

Research Administration

Huntsville, Alabama 35899 Phone: (205) 890-6000 (205) 890-6677

June 11, 1998

U.S. Army Aviation & Missile Command

SFAE-MSL-ML-TR-P

Attn: Mr. Joel Price

Redstone Arsenal, AL 35898

RE: **Final Report** 

DAAH01-91-D-R002 D.O. 108

Dear Mr. Price:

Please find enclosed a copy of the above noted Final Report for "Atmospheric Model Development for MLRS" as required by the above referenced contract.

If you have any questions or need additional information, please contact me at (256) 890-6000 ext. 224.

Sincerely, imberly R. Howath

Kimberly R. Horvath

**Contract Assistant** 

Distribution Unlimited

ENC.

AMSAM-AC-RD-BB/Belva Lynn cc:

(ltr/rpt)

ONRRO

(ltr/rpt)

DTIC/OCA

(2 ltr/rpt)

UAH/O. Essenwanger

(ltr)

**UAH/** Accounting

(ltr)

**UAH/File** 

(ltr/rpt)

**UAH/Archives** 

(rpt)

| SECURITY ( | LASSIFICATION | OF THIS | PAGE |
|------------|---------------|---------|------|

| REPORT                                                                                   | DOCUMENTATION                        | ON PAGE                |                                       |              | Form Approved<br>OMB No. 0704-0 |
|------------------------------------------------------------------------------------------|--------------------------------------|------------------------|---------------------------------------|--------------|---------------------------------|
| 1a. REPORT SECURITY CLASSIFICATION Un Classifical -                                      |                                      | 16. RESTRICTIV         | E MARKINGS                            |              |                                 |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                                    |                                      | l.                     | N/AVAILABILIT                         |              |                                 |
| 2b. DECLASSIFICATION/DOWNGRADING SCHEE                                                   | DULE                                 | Destri                 | bution                                | State        | ment A                          |
| 4. PERFORMING OPGANIZATION REPORT NUIVI<br>WAH - 5-24837                                 | BER(S)                               | 5. MONITORING          | G ORGANIZATIO                         | N REPORT N   | NUMBER(\$)                      |
| A Lowy LAIL Scimor Day                                                                   | 6b. OFFICE SYMBOL (If applicable)    |                        | MONITORING OR                         |              |                                 |
| 6c ADDRESS (City, State, and ZIP Code)  Now. Alabama in Itunhail  If unb will, AL 35-899 | ( L                                  | 7b. AODRESS (C         |                                       |              | Con. on and<br>12 35 898        |
| 83. NAME OF FUNDING/SPONSORING ORGANIZATION  SIL GOVU                                    | 8b. OFFICE SYMBOL<br>(If applicable) | 9. PROCUREMEN          |                                       |              |                                 |
| 8c. ADDRESS (City, State, and ZIP Code)                                                  |                                      | 10. SOURCE OF          | FUNDING NUMI                          | BERS         |                                 |
| see above                                                                                |                                      | PROGRAM<br>ELEMENT NO. | PROJECT<br>NO.                        | TASK<br>NO.  | WORK UN<br>ACCESSION            |
| 11. TITLE (Include Security Classification)  TANY168, 98 (U)                             |                                      |                        | <u> </u>                              |              | ,                               |
| 12. PERSONAL AUTHOR(S) Di, Oskai Essenhangu                                              | ·                                    |                        | · · · · · · · · · · · · · · · · · · · |              |                                 |
| 13a. TYPE OF REPORT  FIRM REPORT  FROM 1/3  FROM 1/3                                     |                                      | 14. DATE OF REPO       | ORT (Year, Mont                       | th, Day) 1   | 5. PAGE COUNT                   |
| 16. SUPPLEMENTARY NOTATION                                                               |                                      |                        |                                       |              |                                 |
| 17. COSATI CODES                                                                         | 18. SUBJECT TERMS (                  | Continue on reven      | e if peressant                        | and identifi | hy black aumber                 |
| SIELD GROUP SUR GROUP                                                                    | <b>⊣</b>                             |                        | ic in medeasary a                     | ina identity | by block number)                |

This report is divided into 5 letter reports covering the required scope of work tasks.

The first task was the determination of the frequency distribution of 2, 3, and 4 m/sec wind speed at the surface, 199 and 1000 m elevation for 2 Korean stations (Tab; es 108 -1.1 and 1.2). Tables 108 - 1.3 to 1.5 display the conditions for the same thresholds for other climatic regimes, standardized here. We learn that the Korean stations have much weaker wind speeds than at these previous stations.

The next ketter report delineates the study of the wind direction turn angle from the surface to 300m 500, 1000, amd 1500 m of elevation. Of special interest was the 300 m elevation. Table 108-2.1 illustrates the turn angle. The turn angle from zero to 45 degrees implies agreement with the "Eknan Model" of friction. It is not surprising, however, that Albrook in the tropics provides the highest frequency with almost 85 % of data in 22a. NAME OF RESPONSIBLE INDIVIDUAL

D. Oskar Essenhanza

22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL 25-850-6296

this range, Thule shows the smallest amount. This is caused that cold air advection leads to backing, while friction and warm air advection shows veering of the wind. Thus cold air advection is expected to be low in the tropics (Albrook), while it is highest at the polar station (Thule). Similar results can be found fpr the additional tabulations 108 - 2.3 to 2.11.

In letter report # 3 the wind direction profile is presented which is associated with the exdeedance kevel of the wind speed. It should be noticed that the exceedance levels in the heading of the Tables 108 - 3.1 - 3.4 are not exceedance levels for the wind direction but rather the associated mean profile direction for the wind speed profiles. We learn that the strong winds disclose a shift of the wind direction towards easterlies in the tropics, towards westerlies in the other regions. E.g. strong windsmat change from a headwind to a lateral wind if the mean direction profile for the year is used for strong winds. It is cautioned that a wind speed profile at the 99 % exceedance level is higher in 1 % of the cases.

Although the next task was uniform in the technical aspect of the requirement. The regions for the wind speed profiles comprise two different climatic regimes. Thus the task was divided into letter report 4 abd 5, The first report deals with the Middle East, report # 5 covers the Skandinavian area.

In the Middle East Dhahran, Abu Dhabi, and Rhyadh delineate a similar climatic regime while Israel has muchg stronger winds.

The Skandinavian stations resemble wind speed profiles for Berlin (Kopenhavn and Oslo) and Thule (Jan Mayen). Details may be found in Tables 108 - 4.1 - 4.4 (Middle East) and Tables 108 - 5.1 to 5.3 (Skandinavia).

In addition to the wind speed profiles for exceeance levels ranging from 50 to 99 % the wind direction profiles are given for the year, winter, and summer. It should be noticed that in the higher elevations the summer mean directional profile is quite different from winter.

Finally, the principal investigator attended the Conference on Atmospheric Battle Space which was held at the Navy facility at San Diego. California. Discussions centered on the results from the study of the Ekman Model, and tentative results from wind speed profiles for the Middle East.

## PLEASE CHECK THE APPROPRIATE BLOCK BELOW

| $-\boldsymbol{\nu}_{\ell}$ | AU#                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | copies are being forwarded. Indicate whether Statement A, B, C, D, E, F, or X applies.                                                                                                                                                                                                                                                                                                          |
| *                          | DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED                                                                                                                                                                                                                                                                                                                |
|                            | DISTRIBUTION STATEMENT B:  DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; (indicate Reason and Date). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).                                                                                                                                                                                       |
|                            | DISTRIBUTION STATEMENT C: DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTS (Indicate Reason and Date). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).                                                                                                                                                                          |
|                            | DISTRIBUTION STATEMENT D: DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).                                                                                                                                                                                                      |
|                            | DISTRIBUTION STATEMENT E:  DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).                                                                                                                                                                                                                   |
|                            | DISTRIBUTION STATEMENT F: FUTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date) or HIGHER DoD AUTHORITY.                                                                                                                                                                                                                                                          |
|                            | DISTRIBUTION STATEMENT X: DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE 5230.25. WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE, 6 Nov 1984 (indicate date of determination). CONTROLLING DoD OFFICE IS (Indicate Controlling DoD Office). |
|                            | This document was previously forwarded to DTIC on (date) and the AD number is                                                                                                                                                                                                                                                                                                                   |
|                            | In accordance with provisions of DoD instructions. The document requested is not supplied because:                                                                                                                                                                                                                                                                                              |
|                            | It will be published at a later date. (Enter approximate date, if known).                                                                                                                                                                                                                                                                                                                       |
| □.                         | Other. (Give Reason)                                                                                                                                                                                                                                                                                                                                                                            |
|                            | Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven distribution ements, as described briefly above. Technical Documents must be assigned distribution statements.                                                                                                                                                                                   |
|                            | Dr. Oskar M. Essenwanger Print or Type Name                                                                                                                                                                                                                                                                                                                                                     |
|                            | Authorized Signature/Date                                                                                                                                                                                                                                                                                                                                                                       |

# THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Account No. <u>5-348</u>27

# MONTHLY TECHNICAL PROGRESS

Report No. FARMY 168,98

FOR THE PERIOD OF: 7/21/1997 br 3/30/98 PREPARED: Dr. Whom Essens ongen

| Contract No.: 9/44401-91-1-8002                                                                   | Delivery Order No.: 108  |
|---------------------------------------------------------------------------------------------------|--------------------------|
| Delivery Order Title:<br>Afmorphisic Mother Development for MI                                    | i KS                     |
| Research Activities Performed:  Development of Wina Profile of  Shody of Ekinan Model for various | Probabily of Excudent    |
| Problems Encountered: Some Justiens in Jo<br>dala from Juneau livels to Kin                       | lyans g<br>Louds (mobio) |
| Research Activities Planned Next Month  Con 4th Rp 11th 31 March                                  | न <b>१</b>               |
|                                                                                                   |                          |
| Dr. Oslan Esslanmager Principal Investigator                                                      | Date:                    |
| Prepared for:                                                                                     | cc:                      |
| •                                                                                                 |                          |
| ATTN:                                                                                             |                          |
|                                                                                                   |                          |
|                                                                                                   |                          |
|                                                                                                   |                          |

TPR/RA88

Encl. #1

Attachments can be appended

REPORT FARMY108.98

DAAH01-91-D-R002DO 108

Sequence Number A008

15 May 1998

Principal Investigator
Dr.Oskar Essenwanger
Prof. Atmosph. and Emvironm. Science

## TABLE OF CONTENT

| Scope of work (Requirement)                                                                                                                                                        | 2  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abstract                                                                                                                                                                           | 3  |
| Letter Report FARMY108 - 1<br>Frequency of 2 and 3 m/sec wind Speed for Korea                                                                                                      | 4  |
| Letter Report FARMY108 - 2<br>Frequency of Directional Turn Anglle<br>for Berlin, Thule, and Albrook                                                                               | 9  |
| Letter Report FARMY108 - 3<br>Directional Wind Profile for 50 - 99% Wind Speed Profiles<br>from Surface to 25 km for 4 Stations with Summer Directional<br>Profiles for 4 Stations | 22 |
| Letter Report FARMY108-4<br>Wind Speed Profiles for 50 - 99 %<br>For 4 Middle East Stations                                                                                        | 28 |
| Letter Report DARMY108 - 5-<br>Wind Speed Profiles for 50 - 99%<br>For 3 Stations of Scandinavia                                                                                   | 34 |
| References                                                                                                                                                                         | 38 |
| cknowledgement                                                                                                                                                                     | 38 |

DAAHO1-91-D-ROOZ PANR32-07-7

# STATEMENT OF WORK Atmospheric Model Development for MIRS 5 JUNE 97

# Section I. Background and Objective

The Aerodynamics Technology Functional Area of the Systems
Simulation and Development Directorate of the U.S. Army Missile Command
is providing support to the Multiple Launch Rocket System (MLRS) Project
Office in the area of acrodynamic and atmospheric model development.
The objectives of this task shall be to enhance atmospheric wind models
for specific terrain and climatic regimes.

### Section II. Requirements

- 1. The contractor shall determine the frequency of windspeed under 2 m/sec and 3 m/sec at surface and 100 meters above the surface for two korean stations, and compare these with the global data provided in latter report FARMY-86-1,95.
- 2. The contractor shall provide frequency distributions of the turn angle in the Ekman spiral model for three stations (Berlin, Albrook, Thule or government approved substitution). Of special interest is the turn angle in the boundary layer (surface to 500 meters).
- 3. The contractor shall develop mean wind direction profiles for 4 significant climatic regimes associated with the 50, 84, 90 and 99 percent exceedance windspeed profiles described in the final report FARMY-43. These profiles will include summer conditions (June, July, August).
- 4. The contractor shall develop wind velocity profiles using the methods described in FARMY-153 for locations representative of Bahrain, Israel, Norway, and Denmark. These profiles shall be based on historical data and shall include 50, 68, 84, 90, and 99 percent profiles.
- 5. Results from this analysis shall be presented and discussed with personnel of the Battlefield Directorate, White Sands, NM.

#### ABSTRACT.

This report is divided into 5 letter reports covering the required scope of work tasks.

The first task was the determination of the frequency distribution of 2, 3, and 4 m/sec wind speed at the surface, 199 and 1000 m elevation for 2 Korean stations (Tab; es 108 -1.1 and 1.2). Tables 108 - 1.3 to 1.5 display the conditions for the same thresholds for other climatic regimes, standardized here. We learn that the Korean stations have much weaker wind speeds than at these previous stations.

The next ketter report delineates the study of the wind direction turn angle from the surface to 300m 500, 1000, amd 1500 m of elevation. Of special interest was the 300 m elevation. Table 108-2.1 illustrates the turn angle. The turn angle from zero to 45 degrees implies agreement with the "Eknan Model" of friction. It is not surprising, however, that Albrook in the tropics provides the highest frequency with almost 85 % of data in this range, Thule shows the smallest amount. This is caused that cold air advection leads to backing, while friction and warm air advection shows veering of the wind. Thus cold air advection is expected to be low in the tropics (Albrook), while it is highest at the polar station (Thule). Similar results can be found for the additional tabulations 108 - 2.3 to 2.11.

In letter report # 3 the wind direction profile is presented which is associated with the exdeedance kevel of the wind speed. It should be noticed that the exceedance levels in the heading of the Tables 108 - 3.1 - 3.4 are not exceedance levels for the wind direction but rather the associated mean profile direction for the wind speed profiles. We learn that the strong winds disclose a shift of the wind direction towards easterlies in the tropics, towards westerlies in the other regions. E.g. strong windsmat change from a headwind to a lateral wind if the mean direction profile for the year is used for strong winds. It is cautioned that a wind speed profile at the 99 % exceedance level is higher in 1 % of the cases.

Although the next task was uniform in the technical aspect of the requirement. The regions for the wind speed profiles comprise two different climatic regimes. Thus the task was divided into letter report 4 abd 5, The first report deals with the Middle East, report # 5 covers the Skandinavian area.

In the Middle East Dhahran, Abu Dhabi, and Rhyadh delineate a similar climatic regime while Israel has muchg stronger winds.

The Skandinavian stations resemble wind speed profiles for Berlin (Kopenhavn and Oslo) and Thule (Jan Mayen). Details may be found in Tables 108 - 4.1 - 4.4 (Middle East) and Tables 108 - 5.1 to 5.3 (Skandinavia).

In addition to the wind speed profiles for exceeance levels ranging from 50 to 99 % the wind direction profiles are given for the year, winter, and summer. It should be noticed that in the higher elevations the summer mean directional profile is quite different from winter.

Finally, the principal investigator attended the Conference on Atmospheric Battle Space which was held at the Navy facility at San Diego. California. Discussions centered on the results from the study of the Ekman Model, and tentative results from wind speed profiles for the Middle East.

