Anal elméleti kérdések

1.

2.6. Az algebra alaptétele

2.10. Tétel A komplex számok körében minden n-edfokú ($n \in \{1, 2, 3, ...\}$), $a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0$ alakú egyenletnek ($a_i \in \mathbb{C}$, $a_n \neq 0$) pontosan n darab gyöke van, amennyiben az m-szeres gyököket multiplicitással (azaz m-szer) számoljuk.

2.

1.3.1. A határérték egyértelműsége

The
$$\lim_{n\to\infty} a_n = A$$
 is $\lim_{n\to\infty} a_n = B$, addor $A = B$.

(B) Indirekt módon bizonyítunk³. Tehát feltesszük, hogy $A \neq B$, például A < B. Legyen d = B - A > 0 és $\varepsilon = \frac{d}{3} > 0$!

A számsorozat konvergenciája miatt létezik $N_1(\varepsilon)$ és $N_2(\varepsilon)$, hogy

$$A - \varepsilon < a_n < A + \varepsilon$$
, ha $n > N_1(\varepsilon)$,

$$B - \varepsilon < a_n < B + \varepsilon$$
, ha $n > N_2(\varepsilon)$.

De ekkor $\forall n > \max \{N_1(\varepsilon), N_2(\varepsilon)\}$ esetën:

$$a_n < A + \varepsilon < B - \varepsilon < a_n$$

Ez pedig ellentmodás, tehát nem igaz, hogy $A \neq B$, vagyis A = B.

- T_1 $(a_n \rightarrow A) \land (b_n \rightarrow B) \implies (a_n + b_n \rightarrow A + B)$
- (B) Tehát be kell látni, hogy

$$c_\alpha = a_\alpha + b_\alpha \rightarrow C = A + B$$
,

Fritzné, Kónya, Pataki, Tasnádi

tankonyvtar.ttk.bme.ha

24

azaz $\forall \varepsilon > 0$ -hoz $\exists N(\varepsilon) \in \mathbb{N}$, hogy

$$|c_n - C| < \varepsilon$$
, ha $n > N(\varepsilon)$.

Legyen $\varepsilon^* = \frac{\varepsilon}{2}$! Az a_n és b_n számsorozatok konvergenciája miatt

$$\exists N_1(\varepsilon^*) = N_1\left(\frac{\varepsilon}{2}\right) \land N_2(\varepsilon^*) = N_2\left(\frac{\varepsilon}{2}\right), \text{hogy}$$

$$\begin{split} |a_n - A| < \varepsilon^* = \frac{\varepsilon}{2} \,, \quad \forall \, n > N_1 \left(\varepsilon^* \right) \\ \text{\'es} \quad |b_n - B| < \varepsilon^* = \frac{\varepsilon}{2} \,, \quad \forall \, n > N_2 \left(\varepsilon^* \right) \, \end{split} \qquad \Longrightarrow \quad \text{Ha} \ n \ > \ \max \left\{ N_1 \left(\varepsilon^* \right), N_2 \left(\varepsilon^* \right) \right\},$$

akkor

$$|c_n - C| = |(a_n + b_n) - (A + B)| =$$

 $= |(a_n - A) + (b_n - B)| \le |a_n - A| + |b_n - B| < \varepsilon^* + \varepsilon^* = 2\varepsilon^* = \varepsilon$
Tehát a keresett $N(\varepsilon) = \max \left\{ N_1 \left(\frac{\varepsilon}{2} \right), N_2 \left(\frac{\varepsilon}{2} \right) \right\}$

4.

 $\ \widehat{\mathbb{D}}$ A felülről korlátos H halmaz legkisebb felső korlátját szuprémumnak (felső határnak) nevezzük.

Jele: $\sup H$.

 \bigodot Az alulról korlátos Hhalmaz legnagyobb alsó korlátját infimumnak (alsó határnak) nevezzük.

Jele: $\inf H$.

5.

