УДК 517.982.22

О ПРЕДСТАВЛЯЮЩИХ И АБСОЛЮТНО ПРЕДСТАВЛЯЮЩИХ СИСТЕМАХ ПОДПРОСТРАНСТВ В БАНАХОВЫХ ПРОСТРАНСТВАХ

И.С.Фещенко

Аннотация. В работе изучаются свойства представляющих систем подпространств и абсолютно представляющих систем подпространств в банаховых пространствах.

Ключевые слова: банахово пространство, представляющая система подпространств, абсолютно представляющая система подпространств.

1. Введение

Пусть X — линейное нормированное пространство над полем \mathbb{K} действительных или комплексных чисел, $X_k, k \geqslant 1$, — система подпространств X (т.е. замкнутых линейных множеств), которую мы будем обозначать $S = (X; X_k, k \geqslant 1)$.

Определение 1.1. ([4]) Система S называется представляющей системой подпространств (ПСП) в X, если произвольный $x \in X$ можно представить в виде $x = \sum_{k=1}^{\infty} x_k$, где $x_k \in X_k$, $k \ge 1$.

Отметим, что в случае банахова пространства X в книге [12] (определение 15.21) ПСП в X называется псевдоразложением X.

Определение 1.2. ([4]) Система S называется абсолютно представляющей системой подпространств в X, если произвольный $x \in X$ можно представить в виде $x = \sum_{k=1}^{\infty} x_k$, где $x_k \in X_k$, $k \ge 1$ и $\sum_{k=1}^{\infty} \|x_k\| < \infty$.

ПСП и АПСП являются естественным обобщением представляющих и абсолютно представляющих систем (все X_k одномерны) (см., например, [3]). Определения ПСП и АПСП можно давать и в более широких классах пространств, чем линейные нормированные (см.[4]); ПСП и АПСП в различных классах пространств изучались в работах Ю.Ф. Коробейника, А.В. Абанина, К.А.Михайлова и др. (см., например, [4],[1],[6]). В данной работе мы изучаем ПСП и АПСП в банаховых пространствах.

В параграфе 2 изучаются свойства Π С Π в X, приведены достаточные условия для того, чтобы счётная система подпространств была Π С Π в X, доказана теорема об устойчивости Π С Π , а также показана связь между Π С Π в гильбертовом пространстве и проблемой Γ альперина.

В параграфе 3 приводятся различные критерии АПСП, изучаются свойства АПСП в X.

2. ПРЕДСТАВЛЯЮЩИЕ СИСТЕМЫ ПОДПРОСТРАНСТВ В БАНАХОВЫХ ПРОСТРАНСТВАХ

2.1. **Некоторые свойства ПСП в банаховых пространствах.** Пусть X — банахово пространство, $S=(X;X_k,k\geqslant 1)$ — система его подпространств. Введём необходимые обозначения и определения. Для непустого $I\subset\mathbb{N}$ определим подпространство $S^{(I)}$ как замыкание линейной оболочки подпространств $X_i, i\in I$. Обозначим X^* сопряженное пространство к X; для $\varphi\in X^*$ обозначим $\varphi^{(S,I)}$ сужение φ на $S^{(I)}$. Ясно, что $\varphi^{(S,I)}\in (S^{(I)})^*$. Для разбиения $\pi=\{I_k\}$ (k пробегает конечное или счётное число значений) множества \mathbb{N} определим

$$F_1(S, \pi, \varphi) = \sum_k \|\varphi^{(S, I_k)}\|, \varphi \in X^*.$$

Разбиение π множества $\mathbb N$ назовём последовательным, если оно имеет один из следующих двух видов:

- (1) Множества $I_k = \{n(k-1)+1, n(k-1)+2, \ldots, n(k)\}, k \geqslant 1$ для некоторой возрастающей последовательности натуральных чисел $n(1) < n(2) < \ldots, n(0) = 0$.
- (2) Множества $I_k = \{n(k-1)+1,\ldots,n(k)\}, 1 \leqslant k \leqslant p, I_{p+1} = \{n(p)+1,n(p)+2,\ldots\}$ для некоторой возрастающей последовательности натуральных чисел $n(1) < \ldots < n(p), n(0) = 0.$

Теорема 2.1. Пусть $S - \Pi C \Pi$ в X. Тогда существует $\varepsilon > 0$ такое, что для произвольного последовательного разбиения π множества \mathbb{N} выполнено

(2.1)
$$F_1(S, \pi, \varphi) \geqslant \varepsilon \|\varphi\|, \ \varphi \in X^*.$$

Доказательство. Определим пространство

$$D_c = \{ \xi = (x_1, x_2, \ldots) \mid x_k \in X_k, k \geqslant 1, \sum_{k=1}^{\infty} x_k \text{ сходится} \}$$

с нормой $\|\xi\| = \sup_{k\geqslant 1} \|x_1 + \ldots + x_k\|$. Легко проверить, что D_c банахово. Определим линейный оператор $A:D_c\to X$ равенством $A(x_1,x_2,\ldots)=\sum_{k=1}^\infty x_k$. Тогда A ограничен (более того, $\|A\|\leqslant 1$). Поскольку S является ПСП в X, то $\mathrm{Im}(A)=X$. Из теоремы про открытое отображение следует существование числа M>0 такого, что для произвольного $x\in X$ существует $\xi=(x_1,x_2,\ldots)\in D_c$, для которого $x=A\xi$ и $\|\xi\|\leqslant M\|x\|$. Тогда $x=\sum_{k=1}^\infty x_k$ и для каждого $k\geqslant 1$ $\|x_1+\ldots+x_k\|\leqslant M\|x\|$. Для натуральных $l\leqslant k$ определим $x_{l,k}=x_l+\ldots+x_k$, тогда $\|x_{l,k}\|\leqslant 2M\|x\|$. Для последовательного разбиения π первого вида и $\varphi\in X^*$ имеем

$$|\varphi(x)| = |\varphi(\sum_{k=1}^{\infty} x_{n(k-1)+1,n(k)})| \leqslant \sum_{k=1}^{\infty} |\varphi(x_{n(k-1)+1,n(k)})| \leqslant$$
$$\leqslant \sum_{k=1}^{\infty} \|\varphi^{(S,I_k)}\| \|x_{n(k-1)+1,n(k)}\| \leqslant 2M \|x\| F_1(S,\pi,\varphi),$$

откуда, в силу произвольности $x \in X$, $F_1(S, \pi, \varphi) \geqslant (1/(2M)) \|\varphi\|$. Для последовательного разбиения π второго вида такая же оценка доказывается аналогично.

