Assignment 5

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2022 Due by: 12/4/2022

Q1. Let X have probability density function

$$f(x) = \begin{cases} \frac{\Gamma(7)x^4(\theta - x)}{\Gamma(5)\theta^6}, & 0 < x < \theta \\ 0, & \text{otherwise} \end{cases}$$

Show that $\frac{X}{\theta}$ is a pivotal quantity and use this pivotal quantity to find a 92% lower confidence limit for θ . (20 marks)

- Q2. Consider independent random samples from two normal distributions, $X_i \sim N(0, a_1)$ and $Y_j \sim N(0, a_2)$; $i = \dots, 30, j = 1, \dots, 30$. Derive a $100(1 \alpha)\%$ confidence interval for $\frac{a_1}{a_2}$ based on sufficient statistics. (20 marks)
- Q3. Consider independent random samples from two exponential distributions, $X_i \sim EXP(\mu)$ and $Y_j \sim EXP(\lambda)$; i = 1, ..., 30, j = 1, ..., 30.
 - (a) Find the distribution of $(\lambda/\mu)(\bar{X}/\bar{Y})$. (10 marks)
 - (b) Derive a $100(1-\alpha)\%$ confidence for λ/μ . (10 marks)
- Q4. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pdf

$$f(x|\lambda) = \frac{\lambda^5}{\Gamma(5)} x^4 e^{-\lambda x}, x > 0$$
, zero othewise,

the prior density of λ is

$$\pi(\lambda) = \frac{\mu^3}{\Gamma(3)} \lambda^2 e^{-\mu\lambda}, \lambda > 0$$
, zero othewise,

where μ is known. Derive a $100(1-\alpha)\%$ equal probability Bayesian confidence interval for λ in terms of χ^2 random variable. (20 marks)

Q5. Losses follow a gamma distribution with $\alpha = 3$ and θ unknown. The prior distribution of θ has density function $\pi(\theta) = \frac{1}{\theta}$, Five losses are observed:

Determine the 95% HPD credible interval for θ . (10 marks)

MEME15203 Statistical Inference

Q6. You are given:

$$f(x|\theta) = \begin{cases} (\theta+1)x^{\theta} & \text{for } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$
$$\pi(\theta) = \begin{cases} \frac{1}{\theta+1} & \text{for } \theta > 0\\ 0 & \text{otherwise} \end{cases}$$

Suppose that a single observation takes the value x=0.33. Find the upper bound of the 98% HPD credible region for θ . (10 marks)