PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43) Date of publication of application: 11.04.1995

(51)Int.Cl.

H01S 3/109

G02F 1/37

H01S 3/094

H01S 3/18

(21)Application number: **06-103832**

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

18.05.1994

(72)Inventor:

MINEMOTO TAKASHI

OZAKI YUSUKE SONODA NOBUO

(30)Priority

Priority number: 05115626

Priority date: 18.05.1993 Priority country: JP

(54) LASER SYSTEM

(57) Abstract:

PURPOSE: To emit SH beams capable of easily converting 0.8μm band into basic waves by a method wherein, as for the solid laser medium, GaAs crystal, AlGaAs crystal or super lattice crystal thereof are applicable in relation to the laser system including inner resonator type wavelength converting element.

CONSTITUTION: The laser system is mainly composed of an exciting semiconductor laser 20, a light emitting part 22 as a solid laser medium excited by the laser 20 and a wavelength conversion element 23 converting the wavelength of laser beams from the excited solid laser. As for the solid laser medium of the light emitting part 22, GaAs, AlGaAs, GaAs-AlGaAs base semiconductor crystals are applicable.

(5)

LEGAL STATUS

[Date of request for examination]

09.11.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

3329066

19.07.2002

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-99360

(43)公開日 平成7年(1995)4月11日

(51) Int.Cl. ⁶	識別記号 庁内整理番号	FΙ	技術表示簡所
H01S 3/109			·
G 0 2 F 1/37	9316-2K		
H01S 3/094			·
3/18			
		H01S	3/ 094
	•	審査請求	未請求 請求項の数11 OL (全 11 頁)
(21)出顯番号	特願平6-103832	(71)出願人	000005821
,	,		松下電器産業株式会社
(22)出願日	平成6年(1994)5月18日		大阪府門真市大字門真1006番地
		(72)発明者	峯本 尚
(31)優先権主張番号	特顧平5-115626		大阪府門真市大字門真1006番地 松下電器
(32)優先日	平 5 (1993) 5 月18日		産業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	尾崎 祐介
	.		大阪府門真市大字門真1006番地 松下電器
•			産業株式会社内
÷		(72)発明者	園田 信雄
			大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(74)代理人	弁理士 小鍜治 明 (外2名)
			•

(54) [発明の名称] レーザ装置

(57)【要約】

【目的】 内部共振器型波長変換素子を含むレーザ装置 に関し、固体レーザ媒質として、GaAs結晶、AlGaAs結晶、またはそれらの超格子結晶を用いることにより、容易に0.8μm帯を基本波とするSH光を得る。

【構成】 レーザ装置は、励起用半導体レーザ20、レーザ20により励起される固体レーザ媒質である発光部22、励起された固体レーザからのレーザ光の波長を変換する波長変換素子23を主な構成要素としている。発光部22の固体レーザ媒質には、GaAs、AlGaAs、GaAs-AlGaAs、GaAs、不の半導体結晶が用いられていることを特徴としている。

(o)

(b)

【特許請求の範囲】

【請求項1】半導体レーザと、

前記半導体レーザにより励起される固体レーザ媒質と、 前記固体レーザ媒質から出射するレーザ光の波長を変換 する波長変換素子と、

前記固体レーザから出射するレーザ光を増幅するための 光共振器とを備え、

前記半導体レーザからの励起光は、前記固体レーザ媒質の片方の主面に照射され、

前記光共振器は、前記主面と、反対側に配置された出力 10 ミラーとの間で構成されており、

前記光共振器の間に前記波長変換索子が配置されてお り

前記固体レーザ媒質としてIII-V族半導体結晶またはI I-VI族半導体結晶を用いることを特徴とするレーザ装置。

【請求項2】固体レーザ媒質として、GaAs結晶、A 1GaAs結晶、GaInP結晶またはそれらの混晶結晶や超格子結晶から選ばれる少なくとも一つの物質、またはCdS、CdSe、ZnS、ZnSe、ZnTe、MgS、MgSe及びそれらの混晶結晶や超格子結晶から選ばれる少なくとも一つの物質を用いることを特徴とする請求項1記載のレーザ装置。

【請求項3】半導体レーザの励起パワー及び発生した第 2次高調波パワーをモニターフォトダイオードを備えた ことを特徴とする請求項1または2に記載のレーザ装 置。

【請求項4】構成要素光部品が温度コントロールされているととを特徴とする請求項1または2記載のレーザ装置。

【請求項5】固体レーザ媒質の発光に寄与する部分の主面の直径が励起用半導体レーザビームの直径と同程度であることを特徴とする請求項1または2に記載のレーザ装置。

【請求項6】固体レーザ媒質の片方の主面には、誘電体 多層膜よりなるミラーが形成されており、前記ミラーは 半導体レーザより出射された励起光を透過し、かつ基本 波を効率よく反射する機能を有し、さらに前記主面がサファイヤ基板またはダイヤモンド基板に接合されている ことを特徴とする請求項1または2 に記載のレーザ装置

【請求項7】固体レーザ媒質が直接Au, Ag, Cu, Al, またはこれらをの元素を含む熱伝導率が100W・m⁻¹・K⁻¹以上の合金に保持されていることを特徴とする請求項1または2に記載のレーザ装置。

【請求項8】サファイヤ基板、またはダイヤモンド基板がAu、Ag、Cu、Al、またはそれらの元素を含む熱伝導率が100W・m⁻¹・K⁻¹以上の合金からなる材料に保持されているととを特徴とする請求項6記載のレーザ装置。

