Teoria dei linguaggi

Indice

1. Introduzione	2
1.1. Storia	
1.2. Ripasso	
2. Gerarchia di Chomsky	3
2.1. Rappresentazione	
2.2. Grammatiche	
2.2.1. Regole di produzione	3
2.2.2. Linguaggio generato da una grammatica	3
2.3. Gerarchia	
2.4. Potenza computazionale	5

1. Introduzione

1.1. Storia

Un **linguaggio** è uno strumento di comunicazione usato da membri di una stessa comunità, ed è composto da due elementi:

- sintassi: insieme di simboli (o parole) che devono essere combinati con una serie di regole;
- semantica: associazione frase-significato.

Per i linguaggi naturali è difficile dare delle regole sintattiche: vista questa difficoltà, nel 1956 **Noam Chomsky** introduce il concetto di **grammatiche formali**, che si servono di regole matematiche per la definizione della sintassi di un linguaggio.

Il primo utilizzo dei linguaggi risale agli stessi anni con il **compilatore Fortran**, ovvero un traduttore da un linguaggio di alto livello ad uno di basso livello, ovvero il *linguaggio macchina*.

1.2. Ripasso

Un **alfabeto** è un insieme *non vuoto* e *finito* di simboli, di solito indicato con Σ o Γ .

Una **stringa** (o **parola**) è una sequenza *finita* di simboli appartenenti a Σ .

Data una parola w, possiamo definire:

- |w| numero di caratteri di w;
- $|w|_a$ numero di occorrenze della lettera $a \in \Sigma$ in w.

Una parola molto importante è la **parola vuota** ε , che, come dice il nome, ha simboli, ovvero $|\varepsilon| = 0$.

L'insieme di tutte le possibili parole su Σ è detto Σ^* .

Un'importante operazione sulle parole è la **concatenazione** (o *prodotto*), ovvero se $x, y \in \Sigma^*$ allora la concatenazione w è la parola w = xy.

Questo operatore di concatenazione:

- non è commutativo, infatti $w_1 = xy \neq yz = w_2$ in generale;
- è associativo, infatti (xy)z = x(yz).

La struttura $(\Sigma^*, \cdot, \varepsilon)$ è un **monoide** libero generato da Σ .

Vediamo ora alcune proprietà delle parole:

- **prefisso**: x si dice *prefisso* di w se esiste $y \in \Sigma^*$ tale che xy = w;
 - **prefisso proprio** se $y \neq \varepsilon$;
 - prefisso non banale se $x \neq \varepsilon$;
 - il numero di prefissi è uguale a |w| + 1.
- **suffisso**: y si dice *suffisso* di w se esiste $x \in \Sigma^*$ tale che xy = w;
 - suffisso proprio se $x \neq \varepsilon$;
 - suffisso non banale se $y \neq \varepsilon$;
 - il numero di suffissi è uguale a |w| + 1.
- fattore: y si dice fattore di w se esistono $x,z\in \Sigma^*$ tali che xyz=w;
 - il numero di fattori è al massimo $\frac{|w| \cdot |w+1|}{2} + 1$.
- sottosequenza: x si dice sottosequenza di w se x è ottenuta eliminando 0 o più caratteri da w;
 - un fattore è una sottosequenza ordinata.

Un **linguaggio** L definito su un alfabeto Σ è un qualunque sottoinsieme di Σ^* .

2. Gerarchia di Chomsky

2.1. Rappresentazione

Vogliamo rappresentare in maniera finita un oggetto infinito come un linguaggio.

Abbiamo a nostra disposizione due modelli molto potenti:

- **generativo**: date delle regole, si parte da *un certo punto* e si generano tutte le parole di quel linguaggio con le regole date; parleremo di questi modelli tramite le *grammatiche*;
- **riconoscitivo**: si usano dei *modelli di calcolo* che prendono in input una parola e dicono se appartiene o meno al linguaggio.

Considerando il linguaggio sull'alfabeto $\{(,)\}$ delle parole ben bilanciate, proviamo a dare due modelli:

- generativo: a partire da una sorgente S devo applicare delle regole per derivate tutte le parole appartenenti a questo linguaggio;
 - la parola vuota ε è ben bilanciata;
 - se x è ben bilanciata, allora anche (x) è ben bilanciata;
 - se x, y sono ben bilanciate, allora anche xy sono ben bilanciate.
- *riconoscitivo*: abbiamo una *black-box* che prende una parola e ci dice se appartiene o meno al linguaggio (in realtà potrebbe non terminare mai la sua esecuzione);
 - #(=#);
 - per ogni prefisso, $\#(\geq \#)$.

