

Scuola di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica

Tesi di Laurea

TITOLO ITALIANO

TITOLO INGLESE

FEDERICO SCHIPANI

Relatore: *Relatore*Correlatore: *Correlatore*

Anno Accademico 2014-2015

INDICE

1	INTRODUZIONE 7
2	ACCESS CONTROL 9
	2.1 Storia dell'Access Control 9
	2.1.1 Access Control Lists (ACLs) 10
	2.1.2 Role-based Access Control 11
3	FORMAL ACCESS CONTROL POLICY LANGUAGE 13
	3.1 Il processo di valutazione di FACPL 13
	3.2 La sintassi di FACPL 14
	3.3 Esempi con FACPL 16
4	ESTENSIONI DEL LINGUAGGIO 17
5	CONCLUSIONI 19

ELENCO DELLE FIGURE

Figura 1 Figura 2 ACL in OS X 11

Il processo di valutazione di FACPL 13

"With great power comes great responsibility" — Uncle Ben

1

INTRODUZIONE

prova 123

ACCESS CONTROL

Ai giorni d'oggi esistono moltissimi sistemi capaci di condividere dati e risorse computazionali, ed impedire accessi non autorizzati è diventata una priorità inderogabile. Per esempio molti dati personali possono essere raccolti durante alcune attività quotidiane, e proteggere questi dati da malintenzionati è molto importante. Questo, e moltre altre ragioni, sono il motivo per cui esistono sistemi di Access Control, ovvero dei sistemi definiti da un insieme di condizioni che permettono di creare una prima linea difensiva contro accessi indesiderati.

2.1 STORIA DELL'ACCESS CONTROL

Negli anni sono stati proposti diversi approcci per cercare di definire un modello efficiente e scalabile. Il primo di questi si chiama *Access Control Lists (ACLs)* ed è stato proposto intorno agli anni 1970 spinto dall'avvento dei primi sistemi multi utente.

Successivamente è nato un nuovo modello chiamato *Role-based Access Control (RBAC)* che modifica alcuni aspetti di ACL in modo da rimuovere molte delle limitazioni di quest'ultimo.

Uno dei problemi di RBAC è l'impossibilità di differenziare membri di uno stesso gruppo in modo da negare o permettere accessi sulla base di singoli attributi, ed è per venire in contro a questa necessità che è stato implementato un nuovo modello chiamato *Attribute Based Access Control (ABAC)*, dove le decisioni vengono prese in base ad un set di attributi legati al richiedente, all'ambiente ed alla risorsa per cui si chiede l'accesso.

Anche questo modello però ha delle limitazioni che vengono fuori quando il numero di risorse da gestire è elevato, motivo per cui nasce *Policy-based Access Control (PBAC)*. PBAC migliora e standardizza il modello ABAC combinando attributi dalle risorse, dall'ambiente e dal richiedente con informazioni di un particolare insieme di circostanze sotto le quali la

richiesta è stata effettuata.

Le organizzazioni non sono statiche, si evolvono e devono rispondere ad una varietà di stimoli, che possono essere legali, economici, finanziari, di mercato o una varietà di fattori di rischio. Anche tecniche avanzate, come per esempio ABAC e PBAC, non riescono in maniera sufficiente a rispondere ai bisogni di dinamismo e cambiamenti dei livelli di rischio, motivo per cui è nato *Risk-adaptive Access Control (RAdAC)* che fornisce un modello adattabile al settore enterprise.

2.1.1 Access Control Lists (ACLs)

ACL è il più datato e basico modello di controllo agli accessi. Prende piede intorno agli anni 70 grazie all'avvento dei sistemi multi utente i quali necessitano di limitare l'accesso a file e dati condivisi, infatti i primi sistemi ad utilizzare questo modello sono stati sistemi di tipo UNIX. Con la comparsa della multiutenza per sistemi ad uso personale lo standard ACL è stato implementato in molte più ambienti come sistemi UNIX-Like e Windows.

Nonostante negli anni sono stati sviluppati modelli più complessi ACL viene comunque usato nei sistemi operativi recenti, come si può vedere in figura 1 OS X sfrutta questo standard per la gestione dei permessi sul filesystem.

Il concetto dietro ACL è uno dei più semplici, in quanto ogni risorsa del sistema che deve essere controllata ha una sua lista che ad ogni soggetto associa le azioni che può effettuare sulla risorsa ed il sistema operativo, quando viene fatta richiesta decide in base alla lista se dare il permesso o meno.

