Université Pierre et Marie Curie - Paris VI TD no2, Formes Modulaires, le jeudi 11h15-13h15, salle 15/16 101. Faculté de Mathématiques 2018–2019

Exercice 1. Trouver une relation linéaire entre E_4^3 , E_{12} et Δ . En déduire la congruence de Ramanujan

$$\tau(n) \equiv \sigma_{11}(n) \mod 691$$
.

Exercice 2. Exprimer $j(2\tau) + j(\frac{\tau}{2}) + j(\frac{\tau+1}{2})$ en fonction de $j(\tau)$. En déduire une formule récursive pour calculer les coefficients de $j(\tau)$.

Exercice 3. Soit $d_k = \dim M_k(\Gamma(1), \mathbb{Q})$.

- a) Montrer qu'il existe $f_0, \ldots, f_{d-1} \in M_k(\Gamma(1), \mathbb{Q})$ tel que, pour tout $0 \leq i, j < d$ le coefficient de q^i pour f_j est zéro, sauf pour j = i où ce coefficient est 1.
 - b) Montrer que les f_j sont une \mathbb{Z} -base de $M_k(\Gamma(1),\mathbb{Z})$ (base de V. Miller).
 - c) Calculer ces formes modulo q^4 dans le cas de $M_{24}(\Gamma(1))$.

Exercice 4. Soit $\Gamma(1) = SL_2(\mathbb{Z})$ et $k \in \mathbb{N}$.

- i. Montrer que si $f \in \mathcal{M}_k(\Gamma(1))$, alors $\tau \mapsto |f(\tau)|\Im(\tau)^{k/2}$ est invariante par $\Gamma(1)$.
- ii. Montrer que si $f \in \mathcal{S}_k(\Gamma(1))$, alors $\tau \mapsto |f(\tau)|\Im(\tau)^{k/2}$ est bornée.
- iii. Montrer que si $f \in \mathcal{S}_k(\Gamma(1))$ et $f(\tau) = \sum_{n \in \mathbb{N}} a_n \exp(2i\pi n\tau)$ est son q-développement à la pointe ∞ , alors $a_n = O(n^{k/2})$.

k	2	4	6	8	10	12	14	16
$-\frac{2k}{\mathrm{B}_k}$	-24	240	-504	480	-264	65520/691	-24	16320/3617

Exercice 5. Soient Γ un sous-groupe discret de $SL_2(\mathbb{R})$ et $\gamma \in \Gamma, \gamma \neq \pm Id$. Montrer que

- i. $|\operatorname{tr}(\gamma)| = 2 \iff \pm \gamma \cong \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \iff \gamma$ possède un seul point fixe qui est dans $\mathbb{R} \cup \{\infty\}$. On dit alors que γ est parabolique et ses points fixes sont appelés des pointes de Γ . Prouver que si $\Gamma = SL_2(\mathbb{Z})$, alors l'ensemble de ses pointes est $\mathbb{Q} \cup \{\infty\}$.
- ii. $|\operatorname{tr}(\gamma)| < 2 \iff \gamma \cong \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}, \theta \in \mathbb{R} \iff \gamma \text{ possède deux points fixes conjugués}$ τ et $\overline{\tau}$ dans $\mathbb{C} \setminus \mathbb{R}$. On dit alors que γ est un élément elliptique. Prouver que γ est elliptique si, et seulement s'il est d'ordre fini. Trouver les points fixes des éléments elliptiques de $SL_2(\mathbb{Z})$, et décrire le corps $K = \mathbb{Q}(\tau)$.

iii. $|\operatorname{tr}(\gamma)| > 2 \iff \gamma \cong \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, a \in \mathbb{R}^*, |a| \neq 1 \iff \gamma \text{ possède deux points fixes distincts } \omega, \omega' \text{ dans } \mathbb{R} \cup \infty. \text{ On dit alors que } \gamma \text{ est hyperbolique. Lorsque } \Gamma = SL_2(\mathbb{Z}), \text{ décrire le corps } F = \mathbb{Q}(\omega), \text{ et le sous-groupe de } F^* \text{ engendré par } a.$

Exercice 6. Soient $f \in M_k$ et $g \in M_\ell$ des formes modulaires de poids k et ℓ respectivement. a) Montrer que $\ell f'g - kfg' \in M_{k+\ell+2}$.

