## Homework 4

July 15, 2025

### Author: Alejandro M. Ouslan

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
import statsmodels.stats.api as sms
from statsmodels.tsa.arima.model import ARIMA
import statsmodels.api as sm
from statsmodels.tsa.ar_model import AutoReg
import numpy as np
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

```
[2]: df = pd.read_excel("data/MONEYDEM-1.xls")
    df['year'] = df['DATE'].astype(int)
    df['quarter'] = ((df['DATE'] - df['year']) * 10).round().astype(int)
    df['date'] = df['year'].astype(str) + 'Q' + df['quarter'].astype(str)
    df['date'] = pd.PeriodIndex(df['date'], freq='Q')
    df.set_index('date', inplace=True)
    df
```

| [2]: |        | DATE   | TB3mo    | TB1yr    | year | quarter |
|------|--------|--------|----------|----------|------|---------|
|      | date   |        |          |          |      |         |
|      | 1959Q3 | 1959.3 | 3.540000 | 4.493333 | 1959 | 3       |
|      | 1959Q4 | 1959.4 | 4.230000 | 4.740000 | 1959 | 4       |
|      | 1960Q1 | 1960.1 | 3.873333 | 4.360000 | 1960 | 1       |
|      | 1960Q2 | 1960.2 | 2.993333 | 3.646667 | 1960 | 2       |
|      | 1960Q3 | 1960.3 | 2.360000 | 2.903333 | 1960 | 3       |
|      | •••    | •••    | •••      |          | •••  |         |
|      | 2000Q1 | 2000.1 | 5.520000 | 5.816667 | 2000 | 1       |
|      | 2000Q2 | 2000.2 | 5.713333 | 5.856667 | 2000 | 2       |
|      | 2000Q3 | 2000.3 | 6.016667 | 5.803333 | 2000 | 3       |
|      | 2000Q4 | 2000.4 | 6.016667 | 5.630000 | 2000 | 4       |
|      | 2001Q1 | 2001.1 | 4.816667 | 4.416667 | 2001 | 1       |

[167 rows x 5 columns]

## 1 Problems

### 1.1 Problem a

```
[3]: #1a
    plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['TB3mo'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB3mo')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



```
[4]: plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['TB1yr'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB1yr')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• No, they appear to have changing mean and variance given that in 1980 had a vilont spike

## 1.2 Problem b

```
[5]: plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['TB1yr'], marker='o')
    plt.plot(df.index.to_timestamp(), df['TB3mo'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• They apear to be practically identical the seam to follow the same trend

## 1.3 Problem c

```
[6]: model = smf.ols("TB1yr ~ TB3mo", data=df).fit()
print(model.summary())
```

## OLS Regression Results

| Dep. Variable:    | TB1yr            | R-squared:          | 0.980     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.980     |
| Method:           | Least Squares    | F-statistic:        | 7975.     |
| Date:             | Tue, 15 Jul 2025 | Prob (F-statistic): | 1.30e-141 |
| Time:             | 21:30:14         | Log-Likelihood:     | -56.689   |
| No. Observations: | 167              | AIC:                | 117.4     |
| Df Residuals:     | 165              | BIC:                | 123.6     |
| Df Model:         | 1                |                     |           |

Covariance Type: nonrobust

|                        | coef             | std err        | t                | P> t                                   | [0.025         | 0.975]          |
|------------------------|------------------|----------------|------------------|----------------------------------------|----------------|-----------------|
| Intercept<br>TB3mo     | 0.6981<br>0.9167 | 0.067<br>0.010 | 10.486<br>89.302 | 0.000                                  | 0.567<br>0.896 | 0.830<br>0.937  |
| Omnibus: Prob(Omnibus) | <br>):           |                | 202              | ========<br>in-Watson:<br>ue-Bera (JB) | ) :            | 0.623<br>39.846 |

| Kurtosis: | 5.322 | Cond. No. | 16.7     |
|-----------|-------|-----------|----------|
| Skew:     | 0.289 | Prob(JB): | 2.23e-09 |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### 1.4 Problem d

• A 1 percentage point increase in the 3-month Treasury rate (short-term) is associated with a 0.9167 percentage point increase in the 1-year Treasury rate (long-term), on average, holding other factors constant.

#### 1.5 Problem e

```
[7]: t_test_result = model.t_test('TB3mo = 1')
print(t_test_result)
```

Test for Constraints

|    | coef   | std err | t      | P> t  | [0.025 | 0.975] |
|----|--------|---------|--------|-------|--------|--------|
| c0 | 0.9167 | 0.010   | -8.112 | 0.000 | 0.896  | 0.937  |

• since p-value is 0.000 there is strong but less-than-perfect pass-through from short- to long-term rates.

#### 1.6 Problem f

```
[8]: residuals = model.resid

plt.figure(figsize=(8, 5))
plt.scatter(df['TB3mo'], residuals, alpha=0.7)
plt.axhline(0, color='red', linestyle='--')
plt.xlabel('TB3mo (3-month Treasury rate)')
plt.ylabel('Residuals')
plt.title('Residuals vs TB3mo')
plt.grid(True)
plt.show()
```



• No there does not seam to be a pattern

## 1.7 Problem g

```
[9]: residuals = model.resid
  exog = model.model.exog

white_test = sms.het_white(residuals, exog)

lm_stat, lm_pvalue, f_stat, f_pvalue = white_test

print(f"White test LM statistic: {lm_stat:.4f}")
  print(f"White test LM p-value: {lm_pvalue:.4f}")
  print(f"White test F statistic: {f_stat:.4f}")
  print(f"White test F p-value: {f_pvalue:.4f}")
```

White test LM statistic: 31.3738 White test LM p-value: 0.0000 White test F statistic: 18.9687 White test F p-value: 0.0000

• given that the p-value is 0.0000 there is evidence of heteroskedasticity

### 1.8 Problem h

