MATH 450 HOMEWORK 3

Exercise 1. Here are some differential forms on $M \cong \mathbb{R}^4$:

$$\alpha = x^{2} dx + z dy$$

$$\beta = dy + 3dz + t dt$$

$$\gamma = dx \wedge dy + 2y dx \wedge dt$$

$$\delta = dx \wedge dy \wedge dz + x dy \wedge dz \wedge dt$$

Calculate $\alpha \wedge \beta$, $\beta \wedge \gamma$, $\gamma \wedge \gamma$, $\alpha \wedge \delta$, $\beta \wedge \delta$

Exercise 2. Calculate the exterior derivatives of the following exterior differential forms on a manifold with coordinates $\{x, y, z, t\}$:

$$f = xy + e^{zt}$$

$$\alpha = x dx + y dy$$

$$\beta = x dy + y dx$$

$$\gamma = x dy - y dx$$

$$\delta = xyzt dx \wedge dy$$

$$\mu = x dx \wedge dy \wedge dt + xyz t dy \wedge dz \wedge dt$$

$$\sigma = (1 + yx + yzx) dx + (x + xz) dy + x^2y dz$$

$$\omega = (x^2 + y^2 + z^2 + t^2) dx \wedge dy \wedge dz \wedge dt$$

Exercise 3. Consider the following most general form on a 3-dimensional manifold with coordinates $\{x^1, x^2, x^3\}$.

0-form
$$f = f(x^{1}, x^{2}, x^{3})$$

1-form $\alpha = a_{1} dx^{1} + a_{2} dx^{2} + a_{3} dx^{3}$
2-form $\beta = A_{1} dx^{2} \wedge dx^{3} + A_{2} dx^{3} \wedge dx^{1} + A_{3} dx^{1} \wedge dx^{2}$
3-form $\omega = g dx^{1} \wedge dx^{2} \wedge dx^{3}$

where $f,\,g,\,a_i$ and A_i are arbitrary unspecified differentiable functions. Calculate

$$df$$
, $d\alpha$, $d\beta$, $d\omega$.

Also, calculate ddf to see how it vanishes.

Exercise 4. Let $\alpha = xdy + ydx$, and $\omega = dx \wedge dy + dz \wedge dt$. Calculate:

$$\alpha \wedge \alpha$$
, $\alpha \wedge \omega$, and $\omega \wedge \omega$