

1

SEQUENCE LISTING

<110> diaDexus, Inc.
Macina, Roberto
Turner, Leah
Sun, Yongming

<120> Compositions, Splice Variants and Methods Relating to Colon Specific Genes and Proteins

<130> DEX-0448

<150> US 60/431,132
<151> 2002-12-04

<150> US 60/431,144
<151> 2002-12-04

<160> 240

<170> PatentIn version 3.1

<210> 1
<211> 547
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (103)..(103)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (112)..(112)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (208)..(208)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (243)..(243)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (277)..(277)
<223> n=a, c, g or t

<400> 1
cagaagagta ttcacgcctg caatgttaggt ggccgactcc tgtgtcagga caggccacct 60
acattgcaga agagtattca cgccctgcgca gccaggatag cantgagctc angacaccgg 120

ccagggacat tctcgcgagt tacagccctg aacgacgtgg aaactcgtga ttgcacgtgg	180
ccacatgccc gatgcgaagg ccctgcantg agcagagacg tgtggacccc tgcaggatgc	240
agncaggaag ctgtggagtt ggtccagtat gcttacnntt agagaaggtt cgtggagaac	300
ggagaagaaa cgtaagaagc gaagtgamgg atkwastcar rgacagaaga tgaagaggag	360
aaaagccaag aggaycmkgr agcgaagagg aagagaagga agactcgcca gccagatgcc	420
aaagatgggg attcatacga mcccstatgac ttcagtgaca cagaggagga aatgcctcaa	480
gtacacactc caaagacggc agactcacag gagaccaagg aatcccagaa agtggagttg	540
agtgaat	547

<210> 2
<211> 325
<212> DNA
<213> Homo sapien

<400> 2 ggctggatt aataccctc gaagacaagg aggactatgg gccaataag gagtgccac	60
tgtgccttg tccaagattt tttgaatccc taagtcgaga tctaaaagg actatggtgt	120
ataccttagag gactcaggcc acactcttag aggtctcttc attattgtg acaaaggaat	180
cctaagacaa attactctga atgatcttcc tgtggtaga tcagtggatg agacactacg	240
tttggttcaa gcattccagt acactgacaa acacggagaa gtctgcccgt ccggctggaa	300
acctggtaag tgaaacaata atccc	325

<210> 3
<211> 1165
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (44)..(44)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (50)..(50)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (57)..(58)
<223> n=a, c, g or t

<220>

```
<221> misc_feature  
<222> (60)..(61)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (66)..(66)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (68)..(68)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (70)..(74)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (76)..(76)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (78)..(78)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (80)..(81)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (83)..(84)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (87)..(87)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature  
<222> (95)..(95)  
<223> n=a, c, g or t
```

```
<220>  
<221> misc_feature
```

<222> (98)..(98)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (101)..(101)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (104)..(104)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (110)..(111)
<223> n=a, c, g or t

<400> 3		
aaccgctccg gcaacgccaa ccgctccgct gcgcgcaggc tggncgtcan gctctcnncn	60	
ncagcnncnn nnnnancnan nannccnctt ccaanatntc ncanctctcn ncctccctct	120	
gctgcctgct ggtgttggcc aatgcccgg a caggccctc ttccatccc ctgtcgatg	180	
agctggtaa ctatgtsaac aaacggaata ccacgtggca ggccgggcac aacttctaca	240	
acgtggacat gagctacttg aagaggctat gtggtacatt cctgggtggg cccaagccac	300	
cccagagagt tatgtttacc gaggacctga agctgcctgc aagcttcgat gcacggaaac	360	
aatggccaca gtgtcccacc atcaaagaga tcagagacca gggctcctgt ggctcctgct	420	
gggccttcgg ggctgtggaa gccatctctg accggatctg satycacacc aatgcgcacg	480	
tgcagcgtgg aggtgtcggc ggaggacctg ctcacrtgct gtggcagcat gtgtgggac	540	
ggctgtatg gtggctatcc tgctgaagct tggacttct ggacaagaaa aggccctgg	600	
tctggtgcc atctatgaat cccatgttagg gtgcagacccg taytccatac cctccctgt	660	
agcaccacgt cgaaggggtc cgggbccccca tgcacggggg aggagatac ccscargtgt	720	
agcaagakct gtgagcctgg gtacagacccg actayaaacw ggacamgcgy tayggataca	780	
attctacagg tctccaatag cgaggacrtc atggcygaga tctmaaaaaaa cggcccggtgg	840	
aggagcttt ctctgttat cggacttcct ggtctagaag tcagggagtg taccacacacg	900	
tcacccggaga gatgattggg tggcatgcc atccggatcc tggctgggg agtggcgaag	960	
gacaccctac tggtggttgc atcgaaaca ctgactgggg tgacatgggt cttaaatacc	1020	
cgaggcagga cacgtggac cgcacacatg gggggggAAC cggccgagca gcggaaaaat	1080	
aatgcgggcg tggcactgcg gccacaggaa aacgtaatca gcacacaaaa agaggaggca	1140	

ggaacaaccc ggaaactgac gtgga

1165

<210> 4
<211> 754
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (29)..(29)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (135)..(135)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (176)..(176)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (235)..(235)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (256)..(256)
<223> n=a, c, g or t

<400> 4		
tcacctccct ccacgaggac gattggcgnt ctcggccttc ccggggccct gccctcaccc		60
cgatccggga tgaggagtgg ggtggccact cccccccggag tcccagggga tgggaccagg		120
agccgcggag ggagnaggca ggccccggct ggccggccag gcggcccccgg gcccgnntccg		180
atagacgcca ctggacgacc tcaccccgcc gagcaccgca cgagtcaggg agcanctctc		240
ccacgaataa tggtgngaga agccgggcac tacatgcccc cgcaagagccc cagccgggac		300
gacctctatg accaagacaa ctctagggac attcccacgc taccacaggc gaccccccac		360
tacgacaaca ttcaaggctcc tcgggagcgc cctcctgcct accccaggtc ccaccaccac		420
cgtacccggg accctcgaaa caacggctcc aggtccgggg acctcccccta tcatggcg		480
ctactggagg aggctgtgag gaagaaagg gtcggaggag aggaggatac cccacaagga		540
ggaggaggaa gaggcctact acccgccccgc gccggcccccgt tactcggaga ccgactcgca		600
ggcgtccccga gagcgcaggc tcaagaagaa cttggccctg agtcggaaaa gtttagtcgt		660

6

ctgatctgac gtttctacg tagcttygt atttttwty ytaatttcaa ggcacactga	720
tgaagcatac cgtacccctc cgagttataa cgtc	754

<210> 5
<211> 1269
<212> DNA
<213> Homo sapien

<400> 5 cagcccgcbc gggtaactgtg tgagtctgcg tctggggca cggggacggg cgccggggaa	60
ggttgatagg cgctgtgggt ttgagcttgg tgcggtgtgc gcgttgagg ggttatgttg	120
ttcggtgtcc tgtgtgtttg tatatggat agtgtgtgtct tggctgtgtct gaggtgtgtg	180
ctcgggtgtg ttattggcgt ggtcagatgc gtctggagt tttcgtgagg cgcccttgc	240
tgtccccggg cgcggggatg acgttgtgtt ggtcgtgggt tgcttgggg agccacacgt	300
gggaactgcg gttggaaaat attatagaag ggctaaatgt gggggcccat cctcccttga	360
cgggatttgt atgatgtcta gtgagggacg cgacgtatgt gggggcttgc gtttctgtc	420
gtgcacatctga gagtgtacgg ttttatggcg tgcactatgc cgttctcaa aaaagttcc	480
ttgttgaggc atagcatcag gagtctgagg tcgctcttgc gtcattaccc ttggaaatat	540
taagtgtgtt catcaggctg gtgtgttag ttagtaaca gctgtgttaa taattagagt	600
actggttctt aagtgatatc agttattgtt agggatgtatgt gttaagacta ttgatttcac	660
ctatacagtg aggatataagg tttataagag atacttcatc cagcacatccc ttactctgcc	720
agagtagtga agctaattaa acacgtttgg tttctgaata aattgaacta aatccaaact	780
atttcctaaa atcacaggac attaaggacc aatagcatct gtgccagaga tgtactgtta	840
ttagctggga agaccaattc taacagcaaa taacagtctg agactcctca tacctcagtg	900
gttagaaagca tgtctcttt gagctacagt agagggaaag ggattgtgt gttagtcaagt	960
caccatgctg aatgtacact gattccttta ttagtactgc ttaactcccc actgcctgtc	1020
ccagagagggc tttccaatgt agctcagtaa ttccctgttac tttacagaca ggaaagttcc	1080
agaaacttta agaacaaact ctgaaaacct atgagcaaat ggtgctgaat acwtttttt	1140
taaagccaca tttcattgtc ttagtcaaag caggmttatt aastgattat ttaaaattcr	1200
wywtkwtawa ttagcaactt caagtataac awcttwkaaa ctggaataag tgtttattt	1260
ctattaata	1269

<210> 6
<211> 1403
<212> DNA
<213> Homo sapien

<400> 6
cagcccgccg gggtaactgtg tgagtctgcg tctggggacggg cggggacggg cgccggggaa 60
ggttatagg cgctgtgggt ttgagcttgg tgcgttgcgc gcgttgagg ggttatgttgc 120
ttcgggtgtcc tgtgtgtttg tatatggat agtgtgtgtct tggctgtgtct gaggtgtgt 180
ctcgggtgtg ttattggcgt ggtcagatgc gtctggagt tttcgtgagg cgccttgc 240
tgtccccggg cgcggggatg acgttgcgtt ggtcgtgggt tgcttgcgttggg agccacacgt 300
gggaactgcg gttggaaaat attatagaag ggctaaatgt gggggcccat cctcccttga 360
cgggatttgt atgatgtcta gtgagggacg cgacgtatgt gggggcttgc gtttccttgc 420
gtgcacatctga gagtgtaacgg tggttatggcg tgcactatgc cgtttctcaa aaaagttcc 480
ttgttgaggc atagcatcag gagtctgagg tcgccttttgc gtcattaccc ttggaaatata 540
taagtgtgtt catcaggctg gtgttgcgtt tagtaaaca gctgtgttaa taatttagt 600
actggttctt aagtgtatc agttattgtt agggatgtatgtt gttaaagacta ttgatttcac 660
ctatacagtg aggatataagg tttataagag atacttcatc cagcatacccttactctgcc 720
agagtagtga agctaattaa acacgtttgg tttctgaata aattgaacta aatccaaact 780
atttcctaaa atcacaggac attaaggacc aatagcatct gtgccagaga tgtactgtta 840
ttagctggga agaccaatttc taacagcaaa taacagtctg agactcctca tacctcagtg 900
gttagaaagca tgtctcttt gagctacagt agagggaaag ggattgtgtgt gttagtcaaga 960
gagacatgtcttaaccact gaggtatgag gcatgtctct cttgagctac agtagaggggg 1020
aaggattgtgttgc agtcaccatg ctgaatgtac actgatttccttatgtatgac 1080
tgtttaactc cccactgcct gtcccagaga ggctttccaa tgtagctcag taattcctgt 1140
tactttacag acagggaaatgt tccagaaact ttaagaacaa actctgaaag acctattcag 1200
caccatttgc tcataggctt ttcagagttt gttcttaaag acctatgagc aaatgggtct 1260
gaatacwttt tttttaaagc cacatttcat tgtcttagtc aaagcaggmt tattaastga 1320
ttattnaaaa ttcrwywtkw tawattagca acttcaagta taacawcttw kaaactggaa 1380
taagtgtttta ttttcttata ata 1403

<210> 7
<211> 200
<212> DNA
<213> Homo sapien

<400> 7
ccacccggcag gttgtactca ccacactaat gcagaggaaa atctctaact tccaaaggtc 60
ccaccaagca gttcagaaac ctaccaccag taaatgttcc aactacagaa gtctcaccaa 120
cttctcagaa aaccaccaca aaaaccacca caccaaatgc tcawgcwaca cggagtacac 180

ctgccaggga tcctctagaa	200
<210> 8	
<211> 983	
<212> DNA	
<213> Homo sapien	
<400> 8	
ctctgggccc tgtgtttcc cgagcacctt ttctgactct ggctggatt acatgtgtcg	60
gtatgtggca cttgtccctt tttgccttg gatatgcga cccttctatt gtattgcgcc	120
ctttgtgccc gcactttccg gtccatgtcg gggatgatgg atcccccttc ccctttgctc	180
agttgcctcc tggggccagg ggcccctcac cacaagggtt ctggatatac agtttataaa	240
ggcctggccc tcccatgttt gcatgcctat gtacttctac gccaaacgtg tcagcccttc	300
ctcctaagc tctctgcgt gcctccctgt tctggagga cggtgtgctg gtgtgactga	360
atttggccct cttgtacagt taactctccc aggtggattt tgtggaggtg agtaaaaggg	420
gcattgagac tataaagcag tagacaatcc ccacatacca tctgttagagt tggaactgca	480
ttctttcaaa gtwtkrrtaw gcatataytt gtagggctgt agacttacgg tcctawtakt	540
ctkwtrrcca tygcttattc twgagcacwa aagtgataat caattakyac asttsawaca	600
tcacctttwt tgacttggc caagccctt tacagctcww tggcattttc ctcgcymagg	660
cctgtgaggt aactgggatc gcaccttta taccagagac ctgaggcaga taaaatwtat	720
ttccatctag gactagaaaa acttgggtct cttaccgcga gactgagagg cagaagtcag	780
cccgaaatgcc tgcagtttc atggagggga aacgcaaaac ctgcagttcc tgagtacctt	840
mtacaggcmc ggcccagcyt aggccccggg tggcaacacc acagcaagcc ggccccccct	900
cttttggcct tgcggataag ggagagttga ccgtttcat cctgcctccg ttattgtAAC	960
ttggaggttt acacgggtgc gtt	983
<210> 9	
<211> 676	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (676)..(676)	
<223> n=a, c, g or t	
<400> 9	
caaagacttc gactccctg agaacggtgc ggacagcttc cagagcttag actccctcct	60
tcagtcctgg aacagccagt cgtccttgct ggatgtgcaa cgggttcctt cttcgagag	120

cttsgragrt gactgcakcc wkastctmtk cctcaataag ccaacatgtm tttcaaggat	180
tacatccaag agaggagtga cccrktggag caaggcaaac cagttatacc tgcagctgtg	240
ctggccggct tcacaggaag tggacctatt cagctgtggc agtwtctcct ggagctgyta	300
tcasacaaat cctgccagtc attcatcasc tggactgkag ackgatggsa gtttaagctc	360
gccgaccccg atgagggtggc ccgccagtgg ggaaagaggc ttagcccacg atgaactacg	420
agaagctgaa ccggggctta cgctactatt acgactagaa catcatgcac aagacgtcg	480
agaaagcgct acgtgttctc gattaaatgt gcggaccta gaaacttgc tggggttca	540
acgccccgag ggaactgtaa cgcgataaac ctgggcagta acaacccgt acaccggaag	600
gtacttgacg ttccgcccgg ggacccaccc cttgaacccg gctcccaag gttcgtgg	660
acctgttggg tgcccn	676

<210> 10
<211> 2220
<212> DNA
<213> Homo sapien

<400> 10 gggggggaga agaggggagg gcatcatggg gccagtgccg tctgttcggc cctgggaagc	60
tgcgctggc tggcttgct cctgtgtggc tgtgccaggg ccatccagga gtgtgcact	120
tggacctgg agatggaa ggccgagagg ccttggact gctaaaccat ctggaaagtca	180
gcctttaca gacttcggca ggtccggct ctccaggtgt gatgggtca ggatggctga	240
acctggagat agtctggagt ctcttgaag gacctgctt gctcctgctg caaaggaact	300
gcaggcattt gtccttcct tccctcccc accccactgc tgaaaaaggt tggcgggggg	360
aaagcagctc tgctttcac agtgtatacg tgtcaggaga cagcagaggt gctgggttga	420
agattgcagg tggcaggccc agcccaggct gctgctcagt gggtgcctgg cttcatcat	480
ctcgccccac ctgcttcctg tgggtggcc agtcccagct gccgtcttaa agcagatgt	540
cgcaacagtg tacaggcaca cctgccatag caaattccta ggatacctca gtcctccatg	600
ttggtatgt tttctttca acaatgtgga aaatgcagtt taccaagaag ctttttttgt	660
tttcctttta agtattact tcaaaaaaagc aagcgatgag tttgcctgtg gagcgggttt	720
tgaggagatc tgggaggatg agacggtgct cccgatgtat gaaggccgga ttctggcaa	780
agtggagcgg atcgatttag ccctggggtc tggcttttgtt gaactgttgg agcccgaagc	840
tcttgtgaac tgtcttggt gtgagcaact ggcacaaaac atttgaagg aaaattaaac	900
caatgaagaa gacaaagtct aaggaagaat cggccagtgg gccttcggga gggcgggggg	960
agttgattt tcatgattca tgagctgggt actgactgag ataagaaaag cctgaactat	1020

10

ttataaaaaa	catgaccact	cttggctatt	gaagatgctg	cctgtatttg	agagactgcc	1080
atacataata	tatgacttcc	tagggatctg	aaatccataa	actaagagaa	actgtgtata	1140
gcttacctga	acaggaatcc	ttactgatat	ttatagaaca	gttgcattcc	cccatccccca	1200
gtttatggat	atgctgcctt	aaacttggaa	gggggagaca	ggaagttta	attgttctga	1260
ctaaacttag	gagttgagct	aggagtgcgt	tcatggtttc	ttcactaaca	gaggaattat	1320
gcttgcact	acgtccctcc	aagtgaagac	agactgtttt	agacagactt	tttaaaatgg	1380
tgccttacca	ttgacacatg	cagaaaattgg	tgcgtttgt	ttttttttt	tcctatgctg	1440
ctctgttttgc	tcttaaaggt	cttgagggtt	gaccatgttgc	cgtcatcatc	aacattttgg	1500
gggttgtgtt	ggatggatg	atctgttgc	gagggagagg	cagggAACCC	tgctccttcg	1560
ggccccaggt	tgatcctgtg	actgaggctc	cccctcatgt	agcctccccca	ggcccagggc	1620
cctgaggcct	gctagaatca	ctggcgctgt	gtttcgtgg	aaatgacagt	tccttgtttt	1680
ttttgtttct	gtttttgttt	tacattagtc	attggaccac	agccattcag	gaactacccc	1740
ctgccccaca	aagaaatgaa	cagttgtagg	gagacccagc	agcaccttcc	ctccacacac	1800
cttcatttttgc	aagttcgggt	ttttgtgttgc	agttaatctg	tacattctgt	ttgccattgt	1860
tacttgtact	atacatctgt	atatagtgt	cggcaaaaga	gtattaatcc	actatctcta	1920
gtgcttgact	ttaaatcagt	acagtacctg	tacctgcacg	gtcacccgct	ccgtgtgtcg	1980
ccctatatttgc	agggctcaag	ctttcccttg	tttttggaaa	ggggtttatg	tataaatata	2040
ttttatgcct	ttttattaca	agtcttgta	tcaatgactt	ttgtcatgac	attttgttct	2100
acttataactg	taaattatgc	attataaaga	gttcatttaa	ggaaaattac	ttggtacaat	2160
aattattgtat	attaagagat	gtagccttta	ttaaaatttt	atattttca	aaaaaaaaaaa	2220

<210> 11
<211> 1407
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (1175)..(1175)
<223> n=a, c, g or t

<400> 11	tcgacccaks	gcgatcwcgg	aggagaagca	ggagctgtcg	ggaagatcag	aagccagtca	60
	tggatgacca	gcgcgacctt	atctccaaca	atgagcaact	gcccatgctg	ggccggcgcc	120
	ctggggcccc	ggagagcaag	tgcagccgcg	gagccctgttgc	cacaggcttt	tccatcctgg	180
	tgactctgtct	cctcgctggc	caggccacca	ccgcctactt	cctgtaccag	cagcagggcc	240

11

ggctggacaa	actgacagtc	acctcccaga	acctgcagct	ggagaacacctg	cgcacatgaagc	300
ttcccaagcc	tcccaaggct	tgagcaaga	tgcgcatggc	caccccgctg	ctgatgcagg	360
cgctgccat	gggagccctg	ccccaggggc	ccatgcagaa	tgccaccaag	tatggcaaca	420
tgacagagga	ccatgtgatg	cacctgctcc	agaatgctga	ccccctgaag	gtgtaccgc	480
cactgaaggg	gagcttcccc	gagaacctga	gacaccta	gaacaccatg	gagaccatag	540
actggaaggt	ctttgagagc	tggatgcacc	attggctcct	gtttgaaatg	agcaggcact	600
ccttggagca	aaagcccact	gacgctccac	cgaaagtact	gaccaagtgc	caggaagagg	660
tcagccacat	ccctggctgt	ccacccgggt	tcattcaggc	ccaagtgcga	cgagaacggc	720
aactatctgc	cactccagtg	ctatggggag	catcggtac	tgctggtgtg	tcttcccaa	780
cggcacggag	gtccccaaaca	ccagaagccg	cgggcaccat	aactgcagtg	agtcaactgga	840
actggaggac	ccgtcttctg	ggctgggtgt	gaccaagcag	gatctggcc	cagtccccat	900
gtgagagcag	cagaggcggt	cttcaacatc	ctgccagccc	cacacagcta	cagctttctt	960
gtcccttca	gcccccaagcc	cctcccccata	tcccaccctg	tacctcatcc	catgagaccc	1020
tggtgccctgg	ctctttcgtc	acccttggac	aagacaaacc	aagtgcgaac	agcagataac	1080
aatgcagcaa	ggccctgctg	cccaatctcc	atctgtcaac	aggggcgtga	ggtcccaggd	1140
aagtggccaa	aagcctagac	agataccccc	gttcnctgac	avtacacagc	agcctccaac	1200
acaaggctcc	aaagkaccta	gggctcatgg	acgagkatgg	gaaggcacag	ggagaaggga	1260
taaccctaca	ccckagaccc	caggctggac	atgctgactg	tcctctcccc	tccagccctt	1320
ggccttggct	tttcttagct	atttacmtgc	aggctgagcc	actcwyrttc	cctttccca	1380
gccatcactc	cccgaggaag	agccaat				1407

<210> 12
<211> 673
<212> DNA
<213> Homo sapien

<400> 12	ggtcgcactg	gtgatgcggt	ctgttgcctcc	ccggcctcct	ggactcctgg	tcccskggtc	60
	tcccaagcgct	ggtttcgact	tcaagcttcct	gccccagcca	cctcaagaga	aggctcacga	120
	tggtgccgc	tactaccggg	ctgatgatgc	caatgtggtt	cgtgaccgtg	acctcgaggt	180
	ggacaccacc	ctcaagagcc	tgagccagca	gatcgagaac	atccggagcc	cagagggcag	240
	ccgcaagaac	cccgccccca	cctgccgtga	cctcaagatg	tgccactctg	actggatgag	300
	tggcgagtag	tggattgatc	ccaaactaag	gctgcaggct	ggatgccatc	ctattcgtt	360
	catgcgatca	atggagactg	gtgagacgct	gcgtgtaccc	cactcagcgt	cagtgtggcg	420

12

ccagaagaac tggtacatca gcaagaaccc caaggacaag aggcatgtct ggttcggcga	480
gagcatgacc gatggattcc agttcgagta tggcggccag ggctccgacc ctgccatgt	540
ggccatccag ctgacccccc tgccctgtat gtccasccag gccttcaga acatcaccta	600
ccactgtaaag aacagtgtgg cctacatgga ccaccagact ggcaacccctt aagaaggccct	660
gctcccccag ggc	673

<210> 13
<211> 382
<212> DNA
<213> Homo sapien

<400> 13 agcagcatgg cacttaacag agagttctct ttcattgtga tcactaccgt gacacttact	60
tttgtgcctat caggacttt tgcaatattt cgctctgtcg gctttccaat cttcaggat	120
atcatcgagc tagaccatcc cctactatgg atttatttttt tttcccttca aacacagtaa	180
ggaaaacaatc tattactttt ttcctaaaaa ggagaattta tagcactgtat atacagctww	240
aaaatattttt tagaatgtatg taaatagtta accttcagta gtctattaag gcattaatac	300
ttctctgaca tgcgcttttggagg ggtcctgaag gtgcattatc gtctgtgatt	360
actgcttgggg atgtgttctt tg	382

<210> 14
<211> 911
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (911)..(911)
<223> n=a, c, g or t

<400> 14 agcggAACGG agagaacagg aaAGCGCAG gagCCGvCGC caccaccAGC gcAGCAGTCC	60
tggagCTGTG aggAGATTG GGCCTCACCC CTGCCTCCCC TGCGTCCCAG CACCGGCCGC	120
TTCCTGTCTC GGACCCATTC CAACAATCTC GTAAAACATG GTGGATTACT ATGAAGTTCT	180
AGGCCTGCAG AGACATGCAG TCTACCCAGG GGATATTACA AAAGGCATAT CGGGAAACTG	240
GCACTGAAGT GGCACTCCAGA TAAAAATCCT GAGAATAAAG AAGAAGCAGC AGCAGAAAAT	300
TCAAGCAAGT AGCGGAGGCA TATGAAGTGC TGTGGATGC TAAGAAACGG GACATCTATG	360
ACAAATATGG CAAMAGAAGG ATTAAATGGT GGAGGACGGA GGTGGAAGTC ATTTGACAG	420
TCCATTGAA TTGGCTTCA CATTCGTAAC CCCAGATGAT GTCTTCAGGG AATTTTTAG	480
GTGGAAGGGA CCCATTTCA TTTGACTTCT TTGAAGACCC TTTGAGGAC TTCTTGGGA	540

atcgaagggg tccccgagga agcagaagcc gagggacggg gtcgtttak tctgcgttca	600
gtggatttcc gtctttgtta agtggatggt cttctatgga tgcaggattt acttcattgg	660
ggtcactggg tcacggggtc ctcactctat tctcttccac gtcatttggt ggtagtggca	720
tgggcaacta taaatcgata tcaacttcca ctaaaatttgtt taatggcaga ccaatcacta	780
caaagagaat tggtgataac agtcaagaca gagtacaagt tgaagatgat ggccagttaa	840
agttcttaac tattggttat gagcagctgc tgtgcttggta aacaagtga ttcaacgcac	900
gcgccttagct n	911

<210> 15
<211> 431
<212> DNA
<213> Homo sapien

<400> 15 ttaagakcgc kacgggcgct ttcccttcag cggagcgcgg cgccaagatg gcagtgc当地 tatccaagaa gaggaagttt gtcgctgatg gcatcttcaa agctgaactg aatgagtttc ttactcggga gctggctgaa gatggctact ctggagttga ggtgc当地 acaccaacca ggacagaaaat cattatctt aaccacagaa cacagaatgt tcttggtgag aaggccoggc ggattcggga actgactgct gtagttcaga agaggttgg cttccagag ggcagtgtag agctttatgc tgaaaaggtg gccactagag gtctgtgtgc catttsccca gcagagyyty tgcshtacma actcyaggas ggctcgctgc gccgcgttccatcgct gtcccgac cccatggggc c	60 120 180 240 300 360 420 431
--	---

<210> 16
<211> 1047
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (7)..(7)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (64)..(64)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (66)..(66)
<223> n=a, c, g or t

```
<220>
<221> misc_feature
<222> (71)..(71)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (73)..(73)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (80)..(80)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (95)..(95)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (110)..(110)
<223> n=a, c, g or t

<220>
<221> misc_feature
<222> (136)..(136)
<223> n=a, c, g or t

<400> 16
'cccatgnccct gcagaaacac ctggctggc tgggcctgac tgaggccatt gacaagaaca      60
aggnntttt ntnacgcatt tcaggcaaga aggnnttta cctggccan ttccacgcc      120
accgcctttg agttgnacac agatggcaac cccttgacc aggacatcta cgggcgcgag      180
ggaggcgcag ccccaagctg ttctacgccc accaccctt catttctta gtgcgggaca      240
cccaaagcgg ctccctgcta ttcatgggc gcctggtccg gcctaagggt gacaagatgc      300
gagacgagtt atagggcctc agggtgcaca caggatggca ggaggcatcc aaaggctcct      360
gagacacatg ggtgttattt ggggtggggg ggaggtgagg taccagcctt ggatactcca      420
tgggggtgggg gtggaaaaac agaccgggggt tcccggtgtc ctgagcggac cttccagct      480
agaattcact ccacttggac atgggccccca gataccatga tgctgagccc ggaaactcca      540
catcctgtgg gacctggcc atagtcattc tgcctgcct gaaagtccca gatcaagcct      600
gcctcaatca gtattcatat ttatagccag gtaccttctc acctgtgaga ccaaatttag      660
ctaggggggt cagccagccc tcttctgaca ctaaaacacc tcagctgcct ccccagctct      720
```

15

atcccaacct ctcctaacta taaaactagg tgctgcagcc cctgggacca ggcaccccca	780
gaatgacctg gccgcagtga ggccgattga gaaggagctc ccaggagggg cttctggma	840
gactctggtc aagaagcatc gtgtctggcg ttgtgggat gaacttttg ttttgttct	900
tcctttta gttcttcaaa gatagggagg gaagggggaa catgagcctt tggctatc	960
aatccaagaa cttatttta catttttt tcaataaaac tttcccattt gsaaaraaac	1020
ccaaaaaaaaac cgagactagt tctctcc	1047

<210> 17
<211> 833
<212> DNA
<213> Homo sapien

cctgatgtcg ccacgatttc ccgcgtggcc gtgggtggtg aagctttag cctcgctcca	60
tgaggatctt tcatgaggta tcggtcaggt cccggcccaag cccggctcca acgccccat	120
ggctggggga gggcgtagcc ctcttagatg ggcccccctgt gggtgacccc ctctcccgag	180
tccctgacca tgccgcgttc gcaccaaaac cgtgaagaag gcggcccgaa tcatcataga	240
aaagtactac acgcgcctgg gcaacgactt ccacacgaac aagcgcgtgt gcgaggagat	300
cgccattatc cccagcaaaa agctccgcaa caagatagca ggttacgtca cgcatctgat	360
gaagcgaatt cagagaggcc cagtaagagg tatctccatc aagctgcagg aggaggagag	420
agaaaggaga gacaattatg ttcctgaggt ctcagccctg gatcaggaga ttattgaagt	480
agatcctgac actaaggaaa tgctgaagct tttggacttc ggcagtctgt ccaaccttca	540
ggtcactcag cctacagttt ggttgcattt caaaacgcct cggggacctg tttgaatttt	600
ttctgttagtg ctgttatttt ttcaataaaat tctggacca ccagccttag aaacacaaga	660
aagagaaaact gggaggccta tattgcgggg gcgggaaaga ggggttggag aagatggcc	720
taaccgggtgg tgtatccctgg ttgtcgctga cgcagagggt tgctgtgtac tagatgggc	780
agaatctggc cgggtcccta tagtggaggt ctgcattaaat tacaataaaac gag	833

<210> 18
<211> 1106
<212> DNA
<213> Homo sapien

cagtaagttt ggcattgggtg cagagggagg ggtccagtgc acccttttag tccttacctc	60
gtgggttagtt gttgccttgt gactgcccatt tagggcaatt gaatagcaca ttgggtggcta	120
tacgttggttt cacagtgcctc aagtgcatacg cgcctgccc gttgttcgca aggcaggagc	180

16

aactcctttt	taggcaacgg	gggtctctaa	tgccc gagca	ctgtgggctt	ggtcacagga	240
ggtgcgcatg	tcagcagcac	ggagcctccc	cgggcaggat	gacttttag	ggggacacag	300
atgtctggc	aatgccaggg	tcctgggaac	agaggccccg	agcaggacca	ggagtgcggg	360
cagcgcgggc	cgggggcttc	tgggagccaa	aggcgaggct	gaggttgcaa	actctgggc	420
caacatgggc	cgcgttcgca	ccaaaaccgt	gaagaaggcg	gcccgggtca	tcatagaaaa	480
gtactacacg	cgcctggca	acgacttcca	cacgaacaag	cgcgtgtgcg	aggagatcgc	540
cattatcccc	agcaaaaagc	tccgcaacaa	gatagcaggt	tacgtcacgc	atctgtatgaa	600
gcgaattcag	agaggccca	taagaggtat	ctccatcaag	ctgcaggagg	aggagagaga	660
aaggagagac	aattatgttc	ctgaggtctc	agccttgat	caggagatta	ttgaagtata	720
tcctgacact	aaggaaatgc	tgaagctttt	ggacttcggc	agtctgtcca	accttcagg	780
cactcagcct	acagttggga	tgaatttcaa	aacgcctcgg	ggacctgttt	gaatttttc	840
tgttagtgctg	tattatttc	aataaatstg	ggacmacagc	ataaaaatata	aaagacagag	900
agcaataaat	gcaactgcaa	ataatgcctg	ctccaagcac	gacacaaaaaa	acagaaccat	960
ccggcaaaac	caaaaacaaat	agaaacacccg	acatacacag	caaacaagga	catgaaccag	1020
caacccgcga	tgaagacaaa	acaaacgcgc	gacgcaaaaaa	gaacaaacca	taccaccgaa	1080
ggatactcca	caccaacccg	gcaaat				1106

<210> 19
<211> 744
<212> DNA
<213> Homo sapien

<400> 19						
taacaggcct	cgcctgtgct	tcctgtttcc	tctttacca	aggacccgcc	aacatgggcc	60
gcgttcgac	caaaaaccgtg	aagaaggcg	cccgggtcat	catagaaaaag	tactacacgc	120
gcctggca	cgacttccac	acgaacaagc	gcgtgtgcga	ggagatcgcc	attatcccc	180
gaaaaagct	ccgcaacaag	atagcaggtt	acgtcacgc	tctgtatgaa	cgaattcaga	240
gaggcccagt	aagaggtatc	tccatcaagc	tgcaggagga	ggagagagaa	aggagagaca	300
attatgttcc	tgaggtctca	gccttggatc	aggagattat	tgaagtagat	cctgacacta	360
aggaaatgct	gaagctttt	gacttcggca	gtctgtccaa	ccttcaggatc	attcatcccc	420
actgtaggct	gagtgacctg	aaggttggac	agactgctca	gcctacagtt	gggatgaatt	480
tcaaaacgcc	tcggggacct	gtttgaattt	tttctgtatg	gctgtattat	tttcaataaa	540
ttctgggacc	accagccta	gaaacacaag	aaagagaaac	tgggaggcct	atattgcggg	600
ggcgggaaag	aggggttgg	gaagatggc	ctaaccggtg	gtgtatcctg	gttgcgtcg	660

17

acgcagaggt ttgctgtgta ctagatgggg cagaatctgg ccgggtccct atagtggagg	720
tctgcatcaa ttacaataaaa cgag	744
<210> 20	
<211> 1559	
<212> DNA	
<213> Homo sapien	
<400> 20	
cttgcggcatt gcggcatkgg cagtatcygc ckscatcctc ttccgtgagg cgcgctgaga	60
ccctggacyg gcctcctgar aggwtgccgg tgcgggcgcc cgccggagagg gacccgtcgc	120
catgggccgt gtgatccgtg gacagaggaa gggcgccggg tctgtttcc gcgcgcacgt	180
gaagcaccgt aaaggcgctg cgccctgcg cgccgtggat ttgcgtgagc ggcacggcta	240
catcaagggc atcgtcaagg acatcatcca cgacccgggc cgccgcgcg ccctcgccaa	300
ggtgttcttc cgggatccgt atcggtttaa gaagcggacg gagctgttca ttgcccggca	360
gggcattcac acgggcccagt ttgtgtattt cggcaagaag gcccagctca acattggcaa	420
tgtgctccct gtgggcacca tgccctgaggg tacaatcggt tgctgcctgg aggagaagcc	480
tggagaccgt ggcaagctgg cccgggcattc agggactat gccaccgtta tctcccacaa	540
ccctgagacc aagaagaccc gtgtgaagct gcccctccggc tccaagaagg ttatctcctc	600
agccaacaga gctgtggttt gtgtggtggc tggaggtggc cgaattgaca aacccatctt	660
gaaggctggc cgggcgtacc acaaataaa ggcaaagagg aactgctggc cacgagtacg	720
gggtgtggcc atgaatcctg tggagcatcc ttttgaggt ggcaaccacc agcacatcg	780
caagccctcc accatccgca gagatcccc tgctggccgc aaagtgggtc tcattgctgc	840
ccgcccggact ggacgtctcc ggggaaccaa gactgtgcag gagaaagaga actagtgc	900
aggcctcaa taaagttgt gtttatgcca aaaaaaaaaaaaaaaa gaaaacaaaa	960
aaaaaaaaaaaa aaaaaaggc agaaaaaaaaaa aaagaaaaac caaagcaaaa ggaagaaaa	1020
agaaaaaaaaa aaaaagaaga agaagaggca gagaggagaa caagagggcg caccacacac	1080
agccagcggg gccaaacacc accccacggc gacaacaacc gacagagaga gagaccaacc	1140
ctcacccagg cggagagggc gggcgccgc gagaagaaaa aaccacaaaa aacagccaa	1200
cacgcgcaac gaagcgacca cacacaaagc agaagaaaaac accgaaaagc ctaagaagga	1260
agaggcacgc caccggcaca ccgggggcga caacggcgca ccgaccacgc acgacagac	1320
atagcaccaa gcagcagaag gcggagcaac catagacagc catcagaccc acagccgagg	1380
aacacgacag acgcaccacc cccaggcgccg ccgaagcata gacgaacaca cgagataaac	1440
accacagtga cggcgccgca gaggaagcac acgacacatc caacgaagga aagaacgaaa	1500

cacaaaagcaa aacaggccac cgccagaaac aatcagtcac gccagcccc cacaccagc 1559

<210> 21
<211> 1745
<212> DNA
<213> Homo sapien

<400> 21
gcggccggcc gggcaggtac ctagaagaga ggcgggtcaa agaagtatgt agataacgca 60
tatctcaggt cataggctat cccatcaccc tttatttggc gaaggrcaga gaagggaaatt 120
agtatgtatg mwggcagagg aagagaaagg tgcagcaaca rcacagcagg caagcataac 180
agcatgcattg aagcaaaagc ccaagatcg magatgtggg ttcagatgca ggcaggcatg 240
acagcggtaa ggcataagca agaagcaaaa ctcaagcaag catcaaagca gcaaatacat 300
tgatccaggc aagcaactaa acaagaccaa gcctatttgg accagaaacc ctgatgacat 360
cacccaagag gagtatggag aattctacaa gagcctcaat aatgacttggg aagaccactt 420
ggcagtcaag cactttctg tagaaggtca cgttggatt caggscatttgc ttatatttc 480
ctcgccggc tccctttgac ctttgtaga acaagaagaa aaagaacaac atcaaactct 540
atgtccgccc tggatccatc atggacagct gtatgttttttggat gataccagag tatctcaatt 600
ttatccgtgg tggatccatc tctgaggatc tgccctgaa catctcccgaa gaaatgctcc 660
agcagagcaa aatcttggaaa gtccattcgc aaaaacatttgc ttaagaagtg ctttgagctc 720
ttctcttagag ctggcagaag acaaggagaa ttacaagaca attcctatga gggcacttct 780
cataaaaatc tcaacgcttg gaatccacga agacatccac taaccggcgc cgccctgtctg 840
agagctgtcg cgctatcata cctccctgtc tggagatgag atgacatctc tgcagatgt 900
tgtttctcgc atgaaggaga cacagaagtc catctattac atcacttggtg agagcaaaga 960
gcaggtggcc aactcagctt ttgtggagcg agtgcggaaa cggggcttcg aggtggata 1020
tatgaccgag cccatttgacg agtactgtgt gcagcagctc aaggaatttg atggaaagag 1080
cctggctctca gttaccaagg agggcttggc gctgcctgag gatgaggagg agaagaagaa 1140
gatggaaagag agcaaggccaa agtttgagaa cctctgcaag ctcatgaaag aaatcttgc 1200
taagaagggtt gagaagggtga caatctccaa tagacttggc tcttcacctt gctgcattgt 1260
gaccagcacc tacggcttggc cagccatat ggagcggatc atgaaagccc aggcacttcg 1320
ggacaactcc accatgggct atatgtatggc caaaaagcac ctggagatca accctgacca 1380
ccscattgtt ggagacgctg cggcagaagg ctgaggccga cgagaatgtt aaggcagttt 1440
aggacctgggt ggtgctgtcg tttgaaaccg ccctggatc ttctggcttt tcccttgagg 1500
agtccccaga cccactccaa ccgcgtatcta tcgcgtatc aagcttaggtc taggtattga 1560

19

tgaagatgaa gtggcagcag aggaacccaa tgctgcagtt cctgatgaga tccccccctct 1620
cgagggcgt gaggatgcgt ctcgcattcg aggaagtgcg gtttaggttag gagtcgtact 1680
tggaaacact tgtgttttg gtttttgtgt ccccatggg gctcccactg cgccctcgagtt 1740
gcccc 1745

<210> 22
<211> 379
<212> DNA
<213> Homo sapien

<400> 22 gtcgccaggt ccgcagggtcc gcctggccga gcaggaggcg ccatcatggg agtggacatc 60
cgccataaca aggaccgaaa ggttcggcgc aaggagccca agagccagga tatctacctg 120
aggctgttgg tcaagttata caggtttctg gccagaagaa ccaactccac attcaaccag 180
gttgtgttga agaggttgtt tatgagtgc accaaccggc cgccctctgtc cctttcccg 240
atgatccgga agatgaagct tcctggccgg gaaaacaaga cggccgtggt tgtggggacc 300
ataactgtatg atgtgcgggt tcaggaggtta cctcgccgcg accacgcatc catcacactg 360
cgcccgctcga catgcatct 379

<210> 23
<211> 1577
<212> DNA
<213> Homo sapien

<400> 23
ttcccgccgg aatctggacc gcgaccgggtt ccacggacgg actccggggc gtccgtgggaa 60
gctgggtgcc tgaggacctt ggcggtcggg cggggcagg agggtgtcagg tggtcgtat 120
tcgggatgca cagtaatctg gcggtcagct gcgggcccga ctgggatccg gggcttcggg 180
ggcgcgcgcc gtcgggggtc cgagctggaa tcttgctgca cgcgtcacgt actcactt 240
gctagtatgt tctggagcta cggaattgtc atgtgggagg tcatgagcta tggagagcga 300
ccctactggg acatgagcaa ccaggatgtc atcaatgccg tggagcagga ttaccggctg 360
ccaccaccca tggactgtcc cacagcactg caccagctca tgctggactg ctgggtgcgg 420
gaccggaaacc tcagggccaa attctccag attgtcaata ccctggacaa gctcatccgc 480
aatgctgcca gcctcaaggt cattgccage gctcagtctg gcatgtcaca gcccctcctg 540
gaccgcacgg tccccagatta cacaaccttc acgacagttg gtgattggct ggatgccatc 600
aagatggggc ggtacaagga gagcttcgtc agtgcggggt ttgcatacttt tgacctggtg 660
gcccagatga cggcagaaga cctgctccgt attggggtca ccctggccgg ccaccagaag 720
aagatcctga gcaatgtatcca ggacatgcgg ctgcagatga accagacgct gcctgtgcag 780

gtctgacacc ggctcccacg gggaccctga ggaccgtgca gggatgccaa gcagccggct	840
ggactttcgg actcttggac ttttggatgc ctggccttag gctgtggccc agaagctgga	900
agtttggaa aggcccaagc tgggacttct ccaggcctgt gttccctccc caggaagtgc	960
gccccaaacc tcttcataatt gaagatggat taggagaggg ggtgatgacc cctccccaaag	1020
ccccctcaggg cccagacctt cctgctctcc agcagggat ccccacaacc tcacacttgt	1080
ctgttcttca gtgctggagg tcctggcagg gtcaggctgg ggtaagccgg ggttccacag	1140
ggcccagccc tggcaggggt ctggcccccc aggttaggcgg agagcagtcc ctccctcagg	1200
aactggagga ggggactcca ggaatgggaa aatgtgacac caccatcctg aagccagctt	1260
gcacctccag tttgcacagg gatttgtct gggggctgag ggccctgtcc ccaccccccgc	1320
ccttggtgct gtcataaaaag ggcaggcagg ggcaggctga ggagttgccc tttgcccccc	1380
agagactgac tctcagagcc agagatggga tgtgtgagtg tgtgtgtgtg tgtgtgcgcg	1440
cgcgcgcgcg tgtgtgtgtg cacgcactgg cctgcacaga gagcatgggt gagcgtgtaa	1500
aagcttggcc ctgtgcccta caatggggcc agctggggcg acagcagaat aaaggcaata	1560
agataaaaaa aaa	1577

<210> 24
 <211> 1833
 <212> DNA
 <213> Homo sapien

<400> 24	
tgcaaggcca ggaagctaca gggaaagttc tgatcaaaat acacaaagac acaagccagg	60
tccccaccgc gcttggcgat gcatccatag cagccttggt gctgtggaca ctccctgggg	120
cccagcgaag gggagagttt gctcccaaag ggcaccaat gaccaacatt tgccccccgg	180
aggaaagaac tggAACcAGC ctctgacctg tccaggtgcc ctgtccagct gactgcaagg	240
acagagagga gtcctgccc gctcttggat cagtctgtg gccgaggagc ccgggtggagc	300
caggggtgac cctggagccc agcctgcccc gaggaggccc cggctcagag ccatgccagg	360
tgtctgtgat agggccctg acttcctctc cccgtctgaa gaccaggtgc tgaggcctgc	420
cttggcagc tcagtggtc tgaactgcac ggcttggta gtctctggc cccactgctc	480
cctgccttca gtccagtggc tgaaagacgg gcttccattg ggaattgggg gccactacag	540
cctccacgag tactcctggg tcaaggccaa cctgtcagag gtgttgtgt ccagtgtcct	600
gggggtcaac gtgaccagca ctgaagtcta tggggcccttc acctgctcca tccagaacat	660
cagttctcc tccttactc ttcaagagac tggccctaca agccacgtgg ctgcggtgct	720
ggcctccctc ctggtcctgc tggccctgct gctggccgcc ctgctctatg tcaagtgccg	780

tctcaacgtg	ctgctctgg	accaggacgc	gtatggggag	gtggagataa	acgacgggaa	840
gctctacgac	gcctacgtct	cctacagcga	ctgccccgag	gaccgcaagt	tcgtgaactt	900
catcctaaag	ccgcagctgg	agcggcgctg	gggctacaag	ctcttcctgg	acgaccgca	960
cctcctgccc	cgcgctgagc	cctccgcccga	cctcttggtg	aacctgagcc	gctgccgacg	1020
cctcatcg	tgctttcgg	acgccttcct	gagccgggccc	tggtgcagcc	acagcttccg	1080
gtgggtcccc	cgcgggggtt	ggtggggccc	agcgtacacc	cacccccc	acggtcccgc	1140
cccgcaggga	gggcctgtgc	cggctgctgg	agctcacccg	cagacccatc	ttcatcacct	1200
tcgagggcca	gaggcgcgac	cccgcgacc	cggcgctccg	cctgctgcgc	cagcaccgccc	1260
acctggtgac	cttgctgctc	tggaggccc	gctccgtgac	tccttcctcc	gatttttgg	1320
aagaagtgc	gctggcgctg	ccgcggaaagg	tgcggtacag	gccggtgaa	ggagacccc	1380
agacgcagct	gcaggacgac	aaggacccc	tgctgattct	tcgaggccga	gtccctgagg	1440
gccggggccct	ggactcagag	gtggacccgg	accctgaggg	cgacctgggt	gtccgggggc	1500
ctgttttgg	agagccatca	gtccaccgc	acaccagtgg	ggtctcgctg	ggagagagcc	1560
ggagcagcga	agtggacg	tcggatctcg	gctcgcaaa	ctacagtgcc	cgcacagact	1620
tctactgc	gtgtccaag	gatgatatgt	agctcccacc	ccagagtgc	ggatcatagg	1680
gacagcgggg	gccagggcag	cggcgctcg	cctctgctca	acaggaccac	aacccctgcc	1740
agcagccctg	ggaccctgcc	agcagccctg	ggaaaaggct	gtggcctcag	ggcgccccc	1800
agtgccagaa	aataaagtcc	ttttggattc	tga			1833

<210> 25
<211> 2138
<212> DNA
<213> Homo sapien

<400> 25						
tgcaaggcca	ggaagctaca	ggaaaagttc	tgataaaaat	acacaaagac	acaagccagg	60
tccccaccgc	gcttggcgat	gatccatag	cagccttgg	gctgtggaca	ctccctgggg	120
cccagcgaag	gggagagttt	gctcccaaag	gcccaccaat	gaccaacatt	tgccccccgg	180
aggaaagaac	tggaaaccagc	ctctgacctg	tccaggtgcc	ctgtccagct	gactgcaagg	240
acagagagga	gtcctgcccc	gctcttggat	cagtctgctg	gccgaggagc	ccgggtggagc	300
caggggtgac	cctggagccc	agctgcccc	gaggaggccc	cggctcagag	ccatgccagg	360
tgtctgtat	agggccctg	acttccctc	cccgtctgaa	gaccaggtgc	tgaggcctgc	420
cttgggcagc	tcagtggctc	tgaactgcac	ggcttggta	gtctctggc	cccactgctc	480
cctgccttca	gtccagtggc	tgaaagacgg	gcttccattg	ggaattgggg	gccactacag	540

cctccacgag tactcctggg tcaaggccaa cctgtcagag gtgcttgtgt ccagtgtcct	600
gggggtcaac gtgaccagca ctgaagtcta tggggccttc acctgtcaca tccagaacat	660
cagtttctcc tccttcactc ttcagagagc tggccctaca agccacgtgg ctgcggtgct	720
ggcctccctc ctggtcctgc tggccctgct gctggccgccc ctgtctatg tcaagtgccg	780
tctcaacgtg ctgctcttgtt accaggacgc gtatggggag gtggagataa acgacggaa	840
gctctacgac gcctacgtct cctacagcga ctgccccgag gaccgcaagt tcgtgaactt	900
catcctaaag ccgcagctgg agcggcgctcg gggctacaag ctcttcctgg acgaccgca	960
cctcctgccc cgcgctgagc cctccgcccga cctcttggtg aacctgagcc gctgccgacg	1020
cctcatcgtg gtgctttcgg acgccttcct gagccgggcc tggtgagcc acagcttcgg	1080
gtgggtccccg cgccgggttg ggtggggccc agcgtacacc caccccccgt acggtccccg	1140
cccgcaggga gggcctgtgc cggctgctgg agctcacccg cagacccatc ttcatcacct	1200
tcgagggcca gaggcgcgac cccgcgcacc cggcgctccg cctgctgcgc cagcaccgccc	1260
acctggtgac cttgctgctc tggaggcccg gctccgtggt gcggagcagg cgccggaggg	1320
tccggggcta gccccgggtt agagatgggc ggtgcccggg ctccaggctg ggacccctcc	1380
gtggggagct ctgcggcacc acgctttgtt aatgggcctt gggggaggt tccgctgcct	1440
ggggccccga tgccgggagc cgccttgag gccccggag ccacggaata gctgtcgca	1500
ggcgtgaaac ccgtggcag cgcagggtgt gctcttggg gccaggacgc cagggcttc	1560
cgaggtgttc acacctgcaa accgccccga cctggccccc aggactcctt cctccgattt	1620
ttggaaaagaa gtgcagctgg cgctgcccgg gaaggtgcgg tacaggccgg tggaggaga	1680
cccccagacg cagctgcagg acgacaagga ccccatgctg attcttcgag gccgagtccc	1740
tgagggccgg gcccctggact cagaggtgga cccggaccct gagggcgacc tgggtgtccg	1800
ggggcctgtt tttggagagc catagctcc accgcacacc agtgggtct cgctggaga	1860
gagccggagc agcgaagtgg acgtctcgga tctcggtcg cgaaactaca gtcccccac	1920
agacttctac tgcctgggtt ccaaggatga tatgtagctc ccacccaga gtgcaggatc	1980
atagggacag cggggggccag ggcagcggcg tgcgtccctt gctcaacagg accacaaccc	2040
ctgccagcag ccctgggacc ctgccagcag ccctggaaa aggctgtggc ctcagggcgc	2100
ctcccagtgc cagaaaataa agtccctttt gattctga	2138

<210> 26

<211> 676

<212> DNA

<213> Homo sapien

23

<400> 26
cccccgcccc tgcgcccggc acgccccggc tcccgagag ccctccggcg acctcttggt 60
gaacctgagc cgctgcccac gcctcatcggt ggtgctttcg gacgccttcc tgagccgggc 120
ctggtcagc cacagcttcc gactccttcc tccgattttt ggaaaagaagt gcagctggcg 180
ctgcccggaa aggtgcggta caggccggtg gaaggagacc cccagacgca gctgcaggac 240
gacaaggacc ccatgctgat tcttcgaggc cgagtccctg agggccgggc cctggactca 300
gaggtggacc cggaccctga gggcgacctg ggtgtccggg ggcctgtttt tggagagcca 360
tcagctccac cgcacacccag tggggtctcg ctgggagaga gccggagcag cgaagtggac 420
gtctcggatc tcggctcgcg aaactacagt gcccgacacag acttctactg cctgggtgtcc 480
aaggatgata tgttagctccc accccagagt gcaggatcat agggacagcg gggggccaggg 540
cagcggcgtc gctcctctgc tcaacaggac cacaaccctt gccagcagcc ctgggaccct 600
gccagcagcc ctgggaaaag gctgtggcct cagggcgcct cccagtgc当地 gaaaataaaag 660
tccttttggaa ttctga 676

<210> 27
<211> 1333
<212> DNA
<213> Homo sapien

<400> 27
agatgctgtc gagcggcgca gtgtgatgga tcgtggtcgc ggcgaggaat ggagagcacg 60
gtctgaatct gcacagagca agatgctgag tggagtcggg ggctttgtgc tggggcctgct 120
cttccttggg gccgggcgtgt tcatactactt caggaatcag aaaggacact ctggacttca 180
gccaacagga ttcctgagct gaaatgcaga tgaccacatt caaggaagaa ctttctgccc 240
cagcttgca ggatgaaaag ctttcctgct tggcagttat tcttccacaa gagagggctt 300
tctcaggacc tggttgctac tggttcggca actgcagaaa atgtctccc ttgtggcttc 360
ctcagctcct gcccttggcc tgaagtccca gcattgatgg cagcgcctca tcttcaactt 420
ttgtgctccc cttgcctaa accgtatggc ctcccggtca tctgtactca ccctgtacga 480
caaacacatt acattattaa atgttctca aagatggagt taaatatcat ctggccatt 540
tggctccaaa gacagaaaaat gaaaagaaaa agggaaagatt atttcctaa tagaataatg 600
attttcatgt atatgtcatg agtgtgtgag gtaatgcgtt tggatattttt 660
acattccaca ctatagccat atatcaaaac ttcatgctgt acaatataaa tatmctatac 720
aattttact tgtcaattaa aaaagtaatc ctaacatttaaa aaaaggcaat gcataaaaaac 780
tgagaacaga ctataacaac taaaacaaac tggcaaca tggatgaga aaccagccag 840
caagtcaatc agaactctttt ctcatctcg tctacaatat tttgtattta taactgtaaa 900

ttagtgtata	gtgtttca	cttccagagactt	caataatac	gtgttatcaa	aggacttgta	960		
cagatttc	ag	aaaagacac	at	ttagaaga	tggagagttc	tccgttatgt	tctatctgag	1020
agtca	gtat	aaatgtcaaa	tctaaaagta	cataattc	aggtctat	tttcaaattaata	1080	
atcat	tttgag	cataatttct	ccactgtc	agacgactgt	tat	tttatttt	tcaatcaa	1140
taaaagttgt	ttttatgc	at	cttatttt	tagttat	at	ttacttgta	atacgttagc	1200
gtacaagtgc	atataa	atcc	tgtaa	agagta	taatc	cata	gaaatata	1260
ttatgtctgt	tctgtt	gat	cacag	atgt	caaca	aaatag	gcctcatttc	1320
gaaatgattt	tct							1333

