

SEQUENCE LISTING

<110> Bayer HealthCare AG
 Golz, Stefan
 Brüggemeier, Ulf
 Geerts, Andreas

<120> Diagnostics and Therapeutics for Diseases Associated with
 G-Protein Coupled Receptor ADIPOR1 (ADIPOR1)

<130> LeA 36 901

<150> PCT/EP2004/010384
 <151> 2004-09-16

<150> EP03021898.6
 <151> 2003-09-27

<160> 5

<170> PatentIn version 3.3

<210> 1

<211> 2100

<212> DNA

<213> Homo sapiens

<400> 1		
ggcgctgaag atcggggccg ctcggccgca ggccgcctcc agcgccgcgg gatgttagcgc	60	
gggggaccgc ggccccccagc agagcccgcc tgcccgctt gtctaccatc agagggagat	120	
ctctgcccccc tggggctgag agaccccaac ctttcccaa gctgaagctg cagggtattt	180	
aggtaccagc cagatgtctt cccacaaagg atctgtggtg gcacagggga atggggctcc	240	
tgcaggtaac agggaaagctg acacggtgaa actggctgaa ctgggacccc tgctagaaga	300	
gaagggcaaa cgggtaatcg ccaacccacc caaagctgaa gaagagcaaa catgcccagt	360	
gccccaggaa gaagaggagg aggtgcgggt actgacactt cccctgcaag cccaccacgc	420	
catggagaag atggaagagt ttgtgtacaa ggtctggag ggacgttggaa gggtcatccc	480	
atatgatgtg ctccctgact ggctaaagga caacgactat ctgctacatg gtcataagacc	540	
tcccatgcc tcccttcggg ttgcattcaa gagcatcttc cgcatcata cagaaactgg	600	
caacatctgg acccatctgc ttggttcgt gctgtttctc ttttggaa tcttgaccat	660	
gctcagacca aatatgtact tcatggcccc tctacaggag aaggtggttt ttggatgtt	720	
cttttgggt gcagtgcct gcctcagctt ctcctggctc tttcacaccg tctattgtca	780	
ttcagagaaa gtctctcgaa cttttccaa actggactat tcagggattt ctcttctaatt	840	
tatggggagc tttgtccct ggctctatta ttcccttctac tgctccccac agccacggct	900	
catctacctc tccatcgct gtgtcctgg catttctgcc atcattgtgg cgcaagtggga	960	
ccggtttgcc actcctaagc accggcagac aagagcaggc gtgtccctgg gacttggctt	1020	
gagtggcgtc gtgcccacca tgcactttac tatcgctgag ggctttgtca aggccaccac	1080	
agtggggccag atgggctggt tcttcctcat ggctgtgatg tacatcactg gagctggcct	1140	
ttatgctgct cgaattcctg agcgcttctt tcctggaaaa tttgacatat ggttccagtc	1200	
tcatcagatt ttccatgtcc tggtggtggc agcagcctt gtccacttct atggagtctc	1260	

caacccatcg	gaattccgtt	acggcctaga	aggcggctgt	actgatgaca	cccttctctg	1320
agccttccca	cctgcggggt	ggaggaggaa	cttccaagt	gctttaaaaa	ataacttctt	1380
tgctgaagtg	agaggaagag	tctgagttgt	ctgtttctag	aagaaacctc	ttagagaatt	1440
cagtaccaac	caagcttcag	cccacttca	caccactgg	gcaataaact	ttccatttcc	1500
attctcctag	ctggggatgg	ggcatggtca	aacttagcca	tcccctccctc	agcaaggcat	1560
ctaccggccc	ctcacagaga	cagtacttg	aaactcatgt	tgagatTTA	ccctctccctc	1620
caaccatTTT	gggaaaatta	tggactggga	ctttcagaa	attctgtctt	ttcttctgga	1680
agaaaaatgtc	cctcccttac	ccccatcTT	aactttgtat	cctggcttat	aacaggccat	1740
ccatTTTGT	agcacacttt	tcaaaaacaa	ttatataaccc	tggtcccattc	tttcttagggc	1800
ctggatCTGc	ttatagagca	ggaagaataa	agccaccaac	ttttacctag	cccggtcaat	1860
catggaagtg	tgtccaggct	tcaagtaact	tgagTTTAA	ttttttttt	ttcttggcag	1920
agtaatgtaa	aattttaaatg	gggaaagata	tttaatattt	aatactaagc	tttaaaaaga	1980
aacctgctat	cattgctatg	tatcttgatg	caaagactat	gatgttaata	aaagaaaagta	2040
cagaagagac	ttggcattca	aagatttcaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100

