Recurrent Neural Networks 2

CS 287

(Based on Yoav Goldberg's notes)

Review: Representation of Sequence

Many tasks in NLP involve sequences

$$w_1, \ldots, w_n$$

Representations as matrix dense vectors X
 (Following YG, slight abuse of notation)

$$\mathbf{x}_1 = \mathbf{x}_1^0 \mathbf{W}^0, \dots, \mathbf{x}_n = \mathbf{x}_n^0 \mathbf{W}^0$$

Would like fixed-dimensional representation.

Review: Sequence Recurrence

- ► Can map from dense sequence to dense representation.
- $ightharpoonup x_1, \ldots, x_n \mapsto s_1, \ldots, s_n$
- ▶ For all $i \in \{1, ..., n\}$

$$\mathbf{s}_i = R(\mathbf{s}_{i-1}, \mathbf{x}_i; \theta)$$

 \triangleright θ is shared by all R

Example:

$$\mathbf{s}_4 = R(\mathbf{s}_3, \mathbf{x}_4)$$

= $R(R(\mathbf{s}_2, \mathbf{x}_3), \mathbf{x}_4)$
= $R(R(R(R(\mathbf{s}_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3), \mathbf{x}_4)$

- Run forward propagation.
- ► Run backward propagation.
- Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- ► Run forward propagation.
- ► Run backward propagation.
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation.
- Update all weights (shared)

- Run forward propagation.
- ► Run backward propagation.
- ▶ Update all weights (shared)

Review: Issues

- ► Can be inefficient, but batch/GPUs help.
- ▶ Model is much deeper than previous approaches.
 - ▶ This matters a lot, focus of next class.
- ▶ Variable-size model for each sentence.
 - Have to be a bit more clever in Torch.

Quiz

Consider a ReLU version of the Elman RNN with function R defined as

$$NN(\mathbf{x}, \mathbf{s}) = ReLU(\mathbf{s}\mathbf{W}^{\mathbf{s}} + \mathbf{x}\mathbf{W}^{\mathbf{x}} + \mathbf{b}).$$

We use this RNN with an acceptor architecture over the sequence $\mathbf{x}_1, \ldots, \mathbf{x}_5$. Assume we have computed the gradient for the final layer

$$\frac{\partial L}{\partial \mathbf{s}_{i}}$$

What is the symbolic gradient of the previous state $\frac{\partial L}{\partial s_4}$?

What is the symbolic gradient of the first state $\frac{\partial L}{\partial s_1}$?

Answer

$$\begin{split} \frac{\partial L}{\partial s_{4,i}} &= \sum_{j} \frac{\partial s_{5,j}}{\partial s_{4,i}} \frac{\partial L}{\partial s_{5,j}} \\ &= \sum_{j} \begin{cases} W_{i,j}^{s} \frac{\partial L}{\partial s_{5,j}} & s_{5,j} > 0 \\ 0 & o.w. \end{cases} \\ &= \sum_{j} \mathbf{1}(s_{5,j} > 0) W_{i,j}^{s} \frac{\partial L}{\partial s_{5,j}} \end{split}$$

- ► Chain-Rule
- ► ReLU Gradient rule
- ► Indicator notation

Answer

$$\frac{\partial L}{\partial s_{1,j_{1}}} = \sum_{j_{2}} \frac{\partial s_{2,j_{2}}}{\partial s_{1,j_{1}}} \dots \sum_{j_{5}} \frac{\partial s_{5,j_{5}}}{\partial s_{4,j_{4}}} \frac{\partial L}{\partial s_{5,j_{5}}}
= \sum_{j_{2}} \dots \sum_{j_{5}} \mathbf{1}(s_{2,j_{2}} > 0) \dots \mathbf{1}(s_{5,j_{5}} > 0) W_{j_{1},j_{2}}^{s} \dots W_{j_{4},j_{5}}^{s} \frac{\partial L}{\partial s_{5,j_{5}}}
= \sum_{j_{2}\dots j_{5}} \prod_{k=2}^{5} \mathbf{1}(s_{k,j_{k}} > 0) W_{j_{k-1},j_{k}}^{s} \frac{\partial L}{\partial s_{5,j_{5}}}$$

- Multiple applications of Chain rule
- Combine and multiply.
- Product of weights.

