AUFTRAGGEBER:

> FRAUNHOFER IOSB

BETREUER:

> THOMAS POLLOK & STEFAN WOLF

Rapid Classification Al Trainer

PFLICHTENHEFT

- > ADRIAN NELSON
- > ANDREAS OTT
- **DARIA BIDENKO**
- > JONAS WILLE
- > PAUL SCHAARSCHMIDT
- > SASCHA ROLINGER

Inhaltsverzeichnis

1 Einleitung	1
2 Zielbestimmung	1
2.1 Muss-Kriterien 2.2 Kann-Kriterien 2.3 Abgrenzungskriterien	2
3 Produkteinsatz	3
3.1 Anwendungsbeschreibung 3.2 Anwendungsbereiche 3.3 Zielgruppe 3.4 Betriebsbedingungen	3 3
4 Produktfunktionen	4
4.1 Funktionsübersicht 4.2 Funktionsbeschreibungen 4.3 Anwendungsfälle	5
5 Produktumgebung	21
5.1 Software	21
6 Produktdaten	22
6.1 Projektdaten	22
7 Benutzerschnittstelle	
7.1 Hauptfenster 7.2 Home 7.3 Import Files. 7.4 Image Inspection 7.5 AI Training 7.6 Input Images 7.7 Results 7.8 Automation	
7.9 Settings	
8 Produktleistung	
8.1 Grundlegende Produktleistungen	
9 Testfälle und Testszenarien	
9.1 Testfälle 9.2 Testszenarien	
10 Zeitplanung	49
10.1 Zeitplan	49
Glossar	51

1 Einleitung

Das Projekt "Rapid Classification AI Trainer" wird im Rahmen des Moduls Praxis der Softwareentwicklung am Karlsruher Institut für Technologie (KIT) im Sommersemester 20/21 für das Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB) entwickelt.

2 Zielbestimmung

Das Ziel dieses PSE Projekts ist eine Desktop-Anwendung, die anhand von verschiedenen Suchbegriffen Bilder aus dem Internet lädt und mit diesen das Training eines Deep-Learning-Modells startet. Im Folgenden werden die maßgeblichen Eigenschaften der Software definiert. Sie sind dabei aufgeteilt in Muss-Kriterien, die implementiert werden müssen, Kann-Kriterien, deren Implementierung wünschenswert ist, und Abgrenzungskriterien, die explizit nicht implementiert werden sollen.

2.1 Muss-Kriterien

- Die Anwendung beinhaltet ein Plugin-Framework zum automatisierten Abruf von Bildern aus diversen Quellen anhand von Suchwörtern
 - o Ein Plugin für die Verwendung des Flickr APIs wird mit der Anwendung ausgeliefert
 - o Die gefunden Bilder können in der Anwendung ausgewählt und inspiziert werden
 - o Die Suchwörter werden als Beschriftung (engl. *label*) der geladenen Bilder für nachgelagerte Verarbeitungsschritte verwendet
 - o Suchwörter können aus einer Datei geladen werden
- Die Anwendung beinhaltet ein Plugin-Framework zur Parametrisierung und Training verschiedener Klassifikatoren
 - o Ein Plugin für die Verwendung von MMClassification des OpenMMLab wird mit der Anwendung ausgeliefert
 - Die Klassifikationsgenauigkeit des verwendeten Modells wird ausgegeben, sowie eine Verlustkurve und Top1, Top5 Genauigkeit
 - o Die Anwendung unterstützt den Vergleich von zwei Klassifikationsmodellen
- Die Aufteilung der Bilder in Validierungs- und Trainingsdatensatz erfolgt automatisch mit vom Nutzer spezifizierten Anteilen
- Der Nutzer kann Bilder ohne Label klassifizieren lassen
- > Der Nutzer kann in MMClassification ein auf ImageNet vortrainiertes Modell auswählen
- Eine Profilverwaltung für die Einstellungen der Klassifikatoren wird angeboten
- Eine Einstellungsverwaltung für Sammlerplugins wird angeboten
- Die Ausgabe des Trainings beinhaltet eine Konfusionsmatrix und die 10 am stärksten falsch klassifizierte Bilder
- > Das Abspeichern von Klassifizierungsergebnissen in maschinenlesbarem Format und Bildern ist möglich

2.2 Kann-Kriterien

- Das Projekt wird als Linux-Server-Anwendung realisiert, unterteilt in GUI/Programmlogik für Benutzer/Server
- > Ein Plugin für die Verwendung des Bing Image APIs wird mit der Anwendung ausgeliefert, sowie weitere Image Search Plugins
- Die von den Bildsammler APIs aus der Anwendung heraus gestellten Anfragen werden protokolliert, um eine Überschreitung der an den API-Zugang gekoppelten Anfragenobergrenze zu vermeiden
- Durch ein Batch-Verarbeitungssystem können vom Benutzer definierte Jobs geplant und ausgeführt werden
- Der Nutzer kann einzelne Bilder zwischen Validierungs- und Trainingsdatensatz verschieben, sowie separat einen Validierungsdatensatz laden
- Die vom Nutzer ausgeführten Bildersuchen und Trainings werden protokolliert, um die Modellentwicklung nachvollziehbar zu machen
- Die Konfigurationsdateien zweier Modelle können verglichen werden
- Speicherverwaltung der Datensätze, d.h. Löschung und Verschiebung
- Neben der Klassifizierung wird auch die Objekterkennung durch Plugins ermöglicht
- Der Nutzer kann aus dem Programm heraus Einstellungen in den Klassifizierungswerkzeugen über Templates treffen, die dann in die Konfigurationsdatei des Werkzeugs übernommen werden
- Dem Nutzer wird eine Vorschau der Data Augmentation angezeigt

2.3 Abgrenzungskriterien

- Keine programmatische Überprüfung von korrektem Labeling oder KI-Ergebnissen
- Das Programm wird mit englischem Sprachpaket ausgeliefert. Weitere Sprachen werden nicht angeboten und eine Erweiterbarkeit ist nicht gefordert.
- > Für die Verwaltung der Datensätze wird das ImageNet-Format (Klassifikation) und das Coco-Format (Objekterkennung) verwendet. Eine Überführung dieser Formate in eventuell von anderen Werkzeugen benötigte Formate wird nicht unterstützt.

3 Produkteinsatz

Dieses Kapitel beschreibt, was die Software ist, wo sie sinnvoll eingesetzt werden kann und von wem sie auf welche Weise genutzt wird.

3.1 Anwendungsbeschreibung

Für das Training von Deep Learning basierten Modellen werden Trainingsdaten benötigt. Das Sammeln und Annotieren dieser Trainingsdaten kann sehr viel Zeit und Ressourcen in Anspruch nehmen. Das Ziel des Rapid-Classification AI Trainer PSE Projekts ist eine Desktop-Anwendung, die anhand von verschiedenen Suchbegriffen Bilder aus dem Internet lädt und mit diesen das Training eines Deep-Learning-Modells startet. Mittels der Suchbegriffe haben die Bilder bereits eine Klassenzuordnung und müssen nicht mehr annotiert werden. Eine zentrale Anforderung an das Projekt ist dabei eine hohe Modularität. Sowohl das Laden der Bilder als auch das KI-Training soll über Plugins umgesetzt werden, sodass später noch neue Datenquelle wie auch neue Trainingsmethoden hinzugefügt werden können. Die Implementierung findet in C⁺⁺ und Qt statt. Für die Codeverwaltung wird GIT verwendet.

3.2 Anwendungsbereiche

Der Hauptanwendungsbereich der Software ist die Verwendung zum Training von KI-Modellen am Fraunhofer IOSB. Die Software soll dabei einen Vergleich zwischen verschiedenen ausgewählten Klassifizierungsmodellen ermöglichen und dem Nutzer das Sammeln sowie Annotieren ("Labeling") dieser Bilddaten für Forschungszwecke weitestgehend erleichtern.

3.3 Zielgruppe

Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung.

3.4 Betriebsbedingungen

> Desktop oder Laptop gebunden

4 Produktfunktionen

Im Folgenden werden die Produktfunktionen aufgeführt. Das Produkt verhält sich funktional, wie beschrieben.

4.1 Funktionsübersicht

4.1.1 Grundfunktionen

FA 10	Neues Projekt erstellen
FA 20	Projekt öffnen
FA 30	Projekt löschen
FA 40	Trainings- und Validierungsbilder definieren
FA 50	Anteil Validierungs- zu Trainingsbilder einstellen
FA 60	Schlüsselwörter aus einer Datei laden
FA 70	Hinzufügen eines neuen, vortrainierten Modells
FA 80	Laden eines vom Benutzer erstellten, vortrainierten Modells
FA 90	Trainiertes Modell löschen
FA 100	Unpassende Bilder manuell entfernen
FA 110	Training ausführen
FA 120	Zu klassifizierende Bilder (Eingabebilder) definieren
FA 130	Eingabebilder klassifizieren
FA 140	Konfusionsmatrix ausgeben
FA 150	Verlustkurve ausgeben
FA 160	Die 10 am stärksten falsch klassifizierte Bilder anzeigen
FA 170	Top 1 und Top 5 Genauigkeit ausgeben
FA 180	Trainings- oder Klassifizierungsergebnisse abspeichern
FA 190	Verschiedene Klassifizierungsmodelle vergleichen
FA 200	Selektion und Einstellung des KI Klassifikationsplugin
FA 210	Selektion und Einstellung des Bildsammlerplugins
FA 220	Plugin hinzufügen

4.1.2 Optionale Funktionen

FA 300	Bilder zwischen Labels verschieben
FA 310	Für die Klassifizierungsmodelle wird eine Versionsverwaltung implementiert
FA 320	Mit Data Augmentation den Bilderdatensatz anpassen
FA 330	Eine Vorschau der Data Augmentation anzeigen
FA 340	Automatisierte Verarbeitung mehrere Trainingsvorgänge

4.2 Funktionsbeschreibungen

FA 10

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

> Es wird ein neues Projekt erstellt.

