursor helemaal naar links;
F2	< CURSOR	→ Verplaats de cursor naar links;
F3	CURSOR >	→ Verplaats de cursor naar rechts;
F4	HOME >	→ Verplaats de cursor helemaal naar rechts;
F8	OTHER MENU	Activeer het hoofdmenu.

Door het drukken op F2 (X-MARKERS) wordt de X-markers-functie actief gemaakt. Er wordt nu een cursor op het scherm gezet op het punt met de hoogste y-waarde. Hiervoor wordt naar de subroutine X_markers gesprongen. Vanuit deze routine wordt naar de subroutine Draw_cursor gesprongen. Hierna wordt menu 3 (Menu_no=3) actief gemaakt. Hierna wordt teruggesprongen naar Trace cursor. Hier worden de functietoetsen op de volgende manier gedefinieerd:

Pagina	PML 233492002
78	

Fl	HOLD LEFT on/off	→ Houdt de linkerpositie vast;
F2	HOLD CNTR on/off	→ Houdt de middenpositie vast;
F3	HOLD RIGHT on/off	→ Houdt de rechterpositie vast;
F4	HOLD OFF on/off	→ Houdt beide posities vast;
F5	SINGLE on/off	→ Houdt geen enkele positie vast;
F8	OTHER MENU	→ Activeer her hoofdmenu.

De cursor kan bestuurd worden met de muis en met behulp van de cursortoetsen. Tevens kan de cursor met de functietoetsen bestuurd worden. Hiervoor moet in het hoofdmenu de functie 'CURSOR MOVES' geactiveerd worden. Indien één van de bovenstaande functies wordt geactiveerd, dan wordt de vorige geselecteerde functie uitgeschakeld. Voor de functie Y-MARKERS gelden dezelfde functietoetsen als bij X-markers behalve F1 en F3. Deze zijn bij Y-MARKERS respectievelijk HOLD UPPER, om de bovengrens vast te houden, en HOLD LOWER, om de ondergrens vast te houden. De gekozen cursormode wordt bijgehouden in de variabele Cursor_mode. (1=X-markers en 2=Y-markers).

Met functietoets F4 (MARKER FUNCT'S) worden de markers-functies actief gemaakt. Hiervoor wordt naar de subroutine Marker_functs gesprongen. Hier wordt menu 4 (Menu_no=4) geactiveerd. Vervolgens wordt teruggesprongen naar Trace_cursor. De functietoetsen worden hier op onderstaande manier gedefinieerd:

FI	SLOPE on on	→ Laat de helling van het signaal zien;
F2	DELTA on/off	→ Berekent het verschil tussen 2 markeringen;
F3	PEAK on/off	→ Berekent de pieken in het signaal;
F6	FULL SCALE	→ Tekent de grafiek op de volle X-schaal;
F7	MARKER SCALE	→ Tekent het gedeelte van de grafiek binnen de markeringen;
F8	OTHER MENU	→ Activeer het hoofdmenu.

Deze functietoetsen worden alleen geactiveerd als de functie X-markers actief is. Is dat niet het geval dan wordt alleen functietoets F8 gedefinieerd.

Bij de functie 'SLOPE' wordt de helling van de grafiek berekend op het punt waar de marker staat. Met de functie 'DELTA' wordt het verschil bepaald tussen 2 markeringen (in de X- en de Y-richting). Hiervoor moeten er wel twee markeringen actief zijn. Deze functie werkt ook als de functie Y-markers actief is. De functie 'PEAK' berekent de pieken in het signaal. Hier worden nog twee functietoetsen actief gemaakt. Dit zijn de functietoetsen F4 en F5, deze dienen om respectievelijk

de vorige en de volgende piek in het signaal te bepalen. De functie 'FULL SCALE' werkt ook als de functie Y-markers actief is. Tevens moet de grafiek zijn ingezoomd. Het tekent de grafiek op een volledige X-schaal. De Y-schaal verandert hier niet. De functie 'MARKER SCALE' tekent het gedeelte van de grafiek, dat aangegeven wordt door de twee markeringen. Deze functie is alleen beschikbaar als er twee markeringen op het scherm aangegeven zijn. Met functietoets F8 wordt het hoofdmenu weer geactiveerd.

Met functietoets F5 (GRID on/off) wordt een extra fijn grid in de grafiek getekend. Hiervoor wordt naar de subroutine Grid_on_off gesprongen.

