Valid Codes & Descriptions for ANNOTATED INFORMATION in 2005 PDP Analytical Results

Annotate Code	Annotated Information	
Q	Residue at below quantifiable level (BQL)	
QV	Residue at <bql> with presumptive violation - No Tolerance</bql>	
QX	Residue at <bql> with presumptive violation - Exceeds Tol.</bql>	
V	Residue with a presumptive violation - No Tolerance	
X	Residue with a presumptive violation - Exceeds Tolerance	

Valid Codes & Descriptions for COMMODITY MARKETING CLAIM on 2005 PDP Samples

Claim Code	Commodity Marketing Claim
NC	No Claim
OT	Other
PD	No Pesticides Detected
PO	Organic
PP	Pesticide Free

Valid Codes & Descriptions for COMMODITIES Sampled/Analyzed by PDP in 2005 (Fresh Product Unless Otherwise Noted)

Commodity		# of Samples
Code	Commodity Name	Analyzed
AP	Apples	743
CF	Cauliflower	741
СМ	Heavy Cream	369
CN	Cantaloupe	558
EP	Eggplant	736
GB	Green Beans	181
GF	Grapefruit	742
GR	Grapes	739
GZ	Green Beans, Frozen	555
KA	Pork Adipose	352
KM	Pork Muscle	352
LT	Lettuce	743
MK	Milk	746
OG	Oranges	741
OJ	Orange Juice	744
PD	Plums, Dried (Prunes)	153
PE	Pears	555
PU	Plums	573
ST	Strawberries	737
SY	Soybean grain	974
WB	Water, Bottled	378
WH	Wheat grain	674
WM	Watermelon	182
WR	Water, Finished	374
WS	Winter Squash	731
WU	Water, Untreated	376

Valid Codes & Descriptions for COMMODITY TYPE in 2005 PDP Samples

Commod Type Code	Commodity Type
CO	Liquid Concentrate
FR	Fresh
FZ	Frozen
GR	Grain, Raw
NP	Not Provided
OT	Other
PK	Pork, Back Fat
PY	Pork, Belly Fat
RE	Liquid Ready-to-Serve
WH	Water Bottle 2-HDPE
WP	Water Bottle 1-PETE

Valid Codes & Descriptions for Concentration/LOD Unit-of-Measure Code

Concen/LOD Unit Code	Concen/LOD Unit Description
В	Parts-per-Billion (ppb)
М	Parts-per-Million (ppm)
Т	Parts-per-Trillion (ppt)

Valid Codes & Descriptions for CONFIRMATION METHOD in 2005 PDP Analytical Results

ConfMethod Code	Confirmation Method
С	GC or LC Alternate Column
CD	GC or LC Alt. Column and Alt. Detector
D	GC or LC Alternate Detector
I	GC/IT-Gas Chrom w/lon Trap MS-single stg
L	LC/MS-Liq Chrom w/Mass Spec-single stage
LT	LC-MS/MS - Liq Chrom w/Tandem Mass Spec
М	GC/MS - single quadropole
MO	Quant. & Confirm. by GC/MS only
Р	LC-AMP - Liquid Chrom Alt. Mobile Phase
S	GC or LC -MS Alternate Detector
Т	GC/MS/MS - Gas Chrom w/Tandem Mass Spec

Valid Codes & Descriptions for COUNTRIES Where PDP 2005 Samples Originated

Country Code	Country Name
150	Argentina
160	Australia
180	Bahamas
190	Belgium
220	Brazil
227	Belize
260	Canada
275	Chile
280	China, Peoples Rep. (Com.)
281	China, Republic of (Taiwan)
295	Costa Rica
320	Dominican Republic
338	Fiji
350	France
415	Guatemala
430	Honduras
490	Japan
515	Korea, Republic of
595	Mexico
630	Netherlands
660	New Zealand
665	Nicaragua
710	Panama
720	Peru
801	South Africa
922	Egypt
925	United Kingdom
M01	Brazil / USA
M02	Brazil / Mexico / USA
M03	Brazil / Costa Rica / USA
M04	Brazil / Mexico
M05	Honduras / Mexico / USA
M06	Mexico / USA
M33	Belize / Brazil / Mexico / USA
M95	Belize / Brazil
M99	Multi-Country Origin - Countries Unknown
MA1	Belize / Costa Rica
MA2	Brazil / Costa Rica
MA3	Argentina / Chile / France / USA
UNK	Unknown

Valid Codes & Descriptions for DETERMINATIVE METHOD in 2005 PDP Analytical Results

Determin Code	Determine the Mathead	
	Determinative Method	
01	GC/ECD - Electron Capture Detector	
02	GC/FPD - Flame Photometric Detector in Phosphorus Mode	
05	GC/ELCD - Electrolytic Conductivity Detector in Halogen Mode	
07	GC/MS - Gas Chrom w/Mass Spec - single quadrupole	
80	GC/IT - Gas Chrom w/ Ion Trap Mass Spec - single stage	
10	LC/FL - Liquid Chromatography w/ Fluorescense Detector	
12	Liquid Chrom w/ POST-Column Derivatization & FL Detector	
34	GC/MS/MS - Gas Chrom w/ Tandem Mass Spectrometry	
60	GC/XSD - Halogen Specific Detector	
61	LC/MS - Liquid Chrom w/ Mass Spec - single stage	
62	LC-MS/MS - Liquid Chrom w/ Tandem Mass Spectrometry	
64	Second LC/MS/MS	
65	GC/Micro ECD - Micro Electronic Capture Detector	
66	GC/PFPD - Pulsed Flame Photometric Detector	
67	Third LC/MS/MS	
68	Second GC/ECD	
70	Fourth LC/MS/MS	

Valid Codes & Descriptions for COLLECTION/DISTRIBUTION FACILITY TYPE in 2005 PDP Samples

DistType Code	Collection Facility Type
В	Broker
D	Distribution Center
G	Grain Lot
Н	Wholesale
L	Wholesale and Retail
0	Other Market Type
Р	Processing Plant
R	Retail
S	Storage Facility
Т	Terminal Market
U	Unknown
W	Water Treatment Facility

Valid Codes & Descriptions for EXTRACTION METHOD in 2005 PDP Analytical Results

Extract		
Code	Extraction Method	
015	Modified Luke Extraction Method without Cleanup for Multi-Residues & Carbamates	
550	CDFA Lee et al C-18 Extraction Method	
551	CDFA Chlorinated ACN Florisil SPE Extraction Method	
552	CDFA MSD Aminopropyl Extraction Method	
553	CDFA Carbamate SPE Extraction Method	
554	CDFA Organophosphate Florasil Extraction Method	
555	CDFA Chlorinated Aminopropyl Extraction Method	
556	CDFA LC Compounds Florisil SPE Extraction Method	
800	FL-Modified CDFA C-18 Extraction Method (P-fraction)	
801	FL-Modified CDFA C-18 Extraction Method Aminopropyl SPE Cleanup	
802	FL-Modified CDFA C-18 Extraction Method w/ Florisil SPE Cleanup	
803	GIPSA Modified Method for Extraction of Multi-Residues in Grains	
804	GIPSA Modified Method for Determ. of Triazole Metab. in Wheat Flour (SPE, LC/MS-MS)	
805	MDA Modified Quecher's Method	
806	NYS Modified SPE Method (F&V)	
811	Montana SPE Extraction Method for Polar Pesticides (Water)	
812	Montana Liquid/Liquid Extraction Method for Non-Polar Pesticides	
813	NSL Dairy Product Extraction Method	
814	WA-Modified CDFA C-18 Extraction Method (P-fraction)	
815	WA-Modified CDFA C-18 Extraction Method Aminopropyl SPE Cleanup	
816	WA-Modified CDFA C-18 Extraction Method w/ Florisil SPE Cleanup	
817	FL Aminopropyl SPE Extraction Method	
818	NSL Animal Tissue Extraction Method	
901	NYS Modification of USGS Method 2001/2002 (SPE/GC)	
902	NYS Modification of USGS Method 9060 (SPE/LC)	
903	NYS Modification of USGS Method for Chloroacetanilide (SPE/LC)	
998	OTHER Single-Analysis Methods	
999	OTHER Multi-Residue Methods	

Valid Codes & Descriptions for PDP Participating LABORATORIES in 2005

Lab Code	Lab Agency Name	Lab City/State
CA1	California Department of Food & Agriculture	Sacramento, CA
CO1	Colorado Department of Agriculture	Denver, CO
FL1	Florida Dept of Agriculture & Consumer Services	Tallahassee, FL
FL2	Florida Dept of Agriculture & Consumer Services #2	Winter Haven, FL
MI1	Michigan Department of Agriculture	East Lansing, MI
MN1	Minnesota Department of Agriculture	St. Paul, MN
MT1	Montana Department of Agriculture	Bozeman, MT
NY1	New York Department of Agriculture and Markets	Albany, NY
OH1	Ohio Department of Agriculture	Reynoldsburg, OH
TX1	Texas Department of Agriculture	College Station, TX
US2	USDA, AMS, National Science Laboratory	Gastonia, NC
US3	USDA, GIPSA, Technical Services Division	Kansas City, MO
WA1	Washington State Department of Agriculture	Yakima, WA

Valid Codes & Descriptions for MEAN RESULT in 2005 PDP Analytical Results (O, A, and R indicated Positive Detections)

Mean Code	Mean Result Finding
А	Detect - Avg of Original & Re-extract
N	Non-Detect - Original Analysis
NA	Non-Detect - Averaged Analyses
NR	Non-Detect - Rerun Analysis
NU	Non-Detect - Unvalidated Residue
0	Detect - Original Analysis Value
R	Detect - Re-extraction Analysis Value

Valid Codes & Descriptions for Sample ORIGIN Code

Origin Code	Origin of Sample
1	Domestic (U.S.)
2	Imported
3	Unknown origin

Valid Codes & Descriptions for Compounds (PESTICIDES) Analyzed by PDP in 2005

Pest		Took Class	# of Analysis
Code	Pesticide Name	Test Class	Results
001	Aldrin	A	9757
002	Allethrin	0	6276
011	Captan	A	6462
024	Diazinon	C	10191
026	2,4-D	G	960
028	Dieldrin	A	12471
031	Dinoseb	F	237
032	Diuron	A	4823
033	Anilazine	A	522
034	Endrin	A	7001
042	Azinphos methyl	C	7958
044	Heptachlor	A	9348
046	Monuron (DIIO manage)	A	461
050	Lindane (BHC gamma)	A	11389
052	Malathion	С	14442
055	Methoxychlor Total	A	2780
057	Parathion methyl	С	5784
058	MGK-264	F	1467
061	Neburon	A	960
065	Parathion ethyl	С	7130
069	Mevinphos Total	C	6436
070	Piperonyl butoxide		10409
075	Pyrethrins	A	704
083	O-Phenylphenol	I	7647
088	TEPP	С	1055
102	Carbaryl	E	14208
107	Ethion	C	7894
108	Tetradifon	A	10050
114	Chlorpropham	E C	7085
117	Disulfoton	C	6734
124 125	Coumaphos Diphonylamina (DDA)	F	3336 6923
125	Diphenylamine (DPA)	A	3769
120	Folpet Linuron		
	DCPA	A	6236
134 143		A	8488
143	Heptachlor epoxide Dicloran	A	9012 6877
144	Tecnazene	A	3165
		C	
148 149	Phorate Simazine	R	6331 10415
151	Trifluralin	A	10415
151	Terbacil		5166
152	Bromacil	A U	2963
153	Dicamba	G	2963
156	Ametryn	R	1117
	Thiabendazole	B	
157	THIADEHUAZOIE	В	9876

Pest Code	Pesticide Name	Test Class	# of Analysis Results
159			10008
160	Methomyl	E C	14134
161	Chlorpyrifos Pebulate	P	452
162		E E	925
	Proposur	C	
163	Fonofos Chlorothalonil		4129
164		A C	6120 7417
165	Phosmet Phosalone		
166		С	5042
167	Aldicarb	E	8601
168	Aldicarb sulfone	<u>E</u>	8121
169	Aldicarb sulfoxide	E	8048
170	Methamidophos	С	10589
171	Dimethoate	С	11704
172	Chlordane trans	A	9487
173	Chlordane cis	A	10005
174	Captafol	A	1590
175	Ethoprop	С	3976
176	Tetrachlorvinphos	С	4639
177	Fenthion	С	4231
178	Omethoate	С	10322
180	Carbofuran	E	10428
181	Metribuzin	F	8663
189	Phorate sulfone	С	5563
190	Phorate sulfoxide	С	2258
191	Benfluralin	A	678
195	Methiocarb	E	3700
196	Chloroneb	A	704
197	Methidathion	С	7658
200	EPTC	Р	5288
201	Vernolate	Р	584
202	Carbophenothion	С	2258
203	Phosphamidon	С	4675
204	Acephate	С	11880
205	Terbufos	С	4581
208	Malathion oxygen analog	С	13552
209	Dicrotophos	С	224
210	Carboxin	F	2346
216	Disulfoton sulfone	С	6701
217	DEF (Tribufos)	C	1399
219	Oxydemeton methyl	C	2432
222	Permethrin cis	0	5124
223	Permethrin trans	0	4900
224	Profenofos	C	5058
227	Alachlor	A	4528
228	Cyanazine	R	1802
230	Pendimethalin	F	5191
231	Iprodione metabolite isomer	A	2214
232	Cycloate	P	1905
232	Amitraz	F F	1115
233	AHIMAL	Г	1110

