Homework 1	Graded
Student	
Boyuan Deng	
Total Points	
4.5 / 5 pts	
Question 1	
1	1 / 1 pt
✓ - 0 pts Correct	
Question 2	
2	1 / 1 pt
✓ - 0 pts Correct	
Question 3	
3	1 / 1 pt
→ - 0 pts Correct	
Question 4	
4	1 / 1 pt
→ - 0 pts Correct	
Question 5	
5	0.5 / 1 pt
- 0 pts Correct	
 ✓ - 0.5 pts Click here to replace this description. 	
■ It's true that \$u\$ should decay at infinity, however, it's not trivial. You can use the mean va that (look at the solutions on the webpage).	lue property to show

No questions assigned to the following page.	

PDE Homework 1 Due Date: Feb 9

Saman H. Esfahani

001 equation: directional protection in the special domains, to $\begin{array}{l} u_t = \underline{b} \cdot \nabla u + \underline{c} \underline{v} = 0, \quad \text{in } \mathbb{R}^n \times (0, \infty), \\ u_t = \underline{g} \qquad \qquad \text{on } \mathbb{R}^n \times \{t = 0\}, \end{array}$ 002 003 here $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants. 004 • 2- Let $u: B_r(0) \subset \mathbb{R}^n \to \mathbb{R}$ be a solution to 005 the following equation: $\begin{cases} -\Delta u = f, & \text{in } B_r^{\circ}(0), \\ u = g & \text{on } \partial B_r(0). \end{cases}$ 007 Prove the following: 008 $u(0) = \frac{1}{\operatorname{vol}(\partial B_r(0)} \int_{\partial B_r(0)} (gdS) + \frac{1}{\underline{n(n-2)\operatorname{vol}(B_1(0))}} \int_{B_r(0)} (\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}) f dx.$ 009 Show that $v = |\nabla u|^2$ is subharmonic; i.e., 010 011 012 • 4. Prove there exists a constant C such that 013 for any function u, a solution of 014 $\begin{cases} -\Delta u = f, & \text{in } B_r^{\circ}(0), \\ u = g & \text{on } \partial B_r(0). \end{cases}$ 015 we have 016 $\max_{B_1(0)} |u| \le C(\max_{\partial B_1(0)} |g| + \max_{B_1(0)} |f|).$ 017 • 5. Suppose that $u\in L^2(\mathbb{R}^n)\cap C^2(\mathbb{R}^n)$ and $\Delta u=0. \text{ Show } u=0.$ 2nd continuity Liouville's thm the armonic C \overline{v} At is a constant 019

 $h_{1}Mt+b \cdot \nabla M + CM = 0 \quad \text{in } \mathbb{R}^{n} \times (0.00)$ $u=g \qquad \text{on } \mathbb{R}^{n} \times t=0$ $\mathbb{E} : \mathbb{R} - 7/\mathbb{R} \quad \text{for } x \in \mathbb{R}^{n} \quad \mathbb{E} t \in (0, \infty)$ $\mathbb{E} (5) = \mathbb{E} t \times t + 5 \cdot t +$

