Beyond the exponential family

Eric Pedersen, Gavin Simpson, David Miller August 6th, 2016

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

Most glm families (Poisson, Gamma, Gaussian, Binomial) are exponential families

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

Computationally easy

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance
- ... but it doesn't describe everything

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance
- ... but it doesn't describe everything
- mgcv has expanded to cover many new families

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance
- ... but it doesn't describe everything
- mgcv has expanded to cover many new families
- Lets you model a much wider range of scenarios with smooths

What we'll cover

- "Counts": Negative binomial and Tweedie distributions
- Modelling proportions with the Beta distribution
- Robust regression with the Student's t distribution
- Ordered and unorderd categorical data
- Multivariate normal data
- Modelling exta zeros with zero-inflated and adjusted families
- NOTE: All the distributions we're covering here have their own quirks. Read the help files carefully before using them!

Modelling "counts"

Counts and count-like things

- Response is a count (not always integer)
- Often, it's mostly zero (that's complicated)
- Could also be catch per unit effort, biomass etc
- Flexible mean-variance relationship

Tweedie distribution

- $Var(count) = \varphi(count)^q$
- Common distributions are sub-cases:
 - $\blacksquare q = 1 \Rightarrow Poisson$
 - $\blacksquare q = 2 \Longrightarrow Gamma$
 - $\mathbf{q} = 3 \Rightarrow \text{Normal}$
- We are interested in 1 < q < 2
- (here q = 1.2, 1.3, ..., 1.9)
- tw()

Negative binomial

- Var(count) = $(count) + \varkappa(count)^2$
- Estimate χ
- Is quadratic relationship a "strong" assumption?
- Similar to Poisson: Var(count) = (count)
- nb()

Modelling proportions

The Beta distribution

Modelling outliers

The student-t distribution

- Models continuous data w/ longer tails than normal
- Far less sensitive to outliers
- Has one extra parameter: df.
- bigger df: t dist approaches normal

The student-t distribution: Usage

```
set.seed(4)
n=300
dat = data.frame(x=seq(0,10,length=n))
dat$f = 20*exp(-dat$x)*dat$x
dat$y = 1*rt(n,df = 3) + dat$f
norm_mod = gam(y~s(x,k=20), data=dat,
family=gaussian(link="identity"))
t_mod = gam(y~s(x,k=20), data=dat, family=scat(link="identity"))
```

The student-t distribution: Usage

The student-t distribution: Usage

```
Family: Scaled t(2.976, 0.968)
Link function: identity
Formula:
y \sim s(x, k = 20)
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.02664 0.06853 29.57 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
       edf Ref.df Chi.sq p-value
s(x) 13.27 15.71 1221 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.695 Deviance explained = 63.1% -REML = 546.75 Scale est. = 1 n = 300
```

Modelling multi-dimensional data

Ordered categorical data

- Assumes data are in discrete categories, and categories fall in order
- e.g.: conservation status: "least concern", "vulnerable", "endangered", "extinct"
- fits a linear latent model using covariates, w/ threshold for each level
- First cut-off always occurs at -1

Ordered categorical data

Ordered categorical data

Using ocat

```
n= 200
dat = data.frame(x1 = runif(n,-1,1),x2=2*pi*runif(n))
dat$f = dat$x1^2 + sin(dat$x2)
dat$y_latent = dat$f + rnorm(n,dat$f)
dat$y = ifelse(dat$y_latent<0,1, ifelse(dat$y_latent<0.5,2,3))
ocat_model = gam(y~s(x1)+s(x2), family=ocat(R=3),data=dat)
plot(ocat_model,page=1)</pre>
```


Using ocat

summary(ocat_model)

```
Family: Ordered Categorical(-1,-0.09)
Link function: identity
Formula:
y \sim s(x1) + s(x2)
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5010 0.2792 1.794 0.0727.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x1) 3.452 4.282 18.67 0.00133 **
s(x2) 5.195 6.270 84.34 1.09e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Deviance explained = 57.7%
```

Using ocat

Error in eval(expr, envir, enclos) : invalid subscript type
'double'