Vorbedingung:

Benutzer befindet sich auf dem "Start"-Tab

Nachbedingung:

- Ein neues Projekt wurde angelegt, was das Laden von Trainings- und Validierungsbildern, wie auch das weitere Konfigurieren der einzelnen Komponenten ermöglicht.
- Das Projektverzeichnis inkl. Projektdatei wurde angelegt
- Der Benutzer befindet sich im neu erstellten Projekt.

Erfolgsszenario:

- 1. Benutzer betätigt die Schaltfläche "Neues Projekt erstellen"
- 2. Benutzer gibt einen Namen ein und ein Verzeichnis an.
- 3. Der Benutzer befindet sich im neu erstellten Projekt.

FA 20

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Die Daten eines Projektes aus dem Projektverzeichnis laden.

Vorbedingung:

- Ein Projekt wurde angelegt.
- Man befindet sich auf dem "Start"-Tab.

Nachbedingung:

- Die Dateien aus dem Projektverzeichnis des ausgewählten Projektes wurden geladen und die Projektinhalte sind auf dem selbem Stand als sie bei der letzten Speicherung der Dateien des Projektes waren.
- Die Inhalte des Projektes werden angezeigt und können bearbeitet werden.

Erfolgsszenario:

- 1. Der Benutzer wählt ein zu öffnendes Projekt aus
- 2. Der Benutzer betätigt die "Öffnen" Schaltfläche

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Ein Projekt und seine Daten löschen.

Vorbedingung:

- Das zu löschende Projekt wurde angelegt.
- Man befindet sich auf dem "Start"-Tab

Nachbedingung:

- Das Projektverzeichnis und damit mit dem Projekt verbundene Inhalte (Trainingsbilder, Validierungsbilder, Eingabebilder und Projektdatei) sind gelöscht worden.
- Modelle bleiben, sofern die Löschung aller mit dem Projekt verbundener Modelle nicht ausgewählt wurde, erhalten

Er folgs szenario:

- 1. Der Benutzer wählt das zu löschende Projekt aus
- 2. Der Benutzer betätigt die "Löschen"-Schaltfläche
- 3. Der Benutzer wählt mit einem Klick die Option "verbundene Modelle löschen" aus Alternative Abläufe:
 - 3a. Der Benutzer wählt nicht die Option "verbundene Modelle löschen" aus, sodass die Modelle zur weiteren Verwendung erhalten bleiben.

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Ein Satz an Trainings- und Validierungsbilder wird in das Programm geladen.

Vorbedingung:

- Bilder sind durch ein Sammlerplugin erreichbar.
- Benutzer befindet sich im "Importiere Dateien"-Tab.

Nachbedingung:

Bilder sind der Software bekannt und können weiterverwendet werden.

Er folgs szenario:

- 1. Benutzer gibt Schlüsselwörter ein
- 2. Benutzer legt Anzahl fest
- 3. Benutzer wählt Plugin aus
- 4. Benutzer konfiguriert Plugin soweit notwendig
- 5. Benutzer betätigt "Lade Bilder"
- 6. Ein Fortschrittsbalken wird angezeigt

Alternative Abläufe:

4a. Falls erforderliche Parameter für das Sammlerplugin fehlen, wird der Nutzer visuell darauf aufmerksam gemacht. Sofern der Nutzer seine Konfiguration korrigiert, wird bei Schritt 5 fortgefahren.

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Anteil der Validierungs- zu Trainingsbilder verstellen.

Vorbedingung:

Benutzer befindet sich im "Importiere Dateien"-Tab.

Nachbedingung:

 Bilder werden in dem gewünschten Verhältnis zwischen Validierung und Training aufgeteilt.

Erfolgsszenario:

- 1. Benutzer gibt Schlüsselwörter ein
- 2. Benutzer legt Anzahl fest
- 3. Benutzer wählt Plugin aus
- 4. Benutzer konfiguriert Plugin soweit notwendig
- 5. Benutzer schiebt den Regler "Split Validation (%)" und gibt somit die Prozentuale Aufteilung zwischen Validierungs- und Trainingsbildern an
- 6. Benutzer betätigt "Lade Bilder"
- 7. Ein Fortschrittsbalken wird angezeigt
- 8. Die geladenen Bilder wurden nach den gewünschten Anteilen aufgeteilt

FA 60

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Schlüsselwörter für eine Suchanfrage werden aus einer Text Datei übernommen.

Vorbedingung:

- Yextdatei liegt in korrektem Format vor.
- Ein Projekt ist geöffnet.
- Benutzer befindet sich im "Importiere Dateien"-Tab.

Nachbedingung:

Alle Begriffe aus der angegebenen Datei sind jetzt in der Schlüsselwörterleiste vorhanden.

Erfolgsszenario:

- 1. Benutzer betätigt Schlüsselwörterladen Schaltfläche
- 2. Ein Dialog zu der Auswahl einer Datei im Dateisystem öffnet sich
- 3. Benutzter wählt konkrete Text Datei
- 4. Benutzer betätigt "Bestätigen"
- 5. Die Begriffe aus der Datei erscheinen in der Schlüsselwortleiste

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	$\operatorname{Grundfunktion}$

Ziel:

> Ein vortrainiertes Klassifikationsmodell soll in die Anwendung für ein Training hinzugefügt werden.

Vorbedingung:

- Ein Klassifikationsplugin ist geladen und wurde korrekt eingestellt
- Das Klassifikationsplugin stellt mindestens ein Basismodell bereit
- Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Nachbedingung:

Ein neues vortrainiertes Modell steht zum Training zur Verfügung

Erfolgsszenario:

- 1. Benutzer klickt auf die Schaltfläche "Hinzufügen"
- 2. Der Benutzer gibt einen Namen für das zu erstellende Modell ein
- 3. Der Benutzer wählt ein Plugin aus, das mindestens ein Basismodell beinhaltet
- 4. Der Benutzer wählt ein Basismodell aus
- 5. Benutzer bestätigt seine Auswahl

FA80

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

> Es kann ein vom Benutzer erstelltes, vortrainiertes Modell geladen werden

Vorbedingung:

- > Es wurde nach FA 40 ein Modell hinzugefügt
- > Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Nachbedingung:

> Ein bereits erstelltes, vortrainiertes Modell wurde geladen und steht zum Training zur Verfügung

${\it Erfolgs szenario:}$

- 1. Benutzer wählt ein vorher erstelltes Modell aus
- 2. Benutzer betätigt die Schaltfläche "laden"

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Es kann ein bereits trainiertes Modell gelöscht werden.

Vorbedingung:

- Es wurde innerhalb des ausgewählten Projektes ein Modell trainiert.
- Man wechselt zum "Importiere Dateien"-Tab

Nachbedingung:

Das ausgewählte Modell wurde vom zugehörigen Datensatz gelöscht. Andere Inhalte wie z.B. der Datensatz und die anderen trainierte Modelle innerhalb dieses Projektes bleiben aber erhalten.

Erfolgsszenario:

- 1. Der Benutzer wählt das zu löschende Modell aus.
- 2. Der Benutzer wählt die Schaltfläche "Löschen" aus.

FA 100

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

\rightarrow Unpassendes Bild aus dem Trainingssatz entfernen.

Vorbedingung:

Die Trainingsbilder sind bereits geladen.

Nachbedingung:

> Unpassende Bilder wurden aus dem Trainingssatz entfernt.

Erfolgsszenario:

- 1. Benutzer geht auf den "Bildinspektion"-Tab
- 2. Benutzer wählt Bild/Bilder
- 3. Benutzer drückt den "Trainingsbilder entfernen"-Knopf
- 4. Die gewählten Bilder sind nicht mehr in der Vorschau zu sehen

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

> Ein Modell wird mithilfe der ausgewählten Trainings- und Validierungsbilder trainiert

Vorbedingung:

- Es sind bereits Trainings- und Validierungsbilder geladen
- Ein Modell zum Trainieren wurde geladen
- Benutzer befindet sich auf dem "KI Training"-Tab

Nachbedingung:

Das Modell wurde auf den Bildern trainiert.

Erfolgsszenario:

1. Benutzer betätigt die Schaltfläche "Start"

Alternative Abläufe:

1a. Der Benutzer kann nach FA320 Optionen zur Data Augmentation ausgewählt haben, die sich auf den Trainingsvorgang auswirken. Diese Auswahl muss dann noch vor dem Starten des Trainings stattfinden.

