

Algebra relacional

Sergio Sánchez Curso Bases de datos Escuela de Informática

Fundamentos Matemáticos

Los Fundamentos de la matemática es el estudio de conceptos matemáticos básicos como números, figuras geométricas, conjuntos, funciones etc. y las estructuras fundamentales más complejas que forman. (fórmulas, teorías y sus modelos, algoritmos, etc.)

Teoría de Conjuntos

- Un conjunto es una agrupación, clase o colección de objetos denominados elementos del conjunto.
- La relación de pertenencia entre los elementos y los conjuntos siempre es perfectamente discernible, en otras palabras, si un objeto pertenece a un conjunto o no, siempre puede calificarse como verdadero o falso.
- Un conjunto se puede determinar de dos maneras: por extensión y por compresión.

Relación y Función

En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Recorrido o Rango, de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.

Relación y Función

- Por su parte, una Función es una relación a la cual se añade la condición de que a cada valor del Dominio le corresponde uno y sólo un valor del Recorrido.
- El dominio de una relación es el conjunto de preimágenes; es decir, el conjunto formado por los elementos del conjunto de partida que están relacionados.
- Al conjunto de imágenes, esto es, elementos del conjunto de llegada que están relacionados, se le denomina recorrido o rango.

- Sea A = {1, 2, 3, 4} y B = {4, 5, 6, 7, 8} y R la relación definida de A en B determinada por la regla "y es el doble de x" o "y = 2 x", encontrar dominio y rango de la relación.
- Los pares que pertenecen a la relación
- R (y = 2x) son solo: $R = \{(2, 4), (3, 6), (4, 8)\}$
- En esta relación vemos que: "4 es el doble de 2"; esto es, "4 es la imagen de 2 bajo R", dicho de otro modo, "2 es preimagen de 4".
- Así, el dominio y rango son:

$$D = \{2, 3, 4\} \qquad Rg = \{4, 6, 8\}$$

Algebra Relacional

- Introducción
 - Lenguajes de acceso en BDR
 - Álgebra Relacional
 - Lenguaje procedimental (se indica qué y cómo obtenerlo)
 - Cálculo Relacional
 - Lenguaje no procedimental (se indica qué pero no cómo obtenerlo)
 - Dos tipos
 - Orientado a Tuplas
 - Orientado a Dominios
 - Álgebra y Cálculo Relacional son equivalentes en poder expresivo
 - Lenguajes de Usuario
 - SQL (Structured Query Language), basado en álgebra relacional
 - · QBE (Query By Example), basado en cálculo relacional

Cálculo Relacional de Tuplas

- Es un lenguaje de consulta no procedimental
- Describe la información deseada sin dar un procedimiento específico para obtenerla.
- Una consulta en el CRT se expresa como {t / P(t)}
- es decir, el conjunto de todas las tuplas t, tal que elpredicado P, es verdadero para t.

Cálculo Relacional de Tuplas

- Ejemplos
- Dadas las relaciones r y s:
- la **unión** se expresa

$$\{ t / r(t) \vee s(t) \}$$

- es decir, el conjunto de tuplas t tales que t
- está en r **ó** en s

Cálculo Relacional de Dominios

- Usa variables de dominio que toman valores del dominio de un atributo.
- Una expresión en el CRD es de la forma $\{< x1,x2,...,n > | P(x1,x2,...,xn)\}$
- donde
- x1, x2, ..., xn representan variables de dominio
- P es una fórmula compuesta por átomos

Cálculo Relacional de Dominios

- Consultas de ejemplo
- Encontrar nombre de sucursal, número de préstamo, nombre de cliente y cantidad de préstamos mayores de 1200 dólares.