<210> 28
<211> 1228
<212> DNA
<213> Homo sapien

<400> 28									
ctttgggagc	tggctctc	cataagctt	tctggaggag	gaacwrtggc	tttgctgagg	60			
acactctgga	cttcagccaa	caggattcct	gagctgaaat	gcagatgacc	acattcaagg	120			
aagaaccttc	tgccccagct	ttgcaggat	aaaagcttc	ctgcttggca	gttattctc	180			
cacaagagag	ggcttctca	ggacctgg	ttt	gctactgg	ttt	cgccaactgc	agaaaaatgtc	240	
ctcccttgt	gttcc	tca	ctc	ctgc	cttgc	gttattctc	gatggcagcg	300	
cctcatcttc	aactttgt	ctccc	tttgc	cctaaaccgt	atggc	cctccc	gtgc	atctgt	360
actcaccc	tgc	acaaaac	acattacatt	at	taa	atgtt	tctca	aaagat	420
atcatctggt	ccat	tttg	gt	ccaa	agacag	aaaatgaaa	gaaa	aaaggga	480
cctaata	taatg	at	ttt	catgtat	atg	tgatgt	gtg	aggtaat	540
aatagctgga	tttag	acatt	ccac	actata	gccat	atac	aaaactt	cat	600
ataaaatatmc	tata	caattt	ttactt	gtca	at	aaaaaa	aa	tctaa	660
gcaatgcata	aaaactgaga	acagactata	acaactgaaa	caaactggc	aaacatgaga	720			
tgagaaacca	gccagca	gt	caatc	agaac	tctt	tctca	tctc	gttac	780
atttataact	gt	aaat	ttt	gtatgt	ttt	ca	tcc	actgtt	840
atcaaaggac	ttgt	acagat	ttc	agagaaa	gacacat	tt	gaagatgg	gag	900
tatgttctat	ctg	agagt	ca	gtatgaa	at	tca	aa	actgtt	960
tatttcaat	taata	atcat	ttg	agcata	ttt	ctcc	act	gttattt	1020
tat	ttcaat	caaatt	aaa	gtt	tttta	tgc	at	atgttact	1080
tgtacata	cg	tagc	gtac	at	gtc	atata	aa	tctgtaa	1140

atattaagct gataattatg tctgttctgt ttgatcacag agttgcaaca aataggcctc	1200
atttcctaag ttgaggaat gattttct	1228
<210> 29	
<211> 2619	
<212> DNA	
<213> Homo sapien	
<400> 29	
ggggAACACA acttaggcta ggtacgaggc ctgggtggtc mggctatcg actctccatt	60
gccctgcacg tgggtttga caacttcgag cagctgctct cgggggctca ctggatggac	120
cagcacttcc gcacgacgcc cctggagaag aacgcccccg tcttgctggc cctgctgggt	180
atctggtaca tcaactgctt tgggtgtgag acacacgcca tgctgcccta tgaccagtac	240
ctgcaccgct ttgctgcgta cttccagcag ggcgacatgg agtccaatgg gaaatacatc	300
accaaattctg gaacctgtgt ggaccaccag acaggccccca ttgtgtgggg ggagccaggg	360
accaatggcc agcatgctt ttaccagctc atccaccaag gcaccaagat gataccctgt	420
gacttcctca tcccggtcca gaccagcac cccatacggg agggcttgca tcacaagatc	480
ctcctggcca acttcttggc ccagacagag gccctgatga gggaaaatc gacggaggag	540
gcccggaaagg agctccagggc tgcgggcaag agtccagagg accttgagag gctgctgcca	600
cataaggctt ttgaaggaaa tcgcccacc aactctattt tgttcaccaa gctcacacca	660
ttcatgcttg gagccttggt cgccatgtat gagcacaaga tcttcgttca gggcatcatc	720
tgggacatca acagcttga ccagtggga gtggagctgg gaaagcagct ggctaagaaa	780
atagagcctg agcttgatgg cagtgcctaa gtgaccccttc acgacgcttc taccaatggg	840
ctcatcaact tcatcaagca gcagcgcgag gccagagtcc aataaaactcg tgctcatctg	900
cagccctcctc tgtgactccc ctttcttctc tcgtccctcc tccccggagc cggcaactgca	960
tgttccctgga caccacccag agcaccctct ggttgtggc ttggaccacg agcccttagc	1020
agggaggct ggtctccccc agcctaacc ccaagcccccatgcttcatgt ctccctctgt	1080
gttagaattt gctgaagtgt ttttgtgcag ctgacttttgc tgacccatgt tcacgttgc	1140
cacatcccat gtagaaaaat aaagatgcca cggaggaggt tgtaggctca gcctctgatt	1200
ttttttttcc tgtgatggtg ctttatgttag cagagggcag gagcgctcag caggacgcag	1260
gctgtgcctc tgcggacact taacactaag tggtgagcgg gtctagagtg gagcaagggt	1320
ccctgagaag acaatagtgg ggtggggca caatcagtca ggacggcaca gktrcrggct	1380
cayrcctgta atcycagcac tttggggaggc craggyagggk ggatcacctg aggtcagacc	1440
agtctggtca acatggtcaa accccgtctg taccaaaaat acaaaaacca gctggcatt	1500

gtggcacctg cctgtggcc cagctactcg ggaggccgag gcagaagact cgctggaacc	1560
cgggaggcgg agcttgcgt gagccgagac tgcgtcaactg caccgcagcc tgggtgacag	1620
agccagactc catctcaaca acagacgcac ttacacttgg agtgcgtgtc gcacagggcc	1680
gaggagcgca tgcacacag gcggatggtc ccttgctac tgctgttagac gaacacgttgc	1740
cactggtgcg ggtggaactc ggctgcagtg atgacttcgg tcagtcctc catgttagca	1800
ggcttgcgt ccacgatgtt aaagcttcta tctgtgattt ctaagtgcctaaattaatt	1860
ctcaggcat ctgcagaaaat atatgtttca tgatcactat ttactgaaat ggaatttata	1920
tgatatgtgt gacattgc aaaaattcgc cgtggactcg cttctaccat aagatccatg	1980
ggcttcaata ttgggaccccg tagccgcgtg atcctaaatg ggtctcgaaag tcttccatct	2040
tcgtcttca ggttataacc ttctgcgtt ttatcccgtt cacttatttt ccataatttt	2100
atagtttat cattttaga cagtagaaaa tgagcagcat tctgttgtgg taaccaccta	2160
attttattaa tttttcctc aattttaga cttttcaaat agtcaaactc cggttcatga	2220
ctttgaaagg tgctgtaaac attatattct cccctagaat gagggcggct tttattctct	2280
tgttcacgct gaaaaataac aactctgcgg cccttgcctc ctgttgcaag aagatctcca	2340
gagtaattaa actcaacggt gggaaatgatg tccgcgttccg ccacgtcctc gtcgatggcc	2400
cccttgacct gcgagaagca ccactggaag tcgttgccgc ccgcggggca gccggccgcct	2460
ccggctccctg ccatggcagc cggcggcggg acgggcgggg accgcggcag accagggaga	2520
ccggctccgc gcccgtgcag ccgagcgctc agccccgggg ccgccaccac cgccggcgcc	2580
ccggccgccc cccggccgc cggggagggta tyttyykt	2619

```

<210> 30
<211> 2564
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (554)..(554)
<223> n=a, c, g or t

```

<400> 30 actggtgtt agttttaaa gagcagttat cactgttccc tgccttgtgg tgcgtatcgga	60
tgtgtccccc tcgctccaaac tgagctgtac agcgagtgcac ccaggctggg actgaccct	120
gctgagaagt accaggcgggt ctgtccctc tgcctgaagc ccagacagtgc tctcaagca	180
taactgtatgt ctgcgtatc agatcctctt ggccaacttc ttggcccaga cagaggccct	240
gatgagggga aaatcgacgg aggaggcccg aaaggagctc caggctgcgg gcaagagtcc	300

agaggacctt gagaggctgc tgccacataa ggtcagcaact tctgcatttg gctttggggt	360
gcatgctgga gttggagggtg tgaagctatg gcaccaggca ggggcttggg gcatgcctgg	420
cttgcctac agaatgggag ggcctgtcct cacagacctg cacgtctcag cctctgggc	480
agggtgtgct tcccttcaag gggtttaggg atcaggactc tcttggagac attccttggt	540
gttttctgca ggtntttgaa ggaaatcgcc caaccaactc tattgtgttc accaagctca	600
caccattcat gcttggagcc ttggtcgcca tgtatgagca caagatctc gttcaggggca	660
tcatctggga catcaacagc tttgaccagt ggggagtggg gctggaaag cagctggcta	720
agaaaataga gcctgagctt gatggcagtg ctcaagtgac ctctcacgac gcttctacca	780
atgggctcat caacttcatc aagcagcagc gcgaggccag agtccaataa actcgtgctc	840
atctgcagcc tcctctgtga ctcccctttc tcttctcgtc cctcctcccc ggagccggca	900
ctgcatgttc ctggacacca cccagagcac cctctgggttggggcttggg ccacgagccc	960
ttagcaggga aggctggctt ccccccagc aaccccccagc ccctccatgt ctatgctccc	1020
tctgtgttag aattggctga agtgttttg tgcagctgac ttttctgacc catgttca	1080
ttgttcacat cccatgtaga aaaataaaga tgccacggag gaggtttag gctcagcctc	1140
tgatTTTTT ttccctgtga tgggtctta tgtatcggag ggcaggagcg ctcagcagga	1200
cgcaggctgt gcctctgcgg acacttaaca ctaagtggtg agcgggtcta gagtggagca	1260
aggtgccctg agaagacaat agtgggggtgg gggcacaatc agtcaggacg gcacagkrc	1320
rggctcayrc ctgtaatcyc agcactttgg gaggccragg yaggkggatc acctgaggc	1380
agaccagtct ggtcaacatg gtgaaacccc gtctgtacca aaaataaaaa aaccagctgg	1440
gcatgggtggc acctgcctgt ggtcccagct actcgggagg ccgaggcaga agactcgctg	1500
gaacccggga ggcggagctt gccgtgagcc gagactgtgt cactgcaccg cagcctgggt	1560
gacagagcca gactccatct caacaacaga cgcaattaca cttggagtgt ctgtcgacaca	1620
ggggccgagga gcgcatgtca cacaggcggc tggtcccttt gctactgctg tagacgaaca	1680
cgttgcactg gtgcgggtgg aactcggctg cagtgtatgc ttccgtcagc tcctccatgt	1740
tagcaggctt gatgtccacg atgttaaagc ttctatctgt gatttctaaag tgccataaaat	1800
taattctcag gtcatctgca gaaagatatg tttcatgatc actatctact gaaatgaaat	1860
ttatatgata tgtgtgagca tttgcaaaaa ttccgcgtgg actcgcttct accataagat	1920
ccatggcctt caatattggg acccgtagcg ccgtgatcct aaatgggtct cgaagtcttc	1980
catcttcgtc ttccaggta taaccttctg ctctttatc ccgttcaactt atttccata	2040
atttatagt ttatcattt gtagacagta gaaaatgagc agcattctgt tgtggtaacc	2100

28

acctaatttt attaattttt tcctcaattt ctagactttt caaatagtca aactccggtt	2160
catgactttg aaaggtgctg taaacattat attctcccct agaatgaggg cggttttat	2220
tctttgttc acgctgaaaa ataacaactc tgccgcctt gtctctgtt gcaagaagat	2280
ctccagagta attaaactca acggtgaaa ttagtgcgc ttcggccacg tcctcgtcga	2340
tggccccctt gacctgcgag aagcaccact ggaagtcgtt gccgccccgc gggcagccgc	2400
cgcctccggc tcctgccatg gcagccggcg gcgggacggg cggggaccgc ggcagaccag	2460
ggagacggcc tccgcgcgc tgcagccgag cgctcagccc cggggccgccc accaccggc	2520
gcgcgcgcgc cgccgcggcc gccgcgggg aggatytty ykct	2564

<210> 31
<211> 5718
<212> DNA
<213> Homo sapien

<400> 31	
catcaatgaa aactgtgctc agcattaacc ttcagaagct gatgacactg ttctactta	60
agcaggaaag agaagtttc tccgcacctg ttgagggcac gtttctcc ggcctgttg	120
agggcacttc tctaaagtga atggatcctg cttttgcgg acataggtgc gtggattgc	180
cagcgcctct cagaacatca agactgcact ggggagaacc cacagaaacg gacaggactg	240
ctggccaggt ggttccccc gcaggcgccc cagagctagg tgacgacacc tccagggAAC	300
gtgcgcgca gacctaagg cagtggcagt tccacggag cagcagtgcc acgtggAAC	360
tctacacacg ggacccgcct gggctgcacc ttctgctctg ccctgggggt ggaggaggtg	420
ggctatttag tggaaatac attctagagg aagatggaaa agggtgtcca aatacgcagt	480
gaaaatccag taaaacattt aaaatttatt gaacttttg gtcaaaatag ttgaacaaat	540
atatacaatc ccattttact agaactgtct taaggaccag gtttgactaa tgctaaata	600
actgttccac acctcagact ttgtaaattt tgtcacaatc aatatacagt atataaatta	660
tttttagtt aaaataaagg tacctttaga ttctcaattt ctaacttaat gtgaactcaa	720
gtggcactgt gtttagcatgg attcagggtt atgacggaca tcctgttctt gcccattgtgg	780
attagtaatc agcacacacc ttcatctcc cagggggatg ggggatcagc acacaccc	840
atctccacag ggggaccggg gatcagcaca cgccttcattc tccacagggg gatggggat	900
cagcacacac cttcatctcc acagtggat ggcggatcag cacacgcctt catctccaca	960
ggggatggg ggtatgagcac acgccttcattt ctccacagggg gatggcgga tcagcacacg	1020
cttcatctcc cacaggggca cggcgatca gcacacgcct tcatctccac agggggacgg	1080
gggatcagca cacgccttca tctccacagg aggacggggg atcagcacac accttcattct	1140

29

ccacaggggg accggggatc agcacacacc ttcatctcca cagggggatg ggggatcagc	1200
acacaccttc atctccacag ggggatgggg gatcagcaca cgccatctc tccacaggg	1260
gatggggat cagcacacgc ctcatctcc acagggggat ggggatcag cacacgcctt	1320
catctccaca gtgggatggc ggatcagcac acgccttcat ctccacaggg gnatggggga	1380
tcagcacaca cttcatctc cacagggggta tggggatca gcacacgcct tcatctccac	1440
agtgggatgg cgatcagca cacgccttca tctccacagg gggatggggg atcagcacac	1500
gcctcatct ccacagtggg acggggatc agcacacacc tccatctcca cagggggacg	1560
ggggaccagc acacacctcc atctccacag gggcacgagg aagcagcaca caccttcatc	1620
tccacaggag gacggggat cagcacacat ctcatctcc acagggggat ggggatcag	1680
cacacacctc catctccaca ggggacaag agatcagcac acaccttcat ccccacaggg	1740
ggacagggga tcagcatacc cttcatctc cacagggggta tggggatca gcacacacct	1800
tcatctccac agggggacgg gggatcagca taccccttca tctccacagg gggatgggg	1860
atcagcacac accttcatcc ccacaggggg atggggatc agcacacacc tccatctcca	1920
caggggcatg aggaatcagc acacaccttc atctccacag gaagacgggg gatcagcaca	1980
ccccttcatc tccacagggg gatggggat cagcacacac ctcatctcc acagggggac	2040
ggggatcag cagtacacac ctcatcttag atagggaaac agggatcag tacacacctc	2100
tatctccaca ggggcacgag gatcagcac acacctccat ctccacaggg catggggat	2160
cagcacaccc ctcatctcc acagggggac ggggatcagc acacaccttc atctccacag	2220
ggggacgggg gatcaacaca ccccttcatc tccacatggg gatggggat cagcacacac	2280
ctcatctcc acagggggac ggggatcag cacacgcctc catgtccaca ggggcacggg	2340
ggatcagcac accccttcat ctccacaggg agatggggga tcagcacaca cttcatctc	2400
cacagggggc cggggatcag cacacacccat ctccacaggg ggacagggga tcaacacacc	2460
ccttcatctc cacatggggta tggggatca gcacacacct tcatctccac agggggatgg	2520
ggatcagcac acgcctccat ctccacaggg ggcgggggta ttggcacacc cttcatctc	2580
cacagggaga tggggatca gcacacacct tcatctccac agggggacgg gggatcagca	2640
cacccttca tctccacagt gggacagggg atcagcacat cccttcatct ccacaggggg	2700
atggggatca gcacacacct tcatctccac agggagatgg gggatcagca cgcaccttca	2760
tctccacagg ggcacggggg atcagcacac accttcatct ccacaggggg acggggatc	2820
agcacacacc ttcatccaga caggggcatg aggaatcagc acacaccttc atctagacag	2880
ggggatggga tggggatca gcacacacct ccacatctccac aggggcacga gggagcagca	2940
cacaccttcca tctccacagg gcacagggga tcagcacaca cttcatctcc cacagggca	3000

caggcaatca gcacataacct tcatacttagac agggtgacgg gcgatcagca cacacacctcca	3060
tctccacacgc agcaggagga atcaaacacac accttcatct ccacaggcgg acgggggatc	3120
agcacacacc tccatctcca caggggcacg ggagcccgac tccccactcc cctcggggac	3180
acgtagtggg cgtgtgttaa atcccacgga agcaagctt ggtcaactcag cattggtaca	3240
gctctgtatt atttgtcttg gaaaatcttg atttctggta tcaaagatcc tactttgaaa	3300
ataaaccaac gtactggtgg catcgtgtaa taaaattgc ttaatttgc tggcttggaaa	3360
tgcaggatga aatttagcat gcatgtaatt ttagcaatgt taaaaaagta tactttcccc	3420
aaagtgcattt ttcaaaagcc ttagaaagca agcacgtatt tcttcaactg tagtgaattt	3480
gaagctactt taaaccaggc ttactggatg gcagcaattt tggttcttcc ttgcaatttt	3540
ctttctcaga ggtggcctcg gttctggctt ttcccagacc ttacctggtg tatctgatgg	3600
gctacttcta cagaaacaca gcgggcagca gcttggggac agaaatgctg cacacataacc	3660
cccacgctgc caaagaagga cacacatttc tcaaacagtt agttccaaag aagaaccctg	3720
cataacttca ttcttatgcaa taaaattaaa taaaagaca atacttctgt ttggatttaa	3780
aaacacttta tagtgtgttg ttttattga gcgctcacac ccgaaggggt ggcggcggat	3840
gctgtgggag tggagctggg aaagcagctg gctaagaaaa tagagcctga gcttgatggc	3900
agtgcctcaag tgacctctca cgacgcttct accaatggc tcataactt catcaagcag	3960
cagcgcgagg ccagagtc当地 ataaactcgt gctcatctgc agcctctct gtgactcccc	4020
tttctctct ctgtccctct ccccgagcc ggcactgcat gttcctggac accacccaga	4080
gcacccctcg gttgtggct tggaccacga gccccttagca gggaggctg gtctccccca	4140
gcctaaccctt cagccctcc atgtctatgc tccctctgtg ttagaattgg ctgaagtgtt	4200
tttgtgcagc tgactttct gaccatgtt cacgttggc acatccatg tagaaaaata	4260
aagatgccac ggaggaggtt gtaggctcag cctctgattt tttttctt gtgatggc	4320
tttatgttagc agagggcagg agcgcctcagc aggacgcagg ctgtgcctct gcggacactt	4380
aacactaagt ggtgagcggg tctagagtgg agcaaggtgc cctgagaaga caatagtgg	4440
gtggggcac aatcagtcag gacggcacag ktrcrggctc ayrctgtaa tcycagcact	4500
ttgggaggcc raggyaggkg gatcacctga ggtcagacca gtctggtaa catggtaaa	4560
ccccgtctgtt accaaaaata caaaaaccag ctggcatgg tggcacctgc ctgtggccc	4620
agctactcgg gaggccgagg cagaagactc gctgaaaccc gggaggcgg gcttgcctg	4680
agccgagact gtgtcaactgc accgcagctt gggtgacaga gccagactcc atctcaacaa	4740
cagacgcact tacacttgggatgtctgtcg cacagggccg aggagcgcatt gtcacacagg	4800

31

cggatggtcc	ctttgctact	gctgtagacg	aacacgttgc	actggtgcg	gtggaaactcg	4860
gctgcagtga	tgacttcggt	cagctcctcc	atgttagcag	gcttgatgtc	cacgatgtta	4920
aagcttctat	ctgtgatttc	taagtgccat	aaattaattc	tcaggtcatc	tgcagaaaaga	4980
tatgtttcat	gatcactatt	tactgaaaatg	gaatttatat	gatatgtgtg	agcatttgca	5040
aaaattcgcc	gtggactcgc	ttctaccata	agatccatgg	gcttcaatat	tgggaccctgt	5100
agcgccgtga	tcctaaatgg	gtctcgaagt	cttccatctt	cgtcttcag	gttataacct	5160
tctgctctt	tatcccgttc	acttattttc	cataatttta	tagtttatac	atttgttagac	5220
agtagaaaaat	gagcagcatt	ctgttgttgt	aaccacctaa	ttttattaaat	tttttcctca	5280
atttcttagac	ttttcaaata	gtcaaactcc	ggttcatgac	tttggaaaggt	gctgtaaaca	5340
ttatattctc	ccctagaatg	aggcggtt	ttattctctt	gttcacgctg	aaaaataaca	5400
actctgccgc	ccttgcgtcc	tgttgcaga	agatctccag	agtaattaaa	ctcaacggtg	5460
gaaatgatgt	ccgcttcggc	cacgtcctcg	tcgatggccc	ccttgacctg	cgagaagcac	5520
cactggaagt	cgttgcgc	cggggggcag	ccggccgc	cggctcctgc	catggcagcc	5580
ggcggcggga	cgggcgggga	ccgcggcaga	ccagggagac	ggcctccg	ccgctgcagc	5640
cgagcgctca	cccccggggc	cccccaccacc	gccggcgcc	ccggccgc	ccggccgc	5700
ggggagggat	ytttykct					5718

<210> 32
<211> 1091
<212> DNA
<213> Homo sapien

<400> 32	gcctttgcgs	gtggcggcga	acgcggagag	cacgcccata	aggcctcg	ggg	cacgctacga	60
	gagtaacaagg	tagtgggtcg	ctgcctgccc	acccccaaat	gccacacg	cc	ccccctctac	120
	cgcatacgaa	tctttgcgcc	taatcatgtc	gtcgccaagt	cccgcttctg	gtactttgt	ta	180
	tctcagttaa	agaagatgaa	gaagtcttca	ggggagattt	tctactgtgg	gcaggtgttt		240
	gagaagtccc	ccctgcgggt	gaagaacttc	gggatctggc	tgcgtatga	ctcccggagc		300
	ggcacccaca	acatgttaccg	ggaataccgg	gacctgacca	ccgcaggcgc	tgtcacccag		360
	tgctaccgag	acatgggtgc	ccggcaccgc	gcccggagcc	actccattca	gatcatgaag		420
	gtggaggaga	tcgcggccag	caagtgcgc	cgccggctg	tcaagcagtt	ccacgactcc		480
	aagatcaagt	tcccgctgcc	ccaccgggtc	ctgcggcgtc	agcacaagcc	acgcttcacc		540
	accaagaggc	ccaacaacct	tctttctagg	tgcagggccc	tgcgtccgggg	tgtgccccca		600
	aataaactca	ggaacgc	cccc	gaaggtacaa	gctgctgttc	cgatgactt	taaggacttc	660

32

agtctgctgt aacgaggagg cgcgctaata tcagttcaag accatggtga ggcgagcttgc	720
gagcgctggc acgcatgacc cggagaagag caccggaaac cgggatgggg aacggctgga	780
tgccaaagtca agcgccagaa gatggccaa gcgggaccgg accacacgac gagcactgcc	840
cgcttaagaa gaataccaca gcaacgcgaa agcaacagta aggagaaca aaccgaggcg	900
acaccagagc ggcgcgaaag aaaaaaacgc agcacaacga acacgcggca gcgcaatacg	960
cagcgcgctc taaagagacc gacagaaagc aacccgtcgg ggacaaccaa ggcgagacga	1020
agcccccccggg acgcaaacgg gagggagaag agcgcaccgc aggtccgaat aaagagagga	1080
acagccgaca t	1091

<210> 33
<211> 859
<212> DNA
<213> Homo sapien

<400> 33	
acagccgtgt tgcgccagg ccgcgccttc cttccacag cgccgcgtgc gctgcgaag	60
gtctggcggc tcttggact ggcggggctg cgccgggggt taggggtgggg gtacggaaag	120
gctcaaccca ggacctgcgt accttgcctt gggggcgcac taagcacctg ccgggagcag	180
ggggcgcacc gggactcgc agatttcgc acgtggggatc actgggatc tggactgc	240
gtccggggga tgggctaggg ggacatgcgc acgtttggg cttacagaa tgtgatcg	300
cgagggggag ggcgaagcgt ggcgggaggg cgaggcgaag gaaggaggc ctcgttcgtc	360
cggcccgacc tgaccaatgc cgccgtggaa acgggcttgg agctggcccc ataaggcgt	420
gcggcttcct ccgacgcgcg ccctccccac agttctcga ctgcagtgg gcggggggca	480
ccaacacttg gagattttc cggaggggag aggatttct aagggcacag agaatccatt	540
ttctacacat taacttgagc tgctggaggg acactgtgg caaacggaga cttattttg	600
tacaaagaac ctttgacctg gggcgtaata aagatgacct ggaccctgc cccactatc	660
tggagtttc catgctggcc aagatctgga cacgagcagt ccctgaggg cggggccct	720
ggcgtgaggg ccccgtaaca gcccacccctg ggggtgggtt gtggcactg ctgctctgt	780
aggagaagc ctgtgtgggg cacacctttt caagggagcg tgaactttat aaataaaatca	840
gttctgttta caaaaaaaaa	859

<210> 34
<211> 2236
<212> DNA
<213> Homo sapien

<400> 34	
ctcaccccta agcccaaaaa tcggctccca cccttgttta cttggccga accattcacc	60

ggagcgcgca	gcgggtggag	tgtggctcg	aggaccgcgg	cgggtcaagc	acctttctcc	120
cccatatctg	aaagcatgcc	cttggccac	gtcgtaacg	ctcattaaaa	cttccagaat	180
gcaacaggac	ggacttgag	tagggacaag	gaacggaagt	gggaagggga	ggagcgtgca	240
ccccctctgg	ccttggtgcg	cgccgcgccc	cctaaggta	tttggaaagg	acgcgcggc	300
cagacgcgcc	cagacggccg	cgatggcgct	gttggccggc	gggtctcca	gagggctggg	360
ctcccacccg	gccgcccgcag	gccgggacgc	ggtcgttcc	gtgtggcttc	tgcttagcac	420
ctggtgacaca	gctcctgcca	ggccatcca	ggtgaccgtg	tccaaacctt	accacgttgt	480
gatccttcc	cagcctgtga	ccctgccc	tacctaccag	atgacctcga	ccccacgca	540
accatcg	tc atctggaa	gt acaagtctt	ctgcccggac	cgcatcgccg	atgccttctc	600
cccgcc	ccagcacaacc	agctcaatgc	ccagctggca	gccgggaacc	caggctacaa	660
cccctacgtc	gagtgccagg	acagcgtgcg	caccgtcagg	gtcgtggcca	ccaagcaggg	720
caacgctgtg	accctggag	attactacca	gggcccggagg	attaccatca	ccggaaatgc	780
tgacctgacc	tttggaccaga	cggcgtgggg	ggacagtgg	gtgtattact	gtccgtgg	840
ctcagcccag	gacccagg	ggaacaatga	ggcctacgca	gagctcatcg	tccttggag	900
gacccagg	gtggctgagc	tcttacctgg	ttttcaggcg	ggggccatag	aagactggct	960
cttcgtgg	tttggatgcc	tggctgc	cctcatcttc	ctcctctgg	gcatctgctg	1020
gtgccagtgc	tgccgcaca	cttgctgctg	ctacgtcagg	tgcccctgct	gcccagacaa	1080
gtgctgctgc	cccgaggccc	tgtatgccgc	cggcaaagca	gccacctcag	gtgtcccag	1140
catttatgcc	cccagcacct	atgcccac	gtctccgc	aagacccac	ccccaccagc	1200
tatgattccc	atgggcctg	cctacaacgg	gtaccctgg	ggataccctg	gagacgttga	1260
caggagtagc	tca	ctgggt	gccaaggctc	ctatgtaccc	ctgcttggg	1320
cagtg	tctgaagtcc	gcagtggcta	caggattcag	gccagccagc	aggacgactc	1380
catgcggg	ctgtactaca	tggagaagga	gctggccaac	ttcgaccctt	ctcgac	1440
cccccc	ggccgtgtgg	agcggccat	gagtgaagtc	acccccc	acgaggacga	1500
ctggcgatct	cgcccttccc	ggggccctgc	cctcaccc	atccggatg	aggagtggg	1560
tggccactcc	ccccggagtc	ccagggatg	ggaccaggag	cccgc	aggcagg	1620
cgggg	cgcccgaggc	ggccccgggc	ccgctccgt	gacgc	ccctgg	1680
cccgccg	accgccc	gagt	caggagcag	gtctccac	agtaatgg	1740
ccgggc	ctac	atgccccgc	ggagccgcag	ccggac	ctctatgacc	1800
gagggacttc	ccacgctccc	gggacccca	ctacgacgac	ttcaggtctc	gggagcgc	1860

34

tcctgccgac cccaggtccc accaccaccg tacccgggac cctcgggaca acggctccag	1920
gtccggggac ctccccatg atggcggtc actggaggag gctgtgagga agaagggtc	1980
ggaggagagg aggagacccc acaaggagga ggaggaagag gcctactacc cgcccgcgcc	2040
gccccctac tcggagacccg actcgcaggc gtcccgagag cgccaggctca agaagaactt	2100
ggccctgagt cgggaaagtt tagtcgtctg atctgacgtt ttctacgttag cttttgtatt	2160
ttttttttta atttgaagga acactgatga agccctgcca tacccctccc gagtctaata	2220
aacgtataaa tcacaa	2236

<210> 35
<211> 1612
<212> DNA
<213> Homo sapien

<400> 35	
ggatacttga tttcggtttg tggggacagt ggtggaccca gcatctggc tttatataaa	60
gggcagctt gttgcctgt aaacacacag accatgggtg gccacttctt ccagtaagtt	120
agctggggag ttggaagttt agtaaaacc ttttgattga caaatgttgg cgaattacca	180
tgctgttaaa tgaaacatttgc ttctgccacc ctggggctgt gggtgccctgc gtgcaccctc	240
tgaaaaatca cacaggaagt ggggtgggt ctctgtaaag ctgggttccc ccagcctcag	300
ggatgctgca gaaatggaat gaggaccaac agggactcag atgtccaagg aagctctaca	360
gcggagagga cggcttggga aggaggtcca ggcccaggtc cctccggaac ccaatggta	420
tggggcagcc tggctcctgc ctcatcccc ttctcctgtt gattgtgtcc tcacagtgtt	480
tgccgccggc aaagcagcca ctcaggtgt tccccagcatt tatgccccca gcacctatgc	540
ccacctgtct cccgccaaga ccccaccccc accagctatg attcccatgg gcccgccta	600
caacgggtac cctggaggat accctggaga cgttgacagg agtagctcag ctggtgccca	660
aggctcctat gtacccctgc ttctggacac ggacagcagt gtggcctctg aagtccgcag	720
tggctacagg attcaggcca gccagcagga cgactccatg cgggtcctgt actacatgga	780
gaaggagctg gccaacttcg acccttctcg acctggcccc cccagtgccgt gtgtggagcg	840
ggccatgagt gaagtcaccc ctccacgaa ggacgactgg cgatctcggc ttccccgggg	900
ccctgccctc accccgatcc gggatgagga gtggggtggc cactcccccc ggagtcccag	960
gggatggac caggagcccg ccagggagca ggcaggcggg ggctggcggg ccaggcggcc	1020
ccggggccgc tccgtggacg ccctggacga cctcaccccg ccgagcacccg ccgagtcagg	1080
gagcaggctt cccacgagta atggtggag gagaagccgg gcctacatgc ccccgccggag	1140
ccgcagccgg gacgacccctt atgaccaaga cgactcgagg gacttcccac gctcccgaaa	1200

35

cccccaactac gacgacttca ggtctcgaaa gcgcctcct gccgacccca ggtcccacca	1260
ccaccgtacc cgggaccctc gggacaacgg ctccaggtcc gggacactcc cctatgatgg	1320
gcggctactg gaggaggctg tgaggaagaa ggggtcgagg gagaggagga gaccccacaa	1380
ggaggaggag gaagaggcct actacccgcc cgccgcgccc ccgtactcgg agaccgactc	1440
gcaggcgtcc cgagagcga ggctcaagaa gaacttgccc ctgagtcggg aaagttagt	1500
cgtctgatct gacgtttct acgttagctt tgtatTTTT ttttaattt gaaggaacac	1560
tgtatgaagcc ctgccataacc cctcccgagt ctaataaaac gtataatcac aa	1612

<210> 36

<211> 6003

<212> DNA

<213> Homo sapien

<400> 36

tgacatacga aaggTTTTa atatctacaa aagatgacag actgaaatag taacattctc	60
caggatggaa agatctatgc cacgtaggaa ttgtttgttc aaattattat ttttAAAAG	120
ccataagcta tggagagaat aacagAGTT tgTTTGTtT ttaatCCTG atacGGTgGA	180
agtctggtag gatgggaacc gttcttgaag cttgagaata cattcggAAC aaATAAAAAG	240
taggAAATGC atacATTTG ttATTTACAG ttgtAGGGCA ggTAAGGGCA aaACGTATTG	300
ataAAACTCAA agaATTtAA gaATGATATT gTCATGAGCC ATGAGCCATG gaAGCTGAA	360
ggTTGGGCT ccCTCCTGCC atCGGGTGGG gggTGTcGGC ggaAGGGGgt acGTGTcCTG	420
tcCTCTCCC GTGCTTATTt CCTGCTGGAA CGTGGTTT GACGcAGCCG TGACAGCCt	480
tcATCCTTAT taaaATcaca caATGAAGCA ggTCGCCAA gATTGAAGC gCgTTCCAG	540
ggcggACCCc ggtccccGCC tttggCCAGC AAAAGTACAT tCTGGCAGGG AGGGATCTt	600
gagCCCCGAA GTGAGGTCAT GCCAGTTAGC AGTTAGAAAA ggAGGGCATtT CTCACACTG	660
ctAAAGAGTT tgACGCTGT gAAATATAAA cAGGAAGCgg GAGCTCTCCA AGGCGACtG	720
aaggAAATAC ACTGCCAGTT TGGTCAACTT GTGAATGCCA GTTCTCTAGG TCGTCAAGGG	780
cactGCCAGT TAAGACTGAT CCCtTAActG cACCCGAGGC TACTACTtT CGCCAGtCT	840
cggcAGTgAC CCCATTtTTt TTtCAATCCT TCCCACAGCC AGGTCACTCA gCAGTGGGgt	900
gactgACCCG AAGCGCAGtG ggaAGGGCtt ACAGTCAtCT CTCAACTCCC CGAACtTGCA	960
gggcAGGGGA GCGCAGAGGT CAGTGAATC CCCAGCCAGG CCTTATTTA GTCAtGAGtT	1020
tccACTGGCT ccCTCCTCTG ACTGTATCAG CGCTGCTCAC ACCGCGGGat TGGAGTTCA	1080
gCTGTTTCC CTGCTCCGGC CTGAGTgAGA AGGTCAcAGA gCCCGACtT TtCCGGGGGA	1140
ggtgggtggg gCcCTCCGGC AGCCTAAGtG AGATTGcAGA gATCTGGGc CGCTGGAGGA	1200

ggtccttccg	ccccgggctt	ggggctttgg	gttagcttct	cccccgcttc	tctacctagg	1260
catctcggtt	acaatgaaat	taaaaacaaa	acacaaagca	acacaagttc	tcattgttt	1320
tcccctctgt	cagccagtg	cctcgataca	atttcccag	ggctgcctt	cctttattgc	1380
tcaatttaac	ctcttcctag	agttctgca	agttcaaggg	caggatccgt	gtcggattca	1440
tcaactagt	cagcgcttag	tgcagagcag	ggggctcaag	aaatacgtgt	cgaccgcatg	1500
attgctaaga	tttccctgta	acaggcggtt	tttttttctt	gtctctctca	tccctcctgc	1560
cctgggtgca	gaccgcgaac	agcgccgccc	aacttccaa	caggcaggga	gagggccgat	1620
ccgggctggc	acgccacgtc	cccggggtct	cagtcctgg	gtcaacgcag	agaggctcgc	1680
ggtcgcgggt	gctacgacct	gagccccggcc	acgtgaagcg	tcaegccctg	cgctgctgca	1740
gggcaggcgc	cggccggcgc	gttgtgtaac	gctgcagccg	gaggggaggc	gaccggggcg	1800
cctctgctcc	ggagggggca	gaggagggag	ggagcgcgg	gcacagcgcc	cggtatctt	1860
ctgcgcttga	ctggccggga	ggaagggggt	gacactgggg	caccagggg	gctgcgcaac	1920
cgggtgcccc	cccgccccca	ggttgtgcc	aggagcggag	ctcctggag	cgagggggccc	1980
tcggctcaca	ccctccacgg	tcaaggtgcgc	gcggcggtct	cggcgccagc	ctcagctgcc	2040
cctgcgcctt	gcccgtggcc	cgttcccat	ggggtgacat	ccgccccgcc	cctcggtccc	2100
tccccaaaggc	gggcaattcc	tggacgcgag	ggtgagcagt	gggggcaggg	aagccaggac	2160
ggaaagaaac	cccagcctct	gggaaaggct	ggggggccgg	gcgactccct	ccgcagcgcg	2220
ccggttccctc	caagcgggcc	gggcggggga	ggaggaagag	ggctggctg	gagctagcaa	2280
ggggatattc	ctctcccgcc	ttgagtcaga	cgcggcgg	tccgtctcc	cccgttccct	2340
cccaggagac	gggaacttac	ttcatttccc	tggggcaggt	tgcggcacgt	taccaacttc	2400
tccccctccc	ccagcacccc	cgtcccttcc	agttccgcg	ccccccaccc	aactggcag	2460
gaccaggcgc	gtgctgccac	ccctcttcg	ggaaaggcg	gccgcagccg	cagacacctg	2520
ggggccgggg	ctgggggtgg	gggctcccta	gcagccgcg	gagcgttgc	caacacgtga	2580
gactcatgt	atgaagccgg	gggagggcgg	gcaggtcgct	cttccctcc	ccggcagtgg	2640
ccagacgtgc	ctggagtcac	aggtagaaac	acgtagctcc	aaccaccca	ccgctccctc	2700
ccgcctcccc	ccccgcacca	tttctcattc	acttggctcg	cacggcgcag	acagaccgcg	2760
cagggagcac	acaccgcccag	tctgtgcgc	gagtcggagc	cagaggccgc	ggggacacccg	2820
ggccatgcac	ccccccaact	gaagctgcac	ctcaaagccg	aagattccag	cagcccaggg	2880
gatttcaaag	agctcagact	cagaggaaca	tctgcggaga	gaccccccga	gcctctcca	2940
ggcagtcct	catccagacg	ctccgctagt	gcagacagga	gcgcgcagtg	gccccggctc	3000
gccgcgcac	ggagcggatc	cccagcgcgc	aaccaccccc	cgcctgcctg	cccaaagcac	3060

cgggactgga	gcacggagac	ctaccaggga	tgtaccctgc	ccacatgtac	caagtgtaca	3120
agtcaagacg	gggaataaaag	cggagcagg	acagcaaggt	aagcaagtgc	accccctaggg	3180
accctgcgct	cagcccctcg	cgcgcgctga	gtttccaaga	aaagtttct	cgcttgagg	3240
ttggcgaggg	gatgcaggg	gtgggctcgg	tgcctcttc	gagtgcattg	aaaaagaaaag	3300
ggcagacgt	ggttctgggt	gctactctgc	tactctgctc	ctctgccgga	ctgttgctgc	3360
ggggctggga	ggataggctt	ctcatctcct	tccccaaagcg	cccaccgcct	ccccgtgcgt	3420
cttcaggag	acctacaaat	tgccgcaccg	gctcatcgag	aaaaagagac	gtgaccggat	3480
taacgagtgc	atcgcccagc	tgaaggatct	cctacccgaa	catctcaaac	ttacaacttt	3540
gggtcacttg	aaaaaagcag	tggttcttga	acttacccctg	aagcatgtga	aagcactaac	3600
aaacctaatt	gatcagcagc	agcagaaaaat	cattgccctg	cagagtggtt	tacaagctgg	3660
tgagctgtca	gggagaaaatg	tcgaaacacagg	tcaagagatg	ttctgctcag	gtttccagac	3720
atgtgcccgg	gaggtgcttc	agtatctggc	caagcacgag	aacactcggg	acctgaagtc	3780
ttcgcagctt	gtcacccacc	tccaccgggt	ggtctcggag	ctgctgcagg	gtggtaccc	3840
caggaagcca	tcagaccagg	ctcccaaagt	gatggacttc	aaggaaaaac	ccagctctcc	3900
ggccaaaggt	tcggaaggtc	ctggggaaaaa	ctgcgtgcc	gtcatccagc	ggactttcgc	3960
tcactcgagt	ggggagcaga	gcggcagcga	cacggacaca	gacagtggct	atggaggaga	4020
atcgagaaag	ggcgacttgc	gcagtgagca	gccgtcttc	aaaagtgacc	acggacgcag	4080
gttcacgatg	ggagaaaagga	tcggcgcaat	taagcaagag	tccgaagaac	cccccacaaa	4140
aaagaaccgg	atgcagctt	cggatgatga	aggccatttc	actagcagt	acctgatcag	4200
ctccccgttc	ctgggcccac	acccacacca	gcctccttcc	tgcctgcct	tctacctgat	4260
cccaccttca	gcgactgcct	acctgcccatt	gctggagaag	tgctggatc	ccacacctgt	4320
gccagtgcta	tacccaggcc	tcaacgcctc	tgccgcagcc	ctctctagct	tcatgaaccc	4380
agacaagatc	tcggctccct	tgctcatgcc	ccagagactc	ccttctccct	tgccagctca	4440
tccgtccgtc	gactcttctg	tcttgctcca	agctctgaag	ccaatcccc	ctttaaactt	4500
agaaaacaaa	gactaaactc	tctagggat	cctgctgcct	tgctttcctt	cctcgctact	4560
tcctaaaaag	caacaaaaaa	gtttttgtga	atgctgcaag	attgttgcat	tgtgtataact	4620
gagataatct	gaggcatgga	gagcagattc	agggtgtgt	tgtgtgtgt	tgtgtgtgt	4680
tgtatgtgcg	tgtgcgtgca	catgtgtgcc	tgcgtgttgg	tataggactt	taaagctcct	4740
tttggcatag	ggaagtca	aaggattgt	tgacatcagg	agacttgggg	gggattgtag	4800
cagacgtctg	ggctttccc	caccagaga	atagccccct	tcgatacaca	tcagctggat	4860

38

tttcaaaagc ttcaaagtct tggctgtga gtcactttc agttgggag ctgggtctgt	4920
ggcttgatc agaaggtaact ttcaaaagag ggcttccag ggctcagctc ccaaccagct .	4980
gttaggaccc caccctttg ccttattgt cgacgtgact caccagacgt cggggagaga	5040
gagcagtcag accgagctt ctgctaacat ggggaggtag cagggactgg catagcacgg	5100
tagtggttg gggaggttc cgcaaggctg ctccccaccc ctgcctcgga agaataaaga	5160
gaatgttagtt ccctactcag gcttcgttag tgattagctt actaaggaac tgaaaatggg	5220
ccccttgtac aagctgagct gccccggagg gagggaggag ttccctggc ttctggcacc	5280
tgtttctagg cctaaccatt agtacttaact gtgcaggaa ccaaaccaag gtctgagaaa	5340
tgcggacacc ccgagcggc acccaaagt gcacaaagct gagtaaaag ctgccccctt	5400
caaacagaac tagactcagt tttcaattcc atcctaaaac tcctttAAC caagcttagc	5460
ttctcaaaagg cctaaccaag ccttggcacc gccagatctt ttctgttaggc taattccct	5520
tgcccaacgg catatggagt gtccttattg ctaaaaagga ttccgtctcc ttcaaagaag	5580
ttttatTTT ggtccagagt acttggTTTcc ccgatgtgtc cagccagctc cgcagcagct	5640
tttcaaaatg cactatgcct gattgctgat cgtgtttAA ctTTTCTTT tcctgttttt	5700
atTTTGGTAT taagtcgttg ctttatttg taaagctgtt ataaatataattatataaa	5760
tatattaaaa aggaaaatgt ttcatgtttt tatttgtata attacttgcat tcacacagtg	5820
agaaaaaaatg aatgtattcc tggTTTGAAG gagaagaata atTTTTTTT tctctaggaa	5880
gaggtacagt gtttatTTT tggagccttc ctgaagggtgt aaaattgtaa atatTTTat	5940
ctatgagtaa atgttaagta gttgtttAA aataacttaat aaaataattc ttTCCTGTG	6000
gaa	6003

<210> 37
 <211> 5871
 <212> DNA
 <213> Homo sapien

<400> 37	
tgacatacga aaggTTTTA atatctacAA aagatgacag actgaaatAG taacattCTC	60
caggatggaa agatctatGC cacgttagAA ttgtttgtTC aaattattat ttttAAAAG	120
ccataagCTA tggagagaAT aacagAGTTT tgTTTGTttt ttTAATCCTG atacggTgGA	180
agtctggTAG gatggGAACC gttcttGAAG ctTGAGAAATA cattcggAAC aaataAAAAG	240
taggAAATGC atacATTtTG ttatTTACAG ttgttagggCA ggtaaggGC AAACGTATTG	300
atAAACTCAA agaATTtAA gaatgatTTT gtcATGAGCC atgAGCCATG gaAGCTGCAA	360
ggTTTGGGCT ccCTCCTGCC atcgggtggg gggtgtcgGC ggaaggGGGT acgtgtcCTG	420

39

tcctctccca	gtgcttattt	cctgctggaa	ccgtggttt	gacgcagccg	tgacagccct	480
tcatccttat	taaaatcaca	aatgaagca	ggtcgccccaa	attgaaaagc	gcgtttccag	540
ggcgacccc	ggtcccccgc	tttggccagc	aaaagtacat	tctggcaggg	aggatctct	600
gagccccgaa	gtgaggtcat	gccagttagc	agtttagaaaa	ggaggcattt	ctcacacttg	660
ctaaagagtt	tgacgcttgt	gaaatataaa	caggaagcgg	gagctctcca	aggcgacctg	720
aagggaaatac	actgccagtt	tggtcaactt	gtgaatgcca	gttctctagg	tcgtcaaggg	780
cactgccagt	taagactgat	cccctaactg	cacccgagggc	tactacttct	cgcccagtc	840
cggcagtgac	cccattttt	tttcaatcct	tcccacagcc	aggtcactca	gcagtgggt	900
gactgacccg	aagcgcagtg	ggaagggctt	acagtcatct	ctcaactccc	cgaacttgca	960
gggcaggggg	gcbcagaggt	cagtgaaatc	cccagccagg	ccttatttta	gtcatgagtt	1020
tccactggct	ccctcctctg	actgtatcag	cgctgctcac	accgcgggat	tggagttca	1080
gctgtttcc	ctgctcccg	ctgagtgaga	aggtcacaga	gcccggacct	ttccggggga	1140
ggtgtgggtgg	gcccctccggc	agcctaagtg	agattgcaga	gatctgggc	cgctggagga	1200
ggtccttccg	ccccgggctt	ggggctttgg	gttagcttct	cccccgcttc	tctacctagg	1260
catctcggtt	acaatgaaat	taaaaacaaa	acacaaagca	acacaagttc	tcattgttt	1320
tccccctctgt	cagccagttg	cctcgataca	attttccag	ggctgccttt	cctttattgc	1380
tcaatttaac	ctcttcctag	aggttctgca	agttcaaggg	caggatccgt	gtcggattca	1440
tcaactagtg	cagcgcctag	tgcagagcag	ggggctcaag	aaatacgtgt	cgaccgcatg	1500
attgctaaga	tttccctgta	acaggcggtt	tttttttctt	gtctctctca	tccctcctgc	1560
cctgggtgca	gaccgcgaac	agcgccgccc	aacttccaa	caggcaggga	gagggccgat	1620
ccgggctggc	acgccacgtc	cccggggtct	cagtcctgg	gtcaacgcag	agaggctcgc	1680
ggtccgcgg	gctacgacct	gagccggcc	acgtgaagcg	tcacgcctg	cgctgctgca	1740
gggcaggcgc	cgccgcccgc	gttgtaac	gctgcagccg	gagggaggg	gaccggggcg	1800
cctctgtcc	ggagggggca	gaggagggag	ggagcgccgg	gcacagcgcc	cggtatctt	1860
ctgcgttga	ctggccggga	ggaaggggt	gacactgggg	cacccagggg	gctgcgcaac	1920
cgggtccccg	cccgccccca	ggtgtgccc	aggagcggag	ctcctggag	cgagggggccc	1980
tcggctcaca	ccctccacgg	tcaaggcgc	gcggcgtgct	cgccggcagc	ctcagctgcc	2040
cctgcgttgc	gccgtcgccc	cgcttccat	gggtgacat	ccggcccgcc	cctcggtccc	2100
tccccaaaggc	ggcaattcc	tggacgcgag	ggtgagcagt	gggggcaggg	aagccaggac	2160
ggaaagaaac	cccagccct	gggaaaggct	ggggggccgg	gcgactccc	ccgcagcgcg	2220
ccggttcctc	caagcgggccc	gggcggggga	ggaggaagag	ggctgggctg	gagctagcaa	2280

ggggatattc ctctccggc ttgagtcaga cgcgggcgga tccgtcctcc cccgttcct	2340
cccaggagac gggacttac ttcattccc tggggcaggt tcgcccacgt taccaacttc	2400
tccccctccc ccagcacccc cgtcccttcc agttcccg cgccccaccc aactggcag	2460
gaccaggcgt gtgctgccac cccctttcg gggaaaggcg gccgcagccg cagacacctg	2520
ggggccgggg ctgggggtgg gggctcccta gcagccgccc gagcgttgtc caacacgtga	2580
gactcatgtg atgaagccgg gggagggcg ggaggtcgct cttccctcc ccggcagtgg	2640
ccagacgtgc ctggagtcac agggtagaac acgtagctcc aaccaccca cgcgtccctc	2700
ccgcctcccc gcccgcacca cttctcatcc acttggctcg cacggcgcag acagaccgcg	2760
cagggagcac acaccgcac tctgtgcgct gagtcggagc cagaggccgc ggggacacccg	2820
ggccatgcac gcccccaact gaagctgcat ctcaaagccg aagattccag cagcccaggg	2880
gattcaaag agctcagact cagaggaaca tctgcggaga gacccccc gccctctcca	2940
gggcagtcct catccagacg ctccgctagt gcagacagga gcgcgcagtg gccccggctc	3000
gccgcgccat ggagcggatc cccagcgcgc aaccaccccg cgcctgcctg cccaaagcac	3060
cgggactgga gcacggagac ctaccaggga tgtaccctgc ccacatgtac caagtgtaca	3120
agtcaagacg gggataaaag cggagcgagg acagcaaggt aagcaagtgc acccctaggg	3180
accctgcgct cagccctcg cgcgcgtga gtttccaaga aaagtttct cgctttgagg	3240
ataggcttct catctccccc cccaaagcgcc caccgcctcc cgcgtcgctc tgcaaggagac	3300
ctacaaattg ccgcacccgc tcatcgagaa aaagagacgt gaccggatta acgagtgcat	3360
cgcctcg aaggatctcc tacccgaaca tctcaaactt acaactttgg gtcacttgga	3420
aaaagcagtg gttttgaac ttaccttcaa gcatgtgaaa gcactaacaa acctaattga	3480
tcagcagcag cagaaaatca ttgcctgca gagtggtta caagctggtg agctgtcagg	3540
gagaaatgtc gaaacaggc aagagatgtt ctgctcagggt ttccagacat gtgcgggaa	3600
ggtgcttcag tatctggcca agcacgagaa cactcgggac ctgaagtctt cgcagctgt	3660
caccaccc caccgggtgg tctcggagct gctgcagggt ggtacctcca ggaagccatc	3720
agacccagct cccaaagtga tggacttcaa gaaaaaccc agctctccgg ccaaagggtt	3780
ggaaggcct gggaaaaact gcgtgccagt catccagcgg acttcgcctc actcgagttgg	3840
ggagcagagc ggcagcgcaca cggacacaga cagtggttat ggaggagaat cggagaaggg	3900
cgacttgcgc agtgagcagc cgtgcttcaa aagtgaccac ggacgcaggt tcacgatggg	3960
agaaaggatc ggcgcattaa agcaagagtc cgaagaaccc cccacaaaaa agaaccggat	4020
gcagcttcg gatgatgaag gccatttcac tagcagtgac ctgatcagct cccgttcct	4080

41

gggcccacac ccacaccagc	ctcctttctg	cctgccccttc	tacctgatcc	cacccatcagc	4140	
gactgcctac ctgccccatgc	tggagaagtg	ctggtatccc	acctcagtgc	cagtgtata	4200	
cccaggcctc aacgcctctg	ccgcagccct	ctctagcttc	atgaacccag	acaagatctc	4260	
ggctcccttg	ctcatgcccc	agagactccc	ttctcccttg	ccagctcattc	cgtccgtcga	4320
ctcttctgtc	ttgctccaag	ctctgaagcc	aatcccccct	ttaaaacttag	aaaccaaaga	4380
ctaaactctc	tagggatcc	tgctgctttg	ctttccttcc	tcgctacttc	ctaaaaagca	4440
acaaaaaaagt	ttttgtgaat	gctgcaagat	tgttgcattg	tgtatactga	gataatctga	4500
ggcatggaga	gcagattcag	ggtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tatgtgcgtg	4560
tgcgtrcaca	tgtgtgcctg	cgtgttgta	taggactta	aagctccttt	tggcataggg	4620
aagtacgaa	ggattgcttg	acatcaggag	acttgggggg	attttagca	gacgtctggg	4680
ctttccccca	cccagagaat	agcccccctc	gatacacatc	agctggattt	tcaaaagctt	4740
caaagtcttg	gtctgtgagt	cactcttcag	tttggagct	gggtctgtgg	ctttgatcag	4800
aaggtaactt	caaaagaggg	ctttccaggg	ctcagctccc	aaccagctgt	taggacccca	4860
cccttttgc	tttattgtcg	acgtgactca	ccagacgtcg	gggagagaga	gcagtcagac	4920
cgagctttct	gctaacatgg	ggaggtagca	ggcaactggca	tagcacggta	gtggtttggg	4980
gaggttccg	caggtctgct	ccccacccct	gcctcgaaag	aataaagaga	atgtagttcc	5040
ctactcaggc	tttcgttagtg	attagcttac	taaggaactg	aaaatggcc	ccttgtacaa	5100
gctgagctgc	cccgaggaga	gggaggagtt	ccctgggctt	ctggcacctg	tttcttaggcc	5160
taaccattag	tacttactgt	gcagggaaacc	aaaccaaggt	ctgagaaatg	cggacacccc	5220
gagcgagcac	cccaaagtgc	acaaagctga	gtaaaaagct	gcccccttca	aacagaacta	5280
gactcagttt	tcaattccat	cctaaaaactc	cttttaacca	agcttagctt	ctcaaaggcc	5340
taaccaagcc	ttggcaccgc	cagatcctt	ctgtaggcta	attcctcttg	cccaacggca	5400
tatggagtgt	ccttattgct	aaaaaggatt	ccgtctcctt	caaagaagtt	ttatttttgg	5460
tccagagtac	ttgttttccc	gatgtgtcca	gccagctccg	cagcagcttt	tcaaaatgca	5520
ctatgcctga	ttgctgatcg	tgttttaact	tttcttttc	ctgtttttat	tttgttatta	5580
agtcgttgcc	tttatttgta	aagctgttat	aaatatatat	tatataaata	tataaaaag	5640
gaaaatgttt	cagatgtta	tttgtataat	tacttgattc	acacagttag	aaaaaatgaa	5700
tgtattcctg	ttttgaaga	gaagaataat	tttttttc	tctagggaga	ggtacagtgt	5760
ttatattttg	gagccttcct	gaaggtgtaa	aattgtaaat	attttatct	atgagtaat	5820
gttaagttagt	tgtttaaaa	tacttaataa	aataattttt	ttcctgtgga	a	5871