(D) (Torlódási pont (sűrűsödési pont, sűrűsödési érték):) $t \in \mathbb{R}$, ill. $t = \infty$, vagy $t = -\infty$ az (a_n) torlódási pontja, ha minden környezete a sorozat végtelen sok elemét tartalmazza

(Tehát létezik olyan (a_{n_r}) részsorozat, amely t-hez tart.)

 $(+\infty \text{ k\"ornyezetei } (P,\infty) \text{ alak\'uak, ahol } P \in \mathbb{R}. -\infty \text{ k\"ornyezetei } (-\infty, M) \text{ alak\'uak,}$ ahol $M \in \mathbb{R}$.)

6.

Átviteli elv:

$$\lim_{x \to x_0} f(x) = A \qquad \iff \qquad \forall x_n \to x_0 \text{-ra } f(x_n) \to A$$

$$x_n \in D_f$$

$$x_n \neq x_0$$

$$(P \text{ állítás})$$

$$(Q \text{ állítás})$$

7.

3.1.2. Végesben vett határértékek

1.
$$\lim_{x \to x_0} f(x) = A$$

2. $\lim_{x \to x_0 \to 0} f(x) = f(x_0 + 0) = A$
3. $\lim_{x \to x_0 \to 0} f(x) = f(x_0 - 0) = A$

$$\begin{cases}
1. & 0 < |x - x_0| < \delta \\ (x \in \hat{K}_{x_0, \delta})
\end{cases}$$
2. $0 < x - x_0 < \delta \\ (x_0 < x < x_0 + \delta)
\end{cases}$
3. $-\delta < x - x_0 < 0$

1.
$$\lim_{x \to x_0} f(x) = +\infty$$

2. $\lim_{x \to x_0 + 0} f(x) = +\infty$
3. $\lim_{x \to x_0 - 0} f(x) = +\infty$

$$\begin{cases}
\forall \Omega > 0 \text{-liez } \exists \delta(\Omega) > 0 \text{:} \\
f(x) > \Omega, \text{ ha}
\end{cases}$$

$$\begin{array}{ll} 1. & \lim_{x \to x_0} f(x) = -\infty \\ 2. & \lim_{x \to x_0 \to 0} f(x) = -\infty \\ 3. & \lim_{x \to x_0 \to 0} f(x) = -\infty \end{array} \end{array} \right\} \begin{array}{l} \forall \Omega > 0 \text{-hoz } \exists \delta(\Omega) > 0 \text{:} \\ f(x) < -\Omega, \text{ ha} \end{array} \left\{ \begin{array}{l} 1. & 0 < |x - x_0| < \delta \\ & (x \in \tilde{K}_{x_0,\delta}) \end{array} \right. \\ 2. & 0 < x - x_0 < \delta \\ & (x_0 < x < x_0 + \delta) \end{array} \right. \\ 3. & -\delta < x - x_0 < 0 \\ & (x_0 - \delta < x < x_0) \end{array}$$

