15-312 Assignment 1

Andrew Carnegie (andrew)

October 24, 2017

```
Type \tau ::=
                                                                                                   naturals
          nat
                                          nat
                                                                                                   unit
          unit
                                          unit
          bool
                                          bool
                                                                                                   boolean
          prod(\tau_1; \tau_2)
                                                                                                   product
                                           \tau_1 \times \tau_2
          \mathtt{arr}(\tau_1; \tau_2)
                                                                                                   function
                                           \tau_1 \rightarrow \tau_2
                                                                                                   list
          list(\tau)
                                           \tau\, {\tt list}
  Exp e
             ::=
                                                                                                   variable
          x
                                           \boldsymbol{x}
          nat[n]
                                          \overline{n}
                                                                                                   number
          unit
                                           ()
                                                                                                   unit
          Т
                                          Т
                                                                                                   true
                                          F
          F
                                                                                                   false
          if(x;e_1;e_2)
                                           \verb"if"\,x" \verb"then"\,e_1" \verb"else"\,e_2"
                                                                                                   if
          lam(x:\tau.e)
                                           \lambda x : \tau . e
                                                                                                   abstraction
                                                                                                   application
          ap(f;x)
                                           f(x)
                                           \langle x_1, x_2 \rangle
          tpl(x_1; x_2)
                                                                                                   pair
                                           case p\{(x_1; x_2) \hookrightarrow e_1\}
          \mathtt{case}(x_1, x_2.e_1)
                                                                                                   match pair
          nil
                                                                                                   nil
                                                                                                   cons
          cons(x_1; x_2)
                                          x_1 :: x_2
          \mathsf{case}\{l\}(e_1; x, xs.e_2)
                                           \operatorname{case} l\left\{\operatorname{nil} \hookrightarrow e_1 \mid \operatorname{cons}(x; xs) \hookrightarrow e_2\right\}
                                                                                                   match list
          let(e_1; x : \tau.e_2)
                                           \mathtt{let}\; x = e_1 \; \mathtt{in}\; e_2
                                                                                                   let
  \mathsf{Val} \ \ v \ \ ::=
          val(n)
                                                                                                   numeric value
                                          n
                                          Т
                                                                                                   true value
          val(T)
                                                                                                   false value
          val(F)
                                          F
          val(Null)
                                          Null
                                                                                                   null value
          val(cl(V; x.e))
                                          (V, x.e)
                                                                                                   function value
          val(l)
                                                                                                   loc value
          val(pair(v_1; v_2))
                                           \langle v_1, v_2 \rangle
                                                                                                   pair value
State s ::=
                                                                                                   live value
          alive
                                           alive
                                                                                                   dead value
                                           dead
          dead
  \mathsf{Loc} \ l \ ::=
          loc(l)
                                          l
                                                                                                   location
  Var l ::=
          var(x)
                                                                                                   variable
                                          \boldsymbol{x}
```

1 Paths and aliasing

Model dynamics using judgement of the form:

$$V, H, R, F \vdash e \Downarrow v, H', F'$$

Where $V: \mathsf{Var} \to \mathsf{Val} \times \mathsf{State}$, $H: \mathsf{Loc} \to \mathsf{Val}$, $R \subseteq \mathsf{Loc}$, and $F \subseteq \mathsf{Loc}$. This can be read as: under stack V, heap H, roots R, freelist F, the expression e evaluates to v, and engenders a new heap H' and freelist F'.

Note that the stack maps each variable to a value v and a state s. If s is alive, then v can still be used, while dead indicates that v is already used and cannot be used again. We write $\overline{V} = \{x \in V \mid V(x) = (_, \mathtt{alive})\}$ for the variables in V that are alive, and $V^* : V \upharpoonright_{\overline{V}} \to \mathsf{Val}$ for the associated restricted map $x \mapsto fst(V(x))$ which projects out the value component of live variables.

Roots represents the set of locations required to compute the continuation *excluding* the current expression. We can think of roots as the heap allocations necessary to compute the context with a hole that will be filled by the current expression.

In order prove soundness of the type system, we need some auxiliary judgements to defining properties of a heap. Below we define $reach: Val \rightarrow \{\{Loc\}\}\$ that maps stack values its the root multiset, the multiset of locations that's already on the stack.

Next we define reachability of values:

$$\begin{split} reach_H(\langle v_1, v_2 \rangle) &= reach_H(v_1) \uplus reach_H(v_2) \\ reach_H(l) &= \{l\} \uplus reach_H(H(l)) \\ reach_H(_-) &= \emptyset \end{split}$$

For a multiset S, we write $\mu_S: S \to \mathbb{N}$ for the multiplicity function of S, which maps each element to the count of its occurence. If $\forall s \in S.\mu(s) = 1$, then S is a property set, and we denote it by $\mathsf{set}(S)$. Additionally, $A \uplus B$ denotes counting union of sets where $\mu_{A \uplus B}(s) = \mu_A(s) + \mu_B(s)$, and $A \cup B$ denotes the usual union where $\mu_{A \cup B}(s) = \max{(\mu_A(s), \mu_B(s))}$. For the disjoint union of sets A and B, we write $A \sqcup B$.

