SLAM 系统可观性和一致性分析

张谦

2020年2月23日

1 无偏估计、有效性和一致性

现实中常常有这样的问题,比如,想知道全体女性的身高均值 μ ,但是没有办法把每个女性都进行测量,只有抽样一些女性来估计全体女性的身高:

Tobin/Dusheck, Asking About Life, 2/e Figure 16.6

Height in inches

知乎 @马同学 Copyright © 2001 by Harcourt, Inc. All rights reserved.

图 1: 身高高斯分布示意图

那么根据抽样数据怎么进行推断?什么样的推断方法才称为"好"?

1.1 无偏性

比如说我们采样到的女性身高分别为:

$$\{x_1, x_2, \dots, x_n\} \tag{1}$$

那么:

$$\bar{X} = \frac{x_1 + x_2 + \dots + x_n}{n} \tag{2}$$

是对 μ 不错的一个估计,为什么?以为它是无偏估计。

首先,真正的全体女性的身高均值 μ ,我们是不知道的,只有上帝才知道,在图中就画为虚线,通过采样计算出 \bar{X} 会发现,不同采样得到的 \bar{X} 是围绕 μ 左右波动的。这有点像打靶,只要命中在靶心周围,还算不错的成绩,这就是无偏的。

如果用一下式子去估计总体方差 σ^2 :

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
(3)

会偏离靶心并产生偏差,这就是有偏的,这个偏差为 $\frac{1}{n}\sigma^2$,这种偏差就像瞄准镜歪了,属于系统误差,就此而言,无偏估计要好于有偏估计。

图 2: 采样计算 \bar{X}

知乎 @马同学

图 3: 打靶例子

图 4: 系统偏差

图 5: 有效性示意图

1.2 有效性

打靶的时候,右边的成绩肯定更优秀:进行估计的时候,也是估计量越靠近目标,效果越好,这个靠近可以用方差来衡量。另外,有效估计和偏差性是不想关的。

举个例子,从 $N(\mu, \sigma^2)$ 中抽出 10 个样本:

$$\{x_1, x_2, \dots, x_n\} \tag{4}$$

下面两个都是无偏估计量:

$$T_1 = \frac{x_1 + x_3 + 2x_{10}}{4}, T_2 = \frac{1}{10} \sum_{i=1}^{10} x_i$$
 (5)

但是后者比前者方差小,后者更有效。并且显示中不一定非要选无偏估计量,比如:如果能接受点误差,选择右边这个估计量更好。

有偏

无偏,有效性差

有偏,有效性好

1.3 一致性

之前说了,如果用以下式子去估计方差 σ^2 :

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
(6)

会有一个偏差 $\frac{1}{n}\sigma^2$, 可以看到,随着采样个数 n 的增加,这个偏差会越来越小。那么这个估计量就是"一致的"。如果样本数量够多,其实这种"有偏"但是"一致"的估计量也是可以选的。

1.4 总结

在共视的 Mapping 中,由于 fix 历史帧,优化滑窗内的关键帧,导致的"有偏"估计,但是由于前端 vio 能够提供无偏且一致的初值,会提升后端共视非线性优化的"有效性",而且最终使得 SLAM 能有一个比较精确的输出。

