Transmission des Ondes ÉlectroMagnétiques GEL-19881 Département de génie électrique et de génie informatique Automne

EXAMEN PARTIEL No.1

Heure: de 10h30 à 12h20

Date: 25 octobre Salles: PLT-1112

Documents Permis: Livres de Rao + Formules de math.

calculatrice autorisée par la Faculté seulement

Pondération: 40%

Directives: Répondez directement sur le questionnaire que vous aurez préalablement signé;

Écrivez lisiblement, encâdrez vos réponses.

Question 1 (20 pts) (/20)

Soit une ligne de transmission sans perte à plaques parallèles composée de deux matériaux comme sur la figure ci-dessus.

Déterminez l'inductance par unité de longueur, la vitesse de propagation et l'impédance caractéristique.

Question 2 (30 pts) (/30)

Un système comportant une de transmission sans perte est représenté sur la figure ci-dessus. Le système est dans son régime permanent lorsque, au temps t=0, on ouvre l'interrupteur #1 et on ferme l'interrupteur #2.

a) Tracez le diagramme des réflexions multiples produit sur la ligne en tension et en courant entre $0 \le t \le 4\mu s$.

b) Esquissez l'évolution de la tension et du courant en fonction à $z=25\ m.$

Question 3 (30 pts) (/30)

Une onde plane se propage dans le vide (x < 0). Le champ électrique E_i de cette onde s'exprime :

$$\boldsymbol{E}_i(x,y,z,t) = 2.0(\boldsymbol{a}_x - \boldsymbol{a}_y) \cos(\omega t - 1.5\pi(x+y) + 0.1\pi) \ mV/m \ .$$

Cette onde est incidente sur un matériau sans perte dont l'interface se situe à x=0.

a) Donnez l'expression du champ magnétique incident H_i ;

b) Déterminez la fréquence de l'onde;

c) Si le coefficient de réflexion à cet angle d'incidence vaut $\bar{\Gamma}_{\parallel} = 0.67 \angle 155^{\circ}$ et que l'angle de transmission est de $\theta_t = 30^{\circ}$, exprimez le phaseur du champ électrique transmis au point $(0^+,0,0)$ (direction non demandée).

Question 4 (20 pts) (/20)

Un générateur ayant une impédance de sortie de $50\,\Omega$, produit une onde carrée de $1.0\,$ kHz dont l'amplitude est de $2\,$ $V\,(0-2\,$ V). Le générateur est branché a une ligne RG-58A/U(JAN-C-17A). On observe le signal reproduit ci-dessus au niveau de la sortie du générateur avec un oscilloscope.

a) Déterminez la longueur du câble;

b) Dessinez le modèle et donnez tous les paramètres de la charge.

Question	Résultat
1	/20
2	/30
3	/30
4	/20
Total	/100

FIN Bonne chance à tous