Week 3 – Data Link Layer

Assignment Project Exam Help

https://powcoder.com COMP90007 Internet Technologies Add WeChat powcoder

Lecturer: Ling Luo

Semester 2, 2021

Error Detection Codes

- Parity Bit (1 bit): (Hamming distance=2)
- Internet Checksum (16 bits): (Hamming distance=2)
- Cyclic Redundancy Check (CRC) (Standard 32-bit CRC: Happenipowdistancem4)

Add WeChat powcoder

How it works?

Sender: calculates R check bits using a function of data bits:

Receiver: receives/thevcodeword and calculates the same function on the data and match the results with received check bits:

Parity Bit

Given data 10001110, count the number of 1s

Sender: Add parity bit → 10001110**0** (for even parity)

Assignment Projecto Examparity p

Receiver: Check the trace // polyate for the control of the contro

Hamming distance is 2 for Parity Bit...

2-1=1 error bit can be detected and

 $(2-1)/2 = \frac{1}{2}$ not even 1 bit error can be corrected

Internet Checksum

- There are different variations of checksum
- Internet Checksum (16-bit word):
 Sum moderice and any overflow of high order bits back into low-order bits

Add WeChat powcoder

Example of Checksum

Calculate checksum (5-bit word) for data **00110 10001 11001 01011**

The checksum is one's complement of 11100 which is 00011

Data sent: 00110 10001 11001 01011 00011

Cyclic Redundancy Check

- Based on a generator polynomial G(x)
 - \Box e.g. $G(x) = x^4 + x + 1$ (10011)
 - Steps: Assignment Project Exam Help
 - Let r be the degree of G(x) (r=4). Append r zero bits to the low-order end of the frame soft flow contains m + r bits and corresponds to the polynomial x^rM(x).
 Divide the bit string corresponding to G(x) into the bit string
 - **Divide the bit string corresponding to G(x)** into the bit string corresponding to $x^rM(x)$, using modulo 2 division.
 - **Subtract the remainder** (which is always r or fewer bits) from the bit string corresponding to $x^rM(x)$ using modulo 2 subtraction.
 - The result is the checksummed frame to be transmitted. Call its polynomial T(x).

Example

Data: **1101001** and $G(x) = x^{4} + x + 1$ (**10011**) 5 bits polynomial add 4 bits as the checksum – so add 0000 10011 11010010000 signment Project Exam Help 010010 tps://powcoder.com 10011 00001Acdd WeChat powcoder 10011 010110 10011 Data sent: **1101001**0101

Error Correction: Hamming Code

n=2^k-k-1 (n: number of data, k: check bits)
 Example: Data: 0101 - > requires 3 check bits

Assignmen(2P)roject Exam Help

- Put check bits in positions p that are power of 2, starting with position we chat powcoder
- Check bit in <u>position p is parity of positions with a p</u>
 term in their value

Example

Put check bits in positions p that are power of 2, starting with position 1

Data: 0101 \rightarrow requires 3 check bits

Position	P1	P2	P3	P4	P5	P6 /	P7
Data	?	. ?	0);	?	1	\ _ O \	

Assignment Project Exam Help

1. Calculate the parity bits for P1, P2, P4 (rule: even parity)

Data sent: 0100101	error	error
Example 1 : At the receiver: 0		mple 2 : At the receiver: 0000101
/P1+P3+P5+P7=0+0+1+0 P2+P3+P6+P7=1+0+0+0)= 1×	+ P3 + P5 + P7 = 0+0+1+1= 0
P2)= 1× (P2)	+ P3 + P6 + P7 = 0+0+0+1= 1 ×
P4/+ P5 + P6 + P7 = 0+1+0+0)= 1× P4 -	+ P5 + P6 + P7 = 0+1+0+1= 0

Error bit: P1, P2, P4 \rightarrow P(1+2+4)=P7

Error bit: P2

111

Error Control Discussion

- Error Correction: More efficient in noisy transmission media e.g., wireless
- Error Detection: More efficient in the transmission media where low error trates equipment of the properties of the propertie
- The error can occur in the check bits
- Require assumption on a specific number of errors occurring in transmission that powcoder