This letter report provides information about the cumulative frequency distribution of 2,3, and 4 m/sec of the wind speed at 3 elevations for two stations in Korea. For convenience 3 more thresholds have been added.

Table 108 - 1.1. illustrates the cumulative frequency of the wind speed for the required thresholds 2,3, and  $4m/\sec$  for Osan (Table 108 -1.1) and Yable 108 - 1.2 gives the same information for Pyong, both Kprea.

These tables are also including the threshold 5, 15, and 30 m/sec. and the maximum wind speed.

Three elevations, surface, 100 m, and 1 km were specified by the scope of work.

The same cumulative frequency of the wind speed is displayed in Tables 108 -3,4, and 5 for 5 stations from South to North. Although this information was provided in an earlier report (FARMY-DO -97). The tables have been standardized in the format of the Korean stations to permit an easy comparison.

We learn from Tables 108 - 1.1 and 1.2 that the surface wind speed at these Korean stations is lower or equals 2 m/sec for Osan and Pyong in 74 and 82 %, respectively. In comparison, the highest frequency is found (Table 108 - 1.3) at Thule wit about 57%. Although this frequency for the Korean stations appears to be very high, a comparison of the maximum wind speed in Table 108 -1.3 shows that the maximum at Pyong is in line with Montgomery or Trappes (France). Thus the Kprean data are reasonable.

The cumulative frequency of the wind speed at the other thresholds can be found by a closer perusal of the tables.

For the elevation of 100 m the frequency of a wind speed lower or equal to 2 m/sec reduces to 59 and 72 % for Osan and Pyong, respectively. This is in line with expectations, because the wind speed increases with height. Again, the highest frequency (Table 108 -1.4) for Thule with 57 %.

Finally, at 1 km we find the cumulative frequency for the 2 m/sec threshold with 9 and 11 % for Osan and Pyomg, respectively. Surprisingly the frequency is twicw as high for 2 m/sec at Thule (Table 108 -1.5). This indicates again that the result from the Korean data is reasonable.

The results for the other thresholds are depicted in the respective tables.

The tables have been furnished to the MLRS system upon request on computer disks.

1,1 Windspeed Frequency Distribution for Osan, Korea

|     | su   | rface | 1    | 00 m  | •    | 1 km    |
|-----|------|-------|------|-------|------|---------|
| đ   | N    | %     | N    | %     | N    | %       |
| BC  | 5969 | 74.1  | 4654 | 57.9  | 716  | 8.8     |
| ec  | 6864 | 85.2  | 5923 | 73.7  | 1609 | 19.7    |
| ec  | 6906 | 85.7  | 6757 | 84.1  | 2283 | 28.0    |
| ec  | 7325 | 90.9  | 7209 | 89.7  | 3167 | 38.5    |
| ec  | 8052 | 899.9 | 8026 | 99.9  | 7702 | 94.3    |
| ec  | 8056 | 100.0 | 8032 | 100.0 | 8167 | 100.0   |
| ec  | 8059 | 100.0 | 8034 | 100.0 | 8168 | 100.0   |
| eed | 41.2 | m/sec | 38.7 | m/sec | 30.  | 3 m/sec |

<sup>:</sup> record 1973 - 1995

8 1,2 Windspeed Frequency Distribution. for PYong, Korea

|         |         |         | ·     |       |       |         |
|---------|---------|---------|-------|-------|-------|---------|
| n       | su      | rface   | 1     | 00 m  |       | 1 km    |
| ed      | N       | 8       | N     | 8     | N     | %       |
| sec     | 10396   | 82.1    | 8427  | 71.9  | 1271  | 10.7    |
| sec     | 11278   | 89.1    | 6939  | 82.2  | 2557  | 21.6    |
| sec     | 11767   | 92.9    | 10446 | 89.1  | 4020  | 33.9    |
| sec     | 12104   | 95.6    | 10921 | 93.2  | 5492  | 46.3    |
| sec     | 12651   | 99.99   | 11713 | 99.9  | 11685 | 98.5    |
| 'sec    | 12660   | 100.0   | 11722 | 100.0 | 11855 | 100.0   |
| 'sec    | 12662   | 100.0   | 11723 | 100.0 | 11860 | 100.0   |
| peed    | 40.0    | m/sec   | 36.9  | m/sec | 71.   | 6 m/sec |
| · = === | 1024 10 | 72 1006 |       |       |       |         |

|         | 8.66        | 6.66         | 100.0        |              | Dec 96<br>Dec 93                                           |    | • |  |     |
|---------|-------------|--------------|--------------|--------------|------------------------------------------------------------|----|---|--|-----|
|         | 283,        | 2847 99.9    | 2849 100.0   | 37.4m/s      | 12 Nov 74 - 31                                             | .· |   |  |     |
|         | 4565 99.8 2 | 4572 100.0 2 | 4572 100.0 2 | 20.4m/s      | Montgomery, AL<br>Berlin, Germany                          |    | · |  | e e |
|         | 14993 99.8  | 15005 99.9   | 15022 100.0  | 68.2m/s      | 74 - 15 Jan 76<br>71 - 31 Dec 96<br>71 - 31 Dec 96         |    |   |  |     |
| 84.1    | 8.66        | 6.66         | 100.0        | 63.0m/s      | 4 Jan<br>1 Jan<br>1 Jan                                    |    |   |  |     |
| 11889   | 13976       | 13981        | 14001        | 63.          | Albrook, Canal Zone<br>Trappes, France<br>Thule, Greenland |    |   |  |     |
| 58.3    | 6.66        | 100.0        | 3644 100.0   | 17.2m/s      | Albrook, Canal 3<br>Trappes, France<br>Thule, Greenlan     |    |   |  |     |
| 2123    | 3642        | 3644         | 3644         |              |                                                            |    |   |  |     |
| 5.0 m/s | 15.0 m/s    | 30.0 m/s     | TOTAL:       | MAX SURF WS: | Period of record:                                          |    |   |  |     |

.

- 7 -

•

Table 108-1.4

| i            |  |
|--------------|--|
| DISTRIBUTION |  |
| SPEED        |  |
| MIND         |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |       |                 |       | - NOTTOSTILL | TOOT   |                       |         | •     |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|-------|-----------------|-------|--------------|--------|-----------------------|---------|-------|-------------|
| Wind Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALI  | ALBROOK<br>N | MONTO | MONTGOMERY<br>N | TRA   | TRAPPES<br>N | BEI    | BERLIN                | TH      | THULE | AVERAGE     |
| 2.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 753  |              |       |                 |       |              | 2      | 96<br> <br> <br> <br> | z       | æ     | <b>a</b> p  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 7.02         | 1778  | 12.7            | 3119  | 20.8         | 402    | 8.8                   | 1320    |       |             |
| 3.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1232 | 33.8         | 6475  | 46.2            | 6310  | 42.0         | 6      | •                     | 0.70    | 40.0  | 22.0        |
| 4.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1687 | 46.2         | 6     |                 |       |              | 1008   | 23.4                  | 1859    | 65.3  | 42.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | •            | 7848  | 70.3            | 9148  | 6.09         | 1751   | 38.3                  | 2173    | 76.3  | 58.4        |
| ر<br>د<br>د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |              |       |                 |       |              |        |                       |         |       | •<br>•<br>• |
| # /III O · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2123 | 58.3         | 11889 | 84.1            | 11360 | 75.6         | 2477   | 54.2                  |         |       |             |
| 15.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3642 | 6.66         | 13076 | 6               |       |              | •      | 7                     | 23/6    | 83.4  | 71.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | •            | 0/651 | ν.<br>Σ         | 14993 | 8.66         | 4565   | 99.8                  | 2837    | 7 00  | (           |
| 30.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3644 | 100.0        | 13981 | 6.66            | 15005 | 6,66         | 4573   | 0                     |         | •     | 99.8        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |       |                 |       |              | 7/6    | 100.0                 | 2847    | 6.66  | 6.66        |
| TOTAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3644 | 100.0        | 14001 | 100.0           | 15022 | 001          | ,<br>1 |                       |         |       |             |
| MAX SIIDE MG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |       |                 | 1     |              | 40/5   | 100.0                 | 2849    | 100.0 | 100.0       |
| : CA - TICA - TI |      | 1/.2m/8      | 63.(  | 63.0m/s         | 68.   | 68.2m/s      | 20.    | 20.4m/s               | 37.4m/s | s/w   |             |

Period of record: Albrook, Canal Zone 4 Jan 74 - 15 Jan 76 Trappes, France 1 Jan 71 - 31 Dec 96 Thule, Greenland 1 Jan 71 - 31 Dec 96

Montgomery, AL 12 Nov 74 - 31 Dec 96 Berlin, Germany 1 Jan 71 - 31 Dec 93 [ M 108-1,5 WIND SPEED DISTRIBUTION - 1KM

| Wind Speed                                                           | ALE           | ALBROOK<br>N %                                       | MONT     | MONTGOMERY<br>N                         | TRA<br>N | TRAPPES<br>N %                      | BER          | BERLIN                            | ij          | THULE                           | AVERAGE                |
|----------------------------------------------------------------------|---------------|------------------------------------------------------|----------|-----------------------------------------|----------|-------------------------------------|--------------|-----------------------------------|-------------|---------------------------------|------------------------|
| 2.0 m/s                                                              | 353           | 9.7                                                  | 1183     |                                         |          |                                     | :            | ·                                 | Z           | ا<br>ا<br>ا عرم<br>ا            | аP                     |
|                                                                      |               |                                                      | )        |                                         | /8/      | 2.5                                 | 180          | 3.9                               | 603         | 21.2                            |                        |
| 3.0 m/s                                                              | 640           | 17.6                                                 | 2482     | 17.7                                    | 1799     | 12.0                                | 435          | a                                 | •           |                                 | · n                    |
| 4.0 m/s                                                              | 775           | 21.3                                                 | 3165     | , , ,                                   |          |                                     |              | )<br>)                            | 1065        | 37.4                            | 18.8                   |
|                                                                      |               | <b></b> .                                            |          |                                         | 2382     | 15.9                                | 636          | 13.9                              | 1273        | 44.7                            | 23.7                   |
| 5.0 m/s                                                              | 1121          | 30.8                                                 | 4571     | 32.6                                    | 3643     | 24.3                                | 070          | ,                                 |             |                                 |                        |
| 15.0 m/s                                                             | 3618          | 0                                                    |          |                                         |          | )                                   | 6/6          | 21.4                              | 1619        | 56.8                            | 33.2                   |
|                                                                      |               | 2.00                                                 | 12975    | 92.7                                    | 13028    | 86.7                                | 3881         | 84.9                              | י<br>י<br>י |                                 |                        |
| 30.0 m/s                                                             | 3644          | 100.0                                                | 13001    | 6                                       | ,        |                                     | <b>!</b>     | •                                 | 2/3/        | 96.1                            | 92.0                   |
|                                                                      | ı             |                                                      | TECCT    | 9.99<br>9.99                            | 14969    | 9.66                                | 4564         | 8.66                              | 2848        | 100.0                           | 6.66                   |
| TOTAL:                                                               | 3644          | 100.0                                                | 14001    | 100.0                                   | 15000    |                                     |              |                                   |             |                                 |                        |
| Vav.                                                                 |               |                                                      | <b>)</b> |                                         | 77067    | 100.0                               | 4572         | 100.0                             | 2849        | 100.0                           | 001                    |
| raa sukk ws:                                                         | 26.           | 26.2m/s                                              | 33.      | 33.5m/s                                 | 51.4m/s  | æ/w                                 | 35.5m/B      | s/w                               | 51.(        | 51.0m/s                         | )<br>)<br>)            |
| Period of record: Albrook, Canal<br>Trappes, Franc<br>Thule, Greenla | ord: Al<br>Tr | Albrook, Canal<br>Trappes, France<br>Thule, Greenlan | on ⊂     | Zone 4 Jan 74<br>1 Jan 71<br>d 1 Jan 71 | 1 1 1    | 15 Jan 76<br>31 Dec 96<br>31 Dec 96 | Mont<br>Berl | Montgomery, AL<br>Berlin, Germany | _           | 12 Nov 74 - 31<br>1 Jan 71 - 31 | 31 Dec 96<br>31 Dec 93 |

atter report provides the frequency of the wind direction ngle (Ekman Spiral) for 3 stations (Berlin, Albrook, Thule). cial interest is the boundary ayer (surface to 300 m.

is study was performed with data furnished on CD Rom by the onmental Technical Application Center of the Air Force sheville, N.C. The study required to determine the mency of the turn angle of the wind in the boundary r, especially the lowest 300 m. s reported earlier (FARMY-DO-97) the wind direction s in the lower layers for 3 reasons:

- a) surface friction (Ekman Spiral)
- b) warm air advection (veering)
- c) Cold air advection (backing)

terms veering or backing refer to the direction the turn angle of the wind from surface to a soecifie4 evation. In the friction layer this turn is considered a concept called the Ekman Spiral.

Two facts must be considered in a frequency of the rn angle. In the study of the wind from surface to specified elevation one can notice that the direction my not display a uniform turn up to a certain height. n the Ekman Model it is considered that a uniform turn xists until the so-called geostrophic wind is reached. n our study it was decided to find the "top" height thenever the direction reversed veering by more than

A second fact is the discontinuity of the wind direction at 360 degrees. E.g. a wind direction of 20 degrees at 300 m and a surface wind direction of 309 degrees would lead to a numerical value of - 320 degrees unless the the discontinuity at 360 degrees is properly considered. This leads to 40 degrees (see EssenwANGER, 1986),

After including these two points into our calculations the Table 108 -2.1 was obtained. For the Ekman Spiral the interval from 0 to 45 degrees is expectedt. We learn that for Albrook almost 86 % fall into this range. The frequency is 53 % for Berlin, but only 30 % for Thule. Backing of the wind shows a frequency of 9 % for Albrook, 17 % for Berlin, and 51 % for Thule. These numbers may indicate the frequency of cold air advection. These numbers are quite reasonable in accordance with thr general circulation of the atmosphere. where one would expect more cold air affecting Thule.

A second tabulation for 300 m elevation was established (Table 108 - 2.2). In this table the data were not counted whenever the first direction was backing. This was considered not in line with the Ekman Spiral. In this table the 15 degree intervals start with zero degree turn. The cumulative frequency distribution of the turn angle is added up from zero degrees. We notice that Albrook has a cumulative frequency from 0 ro 45 degrees Of 99 %, Berlin 95 and Thule 84 %.

It was assumed that backing from surface on to the next available elevation is implying cold air advection. It must also pointed out that the positive turn angle includes che dases of warm air advection. The separation into the 3 groups causing the wind to turn may be an interesting but also beneficial study by itself.

The author realizes that the surface friction plays an important role in this statistical analysis as obtained here. It must be called to the attention that the result fits reasonably into the scheme of the general circulation. How much warm or cold air advection by overriding or enhancing the frictional effect. These effects could not be determined in the time frame of this study.

In an earlier report it was stated that the frictional boundary layer effect is found at a higher elevation in the tropics than at midlatitudes and polar areas. Thus 3 more tables each for all three stations were added (Tables 108 - 2.3 to 2.11) These tables were calculated for top heights up to 500, 1000, and 1500 m. They display the same trend as the previous tables. It must also be added that in these tables the direction profile was not terminated whenever the reversal of the principal directional turn was less than 10 degrees. This has lead to a reduction in the size of the turn angle compared with Tables 108 -2.1 and 2.2. Thus the frequency distribution for the same classes as in these turn angles.