```
[10]: model_robust = smf.ols("TB1yr ~ TB3mo", data=df).fit(cov_type='HCO')
print(model_robust.summary())
```

#### OLS Regression Results

| ===========       | ===========      |                     | ========= |
|-------------------|------------------|---------------------|-----------|
| Dep. Variable:    | TB1yr            | R-squared:          | 0.980     |
| Model:            | OLS              | Adj. R-squared:     | 0.980     |
| Method:           | Least Squares    | F-statistic:        | 3085.     |
| Date:             | Tue, 15 Jul 2025 | Prob (F-statistic): | 1.05e-108 |
| Time:             | 21:30:14         | Log-Likelihood:     | -56.689   |
| No. Observations: | 167              | AIC:                | 117.4     |
| Df Residuals:     | 165              | BIC:                | 123.6     |
| Df Model:         | 1                |                     |           |

Covariance Type: HCO

|                                        | coef             | std err        | Z                      | P> z                                             | [0.025         | 0.975]                              |
|----------------------------------------|------------------|----------------|------------------------|--------------------------------------------------|----------------|-------------------------------------|
| Intercept<br>TB3mo                     | 0.6981<br>0.9167 | 0.088<br>0.017 | 7.940<br>55.539        | 0.000<br>0.000                                   | 0.526<br>0.884 | 0.870<br>0.949                      |
| Omnibus: Prob(Omnibus) Skew: Kurtosis: | ):               | 0.             | .000 Jaro<br>.289 Prob | oin-Watson:<br>que-Bera (JB)<br>o(JB):<br>l. No. | :              | 0.623<br>39.846<br>2.23e-09<br>16.7 |

#### Notes:

### [1] Standard Errors are heteroscedasticity robust (HCO)

• The coefecients did not change, however the std err did increase for both the intercept and the coefficient When heteroskedasticity is present, regular SEs underestimate the true variability of the coefficients, so the robust SEs tend to be larger and more reliable.

## 1.9 Problem j

```
[11]: df['D'] = (df['TB3mo'] > 10.00).astype(int)
model_with_dummy = smf.ols("TB1yr ~ TB3mo + D", data=df).fit()
print(model_with_dummy.summary())
```

#### OLS Regression Results

| Dep. Variable: | TB1yr            | R-squared:          | 0.981     |
|----------------|------------------|---------------------|-----------|
| Model:         | OLS              | Adj. R-squared:     | 0.981     |
| Method:        | Least Squares    | F-statistic:        | 4176.     |
| Date:          | Tue, 15 Jul 2025 | Prob (F-statistic): | 2.16e-141 |
| Time:          | 21:30:14         | Log-Likelihood:     | -52.401   |

| Df Residuals:    |       | 164       | BIC: |             | 120.2   |
|------------------|-------|-----------|------|-------------|---------|
| Df Model:        |       | 2         |      |             |         |
| Covariance Type: |       | nonrobust |      |             |         |
|                  | ===== |           |      | <br>======= | ======= |
|                  |       |           |      |             |         |

|                    | coef                        | std err                 | t                         | P> t                    | [0.025                   | 0.975]                   |
|--------------------|-----------------------------|-------------------------|---------------------------|-------------------------|--------------------------|--------------------------|
| Intercept<br>TB3mo | 0.5551<br>0.9452<br>-0.4456 | 0.081<br>0.014<br>0.152 | 6.832<br>67.730<br>-2.940 | 0.000<br>0.000<br>0.004 | 0.395<br>0.918<br>-0.745 | 0.716<br>0.973<br>-0.146 |
| <br>Omnibus:       |                             | <b></b><br>15           | .483 Durk                 | ========<br>oin-Watson: | ========                 | 0.597                    |
| Prob(Omnibus       | ;):                         | 0                       | .000 Jaro                 | que-Bera (JB            | ):                       | 26.029                   |
| Skew:              |                             | 0                       | .476 Prob                 | o(JB):                  |                          | 2.23e-06                 |
| Kurtosis:          |                             | 4                       | .684 Cond                 | l. No.                  |                          | 40.8                     |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### 1.10 Problem k

• given that the p-value of delta is 0.004 the dummy is revelat.

### 1.11 Problem l

• The coeficien increased but also did the standard error

## 2 Problem 2

## 2.1 Problem A

```
[12]: df = pd.read_excel("data/SIM_2-1.xls")
    plt.figure(figsize=(8, 5))
    plt.plot(df["OBS"], df['Y1'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB3mo')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• given that the series has not broke out dwon or up and it seems to hover aroun 1 we could say that it is stationary

## 2.2 Problem B

```
[13]: fig = plot_acf(df['Y1'], lags=10)
    plt.show()
    plot_pacf(df['Y1'], lags=15)
    plt.show()
```





 $\bullet$  given that the series has not broke out dwon or up and it seems to hover aroun 1 we could say that it is stationary

#### 2.3 Problem C

```
[14]: # AR(1)
    res = AutoReg(df['Y1'], lags =1).fit()
    print(res.summary())
    y_true = res.model.endog[res.model._hold_back:]
    y_pred = res.fittedvalues

    ssr = np.sum((y_true - y_pred) ** 2)

    tss = np.sum((y_true - np.mean(y_true)) ** 2)

    n = len(y_true)
    k = res.df_model + 1

    r2 = 1 - ssr / tss
    r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))
```

```
print("R^2:", round(r2, 4))
print("Adjusted R^2:", round(r2_adj, 4))
                            AutoReg Model Results
                                        No. Observations:
Dep. Variable:
                                                                           100
Model:
                           AutoReg(1) Log Likelihood
                                                                      -132.061
```

0.919

Conditional MLE S.D. of innovations Method: Date: Tue, 15 Jul 2025 AIC 270.122 Time: 21:30:14 BIC 277.907 1 HQIC

Sample: 273.272 100

print("Adjusted R^2:", round(r2\_adj, 4))

| ======= |         | ======= | ======== | ======= | ======= | ======= |
|---------|---------|---------|----------|---------|---------|---------|
|         | coef    | std err | Z        | P> z    | [0.025  | 0.975]  |
| const   | -0.1372 | 0.100   | -1.366   | 0.172   | -0.334  | 0.060   |
| Y1.L1   | 0.7545  | 0.067   | 11.269   | 0.000   | 0.623   | 0.886   |
|         |         |         | Roots    |         |         |         |

|      | Real   | Imaginary | Modulus | Frequency |
|------|--------|-----------|---------|-----------|
| AR.1 | 1.3254 | +0.0000j  | 1.3254  | 0.0000    |

R^2: 0.5619

Adjusted R^2: 0.5528

```
[15]: # AR(2)
      res = AutoReg(df['Y1'], lags=2).fit()
      print(res.summary())
      y_true = res.model.endog[res.model._hold_back:]
      y_pred = res.fittedvalues
      ssr = np.sum((y_true - y_pred) ** 2)
      tss = np.sum((y_true - np.mean(y_true)) ** 2)
      n = len(y_true)
      k = res.df_model + 1
      r2 = 1 - ssr / tss
      r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))
      print("R^2:", round(r2, 4))
```

