

Big Data Ecology

Spatial Data

Christian König

Ecology and Macroecology Lab
Institute for Biochemistry and Biology
University of Potsdam

Vector data

- Spatial features defined by vertices and paths
- Attribute table may contain additional (non-spatial) information
- Vector data types:

Raster data

- Continuous spatial surfaces defined by a matrix/grid of values
- Spatial extent and resolution
- Raster value types:

Coordinate Systems

- Ellipse: Mathematical representation of the Earth as a geometrical object (radius, flattening).
- Datum: Defines the position of the origin, the scale, and the orientation of the coordinate system relative to the Earth
- Coordinates can be expressed in angular units relative to the equator and prime meridian of the reference ellipsoid

Source: Gregory et al. (2019) 10.1007/s10712-019-09525-z

Projections

- Projections map the coordinates from a 3D surface (as defined by the ellipsoid and reference datum) to a 2D plane
- Different families: azimuthal, conical, cylindrical
- Projections may preserve direction, area, or distances, but never all of them!
- The true size of geographical entities may be not what you think it is

Source:

https://www.blendspace.com/lessons/p45LnYc6Gx13DA/location-map-projections-and-types

Projections

Conformal preserves angles

Mercator projection

Equidistant preserves distances

Plate Carrée equidistant cylindrical projection

Equal area preserves area

Mollweide equal area cylindrical projection

Coordinate Reference Systems (CRS)

- The coordinate reference system holds all information relevant to represent geospatial data: reference ellipsoid, datum and projection
- Different standards defining the CRS, e.g.:
 - <u>EPSG code</u>: four to five digit numeric code for widely used CRS's, e.g. 4326 for lon/lat on WGS84 ellipsoid
 - o <u>Proj4 String</u>: explicit definition of the CRS, e.g. '+proj=longlat +ellps=WGS84 +datum=WGS84 +no defs'lon/lat on WGS84 ellipsoid
 - WKT2: more modern and structured definition of the CRS, see e.g. <u>here</u> for the WKT2 definition of lon/lat on WGS84 ellipsoid

Spatial Data in R

- Rich ecosystem of spatial R-packages
- Vector Data:
 - sp "classical" framework for spatial data in R
 - sf modern implementation of simple features, supports dplyr syntax

Raster Data:

- <u>raster</u> powerful, most widely used R-package for raster data manipulation
- stars recent project with focus on multidimensional arrays and integration with sf
- There are <u>countless packages</u> for more specialized geospatial applications in R, e.g. for advanced data I/O, cartography, geostatistics, visualization, and more

Attribute data operations

- Manipulate spatial (vector) data based on their attributes in much the same way as non-spatial data, e.g.:
 - Join information based on shared attributes/columns
 - Subset the dataset based on <u>column values</u>
 - Select or remove specific <u>attributes/columns</u>
 - Aggregate features based on their <u>attributes/columns</u>
 -) ...

Spatial data operations - vectors

- Manipulate spatial (vector) data based on their spatial characteristics and relationships, rather than their attributes, e.g.:
 - Join information from different features based on their <u>shared position</u>
 - Subset the dataset based on <u>topological relations</u> with other features (e.g. intersection, adjacency)
 - Aggregate features based on their spatial grouping
 - O ...

Spatial data operations - rasters

- Manipulate spatial raster data, e.g.:
 - Subset raster based on cell-IDs
 - use efficient map algebra algorithms, e.g. to perform arithmetic operations with multiple raster, reclassify values, calculate summary statistics or apply moving window approaches
 - Merge overlapping or neighbouring rasters

Geometry operations

- Manipulation of spatial data based on their geometry, not their attributes/data, e.g.:
 - Dissolve boundaries of neighbouring polygon features
 - Crop spatial data to a different extent or clip it by another polygon features
 - Buffer vector data or calculate their centroid
 - Aggregate or Disaggregate raster data to a different resolution
 - Extract raster values for a given set of vector features

Practical

Work through the R practical spatial data.md

Further readings

E-Books and tutorials:

https://saylordotorg.github.io/text_essentials-of-geographic-information-systems/index.html

https://docs.ggis.org/3.16/en/docs/gentle_gis_introduction

https://geocompr.robinlovelace.net/

https://r-spatial.github.io/sf/

Overview of spatial packages in R:

https://cran.r-project.org/web/views/Spatial.html

Coordinate Reference Systems:

https://www.nceas.ucsb.edu/sites/default/files/2020-04/OverviewCoordinateReferenceSystems.pdf

Cheatsheets:

https://github.com/rstudio/cheatsheets/blob/master/sf.pdf

https://www.maths.lancs.ac.uk/~rowlings/Teaching/UseR2012/cheatsheet.html