DATA STRUCTURES (3130702)

INFORMATION TECHNOLOGY DEPARTMENT – GEC, BHAVNAGAR

PREREQUISITE – Practical 1

Learning Outcomes:

- 1. Usage of C programming constructs like loop, condition and variables.
- 2. To understand the usage of array, string, user defined function, structure, pointer and dynamic memory allocation.

PROGRAMS:

- 1. Write a program to implement a student structure using dynamic memory allocation and perform following operations Create a student record
 - Search a student record
 - Update a student record
 - Delete a student record
 - Display student records
 - Sort student records
 - Merge student records (Use sorted and unsorted array)
- 2. Write a program to implement a 2- dimensional string array using double pointer.
 - Print initial letter of each string
 - Sort the string in ascending order

STUDY OF DATA STRCUTURE-STACK – Practical 2

Learning Outcomes:

- 1. Create a stack and perform operations on stack
- 2. Using stack to represent expression in Polish and reverse polish notation 3. Using stack to evaluate expression

PROGRAMS:

- 1. Write a program to create a stack and perform following operation on stack. Push, pop, peek, change and display
- 2. Write a program to reverse a string using stack
- 3. Write a program to check the expression for valid usage of parenthesis
- 4. Write a program to convert infix expression to postfix expression using stack
- 5. Write a program to convert infix expression to prefix expression using stack 6. Write a program to evaluate expression using stack

STUDY OF DATA STRUCTURE- QUEUE - Practical 3

Learning Outcomes:

1. Create and use different types of queue with operations

PROGRAMS

- 1. Write a program to create queue and perform operation like insert, delete and display
- 2. Write a program to create circular queue and perform operations like insert, delete and display.
- 3. Write a program to create double ended queue and perform operations like insert, delete and display.

STUDY OF DATA STRUCTURE- LINKED LIST - Practical 4

Learning Outcomes:

1. Create and use different types of liked list with operations

PROGRAMS:

- 1. Write a Program to create singly linear linked list, singly circular linked list, doubly linear linked list and doubly circular linked list and perform following operations.
 - Create a linked list
 - Insert a node at beginning
 - Insert a node at end
 - Insert a node before a value
 - Insert a node after a value
 - Delete a node with a value
 - Delete a node after a value
 - Delete a node before a value
 - Delete a node from beginning
 - Delete a node from end
 - Delete a linked list
 - Display a linked list

STUDY OF DATA STUCTURE- TREE – Practical 5

Learning Outcomes:

1. Create and use binary search tree to organize data hierarchically

PROGRAMS:

- 1. Write a program to create a binary search tree and perform following operations
 - Insert a node in tree
 - Search a node in tree
 - Traversal of tree (Inorder, preorder, postorder)
 - Delete a node in tree
 - Delete tree
 - Calculate height of the tree
 - Calculate total number of nodes, number of internal nodes and number of leaf nodes
- 2. Write a program to create threaded binary tree
- 3. Write a program to create a self-balancing binary search AVL tree

STUDY OF DATA STRUCTURE- GRAPH - Practical 6

Learning outcomes:

- 1. Represent graph using array and linked list data structure
- 2. Perform operations on graph data structure

PROGRAMS:

- 1. Create a graph and perform Breadth First Search
- 2. Create a graph and perform Depth First Search
- 3. Create a graph and find Minimum Spanning Tree using Prim's and Krusal's algorithm
- 4. Create a graph and find Shortest path using Dijkstra's algorithm

STUDY OF HASHING TECHNIQUES - Practical 7

Learning outcomes:

- 1. Study and understand different hashing techniques
- 2. Design of hashing function

PROGRAMS:

- 1. Write a program to implement following hashing techniques with collision resolution mechanism.
 - Division method

- Multiplication method
- Mid-square method
- Folding method

	Apply	collision resoluti	ion mechanism l	ike linear	probing,	quadratic	probing,	double
has	hing 🛮	After certain of	peration of insert	tion apply	rehashin	ıg		

STUDY OF SORTING AND SEARCHING TECHNIQUES – Practical 8

Learning outcomes:

- 1. Understand and implement various sorting techniques to arrange the data values in order
- 2. Understand and implement efficient searching technique to retrieve the value from data structure **PROGRAMS**:
- 1. Write a program to sort a data value using following techniques
 - Bubble sort
 - Selection sort
 - Insertion sort
- 2. Write a program to search a data value using following techniques
 - Linear search
 - Binary search

	D 4 11	4 0	• 1 4	41	• 41	• 1
ш	Practical 1	to 8	implements	tne concepts	s covering the	course curriculum.

NOTE *

A set of practice problems will be declared regularly to enhance problem solving ability and logic building.

Practice problems will be a part of assignment and will be considered in evaluating the lab performance.

Add set of practical problems as practical (Practical no: 9, 10, and 11)

Subject Coordinator
(ANOOP PATEL)