Hands-on Machine Learning with Kafka-based Streaming Pipelines

Strata, San Francisco, 2019

Boris Lublinsky and Dean Wampler, Lightbend

boris.lublinsky@lightbend.com dean.wampler@lightbend.com

If you have not done so already, download the tutorial from GitHub

https://github.com/lightbend/model-serving-tutorial

See the README for setup instructions.

These slides are in the presentation folder.

Outline

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

But first, introductions...

Outline

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

ML vs. Infrastructure Code

papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

ML vs. Infrastructure Code

papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Outline

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

Model Serving Architectures

- Embedding model as code, deployed into a stream engine
- Model as data easier dynamic updates
- Model Serving as a service use a separate service, access from the streaming engine
- Dynamically controlled streams one way to implement model as data in a streaming engine

Embedding: Model as Code

- Implement the model as source code
- The model code is linked into the streaming application at build time

Why is this problematic?

Impedance Mismatch

Continually expanding Data Scientist toolbox

So, "models as code" is problematic

Defined Software Engineer toolbox

Impedance Mismatch

Continually expanding Data Scientist toolbox

So, "models as code" is problematic

Defined Software Engineer toolbox

Embedding: Model as Code

• It also *mostly* eliminates the possibility of updating the model at runtime, as the world changes*.

*Although some coding environments support dynamic loading of new code, do you really want to go there??

- Hidden technical debt in machine learning systems
- Model serving patterns
 - · Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

Better Alternative - Model As Data

Standards:

Portable Format for Analytics (PFA)

PMML

<u>Predictive Model Markup Language</u> (PMML) is an XML-based language that enables the definition and sharing of predictive models between applications.

PMML

Implementations for:

Java (JPMML), R, Python Scikit-Learn, Spark here and here, ...

PFA

<u>Portable Format for Analytics</u> (PFA) is an emerging standard for statistical models and data transformation engines. PFA combines the ease of portability across systems with algorithmic flexibility: models, pre-processing, and post-processing are all functions that can be arbitrarily composed, chained, or built into complex workflows.

PFA

Implementations for:

Java (<u>Hadrian</u>), R (<u>Aurelius</u>), Python (<u>Titus</u>), Spark (<u>Aardpfark</u>), . . .

ONNX

Open Neural Networks Exchange (ONNX) is an open standard format of machine learning models to offer interoperability between various Al frameworks. Led by Facebook, Microsoft, and AWS.

ONNX

- Supported Tools page.
- Converters for Keras, CoreML, LightGBM, Scikit-Learn,
- PyTorch,
- third-party support for <u>TensorFlow</u>

TensorFlow

- TensorFlow model is represented as a computational graph of Tensors.
- Tensors are defined as multilinear functions which consist of various vector variables. (i.e., generalization of 2x2 matrices)
- TensorFlow supports exporting graphs in the form of binary protocol buffers

TensorFlow Export Formats

SavedModel - Features:

- Multiple graphs sharing a single set of variables.
- Support for <u>SignatureDefs</u>
- Support for <u>Assets</u>

Normal (optimized) export of a TensorFlow Graph.

 Exports the Graph into a single file, that can be sent over Kafka, for example

Considerations for Interchange Tools

- Do your training tools support exporting with a standard exchange format, e.g., PMML, PFA, etc.?
- Do your serving tools support the same format for import?
- Is there support on both ends for the model types you want to use, e.g., random forests, neural networks, etc.?
- Does the serving implementation faithfully reproduce the results of your training environment?

Outline

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

Model Serving as a Service

- Advantages
- Simple integration with existing technologies and organizational processes
- Easier to understand if you come from a non-streaming world
- Disadvantages
- Worse latency: remote calls instead of local function calls
- Coupling the availability, scalability, and latency/throughput of your streaming application with the SLAs of the service

Model Serving as a Service

- Advantages
 - Simple integration with existing technologies and organizational processes
- Easier to understand if you come from a non-streaming world
- Disadvantages
- Worse latency: remote calls instead of local function calls
- Coupling the availability, scalability, and latency/throughput of your streaming application with the SLAs of the service

Model Serving as a Service challenges

- Launch ML runtime graphs, scale up/down, perform rolling updates
- Infrastructure optimization for ML
- Latency optimization
- Connect to business apps via various APIs, e.g. REST, gRPC
- Allow Auditing and clear versioning
- Integrate into Continuous Integration (CI)
- Allow Continuous Deployment (CD)
- Provide Monitoring

