CS557: Cryptography

Public-key Cryptography-II

S. Tripathy IIT Patna

Present Class

- Public Key Cryptography
 - Public Key Encryption
 - RSA

Public-Key Cryptosystems (confidentiality)

Public-Key Cryptosystem: Secrecy

RSA

- Key Setup
 - each user generates a public/private key pair by:
 - selecting two large primes at random: p, q
 - computing their system modulus N=p.q
 - note \emptyset (N) = (p-1) (q-1)
 - select at random the encryption key e
 - where $1 < e < \emptyset(N)$, $gcd(e, \emptyset(N)) = 1$
- solve following equation to find decryption key d
 - e.d=1 mod \emptyset (N) and $0 \le d \le N$
- publish their public encryption key: KU={e,N}
- keep secret private decryption key: KR={d,p,q}
- to encrypt a message M the sender:
 - obtains public key of recipient KU={e, N}
 - computes: C=Me mod N, where 0≤M<N
- to decrypt the ciphertext C the owner:
 - uses their private key KR={d,p,q}
 - computes: M=Cd mod N

RSA Encryption is one-way trapdoor

- Now D_d [E_e[x]] = x
 E[x] and D[y] can be computed efficiently if keys are known
- E⁻¹[y]cannot be computed efficiently without knowledge of the (private) decryption key d.
- Also, it should be possible to select keys reasonably efficiently. Efficiency requirements are less stringent since it has not to be done too often.

RSA Key Generation

- users of RSA must:
 - 1. determine two primes at random: p, q
 - primes p,q must not be easily derived from modulus N=p.q
 - means must be sufficiently large
 - Primes are dense so choose randomly.
 - Probabilistic primality testing methods known.
 - 2. select either e or d and compute the other
 - typically guess and use probabilistic test
 - exponents e, d are inverses, so use Inverse algorithm to compute the other (Extended Euclidean algorithm)

Prime numbers

Definitions:

- A Prime number is an integer that has no integer factors other than 1 and itself.
- Otherwise, it is called composite number.
- A primality testing is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization)

The Largest Known Prime

- A Mersenne prime is a prime of the form
 29 1
- The largest known prime as of March 2007 is the 44th known Mersenne prime

$$p = 2^{32582657} - 1$$

- Which has 9,808,358 decimal digits
 - This would take over 2000 pages to print, assuming a page contains 60 lines with 80 characters per line.
- Largest known prime number: As of Dec 2018,
 - the largest known prime number is 282589933 1, a number with 24,862,048 digits. It was found by the Great Internet Mersenne Prime Search (GIMPS).

Primality Test

- The primality test provides the probability of whether or not a large number is prime.
- Several theorems including Fermat's theorem provide idea of primality test.
- Cryptography schemes such as RSA algorithm heavily based on primality test.
- 1. Square Root Compositeness Theorem

+

- 2. Fermat's Theorem =
- 3. Miller-Rabin Compositeness Test

A Naïve Algorithm (Primality Test)

A Naïve Algorithm

- Pick any integer P that is greater than 2.
- Try to divide P by all odd integers starting from 3 to square root of P.
- If P is divisible by any one of these odd integers, we can conclude that P is composite.
- The worst case is that we have to go through all odd number testing cases up to square root of P.
- Time complexity is O(square root of N)

Square Root Compositeness (Primality Test)

The Square Root Compositeness theorem gives a way to factor certain composite numbers

Given integers n, x, and y:

If
$$x^2 \equiv y^2 \pmod{n}$$
, but $x \neq \pm y \pmod{n}$

Then n is composite

Ex.:
$$n=21$$
? $x=2$, $y=16$

Fermat's Theorem (Primality Test)

Fermat's Theorem

- Given that P is an integer that we would like to test that it is either a PRIME or not.
- And A is another integer that is greater than zero and less than P.
- From Fermat's Theorem, if P is a PRIME, it will satisfy this two equalities:
 - $A^{(p-1)} = 1 \pmod{P}$ or $A^{(p-1)} \pmod{P} = 1$
 - A^P = A(mod P) or A^P mod P = A
- For instances, if P = 341, will P be PRIME?
 -> from previous equalities, we would be able to obtain that:
 2^(341-1)mod 341 = 1, if A = 2
- However, if we choose A equal to 3:
- 3^(341-1)mod 341 = 56 !!!!!!!!!
 - That means Fermat's Theorem is not true in this case!