AutoReg Model Results

```
Dep. Variable:
                               No. Observations:
                                                        100
   Model:
                      AutoReg(2) Log Likelihood
                                                   -130.629
   Method:
                 Conditional MLE S.D. of innovations
                                                      0.918
   Date:
              Tue, 15 Jul 2025 AIC
                                                     269.258
   Time:
                        21:30:14 BIC
                                                     279.598
   Sample:
                             2 HQIC
                                                     273.440
                           100
   ______
                                    P>|z|
               coef std err
                             z
                                            [0.025
                                                    0.975]
   ______

      const
      -0.1144
      0.102
      -1.116
      0.264

      Y1.L1
      0.6939
      0.101
      6.896
      0.000

                                            -0.315 0.086
                                             0.497
                                                     0.891
   Y1.L2
            0.0870
                     0.101
                            0.861 0.389 -0.111
                                                     0.285
                            Roots
   ______
                     Imaginary Modulus Frequency
               Real
   _____
   AR.1 1.2462 +0.0000j 1.2462 0.0000
AR.2 -9.2181 +0.0000j 9.2181 0.5000
   R^2: 0.567
   Adjusted R^2: 0.5532
[16]: # ARMA(1,1)
    arma_mod = ARIMA(df['Y1'], order=(1, 1, 0)).fit()
    print(arma_mod.summary())
```

```
arma_mod = ARIMA(df['Y1'], order=(1, 1, 0)).fit()
print(arma_mod.summary())

y_true = df['Y1'].diff().values

y_pred = arma_mod.fittedvalues

ssr = np.sum((y_true - y_pred) ** 2)

tss = np.sum((y_true - np.mean(y_true)) ** 2)

n = len(y_true)
k = arma_mod.df_model

r2 = 1 - ssr / tss
r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))

print("R^2:", round(r2, 4))
print("Adjusted R^2:", round(r2_adj, 4))

print("AIC:", arma_mod.aic)
print("BIC:", arma_mod.bic)
```

SARIMAX Results

\_\_\_\_\_\_ Dep. Variable: Y1 No. Observations: 100 Model: ARIMA(1, 1, 0) Log Likelihood -136.382 Date: Tue, 15 Jul 2025 AIC 276.764 Time: 21:30:14 BIC 281.954 Sample: O HQIC 278.864 - 100 Covariance Type: opg coef std err z P>|z| [0.025 0.975] \_\_\_\_\_ 0.106 -1.868 0.062 -0.406 ar.L1 -0.1982 0.010 sigma2 0.9203 0.125 7.356 0.000 0.675 1.165 \_\_\_\_\_\_ Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 0.23 0.82 Prob(JB): Prob(Q): 0.89 Heteroskedasticity (H): 1.04 Skew: -0.01Prob(H) (two-sided): 0.91 Kurtosis: Warnings: [1] Covariance matrix calculated using the outer product of gradients (complexstep). R^2: nan Adjusted R^2: nan AIC: 276.7637125558847 BIC: 281.95395225615385 [17]: # ARMA(1,4)  $arma_mod = ARIMA(df['Y1'], order=(1, 4, 0)).fit()$ print(arma\_mod.summary()) y\_true = df['Y1'].diff().values y\_pred = arma\_mod.fittedvalues ssr = np.sum((y\_true - y\_pred) \*\* 2) tss = np.sum((y\_true - np.mean(y\_true)) \*\* 2) n = len(y\_true) k = arma\_mod.df\_model r2 = 1 - ssr / tss

```
r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))
     print("R^2:", round(r2, 4))
     print("Adjusted R^2:", round(r2_adj, 4))
     print("AIC:", arma_mod.aic)
     print("BIC:", arma_mod.bic)
                                SARIMAX Results
    ______
    Dep. Variable:
                                   Y1
                                       No. Observations:
                                                                       100
                        ARIMA(1, 4, 0)
    Model:
                                      Log Likelihood
                                                                  -248.774
    Date:
                       Tue, 15 Jul 2025 AIC
                                                                   501.548
                              21:30:14
    Time:
                                      BIC
                                                                   506.677
    Sample:
                                    0
                                      HQIC
                                                                   503.621
                                 - 100
    Covariance Type:
                                  opg
    _____
                   coef
                          std err
                                               P>|z|
                                                          Γ0.025
                                                                    0.975]
                                    -11.873
                                                0.000
    ar.L1
                -0.7572
                            0.064
                                                         -0.882
                                                                    -0.632
    sigma2
             10.3403 1.580
                                                0.000
                                                          7.244
                                      6.546
                                                                    13.436
    Ljung-Box (L1) (Q):
                                     23.50
                                            Jarque-Bera (JB):
    2.57
                                            Prob(JB):
    Prob(Q):
                                      0.00
    0.28
    Heteroskedasticity (H):
                                      1.16
                                            Skew:
    0.39
    Prob(H) (two-sided):
                                      0.68
                                            Kurtosis:
    2.86
    Warnings:
    [1] Covariance matrix calculated using the outer product of gradients (complex-
    step).
    R^2: nan
    Adjusted R^2: nan
    AIC: 501.54819826952695
    BIC: 506.67689465246264
[18]: \# ARMA(2,1)
     arma_mod = ARIMA(df['Y1'], order=(2, 1, 0)).fit()
```

print(arma\_mod.summary())

y\_true = df['Y1'].diff().values

```
y_pred = arma_mod.fittedvalues
ssr = np.sum((y_true - y_pred) ** 2)
tss = np.sum((y_true - np.mean(y_true)) ** 2)

n = len(y_true)
k = arma_mod.df_model

r2 = 1 - ssr / tss
r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))

print("R^2:", round(r2, 4))
print("Adjusted R^2:", round(r2_adj, 4))

print("AIC:", arma_mod.aic)
print("BIC:", arma_mod.bic)
```

\_\_\_\_\_\_

| Dep. Variable: | Y1               | No. Observations: | 100      |
|----------------|------------------|-------------------|----------|
| Model:         | ARIMA(2, 1, 0)   | Log Likelihood    | -135.770 |
| Date:          | Tue, 15 Jul 2025 | AIC               | 277.540  |
| Time:          | 21:30:14         | BIC               | 285.325  |
| Sample:        | 0                | HQIC              | 280.690  |

- 100

Covariance Type: opg

|        | coef    | std err | z      | P> z  | [0.025 | 0.975] |  |  |
|--------|---------|---------|--------|-------|--------|--------|--|--|
| ar.L1  | -0.2212 | 0.109   | -2.034 | 0.042 | -0.434 | -0.008 |  |  |
| ar.L2  | -0.1107 | 0.105   | -1.052 | 0.293 | -0.317 | 0.095  |  |  |
| sigma2 | 0.9087  | 0.122   | 7.439  | 0.000 | 0.669  | 1.148  |  |  |

===

Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB):

0.45

Prob(Q): 0.92 Prob(JB):

0.80

Heteroskedasticity (H): 1.01 Skew:

0.05

Prob(H) (two-sided): 0.97 Kurtosis:

