Del hi - 1 2013

CHEM STRY MARKI NG SCHEME DELHI -2013 SET 56/1/1

Q no.	Ans wers	Marks
1	4	1
2	Mond Process/ Vapour phase refining method	1
3	4	1
4	4-chl or opent - 1-ene	1
5	CH ₃ CN is for med or ethanenitrile is for med.	1
6	<u> Н</u> ₈ С- СҢ СҢ ₂)- СҢ- СНО	1
7	$(CH_3)_3 N < CH_3 NH_2 < (CH_3)_2 NH$	1
8	mRNA, r RNA, t RNA	1
9	$\Delta T_{\rm b} = K_{\rm b} m$	1/2
	$T_b - T_b^0 = 0.52 \text{ K kg mol}^{-1} \text{ x } \frac{18 \text{ g}}{180 \text{ g mol}^{-1}} \text{ x } \frac{1}{1 \text{kg}}$	1/2
	$T_b - 373.15 \text{ K} = 0.052 \text{ K}$	1/2
	$T_b = 373.202 \mathrm{K}$	1/2
10	$\Lambda_{m} = \kappa / C$	1/2
	$\Lambda_{\rm m} = R / C$ $\Lambda_{\rm m} = 0.025 \text{ S cm}^{-1}$ $0.20 \text{ mol } L^{-1}$	1/2
	$\Lambda_{\rm m} = 125 \mathrm{Scm}^2 \mathrm{mol}^{-1}$	1
	(deduct ½ mark for wrong or no unit)	
	1	

11		Dspersed phase	Dspersion Medium	
	(i) S moke (ii) M1 k	Soli d Li qui d	Gas Ii qui d	1 1
11		OR		
	Lyophilic sols are solvent a sols Lyophobic sols can be easil		obic sols are Solvent repelling	$\begin{vmatrix} \frac{1}{2} + \frac{1}{2} \\ 1 \end{vmatrix}$
12				
	Physis or pti on		Che ni sorpti on	
	It is not very specific.		It is highly specific.	
	It is usually takes pla decreases with increasing t	ce at low temperature and emperature.	It takes place at high temperature.	
	It is reversible.		It is irreversible.	
	Low ent halpy of adsorption	1.	High ent hal py of ads or pti on.	½ x4=2
13	(a) Na CN solution			
14	(b) CO			1+1
14	(i)			
	$PCl_5 \xrightarrow{heat} PCl_3 + Cl_2$			1
	(ii)			
	4 H ₃ PO ₃ heat 3 H ₃	$_{3}PQ_{1}+PH_{3}$		1
	(Full marks may be given if equation is not balanced)			

15	(a) Cu, because in +1 oxidation state it has stable $3d^{10}$ configuration. (b) Mh^{2+} , V^{3+} : because of the presence of unpaired electrons. (if only one ion is mentioned deduct $\frac{1}{2}$ mark)	$\frac{1/2 + 1/2}{1/2 + 1/2}$
16	 (i) Due to resonance / diagrammatic representation, C- Cl bond acquires a partial double bond character which is difficult to cleave. (ii) Due to sp² hybri disation of 'C of C Cl bond. (iii) Due to unstable phenyl cation. (iv) Due to repulsion bet ween nucleophile and electron rich arenes. 	1+1
177	(any t wo)	
17	(i) $CH_3-CH_2-\overset{{\circ}}{\circ}-H + H^+ \longrightarrow CH_3-CH_2-\overset{{\circ}}{\circ}-H$	1/2
	(ii) $CH_3CH_2 - \overset{\circ}{O} : + CH_3 - CH_2 - \overset{\circ}{O} : + CH_3 - CH_2 - \overset{\circ}{O} : + CH_3 - CH_2 - \overset{\circ}{O} : + CH_3 - CH_3 -$	1/2
	(iii) $CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H$	1
18	(i) CH ₃ - CH = CH ₂ H O'H CH ₃ - CH CH ₃ OH	
	(ii)	
	OH OH NO ₂ Conc. HNO ₃ O ₂ N NO ₂	
	(or by any other correct suitable method)	1+1

