Projet DRONE

Gestion de L'OS Embarqué et de l'environnement Graphique

Pierre-jean TEXIER

Ecole Supérieure des Technologies Electronique Informatique Infographie

13 Février 2014

Sommaire

- Présentation du Projet
- 2 Segment SOL
- Gestion de Projet
- Droit

- 5 Réalisations
- 6 Bilan de LOT
- Conclusion

Présentation du Projet

Présentation du Projet

Projet de FIN d'étude

"Contexte Industriel"

Présentation du Projet

- "Contexte Industriel"
- PROJET Drone Next GEN

Présentation du Projet

- "Contexte Industriel"
- PROJET Drone Next GEN
 - 2 Composants -> 2 Equipes

Présentation du Projet

- "Contexte Industriel"
- PROJET Drone Next GEN
 - 2 Composants -> 2 Equipes

Matrice de Compétenc Phase Programme Analyse Fonctionnelle Cahier des Charges

Présentation du Segment SOL

Présentation

Matrice de Compétend Phase Programme Analyse Fonctionnelle Cahier des Charges

Présentation du Segment SOL

Présentation

• L'équipe (OBS : Organization Breakdown Structure)

Matrice de Compétend Phase Programme Analyse Fonctionnelle Cahier des Charges

Présentation du Segment SOL

Présentation

• L'équipe (OBS : Organization Breakdown Structure)

Matrice de Compétence Phase Programme Analyse Fonctionnelle Cahier des Charges

Matrice de compétence Segment SOL

Remarques

Permet d'organiser au mieux les ressources

Expression des Besoins

Besoins Exprimés par le Client :

- Affichage
- Ergonomie
- Vidéo
- Communication
- Gamme de Température
 - Commerciale : 0°C à 70°C
 - Industrielle : -45°C à 85°C

Diagramme Fonctionnel de Degré 1

Cahier des Charges Personnel

Tâches à réaliser

- OS Linux embarqué Fonctionnel
- Préparation de l'environnement graphique (Qt, openCV, ...)
- Optimisation du temps de boot hardware et subjectif
- Gestion de l'énergie

Cahier des Charges Personnel

Tâches à réaliser

- OS Linux embarqué Fonctionnel
- Préparation de l'environnement graphique (Qt, openCV, ...)
- Optimisation du temps de boot hardware et subjectif
- Gestion de l'énergie

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Diagramme PERT Outils

Gestion de Projet

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Diagramme PERT Outils

Cycle de vie Logiciel

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Diagramme PERT Outils

ROADMAP : Segment SOL

Phases	2013			2014		
	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.
Analyse des besoins CLIENT / Cahier des Charges fonctionnelle du système.		\Rightarrow				
Définition architecture système et sous- système.	<					
Spécifications sous-systèmes et choix matérielles et logicielles.						
Conception et réalisation des composants spécifiques logicielles et matérielles.			<u></u>			
Tests unitaire du software, Qualifications des composants spécifiques hardwares.				<	>	
Test d'intégration des sous-ensembles et sous-systèmes						
Validation / Qualification du système complet.						>

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT^{*} Diagramme PERT Outils

ROADMAP : Segment SOL

Remarques

- 2 Jalons : Intégration
- Suivi du cycle de Vie Logiciel

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANTT Diagramme PERT Outils

Suivi des dépenses : Segment SOL

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANTT Diagramme PERT Outils

Suivi des dépenses : Segment SOL

Remarques

- 750 Euros de Budget à l'instant t0
- Environ 450 Euros dépensé en fin de PROJET

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANTT Diagramme PERT Outils

Gantt Prévisionnel

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANTT Diagramme PERT Outils

Gantt Prévisionnel

Remarques

• Les tâches du cahier des charges sont présentées ainsi que les relations entre elles

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANT Diagramme PERT Outils

Pert

Cycle de vie Logiciel ROADMAP Suivi des Dépenses Diagramme de GANTT Diagramme PERT Outils

Outils mis en place

Gestion de Version

- GIT
 - GITHUB Segment SOL

Gestion de Documentation

- Doxygen
 - Doxygen Segment SOL

Gestion de Publication

- Doku-Wiki
 - Wiki Segment SOL

Droit

2 types de Licences utilisés pour le Projet

Droit

2 types de Licences utilisés pour le Projet

• GPLv3 🐬

► Texte GPLv3

Droit

2 types de Licences utilisés pour le Projet

• GPLv3 🐯

► Texte GPLv3

• Creative Commons © 0 0

→ Texte Creative Commons

Droit

2 types de Licences utilisés pour le Projet

```
• GPLv3 Texte GPLv3
```

Creative Commons

```
▶ Texte Creative Commons
```

Le plus

- Développement avec des Outils Libre
- Améliore la maintenabilité, portabilité du développement

Droit

2 types de Licences utilisés pour le Projet

- GPLv3
- Creative Commons © 0 0

Le plus

- Développement avec des Outils Libre
- Améliore la maintenabilité, portabilité du développement

Quelques Outils

• GIMP, GNU Linux, GNU plot, bootchart, LATEX, fbvis, ...

Réalisations

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Choix technologiques Etude Materiel

System On Chip

▶ Synoptique

Single Board Computer

Disponible sur le marchés

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Environnement "Linux Embarqué"

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Mon Choix

```
Linaro
-> arm-linux-gnueabihf-*
```

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Ontimisation du Système

Chaine de compilation croisée

Compilation Croisée?