2.2. Grammatiche

Una **grammatica** è una tupla (V, Σ, P, S) , con:

- *V insieme finito e non vuoto* delle **variabili**; queste ultime sono anche dette *simboli non terminali* e sono usate durante il processo di generazione delle parole del linguaggio;
- Σ insieme finito e non vuoto dei **simboli terminali**; questi ultimi appaiono nelle parole generate, a differenza delle variabili che invece non possono essere presenti;
- *P insieme finito* delle **regole di produzione**;
- $S \in V$ simbolo iniziale o assioma, è il punto di partenza della generazione.

2.2.1. Regole di produzione

Soffermiamoci sulle regole di produzione: la forma di queste ultime è $\alpha \longrightarrow \beta$, con $\alpha \in (V \cup \Sigma)^+$ e $\beta \in (V \cup \Sigma)^*$.

Una regola di produzione viene letta come "se ho α allora posso sostituirlo con β ".

L'applicazione delle regole di produzione è alla base del **processo di derivazione**: esso è formato infatti da una serie di **passi di derivazione**, che permettono di generare una parola del linguaggio.

Diciamo che x deriva y in un passo, con $x, y \in (V \cup \Sigma)^*$, se e solo se $\exists (\alpha \longrightarrow \beta) \in P$ e $\exists \eta, \delta \in (V \cup \Sigma)^*$ tali che $x = \eta \alpha \delta$ e $y = \eta \beta \delta$.

Il passo di derivazione lo indichiamo con $x \Rightarrow y$.

La versione estesa afferma che x deriva y in $k \ge 0$ passi, e lo indichiamo con $x \stackrel{k}{\Rightarrow} y$, se e solo se $\exists x_0,...,x_k \in (V \cup \Sigma)^*$ tali che $x=x_0,x_k=y$ e $x_{i-1} \Rightarrow x_i \ \forall i \in [1,k]$.

Se non ho indicazioni sul numero di passi k posso scrivere:

- $x \underset{+}{\overset{*}{\Rightarrow}} y$ per indicare un numero generico di passi, e questo vale se e solo se $\exists k \geq 0$ tale che $x \underset{k}{\overset{k}{\Rightarrow}} y$;
- $x \stackrel{+}{\Rightarrow} y$ per indicare che serve almeno un passo, e questo vale se e solo se $\exists k > 0$ tale che $x \stackrel{k}{\Rightarrow} y$.

2.2.2. Linguaggio generato da una grammatica

Indichiamo con L(G) il linguaggio generato dalla grammatica G, ed è l'insieme $\{w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w\}$.

Due grammatiche G_1, G_2 sono **equivalenti** se e solo se $L(G_1) = L(G_2)$.

Se consideriamo l'esempio delle parentesi ben bilanciate, possiamo definire una grammatica per questo linguaggio con le seguenti regole di produzione:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow (S)$;
- $S \longrightarrow SS$.

Vediamo un esempio più complesso. Siano:

- $\Sigma = \{a, b, c\};$
- $V = \{S, B\};$
- $P = \{S \longrightarrow aBSc \mid abc, Ba \longrightarrow aB, Bb \longrightarrow bb\}.$

Questa grammatica genera il linguaggio $L(G)=\{a^nb^nc^n\mid n\geq 1\}$: infatti, il "caso base" genera la stringa abc, mentre le iterazioni "maggiori" generano il numero di a e c corretti, con i primi che vengono ordinati prima di inserire anche il numero corretto di b.

2.3. Gerarchia

Negli anni 50 Noam Chomsky studia la generazione dei linguaggi formali e crea una **gerarchia di grammatiche formali**. La classificazione delle grammatiche viene fatta in base alle regole di produzione che definiscono la grammatica.

Grammatica	Regole	Modello riconoscitivo
Tipo 0.	Nessuna restrizione, sono il tipo più generale.	Macchine di Turing.
Tipo 1, dette context- sensitive o dipendenti dal contesto.	Se $(\alpha \longrightarrow \beta) \in P$ allora $ \beta \ge \alpha $, ovvero devo generare parole che non siano più corte di quella di partenza. Sono dette dipendenti dal contesto perché ogni regola $(\alpha \longrightarrow \beta) \in P$ può essere riscritta come $\alpha_1 A \alpha_2 \longrightarrow \alpha_1 B \alpha_2$, dove α_1 e α_2 rappresentano il contesto.	Automi limitati linearmente.
Tipo 2, dette context-free o libere dal contesto.	Le regole in P sono del tipo $\alpha \longrightarrow \beta$, con $\alpha \in V$ e $\beta \in (V \cup \Sigma)^+$.	Automi a pila.
Tipo 3, dette grammatiche regolari	Le regole in P sono del tipo $A \longrightarrow aB$ oppure $A \longrightarrow a$, con $A, B \in V$ e $a \in \Sigma$. Vale anche il simmetrico.	Automi a stati finiti.