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
235	Chlorpyrifos methyl	С	3431
236	Fenamiphos	С	10104
245	Oxydemeton methyl sulfone	С	9181
246	Oxythioquinox	F	352
249	Prometryn	R	4724
253	Dicofol o,p'	А	2301
254	Dicofol p,p'	А	10400
255	Cyromazine	F	1796
258	Isofenphos	С	1166
264	Propiconazole	L	7827
271	Fenarimol	A	5712
275	Methoxychlor p,p'	A	4188
276	Methoxychlor olefin	A	2020
283	Metolachlor	A	10494
292	Fluazifop butyl	G	1118
297	Fluvalinate	0	2107
299	Diclofop methyl	G	674
304	Quintozene (PCNB)	A	5527
305	Atrazine	R	8887
310	Propham	E	1763
311	Sulfotep	С	452
312	2,4,5-T	G	461
317	2,4-DB	G	960
318	MCPA	G	960
321	Hexachlorobenzene (HCB)	A	5766
324	Dichlobenil	T	5518
329	Picloram	G	960
330	Diphenamid	F	5227
333	Propazine	R	378
338	Dichlorvos (DDVP)	C	11533
341	Propanil	A	3621
343	Monocrotophos	C	1895
349	Oxychlordane	A	2034
351	Pentachloroaniline (PCA)	A	4414
352	Mirex	I	352
370	Parathion oxygen analog	C	5546
376	Pentachlorophenyl methyl ether	A	1115
377	Phenthoate	I	2034
382	1-Naphthol	E	3500
387	Pentachlorobenzene (PCB)	A	5364
388	Pentachlorophenyl methyl sulfide	A	4412
391	Fenitrothion	C	3217
395	Diazinon oxygen analog	C	9504
512	3-Hydroxycarbofuran	E	10224
529	Vinclozolin	A	7917
537	Oxamyl	E	9115
538	Ethion di oxon	C	2451
539	Permethrin Total	0	4961
540	Pronamide	A	8027

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
546	Fenvalerate	0	59
556	Resmethrin	0	7430
562	Pirimiphos methyl	C	6053
580	Pirimicarb	E	2098
593	Procymidone	A	981
594	Napropamide	F	7730
595	Pyrazon	A	1115
596	Norflurazon	A	9174
597	Cypermethrin	0	10813
604	Imazalil	N	7281
607	Metalaxyl	F	14040
608	Triadimefon	l	9403
609	Sulprofos	C	2962
612	Deltamethrin (includes parent Tralomethrin)	0	11095
614	Coumaphos oxygen analog	C	2874
620	MCPB	G	960
621	Tri Allate	P	2763
623	Propargite	I	8415
624	Tetrahydrophthalimide (THPI)	A	6491
625	Oxadiazon	A	1166
626	Iprodione	A	8164
633	Hexazinone	S	704
636	Propetamphos	C	9987
638	Triadimenol	I	3363
651	Diflubenzuron	A	4147
655	Isofenphos oxygen analog	C	224
658	Bendiocarb	E	9117
660	Fenthion sulfone	C	704
666	Carbendazim (MBC)	В	4044
675	Propachlor	A	2595
679	Myclobutanil	L	12693
691	Fenthion-O analog	C	462
699	Clofentezine	A	1458
701	Fluometuron	A	237
706	Disulfoton sulfoxide	С	657
713	Oxyfluorfen	A	8096
714	Esfenvalerate	0	2881
717	Chlorimuron ethyl	K	783
719	Clomazone	A	6987
720	Norflurazon desmethyl	A	6940
721	Ethalfluralin	A	6438
722	Etridiazole	A	4497
725	Nitrapyrin	A	791
726	Thiobencarb	P	3190
727	Acifluorfen	A	224
729	Bromoxynil	G	392
731	Triclopyr	G	461
736	Fluridone	A	8754
737	Oryzalin	F	981
131	Oryzallii	F	981

Pest Code	B (111 N	Test Class	# of Analysis Results
	Pesticide Name		
745	Fenamiphos sulfone	С	8597
746	Fenamiphos sulfoxide	С	5292
750	Quizalofop ethyl	G	667
753	Imazamethabenz methyl	J	960
755	Tralomethrin	0	224
758	Bentazon	F	749
772	Chlorpyrifos oxygen analog	С	224
777	Fenoxaprop ethyl	G	2486
778	Molinate	Р	452
779	Parathion methyl oxygen analog	С	2891
780	Tebuthiuron	F	1127
781	Cyfluthrin	0	13553
783	Butylate	P	1096
784	Desethyl-desisopropyl Atrazine	R	211
785	Desisopropyl atrazine	R	1128
791	Phenmedipham	E	914
793	TCMTB	F	674
806	Butachlor	A	526
807	Acetochlor	A	2449
808	Fenpropathrin	0	11488
833	Prochloraz	N	1503
840	Fenuron	F	461
848	Phenothrin	0	981
850	Bitertanol	L	64
858	Ethiofencarb	E	2777
900	Endosulfan I	A	11849
901	Endosulfan II	A	11809
902	Endosulfan sulfate	A	11651
903	BHC alpha	A	9427
904	BHC beta	A	522
906	DDT p,p'	A	9034
907	DDT o,p'	A	2019
908	DDD p,p'	A	10674
909	DDD o,p'	A	2034
910	DDE p,p'	A	12542
910	DDE p,p	A	224
911	Triforine	A	1796
915		C	1796
	Phonales oxygen analog		
929	Phosalone oxygen analog	С	224
930	Bifenthrin	0	12485
942	Prometon	R	1128
943	Thiodicarb	E	440
945	Ethofumesate	С	704
947	Tetramethrin	0	2384
952	Chloramben	A	237
954	Hexaconazole	L	2906
963	Terbufos sulfone	С	4089
964	Desethyl Atrazine	R	1128
967	Imidacloprid	A	8789

Pest Code	Pesticide Name	Test Class	# of Analysis Results
A05	Benoxacor	A	1362
A15	Chlorethoxyfos	C	914
A22	Cyproconazole	L	2095
A25	Dichlorprop	G	237
A30	Fenbuconazole	L	5371
A38	Lactofen	A	667
A30	Mecoprop (MCPP)	A	224
A42 A46	Oxadixyl	F	5032
A40 A47	Oxamyl oxime	E	3657
A54	RH 9129 (fenbuconazole metab.)	L	594
A54 A55	,	L	674
	RH 9130 (fenbuconazole metab.) Tebuconazole	L	
A58			6288
A59	Tebupirimfos	С	840
A60	Terbufos-O analog	С	462
A61	Triflumizole	<u>L</u>	4954
A68	1,2,4-Triazole	L	499
A82	Fipronil	A	1819
AAK	Chlorfenvinphos total	С	2546
AAU	Flumetsulam	A	1123
AAX	Ethion mono oxon	С	4485
AAY	Sulfentrazone	l	1164
AAZ	Chlorpyrifos methyl O-analog	С	1115
ABB	Spinosad	I	59
ABC	Spinosad A	I	1131
ABD	Spinosad D	I	493
ABF	Pymetrozine	F	1423
ABG	Tebufenozide	F	4262
ABN	Acetochlor ethanesulfonic acid (ESA)	A	961
ABO	Acetochlor oxanilic acid (OA)	A	961
ABP	Alachlor ethanesulfonic acid (ESA)	А	961
ABQ	Alachlor oxanilic acid (OA)	А	961
ABR	Bensulfuron methyl	K	950
ABV	DCPA monoacid	A	237
ACA	Imazamox	J	736
ACB	Imazapyr	J	736
ACC	Imazaquin	J	1618
ACD	Imazethapyr	J	960
ACE	Methidathion oxygen analog	C	462
ACG	Metolachlor ethanesulfonic acid (ESA)	A	961
ACH	Metolachlor oxanilic acid (OA)	A	961
ACI	Metsulfuron methyl	K	686
ACM	Nicosulfuron	K	736
ACO	S-(2-hydroxy)propyl EPTC	P	224
ACP	Sulfometuron methyl	K	723
ACQ	Sulprofos oxygen analog	C	224
ACR	Tebupirimfos oxygen analog	C	462
ACT	Siduron	F	736
ACV	Methoprene	I	3134
ACV	Imazapic	J	736
AUZ	ιιτιαζαγισ	J	130

Pest Code	Pesticide Name	Test Class	# of Analysis Results
ADC	Prallethrin		
		0 F	8364
ADD	Dimethenamid		1581
ADE	Esfenvalerate+Fenvalerate Total	0	10184
ADG	Indoxacarb	1	2352
ADJ	Fluroxypyr 1-methylheptyl ester	G	1819
ADL	MGK-326 (dipropyl isocinchomeronate)	F	704
ADP	Triasulfuron	K	499
ADR	Triticonazole	L	674
ADU	Bromuconazole 46	L L	674
ADV	Bromuconazole 47	L	674
ADW	Triazole alanine (TA)	L	521
ADX	Triazole acetic acid (TAA)	L_	499
AEB	Dimethenamid/Dimethenamid P	F	1127
AEC	Hydroprene	l	4140
AED	Hydroxy Atrazine	R	499
AEE	Imazamethabenz acid	J	499
AEF	Thifensulfuron	K	499
AEH	Halosulfuron methyl	K	347
AEJ	Resmethrin-c	0	1796
AEK	Resmethrin-t	0	1780
AEL	Cyhalothrin, Total (Cyhalothrin-L + R157836 epimer)	0	8521
AEM	Cyhalothrin, Lambda	0	5004
AEN	Cyhalothrin, Lambda epimer R157836	0	2873
AEP	Clothianidin	F	779
AEQ	Thifensulfuron methyl	K	668
AER	Clethodim	I	352
AES	Methoxyfenozide	I	1431
AET	Clofencet	F	622
AEV	Sethoxydim	I	1343
AEW	Famoxadone	F	1768
AEY	Dimethenamid oxanilic acid (OA)	F	723
AEZ	Flufenacet oxanilic acid (OA)	А	288
AFA	Propachlor oxanilic acid (OA)	А	851
AFB	Dimethenamid ethanesulfonic acid (ESA)	F	435
AFC	Heptachlor epoxide cis	А	1462
AFD	Heptachlor epoxide trans	A	1462
AFF	Flumioxazin	A	736
AFH	Flufenacet ethanesulfonic acid (ESA)	A	224
AFJ	Formetanate	E	38
AFK	Halosulfuron	K	211
AFM	Flutriafol	L	306
AFO	Dinotefuran	A	59
AFS	Fenpyroximate	F	451
AFU	Propamocarb hydrochloride	E	64
AFW	Spiromesifen Total (parent + enol metabolite)	L I	64
AFY	Diflufenzopyr	K	352
AFZ	2,6-DIPN	I	352
B10	Hexythiazox	A	352
	·		
B12	Thiazopyr	A	1581

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
B13	Chlorfenapyr	А	1851
B15	Isoxaflutole	А	704
B16	Pyrimethanil	V	544
B18	Naptalam	I	148
B21	Carfentrazone ethyl	А	2989
B22	Cyprodinil	V	3037
B23	Fludioxonil	А	9287
B24	Pyriproxyfen	F	9606
B26	Tefluthrin	0	1627
B28	5-Hydroxythiabendazole	В	1355
B30	Flufenacet	А	1813
B32	Forchlorfenuron	А	756
B38	Clodinafop propargyl	А	654
B41	Fenhexamid	I	1243
B42	Kresoxim-methyl	I	800
B43	Thiamethoxam	Α	3290
B44	Zoxamide	А	146
B46	Clopyralid	G	940
B48	Azoxystrobin	F	5288
B51	Acibenzolar S methyl	F	1796
B52	Buprofezin	F	7153
B53	Epoxiconazole	L	2095
B56	Pyridaben	А	4249
B57	Quinoxyfen	I	118
B58	Difenoconazole	L	3777
B61	Pyraclostrobin	F	2173
B63	Flutolanil	Α	1819
B64	Fenamidone	Α	118
B68	Thiacloprid	Α	480
B70	Tolclofos methyl	Α	224
B72	Tetraconazole	L	2453
B75	Boscalid	Α	4450
B77	Dimethomorph	W	4815
B78	Fluquinconazole	L	306
B79	Trifloxystrobin	F	3218
B80	Acetamiprid	А	2232
B82	Bifenazate	F	2698
B84	Etoxazole	F	465
B85	Spirodiclofen	I	64

Valid Codes & Descriptions for QUANTITATION METHOD in 2005 PDP Analytical Results

Quantitate	
Code	Quantitation Method
Н	Standard NOT In Matrix
HU	Standard NOT in Matrix (Unvalidated Residue)
M	Standard In Matrix
ME	Estimate - Standard in Matrix (Calibration Integrity Requirements Not Met)
MU	Standard In Matrix (Unvalidated Residue)
PM	Standard Prepared Using Analyte Protectants - In Matrix
SH	Internal Standard - NOT in Matrix
SM	Internal Standard - In Matrix
SU	Internal Standard in Matrix (Unvalidated Residue)
TU	Internal Standard NOT in Matrix (Unvalidated Residue)

Valid Codes & Descriptions for All 50 STATES (plus Washington D.C. and Puerto Rico)

State	
Code	State
AK	Alaska
AL	Alabama
AR	Arkansas
AZ	Arizona
CA	California
СН	Check Sample
CK	Check Sample
CO	Colorado
CT	Connecticut
DC	Washington D.C.
DE	Delaware
FL	Florida
GA	Georgia
HI	Hawaii
IA	lowa
ID	Idaho
IL	Illinois
IN	Indiana
KS	Kansas
KY	Kentucky
LA	Louisiana
MA	Massachusetts
MD	Maryland
ME	Maine
MI	Michigan
MN	Minnesota
MO	Missouri
MS	Mississippi
MT	Montana
NC	North Carolina
ND	North Dakota
NE	Nebraska
NH	New Hampshire
NJ	New Jersey
NM	New Mexico
NV	Nevada
NY	New York
OH	Ohio
OK	Oklahoma
OR	Oregon
PA	Pennsylvania
PR	Puerto Rico

State Code	State
RI	Rhode Island
SC	South Carolina
SD	South Dakota
TN	Tennessee
TX	Texas
US	United States (exact State not available)
UT	Utah
VA	Virginia
VT	Vermont
WA	Washington
WI	Wisconsin
WV	West Virginia
WY	Wyoming

Valid Codes & Descriptions for TEST (COMPOUND) CLASS in 2005 PDP Analytical Results

Test Class Code	Test (Compound) Class
А	Halogenated
В	Benzimidazole
С	Organophosphorus
Е	Carbamate
F	Organonitrogen
G	2,4-D / Acid Herbicides
Н	Formetanate HCL
I	Other Compounds
J	Imidazolinone
K	Sulfonyl Urea Herbicides
L	Conazoles / Triazoles
N	Imidazoles
0	Pyrethroids
Р	Thiocarbamates
R	Triazines
S	Triazine, Non-Halogenated
Т	Nitrile
U	Uracil
V	Pyrimidone
W	Morpholine