Une chaîne de compilation croisée est un groupe d'outils permettant la compilation d'un programme d'une architecture processeur à une autre (x86 => ARM).

Mon Choix

```
Linaro —> arm-linux-gnueabihf-*
```

Pourquoi eabihf?

- HardFloat
- FPU neon-vfvp4

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Risques et Opportunités

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Kernel

Kernel?

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Kernel

Kernel?

Pourquoi Optimiser?

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Kernel

Kernel?

Pourquoi Optimiser?

• Empreinte Mémoire

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Kernel

Kernel?

Pourquoi Optimiser?

- Empreinte Mémoire
- Besoins pour le Projet (V4L, Tactile, ...)

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Kernel

Kernel?

→ Linux

Pourquoi Optimiser?

- Empreinte Mémoire
- Besoins pour le Projet (V4L, Tactile, ...)

Informations

- Version 3.4.67
- Non mainline

▶ Lien github

A savoir

- Plusieurs branches
- 3.0 et 3.4.67 = stable
- 3.10 = experimental

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Configuration

- Interface : xconfig (make ARCH=arm xconfig)
- Suppression :
 - Options inutiles dans l'embarqué (<u>ex</u> : Swap)
 - Options de Debug / Profilling (ex : Ftrace)
 - Options Inutiles pour notre Projet (ex : HDMI)

Empreinte Mémoire

Début du Projet : 5.20 MB -> Fin du Projet : 3.33 MB

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Implantation sur cible

Choix technologiques
Environnement
Kernel

Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Qt embedded 🗵

Fonctionnement:

Besoins : Génération d'un "qmake" spécifique à notre architecture :

Etapes

- Modification du fichier qmake.conf
- Génération du Makefile spécifique aux besoins (./configure)
- Cross-compilation de Qt embedded 4.8.2 (make)
- Installation des binaires (make install)
- O Portage des binaires générés sur cible
- Tests

Segment SOL Gestion de Projet Droit Réalisations Conclusion

OpenCV embedded

OpenCV embedded

Portage sur Architecture ARM CopenCV

Etapes

- Ohoix des Modules openCV : Utilisation de Cmake
- Cross-compilation librairies/modules
- Portage des binaires générés sur cible
- Tests

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

Optimisation du temps d'amorçage système

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Hardware

U-boot

Variable 'bootdelay'

Scripts de démarrage : Dootchart

- Networking
- ssh
- exim4
- apache

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Subjectif

Remplacement du Logo de démarrage : *logo_linux_clut224.ppm*

• Logo de base

Logo personnalisé : 640*480

Choix technologiques
Environnement
Kernel
Qt embedded
OpenCV embedded
Optimisation démarrage
Power Management
Optimisation du Système

PBIT Power On Built in Test

Utilisation simpliste du Framebuffer pour la phase de "PBIT"

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Power Management

Réalisé

- Création d'un Crontab
- Test sur l'autonomie du Système

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Réalisé

- Système de fichier Temporaire
 - tmpFS
- Autologin
 - agetty -autologin
- Lancement Automatique de l'application : ihm
- UDEV
 - iDVendor
 - iDProduct

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Possible

Accélération matérielle

② Gestion des Heuristiques

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Possible

- ② Gestion des Heuristiques
 - powersave

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Possible

- ② Gestion des Heuristiques
 - powersave
 - fantasy

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Possible

- ② Gestion des Heuristiques
 - powersave
 - fantasy
 - ondemand

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système Possible

- ② Gestion des Heuristiques
 - powersave
 - fantasy
 - ondemand
 - interactive

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- @ Gestion des Heuristiques
 - powersave
 - fantasy
 - ondemand
 - interactive
 - userspace

Choix technologiques Environnement Kernel Qt embedded OpenCV embedded Optimisation démarrage Power Management Optimisation du Système

Optimisation du Système

- @ Gestion des Heuristiques
 - powersave
 - fantasy
 - ondemand
 - interactive
 - userspace
 - perfomance

LOT Segment SOL: Coûts

Coût de Developpement 🦸

Nom / Prénom	Coût	
TEXIER Pierre-jean	3300 €	
PRADEAU Martin	2719 €	
POUCH Pierre	2640 €	
L'HUILLIER Guillaume	ER Guillaume 2640 €	
OUKRAT Rémi	19 669 €	

Coût D'industrialisation

: 100 Pièces => 33905 €

LOT Segment SOL : Coûts Conclusion

Conclusion

Matrice de Validation

Cahier des Charges	TV	Commentaires
Choix SoC / SbC	Levée de risque sur carte	<u>-</u>
Chaine de compilation croisée	Compilation "hello world"	••
OS Linux sur cible	Sur carte SD	-6
Préparation graphique	Qt / OpenCV	
Power Management	Via sysFS	-6

Conclusion

Compétences Acquises

- Portage d'application graphique sur Architecture ARM
- Optimisation d'un système Linux
- Gestion d'un Projet de bout en bout : Chef de Projet

Bilan Personnel

- Mise en pratique de l'enseignement
- Orientation en Linux Embarqué confortée
- Atout pour le prochain stage
- Implication dans la communauté "SUNXI"

FIN

Questions

Tests de Validation

Système Linux

Synoptique du System On Chip

Matrice de Validation Conclusion Questions

Etude du Marché

✓ retour

Qt embedded

tslib

openCV

bootchart

