Description of files included in the IIT Human Brain Atlas (v.3.1)

- <u>Summary</u>: The IIT Human Brain Atlas contains anatomical, DTI, and HARDI templates, probabilistic gray matter labeling, and files containing information about the quality of the templates. In addition, files that make the IIT Human Brain Atlas directly compatible with common neuroimaging tools such as FSL, TBSS, DTI-TK, ITK-SNAP, MRtrix etc. are provided.
- Matrix size: All files are available in two matrix sizes: 182x218x182 and 256x256x256. The spatial resolution is the same in both versions. The 256x256x256 is simply a zero-padded version of the 182x218x182 (the units for some of the files are different between versions; see details below). The origin of the 256x256x256 files is set to (0,0,0). The orientation of the 182x218x182 files is RPI and that of the 256x256x256 files is LPI.
- Space: The IIT Human Brain Atlas is in ICBM-152 space. More specifically, in FSL, the 182x218x182 files of the atlas are in MNI152, or MNI152_T1_1mm space.
- Naming: All files listed below are in 182x218x182 matrix size. The corresponding files in 256x256x256 matrix size are named the same way as the files in native matrix size with a "_256" suffix. For example, the FA volume of the mean DTI template in 182x218x182 matrix size is called "IITmean_FA.nii", and the same volume in 256x256x256 matrix size is called "IITmean_FA_256.nii". The *_256.nii files are not discussed separately in this document because they have the same contents as the corresponding files listed below.

1) Mean DTI template contains:

- IITmean_b0.nii: Average of the normalized b=0sec/mm² (mean T2-weighted)

images over all subjects.

- IITmean_colormap.tif: FA-weighted orientation color maps produced from the tensors of

the mean DTI template.

- IITmean cou.nii: Cone of uncertainty for the mean DTI template. (Produced based

on 100 mean tensor templates generated with a bootstrap

approach). (Units: degrees).

- IITmean_dw.nii: Average normalized mean DW images over all subjects.

- IITmean FA.nii: FA maps produced from the tensors of the mean DTI template.

- IITmean FA skeleton.nii: White matter skeleton derived from IITmean FA.nii, for use with

TBSS. This skeleton was thresholded at FA>0.25.

- IITmean_fastd.nii: Standard deviation of FA of the mean DTI template. (Produced

based on 100 mean tensor templates generated with a bootstrap

approach).

- IITmean L(1,2,3).nii: 1st, 2nd, and 3rd eigenvalues of the mean DTI template. (Units:

mm²/sec). (For the 256x256x256 version, Units: 10⁻³ mm²/sec).

- IITmean_lower_cingulum.nii: Mask of the inferior portion of the cingulum corresponding to

IITmean_FA.nii, for use with TBSS.

- IITmean tensor.nii: Full tensors of the mean DTI template. The matrix size of this file

is 182x218x182x6. (Units: mm²/sec). (The 256x256x256x6 version is compatible with DTI-TK, and has Units: 10⁻³ mm²/sec).

- IITmean tensor mask 256.nii: Binary mask corresponding to the tensor file of the mean DTI

template "IITmean_tensor_256.nii", for use in the non-linear

registration step of DTI-TK.

- IITmean_tr.nii: Trace maps produced from the tensors of the mean DTI

template. (Units: mm²/sec). (For the 256x256x256 version, Units:

10⁻³ mm²/sec).

- IITmean trstd.nii: Standard deviation of trace of the mean DTI template. (Produced

based on 100 mean tensor templates generated with a bootstrap approach). (Units: mm²/sec). (For the 256x256x256 version,

Units: 10⁻³ mm²/sec).

- IITmean tvdt scl.nii: Total variance of the diffusion tensor of the mean DTI template.

(Produced based on 100 mean tensor templates generated with

a bootstrap approach). (Units: $10^{-8} (\text{mm}^2/\text{sec})^2$).

- IITmean_V(1,2,3).nii: 1st, 2nd, and 3rd eigenvectors of the mean DTI template. The

dimensions of the three eigenvector files are 182x218x182x3. (For the 256x256x256 version of the atlas, the dimensions of the

three eigenvector files are 256x256x256x3).

- IITmean_(xx,yx,yy,zx,zy,zz).nii: The xx, yx, yy, zx, zy, zz tensor elements of the mean DTI

template. (Units: mm²/sec). (For the 256x256x256 version, Units:

10⁻³ mm²/sec).