FA 120

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Zu klassifizierende Bilder werden in das Programm geladen.

Vorbedingung:

Eingabedaten befinden sich an einer für das Programm erreichbaren Position.

Nachbedingung:

- Eingabebilder sind der Software bekannt und können klassifiziert werden.
- Man befindet sich im "Eingabebilder"-Tab

Erfolgsszenario:

- 1. Benutzer gibt Pfad an, an dem sich Bilder befinden
- 2. Benutzer betätigt "Importieren"
- 3. Geladene Bilder werden angezeigt

Alternative Abläufe:

1a. Falls der Ordner leer ist, oder keine validen Bilddateien enthält, wird eine Fehlermeldung zurückgegeben.

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

> Eingabebilder werden von einem Modell ausgewertet

Vorbedingung:

- > Es sind Eingabebilder und ein Modell bereits geladen
- Man befindet sich im "Eingabebilder"-Tab

Nachbedingung:

 \rangle Die Eingabebilder werden mit einer Wahrscheinlichkeit durch das Modell Klassen zugeordnet

Erfolgsszenario:

- 1. Benutzer betätigt "Klassifizieren"
- 2. Ergebnisse werden im "Ergebnisse"-Tab angezeigt

FA 140

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Es wird eine Konfusionsmatrix des trainierten Modells angezeigt.

Vorbedingung:

Der Trainingsprozess ist abgeschlossen.

Nachbedingung:

 \rangle Die Konfusionsmatrix wird angezeigt und kann ausgewertet werden.

Erfolgsszenario:

- 1. Benutzer öffnet "Ergebnisse"-Tab
- 2. Auf dem "Ergebnisse"-Tab wird die Konfusionsmatrix angezeigt

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Es wird eine Verlustkurve des trainierten Modells angezeigt.

Vorbedingung:

> Der Trainingsprozess ist abgeschlossen.

Nachbedingung:

Die Verlustkurve wird angezeigt und kann ausgewertet werden.

${\it Erfolgs szenario:}$

- 1. Benutzer öffnet "Ergebnisse"-Tab
- 2. Auf dem "Ergebnisse"-Tab wird die Verlustkurve angezeigt

FA 160

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

 $\rangle~$ Es wird eine Bildansicht der 10 am stärksten falsch klassifizierten Bilder ausgegeben.

Vorbedingung:

Der Trainingsprozess ist abgeschlossen.

Nachbedingung:

Die 10 am stärksten falsch klassifizierten Bilder werden angezeigt.

Erfolgsszenario:

- 1. Benutzer öffnet "Ergebnisse"-Tab
- 2. Im "Ergebnisse"-Tab sind die am 10 stärksten falsch klassifizierten Bilder zu sehen

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Die Top 1 und Top 5 Genauigkeit wird angezeigt

Vorbedingung:

- Der Trainingsprozess ist abgeschlossen.
- Benutzer wechselt zum "Ergebnisse"-Tab

Nachbedingung:

> Im "Ergebnisse"-Tab sind die Werte einzusehen

Erfolgsszenario:

1. Benutzer wählt innerhalb des "Ergebnisse"-Tabs den "Trainings Ergebnisse"-Tab aus

Alternative Abläufe:

1a. Es findet keine Auswahl statt, sofern der "Trainings Ergebnisse"-Tab bereits ausgewählt ist

FA 180

Akteur	Häufigkeit	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

 $\rangle\;$ Es werden alle Trainingsergebnisse oder alle Klassifizierungsergebnisse, die in Form von Verlustkurve, Konfusionsmatrix, den 10 am stärksten falsch klassifizierten Bildern und Top 1 und Top 5 Genauigkeit vorliegen, abgespeichert

Vorbedingung:

- Zur Speicherung von Trainingsergebnissen muss es einen erfolgreichen Trainingsvorgang gegeben haben
- > Zur Speicherung von Klassifizierungsergebnissen muss es eine erfolgreiche Klassifizierung gegeben haben
- Man befindet sich auf dem "Ergebnisse"-Tab

Nachbedingung:

Es wurden alle Trainingsergebnisse oder alle Klassifizierungsergebnisse abgespeichert

Erfolgsszenario:

- 1. Benutzer wählt innerhalb des "Ergebnisse"-Tab den "Training Ergebnisse"-Tab zur Speicherung der Trainingsergebnisse aus
- 2. Benutzer betätigt die "Speichern"-Schaltfläche

Alternative Abläufe:

2a. Stattdessen kann der Benutzer innerhalb des "Ergebnisse"-Tab den "Klassifizierung Ergebnisse"-Tab zur Speicherung der Klassifizierungsergebnisse auswählen

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Grundfunktion

Ziel:

Mehrere Modelle werden miteinander verglichen.

Vorbedingung:

Die Modelle basieren auf demselben Datensatz und existieren bereits.

Nachbedingung:

Die Grafiken im "Ergebnisse"-Tab zeigen Vergleiche zwischen beiden Modellen.

Erfolgsszenario:

- 1. Benutzer trainiert ein Modell
- 2. Benutzer öffnet "Ergebnisse"-Tab
- 3. Benutzer wählt bei "Vergleichen mit:" ein anderes Modell aus
- 4. Die Grafiken im "Ergebnisse"-Tab zeigen Vergleiche zwischen aktuellem Modell und Vergleichsmodell an

FA 200

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Selten	Grundfunktion

Ziel:

Das KI-Klassifikationsplugin ist korrekt eingestellt.

Vorbedingung:

> Das zu verwendende Plugin befinden sich an einer für das Programm erreichbaren Position.

Nachbedingung:

Das KI-Klassifikationsplugin wurde vollständig konfiguriert und kann verwendet werden.

Erfolgsszenario:

- 1. Benutzer öffnet die Einstellungen aus dem Hauptfenster
- 2. Benutzer wählt Klassifikationsplugin in Einstellungsliste
- 3. Benutzer füllt die Einstellungsseite aus
- 4. Benutzer bestätigt die Eingaben
- 5. Das Plugin wurde erfolgreich konfiguriert

Alternative Abläufe:

4a. Falls die Einstellungen unvollständig bzw. nicht korrekt, wird der Nutzer visuell darauf aufmerksam gemacht. Sofern er die Einstellungen korrigiert, wird bei Schritt 4 fortgefahren.

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Selten	Grundfunktion

Ziel:

Das Bildsammlerplugin ist korrekt eingestellt.

Vorbedingung:

> Das zu verwendende Plugin befinden sich an einer für das Programm erreichbaren Position.

Nachbedingung:

Das Bildsammlerplugin wurde vollständig konfiguriert und kann verwendet werden.

Erfolgsszenario:

- 1. Benutzer öffnet die Einstellungen aus dem Hauptfenster
- 2. Benutzer wählt Bildsammlerplugins in der Einstellungsliste
- 3. Benutzer füllt die Einstellungsseite aus
- 4. Benutzer betätigt die Eingaben
- 5. Das Plugin wurde erfolgreich konfiguriert

Alternative Abläufe:

4a. Falls die Einstellungen unvollständig bzw. nicht korrekt, wird der Nutzer visuell darauf aufmerksam gemacht. Sofern er die Einstellungen korrigiert, wird bei Schritt 4 fortgefahren.

FA 220

Akteur	Häufigkeit	Kategorie
Benutzer	Selten	Grundfunktion

Ziel:

Ein Plugin wurde zur Anwendung hinzugefügt.

Vorbedingung:

Ein zum Plugin Framework kompatibles Plugin steht zur Verfügung.

Nachbedingung:

Das hinzugefügte Plugin kann aus dem Programm heraus benutzt werden.

Er folgs szenario:

- 1. Benutzer legt das Plugin in den Plugin Ordner ab
- 2. Das Plugin wird beim Starten des Programms erkannt, und in den Plugin spezifischen Menüs eingebunden. Das ist der globale Einstellungsbereich, sowie das Menü zur Auswahl des Bildsammlers, und die trainingsspezifischen Einstellungen für Klassifizierungsplugins.

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Optionale Funktion

Ziel:

Bilder zwischen Labels verschieben.

Vorbedingung:

- Die Trainingsbilder sind bereits geladen.
- Man befindet sich im "Bildinspektion"-Tab

Nachbedingung:

Die Bilder sind unter dem vom Benutzer gewünschten Label.

Erfolgsszenario:

- 1. Benutzer wählt Bild/Bilder
- 2. Benutzer verschiebt die Bilder (Drag & Drop) in entsprechendes Feld
- 3. Die gewählten Bilder sind unter gewünschten Labeln zu sehen

FA 310

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Optionale Funktion

Ziel:

> Für die Klassifizierungsmodelle steht eine Versionsverwaltung bereit. Dies wird über die von Pytorch (in MM Classification) erstellten Checkpoints und den darin enthaltenen Parameterdateien (.pth) ermöglicht. Versionen können geladen oder gelöscht werden.