Met functietoets F6 (SCALE WINDOW) wordt naar de routine Scale_window gesprongen. Hier wordt menu 6 (Menu_no=6) actief gemaakt. Vervolgens wordt teruggesprongen naar Trace_cursor. Hier worden de volgende functietoetsen actief gemaakt:

F1 FULL X/Y SCALE → Tekent de ingezoomde grafiek op de volledige X- of Y-schaal;

F2 MOVE WINDOW

→ Hiermee kan gescrolled worden door de grafiek;

F3 DEFAULT SCALES → Tekent de ingezoomde grafiek op het ingestelde Y-bereik;

F4 MIN/MAX SCALES → Tekent de grafiek op de volle X-schaal. Het bereik langs de Y-as is de minimale en de maximale waarde van de grafiek;

F5 ZOOM IN → Hiermee kan de grafiek ingezoomd worden;

F6 ZOOM OUT → Hiermee kan de grafiek uitgezoomd worden;

F8 OTHER MENU -- Activeer het hoofdmenu.

De functietoetsen F1, F2 en F6 werken alleen als de grafiek is ingezoomd.

De functie 'FULL SCALE' (F1) tekent de grafiek op het volledige X- of Y-bereik. Het bereik dat volledig getekend wordt, is afhankelijk van de variabele Cursor_mode.

Met de functie 'MOVE WINDOW' (F2) kan, als de grafiek niet in z'n geheel op het scherm staat, gescrolled worden in de X- of de Y-richting. Ook dit is afhankelijk van de variabele Cursor_mode. Voor het scrollen wordt naar de routine Move_window gesprongen. Hier wordt menu 5 actief gemaakt. Vervolgens wordt teruggesprongen naar Trace_cursor. Hier worden de functietoetsen op één van de onderstaande manieren gedefinieerd:

80 → Verschuif het window 10% naar links; F3 << 10% LEFT 10% F4 << 5% LEFT 5% → Verschuif het window 5% naar links; 5% >>RIGHT 5% F5 → Verschuif het window 5% naar rechts; F6 10% >>RIGHT 10% → Verschuif het window 10% naar rechts; F7 EXECUTE → Voer de verschuiving uit; F8 OTHER MENU → Activeer het hoofdmenu;

F3 << 10% DOWN 10% → Verschuif het window 10% naar beneden; F4 << 5% DOWN 5% → Verschuif het window 5% naar beneden; 5% >>UP 5% → Verschuif het window 5% omhoog; F6 10% >>UP 10% → Verschuif het window 10% omhoog; F7 EXECUTE → Voer de verschuiving uit; OTHER MENU -> Activeer het hoofdmenu.

Pagina

De functie 'DEFAULT SCALES' (F3) uit het 'SCALE WINDOW' menu tekent de grafiek op het volledige bereik langs de Y-as. Dit is het voor de meting ingestelde bereik. De x-as blijft ingezoomd.

De functie MIN/MAX SCALES (F4) berekend de minimale en de maximale y-waarde van de grafiek. Deze twee waarde vormen het bereik langs de y-as. De grafiek wordt op het volledige bereik van de x-as getekend.

Met functietoets F5 (ZOOM IN) kan de grafiek worden ingezoomd. Hiervoor wordt naar de subroutine Zooming_in gesprongen. Vanuit deze subroutine wordt de routine Zoom_window met de volgende parameters aangeroepen:

Data(*) → De ingelezen data;

Zoom_exec → Geeft aan of de zoomfunctie uitgevoerd moet worden;

Dt → Dummy variabele.

In deze SUB worden na het declareren en initialiseren van een aantal variabelen de functietoetsen op onderstaande manier gedefinieerd:

Pagina

RI

F1 MOVE BOX

→ Verplaats het zoomvenster;

F2 ZOOM X

→ Zoomen in de x-richting;

F3 ZOOM Y

→ Zoomen in de y-richting;

F4 ZOOM XY

→ Zoomen in beide richtingen;

F7 EXECUTE

→ Voer de zoomfunctie uit;

F8 OTHER MENU/ RETURN → Activeer het voorgaande menu.

Met functietoets F1 kan het gedeelte van de grafiek, dat ingezoomd wordt verplaatst worden. Met de functietoetsen F2 en F3 kan respectievelijk in de x- en de y-richting gezoomd worden. Met functietoets F4 kan in beide richtingen ingezoomd worden. Met functietoets F7 wordt de zoomfunctie uitgevoerd. Het bereik van de beide assen wordt aangegeven met de variabelen Mini_x, Maxi_x, Mini_y en Maxi_y. De variabele Zoom_execution wordt hier eveneens '1' gemaakt. Met functietoets F8 wordt de ingeschakelde zoomfunctie (MOVE BOX, ZOOM_X, ZOOM_Y of ZOOM_XY) uitgeschakeld (RETURN). Als geen van deze functies actief is, wordt het SCALE WINDOW menu weer actief gemaakt.

