Tweakable Blockciphers: Theory and Application

Bart Mennink KU Leuven (Belgium)

IACR School on Design and Security of Cryptographic Algorithms and Devices

October 21, 2015

Tweakable Blockciphers

Tweakable Blockciphers

- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Motivation: OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - ullet Tweak $(N, {\sf tweak})$ is unique for every evaluation

Motivation: OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
- Change of tweak should be efficient

Motivation: OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable blockcipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
- Change of tweak should be efficient

Tweakable blockcipher with efficient re-tweaking ⇒ efficient AE

- XTS mode for disk encryption
- Tweak (i, j) = (sector, block) unique for every block

- XTS mode for disk encryption
- Tweak (i, j) = (sector, block) unique for every block
- Change of tweak should be efficient (as before)

- XTS mode for disk encryption
- Tweak (i, j) = (sector, block) unique for every block
- Change of tweak should be efficient (as before)
- Incrementality: change in one (or few) blocks

- XTS mode for disk encryption
- Tweak (i, j) = (sector, block) unique for every block
- Change of tweak should be efficient (as before)
- Incrementality: change in one (or few) blocks

Tweakable blockcipher facilitates ECB-like modes \Longrightarrow incrementality

Motivation: Skein

- Skein hash function by Ferguson et al. [FLS+07]
- Based on Threefish tweakable blockcipher
- Tweaks used for domain separation

Motivation: Skein

- Skein hash function by Ferguson et al. [FLS+07]
- Based on Threefish tweakable blockcipher
- Tweaks used for domain separation

Tweakable blockcipher \implies independent-looking blockciphers

Tweakable Blockciphers from Scratch

- Hasty Pudding Cipher [Sch98]
 - AES submission, "first tweakable cipher"
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY [JNP14]
 - CAESAR submissions Deoxys, Joltik, KIASU

Tweakable Blockciphers from Scratch

- Hasty Pudding Cipher [Sch98]
 - AES submission, "first tweakable cipher"
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY [JNP14]
 - CAESAR submissions Deoxys, Joltik, KIASU

Our focus: generic tweakable blockcipher design

Outline

Birthday Bound TBCs

Improved Security for Birthday Bound TBCs

Improved Efficiency for Birthday Bound TBCs

Beyond Birthday Bound TBCs

Conclusion

Outline

Birthday Bound TBCs

Improved Security for Birthday Bound TBCs

Improved Efficiency for Birthday Bound TBCs

Beyond Birthday Bound TBCs

Conclusion

Tweakable Blockciphers from Blockciphers/Permutations

• LRW₁ and LRW₂ by Liskov et al. [LRW02]:

- h is XOR-universal hash
 - ullet E.g., $h(t)=h\otimes t$ for $n ext{-bit "key" }h$

• XE and XEX by Rogaway [Rog04]:

• $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

• XE and XEX by Rogaway [Rog04]:

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and XTS

OCB2:

XTS:

$$L = E_K(i)$$

$$E_k$$

$$E_k$$

$$2^2L$$

$$C_1$$

$$C_2$$

$$C_d$$

• XE and XEX by Rogaway [Rog04]:

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and XTS

XE and XEX by Rogaway [Rog04]:

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and XTS
- Generalized masking:
 - Chakraborty and Sarkar [CS06]: $\varphi^{\alpha}(E_k(N))$ for LFSR φ
 - Gray codes (used in OCB1 and OCB3)

Tweakable Blockciphers from Permutations

Minalpher's TEM [STA+14]:

• $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Tweakable Blockciphers from Permutations

• Prøst [KLL+14] uses XE(X) with Even-Mansour:

with
$$E_k(m) = P(m \oplus k) \oplus k$$

Tweakable Blockciphers from Permutations

• Prøst [KLL+14] uses XE(X) with Even-Mansour:

