IL METODO DI ANALISI SU BASE TAGLI

Prof. Simone Fiori
Dipartimento di Ingegneria dell'Informazione (DII)
Università Politecnica delle Marche (uPM)
http://web.dii.univpm.it/fiori

1 Generalità

Il metodo di analisi su base tagli (MABT) si applica a circuiti elettrici formati solamente da resistori e generatori indipendenti di corrente.

Consideriamo un generico bipolo k^{mo} il cui stato elettrico sia descritto dalla coppia tensione-corrente (v_k, i_k) . La relazione costitutiva del bipolo può essere del tipo:

- $i_k = G_k v_k$ se il bipolo è un resistore di conduttanza G_k ,
- $i_k = i_{g,k}$ se il bipolo è un generatore indipendente di corrente di valore $i_{g,k}$.

Queste relazioni costitutive si possono riassumere con la relazione costitutiva generalizzata

$$i_k = G_k v_k + i_{q,k},\tag{1}$$

con la convenzione che

- se il bipolo è un resistore, si assume $i_{g,k} = 0$,
- se il bipolo è un generatore indipendente di corrente, si assume $G_k = 0$.

Si assume una partizione albero/co-albero \mathcal{A}/\mathcal{C} del grafo \mathcal{G} associato al circuito elettrico. Per gli archi dell'albero, cioè quando $k \in \mathcal{A}$, a partire dalla relazione (1) si può scrivere un'unica relazione vettoriale tra le tensioni e le correnti associate agli archi dell'albero, ovvero:

$$I_a = G_a V_a + I_{g,a}, (2)$$

dove I_a è il vettore delle correnti sugli archi di albero, V_a è il vettore delle tensioni sugli archi di albero, G_a è una matrice diagonale delle eventuali

conduttanze degli archi di albero e $I_{g,a}$ è il vettore delle correnti impresse dagli eventuali generatori presenti sugli archi di albero.

Analogamente, per gli archi del co-albero, cioè quando $k \in \mathcal{C}$, si può scrivere un'unica relazione vettoriale tra le tensioni e le correnti associate agli archi del co-albero, ovvero:

$$I_c = G_c V_c + I_{g,c},\tag{3}$$

dove I_c è il vettore delle correnti sugli archi di co-albero, V_c è il vettore delle tensioni sugli archi di co-albero, G_c è una matrice diagonale delle eventuali conduttanze degli archi di co-albero e $I_{g,c}$ è il vettore delle correnti impresse dagli eventuali generatori presenti sugli archi di co-albero.

Ricordiamo le relazioni topologiche che descrivono la struttura del grafo e la partizione albero/co-albero:

$$\begin{cases}
I_a + AI_c = 0, \\
V_c + BV_a = 0, \\
B = -A^T.
\end{cases}$$
(4)

Il sistema risolvente nel metodo di analisi su base tagli è, quindi

$$\begin{cases}
I_a = G_a V_a + I_{g,a}, \\
I_c = G_c V_c + I_{g,c}, \\
I_a + A I_c = 0, \\
V_c + B V_a = 0.
\end{cases}$$
(5)

Questo insieme di equazioni contiene 2R incognite (dove R rappresenta il numero totale di archi del grafo \mathcal{G}) ed è composto da 2R equazioni linearmente indipendenti.

2 Struttura e proprietà del sistema risolvente

Conviene scrivere il sistema risolvente (5) utilizzando, come unica incognita, il vettore delle tensioni di albero V_a . Per far questo, inseriamo la prima e la seconda equazione all'interno della terza, ottenendo

$$\begin{cases}
G_a V_a + I_{g,a} + A(G_c V_c + I_{g,c}) = 0, \\
V_c + B V_a = 0,
\end{cases}$$
(6)

ovvero

$$\begin{cases}
G_a V_a + I_{g,a} + A G_c V_c + A I_{g,c} = 0, \\
V_c = -B V_a.
\end{cases}$$
(7)

Inserendo, infine, l'ultima equazione nella prima, si ottiene

$$G_a V_a + I_{g,a} + A G_c (-BV_a) + A I_{g,c} = 0.$$
 (8)

Raccogliendo i termini omologhi, si ottiene poi

$$(G_a - AG_cB)V_a = -I_{q,a} - AI_{q,c}. (9)$$

Definendo

$$\begin{cases}
G_T \stackrel{\Delta}{=} G_a - AG_cB, \\
I_{g,T} \stackrel{\Delta}{=} - I_{g,a} - AI_{g,c},
\end{cases}$$
(10)

si può scrivere il sistema risolvente in forma compatta come

$$G_T V_a = I_{a.T}. (11)$$

La matrice G_T ha dimensione $a \times a$, dove a rappresenta il numero di archi dell'albero ed è dimensionalmente omogenea, infatti, tutti i suoi elementi si misurano in Siemens (S). Il vettore colonna $I_{g,T}$ ha a righe ed è dimensionalmente omogeneo, infatti, tutti i suoi elementi si misurano in Ampère (A).

La matrice G_T è simmetrica, infatti, dopo averla scritta come $G_a + AG_cA^T$ (grazie alla terza equazione topologica $B = -A^T$), si può notare che

$$G_T^T = (G_a + AG_cA^T)^T = G_a^T + (AG_cA^T)^T = G_a + AG_c^TA^T = G_a + AG_cA^T,$$
(12)

dato che sia G_a che G_c sono diagonali e, in quanto tali, anche simmetriche.