

COMPUTER ORGANIZATION AND DESIGN

Mahesh Awati

Department of Electronics and Communication Engg.

COMPUTER ORGANIZATION AND DESIGN

Arithmetic for Computers

Mahesh Awati

Department of Electronics and Communication Engineering

Range of Signed & Unsigned Numbers

PES
UNIVERSITY
CELEBRATING 50 YEARS

Table 1.3 Range of *N*-bit numbers

System	Range
Unsigned	$[0, 2^N - 1]$
Sign/Magnitude	$[-2^{N-1}+1, 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1} - 1]$

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 Two's Complement

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

Sign/Magnitude

Figure 1.11 Number line and 4-bit binary encodings

The negative numbers are stored in two's complement form

The range for a 32 bit signed number is

-2147483648 to 2147483647

Range of Signed & Unsigned Numbers

The negative numbers are stored in two's complement form

The range for a 32 bit signed number is

-2147483648 to 2147483647

Range of Signed & Unsigned Numbers

Example 1.12 ADDING TWO'S COMPLEMENT NUMBERS

Compute (a) $-2_{10} + 1_{10}$ and (b) $-7_{10} + 7_{10}$ using two's complement numbers.

Solution: (a) $-2_{10} + 1_{10} = 1110_2 + 0001_2 = 1111_2 = -1_{10}$. (b) $-7_{10} + 7_{10} = 1001_2 + 0111_2 = 10000_2$. The fifth bit is discarded, leaving the correct 4-bit result 0000_2 .

Example 1.13 SUBTRACTING TWO'S COMPLEMENT NUMBERS

Compute (a) $5_{10} - 3_{10}$ and (b) $3_{10} - 5_{10}$ using 4-bit two's complement numbers.

Solution: (a) $3_{10} = 0011_2$. Take its two's complement to obtain $-3_{10} = 1101_2$. Now add $5_{10} + (-3_{10}) = 0101_2 + 1101_2 = 0010_2 = 2_{10}$. Note that the carry out of the most significant position is discarded because the result is stored in four bits. (b) Take the two's complement of 5_{10} to obtain $-5_{10} = 1011$. Now add $3_{10} + (-5_{10}) = 0011_2 + 1011_2 = 1110_2 = -2_{10}$.

Range of Signed & Unsigned Numbers

PES UNIVERSITY CELEBRATING 50 YEARS

Example 1.14 ADDING TWO'S COMPLEMENT NUMBERS WITH OVERFLOW

Compute $4_{10} + 5_{10}$ using 4-bit two's complement numbers. Does the result overflow?

Solution: $4_{10} + 5_{10} = 0100_2 + 0101_2 = 1001_2 = -7_{10}$. The result overflows the range of 4-bit positive two's complement numbers, producing an incorrect negative result. If the computation had been done using five or more bits, the result $01001_2 = 9_{10}$ would have been correct.

Range of Signed & Unsigned Numbers

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥0	≥0

FIGURE 3.2 Overflow conditions for addition and subtraction.

Observations:

- ✓ Overflow occurs when adding two positive numbers and the sum is negative, or vice versa.
- ✓ Overflow occurs in subtraction when we subtract a negative number from a positive number and get a negative result, or when we subtract a positive number from a negative number and get a positive result.
- ✓ No overflow can occur when adding positive and negative operands.

Computer Organization and Design Overflow condition for Addition & Subtraction

PES UNIVERSITY CELEBRATING SO YEARS

What about overflow with unsigned integers?

- ✓ Unsigned integers are commonly used for memory addresses where overflows are ignored.
- ✓ Fortunately, the compiler can easily check for unsigned overflow using a branch instruction.
- ✓ Addition has overflowed if the sum is less than either of the addends, whereas subtraction has overflowed if the difference is greater than the minuend.

Some programming languages allow two's complement integer arithmetic on variables declared byte and half, whereas RISC-V only has integer arithmetic operations on full words.

What RISC-V instructions should be generated for byte and half-word arithmetic operations?

Computer Organization and Design Addition/ Subtraction

PES UNIVERSITY CELEGRATING SO YEARS

Some programming languages allow two's complement integer arithmetic on variables declared byte and half, whereas RISC-V only has integer arithmetic operations on full words.

What RISC-V instructions should be generated for byte and half-word arithmetic operations?

- 1. Load with 1b, 1h; arithmetic with add, sub, mul, div, using and to mask result to 8 or 16 bits after each operation; then store using sb, sh.
- 2. Load with 1b, 1h; arithmetic with add, sub, mul, div; then store using sb, sh.

Computer Organization and Design Addition/ Subtraction

Saturation Arithmetic:

One feature not generally found in general-purpose microprocessors is saturating operations.

Saturation means that when a calculation overflows, the result is set to the largest positive number or the most negative number, rather than a modulo calculation as in two's complement arithmetic.

COMPUTER ORGANIZATION AND DESIGN

Arithmetic for Computers

Mahesh Awati

Department of Electronics and Communication Engineering

MULTIPLICATION: Sequential Circuit Multiplier

Multiplier: For n=m=4

			X	m3 q3	m2 q2	m1 q1		Multiplicand Multiplier
j=0 j=1 j=2 j=3	m3q3	+ m3q2 m2q3	m3q1 m2q2 m1q3	m3q0 m2q1 m1q2 m0q3	m2q0 m1q1 m0q2	m1q0 m0q1	m0q0	Partial Product
P7	P6	P5	P4	P3	P2	P1	P0	Product

		X		1 0	0 1	1	(13) Multiplicand M (11) Multiplier Q
			1	1	0	1	•
		1	1	0	1		
	0	0	0	0			
1	1	0	1				_
0	0	0	1	1	1	1	(143) Product P