Tweakable Blockciphers in CAESAR

Tweakable Blockciphers in CAESAR

Dedicated

Deoxys, Joltik, KIASU, SCREAM

XE/XEX-inspired

AEZ, CBA, COBRA, COPA, ELmD, iFeed, Marble, OCB, OMD, OTR, POET, SHELL

TEM-inspired

Minalpher, Prøst

Outline

Birthday Bound TBCs

Improved Security for Birthday Bound TBCs

Improved Efficiency for Birthday Bound TBCs

Beyond Birthday Bound TBCs

Conclusion

Tweakable Blockciphers in CAESAR

Dedicated

Deoxys, Joltik, KIASU, SCREAM

XE/XEX-inspired

AEZ, CBA, COBRA, COPA, ELmD, iFeed, Marble, OCB, OMD, OTR, POET, SHELL

TEM-inspired

Minalpher, Prøst

Tweakable Blockciphers in CAESAR

Dedicated

Deoxys, Joltik, KIASU, SCREAM

XE/XEX-inspired

AEZ, CBA, COBRA, COPA, ELmD, iFeed, Marble, OCB, OMD, OTR, POET, SHELL

 $2^{\alpha}3^{\beta}7^{\gamma}(k||N \oplus P(k||N))$ **TEM-inspired** Minalpher, Prøst

XPX [Men15b], generalization of this

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- ullet ${\mathcal T}$ can (still) be any set

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- ullet ${\mathcal T}$ can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$
 - lacktriangledown "Stupid" $\mathcal{T} \longrightarrow \mathsf{insecure}$

- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$
 - lacktriangledown "Stupid" $\mathcal{T} \longrightarrow \mathsf{insecure}$
 - $m{2}$ "Normal" $\mathcal{T} \longrightarrow \text{single-key secure}$

- $(t_{11},t_{12},t_{21},t_{22})$ from some tweak set $\mathcal{T}\subseteq (\{0,1\}^n)^4$
- T can (still) be any set
- ullet Security of XPX strongly depends on choice of ${\mathcal T}$
 - lacktriangledown "Stupid" $\mathcal{T} \longrightarrow \mathsf{insecure}$
 - $m{2}$ "Normal" $\mathcal{T} \longrightarrow \text{single-key secure}$
 - $lacksquare{3}$ "Strong" \mathcal{T} \longrightarrow related-key secure

$$\begin{split} (0,0,0,0) \in \mathcal{T} &\implies & \mathsf{XPX}_k((0,0,0,0),m) = P(m) \\ (1,0,1,1) \in \mathcal{T} &\implies & \mathsf{XPX}_k((1,0,1,1),0) = k \end{split}$$

$$\begin{split} (0,0,0,0) \in \mathcal{T} &\implies & \mathsf{XPX}_k((0,0,0,0),m) = P(m) \\ (1,0,1,1) \in \mathcal{T} &\implies & \mathsf{XPX}_k((1,0,1,1),0) = k \\ (1,0,0,2) \in \mathcal{T} &\implies & \mathsf{XPX}_k((1,0,0,2),0) = 3P(k) \end{split}$$

"Valid" Tweak Sets

Technical definition to eliminate trivial cases

$$(0,0,0,0) \in \mathcal{T} \implies \mathsf{XPX}_k((0,0,0,0),m) = P(m)$$

 $(1,0,1,1) \in \mathcal{T} \implies \mathsf{XPX}_k((1,0,1,1),0) = k$
 $(1,0,0,2) \in \mathcal{T} \implies \mathsf{XPX}_k((1,0,0,2),0) = 3P(k)$
...

"Valid" Tweak Sets

- Technical definition to eliminate trivial cases
- If \mathcal{T} is invalid, then XPX is insecure

Single-Key Security

ullet If ${\mathcal T}$ is valid, then XPX is STPRP

Single-Key Security

ullet If ${\mathcal T}$ is valid, then XPX is STPRP

Φ⊕-Related-Key Security (Simplified)

• $\mathcal D$ can influence key: $k\mapsto k\oplus \delta$

Single-Key Security

• If \mathcal{T} is valid, then XPX is STPRP

Φ⊕-Related-Key Security (Simplified)

• \mathcal{D} can influence key: $k\mapsto k\oplus \delta$

$\Phi_{P\oplus}$ -Related-Key Security (Simplified)

