# Spring 2021

# Section 7 (DSSA)

## Forecasting - Part 2

## **Trend Projection:**

- It fits a trend line to a series of historical data points.
- The line is projected into the future for medium to long range forecasts.
- The simplest is a linear model developed using regression analysis.

$$Y^{\hat{}} = b_0 + b_1 x$$

Where:

- $Y^{\circ}$  = Predicted value
- $b_0 = \text{intercept}$
- $b_1$  = slope of the line
- X = time period



## **Seasonal Variations:**

- Recurring variations over time may indicate the need for seasonal adjustments in the trend line
- Analyzing data in monthly or quarterly terms usually makes it easy to spot seasonal patterns.
- A seasonal index indicates how a particular season (e.g., month or quarter) compares with an average season.
- When no trend is present, the seasonal index can be found by dividing the average value for a particular season by the average of all the data
- 1. Get the average of the same period over all the years
- 2. Get the total (summation) of all the averages.
- 3. Divide the total of averages by number of periods of time.
- 4. Calculate the seasonal index of each period by:  $\frac{Step 1}{Step 3}$

#### Example 1

| Quarter   | Year |      | Average 3-year | Quarterly sales | Average    |                |
|-----------|------|------|----------------|-----------------|------------|----------------|
|           | 2003 | 2004 | 2005           | sales           |            | seasonal index |
| Quarter 1 | 72   | 75   | 76             | (72+75+76)/3 =  | 291.32/4 = | 1.02           |
|           |      |      |                | 74.33           | 72.83      |                |
| Quarter 2 | 64   | 66   | 68             | 66              | 72.83      | 0.906          |
| Quarter 3 | 63   | 64   | 67             | 64.66           | 72.83      | 0.887          |
| Quarter 4 | 75   | 89   | 95             | 86.33           | 72.83      | 1.185          |
| Total     |      |      |                | 291.32          |            |                |

If the average demand for year 2006 is forecasted to be 350, then what is the forecasted value of each quarter, taken into consideration the calculated seasonal index?

| Quarter   | Forecasted Seasonal value      |
|-----------|--------------------------------|
| Quarter 1 | $\frac{350}{4} * 1.02 = 89.25$ |
| Quarter 2 | 79.275                         |
| Quarter 3 | 77.6                           |
| Quarter 4 | 103.687                        |

## **Seasonal variations with Trend:**

- When both trend and seasonal components present, the forecasting task is more complex.
- Seasonal indices should be computed using a *centered moving average (CMA)* approach.
- Steps:
  - 1) Compute the CMA for each observation (where possible).
  - 2) Compute the seasonal ratio = observation / CMA for that observation.
  - 3) Average seasonal ratios to get seasonal indices.
  - 4) If seasonal indices do not add to the number of seasons, multiply each index by (Number of seasons/sum of indices)

#### Example 2

| Time Period | Quarter | Sales (in millions) |
|-------------|---------|---------------------|
| 1           | 1       | 1306                |
| 2           | 2       | 1305                |
| 3           | 3       | 1311                |
| 4           | 4       | 1313                |
| 5           | 1       | 1324                |
| 6           | 2       | 1329                |
| 7           | 3       | 1346                |
| 8           | 4       | 1347                |
| 9           | 1       | 1378                |
| 10          | 2       | 1394                |
| 11          | 3       | 1441                |
| 12          | 4       | 1469                |

#### **Solution:**

- ➤ The centered moving average is the average of two moving averages. Therefore, we have to calculate the moving average first.
- ➤ We are dealing here with 4-MA, because the year is divided into 4 quarters (timestamps) or based on what will be required in the problem.
- $\triangleright$  Average of the first 4 periods = [1306 + 1305 + 1311 + 1313] / 4 = 1308.75
- $\blacktriangleright$  Average of the second 4 periods = [1305 + 1311 + 1313 + 1324] / 4 = 1313.25
- $\triangleright$  Since, we got now two moving averages, we can calculate the first centered moving average which is = [1308.75 + 1313.25] /2 = 1311
- Now, we need to know the location of this centered moving average or what we call centered location = the average of the centers of the moving averages.

