Тема. Розв`язування задач

Завдання:

- Продовжити формувати поняття імпульсу тіла та фізичні основи реактивного руху;
- формувати навички та уміння розв'язувати типові фізичні задачі;
- застосовувати набуті знання у побуті.

Теоретичний блок

Експрес - опитування:

- 1. Охарактеризувати імпульс як фізичну величину.
- 2. Сформулювати закон збереження імпульсу, навести його математичний запис.
- 3. Який рух називається реактивним?
- 4. Який імпульс отримує ракета порівняно з газами, що вилітають із сопла?
- 5. Як можна збільшити швидкість ракети?

Подумай!

- 1. Чи можна стверджувати, що імпульс тіла величина відносна? Відповідь обґрунтуйте.
- 2. Припустімо, що літак піднімається суворо рівномірно і прямолінійно. Чи зміниться при цьому його імпульс?
- 3. Дві матеріальні точки рівної маси рухаються назустріч одна одній з рівними за модулем швидкостями. Чому дорівнює імпульс системи точок?
- 4. Куля масою 0,01 кг летить горизонтально зі швидкістю 200 м/с, ударяється об перешкоду і зупиняється. Чому дорівнює імпульс кулі до удару? Який імпульс куля отримала від перешкоди?
- 5. На гладкій поверхні лежить дерев'яний циліндр. Чи залежить набута циліндром швидкість від напряму лінії пострілу відносно осі циліндра, якщо куля застрягає в дереві?

Методичні рекомендації

Розглянемо методику розв'язування задач на закони збереження при абсолютно пружному і непружному ударі та використання її для розв'язування задач з інших тем фізики.

Задача 1. Дві кулі масами m_1 та m_2 (мал.39) рухаються по ідеально рівній поверхні в одному і тому самому напрямі відповідно зі швидкостями θ_1 та θ_2 ($\theta_1 > \theta_2$). Знайти швидкість куль після удару і втрату механічної енергії.

Позначимо швидкість куль після удару через U. Запишемо закон збереження імпульсу тіл:

$$m_1\theta_1 - m_2\theta_2 = (m_1 + m_2)\Omega$$
.

Виберемо вісь ОХ вздовж напряму руху тіл. У проекціях на вісь ОХ закон збереження імпульсу матиме вигляд:

$$m_i \vartheta_i + m_2 \vartheta_2 = \left(m_i + m_2\right) U.$$

Маємо:

$$u = \frac{m_1 \vartheta_1 + m_2 \vartheta_2}{(m_1 + m_2)}.$$
(1)

Знайдемо втрату механічної енергії:

$$\Delta W = W_1 - W_2 = \frac{m_1 \theta_1^2}{2} + \frac{m_2 \theta_2^2}{2} - \frac{m_1 + m_2}{2} u^2. \tag{2}$$

AGo
$$\Delta W = \frac{m_1 m_2}{2(m_1 + m_2)} (\vartheta_1 - \vartheta_2)^2.$$
(3)

Якщо тіла рухаються назустріч одне одному ($9_2 < 0$), то

$$\Delta W = \frac{m_1 m_2}{2(m_1 + m_2)} (\vartheta_1 - \vartheta_2)^2.$$

Якщо одне з тіл нерухоме в (9_2 =0), то

$$\Delta W = \frac{m_1 m_2}{2(m_1 m_2)} \vartheta_1^2 = \frac{W_1}{I + \frac{m_1}{m_2}}.$$

Якщо $m_2 > m_1$, то $\Delta W = W_1$, тобто зміна енергій іде на нагрівання і деформацію тіла. Це спостерігається під час кування.

За умови $m_2 < m_1$ відбувається переміщення тіл під час удару. Це буває під час забивання паль, цвяхів і т.п.

Досить часто доводиться знаходити сумарний імпульс при абсолютно непружному ударі, коли тіла рухаються під довільним кутом а. У цьому разі вектори додаються за правилом трикутника або паралелограма. Модуль імпульсу знаходять за теоремою косинусів або за теоремою Піфагора, якщо $a=90^{\circ}$.

Для довільного кута: $\left(\left(m_1+m_2\right)\mathcal{U}\right)^2=\left(m_1\vartheta_1\right)^2+\left(m_2\vartheta_2\right)^2-2m_1m_2\vartheta_1\vartheta_2\cos\alpha.$

$$\mathcal{U} = \frac{\sqrt{\left(m_1 \vartheta_1\right)^2 + \left(m_2 \vartheta_2\right)^2 - 2m_1 m_2 \vartheta_1 \vartheta_2 \cos \alpha}}{m_1 + m_2}.$$

Звідси

Якщо
$$a = 90^{\circ}$$
, то
$$u = \frac{\sqrt{(m_1 \vartheta_1)^2 + (m_2 \vartheta_2)^2}}{m_1 + m_2}.$$

Задача 2. Вздовж берега пливе пліт масою M зі швидкістю θ_1 . На нього стрибає людина масою m швидкістю θ_2 , напрям якої перпендикулярний до берега. Знайти швидкість плоту разом з людиною (мал. 40 а).

Оскільки опором води можна знехтувати, то закон збереження імпульсу матиме вигляд;

$$M\vartheta_1+m\vartheta_2=(M+m)\overline{u}.$$

Модуль імпульсу після взаємодії визначаємо за теоремою Піфагора (мал 40 б):

$$((M+m)u)^2 = (M\vartheta_1)^2 + (m\vartheta_2)^2 \Rightarrow u = \frac{\sqrt{(M\vartheta_1)^2 + (M\vartheta_2)^2}}{M+m}.$$

Напрям вектора швидкості визначається кутом альфа;

$$tg\alpha = m\theta_2 / M\theta_i \Rightarrow \alpha = artgm\theta_2 / m\theta_i$$
.