【請求項9】波長変換素子の励起側主面に基本波が透過 し高調波を反射する誘電体多層膜が形成されていること を特徴とする請求項1または2に記載のレーザ装置。

【請求項10】波長変換素子が、KTiOPO4, LiNbO3, LiTaO3, LiIO3, β -BaB2O4, LiB3O3または有機イオン結晶から選ばれる少なくても一つの波長変換用非線形光学材料で構成されている請求項1、2または9のいずれかに記載のレーザ装置。

【請求項11】波長変換用非線形光学材料の誘電分極が 周期的に反転されていることを特徴とする請求項1、2 または9のいずれかに記載のレーザ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本願発明は、レーザプリンタ、光 ディスク、光応用計測、レーザディスプレー等のレーザ 光源として用いられるもので、半導体レーザで励起され る固体レーザ媒質を有し、共振器内部に波長変換素子を 有したレーザ装置に関するものである。

[0002]

20 【従来の技術】近年、2次の非線形光学材料を利用した 波長変換素子(第2次高調波発生(以下SHGと略 す)、光和周波発生、光差周波発生など)を含むレーザ 装置が、光情報処理用(例えば光ディスクプレーヤやレ ーザブリンタ)光源、各種計測装置用光源、レーザディ スプレー用光源として盛んに研究されている。

【0003】波長変換素子を含むレーザ装置としては、 以下の2種類に大別する事が出来る。

[0004] (1) 第1の方式はNd:YAGやNd: YVO。等の固体レーザ媒質を半導体レーザで励起し、

30 固体レーザ装置の光共振器内に液長変換素子(おもにS HG素子 Second Harmonic Generator)を配置して第 2次高調液(以下SH波と略す)を発生させる方式で、 内部共振器型波長変換素子が用いられている。

【0005】(2)第2の方式は半導体レーザから出射された基本波を直接波長変換素子に入射して第2次高調波を取り出す方式のものであり、外部共振器型の波長変換素子と導波路型波長変換素子が用いられている。

[0006]

【発明が解決しようとする課題】従来の第1の方式は、 比較的簡単に被長変換を行うことが出来る。また、レーザディスプレーの光源としては1W〜数Wの光パワーが必要であるが、内部共振器型のSHG素子では比較的容易にその程度の大パワー出力を得ることができる。しかし、従来のNd系固体レーザ媒質では基本波の発振波長が1.06μ㎡付近であり、そのSH光は0.53μ㎡付近の緑色光となり、より短波長のSH光を得ることが出来ない。Nd:YAG結晶は0.946μ㎡でレーザ発振可能であるが、発振効率が1.06μ㎜の場合に比べて約1桁程度低い。さらに発振効率が結晶温度に大きく50依存するという課題がある。

[0007] 近年、Crを活性イオンとするCr: Li CaAlf。(以下LiCAFと略す)、Cr:LiS rAlF。(以下LiSAFと略す)等のレーザ媒質は 半導体レーザ励起により 0. 7 μm~ 1. 0 μmの波長範 囲で効率よく発振することが報告されている。しかして れらのレーザ結晶を内部共振器型波長変換素子に利用す る場合、発振波長を複屈折フィルターやグレーティング で選択する必要があり光共振器の構成が複雑になるとい う課題がある。また、これらはフッ化物結晶であり、空 気中の水分と反応したり結晶成長が困難である等の課題 10 がある。さらにこれらの酸化物やフッ化物の蛍光寿命は 100μsec程度であるのでレーザ光を直接変調する 場合10kHz程度でしか変調出来ない。光ディスクプ レーヤー等の記録光源として用いるにためには少なくと も数MHz以上に光を変調する必要があり、従って電気 光学効果や音響光学効果を利用した外部光変調器が新た に必要になるという課題がある。

【0008】半導体レーザを用いた内部共振器型液長変換素子も提案されている(例えばHarold D. et al.:IEE E J.Quantum Electonics Vol.QE6 (1970) pp356-36 0)。しかし通常の半導体レーザ光は狭い導波路(0.1μm×数μm角の断面)から光が出射され、出射された光は大きな広がり角を持つ。このため半導体レーザチップの外にレンズや出力ミラーを設置しても、出力ミラーで反射された光の数十%しか半導体レーザの導波路内に戻らず、光共振器内の基本波強度を大きくできない。従って高効率の波長変換素子を備えたレーザ装置を実現することが出来ないという課題がある。

【0009】第2の方式では、半導体レーザ光の液長を直接波長変換するため0.4μm帯のSH光を得ること 30が出来る。さらにCdZnSe、ZnSe、ZnMgSSe系等のII-VI族半導体レーザの光を基本波とすることにより波長0.3μm以下のSH光を得ることが出来る。しかし、外部共振器型波長変換素子では半導体レーザの波長と光共振器の共振波長を一致させるため複雑な波長制御技術が必要となるという課題がある。さらに波長変換用結晶自体を光共振器とする場合は(例えばW.Lenthetal.:Proceedings of SPIE Vol.1219 (1990) pp2 1-29、特開平4-335586号公報等)結晶端面に高精度の曲面加工が必要となりレーザ装置が著しく高価なものとな 40るという課題がある。