Next, we define the predicates no_alias, no_ref, and disjoint:

no_alias(V, H): $\forall x, y \in \overline{V}, x \neq y$. Let $r_x = reach_H(\overline{V}(x)), r_y = reach_H(\overline{V}(y))$. Then:

- $(1) \ \, \mathsf{set}(r_x), \mathsf{set}(r_y)$
- (2) $r_x \cap r_y = \emptyset$

 $\mathsf{no_ref}(V,H,v) \text{:} \quad (reach_H(v)) \cap (\textstyle \bigcup_{x \in \overline{V}} reach_H(V(x))) = \emptyset.$

$$\mathsf{disjoint}(\mathcal{C})$$
: $\forall X,Y \in \mathcal{C}.\ X \cap Y = \emptyset$

If the induced graph of heap H is a forest, then it is a disjoint union of arborescences (directed trees), and there is at most one path from one loaction in H to another by following the pointers.

Next, we define $locs_{V,H}$ using the previous notion of reachability. size calculates the number of cells a value occupies. copy(H, L, v) takes a heap H, a set of locations L, and a value v, and returns a new heap H' and a location l such that l maps to v in H'.

$$\begin{split} locs_{V,H}(e) &= \bigcup_{x \in FV(e)} reach_H(V(x)) \\ size(\langle v_1, v_2 \rangle) &= size(v_1) + size(v_2) \\ size(_) &= 1 \\ \\ copy(H, L, \langle v_1, v_2 \rangle) &= \\ let \ L_1 \sqcup L_2 \subseteq L \\ \\ \text{where } |L_1| &= size(v_1) \ , |L_2| = size(v_2) \\ let \ H_1 &= copy(H, L_1, v_1) \\ let \ H_2 &= copy(H_1, L_2, v_2) \ \text{in} \\ H_2[l \mapsto v] \\ copy(H, L, v) &= \\ let \ l \in H \ \text{in} \\ H[l \mapsto v] \end{split}$$

2 Garbage collection semantics

$$\frac{V(x) = (v, alive)}{V, H, R, F \vdash x \Downarrow v, H, F}(S_1) \qquad \frac{V, H, R, F \vdash \overline{n} \Downarrow val(n), H, F}(S_2)}{V, H, R, F \vdash \overline{n} \Downarrow val(T), H, F}(S_3) \qquad \overline{V, H, R, F \vdash \overline{n} \Downarrow val(n), H, F}(S_4)}$$

$$\overline{V, H, R, F \vdash \overline{n} \Downarrow val(T), H, F}(S_4)$$

$$\overline{V, H, R, F \vdash \overline{n} \Downarrow val(T), H, F}(S_5)}$$

$$\frac{V(x) = \overline{T} \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e_1)\} \qquad V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \vdash \overline{n} \iff \overline{n$$

3 Operational semantics

In order to prove the soundess of the type system, we also define a simplified operational semantics that does not account for garbage collection.

$$\boxed{V, H \vdash e \Downarrow v, H'}$$

This can be read as: under stack V, heap H the expression e evaluates to v, and engenders a new heap H'. We write the representative rules.

$$\frac{v = \langle V(x_1), V(x_2) \rangle \qquad H', l = copy(H, L, v)}{V, H \vdash \mathsf{cons}(x_1; x_2) \Downarrow l, H'} (S_{17})$$

$$\frac{V(x) = (l, \mathsf{alive}) \qquad H(l) = \langle v_h, v_t \rangle \qquad V' = V\{x \mapsto (l, \mathsf{dead})\}}{V'' = V'[x_h \mapsto (v_h, \mathsf{alive}), x_t \mapsto (v_t, \mathsf{alive})] \qquad V'', H \vdash e_2 \Downarrow v, H'} (S_{18})$$

$$\frac{V, H \vdash e_1 \Downarrow v_1, H_1 \qquad V' = V[x \mapsto v_1] \qquad V', H_1 \vdash e_2 \Downarrow v_2, H_2}{V, H \vdash \mathsf{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2} (S_{19})$$

4 Type rules

The type system takes into account of garbaged collected cells by returning potential locally in a match construct. Since we are interested in the number of heap cells, all constants are assumed to be nonnegative.