Example: Clipper

Example: Seldon Core

Example: TensorRT

Example: TensorFlow serving

Example: Kubeflow Serving (proposal)

TODO

https://docs.google.com/document/d/1_s8CYdhlrQRu4BX2m7adQhVt_OTr4WSZXgUY0Z77GzY/edit#heading=h.n8q237dhw3zp

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

Rendezvous Architecture

Designed to handle the logistics of ML in a flexible, responsive, convenient, and realistic way. Specifically, it provides the following:

- Collect data at scale from a variety of sources and preserve raw data so that potentially valuable features are not lost.
- Make input and output data available to many independent applications (consumers), on premise, geographically distributed, or in the cloud.
- Manage multiple models during development and production.
- Improve evaluation methods for comparing models during development and production, including use of reference models for baseline successful performance.
- Have new models poised for rapid deployment.

Rendezvous Architecture

Rendezvous Architecture - Decoy

Rendezvous Architecture - Canary

How are those "arrows" implemented?

Log-Driven Enterprise

- Complete decoupling of services.
- All communications go through the log rather then services talking to each other directly.
- Specifically, stream processors don't talk explicitly to other services, but send async. messages through the log.

Example: Kafka

Model Serving in a Log-Driven Enterprise

A streaming system supporting model updates without interruption of execution (<u>dynamically controlled stream</u>).

Model Representation (Protobufs)

```
// On the wire
                                                 See the "protobufs"
syntax = "proto3";
                                                 project in the
// Description of the trained model.
                                                 example code.
message ModelDescriptor {
                        // Model name
 string name = 1;
 string description = 2; // Human readable
 string dataType = 3;
                       // Data type for which this model is applied.
 enum ModelType {
                       // Model type
                                                      ModelType modeltype = 4;
   TensorFlow = 0;
                                                      oneof MessageContent {
   TensorFlowSAVED = 2;
                                                        // Byte array containing the model
                        // Could add PFA, ONNX, ...
   PMML = 2;
                                                        bytes data = 5;
                                                        string location = 6;
```

Model Code Abstraction (Scala)

```
trait Model[RECORD, RESULT] {
  def score(input : RECORD) : RESULT
  def cleanup() : Unit
  def toBytes() : Array[Byte]
  def getType : Long
}
```

[RECORD, RESULT] are type parameters; compare to Java: <RECORD, RESULT>

See the "model" project in the example code.

```
trait ModelFactory[RECORD, RESULT] {
  def create(d : ModelDescriptor) : Option[Model[RECORD, RESULT]]
  def restore(bytes : Array[Byte]) : Model[RECORD, RESULT]
}
```


Production Concern: Monitoring

Model monitoring should provide information about usage, behavior, performance and lifecycle of the deployed models

```
case class ModelToServeStats(
                                           // Scala example
                                           // Model name
name: String,
                                           // Model descriptor
description: String,
modelType: ModelDescriptor.ModelType,
                                           // Model type
                                          // Start time of model usage
since: Long,
                                          // Number of records scored
usage: Long = 0,
duration: Double = 0.0,
                                          // Time spent on scoring
min: Long = Long.MaxValue,
                                          // Min scoring time
max: Long = Long.MinValue
                                          // Max scoring time
```


Queryable State

Ad hoc query of the stream state. Different than the normal data flow.

- Treats the stream as a lightweight embedded database.
- Directly query the current state of the stream.
 - No need to materialize that state to a datastore first.

Akka Streams

- A library
- Implements Reactive Streams.
- http://www.reactive-streams.org/
- Back pressure for flow control

Aakka streams

... and they compose

Aakka streams

- Part of the Akka ecosystem
- Akka Actors, Akka Cluster, Akka HTTP, Akka Persistence, ...
- Alpakka rich connection library
 - like Camel, but implements Reactive Streams
- Commercial support from Lightbend

- A very simple example to get the "gist":
 - Calculate the factorials for n = 1 to 10


```
import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
                                                                    6
import scala.concurrent._
                                                                   24
import scala.concurrent.duration._
                                                                    120
implicit val system = ActorSystem("QuickStart")
                                                                    720
implicit val materializer = ActorMaterializer()
                                                                    5040
                                                                    40320
val source: Source[Int, NotUsed] = Source(1 to 10)
                                                                    362880
val factorials = source.scan(BigInt(1)) ( (acc, next) => acc * next )
factorials.runWith(Sink.foreach(println))
                                                                    3628800
```

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

Imports!