2 非线性系统可观性分析

2.1 Lie Derivative

在介绍 Lie Derivative 之前, 先需要以下一些概念。

- (1) 向量函数 $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^n$ (从 $\mathbf{x} \in \mathbb{R}^n$ 映射到 $f(\mathbf{x}) \in \mathbb{R}^n$),叫做 \mathbb{R}^n 里的向量场(Vector field)。如果进一步,向量函数 f 具有连续偏导,而且是任意阶的偏导,那么我们说 f 是光滑向量场(Smooth Vector field)。
- (2) 光滑标量函数 $h(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ (从 $\mathbf{x} \in \mathbb{R}^n$ 映射到 $h(\mathbf{x}) \in \mathbb{R}$ 的函数)的 Gradient 由一个行向量 $\nabla h = \frac{\partial h}{\partial \mathbf{x}}$ 表示,其中 $\mathbf{x} \in \mathbb{R}^n$ 。所以我们要记住,Gradient 是标量对向量的求导,其结果是个行向量。光滑向量场 $f(\mathbf{x})$ 的 Jacobian 由一个 $n \times n$ 的矩阵 $\nabla f = \frac{\partial f}{\partial \mathbf{x}}$,其中矩阵的第一行就是 $\nabla f_1 = \frac{\partial f_1}{\partial \mathbf{x}}$,就是刚刚定义的光滑标量函数 f_1 (列向量 f 的第一个元素)的 Gradient,而我们知道 Gradient 是行向量。以此类推 Jacobian 的第 i 行应该为 $\nabla f_i = \frac{\partial f_i}{\partial \mathbf{x}}$ 。那么基于以上几个定义,我们就可以用来定义 Lie Derivative。
- (3) Lie Derivative 的定义: 光滑标量函数 $h(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ 相对于光滑向量场 $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ 的 Lie Derivative 由一个标量函数 $L_{\mathbf{f}}h = \nabla h\mathbf{f} = \frac{\partial h}{\partial \mathbf{x}}\mathbf{f}$ 表示,其中 $\frac{\partial h}{\partial \mathbf{x}}$ 就是标量函数 $h(\mathbf{x})$ 的 Gradient,是个行向量。行向量 $\frac{\partial h}{\partial \mathbf{x}}$ 乘以向量场 $f(\mathbf{x}) \in \mathbb{R}^n$,其结果正好是个标量,所以 $L_{\mathbf{f}}h = \nabla h\mathbf{f} = \frac{\partial h}{\partial \mathbf{x}}f$ 是个标量。
- (4) 如果 $g(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^n$ 是另一个向量场,由于刚刚计算的 Lie Derivative: $L_{\mathbf{f}}h$ 是个标量,它又可以跟 $g(\mathbf{x})$ 算出一个 Lie Derivative,表示为 $L_{\mathbf{g}}L_{\mathbf{f}}h = L_{\mathbf{g}}(L_{\mathbf{f}}h) = \nabla(L_{\mathbf{f}}h)g = \frac{\partial(L_{\mathbf{f}}h)}{\partial \mathbf{x}}g = \frac{\partial(\frac{\partial h}{\partial \mathbf{x}}f)}{\partial \mathbf{x}}g$,当然同样地,算出来 $L_{\mathbf{g}}L_{\mathbf{f}}h$ 的结果依然是个标量。以此类推,可以一直搞下去。于是我们有标量行数 $h(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ 的 0 阶 Lie Derivative,表示为 $L_{\mathbf{f}}^0h = h$,是它本身。标量函数 $h(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ 的第 i 阶 Lie Derivative 为 $L_{\mathbf{f}}^ih = L_{\mathbf{f}}(L_{\mathbf{f}}^{i-1}h) = \nabla(L_{\mathbf{f}}^{i-1}h)f = \frac{\partial(L_{\mathbf{f}}^{i-1}h)}{\partial \mathbf{x}}\mathbf{f}$ 。
- (5) 总结一下,Lie Derivative 与一般的 Derivate 的区别是,Lie Derivative 是定义在两个函数 h 和 f 之间的,它 俩都是向量 \mathbf{x} 的函数,标量行数 h 对 \mathbf{x} 的 Gradient 乘以 $f(\mathbf{x})$,它们通过共同的 \mathbf{x} 联系起来的。一般的 Derivative 是某个函数对 \mathbf{x} 定义的。举个例子,对于单输出非线性系统:

$$\dot{\mathbf{x}} = f(\mathbf{x})
y = h(\mathbf{x})$$
(7)

我们有 $\dot{y} = \frac{\partial h}{\partial \mathbf{x}} \dot{\mathbf{x}} = \frac{\partial h}{\partial \mathbf{x}} f(\mathbf{x}) = L_{\mathbf{f}} h$, $\ddot{y} = \frac{\partial (L_{\mathbf{f}} h)}{\partial \mathbf{x}} \dot{\mathbf{x}} = \frac{\partial (L_{\mathbf{f}} h)}{\partial \mathbf{x}} f(\mathbf{x}) = L_{\mathbf{f}}^2 h$

2.2 非线性系统的 Lie Derivative 和可观矩阵

考虑连续非线性系统:

$$\dot{\mathbf{x}} = \mathbf{f}_0(\mathbf{x}) + \sum_{i=1}^{l} \mathbf{f}_i(\mathbf{x}) \mathbf{u}_i$$

$$\mathbf{z} = \mathbf{h}(\mathbf{x})$$
(8)

其中控制输入 $\mathbf{u} = [u_1, u_2, \dots, u_l]^T$, 状态量 $\mathbf{x} = [x_1, x_2, \dots, x_m]^T$, 状态过程模型表示为向量函数 $\mathbf{f}_i, i = 0, 1, \dots, l$ 。

为了分析系统的可观性,以及在现有的测量下状态量各个方向的可观性,我们计算系统的 Lie Derivative。定义测量函数 \mathbf{h} 的零阶 Lie Derivative 为其自身:

$$\mathcal{L}^0 \mathbf{h} = \mathbf{h}(\mathbf{x}) \tag{9}$$

由 Lie Derivative 的定义,测量函数 **h** 不同阶的 Lie Derivative 由 \mathcal{L}^0 **h** 循环计算得到。其中,由第 i 阶 Lie Derivative, \mathcal{L}^i **h** 和状态过程函数 \mathbf{f}_i 可计算得到测量函数的第 i+1 阶 Lie Derivative $\mathcal{L}^{i+1}_{\mathbf{f}_i}$ **h**:

$$\mathcal{L}_{\mathbf{f}_{j}}^{i+1}\mathbf{h} = \nabla \mathcal{L}^{i}\mathbf{h} \cdot \mathbf{f}_{j} \tag{10}$$

其中 $\nabla \mathcal{L}^i$ h 为第 i 阶 Lie Derivative 的生成空间:

$$\nabla \mathcal{L}^{i} \mathbf{h} = \left[\frac{\partial \mathcal{L}^{i} \mathbf{h}}{\partial x_{1}}, \frac{\partial \mathcal{L}^{i} \mathbf{h}}{\partial x_{2}}, \dots, \frac{\partial \mathcal{L}^{i} \mathbf{h}}{\partial x_{m}} \right]$$
(11)