- tbss 3 postreg iit(256): Script allowing use of the IIT Human Brain Atlas in TBSS. More

specifically, this script applies the nonlinear transformations.

- tbss 4 prestats iit(256): Script allowing use of the IIT Human Brain Atlas in TBSS. More

specifically, this script completes the final steps before statistical

analysis.

- tbss non FA iit(256): Script allowing use of the IIT Human Brain Atlas in TBSS. More

specifically, this script applies the nonlinear transformations and

projection parameters to non-FA data.

2) Median DTI template contains:

- IITmedian_colormap.tif: FA-weighted orientation color maps produced from the tensors

of the median DTI template.

- IITmedian_cou.nii: Cone of uncertainty for the median DTI template. (Produced

based on 100 median tensor templates generated with a

bootstrap approach). (Units: degrees).

- IITmedian FA.nii: FA maps produced from the tensors of the median DTI

template.

- IITmedian fastd.nii: Standard deviation of FA of the median DTI template.

(Produced based on 100 median tensor templates generated

with a bootstrap approach).

- IITmedian_L(1,2,3).nii: 1st, 2nd, and 3rd eigenvalues of the median DTI template. (Units:

mm²/sec). (For the 256x256x256 version, Units: 10⁻³ mm²/sec).

- IITmedian tr.nii: Trace maps produced from the tensors of the median DTI

template. (Units: mm²/sec). (For the 256x256x256 version,

Units: 10⁻³ mm²/sec).

- IITmedian_trstd.nii: Standard deviation of trace of the median DTI template.

(Produced based on 100 median tensor templates generated

with a bootstrap approach). (Units: mm²/sec). (For the

256x256x256 version, Units: 10⁻³ mm²/sec).

- IITmedian_tvdt_scl.nii: Total variance of the diffusion tensor of the median DTI

template. (Produced based on 100 median tensor templates generated with a bootstrap approach). (Units: 10⁻⁸(mm²/sec)²).

- IITmedian_V(1,2,3).nii: 1st, 2nd, and 3rd eigenvectors of the median DTI template. The

dimensions of the three eigenvector files are 182x218x182x3. (For the 256x256x256 version of the atlas, the dimensions of

the three eigenvector files are 256x256x256x3).

- IITmedian_(xx,yx,yy,zx,zy,zz).nii: The xx, yx, yy, zx, zy, zz tensor elements of the median DTI

template. (Units: mm²/sec). (For the 256x256x256 version,

Units: 10⁻³ mm²/sec).

3) HARDI template contains:

- IIT_HARDI.nii: Spherical harmonic (SH) coefficients representing the fiber

orientation distribution (FOD) function (produced using

constrained spherical deconvolution with *I*=6). The dimensions of the file are 182x218x182x28. (For the 256x256x256 version of the atlas, the dimensions of the file are 256x256x256x28). Each of the 28 volumes corresponds to a single spherical

harmonic component, in the following order:

[1] Y(0,0)

[2] Im {Y(2,2)}

[3] $Im \{Y(2,1)\}$

[4] Y(2,0)

[5] Re {Y(2,1)}

[6] Re {Y(2,2)} [7] Im {Y(4,4)} [8] Im {Y(4,3)} etc.

(Note: SH coefficients are stored in a format compatible with the MRtrix toolbox, i.e. the (-1)^m factor in SH basis was omitted).

- IIT_GFA.nii: Generalized FA maps produced from the spherical harmonic

coefficients of the HARDI template.

- IIT_correlation.nii: Maps of the average correlation of neighboring FODs (6

neighbors) of the HARDI template. FOD correlation was defined in: "Anderson, A.W., 2005. Measurement of fiber orientation distributions using high angular resolution diffusion imaging.

Magn Reson Med 54, 1194-1206".

4) Gray matter atlas contains:

- IIT (CSF,GM,WM) tissue prob.nii: Probability maps for CSF, GM, WM.

- IITmean_t1.nii: Mean T1-weighted template.

- IITstd_t1.nii: Standard deviation of the T1-weighted template.

- IIT_GM_Desikan_atlas.nii: 86 GM labels of the IIT Human Brain Atlas. (Based on the

Desikan atlas, Neuroimage 2006;31:968-980).

