ECE408 / CS483 / CSE408 Summer 2024

Applied Parallel Programming

Lecture 18: Computation in Deep Neural Networks

What Will You Learn Today?

to implement the different types of layers in a Convolutional Neural Network (CNN)

LeNet-5:CNN for hand-written digit recognition

Many Types of CNNs

© Volodymyr V. Kindratenko, 2023 ECE408/CS483 University of Illinois at Urbana-Champaign

Anatomy of a Convolution Layer

Notion of a Channel in Input Layer

2-D Pooling (Subsampling)

- A subsampling layer
 - Sometimes with bias and nonlinearity built in
- Common types
 - max, average, L² norm, weighted average
- Helps make representation invariant to size scaling and small translations in the input

Forward Propagation

Outputs Must Use Full Mask/Kernel

Example of the Forward Path of a Convolution Layer

Sequential Code: Forward Convolutional Layer

```
void convLayer_forward(int B, int M, int C, int H, int W, int K, float* X, float* W, float* Y) {
 int H out = H - K + 1;
                                           // calculate H out, W out
 int W out = W - K + 1;
 for (int b = 0; b < B; ++b)
                                        // for each image
   for(int m = 0; m < M; m++) // for each output feature map</pre>
     for(int h = 0; h < H_out; h++) // for each output value (two loops)</pre>
       for(int w = 0; w < W out; w++) {
         Y[b, m, h, w] = 0.0f;
                                        // initialize sum to 0
         for(int c = 0; c < C; c++) // sum over all input channels
           for(int p = 0; p < K; p++) // KxK filter
             for(int q = 0; q < K; q++)
               Y[b, m, h, w] += X[b, c, h + p, w + q] * W[m, c, p, q];
      }
```

A Small
Convolution
Layer Example

Image b in mini batch

X[b,0,_, _]

1	2	0	1
1	1	3	2
0	2	2	0
2	1	0	3

1	1	1	
2	2	3	w[0,0,_, _]
2	1	0	

	0	2	1	0
X[b,1,_, _]	0	ന	2	1
∧[ʊ,±,_, _]	1	1	0	2
	2	1	0	3

1	2	3		\bigcirc 2
1	1	0	W[0,1,_, _]	7[b,0,_, _]
3	0	1		[

	Т	
X[b,2,_, _]	0	1
	ന	3

1	2	1	0
0	1	3	2
3	3	2	0
1	თ	2	0

0	1	1	
1	0	2	W[0,2,_, _
1	2	1	

output map

A Small Convolution **Layer Example**

X[b,0,_, _]

1	2	0	1
1	1	3	2
0	2	2	0
2	1	0	3

W[0,0,_, _] 3+13+2

X[b,1,_, _]

2 0 3 0 1 1

1 2 3 W[0,1,_,_] 18 ? Y[b,0,_, _]

X[b,2,_, _]

1	2	1	0
0	1	3	2
3	3	2	0
1	3	2	0

	1	1	0
W[0,2,_, _]	2	0	1
	1	2	1

A Small Convolution Layer Example c = 1

X[b,0,_, _]

1	2	0	1
1	1	3	2
0	2	2	0
2	1	0	3

1 1 1 w[0,0,__]

1

X[b,1,_, _]

 0
 2
 1
 0

 0
 3
 2
 1

 1
 1
 0
 2

 2
 1
 0
 3

... 18+7+3+3

Y[b,0,_, _]

X[b,2,_, _]

1	2	1	0
0	1	3	2
3	3	2	0
1	3	2	0

Ī	0	1	1	
	1	0	2	W[0,2,_, _]
Ī	1	2	1	

A Small Convolution Layer Example c = 2

X[b,0,_, _]

1	2	0	1
1	1	3	2
0	2	2	0
2	1	0	3

1 1 1 2 2 3 wi 2 1 0

W[0,0,_, _]

X[b,1,_, _]

 0
 2
 1
 0

 0
 3
 2
 1

 1
 1
 0
 2

 2
 1
 0
 3

3+6+11 31+ 1 2 3 1 1 0 3 0 1 | 3+6+11 | 51 ? | ? ? | ? ?

X[b,2,_, _]

0 1 1 1 0 2 1 2 1

Parallelism in a Convolution Layer

Output feature maps can be calculated in parallel

- Usually a small number, not sufficient to fully utilize a GPU
 All output feature map pixels can be calculated in parallel
- All rows can be done in parallel
- All pixels in each row can be done in parallel
- Large number but diminishes as we go into deeper layers

All **input feature maps** can be processed in parallel, but need atomic operation or tree reduction (we'll learn later)

Different layers may demand different strategies.