The Promise of RNNs

- ▶ Hope: Learn the long-range interactions of language from data.
- ► For acceptors this means maintaining early state:
- ▶ Example: How can you not see this movie?

You should not see this movie.

▶ Memory interaction here is at s_1 , but gradient signal is at s_n

Long-Term Gradients

- Gradients go through multiplicative layers.
- Fine at end layers, but issues with early layers.
- ► For instance consider quiz with hardtanh

$$\sum_{j_2...j_5} \prod_{k=2}^5 \mathbf{1}(1 > s_{k,j_k} > 0) W_{j_{k-1},j_k}^s \frac{\partial L}{\partial s_{5,j_5}}$$

► The multiplicative effect tends very large *exploding* or *vanishing* gradients.

Exploding Gradients

Easier case, can be handled heuristically,

Occurs if there is no saturation but exponential blowup.

$$\sum_{j_2...j_n} \prod_{k=2}^n W_{j_{k-1},j_k}^s$$

- ▶ In these cases, there are reasonable short-term gradients, but bad long-term gradients.
- Two practical heuristics:
 - gradient clipping, i.e. bounding any gradient by a maximum value
 - gradient normalization, i.e. renormalizing the the RNN gradients if they are above a fixed norm value.

Vanishing Gradients

▶ Occurs when combining small weights (or from saturation)

$$\sum_{j_2...j_n} \prod_{k=2}^n W_{j_{k-1},j_k}^s$$

- Again, affects mainly long-term gradients.
- ▶ However, not as simple as boosting gradients.

LSTM (Hochreiter and Schmidhuber, 1997)

LSTM Formally

```
R(\mathbf{s}_{i-1}, \mathbf{x}_i) = [\mathbf{c}_i, \mathbf{h}_i]
\mathbf{c}_i = \mathbf{j} \odot \mathbf{i} + \mathbf{f} \odot \mathbf{c}_{i-1}
\mathbf{h}_i = \tanh(\mathbf{c}_i) \odot \mathbf{o}
\mathbf{i} = \tanh(\mathbf{x} \mathbf{W}^{\times i} + \mathbf{h}_{i-1} \mathbf{W}^{hi} + \mathbf{b}^i)
\mathbf{j} = \sigma(\mathbf{x} \mathbf{W}^{\times j} + \mathbf{h}_{i-1} \mathbf{W}^{hj} + \mathbf{b}^j)
\mathbf{f} = \sigma(\mathbf{x} \mathbf{W}^{\times f} + \mathbf{h}_{i-1} \mathbf{W}^{hf} + \mathbf{b}^f)
\mathbf{o} = \tanh(\mathbf{x} \mathbf{W}^{\times o} + \mathbf{h}_{i-1} \mathbf{W}^{ho} + \mathbf{b}^o)
```


A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

n of nonlessitting on a heat

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Unreasonable Effectiveness of RNNs

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Proof. Omitted.	
Lemma 0.1. Let C be a set of the construction. Let C be a gerber covering. Let F be a quasi-coherent sheaves of C have to show that $\mathcal{O}_{C_X} = \mathcal{O}_X(\mathcal{L})$	O-modules. We
$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$	
<i>Proof.</i> This is an algebraic space with the composition of sheaves I have	\mathcal{F} on $X_{\acute{e}tale}$ we
$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$	
where \mathcal{G} defines an isomorphism $\mathcal{F} \to \mathcal{F}$ of \mathcal{O} -modules.	
Lemma 0.2. This is an integer Z is injective.	
Proof. See Spaces, Lemma ??.	
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let \mathcal{X} be a scheme which is equal to the formal complex.	
The following to the construction of the lemma follows.	
Let X be a scheme. Let X be a scheme covering. Let	

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let $\mathcal F$ be a

 $b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$ be a morphism of algebraic spaces over S and Y.

quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent F is an algebraic space over S.

finite type.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor $O_X(U)$ which is locally of

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Music Composition

```
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
```

Today's Lecture

- Build up to LSTMs
- ▶ Note: Development is ahistoric, later papers first.
- ▶ Main idea: Getting around the vanishing gradient issue.

