# Examining Large Pre-Trained Language Models for Machine Translation: What You Don't Know About It

#### **Motivations**

- ► Large pre-trained language models (PLMs) are very costly: hardware purchase/lease, ML expertise, training/tuning time, data preparation, evaluation
- ► Are Extra-large PLMs (*xL*-PLMs) superior to smaller-sized PLMs (*S*-PLMs) toward *domain-specific* Machine Translations (MTs)?
- ▶ If not always, in what situations?

### **Strategies**

WMT-2023 @EMNLP2023

- ► Compare two off-the-shelf *xL*-PLMs: Meta-Al's wmt21-dense-24-wide-en-X/X-en (WMT21fb) and NLLB (2022) *vs* one much smaller and well-known *S*-PLM Marian Helsinki
- ► Two domain specific fine-tuning and testing: automotive commercial, and biomedical/clinical from ClinSpEn2022 (different size of data)

## **Experimental Settings**

- ► Limited-amount *automotive* in-house data: WMT21fb (4.7 billion parameters) developed for multilingual MT *vs* 618 times smaller Marian (7.6 million parameters)[1]
- ▶ Clinical-domain test: using 250K pairs fine-tuning data from IBECS after careful cleaning, NLLB-200-distilled (1.3B parameters)
  [2] vs 171 times smaller Marian Helsinki

#### **On Commercial Automotive Data**

|                    | Marian | WMT21fb |
|--------------------|--------|---------|
| Before fine-tuning | 36.91  | 47.55   |
| After fine-tuning  | 48.78  | 59.92   |
| Gain (↑)           | 32.16% | 26.01%  |

Table: hLEPOR Metric Scores (https://pypi.org/project/hLepor/)

► The xLPLM wins the scores, though Marian's increasing rate is higher. How about *cost-wise*?

## On ClinSpEn Clinical/Biomedical Data

- ► Three **ClinSpEn-MT** tasks:
- ► 1) Clinical Cases, EN→ES (CC): on 202 COVID-19 clinical case reports;
- ▶ 2) Clinical Terms (CT), EN←ES: 19K+ parallel terms extracted from biomedical literature and electronic health records (EHRs);
- ▶ 3) Ontology Concepts (**OC**), EN→ES: 2K+ parallel concepts from biomedical ontology.
- ► Evaluations displayed below: clinical-Marian wins clinical-NLLB in Task-1 (all metrics), Task-2 (METEOR, ROUGE), and Task-3 (METEOR, COMET, ROUGE) on platform metrics.

## Logrus-UoM Team in ClinSpEn-2022

► Clinical-Marian (*S*-PLM) as our official system: ranked the **2nd** on Task-1 (via SacreBLEU, BLEU) and Task-3 (via METEOR, ROUGE) respectively.

# How S-PLM and xL-PLM Perform on Clinical Domain using 250K Pairs of Fine-Tuning?

| MT          | SacreBLEU | METEOR | COMET           | BLEU-HF | ROUGE-L-F1 |
|-------------|-----------|--------|-----------------|---------|------------|
|             |           |        | Clinical-Marian |         |            |
| Task-I:CC   | 38.18     | 0.6338 | 0.4237          | 0.3650  | 0.6271     |
| Task-II:CT  | 26.87     | 0.5885 | 0.9791          | 0.2667  | 0.6720     |
| Task-III:OC | 39.10     | 0.6262 | 0.9495          | 0.3675  | 0.7688     |
|             |           |        | Clinical-NLLB   |         |            |
| Task-I:CC   | 37.74     | 0.6273 | 0.4081          | 0.3601  | 0.6193     |
| Task-II:CT  | 28.57     | 0.5873 | 1.0290          | 0.2844  | 0.6710     |
| Task-III:OC | 41.63     | 0.6072 | 0.9180          | 0.3932  | 0.7477     |

**Table**: Evaluation Scores of Clinical-Marian (S-PLM) vs Clinical-NLLB (xL-PLM) on Three MT Tasks using Fine-Tuned Models.

## **Bibliography**

- [1] Marcin Junczys-Dowmunt and etc. Marian: Fast neural machine translation in C++. In Proceedings of ACL 2018, System Demonstrations.
- [2] NLLB Team. No language left behind: Scaling human-centered machine translation, 2022. URL https://arxiv.org/abs/2207.04672.