Table 108 - 2.1 Turn of the Wind Direction between Surface and 300 m.
"ind direction at 300m minus wind direction at surface.

|                   | Turn         | #   | ALB  | ROOK<br>Cum % | ;    | BER<br># % | LIN<br>Cum | 8 #   | THUL<br>% |       |
|-------------------|--------------|-----|------|---------------|------|------------|------------|-------|-----------|-------|
| ,                 | -166         | 1   | 0.1  | 0.1           |      | 2 0.0      | 0.0        | 97    |           | Cum % |
| TLE 5             | -151         | 0   | 0.0  | 0.1           |      | 5 0.1      | 0.1        | 161   |           |       |
| 0                 | <b>-</b> 136 | 0   | 0.0  | 0.1           | : 3  | _          | 0.2        |       | 1.5       | 2.4   |
| Cum % :0          | -121         | 0   | 0.0  | 0.1           | 7    |            | 0.4        | 161   | 1.5       | 3.9   |
| to .              | -106         | 0   | 0.0  | 0.1           | 13   |            | 0.6        | 210   | 1.9       | 5.8   |
| to                | -91          | 0   | 0.0  | 0.1           | 14   |            | 0.9        | 204   | 1.9       | 7.7   |
| 78.8 to           | <b>-</b> 76  | 0   | 0.0  | 0.1           | 21   | 0.4        |            | 230   | 2.1       | 9.8   |
| 83.9<br>to        | -61          | 0   | 0.0  | 0.1           | 35   | 0.7        | 1.4        | 311   | 2.9       | 12.7  |
| 87.7<br>to        | -46          | 3   | 0.4  | 0.5           | 80   | 1.7        | 2.1        | 397   | 3.7       | 16.4  |
| 90.1              | -31          | 4   | 0.5  | 1.0           | 221  | 4.7        | 3.8        | 576   | 5.3       | 21.7  |
| 92.2<br>0 to      | <b>-</b> 16  | 12  | 1.6  | 2.6           | 537  |            | 8.6        | 768   | 7.1       | 28.8  |
| '3.6<br>.5 to     | -1           | 69  | 9.1  | 11.7          | 816  | 11.5       | 20.1       | 1090  | 10.1      | 38.9  |
| 1.9<br>0 to       | 14           | 313 | 41.1 | 52.8          | 1161 | 17.4       | 37.5       | 1277  | 11.8      | 50.7  |
| .2<br>15 to       | 29           | 258 | 33.9 | 86.6          | 778  |            | 62.3       | 1608  |           | 65.6  |
| 30 to             | 44           | 81  | 10.6 | 97.2          | 534  |            | 79.0       | 991   |           | 74.7  |
| 6<br><b>45</b> to | 59           | 14  | 1.8  | 99.1          |      |            | 90.4       | 685   | 6.3       | 81.0  |
| 60 to             | 74           | 2   |      | 99.3          | 255  |            | 95.8       | 459   | 4.2       | 85.3  |
| 75 to 8           | 39           | 1   |      |               | 88   |            | 97.7       | 350   | 3.2       | 38.5  |
| 90 to 10          |              | 2   |      | 99.5          | 48   |            | 8.7        | 253   | 2.3 9     | 90.9  |
| 105 to 11         |              | 0   |      | 99.7          | 19   | 0.4 9      | 9.1        | 187   | 1.7 9     | 2.6   |
| 120 to 13         |              |     |      | 99.7          | 15   | 0.3 9      | 9.5        | 156   | 1.4 9     | 4.0   |
| 135 to 14         |              | 1   |      | 99.9          | 13   | 0.3 9      | 9.7        | 167   | 1.5 9     | 5.6   |
| 150 to 16         |              |     |      | 00.0          | 5    | 0.1 9      | 9.9        | 170   | 1.6 9     | 7.2   |
|                   |              |     |      | 00.0          | 6    | 0.1 100    | 0.0        | 139   | 1.3 98    | 8.4   |
|                   |              |     |      | 00.0          | 1    | 0.0 100    | 0.0        | 169 1 | 1.6 100   | 0.0   |
| AL ALL CLASSES    | <b>5</b> :   | 7 € | 52   |               | 467  | 7          |            | 1081  | .6        |       |

Table 108 - 2.2 Wind Turn Between Surface and 300 m, no Backing included.

| <b>01</b> |               |          | ROOK   | BERLIN     |       | T      | HULE     |
|-----------|---------------|----------|--------|------------|-------|--------|----------|
| -         | ass Wind Turn | # %      | Cum %  | # %        | Cum % | #      | % Cum %  |
| 1         | •             | 229 26.3 | 26.3   | 4957 59.5  | 59.5  | 7104   | 0.1 60.1 |
| 2         |               | 415 47.7 | 74.0   | 1762 21.1  | 80.7  | 1303 : | 1.0 71.1 |
| 3         | 16 to 30      | 177 20.3 | 94.4   | 776 9.3    | 90.0  | 915    | 7.7 78.8 |
| 4         | 31 to 45      | 41 4.7   | 99.1   | 437 5.2    | 95.2  | 599    | 5.1 83.9 |
| 5         | 46 to 60      | 4 0.5    | 99.5   | 206 2.5    | 97.7  | 448    | 3.8 87.7 |
| 6         | 61 to 75      | 1 0.1    | 99.7   | 86 1.0     | 98.7  | 286    | 2.4 90.1 |
| 7         | 76 to 90      | 0 0.0    | 99.7   | 36 0.4     | 99.1  | 245    | 2.1 92.2 |
| 8         | 91 to 105     | 1 0.1    | 99.8   | 24 0.3     | 99.4  | 169    | 1.4 93.6 |
| 9         | 106 to 120    | 1 0.1    | 99.9   | 17 0.2 9   | 99.6  | 153 :  | .3 94.9  |
| 10        | 121 to 135    | 0 0.0    | 99.9   | 10 0.1 9   | 99.8  | 158 1  | 3 96.2   |
| 11        | 136 to 150    | 1 0.1    | 100.0  | 8 0.1 9    | 9.9 1 |        | .3 97.5  |
| 12        | 151 to 165    | 0 0.0    | 100.0  | 6 0.1 9    | 9.9 1 |        | .1 98.6  |
| 13        | 166 to 180    | 0 0.0    | 100.0  | 4 0.0 10   | 0.0   |        | .8 99.4  |
| 14        | 181 to 195    | 0 0.0    | 100.0  | 0 0.0 10   | 0.0   | 22 0   | .2 99.6  |
| 15        | 196 to 210    | 0 0.0    | 100.0  | 1 0.0 10   | 0.0   |        | .2 99.8  |
| 16        | 211 to 225    | 0 0.0    | 100.0  | 0 0.0 100  | 0.0   |        | 1 99.9   |
| 17        | 226 to 240    | 0 0.0    | 100.0  | 0 0.0 100  |       |        | 1 100.0  |
| 18        | 241 to 255    | 0 0.0    | 100.0  | 1 0.0 100  |       |        | 0 100.0  |
| .9        | 256 to 270    | 0 0.0    | 100.0  | 0 0.0 100  | .0    |        | 0 100.0  |
| . 0       | 271 to 285    | 0 0.0    | 100.0  | 0 0.0 100  | .0    |        | 0 100.0  |
| 1         | 286 to 300    | 0 0.0    | 100.0  | 0 0.0 100  | .0    |        | 0 100.0  |
| 2         | 301 to 315    | 0 0.0 1  | 100.0  | 0 0.0 100  |       |        | 0 100.0  |
| 3         | 316 to 330    | 0 0.0 1  | .00.0  | 0 0.0 100  | _     |        | 0 100.0  |
| 1         | 331 to 345    | 0 0.0 1  | 00.0   | 0 0.0 100  |       |        | 100.0    |
| 5         | 346 to 360    | 0 0.0 1  | 00.0   | 0 0.0 100. |       |        |          |
| TAL       | ALL CLASSES:  | 870      | - 12 - | 8331       |       | 1182   | 100.0    |

Table 108 - 2.3 , WIND TURN, ALBROOK, CANAL ZONE.

Wind direction at top height minus wind direction at surface.

| Cl.          | ass Wind T  | urn   | 500<br># % | OM<br>Cum % | ;   | 100<br># % | 00 M<br>Cum % | #     | 1500<br>%  | M<br>Cum   |
|--------------|-------------|-------|------------|-------------|-----|------------|---------------|-------|------------|------------|
| ;            | 1 -180 to - | 166   | 1 0.2      | 0.2         |     | 2 0.3      | 0.3           | <br>3 | 0.4        | 0.4        |
|              | 2 -165 to - | 151   | 0.0        | 0.2         | 2   | 2 0.3      | 0.6           | 4     | 0.6        | 1.0        |
| 3            | -150 to -:  | 136 2 | 2 0.3      | 0.5         | 2   | 0.3        | 0.9           | 2     | 0.3        | 1.3        |
| 4            | -135 to -1  | 121 1 | 0.2        | 0.6         | 4   | 0.6        | 1.4           | 5     | 0.7        | 2.0        |
| 5            | -120 to -1  | .06 0 | 0.0        | 0.6         | 0   | 0.0        | 1.4           | 4     | 0.6        | 2.6        |
| 6            | -105 to -   | 91 1  | 0.2        | 0.8         | 3   |            | 1.9           | 3     | 0.4        |            |
| 7            | -90 to -    | 76 4  | 0.6        | 1.4         | 4   |            | 2.4           | 2     | 0.3        | 3.0        |
| 8            | -75 to -    | 61 3  | 0.5        | 1.8         | 4   |            | 3.0           | 8     | 1.2        | 3.3<br>4.5 |
| 9            | -60 to -    | 46 7  | 1.1        | 2.9         | 7   | 1.0        | 4.0           | 3     | 0.4        |            |
| 10           | -45 to -:   | 31 9  | 1.4        | 4.2         | 12  | 1.7        | 5.8           | 14    | 2.0        | 4.9        |
| 11           | -30 to -1   | l6 14 | 2.1        | 6.4         | 10  | 1.4        | 7.2           | 11    | 1.6        | 6.9        |
| 12           | -15 to -    | -1 44 | 6.7        | 13.0        | 32  | 4.6        | 11.8          | 31    |            | 8.5        |
| 13           | 0 to 1      | .4 78 | 11.8       | 24.8        | 64  | 9.2        | 21.0          | 38    | 4.5<br>5.5 | 13.0       |
| 14           | 15 to 2     | 9 156 | 23.6       | 48.4        | 103 | 14.8       | 35.9          | 80    |            | 18.4       |
| 15           | 30 to 4     | 4 157 | 23.8       | 72.2        | 142 |            | 56.3          |       |            | 30.0       |
| 16           | 45 to 5     | 9 94  | 14.2       | 86.4        | 124 |            | 74.2          |       |            | 47.0       |
| 17           | 60 to 7     | 4 40  | 6.1        | 92.4        | 71  |            | 84.4          |       |            | 62.4       |
| 18           | 75 to 89    | 9 23  | 3.5        | 95.9        | 51  |            | 91.8          |       |            | 72.5       |
| 19           | 90 to 104   | 15    | 2.3        | 98.2        | 26  |            |               | 65    |            | 31.8       |
| 20           | 105 to 119  | 6     | 0.9        | 99.1        | 11  |            | 95.5          | 39    |            | 37.5       |
| 21           | 120 to 134  | 2     | 0.3        | 99.4        | 13  |            | 97.1          | 38    |            | 2.9        |
| 22           | 135 to 149  |       | 0.5        | 99.8        | 5   |            | 99.0          |       |            | 6.7        |
| 23           | 150 to 164  |       |            | 00.0        |     |            | 9.7           | 12    |            | 8.4        |
| 24           | 165 to 180  | _     |            |             | 1   |            | 9.9           | 9     | 1.3 9      | 9.7        |
| <b>FOTAL</b> | ALL CLASSES | •     | 6.0 I      | 00.0        | 1   | 0.1 10     | 0.0           | 2     | 0.3 100    | 0.0        |
| ~            |             | •     | 1 <b>3</b> | _           | 69  | 4          |               | 6     | 94         |            |

| T          | able 108 - 2.4 | WIND TURN, 1 | O DEGREE | BACKI | NG ALLOWEI | , ALBROOK, CANAL ZONE |
|------------|----------------|--------------|----------|-------|------------|-----------------------|
|            |                |              | 500 M    |       | RF TO 1000 |                       |
| C)         | lass Wind Turn | # %          | Cum %    | #     | % Cum      |                       |
| ]          | -10 to 0       | 130 17.4     | 17.4     | 110   | 14.7 14    | .7 98 13.1 13.1       |
| 2          | l 1 to 15      | 123 16.4     | 33.8     | 86    | 11.5 26    | .2 60 8.0 21.1        |
| 3          | 16 to 30       | 201 26.8     | 60.6     | 133   | 17.8 43    | .9 96 12.8 33.9       |
| 4          | 31 to 45       | 146 19.5     | 80.1     | 143   | 19.1 63    | .0 123 16.4 50.3      |
| 5          | 46 to 60       | 70 9.3       | 89.5     | 113   | 15.1 78    | 1 124 16.6 66.9       |
| 6          | 61 to 75       | 36 4.8       | 94.3     | 62    | 8.3 86.    | 4 73 9.7 76.6         |
| 7          | 76 to 90       | 22 2.9       | 97.2     | 44    | 5.9 92.    | 3 51 6.8 83.4         |
| 8          | 91 to 105      | 9 1.2        | 98.4     | 23    | 3.1 95.    | 3 41 5.5 88.9         |
| 9          | 106 to 120     | 6 0.8        | 99.2     | 12    | 1.6 96.    | 9 27 3.6 92.5         |
| 10         | 121 to 135     | 1 0.1        | 99.3     | 13    | 1.7 98.    | 7 30 4.0 96.5         |
| 11         | 136 to 150     | 3 0.4        | 99.7     | 3     | 0.4 99.    | 1 9 1.2 97.7          |
| 12         | 151 to 165     | 1 0.1        | 99.9     | 1     | 0.1 99.    | 2 6 0.8 98.5          |
| 13         | 166 to 180     | 0 0.0        | 99.9     | 0     | 0.0 99.2   | 2 1 0.1 98.7          |
| 14         | 181 to 195     | 0 0.0        | 99.9     | 2     | 0.3 99.5   | 2 0.3 98.9            |
| 15         | 196 to 210     | 0 0.0        | 99.9     | 1     | 0.1 99.6   | 2 0.3 99.2            |
| 16         | 211 to 225     | 0 0.0        | 99.9     | 1     | 0.1 99.7   | 1 0.1 99.3            |
| 17         | 226 to 240     | 0 0.0        | 99.9     | 1     | 0.1 99.9   | 2 0.3 99.6            |
| 18         | 241 to 255     | 0 0.0        | 99.9     | 0     | 0.0 99.9   | 0 0.0 99.6            |
| 19         | 256 to 270     | 0 0.0        | 99.9     | 0     | 0.0 99.9   | 1 0.1 99.7            |
| ₹0         | 271 to 285     | 0 0.0        | 99.9     | 0     | 0.0 99.9   | 0 0.0 99.7            |
| 2 <b>1</b> | 286 to 300     | 0 0.0        | 99.9     | 0     | 0.0 99.9   | 0 0.0 99.7            |
| <b>:2</b>  | 301 to 315     | 0 0.0 9      | 99.9     | 0     | 0.0 99.9   | 0 0.0 99.7            |
| 3 .        | 316 to 330     | 1 0.1 10     | 00.0     | 1 (   | 0.1 100.0  | 1 0.1 99.9            |
| 1 1        | 331 to 345     | 0 0.0 10     | 0.0      | 0 (   | 0.0 100.0  | 1 0.1 100.0           |
| 4          | ' '            |              |          |       |            |                       |
| 5          | 346 to 360     | 0 0.0 10     | 0.0      | 0 0   | 0.0 100.0  | 0 0.0 100.0           |

