

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

FUNDAMENTALS OF OPTIMIZATION

Introduction

CONTENT

- Optimization problems
- Optimization problem classification
- Applications
- Topics

Optimization problems

- Maximize or minimize some function relative to some set (range of choices)
- The function represents the quality of the choice, indicating which is the "best"
- Example

A shipper need to find the shortest route to deliver packages to

customers 1, 2, ..., N

0	3	1	6
3	0	2	4
1	2	0	5
6	4	5	0

0	3	4	2	5	6	8	7
3	0	3	6	7	2	1	6
4	3	0	4	7	1	1	9
2	6	4	0	2	8	3	4
5	7	7	2	0	6	5	1
6	8	1	8	6	0	9	3
8	1	1	3	5	9	0	2
7	6	9	4	1	3	2	0

Notations

- $x \in \mathbb{R}^n$: vector of decision variables $x_{j,j} = 1, 2, ..., n$
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $g_i: \mathbb{R}^n \to \mathbb{R}$ is the constraint function defining restriction on x, i = 1, 2, ..., m

minimize f(x) over $x = (x_1, x_2, ..., x_n) \in X \subset \mathbb{R}^n$ satisfying a property P:

$$g_i(x) \le b_i$$
, $i = 1, 2, ..., s$
 $g_i(x) = d_i$, $i = s + 1, 2, ..., m$

Examples

min
$$f(x) = 3x_1 - 5x_2 + 10x_3$$

 $x_1 + x_2 + x_3 \le 10$
 $2x_1 + 4x_2 - 5x_3 = 9$ (Linear Program)
 $x_1, x_2 \in R^+, x_3 \in Z$

min
$$f(x) = 4x_1^2 + 3x_2^2 - 7x_1 x_3$$

 $x_1 + x_2^3 + 4x_3 \le 10$
 $2x_1^2 + 4x_2 - 5x_3 = 7$ (Nonlinear Program)
 $x_1, x_2 \in \mathbb{R}^+, x_3 \in \mathbb{Z}$

Solving optimization problems

- General optimization problems
 - Very difficult to solve
- Some special cases
 - Linear programming
 - Least square problem
 - Some shortest path problems on networks
 - Etc.
- Example TSP

0	3	1	6
3	0	2	4
1	2	0	5
6	4	5	0

0	3	4	2	5	6	8	7
3	0	3	6	7	2	1	6
4	3	0	4	7	1	1	9
2	6	4	0	2	8	3	4
5	7	7	2	0	6	5	1
6	8	1	8	6	0	9	3
8	1	1	3	5	9	0	2
7	6	9	4	1	3	2	0

Classification

- Linear Programming (LP): f and g_i are linear
- Nonlinear Programming (NLP): some function f, g_i are nonlinear
- Continuous optimization: f and g_i are continuous on an open set containing X, X is closed and convex
- Integer Programming (IP): $X \subseteq \{0,1\}^n$ or $X \subseteq Z^n$
- Constrained optimization: m > 0, $X \subset \mathbb{R}^n$
- Unconstrained optimization: m = 0, $X = R^n$

Applications

- Production Planning
- Routing in transportation
- Scheduling
- Assignment
- Packing
- Time Tabling
- Network designs
- Machine learning

• . . .

Agriculture Production Planning

SKU	Chart	Demand
***		10000
		25000
		32000
		42500

Construction Planning

Planning

How to make a plan for delivering goods to customers

How to make a plan for delivering goods to customers

How to pick items in a very large warehouse?

Assignment

How to assign tasks to workers in an optimal way

4		6		8
2	6		7	
	5			6
		1	4	
			6	3

Time tabling

How to assign classes into slots of the timetable

Monday	Tuesday	Wednesday	Thursday	Friday	
Data structure & Algorithms, TC-305	Python Programmin g, D9-302	Statistics, B1-203	Technical writing, B1- 202	Networkings , B1-404	
Fundamenta I of			Java advanced,		
optimization,	Machine	allOII,		B1-204	Image
B1-402	learning, D6-302	Software engineering, D5-102	Operating systems, D9-101	processing, D6-303	

Machine learning

Prediction

X	Y
43	45
44	46
45	45
46	48
47	47
48	51
49	49
50	?

Computer vision

Topics of the course

- Unconstrained convex optimization
- Constrained convex optimization
- Linear programming
- Linear integer programming
- Constraint Programming
- Modelling
- Heuristic methods

References

- Stephan Boyd and Lieven Vandenberghe . Convex optimization. Cambridge University Press 2004
- David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer 2008
- Laurence A. Wolsey. Integer Programming. Wiley-Interscience; 1st edition (September 9, 1998)
- Francesca Rossi Peter van Beek Toby Walsh. Handbook of Constraint Programming 1st Edition. Elsevier Science, 2006
- El-Ghazali Talbi El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley 2009

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