Met functietoets F6 (ZOOMING OUT) uit het 'SCALE WINDOW' menu kan het ingezoomde deel van de grafiek worden vergroot of verkleind. Hiervoor wordt naar de routine Zooming_out gesprongen. In deze routine wordt menu 7 (Menu_no=7) actief gemaakt. Vervolgens wordt teruggesprongen naar Trace_cursor. Hier worden de functietoetsen op onderstaande manier gedefinieerd:

F1 X ZOOM on/ff → Zoomen in de x-richting;
F2 Y ZOOM on/off → Zoomen in de y-richting;
F7 EXECUTE → Voer de zoomfunctie uit;
F8 OTHER MENU → Activeer het hoofdmenu.

Als één van deze twee toetsen geactiveerd wordt, dan worden er nog twee functietoetsen geactiveerd. Dit zijn de volgende twee toetsen:

F3 X/Y ZOOM OUT → Uitzoomen in de x- of de y-richting; F4 X/Y ZOOM IN → Inzoomen in de x- of de y-richting.

In welke richting gezoomd wordt, is afhankelijk van de functie die gekozen is (X-ZOOM of Y-ZOOM). Met de functietoetsen F3 en F4 kan het bereik langs de gekozen as worden vergroot of

PML 233492002

- 1

verkleind. Met functietoets F7 wordt de zoomfunctie uitgevoerd. Met functietoets F8 wordt het hoofdmenu van CURSORS actief gemaakt.

Met functietoets F7 (COPY TO PRINTER) wordt een afdruk gemaakt op de printer van de op het scherm afgebeelde grafiek. Hiervoor wordt naar de subroutine **Printer** gesprongen. Hier wordt met het commando '**DUMP GRAPHICS**' een afdruk gemaakt op de printer.

Met functietoets F8 (EXIT) wordt het programma-onderdeel 'CURSORS' verlaten en wordt het processing menu op het scherm gezet. Het processing menu kan met functietoets F1 worden verlaten, waarna het hoofdmenu van het programma wordt geactiveerd. Door nogmaals op functietoets F1 te drukken wordt het programma 'DISPLAY' verlaten en wordt het besturingsprogramma 'MASTER' geladen.

4.10 Het programma 'MEAS_MASTER'

Met het programma 'MEAS_MASTER' kan een meting met alle digitizers (LF, MF en HF) worden uitgevoerd. Na het verrichten van de metingen wordt, nadat de MF en de HF digitizers zijn uitgelezen, de LF data meteen op het scherm vertoond. Voor het bekijken van de MF en de HF data moet het programma 'DISPLAY' gebruikt worden. Van het programma 'MEAS_MASTER' is een structuurdiagram getekend in bijlage 10.

Aan het begin van het programma worden allereerst de bijbehorende modulen geladen. Dit zijn de modulen 'USER', 'OTHER' en 'LOCK'. Vervolgens wordt de 'lock'-status gecontroleerd en op het scherm gezet. Hiervoor worden respectievelijk de routines Lock_avail en Lock_status aangeroepen. Als het software-slot gesloten is moet het programma via het drukken op F1 verlaten worden.

Is het software-slot niet gesloten dan wordt het programma 'MEAS_MASTER' beëindigd en wordt het programma 'PROG_83' geladen. Met dit programma worden de MF digitizers ingesteld.

4.11 De programma's 'PROG_83' en 'PROG_85'

Met de programma's 'PROG_83' en 'PROG_85' worden respectievelijk de MF en de HF digitizers geïnitialiseerd en gekalibreerd. Tevens worden in deze programma's de codes voor de MF en de HF digitizers gegenereerd. Deze twee programma's zitten op dezelfde manier in elkaar, zodat hier wordt volstaan met het beschrijven van 'PROG_83'. Van het programma 'PROG_83' is een structuurdiagram getekend in bijlage 11.

Pagina

83

7

Het programma 'PROG_83' begint met het declareren en initialiseren van een aantal variabelen. Vervolgens worden de bijbehorende softwaremodulen geladen. Dit zijn de modulen 'MENU_83', 'USER', 'UTIL', 'OTHER', 'SETUP_83' en 'MEASURE_83'. Vervolgens worden de kanaalgegevens ingelezen. Hiervoor wordt de routine Hp5183_chan_id (Zie 'SETUPS' §4.3) aangeroepen. Hierna worden de digitizers geïnitialiseerd met de routine Hp5183_initial (Zie 'PROGRAM_83' §4.5). Na het initialiseren van de digitizers worden de setup gegevens ingelezen. Dit gebeurt in de routine Hp5183_setup_r (zie 'SETUPS' §4.3). Nadat de setup gegevens zijn ingelezen, worden de input channel parameters in de array Channel_setup83(*) gezet. Hiervoor wordt voor elke kanaal de routine Hp5183_set_inp uit de module 'SETUP_83' met onderstaande parameters aangeroepen:

Unit

→ Het kastnummer;

J+1

→ Het kanaalnummer (1 of 2);

S_range

→ Het ingestelde bereik;

S offset

→ De ingestelde offset;

S coupling

→ De ingestelde 'coupling' (0=NC, 1=DC, 2=AC);

S config

→ De meetmethode (1= SINGLE, 2=DIFFERENTIAL);

S_filter

→ Anti-aliasing filter (1=aan, 0=uit).

