Learning HMM parameters

Given: m observed sentences, each looks like $O=[o_1,\ldots,o_T], o_t\in V$ (lengths vary).

Find: HMM $\lambda = [A, B, \pi]$

The problem is easy if the hidden states $Q=[q_1,\ldots,q_T], q_t\in S$ are known. This is called "supervised learning". Using MLE, we have

$$a_{ij} = \frac{C(i \to j)}{C(i)}$$
 $b_{i,o} = \frac{C(i \to o)}{C(i)}$ $\pi_i = \frac{C(q_1 = i)}{m}$

There are hidden states not observed, so can't directly estimate λ .

Ideas: assume a rough estimation of λ and estimate hidden states,

use the estimation to refine $\boldsymbol{\lambda}$. Do these two steps iteratively until convergence.

hard counts = # I (flip i = head) thip a win for m times and estimate the Pr(head) = # heads Soft counts = & Pr (flip: = head) Learning HMM parameters ELONIT We don't know the POS tag sequence definitely and $a_{ij} = \frac{C(i o j)}{C(i)}$ is not available. Rather, we need to find "soft" counts, using probabilities estimated based on $\lambda = [A,B,\pi]$ ullet Find probability of co-occurrence of two tags (i,j) at location t : $\xi_t(i,j) = \Pr(q_t = i, q_{t+1} = j | O, \lambda)$ / Ksi/ _ Pr (St=i, St+1=5, 0 |) Pr (O|X) & forward / backward $\alpha_t(j) = P(o_1, \dots, o_t, q_t = j)$ $\beta_{t+1}(j) = P(o_{t+2}, \dots, o_T | q_{t+1} = j)$ Aij (from Prev. est.) $Pr(\mathcal{Y}=i,\mathcal{Y}_{t+1}=j,O|\lambda) = Pr(\mathcal{Y}_{t=i},O_{i,-1},O_{t}|\lambda) \times Pr(\mathcal{Y}_{t+1}=j|\mathcal{Y}_{t}=i,\lambda)$ B; (0+n) = × Pr(0++1 | 2+n=j, x) × Pr(0++2---0-1 2+n=j, x)

$$\beta_{1}(1) = Pr(0_{2} - - 0_{1} | 2_{1} = 1)$$
 $Pr(0|N) = \sum_{i=1}^{N} Pr(2_{i} = i) Pr(0|1 2_{i} = i) \beta_{i}(i)$

Learning HMM parameters

Estimating \boldsymbol{B} :

- Similarly, $b_{i,o} = \frac{C(i
 ightarrow o)}{C(i)}$ is not available.
- Find probability of co-occurrence of tag $m{i}$ and word $m{o}$ at location $m{t}$:

 $P_r(s|\lambda) = \sum_{i=1}^{N} \lambda_r(i)$

there some labeled sog, then initialize I using MLE on the labeled data (Semi-Supervised learning)

Learning HMM parameters

EM (expectation-maximization) algorithm: (b/c we have hidden vandom vars)

Given: m observed sentences, possibly labeled

can't use MLE)

Initialize $\lambda = [A, B, \pi]$ either randomly or using the POS-tags if available.

loop until convergence

M-step: find

where does it wonverge to? Typically a

E-step: run forward and backward algorithms to find

 $lpha_t(j) = P(o_1, \ldots, o_t, q_t = j)$ $eta_t(i) = P(o_{t+1}, \ldots, o_T | q_t = i)$ find

global optimum

 $\xi_t(i, j) = \Pr(q_t = i, q_{t+1} = j | O, \lambda)$

$$\gamma_t(i) = \Pr(q_t = i | O, \lambda)$$

$$a_{ij} = \frac{\sum_{k=1}^{m} \sum_{t=1}^{T} \xi_{t}^{(m)}(i,j)}{\sum_{i} \sum_{k=1}^{m} \sum_{t=1}^{T} \xi_{t}^{(m)}(i,j)} \qquad b_{io} = \frac{\sum_{k=1}^{m} \sum_{t=1,o_{t}=o}^{T} \gamma_{t}^{(m)}(i)}{\sum_{k=1}^{m} \sum_{t=1}^{T} \gamma_{t}^{(m)}(i)}$$

$$b_{io} = \frac{\sum_{k=1}^{m} \sum_{t=1, o_t=o}^{T} \gamma_t^{(m)}(i)}{\sum_{k=1}^{m} \sum_{t=1}^{T} \gamma_t^{(m)}(i)}$$

starting probabilities are left as an exercise.

Learning HMM parameters

A running example of EM.

- Same cheating dealer example. Observe sequence of H/T. Estimate the cheating model
 - o transiting between cheating and no cheating,

o the probability of heads under the two modes.

Consingle segmence

Thit idite $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ The probability of heads under the two modes. $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ The probability of heads under the two modes.

E-Slep: for
$$t=1,...,3$$
,
for $i=1,\lambda$
find $d+(i)$, $\beta+(i)$

State 1 = cheating

hsing forward (buckward Alg.

M-Step: for t = 1, ..., 3

find Tt(i), for (i,j) pairs,

re-Cstimate A, B, TI, go to Estep , find 5+(i,j)

Natural Language Processing CSE 325/425

Sihong Xie

Lecture 9:

These are all called CRF-LSTM & he was

Pr(a|0,N) "discriminative" models

rather than HMM

Long-short Term Memory

Pr(a|0,N) = Pr(0,0|N) "generative" model

Drawbacks of HMM

HMM has very restricted parameter forms

- transition probabilities only models tag-tag relationships.
 - what if I want to know how NNP (proper noun) influences the prediction of VBN (verb,

past particle)?