由给定的观测信息,为了分析在哪些方向上是可观的,我们检查测量函数各阶 Lie Derivative 的生成空间,且定义可观矩阵为

$$\mathcal{O} = \begin{bmatrix} \nabla \mathcal{L}^{0} \mathbf{h} \\ \nabla \mathcal{L}_{\mathbf{f}_{i}}^{1} \mathbf{h} \\ \nabla \mathcal{L}_{\mathbf{f}_{i}^{1} \mathbf{f}_{j}}^{1} \mathbf{h} \\ \nabla \mathcal{L}_{\mathbf{f}_{i}^{1} \mathbf{f}_{j}^{1} \mathbf{h}}^{3} \mathbf{h} \\ \vdots \end{bmatrix}$$

$$(12)$$

其中 $i,j,k=1,2,\ldots,l$ 。为了证明系统是可观的,需要证明 \mathcal{O} 的若干行组成的子矩阵是列满秩的(full colum rank)。相反的,为了证明系统是非完全可观的,且找出不可观的方向,则需要证明:(a)矩阵 \mathcal{O} 中的无限多行,均可表示为矩阵 \mathcal{O}' 行向量的线性组合,其中 \mathcal{O}' 的行向量来自于 \mathcal{O} ;(b)求解矩阵 \mathcal{O}' 的零空间,即可得到系统不可观的方向。尽管条件(b)可以直接求解得到,但是条件(a)很难找到。

2.3 非线性系统可观性分析

通过上面介绍可知,要分析非线性系统的可观性,是非常有挑战的,因为要计算具有无限行组成的可观矩阵的零空间。但是论文中提出了一种方法,使可观性分析变得容易,将可观矩阵分解为两个矩阵相乘:一个满秩的无限行矩阵和一个非满秩的有限行矩阵。下面将通过计算一系列关于状态变量 x 的基函数,来达到分解可观矩阵的目的。

首先给出定理,

Theorem1: 假设存在非线性变换 $\beta(\mathbf{x}) = \left[\beta_1(\mathbf{x})^T, \dots, \beta_t(\mathbf{x})^T\right]^T$, 这些基均是关于状态变量 \mathbf{x} 的函数,总共有 t 个,且满足如下条件:

- (C1) $\beta_1(\mathbf{x}) = \mathbf{h}(\mathbf{x});$
- (C2) $\frac{\partial \beta}{\partial \mathbf{x}} \cdot \mathbf{f}_i(\mathbf{x}), i = 0, 1, \dots, l$ 是关于 β 的函数;
- (C3) 定义一个可观的非线性系统:

$$\begin{cases} \dot{\beta} = \mathbf{g}_0(\beta) + \sum_{i=1}^{l} \mathbf{g}_i(\beta) \mathbf{u}_i \\ \mathbf{z} = \mathbf{h} = \beta_1 \end{cases}$$
 (13)

其中, $\mathbf{g}_i(\beta) = \frac{\partial \beta}{\partial \mathbf{x}} \mathbf{f}_i(\mathbf{x}), i = 0, 1, \dots, l$ 。

根据以上假设条件,则有以下两条结论:

(i) 可观矩阵 O 可被分解为:

$$\mathcal{O} = \Xi \cdot \mathbf{B} \tag{14}$$

其中 Ξ 为系统(13)的可观矩阵,且 $\mathbf{B} \triangleq \frac{\partial \beta}{\partial \mathbf{x}}$ 。

(ii) $null(\mathcal{O}) = null(\mathbf{B})$

证明结论 (i): 根据链式法则, Lie Derivative $\nabla \mathcal{L}^i \mathbf{h}$ 的生成空间可表示为,

$$\nabla \mathcal{L}^{i} \mathbf{h} = \frac{\partial \mathcal{L}^{i} \mathbf{h}}{\partial \mathbf{x}} = \frac{\partial \mathcal{L}^{i} \mathbf{h}}{\partial \beta} \frac{\partial \beta}{\partial \mathbf{x}}$$
(15)

因此,系统(8)的可观矩阵 O 可被分解为:

$$\mathcal{O} = \begin{bmatrix} \nabla \mathcal{L}^{0} \mathbf{h} \\ \nabla \mathcal{L}_{\mathbf{f}_{i}}^{1} \mathbf{h} \\ \nabla \mathcal{L}_{\mathbf{f}_{i} \mathbf{f}_{j} \mathbf{f}_{k}}^{2} \mathbf{h} \\ \nabla \mathcal{L}_{\mathbf{f}_{i} \mathbf{f}_{j} \mathbf{f}_{k}}^{3} \mathbf{h} \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathcal{L}^{0} \mathbf{h}}{\partial \beta} \\ \frac{\partial \mathcal{L}_{\mathbf{f}_{i}}^{1} \mathbf{h}}{\partial \beta} \\ \frac{\partial \mathcal{L}_{\mathbf{f}_{i} \mathbf{f}_{j} \mathbf{f}_{k}}^{2} \mathbf{h}}{\partial \beta} \\ \frac{\partial \mathcal{L}_{\mathbf{f}_{i} \mathbf{f}_{j} \mathbf{f}_{k}}^{2} \mathbf{h}}{\partial \beta} \\ \vdots \end{bmatrix} \frac{\partial \beta}{\partial \mathbf{x}} = \Xi \cdot \mathbf{B}$$

$$(16)$$

接下来证明矩阵 Ξ 是系统 (13) 的可观矩阵。

为区分系统(8)和系统(13)的各阶 Lie Derivative,利用符号 $\mathcal J$ 表示系统(13)的 Lie Derivative。系统(13)的零阶 Lie Derivative 的生成空间表示为:

$$\nabla \mathcal{J}^0 \mathbf{h} = \frac{\partial \mathbf{h}}{\partial \beta} = \frac{\partial \mathcal{L}^0 \mathbf{h}}{\partial \beta} \tag{17}$$