- IIT GM Desikan confidence.nii: Confidence index map for the Desikan GM labels.

- IIT GM Desikan mask.nii: GM mask corresponding to the IIT Human Brain Atlas with

the Desikan labels.

- IIT_GM_Desikan_prob.nii: Maps of the probability that a GM voxel belongs to a GM

label, for each Desikan GM label separately (thus this file contains 86 volumes, one for each label). The dimensions of this file are 182x218x182x86. (For the 256x256x256 version of the atlas, the dimensions of this file are 256x256x256x86). The order of the 86 GM labels in this file is shown in the "GM Labels" section below (1st column). When opened in FSL, the "volume" index in FSL corresponds to the "order" shown in the "GM Labels" section below. NOTE: DO NOT UNZIP THIS FILE WITHOUT ENOUGH SPACE (~2.5GB) IN THE TARGET DIRECTORY; IF YOU HAVE TROUBLE VIEWING THIS FILE IN FSLVIEW DUE TO ITS LARGE SIZE, YOU CAN OPEN THE INDIVIDUAL PROBABILITY MAPS FOR

EACH LABEL AS DESCRIBED NEXT.

- label probabilities Desikan.zip: This zipped directory contains individual maps of the

probability that a GM voxel belongs to a Desikan GM label. There is one file per label, named label-(labelID).nii. This is the same information as in the IIT GM Desikan prob.nii file

above, but divided into 86 files, one for each GM label. The dimensions of each file are 182x218x182. (For the 256x256x256 version of the atlas, the dimensions of each file are 256x256x256). The files are named using the labelID listed in the "GM labels" section below.

- LUT_GM_Desikan.txt: Text file containing an appropriate look-up table that allows

visualization of all gray matter labels of the atlas in color in ITK-SNAP. This look-up table should be used in conjunction

with the IIT_GM_Desikan_atlas.nii.

- IIT_GM_Destrieux_atlas.nii: 164 GM labels of the IIT Human Brain Atlas. (Based on the

Destrieux atlas, Neuroimage 2010;53:1-15).

- IIT_GM_Destrieux_confidence.nii: Confidence index map for the Destrieux GM labels.

- IIT_GM_Destrieux_mask.nii: GM mask corresponding to the IIT Human Brain Atlas with

the Destrieux labels.

- IIT_GM_Destrieux_prob.nii: Maps of the probability that a GM voxel belongs to a GM

label, for each Destrieux GM label separately (thus this file contains 164 volumes, one for each label). The dimensions of this file are 182x218x182x164. (For the 256x256x256

version of the atlas, the dimensions of this file are

256x256x256x164). The order of the 164 GM labels in this file is shown in the "GM Labels" section below (1st column).

When opened in FSL, the "volume" index in FSL

corresponds to the "order" shown in the "GM Labels" section below. NOTE: DO NOT UNZIP THIS FILE WITHOUT ENOUGH SPACE (~4GB) IN THE TARGET DIRECTORY; IF YOU HAVE TROUBLE VIEWING THIS FILE IN FSLVIEW

DUE TO ITS LARGE SIZE, YOU CAN OPEN THE

INDIVIDUAL PROBABILITY MAPS FOR EACH LABEL AS

DESCRIBED NEXT.

- label_probabilities_Destrieux.zip: This zipped directory contains individual maps of the

probability that a GM voxel belongs to a Destrieux GM label. There is one file per label, named label-(labelID).nii. This is the same information as in the IIT_GM_Destrieux_prob.nii file above, but divided into 164 files, one for each GM label. The dimensions of each file are 182x218x182. (For the 256x256x256 version of the atlas, the dimensions of each file are 256x256x256). The files are named using the labelID

listed in the "GM labels" section below.

- LUT_GM_Destrieux.txt: Text file containing an appropriate look-up table that allows

visualization of all gray matter labels of the atlas in color in ITK-SNAP. This look-up table should be used in conjunction

with the IIT_GM_Destrieux_atlas.nii.