3.31

\_\_\_\_\_

===

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

R^2: nan

Adjusted R^2: nan AIC: 277.5398840453032 BIC: 285.325243595707

### 2.4 Problem D

```
[19]: #AR(2)
    res = AutoReg(df['Y1'], lags=2, trend="n").fit()
    print(res.summary())
    y_true = df['Y1'].diff().values

    y_pred = arma_mod.fittedvalues
    ssr = np.sum((y_true - y_pred) ** 2)
    tss = np.sum((y_true - np.mean(y_true)) ** 2)

    n = len(y_true)
    k = arma_mod.df_model
    r2 = 1 - ssr / tss
    r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))

    print("R^2:", round(r2, 4))
    print("AIC:", arma_mod.aic)
    print("BIC:", arma_mod.bic)
```

#### AutoReg Model Results

| =========      | ======= |                | ======   | ========      | ====== | =======   |
|----------------|---------|----------------|----------|---------------|--------|-----------|
| Dep. Variable: |         | Y1             | No. Ob   | servations:   |        | 100       |
| Model:         |         | AutoReg(2)     | Log Li   | kelihood      |        | -131.248  |
| Method:        | Co      | onditional MLE | S.D. o   | f innovations |        | 0.923     |
| Date:          | Tue     | e, 15 Jul 2025 | AIC      |               |        | 268.496   |
| Time:          |         | 21:30:14       | BIC      |               |        | 276.251   |
| Sample:        |         | 2              | HQIC     |               |        | 271.633   |
| •              |         | 100            | •        |               |        |           |
| =========      |         |                |          | ========      |        | ========  |
|                | coef    | std err        | z        | P> z          | [0.025 | 0.975]    |
| Y1.L1          | 0.7102  | 0.100          | 7.087    | 0.000         | 0.514  | 0.907     |
| Y1.L2          | 0.1051  | 0.100          | 1.046    | 0.295         | -0.092 | 0.302     |
|                |         | R              | oots     |               |        |           |
| =========      |         |                | ======   |               | ====== | =======   |
|                | Real    | Imagi          | nary     | Modulus       |        | Frequency |
| AR.1           | 1.1963  | +0.0           | <br>000j | 1.1963        |        | 0.0000    |
| AR.2           | -7.9532 | +0.0           | 000j     | 7.9532        |        | 0.5000    |
|                |         |                |          |               |        |           |

R^2: nan

Adjusted R^2: nan AIC: 277.5398840453032 BIC: 285.325243595707

```
[20]: # ARIMA(1,1)
    arma_mod = ARIMA(df['Y1'], order=(1, 1, 0), trend="n").fit()
    print(arma_mod.summary())
    y_true = df['Y1'].diff().values

y_pred = arma_mod.fittedvalues

ssr = np.sum((y_true - y_pred) ** 2)
    tss = np.sum((y_true - np.mean(y_true)) ** 2)

n = len(y_true)
    k = arma_mod.df_model

r2 = 1 - ssr / tss
    r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))

print("R^2:", round(r2, 4))
    print("Adjusted R^2:", round(r2_adj, 4))

print("AIC:", arma_mod.aic)
    print("BIC:", arma_mod.bic)
```

#### SARIMAX Results

\_\_\_\_\_\_ Dep. Variable: Y1 No. Observations: 100 Model: ARIMA(1, 1, 0) Log Likelihood -136.382 Date: Tue, 15 Jul 2025 AIC 276.764 Time: 21:30:14 BIC 281.954 HQIC 278.864 Sample: 0

- 100

Covariance Type: opg

| ======== | coef    | std err | z      | P> z  | [0.025 | 0.975] |
|----------|---------|---------|--------|-------|--------|--------|
| ar.L1    | -0.1982 | 0.106   | -1.868 | 0.062 | -0.406 | 0.010  |
| sigma2   | 0.9203  | 0.125   | 7.356  | 0.000 | 0.675  | 1.165  |

\_\_\_\_\_

===

Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB):

0.23

Prob(Q): 0.82 Prob(JB):

0.89

Heteroskedasticity (H): 1.04 Skew:

### 2.5 Problem E

• for the part c looking at the AIC the best model is the AR(2) given that it has the smallest AIC fro the part ed the best is sitll AR(2) given that it has the smallest AIC

#### 2.6 Problem F

• yes because looking at the AIC it should gest that the best model is AR(2) given that the simulated model was created with AR(1) one would expect AR(1) would be the best model

#### 2.7 Problem G

```
[21]: # AR(2)
    model_ar2 = AutoReg(df['Y1'], lags=2, old_names=False)
    res_ar2 = model_ar2.fit()

    residuals = res_ar2.resid

    fig, ax = plt.subplots(2, 1, figsize=(10, 6))

    plot_acf(residuals, ax=ax[0], lags=20)
    ax[0].set_title('ACF of AR(2) Residuals')

    plot_pacf(residuals, ax=ax[1], lags=20, method='ywm')
    ax[1].set_title('PACF of AR(2) Residuals')

    plt.tight_layout()
    plt.show()
```



• yes they look like random noice

## 3 Problem

### 3.1 Problem A

```
[22]: df = pd.read_excel("data/QUARTERLY-1.xls")
    df['date'] = pd.PeriodIndex(df['Date'], freq='Q')
    df.set_index('date', inplace=True)
    df = df[["CPINSA","Date"]]
    df
```

```
[22]:
              CPINSA
                        Date
      date
      1960Q1
               30.57
                      1960Q1
               30.60
                      1960Q2
      1960Q2
      1960Q3
               30.60
                      1960Q3
      1960Q4
               30.80
                      1960Q4
      1961Q1
               30.80 1961Q1
              209.01 2007Q1
      2007Q1
      2007Q2 210.37
                      2007Q2
      2007Q3 211.16
                      2007Q3
      2007Q4
              212.37
                      2007Q4
      2008Q1
             213.96
                      2008Q1
```

### [193 rows x 2 columns]

```
[23]: plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['CPINSA'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB3mo')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• does not look staionary

## 3.2 Problem B

```
[24]: fig = plot_acf(df['CPINSA'], lags=25)
plt.show()
plot_pacf(df['CPINSA'], lags=25)
plt.show()
```





## 3.3 Problem C

```
[25]: df["log_CPINSA"] = np.log((df["CPINSA"] / df["CPINSA"].shift(1)))
    plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['log_CPINSA'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB3mo')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• There was a dip but it seems to be stationary given that there is no strong trend

## 3.4 Problem D

```
[26]: fig = plot_acf(df['log_CPINSA'].dropna(), lags=25)
    plt.show()
    plot_pacf(df['log_CPINSA'].dropna(), lags=25)
    plt.show()
```





## 3.5 Problem E

```
[27]: df["log_CPINSA4"] = np.log((df["CPINSA"] / df["CPINSA"].shift(4)))
    plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['log_CPINSA4'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB3mo')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• there was a dip but it seems to be stationary given that there is no strong trend

# 3.6 Problem F