MULTIPLICATION: Sequential Circuit Multiplier

Iteration	Multiplier	Steps	Multiplicand	Product
0	0011	-	0000 0010	0000 0000
1		a) Test bit =1; Product= Product + Multiplicand		0000 0010
		b) Shift left Multiplicand	0000 0100	
	0001	c) Shift Right Multiplier		
2		a) Test bit =1; Product= Product + Multiplicand	0000 0100	0000 0110
		b) Shift left Multiplicand	0000 1000	
	000 0	c) Shift Right Multiplier		
3		a) Test bit =0; Product= Product (No operation)	0000 0000	0000 0110
		b) Shift left Multiplicand	0001 0000	
	000 0	c) Shift Right Multiplier		
4		a) Test bit =0; Product= Product (No operation)	0001 0000	0000 0110
		b) Shift left Multiplicand	0010 0000	
	000 0	c) Shift Right Multiplier		

MULTIPLICATION: Sequential Circuit Multiplier

First version of the multiplication hardware

- The Multiplicand register, ALU, and Product register are all 64 bits wide.
- 64-bit product register is initialized to 0.
- The Multiplier register of 32 bits.

These three steps are repeated 32 times to obtain the product. If each step took one clock cycle, this algorithm would require almost 200 clock cycles to multiply two 32-bit numbers.

MULTIPLICATION: Sequential Circuit Multiplier

First version of the multiplication hardware

- The Multiplicand register, ALU, and Product register are all 64 bits wide.
- 64-bit product register is initialized to 0.
- The Multiplier register of 32 bits.

MULTIPLICATION: Sequential Circuit Multiplier

PES UNIVERSITY CELEBRATING 50 YEARS

First version of the multiplication hardware

- The Multiplicand register, ALU, and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits.
- The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted left 1 bit on each step.
- The multiplier is shifted in the opposite direction at each step. The algorithm starts with the product initialized to 0.
- Control decides when to shift the Multiplicand and Multiplier registers and when to write new values into the Product register.

MULTIPLICATION: Sequential Circuit Multiplier

Refined Version

- This circuit performs multiplication by using
 - ✓ Single n-bit adder instead 2n-bit adders
 - Registers P and Q are shift registers, concatenated as shown, they hold partial product PPi while multiplier bit q0 generates the signal Add/No add.
 - This signal causes the multiplexer MUX to select 0 when q0 = 0, or to select the multiplicand M when q0 = 1, to be added to PPi to generate PP(i + 1). The product is computed in n cycles.
 - ✓ Initially Register A is loaded with PPi as Os (n bit Os)

MULTIPLICATION: Sequential Circuit Multiplier

Multiplier: Fo	or n=m=	4								UNIVEF	RSITY
			m3	m2	m1		Multiplica	nd			
		X	q3	q2	q1	q0 - I	Multiplier				
j=0			m3q0	m2q0	m1q0	m0q0	Pa	rtial	1 1 0 1 × 1 0 1 1	(13) Multiplica (11) Multiplier	
j=1	+	m3q1	m2q1	m1q1	m0q1			odu	1 1 0 (1)	(,	`
j=2	m3q2	m2q2	m1q2	m0q2					1 1 0 1		
j=3 m3q3	m2q3	m1q3	m0q3				م در	nal 11	0 0 0 0 0 1		
P7 P6	P5	P4	Р3	P2	P1	P0	Prøduct (~ 1 0 0	0 1 1 1 1	(143) Product P)
		Com	m3q0	m2q0	m1q0	m0q0	q3	q2	q1	q0	
						p0				test	—
					Ru	ghtshoo					7 Pendia
			m3q0	m2q0	m1q0	m0q0	A3	q2	q1	q0	bits.
			0	m3q0	m2q0	m1q0	P0(moq0)	q3	q2	q1)

MULTIPLICATION: Sequential Circuit Multiplier

MULTIPLICATION: Sequential Circuit Multiplier

M

Refined Version

Shift Right

$$\begin{array}{c} & 1 & 1 & 0 & 1 \\ \times & 1 & 0 & 1 & 1 \\ \hline & 1 & 1 & 0 & 1 \\ & 1 & 1 & 0 & 1 \\ & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}$$

- (13) Multipl
- (11) Multipl

(143) Product P

0	1	0	0
1	1	0	1

1 1 1 0

No ADD

1	1	1	1

Shift Right

ADD M to A

What are the changes in terms of hardware requirements?

1 0 0 0 1 1

0	1	0	0	0

Shift Right

Adder: n bit instead
of 2n
Registr:

Registr:

a) one (2n+1) right

shift registry

MULTIPLICATION: Sequential Circuit Multiplier

Comparison of Refined Version Vs First Version

Compare with the first version

- The Multiplicand register and ALU have been reduced to 32 bits.
- Now the product is shifted right.
- The separate Multiplier register also disappeared. The multiplier is placed instead in the right half of
- the Product register, which has grown by one bit to 33 bits to hold the carryout of the adder. (Note: It depends on size of data)

No of steps | iteration

(i) test and add

(i) shift right

(ii) Decision.

MULTIPLICATION: Sequential Circuit Multiplier

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the <u>octal unsigned 6-bit integers 62 and 12 using</u> the hardware described in Figure 3.3. You should show the contents of each register on each step.

