Project I: Boolean Algebra on Regular Regions in \mathbb{R}^2 due 2019 OCT 16, 13:15

1 Definitions

In a topological space \mathcal{X} , the *complement* of a subset $\mathcal{P} \subseteq \mathcal{X}$, written \mathcal{P}' , is the set $\mathcal{X} \setminus \mathcal{P}$. The *closure* of a set $\mathcal{P} \subseteq \mathcal{X}$, written \mathcal{P}^- , is the intersection of all closed supersets of \mathcal{P} . The *interior* of \mathcal{P} , written \mathcal{P}° , is the union of all open subsets of \mathcal{P} . The *exterior* of \mathcal{P} , written $\mathcal{P}^{\perp} := \mathcal{P}'^{\circ} := (\mathcal{P}')^{\circ}$, is the interior of its complement. By the identity $\mathcal{P}^- = \mathcal{P}'^{\circ}$ we have $\mathcal{P}^{\perp} = \mathcal{P}^{-\prime}$. A point $\mathbf{x} \in \mathcal{X}$ is a *boundary point* of \mathcal{P} if $\mathbf{x} \notin \mathcal{P}^\circ$ and $\mathbf{x} \notin \mathcal{P}^\perp$. The *boundary* of \mathcal{P} , written $\partial \mathcal{P}$, is the set of all boundary points of \mathcal{P} . It can be shown that $\mathcal{P}^\circ = \mathcal{P} \setminus \partial \mathcal{P}$ and $\mathcal{P}^- = \mathcal{P} \cup \partial \mathcal{P}$. An open set $\mathcal{P} \subseteq \mathcal{X}$ is *regular* if it coincides with the interior of its own closure, i.e. if $\mathcal{P} = \mathcal{P}^{-\circ}$.

Definition 1. A Boolean algebra is an algebra of the form

$$\mathbf{B} := (\mathcal{B}, \ \lor, \ \land, \ ', \ \hat{0}, \ \hat{1}), \tag{1}$$

where the binary operations \vee , \wedge called "meet" and "join," the unary operation ' called complementation, and the nullary operations $\hat{0}$, $\hat{1}$ satisfy

- (BA-1) the identity laws: $x \wedge \hat{1} = x, x \vee \hat{0} = x$,
- (BA-2) the complement laws: $x \wedge x' = \hat{0}, x \vee x' = \hat{1},$
- (BA-3) the commutative laws: $x \lor y = y \lor x$, $x \land y = y \land x$,
- (BA-4) the distributive laws: $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$

Definition 2. A set $S \subseteq \mathbb{R}^D$ is *semianalytic* if there exist a finite number of analytic functions $g_i : \mathbb{R}^D \to \mathbb{R}$ such that S is in the universe of a finite Boolean algebra formed from the sets

$$\mathcal{X}_i = \left\{ \mathbf{x} \in \mathbb{R}^{\mathsf{D}} : g_i(\mathbf{x}) \ge 0 \right\}. \tag{2}$$

The g_i 's are called the *generating functions* of S. In particular, a semianalytic set is *semialgebraic* if all of its generating functions are polynomials.

Recall that a function is *analytic* if and only if its Taylor series at \mathbf{x}_0 converges to the function in some neighborhood for every \mathbf{x}_0 in its domain.

Definition 3. A $Yin\ set\ \mathcal{Y}\subseteq\mathbb{R}^2$ is a regular open semianalytic set whose boundary is bounded. The class of all such Yin sets form the $Yin\ space\ \mathbb{Y}$.

The Yin sets form a model of physically meaningful regions in the plane.

Theorem 4. The algebra $\mathbf{Y} := (\mathbb{Y}, \cup^{\perp\perp}, \cap, \perp, \emptyset, \mathbb{R}^2)$ is a Boolean algebra, where $A \cup^{\perp\perp} B := ((A \cup B)^{\perp})^{\perp}$.

