Дисперсионный анализ для неполных повторных наблюдений с приложениями

Федорченко Сергей Андреевич, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., д. Алексеева Н.П. Рецензент: аналитик Уфлянд А.Г.

Санкт-Петербург 2018г.

Введение

Пусть x_{ijt} — значение количественного показателя у j-го индивида в i-й группе в t-й момент времени.

Пример

Численные значения анализов для пациентов, которые разделены на группы различным лечением.

Пусть ν_i — количество индивидов в i-й группе в самый представительный момент времени.

Математическая модель

$$x_{ijt} = \mu + \alpha_i + e^1_{ij} + \beta_t + \gamma_{it} + e_{ijt},$$
 где $i = 1..I, j = 1..\nu_i, t = 1..T.$

Можно рассматривать модели двух типов:

- ullet фиксированные эффекты $lpha_i, eta_t, \gamma_{it}$ константы,
- ullet случайные $lpha_i, eta_t, \gamma_{it}$ нормальные случайные величины.

Также в некоторых данных возникает проблема пропусков — отсутствие значений в некоторые моменты времени t.

Постановка задач

Гипотеза

$$H_0: \gamma_{11} = \dots = \gamma_{1T} = \dots = \gamma_{IT} = 0.$$

В примере с пациентами данная гипотеза будет иметь смысл проверки одинаковой эффективности взаимодействия разных методов лечения со временем. Методом проверки данной гипотезы является дисперсионный анализ.

Задача

 Построить матричную статистику критерия для случайного эффекта взаимодействия при пропущенных данных.

Двухфакторная модель с фиксированными эффектами

Определение

$$x_{ijt} = \mu + \alpha_i + e^1_{ij} + \beta_t + \gamma_{it} + e_{ijt},$$
 где $i = 1..I, j = 1..\nu_i, t = 1..T.$

- μ генеральное среднее,
- α_i фиксированный эффект группы,
- β_t фиксированный эффект времени,
- ullet $e^1_{ii} \sim N(0, \sigma^2_1)$ ошибки, вызванные разнообразием индивидов,
- ullet γ_{it} фиксированный эффект взаимодействия,
- $e_{iit} \sim N(0, \sigma^2)$ общие ошибки наблюдений.

$$\sum_{i=1}^{I} \alpha_i = 0, \sum_{t=1}^{T} \beta_t = 0, \sum_{i=1}^{I} \gamma_{it} = 0, \sum_{t=1}^{T} \gamma_{it} = 0.$$

Данные с пропусками

При наличии пропусков потребуется ввести дополнительные обозначения:

Пусть m_{it} — количество наблюдений в i группе в t момент времени, N_{ij} — множество временных точек индивида j в группе i, n_{ij} — количество наблюдений j-го индивида в группе i.

Обозначим
$$m_i = \sum_{t=1}^T m_{it}, \ m_{\cdot t} = \sum_{i=1}^I m_{it}, \ m_{\cdot \cdot \cdot} = \sum_{t=1}^T m_{t \cdot \cdot},$$
 $x_{ij.} = \frac{1}{n_{ij}} \sum_{t \in N_{ij}} x_{ijt}$ — усреднение по индексу t (аналогично другие усреднения).

Проблема

- $\mathbb{E}x_{ij} \neq \mu + \alpha_i$,
- $\mathbb{E}(x_{iit} x_{ii.}) \neq \beta_t + \gamma_{it.}$

Групповая поправка

Для случая пропущенных данных в модели с фиксированными эффектами в статье [Н.П. Алексеева, 2017] введены две поправки, индивидуальная и групповая:

$$L = (x_{\cdot \cdot 1} - x_{\cdot \cdot \cdot \cdot}, x_{\cdot \cdot T} - x_{\cdot \cdot \cdot})^T, K = (x_{1 \cdot \cdot \cdot} - x_{\cdot \cdot \cdot}, x_{I \cdot \cdot} - x_{\cdot \cdot \cdot})^T,$$

$$M = \begin{bmatrix} \frac{m_{11}}{m_{1}} & \cdots & \frac{m_{1T}}{m_{1}} \\ \vdots & \ddots & \vdots \\ \frac{m_{I1}}{m_{I}} & \cdots & \frac{m_{IT}}{m_{I}} \end{bmatrix}, \quad N = \begin{bmatrix} \frac{m_{11}}{m_{.1}} & \cdots & \frac{m_{I1}}{m_{.1}} \\ \vdots & \ddots & \vdots \\ \frac{m_{1T}}{m_{.T}} & \cdots & \frac{m_{IT}}{m_{.T}} \end{bmatrix}.$$