Step	Action	Multiplier	Multiplicand	Product
0	Initial Vals	001 010	000 000 110 010	000 000 000 000
	lsb=0, no op	001 010	000 000 110 010	000 000 000 000
1	Lshift Mcand	001 010	000 001 100 100	000 000 000 000
	Rshift Mplier	000 101	000 001 100 100	000 000 000 000
	Prod=Prod+Mcand	000 101	000 001 100 100	000 001 100 100
2	Lshift Mcand	000 101	000 011 001 000	000 001 100 100
	Rshift Mplier	000 010	000 011 001 000	000 001 100 100
	1sb=0, no op	000 010	000 011 001 000	000 001 100 100
3	Lshift Mcand	000 010	000 110 010 000	000 001 100 100
	Rshift Mplier	000 001	000 110 010 000	000 001 100 100
	Prod=Prod+Mcand	000 001	000 110 010 000	000 111 110 100
4	Lshift Mcand	000 001	001 100 100 000	000 111 110 100
	Rshift Mplier	000 000	001 100 100 000	000 111 110 100
	lsb=0, no op	000 000	001 100 100 000	000 111 110 100
5	Lshift Mcand	000 000	011 001 000 000	000 111 110 100
	Rshift Mplier	000 000	011 001 000 000	000 111 110 100
	1sb=0, no op	000 000	110 010 000 000	000 111 110 100
6	Lshift Mcand	000 000	110 010 000 000	000 111 110 100
	Rshift Mplier	000 000	110 010 000 000	000 111 110 100

First Version of Sequential Circuit Multiplier

Octal – 3 bit representation of numbers.

MULTIPLICATION: Sequential Circuit Multiplier

3.13 [20] <\$3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the octal unsigned 8-bit integers 62 and 12 using the hardware described in Figure 3.5. You should show the contents of each register on each step.

Step	Action	Multiplicand	Product/Multiplier
0	Initial Vals	110 010	000 000 001 010
1	lsb=0, no op	110 010	000 000 001 010
1	Rshift Product	110 010	000 000 000 101
2	Prod=Prod+Mcand	110 010	110 010 000 101
	Rshift Mplier	110 010	011 001 000 010
3	lsb=0, no op	110 010	011 001 000 010
3	Rshift Mplier	110 010	001 100 100 001
4	Prod=Prod+Mcand	110 010	111 110 100 001
4	Rshift Mplier	110 010	011 111 010 000
5	lsb=0, no op	110 010	011 111 010 000
5	Rshift Mplier	110 010	001 111 101 000
6	lsb=0, no op	110 010	001 111 101 000
0	Rshift Mplier	110 010	000 111 110 100

Refined Version of Sequential Circuit Multiplier

Reference: Computer Architecture with RISC V - The Hardware/Software Interface: RISC-V Edition by David A. Patterson and John L. Hennessy

MULTIPLICATION: Sequential Circuit Multiplier

3.14 [10] <\$3.3> Calculate the time necessary to perform a multiply using the approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step of the operation takes four time units. Assume that in step 1a an addition is always performed—either the multiplicand will be added, or a zero will be. Also assume that the registers have already been initialized (you are just counting how long it takes to do the multiplication loop itself). If this is being done in hardware, the shifts of the multiplicand and multiplier can be done simultaneously. If this is being done in software, they will have to be done one after the other. Solve for each case.

Hardware

- 1. Add-1 clock
- 2. Shift 1 clock
- 3. Decide looping 1 clock

Software

- 1. Decide what to add(M/0) 1 clk
- 2. Add-1 clk
- 3. SR-1 clk
- 4. SL- 1 clk
- 5. Decide on looping 1 clk

 $(3 \times 8) \times 4tu = 96$ time units for hardware

 $(5 \times 8) \times 4tu = 160$ time units for software

Sequential

a) Hardware

Sequential a) software

FASTER MULTIPLICATION

<u>Case 1:</u> Faster multiplications are possible by essentially providing one 32- bit adder for each bit of the multiplier: one input is the multiplicand ANDed with a multiplier bit, and the other is the output of a prior adder.

Multiplier: For n=m=4; Number of levels =(n-1)

			X	m3 q3	m2 q2	m1 q1	m0 q0	- Multiplicand - Multiplier
j=0 j=1		+	m3q1	m3q0 m2q1	m2q0 m1q1	m1q0 m0q1	m0q0	M.q0 M.q1
j=2 j=3	m3q3	m3q2 m2q3	m2q2 m1q3	m1q2 m0q3	m0q2			M.q2 M.q3
P7	P6	P5	P4	P3	P2	P1	P0	

Fast Multiplier

PES
UNIVERSITY
CELEBRATING 50 YEARS

<u>Case 1:</u> Faster multiplications are possible by essentially providing one 32- bit adder for each bit of the multiplier: one input is the multiplicand ANDed with a multiplier bit, and the other is the output of a prior adder.

- Use 31,32-bit adders to compute the partial products
- One input is the multiplicand ANDed with the multiplier and the other is the partial product from the previous stage.

multiplicand ANDed with the multiplier

Partial Product from the previous stage

3.15 [10] <\$3.3> Calculate the time necessary to perform a multiply using the approach described in the text (31 adders stacked vertically) if an integer is 8 bits wide and an adder takes four time units.

It takes B time units to get through an adder, and there will be A - 1 adders. Word is 8 bits wide, requiring 7 adders. $7 \times 4tu = 28$ time units.

Mplierž · Woand

Mplier3 · Moand

Moller1 - Moand Moller0 - Moand

FASTER MULTIPLICATION

PES
UNIVERSITY
CELEBRATING 50 YEARS

<u>Case 2:</u> An alternative way to organize these 32 additions is in a parallel tree. Instead of waiting for 32 add times, we wait just the log₂ (32) or five 32-bit add times.

Multiplier: For n=m=4; Number of levels log2 (4) =2

FASTER MULTIPLICATION

Case 2:

An alternative way to organize these 32 additions is in a parallel tree. Instead of waiting for 32 add times, we wait just the log2 (32) or five 32-bit add times.