EPA Tolerance Levels for Commodity/Pesticide Pairs Analyzed by PDP in 2005

Tolerance Level Code: NT = No Tolerance Established

EX = Exempt from Tolerance Requirement

Ex2 = Exempt for growing crops

SU = Safe Use in spot/crack/crevice treatment

Commod	Pest	EPA Tolerance	Units		
Code	Code	Level	pp_	Note	Comment
AP	001	0.03	М	AL	Action Level
AP	002	EX	М		Exempt
AP	011	25	М		
AP	024	0.5	М		
AP	028	0.03	М	AL	Action Level
AP	032	1	М		
AP	034	NT	М		
AP	042	1.5	М		
AP	044	NT	М		
AP	050	1	М		
AP	052	8	М		
AP	055	NT	М		
AP	057	NT	М		
AP	065	NT	М		
AP	069	NT	М		
AP	070	8	М		
AP	083	25	М		
AP	088	NT	М		
AP	102	10.0	М		
AP	107	NT	М		
AP	108	5	М		
AP	114	NT	М		
AP	117	NT	М		
AP	124	NT	М		
AP	125	10.0	М		
AP	126	25	М		
AP	129	NT	М		
AP	134	NT	М		
AP	143	NT	М		
AP	144	NT	М		
AP	147	NT	М		
AP	148	NT	М		
AP	149	0.25	М		
AP	151	NT	М		
AP	152	0.3	М		
AP	157	10	М		
AP	159	1	М		
AP	160	1.5	М		

AP	163	NT	М		
AP	165	10	М		
AP	166	10.0	М		
AP	167	NT	М		
AP	168	NT	М		
AP	169	NT	М		
AP	170	0.02	М		
AP	171	2	М		
AP	172	0.1	М	AL	Action Level
AP	173	0.1	М	AL	Action Level
AP	175	NT	М		
AP	176	NT	М		
AP	177	NT	М		
AP	178	2	М		
AP	180	NT	М		
AP	181	NT	М		
AP	189	NT	М		
AP	190	NT	М		
AP	195	NT	М		
AP	197	0.05	М		
AP	200	NT	М		
AP	202	NT	М		
AP	203	NT	M		
AP	204	0.02	M		
AP	205	NT	M		
AP	208	NT	M		
AP	216	NT	M		
AP	222	0.05	M		
AP	223	0.05	M		
AP	224	NT	M		
AP	231	NT	M		
AP	232	NT	M		
AP	236	0.25	M		
AP	245	1	М		
AP	249	NT	М		
AP	253	5	М		
AP	254	5	М		
AP	255	NT	М		
AP	264	NT	M		
AP	271	0.1	М		
AP	276	NT	М		
AP	283	NT	М		
AP	292	NT	М		
AP	304	NT	М		
AP	305	NT	М		
AP	321	NT	М		
AP	324	0.5	M		

AP	330	NT	M	
AP	338	0.5	M	
AP	349	NT	M	
AP	351	NT	M	
AP	370	NT	M	
AP	377	NT	M	
AP	382	NT	M	
AP	387	NT	M	
AP	388	NT	M	
AP	391	NT	M	
AP	395	NT	M	
AP	512	NT	M	
AP	529	NT	M	
AP	537	2	M	
AP	540	0.1	M	
AP	556	3.0	M	
AP	562	NT	M	
AP	580	NT	М	
AP	594	0.1	M	
AP	596	0.1	M	
AP	597	NT	М	
AP	604	NT	М	
AP	607	0.2	M	
AP	608	1.0	М	
AP	609	NT	M	
AP	612	0.2	М	
AP	614	NT	М	
AP	623	NT	М	
AP	624	25	M	
AP	626	NT	M	
AP	636	0.1	M	
AP	651	NT	M	
AP	658	SU	M	
AP	666	7.0	M	Interim Tolerance
AP	679	0.5	M	Interim Folcrance
AP	699	0.5	M	
AP				
AP AP	713	0.05 NT	M	
	719			
AP	720	0.1	M	
AP	721	NT	M	
AP	726	NT 0.4	M	
AP	736	0.1	M	
AP	745	0.25	M	
AP	746	0.25	M	
AP	779	NT	M	
AP	781	0.05	M	
AP	808	5.0	M	

AP	858	NT	М		
AP	900	2.0	М		
AP	901	2.0	М		
AP	902	2.0	М		
AP	903	0.05	М	AL	Action Level
AP	906	0.1	М	AL	Action Level
AP	907	0.1	М	AL	Action Level
AP	908	0.1	М	AL	Action Level
AP	909	0.1	М	AL	Action Level
AP	910	0.1	М	AL	Action Level
AP	915	0.01	М		
AP	928	NT	М		
AP	930	0.05	М		
AP	963	NT	М		
AP	967	0.6	М		
AP	A30	NT	М		
AP	A46	NT	М		
AP	A47	2	М		
AP	A58	NT	М		
AP	A61	0.5	М		
AP	AAK	NT	М		
AP	AAX	NT	М		
AP	ABG	1.0	М		
AP	ACV	NT	М		
AP	ADC	1.0	М		
AP	ADE	2.0	М		
AP	AEC	0.2	М		
AP	AEJ	3.0	М		
AP	AEK	3.0	М		
AP	AEL	0.30	М		
AP	AEM	0.30	М		
AP	AEN	0.30	М		
AP	AFS	0.40	М		
AP	B16	3.0	М		
AP	B21	0.10	М		
AP	B22	0.1	М		
AP	B23	5.0	М		
AP	B24	0.2	М		
AP	B32	0.01	М		Interim Tolerance
AP	B42	0.5	М		
AP	B43	0.2	М		
AP	B48	NT	М		
AP	B51	NT	М		
AP	B52	4	М		
AP	B56	0.5	М		
AP	B61	1.5	М		
AP	B68	0.3	М		

AP	B75	3.0	М		
AP	B77	NT	M		
AP			M		
	B79	0.50			
AP	B80	1.0	M		
AP	B82	0.75	M		
AP	B84	0.20	M		
CF	001	0.03	M	AL	Action Level
CF	028	0.03	M	AL	Action Level
CF	032	NT	M		
CF	034	0.05	М	AL	Action Level
CF	044	0.05	М	AL	Action Level
CF	050	1	M		
CF	052	8	M		
CF	055	NT	M		
CF	057	NT	M		
CF	065	NT	M		
CF	070	Ex2	М		Exempt for grown cro
CF	083	NT	M		
CF	102	10	M		
CF	107	NT	М		
CF	108	NT	М		
CF	114	NT	M		
CF	117	0.75	M		
CF	125	NT	М		
CF	129	NT	М		
CF	134	5	М		
CF	143	0.05	М	AL	Action Level
CF	144	NT	М		
CF	147	NT	M		
CF	149	NT	M		
CF	151	0.05	M		
CF	152	NT	M		
CF	157	NT	M		
CF	159	2	M		
CF	160	1.0	M		
CF	163	NT	M		
CF	167	NT	M		
CF		NT	M		
CF	168				
CF	169	NT	M		
	171	2	M	A 1	ا در د ا مرداد
CF	172	0.1	M	AL	Action Level
CF	173	0.1	M	AL	Action Level
CF	176	NT	M		
CF	177	NT	M		
CF	178	2	M		
CF	180	NT	М		
CF	181	NT	M		

CF	189	NT	M	
CF	190	NT	M	
CF	195	NT	M	
CF	197	NT	M	
CF	200	0.1	M	
CF	202	NT	M	
CF	203	NT	M	
CF	205	NT	М	
CF	208	NT	M	
CF	216	0.75	M	
CF	222	1.0	M	
CF	223	1.0	М	
CF	224	NT	М	
CF	231	NT	М	
CF	232	NT	M	
CF	236	NT	M	
CF	249	NT	M	
CF	253	NT	M	
CF	254	NT	M	
CF	255	10.0	M	
CF	264	NT	M	
CF	271	NT	M	
CF	276	NT	M	
CF	283	NT	M	
CF	292	NT	M	
CF	304	0.1	M	Interim Tolerance
CF	305	NT	M	intenin roleiance
CF		0.1	M	Interim Teleronee
	321			Interim Tolerance
CF	324	NT	M	
CF	330	NT	M	
CF	349	NT	M	1 · · T ·
CF	351	0.1	M	Interim Tolerance
CF	370	NT	M	
CF	377	NT	M	
CF	387	0.1	M	Interim Tolerance
CF	388	0.1	M	Interim Tolerance
CF	391	NT	M	
CF	395	NT	M	
CF	512	NT	M	
CF	529	NT	M	
CF	537	NT	M	
CF	540	NT	M	
CF	562	NT	М	
CF	580	NT	М	
CF	594	0.1	М	
CF	596	NT	М	
CF	597	2.0	M	

CF	604	NT	M		
CF	607	1.0	М		
CF	608	NT	М		
CF	609	NT	М		
CF	612	0.05	М		
CF	623	NT	М		
CF	624	2	М		
CF	626	NT	М		
CF	636	0.1	М		
CF	651	NT	М		
CF	658	SU	М		
CF	666	0.2	М		Interim Tolerance
CF	679	0.03	М		
CF	699	NT	М		
CF	713	0.05	М		
CF	719	NT	М		
CF	720	NT	М		
CF	721	NT	М		
CF	726	NT	М		
CF	779	NT	М		
CF	781	2.5	М		
CF	808	3.0	М		
CF	858	NT	М		
CF	900	2.0	М		
CF	901	2.0	М		
CF	902	2.0	М		
CF	903	0.05	М	AL	Action Level
CF	906	0.5	M	AL	Action Level
CF	907	0.5	М	AL	Action Level
CF	908	0.5	M	AL	Action Level
CF	909	0.5	М	AL	Action Level
CF	910	0.5	М	AL	Action Level
CF	915	NT	М		
CF	930	0.6	М		
CF	963	NT	М		
CF	967	3.5	M		
CF	A30	NT	M		
CF	A46	NT	M		
CF	A58	NT	M		
CF	AAK	NT	M		
CF	AAX	NT	М		
CF	ABF	0.5	М		
CF	ABG	5.0	М		
CF	ACV	NT	М		
CF	ADE	0.5	М		
CF	AEC	0.2	М		
CF	AEJ	3.0	М		

CF	AEK	3.0	М		
CF	AEL	0.4	M		
CF	AEV	5.0	М		
CF	AFS	NT	М		
CF	B16	NT	M		
CF	B21	0.10	M		
CF	B23	2.0	M		
CF	B24	0.70	M		
CF	B32	NT	M		
CF	B42	NT	M		
CF	B43	NT	M		
CF	B48	30	M		Section 18 Crisis Exempt
CF		1.0	M		Section to Chais Exempt
	B51				
CF	B52	NT	M		
CF	B61	5.0	M		
CF	B68	NT	M		
CF	B75	3.0	M		
CF	B77	NT	M		
CF	B79	NT	M		
CF	B80	1.20	M		
CF	B84	NT	M		
CM	028	300	В	AL	Action Level, Fat basis
CM	052	500	В		Fat basis
CM	058	300	В		Fat basis
CM	102	300	В		
CM	108	400	В	AL	Action Level, Fat basis
CM	114	50	В		Interim Tolerance
CM	124	500	В		Fat basis
CM	125	10	В		
CM	149	20	В		
CM	157	400	В		
СМ	160	10	В		
СМ	167	NT	В		
CM	168	NT	В		
CM	169	NT	В		
CM	170	100	В		
CM	171	2	В		
CM	176	500	В		Fat basis
CM	178	2	В		. 41 54616
CM	180	20	В		For carbamate part
CM	181	50	В		i oi caibailiate part
CM	204	100	В		
CM	204	NT	В		
CM	217	2	В		
CM	219	10	В		
CM	224	10	В		
СМ	227	20	В		

CM	233	30	В		
CM	235	50	В		
CM	236	100	В		
СМ	264	50	В		
CM	271	NT	В		
СМ	283	20	В		
CM	297	NT	В		
CM	304	NT	В		
CM	305	20	В		
CM	310	NT	В		
CM	321	NT	В		
CM	338	20	В		
CM	341	50	В		
CM	351	NT	В		
CM	376	NT	В		
CM	387	NT	В		
CM	388	NT	В		
CM	512	20	В		For carbamate part
CM	529	50	В		Interim Tolerance
CM	539	250	В		
CM	540	20	В		
CM	595	10	В		
CM	596	100	В		
CM	597	100	В		
CM	607	20	В		
CM	608	40	В		
CM	612	20	В		
CM	614	500	В		Fat basis
CM	623	80	В		
CM	626	500	В		
CM	638	10	В		
СМ	675	20	В		
CM	679	200	В		
CM	713	50	В		
CM	722	50	В		
CM	736	50	В		
CM	745	100	В		
CM	746	100	В		
CM	777	20	В		
CM	781	1000	В		
CM	808	80	В		
CM	900	500	В		Fat basis
CM	901	500	В		Fat Basis
CM	902	500	В		Fat Basis
CM	910	1250	В	AL	Action Level, Fat basis
CM	930	100	В		
CM	947	NT	В		

CM	054	NT	D		
CM	954		B		
	A22	NT			
CM	A61	50	В		
CM	A82	50	В		
CM	AAZ	50	В		
CM	ADE	300	В		
CM	ADJ	300	В		
СМ	AEL	200	В		
СМ	B13	10	В		
СМ	B26	NT	В		
СМ	B52	10	В		
CM	B53	NT	В		
CM	B58	10	В		
CM	B63	50	В		
CM	B72	50.0	В		Sect18 Crisis Exempt
CN	001	0.1	М	AL	Action Level
CN	002	4	М		
CN	011	25	М		
CN	024	0.75	М		
CN	028	0.1	М	AL	Action Level
CN	034	0.05	М	AL	Action Level
CN	042	2.0	М		
CN	044	0.05	М	AL	Action Level
CN	050	3	М		
CN	052	8	М		
CN	057	NT	M		
CN	065	NT	M		
CN	069	0.5	M		
CN	070	8	M		
CN	083	10	M		
CN	102	10	M		
CN	107	NT	M		
CN	108	1	M		
CN	114	NT	M	 	
CN	117	NT	M		
CN	125	NT	M		
CN	126	15	M		
CN	134	15	M		
CN	143	0.05	M	AL	Action Level
CN	143	NT	M	ΛL	Action Level
			M		
CN	148	NT			
CN	149	NT 0.05	M		
CN	151	0.05	M		
CN	152	NT 45.0	M		
CN	157	15.0	M		
CN	159	0.2	M		
CN	160	0.1	M		

