R for Bioinformatics

Analyses and challenges of RNA-seq data

About me

Cascais, Portugal

CECAD Research Center, Cologne

About today

- Introduction to Bioinformatics
- High-throughput RNA-sequencing
- RNA-sequencing data analysis workflow
 - Particularities of the data
 - Common challenges
 - Common analyses

"Computer-aided biology"

Prof. Dr. Barry Grant

Biological data

Biological knowledge

Bacterial vs viral pneumonia diagnosis

Kermany et al. Cell (2018)

High-throughput sequencing data

Medical imaging

Biomolecule structure

. .

Fundamental biology

Medical diagnosis

Mechanisms of disease

What does a bioinformatician do?

- Develop own software
- Apply previously developed software to particular questions and data
 - Understand the data
 - Apply analysis pipelines
 - Refine analysis pipelines after first findings and data exploration

Bioinformatics using R

Release Date		Software packages R
3.12	October 28, 2020	<u>1974</u> 4.0
3.11	April 28, 2020	<u>1903</u> 4.0
3.10	October 30, 2019	<u>1823</u> 3.6
3.9	May 3, 2019	<u>1741</u> 3.6
3.8	October 31, 2018	<u>1649</u> 3.5
3.7	May 1, 2018	<u>1560</u> 3.5
3.6	October 31, 2017	<u>1473</u> 3.4
3.5	April 25, 2017	<u>1383</u> 3.4
<u>3.4</u>	October 18, 2016	<u>1296</u> 3.3
3.3	May 4, 2016	<u>1211</u> 3.3

- Open source
- Open development
- Documented
- Reviewed
- Common platform for community

High-throughput sequencing data

Medical imaging

Biomolecule structure

. .

Fundamental biology

Medical diagnosis

Mechanisms of disease

Genetic information

1. What is DNA?

2. How does it encode genetic information?

AGACTG

Genetic information

Gene expression

Gene expression

Gene expression tells us about cellular activity.

RNA-sequencing data

Humans have 20.000+ genes encoding for proteins -> need for scalable method

RNA-sequencing for group comparison

What distinguishes old hearts from young hearts?

Effect of total number of reads

Number of reads assigned to a given gene depends on the total number of reads.

Simple solution: scale by total number of reads

Effect of total number of reads

Number of reads assigned to a given gene depends on the total number of reads.

Simple solution: scale by total number of reads

Effect of confounding variables

Sources of variation in the data beyond the biologically interesting signal.

	Old	Young
Cohort 1	8	21
Cohort 2	22	9

Simple solution: regress out cohort

Effect of confounding variables

Sources of variation in the data beyond the biologically interesting signal.

	Old	Young
Cohort 1	8	21
Cohort 2	22	9

Simple solution: regress out cohort

Differential expression analysis

Statistical quantification of expression differences between sample groups.

Model for data distribution

Read count data follows a Negative Binomial distribution.

Differential expression analysis

Read counts ~ Confounding Effects + Biological Effect

Take home messages

- Bioinformatics as "computer-aided biology"
- Gene expression as a read out of cellular activity
- Features of RNA-sequencing data

Q & A