- \mathcal{D} can influence key: $k \mapsto k \oplus \delta$ or $P(k) \mapsto P(k) \oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

Single-Key Security

• If \mathcal{T} is valid, then XPX is STPRP

Φ⊕-Related-Key Security (Simplified)

• \mathcal{D} can influence key: $k \mapsto k \oplus \delta$

$\Phi_{P\oplus}$ -Related-Key Security (Simplified)

- $\mathcal D$ can influence key: $k\mapsto k\oplus \delta$ or $P(k)\mapsto P(k)\oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

if ${\mathcal T}$ is valid, and for all tweaks:	security
$t_{12}, t_{22} \neq 0$ and $(t_{21}, t_{22}) \neq (0, 1)$	Φ_{\oplus} -rk-STPRP
$t_{11}, t_{12}, t_{21}, t_{22} \neq 0$	$\Phi_{P\oplus}$ -rk-STPRP

XPX Covers Even-Mansour

XPX Covers Even-Mansour

• Single-key STPRP secure (surprise?)

XPX Covers Even-Mansour

- Single-key STPRP secure (surprise?)
- ullet Generally, if $|\mathcal{T}|=1$, XPX is a normal blockcipher

XPX Covers XEX With Even-Mansour

• (α, β, γ) is in fact the "real" tweak

XPX Covers XEX With Even-Mansour

- (α, β, γ) is in fact the "real" tweak
- $\Phi_{P\oplus}$ -rk STPRP secure (if $2^{\alpha}3^{\beta}7^{\gamma} \neq 1$)

- By Andreeva et al. [ABL+14]
- Implicitly based on XEX based on AES

- By Andreeva et al. [ABL+14]
- Implicitly based on XEX based on AES
- Prøst-COPA by Kavun et al. [KLL+14]:
 COPA based on XEX based on Even-Mansour

Single-Key Security of COPA

Single-Key Security of COPA

$$\begin{array}{c|c} \hline \text{COPA} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\mathsf{sk}} & \boxed{\mathsf{XEX}} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\mathsf{sk}} & \boxed{E} \end{array}$$

Related-Key Security of COPA

ullet Approach generalizes for any Φ (proof in [Men15b])

$$\begin{array}{c|c} \hline \text{COPA} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi\text{-rk}} & \boxed{\text{XEX}} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi\text{-rk}} & \boxed{E} \end{array}$$

Single-Key Security of Prøst-COPA

$$\begin{array}{c|c}
\hline
\text{COPA} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\mathsf{sk}} & \text{XEX} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\mathsf{sk}} & E
\end{array}$$

Single-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

Related-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

Related-Key Security of Prøst-COPA

Single-Key Security of Prøst-COPA

$$\boxed{ \text{COPA} } \xrightarrow{ \mathcal{O}\left(\frac{\sigma^2}{2^n}\right) } \text{SK} \qquad \boxed{ \text{XEX} } \xrightarrow{ \mathcal{O}\left(\frac{\sigma^2}{2^n}\right) } \boxed{ E } \xrightarrow{ \mathcal{O}\left(\frac{\sigma^2}{2^n}\right) } \boxed{ P }$$

Related-Key Security of Prøst-COPA

Application of XPX to AE: Minalpher

- By Sasaki et al. [STA+14]
- ullet Extra nonce N concatenated to k

 $2^{2d-1}3L$

Application of XPX to AE: Minalpher

- By Sasaki et al. [STA+14]
- Extra nonce N concatenated to k
- Based on XPX with $\mathcal{T} = \{(2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta})\}$

 $\stackrel{*}{\bigoplus} 2^{2d-1}3L$

Application of XPX to AE: Minalpher

- By Sasaki et al. [STA+14]
- ullet Extra nonce N concatenated to k
- Based on XPX with $\mathcal{T} = \{(2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta}, 2^{\alpha}3^{\beta})\}$