Contents

Highway Networks

Gated Recurrent Unit (GRU)

LSTN

Review: Deep ReLU Networks

$$NN_{layer}(\mathbf{x}) = ReLU(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)$$

- ► Given a input **x** can build arbitrarily deep fully-connected networks.
- Deep Neural Network (DNN) :

$$NN_{layer}(NN_{layer}(NN_{layer}(\dots NN_{layer}(\mathbf{x}))))$$

Deep Networks

$$\textit{NN}_{\textit{layer}}(\mathbf{x}) = \text{ReLU}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)$$

► Can have similar issues with vanishing gradients.

$$\frac{\partial L}{\partial h_{n-1,j_{n-1}}} = \sum_{j_n} \mathbf{1}(h_{n,j_n} > 0) W_{j_{n-1},j_n} \frac{\partial L}{\partial h_{n,j_n}}$$

Deep Networks

$$NN_{layer}(\mathbf{x}) = ReLU(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1)$$

► Can have similar issues with vanishing gradients.

$$\frac{\partial L}{\partial h_{n-1,j_{n-1}}} = \sum_{j_n} \mathbf{1}(h_{n,j_n} > 0) W_{j_{n-1},j_n} \frac{\partial L}{\partial h_{n,j_n}}$$

Review: NLM Skip Connections

Thought Experiment: Additive Skip-Connections

$$NN_{s/1}(\mathbf{x}) = \frac{1}{2} \operatorname{ReLU}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1) + \frac{1}{2}\mathbf{x}$$

Exercise: Gradients

Exercise: What is the gradient of $\frac{\partial L}{h_{n-1}}$ with skip-connections? Inductively what happens?

Exercise

We now have the average of two terms. One with no saturation condition or multiplicative term.

$$\frac{\partial L}{\partial h_{n-1,j_{n-1}}} = \frac{1}{2} \left(\sum_{j_n} \mathbf{1}(h_{n,j_n} > 0) W_{j_{n-1},j_n} \frac{\partial L}{\partial h_{n,j_n}} \right) + \frac{1}{2} \left(h_{n-1,j_{n-1}} \frac{\partial L}{\partial h_{n,j_{n-1}}} \right)$$

Thought Experiment 2: Dynamic Skip-Connections

Dynamic Skip-Connections: intuition

$$NN_{s/2}(\mathbf{x}) = (1-t) \operatorname{ReLU}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1) + t\mathbf{x}$$

 $t = \sigma(\mathbf{x}\mathbf{W}^t + b^t)$

- ▶ No longer directly computing the next layer **h**_i.
- ▶ Instead computing $\Delta \mathbf{h}$ and dynamic update proportion t.
- Seems like a small change from DNN. Why does this matter?

Dynamic Skip-Connections Gradient

$$\begin{aligned} \mathit{NN}_{\mathit{sl}2}(\mathbf{x}) &= (1-t)\,\mathsf{ReLU}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1) + t\mathbf{x} \\ t &= \sigma(\mathbf{x}\mathbf{W}^t + b^t) \end{aligned}$$

- ▶ The t values are saved on the forward pass.
- t allows for a direct flow of gradients to earlier layers.

$$\frac{\partial L}{\partial h_{n-1,j_{n-1}}} = (1-t) \left(\sum_{j_n} \mathbf{1} (h_{n,j_n} > 0) W_{j_{n-1},j_n} \frac{\partial L}{\partial h_{n,j_n}} \right) + t \left(h_{n-1,j_{n-1}} \frac{\partial L}{\partial h_{n,j_{n-1}}} \right) + \dots$$

(What is the ...?)

Dynamic Skip-Connections

$$NN_{sl2}(\mathbf{x}) = (1-t) \operatorname{ReLU}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1) + t\mathbf{x}$$

 $t = \sigma(\mathbf{x}\mathbf{W}^t + b^t)$

$$\frac{\partial L}{\partial h_{n-1,j_{n-1}}} = (1-t) \left(\sum_{j_n} \mathbf{1} (h_{n,j_n} > 0) W_{j_{n-1},j_n} \frac{\partial L}{\partial h_{n,j_n}} \right) + t \left(h_{n-1,j_{n-1}} \frac{\partial L}{\partial h_{n,j_{n-1}}} \right) + \dots$$

- Note: \mathbf{h} and \mathbf{W}^t are also receiving gradients through the sigmoid!
- ► (Backprop is fun.)

