MAST90105 Lab and Workshop 11 Solutions

The Lab and Workshop this week covers problems arising from Module 7.5 and 8.1. The problems have been assigned to groups this week.

1 Lab

1. Let $X \sim U(0,1)$ and consider a random sample of size 11 from X. Recall that if m is the median and Y_1, \ldots, Y_n are the order statistics then

$$P(Y_i < m < Y_j) = \sum_{k=i}^{j-1} {n \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k}.$$

We will check this formula using R by computing some confidence intervals for the median of X.

a. Use the R command:

```
qbinom(c(0.025, 0.975), size = 11, prob = 0.5)
## [1] 2 9
```

to compute quantiles of the binomial (11,0.5) distribution. (Ie. in the first case we find $\pi_{0.975}$ so that $P(X \leq \pi_{0.975}) \approx 0.975$. It is approximate as the distribution is discrete. However, it gives a guide to the endpoints of the confidence interval.)

b. Being careful about the correct evaluation points, use the *pbinom* command in R determine $P(Y_2 < m < Y_9)$?

```
pbinom(8, 11, 0.5) - pbinom(1, 11, 0.5)
## [1] 0.9614258
```

c. Use the R command:

```
X <- runif(11)
```

to simulate 11 observations from X.

- d. Use the *sort* command to compute the order statistics and store them in a new variable Y and hence compute Y_2 and Y_9 .
- e. Automate this in a function and check f(11) to see that it works:

```
f = function(n) {
    X = runif(n)
    Y = sort(X)
    c(Y[2], Y[9])
}
f(11)
```

```
## [1] 0.1484990 0.7242913
```

Enter f(11) to check it works.

f. Enter the following R commands:

```
t = as.matrix(rep(11, 100)) #t needs to be a matrix for apply to work.
C = t(apply(t, 1, f)) #this is a trick to avoid programming
matplot(C, type = "l")
abline(c(0.5, 0))
```



```
sum((C[, 1] < 0.5) & (C[, 2] > 0.5))/nrow(C)
## [1] 0.96
```

and hence compute the proportion of your simulated samples that contain the true mean value 1/2. Is this close to your answer in (b)? (The apply command

applies the function f to each row in t and t(A) computes the transpose of the matrix A).

- This is reasonably close to the true value.
- g. To get more precision, repeat with

```
t = as.matrix(rep(11, 1000))
C = t(apply(t, 1, f)) #this is a trick to avoid programming
matplot(C, type = "l")
abline(c(0.5, 0))
```



```
sum((C[, 1] < 0.5) & (C[, 2] > 0.5))/nrow(C)
## [1] 0.946
```

2. The following 25 observations give the time in seconds between submissions of computer programs to a printer queue.

 $79\ 315\ 445\ 350\ 136\ 723\ 198\ 75\ 161\ 13\ 215\ 24\ 57\ 152\ 238\ 288\ 272\ 9\ 315\ 11\ 51\ 98\ 620$ $244\ 34$

a. The cumulative distribution function allows us to use graphical methods to approximate the percentiles. Store the above data a vector X in R, and use the command

```
X <- c(79, 315, 445, 350, 136, 723, 198, 75, 161, 13,
      215, 24, 57, 152, 238, 288, 272, 9, 315, 11, 51,
      98, 620, 244, 34)
plot(ecdf(X))</pre>
```


to plot the cumulative distribution function. Use the plot to give approximate point estimates of $\pi_{0.25}$, m and $\pi_{0.75}$.

• The first quartile seems to be around 60, the median is around 160 and the third quartile around 300.

b. Use the command

to obtain a quantile-quantile plot of X for the exponential distribution. What do you think?

• There is a reasonable approximation to the line y = x consistent with the exponential distribution with mean matching the sample, but the last points is an outlier.

c. Use the command

```
qqplot(X, qexp(ppoints(100), 1))
```


to obtain a quantile-quantile plot of X for the exponential distribution. How does this differ from your previous plot?

• The plot looks similar - the only difference is the scale on the y-axis is changed by having mean 1.

d. Use the command

qqnorm(X)

Normal Q-Q Plot

to obtain a normal quantile-quantile plot of X. What do you think?