 $\stackrel{*}{\bigoplus} 2^{2d-1}3L$

Application of XPX to AE: Minalpher

- By Sasaki et al. [STA+14]
- ullet Extra nonce N concatenated to k
- Based on XPX with $\mathcal{T}=\{(2^{\alpha}3^{\beta},2^{\alpha}3^{\beta},2^{\alpha}3^{\beta},2^{\alpha}3^{\beta})\}$

$$\boxed{ \text{Minalph.} } \xrightarrow{\frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{-\text{rk}}}} \boxed{ XPX } \xrightarrow{\frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{P\oplus}-\text{rk}}} \boxed{ P}$$

 $\stackrel{*}{\bigoplus} 2^{2d-1}3L$

Application of XPX to MAC: Chaskey

• By Mouha et al. [MMV+14]

Application of XPX to MAC: Chaskey

- By Mouha et al. [MMV+14]
- Based on XPX with $\mathcal{T} = \{(1,0,1,0), (3,0,2,0), (5,0,4,0)\}$

Application of XPX to MAC: Chaskey

- By Mouha et al. [MMV+14]
- Based on XPX with $\mathcal{T} = \{(1,0,1,0), (3,0,2,0), (5,0,4,0)\}$

$$\begin{array}{c|c}
\hline
\text{Chaskey} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\mathsf{sk}} & \boxed{\mathsf{XPX}} & \xrightarrow{\begin{array}{c} \mathcal{O}\left(\frac{\sigma^2}{2^n}\right) \\ \hline
\mathsf{sk} \end{array}} & \boxed{P}$$

Application to MAC: Adjusted Chaskey

- Extra P-call
- Based on XPX with $\mathcal{T}' = \{(0,1,0,1), (2,1,2,0), (4,1,4,0)\}$

Application to MAC: Adjusted Chaskey

- Extra P-call
- Based on XPX with $\mathcal{T}' = \{(0,1,0,1), (2,1,2,0), (4,1,4,0)\}$

$$\begin{array}{c|c} \hline \text{Chaskey} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{\text{-rk}}} & \hline & \text{XPX} & \frac{\mathcal{O}\left(\frac{\sigma^2}{2^n}\right)}{\Phi_{\oplus^{\text{-rk}}}} & \hline & P & \\ \end{array}$$

Application to MAC: Adjusted Chaskey

- Extra P-call
- Based on XPX with $\mathcal{T}' = \{(0,1,0,1), (2,1,2,0), (4,1,4,0)\}$

Approach also applies to Keyed Sponges

Outline

Birthday Bound TBCs

Improved Security for Birthday Bound TBCs

Improved Efficiency for Birthday Bound TBCs

Beyond Birthday Bound TBCs

Conclusion

MEM

• MEM by Granger et al. [GJMN15]:

ullet φ_i are fixed LFSRs, $(lpha,eta,\gamma,N)$ is tweak (simplified)

MEM

• MEM by Granger et al. [GJMN15]:

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Masking combines advantages of:
 - Powering-up masking
 - LFSR masking

MEM

MEM by Granger et al. [GJMN15]:

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Masking combines advantages of:
 - Powering-up masking
 - LFSR masking

New masking is simpler, constant-time (by default), more efficient

Application of MEM to AE: OPP

- Offset Public Permutation (OPP) [GJMN15]
- Generalization of OCB3:
 - Permutation-based
 - More efficient MEM-masking
- Security against nonce-respecting adversaries

Application of MEM to AE: OPP

- Offset Public Permutation (OPP) [GJMN15]
- Generalization of OCB3:
 - Permutation-based
 - More efficient MEM-masking
- Security against nonce-respecting adversaries

0.55 cpb with reduced-round BLAKE2b

Application of MEM to AE: MRO

- Misuse-Resistant OPP (MRO) [GJMN15]
- Fully nonce-misuse resistant version of OPP

Application of MEM to AE: MRO

- Misuse-Resistant OPP (MRO) [GJMN15]
- Fully nonce-misuse resistant version of OPP