该零阶生成空间即为矩阵 Ξ 的第一行块矩阵。

利用 $\nabla \mathcal{J}^i \mathbf{h} = \frac{\partial \mathcal{L}^i \mathbf{h}}{\partial \beta}$ 表示矩阵 Ξ 的 i 行 Lie Derivative 的生成空间,则第 i+1 行的生成空间 $\nabla \mathcal{J}_{\mathbf{g}_j}^{i+1} \mathbf{h}$ (状态过程函数为 \mathbf{g}_i) 可表示为

$$\nabla \mathcal{J}_{\mathbf{g}_{j}}^{i+1}\mathbf{h} = \frac{\partial \mathcal{J}_{\mathbf{g}_{j}}^{i+1}\mathbf{h}}{\partial \beta} = \frac{\partial \nabla \mathcal{J}^{i}\mathbf{h} \cdot \mathbf{g}_{j}}{\partial \beta} = \frac{\partial (\frac{\partial \mathcal{L}^{i}\mathbf{h}}{\partial \beta} \cdot \frac{\partial \beta}{\partial \mathbf{x}} \mathbf{f}_{j}(\mathbf{x}))}{\partial \beta} = \frac{\partial (\frac{\partial \mathcal{L}^{i}\mathbf{h}}{\partial \mathbf{x}} \cdot \mathbf{f}_{j}(\mathbf{x}))}{\partial \beta} = \frac{\partial \mathcal{L}_{\mathbf{f}_{j}}^{i+1}\mathbf{h}}{\partial \beta}$$
(18)

因此,矩阵 Ξ 的每一行矩阵块,为系统(13)的各阶 Lie Derivative 的生成空间,即矩阵 Ξ 是系统(13)的可观矩阵。证明结论(ii):由于 $\mathcal{O} = \Xi \mathbf{B}$,则有 $null(\mathcal{O}) = null(\mathbf{B}) + null(\Xi) \cap range(\mathbf{B})$ [Meyer2000],另外,由于假设条件(C3)系统(13)是可观的,即可观矩阵 Ξ 为列满秩(full column rank),则有 $null(\mathcal{O}) = null(\mathbf{B})$ 。至此,由假设条件(C1)、(C2)和(C3)得到的结论(i)和(ii)证毕。

由 **Theorem1** 可知,为了分析一个系统的不可观方向,首先需要找到一些基函数(basis functions)满足条件(C1)和(C2),并且需要证明矩阵 Ξ 是列满秩 (full column rank),即满足条件(C3)。当着三个条件满足后,则系统(8)的不可观方向分析转换成求解矩阵 **B** 的零空间。由于矩阵 **B**_I 是有限维的,因此求解零空间很容易。

3 VI-SLAM 系统可观性分析

3.1 系统概述

在该系统中,四元数表示旋转采用 JPL 形式。坐标系约定:全局坐标系用 G 表示,Camera 坐标系用 C 表示,IMU 坐标系用 I 表示,地图点用 f 表示;相机、IMU 和地图点表示在某个坐标系下,则该坐标系符号写在对应变量符号的左上角,变量标识写在变量符号的右下角,例如 $^G\mathbf{p}_I$ 表示 IMU 系(body 系)原点在全局坐标系中的位置(平移), $^G\mathbf{v}_I$ 表示 IMU 系在全局坐标系下的速度, $^I\mathbf{q}_G$ 表示从全局坐标系旋转到 IMU 系的单位四元数,由于采用 JPL 形式,旋转均是由 G 系到 I 系旋转,与 Hamilton 表示方式相反; $^G\mathbf{p}_f$ 。表示第 i 个地图点在 G 系下的坐标。

状态变量包含位姿、速度、Bias 和地图点:

$$\mathbf{x} = \begin{bmatrix} {}^{I}\mathbf{q}_{G}^{T}, \mathbf{b}_{g}^{T}, {}^{G}\mathbf{v}_{I}^{T}, \mathbf{b}_{a}^{T}, {}^{G}\mathbf{p}_{I}^{T} | {}^{G}\mathbf{p}_{f_{1}}^{T}, \dots, {}^{G}\mathbf{p}_{f_{N}}^{T} \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{x}_{s}^{T} | \mathbf{x}_{m}^{T} \end{bmatrix}^{T}$$

$$(19)$$

其中 \mathbf{x}_s^T 和 \mathbf{x}_m^T 分别表示 16×1 维传感器状态和 $3N \times 1$ 维地图点状态。

连续系统状态模型:

$${}^{I}\dot{\mathbf{q}}_{G}(t) = \frac{1}{2} \left({}^{I}\omega(t)\right){}^{I}\mathbf{q}_{G}(t) \tag{20}$$

$${}^{G}\dot{\mathbf{p}}_{I}(t) = {}^{G}\mathbf{v}_{I}(t) \tag{21}$$

$${}^{G}\dot{\mathbf{v}}_{I}(t) = {}^{G}\mathbf{a}_{I}(t) \tag{22}$$

$$\dot{\mathbf{b}}_g(t) = \mathbf{n}_{wg}(t) \tag{23}$$

$$\dot{\mathbf{b}}_a(t) = \mathbf{n}_{wa}(t) \tag{24}$$

$${}^{G}\dot{\mathbf{p}}_{f_i}(t) = \mathbf{0}_{3\times 1}, i = 1,\dots, N$$
(25)