Highway Network (Srivastava et al., 2015)

- Now add a combination at each dimension.
- ▶ ⊙ is point-wise multiplication.

$$egin{array}{lll} extit{NN}_{highway}(\mathbf{x}) &=& (1-\mathbf{t})\odot ilde{\mathbf{h}} + \mathbf{t}\odot \mathbf{x} \\ ilde{\mathbf{h}} &=& \operatorname{ReLU}(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1) \\ ilde{\mathbf{t}} &=& \sigma(\mathbf{x}\mathbf{W}^t + \mathbf{b}^t) \\ ilde{\mathbf{W}}^t, \mathbf{W}^1 &\in& \mathbb{R}^{d_{ ext{hid}} imes d_{ ext{hid}}} \\ ilde{\mathbf{b}}^t, \mathbf{b}^1 &\in& \mathbb{R}^{1 imes d_{ ext{hid}}} \end{array}$$

- $ightharpoonup \tilde{\mathbf{h}}$; transform (e.g. standard MLP layer)
- t; carry (dimension-specific dynamic skipping)

Highway Gradients

- ▶ The t values are saved on the forward pass.
- $ightharpoonup t_i$ determines the update of dimension j.

$$\frac{\partial L}{\partial h_{n-1,j_{n-1}}} = \left(\sum_{j_n} (1 - t_{j_n}) \mathbf{1}(h_{n,j_n} > 0) W_{j_{n-1},j_n} \frac{\partial L}{\partial h_{n,j_n}}\right) + t_{j_{n-1}} \left(h_{n-1,j_{n-1}} \frac{\partial L}{\partial h_{n,j_{n-1}}}\right) + \dots$$

Intuition: Gating

▶ This is known as the *gating* operation

$$\textbf{t}\odot\textbf{x}$$

- Allows vector t to mask or gate x.
- lacktriangle True gating would have $\mathbf{t} \in \{0,1\}^{d_{\mathrm{hid}}}$
- Approximate with the sigmoid,

$$\mathbf{t} = \sigma(\mathbf{W}^t \mathbf{x} + \mathbf{b})$$

Contents

Highway Networks

Gated Recurrent Unit (GRU)

LSTN

Back To Acceptor RNNs

- ► Acceptor RNNs are deep networks with shared weights.
- Elman tanh layers

$$\mathit{NN}(\mathbf{x},\mathbf{s}) = \tanh(\mathbf{s}\mathbf{W}^s + \mathbf{x}\mathbf{W}^x + \mathbf{b}).$$

RNN with Skip-Connections

Can replace layer with modified highway layer.

$$egin{array}{lcl} R(\mathbf{s}_{i-1},\mathbf{x}_i) &=& (1-\mathbf{t})\odot ilde{\mathbf{h}} + \mathbf{t}\odot \mathbf{s}_{i-1} \ & ilde{\mathbf{h}} &=& ext{tanh}(\mathbf{x}\mathbf{W}^{x}+\mathbf{s}_{i-1}\mathbf{W}^{s}+\mathbf{b}) \ & \mathbf{t} &=& \sigma(\mathbf{x}\mathbf{W}^{xt}+\mathbf{s}_{i-1}\mathbf{W}^{st}+\mathbf{b}^{t}) \ & \mathbf{W}^{xt}, \mathbf{W}^{x} &\in& \mathbb{R}^{d_{ ext{in}} imes d_{ ext{hid}}} \ & \mathbf{W}^{st}, \mathbf{W}^{s} &\in& \mathbb{R}^{d_{ ext{hid}} imes d_{ ext{hid}}} \ & \mathbf{b}^{t}, \mathbf{b} &\in& \mathbb{R}^{1 imes d_{ ext{hid}}} \end{array}$$

RNN with Skip-Connections

Final Idea: Stopping flow

- ▶ For many tasks, it is useful to halt propagation.
- ► Can do this by applying a reset gate r.