1.06 cpb with reduced-round BLAKE2b

Outline

Birthday Bound TBCs

Improved Security for Birthday Bound TBCs

Improved Efficiency for Birthday Bound TBCs

Beyond Birthday Bound TBCs

Conclusion

• All results so far: up to birthday bound

- All results so far: up to birthday bound
- \bullet Security of AE's is mostly dominated by security of \widetilde{E}

- All results so far: up to birthday bound
- ullet Security of AE's is mostly dominated by security of \widetilde{E}
- For some AE's (e.g., OCB, pOMD, OPP, ...):

- All results so far: up to birthday bound
- ullet Security of AE's is mostly dominated by security of \widetilde{E}
- For some AE's (e.g., OCB, pOMD, OPP, ...):

Can we improve this?

BBB Tweakable Blockciphers from Blockciphers

- LRW $_2[
 ho]$: concatenation of ho LRW $_2$'s
- k_1, \ldots, k_{ρ} and h_1, \ldots, h_{ρ} independent

BBB Tweakable Blockciphers from Blockciphers

- LRW₂[ρ]: concatenation of ρ LRW₂'s
- ullet $k_1,\ldots,k_
 ho$ and $h_1,\ldots,h_
 ho$ independent
- ho=2: secure up to $2^{2n/3}$ queries [LST12,Pro14]
- $ho \geq 2$ even: secure up to $2^{
 ho n/(
 ho + 2)}$ queries [LS13]
- Conjecture: optimal $2^{\rho n/(\rho+1)}$ security

BBB Tweakable Blockciphers from Permutations

- $\mathsf{TEM}[\rho]$: concatenation of ρ TEM -like's
- ullet $P_1,\ldots,P_
 ho$ and $h_1,\ldots,h_
 ho$ independent

BBB Tweakable Blockciphers from Permutations

- TEM[ho]: concatenation of ho TEM-like's
- ullet $P_1,\ldots,P_
 ho$ and $h_1,\ldots,h_
 ho$ independent
- ho=2: secure up to $2^{2n/3}$ queries [CLS15]
- $\rho \geq 2$ even: secure up to $2^{\rho n/(\rho+2)}$ queries [CLS15]
- Conjecture: optimal $2^{\rho n/(\rho+1)}$ security

State of the Art (Blockcipher Based)

	security	key	cost	
scheme	(\log_2)	length	\overline{E}	\otimes/h
LRW ₁	n/2	n	2	0
LRW_2	n/2	2n	1	1
XEX	n/2	n	2	0
$LRW_2[2]$	2n/3	4n	2	2
$LRW_2[ho]$	$\rho n/(\rho\!+\!2)$	$2\rho n$	ρ	ρ

Optimal 2^n security only if key length and $\cos t \to \infty$?

Efficiency

tweak schedule lighter than key schedule

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Tweak and key change approximately equally expensive

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Tweak and key change approximately equally expensive

TWEAKEY [JNP14] key scheduling blends key and tweak

• Minematsu [Min09]:

- Secure up to $\max\{2^{n/2},2^{n-|t|}\}$ queries
- \bullet Beyond birthday bound for |t| < n/2

Minematsu [Min09]:

- Secure up to $\max\{2^{n/2}, 2^{n-|t|}\}$ queries
- Beyond birthday bound for |t| < n/2
- Tweak-length extension possible by XTX [MI15]

State of the Art (Blockcipher Based)

scheme	security	key		cost		
	(\log_2)	length	\overline{E}	\otimes/h	tdk	
LRW ₁	n/2	n	2	0	0	
LRW_2	n/2	2n	1	1	0	
XEX	n/2	n	2	0	0	
$LRW_2[2]$	2n/3	4n	2	2	0	
$LRW_2[ho]$	$\rho n/(\rho\!+\!2)$	$2\rho n$	ρ	ho	0	
Min	$\max\{n/2, n{-} t \}$	n	2	0	1	
Min-XTX	2n/3	7n/3	2	1	1	

Goal

 $\label{eq:Given a blockcipher } \begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line($

Generic Design

Generic Design

- Mixing functions A_i, B_i
 - ullet should be such that $\widetilde{E}[
 ho]$ is invertible
 - but can be anything otherwise

