

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Ch8. Simple Exponential smoothing OTexts.org/fpp3/

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

Big idea: control the rate of change

 α controls the flexibility of the **level**

- If α = 0, the level never updates (mean)
- If α = 1, the level updates completely (naive)

 β controls the flexibility of the **trend**

- If β = 0, the trend is linear
- If β = 1, the trend changes suddenly every observation

 γ controls the flexibility of the **seasonality**

- If γ = 0, the seasonality is fixed (seasonal means)
- If $\gamma = 1$, the seasonality updates completely (seasonal naive)

Models and methods

Methods

Algorithms that return point forecasts.

Models

- Generate same point forecasts but can also generate forecast distributions.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

Iterative form

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t|t-1}$$

Iterative form

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t|t-1}$$

Weighted average form

$$\hat{y}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j y_{T-j} + (1-\alpha)^T \ell_0$$

Iterative form

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t|t-1}$$

Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j \mathbf{y}_{T-j} + (1-\alpha)^T \ell_0$$

Component form

Forecast equation

Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Component form

Forecast equation

Smoothing equation

$$\hat{\mathbf{y}}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Component form

Forecast equation

 $\hat{\mathbf{y}}_{t+h|t} = \ell_t$

Smoothing equation

 $\ell_t = \alpha \mathbf{y}_t + (\mathbf{1} - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Component form

Forecast equation

Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha v_t + (1 - \alpha)\ell_{t-1}$$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} + e_t \\ \ell_t &= \ell_{t-1} + \alpha (\mathbf{y}_t - \ell_{t-1}) \\ &= \ell_{t-1} + \alpha e_t \end{aligned}$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Specify probability distribution for e_t , we assume $e_t = \varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

ETS(A,N,N) model

$$y_t = \ell_{t-1} + \varepsilon_t$$

State equation

$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Observation equation: relationship between observations and states.
- State equation(s): evolution of the state(s) through time.

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $\qquad \qquad \boldsymbol{e}_t = \mathbf{y}_t \hat{\mathbf{y}}_{t|t-1} = \ell_{t-1} \varepsilon_t$

ETS(M,N,N) model

Observation equation

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $ightharpoonup e_t = \mathbf{y}_t \hat{\mathbf{y}}_{t|t-1} = \ell_{t-1}\varepsilon_t$

ETS(M,N,N) model

Observation equation

$$\mathbf{y}_t = \ell_{t-1}(\mathbf{1} + \varepsilon_t)$$

State equation

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.