Seq2Seq

<Sequence to Sequence Learning with Neural Networks> (NIPS 2014)

기존 RNN, LSTM의 문제점

입력 문장의 길이와 출력문장의 길이가 같음, fixed 되어있음

기존 RNN, LSTM의 문제점

문제의식

- Domain-independent한 방법이 필요하다
- Monotonic한 관계가 아닌 문장에도 잘 적용할 수 있는 방법이 필요하다

제안된 모델

- 첫번째 LSTM이 입력 문장을 순서대로 읽는다
- 그 LSTM은 문장 전체 정보를 나타내는 representation vector를 생성한다
- 또다른 LSTM은 그 백터로부터 출력 문장을 만들어낸다

제안된 모델 used as decoder's first hidden state ※创始 U型能 的 是 外部量 对图. evening <eos> good (呢 LSTM). 디코더 Encoder Decoder 🗸 产 고정된 크기 context vector 임베딩 임베딩 임베딩 임베딩 임베딩 임베딩 임베딩 인제 끝. <eos> good evening guten abend <sos> <sos> 독일어 영어 encoder's last hidden

제안된 모델

제안된 모델

+)언어 모델

- 문장(sequence)에 확률을 부여하는 것
- 연쇄 법칙 P(친구와 친하게 지내다) = P(친구와) * P(친하게|친구와) * P(지내다|친구 와 친하게)

$$(P(w_1, ..., w_i) = \prod_{i=1}^{n} P(w_i | w_1, ..., w_{i-1}))$$

Seq2Seq 가 구하고자 하는것

입력문장이 들어왔을 때
$$P(y_1, ..., y_{T'} | x_1, ..., x_T) = \prod_{t=1}^{T} P(y_t \bigcirc y_1, ..., y_{t-1})$$
 출력문장이 나을 확률 \Rightarrow 기 확률은 연쇄적으로 구한다.

·x· T'≠T 일 4 있다.

Experiments

큰 LSTM 모델 학습시키기-beam search

• Log probability를 최대로 만들도록 학습

$$1/|set| \sum_{(T,S)\in set} \log p(T|S)$$

T: correct translation

5: Source

• 학습이 완료되면, 가장 적합한 번역을 결과로 도출

$$\widehat{T} = \underset{T}{\operatorname{arg\,max}} p(T|S)$$

큰 LSTM 모델 학습시키기-beam search

greedy decoding 의 경우됐다. 생김.

큰 LSTM 모델 학습시키기-beam search

√문장 순서 바꾸기 (reversing)

Short

• 입력 문장의 단어 순서를 거꾸로 함 => BLEU 스코어가 25.9 에서 30.6으로 높아짐

- 예상 이유
 - Short term dependency를 해결해줌 (minimal time lag)
 - Source와 target 간의 평균 거리는 그대로이지만
 - 학습(최적화)이 더 쉬워져서 성능이 좋아진 것 같다고 예측
 - 원래는 문장 뒷부분에 대한 판단이 안 좋아질 거라고 생각했는데 오히려 긴 문장도 잘 처리할 수 있게 됨

Training details

- Deep LSTM layers (4)
- 입력 vocab: 160,000 출력 vocab: 80,000
- 파라미터를 -0.08~0.08 균일분포로 초기화

learning rate decay

- √ SGD 사용, learning rate=0.7, epoch에 따라 학습률 감조
 - Batch size=128
 - 비슷한 길이의 문장끼리 하나의 batch로)
 - Exploding gradient 해결을 위해 gradient의 크기를 제한

MTCJ

results

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	∀ 34.81

	Method	test BLEU score (ntst14)
	Baseline System [29]	33.30
	Cho et al. [5]	34.54
	Best WMT'14 result [9]	37.0
//	Rescoring the baseline 1000-best with a single forward LSTM	35.61 U
/ [Rescoring the baseline 1000-best with a single reversed LSTM	35.85
	Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
[Oracle Rescoring of the Baseline 1000-best lists	~45

분석

순서에 따른 의미 변화도 잘 감지 => 기존의 bag of words 로는 파악할 수 없는 부분

분석

긴 문장도 ok 단어 빈도가 낮아도 좋은 성능

결론

80K VOCAD.

- limited vocab의 Seq2Seq는 기존의 unlimited SMT를 뛰어넘음 아직 심플하고 unoptimized 한 모델의 성능이므로,

 - 앞으로 더욱 발전할 가능성이 높음
- ♣ Source를 reverse 했을 때 놀라운 성능을 보임(• 긴 문장에 대해서도 좋은 성능 (이전엔 불가했음)

 - RNN도 reversed data를 쓴다면 학습가능할 것이다