- The normal plot does not look linear at both ends indicating a poor fit to the normal distribution.
- e. Give point estimates of $\pi_{0.25}$, m and $\pi_{0.75}$. (Use the command:

```
quantile(X, c(0.25, 0.5, 0.75), type = 6)
## 25% 50% 75%
## 54.0 161.0 301.5
```

for the 25th percentile)

- f. Find the following confidence intervals and give the confidence level.
 - i. (y_3, y_{10}) , a confidence interval for $\pi_{0.25}$.

```
Y <- sort(X)
c(Y[3], Y[10])
## [1] 13 98
pbinom(9, 25, 0.25) - pbinom(2, 25, 0.25)
## [1] 0.8965632
```

ii. (y_9, y_{17}) , a confidence interval for the median m.

```
c(Y[9], Y[17])

## [1] 79 244

pbinom(16, 25, 0.5) - pbinom(8, 25, 0.5)

## [1] 0.8922479
```

iii. (y_{16}, y_{23}) , a confidence interval for $\pi_{0.75}$.

```
c(Y[16], Y[23])
## [1] 238 445
pbinom(22, 25, 0.75) - pbinom(15, 25, 0.75)
## [1] 0.8965632
```

g. Find a t interval for the mean μ of the same confidence as that constructed for the median. Compare these two confidence intervals. Are the results surprising? (Your quantile plots and a histogram or stem and leaf plot may help).

```
t.test(X, conf.level = 0.892)$conf.int
## [1] 142.7571 267.0829
## attr(,"conf.level")
## [1] 0.892
```

- The confidence interval is wider for the median and in a different position the data does not appear to come from a normal distribution, so in part this may reflect the fact that the population median is not the same as the population but the t-confidence interval is probably not appropriate.
- 3. The data is in the file Lab11.RData in the LMS and Lab Folder. Let p be the proportion of yellow lollies in a packet of mixed colours. It is claimed that p = 0.2.
 - a. Define a test statistic and critical region with a significance level of $\alpha = 0.05$ to test $H_0: p = 0.2$ against $H_1: p \neq 0.2$.
 - Let \hat{p} be the proportion yellow lollies counted. Assuming that the number of yellow lollies counted is Binomial(n, p) where n is the total number of lollies counted, we would reject H_0 if

$$|z| = \frac{\hat{p} - 0.2}{\sqrt{0.2 \times 0.8/n}} > 1.96.$$

b. To perform the test, each of 20 students counted the number of yellow lollies and the total number of lollies in a 48.1 gram packet. The results were:

у	n	У	n
8.00	56.00	10.00	57.00
13.00	55.00	8.00	59.00
12.00	58.00	10.00	54.00
13.00	56.00	11.00	55.00
14.00	57.00	12.00	56.00
5.00	54.00	11.00	57.00
14.00	56.00	6.00	54.00
15.00	57.00	7.00	58.00
11.00	54.00	12.00	58.00
13.00	55.00	14.00	58.00

If each student made a test of $H_0: p = 0.2$ at the 5% level of significance, what proportion of students rejected the null hypothesis?

 \bullet 0.05 - See R output.

```
load("/Volumes/Maths & Stats/Lab-Materials/MAST90105MethodsofMathematicalStatis
phat = Data$y/Data$n
zabs = abs((phat - 0.2)/sqrt(0.8 * 0.2/Data$n))
sum(zabs > 1.96)/20
## [1] 0.05
```

- c. If the null hypothesis were true, what proportion of students do you expect to reject the null hypothesis at the 5% level of significance?
 - 0.05
- d. For each of the 20 ratios in part (b) an approximate 95% confidence interval can be constructed. What proportion of these intervals contains p = 0.2?
 - 0.9 see R output. There is no contradiction with part b, because the width of the confidence interval is determined by the observed proportion, \hat{p} , not the null hypothesis value 0.2.

```
ci <- 1.96 * sqrt(phat * (1 - phat)/Data$n)
sum((phat - ci < 0.2) * (phat + ci > 0.2))/20
## [1] 0.9
```