16, 32 bit adders	Level 1
8, 32 bit adders	Level 2
4, 32 bit adders	Level 3
2, 32 bit adders	Level 4
1, 32 bit adders	Level 5
	Level

(1) No of =
$$log_2(32) = 5$$
 levels

② No of Addu is level
$$1 = \frac{\eta}{2}$$

(1) No of = log_2(32) = 5

Levels
(2) No of Addus is level 1 =
$$\frac{N}{2}$$
(3) Successive levels, have $\frac{1}{2}$ of previous levels

FASTER MULTIPLICATION

Case 2: n=64 bit

FASTER MULTIPLICATION

PES
UNIVERSITY
CELEBRATING 50 YEARS

3.16 [20] <\$3.3> Calculate the time necessary to perform a multiply using the approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes four time units.

It takes B time units to get through an adder, and the adders are arranged in a tree structure. It will require log 2(A) levels. An 8 bit wide word requires seven adders in three levels. $3 \times 4tu = 12$ time units.

Computer Organization and Design RISC V Multiplication and Division Instruction

M Extension

RISC V Multiplication and Division Instruction

M Extension

Case1: Unsigned Numbers

Case2: Signed Numbers

RISC V Multiplication and Division Instruction

M Extension

Case1: Unsigned Numbers

Case2: Signed Numbers

RISC V Multiplication and Division Instruction

M Extension

Case1: Unsigned Numbers

Case2: Signed Numbers

RISC V Multiplication and Division Instruction

M Extension

Case1: Unsigned Numbers

Source code					
	1	li x5,0xffffffff			
	2	li x6,0x0f			
	3	mul x7,x5,x6			
	4	mulhu x8,x5,x6			

x5	t0	0xffffffff
x6	t1	0x0000000f
x7	t2	0xfffffff1
x8	s0	0x0000000e

Case2: Signed Numbers

COMPUTER ORGANIZATION AND DESIGN

Arithmetic for Computers

Mahesh Awati

Department of Electronics and Communication Engineering

Division

 $Dividend = Quotient \times Divisor + Remainder$

Division

PES UNIVERSITY CELEBRATING 50 YEARS

First version of the division Algorithm

- We start with the 32-bit Quotient register set to 0.
- Each iteration of the algorithm needs to move the divisor to the right one digit, so we start with the divisor placed in the left half of the 64-bit Divisor register and shift it right 1 bit each step to align it with the dividend.
- The Remainder register is initialized with the dividend

- This means, The Divisor register, ALU, and Remainder register are all 64(2n)bits wide, with only the Quotient register being 32 bits.
- Control decides when to shift the Divisor and Quotient registers and when to write the new value into the Remainder register.

Division

Division

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let's try dividing 7 $_{\rm ten}$ by 2 $_{\rm ten}$, or 0000 0111 $_{\rm two}$ by 0010 $_{\rm two}$.

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 0111
1	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem $\geq 0 \Longrightarrow$ SLL Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	@000 0001
5	2a: Rem $\geq 0 \Longrightarrow$ SLL Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

The surprising requirement of this algorithm is that it takes (n+1) steps to get the proper quotient and remainder.

An improved version of the division hardware

- The Divisor register, ALU, and Quotient register are all 32 bits wide. i.e., the ALU and Divisor registers are halved in comparison with version 1 and the remainder is shifted left.
- This version also combines the Quotient register with the right half of the Remainder register.

Computer Organization and Design RISC V Multiplication and Division Instruction

M Extension

Signed Division

Remember the signs of the divisor and dividend and then negate the quotient if the signs disagree.

Complication of signed division is that we must also set the sign of the remainder.

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Example: ±7ten by ±2ten:

Case 1: +7 /+2: Quotient =+ 3, Remainder = + 1: check - + 7 3 x 2+ (+1)= 6 + 1

Case 2: -7/+2: Quotient = -3, Remainder = -1

Case 3: +7 /-2 : Quotient =- 3, Remainder= + 1

Case 4: -7 /- 2: Quotient =+3, Remainder= -1

Dividend = Quotient x Divisor + Remainder

Dividend	Divisor	Quotient	Remainder
+	+	+	+
-	+	-	-
+	-	-	+
-	-	+	-

COMPUTER ORGANIZATION AND DESIGN

Arithmetic for Computers

Floating Point

Mahesh Awati

Department of Electronics and Communication Engineering

PES UNIVERSITY

1. FLOATING POINT REPRESENTATION

Why Floating Point Representation needed?

So far we have seen how a decimal number is represented in binary and how it is classified as signed and unsigned, represented and how they are stored

Ex: $(65535)_{10} = 0$ xFFFF = 1111 1111 1111 1111

But, How about storing a small number like $0.00000000005 = 0.5 \times 10^{-10}$ Or How about storing a Large number like $500000000000 = 5 \times 10^{11}$

If Conventional Binary Representation is used —The Number is needed to Converted into Binary and then need to be stored in memory.

Can we represent these by using Fixed Size Memory?

Yes, There are standard representation to do and are called Floating Point Representation defined by IEEE commonly used in all processors

3.14159265... _{ten} (pi)

2.71828... _{ten} (e)

 0.000000001_{ten} or $1.0_{ten} \times 10^{-9}$ (seconds in a nanosecond)

 $3,155,760,000_{\text{ten}}$ or $3.15576_{\text{ten}} \times 10^9$ (seconds in a typical century)

1. FLOATING POINT REPRESENTATION

There are three standards used for floating point number representation defined by IEEE

Precision	Sign	Exponent	Mantissa	Total
single	1	8	23	32
double	1	11	52	64
long double	1	15	64	80

a) Single Precision - 32 bit Number representation

It is called a *single-precision* representation **because it occupies a single 32-bit word**. IEEE 32 bit Number Floating Point representation is as shown below

31	30	23	22	0
Sign	Bias Exponent (E')		M- Mantissa fraction (23 bits)	

a) Single Precision - 32 bit Number representation where,

✓ Bit 31: S- Sign bit
 If S=1 – Negative Sign and S=0 – Positive Sign

Value Represented = $\pm 1.M \times 2^{E'-127}$

✓ Bit [30:23]: Biased Exponent -8 bits allows us to represent 2⁸=256 different integers.