Nadat deze array gevuld is met de juiste waarden, worden de geheugenparameters in de array Common_setup83(*) gezet. Het vullen van deze array gebeurt in de routine Hp5183_set_mem uit de module 'SETUP_83', die met de volgende parameters wordt aangeroepen:

Unit

→ Het kastnummer;

S mode

 \rightarrow De ingestelde 'coupling' (0=NC, 1=DC, 2=AC);

S_rec_length

→ De ingestelde recordlengte.

Deze twee routines converteren tevens de gegevens in deze twee array's naar HP5183 registerwaarden. Deze gegevens worden opgeslagen in de array Snap_image83(*).

Vervolgens worden de digitizers gekalibreerd. Hiervoor wordt de routine Hp5183_calibr aangeroepen (zie 'PROGRAM_83' §4.6). Nadat de digitizers zijn gekalibreerd, worden de triggerparameters in de array Common_setup83(*) gezet. Hiervoor wordt voor elke kast de routine Hp5183_set_trig uit de module 'SETUP 83' met de onderstaande parameters aangeroepen:

Pagina PML 233492002 84

Unit → Het kastnummer;

S_source → De trigger-source (1=kanaal 1, 2=kanaal 2, 3=beide, 4=extern);

S slope
→ De trigger-flank (2=positief, 3=negatief, 4=beide flanken);

S_level → Het trigger-level;

S hyst → De hysteresis;

S_position \rightarrow De trigger-positie.

Tevens worden deze waarden geconverteerd naar HP5183 registerwaarden. Deze waarden worden opgeslagen in de array Snap_image83(*). Vervolgens worden de timebase-parameters in de array Common_setup83(*) gezet. Hiervoor wordt de routine Hp5183_set_tmb uit de module 'SETUP 83' met de volgende parameters aangeroepen:

Unit → Het kastnummer;

S_sample_rate → De sample-frequentie

S_sclk_src → De sample-klok source (1=intern, 1=laag extern, 2=hoog

extern);

S rclk src → De referentieklok (0=intern, 1=1 MHz extern, 2=4 MHz extern,

3=10 MHz extern).

Ook deze waarden worden geconverteerd naar HP5183 registerwaarden. Deze waarden worden eveneens opgeslagen in de array Snap image83(*).

Als laatste worden nog enige aanvullende gegevens in de array Common_setup83(*) gezet. Vervolgens worden deze gegevens geconverteerd naar HP5183 registerwaarden, die opgeslagen worden in de array Snap_image83(*). Hiervoor worden respectievelijk de routines Hp5183_fill_com en Hp5183_bitgen uit de module 'MEASURE_83' aangeroepen. Deze routines hebben als enige parameter het kastnummer. Hierna wordt het programma 'PROG_83' beëindigd en wordt het programma 'PROG_85' geladen.

Nadat de code voor de HF digitizers is gegenereerd en de digitizers zijn geInitialiseerd en gekalibreerd wordt het programma 'PROG_65' geladen.

Pagina

85

4.12 Het programma 'PROG' 65'

Voor de beschrijving van het programma 'PROG_65' wordt verwezen naar de beschrijving van het programma 'PROGRAM_65' in §4.5. Deze programma's zijn identiek, totdat op de 'START' knop wordt gedrukt. Daarnaast worden er enige extra software-modulen geladen. Dit zijn de modulen 'UTIL', 'MEASURE_83', 'MEASURE_85' en 'LOCK'. Een ander verschil is dat vóór het invullen van de menu's het soort meting ingesteld moet worden. Hiervoor wordt aan het begin van het programma de routine Start_option aangeroepen. Deze routine heeft geen parameters. In deze routine wordt ingesteld of de meting automatic, manual of simultaneous moet verlopen. Dit wordt bijgehouden met de variabele Auto_:nanual. Deze variabele kan drie waarden aannemen (0=manual, 1=automatic, 2=simultaneous).

Nadat de 'START' knop is ingedrukt wordt de routine Appl_start met de parameter Good_disc_data aangeroepen. In deze routine wordt een thruput voor de LF digitizers gestart. Tevens worden vanuit deze routine de MF en de HF digitize. s gestart. Van de SUB Appl_start is een structuurdiagram getekend in bijlage 12.