【0010】導波路型波長変換素子では、断面積が数μm×数μm以下の導波路に大パワーのレーザ光を導入することが困難なために、レーザディスプレー用光源を実現することは出来ない。さらに、半導体レーザ光を効率よく安定して導波路型波長変換素子に導入することが困難でる。また半導体レーザ光の波長を安定させるため波長安定化の機構が必要になるので、外部共振器型波長変換素子の場合と同様の課題がある。

【0011】本発明は、前記従来の問題点を解決するた 50

め、簡単な構成で、かつ直接変調可能なさらに大パワー の短波長レーザ光源を得ることのできるレーザ装置を提

供することを目的とする。

[0012]

【課題を解決するための手段】本発明のレーザ装置は、 半導体レーザ、固体レーザ媒質、光共振器及び波長変換 素子を構成要素とするレーザ装置において、前記固体レ ーザ媒質としてIII-V族半導体結晶、またはII-VI族 半導体結晶を用いることを特徴とする。

【0013】前記構成において、固体レーザ媒質としては、III-V族半導体結晶であるGaAs結晶、AlGaAs結晶、AlGaAs結晶、AlGaAs結晶、AlGaAs結晶、それらの混晶結晶や超格子結晶から選ばれる少なくとも一つの物質、またはII-VI族半導体結晶としてはCdS、CdSe、ZnS、ZnSe、ZnTe及びそれらの混晶結晶や超格子結晶の何れかが用いられていることが望ましい。

【0014】さらに、固体レーザ媒質の少なくとも片方の主面に誘電体多層膜よりなるミラーが形成されており、との端面がサファイヤ基板またはダイヤモンド基板 に接合されているとか、固体レーザ媒質が熱伝導の優れたAu、Ag、Cu、Al、またはこれらをの元素を含む熱伝導率100W・m⁻¹・K⁻¹以上の合金に直接保持されていることが好ましい。

【0015】半導体レーザの励起パワー及び発生した第 2次高調波パワーを同時にモニターすること、さらに構 成要素光部品が温度コントロールされていることがより 好ましい。

[0016] 固体レーザ媒質の発光に寄与する部分の主面の直径が励起用半導体レーザビームの直径と同程度で30 あることが望ましい。

【0017】さらに波長変換素子の励起側主面に基本波 が透過し高調波を反射する誘電体多層膜が形成されてい ることがこのましい。

【0018】また前記構成においては、波長変換素子は、KTiOPO。(KTP), LiNbO。(LN), LiTaO。(LT), KNbO。(KN), LiIO。, β-BaB。O。(BBO), LiB。O。(LBO) または有機イオン結晶から選ばれる少なくとも一つの波長変換用光学材料で構成されることが好ましい。

【0019】また前記構成においては、波長変換用非線 形光学材料の誘電分極が周期的に反転されていることが 好ましい。

【0020】さらに、本願発明によるレーザ装置をレーザディスプレーの光源として用いることが好ましい。 【0021】

【作用】本発明の構成によれば、固体レーザ媒質として III-V半導体結晶、またはエーVI族半導体結晶を用いることにより変調可能な、そして高出力な短波長光源用のレーザ装置を実現できる。

0 【0022】すなわち、波長0.9μm~0.6μm帯の

10

レーザ光は、固体レーザ媒質としてGaAs、AlGa As、AlGaInP系のIII-V族半導体結晶を用い ることにより発振させることが出来る。この時励起用半 導体レーザ光源(GaAs系、AIGaInP系の半導 体レーザ)の波長は固体レーザ媒質として用いる半導体 材料の吸収端波長より短くすることにより、効率よく励 起可能である。

[0023]波長変換方式としては内部共振器型波長変 換方式となるため、簡単な構成で0.9μm~0.6μm 帯の半分の波長のSH光を得ることが出来る。基本波の 波長は主に固体レーザ媒質として用いる半導体結晶の組 成により決めることができる。

【0024】波長0.5 μm~0.4 μm帯のレーザ光 は、固体レーザ媒質としてII-VI族半導体結晶であるC dS, CdSe, ZnS, ZnSe, ZnTe, Mg S、MgSe及びそれらの混晶結晶や超格子結晶の何れ かを用いることができる。

【0025】励起用半導体レーザとしては例えばCdZ nSe、ZnSe、ZnMgSSe系等のIIーVI族半導 体レーザを用いることが出来る。

【0026】 これら半導結晶の蛍光寿命は数nsec程 度であり、励起光源を変調する事により少なくとも数百 MHzまで変調する事が可能となる。従って光ディス ク、レーザディスプレー等の光源として新たに光変調器 を必要としないという特徴がある。酸化物結晶やフッ化 物結晶を固体レーザ媒質として用いた場合には、変調周 波数が数10kHzであり、これらの結晶を用いたレー ザ装置を光ディスクプレーヤー等の光源として用いる場 合、新たに光変調器を必要としていた。

【0027】つぎに固体レーザ媒質は、光共振器内に配 置されているか少なくても片方の主面に誘電体(または 半導体) 多層膜よりなるミラーが形成されており、対向 する側には出力ミラーが配置されている。固体レーザ媒 質はサファイヤ基板またはダイヤモンド基板に接合され たものか、直接銅のような熱伝導の良い材料からできた 台に固定されているので、固体レーザ結晶で発生する熱 を効率よく取り出すことが出来る。本構成のレーザ装置 は光励起型の、導波路構造を用いない、バルクタイプの レーザ装置である。導波路型半導体レーザの内部共振器 型波長変換の場合に問題となるレーザ光が光導波路へ数 十%しか戻らず(光共振器ロスが非常に大きい)光共振 器内の基本波強度が大きくならないという問題を解決で きる。