Для подмножества $M \subset X$ обозначим M^{\perp} множество всех $\varphi \in X^*$ таких, что $\varphi(x) = 0, x \in M$. Напомним (см., например, параграф 15 книги [12]), что система подпространств $G_k, k \geqslant 1$, банахова пространства E называется разложением Шаудера E, если для каждого $x \in E$ существуют и единственны $x_k \in G_k, k \geqslant 1$, такие, что $x = \sum_{k=1}^{\infty} x_k$.

Теорема 2.2. Пусть $S-\Pi C\Pi$ в X. Тогда система подпространств $X_k' = \bigcap_{j \neq k} X_j^{\perp}, k \geqslant 1$ является разложением Шаудера в замыкании своей линейной оболочки.

Доказательство. Достаточно доказать, что существует $\varepsilon > 0$, такое, что для произвольных натуральных n, m и произвольных $\varphi \in \sum_{k=1}^{n} X'_k$, $\psi \in \sum_{k=n+1}^{n+m} X'_k$ выполнено $\|\varphi + \psi\| \geqslant \varepsilon \|\varphi\|$ (см. теорему 15.5 в [12]).

Из теоремы 2.1 следует, что существует $\varepsilon > 0$ такое, что для произвольного последовательного разбиения π выполнено неравенство (2.1). Пусть $\varphi \in \sum_{k=1}^n X_k', \psi \in \sum_{k=n+1}^{n+m} X_k'$. Определим разбиение π так: $I_1 = \{1, 2, \dots, n\}, I_2 = \{n+1, n+2, \dots\}$. Тогда

$$\|\varphi + \psi\| \ge \|(\varphi + \psi)^{(S,I_1)}\| = \|\varphi^{(S,I_1)}\| = \|\varphi^{(S,I_1)}\| + \|\varphi^{(S,I_2)}\| \ge \varepsilon \|\varphi\|,$$

откуда следует нужное утверждение.

Будем говорить, что система подпространств S является перестановочной ПСП (ППСП) в X, если для произвольной биекции $\sigma: \mathbb{N} \to \mathbb{N}$ система подпространств $S_{\sigma} = (X; X_{\sigma(k)}, k \geqslant 1)$ является ПСП в X. Напомним (см., например, с.534 в [12]), что разложение Шаудера $G_k, k \geqslant 1$ банахова пространства E называется безусловным, если каждый сходящийся ряд вида $\sum_{k=1}^{\infty} x_k, x_k \in G_k, k \geqslant 1$, сходится безусловно.

Теорема 2.3. Пусть $S-\Pi\Pi C\Pi$ в X. Тогда система подпространств $X_k' = \bigcap_{j \neq k} X_j^{\perp}, k \geqslant 1$ является безусловным разложением Шаудера в замыкании своей линейной оболочки.

Доказательство. Воспользуемся следующим утверждением (см. теорему 15.18 в [12]): если $G_k, k \geqslant 1$, — система подпространств банахова пространства E, причём замыкание линейной оболочки $G_k, k \geqslant 1$, равно E, то $G_k, k \geqslant 1$, является безусловным разложением Шаудера E тогда и только тогда, когда для произвольной биекции $\sigma: \mathbb{N} \to \mathbb{N}$ система подпространств $G_{\sigma(k)}, k \geqslant 1$, является разложением Шаудера E. Теперь из теоремы 2.2 следует нужное утверждение.

2.2. Достаточное условие для того, чтобы система подпространств была $\Pi C \Pi$ в X. Пусть X — линейное нормированное пространство, $S = (X; X_k, k \ge 1)$ — система его подпространств. Для множества $F \subset X$ и элемента $x \in X$ обозначим d(x, F) расстояние от x до F. Определим множество

$$\Delta(S) = \{ x \in X \mid \liminf_{k \to \infty} d(x, X_k) = 0 \}.$$

Теорема 2.4. Если замыкание линейной оболочки $\Delta(S)$ равно X, то S является ППСП в X.

Доказательство. Очевидно, для произвольной биекции $\sigma: \mathbb{N} \to \mathbb{N}$ $\Delta(S_{\sigma}) = \Delta(S)$. Поэтому достаточно доказать, что произвольная система подпространств S, удовлетворяющая условию теоремы, является ПСП в X.

Достаточно доказать, что произвольный $x \in X, ||x|| < 1$ может быть представлен в виде $x = \sum_{k=1}^{\infty} x_k$, где $x_k \in X_k$. Итак, пусть $x \in X, ||x|| < 1$. Для $k = 1, 2, \ldots$ проделаем следующие операции.

Пусть для некоторого $k \geqslant 1$ у нас уже определены натуральные числа N(l,i,j) для $l=1,\ldots,k-1,\,i=1,\ldots,r(l),\,j=1,\ldots,N(l)$ и элементы $y_{l,i,j}\in X_{N(l,i,j)}$, причём

$$||x - \sum_{l=1}^{k-1} \sum_{i=1}^{r(l)} \sum_{j=1}^{N(l)} y_{l,i,j}|| < 2^{-(k-1)}$$

(для k=1 ничего не определено). Обозначим $z=x-\sum_{l=1}^{k-1}\sum_{i=1}^{r(l)}\sum_{j=1}^{N(l)}y_{l,i,j}$, тогда $\|z\|<2^{-(k-1)}$ (для k=1 определяем z=x). Существует $N(k)\in\mathbb{N}$ и элементы $x_{k,j}\in\Delta(S), j=1,\ldots,N(k)$, такие, что

(2.2)
$$||z - \sum_{j=1}^{N(k)} x_{k,j}|| < 2^{-k}.$$

Выберем $r(k) \in \mathbb{N}$ так, чтобы

$$||x_{k,j}/r(k)|| < 2^{-k}(N(k))^{-1}, \ j = 1, \dots, N(k).$$

Неравенство (2.2) перепишем в виде

(2.4)
$$||z - \left(\underbrace{\frac{x_{k,1} + \ldots + x_{k,N(k)}}{r(k)} + \ldots + \frac{x_{k,1} + \ldots + x_{k,N(k)}}{r(k)}}_{r(k)}\right)|| < 2^{-k}.$$

Из $||z|| < 2^{-(k-1)}$ и (2.2) следует, что $||\sum_{j=1}^{N(k)} x_{k,j}|| < 2^{-(k-1)} + 2^{-k}$. Поэтому для произвольного $a = 1, \ldots, r(k) - 1$ имеем:

(2.5)
$$\| \underbrace{\frac{x_{k,1} + \ldots + x_{k,N(k)}}{r(k)} + \ldots + \frac{x_{k,1} + \ldots + x_{k,N(k)}}{r(k)}}_{q} \| < 2^{-(k-1)} + 2^{-k}$$

Ясно, что $x_{k,j}/r(k) \in \Delta(S)$ для $j=1,\ldots,N(k)$. Используя неравенства (2.3),(2.4),(2.5) несложно видеть, что существуют натуральные числа $N(k,i,j), i=1,\ldots,r(k); j=1,\ldots,N(k)$ и элементы $y_{k,i,j} \in X_{N(k,i,j)}$, такие, что

(1) N(k-1,r(k-1),N(k-1)) < N(k,1,1) (для k=1 это условие отсутствует); N(k,i,j) < N(k,i',j') если i < i'; N(k,i,j) < N(k,i,j') если j < j';

(2)
$$||z - \sum_{i=1}^{r(k)} \sum_{j=1}^{N(k)} y_{k,i,j}|| < 2^{-k}$$
, T.e.

$$||x - \sum_{l=1}^{k} \sum_{i=1}^{r(l)} \sum_{j=1}^{N(l)} y_{l,i,j}|| < 2^{-k};$$

(3) для произвольного a = 1, ..., r(k) - 1

$$\|\sum_{i=1}^{a} \sum_{j=1}^{N(k)} y_{k,i,j}\| < 2^{-(k-1)} + 2^{-k};$$

(4) $||y_{k,i,j}|| < 2^{-k}(N(k))^{-1}$ для всех $i = 1, 2, \dots, r(k), j = 1, 2, \dots, N(k)$.

Действительно, сначала выберем N(k,1,1) и y(k,1,1) (достаточно близко к $x_{k,1}/r(k)$), затем N(k,1,2) и $y_{k,1,2}$ (достаточно близко к $x_{k,2}/r(k)$), . . . , затем N(k,1,N(k)) и $y_{k,1,N(k)}$ (достаточно близко к $x_{k,N(k)}/r(k)$), затем переходим к выбору «второй группы»: N(k,2,1) и y(k,2,1) (достаточно близко к $x_{k,1}/r(k)$) и т.д.

Выполнив такие операции, получим набор элементов $y_{l,i,j} \in X_{N(l,i,j)}$, где $l=1,2,\ldots,$ $i=1,\ldots,r(l),\ j=1,2\ldots,N(l).$ По построению N(l,i,j)< N(l',i',j') если l< l'; N(l,i,j)< N(l,i',j') если i< i'; N(l,i,j)< N(l,i,j') если j< j'. Покажем, что

(2.6)
$$x = y_{1,1,1} + y_{1,1,2} + \ldots + y_{1,1,N(1)} + y_{1,2,1} + \ldots + y_{1,2,N(1)} + \ldots + y_{1,r(1),1} + \ldots + y_{1,r(1),N(1)} + y_{2,1,1} + \ldots + y_{2,1,N(2)} + y_{2,2,1} + \ldots$$

Для этого рассмотрим сумму первых s членов ряда в правой части (2.6). Представим s в виде $s=r(1)N(1)+\ldots+r(k-1)N(k-1)+aN(k)+b$, где $0\leqslant a\leqslant r(k)-1$, $0\leqslant b\leqslant N(k)-1$. Оценим

$$\delta_s = \|x - \sum_{l=1}^{k-1} \sum_{i=1}^{r(l)} \sum_{j=1}^{N(l)} y_{l,i,j} - \sum_{i=1}^{a} \sum_{j=1}^{N(k)} y_{k,i,j} - \sum_{j=1}^{b} y_{k,a+1,j}\|.$$

Из построения $y_{l,i,j}$ следуют оценки

(2.7)
$$||x - \sum_{l=1}^{k-1} \sum_{i=1}^{r(l)} \sum_{j=1}^{N(l)} y_{l,i,j}|| < 2^{-(k-1)},$$

(2.8)
$$\|\sum_{i=1}^{a} \sum_{j=1}^{N(k)} y_{k,i,j}\| < 2^{-(k-1)} + 2^{-k},$$

(2.9)
$$\|\sum_{j=1}^{b} y_{k,a+1,j}\| < N(k)2^{-k}(N(k))^{-1} = 2^{-k}.$$

Из неравенств (2.7),(2.8),(2.9) следует $\delta_s < 6 \cdot 2^{-k} \to 0$, $s \to \infty$. Поэтому справедливо равенство (2.6). Дополняя его в нужных местах нулями, получим искомое разложение $x = \sum_{k=1}^{\infty} x_k, \ x_k \in X_k$.

Приведём пример системы S, для которой выполнено условие теоремы 2.4. Для двух подпространств Y, Z пространства X определим

(2.10)
$$\rho_0(Y, Z) = \sup\{d(y, Z) \mid y \in Y, ||y|| = 1\}.$$

Пример 2.1. Пусть система подпространств $Y_j, j \in \Lambda$ (Λ — некоторое множество индексов) такова, что замыкание линейной оболочки $Y_j, j \in \Lambda$ равно X. Пусть система $S = (X; X_k, k \geqslant 1)$ такова, что для каждого $j \in \Lambda$ существует последовательность натуральных чисел $k(1) < k(2) < \ldots$, для которой $\lim_{n \to \infty} \rho_0(Y_j, X_{k(n)}) = 0$. Тогда для каждого $j \in \Lambda$ $Y_j \subset \Delta(S)$. Поэтому S удовлетворяет условию теоремы 2.4, а значит, является ПСП в X.

Замечание 1. Если система S удовлетворяет условию теоремы 2.4, то для каждого $n \in \mathbb{N}$ система $S_{(\geqslant n)} = (X; X_{k+n-1}, k \geqslant 1)$ также удовлетворяет условию теоремы 2.4, а поэтому является ПСП в X. Поэтому для каждого $n \in \mathbb{N}$ замыкание линейной оболочки подпространств $X_k, k \geqslant n$ равно X. Последнее условие не является достаточным для того, чтобы S была ПСП в X. Это показывает следующий пример (который относится к математическому фольклору).

Пусть $X = L_p([0,1], dx)$ $(p \in [1,\infty))$, подпространство X_k порождено $x^k, k \geqslant 0$ (нам удобнее нумеровать подпространства числами $0,1,2,\ldots$, а не $1,2,\ldots$). Тогда для всех $n \geqslant 0$ замыкание линейной оболочки $X_k, k \geqslant n$ равно X, но S не есть ПСП в X. Действительно, если $f(x) = \sum_{k=0}^{\infty} a_k x^k$ (сходимость по норме пространства X), то $\|a_k x^k\| \to 0, k \to \infty$, а поэтому для всех достаточно больших $k |a_k| \leqslant (kp+1)^{1/p}$. Поэтому $f(x) \in C^{\infty}([0,1))$.