Voor het starten van de meting wordt de routine Thru_do_thruput met de parameter Good_disc_data aangeroepen. Deze routine start het thruput icode programma voor het verrichten van een LF meting. Tevens wordt de meting voor de MF en de HF digitizers gestart vanuit deze routine. Hiervoor worden respectievelijk de routines Hp5183_meas en Hp5185_meas aangeroepen. Deze parameters hebben als parameter de waarde '1'. Dit om aan te geven dat de meting gestart moet worden.

Na het beëindigen van de meting worden de routines Hp5183_meas en Hp5185_meas nogmaals aangeroepen. Nu echter met de waarde '2' als parameter. Dit om aan te geven dat de digitizers uitgelezen kunnen worden en de opgenomen data opgeslagen kan worden in de files 'DATA83_x' en 'DATA85_x'. Hierbij staat de x voor het kanaalnummer.

Na het inlezen van de data kan het programma op de manier, zoals beschreven bij het programma 'PROGRAM_65' worden verlaten, waarna teruggekeerd wordt naar het 'MASTER' besturingsprogramma.

Pagina PML 233492002 86

4.13 Het programma 'MASTER'

Met het programma 'MASTER' kunnen de verschillende programma's via een programma selectiemenu opgestart worden. Van dit programma is een structuurdiagram getekend in bijlage 13.

Het programma begint met het declareren en initialiseren van een aantal variabelen. Hiema worden de bijbehorende softwaremodulen geladen. Dit zijn de modulen 'USER' en 'OTHER'. Vervolgens komt het programma in een lus terecht. In deze lus wordt de SUB **Program_menu** met de variabele **Option** als enige parameter aangeroepen. Deze SUB zet het programma selectie menu op het scherm. Met de variabele **Option** wordt bijgehouden welk programma is gekozen. De naam van het programma wordt opgeslagen in de variabele **Program\$**. Hiervoor geldt onderstaande tabel.

Tabel 21 Variabelen in het Program\$

Option	Program\$	Omschrijving
1	UNIT_MNGR	Unit management
2	CHANNELS	Kanaal identificatie
3	SETUPS	Hardware setup
4	DATA_MNGR	Data management
5	SPAM	HP3565 meting
6	PROGRAM_65	HP3565 thruput
7	DIAGNOSE	Niet beschikbaar
8	PROGRAM_83	HP5183 meting
9	OP_VER83	HP5183 verificatie
10	PROGRAM_85	HP5185 meting
11	OP_VER85	HP5185 verificatie
12	DISPLAY	Display data HP518x
13	MEAS_MASTER	Master measurement
14	TIME_DATE	Instellen datum en tijd
15	SYSB60	Reboot BASIC
16	SYSHPUX	Reboot UNIX
17	MASTER	Verlaat MASTER

Pagina

Als de variabele Option een waarde kleiner dan 14 heeft, wordt het bijbehorende programma geladen. Heeft de variabele Option de waarde 14, dan wordt de routine Timedate menu met onderstaande parameters aangeroepen:

1

→ Mode;

ClockS

→ De tijd;

Calendar\$

→ De datum.

Bij mode 0 krijgen de variabelen Clock\$ en Calendar\$ de huidige tijd en datum. Bij mode 1 kan de tijd en datum via een menu ingevuld worden.

Heeft Option de waarde 15 dan moet de keuze nog een keer bevestigd worden. Hiervoor worden de functietoetsen op onderstaande manier gedefinieerd:

reboot BASIC Fl

→ Start BASIC opnieuw op;

F8 stay at BASIC → Blijf in BASIC.

Wordt de gemaakte keuze met functietoets F1 bevestigd, dan wordt met het commando 'SYSBOOT Program\$' BASIC opnieuw opgestart. Indien de gemaakte keuze niet bevestigd wordt, blijft het programma selectiemenu actief.

Heeft Option de waarde 16 dan moet de keuze eveneens bevestigd worden. Hiervoor worden de functietoetsen op onderstaande manier gedefinieerd:

Fl go for HP-UX → Start UNIX op;

F8 stay at BASIC → Blijf in BASIC.

Wordt de gemaakte keuze met functietoers F1 bevestigd, dan wordt met het commando 'SYSBOOT Program\$' UNIX opgestart. Indien de gemaakte keuze niet bevestigd wordt, blijft het programma selectiemenu actief.

Heeft de variabele Option de waarde 17 dan wordt het programma 'MASTER' beëindigd en wordt teruggekeerd naar BASIC.