- b) Obtenir le développement de Fourier et les formules de transformations modulaires de $\frac{i\pi}{12}E_2 := \frac{d}{d\tau}\log\eta(\tau)$. Est-ce une forme modulaire? De quel poids?
- c) Soit $D_0 = q \frac{\mathrm{d}}{\mathrm{d}q} = \frac{1}{2i\pi} \frac{\mathrm{d}}{\mathrm{d}\tau}$. Montrer que l'opérateur $f \mapsto D_0 f \frac{k}{12} E_2 f$ envoie M_k (resp. S_k) dans M_{k+2} (respectivement S_{k+2}).
 - i. Est-ce que $D_0 cE_2$, pour une constante c adaptée, envoie $\mathbb{C}E_2$ dans M_4 ?
 - ii. Exprimer $D_0\Delta$ et D_0E_{2k} , pour $1 \leq k \leq 6$ en termes des $E_{2\ell}$ et Δ .
 - iii. Prouver que $\tau(n) \equiv n\sigma_5(n) \mod 5$.

Exercice 7. Pour un entier D > 0, on considère l'ensemble $\mathcal{Q}(D)$ des fonctions quadratiques $Q(X) = aX^2 + bX + c$ avec $a, b, c \in \mathbb{Z}, b^2 - 4ac = D$ et a < 0.

Pour chaque nombre réel x, Zagier considère les sommes

$$A_D(x) = \sum_{\substack{Q \in \mathcal{Q}(D), \\ Q(x) > 0}} Q(x), \quad B_D(x) = \sum_{\substack{Q \in \mathcal{Q}(D), \\ Q(x) > 0}} Q^3(x), \quad C_D(x) = \sum_{\substack{Q \in \mathcal{Q}(D), \\ Q(x) > 0}} Q^5(x).$$

- a) Montrer que la somme qui définit $A_5(0)$ est une somme finie.
- b) Plus généralement, si $x \in \mathbb{Q}$ est un nombre rationnel, montrer que la somme qui définit $A_5(x), B_5(x), C_5(x)$ et même $A_D(x), B_D(x), C_D(x)$ est finie.
 - c) Calculer $A_5(0)$, $A_5(\frac{1}{2})$, $A_5(\frac{1}{3})$. Idem avec $B_5(0)$, $B_5(\frac{1}{2})$, $B_5(\frac{1}{3})$, puis $C_5(0)$, $C_5(1/2)$, $C_5(1/3)$.
 - d) i) Montrer que A_5 vérifie pour tout nombre rationnel x l'équation modulaire

(1)
$$x^2 A_5 \left(\frac{1}{x}\right) - A_5(x) = 2x^2 - 2.$$

- ii) En déduire que $A_5(x) = 2$ pour tout nombre rationnel x.
- iii) Montrer que

$$x^{6}B_{5}(\frac{1}{x}) - B_{5}(x) = 2x^{6} - 2$$
, puis que $B_{5}(x) = 2$.

iv) Montrer que $x^2A_D(1/x) - A_D(x) = \alpha_D(x^2 - 1)$ pour une constante α_D et que $x^6B_D(1/x) - B_D(x) = \beta_D(x^6 - 1)$, pour une constante β_D .

v) Montrer que $A_D = \alpha_D$ est constant, avec

$$\alpha_D = \sum_{b \in \mathbb{Z}, |b| < \sqrt{D}, b \equiv D \bmod 2} \sigma_1 \left(\frac{D - b^2}{4} \right).$$

Formuler un énoncé analogue pour B_D .

vi) Qu'est-ce qu'il se passe pour $x^{10}C_D(\frac{1}{x})-C_D(x)$? (Traiter l'exercice 8 pourra vous aider à répondre).