<210> 38
 <211> 7742
 <212> DNA
 <213> Homo sapien

<400> 38	
tgacatacga aaggtttta atatctacaa aagatgacag actgaaatag taacattctc	60
caggatggaa agatctatgc cacgttagaa ttgtttgttc aaattattat ttttaaaag	120
ccataagcta tggagagaat aacagagttt tggtttgttt ttaatcctg atacggtgga	180
agtctggtag gatgggaacc gttcttgaag cttgagaata cattcggAAC aaataaaaag	240
taggaaatgc atacatttg ttatttacag ttgttagggca ggtaagggcA aaacgtattg	300
ataaactcaa agaattttaa gaatgatatt gtcatgagcc atgagccatg gaagctgcaa	360
ggtttgggct ccctcctgcc atcgggtggg ggggtgtcgcc ggaagggggt acgtgtcctg	420
tcctctcccc gtgttattt cctgctggaa ccgtgggttt gacgcagccg tgacagccct	480
tcatccttat taaaatcaca caatgaagca ggtcgccaa gattgaaagc gcgtttccag	540
ggcggacccc ggtcccccgc tttggccagc aaaagtacat tctggcaggg agggatctct	600
gagccccgaa gtgagggtcat gccagtttagc agtttagaaaa ggaggcattt ctcacacattt	660
ctaaagagtt tgacgcttgt gaaatataaa caggaagcgg gagctctcca aggcgcacctg	720
aaggaaatac actgccagtt tggtaactt gtgaatgccca gttctctagg tcgtcaaggg	780
cactgccagt taagactgat cccctaactg cacccgaggc tactactctt cgcccagtct	840
cggcagtgac cccattttt tttcaatcct tcccacagcc aggtcactca gcagtggggt	900
gactgacccg aagcgcagtg ggaagggtt acagtcatct ctcaactccc cgaacttgca	960
gggcagggga ggcgcagaggt cagtgaaatc cccagccagg ctttattta gtcatgagtt	1020
tccactggct ccctcctctg actgtatcag cgctgctcac accgcggat tggagttca	1080
gctgtttcc ctgctcccg ctgagtgaga aggtcacaga gcccggaccc ttccggggga	1140
ggtggttggg gcccctccggc agcctaagtg agattgcaga gatctggggc cgctggagga	1200
ggtccttccg ccccggtt ggggtttgg gttagctct ccccgcttc tctacctagg	1260
catctcggtt acaatgaaat taaaaacaaa acacaaagca acacaagtcc tcattgttt	1320
tccctctgt cagccagttt cctcgataca atttcccaag ggctgcctt cctttattgc	1380
tcaatttaac ctcttccttag aggttctgca agttcaaggg caggatccgt gtcggattca	1440
tcaactagt cagcgcctag tgcagagcag ggggctcaag aaatacgtgt cgaccgcatt	1500
attgctaaga tttccctgta acaggcggtt ttttttctt gtctctctca tccctcctgc	1560
cctgggtgca gaccgcgaac agcgcgcggc aacttccaa caggcaggga gagggccgat	1620
ccgggctggc acgccacgtc cccgggtct cagtcctgg gtcaacgcag agaggctcgc	1680

ggtccgcgggt gctacgaccc t	gagcccgcc acgtgaagcg tcacgcctg cgctgctgca	1740
ggcaggcgc cgcgcgcg gttgttaac gctcagccg gagggggaggc gaccggggcg		1800
cctctgtcc ggagggggca gaggagggag ggagcgcgg gcacagcgcc cggtatctt		1860
ctgcgtttga ctggccggga ggaagggggt gacactgggg caccagggg gctgcgcaac		1920
cgggtccccg cccgcggca ggttgtcccc aggagcggag ctccctggag cgagggggccc		1980
tccggctcaca ccctccacgg tcaggtgcgc gcggcgtgct cggcggcagc ctcagctgcc		2040
cctgcgcttg gccgtcgcc cgcgtccat ggggtgacat ccgcggcgcc cctcggtccc		2100
tccccaaggc gggcaattcc tggacgcgag ggtgagcagt gggggcaggg aagccaggac		2160
ggaaagaaac cccagcctct ggggaaggct gggggggccgg gcgactccct ccgcagcgcg		2220
ccgggttcctc caagcgggccc gggcggggggaa ggaggaagag ggctgggctg gagctagcaa		2280
ggggatattc ctctccggc ttgagtcaga cgcgggcccga tccgtccctcc cccgttcct		2340
cccaggagac gggaaacttac ttcatttccc tggggcaggt tcgcccacgt taccaacttc		2400
tccccctccc ccagcaccccc cgtcccttcc agcttccgcg ccccccaccc aactggcag		2460
gaccagggtc gtgctgccac cccctttcg gggaaaggcg gccgcagccg cagacacctg		2520
ggggccgggg ctgggggtgg gggctcccta gcagccgcg gagcgttgcgca acacagtga		2580
gactcatgtg atgaagccgg gggagggcgg gcaggtcgct cttccctcc ccggcagtgg		2640
ccagacgtgc ctggagtcac aggtagaaac acgtagctcc aaccaccca cgcgtccctc		2700
ccgcctcccc gcccgcacca cttctcattc acttggctcg cacggcgcag acagaccgcg		2760
cagggagcac acaccgcac tctgtgcgct gagtcggagc cagaggccgc gggacaccg		2820
ggccatgcac gcccccaact gaagctgcat ctcaaagccg aagattccag cagcccagg		2880
gatttcaaag agctcagact cagaggaaca tctgcggaga gaccccccga gcccctcca		2940
gggcagtcct catccagacg ctccgctagt gcagacagga gcgcgcagtg gccccggctc		3000
gccgcgcacat ggagcggatc cccagcgcgc aaccaccccc cgcctgcctg cccaaagcac		3060
cgggacttggaa gcacggagac ctaccagggt aagttggcac tccttggccc ttcaaggctc		3120
aactgcagcc ccatgttatg cgcactctc aacttggagc agctccgggc gcaccggag		3180
gttcttggcc ggcagaacgc ctgcagccgt gcgcacgcag tcacgaccct tcctggctc		3240
tcttcctgca ggatgtaccc tgcccacatg taccaagtgt acaagtcaag acggggataa		3300
aagcggagcg aggacagcaa ggttaagcaag tgcaccccta gggaccctgc gtcagcccc		3360
tcgcgcgcgc tgagttcca agaaaagttt tctcgcttg aggttggcga gggatgcag		3420
ggtgtggct cggtgccctct tctgagtgac ttggaaaaga aaggccagac gatggttctg		3480

44

tttccaggtg	cggcacaggc	cttctgaaac	gttttccttc	ggattttct	ttccccaggt	5400
gagctgtca	ggagaaaatgt	cgaaacaggt	caagagatgt	tctgctcagg	tttcagaca	5460
tgtgcccggg	aggtgcttca	gtatctggcc	aagcacgaga	acactcggga	cctgaagtct	5520
tcgcagcttg	tcacccacct	ccaccgggtg	gtctcggagc	tgctgcaggg	tgg tacctcc	5580
aggaagccat	cagacccagc	tcccaaagtg	atggacttca	aggaaaaacc	cagctctccg	5640
gccaaaggtt	cggaaagggtcc	tggaaaaaac	tgcgtgccag	tcatccagcg	gactttcgct	5700
cactcgagtg	gggagcagag	cggcagcgcac	acggacacag	acagtggcta	tggaggagaa	5760
tcggagaagg	gcgacttgcg	cagtgagcag	ccgtgcttca	aaagtgacca	cggacgcagg	5820
ttcacgatgg	gagaaaggat	cggcgcaatt	aagcaagagt	ccgaagaacc	ccccacaaaa	5880
aagaaccgga	tgcagcttc	ggatgatgaa	ggccatttca	ctagcagtga	cctgatcagc	5940
tccccgttcc	tgggcccaca	cccacaccag	cctcctttct	gcctgcccctt	ctacctgatc	6000
ccacccctcag	cgactgccta	cctgcccattg	ctggagaagt	gctggtatcc	cacccatgt	6060
ccagtgctat	acccaggcct	caacgcctct	gccgcagccc	tctctagctt	catgaaccca	6120
gacaagatct	cggctccctt	gctcatgccc	cagagactcc	cttcccttcc	gccagctcat	6180
ccgtccgtcg	actcttctgt	cttgctccaa	gctctgaagc	caatcccccc	tttaaactta	6240
gaaaccaaag	actaaactct	ctaggggatc	ctgctgctt	gctttccctc	ctcgctactt	6300
cctaaaaagc	aacaaaaaaag	tttttgtaa	tgctgcaaga	ttgttgatt	gtgtatactg	6360
agataatctg	aggcatggag	agcagattca	gggtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	6420
gtatgtgcgt	gtgcgtgcac	atgtgtgcct	gcgtgttgtt	ataggacttt	aaagctcctt	6480
ttggcatagg	gaagtcacga	aggattgctt	gacatcagga	gacttgggggg	ggattgttagc	6540
agacgtctgg	gctttcccccc	acccagagaa	tagccccctt	cgatacacat	cagctggatt	6600
ttcaaaagct	tcaaagtctt	ggtctgtgag	tcactcttca	gtttgggagc	tgggtctgtg	6660
gctttgatca	gaaggtactt	tcaaagagg	gctttccagg	gctcagctcc	caaccagctg	6720
ttaggacccc	acccttttgc	cttattgtc	gacgtgactc	accagacgtc	ggggagagag	6780
agcagtca	ccgagcttcc	tgctaacatg	gggaggttagc	aggcactggc	atagcacgg	6840
agtggtttgg	ggaggtttcc	gcaggtctgc	tccccacccc	tgcctcggaa	gaataaagag	6900
aatgttagttc	cctactcagg	cttcgttagt	gattagctta	ctaaggaact	gaaaatggc	6960
cccttgcata	agctgagctg	ccccggaggg	agggaggagt	tccctgggct	tctggcacct	7020
gtttctaggc	ctaaccat	gtacttactg	tgcaggaaac	caaaccaagg	tctgagaaat	7080
gcggacacccc	cgagcgcagca	ccccaaagtg	cacaaagctg	agtaaaaagc	tgcccccttc	7140

46

aaacagaact agactcagtt ttcaattcca tcctaaaact cctttaacc aagcttagct	7200
tctcaaaggc ctaaccaagc cttggcacccg ccagatcctt tctgtaggct aattcctctt	7260
gcccaacggc atatggagtgc tccttattgc taaaaaggat tccgtctcct tcaaagaagt	7320
tttatttttg gtccagagta cttgtttcc cgatgtgtcc agccagctcc gcagcagctt	7380
ttcaaaatgc actatgcctg attgctgatc gtgttttaac ttttctttt cctgtttta	7440
ttttggtatt aagtcgttgc ctttatttgc aaagctgtta taaatatata ttatataaat	7500
atattaaaaa ggaaaatgtt tcagatgttt atttgtataa ttacttgatt cacacagtga	7560
gaaaaaaaaatga atgtattcct gttttgaag agaagaataa ttttttttt ctctaggag	7620
aggtacagtg tttatattt ggagccttcc tgaaggtgta aaattgtaaa ttttttatac	7680
tatgagtaaa tgtaaagttag ttgtttaaa atacttaata aaataattct ttccctgtgg	7740
aa	7742

<210> 39
<211> 5384
<212> DNA
<213> Homo sapien

<400> 39	
tgacatacga aaggtttta atatctacaa aagatgacag actgaaatag taacatttc	60
caggatggaa agatctatgc cacgttagaa ttgtttgttc aaattattat tttttaaaag	120
ccataagcta tggagagaat aacagagttt tggtttgtt ttaatcctg atacggtgga	180
agtctggtag gatgggaacc gttcttgaag cttgagaata cattcgaaac aaataaaaag	240
taggaaatgc atacattttg ttatattacag ttgttagggca ggtaaggca aaacgtattt	300
ataaaactcaa agaattttaa gaatgatatt gtcatgagcc atgagccatg gaagctgcaa	360
ggtttggct ccctcctgcc atcggtgggg gggtgtcgcc ggaagggggt acgtgtcctg	420
tcctctcccc gtgttattt cctgctggaa ccgtggttt gacgcagccg tgacagccct	480
tcatccttat taaaatcaca caatgaagca ggtcgcccaa gattgaaagc gcgtttccag	540
ggcggacccc ggtcccccggc tttggccagc aaaagtacat tctggcaggg agggatctct	600
gagcccccga gtgagggtcat gccagttac agtttagaaaa ggaggcattt ctcacacttg	660
ctaaagagtt tgacgcttgc gaaatataaa caggaagcgg gagctctcca aggccacccgt	720
aaggaaatac actgccagtt tggtaactt gtgaatgcca gttctctagg tcgtcaaggg	780
cactgccagt taagactgat cccctaactg cacccgaggc tactactttt cgcccagtct	840
cgccagtgac cccatTTTT ttcaatcct tcccacagcc aggtcactca gcagtggggt	900
gactgacccg aagcgcagtg ggaaggcattt acagtcatct ctcaactcccc cgaacttgca	960

gggcagggga	gcmcagaggt	cagtgaaatc	cccagccagg	ccttattta	gtcatgagtt	1020
tccactggct	ccctcctctg	actgtatcag	cgctgctcac	accgcgggat	tggagttca	1080
gctgtttcc	ctgctcccg	ctgagtgaga	aggtcacaga	gcccgaccc	ttccggggga	1140
ggtggtggg	gcctccggc	agcctaagtg	agattgcaga	gatctgggc	cgctggagga	1200
ggtcctccg	ccccgggctt	ggggctttgg	gttagctct	ccccgcttc	tctacctagg	1260
catctcggtt	acaatgaaat	taaaaacaaa	acacaaagca	acacaagttc	tcattgttt	1320
tcccctctgt	cagccagtgg	cctcgataca	attttccag	ggctgcctt	cctttattgc	1380
tcaatttaac	ctcttcctag	aggttctgca	agttcaaggg	caggatccgt	gtcggttca	1440
tcaactagtg	cagcgcctag	tgcagagcag	ggggctcaag	aaatacgtgt	cgaccgcatg	1500
attgctaaga	tttccctgta	acaggcggtt	tttttttctt	gtctctctca	tccctccctgc	1560
cctgggtgca	gaccgcgaac	agcgcggccg	aacttccaa	caggcaggga	gagggccgat	1620
ccgggctggc	acgccacgtc	cccggggtct	cagtccctgg	gtcaacgcag	agaggctcgc	1680
ggtccgcgtt	gctacgacct	gagccggcc	acgtgaagcg	tcacgcctg	cgctgcgtca	1740
gggcaggcgc	cgccgcgcg	gttgtaaca	gctgcagccg	gaggggaggc	gaccggggcg	1800
cctctgctcc	ggagggggca	gaggagggag	ggagcgcgg	gcacagcgc	cggtatctt	1860
ctgcgcttga	ctggccggga	ggaaggggt	gacactgggg	cacccagggg	gctgcgcaac	1920
cgggtgcgg	cccgcgcga	gttgtgccc	aggagcggag	ctcctggag	cgagggccc	1980
tcggctcaca	ccctccacgg	tcaggtgcgc	gcggcgtgt	cggggcagc	ctcagctgcc	2040
cctgcgcctt	gccgtcgcc	cgcttccat	ggggtgacat	ccgccccgcc	cctcggtccc	2100
tccccaaaggc	ggcaattcc	tggacgcgag	ggtgagcagt	ggggcaggg	aagccaggac	2160
ggaaagaaac	cccagcctct	gggaaaggct	ggggggccgg	gcgactccct	ccgcagcgcg	2220
ccggttcctc	caagcgggccc	gggcggggga	ggaggaagag	ggctggctg	gagctagcaa	2280
ggggatattc	ctctccggc	ttgagtcaga	cgccggccga	tccgtctcc	cccgttccct	2340
cccaggagac	ggaaacttac	ttcattccc	tggggcaggt	tcgcccacgt	taccaacttc	2400
tccccctccc	ccagcacccc	cgcccccttc	agcttccgcg	ccccccaccc	aactggcag	2460
gaccaggcgc	gtgctccac	ccctcttcg	gggaaaggcg	gccgcagccg	cagacacctg	2520
ggggccgggg	ctgggggtgg	gggctcccta	gcagccgcg	gagcgttgc	caacacgtga	2580
gactcatgtg	atgaagccgg	gggagggcgg	gcaggtcgct	cctccctcc	ccggcagtgg	2640
ccagacgtgc	ctggagtcac	aggtagaac	acgtagctcc	aacccaccca	ccgctccctc	2700
ccgcctcccc	gccccccccca	cttctcattc	acttggctcg	cacggcgcag	acagaccgag	2760
cagggagcac	acaccgcccag	tctgtgcgt	gagtcggagc	cagaggccgc	ggggacaccg	2820

ggccatgcac gcccccaact gaagctgcat ctc当地agccg aagattccag cagcccaggg	2880
gattcaaag agctcagact cagaggaaca tctgcggaga gacccccc当地 gccctctcca	2940
gggcagtc当地 catccagacg ctccgctagt gcagacagga gcgccgactg gccccggctc	3000
gccgc当地ccat ggagcggatc cccagcgc当地 aaccacccccc cgc当地gc当地 cccaaagcac	3060
cgggactt当地 ggacggagac ctaccaggta tgtaccctgc ccacatgtac caagtgtaca	3120
agtcaagacg gggaaaataaag cgagc当地gagg acagcaagga gacctacaaa ttgccc当地acc	3180
ggctcatcga gaaaaagaga cgtgaccggta ttaacgagtg catc当地ccc当地 ctgaaggatc	3240
tc当地taccggta acatctcaaaa cttacaactt tgggtcactt ggaaaaagca gtggttctt当地	3300
aacttacctt gaagcatgtg aaagcactaa caaac当地taat tgatcagcag cagcagaaaa	3360
tc当地tgc当地 ct当地agactg gt当地agctg agggagaaaat gtc当地aaacag	3420
gtcaagagat gttctgctca ggttccaga catgtgccc当地 ggaggtgctt cagtatctgg	3480
ccaaggcacga gaacactc当地 gacctgaagt ct当地cgactg tgc当地acccac ctccacc当地gg	3540
tggtctcgga gctgctgca ggtggtaacct ccaggaagcc atc当地acccca gctcc当地aaag	3600
tgatggactt caaggaaaaaa cccagctctc cggccaaagg tt当地ggaaaggt cctgggaaaa	3660
actgc当地gtcc agtcatccag cggactttcg ct当地actcgag tggggagcag agc当地ggcagcg	3720
acacggacac agacagttggc tatggaggag aatc当地ggagaa gggc当地actt当地 cgactgtgagc	3780
agccgtgctt caaaaagtgac cacggacgca ggttcacgat gggagaaaagg atc当地ggc当地aa	3840
ttaagcaaga gtcc当地gaagaa cccccc当地caaa aaaagaaccg gatc当地agctt tc当地ggatgatg	3900
aaggccattt cactagcagt gacctgatca gctccccc当地 cctgggccc当地 cacc当地acacc	3960
agc当地ctt当地 ct当地cctgccc tt当地tacctga tccc当地accttc agc当地actgcc tacctgccc当地	4020
tgctggagaa gt当地ctggat cccacctc当地 tagccactgct atacccaggc ct当地aacgc当地ct	4080
ctgccc当地cagc cctctcttagc tt当地atgaacc cagacaagat ct当地ggctccc tt当地gtcatgc	4140
ccc当地agact cc当地ttctccc tt当地ggc当地agctc atccgctccgt cgactt当地ct ct当地ttgtcc	4200
aagctctgaa gccaatcccc cc当地ttaaact tagaaaccaa agactaaact ctctagggga	4260
tc当地ctgtctt tt当地gtt当地ctt tc当地tc当地tac tt当地ctt当地aaaaa gcaacaaaaa agt当地ttgtg	4320
aatgctgcaa gattgtt当地ca tt当地gtt当地atac tgagataatc tgaggcatgg agagcagatt	4380
cagggtgtgt gt当地gtgtgt gt当地gtgtgt gt当地tatgtgc gt当地gtc当地gtc acatgtgtgc	4440
ctgctgctt当地 gt当地aggact tt当地aaagctcc tt当地tggc当地ata gggaaagtc当地ac gaaggattgc	4500
ttgacatcag gagactt当地ggg gggattgtta gcagacgtct gggctt当地cc accccc当地agag	4560
aatagcccccc tt当地cgat当地acac atc当地agctgga tt当地tcaaaaag ct当地caaagtc tt当地gtctgtg	4620

49

agtcaactctt	cagtttgaaa	gctgggtctg	tggctttat	cagaaggta	tttcaaaaga	4680
gggcTTCCA	gggctcagct	cccaaccagc	tgttaggacc	ccacccttt	gcctttattg	4740
tcgacgtgac	tcaccagacg	tcggggagag	agagcagtca	gaccgagctt	tctgctaaca	4800
tggggaggta	gcagggactg	gcatacgacg	gtatggttt	ggggaggttt	cccgaggct	4860
gctccccacc	cctgcctcgg	aagaataaaag	agaatgtat	tccctactca	ggctttcgta	4920
gtgattagct	tactaaggaa	ctgaaaatgg	gccccttga	caagctgagc	tgccccggag	4980
ggagggagga	gttccctggg	cttctggcac	ctgtttctag	gcctaaccat	tagtactac	5040
tgtgcaggaa	accaaaccac	ggtctgagaa	atgcggacac	cccgagcgg	caccccaaag	5100
tgcacaaaagc	ttagaaaaaa	gctgccccct	tcaaacagaa	ctagactcag	ttttcaattc	5160
catcctaaaa	ctccctttaa	ccaagcttag	cttctcaaag	gcctaaccac	gccttggcac	5220
cgcagatcc	tttctgttagg	ctaattcctc	ttgccccaa	gcatatggag	tgtccttatt	5280
gctaaaaagg	attccgtctc	cttcaaagaa	gttttat	tggtccagag	tacttgtttt	5340
cccgatgtgt	ccagccagaa	ccacaaat	cggggta	gctc		5384

<210> 40
<211> 5356
<212> DNA
<213> Homo sapien

<400> 40						
tgacatacga	aaggtttta	atatctacaa	aagatgacag	actgaaatag	taacattctc	60
caggatggaa	agatctatgc	cacgttagaa	ttgtttgttc	aaattattat	ttttaaaag	120
ccataagcta	tggagagaat	aacagagttt	tgttttgttt	tttaatcctg	atacggtgga	180
agtctggtag	gatggaaacc	gttcttgaag	cttgagaata	cattcggAAC	aaataaaaag	240
taggaaatgc	atacattttt	ttatttacag	ttgttagggca	ggtaaggggca	aaacgtattt	300
ataaaactcaa	agaattttaa	gaatgatatt	gtcatgagcc	atgagccatg	gaagctgcaa	360
ggtttggct	ccctcctgcc	atcggtgggg	gggtgtcgcc	ggaagggggt	acgtgtcctg	420
tcctctccca	gtgcttattt	cctgctggaa	ccgtggtttt	gacgcagccg	tgacagccct	480
tcatccttat	taaaatcaca	caatgaagca	ggtcgccccaa	gattgaaagc	gcgtttccag	540
ggcggacccc	gtcccccgcc	tttggccagc	aaaagtacat	tctggcaggg	agggatctct	600
gagccccgaa	gtgaggtcat	gccagttagc	agttagaaaa	ggaggcattt	ctcacacttg	660
ctaaagagtt	tgacgcttgt	gaaatataaa	caggaagcgg	gagctctcca	aggcgacctg	720
aaggaaatac	actgccagtt	tggtcaactt	gtgaatgcca	gttctctagg	tcgtcaaggg	780
cactgccagt	taagactgat	cccctaactg	cacccgaggc	tactacttt	cgcccagtc	840

50

cggcagtgac cccatTTTT tttcaatcct tcccacagcc aggtcaactca gcagtgggt	900
gactgacCCG aagcgcaGtg ggaaggGctt acagtcatct ctcaactccc cgaaacttgca	960
gggcaggGGA gCGcAGAGGT cAGtgAAATC cccAGCCAGG CCTTATTta gTCatGAGtt	1020
tccactggct ccCTCCTCTG actgtatCAG cgctgctCAC accgcGGGat tggagtttca	1080
gCTGTTTCC CTGCTCCGG CTGAGTGAGA aggtcacAGA GCCCggACtT tCCGGGGGA	1140
ggtgggtggg GCCCTCCGGC AGCCTAAGTG AGATTGcAGA GATCTGGGC CGCTGGAGGA	1200
ggtcTTTCCG CCCCggGtttTGG GTTAGCTtCT cCCCCGCTtC TCTACCTAGG	1260
catCTCGGTT ACAATGAAAT TAAAAACAAA ACACAAAGCA ACACAAGTtC TCATTGTTT	1320
tcccCTCTGT cAGCCAGTGG CCTCGATAcA ATTTCCCAg ggCTGCTTT CCTTTATTGc	1380
tcaatttaAC CTCTTCCtAG AGTTCTGCA AGTTCAAGGG CAGGATCCGT GTCGGATTCA	1440
tcaactAGTG CAGEGCGCTAG TGcAGAGCAG ggggCTCAAG AAATACGTGT CGACCGCATG	1500
attgctaAGA TTtCCCTGTA ACAGGCGGTT TTTTTTCTT GTCTCTCTCA TCCCTCTGC	1560
cctgggtGCA GACCgCGAAC AGCGCCGCCG AACTTCCAA CAGGcAGGGA GAGGGCCGAT	1620
ccgggCTGGC ACgCCACGTC CCCGGGtCT cAGTCCCTGG GTCAACGCGAG AGAGGCTCGC	1680
ggTCCGCGGT GCTACGACCT gagCCCGGCC ACgtGAAGCG tcACGCCtG CGCTGCTGCA	1740
gggcaggGCGC CGCCGCCGCG GTTGTGTAAC GCTGcAGCCG GAGGGGAGGC GACCggggCG	1800
cctCTGCTCC GGAGGGGGCA GAGGAGGGAG GGAGCGCCGG GCACAGCGCC CGGTATCTT	1860
ctgCGCTTGA CTGGCCGGGA GGAAGGGGt GACACTGGGG CACCCAGGGG GCTGCGCAAC	1920
cgggtGCCG CCGCCCGCA GTTGTGCC AGGAGCGAG CTCTGGAG CGAGGGGCC	1980
tcggCTCACA CCCTCCACGG TCAAGGTGCGC GCGGCGTGT CGGCGGCAGC CTCAGCTGCC	2040
cctGCGCTTG GCCGTCGGCC CGCTTCCCAT GGGGTGACAT CGGCCCCGCC CCTCGGTCCC	2100
tccccAAggc GGGCAATTCC TGGACGCGAG GGTGAGCAGT GGGGGCAGGG AAGCCAGGAC	2160
ggAAAGAAAC CCCAGCCTCT GGGGAAGGCT GGGGGGCCGG GCGACTCCtT CCgCAGCGCG	2220
ccggTTCCtC CAAGCGGGCC GGGCGGGGGa GGAGGAAGAG GGCTGGCTG GAGCTAGCAA	2280
ggggatATTc CTCTCCCGC TTGAGTCAGA CGCGGGCGGA TCCGTCTCC CCCGTTCCtT	2340
cccAGGAGAC GGGAAACTTAC TtCATTCCtC TGGGGCAGGT TCGCCCAcGT TACCAACTtC	2400
tccccCTCCC CCAGCACCC CGTCCCTCC AGCTTCCGCG CCCCCCACCC AACTGGGAG	2460
gaccCAGGTC GTGCTGCCAC CCCtCTTcG GGGAAAGGCG GCGCAGCCG CAGACACCTG	2520
ggggCCGGGG CTGGGGGTGG GGGCTCCtA GCAgCCGCCG GAGCGTTGTC CAACACGTGA	2580
gactcatgtG ATGAAGCCGG GGGAGGGCGG GCAAGGTGCT CCTTCCtCC CGGCAgTGG	2640
ccagacGTGc CTGGAGTCAC AGGGTAGAAC ACgtAGCTCC AACCCACCCA CGCTCCtC	2700

ccgcctcccc	gcccggccca	cttctcattc	acttggctcg	cacggcgtag	acagaccg	2760						
caggagcac	acacccgccc	tctgtgcgt	gagtcggagc	cagaggccgc	ggggacaccg	2820						
ggccatgcac	gcccccaact	gaagctgc	ctcaaagccg	aagattccag	cagcccaggg	2880						
gattcaaag	agctcagact	cagaggaaca	tctgcggaga	gacccccc	gaa gccccttcca	2940						
ggcagtcct	catccagacg	ctccgctagt	gcagacagga	gcgcgc	agtg	3000						
gccgcgccc	at	ggagcggatc	cccagcgcgc	aaccaccc	cgcctgcctg	cccaaagcac	3060					
cgggactgga	gcacggagac	ctaccaggga	tgtaccctgc	ccacatgtac	caagtgtaca	3120						
agtcaagacg	gggaataaaag	cggagcgagg	acagcaagga	gacctacaaa	ttgccgcacc	3180						
ggctcatcga	aaaaaagaga	cgtgaccgga	ttaacgagtg	catcgccc	ag ctgaaggatc	3240						
tcctacc	ga	acatctcaaa	cttacaactt	tgggtcactt	ggaaaaagca	gtggttcttgc	3300					
aacttac	tt	gaagcatgtg	aaagcactaa	caaacc	taat tgatcagcag	cagcagaaaa	3360					
tcattgc	ct	gcagagtgg	ttacaagctg	gtgagctg	tc agggagaaat	gtcgaaacag	3420					
gtcaagagat	gttctgctca	ggttccaga	catgtgccc	ggaggtg	cattt ctt	cttg	3480					
ccaagcacga	gaacactcgg	gacctgaagt	cttcgcag	tgtcaccc	ac ctccacc	gggg	3540					
tgg	tc	cg	g	g	tttcc	caat	3600					
tgtggactt	caaggaaaaa	cccagctc	cggccaaagg	ttcgg	aaaggt	cctgggaaaa	3660					
actgcgtgcc	agtcatcc	cgactttc	ctca	ctcgag	tggggagc	agcggcagcg	3720					
acacggacac	agacagtgg	tatggaggag	aatcg	ggagaa	ggcgactt	cgcagt	gagc	3780				
agccgtgctt	caaaaagt	gac	ca	ggacg	gat	ttcacgat	gggagaaagg	atcg	ggc	caa	3840	
ttaagcaaga	gtcc	gaagaa	cccc	ccacaa	aaa	agaacc	gat	gc	agtt	tcggat	gtat	3900
aaggccat	tt	ca	ct	actg	act	gtat	gat	ca	ttt	cc	acc	3960
agcctcc	ttt	ct	gc	c	cc	ttt	cc	tt	cc	cc	cc	4020
tgc	ct	gc	cc	tt	cc	cc	cc	tt	cc	cc	cc	4080
ctg	cc	gc	ag	cc	cc	cc	cc	tt	cc	cc	cc	4140
ccc	cc	cc	cc	tt	cc	cc	cc	cc	cc	cc	cc	4200
aagctctgaa	gccaatcccc	cctttaaact	tagaaacca	agactaa	act	ctctaggg	gaa	ttt	ttt	ttt	ttt	4260
tcctgctgct	ttg	ctt	cc	tc	tc	tc	tc	tc	tc	tc	tc	4320
aatgctgcaa	gattgttgca	tttgttatac	tgagataatc	tgaggcatgg	agagc	agatt	gtt	ttt	ttt	ttt	ttt	4380
cagggtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtatgtgc	gtgtgcgtgc	acatgtgt	gc	4440					
ctgcgtgttg	gtataggact	ttaaagctcc	ttttggcata	gggaagt	cac	gaaggatt	gc	4500				

52

ttgacatcat	gagacttggg	ggggattgt	a gcagacgtct	gggtttcc	ccacccagag	4560				
aatagcccc	ttcgatacac	atcagctgga	tttcaaaag	cttcaaagtc	ttggtctgt	4620				
agtca	cactt	cagtttggg	a gctgggtctg	tggctt	gat cagaaggta	4680				
gggcttcc	gggc	tcag	ccaaaccagc	tgttaggacc	ccacccttt	4740				
tcgacgtgac	tcacc	acagc	tcggggagag	agagcagtca	gaccgagctt	4800				
tggggaggta	gcagg	cactg	gcata	gcac	gtatggtt	4860				
gctccccacc	cctgc	cctcg	aagaataaa	agaatgt	acta	4920				
gtgattagct	tacta	aggaa	ctgaaaatgg	gccc	ttgt	4980				
ggagggagga	gttcc	cttgg	cttgcac	ctgtt	ttgt	5040				
tgtgcaggga	accaa	acca	ggtctgagaa	atgcgg	acac	5100				
tgcacaaa	ac	tgagtaaaaa	gctgcccc	tcaa	acag	ctagactc	5160			
catcctaaaa	ctc	ctttaa	ccaagctt	cttct	caaag	gcctaaccat	5220			
cgccagatcc	tttct	gttagg	ctaatt	cctc	ttgccc	acg	gcata	tgtag	5280	
gctaaaaagg	attcc	gtctc	cttcaa	agaa	gtttt	at	tttt	tgg	ccagag	5340
gcgaccacgm	taagcc									5356

<210> 41
<211> 2176
<212> DNA
<213> Homo sapien

<400> 41	cacgtgctcg	agctgcttcc	cgggcagctg	gagcaggatg	atagtgggcc	aggcgtgacg	60		
	agcgggcagt	gtgctgggt	aaaggacctg	acaggcctca	ggagggactt	gcgc	ttcagg	120	
	ccgggatcag	gtgctgtgaa	gctgcctgtg	gagctggcct	tggcttccg	gaact	cctcc	180	
	agcttctgtc	ggt	tagtactt	gtacc	cttgg	cttgc	atacagaaa	240	
	tgg	ttctc	ac	ttgttct	cttgg	ccat	gat	300	
	aac	ctggcca	act	tttctgc	aagg	ttccac	cttgg	420	
	agcaggctgt	cag	tact	ttgg	ctcaact	cac	ccaca	480	
	c	ttt	act	ttgg	act	ccct	cttgc	540	
	c	ttt	act	ttgg	act	ccct	cttgc	600	
	c	ttt	act	ttgg	act	ccct	cttgc	660	
	ccc	ttt	aaa	tttagaa	acc	aaagact	aaa	ctctctaggg	720
	ccc	ttt	aaa	tttagaa	acc	aaagact	aaa	ctctctaggg	

53

cttcctcgct acttcctaaa aagcaacaaa aaagttttg tgaatgctgc aagattgtg 780
 cattgtgtat actgagataa tctgaggcat ggagagcaga ttcagggtgt gtgtgtgtgt 840
 gtgtgtgtgt gtgtgtatgt gcgtgtgcgt gcacatgtgt gcctgcgtgt tggtatagga 900
 cttaaagct cctttggca taggaaagtc acgaaggatt gcttgcacatc aggagactt 960
 ggggggattt tagcagacgt ctgggctttt ccccacccag agaatagccc ctttcata 1020
 acatcagctg gattttcaaa agcttcaaag tcttggtctg tgagtcaactc ttca 1080
 gagctggggtc tggcgtttt atcagaaggt actttcaaaa gagggcttc cagggctc 1140
 ctcccaacca gctgttagga ccccacccctt ttgccttat tgcacgtg actcaccaga 1200
 cgtcggggag agagagcagt cagaccgagc ttctgtctaa catggggagg tagcaggcac 1260
 tggcatagca cggtagtggt ttggggaggt ttccgcaggt ctgcctccca cccctgcctc 1320
 ggaagaataa agagaatgta gttccctact caggcttctg tagtgattag ctta 1380
 aactgaaaat gggccccctt tacaagctga gctgccccgg agggagggag gagttccctg 1440
 ggcttctggc acctgtttct aggccctaacc attagtactt actgtgcagg gaaccaaacc 1500
 aaggctcgag aaatgcggac accccgagcg agcaccctaa agtgcacaaa gctgagtaaa 1560
 aagctgcccc cttcaaacag aactagactc agtttcaat tccatcctaa aactccttt 1620
 aaccaagctt agtttctcaa aggccctaacc aagccttggc accgccagat ctttctgt 1680
 ggctaattcc ttttgcctaa cggcatatgg agtgcctta ttgtaaaaaa ggattccgtc 1740
 tccttcaag aagtttatt tttggtccag agtacttggt ttcccgatgt gtccagccag 1800
 ctccgcagca gctttcaaa atgcactatg cctgattgt gatgtgttt taacttttc 1860
 ttttcctgtt tttatttgg tattaagtcg ttgccttat ttgtaaagct gttataaata 1920
 tatattatat aaatataatta aaaaggaaaa tgtttcagat gtttattgt ataattactt 1980
 gattcacaca gtgagaaaaa atgaatgtat tcctgtttt gaagagaaga ataattttt 2040
 tttctctag ggagaggtac agtgtttata tttggagcc ttccctgaagg tgtaaaattt 2100
 taaaatttt tatctatgag taaatgttaa gtagttgttt taaaatactt aataaaataa 2160
 ttctttccct gtggaa 2176

<210> 42
 <211> 1047
 <212> DNA
 <213> Homo sapien

<400> 42
 tgatctaagg ccaccctctc ggggagggag ttggggaaagc tgggtggct ggggtggtag 60
 ctccctaccta ctgtgtggca agaaggtatg ggtcatgaac agaaccaagg agctgcgtc 120

54

ctacagatgt taccacttct gtggctgcta ccccactcct gggccgtccc tgaagctcct	180
actccaatgt ggccagatga cctgc当地aaac cacacattcc tgc当地acagt gtactgccag	240
gatggagtc cc当地gtggg actctctgag gc当地acgacg aggaccagct tt当地ttcttc	300
gactttccc agaacactcg ggtgc当地cgc ct当地ccgaat tt当地ctgactg ggctcaggaa	360
cagggagatg ct当地tgc当地cat tt当地tttgc当地 aaagagttct gc当地gatggat gatccagcaa	420
ataggccaa aacttgatgg gaaaatccc当地 gt当地ccagag gg当地ttccat cgctgaagtg	480
ttcacgctga agccccctgga gtttggcaag cccaacactt tggtctgttt tgtc当地agtaat	540
ctcttccc当地 ccatgctgac agt当地aaactgg cagcatcatt cc当地tccctgt ggaaggattt	600
gggc当地ctactt tt当地tctc当地agc tg当地cgatgg当地 ct当地agcttcc aggcc当地tttc tt当地acttaa当地ac	660
ttcacaccag aaccttctga cat当地ttctcc tgc当地attgtga ct当地acgaaat tgaccgctac	720
acagcaattg cct当地attgggt accccggaac gc当地actgc当地ct cagatctgct ggagaatgtg	780
ctgtgtggcg tggc当地tttgg cct当地gggtgtg ct当地ggcatca tc当地gtggcat tg当地ttctcatc	840
atctacttcc ggaaggc当地ttg ctc当地aggtgac tgatttcc当地 agaccagagt tt当地gatgccc当地ag	900
cagcttc当地gga catccctt当地ggg gt当地gtgtgt agat当地ttccca cct当地ggggact ct当地gtccc当地	960
tgggcttgca tccc当地agggat ccc当地aggtgg cct当地ccatac acaaccacat cc当地ttcccc	1020
cacaaggcaa taaatctcat tt当地ttta	1047

<210> 43
<211> 871
<212> DNA
<213> Homo sapien

<400> 43 ctctgatcgc cgatcaccc ttagaccacc tt当地gtc当地ataa acaaaatgcc catgttggtc	60
ctctgccc当地t gacctgtgac attctggact atttctgtgt tt当地tttgtgg cc当地gagctc当地ga	120
gccggccatt tt当地tttgc当地 aagat当地ttctg cgagtgatgg atccagcaa tagggccaaa	180
acttgatggg aaaatccgg tgc当地ccagagg gtttccatc gctgaagtg tc当地acgctgaa	240
gccccctggag tttggcaagc ccaacacttt ggtctgttt gtc当地agtaatc tcttccc当地acc	300
catgctgaca gt当地gaactggc agcatcatc cgtccctgtg gaaggatttgg ggc当地ctacttt	360
tgtctc当地agct gtc当地gatggac tc当地agcttccca ggc当地tttct tacttaaact tc当地acaccaga	420
accttctgac attttctccct gc当地attgtgac tc当地acgaaattt gaccgctaca cagcaattgc	480
ctattggta ccccggaacg cactgccc当地c agatctgctg gagaatgtgc tgc当地gtggcg	540
ggcc当地tttggc ct当地gggtgtgc tggc当地catcat cgtgggc当地att gttctcatca tctacttccg	600
gaaggc当地ttgc tc当地aggtgact gatttccca gaccagagtt tgatgccagc agcttc当地ggcc	660

55

atccaaacag aggatgctca gatttctcac atcctgccca ggatctcctc ttagggtaga	720
agaagtctct gggacatccc tgggtgtgt gtgtagattt cccacctggg gactctgctg	780
tccctggct tgcataccag ggatcccaga gtggcctgcc tatcacaacc acatcccttc	840
ccccccacaag gcaataaaatc tcattttttt a	871

<210> 44
<211> 2754

<212> DNA

<213> Homo sapien

<400> 44	
gcgggatggc aggggcgagc tccacgcct gtcccccgtct aagctaccac cttaacttcc	60
accaggctgg gaaccagggc ttcccttggtt gtggtcagca atgagtctgg atgacaattt	120
gtcgggcacg agcggtatgg aagtggacga ccgcgtgtcg ggcgtggagc agcggctgca	180
gttacaggaa gacgagctgg cggtcctaaa ggcggcgctg gcggatgctc tgcgtcgct	240
gcgggcatgc gaagaacagg gagcggcgct acgcgcgcgg ggcaccccca agggccgggc	300
gcctccgcgc ttaggcacca ctgcctcggt gtgtcagctc ttgaaaggcc ttccaccag	360
gacgccccctt aatggctcgg gaccccccgcg gcgcgtgggt ggctatgcca cgtccccatc	420
ctctcccaag aaggaggcga cctccggcg cagcagtgtc cgccgctact tgtaaccaga	480
gcgcctcgcc tcggtgccgc gtgaggaccc ccgcagccgg accacatcct ccagcagcaa	540
ctgtagcgcc aaaaaggaag gcaaaaccaa agaagttatc ttcagtgtgg aggatggctc	600
cgtaaaaatg ttccctgaggg gccgcctgt gcccattatg atcccagacg agctggcacc	660
cacctacagec ctggacacac gctcggagct gccttcttgc cggctcaagc tggagtgggt	720
ctatggctac cgtggccgag actgccgggc caacctttat ttgctgccc ccggggagat	780
agtgtacttt gtggcctccg tagccgtgtc atacagcgtg gaggagcaga ggcagcgcaca	840
ctacctggga cacaacgatg acatcaaattt cttggccatc cacccagata tggtcaccat	900
cgcacggga caggtggcg gAACCAACTAA ggaaggaaag ccgcgtgccgc cccacgtgcg	960
catctgggac tcagttttcc tctccacctt acacgtgtc ggcttggggg tgtttgacag	1020
agccgtgtgc tgtgtggct tctccaaatc taatggaggc aacctgtgt gtgcagtgg	1080
tgaatccaat gatcacatgc tctcgggtgtc ggactgggcc aaggagacca aggtgggtgg	1140
tgtcaagtgc tccaaatgagg ctgtattggc ggccacccctc cacccacgg accccactgt	1200
gcttatcacc tgcgggaaat ctcacatcta cttctggacc ttggagggggg gcagcttgag	1260
caagcggcaa ggcctctttt agaaacatga gaaaccgaag tatgtgtgt gtgtgacctt	1320
tttggaaaggc ggcgacgtgg tcacggggga ctctgggggg aacctctatg tttggggcaa	1380

56

aggtgtggAAC	cgtatcacAC	aggcggtgCT	gggcGCCAc	gacggcGGCG	tgtttgggCT	1440
ctgcGCCCTG	cgggacggGA	cgctggTgTC	tggagggggC	cgtatcgGC	gggtggTCCT	1500
ctggggTTCT	gactacAGCA	agctgcAGGA	agtggaggTC	cctgaggACT	ttggCCCTGT	1560
gcgcaccGTG	gcagaggGCC	acggagACAC	actgtacGTG	gggaccACCC	gcaattCCAT	1620
cctgcaggGC	tccgtgcACA	caggCTCTC	actgctggTC	caggGCCATG	tggaAGAGCT	1680
gtggggCCTG	gccacacACC	ccagtcggGC	ccagTTGTG	acctgcggGC	aggataAGCT	1740
ggtgcATCTA	tggagCTCAG	attcccACCA	gcccCTGTG	agcaggATCA	tcgaggACCC	1800
tgcccgCTCA	gccggCTTCC	accccAGTGG	ctctgtCTG	gctgtggGTA	cagtgaCTGG	1860
cagatggCTG	ctgctggACA	cggagACCCA	tgacctggTG	gctatCCACA	cagacggCAA	1920
tgaacagATC	tcagtggTC	gcttCTCCCC	agacggggCG	tacctggCCG	tgggCTCCCA	1980
cgacaactTG	gtgtacgtGT	acacggTGG	ccagggCGGC	cgcaaggTC	gccgcCTGG	2040
caagtgcTCG	ggccATTCCA	gttttatCAC	ccacctggAT	tgggcccAGG	acagcagCTG	2100
ctttgtcACC	aactccggGG	actatgAGAT	tctgtactGG	gaccggCTA	cctgtAAAGCA	2160
gatcaccAGT	gccccatgCTG	tgaggaACAT	ggaatgggCC	acagCTACTT	gtgtcCTAGG	2220
gtttgggATG	tttgggatCT	ggtctgAGGG	ggcggacGGC	actgataATCA	acgctgtGGC	2280
ccgctCTCAT	gatgggaAGT	tgctggCTTC	agctgatgAC	tttggcaaAG	ttcacCTGTT	2340
tagctACCCC	tgctgtcAGC	ctcgagCCCT	cagccacaAG	tacggTggAC	acagcagCCA	2400
tgtgacAAAT	gtggcCTCT	tgtggatGA	cagcatggCC	ctgaccACAG	ggggcaAGGA	2460
caccagtGTG	ctacagtggC	gggtggCTG	atgcggCCAG	ggaagagtCA	ggtgtcAGGG	2520
caggaattCT	atttcggGA	gatgtctATT	gccgagtAGA	gtaatatATA	cccagAGTAT	2580
gtctatAGCA	gagggggTTA	tgggggCGGG	agggttagACT	gacatacAGA	agtctCTATT	2640
tatccggGTG	ggaagaggGA	gtcacatCGC	tttggggATC	cattggTGT	tggtttggGG	2700
tgtttttAA	gttttttCTT	ttatATCATC	cagaaataAA	gacacgtACA	ctaa	2754

<210> 45
<211> 2309
<212> DNA
<213> Homo sapien

<400> 45	ctcgccccCG	tttcatCGG	agacctCCGG	ggagcggtGG	gggtggagGA	atggTTCTC	60
	ccctttCTG	aactgaataAC	taagaccCTT	ttttttCTT	tgcctttCC	tgacagCAA	120
	accaaagaAG	ttatctTCAG	tgtggaggAT	ggctccGTGA	aaatgttCCT	gaggggCCGC	180
	cctgtGCCA	tgtatgatCCC	agacgagCTG	gcacccACCT	acagcctGGA	cacacgCTCG	240

57

gagctgcctt	cttgcggct	caagctggag	tgggtctatg	gctaccgtgg	ccgagactgc	300
cggccaacc	tttatttgc	gcccacccggg	gagatagtgt	actttgtggc	ctccgtagcc	360
gtgtataca	gcgtggagga	gcagaggcag	cgacactacc	tggacacaa	cgatgacatc	420
aatgcttgg	ccatccaccc	agatatggtc	accatcgcca	cggacaggt	ggcgggaacc	480
actaaggaag	ggaagccgct	gcccccac	gtgcgcacatc	gggactcagt	ttccctctcc	540
accttacacg	tgctggcctt	gggggtgttt	gacagagccg	tgtgtgtgt	gggcttotcc	600
aatctaata	gaggcaacct	gctgtgtca	gtggatgaat	ccaatgatca	catgctctcg	660
gtgtggact	gggccaagga	gaccaagggt	gtggatgtca	agtgtccaa	tgaggctgt	720
ttggtggcca	ccttccaccc	cacggacccc	actgtgctta	tcacctgcgg	gaaatctcac	780
atctacttct	ggaccttgg	ggggggcagc	ttgagcaagc	ggcaaggcct	ctttgagaaa	840
catgagaaac	cgaagtatgt	gctgtgtgt	accttttgg	aagggtggcga	cgtggtcacg	900
ggggactctg	gggggaacct	ctatgtttgg	ggcaaagggt	ggaaccgtat	cacacaggcg	960
gtgctggcg	cccacgcacgg	cggcgtgttt	gggctctgcg	ccctgcggga	cgggacgctg	1020
gtgtctggag	ggggccgtga	tcggcgggtg	gtcctctggg	gttctgacta	cagcaagctg	1080
caggaagtgg	aggtccctga	ggactttggc	cctgtgcgca	ccgtggcaga	gggccacgg	1140
gacacactgt	acgtggggac	cacccgcaat	tccatcctgc	agggctccgt	gcacacaggc	1200
ttctca	tgtccaggg	ccatgtggaa	gagctgtggg	gcctggccac	acacccagt	1260
cggccccagt	ttgtgacctg	cggcaggat	aagctggtgc	atctatggag	ctcagattcc	1320
caccagcccc	tgtggagcag	gatcatcgag	gaccctgccc	gctcagccgg	cttccacccc	1380
agtggctctg	tcctggctgt	gggtacagt	actggcagat	ggctgctgct	ggacacggag	1440
acccatgacc	tggtggttat	ccacacagac	ggcaatgaac	agatctcagt	ggtcagcttc	1500
tccccagacg	gggcgtacct	ggccgtgggc	tcccacgaca	acttggtgta	cgtgtacacg	1560
gtggaccagg	gcggccgcaa	ggtcagccgc	ctgggcaagt	gctcgggcca	ttccagttt	1620
atcacccacc	tggattgggc	ccaggacagc	agctgctttg	tcaccaactc	cggggactat	1680
gagattctgt	actgggaccc	ggctacctgt	aagcagatca	ccagtgcgga	tgtgtgagg	1740
aacatggaat	gggccacagc	tacttgtgtc	ctagggtttgc	gggtgtttgg	gatctggtct	1800
gagggggcgg	acggcactga	tatcaacgct	gtggcccgct	ctcatgatgg	gaagttgctg	1860
gcttcagctg	atgactttgg	caaagttcac	ctgttttagct	acccctgctg	tcagcctcga	1920
gccctcagcc	acaagtacgg	tggacacagc	agccatgtga	caaatgtggc	cttcttgtgg	1980
gatgacagca	tggccctgac	cacagggggc	aaggacacca	gtgtgctaca	gtggcgggtg	2040
gtctgatgcg	gccaggaaag	agtcaagggt	cagggcagga	attctat	ttt cgggagatgt	2100

ctattgccga	gttagagtaat	atatacccg	agtatgtcta	tagcagaggg	ggtttatgggg	2160
gcggggagggt	agactgacat	acagaagtct	ctatttatcc	gggtggaaag	agggagtcac	2220
atcgctttgg	ggatccattg	gtgttggtt	tgggtgttt	ttaagtttt	ttctttata	2280
tcatccagaa	ataaaagacac	gtacactaa				2309
<210>	46					
<211>	2312					
<212>	DNA					
<213>	Homo sapien					
<400>	46					
ctccacccccc	ggccccgaag	ctccgccacc	cggcccatg	agttagcttg	gagctgggtg	60
agaccctttc	gcagaccacc	cccatctcc	tctccgcgt	cccgggctt	agatctcagc	120
aaaaccaaag	aagttatctt	cagtgtggag	gatggctccg	tgaaaatgtt	cctgaggggc	180
cgcctgtgc	ccatgatgat	ccagacgag	ctggcaccca	cctacagcct	ggacacacgc	240
tcgagactgc	cttcttgccg	gctcaagctg	gagtggtct	atggctaccg	tggccgagac	300
tgccgggcca	acctttatcc	gctgccacc	ggggagatag	tgtactttgt	ggcctccgta	360
gccgtgtat	acagcgtgga	ggagcagagg	cagcgacact	acctggaca	caacgatgac	420
atcaaatgct	tggccatcca	cccagatatg	gtcaccatcg	ccacggaca	ggtggcggga	480
accactaagg	aagggaagcc	gctgccgccc	cacgtgcgca	tctggactc	agtttccctc	540
tccacottac	acgtgctgg	cttgggggtg	tttgacagag	ccgtgtgctg	tgtggcttc	600
tccaaatcta	atggaggcaa	cctgctgtgt	gcagtggatg	aatccaatga	tcacatgctc	660
tcggtgtgg	actgggccaa	ggagaccaag	gtggtggtatg	tcaagtgc	caatgaggct	720
gtattggtgg	ccaccttcca	ccccacggac	cccactgtgc	ttatcacctg	cggaaatct	780
cacatctact	tctggacctt	ggaggggggc	agcttgagca	agcggcaagg	cctctttgag	840
aaacatgaga	aaccgaagta	tgtgctgtgt	gtgacctttt	tggaaagggtgg	cgacgtggtc	900
acggggact	ctggggggaa	cctctatgtt	tggggcaaag	gtgggaaccg	tatcacacag	960
gcggtgtctgg	gcgcccacga	cggcggcgtg	tttgggtct	gcgcctgctg	ggacggacg	1020
ctggtgtctg	gagggggccg	tgatcggcgg	gtggtctct	ggggttctga	ctacacaag	1080
ctgcaggaag	tggaggtccc	tgaggacttt	ggccctgtgc	gcaccgtggc	agagggccac	1140
ggagacacac	tgtacgtgg	gaccacccgc	aattccatcc	tgcagggctc	cgtgcacaca	1200
ggcttctcac	tgctggtcca	ggccatgtg	gaagagctgt	ggggcctggc	cacacacccc	1260
agtccgggccc	agtttgtgac	ctgccccag	gataagctgg	tgcacatctatg	gagctcagat	1320
tcccaccacgc	ccctgtggag	caggatcatc	gaggaccctg	cccgctcagc	cggtttccac	1380

cccagtggct ctgtcctggc tgtgggtaca gtgactggca gatggctgct gctggacacg	1440
gagacccatg acctggtggc tatccacaca gacggcaatg aacagatctc agtggtcagc	1500
ttctccccag acggggcgta cctggccgtg ggctcccacg acaaacttggt gtacgtgtac	1560
acggtgacc accggcccg caaggtcagc cgccctggca agtgctcggg ccattccagt	1620
tttatcaccc acctggattg ggcccaggac agcagctgct ttgtcaccaa ctccggggac	1680
tatgagattc tgtactggga cccggctacc tgtaagcaga tcaccagtgc ggatgctgtg	1740
aggaacatgg aatgggccac agctacttgt gtcctaggggt ttgggggtt tgggatctgg	1800
tctgaggggg cgacggcac tgatatcaac gctgtggccc gctctcatga tggaaagttg	1860
ctggcttcag ctgatgactt tggcaaagtt cacctgttta gctacccctg ctgtcagcct	1920
cgagccctca gccacaagta cggtgacac acgagccatg tgacaaatgt ggccttcttg	1980
tgggatgaca gcatggccct gaccacaggg ggcaaggaca ccagtgtgct acagtggcgg	2040
gtggtctgat gcggccaggg aagagtcagg tgtcagggca ggaattctat tttcgggaga	2100
tgtctattgc cgagtagagt aatatatacc cagagtatgt ctatagcaga gggggttatg	2160
ggggcgggag ggtagactga catacagaag tctctattta tccgggtggg aagagggagt	2220
cacatcgctt tggggatcca ttgggtttt gtttgggggtg ttttttaagt tttttctttt	2280
atatcatcca gaaataaaaga cacgtacact aa	2312

<210> 47
<211> 2826
<212> DNA
<213> Homo sapien

<400> 47	
ggccagacgg tacctagggg gatccggcg cagcaatcct ggccctagga ttgtgttggg	60
gggcttggca ggcggtgtcc cgacccccc ttctggcat cctggggatg accccagcgc	120
cggggccggc gccggccgcc tcatgccagg cgagctgagc tggggatgct ggaacgaagg	180
gcgttgcata ggcacggga ggcagggcct gttgggggg accggggcccg ggctgggacc	240
ggggggggccg gcgggtggctg tgggtggggcg atggcggagc gcgcccccgc cttctgcggc	300
ctgtacgaca cgtcctcgct gctgcgatac tgcacacatg acaatttgc gggcacgagc	360
ggtatggaag tggacgaccg cgtgtcgccg ctggagcagc ggctgcagtt acaggaagac	420
gagctggcg tccattaaaggc ggcgcgtggcg gatgccttc gtcgcctgcg ggcacatgc	480
gaacagggag cggcgctacg cgccgcggggc acccccaagg gccggcgcc tccgcgtta	540
ggcaccactg cctcggtgtc tcaagctctt aaaggccttc ccaccaggac gccccttaat	600
ggctcgggac ccccgcgccg cgtgggtggc tatgcacgt ccccatcctc tcccaagaag	660

gaggcgaccc	ccgggcgcag	cagtgtccgc	cgctacttgt	caccagagcg	cctcgccctcg	720
gtgcgcgcgtg	aggacccccc	cagccggacc	acatcctcca	gcagcaactg	tagcgccaaa	780
aaggaaggca	aaaccaaaga	agttatcttc	agtgtggagg	atggctccgt	aaaaatgttc	840
ctgaggggcc	gccctgtgcc	catgatgatc	ccagacgagc	tggcacccac	ctacagcctg	900
gacacacgct	cggagctgcc	ttcttgccgg	ctcaagctgg	agtgggtcta	tggctaccgt	960
ggccgagact	gccgggccaa	ccttatttg	ctgcccaccc	gggagatagt	gtactttgtg	1020
gcctccgtag	ccgtgctata	cagcgtggag	gagcagaggc	agcgacacta	cctgggacac	1080
aacgatgaca	tcaaatgctt	ggccatccac	ccagatatgg	tcaccatcgc	cacgggacag	1140
gtggcgggaa	ccactaagga	agggaaagccg	ctgcccggcc	acgtgcgcac	ctgggactca	1200
gtttccctct	ccaccttaca	cgtgctggc	ttgggggtgt	ttgacagagc	cgtgtgctgt	1260
gtgggcttct	ccaaatctaa	tggaggcaac	ctgctgtgt	cagtggatga	atccaatgat	1320
cacatgctct	cggtgtggg	ctgggccaag	gagaccaagg	tggtgatgt	caagtgcctc	1380
aatgaggctg	tattggtggc	caccccttccac	cccacggacc	ccactgtgct	tatcacctgc	1440
gggaaatctc	acatctactt	ctggacctt	gagggggca	gcttgagcaa	gcggcaaggc	1500
ctctttgaga	aacatgagaa	accgaagtat	gtgctgtgt	tgacctttt	ggaaggtggc	1560
gacgtggtca	cgggggactc	tgggggaac	ctctatgtt	ggggcaaagg	tccctgagga	1620
ctttggccct	gtgcgcaccc	tggcagaggg	ccacggagac	acactgtacg	tggggaccac	1680
ccgcaattcc	atcctgcagg	gctccgtgca	cacaggcttc	tcactgctgg	tccagggcca	1740
tgtggaagag	ctgtgggccc	tggccacaca	ccccagtcgg	gcccagttt	tgacctgcgg	1800
gcaggataag	ctgggtgcac	tatggagctc	agattccac	cagccctgt	ggagcaggat	1860
catcgaggac	cctgccccgt	cagccggctt	ccacccca	ggctctgtcc	tggctgtggg	1920
tacagtgact	ggcagatggc	tgctgctgga	cacggagacc	catgacctgg	tggctatcca	1980
cacagacggc	aatgaacaga	tctcagtgg	cagcttctcc	ccagacgggg	cgtacctggc	2040
cgtggctcc	cacgacaact	tggtgatgt	gtacacggtg	gaccagggcg	gccgcaaggt	2100
cagccgcctg	ggcaagtgt	cggccattc	cagtttatac	accacactgg	attggggcca	2160
ggacagcagc	tgctttgtca	ccaaactccgg	ggactatgag	attctgtact	gggacccggc	2220
tacctgttaag	cagatcacca	gtgcggatgc	tgtgaggaac	atgaaatggg	ccacagctac	2280
ttgtgtccta	gggtttgggg	tgtttggat	ctggtctgag	ggggcggacg	gcactgat	2340
caacgctgtg	ccccgctctc	atgatggaa	gttgctggct	tcaactgtat	actttggcaa	2400
agttcacctg	tttagctacc	cctgctgtca	gcctcgagcc	ctcagccaca	agtacggtgg	2460