CN	164	5	M		
CN	165	NT	M		
CN	167	NT	M		
CN	168	NT	M		
CN	169	NT	M		
CN	170	0.5	M		
CN	171	1	M		
CN	172	0.1	M	AL	Action Level
CN	173	0.1	М	AL	Action Level
CN	174	NT	М		
CN	175	NT	М		
CN	176	NT	М		
CN	178	1	М		
CN	180	0.2	М		For carbamate part
CN	181	NT	М		
CN	189	NT	М		
CN	197	NT	М		
CN	201	NT	М		
CN	203	NT	М		
CN	204	0.02	М		
CN	205	NT	M		
CN	208	NT	M		
CN	210	NT	M		
CN	216	NT	M		
CN	222	3.0	M		
CN	223	3.0	M		
CN	227	NT	M		
CN	230	NT	M		
CN	232	NT	M		
CN	236	NT	M		
CN	245	0.3	M		
CN	249	NT	M		
CN	254	5	M		
CN	264	NT	M		
CN	275	NT	M		
CN	283	NT	M		
CN	304	NT	M		
CN	305	NT	M		
CN	321	NT	M		
CN	330	NT	M		
CN	338	0.5	M		
CN	343	NT	M		
CN	370	NT	M		
CN	382	10	M		
CN	387	NT	M		
CN	395	NT	M		
CN	512	0.2	M		For carbamate part

CN	529	NT	М		
CN	537	2.0	М		
CN	539	3.0	М		
CN	540	NT	М		
CN	556	3.0	М		
CN	562	NT	M		
CN	594	0.1	M		
CN	596	NT	М		
CN	597	NT	M		
CN	604	NT	М		
CN	607	1.0	М		
CN	608	0.3	М		
CN	612	0.2	М		
CN	623	NT	М		
CN	624	25	М		
CN	626	NT	М		
CN	636	0.1	М		
CN	638	0.3	М		
CN	658	SU	М		
CN	679	0.20	М		
CN	719	0.05	М		
CN	720	NT	М		
CN	721	0.05	М		
CN	725	NT	М		
CN	736	0.1	М		
CN	745	NT	М		
CN	781	0.05	М		
CN	783	NT	М		
CN	791	NT	М		
CN	808	0.5	М		
CN	900	2.0	М		
CN	901	2.0	М		
CN	902	2.0	М		
CN	903	0.05	М	AL	Action Level
CN	906	0.1	М	AL	Action Level
CN	908	0.1	М	AL	Action Level
CN	910	0.1	М	AL	Action Level
CN	930	0.4	М		
CN	963	NT	М		
CN	967	0.5	М		
CN	A15	NT	М		
CN	A46	NT	М		
CN	A47	2.0	М		
CN	A61	0.5	М		
CN	ADC	1.0	М		
CN	ADD	NT	М		
CN	ADE	1.0	М		

CN	AEC	0.2	M		
CN	AEL	0.2	M		
CN	AEM	0.01	M		
CN	AEN	0.01	M		
CN	AEV	4.0	M		
CN	AEW	0.30	M		
CN	B18	0.1	М		
CN	B23	0.03	М		
CN	B24	0.10	M		
CN	B44	1.0	M		
CN	B52	NT	M		
CN	B58	NT	M		
CN	B75	1.6	М		
CN	B77	0.5	M		
CN	B82	0.75	М		
EP	001	0.05	М	AL	Action Level
EP	011	25	М		
EP	028	0.05	М	AL	Action Level
EP	034	0.05	М	AL	Action Level
EP	042	0.3	М		
EP	044	0.03	М	AL	Action Level
EP	050	1	М		
EP	052	8	М		
EP	070	Ex2	M		Exempt for grown cro
EP	083	NT	M		Example for grown ord
EP	102	10	M		
EP	134	1	M		
EP	159	0.2	M		
EP	160	0.1	M		
EP	164	NT	M		
EP	170	1.0	M		
EP	170	0.1	M	AL	Action Level
EP	172	0.1	M	AL	Action Level
EP EP				AL	Action Level
EP EP	200	0.1	M		
EP EP	204	0.02	M	-	
	208	NT 1.0	M	-	
EP	222	1.0	M	\vdash	
EP	223	1.0	M		
EP	236	0.1	M		
EP	245	1	M		
EP	254	5	M		
EP	338	0.5	M		
EP	537	2.0	M		
EP	594	0.1	М		
EP	597	0.2	М		
	607	1.0	M		
EP EP	612	0.3	M		

EP	658	SU	М		
EP					
EP EP	679	0.03	M		
	714	0.05	M		
EP	745	0.1	M		
EP	746	0.1	M		
EP	781	0.05	M		
EP	808	NT	M		
EP	900	2.0	M		
EP	901	2.0	M		
EP	902	2.0	М		
EP	903	0.05	M	AL	Action Level
EP	906	0.1	M	AL	Action Level
EP	908	0.1	M	AL	Action Level
EP	910	0.1	M	AL	Action Level
EP	930	0.05	M		
EP	ADC	1.0	М		
EP	AEM	0.20	M		
EP	AEN	0.20	M		
EP	AEW	4.0	M		
EP	AFC	NT	М		
EP	AFD	NT	М		
EP	AFF	NT	М		
EP	B13	1.0	М		
EP	B21	0.10	М		
EP	B23	0.01	М		
EP	B24	0.2	М		
EP	B52	NT	М		
EP	B61	1.4	М		
EP	B77	1.5	М		
GB	001	0.05	М	AL	Action Level
GB	011	25	М		Interim Tolerance
GB	024	0.5	М		
GB	028	0.05	М	AL	Action Level
GB	033	NT	M	7 11	71011011 20101
GB	034	0.05	M	AL	Action Level
GB	042	2.0	M	712	7,01,011, 2,07,01
GB	044	0.05	M	AL	Action Level
GB	050	0.5	M	AL	Action Level
GB	050	8	M	/ \L	AUTOH LOVE
GB	052	NT	M		
GB	057	NT	M		
GB	065	NT	M		
GB	069	NT	M		
GB		8	M		
	070				
GB	083	NT 10	M		
GB	102	10	M		
GB	107	NT	M		

GB	108	NT	M		
GB	114	NT	M		
GB	117	0.75	M		
GB	125	NT	M		
GB	129	NT	М		
GB	134	2	М		
GB	143	0.05	М	AL	Action Level
GB	144	20	М		
GB	147	NT	М		
GB	148	0.1	М		
GB	149	NT	М		
GB	151	0.05	М		
GB	159	2	М		
GB	160	0.05	М		
GB	162	NT	М		
GB	163	NT	М		
GB	164	5	М		
GB	165	NT	М		
GB	166	NT	М		
GB	167	NT	M		
GB	168	NT	М		
GB	169	NT	M		
GB	170	1	М		
GB	171	2	M		
GB	172	0.1	M	AL	Action Level
GB	173	0.1	M	AL	Action Level
GB	174	NT	M	7 1.=	7 1011011 = 0 1 01
GB	175	0.02	М		
GB	178	2	M		
GB	180	NT	M		
GB	189	0.1	M		
GB	195	NT	M		
GB	203	NT	M		
GB	204	3	M		
GB	208	NT	M		
GB	210	0.2	M		
GB	216	0.75	M		
GB	230	NT	M		
GB	235	NT	M		
GB	236	NT	M		
GB	245	0.5	M		
GB	254	5	M		
GB	275	NT	M		
GB	283	0.3	M		
GB	304	0.3	M		Interim Tolerance
GB	305	NT	M		IIIIGIIIII TUICIAIIICE
GB	303	0.1	M		Interim Tolerance
GD	321	0.1	IVI		intenin rolerance

GB	330	NT	М		
GB	338	0.5	M		
GB	351	0.1	М		Interim Tolerance
GB	382	10	М		
GB	387	0.1	M		Interim Tolerance
GB	388	0.1	M		Interim Tolerance
GB	395	NT	M		
GB	512	NT	M		
GB	529	2.0	M		Interim Tolerance
GB	537	NT	M		
GB	539	NT	M		
GB	540	NT	М		
GB	562	NT	M		
GB	597	0.5	М		
GB	607	0.2	М		
GB	608	NT	M		
GB	624	25	M		Interim Tolerance
GB	626	2.0	М		
GB	679	1.0	М		
GB	719	0.05	М		
GB	722	NT	М		
GB	736	0.1	М		
GB	745	NT	М		
GB	781	0.05	М		
GB	833	NT	М		
GB	900	2.0	М		
GB	901	2.0	М		
GB	902	2.0	М		
GB	903	0.05	М	AL	Action Level
GB	904	NT	М		
GB	906	0.2	М	AL	Action Level
GB	908	0.2	М	AL	Action Level
GB	910	0.2	М	AL	Action Level
GB	930	0.6	М		
GB	A58	NT	М		
GB	ABG	NT	М		
GB	ADE	2.0	М		
GB	AEM	0.20	М		
GB	AEN	0.20	М		
GB	B23	0.4	М		
GB	B24	0.10	М		Sect18 Crisis Exempt
GF	001	0.02	М	AL	Action Level
GF	002	EX	М		Exempt
GF	024	0.7	М		-
GF	028	0.02	М	AL	Action Level
GF	032	1	М		
GF	042	2.0	М		

GF	044	0.05	М	AL	Action Level
GF	050	0.5	M	AL	Action Level
GF	052	8	M	-	7.64.61. 2010.
GF	070	Ex2	M		Exempt for grown cro
GF	083	10	M		zxepr ioi giotiii oio
GF	102	10	M		
GF	107	5.0	M		Interim Tolerance
GF	108	2	M		monin relevance
GF	143	0.05	M	AL	Action Level
GF	149	0.25	M	7 1	7 totion Level
GF	151	0.05	M		
GF	153	0.1	M		
GF	157	10	M		
GF	159	2	M		
GF	160	1.0	M		
GF	165	5	M	+	
GF	167	0.3	M	+ +	
GF	168	0.3	M		
GF	169	0.3	M		
GF	170	0.02	M		
GF	171	2	M		
GF	172	0.1	M	AL	Action Level
GF	173	0.1	M	AL	Action Level
GF	178	2	M	/ (_	Action Level
GF	197	2.0	M		
GF	204	0.02	M		
GF	204	NT	M		
GF	219	1	M		
GF	236	0.60	M		
GF	245	1	M		
GF	254	10	M		
GF	338	3	M		
GF	382	10	M		
GF	395	NT	M		
GF	537	3	M		
GF	538	5.0	M		Interim Tolerance
GF	556	3.0	M	+	IIIIGIIIII TOIGIAIICE
GF	594	0.1	M		
GF	594	0.1	M		
GF	604	10.0	M		
GF		1.0	M		
GF	607	0.05		-	
GF	612	5	M		
	623				
GF	636	0.1	M		
GF	651	0.5	M	-	
GF	658	SU	M		Intorim Toloronos
GF	666	10.0	M		Interim Tolerance

GF	714	0.05	М		
GF	720	0.2	М		
GF	736	0.1	M		
GF	745	0.60	M		
GF	781	0.2	M		
GF	808	2.0	M		
GF	903	0.05	M	AL	Action Level
GF	906	0.1	М	AL	Action Level
GF	908	0.1	М	AL	Action Level
GF	910	0.1	М	AL	Action Level
GF	930	0.05	М		
GF	967	0.7	М		
GF	A30	0.5	М		Sect18 Crisis Exempt
GF	A47	3	М		
GF	AAX	5.0	М		Interim Tolerance
GF	ADC	1.0	М		
GF	ADE	0.05	М		
GF	AEL	0.01	М		
GF	AEM	0.01	М		
GF	AEN	0.01	M		
GF	B12	0.05	M		
GF	B24	0.3	M		
GF	B48	1.0	M		
GF	B52	2.5	M		
GF	B56	0.5	M		
GF	B61	2.0	M		
GF	B79	0.3	M		
GR	001	0.05	M	AL	Action Level
GR	001	4	M	AL	Action Level
GR	002		M		
		50			
GR	024	0.75	M	Δ1	A atia a 1 a cal
GR	028	0.05	M	AL	Action Level
GR	032	1	M		
GR	034	NT	M		
GR	042	4.0	M		
GR	044	0.05	M	AL	Action Level
GR	050	1	M		
GR	052	8	M		
GR	057	NT	M		
GR	065	NT	M		
GR	069	0.5	М		
GR	070	8	M		
GR	083	NT	М		
GR	102	10	М		
GR	107	NT	М		
GR	108	5	М		
GR	114	NT	М		

	–				
GR	117	NT	M		
GR	125	NT	M		
GR	126	25	M		
GR	129	NT	М		
GR	134	NT	М		
GR	143	0.05	M	AL	Action Level
GR	144	10	M	//L	Action Level
GR	147	NT	M		
GR	148	NT	M		
GR	149	0.25	M		
GR	151	0.05	M		
GR	152	NT	M		
GR	157	NT	М		
GR	159	5	М		
GR	160	0.5	М		Regional Tolerance
GR	162	NT	M		1.09.01.31.1.010.41.00
GR	163	NT	M		
GR	164	NT	M		
GR	165	10	M		
GR	166	10.0	M		
GR	167	NT	M		
GR	169	NT	M		
GR	170	0.02	М		
GR	171	1	М		
GR	172	0.1	М	AL	Action Level
GR	173	0.1	M	AL	Action Level
GR	174	NT	M	7 (=	7 (61(61) 2676)
GR	177	NT	M		
GR	178	1	M		
GR	180	0.2	M		For carbamate part
GR	181	NT	M		
GR	189	NT	M		
GR	195	NT	M		
GR	197	NT	M		
GR	203	NT	М		
GR	204	0.02	М		
GR	205	NT	M		
GR	208	NT	M		
GR	216	NT	M		
GR	224	NT	M		
GR	230	NT	M		
GR	235	NT	M		
GR	236	0.10	M		
GR	245	0.1	M		
GR	254	5	M		
GR	271	0.2	М		
GR	275	NT	М		
_ · · ·	5				

