Formelsammlung Mathematik

Juli 2017

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

0	0000	0 1 2 3	0
1	0001		1
2	0010		2
3	0011		3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\begin{split} &\sin(-x) = -\sin x \\ &\cos(-x) = \cos x \\ &\sin(x+y) = \sin x \cos y + \cos x \sin y \\ &\sin(x-y) = \sin x \cos y - \cos x \sin y \\ &\cos(x+y) = \cos x \cos y - \sin x \sin y \\ &\cos(x-y) = \cos x \cos y + \sin x \sin y \\ &\mathrm{e}^{\mathrm{i}\varphi} = \cos \varphi + \mathrm{i}\sin \varphi \end{split}$$

Polarkoordinaten

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \\ \varphi &\in (-\pi, \pi] \\ \det J &= r \end{aligned}$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$\begin{split} x &= r \sin \theta \, \cos \varphi \\ y &= r \sin \theta \, \sin \varphi \\ z &= r \cos \theta \\ \varphi &\in (-\pi, \pi], \; \theta \in [0, \pi] \\ \det J &= r^2 \sin \theta \end{split}$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

1 (Grundlagen	5	3.4	Reelle Funktionen	16
1.1	Arithmetik	5		3.4.1 Monotone Funktionen	16
	1.1.1 Zahlenbereiche	5		3.4.2 Grenzwert einer Funktion	16
	1.1.2 Intervalle	5		3.4.3 Stetige Funktionen	16
	1.1.3 Summen	5	3.5	Differentialrechnung	16
	1.1.4 Binomischer Lehrsatz	5		3.5.1 Differentialquotient	16
	1.1.5 Potenzgesetze	6		3.5.2 Ableitungsregeln	16
1.2	Gleichungen	6		3.5.3 Tangente und Normale	16
	1.2.1 Quadratische Gleichungen	6	3.6	Integralrechnung	17
1.3	Komplexe Zahlen	6		3.6.1 Regelfunktionen	17
	1.3.1 Rechenoperationen	6		3.6.2 Stetige Funktionen	17
	1.3.2 Betrag	6		3.6.3 Hauptsatz	17
	1.3.3 Konjugation	6		3.6.4 Integrationsregeln	17
1.4	Logik	6		3.6.5 Integral bei Polstellen	17
	1.4.1 Aussagenlogik	6	3.7	Skalarfelder	18
	1.4.2 Prädikatenlogik	8		3.7.1 Partielle Ableitungen	18
1.5	Mengenlehre	9		3.7.2 Gradient	18
	1.5.1 Definitionen	9		3.7.3 Richtungsableitung	18
	1.5.2 Boolesche Algebra	9	3.8	Vektorfelder	18
	1.5.3 Teilmengenrelation	9		3.8.1 Tangentialraum	18
	1.5.4 Natürliche Zahlen	9		3.8.2 Richtungsableitung	18
	1.5.5 ZFC-Axiome	10	3.9	Variationsrechnung	19
	1.5.6 Kardinalität	10		3.9.1 Fundamentallemma	19
1.6	Funktionen	10		3.9.2 Euler-Lagrange-Gleichung	19
	1.6.1 Surjektionen	10	3.10	Fourier-Analysis	19
	1.6.2 Injektionen	10		3.10.1 Fourierreihen	19
	1.6.3 Bijektionen	10			~
	1.6.4 Komposition	11		ineare Algebra	20
	1.6.5 Einschränkung	11	4 L 4.1	Grundbegriffe	20
	1.6.5 Einschränkung	11 11		Grundbegriffe	20 20
1 7	1.6.5 Einschränkung	11 11 11	4.1	Grundbegriffe	20 20 20
1.7	1.6.5 Einschränkung	11 11		Grundbegriffe	20 20 20 20
	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen	11 11 11 12	4.1	Grundbegriffe	20 20 20 20 20
2 1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen	11 11 11 12 13	4.1	Grundbegriffe	20 20 20 20 20 20 21
	1.6.5 Einschränkung	11 11 11 12 13 13	4.1	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen	20 20 20 20 20 21 21
2 1	1.6.5 Einschränkung	11 11 11 12 13 13 13	4.1	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen	20 20 20 20 20 21 21 21
2 1 2.1	1.6.5 Einschränkung	11 11 11 12 13 13 13 13	4.1	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten	20 20 20 20 20 21 21 21 22
2 1	1.6.5 Einschränkung	11 11 11 12 13 13 13 13 13	4.14.24.3	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte	20 20 20 20 21 21 21 22 22
2 1 2.1	1.6.5 Einschränkung	11 11 12 13 13 13 13 13 13	4.14.24.34.4	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme	20 20 20 20 21 21 21 22 22 22
2 1 2.1	1.6.5 Einschränkung	11 11 11 12 13 13 13 13 13	4.14.24.3	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra	20 20 20 20 21 21 21 22 22 22 22 23
2 1 2.1 2.2	1.6.5 Einschränkung	11 11 12 13 13 13 13 13 14	4.1 4.2 4.3 4.4 4.5	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt	20 20 20 20 20 21 21 21 22 22 22 23 23
2 2.1 2.2 3 4	1.6.5 Einschränkung	11 11 11 12 13 13 13 13 13 14 15	4.14.24.34.4	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie	20 20 20 20 20 21 21 21 22 22 22 23 23 24
2 1 2.1 2.2	1.6.5 Einschränkung	11 11 11 12 13 13 13 13 13 14 15 15	4.1 4.2 4.3 4.4 4.5	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden	20 20 20 20 20 21 21 21 22 22 22 23 24 24
2 2.1 2.2 3 4	1.6.5 Einschränkung	11 11 12 13 13 13 13 13 14 15 15	4.1 4.2 4.3 4.4 4.5	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie	20 20 20 20 20 21 21 21 22 22 22 23 23 24
2 1 2.1 2.2 3 3.1	1.6.5 Einschränkung	11 11 12 13 13 13 13 13 14 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen	20 20 20 20 21 21 22 22 22 23 24 24 24
2 2.1 2.2 3 4	1.6.5 Einschränkung	11 11 12 13 13 13 13 13 14 15 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen Differentialgeometrie	20 20 20 20 20 21 21 21 22 22 22 23 24 24
2 1 2.1 2.2 3 3.1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen Funktionen Elementare Funktionen 2.1.1 Exponentialfunktion 2.1.2 Winkelfunktionen Zahlentheoretische Funktionen 2.2.1 Eulersche Phi-Funktion 2.2.2 Carmichael-Funktion Analysis Ungleichungen 3.1.1 Dreiecksungleichung 3.1.2 Bernoullische Ungleichung Konvergenz 3.2.1 Umgebungen	11 11 12 13 13 13 13 13 14 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen	20 20 20 20 21 21 22 22 22 23 24 24 24
2 1 2.1 2.2 3 3.1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen Funktionen Elementare Funktionen 2.1.1 Exponentialfunktion 2.1.2 Winkelfunktionen Zahlentheoretische Funktionen 2.2.1 Eulersche Phi-Funktion 2.2.2 Carmichael-Funktion Analysis Ungleichungen 3.1.1 Dreiecksungleichung 3.1.2 Bernoullische Ungleichung Konvergenz 3.2.1 Umgebungen 3.2.2 Konvergente Folgen	11 11 12 13 13 13 13 13 14 15 15 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen Differentialgeometrie Kurven	20 20 20 20 20 21 21 22 22 22 23 24 24 24 24
2 1 2.1 2.2 3 3.1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen Funktionen Elementare Funktionen 2.1.1 Exponentialfunktion 2.1.2 Winkelfunktionen Zahlentheoretische Funktionen 2.2.1 Eulersche Phi-Funktion 2.2.2 Carmichael-Funktion Analysis Ungleichungen 3.1.1 Dreiecksungleichung 3.1.2 Bernoullische Ungleichung Konvergenz 3.2.1 Umgebungen 3.2.2 Konvergente Folgen	11 11 12 13 13 13 13 13 14 15 15 15 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen Differentialgeometrie Kurven 5.1.1 Parameterkurven 5.1.2 Differenzierbare Parameterkurven	20 20 20 20 20 21 21 22 22 23 24 24 24 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
2 1 2.1 2.2 3 3.1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen Funktionen Elementare Funktionen 2.1.1 Exponentialfunktion 2.1.2 Winkelfunktionen Zahlentheoretische Funktionen 2.2.1 Eulersche Phi-Funktion 2.2.2 Carmichael-Funktion Analysis Ungleichungen 3.1.1 Dreiecksungleichung 3.1.2 Bernoullische Ungleichung Konvergenz 3.2.1 Umgebungen 3.2.2 Konvergente Folgen 3.2.3 Häufungspunkte	11 11 12 13 13 13 13 13 14 15 15 15 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen Differentialgeometrie Kurven 5.1.1 Parameterkurven	20 20 20 20 21 21 21 22 22 22 23 24 24 24 24 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
2.1 2.2 3.1 3.1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen Funktionen Elementare Funktionen 2.1.1 Exponentialfunktion 2.1.2 Winkelfunktionen Zahlentheoretische Funktionen 2.2.1 Eulersche Phi-Funktion 2.2.2 Carmichael-Funktion Analysis Ungleichungen 3.1.1 Dreiecksungleichung 3.1.2 Bernoullische Ungleichung Konvergenz 3.2.1 Umgebungen 3.2.2 Konvergente Folgen 3.2.3 Häufungspunkte 3.2.4 Cauchy-Folge	11 11 12 13 13 13 13 13 14 15 15 15 15 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen Differentialgeometrie Kurven 5.1.1 Parameterkurven 5.1.2 Differenzierbare Parameterkurven Koordinatensysteme	20 20 20 20 21 21 21 22 22 22 23 24 24 24 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
2.1 2.2 3.1 3.1	1.6.5 Einschränkung 1.6.6 Bild 1.6.7 Urbild Mathematische Strukturen Funktionen Elementare Funktionen 2.1.1 Exponentialfunktion 2.1.2 Winkelfunktionen Zahlentheoretische Funktionen 2.2.1 Eulersche Phi-Funktion 2.2.2 Carmichael-Funktion Analysis Ungleichungen 3.1.1 Dreiecksungleichung 3.1.2 Bernoullische Ungleichung Konvergenz 3.2.1 Umgebungen 3.2.2 Konvergente Folgen 3.2.3 Häufungspunkte 3.2.4 Cauchy-Folge Reihen	11 11 12 13 13 13 13 13 14 15 15 15 15 15 15 15	4.1 4.2 4.3 4.4 4.5 4.6 5 .1	Grundbegriffe 4.1.1 Norm 4.1.2 Skalarprodukt Koordinatenvektoren 4.2.1 Koordinatenraum 4.2.2 Kanonisches Skalarprodukt Matrizen 4.3.1 Quadratische Matrizen 4.3.2 Determinanten 4.3.3 Eigenwerte Lineare Gleichungssysteme Multilineare Algebra 4.5.1 Äußeres Produkt Analytische Geometrie 4.6.1 Geraden 4.6.2 Ebenen Differentialgeometrie Kurven 5.1.1 Parameterkurven 5.1.2 Differenzierbare Parameterkurven Koordinatensysteme 5.2.1 Polarkoordinaten	20 20 20 20 21 21 22 22 22 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25

4 INHALTSVERZEICHNIS

 6 Funktionentheorie 6.1 Holomorphe Funktionen 6.2 Harmonische Funktionen 6.3 Wegintegrale 	27	9.2 Ringe	31
7 Dynamische Systeme 7.1 Grundbegriffe	28 29 29	10 Tabellen 10.1 Kombinatorik 10.1.1 Binomialkoeffizienten 10.1.2 Stirling-Zahlen erster Art 10.1.3 Stirling-Zahlen zweiter Art 10.2 Zahlentheorie 10.2.1 Primzahlen	32 33 33 34
8.1.2 Binomialkoeffizienten	29 29 29 29	11 Anhang11.1 Griechisches Alphabet11.2 Frakturbuchstaben11.3 Mathematische Konstanten11.4 Physikalische Konstanten11.5 Einheiten	35 35 35
9 Algebra 9.1 Gruppentheorie	31	11.5.1 Vorsätze 11.5.2 SI-System 11.5.3 Nicht-SI-Einheiten 11.5.4 Britische Einheiten	36 36 36

Grundlagen 1

1.1 Arithmetik

1.1.1 Zahlenbereiche

Natürliche Zahlen ab null:

$$\mathbb{N}_0 := \{0, 1, 2, 3, 4, \ldots\}.$$

Natürliche Zahlen ab eins:

$$\mathbb{N}_1 := \{1, 2, 3, 4, 5, \ldots\}.$$

Natürliche Zahlen:

N, wenn es keine Rolle spielt,

ob
$$\mathbb{N} := \mathbb{N}_0$$
 oder $\mathbb{N} := \mathbb{N}_1$.

Ganze Zahlen:

$$\mathbb{Z} := \{\ldots -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

Rationale Zahlen:

$$\mathbb{Q} := \{ \frac{z}{n} \mid z \in \mathbb{Z}, n \in \mathbb{N}_0 \}.$$

Reelle Zahlen:

$$\mathbb{R} := \overline{\mathbb{Q}}$$
 bezüglich $d(x, y) = |x - y|$.

Positive reelle Zahlen:

$$\mathbb{R}^+ := \{ x \in \mathbb{R} \mid x > 0 \}.$$

Nichtnegative reelle Zahlen:

$$\mathbb{R}_0^+ := \{ x \in \mathbb{R} \mid x \ge 0 \}.$$

Negative reelle Zahlen:

$$\mathbb{R}^- := \{ x \in \mathbb{R} \mid x < 0 \}.$$

Nichtpositive reelle Zahlen:

$$\mathbb{R}_0^- := \{ x \in \mathbb{R} \mid x \le 0 \}.$$

Komplexe Zahlen:

$$\mathbb{C} := \{ a + bi \mid a, b \in \mathbb{R} \}. \tag{1.11}$$

Quaternionen:

$$\mathbb{H} := \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \}. \tag{1.12}$$

Algebraische Zahlen:

$$\mathbb{A} := \{ a \in \mathbb{C} \mid \exists P \in \mathbb{Q}[X] \colon P(a) = 0 \}. \tag{1.13}$$

Irrationale Zahlen:

$$\mathbb{R} \setminus \mathbb{Q} = \{\sqrt{2}, \sqrt{3}, \pi, e, \ldots\}. \tag{1.14}$$

Transzendente Zahlen:

$$\mathbb{R} \setminus \mathbb{A} = \{\pi, e, \ldots\}. \tag{1.15}$$

Es gelten die folgenden Teilmengenbeziehungen:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$$
.

Es gilt die folgende Abstufung der Mächtigkeit:

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{A}| < |\mathbb{R}| = |\mathbb{C}|. \tag{1.17}$$

1.1.2 Intervalle

Abgeschlossene Intervalle:

$$[a,b] := \{ x \in \mathbb{R} \mid a \le x \le b \}.$$
 (1.18)

Offene Intervalle: (1.1)

$$(a,b) := \{ x \in \mathbb{R} \mid a < x < b \}. \tag{1.19}$$

Halboffene Intervalle: (1.2)

$$(a,b] := \{ x \in \mathbb{R} \mid a < x \le b \}, \tag{1.20}$$

$$[a,b) := \{ x \in \mathbb{R} \mid a \le x < b \}. \tag{1.21}$$

(1.3)Unbeschränkte Intervalle:

$$[a,\infty) := \{ x \in \mathbb{R} \mid a \le x \},\tag{1.22}$$

$$(1.4) (a, \infty) := \{ x \in \mathbb{R} \mid a < x \}, (1.23)$$

$$(-\infty, b] := \{ x \in \mathbb{R} \mid x \le b \},\tag{1.24}$$

$$(-\infty, b) := \{ x \in \mathbb{R} \mid x < b \}. \tag{1.25}$$

1.1.3 Summen

(1.5)

(1.6)

(1.8)

Definition. Für eine Folge (a_n) :

$$\sum_{k=1}^{m-1} a_k := 0, \qquad \text{(leere Summe)} \tag{1.26}$$

(1.7)
$$\sum_{k=m}^{n} a_k := \sum_{k=1}^{n-1} a_k. \qquad (n \ge m)$$
 (1.27)

$$\sum_{k=m} a_k := \sum_{k=m} a_k. \qquad (n \ge m) \tag{1.27}$$

Für eine Konstante c gilt:

(1.9)
$$\sum_{k=-m}^{n} c = (n-m+1) c.$$
 (1.28)

Der Summierungsoperator ist linear: (1.10)

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k,$$
 (1.29)

$$\sum_{k=m}^{n} ca_k = c \sum_{k=m}^{n} a_k. \tag{1.30}$$

Indexverschiebung ist möglich:

$$\sum_{k=m}^{n} a_k = \sum_{k=m-j}^{n-j} a_{k+j} = \sum_{k=m+j}^{n+j} a_{k-j}.$$
 (1.31)

Aufspaltung ist möglich:

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{p} a_k + \sum_{k=n+1}^{n} a_k. \tag{1.32}$$

Vertauschung der Reihenfolge bei Doppelsummen:

$$\sum_{i=n}^{m} \sum_{j=a}^{n} a_{ij} = \sum_{i=a}^{n} \sum_{j=a}^{m} a_{ij}.$$
(1.33)

1.1.4 Binomischer Lehrsatz

Sei R ein unitärer Ring. Für $a,b \in R$ mit ab = ba gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 (1.34)

(1.16)

und

$$(a-b)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k a^{n-k} b^k.$$
 (1.35)

Die ersten Formeln sind:

$$(a+b)^2 = a^2 + 2ab + b^2, (1.36)$$

$$(a-b)^2 = a^2 - 2ab + b^2, (1.37)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, (1.38)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3, (1.39)$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4, (1.40)$$

$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4.$$
 (1.41)

1.1.5 Potenzgesetze

Definition. Für $a \in \mathbb{R}, a > 0$ und $x \in \mathbb{C}$:

$$a^x := \exp(\ln(a) x). \tag{1.42}$$

Für $a \in \mathbb{R}, a > 0$ und $x, y \in \mathbb{C}$ gilt:

$$a^{x+y} = a^x a^y$$
, $a^{x-y} = \frac{a^x}{a^y}$, $a^{-x} = \frac{1}{a^x}$. (1.43)

1.2 Gleichungen

1.2.1 Quadratische Gleichungen

Definition. Eine Gleichung der Form $ax^2 + bx + c = 0$ mit $a \neq 0$ heißt quadratische Gleichung.