Vorbedingung:

- Das ausgewählte Modell wurde bereits mithilfe dieser Anwendung trainiert.
- Es fanden weitere Trainingsvorgänge mit diesem Modell statt.
- Benutzer befindet sich beim "Importiere Dateien"-Tab

Nachbedingung:

Der Nutzer kann eine Version (lernbare Parameter/Gewichte) des ausgewählten Modells laden und damit weiterarbeiten oder alternativ die ausgewählte Version löschen

Erfolgsszenario:

- 1. Benutzer wählt ein Modell aus
- 2. Dem Benutzer wird eine Auswahl der Versionen des ausgewählten Modells angezeigt
- 3. Die ausgewählte Version des ausgewählten Modells wird über die Schaltfläche "Laden" geladen und macht die Weiterarbeit möglich.

Alternative Abläufe:

3a. Es wird die Schaltfläche "Löschen" betätigt, was die Löschung der ausgewählten Version zur Folge hat.

Akteur	Häufigkeit	Kategorie
Benutzer	Oft	Optionale Funktion

Ziel:

Der Bilderdatensatz soll mit Methoden der Data Augmentation angepasst werden können.

Vorbedingung:

- \rightarrow In das geöffnete Projekt ist ein Bilderdatensatz hineingeladen worden.
- > Der Benutzer befindet sich beim Tab "KI Training"

Nachbedingung:

Der Datensatz wird während des Trainingsvorgang durch Methoden der Data Augmentation temporär für ein besseres Trainingsergebnis angepasst.

Erfolgsszenario:

- 1. Benutzer wählt die zu verwendende/n Data Augmentation Methode(n) aus
- 2. Benutzer füllt die Parameterfelder aus
- 3. Der Benutzer bestätigt seine Eingabe
- 4. Benutzer erhält eine Vorschau anhand eines Beispielbildes der ausgewählten Methode.

FA 330

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Optionale Funktion

Ziel:

Vum die Methoden der Data Augmentation dem Benutzer zugänglicher zu machen, wird eine Vorschau der ausgewählten Methode mit den eingegebenen Parametern anhand eines Beispielbildes angezeigt.

Vorbedingung:

- \ In das geöffnete Projekt ist ein Bilderdatensatz hineingeladen worden.
- Der Benutzer befindet sich beim Tab "KI Training"
- Der Benutzer hat gemäß FA 320 eine Auswahl der Data Augmentation Methode bzw. der Eingabe der Parameter getan

Nachbedingung:

Der Benutzer erhält eine Vorschau der Data Augmentation mithilfe eines Beispielbildes, dass gemäß der ausgewählten Methode und eventueller Parametereingabe angepasst wurde.

Erfolgsszenario:

- 1. Der Benutzer klickt auf "Zeige Vorschau"
- 2. Benutzer erhält eine Vorschau anhand eines Beispielbildes der ausgewählten Methode mit den ausgewählten Parametern.

Akteur	$H\"{a}ufigkeit$	Kategorie
Benutzer	Oft	Optionale Funktion

Ziel:

> Es sollen automatisiert mehrere Trainingsvorgänge hintereinander ausgeführt werden können.

Vorbedingung:

Es existieren bereits entsprechend definierte Aufgaben.

Nachbedingung:

Die angegebenen Aufgaben sind durchgeführt, das heißt mehrere Modelle wurden trainiert.

Erfolgsszenario:

- 1. Benutzer wechselt zum Tab "Automatisierung"
- 2. Benutzer wählt Aufgaben auf der linken Fensterseite aus
- 3. Benutzer betätigt den ">|" Knopf, die ausgewählten Aufgaben befinden sich rechts
- 4. Benutzer betätigt den "Start" Knopf.

4.3 Anwendungsfälle

Das folgende Diagramm veranschaulicht mögliche Interaktionen eines Nutzers mit der Software.

Abbildung 1: Anwendungsfalldiagramm

5 Produktumgebung

5.1 Software

Ein PC mit dem Betriebssystem Windows 10 mit 64 Bit wird für die Software benötigt. Wenn eine Modelldatei mit dem Klassifikationsplugin weiter trainiert wird oder Bilder klassifiziert werden sollen, muss das gewählte Plugin bereits installiert sein.

5.2 Hardware

Folgende minimale Hardware wird benötigt:

- > 16GB Arbeitsspeicher
- > 3,4GHz Quad-Core Prozessor
- > 256GB SSD Speicher
- Nvidia RTX 2070
- > Bildschirm und Eingabegeräte

5.3 Einsatzkonditionen

Der Nutzer muss bei der Benutzung der Software folgende Bedingungen beachten:

- > Die tatsächlichen Hardwareanforderungen hängen stark von der Größe und Komplexität des ausgewählten Projekts ab
- > Es können keine Projekte geladen werden, die den verfügbaren Speicherplatz oder andere Ressourcen überlasten
- > Für den Trainings- sowie Klassifizierungsprozess wird bei vielen Projekten eine sehr hohe Grafikleistung benötigt, daher ist eine dedizierte Grafikkarte für die Anwendung unverzichtbar

6 Produktdaten

Innerhalb der Software werden grundsätzlich zwei Arten von Daten gespeichert: Projektdaten und Standardeinstellungen. Die Projektdaten enthalten projektspezifische Information und werden in dem dedizierten Projektverzeichnis abgespeichert. Die Standardeinstellungsdaten sind global und projektübergreifend.

6.1 Projektdaten

PD10	Trainings- und Validierungsbilder
PD20	Eingabebilder
PD30	Zu Projekt gehörende Modelle
PD40	Modellparameter und Konfigurationen
PD50	Ausgabewerte tabellarisch, graphisch

6.2 Standardeinstellungsdaten

PD110	Verzeichnis, in welches Plugins installiert werden
PD120	Standardarbeitsverzeichnis
PD130	Plugin Konfigurationen
PD140	Nutzer Präferenzen für die Anwendung
PD150	Zuletzt geöffnete Projekte

7 Benutzerschnittstelle

7.1 Hauptfenster

Das Hauptfenster beinhaltet alle zentralen Funktionen der Anwendung bis auf Dialoge, in ein separates Fenster ausgelagerte Einstellungen und etwaige Pop-outs um Ergebnisse besser betrachten zu können. Die verschiedenen Funktionen der Anwendung werden über die Reiter am oberen Rand des Fensters angesteuert. Die Anordnung wurde gewählt, sodass sich der Nutzer im Standardszenario der Nutzung des Programms intuitiv in Leserichtung von links nach rechts über die Reiter bewegt. Im Folgenden werden die Inhalte dieser Reiter erläutert.

Abbildung 2: Struktur des Hauptfensters

7.2 Home

Der "Home" (dt.: in etwa "Start") Tab fordert den Nutzer dazu auf ein Projekt auszuwählen, welches die Grundlage für die weiteren Arbeitsschritte bietet. Ein Projekt umfasst dabei einen Bilderdatensatz und die darauf trainierten Modelle. Der Nutzer kann ein neues Projekt hinzufügen, indem er einen Namen vergibt und einen Projektordner in seinem Dateisystem definiert. Der Nutzer kann ein Projekt entfernen. Durch die Auswahl eines Projektes in der Liste und die Betätigung der "Open" Schaltfläche wird das Projekt geladen. Danach ist das geladene Projekt mit einem Haken links neben seinem Namen gekennzeichnet.

Abbildung 3: Home Tab und Dialoge

7.3 Import Files

Der "Import Files" (dt.: "importiere Dateien") Tab ist in zwei Bereiche unterteilt. Im oberen Bereich wird ein Bildsammlerplugin ausgewählt, und für das Laden von Bildern konfiguriert. Dazu sind die Suchbegriffe, die gewünschte Anzahl von Bildern, das Bildsammlerplugin und die Aufteilung zwischen Validierungs- und Trainingsdatensatz anzugeben. Nach Betätigung der "Load Images" (dt.: "lade Bilder") Schaltfläche bearbeitet das Programm die Aufgabe und zeigt den Erfolg auf nebenstehendem Ladebalken an. Zusätzlich gibt es die Möglichkeit Suchbegriffe aus einer Datei zu laden, anstatt sie manuell in das Eingabefeld zu schreiben.

Im unteren Teil des Fensters soll der Nutzer ein Modell auswählen, welches im Projekt vorhanden ist. Er kann über eine Schaltfläche ein Modell hinzufügen. Dazu muss der Nutzer einen Namen für das Modell angeben, welches Plugin für das Modell verwendet wird, und auf welchem vortrainierten Basismodell das neue Modell aufgesetzt werden soll. Nach der Auswahl wird durch den Lade-Knopf das Modell geladen. Dies wird durch einen Haken neben dem Modellnamen in der Modellliste kenntlich gemacht.