- e. If the 20 results are pooled do we reject $H_0: p = 0.2$?
 - No see R output. Note that this does not contradict the results in (b) because there were different total numbers counted each time.

```
x = sum(Data$y)
N = sum(Data$n)
ptothat = x/N
(ptothat - 0.2)/sqrt(0.2 * 0.8/N)
## [1] -0.4324987
```

- 4. Let $X \sim \text{binomial}(1, p)$ and let X_1, \ldots, X_{10} be a random sample of size 10. Consider a test of $H_0: p = 0.5$ against $H_1: p = 0.25$. Let $Y = \sum_{i=1}^{10} X_i$. Define the critical region as $C = \{y: y < 3.5\}$.
 - a. Find the value of α the probability of a Type I error. Do not use a normal approximation. (Hint: Use pbinom).

```
pbinom(3.5, 10, 0.5)
## [1] 0.171875
```

b. Find the value of β , the probability of a Type II error. Do not use a normal approximation.

```
1 - pbinom(3.5, 10, 0.25)
## [1] 0.2241249
```

- c. Simulate 200 observations on Y when p = 0.5. Find the proportion of cases when H_0 was rejected. Is this close to α ?
 - It is reasonably close see R output.

```
sum(rbinom(200, 10, 0.5) < 3.5)/200
## [1] 0.145</pre>
```

- d. Simulate 200 observations on Y when p = 0.25. Find the proportion of cases when H_0 was not rejected. Is this close to β ?
 - It is reasonably close see R output.

```
sum(rbinom(200, 10, 0.25) > 3.5)/200
## [1] 0.225
```

5. A ball is drawn from one of two bowls. Bowl A contains 100 red balls and 200 white balls; Bowl B contains 200 red balls and 100 white balls. Let p denote the probability of drawing a red ball from the bowl. Then p is unknown as we don't know which bowl is being used. To test the simple null hypothesis $H_0: p=1/3$ against the simple alternative that p=2/3, three balls are drawn at random with replacement from the selected bowl. Let X be the number of red balls drawn. Let the critical region be $C = \{x: x=2,3\}$. Using R, what are the probabilities α and β respectively of Type I and Type II errors?

```
# alpha is prob of critical region under null
# hypothesis:
(alpha <- 1 - pbinom(1, size = 3, prob = 1/3))

## [1] 0.2592593

# beta is prob outside critical region under
# alternative hypothesis:
(beta <- pbinom(1, size = 3, prob = 2/3))

## [1] 0.2592593</pre>
```

- 6. Let $Y \sim \text{binomial}(100, p)$. To test $H_0: p = 0.08$ against $H_1: p < 0.08$, we reject H_0 and accept H_1 if and only if $Y \leq 6$. Using R or Mathematica,
 - a. Determine the significance level α of the test.
 - There is a 30% of rejecting H_0 when it is true so the Type I error has not been well controlled see R output.

```
pbinom(6, 100, 0.08)
## [1] 0.303156
```

- b. Find the probability of a Type II error if in fact p = 0.04.
 - A Type II error occurs if H_0 is not rejected but the alternative is true. There is a 10% of not rejecting H_0 if p=0.04 so the type II error is quite well controlled see R output. The R output also shows that a better decision rule would be to reject H_0 if $Y \leq 2$ having the Type I error 0.04 and Type II error 0.57. This illustrates that it is difficult to get both good Type I and Type II error when the probabilities are small.

```
1 - pbinom(6, 100, 0.04)

## [1] 0.1063923

pbinom(3, 100, 0.08)

## [1] 0.0367059

1 - pbinom(3, 100, 0.04)

## [1] 0.5705244
```

- 7. Let p be the probability a tennis player's first serve is good. The player takes lessons to increase p. After the lessons he wishes to test the null hypothesis $H_0: p = 0.4$ against the alternative $H_1: p > 0.4$. Let y be the number out of n = 25 serves that are good, and let the critical region be defined by $C = \{y: y \ge 13\}$.
 - a. Define the power function to be $K(p) = P(Y \ge 13; p)$. Graph this function for 0 .

```
Kfun <- function(p) {
    1 - pbinom(12, 25, p)
}
t <- seq(0, 1, 0.01)
K <- Kfun(t)
plot(t, K, type = "l")</pre>
```


b. Find the value of $\alpha = K(0.40)$

```
Kfun(0.4)
## [1] 0.1537678
```

c. Find the value of β when $p=0.6,\,(\beta=1-K(0.6))$

```
1 - Kfun(0.6)
## [1] 0.1537678
```

