Risk Assessment: A Game Theoretic Approach

Vicki Bier, Aniruddha Nagaraj, Vinod Abhichandani

University of Wisconsin-Madison

Background

- Game theory is a useful model for security risk assessment:
 - Appropriate when protecting against intelligent and adaptable adversaries
 - Recognizes that defensive strategies must take attacker behavior into account
 - Can identify qualitative properties of optimal solutions (e.g., randomization)

Background...

- Game theory is only beginning to be used in security risk assessment
- Military analogies (Schneier):
 - "The defender has to defend against every possible attack"
 - "The attacker...only has to choose one attack, and he can concentrate his forces on that one attack"

Background...

- Most applications are still exploratory:
 - Illustrative applications to the choice of attack and defense strategies (Cohen)
 - Experiments demonstrating relevance of game theory to information warfare (Burke)
 - Application of game theory to financial institution risks (Chaturvedi et al., Gupta)
 - Importance of perverse incentives (Anderson)

Outline of this work

- Games between attackers and defenders:
 - Simple series/parallel systems
 - Components with inherent values, and also a value to system function

Overall goal

- Study optimal allocation of resources for protection of series and parallel systems against intentional attacks
- Protective investment c_i reduces the probability of successful attack against component i to p_i(c_i):
 - p_i(c_i) convex, decreasing, twice differentiable and invertible

Cases being considered

- Results to date:
 - Components in parallel
 - Components in series
 - "Additive" models
 (Components have different "values" v_i)
- In process:
 - Arbitrary series/parallel structures
 (NP-hard, may use heuristic approaches)
 - Other configurations
 (Explore merits of perimeter defense, etc.)

Assumptions

- Realistic levels of defensive investment will not deter attacks:
 - Models applicable to determined attackers
- Attacks against different components succeed or fail independently:
 - Models applicable to functionally diverse and spatially separated defenses
- Likely to apply to most serious threats against security-critical systems

Components in parallel

- Defender wishes to maximize (expected value of system) – (defense cost), or equivalently:
 - Choose c_i to minimize α [$\Pi p_i(c_i) \vee + \Sigma p_i(c_i) \vee_i$] + Σc_i where α is probability of an attack on the system, ν is the value of the system functionality, and ν_i is the inherent value of component i
- Optimum occurs when
 - $p_i'(c_i) \ge -1/\alpha[v_i + v \prod_{j \ne i} p_j(c_j)]$, and
 - $c_i [\alpha v_i p_i'(c_i) + \alpha v p_i'(c_i) \prod_{i \neq i} p_i(c_i) + 1] = 0$
- Multiple local optima are possible

Components in parallel...

- Local optimum is unique when p_i(c_i) are log convex:
 - Success probability decreases "faster than exponentially" in c_i
- This seems unlikely to be the case

Components in parallel...

- General insights:
 - Optimal defense strategy depends on the cost-effectiveness with which components can be improved
 - As measured by the p_i'(c_i)
 and on the values of the components
 - As measured by the v_i
 - Components that are too costly to defend (relative to their value) will not be hardened

- Can occur for many reasons:
 - Physically in series (e.g., pipelines)
 - Multiple failure modes
 - Attacker can afford only one target
 - First successful attack is much more serious (e.g., for symbolic reasons)

- Attacker has a choice of targets
- Two bounding cases:
 - Attacker has no knowledge of defensive investments
 - Attacker can obtain perfect knowledge about defensive investments at no cost

- Assumption of perfect knowledge may not always be unrealistic:
 - Due to the openness of our society
- Public demands knowledge of defense
 - Even when this weakens its effectiveness!
- This increases the difficulty of defense:
 - E.g., anthrax protection

- Assume attacker has only one attempt (multiple attacks are considered later)
- Attacker objective is to:
 - Choose i to maximize [p_i(c_i) v_i]
- For optimal allocation of defensive resources:
 - Defense must equalize the expected values of attacks against all targets
 - "Each of the defended targets [must] yield the same payoff to the attacker" (Dresher)

- Unlike in defending against accidents or acts of nature:
 - Optimal allocation does not depend on cost-effectiveness of investments!
- Defender is deprived of flexibility:
 - Must defend all targets of comparable expected value equally (regardless of cost)

Insight

- "Investment in defensive measures,
 - unlike investment in safety measures,
 saves a lower number of lives" (Ravid)

- Now, assume that the attacker can attack each component once (multiple attacks)
- Attacker objective is to:
 - Choose i to maximize $\alpha \left[\sum p_i(c_i) v_i + v \left\{ 1 \prod \left[1 p_i(c_i) \right] \right\} \right] + \sum c_i$
- For optimal allocation of defensive resources:
 - Defense need not focus exclusively on components that cause highest expected damage
 - Investment in other components may pay off, if attacks against such "first-choice" targets fail
 - Optimal defense strategy again depends on the costeffectiveness with which components can be improved

Perfect knowledge

Insights:

- Properties of the optimal solution for series systems with multiple attacks are similar to those for parallel systems (e.g., multiple optima)
- If one component dominates the risk, then the optimal solution with multiple attacks will be similar to that with a single attack

No knowledge

- Assume:
 - Attacker targets component i with constant probability q_i (regardless of defense c_i)
 - Attacker has only one attempt
- Defender objective similar to previous:
 - Choose $\{c_i\}$ to minimize $\sum q_i v_i p_i(c_i) + \sum c_i$
- Optimum occurs when p_i'(c_i) ≥ -1/(q_i v_i)
 - and $c_i [q_i v_i p_i'(c_i) + 1] = 0$
- Expenditure c_i is increasing in q_i v_i

Arbitrary Structures

- Find defensive strategy when optimal attack strategy is NP-hard (joint work with Cox, Azaiez):
 - Cox's work on least cost diagnosis (1989, 1996) suggests near-optimal heuristic attack strategies
 - Identify optimal (or near-optimal) defenses against near-optimal attacks
 - Determine when heuristic attack strategies are in fact optimal

Conclusions

- Protection of series systems from knowledgeable adversaries is a fundamentally different challenge:
 - Investments less cost-effective (since attacks can be deflected to other targets)
 - Defender loses flexibility to allocate resources cost-effectively
 - Importance of redundancy, secrecy (and deception) as defensive strategies

Conclusions...

- Defender should consider the success probabilities of attacks against various components:
 - Not only their inherent values
- Some high-value targets with a low probability of being successfully attacked may not merit any investment:
 - Lower-value, more vulnerable targets may merit defense
- Contrast this to the heuristic proposed by Brookings (2002):
 - Protecting only the most valuable assets