CS 228 : Logic in Computer Science

Krishna. S

A Quick Recap

- ▶ We focus on FO over words : the signature has <, S, Q_a , Q_b , Remember you always have = with you
- Satisfiability of FO over words: reduce FO satisfiability problem to another problem, using automata
- Reduce satisfiability of an FO formula to the emptiness question of an equivalent automata
- ► Recall how automata accept languages

▶ A path from one state to another gives a word over $\Sigma = \{a, b, c\}$

3/30

- ▶ A path from one state to another gives a word over $\Sigma = \{a, b, c\}$
- The machine accepts words along paths from an initial state to a final state

3/30

- ▶ A path from one state to another gives a word over $\Sigma = \{a, b, c\}$
- The machine accepts words along paths from an initial state to a final state
- ➤ The set of words accepted by the machine is called the language accepted by the machine

▶ What is the language L accepted by this machine, L(A)?

- ▶ What is the language L accepted by this machine, L(A)?
- Write an FO formula φ such that $L(\varphi) = L(A)$

A Second and a Third Machine B, C

A Second and a Third Machine B, C

▶ What are L(B), L(C)?

A Second and a Third Machine B, C

- ▶ What are L(B), L(C)?
- ▶ Give an FO formula φ such that $L(\varphi) = L(B) \cup L(C)$

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q is a finite set of states

- Q is a finite set of states
- \triangleright Σ is a finite alphabet

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

- Q is a finite set of states
- \triangleright Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state

- Q is a finite set of states.
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- $ightharpoonup F \subset Q$ is the set of final states

- Q is a finite set of states.
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- $ightharpoonup F \subset Q$ is the set of final states
- ▶ L(A)=all words leading from q_0 to some $f \in F$

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

7/30

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

7/30

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

▶ Begins with *a*, ends with *b*, and has a pair of consecutive *a*'s

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

- ▶ Begins with a, ends with b, and has a pair of consecutive a's
- Contains a b and ends with aa

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb
 - ▶ There are two occurrences of b between which only a's occur

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb
 - ▶ There are two occurrences of b between which only a's occur
 - ▶ Right before the last position is an a

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb
 - ▶ There are two occurrences of b between which only a's occur
 - Right before the last position is an a
 - Even length words

Every state on every symbol goes to a unique state

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q,a)=q_1,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) =$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - ▶ $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) =$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - w = aab
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$
 - $\hat{\delta}: Q \times \Sigma^* \to Q$ extension of δ to strings
 - $\hat{\delta}(q,\epsilon) = q$
 - $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

DFA: Transition Function on Words

DFA: Transition Function on Words

- $\delta(q, wa) = s = \delta(\hat{\delta}(q, w), a) = \delta(r, a)$
- $\hat{\delta}(q, wb) = t = \delta(\hat{\delta}(q, w), b) = \delta(r, b)$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A
- $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
- $ightharpoonup \Sigma^* = L(A) \cup \overline{L(A)}$

▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$

- ▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$
- ▶ Show that for any $w \in \Sigma^*$,
 - $\hat{\delta}(q_{00}, w) = q_{ij}$ with $i, j \in \{0, 1\}$, parity of i same as $|w|_a$ and parity of j same as $|w|_b$

► Prove by induction on |w|

- ► Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$

- ▶ Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$
- ▶ Assume the claim for $x \in \Sigma^*$, and show it for $xc, c \in \{a, b\}$.

 $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$

- $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$
- By induction hypothesis, $\hat{\delta}(q_{00}, x) = q_{ij}$ iff
 - parity of *i* and $|x|_a$ are the same
 - ▶ parity of j and $|x|_b$ are the same

- ► Case Analysis : If $|x|_a$ odd and $|x|_b$ even, then i = 1, j = 0
 - $\delta(q_{10},a) = q_{00}, \delta(q_{10},b) = q_{11}$
 - ▶ $|xa|_a$ is even and $|xa|_b$ is even
 - ► $|xb|_a$ is odd and $|xb|_b$ is odd
- Other Cases : Similar
- $\delta(q_{00}, x) = q_{10}$ iff $|x|_a$ odd and $|x|_b$ even

Closure Properties : DFA

Closure under Complementation

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ▶ For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$
 - $w \in L(\overline{A})$ iff $\hat{\delta}(q_0, w) \in Q F$ iff $w \notin L(A)$
 - $L(\overline{A}) = L(\overline{A})$

18/30

aaab

19/30

aaab

► aaab

► aaab

▶ aaab

aabba

aabba

aabba

► aabba

▶ aabba

► aabba

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

```
All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
```

•
$$A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$$

►
$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$

```
► A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)

► A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)

► A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),

► \delta((q, s), a) = (\delta_1(q, a), \delta_2(s, a))

► F = F_1 \times F_2
```

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$$

 $\blacktriangleright A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$

 $\hat{\delta}_1(q_0,x) \in F_1$ and $\hat{\delta}_2(s_0,x) \in F_2$

```
▶ A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)

▶ A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),

▶ \delta((q, s), a) = (\delta_1(q, a), \delta_2(s, a))

▶ F = F_1 \times F_2

▶ Show that for all x \in \Sigma^*, \hat{\delta}((p, q), x) = (\hat{\delta_1}(p, x), \hat{\delta_2}(q, x))

x \in L(A) iff \hat{\delta}((q_0, s_0), x) \in F iff (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2 iff
```

30/3

```
ightharpoonup A_1 = (Q_1, Σ, δ_1, q_0, F_1)
```

•
$$A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$$

►
$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$$

$$\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$$

$$F = F_1 \times F_2$$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2 \text{ iff } \hat{\delta_1}(q_0, x) \in F_1 \text{ and } \hat{\delta_2}(s_0, x) \in F_2 \text{ iff } x \in L(A_1) \text{ and } x \in L(A_2)$$