Per esempio, sempre in figura 1, si può vedere come *test_folder* sia la risorsa da controllare, *federicoschipani*, *staff* e *everyone* siano i soggetti e le azioni associate sono, in questo caso, *Read & Write* al primo soggetto e *Read only* agli altri due.

La semplicità di questo modello non richiede grandi infrastrutture sottostanti, infatti implementarlo dal punto di vista applicativo risulta abbastanza semplice attraverso l'uso di linguaggi ad alto livello come Python o Java, poiché le strutture che servono per implementare questo standard sono già definite.

Questo elevato grado di relativa facilità di implementazione però ha anche un aspetto negativo che si manifesta quando si ha a che fare con grandi quantità di risorse. Ogni volta che viene richiesto l'accesso ad una risorsa da parte di un entità, utente o applicazione che sia, bisogna

Figura 1: ACL in OS X

verificare nella lista associata, il che lo rende abbastanza oneroso dal punto di vista computazionale.

Un altro lato negativo emerge quando bisogna effettuare modifiche ai permessi di una determinata risorsa, in quanto bisogna andare ad operare sulla lista di quest'ultima, il che rende questo compito incline ad errori ed oneroso dal punto di vista del tempo.

2.1.2 Role-based Access Control (RBAC)

RBAC

FORMAL ACCESS CONTROL POLICY LANGUAGE

Negli anni molti linguaggi sono stati proposti per definire policy di access control. Uno di questi è stato rilasciato nel 2003 da parte di OASIS ed il suo nome è *eXtensible Access Control Markup Language* (XACML). Questo linguaggio ha una sintassi basata su XML e fornisce caratteristiche avanzate per l'access control. Il problema fondamentale di XACML è che non ha una sintassi facile da leggere e da scrivere.

L'obiettivo di *Formal Access Control Policy Language* (FACPL) è definire una sintassi alternativa per XACML in modo da renderlo più agevole da usare. FACPL quindi è parzialmente inspirato a XACML, ma oltre ad introdurre una nuova sintassi ridefinisce alcuni aspetti aggiungendo nuove caratteristiche. Il suo scopo però non è sostituire XACML, ma fornire un linguaggio compatto ed espressivo per facilitare le tecniche di analisi attraverso tool specifici.

3.1 IL PROCESSO DI VALUTAZIONE DI FACPL

Figura 2: Il processo di valutazione di FACPL

In figura 2 è mostrato il processo di valutazione delle policy definite in FACPL. I componenti principali sono tre:

- Policy Repository (PR)
- Policy Decision Point (PDP)
- Policy Enforcement Point (PEP)

Le policy sono memorizzate nel PR, il quale le rende disponibili al PDP che deciderà se garantire l'accesso o meno (Primo step). Nello step 2, quando il PEP riceve una richiesta, le credenziali di quest'ultima vengono codificate in una sequenza di attributi (ogni attributo è una coppia stringa valore) che, nello step 3, andranno a loro volta a formare una FACPL Request. Al quarto step il context handler aggiungerà attributi di ambiente (per esempio l'ora di ricezione della richiesta) e manderà la richiesta al PDP. A questo punto il PDP, tra il quinto e l'ottavo step, valuterà la richiesta e fornirà un risultato, il quale può eventualmente contenere delle obligations. La decisione del PDP può essere di quattro tipi, permit, deny, not-applicable o indeterminate. Il significato delle prime due decisioni è facilmente intuibile, mentre per le ultime due vuol dire che c'è stato un errore durante la valutazione. Gli errori possono essere di diverso tipo, e vengono gestiti attraverso algoritmi che combinano le decisioni delle varie policy per ottenere un risultato finale. Le obligations sono azioni, eseguite dal PEP, correlate al sistema di controllo degli accessi. Queste azioni possono essere di svariati tipi, come per esempio generare un file di log, o mandare una mail. Allo step 13, sulla base del risultato delle *obligations*, il PEP esegue un processo chiamato Enforcement il quale restituirà un'altra decisione. Quest'ultima decisione corrisponde alla decisione finale del sistema e può differire da quella del PDP.

3.2 LA SINTASSI DI FACPL

La sintassi di FACPL è definita nella tabella 1. La sintassi è fornita come una grammatica di tipo EBNF, dove il simbolo ? corrisponde ad un elemento opzionale, il simbolo * corrisponde ad una sequenza con un numero arbitrario di elementi (anche o), ed il simbolo + corrisponde ad una sequenza non vuota con un numero arbitrario di elementi.

