Analyse anancée

Locally convex spaces

Question 1/10

 $A \subseteq X$ is convex

Réponse 1/10

$$tA + (1-t)A \subseteq A \text{ for all } t \in [0,1]$$

Question 2/10

Properties of \overline{A} and \mathring{A} when A is convex

Réponse 2/10

$$\overline{A}$$
 and \mathring{A} are convex
If $\mathring{A} \neq \emptyset$ then $\mathring{A} = \overline{A}$

Question 3/10

Properties of A + U with $A \subseteq X$ and $U \subseteq X$ open

Réponse 3/10

A+U is open

Question 4/10

Existence of symmetric neighbourhoods

Réponse 4/10

If W is a neighbourhood of 0 then there exists a neighbourhood V of 0 such as V = -V and $V + V \subseteq W$

Question 5/10

Link between \overline{A} , \overline{B} and $\overline{A+B}$

Réponse 5/10

$$\overline{A} + \overline{B} \subseteq \overline{A + B}$$

Question 6/10

Properties of K + F with $K \subseteq X$ compact and $F \subseteq X$ closed

Réponse 6/10

K + F is closed

Question 7/10

Properties of $p_A: X \longrightarrow \mathbb{R}_+$ $u \longmapsto \inf(\{t > 0, u \in tA\})$ for $A \subseteq X$ absorbing

Réponse 7/10

 p_A is well defined and positively homogeneous, $p_A(0) = 0$ and p_A is sub-additive If A is convex, $\{p_A(x)<1\}\subseteq A\subseteq \{p_A(x)\leqslant 1\}$ and if A is open then $A = \{p_A(x) < 1\}$ If A is convex and balanced, p_A is a semi-norm If X is a normed space and A is a neighourhood of the origin then there exists $K \geqslant 0$ such that $p_A(u) \leqslant K \|u\|_X$

Question 8/10

Separation of compac and closed sets in a TVS

Réponse 8/10

If X is a TVS, K is a compact subset of X and F a closed subset of X then there exists a neighbourhood V of 0 such that $(K+V)\cap (F+V)=\varnothing$

Question 9/10

 $A \subseteq X$ is balanced

Réponse 9/10

$$\forall |\lambda| \leqslant 1, \lambda A \subseteq A$$

Question 10/10

 $A \subseteq X$ is absorbing

Réponse 10/10

$$\forall u \in X, \exists t > 0, tu \in A$$