-14-

| -                       |                     | · .              |                             |
|-------------------------|---------------------|------------------|-----------------------------|
| Tab;e 108 - 2.5         | WIND TURN, NO BACKI | NG ALLOWED, ALBR | OOK, CANAL ZONE.            |
|                         | SURF TO 500 M       | SURF TO 1000M    | SURF TO 1500 M              |
| Class Wind Turn         | # % Cum %           | # % Cum %        | # % Cum %                   |
| 1 0                     | 133 17.8 17.8       | 126 16.8 16.8    | 123 16.4 16.4               |
| 2 1 to 15               | 132 17.6 35.4       | 83 11.1 27.9     | 61 8.1 24.6                 |
| 3 16 to 30              | 203 27.1 62.5       | 126 16.8 44.7    | 97 13.0 37.5                |
| 4 31 to 45              | 140 18.7 81.2       | 138 18.4 63.2    | •                           |
| 5 46 to 60              | 66 8.8 90.0         | 108 14.4 77.6    | 116 15.5 68.0               |
| 6 61 to 75              | 36 4.8 94.8         | 66 8.8 86.4      | 74 9.9 77.8                 |
| 7 76 to 90              | 20 2.7 97.5         | 40 5.3 91.7      | 48 6.4 84.2                 |
| 8 91 to 105             | 9 1.2 98.7          | 24 3.2 94.9      | 39 5.2 89.5                 |
| 9 106 to 120            | 6 0.8 99.5          | 12 1.6 96.5      | 32 4.3 93.7                 |
| 10 121 to 135           | 1 0.1 99.6          | 15 2.0 98.5      | 27 3.6 97.3                 |
| 11 136 to 150           | 2 0.3 99.9          | 4 0.5 99.1       | 7 0.9 98.3                  |
| 12 151 to 165           | 1 0.1 100.0         | 3 0.4 99.5       | 5 0.7 98.9                  |
| 13 166 to 180           | 0 0.0 100.0         | 0 0.0 99.5       | 1 0.1 99.1                  |
| 14 181 to 195           | 0 0.0 100.0         | 2 0.3 99.7       | 1 0.1 99.2                  |
| 15 196 to 210           | 0 0.0 100.0         | 1 0.1 99.9       | 2 0.3 99.5                  |
| 16 211 to 225           | 0 0.0 100.0         | 0 0.0 99.9       | 0 0.0 99.5                  |
| .7 226 to 240           | 0 0.0 100.0         | 1 0.1 100.0      | 2 0.3 99.7                  |
| 8 241 to 255            | 0 0.0 100.0         | 0 0.0 100.0      | 0 0.0 99.7                  |
| 9 256 to 270            | 0 0.0 100.0         | 0 0.0 100.0      | 200                         |
| 0 271 to 285            | 0 0.0 100.0         | 0 0.0 100.0      | 1 0.1 99.9<br>0 0.0 99.9    |
| 1 286 to 300            | 0 0.0 100.0         | 0 0.0 100.0      |                             |
| <sup>2</sup> 301 to 315 | 0 0.0 100.0         | 0 0.0 100.0      | 23,3                        |
| <sup>3</sup> 316 to 330 | 0 0.0 100.0         | 0 0.0 100.0      |                             |
| 331 to 345              | 0 0.0 100.0         | 0 0.0 100.0      | 33.3                        |
| 346 to 360              | 0 0.0 100.0         | 0 0.0 100.0      | 1 0.1 100.0                 |
| FAL ALL CLASSES:        | 749<br>- 15-        | 749              | 0 0.0 100.0<br>7 <b>4</b> 9 |
|                         |                     |                  |                             |

Table 108 - 2.6 , WIND TURN, BERLIN, GERMANY

Wind direction at top height minus wind direction at surface.

| Class | ; <b>W</b>       | ind    | Turn  | #   | 500<br>% | M<br>Cum % | #               | 100<br>% | 0 M<br>Cum % | #   | 1500<br>% | M<br>Cum % |
|-------|------------------|--------|-------|-----|----------|------------|-----------------|----------|--------------|-----|-----------|------------|
| 1     | -180             | <br>to | -166  | 4   | 0.2      | 0.2        | 4               | 0.2      | 0.2          | 7   | 0.3       | 0.3        |
| 2     | -165             | to     | -151  | 2   | 0.1      | 0.3        | 5               | 0.2      | 0.4          | 11  |           |            |
| 3     | -150             | to     | -136  | 0   | 0.0      | 0.3        | 5               | 0.2      | 0.6          | 10  | 0.4       | 1.3        |
| 4     | <del>-</del> 135 | to     | -121  | 2   | 0.1      | 0.4        | 7               | 0.3      | 0.9          | 12  | 0.5       | 1.8        |
| 5     | -120             | to     | -106  | 6   | 0.3      | 0.8        | 12              | 0.5      | 1.5          | 15  | 0.7       | 2.5        |
| 6     | -105             | to     | -91   | 9   | 0.5      | 1.2        | 8               | 0.4      | 1.8          | 13  | 0.6       | 3.0        |
| 7     | -90              | to     | -76   | 6   | 0.3      | 1.6        | 19              | 0.9      | 2.7          | 23  | 1.0       | 4.1        |
| 8     | <b>-</b> 75      | to     | -61   | 12  | 0.8      | 2.3        | 24              | 1.1      | 3.8          | 36  | 1.6       | 5.7        |
| 9     | -60              | to     | -46   | 32  | 1.7      | 4.1        | 40              | 1.8      | 5.6          | 50  | 2.2       | 7.9        |
| 10    | -45              | to     | -31   | 57  | 3.1      | 7.1        | 66              | 3.0      | 8.5          | 63  | 2.8       | 10.7       |
| 11    | -30              | to     | -16   | 155 | 8.4      | 15.5       | 132             | 5.9      | 14.5         | 118 | 5.3       | 16.0       |
| 12    | -15              | to     | -1    | 245 | 13.3     | 28.8       | 256             | 11.5     | 26.0         | 216 | 9.7       | 25.7       |
| 13    | 0                | to     | 14    | 363 | 19.6     | 48.4       | 386             | 17.4     | 43.4         | 290 | 13.0      | 38.6       |
| 14    | 15               | to     | 29    | 408 | 22.1     | 70.5       | 443             | 19.9     | 63.3         | 375 | 16.8      | 55.4       |
| 15    | 30               | to     | 44    | 270 | 14.6     | 85.1       | 355             | 16.0     | 79.3         | 384 | 17.2      | 72.6       |
| 16    | 45               | to     | 59    | 146 | 7.9      | 03.0       | 230             | 10.3     | 89.6         | 241 | 10.8      | 83.4       |
| 17    | 60               | to     | 74    | 63  | 3.4      | 96.4       | 98              | 4.4      | 94.0         | 143 | 6.4       | 89.8       |
| 18    | 75               | to     | 89    | 31  | 1.7      | 98.1       | 54              | 2.4      | 96.4         | 80  | 3.6       | 93.3       |
| 19    | 90               | to     | 104   | 12  | 0.6      | 98.8       | 39              | 1.8      | 99.2         | 49  | 2.2       | 95.5       |
| 20    | 105              | to     | 119   | 7   | 0.4      | 99.1       | 16              | 0.7      | 98.9         | 36  | 0.6       | 97.1       |
| 21    | 120              | to     | 134   | 5   | 0.3      | 99.4       | 11              | 0.5      | 99.4         | 22  | 1.0       | 98.1       |
| 22    | 135              | to     | 149   | 2   | 0.1      | 99.5       | 5               | 0.2      | 99.6         | 12  | 0.8       | 98.9       |
| 23    | 150              | to     | 164   | 6   | 0.3      | 99.8       | 3               | 0.1      | 99.8         | 15  | 0.7       | 99.6       |
| 24    | 165              | to     | 180   | 1   | 0.2      | 100.0      | 5               | 0.2      | 100.0        | 10  | 0.4       | 100.0      |
| TOTAL | ALL              | CLA    | SSES: |     | 1848     | ,          | 2<br><b>L -</b> | 223      |              |     | 2236      |            |

Table 108 2.7 WIND TURN, 10 DEGREE BACKING ALLOWED , BERLIN, GERMANY

|         | , as because backing Ablowed , Berlin, GERMANY |      |        |       |      |          |       |      |         |        |
|---------|------------------------------------------------|------|--------|-------|------|----------|-------|------|---------|--------|
| . =     |                                                |      |        | 500 M | S    | URF TO 1 | M000  | su   | RF TO   | 1500 M |
| C1<br>- | ass Wind Turn                                  | #    | %<br>  | Cum % | #    | %        | Cum % | #    | %       | Cum %  |
| 1       | -10 to 0                                       | 2346 | 44.8   | 44.8  | 1881 | 1 35.9   | 35.9  | 1760 | 33.6    | 33.6   |
| 2       | 1 to 15                                        | 1030 | 19.7   | 64.5  | 905  | 17.3     | 53.2  | 733  | 14.0    | 47.6   |
| 3       | 16 to 30                                       | 832  | 15.9   | 80.4  | 929  | 17.7     | 71.0  | 826  |         |        |
| 4       | 31 to 45                                       | 515  | 9.8    | 90.2  | 659  | 12.6     | 83.6  | 743  | 14.2    | **     |
| 5       | 46 to 60                                       | 258  | 4.9    | 95.2  | 419  |          | 91.6  | 490  | 9.4     |        |
| 6       | 61 to 75                                       | 128  | 2.4    | 97.6  | 187  | 3.6      | 95.1  | 281  |         | 92.3   |
| 7       | 76 to 90                                       | 47   | 0.9    | 98.5  | 97   | 1.9      | 97.0  | 140  |         |        |
| 8       | 91 to 105                                      | 30   | 0.6    | 99.1  | 57   | 1.1      | 98.1  | 92   |         | 96.8   |
| 9       | 106 to 120                                     | 15   | 0.3    | 99.4  | 38   | 0.7      | 98.8  | 57   | 1.1     | 97.9   |
| 10      | 121 to 135                                     | 10   | 0.2    | 99.6  | 24   | 0.5      | 99.3  | 35   | 0.7     | 98.5   |
| 11      | 136 to 150                                     | 8    | 0.2    | 99.7  | 11   | 0.2      | 99.5  | 26   |         | 99.0   |
| 12      | 151 to 165                                     | 6    | 0.1    | 99.8  | 10   | 0.2      | 99.7  | 13   | 0.2     |        |
| 13      | 166 to 180                                     | 3    | 0.1    | 99.9  | 6    | 0.1 9    | 99.8  | 14   | 0.3     | 99.5   |
| 14      | 181 to 195                                     | 2    | 0.0    | 99.9  | 3    | 0.1 9    | 9.8   | 10   | 0.2     | 99.7   |
| 15      | 196 to 210                                     | 1    | 0.0    | 99.9  | 2    | 0.0 9    | 9.9   | 3    | 0.1     | 9.8    |
| .6      | 211 to 225                                     | 1 (  | 0.0 1  | 00.0  | 1    | 0.0 9    | 9.9   | 3    |         | 9.8    |
| 7       | 226 to 240                                     | 0 (  | 0.0 1  | 00.0  | 2    | 0.0 9    | 9.9   | 2    |         | 9.9    |
| 8       | 241 to 255                                     | 0 (  | 0.0 10 | 00.0  | 0    | 0.0 9    | 9.9   | 2    |         | 9.9    |
| 9       | 256 to 270                                     | 1 0  | 0.0 10 | 00.0  | 0    | 0.0 99   | 9.9   | 0    |         | 9.9    |
| 3       | 271 to 285                                     | 0 0  | .0 10  | 0.0   | 1    | 0.0 100  | 0.0   | 1    | 0.0 9   |        |
| 1       | 286 to 300                                     | 0 0  | .0 10  | 0.0   | 1    | 0.0 100  | 0.0   | 2    | 0.0 10  |        |
| 2       | 301 to 315                                     | 0 0  | .0 10  | 0.0   | 0    | 0.0 100  | .0    |      | 0.0 100 |        |
| 3       | 316 to 330                                     | 1 0  | .0 10  | 0.0   | 0    | 0.0 100  | . 0   |      | 0.0 100 |        |
|         | 331 to 345                                     | 0 0  | .0 10  | 0.0   | 1    | 0.0 100  | .0    |      | 0.0 100 |        |
|         | 346 to 360                                     | 0 0  | .0 10  | 0.0   | 0    | 0.0 100  | .0    |      | 0.0 100 |        |
| ľAL     | ALL CLASSES:                                   | 5    | 5234   |       |      | 5234     |       |      | 5234    |        |
|         |                                                |      |        | - 17  |      |          |       | `    |         |        |

|          | •                      |           |            |       |              |          |          |
|----------|------------------------|-----------|------------|-------|--------------|----------|----------|
| Ta       | able 108 - 2.8 W       | IND TURN, | NO BACKING | ALLOW | ED , BERLIN, | GERMANY  |          |
|          |                        |           | TO 500 M   |       | RF TO 1000M  | SURF TO  | ) 1500 M |
| C1       | ass Wind Turn          | # %       | Cum %      | #     | % Cum %      | # %      |          |
| 1        | -10 to 0               | 2431 46   | .4 46.4    | 2168  | 41.4 41.4    | 2127 40. |          |
| 2        | 1 to 15                | 989 18    | 9 65.3     | 733   | 14.0 55.4    | 586 11.  | 2 51.8   |
| 3        | 16 to 30               | 807 15    | 4 80.8     | 877.  | 16.8 72.2    | 770 14.  | 7 66.5   |
| 4        | <b>31</b> to <b>45</b> | 513 9.    | 8 90.6     | 635   | 12.1 84.3    | 690 13.  | 2 79.7   |
| 5        | 46 to 60               | 246 4.    | 7 95.3     | 392   | 7.5 91.8     | 439 8.   | 4 88.1   |
| 6        | 61 to 75               | 128 2.    | 4 97.7     | 193   | 3.7 95.5     | 260 5.0  | 93.1     |
| 7        | 76 to 90               | 47 0.     | 9 98.6     | 88    | 1.7 97.2     | 133 2.5  | 95.6     |
| 8        | 91 to 105              | 27 0.     | 5 99.1     | 53    | 1.0 98.2     | 75 1.4   | 97.1     |
| 9        | 106 to 120             | 14 0.:    | 3 99.4     | 35    | 0.7 98.9     | 51 1.0   | 98.0     |
| 10       | 121 to 135             | 8 0.2     | 99.5       | 23    | 0.4 99.3     | 31 0.6   | 98.6     |
| 11       | 136 to 150             | 9 0.2     | 99.7       | 12    | 0.2 99.5     | 24 0.5   | 99.1     |
| 12       | 151 to 165             | 6 0.1     | 99.8       | 8     | 0.2 99.7     | 12 0.2   | 99.3     |
| 13       | 166 to 180             | 3 0.1     | 99.9       | 6     | 0.1 99.8     | 14 0.3   | 99.6     |
| 14       | 181 to 195             | 2 0.0     | 99.9       | 3     | 0.1 99.8     | 9 0.2    | 99.8     |
| 15       | 196 to 210             | 1 0.0     | 99.9       | 2     | 0.0 99.9     | 3 0.1    | 99.8     |
| .6       | 211 to 225             | 1 0.0     | 100.0      | 1     | 0.0 99.9     | 2 0.0    | 99.8     |
| .7       | 226 to 240             | 0 0.0     | 100.0      | 2     | 0.0 99.9     | 2 0.0    | 99.9     |
| 8        | 241 to 255             | 0 0.0     | 100.0      | 0     | 0.0 99.9     | 2 0.0    | 99.9     |
| 9        | 256 to 270             | 1 0.0     | 100.0      | 0     | 0.0 99.9     | 0 0.0    | 99.9     |
| 0        | 271 to 285             | 0 0.0     | 100.0      | 1     | 0.0 100.0    | 1 0.0    | 99.9     |
| 1        | 286 to 300             | 0 0.0     | 100.0      | 1     | 0.0 100.0    | 2 0.0    | 100.0    |
| 2        | 301 to 315             | 0 0.0     | 100.0      | 0     | 0.0 100.0    | 0 0.0    | 100.0    |
| 3 ·      | 316 to 330             | 1 0.0     | 100.0      | 0     | 0.0 100.0    | 0 0.0    | 100.0    |
| <i>.</i> | 331 to 345             | 0 0.0     | 100.0      | 1 (   | 0.0 100.0    | 1 0.0 1  | .00.0    |
|          | 346 to 360             | 0.0       | 100.0      | 0 (   | 0.0 100.0    | 0 0.0 1  | 00.0     |
| TAL      | ALL CLASSES:           | 5234      | ł          | 5     | 234          | 5234     |          |