$$\frac{n \in \mathbb{Z}}{\Sigma; \emptyset \left| \frac{q}{q} \ n : \mathrm{nat}} (\mathrm{L:ConstI}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ () : \mathrm{unit}}{\Sigma; \emptyset \left| \frac{q}{q} \ n : \mathrm{nat}} (\mathrm{L:ConstI}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ T : \mathrm{bool}}{\Sigma; \emptyset \left| \frac{q}{q} \ F : \mathrm{bool}} (\mathrm{L:ConstF}) \qquad \frac{\Sigma; \Gamma \left| \frac{q}{q'} \ e_{f} : B \right|}{\Sigma; \Gamma, x : \mathrm{bool} \left| \frac{q}{q'} \ \text{if} \ x \ \text{then} \ e_{t} \ \text{else} \ e_{f} : B} (\mathrm{L:Cond}) \qquad \frac{\Sigma; \Gamma, x_{1} : A_{1}, x_{2} : A_{2} \left| \frac{q}{q'} \ e_{f} : B \right|}{\Sigma; \Gamma, x_{1} : A_{1}, x_{2} : A_{2} \left| \frac{q}{q'} \ e_{f} : B \right|} (\mathrm{L:Cond}) \qquad \frac{\Sigma; \Gamma, x_{1} : A_{1}, x_{2} : A_{2} \left| \frac{q}{q'} \ e_{f} : B \right|}{\Sigma; \Gamma, x_{1} : A_{1}, x_{2} : A_{2} \left| \frac{q}{q'} \ e_{f} : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ \mathrm{nil} : L^{p}(A) \left(\mathrm{L:Nil}\right)}{\Sigma; \Gamma, x_{1} : A_{1}, x_{2} : A_{2} \left| \frac{q}{q'} \ e_{f} : B \right|} (\mathrm{L:MatP}) \qquad \frac{\Sigma; \emptyset \left| \frac{q}{q} \ \mathrm{nil} : L^{p}(A) \left(\mathrm{L:Nil}\right)}{\Sigma; \Gamma, x_{1} : A_{1}, x_{2} : L^{p}(A) \left| \frac{q+p+1}{q} \ \mathrm{cons}(x_{h}; x_{t}) : L^{p}(A) \right|} (\mathrm{L:Cons}) \qquad \frac{\Sigma; \Gamma \left| \frac{q}{q'} \ e_{1} : B \ \Sigma; \Gamma, x_{h} : A, x_{t} : L^{p}(A) \left| \frac{q+p+1}{q'} \ e_{2} : B \right|}{\Sigma; \Gamma, x : L^{p}(A) \left| \frac{q}{q'} \ \mathrm{case} \ x \ \{\mathrm{nil} \hookrightarrow e_{1} \mid \mathrm{cons}(x_{h}; x_{t}) \hookrightarrow e_{2}\} : B} (\mathrm{L:MatL}) \qquad \frac{\Sigma; \Gamma_{1} \left| \frac{q}{p} \ e_{1} : A \ \Sigma; \Gamma_{2}, x : A \left| \frac{p}{q'} \ e_{2} : B \right|}{\Sigma; \Gamma_{1}, \Gamma_{2} \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B} (\mathrm{L:Let}) \qquad \frac{\Sigma; \Gamma_{1} \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{\Sigma; \Gamma_{1}, \Gamma_{2} \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B} (\mathrm{L:Let}) \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e_{2}) : B}{2} \qquad \frac{\Sigma; \Omega \left| \frac{q}{q'} \ \mathrm{let}(e_{1}; x : \tau.e$$

Now if we take $\dagger: L^p(A) \mapsto L(A)$ as the map that erases resource annotations, we obtain a simpler typing judgement Σ^{\dagger} ; $\Gamma^{\dagger} \vdash e : B^{\dagger}$.

5 Soundness for garbage collection semantics

We simplify the soundness proof of the type system for the general metric to one with monotonic resource. (No function types for now)

Lemma 1.1. If $\Sigma; \Gamma | \frac{q}{q'} e : B$, then $\Sigma^{\dagger}; \Gamma^{\dagger} \vdash e : B^{\dagger}$.

Lemma 1.2. If $V, H, R, F \vdash e \Downarrow v, H', F'$, then $\forall x \in V$, $reach_H(V(x)) = reach_{H'}(V(x))$.

Proof. Induction on the evaluation judgement.

Lemma 1.3. For all stacks V and heaps H, if $V, H, R, F \vdash e \Downarrow v, H', F', \Sigma^{\dagger}; \Gamma^{\dagger} \vdash e : B^{\dagger}, H \vDash V : \Gamma$, no_alias(V, H), and disjoint $(\{R, F, locs_{V,H}(e)\})$, then $\operatorname{set}(reach_{H'}(v))$, disjoint $(\{R, F', reach_{H'}(v)\})$, no_ref(V, H, v), and no_alias(V, H').

