Week 3: Data types, summary statistics, & transformations

ANTH 674: Research Design & Analysis in Anthropology

Professor Andrew Du

Andrew.Du2@colostate.edu

Office Hours: Thursdays, 1:00-4:00pm in GSB 312

Statistics vignette

- What is Euler's number & where does it come from?
- $e \approx 2.71828$
- Used as base of natural logarithm
- Fundamental to continuous growth & rate of change

Leonhard Euler

1

Derivation using compound interest

- You have \$1 in your bank, which offers 100% interest every year
 - After one year, $$1 \rightarrow 2
- 50% interest twice a year
 - After one year, $\$1 \rightarrow \$1.50 \rightarrow \$2.25$
- 1/12th interest every month
 - After one year, $\$1 \rightarrow \$1.08 \rightarrow ... \rightarrow \2.61
- General formula: $N_0 \left(1 + \frac{1}{n}\right)^n$

Derivation using compound interest

• Every day: $1\left(1+\frac{1}{365}\right)^{365}=2.715$

• Every hour: $1\left(1+\frac{1}{8760}\right)^{8760}=2.718$

3

A probability interpretation

 Probability every dropped chocolate is placed in wrong position = 1/e (as # chocolates → ∞)

Widely considered the most beautiful equation in math

• Euler's identity

$$e^{i\pi} + 1 = 0$$

5

Lecture outline

- 1. Different types of data ("qualitative" vs. quantitative)
 - 1. How are they described & summarized?
 - 2. How are they plotted (visualizing the distribution)?
- 2. Different types of data transformations
 - 1. What are they & what are they used for?
- 3. Plotting two data types against each other

6

Different data types

How are they described, summarized, and plotted?

7

What is data?

- <u>Wikipedia:</u> **Data** are characteristics or <u>information</u>, usually numerical, that are collected through observation
- Want to learn something from data through analysis and/or visualization (plotting)

9

Location/central tendency The second of the

Summary statistics

- Used to summarize distribution of data w/ one number (except for multivariate distributions)
- 1. Location or central tendency
- 2. Spread or variation

10

11

Different types of data

"Qualitative"

Quantitative

- Categorical/nominal
- Discrete

Ordinal

Continuous

13

Data type tells you which summary

statistics, plots, and analyses to use!

14

"Qualitative" data

What is "qualitative" data?

- · Data assigned to groups, usually based on some qualitative property
- 1. Categorical/nominal data (unordered)
- 2. Ordinal data (ordered)

Questions?

Categorical/nominal data

- · Unordered qualitative data
- E.g., head/tail (binomial); basalt/chert/quartz (multinomial)
- Quantified as counts or proportions
- = factors in R

17

Central tendency • Mode: most common category Black Brown Red Blond Hair color

Plotting categorical data • Barplot | Descriptions of the property of the pr

18

Spread

Black

	black	brown	red	blond
#	108	286	71	127
prop.	0.18	0.48	0.12	0.21

Red

• Information theory measures (most common is Shannon's index)

Brown

Hair color

Not commonly used

$$-\sum p_i \log(p_i) \quad \begin{array}{ll} p_i = \text{proportion} \\ \text{of } i^{\text{th}} \text{ category} \end{array}$$

 $-[0.18 \times \log(0.18) + 0.48 \times \log(0.48) + 0.12 \times \log(0.12) + 0.21 \times \log(0.21)] = 1.25$

Blond

Claude Shannon

19

_

Ordinal data

- Ordered qualitative data
- Distance between categories not known
- E.g., small/medium/large; juvenile/adult
- Quantified as counts or proportions
- = ordered factor levels in R

Plotting ordinal data med. large small Barplot 11 7 14 10 0 Size

22

Central tendency • Median: middle value in ordered data (first convert to ranks: 1, 2, 3) Frequency 6 8 7 Size

small med. large **Spread** 14 11 • <u>Interquartile range (IQR):</u> difference between 75th and 25th percentiles (or 3rd and 1st quartiles; median is the 2nd quartile) • Middle 50% of data After converting sizes to ranks IQR = 3 - 1 = 225% of data 75% of data

Quantitative data

26

What is quantitative data?

· Each data point is a number, and distances have meaning (e.g., 1 vs. 3)

Discrete

Continuous

- Finite or countable Any value within a values (e.g., integers)
 - continuous interval (e.g., 2.4575)
- In practice, all continuous numbers are discrete due to limited precision of measurements (e.g., 1.21, 1.22, 1.23)

29

Plotting discrete data

Line plot (like a barplot w/ more categories)

Discrete data

- Finite or countable values
- E.g., count data, anything measured in integers
- Treated as numeric class in R

30

Plotting discrete data

• Histogram

Plotting discrete data

• Density plot ("smoothed histogram")

Central tendency & spread

· Same as with continuous data

33

Continuous data

- Any value within a *continuous* interval (e.g., 2.4575)
- E.g., stone tool mass, hominin femur length
- Treated as numeric class in R

34

Plotting continuous data • Histogram mtcars\$mpg

Miles per gallon

35

What if data are non-normal? Arithmetic mean = 5.6 800 Median = 1.1 Mean heavily influenced by extreme values, but median less so Frequency Best to use median for non-normal distributions e.g., median household income 20 40 100 120

40

An example

90% of *Nature*'s 2004 impact factor was based on only 25% of its publications

 Journal impact factor: average # of times articles from journal published in the past two years have been cited in year of consideration

41

Central tendency (geometric mean)

- Used when dealing with data produced by multiplicative processes (e.g., % increases) → lognormal distributions
- E.g., population size, body size, household income, citation numbers
- Can't use when you have zeros or negative numbers

Central tendency

 Geometric mean: nth root of elements multiplied together

E.g., x <- c(1, 2, 3)

$$GM = \sqrt[3]{(1 \times 2 \times 3)}$$

 Same as taking arithmetic mean of logtransformed values & calculating antilog

$$GM = \exp\left(\frac{\sum \log(x_i)}{n}\right)$$
 E.g., $GM = \exp\left(\frac{\log(1) + \log(2) + \log(3)}{3}\right)$

42

Geometric mean (on lognormal distribution) Arithmetic mean = 5.6 Median = 1.06 Geometric mean & 1.08 Geometric mean & Arithmetic mean = 0.07 exp(mean) = 1.08

Log-transformed data

Questions?

