In the Claims

Amendments to the claims:

Claims 1 –5 (Canceled)

5

10

6. (Previously Amended) A method for forming within a silicon semiconductor substrate employed within an integrated circuit microelectronics fabrication a silicon oxide dielectric field oxide (FOX) isolation layer comprising:

providing a silicon semiconductor substrate;

forming upon the silicon semiconductor substrate a silicon oxide pad oxide layer; forming upon the silicon oxide pad oxide layer a patterned silicon nitride mask layer;

oxidizing the silicon semiconductor substrate locally at a first temperature of at least above 1100 degrees centigrade, through the patterned silicon nitride mask layer to form silicon oxide dielectric field oxide (FOX) isolation layers which prevent out-diffusion of nitrogen species from the silicon nitride mask layer; and

then oxidizing the silicon semiconductor substrate further at a second temperature no greater than 1100 degrees centigrade as desired to form greater thickness of silicon oxide layers.

Docket: TSMC 98 - 262CC

S/N: 09/325,951

8. (Original) The method of Claim 6 wherein the silicon oxide pad oxide layer is formed

employing thermal oxidation of the silicon semiconductor substrate in an oxidizing

environment.

9. (Original) The method of Claim 6 wherein the semiconductor silicon substrate is a

single crystalline silicon wafer of (100) crystal orientation.

10. (Currently Amended) The method of claim 11 6, wherein the dry oxidizing

environment comprises:

oxygen gas;

nitrogen gas; and

average room temperature humidity.

11. (Previously Added) A method for forming a silicon oxide dielectric field oxide

(FOX) isolation layer comprising:

5

10

providing a silicon structure;

forming upon the silicon structure a pad oxide layer;

forming upon the pad oxide layer a patterned silicon nitride mask layer;

oxidizing the silicon structure locally at a first temperature of at least above

about 1100°C, through the patterned silicon nitride mask layer to form silicon oxide

dielectric field oxide (FOX) isolation layers which prevent out-diffusion of nitrogen

species from the silicon nitride mask layer; and

then oxidizing the silicon structure further at a second temperature no greater

than about 1100°C to form greater thickness of silicon oxide layers.

Docket: TSMC 98 - 262CC

S/N: 09/325,951

12. (Previously Added) The method of claim 11, wherein the pad oxide layer is formed

employing thermal oxidation of the silicon structure in an oxidizing environment.

13. (Previously Added) The method of claim 11, wherein the silicon structure is a single

crystalline silicon wafer of (100) crystal orientation.

14. (Currently Amended) The method of claim 11, wherein the dry oxidizing

environment is a dry oxidizing environment comprises comprising:

oxygen gas;

nitrogen gas; and

average room temperature humidity.

15. (New) The method of claim 6, wherein the first temperature is from at least above

1100 degrees centigrade to about 1300 degrees centigrade and the second temperature is

from about 950 degrees centigrade to about 1000 degrees centigrade.

16. (New) The method of claim 11, wherein the first temperature is from at least above

1100 degrees centigrade to about 1300 degrees centigrade and the second temperature is

from about 950 degrees centigrade to about 1000 degrees centigrade.

4