Exercice 8. Pour un entier n pair positif, on note $R_{\leq n}$ l'espace vectoriel des polynômes P de degré $\leq n$ qui vérifient la relation de période

(2)
$$P(x) = P(x+1) + (x+1)^n P\left(\frac{x}{x+1}\right).$$

- a) Déterminer une base et la dimension de $R_{\leq n}$ pour n=0,2,4,6,8,10,12.
- b) On rappelle qu'une forme modulaire $f(\tau) = a_0 + \sum_{m \ge 1} a_m q^m$ de poids k pour $SL_2(\mathbb{Z})$ satisfait l'équation fonctionnelle $f(-\frac{1}{\tau}) = \tau^k f(\tau)$. A une telle forme f on associe successivement la série

$$\tilde{f}(\tau) := \sum_{m>1} \frac{a_m}{m^{k-1}} q^m, \ q = \exp(2i\pi\tau),$$

puis le "polynôme de périodes"

$$r_f(\tau) := \tilde{f}(\tau) - \tau^{k-2} \tilde{f}(-1/\tau).$$

On suppose que f est une forme modulaire parabolique (i.e. $a_0 = 0$) de poids k pour $SL_2(\mathbb{Z})$. Démontrer que r_f est un polynôme de $R_{\leq k-2}$.

- c) Déterminer r_f lorsque $f = G_k$ est la série d'Eisenstein de l'exercice ??.
- d) Expliquer pour quoi la fonction \mathcal{C}_D dans l'exercice 7 n'est pas constante.

Indications de correction exercice 1.

a) est une simple vérification. Pour b), on commence par trouver

(3)
$$\epsilon_2(x)\epsilon_2(y) = (\epsilon_2(x) + \epsilon_2(y))\epsilon_2(x+y) + 2(\epsilon_1(x) + \epsilon_1(y))\epsilon_3(x+y),$$

puis l'on utilise les développements de (3) en y = 0 de la forme $\epsilon_2(y) = \frac{1}{y^2} + b + O(y)$ avec $b = 2\zeta(2)$, et $\epsilon_3(x+y) = \epsilon_3(x) + y\epsilon_3'(x) + O(y^2)$. Modulo O(y) Il vient

$$\epsilon_2(x)\left(\frac{1}{y^2}+b\right) = \left(\epsilon_2(x) + \frac{1}{y^2} + b\right)\left(\epsilon_2(x) + y\epsilon_2'(x) + \frac{y^2}{2}\epsilon_2''(x)\right) + 2\left(\epsilon_1(x) + 1/y\right)\left(\epsilon_3(x) + y\epsilon_3'(x)\right).$$

Les termes en $\frac{1}{y^2}$ et $\frac{1}{y}$ disparaissent, et ne restent que le terme constant qui donne

$$0 = \epsilon_2^2 + \frac{1}{2}\epsilon_2'' + 2\epsilon_1\epsilon_3 + 2\epsilon_3'.$$

Puisque $\epsilon_2'' = -2\epsilon_3' = 6\epsilon_4$, on trouve l'identité intermédiaire demandée

$$(4) 0 = \epsilon_2^2 + 2\epsilon_1 \epsilon_3 - 3\epsilon_4.$$

Le terme constant du développement de (3) en z=0 fournit quant à lui (utilisant les parités)

$$\epsilon_2^2(x) = (2\epsilon_2(x) + \frac{z^2}{2}\epsilon_2''(x))(1/z^2 + b) + 2(z\epsilon_1' - \frac{z^2}{2}\epsilon_1'' + \frac{z^3}{3!}\epsilon_1''')(\frac{1}{z^3} + O(z)),$$

ie $\epsilon_2^2 = 2b\epsilon_2 + \frac{1}{2}\epsilon_2'' + \frac{1}{3}\epsilon_1''' = 2b\epsilon_2 + \frac{1}{2}\epsilon_2'' - 2\epsilon_4$, ou encore

$$(5) 0 = -\epsilon_2^2 + 2b\epsilon_2 + \epsilon_4.$$

On reporte pour éliminer ϵ_4 , de sorte que $\epsilon_2^2 - 3b\epsilon_2 = \epsilon_1\epsilon_3$. On dérive, et l'on trouve $\epsilon_1\epsilon_4 = \epsilon_2\epsilon_3 - 2b\epsilon_3$. On reporte la valeur de ϵ_4 provenant de (5), d'où $(\epsilon_1\epsilon_2 - \epsilon_3)(2b - \epsilon_2) = 0$, $\epsilon_1\epsilon_2 = \epsilon_3$. On utilise ceci pour faire disparaître ϵ_3 , et on trouve l'équation différentielle voulue avec $b = 2\zeta(2) = \pi^2/3$, il vient a = 3b.