Subsampling (Pooling) by Scale N

Convolution Output Y

B images
M features per image
H_{out}×W_{out} values per feature

Average over N×N blocks, then calculate sigmoid

Output Size

 $H_{S(N)}$ = floor (H_{out} / N) $W_{S(N)}$ = floor (W_{out} / N)

Subsampling/Pooling Output S

B images
M features per image $H_{S(N)} \times W_{S(N)}$ values per feature

Sequential Code: Forward Pooling Layer

Kernel Implementation of Subsampling Layer

- Straightforward mapping from grid to subsampled output feature map pixels
- in GPU kernel,
 - need to manipulate index mapping
 - for accessing the output feature map pixels
 - of the previous convolution layer.
- Often merged into the previous convolution layer to save memory bandwidth

Design of a Basic Kernel

- Each block computes
 - a tile of output pixels for one feature
 - TILE_WIDTH pixels in each dimension
- Grid's X dimension maps to M output feature maps
- Grid's Y dimension maps to the tiles in the output feature maps (linearized order).
- (Grid's Z dimension is used for images in batch, which we omit from slides.)

A Small Example

Assume

- M = 4 (4 output feature maps),
- thus 4 blocks in the X dimension, and
- W_out = H_out = 8 (8x8 output features).

If $TILE_WIDTH = 4$,

we also need 4 blocks in the Y dimension:

- for each output feature,
- top two blocks in each column calculates the top row of tiles, and
- bottom two calculate the bottom row.

Output Feature Maps and Tiles

Host Code for a Basic Kernel: CUDA Grid

Consider an output feature map:

- width is W_out, and
- height is H_out.
- Assume these are multiples of TILE_WIDTH.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

Let **X_grid** be the number of blocks needed in X dim (5 above). Let **Y_grid** be the number of blocks needed in Y dim (4 above).

Host Code for a Basic Kernel: CUDA Grid

(Assuming W_out and H_out are multiples of TILE_WIDTH.)

Sequential Code: Forward Convolutional Layer

```
void convLayer_forward(int B, int M, int C, int H, int W, int K, float* X, float* W, float* Y) {
 int H out = H - K + 1;
                                           // calculate H out, W out
 int W out = W - K + 1;
 for (int b = 0; b < B; ++b)
                                           // for each image
   for(int m = 0; m < M; m++)
                                           // for each output feature map
     for(int h = 0; h < H out; h++)
                                           // for each output value (two loops)
       for(int w = 0; w < W out; w++) {
         Y[b, m, h, w] = 0.0f;
                                           // initialize sum to 0
                                                                                Computed
         for(int c = 0; c < C; c++) // sum over all input channels</pre>
                                                                                by the grid
           for(int p = 0; p < K; p++)
                                           // KxK filter
             for(int q = 0; q < K; q++)
               Y[b, m, h, w] += X[b, c, h + p, w + q] * W[m, c, p, q];
}
                                                    Computed by a thread
```

Partial Kernel Code for a Convolution Layer

Some Observations

Enough parallelism

- if the total number of pixels
- across all output feature maps is large
- (often the case for CNN layers)

Each input tile

- loaded M times (number of output features), so
- not efficient in global memory bandwidth,
- but block scheduling in X dimension should give cache benefits.

Implementing a Convolution Layer with Matrix Multiplication

Simple Matrix Multiplication

Each product matrix element is an output feature map pixel.

This inner product generates element 0 of output feature map 0.

Tiled Matrix Multiplication 2x2 Example

Each block calculates one output tile – 2 elements from each output map

Each input element is reused 2 times in the shared memory

Convolution Filters

Tiled Matrix Multiplication 2x4 Example

Each block calculates one output tile – 4 elements from each output map

Each input element is reused 2 times in the shared memory

Efficiency Analysis: Total Input Replication

- Replicated input features are shared among output maps
 - There are H_out * W_out output feature map elements
 - Each requires K*K elements from the input feature maps
 - So, the total number of input element after replication is H_out*W_out*K*K times for each input feature map
 - The total number of elements in each original input feature map is (H_out+K-1)* (W*out+K-1)

Analysis of a Small Example

H out = 2

W out = 2

K = 2

There are 3 input maps (channels)

The total number of input elements in the replicated ("unrolled") input matrix is 3*2*2*2*2

The replicating factor is

(3*2*2*2*2)/(3*3*3) = 1.78

Memory Access Efficiency of Original Convolution Algorithm

- Assume that we use tiled 2D convolution
- For input elements
 - Each output tile has TILE_WIDTH² elements
 - Each input tile has (TILE_WIDTH+K-1)²
 - The total number of input feature map element accesses was TILE_WIDTH^{2*}K²
 - The reduction factor of the tiled algorithm is K²*TILE_WIDTH²/(TILE_WIDTH+K-1)²
- The convolution filter weight elements are reused within each output tile

Properties of the Unrolled Matrix

- Each unrolled column corresponds to an output feature map element
- For an output feature element (h,w), the index for the unrolled column is h*W_out+w (linearized index of the output feature map element)

Properties of the Unrolled Matrix (cont.)