 $P_0 = MN, P_0^{\infty} = \lim_{n \to \infty} P_0^n.$

Определим вектор групповой поправки, как

$$G = \sum_{i=0}^{\infty} P_0^i (ML - P_0 K).$$

Индивидуальная поправка

- ullet J^i матрицу инциденций значений в i-й группе,
- ullet $\Lambda_{
 u_i}$ матрица размера u_i с элементами $rac{1}{n_{ij}}$
- ullet Λ_{iT} диагональная матрица с элементами $rac{1}{m_{it}}$
- $R_i = \Lambda_{\nu_i} J^i, P_i = R_i \Lambda_{iT} (J^i)^T, \pi(i) = \left(\frac{n_{i1}}{m_{i.}}, \dots, \frac{n_{i\nu_i}}{m_{i.}}\right)$.
- $\bullet \ U_i = \{x_{i \cdot t}\}_{t=1}^T, \ V_i = \{x_{ij \cdot t}\}_{j=1}^{\nu_i}$

Зададим последовательность $A_i(k) = P_i A_i(k-1)$, с начальным вектором $A_i(0) = R_i U_i - P_i V_i$. Определим вектор

индивидуальных поправок i-й группы как $H_i = \sum\limits_{k=1}^\infty A_i(k)$.

Утверждение [Н.П. Алексеева, 2012,2017]

Пусть $y_{ijt}=x_{ijt}-x_{ij.}+H_{ij}+G_i$, тогда

- $y_{ijt} = \beta_t + \gamma_{it} + \delta_{ijt},$
- $\delta_{ijt}=e_{ijt}-e_{ij.}+arepsilon_{ij}+\epsilon_i$, где $arepsilon_{ij},\epsilon_i$ случайные компоненты H_{ij},G_i соответственно.

Матричный вид модели

Определения

- \bullet $Y = (Y_{11}, ..., Y_{1T}, ..., Y_{I1}, ..., Y_{IT})^{\mathrm{T}}$, где Y_{it} вектор-строки с m_{it} компонентами $\{y_{ijt}\}_{i=1}^{m_{it}}$,
- $\Theta = (\beta_1, \gamma_{11}, ..., \gamma_{I1}, ..., \beta_{T-1}, \gamma_{1,T-1}, ..., \gamma_{I,T-1})$ вектор с I(T-1) компонентами,
- $\delta = (\delta_{11}, ..., \delta_{IT})^{\mathrm{T}}$, где δ_{it} вектор-строки с m_{it} компонентами.

Таким образом можем модель записать в матричном виде:

$$Y = H\Theta + \delta$$
,

где δ — вектор с ковариационной матрицей $\Sigma = \sigma^2 \Lambda$ [Н.П. Алексеева, 2017].

Матрица плана Н

Пусть $\iota = I-1, \tau = T-1.$

	β_1	γ_{11}	γ_{21}		$\gamma_{\iota 1}$		$\beta_{ au}$	$\gamma_{1, au}$	$\gamma_{2, au}$		$\gamma_{\iota, au}$
Y_{11}	1	1	0		0		0	0	0		0
:	:	:	:	:	:	:	:	:	:	:	:
$Y_{1\tau}$	0	0	0		0		1	1	0		0
Y_{1T}	-1	-1	0		0		-1	-1	0		0
:	:	:	:	:	:	:	:	:	÷	:	:
$\overline{Y_{I1}}$	1	-1	-1		-1		0	0	0		0
:	:	:	:	:	:	:	:	:	÷	÷	÷
$Y_{I au}$	0	0	0		0		1	-1	-1		-1
Y_{IT}	-1	-1	-1		-1		-1	-1	-1		-1

Статистика критерия

$$\hat{\Theta} = H(H^{\mathrm{T}}\Lambda^{-1}H)^{-1}H^{\mathrm{T}}\Lambda^{-1}Y,$$

- Строим матрицу плана H_b усеченной модели $y_{ijt}=\beta_t+\delta_{ijt}$ из столбцов H, соответствующих β ,
- ullet МНК-оценка параметров $\hat{eta} = (H_b^{
 m T} \Lambda^{-1} H_b)^{-1} (H_b)^{
 m T} \Lambda^{-1} Y$.

