IPEIO - PROBABILIDADES E ESTATÍSTICA

Ano Lectivo 2015/16

 2° Teste - 06 de Maio de 2016

Duração: 0h45

Resolução abreviada do 2º Teste

Versão A

1. V Considere-se a população X de onde é proveniente a amostra aleatória. Como $X \sim P(4\lambda)$ então sabe-se que $E[X] = 4\lambda$ e $V[X] = 4\lambda$.

O estimador $\hat{\lambda}$ será estimador centrado para λ se $E[\hat{\lambda}] = \lambda$. Como,

$$E[\hat{\lambda}] = E\left[\frac{\bar{X}}{4}\right] = \frac{E[\bar{X}]}{4} = \frac{E[X]}{4} = \frac{4\lambda}{4} = \lambda,$$

uma vez que é conhecido que $E[\bar{X}] = E[X]$ (ver Exemplo 5.11, pag. 39 do texto de apoio), pelo que o estimador $\hat{\lambda}$ é centrado.

В

$$EQM(\hat{\lambda}) = V[\hat{\lambda}] + b^2(\hat{\lambda}) = V[\hat{\lambda}] = V\left[\frac{\bar{X}}{4}\right] = \frac{V[\bar{X}]}{16} = \frac{V[X]}{16n} = \frac{4\lambda}{16n} = \frac{\lambda}{4n},$$

uma vez que $b^2(\hat{\lambda}) = 0$ por o estimador ser centrado e é conhecido que $V[\bar{X}] = \frac{V[X]}{n}$ (ver o Exemplo 5.11, pag. 39 do texto de apoio).

 $oxed{\mathbb{B}}$ Para a amostra considerada, teremos que $\bar{x}=\frac{7+3+3+5+6+5+2+5+4+2}{10}=4.2$, logo obteremos como estimativa de λ , o valor

$$\hat{\lambda} = \frac{\bar{x}}{4} = \frac{4.2}{4} = 1.05.$$

2. $\boxed{\mathbb{A}}$ Represente-se por X a população.

- Estatística pivot: $T = \sqrt{24} \frac{\overline{X} \mu}{S} \sim t_{23}$
- Determinação da constante \underline{c} que garante que $P\left(-c < T < c\right) = 0.95$ $c = t_{23:0.05/2} = t_{23:0.025} = 2.069$
- $-2.069 < \sqrt{24} \frac{\overline{X} \mu}{S} < 2.069 \Leftrightarrow \overline{X} \frac{S}{\sqrt{24}} 2.069 < \mu < \overline{X} + \frac{S}{\sqrt{24}} 2.069$
- $IC_{95\%}(\mu) \equiv \left] \overline{X} \frac{S}{\sqrt{24}} 2.069, \overline{X} + \frac{S}{\sqrt{24}} 2.069 \right[$
- Estimativa por intervalo de 95% de confiança para μ $IC_{95\%}(\mu) = \left] 49.48 \frac{3.8964}{\sqrt{24}} 2.069, 49.48 + \frac{3.8964}{\sqrt{24}} 2.069 \right[=]47.8344; 51.1256[$

C A estatística de teste é:

$$T = \sqrt{n} \frac{\bar{X} - 50}{S} \underset{\mu = 50}{\sim} t_{23}.$$

A Região de rejeição é $R_{0.01} =]-\infty, t_{23,0.01}[$ com $t_{23,0.01} = 2.5.$

V

3. $\hat{\mathbf{C}}$ $\hat{Y} = 8.2727 + 4.7164 x$

 $\hat{\mathbf{A}} \hat{\mathbf{Y}}(30) = 8.2727 + 4.7164 \times 30 = 149.7647$

F $R^2 = 0.9788 \ge 0.8$ A qualidade do ajustamento é "'razoável"

 $V \mid H_0: \beta_1 = 0 \ vs \ H_1: \beta_1 \neq 0$

- Região de rejeição para $\alpha = 0.05$: $t_{9:0.025} = 2.262$ e $R_{0.05} =]-\infty, -2.262[\cup]2.262, +\infty[$
- Valor observado da estatística de teste: $t_{obs}=20.389$, dado pelo output do R
- Decisão: $t_{obs} \in R_{0.05}$ logo rejeitamos H_0 ao nível de significância de 5%.

Observação: Tomaríamos a mesma decisão utilizando o valor - p, pois $valor - p = 7.66 \times 10^{-9} < 0.05$.

4. $H_0: \sigma = 1 \ vs \ H_1: \sigma \neq 1$

Represente-se por X a população.

Informação populacional: $X \sim N(\mu, \sigma^2), \mu \equiv E(X) =?,$

Informação amostral: n = 30, s = 0.8

A estatística de teste é:

$$X^2 = \frac{(n-1)S^2}{1} \underset{\sigma=1}{\sim} \chi_{29}^2.$$

O valor observado da estatística de teste é $x_{obs}^2 = (30-1)\times 0.8^2 = 18.56$

Como $x_{obs}^2 \notin R_{0.05}$ então não rejeitamos H_0 a 5% de significância.