We need both positive and negative integers and, we keep two integers for special cases, so we have 254 left to cover -126 to +127 (Actual sign exponent E excluding special cases).

In this, 127 is exponent bias ,added to the actual exponent (E) and stored in exponent filed and is called excess 127 representation (E') which is an unsigned integer

E' = E + 127, Therefore, the range of E' for normal values is $-126+127=1 \le E' \le 127+127=254 \& E'$ including special cases is in the range $0 \le E' \le 255$.

✓ Bit [22:0]: 23 bit Mantissa fraction

The fractional part of the significant bits called mantissa, always has a

leading 1, with the binary point immediately to its right. Therefore, the

mantissa

$$B = 1.M = 1.b_{-1} b_{-2} b_{-3} \dots b_{-23}$$
 has the value

$$V(B) = 1 + b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \cdots + b_{-23} \times 2^{-23}$$

PES UNIVERSITY CELEBRATING 50 YEARS

a) Single Precision - 32 bit Number representation

- ✓ Bit [22:0]: 23 bit Mantissa fraction
 - To pack even more bits into the number, IEEE 754 makes the leading 1 bit of normalized binary numbers implicit.
 - The number is actually 24 bits long in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double precision (1 + 52).
 - To be precise, we use the term significand to represent the 24- or 53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or 52-bit number.
 - 0 has no leading 1, it is given the reserved exponent value 0 so that the hardware won't attach a leading 1 to it.

$$V(B) = 1 + b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \cdots + b_{-23} \times 2^{-23}$$

Value Represented = $\pm 1.M \times 2^{E'-127}$

a) Single Precision - 32 bit Number representation

Example: +(257.3)₁₀ convert to IEEE 754 32 Bit Floating Point Representation

Ste	p1 :	Rep	epresent data into Binary From											oces	s of	Mo	ving	g de	cim	al p	oint	to the
(25	7) ₁₀)	\rightarrow		(10	0 0	0 0	0 0	0 1)2		,	ро	sitic	n	just	r	- ight	to	.	the	most
(0.3	3) ₁₀	•	\rightarrow		(0 2	100	0 1	1 0	0 1	. 1 .)2/	sig	nific	cant	nor	ı zei	ro di	igit ((bit	in bi	inary)
0	1	0	0	0	0	0	0	0	1		0/	1	0	0	1	1	0	0	1	1		
Sto	. 7.	Nor		+	ho e	lata	ron	ross	· nto	ما ام	hin	0 K) (forn	_								

0.3	X2	0.6	0
0.6	X2	1.2	1
0.2	X2	0.4	0
0.4	X2	0.8	0
0.8	X2	1.6	1
0.6	X2	1.2	1

Step2: Normalize the data represented in binary form

			•	_																	
0	1	0	0	0	0	0	0	0	1	•	0	1	0	0	1	1	0	0	1	1	••••
							_						_								

Step3: Identify the exponent and biased Exponent

0	1	•	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0	1	1	••••
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	------

x 28

Exponent E'= $E+127 = 8+127 =$	135
--------------------------------	-----

31	30					2	23	22									0
Sign	Expor	nent	–Ex	cess	s 12	27- E	Ξ'	M.	- Ma	antis	ssa t	frac	tion	(23	B bit	:s)	
0	1 0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	0	1

PES UNIVERSITY CELEBRATING 50 YEARS

a) Single Precision - 32 bit Number representation

Example

31	30	l						23	22)				0
0	1	0	0	0	0	0	1	1	0	0	0	1	0 0	10

31	Sign	0	It is a Positive Number
30:23	E'	10000011	Exponent
		2 ⁷ 2 ¹ 2 ⁰	$E' = 2^7 + 2^2 + 2^1 = 128 + 2 + 1 = 131$
22:0	М	0001001	Mantissa = 1/8 + 1/128 = 9/128
		2 ⁻¹ 2 ⁻⁴ 2 ⁻⁷	= 0.0703125

Value Represented = \pm 1.M x $2^{E'-127}$ = \pm 1.0001001..... x $2^{(131-127)}$ = \pm 1.0001001 x 2^4 Sign (1+Mantissa) x $2^{(E'-127)}$ = \pm 1.125

- 1. Identify Sign of the Number
- 2. Find the biased Exponent.
- 3. Find out actual Exponent.
- 4. Identify the Fractional Part and Find the decimal Value

Value Represented = \pm 1.M x 2^{E'-127} or $(-1)^S \times F \times 2^E$

PES UNIVERSITY CELEBRATING 50 YEARS

Examples

Show the IEEE 754 binary representation of the number -0.75_{ten} in single and double precision.

PES UNIVERSITY CELEBRATING 50 YEARS

Examples

3.22 [10] <\$3.5> What decimal number does the bit pattern 0×00000000 represent if it is a floating point number? Use the IEEE 754 standard.

Examples

- **3.23** [10] <§3.5> Write down the binary representation of the decimal number 63.25 assuming the IEEE 754 single precision format.
- **3.24** [10] <§3.5> Write down the binary representation of the decimal number 63.25 assuming the IEEE 754 double precision format.

Examples

Converting Binary to Decimal Floating Point

What decimal number does this single precision float represent?