2 Workshop

- 8. Let X_1, \ldots, X_{10} be a random sample of size n = 10 from a distribution with p.d.f. $f(x; \theta) = \exp(-(x \theta)), \theta \le x < \infty$.
 - a. Show that $Y_1 = \min(X_i)$ is the maximum likelihood estimator of θ .
 - The likelihood is

$$L(\theta) = \begin{cases} \exp[-\sum_{i=1}^{10} (x_i - \theta)] & \theta < \min(x_i) \\ 0 & otherwise \end{cases}$$

- Clearly each $(x_i \theta)$ is minimised (so that $-(x_i \theta)$ is maximised) when θ is as large as possible. Hence $\hat{\theta} = \min(X_i) = Y_1$.
- b. Find the p.d.f. of Y_1 and show that $E(Y_1) = \theta + 1/10$ so that $Y_1 1/10$ is an unbiased estimator of θ .
 - Firstly, $F(x) = \int_{\theta}^{x} \exp(-(t-\theta))dt = 1 \exp(-(x-\theta)), \ x \ge \theta$. Then for $y \ge \theta$

$$F_{Y_1}(y) = 1 - P(Y_1 > y) = 1 - P(all X's > y) = 1 - (1 - F_{X_1}(y))^1 = 1 - \exp(-10(y - \theta))$$

• Differentiating gives the density g_1 for $y \ge \theta$ as

$$g_1(y_1) = 10 \exp(-10(y - \theta))$$
 (1)

• Hence, with $y = y_1 - \theta$

$$E(Y_1) = \int_{\theta}^{\infty} y_1 10 \exp[-10(y_1 - \theta)] dy_1 = \theta + \int_{0}^{\infty} y_1 10 \exp(-10y) dy$$
$$= \theta + 1/10$$

and $Y_1 - 1/10$ is an unbiased estimator of θ as required.

- c. Compute $P(\theta \leq Y_1 \leq \theta + c)$ and use this to construct a 95% confidence interval for θ .
 - Firstly,

$$P(\theta \le Y_1 \le \theta + c) = \int_{\theta}^{\theta + c} 10 \exp[-10(y - \theta)] dy = \int_{0}^{c} 10 \exp(-10y) dy = 1 - \exp(-10c)$$

• Hence we need to solve

$$1 - \exp(-10c) = 19/20$$
 or $\exp(-10c) = 1/20$ so that $c = (1/10)\ln(20)$

• Now, simple rearranging yields

$$P(\theta \le Y_1 \le \theta + c) = P(Y_1 - c \le \theta \le Y_1)$$

so that our 95% confidence interval is $[y_1 - 0.1 \ln(20), y_1]$.

- See Solutions to Lab and Workshop 10 Question 14.
- 9. A random variable X is said to have a Pareto distribution with parameters, x_0 and β , if its cdf is

$$F_X(x) = \begin{cases} 1 - \left(\frac{x_0}{x}\right)^{\beta} & x > x_0 \\ 0 & x \le x_0 \end{cases}$$

- a. What is the pdf of X?
 - The pdf is

$$f_X(x) = \begin{cases} \frac{\alpha}{x_0} \left(\frac{x_0}{x}\right)^{\beta+1} & x > x_0 \\ 0 & x \le x_0 \end{cases}$$

- b. Suppose U_1, \dots, U_n are a random sample from the uniform distribution on (0, X) where X is the unknown parameter. Suppose that X has a Pareto prior distribution with parameters x_0, β . Calculate the posterior distribution of X. (Hint: Consider carefully the values of the posterior pdf which are strictly positive, noting that both the joint distribution of the sample and the prior distribution pdf's have to be positive.)
 - The likelihood is

$$f(u_1, \dots, u_n | X = x) = \begin{cases} \frac{1}{x^n} & 0 < u_i < x, i = 1, \dots, n \\ 0 & otherwise. \end{cases}$$

Hence the posterior pdf is proportional to $f(u_1, \dots, u_n | X = x) f_X(x)$, which is proportional to

$$\begin{cases} \frac{1}{x^n} \frac{\beta}{x_0} \left(\frac{x_0}{x}\right)^{\beta+1} & 0 < u_i < x, i = 1, \dots, n & \& \quad x > x_0, \\ 0 & otherwise. \end{cases}$$

This expression is proportional to a Pareto distribution with parameters $x_n = \max(u_1, \dots, u_n, x_0), \beta_n = \beta + n$. Hence this is the posterior pdf.