One E-Call with Linear Mixing

One E-Call with Linear Mixing

Theorem [Men15a]

• If A_1,B_1,A_2 are linear, $\widetilde{E}[1]$ can be attacked in at most about $2^{n/2}$ queries

One $E ext{-Call}$ with Polynomial Mixing

 $\mathsf{Men}_1(k,t,m) = c \; \mathsf{[Men15a]}$

Idea

- Subkey $k \oplus t$
- $\bullet \ \ \mathsf{Masking} \ k \otimes t$

One E-Call with Polynomial Mixing

 $\mathsf{Men_1}(k,t,m) = c \; \mathsf{[Men15a]}$

Idea

- ullet Subkey $k \oplus t$
- $\bullet \ \ \mathsf{Masking} \ k \otimes t$

Security

• Up to $2^{2n/3}$ queries

One $E ext{-Call}$ with Polynomial Mixing

 $\mathsf{Men_1}(k,t,m) = c \; \mathsf{[Men15a]}$

Idea

- Subkey $k \oplus t$
- $\bullet \ \ \mathsf{Masking} \ k \otimes t$

Security

• Up to $2^{2n/3}$ queries

Cost

- ullet One E-call
- One ⊗-evaluation
- One re-key

 $\bullet \ \, \mathsf{Key} \,\, k \,\, \mathsf{is} \,\, \mathsf{secret}$

- Key k is secret
- ullet Consider any construction query (t,m,c)

- Key k is secret
- Consider any construction query (t, m, c)

- Key k is secret
- Consider any construction query (t, m, c)
- ullet May "hit" any primitive query (l,x,y)

- Key k is secret
- Consider any construction query (t, m, c)
- \bullet May "hit" any primitive query (l,x,y)

 $k \oplus t = l$ and $m \oplus k \otimes t = x$

- Key k is secret
- Consider any construction query (t, m, c)
- ullet May "hit" any primitive query (l,x,y)

$$k \oplus t = l \text{ and } m \oplus k \otimes t = x$$
or
 $k \oplus t = l \text{ and } c \oplus k \otimes t = y$

- Key k is secret
- Consider any construction query (t, m, c)
- May "hit" any primitive query (l,x,y)

$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{m}} \oplus k \otimes \textbf{\textit{t}} = x \quad \Longleftrightarrow \quad k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{m}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = x$$
 or or
$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{c}} \oplus k \otimes \textbf{\textit{t}} = y \quad \Longleftrightarrow \quad k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{c}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = y$$

- Key k is secret
- Consider any construction query (t, m, c)
- May "hit" any primitive query (l,x,y)

$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{m}} \oplus k \otimes \textbf{\textit{t}} = x \qquad \Longleftrightarrow \qquad \boxed{k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{m}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = x}$$
 or or
$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{c}} \oplus k \otimes \textbf{\textit{t}} = y \qquad \Longleftrightarrow \qquad k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{c}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = y$$

$$k=l\oplus t$$
 and ${\color{red} m}\oplus (l\oplus t)\otimes t=x$

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

Consider a finite field \mathbb{F} . Let

- $L \subseteq \mathbb{F}^2$ be a set of lines
- ullet $P\subseteq \mathbb{F}^2$ be a set of points

 $\# \ \text{point-line incidences} \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}$

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

- $L \subseteq \mathbb{F}^2$ be a set of lines
- $P \subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

- $L \subseteq \mathbb{F}^2$ be a set of lines
- $P \subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points
- About $q^{3/2}$ solutions to $m \oplus (l \oplus t) \otimes t = x$

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

- $L \subseteq \mathbb{F}^2$ be a set of lines
- ullet $P\subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points
- About $q^{3/2}$ solutions to $m \oplus (l \oplus t) \otimes t = x$
- ullet Every solution fixes one $l\oplus t$

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

- $L \subseteq \mathbb{F}^2$ be a set of lines
- $P \subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points
- About $q^{3/2}$ solutions to $m \oplus (l \oplus t) \otimes t = x$
- ullet Every solution fixes one $l\oplus t$
- k is random n-bit key

