Machine Learning Foundations

(機器學習基石)

Lecture 14: Regularization

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

overfitting happens with excessive power, stochastic/deterministic noise, and limited data

Lecture 14: Regularization

- Regularized Hypothesis Set
- Weight Decay Regularization
- Regularization and VC Theory
- General Regularizers

Regularization: The Magic

• idea: 'step back' from \mathcal{H}_{10} to \mathcal{H}_{2}

name history: function approximation for ill-posed problems

how to step back?

Stepping Back as Constraint

Q-th order polynomial transform for $x \in \mathbb{R}$:

$$\Phi_Q(x) = (1, x, x^2, \dots, x^Q)$$

+ linear regression, denote $\tilde{\mathbf{w}}$ by \mathbf{w}

hypothesis **w** in \mathcal{H}_{10} : $w_0 + w_1 x + w_2 x^2 + w_3 x^3 + ... + w_{10} x^{10}$

hypothesis **w** in \mathcal{H}_2 : $w_0 + w_1 x + w_2 x^2$

that is, $\mathcal{H}_2 = \mathcal{H}_{10}$ AND 'constraint that $w_3 = w_4 = \ldots = w_{10} = 0$ '

做约束

step back = constraint

Regression with Constraint

$$\mathcal{H}_{10} \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1}
ight\}$$

regression with \mathcal{H}_{10} :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{in}(\mathbf{w})$$

$$\mathcal{H}_2 \equiv \left\{ oldsymbol{w} \in \mathbb{R}^{10+1}
ight.$$
 while $w_3 = w_4 = \ldots = w_{10} = 0
ight\}$ regression with \mathcal{H}_2 : $\displaystyle \min_{oldsymbol{w} \in \mathbb{R}^{10+1}} \; \mathcal{E}_{in}(oldsymbol{w})$

s.t. $W_3 = W_4 = \ldots = W_{10} = 0$

step back = constrained optimization of E_{in}

why don't you just use $\mathbf{w} \in \mathbb{R}^{2+1}$? :-)

我們之所以跨出這一步的目的是希望 能夠拓展我們的視 野,讓我們在推導後面的問題的時候 會變得容易一些

Regression with Looser Constraint

$$\mathcal{H}_2 \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right.$$
 while $w_3 = \ldots = w_{10} = 0$

regression with \mathcal{H}_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} \quad E_{in}(\mathbf{w})$$

s.t.
$$w_3 = \ldots = w_{10} = 0$$

$$\mathcal{H}_2' \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right.$$
 while ≥ 8 of $w_q = 0 \right\}$

regression with \mathcal{H}'_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} \quad E_{in}(\mathbf{w})$$

s.t.
$$\sum_{q=0}^{10} [w_q \neq 0] \le 3$$

more flexible than H₂:

$$\mathcal{H}_2 \subset \mathcal{H}_2'$$

less risky than H₁₀:

$$\mathcal{H}_2' \subset \mathcal{H}_{10}$$

bad news for sparse hypothesis set \mathcal{H}'_2 :

NP-hard to solve :-(

Regression with Softer Constraint

$$\mathcal{H}_2' \ \equiv \ \left\{ oldsymbol{w} \in \mathbb{R}^{10+1}
ight.$$
 while ≥ 8 of $w_q = 0
ight\}$

regression with \mathcal{H}'_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\mathsf{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3$$

$$\mathcal{H}(C) \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \\ \text{while } \|\mathbf{w}\|^2 \leq C \right\}$$

regression with $\mathcal{H}(C)$:

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\mathsf{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} w_q^2 \leq C$$

- $\mathcal{H}(C)$: overlaps but not exactly the same as \mathcal{H}'_2
- soft and smooth structure over $C \ge 0$: $\mathcal{H}(0) \subset \mathcal{H}(1.126) \subset \ldots \subset \mathcal{H}(1126) \subset \ldots \subset \mathcal{H}(\infty) = \mathcal{H}_{10}$

regularized hypothesis \mathbf{w}_{REG} :
optimal solution from
regularized hypothesis set $\mathcal{H}(C)$

For $Q \ge 1$, which of the following hypothesis (weight vector $\mathbf{w} \in \mathbb{R}^{Q+1}$) is not in the regularized hypothesis set $\mathcal{H}(1)$?