61

acacagcagc	catgtgacaa	atgtggcctt	cttgtggat	gacagcatgg	ccctgaccac	2520
agggggcaag	gacaccagtg	tgctacagtg	gcgggtggtc	tgatgcggcc	agggaaagagt	2580
caggtgtcag	ggcaggaatt	ctatttcgg	gagatgtcta	ttgccgagta	gagtaatata	2640
tacccagagt	atgtctatag	cagaggggt	tatggggcg	ggagggtaga	ctgacataca	2700
gaagtctcta	tttatccggg	tgggaagagg	gagtcacatc	gctttggga	tccattggtg	2760
tttggtttg	ggtgttttt	aagtttttc	tttatatatca	tccagaaata	aagacacgta	2820
cactaa						2826

<210> 48
<211> 2118
<212> DNA
<213> Homo sapien

<400> 48						
ctccacccccc	ggccccgaag	ctccgccacc	cgccgccatg	atgtgtttt	gagctggcaa	60
aaccaaagaa	gttatcttca	gtgtggagga	tggctccgtg	aaaatgttcc	tgaggggccc	120
ccctgtgccc	atgatgatcc	cagacgagct	ggcacccacc	tacagcctgg	acacacgctc	180
ggagctgcct	tcttgcggc	tcaagctgga	gtgggtctat	ggctaccgtg	gccgagactg	240
ccgggccaac	ctttatttgc	tgcccaccgg	ggagatagtg	tactttgtgg	cctccgtac	300
cgtgctatac	agcgtggagg	agcagaggca	gcgacactac	ctggacacaca	acgatgacat	360
caaatgttgc	ccatccacc	cagatatggt	caccatcgcc	acgggacagg	tggcgggaaac	420
cactaaggaa	gggaagccgc	tgccgcccc	cgtgcgcac	tggactcag	tttccctctc	480
caccttacac	gtgctggct	tgggggttt	tgacagagcc	gtgtgtgtg	tgggcttctc	540
caaatcta	ggaggcaacc	tgctgtgtgc	agtggatgaa	tccaatgatc	acatgctctc	600
ggtgtggac	tgggccaagg	agaccaaggt	gtggatgtc	aagtgttcca	atgaggctgt	660
atttgtggcc	acttccacc	ccacggaccc	cactgtgtt	atcacctgcg	ggaaatctca	720
catctacttc	tggaccttgg	agggggcag	ctttagcaag	cggcaaggcc	tcttgagaa	780
acatgagaaa	ccgaagtatg	tgctgtgtgt	gaccttttg	gaaggtggcg	acgtggtcac	840
gggggactct	ggggggaaacc	tctatgtttt	ggcaaaaggt	ggaaaccgt	tcacacaggc	900
ggtgtgtggc	ccccacgacg	gcggcgtgtt	tgggctctgc	ccccgtgggg	acgggacgct	960
ggtgtctgga	ggggccgtg	atcggcgggt	gtcctctgg	ggttctgact	acagcaagct	1020
gcaggaagtg	gaggtccctg	aggactttgg	ccctgtgcgc	accgtggcag	agggccacgg	1080
agacacactg	tacgtgggga	ccacccgcaa	ttccatcctg	caggctccg	tgcacacagg	1140
cttctca	ctggtccagg	accctgcccc	ctcagccggc	ttccacccca	gtggctctgt	1200

62

cctggctgtg	ggtacagtga	ctggcagatg	gctgctgctg	gacacggaga	cccatgacct	1260
ggtgctatac	cacacagacg	gcaatgaaca	gatctcagtg	gtcagcttct	ccccagacgg	1320
ggcgtaacctg	gccgtggct	cccacgacaa	cttggtgtac	gtgtacacgg	tggaccagg	1380
cggccgcaag	gtcagccgcc	tggcaagtg	ctcggccat	tccagttta	tcacccacct	1440
ggattgggcc	caggacagca	gctgcttgc	caccaactcc	ggggactatg	agattctgta	1500
ctgggaccccg	gctacctgta	agcagatcac	cagtgcggat	gctgtgagga	acatggaatg	1560
ggccacagct	acttgtgtcc	tagggtttgg	ggtgtttggg	atctggtctg	agggggcgga	1620
cggcaactgat	atcaacgctg	tggcccgctc	tcatgatggg	aagttgctgg	cttcagctga	1680
tgactttggc	aaagttcacc	tgttagcta	ccctgctgt	cagcctcgag	ccctcagcca	1740
caagtacggt	ggacacagca	gccatgtgac	aatgtggcc	ttcttgggg	atgacagcat	1800
ggccctgacc	acagggggca	aggacaccag	tgtgctacag	tggcgggtgg	tctgatgcgg	1860
ccagggaaaga	gtcaggtgtc	agggcaggaa	ttcttatttc	gggagatgtc	tattgccgag	1920
tagagtaata	tatacccaga	gtatgtctat	agcagagggg	gttatggggg	cgggagggtta	1980
gactgacata	cagaagtctc	tatttatccg	ggtggaaaga	gggagtcaca	tcgctttggg	2040
gatccattgg	tgtttggttt	gggggtttt	ttaagttttt	tctttatat	catccagaaa	2100
taaagacacg	tacactaa					2118

<210> 49
<211> 2152
<212> DNA
<213> Homo sapien

<400> 49	ctccacccccc	ggccccgaag	ctccgccacc	cgccgccatg	agtagctttg	gagctggcaa	60
	aaccaaagaa	gttatcttca	gtgtggagga	tggctccgtg	aaaatgttcc	tgagggggcg	120
	ccctgtgccc	atgatgatcc	cagacgagct	ggcacccacc	tacagcctgg	acacacgctc	180
	ggagctgcct	tcttgcggc	tcaagctgga	gtgggtctat	ggctaccgtg	gccgagactg	240
	ccgggccaac	ctttatttgc	tgcccaccgg	ggagatagtg	tactttgtgg	cctccgtagc	300
	cgtgctatac	agcgtggagg	agcagaggca	gcfgacactac	ctgggacaca	acgatgacat	360
	caaatgcttg	gccatccacc	cagatatggt	caccatcgcc	acgggacagg	tggcgggaac	420
	cactaaggaa	gggaagccgc	tgccgcccc	cgtgcgcac	tgggactcag	tttccctctc	480
	caccttacac	gtgctggct	tgggggttt	tgacagagcc	gtgtgctgtg	tggccttctc	540
	caaatcta	ggaggcaacc	tgctgtgtc	agtggatgaa	tccaatgatc	acatgctctc	600
	ggtgtggac	tgggccaagg	agaccaaggt	ggtggatgtc	aagtgctcca	atgaggctgt	660

63

attgggtggcc	accttccacc	ccacggaccc	cactgtgctt	atcacctgcg	ggaaatctca	720
catctacttc	tggaccttgg	agggggggcag	cttgagcaag	cggcaaggcc	tctttgagaa	780
acatgagaaa	ccgaagtatg	tgctgtgtgt	gaccttttg	gaaggtggcg	acgtggtcac	840
gggggactct	ggggggaaacc	tctatgtttg	gggcaaaggt	gggaaccgta	tcacacaggc	900
ggtgtctggc	gcccacgacg	gcggcgtgtt	tgggctctgc	gccctgcggg	acgggacgct	960
ggtgtctgga	ggggggccgtg	atcggcgggt	ggtcctctgg	ggttctgact	acagcaagct	1020
gcaggaagtg	gaggtccctg	aggactttgg	ccctgtgcgc	accgtggcag	agggccacgg	1080
agacacactg	tacgtgggga	ccacccgcaa	ttccatcctg	cagggetccg	tgcacacagg	1140
cttctcactg	ctggtccagg	gccatgtgga	agagctgtgg	ggcctggcca	cacacccagg	1200
tcgggcccag	tttgtgacct	gcgggcagga	taagctggtg	catctatgga	gctcagattc	1260
ccaccagccc	ctgtggagca	ggatcatcga	ggaccctgcc	cgctcagccg	gcttccaccc	1320
cagtggctct	gtcctggctg	tgggtacagt	gactggcaga	tggctgctgc	tggacacgga	1380
gaccatgac	ctggtggcta	tccacacaga	cggcaatgaa	cagatctcag	tggtcagctt	1440
ctccccaggg	ccattccagt	tttatcaccc	acctggattt	ggcccaggac	agcagctgct	1500
ttgtcaccaa	ctccggggac	tatgagattc	tgtactggga	cccggttacc	tgttaaggcaga	1560
tcaccagtgc	ggatgctgtg	aggaacatgg	aatgggcccac	agctacttgt	gtccttagggt	1620
ttgggggtgtt	tgggatctgg	tctgaggggg	cggacggcac	tgatatcaac	gctgtggccc	1680
gctctcatga	tgggaagttt	ctggcttcag	ctgatgactt	tggcaaagtt	cacctgttta	1740
gctacccctg	ctgtcagccct	cgagccctca	gccacaagta	cggtggacac	agcagccatg	1800
tgacaaatgt	ggccttcttg	tgggatgaca	gcatggccct	gaccacaggg	ggcaaggaca	1860
ccagtgtgct	acagtggcgg	gtggctgtat	gcccggcagg	aagagtcagg	tgtcagggca	1920
ggaattctat	tttcgggaga	tgtctattgc	cgagtagagt	aatataacc	cagagtatgt	1980
ctatagcaga	gggggttatg	ggggcgggag	ggtagactga	catacagaag	tctctattta	2040
tccgggtggg	aagagggagt	cacatcgctt	tgggatcca	ttgggttttg	gtttggggtg	2100
tttttaagt	tttttctttt	atatcatcca	gaaataaaga	cacgtacact	aa	2152

<210> 50
<211> 1899
<212> DNA
<213> Homo sapien

<400> 50						
aggctaggta	gcgggctggg	tgtgaatcgg	ccgaggtcgc	ccgggacagg	tggcgggaac	60
cactaaggaa	gggaagccgc	tgccgccccca	cgtgcgcac	tgggactcag	tttccctctc	120

64

caccttacac gtgctggct tgggggtgtt tgacagagcc gtgtgctgtg tgggcttc	180
caaatcttgc tccaatgagg ctgtatttgtt ggccaccttc caccacacgg accccactgt	240
gcttatcacc tgcggaaat ctcacatcta cttctggacc ttggaggggg gcagcttgag	300
caagcggcaa ggccttttga agaaacatga gaaaccgaag tatgtgctgt gtgtgacctt	360
tttggaaagggt ggcgacgtgg tcacggggga ctctgggggg aacctctatg tttggggcaa	420
agggtggaaac cgtatcacac aggccgtgct gggcgccccac gacggcggcg tttttggct	480
ctgcgcctg cgggacggga cgctgggtgc tggagggggc cgtgatcgcc ggggtggct	540
ctggggttct gactacagca agctgcagga agtggaggtc cctgaggact ttggccctgt	600
gcgcaccgtg gcagagggcc acggagacac actgtacgtg gggaccaccc gcaattccat	660
cctgcagggc tccgtgcaca caggcttctc actgctggtc caggatccag caaccaagag	720
tttaactcca agcacagcag agggggccca gggccctgtt ccaactgtgc tgcctcctgc	780
cactctgatt ggggggtggca cccttcaggg ccatgtggaa gagctgtggg gcctggccac	840
acaccccaagt cggggcccagt ttgtgacctg cgggcaggat aagctggtgc atctatggag	900
ctcagattcc caccagcccc tgtggagcag gatcatcgag gaccctgccc gtcagccgg	960
cttcacccccc agtggctctg tcctggctgt gggtacagtg actggcagat ggctgctgct	1020
ggacacggag acccatgacc tgggtggctat ccacacagac ggcaatgaac agatctcagt	1080
ggtcagcttc tccccagacg gggcgtacct ggccgtggc tcccacgaca acttggtgta	1140
cgtgtacacg gtggaccagg gcggccgcaa ggtcagccgc ctggcaagt gtcgggcca	1200
ttccagttt atcacccacc tggattggc ccaggacagc agctgctttg tcaccaactc	1260
cggggactat gagattctgt actgggaccc ggctacctgt aagcagatca ccagtgcgga	1320
tgtgtgagg aacatggaat gggccacagc tacttgtgtc cttagggtttg ggggttttgg	1380
gatctggctc gagggggcgg acggcactga tatcaacgct gtggcccgct ctcatgtgg	1440
gaagttgctg gcttcagctg atgactttgg caaaagttcac ctgttagct accccctgctg	1500
tcagcctcga gccctcagcc acaagtacgg tggacacagc agccatgtga caaatgtggc	1560
cttcttgtgg gatgacagca tggccctgac cacagggggc aaggacacca gtgtgctaca	1620
gtggcgggtg gtctgtgcg gccaggaaag agtcaggtgt cagggcagga attctatccc	1680
cgggagatgt ctattgccga gttagagtaat atataccag agtatgtcta tagcagaggg	1740
ggttatgggg gcggggaggg agactgacat acagaagtct ctatccatcc ggggtggaaag	1800
agggagtcac atcgcttgg ggatccattg gtgtttgtt tgggggtttt tttaagttt	1860
ttctttata tcacccagaa ataaagacac gtacactaa	1899

```

<210> 51
<211> 2951
<212> DNA
<213> Homo sapien

<400> 51
ttccctrccgs cattgcgsag atttcatctg gccaggacac tggctgtcca cctggcactg      60
gtcccgacag aggcccagct ggggaaagtt ratgttcaact gggggcagga accctcccta      120
tctccaggct gcctcccaac ctcaggaggc cacaagatta gcagaaagcc acgttgagtc      180
agccagtaac atggagcaac tgacaaggga aactgaggac tattccaaac aagccctctc      240
actggtgcbc aaggccctgc atgaaggagt cggaagcggg agcggttagcc cggacggtgc      300
tgtggtgcaa gggcttgtgg aaaaatttgg aaaaaaccaag tccctggccc agcagttgac      360
aaggagggcc actcaagcgg aaatttgaagc agataggct tatcagcaca gtctccgcct      420
cctggattca gtgtctccgc ttcagggagt cagtgatcag tcctttcagg tggagaaggc      480
aaagaggatc aaacaaaaaag cggattcaact ctcaagcctg gtaaccaggc atatggatga      540
gttcaagcgt acacagaaga atctggaaa ctggaaagaa gaagcacagc agcttttaca      600
aatggaaaaa agtgggagag agaaatcaga tcagctgctt tccctgcca atcttgctaa      660
aagcagagca caagaagcac tgagtatggg caatgccact ttttatgaag ttgagagcat      720
cctaaaaaac ctcagagagt ttgacctgca ggtggacaac agaaaagcag aagctgaaga      780
agccatgaag agactctcct acatcagcca gaaggttca gatgccagtg acaagaccca      840
gcaagcagaa agagccctgg ggagcgctgc tgctgatgca cagagggcaa agaatggggc      900
cggggaggcc ctggaaatct ccagtgagat tgaacaggag attgggagtc tgaacttgg      960
agccaatgtg acagcagatg gagccttggc catggaaaag ggactggcct ctctgaagag      1020
tgagatgagg gaagtggaaag gagagctgga aaggaaggag ctggagtttgc acacgaatat      1080
ggatgcagta cagatggtga ttacagaagc ccagaagggtt gataccagag ccaagaacgc      1140
tggggttaca atccaagaca cactcaacac attagacggc ctccctgcattc tgatggacca      1200
gcctctcagt gtagatgaag aggggctggg cttactggag cagaagcttt cccgagccaa      1260
gacccagatc aacagccaaac tgccggccat gatgtcagag ctggaaagaga gggcacgtca      1320
gcagaggggc cacctccatt tgctggagac aagcatagat gggattctgg ctgatgtgaa      1380
gaaccttggag aacatttaggg acaacctgcc cccaggctgc tacaataccca aggcttttgc      1440
gcaacagtga agctgccata aatatttctc aactgagggtt cttgggatac agatctcagg      1500
gctcgggagc catgtcatgt gagtgggtgg gatggggaca tttgaacatg tttatgggt      1560
atgctcaggta caactgacct gaccccatc ctgatcccat ggcaggtgg ttgtcttatt      1620
gcaccatact cttgcttcc tgatgctggg caatgaggca gatagcactg ggtgtgagaa      1680

```

tgatcaagga tctggacccc aaagaataga ctggatggaa agacaaaactg cacaggcaga	1740
tgttgcctc ataatacgatcg taagtggagt cctggattt ggacaagtgc tggtggata	1800
tagtcaactt attcttttagt taatgtgact aaaggaaaaa actttgactt tgccaggca	1860
tgaaattctt cctaattgtca gaacagagtg caacccagtc acactgtggc cagtaaaata	1920
ctattgcctc atattgtcct ctgcaagctt cttgctgatc agagttcctc ctacttacaa	1980
cccagggtgt gaacatgttc tccatttca agctggaaga agtgaagcagt gttggagtgta	2040
ggacctgtaa ggcaggccca ttcagagcta tggtgcttgc tggtgctgc caccttcaag	2100
ttctggacct gggcatgaca tcctttctt taatgatgcc atggcaactt agagattgca	2160
tttttattaa agcatttcct accagcaaag caaatgttgg gaaagtattt acttttcgg	2220
tttcaaagtg atagaaaagt gtggcttggg cattgaaaga ggtaaaattc tctagattta	2280
ttagtcctaa ttcaatccta ctttcgaac accaaaaatg atgcgcatca atgtattta	2340
tcttattttc tcaatctcct ctctcttcc tccacccata ataagagaat gttcctactc	2400
acacttcagc tgggtcacat ccattccctcc attcatcctt ccattccatct ttccatccat	2460
tacctccatc catccttcca acatataattt attgagtacc tactgtgtgc caggggctgg	2520
tgggacagtg gtgacatagt ctctgcctc atagagtta ttgtcttagtg aggaagacaa	2580
gcatttttaa aaaataaatt taaacttaca aactttgttt gtcacaagtg gtgtttattg	2640
caataaccgc ttggtttgc acctcttgc tcaacagaac atatgttgc agaccctccc	2700
atggggcac ttgagtttg gcaaggctga cagagcttg ggttgtgcac atttcttgc	2760
attccagctg tcactctgtg ccttctaca actgatttgc acagactgtt gagttatgt	2820
aacaccagtg ggaattgctg gaggaccag aggcaattcc accttggctg ggaagactat	2880
ggtgctgcct tgcttctgtt tttccttggaa ttttctgaa agtgtttta aataaagaac	2940
aattgttaga t	2951

<210> 52
 <211> 3643
 <212> DNA
 <213> Homo sapien

<400> 52	
tgccggaaac agaataatgg cgtctcgtag ccccaggcga cagcgtggag gggcggtct	60
gtcgatttggaa tgaacgcagc tgagattact cccagccact aaggacgaag aggtgggcgc	120
gtggcgtccc acgcctcgat cgacagtggg cggggcttttgc ttgcctgagt aaccgtatga	180
tggtggttgtt ggtgggtctt tcctgtctca acgataaccta ttttcttagtg ctgagatcct	240
gagacaatga gtggatgtatgat ccaaattgtttt cacttcttcg acgttatgag cttttatattt	300

acccagggga tggatctgtt gaaatgcatt atgtaaagaa tcattgcacc ttttaaagc	360
ggaccaaata tgataacctg cacttggaaat atttattttt aggcaacaaa gtgaatgtct	420
tttctcgaca actggtatta attgactatg gggatcaata tacagctgc cagctggca	480
gttaggaaaga aaaaacgcta gccctaatta aaccagatgc aatatcaaag gctggagaaa	540
taattgaaat aataaacaaa gctggatttata ctataaccaa actcaaaatg atgatgctt	600
caaggaaaga agcattggat tttcatgttag atcaccagtc aagaccctt ttcaatgagc	660
tgatccagtt tattacaact ggtccttata ttgccatgga gatttaaga gatgatgcta	720
tatgtaatg gaaaagactg ctgggacctg caaactctgg agtggcacgc acagatgctt	780
ctgaaagcat tagagccctc tttggaacag atggcataag aaatgcagcg catggccctg	840
attctttgc ttctgcggcc agagaaatgg agttgtttt tccttcaagt ggaggttg	900
ggccggcaaa cactgctaaa tttactaattt gtacctgtt cattgttaaa ccccatgctg	960
tcagtgaagg actgttggga aagatcctga tggctatccg agatgcaggt tttgaaatct	1020
cagctatgca gatgttcaat atggatcggg ttaatgttga ggaattctat gaagttata	1080
aaggagtagt gaccgaatat catgacatgg tgacagaaat gtattctggc ctttgttag	1140
caatggagat tcaacagaat aatgctacaa agacattcg agaattttgt ggacctgtg	1200
atcctgaaat tgccggcat ttacgcccctg gaactctcag agcaatctt ggtaaaacta	1260
agatccagaa tgctgttac tgcactgatc tgccagagga tggcttata gaggttcaat	1320
acttcttcaa gatcttggat aattagtggt gtggaaagta aagaagtcac aggttggac	1380
atttagacaa gagtgaatca cacacgagga atgtgttcat tcttttattt tccgttgg	1440
taacctgact gaatacaaga tcaacaagag cactgtactc ctggcaatta ttacatatgt	1500
tagaacatgg atttgcact gtagacaaca tttaacacca gtctatgggg tactgcattt	1560
ctttttataa agttcaaaat aaagattttt tttcaacacca gtgactttgg ttatttcat	1620
acattacact ttttcttgcgaaaaaaataa aaattgtaca actgcataaa tataaaattc	1680
ttccaccatg aaaatggta aaacattcat aaagacacag caccagcatg tgatgcctcc	1740
agaaaggaaa aaaggaaagt aaaagaaaat gtataaagca aattaattag ccctgtcact	1800
agccaaagtg atgggcagat ccagatctca gacacagctt tagaacatac cggaggacaa	1860
ggcaagagat gtcaagacag cattcaatac aagcataaca caacccatca ctttttgg	1920
ttttctgtt gtgtcactt aaatttaaag ggcagttccc ccatgacaaa cccccacccc	1980
agcccccagg aaaaaaataa aaataaagac ctaacaccac aggaaaagac tatggagttat	2040
gttaaaaatg ctcatcgatg ggccattacc tttgaaagag ccaaaaaaca aaaaaaaaaa	2100

68

aaaaaaaaaa attaccatgc cagtttatt cccgttgaat atttacacct tggacagcaa	2160
accttgctca cataaaagtag aaaacagata caataaaaaca tggcttggaaa aatgaccaga	.2220
gtatgcacct gtagtactgt acactaaata aaatacacaa ggcagcaata cttaggggcc	2280
agaaacactg cttactacaa gtcagttacg gaatcataat ttacagtaaa aatgggcacg	2340
tcccaaggct caattttct ttttcttttgc tcatttacag tagaataat attttgtgc	2400
tattgctaca cttaattta cattctaacc tattaaatgc agaaagctag tgtaaagcat	2460
atagattaag tgttaggtccc atacgtatga cagttgttc aagactagta ggaaaaatgtt	2520
tttgtatctt ttttaactt attaaatggc tagtggaaa gatttgtct tttgtatcagc	2580
tcttaacttc aatttttaca tcaaaacgtc cctgaaaacg gtctttctca ctgtacccaa	2640
tgttctcacc gtacgccta cactctatgc gaatttcagt gtccatggta agattggta	2700
actgtacggc cagcaggggc tgcaaggatttgc tgggctgcag gagttgcca tagtacggat	2760
aatactgcag aggaaaacca ggggagttgc ccagtccaaa atactccaca tttccaactt	2820
tatccttatac ttcatctcgc ttgcagttgc actgaacggg aaggacattt gggttataact	2880
tcatcaactgg gtaagtctcc aaggactcat tcttggagg cttaggtttg aagcctagaa	2940
ctcggtttagt ctttataata atgcacggtt tgccctctt gttagccataa gtttcatcat	3000
ttaatccaga gcaatttccc agccattcaa gcttgaatct gcagaccttt cgctctcc	3060
gttcatgatt aaagtctcct cgttcttcg gttcaactggg cacatcgcca caatctcaa	3120
aaatcatgtc atccctctgg gctgaatctt tgtactttc caggaaccta actatgtca	3180
gtacatatgc ctcatacgatc ttgggatcat taggacgaaa ggaaatttca gtcttctgga	3240
tctgaggaat ctgtgttaat cctggcgcccc ccactcggtc ctgatatgtg ggcttaatt	3300
cactgatggt gagcagcatc acttggatgg ttccgatgaa gatgccagcc aggcagccat	3360
aaaatattac gtagaataga aggatctaa accaactgcc accggtcctg cccagaaact	3420
ccttcttc ttagttccag atgaatttct tccagctgcc ctccctcttgc gctttccgc	3480
ggcccatggc gatggcggtt cagcagctgc cgccgtccgg agggtgtgggtg gctgcggcgc	3540
gcgccttggc gtcctctcgcc cgcgtcggtc tctccggct ggctctctgc aggcaggacg	3600
cgccgtgcc gtcgkctctc ggagtgcgag acgcgcggcg gag	3643

<210> 53
<211> 1005
<212> DNA
<213> Homo sapien

<400> 53
ggccgtcgcc tgacgcccattt tttccctttt cggccgcgtt ggtgaacagg acccgtcgccc 60

69

atgggcgcgtg tgatccgtgg acagaggaag ggcgccgggt ctgtgttccg cgccgcacgtg	120
aaggcaccgt aaggcgctgc gcgcctgcgc gccgtggatt tcgctgagcg gcacggctac	180
atcaaggcgt tcgtcaagga catcatccac gaccggggcc gcggcgcgcc cctcgccaag	240
gtggtcttcc gggatccgt atcggtttaag aagcggacgg agctgttcat tgccgcccag	300
ggcattcaca cgggccagtt tgtgtattgc ggcaagaagg cccagctcaa cattggcaat	360
gtgctccctg tgggcaccat gcctgagggt acaatcgtgt gctgcctgga ggagaagcct	420
ggagaccgtg gcaagctggc cggggcatca gggaaactatg ccaccgttat ctcccacaac	480
cctgagacca agaagacccg tgtgaagctg ccctccggct ccaagaaggt tatctcctca	540
gccaacagag ctgtggttgg tgtggtggt ggaggtggcc gaattgacaa acccatcttgc	600
aaggctggcc gggcgatcca caaatataag gcaaagagga actgctggcc acgagtacgg	660
ggtgtggcca tgaatcctgt ggagcatect ttggaggtg gcaaccacca gcacateggc	720
aaggccctcca ccatccgcag agatgcccct gctggccgca aagtgggtct cattgctgcc	780
cgccggactg gacgtctccg gggaaaccaag actgtgcagg agaayatgtg ggckcmagaat	840
gggtttgccc aaaaaaacac aacaacgcaa acacaaaaggc aaacatatacg aaaaaaaaggg	900
ggctaccggg gccgacactc tagaggtaat ataatagcgg cagaggacag gggagggttag	960
ggcaacactt tattctgtat atttqqccqc tctaaaatca cactc	1005

<210> 54
<211> 3273
<212> DNA
<213> Homo sapien

```
<220>
<221> misc_feature
<222> (3246)..(3246)
<223> n=a, c, g or t
```

70

taaacgcgggt gtgggacttg tggccaaggc aggagggaaa gcctgtctgg aagttacttg	540
tggacatgga tcccaggatg ctggtatcct gcatagattt caggtacatc actgatgtcc	600
tgactgagga ggatgcccta gaaatactgc agaaaggtaa aattggtaaa aaagaaaagag	660
agaagcaaat gctggcacaa ggataccctg cttacacgac atcgtgcgcc tggctgggt	720
actcagatga cacgttgaag cagctctgtg cccaggcgct gaaggatggc tggaccaggt	780
ttaaagtaaa ggtgggtgct gatctccagg atgacatgca aagatgccaa atcatccgag	840
acatgattgg accggaaaaag actttgatga tggatgcca ccagcgctgg gatgtgcctg	900
aggcggtgga gtggatgtcc aagctggcca agttcaagcc atttgtgatt gaggagccaa	960
cctccctga tgacattctg gggcacgcca ccatttccaa ggcactggtc ccatttaggaa	1020
ttggcattgc cacaggagaa cagtgcaca atagagtatgat atttaagcaa ctcctacagg	1080
cgaaggccct gcagttcctc cagattgaca gttgcagact gggcagtgtc aatgagaacc	1140
tctcagtatt gctgatggcc aaaaagtttgg aaattcctgt ttgccccat gctggtggag	1200
ttggcctctg tgaactggtg cagcacctga ttatatttga ctacatatca gtttctgcaa	1260
gcctgaaaaa tagggtgtgt gагтатгтг accacctgca tgagcatttc aагтатcccг	1320
tgatgatcca gcccccttcc tacatgcctc ccaaggatcc cggctactca acagaaatga	1380
aggaggaatc tgtaaagaaa caccagtatc cagatggta agtttggaaag aaactccttc	1440
ctgctcaaga aaattaagtg ctcagccccca acaacttttt tcttctgaa gtgaaaggc	1500
ttaaaatttc ttggaaatag ttttacaaaa atggatttaa aaaatcctac cgatcaagat	1560
gagttcagct agaagtcata ccaccctcag gaatcagcta aagaaaaag aacttttacc	1620
tcggcatcca gcccccccccc taaagactga caatatcctt cgagctcctt tgaaagcacc	1680
ctaaacagcc atttccattt taatagttgg atgcggattt gacccttcaa tctgaaagtc	1740
ttcagctttg aagtcataa ttttctcaac ttttctgaaatc atcctgagct ttggaaagg	1800
tctgggttct cgctgaagct gaattttcag tggctcgatg tgattcaggt aaatatgtgc	1860
atctccaaa gtgtgtataa agtcacctgg ctataaaccg gggggagaaa gcagaacagt	1920
atgttagttt caattcttta aaacatcatt taaaacatt agaatatgca gacaccgca	1980
ggctttttt aaaaaataa ttttagtgttag cttttccatt tttttgttagc aacagcatct	2040
tgttatgttg cccaggctgg tattgaactc cagacctcaa gcaattgctc ctgtctcagt	2100
ctcccaaagt gctgggatata caggcatgag ccaccatacc caacccatc atagctttg	2160
agaaaaatcca tagaagctgt atcacaaaca acctgtatag atctgttagt gcgtataccca	2220
cagggccaga aaaccttcca gaagaggaag gtttcaaagt aaaagctggt tcatttctta	2280
cttacacata tcaaatttaa aagctaattca gagactaaac tctgcaattt gtttcccat	2340

ataaaagaac tgaagagctc agtgtggtag gctggcaagt cacccttccc gagacagccc	2400
accttcaggc ccgtgatgtg cgcaatcatg tacgtgagca gggcgtagct ggcgatgtg	2460
aaaggcacac cgaggcccat gtctcccgat ctctggtaca gctggcagga cagctcactg	2520
ttcaccacat agaactggca gagggcatgg catggaggca ggcgcacatcg aggaagatct	2580
cttggattcc aagcgcacat gatgattctt ctgtcgctcg ggttgggttt gatgggtgtca	2640
atcactctt gcagttggtc aactccctgt cctgaataat ctgattccat atctctgtat	2700
tctgccccaa aatgcctcca ctggaagcca taaaactggc ccaagtcccc ttcttctctg	2760
gtggagaatc ccaggctgtc caaaaagtct cgggatccat tggcatccca gattttca	2820
cccttggaaag acagctctt agcatttgc gatcccttga taaaccacag caactcctcc	2880
aaaacaccct tccagaacac acgtttggtt gtcagcagag ggaattcatc tctcaggctg	2940
tagcgcgcct gcatgccgaa taccgacagg gtgccgggc cctgtcggtc gtccttcctg	3000
acgccccgcggc ggaggatgtg ttggatctgc cccaggtact gcagctcccc gtgcggcgga	3060
cgcggctcggtcg cgtcccgctc ctgtcgccggcg gggggcaagg gccggcgccgg cagctccgg	3120
ccggccacag gcatggcgcg gcggggcgaaaa gacggaggca ggcgaagtgg cgccggcgga	3180
cggaggcagg ccaagtggcg cggccggacg gaggcaggcc aagtggcgcg gtggcaggac	3240
cctcgncgaa ttaaccgagc ctcgtactag cca	3273

<210> 55
<211> 2967
<212> DNA
<213> Homo sapien

<400> 55	
gccatggtaa gcgcggacgc catggtaagc gcggacgcca tggtatggta agcgccggacg	60
ccatggtaag cgccggacgcc atggtaagcg cggacgccc ggttaagcgac gacgcccattgg	120
taagcgccga cgccatggta agcgccggacg ccatggtaag cgccggacgcc atggtaagcg	180
cggacgccc ggttaagcgac gacgcccattgc acacggaccc tgactactcg gctgcctatg	240
tcgtcataga aactgatgca gaagatggaa tcaaggggtg tggattacc ttcaactctgg	300
aaaaaggcac tgaagtgtt gtctgtgctg tgaatgcct cggccaccat gtgctcaaca	360
aggacctcaa ggacattgtt ggtgacttca gaggcttcta taggcagctc acaagtgtatg	420
ggcagctcag atggatttgtt ccagaaaagg gcgtgggtca cctggcgaca gcggccgtcc	480
taaacgcgggt gtgggacttg tggccaaagc aggagggaaa gcctgtctgg aagttacttg	540
tggacatggta tcccaggatg ctggtatccct gcatagattt caggtacatc actgatgtcc	600
tgactgagga ggatgcccta gaaatactgc agaaaggta aattggtaaa aaagaaaagag	660

agaagcaaat gctggcacaa ggataccctg cttacacgac atcgtgcgcc tggctgggt	720
actcagatga cacgttgaag cagctctgtg cccaggcgct gaaggatggc tggaccaggt	780
ttaaagtaaa ggtgggtgct gatctccagg atgacatgcg aagatgccaatcatccgag	840
acatgattgg accggaaaaag actttgatga tggatgccaatcagcgctgg gatgtgcctg	900
aggcggtgga gtggatgtcc aagctggcca agttcaagcc atttgtggatt gaggagccaa	960
cctcccccga tgacattctg gggcacgcca ccattccaa ggcactggtc ccatttaggaa	1020
ttggcattgc cacaggagaa cagtgcaca atagagtat atttaagcaa ctctacagg	1080
cgaaggccct gcagttcctc cagattgaca gttgcagact gggcagtgtc aatgagaacc	1140
tctcagtatt gctgatggcc aaaaagtttggaaattcctgt ttgccccat gctggtggag	1200
ttggcctctg tgaactggtg cagcacctga ttatatttga ctacatatca gtttctgcaa	1260
gccttgaaaa tagggtgtgt gагтатгтг accacctgca tgagcatttc aагтатcccг	1320
tgatgatcca gcgggcttcc tacatgcctc ccaaggatcc cggtactca acagaaatga	1380
aggaggaatc tgtaaagaaaa caccagtatc cagatggtga agtttggaaag aaactccttc	1440
ctgctcaaga aaattaagtg ctcagccccca acaactttt tcttctgaa gtgaaaggc	1500
ttaaaaatttc ttggaaatag ttttacaaaa atggatttaaaaatcctac cgatcaagat	1560
gagttcagct agaagtcata ccaccctcag gaatcagcta aagcaaaaag aacttttacc	1620
tcggcatcca gcccccccccc taaagactga caatatcctt cgagctcctt tgaaagcacc	1680
ctaaacagcc atttccattt taatagttgg atgcggattt gacccttcaa tctgaaagtc	1740
ttcagctttg aagtcatcaa ttttctcaac ttttcgaaga atcctgagct ttggaaagg	1800
tctgggttct cgctgaagct aaaaacaaaa taaggccatt atttgccat aattgtacga	1860
cctgttgtaa ttgctcctca tgtccgtgaa acaagttacac aggatgtgat caacaaagtt	1920
ctattttaca ggagtatgat cctgtcgata ccttgcgtta gtttatgtaa catgattgga	1980
gcgcaaccag ctgttcttgc acagatcg agagtgggg gtatggatg acattacaca	2040
gcatcaggag cctgggcctt catcaggtaa ctgaagagct cagtgtggta ggctggcaag	2100
tcacccttcc cgagacagcc cacccctcagg cccgtatgt ggcacatcat gtacgtgac	2160
agggcgtacg tggcgatgtt gaaaggcaca ccgaggccca tgtctccgatctctggat	2220
agctggcagg acagctact gttcaccaca tagaactggc agagggcatg gcatggaggc	2280
agcgccatca gaggaagatc tcttggatttcaagcgacata gatgattct tctgtcgatca	2340
gggttggttt tcatgggtgc aatcactt tgcagttgtt caactccctg tcctgaataa	2400
tctgattcca tatctctgta ttctgccccca aaatgcctcc actggaagcc ataaactggg	2460

73

cccaagtccc	cttcttctct	ggtggagaat	cccaggctgt	ccaaaaagtc	tcgggatcca	2520
ttggcatccc	agattttcac	tcccttggaa	gacagctctt	tagcatttgt	ggatcccttg	2580
ataaaaccaca	gcaactcctc	caaaacaccc	ttccagaaca	cacgtttgg	tgtcagcaga	2640
gggaattcat	ctctcaggct	gtagcgcgcc	tgcattgccga	ataccgacag	ggtgccggtg	2700
ccccgtgcgg	cgtcccttcct	gacgccgcag	cgaggatgt	gttggatctg	ccccaggtac	2760
tgcagctccc	cgtgcggccgg	acgcggctcg	gcgtcccgt	cctgtgcggc	ggggggcaag	2820
ggccggcgcg	gcagctccga	gccggccaca	ggcatggcgc	ggcggggcggg	ggacggaggc	2880
aggcgaagtg	gcgcggcggg	acggaggcag	gccaaagtggc	gcggggcagg	acccttccg	2940
cgcgcccttt	cccgcgcccg	tcccgcg				2967

<210> 56
 <211> 2761
 <212> DNA
 <213> Homo sapien

 <220>
 <221> misc_feature
 <222> (2734)..(2734)
 <223> n=a, c, g or t

<400> 56	gcccattgttaa	gcgcggacgc	catggtaagc	gcggacgcca	tggtatggta	agcgcgacg	60
	ccatggtaag	cgcgacgcc	atggtaagcg	cgacgcacat	ggtaagcg	gacgcacatgg	120
	taagcgccga	cgcacatggta	agcgccgc	ccatggtaag	cgcgacgcc	atggtaagcg	180
	cggacgcacat	ggtaagcg	gacgcacatgc	acacggaccc	tgactactcg	gctgcctatg	240
	tgcgtcataga	aactgtatgca	gaagatggaa	tcaagggtg	tggattacc	ttcactctgg	300
	aaaaaggcac	tgaagtttt	gtctgtgctg	tgaatgcct	cgcacccat	gtgcataaca	360
	aggacctcaa	ggacatttt	ggtgacttca	gaggcttcta	taggcagctc	acaagtgtatg	420
	ggcagctcag	atggatttt	ccagaaaagg	gcgtggtgca	cctggcgaca	gcggccgtcc	480
	taaacgcgg	gtgggacttg	tggccaagc	aggaggaaa	gcctgtctgg	aagttacttg	540
	tggacatgga	tcccaggatg	ctggatccct	gcatagattt	caggtacatc	actgtatgtcc	600
	tgactgagga	ggatgcctta	gaaatactgc	agaaaggta	aattggtaaa	aaagaaaagag	660
	agaagcaaat	gctggcacaa	ggataccctg	cttacacgac	atcgtgcgcc	tggctgggt	720
	actcagatga	cacgttgaag	cagctctgtg	cccaggcgct	gaaggatggc	tggaccaggt	780
	ttaaaagtaaa	ggtgggtgct	gatctccagg	atgacatgctg	aagatgcca	atcatccgag	840
	acatgattgg	accggaaaag	actttgatga	tggatgcca	ccagcgctgg	gatgtgcctg	900

aggcggtgga	gtggatgtcc	aagctggcca	agttcaagcc	attgtggatt	gaggagccaa	960
cctccccctga	tgacattctg	gggcacgcca	ccatccaa	ggcactggtc	ccattaggaa	1020
ttggcattgc	cacaggagaa	cagtgccaca	atagagtat	atattaagcaa	ctcctacagg	1080
cgaaggccct	gcagttcctc	cagattgaca	gttgcagact	gggcagtgtc	aatgagaacc	1140
tctcagtatt	gctgatggcc	aaaaagttt	aaattcctgt	ttgccccat	gctgggtggag	1200
ttggcctctg	tgaactggtg	cagcacctga	ttatattga	ctacatatca	gtttctgcaa	1260
gccttgaaaa	tagggtgtgt	gagtagttt	accacctgca	tgagcatttc	aagtatcccg	1320
tgtatgtcca	gcgggcttcc	tacatgcctc	ccaaggatcc	cggctactca	acagaaatga	1380
aggaggaatc	tgtaaaagaaa	caccagtata	cagatggtga	agtttggaaag	aaactccccc	1440
ctgctcaaga	aaattaagtg	ctcagccccca	acaacttttt	tcttctgaa	gtgaaaggc	1500
ttaaaaatttc	ttggaaatag	ttttacaaaa	atggatttaa	aaaatcctac	cgatcaagat	1560
gagttcagct	agaagtcata	ccaccctcag	aatcagctta	aagaaaaaag	aacttttacc	1620
tcggcatcca	gcccaacccc	taaagactga	caatatcctt	cgagctcctt	tgaaagcacc	1680
ctaaacagcc	atttccatTTT	taatagttgg	atgcggattt	tacccttcaa	tctgaaagtc	1740
ttcagctttg	aagtcatcaa	tttctcaac	tttcgaaga	atcctgagct	ttgggaaagg	1800
tctgggttct	cgctgaagct	gaattttcag	tggctcgatg	tgattcaggt	aaatatgtgc	1860
atctccaaa	gtgtgtataa	agtcacctgg	cttcaggccc	gtatgtgcg	caatcatgt	1920
cgtgagcagg	gcgttagctgg	cgatgttcaa	aggcacacccg	aggccatgt	ctcccgatct	1980
ctggcacgc	tggcaggaca	gctcaacttt	caccacatag	aactggcaga	ggcataggca	2040
tggaggcagc	gccatcagag	gaagatctct	tggattccaa	gcgcacatga	tgattcttct	2100
gtcgctcagg	ttggtttga	tgggtcaat	cacttttgc	agttggtcaa	ctccctgtcc	2160
tgaataatct	gattccatAT	ctctgtattc	tgccccaaaa	tgctccact	ggaagccata	2220
aactggccc	aagtcccctt	tttctctgg	ggagaatccc	aggctgtcca	aaaagtctcg	2280
ggatccattt	gcattccaga	ttttcactcc	cttggaaagac	agctctttag	catttgcgaa	2340
tcccttgata	aaccacagca	actccctcaa	aacacccttc	cagaacacac	gtttgggtgt	2400
cagcagaggg	aattcatctc	tcaggctgt	gcgcgcctgc	atgccgaata	ccgacaggg	2460
gccgggtggcc	gtgcggcgt	cttcctgac	gccgcagcgg	aggatgtgtt	ggatctgccc	2520
caggtactgc	agctccccgt	gcggcggacg	cggtcgccg	tcccgctct	gtgcggcgg	2580
gggcaagggc	cggcgccggca	gctccgagcc	ggccacaggc	atggcgccggc	gggcgggggaa	2640
cggaggcagg	cgaagtggcg	cggcgggacg	gaggcaggcc	aagtggcgcg	gcgggacgga	2700
ggcaggccaa	gtggcgccgt	ggcaggaccc	tgcnccgatt	aaccgagcct	cgtactagcc	2760

a

2761

```

<210> 57
<211> 3485
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (3458)..(3458)
<223> n=a, c, g or t

<400> 57
gccatggtaa gcgcggacgc catggtaagc gcggacgcca tggtatggta agcgccggacg 60
ccatggtaag cgccggacgcc atggtaagcg cggacgccc ggttaagcgcg gacgccccatgg 120
taagcgccga cgccatggta agcgccggacg ccatggtaag cgccggacgcc atggtaagcg 180
cgacgccccat ggttaagcgcg gacgccccatgc acacggacccc tgactactcg gctgcctatg 240
tcgtcataga aactgtatgca gaagatggaa tcaagggttg tggaaattacc ttcaactctgg 300
gaaaaaggcac tgaagttgtt gtctgtgctg tgaatgcctt cgcaccat gtgctcaaca 360
aggacctcaa ggacattgtt ggtgacttca gaggcttcta taggcagctc acaagtgtatg 420
ggcagctcag atggatttgtt ccagaaaagg gcgtggtgca cctggcgaca gcggccgtcc 480
taaacgcgggt gtgggacttg tggcccaagc aggagggaaa gcctgtctgg aagttacttg 540
tggacatgga tcccaggatg ctggtatccct gcatagattt caggtacatc actgtatgtcc 600
tgactgagga ggtatgcctta gaaatactgc agaaaggctca aattggtaaa aaagaaaagag 660
gtgggttgta agaaaattttt cttcattgtt tttgctaaca ttgtccactt ttgagtgc 720
ctgtccctttt ggggtacaca ttgtcttccc aaatgccttg tgctgagcag ctggccctc 780
aaatcaacat tcaagtctgc atggtaagc ctgctggta tgacctctga ctgcagagtt 840
tgcttcagcc actgctgaaa ggaagtttg ctttaggatt acactgtagg gagagccctg 900
ggggagcagg gcagtcgtg agagtatccct gatcacctgg gttgacatc ctagtaattt 960
gtggctgggt gtgtgtgtgc agggccggat caggagaaca gctggactct ccagggaaa 1020
cagcttagct acaggcactt ccaattccga agggccctgg aaagtgc当地 atgttgacgg 1080
cgctgtgttt tcacagagaa gcaaattgtcg gcacaaggat accctgttta cacgacatcg 1140
tgcgcctggc tgggtactc agatgacacg ttgaagcagc tctgtgc当地 ggcgtgaag 1200
gatggctggta ccaggtgagt gtgtatgtgg acctgacttt cccagttggc ggcaggagag 1260
actcaggcag tttaaagtaa aggtgggtgc tgatctccag gatgacatgc gaagatgc当地 1320
aatcatccga gacatgattt gaccggaaaa gactttgttg atggatgc当地 accagcgctg 1380

```

ggatgtgcct	gaggcggtgg	agtggatgtc	caagctggcc	aagttcaagc	cattgtggat	1440
tgaggagcca	acctccccctg	atgacattct	ggggcacgcc	accatttcca	aggcactggt	1500
cccatttagga	attggcattg	ccacaggaga	acagtgccac	aatagagtga	tatthaagca	1560
actcctacag	gcbaaggccc	tgcagttcct	ccagattgac	agttgcagac	tggcagtg	1620
caatgagaac	ctctcagtat	tgctgatggc	caaaaagttt	gaaattcctg	tttgccccca	1680
tgctgggtgga	gttggcctct	gtgaactggt	gcagcacctg	attatatttgc	actacatatc	1740
agtttctgca	agccttgaaa	atagggtgtg	tgagtatgtt	gaccacctgc	atgagcattt	1800
caagtatccc	gtgatgatcc	agcgggcttc	ctacatgcct	cccaaggatc	ccggctactc	1860
aacagaaaatg	aaggaggaat	ctgttaaagaa	acaccagtat	ccagatggtg	aagtttgaa	1920
gaaactcctt	cctgctcaag	aaaattaagt	gctcagcccc	aacaactttt	ttctttctga	1980
agtgaaaggg	cttaaaattt	cttggaaata	gttttacaaa	aatggatttta	aaaaatccta	2040
ccgatcaaga	tgagttcagc	tagaagtcat	accaccctca	ggaatcagct	aaagcaaaaa	2100
gaacttttac	ctcggcatcc	agcccaaccc	ctaaagactg	acaatatcct	tcgagctcct	2160
ttgaaagcac	cctaaacagc	cattccatt	ttaatagtttgc	gatgcggatt	gtacccttca	2220
atctgaaagt	cttcagcttt	gaagtcatca	attttctcaa	cttttgcag	aatcctgagc	2280
tttggaaag	gtctgggttc	tcgctgaagc	taaaaacaaa	ataaggccat	tathttgc	2340
taattgtacg	acctgttta	attgctcctc	atgtccgttgc	aacaagtaca	caggatgttgc	2400
tcaacaaagt	tctattttac	aggagtatga	tcctgtcgat	accttgcgt	aggttatgttgc	2460
acatgattgg	agcgcaacca	gctgttctct	tgcacagatc	gagagtgagg	ggtatTTG	2520
gacattacac	agcatcagga	gcctgggcc	tcatcaggttgc	actgaagagc	tcagtgtggt	2580
aggctggcaa	gtcaccccttc	ccgagacagc	ccaccccttgc	gcccgatgt	tgcgcaatca	2640
tgtacgtgag	cagggcgttag	ctggcgatgt	tgaaaggcac	accgaggccc	atgtctcccg	2700
atctctggta	cagctggcag	gacagctcac	tgttaccac	atagaactgg	cagagggcat	2760
ggcatggagg	cagcgccatc	agaggaat	ctcttggatt	ccaagcgcac	atgatgattc	2820
ttctgtcgatc	agggttggtt	ttgatgggttgc	caatcactt	ttgcagttgg	tcaactccct	2880
gtcctgaata	atctgattcc	atatctctgt	attctgccttcc	aaaatgcctc	cactggaaagc	2940
cataaaactgg	gcccaagtcc	ccttcttctc	tggtggagaa	tcccaggctg	tccaaaaagt	3000
ctcgggatcc	attggcatcc	cagattttca	ctcccttgg	agacagctct	ttagcatttgc	3060
tggatccctt	gataaaccac	agcaactcct	ccaaaacacc	cttccagaac	acacgttgg	3120
ttgtcagcag	aggaaattca	tctctcaggc	tgtagcgcgc	ctgcattgcgc	aataccgaca	3180

77

gggtgccggt gcccgtgcgg tcgtccttcc tgacgcccga gcggaggatg tttggatct	3240
gccccaggta ctgcagctcc ccgtgcggcg gacgcggctc ggctcccgc tcctgtgcgg	3300
cggggggcaa gggccggcg ggcagctccg agccggccac aggcatggcg cggcggcg	3360
gggacggagg caggcgaagt ggccgcggcg gacggaggca ggccaagtgg cgccggcg	3420
cgaggcagg ccaagtggcg cggtggcagg accctcgnc gattaaccga gcctcgact	3480
agcca	3485

<210> 58
<211> 4112
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (4085)..(4085)
<223> n=a, c, g or t

<400> 58 gccatggtaa ggcggacgc catggtaagc gcggacgcca tggatggta agcgcggacg	60
ccatggtaag cgccatggtaa agcgcggacg ccatggtaag cgccatggtaa atggtaagcg	120
taagcgccat ggtaagcg gacccatgc acacggaccc tggactactcg gctgcctatg	180
cggacccat ggtaagcg gacccatgc acacggaccc tggactactcg gctgcctatg	240
tgcgtataga aactgtatgca gaagatggaa tcaagggtg tggattacc ttcaactctgg	300
aaaaaggcac tgaagttgtt gtctgtctg tgaatgcct cggccaccat gtgctcaaca	360
aggacctcaa ggacattgtt ggtgacttca gaggcttcta taggcagctc acaagtgtatg	420
ggcagctcag atggatttgtt ccagaaaagg gcgtggtgca cctggcgaca gcccgtcc	480
taaacgcgtt gtggacttg tggccaagg aggagggaaa gcctgtctgg aagttacttg	540
tggacatgga tcccaggatg ctggatcct gcatagatc caggatcatc actgtatgtcc	600
tgactgagga ggatgccta gaaatactgc agaaaggctca aattggtaaa aaagaaagag	660
agaagcaaat gctggcacaa ggataccctg cttacacgac atcgtgcgcc tggctgggt	720
actcagatga cacgttgaag cagctctgtg cccaggcgct gaaggatggc tggaccaggt	780
ttaaagtaaa ggtgggtgct gatctccagg atgacatgcg aagatgcca atcatccgag	840
acatgattgg accggaaaag actttgatga tggatgcca ccagcgctgg gatgtgcctg	900
aggcggtgga gtggatgtcc aagctggcca agttcaagcc attgtggatt gaggagccaa	960
cctccctga tgacattctg gggcacgcca ccatttccaa ggcactggtc ccatttaggaa	1020
ttggcattgc cacaggagaa caggtgagtg acgccccaa caggtggatg acgtccctt	1080

ggggtcagta cacgctgacc agtgaccgag gacacagttg tgtgttaggc tccatcacct	1140
gctgtacttt gagttggaa attttcatca tcttagaaac tgggtcattt tatcagagtc	1200
tagagtcaga tatagaaaaaa gtttgtggct atttctccaa tttatatgac taaggtcagg	1260
tatcttttc aaagtgtcta attgaaattg aaaaggcagc aatttaaagt tgctattgca	1320
agggcagaaa atggcttaa gaaagccagc ttccaaattt aataaacatg actgcgttca	1380
cttttgagc ttataaatga agcccgagtg cctgccaaaa cctgctgcag tcagccccag	1440
agcagagcag cgtgaggagc tgattctcg ttttccggc aaaaggagca atactgctct	1500
gccgtggttc cgtgttgtca tctgtgccac ctgctcatca ctgtcaccgt atttcatcct	1560
gatgcttcat ctcccactta tcagtcgctg tgacagtcat tccctcataa atggcgagcc	1620
agtgtgattt tgacctgact cacactgttg cattagcaga tttgtaaaga agtgagcaca	1680
aggtccctgc ccacgctata aaagctcgcc tcatgccag cgagaacaaa gaagaaatac	1740
agtctggct tcctgacggc cactgatgaa taattattgg catagagtgg ctgcgttgcc	1800
aggttagag atcctgaagg ccaaggctga ctcttctgtt ggtgttattt tcaattctat	1860
ttccagtgcc acaatagagt gatatttaag caactcctac aggcgaaggc cctgcagttc	1920
ctccagattt acagttgcag actggggcagt gtcaatgaga acctctcagt attgctgtat	1980
gccaaggaaat ttgaaagtaa gcgtgtcga gcccgtgcag accagacctt cattttccca	2040
ctaattcagac acctcccttg atggtttgcattt attcacatgc atgggagtct gtatggcc	2100
atttcgattt ttttctaact ctcatttagc ttaatccgg gaatttttga ttttcatctt	2160
ggaatttcct tcctaaatat taataaatga ttaatcacc tgtggcaat aagaaaaacc	2220
agaaagttcc ctttcacccc ttccctcccc tgcctactc ttgggtattaa atagaaacga	2280
tttcctttta gttcctgttt gccccatgc tgggtggagtt ggcctctgtg aactggtgca	2340
gcacctgatt atatttgact acatatcagt ttctgcaagc ctgtaaaata gggtgtgtga	2400
gtatgttgac cacctgcatg agcatttcaa gtatcccgtg atgatccagc gggcttccta	2460
catgcctccc aaggatcccc gctactcaac agaaatgaag gaggaatctg taaagaaaca	2520
ccagtatcca gatggtaag tttggaaagaa actccttcct gctcaagaaa attaagtgt	2580
cagccccaaac aacttttttc ttctgaagt gaaagggtttt aaaatttctt ggaaatagtt	2640
ttacaaaaat ggatttaaaa aatccttaccg atcaagatga gttcagctag aagtcatacc	2700
accctcagga atcagctaaa gaaaaagaa ctttacctc ggcattccagc ccaaccctta	2760
aagactgaca atatccttcg agctcctttg aaagcaccct aaacagccat ttccatttta	2820
atagttggat gcggattgta cccttcaatc tgaaagtctt cagcttgaa gtcataatt	2880
ttctcaactt ttctgaagaat cctgagcttt gggaaaggc tgggttctcg ctgaagctaa	2940

aaacaaaata aggccattat tttgccataa ttgtacgacc tgttgttaatt gctcctcatg	3000
tccgtgaaac aagtacacag gatgtgatca acaaagtctt atttacagg agtatgatcc	3060
tgtcgatacc ttgccgttagg ttatgtaca tgattggagc gcaaccagct gttctcttgc	3120
acagatcgag agtgagggggt attttgtac attacacagc atcaggagcc tggtcctca	3180
tcaggttaact gaagagctca gtgtggtagg ctggcaagtc acccttccc agacagccca	3240
ccttcaggcc cgtgatgtgc gcaatcatgt acgtgagcag ggcttagctg gcgtatgtga	3300
aaggcacacc gaggcccattt tctcccgatc tctggtagc ctggcaggac agctcactgt	3360
tcaccacata gaactggcag agggcatggc atggaggcag cgccatcaga ggaagatctc	3420
ttggattcca agcgcacatg atgattcttc tgctgtcagg gttggttttg atggtgtcaa	3480
tcactctttg cagttggtca actccctgtc ctgaataatc tgattccata tctctgtatt	3540
ctgccccaaa atgcctccac tggaagccat aaactggcc caagtccct tcttcctgg	3600
tggagaatcc caggctgtcc aaaaagtctc gggatccattt ggcatcccag atttcactc	3660
ccttggaaaga cagctcttta gcattttgtgg atcccttgat aaaccacagc aactcctcca	3720
aaacaccctt ccagaacaca cgtttggtttgc tcagcagagg gaattcatct ctcaggctgt	3780
agcgcgcctg catgccaaat accgacaggg tgccgggtcc cgtcggtcg tccttcctga	3840
cgccgcagcg gaggatgtgt tggatctgcc ccaggtactg cagctccctg tgccggcgac	3900
gcggctcgcc gtcccgctcc tggcgccgg gggcaaggcc cgccgcggc agctccgagc	3960
cggccacagg catggcgccgg cggcgggggg acggaggcag gcgaagtggc gcggcgggac	4020
ggaggcagggc caagtggcgcc ggcgggacgg aggcaaggcca agtggcgccgg tggcaggacc	4080
ctcgncgat taaccgagcc tcgtactagc ca	4112