【0028】光励起法を用いることにより、(光励起に より発生したキャリアの閉じとめのみを考えればよく) 通常の半導体レーザで必要となる電流の閉じとめや電流 を流すための低抵抗化を考える必要がなく、発光部の素 子構造が簡単になる。さらに励起用の半導体レーザのビ ームの品質(縦モード、横モードとも)があまり要求さ れないので、縦モード・横モードともマルチモードの大 50

パワーの半導体レーザを利用できる。SHG出力は入射 パワーの2乗に比例するので、とのような大パワーの半 導体レーザが利用出来るととは変換効率の大きな高出力 のSHG光源を実現する上で非常に有効である。通常2 00mW以上の高出力半導体レーザは導波路幅が広く (数十μm以上) レーザビームは縦モード・横モードと もマルチモードとなり導波路型や外部共振器型SHG素 子には利用できない。

【0029】非線形光学材料としてはKTiOPO (KTP), LiNbO, (LN), LiTaO, (L T), KNbO, (KN), LilO, が比較的大きな 非線形光学定数を示すので有効である。β − B a B, O, (BBO), LiB,O,(LBO)は吸収端波長が0. 2μm以下と短いので紫外のSH光発生まで使用でき特 にII-VI族半導体結晶との組合せが有効である。またK TiOPO, LiNbO, LiTaO,等の非線形光 学材料の場合、誘電分極が周期的に反転されてた構成の 材料を波長変換素子として用いることができる。この場 合、誘電分極の反転周期を調節することにより任意の波 長で位相整合(いわゆる疑似位相整合:例えばD.H.Jund 20 t et.al.:Apl.Phys.Lett Vol.59 pp2657-2659(1991)) をとるとができ、波長変換材料の種類を変化させる必要 がないので有利である。また有機イオン結晶は有機非線 形光学材料の一種であり、非常に大きな非線形光学定数 が期待できるので低出力の波長変換に有効である。

【0030】さらに、本願発明によるレーザ装置をレー ザディスプレーの光源として用いることにより、従来試 みられたガスレーザを用いたレーザディスプレーに比べ て、きわめて小型・高効率で安価なレーザディスプレー を実現するととが可能となる。

[0031]

【実施例】以下、実施例を用いて本願発明をさらに具体 的に説明する。

【0032】本願発明は、固体レーザ媒質として半導体 結晶(III-V族半導体結晶、II-VI族半導体結晶)を 用いる事により基本波波長が0.9μm帯~0.6μm帯 及び0.5μm~0.4μm帯の光を得、その内部共振器 型波長変換素子を用いて半分の波長の短波長レーザ光を 発生するレーザ装置を実現するものである。

【0033】固体レーザ媒質として半導体結晶を用いる 場合、光励起されたキャリアが励起場所にとどまらず拡 散や結晶表面での非発光再結合により消滅するので、す ぐにキャリヤ密度が減衰する。励起されたキャリアを特 定の場所に閉じ込めるブロッキング層を設けることがキ ャリヤの閉じ込めに有効である。また、非発光再結合成 分が多い結晶表面にキャリヤが拡散しない構造となるの で望ましい。キャリアの閉じ込め構造は、光励起される 場所(したがって発光場所)よりエネルギーギャップの 大きな材料で励起部分を被うことにより実現できる。

[0034] 例えば0.8 µm帯の固体レーザ媒質とし

てGaAs結晶を、キャリア閉じとめのためのバンドギ ャップの大きな材料としてはAIGaAsを用いること が出来る。励起用半導体レーザ光の波長により吸収係数 が異なるので、励起光を吸収するだけの結晶厚みがあれ ばよい。通常GaAs結晶の厚みは数μmから数十μm程 度以下でよい。最も簡単にはGaAs基板をメカノケミ カル研磨及びウエットエッチング等を利用して厚み数μ m~数十µm程度の薄板状結晶を得ることが出来る。厚み 数μm~数十μm程度の薄板状結晶を得る別の方法として はGaAs基板上にAlGaAsを0.2μm成長し、 次にGaAsを数μm~数十μm成長し次にAlGaA sを0.2μm成長する。次にGaAs基板を厚み数十 μm程度以下まで研磨し、最後に選択エッチングで残っ たGaAs基板を完全に除去すればよい。この場合は厚 み0.2μmのA1GaAsにサンドイッチされた厚み 数μm~数十μmのGaAs薄板結晶を得ることが出来 る。固体レーザ媒質として発光効率を上げるために発光 層としてGaAs-A1GaAsの多重量子井戸構造の 薄板結晶を用いてもよい。次にその薄板状結晶をサファ イヤ、またはダイヤモンド結晶上に接合する。接合の方 法としては例えば適当な有機接着剤を用いても良いが、 オプティカルコンタクト、陽極酸化(例えばBertil Hok et al.:Appl.Phys.Lett.Vol43 (1983)pp267-269) 等の 技術を用いることが放熱、信頼性の観点より望ましい。 さらにサファイヤ基板またはダイヤモンド基板は熱伝導 率100W・m-1・K-1以上のAg, Cu, Au, A 1、またはそれらの合金からなる材料に熱伝導ペース ト、ネジ、半田等で保持されることにより効率よく固体 レーザ媒質から発生する熱を放熱するこができる。固体 レーザ媒質を直接熱伝導の良い台に固定しても良い。 【0035】次にフォトプロセス及びエッチングプロセ スを利用して、直径が励起用半導体レーザ光のビーム径 と同程度になるように円板状に加工する。例えば直径数 μm~20μmφ程度になるよう周辺部を除去すればよ い。また1W~数Wの大パワーの波長変換用には、励起 用半導体レーザのビーム径と同程度の100~1000 μmφ程度になるように周辺部を除去する。さらにきキ ャリアの結晶表面への拡散を押さえるためには結晶表面 にAlGaAs (例えばAl。,Ga。,As)をエピタ キシャル成長すればよい。次に半導体結晶の片方の主面 及び対向する側に配置された出力鏡の間で光共振器を構 成する。半導体結晶主面を光共振器の片方のミラーとし て用いる代わりに別に光学ガラス基板に誘電体多層膜を 蒸着したミラーを用いてもよい。光励起用光源としては 電気から光への変換効率のよい半導体レーザを用いる。 半導体レーザとしてはAIGaAs系半導体レーザ(波 長0.8μm帯) またAlGaInP系半導体レーザ (波長0.6μπ帯)を用いるととが出来る。 【0036】非線形光学材料としてはKTiOPO