 $\{<$ b,I,c,a> / <b,I,c,a> \in préstamo \land a>1200 $\}$

Algebra Relacional

- Definición
 - Conjunto cerrado de operaciones
 - Actúan sobre relaciones
 - Producen relaciones como resultados
 - Pueden combinarse para construir expresiones más complejas

Operadores Básicos

- Unión
- Diferencia
- Producto Cartesiano
- Selección
- Proyección

Son operacionalmente completos, permiten expresar cualquier consulta a una BDR

Operadores Derivados

- Intersección
- •Join
- División
- Asociación
- •No añaden nada nuevo
- •Se forman combinando los operadores básicos
- ·Son útiles en determinadas consultas

Unión

$\rightarrow R \cup S$

- La unión de dos relaciones R y S, es otra relación que contiene las tuplas que están en R, o en S, o en ambas, eliminándose las tuplas duplicadas
- R y S deben ser unión-compatible, es decir, definidas sobre el mismo conjunto de atributos

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros 🔾 Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
•	María	25
421	Jorge	48

Diferencia

- $\rightarrow R S$
 - La diferencia de dos relaciones R y S, es otra relación que contiene las tuplas que están en la relación R, pero no están en S
 - R y S deben ser unión-compatible

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

E#	Nombre	Edad
322	Rosa María	37 25
_	Iviaiia	20

Jefes - Ingenieros

E#	Nombre	Edad
421	Jorge	48

Producto Cartesiano

$\rightarrow R \times S$

 Define una relación que es la concatenación de cada una de las filas de la relación R con cada una de las filas de la relación S

Ingenieros

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Departamentos

D#	Descrip
D1	Central
D3	I+D

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320 320 322	José José Rosa Rosa	D1 D1 D3	RX338A PY254Z RX338A PY254Z	21 32 21 32

Ingenieros X Departamentos

E#	Nombre	D#	DD	Descrip
320	José	D1	D1	Central
320	José	$\mathbf{D1}$	D_3	I+D
322	Rosa	$\mathbf{D}3$	D1	Central
•	Rosa	D3	D3	I+D

Selección

- → ∂ predicado (R)
 - Es un operador unario
 - Define una relación con los mimos atributos que R y que contiene solo aquellas filas de R que satisfacen la condición especificada (predicado)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	Maria	25

$\sigma_{\text{edad}>=35}$ (Ingenieros)

E#	Nombre	Edad
322	Rosa	37

σ _{edad>=45} (Ingenieros)

E#	Nombre	Edad

Proyección

- Π col1, . . . , coln(R)
 - Es un operador unario
 - Define una relación que contiene un subconjunto vertical de R con los valores de los atributos especificados, eliminando filas duplicadas en el resultado

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
•	María	25
•	José	29

π_{Nombre,Edad} (Ingenieros)

Nombre	Edad
José	34
Rosa	37
María	25
José	29

π_{Nombre}(Ingenieros)

Nombre
José
Rosa
María

Intersección

$R \cap S$

- Define una relación que contiene el conjunto de todas las filas que están tanto en la relación R como en S
- R y S deben ser unión-compatible
- Equivalencia con operadores básicos
 - $R \cap S = R (R S)$

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320 421	José Jorge	34 48

Ingenieros ∩ Jefes

E#	Nombre	Edad
320	José	34

División o cociente

- ► R ÷ S
 - Define una relación sobre el conjunto de atributos C, incluido en la relación R, y que contiene el conjunto de valores de C, que en las tuplas de R están combinadas con cada una de las tuplas de S
 - Condiciones
 - grado(R) > grado (S)
 - conjunto atributos de S Ì conjunto de atributos de R
 - Equivalencia con operadores básicos
 - $X1 = \pi c(R)$; $X2 = \pi c((S X X 1) R)$; X = X1 X2

R1	E#	Proyecto
	320	RX338A
	320	PY254Z
	•	RX338A
	323	NC168T
	•	PY254Z
	•	PY254Z
	324	NC168T

R2 Proyecto RX338A PY254Z E# 320 323

Ejemplo división o cociente

Sean R y S, y Q = $R \div S$

R(A, B)

S(B)

Q(A)

a1 b1

b1

→

a2

a1 b2

b2

a2 b1

b3

a2 b2

a2 b3

a2 b4

a3 b1

a3 b3

Join

- Unión Natural (Natural Join)
 - R |X| S ó R * S
 - El resultado es una relación con los atributos de ambas relaciones y se obtiene combinando las tuplas de ambas relaciones que tengan el mismo valor en los atributos comunes
 - Normalmente la operación de join se realiza entre los atributos comunes de dos tablas que corresponden a la clave primaria de una tabla y la clave foránea correspondiente de la otra tabla
 - Método∂
 - Se realiza el producto cartesiano R x S
 - Se seleccionan aquellas filas del producto cartesiano para las que los atributos comunes tengan el mismo valor
 - Se elimina del resultado una ocurrencia (columna) de cada uno de los atributos comunes
 - Equivalencia con operadores básicos
 - R/X/F S = sF(R C S)

