

要求:

- 1、完成本文档中所有的题目并写出分析、运行结果
- 2、无特殊说明,均使用VS2022编译即可
- 3、直接在本文件上作答,写出答案/截图(不允许手写、手写拍照截图)即可;填写答案时,为适应所填内容或贴图, 允许调整页面的字体大小、颜色、文本框的位置等
 - ★ 贴图要有效部分即可,不需要全部内容
 - ★ 在保证一页一题的前提下,具体页面布局可以自行发挥,简单易读即可
 - ★ 不允许手写在纸上,再拍照贴图
 - ★ 允许在各种软件工具上完成(不含手写),再截图贴图
- 4、转换为pdf后提交
- 5、3月12日前网上提交本次作业(在"文档作业"中提交)

贴图要求:只需要截取输出窗口中的有效部分即可,如果全部截取/截取过大,则视为无效贴图

例:无效贴图

例:有效贴图

Microsoft Visual Studio 调试控制台
 He11o, wor1d!

附:用WPS等其他第三方软件打开PPT,将代码复制到VS2022中后,如果出现类似下面的编译报错,则观察源程序编辑窗的右下角是否为CR,如果是,单击CR,在弹出中选择CRLF,再次CTRL+F5运行即可

基础知识:用于看懂float型数据的内部存储格式的程序如下:

注意:除了对黄底红字的具体值进行改动外,其余部分不要做改动,也暂时不需要弄懂为什么(需要第6章的知识才能弄懂)

```
#include <iostream>
using namespace std;
int main()
{
    float f = 123.456;
    unsigned char* p = (unsigned char*)&f;
    cout << hex << (int) (*p) << endl;
    cout << hex << (int) (*(p+1)) << endl;
    cout << hex << (int) (*(p+2)) << endl;
    cout << hex << (int) (*(p+3)) << endl;
    return 0;
}
//注: 忽略本题出现的warning
```

上例解读: 单精度浮点数123.456,在内存中占四个字节,四个字节的值依次为0x42 0xf6 0xe9 0x79(按打印顺序逆向取)转换为32bit则为: 0100 0010 1111 0110 1110 1001 0111 1001

符号位

8位指数

23位尾数

基础知识:用于看懂double型数据的内部存储格式的程序如下:

注意:除了对黄底红字的具体值进行改动外,其余部分不要做改动,也暂时不需要弄懂为什么(需要第6章的知识才能弄懂)

```
Microsoft
#include <iostream>
using namespace std;
int main()
      double d = 1.23e4;
      unsigned char* p = (unsigned char*)&d;
      cout << hex << (int) (*p) << endl;
      cout \langle\langle \text{ hex } \langle\langle \text{ (int) } (*(p+1)) \rangle\langle\langle \text{ endl};
      cout \langle\langle hex \langle\langle (int) (*(p+2)) \langle\langle end1;
      cout << hex << (int) (*(p+3)) << end1;
      cout << hex << (int) (*(p+4)) << end1;
      cout \langle\langle hex \langle\langle (int) (*(p+5)) \langle\langle endl;
      cout \langle\langle hex \langle\langle (int) (*(p+6)) \langle\langle endl;
      cout \langle\langle \text{ hex } \langle\langle \text{ (int) } (*(p+7)) \rangle\langle\langle \text{ endl};
      return 0:
```

符号位

自学内容: 自行以"IEEE754" / "浮点数存储格式" / "浮点数存储原理" / "浮点数存储方式"等关键字,

在网上搜索相关文档,读懂并了解浮点数的内部存储机制

学长们推荐的网址:

https://baike.baidu.com/item/IEEE%20754/3869922?fr=aladdin

https://zhuanlan.zhihu.com/p/343033661

https://www.bilibili.com/video/BV1iW411d7hd?is_story_h5=false&p=4&share_from=ugc&share_medium=android&share_plat=android&share_session_id=e12b54be-6ffa-4381-9582-9d5b53c50fb3&share_source=QQ&share_tag=s_i×tamp=1662273598&unique_k=AuouME0