,(KTP), LiNbO,(LN), LiTaO,(L

T), KNbO, (KN)、LilO, 等を用いること が出来る。LiIO,では基本波波長約0. 6μmまで、 またKNでは基本波波長約0.84 μmまで位相整合可 能である。また有機イオン結晶としては例えば特願平5 -61680号に示されているようにp-ニトロフェノ キシ酢酸ナトリウム系等を用いることが出来る。KT P、LNのバルク結晶では基本波波長1μm帯以下の波 長では位相整合しない。また、LTは複屈折量が小さく バルク結晶では全く位相整合しない。従って、いわゆる 10 疑似位相整合をとる必要がある。疑似位相整合のための 方法としてはKTPににおいてはRb等のイオン拡散法 が主に用いられる。LNやLTにおいては櫛形電極を形 成して高電場でポーリングする。または結晶成長時にイ ットリウム等の元素を添加し且つ1分間に数回~十数回 周期的に揺らいだ成長温度条件で結晶を引き上げる(チ ・ョクラルスキー法)等の方法により、周期的に誘電分極 の反転した結晶を得ることが出来る。

【0037】上記の非線形光学材料を用いて作成した波 長変換素子をレーザ装置の光共振器内に配置することに より内部共振器型波長変換方式のレーザ装置が実現され る。波長変換素子及び/または各光部品が必要に応じて 温度コントロールされていてもよい。本構成は内部共振 器型波長変換方式であり、簡単な構成で効率よく波長変 換することが出来る。そのため外部共振器型波長変換素 子や導波路型波長変換素子を用いる場合に問題となる複 雑な波長安定化制御や波長変換結晶の複雑な加工をほと んど必要としない。

【0038】レーザ媒質としてII-VI族半導体結晶を用いる場合は、GaAs基板上に例えばZnSeをエビタキシャル成長した後、基板のみを研磨及びエッチングによ除去することによりZnSeの薄板結晶を得ることが出来る。励起用半導体レーザとしては例えばCdZnSe、ZnSe、ZnMgSSe系等のII-VI族半導体レーザを用いることが出来る。また波長変換用非線形光学材料としてBBOまたはLBOを用いる。上記以外は同様の構成で短波長レーザ装置を実現できる。

【0039】さらにSH光強度安定化のため発振スペクトルを単一モードにする必要がある場合は光共振器内にエタロン板を、また偏光を制御する必要がある場合はブリュウスター板等の偏光制御素子を光共振器内に配置する事により実現できる。また、励起用半導体レーザパワー及びSHG出力を同時にモニターし、レーザ装置の主な構成部品の温度を一定にする事によりより安定なSHG出力光を得ることが可能となる。

【0040】本願発明をより詳細に説明するために以下 に具体例を用いて説明する。

(実施例1)本願発明のレーザ装置の概略を図2に示す。励起用半導体レーザ光源20として波長780nmのA1GaAs系の半導体レーザを用いた。半導体レー50 ザ20から出射された光はレンズ系21を通して発光部