Wegen $a \neq 0$ lässt sich die Gleichung durch a dividieren und es ensteht die äquivalente Normalform $x^2 + px + q = 0$ mit p := b/a und q := c/a.

Lösung. Seien nun die a,b,c reelle Zahlen. Die Zahl

$$D = p^2 - 4q (1.44)$$

heißt Diskriminante. Für D>0 gibt es zwei reelle Lösungen:

$$x_1 = \frac{-p - \sqrt{D}}{2} = \frac{-b - \sqrt{b^2 - 4ac}}{2a},\tag{1.45}$$

$$x_2 = \frac{-p + \sqrt{D}}{2} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$
 (1.46)

Für D=0 fallen beiden Lösungen zu einer doppelten Lösung zusammen:

$$x_1 = x_2 = -\frac{p}{2} = -\frac{b}{2a}. (1.47)$$

Für D < 0 gibt es keine reelle Lösung. Aber es gibt zwei komplexe Lösungen, die zueinander konjugiert sind:

$$x_1 = \frac{-p - i\sqrt{|D|}}{2}, \quad x_2 = \frac{-p + i\sqrt{|D|}}{2}.$$
 (1.48)

In jedem Fall gelten die Formeln von Vieta:

$$p = -(x_1 + x_2), q = x_1 x_2. (1.49)$$

1.3 Komplexe Zahlen

1.3.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.50}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}.\tag{1.51}$$

1.3.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|, (1.52)$$

$$z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},\tag{1.53}$$

$$z\,\overline{z} = |z|^2. \tag{1.54}$$

1.3.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \qquad (1.55)$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{\overline{z}_1}{\overline{z}_2}}, \quad (1.56)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2,$$
 (1.57)

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}, \quad (1.58)$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}), \qquad (1.59)$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.60}$$

1.4 Logik

1.4.1 Aussagenlogik

1.4.1.1 Boolesche Algebra

Distributivgesetze:

$$A \lor (B \land C) \iff (A \lor B) \land (A \lor C),$$
 (1.61)

$$A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C).$$
 (1.62)

1.4.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche

Funktionen.

AB	Wei
00	a
01	Ъ
10	С
11	d

	•		
Nr.	dcba	Fkt.	Name
0	0000	0	Kontradiktion
1	0001	$\overline{A \vee B}$	NOR
2	0010	$\overline{B} \Rightarrow A$	
3	0011	\overline{A}	
4	0100	$\overline{A \Rightarrow B}$	
5	0101	\overline{B}	
6	0110	$A \oplus B$	Kontravalenz
7	0111	$\overline{A \wedge B}$	NAND
8	1000	$A \wedge B$	Konjunktion
9	1001	$A \Leftrightarrow B$	Äquivalenz
10	1010	B	Projektion
11	1011	$A \Rightarrow B$	Implikation
12	1100	$\mid A \mid$	Projektion
13	1101	$B \Rightarrow A$	Implikation
14	1110	$A \vee B$	Disjunktion
15	1111	1	Tautologie

1.4.1.3 Darstellung mit Negation, Konjunktion und Disjunktion

$$A \Rightarrow B \iff \overline{A} \lor B,\tag{1.63}$$

$$(A \Leftrightarrow B) \iff (\overline{A} \wedge \overline{B}) \vee (A \wedge B), \tag{1.64}$$

$$A \oplus B \iff (\overline{A} \wedge B) \vee (A \wedge \overline{B}).$$
 (1.65)

1.4. LOGIK 7

Tabelle 1.1: Rechnen mit komplexen Zahlen

Name	Operation	Polarform	kartesische Form
Identität	z	$= r e^{i\varphi}$	= a + bi
Addition	$z_1 + z_2$		$= (a_1 + a_2) + (b_1 + b_2)i$
Subtraktion	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$= \frac{\ddot{a}}{a^2 + b^2} - \frac{b}{a^2 + b^2} i$
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Betrag	z	= r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b) \arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Idempotenzgesetze
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Neutralitätsgesetze
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Extremalgesetze
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Komplementärgesetze
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Kommutativgesetze
$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	Assoziativgesetze
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$	Absorptionsgesetze

1.4.1.4 Tautologien

Ringschluss:

Ersetzungsregel:

 $P(A) \wedge (A \Leftrightarrow B) \implies P(B).$

 $A \land B \Rightarrow C \iff A \Rightarrow (B \Rightarrow C).$

(1.76)

(1.77)

Modus ponens: $(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \\ \Rightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow C) \land (B \Leftrightarrow C).$ (1.74)

 $(A \Rightarrow B) \land A \implies B.$ (1.66) Ringschluss, allgemein:

Modus tollens: $(A_1 \Rightarrow A_2) \wedge \ldots \wedge (A_{n-1} \Rightarrow A_n) \wedge (A_n \Rightarrow A_1)$ $(A \Rightarrow B) \wedge \overline{B} \implies \overline{A}.$ (1.75)

Modus tollendo ponens:

 $(A \lor B) \land \overline{A} \implies B.$ Für jede Funktion $P \colon \{0,1\} \to \{0,1\}$ gilt:

Modus ponendo tollens:

 $\overline{A \wedge B} \wedge A \Longrightarrow \overline{B}.$ (1.69) Regel zur Implikation:

Kontraposition:

Vollständige Fallunterscheidung: $A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}.$ (1.70)Beweis durch Widerspruch: $(A \Rightarrow C) \land (B \Rightarrow C) \implies (A \oplus B \Rightarrow C), \qquad (1.78)$ $(A \Rightarrow C) \land (B \Rightarrow C) \implies (A \Rightarrow C) \land (A \Rightarrow C) \land$

els durch Widerspruch: $(A \Rightarrow C) \land (B \Rightarrow C) \iff (A \lor B \Rightarrow C).$ (1.79) $(\overline{A} \Rightarrow B \land \overline{B}) \implies A.$ (1.71) Vallet \(\begin{align*} A \rightarrow \ B \rightarrow \

 $(A \Rightarrow B \land B) \Longrightarrow A$. Vollständige Fallunterscheidung, allgemein: Zerlegung einer Äquivalenz: $\forall k [A, \rightarrow C] \Longrightarrow (\bigcirc^n A, \rightarrow C)$

egung einer Aquivalenz: $\forall k[A_k \Rightarrow C] \implies (\bigoplus_{k=1}^n A_k \Rightarrow C), \qquad (1.80)$ $(A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A). \qquad (1.72)$ $\forall k[A_k \Rightarrow C] \iff (\exists k[A_k] \Rightarrow C). \qquad (1.81)$

Kettenschluss:

 $(A \Rightarrow B) \land (B \Rightarrow C) \implies (A \Rightarrow C).$ (1.73)

1.4.2 Prädikatenlogik

1.4.2.1 Rechenregeln

Verneinung (De Morgansche Regeln):

$$\overline{\forall x[P(x)]} \iff \exists x[\overline{P(x)}],$$
 (1.82)

$$\overline{\exists x [P(x)]} \iff \forall x [\overline{P(x)}].$$

Verallgemeinerte Distributivgesetze:

$$P \lor \forall x[Q(x)] \iff \forall x[P \lor Q(x)],$$
 (1.84)

$$P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$$

Verallgemeinerte Idempotenzgesetze:

$$\exists x \in M [P] \iff (M \neq \{\}) \land P$$
$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 0 & \text{wenn } M = \{\}. \end{cases}$$

$$\forall x{\in}M \ [P] \iff (M = \{\}) \vee P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 1 & \text{wenn } M = \{\}. \end{cases}$$

Äquivalenzen:

$$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)],$$

$$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)],$$

$$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)],$$

$$\exists x [P(x) \lor Q(x)] \iff \exists x [P(x)] \lor \exists x [Q(x)],$$

$$\exists x [T(x) \lor Q(x)] \iff \exists x [T(x)] \lor \exists x [Q(x)]$$
$$\forall x [P(x) \Rightarrow Q] \iff \exists x [P(x)] \Rightarrow Q,$$

$$\forall m[D \to O(m)] \longleftrightarrow D \to \forall m[O(m)]$$

$$\forall x[P\Rightarrow Q(x)]\iff P\Rightarrow \forall x[Q(x)],$$

$$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$$
 (1.94)

Implikationen:

$$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)], \tag{1.95}$$

$$\forall x [P(x)] \lor \forall x [Q(x)] \implies \forall x [P(x) \lor Q(x)], \tag{1.96}$$

$$\exists x [P(x) \land Q(x)] \implies \exists x [P(x)] \land \exists x [Q(x)], \tag{1.97}$$

$$\forall x[P(x) \Rightarrow Q(x)] \implies (\forall x[P(x)] \Rightarrow \forall x[Q(x)]), \quad (1.98)$$

$$\forall x [P(x) \Leftrightarrow Q(x)] \implies (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]).$$
 (1.99)

1.4.2.2 Endliche Mengen

Sei $M = \{x_1, \dots, x_n\}$. Es gilt:

$$\forall x \in M [P(x)] \iff P(x_1) \land \dots \land P(x_n), \quad (1.100)$$

$$\exists x \in M [P(x)] \iff P(x_1) \vee \ldots \vee P(x_n). \tag{1.101}$$

1.4.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
 (1.102)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \qquad (1.103)$$

$$\forall x \in M \setminus N [P(x)] \iff \forall x [x \notin N \Rightarrow P(x)]. \quad (1.104)$$

1.4.2.4

Quantifizierung über Produktmengen (1.86)

$$\forall (x,y) [P(x,y)] \iff \forall x \forall y [P(x,y)], \tag{1.105}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)]. \tag{1.106}$$

(1.87)Analog gilt

$$\forall (x, y, z) \iff \forall x \forall y \forall z, \tag{1.107}$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z \tag{1.108}$$

(1.88)usw.

(1.92)

(1.93)

(1.83)

(1.85)

- 1.4.2.5 (1.89)Alternative Darstellung
- (1.90)Sei $P: G \to \{0,1\}$ und $M \subseteq G$. Mit P(M) ist die Bild-
- menge von P bezüglich M gemeint. Es gilt (1.91)

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$(1.109)$$

$$\iff M \subseteq \{x \in G \mid P(x)\} \tag{1.109}$$

und

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M)$$

$$\iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
(1.110)

1.4.2.6 **Eindeutigkeit**

Quantor für eindeutige Existenz:

$$\exists !x [P(x)]$$

$$:\iff \exists x \left[P(x) \land \forall y \left[P(y) \Rightarrow x = y \right] \right]$$

$$\iff \exists x \left[P(x) \right] \land \forall x \forall y \left[P(x) \land P(y) \Rightarrow x = y \right].$$
(1.111)

1.5 Mengenlehre

1.5.1 Definitionen

Aufzählende Notation:

$$a \in \{x_1, \dots, x_n\} : \Leftrightarrow a = x_1 \vee \dots \vee a = x_n.$$
 (1.112)

Beschreibende Notation:

$$a \in \{x \mid P(x)\} :\iff P(a), \tag{1.113}$$

$${x \in M \mid P(x)} := {x \mid x \in M \land P(x)},$$
 (1.114)

$$\{f(x) \mid P(x)\} := \{y \mid y = f(x) \land P(x)\}.$$
 (1.115)

Teilmengenrelation:

$$A \subseteq B :\iff \forall x [x \in A \implies x \in B].$$
 (1.116)

Gleichheit:

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.117}$$

Vereinigungsmenge:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}. \tag{1.118}$$

Schnittmenge:

$$A \cap B := \{ x \mid x \in A \land x \in B \}. \tag{1.119}$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.120}$$

Symmetrische Differenz:

$$A \triangle B := \{ x \mid x \in A \oplus x \in B \}. \tag{1.121}$$

Komplementärmenge:

$$A^{\mathsf{C}} := G \setminus A.$$
 (G: Grundmenge) (1.122)

Vereinigung über indizierte Mengen:

$$\bigcup_{i \in I} A_i := \{ x \mid \exists i \in I [x \in A_i] \}. \tag{1.123}$$

Schnitt über indizierte Mengen:

$$\bigcap_{i \in I} A_i := \{ x \mid \forall i \in I [x \in A_i] \}. \tag{1.124}$$

1.5.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.125}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.126}$$

1.5.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.127}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.128)

Kontraposition:

$$A \subseteq B = B^{\mathsf{C}} \subseteq A^{\mathsf{C}}.\tag{1.129}$$

1.5.4 Natürliche Zahlen

1.5.4.1 Von-Neumann-Modell

Mengentheoretisches Modell der natürlichen Zahlen:

$$0 := \{\}, \quad 1 := \{0\}, \quad 2 := \{0, 1\},$$

 $3 := \{0, 1, 2\}, \quad \text{usw.}$ (1.130)

9

Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.131}$$

1.5.4.2 Vollständige Induktion

Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\implies \forall n \ge n_0 [A(n)].$$
(1.132)

Die Aussage $A(n_0)$ ist der *Induktionsanfang*.

Die Implikation

$$A(n) \Rightarrow A(n+1) \tag{1.133}$$

heißt Induktionsschritt. Beim Induktionsschritt muss A(n+1) gezeigt werden, wobei A(n) als gültig vorausgesetzt werden darf.

Tabelle 1.3: Boolesche Algebra

Vereinigung	Schnitt	
$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup \check{G} = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Kommutativgesetze
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	Assoziativgesetze
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgansche Regeln
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Absorptionsgesetze
α α 1		

G: Grundmenge

1.5.5 ZFC-Axiome

Axiom der Bestimmtheit:

$$\forall A \forall B \, [A=B \iff \forall x \, [x \in A \Leftrightarrow x \in B]]. \quad (1.134)$$

Axiom der leeren Menge:

$$\exists M \forall x \, [x \notin M]. \tag{1.135}$$

Axiom der Paarung:

$$\forall x \forall y \exists M \forall a [a \in M \iff x = a \lor y = a]. \tag{1.136}$$

Axiom der Vereinigung:

$$\forall S \exists M \forall x [x \in M \iff \exists A \in S [x \in A]]. \tag{1.137}$$

Axiom der Aussonderung:

$$\forall A \exists M \forall x [x \in M \iff x \in A \land \varphi(x)]. \tag{1.138}$$

Axiom des Unendlichen:

$$\exists M \left[\{ \} \in M \land \forall x \in M \left[x \cup \{x\} \in M \right] \right]. \tag{1.139}$$

Axiom der Potenzmenge:

$$\forall A \exists M \forall T [T \in M \iff T \subseteq A]. \tag{1.140}$$

Axiom der Ersetzung:

$$\forall a \in A \exists^{=1} b \left[\varphi(a, b) \right]$$

$$\implies \exists B \forall b \left[b \in B \iff \exists a \in A \left[\varphi(a, b) \right] \right].$$

$$\tag{1.141}$$

Axiom der Fundierung:

$$\forall A [A \neq \{\} \implies \exists x \in A [x \cap A = \{\}]]. \tag{1.142}$$

Auswahlaxiom:

$$\forall x, y \in A [x \neq y \implies x \cap y = \{\}]$$

$$\land \forall x \in A [x \neq \{\}]$$

$$\implies \exists M \ \forall x \in A \ \exists^{=1} u \in x [u \in M].$$
(1.143)

1.5.6 Kardinalität

Definition. Zwei Mengen M,N heißen gleichmächtig, notiert als |M|=|N|, wenn es eine bijektive Abbildung $f\colon M\to N$ gibt.

Eine Menge M heißt weniger mächtig oder gleichmächtig, notiert als $|M| \leq |N|$, wenn es eine injektive Abbildung $f: M \to N$ gibt. Äquivalent dazu ist, dass es eine surjektive Abbildung $g: N \to M$ gibt.

Eine Menge heißt abzählbar unendlich, wenn sie gleichmächtig zu den natürlichen Zahlen ist.

Gleichmächtigkeit ist eine Äquivalenzrelation.

Definition. Die Äquivalenzklassen

$$|M| := \{ N \mid |M| = |N| \} \tag{1.144}$$

heißen Kardinalzahlen.

Satz von Cantor-Bernstein.

Aus $|M| \leq |N|$ und $|N| \leq |M|$ folgt |M| = |N|.

1.5.6.1 Potenzmengen

Satz von Cantor. Für jede Menge gilt $|M| < |2^M|$. Ist M endlich, dann gilt $|M| = 2^{|M|}$.

1.6 Funktionen

1.6.1 Surjektionen

Definition. Eine Funktion $f: A \to B$ heißt surjektiv, wenn f(A) = B ist. Damit ist gemeint, dass jedes Element der Zielmenge wenigstens einmal der Funktionswert von einem Element der Definitionsmenge ist.

1.6.2 Injektionen

Definition. Eine Funktion $f: A \to B$ heißt *injektiv*, wenn

$$\forall x_1, x_2 \in A [f(x_1) = f(x_2) \implies x_1 = x_2] \quad (1.145)$$

gilt.

1.6.3 Bijektionen

Definition. Eine Funktion $f: A \to B$ heißt *bijektiv*, wenn sie injektiv und surjektiv ist.