```
[28]: fig = plot_acf(df['log_CPINSA4'].dropna(), lags=25)
    plt.show()
    fig = plot_pacf(df['log_CPINSA4'].dropna(), lags=25)
    plt.show()
```





## 3.7 Problem G

[29]: res = AutoReg(df['log\_CPINSA4'].dropna(), lags =5).fit()
print(res.summary())

| AutoReg Model Results |        |            |            |           |          |       |  |  |  |
|-----------------------|--------|------------|------------|-----------|----------|-------|--|--|--|
| Dep. Variable:        | <br>1  | og_CPINSA4 | No. Observ | ations:   |          | 189   |  |  |  |
| Model:                |        | AutoReg(5) | Log Likeli | hood      | 74       | 3.312 |  |  |  |
| Method:               | Condi  | tional MLE | S.D. of in | novations |          | 0.004 |  |  |  |
| Date:                 | Tue, 1 | 5 Jul 2025 | AIC        |           | -147     | 2.624 |  |  |  |
| Time:                 |        | 21:30:15   | BIC        |           | -145     | 0.120 |  |  |  |
| Sample:               |        | 06-30-1962 | HQIC       |           | -146     | 3.503 |  |  |  |
|                       | _      | 03-31-2008 |            |           |          |       |  |  |  |
| ==                    | coef   | std err    | 7          | <br>P> z  | Γ0.025   |       |  |  |  |
| 0.975]                |        |            |            |           |          |       |  |  |  |
|                       | 0.0040 | 0.004      | 4 006      | 0.000     | 0.5.05   |       |  |  |  |
| const                 | 0.0012 | 0.001      | 1.826      | 0.068     | -8.5e-05 |       |  |  |  |

| 0.002          |         |       |        |       |        |
|----------------|---------|-------|--------|-------|--------|
| log_CPINSA4.L1 | 1.4432  | 0.068 | 21.189 | 0.000 | 1.310  |
| 1.577          |         |       |        |       |        |
| log_CPINSA4.L2 | -0.4339 | 0.117 | -3.700 | 0.000 | -0.664 |
| -0.204         |         |       |        |       |        |
| log_CPINSA4.L3 | 0.2177  | 0.120 | 1.811  | 0.070 | -0.018 |
| 0.453          |         |       |        |       |        |
| log_CPINSA4.L4 | -0.6346 | 0.117 | -5.425 | 0.000 | -0.864 |
| -0.405         |         |       |        |       |        |
| log_CPINSA4.L5 | 0.3809  | 0.068 | 5.621  | 0.000 | 0.248  |
| 0.514          |         |       |        |       |        |

Roots

|      | Real    | Imaginary | Modulus | Frequency |
|------|---------|-----------|---------|-----------|
| AR.1 | -0.7595 | -1.0363j  | 1.2848  | -0.3507   |
| AR.2 | -0.7595 | +1.0363j  | 1.2848  | 0.3507    |
| AR.3 | 1.0440  | -0.0000j  | 1.0440  | -0.0000   |
| AR.4 | 1.0704  | -0.6143j  | 1.2342  | -0.0829   |
| AR.5 | 1.0704  | +0.6143j  | 1.2342  | 0.0829    |

```
[30]: y_true = res.model.endog[res.model._hold_back:]
y_pred = res.fittedvalues

ssr = np.sum((y_true - y_pred) ** 2)

tss = np.sum((y_true - np.mean(y_true)) ** 2)

n = len(y_true)
k = res.df_model + 1

r2 = 1 - ssr / tss
r2_adj = 1 - (ssr / (n - k)) / (tss / (n - 1))

print("R^2:", round(r2, 4))
print("Adjusted R^2:", round(r2_adj, 4))
```

R^2: 0.9708

Adjusted R^2: 0.9698

```
[31]: arma_mod = ARIMA(df['log_CPINSA4'].dropna(), order=(0, 0, 10)).fit()
print(arma_mod.summary())
```

/home/ouslan/Documents/Github/ECON-124/.venv/lib/python3.10/site-packages/statsmodels/tsa/statespace/sarimax.py:978: UserWarning: Non-invertible starting MA parameters found. Using zeros as starting parameters.
warn('Non-invertible starting MA parameters found.'

| ===========    | ============     | ===============   | ========= |
|----------------|------------------|-------------------|-----------|
| Dep. Variable: | log_CPINSA4      | No. Observations: | 189       |
| Model:         | ARIMA(0, 0, 10)  | Log Likelihood    | 768.413   |
| Date:          | Tue, 15 Jul 2025 | AIC               | -1512.826 |
| Time:          | 21:30:16         | BIC               | -1473.925 |
| Sample:        | 03-31-1961       | HQIC              | -1497.066 |
|                | - 03-31-2008     |                   |           |

Covariance Type: opg

| ======== |           |          |        |       | ======== |          |
|----------|-----------|----------|--------|-------|----------|----------|
|          | coef      | std err  | z      | P> z  | [0.025   | 0.975]   |
|          | 0 0205    | 0 005    | 7.731  | 0.000 | 0.000    | 0.050    |
| const    | 0.0395    | 0.005    | 1.131  | 0.000 | 0.029    | 0.050    |
| ma.L1    | 1.5961    | 0.055    | 28.853 | 0.000 | 1.488    | 1.704    |
| ma.L2    | 1.9248    | 0.116    | 16.662 | 0.000 | 1.698    | 2.151    |
| ma.L3    | 2.2935    | 0.169    | 13.555 | 0.000 | 1.962    | 2.625    |
| ma.L4    | 1.9670    | 0.200    | 9.857  | 0.000 | 1.576    | 2.358    |
| ma.L5    | 1.6215    | 0.219    | 7.396  | 0.000 | 1.192    | 2.051    |
| ma.L6    | 1.5860    | 0.229    | 6.936  | 0.000 | 1.138    | 2.034    |
| ma.L7    | 1.2069    | 0.219    | 5.523  | 0.000 | 0.779    | 1.635    |
| ma.L8    | 0.7927    | 0.171    | 4.638  | 0.000 | 0.458    | 1.128    |
| ma.L9    | 0.5756    | 0.123    | 4.665  | 0.000 | 0.334    | 0.817    |
| ma.L10   | 0.1923    | 0.071    | 2.693  | 0.007 | 0.052    | 0.332    |
| sigma2   | 1.671e-05 | 1.62e-06 | 10.303 | 0.000 | 1.35e-05 | 1.99e-05 |

\_\_\_\_\_

===

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB):

156.44

Prob(Q): 0.99 Prob(JB):

0.00

Heteroskedasticity (H): 0.16 Skew:

1.17

Prob(H) (two-sided): 0.00 Kurtosis:

6.80

\_\_\_\_\_\_

===

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

/home/ouslan/Documents/Github/ECON-124/.venv/lib/python3.10/site-packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle\_retvals warnings.warn("Maximum Likelihood optimization failed to "