- $\mathbf{0} \ \mathbf{w}^T = [0, 0, \dots, 0]$
- **2** $\mathbf{w}^T = [1, 0, \dots, 0]$
- **3** $\mathbf{w}^T = [1, 1, \dots, 1]$
- $\mathbf{4} \ \mathbf{w}^T = \left[\sqrt{\frac{1}{Q+1}}, \sqrt{\frac{1}{Q+1}}, \dots, \sqrt{\frac{1}{Q+1}} \ \right]$

For $Q \ge 1$, which of the following hypothesis (weight vector $\mathbf{w} \in \mathbb{R}^{Q+1}$) is not in the regularized hypothesis set $\mathcal{H}(1)$?

- $\mathbf{0} \ \mathbf{w}^T = [0, 0, \dots, 0]$
- **2** $\mathbf{w}^T = [1, 0, \dots, 0]$
- **3** $\mathbf{w}^T = [1, 1, \dots, 1]$
- $\mathbf{4} \ \mathbf{w}^T = \left[\sqrt{\frac{1}{Q+1}}, \sqrt{\frac{1}{Q+1}}, \dots, \sqrt{\frac{1}{Q+1}} \ \right]$

Reference Answer: (3)

The squared length of **w** in \bigcirc is Q + 1, which is not < 1.

Matrix Form of Regularized Regression Problem

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} \quad E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \underbrace{\sum_{n=1}^{N} (\mathbf{w}^T \mathbf{z}_n - y_n)^2}_{(Z\mathbf{w} - \mathbf{y})^T (Z\mathbf{w} - \mathbf{y})}$$

$$\text{s.t.} \qquad \sum_{q=0}^{Q} w_q^2 \le C$$

- $\sum_{n \dots} = (\mathbf{Z}\mathbf{w} \mathbf{y})^T (\mathbf{Z}\mathbf{w} \mathbf{y})$, remember? :-)
- $\mathbf{w}^T \mathbf{w} \leq C$: feasible \mathbf{w} within a radius- \sqrt{C} hypersphere

how to solve constrained optimization problem?

The Lagrange Multiplier

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} \quad \mathbf{E}_{in}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^T (\mathbf{Z}\mathbf{w} - \mathbf{y}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq \mathbf{C}$$

- decreasing direction: ¬∇E_{in}(w),
 remember? :-)
- normal vector of $\mathbf{w}^T \mathbf{w} = \mathbf{C}$: \mathbf{w}
- if -∇E_{in}(w) and w not parallel: can decrease E_{in}(w) without violating the constraint
- at optimal solution w_{REG},
 -∇E_{in}(w_{REG}) ∝ w_{REG}

want: find Lagrange multiplier $\lambda > 0$ and \mathbf{w}_{REG} such that $\nabla E_{in}(\mathbf{w}_{REG}) + \frac{2\lambda}{N} \mathbf{w}_{REG} = \mathbf{0}$

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

$$\frac{2}{N} \left(\mathbf{Z}^T \mathbf{Z} \mathbf{w}_{\text{REG}} - \mathbf{Z}^T \mathbf{y} \right) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

optimal solution:

$$\boldsymbol{w}_{\text{REG}} \leftarrow (\boldsymbol{Z}^T\boldsymbol{Z} + \textcolor{red}{\lambda}\boldsymbol{I})^{-1}\boldsymbol{Z}^T\boldsymbol{y}$$