-18-

Table 108 -2.9 WIND TURN THULE, GREENLAND

Wind direction at top height minus wind direction at surface.

| Cla  | ss Win       | d Turn         | su<br># |     | 500 M<br>Cum % | su<br># |       | 1000 M<br>Cum % | S1<br>#     | URF TO | 1500 M |
|------|--------------|----------------|---------|-----|----------------|---------|-------|-----------------|-------------|--------|--------|
| 1    | -180 t       | 0 -166         | 240     | 2.3 | 2.3            | 249     | 2.3   | 2.3             | 287         | 2.7    | 2.7    |
| 2    | -165 to      | o <b>-</b> 151 | 267     | 2.5 | 4.8            | 297     | 2.8   | 5.1             | 323         | 3.1    | 5.8    |
| 3    | -150 to      | o <b>-</b> 136 | 326     | 3.1 | 7.9            | 339     | 3.2   | 8.3             | 394         | 3.8    | 9.6    |
| 4    | -135 to      | o <b>-</b> 121 | 332     | 3.2 | 11.1           | 408     | 3.8   | 12.2            | 407         | 3.9    | 13.5   |
| 5    | -120 to      | -106           | 381     | 3.6 | 14.7           | 437     | 4.1   | 16.3            | 428         | 4.1    | 17.6   |
| 6    | -105 to      | -91            | 393     | 3.7 | 18.4           | 448     | 4.2   | 20.5            | 421         | 4.0    | 21.6   |
| 7    | -90 to       | <b>-</b> 76    | 448     | 4.3 | 22.7           | 424     | 4.0   | 24.5            | 406         | 3.9    | 25.5   |
| 8    | -75 to       | -61            | 469     | 4.5 | 27.1           | 408     | 3.8   | 28.4            | 394         | 3.8    | 29.3   |
| 9    | -60 to       | -46            | 565     | 5.4 | 32.5           | 477     | 4.5   | 32.9            | 390         | 3.7    | 33.0   |
| 10   | -45 to       | -31            | 621     | 5.9 | 38.4           | 495     | 4.7   | 37.5            | 376         | 3.6    | 36.6   |
| 11   | -30 to       | -16            | 655     | 6.2 | 44.6           | 540     | 5.1   | 42.6            | 432         | 4.1    | 40.7   |
| 12   | -15 to       | -1             | 740     | 7.0 | 51.6           | 595     | 5.6   | 48.2            | <b>5</b> 35 | 5.1    | 45.8   |
| 13   | 0 to         | 14             | 896     | 8.5 | 60.1           | 810     | 7.6   | 55.8            | 670         | 6.4    | 52.3   |
| 14   | 15 to        | 29             | 678     | 6.4 | 66.5           | 819     | 7.7   | 63.6            | 727         | 7.0    | 59.2   |
| 15   | 30 to        | 44             | 671     | 6.4 | 72.9           | 726     | 6.8   | 70.4            | 719         | 6.9    | 66.1   |
| 16   | <b>45</b> to | 59             | 565     | 5.4 | 78.3           | 628     | 5.9   | 76.3            | 684         | 6.5    | 72.6   |
| 17   | 60 to        | 74             | 442     | 4.2 | 82.5           | 575     | 5.4   | 81.7            | 612         | 5.9    | 78.5   |
| 18   | 75 to        | 89             | 335     | 3.2 | 85.6           | 375     | 3.5   | 85.3            | 431         |        | 82.6   |
| 19   | 90 to        | 104            | 305     | 2.9 | 88.5           | 312     | 2.9   | 88.2            | 378         |        | 86.2   |
| 20   | 105 to       | 119            | 226     | 2.1 | 90.7           | 216     | 2.0   | 90.2            | 315         |        | 89.2   |
| 21   | 120 to       | 134            | 231     | 2.2 | 92.9           | 255     | 2.4   | 92.6            | 293         |        | 92.0   |
| 22   | 135 to       | 149            | 218     | 2.1 | 95.0           | 241     | 2.3   | 94.9            | 273         |        | 94.6   |
| 23   | 150 to       | 164            | 239     | 2.3 | 97.2           | 246     | 2.3   | 97.2            | 252         |        | 97.1   |
| 24   | 165 to       | 180            | 293     | 2.8 | 100.0          | 294     | 2.8 1 | 00.0            | 308         | 2.9 10 |        |
| OTAL | ALL CLAS     | SSES:          | 105     | 36  |                | 1061    |       |                 | 104         |        |        |
|      |              |                |         |     | _19_           |         |       |                 |             | . – •  |        |

-19-

Table 108 - 2.10 WIND TURN , 0 DEGREE BACKING ALLOWED, THULE, GREENLAND.

|               |                |       |       |       | THOLE, GREENLAND.     |        |                                       |              |           |  |
|---------------|----------------|-------|-------|-------|-----------------------|--------|---------------------------------------|--------------|-----------|--|
| SURF TO 500 M |                |       |       |       | SURF TO 1000M SURF TO |        |                                       | RF TO 1500 M |           |  |
| •             | lass Wind Turn | #     | %<br> | Cum % | #                     | %      | Cum %                                 | #            | % Cum %   |  |
|               | 1 -10 to 0     | 5516  | 51.9  | 51.9  | 531                   | 7 50.  | 0 50.0                                | 5265         | 49.5 49.5 |  |
|               | 2 1 to 15      | 881   | 8.3   | 60.1  | 77                    | 4 7    | 3 57.3                                | 597          | 5.6 55.1  |  |
| 3             | 3 16 to 30     | 749   | 7.0   | 67.2  | 68                    | 5 6.4  | 4 63.7                                | 630          | 5.9 61.0  |  |
| 4             | 31 to 45       | 631   | 5.9   | 73.1  | 566                   | 5 5.3  | 3 69.0                                | 515          | 4.8 65.9  |  |
| 5             | 46 to 60       | 518   | 4.9   | 78.0  | 539                   | 9 5.1  | 1 74.1                                | 551          | 5.2 71.0  |  |
| 6             | 61 to 75       | 386   | 3.6   | 81.6  | 422                   | 4.0    | 78.1                                  | 416          | 3.9 75.0  |  |
| 7             | 76 to 90       | 292   | 2.7   | 84.3  | 346                   | 3.3    | 81.3                                  | 352          | 3.3 78.3  |  |
| 8             | 91 to 105      | 254   | 2.4   | 86.7  | 254                   | 2.4    | 83.7                                  | 281          | 2.6 80.9  |  |
| 9             | 106 to 120     | 243   | 2.3   | 89.0  | 242                   | 2.3    | 86.0                                  | 277          | 2.6 83.5  |  |
| 10            | 121 to 135     | 187   | 1.8   | 90.8  | 211                   | 2.0    | 87.9                                  | 223          | 2.1 85.6  |  |
| 11            | 136 to 150     | 214   | 2.0   | 92.8  | 232                   | 2.2    | 90.1                                  | 230          | 2.2 87.8  |  |
| 12            | 151 to 165     | 197   | 1.9   | 94.6  | 217                   | 2.0    | 92.2                                  | 230          | 2.2 89.9  |  |
| 13            | 166 to 180     | 181 1 | . 7   | 96.3  | 182                   | 1.7    | 93.9                                  | 195          | 1.8 91.8  |  |
| 14            | 181 to 195     | 113 1 | .1    | 97.4  | 134                   | 1.3    | 95.1                                  | 176          | 1.7 93.4  |  |
| 15            | 196 to 210     | 90 0  | . 8   | 98.3  | 111                   | 1.0    |                                       | 124          | 1.2 94.6  |  |
| <b>`6</b>     | 211 to 225     | 71 0  | . 7   | 98.9  | 104                   | 1.0    | 97.2                                  |              | 1.3 95.9  |  |
| .7            | 226 to 240     | 47 0  | . 4   | 99.4  | 95                    | 0.9    | 98.1                                  | 101          | 0.9 96.8  |  |
| 8             | 241 to 255     | 28 0  | . 3   | 99.6  | 60                    | 0.6    | 98.6                                  | 75           |           |  |
| 9             | 256 to 270     | 17 0  | 2     | 99.8  | 44                    | 0.4    | 99.0                                  | •            | -         |  |
| )             | 271 to 285     | 10 0. | 1 9   | 99.9  | 22                    | 0.2    | 99.2                                  |              |           |  |
| 1             | 286 to 300     | 3 0.  | 0 9   | 99.9  | 23                    |        | 99.5                                  |              | -         |  |
| 2             | 301 to 315     | 2 0.  | 0 9   | 9.9   | 10                    |        | 99.5                                  |              | 0.3 98.7  |  |
| 3 .           | 316 to 330     | 4 0.  | 0 10  | 0.0   | 12                    |        | 99.7                                  |              | 0.3 99.0  |  |
|               | 331 to 345     | 3 0.  | 0 10  | 0.0   | 13                    |        | 99.8                                  |              | 0.2 99.2  |  |
|               | 346 to 360     | 1 0.0 |       | 0.0   | 23                    | 0.2 10 |                                       |              | 0.1 99.3  |  |
| ľAL           | ALL CLASSES:   | 106   | 538   |       |                       | 10638  | · · · · · · · · · · · · · · · · · · · |              | 0.7 100.0 |  |
|               |                | _ ,   | =     | - 20- | •                     | 10028  |                                       | 10           | 638       |  |

- 20-

| Ta      | able 108 - 2.11 | WIND TUR | N,   | NO BACKI | NG ALI | OWE,    | THULE,     | GREEN | LAND          |    |
|---------|-----------------|----------|------|----------|--------|---------|------------|-------|---------------|----|
|         |                 |          |      | 500 M    |        |         | 1000M      |       | URF TO 1500 P | vr |
| Cl<br>- | ass Wind Turn   | #        | 8    | Cum %    | #      |         | Cum %      | #     |               |    |
| 1       | 0               | 5775     | 54.3 | 54.3     | 571    | 7 53.7  | 53.7       | 5704  |               | -  |
| 2       | 1 to 15         | 794      | 7.5  | 61.8     | 64:    | 3 6.0   | 59.8       | 559   | -             |    |
| 3       | 16 to 30        | 701      | 6.6  | 68.3     | 603    | 3 5.7   | 65.5       | 534   |               |    |
| 4       | 31 to 45        | 596      | 5.6  | 73.9     | 526    | 4.9     | 70.4       | 482   |               |    |
| - 5     | 46 to 60        | 507      | 4.8  | 78.7     | 489    | 4.6     | 75.0       | 488   |               |    |
| 6       | 61 to 75        | 365      | 3.4  | 82.1     | 388    | 3.6     | 78.5       | 384   | ,             |    |
| 7       | 76 to 90        | 286      | 2.7  | 84.8     | 327    | 3.1     | 81.7       | 335   | 3.1 79.8      |    |
| . 8     | 91 to 105       | 243      | 2.3  | 87.1     | 256    | 2.4     | 84.1       | 255   | 2.4 82.2      |    |
| 9       | 106 to 120      | 230 2    | 2.2  | 89.3     | 236    | 2.2     | 86.3       | 251   | 2.4 84.5      |    |
| 10      | 121 to 135      | 180 1    | . 7  | 91.0     | 197    | 1.9     | 88.2       | 213   | 2.0 86.5      |    |
| 11      | 136 to 150      | 208 2    | . 0  | 92.9     | 212    | 2.0     | 90.2       | 208   | 2.0 88.5      |    |
| 12      | 151 to 165      | 189 1    | . 8  | 94.7     | 212    | 2.0     |            | 222   | 2.1 90.6      |    |
| 13      | 166 to 180      | 182 1    | . 7  | 96.4     | 175    | 1.6     |            | 178   | 1.7 92.2      |    |
| 14      | 181 to 195      | 111 1    | . 0  | 97.5     | 128    | 1.2     |            | 163   | 1.5 93.8      |    |
| 15      | 196 to 210      | 88 0     | 8    | 98.3     | 105    | _       | 96.0       | 113   | 1.1 94.8      |    |
| 16      | 211 to 225      | 69 0.    | 6    | 98.9     | 107    |         | 97.0       | 128   |               |    |
| .7      | 226 to 240      | 48 0.    | 5    | 99.4     | 91     |         | 97.9       | 104   |               |    |
| .8      | 241 to 255      | 27 0.    | 3    | 99.6     | 65     |         | 98.5       | 73    | 1.0 97.0      |    |
| 9       | 256 to 270      | 17 0.    | 2    | 99.8     | 41     |         | 98.9       | 51    | 0.7 97.7      |    |
| 0       | 271 to 285      | 9 0.     | 1 !  | 99.9     | 28     |         | 9.1        |       | 0.5 98.2      |    |
| 1       | 286 to 300      | 3 0.0    | ) 9  | 99.9     | 25     |         | 9.4        | 35    | 0.3 98.5      |    |
| 2 ;     | 301 to 315      | 2 0.0    | ) 9  | 99.9     | 14     |         | 9.5        | 26    | 0.2 98.8      |    |
| 3 . 3   | 316 to 330      | 4 0.0    | 10   | 0.0      | 13     |         |            | _     | 0.3 99.0      |    |
| 3       | 331 to 345      | 3 0.0    |      | 0.0      |        |         | 9.6<br>9.7 |       | 0.2 99.2      |    |
| 3       | 46 to 360       | 1 0.0    |      | 0.0      |        |         |            |       | 0.1 99.4      |    |
| ľAL .   | ALL CLASSES:    | 106.     |      | - • •    |        | 0.3 100 | J. U       |       | 0.6 100.0     |    |
|         |                 | 200      |      | - 21 -   | 1      | 0638    |            | 10    | 0638          |    |

This letter report provides wind directional profiles for 4 significant climate regimes associated with the 50 - 99 % exceedance wind speed profiles described in FARMY - 43 Report. This letter report includes summer conditions (June - August) of the mean wind direction for 4 stations.

In order to associate the directional profiles with the respective wind speed profiles the boundaries of the wind speed profile for the applicable exceedance level of the wind speed profile was determined for every altitude from surface to 25 km. For each of these intervals from surface to 25 kn the directional profile data were selected, summarized at each altitude level, and the mean direction as outlined by Essenwanger (1986) was computed. This was done for every exceedance level of the wind speed peofile. The result is given in Tables 108 -3.1 to 3.4.

At Albrook (Table 108 -3.1) we find q shift of about 90 degrees of the wind direction above 18 km towards Southeast from the mean direction for the 50% exceedance level 10 - 14 km..

to the 99 % exceedance level. Thus the strong wind speeds are appaewnrlt coming from a slightly different circulation system in that region.

This shift is not found for Montgomery (Table 108 - 3.2) or Berlin (Table 108 - 3.3).

At Thule (Table 108 - 3.4) the mean wind directions shift from Northwesterlies above 18 km towarss westerlies for strong Wind speeds. This is opposite what we find at Albrooks.

These results indicate that calculatuins of the MET error for Army missile system should take wind direction shifts above 18 km for strong winds into account.

Table 108 - 3.5 is depicting the mean sind directional profiles for the summer months (June - August) for 4 stations where wind speed profiles have been established (FARMY - 43). We learn that in summer above about 18 km the wind shifts in summer towards Easterlies. This is expected from the atmospheric general circulation system of the atmosphere.

