Methods in Calculus (Chapter 3/Chapter 6)

In this chapter, we explore a variety of new techniques for integration, as well as how integration can be applied.

1:: Improper Integrals

"Evaluate $\int_{1}^{\infty} \frac{1}{x^2} dx$ or show that it is not convergent."

2:: Mean value of a function

"Find the mean value of $f(x) = \frac{4}{\sqrt{2+3x}}$ over the interval [2,6]."

3:: Differentiating and integrating inverse trigonometric functions

"Show that if $y = \arcsin x$, then $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ "

4:: Integrating using partial fractions.

"Show that
$$\int \frac{1+x}{x^3+9x} dx =$$

$$A \ln \left(\frac{x^2}{x^2+9}\right) + B \arctan \left(\frac{x}{3}\right) + c$$
"

Improper Integrals

STARTER 1: Determine $\int_{-1}^{1} \frac{1}{x^2} dx$. Is there an issue?

$$\int_{-1}^{1} \frac{1}{x^2} dx = \int_{-1}^{1} x^{-2} dx = [-x^{-1}]_{-1}^{1}$$
$$= \left(-\frac{1}{1}\right) - \left(-\frac{1}{-1}\right) = -1 - +1 = -2$$

What's odd is the we ended up with a negative value. But the whole graph is above the x axis! The problem is related to integrating over a discontinuity, i.e. the function is not defined for the entire interval [-1,1], notably where x=0. We will see when this causes and issue and when it does not.

We say the definite integral does not exist.

STARTER 2: Determine $\int_{1}^{\infty} \frac{1}{x^2} dx$. Is there an issue?

(Note: **the below is seriously dodgy maths** as we're not allowed to use ∞ in calculations – we'll look at the proper way to write this in a sec)

$$[-x^{-1}]_1^{\infty} = \left(-\frac{1}{\infty}\right) - \left(-\frac{1}{1}\right) = 0 + 1 = 1$$

Although the graph is extending to infinity, the **area** is **finite** because the y values converge towards 0. The result is therefore valid this time. This is an example of an **improper integral** and because the value converged, we say the definite integral exists.

STARTER 3: Determine $\int_0^1 \frac{1}{\sqrt{x}} dx$. Is there an issue?

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \int_0^1 x^{-\frac{1}{2}} dx = [2\sqrt{x}]_0^1$$
$$= 2\sqrt{1} - 2\sqrt{0} = 2$$

This is similar to the second example. Although $y \to \infty$ as $x \to 0$ (and not defined when x = 0), the area is convergent and therefore finite. The result of 2 is therefore valid.

The integral $\int_a^b f(x) dx$ is improper if either:

- · One or both of the limits is infinite
- f(x) is undefined at x = a, x = b are another point in the interval [a, b].

$$\mathscr{F}$$
 To find $\int_a^\infty f(x) \ dx$, determine $\lim_{t\to\infty} \int_a^t f(x) \ dx$

As mentioned, we can't use ∞ in calculations directly. We can make use of the lim function we saw in differentiation by first principles.

Evaluate $\int_1^\infty \frac{1}{x^2} dx$ or show that it is not convergent.

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx$$

$$= \lim_{t \to \infty} \left[-x^{-1} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left(-\frac{1}{t} - \left(-\frac{1}{1} \right) \right)$$

$$= 1$$

Evaluate $\int_{1}^{\infty} \frac{1}{x} dx$ or show that it is not convergent.

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx$$

$$= \lim_{t \to \infty} \left[\ln x \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left(\ln t - \ln 1 \right)$$

$$= \lim_{t \to \infty} \left(\ln t \right)$$

$$= \lim_{t \to \infty} \left(\ln t \right)$$
As $t \to \infty$, $\ln t \to \infty$

$$So, it is not convergent.$$

When f(x) not defined for some value

We need to avoid values with the range [a,b] for which the expression is not defined. But just as we avoided ∞ by considering the limit as $t \to \infty$, we can similarly find what the area converges to as x tends towards the undefined value.

Evaluate $\int_0^1 \frac{1}{x^2} dx$ or show that it is not convergent.

At zero,
$$\frac{1}{x^2}$$
 is not defined.

$$\int_0^1 \frac{1}{x^2} dx = \lim_{t \to 0} \int_t^1 \frac{1}{x^2} dx$$

$$= \lim_{t \to 0} \left(-x^{-1} \right]_t^1$$

$$= \lim_{t \to 0} \left(-\frac{1}{1} - \left(-\frac{1}{1} \right) \right)$$
As $t \to 0$, $\frac{1}{t} \to \infty$

Evaluate $\int_0^2 \frac{x}{\sqrt{4-x^2}} \ dx$ or show that it is not convergent.