GM labels based on the Desikan atlas (Neuroimage 2006;31:968-980)

order) label-name
0	8	Left-Cerebellum-Cortex
1	47	Right-Cerebellum-Cortex
2	10	Left-Thalamus-Proper
3	49	Right-Thalamus-Proper
4	11	Left-Caudate
5	50	Right-Caudate
6	12	Left-Putamen
7	51	Right-Putamen
8	17	Left-Hippocampus
9	53	Right-Hippocampus
10	18	Left-Amygdala
11	54	Right-Amygdala
12	26	Left-Accumbens-area
13	58	Right-Accumbens-area
14	1000	ctx-lh-Unknown
15	2000	ctx-rh-Unknown
16	1001	ctx-lh-bankssts
17	2001	ctx-rh-bankssts
18	1002	ctx-lh-caudalanteriorcingulate
19	2002	ctx-rh-caudalanteriorcingulate
20	1003	ctx-lh-caudalmiddlefrontal
21	2003	ctx-rh-caudalmiddlefrontal
22	1004	ctx-lh-corpuscallosum
23	2004	ctx-rh-corpuscallosum
24	1005	ctx-lh-cuneus
25	2005	ctx-rh-cuneus
26	1006	ctx-lh-entorhinal
27	2006	ctx-rh-entorhinal
28	1007	ctx-lh-fusiform
29	2007	ctx-rh-fusiform
30	1008	ctx-lh-inferiorparietal
31	2008	ctx-rh-inferiorparietal
32	1009	ctx-lh-inferiortemporal
33	2009	ctx-rh-inferiortemporal
34	1010	ctx-lh-isthmuscingulate
35	2010	ctx-rh-isthmuscingulate
36	1011	ctx-lh-lateraloccipital
37	2011	ctx-rh-lateraloccipital
38	1012	ctx-lh-lateralorbitofrontal
39	2012	ctx-rh-lateralorbitofrontal
40	1013	ctx-lh-lingual
41	2013	ctx-rh-lingual
42	1014	ctx-lh-medialorbitofrontal
43	2014	ctx-rh-medialorbitofrontal
44	1015	ctx-lh-middletemporal
45	2015	ctx-rh-middletemporal
46	1016	ctx-lh-parahippocampal
47	2016	ctx-rh-parahippocampal
••	_010	out in paramppooumpur

48	1017	ety lb persontrol
40 49	2017	ctx-lh-paracentral
49 50	1018	ctx-rh-paracentral
51	2018	ctx-lh-parsopercularis
52	1019	ctx-rh-parsopercularis
52 53		ctx-lh-parsorbitalis
	2019	ctx-rh-parsorbitalis
54	1020	ctx-lh-parstriangularis
55	2020	ctx-rh-parstriangularis
56	1021	ctx-lh-pericalcarine
57	2021	ctx-rh-pericalcarine
58	1022	ctx-lh-postcentral
59	2022	ctx-rh-postcentral
60	1023	ctx-lh-posteriorcingulate
61	2023	ctx-rh-posteriorcingulate
62	1024	ctx-lh-precentral
63	2024	ctx-rh-precentral
64	1025	ctx-lh-precuneus
65	2025	ctx-rh-precuneus
66	1026	ctx-lh-rostralanteriorcingulate
67	2026	ctx-rh-rostralanteriorcingulate
68	1027	ctx-lh-rostralmiddlefrontal
69	2027	ctx-rh-rostralmiddlefrontal
70	1028	ctx-lh-superiorfrontal
71	2028	ctx-rh-superiorfrontal
72	1029	ctx-lh-superiorparietal
73	2029	ctx-rh-superiorparietal
74	1030	ctx-lh-superiortemporal
75	2030	ctx-rh-superiortemporal
76	1031	ctx-lh-supramarginal
77	2031	ctx-rh-supramarginal
78	1032	ctx-lh-frontalpole
79	2032	ctx-rh-frontalpole
80	1033	ctx-lh-temporalpole
81	2033	ctx-rh-temporalpole
82	1034	ctx-lh-transversetemporal
83	2034	ctx-rh-transversetemporal
84	1035	ctx-lh-insula
85	2035	ctx-rh-insula

GM labels based on the Destrieux atlas (Neuroimage 2010;53:1-15)

order	labelID label-name		
0	8	Left-Cerebellum-Cortex	
1	47	Right-Cerebellum-Cortex	
2	10	Left-Thalamus-Proper	
3	49	Right-Thalamus-Proper	
4	11	Left-Caudate	
5	50	Right-Caudate	
6	12	Left-Putamen	
7	51	Right-Putamen	

```
17
8
             Left-Hippocampus
```