TD no 2.

Exercice 1. En poids 12, on a $E_{12} - E_4^3 = c\Delta$, pour une constante c à déterminer, puisque c'est une forme parabolique. En calculant le coefficient dominant, on trouve

 $E_4^3 = 1 + 3.240q + \dots = 1 + 3aq + \dots$ et $E_{12} = 1 + 65520/691q + \dots = 1 + bq$ d'où c = -3a + b. Comme 691 est premier à 65520 il s'ensuit que

$$691E_{12} = 691E_4^3 + (-691 * 3 * a + 691 * b)\Delta.$$

Ces q-séries sont à coefficients entiers. En les réduisant modulo 691 il vient $\tau(n) \equiv \sigma_{11}(n) \mod 691$.

Exercice 2. $g(\tau) = j(\tau/2) + j(2\tau) + j((\tau+1)/2)$ est holomorphe sur \mathbb{H} , et 1-périodique. On aussi, utilisant la modularité de j,

(6)
$$g(-1/\tau) = j(-1/(2\tau)) + j(-2/\tau) + j((1-1/\tau)/2)$$

(7)
$$= j(2\tau) + j(\tau/2) + j(\frac{2}{-1 + 1/\tau})$$

(8)
$$= j(2\tau) + j(\tau/2) + j(\frac{2\tau}{1-\tau})$$

(9)
$$= j(2\tau) + j(\tau/2) + j(-2 + \frac{2}{1-\tau})$$

(10)
$$= j(2\tau) + j(\tau/2) + j(\frac{\tau - 1}{2}) = g(\tau).$$

Reste à vérifier qu'elle est méromorphe à l'infini pour conclure que c'est une fonction modulaire de poids zéro pour $\Gamma(1)$.

Son q-développement est $g(\tau)=1/q^2+3*744+o(1)$, de sorte qu'elle est méromorphe en l'infini. C'est donc un polynôme en j. Comme $j(q)=\frac{1}{q}+a+bq+O(q)$, a=744, b=196884 on trouve successivement $j^2=\frac{1}{q^2}+2a/q+a^2+2b+O(q)$ et $g(\tau)-j^2=-2a/q-2b-a^2+3a+o(1)$, $g(\tau)-j^2+2aj=a^2-2b+3a+o(1)$. La partie o(1) étant une fonction modulaire de poids zéro, nulle à l'infini, elle est nulle.

$$g(\tau) = j^2 - 2aj + a^2 - 2b + 3a = j^2 - 2.744j + 162000.$$

Pour ce qui est du calcul récursif des coefficients, contentons nous d'en donner l'idée sur un exemple : supposons connus $j = 1/q + a_0 + a_1q + \ldots + a_5q^5 + O(q^6)$, et l'on veut calculer a_6 . Alors j^2 est connu mod q^5 , ainsi que $j(\tau)$ et $j(2\tau)$. Mais a_6 figure dans le coeff. de q^3 de $j(\tau/2)$ et $j((\tau+1)/2)$, donc on le récupère déjà dans un calcul mod q^4 .

exercice 5 : regarder le polynôme caractéristique et les valeurs propres des matrices.

b) Dans le cas elliptique, le stabilisateur de τ est un sous-groupe fermé, conjugué à un sous-groupe de $SO_2(\mathbb{R})$ qui est compact. C'est donc un groupe fini.

Dans le cas SL_2 , les valeurs propres vivent dans $\mathbb{Q}(\sqrt(\Delta))$, $\Delta = tr(A)^2 - 4$.