<210> 2

<211> 375

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Ser His Lys Gly Ser Val Val Ala Gln Gly Asn Gly Ala Pro
 1 5 10 15

Ala Ser Asn Arg Glu Ala Asp Thr Val Glu Leu Ala Glu Leu Gly Pro
 20 25 30

Leu Leu Glu Glu Lys Gly Lys Arg Val Ile Ala Asn Pro Pro Lys Ala
 35 40 45

Glu Glu Glu Gln Thr Cys Pro Val Pro Gln Glu Glu Glu Glu Val
 50 55 60

Arg Val Leu Thr Leu Pro Leu Gln Ala His His Ala Met Glu Lys Met
 65 70 75 80

Glu Glu Phe Val Tyr Lys Val Trp Glu Gly Arg Trp Arg Val Ile Pro
 85 90 95

Tyr Asp Val Leu Pro Asp Trp Leu Lys Asp Asn Asp Tyr Leu Leu His
 100 105 110

Gly His Arg Pro Pro Met Pro Ser Phe Arg Ala Cys Phe Lys Ser Ile
 115 120 125

Phe Arg Ile His Thr Glu Thr Gly Asn Ile Trp Thr His Leu Leu Gly
130 135 140

Phe Val Leu Phe Leu Phe Leu Gly Ile Leu Thr Met Leu Arg Pro Asn
145 150 155 160

Met Tyr Phe Met Ala Pro Leu Gln Glu Lys Val Val Phe Gly Met Phe
165 170 175

Phe Leu Gly Ala Val Leu Cys Leu Ser Phe Ser Trp Leu Phe His Thr
180 185 190

Val Tyr Cys His Ser Glu Lys Val Ser Arg Thr Phe Ser Lys Leu Asp
195 200 205

Tyr Ser Gly Ile Ala Leu Leu Ile Met Gly Ser Phe Val Pro Trp Leu
210 215 220

Tyr Tyr Ser Phe Tyr Cys Ser Pro Gln Pro Arg Leu Ile Tyr Leu Ser
225 230 235 240

Ile Val Cys Val Leu Gly Ile Ser Ala Ile Ile Val Ala Gln Trp Asp
245 250 255

Arg Phe Ala Thr Pro Lys His Arg Gln Thr Arg Ala Gly Val Phe Leu
260 265 270

Gly Leu Gly Leu Ser Gly Val Val Pro Thr Met His Phe Thr Ile Ala
275 280 285

Glu Gly Phe Val Lys Ala Thr Thr Val Gly Gln Met Gly Trp Phe Phe
290 295 300

Leu Met Ala Val Met Tyr Ile Thr Gly Ala Gly Leu Tyr Ala Ala Arg
305 310 315 320

Ile Pro Glu Arg Phe Phe Pro Gly Lys Phe Asp Ile Trp Phe Gln Ser
325 330 335

His Gln Ile Phe His Val Leu Val Val Ala Ala Ala Phe Val His Phe
340 345 350

Tyr Gly Val Ser Asn Leu Gln Glu Phe Arg Tyr Gly Leu Glu Gly Gly
355 360 365

Cys Thr Asp Asp Thr Leu Leu
370 375

<210> 3
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Primer1 (forward primer)
<400> 3
gagaaggggca aacgggtaa

19

<210> 4
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Primer2 (reverse primer)
<400> 4
ctcttcttccc tggggcact

19

<210> 5
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Probe1
<400> 5
cccacccaaa gctgaagaag agca

24