A planar curve is a continuous map $\gamma:(0,1)\to\mathbb{R}^2$. It is *smooth* if the map is smooth. It is *simple* if the map is injective; otherwise it is *self-intersecting*. Although strictly speaking a curve γ is a map, we also use γ to refer to its image. Two piecewise smooth curves γ_1 and γ_2 intersect at q if there exist $s_1, s_2 \in (0, 1)$ such that $\gamma_1(s_1) = \gamma_2(s_2) = q$. Then q is the intersection of γ_1 and γ_2 . For an open ball $\mathcal{N}_r(q)$ with sufficiently small radius r, $\mathcal{N}_r(q) \setminus \gamma_1$ consists of two disjoint connected regular open sets. If $\gamma_2 \setminus q$ is entirely contained in one of these two sets, q is an improper intersection; otherwise it is a proper intersection. Two curves are disjoint if they have neither proper intersections nor improper ones. Suppose upon its extension to a path, a simple curve γ further satisfies $\gamma(0) = \gamma(1)$, then γ is a simple closed curve or Jordan curve.

Theorem 5 (Jordan Curve Theorem). The complement of a Jordan curve γ in the plane \mathbb{R}^2 consists of two components, each of which has γ as its boundary. One component is bounded and the other is unbounded; both of them are open and path-connected.

Definition 6. The *interior* of an oriented Jordan curve γ , denoted by $int(\gamma)$, is the component of the complement of γ that always lies to the left when an observer traverses the curve in the increasing direction of its parameterization.

A Jordan curve is said to be *positively oriented* if its interior is the bounded component of its complement; otherwise it is *negatively oriented*.

Definition 7. Two Jordan curves are *almost disjoint* if they have no proper intersections and at most a finite number of improper intersections.

Figure 1: A Yin set with complex topology and geometry. In subplot (b), the Jordan curves γ_1 , γ_4 , γ_5 , γ_6 , γ_7 , and γ_{10} are positively oriented while the others are negatively oriented.

2 Boolean Algebra on Yin Sets in \mathbb{R}^2

The following theorem furnishes a representation of Yin sets; see Figure 1 for an example.

Theorem 8. Each Yin set $\mathcal{Y} \neq \emptyset$, \mathbb{R}^2 can be uniquely expressed as

$$\mathcal{Y} = \bigcup_{j}^{\perp \perp} \bigcap_{i} \operatorname{int} \left(\gamma_{j,i} \right), \tag{3}$$

where j is the index of connected components of \mathcal{Y} and $\gamma_{j,i}$'s are oriented Jordan curves that are pairwise almost disjoint.

Before you read the mathematical answers of this project, think about the following problems.

- (A) Prove Theorem 8.
- (B) Find a Boolean algebra

$$(\mathbb{J}, \vee, \wedge, ', \hat{0}, \hat{1}), \tag{4}$$

where $\mathbb J$ contains sets of pairwise almost disjoint oriented Jordan curves.

- (C) Find an isomomorphism $\rho: \mathbb{J} \to \mathbb{Y}$ such that the Boolean algebras $(\mathbb{J}, \vee, \wedge, ', \hat{0}, \hat{1})$ and $(\mathbb{Y}, \cup^{\perp\perp}, \cap, ^{\perp}, \emptyset, \mathbb{R}^2)$ are isomorphic. Prove your conclusion.
- (D) Design an algorithm for Boolean algebra on \mathbb{Y} , in such a way that first the operands and operation are sent to \mathbb{J} , then the operation is performed in \mathbb{J} , and finally the results in \mathbb{J} are mapped back to \mathbb{Y} . You can approximate Jordan curves with linear polygons.
- (E) Design an algorithm to calculate in O(1) time the Betti numbers of any Yin set \mathcal{Y} , i.e. its number of components and the number of holes in each components.

Figure 2: Testing Boolean algorithms on Yin sets with complex topology and geometry. In subplots (a), (c), and (d), a solid line represents a positively oriented Jordan curve, a dotted line a negatively oriented Jordan curve, and a shaded region the result of a Boolean operation. Make sure you have improper intersections in your tests.