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

```
import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._
```

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

Initialize and specify now the stream is "materialized"

6

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

40320 362880 3628800

5040

Æ.

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

126

Create a **source** of Ints. Second type represents a hook used for "materialization" - not used here

val source: Source[Int, NotUsed] = Source(1 to 10)40320val factorials = source.scan(Bigint(1)) ((acc, next) => acc * next)362880factorials.runWith(Sink.foreach(println))3628800


```
import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._
```

implicit val system = ActorSystem("QuickStart") implicit val materializer = ActorMaterializer()

Scan the source and compute factorials, with a seed of 1, of type BigInt (a flow)

Val cource Source[Int Notliced] = Source(1 to 10)

val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)

362880 3628800

6

24


```
import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
                                                                     6
import scala.concurrent._
                                                                     24
import scala.concurrent.duration._
                                                                     120
implicit val system = ActorSystem("QuickStart")
                                                                     720
implicit val materializer = ActorMaterializer()
                                                                     5040
                                              Output to a sink,
val source: Source[Int, NotUsed] = Source(1 to
                                              and run it
val factorials - source scan(BigInt(1)) ( (acc, ng
factorials.runWith(Sink.foreach(println))
```

Flow

40320 362880 3628800 Sink 57

Source

Using TensorFlow Serving in Akka Streams

Use Custom Actor to access TensorFlow Serving Server

Code Time

- Open the example code project
- We'll walk through the project at a high level
- Familiarize yourself with the tensorflowserver code
- Load and start the TensorFlow model serving Docker image
 - See <u>Using TensorFlow Serving</u> in the README
- Try the implementation and see if you have any questions

Model Serving from an Akka Streams App

- How do we integrate model serving (or any other new stateful capability) into an Akka Streams app?
- Make asynchronous calls to Akka Actors to do anything you want and keep the state
 - We'll discuss Actors that implement model serving within the microservice boundary (i.e., with a library)
 - Actors could also call an external service, like TensorFlow Serving (not shown)

Using Invocations of Akka Actors

Use a router actor to forward requests to the actor(s) responsible for processing requests for a specific model type. Clone for scalability!!

Microservice boundary

Akka Streams Example

Code time

- 1. Run the *client* project (if not already running)
- 2. Explore and run akkaServer project

Akka Streams Example

Check Queryable state

Curl or open in a browser:

http://localhost:5500/models

http://localhost:5500/state/wine

Handling Other Production Concerns with Akka and Akka Streams

•Scale scoring with workers and routers, across a cluster

Persist actor state with Akka
 Persistence

•Connect to *almost* anything with Alpakka

Data

Using Akka Cluster

Two approaches for scalability:

- Kafka partitioned topic; add partitions and corresponding listeners.
- Akka cluster sharing: split model serving actor instances across the cluster.

Flink

Flink is an open source stream-processing engine (SPE) that provides the following:

- Scales well, can run on thousands of nodes.
- Provides powerful checkpointing and save-pointing facilities that enable fault tolerance and restart ability.
- Provides state support for streaming applications, which minimizes the need for external databases for external access to the state.
- Provides powerful window semantics, enabling calculation of accurate results, even in the case of out-of-order or late-arriving data.

Flink Low Level Join

- Create a state object for one input (or both)
- Update the state upon receiving elements from its input
- Upon receiving elements from the other input, probe the state and produce the joined result

Key based join

Flink's CoProcessFunction allows key-based merge of 2 streams. When using this API, data is key-partitioned across multiple Flink executors. Records from both streams are routed (based on key) to the appropriate executor that is responsible for the actual processing.

Partition based join

Flink's *RichCoFlatMapFunction* allows merging of 2 streams in parallel (based on parallelization parameter). When using this API, on the partitioned stream, data from different partitions is processed by dedicated Flink executor.

Flink Example

Code time

- 1. Run the *client* project (if not already running)
- 2. Explore and run flinkServer project

Spark Structured Streaming

Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine.

- •Scales well, runs on thousands of nodes.
- •Express your streaming computation the same way you would express a batch SQL computation on static data:
 - •The Spark SQL engine will take care of running it incrementally and continuously and updating the final result as streaming data continues to arrive.