其中,

$$\Omega(\omega) = \begin{bmatrix} -\lfloor \omega \rfloor_{\times} & \omega \\ -\omega^{T} & \mathbf{0} \end{bmatrix}$$
 (26)

$$[\omega]_{\times} = \triangleq \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

$$(27)$$

陀螺仪测量 I_{ω_m} 和加速度计测量 $I_{\mathbf{a}_m}$ 模型为:

$${}^{I}\omega_{m}(t) = {}^{I}\omega(t) + \mathbf{b}_{a}(t) + \mathbf{n}_{a}(t) \tag{28}$$

$${}^{I}\mathbf{a}_{m}(t) = \mathbf{C}({}^{I}\mathbf{q}_{G}(t))({}^{G}\mathbf{a}_{I}(t) - {}^{G}\mathbf{g}) + \mathbf{b}_{a}(t) + \mathbf{n}_{a}(t)$$

$$(29)$$

其中 C(q) 表示四元数对应的选择矩阵。

对于上述连续状态模型,在当前时刻的估计量处线性展开,并求期望,得到状态估计的传递模型:

$${}^{I}\dot{\hat{\mathbf{q}}}_{G}(t) = \frac{1}{2} \left({}^{I}\hat{\omega}(t)\right){}^{I}\hat{\mathbf{q}}_{G}(t) \tag{30}$$

$$\hat{\hat{\mathbf{p}}}_I(t) = {}^G\hat{\mathbf{v}}_I(t) \tag{31}$$

$$\overset{G}{\hat{\mathbf{v}}}_{I}(t) = \mathbf{C}^{T} (\overset{I}{\hat{\mathbf{q}}}_{G}(t)) \overset{I}{\hat{\mathbf{a}}}(t) + {}^{G}\mathbf{g}$$
(32)

$$\dot{\mathbf{b}}_{g}(t) = \mathbf{0}_{3 \times 1} \tag{33}$$

$$\dot{\mathbf{b}}_a(t) = \mathbf{0}_{3 \times 1} \tag{34}$$

$$\hat{\mathbf{p}}_{f_i}(t) = \mathbf{0}_{3 \times 1}, i = 1, \dots, N \tag{35}$$

其中 ${}^{I}\hat{\mathbf{a}}(t) = {}^{I}\mathbf{a}_m(t) - \hat{\mathbf{b}}_a(t), {}^{I}\hat{\omega}(t) = {}^{I}\omega_m(t) - \hat{\mathbf{b}}_q(t)$

根据误差状态 (error state) 的定义 $\tilde{\mathbf{x}} = \mathbf{x} - \hat{\mathbf{x}}$ 有:

$$\tilde{\mathbf{x}} = \begin{bmatrix} {}^{I}\delta\theta_{G}^{T}, \ \tilde{\mathbf{b}}_{g}^{T}, \ {}^{G}\tilde{\mathbf{v}}_{I}^{T}, \ \tilde{\mathbf{b}}_{a}^{T}, \ {}^{G}\tilde{\mathbf{p}}_{I}^{T} \end{bmatrix}^{G}\tilde{\mathbf{p}}_{f_{1}}^{T}, \dots, \ {}^{G}\tilde{\mathbf{p}}_{f_{N}}^{T} \end{bmatrix}^{T} = \begin{bmatrix} \tilde{\mathbf{x}}_{s}^{T} | \tilde{\mathbf{x}}_{m}^{T} \end{bmatrix}^{T}$$
(36)

则有线性连续误差状态方程,

$$\dot{\tilde{\mathbf{x}}} = \begin{bmatrix} \mathbf{F}_s & \mathbf{0}_{15 \times 3N} \\ \mathbf{0}_{3N \times 15} & \mathbf{0}_{3N} \end{bmatrix} \tilde{\mathbf{x}} + \begin{bmatrix} \mathbf{G}_s \\ \mathbf{0}_{3N \times 12} \end{bmatrix} \mathbf{n} = \mathbf{F}_c \tilde{\mathbf{x}} + \mathbf{G}_c \mathbf{n}$$
(37)

其中,

$$\mathbf{n} = \left[\mathbf{n}_g^T, \mathbf{n}_{wg}^T, \mathbf{n}_a^T, \mathbf{n}_{wa}^T\right]^T \tag{38}$$

$$\mathbf{F}_{s} = \begin{bmatrix} -\lfloor \hat{\omega} \rfloor_{\times} & -\mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ -\mathbf{C}^{T}({}^{I}\hat{\mathbf{q}}_{G})\lfloor{}^{I}\hat{\mathbf{a}}\rfloor_{\times} & \mathbf{0}_{3} & \mathbf{0}_{3} & -\mathbf{C}^{T}({}^{I}\hat{\mathbf{q}}_{G}) & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \end{bmatrix}$$
(39)

$$\mathbf{G}_{s} = \begin{bmatrix} -\mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & -\mathbf{C}^{T}({}^{I}\hat{\mathbf{q}}_{G}) & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \end{bmatrix}$$

$$(40)$$

$$\mathbb{E}\left[\mathbf{n}(t)\mathbf{n}^{T}(\tau)\right] = \mathbf{Q}_{c}\delta(t-\tau) \tag{41}$$