<210> 59
<211> 2636
<212> DNA
<213> Homo sapien

<400> 59	
ccatggtaa gcgccggacgc catggtaagc gcggacgcca tggatggta agcgcggacg	60
ccatggtaag cgccggacgccc atggtaagcg cggacgccc gtaagcgcg gacgcccattgg	120
taagcgccga cgccatggta agcgcggacg ccatggtaag cgccggacgccc atggtaagcg	180
cggacgcccattggtaagcgcg gacgcccattgc acacggaccc tgactactcg gctgcctatg	240
tcgtcataga aactgtatgca gaagatggaa tcaaggggtg tggattacc ttcactctgg	300
gaaaaggcac tgaagttgtt gtctgtgctg tgaatgcctt cgcaccat gtgctcaaca	360
aggacctcaa ggacattgtt ggtgacttca gaggcttcta taggcagctc acaagtgtatg	420

ggcagctcgatggatttgttccagaaaagggcgtggtgca	cctggcgaca	gcggccgtcc	480			
ttaaacgcgggttgggacttg	tggccaagc	aggagggaaa	gcctgtctgg	aagttacttg	540	
tggacatggatcccaggatgttgc	ctggtatcct	gcatagattt	caggtacatc	actgtatgtcc	600	
tgactgaggttgc	ggatgcccta	gaaatactgc	agaaaggta	aatttgtaaa	aaagaaaagag	660
agaagcaaataatgc	gctggcacaa	ggataccctg	cttacacgac	atcgtgcgc	tggctgggt	720
actcagatgacgttgaag	cagctctgtg	cccaggcgct	gaaggatggc	tggaccaggt	780	
ttaaaagtaaa	ggtgggtgtcttccagg	atgacatgcg	aagatgcca	atcatccgag	840	
acatgattgg	accggaaaaag	actttgatga	tggatgcca	ccagcgctgg	gatgtgcctg	900
aggcggtgga	gtggatgtcc	aagctggcca	agttcaagcc	attgtggatt	gaggagccaa	960
cctccccctgatgacattctg	gggcacgcca	ccatttccaa	ggcactggtc	ccatttaggaa	1020	
ttggcattgc	cacaggagaa	cagtgcacaca	atagagtgtat	atattaagcaa	ctcctacagg	1080
cgaaggccct	gcagttcctc	cagattgaca	gttgcagact	gggcagtgtc	aatgagaacc	1140
tctcagtttgc	gctgatggcc	aaaaagtttgc	aaattcctgt	ttggccccat	gctgggtggag	1200
ttggcctctgttgaactgggt	cagcacctgatgac	ttatatttga	ctacatatca	gtttctgcaa	1260	
gccttgaaaa	tagggtgtgt	gagttatgttgc	accacctgca	tgagcatttc	aagtatcccg	1320
tgtatgtccatggggcttcc	tacatgcctc	ccaaggatcc	cggctactca	acagaaaatga	1380	
aggaggaatctgtaaagaaa	caccagtatc	catatggta	agtttggaa	aaactccttc	1440	
ctgctcaaga	aaattaagtgc	ctcagccccaa	acaactttt	tcttctgaa	gtgaaaggc	1500
ttaaaaatttc	ttggaaatag	ttttacaaaa	atggatttaa	aaaatcctac	cgatcaagat	1560
gagttcagct	agaagtcatca	ccaccctcag	gaatcagcta	aagcaaaaag	aacttttacc	1620
tcggcatcca	gccccacccc	taaagactga	caatatcctt	cgagctcctt	tgaaagcacc	1680
ctaaacagcc	atttccat	taatagttgg	atgcggatttgc	tacccttcaa	tctgaaagtc	1740
ttcagcttttgc	aagtcatcaa	ttttctcaac	tttctgaaga	atcctgagct	ttgggaaaagg	1800
tctgggttctcgctgaagct	aaaaacaaaa	taaggccatt	atttgccat	aattgtacga	1860	
cctgttgtaa	ttgctccatca	tgtccgtgaa	acaagtacac	aggatgtgtat	caacaaagtt	1920
ctattttaca	ggagtatgtat	cctgtcgata	ccttgcgtat	ggttatgtaa	catgatttgg	1980
gcgcacccag	ctgttctcttgc	gcacagatcg	agagtgggg	gtatgtgt	acattacaca	2040
gcatcaggag	cctggtgccat	catcaggatgt	aagttcttat	aaccacttgc	ggcaaattta	2100
ttaaaagacag	gaacacagtc	aatctgttac	tcatagtagc	tctacgttta	cttgaattcc	2160
acaatcccta	accatctgt	ccctggcaga	aagaaggaaa	gatgacatgc	atggacagtg	2220

81

aacagaaaagg gatgaaagcc aggattcctg ggatgaacag acagtggcaa ttaggatgtg	2280
aagacaggtc acaacctatt actatgtcta aaaacgacca gagcagagag ccagagagaa	2340
taagcctgaa gtcacctcca ctcaaaagca gccaaaactcc ctcaaaggag taactttaa	2400
aacctggatc taacctggaa ggggctaaaa agtgtctggt tctgagttt tttccttaag	2460
gctcatgaag cagatgaact tacatTTTA ttgccattc atatcaattt ttggctgta	2520
taacttaggg atttcaacag actttgaag tttggaccta aatattgtac ttaatgtaaa	2580
ttaacaaaaa atatttatgg ccagggtggt ggcttatgcc tgtaattcca gaattt	2636

<210> 60
<211> 2764
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (2737)..(2737)
<223> n=a, c, g or t

<400> 60 gccatggtaa gcgcggacgc catggtaagc gcggacgcca tggatggta agcgccggacg	60
ccatggtaag cgccggacgcc atggtaagcg cggacgccc ggttaagcgcg gacgccccatgg	120
taagcgccga cgccatggta agcgccggacg ccatggtaag cgccggacgcc atggtaagcg	180
cggacgccc ggttaagcgcg gacgccccatgg acacggaccc tgactactcg gctgcctatg	240
tcgtcataga aactgatgca gaagatggaa tcaagggttg tggattacc ttcactctgg	300
aaaaaggcac tgaagttttt gtctgtgctg tgaatgcctt cgccaccat gtgctcaaca	360
aggacctcaa ggacattttt ggtgacttca gaggcttcta taggcagctc acaagtgtatg	420
ggcagctcag atggattttt ccagaaaaagg gcgtggtgca cctggcgaca gcggccgtcc	480
taaacgcgtt gtggacttg tggccaagc aggaggaaaa gcctgtctgg aagttacttg	540
tggacatgga tcccaggatg ctggatccct gcatagattt caggtacatc actgatgtcc	600
tgactgagga ggtgcccata gaaatactgc agaaaggctca aattggtaaa aaagaaaagag	660
agaagcaaata gctggcacaa ggataccctg cttacacgac atcgtgcgcc tggctgggt	720
actcagatga cacgttgaag cagctctgtg cccaggcgct gaaggatggc tggaccaggt	780
ttaaagtaaa ggtgggtgct gatctccagg atgacatgct aagatgccaa atcatccgag	840
acatgattgg accggaaaaag actttgatga tggatgccaa ccagcgctgg gatgtgcctg	900
aggcggtgga gtggatgtcc aagctggcca agttcaagcc attgtggatt gaggagccaa	960
cctccctga tgacattctg gggcacgcca ccatttccaa ggcactggtc ccatttaggaa	1020

ttggcattgc cacaggagaa cagggtgtgt gagtatgtt accacactgca tgagcatttc	1080
aagtatcccg ttagtatcca gcgggcttcc tacatgcctc ccaaggatcc cggctactca	1140
acagaaatga aggaggaatc tgtaaaagaaa caccagtatc cagatggta agtttggaaag	1200
aaactccttc ctgctcaaga aaattaagtg ctcagccccca acaacttttt tctttctgaa	1260
gtgaaaagggc taaaaatttc ttggaaatag ttttacaaaa atggatttaa aaaatcctac	1320
cgatcaagat gagttcagct agaagtcata ccaccctcag gaatcagcta aagcaaaaag	1380
aacttttacc tcggcatcca gcccacccca taaagactga caatatcctt cgagctcctt	1440
tgaaaggcacc ctaaacagcc atttccattt taatagtgg atgcggattt gaccccttcaa	1500
tctgaaaagtc ttcaagcttg aagtcatcaa ttttctcaac ttttcaaga atccctgagct	1560
ttgggaaagg tctgggttct cgctgaagct aaaaacaaaa taaggccatt attttgcatt	1620
aattgtacga cctgttgtaa ttgctcctca tgtccgtgaa acaagtacac aggatgtgat	1680
caacaaagtt ctatttaca ggagtatgtat cctgtcgata ccttgccgta ggttatgtaa	1740
catgatttggaa ggcacaccag ctgttcttgc acacagatcg agagtgggg gtattttg	1800
acattacaca gcatcaggag cctggcgcct catcaggtaa ctgaagagct cagtgtggta	1860
ggctggcaag tcacccttcc cgagacagcc caccttcagg cccgtatgt ggcacatcat	1920
gtacgtgagc agggcgttagc tggcgatgtt gaaaggcaca ccgaggccca tgtctccgaa	1980
tctctggta acgtggcagg acagctact gttcaccaca tagaactggc agagggcatg	2040
gcatggaggc agcgccatca gagaaagatc tcttgatttc caagcgcaca tgatgattct	2100
tctgtcgta gggttggttt tgatgggtc aatcacttt tgcagtttgt caactccctg	2160
tcctgaataa tctgattcca tatctctgta ttctgccccca aatgcctcc actggaaagcc	2220
ataaaactggg cccaaatccc cttttctct ggtggagaat cccaggctgt ccaaaaagtc	2280
tcgggatcca ttggcatccc agatttcac tcccttgaa gacagcttt tagcatttgt	2340
ggatcccttg ataaaccaca gcaactcctc caaaacaccc ttccagaaca cacgttttgt	2400
tgtcagcaga gggattcat ctctcaggct gtagcgcgcc tgcattccgaa ataccgacag	2460
ggtgccggtg cccgtgcggc cgtccttcct gacgcccgcag cggaggatgt gttggatctg	2520
ccccaggtac tgcagctccc cgtgcggcgg acgcggctcg gcgtcccgct cctgtgcggc	2580
ggggggcaag ggccggcgcg gcaagtcgcg gccggccaca ggcattggcgc ggcggggcggg	2640
ggacggaggc aggcgaagtg gcgcggcggg acggaggcag gccaagtgcc gcccggggac	2700
ggaggcaggc caagtggcgc ggtggcagga ccctcgncgg attaaccgag cctcgtacta	2760
gcca	2764

```

<210> 61
<211> 3436
<212> DNA
<213> Homo sapien

<400> 61
gcgcggacgc catggtaagc gcggacgcca tggatggta agcgccgacg 60
ccatggtaag cgccggacgc atggtaagcg cgacgccc gtaagcgcg gacgccatgg 120
taagcgccga cgccatggta agcgccgacg ccatggtaag cgccggacgccc atggtaagcg 180
cgacgccc gtaagcgcg gacgccatgc acacggaccc tgactactcg gctgcctatg 240
tcgtcataga aactgatgca gaagatggaa tcaagggtt tggaattacc ttcactctgg 300
gaaaaggcac tgaagtttt gtctgtctg tgaatgcctt cgccaccat gtgctcaaca 360
aggacctcaa ggacattttt ggtgacttca gaggcttcta taggcagctc acaagtgtatg 420
ggcagctcag atggatttgtt ccagaaaagg gctgtggtca cctggcgaca gcccgtcc 480
taaacgcgtt gtgggacttg tggccaagc aggagggaaa gcctgtctgg aagttacttg 540
tggacatgga tccccaggatg ctggtatcct gcatagattt caggtacatc actgatgtcc 600
tgactgagga ggtgcctt gaaatactgc agaaaggctca aattggtaaa aaagaaaagag 660
agaagcaaat gctggcacaa ggataccctg cttacacgac atcgtgcgcc tggctgggt 720
actcagatga cacgttgaag cagctctgtt cccaggcgct gaaggatggc tggaccaggt 780
ttaaagtaaa ggtgggtgtt gatctccagg atgacatgct aagatgcca atcatccgag 840
acatgattgg accggaaaag actttgatga tggatgcca ccagcgctgg gatgtgcctg 900
aggcggttga gtggatgtcc aagctggcca agttcaagcc attgtggatt gaggagccaa 960
cctcccttga tgacattctg gggcacgcca ccatttccaa ggcactggtc ccatttagaa 1020
ttggcattgc cacaggagaa cagtgcacaca atagagtgtt attaagccaa ctcctacagg 1080
cgaaggccct gcagttccctc cagattgaca gttcagact gggcagtgtc aatgagaacc 1140
tctcgttatt gctgtatggcc aaaaagtttggaaatttctgt ttggcccccatt gctgggtggag 1200
ttggcctcttga tgaactgggtt cagcaccttga ttatatttgc ctacatatca gtttctgca 1260
gccttggaaaa tagggtgtgtt gaggatgttgc accaccttgc tgacatttc aagtatcccc 1320
tgatgttca gcccccttcc tacatgcctc ccaaggatcc cggctactca acagaaaatgt 1380
aggaggaatc tgtaaagaaa caccagtatc cagatggtca agtttggaaag aaactccctc 1440
ctgtcaaga aaattaatgtt ctcagccca acaacttttt tctttctgtt gtaaaaggc 1500
ttaaaatttc ttggaaatag ttttacaaa atggatttaa aaaatccatc cgatcaagat 1560
gagttcagct agaagtcata ccaccccttgc gaatcagctt aagaaaaag aacttttacc 1620
tcggcatcca gccccacccc taaagacttca caatatccctt cgagctccctt tgaaagcacc 1680

```

ctaaacagcc	atttccattt	taatagttgg	atgcggattg	tacccttcaa	tctgaaaatc	1740
ttcagctttg	aagtcatcaa	ttttctcaac	ttttcgaaga	atcctgagct	ttgggaaagg	1800
tctgggttct	cgctgaagct	aaaaacaaaa	taaggccatt	atttgccat	aattgtacga	1860
cctgttgtaa	ttgctcctca	tgtccgtgaa	acaagtacac	aggatgtgat	caacaaagtt	1920
ctatttaca	ggagtatgat	cctgtcgata	ccttgcgtta	ggttatgtaa	catgattgga	1980
gcgcaaccag	ctgttctttt	gcacagatcg	agagtgaggg	gtatTTgtg	acattacaca	2040
gcatcaggag	cctggtgccc	catcaggtaa	ctgaagagct	cagtgtggta	ggctggcaag	2100
tcacccttcc	cgagacagcc	cacccagg	cccggtatgt	gcgcaatcat	gtacgtgagc	2160
agggcgttagc	tggcgatgtt	gaaaggcaca	ccgaggccca	tgtctccgaa	tctctggcac	2220
agctggcagg	acagctcaact	gttcaccaca	tagaactggc	agagggcatg	gcatggaggc	2280
agcgccatca	gaggaagata	ggaaccagca	gaggaagata	aggagggatg	gtggtttggaa	2340
agaccacagc	taaaggcaaa	gtaaaacagg	agagaaacag	aagccaaactc	atatggtgga	2400
gaccaggaga	gagagccact	gggctgcagt	gatgtccata	acagcctctg	cagcgtatggc	2460
acggagctga	gggagactat	ccatcggtgc	aaggttctg	caggtgtcca	tttacggctg	2520
aagaatgct	cttccatcag	agctgaaggg	atctggctaa	cctcgtggca	ccagattaca	2580
aatacagcag	gaataattct	gttgcacaca	ggaaactgg	gcttctggta	caccctccta	2640
tattaaaagt	ctctattaca	tggccaggca	cagtggctca	tgccgtaaat	cccaacactg	2700
ggacgccagg	gtgggcagat	cacttgaggc	caacttgagt	tcgagactag	cctggccaac	2760
atagtgaaac	cccgctctg	ctaaaaatac	aaaaattcgc	gcgcctgtgg	tcccagctct	2820
ggggctgagg	aatgggaact	cacttgaacc	tgggagatgg	aggttgcgt	gagctggagt	2880
gcaatggcgt	gatcatgact	cactacagcc	tcaaattcct	gggttcaaata	gatcctctcg	2940
ccttggcctc	tggagttgtt	ggaattacag	gtgtgagcca	ccacacctgg	ctctacaccc	3000
tggtagagtt	gaattttaca	atataattgt	taaaaatgtt	agtgaggtgg	cagcgtatgt	3060
gaacttcatc	tgcttccatt	taaaaatgtt	acatcttaca	tgttagttct	aggcaattta	3120
aaaccctttt	tgggtgtaa	atgagtataa	atacacaat	taagatcatc	tggttgggag	3180
gctgaggcag	gcagatcatc	tgaggtcagg	agttcaagac	cagcctgacc	aacatggtga	3240
aaccccgctt	ctactaaaaa	tacaaaatta	gccgggcatt	gtggcacatg	cctgtatcc	3300
cagctacttg	ggaggctgag	gcaggagaat	cactcgaacc	caggaggcag	aggttacagt	3360
gagccaagat	cacgcccgtt	cattccagcc	tgggcaacag	agcaaaactc	tgtctcaaaa	3420
aaaaaaaaaa	aaaaaaaaaa					3436

```

<210> 62
<211> 2928
<212> DNA
<213> Homo sapien

<400> 62
gcacatggtaa gcgcggacgc catggtaagc gcggacgcca tggtatggta agcgccgacg      60
ccatggtaag cgccggacgcc atggtaagcg cggacgccc ggttaagcgac gacgcccattgg      120
taagcgccga cgccatggta agcgccgacg ccatggtaag cgccggacgcc atggtaagcg      180
cggaacgccc ggttaagcgac gacgcccattgg acacggaccc tgactactcg gctgcctatg      240
tcgtcataga aactgatgca gaagatggaa tcaagggttg tggaaattacc ttcactctgg      300
aaaaaggcac tgaagttgtt gtctgtgctg tgaatgcctt cgcccccattt gtgctcaaca      360
aggacctcaa ggacattgtt ggtgacttca gaggcttcta taggcagctc acaagtgtatg      420
ggcagctcag atggatttgtt ccagaaaagg gcgtggtgca cctggcgaca gcggccgtcc      480
taaacgcgtt gtgggacttg tggggcaagc aggagggaaa gcctgtctgg aagttacttg      540
tggacatgga tccccaggatg ctggatatcct gcatagattt caggtacatc actgatgtcc      600
tgactgagga ggatgcccata gaaatactgc agaaaggtaa aatttgtaaa aaagaaaagag      660
agaagcaaat gctggcacaa ggataccctg cttacacgac atcgtgcgc tggctgggt      720
actcagatga cacgttgaag cagctctgtt cccaggcgct gaaggatggc tggaccaggt      780
ttaaagtaaa ggtgggtgtt gatctccagg atgacatgcg aagatgccaa atcatccgag      840
acatgattgg accggaaaag actttgatga tggatgccaa ccagcgctgg gatgtgcctg      900
aggcggtgga gtggatgtcc aagctggcca agttcaagcc atttgtggatt gaggagccaa      960
cctcccccata tgacattctg gggcacgcca ccatttccaa ggcactggtc ccatttaggaa     1020
ttggcattgc cacaggagaa cagtggccaca atagagtat atttaagcaa ctcctacagg     1080
cgaaggccct gcagttccctc cagattgaca gttgcagact gggcagtgtc aatgagaacc     1140
tctcgttattt gctgtatggcc aaaaagttt aaattccctgt ttggcccccattt gctgggtggag    1200
ttggcctctg tgaactgggtt cagcacctga ttatatttga ctacatatca gtttctgcaa    1260
gccttgaaaa taggggtgtt ggttatgtt accacctgca tgagcatttc aagtatcccg    1320
tgatgatcca gcgggcttcc tacatgcctc ccaaggatcc cggctactca acagaaatga    1380
aggaggaatc tgtaaagaaa caccagtatc cagatggtga agtttggaaag aaactccctc    1440
ctgctcaaga aaattaagtg ctcagccca acaactttt tctttctgaa gtgaaaggc       1500
ttaaaaatttcc ttggaaatag ttttacaaaa atggatttaa aaaatcctac cgatcaagat    1560
gagttcagct agaagtcata ccacccctcag gaatcagctt aagcaaaaag aacttttacc    1620

```

86

tcggcatcca	gccccaaacccc	taaagactga	caatatcctt	cgagctcctt	tgaaagcacc	1680
ctaaacagcc	atttccattt	taatagttgg	atgcggattg	tacccttcaa	tctgaaaagtc	1740
ttcagtttg	aagtcatcaa	ttttctcaac	ttttcgaaga	atcctgagct	ttgggaaagg	1800
tctgggttct	cgctgaagct	aaaaacaaaa	taaggccatt	atttgccat	aattgtacga	1860
cctgttgtaa	ttgctcctca	tgtccgtgaa	acaagtacac	aggatgtgat	caacaaagtt	1920
ctatttaca	ggagtatgat	cctgtcgata	ccttgcgtta	ggttatgtaa	catgattgga	1980
gcgcaaccag	ctgttcttt	gcacagatcg	agagtgaggg	gtatTTGtg	acattacaca	2040
gcatcaggag	cctggtgccct	catcaggtaa	ctgaagagct	cagtgtggta	ggctggcaag	2100
tcacccttcc	cgagacagcc	caccttcagg	cccgtgatgt	gcgcacatcat	gtacgtgagc	2160
agggcgttagc	tggcgatgtt	gaaaggcaca	ccgaggccca	tgtctcccgta	tctctggta	2220
agctggcagg	acagctcaact	gttcaccaca	tagaactggc	agagggcatg	gcatggaggc	2280
agcgccatca	gaggaagata	ggaaccagca	gaggaagata	aggagggatg	gtggtttga	2340
agaccacagc	taaaggcaaa	gtaaaacagg	agagaaacag	aagccaaactc	atatggtgaa	2400
gaccaggaga	gagagccact	gggctgcagt	gatgtccata	acagcctctg	cagcgtggc	2460
acggagctga	gggagactat	ccatcggtgc	aaggttctg	caggtgtcca	tttacggctg	2520
aagcaatgct	cttccatcag	agctgaaggg	atctggcta	cctcgtggca	ccagattaca	2580
aatacagcag	gaataattct	gttgccaca	ggaaactggt	gcttctggta	caccctccta	2640
tattaaaagt	ctctattaca	tggccaggca	cagtggctca	tgcctgaaat	cccaacactg	2700
ggacgccagg	gtgggcagat	cacttgaggc	caacttgagt	tcgagactag	cctggccaac	2760
atagtgaaac	cccgctctcg	ctaaaaatac	aaaaattcgc	gcgcctgtgg	tcccagctct	2820
ggggctgagg	aatgggaact	cacttgaacc	tgggagatgg	agttgcccgt	gagcggagat	2880
cacaccactg	cactccagcc	tggcaacag	ggtgagactg	tgtctcaa		2928

<210> 63
<211> 3100
<212> DNA
<213> Homo sapien

<400> 63						
gcatggtaa	gcgcggacgc	catggtaagc	gcggacgcca	tggtatggta	agcgcggacg	60
ccatggtaag	cgcggacgccc	atggtaagcg	cgacgcccatt	ggtaagcgcg	gacgcccattgg	120
taagcgcgga	cgcgcattggta	agcgcggacg	ccatggtaag	cgccgcgc	atggtaagcg	180
cggacgcccatt	ggtaagcgcg	gacgcccattgc	acacggaccc	tgactactcg	gctgcctatg	240
tcgtcataga	aactgatgca	gaagatggaa	tcaaggggtg	tggattacc	ttcactctgg	300

gaaaaggcac tgaagttgtt gtcttgctg tgaatgcctc cgccaccat gtgctcaaca	360
aggacctaag gagacattgtt ggtgacttca gaggcttcta taggcagctc acaagtatg	420
ggcagctcgat atggatttgtt ccagaaaagg gcgtggtgca cctggcgaca gcccgtcc	480
taaacgcgtt gtggacttg tggccaagc aggagggaaa gcctgtctgg aagttacttg	540
tggacatgga tcccaggatg ctggatcct gcatagattt caggtacatc actgatgtcc	600
tgactgagga ggatgccta gaaatactgc agaaaggtca aattggtaaa aaagaaagag	660
agaagcaaat gctggcacaa ggataccctg cttacacgac atcgtgcgcc tggctgggt	720
actcagatga cacgttgaag cagctctgtg cccaggcgct gaaggatggc tggaccaggt	780
ttaaagtaaa ggtgggtgt gatctccagg atgacatgct aagatgc当地 atcatccgag	840
acatgattgg accggaaaag actttgatga tggatgc当地 ccagcgctgg gatgtgc当地	900
aggcggtgga gtggatgtcc aagctggcca agttcaagcc attgtggatt gaggagccaa	960
cctccccctga tgacattctg gggcacgc当地 ccatttccaa ggcactggc当地 ccatttaggaa	1020
ttggcattgc cacaggagaa cagtgccaca atagagtgtt atttaagccaa ctcctacagg	1080
cgaaggccct gcagttcctc cagattgaca gttgcagact gggcagtgctc aatgagaacc	1140
tctcagtatt gctgatggcc aaaaagtttggaaattccctgt ttgccccat gctgggtggag	1200
ttggcctctg tgaactggtg cagcacctga ttatatttga ctacatatca gtttctgcaa	1260
gccttgaaaa tagggtgtgtt gagtatgttgg accacctgca tgagcatttc aagtatcccg	1320
tgatgatcca gcgggcttcc tacatgcctc ccaaggatcc cggctactca acagaaatgaa	1380
aggaggaatc tgtaaagaaa caccagtatc cagatggtga agtttggaaag aaactccctc	1440
ctgctcaaga aaattaagtg ctcagccccacaacttttt tcttctgaa gtgaaaggc	1500
ttaaaatttc ttggaaatag ttttacaaaa atggatttaaaaatcctac cgatcaagat	1560
gagttcagct agaagtcata ccaccctcag gaatcagcta aagcaaaaag aacttttacc	1620
tcggcatcca gcccccccccc taaagactga caatatcctt cgagctc当地 tgaaagcacc	1680
ctaaacagcc atttccattt taatagttgg atgcggattt gaccccttcaa tctgaaagtc	1740
ttcagtttg aagtcatcaa ttttctcaac ttttctgaaatcctgat ttggaaagg	1800
tctgggttct cgctgaagct aaaaacaaaaa taaggccattt attttccat aattgtacga	1860
cctgttgtaa ttgctcctca tgcgtgttgc当地 acaagtacac aggtgttgc当地 caacaaagtt	1920
ctatttaca ggagtatgat cctgtcgata cttggcgta ggttatgtaa catgatttggaa	1980
gcgc当地 acccgatcg agagtgggg gtatgttgc当地 acattacaca	2040
gc当地 catcaggag cctggc当地 catcaggtaa ctgaagagct cagtggttgc当地 ggctggcaag	2100
tcacccttcc cgagacagcc cacccctcagg cccgtatgtt ggc当地 atcat gtacgtgagc	2160

agggcgtagc tggcgatgtt gaaaggcaca ccgaggccca tgtctcccga tctctggtagc	2220
agctggcagg acagctact gttaccacca tagaactggc agagggcatg gcatggaggc	2280
agcgccatca gaggaagatc tcttgattc caagcgcaca tgatgattct tctgtcgta	2340
gggttggttt tgatgggttc aatcaacttt tgcagtttgt caactccctg tcctgaataa	2400
tctgattcca tatctctgta ttctgccccaaatgcctcc actggaagcc ataaaactggg	2460
ccaaagtccc cttcttcctt ggtggagaat cccaggctgt ccaaaaagtc tcgggatcca	2520
ttggcatccc agatttcac tcccttgaa gacagcttt tagcatttgt ggatcccttg	2580
ataaaaccaca gcaactcctc caaaacaccc ttccagaaca cacgttttgt tgtcagcaga	2640
gggaattcat ctctcaggct gtagcgcgcc tgcattgcga ataccgacag ggtgccggtg	2700
cccggtcggt cgtccttcct gacgcccgcag cggaggatgt gttggatctg ccccaggatt	2760
tccaggtccc agatgaagag ataattctac ttactggata taggatgcat tagatctct	2820
tacctaaaaa aaaaaaaaaa ggcagcaatg atcaaaatac taataaatta ctcacagact	2880
cagtgatatttttcttgag taaaagtcca ggatggtaa tagaataacct gctgttgct	2940
tttggaaaaaa ttggtactgt atgttagcaaa ataatgtgaa acccatatgc atggatattc	3000
ttaacaattt gaagaaatcg tcacagcttt cctgggttgt tgaggctcta agatggtctt	3060
ttcctctgat gtgataataa agtgtttatt ctgaactcta	3100

<210> 64
<211> 463
<212> DNA
<213> Homo sapien

<400> 64 tggatcggtt tcgcggcgag gtacaggatt agactgggtt tatatttaac tcttcctca	60
tagtgtact acacgcgcct gggcaacgac ttccacacga acaagcgcgt gtgcgaggag	120
atcgccatta tccccagcaa aaagctccgc aacaagatag caggttatgt cacgcattctg	180
atgaagcggaa ttccagagagg cccagtaaga ggtatctcca tcaagctgca ggaggaggag	240
agagaaagga gagacaattt tgttcctgag gtctcaggct tggatcagga gattattgaa	300
gtagatcctg acactaagga aatgctgaag cttttggact tcggcagtct gtccaacctt	360
caggtcactc agcctacagt tggatgaat ttcaaaacgc ctcggggacc tgtttgaatt	420
tttctgttag tgctgtatta tttcaataa atctggaca aca	463

<210> 65
<211> 5226
<212> DNA
<213> Homo sapien

<400> 65	
gcgggtggcgg tggcgccgc gtcccgccgg cagtcgtgct acctgtgtga cctgccccgc	60
atgcacctggg ccatgatctg ggacttcacc gaaccgtct gcccgccgtc cgtaactac	120
gaggggcgccg acccgctcga gttcgatcc gagacggccgc ggcagctaa gcggggcgcac	180
ggctgttcc cgagggtcg ctccccaccc ggcgcccggg cctcgccgc cgccaagccg	240
ccgcccgtct ccgccaagga catcctttg cagcagcagc agcagcttgg ccacggccgc	300
cccgaggccgg ccccgccgcg cccgcaggcc ttggagcgct acccggttggc ggccgcccggc	360
gagaggcccc cgccgcctcg ctctgacttc ggcagcagcc gcccggcagc gagcctggcc	420
cagccgccga cgccgcagcc gccgcccgtg aacggcatcc tggtgcccaa cggcttctcc	480
aagcttagagg agccgcccga gctgaatcgc cagagccga acccgccggc cggccacgcg	540
gtgcgcggcc caactgggtgcc gtcatgaac ggctggccca cgccgctgccc caccgcgttc	600
ggcctcgccgc gccgcgcgtgc cgccctctta gccgcgggtt ccggAACCGC ggccgcccagc	660
ctgggctccg cgccagccac cgatctgggc gcccacaaga ggccggcata cgtgtcgagc	720
agcgctgccc tgaggcacga gcagcgttag gcggcagcca aggagaaaaca accgcccggc	780
cctgcgcacc gggggcccccgc cgacagcctg tccaccgcgg ccggggccgc cgagctgagc	840
gcggaaagggtc cgggcagag cccgcgggtct ggagagcagg actgggtcaa caggcccaag	900
accgtgcgcg acacgctgct ggcgcgtcac cagcacggcc actcggggcc ctgcagagc	960
aagttaaga aggagccggc cctgactgca ggcaggttgt tgggtttcga ggccaacggg	1020
gccaacgggt ctaaagcagg tagggccggc tgtgaagtga ggggtctag gggagaaaag	1080
gggacggaga gcagaggaag ggtggttctt tggattcacc attttacccc agcccagaaa	1140
caacaaacac cccacttcct gatctgcctg aggccgaacc agtgcgttgt ggcaacgtgt	1200
tcatgtgctg aagcagcata acagagatga gtcagactgg gctgatacgc tctgacacgg	1260
ggttttcctt tcccagcaca ttcttggatg ggagcatgag ggcaccagtc accttttaac	1320
ctattggggg acattagcag tcacatgttg agtgc当地 accgactttt tgtgc当地gt	1380
tacaaacagg cagttacaag cgtgtcattt tcagtggtc catttaaat cagtctgt	1440
cctcagaatc ccgtacgcct gaaggttta agttgcattt gtcacccatgt gtcgtatatg	1500
agtattttct gtctgtgttt ttagagagga ggaattctgt aacgactttt gtttcgggtt	1560
aggaagagaa tgcattttt cagtgacccg ccacttatgt taccttttc cttttatttc	1620
tttgtgtttc cagttgc当地 aacagcaagg aaaaggaagc cctctccaga accagaaggt	1680
gaagtcgggc cccctaagat caacggagag gcccagccgt ggctgtccac atccacagag	1740
gggctcaaga tccccatgac tcctacatcc tctttgtgt ctccggccacc acccactgcc	1800

tcacccatt ccaaccggac cacaccgcct gaagcggccc agaatggcca gtcccccatt	1860
gcagccctga tcttagtagc agacaatgca gggggcagtc atgcctcaaa agatgccaac	1920
cagggttcaact ccactaccag gaggaatagc aacagtccgc cctctccgtc ctctatgaac	1980
caaagaaggc tggggccccag agaggtgggg ggccaggggag caggcaacac aggaggactg	2040
gagccagtgc accctgccag cctccggac tcctctctgg caaccagtgc cccgctgtgc	2100
tgcacccctct gccacgagcg gctggaggac acccattttg tgcaagtgcgtccct	2160
tcgcacaagt tctgcttccc ttgctccaga caaagcatca aacagcaggg agctagtggaa	2220
gaggtctatt gtcccagtgg ggaaaaatgc cctcttgtgg gctccaatgt cccctggcc	2280
tttatgcaag gggaaattgc aaccatcctt gctggagatg tgaaagtgaa aaaagagaga	2340
gactcgtgac ttttccgggt tcagaaaaac ccaatgatta cccttaatta aaactgcttg	2400
aattgtatat atatctccat atatataatat atccaagaca agggaaatgt agacttcata	2460
aacatggctg tataattttg atttttttt aatacattgt gtttctatat tttttttgac	2520
gacaaaaggt atgtacttat aaagacattt ttttctttt ttaacgttat tagcatatct	2580
tttgtctta ttatcctggt gacagttacc gttctatgta ggctgtgact tgcgctgctt	2640
tttttagagca cttggcaaat cagaaaatgct tctagctgta tttgtatgca cttatttaa	2700
aaagaaaaaa aaagccaaat acatttctg acattgtaaat attgccttac tgtctgtcat	2760
tccttattgc tggcccttt ctcaggccgg aggccaagtg gtggagaagg aaagggaaatg	2820
atcgaacggg catgttgtca agtgggcattg ccactggaa ataccaccag tttaccctga	2880
aacattgtcc tcagaggagt agggaaatgg attttgaatc tctatTTTgc tcaaaaatgc	2940
agttcctgag atactgatga ctgagagtgc tgctggaaa ttttcaggat tgtgtggct	3000
tttgggttttt tttgtttttt ttttttaag acaaagtga ccgctgttca ctgtccacgt	3060
gatcagttgt aagattacaa tgctgcatgc tagttggta cataagatac aattccagtg	3120
atggaaaggcg gttataatgg atgggtgtgt gtacaagatg gcactgccat ctttgagcag	3180
agcccagctc tgcagcgcca cttcatctt ttaaacacccc tagaggtctg tttgttgg	3240
ctgttgtcct ttatTTTgaa agagttgcaaa gagaagttac agtccaggtg aacttggaga	3300
ttgtggatt ggttttgttt ctgtttgtt ttgtttatca tttacctgta gtgttattgc	3360
tgttgtatact atcacctata ccctgtttct agttagtgcgt gaatacagtg tggtaaatg	3420
acagtaacag ccgcgtggtg ctgccaggac tgcccttggg catatcagtg acagccaaa	3480
tgtgggtgga ggaaacctgt aatttccttc ttaacatgtg tttgaaatac caagtgaata	3540
atactgttct ggaaaaaaat gataaactag tggaaattaa agaaattaag ggttttat	3600

91

aatagacagg	ccccacctct	caaaatattt	ttagaagtct	ttttgtaaac	taatttcttt	3660
tgatcactat	tttgcacatcg	taaaatgatt	ttttaaaac	caataaaatca	tcaattatta	3720
gaaatagttg	tctcacagtg	atactggttt	ttctttgtg	ctgttatgat	ttaacattga	3780
caggaacact	atttaaatc	cttacgttca	ggtgttgt	acttggcctt	ataatttaggc	3840
tgaattatgg	cttcaaggtc	tacaatttat	gtgtatggtt	cacagcctag	cttctattta	3900
catttggaaa	tacagattt	taccaacttt	ggattttttt	ttagttatat	gtttgtcttt	3960
cctttttaaa	ttgttcaaaa	ctattttta	atggtcaagt	tactaacact	tgaaaatcag	4020
atactgcacc	aaatacagtg	ttttccgta	gtgttttaa	tgagtgcacc	tattactact	4080
gtgcgagaat	tcatgttta	ccagtcattt	ttatattaca	aacagacttg	catgattaac	4140
cagttgttac	acttactttt	tcaagttgga	gtatatatga	ctcagtgcag	actggctct	4200
cttatgtgaa	tgcacacatg	cagaaatgca	gagtcaattt	tacatgccc	taaagacatt	4260
tgtaaagaat	tcaagcttta	ttgtctgtt	tataaatgtg	tatctaggca	ctttattata	4320
actggattt	gacctcacag	atgttacaac	ttgatcagtc	gtttgaccta	atttggta	4380
gctatctgta	tggttgcaa	tcttaataca	gacatgctt	ccaaaaagat	taatacagaa	4440
ccatcctgcc	gttttggata	agtctatcca	gctgtggaaa	ggcaacctg	tggttctct	4500
gtactggtgt	ttaatggggg	aagaatatga	acagctttaa	agagctgtgt	attgtggta	4560
ctactattaa	aaaataagat	ctgcacgagt	ctgactggcc	tttgggtggc	ctttgtggac	4620
ggctcgttagc	tggaaagtgt	tgatctgggt	tttctggcat	tcttttaagt	taaaaagtta	4680
acatcgggac	atgggttga	tctttgtt	tacctgatga	cagtgcagag	attctccaca	4740
gctggataaa	aatgtcacaa	agctacttac	tgtacatgg	cagtatcaga	tttcaaatcc	4800
taatatttca	gctgtgctt	taatactcaa	aatatttaggg	gatggggtgt	tgaagcttcc	4860
cctttttgc	ttttaacaat	ttatagaatt	taacagatgt	actgtcttc	atgtggcctc	4920
acatttaaag	ttatgagaac	atacacatgg	tttacaactt	ttactatata	ccttccttg	4980
gccaccaagt	atttaaaag	tgtgccacct	tttaacctt	actttttta	agttgaaggt	5040
gatactttt	ctatatatga	tgaaaactcat	gtcaactgaa	gtgagtgtaa	tctcagatat	5100
caacattatt	atatttaaa	atcacgctat	ggaaatatca	cctgaattct	gtcatttgtc	5160
agatttacag	tacctttttt	tcttaactt	ttagcattaa	ataaaaataa	aattgggagc	5220
actgaa						5226

<210> 66
<211> 5045
<212> DNA
<213> Homo sapien

<400> 66						
gcgggtggcg	tggcggccgc	gtcccgccgg	cagtcgtgct	acctgtgtga	cctgccccgc	60
atgccctgg	ccatgatctg	ggacttcacc	gaacccgtct	gccgcggctg	cgtcaactac	120
gagggcgccg	accgcgtcga	gttcgtcattc	gagacggcgc	ggcagctcaa	gcgggcgcac	180
ggctgttcc	cggagggtcg	ctccccaccc	ggcgccgcgg	cctcgccgc	cggccaagccg	240
ccgcccgtct	ccgccaagga	catccttttgc	cagcagcagc	agcagcttgg	ccacggcggc	300
cccgaggcgg	ccccgcgcgc	gccgcaggcc	ttggagcgct	accctgttgc	ggccgcggcc	360
gagaggcccc	cgcgcctcg	ctctgacttc	ggcagcagcc	gcccgccagc	gagcctggcc	420
cagccgcga	cgcgcagcc	gccgcccgtg	aacggcatcc	tggtgcccaa	cggcttctcc	480
aagcttagagg	agccgcccga	gctgaatcgc	cagagcccga	accgcggcgc	cggccacgcg	540
gtgccgcccc	ccctggtycc	gctcatgaac	ggctcgccca	cgcgcgtgcc	caccgcgtc	600
ggcctcgccg	gccgcgcgtc	cgcctcctta	gccgcggtgt	ccggaaccgc	ggccgcccagc	660
ctgggctccg	cgcagcccac	cgatctggc	gcccacaaga	ggccggcattc	cgtgtcgagc	720
agcgctgccc	tggagcacga	gcagcgtgag	gcggcagcca	aggagaaaca	accgcggccg	780
cctgcgcacc	ggggcccccgc	cgacagcctg	tccaccgcgg	ccggggccgc	cgagctgagc	840
gcggaaggtg	cggcaagag	ccgcgggtct	ggagagcagg	actgggtcaa	caggcccaag	900
accgtgcgcg	acacgctgct	ggcgctgcac	cagcacggcc	actcggggcc	cttcgagagc	960
aagttaaga	aggagccggc	cctgactgca	ggcaggttgt	tggtttgc	ggccaacggg	1020
gccaaacgggt	ctaaagcagg	tagggcgcc	tgtgaagtga	gggggtctag	gggagaaaag	1080
gggacggaga	gcagaggaag	ggtggttctt	tggattcacc	attttacccc	agcccagaaa	1140
caacaaacac	cccacttct	gatctgcctg	aggcggaaacc	agtgttttgt	ggcaacgtgt	1200
tcatgtgctg	aagcagcata	acagagatga	gtcagactgg	gctgatacgc	tctgacacgg	1260
ggttttcctt	tcccagcaca	ttcttggatg	ggagcatgag	ggcaccagtc	accttttaac	1320
ctattggggg	acattagcag	tcacatgttgc	agtgc当地	agggtacttt	tgtgc当地	1380
tacaaacagg	cgttacaag	cgtgtcattt	tcagtgctc	cattttaaat	cagtctgctg	1440
cctcagaatc	ccttgcaaga	acagcaagga	aaaggaagcc	ctctccagaa	ccagaaggtg	1500
aagtgcggcc	ccctaagatc	aacggagagg	cccagccgtg	gctgtccaca	tccacagagg	1560
ggctcaagat	ccccatgact	cctacatcct	cttttgtgtc	tccgc当地	cccactgcct	1620
cacctcatc	caaccggacc	acaccgcctg	aagcggccca	aatggccag	tccccatgg	1680
cagccctgat	cttagtagca	gacaatgcag	ggggcagtc	tgctcaaaa	gatgccaacc	1740
aggttcaactc	cactaccagg	aggaatagca	acagtccgc	ctctccgtcc	tctatgaacc	1800

aaagaaggct	gggccccaga	gaggtgggg	gccagggagc	aggcaacaca	ggaggactgg	1860
agccagtgc	ccctgccagc	ctcccgact	cctctctggc	aaccagtgcc	ccgctgtgct	1920
gcaccctctg	ccacgagcgg	ctggaggaca	cccatttgt	gcagtgcccg	tccgtccctt	1980
cgcacaagtt	ctgcttcct	tgctccagac	aaagcatcaa	acagcaggg	gctagtggag	2040
aggcttattg	tcccagtgg	gaaaaatgcc	ctcttgtgg	ctccaatgtc	ccctgggcct	2100
ttatgcaagg	ggaaaattgca	accatcctt	ctggagatgt	gaaagtgaaa	aaagagagag	2160
actcgtgact	tttccggttt	cagaaaaacc	caatgattac	cctaattaa	aactgcttga	2220
attgtatata	tatctccata	tatatatata	tccaaagacaa	ggaaaatgta	gacttcataa	2280
acatggctgt	ataattttga	tttttttga	atacattgtg	tttctatatt	tttttgacg	2340
acaaaaggta	tgtacttata	aagacatttt	tttctttgt	taacgttatt	agcatatctt	2400
tgtgcttat	tatcctggtg	acagttaccg	ttctatgtag	gctgtgactt	gcgcgtcttt	2460
tttagagcac	ttggcaaatc	agaaatgctt	ctagctgtat	ttgtatgcac	ttatttaaa	2520
aagaaaaaaaaa	aagccaaata	catttctga	cattgtaaga	ttgccttact	gtctgtcatt	2580
ccttattgct	ggccccc	tcaggccgga	ggccaagtgg	tggagaagga	aaggaaatga	2640
tcgaacgggc	atgttgc	aaatgggc	catggggaaa	taccaccgt	ttaccctgaa	2700
acattgtcct	cagaggagta	ggaaagtgg	tttgaatct	ctattttgt	caaaagttca	2760
gttcc	tactgatgac	tgagagtgc	gctggaaat	ttcaggatt	gtgtggctt	2820
ttgggtttt	ttgtttttt	tttttaaga	caaagttgac	cgctgttcac	tgtccacgtg	2880
atcagttgta	agattacaat	gctgc	atgttac	ataagataca	attccagtga	2940
tggaaggcgg	ttataatgga	tgggggtgt	tacaagatgg	ca	tttgagcaga	3000
gccagctct	gcagcgc	ccac	ttcat	taaacaccct	agaggtctgt	3060
tgtgtcctt	tat	tttggaaa	gagttgcaag	agaagttaca	gtccaggtga	3120
tgtggattg	gtttgtt	tc	ttttgtt	tgtttatcat	ttacctgttag	3180
gttataacta	tcac	tttct	gtgagtgct	aatacagtat	ggtacaatga	3240
cagtaac	cg	gtgg	tgccaggact	gc	ccccc	3300
gtgggtggag	gaa	ac	ctgt	taacatgtgt	ttgaaatacc	3360
tactgttctg	gaaaa	aaat	gt	ggaaataaa	gaaattaagg	3420
atagacaggc	cccac	ctc	aaat	taaact	tttgtaaaact	3480
gatcactatt	ttg	catc	aaatgattt	ttt	aaaacc	3540
aaatagttgt	ctc	acagt	ta	ttgtt	ttgtt	3600
aaat	act	gggttt	ttt	ttgt	ttgtt	

94

aggaacacta	ttttaaatcc	ttacgttcag	gtgttgtaa	cttggccta	taatttagct	3660
gaattatggc	ttcaaggct	acaatttatg	tgtatggtc	acagcctagc	ttctattac	3720
atttgaaaat	acagatttt	accaacttg	gattctttt	tagttatag	tttgtcttc	3780
ctttttaat	tgttcaaaac	tatttttaa	tggtcaagtt	actaacactt	gaaaatcaga	3840
tactgcacca	aatacagtgt	tttccgtag	tgttttaat	gagtgcacct	attactactg	3900
tgcgagaatt	catgtttac	cagtcattgt	tatattacaa	acagacttgc	atgattaacc	3960
agttgttaca	cttactttt	caagttggag	tatatatgac	tcagtgcaga	ctggtctctc	4020
ttatgtgaat	gcacacatgc	agaaatgcag	agtcaatttt	acatgccat	aaagacattt	4080
gtaaagaatt	cagctcttat	ggtctgtgt	ataaaatgtgt	atctaggcac	tttattataa	4140
ctggaatttg	acctcacaga	tgttacaact	tgatcagtcg	tttgacctaa	tttgtggtag	4200
ctatctgtat	gttttgcata	cttaatacag	acatgcttc	caaaaagatt	aatacagaac	4260
catcctgccc	ttttggataa	gtctatccag	ctgtggaaag	ggcaacctgt	ggtttctctg	4320
tactgggttt	taatggggga	agaatatgaa	cagctttaaa	gagctgtgt	tttgtggtag	4380
tactattaaa	aaataagatc	tgcacgagtc	tgactggcct	ttgggtggcc	tttgtggacg	4440
gctcgtagct	ggaaagtgtt	gatctgggtt	ttctggcatt	cttttaagtt	aaaaagttaa	4500
catcgggaca	tggggttgat	cttttgggt	acctgatgac	agtgcagaga	ttctccacag	4560
ctggataaaa	atgtcacaaa	gctacttaact	gtacatggc	agtatcagat	ttcaaattct	4620
aatatttcag	ctgtgttttt	aatactcaaa	atattagggg	atgggggtgtt	gaagcttcc	4680
ctttttgtc	tttaacaatt	tatagaattt	aacagatgta	ctgtcttca	tgtggcctca	4740
catttaaagt	tatgagaaca	tacacatggt	ttacaacttt	tactatatac	ctttccttgg	4800
ccaccaagta	ttttaaaagt	gtgccacctt	ttaaccttta	cttttttaa	gttgaaggtg	4860
atacttttc	tatatatgat	gaaactcatg	tcaactgaag	tgagtgtat	ctcagatatc	4920
aacattatta	tattttaaaa	tcacgctatg	gaaatatcac	ctgaattctg	tcatttgtca	4980
gatttacagt	acctttttt	ctttaacttt	tagcattaaa	taaaaataaaa	attgggagca	5040
ctgaa						5045

<210> 67
<211> 4956
<212> DNA
<213> Homo sapien

<400> 67	gccccccgc	tggcgccgc	gtcccgccgg	cagtcgtgt	acctgtgt	60	
	atgcctggg	ccatgatctg	ggacttcacc	gaaccgcgt	gccgcggctg	cgtcaactac	120

95

gagggcgccg	accgcgtcga	gttcgtcatc	gagacggcgc	ggcagctcaa	gcgggcccac	180
ggctgcttcc	cggagggtcg	ctccccaccc	ggcgccgcgg	cctcgccgc	cgccaagccg	240
ccggccgtct	ccgccaagga	catcccttttgc	cagcagcagc	agcagcttgg	ccacggcggc	300
cccgaggcgg	ccccgcgcgc	gccgcaggcc	ttggagcgct	acccgttggc	ggccgcggcc	360
gagaggcccc	cgcgcctcgg	ctctgacttc	ggcagcagcc	gcccggcagc	gagcctggcc	420
cagccgcccga	cgccgcagcc	gccgcccgtg	aacggcatcc	tggtgcctaa	cggcttctcc	480
aagcttagagg	agccgcgcga	gctgaatcgc	cagagccga	acccgcggcg	cggccacgcg	540
gtgccgccta	ccctggtgcc	gctcatgaac	ggctcgccca	cgccgcgtgcc	caccgcgttc	600
ggcctcgccg	gccgcgcgtgc	cgcctcctta	gccgcggtgt	ccggaaccgc	ggccgcgcagc	660
ctgggctccg	cgcagcccac	cgcattggc	gcccacaagc	gcccggcatac	cgtgtcgagc	720
agcgctgccc	tggagcacga	gcagcgtgag	gcccgcgcga	aggagaaaaca	accgcgcgcg	780
cctgcgcacc	ggggcccccgc	cgacagcctg	tccaccgcgg	ccggggccgc	cgagctgagc	840
gcggaaagggt	cggcgaagag	ccgcgggtct	ggagagcagg	actgggtcaa	caggcccaag	900
accgtgcgcg	acacgctgct	ggcgctgcac	cagcacggcc	actcgccgc	cttcgagagc	960
aagttaaga	aggagccggc	cctgactgca	ggcaggttgt	tggtttcga	ggccaacggg	1020
gccaaacgggt	ctaaagcagg	tagggcggc	tgtgaagtga	gggggtctag	gggagaaaag	1080
gggacggaga	gcagaggaag	ggtggttctt	tggattcacc	attttacccc	agcccagaaa	1140
caacaaacac	cccacttcct	gatctgcctg	aggcggaaacc	agtgttgtt	ggcaacgtgt	1200
tcatgtgctg	aagcagcata	acagagatga	gtcagactgg	gctgatacgc	tctgacacgg	1260
ggttttcctt	tcccagcaca	ttcttggatg	ggagcatgag	ggcaccagtc	accttttaac	1320
ctattggggg	acattagcag	tcacatgttg	agtgc当地acg	aggttgc当地ag	aacagcaagg	1380
aaaaggaagc	cctctccaga	accagaaggt	gaagtcgggc	cccctaagat	caacggagag	1440
gcccagccgt	ggctgtccac	atccacagag	gggctcaaga	tcccatgac	tcctacatcc	1500
tctttgtgt	ctccgccacc	accactgccc	tcacacttatt	ccaacggac	cacaccgcct	1560
gaagcggccc	agaatggcca	gtccccatg	gcagccctga	tcttagtagc	agacaatgca	1620
ggggcagtc	atgcctcaaa	agatgccaac	caggttcact	ccactaccag	gaggaatagc	1680
aacagtccgc	cctctccgtc	ctctatgaac	caaagaaggc	tggcccccag	agaggtgggg	1740
ggcagggag	caggcaacac	aggaggactg	gagccagtgc	accctgccag	cctccggac	1800
tcctctctgg	caaccagtgc	cccgcgtgtgc	tgcaccctct	gccacgagcg	gctggaggac	1860
accatatttg	tgcagtgecc	gtccgtccct	tgcacaagt	tctgcttccc	ttgctccaga	1920
caaagcatca	aacagcaggg	agcttagtgga	gaggtctatt	gtcccagtgg	ggaaaaatgc	1980

cctcttgtgg gctccaatgt cccctgggcc tttatgcaag gggaaattgc aaccatcctt	2040
gctggagatg tgaaagtgaa aaaagagaga gactcggtac ttttcgggtt tcagaaaaac	2100
ccaatgatta cccttaatta aaactgcttg aattgtatat atatctccat atatatatat	2160
atccaagaca agggaaatgt agacttcata aacatggctg tataattttg atttttttg	2220
aatacattgt gtttctatat ttttttgac gacaaaaggt atgtacttat aaagacattt	2280
ttttcttttg ttaacgttat tagcatatct ttgtgcttta ttatcctggc gacagttacc	2340
gttctatgta ggctgtgact tgcgctgctt ttttagagca cttggcaaat cagaaatgct	2400
tctagctgta tttgtatgca cttatTTaa aaagaaaaaa aaagccaaat acatTTctg	2460
acattgtaaat attgccttac tgtctgtcat tccttattgc tggccccctt ctcaggccgg	2520
aggccaaatgt gtggagaagg aaaggaaatg atcgaacggg catgttgtca agtgggcatg	2580
ccactggaa ataccaccag tttaccctga aacattgtcc tcagaggagt aggaaatgtgg	2640
atTTGAATC tctatTTGC tcaaaagtTC agttcctgag atactgtga ctgagagtgc	2700
tgctggaaa ttttcaggat tgtgtgtct tttggggTTT tttgtttttt ttttttaag	2760
acaaagtta ccgctgttca ctgtccacgt gatcagttgt aagattacaa tgctgcatgc	2820
tagttggta cataagatac aattccagtg atggaaggcg gttataatgg atggtgtgt	2880
gtacaagatg gcactgccat cttgagcag agcccagctc tgcaagcgca cttcatctt	2940
ttaaacaccc tagaggtctg tttttgttg ctgttgtct ttatTTGAA agagttgcaa	3000
gagaagttac agtccaggtg aacttggaga ttgtgggatt ggtttgttt ctgtttgtt	3060
ttgtttatca tttacctgta gtgttattgc tggtgataact atcacctata cccctgttct	3120
agtgagtgtc gaatacagta tggtaaatg acagtaacag ccgcgtggc ctgccaggac	3180
tgcccttggg catatcagtg acagccaaa tgggggtgga ggaaacctgt aatttccctc	3240
ttaacatgtg tttgaaatac caagtgaata atactgttct ggaaaaaaaaat gataaactag	3300
tggaaattaa agaaattaag ggttttatat aatagacagg ccccacctct caaaatattt	3360
ttagaagtct ttttgtaaac taatttcttt tgatcactat tttgcattcag taaaatgatt	3420
tttttaaaac caataaaatca tcaattatta gaaatagttg tctcacagtg atactggttt	3480
ttctttgtg ctgttatgat ttaacattga caggaacact atttaaatc cttacgttca	3540
ggtgtttgtt acttggcctt ataatttaggc tgaattatgg cttcaaggc tacaaatttat	3600
gtgtatggtt cacagcctag cttctattta catttggaaaa tacagatttt taccaacttt	3660
ggattctttt ttagttatat gtttgtctt cttttttaaa ttgttcaaaa ctatTTTTA	3720
atggtcaagt tactaacact tgaaaatcag atactgcacc aaatacagtg ttttccgtt	3780

97

gtgttttaa tgagtgcacc tattactact gtgcgagaat tcatttttta ccagtcattg 3840
ttatattaca aacagacttg catgattaac cagttttac acttactttt tcaagttgga 3900
gtatatatga ctcaagtgcag actggctctc ttatgtgaa tgcacacatg cagaaaatgca 3960
gagtcaattt tacatgccca taaagacatt tgtaaagaat tcagctctt tggctgttg 4020
tataaatgtg tatctaggca ctttattata actggaattt gacccacag atgttacaac 4080
ttgatcagtc gttgaccta atttggta gctatctgta tgaaaaatgca 4140
gacatgcattt ccaaaaagat taatacagaa ccattctgac gttttggata agtctatcca 4200
gctgtggaaa gggcaacctg tggttctct gtactggtgt ttaatggggg aagaatatgaa 4260
acagctttaa agagctgtgt atttggta ctactattaa aaaataagat ctgcacgagt 4320
ctgactggcc tttgggtggc ctttggac ggctcgtagc tggaaagtgt tgatctgggt 4380
tttctggcat tcttttaagt taaaaagttt acatcggttac atgggtttga tctttttttt 4440
tacctgtatga cagtgccagag attctccaca gctggataaa aatgtcacaa agctacttac 4500
tgtacatggg cagtatcaga ttcaaattcc taatatttca gctgtgcattt taataactcaa 4560
aatatttaggg gatgggggtgt tgaagcttcc ctttttttgc ttttaacaat ttatagaatt 4620
taacagatgt actgtcttcc atgtggcctc acattttaaag ttatgagaac atacacatgg 4680
tttacaactt ttactatata ctttccttg gccaccaagt attttaaaag tggccaccc 4740
tttaacccctt acttttttttta agttgaaggt gataactttt ctatatatgaa tgaaaactcat 4800
gtcaactgaa gtgagtgtaa tctcagatata caacattttt atattttaaa atcacgctat 4860
ggaaaatatca cctgaattct gtcattgtc agatttacag taccttttt tcttttaactt 4920
tttagcattaa ataaaaataa aattggggac actgaa 4956

```
<210> 68
<211> 4442
<212> DNA
<213> Homo sapien
```

```
<400> 68
gcgggtggcgg tggcgccgc gtcggcgg cagtcgtgct acctgtgtga cctgccccgc 60
atgccttggg ccatgatctg ggacttcacc gaacccgtct gcccggcgtg cgtcaactac 120
gagggcgccc accgcgtcga gttcgatcatc gagacggcgc ggcagctcaa gcgggcgcac 180
ggctgcttcc cggagggtcg ctccccaccc ggccggcgg cctcgccgc cgccaagccg 240
ccgcgcgtct ccgccaagga catccttttgc cagcagcagc agcagttgg ccacggcggc 300
cccgaggcgg ccccgccgc gcccggcggc ttggagcgct acccgttggc ggccggcggc 360
gagaggcccc cgccgcctcggt ctctgacttc ggcagcagcc gcccggcagc gagcctggcc 420
```

