COSC 4364 Spring 2018

Assignment 9

Out: April 26. Due: May 4. e-mail your report and code.

	Points				
Problem	a)	b)	c)	d)	Total
1	3				3
2	3				3
3	3				3
4	6				6
5	3	6			9
6	5				5
7	30				30
8	40				40
Total					99

Problem 1. (3 points) Vector norms are used to create so-called subordinate matrix norms. Which of the following conditions, if any, is satisfied by every subordinate matrix norm?

- a. $||Ax|| \ge ||A|| ||x||$ b. ||I|| = 1 c. $||AB|| \ge ||A|| ||B||$ d. $||A+B|| \ge ||A|| + ||B||$
- e. Non of these

Problem 2. (3 points) Which of the following conditions, if any, defines diagonal dominance of a matrix A?

$$a. \quad \left| a_{ii} \right| \geq \sum_{j=1}^{n} \left| a_{ij} \right| \quad b. \ \left| a_{ii} \right| \geq \sum_{j=1, j \neq i}^{n} \left| a_{ij} \right| \quad c. \ \left| a_{ii} \right| \geq \sum_{j=1}^{n} \left| a_{ji} \right| \quad d. \ \left| a_{ii} \right| \geq \sum_{j=1, j \neq i}^{n} \left| a_{ji} \right| \quad e. \ None \ of \ these$$

Problem 3. (3 points) A general procedure for solving a system of equations $(\mathbf{I}-\mathbf{G})\mathbf{x}=\mathbf{b}$ by an iterative method is to form an iteration formula $\mathbf{x}^{k+1} = \mathbf{G}\mathbf{x}^k + \mathbf{b}$. What is a necessary and sufficient condition that guarantees that the sequence \mathbf{x}^k converges to the solution to $(\mathbf{I}-\mathbf{G})\mathbf{x}=\mathbf{b}$?

a. $\it G$ is diagonally dominant. b. The spectral radius of $\it G$ <1. c. None of these

Problem 4. (6 points) If a set of m+1 data points (x_k,y_k) k=0,1,...,m are to be represented by a least squares fit of y=x²-x+c derive an expression for c in terms of x_k and y_k .

Problem 5. (a) 3 points, b) 6 points) The Gram-Schmidt process is used on the vectors $\mathbf{x}_1 = [2,2,1]^T$, $\mathbf{x}_2 = [1,1,5]^T$ and $\mathbf{x}_3 = [-3,2,1]^T$ to create the orthonormal vectors \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 .

a) Which one of the following vectors is the correct representation of \mathbf{u}_1 ? i) $[2/3,2/3,1/3]^{\mathsf{T}}$ ii) $[2,2,1]^{\mathsf{T}}$ iii) $[2/5,2/5,1/5]^{\mathsf{T}}$ iv) None of these b) Which one of the following vectors is the correct representation of \mathbf{u}_2 ? i) $(1/\operatorname{sqrt}(27))[1,1,5]^{\mathsf{T}}$ ii) $(1/\operatorname{sqrt}(18))[-1,-1,4]^{\mathsf{T}}$ iii) $[1,1,-4]^{\mathsf{T}}$ iv) None of these

Problem 6. (5 points) A set of data points (x_k, y_k) are to be approximated by y=1/(a+bx). A direct use of the least squares method results in a non-linear problem. How would you reformulate the problem to form a linear least squares problem?

Matlab problems

Problem 7. (Exercise 8.4.11) (30 points) Write your own Matlab code for the conjugate gradient method to solve the system Ax=b where A and b are as below

$$A = \begin{bmatrix} 3 & -1 & & & & & & \\ -1 & 3 & -1 & & & & & \\ & -1 & 3 & -1 & & & & \\ & & -1 & 3 & -1 & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$$

(diag(A) = 3, 1^{st} superdiag =-1, 1^{st} subdiagonal =-1, antidiagonal=1/2 where it does not conflict with the diagonal and 1^{st} super and subdiagonal. True solution is $x=(1,1,.....,1)^T$). For increasing values of the size n of the matrix compute the root mean square (RMS) error in your conjugate gradient solution by comparing to the true solution. Make a table and plot of how the number of iterations for convergence depend on n for an RMS error of 10^{-7} .

Problem 8. (Exercise 9.2.1). (40 points)

Step 1 - generating a noisy data set . For a 7^{th} degree polynomial of your choice on the interval [-1,1] for 100 randomly selected values in [-1,1] compute the corresponding polynomial values. Then, find the maximum absolute value of the polynomial points, p_{max} . Then, perturb each polynomial value by randomly adding a value from [-0.1 p_{max} ,0.1 p_{max}].

Step 2. Using the data set from step 1 find a least squares fit using the polynomial regression algorithm described on pages 440-443 in the book. Progressively specify an error tolerance 10^{-k} for k=3, 4, 5, 6, and 7. Report the polynomial you are getting for each error tolerance. Plot the polynomial you used to generate the noisy data and the polynomials generated for each error tolerance.