- Each section of the unrolled column corresponds to an input feature map
- Each section of the unrolled column has k*k elements (convolution mask size)
- For an input feature map c, the vertical index of its section in the unrolled column is c*k*k (linearized index of the output feature map element)

To Find the Input Elements

- For output element (h,w), the base index for the upper left corner of the input feature map c is (c, h, w)
- The input element index for multiplication with the convolution mask element (p, q) is (c, h+p, w+q)

Input to Unrolled Matrix Mapping

```
Output element (h, w)
                                                                                                           Features
Mask element (p, q)
Input feature map c
                                                                                                           Convolution
                                                                                                            Filtetrs
// calculate the horizontal matrix index
int w unroll = h * W out + w;
                                                                                                            Innut
                                                                                                           Features
// find the beginning of the unrolled
int w base = c * (K*K);
                                                                         1111
                                                                               0110
                                                                                                    14 20 15 24
                                                                               1 2 2 0
                                                                         2 1 2 1
                                                                                                    12 24 17 26
// calculate the vertical matrix index
                                                                           Convolution
                                                                                                      Output
                                                                            Filtetrs
                                                                                                     Features
int h unroll = w base + p * K + q;
X \text{ unroll}[b, h \text{ unroll}, w \text{ unroll}] = X[b, c, h + p, w + q];
                                                                                           Features
```

Function to generate "unrolled" X

```
void unroll(int B, int C, int H, int W, int K, float* X, float* X unroll)
 int H out = H - K + 1;
                                                // calculate H out, W out
  int W out = W - K + 1;
 for (int b = 0; b < B; ++b)
                                               // for each image
    for (int c = 0; c < C; ++c) {
                                             // for each input channel
     int w base = c * (K*K);
                                                // per-channel offset for smallest X unroll index
     for (int p = 0; p < K; ++p)
                                                // for each element of KxK filter (two loops)
       for (int q = 0; q < K; ++q) {
         for (int h = 0; h < H out; ++h) // for each thread (each output value, two loops)
           for (int w = 0; w < W_out; ++w) {
             int h_unroll = w_base + p * K + q; // data needed by one thread
             int w unroll = h * W_out + w;  // smallest index--across threads (output values)
             X_{unroll}[b, h_{unroll}, w_{unroll}] = X[b, c, h + p, w + q]; 	// copy input pixels
    }
```

Implementation Strategies for a Convolution Layer

Baseline

Tiled 2D convolution implementation, use constant memory for convolution masks

Matrix-Multiplication Baseline

- Input feature map unrolling kernel, constant memory for convolution masks as an optimization
- Tiled matrix multiplication kernel

Matrix-Multiplication with built-in unrolling

- Perform unrolling only when loading a tile for matrix multiplication
- The unrolled matrix is only conceptual
- When loading a tile element of the conceptual unrolled matrix into the shared memory, use the properties in the lecture to load from the input feature map

More advanced Matrix-Multiplication

Use joint register-shared memory tiling

Transformer-based Language Models

Single Layer Computational Flow

GPT-3, as an example

 d_{model}

X

Language Models are Few-Shot Learners, Brown et al., OpenAI, July 2020

Model Name	$n_{ m params}$	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

GPT-3 has 96 Layers, 55B parameters just from Self Attention. 220 Gflop per X vector, per output token.

Project Overview

- Optimize the forward pass of the convolutional layers in a modified LeNet-5 CNN using CUDA. (CNN implemented using Mini-DNN, a C++ framework)
- The network will be classifying Fashion MNIST dataset
- Some network parameters to be aware of
 - Input Size: 86x86 pixels, batch of 1k-10k images
 - Input Channels: 1
 - Convolutional kernel size: 7x7
 - Number of kernels: Variable (your code should support this)

https://github.com/zalandoresearch/fashion-mnist

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

QUESTIONS?

READ CHAPTER 16!