GR	283	NT	M	
GR	304	NT	M	
GR	305	NT	М	
GR	321	NT	М	
GR	324	0.15	M	
GR	338	0.5	M	
GR	343	NT	M	
GR	351	NT	М	
GR	382	10	M	
GR	387	NT	M	
GR	388	NT	М	
GR	395	NT	М	
GR	512	0.2	М	For carbamate part
GR	529	NT	М	
GR	537	NT	М	
GR	539	NT	M	
GR	540	0.1	M	
GR	556	3.0	М	
GR	562	NT	М	
GR	593	NT	М	
GR	596	0.1	М	
GR	597	NT	М	
GR	604	NT	M	
GR	607	2.0	М	
GR	608	1.0	М	
GR	612	0.05	М	
GR	621	NT	М	
GR	623	10	M	
GR	624	50	M	
GR	626	60.0	M	
GR	636	0.1	M	
GR	638	1.0	M	
GR	658	SU	M	
GR	679	1.0	M	
GR	713	0.05	M	
GR	719	NT	M	
GR	720	0.1	M	
GR	722	NT	M	
GR	736	0.1	M	
GR	737	0.05	M	
GR	745	0.10	M	
GR	746	0.10	M	
GR	781	0.05	M	
GR	808	5.0	M	
GR	833	NT	M	
GR	848	NT	M	
GR	858	NT	M	

CD	000	2.0	N 4		
GR	900	2.0	M		
GR	901	2.0	M		
GR	902	2.0	M		
GR	903	0.05	M	AL	Action Level
GR	906	0.05	M	AL	Action Level
GR	908	0.05	M	AL	Action Level
GR	910	0.05	М	AL	Action Level
GR	930	0.2	M		
GR	947	NT	M		
GR	963	NT	M		
GR	967	1.0	M		
GR	A30	NT	М		
GR	A47	NT	М		
GR	A58	5.0	М		
GR	A61	2.5	М		
GR	ABG	3.0	М		
GR	ADC	1.0	М		
GR	ADE	0.05	М		
GR	ADG	NT	М		
GR	AEL	0.01	М		
GR	AEM	0.01	M		
GR	AEN	0.01	M		
GR	B21	0.10	M		
GR	B22	2.0	M		
GR	B23	1.0	M		
GR	B23	0.10	M		
GR	B48	1.0	M		
			M		
GR	B52	0.40			
GR	B56	1.5	M		
GR	B77	3.5	M		
GR	B82	0.75	M		
GZ	001	0.05	M	AL	Action Level
GZ	011	25	M		Interim Tolerance
GZ	024	0.5	M		
GZ	028	0.05	M	AL	Action Level
GZ	033	NT	M		
GZ	034	0.05	M	AL	Action Level
GZ	042	2.0	М		
GZ	044	0.05	М	AL	Action Level
GZ	050	0.5	М	AL	Action Level
GZ	052	8	М		
GZ	055	NT	М		
GZ	057	NT	М		
GZ	065	NT	М		
GZ	069	NT	М		
GZ	070	8	М		
GZ	083	NT	M		

GZ	102	10	M		
GZ	107	NT	M		
GZ	108	NT	M		
GZ	114	NT	M		
GZ	117	0.75	M		
GZ	125	NT	M		
GZ	129	NT	М		
GZ	134	2	М		
GZ	143	0.05	М	AL	Action Level
GZ	144	20	М		
GZ	147	NT	М		
GZ	148	0.1	М		
GZ	149	NT	М		
GZ	151	0.05	М		
GZ	159	2	M		
GZ	160	0.05	M		
GZ	163	NT	M		
GZ	164	5	M		
GZ	165	NT	M		
GZ	166	NT	M		
GZ	167	NT	M		
GZ	168	NT	M		
GZ	169	NT	M		
GZ	170	2	M		
GZ	171		M	Λ1	Astion Lovel
GZ	172	0.1	M	AL	Action Level
GZ	173	0.1	M	AL	Action Level
GZ	174	NT	M		
GZ	175	0.02	M		
GZ	178	2	M		
GZ	180	NT	M		
GZ	189	0.1	M		
GZ	195	NT	M		
GZ	203	NT	M		
GZ	204	3	M		
GZ	208	NT	M		
GZ	210	0.2	M		
GZ	216	0.75	M		
GZ	230	NT	M		
GZ	236	NT	M		
GZ	245	0.5	M		
GZ	254	5	M		
GZ	275	NT	M		
GZ	283	0.3	M		
GZ	304	0.1	M		Interim Tolerance
GZ	305	NT	М		
GZ	321	0.1	М		Interim Tolerance

GZ	330	NT	М		
GZ	338	0.5	M		
GZ	351	0.1	М		Interim Tolerance
GZ	382	10	М		
GZ	387	0.1	M		Interim Tolerance
GZ	388	0.1	M		Interim Tolerance
GZ	395	NT	M		
GZ	512	NT	M		
GZ	529	2.0	M		Interim Tolerance
GZ	537	NT	М		
GZ	539	NT	М		
GZ	540	NT	М		
GZ	562	NT	М		
GZ	597	0.5	М		
GZ	607	0.2	М		
GZ	608	NT	М		
GZ	626	2.0	M		
GZ	679	1.0	М		
GZ	719	0.05	М		
GZ	722	NT	М		
GZ	736	0.1	М		
GZ	745	NT	М		
GZ	781	0.05	М		
GZ	833	NT	М		
GZ	900	2.0	М		
GZ	901	2.0	М		
GZ	902	2.0	М		
GZ	903	0.05	М	AL	Action Level
GZ	904	NT	М		
GZ	906	0.2	М	AL	Action Level
GZ	908	0.2	М	AL	Action Level
GZ	910	0.2	М	AL	Action Level
GZ	930	0.6	М		
GZ	A58	NT	М		
GZ	ABG	NT	М		
GZ	ADE	2.0	М		
GZ	AEM	0.20	М		
GZ	AEN	0.20	М		
GZ	B22	0.6	М		
GZ	B23	0.4	М		
GZ	B24	0.10	М		Sect18 Crisis Exempt
KA	001	300	В	AL	Action Level
KA	011	50	В		
KA	028	300	В	AL	Action Level
KA	044	200	В	AL	Action Level
KA	050	4000	В		
KA	052	4000	В		

KA	058	300	В		
KA	070	100	В		
KA	075	100	В		
KA	102	100	В		
KA	107	200	В		Interim Tolerance
KA	114	500	В		Interim Tolerance
KA	124	1000	В		
KA	129	1000	В		
KA	143	200	В	AL	Action Level
KA	148	NT	В		
KA	149	20	В		
KA	152	NT	В		
KA	157	100	В		
KA	160	200	В		
KA	164	100	В		
KA	165	200	В		
KA	166	NT	В		
KA	167	NT	В		
KA	168	NT	В		
KA	169	NT	В		
KA	170	100	В		
KA	171	NT	В		
KA	172	300	В	AL	Action Level
KA	173	300	В	AL	Action Level
KA	176	1500	В		
KA	177	NT	В		
KA	178	NT	В		
KA	180	NT	В		
KA	181	700	В		
KA	196	200	В		
KA	197	NT	В		
KA	204	100	В		
KA	208	NT	В		
KA	210	100	В		
KA	219	10	В		
KA	224	NT	В		
KA	227	20	В		
KA	235	500	В		
KA	236	50	В		
KA	245	10 NT	В		
KA	258	NT 100	В		
KA	264	100	В		
KA	271	NT	В		
KA	275	NT	В		
KA	283	NT	В		
KA	297	NT	В		
KA	305	NT	В		

KA	310	NT	В		
KA	330	NT	В		
KA	338	100	В		
KA	341	100	В		
KA	382	100	В		
KA	512	NT	В		
KA	529	50	В		Interim Tolerance
KA	539	3000	В		
KA	540	20	В		
KA	556	3000	В		
KA	562	200	В		
KA	596	100	В		
KA	597	1000	В		
KA	604	10	В		
KA	607	400	В		
KA	608	40	В		
KA	609	NT	В		
KA	612	50	В		
KA	614	1000	В		
KA	623	1000	В		
			В		
KA	624	50			
KA	625	NT	В		
KA	626	500	В		
KA	633	100	В		
KA	636	100	В		
KA	638	100	В		
KA	651	50	В		
KA	660	NT	В		
KA	666	100	В		Interim Tolerance
KA	675	20	В		
KA	699	50	В		
KA	713	50	В		
KA	721	NT	В		
KA	722	100.0	В		
KA	725	50	В		
KA	726	200	В		
KA	736	50	В		
KA	745	50	В		
KA	746	50	В		
KA	777	50	В		
KA	781	10000	В		
KA	808	1000	В		
KA	900	200	В		
KA	901	200	В		
KA	902	200	В		
KA	903	300	В	AL	Action Level
KA	906	5000	В	AL	Action Level

KA	908	5000	В	AL	Action Level
KA	910	5000	В	AL	Action Level
KA	930	1000	В		
KA	945	50	В		
KA	967	300	В		
KA	A05	10	В		
KA	A30	10	В		Sect18 Crisis Exempt
KA	A61	500	В		
KA	A82	40	В		
KA	ABG	100	В		
KA	ACV	1000	В		
KA	ADC	1000	В		
KA	ADE	1500	В		
KA	ADG	1500	В		
KA	ADJ	100	В		
KA	ADL	100	В		
KA	AEC	200	В		
KA	AEM	3000	В	 	
KA	AES	100	В		
KA	AFY	300	В		Interim Tolerance
KA	B10	20	В		mitoriini Tororanoo
KA	B15	200	В		
KA	B24	100	В		
KA	B30	50	В		Sect18 Crisis Exempt
KA	B48	10.0	В		Coot to Onoio Exempt
KA	B52	50	В		
KA	B56	50	В		
KA	B58	50	В		
KA	B63	100	В		
KA	B75	100	В		
KA	B79	50	В		
KA	B80	100	В		
KA	B82	NT	В		
KM	011	50	В		
KM	052	4000	В		
KM	070	100	В	 	
KM	075	100	В		
KM	102	100	В		
KM	107	200	В		Interim Tolerance
KM	114	500	В		Interim Tolerance
KM	124	1000	В		
KM	129	1000	В	+	
KM	148	NT	В		
KM	149	20	В		
KM	152	NT	В		
KM	157	100	В	 	
IXIVI	160	50	В		

KM	164	30	В		
KM	165	200	В		
KM	166	NT	В		
KM	167	NT	В		
KM	168	NT	В		
KM	169	NT	В		
KM	170	100	В		
KM	171	NT	В		
KM	177	NT	В		
KM	178	NT	В		
KM	180	NT	В		
KM	181	700	В		
KM	196	200	В		
KM	197	NT	В		
KM	204	100	В		
KM	208	NT	В		
KM	210	100	В		
KM	224	NT	В		
KM	227	20	В		
KM	235	500	В		
KM	236	50	В		
KM	245	10	В		
KM	246	NT	В		
KM	258	NT	В		
KM	264	100	В		
KM	271	NT	В		
KM	283	NT	В		
KM	297	NT	В		
KM	305	NT	В		
KM	330	NT	В		
KM	338	100	В		
KM	341	100	В		
KM	352	100	В	AL	Action Level
KM	382	100	В		
KM	512	NT	В		
KM	529	50	В		Interim Tolerance
KM	539	250	В		
KM	540	20	В		
KM	556	3000	В		
KM	562	NT	В		
KM	596	100	В		
KM	597	200	В		
KM	604	10	В		
KM	607	50	В		
KM	608	40	В		
KM	609	NT	В		
KM	612	50	В		

KM	614	1000	В	
KM	623	100	В	
KM	624	50	В	
KM	625	NT	В	
KM	626	500	В	
KM	633	100	В	
KM	636	100	В	
KM	638	100	В	
KM	651	50	В	
KM	660	NT	В	
KM	666	100	В	Interim Tolerance
KM	679	100	В	
KM	699	50	В	
KM	713	50	В	
KM	721	NT	В	
KM	722	100.0	В	
KM	725	50	В	
KM	726	200	В	
KM	736	50	В	
KM	745	50	В	
KM	777	50	В	
KM	781	400	В	
KM	808	100	В	
KM	900	200	В	
KM	901	200	В	
KM	902	200	В	
KM	930	500	В	
KM	945	50	В	
KM	967	300	В	
KM	A05	10	В	
KM	A30	10	В	Sect18 Crisis Exempt
KM	A61	50	В	
KM	A82	10	В	
KM	ABG	80	В	
KM	ACV	100	В	
KM	ADC	1000	В	
KM	ADE	1500	В	
KM	ADG	100	В	
KM	ADJ	100	В	
KM	ADL	100	В	
KM	AEC	200	В	
KM	AEM	200	В	
KM	AER	200	В	
KM	AES	20	В	
KM	AEV	200	В	
KM	AFA	20	В	
KM	AFZ	1350	В	Temporary Tolerance

KM	B15	200	В		
KM	B24	100	В		
KM	B30	50	В		Sect18 Crisis Exempt
KM	B43	20	В		Occito Olisis Excilipi
KM	B48	10	В		
KM	B52	50	В		
KM	B56	50	В		
KM	B58	50	В		
KM	B63	50	В		
KM	B75	50	В		
KM	B79	50	В		
KM			В		
	B80	100			
KM	B82	20	В	Δ1	Anting Lovel
LT	001	0.03	M	AL	Action Level
LT	011	100	M		
LT	024	0.7	M		A atlant
LT	028	0.03	M	AL	Action Level
LT	032	NT	M		Λ σ (* 1 · 1
LT	034	0.05	M	AL	Action Level
LT	042	NT	M		
LT	044	0.05	M	AL	Action Level
LT	050	3	M		
LT	052	8	М		
LT	055	NT	М		
LT	057	NT	М		
LT	065	NT	М		
LT	069	0.5	М		
LT	070	Ex2	М		Exempt for grown cro
LT	083	NT	M		
LT	088	NT	М		
LT	102	10	M		
LT	107	NT	M		
LT	108	NT	M		
LT	114	NT	М		
LT	117	0.75	М		
LT	124	NT	М		
LT	125	NT	М		
LT	126	50	М		
LT	129	NT	М		
LT	134	2	М		
LT	143	0.05	М	AL	Action Level
LT	144	10	М		
LT	147	NT	М		
LT	148	NT	М		
LT	149	NT	М		
LT	151	0.05	М		
LT	152	NT	М		