https://blog.csdn.net/gao_zhennan/article/details/120717424

https://www.h-schmidt.net/FloatConverter/IEEE754.html

例: float型数的机内表示

格式要求: 多字节时,每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001")	注意:
<i>t</i> al 100 05	1、作业中绿底/黄底文字/截图可不填
例1: 100.25 下面是float机内存储手工转十进制的的方法:	2、计算结果可借助第三方工具完成,
(1) 得到的32bit的机内表示是: <u>0100 0010 1100 1000 1000 0000 0000</u> (42 c8 80 00)	
(1) [(12]H]0261 0H]/(H](142/1/2.	/ 没必要完全手算
(2) 其中: 尾数的符号位是0	
指数是 <u>1000 0101</u> (填32bit中的原始形式)	
指数转换为十进制形式是133(32bit中的原始形式按二进制原码形式转换)	
指数表示的十进制形式是6(32bit中的原始形式按IEEE754的规则转换)	
1000 0101	
$\begin{array}{c} -0111 \ 1111 \\ = 0000 \ 0110 \ (0x06 = 6) \end{array}$	
- 0000 0110 (0x06 - 0) 尾数是 100 1000 1000 0000 0000 (填32bit中的原始形式)	
尾数定 <u>100 1000 1000 0000 0000</u> (\$32b1t 中的原始形式 是 尾数转换为十进制小数形式是 0.56640625 ▲ (32bit 中的原始形式 按二进制原码形式 转换)	
尾数表示的十进制小数形式是 1.56640625 (加整数部分的 1 后)	
$100 \ 1000 \ 1000 \ 0000 \ 0000 \ 0000 = 2^{0} + 2^{-1} + 2^{-4} + 2^{-8}$	
= 0.5 + 0.0625 + 0.00390625 = 0.56640625 => 加1 => 1.56640625	
1.56640625 x 2 ⁶ = 100.25 (此处未体)	现出误差)
下面是十进制手工转float机内存储的方法:	
100 = 0110 0100 (整数部分转二进制为7位,最前面的0只是为了8位对齐,可不要)	
0.25 = 01 (小数部分转二进制为2位)	
100.25 = 0110 0100.01 = 1.1001 0001 x 26 (确保整数部分为1,移6位)	
符号位: 0	
阶 码: 6 + 127 = 133 = 1000 0101 屋敷(会1) 1001 0001 => 1001 0001 0000 0000 0000 (沙文33位 后面沙14条花台竹0)	
尾数(舍1): 1001 0001 => 1001 0001 0000 0000 0000 0	
100 1000 1000 0000 0000 0000 0000 烟点,光25位为	本页不用作答

本页不用作答

1907 A

例: float型数的机内表示

格式要求: 多字节时, 每8bit中间加一个空格或-(例: "11010100 00110001" 或 "11010100-00110001") 注意:	
例2: 1.2	黄底文字/截图可不填
$[\mathcal{V}][\mathcal{L}]$: 1. \mathcal{L}	告助第三方工具完成,
(1) 得到的32bit的机内表示是: <u>0011 1111 1001 1001 1001 1001 1010</u> (3f 99 99 9a) 没必要完全	P算
(2) 其中: 尾数的符号位是0	
指数是 <u>0111 1111</u> (填32bit中的原始形式)	0. 125 +
指数转换为十进制形式是127(32bit中的原始形式按二进制原码形式转换)	0.0625 +
指数表示的十进制形式是(32bit中的原始形式按IEEE754的规则转换)	0.0078125 +
0111 1111	0.00390625 +
- 0111 1111	0.00048828125 +
$= 0000 \ 0000 \ (0x0 = 0)$	0.000244140625 +
	0.000030517578125 +
尾数是 <u>001 1001 1001 1001 1001 1010</u> (填32bit中的原始形式) 尾数转换为十进制小数形式是 <u>0.2000000476837158203125</u> (32bit中的原始形式按二进制原码形式转换)	0.0000152587890625 +
尾数表示的十进制小数形式是 <u>1.2000000476837158203125</u> (加整数部分的 1 后)	0.0000019073486328125 +
$\frac{7-2}{3} \frac{1.20000001100211002100120}{100110011001100110011001} \frac{1.200000011002100120}{1001100110011001100200120} \frac{1.200000011002100200120}{100110011001100200120} \frac{1.200000011002100200120}{10011001100200120} \frac{1.200000011002100200120}{100110011002000120} \frac{1.200000011002100200120}{10011001100200120} \frac{1.200000011002100200120}{10011001100200120} \frac{1.200000011002100200120}{10011001100200120} \frac{1.200000011002100200120}{10011001100200120} \frac{1.200000011002100200120}{1001100110011001100200120} \frac{1.20000001100200120}{100110011001100200120} \frac{1.20000001100200120}{1001100110011001100200120} \frac{1.20000001100200120}{100110011001100200120} \frac{1.20000001100200120}{100110011001100110011001001000001000000$	0.00000095367431640625 +
= 0.125 + + 0.0000002384185791015625(详见右侧蓝色) = 0.2000000476837158203125	0. 0000002384185791015625
=> 加1 = 1,2000000476837158203125 (此处已体现出误差)	0. 2000000476837158203125
下面是十进制手工转float机内存储的方法:	0. 200000470837138203123
1 = 1 (整数部分转二进制为 1 位)	
0.2 = 0011 0011 0011 0011 0011 0011 · (小数部分无限循环,转为二进制的24位)	
=> 0011 0011 0011 0011 0011 010 (四舍五入为23位,此处体现出误差)	
1.2 = 1.0011 0011 0011 0011 0011 010 = 1.0011 0011	
符号位: 0	
阶 码: 0 + 127 = 127 = 0111 1111	
尾数(舍1): 0011 0011 0011 0011 010 (共23位)	
001 1001 1001 1001 1010 (从低位开始四位一组,共23位)	本页不用作答