19	 (a) p-type se mi conduct or (b) Ferro magnetis m (c) I npurity defect / Cation vacancy defect 	
	(c) Impurity defect / Catron vacancy defect	1x3=3
20	When $K_2 SO_4$ is dissolved in water, ions are produced. Total number of ions produced = 3	
	i =3	1/2
	$\pi = i CRT \qquad = i \times \underline{n} \times R \times T$ V	1/2
	$\pi = 3 \text{ x}$ $\frac{2.5 \times 10^{2} \text{ g}}{174 \text{ g mol}^{-1}}$ $\frac{1}{2\text{L}}$ $\frac{1}{2}$ x 0.0821 Lat mK ¹ mol ⁻¹ x 298 K	1
	$\pi = 5.27 \times 10^3 \text{ at m}$	1
	(deduct ½ mark for wrong or no unit)	
21	The cell reaction: $Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$	
	$E_{cell} = 0.44 \text{ V}$	
	Ner nst equation	
	$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \frac{0.059 \log [\text{Fe}^{2+}]}{2 [\text{H}^{+}]^{2}}$	1
	$E_{\text{cell}} = 0.44 \text{ V} - \underbrace{0.059}_{2} \log \underbrace{(0.001 \text{ M})}_{2}$	1/2
	$= 0.44 \text{ V- } \frac{0.059}{2} \log (10^{3})$	1/2
	= 0.44 V + 0.0885 V	1/2
	=0.5285 V (deduct ½ mark for wrong or no unit)	1

22		
22	(i) Due to incomplete filling of d-orbitals, transition metals show variable oxidation states.	
	 (ii) Because of Lant hanoid Contraction. (iii) Because of their ability to show multiple / variable oxidation states. 	1 x 3=3
	OR	
22	(i) $G_2 O^{2-} + 6Fe^{2+} + 14H^{\dagger} \rightarrow 2G^{3+} + 6Fe^{3+} + 7H_2 O$	
	(ii) $2 \text{G O}_4^2 + 2 \text{H}^{\dagger} \rightarrow \text{G}_2 \text{O}^2 + \text{H O}$	
	(iii) $2 \text{Mh } Q_1^- + 5 \text{C}_2 Q_1^{2-} + 16 \text{H}^{\dagger} \rightarrow 2 \text{Mh}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2 \text{O}$	
	$(III) 2MIQ_1 + 3QQ_1 + 10H \rightarrow 2MI + 10CQ_1 + 8H_2O$	1 x 3=3
	(Accept only bal anced equation)	
23	(i) Tri a mmi net ri chl ori dochr o mi u n(III)	1
	(ii) Pot assi u m he xac ynof errat e(III)	1
	(iii) D bromi dobi s-(et hane-1, 2-di a mi ne) cobalt (III) /	1
	D bromi dobi s-(et hyl enedi a mi ne) cobalt (III)	
24	(i) A=C ₆ H ₅ CN B=C ₆ H ₅ COOH C=C ₆ H ₅ CONH ₂	½x3=1 ½
	(ii) $A=C_6 H_5 NH_2$ $B=C_6 H_5 N_2^+ C_1^ C=C_6 H_5 - OH$	½x3=1 ½
25	(i) Buna-S: 1,3- But adi ene and Styrene	1/2+1/2
	CH = CH ₂	
	CH ₂ = CH - CH = CH ₂ and	
	(ii) Ne oprene: Chl or oprene	
	$C\mathbf{H} = \mathbf{C} - \mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H}$	1/2+1/2

Del hi - 1 2013

	(iii) Nyl on- 6, 6: Не ха met hyl ene di a mi ne and Adi pi c aci d Н N (СН) 6- NН HOOC- (СН) 4- СООН	1/2+1/2
26	(i) Sonali: Concerned for the society, socially active and helpful to others. Principal: Caring, commanding and serious about the welfare of students. (or any other suitable values) (ii) Vitamins B and C	1 1 1 1/2 + 1/2
27.	(a) Sodi u m Benzoat e (b) To i npart antiseptic properties (c) Tranquilizers	1 x 3=3

