Artificial Intelligence and Machine Learning 2023/2024

Week 7 Tutorial and Additional Exercises

Dr Ruchit Agrawal

School of Computer Science

March 4, 2024

In this tutorial...

In this tutorial we will be covering

- Univariate and multivariate linear regression.
- Exercises on gradient descent.
- Exercises on geometric concepts.
- Optional theoretical exercises.

Univariate Linear Regression

Recall the formal statement of univariate linear regression:

- Given a training set $\{(x_{(1)}, y_{(1)}), \dots, (x_{(n)}, y_{(n)})\}$, train weights w_0, w_1 that minimise a loss function.
- Given this training set, and weights w_0 , w_1 , the square loss (or L_2 loss) function is given as

$$g(w_0, w_1) = \sum_{i=1}^n (w_0 + w_1 x_{(i)} - y_{(i)})^2.$$

• Informally, we need w_0, w_1 such that for all $i = 1, \ldots, n$

$$w_0 + w_1 x_{(i)} \approx y_{(i)}$$
.

Multivariate Linear Regression

Recall the formal statement of multivariate linear regression:

- Given a training set $\{(\mathbf{x}_{(1)}, y_{(1)}), \dots, (\mathbf{x}_{(n)}, y_{(n)})\}$, train a weight vector \mathbf{w} that minimises a loss function.
- If we have d variables, then for all i = 1, ..., n, we write

$$\mathbf{x}_{(i)} = (1, x_{(i)}^1, x_{(i)}^2, \dots, x_{(i)}^d)$$
 and $\mathbf{w} = (w_0, w_1, w_2, \dots, w_d)$.

• Given this training set and a weight vector \mathbf{w} , the square loss (or L_2 loss) function is given as

$$g(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{(i)} - y_{(i)})^{2}.$$

ullet Informally, we need ullet such that for all $i=1,\ldots,n$

$$\mathbf{w}^T \mathbf{x}_{(i)} \approx y_{(i)}.$$

Consider a univariate linear regression problem with the *mean* square loss:

$$g(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x_{(i)} - y_{(i)})^2$$

 We have this training set of size n = 4:

i	x ⁽ⁱ⁾	$y^{(i)}$
1	1	3
2	0	2
3	2	5
4	-1	0

• Fill in the table to the right for each choice of weights.

Weights w_0, w_1	Loss $g(w_0, w_1)$	
$w_0 = 2, w_1 = 3$?	
$w_0 = 3$, $w_1 = 1$?	
$w_0 = 2$, $w_1 = 2$?	
$w_0 = 0$, $w_1 = 2$?	

• Which of these weights yield the minimum loss?

Exercise 1: Solution

• The table is filled as follows:

Weights w_0, w_1	Loss $g(w_0, w_1)$	
$w_0 = 2, \ w_1 = 3$	3.5	
$w_0 = 3, \ w_1 = 1$	1.5	
$w_0 = 2, \ w_1 = 2$	0.5	
$w_0 = 0$, $w_1 = 2$	2.5	

• The optimal weights out of these are $w_0 = 2$, $w_1 = 2$.

Consider the following algorithm.

Algorithm 1: Single iteration of Gradient Descent for Univariate Linear Regression.

• What are the numerical values of C, w_0 , w_1 at the end of algorithm 1 for $\alpha = 1$ and the following training set of size n = 3:

i	$x_{(i)}$	$y_{(i)}$
1	1	1
2	2	5
3	3	11

Exercise 2: Solution

• For each i = 0, 1, 2, 3, we write the values of C, w_0, w_1 :

i	С	w_0	w_1
0	0	0	0
1	1	1	1
2	5	3	5
3	54	-4	-16

- Therefore, at the end of algorithm 1, we will have: C = 54, $w_0 = -4$, $w_1 = -16$.
- Draw this table for the same training set and $\alpha=2$. Then, for $\alpha=0.5$.

Consider the following pairs of points in the form (x, y). In each case, find the equation of the line that passes between the two given points in the form y = ax + b. Also, find its slope.

- (1,2) and (-1,-4).
- (-1,3) and (3,-5).
- (-2, -3) and (1, 0).
- (3,5) and (0,5).

Hint: You should find the values of a and b. The slope equals a.

Exercise 3: Solution

The line equations are (in the same order):

- y = 3x 1; slope is 3.
- 2 y = -2x + 1; slope is -2.
- **3** y = x 1; slope is 1.
- **4** y = 5; slope is 0.

In each case, find the point of intersection of the two given lines.

- y = x + 1 and y = 4x 2.
- ② y = 5x and y = -3x.
- y = -2x + 3 and y = 4x 6.
- **4** y = 5 and y = -x 10.

Hint: In each case, equate the two right-hand-sides to find x. Then solve for y.

Exercise 4: Solution

The points of intersection are (in the same order):

- **1** (1, 2).
- **2** (0,0).
- **3** (1.5, 0).
- (-15,5).

Up next...

Optional Material

Optional Exercise 1

 Assume that we have trained a multi-variable regression model such that given an instance x, it predicts its y value to be

$$\mathbf{w}^T \mathbf{x}$$
.

• Prove that if the model predicts the same value \hat{y} for instances \mathbf{x}_1 and \mathbf{x}_2 , then, for all t, it also predicts the value \hat{y} for the instance \mathbf{x}_0 , where

$$\mathbf{x}_0 = t\mathbf{x}_1 + (1-t)\mathbf{x}_2.$$

- Geometrically, \mathbf{x}_0 lies in the line that passes from \mathbf{x}_1 and \mathbf{x}_2 .
- Hint: Start with $\mathbf{w}^T \mathbf{x}_0$ and expand \mathbf{x}_0 according to its formula.

Optional Exercise 1: Solution

• The prediction for \mathbf{x}_0 is

$$\mathbf{w}^{T}\mathbf{x}_{0} = \mathbf{w}^{T}(t\mathbf{x}_{1} + (1-t)\mathbf{x}_{2})$$

$$= t\mathbf{w}^{T}\mathbf{x}_{1} + (1-t)\mathbf{w}^{T}\mathbf{x}_{2}$$

$$= t\hat{y} + (1-t)\hat{y}$$

$$= \hat{y}.$$

• Therefore the same value \hat{y} is predicted by the model for \mathbf{x}_0 .

Any questions?

Until the next time...

Thank you for your attention!