1、float型数的机内表示

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001") 2351495 51495.59415
A. 34567. 76543(此处设学号是1234567,需换成本人学号后5位,小数为学号后五位逆序,非本人学号0分,下同!)
注:尾数为正、指数为正
(1) 得到的32bit的机内表示是: 0100 0111 0100 1001 0010 0111 1001 1000 (47 49 27 98)
(2) 其中: 尾数的符号位是0
指数是100 0111 0(填32bit中的原始形式)
指数转换为十进制形式是142(32bit中的原始形式按二进制原码形式转换)
指数表示的十进制形式是15(32bit中的原始形式按IEEE754的规则转换)
尾数是 100 1001 0010 0111 1001 1000(填32bit中的原始形式)
尾数转换为十进制小数形式是 0.57152080535888671875(32bit中的原始形式按二
进制原码形式转换)
尾数表示的十进制小数形式是 1.57152080535888671875(加整数部分的1)
注1: 转换为十进制小数用附加的工具去做,精度足够;
自己去网上找工具也行,但找到工具要满足精度要求(下同!!!)
注2: 数据超过了float的精度范围,但P.4方式打印后不影响理解(下同!!!)

解

1、float型数的机内表示

格式要求: 多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001") -59415.51495 B76543.34567 (设学号为1234567,按规则更换为学号和学号逆序)
注: 尾数为负、指数为正
(1)得到的32bit的机内表示: (2) 其中: 尾数的符号位是_1100 0111 0110 1000 0001 0111 1000 0100 (c7 68 17 84)
指数是100 0111 0(填32bit中的原始形式) 指数转换为十进制形式是142(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是15(32bit中的原始形式按IEEE754的规则转换)
尾数是 110 1000 0001 0111 1000 0100(填32bit中的原始形式) 尾数转换为十进制小数形式是 0.813217639923095703125(32bit中的原始形式按二
进制原码形式转换) 尾数表示的十进制小数形式是 1.813217639923095703125(加整数部分的1)

格式要求: 0.0051495	多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "110	1-0100-0011-0001")
C. 0. 003456	67 <mark>(设学号为1234567,按规则更换为学号)</mark>	
	7正、指数为负	
(1) 得到的	J32bit的机内表示是: _ 0011 1011 1010 1000 1011 1101 0010 0011 (3b a8	bd 23)
(2) 其中:	尾数的符号位是0	
	指数是011 1011 1(填32bit中的原始形式)	
	指数转换为十进制形式是119(32bit中的原始形式按二进制原码)	形式转换)
	指数表示的十进制形式是(32bit中的原始形式按IEEE754的规	
	(alasa Handon Alasa Handon Hand	
	尾数是010 1000 1011 1101 0010 0011(填32bit中的原始形	式)
	尾数转换为十进制小数形式是 0.31827199459075927734375	
二进制原码	· · · · · · · · · · · · · · · · · · ·	
	尾数表示的十进制小数形式是 1.31827199459075927734375	(加整数部分的1)

1、float型数的机内表示

格式要求:多字节时,每4bit中间加一个空格或-(例:"1101 0100 0011 0001" 或 "1101-0100-0011-0001") -0.0051495
D. −0. 0076543 <mark>(设学号为1234567,按规则更换为学号逆序)</mark> 生: 尾数为负、指数为负
(1) 得到的32bit的机内表示是:_ 1011 1011 1010 1000 1011 1101 0010 0011 (bb a8 bd 23)
(2) 其中: 尾数的符号位是1
指数是011 1011 1(填32bit中的原始形式) 指数转换为十进制形式是119(32bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是8(32bit中的原始形式按IEEE754的规则转换)
尾数是 010 1000 1011 1101 0010 0011(填32bit中的原始形式) 尾数转换为十进制小数形式是 0.31827199459075927734375(32bit中的原始形式按 二进制原码形式转换)
尾数表示的十进制小数形式是 1.31827199459075927734375(加整数部分的1)

格式要求:多字节时,每4bit中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001") 51495.59415
A. 34567. 76543 <mark>(设学号为1234567,按规则更换为学号和学号逆序)</mark>
注: 尾数为正、指数为正
(1) 得到的64bit的机内表示是: 0100 0000 1110 1001 0010 0100 1111 0011 0000 0011 0100 0110 1101 1100 0101 1101 (40 e9 24 f3 3 46 dc 5d)
(2) 其中: 尾数的符号位是0
指数是 100 0000 1110(填64bit中的原始形式) 指数转换为十进制形式是1038(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是15(64bit中的原始形式按IEEE754的规则转换)
尾数是 1001 0010 0100 1111 0011 0000 0011 0100 0110 1101 1100 0101 1101 (填64bit 中的原始形式)
(1)
0.5715208175659178824190576051478274166584014892578125(64bit中的原始形式按二进制原
码形式转换) 尾数表示的十进制小数形式是
1.5715208175659178824190576051478274166584014892578125(加整数部分的1)