—called ridge regression in Statistics

岭回归

minimizing unconstrained E_{aug} effectively minimizes some C-constrained E_{in}

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

equivalent to minimizing

$$E_{in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^T \mathbf{w}$$
augmented error $E_{aug}(\mathbf{w})$

regularization with augmented error instead of constrained Ein

$$\mathbf{w}_{\mathsf{REG}} \leftarrow \underset{\mathbf{w}}{\mathsf{argmin}} \, E_{\mathsf{aug}}(\mathbf{w}) \; \mathsf{for} \; \mathsf{given} \; \lambda > 0 \; \mathsf{or} \; \lambda = 0$$

minimizing unconstrained E_{aug} effectively minimizes some C-constrained E_{in}

The Results

philosophy: a little regularization goes a long way!

Some Detail: Legendre Polynomials

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} \frac{1}{N} \sum_{n=0}^{N} (\mathbf{w}^T \mathbf{\Phi}(x_n) - y_n)^2 + \frac{\lambda}{N} \sum_{q=0}^{Q} w_q^2$$

naïve polynomial transform:

$$\Phi(\mathbf{x}) = (1, x, x^2, \dots, x^Q)$$

—when $x_n \in [-1, +1]$, x_n^q really small, needing large w_q

normalized polynomial transform:

$$(1, L_1(x), L_2(x), \dots, L_O(x))$$

—'orthonormal basis functions' called Legendre polynomials

When would wree equal wrin?

- $\mathbf{C} = \infty$
- **3** $C \ge \|\mathbf{w}_{LIN}\|^2$
- 4 all of the above

When would \mathbf{w}_{REG} equal \mathbf{w}_{LIN} ?

- $C = \infty$
- **3** $C \ge \|\mathbf{w}_{LIN}\|^2$
- 4 all of the above

Reference Answer: (4)

 \bigcirc and \bigcirc shall be easy; \bigcirc means that there are effectively no constraint on \mathbf{w} , hence the equivalence.

Regularization and VC Theory

Regularization by Constrained-Minimizing E_{in}

 $\min_{\mathbf{w}} E_{in}(\mathbf{w}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq C$

VC Guarantee of Constrained-Minimizing E_{in}

$$E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \Omega(\frac{\mathcal{H}(C)}{C})$$

Regularization by Minimizing E_{auq}

$$\min_{\boldsymbol{w}} E_{\text{aug}}(\boldsymbol{w}) = E_{\text{in}}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w}$$

minimizing E_{aug} : indirectly getting VC guarantee without confining to $\mathcal{H}(C)$

Another View of Augmented Error

Augmented Error

$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

VC Bound

$$E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \Omega(\mathcal{H})$$

- regularizer w^Tw
 : complexity of a single hypothesis
- generalization price $\Omega(\mathcal{H})$: complexity of a hypothesis set
- if $\frac{\lambda}{N}\Omega(\mathbf{w})$ 'represents' $\frac{\Omega}{N}(\mathcal{H})$ well, E_{aug} is a better proxy of E_{out} than E_{in}

minimizing E_{auq} :

(heuristically) operating with the better proxy; (technically) enjoying flexibility of whole \mathcal{H}

Effective VC Dimension

$$\min_{\mathbf{w} \in \mathbb{R}^{\tilde{\sigma}+1}} E_{\text{aug}}(\mathbf{w}) = \underline{E}_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \Omega(\mathbf{w})$$

- model complexity? $d_{VC}(\mathcal{H}) = \tilde{d} + 1$, because $\{\mathbf{w}\}$ 'all considered' during minimization
- $\{\mathbf{w}\}$ 'actually needed': $\mathcal{H}(C)$, with some C equivalent to λ
- $d_{\text{VC}}(\mathcal{H}(C))$: effective VC dimension $d_{\text{EFF}}(\mathcal{H}, \underbrace{\mathcal{A}}_{\min E_{\text{aug}}})$

explanation of regularization: $d_{\text{VC}}(\mathcal{H})$ large, while $d_{\text{EFF}}(\mathcal{H}, \mathcal{A})$ small if \mathcal{A} regularized

Consider the weight-decay regularization with regression. When increasing λ in \mathcal{A} , what would happen with $d_{\text{EFF}}(\mathcal{H}, \mathcal{A})$?

