VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Hidasi Balázs

hidasi@tmit.bme.hu

Konzulens: Gáspár-Papanek Csaba

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék 2009. Május 20.

Tartalom

- Motiváció
- Célok
- A ShiftTree algoritmus
 - A módszer alapjai
 - Tanulás (ötlet)
 - Osztályozás példa
 - Optimalizálás: többszörös modellezés
- Eredmények
 - Benchmark
 - Verseny
- Alkalmazási lehetőségek
 - Beszélő felismerése
 - Gesztusfelismerés (+felhasználó azonosítás)
 - "Gondolatok" felismerése
- Összefoglalás

Motiváció

- Jelenlegi algoritmusok hátrányai
 - Klasszikus módszerek
 - Jelentős emberi munka (előkészítés)
 - Nem erre találták ki
 - Információvesztés (pontatlanság)
 - Általában nem magyaráz
 - Terület-specifikus algoritmusok
 - Más területen nem hatékony

Célok

- Automatikus
 - Kevés emberi munka
 - Rövid előkészítési fázis
 - Minél több típus általános kezelése
 - Változók száma, osztályok száma, idősorok hossza, stb.
 - Több területen használható (általános)
- Pontos osztályozás
 - Magas találati arány
- Magyarázó
 - Könnyen értelmezhető modellt épít
 - Ellenőrizhető

ShiftTree – A módszer alapjai

- Hibrid algoritmus
 - Döntési fa alap
 - Szerkezet
 - Vágások jóság értékei
 - Leállási feltételek
 - Módosított csomópont-szerkezet
- Moduláris felépítés

Szemtologató (EyeShifter)

- ES-Operator (ESO)
- Szem (pointer) mozgatás

Feltételállító (ConditionBuilder)

- ÇB-Operator (CBO)
- Érték származtatás a szem által mutatott értékből
 - (és környezetéből)

Döntő (Decider)

- Vágási helyek vizsgálata
- Jóságérték számítás
- Optimális vágás választása a lehetségesekből
- Feltétel kiszámítása

ShiftTree – Tanulás (ötlet)

- "Dinamikus attribútumok"
 - Hol nézzük? (ESO)

- 25 időegységgel előrefele (ESONext(25))
- A globális maximumnál (ESOMax)
- 60 méretű intervallumon belül a legkisebb értéknél
- **-** ...
- Mit nézzünk? (CBO)
 - A pontbeli értéket (CBOSimple)

- Az érték környezetének normális eloszlás szerinti súlyozott átlagát (CBONormal)
- Az ugrás során a lokális maximumok számát
- Az ugrás hosszát
- **-** ...
- Tanulás egy csomópontban
 - Leállási feltételek vizsgálata
 - Lehetséges attribútumok kiszámolása (ESO-CBO párok)
 - Az (első) optimális vágás megtalálása (ezt végzi a Decider)
 - Attribútumok közül egy
 - Feltétel érték
 - Operátorok és a feltétel érték megjegyzése
 - Vágás az attribútum és a feltétel alapján
 - Kettéosztani a tanítópontokat a jobb és bal gyermeknek
 - Rekurzívan ugyanez a gyermek csomópontokban

Optimalizálás: többszörös modellezés

- Több optimális attribútum esetén
 - Az összeset kiválasztjuk
 - Az összes szerint vágunk
 - Többszörös fát építünk
 - De csak ott sokszorozunk, ahol kell, nem az egész fát

Egy másik halmazzal kiválasztjuk a legjobbat

Eredmények: benchmark adatokon

- 20 adatsor különböző területekről
 - Egy változó
 - Eltérő tulajdonságok
 - 7 másik algoritmussal szemben
 - KNN, C4.5 döntési fa, Logistic Model Tree, MLP, SVM, Naív Bayes háló, Random Forest
- Konfiguráció
 - Nincs optimalizálás
 - Legegyszerűbb operátorok
 - Ugrás előre/hátra fix távot
 - Ugrás a következő lokális maximumra/minimumra
 - Ugrás a maximumra/minimumra
 - Pontbeli érték, normális súlyozás, exponenciális súlyozás

Eredmények: verseny körülmények

- SIGKDD'07 Time Series Challange adatsorain
 - 20 adatsor
 - Kombinált osztályozók ellen
- Erősebb konfiguráció
 - Fejlettebb operátorok
 - Több futtatás, többségi szavazás
 - De a paraméterek nincsenek finomhangolva
- Eredmények
 - 6 első helyezés (legtöbb)
 - 4 adatsoron még lehetne nyerni
 - 2 adatsoron lehetne javítani
 - 8 adatsoron kevés a tanítóminta
 - Modell alapú algoritmusok itt elvéreznek
 - Összesítésben: 6-8 hely
 - Holtversenyben (a 13-ból)

Alkalmazás: hang- és, gesztusfelismerés

- Személy felismerése az ae magánhangzó kiejtése alapján
 - 12 változó
 - 9 személy (osztály)
- Egyszerű operátorok
- Nincs optimalizálás
- Találati arány kellően magas

- Gesztus adatai gyorsulásmérővel
 - 3 változó (koordináta tengelyek)
 - 10 gesztus, 4 felhasználó
 - Kevés adat
- Lehetséges feladatok:
 - Gesztus felismerése
 - Adott gesztusnál a felhasználó felismerése (nehéz feladat)
 - Bonyolult gesztusnál jobb eredmény
 - Kiemelkedő találati arány

Alkalmazás: "Gondolat" felismerés

EEG hullámok osztályozása

- Adatsor:
 - Két osztály: FEL, LE
 - 6 változó
- Jelenleg ~90% körüli pontosság
 - 2003-as versenyen a top3-ban

Alkalmazás típusai

- Offline osztályozás
 - Alkatrészek tesztelésének automatikus kiértékelése
- Stream adatsorban jelek felismerése
 - Még sok nyitott kérdés
 - Folyamatban lévő kutatás

Összefoglalás

- Új idősor-osztályozó: ShiftTree
 - Automatikus
 - Minden egydimenziós idősorral működik
 - Operátorok definiálása a szakértő feladata
 - Nem automatikus
 - Pontos
 - Már egyszerű operátorokkal, optimalizálás nélkül is kellően pontos
 - Optimalizálással kifejezetten hatékony
 - Ha a tanítóminta nem túl kicsi
 - Magyarázó
 - Könnyen értelmezhető modellek, ellenőrizhető
- Legnagyobb előnye: általános
 - Tématerülettől függetlenül hatékonyan használható

Köszönöm a figyelmet!