$$\begin{split} \tilde{\mathbf{h}} &= \tanh(\mathbf{x}\mathbf{W}^{x} + (\mathbf{r} \odot \mathbf{s}_{i-1})\mathbf{W}^{s} + \mathbf{b}) \\ \mathbf{r} &= \sigma(\mathbf{x}\mathbf{W}^{xr} + \mathbf{s}_{i-1}\mathbf{W}^{sr} + \mathbf{b}^{r}) \end{split}$$

Gated Recurrent Unit (GRU) (Cho et al 2014)

$$egin{array}{lcl} R(\mathbf{s}_{i-1},\mathbf{x}_i) &=& (1-\mathbf{t})\odot ilde{\mathbf{h}} + \mathbf{t}\odot \mathbf{s}_{i-1} \ & ilde{\mathbf{h}} &=& ext{tanh}(\mathbf{x}\mathbf{W}^x + (\mathbf{r}\odot \mathbf{s}_{i-1})\mathbf{W}^s + \mathbf{b}) \ & \mathbf{r} &=& \sigma(\mathbf{x}\mathbf{W}^{xr} + \mathbf{s}_{i-1}\mathbf{W}^{sr} + \mathbf{b}^r) \ & \mathbf{t} &=& \sigma(\mathbf{x}\mathbf{W}^{xt} + \mathbf{s}_{i-1}\mathbf{W}^{st} + \mathbf{b}^t) \ & \mathbf{W}^{xt}, \mathbf{W}^{xr}, \mathbf{W}^x &\in& \mathbb{R}^{d_{ ext{in}} \times d_{ ext{hid}}} \ & \mathbf{W}^{st}, \mathbf{W}^{sr}, \mathbf{W}^s &\in& \mathbb{R}^{d_{ ext{hid}} \times d_{ ext{hid}}} \ & \mathbf{b}^t, \mathbf{b} &\in& \mathbb{R}^{1 \times d_{ ext{hid}}} \end{array}$$

- ▶ t; dynamic skip-connections
- ▶ r; reset gating
- ▶ s: hidden state

Example: Language Modeling

- ▶ In non-Markovian language modeling, treat corpus as a sequence
- **r** allows resetting the state after a sequence.

consumers may want to move their telephones a little closer to the tv set </s> < unk> < unk> watching abc 's monday night football can now vote during < unk > for the greatest play in N years from among four or five <unk> <unk> </s> two weeks ago viewers of several nbc <unk> consumer segments started calling a N number for advice on various <unk> issues </s> and the new syndicated reality show hard copy records viewers 'opinions for possible airing on the next day 's show </s>

Contents

Highway Networks

Gated Recurrent Unit (GRU)

LSTM

LSTM

- ► Long Short-Term Memory network uses the same idea.
- ► Model has three gates, input, output, forget.
- Developed first, but a bit harder to follow.
- Seems to be better at LM, comparable to GRU on other tasks.

LSTMs State

The state \mathbf{s}_i is made of 2 components :

- **▶ c**_{*i*}; cell
- ▶ **h**_i; hidden

$$R(\mathbf{s}_{i-1}, \mathbf{x}_i) = [\mathbf{c}_i, \mathbf{h}_i]$$

LSTM Development: Input and Forget Gates

The cell is updated with Δc , not a convex combination (two gates).

$$R(\mathbf{s}_{i-1}, \mathbf{x}_i) = [\mathbf{c}_i, \mathbf{h}_i]$$

$$\mathbf{c}_i = \mathbf{j} \odot \tilde{\mathbf{h}} + \mathbf{f} \odot \mathbf{c}_{i-1}$$

$$\tilde{\mathbf{h}} = \tanh(\mathbf{x} \mathbf{W}^{xi} + \mathbf{h}_{i-1} \mathbf{W}^{hi} + \mathbf{b}^i)$$

$$\mathbf{j} = \sigma(\mathbf{x} \mathbf{W}^{xj} + \mathbf{h}_{i-1} \mathbf{W}^{hj} + \mathbf{b}^j)$$

$$\mathbf{f} = \sigma(\mathbf{x} \mathbf{W}^{xf} + \mathbf{h}_{i-1} \mathbf{W}^{hf} + \mathbf{b}^f)$$