PML 233492002

88

5

ONDERTEKENING

& W. Kartham

M, Koops

(Projectleider)

G.H. Olthof

(Auteur)

6 REFERENTIES

- System reference for HP 35650 Series Hardware and HP VISTA, Hewlett Packard Company, 1986
- Operating and Programming manual 5183A Waveform Recorder, Hewlett Packard Company, November 1988
- Operating and Programming manual 5185A Waveform Recorder, Hewlett Packard Company, September 1987
- 4 Introduction to Programming The HP 35650 Series Hardware, Hewlett Packard Company,
 Oktober 1986

Pagina

BIJLAGE 1 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA 'UNIT_MNGR'

PML 233492002

Pagina

BIJLAGE 2 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA 'CHANNELS'

BIJLAGE 1

Pagina

PML 233492002

Pagina

BIJLAGE 3 STRUCTUURDIAGRAM VAN HET PROGRAMMA 'SETUPS"

BIJLAGE 1

Pagina

PML 233492002

PML 233492002

Pagina

BIJLAGE 4 STRUCTUURDIAGRAM VAN HET PROGRAMMA 'DATA MNGR'

BIJLAGE 1

Pagina

PML 233492002

2

-4.1

PML, 233492002

Pagina

4.1

PML 233492002

.

Pagina

5

-

PML 233492002

6

į. Į

Pagina

Pagina

BIJI AGE 5 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA PROGRAM_65"

Pag na

2

PML 233492002

Aktiveer F7 Ingevoerde BDAT file aanwezig? Initialiseer parameterblok voor thruput icode programma Setup Thru_init_parm veranderd? op START Start thruput en bewaar data op disk Appl_start gedrukt? op START Foutmelding gedrukt? UNTIL niet op functietoets gedrukt Hier wordt de gemaakte keuze uitgevoerd Appl do main Functietoetsen Aktiveer post-thruput toetsen GOSUB Appl_other_keys veranderd? GOSUB Appl_main_keys thruputtoetsen

. 1

4

PML 233492002

Pagina

5

t

Pagina

1

BIJLAGE 6 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA 'PROGRAM 83'

PML 233492002

Pagina

t

BIJLAGE 1

Pagina

PML 233492002

4.

PML 233492002

~ 4"

Pagina

BIJLAGE 7 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA 'OP_VER83'

Pagina

BIJLAGE 8 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA 'OP_VER85'

4.1

Pagina

BIJLAGE 9 STRUCTUURDIAGRAMMEN VAN HET PROGRAMMA 'DISPLAY'

,,+

2

PML 233492002

. **. .** .

Pagina

3

PML 233492002

+

TNO-rapport

BIJLAGE 9

PML 233492002

Pagina

BIJLAGE	ı
---------	---

PML 233492002

0

	-	-
M	UNU	3

UPDATE

endPLOT

F7

F8

OTHER MENU

F1 HRD COPY GOTO Hard copy → Maak afdruk op printer of plotter Hard_copy: Fl PRINTER → GOTO Printer plot → Afdruk op printer F3 PLOTTER GOTO Plotter_plot → Afdruk op plotter F7 CANCEL GOTO Default_keys Annuleer hardcopy F8 endPLOT **GOTO Exit** → Verlaat Mulitplot REPLACE F2 GOTO Add → Vervang de geselecteerde grafiek door een andere grafiek F3 REMOVE **GOTO** Delete → Wis de geselecteerde grafiek F4 RESCALE GOTO Rescale → Bepaal de minimum en de maximum waarde van de geselecteerde grafiek. Teken alle grafieken op dit

GOTO Update

GOTO Exit

GOSUB Toggle menu

bereik.

→ Teken alle grafieken opnieuw

Activeer Menu2

→ Verlaat Multiplot

Pagina

ME	NU 2				
F1	WINDOW	\rightarrow	GOTO Window	\rightarrow	Inzoomen van de grafiek
Wir	adow:				
Fl	TOP	→	GOTO Top	→	Verplaats bovenas
F2	BOTTOM	\rightarrow	GOTO Bottom	→	Verplaats onderas
F5	UP	\rightarrow	GOSUB Cursor_large	\rightarrow	Verplaats geselecteerde as omhoog
F6	DOWN	\rightarrow	GOSUB Cursor_small	→	Verplaats geselecteerde as omlaag
F3	LEFT	\rightarrow	GOTO Left	→	Verplaats linkeras
F4	RIGHT	>	GOTO Right	→	Verplaats rechteras
F5	toLEFT	\rightarrow	GOSUB Cursor_small	→	Verplaats geselecteerde as omhoog
F6	toRIGHT	\rightarrow	GOSUB Cursor_large	→	Verplaats geselecteerde as omlaag
F7	CANCEL	\rightarrow	GOTO Previous	→	Annuleer
F8	EXECUTE	\rightarrow	GOTO Zoom	\rightarrow	Voer zoomfunctie uit
F2	ZOOM OUT	→	GOTO Zoom_out	\rightarrow	Uitzomen
F3	FULL VIEW	→	GOTO Plot_all	\rightarrow	Teken alle grafieken op het origi-
					nele bereik
F4	UPDATE	→	GOTO Update	\rightarrow	Teken de grafieken opnieuw
F5	TRACE	→	GOTO Trace	\rightarrow	Activeer 'Trace' functies
Tra	ce:				
FI	CURSOR	→	GOSUB Trace_currsor	\rightarrow	Activeer cursor functies
Tra	ce_cursor:				
FI	< HOME	→	GOTO Home_left	→	Cursor helemaal naar links
F2	< CURSOR	→	GOSUB Left_cursor	\rightarrow	Beweeg cursor naar links
F3	CURSOR >	→	GOSUB Right_cursor	\rightarrow	Beweeg cursor naar rechts
F4	HOME >	→	GOTO Home_right	\rightarrow	Cursor helemaal naar rechts
F5	hrdCOPY	→	GOSUB Trace_hardcopy	\rightarrow	Afdruk op printer
F6	PRINT	~→	GOSUB Print_value	\rightarrow	Afdrukken van de met de cursor
					aangegeven waarde
F8	endCURSOR	→	GOSUB Trace_keys	→	Activeer Trace' functies
F2	SCROLL	\rightarrow	GOSUB Trace_scroll	→	Scrollen van de grafiek. Is alleen
					actief als de grafiek is ingezoomd