Eine Funktion $f\colon A\to B$ ist genau dann bijektiv, wenn es ein qmit

$$g \circ f = \mathrm{id}_A \quad \text{und} \quad f \circ g = \mathrm{id}_B$$
 (1.146)

gibt. Wenn f bijektiv ist, so gibt es g genau einmal und g wird die Umkehrfunktion oder Inverse von f genannt und als f^{-1} notiert.

1.6. FUNKTIONEN 11

Komposition 1.6.4

Definition. Für zwei Funktionen $f \colon A \to B$ und $g \colon B \to B$ C ist die Komposition (g nach f) durch

$$g \circ f \colon A \to C, \quad (g \circ f)(x) := g(f(x))$$
 (1.147)

definiert.

Für die Komposition gilt das Assozativgesetz:

$$(f \circ g) \circ h = f \circ (g \circ h). \tag{1.148}$$

Die Komposition von Injektionen ist eine Injektion. Die Komposition von Surjektionen ist eine Surjektion. Die Komposition von Bijektionen ist eine Bijektion. Sind f, g Bijektionen, so gilt

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}. \tag{1.149}$$

Ist $g \circ f$ injektiv, so ist f injektiv.

Ist $g \circ f$ surjektiv, so ist g surjektiv. Ist $g \circ f$ bijektiv, so ist f injektiv und g surjektiv.

Definition. Für eine Funktion $\varphi \colon A \to A$ wird

$$\varphi^0 := \mathrm{id}_A, \quad \varphi^{n+1} := \varphi^n \circ \varphi$$
(1.150)

Iteration von φ genannt.

1.6.5 Einschränkung

Definition. Sei $f: A \to B$ und $M \subseteq A$. Die Funktion g(x) = f(x) mit $g: M \to B$ wird Einschränkung von fgenannt und mit $f|_M$ notiert.

Sei $f: A \to B$ und $M \subseteq A$. Mit der Inklusionsabbildung $i(x) := x \text{ mit } i : M \to A \text{ gilt:}$

$$f|_{M} = f \circ i. \tag{1.151}$$

Es gilt

$$g \circ (f|_{M}) = (g \circ f)|_{M}.$$
 (1.152)

1.6.6 Bild

Definition. Ist $f: A \to B$ und $M \subseteq A$, so wird

$$f(M) := \{ f(x) \mid x \in M \} \tag{1.153}$$

das Bild von M unter f genannt.

Es gilt

$$f(M \cup N) = f(M) \cup f(N), \tag{1.154}$$

$$f(M \cap N) = f(M) \cap f(N), \tag{1.155}$$

$$f\left(\bigcup_{i\in I} M_i\right) = \bigcup_{i\in I} f(M_i),\tag{1.156}$$

$$I \neq \emptyset \implies f\left(\bigcap_{i \in I} M_i\right) = \bigcap_{i \in I} f(M_i),$$
 (1.157)

$$M \subseteq N \implies f(M) \subseteq f(N),$$
 (1.158)

$$f(\emptyset) = \emptyset, \tag{1.159}$$

$$(g \circ f)(M) = g(f(M)).$$
 (1.160)

Urbild 1.6.7

Definition. Ist $f: A \to B$, so wird

$$f^{-1}(M) := \{ x \in A \mid f(x) \in M \}. \tag{1.161}$$

das Urbild von M unter f genannt.

Es gilt

$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N), \tag{1.162}$$

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N), \tag{1.163}$$

$$f^{-1}\Big(\bigcup_{i\in I} M_i\Big) = \bigcup_{i\in I} f^{-1}(M_i),$$
 (1.164)

$$I \neq \emptyset \implies f^{-1}\Big(\bigcap_{i \in I} M_i\Big) = \bigcap_{i \in I} f^{-1}(M_i), \quad (1.165)$$

$$M \subseteq N \implies f^{-1}(M) \subseteq f^{-1}(N), \tag{1.166}$$

$$f^{-1}(\emptyset) = \emptyset, \tag{1.167}$$

$$f^{-1}(B) = A, (1.168)$$

$$f^{-1}(M \setminus N) = f^{-1}(M) \setminus f^{-1}(N),$$
 (1.169)

$$f^{-1}(B \setminus M) = B \setminus f^{-1}(M), \tag{1.170}$$

$$(g \circ f)^{-1}(M) = f^{-1}(g^{-1}(M)),$$
 (1.171)

$$(f|_{M})^{-1}(N) = M \cap f^{-1}(N). \tag{1.172}$$

1.7 Mathematische Strukturen

Axiome

E: Abgeschlossenheit.

Die Verknüpfung führt nicht aus der Menge heraus.

A: Assoziativgesetz.

 $\forall a, b, c [(a * b) * c = a * (b * c)].$

N: Existenz des neutralen Elements.

 $\exists e \forall a [e * a = a * e = a].$

I: Existenz der inversen Elemente.

 $\forall a \exists b \lceil a * b = b * a = e \rceil.$

K: Kommutativgesetz.

 $\forall a, b [a * b = b * a].$

I*: Existenz der multiplikativ inversen Elemente. $\forall a \neq 0 \ \exists b [a * b = b * a = 1].$

DI: Linksdistributivgestz.

 $\forall a, x, y [a * (x + y)] = a * x + a * y].$

Dr: Rechtsdistributivgesetz.

 $\forall a, x, y [(x+y) * a = x * a + y * a].$

D: Distributivgesetze.

Dl und Dr.

T: Nullteilerfreiheit.

 $\forall a, b [a \neq 0 \land b \neq 0 \implies a * b \neq 0]$

bzw. die Kontraposition

 $\forall a, b [a * b = 0 \implies a = 0 \lor b = 0].$

U: Unterscheibarkeit von Null- und Einselement. Die neutralen Elemente bezüglich Addition und Multiplikation sind unterschiedlich.

Strukturen

Strukturen mit einer inneren Verknüpfung:

EAN Halbgruppe
EAN Monoid
Gruppe

EANIK | abelsche Gruppe

Strukturen mit zwei inneren Verknüpfungen:

EANIK, EA, D | Ring

EANIK, EAK, D...... kommutativer Ring unitärer Ring unitärer Ring Integritätsring Körper

Axiome für Relationen

R: Reflexivität.

 $\forall a (aRa).$

S: Symmetrie.

 $\forall a, b (aRb \iff bRa).$

T: Transitivität.

 $\forall a, b, c (aRb \land bRc \implies aRc).$

An: Antisymmetrie.

 $\forall a, b \ (aRb \land bRa \implies a = b).$

L: Linearität.

 $\forall a, b (aRb \vee bRa).$

Ri: Irrreflexivität.

 $\forall a (\neg aRa).$

A: Asymmetrie.

 $\forall a, b (aRb \implies \neg bRa).$

Min: Existenz der Minimalelemente.

 $\forall T \subseteq M, T \neq \emptyset \ \exists x \in T \ \forall y \in T \setminus \{x\} \ (x < y).$

Relationen

RANT.... Äquivalenzrelation Halbordnung Totalordnung

RiAT strenge Halbordnung strenge Totalordnung

RiATLMin | Wohlordnung

2 Funktionen

2.1 Elementare Funktionen

2.1.1 Exponentialfunktion

Definition. $\exp \colon \mathbb{C} \to \mathbb{C} \text{ mit }$

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 (2.1)

Die Einschränkung von exp auf \mathbb{R} ist injektiv und hat die Bildmenge $\{x \in \mathbb{R} \mid x > 0\}$.

Für $x, y \in \mathbb{C}$ gilt:

$$\exp(x+y) = \exp(x)\exp(y), \tag{2.2}$$

$$\exp(x - y) = \frac{\exp(x)}{\exp(y)},\tag{2.3}$$

$$\exp(-x) = \frac{1}{\exp(x)}. (2.4)$$

Eulersche Formel. Für alle $x \in \mathbb{C}$ gilt:

$$e^{ix} = \cos x + i \sin x.$$

2.1.2 Winkelfunktionen

Definition. *Kosinus*: $\mathbb{C} \to \mathbb{C}$,

$$\cos(x) := \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
 (2.6)

Sinus: $\mathbb{C} \to \mathbb{C}$.

$$\sin(x) := \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \quad (2.7)$$

Tangens: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\tan(x) := \frac{\sin(x)}{\cos(x)}.\tag{2.8}$$

Kotangens: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\cot(x) := \frac{\cos(x)}{\sin(x)}. (2.9)$$

Sekans: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\sec(x) := \frac{1}{\cos(x)}.\tag{2.10}$$

Kosekans: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\csc(x) := \frac{1}{\sin(x)}.\tag{2.11}$$

Darstellung durch die Exponentialfunktion: Für $x \in \mathbb{C}$ gilt:

$$\cos x = \text{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2},$$

$$\sin x = \operatorname{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}.$$

2.1.2.1 Symmetrie und Periodizität

Für $x \in \mathbb{C}$ gilt:

$$\sin(-x) = -\sin x$$
, (Punktsymmetrie) (2.14)

$$\cos(-x) = \cos x$$
, (Achsensymmetrie) (2.15)

$$\sin(x + 2\pi) = \sin x,\tag{2.16}$$

$$\cos(x + 2\pi) = \cos x,\tag{2.17}$$

$$\sin(x+\pi) = -\sin x,\tag{2.18}$$

$$\cos(x+\pi) = -\cos x,\tag{2.19}$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x = -\sin\left(x - \frac{\pi}{2}\right),\tag{2.20}$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x = -\cos\left(x - \frac{\pi}{2}\right). \tag{2.21}$$

2.1.2.2 Additionstheoreme

Für $x, y \in \mathbb{C}$ gilt:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y, \tag{2.22}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y, \tag{2.23}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \qquad (2.24)$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{2.25}$$

2.1.2.3 Trigonometrischer Pythagoras

Für $x \in \mathbb{C}$ gilt:

(2.5)

$$\sin^2 x + \cos^2 x = 1. \tag{2.26}$$

2.1.2.4 Produkte

Für $x, y \in \mathbb{C}$ gilt:

$$2\sin x \sin y = \cos(x - y) - \cos(x + y), \tag{2.27}$$

$$2\cos x \cos y = \cos(x - y) + \cos(x + y),$$
 (2.28)

$$2\sin x \cos y = \sin(x - y) + \sin(x + y). \tag{2.29}$$

2.1.2.5 Summen und Differenzen

Für $x, y \in \mathbb{C}$ gilt:

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2},$$
 (2.30)

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2},$$
 (2.31)

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2},\qquad(2.32)$$

$$\cos x - \cos y = 2\sin\frac{x+y}{2}\sin\frac{y-x}{2}.$$
 (2.33)

2.1.2.6 Winkelvielfache

Für $x \in \mathbb{C}$ gilt:

$$\sin(2x) = 2\sin x \cos x,\tag{2.34}$$

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{2.35}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x,\tag{2.36}$$

$$\cos(3x) = 4\cos^3 x - 3\cos x. \tag{2.37}$$

2.2 Zahlentheoretische Funktionen

2.2.1 Eulersche Phi-Funktion

Definition. Eulersche Phi-Funktion:

$$(2.13) \qquad \varphi(n) := |\{a \in N \mid 1 \le a \le n \land \operatorname{ggT}(a, n) = 1\}|. \quad (2.38)$$

(2.12)

Für zwei teilerfremde Zahlen m, n gilt:

$$\varphi(mn) = \varphi(m)\,\varphi(n). \tag{2.39}$$

Für jede Primzahlpotenz p^k mit $k\in\mathbb{Z}$ und $k\geq 1$ gilt:

$$\varphi(p^k) = p^k - p^{k-1}. (2.40)$$

Besitzt die Zahl \boldsymbol{n} die Primfaktorzerlegung

$$n = \prod_{p|n} p^{k_p},\tag{2.41}$$

so gilt:

$$\varphi(n) = \prod_{p|n} (p^{k_p} - p^{k_p - 1}) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$
(2.42)

2.2.2 Carmichael-Funktion

Definition. Carmichael-Funktion:

$$\lambda(n) := \min\{m \mid \forall a [ggT(a, n) = 1 \\ \implies a^m \equiv 1 \mod n] \}.$$
 (2.43)

3 Analysis

3.1 Ungleichungen

3.1.1 Dreiecksungleichung

In einem metrischen Raum (X,d) gilt für $x,y,z\in X$ die allgemeine Dreiecksungleichung:

$$d(x,z) \le d(x,y) + d(y,z),\tag{3.1}$$

$$|d(x,y) - d(y,z)| \le d(x,z).$$
 (3.2)

Ist X ein normierter Raum, so wird durch d(x,y) := ||x-y|| eine Metrik induziert. Somit gilt

$$||x - z|| \le ||x - y|| + ||y - z||, \tag{3.3}$$

$$|||x - y|| - ||y - z||| \le ||x - z||. \tag{3.4}$$

Wird nun $x := x_1, z := -x_2$ und y := 0 gesetzt, so ergibt sich die Dreiecksungleichung für normierte Räume:

$$||x_1 + x_2|| \le ||x_1|| + ||x_2||, \tag{3.5}$$

$$|||x_1|| - ||x_2||| \le ||x_1 - x_2||. \tag{3.6}$$

Normen sind z. B. $\|x\|=|x|$ für $x\in\mathbb{R}$ und $\|z\|=|z|$ für $z\in\mathbb{C}.$ Allgemeiner

$$||v||^2 = \sum_{k=1}^n v_k^2 \tag{3.7}$$

für einen Koordinatenvektor $v \in \mathbb{R}^n$, $v = (v_k)_{k=1}^n$. Ist $\langle v, w \rangle$ ein Skalarprodukt, so wird durch

$$||v|| := \sqrt{\langle v, v \rangle} \tag{3.8}$$

eine Norm induziert.

3.1.2 Bernoullische Ungleichung

Für $x \in \mathbb{R}$, $x \ge -1$ und $n \in \mathbb{Z}$, $n \ge 1$ gilt

$$(1+x)^n \ge 1 + nx. \tag{3.9}$$

Die Ungleichung wird nur für n=1 oder x=0 zu einer Gleichung.

3.2 Konvergenz

3.2.1 Umgebungen

Sei (X,T) ein topologischer Raum und $x\in X.$

 $\textbf{Definition.}\ \ Umgebungs filter:$

$$\mathfrak{U}(x):=\{U\subseteq X\mid x\in O\wedge O\in T\wedge O\subseteq U\}.\eqno(3.10)$$

Ein $U \in \mathfrak{U}(x)$ wird Umgebung von x genannt.

Definition. Eine Menge $\mathfrak{B}(x) \subseteq \mathfrak{U}(x)$ heißt *Umgebungsbasis* gdw.

$$\forall U \in \mathfrak{U}(x) \,\exists B \in \mathfrak{B}(x) \colon B \subseteq U. \tag{3.11}$$

Sei (X, d) ein metrischer Raum und $x \in X$.

Definition. ε - Umgebung:

$$U_{\varepsilon}(x) := \{ y \in X \mid d(x, y) < \varepsilon \}. \tag{3.12}$$

Punktierte ε -Umgebung:

$$\dot{U}_{\varepsilon}(x) := U_{\varepsilon}(x) \setminus \{x\}. \tag{3.13}$$

Bei

$$\mathfrak{B}(x) = \{ U_{\varepsilon}(x) \mid \varepsilon > 0 \} \tag{3.14}$$

handelt es sich um eine Umgebungsbasis.

Für einen normierten Raum ist durch d(x,y) := ||x-y|| eine Metrik gegeben. Speziell für $X = \mathbb{R}$ oder $X = \mathbb{C}$ wird fast immer d(x,y) := |x-y| verwendet.

3.2.2 Konvergente Folgen

Definition. Eine Folge $(a_n): \mathbb{N} \to X$ heißt konvergent gegen g, wenn

$$\forall U \in \mathfrak{B}(g) \,\exists n_0 \,\forall n > n_0 \colon a_n \in U. \tag{3.15}$$

Man schreibt dann $\lim_{n\to\infty} a_n = g$ und bezeichnet g als Grenzwert.

Für eine Folge $(a_n): \mathbb{N} \to \mathbb{R}$ wird (3.15) zu:

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \colon \ |a_n - g| < \varepsilon. \tag{3.16}$$

Sandwichsatz. Seien (a_n) und (b_n) reelle Folgen mit $a_n \to g$ und $b_n \to g$. Gilt $a_n \le c_n \le b_n$ für fast alle n, so konvergiert (c_n) auch gegen g.

3.2.3 Häufungspunkte

Definition. Eine Punkt h heißt $H\ddot{a}ufungspunkt$ einer Folge (a_n) , wenn

$$\forall U \in \mathfrak{B}(h) \ \forall n_0 \ \exists n > n_0 \colon \ a_n \in U. \tag{3.17}$$

Besitzt eine Folge (a_n) einen Grenzwert g, so ist g auch ein Häufungspunkt von (a_n) .

3.2.4 Cauchy-Folge

Sei (X, d) ein metrischer Raum.

Definition. Eine Folge (a_n) heißt Cauchy-Folge gdw.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n > N \colon \ d(a_m, a_n) < \varepsilon.$$
 (3.18)

Ein metrischer Raum (X,d) heißt vollständig, wenn jede Cauchy-Folge von Punkten aus X einen Grenzwert g mit $g \in X$ besitzt. Ein vollständiger normierter Raum heißt Banachraum.

3.3 Reihen

Definition. Sei (a_n) eine Folge. Die Folge (s_n) von Partialsummen

$$s_n = \sum_{k=0}^{n} a_k \tag{3.19}$$

wird Reihe genannt. Der Grenzwert

$$\sum_{k=0}^{\infty} a_k := \lim_{n \to \infty} \sum_{k=0}^{n} a_k \tag{3.20}$$

wird als Summe der Reihe bezeichnet.