格式要求: 多字节时,每4b1t中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001") -59415.51495
B76543. 34567 (设学号为1234567, 按规则更换为学号和学号逆序)
注: 尾数为负、指数为正
(1) 得到的64bit的机内表示是: 1100 0000 1110 1101 0000 0010 1111 0000 0111 1010 0111 1000 0110 1100 0010 0010 (c0 ed 2 f0 7a 78 6c 22)
(2) 其中: 尾数的符号位是1
指数是 100 0000 1110(填64bit中的原始形式)
指数转换为十进制形式是1038(64bit中的原始形式按二进制原码形式转换)
指数表示的十进制形式是15(64bit中的原始形式按IEEE754的规则转换)
尾数是 1101 0000 0010 1111 0000 0111 1010 0111 1000 0110 1100 0010 0010
(填64bit中的原始形式)
尾数转换为十进制小数形式是 0.813217619323730378511072558467276394367218017578125
(64bit中的原始形式按二进制原码形式转换)
尾数表示的十进制小数形式是 1.813217619323730378511072558467276394367218017578125
(加整数部分的1)

俗式安水: 多子下时,母401t中间加一个全格以-(例: 1101 0100 0011 0001 및 1101-0100-0011-0001)
0. 0051495
C. 0. 0034567 (设学号为1234567, 按规则更换为学号和学号逆序)
注:尾数为正、指数为负
(1) 得到的64bit的机内表示是: 0011 1111 0111 0101 0001 0111 1010 0100 0110 0001 0111 0011 1011 1000 0101 1111 (3f 75 17 a4 61 73 b8 5f)
(2) 其中: 尾数的符号位是0
指数是011 1111 0111(填64bit中的原始形式) 指数转换为十进制形式是1015(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是8(64bit中的原始形式按IEEE754的规则转换)
尾数是 0101 0001 0111 1010 0100 0110 0001 0111 0011 1011 1000 0101 1111 (填64bit中的原始形式)
尾数转换为十进制小数形式是 0.318272000000001103757085729739628732204437255859375 (64bit中的原始形式按二进制原码形式转换)
尾数表示的十进制小数形式是1.318272000000001103757085729739628732204437255859375 (加整数部分的1)

格式要求: 多字节时,每4b1t中间加一个空格或-(例: "1101 0100 0011 0001" 或 "1101-0100-0011-0001") -0.0059415
D. −0. 0076543 (设学号为1234567, 按规则更换为学号和学号逆序) 注: 尾数为负、指数为负
(1) 得到的64bit的机内表示是: 1011 1111 0111 1000 0101 0110 0001 1101 0100 0011 0000 0110 1110 0101 1100 1101(bf 78 56 1d 43 6 e5 cd)
(2) 其中: 尾数的符号位是1
指数是 011 1111 0111(填64bit中的原始形式) 指数转换为十进制形式是1015(64bit中的原始形式按二进制原码形式转换) 指数表示的十进制形式是8(64bit中的原始形式按IEEE754的规则转换)
尾数是 1000 0101 0110 0001 1101 0100 0011 0000 0110 1110 0101 1100 1101 (填64bit中的原始形式)
尾数表示的十进制小数形式是 1.521023999999999316315779651631601154804229736328125 (加整数部分的1)

3、总结

- (1) float型数据的32bit是如何分段来表示一个单精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?
- (2) 为什么float型数据只有7位十进制有效数字? 为什么最大只能是3.4x10³⁸ ? 有些资料上说有效位数是6[~]7位,能找出6位/7位不同的例子吗?
- (3) double型数据的64bit是如何分段来表示一个双精度的浮点数的?给出bit位的分段解释 尾数的正负如何表示?尾数如何表示?指数的正负如何表示?指数如何表示?
- (4) 为什么double型数据只有15位十进制有效数字? 为什么最大只能是1.7x10³⁰⁸ ? 有些资料上说有效位数是15[~]16位,能找出15位/16位不同的例子吗?
- (5) 8/11bit的指数的表示形式是2进制补码吗?如果不是,一般称为什么方式表示?

本页不用作答,自己能知道 正确答案即可 (属于考试知识点)

4、思考

double赋值给float时,下面两个程序,double型常量不加F的情况下,左侧有warning,右侧无warning,为什么?总结一下规律

- 1.2无法用二进制浮点数精确表示,转换为float时会丢失精度;
- 100.25可以用二进制浮点数精确表示,转换为float时不会丢失精度;