45

Spread

- <u>Variance</u>: measures how far values deviate from the arithmetic mean
- Subtract the mean from each element, square the results, add them up, and divide by number of elements minus 1

*i*th element
$$\sum (x_i - \bar{x})^2$$
 Arithmetic mean # elements $n - 1$

 Square-root of variance = <u>standard</u> deviation 46

As with the arithmetic mean, variance and SD are most interpretable for normal distributions

47

What if data are non-normal?

- Interquartile range
- Doesn't depend on arithmetic mean or type of distribution

50

Summary: which plot to make?

Data type	Plot	
Categorical	Barplot	
Ordinal	Barplot	
Discrete	Line plot	
	Histogram	
	Density plot	
Continuous	Histogram	
	Density plot	

Geometric standard deviation

- Used when you would use the geometric mean (e.g., lognormal data)
- Calculate std. dev. of log-transformed values and take the antilog

51

Summary: which statistic to use?

Data type	Location	Spread
Categorical	Mode	Information measures
Ordinal	Median	Interquartile range
Discrete/Continu	ious	
Normal	Arithmetic mean	VarianceStandard deviation
Non-normal	- Median - Geometric mean	- Interquartile range - Geometric SD

52 53

Data transformations
What are they & what are they used for?

54

What is data transformation?

- Applying a mathematical function to data to change its distribution
- Rank order of data maintained (monotonic transformation)

56 57

1 /

Why transform data?

- To make data & results easier to understand and visualize
- To make sure assumptions of statistical methods are not violated

Types of data transformations

- 1. Centering and scaling
- 2. Log transformations
- 3. Square-root transformations
- 4. Arcsine & logit transformations

58

59

Centering and scaling

- Transforms data to have mean = 0 & standard deviation = 1 (i.e., Z-scores)
- Subtract the mean & divide by SD

Centering and scaling

- Transforms data to have mean = 0 & standard deviation = 1 (i.e., Z-scores)
- Subtract the mean & divide by SD
- Converts data to units of standard deviation, so variables of different units can be compared (e.g., mass & inches)
- Can be used on non-normal data!

Log transformations

- Replaces data with their logarithms
- $b^a = x$; $\log_b x = a$
- Base *e* (analyses) and 10 (plotting) most common
- Cannot transform zeros and negative numbers

63

Log transformations

- Many statistical & plotting methods deal with additive/absolute/linear change
- E.g., linear regression: y = a + bx

•1 → 2: +1 •100 → 200: +100 Treated differently w/

•1 → 2: x2 •100 → 200: x2 But multiplicative/ relative change the same! Log transformations

- What if you are interested in multiplicative/relative/proportional/percent change?
- Log-transformations: multiplicative → additive
- $\log(2) \log(1) = \log(\frac{2}{1}) = 0.69$
- $\log(200) \log(100) = \log\left(\frac{200}{100}\right) = 0.69$
- Doubling from 1 to 2 now treated the same as doubling from 100 to 200!
- Can now use linear methods to investigate multiplicative change

64 65

67

Log transformations

 Can aid visualization if data vary over orders of magnitude (spreads out small numbers and squeezes large ones)

Other transformations

- Removes dependence between mean & variance of a variable
- 1. Square-root: \sqrt{x}
 - · Used for count data
- 2. Arcsine: $arcsine(\sqrt{x})$
 - Used for proportions
- 3. <u>Logit</u>: $\log(\frac{x}{1-x})$
 - Used for proportions

Plotting two data types against each other

71

Why do this?

- Want to see how two variables are related to each other
- Good way to visually describe your two variables

First, a note on ordinal & discrete data when plotting

- Ordinal treated as categorical (maintaining order of categories)
- Discrete treated as continuous
- When ordinal data have many categories, can mimic discrete data (e.g., rank abundance of species)
- When discrete data are too few, can mimic ordinal data (e.g., 3, 4, & 5 number of forward gears in mtcars)

		X-axis		
		Categorical	Continuous	
Y-axis	Categorical	Bar plot	Box plot Violin plot	
	Continuous	Box plot Violin plot	Scatter plot	

Barplots (categorical vs. categorical)

Hair color of brown-eyed students

Black Brown Red Blond

Male Female

Sex

74

Barplots (stacked) (categorical vs. categorical)

Hair color of brown-eyed students

Female
Male

Black

Brown

Red

Blond

Blond

82

83

Plotting summary

- These are the general rules of plotting (R will actually automatically make these plots according to your variable type)
- BUT, use best judgment for showing what YOU want to show (according to your research question)
- Data visualization is very important: want to convey your data and results as clearly & effectively as possible!

84

Summary

- There are four main data types: categorical, ordinal, discrete, & continuous
- Data type tells you which summary statistics and plots to use
- Data transformations aid visualization and interpretation & help data satisfy statistical assumptions
- How to plot & compare two variables depends on data type