```
[32]: arma_mod = ARIMA(df['log_CPINSA4'].dropna(), order=(5, 0, 10)).fit()
print(arma_mod.summary())
```

| =======                                 |               |               | IMAX Kesu<br>======= | 118<br>========= | ======== | ========  |
|-----------------------------------------|---------------|---------------|----------------------|------------------|----------|-----------|
| Dep. Vari                               |               | log_CPINS     |                      | Observations     |          | 189       |
| Model:                                  |               | ARIMA(5, 0, : | 10) Log              | Likelihood       |          | 791.966   |
| Date:                                   | T             | ue, 15 Jul 20 | 025 AIC              |                  |          | -1549.932 |
| Time:                                   |               | 21:30         | :16 BIC              |                  |          | -1494.822 |
| Sample:                                 |               | 03-31-19      | 961 HQI              | C                |          | -1527.605 |
|                                         |               | - 03-31-20    | 800                  |                  |          |           |
| Covarianc                               |               |               | opg                  |                  |          |           |
|                                         | coef          | std err       | z                    |                  | [0.025   | 0.975]    |
| const                                   | 0.0375        | 0.012         | 3.003                | 0.003            | 0.013    | 0.062     |
| ar.L1                                   | 1.5931        | 0.567         | 2.808                | 0.005            | 0.481    | 2.705     |
| ar.L2                                   | -0.5906       | 0.845         | -0.699               | 0.485            | -2.247   | 1.066     |
| ar.L3                                   | 0.0890        | 0.648         | 0.137                | 0.891            | -1.180   | 1.358     |
| ar.L4                                   | -0.4775       | 0.718         | -0.666               | 0.506            | -1.884   | 0.929     |
| ar.L5                                   | 0.3435        | 0.348         | 0.987                | 0.324            | -0.338   | 1.025     |
| ma.L1                                   | 0.0075        | 0.576         | 0.013                | 0.990            | -1.121   | 1.136     |
| ma.L2                                   | 0.0831        | 0.409         | 0.203                | 0.839            | -0.719   | 0.886     |
| ma.L3                                   | 0.1381        | 0.431         | 0.321                | 0.748            | -0.706   | 0.982     |
| ma.L4                                   | -0.4304       | 0.456         | -0.944               | 0.345            | -1.324   | 0.463     |
| ma.L5                                   | 0.3823        | 0.285         | 1.339                | 0.181            | -0.177   | 0.942     |
| ma.L6                                   | 0.3555        | 0.312         | 1.141                | 0.254            | -0.255   | 0.966     |
| ma.L7                                   | 0.1501        | 0.403         | 0.372                | 0.710            | -0.641   | 0.941     |
| ma.L8                                   | -0.0303       | 0.186         | -0.163               | 0.871            | -0.395   | 0.334     |
| ma.L9                                   | 0.0529        | 0.143         | 0.371                | 0.711            | -0.227   | 0.333     |
| ma.L10                                  | -0.1239       | 0.170         | -0.730               | 0.465            | -0.457   | 0.209     |
| sigma2                                  | 1.277e-05     | 9.72e-07      | 13.134               | 0.000            | 1.09e-05 | 1.47e-05  |
| ======================================= | ========      | ========      | ======               | ========         | =======  | =======   |
| Ljung-Box<br>117.79                     | (L1) (Q):     |               | 0.05                 | Jarque-Bera      | (JB):    |           |
| Prob(Q):                                |               |               | 0.82                 | Prob(JB):        |          |           |
|                                         | dasticity (H) | :             | 0.16                 | Skew:            |          |           |
|                                         | two-sided):   |               | 0.00                 | Kurtosis:        |          |           |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[33]: arma_mod = ARIMA(df['log_CPINSA4'].dropna(), order=(6, 0, 7)).fit()
print(arma_mod.summary())
```

| ==========     | ============     |                   | ========== |
|----------------|------------------|-------------------|------------|
| Dep. Variable: | log_CPINSA4      | No. Observations: | 189        |
| Model:         | ARIMA(6, 0, 7)   | Log Likelihood    | 791.248    |
| Date:          | Tue, 15 Jul 2025 | AIC               | -1552.496  |
| Time:          | 21:30:17         | BIC               | -1503.870  |
| Sample:        | 03-31-1961       | HQIC              | -1532.796  |
|                | - 03-31-2008     |                   |            |

Covariance Type: opg

-----

|        | coef      | std err  | Z      | P> z  | [0.025   | 0.975]   |
|--------|-----------|----------|--------|-------|----------|----------|
| const  | 0.0383    | 0.011    | 3.337  | 0.001 | 0.016    | 0.061    |
| ar.L1  | 1.3653    | 0.955    | 1.429  | 0.153 | -0.507   | 3.238    |
| ar.L2  | -0.3581   | 1.621    | -0.221 | 0.825 | -3.536   | 2.820    |
| ar.L3  | 0.3838    | 1.052    | 0.365  | 0.715 | -1.678   | 2.446    |
| ar.L4  | -0.7411   | 0.380    | -1.949 | 0.051 | -1.486   | 0.004    |
| ar.L5  | 0.2318    | 0.414    | 0.560  | 0.576 | -0.580   | 1.044    |
| ar.L6  | 0.0712    | 0.318    | 0.224  | 0.823 | -0.553   | 0.695    |
| ma.L1  | 0.2100    | 0.970    | 0.216  | 0.829 | -1.692   | 2.112    |
| ma.L2  | 0.2335    | 0.854    | 0.273  | 0.785 | -1.441   | 1.908    |
| ma.L3  | -0.0672   | 0.430    | -0.156 | 0.876 | -0.909   | 0.775    |
| ma.L4  | -0.4725   | 0.371    | -1.275 | 0.202 | -1.199   | 0.254    |
| ma.L5  | 0.1967    | 0.654    | 0.301  | 0.764 | -1.085   | 1.478    |
| ma.L6  | 0.1879    | 0.584    | 0.322  | 0.747 | -0.956   | 1.332    |
| ma.L7  | 0.2809    | 0.280    | 1.004  | 0.315 | -0.268   | 0.829    |
| sigma2 | 1.304e-05 | 1.07e-06 | 12.198 | 0.000 | 1.09e-05 | 1.51e-05 |

\_\_\_\_\_\_

===

Ljung-Box (L1) (Q): 0.04 Jarque-Bera (JB):

133.37

Prob(Q): 0.84 Prob(JB):