2.3. Об одном достаточном условии для того, чтобы $x \in X$ допускал разложение по системе подпространств S в случае гильбертова пространства X. Пусть X—гильбертово пространство. Для подпространства $Y \subset X$ обозначим P_Y ортопроектор на Y. Пусть $S = (X; X_k, k \geqslant 1)$ —система подпространств X. Рассмотрим произвольный $x \in X$ и попробуем разложить его по системе подпространств S, т.е. представить в виде $x = \sum_{k=1}^{\infty} x_k$, где $x_k \in X_k, k \geqslant 1$.

Естественно попробовать определить искомое разложение следующим образом:

$$x = P_{X_1}x + (I - P_{X_1})x = P_{X_1}x + P_{X_2}(I - P_{X_1})x + (I - P_{X_2})(I - P_{X_1})x = \dots =$$

$$= \sum_{k=1}^{n} P_{X_k}(I - P_{X_{k-1}}) \dots (I - P_{X_1})x + (I - P_{X_n}) \dots (I - P_{X_1})x = \dots$$

Определим операторы $E_0=I,\ E_n=(I-P_{X_n})\dots(I-P_{X_1}), n\geqslant 1.$ Обозначим $x_n=P_{X_n}E_{n-1}x, n\geqslant 1,$ тогда $x=\sum_{k=1}^n x_k+E_nx, n\geqslant 1.$ Таким образом, получаем следующее утверждение.

Утверждение 2.1. *Если*
$$E_n x \to 0$$
, $n \to \infty$, *mo* $x = \sum_{k=1}^{\infty} x_k$.

Таким образом, если последовательность операторов E_n сходится к 0 сильно при $n \to \infty$, то система подпространств S является ПСП в X. Однако вопрос о сильной сходимости E_n к 0 может оказаться очень сложным. Рассмотрим следующий пример.

Пусть $N \in \mathbb{N}$, $H_k, 1 \leqslant k \leqslant N$ —подпространства X, причём $\bigcap_{k=1}^N H_k = 0$. Пусть отображение $i(\cdot): \mathbb{N} \to \{1, 2, \dots, N\}$ таково, что $i(k+1) \neq i(k), k \geqslant 1$ и для каждого $m \in \{1, 2, \dots, N\}$ существует бесконечно много k, для которых i(k) = m. Определим $X_k = H_{i(k)}^{\perp}, k \geqslant 1$. Тогда $E_n = P_{H_{i(n)}} \dots P_{H_{i(1)}}, n \geqslant 1$. Известно, что E_n сходится к 0 слабо при $n \to \infty$ (см.[9]). Вопрос о сильной сходимости E_n к 0 при $n \to \infty$ называется проблемой Гальперина и является чрезвычайно сложным (см., например, [10]). В то же время из теоремы 2.4 следует, что S является ПСП в X.

2.4. Устойчивость ПСП в банаховых пространствах. Пусть X — банахово пространство, $S=(X;X_k,k\geqslant 1)$ — система подпространств X. Мы покажем, что если подпространства X_k,\widetilde{X}_k достаточно «близки», $k\geqslant 1$, то система подпространств $\widetilde{S}=(X;\widetilde{X}_k,k\geqslant 1)$ также является ПСП в X. За меру «близости» подпространств выберем величину $\rho_0(X_k,\widetilde{X}_k)$, определённую формулой (2.10). Для доказательства соответствующих результатов мы обобщим результаты параграфов 2,3 работы [7], в которой рассматриваются системы одномерных подпространств, на произвольные системы подпространств.

Введём необходимые определения (обобщающие определения параграфа 2 работы [7]). Для набора $P = (x_1, \ldots, x_n)$, где $x_k \in X_k, 1 \leq k \leq n$, определим $\Sigma(P) = \sum_{k=1}^n x_k$, а также

$$\Theta_S(P) = \max_{1 \le k \le n} \| \sum_{j=1}^k x_j \|.$$

Для $x \in X, \varepsilon > 0$ определим

$$\Theta_S(x,\varepsilon) = \inf \{ \Theta_S(P) \mid ||\Sigma(P) - x|| \le \varepsilon \}.$$

(Мы считаем, что $\inf(\emptyset) = \infty$.) Для $x \in X$ определим

$$\Theta_S^*(x) = \sup \{ \Theta_S(x, \varepsilon) \mid \varepsilon > 0 \} = \lim_{\varepsilon \to 0+} \Theta_S(x, \varepsilon).$$

Наконец, определим

$$\overline{\Theta}_S = \sup \{ \Theta_S^*(x) \mid ||x|| \leqslant 1 \}.$$

Следующие две леммы и теорема доказываются точно так же, как леммы 1,2 и теорема 1 в [7].

Лемма 2.1. Если $\Theta_S^*(x) < \infty$ для произвольного $x \in X$, то $\Theta_S^*(x)$ — норма на X, эквивалентная $\|\cdot\|$.

Лемма 2.2. Если для некоторых $\alpha \in (0,1), B > 0$ выполнено $\Theta_S(x, \alpha ||x||) \leqslant B||x||, x \in X$, то $\Theta_S^*(x) \leqslant \frac{B}{1-\alpha} ||x||, x \in X$.

Теорема 2.5. Следующие утверждения эквивалентны:

- (1) S является $\Pi C \Pi$ в X,
- (2) существуют $\alpha \in (0,1), B > 0$, такие, что для произвольного $x \in X$ $\Theta_S(x, \alpha ||x||) \leqslant B||x||$,
- (3) $\Theta_S^*(x) < \infty$ для произвольного $x \in X$,

(4)
$$\overline{\Theta}_S < \infty$$
.

Теперь установим теорему об устойчивости $\Pi C\Pi$ в X.

Теорема 2.6. Пусть $S-\Pi C\Pi$ в X. Если система подпространств $\widetilde{S}=(X;\widetilde{X}_k,k\geqslant 1)$ такова, что $\sum_{k=1}^{\infty} \rho_0(X_k,\widetilde{X}_k)<(2\overline{\Theta}_S)^{-1}$, то \widetilde{S} является $\Pi C\Pi$ в X.