$$R_0 = (Y - H\hat{\Theta})^{\mathrm{T}} \Lambda^{-1} (Y - H\hat{\Theta}),$$

$$R_1 = (Y - H_b \hat{\beta})^{\mathrm{T}} \Lambda^{-1} (Y - H_b \hat{\beta}).$$

Утверждение

$$\mathbb{E}R_0 = \sigma^2(m_{..} - m_{.1} - I(T - 1)).$$

$$\mathbb{E}R_1 = \sigma^2(m_{..} - m_{.1} - T + 1) + \frac{\sum_{i=1}^{I} \sum_{t=1}^{T} m_{it} \gamma_{it}^2}{(I - 1)(T - 1)}.$$

Распределения квадратичных форм

Утверждение

Рассмотрим

$$R_0 = (Y - H\hat{\Theta})^{\mathrm{T}} \Lambda^{-1} (Y - H\hat{\Theta}),$$

$$R_1 = (Y - H_b \hat{\beta})^{\mathrm{T}} \Lambda^{-1} (Y - H_b \hat{\beta}),$$

$$f = \frac{(R_1 - R_0)/((T - 1)(I - 1))}{R_0/(m_{\cdot \cdot} - m_{\cdot 1} - I(T - 1))}.$$

Тогда

- $\frac{1}{\sigma^2}R_0 \sim \chi^2(m_{..} m_{.1} I(T-1))$,
- ullet $R_1 R_0$ и R_0 независимы. При верной $H_0: \gamma_{11} = ... = \gamma_{IT} = 0$
- $\frac{1}{\sigma^2}(R_1-R_0) \sim \chi^2((I-1)(T-1))$,
- $f \sim F((T-1)(I-1), m_{..} m_{.1} I(T-1)).$

Двухфакторная модель со случайными эффектами

Определение

$$x_{ijt} = \mu + a_i + e^1_{ij} + b_t + g_{it} + e_{ijt}$$
, где $i = 1..I, j = 1..\nu_i, t = 1..T$.

- μ генеральное среднее,
- ullet $a_i \sim N(0, \sigma_a^2)$ случайный эффект группы,
- ullet $b_t \sim N(0,\sigma_b^2)$ случайный эффект времени,
- ullet $e_{ij}^1 \sim N(0,\sigma_1^2)$ ошибки, вызванные разнообразием индивидов,
- ullet $g_{it}\sim N(0,\sigma_g^2)$ случайный эффект взаимодействия,
- $e_{ijt} \sim N(0, \sigma^2)$ общие ошибки наблюдений.

Отличия в проверке гипотез для случайных эффектов

Гипотеза

$$H_0: \sigma_g^2 = 0.$$

Утверждение

Рассмотрим

$$Q_e = (Y - H\hat{\Theta})^{\mathrm{T}} \Lambda^{-1} (Y - H\hat{\Theta}), Q_g = (Y - H_b \hat{\beta})^{\mathrm{T}} \Lambda^{-1} (Y - H_b \hat{\beta}).$$

Тогда

$$\mathbb{E}Q_e = \sigma^2(m_{..} - m_{.1} - I(T-1)),$$

$$\mathbb{E}Q_g = \sigma^2(m_{..} - m_{.1} - T + 1) + \frac{m_{..}}{(I-1)(T-1)}\sigma_g^2,$$

При верной $H_0:\sigma_g^2=0$ имеет место $\frac{(Q_g-Q_e)(m..-m_{.1}-I(T-1))}{Q_e((I-1)(T-1))}\sim F((I-1)(T-1),m..-m_{.1}-I(T-1)).$

Применения

- 280 наркозависимых пациентов,
- Индекс тяжести в двух временных точках,
- Группировка по методам лечения: препарат Налтрексон, плацебо и антидепрессанты.

Оценки эффектов взаимодействия:

		t_1	t_2
Naltrexone	Placebo	-0.007	0.019
Placebo	Placebo	-0.012	0.046
Naltrexone	Antide pressant	0.014	-0.067
Placebo	Antidepressant	0.005	-0.057

При проверке гипотезы $\sigma_g^2=0$ получаем p-value=0.059, таким образом нет оснований отвергать нулевую гипотезу со стандартным уровнем значимости.

Итоги

В рамках работы было выполнено следующее :

- Построена статистика для эффекта взаимодействия в случае пропущенных данных в модели со случайными эффектами,
- Произведена проверка статистик моделированием.