BIJLAGE 1

endPLOT

F8

Pagina

PML 233492002

8

Trace scroll: FIto BEGIN GOTO Scroll_begin Cursor helemaal naar links Beweeg cursor naar links F2 <LEFT GOTO Scroll left **→** F3RIGHT > GOTO Scroll_right → Beweeg cursor naar rechts GOTO Scroll end Cursor helemaal naar rechts F4 to END GOTO Scroll_cancel Afdruk op printer F5 CANCEL EXECUTE GOTO Scroll_exec Afdrukken van de met de cur-F6 sor aangegeven waarde endSCROLL GOTO Trace_keys Activeer 'Trace' functies **MATH** F3 GOSUB Trace_math Mathematische functies Trace math: FI INTEG **GOTO** Integrate Integreer grafiek F2 **MOVING AVARAGE** GOTO Moving_average → Bepaal gemiddelde F3RESTORE ORIGINAL GOTO Restore_plot Herstel origineel F4 Activeer 'Trace' functies end MATH GOSUB Trace keys DELTA GOSUB Trace_delta Delta functies Trace delta: end DELTA Activeer 'Trace' functies Fl GOSUB Trace keys F8 endTRACE **GOTO Endurace** Einde 'Trace' functies OTHER MENU GOSUB Toggle_menu Activeer Menul F7

GOTO Exit

Verlaat Multiplot

-

Pagina

9

PML 233492002

t

Pagina

11

HIS	STO KEYS:			
Fl	CURSOR	→ GOTO Bin_cursor	\rightarrow	Activeer 'cursor' functies
Bin	_cursor:			
Fl	<<-	→ GOSUB Move_cursor_1	→	Beweeg de cursor naar links
F2	off_CURSOR	→ GOTO Turn_off_cursor	\rightarrow	Afdruk op plotter
F3	→>	→ GOSUB Move_cursor_r	\rightarrow	Beweeg de cursor naar rechts
F4	Zie F4 uit Histo_ke	eys		
F5	Zie F5 uit Histo_k	eys		
F6	Zie F6 uit Histo_ke	eys .		
F 7	HRD COPY	→ GOTO Hard_copy	\rightarrow	Maak een afdruk op de printer of
				plotter
Ha	rd_copy:			
Fl	PRINTER	→ GOTO Printer_plot	\rightarrow	Afdruk op printer
F3	PLOTTER	→ GOTO Plotter_plot	→	Afdruk op plotter
F5	CANCEL	→ GOTO Cancel_plot	\rightarrow	Annuleer
F8	endPRINT	→ GOTO Exit	\rightarrow	Verlaat Statsplot
F8	endPLOT	→ GOTO Exit	→	Verlaat Mulitplot
F2	NEW INTS	→ GOTO New_ints	→	Selecteer een nieuw interval
Nev	v_ints:			
F2	Param_val\$	→ GOSUB Choose_next	→	Verhoog of verlaag het interval
F4	EXECUTE	→ GOTO New_plot	\rightarrow	Teken de grafiek opnieuw
F4	CDF	→ GOTO Choose_cdf	→	Teken de cumulatieve distributie-
				functie
F5	NEW CHAN	→ GOTO New_chan	→	Selecteer een nieuw kanaal. De
				functietoetsen zijn gedefinieerd als bij
Nev	v_inta:			
F6	NEW SCAN	→ GOTO New_scan	→	Selecteer een nieuwe scan. Voor func-
		_		tietoetsen definities zie New_ints.
F7	HRD COPY	→ GOTO Hard_copy	→	Mask een afdruk op de printer of
		•		plotter.
F8	endSTAT	→ GOTO Exit	→	Verlaat Multiplot

De CDF functietoetsen zijn op dezelfde manier gedefinieerd als de histogram functietoetsen. Met functietoets F4 wordt het histogram getekend.