0.00

Heteroskedasticity (H): 0.14 Skew:

0.13

Prob(H) (two-sided): 0.00 Kurtosis:

7.11

\_\_\_\_\_\_

===

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

/home/ouslan/Documents/Github/ECON-124/.venv/lib/python3.10/site-

packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle\_retvals warnings.warn("Maximum Likelihood optimization failed to "

#### 3.8 Problem H

• looking at the AIC the MA(10) seems to prefrom the best

#### 3.9 Problem I

#### OLS Regression Results

| Dep. Variable:             | e: log_CPINSA4 |               | SA4 R-           | R-squared:      |           |        | 0.000    |
|----------------------------|----------------|---------------|------------------|-----------------|-----------|--------|----------|
| Model:                     |                |               | OLS Ad           | Adj. R-squared: |           |        | -0.016   |
| Method:                    |                | Least Squares |                  | F-statistic:    |           |        | 0.005292 |
| Date:                      | Tı             | ue, 15 Jul 2  | 025 Pr           | ob (F-st        | tatistic) | :      | 0.999    |
| Time:                      |                | 21:30:17      |                  | Log-Likelihood: |           |        | 428.53   |
| No. Observation            | ons:           |               | 189 Al           | C:              |           |        | -849.1   |
| Df Residuals:              |                |               | 185 BI           | C:              |           |        | -836.1   |
| Df Model:                  |                |               | 3                |                 |           |        |          |
| Covariance Type: nonrobust |                |               |                  |                 |           |        |          |
|                            |                |               |                  |                 |           |        |          |
|                            | coef           | std err       |                  | t I             | P> t      | [0.025 | 0.975]   |
| const                      | 0.0405         | 0.004         | 11.08            | 6 (             | 0.000     | 0.033  | 0.048    |
| Q_2                        | 0.0005         | 0.005         | 0.09             | 3 (             | 0.926     | -0.010 | 0.011    |
| Q_3                        | 0.0006         | 0.005         | 0.10             | 8 (             | 0.914     | -0.010 | 0.011    |
| Q_4                        | 0.0005         | 0.005         | 0.10             | 5 (             | 0.917     | -0.010 | 0.011    |
| Omnibus:                   |                | 42.           | ======<br>124 Du | rbin-Wat        | son:      |        | 0.045    |
| Prob(Omnibus):             | :              | 0.            | 000 Ja           | rque-Bei        | ca (JB):  |        | 62.900   |
| Skew:                      |                | 1.            | 275 Pr           | ob(JB):         |           |        | 2.19e-14 |
| Kurtosis:                  |                | 4.            | 218 Cc           | nd. No.         |           |        | 4.76     |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

\_\_\_\_\_\_

specified.

## 3.10 Problem J



• the residuals apear to be staionary

### 3.11 Problem K

```
[36]: fig = plot_acf(df['log_CPINSA4'].dropna(), lags=25)
    plt.show()
    fig = plot_pacf(df['log_CPINSA4'].dropna(), lags=25)
    plt.show()
```





• the residuals seam to be autocorrolated by round 10 periods

# 4 Problem

## 4.1 Problem A

```
[37]: df = pd.read_excel("data/QUARTERLY-1.xls")
    df['date'] = pd.PeriodIndex(df['Date'], freq='Q')
    df.set_index('date', inplace=True)
    # df = df[["CPINSA", "Date"]]
    df["s"] = df["r10"] - df["Tbill"]
    df = df[["s", "Date"]]
    df
```

```
date

1960Q1 0.54334 1960Q1

1960Q2 1.17000 1960Q2

1960Q3 1.44000 1960Q3

1960Q4 1.52667 1960Q4

1961Q1 1.41000 1961Q1
```

## [193 rows x 2 columns]

```
[38]: plt.figure(figsize=(8, 5))
    plt.plot(df.index.to_timestamp(), df['s'], marker='o')
    plt.title('Quarterly Data')
    plt.xlabel('Date')
    plt.ylabel('TB3mo')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```



• it looks stationary

# 4.2 Problem B

```
[39]: fig = plot_acf(df['s'], lags=25)
    plt.show()
    plot_pacf(df['s'], lags=25)
    plt.show()
```





• it seams to be autocorrolated by 4 units and partial autocorrelated by 1

#### AutoReg Model Results

```
Dep. Variable: s No. Observations: 193
Model: AutoReg(2) Log Likelihood -150.856
Method: Conditional MLE S.D. of innovations 0.533
Date: Tue, 15 Jul 2025 AIC 309.713
```

| Time:   | 21:30:17     | BIC  | 322.722 |
|---------|--------------|------|---------|
| Sample: | 09-30-1960   | HQIC | 314.982 |
|         | - 03-31-2008 |      |         |

|       | coef    | std err | Z      | P> z  | [0.025 | 0.975] |
|-------|---------|---------|--------|-------|--------|--------|
| const | 0.1892  | 0.059   | 3.185  | 0.001 | 0.073  | 0.306  |
| s.L1  | 1.1086  | 0.070   | 15.775 | 0.000 | 0.971  | 1.246  |
| s.L2  | -0.2450 | 0.070   | -3.488 | 0.000 | -0.383 | -0.107 |
| Roots |         |         |        |       |        |        |

|      | Real   | Imaginary | Modulus | Frequency |  |
|------|--------|-----------|---------|-----------|--|
| AR.1 | 1.2440 | +0.0000j  | 1.2440  | 0.0000    |  |
| AR.2 | 3.2815 | +0.0000j  | 3.2815  | 0.0000    |  |