- **▶ c**_{*i*}; cell
- ▶ j; input gate
- ▶ **f**; forget gate

LSTM Development: Hidden

Hidden \mathbf{h}_i squashes \mathbf{c}_i

$$R(\mathbf{c}_{i-1}, \mathbf{x}_i) = [\mathbf{c}_i, \mathbf{h}_i]$$

$$\mathbf{h}_i = \tanh(\mathbf{c}_i)$$

$$\mathbf{c}_i = \mathbf{j} \odot \tilde{\mathbf{h}} + \mathbf{f} \odot \mathbf{c}_{i-1}$$

$$\tilde{\mathbf{h}} = \tanh(\mathbf{x} \mathbf{W}^{xi} + \mathbf{h}_{i-1} \mathbf{W}^{hi} + \mathbf{b}^i)$$

$$\mathbf{j} = \sigma(\mathbf{x} \mathbf{W}^{xj} + \mathbf{h}_{i-1} \mathbf{W}^{hj} + \mathbf{b}^j)$$

$$\mathbf{f} = \sigma(\mathbf{x} \mathbf{W}^{xf} + \mathbf{h}_{i-1} \mathbf{W}^{hf} + \mathbf{b}^f)$$

- **▶ c**_{*i*}; cell
- \triangleright **h**_i; hidden
- ▶ i; input gate
- ▶ **f**; forget gate

Long Short-Term Memory

Finally, another output gate is applied to **h**

$$R(\mathbf{s}_{i-1}, \mathbf{x}_i) = [\mathbf{c}_i, \mathbf{h}_i]$$

$$\mathbf{c}_i = \mathbf{j} \odot \mathbf{i} + \mathbf{f} \odot \mathbf{c}_{i-1}$$

$$\mathbf{h}_i = \tanh(\mathbf{c}_i) \odot \mathbf{o}$$

$$\mathbf{i} = \tanh(\mathbf{x} \mathbf{W}^{xi} + \mathbf{h}_{i-1} \mathbf{W}^{hi} + \mathbf{b}^i)$$

$$\mathbf{j} = \sigma(\mathbf{x} \mathbf{W}^{xj} + \mathbf{h}_{i-1} \mathbf{W}^{hj} + \mathbf{b}^j)$$

$$\mathbf{f} = \sigma(\mathbf{x} \mathbf{W}^{xf} + \mathbf{h}_{i-1} \mathbf{W}^{hf} + \mathbf{b}^f)$$

$$\mathbf{o} = \tanh(\mathbf{x} \mathbf{W}^{xo} + \mathbf{h}_{i-1} \mathbf{W}^{ho} + \mathbf{b}^o)$$

Output Gate?

- ► The output gate feels the most ad-hoc (why tanh?)
- Luckily Jozefowicz et al (2015) find output not too important.

Accuracy Results (Jozefowicz et al, 2015)

Arch.	Arith.	XML	PTB
Tanh	0.29493	0.32050	0.08782
LSTM	0.89228	0.42470	0.08912
LSTM-f	0.29292	0.23356	0.08808
LSTM-i	0.75109	0.41371	0.08662
LSTM-o	0.86747	0.42117	0.08933
LSTM-b	0.90163	0.44434	0.08952
GRU	0.89565	0.45963	0.09069
MUT1	0.92135	0.47483	0.08968
MUT2	0.89735	0.47324	0.09036
MUT3	0.90728	0.46478	0.09161

Accuracy of RNN models on three different tasks. LSTM models include versions without the forget, input, and output gates.

English LM Results (Jozefowicz et al, 2015)

Arch.	5M-tst	10M-v	20M-v	20M-tst
Tanh	4.811	4.729	4.635	4.582 (97.7)
LSTM	4.699	4.511	4.437	4.399 (81.4)
LSTM-f	4.785	4.752	4.658	4.606 (100.8)
LSTM-i	4.755	4.558	4.480	4.444 (85.1)
LSTM-o	4.708	4.496	4.447	4.411 (82.3)
LSTM-b	4.698	4.437	4.423	4.380 (79.83)
GRU	4.684	4.554	4.559	4.519 (91.7)
MUT1	4.699	4.605	4.594	4.550 (94.6)
MUT2	4.707	4.539	4.538	4.503 (90.2)
MUT3	4.692	4.523	4.530	4.494 (89.47)