Доказательство. Доказательство аналогично доказательству теоремы 2 в [7]. Пусть $x \in X, x \neq 0$. Пусть $\varepsilon > 0$. Существует $P = (x_1, \dots, x_n), x_k \in X_k$, такой, что

$$||x - \Sigma(P)|| \le \varepsilon, \ \Theta_S(P) \le \overline{\Theta}_S(1 + \varepsilon)||x||.$$

Тогда $||x_k|| \leq 2\overline{\Theta}_S(1+\varepsilon)||x||, 1 \leq k \leq n$. Обозначим $d_k = \rho_0(X_k, \widetilde{X}_k), k \geqslant 1$. Для произвольного $k, 1 \leq k \leq n$, существует $\widetilde{x}_k \in \widetilde{X}_k$, для которого $||x_k - \widetilde{x}_k|| \leq d_k(1+\varepsilon)||x_k||$. Определим $\widetilde{P} = (\widetilde{x}_1, \dots, \widetilde{x}_n)$. Тогда

$$||x - \Sigma(\widetilde{P})|| \leqslant ||x - \Sigma(P)|| + ||\Sigma(P) - \Sigma(\widetilde{P})|| \leqslant \varepsilon + \sum_{k=1}^{n} d_k (1 + \varepsilon) ||x_k|| \leqslant \varepsilon + 2\overline{\Theta}_S (1 + \varepsilon)^2 ||x|| \sum_{k=1}^{n} d_k.$$

Для произвольного $m, 1 \leqslant m \leqslant n$, имеем

$$\|\sum_{k=1}^{m} \widetilde{x}_{k}\| \leq \|\sum_{k=1}^{m} x_{k}\| + \|\sum_{k=1}^{m} (\widetilde{x}_{k} - x_{k})\| \leq \overline{\Theta}_{S}(1 + \varepsilon)\|x\| + 2\overline{\Theta}_{S}(1 + \varepsilon)^{2}\|x\| \sum_{k=1}^{m} d_{k}.$$

Зафиксируем $\alpha \in (2\overline{\Theta}_S \sum_{k=1}^\infty d_k, 1), \ B > \overline{\Theta}_S + 2\overline{\Theta}_S \sum_{k=1}^\infty d_k$. При достаточно малом $\varepsilon > 0$ из доказаных неравенств имеем $\Theta_{\widetilde{S}}(x, \alpha \|x\|) \leqslant B\|x\|$. Поэтому \widetilde{S} является ПСП в X.

- 3. АБСОЛЮТНО ПРЕДСТАВЛЯЮЩИЕ СИСТЕМЫ ПОДПРОСТРАНСТВ В БАНАХОВЫХ ПРОСТРАНСТВАХ
- 3.1. **Критерии АПСП.** Пусть X банахово пространство, $S=(X;X_k,k\geqslant 1)$ система подпространств X. Определим $l_1(X_1,X_2,\ldots)$ как множество последовательностей $\xi=(x_1,x_2,\ldots),x_k\in X_k$, для которых $\|\xi\|=\sum_{k=1}^\infty\|x_k\|<\infty$. Ясно, что $l_1(X_1,X_2,\ldots)$ банахово пространство. Определим оператор $A:l_1(X_1,X_2,\ldots)\to X$ равенством $A(x_1,x_2,\ldots)=\sum_{k=1}^\infty x_k$. Система S является АПСП в X тогда и только тогда, когда $\mathrm{Im}(A)=X$. Хорошо известно, что это равносильно тому, что $A^*:X^*\to (l_1(X_1,X_2,\ldots))^*$ является изоморфным вложением, т.е. для некоторого $\varepsilon>0$ $\|A^*\varphi\|\geqslant \varepsilon\|\varphi\|, \varphi\in X^*$. Легко видеть, что $(l_1(X_1,X_2,\ldots))^*=l_\infty(X_1^*,X_2^*,\ldots)$ множество всех последовательностей $\eta=(\varphi_1,\varphi_2,\ldots), \varphi_k\in X_k^*$, для которых $\|\eta\|=\sup_k\|\varphi_k\|<\infty$. При этом действие $\eta(\xi)=\sum_{k=1}^\infty \varphi_k(x_k)$. Легко видеть, что $A^*\varphi=(\varphi^{(S,1)},\varphi^{(S,2)},\ldots)$, где $\varphi^{(S,k)}$ обозначено сужение φ на X_k . Таким образом, получаем следующую теорему.

Теорема 3.1. S является $A\Pi C\Pi$ в X тогда и только тогда, когда существует $\varepsilon > 0$ такое, что

(3.1)
$$\sup_{k} \|\varphi^{(S,k)}\| \geqslant \varepsilon \|\varphi\|, \varphi \in X^*.$$

Отметим, что теорему 3.1 можно сформулировать следующим образом (уменьшив ε): S является АПСП в X тогда и только тогда, когда существует $\varepsilon > 0$ такое, что для произвольного $\varphi \in X^*$, $\|\varphi\| = 1$ существуют $k \geqslant 1, x \in X_k, \|x\| = 1$ такие, что $|\varphi(x)| \geqslant \varepsilon$.

Понятие АПСП тесно связано с понятием абсолютно представляющего семейства (АПСм). Напомним (см., например, [5]), что множество $D \subset X$ называется АПСм в X если для произвольного $x \in X$ существуют $a_j \in \mathbb{K}, x_j \in D$, такие, что $x = \sum_{j=1}^{\infty} a_j x_j$ и $\sum_{j=1}^{\infty} \|a_j x_j\| < \infty$. АПСм в банаховых и гильбертовых пространствах изучались в [13],[2],[8]. Для системы подпространств S определим $D(S) = \bigcup_{k=1}^{n} \{x \in X_k, \|x\| = 1\}$. Ясно, что S является АПСП в X тогда и только тогда, когда D(S) является АПСм в X.

Приведенный критерий для АПСП (см. абзац после теоремы 3.1) можно получить из следующего хорошо известного критерия для АПСм (см., например, теорему 1 в [5], теорему 2.1 в [13]), который доказывается аналогично теореме 3.1. (Множество D называется нормированным, если $||x|| = 1, x \in D$.)

Теорема 3.2. Пусть D — нормированное множество в X. D является $A\Pi C$ м в X тогда и только тогда, когда существует $\varepsilon > 0$ такое, что для произвольного $\varphi \in X^*, \|\varphi\| = 1$, существует $x \in D$ такой, что $|\varphi(x)| \geqslant \varepsilon$.

Далее мы докажем критерий для АПСм в X, из которого непосредственно следует критерий для АПСП в X (вместо D надо взять D(S)). Следующая теорема обобщает теорему 3 в [8] и показывает, что в теореме 3.2 условие произвольности $\varphi \in X^*$ можно ослабить. (Будем говорить, что D тотально в X, если замыкание линейной оболочки D равно X).