Abbildung 4: Import Files Tab und Dialoge

7.4 Image Inspection

Der "Image Inspection" (dt.: "Bildinspektion") Tab zeigt eine Vorschau der geladenen Validierungs-/Trainingsbilder. Die Validierungsbilder sind unter "Validation images" (dt.: "Validierungsbilder") und die Trainingsbilder unter "Training Images" (dt.: "Trainingsbilder") zu finden. Zu jedem Label aus der Bildsuche gibt es einen entsprechenden Punkt, welcher eine aufklappbare Liste der Bilder enthält. Im unten gezeigten Beispiel sind also unter "Flugzeug" genau die Bilder zu sehen, die durch Suchen von "Flugzeug" gefunden wurden. Weiter ist es mittels des Knopfes "Remove selected images" (dt.: "Ausgewählte Bilder entfernen") möglich ausgewählte Bilder aus der Vorschau und dem Trainingssatz zu entfernen. Zudem ist es möglich die Bilder zwischen den verschiedenen Labels zu verschieben, wenn also Autobilder im Flugzeugabschnitt gefunden werden, können diese mittels Drag & Drop in den Autoabschnitt verschoben werden.

Abbildung 5: Image Inspection Tab

7.5 AI Training

In dem "AI Training" (dt.: "KI Training") Tab wird das Training von dem zuvor ausgewählten Modell auf dem Datensatz des Projektes gestartet. Im oberen Teil des Fensters wird vor jedem Training eine Auswahl an Optionen für die Anpassung des Datensatzes durch Bildtransformationen gewählt. Durch die Betätigung der Schaltfläche "Show Preview" wird auf Basis von Beispielbildern der Effekt dieser Transformation für den Benutzer veranschaulicht. Im unteren Teil des Fensters können weitere Einstellungen für das Training getroffen werden, für die eine Festlegung vor jedem Training sinnvoll ist. Im unten dargestellten Fall ist dies die Auflösung.

Am unteren Ende des Fensters kann das Training gestartet oder abgebrochen werden. Der Fortschritt ist dem Ladebalken zu entnehmen.

Abbildung 6: AI Training Tab

7.6 Input Images

Der "Input Images" (dt.: "Eingabe Bilder") Tab bietet die Möglichkeit Eingabe Bilder, die später von einem Modell ausgewertet werden sollen, in das Programm zu Laden. Dazu befindet sich im oberen Teil des Tabs eine Eingabeleiste, hier kann ein Pfad angegeben werden, an dem sich Bilder befinden. Es ist auch möglich mittels der "Ordner" Schaltfläche rechts neben der Leiste in das Dateisystem des Rechners zu gelangen. Von innerhalb des Dateisystems aus kann dann auch ein Pfad spezifiziert werden. Die "Load" (dt.: "Lade") Schaltfläche ist dazu die am Pfad befinden Bilder zu importieren. In der sich darunter befindenden "Preview" (dt.: "Vorschau") Sektion werden dann die geladenen Bilder angezeigt. Mithilfe des Scrollbalkens kann durch die Anzeige der Bilder navigiert werden, sofern diese nicht alle auf einmal angezeigt werden können. Im unteren Teil des Tabs befindet sich ein Fortschrittsbalken, dieser zeigt den Status des Importier Vorgangs an. Die "Classify" (dt.: "Auswerten") Schaltfläche stößt die Auswertung der Bilder an.

Abbildung 7: Eingabebilder Tab

7.7 Results

Im "Results" (dt.: "Ergebnisse") Tab wird zwischen zwei Verschiedene Arten von Ergebnissen unterschieden. Die Ergebnisse eines Trainings bzw. einer Validierung und die Ergebnisse einer Klassifikation, diese erhalten jeweils ihr eigenes Unter-Tab. Im oberen Teil des "Training results" (dt.: "Trainingsergebnisse") Tab befindet sich ein Feld, dieses zeigt das momentan geladene Modell an. Darunter befindet sich eine Dropdownmenü. Mit diesem kann ein anderes zweites Modell zum Vergleich ausgesucht werden. Wird ein zweites Modell ausgesucht, werden sowohl Daten zu dem Aktuellen sowie auch dem Vergleichsmodell in den folgenden Graphiken wiedergegeben. In der "Results and Comparison" (dt.: "Ergebnisse und Vergleich") Sektion wird die Verlustkurve angezeigt. Daneben werden die Ergebnisse der Validierung des Geladenen Modells in Form einer Verwirrungsmatrix angezeigt. Darüber befindet sich eine Ausgabe der Top 5 und Top 1 Genauigkeiten. Auf der linken Seite der Sektion gibt es die Ansicht "10 Most Misclassified images" (dt.: "10 am meisten falsch Klassifizierten Bilder") hier werden die 10 am

häufigsten falsch klassifizierten Bilder angezeigt. Mittels der "Save" (dt.: "Speichern") Schaltfläche in der unteren Rechten Ecke können diese angezeigten Ergebnisse abgespeichert werden.

In dem "Classification Results" (dt.: "Klassifikationsergebnisse") Tab werden die Ergebnisse einer Auswertung der Eingabebilder anhand eines Modells Tabellarisch angezeigt. Hier befindet sich auch in der unteren rechten Ecke eine "Save" (dt.: "Speichern") Schaltfläche, mit der die Tabelle abgespeichert werden kann.

Abbildung 8: Results Tab Training Results

Abbildung 9: Results Tab Klassifizierungsergebnisse

7.8 Automation

Im "Automation" (dt.: "Automatisierung") Tab wird dem Benutzer ermöglicht, Tasks (dt.: "Aufgaben") zu importieren und diese vom Programm abarbeiten zu lassen. Der Import der Tasks erfolgt über die Betätigung der "Import New Tasks" Schaltfläche. Die Spezifikation der Tasks muss hierzu in einem JSON Format vorliegen. Darin sind die gleichen Parameter anzugeben, die bei einer manuellen Bearbeitung der Aufgabe in dem Programm in den jeweiligen Eingabemenüs anzugeben wären.

In der linken Liste sind die definierten Aufgaben zu sehen, welche bereits eingelesen, aber noch nicht in die Ausführungswarteschlange eingereiht wurden. Durch Betätigung der Schaltfläche mit dem Doppelpfeil nach rechts werden alle definierten Aufgaben in die Abarbeitungswarteschlange eingereiht. Der gleiche Pfeil in die umgekehrte Richtung entfernt alle Aufgaben aus der Abarbeitungswarteschlange, und fügt sie wieder in die linke Liste ein. Einzelne markierte Aufgaben können mit den anderen Pfeilen zwischen linker und rechter Liste transferiert werden.

Die Ausführung und damit die Abarbeitung der Aufgaben wird über die Schaltfläche mit dem "Play Button" Icon gestartet, und mit der Schaltfläche direkt darunter gestoppt. Bereits abgearbeitete Aufgaben werden mit einem Haken links neben ihrem Namen gekennzeichnet. Abgebrochene oder fehlgeschlagene Aufgaben sind mit einem "x" gekennzeichnet. Die Aufgabe die aktuell bearbeitet wird ist durch ein Icon mit zwei kreisförmig angeordneten Pfeilen gekennzeichnet. Der Fortschritt der Bearbeitung kann am Ladebalken unter der rechten Liste abgelesen werden. Aufgaben mit einem leeren Kreis als Icon stehen noch in der Warteschlange und werden nach Fertigstellung der darüber dargestellten Aufgaben begonnen. Markierte Aufgaben können durch Betätigung der Schaltfläche mit dem "x" Icon aus den Listen entfernt werden.

Abbildung 10: Automation Tab

7.9 Settings

Das "Settings" (dt.: "Einstellungen") Fenster wird durch Betätigen der ebenso beschrifteten Schaltfläche auf dem Hauptfenster geöffnet. Hier können die globalen Einstellungen des Programmes getroffen werden. Für jedes dem Programm zugänglich gemachte Plugin gibt es zusätzlich einen eigenen Eintrag in der Liste auf der linken Seite. Durch Auswahl in der Liste

werden auf der rechten Seite die entsprechenden Einstellungsmöglichkeiten gezeigt. Die Abbildung zeigt die Einstellungsmöglichkeiten für das MMClassification Plugin. Im oberen Teil des Fensters werden die zum Plugin gehörenden Modelle im aktuellen Projekt angezeigt. Darunter sieht der Benutzer, welche Dateien das Plugin für das Modell verwendet und er hat die Möglichkeit dafür andere Dateien auszuwählen. Direkt darunter gibt es die Möglichkeit vom Plugin definierte Konfigurationen anzupassen, ohne dabei selbst die Einstellungsdateien des Modells direkt zu bearbeiten.

Am Ende des Fensters kann der Nutzer die vortrainierten Modelle verwalten, welche als Basis für alle vom Nutzer erstellten Modelle dienen. Hierzu reicht es aus, einen Namen und die Parameterund Konfigurationsdatei anzugeben.

Abbildung 11: Einstellungsverwaltung der Anwendung

8 Produktleistung

8.1 Grundlegende Produktleistungen

Im Folgenden geht es um quantifizierbare, nichtfunktionale Leistungen, die das Produkt erbringen soll.