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 7: E:Let

$$\begin{array}{c} V,H,R,F \vdash \operatorname{let}(e_1;x:\tau.e_2) \Downarrow v_2,H_2,F_2 & (\operatorname{case}) \\ V,H,R',F \vdash e_1 \Downarrow v_1,H_1,F_1 & (\operatorname{ad}) \\ \Sigma;\Gamma_1,\Gamma_2 \vdash \operatorname{let}(e_1;x:\tau.e_2) : B & (\operatorname{case}) \\ \Sigma;\Gamma_1 \vdash e_1 : A & (\operatorname{ad}) \\ \Sigma;\Gamma_2,x:A \vdash e_2 : B & (\operatorname{ad}) \\ \Sigma;\Gamma_2,x:A \vdash e_2 : B & (\operatorname{ad}) \\ \Sigma;\operatorname{pose} & \operatorname{no}\operatorname{alias}(V,H),\operatorname{disjoint}(\{R,F,locs_{V,H}(e)\}), \text{ and } H \vDash V : \Gamma \\ H \vDash V : \Gamma_1 & (\operatorname{def} & \operatorname{W.D.E}) \\ F \cap R' = \emptyset & (F \cap locs_{V,H}(e) = \emptyset & \operatorname{and} locs_{V,H}(e_1) \subseteq locs_{V,H}(e)) \\ R' \cap locs_{V,H}(e_1) = \emptyset & (\operatorname{no}\operatorname{-alias}(V,H)) \\ F \cap locs_{V,H}(e_1) = \emptyset & (\operatorname{sp.}) \\ Thus & \text{we have disjoint}(R',F,locs_{V,H}(e_1)) \\ \text{By } H, \operatorname{set}(reach_{H_1}(v_1)),\operatorname{disjoint}(\{R',F_1,reach_{H_1}(v_1)\}),\operatorname{no.ref}(V,H,v), \text{ and no}\operatorname{-alias}(V,H_1) \\ (F_1 \cup g) \cap R = \emptyset & (\operatorname{sp.}) \\ \text{Case: } l \in reach_{H_1}(v'(x')) \text{ for some } x' \in FV(e_2) \text{ where } x' \neq x \\ x' \in V & (\operatorname{def} & of V') \\ l \in reach_{H_1}(V(x')) & (\operatorname{Lemma} 1.2) \\ x' \in FV(e) & (\operatorname{def} & of FV) \\ l \in locs_{V,H}(e) & (\operatorname{def} & of locs_{V,H}) \\ l \notin R & (\operatorname{disjoint}(\{R,F,locs_{V,H}(e)\})) \\ \text{Case: } l \in reach_{H_1}(V'(x)) & (\operatorname{Lemma} 1.2) \\ l \notin R & (\operatorname{disjoint}(\{R,F,locs_{V,H}(e)\})) \\ l \notin R & (\operatorname{disjoint}(\{R,F,locs_{V,H}(e)\})) \\ l \notin R & (\operatorname{disjoint}(\{R',F_1,reach_{H_1}(v_1)\})) \\ l \notin R & (\operatorname{disjoint}($$

Case 13: E:MatCons

$$V(x) = (l, \mathtt{alive})$$
 (ad.)

