Design and Analysis of Algorithms: Lecture 1

Ben Chaplin

Contents

1	Overview			
	1.1	Course details		
	1.2	Complexity classes		
2	Test	annal Cabadulian		
	Interval Scheduling			
	2.1	Definitions & Algorithm		
	2.2	Correctness		
	2.3	Runtime		

1 Overview

1.1 Course details

Course Title: Design and Analysis of Algorithms

Teacher: Professors Erik Demaine, Srini Devadas & Nancy Lynch

School: MIT

Lectures: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-

analysis-of-algorithms-spring-2015/

Textbook: Introduction to Algorithms by Cormen, Leiserson, Rivest & Stein (3rd ed)

1.2 Complexity classes

Definition. P is the class of problems solvable in polynomial time.

Definition. NP is the class of problems verifiable in polynomial time.

Example. Given a graph, does there exist a Hamiltonian cycle? This problem is thought not to be in P, but is in NP. This is because no algorithm has been found to determine whether a graph contains a Hamiltonian cycle in $O(|V|^k)$ time for any $k \in \mathbb{N}$. However, given a graph and a path, it can be verified whether the path is a Hamiltonian cycle in polynomial time.

Definition. NP-complete problems are problems in NP which are "as hard" as any problem in NP.

2 Interval Scheduling

2.1 Definitions & Algorithm

Definition. A request is an ordered pair of numbers $(s, f) \in \mathbb{N} \times \mathbb{N}$ representing "start" and "finish" times.

Definition. Two requests $r_i = (s_i, f_i)$ and $r_j = (s_j, f_j)$ are **compatible** if $f_i \le s_j$ and $f_j \le s_i$ (they don't overlap). A set of requests is **compatible** if every pair of requests is compatible.

Definition. Given a set of requests R, the **optimal schedule of** R is the largest-cardinality compatible subset of R.

Algorithm 1 Greedy Algorithm for Interval Scheduling

Input

R a list of requests, ordered by finish time

Output

C the optimal schedule of R

- 1: $R' \leftarrow R$
- $2: O \leftarrow \{\}$
- 3: while R' is not empty do
- 4: $r \leftarrow$ the request in R' with the earliest finish time
- 5: Add r to O
- 6: Remove all requests from R' which are not compatible with r
- 7: end while
- 8: return O

2.2 Correctness

First, we'll prove the correctness of this algorithm.

Theorem 1. Given a list of requests R (ordered by finish time), **Algorithm 1** produces an optimal schedule of R.

Proof. (Induction on k^* = the size of the optimal schedule)

Base case: Suppose $k^* = 1$. Then **Algorithm 1** returned one request r, where r has the earliest finish time, and the rest of the requests are incompatible with r. Therefore, there can only be one compatible request, so **Algorithm 1** succeeded.

Inductive hypothesis: If a list of requests R has an optimal schedule of size k^* , then Algorithm 1 will produce a schedule of size k^* .

Let S be a list of requests which has an optimal schedule O^* of size $(k^* + 1)$:

$$O^*[1,\ldots,k^*+1] = (s_{j_1},f_{j_1}),\ldots,(s_{j_{k^*+1}},f_{j_{k^*+1}})$$

Suppose, when **Algorithm 1** is run on S, it produces the schedule O of size k:

$$O[1,\ldots,k] = (s_{i_1},f_{i_1}),\ldots,(s_{i_k},f_{i_k})$$

Note that $f_{i_1} \leq f_{j_1}$, because by definition, the algorithm chooses the request with the earliest finish time. Then, we can define a new schedule by taking O^* , and replacing $O^*[1]$ with O[1]:

$$O^{**}[1,\ldots,k^*+1] = (s_{i_1},f_{i_1}),(s_{j_2},f_{j_2}),\ldots,(s_{j_{k^*+1}},f_{j_{k^*+1}})$$

Note that O^{**} is also optimal, as it has length $(k^* + 1)$. We define a new list S':

$$S' = \{(s_i, f_i) \mid (s_i, f_i) \in S \text{ and } s_i \ge f_{i_1}\}$$

In other words, S' is the list of intervals in S which are compatible with (s_{i_1}, f_{i_1}) .

Because O^{**} is optimal for S, $O^{**}[2, \ldots, k^* + 1]$ is optimal for S'. By the **Inductive hypothesis**, **Algorithm 1** should produce a schedule of k^* requests when run on S'. So, when run on S, **Algorithm 1** will:

- 1. choose (s_{i_1},f_{i_1}) (we've stated this explicitly),
- 2. then choose another k^* requests (as now, the algorithm is effectively running on S').

So **Algorithm 1** will return the optimal schedule of size $(k^* + 1)$.

2.3 Runtime

Algorithm 1 runs in $O(n^2)$ time, as:

- 1. it iterates O(n) times (no request can be processed more than once),
- 2. and for each selected request, every subsequent request is checked, resulting in another O(n).