Problem G Generators

The volcanic island of Fleeland has never had a proper electric net, but finally the administration of the island have agreed to build the island's power plants and network.

On the island's coast are its n cities. The administration has surveyed the cities and proposed m of them as possible locations for a power plant, with the ith proposal stating that the company can build a plant in city c_i for cost a_i .

These power plants are very modern and a single plant could power the whole island, but the volcano makes building power lines across the island a dangerous affair. For $1 \le i < n$, the company can build power lines between cities i and i+1 for a cost of b_i , and between cities n and n for a cost of n. A city will receive power if it contains a power plant or is connected to a city with a power plant via power lines.

What is the cheapest way to power all the cities on the island?

Input

- One line containing two integers n ($3 \le n \le 10^5$) and m ($1 \le m \le n$), the number of cities and the number of possible locations for a power plant.
- Then follow m lines, the ith of which contains c_i $(1 \le c_i \le n)$ and a_i $(1 \le a_i \le 10^9)$, the ith possible location for a power plant, and the cost to build it.
- Then follows a line containing n integers b_i ($1 \le b_i \le 10^9$), the costs of building the power lines.

The values of $c_{1,...,n}$ are unique and given in strictly increasing order.

Output

Output the minimal cost of powering all cities on the island.

Sample Input 1

Sample Output 1

3 2	400
1 100	
2 200	
150 300 150	

Sample Input 2

Sample Output 2

•	•
3 2	450
1 100	
2 200	
300 300 150	