Теорема 3.3. Пусть X — банахово пространство, Y — конечномерное подпространство X, D — тотальное в X нормированное множество. D является $A\Pi C$ м в X тогда и только тогда, когда существует $\varepsilon > 0$ такое, что для произвольного $\varphi \in Y^{\perp}$, $\|\varphi\| = 1$ существует $x \in D$ такой, что $|\varphi(x)| \geqslant \varepsilon$.

Для доказательства нам нужна следующая лемма (которая относится к математическому фольклору).

Лемма 3.1. Пусть Y, Z - noдпространства банахова пространства X. Если $Y \cap Z = 0$ и Y + Z = X, то существует c > 0 такое, что для произвольных $y \in Y, z \in Z$ $||y + z|| \ge c(||y|| + ||z||)$.

Доказательство. Определим пространство $Y \oplus Z$ как множество пар $\xi = (y, z), y \in Y, z \in Z$, с нормой $\|\xi\| = \|y\| + \|z\|$. Ясно, что $Y \oplus Z$ банахово. Определим оператор $A: Y \oplus Z \to X$ равенством A(y, z) = y + z. Тогда A ограничен, $\ker A = 0$, $\operatorname{Im} A = X$. Поэтому A обратим, откуда непосредственно следует нужное утверждение.

Доказательство теоремы 3.3. Необходимость очевидна. Докажем достаточность. Предположим, что D—не АПСм в X. Поскольку Y конечномерно, то оно дополняемо в X, т.е. существует подпространство Z такое, что $Y \cap Z = 0$ и Y + Z = X. Существует

 $c_1 > 0$ такое, что

$$(3.2) ||y+z|| \ge c_1(||y|| + ||z||), y \in Y, z \in Z.$$

Выберем в Y нормированный базис e_1, \ldots, e_m . Существует $c_2 > 0$ такое, что для про-извольных $t_1, \ldots, t_m \in \mathbb{K} \parallel \sum_{k=1}^m t_k e_k \parallel \geqslant c_2 \sum_{k=1}^m |t_k|$.

Рассмотрим произвольное $\delta > 0$. Поскольку D тотально в X, существуют элементы f_1, \ldots, f_m из линейной оболочки D, такие, что $\|e_k - f_k\| < \delta, \|f_k\| = 1$ для $k = 1, \ldots, m$. Ясно, что $\{f_1,\ldots,f_m\}\cup D$ не является АПСм в X. Поэтому существует $\varphi\in X^*, \|\varphi\|=1$ такой, что $|\varphi(f_k)| \leqslant \delta$ для $1 \leqslant k \leqslant m$, $|\varphi(x)| \leqslant \delta$ для $x \in D$. Определим линейные функционалы ψ,η равенствами $\psi(y+z)=\varphi(z),\ \eta(y+z)=\varphi(y),\ y\in Y,z\in Z.$ Из неравенства (3.2) следует, что $\psi, \eta \in X^*$. Более того, $\psi \in Y^{\perp}, \eta \in Z^{\perp}$. Оценим $\|\eta\|$. Пусть $y \in Y$, $y = \sum_{k=1}^m t_k e_k$. Тогда

$$|\varphi(y)| \leqslant \sum_{k=1}^{m} |t_k| |\varphi(e_k)| \leqslant \sum_{k=1}^{m} |t_k| (|\varphi(e_k - f_k)| + |\varphi(f_k)|) \leqslant 2\delta \sum_{k=1}^{m} |t_k| \leqslant 2\delta c_2^{-1} ||y||.$$

Поэтому для произвольных $y \in Y, z \in Z$

$$|\eta(y+z)| = |\varphi(y)| \le 2\delta c_2^{-1} ||y|| \le 2c_1^{-1}c_2^{-1}\delta ||y+z||.$$

Положим $c_3 = 2c_1^{-1}c_2^{-1}$, тогда $\|\eta\| \leqslant c_3\delta$.

Поскольку $\|\varphi\|=1$, то $\|\psi\|\geqslant (1-c_3\delta)$. Для произвольного $x\in D\ |\psi(x)|\leqslant \delta(1+c_3)$. Положим $\widetilde{\psi} = \psi/\|\psi\|$. Тогда $\widetilde{\psi} \in Y^{\perp}$, $\|\widetilde{\psi}\| = 1$. Для произвольного $x \in D$ $|\widetilde{\psi}(x)| \leqslant$ $\delta(1+c_3)/(1-c_3\delta)$. При достаточно малых δ получим противоречие.

Рассмотрим АПСП в равномерно гладких пространствах (АПСм в равномерно гладких пространствах изучались в [13],[2]). Напомним определение равномерно гладкого пространства. Определим модуль гладкости пространства X равенством

$$\rho(\tau) = \sup\{(\|x+y\| + \|x-y\|)/2 - 1 \mid \|x\| = 1, \|y\| = \tau\}, \ \tau > 0.$$

X называется равномерно гладким если $\rho(\tau)/\tau \to 0$ при $\tau \to 0$. Для нас равномерно гладкие пространства важны по следующей причине: как мы увидим при доказательстве следующей теоремы, если $S-\mathrm{A}\Pi\mathrm{C}\Pi$ в равномерно гладком X, то для каждого $x \in X$ разложение x в абсолютно сходящийся ряд по системе подпространств S может быть получено простым «естественным» образом.

Будем говорить, что множество A является λ -сетью для множества B, если для произвольного $x \in B$ существует $y \in A$ такой, что $\|x-y\| \leqslant \lambda$. Обозначим $V_X =$ $\{x \in X, \|x\| = 1\}$. Напомним, что для системы подпространств $S = (X; X_k, k \geqslant 1)$ $D(S) = \bigcup_{k=1}^{\infty} V_{X_k}$.

Теорема 3.4. Пусть X — равномерно гладкое банахово пространство. Тогда утверждения равносильны:

- (1) $S = (X; X_k, k \geqslant 1)$ является АПСП в X,
- (2) существуют $\tau, \lambda \in (0,1)$ такие, что $\tau D(S) \lambda$ -сеть для V_X ,
- (3) $\lambda_S = \sup_{\|x\|=1} \inf_{k \ge 1} d(x, X_k) < 1.$

Доказательство. (1) \Rightarrow (2). Для действительного пространства X нужное утверждение следует из теоремы 3.1 в [13]. Для комплексного X рассмотрим X как пространство над $\mathbb R$ и из упомянутой теоремы получим нужное.