接下来讨论离散形式的系统模型:假设陀螺仪信号 $^I\omega_m(t)$ 和加速度计信号 $^I\mathbf{a}_m(t)$ 采样间隔为 $\delta t \triangleq t_{k+1} - t_k$,每次采样后,系统估计状态的传递,利用公式(30)-(35)积分得到。估计状态的协方差通过如下公式得到:

$$\dot{\Phi}_{k+1,k} = \mathbf{F}_c \Phi_{k+1,k}$$
initial condition: $\Phi_{k,k} = \mathbf{I}_{15+3N}$ (42)

$$\mathbf{P}_{k+1|k} = \Phi_{k+1,k} \mathbf{P}_{k|k} \Phi_{k+1,k}^T + \mathbf{Q}_{d,k}$$
(43)

其中离散的系统噪声协方差矩阵 $\mathbf{Q}_{d,k}$ 通过如下积分计算,

$$\mathbf{Q}_{d,k} = \int_{t_k}^{t_{k+1}} \Phi(t_{k+1}, \tau) \mathbf{G}_c \mathbf{Q}_c \mathbf{G}_c^T \Phi^T(t_{k+1}, \tau) d\tau$$
(44)

下面讨论视觉观测模型:为简化问题分析,假设只有一个地图点 \mathbf{p}_{f_i} ,其对应相机测量 \mathbf{z}_i 为地图点 $^I\mathbf{p}_{f_i}$ 在图像平面上的投影,即有

$$\mathbf{z}_i = \frac{1}{p_z} \begin{bmatrix} p_x \\ p_y \end{bmatrix} + \eta_i \tag{45}$$

其中

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = {}^{I}\mathbf{p}_{f_i} = \mathbf{C}({}^{I}\mathbf{q}_G)({}^{G}\mathbf{p}_{f_i} - {}^{G}\mathbf{p}_I)$$

$$(46)$$

且 η_i 为协方差为 \mathbf{R}_i 的高斯白噪声。注意:该视觉观察模型假设图像测量为归一化平面,且相机坐标系和 IMU 坐标系重合,在实际中,相机和 IMU 之间存在内外参。

视觉观测的误差模型表示为

$$\tilde{\mathbf{z}}_i = \mathbf{z}_i - \hat{\mathbf{z}}_i \simeq \mathbf{H}_i \tilde{\mathbf{x}} + \eta_i \tag{47}$$

其中 $\hat{\mathbf{z}} = \mathbf{h}(\hat{\mathbf{x}})$ 是利用当前时刻估计状态 $\hat{\mathbf{x}}$ 通过模型 (45) - (46) 计算得到,且视觉测量雅可比矩阵 \mathbf{H}_i 为

$$\mathbf{H}_{i} = \mathbf{H}_{c} \left[\mathbf{H}_{\theta} \quad \mathbf{0}_{3 \times 9} \quad \mathbf{H}_{p} \quad | \quad \mathbf{0}_{3} \dots \mathbf{H}_{f_{i}} \dots \mathbf{0}_{3} \right] \tag{48}$$

其中

$$\mathbf{H}_c = \frac{\partial \mathbf{h}}{\partial^I \mathbf{p}_{f_i}} = \frac{1}{p_z^2} \begin{bmatrix} p_z & 0 & -p_x \\ 0 & p_z & -p_y \end{bmatrix}$$
 (49)

$$\mathbf{H}_{\theta} = \frac{\partial^{I} \mathbf{p}_{f_{i}}}{\partial \theta} = \lfloor \mathbf{C} (^{I} \mathbf{q}_{G}) (^{G} \mathbf{p}_{f_{i}} - {}^{G} \mathbf{p}_{I}) \rfloor_{\times}$$

$$(50)$$

$$\mathbf{H}_{p} = \frac{\partial^{I} \mathbf{p}_{f_{i}}}{\partial^{G} \mathbf{p}_{I}} = -\mathbf{C}(^{I} \mathbf{q}_{G})$$

$$(51)$$

$$\mathbf{H}_{f_i} = \frac{\partial^I \mathbf{p}_{f_i}}{\partial^G \mathbf{p}_{f_i}} = \mathbf{C}(^I \mathbf{q}_G)$$
 (52)

3.2 可观性分析

为简化分析,将 I 系旋转用 Cayley-Gibbs-Rodriguez(CGR) 方式表示: ${}^{I}\mathbf{s}_{G}$ 表示从 G 系到 I 系的旋转,且有

$${}^{I}\dot{\mathbf{s}}_{G}(t) = \mathbf{D}({}^{I}\omega(t) - \mathbf{b}_{g}(t)) \tag{53}$$

其中 $\mathbf{D} \triangleq \frac{\partial \mathbf{s}}{\partial \theta} = \frac{1}{2} (\mathbf{I}_3 + [\mathbf{s}]_{\times} + \mathbf{s}\mathbf{s}^T)$ 。因此,系统状态变量 \mathbf{x} 可表示为

$$\mathbf{x} = \begin{bmatrix} {}^{I}\mathbf{s}_{G} & \mathbf{b}_{g}^{T} & {}^{G}\mathbf{v}_{I}^{T} & \mathbf{b}_{a}^{T} & {}^{G}\mathbf{p}_{I}^{T} & {}^{G}\mathbf{p}_{f}^{T} \end{bmatrix}^{T}$$

$$(54)$$

另外,为简化书写,系统状态变量忽略坐标系标识,

$$\mathbf{x} = \begin{bmatrix} \mathbf{s}^T & \mathbf{b}_g^T & \mathbf{v}^T & \mathbf{b}_a^T & \mathbf{p}^T & \mathbf{p}_f^T \end{bmatrix}^T$$
 (55)