- $\triangleright$  The center of the first 4 periods equals [(1+4)/2] = 2.5
- $\triangleright$  The center of the second 4 periods equals [(2+5)/2] = 3.5
- $\triangleright$  Therefore, the first centered location of the CMA is [(2.5 + 3.5) / 2] = 3
- The second centered moving average will be the average of (the second 4 periods and the third 4 periods)
- $\triangleright$  Average of the second 4 periods = [1305 + 1311 + 1313 + 1324] / 4 = 1313.25
- $\triangleright$  Average of the third 4 periods = [1311 + 1313 + 1324 + 1329] / 4 = 1319.25
- $\triangleright$  Therefore, the 2<sup>nd</sup> centered moving average = [1313.25 + 1319.25] / 2=1316.25
- ➤ You don't need here to calculate the centered location, because it will be automatically period 4.

#### And so on, until you cover all the data

| Time Period | Quarter | Sales (in millions) | CMA      | Seasonal<br>Ratio |
|-------------|---------|---------------------|----------|-------------------|
| 1           | 1       | 1306                |          |                   |
| 2           | 2       | 1305                |          |                   |
| 3           | 3       | 1311                | 1311     | 1                 |
| 4           | 4       | 1313                | 1316.25  | 0.997531          |
| 5           | 1       | 1324                | 1323.625 | 1.000283          |
| 6           | 2       | 1329                | 1332.25  | 0.997561          |
| 7           | 3       | 1346                | 1343.25  | 1.002047          |
| 8           | 4       | 1347                | 1358.125 | 0.991809          |
| 9           | 1       | 1378                | 1378.125 | 0.999909          |
| 10          | 2       | 1394                | 1405.25  | 0.991994          |
| 11          | 3       | 1441                |          |                   |
| 12          | 4       | 1469                |          |                   |

Therefore, the seasonal indices of the 4 quarters are:

- SA of Quarter 1 = (1.000283 + 0.999909) / 2 = 1.0000963
- SA of Quarter 2 = (0.997561 + 0.991994) / 2 = 0.994777
- SA of Quarter 3 = (1 + 1.002047) / 2 = 1.001024
- SA of Quarter 4 = (0.997531 + 0.991809) / 2 = 0.99467
- Summation approximately equals 4.

# The Decomposition method for Forecasting:

- Decomposition is the process of isolating linear trend and seasonal factors to develop more accurate forecasts.
- There are 5 main steps of decomposition:
  - Compute seasonal indices using CMA approach.
  - De-seasonalize the data by dividing each number by its seasonal index.
  - Find the equation of a trend line using the de-seasonalized data.
  - Forecast for the future periods using the trend line.
  - Multiply the trend line forecast by the appropriate seasonal index.

### Example 3

| Year | Period | Quarter | Data |
|------|--------|---------|------|
| 1997 | 1      | 1       | 7130 |
|      | 2      | 2       | 6940 |
|      | 3      | 3       | 7354 |
|      | 4      | 4       | 7556 |
| 1998 | 5      | 1       | 7673 |
|      | 6      | 2       | 7332 |
|      | 7      | 3       | 7662 |
|      | 8      | 4       | 7809 |
| 1999 | 9      | 1       | 7872 |
|      | 10     | 2       | 7551 |
|      | 11     | 3       | 7989 |
|      | 12     | 4       | 8143 |
| 2000 | 13     | 1       | 8167 |
|      | 14     | 2       | 7902 |
|      | 15     | 3       | 8268 |
|      | 16     | 4       | 8436 |

# ♣ Step 1: calculate the seasonal indices using centered moving average:

| YEAR | PERIOD | QUARTER | Data | CENTERED MOVE AVG. |
|------|--------|---------|------|--------------------|
| 1997 | 1      | 1       | 7130 |                    |
|      | 2      | 2       | 6940 |                    |
|      | 3      | 3       | 7354 | 7312.875           |
|      | 4      | 4       | 7556 | 7429.75            |
| 1998 | 5      | 1       | 7673 | 7517.25            |
|      | 6      | 2       | 7332 | 7587.375           |
|      | 7      | 3       | 7662 | 7643.875           |
|      | 8      | 4       | 7809 | 7696.125           |
| 1999 | 9      | 1       | 7872 | 7764.375           |
|      | 10     | 2       | 7551 | 7847               |
|      | 11     | 3       | 7989 | 7925.625           |
|      | 12     | 4       | 8143 | 8006.375           |
| 2000 | 13     | 1       | 8167 | 8085.125           |
|      | 14     | 2       | 7902 | 8156.625           |
|      | 15     | 3       | 8268 |                    |
|      | 16     | 4       | 8436 |                    |