28	(a) (i) rate= k[A] ² [B] (ii) Rate will increase 9 times of the actual rate of reaction (iii) Rate will increase 8 times of the actual rate of reaction	1x3=
	(b) $k = \underbrace{2\ 303}_{t} \log \left[\underbrace{A_{0}}_{A} \right]$ $[A]$	3
	$k = \underbrace{2303 \log 100}_{40 \text{min}} \frac{100}{70}$	
	$k = \underbrace{2303}_{40} x 0.155 = 0.00892 \text{mi n}^{-1}$	1/2
	$\frac{t_{V2}}{k} = \frac{0.693}{k}$	1/2
	$\int_{1/2}^{t} = \frac{0.693}{0.00892} \min n$	
	$t_{V2} = 77.7 \text{min}$	1/2
28	OR	
	(a) $t_{99\%} = \frac{2\ 303}{k} \log \frac{100}{1}$	1/2
	$t_{90\%} = \frac{2\ 303}{k} \log \frac{100}{10}$	1/2
	on comparision $\frac{t_{.99\%}}{t_{.90\%}} = \frac{\log 100}{\log 10}$ $t_{.90\%} = \log 10$	1/2
	Hence $t_{99\%} = 2 t_{90\%}$ (or solved by any other correct suitable method)	1/2

	(b)	
	$Slope = -\frac{Ea}{2303}R$	1
	$-4250 \mathrm{K} = - \underbrace{\text{Ea}}_{2\ 303\ \text{x}\ 8\ 314\ \text{J}\ \text{K}^1\ \text{mol}^{-1}}$	1
	Ea = 81375 J mol ⁻¹ or 81.375 kJ mol ⁻¹	1
29.	 (i) Because of smaller size of F-atom/shorter bond length, the electron repulsion a mong the lone pairs is greater in F₂ than G₂ (ii) Due to hydrogen bonding in NH₃. 	
	(b)	1+1
	(ii) Br F	
	HO P OH	

30.	(a) (i) Resonating structures of carboxyl at eion are more stable than phenoxide ion structures.	
	(ii)—ve charge is dispersing on two electronegative oxygens in carboxylate ion whereas on one oxygen in phenoxide ion	1+1
	(b)	
	Zn- Hg i) CH₃- CO CH₃ → CH₃- CH₂- CH₃- CH₃- CH₃- CH₃- CH₃- CH₃- CH₃- CH₃	
	ii)	
	$\begin{array}{c} O \\ \hline \\ Cl \end{array} \xrightarrow{H_2} \begin{array}{c} CHO \\ \hline \\ Pd-BaSO_4 \end{array}$ Benzoyl chloride Benzaldehyde	
	dl. № OH iii) CH₃- CHO	1x3 =3
	(or by any other correct suitable method) OR	
30	(a)	
	(i)	
	H—C—OH + H—C OK	
	(ii)	
	Br - CH ₂ COOH	

(iii)

(b)

1 x3=3

(i) <u>It hand and Propanal</u>: It hand gives yellow ppt of Iodofor $n(CH_3)$ on addition of NaOH/ I_2 whereas Propanal does not give this test.

(or any other suitable test)

(ii) <u>Benzoic acid and Phenol</u>: Add neutral FeQ_3 to both, phenol gives purple/violet colouration whereas Benzoic acid does not give this test or/Add NaHCO3 to both, Benzoic acid will give brisk effervescence whereas phenol does not give this test.

1+1

(or any other suitable test)

Sh. S K Munj a

Dr (Mrs.) Sangeet a Bhatia

Pr of. R D Shukl a

Mr. K.M. Abdul Raheem

Dr. K N Uppadhya

Mr. D A Mshra

Mr. Rakesh Dhawan

Mr. Deshbir Singh

Ms. Neer u Sofat

Mr. Akhileshwar Mishra

Mr. Virendra Singh