Cambridge (CIE) A Level Chemistry

Partition Coefficients

Contents

* Partition Coefficients

Partition Coefficients

The Partition Coefficient

- The partition coefficient (K_{pc}) is the ratio of the concentrations of a solute in two $different \, immiscible \, solvents \, in \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, with \, each \, other \, when \, equilibrium \, has \, been \, contact \, when \, equili$ established (at a particular temperature)
- For example, **methylamine (CH₃NH₂)** is dissolved in two immiscible solvents:
 - Water
 - An organic solvent
- A separating funnel is shaken with the organic solvent and aqueous methylamine
- The methylamine is **soluble** in both solvents, so when the mixture is left to settle an equilibrium is established
 - The rate of methylamine molecules moving from the organic layer into the aqueous layer is equal to the rate of molecules moving from the aqueous layer to the organic layer

$$CH_3NH_2$$
 (aq) \rightleftharpoons CH_3NH_2 (organic solvent)

■ The value of its equilibrium constant is also called the partition coefficient

$$K_{pc} = \frac{\left[\text{CH}_{3}\text{NH}_{2} \text{ (organic solvent)} \right]}{\left[\text{CH}_{3}\text{NH}_{2} \text{ (aq)} \right]}$$

Defining the partition coefficient

Partition Coefficient Calculations

• The **partition coefficient** (K_{pc}) for a system in which the solute is in the same physical state in the two solvents can be calculated using the equilibrium expression

Worked Example

Calculating the partition coefficient

100 cm³ of a 0.150 mol dm⁻³ solution of aqueous methylamine (CH₃NH₂) was shaken with 75.0 cm³ of an organic solvent at 25 °C and left in the separating funnel to allow an equilibrium to be established.

Only 50.0 cm³ of the aqueous layer was run off and titrated against 0.225 mol dm⁻³ dilute hydrochloric acid (HCl) with an end-point of 14.1 cm³ of HCl.

Calculate the partition coefficient of methylamine between the organic solvent and water.

Answer

• **Step 1:** Write down the equilibrium equation:

$$CH_3NH_2(aq) \Rightarrow CH_3NH_2(organic solvent)$$

• Step 2: Write down the equilibrium expression:

$$K_{pc} = \frac{\left[\text{CH}_{3}\text{NH}_{2} \text{ (organic solvent)} \right]}{\left[\text{CH}_{3}\text{NH}_{2} \text{ (aq)} \right]}$$

- Step 3: Determine how many moles of CH₃NH₂ have reacted with HCl at the endpoint:
 - At the **end-point**, all CH₃NH₂ (aq) has been neutralised by HCl (aq) $CH_3NH_2(aq) + HCI(aq) \rightarrow CH_3NH_3CI(aq)$
- CH₃NH₂ and HCl react in a ratio of 1:1

$$Mol(HCI) = mol(CH_3NH_2) = 0.225 \times 0.0141$$

$$Mol(CH_3NH_2) = 3.1725 \times 10^{-3} \text{ mol}$$

- Step 4: Determine the number of moles of CH₃NH₂ present in the aqueous layer:
 - Only 50.0 cm³ of the aqueous layer was used to titrate against HCl
 - Thus, 3.1725×10^{-3} mol of CH₃NH₂ was present in only 50.0 cm³ of the aqueous layer
 - The number of moles of CH₃NH₂ in 100 cm³ aqueous layer is, therefore: $Mol(CH_3NH_2 \text{ aqueous layer}) = 3.1725 \times 10^{-3} \times 2 = 6.345 \times 10^{-3} \text{ mol}$
- **Step 5:** Determine the number of moles of CH₃NH₂ in the organic layer:

 $Mol CH_3NH_2$ (organic layer) = $mol CH_3NH_2$ (total) - $mol CH_3NH_2$ (aqueous layer)

$$Mol CH_3NH_2 (total) = 0.100 \times 0.150 = 0.015 mol$$

 $Mol CH_3NH_2$ (organic layer) = 0.015 - 6.345 x 10⁻³

 $Mol CH_3NH_2$ (organic layer) = 8.655 x 10^{-3} mol

Aqueous layer:

Concentration (CH₃NH₂ in aqueous layer) =
$$\frac{6.345 \times 10^{-3}}{0.100}$$

Concentration (CH₃NH₂ in aqueous layer) = 0.06345 mol dm⁻³

Organic layer:

Concentration (CH₃NH₂ in organic layer) =
$$\frac{8.655 \times 10^{-3}}{0.075}$$

Concentration (CH₃NH₂ in organic layer) = 0.1154 mol dm⁻³

• **Step 7:** Substitute the values into the K_{pc} expression:

$$K_{pc} = \frac{0.1154}{0.06345}$$

$$K_{pc} = 1.82$$

• Since the value of K_{pc} is **larger than 1**, methylamine is more soluble in the organic solvent than in water

Factors Affecting the Partition Coefficient

- The partition coefficient (K_{pc}) depends on the **solubilities** of the **solute** in the two
- The degree of solubility of a solute is determined by how strong the intermolecular bonds between solute and solvent are
- The strength of these intermolecular bonds, in turn, depends on the **polarity** of the solute and solvent molecules
- For example, ammonia is more soluble in water than in an organic solvent such as carbon tetrachloride (CCI₄)
 - Ammonia and water are both polar molecules that form hydrogen bonds with each
 - Ammonia forms **permanent dipole-induced dipole** forces with the non-polar CCl₄
 - Since these forces are **much** weaker than hydrogen bonding, ammonia is **less** soluble in CCl₄

- $\blacksquare \quad \text{When } \textit{K}_{\text{pc}} \text{ is <1 the } \textbf{solute} \text{ is more soluble in water than the organic solvent}$
- When K_{pc} is > 1 the **solute** is more soluble in the organic solvent than the water