| Year | Period | Quarter | Data | CMA      | Seasonal Ratio |
|------|--------|---------|------|----------|----------------|
| 1997 | 1      | 1       | 7130 |          |                |
|      | 2      | 2       | 6940 |          |                |
|      | 3      | 3       | 7354 | 7312.875 | 1.005          |
|      | 4      | 4       | 7556 | 7429.75  | 1.0169         |
| 1998 | 5      | 1       | 7673 | 7517.25  | 1.0207         |
|      | 6      | 2       | 7332 | 7587.375 | 0.966          |
|      | 7      | 3       | 7662 | 7643.875 | 1.00237        |
|      | 8      | 4       | 7809 | 7696.125 | 1.0146         |
| 1999 | 9      | 1       | 7872 | 7764.375 | 1.01386        |
|      | 10     | 2       | 7551 | 7847     | 0.96           |
|      | 11     | 3       | 7989 | 7925.625 | 1.0079         |
|      | 12     | 4       | 8143 | 8006.375 | 1.017          |
| 2000 | 13     | 1       | 8167 | 8085.125 | 1.01           |
|      | 14     | 2       | 7902 | 8156.625 | 0.9687         |
|      | 15     | 3       | 8268 |          |                |
|      | 16     | 4       | 8436 |          |                |

Therefore, the seasonal indices of the 4 quarters are:

- SA of Quarter 1 = (1.0207 + 1.01386 + 1.01) / 3 = 1.01485
- SA of Quarter 2 = (0.966 + 0.96 + 0.9687) / 3 = 0.9649
- SA of Quarter 3 = (1.005 + 1.00237 + 1.0079) / 3 = 1.00509
- SA of Quarter 4 = (1.0169 + 1.0146 + 1.017) / 3 = 1.016
- Summation approximately equals 4.

## ♣ Step 2: De-seasonalize the data:

| Year | Period | Quarter | Data | <b>De-Seasonalized Data</b> |
|------|--------|---------|------|-----------------------------|
| 1997 | 1      | 1       | 7130 | 7130 / 1.01485 = 7025.668   |
|      | 2      | 2       | 6940 | 7192.45                     |
|      | 3      | 3       | 7354 | 7316.757                    |
|      | 4      | 4       | 7556 | 7437                        |
| 1998 | 5      | 1       | 7673 | 7560.7                      |
|      | 6      | 2       | 7332 | 7598.714                    |
|      | 7      | 3       | 7662 | 7623.1979                   |
|      | 8      | 4       | 7809 | 7686                        |
| 1999 | 9      | 1       | 7872 | 7756.8                      |
|      | 10     | 2       | 7551 | 7825.68                     |
|      | 11     | 3       | 7989 | 7948.54                     |
|      | 12     | 4       | 8143 | 8014.76                     |
| 2000 | 13     | 1       | 8167 | 8047.49                     |
|      | 14     | 2       | 7902 | 8189.45                     |
|      | 15     | 3       | 8268 | 8226.129                    |
|      | 16     | 4       | 8436 | 8303.15                     |

## **★** Step 3: Find equation of the trend line of the de-seasonalized data:

- Using Excel QM add-in normally or manually, to find the regression trend line equation.
- o The final equation is:
- Y' = 7068.28 + 78.38 X, where X is the time.
- $\circ$  Therefore, the forecast for period 17 will be = (7068.28) + (78.38) (17) = 8400.78
- o Take care: this forecasted value is deseasonalized.
- So, in order to add the seasonality part, multiply by the appropriate seasonal index.
- o Since, it is quarter 1 in year 2001  $\rightarrow Y^{\circ} = (8400.78)(1.01485) = 8525.532$

# **Utilize excel QM to build Forecasting Models**

- 1. Open the Excel QM.
- 2. Click on the "By Chapter Tab" and choose (Chapter 5: Forecasting), then choose the requested method (Decomposition).
  - Enter the number of periods and the number of seasons, then click ok