Thus, the explicit solution would be $g(x-bt)e^{-ct}$

2. Define that $\phi(s) := \frac{1}{n \text{ or (n) } \cdot s^{n-1}} \int_{\Omega(s)} u(s) ds(s)$ $= \frac{\int_{abs(x)} M(x + 4 + 5) dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} M(x + 5 + 4 + 5) dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $= \frac{\int_{abs(x)} \sqrt{N(x + 5 + 4 + 5)} dS(3)}{n \alpha(n)}$ $\phi(s) - \phi(\varepsilon) = \int_{\varepsilon}^{r} \phi'(s) ds \Rightarrow \phi(\varepsilon) = \phi(s) - \int_{\varepsilon}^{r} \phi'(s) ds$ $= \frac{1}{\max(n) \leq n!} \int_{\partial S_{s}(0)} g''(s) ds$ $-\int_{\varepsilon}^{r} \phi'(s) ds = \int_{\varepsilon}^{r} \frac{1}{n\alpha(n)s^{n+1}} \int_{\partial Bs(0)} fy) dy ds$ $= \frac{1}{n\alpha(n)} \int_{\varepsilon}^{r} \frac{1}{s^{n+1}} \int_{Bs(0)} fy) dy ds \qquad \frac{-1}{(n-2)s^{n+2}} \Big|_{s=\varepsilon}^{r} = \frac{1}{n-2} \left(\frac{1}{\varepsilon^{n-2}} - \frac{1}{r^{n/2}}\right)$ $= \frac{1}{n\kappa(n)} \left[\left(\frac{1}{2-n} \frac{1}{5n^2} \int_{B_5(0)} f \, dy \right)^r - \int_{0}^{r} \frac{1}{2-n} \frac{1}{5n^2} \int_{\partial B_5(0)} f \, ds \right]$ $=\frac{1}{n(n2)ocon}\left[\int_{\varepsilon}^{r}\frac{1}{5^{n2}}\int_{\partial B_{S}(0)}fdSds-\frac{1}{n^{n2}}\int_{B_{S}(0)}fdy+\frac{1}{\varepsilon^{n2}}\int_{B_{\varepsilon}(0)}fdy\right]$ $=\frac{1}{n(n+2)\alpha(n)}\left[\int_{\varepsilon}^{r}\frac{1}{5^{n+2}}\int_{\partial B_{S}(0)}fdSds+\frac{1}{\varepsilon^{n+2}}\int_{B_{\varepsilon}(0)}fdy-\frac{1}{\gamma^{n+2}}\int_{B_{S}(0)}fdy\right]$ $\int_{0}^{\infty} ds \int_{\partial B_{0}(0)} \frac{1}{5^{n_{2}}} ds = \int_{B_{0}(0)} \frac{1}{|x|^{n_{2}}} f(x) dx$ As E>O, \$ -> JACON TUINS FOX DA $\lim_{\varepsilon \to 0} -\int_{\varepsilon}^{r} \phi'(s) ds = \frac{1}{n(n+2)\alpha(n)} \int_{B_{r}(0)} \left(\frac{1}{|\chi|^{n+2}} - \frac{1}{n^{n+2}}\right) f dx$ Thus, letting $\varepsilon \to 0$ $\lim_{\varepsilon \to 0} \int_{B_{r}(0)} \left(\frac{1}{|\chi|^{n+2}} - \frac{1}{n^{n+2}}\right) f dx$ $\lim_{\varepsilon \to 0} \int_{B_{r}(0)} \left(\frac{1}{|\chi|^{n+2}} - \frac{1}{n^{n+2}}\right) f dx$

3.
$$u: U \subset IR^n \to IR$$
 is harmonic

$$v = |\Delta u|^2 = \sum_{i=1}^n u_{xi}^2 \quad \text{for } x_1, x_2 \dots x_n$$

$$\frac{\partial v}{\partial x_k} = 2 \sum_{i=1}^n u_{xi}^2 \quad u_{xi} x_k$$

$$\frac{\partial v}{\partial x_k \partial x_i} = 2 \sum_{i=1}^n \left[\frac{\partial^2 u}{\partial x_i \partial x_k} \cdot \frac{\partial^2 u}{\partial x_i \partial x_k} + \frac{\partial u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i \partial x_k} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i \partial x_k} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i \partial x_k} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i \partial x_k} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i \partial x_k} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} \cdot \frac{\partial^2 u}{\partial x_i} + \frac{\partial^2 u}{\partial x_i} \cdot \frac{$$

- - AV ≤0

4. Using Poisson's formula of ball

$$U(x) = \frac{r^2 - |x|^2}{n \, \alpha(n) \, r} \int_{\partial B_r(o)} \frac{g}{|x-g|^n} \, dS$$

Since integrating over the boundary, $g \in \partial B_r(o) = |x-g| \le |x| + r$

$$U(x) = \frac{(r-b)(r+|x|)}{n \, \alpha(n) \, r} \int_{\partial B_r(o)} \frac{g}{|x-g|^n} \, dS$$

$$\leq \frac{(r-b)(r+|x|)}{n \, \alpha(n) \, r} \int_{\partial B_r(o)} \frac{g}{(b|+r)^n} \, dS = \frac{r-|x|}{C|x|+r^n} \frac{1}{n \, \alpha(n) \, r} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r-|x|}{(|x|+r^n)^{n-1}} \frac{r^{n-2}}{n \, \alpha(n) \, r^{n-1}} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r-|x|}{(|x|+r^n)^{n-1}} \frac{r^{n-2}}{n \, \alpha(n) \, r^{n-1}} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS + \frac{r^{n-2}(r-|x|)}{n \, \alpha(n) \, r^{n-1}} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS + \frac{1}{n \, \alpha(n)} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS + \frac{1}{n \, \alpha(n)} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS + \frac{1}{n \, \alpha(n)} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS + \frac{1}{n \, \alpha(n)} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS + \frac{1}{n \, \alpha(n)} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|x|+r^n)^{n-1}} \int_{\partial B_r(o)} g \, dS$$

$$= \frac{r^{n-2}(r-|x|)}{(|$$

5. M is square integrable & 2nd continuity
? M is bounded

From Liouville thm , be $U:\mathbb{R}^n\to\mathbb{R}$ be a bounded harmonic function ($\Delta U=0$)

So that u is a constant

 $U \in L^2(IR^n) \rightarrow \int_{\mathbb{R}^n} |u(x)|^2 dx < \infty$

N must decay at infinity -> N->0

Thus, N=0