BIJLAGE 1

Pagina 12 PML 233492002

5.4

Pagina

.

BIJLAGE 1

Pagina 14 PML 233492002

-

Pagina 15

~†

PML 233492002

16

ا بن

Pagina

17

۱.,

Pagina

BIJLAGE 10 STRUCTUURDIAGRAM VAN HET PROGRAMMA 'MEAS_MASTER'

Pagina

BIJLAGE 11 STRUCTUURDIAGRAM VAN HET PROGRAMMA 'PROG_83'

-4.1

BIJLAGE 1

Pagina

2

PML 233492002

, l

Pagina

BIJLAGE 12 STRUCTUURDIAGRAM VAN DE SUB Appl_start, BEHORENDE BIJ HET PROGRAMMA 'PROG_65'

Pagina

BIJLAGE 13 STRUCTUURDIAGRAM VAN HET PROGRAMMA 'MASTER'

t

REPORT DOCUMENTATION PAGE (MOD NL)		
1. DEFENSE REPORT NUMBER (MOD-NL)	2. RECIPIENT'S ACCESSION NUMBER	3. PERFORMING ORGANIZATION REPORT NUMBER
TD92-2416		PML1992-72
4. PROJECT/TASK/WORKUNIT NO.	5. CONTRACT NUMBER	6. REPORT DATE
233492002	A87/K/046	January 1993
7. NUMBER OF PAGES	8. NUMBER OF REFERENCES	9. TYPE OF REPORT AND DATES COVERED
147 (13 Annexes)	4	Final

10. TITLE AND SUBTITLE

User manual and program description of the Data Acquisition System of PML-Pulse Physics (Gebruikershandleiding en programmatuurbeschrijving van het Data Acquisitie Systeem van het Laboratorium voor Pulsfysica)

11. AUTHOR(S)

G.H. Olthof

12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TNO PML - Pulse Physics Laboratory

P.O. Box 45, 2280 AA Rijswijk, The Netherlands. Visiting Address: Schoemakersstraat 97, 2628 VK Delft

13. SPONSORING AGENCY NAME(S) AND ADDRESS(ES)

DWOO, Defence Research

P.O. Box 6006, 2600 JA Delft, The Netherlands

14. SUPPLEMENTARY NOTES

The classification designation: ONGERUBRICEERD is equivalent to: UNCLASSIFIED

15. ABSTRACT (MAXIMUM 200 WORDS (1044 BYTE))

This report describes the hardware and software of the Data Acquisition System (DAS) used at the PML-Pulse Physics Laboratory for their experimental research.

The first part deals with the hardware specifications. How to set up the DAS for performing measurements, is described in the second part of this report. This part can be used as a user's manual of the DAS. For documentation purposes a detailed description of the software is added at the end of the report.

16. DESCRIPTORS	IDENTIFIERS
Hardware	Data Acquisition
Software	Pulsed Power Research
Manual	į –

17A. SECURITY CLASSIFICATION (OF REPORT)	17B. SECURITY CLASSIFICATION (OF PAGE)	17C. SECURITY CLASSIFICATION (OF ABSTRACT)
ONGERUBRICEERD	ONGERUBRICEERD	ONGERUBRICEERD
18. DISTRIBUTION AVAILABILITY STATEMENT		17D. SECURITY CLASSIFICATION (OF TITLES)
Unlimited Distribution		ONGERUBRICEERD

Distributieliist

l.	DWOO
2	HWO-KL
3/4	HWO-KLu
5	HWO-KM
5	PHWO-KM
	DMKM/PFS Ir. B. v.d. Ploeg
3	DMKL/T&WO Ir. J.B.J. Orbons
•	DMKLu/AWO/WO4 Vdg Ir. M. Jehee
.0	DMKM/WCS/COSPON Drs. W. Pelt
1/13	TDCK
4	Hoofddirecteur DO-TNO
5	Lid Instituuts Advies Raad PML Prof. drs. P.J. van den Berg
.6	Lid Instituuts Advies Raad PML Prof. ir. M.A.W. Scheffelaar
7	Lid Instituuts Advies Raad PML Prof. ir. H. Wittenberg
8	PML-TNO, Directeur; daarna reserve
9	PML-TNO, Directeur Programma; daarna reserv
0	PML-TNO, Documentatie
1	PML-TNO, Archief
2	PML-TNO, Pulsfysica, Hoofd
3	PML-TNO, Pulsfysica, Archief
4	PML-TNO, Pulsfysica, Documentatie

25/27 PML-TNO, Pulsfysica, EML

28

PML-TNO, Pulsfysica, PPR