$$H(l) = \langle v_h, v_t \rangle$$
 (ad.)

```
\Gamma = \Gamma', x : L(A)
                                                                                                                      (ad.)
\Sigma; \Gamma', x_h : A, x_t : L(A) \vdash e_2 : B
                                                                                                                      (ad.)
V'', H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F'
                                                                                                                      (ad.)
Suppose H \models V : \Gamma, no_alias(V, H), and , disjoint(\{F, R, locs_{V,H}(e)\})
H \vDash V(x) : L(A)
                                                                                                        (def of W.D.E)
H'' \vDash v_h : A, \ H'' \vDash v_t : L(A)
                                                                                                                      (ad.)
H \vDash v_h : A, \ H \vDash v_t : L(A)
                                                                                                                      (???)
H \vDash V'' : \Gamma', x_h : A, x_t : L(A)
                                                                                                        (def of W.D.E)
NTS no\_alias(V'', H)
Let x_1, x_2 \in \overline{V}'', x_1 \neq x_2, r_{x_1} = reach_H(\overline{V}''(x_1)), r_{x_2} = reach_H(\overline{V}''(x_2))
   case: x_1 \notin \{x_h, x_t\}, x_2 \notin \{x_h, x_t\}
   (1),(2) from no_alias(V,H)
   case: x_1 = x_h, x_2 \notin \{x_h, x_t\}
   set(r_{x_1})
                                                                            (since set(H(l)) from no\_alias(V, H))
                                                                                                (since no\_alias(V, H))
   set(r_{x_2})
   AFSOC, suppose l' \in r_{x_1} \cap r_{x_2}
   but reach_H(\overline{V}(x)) \cap r_{x_2} = \emptyset, contradiction
                                                                                                          (def of reach)
   hence r_{x_1} \cap r_{x_2} = \emptyset
   case: x_1 = x_h, x_2 = x_t
   set(r_{x_1}) since set(H(l)) from no_alias(V, H)
   set(r_{x_2}) since set(H(l)) from no_alias(V, H)
   AFSOC, suppose l' \in r_{x_1} \cap r_{x_2}
   but then \mu_{reach_H(l)}(l') \geq 2, and set(H(l)) does not hold.
   hence r_{x_1} \cap r_{x_2} = \emptyset
   case: otherwise
   similar to the above
Thus we have no\_alias(V'', H)
(F \cup g) \cap R = \emptyset
                                                                               (since F \cap R = \emptyset and by def of g)
NTS R \cap locs_{V'',H}(e_2) = \emptyset
Let l' \in locs_{V'',H}(e_2) be arb.
case: l' \in reach_H(V''(x')) for some x' \in FV(e_2) where x' \notin \{x_h, x_t\}
   x' \in V
                                                                                                              (\text{def of }V'')
   l' \in reach_H(V(x'))
   x' \in FV(e)
                                                                                                             (\text{def of } FV)
   l' \in locs_{V,H}(e)
                                                                                                        (\text{def of } locs_{V,H})
   l' \notin R
                                                                                       (disjoint({R, F, locs_{V,H}(e)}))
case: l' \in reach_H(V''(x_h))
```

```
l' \in reach_H(v_h)
   l' \in reach_H(V^{\star}(x))
                                                                                                           (def of reach)
   l' \in locs_{VH}(e)
                                                                                                         (\text{def of } locs_{V,H})
   l' \notin R
                                                                                (since disjoint(\{F, R, locs_{V,H}(e)\}))
case: l' \in reach_H(V''(x_t))
   similar to above
Hence R \cap locs_{V'',H}(e_2) = \emptyset
F \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                     (Similar to above)
g \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                               (def. of g)
(F \cup g) \cap locs_{V'',H}(e_2) = \emptyset
Thus disjoint(\{R, F \cup q, locs_{V'' H}(e_2)\})
By IH, set(reach_{H'}(v)), disjoint(\{R, F', reach_{H'}(v)\}), no\_ref(V'', H', v), and no\_alias(V'', H')
NTS no_ref(V, H', v)
Let l' \in reach_{H'}(\overline{V}(x)) be arb
l' \in reach_H(l)
                                                                                                      (Lemma 1.2, ad.)
Then l' \in reach_{H'}(v_h) or l'inreach_{H'}(v_t)
                                                                                                           (def of reach)
Wlog l' \in reach_{H'}(v_h)
l' \in reach_{H'}(V''(x_h))
                                                                                                              (\text{def of }V'')
l' \notin reach_{H'}(v)
                                                                                                     (\mathsf{no\_ref}(V'', H', v))
(reach_{H'}(v)) \cap (\bigcup_{x' \in \overline{V} \setminus x} reach_{H'}(V(x'))) = \emptyset
                                                                                                     (\mathsf{no\_ref}(V'', H', v))
(reach_{H'}(v)) \cap (\bigcup reach_{H'}(V(x'))) = \emptyset
no\_ref(V, H', v)
NTS no\_alias(V, H')
Let x_1, x_2 \in \overline{V}, x_1 \neq x_2, r_{x_1} = reach_H(\overline{V}(x_1)), r_{x_2} = reach_H(\overline{V}(x_2))
   case: x_1 \neq x, x_2 \neq x
                                                                                                      (no\_alias(V'', H'))
   (1), (2)
   case: x_1 = x, x_2 \neq x
   set(r_{x_1})
                                                                                                      (no\_alias(V'', H'))
                                                                                                      (no\_alias(V'', H'))
   set(r_{x_2})
   case: otherwise
   similar to above
no\_alias(V, H')
Thus no_ref(V, H', v) and no_alias(V, H')
```

Task 1.4 (Soundness). let $H \vDash V : \Gamma$, Σ ; $\Gamma \mid_{q'}^q e : B$, and $V, H \vdash e \Downarrow v, H'$. Then $\forall C \in \mathbb{Q}^+$ and $\forall F \subseteq \mathsf{Loc}\ with \ |F| \ge \Phi_{V,H}(\Gamma) + q + C$, if $\mathsf{no_alias}(V)$, $R \cap locs_{V,H}(e) = \emptyset$, and $F \cap locs_{V,H}(e) = \emptyset$, then there exists $F' \subseteq \mathsf{Loc}\ s.t.$

1.
$$V, H, R, F \vdash e \Downarrow v, H', F'$$

2.
$$|F'| \ge \Phi_{H'}(v:B) + q' + C$$

Proof. Induction on the evaluation judgement.