LT	157	NT	М		
LT	159	5	M		
LT	160	0.1	M		
LT	163	NT	M		
LT	164	NT	M		
LT	165	NT	M		
LT	166	NT	M		
LT	167	NT	M		
LT	168	NT	M		
LT	169	NT	M		
LT	170	1.0	M		
LT	171	2	M		
LT	172	0.1	M	AL	Action Level
LT	172	0.1	M	AL	Action Level
LT	175	NT	M	AL	Action Level
LT	176	NT	M		
LT	177	NT	M		
LT	178	2	M		
LT	180	NT	M		
LT	181	NT	M		
LT	189	NT	M		
LT	190	NT	M		
LT	191	0.05	M		
LT	195	NT	M		
LT	197	NT	M		
LT	200	0.1	M		
LT	202	NT	M		
LT	203	NT	M		
LT	204	10	M		
LT	205	NT	M		
LT	208	NT	M		
LT	216	0.75	M		
LT	222	20.0	M		
LT	223	20.0	M		
LT	224	NT	M		
LT	231	25.0	М		
LT	232	NT	М		
LT	236	NT	М		
LT	245	2	М		
LT	249	NT	М		
LT	253	NT	М		
LT	254	NT	М		
LT	255	7.0	М		
LT	264	NT	М		
LT	271	NT	М		
LT	276	NT	М		
LT	283	NT	М		

	000	NIT		
LT	292	NT	M	
LT	304	NT	M	
LT	305	NT	M	
LT	321	NT	M	
LT	324	NT	M	
LT	330	NT	M	
LT	338	1	M	
LT	349	NT	M	
LT	351	NT	M	
LT	370	NT	M	
LT	377	NT	M	
LT	382	10	M	
LT	387	NT	M	
LT	388	NT	M	
LT	391	NT	M	
LT	395	NT	M	
LT	512	NT	M	
LT	529	10.0	М	
LT	537	NT	М	
LT	540	1.0	M	
LT	556	3.0	M	
LT	562	NT	M	
LT	580	NT	M	
LT	594	NT	M	
LT	596	NT	M	
LT	597	10.0	M	
LT	604	NT	M	
LT	607	5.0	M	
LT	608	NT	M	
LT	609	NT	M	
LT	612	0.05	M	
LT	614	NT	M	
LT	623	NT	M	
LT	624	100	M	
LT	626	25.0	M	
LT	636	0.1	M	
LT	651	NT	M	
LT		SU	M	
LT LT	658			
LT LT	666	NT 0.03	M	
	679	0.03	M	
LT	699	NT	M	
LT	713	NT	M	
LT	719	NT	M	
LT	720	NT	M	
LT	721	NT	M	<u> </u>
LT	726	0.2	M	Regional Tolerance
LT	736	0.1	M	

LT	745	NT	M		
LT	746	NT	M		
LT	779	NT	M		
LT	781	3.0	M		
LT		NT	M		
	808				
LT	858	NT	M		
LT	900	2.0	M		
LT	901	2.0	M		
LT	902	2.0	M		
LT	903	0.05	M	AL	Action Level
LT	906	0.5	M	AL	Action Level
LT	907	0.5	M	AL	Action Level
LT	908	0.5	M	AL	Action Level
LT	909	0.5	M	AL	Action Level
LT	910	0.5	M	AL	Action Level
LT	915	NT	M		
LT	928	NT	M		
LT	930	3.0	М		
LT	943	35	M		
LT	963	NT	M		
LT	967	3.5	М		
LT	A30	NT	М		
LT	A46	NT	М		
LT	A58	NT	М		
LT	AAK	NT	М		
LT	AAX	NT	М		
LT	ABF	0.6	М		
LT	ABG	10.0	М		
LT	ACV	NT	М		
LT	ADC	1.0	М		
LT	ADE	5.0	М		
LT	AEC	0.2	М		
LT	AEJ	3.0	М		
LT	AEK	3.0	M		
LT	AEL	2.0	М		
LT	AEM	2.0	M		
LT	AEN	2.0	M		
LT	AEV	4.0	M		
LT	AFS	NT	M		
LT	B16	NT	M		
LT	B21	0.10	M		
LT	B23	30	M		
LT	B24	0.10	M		
LT	B32	NT	M		
LT	B42	NT	M		
LT	B43	NT	M		
LT	B48	30.0	M		
LI	D40	30.0	IVI		

LT	B51	0.25	М		
LT	B52	13	M		
LT	B61	29.0	M		
LT	B68	NT	M		
LT	B75	11.0	M		
LT	B77	10	M		
LT	B79	NT	M		
LT	B80	0.20	M		
LT	B84	NT	M		
MK	028	300	В	AL	Action Level, Fat basis
MK	052	500	В		Fat basis
MK	058	300	В		Fat basis
MK	102	300	В		
MK	108	400	В	AL	Action Level, Fat basis
MK	114	50	В		Interim Tolerance
MK	124	500	В		Fat basis
MK	125	10	В		
MK	149	20	В		
MK	157	400	В		
MK	160	10	В		
MK	167	NT	В		
MK	168	NT	В		
		NT	В		
MK	169				
MK	170	100	В		
MK	171	2	В		
MK	176	500	В		Fat basis
MK	178	2	В		
MK	180	20	В		For carbamate part
MK	181	50	В		
MK	204	100	В		
MK	208	NT	В		
MK	217	2	В		
MK	219	10	В		
MK	224	10	В		
MK	227	20	В		
MK	233	30	В		
MK	235	50	В		
MK	236	100	В		
MK	264	50	В		
MK	271	NT	В		
MK	283	20	В		
MK	297	NT	В		
MK	304	NT	В		
MK	305	20	В		
MK	310	NT	В		
MK	321	NT	В		
MK	338	20	В		

MK	341	50	В		
MK	351	NT	В		
MK	376	NT	В		
MK	387	NT	В		
MK	388	NT	В		
MK	512	20	В		For carbamate part
MK	529	50	В		Interim Tolerance
MK	539	250	В		memm relevance
MK	540	20	В		
MK	595	10	В		
MK	596	100	В		
MK	597	100	В		
MK	607	20	В		
MK	608	40	В		
MK	612	20	В		Father:
MK	614	500	В		Fat basis
MK	623	80	В		
MK	626	500	В		
MK	638	10	В		
MK	675	20	В		
MK	679	200	В		
MK	713	50	В		
MK	722	50	В		
MK	736	50	В		
MK	745	100	В		
MK	746	100	В		
MK	777	20	В		
MK	781	1000	В		
MK	808	80	В		
MK	900	500	В		Fat basis
MK	901	500	В		Fat Basis
MK	902	500	В		Fat Basis
MK	910	1250	В	AL	Action Level, Fat basis
MK	930	100	В		·
MK	947	NT	В		
MK	954	NT	В		
MK	A22	NT	В		
MK	A61	50	В		
MK	A82	50	В		
MK	AAZ	50	В		
MK	ADE	300	В		
MK	ADJ	300	В		
MK	AEL	200	В		
MK	B13	10	В		
MK	B26	NT	В		
MK	B52	10	В		
MK	B53	NT	В		
IVIT	D00	INI	D		

MK	B58	10	В		
MK	B63	50	В		
MK	B72	50.0	В		Sect18 Crisis Exempt
OG	001	0.02	М	AL	Action Level
OG	002	EX	М		Exempt
OG	011	NT	М		
OG	024	0.7	М		
OG	028	0.02	М	AL	Action Level
OG	032	1	М		
OG	042	2.0	М		
OG	044	0.05	М	AL	Action Level
OG	050	0.5	М	AL	Action Level
OG	052	8	М		
OG	065	NT	М		
OG	069	NT	М		
OG	070	8	М		
OG	083	10	М		
OG	102	10	М		
OG	107	5.0	М		Interim Tolerance
OG	108	2	М		
OG	114	NT	М		
OG	125	NT	М		
OG	126	NT	М		
OG	134	NT	М		
OG	143	0.05	М	AL	Action Level
OG	144	NT	М		
OG	149	0.25	М		
OG	151	0.05	М		
OG	153	0.1	М		
OG	156	NT	М		
OG	157	10	М		
OG	159	2	М		
OG	160	1.0	М		
OG	164	NT	М		
OG	165	5	М		
OG	167	0.3	М		
OG	168	0.3	М		
OG	169	0.3	М		
OG	170	0.02	М		
OG	171	2	М		
OG	172	0.1	М	AL	Action Level
OG	173	0.1	М	AL	Action Level
OG	175	NT	М		
OG	178	2	М		
OG	180	NT	М		
OG	181	NT	М		
OG	197	2.0	М		

OG	200	0.1	M	
OG	204	0.02	M	
OG	208	NT	M	
OG	222	NT	M	
OG	223	NT	M	
OG	230	NT	M	
OG	236	0.60	M	
OG	245	1	M	
OG	249	NT	M	
OG	254	10	M	
OG	264	NT	M	
OG	275	NT	M	
OG	283	NT	M	
OG	305	NT	M	
OG	324	NT	М	
OG	330	NT	M	
OG	338	3	М	
OG	370	NT	M	
OG	382	10	M	
OG	395	NT	M	
OG	512	NT	M	
OG	529	NT	M	
OG	537	3	M	
OG	538	5.0	M	Interim Tolerance
OG	556	3.0	M	Internit Tolerance
OG	594	0.1	M	
OG	596	0.2	M	
OG	597	NT	M	
OG	604	10.0	M	
OG	607	1.0	M	
OG		NT	M	
	608			
OG	612	0.05	M	
OG	623	5	M	
OG	636	0.1	M	
OG	651	0.5	M	
OG	658	SU	M	
OG	679	NT	M	
OG	713	NT	M	
OG	719	NT	M	
OG	720	0.2	M	
OG	721	NT	M	
OG	726	NT	M	
OG	736	0.1	M	
OG	745	0.60	M	
OG	746	0.60	M	
OG	781	0.2	М	
OG	808	2.0	M	

OG	900	NT	M		
OG	901	NT	M		
OG	902	NT	M		
OG	903	0.05	M	AL	Action Level
OG	906	0.1	M	AL	Action Level
OG	908	0.1	M	AL	Action Level
OG	910	0.1	M	AL	Action Level
OG	930	0.05	M		
OG	954	NT	M		
OG	967	0.7	М		
OG	A30	NT	М		
OG	A46	NT	М		
OG	A47	3	М		
OG	A58	NT	М		
OG	AAX	5.0	М		Interim Tolerance
OG	ADC	1.0	М		
OG	ADE	0.05	М		
OG	AEL	0.01	М		
OG	AEM	0.01	M		
OG	AEN	0.01	M		
OG	B12	0.05	M		
OG	B23	10	M		
OG	B24	0.3	M		
OG	B28	10	M		
OG	B48	1.0	M		
OG	B52	2.5	M		
OG	B56	0.5	M		
OG	B77	NT	M		
OG	B79	0.3	M		
OJ	001	0.02	M	AL	Action Level
	001	EX	M	AL	
OJ					Exempt
Ol	011	NT 0.7	M		
OJ	024	0.7	M	Λ1	Antina I aval
OJ	028	0.02	M	AL	Action Level
OJ	032	1	M		
OJ	042	2.0	M	Δ.	A =1' = 1 = 1
OJ	044	0.05	M	AL	Action Level
OJ	050	0.5	M	AL	Action Level
OJ	052	8	M		
OJ	065	NT	M		
OJ	069	NT	M		
OJ	070	8	M		
OJ	083	10	M		
OJ	102	10	M		
OJ	107	5.0	M		Interim Tolerance
OJ	108	2	M		
OJ	114	NT	M		

OJ	125	NT	М		
OJ	126	NT	М		
OJ	134	NT	М		
OJ	143	0.05	M	AL	Action Level
OJ	144	NT	M		
OJ	149	0.25	M		
OJ	151	0.05	M		
OJ	153	0.1	M		
OJ	156	NT	M		
OJ	157	10	M		
OJ	159	2	M		
OJ	160	1.0	M		
OJ	164	NT	M		
OJ	165	5	M		
OJ	167	0.3	M		
OJ	168	0.3	М		
OJ	169	0.3	М		
OJ	170	0.02	М		
OJ	171	2	М		
OJ	172	0.1	М	AL	Action Level
OJ	173	0.1	М	AL	Action Level
OJ	175	NT	М		
OJ	178	2	М		
OJ	180	NT	М		
OJ	181	NT	М		
OJ	197	2.0	М		
OJ	200	0.1	М		
OJ	204	0.02	М		
OJ	208	NT	М		
OJ	222	NT	M		
OJ	223	NT	М		
OJ	230	NT	M		
OJ	236	0.60	M		
OJ	245	1	M		
OJ	249	NT	M		
OJ	254	10	M		
OJ	264	NT	M		
OJ	275	NT	M		
OJ	283	NT	M		
OJ	305	NT	M		
OJ	324	NT	M		
OJ	330	NT	M		
OJ	338	3	M		
OJ	370	NT	M		
OJ	382	10	M		
OJ	395	NT	M		
OJ	512	NT	M		
	312	INI	IVI		

OJ	529	NT	М		
OJ	537	3	М		
OJ	538	5.0	М		Interim Tolerance
OJ	556	3.0	М		
OJ	594	0.1	М		
OJ	596	0.2	М		
OJ	597	NT	М		
OJ	604	10.0	М		
OJ	607	1.0	М		
OJ	608	NT	М		
OJ	612	0.05	М		
OJ	623	5	М		
OJ	636	0.1	М		
OJ	651	0.5	М		
OJ	658	SU	М		
OJ	679	NT	М		
OJ	713	NT	М		
OJ	719	NT	М		
OJ	720	0.2	М		
OJ	721	NT	М		
OJ	726	NT	М		
OJ	736	0.1	М		
OJ	745	0.60	М		
OJ	746	0.60	М		
OJ	781	0.2	М		
OJ	808	2.0	М		
OJ	900	NT	М		
OJ	901	NT	М		
OJ	902	NT	М		
OJ	903	0.05	М	AL	Action Level
OJ	906	0.1	М	AL	Action Level
OJ	908	0.1	М	AL	Action Level
OJ	910	0.1	M	AL	Action Level
OJ	930	0.05	М		
OJ	954	NT	M		
OJ	967	0.7	М		
OJ	A30	NT	М		
OJ	A46	NT	М		
OJ	A47	3	М		
OJ	A58	NT	М		
OJ	AAX	5.0	М		Interim Tolerance
OJ	ADC	1.0	М		
OJ	ADE	0.05	М		
OJ	AEL	0.01	М		
OJ	AEM	0.01	М		
OJ	AEN	0.01	М		
OJ	B12	0.05	М		

