Line transect notation

Known constants and data:

k = number of lines

 I_j = length of j^{th} line, j=1,...,k

 $L = \Sigma I_i = \text{total line length}$

n = number of animals or clusters detected

 x_i = distance of i^{th} detected animal or cluster from the line, i=1,...,n

w = truncation distance for x

A = size of region of interest

a = area of "covered" region = 2wL

 s_i = size of ith detected cluster, i=1,...,n

Functions:

g(x) = detection function

f(x) = probability density function (pdf) of observed distances

f(0) = f(x) evaluated at 0 distance

Parameters:

N = population size / abundance of animals

 N_s = abundance of clusters

D = density = animals per unit area = N/A

 D_s = density of clusters

 μ = effective strip (half-)width

 P_a = probability of detecting an animal or cluster given it is in the covered area a

E(s) = mean size of clusters in the population

Point transect notation Known constants and data:

k = number of points

n = no. of animals or clusters detected

 r_i = distance of ith detected animal or cluster from the point, i = 1, ..., n

w = truncation distance for r

A= size of region of interest

a = size of covered region = $k\pi w^2$

 s_i = size of ith detected cluster, i = 1, ..., n

Functions:

g(r) = detection function

f(r) = probability density function (pdf)
of detection distances

h(r) = f'(r) = slope of pdf f(r)

h(0) = slope of pdf evaluated at r=0

Parameters:

D = density = animals per unit area

 D_s = density of clusters

 $N = \text{population size} = D \cdot A$

 ρ = effective radius = $\sqrt{2/h(0)}$

 $v = \text{effective area (per point)} = 2\pi/h(0)$

 P_a = prob. of detection of animal or cluster in the covered area a