Simple but restricted

Parametrization

Oij = Pr (2+1=j | 21=i)

bio = Pr(0+=0| 2+=5)

- emission probabilities only models word-tag relationships.
 - o what if I want to use other features, such as
 - "zzfish" can have suffix feature "ish" or "fish" to predict adjective (like "selfish") or noun (like "kingfish").

$$\begin{aligned}
& \mathcal{L} = \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i Y = \text{Fulse} \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i f_i \left(\overrightarrow{X}_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i \left(\sum_{i \geq 1} \theta_i \right) \right\} \\
& + \exp\left\{ \sum_{i \geq 1} \theta_i \left(\sum_{i \geq 1} \theta_i \right$$

These drawbacks can be addressed by a logistic regression model.

- Output: a probability distribution over classes.
- Parameters: $\boldsymbol{\theta} \in \mathbb{R}^d$
- Example: predict if a credit card application should be approved.

 o Input: [annual income > 50,000 \mbox{k} , living in city, has job, has a house]
 - Output: probability of approval = 90%

$$\vec{u} = [u, - - u_d]$$

$$\vec{v} = [v_1 - v_d]$$

$$(\vec{u}, \vec{v}) = \underbrace{\xi(u_i v_i)}_{i=1} \in \mathbb{R}$$

Sigmoid function

The mapping from the inner product $\boldsymbol{\theta}^{\top}\mathbf{f}(\mathbf{x}, y = True) = \sum_{i=1}^{d} \boldsymbol{\theta}_{i} + \sum_{i=1}^{d} \boldsymbol{\theta}_{i} +$

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

The range of sigmoid is (0,1) and the domain is $(-\infty,\infty)$

Multi-class logistic regression

To predict one out of more than two POS tags for a word o_t , we need multi-C E { 1, --- , N } class logistic regression

The probability of POS tag $q_t=c$ given some feature vector of word o_t :

$$Z = \sum_{c' \in \{\text{All tags}\}} \exp \left\{ \sum_{i=1}^{d} \theta_i' f_i(o_t, q_t = c') \right\}$$

$$\exp\left\{\sum_{i=1}^{d}\theta_{i}^{\prime}f_{i}(o_{t},q_{t}=c)\right\}$$
 For postag 1
$$\sum_{i=1}^{d}\theta_{i}^{\prime}f_{i}(o_{t},q_{t}=c^{\prime})\right\}$$

$$\in \mathbb{R}^{d} \text{ for postag N}$$

$$\sum_{i=1}^{d}\theta_{i}^{\prime}f_{i}(o_{t},q_{t}=c^{\prime})\}$$

$$\in \mathbb{R}^{d} \times \mathbb{N}$$

Multi-class logistic regression

Examples

$$\circ f_1 : c = \text{NN AND } o_t = \text{``race''}$$

$$\circ f_2 : c = VB \text{ AND } q_{t-1} = \text{"TO"}$$

 $f_3: c = ext{VBG AND } o_t = ext{ends with "ing"}$

 \circ $f_4: c = \text{VB AND } o_t = \text{is lower-case}$

 \circ $f_5: c = \text{VB AND } o_t = \text{``race''}$

o $f_6: c = NN \text{ AND } q_{t-1} = \text{"TO"}$

Prob of NN

use f	0+ ("YALE"	= , f 2("	race", NN) = VB or NN				
		f_1	f_2	f_3	f_4	f_5	f_6
c = NN	$\mathbf{f}(o_t, \mathrm{NN})$	1	0	0	0	0	1
	$oldsymbol{ heta}_{ ext{NN}}$	0.8	1	-2	3	0.1	-1.3
c = VB	$\mathbf{f}(o_t, \mathrm{VB})$	0	1	0	1	1	0
	$oldsymbol{ heta}_{ ext{VB}}$	0.9	0.8	-1	0.01	0.1	0
c = VBG	$\mathbf{f}(o_t, \mathrm{VBG})$	0	0	0	0	0	0
	$\boldsymbol{\rho}_{\text{rmg}}$	1	0.2	0	0.2	0.4	2 /

X = Secretariat is expected to

$$= \frac{1}{2} \exp\{0.8 \times 1 + 1 \times 0 + (-1) \times 0 \times 1 + 1 \times 0 \times 1 \times 0 \times 1 + 1 \times 0 \times 1 \times 0 \times$$

race tomorrow

Training multi-class logistic regression

Use MLE

- Training data: all pairs of (o_t, q_t) from all POS-tagged sentencens.
- Construct feature vectors $f(o_t, q_t = c)$
- Find the log-likelihood

$$\ell(\boldsymbol{\theta}; \text{Training corpus}) = \sum_{t=1}^{m} \sum_{c \in \{\text{All tags}\}} [q_t = c] \log \Pr(q_t = c | o_t; \boldsymbol{\theta})$$

- Stochastic gradient descent
 - \circ The gradient of the negative log-likelihood of one training pair (o_t,q_t) w.r.t. $oldsymbol{ heta}_c$

$$\frac{\partial}{\partial \boldsymbol{\theta}_c} [-\log \Pr(q_t = c | o_t; \boldsymbol{\theta})] = -\{[q_t = c] - \Pr(q_t = c | o_t; \boldsymbol{\theta})\} \mathbf{f}(o_t, q_t = c)$$

Taking one gradient descent step moves the parameter closer to the feature vector.