NA 10	Plugins können verwendet werden nachdem sie der Anwendung bekannt gemacht
	wurden und die Plugin Einstellungen innerhalb der Anwendung getroffen wurden.
NA 20	Ein Erstnutzer der Software soll diese binnen einer Stunde verstanden haben und
	bedienen können.
NA 30	Die Benutzeroberfläche soll ein ansprechendes und modernes Design haben.
NA 40	Die Inhalte sollen in englischer Sprache vorliegen.
NA 50	Die Software wird in C ⁺⁺ implementiert.
NA 60	In der Implementierung wird das Anwendungsframework Qt 6 verwendet
NA 70	Die zur Bildklassifizierung verwendeten Bilder werden in das ImageNet
	Dateiformat gebracht.
NA 80	Die zur Objekterkennung verwendeten Metadateien (Bilder) und Labels werden in
	das Coco Format gebracht.
NA 90	Im Standardszenario werden die Reiter der Anwendung von links nach rechts
	durchlaufen, ohne dass der Benutzer zurücknavigieren muss.

9 Testfälle und Testszenarien

9.1 Testfälle

T 10

 ${\it Zugeh\"{o}rige\ Produktfunktion:}$

> FA 10

Neues Projekt erstellen

Vorbedingung:

Der Benutzer befindet sich auf dem "Start"-Tab

Ablauf:

Aktion	Reaktion
Klick auf "Neues Projekt erstellen".	Der Benutzer wird aufgefordert einen Namen
	für das Projekt einzugeben und ein
	Verzeichnis.
Der Benutzer gibt einen Namen, ein	Es wird ein neues Projekt mit dem gewählten
Verzeichnis ein und bestätigt seine Eingabe.	Namen im spezifizierten Verzeichnis angelegt.

T 20

 $Zugeh\"{o}rige\ Produktfunktion:$

> FA 20

Projekt öffnen

Vorbedingung:

- \rangle Der Benutzer befindet sich auf dem "Start"-Tab
- > Ein Projekt wurde angelegt

Ablauf:

Aktion	Reaktion
Klick auf das zu öffnende Projekt und	Das ausgewählte Projekt wird mit highlight
bediene den Ladeknopf.	angezeigt
Klick auf den Ladeknopf	Es wird das ausgewählte Projekt aus seiner
	Projektdatei geladen.

Zugehörige Produktfunktion:

> FA 30

Projekt löschen

Vorbedingung:

- \rangle Der Benutzer befindet sich auf dem "Start"-Tab
- Das zu löschende Projekt wurde angelegt

Ablauf:

Aktion	Reaktion
Das zu löschende Projekt wird aus der Liste ausgewählt	Das Projekt wird in der Liste markiert
Es wird auf die Schaltfläche "Löschen"	Der Benutzer wird aufgefordert die Löschung
geklickt.	nochmals zu bestätigten.
Der Benutzer bestätigt das ausgewählte	Die Projektdatei und alle damit verbundenen
Projekt zu löschen.	Daten wie Trainings-, Validierungs- und
	Eingabebilder, wie auch Modelle,
	Konfigurationen und Einstellungen des
	Projektes werden gelöscht.

T 40

 $Zugeh\"{o}rige\ Produktfunktion:$

> FA 40

Trainings- und Validierungsbilder definieren

Vorbedingung:

 \rangle Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Aktion	Reaktion
Schlüsselbegriffe werden in das entsprechende	Eingegebene Schlüsselbegriffe werden als
Feld eingegeben	kleines Kästchen in das Feld übernommen

 $Zugeh\"{o}rige\ Produktfunktion:$

angle FA 40 Trainings- und Validierungsbilder definieren

> Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Ablauf:

Aktion	Reaktion
Klick auf Sammlerplugin Leiste	Ein Dropdown Menu mit den vorhandenen
	Plugins wird geöffnet
In dem Dropdown Menu wird ein Sammler	Gewähltes Sammlerplugin erscheint in der
Plugin ausgewählt	Leiste

T 60

 ${\it Zugeh\"{o}rige\ Produkt funktion:}$

FA 40 Trainings- und Validierungsbilder definieren

- \rangle Der Benutzer befindet sich auf dem "Importiere Bilder"-Tab
- > Sammlerplugin als auch Schlüsselbegriffe wurden definiert

Aktion	Reaktion
Anzahl der Bilder wird in das entsprechende	Eingegebene Zahl wird übernommen und im
Feld eingegeben	Feld angezeigt
Klick auf "Lade Bilder"	Bilder werden geladen, Fortschrittsbalken
	wird entsprechend aktualisiert

 $Zugeh\"{o}rige\ Produktfunktion:$

 $\rangle~$ FA 50 ~ Anteil Validierungs- zu Trainingsbilder einstellen Vorbedingung:

- > Der Benutzer befindet sich auf dem "Importiere Bilder"-Tab
- Sammlerplugin als auch Schlüsselbegriffe und Bilderanzahl wurden definiert

Ablauf:

Aktion	Reaktion
Balken "Split Validation (%)" verschieben	Rechts vom Balken wird der Prozentsatz an
	Validierungsbildern aktualisiert
Klick auf "Lade Bilder"	Bilder werden geladen und gemäß dem
	gewählten Prozentsatz in Trainings- und
	Validierungsbilder aufgeteilt

T 80

 ${\it Zugeh\"{o}rige\ Produkt funktion:}$

> FA 60 Schlüsselwörter aus einer Datei laden

- > Der Benutzer befindet sich auf dem "Importiere Bilder"-Tab
- Man hat eine korrekt formatierte Datei mit Suchbegriffen vorbereitet

Aktion	Reaktion
Den Knopf mit dem Datei Icon neben der	Es öffnet sich ein Dateibrowser.
Suchbegriffeingabe betätigen	
Die vorbereitete Datei auswählen und	Die Suchbegriffe aus der Datei befinden sich
Eingabe bestätigen	in der Suchbegriffeingabe in der Anwendung

Zugehörige Produktfunktion:

> FA 70 Hinzufügen eines neuen, vortrainierten Modells

Vorbedingung:

- $\rangle~$ Ein Klassifikationsplugin ist geladen und wurde laut FA 210 korrekt eingestellt
- Das Klassifikationsmodell stellt mindestens ein Basismodell bereit
- > Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Ablauf:

Aktion	Reaktion
Klick auf "Hinzufügen"	Es öffnet sich ein Dialog Fenster zu
	Erstellung eines Modells
Der Benutzer gibt einen Namen ein	Es wird der eingegebene Name im Feld
	angezeigt
Der Benutzer wählt das zu verwendende	Es ist eine Auswahl der Basismodelle des
Plugin aus	Plugins über das Dropdown Feld möglich
Der Benutzer wählt ein Basismodell im	Das ausgewählte Modell wird im DropDown
Dropdown Feld aus	Feld angezeigt
Klick auf "Okay"	Ein neues Modell auf Grundlage des
	Basismodells mit dem eingegebenen Namen
	wird erstellt

T 100

 ${\it Zugeh\"{o}rige\ Produktfunktion:}$

 \rangle FA 80 Laden eines vom Benutzer erstellten, vortrainierten Modells Vorbedingung

- > Es wurde nach FA 70 ein Modell hinzugefügt
- > Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Aktion	Reaktion
Klick auf ein Modell	Ausgewähltes Modell wird in dem
	entsprechenden Feld angezeigt
Klick auf "Lade"	Keine direkte Reaktion: Modell kann jetzt
	weiterverwendet werden

Zugehörige Produktfunktion:

> FA 90 Trainiertes Modell löschen

Vorbedingung:

- Es wurde innerhalb des ausgewählten Projektes ein Modell trainiert
- Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Ablauf:

Aktion	Reaktion
Das zu löschende, bereits trainierte Modell wird in der Liste ausgewählt	Das Modell wird in der Liste markiert
Es wird auf die Schaltfläche "Löschen" geklickt	Der Benutzer wird aufgefordert die Löschung nochmals zu bestätigen
Der Benutzer bestätigt das ausgewählte	Das ausgewählte Modell wird vom Projekt
Projekt zu löschen	gelöscht und ist nicht mehr in der Liste

T 120

Zugehörige Produktfunktion:

angle FA 100 Unpassende Bilder manuell entfernen

Vorbedingung:

> Trainingsbilder sind bereits geladen.

Ablauf:

Aktion	Reaktion
Klick auf Bild/Bilder	Bilder werden markiert
Klick auf "Ausgewählte Bilder entfernen"-	Gewählte Bilder werden aus der Ansicht
Knopf	entfernt

T 130

Zugehörige Produktfunktion:

> FA 110 Training ausführen

Vorbedingung:

- Es sind bereits Trainings- und Validierungsbilder geladen
- Ein Modell zum Trainieren wurde geladen
- > Der Benutzer befindet sich auf dem "KI Training"-Tab

Aktion	Reaktion
Klick auf "Start"	Fortschrittsbalken wird entsprechend
	aktualisiert

Zugehörige Produktfunktion:

> FA 120 Zu klassifizierende Bilder (Eingabebilder) definieren

Vorbedingung:

Der Benutzer befindet sich auf dem "Eingabebilder"-Tab

Ablauf:

Aktion	Reaktion
Eingabepfad wird im entsprechenden Feld	Der Pfad wird in das Feld übernommen
angegeben	
Klick auf "Importieren"	Sich an diesem Pfad befindenden Bilder
	werden angezeigt.

