4 atoms

Point group	Graph	${ m Shape}$	Example	Dihedrals	
T_d	K_4	Regular Pyramidal	P_4	$\cos^{-1}\left(\frac{1}{3}\right)$	
C_{3v}	S_3	Pyramidal	NH_3	$\cos^{-1}\left(\frac{\cos\theta(1-\cos\theta)}{\sin^2\theta}\right)$	
C_s	S_3	Pyramidal	$\mathrm{Cl_2OS}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
D_{2h}	$K_4 - e$	Planar	$\mathrm{Cl_2Cu_2}$	0 or 180	Cu Cl Cu
C_{2v}	$K_4 - e$	Pyramidal	$\mathrm{H_2Si_2}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
C_2	P_4	Pyramidal	$\mathrm{H}_2\mathrm{O}_2$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
C_1	P_4	Pyramidal	${ m H_2OS}$	$\cos^{-1}\left(\frac{\cos\theta - \cos\varphi\cos\phi}{\sin\varphi\sin\phi}\right)$	<u>~</u>
D_{3h}	S_3	Planar	BH_3	0 or 180	
C_s	P_4	Planar	HNSi_2	0 or 180	S1 — N — S2
D_{2h}	C_4	Planar	$\mathrm{Br_2Na_2}$	0 or 180	
C_{2v}	P_4	Planar	O_2S_2	0 or 180	<u>s</u> — <u>s</u>
C_{2v}	S_3	Planar	CFO_2	0 or 180	6
$D_{\infty h}$	P_4	Linear	C_2H_2	0 or 180	
$C_{\infty v}$	P_4	Linear	$\mathrm{C}_{2}\mathrm{AuH}$	0 or 180	Au © ©
C_s	$T_{3,1}$	Planar	$\mathrm{H_2Si_2}$	0 or 180	H(1) S(2) H(2)
C_s	S_3	Planar	CBrFO	0 or 180	F Gr
C_{2v}	$K_4 - e$	Planar	$\mathrm{C_{3}Si}$	0 or 180	S C(2)
C_{2v}	$K_4 - e$	Planar	$\mathrm{C_{3}Si}$	0 or 180	SC C(1)

From 2019 add AsP3, from Kuchitsu book add N2H2 it's the only C2h molecule so far.

I have finished fairly thorough look through 2019 Vogt, 30A, 30B, 28A, 28C, 28D. Only 28B and 25-series need to be looked at now.

5 atoms

Point group	Shape	Example	${\bf Dihedrals}$	
T_d		${ m O_4Os}$	$\cos^{-1}\left(\frac{1}{3}\right)$?	
C_{3v}		${\rm ClH_3Si}$		
C_{3v}		$(\mathrm{Kr})(\mathrm{O_3S})$		
C_{2v}	Seesaw	$\mathrm{Cl_4Te}$		
C_{2v}		$\mathrm{C_{3}H_{2}}$	0,180?	2019 Vogt, Pg. 318
C_{2v}		$\mathrm{H}_{2}\mathrm{I}_{2}\mathrm{Si}$	0,180?	2019 Vogt, Pg. 102
C_{2v}		$\rm H_2O_2Si$		2019 Vogt, Pg. 107
C_{2v}		$(\mathrm{CO}_2)(\mathrm{N}_2)$		
$C_s(\mathrm{syn})$		$\mathrm{BFH_2O}$		
$C_s(\text{syn-anti})$		$\mathrm{CH_{2}O_{2}}$		
C_s		CN_4		
C_s		C_2H_3		
$C_s \ C_s$		BF ₂ HO CH ₃ OH		
$\stackrel{{\cal C}_s}{C_s}$		ClH_2NaO		
C_s		HNO_3		
C_s		$\mathrm{H_2O_2Si}$		
C_s	Non-planar	$\mathrm{CH_2N_2}$		
$C_s \ C_s$		${ m CBrF_2N} \ { m CHClF_2}$		
C_s		$(CO)(N_2O)$		
C_s (effective)		ArH_3N		
C_s (effective)		$(SO_2)(CO)$		
$C_s(\text{assumed})$		$\mathrm{H_2N_2O}$	$\operatorname{Given}!$	
$C_{\infty v}$	Linear	$\mathrm{CH_{3}N}$		
T.	Linear	(CO)(HCN)		
$D_{\infty h}$	Linear	C_5		
$D_{\infty h}$	Linear Linear	$egin{array}{c} { m C_3Ge_2} \ { m C_3H_2} \end{array}$		
$D_{\infty h}$	Quasi-linear	$C_3 O_2$		