- $\mathbf{0}$ $d_{\mathsf{EFF}} \uparrow$
- 2 $d_{\mathsf{EFF}} \downarrow$
- 3 $d_{\mathsf{EFF}} = d_{\mathsf{VC}}(\mathcal{H})$ and does not depend on λ
- 4 $d_{EFF} = 1126$ and does not depend on λ

Consider the weight-decay regularization with regression. When increasing λ in \mathcal{A} , what would happen with $d_{\text{EFF}}(\mathcal{H}, \mathcal{A})$?

- 1 d_{EFF} ↑
- 2 d_{EFF} ↓
- 3 $d_{\mathsf{EFF}} = d_{\mathsf{VC}}(\mathcal{H})$ and does not depend on λ
- 4 $d_{\text{EFF}} = 1126$ and does not depend on λ

Reference Answer: 2 larger λ \Leftrightarrow smaller C \Leftrightarrow smaller $\mathcal{H}(C)$ \Leftrightarrow smaller d_{FFF}

General Regularizers $\Omega(\mathbf{w})$

want: constraint in the 'direction' of target function

- target-dependent: some properties of target, if known
 - symmetry regularizer: $\sum [q \text{ is odd}] w_q^2$
- plausible: direction towards smoother or simpler stochastic/deterministic noise both non-smooth
 - sparsity (L1) regularizer: $\sum |w_q|$ (next slide)
- friendly: easy to optimize
 - weight-decay (L2) regularizer: $\sum w_q^2$
- bad? :-): no worries, guard by λ

```
augmented error = error \widehat{\text{err}} + regularizer \Omega regularizer: target-dependent, plausible, or friendly ringing a bell? :-)
```

error measure: user-dependent, plausible, or friendly

L2 and L1 Regularizer

 $E_{\rm in} = {\rm const}$

L2 Regularizer

$$\Omega(\mathbf{w}) = \sum_{q=0}^{Q} w_q^2 = \|\mathbf{w}\|_2^2$$

- convex, differentiable everywhere
- easy to optimize

L1 Regularizer

$$\Omega(\mathbf{w}) = \sum_{q=0}^{Q} |w_q| = \|\mathbf{w}\|_1$$

- convex, not differentiable everywhere
- sparsity in solution

L1 useful if needing sparse solution

The Optimal λ

- noise unknown—important to make proper choices

how to choose?
stay tuned for the next lecture! :-)

Consider using a regularizer $\Omega(\mathbf{w}) = \sum_{q=0}^{Q} 2^q w_q^2$ to work with Legendre polynomial regression. Which kind of hypothesis does the regularizer prefer?

- **1** symmetric polynomials satisfying h(x) = h(-x)
- 2 low-dimensional polynomials
- nigh-dimensional polynomials
- 4 no specific preference

Consider using a regularizer $\Omega(\mathbf{w}) = \sum_{q=0}^{Q} 2^q w_q^2$ to work with Legendre polynomial regression. Which kind of hypothesis does the regularizer prefer?

- **1** symmetric polynomials satisfying h(x) = h(-x)
- 2 low-dimensional polynomials
- 3 high-dimensional polynomials
- 4 no specific preference

Reference Answer: 2

There is a higher 'penalty' for higher-order terms, and hence the regularizer prefers low-dimensional polynomials.

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

Lecture 14: Regularization

Regularized Hypothesis Set

original \mathcal{H} + constraint

Weight Decay Regularization

add $\frac{\lambda}{N}$ w^Tw in E_{aug}

- Regularization and VC Theory
 - regularization decreases d_{EFF}
- General Regularizers target-dependent, [plausible], or [friendly]
- next: choosing from the so-many models/parameters