T 150

Zugehörige Produktfunktion:

> FA 130 Eingabebilder klassifizieren

Vorbedingung:

- Der Benutzer befindet sich auf dem "Eingabebilder"-Tab
- Die zu klassifizierende Bilder sind bereits geladen.
- \rangle Ein Modell zum Trainieren wurde geladen

Ablauf:

Aktion	Reaktion
Klick auf "Klassifizieren"	Fortschrittsbalken wird entsprechend
	aktualisiert

T 160

Zugehörige Produktfunktion:

> FA 140 Konfusionsmatrix ausgeben

Vorbedingung:

 \rangle Der Trainingsprozess ist abgeschlossen.

Aktion	Reaktion
Klick auf "Ergebnisse"-Tab	Im "Ergebnisse"- Tab wird eine
	Konfusionsmatrix des trainierten Modells
	angezeigt

Zugehörige Produktfunktion:

> FA 150 Verlustkurve ausgeben

Vorbedingung:

 \rangle Der Trainingsprozess ist abgeschlossen.

Ablauf:

Aktion	Reaktion
Klick auf "Ergebnisse"-Tab	Im "Ergebnisse"-Tab wird die Verlustkurve
	angezeigt.

T 180

Zugehörige Produktfunktion:

 \rangle FA 160 — Die 10 am stärksten falsch klassifizierte Bilder anzeigen

Vorbedingung:

> Der Trainingsprozess ist abgeschlossen.

Ablauf:

Aktion	Reaktion
Klick auf "Ergebnisse"-Tab	Im "Ergebnisse"-Tab werden 10 Bilder
	angezeigt. Die Bilder sind die 10 am
	stärksten falsch klassifizierten Bilder.

T 190

Zugehörige Produktfunktion:

angle FA 170 Top 1 und Top 5 Genauigkeit ausgeben

Vorbedingung:

> Der Trainingsvorgang ist abgeschlossen

Aktion	Reaktion
Wechsel zum "Ergebnisse"-Tab	Man sieht die Top 1 und Top 5
	Genauigkeitswerte.

Zugehörige Produktfunktion:

> FA 180 Trainings- oder Klassifizierungsergebnisse abspeichern

Vorbedingung:

- > Der Trainingsvorgang war erfolgreich
- > Der Benutzer befindet sich auf dem "Ergebnisse"-Tab

Ablauf:

Aktion	Reaktion
Auswahl des "Training Ergebnisse"-Tab	Die Ergebnisse des Trainings werden
	angezeigt
Klick auf "Speichern"	Die Trainingsergebnisse werden gespeichert

T 210

 $Zugeh\"{o}rige\ Produktfunktion:$

FA 180 Trainings- oder Klassifizierungsergebnisse abspeichern

Vorbedingung:

- > Der Klassifizierungsvorgang war erfolgreich
- Der Benutzer befindet sich auf dem "Ergebnisse"-Tab

Ablauf:

Aktion	Reaktion
Auswahl des "Klassifizierung Ergebnisse"-	Die Ergebnisse der Klassifizierung werden
Tab	angezeigt
Klick auf "Speichern"	Die Klassifizierungsergebnisse werden
	gespeichert

T 220

 ${\it Zugeh\"{o}rige\ Produkt funktion:}$

Yerschiedene Klassifizierungsmodelle vergleichen

Vorbedingung:

- › Die zu vergleichenden Modelle gehören zum gleichen Projekt und existieren bereits
- \rangle Der Benutzer befindet sich auf dem "Ergebnisse"-Tab

Aktion	Reaktion
Auswahl des ersten Modells (nach abgeschlossenem Training implizit)	Ausgewähltes Modell wird angezeigt
Auswahl des zweiten Modells	Ausgewähltes Modell wird angezeigt und die Metriken zum Vergleich erscheinen

Zugehörige Produktfunktion:

 \rangle FA 200 Selektion und Einstellung des KI Klassifikationsplugins

Vorbedingung:

- Die Einstellungsseite des Plugins wurde ausgefüllt
- Ein Testmodell wurde für das Plugin angelegt
- > Ein Testdatensatz liegt vor
- $\rangle\;$ Es liegen Vergleichsergebnisse aus einem Training mit dem Testmodell außerhalb der Anwendung vor
- > Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Ablauf:

Aktion	Reaktion
Auswahl und laden des Testmodells	Das Modell wird geladen
Wechseln in den Reiter "KI Training" und	Die Anwendung führt das Training aus
Start des Trainingsvorgangs	
Vergleich der Parameter Dateien des in der	Die Ergebnisse sind identisch
Anwendung trainierten Modells und des	
außerhalb trainierten Modells	

T 240

Zugehörige Produktfunktion:

> FA 210 Selektion und Einstellung des Bildsammlerplugins

Vorbedingung:

- Die Einstellungsseite des Plugins wurde ausgefüllt
- > Der Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Aktion	Reaktion
Eingabe eines Suchbegriffs in das	Der Suchbegriff wird als solcher markiert
entsprechende Feld und Angabe der	
restlichen Einstellungen	
Klicken auf das Bildsammler Dropdownmenü	Das zu testende Plugin wird angezeigt und
	kann ausgewählt werden
Auswahl des zu testenden Plugins und Start	Im nächsten Reiter sind Bilder zu dem
des Suchvorgangs	Suchbegriff zu sehen

 $Zugeh\"{o}rige\ Produktfunktion:$

> FA 210 Selektion und Einstellung des Bildsammlerplugins

> Ein kompatibles Plugin liegt vor

Ablauf:

Aktion	Reaktion
Das kompatible Plugin wird in dem	Sammlerplugin: Das Plugin wird im
Pluginverzeichnis der Anwendung abgelegt	Dropdownmenü für Sammler und auf der
	Einstellungsseite angezeigt. Die
	Einstellungsseite sieht aus wie in der
	Pluginbeschreibung
	Klassifikationsplugin: Das Plugin kann im
	"neues Modell" Dialog ausgewählt werden,
	und die Einstellungsseite sieht aus wie in der
	Pluginbeschreibung

T 300

 ${\it Zugeh\"{o}rige\ Produkt funktion:}$

FA 300 Bilder zwischen Labels verschieben

Vorbedingung:

> Trainingsbilder sind bereits geladen.

Aktion	Reaktion
Klick auf Bild/Bilder	Bilder werden markiert
Halte Maustaste gedrückt und ziehe	Semi-transparente Bildsymbole sind neben der Maus zu sehen
Über einem anderen Label (dem Bildbereich)	Gewählte Bilder werden nicht mehr in
loslassen	Ursprungsbereich angezeigt. Gewählte Bilder werden in anderem Label angezeigt.

Zugehörige Produktfunktion:

 \rangle FA 310 Für die Klassifizierungsmodelle wird eine Versionsverwaltung implementiert

- Das ausgewählte Modell wurde bereits mit dieser Anwendung trainiert
- > Es fanden mehrere Trainingsvorgänge mit diesem Modell statt
- > Benutzer befindet sich auf dem "Importiere Dateien"-Tab

Ablauf:

Aktion	Reaktion
Auswahl eines Modells, dass obige	Eine Ansicht zur Auswahl einer Version des
Bedingungen erfüllt	Modells erscheint
Auswahl einer Version des ausgewählten	Die ausgewählte Version kann wie ein
Modells	anderes Modell über die vorhandenen
	Schaltflächen geladen oder gelöscht werden
Benutzer klickt auf Laden oder auf Löschen	Die entsprechende Aktion wird gemäß FA 80
	(laden) bzw. FA 90 (löschen) durchgeführt

T 320

Zugehörige Produktfunktion:

 \rangle FA 320 Mit Data Augmentation den Bilderdatensatz anpassen .

- $Vorbedingung: % \begin{center} \be$
 - > In das geöffnete Projekt ist ein Bilderdatensatz hineingeladen worden.
 - ⟩ Der Benutzer befindet sich auf dem "KI Training"-Tab

Aktion	Reaktion
Klick auf zu verwendende Data	Die möglichen Parameter der Methode
Augmentation Methode (sofern mehrere zu	erscheinen
Verfügung stehen)	
Benutzer verändert bei Bedarf die	Die eingegeben Werte werden entsprechend
Parameterfelder der Methode	angezeigt

 $Zugeh\"{o}rige\ Produktfunktion:$

> FA 330 Eine Vorschau der Data Augmentation anzeigen

Vorbedingung:

- \rightarrow In das geöffnete Projekt ist ein Bilderdatensatz hineingeladen worden.
- Der Benutzer befindet sich auf dem "KI Training"-Tab
- > Der Benutzer hat gemäß FA 320 eine Auswahl der Data Augmentation Methode bzw. der Eingabe der Parameter getan

Ablauf:

Aktion	Reaktion
Klick auf "Vorschau anzeigen"	Eine Vorschau der ausgewählten Methode
	mit den eingegeben bzw. ausgewählten
	Parameter wird angezeigt

T 340

Zugehörige Produktfunktion:

FA 340 Automatisierte Verarbeitung mehrere Trainingsvorgänge

Vorbedingung:

- > Es gibt Aufgaben, die man importieren kann
- Der Benutzer befindet sich auf dem "Automatisierung"-Tab