Table 108 - 3.1 Wind Direction Profiles Associated with Respective Wind Speed Profiles.

| Albrook, |                  | Canal | Zone |     |     |     |
|----------|------------------|-------|------|-----|-----|-----|
| kn       | 1 50%            | 68%   | 84%  | 90% | 95% | 99% |
| 0        |                  | 323   | 333  | 326 | 333 | 336 |
| 1        |                  | 30    | 17   | 355 | 11  | 11  |
| 2        |                  | 5     | 41   | 20  | 39  | 34  |
| 3        |                  | 333   | 74   | 89  | 63  | 83  |
| 4        | · — <del>-</del> | 133   | 104  | 114 | 102 | 105 |
| 5        | 75               | 59    | 106  | 98  | 100 | 104 |
| 6        | 191              | 231   | 91   | 80  | 89  | 77  |
| 7        | 210              | 255   | 122  | 104 | 333 | 315 |
| 8        | 214              | 256   | 330  | 152 | 295 | 288 |
| 9        | 211              | 240   | 212  | 235 | 250 | 243 |
| 10       | 210              | 236   | 207  | 237 | 231 | 239 |
| 11       | 206              | 224   | 205  | 215 | 233 | 237 |
| 12       | 207              | 225   | 209  | 227 | 236 | 250 |
| 13       | 206              | 216   | 223  | 246 | 241 | 248 |
| 14       | 239              | 245   | 237  | 244 | 251 | 259 |
| 15       | 240              | 250   | 254  | 256 | 271 | 264 |
| 16       | 221              | 243   | 210  | 219 | 295 | 303 |
| 17       | 13               | 352   | 89   | 64  | 27  | 184 |
| 18       | 13               | 356   | 74   | 39  | 63  | 131 |
| 19       | 348              | 315   | 28   | 29  | 19  | 138 |
| 20       | 343              | 314   | 14   | 20  | 13  | 7   |
| 21       | 347              | 315   | 13   | 13  | 5   | 16  |
| 22       | 351              | 316   | 15   | 13  | 18  | 17  |
| 23       | 199              | 236   | 28   | 41  | 16  | 8   |
| 24       | 195              | 236   | 28   | 46  | 17  | 9   |
| 25       | 340              | 237   | 28   | 47  | 21  | 14  |

Table 108 - 3.2 Wind Direction Profiles Associated with Respective Wind Soeed Profile.

# Montgomery, Alabama

| km | 50% | 68% | 84% | 90% | 95%   | 99% |
|----|-----|-----|-----|-----|-------|-----|
| 0  | 133 | 215 | 200 |     | _     |     |
|    |     | 315 | 300 | 299 | 332   | 332 |
| 1  | 237 | 267 | 284 | 275 | 288   | 291 |
| 2  | 258 | 271 | 277 | 274 | 281   | 278 |
| 3  | 260 | 272 | 272 | 270 | 273   | 271 |
| 4  | 262 | 271 | 271 | 268 | 270   | 268 |
| 5  | w65 | w79 | 269 | 266 | 257   | 264 |
| 6  | 267 | 269 | 269 | 264 | 264   | 261 |
| 7  | 267 | 269 | 269 | 263 | 263   | 259 |
| 8  | 266 | 268 | 266 | 262 | 262   | 258 |
| 9  | 267 | 267 | 265 | 262 | 261   | 257 |
| 10 | 267 | 266 | 265 | 261 | 262   | 265 |
| 11 | 267 | 266 | 264 | 261 | 261   | 258 |
| 12 | 267 | 267 | 265 | 262 | 262   | 259 |
| 13 | 267 | 267 | 265 | 262 | 262   | 259 |
| 14 | 267 | 268 | 265 | 262 | 262   | 258 |
| 15 | 267 | 268 | 265 | 262 | 262   | 250 |
| 16 | 268 | 269 | 265 | 263 | 263   | 260 |
| 17 | 268 | 269 | 266 | 265 | 264   | 261 |
| 18 | 269 | 271 | 266 | 266 | 265   | 262 |
| 19 | 273 | 281 | 269 | 269 | 266   | 262 |
| 20 | 315 | 301 | 273 | 271 | 270   | 250 |
| 21 | 351 | 314 | 272 | 272 | 272   | 257 |
| 22 | 359 | 316 | 281 | 282 | 271   | 261 |
| 23 | 165 | 347 | 299 | 290 | 275   | 268 |
| 24 | 163 | 349 | 318 | 200 | 272   | 268 |
| 25 | 5   | 345 | 313 | 297 | 269   | 269 |
|    |     |     |     | _ , | _ 0 _ | 209 |

Table 108 = 3.3 Wind Direction Profiles Associated with Respective Wind Profile

# Berlin, Germany

| km | 50% | 68% | 84%   | 90% | 95%        | 99% |
|----|-----|-----|-------|-----|------------|-----|
| 0  | 242 | 255 | 260   | 265 | 270        | 272 |
| 1  | 268 | 273 | 277   | 282 | 281        |     |
| 2  | 281 | 283 | 287   | 297 | 297        | 284 |
| 3  | 282 | 284 | 289   | 301 | 299        | 305 |
| 4  | 281 | 285 | 290   | 303 | 300        | 307 |
| 5  | 283 | 285 | 291   | 305 | 300        | 307 |
| 6  | 284 | 286 | 292   | 307 | 304        | 308 |
| 7  | 284 | 286 | 292   | 308 | 304        | 309 |
| 8  | 284 | 286 | 293   | 309 | 304        | 309 |
| 9  | 285 | 287 | 293   | 310 | 303        | 307 |
| 10 | 284 | 286 | 294   | 312 | 303        | 305 |
| 11 | 285 | 287 | 293   | 315 | 304        | 307 |
| 12 | 285 | 287 | 292   | 313 | 304        | 306 |
| 13 | 284 | 287 | 291   | 311 | 304        | 307 |
| 14 | 283 | 287 | 191   | 309 | 304        | 307 |
| 15 | 281 | 286 | 290   | 309 | 299        | 305 |
| 16 | 280 | 285 | 189   | 307 | 299<br>297 | 301 |
| 17 | 279 | 283 | 287   | 304 | 297<br>295 | 298 |
| 18 | 276 | 279 | 286   | 302 | 293        | 297 |
| 19 | 273 | 277 | 285   | 301 | 293        | 294 |
| 20 | 269 | 274 | 285   | 301 | 290        | 291 |
| 21 | 255 | 270 | 282   | 298 | 289        | 292 |
| 22 | 242 | 266 | 279   | 296 | 286        | 291 |
| 23 | 238 | 258 | 279   | 299 |            | 288 |
| 24 | 335 | 254 | 275   | 297 | 292        | 290 |
| 25 | 334 | 244 | 272   | 296 | 289        | 286 |
|    |     |     | - , - | 200 | 287        | 283 |

Table 108 - 3.4 Wind Direction Profiles Associated with Respective Wind Soeed Profile.

## Thule, Greenland

| km | 50% | 68% | 84% | 90% | 95% | 99%   |
|----|-----|-----|-----|-----|-----|-------|
|    | -   | •   | 0   |     | 330 | J J 0 |
| 0  | 121 | 121 | 123 | 124 | 132 | 105   |
| 1  | 88  | 117 | 123 | 121 | 117 | 93    |
| 2  | 89  | 149 | 197 | 192 | 183 | 262   |
| 3  | 238 | 224 | 225 | 212 | 211 | 251   |
| 4  | 239 | 228 | 229 | 213 | 214 | 250   |
| 5. | 239 | 235 | 230 | 235 | 218 | 248   |
| 6  | 236 | 229 | 231 | 226 | 220 | 251   |
| 7  | 237 | 237 | 231 | 229 | 225 | 251   |
| 8  | 239 | 236 | 234 | 230 | 227 | 251   |
| 9  | 239 | 237 | 234 | 230 | 227 | 254   |
| 10 | 241 | 238 | 234 | 231 | 228 | 254   |
| 11 | 242 | 239 | 232 | 229 | 227 | 253   |
| 12 | 254 | 240 | 234 | 229 | 227 | 251   |
| 13 | 255 | 242 | 238 | 236 | 229 | 252   |
| 14 | 259 | 250 | 241 | 236 | 232 | 253   |
| 15 | 267 | 254 | 243 | 243 | 238 | 257   |
| 16 | 268 | 254 | 241 | 243 | 234 | 257   |
| 17 | 272 | 254 | 242 | 242 | 240 | 235   |
| 18 | 285 | 266 | 256 | 257 | 253 | 262   |
| 19 | 300 | 269 | 257 | 239 | 258 | 256   |
| 20 | 303 | 288 | 286 | 283 | 294 | 266   |
| 21 | 302 | 224 | 223 | 224 | 270 | 267   |
| 22 | 315 | 221 | 223 | 212 | 272 | 270   |
| 23 | 329 | 209 | 213 | 209 | 241 | 269   |
| 24 | 344 | 346 | 224 | 208 | 329 | 272   |
| 25 | 344 | 348 | 227 | 208 | 344 | 335   |

Table 108 3.5 Wind Direction Profiles for Summer. Four Stations During June - August.

| km         | Alb | Mtg              | Ber | Thu |
|------------|-----|------------------|-----|-----|
| 0          | 314 | $18\overline{4}$ | 306 | 247 |
| 1          | 58  | 259              | 302 | 107 |
| 2          | 80  | 271              | 303 | 121 |
| 3          | 95  | 287              | 304 | 227 |
| 4          | 105 | 298              | 303 | 225 |
| 5          | 112 | 304              | 302 | 235 |
| 6          | 107 | 306              | 300 | 227 |
| 7          | 111 | 305              | 298 | 228 |
| , <b>8</b> | 112 | 302              | 295 | 236 |
| 9          | 102 | 297              | 289 | 238 |
| 10         | 107 | 297              | 288 | 237 |
| 11         | 93  | 298              | 289 | 239 |
| 12         | 89  | 301              | 292 | 254 |
| 13         | 82  | 307              | 290 | 260 |
| 14         | 77  | 312              | 290 | 265 |
| 15         | 87  | 329              | 285 | 316 |
| 16         | 92  | 349              | 281 | 102 |
| 17         | 87  | 26               | 280 | 100 |
| 18         | 79  | 67               | 273 | 82  |
| 19         | 93  | 81               | 182 | 83  |
| 20         | 87  | 84               | 130 | 88  |
| 21         | 81  | 86               | 110 | 97  |
| 22         | 84  | 86               | 106 | 94  |
| 23         | 81  | 87               | 106 | 95  |
| 24         | 85  | 87               | 101 | 95  |
| 25         | 84  | 88               | 103 | 95  |

This letter report gives information about the exceedance probability for thresholds running from 50 to 99 % of the wind speed profile in the Middle East.

The raw data were furnished on magnetic tape by the Technical Application Center of the Air Force at Asheville, N.C. They were converted to PC disks for use in the development of the wind speed profiles for Middle East stations.

- a) Dhahran, Saudi Arabia (Table 108 4.1)
- b) Abu Dhabi, United Emerates (Table 108 4.2)
- c) Rhyadh, Saudi Arabia. (Table 108 4.3)
- dc) Bet Dagan, Israe (Yable 108 4.4)

The data were in block form of lines with 255 digits. The station number, time information, and upper air data were separated by a character ^Z. Thus the first program needed to separate the information into accessable individual lines.

While the station nummber was recognizable, the time information with 18 characters was supposed to have 18 digits with the last digits providing information how many lines of 32 characters were in the upper air data. Unfortunately this line of 18 digits contained anything from 2 to 18 digits. Thus the length of the uppwer air data could not be determined by the number in the time information. A cutoff was made by the station number.

Although the lines of upper air information were supposed to have 32 characters, the number of the digits in the last line from the converted 255 charcters contained less depending on how many ^2 characters were in the line, and the numwerical remainder in the 255 total. However, the line was supplemented in the next 255 line. Thus separate programs had to be established to standardise the upper air information. The supplementation of the last 32 character line was necessary because the last 7 digits of the line contauined the information about wind speed and direction.

After the standardization programs the upper air data were normalized at metric altitude intervals of 1 km from surface to 25 km.

Tyhe next step was a Fourier analysis of the wind speed profile, with calculation of the frequency distributions of the coefficients. Then an analytical profile was established for exceedance thresholds 50 to 99 %. E.g. the 99 % profile is exceeded in 1 % of the cases. The technical details are found in FARMY-138 Report.

The wind speed profiles for the exceedance thresholds are provided in Tables 108 - 4.1 to 4,4. We learn that Dhahran, Abu Dhabi, and Rhyad (Tables 108 - 4.1 to 4,3) appear to be in a similar wind speed regime. However, the wind speed profiles at Bet Dagan, Israel, disclose a stronger upper air wind system,, especially between 10 - 14 km..

In addition to these wind speed profiles the meean wind direction for the total year, the winter and summer months, is listed. The tab; es is display that in the summer months the wind shifts to an easterly direction above 8 km. This is in line with expectations from the general circulation of the atmosphere. More details can be found in the individual tabulations which have been furnished to the MLRS Project Office on computer PC disks upon their request.

Table 108 - 4.1 Eind Speed Profiles for Probabo; oty Level of Exceedance, and Directional Profiles for the Year, Winter, and Summer fpr Dhahran, Saudi Arabia.

| KM | 50%  | MEAN | 68%  | 84%  | 90%  | 95%  | 99%  | 99.9% | TOT | SUM | WIN |
|----|------|------|------|------|------|------|------|-------|-----|-----|-----|
| 0  | 5.3  | 6.2  | 6.8  | 8.8  | 9.9  | 11.3 | 14.6 | 17.7  | 8   | 359 | 348 |
| 1  | 6.0  | 7.0  | 7.7  | 10.0 | 11.2 | 12.8 | 16.5 | 20.0  | 315 | 340 | 290 |
| 2  | 7.0  | 8.3  | 9.1  | 11.8 | 13.3 | 15.1 | 19.5 | 23.6  | 303 | 332 | 284 |
| 3  | 8.3  | 9.8  | 10.7 | 13.9 | 15.6 | 17.8 | 23.0 | 27.9  | 304 | 332 | 287 |
| 4  | 9.6  | 11.3 | 12.4 | 16.0 | 18.0 | 20.5 | 26.5 | 32.1  | 302 | 345 | 283 |
| 5  | 10.8 | 12.7 | 14.0 | 18.0 | 20.3 | 23.1 | 29.8 | 36.2  | 298 | 360 | 282 |
| 6  | 12.1 | 14.2 | 15.6 | 20.2 | 22.7 | 25.9 | 33.4 | 40.5  | 299 | 12  | 281 |
| 7  | 13.6 | 16.0 | 17.6 | 22.7 | 25.6 | 29.1 | 37.6 | 45.6  | 297 | 349 | 280 |
| 8  | 15.5 | 18.2 | 20.0 | 25.8 | 29.1 | 33.1 | 42.8 | 51.9  | 297 | 356 | 280 |
| 9  | 17.8 | 20.9 | 23.0 | 29.7 | 33.5 | 38.1 | 49.2 | 59.6  | 297 | 358 | 280 |
| 10 | 20.0 | 23.5 | 25.9 | 33.4 | 37.6 | 42.8 | 55.2 | 67.0  | 285 | 180 | 279 |
| 11 | 21.9 | 25.8 | 28.4 | 36.6 | 41.2 | 46.9 | 60.6 | 73.5  | 268 | 179 | 279 |
| 12 | 23.2 | 27.3 | 30.0 | 38.8 | 43.7 | 49.7 | 64.1 | 77.8  | 254 | 169 | 279 |
| 13 | 23.2 | 27.2 | 30.0 | 38.7 | 43.6 | 49.6 | 64.0 | 77.7  | 241 | 165 | 277 |
| 14 | 21.7 | 25.5 | 28.1 | 36.2 | 40.8 | 46.4 | 60.0 | 72.7  | 236 | 159 | 276 |
| 15 | 19.5 | 23.0 | 25.3 | 32.6 | 36.7 | 41.8 | 53.9 | 65.4  | 226 | 150 | 275 |
| 16 | 17.1 | 20.1 | 22.1 | 28.5 | 32.1 | 36.6 | 47.2 | 57.2  | 222 | 147 | 275 |
| 17 | 14.3 | 16.8 | 18.5 | 23.8 | 26.9 | 30.5 | 39.4 | 47.8  | 212 | 140 | 270 |
| 18 | 12.2 | 14.4 | 15.8 | 20.4 | 23.0 | 26.2 | 33.8 | 41.0  | 206 | 130 | 279 |
| 19 | 11.7 | 13.8 | 15.1 | 19.5 | 22.0 | 25.1 | 32.4 | 39.2  | 206 | 118 | 276 |
| 20 | 11.7 | 13.7 | 15.1 | 19.5 | 22.0 | 25.0 | 32.3 | 39.2  | 175 | 108 | 281 |
| 21 | 11.6 | 13.6 | 15.0 | 19.3 | 21.8 | 24.8 | 32.0 | 38.8  | 154 | 110 | 235 |
| 22 | 10.8 | 12.7 | 14.0 | 18.1 | 20.4 | 23.2 | 29.9 | 36.3  | 168 | 116 | 270 |
| 23 | 9.3  | 11.0 | 12.1 | 15.6 | 17.5 | 19.9 | 25.8 | 31.2  | 150 | 106 | 315 |
| 24 | 7.3  | 8.6  | 9.4  | 12.2 | 13.7 | 15.6 | 20.1 | 24.4  | 61  | 91  | 347 |
| 25 | 5.3  | 6.2  | 6.8  | 8.8  | 10.0 | 11.3 | 14.6 | 17.7  | 43  | 102 | 10  |