Al livello più alto c'è il *Policy Authorisation System (PAS)*, il quale definisce le specifiche del PEP e del PDP. Il PEP è definito semplicemente come un *enforcing algorithm* che sarà applicato per decidere quali decisioni verrà

Tabella 1: Sintassi di FACPL

```
PAS ::= (pep : EnfAlg pdp : PDP)
Policy Authorisation Systems
      Enforcement algorithms
                                          EnfAlg ::= base | deny-biased | permit-biased
                                            PDP ::= \{Alg \text{ policies} : Policy}^+\}
        Policy Decision Points
        Combining algorithms
                                             Alg ::= p-over_{\delta} \mid d-over_{\delta} \mid d-unless-p_{\delta} \mid p-unless-d_{\delta}
                                                     | first-app_{\delta} | one-app_{\delta} | weak-con_{\delta} | strong-con_{\delta}
                                                \delta := greedy \mid all
           fulfilment strategies
                          Policies
                                           Policy ::= (Effect target : Expr obl : Obligation*)
                                                     | {Alg target : Expr
                                                       policies : Policy<sup>+</sup> obl : Obligation* }
                            Effects
                                           Effect ::= permit | deny
                     Obligations Obligation ::= [Effect ObType PepAction(Expr^*)]
               Obligation Types
                                         ObType ::= M \mid O
                     Expressions
                                            Expr ::= Name | Value
                                                     \mid \operatorname{and}(Expr, Expr) \mid \operatorname{or}(Expr, Expr) \mid \operatorname{not}(Expr)
                                                     \mid equal(Expr, Expr) \mid in(Expr, Expr)
                                                     \mid greater-than(Expr, Expr) \mid add(Expr, Expr)
                                                     \mid subtract(Expr, Expr) \mid divide(Expr, Expr)
                                                     \mid multiply(Expr, Expr)
               Attribute Names
                                           Name ::= Identifier/Identifier
                   Literal Values
                                           Value ::= true | false | Double | String | Date
                                         Request ::= (Name, Value)^+
                         Requests
```

eseguito il processo di enforcement.

Il PDP invece è definito come una sequenza (non vuota) di *Policy*, ed un algoritmo di combining che combinerà i risultati di queste policy per ottenere un unico risultato finale.

Una *policy* può essere una semplice *rule* o una *policy set*, quest'ultima avrà al suo interno altre *policy set* o *rule*, ed in questo modo viene formata una gerarchia di policy.

Tabella 2: Sintassi ausiliaria per le risposte

```
PDP ResponsesPDPResponse ::= \langle Decision FObligation^* \rangleDecisionsDecision ::= permit | deny | not-app | indetFulfilled obligationsFObligation ::= [ObType PepAction(Value^*)]
```

Un *policy set* individua un target, che è una espressione che indica il set di richieste di accesso alla quale si applica la policy, una lista di *obligations*, che definiscono azioni obbligatorie o opzionali che devono essere eseguite nel processo di *enforcement*, una sequenza di altre *policy*, ed un algoritmo per combinarle.

Una *rule* includerà un *effect*, che sarà permit o deny quando la regola è valutata correttamente, un target ed una lista di *obligations*.

Le *Expressions* sono formate da *attribute names* e valori (per esempio boolean, double, strings, date).

Un *Attribute Name* indica il valore di un attributo il quale può essere contenuto nella richiesta o nel contesto. FACPL usa per gli *Attribute Name* una forma del tipo *Identifier / Identifier ,* dove il primo Identifier indica la categoria, ed il secondo il nome dell'attributo. Per esempio *Action / ID* rappresenta il valore di un attributo ID di categoria Action.

I *Combining Algorithm* implementano diverse strategie che servono per risolvere conflitti tra le varie decisioni, restituendo alla fine un'unica decisione finale.

Una *obligation* ha al suo interno un effect, un tipo, ed una azione eseguita dal PEP con la relativa *Expression*.

Una request consiste di una sequenza di attributi organizzati in categorie. La risposta ad una valutazione di una richiesta FACPL è scritta usando la sintassi riportata in tabella 2. La valutazione in due step, descritta precedentemente in sezione 3.1, produce due tipi di risultati. Il primo è la risposta del PDP, il secondo è una decisione, ovvero una risposta del PEP. La decisione del PDP, nel caso in cui ritorni permit o deny, viene associata ad una lista, anche vuota, di fulfilled obligations.

Una *fulfilled obligation* è una semplice coppia formata da un tipo (M o O) ed una azione i quali argomenti sono ottenuti dalla valutazione del PDP.

ESTENSIONI DEL LINGUAGGIO

asd asd asd

CONCLUSIONI

prova 123

BIBLIOGRAFIA

- [1] Autore titolo
- [2] Autore Titolo altre informazioni