Aktion	Reaktion
Klick auf "Importiere neue Aufgaben"	Es wird eine Dateiauswahl angezeigt
Wähle Dateien aus	Die Aufgaben werden in dem linken Kasten angezeigt
Aufgaben aus linkem Kasten ankreuzen und "⊳ " drücken	Die ausgewählten Aufgaben befinden sich nun im rechten Kasten
"Start"-Knopf drücken	Die Aufgaben im rechten Kasten werden verarbeitet

9.2 Testszenarien

S 10

Erstellung, Öffnung und Entfernung eines Projekts

Akteur: BenutzerHäufigkeit: Gelegentlich

Vorbedingung: Programm ist gestartet

Benutzer befindet sich im "Start"-Tab

→ Testfälle: T 10, T 20, T30

Nachbedingung: Ein neues Projekt Verzeichnis ist angelegt

Es wird genau 1 neues Projekt in der Projektauswahl angezeigt

> Erfolgsszenario:

- 1. Betätige "Neues Projekt"
- 2. Benenne das Projekt TestSz10
- 3. Wähle beliebigen Projektordner im Datei System
- 4. Betätige "Ok"
- 5. Wiederhole 1-4 einmalig, aber benenne das zweite Projekt TestSz10L
- 6. Schließe das Programm
- 7. Starte das Programm wieder
- 8. Wähle TestSz10L aus der Projektliste aus
- 9. Betätige "Entfernen"
- 10. Bestätige mit "Ok"

S 20

Definition der Trainings- und Validierungsbilder durch Dateiangabe. Entfernen von Trainings-Und Validierungsbildern. Training eines Modells auf diesen Bildern.

Akteur: BenutzerHäufigkeit: Oft

> Vorbedingung: Ein Projekt ist geöffnet

Das Projekt enthält bereits mindestens 1 Modell

\textbfalle: T 40, T 50, T 60, T 70 T 100, T 130

Nachbedingung: Ein Modell ist auf einem Datensatz von Bildern trainiert und kann

jetzt weiterverwendet werden.

> Erfolgsszenario:

- 1. Wähle "Importiere Dateien"-Tab.
- 2. Betätige die Ordner Schaltfläche
- 3. Wähle eine Datei aus, die die gewünschten Suchbegriffe enthält
- 4. Gebe 20 als Anzahl ein
- 5. Wähle Fickr als Sammlerplugin
- 6. Setze Validierungssplit auf 35%
- 7. Betätige "Lade Bilder"
- 8. Warte bis der Fortschrittsbalken bei 100% ist
- 9. Lade ein Beliebiges Modell
- 10. Wähle den "Bildinspektion"-Tab
- 11. Makiere 3 Beliebige bilder
- 12. Betätige "Ausgewählte Bilder entfernen"
- 13. Wähle den "KI Training"-Tab
- 14. Belasse alle Felder bei den Standardeinstellungen
- 15. Betätige "Start"

S 30

Definition eines neuen Modells, Training des Modells. Abspeichern der Ergebnisse.

Akteur: BenutzerHäufigkeit: Oft

> Vorbedingung: Ein Projekt ist geöffnet

Validierungs- und Trainingsbilder sind geladen

> **Testfälle**: T 80, T 90, T 120 T 130, T160, T170, T180, T190, T200

Nachbedingung: Ein neues Modell wurde erstellt und trainiert Trainings Ergebnisse wurden abgespeichert

> Erfolgsszenario:

- 1. Wähle "Importiere Dateien"-Tab.
- 2. Betätige "Hinzufügen"
- 3. Benenne das Modell Test1
- 4. Wähle das MMClassification Plugin aus
- 5. Wähle ein beliebiges Basismodell
- 6. Betätige "Okay"
- 7. Wähle den "KI Training"-Tab
- 8. Belasse alle Felder bei den Standardeinstellungen
- 9. Betätige "Start"
- 10. Warte bis Fortschrittsbalken bei 100% ist
- 11. Wähle den "Ergebnisse"-Tab
- 12. Betätige speichern

S 40

Auswertung von Eingabebildern, abspeichern der Ergebnisse.

Akteur: BenutzerHäufigkeit: Oft

> Vorbedingung: Ein Projekt ist geöffnet

Ein trainiertes Modell wurde geladen

→ Testfälle: T 150, T 210

Nachbedingung: Ergebnisse der Klassifikation erscheinen auf dem "Results"-Tab

Ergebnisse werden abgespeichert gespeichert

> Erfolgsszenario:

- 1. Wähle den "Eingabebilder"-Tab
- 2. Gebe ein beliebigen (validen) Pfad an
- 3. Betätigt "Lade"
- 4. Wähle den "Ergebnisse"-Tab
- 5. Wähle den "Klassifikation Ergebnisse" unter Tab
- 6. Betätige "Speichern"

10 Zeitplanung

10.1 Zeitplan

Abbildung 12 : Zeitplan

10.2 Verantwortliche Person in den jeweiligen Phasen

Phase 1: Planung	Jonas Wille
Phase 2: Entwurf	Paul Schaarschmidt
Phase 3: Implementierung	Sascha Rolinger
Phase 4: Qualitätssicherung	Daria Bidenko
Phase 5: Abschlusspräsentation	Adrian Nelson

10.3 Wasserfallmodell

Die Durchführung unseres Projekts ist an die einzelnen Phasen des Wasserfallmodells angelehnt.

Abbildung 13: Wasserfallmodell mit Rückkopplung

Glossar

- Basismodell bezeichnet ein vortrainiertes Modell, das dem Benutzer zur Erstellung eines spezifischeren Modells zur Verfügung steht. Es wird von einem Plugin in die Anwendung eingespeist und kann bei dem Hinzufügen eines Modells als Grundlage ausgewählt werden. Durch diesen Schritt des Hinzufügens entsteht dann ein Duplikat, dass mit dem Trainingsvorgang verändert werden kann. Das Basismodell ändert sich dementsprechend nicht. Beispielsweise liefert unsere Anwendung ein auf Image Net vortrainiertes Modell als Basismodell aus.
- C++ Eine von der ISO genormte Programmiersprache; ermöglicht sowohl die effiziente und maschinennahe Programmierung als auch eine Programmierung auf hohem Abstraktionsniveau.
- Deep Learning (tiefes Lernen) bezeichnet eine Methode des maschinellen Lernens, die künstliche neuronale Netze (KNN) mit zahlreichen Zwischenschichten zwischen Eingabeschicht und Ausgabeschicht einsetzt und dadurch eine umfangreiche innere Struktur herausbildet.
- **Git** eine freie Software zur verteilten Versionsverwaltung von Dateien, die durch Linus Torvalds initiiert wurde.
- **GUI** Bezeichnung für Graphische Nutzeroberfläche.
- **Flickr** kommerzieller Onlinedienst mit Community-Elementen, der es Benutzern erlaubt, digitale und digitalisierte Bilder sowie kurze Videos von maximal drei Minuten Dauer mit Kommentaren und Notizen auf die Website zu laden und so anderen Nutzern zugänglich zu machen.
- Klassifikator Algorithmus, speziell in der Mustererkennung eine mathematische Funktion, die einen Merkmalsraum auf eine Menge von Klassen abbildet.
- Konfusionsmatrix Tabellenlayout, das die Visualisierung der Leistung eines Algorithmus ermöglicht; überprüft, ob die Prognose einer Klassifikation richtiger-/fälschlicherweise wahr oder falsch ist.
- Künstliche Intelligenz (KI) auch artifizielle Intelligenz (AI) ein Versuch, bestimmte Entscheidungsstrukturen des Menschen nachzubilden, indem z. B. ein Computer so gebaut und programmiert wird, dass er relativ eigenständig Probleme bearbeiten kann.

- **Labeling** Annotieren der Bilddaten mit Suchworten als Beschriftung (engl. *label*) für nachgelagerte Verarbeitungsschritte.
- Nutzer Person die das Rapid Classification AI Programm nutzt.
- **Objekterkennung** Verfahren zum Identifizieren bekannter Objekte innerhalb eines Objektraums mittels optischer, akustischer oder anderer physikalischer Erkennungsverfahren.
- **Plugin** optionale Software-Komponente, die eine bestehende Software erweitert bzw. Verändert.
- Projekt Ein Bilddatensatz in Verbindung mit den darauf trainierten Modellen.
- **Qt** Anwendungsframework und GUI-Toolkit zur plattformübergreifenden Entwicklung von Programmen und grafischen Benutzeroberflächen.
- **Sammlerplugin** Eine konkrete Art von Plugin das die Möglichkeit bietet Bildermengen anhand von Suchbegriffen automatisch herunterzuladen.
- Server ein Rechner, der für andere in einem Netzwerk mit ihm verbundene Systeme bestimmte Aufgaben übernimmt und von dem diese ganz oder teilweise abhängig sind.
- Training des Deep-Learning-Modells «Fütterung» des Modells mit großen Trainingsdaten, um den Algorithmus zur Lösung eines Problems zu trainieren.
- Validierung des Deep-Learning Modells Auswertung eines bereits annotierten Bilder Satzes durch ein Deep-Learning-Modell, mit dem Ziel die Exaktheit des Modells quantifizieren zu können.