则有 VI-SLAM 状态模型可表示为

$$\begin{bmatrix} \dot{\mathbf{s}} \\ \dot{\mathbf{b}}_{g} \\ \dot{\mathbf{v}} \\ \dot{\mathbf{b}}_{a} \\ \dot{\mathbf{p}} \\ \dot{\mathbf{p}}_{f} \end{bmatrix} = \begin{bmatrix} -\mathbf{D}\mathbf{b}_{g} \\ \mathbf{0}_{3\times1} \\ \mathbf{g} - \mathbf{C}^{T}\mathbf{b}_{a} \\ \mathbf{0}_{3\times1} \\ \mathbf{v} \\ \mathbf{0}_{3\times1} \end{bmatrix} + \begin{bmatrix} \mathbf{D} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \end{bmatrix} \omega + \begin{bmatrix} \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{C}^{T} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \end{bmatrix} \mathbf{a}$$

$$(56)$$

$$\mathbf{z} = \frac{1}{p_z} \begin{bmatrix} p_x \\ p_y \end{bmatrix} \tag{57}$$

其中
$$\mathbf{C} \triangleq \mathbf{C}(\mathbf{s})$$
,
$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = {}^{I}\mathbf{p}_f = \mathbf{C} \cdot (\mathbf{p}_f - \mathbf{p})$$
, 且令

$$\mathbf{f}_{0} = \begin{bmatrix} -\mathbf{D}\mathbf{b}_{g} \\ \mathbf{0}_{3\times1} \\ \mathbf{g} - \mathbf{C}^{T}\mathbf{b}_{a} \\ \mathbf{0}_{3\times1} \\ \mathbf{v} \\ \mathbf{0}_{3\times1} \end{bmatrix}, \mathbf{f}_{1} = \begin{bmatrix} \mathbf{D} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \end{bmatrix}, \mathbf{f}_{2} = \begin{bmatrix} \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{C}^{T} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{0}_{3} \end{bmatrix}$$
(58)

接下来分析系统的可观性: 首先根据 **Theorem1** 中的假设条件(C1)和(C2),找到系统的基函数(basis functions), 其中直接根据条件(C1)得到第一个基函数 $\beta_1 = \mathbf{z} = \mathbf{h}(\mathbf{x})$,

$$\beta_1 \triangleq \mathbf{h}(\mathbf{x}) = \frac{1}{p_z} \begin{bmatrix} p_x \\ p_y \end{bmatrix} \tag{59}$$

然后循环计算条件(C2)中的 $\frac{\partial \beta_i}{\partial \mathbf{x}} \cdot \mathbf{f}_i$,并寻找新的基函数 β ,其中基函数有很多种选择,应当选择那些有明确物理意义的量作为基函数。

计算基函数 β_1 关于 \mathbf{x} 的生成空间,

$$\frac{\partial \beta_{1}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \beta_{1}}{\partial \theta} \frac{\partial \theta}{\partial \mathbf{s}} & \frac{\partial \beta_{1}}{\partial \mathbf{x}_{g}} & \frac{\partial \beta_{1}}{\partial \mathbf{v}} & \frac{\partial \beta_{1}}{\partial \mathbf{b}_{a}} & \frac{\partial \beta_{1}}{\partial \mathbf{p}} & \frac{\partial \beta_{1}}{\partial \mathbf{p}_{f}} \end{bmatrix}
= \frac{\partial \mathbf{h}}{\partial^{I} \mathbf{p}_{f}} \frac{\partial^{I} \mathbf{p}_{f}}{\partial \mathbf{x}}
= \begin{bmatrix} \frac{1}{p_{z}} & 0 & -\frac{p_{x}}{p_{z}^{2}} \\ 0 & \frac{1}{p_{z}} & -\frac{p_{y}}{p_{z}^{2}} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} I \mathbf{p}_{f} \end{bmatrix}_{\times} \frac{\partial \theta}{\partial \mathbf{s}} & \mathbf{0}_{3} & \mathbf{0}_{3} & -\mathbf{C} & \mathbf{C} \end{bmatrix}$$
(60)

计算 $\frac{\partial \beta_1}{\partial \mathbf{x}} \cdot \mathbf{f}_0$:

$$\frac{\partial \beta_{1}}{\partial \mathbf{x}} \cdot \mathbf{f}_{0} = \begin{bmatrix} \frac{1}{p_{z}} & 0 & -\frac{p_{x}}{p_{z}^{2}} \\ 0 & \frac{1}{p_{z}} & -\frac{p_{y}}{p_{z}^{2}} \end{bmatrix} (-\lfloor \mathbf{I} \mathbf{p}_{f} \rfloor_{\times} \mathbf{b}_{g} - \mathbf{C} \mathbf{v})$$

$$= [\mathbf{I}_{2} - \beta_{1}] (-\lfloor \begin{bmatrix} \beta_{1} \\ 1 \end{bmatrix} \rfloor_{\times} \mathbf{b}_{g} - \frac{1}{p_{z}} \mathbf{C} \mathbf{v})$$
(61)