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
31	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PES UNIVERSITY CELEBRATING SO YEARS

a) Single Precision - 32 bit Number representation

Converting Binary to Decimal Floating Point

EXAMPLE

What decimal number does this single precision float represent?

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The sign bit is 1, the exponent field contains 129, and the fraction field contains $1 \times 2^{-2} = 1/4$, or 0.25. Using the basic equation,

ANSWER

$$(-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent-Bias})} = (-1)^1 \times (1 + 0.25) \times 2^{(129-127)}$$

= $-1 \times 1.25 \times 2^2$
= -1.25×4
= -5.0

PES UNIVERSITY CELEBRATING 50 YEARS

a) Single Precision - 32 bit Number representation

Overflow (floating point): A situation in which a positive exponent becomes too large to fit in the exponent field.

Underflow (floating point): A situation in which a negative exponent becomes too large to fit in the exponent field.

What should happen on an overflow or underflow to let the user know that a problem occurred?

- Some computers signal these events by raising an exception, sometimes called an interrupt.
- Exception/Interrupt unscheduled event that disrupts program execution; used to detect overflow.
- The address of the instruction that overflowed is saved in a register, and the computer jumps to a predefined address to invoke the appropriate routine for that exception.
- RISC-V computers do not raise an exception on overflow or underflow; instead, software can read the floating-point control and status register (fcsr) to check whether overflow or underflow has occurred.

PES UNIVERSITY CELEBRATING 50 YEARS

b) Double Precision FP Representation - 64 bit

This tradeoff is between precision and range:

- Increasing the size of the fraction enhances the precision of the fraction,
- While increasing the size of the exponent increases the range of numbers that can be represented.

PES UNIVERSITY CELEBRATING SO YEARS

b) Double Precision FP Representation - 64 bit

To provide **more precision and range** for floating-point numbers, the IEEE standard also specifies a *double-precision* format

63	62 52	2	51	0
Sign	Excess 1023(E')		M- Mantissa fraction (52 bits)	
	11 bit Excess -1023 Exponei	nt	52 bit Mantissa Fraction	

The double-precision format has increased exponent and mantissa ranges.

The 11-bit excess-1023 exponent E has the range $1 \le E \le 2046$ for normal values, with 0 and 2047 used to indicate special values, as before. Thus, the actual exponent E is in the range $-1022 \le E \le 1023$, providing scale factors of 2^{-1022} to 2^{1023}

The 53-bit mantissa provides a precision equivalent to about 16 decimal digits.

A computer must provide at least single-precision representation to conform to the IEEE standard. Double-precision representation is optional.

The standard also specifies certain **optional extended versions** of both of these formats. The extended versions provide increased precision and increased exponent range for the representation of intermediate values in a sequence of calculations.

The use of extended formats helps to reduce the size of the accumulated round-off error in a sequence of calculations leading to a desired result.

2. ADDITION AND SUBTRACTION

Step1: Choose the number with the smaller exponent and find difference in exponents.

Difference in the Exponents $n = |E_A - E_B|$

Shift Mantissa of the Number with the smaller Exponent right by **n steps**. In this **n=2**

Step 2: Add the Mantissa

Step 3: Normalizing

Step 4: Rounding

Single precision requires only 23 fraction bits. As the Normalized results has additional bit, it should be rounded of as follows

- a) Round bit (R)- The bit after the Normalized bit is Round bit
- b) Sticky Bit (S)-The bits after the round bit are Sticky bits All sticky bits should be ORed and taken as One bit

G	R	S	
X	0	0	Truncate
X	0	Х	Truncate
0	1	0	Tie, Truncate
1	1	0	Tie, +1 to LSB
Х	1	1	+1 LSB

2. ADDITION AND SUBTRACTION

Example

+1.	1110	0 1	0 0 0	00000	0 0 0 0 0 0	0 1	0	x 2 ⁴
+1.	1000	0 0	0 0 0	00000	0 1 1 0 0 0 0	1 0	1	x 2 ²

2. ADDITION AND SUBTRACTION

Step1: Choose the number with the smaller exponent and find difference in exponents.

Difference in the Exponents $n = |E_A - E_B| = |4 - 2| = 2$

Shift Mantissa of the Number with the smaller Exponent right by **n times** i.e, Exponents of number match. In this n=2

0. 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 $\times 2^4$

Step 2: Add the Mantissa

PES UNIVERSITY CELEBRATING 50 YEARS

2. ADDITION AND SUBTRACTION

Step 3: Normalizing

1 0. 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 x 2⁴

Since $127 \ge +5 \ge -126$, there is no overflow or underflow. (The biased exponent would be +5 + 127, or 132, which is between 1 and 254, the smallest and largest unreserved biased exponents.)

PES UNIVERSITY CELEBRATING 50 YEARS

2. ADDITION AND SUBTRACTION

Step4: Rounding Single precision requires only 23 fraction bits. As the Normalized results has additional bit, it should be rounded of as follows a) Round bit (R)- The bit after the Normalized bit is Round bit

b) Sticky Bit (S)-The bits after the round bit are Sticky bits - All sticky bits should be ORed and taken as One bit

21098765432109876543210

1. 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 x 2⁵

In the above example R=1 and Oring of Sticky Bits (0|1 = 1). Therefore RS=11, Since RS=11 the increment the fraction by 1 to round it off.

1.	0 0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	X	(2 ⁵
																						1			
4	0.0	1	\sim	\sim	\sim	1	\sim	\circ	^	\sim	_	^	^	^		^	1	1	^	^	1	^			25

G	R	S	
Х	0	0	Truncate
Х	0	Х	Truncate
0	1	0	Tie, Truncate
1	1	0	Tie, +1 to LSB
Х	1	1	+1 LSB

Step 5: Repeat Step3 and 4 if the final result is Not in Normalized state

2. ADDITION AND SUBTRACTION

Try adding the numbers $0.5_{\rm ten}$ and $-0.4375_{\rm ten}$ in binary using the algorithm

PES UNIVERSITY CELEBRATING 50 YEARS

2. ADDITION AND SUBTRACTION

Exponent of one operand is subtracted from the other using the small ALU to determine which is larger and by how much.