- c. Find a $100(1-\alpha)$ % posterior probability interval for X.
 - A $100(1-\alpha)$ % posterior probability interval for X is given by the posterior $\alpha 2$ quantile to the posterior $1-\alpha^2$ quantile.
 - The $\alpha/2$ quantile, $\pi_{\alpha/2}$ for a Pareto x_0, β distribution is obtained by solving $1 \left(\frac{x_0}{x}\right)^{\beta} = \frac{\alpha}{2}$ for x, giving $\pi_{\alpha/2} = x_0 \left(\frac{2}{2-\alpha}\right)^{1/\beta}$.
 - Similarly, The $1 \alpha/2$ quantile, $\pi_{1-\alpha/2}$, for a Pareto x_0, β distribution is given by $\pi_{1-\alpha/2} = x_0 \left(\frac{2}{\alpha}\right)^{1/\beta}$.
 - Applying these to the posterior distribution calculated in part (b) gives a $100(1-\alpha)$ % posterior probability interval for X of $\left(x_n\left(\frac{2}{2-\alpha}\right)^{1/\beta_n}, x_n\left(\frac{2}{\alpha}\right)^{1/\beta_n}\right)$.

- 10. If a newborn baby has a birth weight that is less than 2500 grams we say the baby has a low birth weight. The proportion of babies with birth weight is an indicator of nutrition for the mothers. In the USA approximately 7% of babies have a low birth weight. Let p be the proportion of babies born in the Sudan with low birth weight. Test the null hypothesis $H_0: p=0.07$ against the alternative $H_1: p>0.07$. If y=23 babies out of a random sample of n=209 babies had low birth weight, , using a suitable approximation, what is your conclusion at the significance levels
 - a. $\alpha = 0.05$?
 - b. $\alpha = 0.01$?
 - c. Find the p-value of this test. (Recall the p-value is the probability of the observed value or something more extreme when the null hypothesis is true).

Helpful R output

```
qnorm(c(0.95, 0.99))
## [1] 1.644854 2.326348
pnorm(2.269)
## [1] 0.9883658
```

• Under H_0 , E(Y) = 14.63, $Var(Y) = 13.606 = 3.689^2$. Hence

$$z = \frac{23 - 14.63}{3.689} = 2.269$$

- a. z > 1.645 so reject H_0 at 5% level of significance.
- b. z < 2.326 so don't reject H_0 at the 1% level of significance.
- c. p-value is $P(Z \ge 2.269) = 1 \Phi(2.269) = 1 0.9883 = 0.0117$
- 11. Let p_m and p_f be the respective proportions of male and female white crowned sparrows that return to their hatching site. Give the endpoints for a 95% confidence interval for $p_m p_f$, given that 124 out of 894 males and 70 out of 700 females returned. (The Condor, 1992 pp.117-133.). Does this agree with the conclusion of the test of $H_0: p_m = p_f$ against $H_1: p_m \neq p_f$ with $\alpha = 0.05$?

•
$$\hat{p}_m = \frac{124}{894} = 0.1387$$
, $\hat{p}_f = \frac{70}{700} = 0.1$, so that

$$\hat{p}_m - \hat{p}_f \pm 1.96 \sqrt{\frac{\hat{p}_m (1 - \hat{p}_m)}{n_m} + \frac{\hat{p}_f (1 - \hat{p}_f)}{n_f}} = [0.007, 0.07].$$

$$\hat{p} = 194/1594 = 0.1217$$
. Reject H_0 if $|z| > 1.96$ and

$$|z| = \frac{|\hat{p}_m - \hat{p}_f|}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_m} + \frac{1}{n_f}\right)}} = 2.345 > 1.96$$

so we reject H_0 .