1. V Considere-se a população X de onde é proveniente a amostra aleatória. Como $X \sim P(4\lambda)$ então sabe-se que $E[X] = 4\lambda$ e $V[X] = 4\lambda$.

O estimador $\hat{\lambda}$ será estimador centrado para λ se $E[\hat{\lambda}] = \lambda$. Como,

$$E[\hat{\lambda}] = E\left[\frac{\bar{X}}{4}\right] = \frac{E[\bar{X}]}{4} = \frac{E[X]}{4} = \frac{4\lambda}{4} = \lambda,$$

uma vez que é conhecido que $E[\bar{X}] = E[X]$ (ver Exemplo 5.11, pag. 39 do texto de apoio), pelo que o estimador $\hat{\lambda}$ é centrado.

D

$$EQM(\hat{\lambda}) = V[\hat{\lambda}] + b^2(\hat{\lambda}) = V[\hat{\lambda}] = V\left[\frac{\bar{X}}{4}\right] = \frac{V[\bar{X}]}{16} = \frac{V[X]}{16n} = \frac{4\lambda}{16n} = \frac{\lambda}{4n},$$

uma vez que $b^2(\hat{\lambda}) = 0$ por o estimador ser centrado e é conhecido que $V[\bar{X}] = \frac{V[X]}{n}$ (ver o Exemplo 5.11, pag. 39 do texto de apoio).

 $\boxed{\mathbb{A}}$ Para a amostra considerada, teremos que $\bar{x} = \frac{7+3+3+5+6+5+2+5+4+2}{10} = 4.2$, logo obteremos como estimativa de λ , o valor

 $\hat{\lambda} = \frac{\bar{x}}{4} = \frac{4.2}{4} = 1.05.$

2. \square Represente-se por X a população.

Informação populacional: $X \sim N\left(\mu,\sigma^2\right), \ \mu \equiv E\left(X\right)=?, \quad \sigma^2 \equiv V\left(X\right)=?$ Informação amostral: $n=24, \ \bar{x}=49.48, \ s=3.8964$

- Estatística pivot: $T = \sqrt{24} \frac{\overline{X} \mu}{S} \sim t_{23}$
- Determinação da constante \underline{c} que garante que $P\left(-c < T < c\right) = 0.95$ $c = t_{23:0.05/2} = t_{23:0.025} = 2.069$
- $-2.069 < \sqrt{24} \frac{\overline{X} \mu}{S} < 2.069 \Leftrightarrow \overline{X} \frac{S}{\sqrt{24}} 2.069 < \mu < \overline{X} + \frac{S}{\sqrt{24}} 2.069$
- $IC_{95\%}(\mu) \equiv \overline{X} \frac{S}{\sqrt{24}} 2.069, \overline{X} + \frac{S}{\sqrt{24}} 2.069$
- Estimativa por intervalo de 95% de confiança para μ $IC_{95\%}(\mu) = \left[49.48 \frac{3.8964}{\sqrt{24}}2.069, 49.48 + \frac{3.8964}{\sqrt{24}}2.069\right] = 47.8344; 51.1256$
- A estatística de teste é:

$$T = \sqrt{n} \frac{\bar{X} - 50}{S} \underset{u=50}{\sim} t_{23}.$$

A Região de rejeição é $R_{0.01}=]-\infty,t_{23,0.01}[$ com $t_{23,0.01}=2.5.$

- F
- 3. $\hat{\mathbf{A}} \ \hat{Y} = 8.2727 + 4.7164 \, x$
 - $\boxed{\mathsf{C}} \; \hat{Y}(30) = 8.2727 + 4.7164 \times 30 = 149.7647$
 - $\boxed{\mathbb{F}} \ \ R^2 = 0.9788 \geq 0.8 \qquad \text{A qualidade do ajustamento \'e "`razo\'avel"}$
 - F $H_0: \beta_1 = 0 \ vs \ H_1: \beta_1 \neq 0$
 - Região de rejeição para $\alpha = 0.05$: $t_{9:0.025} = 2.262$ e $R_{0.05} =]-\infty, -2.262[\cup]2.262, +\infty[$
 - Valor observado da estatística de teste: $t_{obs}=20.389$, dado pelo output do R
 - Decisão: $t_{obs} \in R_{0.05}$ logo rejeitamos H_0 ao nível de significância de 5%.

Observação: Tomaríamos a mesma decisão utilizando o valor - p, pois $valor - p = 7.66 \times 10^{-9} < 0.05$.

4. $H_0: \sigma = 1 \ vs \ H_1: \sigma \neq 1$

Represente-se por X a população.

Informação populacional: $X \sim N(\mu, \sigma^2), \mu \equiv E(X) =?,$

Informação amostral: n = 30, s = 0.8

A estatística de teste é:

$$X^2 = \frac{(n-1)S^2}{1} \underset{\sigma=1}{\sim} \chi_{29}^2.$$

O valor observado da estatística de teste é $x_{obs}^2 = (30-1)\times 0.8^2 = 18.56$

Como $x_{obs}^2 \notin R_{0.05}$ então não rejeitamos H_0 a 5% de significância.