Review: Fermat can be used to test for compositeness, but doesn't give factors

- Fermat's little theorem:
 - If n is prime and doesn't divide a, then $a^{n-1} \equiv 1 \pmod{n}$
- · Contrapositive:

- If
$$a^{n-1} \neq 1 \pmod{n}$$
 then n is composite

- In practice,
 - $\text{ If } a^{n-1} \equiv 1 \pmod{n} \quad \text{then n is probably prime}$
 - Rare counterexamples called pseudoprimes

A is \ a ⁿ⁻¹	=1	≠ 1
Prime	Usually true	None
Composite	Rare pseudoprime	All

Rabin-Miller's (Primality Test)

- Rabin-Miller's Probabilistic Primality Algorithm
 - The Rabin-Miller's Probabilistic Primality test was by Rabin, based on Miller's idea. This algorithm provides a fast method of determining of primality of a number with a controllably small probability of error.
 - Given (b, n), where n is the number to be tested for primality, and b is randomly chosen in [1, n-1].
 - Let $n-1 = (2^q)^m$, where m is an odd integer.
 - b^m = 1(mod n)
 - $\exists i \in [0, q-1]$ such that b^((2^i) m)= -1(mod n)
 - If the testing number satisfies either cases, it will be said as "inconclusive" or Probable prime number

Ex.:

- Consider the Carmichael number n = 561.
 - Then n -1 =560 = 2 ^4 *35.
 - m=35,
 - For a = 2, we get
 - $-2^{35} = 263 \neq 1 \mod 561$
 - $-2^35 = 263 \neq -1 \mod 561$
 - 2 ^(2*35=)70 =166 mod 561
 - $-2^{(4*35=)140} = 67 \mod 561$
 - $-2^{(8*35=)280} = 1 \mod 561$. so composite

 Thus, 2 is a Miller-Rabin witness for compositeness of n = 561

RSA Security

- Three major approaches to attacking RSA:
 - brute force key search:
 - infeasible given size of numbers
 - mathematical attacks (based on difficulty of computing $\emptyset(N)$, by factoring modulus N)
 - timing attacks (on running of decryption)

Factoring Problem

- mathematical approach to find d takes 3 forms:
 - factor N=p.q, hence find ø(N) and then d
 - determine $\emptyset(N)$ directly and find d
 - find d directly
- · currently believe all equivalent to factoring
 - barring dramatic breakthrough 1024+ bit RSA secure
 - ensure p, q of similar size and matching other constraints

Security lies on Factoring

- have seen slow improvements over the years
- biggest improvement comes from improved algorithm
 - "Quadratic Sieve" to "Generalized Number Field Sieve"
- Rivest's estimation in 1977: to factor a 129-digit number requires 40000 trillion years
 - That was the first RSA challenge: RSA-129, award \$100.
 - RSA-129 was factored in 1994 Atkins, Graff, Lenstra, Leland +
 600 volunteers using 1600 computers for about one year.
 - RSA-challenge that was factored: RSA-640 in Dec. 2005.
 - RSA 704 was factored in July 2, 2012
 - RSA 829 in 2020
- Current recommendations
 - Individual users: n should have 768 bits (231 digits)
 - Organizations (short term): 1024 bits (308 digits)
 - Organizations (long term): 2048 bits (616 digits)

Complexity of Factoring Problem

- Trial division
 - Complexity \in
- Pollard p-1 method

```
input: an integer n, and a prespecified "bound" B
output: factors of n
            a \leftarrow 2
            for j \leftarrow 2 to B
                do a \leftarrow a^j \mod n
            d \leftarrow \gcd(a-1,n)
            if 1 < d < n
                 then return(d)
                else return(" failure')
```

Thanks