TOTAL = ALL YEAR SUMMER = MAY - AUG WINTER = NOV - FEB

Table 108- 4.2 Wind Speed Profiles for Probability Level of Exceedance, and Directional Profiles for the Year, Winter, and Summer for Abu Dhabi , Emerates.

| KM  | 50%  | MEAN | 1 68% | 84%  | 90%  | 95%  | 99%  | 99.9% | TOT | SUM | C/TAT      |
|-----|------|------|-------|------|------|------|------|-------|-----|-----|------------|
| 0   | 4.2  | 4.9  | 5.4   | 7.0  | 7.9  | 8.9  | 11.6 | 14.0  | 360 | 349 | WIN        |
| 1   | 4.8  | 5.7  | 6.3   | 8.1  | 9.1  | 10.4 | 13.4 | 16.2  | 298 | 303 | 1          |
| 2   | 6.1  | 7.2  | 7.9   | 10.2 | 11.5 | 13.0 |      | 20.4  | 282 | 300 | 287        |
| 3   | 7.8  | 9.2  | 10.1  | 13.0 | 14.7 | 16.7 | 21.5 | 26.1  | 286 | 348 | 267        |
| 4   | 9.8  | 11.5 | 12.7  | 16.4 | 18.5 | 21.0 | 27.1 | 32.9  | 301 | 16  | 271<br>271 |
| 5   | 12.0 | 14.1 | 15.5  | 20.0 | 22.6 | 25.7 | 33.2 | 40.2  | 301 | 28  | 269        |
| 6   | 14.3 | 16.8 | 18.5  | 23.8 | 26.9 | 30.6 | 39.5 | 47.8  | 301 | 19  | 269        |
| 7   | 16.6 | 19.5 | 21.4  | 27.7 | 31.2 | 35.5 | 45.8 | 55.5  | 302 | 18  | 269        |
| . 8 | 18.8 | 22.1 | 24.3  | 31.4 | 35.4 | 40.2 | 52.0 | 63.0  | 299 | 14  | 269        |
| 9   | 20.8 | 24.5 | 27.0  | 34.8 | 39.2 | 44.6 | 57.6 | 69.9  | 298 | 14  | 270        |
| 10  | 22.4 | 26.3 | 28.9  | 37.4 | 42.1 | 47.9 | 61.8 | 75.0  | 288 | 27  | 270        |
| 11  | 23.4 | 27.5 | 30.3  | 39.1 | 44.0 | 50.1 | 64.6 | 78.4  | 253 | 29  | 269        |
| 12  | 23.8 | 28.0 | 30.8  | 39.7 | 44.7 | 50.9 | 65.7 | 79.7  | 238 | 153 | 270        |
| 13  | 24.0 | 28.2 | 31.0  | 40.1 | 45.1 | 51.3 | 66.3 | 80.4  | 230 | 152 | 269        |
| 14  | 22.1 | 26.1 | 28.7  | 37.0 | 41.7 | 47.4 | 61.2 | 74.3  | 228 | 155 | 268        |
| 15  | 19.6 | 23.1 | 25.4  | 32.8 | 36.9 | 42.0 | 54.2 | 65.7  | 225 | 153 | 269        |
| 16  | 16.7 | 19.7 | 21.7  | 28.0 | 31.5 | 35.8 | 46.3 | 56.1  | 221 | 139 | 269        |
| 17  | 14.2 | 16.7 | 18.3  | 23.6 | 26.6 | 30.3 | 39.1 | 47.5  | 223 | 160 | 270        |
| 18  | 10.6 | 12.4 | 13.7  | 17.6 | 19.9 | 22.6 | 29.2 | 35.4  | 211 | 134 | 269        |
| 19  | 7.9  | 9.3  | 10.2  | 13.2 | 14.8 | 16.9 | 21.8 | 26.4  | 213 | 159 | 263        |
| 20  | 6.8  | 8.0  | 8.8   | 11.3 | 12.8 | 14.5 | 18.7 | 22.7  | 198 | 124 | 280        |
| 21  | 7.1  | 8.3  | 9.2   | 11.8 | 13.3 | 15.2 | 19.6 | 23.8  | 230 | 160 | 265        |
| 22  | 8.1  | 9.5  | 10.5  | 13.5 | 15.3 | 17.4 | 22.4 | 27.2  | 195 | 140 | 266        |
| 23  | 8.9  | 10.5 | 11.5  | 14.9 | 16.8 | 19.1 | 24.6 | 29.8  | 197 | 61  | 271        |
| 24  | 8.7  | 10.3 | 11.3  | 14.6 | 16.5 | 18.7 | 24.2 | 29.3  | 320 | 9   | 276        |
| 25  | 7.4  | 8.7  | 9.6   | 12.4 | 14.0 | 15.9 | 20.5 | 24.9  | 288 | 225 | 274        |

TOTAL = ALL YEAR SUMMER = JUN - AUG WINTER = NOV - MAR

Table 108 -4.3 Wind Speed Profiles for Probability Levels of Exceedance, and Directional Profiles for Year, Winter, and Summer for Rhyad, Suudi Arabia.

| KM | 50%  | MEAN | 68%  | 84%  | 90%  | 95%  | 99%  | 99.9% | TOT | SUM | WIN |
|----|------|------|------|------|------|------|------|-------|-----|-----|-----|
| 0  | 3.8  | 4.4  | 4.9  | 6.3  | 7.1  | 8.1  | 10.4 | 12.7  | 12  | 10  | 13  |
| 1  | 4.9  | 5.8  | 6.4  | 8.3  | 9.3  | 10.6 | 13.7 | 16.6  | 43  | 41  | 275 |
| 2  | 6.6  | 7.8  | 8.6  | 11.1 | 12.5 | 14.2 | 18.4 | 22.3  | 303 | 330 | 268 |
| 3  | 8.4  | 9.9  | 10.9 | 14.1 | 15.9 | 18.1 | 23.3 | 28.3  | 302 | 310 | 272 |
| 4  | 10.0 | 11.8 | 12.9 | 16.7 | 18.8 | 21.4 | 27.7 | 33.5  | 304 | 313 | 272 |
| 5  | 11.2 | 13.2 | 14.5 | 18.7 | 21.1 | 24.0 | 31.0 | 37.6  | 301 | 314 | 277 |
| 6  | 12.2 | 14.3 | 15.8 | 20.4 | 22.9 | 26.1 | 33.7 | 40.9  | 302 | 318 | 274 |
| 7  | 13.3 | 15.6 | 17.2 | 22.2 | 25.0 | 28.4 | 36.7 | 44.5  | 299 | 327 | 275 |
| 8  | 14.8 | 17.4 | 19.1 | 24.7 | 27.8 | 31.6 | 40.8 | 49.5  | 285 | 331 | 272 |
| 9  | 17.3 | 20.3 | 22.4 | 28.9 | 32.5 | 37.0 | 47.8 | 57.9  | 286 | 193 | 277 |
| 10 | 19.3 | 22.8 | 25.0 | 32.3 | 36.4 | 41.4 | 53.5 | 64.8  | 257 | 193 | 277 |
| 11 | 21.1 | 24.9 | 27.4 | 35.3 | 39.8 | 45.3 | 58.4 | 70.9  | 253 | 199 | 279 |
| 12 | 22.3 | 26.2 | 28.8 | 37.2 | 42.0 | 47.7 | 61.6 | 74.7  | 238 | 193 | 279 |
| 13 | 22.9 | 27.0 | 29.7 | 38.3 | 43.1 | 49.1 | 63.4 | 76.8  | 236 | 191 | 279 |
| 14 | 23.3 | 27.1 | 29.6 | 37.6 | 42.1 | 47.6 | 60.9 | 73.4  | 225 | 183 | 277 |
| 15 | 20.9 | 24.2 | 26.4 | 33.5 | 37.5 | 42.4 | 54.2 | 65.3  | 226 | 185 | 272 |
| 16 | 18.2 | 21.0 | 22.9 | 29.0 | 32.4 | 36.6 | 46.7 | 56.2  | 216 | 174 | 276 |
| 17 | 15.6 | 18.0 | 19.6 | 24.8 | 27.6 | 31.2 | 39.7 | 47.7  | 210 | 166 | 271 |
| 18 | 12.6 | 14.4 | 15.7 | 19.6 | 21.9 | 24.6 | 31.2 | 37.4  | 202 | 153 | 274 |
| 19 | 10.6 | 12.1 | 13.2 | 16.4 | 18.2 | 20.5 | 25.8 | 30.9  | 180 | 133 | 273 |
| 20 | 10.0 | 11.4 | 12.3 | 15.3 | 17.0 | 19.1 | 24.0 | 28.7  | 164 | 121 | 271 |
| 21 | 10.2 | 11.7 | 12.7 | 15.8 | 17.5 | 19.6 | 24.8 | 29.6  | 147 | 104 | 276 |
| 22 | 10.7 | 12.3 | 13.3 | 16.6 | 18.5 | 20.7 | 26.2 | 31.3  | 148 | 104 | 275 |
| 23 | 10.8 | 12.4 | 13.4 | 16.7 | 18.6 | 20.8 | 26.3 | 31.5  | 133 | 102 | 298 |
| 24 | 10.0 | 11.4 | 12.4 | 15.4 | 17.1 | 19.1 | 24.1 | 28.9  | 134 | 94  | 286 |
| 25 | 8.5  | 9.6  | 10.4 | 12.8 | 14.2 | 15.8 | 19.9 | 23.7  | 135 | 105 | 298 |

TOTAL = ALL YEAR SUMMER = MAY - AUG WINTER = NOV - FEB

Table 108- 4.4 Wind Speed Profiles for Probability Level og Exceedance, and Wind Direction Profiles for Year, Winter, and Summer for Bet Dagan, Israel.

| KM<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 50%<br>4.2<br>5.2<br>6.9<br>8.9<br>11.0<br>12.9<br>14.8<br>16.7<br>18.9<br>21.8<br>23.9<br>25.7<br>27.0<br>28.1<br>26.8 | MEAN<br>5.0<br>6.1<br>8.1<br>10.5<br>12.9<br>15.2<br>17.4<br>19.7<br>22.2<br>25.6<br>28.1<br>30.3<br>31.7<br>33.0<br>31.5 | 68%<br>5.5<br>6.7<br>8.9<br>11.5<br>14.2<br>16.7<br>19.1<br>21.6<br>24.4<br>28.2<br>31.0<br>33.3<br>34.9<br>36.3<br>34.7 | 84%<br>7.0<br>8.7<br>11.5<br>14.9<br>18.3<br>21.6<br>24.7<br>27.9<br>31.5<br>36.4<br>40.0<br>45.1<br>46.9<br>44.8 | 90%<br>7.9<br>9.8<br>12.9<br>16.7<br>20.6<br>24.3<br>27.9<br>31.5<br>41.0<br>45.0<br>48.4<br>50.8<br>52.9<br>50.5 | 95%<br>9.0<br>11.1<br>14.7<br>19.0<br>23.5<br>27.7<br>31.7<br>35.8<br>40.4<br>46.7<br>51.2<br>55.1<br>57.7<br>60.1 | 99% 11.7 14.4 19.0 24.6 30.3 35.7 40.9 46.2 52.2 60.3 66.1 71.1 74.6 | 99.9% 14.1 17.4 23.0 29.8 36.8 43.3 49.6 56.1 63.3 73.1 80.2 86.2 90.4 | TOT<br>317<br>285<br>268<br>265<br>266<br>265<br>264<br>264<br>263<br>262<br>262<br>259<br>258 | SUM<br>317<br>302<br>287<br>268<br>265<br>263<br>260<br>257<br>257<br>253<br>252<br>249<br>242<br>240 | WIN<br>297<br>241<br>252<br>260<br>268<br>270<br>271<br>272<br>272<br>273<br>272<br>271<br>271 |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 15<br>16<br>17                                                                     | 24.7<br>22.0                                                                                                            | 29.1<br>25.9                                                                                                              | 32.0<br>28.5                                                                                                             | 41.3<br>36.8                                                                                                      | 46.5<br>41.5                                                                                                      | 57.4<br>52.9<br>47.2                                                                                               | 74.1<br>68.3<br>60.9                                                 | 89.9<br>82.8<br>73.9                                                   | 255<br>253<br>250                                                                              | 235<br>231<br>225                                                                                     | 271<br>270<br>270                                                                              |
| 17<br>18<br>19<br>20                                                               | 18.7<br>15.7<br>13.9<br>12.8                                                                                            | 22.1<br>18.4<br>16.3<br>15.0                                                                                              | 24.3<br>20.3<br>18.0<br>16.6                                                                                             | 31.3<br>26.2<br>23.2<br>21.4                                                                                      | 35.3<br>29.5<br>26.2                                                                                              | 40.1<br>33.5<br>29.7                                                                                               | 51.8<br>43.3<br>38.4                                                 | 62.8<br>52.5<br>46.6                                                   | 244<br>229<br>221                                                                              | 213<br>182<br>163                                                                                     | 268<br>268<br>267                                                                              |
| 21<br>22<br>23<br>24<br>25                                                         | 11.9<br>10.9<br>9.5<br>7.7<br>5.8                                                                                       | 14.1                                                                                                                      | 15.5<br>14.1<br>12.3<br>9.9<br>7.6                                                                                       | 20.0<br>18.2<br>15.8<br>12.8<br>9.8                                                                               | 24.1<br>22.5<br>20.6<br>17.8<br>14.4<br>11.0                                                                      | 27.4<br>25.6<br>23.4<br>20.3<br>16.4<br>12.5                                                                       | 35.4<br>33.0<br>30.2<br>26.2<br>21.2<br>16.2                         | 42.9<br>40.1<br>36.6<br>31.8<br>25.7<br>19.6                           | 198<br>194<br>185<br>170<br>168<br>170                                                         | 130<br>118<br>113<br>108<br>104<br>104                                                                | 268<br>266<br>267<br>255<br>227<br>255                                                         |

TOTAL = ALL YEAR SUMMER = MAY - AUG WINTER = NOV - FEB Letter Report 109 - 5

15 May 1998

This letter report provides the wind speed profiles for 3 stations in the Scandinavian area.