```
plt.legend()
plt.show()
```

```
lb_stat
               lb_pvalue
     0.051333
                0.820760
1
2
     2.117369
                0.346912
3
     6.858840
                0.076536
4
     7.078838
                0.131780
5
    10.925209
                0.052883
6
    12.709362
                0.047891
7
   17.987541
                0.012026
                0.005535
8
    21.684678
9
    22.297068
                0.007984
10
   22.618691
                0.012245
   29.728266
                0.001748
11
12
   29.835833
                0.002956
13
   30.007268
                0.004698
   32.537869
                0.003357
15
   33.486681
                0.004018
16 33.949568
                0.005519
17
   35.670142
                0.005074
18 35.869956
                0.007332
   35.901840
19
                0.010852
20 35.957500
                0.015559
```



• there seem to be autocorroration for periods after 5

# 4.3 Problem E

[42]: res\_ar7 = AutoReg(df['s'].dropna(), lags =7).fit()
print(res\_ar7.summary())

#### AutoReg Model Results Dep. Variable: No. Observations: 193 Model: AutoReg(7) Log Likelihood -139.381 Method: Conditional MLE S.D. of innovations 0.512 Date: Tue, 15 Jul 2025 AIC 296.763 Time: 21:30:18 BIC 325.794 HQIC Sample: 12-31-1961 308.527 - 03-31-2008 coef std err z P>|z| [0.025 0.975] 0.2104 0.067 3.152 0.002 0.080 0.341 const s.L1 1.1768 0.073 16.192 0.000 1.034 1.319

| s.L2  | -0.4658 | 0.109 | -4.258 | 0.000 | -0.680 | -0.251 |
|-------|---------|-------|--------|-------|--------|--------|
| s.L3  | 0.3861  | 0.112 | 3.443  | 0.001 | 0.166  | 0.606  |
| s.L4  | -0.3386 | 0.113 | -2.996 | 0.003 | -0.560 | -0.117 |
| s.L5  | 0.3188  | 0.112 | 2.840  | 0.005 | 0.099  | 0.539  |
| s.L6  | -0.3791 | 0.109 | -3.466 | 0.001 | -0.593 | -0.165 |
| s.L7  | 0.1504  | 0.073 | 2.066  | 0.039 | 0.008  | 0.293  |
| Roots |         |       |        |       |        |        |

\_\_\_\_\_\_

|      | Real    | Imaginary | Modulus | Frequency |
|------|---------|-----------|---------|-----------|
| AR.1 | -0.9208 | -0.8352j  | 1.2432  | -0.3828   |
| AR.2 | -0.9208 | +0.8352j  | 1.2432  | 0.3828    |
| AR.3 | 0.1872  | -1.2949j  | 1.3083  | -0.2271   |
| AR.4 | 0.1872  | +1.2949j  | 1.3083  | 0.2271    |
| AR.5 | 1.2281  | -0.3642j  | 1.2810  | -0.0459   |
| AR.6 | 1.2281  | +0.3642j  | 1.2810  | 0.0459    |
| AR.7 | 1.5317  | -0.0000j  | 1.5317  | -0.0000   |

# 4.4 Problem F

```
lb_stat lb_pvalue
    0.000031
               0.995573
1
    0.107644
2
               0.947601
    0.145260
3
               0.985901
4
    0.228593
               0.993945
5
    0.681262
               0.983981
6
    0.813668
               0.991702
7
    1.444265
               0.984177
8
    4.386175
               0.820710
9
    5.651757
               0.774202
10
    5.669816
               0.842199
11 12.263550
               0.344163
```

```
12.683548
12
                0.392455
13
    12.855834
                0.459008
14
    13.448330
                0.491565
15
    14.105729
                0.517526
    14.532605
                0.559100
16
17
    16.863113
                0.463677
18
    16.924938
                0.528271
    17.146294
                0.579957
19
20
    18.076740
                0.582353
```



• there does not seem to be autoccoeration

## 4.5 Problem G

```
[44]: print(f"AIC AR(2): {res_ar2.aic}")
print(f"AIC AR(7): {res_ar7.aic}")

print(f"BIC AR(2): {res_ar2.bic}")
print(f"BIC AR(7): {res_ar7.bic}")
```

AIC AR(2): 309.7126128947031

```
AIC AR(7): 296.76261348236477
BIC AR(2): 322.72170660688965
BIC AR(7): 325.7943335457836
```

#### 4.6 Problem H

```
[45]: df2 = df.head(-10)
      y = df2['s'].dropna()
      forecast_ar2 = res_ar2.predict(start=res_ar2.model._hold_back, end=len(y)-1)
      error_ar2 = y[res_ar2.model._hold_back:] - forecast_ar2
      error_ar2
[45]: date
      1960Q3
               0.086837
      1960Q4
               0.027696
      1961Q1
             -0.118914
      1961Q2
               0.084988
      1961Q3
               0.190625
      2004Q3
              -0.521260
      2004Q4
             -0.272081
      2005Q1 -0.143164
     2005Q2 -0.322460
      2005Q3
             -0.347333
     Freq: Q-DEC, Length: 181, dtype: float64
[46]: y = df2['s'].dropna()
      res_ar7 = AutoReg(df2['s'].dropna(), lags=7).fit()
      forecast_ar7 = res_ar7.predict(start=res_ar7.model._hold_back, end=len(y)-1)
      error_ar7 = y[res_ar7.model._hold_back:] - forecast_ar7
      error_ar7
[46]: date
      1961Q4
             -0.096905
      1962Q1
             -0.124619
      1962Q2
              -0.089512
      1962Q3
             -0.030522
      1962Q4
              -0.080839
      2004Q3
              -0.449768
      2004Q4
             -0.268528
      2005Q1
             -0.218167
```

```
2005Q2
             -0.097570
              -0.433046
      2005Q3
     Freq: Q-DEC, Length: 176, dtype: float64
[47]: mse ar2 = (error ar2**2).mean()
      mse_ar7 = (error_ar7**2).mean()
      print(f'MSE AR(2): {mse_ar2:.4f}')
     print(f'MSE AR(7): {mse_ar7:.4f}')
     MSE AR(2): 0.2933
     MSE AR(7): 0.2697
        • The AR(7) seems to have a smaller forecst error than AR(2)
     4.7 Problem I
[48]: forecast_ar2 = res_ar2.predict(start=len(y), end=len(y)+9)
      # Forecast error
      error_ar2 = df['s'].tail(10) - forecast_ar2
      error ar2
[48]: date
      2005Q4
              -0.144416
      2006Q1
             -0.518433
      2006Q2
               0.124451
      2006Q3
             -0.574535
      2006Q4
             -0.336027
      2007Q1
             -0.202987
     2007Q2
             0.168873
     2007Q3
             -0.025795
     2007Q4
             0.209614
     2008Q1
                0.575152
     Freq: Q-DEC, dtype: float64
[49]: forecast_ar7 = res_ar7.predict(start=len(y), end=len(y)+9)
      # Forecast error
      error_ar7 = df['s'].tail(10) - forecast_ar7
      forecast_ar7
[49]: 2005Q4
                0.585641
      2006Q1
               0.592219
      2006Q2
               0.707072
      2006Q3
               0.791292
      2006Q4
               0.896282
               1.037073
      2007Q1
```

```
2007Q2 1.173433

2007Q3 1.272218

2007Q4 1.326425

2008Q1 1.368948

Freq: Q-DEC, dtype: float64

[50]: mse_ar2 = (error_ar2**2).mean()

mse_ar7 = (error_ar7**2).mean()

print(f'MSE AR(2): {mse_ar2:.4f}')

print(f'MSE AR(7): {mse_ar7:.4f}')
```

MSE AR(2): 0.1193 MSE AR(7): 0.6474

• the AR(2) seems to prefer better than the AR(7) at forcasting the 10 steps. This is supported given that looking at the entire series the AR(7) fits better the historical data