Jede beliebige Folge (a_n) lässt sich durch

$$b_0 := a_0, \quad b_k := a_k - a_{k-1}$$
 (3.21)

als Reihe

$$a_n = \sum_{k=0}^{n} b_k = a_0 + \sum_{k=1}^{n} (a_k - a_{k-1})$$
 (3.22)

darstellen. Die Summe auf der rechten Seite von (3.22) wird als *Teleskopsumme* bezeichnet.

3.3.1 Absolute Konvergenz

Sei X ein normierter Raum.

Definition. Eine Reihe $s_n = \sum_{k=0}^n a_k$ mit $a_k \in X$ heißt absolut konvergent, wenn

$$\sum_{k=0}^{\infty} \|a_k\| < \infty. \tag{3.23}$$

Es gilt: X ist ein Banachraum gdw. jede absolut konvergente Reihe konvergent ist.

Ist X ein Banachraum und $s_n = \sum_{k=0}^n a_k$ eine absolut konvergente Reihe mit $a_k \in X$, so gilt:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} a_{\sigma(k)}, \quad \sigma \in \text{Sym}(\mathbb{N}_0).$$
 (3.24)

Eine konvergente Reihe, für die (3.24) gilt, heißt unbedingt konvergent.

3.3.2 Konvergenzkriterien

3.3.2.1 Quotientenkriterium

Gegeben ist eine unendliche Reihe $s_n = \sum_{k=0}^n a_k$, wobei die a_k reelle oder komplexe Zahlen sind und $a_k \neq 0$ ab einem gewissen k ist. Gilt

$$\exists q < 1 \ \exists k_0 \ \forall k > k_0 : \left| \frac{a_{k+1}}{a_k} \right| \le q, \tag{3.25}$$

so ist (s_n) absolut konvergent. S. (3.23). Gilt jedoch

$$\exists k_0 \ \forall k > k_0 \colon \left| \frac{a_{k+1}}{a_k} \right| \ge 1, \tag{3.26}$$

so ist (s_n) divergent.

Existiert der Grenzwert

$$g = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|,\tag{3.27}$$

so gilt:

$$g < 1 \implies (s_n)$$
 ist absolut konvergent, (3.28)

$$g > 1 \implies (s_n)$$
 ist divergent, (3.29)

$$g = 1 \implies \text{keine Aussage.}$$
 (3.30)

3.3.3 Cauchy-Produkt

Sei

$$A_m := \sum_{n=0}^m a_n, \quad A := \lim_{m \to \infty} A_m,$$
 (3.31)

$$B_m := \sum_{n=0}^m b_n, \quad B := \lim_{m \to \infty} B_m,$$
 (3.32)

$$C_m := \sum_{n=0}^{m} c_n, \quad C := \lim_{m \to \infty} C_m.$$
 (3.33)

Definition. Das Cauchy-Produkt von zwei Reihen (A_m) und (B_m) ist definiert durch

$$C_m := \sum_{n=0}^{m} c_n \quad \text{mit } c_n := \sum_{k=0}^{n} a_k b_{n-k}.$$
 (3.34)

Das Cauchy-Produkt von zwei reellen oder komplexen absolut konvergenten Reihen ist absolut konvergent und es gilt

$$C = AB. (3.35)$$

Satz von Mertens. Das Cauchy-Produkt von reellen oder komplexen konvergenten Reihen, eine davon absolut konvergent, ist konvergent und es gilt (3.35).

3.4 Reelle Funktionen

Definition. Eine Funktion $f : D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt reelle Funktion.

3.4.1 Monotone Funktionen

Jede streng monotone reelle Funktion ist injektiv.

3.4.2 Grenzwert einer Funktion

Ist $f: I \to \mathbb{R}$ eine reelle Funktion, I eine offenes Intervall und $x_0 \in I$, so gilt:

$$g = \lim_{x \to x_0} f(x)$$

$$\iff g = \lim_{x \uparrow x_0} f(x) \land g = \lim_{x \downarrow x_0} f(x).$$
(3.36)

3.4.3 Stetige Funktionen

Sei $f: I \to \mathbb{R}$ eine reelle Funktion und I ein offenes Intervall. Die Funktion f ist stetig bei $x_0 \in I$ gdw.

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{3.37}$$

Sind f, g stetige Funktion, so ist auch $g \circ f$ stetig.

Zwischenwertsatz. Sei $f: [a,b] \to \mathbb{R}$ eine stetige Funktion und sei a < b. Bei f(a) < f(b) gilt:

$$\forall y \in [f(a), f(b)] \ \exists x \in [a, b] : y = f(x).$$
 (3.38)

Bei f(a) > f(b) gilt:

$$\forall y \in [f(b), f(a)] \ \exists x \in [a, b] : y = f(x).$$
 (3.39)

3.5 Differential rechnung

3.5.1 Differential quotient

Definition. Sei $U \subseteq \mathbb{R}$ ein offenes Intervall und sei $f: U \to \mathbb{R}$. Die Funktion f heißt differenzierbar an der Stelle $x_0 \in U$, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.40)

existiert. Dieser Grenzwert heißt Differential quotient oder Ableitung von f an der Stelle x_0 . Notation:

$$f'(x_0), \qquad (Df)(x_0), \qquad \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}.$$
 (3.41)

3.5.2 Ableitungsregeln

Sind f, g, h an der Stelle x differenzierbare Funktionen, ist $h(x) \neq 0$ und ist a eine reelle Zahl, so gilt

$$(af)'(x) = af'(x), \tag{3.42}$$

$$(f+q)'(x) = f'(x) + q'(x), (3.43)$$

$$(f-g)'(x) = f'(x) - g'(x), (3.44)$$

$$(fg)'(x) = f'(x)g(x) + g'(x)f(x), (3.45)$$

$$\left(\frac{f}{h}\right)'(x) = \frac{f'(x)h(x) - h'(x)f(x)}{h(x)^2}.$$
 (3.46)

3.5.2.1 Kettenregel

Ist g differenzierbar an der Stelle x_0 und f differenzierbar an der Stelle $g(x_0)$, so ist $f \circ g$ differenzierbar an der Stelle x_0 und es gilt

$$(f \circ g)'(x_0) = (f' \circ g)(x_0) g'(x_0). \tag{3.47}$$

3.5.3 Tangente und Normale

Funktionsgleichung der Tangente an den Graphen von f an der Stelle x_0 :

$$T(x) = f(x_0) + f'(x_0)(x - x_0). (3.48)$$

Funktionsgleichung der Normale an den Graphen von f an der Stelle x_0 :

$$N(x) = f(x_0) + \frac{1}{f'(x_0)}(x - x_0). \tag{3.49}$$

3.5.3.1 Taylorreihe

Sei f eine an der Stelle a unendlich oft differenzierbare reelle Funktion.

Definition. Taylorreihe von f an der Stelle a:

$$f[a](x) := (\exp((x-a)D)f)(a)$$

$$= \sum_{k=0}^{\infty} \frac{(D^k f)(a)}{k!} \cdot (x - a)^k$$
 (3.50)

$$= f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2} \cdot (x - a)^{2} + \dots$$

mit $f^{(k)}(a) = (D^k f)(a)$.

Für Polynomfunktionen und für exp, sin, cos gilt

$$\forall x \in \mathbb{R} \colon f[a](x) = f(x). \tag{3.51}$$

3.6 Integralrechnung

3.6.1 Regelfunktionen

Ist T eine Treppenfunktion mit $T(x) := t_k$ für $x \in (x_k, x_{k+1})$, so gilt:

$$\int_{a}^{b} T(x) dx = \sum_{k=0}^{n-1} (x_{k+1} - x_k) t_k.$$
 (3.52)

Definition. Eine Funktion $f:[a,b] \to \mathbb{R}$ heißt Regelfunktion, wenn es eine Folge von Treppenfunktionen gibt, die gleichmäßig gegen f konvergiert.

Ist (T_n) eine gleichmäßig gegen die Regelfunktion f konvergente Folge von Treppenfunktionen, so gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} T_n(x) dx.$$
 (3.53)

Jede stückweise stetige Funktion ist eine Regelfunktion.

3.6.2 Stetige Funktionen

Sei $f: [a, b] \to \mathbb{R}$ eine stetige, monoton steigende Funktion mit $f(x) \ge 0$ auf dem gesamten Definitionsbereich.

Untersumme:

$$\underline{A}_n = \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \frac{b-a}{n} \tag{3.54}$$

Obersumme

$$\overline{A}_n = \sum_{k=1}^n f\left(a + k\frac{b-a}{n}\right) \frac{b-a}{n} \tag{3.55}$$

Es gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \underline{A}_{n} = \lim_{n \to \infty} \overline{A}_{n}.$$
 (3.56)

3.6.3 Hauptsatz

Sei I ein Intervall, offen, halboffen, geschlossen oder unendlich. Sei $f\colon I\to\mathbb{R}$ stetig.

Definition. *Integral funktion*:

$$F(x) := \int_{-\pi}^{x} f(x) \, \mathrm{d}x, \quad F \colon I \to \mathbb{R}. \tag{3.57}$$

Definition. Gilt F' = f, so wird F Stammfunktion von f genannt.

Satz. Die Integralfunktion ist differenzierbar und es gilt F' = f. Ist $f: I \to \mathbb{R}$ stetig und F eine Stammfunktion von f, so gilt

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
 (3.58)

für $a, b \in I$.

3.6.4 Integrationsregeln

3.6.4.1 Linearität

Für integrierbare Funktionen $f,g\colon [a,b]\to \mathbb{R}$ und eine Konstante $c\in \mathbb{R}$ gilt die Additivität:

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \quad (3.59)$$

und die Homogenität:

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx.$$
(3.60)

3.6.4.2 Substitutionsregel

Für $f \in C(I \to \mathbb{R})$ und $\varphi \in C^1([a, b] \to \mathbb{R})$ mit $\varphi([a, b]) \subseteq I$ gilt

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$
 (3.61)

3.6.4.3 Partielle Integration

Für $f, g \in C^1([a, b] \to \mathbb{R})$ gilt

$$\int_{a}^{b} f(x) g'(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx.$$
(3.62)

3.6.5 Integral bei Polstellen

Bei Polstellen im Integrationsintervall ist Vorsicht geboten. Man könnte z.B. auf die Idee kommen, dass einfach

$$\int_{-1}^{1} \frac{1}{x^3} \, \mathrm{d}x = \left[-\frac{1}{2x^2} \right]_{-1}^{1} = 0 \tag{3.63}$$

gerechnet werden kann. Die Funktion $f(x) := x^{-3}$ besitzt jedoch eine Polstelle bei x = 0, ist dort somit nicht definiert und die Lücke ist auch nicht stetig behebbar. Der Hauptsatz (3.58) setzt aber einen stetigen Integranden voraus.

Um solche Situationen angehen zu können, ist eine Erweiterung des Integralbegriffs notwendig.

Definition. Cauchy-Hauptwert (kurz CH, engl. PV für principial value) bei einer Definitionslücke x=c:

$$PV \int_{a}^{b} f(x) dx := \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right).$$
 (3.64)

Nun gilt:

$$PV \int_{-1}^{1} \frac{1}{x^3} \, \mathrm{d}x = 0. \tag{3.65}$$

Die Flächeninhalte auf beiden Seiten der Polstelle sind

von unterschiedlichem Vorzeichen und heben sich gegenseitig auf.

Eine alternative Erweiterung ist die Erweiterung des Integranden auf einen komplexen Definitionsbereich. Da die Funktion $f(z) := z^{-3}$ meromorph ist, lässt sich der Integrationsweg um die Polstelle herumführen und es gilt

$$\int_{-1}^{1} \frac{1}{z^3} \, \mathrm{d}z = 0. \tag{3.66}$$

Zu beachten ist aber, dass z.B.

$$\int_{-1}^{1} \frac{1}{z^2} \, \mathrm{d}z = -2 \tag{3.67}$$

ist, obwoh

$$PV \int_{-1}^{1} \frac{1}{x^2} \, \mathrm{d}x \tag{3.68}$$

nicht existiert.

Man beachte auch, dass in der komplexen Ebene der Umlaufsinn um die Polstelle unter Umständen eine Rolle spielt, denn die Wegunabhängigkeit des Integrals für einen holomorphen Integranden ist nur für einfach zusammenhängende Gebiete sichergestellt. Z.B. ist

$$\int_{-1}^{1} \frac{1}{z} \, \mathrm{d}z = -\pi \mathrm{i} \tag{3.69}$$

für den Integrationsweg oberhalb der Polstelle.

$$\int_{-1}^{1} \frac{1}{z} \, \mathrm{d}z = +\pi \mathrm{i} \tag{3.70}$$

für den Integrationsweg unterhalb der Polstelle und

$$PV \int_{-1}^{1} \frac{1}{x} \, \mathrm{d}x = 0. \tag{3.71}$$

Skalarfelder 3.7

Sei $x:=(x_k)_{k=1}^n$ und $a:=(a_k)_{k=1}^n$. Sei $f\colon G\to\mathbb{R}$ wobei $G\subseteq\mathbb{R}^n$ eine offene Menge ist.

Partielle Ableitungen

Definition. Die $partiellen \ Ableitungen \ von \ f \ an \ der \ Stelle$ $a \in G$ sind definiert durch

$$\frac{\partial f(x)}{\partial x_k} \bigg|_{x=a} := \frac{\mathrm{d}f(a_1, \dots, t, \dots, a_n)}{\mathrm{d}t} \bigg|_{t=a_k}$$

$$= \lim_{h \to 0} \frac{f(a_1, \dots, a_k + h, \dots, a_n) - f(a)}{h}.$$
(3.72)

Kurzschreibweisen:

$$(D_k f)(a), \quad (\partial_k f)(a).$$
 (3.73)

3.7.2 Gradient

Sei $(e_k)_{k=1}^n$ die kanonische Basis des \mathbb{R}^n .

Definition. Gradient an der Stelle a:

$$(\nabla f)(a) := \sum_{k=1}^{n} e_k(D_k f)(a) = ((D_1 f)(a), \dots, (D_n f)(a)).$$
(3.74)

Formale Schreibweise:

$$\nabla := \sum_{k=1}^{n} e_k D_k. \tag{3.75}$$

Ist $(\nabla f)(x)$ stetig bei x = a, so ist f bei a differenzierbar. kurz $D_v = \langle v, \nabla \rangle$.

3.7.2.1 **Tangentialraum**

Ist $f: G \to \mathbb{R}$ in einer Umgebung von $x_0 \in G$ differenzierbar, so existiert bei x_0 auf eindeutige Art ein Tangentialraum, der durch

$$T(x) = f(x_0) + \langle (\nabla f)(x_0), x - x_0 \rangle \tag{3.76}$$

beschrieben wird.

3.7.3 Richtungsableitung

Definition. Richtungsableitung an der Stelle a in Richtung v:

$$(D_v f)(a) := \frac{\mathrm{d}}{\mathrm{d}t} f(a+tv) \Big|_{t=0}$$

$$= \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h}.$$
(3.77)

Die partiellen Ableitungen sind die Richtungsableitungen bezüglich der Standardbasis (e_k) :

$$(D_{e_k}f)(a) = (D_kf)(a).$$
 (3.78)

Ist f an der Stelle a differenzierbar, so gilt:

$$(D_v f)(a) = \langle v, (\nabla f)(a) \rangle = \sum_{k=1}^n v_k(D_k f)(a). \quad (3.79)$$

Sind f, g an der Stelle a differenzierbar, so gilt dort:

$$D_v(f+q) = D_v f + D_v q, (3.80)$$

$$\forall r \in \mathbb{R} \colon D_v(rf) = rD_v f,\tag{3.81}$$

$$D_v(fg) = gD_v f + fD_v g, (3.82)$$

$$D_{v+w}f = D_v f + D_w f. (3.83)$$

Vektorfelder 3.8

Sei $f: G \to \mathbb{R}^m$ wobei $G \subseteq \mathbb{R}^n$ eine offene Menge ist.

Definition. Jacobi-Matrix an der Stelle a:

$$(J[f](a))_{ij} := (D_j f_i)(a). \tag{3.84}$$

Schreibweisen:

$$J[f](a) = (Df)(a) = (\nabla \otimes f)^{T}(a)$$
(3.85)

und

$$J[f](x) = \frac{\partial f(x)}{\partial x} = \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}.$$
 (3.86)

3.8.1 **Tangentialraum**

Ist $f: (G \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ bei $x_0 \in G$ differenzierbar, so gibt es dort einen Tangentialraum, der durch

$$T(x) = f(x_0) + (Df)(x_0)(x - x_0)$$
(3.87)

beschrieben wird.

Richtungsableitung

Definition. Richtungsableitung von f an der Stelle a:

$$(D_v f)(a) := \frac{\mathrm{d}}{\mathrm{d}t} f(a + tv) \Big|_{t=0}.$$
 (3.88)

Ist $f: (G \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ bei $a \in G$ differenzierbar, so gilt:

$$(D_v f)(a) = (\langle v, \nabla \rangle f)(a) = J[f](a) v, \tag{3.89}$$

Variationsrechnung 3.9

3.9.1 **Fundamentallemma**

Sei I := [a, b] kompakt und sei $g : I \to \mathbb{R}$ stetig. Wenn

$$\int_{a}^{b} g(x)h(x) \, \mathrm{d}x = 0 \tag{3.90}$$

für jede unendlich oft differenzierbare Funktion $h: I \to \mathbb{R}$ mit h(a) = h(b) = 0 gilt, so ist g(x) = 0 für alle x.

3.9.2 Euler-Lagrange-Gleichung

Sei I := [a, b] kompakt. Sei

$$F \colon I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \tag{3.91}$$

zweimal stetig differenzierbar. Gesucht ist eine zweimal stetig differenzierbare Funktion $f: I \to \mathbb{R}$ mit fixen Randwerten f(a) = A und f(b) = B, für die

$$J(f) := \int_{a}^{b} F(x, f(x), f'(x)) dx$$
 (3.92)

einen Extremwert annimmt.

