Automorphisms of Weighted Projective Hypersurfaces

 $X_{d} \in \mathbb{P}_{\mathbb{C}}^{n+1}$ a smooth hypersurface of lim. n and degree d

1) When is Aut(X) linear?

every automorphism
comes from PGLn+2

Thm: (Grothen dieck-Lefscheiz, Matsumura-Monsky, Chang)

Let X, ≅X2 be an iso of hypersurfoces in Pn+1, n≥1, Then it is linear unless

(1) n=1, $\{d_1, d_2\} = \{1, 2\}$, (2) n=1, d=3(3) n=2, d=4

2) When is Aut(x) finite?

Thm: (matsumura-monsky, '64): If n=1 and d=3, then Lin(x) is finite.

automorphisms from PGLn+2

Q: How do we explicitly bound Lin(x)?

Goal: extend theorems to weighted projective space

weights

where $t \in \mathbb{C}^*$ acts by $t \cdot (x_0, ..., x_{n+1}) = (t^{a_0} x_0, ..., t^{a_{n+1}} x_{n+1})$

$$\underline{Ex}: P(\underbrace{1,1,\ldots,1}) \cong P^{n+1}$$

$$P(2,1,1) = \frac{(1:0:0)}{\text{singular point}}$$

Assume that P is well-formed:

$$gcd(a_0,...,\hat{a}_i,...,a_{n+1})=1$$

for each $i=0,...,n+1$

Let $f = f(x_0, ..., x_{n+1})$ be homogeneous of weighted degree d (deg(xi)=ai).

Then X:={f=0} = P(a0,...,an+1) is a hypersurface.

X is quasismooth if $\{f=o\} \in \mathbb{A}^{n+2} \setminus \{o\}$ is smooth.

 $P(a_0,...,a_{n+1}) = Proj S$ $S = C(x_0,...,x_{n+1})$ $x_1 + a_0 \qquad x_1 + a_{n+1}$ yraded automorphisms

Prop: Aut(P(ao,..., anil) = Aut(s)/H

"scalor transformation"

 $\underline{EX}: \operatorname{Aut}(P^{n+1}) = PGL_{n+2} \qquad (x_{0}, \dots, x_{n+1}) \qquad (x_{0}, \dots, t_{n+1})$

- Call elements of Aut(s) "linear"

 $\underline{EX}: P(4,3,1) \qquad \chi \longmapsto \chi^{+} y \neq + z^{4}$ $\chi \downarrow \qquad \chi \downarrow \qquad \chi \downarrow \rightarrow 2 \times \qquad \chi \downarrow \rightarrow 2 \times$

(F1) Linearity - Saw that Aut(X) = Lin(X) for most X1 s P^n+1 smooth Theorem A: (F. 2023)

Theorem A: (E., 2023) Let Xd = P(a0,...,an+1), Xd, = P(a0,...,an+1) be two well-formed, quasismooth hypersurfaces such that d≠a; for any i and either (1) $n \ge 3$, or (2) n = 2, $a_0 + a_1 + a_2 + a_3 \ne d$ If g: X'=X is an iso, then d = d', {a0,...,an+1} = {a',...,a'n+1} and 9 is linear Idea: CI(X) =Z, CI(X')=Z NTS $CI(X) \cong Pic Gm (affine cone over X)$

Remark: Przyjalkowski-Shramov & others
have had partial results for
weighted comp. intis

Ex: (failure of uniqueness of embeddings
for N=1)

$$R(x,D) := \bigoplus_{i=0}^{\infty} H^{i}(x,iD)$$

a) Let
$$X$$
 be sm., genus 1 curve $p \in X$ a rational point

$$R(X, \rho) \cong k[x_1, x_2, x_3]/(f_6)$$
3 2 1

$$= X = X_6 \leq P(3,2,1)$$

Weierstrass rep of elliptic curve

$$x_1^2 = x_2^3 + ax_2x_3^4 + bx_3^6$$

$$R(X, 2P) \cong k[Y_1, Y_2, Y_3]/(94)$$

 $\Rightarrow X = X_4 \in P(2,1,1)$

double cover of P1

cubic plane curve

X is tangent to a line with order 4 at P

$$R(X,P) \Rightarrow$$

$$X_{12} \subseteq P(4,3,1)$$
Idea for Thm A:
$$Show that g: X \longrightarrow X$$

$$nops \Theta_{x}(1) to \Theta_{x}(1)$$

 $O_{x}(1)$ to $O_{x}(1)$

(Grothendieck-Lefschetz) n 23

Theorem B (E., 2023)

Let X1 = P(a0,--,anti) be well-formed, quasismooth. Lin(X) is finite iff:

- (1) d > 2 max {ao, ..., an+1}, or
- (2) d = 2 max {ao, ..., an+,} but only

 $q_0 = \frac{d}{2}$

If neither (1) nor (2) holds, Lin(x) is infinite and X is rational Idea: if X is a quadric in some variables => Lin(X) infinite

- Proof: computing dim(Lie(Lin(x))) = 0
if (1) or (2) holds

Q: How do we bound Lin(x) explicitly?

Bott, Tate (1961): proved ∃kn,d |Lin(x)| ≤ kn,d xd ≤ Pn+1 smooth

• Howard, Sommese (1981): proved $\exists k_n$ such that $|Lin(x)| \le k_n d^{n+1}$, $d \ge 3$ $\chi_d \le P^{n+1} \text{ smooth}$

- kn not explicit

Theorem C: (E., 2023)

For each $n \ge 1$, there exists a constant Con such that: for any well-formed, quasismooth $X_1 \subseteq P(a_0,...,a_{n+1})$ of dim. n, if Lin(x) is finite, then

$$|Lin(x)| \leq C_n \frac{d^{n+1}}{a_0 \cdots a_{n+1}}$$

can compute an explicit value: ~(2n)! suffices

Expectation: $C_n = (n+2)!$ usually works (works for n large enough)

Prop: $C_1 = \frac{21}{2}$ is optimal

Proof idea:

Step 1: Translate to a statement about graded rings

If H = Aut(s) is defined as

$$H = \begin{cases} h: h \cdot f = f \end{cases}$$
defines
hypersurface x

then Theorem () IHI < Cn as...anti

Step 2: Reduce to abelian groups

Thm: (Jordan, 1878)

There exists a constant J_N const. for such that for any finite group GL_N $H \in GL_N(C)$, there exists a normal abelian subgroup $A \in H$ such that $[H:A] \leq J_N$.

Thm: (Collins, 2007) When $N \ge 71$, $J_N = (N+1)!$

In achieved by standard rep. of SN+1 in GLN(C)

Lemma: Let $S = E[X_0, ..., X_{n+1}]$ be a neighted graded poly. ring.

Then the Jordan constant of Aut(S) is uniformly bounded by C_{n_1} indep. of weights.

If A 75 abelian, get bound

IAI = do-an+1

Ex: P(a,b,c)

a, b, c are distinct

Then every finite subgroup of Aut(P) is conjugate to an abelian group.