At
$$x=2$$
, $\frac{3c}{\sqrt{4-x^2}}$ is undefined.

$$\int_0^2 x (4-x^2)^{-1/2} dx = \lim_{t \to 2} \int_0^t x (4-x^2)^{-1/2} dx$$

$$= \lim_{t \to 2} \left[-(4-x^2)^{1/2} \right]_0^t$$

$$= \lim_{t \to 2} \left(-(4-t^2)^{1/2} + (4)^{1/2} \right)$$

$$= \frac{2}{t^2}$$

When integrating between $-\infty$ and ∞

Suppose we want $\int_{-\infty}^{\infty} f(x) dx$. How could evaluate this?

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to -\infty} \int_{t}^{0} f(x) dx + \lim_{t \to \infty} \int_{0}^{t} f(x) dx$$

(a) Find $\int xe^{-x^2}dx$ (b) Hence show that $\int_{-\infty}^{\infty}xe^{-x^2}dx$ converges and find its value.

a)
$$\int x e^{-x^2} dx = -\frac{1}{2}e^{-x^2} + c$$

a)
$$\int x e^{-x^{2}} dx = -\frac{1}{2} e^{-x^{2}} + C$$

b) $\int_{-\infty}^{\infty} x e^{-x^{2}} dx = \lim_{t \to -\infty} \int_{t}^{0} x e^{-x^{2}} dx + \lim_{t \to \infty} \int_{0}^{t} x e^{-x^{2}} dx$

$$= \lim_{t \to -\infty} \left[-\frac{1}{2} e^{-x^{2}} \right]_{t}^{0} + \lim_{t \to \infty} \left[-\frac{1}{2} e^{-x^{2}} \right]_{0}^{t}$$

$$= \lim_{t \to -\infty} \left(-\frac{1}{2} + \frac{1}{2} e^{-t^{2}} \right) + \lim_{t \to \infty} \left(-\frac{1}{2} e^{-t^{2}} + \frac{1}{2} \right)$$

The Mean Value of a Function

How would we find the mean of a set of values y values $y_1, y_2, ..., y_n$? So the question then is, can we extend this to the continuous world, with a function y = f(x), between x = a and x = b?

$$\bar{y} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

$$\bar{y} = \frac{\int_a^b f(x) \, dx}{h - a}$$

Integration can be thought of as the continuous version of summation of the y values.

The width of the interval, b-a, could (sort of) be

thought of as the number of points in the interval on

an infinitesimally small

scale.

 \mathscr{I} The **mean value** of the function y = f(x)over the interval [a, b] is given by

$$\frac{1}{b-a} \int_{b}^{a} f(x) dx$$
We write it as \bar{y} or \bar{f} or y_{m} .

Find the mean value of $f(x) = \frac{4}{\sqrt{2+3x}}$ over the interval [2,6].

$$\int_{2}^{6} 4(2+3x)^{-1/2} dbc$$

$$= \left[\frac{8}{3}(2+3x)^{1/2}\right]_{2}^{6}$$

$$= \frac{8}{3}\sqrt{20} - \frac{8}{3}\sqrt{8}$$

$$= \frac{16}{3}\sqrt{5} - \frac{16}{3}\sqrt{2}$$

$$= \frac{16}{3}(\sqrt{5} - \sqrt{2})$$

$$= \frac{1}{4}(\sqrt{5} - \sqrt{2})$$

$$= \frac{1}{6-2}$$

$$= \frac{1}{6-2}$$

$$f(x) = \frac{4}{1 + e^x}$$

- (a) Show that the mean value of f(x) over the interval $[\ln 2, \ln 6]$ is $\frac{4 \ln \frac{9}{7}}{1}$
- (b) Use your answer to part a to find the mean value over the interval $[\ln 2, \ln 6]$ of f(x) + 4.
- Use geometric considerations to write down the mean value of -f(x) over the interval $[\ln 2, \ln 6]$

$$\begin{aligned}
&= \frac{8}{3}\sqrt{20} - \frac{8}{3}\sqrt{8} \\
&= \frac{16}{3}\sqrt{5} - \frac{16}{3}\sqrt{2} \\
&= \frac{16}{3}\sqrt{5} - \frac{16}{3}\sqrt{2} \\
&= \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2}) \\
&= \frac{1}{4} \times \frac{16}{3}(\sqrt{5} - \sqrt{2})
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$