1.
$$0 < |x - x_0| < \delta$$

 $(x \in \hat{K}_{x_0,\delta})$

2.
$$0 < x - x_0 < \delta$$

 $(x_0 < x < x_0 + \delta)$

3.
$$-\delta < x - x_0 < 0$$

 $(x_0 - \delta < x < x_0)$

1.
$$0 < |x - x_0| < \delta$$

 $(x \in \hat{K}_{m,\delta})$

2.
$$0 < x - x_0 < \delta$$

 $(x_0 < x < x_0 + \delta)$

3.
$$-\delta < x - x_0 < 0$$

 $(x_0 - \delta < x < x_0)$

1.
$$0 < |x - x_0| < \delta$$

 $(x \in \vec{K}_{x_0,\delta})$

2.
$$0 < x - x_0 < \delta$$

 $(x_0 < x < x_0 + \delta)$

3.
$$-\delta < x - x_0 < 0$$

 $(x_0 - \delta < x < x_0)$

3.1.3. Végtelenben vett határértékek

```
 \lim_{x \to \infty} f(x) = A \qquad \forall \varepsilon > 0 \text{-hox } \exists P(\varepsilon) > 0 : \qquad |f(x) - A| < \varepsilon, \text{ ha } x > P(\varepsilon)   \lim_{x \to -\infty} f(x) = A \qquad \forall \varepsilon > 0 \text{-hox } \exists P(\varepsilon) > 0 : \qquad |f(x) - A| < \varepsilon, \text{ ha } x < -P(\varepsilon)   \lim_{x \to \infty} f(x) = +\infty \qquad \forall \Omega > 0 \text{-hox } \exists P(\Omega) > 0 : \qquad f(x) > \Omega, \text{ ha } x > P(\Omega)   \lim_{x \to -\infty} f(x) = -\infty \qquad \forall \Omega > 0 \text{-hox } \exists P(\Omega) > 0 : \qquad f(x) < -\Omega, \text{ ha } x > P(\Omega)   \lim_{x \to -\infty} f(x) = +\infty \qquad \forall \Omega > 0 \text{-hox } \exists P(\Omega) > 0 : \qquad f(x) > \Omega, \text{ ha } x < -P(\Omega)   \lim_{x \to -\infty} f(x) = -\infty \qquad \forall \Omega > 0 \text{-hox } \exists P(\Omega) > 0 : \qquad f(x) < -\Omega, \text{ ha } x < -P(\Omega)   \lim_{x \to -\infty} f(x) = -\infty \qquad \forall \Omega > 0 \text{-hox } \exists P(\Omega) > 0 : \qquad f(x) < -\Omega, \text{ ha } x < -P(\Omega)
```

8.

ben, akkor minden f(a) és f(b) közé eső c érté

9.

I. tétele

az [a, b] (korlátos és zárt) intervallumon, akkor ott

T Weierstrass II. tétele:

Ha f folytonos [a,b]-ben, akkor ott felveszi az infimumát, ill. szuprémumát, tehát van minimuma és maximuma. Vagyis $\exists \alpha, \beta \in [a,b]$, hogy

Eritzné, Kónya, Pataki, Taszádi

tankonyvtar.ttk.bose Au

214

$$f(\alpha) = \sup\{f(x) : x \in [a, b]\}$$
 $\left(= \max_{x \in [a, b]} \{f(x)\} = \max f([a, b])\right)$
 $f(\beta) = \inf\{f(x) : x \in [a, b]\}$ $\left(= \min_{x \in [a, b]} \{f(x)\} = \min f([a, b])\right)$

10.

$$\bigcirc$$
 Legyen $K_{x_0,\delta} \subset D_f$

$$f'(x_0) := \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

f deriválható (differenciálható) x_0 -ban, ha a fenti határérték létezik és véges. Ekkor $f'(x_0) \in \mathbb{R}$ az f függvény x_0 pontbeli deriváltja (differenciálhányadosa).

11. Kérdés

12.

$$\begin{split} 3. & (f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x) \\ & \lim_{h \to 0} \frac{(f \cdot g)(x+h) - (f \cdot g)(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \\ & = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} = \\ & = \lim_{h \to 0} \left(\frac{f(x+h)g(x+h) - f(x)g(x+h)}{h} + \frac{f(x)g(x+h) - f(x)g(x)}{h} \right) = \\ & = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} g(x+h) + f(x) \frac{g(x+h) - g(x)}{h} \right) \\ & \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ & f'(x) & g(x) & f(x) & g'(x) \\ \end{split}$$

 $\lim_{h\to 0} g(x+h) = g(x)$ (határérték = helyettesítési érték) oka: g deriválható x-ben \implies g folytonos x-ben

13.

14.

ma (minimuma) van az értelmezési $\leq f(x_0) \ (f(x) \geq f(x_0)), \text{ ha } x \in K$

15.

 (T_2) Ha f differenciálható I-n:

- 1. f' monoton $n\tilde{o} \iff f$ konvex
- 2. f' monoton csökken ← f konkáv

17. Elégséges

$$orlátos \ és \ monoton \implies f \in R_{[a,b]}$$

$$f \in R_{[a,b]}$$

$$pont \ kiv\'etel\'evel \ folytonos \ [a,b]-n \implies$$

18.

19.

20.

21.