Die Euler-Lagrange-Gleichung

$$\frac{\partial F(x, y, y')}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F(x, y, y')}{\partial y'} = 0$$
 (3.93)

mit y = f(x) und y' = f'(x) ist eine notwendige Bedingung dafür.

Fourier-Analysis 3.10

3.10.1 **Fourierreihen**

3.10.1.1 Fourier-Koeffizienten

Komplexe Fourier-Koeffizienten:

$$c_k[s] = \frac{1}{T} \int_{t_0}^{t_0+T} e^{-ki\omega t} s(t) dt.$$
 (3.94)

Nach Normierung $x := \omega t$, $f(x) := s(x/\omega)$:

$$c_k[f] = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-kix} f(x) dx.$$
 (3.95)

Es gilt (λ : eine Konstante):

$$c_k[f+g] = c_k[f] + c_k[g],$$
 (3.96)

$$c_k[\lambda f] = \lambda c_k[f]. \tag{3.97}$$

Reelle Fourier-Koeffizienten:

$$a_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \cos(k\omega t) \, s(t) \, \mathrm{d}t, \tag{3.98}$$

$$a_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \cos(k\omega t) \, s(t) \, dt, \qquad (3.98)$$

$$b_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \sin(k\omega t) \, s(t) \, dt. \qquad (3.99)$$

Nach Normierung $x := \omega t$, $f(x) := s(x/\omega)$:

$$a_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) f(x) dx,$$
 (3.100)

$$b_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(kx) f(x) dx.$$
 (3.101)

Lineare Algebra 4

4.1 Grundbegriffe

4.1.1 Norm

Definition. Eine Abbildung $v \mapsto ||v||$ von einem Vektorraum V über dem Körper K in die nichtnegativen reellen Zahlen heißt Norm, wenn für alle $v, w \in V$ und $a \in K$ die drei Axiome

$$||v|| = 0 \implies v = 0, \tag{4.1}$$

$$||av|| = |a| ||v||, \tag{4.2}$$

$$||v + w|| \le ||v|| + ||w|| \tag{4.3}$$

erfüllt sind.

Eigenschaften:

$$||v|| = 0 \iff v = 0, \tag{4.4}$$

$$||-v|| = ||v||, \tag{4.5}$$

$$|v| \ge 0. \tag{4.6}$$

Dreiecksungleichung nach unten:

$$|||v|| - ||w||| \le ||v - w||. \tag{4.7}$$

4.1.2 Skalarprodukt

4.1.2.1 **Axiome**

Definition. Eine Abbildung heißt Skalarprodukt, wenn folgende Axiome erfüllt sind.

Axiome für v, w aus einem reellen Vektorraum und λ ein Skalar:

$$\langle v, w \rangle = \langle w, v \rangle, \tag{4.8}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.9}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.10}$$

$$\langle v, v \rangle \ge 0,\tag{4.11}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.12}$$

Axiome für v, w aus einem komplexen Vektorraum und λ ein Skalar:

$$\langle v, w \rangle = \overline{\langle w, v \rangle},\tag{4.13}$$

$$\langle \lambda v, w \rangle = \overline{\lambda} \langle v, w \rangle, \tag{4.14}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle,$$
 (4.15)

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.16}$$

$$\langle v, v \rangle \ge 0, \tag{4.17}$$

$$\langle v, v \rangle = 0 \iff v = 0.$$
 (4.18)

4.1.2.2 Eigenschaften

Das reelle Skalarprodukt ist eine symmetrische bilineare Abbildung.

Winkel und Längen

Definition. Der Winkel φ zwischen v und w ist definiert durch die Beziehung:

$$\langle v, w \rangle = ||v|| \, ||w|| \cos \varphi. \tag{4.19}$$

Definition. Orthogonal:

$$v \perp w :\iff \langle v, w \rangle = 0. \tag{4.20}$$

Ein Skalarprodukt $\langle v, w \rangle$ induziert die Norm

$$||v|| := \sqrt{\langle v, v \rangle}. \tag{4.21}$$

4.1.2.4 **Orthonormalbasis**

Sei $B = (b_k)_{k=1}^n$ eine Basis eines endlichdimensionalen Vektorraumes über den reellen oder komplexen Zahlen.

Definition. Gilt $\langle b_i, b_j \rangle = 0$ für alle i, j mit $i \neq j$, so wird B Orthogonalbasis genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthogonalsystem.

Definition. Ist B eine Orthogonalbasis und gilt zusätzlich $\langle b_k, b_k \rangle = 1$ für alle k, so wird B Orthonormalbasis (ONB) genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthonormalsystem.

Sei $v = \sum_k v_k b_k$ und $w = \sum_k w_k b_k$. Mit \sum_k ist immer $\sum_{k=1}^{n} \frac{\sum_{k=1}^{n}}{\text{gemeint.}}$ Ist B eine Orthonormalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \overline{v_k} \, w_k. \tag{4.22}$$

Ist B nur eine Orthogonalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \langle b_k, b_k \rangle \overline{v_k} \, w_k \tag{4.23}$$

Allgemein gilt:

$$\langle v, w \rangle = \sum_{i,j} g_{ij} \overline{v_i} w_j \tag{4.24}$$

mit $g_{ij} = \langle b_i, b_j \rangle$. In reellen Vektorräumen ist die komplexe Konjugation wirkungslos und kann somit entfallen.

Ist B eine Orthogonalbasis und $v = \sum_{k} v_k b_k$, so gilt:

$$v_k = \frac{\langle b_k, v \rangle}{\langle b_k, b_k \rangle}. (4.25)$$

Ist B eine Orthonormalbasis, so gilt speziell:

$$v_k = \langle b_k, v \rangle. \tag{4.26}$$

4.1.2.5 Orthogonale Projektion

Orthogonale Projektion von v auf w:

$$P[w](v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w. \tag{4.27}$$

4.1.2.6 Gram-Schmidt-Verfahren

Für linear unabhängige Vektoren v_1, \ldots, v_n wird durch

$$w_k := v_k - \sum_{i=1}^{k-1} P[w_i](v_k)$$
(4.28)

ein Orthogonalsystem w_1, \ldots, w_n berechnet.

Speziell für zwei nicht kollineare Vektoren v_1, v_2 gilt

$$w_1 = v_1, (4.29)$$

$$w_2 = v_2 - P[w_1](v_2). (4.30)$$

4.2 Koordinatenvektoren

4.2.1 Koordinatenraum

Addition von $a, b \in K^n$:

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix}. \tag{4.31}$$

Subtraktion:

$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} - \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} := \begin{bmatrix} a_1 - b_1 \\ \vdots \\ a_n - b_n \end{bmatrix}. \tag{4.32}$$

Skalarmultiplikation von $\lambda \in K$ mit $a \in K^n$:

$$\lambda \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} := \begin{bmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{bmatrix}. \tag{4.33}$$

Ist K ein Körper, so bildet die Menge

$$K^{n} = \{(a_{1}, \dots, a_{n}) \mid \forall k \colon a_{k} \in K\}$$
(4.34)

bezüglich der Addition (4.31) und der Multiplikation (4.33) einen Vektorraum, der *Koordinatenraum* genannt wird. Das Tupel $E_n = (e_1, \ldots, e_n)$ mit

$$e_{1} := (1, 0, 0, 0, \dots, 0),$$

$$e_{2} := (0, 1, 0, 0, \dots, 0),$$

$$e_{3} := (0, 0, 1, 0, \dots, 0),$$

$$\dots$$

$$e_{n} := (0, 0, 0, 0, \dots, 1)$$

$$(4.35)$$

bildet eine geordnete Basis von K^n , die kanonische Basis genannt wird. Es gilt

$$a = (a_1, \dots, a_n) = a_1 e_1 + \dots + a_n e_n.$$
 (4.36)

4.2.2 Kanonisches Skalarprodukt

Definition. Für $a, b \in \mathbb{R}^n$:

$$\langle a, b \rangle := \sum_{k=1}^{n} a_k b_k. \tag{4.37}$$

Für $a, b \in \mathbb{C}^n$:

$$\langle a, b \rangle := \sum_{k=1}^{n} \overline{a_k} \, b_k \tag{4.38}$$

Die kanonische Basis (4.35) ist eine Orthonormalbasis bezüglich diesem Skalarprodukt, s. 4.1.2.4. Das Skalarprodukt induziert die Norm

$$|a| := \sqrt{\langle a, a \rangle} = \sqrt{\sum_{k=1}^{n} |a_k|^2}, \tag{4.39}$$

die Vektorbetrag genannt wird.

Jedem Koordinatenvektor $a \neq 0$ lässt sich ein Einheitsvektor $\hat{a} := \frac{a}{|a|}$ zuordnen, der in Richtung von a zeigt und die Eigenschaft $|\hat{a}| = 1$ besitzt.

4.3 Matrizen

4.3.1 Quadratische Matrizen

4.3.1.1 Matrizenring

Mit $K^{n \times n}$ wird die Menge quadratischen Matrizen

$$(a_{ij}) = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \ddots & \dots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$
 (4.40)

mit Einträgen a_{ij} aus dem Körper ${\cal K}$ bezeichnet.

Die Menge $K^{n \times n}$ bildet bezüglich Addition und Multiplikation von Matrizen einen Ring (s. 1.7).

Das neutrale Element der Multiplikation ist die Ein-

heitsmatrix

$$E_n = (\delta_{ij}), \quad \delta_{ij} := \begin{cases} 1 & \text{wenn } i = j, \\ 0 & \text{sonst.} \end{cases}$$
 (4.41)

Das sind

$$E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{usw.}$$
 (4.42)

4.3.1.2 Symmetrische Matrizen

Eine quadratiche Matrix $A = (a_{ij})$ heißt symmetrisch, falls gilt $a_{ij} = a_{ji}$ bzw. $A^T = A$.

Jede reelle symmetrische Matrix besitzt ausschließlich reelle Eigenwerte und die algebraischen Vielfachheiten stimmen mit den geometrischen Vielfachheiten überein.

Jede reelle symmetrische Matrix A ist diagonalisierbar, d. h. es gibt eine invertierbare Matrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$ gilt.

Sei V ein K-Vektorraum und $(b_k)_{k=1}^n$ eine Basis von V. Für jede symmetrische Bilinearform $f\colon V^2\to K$ ist die Darstellungsmatrix

$$A = (f(b_i, b_j)) \tag{4.43}$$

symmetrisch. Ist $A \in K^{n \times n}$ eine symmetrische Matrix, so ist

$$f(x,y) = x^T A y. (4.44)$$

eine symmetrische Bilinearform für $x,y\in K^n$. Ist $K=\mathbb{R}$ und A positiv definit, so ist (4.44) ein Skalarprodukt auf \mathbb{R}^n

4.3.1.3 Reguläre Matrizen

Eine quadratische Matrix $A \in K^{n \times n}$ heißt regulär oder invertierbar, wenn es eine inverse Matrix A^{-1} gibt, so dass

$$A^{-1}A = E_n \quad (\iff AA^{-1} = E_n)$$
 (4.45)

gilt, wobei mit E_n die Einheitsmatrix gemeint ist. Jede reguläre Matrix besitzt genau eine inverse Matrix. Eine Matrix A ist genau dann regulär, wenn $\det(A) \neq 0$ gilt. Die Menge der regulären Matrizen bildet bezüglich Matrizenmultiplikation eine Gruppe, die allgemeine lineare Gruppe

$$GL(n, K) := \{ A \in K^{n \times n} \mid \det(A) \neq 0 \}.$$
 (4.46)

Ist V ein Vektorraum über dem Körper K, so bilden die Automorphismen bezüglich Verkettung eine Gruppe, die Automorphismengruppe

$$GL(V) = Aut(V). (4.47)$$

Ein *Endomorphismus* ist eine lineare Abbildung, welche eine Selbstabbildung ist. Ein *Automorphismus* ist eine bijektiver Endomorphismus.

Wählt man auf V eine Basis B, so ist die Zuordnung der Darstellungsmatrix

$$M_B^B : \operatorname{Aut}(V) \to \operatorname{GL}(\dim V, K)$$
 (4.48)

eine Gruppenisomorphismus.

Eine quadratische Matrix, die nicht regulär ist, heißt singulär. Endomorphismen, die nicht bijektiv sind, lassen die Dimension ihrer Definitionsmenge schrumpfen:

$$f \in \operatorname{End}(V) \setminus \operatorname{Aut}(V) \iff \dim f(V) < \dim V.$$
 (4.49)

Für Matrizen $A \in K^{n \times n}$ bedeutet das, dass sie nicht den vollen Rang besitzen:

$$\det A = 0 \iff \operatorname{rk}(A) < n = \dim K^n. \tag{4.50}$$

Inversions formel:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \tag{4.51}$$

Definition. Wird in der Matrix A die Zeile i und die Spalte j entfernt, so entsteht eine neue Matrix $[A]_{ij}$, die Streichungsmatrix von A genannt wird.

Laplacescher Entwicklungssatz:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det([A]_{ij}), \tag{4.52}$$

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det([A]_{ij}). \tag{4.53}$$

4.3.2 Determinanten

Für Matrizen $A, B \in K^{n \times n}$ und $r \in K$ gilt:

$$\det(AB) = \det(A)\det(B),\tag{4.54}$$

$$\det(A^T) = \det(A),\tag{4.55}$$

$$\det(rA) = r^n \det(A), \tag{4.56}$$

$$\det(A^{-1}) = \det(A)^{-1}. (4.57)$$

Für eine Diagonalmatrix $D = diag(d_1, \ldots, d_n)$ gilt:

$$\det(D) = \prod_{k=1}^{n} d_k. \tag{4.58}$$

Eine linke Dreiecksmatrix ist eine Matrix der Form (a_{ij}) mit $a_{ij} = 0$ für i < j. Eine rechte Dreiecksmatrix ist die Transponierte einer linken Dreiecksmatrix.

Für eine linke oder rechte Dreiecksmatrix $A = (a_{ij})$ gilt:

$$\det(A) = \prod_{k=1}^{n} a_{kk}.$$
(4.59)

4.3.3 Eigenwerte

Eigenwertproblem: Für eine gegebene quadratische Matrix A bestimme

$$\{(\lambda, v) \mid Av = \lambda v, v \neq 0\}. \tag{4.60}$$

Das homogene lineare Gleichungssystem

$$Av = \lambda v \iff (A - \lambda E_n)v = 0 \tag{4.61}$$

besitzt Lösungen $v \neq 0$ gdw.

$$p(\lambda) = \det(A - \lambda E_n) = 0. \tag{4.62}$$

Bei $p(\lambda)$ handelt es sich um ein normiertes Polynom vom Grad n, das charakeristisches Polynom genannt wird.

Eigenraum:

$$\operatorname{Eig}(A,\lambda) := \{ v \mid Av = \lambda v \}. \tag{4.63}$$

Die Dimension dim $\operatorname{Eig}(A,\lambda)$ wird geometrische Vielfachheit von λ genannt.

Spektrum:

$$\sigma(A) := \{ \lambda \mid \exists v \neq 0 \colon Av = \lambda v \}. \tag{4.64}$$

4.4 Lineare Gleichungssysteme

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten hat die Form:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2,$
: (4.65)

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n.$

Das System lässt sich durch

$$A := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{bmatrix}$$
(4.66)

und

$$x := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b := \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$(4.67)$$

zusammenfassen.

Äquivalente Matrixform von (4.65):

$$Ax = b. (4.68)$$

Erweiterte Koeffizientenmatrix:

$$(A \mid b) := \begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_n \end{bmatrix}. \tag{4.69}$$

Lösungskriterium:

$$\exists x [Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b). \tag{4.70}$$

Eindeutige Lösung (bei n Unbekannten):

$$\exists !x[Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b) = n. \tag{4.71}$$

Im Fall m = n gilt:

$$\exists! x [Ax = b] \iff A \in GL(n, K)$$

$$\iff \operatorname{rg}(A) = n \iff \det(A) \neq 0.$$
(4.72)

4.5 Multilineare Algebra

4.5.1 Äußeres Produkt

Sei V ein Vektorraum und sei $v_k \in V$ für alle k. Sind $a = \sum_{k=1}^n a_k v_k$ und $b = \sum_{k=1}^n b_k v_k$ beliebige Linearkombinationen, so gilt

$$a \wedge b = \sum_{i,j} a_i b_j \, v_i \wedge v_j$$

$$= \sum_{1 \le i < j \le n} (a_i b_j - a_j b_i) \, v_i \wedge v_j$$

$$(4.73)$$

und

$$a \wedge b = a \otimes b - b \otimes a$$

$$= \sum_{i,j} (a_i b_j - a_j b_i) v_i \otimes v_j$$

$$= \sum_{i,j} a_i b_j (v_i \otimes v_j - v_j \otimes v_i).$$
(4.74)

4.5.1.1 Alternator

Für $a_k \in V$ ist $\mathrm{Alt}_p \colon T^p(V) \to A^p(V) \subseteq T^p(V)$ mit

$$\operatorname{Alt}_{p}(a_{1} \otimes \ldots \otimes a_{p})$$

$$:= \frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \left(a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(p)} \right). \tag{4.75}$$

Es ist $\Lambda^p(V)$ isomorph zu $A^p(V)$ und man setzt:

$$a_1 \wedge \ldots \wedge a_p = p! \operatorname{Alt}_p(a_1 \otimes \ldots \otimes a_p).$$
 (4.76)

Speziell gilt

$$Alt_2(a \otimes b) := \frac{1}{2}(a \otimes b - b \otimes a). \tag{4.77}$$

und

$$a \wedge b = 2\operatorname{Alt}_2(a \otimes b). \tag{4.78}$$

4.5.1.2 Äußere Algebra

Darstellung als Quotientenraum:

$$\Lambda^2(V) = T^2(V)/\{v \otimes v \mid v \in V\}. \tag{4.79}$$

Dimension: Ist $\dim(V) = n$, so gilt

$$\dim(\Lambda^k(V)) = \binom{n}{k}.$$
(4.80)

4.6 Analytische Geometrie

4.6.1 Geraden

4.6.1.1 Parameterdarstellung

Punktrichtungsform:

$$p(t) = p_0 + t\underline{v},\tag{4.81}$$

 p_0 : Stützpunkt, \underline{v} : Richtungsvektor. Die Gerade ist dann die Menge $g = \{p(t) \mid t \in \mathbb{R}\}.$

Der Vektor \underline{v} repräsentiert außerdem die Geschwindigkeit, mit der diese Parameterdarstellung durchlaufen wird: $p'(t) = \underline{v}$.

