Eigenvalue Calculation - Report

Manognya Kundarapu - EE24BTECH11037

1) **Introduction:** The Eigenvalues are the special set of scalars associated with the system of linear equations. For a square matrix A, an eigenvalue λ is a scalar that satisfies the equation:

A**v** = λ **v**, **v** is a non-zero vector called the eigenvector associated with λ . Some of the key applications of eigenvalues:

- a) In dynamical systems, eigenvalues determine stability. Used in control systems and vibration analysis .
- b) These are critical for diagonalizing matrices.
- c) In data science and machine learning, eigenvalues help identify the most significant features of data.
- 2) Chosen Algorithm: The QR algorithm is a powerful numerical method for finding the eigenvalues of a square matrix. It relies on QR decomposition and QR iteration. QR decomposition:

It is a matrix factorization method that expresses a given square matrix A as:

A = OR

Q is an orthogonal matrix, R is an upper triangular matrix. The decomposition can be composed using

- →Gram-Schmidt orthogonalization.
- →Householder reflections
- →Givens rotations

QR Iteration Algorithm:

It basically applies the QR decomposition iteratively. Algorithm steps:

- i) Start with $A_0 = A$, A is input matrix.
- ii) Compute $A_k = Q_k R_k$, the QR decomposition, from the k_{th} step.
- iii) Compute the next iterate as $A_{K+1} = R_k Q_k$. Continue the iteration until A_k converges to a form where its diagonal elements approximate the eigenvalues of A.

Convergence:

- \rightarrow The QR algorithm typically converges to a form where the matrix A_k becomes upper triangular, with its diagonal elements representing the eigenvalues of A.
- \rightarrow The convergence rate depends on the separation of the eigenvalues of A.

Shifts and Improved Convergence:

The basic QR algorithm can be slow, especially for matrices with closely spaced eigenvalues. Shifts are used to accelerate convergence.

A **shift** modifies the QR iteration to focus on a specific eigenvalue. Instead of working with A_k , a shifted matrix $A_k - \mu I$ is used, where μ is the shift.

Shifted QR Algorithm:

 \rightarrow Choose a shift: Select μ , typically an eigenvalue estimate (e.g., the bottom-right entry of A_k).

1

 \rightarrow Shift the matrix: Compute the QR decomposition of $A_k - \mu I$ as $(A_k - \mu I) = Q_k R_k$. \rightarrow Update the matrix: Form the next iterate:

$$A_{k+1} = R_k Q_k + \mu I$$

→Repeat: Iterate until convergence.

How shifts improve convergence:

- i) Better eigenvalue separation: By focusing the iteration on specific eigenvalues, shifts help the algorithm converge faster for poorly separated eigenvalues.
- ii) Reduction of subdominant terms: Shifts minimize the contribution of less significant eigenvalue terms in the iterations, accelerating convergence.
- iii) Wilkinson shift: A common choice for the shift μ is based on a more refined eigenvalue estimate, such as the eigenvalues of the $2x^2$ trailing principal submatrix of A_k .

The QR algorithm iteratively decomposes a matrix and reassembles it to converge to its eigenvalues. Shifts significantly improve the convergence by targeting specific eigenvalues and reducing computational overhead, making the method both robust and efficient for a wide range of applications in numerical linear algebra.

PROS: Suitable for finding all eigenvalues of a matrix, often converges faster, also handles the complex values.

CONS: Requires some other transformations to improve efficiency and implementation is often complex.

- 3) **Time complexity:** The QR algorithm is $O(n^3)$ for each iteration without optimization. Despite its theoretical time complexity of $O(n^3)$, it becomes faster when enhanced with shifts. Steps:
 - \rightarrow QR decomposition: The QR decomposition itself requires $O(n^3)$ for a general dense matrix using algorithms like Householder reflections.
 - \rightarrow Matrix multiplication: The subsequent R_kQ_k multiplication also requires $O(n^3)$
 - \rightarrow Thus, each iteration is $O(n^3)$, and the total complexity depends on the number of iterations required for convergence, which is typically manageable for well-behaved matrices. With shifts, the number of iterations can often be drastically reduced.
 - →The QR algorithm, particularly with shifts, provides highly accurate eigenvalues for symmetric and general matrices. This is essential when precision is critical.
- 4) Comparison with other algorithms:
 - \rightarrow **Power and Inverse Iteration Methods,** $O(n^2)$: These are faster but provide only one eigenvalue at a time and require a good initial guess.
 - \rightarrow **Jacobi Method** $O(n^4)$: Simpler to implement but slower for larger matrices.
 - \rightarrow **Divide and Conquer** $O(n^3)$: Similar complexity but less straightforward and not as widely implemented.
 - \rightarrow Lanczos and Arnoldi $O(k \cdot n^2)$: Effective for sparse matrices or approximating a subset of eigenvalues, but not as general-purpose.

Why OR Algorithm?

(a) Efficiency for Moderate Matrix Sizes:

For matrices with moderate dimensions (e.g., $n \le 1000$), the $O(n^3)$ complexity is

feasible on modern computational systems. Many real-world applications fall within this range.

(b) Accuracy:

The QR algorithm, particularly with shifts, provides highly accurate eigenvalues for symmetric and general matrices. This is essential when precision is critical.

(c) General Applicability:

The QR algorithm works for a wide range of matrices, making it a robust choice for assignments where the matrix structure (e.g., symmetry, sparsity) might not be guaranteed.

Therefore, QR Algorithm achieves a favorable balance between computational effort and accuracy, justifying its use in this context.