OJ	B23	10	M		
			M		
OJ	B24	0.3			
OJ	B28	10	M		
OJ	B48	1.0	M		
OJ	B52	2.5	M		
OJ	B56	0.5	M		
OJ	B77	NT	M		
OJ	B79	0.3	M		
PD	001	0.3	М	AL	Action Level
PD	002	4	M		
PD	011	100	M		
PD	024	0.5	M		
PD	028	0.3	M	AL	Action Level
PD	042	2.0	M		
PD	044	0.05	M	AL	Action Level
PD	050	1	М		
PD	052	8	М		
PD	070	8	М		
PD	083	20	М		
PD	102	10	М		
PD	108	5	М		
PD	144	15	М		
PD	149	0.25	М		
PD	151	0.05	М		
PD	160	0.05	M		
PD	164	0.2	M		
PD	165	5	M		
PD	166	15.0	M		
PD	170	0.02	M		
PD	172	0.1	M	AL	Action Level
PD	173	0.1	M	AL	Action Level
PD	197	0.05	M	/ _	ACTION LOVE
PD	204	0.02	M		
PD	208	NT	M		
PD	245	1	M		
PD	254	5	M		
PD	264		M		
		1.0			
PD	283	0.1	M		
PD	324	0.15	M		
PD	338	0.5	M		
PD	395	NT	M		
PD	540	0.1	M		
PD	594	0.1	M		
PD	596	0.1	M		
PD	597	NT	M		
PD	607	1.0	M		
PD	612	0.05	M		

PD	626	20.0	М		
PD	636	0.1	M		
PD	658	SU	M		
PD	679	2.0	M		
PD	713	0.05	M		
PD	714	0.05	M		
PD	720	0.1	M		
PD	781	0.05	M		
PD	900	2.0	M		
PD	901	2.0	M		
PD	902	2.0	M		
PD	903	0.05	М	AL	Action Level
PD	906	0.2	М	AL	Action Level
PD	908	0.2	М	AL	Action Level
PD	910	0.2	М	AL	Action Level
PD	930	0.05	М		
PD	ADC	1.0	М		
PD	AEM	0.50	M		
PD	AEN	0.50	M		
PD	AFC	NT	M		
PD	AFD	NT	M		
PD	B22	2.0	M		
PD	B23	5.0	M		
PD					
	B24	1.0	M		
PD	B41	1.5	M		
PD	B56	2.5	M	A.1	A (;)
PE	001	0.03	M	AL	Action Level
PE	002	EX	М		Exempt
PE	011	25	M		
PE	024	0.5	М		
PE	028	0.03	M	AL	Action Level
PE	032	1	M		
PE	034	NT	M		
PE	042	1.5	M		
PE	044	0.05	M	AL	Action Level
PE	050	1	M		
PE	052	8	М		
PE	057	NT	М		
PE	065	NT	М		
PE	069	NT	М		
PE	070	8	М		
PE	083	25.0	M		
PE	102	10.0	M		
PE	107	NT	M		
PE	108	5	M		
PE	114	NT	M		
PE	117	NT	M		
PE	11/	IN I	IVI		

PE	125	NT	M		
PE	126	NT	M		
PE	129	NT	M		
PE	134	NT	M		
PE	143	0.05	M	AL	Action Level
PE	144	NT	M		
PE	147	NT	M		
PE	148	NT	M		
PE	149	0.25	М		
PE	151	NT	М		
PE	152	NT	М		
PE	157	10	М		
PE	159	4	М		Regional Tolerance
PE	160	0.05	М		
PE	162	NT	М		
PE	163	NT	М		
PE	164	NT	М		
PE	165	10	М		
PE	166	10.0	М		
PE	167	NT	М		
PE	169	NT	М		
PE	170	0.02	М		
PE	171	2	М		
PE	172	0.1	М	AL	Action Level
PE	173	0.1	М	AL	Action Level
PE	174	NT	М		
PE	177	NT	М		
PE	178	2	М		
PE	180	NT	М		
PE	181	NT	М		
PE	189	NT	М		
PE	195	NT	М		
PE	197	0.05	М		
PE	203	NT	М		
PE	204	0.02	М		
PE	205	NT	М		
PE	208	NT	М		
PE	216	NT	М		
PE	222	3.0	М		
PE	223	3.0	М		
PE	224	NT	М		
PE	230	NT	M		
PE	235	NT	M		
PE	236	NT	M		
PE	245	0.3	M		
PE	254	5	M		
PE	271	0.1	M		

DE	075	NIT		
PE	275	NT	M	
PE	283	NT	M	
PE	304	NT	M	
PE	305	NT	M	
PE	321	NT	M	
PE	324	0.5	M	
PE	338	0.5	M	
PE	343	NT	M	
PE	351	NT	M	
PE	382	NT	M	
PE	387	NT	M	
PE	388	NT	M	
PE	395	NT	М	
PE	512	NT	М	
PE	529	NT	М	
PE	537	2.0	М	
PE	539	3.0	М	
PE	540	0.1	М	
PE	556	3.0	М	
PE	562	NT	М	
PE	593	NT	М	
PE	594	0.1	М	
PE	596	0.1	М	
PE	597	NT	М	
PE	604	NT	M	
PE	607	NT	M	
PE	608	1.0	M	
PE	612	0.05	M	
PE	621	NT	M	
PE	623	NT	M	
PE	624	25	M	
PE	626	NT	M	
PE	636	0.1	M	
PE	638	1.0	M	
PE	651	0.50	M	
PE	658	SU	M	
PE	679	NT	M	
PE	699	0.5	M	
PE PE	713	0.05		
PE	713	NT	M	
PE			M	
	720	0.1		
PE	722	NT 0.4	M	
PE	736	0.1	M	
PE	737	0.05	M	
PE	745	NT	M	
PE	746	NT	M	
PE	781	0.05	M	

	000	5.0	N 4		
PE	808	5.0	M		
PE	833	NT	M		
PE	848	NT	M		
PE	858	NT	M		
PE	900	2.0	M		
PE	901	2.0	M		
PE	902	2.0	M		
PE	903	0.05	M	AL	Action Level
PE	906	0.1	M	AL	Action Level
PE	908	0.1	M	AL	Action Level
PE	910	0.1	M	AL	Action Level
PE	930	0.5	M		
PE	947	NT	М		
PE	963	NT	М		
PE	967	0.6	М		
PE	A30	NT	М		
PE	A47	2.0	М		
PE	A58	NT	М		
PE	A61	0.5	М		
PE	ABG	1.5	М		
PE	ADC	1.0	М		
PE	ADE	2.0	М		
PE	ADG	0.20	М		
PE	AEL	0.30	М		
PE	AEM	0.30	М		
PE	AEN	0.30	М		
PE	B21	0.10	М		
PE	B22	0.1	M		
PE	B23	5.0	M		
PE	B24	0.2	M		
PE	B48	NT	M		
PE	B52	NT	M		
PE	B56	0.75	M		
PE	B82	0.75	M		
PU	001	0.73	M	AL	Action Level
PU	001	4	M	/L	Action Level
PU	011	100	M		
PU	024	0.5	M		
PU				ΛΙ	Action Level
PU	028 042	0.3	M	AL	ACIION LEVEI
		2.0		ΛΙ	Action Lovel
PU	044	0.05	M	AL	Action Level
PU	050	1	M		
PU	052	8	M		
PU	070	8	M		
PU	083	20	M		
PU	102	10	M		
PU	108	5	M		

PU	144	15	M		
PU	149	0.25	M		
PU	151	0.05	M		
PU	160	0.05	M		
PU	164	0.2	M		
PU	165	5	M		
PU	166	15.0	M		
PU	170	0.02	M		
PU	172	0.1	M	AL	Action Level
PU	173	0.1	M	AL	Action Level
PU	197	0.05	M		
PU	204	0.02	M		
PU	208	NT	М		
PU	245	1	М		
PU	254	5	М		
PU	264	1.0	М		
PU	283	0.1	М		
PU	324	0.15	М		
PU	338	0.5	М		
PU	395	NT	М		
PU	540	0.1	М		
PU	594	0.1	М		
PU	596	0.1	М		
PU	597	NT	М		
PU	607	1.0	М		
PU	612	0.05	M		
PU	626	20.0	М		
PU	636	0.1	M		
PU	658	SU	M		
PU	679	2.0	M		
PU	713	0.05	M		
PU	714	0.05	M		
PU	720	0.1	M		
PU	781	0.05	M		
PU	900	2.0	M		
PU	901	2.0	M		
PU	902	2.0	M		
PU	903	0.05	M	AL	Action Level
PU	906	0.03	M	AL	Action Level
PU	908	0.2	M	AL	Action Level
PU	910	0.2	M	AL	Action Level
PU	930	0.2	M	AL	ACTION FEACI
PU	ADC	1.0	M		
PU	AEM	0.50	M		
PU	AEN	0.50	M		
PU	AFC	0.50 NT	M		
PU	AFD				
	AFD	NT	M		

PU	B22	2.0	M	
PU	B23	5.0	M	
PU	B24	1.0	M	
PU	B41	1.5	M	
PU	B56	2.5	M	
ST	011	25	M	
ST	024	0.5	M	
ST	042	2.0	M	
ST	050	1	M	
ST	052	8	M	
ST	069	1.0	M	
ST	083	NT	M	
ST	102	10	M	
ST	108	5	M	
ST	126	25	M	
ST	134	2	М	
ST	149	0.25	М	
ST	152	0.1	M	
ST	157	5.0	M	
ST	159	2	M	
ST	160	0.2	M	
ST	170	0.02	M	
ST	171	NT	M	
ST	180	0.2	M	For carbamate part
ST	204	0.02	M	1 of carbamate part
ST	208	NT	M	
ST	219	2	M	
ST	231	15	M	
ST				
ST	236 245	0.6	M	
			M	
ST	253	5	M	
ST	254	5	M	
ST	338	1	M	
ST	382	10	M	
ST	395	NT	M	
ST	512	0.2	M	For carbamate part
ST	556	3.0	M	
ST	607	10.0	M	
ST	608	NT	M	
ST	612	0.05	M	
ST	624	25	M	
ST	626	15	M	
ST	636	0.1	M	
ST	658	SU	M	
ST	679	0.50	M	
ST	722	0.20	M	
ST	736	0.1	M	

ST	745	0.6	М		
ST	781	0.05	M		
ST	808	2.0	М		
ST	900	2.0	М		
ST	901	2.0	М		
ST	902	2.0	M		
ST	930	3.0	M		
ST	967	0.50	M		
ST	A61	2.0	M		
ST	A68	NT	M		
ST	AAY	0.60	M		Sect18 Crisis Exempt
ST	ABC	1.0	M		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ST	ABD	1.0	M		
ST	ADC	1.0	M		
ST	ADE	0.05	M		
ST	ADW	NT	M		
ST	ADX	NT	M		
ST	AEL	0.01	M		
ST	AEM	0.01	M		
ST	AEN	0.01	M		
ST	B22	5.0	M		Interim Tol thru 12/31/07
ST	B23	2.0	M		111011111 1011111111 12/01/07
ST	B24	0.30	M		Sect18 Crisis Exempt
ST	B28	5.0	M		Geet to Glisia Exempt
ST	B41	3.0	M		
ST	B82	1.5	M		
SY	001	50	В	AL	Action Level
SY	028	50	В	AL	Action Level
SY	020	50	В	AL	Action Level
SY	052	8000	В	AL	Action Level
SY	052	100	В		
SY	065	100	В		
SY	102	5000	В		
SY	117	100	В		
SY	129	1000	В		
SY	148	1000	В		
SY	151	50	В		
SY	157	100	В		
			В		
SY	159	200			
SY	160	300	В		
SY	167	20	В		
SY	168	20	В		
SY	169	20	В		
SY	170	1000	В		
SY	171	50	В		
SY	178	50	В		Fan and 1
SY	180	200	В		For carbamate part

SY	181	300	В		
SY	200	100	В		
SY	204	1000	В		
SY	208	NT	В		
SY	210	200	В		
SY	216	100	В		
SY	216	200	В		
SY	230	NT	В		
SY	264	NT	В		
SY	271	NT	В		
SY	283	200	В		
SY	292	1000	В		
SY	370	NT	В		
SY	512	200	В		For carbamate part
SY	537	200	В		
SY	539	50	В		
SY	556	3000	В		
SY	596	100	В		
SY	597	50	В		
SY	607	1000	В		
SY	612	100	В		
SY	624	2000	В		
SY	636	100	В		
SY	658	SU	В		
SY	666	200	В		Interim Tolerance
SY	679	50	В		Regional Tolerance
SY	706	100	В		-
SY	713	50	В		
SY	714	50	В		
SY	717	50	В		
SY	719	50	В		
SY	720	100	В		
SY	721	50	В		
SY	736	100	В		
SY	750	50	В		
SY	777	50	В		
SY	779	NT	В		
SY	781	50	В		
SY	807	100	В		
SY	808	NT	В		
				٨١	Action Lovel
SY	908	200	В	AL	Action Level
SY	910	200	В	AL	Action Level
SY	967	1000	В		
SY	A05	10	В		
SY	A22	NT	В		
SY	A38	10	В		
SY	A46	NT	В		

