MSE 480/780 - Mid-Term Exam Solutions (Spring 2017)

Problem 1 (20 Marks)

Part a (5 marks)

Plotting Tc versus cutter angle:

Alternatively plotting versus time:

Part b (5 marks)

- Max Cutting Torque, T_c : $RK_1as_t(sin(\pi/2)+h^*/s_t) = 4.156 N^*m$
- Max Tangential Force, F_t : $K_1 as_t (sin(\pi/2) + h^*/s_t) = 332.5 N$
- Max Thrust Force, F_{th} : $K_1 a s_t (r_1 sin(\pi/2) + r_2 h^*/s_t) = 212.8 N$
- Max Radial Force, F_r : $F_{th}cos(\Psi) = 150.5 N$
- Max Axial Force, F_z: F_{th}sin(Ψ) = 150.5 N

Part c (5 marks)

Power can be calculated as: P = (Torque)*(Spindle Speed)

=Omega*R*K1*a*st*(sin(phi) + h*/heq)

Given 2/3 immersion and heq~st: => Pmax ~ Omega*R*K1*a*(st + h*)

e.g. calculated (max) power from part a 304.7 W

Maximum spindle power 400 W

Maximum feed per tooth (st)max =Pmax/(Omega*R*K1*a) - h*

(st)max= 0.055645003 mm

Maximum feed per revolution (s = 2*st) 0.111 mm

*** Using Pmax is conservative; also OK to calculate based on Pavg as follows

Integrating over 1/2 revolution (period of signal) with 2/3 immersion yields:

Pavg ~ (1/Pi)*Omega*R*K1*a*(1-cos((2*Pi)/3))*st + (2/3)*Omega*R*K1*a*h*

e.g. calculated (avg) power from part a

157.0 W

Letting A =

(1/Pi)*Omega*R*K1*a*(1-cos((2*Pi)/3)) = 2909.4

and letting B =

(2/3)*Omega*R*K1*a*h* = 40.6

=> Pavg = A*st + B

Maximum feed per tooth (st)max = (Pmax - B) / A

(st)max= 0.12352394 mm

Maximum feed per revolution

(s = 2*st) 0.247 mm

Problem 2 (20 Marks)

Part a (5 marks)

Part b (10 marks)

Part c (5 marks)