Two E-Calls with Linear Mixing

 $\mathsf{Men_2}(k,t,m) = c$

Idea

- ullet Subkey $k \oplus t$
- ullet Masking E(2k,t)

Two E-Calls with Linear Mixing

 $\mathsf{Men}_2(k,t,m) = c$

Idea

- Subkey $k \oplus t$
- Masking E(2k,t)

Security

ullet Up to 2^n queries

Two E-Calls with Linear Mixing

 $\mathsf{Men_2}(k,t,m) = c$

Idea

- ullet Subkey $k \oplus t$
- Masking E(2k,t)

Security

ullet Up to 2^n queries

Cost

- Two E-calls
- Zero ⊗-evaluations
- One re-key

Two $E ext{-Calls}$ with Linear Mixing

Idea

- Subkey $k \oplus t$
- Masking E(2k,t)

Security

• Up to 2^n queries

Cost

- ullet Two E-calls
- Zero ⊗-evaluations
- One re-key

New after observation by Guo et al. (original proof only for $t \neq 0$)

Two E-Calls with Linear Mixing: Proof Idea

Two E-Calls with Linear Mixing: Proof Idea

• Construction query (t, m, c) "hits" primitive query (l, x, y) if

$$k \oplus t = l$$
 and $z \oplus m = x$ or $k \oplus t = l$ and $z \oplus c = y$

Two E-Calls with Linear Mixing: Proof Idea

• Construction query (t, m, c) "hits" primitive query (l, x, y) if

$$k \oplus \textbf{\textit{t}} = l \text{ and } z \oplus \textbf{\textit{m}} = x$$
 or
$$k \oplus \textbf{\textit{t}} = l \text{ and } z \oplus \textbf{\textit{c}} = y$$

ullet is random key, z is almost-random subkey

Comparison

scheme	security	key	cost		
	(\log_2)	length	\overline{E}	\otimes/h	tdk
LRW ₁	n/2	n	2	0	0
LRW_2	n/2	2n	1	1	0
XEX	n/2	n	2	0	0
$LRW_2[2]$	2n/3	4n	2	2	0
$LRW_2[ho]$	$\rho n/(\rho\!+\!2)$	$2\rho n$	ho	ho	0
Min	$\max\{n/2, n{-} t \}$	n	2	0	1
Min-XTX	2n/3	7n/3	2	1	1
Men_1	2n/3 *	n	1	1	1
Men ₂	n *	n	2	0	1

^{*} Information-theoretic model

Outline

Birthday Bound TBCs

Improved Security for Birthday Bound TBCs

Improved Efficiency for Birthday Bound TBCs

Beyond Birthday Bound TBCs

Conclusion

Conclusion

Birthday Bound Tweakable Blockciphers

- Myriad applications to AE, MAC, encryption, . . .
- Various solutions for different problems:
 - Efficiency
 - Related-key security
 - •

Conclusion

Birthday Bound Tweakable Blockciphers

- Myriad applications to AE, MAC, encryption, . . .
- Various solutions for different problems:
 - Efficiency
 - Related-key security
 - •

Beyond Birthday Bound Tweakable Blockciphers

- Allow for beyond birthday bound secure AE
- Efficient scheme without re-keying?
- One-call tweakable cipher with improved security?
- Optimal security in standard model?

Conclusion

Birthday Bound Tweakable Blockciphers

- Myriad applications to AE, MAC, encryption, . . .
- Various solutions for different problems:
 - Efficiency
 - Related-key security
 - •

Beyond Birthday Bound Tweakable Blockciphers

- Allow for beyond birthday bound secure AE
- Efficient scheme without re-keying?
- One-call tweakable cipher with improved security?
- Optimal security in standard model?

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Generic Design: Inverse

Valid Mixing Functions (informal)

 A_i, B_i are valid if there is one A_{i*} that processes m, s.t.

- first i^*-1 rounds computable in forward direction
- last $\rho-(i^*-1)$ rounds computable in inverse direction both without usage of m

Example for $i^* = 2$