The technical details of this study to develop wind speed profiles are similar to letter report 108 - 4 but wind speed profiles for this report are from Skandinavian station.

a) Oslo/Gardemoen, Norway (Table 108 - 5.1)

b) Copenhavn/(Kuebenhavn/Jaegersh), Denmark (Table 108 - 5.2)

C) Jan Mayen, Norway, (Table 108 - 5.3)

The tables illustrate that the highest wind speed of the progfiles occur between 6 to 12 km altitude. That is lower than in the subtropical or tropical regions. They are not higher than the previous Middle East stations but much lower than Bet Dagan, Israel or Montgomery.

The mean wind direction stays in the westerly range except for a shift above 20 km in summer for Kopenhaven and Oslo. No shift to easterlies can be found for Jan Mayen.

Table 108 - 5.1 Wind Speed Profiles for Probability Levels of Exceedance, amd Wimd Direction Profiles for Year, Winter, and Summer for Oslo/Gardermoen, Norway.

| KM  | 50%  | MEAN | v 68% | 84%  | 90%  | 95%  | 99%  | 99.9% | TOT   | SUM | WIN |
|-----|------|------|-------|------|------|------|------|-------|-------|-----|-----|
| 0   | 4.2  | 5.3  | 6.0   | 8.3  | 9.6  | 11.3 |      | 18.7  | 60    | 71  | 54  |
| 1   | 5.2  | 6.5  | 7.3   | 10.0 | 11.6 | 13.4 | 17.9 | 22.2  | 286   | 284 | 287 |
| 2   | 6.4  | 7.8  | 8.8   | 12.0 | 13.7 | 15.9 | 21.1 | 26.0  | 282   | 273 | 281 |
| 3 . | 7.7  | 9.4  | 10.6  | 14.2 | 16.3 | 18.8 | 24.8 | 30.5  | . 282 | 272 | 282 |
| 4   | 9.2  | 11.2 | 12.5  | 16.8 | 19.1 | 22.0 | 29.0 | 35.6  | 282   | 273 | 284 |
| 5   | 10.8 | 13.1 | 14.6  | 19.4 | 22.2 | 25.5 | 33.5 | 41.0  | 281   | 273 | 282 |
| 6   | 12.3 | 14.8 | 16.4  | 21.8 | 24.8 | 28.5 | 37.4 | 45.8  | 280   | 274 | 280 |
| 7   | 13.2 | 15.9 | 17.6  | 23.4 | 26.6 | 30.5 | 40.0 | 48.9  | 281   | 274 | 281 |
| 8   | 13.3 | 16.0 | 17.8  | 23.6 | 26.8 | 30.8 | 40.4 | 49.4  | 282   | 273 | 284 |
| 9   | 15.8 | 18.1 | 19.6  | 24.4 | 27.1 | 30.4 | 38.4 | 45.9  | 284   | 280 | 286 |
| 10  | 15.0 | 17.1 | 18.6  | 23.1 | 25.6 | 28.7 | 36.2 | 43.3  | 284   | 281 | 285 |
| 11  | 14.6 | 16.6 | 18.0  | 22.3 | 24.8 | 27.7 | 35.0 | 41.7  | 284   | 273 | 286 |
| 12  | 14.3 | 16.3 | 17.7  | 22.0 | 24.4 | 27.3 | 34.4 | 41.0  | 284   | 279 | 287 |
| 13  | 13.8 | 15.7 | 16.9  | 21.0 | 23.3 | 26.1 | 32.8 | 39.1  | 284   | 275 | 288 |
| 14  | 12.0 | 13.5 | 14.6  | 18.0 | 19.9 | 22.2 | 27.8 | 33.0  | 285   | 275 | 288 |
| 15  | 10.4 | 11.7 | 12.6  | 15.4 | 17.0 | 18.9 | 23.5 | 27.9  | 286   | 274 | 291 |
| 16  | 9.4  | 10.6 | 11.3  | 13.8 | 15.1 | 16.8 | 20.8 | 24.6  | 286   | 272 | 291 |
| 17  | 9.5  | 10.7 | 11.6  | 14.2 | 15.7 | 17.5 | 21.8 | 26.0  | 287   | 271 | 290 |
| 18  | 9.0  | 10.2 | 11.1  | 13.7 | 15.2 | 17.0 | 21.4 | 25.5  | 289   | 267 | 292 |
| 19  | 8.7  | 9.8  | 10.6  | 13.1 | 14.5 | 16.2 | 20.4 | 24.3  | 288   | 268 | 289 |
| 20  | 8.9  | 10.2 | 11.0  | 13.6 | 15.1 | 16.9 | 21.2 | 25.3  | 297   | 228 | 289 |
| 21  | 9.8  | 11.2 | 12.1  | 15.0 | 16.7 | 18.7 | 23.6 | 28.2  | 300   | 148 | 291 |
| 22  | 10.8 | 12.4 | 13.4  | 16.7 | 18.6 | 20.9 | 26.4 | 31.5  | 314   | 134 | 289 |
| 23  | 11.4 | 13.0 | 14.1  | 17.6 | 19.6 | 22.0 | 27.9 | 33.4  | 328   | 76  | 287 |
| 24  | 11.0 | 12.6 | 13.6  | 17.0 | 18.9 | 21.3 | 26.9 | 32.2  | 331   | 105 | 289 |
| 25  | 9.6  | 11.0 | 11.9  | 14.7 | 16.4 | 18.3 | 23.1 | 27.6  | 330   | 119 | 290 |

Table 108 - 5.2 Wind Speed Profiles for Probability Level of Exceedance, and Wind Directional Profiles for Year, Winter, and Summer. for Kopenhavn (Kuehenhavn/Jaegersb.) Denmark.

| KM     | 50%  | MEAN | 1 68% | 84%  | 90%  | 95%          | 0.00 | 00 00 |     |     |      |
|--------|------|------|-------|------|------|--------------|------|-------|-----|-----|------|
| 0      | 7.9  | 9.3  | 10.2  | 13.2 |      | -            | 99%  | 99.9% | TOT | SUM | WIN  |
| 1      | 8.0  | 9.4  | 10.4  | 13.4 | 15.1 | 16.9<br>17.2 |      | 26.4  | 317 | 318 | 268  |
| 2      | 8.2  | 9.6  | 10.6  | 13.7 | 15.4 | 17.6         | 22.2 | 26.9  | 254 | 257 | 254  |
| 3      | 8.7  | 10.2 | 11.2  | 14.5 | 16.3 |              |      | 27.5  | 267 | 266 | 259  |
| 3<br>4 | 9.7  | 11.4 | 12.5  | 16.1 | 18.2 | 18.6         | 24.0 | 29.1  | 269 | 258 | 267  |
| 5      | 11.2 | 13.2 | 14.5  | 18.7 |      | 20.7         | 26.7 | 32.4  | 269 | 267 | 267  |
| 6      | 13.1 | 15.4 | 16.9  | 21.9 | 21.1 | 24.0         | 31.0 | 37.6  | 269 | 256 | 2.70 |
| 7      | 14.9 | 17.5 | 19.3  | 24.9 | 24.7 | 28.0         | 36.2 | 43.9  | 272 | 269 | 272  |
| 8      | 16.1 | 19.0 | 20.9  | 26.9 | 28.0 | 31.9         | 41.2 | 49.9  | 272 | 268 | 274  |
| 9      | 15.2 | 18.0 | 19.9  | 26.9 | 30.4 | 34.5         | 44.6 | 54.1  | 273 | 270 | 274  |
| 10     | 15.5 | 18.4 | 20.4  | 26.6 | 29.5 | 33.7         | 43.7 | 53.3  | 273 | 269 | 274  |
| 11     | 14.7 | 17.4 | 19.3  | 25.1 | 30.1 | 34.3         | 44.6 | 54.3  | 274 | 269 | 279  |
| 12     | 12.7 | 15.2 | 16.8  | 22.0 | 28.5 | 32.5         | 42.3 | 51.5  | 274 | 267 | 279  |
| 13     | 10.7 | 12.7 | 14.1  | 18.5 | 24.9 | 28.4         | 37.0 | 45.1  | 281 | 258 | 281  |
| 14     | 10.2 | 12.2 | 13.5  | 17.7 | 21.0 | 24.0         | 31.2 | 38.1  | 274 | 257 | 282  |
| 15     | 9.9  | 11.9 | 13.1  |      | 20.1 | 23.0         | 29.9 | 36.5  | 280 | 258 | 283  |
| 16     | 9.9  | 11.8 | 13.1  | 17.3 | 19.6 | 22.4         | 29.2 | 35.6  | 280 | 257 | 283  |
| 17     | 11.8 | 13.6 | 14.9  | 17.2 | 19.5 | 22.3         | 29.0 | 35.4  | 273 | 254 | 282  |
| 18     | 10.8 | 12.0 | 12.8  | 18.7 | 20.9 | 23.6         | 30.0 | 36.1  | 273 | 251 | 281  |
| 19     | 8.6  | 9.5  | 10.0  | 15.4 | 16.8 | 18.6         | 22.8 | 26.8  | 274 | 242 | 281  |
| 20     | 7.8  | 8.5  | 8.9   | 11.8 | 12.7 | 13.9         | 16.8 | 19.6  | 272 | 237 | 279  |
| 21     | 8.2  | 8.9  | 9.4   | 10.4 | 11.2 | 12.2         | 14.6 | 16.8  | 284 | 211 | 279  |
| 22     | 9.0  | 9.9  |       | 10.9 | 11.8 | 12.9         | 15.5 | 17.9  | 284 | 179 | 278  |
| 23     | 9.8  | 10.8 | 10.5  | 12.4 | 13.5 | 14.8         | 17.9 | 20.9  | 269 | 169 | 277  |
| 24     | 10.1 | 11.1 | 11.5  | 13.7 | 14.9 | 16.4         | 20.0 | 23.5  | 327 | 166 | 280  |
| 25     | 10.0 | 11.1 | 11.9  | 14.2 | 15.4 | 17.0         | 20.8 | 24.4  | 327 | 168 | 280  |
|        | 10.0 | 11.0 | 11.8  | 14.0 | 15.3 | 16.8         | 20.6 | 24.1  | 327 | 169 | 281  |

Table 108 - 5.3 Wind Speed Profiles for Probability Level of Exceedance, and Wind Direction Profiles for Year, Winter, amd Summe, for Jan Mayen, Norway.

| KM  | 50%  | MEAN | 68%  | 84%  | 90%  | 95%  | 99%  | 99.9% | TOT | SUM | WIN |
|-----|------|------|------|------|------|------|------|-------|-----|-----|-----|
| 0   | 8.3  | 9.7  | 10.7 | 13.8 | 15.5 | 17.7 | 22.8 | 27.7  | 329 | 300 | 358 |
| 1   | 8.6  | 10.1 | 11.1 | 14.3 | 16.1 | 18.4 | 23.7 | 28.8  | 298 | 266 | 27  |
| 2   | 8.8  | 10.4 | 11.4 | 14.7 | 16.6 | 18.9 | 24.4 | 29.5  | 269 | 256 | 298 |
| 3   | 9.2  | 10.8 | 11.9 | 15.3 | 17.3 | 19.6 | 25.4 | 30.8  | 269 | 256 | 298 |
| 4   | 9.9  | 11.6 | 12.8 | 16.5 | 18.6 | 21.1 | 27.3 | 33.1  | 268 | 267 | 284 |
| 5   | 10.9 | 12.9 | 14.1 | 18.3 | 20.6 | 23.4 | 30.2 | 36.6  | 267 | 257 | 272 |
| 6   | 12.2 | 14.4 | 15.8 | 20.4 | 23.0 | 26.2 | 33.8 | 41.0  | 257 | 256 | 268 |
| . 7 | 13.5 | 15.9 | 17.5 | 22.5 | 25.4 | 28.9 | 37.3 | 45.2  | 267 | 258 | 283 |
| 8   | 14.4 | 16.9 | 18.6 | 24.0 | 27.1 | 30.8 | 39.8 | 48.3  | 268 | 257 | 283 |
| 9   | 13.9 | 16.3 | 17.9 | 23.1 | 26.1 | 29.7 | 38.3 | 46.5  | 258 | 253 | 272 |
| 10  | 13.4 | 15.8 | 17.4 | 22.4 | 25.3 | 28.8 | 37.1 | 45.0  | 266 | 255 | 272 |
| 11  | 13.1 | 15.4 | 17.0 | 21.9 | 24.7 | 28.1 | 36.2 | 43.9  | 268 | 258 | 283 |
| 12  | 13.0 | 15.3 | 16.9 | 21.8 | 24.5 | 27.9 | 36.0 | 43.7  | 268 | 253 | 286 |
| 13  | 13.3 | 15.5 | 16.9 | 21.6 | 24.2 | 27.4 | 35.0 | 42.3  | 268 | 252 | 286 |
| 14  | 12.6 | 14.7 | 16.0 | 20.4 | 22.8 | 25.9 | 33.1 | 39.9  | 268 | 253 | 284 |
| 15  | 12.0 | 14.0 | 15.3 | 19.5 | 21.8 | 24.6 | 31.5 | 38.0  | 268 | 244 | 285 |
| 16  | 11.5 | 13.4 | 14.6 | 18.6 | 20.8 | 23.5 | 30.1 | 36.3  | 266 | 241 | 287 |
| 17  | 13.0 | 14.8 | 16.0 | 20.0 | 22.2 | 24.9 | 31.4 | 37.6  | 268 | 244 | 294 |
| 18  | 13.5 | 15.2 | 16.3 | 19.9 | 21.9 | 24.4 | 30.3 | 35.9  | 267 | 236 | 288 |
| 19  | 12.2 | 13.6 | 14.6 | 17.7 | 19.4 | 21.6 | 26.7 | 31.5  | 268 | 229 | 290 |
| 20  | 11.5 | 12.8 | 13.7 | 16.6 | 18.1 | 20.1 | 24.8 | 29.2  | 258 | 212 | 289 |
| 21  | 11.7 | 13.0 | 13.9 | 16.8 | 18.5 | 20.5 | 25.3 | 29.8  | 257 | 210 | 297 |
| 22  | 12.5 | 14.0 | 15.0 | 18.2 | 20.0 | 22.2 | 27.5 | 32.5  | 256 | 207 | 296 |
| 23  | 13.4 | 15.1 | 16.2 | 19.8 | 21.8 | 24.2 | 30.1 | 35.7  | 252 | 206 | 298 |
| 24  | 13.9 | 15.6 | 16.8 | 20.5 | 22.6 | 25.1 | 31.3 | 37.1  | 243 | 206 | 295 |
| 25  | 13.4 | 15.0 | 16.1 | 19.6 | 21.6 | 24.0 | 29.9 | 35.4  | 243 | 206 | 298 |

#### REFERENCES:

Essenwanger, 1085 Elements of Statistical Analysis World Survey of Climatology, Vol 1 B, Elsevier, Amsterdam. pp424. Essenwanger, DARMY 43, October 933 pp 49

Essenwanger FARMT 85 June 85, pp 90

Essenwanger, FARMY 97, June 97, pp 28.

Essenwanger, FARMY 138, June 1980, pp 50

#### ACKNOWLEDGEMENTL

The principal investigater's thanks go to Mrs Mary Pitruzzello for the excellent aid to provide the many calculations for this report except the calculations of the wind speed and direction profiles. However, she prepared the tables for this report. into the format which is seen here in this report.