Spark Streaming

Spark Structured Streaming

Arbitrary Stateful Processing in Structured Streaming

Spark Streaming

Spark Structured Streaming - mapWithState

Spark Structured Streaming - continuous processing

Multi loop continuous processing

Spark Example

Code time

- 1. Run the *client* project (if not already running)
- 2. Explore and run sparkServer project

Outline

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

Additional Production Concerns for Model Serving

- Implications of models as data
- Software process, e.g., CI/CD
- Speculative execution of models

Models as Data - Implications

- If models are data, they are subject to all the same *Data Governance* concerns as the data itself!
 - Security and privacy considerations
 - Traceability, e.g., for auditing
 - • •

Security and Privacy Considerations

- Models are intellectual property
 - So controlled access is required
- How do we preserve privacy in model-training, scoring, and other data usage?
 - papers and articles on privacy preservation

Model Traceability - Motivation

- You update your model periodically
- You score a particular record R with model version N
- Later, you audit the data and wonder why R was scored the way it was

 You can't answer the question unless you know which model version was actually used for R

Model Traceability Requirements

- A model repository
- Information stored for each model instance, possibly including:
 - Name
 - Version (or other unique ID)
 - Creation, deployment, and retirement dates
 - Model parameters
 - Quality metric

Model Traceability in Use

- You also need to augment the records with the model ID, as well as the score.
 - Input Record

Output Record with Score, model version ID

Software Process

- How and when should new models be deployed? (CI/CD)
- Are there a quality control steps first?
- Should you do blue-green deployments, perhaps using a canary release as a validation step?

Speculative Execution

According to Wikipedia, speculative execution is an optimization technique, where:

- The system performs work that may not be needed, before it's known if it will be needed.
- If and when it *is* needed, we don't have to wait.
- The results are discarded if they aren't needed.

Speculative Execution

- Provides more concurrency if extra resources are available.
- Used for:
- branch prediction in pipelined processors,
- value prediction for exploiting value locality,
- prefetching instructions and files,
- etc.

Why not use it with machine learning??

General Architecture for Speculative Execution

- Starter (proxy) controls parallelism and invocation strategy
- Parallel execution by executors
- Collector responsible for bringing results from executors together

General Architecture for Speculative Execution

• Starter (p parallelisi

Look familiar? It's similar to the strategy
Parallel e

pattern we saw previously for invoking a "farm" of actors or external services.

• Collector But we must add logic to pick the result to return.

Model Serving Use Case - Guarantee Execution Time

- I.e., meet a latency SLA
- Run several models:
 - A smart model, but takes time 71 for a given record
 - A "less smart", but faster model with a fixed upper-limit on execution time, with *T2* << *T1*
- If timeout (latency budget) *T* occurs, where *T2 < T < T1*, return the less smart result
- But if T1 < T, return that result
 - (Do you understand why T2 < T < T1 is required?)

Model Serving Use Case - Ensembles of Models

- Consensus-based model serving
- N models (N > 2)
- Score with all of them and return the majority result
- Quality-based model serving
- N models with the same quality metric
- Pick the result with the best quality score for a given record
- Similarly for more sophisticated boosting and bagging systems

Architecture

https://developer.lightbend.com/blog/2018-05-24-speculative-model-serving/index.html

One Design Using Actors

- Hidden technical debt in machine learning systems
- Model serving patterns
 - Embedding models as code
 - Models as data
 - External services
 - Dynamically controlled streams
- Additional production concerns for model serving
- Wrap up

Recap

- Model serving is one small(-ish) part of the whole ML pipeline
- Use logs (e.g., Kafka) to connect most services
- Models as data provides the most flexibility
- Model serving can be implemented in "general" microservices (e.g., Akka Streams) or data systems like Flink, Kafka
- Model serving can in process (embedded library) or external service (e.g., TensorFlow Serving)
- Production concerns include integration with your CI/CD pipeline, and data governance

Thanks for coming! Questions?

lightbend.com/lightbend-platform boris.lublinsky@lightbend.com dean.wampler@lightbend.com

Don't miss:

- •Sean Glover, *Put Kafka in Jail with Strimzi* 4:20pm–5:00pm Wednesday. Location: 2006
- Dean Wampler, Executive Briefing: What it takes to use machine learning in fast data pipelines
 3:50pm-4:30pm Thursday. Location: 2020