显然 $\frac{\partial \beta_1}{\partial \mathbf{x}} \cdot \mathbf{f}_0$ 没法表示成现有基函数 $\{\beta_1\}$ 的函数, 因此增加基函数:

$$\beta_2 \triangleq \frac{1}{p_z} \tag{62}$$

$$\beta_3 \triangleq \mathbf{C}\mathbf{v}$$
 (63)

$$\beta_4 \triangleq \mathbf{b}_q \tag{64}$$

其中 β_2 表示地图的逆深度, β_3 表示 I 系下的速度, β_4 表示陀螺仪 bias,则有,

$$\frac{\partial \beta_1}{\partial \mathbf{x}} \cdot \mathbf{f}_0 \triangleq \begin{bmatrix} \mathbf{I}_2 & -\beta_1 \end{bmatrix} \left(-\lfloor \begin{bmatrix} \beta_1 \\ 1 \end{bmatrix} \right]_{\times} \beta_4 - \beta_2 \beta_3$$
 (65)

计算 $\frac{\partial \beta_1}{\partial \mathbf{x}} \cdot \mathbf{f}_1$:

$$\frac{\partial \beta_{1}}{\partial \mathbf{x}} \cdot \mathbf{f}_{1} = \begin{bmatrix} \frac{1}{p_{z}} & 0 & -\frac{p_{x}}{p_{z}^{2}} \\ 0 & \frac{1}{p_{z}} & -\frac{p_{y}}{p_{z}^{2}} \end{bmatrix} \lfloor^{I} \mathbf{p}_{f} \rfloor_{\times}
= \begin{bmatrix} \mathbf{I}_{2} & -\beta_{1} \end{bmatrix} \lfloor \begin{bmatrix} \beta_{1} \\ 1 \end{bmatrix} \rfloor_{\times}$$
(66)

无需增加新的基函数。

计算 $\frac{\partial \beta_1}{\partial \mathbf{x}} \cdot \mathbf{f}_2$:

$$\frac{\partial \beta_1}{\partial \mathbf{x}} \cdot \mathbf{f}_2 = \mathbf{0}_{2 \times 1} \tag{67}$$

无需增加新的基函数。

计算基函数 β_2 关于 \mathbf{x} 的生成空间,

$$\frac{\partial \beta_{2}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \beta_{2}}{\partial \theta} \frac{\partial \theta}{\partial \mathbf{s}} & \frac{\partial \beta_{2}}{\partial \mathbf{x}_{g}} & \frac{\partial \beta_{2}}{\partial \mathbf{v}} & \frac{\partial \beta_{2}}{\partial \mathbf{b}_{a}} & \frac{\partial \beta_{2}}{\partial \mathbf{p}} & \frac{\partial \beta_{2}}{\partial \mathbf{p}_{f}} \end{bmatrix}
= \frac{\partial \beta_{2}}{\partial^{I} \mathbf{p}_{f}} \frac{\partial^{I} \mathbf{p}_{f}}{\partial \mathbf{x}}
= -\frac{1}{n^{2}} \mathbf{e}_{3}^{T} \left[\begin{bmatrix} I \mathbf{p}_{f} \end{bmatrix}_{\times} \frac{\partial \theta}{\partial \mathbf{s}} & \mathbf{0}_{3} & \mathbf{0}_{3} & -\mathbf{C} & \mathbf{C} \end{bmatrix}$$
(68)

其中 \mathbf{e}_3 为 3×3 单位矩阵第三列: $[\mathbf{e}_1 \ \mathbf{e}_2 \ \mathbf{e}_3] = \mathbf{I}_3$ 。

计算 $\frac{\partial \beta_2}{\partial \mathbf{x}} \cdot \mathbf{f}_0$:

$$\frac{\partial \beta_2}{\partial \mathbf{x}} \cdot \mathbf{f}_0 = -\frac{1}{p_z^2} \mathbf{e}_3^T (-\lfloor {}^I \mathbf{p}_f \rfloor_{\times} \mathbf{b}_g - \mathbf{C} \mathbf{v})
= -\beta_2 \mathbf{e}_3^T (-\lfloor {}^I \mathbf{p}_f \rfloor_{\times} \beta_4 - \beta_2 \beta_3)$$
(69)

无需增加新的基函数。

计算 $\frac{\partial \beta_2}{\partial \mathbf{x}} \cdot \mathbf{f}_1$:

$$\frac{\partial \beta_2}{\partial \mathbf{x}} \cdot \mathbf{f}_1 = -\frac{1}{p_z^2} \mathbf{e}_3^T \lfloor {}^I \mathbf{p}_f \rfloor_{\times}
= -\beta_2 \mathbf{e}_3^T \lfloor {}^I \binom{\beta_1}{1} \rfloor_{\times}$$
(70)

无需增加新的基函数。

计算 $\frac{\partial \beta_2}{\partial \mathbf{x}} \cdot \mathbf{f}_2$:

$$\frac{\partial \beta_2}{\partial \mathbf{x}} \cdot \mathbf{f}_2 = 0 \tag{71}$$

无需增加新的基函数。

References

[1] Meyer CD (2000) Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: SIAM.