Gerade durch zwei Punkte: Sind zwei Punkte p_1, p_2 mit $p_1 \neq p_2$ gegeben, so ist durch die beiden Punkte eine Gerade gegeben. Für diese Gerade ist

$$p(t) = p_1 + t(p_2 - p_1) (4.82)$$

eine Punktrichtungsform. Durch Umformung ergibt sich die **Zweipunkteform:**

$$p(t) = (1-t)p_1 + tp_2. (4.83)$$

Bei (4.83) handelt es sich um eine Affinkombination. Gilt $t \in [0, 1]$, so ist (4.83) eine Konvexkombination: eine Parameterdarstellung für die Strecke von p_1 nach p_2 .

4.6.1.2 Parameterfreie Darstellung

Hesse-Form:

$$q = \{ p \mid \langle n, p - p_0 \rangle = 0 \}, \tag{4.84}$$

 p_0 : Stützpunkt, \underline{n} : Normalenvektor.

Die Hesse-Form ist nur in der Ebene möglich. Form (4.84) hat in Koordinaten die Form

$$g = \{(x,y) \mid n_x(x-x_0) + n_y(y-y_0) = 0\}$$

= \{(x,y) \cdot n_xx + n_yy = n_xx_0 + n_yy_0\}. (4.85)

Hesse-Normalform: $(4.84) \text{ mit } |\underline{n}| = 1.$

Sei $v \wedge w$ das äußere Produkt.

Plückerform:

$$g = \{ p \mid (p - p_0) \land \underline{v} = 0 \}. \tag{4.86}$$

Die Größe $\underline{m} = p_0 \wedge \underline{v}$ heißt Moment. Beim Tupel $(\underline{v} : \underline{m})$ handelt es sich um Plückerkoordinaten für die Gerade.

In der Ebene gilt speziell:

$$g = \{(x,y) \mid (x - x_0)\Delta y = (y - y_0)\Delta x\}$$
 (4.87)

 $mit \ \underline{v} = (\Delta x, \Delta y).$

Sei $a := \Delta y$ und $b := -\Delta x$ und $c := ax_0 + by_0$. Aus (4.87) ergibt sich:

$$g = \{(x, y) \mid ax + by = c\}. \tag{4.88}$$

Im Raum ergibt sich ein Gleichungssystem:

$$g = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid \begin{vmatrix} (x - x_0)\Delta y = (y - y_0)\Delta x \\ (y - y_0)\Delta z = (z - z_0)\Delta y \\ (x - x_0)\Delta z = (z - z_0)\Delta x \end{vmatrix} \right\}$$
(4.89)

mit $\underline{v} = (\Delta x, \Delta y, \Delta z)$.

4.6.1.3 Abstand Punkt zu Gerade

Sei $p(t) := p_0 + t\underline{v}$ die Punktrichtungsform einer Geraden und sei q ein weiterer Punkt. Bei $\underline{d}(t) := p(t) - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von t.

Ansatz: Es gibt genau ein t, so dass gilt:

$$\langle \underline{d}, \underline{v} \rangle = 0. \tag{4.90}$$

Lösung:

$$t = \frac{\langle \underline{v}, q - p_0 \rangle}{\langle \underline{v}, \underline{v} \rangle}.$$
 (4.91)

4.6.2 Ebenen

4.6.2.1 Parameterdarstellung

Seien $\underline{u},\underline{v}$ zwei nicht kollineare Vektoren.

Punktrichtungsform:

$$p(s,t) = p_0 + s\underline{u} + t\underline{v}. \tag{4.92}$$

4.6.2.2 Parameterfreie Darstellung

Seien $\underline{v}, \underline{w}$ zwei nicht kollineare Vektoren. Durch

$$E = \{ p \mid (p - p_0) \land \underline{v} \land \underline{w} = 0 \}. \tag{4.93}$$

wird eine Ebene beschrieben.

Hesse-Form:

$$E = \{ p \mid \langle \underline{n}, p - p_0 \rangle = 0 \}, \tag{4.94}$$

 p_0 : Stützpunkt, \underline{n} : Normalenvektor. Die Hesse-Form einer Ebene ist nur im dreidimensionalen Raum möglich. Den Normalenvektor bekommt man aus (4.92) mit $n=u\times v$.

4.6.2.3 Abstand Punkt zu Ebene

Sei $p(s,t) := p_0 + s\underline{u} + t\underline{v}$ die Punktrichtungsform einer Ebene und sei q ein weiterer Punkt. Bei $\underline{d}(s,t) := p - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von (s,t).

Ansatz: Es gibt genau ein Tupel (s, t), so dass gilt:

$$\langle d, u \rangle = 0 \text{ und } \langle d, v \rangle = 0.$$
 (4.95)

Lösung: Es ergibt sich ein LGS:

$$\begin{bmatrix} \langle \underline{u}, \underline{v} \rangle & \langle \underline{v}, \underline{v} \rangle \\ \langle \underline{v}, \underline{v} \rangle & \langle \underline{u}, \underline{v} \rangle \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} \langle \underline{v}, q - p_0 \rangle \\ \langle \underline{u}, q - p_0 \rangle \end{bmatrix}. \tag{4.96}$$

Bemerkung: Die Systemmatrix g_{ij} ist der metrische Tensor für die Basis B = (u, v). Die Lösung des LGS ist:

$$s = \frac{\langle g_{12}\underline{v} - g_{12}\underline{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},\tag{4.97}$$

$$t = \frac{\langle g_{12}\underline{u} - g_{12}\underline{v}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2}.$$
 (4.98)

5 Differentialgeometrie

5.1 Kurven

5.1.1 Parameterkurven

Definition. Sei X ein topologischer Raum und I ein reelles Intervall, auch offen oder halboffen, auch unbeschränkt. Eine stetige Funktion

$$f: I \to X$$
 (5.1)

heißt Parameterdarstellung einer Kurve, kurz Parameterkurve. Die Bildmenge f(I) heißt Kurve.

Eine Parameterdarstellung mit einem kompakten Intervall I = [a, b] heißt Weg.

Für einen Weg mit I = [a, b] heißt f(a) Anfangspunkt und f(b) Endpunkt. Ein Weg mit f(a) = f(b) heißt geschlossen. Ein Weg, dessen Einschränkung auf [a, b) injektiv ist, heißt einfach, auch doppelpunktfrei oder Jordan-Weg.

Beispiele.

Bsp. für einen einfachen geschlossenen Weg:

$$f(t) := \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}, \quad f \colon [0, 2\pi] \to \mathbb{R}^2.$$
 (5.2)

Die Kurve ist der Einheitskreis.

Bsp. für einen geschlossenen Weg mit Doppelpunkt:

$$f(t) := \begin{bmatrix} 2\cos t \\ \sin(2t) \end{bmatrix}, \quad f \colon [0, 2\pi] \to \mathbb{R}^2.$$
 (5.3)

Die Kurve ist eine Achterschleife.

5.1.2 Differenzierbare Parameterkurven

Definition. Eine Parameterkurve $f:(a,b)\to\mathbb{R}^n$ heißt differenzierbar, wenn die Ableitung f'(t) an jeder Stelle t existiert. Die Ableitung f'(t) wird Tangentialvektor an die Kurve an der Stelle t genannt.

Ein C^k -Kurve ist ein Parameterkurve, dessen k-te Ableitung eine stetige Funktion ist. Ein unendlich oft differenzierbare Parameterkurve heißt glatt.

Eine Parameterkurve heißt regulär, wenn:

$$\forall t \colon f'(t) \neq 0. \tag{5.4}$$

5.2 Koordinatensysteme

5.2.1 Polarkoordinaten

Polarkoordinaten r, φ sind gegeben durch die Abbildung

$$\begin{bmatrix} x \\ y \end{bmatrix} = f(r, \varphi) := \begin{bmatrix} r \cos \varphi \\ r \sin \varphi \end{bmatrix}$$
 (5.5)

mit r > 0 und $0 \le \varphi < 2\pi$.

Umkehrabbildung für $(x, y) \neq (0, 0)$:

$$\begin{bmatrix} r \\ \varphi \end{bmatrix} = f^{-1}(x, y) = \begin{bmatrix} r \\ s(y)\arccos\left(\frac{x}{r}\right) \end{bmatrix}$$
 (5.6)

 $mit r = \sqrt{x^2 + y^2}$

und s(y) = sgn(y) + 1 - |sgn(y)|.

Jacobi-Determinante:

$$\det J = \det((Df)(r,\varphi)) = r.$$

Darstellung des metrischen Tensors in Polarkoordinaten:

$$(g_{ij}) = J^T J = \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix}. \tag{5.8}$$

5.3 Mannigfaltigkeiten

5.3.1 Grundbegriffe

Definition. Seien U, V offene Mengen. Eine Abbildung

$$\varphi \colon (U \subseteq \mathbb{R}^n) \to (V \subseteq \mathbb{R}^m) \tag{5.9}$$

heißt regulär, wenn

$$\forall u \in U \colon \operatorname{rg}((D\varphi)(u)) = \min(m, n) \tag{5.10}$$

gilt. Mit $(D\varphi)(u)$ ist dabei die Jacobi-Matrix an der Stelle u gemeint:

$$((D\varphi)(u))_{ij} := \frac{\partial \varphi_i(u)}{\partial u_i}.$$
 (5.11)

Für $(D\varphi)(u) \colon \mathbb{R}^n \to \mathbb{R}^m$ gilt:

$$n \ge m \implies \forall u \colon (D\varphi)(u) \text{ ist surjektiv},$$
 (5.12)

$$n < m \implies \forall u : (D\varphi)(u) \text{ ist injektiv.}$$
 (5.13)

Definition. Sei $m,n\in\mathbb{N},n< m$ und sei $M\subseteq\mathbb{R}^m$. Eine Abbildung φ von einer offenen Menge $U'\subseteq\mathbb{R}^n$ in eine offene Menge $U\subseteq M$ heißt Karte, wenn φ ein Homöomorphismus und $\varphi\colon U'\to\mathbb{R}^m$ eine reguläre Abbildung ist. Ist U eine offene Umgebung von $p\in M$, so heißt φ lokale Karte bezüglich p.

Definition. Sei $m, n \in \mathbb{N}, n < m$. Eine Menge $M \subseteq \mathbb{R}^m$ heißt n-dimensionale Untermannigfaltigkeit des \mathbb{R}^m , wenn es zu jedem Punkt $p \in M$ eine lokale Karte

$$\varphi \colon (U' \subseteq R^n) \to (U \subseteq M \subseteq \mathbb{R}^m) \tag{5.14}$$

gibt.

Definition. Ein Atlas für eine Mannigfaltigkeit M ist eine Menge von Karten, deren Bildmengen M überdecken.

Definition. Sei M eine glatte Mannigfaltigkeit. Eine Abbildung $f \colon M \to \mathbb{R}$ ist (k mal) (stetig) differenzierbar gdw. für jede Karte $\varphi \colon U' \to (U \subseteq M)$ das Kompositum $f \circ \varphi$ (k mal) (stetig) differenzierbar ist. Es genügt der Nachweis für alle Karten aus einem Atlas.

Definition. Seien M,N zwei glatte Mannigfaltigkeiten. Eine Abbildung $f\colon M\to N$ heißt glatt gdw. für alle Karten $\varphi\colon U'\to (U\subseteq M)$ und $\psi\colon V'\to (V\subseteq N)$ das Kompositum $\psi^{-1}\circ f\circ \varphi$ eine glatte Abbildung ist. Es genügt bereits der Nachweis für alle Karten aus jeweils einem Atlas für M und N.

5.3.2 Vektorfelder

5.3.2.1 Tangentialräume

Definition. Tangentialbündel:

$$TM := \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{p\} \times T_p M. \tag{5.15}$$

 $Kotangential b\"{u}ndel:$

$$T^*M := \bigsqcup_{p \in M} T_p^*M, \tag{5.16}$$

(5.7)

wobei T_p^*M eine andere Schreibweise für $(T_pM)^*$ ist. Natürliche Projektion:

$$\pi(p,v) := p, \quad \pi \colon TM \to M. \tag{5.17}$$

Das Tangentialbündel einer glatten Mannigfaltigkeit ist eine glatte Mannigfaltigkeit.

5.3.2.2 Christoffel-Symbole

Sei (M,g)eine pseudo-riemannsche Mannigfaltigkeit. Es gilt:

$$\Gamma_{ab}^{k} = \frac{1}{2} g^{kc} (\partial_a g_{bc} + \partial_b g_{ac} - \partial_c g_{ab}), \qquad (5.18)$$

$$\Gamma_{cab} = \frac{1}{2} (\partial_a g_{bc} + \partial_b g_{ac} - \partial_c g_{ab}), \qquad (5.19)$$

$$\Gamma_{cab} = \frac{1}{2} (\partial_a g_{bc} + \partial_b g_{ac} - \partial_c g_{ab}), \tag{5.19}$$

$$\partial_a g_{bc} = \Gamma_{bac} + \Gamma_{cab},\tag{5.20}$$

$$\Gamma^k_{ab} = \Gamma^k_{ba}. (5.21)$$

6 Funktionentheorie

6.1 Holomorphe Funktionen

Definition. Sei $U \subseteq \mathbb{C}$ eine offene Menge und $f \colon U \to \mathbb{C}$. Die Funktion f wird holomorph an der Stelle $z_0 \in U$ genannt, wenn der Grenzwert

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \tag{6.1}$$

existiert

Das Argument und Bild von f werden nun in Real- und Imaginärteil zerlegt. Das sind die Zerlegungen z = x + yi und f(z) = u(x,y) + v(x,y)i. Die Funktion f(z) ist genau dann holomorph an der Stelle $z_0 = x_0 + y_0$ i, wenn bei (x_0, y_0) die partiellen Ableitungen stetig sind und die Cauchy-Riemann-Gleichungen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 bei (x_0, y_0) (6.2)

gelten. Bei

$$\underline{v} := (u, -v) = (v_x, v_y) = v_x e_x + v_y e_y$$
 (6.3)

handelt es sich um ein Vektorfeld auf dem Koordinatenraum. Die Gleichungen (6.2) lassen sich nun als Quellenfreiheit

$$0 = \langle \nabla, \underline{v} \rangle = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$
 (6.4)

und Rotationsfreiheit

$$0 = \nabla \wedge \underline{v} = \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) e_x \wedge e_y \tag{6.5}$$

interpretieren.

Für totale Differential

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y \tag{6.6}$$

gibt es die Umformulierung

$$\mathrm{d}f = \frac{\partial f}{\partial z} \mathrm{d}z + \frac{\partial f}{\partial \overline{z}} \mathrm{d}\overline{z}. \tag{6.7}$$

Hierbei ist dz = dx + i dy und $d\overline{z} = dx - i dy$.

Die Ableitungsoperatoren

$$\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \tag{6.8}$$

$$\frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \tag{6.9}$$

mit $\partial f = \partial u + \mathrm{i}\,\partial v$ heißen Wirtinger-Operatoren.

Die Gleichungen (6.2) lassen sich nun zur Gleichung

$$\frac{\partial f}{\partial \overline{z}}(z_0) = 0 \tag{6.10}$$

zusammenfassen. Für holomorphe Funktionen reduziert sich das Differential (6.7) wegen (6.10) auf die Form

$$\mathrm{d}f = \frac{\partial f}{\partial z} \mathrm{d}z. \tag{6.11}$$

6.2 Harmonische Funktionen

Definition. Sei $U \subseteq \mathbb{R}^2$ eine offene Menge. Eine Funktion $\Phi: U \to \mathbb{R}$ heißt harmonisch an der Stelle (x_0, y_0) , wenn die Laplace-Gleichung $(\Delta\Phi)(x_0, y_0) = 0$ mit dem Laplace-Operator

$$\Delta\Phi := \frac{\partial^2 \Phi}{\partial x \partial x} + \frac{\partial^2 \Phi}{\partial y \partial y} \tag{6.12}$$

erfüllt ist

Ist f=u+vi an der Stelle z_0 holomorph, so sind der Realteil u und der Imaginärteil v an der Stelle $(x_0,y_0)=(\operatorname{Re} z_0,\operatorname{Im} z_0)$ harmonisch. Das heißt es gilt

$$(\Delta u)(x_0, y_0) = 0, \quad (\Delta v)(x_0, y_0) = 0.$$
 (6.13)

Ist eine Funktion u auf einem einfach zusammenhängenden Gebiet harmonisch, so lässt sich stets eine harmonische Funktion v finden, so dass f=u+vi holomorph ist. Die Funktion v ist bis auf eine additive reelle Konstante c eindeutig bestimmt. Das heißt, v darf auch durch v+c ersetzt werden.

Die Funktion v wird die harmonisch Konjugierte zu u genannt. An jeder Stelle (x_0,y_0) treffen die Linien

$$\{(x,y) \mid u(x,y) = u(x_0, y_0)\},$$
 (6.14)

$$\{(x,y) \mid v(x,y) = v(x_0, y_0)\} \tag{6.15}$$

senkrecht aufeinander.