- $(2) \Rightarrow (3)$. Очевидно.
- (3) \Rightarrow (1). Доказательство аналогично доказательству теоремы 3 в [2]. Фиксируем $\lambda \in (\lambda_S, 1)$. Рассмотрим произвольный $x \in X$. Существуют $i(1) \in \mathbb{N}$, $x_1 \in X_{i(1)}$ такие, что $||x x_1|| \leqslant \lambda ||x||$. Определим $y_1 = x x_1$, тогда $||y_1|| \leqslant \lambda ||x||$ и $x = x_1 + y_1$. Далее проделаем аналогичную процедуру. Пусть мы имеем разложение $x = x_1 + \ldots + x_k + y_k$. Существуют $i(k+1) \in \mathbb{N}$, $x_{k+1} \in X_{i(k+1)}$ такие, что $||y_k x_{k+1}|| \leqslant \lambda ||y_k||$. Определим $y_{k+1} = y_k x_{k+1}$, тогда $||y_{k+1}|| \leqslant \lambda ||y_k||$ и $x = x_1 + \ldots + x_{k+1} + y_{k+1}$. Индукцией по k легко установить, что $||y_k|| \leqslant \lambda^k ||x||, k \geqslant 1$. Поэтому

$$(3.3) x = \sum_{k=1}^{\infty} x_k.$$

Ясно, что $\|x_k\| \leqslant \lambda^{k-1}(1+\lambda)\|x\|, k \geqslant 1$, поэтому $\sum_{k=1}^{\infty} \|x_k\| \leqslant ((1+\lambda)/(1-\lambda))\|x\|$. Для $k \geqslant 1$ определим $z_k = \sum_{j:i(j)=k} x_j$, тогда $z_k \in X_k$. Из (3.3) имеем $x = \sum_{k=1}^{\infty} z_k$.

Замечание 2. В работе [2] доказано, что каждая АПС (одномерных подпространств) в равномерно гладком X является «быстрой» ПС (см. определение 3 и теорему 3 в [2]). Аналогичное утверждение верно для АПСП. Как следует из доказательства теоремы $3.4,\ (3) \Rightarrow (1),\$ каждая АПСП S в равномерно гладком X является «быстрой» ПСП (наше определение согласовано с определением 3 в [2]): существуют C>0 и $\lambda\in(0,1)$ такие, что для произвольного $x\in X$ существует инъективное отображение $k\mapsto n(k)$ и элементы $y_k\in X_{n(k)}$ такие, что $x=\sum_{k=1}^\infty y_k$ и $\|y_k\|\leqslant C\lambda^k\|x\|, k\geqslant 1.$

Рассмотрим теперь АПСП в гильбертовых пространствах; как мы увидим далее, критерий для АПСП в гильбертовых пространствах приобретает геометрическую наглядность (см. также теоремы 1,2 в [8]). Итак, пусть X гильбертово. Тогда X^* можно отождествить с X: $\varphi(\cdot) = (\cdot, \varphi)$. S является АПСП в X тогда и только тогда, когда существует $\varepsilon > 0$ такое, что для произвольного $\varphi \in V_X$ существует $x \in D(S)$ такой, что $|(x, \varphi)| \geqslant \varepsilon$.

Теорема 3.5. Пусть $\tau > 0, \varepsilon \in (0,1]$. Следующие условия равносильны:

- (1) для произвольного $\varphi \in V_X$ существует $x \in D(S)$ такой, что $|(x,\varphi)| \geqslant \varepsilon$,
- (2) $\tau D(S)$ является $\sqrt{1+\tau^2-2\tau\varepsilon}$ -сетью для V_X .

Доказательство. Для произвольных $\varphi \in V_X, x \in D(S)$ имеем $\|\varphi - \tau x\|^2 = 1 + \tau^2 - 2\tau \text{Re}(x,\varphi)$. Из этого равенства очевидным образом следует нужное утверждение. \square

Следствие 3.1. Пусть $\tau > 0$. Система подпространств S является АПСП в X тогда и только тогда, когда существует $\lambda \in (0, \sqrt{1+\tau^2})$ такое, что $\tau D(S)$ является λ -сетью для V_X .

3.2. **Об одном свойстве АПСП.** Перед тем, как сформулировать и доказать следующую теорему, напомним определение C-выпуклого пространства и некоторые свойства C-выпуклых пространств.

12

Пусть Y — банахово пространство над \mathbb{R} . Обозначим $c_0(\mathbb{R})$ множество последовательностей $\xi=(z_1,z_2,\ldots),z_k\in\mathbb{R}$, для которых $z_k\to 0$ при $k\to\infty$, с нормой $\|\xi\|=\sup_k|z_k|$. Y называется C-выпуклым, если $c_0(\mathbb{R})$ не является финитно представимым в Y (см., например, параграфы 5.1, 5.2 книги [11] и библиографию в конце параграфа 5.2). Для натурального n определим (3.4)

$$C(n,Y) = \inf \left\{ \max \left\{ \| \sum_{k=1}^{n} \alpha_k y_k \| \mid \alpha_k = \pm 1, 1 \leqslant k \leqslant n \right\} \mid y_k \in Y, \|y_k\| \geqslant 1, 1 \leqslant k \leqslant n \right\}.$$

В из лемм 5.2.1, 5.2.2 и теоремы 5.2.2 книги [11] следует, что Y C-выпукло тогда и только тогда, когда $C(n,Y)\to\infty$ при $n\to\infty$.

Пусть Y — банахово пространство над \mathbb{C} . Обозначим $c_0(\mathbb{C})$ множество последовательностей $\xi=(z_1,z_2,\ldots),z_k\in\mathbb{C}$, для которых $z_k\to 0$ при $k\to\infty$, с нормой $\|\xi\|=\sup_k|z_k|$. Y называется C-выпуклым, если $c_0(\mathbb{C})$ не является финитно представимым в Y. Для натурального n определим C(n,Y) формулой (3.4); величину $C_{\mathbb{C}}(n,Y)$ формулой (3.4), только максимум берётся по $|\alpha_k|=1,\alpha_k\in\mathbb{C}$. Перенося леммы 5.2.1, 5.2.2 и теорему 5.2.2 книги [11] на случай комплексных пространств, получим, что Y C-выпукло тогда и только тогда, когда $C_{\mathbb{C}}(n,Y)\to\infty$ при $n\to\infty$. Поскольку для произвольных $\alpha_1,\ldots,\alpha_n\in\mathbb{C}, |\alpha_k|\leqslant 1$ и произвольных $y_1,\ldots,y_n\in Y$

$$\|\sum_{k=1}^{n} \alpha_k y_k\| \le \|\sum_{k=1}^{n} \operatorname{Re}(\alpha_k) y_k\| + \|\sum_{k=1}^{n} \operatorname{Im}(\alpha_k) y_k\| \le 2 \max_{\beta_k = \pm 1} \|\sum_{k=1}^{n} \beta_k y_k\|,$$

то $C_{\mathbb{C}}(n,Y) \leqslant 2C(n,Y)$, а поэтому Y C-выпукло тогда и только тогда, когда $C(n,Y) \to \infty$ при $n \to \infty$.