Case 1: E:Var

$$V, H, R, F \vdash x \Downarrow V(x), H, F$$
 (admissibility)

$$\Sigma; x : B \mid_{q}^{q} x : B$$
 (admissibility)

$$|F| - |F'|$$
 (1)

$$= |F| - |F|$$
 (ad.)

$$= 0$$
 (2)

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 (3)

$$= \Phi_{V,H}(x : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (ad.)

$$= \Phi_{H}(V(x) : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (def. of $\Phi_{V,H}$)

$$= 0$$
 (4)

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 ((3),(5))

Case 2: E:Const* Due to similarity, we show only for E:ConstI

$$|F| - |F'| = |F| - |F|$$

$$= 0$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') = \Phi_{V,H}(\emptyset) + q - (\Phi_{H}(v:int) + q)$$

$$= 0$$

$$(\text{def of } \Phi_{V,H})$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 4: E:App

Case 5: E:CondT

$$\Gamma = \Gamma', x : \mathsf{bool} \tag{ad.}$$

$$H \vDash V : \Gamma' \tag{def of W.F.E}$$

$$\Sigma; \Gamma' \left| \frac{q}{q'} e_t : B \tag{ad.}$$

$$V, H, R, F \cup g \vdash e_t \Downarrow v, H', F' \tag{ad.}$$

$$|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

$$|F| - |F'| < \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

Case 6: E:CondF Similar to E:CondT

Case 7: E:Let

$$V, H, R', F \vdash e_1 \Downarrow v_1, H_1, F_1 \qquad (ad.)$$

$$\Sigma; \Gamma_1 | \frac{q}{p} e_1 : A \qquad (ad.)$$

$$H \vDash V : \Gamma_1 \qquad (\Gamma_1 \subseteq \Gamma)$$

$$|F| - |F_1| \le \Phi_{V,H}(\Gamma_1) + q - (\Phi_{H_1}(v_1 : A) + p) \qquad (IH)$$

$$V', H_1, R, F_1 \cup g \vdash e_2 \Downarrow v_2, H_2, F_2 \qquad (ad.)$$

$$\Sigma; \Gamma_2, x : A \mid \frac{p}{q'} e_2 : B \qquad (ad.)$$

$$H_1 \vDash v_1 : A \text{ and} \qquad (Theorem 3.3.4)$$

$$H_1 \vDash V : \Gamma_2 \qquad (???)$$

$$H_1 \vDash V' : \Gamma_2, x : A \qquad (def of \vDash)$$

$$|F_1 \cup g| - |F_2| \le \Phi_{V',H_1}(\Gamma_2, x : A) + p - (\Phi_{H_2}(v_2 : B) + q') \qquad (IH)$$

$$|F_1| - |F_2| \le \Phi_{V',H_1}(\Gamma_2, x : A) + p - (\Phi_{H_2}(v_2 : B) + q')$$
summing the inequalities:
$$|F| - |F_1| + |F_1| - |F_2| \le \Phi_{V,H}(\Gamma_1) + q - (\Phi_{H_1}(v_1 : A) + p) + \Phi_{V',H_1}(\Gamma_2, x : A) + p - (\Phi_{H_2}(v_2 : B) + q')$$

$$|F| - |F_2| \le \Phi_{V,H}(\Gamma_1) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(\Gamma_2, x : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$= \Phi_{V,H}(\Gamma_1) + \Phi_{V',H_1}(\Gamma_2) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(x : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$(def of \Phi_{V,H})$$

$$\alpha = \Phi_{V,H}(\Gamma_1) + \Phi_{V,H}(\Gamma_2) + q - \Phi_{H_1}(v_1 : A) + \Phi_{V',H_1}(x : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$(Lemma 4.3.3)$$

$$= \Phi_{V,H}(\Gamma) + q - \Phi_{H_1}(v_1 : A) + \Phi_{H_1}(v_1 : A) - (\Phi_{H_2}(v_2 : B) + q')$$

$$(Lemma 4.3.3)$$

$$= \Phi_{V,H}(\Gamma) + q - (\Phi_{H_2}(v_2 : B) + q')$$

Case 8: E:Pair Similar to E:Const*

Case 9: E:MatP Similar to E:MatCons

Case 10: E:Nil Similar to E:Const*

|F| - |F'|

Case 11: E:Cons

$$= |F| - |F \setminus \{l\}|$$

$$= 1$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

$$= \Phi_{V,H}(x_h:A, x_t:L^p(A)) + q + p + 1 - (\Phi_{H'}(v:L^p(A)) + q)$$

$$= \Phi_{V,H}(x_h:A, x_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A)))$$