- 9 53 Right-Hippocampus
- 10 18 Left-Amygdala
- 11 54 Right-Amygdala
- 12 26 Left-Accumbens-area
- 13 58 Right-Accumbens-area
- 14 11100 ctx lh Unknown
- 15 12100 ctx rh Unknown
- 16 11101 ctx_lh_G_and_S_frontomargin
- 17 12101 ctx_rh_G_and_S_frontomargin
- 18 11102 ctx lh G and S occipital inf
- 19 12102 ctx rh G and S occipital inf
- 20 11103 ctx_lh_G_and_S_paracentral
- 21 12103 ctx_rh_G_and_S_paracentral
- 22 11104 ctx lh G and S subcentral
- 12104 ctx rh G and S subcentral 23
- 24 11105 ctx_lh_G_and_S_transv_frontopol
- 25 12105 ctx_rh_G_and_S_transv_frontopol
- 26 11106 ctx_lh_G_and_S_cingul-Ant 27
- 12106 ctx rh G and S cingul-Ant
- 11107 ctx lh G and S cingul-Mid-Ant 28
- 29 12107 ctx rh G and S cingul-Mid-Ant
- 30 11108 ctx_lh_G_and_S_cingul-Mid-Post
- 31 12108 ctx rh G and S cingul-Mid-Post
- 32 11109 ctx lh G cingul-Post-dorsal
- 33 12109 ctx rh G cingul-Post-dorsal
- 34 11110 ctx_lh_G_cingul-Post-ventral
- 35 12110 ctx rh G cingul-Post-ventral
- 11111 ctx_lh_G_cuneus 36
- 12111 ctx rh G cuneus 37
- 38 11112 ctx lh G front inf-Opercular
- 39 12112 ctx rh G front inf-Opercular
- 40 11113 ctx lh G front inf-Orbital
- 41 12113 ctx rh G front inf-Orbital
- 42 11114 ctx lh G front inf-Triangul
- 43 12114 ctx rh G front inf-Triangul
- 11115 ctx lh G front middle 44
- 45 12115 ctx rh G front middle
- 46 11116 ctx_lh_G_front_sup
- 47 12116 ctx_rh_G_front_sup
- 11117 ctx lh G Ins Ig and S cent ins 48
- 12117 ctx_rh_G_Ins_lg_and_S_cent_ins 49
- 50 11118 ctx lh G insular short
- 51 12118 ctx rh G insular short
- 52 11119 ctx lh G occipital middle
- 12119 ctx rh G occipital middle 53
- 54 11120 ctx_lh_G_occipital_sup
- 55 12120 ctx rh G occipital sup
- 11121 ctx lh G oc-temp lat-fusifor 56
- 57 12121 ctx rh G oc-temp lat-fusifor
- 58 11122 ctx lh G oc-temp med-Lingual

```
59
      12122 ctx rh G oc-temp med-Lingual
60
      11123 ctx lh G oc-temp med-Parahip
61
      12123 ctx_rh_G_oc-temp_med-Parahip
62
      11124 ctx_lh_G_orbital
63
      12124 ctx rh G orbital
      11125 ctx lh G pariet inf-Angular
64
65
      12125 ctx rh G pariet inf-Angular
66
      11126 ctx lh G pariet inf-Supramar
67
      12126 ctx_rh_G_pariet_inf-Supramar
68
      11127 ctx_lh_G_parietal_sup
69
      12127 ctx rh G parietal sup
70
      11128 ctx_lh_G_postcentral
71
      12128 ctx_rh_G_postcentral
72
      11129 ctx lh G precentral
73
      12129 ctx_rh_G_precentral
74
      11130 ctx_lh_G_precuneus
75
      12130 ctx_rh_G_precuneus
76
      11131 ctx lh G rectus
77
      12131 ctx_rh_G_rectus
78
      11132 ctx lh G subcallosal
79
      12132 ctx rh G subcallosal
80
      11133 ctx lh G temp sup-G T transv
81
      12133 ctx_rh_G_temp_sup-G_T_transv
82
      11134 ctx lh G temp sup-Lateral
83
      12134 ctx rh G temp sup-Lateral
84
      11135 ctx_lh_G_temp_sup-Plan_polar
85
      12135 ctx_rh_G_temp_sup-Plan_polar
86
      11136 ctx lh G temp sup-Plan tempo
87
      12136 ctx_rh_G_temp_sup-Plan_tempo
88
      11137 ctx lh G temporal inf
89
      12137 ctx rh G temporal inf
90
      11138 ctx lh G temporal middle
91
      12138 ctx rh G temporal middle
92
      11139 ctx Ih Lat Fis-ant-Horizont
93
      12139 ctx rh Lat Fis-ant-Horizont
94
      11140 ctx lh Lat Fis-ant-Vertical
95
      12140 ctx rh Lat Fis-ant-Vertical
      11141 ctx_lh_Lat_Fis-post
96
97
      12141 ctx rh Lat Fis-post
98
      11143 ctx_lh_Pole_occipital
99
      12143 ctx rh Pole occipital
100
      11144 ctx lh Pole temporal
```