10

22集光される。発光部22の構造を図1に示す。Ga As結晶12の厚みは2μmである。波長780nmに 対するGaAs結晶の光吸収係数は約1.4×10 '(cm⁻¹)であるので、結晶の厚み2 µmの時励起光の 94%以上が吸収される。この結晶の出力ミラー側主面 は誘電体多層膜11からなる無反射コーティングが蒸着 されてる。誘電体材料としては高屈折材料としてはTi Oz, CeOzなどを、低屈折材料としてはSiOzやM g F , 等が用いることにより、波長0.88 μmの光が9 9%以上透過する無反射コートが実現されている。 [0041] 結晶の励起側主面には励起波長0.78 μ mの光が透過し基本波波長である0.88μmの光に対し ては99%以上反射する誘電体多層膜ミラー13が形成 されている。誘電体ミラー13はオプチカルコンタクト によりサファイヤ (A1,O,) 基板14に接合されてい る。サファイヤ基板に固定されたGaAs及び誘電体多 層膜よりなる部分をフォトプロセスとドライエッチング の技術を用いて直径10μmφに加工した。サファイヤ 基板の励起光入射側には波長0.78μπの光が効率よ く透過するように誘電体多層膜15よりなる無反射コー トが製膜されている。発光部22は銅製のホルダーに固 定されており効率よく放熱されるようになっている。出 カミラーは基本波である波長0.88μmの光は99% 以上反射しSH光である波長0.44μmの光は95% 以上透過する誘電体多層膜が形成されている。励起用半 導体レーザ20で励起された発光部22は、波長0.8 8 μπの光が光共振器の励起側ミラー13と出力ミラー 24で何度も往復を繰り返すことにより、発振する。励 起用半導体レーザの光は発光層12のGaAs結晶部で ビーム径約10μmに集光されている。基本波である O. 88μmの光は光共振器内に閉じこめてられるた め、光共振器内での基本波の光強度は大きくなる。波長 変換素子用結晶としてはLiIO」を用いた。LiIO」 結晶は波長0.88μmで位相整合する角度に切り出さ れている。さらに結晶表面の発光部側23Aには波長 88μmの光は透過しそのSH光である波長0.4 4 μ mの光は反射する誘電体多層膜が製膜されている。 また、波長変換素子の出力ミラー側23Bの面には0. 88 μm及び0. 44 μmの両方の波長の光が透過する 用に誘電体多層膜が製膜されている。従ってこのLil 〇,よりなる波長変換素子を光共振器内に配置する事に より、光共振器内で大きな光強度を有する波長0.88 μmのSH光である0.44μmの光を出力ミラー24 を通して効率よく取り出すことができる。本構成のレー ザ装置を用いることにより励起用半導体レーザパワー2

【0042】さらに、波長780mmの励起用半導体レ ーザの励起パワーを変調することにより基本波を500 MHzまで変調可能であり、さらに500MHzまで変 50 ンズを介することなく発光部35を励起する。また波長

00mWにおいて1mWの波長440nmのSH光が得

られる。

調された波長440nmのSH光を確認した。なお、変 調周波数(500MHz)は励起用半導体レーザの駆動 回路の制限によるものでありさらに高周波まで変調可能 である。

10

【0043】(実施例2)発光部としてII-VI族半導体 薄膜結晶を用いた場合について図9を用いて説明する。 予め、研磨とエッチングで厚みを薄くした厚み50μm のGaAs基板を用いる。その上にブロッキング層とし てZnSe92を0.2μm、発光層としてZn。,,C d。」Se93を2µm、さらにブロッキング層として ZnSe94を0. 2μm、MBE法を用いて成長す る。次にGaAs基板を選択エッチを用いて完全に除去 する。此の後、この薄膜結晶の片方には波長530nm を透過する誘電体多層膜91、対向する反対側の面には 励起用の波長480 n m光は透過し、基本波である波長 530nmの光を99%以上反射する誘電体多層膜95 を蒸着する。得られた結晶をオプティカルコンタクト法 を用いてサファイヤ基板96に接合する。サファイヤ基 板96には励起用の波長480nmの光が透過する誘電 体多層膜97が蒸着されている。本構成のレーザ媒質を 実施例1と同様の光学系で評価する。但し、励起用半導 体レーザはZnSe系半導体レーザを液体窒素温度に冷 却して用い、波長480nmで励起する。レーザ用出力 ミラーは基本波波長530nmは99%以上反射し、そ のSH光の波長265nmは95%以上透過するミラー に変更する。さらに、波長変換素子としてはBBO結晶 を用いる。他の光学系の構成は実施例1と同様である。 励起用半導体レーザパワー100mWのとき0. 1mW の波長265nmの紫外光を得ることができる。

【0044】さらに、波長480nmの励起用半導体レ 30 ーザの励起パワーを変調することにより500MHzま で変調された波長265nmのSH光を確認できる。 【0045】(実施例3)本願発明による波長440n m用小型レーザ装置の具体例を図3を用いて説明する。 【0046】図3(a)はレーザ装置の構成概要を示す上 面図、図3 (b)は側面図である。レーザ装置を配置する ための台としてはSiブロック38を用いる。CCでSi ブロックを用いるのは、Siの熱伝導率が168W·m -1・K-1と大きいこと、及び線膨張係数が2.4×10°℃ ~1と通常の金属に比べて約1桁小さいため共振器の光学 軸ズレが小さくなるためである。

【0047】半導体レーザチップ30はヒートシンクに 取付け、それをSiブロック38上に固定した。実施例1 と同様の発光部35 (ただし発光部の直径は30 µm φ)をサファイヤ基板36に接合したものを半田等を用 いてSiブロック38に固定する。ことでサファイヤ基板 は半田に濡れるようにSiブロック38に固定する部分に 金等の金属を蒸着したものをもちいた。

【0048】半導体レーザチップから出射された光はレ

変換素子33及び出力ミラーは実施例1と同様のものを用いた。波長変換素子33の固定には熱伝導性のよい接着剤を用いて固定する。最後に出力ミラー34は半導体レーザチップを駆動しながら波長880nmの基本波が安定に発振しSH光の出力が最大になるように調整しながら半田を用いて固定した。半導体の励起パワー200mWの時0.7mWの波長440nmのSH光を得ることができる。

