New Data on Wobbling Motion for Approx130 Mass Region

Robert Poenaru^{1,2}

¹Doctoral School of Physics, UB ²Department of Theoretical Physics, IFIN-HH

May 26, 2023

Outline

Nuclear Triaxiality

Wobbling Motion in Nuclei

3 Current status of nuclear "wobblers"

Nuclear Deformation

Nuclear shapes

Most generally described in terms of the nuclear radius:

$$R(heta,arphi) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} lpha_{\lambda\mu} Y^{\mu}_{\lambda}(heta,arphi)
ight)$$

Quadrupole deformations $\lambda = 2$

- Most relevant modes are the **quadrupole vibrations** $\lambda = 2 \Longrightarrow Play$ a crucial role in the rotational spectra of nuclei:
- $\alpha_{2\mu}$ reduced to only two deformation parameters: β_2 (eccentricity) and γ (triaxiality) (Bohr and Mottelson, 1969).

Axial shapes

- Most of the nuclei are either spherical or axially symmetric in their ground-state.
- Nuclear moments of inertia $\mathcal{I}_{1,2,3}$: only two are equal.

Figure: spherical: $\beta_2 = 0$ prolate: $\beta_2 > 0$ oblate: $\beta_2 < 0$. $(\gamma = 0^\circ)$.

Non-axial shapes

- The triaxiality parameter $\gamma \neq 0^{\circ}$: departure from axial symmetry.
- Moments of inertia: $\mathcal{I}_1 \neq \mathcal{I}_2 \neq \mathcal{I}_3$.

Wobbling Motion

Wobbling Effect

• The total angular momentum of the nucleus precesses and oscillates around \mathcal{J}_{max} .

Wobbling Motion

Harmonic oscillation

- Precession of I is affected by rotational frequency and/or tilting
- Tilting only by "specific" amount \rightarrow harmonic character \rightarrow wobbling phonon: $n_w = 0, 1, 2, \dots$

Wobbling Motion II

R. Poenaru, 2023.

Even-A vs. Odd-A Picture

- Predicted for even-A nuclei more than 50 years ago.
- First experimental evidence: ¹⁶³Lu (Ødegård, 2001).
- Current mass-regions for wobblers: $A \approx [130, 160, 180]$.

Excitation energies vs. Wobbling Energies:

$$E_{\text{wob}}(I_{\text{even}}) = E_{I,n} - E_{I,0} ,$$

 $E_{\text{wob}}(I_{\text{odd}}) = E_{I,n} - \frac{1}{2} (E_{I-1,0} + E_{I+1,0})$

Figure: Experimentally confirmed wobblers, R Poenaru, 2023.

Figure: Experimentally confirmed wobblers, R Poenaru, 2023.

Figure: Experimentally confirmed wobblers, R Poenaru, 2023.

Figure: Experimentally confirmed wobblers, R Poenaru, 2023.

Wobbling Motion in ¹³⁵Pr

What we know so far

- Two-wobbling phonon bands were measured (Matta et. al. 2015 + Sensharma et. al. 2019)
- Exp. measurements: Fusion-Evaporation reactions: ¹²³Sb (¹⁶O, 4n)¹³⁵ Pr
- 1st round: ATLAS, ANL (USA), 2nd round: Pelletron-TIFR, Mumbai.

Fusion Evaporation Reactions

Fusion-evaporation reactions: Long-lived + enhanced deformation

Thank you for your attention!