98

cagccgcccga	cgccgcagcc	gccgcccgtg	aacggcatcc	tggtgcccaa	cggcttctcc	480
aagcttagagg	agccgcccga	gctgaatcgc	cagagcccga	accgcggcg	cggccacgcg	540
gtgcccccga	ccctggtgc	gctcatgaac	ggctcgccca	cgccgctgcc	caccgcgctc	600
ggcctcgccg	gccgcgctgc	cgccctccta	gccgcggtgt	ccgaaaccgc	ggccgcccagc	660
ctgggctccg	cgcagccac	cgatctggc	gcccacaagc	ggccggcattc	cgtgtcgagc	720
agcgctgccg	tggagcacga	gcagcgtgag	gccccagcca	aggagaaaaca	accgcgcggc	780
cctgcgcacc	ggggcccccgc	cgacagcctg	tccaccgcgg	ccggggccgc	cgagctgagc	840
gcggaaggtg	cgggcaagag	ccgcgggtct	ggagagcagg	actgggtcaa	caggcccaag	900
accgtgcgcg	acacgctgct	ggcgcgtcac	cagcacggcc	actcggggcc	cttcgagagc	960
aagttaaga	aggagccggc	cctgactgca	gttgcagaaa	cagcaaggaa	aaggaagccc	1020
tctccagaac	cagaagggtga	agtcgggccc	cctaagatca	acggagaggc	ccagccgtgg	1080
ctgtccacat	ccacagaggg	gctcaagatc	cccatgactc	ctacatcctc	tttgtgtct	1140
ccgccaccac	ccactgcctc	acctcattcc	aaccggacca	caccgcctga	agcggcccg	1200
aatggccagt	cccccatggc	agccctgatc	tttagtagcag	acaatgcagg	gggcagtcat	1260
gcctcaaaag	atgccaacca	ggttcatcct	ctctggcaac	cagtgcggcg	ctgtgctgca	1320
ccctctgcca	cgagcggctg	gaggacaccc	attttgtca	gtgcccgtcc	gtcccttcgc	1380
acaagttctg	cttcccttgc	tccagacaaa	gcatcaaaca	gcagggagct	agtggagagg	1440
tctattgtcc	cagtgggaa	aaatgcctc	ttgtggctc	caatgtcccc	tgggccttta	1500
tgcaagggga	aattgcaacc	atccttgctg	gagatgtgaa	agtaaaaaaaaa	gagagagact	1560
cgtgactttt	ccggtttcag	aaaaacccaa	tgattaccct	taattaaaac	tgcttgaatt	1620
gtatatatat	ctccatatat	atatatatcc	aagacaagg	aaatgttagac	ttcataaaaca	1680
tggctgtata	attttgattt	ttttgaata	cattgtgttt	ctatattttt	tttgacgaca	1740
aaaggtatgt	acttataaag	acatttttt	ctttgttaa	cgttattagc	atatcttgc	1800
gctttattat	cctggtgaca	gttaccgttc	tatgttaggct	gtgacttgcg	ctgcttttt	1860
agagcacttg	gcaaatacaga	aatgcttcta	gctgtatttg	tatgcactta	ttttaaaaag	1920
aaaaaaaaag	ccaaatacat	tttctgacat	tgtaagattg	ccttactgtc	tgtcattcct	1980
tattgctggc	ccctttctca	ggccggaggc	caagtggtgg	agaaggaaag	gaaatgatcg	2040
aacgggcatg	ttgtcaagt	ggcatgccac	tggaaatac	caccagttt	ccctgaaaca	2100
ttgtcctcag	aggagtagga	aagtggattt	tgaatctcta	ttttgctcaa	aagttcagtt	2160
cctgagatac	tgatgactga	gagtgcgtct	gggaaatttt	caggattgtg	tggcttttg	2220
gggttttttg	ttttttttt	tttaagacaa	agttgaccgc	tgttcactgt	ccacgtgatc	2280

agttgttaca	ttacaatgct	gcatgctagt	tggttacata	agatacaatt	ccagtgtatgg	2340
aaggcggtta	taatggatgg	tggtgtgtac	aagatggcac	tgccatctt	gagcagagcc	2400
cagctctgca	gcgccacttc	atcttttaa	acaccctaga	ggtctgttg	ttgttgctgt	2460
tgtcctttat	tttgaaaagag	ttgcaagaga	agttacagtc	caggtgaact	tggagattgt	2520
gggattggtt	ttgtttctgt	tttgggggt	ttatcattta	cctgttagtgc	tattgctgtt	2580
gatactatca	cctataccct	gttcttagtg	agtgtgtaat	acagttatgg	acaatgacag	2640
taacagccgc	gtgggtgtgc	caggactgcc	cttgggcata	tcagtgtacag	ccccaaatgtg	2700
ggtggaggaa	acctgttaatt	tccttcttaa	catgtgtttg	aaataccaag	tgaataatac	2760
tgttctggaa	aaaaatgata	aacttagtgg	aattaaagaa	attaagggtt	ttatataata	2820
gacaggcccc	acctctaaa	atattttag	aagtctttt	gtaaactaat	ttctttgtat	2880
cactatttg	catcagtaaa	atgattttt	taaaaccaat	aaatcatcaa	ttattagaaa	2940
tagttgttcc	acagtgtatac	tggttttct	tttgggtgt	tatgatttaa	cattgacagg	3000
aacactat	taaattccctta	cgttcagggt	tttggtaactt	ggccttataa	ttagggtgaa	3060
ttatggcttc	aagggtctaca	atttatgtgt	atggttcaca	gcctagcttc	tatttacatt	3120
tgaaaataca	gattttacc	aactttggat	tcttttttag	ttatatgttt	gtctttcctt	3180
ttaaattgt	tcaaaactat	tttttaatgg	tcaagttact	aacacttgaa	aatcagatac	3240
tgcaccaat	acagtgtttt	tccgtgtgt	ttttatgag	tgcacctatt	actactgtgc	3300
gagaattcat	gttttaccag	tcattgttat	attacaaaca	gacttgcatt	attaaccagt	3360
tgttacactt	acttttcaa	gttggagtat	atatgactca	gtgcagactg	gtctcttta	3420
tgtgaatgca	cacatgcaga	aatgcagagt	caattttaca	tgcccataaaa	gacatttgta	3480
aagaattcag	ctctttaggt	ctgttgtata	aatgtgtatc	taggcacttt	attataactg	3540
gaatttgacc	tcacagatgt	tacaacttga	tcagtcgtt	gacctaattt	gtggtagcta	3600
tctgtatgtt	ttgcaatctt	aatacagaca	tgctttccaa	aaagattaat	acagaaccat	3660
cctgccgtt	tggataagtc	tatccagctg	tggaaagggc	aacctgtgg	ttctctgtac	3720
tggtgtttaa	tgggggaaga	atatgaacag	ctttaaagag	ctgtgtattg	tggttactac	3780
tataaaaaaaa	taagatctgc	acgagtctga	ctggcctt	ggtggccctt	gtggacggct	3840
cgtagctgga	aagtgttgc	ctgggtttc	tggcattctt	ttaagttaaa	aagttaacat	3900
cgggacatgg	gtttgatctt	ttgttgtacc	tgtgtacgt	gcagagattc	tccacagctg	3960
gataaaaaatg	tcacaaagct	acttactgt	catggcagt	atcagatttc	aaatcctaata	4020
atttcagctg	tgcttttaat	actcaaaata	ttagggatg	gggtgttgaa	gtttccctt	4080

100

ttttgctttt aacaatttat agaatttaac agatgtactg tcttcatgt ggcctcacat	4140
ttaaaagttat gagaacatac acatggtttca aacttttac tatataccctt tccttggcca	4200
ccaagtatTT taaaagtgtg ccaccttttac acctttactt ttttaagtt gaaggtgata	4260
cTTTTCTAT atatgatgaa actcatgtca actgaagtga gtgtaatctc agatatcaac	4320
attattatat tttaaaatca cgctatggaa atatcacctg aattctgtca tttgtcagat	4380
ttacagtacc ttttttctt taacttttag cattaaataa aaataaaatt gggagcactg	4440
aa	4442

<210> 69
<211> 2056
<212> DNA
<213> Homo sapien

<400> 69	
cccgccccgcg cggtcgtcgg agcgcggctc agcggcgcgg cggagactcg gcacggcggc	60
ggccaggcgc aggccggcgg gcggagcagc ggacggcgcc gagggccgccc cacgcgcgg	120
gctcgccgcg ggcgcagcgcg ccggagtggt cggggccgcg ggccgctcgc gcctctcgat	180
gggcagctcg cacttgctca acaagggcct gccgcttgc agactttgac cccgacgcag	240
gcttcagtga ttgccgcgga tcagaaggct gagcactttg gctcgagaca attaaggacg	300
tggatgagg ctccgagaca ggacgcggtt ctgcctgggg atcctgaaga taaaaagctt	360
tgaaaagtcg aattcatggt cgtggaagct gagcccatat taagagatgt caggcgtccg	420
acctccgatc atgaacgggc ccctgcaccc gcggccctcg gtggcattgc tggatggccg	480
ggactgcaca gtggagatgc ccattctgaa ggacgtggcc actgtggcct tctgcacgc	540
gcagtccacg caggagatcc atgagaaggt cctgaacgag gctgtgggg ccctgatgt	600
ccacaccatc actctcacca gggaggacct ggagaagttc aaagccctcc gcatcatcg	660
ccggattggc agtggtttg acaacatcga catcaagtgc gccgggatt taggcattgc	720
cgtctgcaac gtgcccgcgg cgtctgtgga ggagacggcc gactcgacgc tgcgcacat	780
cctgaacctg taccggcggg ccacctggct gcaccaggcg ctgcgggagg gcacacgagt	840
ccagagcgcc gagcagatcc gcgaggtggc gtccggcgct gccaggatcc gcggggagac	900
cttgggcattc atcggacttg gtcgcgtggg gcaggcagtgc ggcgtgcggg ccaaggcctt	960
cggcttcaac gtgctttct acgaccctta cttgtcgat ggcgtggagc gggcgctggg	1020
gctgcagcgt gtcagcaccc tgcaggacct gctttccac agcgactgcg tgaccctgca	1080
ctgcggccctc aacgagcaca accaccaccc catcaacgcac ttcaccgtca agcagatgag	1140
acaagggggcc ttccctggtga acacagcccg gggtggcctg gtggatgaga aggcgcgtggc	1200

101

ccagggccctg	aaggagggcc	ggatccgcgg	cgcggccctg	gatgtgcacg	agtccgaacc	1260
cttcagctt	agccagggcc	ctctgaagga	tgcacccaaac	ctcatctgca	ccccccatgc	1320
tgcatggtag	agcgagcagg	catccatcg	gatgcgagag	gaggcggcac	gggagatccg	1380
cagagccatc	acaggccgga	tcccagacag	cctgaagaac	ttctgcccctg	tgtccctcgc	1440
gttcctcgtt	aagcagaaga	agtcagtagt	tattctcca	tgaacgttct	tgtctgtta	1500
cagtttttag	aacattacaa	aggatctgtt	tgcttagctg	tcaacaaaaa	gaaaacctga	1560
aggagcattt	ggaagtcaat	ttgaggtttt	tttttttgtt	tttttttttt	ttgtatgtt	1620
gaacgtgccc	cagaatgagg	cagttggcaa	acttctcagg	acaatgaatc	cttcccgttt	1680
ttcttttat	gccacacagt	gcattgtttt	ttctacctgc	ttgtcttatt	tttagaataa	1740
tttagaaaaaa	caaaacaaaag	gctgttttc	ctaattttgg	catgaacccc	cccttgttcc	1800
aaatgaagac	ggcatcacga	agcagctcca	aaaggaaaaag	cttggcgggt	gcccagcgtg	1860
cccgctgccc	atcgacgtct	gtcctgggga	cgtggaggg	ggcagcgtcc	ccgcctgcac	1920
cagtccgc	ctgctgatgt	gttaggctag	caatattttg	gtttaaatca	tgtttgtac	1980
tgtaaccatt	tgtatgaatt	attttaaga	aataaaaatc	ctggaaagag	ccagcgtgcc	2040
cagcaaatct	attctg					2056

<210> 70
<211> 1862
<212> DNA
<213> Homo sapien

<400> 70						
cagtggggga	gtttgccgcc	cgctgcgggg	tgaggatgga	gccacgggct	ctaggcctgc	60
cttcctcgg	tcctgtgagg	ggctgctcaa	cctcctcagc	ccttctttgg	gcagggctcc	120
tgaccaacca	ggagagagtg	aggccccagt	gtctgtgagt	ggtccccatg	ggccctggcc	180
atggagtcat	ggcatcccg	ccagacctgc	agcccctaca	gcaccttggg	accccaggca	240
gccctgggtt	ggatgttcag	ccgcaagagg	agacaccccc	acaggggcag	tatcagcctg	300
cagtcctgg	ggctacagac	ccttggctg	gaaggggcca	ggcagcatgt	ccccccatca	360
gggctcctcc	cacgagggac	ttggagatta	aatcccttgg	gctcccacac	ccgcccgtgt	420
caggagcccc	tggtgtgtct	gatggtcccc	gggctgtgct	ctttagctca	gccagcctgc	480
cgagcagagc	ggggccgtgg	ggctctgtggt	tcccaggcag	ggccccccac	agggggttcc	540
agtcccagc	caccccccct	ccgtacccag	ccacagcact	caggctgcac	tgaccatgcc	600
tgtgctgttc	ccagctttag	ccagggccct	ctgaaggatg	cacccaaacct	catctgcacc	660
ccccatgctg	catggtacag	cgagcaggca	tccatcgaga	tgcgagagga	ggcggcacgg	720

102

gagatccgca gagccatcac aggccggatc ccagacagcc tgaagaactg tgtcaacaag	780
gaccatctga cagccgcccc acactgggcc agcatggacc ccgcgcgtcg gcacctgag	840
ctcaatgggg ctgcctatacg gtaccctccg ggcgtggtgg gcgtggcccc cactggcatc	900
ccagctgctg tggaaggat cgtccccagc gccatgtccc tgtccccacgg cctgccccct	960
gtggccacc cgccccacgc cccttcctt ggccaaaccg tcaagcccga ggcggataga	1020
gaccacgcca gtgaccagtt gttagccccggg aggagctctc cagcctcgcc gcctggcag	1080
agggccccgga aaccctcgga ccagagtgtg tggaggaggg atctgtgtgg tggccctggc	1140
actgcagaga ctggtccggg ctgtcaggag gcggggagggg gcagcgctgg gcctcggtc	1200
gcttgcgtc gtccgtcctg tggggcgtctt gcccgtgtc cttcgcttc ctcgttaagc	1260
agaagaagtc agtagttatt ctcccatgaa cgttcttgtc tgtgtacagt tttagaaca	1320
ttacaaagga tctgtttgct tagctgtcaa caaaaagaaa acctgaagga gcatttgaa	1380
gtcaatttga ggtttttttt tttggttttt ttttttttgt atgttggAAC gtggccca	1440
atgaggcagt tggccaaactt ctcaggacaa tgaatccctc ccgtttttct ttttatgcca	1500
cacagtgcac ttttttttctt acctgtttgt ctttttttta gaataattta gaaaaacaaa	1560
acaaaaggctg tttttctaa ttttggcatg aaaaaaaaaa ttttttttttgc ttttttttttgc	1620
tcaacaaagca gctccaaaag gaaaagcttgc ggcgggtggcc accatccatcg	1680
acgtctgtcc tggggacgtg gaggggtggca gcgtccccgc ctgcaccagt ggcgtcctgc	1740
tgtatgtggta ggcttagcaat attttggta aaatcatgtt tgtactgtt accatttgc	1800
tgaatttattt taaagaaata aaaatccctgg aaagagccag cgtccccccgc aaatctattc	1860
tg	1862

<210> 71
<211> 1168
<212> DNA
<213> Homo sapien

ctgcgtggta cagcgagcag gcatccatcg agatgcgaga kgaggcaccc ttca	60
ccaggggccc tctgaaggat gcacccaacc tcacatgtcac ccccatgtct gcatggtaca	120
tggaccccgcc cgtcgtgcac cctgagctca atggggctgc ctataggtac cctccggcg	180
tgggtggcggt ggcccccact ggcacccag ctgcgtggaa aggtatcgac cccagcgcca	240
tgtccctgtc ccacggcctg cccctgtgg cccacccgcc ccacgccccct tctccggcc	300
aaaccgtcaa gccccgaggcg gatagagacc acgccagtga ccagttgttag cccggggagga	360
gctctccagc ctcggcgccct gggcagaggg cccggaaacc ctcggaccag agtgtgtggaa	420

103

ggaggcatct	gtgtggtggc	cctggcaactg	cagagactgg	tccgggctgt	caggaggcgg	480
gagggggcag	cgctgggcct	cgtgtcgctt	gtcgtcgtcc	gtcctgtggg	cgctctgcc	540
tgtgtccttc	gcgttcctcg	ttaagcagaa	gaagtca	gttattctcc	catgaacgtt	600
cttgtctgtg	tacagttttt	agaacattac	aaaggatctg	tttgcttagc	tgtcaacaaa	660
aagaaaaacct	gaaggagcat	ttgaaagtca	atttgaggtt	ttttttttt	gtttttttt	720
ttttgtatgt	tggaacgtgc	cccagaatga	ggcagttggc	aaacttctca	ggacaatgaa	780
tccttcccgt	ttttctttt	atgccacaca	gtgcattgtt	ttttctacct	gcttgtctta	840
tttttagaat	aatttagaaa	aacaaaacaa	aggctgtttt	tcctaatttt	ggcatgaacc	900
ccccctgtt	ccaaatgaag	acggcatcac	gaaggcagtc	caaaaggaaa	agcttggcgcg	960
gtgcccagcg	tgcccgctgc	ccatcgacgt	ctgtcctggg	gacgtggagg	gtggcagcgt	1020
ccccgcctgc	accagtgcgc	tcctgctgat	gtggtaggct	agcaatattt	tggtaaaaat	1080
catgtttgtg	actgtAACCA	tttgtatgaa	ttatTTAAA	gaaataaaaaa	tcctggaaag	1140
agccagcgtg	cccagcaa	atctattctg				1168

<210> 72
<211> 1352
<212> DNA
<213> Homo sapien

<400> 72						
gggcacatctg	tgggggtggga	cggcttgtgg	ggtggggcat	ctcgggaggt	ggggcatctc	60
tggggcccg	ccacttggga	ggcgccccat	cctggggcg	gggcacatca	gagggcgcct	120
ccggaggctg	gagtatctt	ggaggtggga	gcaggtggca	gagaggcttc	ccacagctgg	180
ctggaggcgt	gatcctgggt	gtggccctgt	ggctccgc	tgacccgcag	accaccaacc	240
tcctgtatct	ggagctggga	gacaagcccg	cgcccaacac	cttctatgta	ggcatctaca	300
tcctcatcgc	tgtgggcgt	gtcatgatgt	tcgttggctt	cctggcgtgc	tacggggcca	360
tccaggaatc	ccagtgcctg	ctggggacgt	tcttcacctg	cctggtcate	ctgtttgcct	420
gtgaggtggc	cgcggc	tggggcttt	tcaacaagga	ccagatgc	aaggatgtga	480
agcagttcta	tgaccaggcc	ctacagcagg	ccgtgg	tgtgacg	ccaaacgc	540
aggctgttgt	gaagac	tttgc	ttgactgctg	tggctcc	acactgactg	600
ctttgaccac	ctcagtgc	aagaacaatt	tgtgtcc	ggcagca	atcatcagca	660
accttcaa	ggaggactgc	caccagaaga	tcgatgac	cttcc	aagctgtacc	720
tcatcggcat	tgctgccatc	gtgg	tcgtcg	tgtatcatgat	cttcgagatg	780
tggtgctgtg	ctgtggcatc	cgaa	ccgtgtactg	aggccc	gca gctctggcca	840

104

cagggacctc	tgcagtggcc	cctaagtgcac	ccggacactt	ccgagggggc	catcacccgc	900
tgtgtatata	acgtttccgg	tattactctg	ctacacgtag	ccttttact	tttggggttt	960
tgttttgtt	ctgaaccttc	ctgttacatt	ttcagggctg	acgtcacatg	taggtggcgt	1020
gtatgagtgg	agacgggcct	gggtcttggg	gactggaggg	caggggtcct	tctgccctgg	1080
ggtcccaggg	tgctctgcct	gctcagccag	gcctctcctg	ggagccactc	gcccagagac	1140
tcaagttggc	caacttgggg	ggctgtgtcc	accragcccc	cccgccctgt	gggctgcaca	1200
gctcaccttg	ttccctctcg	ccccgggtcg	agagccgagt	ctgtgggcac	tctctgcctt	1260
catgcacctg	tcctttctaa	cacgtcgcc	tcaactgtaa	tcacaacatc	ctgactccgt	1320
catttaataaa	agaagqaaca	tcaqqcatqc	ta			1352

<210> 73
<211> 1445
<212> DNA
<213> Homo sapien

<400> 73
agatgagtgg ggcagtcaca tcccacccctc cccaaaggccgg gctgttctgc acagcctgct 60
tgggacgctg gtgggagtca ctgtggcctt cggaactgccc ctggcagtgg gggcagctag 120
gccattttggg aggggctcgc cttccccagg cccggccctg ggacctcagc cgttgcttag 180
tggtggcctg cttcagccca ggcatagtggg agaggcacca gacacaggat gtccctctgc 240
cagccccctga agccccgtcc cctgacgagc tggctggagg cgtgatcctg ggtgtggccc 300
tgtggctccg ccatgaccgg cagaccacca acctcctgtt tctggagctg ggagacaagc 360
ccgcgcccaa caccccttat gtaggcattt acatcctcat cgctgtgggc gctgtcatga 420
tgttcggtgg cttccctgggc tgctacgggg ccatccagga atcccagtgc ctgctgggga 480
cgttcttcac ctgcctggtc atcctgtttg cctgtgaggt ggccgcggc atctgggct 540
ttgtcaacaa ggaccagatc gccaaggatg tgaaggcagtt ctatgaccag gccctacagc 600
aggccgtgg gatgtatgac gccaacaacg ccaaggctgt ggtgaagacc ttccacgaga 660
cgcttgcactg ctgtggctcc agcacactga ctgctttgac cacctcagtg ctcaagaaca 720
atttgtgtcc ctcgggcagc aacatcatca gcaacctttt caaggaggac tgccaccaga 780
agatcgatga cctcttctcc gggaaagctgt acctcatcg gattgctgcc atcgtggctg 840
ctgtgatcat gattttcgag atgatcctga gcatggtgct gtgctgtggc atccggaaaca 900
gctccgtgtt ctgaggcccc gcagctctgg ccacaggac ctctgcagtg cccccctaagt 960
gaccggacaca cttccgaggg ggccatcacc gcctgtgtat ataacgtttc cggtattact 1020
ctgctacacq taqcctttt actttttggg ttttgggg gttctgaact ttccctgttac 1080

105

ctttcaggg	ctgacgtcac	atgtaggtag	cgtgtatgag	tggagacggg	cctgggtctt	1140
ggggactgga	gggcaggggt	ccttcgtccc	tggggtccca	gggtgctctg	cctgctcagc	1200
caggcctctc	ctgggagcca	ctcgccccaga	gactcagctt	ggccaacttg	gggggctgtg	1260
tccacccagc	ccgccccgtcc	tgtgggctgc	acagctcacc	ttgttccctc	ctgccccgggt	1320
tcgagagccg	agtctgtggg	cactctctgc	cttcatgcac	ctgtccttcc	taacacgtcg	1380
ccttcaactg	taatcacaac	atcctgactc	cgtcattaa	taaagaagga	acatcaggca	1440
tgcta						1445

<210> 74
<211> 2290
<212> DNA
<213> Homo sapien

<400> 74	gtcaggacca	aaaaaggcaa	cgcgcccttc	ctgacctgta	ccccggagtg	aacccaacct	60
	tgcaacccag	gagtgtcagg	gcctgagggg	agggagacct	ggctcctggg	tgccgtgccc	120
	gtaaggaggt	ggccacactgc	agggcattcc	tggcagaggc	ttcatctggc	caggtaggag	180
	gctgggtggc	cgagccccaa	atctgggtgt	gttctctgcc	tggcgggtggg	tcctgccccca	240
	ggcaccttct	cctctggct	ggctggcag	ggacaatggg	cctggctgcg	aggagggggc	300
	ctgggctgcc	ttctgcattg	cctcggtgac	gggagatggc	ccctgcctgc	tgagggata	360
	gggagtgggc	aggcagttag	agacactgac	agctgtccc	cgggtacagg	gccctgtctg	420
	ggtggccagg	cccatgtctc	gggcccacag	tgcgcacccccc	acccttggac	ggcgcccttct	480
	ccctccccag	gtgcattgt	cccagccagg	gagcgtgggg	gagttcggga	gggctggcct	540
	acacgcctg	gtccagctgt	cccaggtggg	gtgctggct	tcagccctca	gcccgaggcc	600
	taggaatcca	acttgatcct	ccccacacag	cagccaggtt	caaatgcagg	tcccgttaacg	660
	gaagtgtgc	tgtgcagccc	agattggggg	gcaggagcca	gcagggccccc	cccacccctct	720
	tctcgaccca	cactggggag	gcagcattgg	ttccagttcc	ggttcctggg	ctgccccttc	780
	aaccccggcc	tacagtgggg	cccaccctgt	gccttctgtat	gccactccca	ccccacgcca	840
	agtcccagag	gctttgggag	cgggtgaagg	cgggtgggtgg	cgggtggcag	gtgcaggcgg	900
	tgggtggtag	gtgtggcagg	tggcgggccc	cacccgaggt	gtcatccctg	cgaagcacct	960
	gtcgccagca	ctcagagcgc	tcatgaggtg	cccagtc	atgtggcctc	cttagtctcc	1020
	gtcctgtgtc	atggaagagg	taactgaggc	acagaaaact	caccaggcca	ggctgggatg	1080
	tgaggtccct	tgctgctcat	ccctggcagt	cagcaaccct	acatttccc	agctggcgg	1140
	cccggtggtag	gttcggcacc	caggaccctc	cggggtcttg	ggctgtggcg	agtgtgttagg	1200

106

caccacacctg	gtgtctctct	cccccaagg	catctacatc	ctcatcgctg	tgggcgctgt	1260
catgatgttc	gttggcttcc	tgggctgcta	cggggccatc	caggaatccc	agtgcctgct	1320
ggggacgttc	ttcacctgcc	tggtcatcct	gtttgccctgt	gaggtggccg	ccggcatctg	1380
gggcgggttc	aacaaggacc	agatcgccaa	ggatgtgaag	cagttctatg	accaggccct	1440
acagcaggcc	gtgggtggatg	atgacgccaa	caacgccaag	gctgtggtga	agacaccttcca	1500
cgagacgctt	gactgctgtg	gctccagcac	actgactgct	ttgaccacct	cagtgctcaa	1560
gaacaatttg	tgtccctcgg	gcagcaacat	catcagcaac	ctcttcaagg	aggactgcca	1620
ccagaagatc	gatgacctct	tctccggaa	gctgtacctc	atcggcattt	ctgccatcgt	1680
ggtcgctgtg	atcatgatct	tcgagatgat	cctgagcatg	gtgctgtgct	gtggcattccg	1740
gaacagctcc	gtgtactgag	gccccgcagc	tctggccaca	gggacctctg	cagtgcctcc	1800
taagtgaccc	ggacacttcc	gagggggcca	tcaccgcctg	tgtatataac	gtttccggta	1860
ttactctgct	acacgttagcc	tttttacttt	tggggttttt	tttttgttct	gaactttcct	1920
gttacctttt	cagggctgac	gtcacatgta	ggtggcgtgt	atgagtggag	acgggcctgg	1980
gtcttggga	ctggagggca	ggggcttcc	tgcctgggg	tcccagggtg	ctctgcctgc	2040
tcagccaggc	ctctcctggg	agccactcgc	ccagagactc	agcttggcca	acttgggggg	2100
ctgtgtccac	ccagcccccc	cgtcctgtgg	gctgcacagc	tcaccttgtt	ccctcctgcc	2160
ccggttcgag	agccgagtc	gtgggcactc	tctgccttca	tgcacctgtc	ctttctaaca	2220
cgtcgccttc	aactgtaatc	acaacatcct	gactccgtca	tttaataaaag	aaggaacatc	2280
aggcatgcta						2290

<210> 75
<211> 1033
<212> DNA
<213> Homo sapien

<400> 75						
ccattgtgct	ggaaagagcg	cgcaacggcg	gchgacggcg	cgaccccacc	gcgcacatctg	60
ccaggcctcc	gcccggcagcc	gcccacgcgc	ccccgcgccc	cgcgccccga	cccttttttc	120
gcgcggccgc	ccctcgcccc	gccaggcccc	cttgcggccc	acccgcccagg	ccccgcgccc	180
gcccgcggc	cggccaggac	cggccgcgc	cccgcaggcc	gcccgcgc	cgcgcgc	240
tgggagtgga	gggctgcacc	aagtgcata	agtacctgt	cttcgtcttc	aatttcgtct	300
tctggctggc	tggaggcggt	atccctgggt	tggccctgtg	gctccgcct	gacccgcaga	360
ccaccaacct	cctgtatctg	gagctggag	acaagccccgc	gcccaacacc	ttcttatgtag	420
gcatctacat	cctcatcgct	gtgggcgctg	tcatgatgtt	cgttggcttc	ctgggcgtct	480

107

acggggccat ccaggaatcc cagtgcctgc tggggacgtt cttcacctgc ctggtcatacc	540
tgtttgcctg tgaggtggcc gcccgcattt ggggctttgt caacaaggac cagatcgcca	600
aggatgtgaa gcagttctat gaccaggccc tacagcaggc cgtggtgat gatgacgcca	660
acaacgccaa ggctgtggtg aagaccttcc acgagacgct tgactgctgt ggctccagca	720
cactgactgc tttgaccacc tcagtgcctca agaacaattt gtgtccctcg ggcagcaaca	780
tcatcagcaa cctcttcaag gaggactgcc accagaagat cgatgacctc ttctccggga	840
agctgtacct catcgccatt gctgccatcg tggtcgtgt gatcatgatc ttcgagatga	900
tcctgagcat ggtgctgtgc tgtggcatcc ggaacagctc cgtgtactga ggccccgcag	960
ctctggccac agggacctct gcagtgcctcc ctaagtgacc cggacacaat gttcaggaca	1020
cgaatgttca ggc	1033

<210> 76

<211> 1190

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1081)..(1081)

<223> n=a, c, g or t

<220>

<221> misc_feature

<222> (1122)..(1122)

<223> n=a, c, g or t

<400> 76

ccattgtgct ggaaagagcgc cgcaacggcg ggcacggcg cgacccacc ggcgcattctg	60
ccaggcctcc gcccgcagcc gcccacgcgc ccccgccccc cgccgcggcc ccctttttcc	120
gccccccgc ccctcgccccc gccaggcccc cttgcggcc acccgccagg ccccgccgcg	180
gccccccgcg cgcggcaggac cggccgcgc cccgcaggcc gcccgcgcgc cgccgcgc	240
tgggagtggaa gggctgcacc aagtgcattca agtacctgct cttcgcttcc aatttcgtct	300
tctggctggc tggaggcgtg atcctgggtg tggccctgtg gctccgcatt gaccgcaga	360
ccaccaaccc cctgtatctg gagctggag acaagccgc gccaacacc ttctatgttag	420
gcatctacat cctcatcgct gtgggcgcgtg tcatgatgtt cggtggcttc ctgggctgt	480
acggggccat ccaggaatcc cagtgcctgc tggggacgtt cttcacctgc ctggtcatacc	540
tgtttgcctg tgaggtggcc gcccgcattt ggggctttgt caacaaggac cagatcgcca	600
aggatgtgaa gcagttctat gaccaggccc tacagcaggc cgtggtgat gatgacgcca	660

108

acaaacgccaa ggctgtggtg aagacattcc acgagacgct tgactgctgt ggctccagca	720
cactgactgc tttgaccacc tcagtgctca agaacaattt gtgtccctcg ggcagcaaca	780
tcatcagcaa cctcttcaag gaggactgcc accagaagat cgatgacctc ttctccggga	840
agctgtacct catcggcatt gctgccatcg tggtcgctgt gatcatgatc ttcgagatga	900
tcctgagcat ggtgctcaat gataatcttt gtattatagg aaaagtaagg attagtggaa	960
gacagggttt ctatccaaac caacaacata aacggcaata taattgttaa aattagcctt	1020
tatatgccat atgttatgcc tgg tacatag tagactccc ataaatcttt ggtggcttga	1080
nttgaagagg taaagttcag atgaaatctt tggcctcctt tnctggccgg ggacagtaag	1140
attctcatgc taagcaataa aatggtctta tctcttaata atccccatcc	1190

<210> 77
<211> 871
<212> DNA
<213> Homo sapien

<400> 77	
ccatttgtct ggaaagagcg cgcaacggcg gcgacggcg cgaccccacc ggcgcattctg	60
ccaggcctcc gcgcggcagcc gcccacgcgc ccccgccccc cgccgcggcga ccctttcttc	120
gcgcgcgcgc ccctcgcccc gccaggcccc cttgcccccc acccgccagg ccccgccgcg	180
gcccgcgcgc cgcccaggac cggccgcgc cccgcaggcc gcccgcgcgc cgccgcgcga	240
tgggagtggc gggctgcacc aagtgcata agtacctgtctt cttcgatctt aatttcgtct	300
tctggctggc tggaggcgctg atcctgggtg tggccctgtg gctccgcatt gacccgcaga	360
ccaccaaccc cctgtatctg gagctgggag acaagccgc gccaacacc ttctatgttag	420
gcatctacat cctcatcgct gtggcgctg tcatgatgtt cgatggcttc ctggctgtct	480
acggggccat ccaggaatcc cagtcctgc tggggacgtt cttcacctgc ctggatcc	540
tgtttgcctg tgaggtggcc gccggcatct ggggctttgt caacaaggac cagatcgcca	600
aggatgtgaa gcagtttat gaccaggccc tacagcaggc cgtggatggat gatgacgcca	660
acaacgccaa ggctgtggtg aagacattcc acgagacgct tgactgctgt ggctccagca	720
cactgactgc tttgaccacc tcagtgctca agaacaattt gtgtccctcg ggcagcaaca	780
tcatcagcaa cctcttcaag gaggactgcc accagaagat cgatgacctc ttctccggga	840
agctgtacct ggccgcgacc acgctaaggc	871

<210> 78
<211> 1283
<212> DNA
<213> Homo sapien

109

<400> 78
 ggaatcacat cgagccactg aaaattcagt ggctcgatgt gcttcagcga gaacccagac 60
 ctttccaaa gctcaggatt cttcgaaaag tttagaaaaat tgatgacttc aaagctgaag 120
 actttcagat tgaagggtac aatccgcata caactattaa aatggaaatg gctgtttagg 180
 gtgccttcaa aggagctcga aggatattgt cagtcttag gggttggct ggatgccgag 240
 gtaaaagttc ttttgctct aaaagaaaaa ggaacttaggt caaaaatctg tccgtgacct 300
 atcagttatt aatttttaag gatgttgcca ctggcaaatg taactgtgcc agttcttcc 360
 ataataaaaag gcttgagtt aactcactga gggtatctga caatgctgag gttatgaaca 420
 aagtgaggag aatgaaaatgt atgtgctctt agcaaaaaca tgtatgtgca tttcaatccc 480
 acgtacttat aaagaagggtt ggtgaatttc acaagctatt tttggaatat ttttagaata 540
 ttttaagaat ttcacaagct attccctcaa atctgaggga gctgagtaac accatcgatc 600
 atgatgtaga gtgtggttat gaactttaaa gttatagttg ttttatatgt tgctataata 660
 aagaagtgtt ctgcattcgt ccacgccttg ttcattctgt actgccactt atctgctcag 720
 ttccttccta aaatagatta aagaactctc cttaaagtaaa catgtgctgt attctggttt 780
 ggtgctact taaaagagta tatttttagaa ataatagtga atatattttg ccctatttt 840
 ctcattttaa ctgcatttta tcctcaaaat ataatgacca ttttaggatag agttttttt 900
 tttttttttt taaactttta taaccttaaa gggttatttt aaaataatct atggactacc 960
 attttgcctt cattagctc agcatggtgt gacttctcta ataataatgt tagattaagc 1020
 aaggaaaaga tgcaaaaacca cttcggggtt aatcagtgaa atattttcc cttcggtgca 1080
 taccagatac ccccggtgtt gcacgactat ttttattctg ctaattttatg acaagtgtta 1140
 aacagaacaa ggaattattc caacaagtta tgcaacatgt tgcttatttt caaattacag 1200
 tttaatgtct aggtgccagc ctttgatata gctattttg taagaacatc ctccctggact 1260
 ttgggttagt taaatcgctcg act 1283

<210> 79
 <211> 1169
 <212> DNA
 <213> Homo sapien

<400> 79
 ttcatttctt aattggcatt tagtttagca tagtaatttt ttttttttaa tttgctgcca 60
 cttcagcagt tttagtgttt agatgtggga gaggttaagt aagatctgta ttgcctatt 120
 atctctaaaa gtggcttgtc cctgcaggat agtgaatgct tgtctgtacc attggagttt 180
 cacatttcat tgagttgata ccagcagatt ttttcaggg aaaaataatc caatctcata 240
 actacagcac ctcaccacat tctccctctc ctaacagtgt agagacttag attaattgc 300

110

acctttcctt tcaataggta tttctggtgg gatgttgaag aaagctagtg ggcaaaggat	360
tccgcttcaa cagacactgg tgatgggctc ccaggcttgg cggtggcttg ctttctgcac	420
tgcagtaaaa ccacgagagg gcacatccc ctctggatt aataattcat ctgtcttc	480
tgacctgtga cctttctct ctttcttacc acccttccc gtagtgtga agtgaggggg	540
tctctctccc tccttctct tcctctgtga ttcaccttcc ttttaccct gcccgtcgcc	600
ggctccgccc cttaccttca tggacgactc agaggtggag tcgaccgcca gcacatcttgc	660
ctctgtgaag gaacaagagg cccagtttga gaagctgacc cggcgctgg aggaggaacg	720
gcgccacgtc tcggcgccgc tggAACGCGT cgggtctca ccacaagatg ccaacccact	780
catggccaac ggcacatccc ctttcgaaa gaaatgaaaa aaaaagatgat tatttcaag	840
ccgtgtcgaa ctatctaagg aaagcaaaat catttcctaa atgcataatca tttgtgagaa	900
tttctcatta atatcctgaa tcattcattt cagctaaggc ttcatgttga ctcgatatgt	960
catctaggaa agtactatTT catggtccaa acctgttgc atagttggta aggctttcct	1020
ttaagtgtga aatatttaca tgaaattttc tctttaaag ttctttatag ggttagggtg	1080
tggaaaaatg ctatattaat aaatctgttag tgtttagtgt ttatatgttc agaaccagag	1140
tagactggat tgaaagatgg actgggtct	1169

<210> 80
<211> 406
<212> DNA
<213> Homo sapien

<400> 80 gatgatcata tattagcatg gttcataatc atgtcgacgc gcagtgtatg atattgcaga	60
atcggttac gtgtcgccgc agtccctccgg ggtatggtca tgtacaccag caaggaccgc	120
tatttctatt ttgggaagct tgatggccag atctcctctg cctaccccaag ccaagagggg	180
caggtgctgg tggcatctt tggccagttt caactccttgc gcatcaagag cattggctt	240
gaatggaaatt atccactaga ggagccgacc actgagccac cagttaatct cacatactca	300
gcaaaactcac ccgtgggtcg cttagggtgg gtaggggccc atccgagctg aggccatctg	360
ggtaggtggtg gctgatggta cctggccggc ggccgtcgaa acgccc	406

<210> 81
<211> 1902
<212> DNA
<213> Homo sapien

<400> 81 tataggcgcc tgggtttcta atctgtcgag cggcgccagtg tgatggatga gcggccgccc	60
--	----

111

gggcagggtgg	cgagagccct	gggatgcacc	ggccagaggc	catgctgctg	ctgctcacgc	120	
ttgcctcctt	ggggggcccc	acctgggcag	ggaagatgta	tggccctgga	ggaggcaagt	180	
atttcagcac	caactgaagac	tacgaccatg	aaatcacagg	gctgcgggtg	tctgttaggtc	240	
ttctccctgg	gaaaagtgtc	caggtgaaac	ttggagactc	ctgggacgtg	aaactggag	300	
ccttaggtgg	gaatacccg	gaagtcaccc	tgcagccagg	cgaatacatc	acaaaagtct	360	
ttgtcgccctt	ccaagctttc	ctccgggta	tggtcatgta	caccagcaag	gaccgctatt	420	
tctatttgg	gaagcttgat	ggccagatct	cctctgccta	ccccagccaa	gaggggcagg	480	
tgctgggtgg	catctatggc	cagtatcaac	tccttggcat	caagagcatt	ggctttgaat	540	
ggaattatcc	actagaggag	ccgaccactg	agccaccagt	taatctaca	tactcagcaa	600	
actcaccctgt	gggtcgctag	ggtgggtat	ggggccatcc	gagctgaggc	catctgggtg	660	
gtggtggctg	atggtaactgg	agtaactgag	tcgggacgct	aatctgaat	ccaccaataa	720	
ataaaagcttc	tgcagaatca	gtgcataccag	gattggctt	tggatctggg	gtacaaccaa	780	
agcctccct	gtccttgg	gacaaagtcc	ccagtgcgtc	agcccagtga	actgagatga	840	
ggggtagggc	aaaggtgact	ctgccgagga	cagaaagaga	gcagcaccac	cccctcagag	900	
gtgctgtgga	tctctgtgcc	agtcccacaa	tctttgaaga	gtcaggcttc	aaggccgcca	960	
ctccccactg	tccctcaccc	caggcccacc	cagcgggcct	ctgctggcca	ctcagtcccg	1020	
ggattctctg	agtgctcaag	gggcctcagg	gaagccactc	actcatccat	tcactcagca	1080	
aacatttgcc	aaggccgtgt	cctcaccagg	ctgccttggc	actggggta	taaagaagag	1140	
gccaggtttc	agctgagtg	gtatacactg	tggtggggc	tggtgcagag	gcagatagt	1200	
gcagttca	ttgccatctg	catggatggg	gacacatgca	ggtcattgtg	cgtaggcacc	1260	
tgcccagagg	tgaggtgaga	gggatgtgct	tcagggaa	cttccttagag	gaggcaatgt	1320	
ctgagctaag	tcttaaagga	tgaaggacaa	ttggccaagt	ggagacaaag	ggaggaggg	1380	
attacaggtt	gagggctcaa	catgagcaa	gacaggagat	gcagatggct	gggtaat	1440	
gtcacagtag	caacagggaaa	tca	gatc	ccctggac	ggcccattct	tcatgtcccc	1500
ttcccaagcc	tccaagccca	catggcact	tgccaagatc	agagctccag	gggcctccag	1560	
ggacggggtt	ttcagtcc	tgggaccatg	atccacagag	agaaattgtat	cctacttgag	1620	
acacaggaag	caacacatgt	aatgcaacag	ccaagcaccc	aacgatcatc	taatgcaaca	1680	
gccaacacc	cagcgatcat	ctaatgcaac	agccaaacac	ccagcgatca	tctaatgcaa	1740	
cagccaaaca	cccagcgatc	atcta	atgca	acagccaaac	acccagcgat	catcta	1800
aacagccaaa	cacccagtga	tcatcta	atgca	caacagccaa	acacccagtg	atcatcta	1860
gcaacagcca	aacagacaag	tgatcatcta	atgcaacagc	ca		1902	

<210> 82
<211> 1911
<212> DNA
<213> Homo sapien

<400> 82
catgccgagc ggcgcagtgt gatggatcg ggcccccga ggtggagggt gcccggcaca 60
accagacgcc cagtcacggc gagagccctg ggatgcacccg gccagaggcc atgctgctgc 120
tgctcacgct tgccctcctg gggggccccca cctgggcagg gaagatgtat ggccctggag 180
gaggcaagta tttcagcacc actgaagact acgaccatga aatcacaggg ctgcgggtgt 240
ctgttaggtct tctcctggtg aaaagtgtcc aggtgaaact tggagactcc tgggacgtga 300
aactgggagc ctttaggtggg aatacccagg aagtcaccct gcagccaggc gaatacatca 360
caaaaagtctt tgcgccttc caagctttcc tccggggtat ggtcatgtac accagcaagg 420
accgctattt ctatTTggg aagctttagt gccagatctc ctctgcctac cccagccaag 480
agggcaggt gctggtgccc atctatggcc agtataact ccttggcattc aagagcattt 540
gctttgaatg gaattatcca ctagaggagc cgaccactga gccaccagtt aatctcacat 600
actcagcaaa ctcacccgtg ggtcgctagg gtggggtatg gggccatccg agctgaggcc 660
atctgggtgg tggtgtggctga tggtaactgggta gtaactgagt cgggacgctg aatctgaatc 720
caccaataaaa taaagcttct gcagaatcag tgcattccagg attggtcctt ggatctgggg 780
tacaaccaaa gccttccctg ctccttggag acaaagtccc cagtgcgtca gcccagtgaa 840
ctgagatgag gggtagggca aaggtgactc tgccgaggac agaaagagag cagcaccacc 900
ccctcagagg tgctgtggat ctctgtgcca gtcccacaat ctttgaagag tcaggcttca 960
aggcccac tccccactgt ccctcaccctt aggcccaccc agcgggcctc tgctggccac 1020
tcagtcggg gattctctga gtgctcaagg ggcctcagg aagccactca ctcatccatt 1080
cactcagcaa acatTTGCCA agggcgtgtc ctcaccaggc tcgcctggca ctgggggtat 1140
aaagaagagg ccaggtttca gctgagtgcg tatacactgt ggtggggct ggtgcagagg 1200
cagatagtgg cagttcactt tgccatctgc atggatgggg acacatgcag gtcattgtgc 1260
gtaggcacct gcccagaggt gaggtgagag ggatgtgctt cagggaaatc ttccctagagg 1320
aggcaatgtc tgagctaagt cttaaaggat gaaggacaat tggccaagtg gagacaaaagg 1380
gaggaggggaa ttacaggttg agggctcaac atgagcaaag acaggagatg cagatggctg 1440
gggttaatttg tcacagtagc aacaggaaat cagtacaagc cctggacctg gcccatttt 1500
catgtccct tcccaagcct ccaagccac atgggcactt gccaagatca gagctccagg 1560
ggcctccagg gacggggttt tcagtcctt gggaccatga tccacagaga gaaattgtac 1620

ctacttgaga cacaggaagc aacacatgta atgcaacagc caagcaccca acgatcatct 1680
 aatgcaacag ccaaacaccc agcgatcatc taatgcaaca gccaaacacc cagcgatcat 1740
 ctaattgcaac agccaaacac ccagcgatca tctaattgca cagccaaaca cccagcgatc 1800
 atctaattgca acagccaaac acccagtgtat catctaattgc aacagccaaa cacccagtga 1860
 tcatctaattg caacagccaa acagacaagt gatcatctaa tgcaacagcc a 1911

<210> 83
<211> 1852
<212> DNA
<213> Homo sapien

<400> 83
atgcattgtcg agcggcgca g tgttatggat cgtggtcgca gcgagggtggc catgctgctg 60
ctgttcacgc ttggccctcc gggggggcccc acctggcgag ggaagatgtt tggcccttgg 120
ggaggcaagt atttcagcac cactgaagac tacgaccatg aaatcacagg gctgcgggtg 180
tcttaggttc ttctccctgtt gaaaaagtgtc caggtgaaac ttggagactc ctgggacgtg 240
aaactgggag ccttaggtgg gaatacccgag gaagtcaccc tgcagccagg cgaatacatc 300
acaaaaagtct ttgtcgccctt ccaagtttc ctccgggtt tggcatgtt caccagcaag 360
gaccgctatt tctatttgg gaagcttgcat ggccagatct cctctgccta cccagccaa 420
gaggggcagg tgctgggtgg catctatggc cagttcaac tccttggcat caagagcatt 480
ggcttgaat ggaattatcc actagaggag ccgaccactg agccaccagt taatctcaca 540
tactcagcaa actcaccctgt gggtcgttag ggtgggtat gggccatcc gagctgaggc 600
catctgggtg gtgggtggctg atggtaactgg agtaactgag tcgggacgtt gaatctgaat 660
ccaccaataa ataaagcttc tgcagaatca gtgcattccag gattggctt tggatctggg 720
gtacaaccaa agccttcctt gctccttggg gacaaagtcc ccagtgtgc agcccagtga 780
actgagatga gggtagggc aaaggtgact ctgccgagga cagaaagaga gcagcaccac 840
ccctcagag gtgtgtggta tctctgtgcc agtcccacaa tcttgaaga gtcaggcttc 900
aaggccgcca ctccccactg tccctcaccc caggcccacc cagcgggcct ctgctggcca 960
ctcagtccccg ggattctctg agtgctcaag gggcctcagg gaagccactc actcatccat 1020
tcactcagca aacatttgc aaggccgtgt cctcaccagg ctcgcctggc actgggggtt 1080
taaagaagag gccaggttcc agctgagtgc gtatacactg tggtggggc tggtgcaagag 1140
gcagatagtg gcagttcaact ttgccatctg catggatggg gacacatgca ggtcattgtg 1200
cgttaggcacc tgcccagagg tgaggtgaga gggatgtgt tcagggaaatg cttccatagag 1260
gaggcaatgt ctgagctaa tcttaaagga tgaaggacaa ttggccaaatg ggagacaaag 1320

ggaggagggg attacagggtt gagggctcaa catgagcaaa gacaggagat gcagatggct 1380
 gggtaattt gtcacagtag caacaggaaa tcagtacaag ccctggacct ggcccatattct 1440
 tcatgtcccc ttcccaagcc tccaagccca catgggcact tgccaagatc agagctccag 1500
 gggctccag ggacggggtt ttcagtcctt tggaccatg atccacagag agaaattgat 1560
 cctacttgag acacaggaag caacacatgt aatgcaacag ccaagcaccc aacgatcatc 1620
 taatgcaaca gccaaacacc cagcgatcat ctaatgcaac agccaaacac ccagcgatca 1680
 tctaattgcaaa cagccaaaca cccagcgatc atctaattgca acagccaaac acccagcgat 1740
 catctaattgc aacagccaaa cacccagtga tcataatg caacagccaa acacccagtg 1800
 atcatctaatt gcaacagcca aacagacaag tgatcatcta atgcaacagc ca 1852

<210> 84
<211> 1798
<212> DNA
<213> Homo sapien

<400> 84
catgctcgag cggcgcaktg tcatggatcg cccgggcagg tccagtcaca gatgtatggc 60
cctggaggag gcaagtattt cagcaccact gaagactacg accatgaaat cacaggctg 120
cgggtgtctg taggtcttct cctggtaaaa agtgtccagg tgaaacttgg agactcctgg 180
gacgtgaaac tgggagcctt aggtggaaat acccaggaag tcaccctgca gccaggcgaa 240
tacatcacaa aagtctttgt cgccttccaa gctttccccc gggtatggt catgtacacc 300
agcaaggacc gctatttcta ttttggaaag cttgatggcc agatctcctc tgcctacccc 360
agccaagagg ggcaggtgct ggtggcatac tatggccagt atcaactcct tggcatcaag 420
agcattggct ttgaatggaa ttatccacta gaggagccga ccactgagcc accagttaat 480
ctcacatact cagcaaactc acccgtgggt cgctagggtg gggatgggg ccatccgagc 540
tgaggccatc tgggtggtgg tggctgatgg tactggagta actgagtcgg gacgctgaat 600
ctgaatccac caataaataa agcttctgca gaatcagtgc atccaggatt ggtccttgg 660
tctgggtac aaccaaagcc ttccctgctc cttggagaca aagtccccag tgctgcagcc 720
cagtgaactg agatgagggg tagggcaaag gtgactctgc cgaggacaga aagagagcag 780
caccacccccc tcagaggtgc tgtggatctc tgtgccagtc ccacaatctt tgaagagtca 840
ggcttcaagg cccgcactcc ccactgtccc tcacccagg cccacccagg gggcctctgc 900
tggccactca gtcccggtat tctctgagtg ctcaaggggc ctcagggaaag ccactcactc 960
atccattcac tcagcaaaca tttgccaagg ccgtgtcctc accaggctcg cctggactg 1020
gggtataaaa gaagaggcca ggtttcagct gagtgctat acactgtggt gggggctgg 1080

gcagaggcag atagtggcag ttcactttgc catctgcatg gatggggaca catgcaggc	1140
attgtcgta ggcacctgcc cagaggttag gtgagagggg tgtgcttcag ggaagtcttc	1200
ctagaggagg caatgtctga gctaagtctt aaaggatgaa ggacaattgg ccaagtggag	1260
acaaaaggag gaggggatta caggttgagg gctcaacatg agcaaagaca ggagatgcag	1320
atggctgggg taatttgtca cagtagcaac aggaaatcag tacaagccct ggacctggcc	1380
cattttcat gtcccccttcc caagcctcca agcccacatg ggcacttgcc aagatcagag	1440
ctccaggggc ctccaggggac ggggtttca gtcctttggg accatgatcc acagagagaa	1500
attgatccta cttgagacac aggaagcaac acatgtaatg caacagccaa gcacccaaacg	1560
atcatctaat gcaacagcca aacacccagc gatcatctaa tgcaacagcc aaacacccag	1620
cgatcatcta atgcaacagc caaacaccca gcgatcatct aatgcaacag ccaaacaccc	1680
agcgatcatc taatgcaaca gccaaacacc cagtgatcat ctaatgcaac agccaaacac	1740
ccagtgatca tctaattgcaaa cagccaaaca gacaagtgtat catctaattgc aacagcca	1798

<210> 85
<211> 3099
<212> DNA
<213> Homo sapien

<400> 85	
ggcgaatggg cctcttagatg catgctcgag cggcgcagtg ttagtggatcg ccgcggcagg	60
gtcacaggcg agagccctgg gatgcaccgg ccagaggcca tgctgctgct gctcacgctt	120
gccctcctgg ggggccccac ctgggcaggg agtaagtcag tgggtctgc cctcaatctc	180
ccctgcctcc ctccaggaga gccaggact cacccggccc ttgtcccaga ctaactctgg	240
tcacagaacc atcctgtctg cctggagggg cggggtcccc ttgtccggca gaggtcaccc	300
ccatatcacc gcatgggat ttcttcctt ttgggtctct cttttttca gagatgtatg	360
gccctggagg aggcaagtat tttagcacca ctgaagacta cgaccatgaa atcacaggc	420
tgcgggtgtc ttaggtctt ctccctgtga aaaggtgagt agggctatgg tcatggccc	480
agcgccatgt cccctcccat cccacagttt caggaactca gggcagcggg taagcacccg	540
tggccacttt tgccacacat gcctggctac tgctgatgct tcctggctcc cgctgatgct	600
tcctggctgg agcggacacg gtcagaccgt cctccctacc ttctcccttc aacccaagct	660
caactcaacc aaaaatggcc cctctgtccc catgcctgat agggaaagtca ggggaaagtgc	720
tgtccgatta ctgtcaaaga agacaggagg taagggtcag agtggaccac tgactgaata	780
tgagtcgcag aagtgttaga ggcagaagtc cagggccatt tccttaatat cgaagtgtct	840
ctgctggagg tctggatgg atttttgcctt tgcatttaga agttctgggg tcctggaga	900

ggggagagaa	gccaatagc	agaggagaca	gagtgtggc	ggggcgagcc	ggaggggtgc	960
atcctggag	agcaccaggg	tgagggaggg	gtgaagatga	gccccgtcag	ggaagcgctg	1020
gcgagtgtgg	gaagtcacct	gcccctcggc	ctgtgagctg	ctctgcttgg	agtgactaag	1080
gctcgggagg	tccaggctcg	gccagaggca	gctcatatgt	ggccacagt	gacggcagct	1140
ggtgccctct	gggtcacgga	gacctggcgc	tgcacgcagc	tctcctcacc	aggatctcag	1200
tgactcctcc	caaaagtac	acccactttg	cagacgggga	aactgagtcc	ggagaggctg	1260
ggtaacgagc	tcaagatcac	agggccaaa	agtggtagaa	tcagggttgg	tgaccagtga	1320
gtctgtgtca	gagacccaaa	gtctgatggt	gctggactct	ctgcatcccgg	ggaaggagga	1380
tggggcgct	gaggacccgg	gatgtgctgg	gccatcccag	atctggacgt	ccaaagctt	1440
gcctctctcc	cagtgtccag	gtgaaaacttg	gagactcctg	ggacgtgaaa	ctgggagcct	1500
tagtgtggaa	tacccaggaa	gtcacccctgc	agccaggcga	atacatcaca	aaagtcttt	1560
tcgccttcca	agcttcctc	cggggtatgg	tcatgtacac	cagcaaggac	cgctatttct	1620
attttggaa	gctttagtgc	cagatctcct	ctgcctaccc	cagccaagag	gggcaggtgc	1680
tggtggccat	ctatggccag	tatcaactcc	ttggcatcaa	gagcattggc	tttgaatgga	1740
attatccact	agaggagccg	accactgagc	caccagttaa	tctcacatac	tcagcaaact	1800
caccctgtgg	tcgcttaggt	gggttatggg	gccatccgag	ctgaggccat	ctgggtggtg	1860
gtggctgatg	gtactggagt	aactgagtcg	ggacgctgaa	tctgaatcca	ccaataaata	1920
aagcttctgc	agaatcagtg	catccaggat	tggccttgg	atctgggta	caaccaaagc	1980
cttccctgct	ccttggagac	aaagtccccca	gtgctgcagc	ccagtgaact	gagatgaggg	2040
gtaggcAAA	ggtgactctg	ccgaggacag	aaagagagca	gcaccacccc	ctcagaggtg	2100
ctgtggatct	ctgtgccagt	cccacaatct	ttgaagagtc	aggcttcaag	gccgccactc	2160
cccactgtcc	ctcacccca	gcccacccag	cgggcctctg	ctggccactc	agtcccggga	2220
ttctctgagt	gctcaagggg	cctcagggaa	gccactca	catccattca	ctcagcaaac	2280
atttgccaag	gccgtgtcct	caccaggctc	gcctggca	gggggtataa	agaagaggcc	2340
aggTTTcAGC	tgagtgcgtA	tacactgtgg	tggggctgg	tgcagaggca	gatagtggca	2400
tttcaactttg	ccatctgcat	ggatggggac	acatgcaggt	cattgtgcgt	aggcacctgc	2460
ccagaggtga	ggtgagaggg	atgtgcttca	ggaaagtctt	cctagaggag	gcaatgtctg	2520
agctaagtct	taaaggatga	aggacaattg	gccaaagtgg	gacaaaggga	ggaggggatt	2580
acaggtttag	ggctcaacat	gagcaaagac	aggagatgca	gatggctggg	gtaatttgc	2640
acagtagcaa	cagaaatca	gtacaagccc	tggacctggc	ccattttca	tgtcccccttc	2700