[0049] (実施例4)本願発明による波長440nm用小型レーザ装置の2番目の具体例を図4を用いて説 10明する。

【0050】図4(a)はレーザ装置の構成概要を示す上面図、図4(b)は側面図である。レーザ装置を配置するための台としては銅ブロック48を用いる。とこで銅ブロックを用いるのは銅の熱伝導率が400W・m⁻¹・K⁻¹と良好であるためである。本具体例では銅を用いたがAu,Ag,A1等を含む熱伝導率の大きな合金を用いることもできる。半導体レーザチップ40はヒートシンクに取付け、それを銅ブロック上に固定した。Example3と同様に発光部45をサファイヤ基板46に接合したものを半田等を用いて銅ブロック48に固定する。

【0051】とこでサファイヤ基板の半導体レーザ側は 反射光が励起側半導体レーザに戻ることをさけるため垂 直から5~15度程角度を傾けてある。これはサファイ ヤ基板には無反射コートがなされているが、わずかなが ら反射する光が半導体レーザにもどらないようにするた めである。

【0052】以下実施例3と同様に組立をおこなった。本装置を用いて半導体レーザの励起パワー200mWの時0.8mWの波長440nmのSH光を得ることができる。さらに、サファイヤ基板からの反射戻り光が半導体レーザに戻らないため実施例3と比較して安定にSHG光を得るととができる。

【0053】(実施例5)本願発明のレーザ装置をさら に高効率・高出力にするためには、発光部のキャリヤの 閉じこめ効率をさらによくすることと、熱の取り出しを さらに良好にすることが有効である。以下に、発光部の キャリヤ閉じこめ効率をよくし、熱の取り出しをよくす るための発光部の構成及び作成プロセスを図5を用いて 説明する。

[0054]図5(a)のように、GaAs基板50にA1。、、Ga0、、AsB51を0.2 μ m、GaAsB52 を2 μ m、A10、、Ga0、、AsB53を0.2 μ m LP E法を用いて成長する。次にSiO0、を製膜しフォトリソグラフィで所望の発光部の面積と同程度の円形マスクを作成する。

【0055】図5(b)のように、ドライエッチングとウエットエッチングを用いて発光層となる円柱形状を作成する。

【0056】図5(c)のように、キャリヤ閉じとめのた

12

めのブロッキング層(A1。、Ga。、As B55)を 0. $5\sim2~\mu$ m成長する。次に基板を研磨して約 $50~\mu$ m程度まで薄くし、研磨によるダメージをウエットエッチングにより取り除く。

【0057】図5(d)のように、発光部の有効面積より多少大きな円形のパターンをフォトレジストに形成する。 【0058】図5(e)のように、基板50を1規定のNH,OH:H,O2(=1:20)で選択エッチする。

【0059】図5(f)のように、光励起側および励起と 反対側に誘電体多層膜57及び58を製膜する。とこで 励起側主面の誘電体多層膜58には励起波長0.78 μ mの光が透過し基本波波長である0.88 μ mの光に対し ては99%以上反射する。この結晶の出力ミラー側主面 の誘電体多層膜57は波長0.88 μ mの光が99%以 上透過する無反射コートが実現されている。

【0060】(実施例6)つぎに図5(分と同様の構成からなる半導体結晶を用いた小形のレーザ装置の例を図6及び図7を用いて説明する。図6は図5で示したのと同じ、発光部69の取り付け方法を示す図である。発光部69は基本波が透過する貫通穴のあいた銅製の板66に半田などで固定される。さらに板66は同じく銅製のブロック68に固定されている。したがって、発光部で非発光成分として発生した熱は効率よく銅製のブロックに逃がすことができる。同じ銅ブロックに取り付けられた半導体レーザチップ60の光により(レンズを介さず)直接励起される。

【0061】図7は本願発明による小形レーザ装置の全体構成を示す図である。ととで波長変換素子73用の結晶としてはKNbO,を用いた。また励起用半導体レーザバワー、SHG出力をモニターするフォトダイオード80及び81が配置されている。さらに光学系全体がペルチェ素子83により±0.02℃の精度で温度コントロールされている。レーザ装置全体はケース84及び85により乾燥窒素雰囲気中に完全に密閉されている。

【0062】本レーザ装置に於いて、励起半導体レーザパワー200mWの時3mWのSH光を得ることができる。さらにレーザの安定性は1時間当たりのパワー揺らぎは $\pm2\%$ 以内である。これは、出力光をモニターしながらフィードバック制御が可能となるためである。

40 【0063】(実施例7)実施例5と同様の発光部とKNbO,結晶を用いて、図2と同様の光学系を作成し大出力レーザ装置を実現した。発光部の有効径は直径500μmである。また、励起用半導体レーザはストライプ幅500μmの縦モード・横モードともマルチモードのものを用いた。KNbO,結晶を用いた波長変換素子はベルチェ素子により±0.02℃の精度で温度コントロールされている。本構成のレーザ装置において、励起パワー4Wの時2Wの波長440nmのSH光を得ることができる。本レーザ装置はレーザディスプレーの光源と50 して用いることができる。

【0064】 (実施例8) 本願発明による、レーザディ スプレーの例を図8を用いて説明する。赤色光源801 としては、半導体レーザ励起の波長1320ヵmで発振 するNd:YAGレーザの内部共振器型第2次高調波を 用いた。励起パワー5 ♥の縦・横マルチモードの半導体 レーザを用いて波長660nmの赤色SHG出力2Wを 得る。また緑色光源802としては、半導体レーザ励起 の波長1064nmで発振するNd:YVO.レーザを 用いる。半導体レーザの励起パワー3型の時1.6型の 波長532nm緑色光を得ることができる。