Nella figura successiva vediamo una rappresentazione grafica della gerarchia di Chomsky: notiamo come sia una gerarchia propria, ovvero

$$L_3 \subset L_2 \subset L_1 \subset L_0$$
,

ma questa gerarchia non esaurisce comunque tutti i linguaggi possibili.

Sia $L \subseteq \Sigma^*$, allora L è di tipo i, con $i \in [0,3]$, se e solo se esiste una grammatica G di tipo i tale che L = L(G), ovvero posso generare L a partire dalla grammatica di tipo i.

2.4. Potenza computazionale

Se una grammatica é di tipo 1 allora possiamo costruire una macchina che sia in grado di dire, in tempo finito, se una parola appartiene o meno al linguaggio generato da quella grammatica.

Teorema 2.4.1 Una grammatica di tipo 1 è **decidibile**.

Dimostrazione

Siano G una grammatica di tipo 1 e $w \in \Sigma^*$, ci chiediamo se $w \in L(G)$.

Sia h=|w|, ma allora essendo G di tipo 1 ogni forma sentenziale che compare in P non deve superare la lunghezza h, altrimenti potremmo ridurre il numero di caratteri presenti nella forma sentenziale e andare contro la definizione di grammatica di tipo 1.

 $\operatorname{Sia} T_i = \left\{ \gamma \in (V \cup \Sigma)^{\leq n} \mid S \stackrel{\leq i}{\Leftrightarrow} \gamma \right\} \text{ l'insieme di tutte le parole generate dalla grammatica } G \text{ che } \right\}$

hanno al massimo n caratteri e sono generate in massimo i passi di derivazione.

Data questa definizione di T_i possiamo affermare che:

- $\begin{array}{l} \bullet \ T_0 = \{S\}; \\ \bullet \ T_i = T_{i-1} \cup \Big\{\gamma \in (V \cup \Sigma)^{\leq n} \ | \ \exists \beta \in T_{i-1} \ \ \text{tale che } \beta \Rightarrow \gamma \Big\}. \end{array}$

Per come sono costruiti gli insiemi T_i possiamo affermare che

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq (V \cup \Sigma)^{\leq n}$$
,

ma quest'ultimo insieme è un insieme finito.

Prima o poi non si potranno più generare delle stringhe, ovvero $\exists k$ tale che $T_{k-1} = T_k$.

Una volta individuato questo valore k basta controllare se $w \in T_k$.

Questo non vale invece per le grammatiche di tipo 0: infatti, queste sono dette semidecidibili, in quanto un sistema riconoscitivo potrebbe non terminare mai l'algoritmo di riconoscimento e finire quindi in un loop infinito.

Teorema 2.4.2 Una grammatica di tipo 0 è **semidecidibile**.

Dimostrazione

Siano G una grammatica di tipo 0 e $w \in \Sigma^*$, ci chiediamo se $w \in L(G)$.

Non essendo G di tipo 1 non abbiamo il vincolo $|\beta| \ge |\alpha|$ nelle regole di produzione.

Sia $U_i = \left\{ \gamma \in (V \cup \Sigma)^* \mid S \stackrel{\leq i}{\Rightarrow} \gamma \right\}$ l'insieme di tutte le parole generate dalla grammatica G in massimo i passi di derivazione.

Data questa definizione di ${\cal U}_i$ possiamo affermare che:

- $U_0 = \{S\};$
- $U_i = U_{i-1} \cup \{ \gamma \in (V \cup \Sigma)^* \mid \exists \beta \in U_{i-1} \text{ tale che } \beta \Rightarrow \gamma \}.$

Per come sono costruiti gli insiemi U_i possiamo affermare che

$$U_0 \subseteq U_1 \subseteq ... \subseteq (V \cup \Sigma)^*$$
,

ma quest'ultimo insieme è un insieme infinito.

Vista questa caratteristica, nessuno garantisce l'esistenza di un k tale che $U_{k-1}=U_k$ e quindi non si ha la certezza di terminare l'algoritmo di riconoscimento.

Le grammatiche di tipo 0 generano i **linguaggi ricorsivamente enumerabili**: per stabilire se $w \in L(G)$ devo *elencare* con un programma tutte le stringhe del linguaggio e controllare se w compare in esse.

Questa operazione di elencazione in poche parole è la generazione degli insiemi U_i , che poi vengono ispezionati per vedere se la parole w è presente o meno.