Strategy for Integration

1. **Quote.** "A math student's best friend is BOB (the Back Of the Book), but remember that BOB doesn't come to school on test days."

(Joshua Folb, High School Teacher, Winchester, Virginia)

2. **Quote.** "It is the duty of all teachers, and of teachers of mathematics in particular, to expose their students to problems much more than to facts,"

(Paul Halmos, Mathematician, California)

3. Table of Integration Formulas.

Constants of integration have been omitted.

You should know this table!

$$\int x^n dx = \frac{x^{n+1}}{n+1}, (n \neq -1)$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int e^x dx = e^x$$

$$\int a^x dx = \frac{a^x}{\ln a}$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int \sec^2 x dx = \tan x$$

$$\int \csc^2 x dx = -\cot x$$

$$\int \sec x \tan x dx = \sec x$$

$$\int \csc x \cot x dx = -\csc x$$

$$\int \cot x dx = \ln|\sec x|$$

$$\int \cot x dx = \ln|\sin x|$$

$$\int \sinh x dx = \cosh x$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right)$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}|$$

4. Final Exam - Summer 2004. Integrate

(a)
$$\int \frac{x+4}{x^3+x} dx$$

$$(b) \int_0^{\pi/2} \sin^4 x \cos^3 x dx$$

(c)
$$\int e^x \sin(2x) dx$$

5. Final Exam - Fall 2005. Integrate

(a)
$$\int_{1}^{e} \frac{\ln x}{x} dx$$

(b)
$$\int \cos^2(5x) dx$$
(c)
$$\int x^3 \ln x dx$$

(c)
$$\int x^3 \ln x dx$$

(d) $\int x \sec(x^2) \tan(x^2) dx$ (e) $\int \frac{3x+1}{x(x+1)} dx$

(e)
$$\int \frac{3x+1}{x(x+1)} dx$$

6. Final Exam - Spring 2006. Integrate

(a)
$$\int x^2 (\ln x)^2 dx$$

(b)
$$\int_0^{\pi/2} \cos^3 x \sin(2x) dx$$

(c)
$$\int_{0}^{1} \frac{3}{x^{-1/2}(x^{3/2} - x^{1/2})} dx$$

(d)
$$\int \frac{\sqrt{x^2 - 1}}{x} dx$$
 hint: Use the substitution $x = \sec \theta$.

(e)
$$\int_0^3 \frac{dx}{x^2 - 3x - 4}$$

7. Final Exam - Summer 2006. Integrate

(a)
$$\int x^5 e^{-x^3} dx$$

(b)
$$\int_{1}^{5} \sqrt{-x^2 + 6x - 5} \ dx$$

(c)
$$\int \frac{\sqrt{1+x}}{\sqrt{1-x}} dx$$

$$(\mathbf{d}) \int \frac{\cos x}{4 - \sin^2 x} dx$$

(e)
$$\int \frac{dx}{\sqrt{1+x^2}}$$
 hint: Use the substitution $x = \tan \theta$.