Join

- Outer Join
- Es una variante del Join en la que se intenta mantener toda la información de los operandos, incluso para aquellas filas que no participan en el Join
- Se "rellenan con nulos" las tuplas que no tienen correspondencia en el Join
- Tres variantes
 - Left
 - se tienen en cuenta todas las filas del primer operando
 - Right
 - · se tienen en cuenta todas las filas del segundo operando
 - Full
 - · se tienen en cuenta todas las filas de ambos operando

Join

R1

E#	Nombre	D#
320	José	D1
322	Rosa	\mathbf{D}_3
•	María	D3
•	José	D 5

R2

D#	Descrip
D1	Central
D3	I+D
D4	Ventas

R1 * R2

E#	Nombre	D#	Descrip
320	José	D1	Central
322	Rosa	D3	I+D
•	María	D 3	I+D

R1 * LEFT R2

E#	Nombre	D#	Descrip
320	José	D1	Central
322	Rosa	D3	I+D
•	María	D3	I+D
•	José	D 5	null

R1 * RIGHT R2

E#	Nombre	D#	Descrip
•	José	D1	Central
322	Rosa	D3	I+D
•	Maria	D3	I+D
null	null	D4	Ventas

R1 * _{FULL} R2

E#	Nombre	D#	Descrip
320	José	D1	Central
322	Rosa	D3	I+D
•	María	D3	I+D
•	José	D5	null
null	null	D4	Ventas

Asociación

- Asociación o Theta Join (q-Join)
 - R /X/F S ó R * F S
 - Define una relación que contiene las tuplas que satisfacen el predicado F en el producto cartesiano de R y S
 - El predicado F es de la forma R.ai q S.bi donde q representa un operador de comparación (<, ≤, >, ≥, =, ≠)
 - El predicado no tiene por que definirse sobre atributos comunes
 - Equivalencia con operadores básicos
 - $R/X/FS = \sigma F(RXS)$
 - Equijoin
 - Si el predicado F contiene únicamente el operador de igualdad

Asignaturas

CodA	NombreA	Precio
1	Program.	15000
2	Dibujo	20000
3	Inglés	18000

Alumnos

Nmat	Nombre	Apellidos	Domicilio	Telefono
0338	Ana	Pérez Gómez	C / Julio nº 96	1112233
0254	Rosa	López López	C/ Verano s/n	1113344
0168	Juan	García García	C/ Playa nº 1	1114455

Notas

Nmat	CodA	Conv	Nota
0338	1	Feb 02	8
0254	2	Feb 02	5
0168	2	Feb 02	3
0338	2	Feb 02	5
0338	3	Jun 02	7
0254	1	Jun 02	6
0168	1	Jun 02	9
0168	3	Jun 02	5

- Obtener los apellidos y teléfono de los alumnos de nombre Rosa
 - πapellidos, teléfono (σnombre='Rosa'(Alumnos))

Apellidos	Telefono	
López López	1113344	

- Dbtener las notas obtenidas en la asignatura de Inglés
 - πnombre, apellidos, nota (σnombreA='Ingles'(Alumnos*Notas*Asignaturas))

Nombre	Apellidos	Nota
Ana	Pérez Gómez	7
Juan	García García	5

- Obtener los alumnos que figuren matriculados en todas las asignaturas
 - ΠΝmat,codA (Notas) ; ÷ πcodA (Asignaturas)

- ·Ó
 - πnombre, apellidos, (Alumnos * (πNmat,codA (Notas) ÷ πcodA (Asignaturas)))

Nombre	Apellidos
Ana	Pérez Gómez

- Obtener los alumnos que figuren matriculados en las asignaturas de Inglés y Dibujo
 - πNmat (snombreA='Ingles' (Asignaturas) *
 Alumnos) ∩
 - π Nmat (snombreA=''Dibujo' (Asignaturas) *
 Alumnos)

Obtener los alumnos que no han suspendido ninguna asignatura

0338

• π Nmat (σ nota>=5 (Notas)) – π Nmat (σ nota<5 (Notas))

Realizar ejemplos en clase

FIN