This difference controls the three multiplexors; from left to right, they select

- 1. the larger exponent,
- 2. the **significand of the smaller number**, and
- 3. the significand of the larger number.

The smaller significand is shifted right,

then the **significands are added** together using the big ALU

The normalization step then shifts the sum left or right and increments or decrements the exponent.

Rounding then creates the final result, which may require normalizing again to produce the actual final result

Reference: Computer Architecture with RISC V - The Hardware/Software Interface: RISC-V Edition by David A. Patterson and John L. Hennessy

PES UNIVERSITY DELEBRATING 50 YEARS

2. ADDITION AND SUBTRACTION

Add	SA	SB	Function	Description
/				
Sub				
0	0	0	Addition	As signs of A & B are same and Operation is Addition
0	0	1	Subtraction	As sign of A & B are different and Operation required is addition
0	1	0	Subtraction	As sign of A & B are different and Operation required is addition
0	1	1	Addition	Addition As signs of A & B are same and Operation is Addition
1	0	0	Subtraction	As signs of A & B are same and Operation is Subtraction
1	0	1	Addition	As sign of A & B are different and Operation required is Subtraction
1	1	0	Addition	As sign of A & B are different and Operation required is Subtraction
1	1	1	Subtraction	As signs of A & B are same and Operation is Subtraction

$$AS \oplus S_A \oplus S_B$$

3. MULTIPLICATION

Let two numbers be M1 x 2^{E1} and M2x 2^{E2}

Step1: Add the exponents E1 and E2 of two numbers

Note: If exponents biased, then Add them and Subtract the bias value

 E_R =E1+E2; In case E1' and E2' are given for Single Precision Numbers, then ER' = (E1' + E2') -127. As bias has got added twice 127 is subtracted once so that added result is biased only once.

31	30							23	22		0	E,
1	0	0	0	0	0	1	1	1	1	0	0	7
0	1	1	1	0	0	0	0	0	1	0	.,0	224

$$E'R = (E'1 + E'2) - 127 = (7+224) - 127 = 104 (0 1 1 0 1 0 0) - Biased$$

Step2: Multiply the Mantissa M1 and M2 of two numbers and determine the Sign of the result

 $M1 = 1.1000000...0 & M2 = 1.1000000; M1xM2 = 10.0100000 x 2^{104}$

 $(M1 \times 2^{E1}) * (M2 \times 2^{E2})$ = $\pm M1 \times M2. 2^{(E1+E2)}$

Implicit Part of Mantissa

3. MULTIPLICATION

Step3: Normalize the resulting value, If Necessary

Result = M1 x M2 2^{104} = 10.010000 x 2^{104} = 1.0010000 ..x 2^{105} (Normalized

 $E'R = (105) = 0110\ 1001$

Sign = Negative as One of the Number is Negative

31	30	23	22	0
1	0 1 1 0 1 0	0 1 .	0 0 1 0 0	0

3. MULTIPLICATION

Binary Floating-Point Multiplication

Let's try multiplying the numbers 0.5_{ten} and -0.4375_{ten} ,

PES UNIVERSITY CELEBRATING 50 YEARS

ROUNDING AND TRUNCATION

While doing arithmetic operations on Floating Point numbers, it might have led to increase in the number of mantissa bits beyond the defined size of mantissa. In case of Single Precision floating point representation the size of mantissa of resulted number might have become more than 23 (24 bits including the implied leading 1) bits.

1. Chopping: The simplest way is to remove the guard bits and make no changes in the retained bits.

Actual Result	Minimum	Maximum	Truncated	Error Range
b ₋₁ b ₋₂ b ₋₃ b ₋₄ b ₋₅ b ₋₆	$b_{-1} b_{-2} b_{-3} 0 0 0$	b ₋₁ b ₋₂ b ₋₃ 1 1 1	b ₋₁ b ₋₂ b ₋₃	0 to 0.000111

The error in chopping ranges from 0 to almost 1 in the least significant position of the retained bits.

Drawback: The result of chopping is a *biased* approximation because the error range is not symmetrical about 0.

PES UNIVERSITY CELEBRATING 50 YEARS

ROUNDING AND TRUNCATION

2. Von Neumann rounding.

b ₋₁ b ₋₂ b ₋₃ b ₋₄ b ₋₅ b ₋₆	Truncation Action	Error Range
b ₋₁ b ₋₂ b ₋₃ 0 0 0	If the bits to be removed are all 0s, they are	0
	simply dropped, with no changes to the retained	
	bits.	
b ₋₁ b ₋₂ b ₋₃ 0 0 1	if any of the bits to be removed are 1, the least	−1 and +1 in
b ₋₁ b ₋₂ b ₋₃ 0 1 0	significant bit of the retained bits is set to 1. In	the LSB
b ₋₁ b ₋₂ b ₋₃ 0 1 1	our 6-bit to 3-bit truncation example, all 6-bit	position of
b ₋₁ b ₋₂ b ₋₃ 1 0 0	fractions with $b_{-4}b_{-5}b_{-6}$ not equal to 000 are	the retained
b ₋₁ b ₋₂ b ₋₃ 1 0 1	truncated to $0.b_{-1}b_{-2}1$.	bits.
b ₋₁ b ₋₂ b ₋₃ 1 1 0		
b ₋₁ b ₋₂ b ₋₃ 1 1 1		

Advantage: the approximation is *unbiased* because the error range is symmetrical about 0. Unbiased approximations are advantageous because positive errors tend to offset negative errors as the computation proceeds.

