Fachhochschule Aachen Studienort Köln

Fachbereich 9: Medizintechnik und Technomathematik Studiengang: Angewandte Mathematik und Informatik

Abgabeübung COBOL Dreiecksberechnung

Abgabeübung

von

Leon Jarosch

Matrikelnummer: 3283258

Köln, den 6. November 2023

Inhaltsverzeichnis

1	Programmbeschreibung									
2	Verfahrensbeschreibung									
	2.1 Mathematischer Hintergrund									
		2.1.1	Formel von Heron		9					
		2.1.2	Satz des Pythagoras		10					
3	Testdokumentation									
	3.1	3.1 Vordefinierte Tests								
	3.2	Ergänz	zende Tests		11					
Α	Auf	gabenst	tellung		16					

1 Programmbeschreibung

Abbildung 1.1: Programmablauf

Abbildung 1.2: Winkelart

Abbildung 1.3: Dreiecksart

Abbildung 1.4: Umfang

CALC-PERIMITER

$$Umfang = A + B + C.$$

Abbildung 1.5: Oberfläche

PREPARE-OUTPUT

Überführe Variable A zu Output Variable A

Überführe Variable B zu Output Variable B

Überführe Variable C zu Output Variable C

Überführe Variable Umfang zu Output Variable Umfang

Überführe Variable Oberfläche zu Output Variable Oberfläche

Werte Dreiecksart aus und fülle Outputvariable

Werte Winkelart aus und fülle Outputvariable

Abbildung 1.6: Ausgabevorbereitung

DISPLAY-OUTPUT

Display Tabellenüberschriften

Display Dreieck

Abbildung 1.7: Ausgabe

2 Verfahrensbeschreibung

2.1 Mathematischer Hintergrund

Das System arbeitet mit verschiedenen mathematischen Verfahren mit welchen die benötigten Berechnungen durchgeführt werden.

2.1.1 Formel von Heron

Zum berechnen des Flächeninhalts eines Dreiecks wird die Formel von Heron verwendet.

Der Satz von Heron besagt, dass die Fläche eines Dreiecks durch die Länge seiner Seiten berechnet werden kann. Mathematisch ausgedrückt:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
(2.1)

(2.2)

Wobei s für die Hälfte des Umfangs steht:

$$s = \frac{a+b+c}{2} \tag{2.3}$$

Abbildung 2.1: Satz des Pythagoras

2.1.2 Satz des Pythagoras

Zum überprüfen ob ein Dreieck rechtwinklig ist, wird der Satz des Pythagoras verwendet.

Der Satz des Pythagoras besagt, dass in einem rechtwinkligen Dreieck die Summe der Kathetenquadrate gleich dem Hypothenusenquadrat ist. Mathematisch ausgedrückt:

$$a^2 + b^2 = c^2 (2.4)$$

(2.5)

3 Testdokumentation

Im folgenden Testfälle mit welchem das Programm getestet wurde.

- 3.1 Vordefinierte Tests
- 3.2 Ergänzende Tests

Abbildung 3.1: Testfall 1

Abbildung 3.2: Testfall 2

Abbildung 3.3: Testfall 3

Abbildung 3.4: Testfall 4

Abbildung 3.5: Testfall 5

Abbildung 3.6: Testfall 6

Abbildung 3.7: Testfall 7

A Aufgabenstellung

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

ABGABEÜBUNG COBOL

Bitte per Mail schicken als Cobol-Code UND pdf-Datei

Schreiben Sie ein COBOL-Programm, das drei positive ganze Zahlen a, b und c einliest, sie als Seitenlängen eines Dreiecks interpretiert und dessen Umfang, Flächeninhalt und Art ausgibt.

Input:

Solange werden drei positive ganze Zahlen a, b und c eingelesen, bis sie die Seitenlängen eines Dreiecks sind.

Output:

- Umfang U,
- Flächeninhalt F (auf drei Nachkommastellen gerundet),
- die Angabe "rechtwinklig" oder "nicht rechtwinklig",
- die Angabe "schief" oder "gleichschenklig" oder "gleichseitig".

Ein Dreieck ist genau dann

- schief, wenn es keine
- gleichschenklig, wenn es zwei
- gleichseitig, wenn es drei

gleich langen Seiten besitzt.

Beispiele:

а	b	С	U	F	Art
5	3	4	12	6,000	rechtwinklig, schief
11	11	10	32	48,990	nicht rechtwinklig, gleichschenklig
29	29	29	87	364,164	nicht rechtwinklig, gleichseitig

Abzugeben sind:

- Programmentwurf
- © Programmcode
- © Mathematische Verfahrensbeschreibung/mathematischer Hintergrund
- Weitere 4 geeignete Testfälle (incl. erwartetem und erreichtem Ergebnis)

Mathematischer Hintergrund:

Drei positive Zahlen bilden die Seitenlängen eines Dreiecks, wenn je zwei Seiten zusammen länger als die dritte Seite sind.

Der Flächeninhalt eines Dreiecks errechnet sich nach der Formel von Heron:

 $F = [s (s - a) (s - b) (s - c)]^{1/2}$, wobei s der halbe Umfang ist.

Ein Dreieck ist genau dann rechtwinklig, wenn der Satz des Pythagoras mit a oder b oder c als Hypotenuse gilt.