ОМВ, Домашнее задание 2

Спирин Иван, БПМИ197

4 апреля 2021 г.

1б.

 $\|P-Q\|_2 = \sup_{\|x\|_2=1} \|(P-Q)x\|_2$. Далее считаем $\|x\|_2=1$:

$$\begin{split} &\|(P-Q)x\|_2^2 = x^*(P-Q)^*(P-Q)x = x^*(P^*-Q^*)(P-Q)x = x^*(P-Q)^2x = x^*(P^2-PQ-QP+Q^2)x \\ &Q^2)x = x^*(P-PQ-QP+Q)x = x^*(P(I-Q)+Q(I-P))x = x^*P(I-Q)x + x^*Q(I-P)x = \|P(I-Q)x\|_2^2 + \|Q(I-P)x\|_2^2 \end{split}$$

С другой стороны, это же самое равенство можно расписать так: $x^*(P-PQ-QP+Q)x=x^*((I-Q)P+(I-P)Q)x=\|(I-Q)Px\|_2^2+\|(I-P)Qx\|_2^2$

Теперь заметим, что $\|Px\|_2^2 + \|(I-P)x\|_2^2 = x^*P^*Px + x^*(I-P)^*(I-P)x = x^*Px + x^*(I-P)x = x^*Px + x^*x - x^*Px = x^*x = \|x\|_2^2$ (теорема Пифагора, если короче). Отсюда мы понимаем, что, во-первых, $\|x\|_2^2 \geq \|Px\|_2^2$. Если заменим x на Qx, получится $\|Qx\|_2^2 \geq \|PQx\|_2^2$. И аналогичное верно, если вместо P и Q подставлять I-Q или I-P в любом порядке (они все ортопроекторы). Во-вторых, $\|Px\|_2^2 + \|(I-P)x\|_2^2 = 1$, т.к. $\|x\|_2 = 1$. Аналогично, $\|Qx\|_2^2 + \|(I-Q)x\|_2^2 = 1$.

Осталось лишь сложить два равенства, которые получили до этого: $2\|(P-Q)x\|_2^2 = \|P(I-Q)x\|_2^2 + \|Q(I-P)x\|_2^2 + \|(I-Q)Px\|_2^2 + \|(I-P)Qx\|_2^2 \le \|(I-Q)x\|_2^2 + \|(I-P)x\|_2^2 + \|Px\|_2^2 + \|Qx\|_2^2 = 2.$

 $\|(P-Q)x\|_2^2 \le 1 \ \forall x: \|x\|_2 = 1 \Rightarrow \|P-Q\|_2 \le 1$, что и требовалось.