12144 ctx_rh_Pole_temporal 11145 ctx lh S calcarine

11147 ctx_lh_S_cingul-Marginalis 12147 ctx rh S cingul-Marginalis

11148 ctx_lh_S_circular_insula_ant

12148 ctx rh S circular insula ant

12145 ctx rh S calcarine

11146 ctx lh S central

12146 ctx_rh_S_central

101

102103

104

105

106

107 108

109

```
110 11149 ctx_lh_S_circular_insula_inf
```

- 111 12149 ctx rh S circular insula inf
- 112 11150 ctx_lh_S_circular_insula_sup
- 113 12150 ctx_rh_S_circular_insula_sup
- 114 11151 ctx lh S collat transv ant
- 115 12151 ctx_rh_S_collat_transv_ant
- 116 11152 ctx lh S collat transv post
- 117 12152 ctx_rh_S_collat_transv_post

- 120 11154 ctx lh S front middle
- 121 12154 ctx_rh_S_front_middle
- 122 11155 ctx_lh_S_front_sup
- 123 12155 ctx_rh_S_front_sup
- 124 11156 ctx_lh_S_interm_prim-Jensen
- 125 12156 ctx_rh_S_interm_prim-Jensen
- 126 11157 ctx_lh_S_intrapariet_and_P_tran
- 127 12157 ctx_rh_S_intrapariet_and_P_tran
- 128 11158 ctx_lh_S_oc_middle_and_Lunatus
- 129 12158 ctx_rh_S_oc_middle_and_Lunatus
- 130 11159 ctx_lh_S_oc_sup_and_transversal
- 131 12159 ctx rh S oc sup and transversal
- 132 11160 ctx_lh_S_occipital_ant
- 133 12160 ctx_rh_S_occipital_ant
- 134 11161 ctx_lh_S_oc-temp_lat
- 136 11162 ctx_lh_S_oc-temp_med_and_Lingual
- 137 12162 ctx_rh_S_oc-temp_med_and_Lingual
- 138 11163 ctx_lh_S_orbital_lateral
- 139 12163 ctx rh S orbital lateral
- 140 11164 ctx lh S orbital med-olfact
- 141 12164 ctx rh S orbital med-olfact
- 142 11165 ctx_lh_S_orbital-H_Shaped
- 143 12165 ctx_rh_S_orbital-H_Shaped
- 144 11166 ctx_lh_S_parieto_occipital
- 145 12166 ctx_rh_S_parieto_occipital
- 146 11167 ctx_lh_S_pericallosal
- 147 12167 ctx_rh_S_pericallosal
- 148 11168 ctx_lh_S_postcentral
- 149 12168 ctx_rh_S_postcentral
- 150 11169 ctx lh S precentral-inf-part
- 151 12169 ctx_rh_S_precentral-inf-part
- 152 11170 ctx_lh_S_precentral-sup-part
- 153 12170 ctx_rh_S_precentral-sup-part
- 154 11171 ctx lh S suborbital
- 155 12171 ctx_rh_S_suborbital
- 156 11172 ctx_lh_S_subparietal
- 157 12172 ctx rh S subparietal
- 158 11173 ctx lh S temporal inf
- 159 12173 ctx_rh_S_temporal_inf
- 160 11174 ctx lh S temporal sup

- 162
- 12174 ctx_rh_S_temporal_sup 11175 ctx_lh_S_temporal_transverse 12175 ctx_rh_S_temporal_transverse