117

ccaaggcctcc aagcccacat gggcaactgc caagatcaga gctccagggg cctccaggg	2760
cggggtttgc agtccttgg gaccatgate cacagagaga aattgatcct acttgagaca	2820
caggaagcaa cacaatgtaa gcaacagcca agcacccaaac gatcatctaa tgcaacagcc	2880
aaacacccag cgatcatcta atgcaacagc caaacaccca gcgatcatct aatgcaacag	2940
ccaaacaccc agcgatcatc taatgcaaca gccaaacacc cagcgatcat ctaatgcaac	3000
agccaaacac ccagtgatca tctaattgca cagccaaaca cccagtgatc atctaattgca	3060
acagccaaac agacaagtga tcatactaatg caacagcca	3099

<210> 86
<211> 1547
<212> DNA
<213> Homo sapien

<400> 86	
cggcttagcg tggtcgcggc gagtcctccg gggtatggtc atgtacacca gcaaggaccg	60
ctatttctat tttgggaagc ttgatggca gatctcctct gcctacccca gccaagaggg	120
gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcataaaga gcattggctt	180
tgaatggaat tatccactag aggagccgac cactgagcca ccagttatac tcacataactc	240
agcaaactca cccgtgggtc gctagggtgg ggtatggggc catccgagct gaggccatct	300
gggtgggtggt ggctgatggt actggagtaa ctgagtcggg acgctgaatc tgaatccacc	360
aataaataaaa gcttctgcag aatcagtgc tccaggattt gtccttggat ctgggttaca	420
accaaagcct tccctgctcc ttggagacaa agtccccagt gctgcagccc agtgaactga	480
gatgaggggt agggcaaagg tgactctgcc gaggacagaa agagagcagc accacccct	540
cagaggtgct gtggatctct gtgccagtc cacaatctt gaagagtcag gcttcaaggc	600
cgccactccc cactgtccct caccccaaggc ccacccagcg ggcctctgct ggccactcag	660
tcccggatt ctctgagtgc tcaaggggcc tcagggaaagc cactcactca tccattcact	720
cagcaaacat ttgccaaggc cgtgtcctca ccaggctcgc ctggcaactgg gggtataaag	780
aagaggccag gtttcagctg agtgcgtata cactgtggtg ggggctggtg cagaggcaga	840
tagtggcagt tcactttgcc atctgcattgg atggggacac atgcaggta ttgtgcgtag	900
gcacctgccc agaggtgagg tgagagggat gtgcattcagg gaagtcttcc tagaggaggc	960
aatgtctgag ctaagtctta aaggatgaag gacaattggc caagtggaga caaagggagg	1020
aggggattac aggttgaggg ctcaacatga gcaaagacag gagatgcaga tggctgggt	1080
aatttgtcac agtagcaaca ggaaatcagt acaagccctg gacctggccc attcttcatg	1140
tccccctcccc aagcctccaa gcccacatgg gcacttgcca agatcagagc tccagggcc	1200

118

tccagggacg gggtttttag tcctttggga ccatgatcca cagagagaaa ttgatcctac	1260
ttgagacaca ggaagcaaca catgtaatgc aacagccaaag caccacacg tcatctaatt	1320
caacagccaa acacccagcg atcatctaatt gcaacagccaa acacccagc gatcatctaa	1380
tgcaacagcc aaacacccag cgatcatcta atgcaacagc caaacacccca gcgatcatct	1440
aatgcaacag ccaaacaccc agtcatcatc taatgcaaca gccaaacaccc cagtcatcat	1500
ctaatgcaac agccaaacag acaagtcatc atctaattgca acagccaa	1547

<210> 87
<211> 2345
<212> DNA
<213> Homo sapien

<400> 87	
catgctcgag cggcgccagg tgatggatcg agcggccgccc cgggcaggta cgtgctccgg	60
gatcttcagc acccgccggcc gccatcgccg tcgcttggct tcttctggac tcatctgcgc	120
cacttgtccg cttcacactc cgccgccatc atggtaaagc tcgcaaggc aggtaaaaat	180
caaggtgacc ccaagaaaaat ggctccctct ccaaaggagg tagaagaaga tagtgaagat	240
gagaaaaatgt cagaagatga agaagatgt agcagtggag aagaggtcgt catacctcag	300
aagaaaggca agaaggctgc tgcaacctca gcaaagaagg tggcggttc cccaaacaaaa	360
aagggtgcag ttgccacacc agccaagaaa gcagctgtca ctccaggcaa aaaggcagca	420
gcaacacctg ccaagaagac agttacacca gccaaagcag ttaccacacc tggcaagaag	480
ggagccacac caggcaaaagc attggtagca actcctggta agaagggtgc tgccatcccc	540
gccaaggggg caaagaatgg caagaatgcc aagaaggaag acagtgtatga agaggaggat	600
gatgacagtg aggaggatgtt ggaggatgtc gaggacgagg atgaggatgtt agatgttttt	660
gaaccacgcg cgatgaaagc agcagctgtc gcccctgcct cagaggatgtt ggacgtatgt	720
gatgacgttggatgtt tgacgtatgtt gatgaggatgtt atgactctgtt agaagaagct	780
atggagacta caccagccaa aggaaaagaaa gctgcaaaag ttgttctgtt gaaagccaa	840
aacgtggctg aggtgttggatgtt tggaaagatgtt gatgatgtt acgaggatgtt cgacgtatgtt	900
gaagatgtatgtt aagatgtatgtt tgatgtatgtt gatgaggatgtt aggaagaaga ggaggaggaa	960
gagcctgtca aagaagcacc tggaaaacgtt aagaaggaaa tggccaaaca gaaagcagct	1020
cctgttgcgtt agaaacacaaa agtggaaaggc acagaaccgtt ctacggcttt caatctcttt	1080
gttggaaacc taaactttttttaa caaatctgtt cctgttgcgtt aaactggatgtt cagcgtatgtt	1140
tttgctaaaa atgatcttgc tggatgttgcgtt gtcagaattt gatgtactgtt gaaatgttggatgtt	1200
tatgtggatt ttgttgcgtt gtcagaatttgcgtt gagaaggatgtt tggaaactcactt gggatgttggatgtt	1260

119

gtctttggca atgaaattaa actagagaaaa cccaaaaggaa aagacagtaa gaaagagcga	1320
gatgcgagaa cactttggc taaaaatctc ccttacaaag tcactcagga tgaattgaaa	1380
gaagtgtttg aagatgctgc ggagatcaga ttagtcagca aggatggaa aagtaaaggg	1440
attgcttata ttgaatttaa gacagaagct gatgcagaga aaaccttga agaaaagcag	1500
ggaacagaga tcgatggcg atctatttcc ctgtactata ctggagagaa aggtcaaaat	1560
caagactata gaggtggaaa gaatagcact tggagtggtg aatcaaaaac tctggttta	1620
agcaacctct cctacagtgc aacagaagaa actcttcagg aagtatttga gaaagcaact	1680
tttatcaaag taccccgaaa cccaaatggc aaatctaaag ggtatgcatt tatagagttt	1740
gcttcattcg aagacgctaa agaagctta aattcctgta ataaaaggga aattgagggc	1800
agagcaatca ggctggaggc gaggaggctt ccgaggaggc agaggaggag gaggtgacca	1860
caagccacaa ggaaagaaga cgaagttga atagcttctg tccctctgct ttccctttc	1920
cattgaaag aaaggactct ggggtttta ctgttacctg atcaatgaca gagccttctg	1980
aggacattcc aagacagtat acagtcctgt ggtctccctg gaaatccgtc tagttaacat	2040
ttcaagggca ataccgtgtt ggtttgact ggatattcat ataaactttt taaagagttg	2100
agtgatagag ctaaccctta tctgttaagtt ttgaatttat attgtttcat cccatgtaca	2160
aaaccatttt ttcctacaaa tagttgggt tttgttggc ttttttttt ttgttttgc	2220
tttgggggg tttttttgc gttcgtgggg ttgtaaaaga aaagaaagca gaatgttttta	2280
tcatgggggg tgcttcagcg gctttaggac aaattaaaag tcaactctgg tgccaaaaaa	2340
aaaaaa	2345

<210> 88
<211> 1716
<212> DNA
<213> Homo sapien

<400> 88	
catgctcgag cggcgcagtg tgatggatcg agcggccgccc cgggcaggta cgtgctccgg	60
gatcttcagc acccgccggcc gccatcgccg tcgcttggct tcttctggac tcatactgcgc	120
cacttgcggc cttcacactc cgccgccatc atggtaagc tcgcgaaggc agtaaaaat	180
caaggtgacc ccaagaaaaat ggctcctcct ccaaaggagg tagaagaaga tagtgaagat	240
gaggaaatgt cagaagatga agaagatgt agcagttggag aagaggtcgt catacctcag	300
aagaaaggca agaaggctgc tgcaaccta gcaaagaagg tggcggttc cccaaacaaaa	360
aagggttgcag ttgccacacc agccaagaaa gcagctgtca ctccaggcaa aaaggcagca	420
gcaacacctg ccaagaagac agttacacca gccaaagcag ttaccacacc tggcaagaag	480

120

ggagccacac caggcaaagc attggtagca actcctggta agaagggtgc tgccatccca 540
 gccaaggggg caaagaatgg caagaatgcc aagaaggaag acagtgtga agaggaggat 600
 gatgacagtg aggaggatga ggaggatgac gaggacgagg atgaggatga agatgaardt 660
 gaaccacgag cgatgaaagc agcagctgct gccctgcct cagaggatga ggacgatgag 720
 gatgacgaag atgatgagga tgacgatgac gatgaggaag atgactctga agaagaagct 780
 atggagacta caccagccaa aggaaagaaa gctgcaaaag ttgttcctgt gaaagccaaag 840
 aacgtggctg aggatgaaga tgaagaagag gatgatgagg acgaggatga cgacgacgac 900
 gaagatgatg aagatgatga tcatgaagat gatgaggagg aggaagaaga ggaggaggaa 960
 gagcctgtca aagaagcacc tggaaaacga aagaaggaaa tggccaaaca gaaagcagct 1020
 cctgaagcca agaaacagaa agtggaaaggc acagaaccga ctacggcttt caatctctt 1080
 tttggaaacc taaaacttaa caaatctgct cctgaattaa aaactggtat cagcgatgtt 1140
 tttgctaaaa atgatctgc tttgtggat gtcagaattt gtatgactag gaaatttgg 1200
 tatgtggatt ttgaatctgc tgaagacctg gagaaagcgt tggaaactcac tggtttggaa 1260
 gtcttggca atgaaattaa actagagaaa ccaaaaggaa aagacagtaa gaaagagcga 1320
 gatgcgagaa cactttggc taaaatctc ctttacaaag tcactcagga tgaattgaaa 1380
 gaagtgtttg aagatgctgc ggagatcaga ttagtcagca aggatggaa aagtaaaggg 1440
 attgcttata ttgaatttaa gacagaagct gatgcagaga aaaccttga agaaaagcag 1500
 ggaacagaga tcgatggcg atctatcc ctgtactata ctggagagaa aggtcaaaat 1560
 caagactata gaggtggaaa gaatagcact tggagtggtg aatcaaaaac tctggttta 1620
 agcaacctct cctacagtgc aacagaagaa actcttcagg aagtatttga gaaagcaact 1680
 ttatcaaag tacctcgcc gcgaccacgc taagcc 1716

<210> 89
 <211> 2068
 <212> DNA
 <213> Homo sapien

<400> 89
 gcagattgca gggccccggc tgacgggaag tgggtggag ctgcctgcac acgcgggtgcc 60
 gcggggcggg agtagaggcg gagggagggg acacgggctc attgcgggtgt gcgcctgc 120
 ctctgtccct cactcgccgc cgacgacctg tctcgccgag cgacgcctt gcccggccc 180
 cgcagaaatg ttccggttac ccacagtctt tcgcccagatg agaccgggtgt ccagggtact 240
 ggctcctcat ctcactcggtt cttatgccaa agatgtaaaa ttgggtgcag atgcccggc 300
 cttaatgctt caagggtgtac acccttttagc cgatgctgtg gccgttacaa tggggccaaa 360

121

gggaagaaca	gtgattattg	agcagagttg	gggaagtccc	aaagtaacaa	aagatggtgt	420
gactgttgc	aagtcaattt	actaaaaga	taaatacaag	aacattggag	ctaaacttgt	480
tcaagatgtt	gccaataaca	caaataaga	agctggggat	ggcactacca	ctgctactgt	540
actggcacgc	tctatagcca	aggaaggctt	cgagaagatt	agcaaaggtg	ctaattccagt	600
ggaaatcagg	agaggtgtga	tgttagctgt	tgatgctgt	attgctgaac	ttaaaaagca	660
gtctaaacct	gtgaccaccc	ctgaagaaat	tgcacaggtt	gctacgattt	ctgcaaacgg	720
agacaaagaa	attggcaata	tcatctctga	tgcaatgaaa	aaagttggaa	gaaagggtgt	780
catcacagta	aaggatggaa	aaacactgaa	tgatgaatta	gaaattattt	aaggcatgaa	840
gtttgatcga	ggctataattt	ctccatactt	tattaataca	tcaaaaggtc	agaaatgtga	900
attccaggat	gcctatgttc	tgttgagtga	aaagaaaatt	tctagtatcc	agtccattgt	960
acctgctt	gaaattgcca	atgctcaccc	taagccttt	gtcataatcg	ctgaagatgt	1020
tgatggagaa	gctctaagta	cactcgtt	gaataggct	aagggtggc	ttcaggttgt	1080
ggcagtcaag	gctccagggt	ttggtgacaa	tagaaagaac	cagctaaag	atatggctat	1140
tgctactgg	ggtgcagtgt	ttggagaaga	gggattgacc	ctgaatctt	aagacgttca	1200
gcctcatgac	tttagaaaaag	ttggagaggt	cattgtgacc	aaagacgatg	ccatgctt	1260
aaaaggaaaa	ggtgacaagg	ctcaaattga	aaaacgtatt	caagaaatca	ttgagcagtt	1320
agatgtcaca	actagtgaat	atgaaaagga	aaaactgaat	gaacggctt	caaaacttcc	1380
agatggagtg	gctgtgctga	aggtgggtgg	gacaagtgt	gttgaagtga	atgaaaagaa	1440
agacagagtt	acagatgccc	ttaatgctac	aagagctgt	gttgaagaag	gcattgttt	1500
gggagggggt	tgtgccctcc	ttcgatgcat	tccagcctt	gactcattga	ctccagctaa	1560
tgaagatcaa	aaaattggta	tagaaattat	taaaagaaca	ctcaaaattc	cagcaatgac	1620
cattgctaag	aatgcaggtg	ttgaaggatc	tttgatagtt	gagaaaatta	tgcaaaggtc	1680
ctcagaagtt	ggttatgtg	ctatggctgg	agatttgtg	aatatggtg	aaaaaggaat	1740
cattgaccca	acaaaggtaa	atggttgaac	actttctaaa	aattctttt	ttgttcat	1800
tgttaatgta	tcctcacatc	ccaaatctt	gatttgc	ccagaaaaat	agtctaata	1860
cagtagcaac	agcaataagct	cttgc	tcaacaattc	tcatgtacat	ttccagcacc	1920
tagatatttta	atactccact	aaaaggaagc	aggatccctt	gagtagcagt	tgagtccatg	1980
cctggaggca	ggaaaaaaatc	aggatggatc	tggAACACCC	tgttcctg	tggcagtaag	2040
aatattttcc	aagatacgca	gaacaggg				2068

<210> 90

<211> 366

122

<212> DNA

<213> Homo sapien

<400> 90

gccagtgtga tggattcgcg gcgagggtgc tactgttac gaaatcctgt gcaagctcg	60
cttggagggt gatcaactcta cacccccaga tgcatatggg tctgtcaaag cctataactaa	120
ctttgatgct gagcgggatg ctttgaacat tgaaacagcc atcaagacca aagagggttg	180
gatgaggtca ccattgtcaa catttgacc aaccgcagca atgcacagag acaggatatt	240
gccttcgcct accagagaag gaccaaaaag gaacttgcatt cagcactgaa gtcagccta	300
tctggccacc tggagacggt gattttggc ctattgaaga cacctgctca gtatgacgct	360
tctgag	366

<210> 91

<211> 1346

<212> DNA

<213> Homo sapien

<400> 91

catgctcgag cggcgcagtg tgatggatcg tggtcgcggc cgagggacgc tctcagctct	60
cggcgcacgg cccagcttcc ttcaaaatgt ctactgttca cgaatcctg tgcaagctca	120
gcttggaggg tgatcactct acaccccaa gtgcataatgg gtctgtcaaa gcctataacta	180
actttgatgc tgagcgggat gcttgaaca ttgaaacagc catcaagacc aaagggttg	240
atgaggtcac cattgtcaac attttgacca accgcagcaa tgcacagaga caggatattg	300
ccttcgccta ccagagaagg accaaaaagg aacttgcattc agcactgaag tcagccttat	360
ctggccacct ggagacggtg attttggc tattgaagac acctgcttag tatgacgctt	420
ctgagctctg ctccagaacc aaccaggagc tgcagggaaat taacagagtc tacaaggaaa	480
tgtacaagac tgatctggag aaggacatta tttcgacac atctggtagc ttccgcaagc	540
tgatggttgc cctggcaaag ggtagaagag cagaggatgg ctctgtcatt gattatgaac	600
tgattgacca agatgctcg gatctctatg acgctggagt gaagaggaaa ggaactgtat	660
ttcccaagtg gatcagcatc atgaccgagc ggagcgtgcc ccacctccag aaagtatttg	720
ataggtacaa gagttacagc ctttatgaca tggggaaag catcaggaaa gaggttaaag	780
gagacctgga aaatgcttc ctgaacctgg ttcaagtgcatt tcagaacaag cccctgtatt	840
ttgctgatcg gctgtatgac tccatgaagg gcaagggac gcgagataag gtcctgatca	900
gaatcatggt ctccccgact gaagtggaca tggaaaat taggtctgaa ttcaagagaa	960
agtacggcaa gtccctgtac tattatatcc agcaagacac taagggcgac taccagaaa	1020
cgctgctgta cctgtgttgtt ggagatgact gaagcccgac acggcctgag cgtccagaaa	1080

123

tggtgctcac	catgcttcca	gctaacaggt	ctagaaaacc	agcttgcgaa	taacagtccc	1140
cgtggccatc	cctgtgaggg	tgacgttagc	attaccccca	acctcatttt	agttgcctaa	1200
gcattgcctg	gccttcctgt	ctagtctctc	ctgtaagcca	aagaaatgaa	cattccaagg	1260
agttggaagt	gaagtctatg	atgtgaaaca	ctttgcctcc	tgtgtactgt	gtcataaaaca	1320
gatgaataaa	ctgaatttgt	acttta				1346

<210> 92
<211> 756
<212> DNA
<213> Homo sapien

<400> 92	ccgaggcccc	tccttgctcg	acgcccata	ctctgccggg	tgactagctg	cttcctttct	60
	ctctcgcgcg	cggtgtggtg	gcagcaggcg	cagcaggcgc	acccagcctc	gaaatgcaga	120
	acgacgcccgg	cgagttcgtg	gacctgtacg	tgccgcggaa	atgctccgct	agcaatcgca	180
	tcatcggtgc	caaggaccac	gcatccatcc	agatgaacgt	ggccgagggtt	gacaagggtca	240
	caggcagggtt	taatggccag	tttaaaactt	atgctatctg	cggggccatt	cgtaggatgg	300
	gtgagtcaga	tgattccatt	ctccgattgg	ccaaggccga	tggcatcg	tcaaagtaag	360
	gttggggct	cacattggg	cagagtgagt	ggactaggac	tgctccagag	gcgtggctt	420
	aacgttgtcc	ttttccctg	gttctaggaa	cttttactg	gagagaatca	cagatgtgga	480
	atatttgtca	taaataaata	atgaaaacct	aaaaaaaaaa	aaaaaaaaac	tcgagactag	540
	cttctctcaa	ataataacca	tacacaacac	taagggcga	acctgatctc	ttatacaagt	600
	atccttagtc	atttctttg	tgcgacaaat	taacctcctc	ggactccggc	tcactcattt	660
	acaccaacca	cccaatatct	ttaaacctag	catggcatac	ctcttatgag	gggggcggga	720
	taaaggagtc	ggcctaagat	aatatggcct	agccat			756

<210> 93
<211> 1420
<212> DNA
<213> Homo sapien

<400> 93	ccgaggcccc	tccttgctcg	acgcccata	ctctgccggg	tgactagctg	cttcctttct	60
	ctctcgcgcg	cggtgtggtg	gcagcaggcg	cagcaggcgc	acccagcctc	gaaatgcaga	120
	acgacgcccgg	cgagttcgtg	gacctgtacg	tgccgcggaa	atgctccgct	agcaatcgca	180
	tcatcggtgc	caaggaccac	gcatccatcc	agatgaacgt	ggccgagggtt	gacaagggtca	240
	caggcagggtt	taatggccag	tttaaaactt	atgctatctg	cggggccatt	cgtaggatgg	300
	ttagtgtttc	cctgggcttt	gctcatcact	tcgggacatc	gtggacttta	ccgtgcgcac	360

124

tggagtgtgt gatggtgccct gagtagatct gctggcagag tagtttgcgc cagctggact	420
gggctggcccg cctgccgcctt cttgagggtg gaagagggtt gctctgagaa gacactcagg	480
cagcagactc tgcctctcac taggaggtgc ccccccgacc ccgcgtccacc atagtcaggc	540
tgcaggctgc cccgggagag gtggctcccc ttctgcgcct gtctccattc gtcagcggg	600
ggagagacgt gggctggtgg cacagctgac cttctgccat ctcagggcagc cgagtgaa	660
atattcttag tgtgctttt ttttttctt aagggtgagt cagatgattc cattctccga	720
ttggccaagg ccgatggcat cgtctcaaag taaggttggg ggctcacatt tgggcagagt	780
gagttgacta ggactgctcc agagggcgtgg tcttaacgtt gtcctttcc cctggttcta	840
ggaacttttgc actggagaga atcacagatg tggaatattt gtcataaata aataatgaaa	900.
acctaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	960
aaaaaaaaaaa aaaagaggggg ggggcgcgc caaaaaatcc cccccgggggg cgcccttttg	1020
cgcccccgct tttgtgtgaa aggggggccc ccatgaggggg ctttttaaag ggccgcgcag	1080
cggggcgcgc gttataaaaaa gcaccagcag cgagtgggg aacacagccg agccacgcgg	1140
ggagatctc ttggggagaa ggagcccca tatcggcggg gggggggaga gcaaaattag	1200
ggggggaaac accctacacc taaacgaaga tatattaaga aactcttggg aggggaagta	1260
atatataaac ttttcagaga ggggttatat aggtgggtga aaaaccagag acgcgagatc	1320
gtatggatgt ggggtggtaa aagaatattt tgggtcttagc gagtgtatgt aatttcgacg	1380
aaactttatt atagcgaggg gcgttttaga tgataaggtg	1420

<210> 94
<211> 1536
<212> DNA
<213> Homo sapien

<400> 94 ggcacgaggc atcgcgcgcg gtgtggtggc agcaggcgca gcaggcgcac ccagcctcga	60
aatgcagaac gacgcccggcg agttcgtgga cctgtacgtg ccgcggaaat gctccgcgtag	120
caatcgcatc atcggtgcca aggaccacgc atccatccag atgaacgtgg ccgaggtgag	180
ctgggagccc gggaggcggg aaggttgtga tatatgtgcg gaaaggcag gctgtcccat	240
tgtggaggag cccctgggtt gaaggtacag gcagaggctg gctttgagga ttggtgttcc	300
ccaaacctgg gggagtggtt tgtgaccctt cttcttttc taggttgaca aggtcacagg	360
caggttaat ggccagttt aaacttatgc tatctgcggg gccattcgta ggatggtgag	420
tgtttccctg ggcttgctc atcaacttcgg gacatcggtgg actttaccgt gcgcattgga	480
tggtgtgatg gtgcctgagt agatctgctg gcagagtagt ttgagccagc tggactggc	540

125

tggccgcctg	ccgcttcttg	agggtggaag	aggggtgctc	tgagaagaca	ctcaggcagc	600
agactctgcc	tctcactagg	aggtgcccc	ccgacccccc	tccaccatag	tcaggctgca	660
ggctgcccc	ggagaggtgg	ctcccctct	gcgcctgtct	ccattcgctc	agcgggggag	720
agacgtggc	tggtggcaca	gctgaccttc	tgccatctca	ggcagccgga	gtggaaatat	780
tcttagtgtg	ctttttttt	tttcttaagg	gtgagtcaga	tgattccatt	ctccgattgg	840
ccaaggccga	tggcatcgctc	tcaaagtaag	gttggggct	cacatttggg	cagagtgagt	900
ggactaggac	tgctccagag	gcgtggtctt	aacgttgtcc	ttttcccctg	gttcttaggaa	960
cttttgactg	gagagaatca	cagatgtgga	atatttgtca	taaataaata	atgaaaacct	1020
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1080
aaaaaaaaaa	gagggggggg	cgcgcwww	aaatcccccc	ggggggcgcg	ccttgcgcc	1140
cccgctttt	tgtgaaaggg	ggggccccc	gaggggcittt	ttaaagggcc	gcgcagcggg	1200
gcgcgcgtt	taaaaagcac	cagcagcgag	tggggaaaca	cagccgagcc	acgcggggga	1260
gatctcttgg	ggagaaggag	ccccatatc	ggcgaaaaaa	gggagagcaa	aattaggggg	1320
ggaaacaccc	tacacctaaa	cgaagatata	ttaagaaact	cttgggaggg	gaagtaatat	1380
ataaaacttt	cagagagggg	gtatatagg	gggtgaaaaa	ccagagacgc	gagatcgat	1440
ggatgtgggg	tggtaaaaga	atattgtggg	tctagcgagt	gtatgtatt	tcgacgaaac	1500
tttattatag	cgagggcgt	tttagatgat	aaggtg			1536

<210> 95
 <211> 930
 <212> DNA
 <213> Homo sapien

<400> 95	agatcatgcc	gagcgccgccc	agtgtgatgg	atgcgtggtc	gcggccgagg	tacgtccgc	60
	ggaaatgctc	cgctagcaat	cgcatcatcg	gtgccaagga	ccacgcattcc	atccagatga	120
	acgtggccga	ggttgacaag	gtcacaggca	ggttaatgg	ccagttaaa	acttatgcta	180
	tctgcggggc	cattcgtagg	atgggtgagt	cagatgattc	cattctccga	ttggccaagg	240
	ccgatggcat	cgtctcaaag	taaggttggg	ggctcacatt	tggcagagt	gagtggacta	300
	ggactgctcc	agaggcgtgg	tcttaacgtt	gtcctttcc	cctggttcta	ggaactttg	360
	actggagaga	atcacagatg	tgaatattt	gtcataaata	aataatgaaa	acctaaaaaaaaaa	420
	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	480
	aaaagagggg	ggggcgcc	caaaaaatcc	ccccgggggg	cgcgccttt	cgcgcgcgt	540
	tttgtgtgaa	aggggggccc	ccatgagggg	cttttaaag	ggccgcgcag	cggggcgcgc	600

126

gttataaaaa gcaccagcag cgagtggggg aacacagccg agccacgcgg gggagatctc 660
ttggggagaa ggagccccca tatcggcggg gggggggaga gcaaaattag ggggggaaac 720
accctacacc taaacgaaga tatattaaga aactcttggg agggaaagta atatataaac 780
tttcagaga ggggtatat aggtgggtga aaaaccagag acgcgagatc gtatggatgt 840
ggggtgtaa aagaatattg tgggtctagc gagtgtatgt aatttcgacg aaactttatt 900
atagcgaggg gcgtttaga tgataaggta 930

<210> 96
<211> 185
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (35)..(35)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (70)..(70)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (81)..(81)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (93)..(93)
<223> X=any amino acid

<400> 96

Gln Lys Ser Ile His Ala Cys Asn Val Gly Gly Arg Leu Leu Cys Gln
1 5 10 15

Asp Arg Pro Pro Thr Leu Gln Lys Ser Ile His Ala Cys Ala Ala Arg
20 25 30

Ile Ala Xaa Ser Ser Gly His Arg Pro Gly Thr Phe Ser Arg Val Thr
35 40 45

Ala Leu Asn Asp Val Glu Thr Arg Asp Ser Thr Trp Pro His Ala Arg
50 55 60

127

Cys Glu Gly Pro Ala Xaa Ser Arg Asp Val Trp Thr Pro Ala Gly Cys
65 70 75 80

Xaa Gln Glu Ala Val Glu Leu Val Gln Tyr Ala Tyr Xaa Ser Glu Lys
85 90 95

Val Arg Gly Glu Arg Arg Arg Thr Arg Lys Glu Ala Asn Val Lys Asp
100 105 110

Glu Val Lys Asp Arg Gln Ile Asp Arg Gly Glu Thr Ala Lys Arg Thr
115 120 125

Leu Glu Gln Lys Arg Lys Arg Arg Lys Thr Arg Gln Pro Asp Ala Lys
130 135 140

Asp Gly Asp Ser Tyr Asp Pro Tyr Asp Phe Ser Asp Thr Glu Glu Glu
145 150 155 160

Met Pro Gln Val His Thr Pro Lys Thr Ala Asp Ser Gln Glu Thr Lys
165 170 175

Glu Ser Gln Lys Val Glu Leu Ser Glu
180 185

<210> 97
<211> 109
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (39)..(39)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (41)..(42)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (44)..(44)
<223> X=any amino acid

128

<220>
<221> MISC_FEATURE
<222> (55)..(57)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (77)..(77)
<223> X=any amino acid

<400> 97

Ala Glu Thr Cys Gly Pro Leu Gln Asp Ala Xaa Arg Lys Leu Trp Ser
1 5 10 15

Trp Ser Ser Met Leu Thr Phe Arg Glu Gly Ser Trp Arg Thr Glu Lys
20 25 30

Lys Arg Lys Lys Arg Ser Xaa Gly Xaa Xaa Gln Xaa Gln Lys Met Lys
35 40 45

Arg Arg Lys Ala Lys Arg Xaa Xaa Xaa Arg Arg Gly Arg Glu Gly Arg
50 55 60

Leu Ala Ser Gln Met Pro Lys Met Gly Ile His Thr Xaa Pro Met Thr
65 70 75 80

Ser Val Thr Gln Arg Arg Lys Cys Leu Lys Tyr Thr Leu Gln Arg Arg
85 90 95

Gln Thr His Arg Arg Pro Arg Asn Pro Arg Lys Trp Ser
100 105

<210> 98
<211> 106
<212> PRT
<213> Homo sapien

<400> 98

Pro Gly Leu Ile Pro Leu Glu Asp Lys Glu Asp Tyr Gly Pro Asn Lys
1 5 10 15

Glu Cys Pro Leu Cys Leu Cys Pro Arg Leu Phe Glu Ser Leu Ser Arg
20 25 30

Asp Leu Lys Lys Asp Tyr Gly Val Tyr Leu Glu Asp Ser Gly Thr His
35 40 45

129

Cys Leu Glu Val Ser Val Gln Ile Phe Ile Asp Asp Lys Gly Ile Leu
50 55 60

Arg Gln Ile Thr Leu Asn Asp Leu Pro Val Gly Arg Ser Val Asp Glu
65 70 75 80

Thr Leu Arg Leu Val Gln Ala Phe Gln Tyr Thr Asp Lys His Gly Glu
85 90 95

Val Cys Pro Ala Gly Trp Lys Pro Gly Lys
100 105

<210> 99

<211> 75

<212> PRT

<213> Homo sapien

<400> 99

Ile Pro Lys Ser Arg Ser Gln Lys Asp Tyr Gly Val Tyr Leu Glu Asp
1 5 10 15

Ser Gly His Thr Leu Arg Gly Leu Phe Ile Ile Asp Asp Lys Gly Ile
20 25 30

Leu Arg Gln Ile Thr Leu Asn Asp Leu Pro Val Gly Arg Ser Val Asp
35 40 45

Glu Thr Leu Arg Leu Val Gln Ala Phe Gln Tyr Thr Asp Lys His Gly
50 55 60

Glu Val Cys Pro Ala Gly Trp Lys Pro Gly Lys
65 70 75

<210> 100

<211> 224

<212> PRT

<213> Homo sapien

<400> 100

Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly Gly Pro Lys
1 5 10 15

Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu Pro Ala Ser
20 25 30

Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile Lys Glu Ile
35 40 45

130

Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly Ala Val Glu
50 55 60

Ala Ile Ser Asp Arg Ile Cys Ile Gln His Gln Cys Ala Arg Arg Ala
65 70 75 80

Trp Arg Cys Arg Arg Arg Thr Cys Ser His Ala Val Ala Ala Cys Val
85 90 95

Gly Thr Ala Val Met Val Ala Ile Leu Leu Lys Leu Gly Thr Ser Gly
100 105 110

Gln Glu Lys Ala Trp Phe Leu Val Ala Ile Tyr Glu Ser His Val Gly
115 120 125

Cys Arg Pro Tyr Phe His Thr Leu Pro Val Ser Thr Thr Ser Lys Gly
130 135 140

Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser Lys
145 150 155 160

Ser Cys Glu Pro Gly Tyr Arg Pro Ser Tyr Lys Gln Asp Lys Arg Tyr
165 170 175

Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met Ala
180 185 190

Glu Ile Ser Lys Asn Gly Pro Trp Arg Glu Leu Ser Leu Cys Ile Gly
195 200 205

Leu Pro Gly Leu Glu Val Arg Glu Cys Thr Asn Thr Ser Pro Glu Arg
210 215 220

<210> 101
<211> 181
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (19)..(20)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (22)..(29)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (31)..(32)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (34)..(34)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (37)..(37)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (153)..(153)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (172)..(172)
<223> X=any amino acid

<400> 101

Pro Leu Arg Gln Arg Gln Pro Leu Arg Cys Ala Gln Ala Gly Leu Xaa
1 5 10 15

Ala Leu Xaa Xaa Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Xaa
20 25 30

Ser Xaa Leu Ser Xaa Ser Leu Cys Cys Leu Leu Val Leu Ala Asn Ala
35 40 45

Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn Tyr
50 55 60

Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr Asn
65 70 75 80

Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly Gly
85 90 95

132

Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu Pro
100 105 110

Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile Lys
115 120 125

Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly Ala
130 135 140

Val Glu Ala Ile Ser Asp Arg Ile Xaa Ile His Thr Asn Ala His Val
145 150 155 160

Glu Arg Gly Gly Val Gly Gly Pro Ala His Xaa Leu Trp Gln His
165 170 175

Val Trp Gly Arg Leu
180

<210> 102

<211> 227

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (45)..(45)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (78)..(78)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (85)..(85)

<223> X=any amino acid

<400> 102

Thr Ser Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro
1 5 10 15

Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp Gly Gly His Ser Pro Arg
20 25 30

Ser Pro Arg Gly Trp Asp Gln Glu Pro Ala Arg Glu Xaa Ala Gly Gly
35 40 45

Gly Trp Arg Ala Arg Arg Pro Arg Ala Arg Ser Asp Arg Arg His Trp
50 55 60

Thr Thr Ser Pro Arg Arg Ala Pro His Glu Ser Gly Ser Xaa Ser Pro
65 70 75 80

Thr Asn Asn Gly Xaa Arg Ser Arg Ala Tyr Met Pro Thr Val Asp Pro
85 90 95

His Val Arg Asp Asp Leu Leu Trp Thr Lys Tyr Asn Ser Arg Asp Ile
100 105 110

Pro Thr Ala Thr Thr Gly Asp Pro Leu Leu Leu Tyr Asn Ile Gln Ala
115 120 125

Leu Arg Asp Ala Ala Leu Leu Ser Tyr Pro Met Val Pro Thr His His
130 135 140

Ala Tyr Leu Gly Thr Leu Trp Asp Lys Arg Leu Pro Gly Ser Gly Asp
145 150 155 160

Leu Pro Tyr Asp Gly Arg Leu Leu Glu Glu Ala Val Arg Lys Lys Gly
165 170 175

Gly Arg Arg Arg Arg Arg Ile Pro His Lys Glu Glu Glu Glu Ala
180 185 190

Tyr Tyr Pro Pro Ala Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala
195 200 205

Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser
210 215 220

Leu Val Val
225

<210> 103
<211> 222
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (59)..(59)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (79)..(79)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (86)..(86)
<223> X=any amino acid

<400> 103

Ser Pro Pro Ser Thr Arg Thr Ile Gly Xaa Leu Gly Leu Pro Gly Ala
1 5 10 15

Leu Pro Ser Pro Arg Ser Gly Met Arg Ser Gly Val Ala Thr Pro Pro
20 25 30

Gly Val Pro Gly Asp Gly Thr Arg Ser Pro Pro Gly Xaa Arg Gln Ala
35 40 45

Gly Ala Gly Gly Pro Gly Gly Pro Gly Pro Xaa Pro Ile Asp Ala Thr
50 55 60

Gly Arg Pro His Pro Ala Glu His Arg Thr Ser Gln Gly Ala Xaa Leu
65 70 75 80

Pro Arg Ile Met Val Xaa Glu Ala Gly His Tyr Met Pro Pro Gln Ser
85 90 95

Pro Ser Arg Asp Asp Leu Tyr Asp Gln Asp Asn Ser Arg Asp Ile Pro
100 105 110

Thr Leu Pro Gln Ala Thr Pro Ile Tyr Asp Asn Ile Gln Ala Pro Arg
115 120 125

Glu Arg Pro Pro Ala Tyr Pro Arg Ser His His His Arg Thr Arg Asp
130 135 140

135

Pro Arg Asp Asn Gly Ser Arg Ser Gly Asp Leu Pro Tyr Asp Gly Arg
145 150 155 160

Leu Leu Glu Glu Ala Val Arg Lys Lys Gly Val Gly Gly Glu Asp
165 170 175

Thr Pro Gln Gly Gly Gly Arg Gly Leu Leu Pro Ala Arg Ala Ala
180 185 190

Pro Val Leu Gly Asp Arg Leu Ala Gly Val Pro Arg Ala Gln Ala Gln
195 200 205

Glu Glu Leu Gly Pro Glu Ser Gly Lys Phe Ser Arg Leu Ile
210 215 220

<210> 104

<211> 74

<212> PRT

<213> Homo sapien

<400> 104

Met Arg Leu Gly Val Phe Val Arg Arg Leu Leu Cys Val Pro Gly Arg
1 5 10 15

Gly Asp Asp Val Val Leu Val Val Val Cys Leu Trp Glu Pro His Val
20 25 30

Gly Thr Ala Val Gly Lys Tyr Tyr Arg Arg Ala Lys Cys Gly Gly Pro
35 40 45

Ser Ser Leu Asp Gly Ile Cys Met Met Ser Ser Glu Gly Arg Asp Val
50 55 60

Cys Gly Gly Leu Arg Phe Leu Ser Cys Ile
65 70

<210> 105

<211> 85

<212> PRT

<213> Homo sapien

<400> 105

Gly Val Cys Ser Gly Val Leu Leu Ala Trp Ser Asp Ala Ser Trp Ser
1 5 10 15

Phe Arg Glu Ala Pro Leu Cys Val Pro Gly Arg Gly Asp Asp Val Val
20 25 30

136

Leu Val Val Val Cys Leu Trp Glu Pro His Val Gly Thr Ala Val Gly
35 40 45

Lys Tyr Tyr Arg Arg Ala Lys Cys Gly Gly Pro Ser Ser Leu Asp Gly
50 55 60

Ile Cys Met Met Ser Ser Glu Gly Arg Asp Val Cys Gly Gly Leu Arg
65 70 75 80

Phe Leu Ser Cys Ile
85

<210> 106
<211> 85
<212> PRT
<213> Homo sapien

<400> 106

Gly Val Cys Ser Gly Val Leu Leu Ala Trp Ser Asp Ala Ser Trp Ser
1 5 10 15

Phe Arg Glu Ala Pro Leu Cys Val Pro Gly Arg Gly Asp Asp Val Val
20 25 30

Leu Val Val Val Cys Leu Trp Glu Pro His Val Gly Thr Ala Val Gly
35 40 45

Lys Tyr Tyr Arg Arg Ala Lys Cys Gly Gly Pro Ser Ser Leu Asp Gly
50 55 60

Ile Cys Met Met Ser Ser Glu Gly Arg Asp Val Cys Gly Gly Leu Arg
65 70 75 80

Phe Leu Ser Cys Ile
85

<210> 107
<211> 66
<212> PRT
<213> Homo sapien

<400> 107

Thr Gly Arg Leu Tyr Ser Pro Pro Glu Cys Arg Gly Lys Ser Leu Thr
1 5 10 15

Ser Lys Gly Pro Thr Lys Gln Phe Arg Asn Leu Pro Pro Val Asn Val

137

20

25

30

Pro Thr Thr Glu Val Ser Pro Thr Phe Ser Glu Asn His His Lys Asn
35 40 45

His His Thr Lys Cys Ser Ser Tyr Thr Glu Tyr Thr Cys Gln Gly Ser
50 55 60

Ser Arg
65

<210> 108
<211> 66
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (54)..(54)
<223> X=any amino acid

<400> 108

Thr Gly Arg Leu Tyr Ser Pro Pro Glu Cys Arg Gly Lys Ser Leu Thr
1 5 10 15

Ser Lys Gly Pro Thr Lys Gln Phe Arg Asn Leu Pro Pro Val Asn Val
20 25 30

Pro Thr Thr Glu Val Ser Pro Thr Ser Gln Lys Thr Thr Thr Lys Thr
35 40 45

Thr Thr Pro Asn Ala Xaa Ala Thr Arg Ser Thr Pro Ala Arg Asp Pro
50 55 60

Leu Glu
65

<210> 109
<211> 126
<212> PRT
<213> Homo sapien

<400> 109

Met Trp His Leu Ser Pro Phe Ala Leu Gly Ile Cys Asp Pro Ser Ile
1 5 10 15

Val Leu Arg Pro Leu Cys Pro His Phe Pro Val His Val Gly Asp Asp
20 25 30

138

Gly Ser Pro Phe Pro Phe Ala Gln Leu Pro Pro Gly Ala Arg Gly Pro
35 40 45

Ser Pro Gln Gly Val Trp Ile Tyr Ser Phe Ile Arg Pro Gly Pro Pro
50 55 60

Met Phe Ala Cys Leu Cys Thr Ser Thr Pro Asn Val Ser Ala Leu Pro
65 70 75 80

Pro Glu Ala Leu Cys Arg Ala Ser Leu Phe Trp Arg Gly Arg Gly Cys
85 90 95

Gly Val Thr Cys Thr Leu Gly Leu Val Asp Thr Val Asn Ser Ser Gln
100 105 110

Val Asp Phe Ser Gly Gly Glu Lys Lys Gly His Leu Arg Leu
115 120 125

<210> 110

<211> 117

<212> PRT

<213> Homo sapien

<400> 110

Leu Gly Pro Val Phe Ser Arg Ala Pro Phe Leu Thr Leu Val Trp Ile
1 5 10 15

Thr Cys Val Gly Met Trp His Leu Ser Pro Phe Ala Leu Gly Ile Cys
20 25 30

Asp Pro Ser Ile Val Leu Arg Pro Leu Cys Pro His Phe Pro Val His
35 40 45

Val Gly Asp Asp Gly Ser Pro Phe Pro Phe Ala Gln Leu Pro Pro Gly
50 55 60

Ala Arg Gly Pro Ser Pro Gln Gly Val Trp Ile Tyr Ser Phe Ile Arg
65 70 75 80

Pro Gly Pro Pro Met Phe Ala Cys Leu Cys Thr Ser Thr Pro Asn Val
85 90 95

Ser Ala Leu Pro Pro Glu Ala Leu Cys Arg Ala Ser Leu Phe Trp Glu
100 105 110

139

Asp Gly Gly Ala Val
115

<210> 111
<211> 170
<212> PRT
<213> Homo sapien

<400> 111

Met Tyr Phe Lys Asp Tyr Ile Gln Glu Arg Ser Asp Pro Val Glu Gln
1 5 10 15

Gly Lys Pro Val Ile Pro Ala Ala Val Leu Gly Arg Leu His Arg Lys
20 25 30

Trp Thr Tyr Ser Ala Val Ala Val Ser Pro Gly Ala Ala Ile Thr Gln
35 40 45

Ile Leu Pro Val Ile His Gln Leu Asp Trp Arg Leu Met Glu Phe Lys
50 55 60

Leu Ala Asp Pro Asp Glu Val Ala Ala Ser Gly Glu Arg Gly Leu Ala
65 70 75 80

His Asp Glu Leu Arg Glu Ala Glu Pro Gly Leu Thr Leu Leu Arg
85 90 95

Leu Glu His His Ala Gln Asp Val Gly Glu Ser Ala Thr Cys Ser Arg
100 105 110

Leu Asn Val Arg Thr Ser Glu Thr Cys Leu Gly Phe Gln Arg Pro Glu
115 120 125

Gly Thr Val Thr Arg Ile Thr Trp Ala Val Thr Thr Pro Tyr Thr Gly
130 135 140

Arg Tyr Leu Thr Phe Arg Pro Gly Thr His Pro Leu Asn Pro Ala Pro
145 150 155 160

Gln Gly Phe Val Val Pro Val Gly Cys Pro
165 170

<210> 112
<211> 225
<212> PRT
<213> Homo sapien

<220>

140

<221> MISC_FEATURE
<222> (41)..(43)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (46)..(48)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (50)..(50)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (57)..(57)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (68)..(68)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (95)..(95)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (101)..(101)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (110)..(110)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (113)..(113)
<223> X=any amino acid

<400> 112

Lys Asp Phe Asp Ser Pro Glu Asn Gly Ala Asp Ser Phe Gln Ser Ser
1 5 10 15

Asp Ser Leu Leu Gln Ser Trp Asn Ser Gln Ser Ser Leu Leu Asp Val
20 25 30

Gln Arg Val Pro Ser Phe Glu Ser Xaa Xaa Xaa Asp Cys Xaa Xaa Xaa
35 40 45

Leu Xaa Leu Asn Lys Pro Thr Cys Xaa Ser Arg Ile Thr Ser Lys Arg
50 55 60

Gly Val Thr Xaa Trp Ser Lys Ala Asn Gln Leu Tyr Leu Gln Leu Cys
65 70 75 80

Trp Pro Ala Ser Gln Glu Val Asp Leu Phe Ser Cys Gly Ser Xaa Ser
85 90 95

Trp Ser Cys Tyr Xaa Thr Asn Pro Ala Ser His Ser Ser Xaa Gly Leu
100 105 110

Xaa Thr Asp Gly Ser Leu Ser Ser Pro Thr Pro Met Arg Trp Pro Ala
115 120 125

Ser Gly Glu Arg Gly Leu Ala His Asp Glu Leu Arg Glu Ala Glu Pro
130 135 140

Gly Leu Thr Leu Leu Leu Arg Leu Glu His His Ala Gln Asp Val Gly
145 150 155 160

Glu Ser Ala Thr Cys Ser Arg Leu Asn Val Arg Thr Ser Glu Thr Cys
165 170 175

Leu Gly Phe Gln Arg Pro Glu Gly Thr Val Thr Arg Ile Thr Trp Ala
180 185 190

Val Thr Thr Pro Tyr Thr Gly Arg Tyr Leu Thr Phe Arg Pro Gly Thr
195 200 205

His Pro Leu Asn Pro Ala Pro Gln Gly Phe Val Val Pro Val Gly Cys
210 215 220

Pro
225

<210> 113
<211> 175
<212> PRT
<213> Homo sapien

<400> 113

142

Gly Gly Glu Glu Gly Arg Ala Ser Trp Gly Gln Cys Arg Leu Phe Gly
1 5 10 15

Pro Gly Lys Leu Arg Trp Ala Gly Leu Pro Pro Val Trp Leu Cys Gln
20 25 30

Gly His Pro Gly Val Leu His Leu Gly Pro Gly Gly Trp Glu Gly Arg
35 40 45

Glu Ala Phe Gly Leu Leu Asn His Leu Glu Val Ser Leu Leu Gln Thr
50 55 60

Ser Ala Gly Ser Gly Ser Pro Gly Val Met Gly Ser Gly Trp Leu Asn
65 70 75 80

Leu Glu Ile Val Trp Ser Leu Phe Glu Gly Pro Ala Trp Leu Leu Leu
85 90 95

Gln Arg Asn Cys Arg His Leu Ser Phe Pro Ser Leu Pro His Pro Thr
100 105 110

Ala Glu Lys Gly Trp Arg Gly Glu Ser Ser Ser Ala Phe His Ser Val
115 120 125

Tyr Val Ser Gly Asp Ser Arg Gly Ala Gly Leu Lys Ile Ala Gly Gly
130 135 140

Arg Pro Ser Pro Gly Cys Cys Ser Val Gly Ala Trp Pro Ser Ser Ser
145 150 155 160

Arg Pro Thr Cys Phe Leu Trp Cys Gly Gln Ser Gln Leu Pro Ser
165 170 175

<210> 114

<211> 270

<212> PRT

<213> Homo sapien

<400> 114

Met Asp Asp Gln Arg Asp Leu Ile Ser Asn Asn Glu Gln Leu Pro Met
1 5 10 15

Leu Gly Arg Arg Pro Gly Ala Pro Glu Ser Lys Cys Ser Arg Gly Ala
20 25 30

Leu Tyr Thr Gly Phe Ser Ile Leu Val Thr Leu Leu Leu Ala Gly Gln
35 40 45

Ala Thr Thr Ala Tyr Phe Leu Tyr Gln Gln Gln Gly Arg Leu Asp Lys
50 55 60

Leu Thr Val Thr Ser Gln Asn Leu Gln Leu Glu Asn Leu Arg Met Lys
65 70 75 80

Leu Pro Lys Pro Pro Lys Pro Val Ser Lys Met Arg Met Ala Thr Pro
85 90 95

Leu Leu Met Gln Ala Leu Pro Met Gly Ala Leu Pro Gln Gly Pro Met
100 105 110

Gln Asn Ala Thr Lys Tyr Gly Asn Met Thr Glu Asp His Val Met His
115 120 125

Leu Leu Gln Asn Ala Asp Pro Leu Lys Val Tyr Pro Pro Leu Lys Gly
130 135 140

Ser Phe Pro Glu Asn Leu Arg His Leu Lys Asn Thr Met Glu Thr Ile
145 150 155 160

Asp Trp Lys Val Phe Glu Ser Trp Met His His Trp Leu Leu Phe Glu
165 170 175

Met Ser Arg His Ser Leu Glu Gln Lys Pro Thr Asp Ala Pro Pro Lys
180 185 190

Val Leu Thr Lys Cys Gln Glu Glu Val Ser His Ile Pro Gly Cys Pro
195 200 205

Pro Gly Phe Ile Gln Ala Gln Val Arg Arg Glu Arg Gln Leu Ser Ala
210 215 220

Thr Pro Val Leu Trp Gly Ala Ser Ala Thr Ala Gly Val Ser Ser Pro
225 230 235 240

Thr Ala Arg Arg Ser Pro Thr Pro Glu Ala Ala Gly Thr Ile Thr Ala
245 250 255

Val Ser His Trp Asn Trp Arg Thr Arg Leu Leu Gly Trp Val
260 265 270

<210> 115
<211> 225
<212> PRT

144

<213> Homo sapien

<400> 115

Gly Arg Thr Gly Asp Ala Val Cys Cys Pro Pro Ala Leu Leu Asp Leu
1 5 10 15

Arg Gly Pro Pro Gly Pro Pro Ser Ala Gly Phe Asp Phe Ser Phe Leu
20 25 30

Pro Gln Pro Pro Gln Glu Lys Ala His Asp Gly Gly Arg Tyr Tyr Arg
35 40 45

Ala Asp Asp Ala Asn Val Val Arg Asp Arg Asp Leu Glu Val Asp Thr
50 55 60

Thr Leu Lys Ser Leu Ser Gln Gln Ile Glu Asn Ile Arg Ser Pro Glu
65 70 75 80

Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Cys Asp Leu Lys Met Cys
85 90 95

Gln Ser Asp Trp Lys Ser Gly Glu Tyr Trp Ile Asp Pro Asn Gln Gly
100 105 110

Cys Ser Leu Asp Ala Ile Lys Val Phe Met Arg Thr Met Glu Thr Gly
115 120 125

Glu Thr Leu Arg Val Pro His Ser Ala Ser Val Trp Arg Gln Lys Asn
130 135 140

Trp Tyr Ile Ser Lys Asn Pro Lys Asp Lys Arg His Val Trp Phe Gly
145 150 155 160

Glu Ser Met Thr Asp Gly Phe Gln Phe Glu Tyr Gly Gln Gly Ser
165 170 175

Asp Pro Ala Asp Val Ala Ile Gln Leu Thr Phe Leu Arg Leu Met Ser
180 185 190

Ser Glu Ala Phe Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Val Ala
195 200 205

Tyr Met Asp His Gln Thr Gly Asn Leu Lys Lys Ala Leu Leu Leu Gln
210 215 220

Gly

145

225

<210> 116
<211> 121
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (89)..(89)
<223> X=any amino acid

<400> 116

Trp Ile Asp Pro Lys Leu Arg Leu Gln Ala Gly Cys His Pro Ile Arg
1 5 10 15

Cys Met Arg Ser Met Glu Thr Gly Glu Thr Leu Arg Val Pro His Ser
20 25 30

Ala Ser Val Trp Arg Gln Lys Asn Trp Tyr Ile Ser Lys Asn Pro Lys
35 40 45

Asp Lys Arg His Val Trp Phe Gly Glu Ser Met Thr Asp Gly Phe Gln
50 55 60

Phe Glu Tyr Gly Gly Gln Gly Ser Asp Pro Ala Asp Val Ala Ile Gln
65 70 75 80

Leu Thr Phe Leu Arg Leu Met Ser Xaa Glu Ala Phe Gln Asn Ile Thr
85 90 95

Tyr His Cys Lys Asn Ser Val Ala Tyr Met Asp His Gln Thr Gly Asn
100 105 110

Leu Lys Lys Ala Leu Leu Gln Gly
115 120

<210> 117
<211> 66
<212> PRT
<213> Homo sapien

<400> 117

Met Ala Leu Asn Arg Glu Phe Ser Phe Ile Val Ile Thr Thr Val Thr
1 5 10 15

Leu Thr Leu Cys Leu Ser Gly Leu Phe Ala Ile Leu Arg Ser Val Gly
20 25 30

Phe Pro Ile Phe Arg Asp Ile Ile Glu Leu Thr Ile Pro Tyr Tyr Gly
35 40 45

Phe Ile Phe Phe Pro Phe Lys His Ser Lys Glu Thr Ile Tyr Tyr Phe
50 55 60

Phe Pro
65

<210> 118
<211> 81
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (75)..(75)
<223> X=any amino acid