Для $I \subset \mathbb{N}$ обозначим $\min(I)$ наименьший элемент множества I.

Теорема 3.6. Предположим, что X^* C-выпукло. Если $S-A\Pi C\Pi$ в X, то существует N_0 , такое, что для произвольного конечного $I \subset \mathbb{N}$, удовлетворяющего $\min(I) \geqslant N_0$, система подпространств $X_k, k \notin I$ является $A\Pi C\Pi$ в X.

Теорема 3.6 очевидным образом следует из следующей леммы.

Лемма 3.2. Пусть $I_1, I_2, \ldots -$ подмножества $\mathbb{N}, m \in \mathbb{N}$. Предположим, каждое натуральное n принадлежит не более чем m множествам I_j . Тогда для некоторого j система подпространств $X_k, k \notin I_j$ является АПСП в X.

Доказательство. Существует $\varepsilon > 0$, для которого выполнено (3.1). Предположим, утверждение леммы неверно. Тогда для произвольного j существует $\varphi_j \in X^*$, $\|\varphi_j\| = 1$, такой, что $\|\varphi_j^{(S,k)}\| \leqslant 2^{-j}$ для всех $k \notin I_j$. Рассмотрим произвольное $n \in \mathbb{N}$. Существуют $\alpha_1, \ldots, \alpha_n \in \{\pm 1\}$, для которых $\|\sum_{j=1}^n \alpha_j \varphi_j\| \geqslant C(n, X^*)$. Определим $\varphi = \sum_{j=1}^n \alpha_j \varphi_j$. Тогда $\|\varphi\| \geqslant C(n, X^*)$ и для произвольного $k \|\varphi^{(S,k)}\| \leqslant \sum_{j=1}^n \|\varphi_j^{(S,k)}\| \leqslant m+1$. Из неравенства (3.1) следует $m+1 \geqslant \varepsilon C(n, X^*)$, что, в силу произвольности n, противоречит C-выпуклости X^* .

3.3. Устойчивость АПСП.

Теорема 3.7. Если S является АПСП в X, то существует $\delta > 0$ такое, что произвольная система $\widetilde{S} = (X; \widetilde{X}_k, k \geqslant 1)$, удовлетворяющая $\sup_k \rho_0(X_k, \widetilde{X}_k) < \delta$, является АПСП в X.

Доказательство. Пусть $\varepsilon > 0$ такое, что выполнено неравенство (3.1). Покажем, что если для системы подпространств \widetilde{S} $d = \sup_k \rho_0(X_k, \widetilde{X}_k) < \varepsilon$, то \widetilde{S} является АПСП в X. Выберем $\varepsilon_1 < \varepsilon$, $d_1 > d$, причём $d_1 < \varepsilon_1$. Рассмотрим произвольный $\varphi \in X^*$, $\|\varphi\| = 1$. Существует $k \in \mathbb{N}$ и $k \in \mathbb{N}$

$$|\varphi(\widetilde{x})|\geqslant |\varphi(x)|-|\varphi(x-\widetilde{x})|\geqslant (\varepsilon_1-d_1), \ \|\widetilde{x}\|\leqslant (1+d_1),$$
 откуда $\|\varphi^{(\widetilde{S},k)}\|\geqslant (\varepsilon_1-d_1)/(1+d_1).$ Поэтому $\widetilde{S}-\mathrm{A}\Pi\mathrm{C}\Pi$ в X .

Список литературы

- [1] Абанин А.В. Индуктивные абсолютно представляющие системы подпространств // Комплексный анализ. Теория операторов. Математическое моделирование.— Владикавказ: Изд-во ВНЦ РАН, 2006, С. 27-34.
- [2] Вершинин Р.В. О представляющих и абсолютно представляющих системах в банаховых пространствах // Матем. физ., анал., геом.— 1998.— T.5, N=1/2.— C.3-14.
- [3] Коробейник Ю.Ф. Представляющие системы // УМН.— 1981.— Т.36,Вып. 1 (217).— С.73-126.
- [4] Коробейник Ю.Ф. О представляющих системах подпространств // Мат. заметки.— 1985.— T.38,№5.— C.741-755.
- [5] Коробейник Ю.Ф. Об абсолютно представляющих семействах в некоторых классах локально выпуклых пространств // Изв. вузов. Матем. 2009. № 9. С.25-35.
- [6] *Михайлов К.А.* Абсолютно представляющие системы подпространств в пространствах пробных ультрадифференцируемых функций // Изв. Вузов. Сев. Кав. регион. Естественные науки.— 2009.— № 6.— С. 8-11.
- [7] Слепченко А.Н. О некоторых обобщениях базисов банаховых пространств // Матем. сб.— 1983.— Т. 121 (163), № 2 (6).— С.272-285.
- [8] Шрайфель И.С. Об абсолютно представляющих системах в гильбертовых пространствах // Изв. вузов. Матем.— 1995.— \mathbb{N}_{9} .— C.78-82.
- [9] Amemiya I., Ando T. Convergence of random products of contractions in Hilbert space // Acta Sci. Math. Szeged.— 1965.— V.26.— P.239-244.
- [10] Bauschke H.H. Projection algorithms: results and open problems // Inherently Parallel Algorithms in Feasibility and Optimization and their Applications (Haifa 2000).— D. Butnariu, Y. Censor, S. Reich (editors).— Elsevier, 2001.— P.11-22.
- [11] Kadets M.I., Kadets V.M. Series in Banach spaces. Conditional and Unconditional convergence.— Birkhäuser Verlag, Basel, Boston, Berlin, 1997.
- $[12]\ Singer\ I.$ Bases in Banach spaces II.—Springer Verlag, Berlin, Heidelberg, New York, 1981.—880 p.
- [13] Vershynin R. Absolutely representing systems, uniform smoothness, and type // arXiv: math/ 9804044v1 [math.FA] 8 Apr 1998.