

Deep Learning with Neural Networks

Unsupervised Deep Learning (I): autoencoders

Original: Pablo Martínez Olmos, pamartin@ing.uc3m.es

Adapted: Alejandro Guerrero López, alguerre@pa.uc3m.es

Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- Fully observed Belief Nets
- > NADE
- PixelRNN

Non-Tractable Models

- Boltzmann Machines
- VariationalAutoencoders
- Helmholtz Machines
- Many others...

- Generative Adversarial Networks
- Moment Matching Networks

Explicit Density p(x)

Implicit Density

Deep Autoencoder

- An autoencoder is a neural network that is trained to attempt to copy its input to its output
- Internally, it has a low-dimensional hidden representation
- Two parts: encoder f(x) and decoder g(z):
 - where **x** is the input data, e.g., an image of a four
 - where z = f(x), i.e., the output of the encoder
- Autoencoders have been traditionally used for dimensionality reduction or feature learning

Deep Autoencoder

• 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D real-valued codes for Olivetti face patches.

• **Top**: Random samples from the test dataset.

• Middle: Reconstructions by the 30-dimensional deep autoencoder.

• **Bottom**: Reconstructions by the 30-dimentinoal PCA.

Deep Autoencoders

$\mathcal{L}(\eta,\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n \left(\mathbf{x}_n - D_{\theta} \left(E_{\eta}(\mathbf{x}_n) \right) \right)$ Decoder

Sparse Deep Autoencoders

Sparsity penalizer

$$\Omega(\boldsymbol{h}) = \lambda \sum_{i} |h_{i}|$$

Sparse autoencoders are typically used to learn features for another task

Denoising Deep Autoencoders

Source: this excellent blog

- Reconstruct a **corrupted version** of an image
- More robust solutions. It is some sort of regularization
- They are widely used for image denoising and missing data completion

Denoising Deep Autoencoders

$$\mathcal{L}(\eta, \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n \left(\mathbf{x}_n - D_{\theta} \left(E_{\eta}(\tilde{\mathbf{x}}_n) \right) \right)$$