warm

Control borroso

Robótica

Alberto Díaz y Raúl Lara Curso 2022/2023 Departamento de Sistemas Informáticos

License CC BY-NC-SA 4.0

Recordatorio de lógica borrosa

Se puede considerar una extensión de la teoría clasica de conjuntos:

- En esta teoría, los elementos pertenecen o no a un conjunto
- ullet Función característica: f(x)=1 si $x\in A$ y f(x)=0 si x
 otin A

Trata información a priori imprecisa en términos de conjuntos borrosos:

- Los elementos pertenecen a un conjunto con un grado de pertenencia.
- ullet Función de pertenencia: $f(x)=\mu(x)\in [0,1]$

Los conjuntos borrosos se agrupan en particiones

Una partición se define sobre una variable denominada lingüística.

Definiciones

Variable lingüística: Variable cuyos valores son términos en lenguaje natural.

Partición borrosa: Todos los conjuntos borrosos de una variable lingüística.

Función de pertenencia: Determina el grado de pertenencia de un elemento a un conjunto borroso (en tanto por uno).

Ejemplo: La variable lingüística precio puede tomar los valores $precio \equiv \{barato, normal, caro\}$. Estos serán tres conjuntos borrosos, cada uno con las funciones de pertenencia $\{f_{barato}(x), f_{normal}(x) \ y \ f_{caro}(x)\}$.

Operaciones borrosas

Complemento :
$$f_{barato}^{\prime}(x)=1-f_{barato}(x)$$

t-normas (intersección)

- ullet Mínimo: $f_{barato} \cap f_{normal} = min(f_{barato}, f_{normal})$
- ullet Producto algebráico: $f_{barato} \cap f_{normal} = f_{barato} \cdot f_{normal}$

t-conormas (unión)

- Máximo: $f_{barato} \cap f_{normal} = max(f_{barato}, f_{normal})$
- ullet Suma algebráica: $f_{barato} \cap f_{normal} = f_{barato} + f_{normal} f_{barato} \cdot f_{normal}$

La inferencia (\rightarrow) se suele definir como la operación de intersección.

Reglas borrosas

Son reglas que relacionan varios antecedentes con consecuentes, donde:

- Antecedentes: Conjuntos borrosos de entrada
- Consecuentes: Conjuntos borrosos de salida

Si el precio es barato Y la calidad es mala entonces la satisfacción es baja.

Se agrupan en una base de reglas, las cuales pueden ser de varios tipos:

- ullet De tipo Mandani: Si V_1 es $F_i^{V_1}$ Y V_2 es $F_j^{V_2}$ Y \dots entonces V_o es $F_k^{V_o}$
- ullet De tipo Sugeno: Si V_1 es $F_i^{V_1}$ Y V_2 es $F_j^{V_2}$ Y \dots entonces $V_o=f(ec{x})$

Fuzzification y defuzzification

Fuzzification: Convertir valores de entrada concretos en conjuntos borrosos.

• Es basicamente aplicar las funciones de pertenencia a los valores de entrada.

Defuzzification: Convertir conjuntos borrosos en valores de salida concretos.

- Existen muchas técnicas para realizar esta operación.
- Las más comunes son el centroide y el centroide simplificado

Centroide

$$y=rac{\int y\cdot \mu(y)dy}{\int \cdot \mu(y)dy}$$

Centroide simplificado

$$y pprox rac{\sum y \cdot \mu(y) dy}{\sum \cdot \mu(y) dy}$$

Controlador borroso

Es un sistema de control que se apoya en la lógica borrosa como sigue:

- 1. Toma la entrada al sistema.
- 2. Pasa los valores a pertenencia a conjuntos borrosos (fuzzification)
- 3. Infiere conjuntos de borrosos de salida haciendo uso de las reglas borrosas.
- 4. Pasa los conjuntos borrosos de salida en valores concretos (defuzzification)
- 5. Aplica la salida al sistema a controlar.

¡GRACIAS!