$$= \Phi_{H}(V(x_h):A) + \Phi_{H}(V(x_t):L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))$$
(def of $\Phi_{V,H}$)

$$= \Phi_{H}(v_{h}:A) + \Phi_{H}(v_{t}:L^{p}(A)) + p + 1 - \Phi_{H'}(v:L^{p}(A)))$$
(ad.)
$$= \Phi_{H}(v_{h}:A) + \Phi_{H}(v_{t}:L^{p}(A)) + p + 1 - (p + \Phi_{H'}(v_{h}:A) + \Phi_{H'}(v_{t}:L^{p}(A)))$$
(Lemma 4.1.1)
$$= \Phi_{H}(v_{h}:A) + \Phi_{H}(v_{t}:L^{p}(A)) + p + 1 - (p + \Phi_{H}(v_{h}:A) + \Phi_{H}(v_{t}:L^{p}(A)))$$
(Lemma 4.3.3)
$$= 1$$

Hence,

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$

Case 12: E:MatNil Similar to E:Cond*

Case 13: E:MatCons

E:MatCons
$$V(x) = (l, \texttt{alive}) \qquad (\text{ad.})$$

$$H(l) = \langle v_h, v_t \rangle \qquad (\text{ad.})$$

$$\Gamma = \Gamma', x : L^p(A) \qquad (\text{ad.})$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \frac{|q+p+1|}{q'} e_2 : B \qquad (\text{ad.})$$

$$V'', H, R, F \cup g \vdash e_2 \Downarrow v_2, H_2, F' \qquad (\text{ad.})$$

$$H \vDash V(x) : L^p(A) \qquad (\text{def of W.D.E})$$

$$H'' \vDash v_h : A, H'' \vDash v_t : L^p(A) \qquad (\text{ad.})$$

$$H \vDash v_h : A, H \vDash v_t : L^p(A) \qquad (\text{ad.})$$

$$H \vDash V'' : \Gamma', x_h : A, x_t : L^p(A) \qquad (\text{def of W.D.E})$$
Suppose no_alias(V)H, $R \cap locs_{V,H}(e) = \emptyset$, and $F \cap locs_{V,H}(e) = \emptyset$

$$NTS |F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q') \text{ and no_alias}(V)H'$$

$$WTS \text{ no_alias}(V'')H$$

$$let l \in H \text{ arbitrary }, y, z \in \overline{V}'' \text{ arbitrary }, r_y = root(\overline{V}''(y)), r_z = root(\overline{V}''(z))$$

$$\mathbf{case:} \ y \notin \{x_h, x_t\}, z \notin \{x_h, x_t\}$$

$$y, z \in \overline{V}$$
 (def of V'')

$$(1) - (3) \text{ holds} \tag{Sp.}$$

case: $y = x_h, z \notin \{x_h, x_t\}$

$$set(root(\langle v_h, v_t \rangle))$$
 (Sp.)

$$set(root(v_h))$$
 (def of set)

$$set(r_y)$$
 (def of V'')

$$z \in \overline{V}$$
 (def of V'')

$$\operatorname{set}(r_z)$$
 (Sp.)

hence we have (1)