6.3 Wegintegrale

Integral einer komplexwertigen Funktion.

Für $f: [a, b] \to \mathbb{C}$ mit f = u + iv ist

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt,$$
 (6.16)

wenn u und v integrierbar sind.

Definition. Ist $\gamma \colon [a,b] \to \mathbb{C}$ ein differenzierbarer Weg (5.1), so wird

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$
 (6.17)

das Kurvenintegral über f entlang von γ genannt.

Integralsatz von Cauchy. Ist G ein einfach zusammenhängendes Gebiet und $f: G \to \mathbb{C}$ holomorph, so gilt für jeden Weg γ von $\gamma(a)$ nach $\gamma(b)$ die Formel

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a)), \tag{6.18}$$

wobei die Funktion F nicht vom gewählten Weg abhängig ist. Außerdem ist F eine Stammfunktion zu f, das heißt es gilt F'(z) = f(z) für alle $z \in G$.

Sind die Voraussetzungen für den Integralsatz erfüllt, dann motiviert Wegunabhängigkeit die Definition

$$\int_{z_1}^{z_2} f(z) \, \mathrm{d}z := F(z_2) - F(z_1), \tag{6.19}$$

bei der auf Wege gänzlich verzichtet wird.

7 Dynamische Systeme

7.1 Grundbegriffe

Definition. Ein Tupel (T, M, Φ) mit $\Phi: T \times M \to M$ heißt *dynamisches System*, wenn für alle $t_1, t_2 \in T$ und $x \in M$ gilt:

$$\Phi(0, x) = x,\tag{7.1}$$

$$\Phi(t_2, \Phi(t_1, x)) = \Phi(t_1 + t_2, x). \tag{7.2}$$

Die Menge T heißt Zeitraum. Ein System mit $T = \mathbb{N}_0$ oder $T = \mathbb{Z}$ heißt zeitdiskret, eines mit $T = \mathbb{R}_0^+$ oder $T = \mathbb{R}$ heißt zeitkontinuierlich. Ein System mit $T = \mathbb{Z}$ oder $T = \mathbb{R}$ heißt invertierbar.

Die Menge M heißt Zustandsraum, ihre Elemente werden $Zust\ddot{a}nde$ genannt.

Für ein invertierbares System handelt es sich bei Φ um eine Gruppenaktion (s. 9.1.2) der additiven Gruppe (T, +).

Die Menge

$$\Phi(T, x) := \{ \Phi(t, x) \mid t \in T \}$$
(7.3)

heißt Orbit von x. S. a. (9.9).

7.2 Iterationen

Definition. Für eine Selbstabbildung $\varphi \colon M \to M$ lassen sich die *Iterationen* gemäß

$$\varphi^0 := \mathrm{id}, \quad \varphi^n := \varphi^{n-1} \circ \varphi$$
 (7.4)

formulieren. Mit id ist die identische Abbildung

$$id: M \to M, \quad id(x) := x \tag{7.5}$$

und mit $g \circ f$ die Komposition (1.147) gemeint. Für ein bijektives φ wird zusätzlich

$$\varphi^{-n} := (\varphi^{-1})^n \tag{7.6}$$

definiert.

Die Iterationen bilden ein dynamisches System gemäß

$$\Phi(n,x) := \varphi^n(x), \quad \Phi \colon \mathbb{N}_0 \times M \to M. \tag{7.7}$$

Bei einem bijektiven φ lässt sich das System zum invertierbaren System

$$\Phi(n,x) := \varphi^n(x), \quad \Phi \colon \mathbb{Z} \times M \to M$$
(7.8)

erweitern.

Definition. Für eine Funktion $\varphi \colon A \to A$ wird der Operator

$$C_{\varphi}(g) := g \circ \varphi, \quad C_{\varphi} \colon B^A \to B^A$$
 (7.9)

Kompositions operator genannt

Wenn ${\cal B}^A$ ein Funktionenraum ist, dann ist der Kompositionsoperator ein linearer Operator.

8 Kombinatorik

8.1 Kombinatorische Funktionen

8.1.1 Faktorielle

8.1.1.1 Fakultät

Definition. Für $n \in \mathbb{Z}, n > 0$:

$$n! := \prod_{k=1}^{n} k. \tag{8.1}$$

Rekursionsgleichung:

$$(n+1)! = n! (n+1) \tag{8.2}$$

Die Gammafunktion ist eine Verallgemeinerung der Fakultät:

$$n! = \Gamma(n+1).$$

8.1.1.2 Fallende Faktorielle

Definition. Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\underline{k}} := \prod_{i=0}^{k-1} (a-j). \tag{8.4}$$

Für $a, k \in \mathbb{C}$:

$$a^{\underline{k}} := \lim_{x \to a} \frac{\Gamma(x+1)}{\Gamma(x-k+1)}.$$

Für $n \ge k$ und $k \ge 0$ gilt:

$$n^{\underline{k}} = \frac{n!}{(n-k)!}.$$

8.1.1.3 Steigende Faktorielle

Definition. Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\overline{k}} := \prod_{j=0}^{k-1} (a+j).$$

Für $a, k \in \mathbb{C}$:

$$a^{\overline{k}} := \lim_{x \to a} \frac{\Gamma(x+k)}{\Gamma(x)}.$$

Für $n \ge 1$ und $n + k \ge 1$ gilt:

$$n^{\overline{k}} = \frac{(n+k-1)!}{(n-1)!}.$$

8.1.2 Binomialkoeffizienten

Definition. Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$:

$$\begin{pmatrix} a \\ k \end{pmatrix} := \begin{cases} \frac{a^k}{k!} & \text{wenn } k > 0, \\ 1 & \text{wenn } k = 0, \\ 0 & \text{wenn } k < 0. \end{cases}$$

Für $a, b \in \mathbb{C}$:

$$\begin{pmatrix} a \\ b \end{pmatrix} := \lim_{x \to a} \lim_{y \to b} \frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}.$$

Für $0 \le k \le n$ gilt die Symmetriebeziehung

$$\binom{n}{k} = \binom{n}{n-k}$$

und die Rekursionsgleichung

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.$$
 (8.13)

Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$ gilt:

$$\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}.$$
 (8.14)

8.2 Differenzenrechnung

Definition. Vorwärtsdifferenz:

$$(\Delta f)(x) := f(x+1) - f(x), \tag{8.15}$$

$$(\Delta_h f)(x) := f(x+h) - f(x). \tag{8.16}$$

 $(8.3) \quad \textit{R\"{u}ckw\"{a}rtsdifferenz:}$

(8.5)

$$(\nabla_h f)(x) := f(x) - f(x - h). \tag{8.17}$$

Für $n \in \mathbb{N}_0$ und $x \in \mathbb{C}$ gilt:

$$\Delta(x^{\underline{n}}) = nx^{\underline{n-1}}. (8.18)$$

Die Formel gilt auch für $n \in \mathbb{C}$, dann aber $x \in \mathbb{C} \setminus \{k \in \mathbb{Z} \mid k < 0\}$, da auf dem Streifen unter Umständen Polstellen sind.

Für $n \in \mathbb{Z}, n \geq 0$ gilt:

$$\sum_{x=a}^{b-1} x^n = \frac{1}{n+1} \left[x^{\underline{n+1}} \right]_{x=a}^{x=b}. \tag{8.19}$$

(8.6) Die Formel gilt auch für $a,b \geq 0$ und $n \in \mathbb{C} \setminus \{-1\}$. Für a > 0 und $x \in \mathbb{C}$ gilt:

$$\Delta(a^x) = (a-1) a^x. (8.20)$$

8.3 Endliche Summen

(8.7) Summe der Dreieckszahlen:

$$\sum_{k=1}^{n} k = \frac{n}{2}(n+1),\tag{8.21}$$

(8.8)
$$\sum_{k=m}^{n} k = \frac{1}{2}(n-m+1)(n+m). \tag{8.22}$$

Partialsumme der geometrischen Reihe:

(8.9)
$$\sum_{k=m}^{n-1} q^k = \frac{q^n - q^m}{q - 1}, \qquad (q \neq 1)$$
 (8.23)

$$\sum_{k=-m}^{n-1} k^p q^k = \left(q \frac{\mathrm{d}}{\mathrm{d}q} \right)^p \frac{q^n - q^m}{q - 1}. \quad (q \neq 1)$$
 (8.24)

8.4 Formale Potenzreihen

8.4.1 Ring der formalen Potenzreihen

Definition. Ein Ausdruck der Form

$$\sum_{k=0}^{\infty} a_k X^k := (a_k)_{k=0}^{\infty} = (a_0, a_1, a_2, \dots)$$
 (8.25)

(8.12) heißt formale Potenzreihe. Mit R[[X]] wird die Menge der formalen Potenzreihen in der Variablen X mit Koef-

(8.10)

(8.11)

fizienten $a_k \in R$ bezeichnet, wobei R ein kommutativer Ring ist.

 $\check{\mathrm{Die}}$ Menge R[[X]] bildet bezüglich der Addition

$$\sum_{k=0}^{\infty} a_k X^k + \sum_{k=0}^{\infty} b_k X^k := \sum_{k=0}^{\infty} (a_k + b_k) X^k$$
 (8.26)

und der Multiplikation

$$\left(\sum_{i=0}^{\infty} a_i X^i\right) \left(\sum_{j=0}^{\infty} b_j X^j\right) := \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) X^k$$
(8.27)

einen kommutativen Ring.

8.4.2 Binomische Reihe

Definition. Für $a \in \mathbb{C}$:

$$(1+X)^a := \sum_{k=0}^{\infty} {a \choose k} X^k \tag{8.28}$$

Es gilt:

$$(1+X)^{a+b} = (1+X)^a (1+X)^b (8.29)$$

und

$$(1+X)^{ab} = ((1+X)^a)^b. (8.30)$$

9 Algebra

9.1 Gruppentheorie

9.1.1 Grundbegriffe

Definition. Sind (G,*) und (H,\bullet) zwei Gruppen, so heißt $\varphi\colon G\to H$ Gruppenhomomorphismus , wenn

$$\forall g_1, g_2 \in G \colon \varphi(g_1 * g_2) = \varphi(g_1) \bullet \varphi(g_2) \tag{9.1}$$

gilt. Ein *Gruppenisomorphismus* ist ein bijektiver Gruppenhomomorphismus, da die Umkehrabbildung auch wieder ein Gruppenhomomorphismus ist.

Definition. Direktes Produkt:

$$G \times H := \{ (g, h) \mid g \in G, h \in H \},$$
 (9.2)

$$(g_1, h_1) * (g_2, h_2) := (g_1 * g_2, h_1 * h_2).$$
 (9.3)

Satz von Lagrange. Für Gruppen G, H gilt:

$$H \le G \implies |G| = |G/H| \cdot |H|. \tag{9.4}$$

9.1.2 Gruppenaktionen

Definition. Eine Funktion $f: G \times X \to X$ heißt Grup-penaktion, wenn

$$\forall g_1, g_2 \in G, x \in X : f(g_1, f(g_2, x)) = f(g_1 g_2, x), \qquad (9.5)$$

$$\forall x \in X \colon f(e, x) = x \tag{9.6}$$

gilt, wobei mit e das neutrale Element von G gemeint ist. Anstelle von f(g,x) wird üblicherweise kurz gx (oder g+x bei einer Gruppe (G,+)) geschrieben.

Anstelle von Linksaktionen kommen auch Rechtsaktionen vor, die sich von Linksaktionen in der Reihenfolge unterscheiden. Eine Rechtsaktion $f\colon X\times G\to X$ genügt den Regeln

$$\forall g_1, g_2 \in G, x \in X : f(f(x, g_1), g_2) = f(x, g_1 g_2), \qquad (9.7)$$

$$\forall x \in X \colon f(x, e) = x. \tag{9.8}$$

Definition. Für ein $x \in X$ wird

$$Gx := \{ gx \mid g \in G \} \tag{9.9}$$

Bahn oder Orbit genannt. Die Menge

$$G_x := \{ g \in G \mid gx = x \} \tag{9.10}$$

wird Fixgruppe oder Stabilisator genannt. Die Menge

$$X^g := \{ x \in X \mid gx = x \} \tag{9.11}$$

heißt Fixpunktmenge.

Fixgruppen sind immer Untergruppen:

$$\forall x \colon G_x < G. \tag{9.12}$$

Bahnen sind Äquivalenzklassen, die Quotientenmenge

$$X/G := \{Gx \mid x \in X\} \tag{9.13}$$

wird Bahnenraum genannt.

Bahnformel. Ist G eine endliche Gruppe, so gilt:

$$|G| = |Gx| \cdot |G_x|. \tag{9.14}$$

Lemma von Burnside. Ist G eine endliche Gruppe, so gilt:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|. \tag{9.15}$$

9.2 Ringe

Ist R ein Ring, so gilt für alle $a \in R$:

$$(-a) a = -a^2, (-a)^2 = a^2.$$
 (9.16)

9.2.1 Polynome

Für zwei Polynome $f, g \in R[X_1, \dots, X_n]$ gilt:

$$\deg(f+g) \le \max(\deg f, \deg g),\tag{9.17}$$

$$\deg(fg) \le (\deg f)(\deg g). \tag{9.18}$$

Für zwei Polynome f, g mit $\deg f \neq \deg g$ gilt:

$$\deg(f+g) = \max(\deg f, \deg g). \tag{9.19}$$

Ist R ein Integritätsring, so gilt für $f, g \in R[X_1, \dots, X_n]$:

$$\deg(fg) = (\deg f)(\deg g). \tag{9.20}$$

Seien R, S kommutative unitäre Ringe, sei $R \subseteq S$ und sei $r \in S$. Die Funktion $\varphi_r \colon R[X] \to S$ mit

$$\varphi_r(\sum_{k=0}^n a_k X^k) := \sum_{k=0}^n a_k r^k$$
 (9.21)

ist ein Ringhomomorphismus und wird Einsetzungshomomorphismusgenannt. Für ein festes $p \in R[X]$ wird die Funktion

$$f \colon S \to S, \quad f(r) := \varphi_r(p)$$
 (9.22)

als *Polynomfunktion* bezeichnet. In einigen Ringen können unterschiedliche Polynome zur selben Polynomfunktion führen.

9.3 Körper

Definition. Sind $(K, +, \bullet)$ und $(K', +', \bullet')$ Körper, so wird $\varphi \colon K \to K'$ als Körperhomomorphismus bezeichnet, wenn

$$\varphi(a+b) = \varphi(a) +' \varphi(b), \tag{9.23}$$

$$\varphi(a \bullet b) = \varphi(a) \bullet' \varphi(b) \tag{9.24}$$

für alle $a, b \in K$ gilt und $\varphi(1) = 1$ ist.

10 Tabellen

10.1 Kombinatorik

10.1.1 Binomialkoeffizienten

	k = 0	k=1	k=2	k = 3	k=4	k=5	k=6	k = 7	k = 8	k=9	k = 10
n = 0	1	0	0	0	0	0	0	0	0	0	0
n = 1	1	1	0	0	0	0	0	0	0	0	0
n = 2	1	2	1	0	0	0	0	0	0	0	0
n = 3	1	3	3	1	0	0	0	0	0	0	0
n = 4	1	4	6	4	1	0	0	0	0	0	0
n = 5	1	5	10	10	5	1	0	0	0	0	0
n = 6	1	6	15	20	15	6	1	0	0	0	0
n = 7	1	7	21	35	35	21	7	1	0	0	0
n = 8	1	8	28	56	70	56	28	8	1	0	0
n = 9	1	9	36	84	126	126	84	36	9	1	0
n = 10	1	10	45	120	210	252	210	120	45	10	1
n = 11	1	11	55	165	330	462	462	330	165	55	11
n = 12	1	12	66	220	495	792	924	792	495	220	66
n = 13	1	13	78	286	715	1287	1716	1716	1287	715	286
n = 14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001
n=15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003
n=16	1	16	120	560	1820	4368	8008	11440	12870	11440	8008
n = 17	1	17	136	680	2380	6188	12376	19448	24310	24310	19448
n = 18	1	18	153	816	3060	8568	18564	31824	43758	48620	43758
n = 19	1	19	171	969	3876	11628	27132	50388	75582	92378	92378

	1	1	I	1	1					
	k = 0	k = 1	k=2	k=3	k=4	k = 5	k = 6	k = 7	k = 8	k=9
n = -15	1	-15	120	-680	3060	-11628	38760	-116280	319770	-817190
n = -14	1	-14	105	-560	2380	-8568	27132	-77520	203490	-497420
n = -13	1	-13	91	-455	1820	-6188	18564	-50388	125970	-293930
n = -12	1	-12	78	-364	1365	-4368	12376	-31824	75582	-167960
n = -11	1	-11	66	-286	1001	-3003	8008	-19448	43758	-92378
n = -10	1	-10	55	-220	715	-2002	5005	-11440	24310	-48620
n = -9	1	-9	45	-165	495	-1287	3003	-6435	12870	-24310
n = -8	1	-8	36	-120	330	-792	1716	-3432	6435	-11440
n = -7	1	-7	28	-84	210	-462	924	-1716	3003	-5005
n = -6	1	-6	21	-56	126	-252	462	-792	1287	-2002
n = -5	1	-5	15	-35	70	-126	210	-330	495	-715
n = -4	1	-4	10	-20	35	-56	84	-120	165	-220
n = -3	1	-3	6	-10	15	-21	28	-36	45	-55
n = -2	1	-2	3	-4	5	-6	7	-8	9	-10
n = -1	1	-1	1	-1	1	-1	1	-1	1	-1
n = 0	1	0	0	0	0	0	0	0	0	0