PES UNIVERSITY CELEBRATING 50 YEARS

ROUNDING AND TRUNCATION

3. Rounding

b ₋₁	b ₋₂	b ₋₃	b ₋₄	b ₋₅	b ₋₆	Truncation Action	
		G	R	S	S		
b ₋₁	b ₋₂	b ₋₃	0	0	0	Result is exact, No need of rounding	
b ₋₁	b ₋₂	b ₋₃	0	Χ	X	It is rounded to $0.b_{-1}b_{-2}b_{-3}$ by discarding RS	
			1	0	0	If R=1 and S=0; It is Tie case-either truncate or increment. Need to break the tie in an unbiased way, one possibility is to choose the retained bits to be the nearest even number. This is now decided by Guard bit G. If G=0 - It is truncated to the value $0.b_{-1}b_{-2}0$	
b ₋₁	b ₋₂	0	1	0	0		

G	R	S	
Χ	0	0	Truncate
Χ	0	X	Truncate
0	1	0	Tie, Truncate
1	1	0	Tie, +1 to LSB
Χ	1	1	+1 LSB

PES UNIVERSITY CELEBRATING 50 YEARS

ROUNDING AND TRUNCATION

3. Rounding

b ₋₁	b ₋₂	1	1	0	0	If G=1 - It is rounded to 0.b ₋₁ b ₋₂ 1 + 0.001.
b ₋₁	b ₋₂	b ₋₃	1	X	Χ	R=1 and S=1; add 1 to LSB. It is rounded
b ₋₁	b ₋₂	b ₋₃	1	X	X	to 0.b ₋₁ b ₋₂ b ₋₃ + 0.001
b ₋₁	b ₋₂	b ₋₃	1	X	Χ	Note: All don't care conditions can't be
						0

This rounding technique is the default mode for truncation specified in the IEEE floating-point standard[1].

• IEEE 754 encoding of floating-point numbers: A separate sign bit determines the Sign.

Single	precision	Double	precision	Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1-254	Anything	1-2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

• Note: Check slide 17-18

Computer Organization and Design FLOATING POINT Instructions in RISC V

RISC-V supports the IEEE 754 single-precision and double-precision formats with these instructions:

- Floating-point addition, single (fadd.s) and addition, double (fadd.d)
- Floating-point subtraction, single (fsub.s) and subtraction, double (fsub.d)
- Floating-point *multiplication*, *single* (fmul.s) and *multiplication*, *double* (fmul.d)
- Floating-point division, single (fdiv.s) and division, double (fdiv.d)
- Floating-point square root, single (fsqrt.s) and square root, double (fsqrt.d)
- Floating-point equals, single (feq.s) and equals, double (feq.d)
- Floating-point less-than, single (flt.s) and less-than, double (flt.d)
- Floating-point less-than-or-equals, single (fle.s) and less-than-or-equals, double (fle.d)

Computer Organization and Design FLOATING POINT Instructions in RISC V

PES UNIVERSITY CELEBRATING SO YEARS

RISC-V floating-point assembly language

	FP add single	fadd.s f0, f1, f2	f0 = f1 + f2	FP add (single precision)
	FP subtract single	fsub.s f0, f1, f2	f0 = f1 - f2	FP subtract (single precision)
	FP multiply single	fmul.s f0, f1, f2	f0 = f1 * f2	FP multiply (single precision)
	FP divide single	fdiv.s f0, f1, f2	f0 = f1 / f2	FP divide (single precision)
Arithmetic	FP square root single	fsqrt.s f0, f1	f0 = √f1	FP square root (single precision)
	FP add double	fadd.d f0, f1, f2	f0 = f1 + f2	FP add (double precision)
	FP subtract double	fsub.d f0, f1, f2	f0 = f1 - f2	FP subtract (double precision)
	FP multiply double	fmul.d f0, f1, f2	f0 = f1 * f2	FP multiply (double precision)
	FP divide double	fdiv.d f0, f1, f2	f0 = f1 / f2	FP divide (double precision)
	FP square root double	fsqrt.d f0, f1	f0 = √f1	FP square root (double precision)
	FP equality single	feq.s x5, f0, f1	x5 = 1 if f0 == f1, else 0	FP comparison (single precision)
	FP less than single	flt.s x5, f0, f1	x5 = 1 if f0 < f1, else 0	FP comparison (single precision)
Comparison	FP less than or equals single	fle.s x5, f0, f1	$x5 = 1 \text{ if } f0 \le f1, \text{ else } 0$	FP comparison (single precision)
Companson	FP equality double	feq.d x5, f0, f1	x5 = 1 if f0 == f1, else 0	FP comparison (double precision)
	FP less than double	flt.d x5, f0, f1	x5 = 1 if f0 < f1, else 0	FP comparison (double precision)
	FP less than or equals double	fle.d x5, f0, f1	x5 = 1 if f0 <= f1, else 0	FP comparison (double precision)
Data transfer	FP load word	flw f0, 4(x5)	f0 = Memory[x5 + 4]	Load single-precision from memory
	FP load doubleword	fld f0, 8(x5)	f0 = Memory[x5 + 8]	Load double-precision from memory
	FP store word	fsw f0, 4(x5)	Memory[x5 + 4] = f0	Store single-precision from memory
	FP store doubleword	fsd f0, 8(x5)	Memory[x5 + 8] = f0	Store double-precision from memory

THANK YOU

Mahesh Awati

Department of Electronics and Communication

mahesha@pes.edu

+91 9741172822

An improved version of the division hardware

A improved version,

1. Divisor Register need to be of 32 bit size only