Recepción de datos

Se recibe la cantidad de bits junto con las variables asociadas a sus respectivos valores.

- \triangleright bits = 6
- ightharpoonup a = s-10
- ▶ b = 3

Convertir datos a binario

Se convierten los datos a listas de 0s y 1s para representar un valor binario.

$$ightharpoonup$$
 a = - [0, 0, 1, 0, 1, 0]

$$\triangleright$$
 b = + [0, 0, 0, 0, 1, 1]

Tomar el valor absoluto de los números

Se toma el valor absoluto de los números para realizar la multiplicación.

- ightharpoonup abs(a) = [0, 0, 1, 0, 1, 0]
- ightharpoonup abs(b) = [0, 0, 0, 0, 1, 1]

Multiplicación binaria

Se realiza la multiplicación binaria (de valor absoluto) de los dos números binarios.

▶ $abs(a) \times abs(b) = [0, 0, 1, 0, 1, 0] \times [0, 0, 0, 0, 1, 1] = ...$

Inicializar registro y empezar a multiplicar

Inicializar el resultado como una lista de ceros con longitud 2 \times self.bits y empezar a recorrer los bits de abs(b).

resultado = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Si el bit de abs(b) es 1, sumar abs(a) $\times 2^{i}$.

▶ $abs(b)[5] = 1 \Longrightarrow Si$ se hace la suma

Sumar No.1

Sumar $abs(a) \times 2^i$ al resultado.

- $[0, 0, 1, 0, 1, 0] \ll 0 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]$
- resultado + producto = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]

Si el bit de abs(b) es 1, sumar abs(a) $\times 2^{i}$.

▶ $abs(b)[4] = 1 \Longrightarrow Si$ se hace la suma

Sumar No.2

Sumar $abs(a) \times 2^i$ al resultado.

- $[0, 0, 1, 0, 1, 0] \ll 1 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]$
- resultado + producto = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0]

Si el bit de abs(b) es 1, sumar abs(a) $\times 2^i$.

▶ $abs(b)[3] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(b) es 1, sumar abs(a) $\times 2^i$.

▶ $abs(b)[2] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(b) es 1, sumar abs(a) $\times 2^{i}$.

▶ $abs(b)[1] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(b) es 1, sumar abs(a) $\times 2^i$.

▶ $abs(b)[0] = 0 \Longrightarrow No se hace la suma$

Recortar resultado

Recortar el resultado para la cantidad de bits en cuestión.

► [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0] = [0, 1, 1, 1, 1, 0]

Aplicando negativos

Se determina el signo del resultado y se convierte a complemento a dos si es negativo.

 $\qquad \qquad - \ [0, \ 1, \ 1, \ 1, \ 1, \ 0] \Longrightarrow [1, \ 0, \ 0, \ 0, \ 1, \ 0]$

Diseños Lógicos

Johanel, Fabrizio, Jeaustin

Tecnológico de Costa Rica

Semestre I de 2023