【0065】また青色光源803としては実施例6のレ ーザ光源を用いた。これらの光源から出射された光は音 響光学効果を利用した変調器805~807によってそ れぞれ変調される。ととで外部変調器807を用いるの は、使用した大バワーの励起用半導体レーザの変調特性 がよくないためであり、変調特性の良い半導体レーザが あれば必要が無い。また赤及び緑色用光源には原理上外 部変調器が必要であることは、以前に述べた通りであ る。外部変調器を透過した光はNDフィルタ815~8 17によって光量が、色再現性がよくなるように、調整 20 されたのちダイクロイックミラー810~812によっ て同一の光軸に合わされる。この光は全反射ミラー81 8によって光路が調整された後、水平方向の光捜査のた めのポリゴンミラー825で反射され、さらに垂直方向 捜査ミラー820によって反射された後、スクリーン8 30に到達する。スクリーンに画面の大きさ30インチ の映像を写した結果、通常のNTSC方式と同画質の映 像が得られた。

【0066】捜査型のレーザディスプレーに例について 開示したが、投射形液晶ディスプレーの光源としても利 用する事ができる。この場合は、光源から同一光軸に合 わせられた光を、ビームエキスパンダーをもちいて液晶 モジュールの画面サイズに広げて用いる。また音響光学 素子を用いた外部変調器は必要がなくなる。スクリーン に投影された映像にスペックルノイズが発生する場合 は、ランダム位相板、回折素子等を光学系中に配置する ことで回避することが出来る。レーザ光源を用いた場 合、ほぼ完全な平行光を容易に得られること、及び目的 とする波長の光のみを発生するので光の利用効率が非常 に高くなる。通常のランプ光源を用いた場合、特に赤外 や紫外光等の不用な光は熱となり、液晶モジュールの発 熱が問題となるが、レーザ光源を用いた場合との問題を 回避するととが可能となる。

【0067】以上、本願発明による実施例では第2高調 波発生を利用したレーザ装置についての例を示したが、 光和周波発生や光差周波発生を利用したレーザ装置の場 合でも本発明を用いることが出来る。

【0068】さらに上記の説明は、本発明の一実施例に 関するもので、この技術分野の当業者であれば、本発明 の種々の変形例が考えられるが、それらはいずれも本発 50 14 サファイア基板

明の技術的範囲に含まれる。

[0069]

【発明の効果】以上のように本発明のレーザ装置によれ ば以下のような効果が得られ、その工業的価値はきわめ て大きい。

14

- (1)固体レーザ媒質としてIII-V半導体結晶、また はII-VI族半導体結晶を用いることにより簡単な構成 で、直接変調可能な、短波長光源用のレーザ装置を実現 できる。
- (2) 光励起法を用いることにより、(光励起により発 10 生したキャリアの閉じこめのみを考えればよく)通常の 半導体レーザで必要となる電流の閉じこめや電流を流す ための低抵抗化を考える必要がなく、発光部の素子構造 が簡単になる。
 - (3)励起用の半導体レーザのビームの品質(縦モー ド、横モードとも)があまり要求されないので、縦モー ド・横モードともマルチモードの大パワーの半導体レー ザを利用できる。SHG出力は入射パワーの2乗に比例 するので、このような大パワーの半導体レーザが利用出 来るととは変換効率の大きな高出力のSHG光源を実現 する上で非常に有効である。
 - (4) 本願発明によるレーザ装置をレーザディスプレー の光源として用いることにより、従来試みられたガスレ ーザを用いたレーザディスプレーに比べて、きわめて小 型・高効率で安価なレーザディスプレーを実現すること が可能となる。

【図面の簡単な説明】

- 【図1】本発明の実施例1における発光部の構成を示す
- 【図2】本発明の実施例1における、図1の発光部22を 用いたレーザ装置の構成を示す模式図
 - 【図3】本発明の実施例3における小形レーザ装置の構 成を示す図
 - 【図4】本発明の実施例4における小型レーザ装置の構 成を示す図
 - 【図5】本発明の実施例5における発光部の構成及び作 成プロセスを示す図
 - 【図6】本発明の実施例6における発光部の固定部を示 す図
- 【図7】本発明の実施例6におけるレーザ装置の構成を
 - 【図8】本発明のおける光源を利用したレーザディスプ レーの構成を示す図
 - 【図9】本発明の実施例2における発光部の構成を示す 図

【符号の説明】

- 11 誘電体多層膜
- 12 固体レーザ媒質
- 13 誘電体多層膜

(9)

特開平7-99360

1'

- 15 誘電体多層膜
- 20 励起用半導体レーザ
- 21 集光のための光学系
- 22 発光部
- 23 波長変換素子
- 24 出力ミラー
- 801 SHGを利用した赤色レーザ光源
- 802 SHGを利用した緑色レーザ光源

【図1】

*803 SHGを利用した青色レーザ光源

805、806、807 外部変調素子

810、811、812 ダイクロイックミラー

16

815、816、817 光量調節用フィルタ

818 全反射ミラー

820 垂直走査用ミラー

825 水平走査用ポリゴンミラー

*

【図2】

(a)

(b)

[図6]

[図7]

[図8]

[図9]