Suppose $l' \in r_y \cap r_z$

$$l' \in H \qquad (H \models V'' : \Gamma', x_h : A, x_t : L^p(A))$$

$$H \vDash id_{l'} : l' \leadsto l'$$
 (Id)

```
H \vDash (l, l') : l \leadsto l'
                                                                                                                      (Edge)
   H \vDash id_{l'} \equiv (l, l') : l' \leadsto l'
                                                                                                         (linear_H(r_x, r_z))
   contradiction, hence r_u \cap r_z = \emptyset,
                                                                                                   (hence we have (2))
   let l' \in H arbitrary, l_1, l_2 \in r_u
                                                                                                                (arbitrary)
   suppose H \vDash p : l_1 \leadsto l', H \vDash q : l_2 \leadsto l'
   H \vDash (l, l_1) : l \leadsto l_1 \text{ and } H \vDash (l, l_2) : l \leadsto l_2
                                                                                                                      (Edge)
   H \vDash p \circ (l, l_1) : l \leadsto l' \text{ and } H \vDash q \circ (l, l_2) : l \leadsto l'
                                                                                                                     (Comp)
   H \vDash p \circ (l, l_1) \equiv q \circ (l, l_2) : l \leadsto l'
                                                                                                         (linear_H(r_x, r_x))
   H \vDash p \equiv q : l_1 \leadsto l'
                                                                                                      (inversion on Eq)
   hence we have linear_H(r_u, r_u)
   linear_H(r_z, r_z)
                                                                                                                         (Sp.)
   let l' \in H arbitrary, l_1 \in r_u, l_2 \in r_z
                                                                                                                (arbitrary)
   suppose H \vDash p : l_1 \leadsto l', H \vDash q : l_2 \leadsto l'
   H \vDash (l, l_1) : l \rightsquigarrow l_1
                                                                                                                      (Edge)
   H \vDash p \circ (l, l_1) : l \leadsto l'
                                                                                                                     (Comp)
   l = l_2
                                                                                                         (linear_H(r_x, r_z))
   contradiction since r_x \cap r_z = \emptyset
   hence we have linear_H(r_u, r_z)
   hence we have (3)
   case: y = x_t, z \notin \{x_h, x_t\}
   case: y = \notin \{x_h, x_t\}, z = x_h
   case: y = \notin \{x_h, x_t\}, z = x_t
   all symmetric to previous case
   case: y = x_h, z = x_t
   we get (1) the same way as the previous case
   set(root(\langle v_h, v_t \rangle))
                                                                                                                         ((1))
   set(root(v_h) \uplus root(v_t))
                                                                                                              (def of root)
   root(v_h) \cap root(v_t) = \emptyset
                                                                                                                (def of set)
   r_y \cap r_z = \emptyset
                                                                                                             (def of r_y, r_z)
   we get (3) the same way as the previous case
   hence we have no\_alias(V'')H
let l' \in locs_{V'',H}(e_2) arbitrary
   \exists ! x' \in \overline{V}''. \exists ! l'' \in root(\overline{V}''(x')). H \vDash p : l'' \leadsto l'
                                                                                                         (def of locs_{V,H})
   case: x' \notin \{x_h, x_t\}
   x \in \overline{V}
                                                                                                                (\text{def of }V'')
   l' \in locs_{VH}(e)
                                                                                                         (\text{def of } locs_{V,H})
   case: x' = x_h
```

```
H \vDash (l, l'') : l \leadsto l''
                                                                                                                   (Edge)
   H \vDash p \circ (l, l'') : l \leadsto l'
                                                                                                                  (Comp)
   l' \in locs_{V,H}(e)
                                                                                                       (\text{def of } locs_{V,H})
thus we have locs_{V''H}(e_2) \subseteq locs_{V,H}(e)
F \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                                      (Sp.)
g \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                              (def. of g)
(F \cup q) \cap locs_{V'' H}(e_2) = \emptyset
|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma', x_h : A, x_t : L^p(A)) + q + p + 1 - (\Phi_{H'}(v : B) + q')
                                                                                                                       (IH)
    = \Phi_{V,H}(\Gamma') + \Phi_{H}(v_h : A) + \Phi_{H}(v_t : L^p(A)) + p + q + 1 - (\Phi_{H'}(v : B) + q')
                                                                                                          (def of \Phi_{V,H})
    = \Phi_{V.H}(\Gamma') + \Phi_{H}(\langle v_h, v_t \rangle^{L} : L^{p}(A)) + q + 1 - (\Phi_{H'}(v : B) + q')
                                                                                                        (Lemma 4.1.1)
    = \Phi_{VH}(\Gamma', z : L^p(A)) + q + 1 - (\Phi_{H'}(v : B) + q')
                                                                                                          (def of \Phi_{V,H})
    = \Phi_{VH}(\Gamma) + q + 1 - (\Phi_{H'}(v:B) + q')
                                                                                                        (Lemma 4.1.1)
suppose l \in locs_{V'} H(e_2)
\exists x' \in FV(e_2) \cap \overline{V}'', l' \in root(\overline{V}''(x')).x \neq x', H \vDash p : l' \leadsto l
                                                                                                     (def. of locs_{V,H})
   case: x' \notin \{x_h, x_t\}
   contradiction by no_alias(V)H
   case: x' = x_h
   H \vDash p \circ (l, l') : l \leadsto l
   H \vDash id_l : l \leadsto l
   contradiction since linear_H(r_x, r_x)
hence we have l \notin locs_{V'',H}(e_2)
l \in g
                                                                                                                (\text{def of } g)
|g| \geq 1
|F \cup q| - |F'|
    = |F| + |q| - |F'|
                                                                                                         (F, g \text{ disjoint})
Hence.
|F| + |g| - |F'| \le \Phi_{V,H}(\Gamma) + q + 1 - (\Phi_{H'}(v:B) + q')
|F| - |F'| \le \Phi_{V,H}(\Gamma) + q + 1 - |g| - (\Phi_{H'}(v:B) + q')
    \leq \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')
                                                                                                                 (|g| \ge 1)
```