SY	A58	100	В		Regional Tolerance
SY	AAU	50	В		<u> </u>
SY	AAY	50	В		
SY	ABC	20	В		
SY	ABF	NT	В		
SY	ACC	50	В		
SY	ADC	1000	В		
SY	ADD	10	В		
SY	ADG	800	В		
SY	AEC	200	В		
SY	AEL	10	В		
SY	AEN		В		
		10 NT			
SY	AEP	NT	В		
SY	AEQ	100	В		
SY	AES	100	В		Interim Tolerance
SY	AET	30000	В		
SY	AFM	NT	В		
SY	B23	10	В		
SY	B24	100	В		
SY	B28	100	В		
SY	B43	NT	В		
SY	B48	NT	В		
SY	B53	NT	В		
SY	B58	NT	В		
SY	B61	40	В		
SY	B72	NT	В		
SY	B75	2000	В		
SY	B78	NT	В		
SY	B79	NT	В		
WH	002	2000	В		
WH	024	50	В		
WH	028	20	В	AL	Action Level
WH	050	100	В	AL	Action Level
WH	050	8000	В	AL	Action Level
WH		1000	В		
	065				
WH	070	20000	В		
WH	102	3000	В		
WH	117	300	В	-	
WH	129	250	В		
WH	143	NT	В		
WH	148	50	В		
WH	151	50	В		
WH	157	1000	В		
WH	160	500	В		
WH	171	40	В		
WH	178	40	В		
WH	180	100	В		For carbamate part

WH	181	750	В		
WH	189	50	В		
WH	208	NT	В		
WH	210	200	В		
WH	216	300	В		
WH	228	100	В		
WH	235	6000	В		
WH	264	100	В		
WH	275	NT	В		
WH	283	100	В		
WH	299	100	В		
WH	305	250	В		
WH	341	200	В		
WH	370	NT	В		
WH	391	NT	В		
WH	395	NT	В		
WH	512	100	В		For carbamate part
WH	562	NT	В		
WH	604	50	В		
WH	607	200	В		
WH	608	1000	В		
WH	621	50	В		
WH	638	50	В		
WH	679	30	В		
WH	722	50	В		
WH	736	100	В		
WH	781	4000	В		
WH	793	100	В		
WH	807	20	В		
WH	900	100	В		
WH	901	100	В		
WH	902	100	В		
WH	910	500	В	AL	Action Level
WH	954	NT	В		
WH	A22	NT	В		
WH	A30	NT	В		
WH	A54	NT	В		
WH	A55	NT	В		
WH	A58	50	В		
WH	ACV	5000	В		
WH	ADR	50	В		
WH	ADU	NT	В		
WH	ADV	NT	В		
WH	AEL	50	В		
WH	B21	100.0	В		
WH	B23	20	В		
WH	B30	1000	В		Sect18 Crisis Exempt
VVII	D 30	1000			Cotto Onois Exempt

WH	B38	100	В		
WH	B43	20	В		
WH	B53	NT	В		
WH	B58	100	В		
WH	B72	NT	В		
WH	B77	NT	В		
WM	001	0.1	M	AL	Action Level
WM	002	NT	M		
WM	011	25	M		
WM	024	0.75	M		
WM	028	0.1	M	AL	Action Level
WM	034	0.05	M	AL	Action Level
WM	042	2.0	М		
WM	044	0.05	М	AL	Action Level
WM	050	3	М		
WM	052	8	М		
WM	057	NT	M		
WM	065	NT	M		
WM	069	0.5	M		
WM	070	Ex2	M		
WM	083	NT	M		
WM	102	10	M		
WM	102	NT	M		
WM	108	1	M		
WM	114	NT	M		
WM	117	NT	M		
WM	125	NT	M		
WM	126	15	M		
WM	129	NT	M		
WM	134	1	M		
WM	143	0.05	M	AL	Action Level
WM	144	NT	M		
WM	147	NT	M		
WM	148	NT	М		
WM	149	NT	M		
WM	151	0.05	М		
WM	152	0.4	М		Regional Tolerance
WM	156	NT	М		-
WM	157	NT	М		
WM	159	0.2	М		
WM	160	0.1	M		
WM	163	NT	M		
WM	164	5	M		
WM	165	NT	M		
WM	166	NT	M		
WM	167	NT	M		
WM	168	NT	M		
VVIVI	100	IN I	IVI		

WM	169	NT	M		
WM	170	0.5	M		
WM	171	1	M		Comb Ometh/Dimeth
WM	172	0.1	M	AL	Action Level
WM	173	0.1	М	AL	Action Level
WM	174	NT	М		
WM	177	NT	M		
WM	178	1	M		Comb Ometh/Dimeth
WM	180	0.4	М		For carbamate part
WM	181	NT	М		
WM	189	NT	M		
WM	195	NT	M		
WM	197	NT	M		
WM	203	NT	M		
WM	204	0.02	M		
WM	205	NT	М		
WM	208	NT	М		
WM	216	NT	M		
WM	222	3.0	M		
WM	223	3.0	M		
WM	224	NT	М		
WM	230	NT	М		
WM	236	NT	М		
WM	245	0.3	М		
WM	254	5	М		
WM	264	NT	М		
WM	271	NT	М		
WM	275	NT	М		
WM	283	NT	М		
WM	304	NT	М		
WM	305	NT	M		
WM	310	NT	М		
WM	321	NT	М		
WM	324	NT	М		
WM	338	0.5	М		S/convert to Naled
WM	343	NT	М		
WM	351	NT	М		
WM	382	10	М		
WM	387	NT	М		
WM	388	NT	М		
WM	395	NT	М		
WM	512	0.4	М		
WM	529	NT	М		
WM	537	2	М		
WM	539	3.0	М		
WM	540	NT	М		
WM	546	1.0	М		

WM	556	3.0	M		
WM	562	NT	M		
WM	580	NT	M		
WM	593	NT	M		
WM	594	0.1	M		
WM	596	NT	M		
WM	597	NT	M		
WM	604	NT	M		
WM	607	1.0	М		
WM	608	0.3	М		
WM	612	0.2	M		
WM	621	NT	М		
WM	623	NT	М		
WM	624	25	М		
WM	626	NT	М		
WM	636	0.1	М		
WM	638	0.3	М		
WM	658	NT	М		
WM	666	NT	М		
WM	679	0.20	М		
WM	699	NT	М		
WM	713	NT	М		
WM	719	0.05	М		
WM	720	NT	М		
WM	721	0.05	М		
WM	722	NT	M		
WM	736	0.1	М		
WM	737	NT	M		
WM	745	NT	M		
WM	746	NT	M		
WM	781	0.05	M		
WM	808	0.5	М		
WM	833	NT	М		
WM	848	NT	М		
WM	850	NT	М		
WM	858	NT	М		
WM	900	NT	М		
WM	901	NT	M		
WM	902	NT	M		
WM	903	0.05	М	AL	Action Level
WM	906	0.1	М	AL	Action Level
WM	908	0.1	М	AL	Action Level
WM	910	0.1	M	AL	Action Level
WM	930	0.4	M		
WM	947	NT	M		
WM	954	NT	М		
WM	967	0.50	M		

WM	A30	NT	М		
WM	A47	2	M		
WM	A58	NT	M		
WM	A61	0.5	М		
WM	ABB	0.3	М		
WM	ABC	0.3	М		
WM	ABD	0.3	М		
WM	ABG	NT	М		
WM	ADC	1.0	М		
WM	ADE	1.0	М		
WM	ADG	NT	М		
WM	AEC	0.2	M		
WM	AEH	0.1	M		
WM	AEL	0.01	М		
WM	AEM	0.01	М		
WM	AEN	0.01	M		
WM	AEP	NT	M		
WM	AES	0.3	M		
WM	AEV	4.0	M		
WM	AEW	0.3	M		
WM	AFO	0.5	M		
WM	AFU	1.5	M		
WM	AFW B16	0.1 NT	M		
WM	B21	0.10	M		
WM	B21	NT	M		
WM	B23	0.03	M		
WM	B24	0.10	M		
WM	B43	0.20	M		
WM	B44	1	M		
WM	B48	0.30	M		
WM	B52	0.5	М		
WM	B57	0.30	М		Sect18 Crisis Exempt
WM	B58	NT	М		
WM	B61	0.5	М		
WM	B64	0.15	М		
WM	B75	1.6	М		
WM	B77	0.5	М		
WM	B79	0.5	М		
WM	B82	0.75	М		
WM	B85	NT	M		
WS	001	0.1	M	AL	Action Level
WS	002	NT	M		
WS	011	25	M		
WS	024	0.75	M		Δ (: 1 :
WS	028	0.1	M	AL	Action Level
WS	034	0.05	M	AL	Action Level

14/0	0.40	\ IT			
WS	042	NT	M		
WS	044	0.05	M	AL	Action Level
WS	050	3	M		
WS	052	8	M		
WS	057	NT	M		
WS	065	NT	М		
WS	069	NT	М		
WS	070	Ex2	М		Exempt for grown cro
WS	083	NT	М		
WS	102	10	М		
WS	107	NT	M		
WS	108	1	M		
WS	114	NT	M		
WS	117	NT	M		
WS	125	NT	M		
WS					
	126	NT 1	M		
WS	134		M	A 1	2 4: 1 1
WS	143	0.05	M	AL	Action Level
WS	144	NT	M		
WS	148	NT	M		
WS	149	NT	M		
WS	151	0.05	M		
WS	152	NT	M		
WS	157	1	M		Hubbard winter squash only
WS	159	0.2	M		
WS	160	0.1	М		
WS	164	5	М		
WS	165	NT	М		
WS	407				
WS	167	NT	M		
		NT NT	M		
	168	NT	М		
WS	168 169	NT NT	M M		
WS WS	168 169 170	NT NT 0.02	M M M		
WS WS WS	168 169 170 171	NT NT 0.02 NT	M M M	АІ	Action Level
WS WS WS	168 169 170 171 172	NT NT 0.02 NT 0.1	M M M M	AL	Action Level
WS WS WS WS	168 169 170 171 172 173	NT NT 0.02 NT 0.1 0.1	M M M M M	AL AL	Action Level Action Level
WS WS WS WS WS	168 169 170 171 172 173 174	NT NT 0.02 NT 0.1 0.1 NT	M M M M M		
WS WS WS WS WS WS	168 169 170 171 172 173 174 175	NT NT 0.02 NT 0.1 0.1 NT	M M M M M M M M		
WS WS WS WS WS WS WS	168 169 170 171 172 173 174 175 176	NT NT 0.02 NT 0.1 0.1 NT NT	M M M M M M M M M		
WS WS WS WS WS WS WS WS WS	168 169 170 171 172 173 174 175 176 178	NT NT 0.02 NT 0.1 0.1 NT NT NT NT NT	M M M M M M M M M M		Action Level
WS WS WS WS WS WS WS WS WS	168 169 170 171 172 173 174 175 176 178 180	NT NT 0.02 NT 0.1 0.1 NT NT NT NT NT NT NT O.6	M M M M M M M M M M M M		
WS	168 169 170 171 172 173 174 175 176 178 180 181	NT NT 0.02 NT 0.1 0.1 NT	M M M M M M M M M M M M M		Action Level
WS	168 169 170 171 172 173 174 175 176 178 180 181 189	NT NT 0.02 NT 0.1 0.1 NT	M M M M M M M M M M M M M M		Action Level
WS	168 169 170 171 172 173 174 175 176 178 180 181 189	NT NT 0.02 NT 0.1 0.1 NT	M M M M M M M M M M M M M		Action Level
WS W	168 169 170 171 172 173 174 175 176 178 180 181 189	NT NT 0.02 NT 0.1 0.1 NT	M M M M M M M M M M M M M M		Action Level
WS	168 169 170 171 172 173 174 175 176 178 180 181 189	NT NT 0.02 NT 0.1 0.1 NT	M M M M M M M M M M M M M		Action Level

WS	205	NT	M	
WS	208	NT	M	
WS	210	NT	М	
WS	216	NT	M	
WS	222	3.0	М	
WS	223	3.0	M	
WS	227	NT	M	
WS	230	NT	M	
WS	232	NT	M	
WS	236	NT	М	
WS	245	0.3	М	
WS	249	NT	М	
WS	254	5	М	
WS	264	NT	М	
WS	275	NT	М	
WS	283	NT	М	
WS	304	NT	M	
WS	305	NT	М	
WS	321	NT	М	
WS	330	NT	М	
WS	338	0.5	М	
WS	343	NT	М	
WS	370	NT	М	
WS	382	10	М	
WS	387	NT	М	
WS	395	NT	М	
WS	512	0.6	М	For carbamate part
WS	529	NT	М	
WS	537	2.0	М	
WS	539	3.0	М	
WS	540	NT	М	
WS	556	3.0	М	
WS	562	NT	М	
WS	594	0.1	M	
WS	596	NT	М	
WS	597	NT	М	
WS	604	NT	М	
WS	607	1.0	М	
WS	608	0.3	М	
WS	612	0.2	М	
WS	623	NT	М	
WS	624	25	М	
WS	626	NT	М	
WS	636	0.1	М	
WS	638	0.3	М	
WS	658	SU	М	
WS	679	0.20	M	

WS	719	0.1	M		
WS	720	NT	М		
WS	721	0.05	М		
WS	725	NT	М		
WS	736	0.1	М		
WS	745	NT	М		
WS	781	0.05	М		
WS	783	NT	М		
WS	791	NT	М		
WS	808	0.5	М		
WS	900	2.0	М		
WS	901	2.0	M		
WS	902	2.0	М		
WS	903	0.05	М	AL	Action Level
WS	906	0.1	М	AL	Action Level
WS	908	0.1	M	AL	Action Level
WS	910	0.1	М	AL	Action Level
WS	930	0.4	М		
WS	963	NT	М		
WS	967	0.5	М		
WS	A15	NT	M		
WS	A46	0.1	М		
WS	A47	2.0	M		
WS	A61	0.5	M		
WS	ADC	1.0	M		
WS	ADD	NT	M		
WS	ADE	1.0	M		
WS	AEC	0.2	M		
WS	AEL	0.01	M		
WS	AEM	0.01	M		
WS	AEN	0.01	M		
WS	AEV	4.0	M		
WS	AEW	0.30	M		
WS	B18	NT	M		
WS	B23	0.01	M		
WS	B24	0.10	M		
WS	B44	1.0	M		
WS	B52	0.50	M		
WS	B58	NT	M		
WS	B75	1.6	M		
WS	B82	0.75	M		