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1},$$

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! (n-k)!} \qquad (0 \le k \le n)$$

10.1. KOMBINATORIK 33

10.1.2 Stirling-Zahlen erster Art

 $\begin{bmatrix} n \\ k \end{bmatrix}$

	k = 0	k = 1	k=2	k=3	k = 4	k=5	k = 6	k = 7	k = 8	k = 9
n = 0	1	0	0	0	0	0	0	0	0	0
n=1	0	1	0	0	0	0	0	0	0	0
n=2	0	1	1	0	0	0	0	0	0	0
n=3	0	2	3	1	0	0	0	0	0	0
n=4	0	6	11	6	1	0	0	0	0	0
n=5	0	24	50	35	10	1	0	0	0	0
n=6	0	120	274	225	85	15	1	0	0	0
n=7	0	720	1764	1624	735	175	21	1	0	0
n=8	0	5040	13068	13132	6769	1960	322	28	1	0
n=9	0	40320	109584	118124	67284	22449	4536	546	36	1
n = 10	0	362880	1026576	1172700	723680	269325	63273	9450	870	45
n = 11	0	3628800	10628640	12753576	8409500	3416930	902055	157773	18150	1320

10.1.3 Stirling-Zahlen zweiter Art

 $\begin{Bmatrix} n \\ k \end{Bmatrix}$

	k = 0	k = 1	k = 2	k = 3	k=4	k = 5	k = 6	k = 7	k = 8	k = 9
n = 0	1	0	0	0	0	0	0	0	0	0
n=1	0	1	0	0	0	0	0	0	0	0
n=2	0	1	1	0	0	0	0	0	0	0
n=3	0	1	3	1	0	0	0	0	0	0
n=4	0	1	7	6	1	0	0	0	0	0
n=5	0	1	15	25	10	1	0	0	0	0
n=6	0	1	31	90	65	15	1	0	0	0
n=7	0	1	63	301	350	140	21	1	0	0
n = 8	0	1	127	966	1701	1050	266	28	1	0
n=9	0	1	255	3025	7770	6951	2646	462	36	1
n = 10	0	1	511	9330	34105	42525	22827	5880	750	45
n = 11	0	1	1023	28501	145750	246730	179487	63987	11880	1155

KAPITEL 10. TABELLEN

10.2 Zahlentheorie

10.2.1 Primzahlen

0	40	80	120	160	200	240	280	320	360	400	440	480	520	
2	179	419	661	947	1229	1523	1823	2131	2437	2749	3083	3433	3733	1
3	181	421	673	953	1231	1531	1831	2137	2441	2753	3089	3449	3739	2
5	191	431	677	967	1237	1543	1847	2141	2447	2767	3109	3457	3761	3
7	193	433	683	971	1249	1549	1861	2143	2459	2777	3119	3461	3767	4
11	197	439	691	977	1259	1553	1867	2153	2467	2789	3121	3463	3769	5
13	199	443	701	983	1277	1559	1871	2161	2473	2791	3137	3467	3779	6
17	211	449	709	991	1279	1567	1873	2179	2477	2797	3163	3469	3793	7
19	223	457	719	997	1283	1571	1877	2203	2503	2801	3167	3491	3797	8
23	227	461	727	1009	1289	1579	1879	2207	2521	2803	3169	3499	3803	9
29	229	463	733	1013	1291	1583	1889	2213	2531	2819	3181	3511	3821	10
31	233	467	739	1019	1297	1597	1901	2221	2539	2833	3187	3517	3823	11
37	$\frac{233}{239}$	479	743	1013	1301	1601	1907	$\frac{2221}{2237}$	2543	$\frac{2835}{2837}$	3191	3527	3833	12
41	$\frac{233}{241}$	487	751	1021	1303	1607	1913	2239	2549	2843	3203	3529	$\frac{3833}{3847}$	13
43	251	491	757	1033	1303 1307	1609	1931	$\frac{2233}{2243}$	2545 2551	2851	3209	3533	3851	14
47	257	499	761	1039	1319	1613	1933	2251	2557	$\frac{2857}{2857}$	$\frac{3203}{3217}$	3539	3853	15
1.	201	100	101	1000	1010	1010	1000	2201	2001	2001	0211	0000	0000	10
53	263	503	769	1049	1321	1619	1949	2267	2579	2861	3221	3541	3863	16
59	269	509	773	1051	1327	1621	1951	2269	2591	2879	3229	3547	3877	17
61	271	521	787	1061	1361	1627	1973	2273	2593	2887	3251	3557	3881	18
67	277	523	797	1063	1367	1637	1979	2281	2609	2897	3253	3559	3889	19
71	281	541	809	1069	1373	1657	1987	2287	2617	2903	3257	3571	3907	20
79	000	F 417	011	1007	1901	1000	1000	0000	0001	2000	2050	2501	2011	0.1
73	283	547	811	1087	1381	1663	1993	2293	2621	2909	3259	3581	3911	21 22
79	293	557	821	1091	1399	1667	1997	2297	2633	2917	3271	3583	3917	
83	307	563	823 827	1093	$1409 \\ 1423$	1669	1999	2309 2311	$2647 \\ 2657$	2927 2939	3299 3301	3593	3919	23 24
89 97	311 313	$\frac{569}{571}$	829	$1097 \\ 1103$	1423 1427	$1693 \\ 1697$	2003 2011	$2311 \\ 2333$	2659	$\frac{2959}{2953}$	3307	3607 3613	3923 3929	$\frac{24}{25}$
91	313	311	029	1103	1421	1097	2011	∠555	2009	_ <u>2</u> 900	3507	3013	3929	20
101	317	577	839	1109	1429	1699	2017	2339	2663	2957	3313	3617	3931	26
103	331	587	853	1117	1433	1709	2027	2341	2671	2963	3319	3623	3943	27
107	337	593	857	1123	1439	1721	2029	2347	2677	2969	3323	3631	3947	28
109	347	599	859	1129	1447	1723	2039	2351	2683	2971	3329	3637	3967	29
113	349	601	863	1151	1451	1733	2053	2357	2687	2999	3331	3643	3989	30
107	250	co z	0==	1150	1 450	1741	0000	0071	0000	2001	00.40	2050	4001	0.1
127	353	607	877	1153	1453	1741	2063	2371	2689	3001	3343	3659	4001	31
131	359	613	881	1163	1459	1747	2069	2377	2693	3011	3347	3671	4003	32
137	367	617	883	1171	1471	1753	2081	2381	2699	3019	3359	3673	4007	33
139	373	619	887	1181	1481	1759	2083	2383	2707	3023	3361	3677	4013	34
149	379	631	907	1187	1483	1777	2087	2389	2711	3037	3371	3691	4019	35
151	383	641	911	1193	1487	1783	2089	2393	2713	3041	3373	3697	4021	36
157	389	643	919	1201	1489	1787	2099	2399	2719	3049	3389	3701	4027	37
163	397	647	929	1213	1493	1789	$\frac{2111}{2111}$	2411	2729	3061	3391	3709	4049	38
167	401	653	937	1217	1499	1801	2113	2417	2731	3067	3407	3719	4051	39
173	409	659	941	1223	1511	1811	2129	2423	2741	3079	3413	3727	4057	40

11 Anhang

11.1 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Ξ О П	$ u $ $ \xi $ $ o $ $ \pi $	Ny Xi Omikron Pi
$\begin{array}{c} E\\ Z\\ H\\ \Theta \end{array}$	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{bmatrix} R \\ \Sigma \\ T \\ Y \end{bmatrix}$	$egin{array}{c} arrho \ \sigma \ arrho \ arrho \end{array}$	Rho Sigma Tau Ypsilon
Ι Κ Λ Μ	$egin{array}{c} \iota & & \ \kappa & & \ \lambda & & \ \mu & & \end{array}$	Jota Kappa Lambda My	$egin{array}{c} \Phi & X & \Psi & \Omega & \end{array}$	$\begin{array}{c} \varphi \\ \chi \\ \psi \\ \omega \end{array}$	Phi Chi Psi Omega

11.2 Frakturbuchstaben

A a B b C c D d	A a B b C c D d	O o P p Q q R r	O o P p Q q R t	
E e F f G g H h	E e F f G g H	$\begin{array}{c} S & s \\ T & t \\ U & u \\ V & v \end{array}$	S s T t U u V v	
I i J j K k L l	I i I j K t L l	W w X x Y y Z z	W w X r Y y 3 z	
${ m M\ m}$ ${ m N\ n}$	M m N n			

11.3 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3{,}14159\ 26535\ 89793\ 23846\ 26433\ 83279\ldots$
- 2. Eulersche Zahl e = 2,71828 18284 59045 23536 02874 71352 . . .
- 3. Euler-Mascheroni-Konstante $\gamma = 0{,}57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1+\sqrt{5})/2$ $\varphi = 1,61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4,66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2{,}50290~78750~95892~82228~39028~73218\ldots$

11.4 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum c=299792 458 m/s
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8,\!854~187~817~620~39\times 10^{-12}~\mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{H/m}$
- 4. Elementar ladung $e = 1,602\ 176\ 6208\ (98) \times 10^{-19}\ {\rm C}$
- 5. Gravitationskonstante $G = 6,674~08~(31)\times 10^{-11}~{\rm m}^3/({\rm kg}\,{\rm s}^2)$
- 6. Avogadro-Konstante $N_A = 6{,}022\ 140\ 857\ (74) \times 10^{23}/\mathrm{mol}$
- 7. Boltzmann-Konstante $k_B = 1{,}380~648~52~(79) \times 10^{-23}~{\rm J/K}$
- 8. Universelle Gaskonstante R = 8.314 4598 (48) J/(mol K)
- 9. Plancksches Wirkungsquantum $h=6{,}626$ 070 040 (81) × $10^{-34}\,\mathrm{Js}$
- 10. Reduziertes planksches Wirkungsquantum $\hbar = 1,054$ 571 800 (13) × 10^{-34} Js
- 11. Masse des Elektrons $m_e = 9{,}109~383~56~(11)\times 10^{-31}~\mathrm{kg}$
- 12. Masse des Neutrons $m_n = 1{,}674\ 927\ 471\ (21)\times 10^{-27}\ {\rm kg}$
- 13. Masse des Protons $m_p = 1,672~621~898~(21) \times 10^{-27} \,\mathrm{kg}$

36 KAPITEL 11. ANHANG

11.5 Einheiten

11.5.1 Vorsätze

Vorsatz	Faktor	Zahlwort
Exa E	10^{18}	Trillion
Peta P	10^{15}	Billiarde
Tera T	10^{12}	Billion
Giga G	10^{9}	Milliarde
Mega M	10^{6}	Million
Kilo k	10^{3}	Tausend
Hekto h	10^{2}	Hundert
Deka da	10^{1}	Zehn
Dezi d	10^{-1}	Zehntel
Zenti c	10^{-2}	Hunderstel
Milli m	10^{-3}	Tausenstel
Mikro μ	10^{-6}	Millionstel
Nano n	10^{-9}	Milliardstel
Pico p	10^{-12}	Billionstel
Femto f	10^{-15}	Billiardstel
Atto a	10^{-18}	Trillionstel

ь.	••		c.
Kın	arı	nra	fixe
D	u	Ji u	IIAC

D a.	P. a	
Vorsa	Faktor	
Yobi	Yi	2^{80}
Zebi	Zi	2^{70}
Exbi	Ei	2^{60}
Pebi	Pi	2^{50}
Tebi	Ti	2^{40}
Gibi	$_{\mathrm{Gi}}$	2^{30}
Mebi	Mi	2^{20}
Kibi	Ki	2^{10}

11.5.2 SI-System

Newton (Kraft):

$$N = kg m/s^2. (11.1)$$

Watt (Leistung):

$$W = kg m^2/s^3 = VA.$$
 (11.2)

Joule (Energie):

$$J = kg m^2/s^2 = Nm = Ws = VAs.$$
 (11.3)

Pascal (Druck):

$$Pa = N/m^2 = 10^{-5} bar.$$
 (11.4)

Hertz (Frequenz):

$$Hz = 1/s.$$
 (11.5)

Coulomb (Ladung):

$$C = As. (11.6)$$

Volt (Spannung):

$$V = kg m^2 / (A s^3)$$
 (11.7)

Tesla (magnetische Flussdichte):

$$T = N/(A m) = Vs/m^2.$$
 (11.8)

11.5.3 Nicht-SI-Einheiten

Einheit	Symbol	Umrechnung
Zeit:		
Minute	min	$=60\mathrm{s}$
Stunde	h	= 60 min = 3600 s
Tag	d	$= 24 \mathrm{h} = 86400 \mathrm{s}$
Jahr	a	$= 356,25 \mathrm{d}$
Druck:		
bar	bar	$= 10^5 \mathrm{Pa}$
mmHg	mmHg	= 133,322 Pa
Fläche:		
Ar	a	$= 100 \mathrm{m}^2$
Hektar	ha	$= 100 \mathrm{a} = 10000 \mathrm{m}^2$
Masse:		
Tonne	t	= 1000 kg
Länge:		
Liter	L	$= 10^{-3} \mathrm{m}^3$

11.5.4 Britische Einheiten

Einheit	Abk.	Umrechnung
inch	in.	= 2,54 cm
foot	ft.	$= 12 \mathrm{in.} = 30,48 \mathrm{cm}$
yard	yd.	= 3 ft. = 91,44 cm
$\overset{\circ}{\mathrm{chain}}$	ch.	$= 22 \mathrm{yd.} = 20{,}1168 \mathrm{m}$
6 1		10.1
furlong	fur.	$= 10 \mathrm{ch.} = 201,168 \mathrm{m}$
$_{ m mile}$	mi.	= 1760 yd. = 1609,3440 m

Index

Ableitung, 16	Häufungspunkt, 15
absolut konvergent, 15	Hauptsatz der Analysis, 17
Additionstheoreme, 13	holomorph, 27
allgemeine lineare Gruppe, 21	1 /
Alternator, 23	injektiv, 10
Aussagenlogik, 6	inverse Matrix, 21
äußere Algebra, 23	Isomorphismus
Automorphismus	zwischen Gruppen, 31
auf einem Vektorraum, 21	Iteration, 11
Bahn, 31	Jacobi-Matrix, 18
Bahnenraum, 31	,
Bahnformel, 31	komplexe Zahl, 6
Banachraum, 15	Komposition, 11
Betrag	Kompositionsoperator, 28
einer komplexen Zahl, 6	Konjugation
bijektiv, 10	einer komplexen Zahl, 6
Bild, 11	Konjunktion, 6
Binomialkoeffizient, 29	Kontraposition, 7
Tabelle, 32	Kontravalenz, 6
binomische Formeln, 6	konvergente Folge, 15
binomischer Lehrsatz, 5	Konvergenzkriterium, 16 Kosekans, 13
boolesche Algebra, 6	Kosinus, 13
G 1 77 4 4 5	Kotangens, 13
Cauchy Hauptwert, 17	Kotangentialbündel, 25
Cauchy-Folge, 15	Kurve, 25
Cauchy-Produkt, 16	114170, 20
charakteristisches Polynom, 22	Lemma von Burnside, 31
Christoffel-Symbole, 26	lineares Gleichungssytem, 22
Cosinus, 13	
Determinante, 22	Matrix, 21
Differential quotient, 16	quadratische, 21
Differentialrechnung, 16	Matrizenring, 21
differenzierbar, 16	" 1: 1 D : 1.: 00
direktes Produkt, 31	natürliche Projektion, 26
Disjunktion, 6	Norm, 20
dynamisches System, 28	Orbit
	unter einem dynamischen System, 28
Ebene, 24	unter einer Gruppenaktion, 31
Eigenraum, 22	Orthogonal, 20
Eigenwert, 22	Orthogonalbasis, 20
Einschränkung, 11	Orthogonalsystem, 20
Einsetzungshomomorphimus, 31	Orthonormalbasis, 20
Endomorphismus	Orthonormalsystem, 20
auf einem Vektorraum, 21	
erweiterte Koeffizientenmatrix, 22	Parameterdarstellung
Euler-Lagrange-Gleichung, 19	einer Ebene, 24
Falstonialla 20	einer Geraden, 24
Faktorielle, 29	Partialsumme, 15
Fakultät, 29 Fixgruppe, 31	partielle Ableitung, 18
Fixgruppe, 31 Fourier-Koeffizient, 19	Polarkoordinaten, 25
Fourierreihe, 19	Primzahlen
Fundamentallemma, 19	Tabelle, 34
i anadinentamina, 17	principial value, 17 Punktrichtungsform, 24
geometrische Vielfachheit, 22	1 unautonoungstorm, 24
Gerade, 24	quadratische Matrix, 21
Gradient, 18	Quotientenkriterium, 16
Grenzwert, 15	
Gruppenaktion, 31	reelle Funktion, 16
Gruppenhomomorphismus, 31	Regelfunktion, 17

38 INDEX

Reihe, 15 Ring, 31 Matrizenring, 21
Sekans, 13 Sinus, 13 Skalarfeld auf dem Koordinatenraum, 18 Skalarprodukt, 20 Spektrum, 22 Stabilisator, 31 Stirling-Zahlen Tabelle, 33 Streichungsmatrix, 22 surjektiv, 10 symmetrische Bilinearform, 21 symmetrische Matrix, 21
Tangens, 13 Tangentialbündel, 25 Teleskopsumme, 15 Treppenfunktion, 17
Umgebung, 15 Umgebungsfilter, 15 Umkehrfunktion, 10 unbedingt konvergent, 16 Urbild, 11
Variationsrechnung, 19 Vektorfeld auf dem Koordinatenraum, 18 vollständig, 15
Weg, 25 Widerspruch, 7 Winkelfunktion, 13
Zustand, 28 Zustandsraum, 28 Zwischenwertsatz, 16