Задача 3. Снаряд, що летить горизонтально зі швидкістю u=200 м/с, розривається на два осколки. Один з них масою m_1 =5 кг летить у тому самому напрямі зі швидкістю θ_1 =250 м/с. Визначити швидкість другого осколка, якщо його маса m_2 =15 кг.

За законом збереження імпульсу,

$$(m_1+m_2)\vec{u}=m_1\vec{\vartheta}_1+m_2\vec{\vartheta}_2.$$

У проекціях на вісь ОХ (снаряд летить горизонтально) рівняння має вигляд;

$$(m_1+m_2)\mathcal{U}=m_1\mathcal{J}_1+m_2\mathcal{J}_2.$$

Звідки:

$$\begin{aligned} \theta_2 &= \left(m_1 \theta_1 - \left(m_1 + m_2 \right) \mathcal{U} \right) / m_2; \\ \theta_2 &= \left(5 \cdot 250 - 20 \cdot 200 \right) / 15 \approx -183 \text{M} / c. \end{aligned}$$

Знак мінус означає, що напрям руху другого осколка протилежний вибраному.

Практичний блок.

Розглянемо розв'язання задач з використанням цієї методики.

Задача 1. Рух матеріальної точки описується рівнянням $x = 20 + 2t - t^2$. Знайти імпульс точки через 4 с, вважаючи, що її маса дорівнює 4 кг.

Дано:
$$m=4$$
 кг $p_x=mv_x$. 3 рівняння $x=20+2t-t^2$ маємо: $v_{0x}=2$ м/с, $a_x=-2$ м/с $a_x=-$

Bi∂nosi∂ь: $p_x = -24 \frac{\text{KF} \cdot \text{M}}{c}$.

Задача 2. Снаряд масою 20 кг, що летить зі швидкістю 500 м/с, потрапляє у платформу з піском масою 10 т і застрягає в піску. З якою швидкістю розпочала рухатися платформа

Дано:
$$m_1 = 20$$
 кг $m_1 = 20$ кг $v_1 = 500$ м/с $m = 10$ т $v_1 = 500$ м/с $m = 10$ т $v_1 = 500$ м/с $m = 10$ т $v_1 = 500$ м/с $m = 10000$ кг $m = 100$

За законом збереження імпульсу $m_1 \vec{v}_1 = (m_1 + m) \vec{v}$; $Ox: m_1 v_1 = (m_1 + m) v$.

$$v = \frac{m_1 v_1}{m_1 + m}$$
, $[v] = \frac{\kappa r \cdot m}{c \cdot \kappa r} = \frac{m}{c}$, $v = \frac{20 \cdot 500}{10 \cdot 000 + 20} \approx 1$ (m/c).
 $Bi\partial nobi\partial b$: $v = 1$ m/c.

3. Граната, що летіла зі швидкістю 10 м/с, розірвалася на два уламки масами 12 кг і 8 кг, які розлетілися в протилежних напрямках. Швидкість руху більшого уламка 25 м/с у напрямі руху гранати. Яка швидкість руху меншого уламка?

Перевір себе

Це цікаво!

Постріл із гвинтівки супроводжується віддачею. Віддача виникає тому , що відкидна маса газів створює реактивну силу , завдяки якій може бути забезпечено рух як у повітрі , так і в безповітряному просторі. І чим більше маса і швидкість газів , що вилітають, тим більшу силу віддачі відчуває наше плече , чим сильніша реакція гвинтівки , тим більша реактивна сила.

- **1.** Відповідно до інструкції під час пострілу з рушниці варто щільно притиснути приклад до плеча. Навіщо? (Відповідь: збільшити масу рушниці для зменшення її швидкості.
- **2.** Щоб зрушити автобус з місця, достатньо зусиль декількох людей. Чому ж автобус не рухається з місця, якщо його навиліт пробиває важкий снаряд?
- **3.** На малюнку зображено чотири ситуації взаємодії двох тіл. У якому випадку систему тіл можна вважати замкненою? Чому? Відповідь обґрунтуйте.

Блок контролю

- 1. Чи можна стверджувати, що імпульс тіла величина відносна? Відповідь обґрунтуйте.
- 2. Припустімо, що літак піднімається суворо рівномірно і прямолінійно. Чи зміниться при цьому його імпульс?
- 3. Дві матеріальні точки рівної маси рухаються назустріч одна одній з рівними за модулем швидкостями. Чому дорівнює імпульс системи точок?
- 4. Куля масою 0,01 кг летить горизонтально зі швидкістю 200 м/с, ударяється об перешкоду і зупиняється. Чому дорівнює імпульс кулі до удару? Який імпульс куля отримала від перешкоди?

Домашне завдання:

- 1) Рух матеріальної точки описується рівнянням $x = 5 8t + t^2$. Знайти імпульс точки через 2 с, вважаючи, що її маса дорівнює 2 кг.
- 2) Криголам масою 5000 т, який іде з вимкненими двигунами зі швидкістю 10 м/с, наштовхується на нерухому крижину і штовхає її

- попереду себе. Швидкість криголама зменшилась при цьому до 2 м/с. Визначити швидкість крижини.
- 3) Від ракети масою 1000 кг в момент її руху зі швидкістю 171 м/с відокремилась ступень масою 400 кг, швидкість якої при цьому збільшилась до 185 м/с. Знайти швидкість, з якою почала рухатись після відокремлення ступені сама ракета.