<400> 118

Gln Arg Val Leu Phe His Cys Asp His Tyr Arg Asp Thr Tyr Phe Val
1 5 10 15

Pro Ile Arg Thr Phe Cys Asn Ile Ala Leu Cys Arg Leu Ser Asn Leu
20 25 30

Gln Gly Tyr His Arg Ala Arg Pro Phe Pro Thr Met Asp Leu Phe Phe
35 40 45

Phe Leu Ser Asn Thr Val Arg Lys Gln Ser Ile Thr Phe Phe Leu Lys
50 55 60

Arg Arg Ile Tyr Ser Thr Val Ile Gln Leu Xaa Asn Ile Phe Arg Met
65 70 75 80

Met

<210> 119
<211> 253
<212> PRT
<213> Homo sapien

<400> 119

Met Val Asp Tyr Tyr Glu Val Leu Gly Val Gln Arg His Ala Leu Tyr
1 5 10 15

Pro Arg Asp Ser Tyr Lys Arg His Ile Gly Lys Leu Ala Leu Lys Trp
20 25 30

His Pro Asp Lys Asn Pro Glu Asn Lys Glu Glu Ala Ser Ser Arg Lys
35 40 45

Phe Lys Gln Val Ala Glu Ala Tyr Glu Val Leu Ser Asp Ala Lys Lys
50 55 60

Arg Asp Ile Tyr Asp Lys Tyr Gly Asn Arg Arg Ile Lys Val Val Glu
65 70 75 80

Asp Gly Gly Ser His Phe Asp Ser Pro Phe Glu Phe Gly Phe Thr
85 90 95

Phe Arg Asn Pro Asp Asp Val Phe Arg Glu Phe Phe Arg Trp Lys Gly
100 105 110

Pro Ile Leu His Leu Thr Ser Leu Lys Thr Leu Leu Arg Thr Ser Leu
115 120 125

Gly Ile Glu Gly Val Pro Glu Glu Ala Glu Ala Glu Gly Arg Gly Arg
130 135 140

Phe Asn Leu Arg Ser Val Asp Phe Arg Leu Leu Glu Ala Gly Trp Ser
145 150 155 160

Ser Met Asp Ala Gly Phe Thr Ser Leu Gly Ser Leu Gly His Gly Val
165 170 175

Leu Thr Leu Phe Ser Ser Thr Ser Phe Gly Gly Ser Gly Met Gly Asn
180 185 190

Tyr Lys Ser Ile Ser Thr Ser Thr Lys Leu Val Asn Gly Arg Pro Ile
195 200 205

Thr Thr Lys Arg Ile Val Asp Asn Ser Gln Asp Arg Val Gln Val Glu
210 215 220

Asp Asp Gly Gln Leu Lys Phe Leu Thr Ile Gly Tyr Glu Gln Leu Leu
225 230 235 240

Cys Leu Asp Asn Lys Met Ile Gln Arg Thr Arg Leu Ala
245 250

<210> 120
<211> 203
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (32)..(32)
<223> X=any amino acid

<220>
<221> MISC FEATURE
<222> (104)..(104)
<223> X=any amino acid

<400> 120

Arg Arg Ser Ser Ser Arg Lys Phe Lys Gln Val Ala Glu Ala Tyr Glu
1 5 10 15

Val Leu Ser Asp Ala Lys Lys Arg Asp Ile Tyr Asp Lys Tyr Gly Xaa
20 25 30

Arg Arg Ile Lys Trp Trp Arg Thr Glu Val Glu Val Ile Leu Thr Val
35 40 45

His Leu Asn Leu Ala Ser His Ser Val Thr Gln Met Met Ser Ser Gly
50 55 60

Asn Phe Leu Gly Gly Arg Asp Pro Phe Ser Phe Asp Phe Phe Glu Asp
65 70 75 80

Pro Phe Glu Asp Phe Phe Gly Asn Arg Arg Gly Pro Arg Gly Ser Arg
85 90 95

Ser Arg Gly Thr Gly Ser Phe Xaa Ser Ala Phe Ser Gly Phe Pro Ser
100 105 110

Phe Val Ser Gly Trp Ser Ser Met Asp Ala Gly Phe Thr Ser Leu Gly
115 120 125

Ser Leu Gly His Gly Val Leu Thr Leu Phe Ser Ser Thr Ser Phe Gly
130 135 140

Gly Ser Gly Met Gly Asn Tyr Lys Ser Ile Ser Thr Ser Thr Lys Leu
145 150 155 160

Val Asn Gly Arg Pro Ile Thr Thr Lys Arg Ile Val Asp Asn Ser Gln
165 170 175

149

Asp Arg Val Gln Val Glu Asp Asp Gly Gln Leu Lys Phe Leu Thr Ile
180 185 190

Gly Tyr Glu Gln Leu Leu Cys Leu Asp Asn Lys
195 200

<210> 121
<211> 128
<212> PRT
<213> Homo sapien

<400> 121

Met Ala Val Gln Ile Ser Lys Lys Arg Lys Phe Val Ala Asp Gly Ile
1 5 10 15

Phe Lys Ala Glu Leu Asn Glu Phe Leu Thr Arg Glu Leu Ala Glu Asp
20 25 30

Gly Tyr Ser Gly Val Glu Val Arg Val Thr Pro Thr Arg Thr Glu Ile
35 40 45

Ile Ile Leu Ala Thr Arg Thr Gln Asn Val Leu Gly Glu Lys Gly Arg
50 55 60

Arg Ile Arg Glu Leu Thr Ala Val Val Gln Lys Arg Phe Gly Phe Pro
65 70 75 80

Glu Gly Ser Val Glu Leu Tyr Ala Glu Lys Val Ala Thr Arg Gly Leu
85 90 95

Cys Ala Ile Ser Pro Gly Arg Val Ser Ala Val Pro Thr Pro Arg Arg
100 105 110

Ala Arg Cys Ala Ala Ser Phe Leu Ser Leu Ser Arg Thr Pro Met Gly
115 120 125

<210> 122
<211> 143
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X=any amino acid

<220>

150

<221> MISC_FEATURE
<222> (115)..(115)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (119)..(119)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (121)..(121)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (123)..(123)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (125)..(126)
<223> X=any amino acid

<400> 122

Lys Xaa Ala Thr Gly Ala Phe Leu Ser Ala Glu Arg Gly Gly Lys Met
1 5 10 15

Ala Val Gln Ile Ser Lys Lys Arg Lys Phe Val Ala Asp Gly Ile Phe
20 25 30

Lys Ala Glu Leu Asn Glu Phe Leu Thr Arg Glu Leu Ala Glu Asp Gly
35 40 45

Tyr Ser Gly Val Glu Val Arg Val Thr Pro Thr Arg Thr Glu Ile Ile
50 55 60

Ile Leu Ala Thr Arg Thr Gln Asn Val Leu Gly Glu Lys Gly Arg Arg
65 70 75 80

Ile Arg Glu Leu Thr Ala Val Val Gln Lys Arg Phe Gly Phe Pro Glu
85 90 95

Gly Ser Val Glu Leu Tyr Ala Glu Lys Val Ala Thr Arg Gly Leu Cys
100 105 110

Ala Ile Xaa Pro Ala Glu Xaa Leu Xaa Tyr Xaa Leu Xaa Xaa Gly Ser
115 120 125

Leu Arg Arg Val Phe Pro Ile Ala Val Pro His Ala His Gly Ala
130 135 140

<210> 123
<211> 75
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (21)..(24)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (31)..(31)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (36)..(36)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> X=any amino acid

<400> 123

His Xaa Leu Gln Lys His Leu Ala Gly Leu Gly Leu Thr Glu Ala Ile
1 5 10 15

Asp Lys Asn Lys Xaa Xaa Xaa Xaa Arg Xaa Ser Gly Lys Lys Xaa Phe
20 25 30

Tyr Leu Ala Xaa Phe His Ala Thr Ala Phe Glu Leu Xaa Thr Asp Gly
35 40 45

152

Asn Pro Phe Asp Gln Asp Ile Tyr Gly Arg Glu Gly Gly Ala Ala Pro
50 55 60

Ser Cys Ser Thr Pro Thr Thr Pro Ser Ser Ser
65 70 75

<210> 124
<211> 110
<212> PRT
<213> Homo sapien

<400> 124

Cys Gly Thr Pro Lys Ala Ala Pro Cys Tyr Ser Leu Gly Ala Trp Ser
1 5 10 15

Gly Leu Arg Val Thr Arg Cys Glu Thr Ser Tyr Arg Ala Ser Gly Cys
20 25 30

Thr Gln Asp Gly Arg Arg His Pro Lys Ala Pro Glu Thr His Gly Cys
35 40 45

Tyr Trp Gly Trp Gly Gly Glu Val Pro Ala Leu Asp Thr Pro Trp
50 55 60

Gly Gly Gly Lys Thr Asp Arg Gly Ser Arg Val Pro Glu Arg Thr
65 70 75 80

Phe Pro Ala Arg Ile His Ser Thr Trp Thr Trp Ala Pro Asp Thr Met
85 90 95

Met Leu Ser Pro Glu Thr Pro His Pro Val Gly Pro Gly Pro
100 105 110

<210> 125
<211> 196
<212> PRT
<213> Homo sapien

<400> 125

Met Ser Pro Arg Phe Pro Ala Arg Pro Trp Val Val Lys Leu Val Ala
1 5 10 15

Ser Leu His Glu Asp Leu His Glu Val Ser Val Arg Ser Arg Pro Ser
20 25 30

Pro Val Pro Thr Pro Gly Trp Leu Gly Glu Gly Val Ala Leu Val Asp
35 40 45

153

Gly Pro Pro Val Gly Asp Pro Leu Ser Arg Val Pro Glu Pro Cys Arg
50 55 60

Val Arg Thr Lys Thr Val Lys Lys Ala Ala Arg Val Ile Ile Glu Lys
65 70 75 80

Tyr Tyr Thr Arg Leu Gly Asn Asp Phe His Thr Asn Lys Arg Val Cys
85 90 95

Glu Glu Ile Ala Ile Ile Pro Ser Lys Lys Leu Arg Asn Lys Ile Ala
100 105 110

Gly Tyr Val Thr His Leu Met Lys Arg Ile Gln Arg Gly Pro Val Arg
115 120 125

Gly Ile Ser Ile Lys Leu Gln Glu Glu Arg Glu Arg Arg Asp Asn
130 135 140

Tyr Val Pro Glu Val Ser Ala Leu Asp Gln Glu Ile Ile Glu Val Asp
145 150 155 160

Pro Asp Thr Lys Glu Met Leu Lys Leu Leu Asp Phe Gly Ser Leu Ser
165 170 175

Asn Leu Gln Val Thr Gln Pro Thr Val Gly Met Asn Phe Lys Thr Pro
180 185 190

Arg Gly Pro Val
195

<210> 126
<211> 207
<212> PRT
<213> Homo sapien

<400> 126

Met Pro Glu His Cys Gly Leu Gly His Arg Arg Cys Ala Cys Gln Gln
1 5 10 15

His Gly Ala Ser Pro Gly Arg Met Thr Phe Glu Gly Asp Thr Asp Val
20 25 30

Trp Ala Met Pro Gly Ser Trp Glu Gln Arg Pro Arg Ala Gly Pro Gly
35 40 45

Val Arg Ala Ala Arg Ala Gly Gly Phe Trp Glu Pro Lys Ala Arg Leu

154

50

55

60

Arg Leu Gln Thr Leu Gly Pro Asn Met Gly Arg Val Arg Thr Lys Thr
65 70 75 80

Val Lys Lys Ala Ala Arg Val Ile Ile Glu Lys Tyr Tyr Thr Arg Leu
85 90 95

Gly Asn Asp Phe His Thr Asn Lys Arg Val Cys Glu Glu Ile Ala Ile
100 105 110

Ile Pro Ser Lys Lys Leu Arg Asn Lys Ile Ala Gly Tyr Val Thr His
115 120 125

Leu Met Lys Arg Ile Gln Arg Gly Pro Val Arg Gly Ile Ser Ile Lys
130 135 140

Leu Gln Glu Glu Glu Arg Glu Arg Arg Asp Asn Tyr Val Pro Glu Val
145 150 155 160

Ser Ala Leu Asp Gln Glu Ile Ile Glu Val Asp Pro Asp Thr Lys Glu
165 170 175

Met Leu Lys Leu Leu Asp Phe Gly Ser Leu Ser Asn Leu Gln Val Thr
180 185 190

Gln Pro Thr Val Gly Met Asn Phe Lys Thr Pro Arg Gly Pro Val
195 200 205

<210> 127

<211> 180

<212> PRT

<213> Homo sapien

<400> 127

Gly Gly His Arg Cys Leu Gly Asn Ala Arg Val Leu Gly Thr Glu Ala
1 5 10 15

Pro Ser Arg Thr Arg Ser Ala Gly Ser Ala Gly Arg Gly Leu Leu Gly
20 25 30

Ala Lys Gly Glu Ala Glu Val Ala Asn Ser Gly Ala Asn Met Gly Arg
35 40 45

Val Arg Thr Lys Thr Val Lys Lys Ala Ala Arg Val Ile Ile Glu Lys
50 55 60

155

Tyr Tyr Thr Arg Leu Gly Asn Asp Phe His Thr Asn Lys Arg Val Cys
65 70 75 80

Glu Glu Ile Ala Ile Ile Pro Ser Lys Lys Leu Arg Asn Lys Ile Ala
85 90 95

Gly Tyr Val Thr His Leu Met Lys Arg Ile Gln Arg Gly Pro Val Arg
100 105 110

Gly Ile Ser Ile Lys Leu Gln Glu Glu Arg Glu Arg Arg Asp Asn
115 120 125

Tyr Val Pro Glu Val Ser Ala Leu Asp Gln Glu Ile Ile Glu Val Asp
130 135 140

Pro Asp Thr Lys Glu Met Leu Lys Leu Leu Asp Phe Gly Ser Leu Ser
145 150 155 160

Asn Leu Gln Val Thr Gln Pro Thr Val Gly Met Asn Phe Lys Thr Pro
165 170 175

Arg Gly Pro Val
180

<210> 128
<211> 150
<212> PRT
<213> Homo sapien

<400> 128

Met Gly Arg Val Arg Thr Lys Thr Val Lys Lys Ala Ala Arg Val Ile
1 5 10 15

Ile Glu Lys Tyr Tyr Thr Arg Leu Gly Asn Asp Phe His Thr Asn Lys
20 25 30

Arg Val Cys Glu Glu Ile Ala Ile Ile Pro Ser Lys Lys Leu Arg Asn
35 40 45

Lys Ile Ala Gly Tyr Val Thr His Leu Met Lys Arg Ile Gln Arg Gly
50 55 60

Pro Val Arg Gly Ile Ser Ile Lys Leu Gln Glu Glu Arg Glu Arg
65 70 75 80

Arg Asp Asn Tyr Val Pro Glu Val Ser Ala Leu Asp Gln Glu Ile Ile

156
85 90 95

Glu Val Asp Pro Asp Thr Lys Glu Met Leu Lys Leu Leu Asp Phe Gly
100 105 110

Ser Leu Ser Asn Leu Gln Val Ile His Pro Asn Cys Arg Leu Ser Asp
115 120 125

Leu Lys Val Gly Gln Thr Ala Gln Pro Thr Val Gly Met Asn Phe Lys
130 135 140

Thr Pro Arg Gly Pro Val
145 150

<210> 129
<211> 298
<212> PRT
<213> Homo sapien

<400> 129

Met Arg Leu Ala Ala Leu Ala Val Ser Ala Cys Ile Leu Phe Arg Glu
1 5 10 15

Ala Leu Leu Arg Pro Trp Thr Gly Pro Pro Glu Arg Met Pro Val Arg
20 25 30

Ala Ala Arg Gly Glu Gly Pro Val Ala Met Gly Arg Val Ile Arg Gly
35 40 45

Gln Arg Lys Gly Ala Gly Ser Val Phe Arg Ala His Val Lys His Arg
50 55 60

Lys Gly Ala Ala Arg Leu Arg Ala Val Asp Phe Ala Glu Arg His Gly
65 70 75 80

Tyr Ile Lys Gly Ile Val Lys Asp Ile Ile His Asp Pro Gly Arg Gly
85 90 95

Ala Pro Leu Ala Lys Val Val Phe Arg Asp Pro Tyr Arg Phe Lys Lys
100 105 110

Arg Thr Glu Leu Phe Ile Ala Ala Glu Gly Ile His Thr Gly Gln Phe
115 120 125

Val Tyr Cys Gly Lys Lys Ala Gln Leu Asn Ile Gly Asn Val Leu Pro
130 135 140

157

Val Gly Thr Met Pro Glu Gly Thr Ile Val Cys Cys Leu Glu Glu Lys
145 150 155 160

Pro Gly Asp Arg Gly Lys Leu Ala Arg Ala Ser Gly Asn Tyr Ala Thr
165 170 175

Val Ile Ser His Asn Pro Glu Thr Lys Lys Thr Arg Val Lys Leu Pro
180 185 190

Ser Gly Ser Lys Lys Val Ile Ser Ser Ala Asn Arg Ala Val Val Gly
195 200 205

Val Val Ala Gly Gly Arg Ile Asp Lys Pro Ile Leu Lys Ala Gly
210 215 220

Arg Ala Tyr His Lys Tyr Lys Ala Lys Arg Asn Cys Trp Pro Arg Val
225 230 235 240

Arg Gly Val Ala Met Asn Pro Val Glu His Pro Phe Gly Gly Asn
245 250 255

His Gln His Ile Gly Lys Pro Ser Thr Ile Arg Arg Asp Ala Pro Ala
260 265 270

Gly Arg Lys Val Gly Leu Ile Ala Ala Arg Arg Thr Gly Arg Leu Arg
275 280 285

Gly Thr Lys Thr Val Gln Glu Lys Glu Asn
290 295

<210> 130
<211> 271
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (1)..(2)
<223> X=any amino acid

<400> 130

Xaa Xaa Ala Gly Ala Gly Ala Arg Gly Glu Gly Pro Val Ala Met Gly
1 5 10 15

Arg Val Ile Arg Gly Gln Arg Lys Gly Ala Gly Ser Val Phe Arg Ala
20 25 30

158

His Val Lys His Arg Lys Gly Ala Ala Arg Leu Arg Ala Val Asp Phe
35 40 45

Ala Glu Arg His Gly Tyr Ile Lys Gly Ile Val Lys Asp Ile Ile His
50 55 60

Asp Pro Gly Arg Gly Ala Pro Leu Ala Lys Val Val Phe Arg Asp Pro
65 70 75 80

Tyr Arg Phe Lys Lys Arg Thr Glu Leu Phe Ile Ala Ala Glu Gly Ile
85 90 95

His Thr Gly Gln Phe Val Tyr Cys Gly Lys Lys Ala Gln Leu Asn Ile
100 105 110

Gly Asn Val Leu Pro Val Gly Thr Met Pro Glu Gly Thr Ile Val Cys
115 120 125

Cys Leu Glu Glu Lys Pro Gly Asp Arg Gly Lys Leu Ala Arg Ala Ser
130 135 140

Gly Asn Tyr Ala Thr Val Ile Ser His Asn Pro Glu Thr Lys Lys Thr
145 150 155 160

Arg Val Lys Leu Pro Ser Gly Ser Lys Lys Val Ile Ser Ser Ala Asn
165 170 175

Arg Ala Val Val Gly Val Val Ala Gly Gly Arg Ile Asp Lys Pro
180 185 190

Ile Leu Lys Ala Gly Arg Ala Tyr His Lys Tyr Lys Ala Lys Arg Asn
195 200 205

Cys Trp Pro Arg Val Arg Gly Val Ala Met Asn Pro Val Glu His Pro
210 215 220

Phe Gly Gly Asn His Gln His Ile Gly Lys Pro Ser Thr Ile Arg
225 230 235 240

Arg Asp Ala Pro Ala Gly Arg Lys Val Gly Leu Ile Ala Ala Arg Arg
245 250 255

Thr Gly Arg Leu Arg Gly Thr Lys Thr Val Gln Glu Lys Glu Asn
260 265 270

159

<210> 131

<211> 550

<212> PRT

<213> Homo sapien

<400> 131

Met Met Lys Ala Ala Gly Lys Gln Gln Arg Val Gln Gln His Ser
1 5 10 15

Ser Ala Gln His Gln Gln His Ala Cys Thr Ala Asn Ser Pro Lys His
20 25 30

Arg Lys His Val Gly Ser Ser Met Gln Ala Gly Met His Ser Arg Ser
35 40 45

Gln Ala Ser Ser Thr Ala Gln Gln Gln Leu Lys His Ser Ile Gln Gln
50 55 60

Gln Gln Ile Pro Leu His Pro Gly Thr Ala Thr Gln Thr Ser Thr Lys
65 70 75 80

Pro Ile Trp Thr Arg Asn Pro Asp Asp Ile Thr Gln Glu Glu Tyr Gly
85 90 95

Glu Phe Tyr Lys Ser Leu Thr Asn Asp Trp Glu Asp His Leu Ala Val
100 105 110

Lys His Phe Ser Val Glu Gly Gln Leu Glu Phe Arg Ala Leu Leu Phe
115 120 125

Ile Pro Arg Arg Ala Pro Phe Asp Leu Cys Glu Asn Lys Lys Lys Lys
130 135 140

Asn Asn Ile Lys Leu Tyr Val Arg Arg Val Phe Ile Met Asp Ser Cys
145 150 155 160

Asp Glu Leu Ile Pro Glu Tyr Leu Asn Phe Ile Arg Gly Val Val Asp
165 170 175

Ser Glu Asp Leu Pro Leu Asn Ile Ser Arg Glu Met Leu Gln Gln Ser
180 185 190

Lys Ile Leu Lys Val His Ser Gln Gln Thr Leu Leu Arg Ser Ala Leu
195 200 205

Ser Ser Ser Leu Glu Leu Ala Glu Asp Lys Ala Glu Leu Gln Asp Asn
210 215 220

160

Ser Tyr Glu Gly Thr Ser His Lys Asn Leu Asn Ala Trp Asn Pro Arg
225 230 235 240

Arg His Pro Leu Thr Gly Ala Ala Cys Leu Glu Leu Leu Arg Tyr His
245 250 255

Thr Ser Gln Ser Gly Asp Glu Met Thr Ser Leu Ser Glu Tyr Val Ser
260 265 270

Arg Met Lys Glu Thr Gln Lys Ser Ile Tyr Tyr Ile Thr Gly Glu Ser
275 280 285

Lys Glu Gln Val Ala Asn Ser Ala Phe Val Glu Arg Val Arg Lys Arg
290 295 300

Gly Phe Glu Val Val Tyr Met Thr Glu Pro Ile Asp Glu Tyr Cys Val
305 310 315 320

Gln Gln Leu Lys Glu Phe Asp Gly Lys Ser Leu Val Ser Val Thr Lys
325 330 335

Glu Gly Leu Glu Leu Pro Glu Asp Glu Glu Glu Lys Lys Lys Met Glu
340 345 350

Glu Ser Lys Ala Lys Phe Glu Asn Leu Cys Lys Leu Met Lys Glu Ile
355 360 365

Leu Asp Lys Lys Val Glu Lys Val Thr Ile Ser Asn Arg Leu Val Ser
370 375 380

Ser Pro Cys Cys Ile Val Thr Ser Thr Tyr Gly Trp Thr Ala Asn Met
385 390 395 400

Glu Arg Ile Met Lys Ala Gln Ala Leu Arg Asp Asn Ser Thr Met Gly
405 410 415

Tyr Met Met Ala Lys Lys His Leu Glu Ile Asn Pro Asp His Pro Ile
420 425 430

Val Glu Thr Leu Arg Gln Lys Ala Glu Ala Asp Glu Asn Asp Lys Ala
435 440 445

Val Lys Asp Leu Val Val Leu Leu Phe Glu Thr Ala Leu Val Ser Ser
450 455 460

161

Gly Phe Ser Leu Glu Asp Pro Gln Thr Gln Ser Asn Arg Ile Tyr Arg
465 470 475 480

Met Ile Lys Leu Gly Leu Gly Ile Asp Glu Asp Glu Val Ala Ala Glu
485 490 495

Glu Pro Asn Ala Ala Val Pro Asp Glu Ile Pro Pro Leu Glu Gly Asp
500 505 510

Glu Asp Ala Ser Arg Met Arg Gly Ser Arg Val Arg Leu Gly Val Val
515 520 525

Leu Gly Asn Thr Cys Ala Phe Gly Phe Cys Val Pro His Gly Ala Pro
530 535 540

Thr Ala Pro Arg Val Pro
545 550

<210> 132
<211> 190
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (181)..(181)
<223> X=any amino acid

<400> 132

Glu Leu Leu Arg Tyr His Thr Ser Gln Ser Gly Asp Glu Met Thr Ser
1 5 10 15

Leu Ser Glu Tyr Val Ser Arg Met Lys Glu Thr Gln Lys Ser Ile Tyr
20 25 30

Tyr Ile Thr Gly Glu Ser Lys Glu Gln Val Ala Asn Ser Ala Phe Val
35 40 45

Glu Arg Val Arg Lys Arg Gly Phe Glu Val Val Tyr Met Thr Glu Pro
50 55 60

Ile Asp Glu Tyr Cys Val Gln Gln Leu Lys Glu Phe Asp Gly Lys Ser
65 70 75 80

Leu Val Ser Val Thr Lys Glu Gly Leu Glu Leu Pro Glu Asp Glu Glu
85 90 95

162

Glu Lys Lys Lys Met Glu Glu Ser Lys Ala Lys Phe Glu Asn Leu Cys
100 105 110

Lys Leu Met Lys Glu Ile Leu Asp Lys Lys Val Glu Lys Val Thr Ile
115 120 125

Ser Asn Arg Leu Val Ser Ser Pro Cys Cys Ile Val Thr Ser Thr Tyr
130 135 140

Gly Trp Thr Ala Asn Met Glu Arg Ile Met Lys Ala Gln Ala Leu Arg
145 150 155 160

Asp Asn Ser Thr Met Gly Tyr Met Met Ala Lys Lys His Leu Glu Ile
165 170 175

Asn Pro Asp His Xaa His Cys Gly Asp Ala Ala Ala Glu Gly
180 185 190

<210> 133

<211> 111

<212> PRT

<213> Homo sapien

<400> 133

Met Gly Val Asp Ile Arg His Asn Lys Asp Arg Lys Val Arg Arg Lys
1 5 10 15

Glu Pro Lys Ser Gln Asp Ile Tyr Leu Arg Leu Leu Val Lys Leu Tyr
20 25 30

Arg Phe Leu Ala Arg Arg Thr Asn Ser Thr Phe Asn Gln Val Val Leu
35 40 45

Lys Arg Leu Phe Met Ser Arg Thr Asn Arg Pro Pro Leu Ser Leu Ser
50 55 60

Arg Met Ile Arg Lys Met Lys Leu Pro Gly Arg Glu Asn Lys Thr Ala
65 70 75 80

Val Val Val Gly Thr Ile Thr Asp Asp Val Arg Val Gln Glu Val Pro
85 90 95

Arg Arg Asp His Ala Ser Ile Thr Leu Arg Arg Ser Thr Cys Ile
100 105 110

<210> 134

163

<211> 261

<212> PRT

<213> Homo sapien

<400> 134

Phe Pro Arg Glu Ser Gly Pro Arg Pro Val Pro Arg Thr Asp Ser Gly
1 5 10 15

Ala Ser Val Gly Ala Gly Cys Leu Arg Thr Leu Ala Val Gly Pro Gly
20 25 30

Gln Glu Gly Ala Gly Gly Arg Asp Ser Gly Cys Thr Val Ile Trp Arg
35 40 45

Ser Ala Ala Gly Pro Thr Gly Ile Arg Gly Phe Gly Gly Ala Arg Arg
50 55 60

Pro Gly Ser Glu Leu Gly Ser Cys Cys Ala Ala His Val Leu Thr Ser
65 70 75 80

Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser
85 90 95

Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile Asn
100 105 110

Ala Val Glu Gln Asp Tyr Arg Leu Pro Pro Pro Met Asp Cys Pro Thr
115 120 125

Ala Leu His Gln Leu Met Leu Asp Cys Trp Val Arg Asp Arg Asn Leu
130 135 140

Arg Pro Lys Phe Ser Gln Ile Val Asn Thr Leu Asp Lys Leu Ile Arg
145 150 155 160

Asn Ala Ala Ser Leu Lys Val Ile Ala Ser Ala Gln Ser Gly Met Ser
165 170 175

Gln Pro Leu Leu Asp Arg Thr Val Pro Asp Tyr Thr Thr Phe Thr Thr
180 185 190

Val Gly Asp Trp Leu Asp Ala Ile Lys Met Gly Arg Tyr Lys Glu Ser
195 200 205

Phe Val Ser Ala Gly Phe Ala Ser Phe Asp Leu Val Ala Gln Met Thr
210 215 220

164

Ala Glu Asp Leu Leu Arg Ile Gly Val Thr Leu Ala Gly His Gln Lys
225 230 235 240

Lys Ile Leu Ser Ser Ile Gln Asp Met Arg Leu Gln Met Asn Gln Thr
245 250 255

Leu Pro Val Gln Val
260

<210> 135
<211> 361
<212> PRT
<213> Homo sapien

<400> 135

Met Pro Gly Val Cys Asp Arg Ala Pro Asp Phe Leu Ser Pro Ser Glu
1 5 10 15

Asp Gln Val Leu Arg Pro Ala Leu Gly Ser Ser Val Ala Leu Asn Cys
20 25 30

Thr Ala Trp Val Val Ser Gly Pro His Cys Ser Leu Pro Ser Val Gln
35 40 45

Trp Leu Lys Asp Gly Leu Pro Leu Gly Ile Gly Gly His Tyr Ser Leu
50 55 60

His Glu Tyr Ser Trp Val Lys Ala Asn Leu Ser Glu Val Leu Val Ser
65 70 75 80

Ser Val Leu Gly Val Asn Val Thr Ser Thr Glu Val Tyr Gly Ala Phe
85 90 95

Thr Cys Ser Ile Gln Asn Ile Ser Phe Ser Ser Phe Thr Leu Gln Arg
100 105 110

Ala Gly Pro Thr Ser His Val Ala Ala Val Leu Ala Ser Leu Leu Val
115 120 125

Leu Leu Ala Leu Leu Ala Ala Leu Leu Tyr Val Lys Cys Arg Leu
130 135 140

Asn Val Leu Leu Trp Tyr Gln Asp Ala Tyr Gly Glu Val Glu Ile Asn
145 150 155 160

Asp Gly Lys Leu Tyr Asp Ala Tyr Val Ser Tyr Ser Asp Cys Pro Glu

165
165 170 175

Asp Arg Lys Phe Val Asn Phe Ile Leu Lys Pro Gln Leu Glu Arg Arg
180 185 190

Arg Gly Tyr Lys Leu Phe Leu Asp Asp Arg Asp Leu Leu Pro Arg Ala
195 200 205

Glu Pro Ser Ala Asp Leu Leu Val Asn Leu Ser Arg Cys Arg Arg Leu
210 215 220

Ile Val Val Leu Ser Asp Ala Phe Leu Ser Arg Ala Trp Cys Ser His
225 230 235 240

Ser Phe Arg Trp Val Pro Arg Gly Val Gly Trp Ala Pro Ala Tyr Thr
245 250 255

His Pro Pro Asp Gly Pro Ala Pro Gln Gly Gly Pro Val Pro Ala Ala
260 265 270

Gly Ala His Pro Gln Thr His Leu His His Leu Arg Gly Pro Glu Ala
275 280 285

Arg Pro Arg Ala Pro Gly Ala Pro Pro Ala Ala Pro Ala Pro Pro Pro
290 295 300

Gly Asp Leu Ala Ala Leu Glu Ala Arg Leu Arg Asp Ser Phe Leu Arg
305 310 315 320

Phe Leu Glu Arg Ser Ala Ala Gly Ala Ala Ala Glu Gly Ala Val Gln
325 330 335

Ala Gly Gly Arg Arg Pro Pro Asp Ala Ala Ala Gly Arg Gln Gly Pro
340 345 350

His Ala Asp Ser Ser Arg Pro Ser Pro
355 360

<210> 136
<211> 329
<212> PRT
<213> Homo sapien

<400> 136

Met Pro Gly Val Cys Asp Arg Ala Pro Asp Phe Leu Ser Pro Ser Glu
1 5 10 15

166

Asp Gln Val Leu Arg Pro Ala Leu Gly Ser Ser Val Ala Leu Asn Cys
20 25 30

Thr Ala Trp Val Val Ser Gly Pro His Cys Ser Leu Pro Ser Val Gln
35 40 45

Trp Leu Lys Asp Gly Leu Pro Leu Gly Ile Gly Gly His Tyr Ser Leu
50 55 60

His Glu Tyr Ser Trp Val Lys Ala Asn Leu Ser Glu Val Leu Val Ser
65 70 75 80

Ser Val Leu Gly Val Asn Val Thr Ser Thr Glu Val Tyr Gly Ala Phe
85 90 95

Thr Cys Ser Ile Gln Asn Ile Ser Phe Ser Ser Phe Thr Leu Gln Arg
100 105 110

Ala Gly Pro Thr Ser His Val Ala Ala Val Leu Ala Ser Leu Leu Val
115 120 125

Leu Leu Ala Leu Leu Ala Ala Leu Leu Tyr Val Lys Cys Arg Leu
130 135 140

Asn Val Leu Leu Trp Tyr Gln Asp Ala Tyr Gly Glu Val Glu Ile Asn
145 150 155 160

Asp Gly Lys Leu Tyr Asp Ala Tyr Val Ser Tyr Ser Asp Cys Pro Glu
165 170 175

Asp Arg Lys Phe Val Asn Phe Ile Leu Lys Pro Gln Leu Glu Arg Arg
180 185 190

Arg Gly Tyr Lys Leu Phe Leu Asp Asp Arg Asp Leu Leu Pro Arg Ala
195 200 205

Glu Pro Ser Ala Asp Leu Leu Val Asn Leu Ser Arg Cys Arg Arg Leu
210 215 220

Ile Val Val Leu Ser Asp Ala Phe Leu Ser Arg Ala Trp Cys Ser His
225 230 235 240

Ser Phe Arg Trp Val Pro Arg Gly Val Gly Trp Ala Pro Ala Tyr Thr
245 250 255

167

His Pro Pro Asp Gly Pro Ala Pro Gln Gly Gly Pro Val Pro Ala Ala
260 265 270

Gly Ala His Pro Gln Thr His Leu His His Leu Arg Gly Pro Glu Ala
275 280 285

Arg Pro Arg Ala Pro Gly Ala Pro Pro Ala Ala Pro Ala Pro Pro Pro
290 295 300

Gly Asp Leu Ala Ala Leu Glu Ala Arg Leu Arg Gly Ala Glu Gln Ala
305 310 315 320

Arg Glu Gly Pro Gly Leu Ala Ala Gly
325

<210> 137

<211> 164

<212> PRT

<213> Homo sapien

<400> 137

Pro Pro Pro Leu Arg Arg Arg Arg Pro Pro Ser Arg Arg Ala Leu Arg.
1 5 10 15

Arg Pro Leu Gly Glu Pro Glu Pro Leu Pro Thr Pro His Arg Gly Ala
20 25 30

Phe Gly Arg Leu Pro Glu Pro Gly Leu Val Gln Pro Gln Leu Pro Thr
35 40 45

Pro Ser Ser Asp Phe Trp Lys Glu Val Gln Leu Ala Leu Pro Arg Lys
50 55 60

Val Arg Tyr Arg Pro Val Glu Gly Asp Pro Gln Thr Gln Leu Gln Asp
65 70 75 80

Asp Lys Asp Pro Met Leu Ile Leu Arg Gly Arg Val Pro Glu Gly Arg
85 90 95

Ala Leu Asp Ser Glu Val Asp Pro Asp Pro Glu Gly Asp Leu Gly Val
100 105 110

Arg Gly Pro Val Phe Gly Glu Pro Ser Ala Pro Pro His Thr Ser Gly
115 120 125

Val Ser Leu Gly Glu Ser Arg Ser Ser Glu Val Asp Val Ser Asp Leu
130 135 140

168

Gly Ser Arg Asn Tyr Ser Ala Arg Thr Asp Phe Tyr Cys Leu Val Ser
145 150 155 160

Lys Asp Asp Met

<210> 138
<211> 66
<212> PRT
<213> Homo sapien

<400> 138

Met Leu Leu Glu Arg Arg Ser Val Met Asp Arg Gly Arg Gly Glu Glu
1 5 10 15

Trp Arg Ala Arg Ser Glu Ser Ala Gln Ser Lys Met Leu Ser Gly Val
20 25 30

Gly Gly Phe Val Leu Gly Leu Leu Phe Leu Gly Ala Gly Leu Phe Ile
35 40 45

Tyr Phe Arg Asn Gln Lys Gly His Ser Gly Leu Gln Pro Thr Gly Phe
50 55 60

Leu Ser
65

<210> 139
<211> 135
<212> PRT
<213> Homo sapien

<400> 139

Pro His Ser Arg Lys Asn Leu Leu Pro Gln Leu Cys Arg Met Lys Ser
1 5 10 15

Phe Pro Ala Trp Gln Leu Phe Phe His Lys Arg Gly Leu Ser Gln Asp
20 25 30

Leu Val Ala Thr Gly Ser Ala Thr Ala Glu Asn Val Leu Pro Cys Gly
35 40 45

Phe Leu Ser Ser Cys Pro Trp Pro Glu Val Pro Ala Leu Met Ala Ala
50 55 60

Pro His Leu Gln Leu Leu Cys Ser Pro Leu Pro Lys Pro Tyr Gly Leu

169

65

70

75

80

Pro Cys Ile Cys Thr His Pro Val Arg Gln Thr His Tyr Ile Ile Lys
85 90 95

Cys Phe Ser Lys Met Glu Leu Asn Ile Ile Trp Ser Ile Trp Leu Gln
100 105 110

Arg Gln Lys Met Lys Arg Lys Arg Glu Asp Tyr Phe Pro Asn Arg Ile
115 120 125

Met Ile Phe Met Tyr Met Ser
130 135

<210> 140
<211> 115
<212> PRT
<213> Homo sapien

<400> 140

Met Lys Ser Phe Pro Ala Trp Gln Leu Phe Phe His Lys Arg Gly Leu
1 5 10 15

Ser Gln Asp Leu Val Ala Thr Gly Ser Ala Thr Leu Gln Lys Met Ser
20 25 30

Ile Pro Cys Gly Phe Leu Ser Ser Cys Pro Trp Pro Glu Val Pro Ala
35 40 45

Leu Met Ala Ala Pro His Leu Gln Leu Leu Cys Ser Pro Leu Pro Lys
50 55 60

Pro Tyr Gly Leu Pro Cys Ile Cys Thr His Pro Val Arg Gln Thr His
65 70 75 80

Tyr Ile Ile Lys Cys Phe Ser Lys Met Glu Leu Asn Ile Ile Trp Ser
85 90 95

Ile Trp Leu Gln Arg Gln Lys Met Lys Arg Lys Arg Glu Asp Tyr Phe
100 105 110

Pro Ile Glu
115

<210> 141
<211> 135
<212> PRT

170

<213> Homo sapien

<400> 141

Pro His Ser Arg Lys Asn Leu Leu Pro Gln Leu Cys Arg Met Lys Ser
1 5 10 15

Phe Pro Ala Trp Gln Leu Phe Phe His Lys Arg Gly Leu Ser Gln Asp
20 25 30

Leu Val Ala Thr Gly Ser Ala Thr Ala Glu Asn Val Leu Pro Cys Gly
35 40 45

Phe Leu Ser Ser Cys Pro Trp Pro Glu Val Pro Ala Leu Met Ala Ala
50 55 60

Pro His Leu Gln Leu Leu Cys Ser Pro Leu Pro Lys Pro Tyr Gly Leu
65 70 75 80

Pro Cys Ile Cys Thr His Pro Val Arg Gln Thr His Tyr Ile Ile Lys
85 90 95

Cys Phe Ser Lys Met Glu Leu Asn Ile Ile Trp Ser Ile Trp Leu Gln
100 105 110

Arg Gln Lys Met Lys Arg Lys Arg Glu Asp Tyr Phe Pro Asn Arg Ile
115 120 125

Met Ile Phe Met Tyr Met Ser
130 135

<210> 142

<211> 220

<212> PRT

<213> Homo sapien

<400> 142

Met Asp Gln His Phe Arg Thr Thr Pro Leu Glu Lys Asn Ala Pro Val
1 5 10 15

Leu Leu Ala Leu Leu Gly Ile Trp Tyr Ile Asn Cys Phe Gly Cys Glu
20 25 30

Thr His Ala Met Leu Pro Tyr Asp Gln Tyr Leu His Arg Phe Ala Ala
35 40 45

Tyr Phe Gln Gln Gly Asp Met Glu Ser Asn Gly Lys Tyr Ile Thr Lys
50 55 60

171

Ser Gly Thr Arg Val Asp His Gln Thr Gly Pro Ile Val Trp Gly Glu
65 70 75 80

Pro Gly Thr Asn Gly Gln His Ala Phe Tyr Gln Leu Ile His Gln Gly
85 90 95

Thr Lys Met Ile Pro Cys Asp Phe Leu Ile Pro Val Gln Thr Gln His
100 105 110

Pro Ile Arg Lys Gly Leu His His Lys Ile Leu Leu Ala Asn Phe Leu
115 120 125

Ala Gln Thr Glu Ala Leu Met Arg Gly Lys Ser Thr Glu Glu Ala Arg
130 135 140

Lys Glu Leu Gln Ala Ala Gly Lys Ser Pro Glu Asp Leu Glu Arg Leu
145 150 155 160

Leu Pro His Lys Val Phe Glu Gly Asn Arg Pro Thr Asn Ser Ile Val
165 170 175

Phe Thr Lys Leu Thr Pro Phe Met Leu Gly Ala Leu Val Ala Met Tyr
180 185 190

Glu His Lys Ile Phe Val Gln Gly Ile Ile Trp Asp Ile Asn Ser Phe
195 200 205

Asp Gln Trp Gly Ser Gly Ala Gly Lys Ala Ala Gly
210 215 220

<210> 143
<211> 287
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> X=any amino acid

<400> 143

Val Arg Gly Leu Gly Gly Xaa Ala Ile Gly Leu Ser Ile Ala Leu His
1 5 10 15

Val Gly Phe Asp Asn Phe Glu Gln Leu Leu Ser Gly Ala His Trp Met
20 25 30

172

Asp Gln His Phe Arg Thr Thr Pro Leu Glu Lys Asn Ala Pro Val Leu
35 40 45

Leu Ala Leu Leu Gly Ile Trp Tyr Ile Asn Cys Phe Gly Cys Glu Thr
50 55 60

His Ala Met Leu Pro Tyr Asp Gln Tyr Leu His Arg Phe Ala Ala Tyr
65 70 75 80

Phe Gln Gln Gly Asp Met Glu Ser Asn Gly Lys Tyr Ile Thr Lys Ser
85 90 95

Gly Thr Arg Val Asp His Gln Thr Gly Pro Ile Val Trp Gly Glu Pro
100 105 110

Gly Thr Asn Gly Gln His Ala Phe Tyr Gln Leu Ile His Gln Gly Thr
115 120 125

Lys Met Ile Pro Cys Asp Phe Leu Ile Pro Val Gln Thr Gln His Pro
130 135 140

Ile Arg Lys Gly Leu His His Lys Ile Leu Leu Ala Asn Phe Leu Ala
145 150 155 160

Gln Thr Glu Ala Leu Met Arg Gly Lys Ser Thr Glu Glu Ala Arg Lys
165 170 175

Glu Leu Gln Ala Ala Gly Lys Ser Pro Glu Asp Leu Glu Arg Leu Leu
180 185 190

Pro His Lys Val Phe Glu Gly Asn Arg Pro Thr Asn Ser Ile Val Phe
195 200 205

Thr Lys Leu Thr Pro Phe Met Leu Gly Ala Leu Val Ala Met Tyr Glu
210 215 220

His Lys Ile Phe Val Gln Gly Ile Ile Trp Asp Ile Asn Ser Phe Asp
225 230 235 240

Gln Trp Gly Val Glu Leu Gly Lys Gln Leu Ala Lys Lys Ile Glu Pro
245 250 255

Glu Leu Asp Gly Ser Ala Gln Val Thr Ser His Asp Ala Ser Thr Asn
260 265 270

173

Gly Leu Ile Asn Phe Ile Lys Gln Gln Arg Glu Ala Arg Val Gln
275 280 285

<210> 144
<211> 147
<212> PRT
<213> Homo sapien

<400> 144

Met Ala Pro Gly Arg Gly Leu Gly His Ala Trp Leu Val Leu Gln Asn
1 5 10 15

Gly Arg Ala Cys Pro His Arg Pro Ala Arg Leu Ser Leu Trp Gly Arg
20 25 30

Val Cys Phe Pro Ser Arg Gly Leu Gly Ile Arg Thr Leu Leu Glu Thr
35 40 45

Phe Leu Gly Val Phe Cys Arg Tyr Leu Lys Glu Ile Ala Gln Pro Thr
50 55 60

Leu Leu Cys Ser Pro Ser Ser His His Ser Cys Leu Glu Pro Trp Ser
65 70 75 80

Pro Cys Met Ser Thr Arg Ser Ser Phe Arg Ala Ser Ser Gly Thr Ser
85 90 95

Thr Ala Leu Thr Ser Gly Gly Val Glu Leu Gly Lys Gln Leu Ala Lys
100 105 110

Lys Ile Glu Pro Glu Leu Asp Gly Ser Ala Gln Val Thr Ser His Asp
115 120 125

Ala Ser Thr Asn Gly Leu Ile Asn Phe Ile Lys Gln Gln Arg Glu Ala
130 135 140

Arg Val Gln
145

<210> 145
<211> 150
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (9)..(10)
<223> X=any amino acid

174

<400> 145

Ser Gln His Phe Gly Arg Pro Arg Xaa Xaa Asp His Leu Arg Ser Asp
1 5 10 15

Gln Ser Gly Gln His Gly Glu Thr Pro Ser Val Pro Lys Ile Gln Lys
20 25 30

Pro Ala Gly His Gly Gly Thr Cys Leu Trp Ser Gln Leu Leu Gly Arg
35 40 45

Pro Arg Gln Lys Thr Arg Trp Asn Pro Gly Gly Ala Cys Arg Glu
50 55 60

Pro Arg Leu Cys His Cys Thr Ala Ala Trp Val Thr Glu Pro Asp Ser
65 70 75 80

Ile Ser Thr Thr Asp Ala Leu Thr Leu Gly Val Ser Val Ala Gln Gly
85 90 95

Arg Gly Ala His Val Thr Gln Ala Asp Gly Pro Phe Ala Thr Ala Val
100 105 110

Asp Glu His Val Ala Leu Val Arg Val Glu Leu Gly Cys Ser Asp Asp
115 120 125

Phe Gly Gln Leu Leu His Val Ser Arg Leu Asp Val His Asp Val Lys
130 135 140

Ala Ser Ile Cys Asp Phe
145 150

<210> 146
<211> 811
<212> PRT
<213> Homo sapien

<400> 146

Met Thr Asp Ile Leu Phe Leu Pro Met Trp Ile Ser Asn Gln His Thr
1 5 10 15

Pro Ser Ser Pro Gln Gly Asp Gly Gly Ser Ala His Thr Phe Ile Ser
20 25 30

Thr Gly Gly Pro Gly Ile Ser Thr Arg Leu His Leu His Arg Gly Met
35 40 45

175

Gly Asp Gln His Thr Pro Ser Ser Pro Gln Trp Asp Gly Gly Ser Ala
50 55 60

His Ala Phe Ile Ser Thr Gly Gly Trp Gly Met Ser Thr Arg Leu His
65 70 75 80

Leu His Arg Gly Met Ala Asp Gln His Thr Pro Ser Ser Pro Gln Gly
85 90 95

Asp Gly Gly Ser Ala His Ala Phe Ile Ser Thr Gly Gly Arg Gly Ile
100 105 110

Ser Thr Arg Leu His Leu His Arg Arg Thr Gly Asp Gln His Thr Pro
115 120 125

Ser Ser Pro Gln Gly Asp Arg Gly Ser Ala His Thr Phe Ile Ser Thr
130 135 140

Gly Gly Trp Gly Ile Ser Thr His Leu His Leu His Arg Gly Met Gly
145 150 155 160

Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp Gly Gly Ser Ala His
165 170 175

Ala Phe Ile Ser Thr Gly Gly Trp Gly Ile Ser Thr Arg Leu His Leu
180 185 190

His Ser Gly Met Ala Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp
195 200 205

Gly Gly Ser Ala His Thr Phe Ile Ser Thr Gly Gly Trp Gly Ile Ser
210 215 220

Thr Arg Leu His Leu His Ser Gly Met Ala Asp Gln His Thr Pro Ser
225 230 235 240

Ser Pro Gln Gly Asp Gly Gly Ser Ala His Ala Phe Ile Ser Thr Val
245 250 255

Gly Arg Gly Ile Ser Thr His Leu His Leu His Arg Gly Thr Gly Asp
260 265 270

Gln His Thr Pro Pro Ser Pro Gln Gly His Glu Glu Ala Ala His Thr
275 280 285

176

Phe Ile Ser Thr Gly Gly Arg Gly Ile Ser Thr His Leu His Leu His
290 295 300

Arg Gly Met Gly Asp Gln His Thr Pro Pro Ser Pro Gln Gly Asp Lys
305 310 315 320

Arg Ser Ala His Thr Phe Ile Pro Thr Gly Gly Gln Gly Ile Ser Ile
325 330 335

Pro Leu His Leu His Arg Gly Met Gly Asp Gln His Thr Pro Ser Ser
340 345 350

Pro Gln Gly Asp Gly Gly Ser Ala Tyr Pro Phe Ile Ser Thr Gly Gly
355 360 365

Trp Gly Ile Ser Thr His Leu His Pro His Arg Gly Met Gly Asp Gln
370 375 380

His Thr Pro Pro Ser Pro Gln Gly His Glu Glu Ser Ala His Thr Phe
385 390 395 400

Ile Ser Thr Gly Arg Arg Gly Ile Ser Thr Pro Leu His Leu His Arg
405 410 415

Gly Met Gly Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp Gly Gly
420 425 430

Ser Ala Val His Thr Phe Ile Lys Ile Gly Glu Gln Gly Ile Ser Thr
435 440 445

His Leu Tyr Leu His Arg Gly Thr Arg Asp Gln His Thr Pro Pro Ser
450 455 460

Pro Gln Gly Met Gly Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp
465 470 475 480

Gly Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp Gly Gly Ser Thr
485 490 495

His Pro Phe Ile Ser Thr Gly Asp Gly Gly Ser Ala His Thr Phe Ile
500 505 510

Ser Thr Gly Gly Arg Gly Ile Ser Thr Arg Leu His Val His Arg Gly
515 520 525

177

Thr Gly Asp Gln His Thr Pro Ser Ser Ser Gln Gly Asp Gly Gly Ser
530 535 540

Ala His Thr Phe Ile Ser Thr Gly Gly Arg Gly Ser Ala His Thr Ile
545 550 555 560

Ser Thr Gly Gly Gln Gly Ile Asn Thr Pro Leu His Leu His Met Gly
565 570 575

Met Gly Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp Gly Asp Gln
580 585 590

His Thr Pro Pro Ser Pro Gln Gly Arg Gly Gly Leu Ala His Pro Phe
595 600 605

Ile Ser Thr Gly Arg Trp Gly Ile Ser Thr His Leu His Leu His Arg
610 615 620

Gly Thr Gly Asp Gln His Thr Pro Ser Ser Pro Gln Trp Asp Arg Gly
625 630 635 640

Ser Ala Tyr Pro Phe Ile Ser Thr Gly Gly Trp Gly Ser Ala His Thr
645 650 655

Phe Ile Ser Thr Glu Glu Met Gly Asp Gln His Ala Pro Ser Ser Pro
660 665 670

Gln Gly His Gly Ser Ala His Thr Phe Ile Ser Thr Gly Gly Arg
675 680 685

Gly Ile Ser Thr His Leu His Pro Asp Arg Gly Met Arg Asn Gln His
690 695 700

Thr Pro Ser Ser Arg Gln Gly Asp Gly Met Gly Asp Gln His Thr Pro
705 710 715 720

Pro Ser Pro Gln Gly His Glu Gly Ala Ala His Thr Ser Ile Ser Thr
725 730 735

Gly His Arg Gly Ser Ala His Thr Ser Phe Ser Thr Gly Ala Gln Ala
740 745 750

Ile Ser Thr Tyr Leu His Leu Asp Arg Val Thr Gly Asp Gln His Thr
755 760 765

Pro Pro Ser Pro Gln Gln Gln Glu Ser Thr His Thr Phe Ile Ser

178

770 775 780

Thr Gly Gly Arg Gly Ile Ser Thr His Leu His Leu His Arg Gly Thr
785 790 795 800

Gly Ala Arg Leu Pro Thr Pro Leu Gly Asp Thr
805 810

<210> 147
<211> 442
<212> PRT
<213> Homo sapien

<400> 147

Phe Arg Val Met Thr Asp Ile Leu Phe Leu Pro Met Trp Ile Ser Asn
1 5 10 15

Gln His Thr Pro Ser Ser Pro Gln Gly Asp Gly Gly Ser Ala His Thr
20 25 30

Phe Ile Ser Thr Gly Gly Pro Gly Ile Ser Thr Arg Leu His Leu His
35 40 45

Arg Gly Met Gly Asp Gln His Thr Pro Ser Ser Pro Gln Trp Asp Gly
50 55 60

Gly Ser Ala His Ala Phe Ile Ser Thr Gly Gly Trp Gly Met Ser Thr
65 70 75 80

Arg Leu His Leu His Arg Gly Met Ala Asp Gln His Thr Pro Ser Ser
85 90 95

Pro Gln Gly Asp Gly Gly Ser Ala His Ala Phe Ile Ser Thr Gly Gly
100 105 110

Arg Gly Ile Ser Thr Arg Leu His Leu His Arg Arg Thr Gly Asp Gln
115 120 125

His Thr Pro Ser Ser Pro Gln Gly Asp Arg Gly Ser Ala His Thr Phe
130 135 140

Ile Ser Thr Gly Gly Trp Gly Ile Ser Thr His Leu His Leu His Arg
145 150 155 160

Gly Met Gly Asp Gln His Thr Pro Ser Ser Pro Gln Gly Asp Gly Gly
165 170 175

179

Ser Ala His Ala Phe Ile Ser Thr Gly Gly Trp Gly Ile Ser Thr Arg
180 185 190

Leu His Leu His Ser Gly Met Ala Asp Gln His Thr Pro Ser Ser Pro
195 200 205

Gln Gly Asp Gly Gly Ser Ala His Thr Phe Ile Ser Thr Gly Gly Trp
210 215 220

Gly Ile Ser Thr Arg Leu His Leu His Ser Gly Met Ala Asp Gln His
225 230 235 240

Thr Pro Ser Ser Pro Gln Gly Asp Gly Gly Ser Ala His Ala Phe Ile
245 250 255

Ser Thr Val Gly Arg Gly Ile Ser Thr His Leu His Leu His Arg Gly
260 265 270

Thr Gly Asp Gln His Thr Pro Pro Ser Pro Gln Gly His Glu Glu Ala
275 280 285

Ala His Thr Phe Ile Ser Thr Gly Gly Arg Gly Ile Ser Thr His Leu
290 295 300

His Leu His Arg Gly Met Gly Asp Gln His Thr Pro Pro Ser Pro Gln
305 310 315 320

Gly Asp Lys Arg Ser Ala His Thr Phe Ile Pro Thr Gly Gly Gln Gly
325 330 335

Ile Ser Ile Pro Leu His Leu His Arg Gly Met Gly Asp Gln His Thr
340 345 350

Pro Ser Ser Pro Gln Gly Asp Gly Gly Ser Ala Tyr Pro Phe Ile Ser
355 360 365

Thr Gly Gly Trp Gly Ile Ser Thr His Leu His Pro His Arg Gly Met
370 375 380

Gly Asp Gln His Thr Pro Pro Ser Pro Gln Gly His Glu Glu Ser Ala
385 390 395 400

His Thr Phe Ile Ser Thr Gly Arg Arg Gly Ile Ser Thr Pro Leu His
405 410 415

180

Leu His Arg Gly Met Gly Asp Gln His Thr Pro Ser Ser Pro Gln Gly
420 425 430

Asp Gly Gly Ser Ala Val His Thr Phe Ile
435 440

<210> 148

<211> 351

<212> PRT

<213> Homo sapien

<400> 148

Met Lys Ala Ser Gly Thr Leu Arg Glu Tyr Lys Val Val Gly Arg Cys
1 5 10 15

Leu Pro Thr Pro Lys Cys His Thr Pro Pro Leu Tyr Arg Met Arg Ile
20 25 30

Phe Ala Pro Asn His Val Val Ala Lys Ser Arg Phe Trp Tyr Phe Val
35 40 45

Ser Gln Leu Lys Lys Met Lys Lys Ser Ser Gly Glu Ile Val Tyr Cys
50 55 60

Gly Gln Val Phe Glu Lys Ser Pro Leu Arg Val Lys Asn Phe Gly Ile
65 70 75 80

Trp Leu Arg Tyr Asp Ser Arg Ser Gly Thr His Asn Met Tyr Arg Glu
85 90 95

Tyr Arg Asp Leu Thr Thr Ala Gly Ala Val Thr Gln Cys Tyr Arg Asp
100 105 110

Met Gly Ala Arg His Arg Ala Arg Ala His Ser Ile Gln Ile Met Lys
115 120 125

Val Glu Glu Ile Ala Ala Ser Lys Cys Arg Arg Pro Ala Val Lys Gln
130 135 140

Phe His Asp Ser Lys Ile Lys Phe Pro Leu Pro His Arg Val Leu Arg
145 150 155 160

Arg Gln His Lys Pro Arg Phe Thr Thr Lys Arg Pro Asn Asn Leu Leu
165 170 175

Ser Arg Cys Arg Ala Leu Val Arg Gly Val Pro Pro Asn Lys Leu Arg
180 185 190

Asn Ala Pro Lys Val Gln Ala Ala Val Pro Asp Asp Phe Lys Asp Phe
195 200 205

Ser Leu Leu Asn Glu Glu Ala Arg Tyr Tyr Gln Phe Lys Thr Met Val
210 215 220

Arg Arg Ala Trp Ser Ala Gly Thr His Asp Pro Glu Lys Ser Thr Gly
225 230 235 240

Asn Arg Asp Gly Glu Arg Leu Asp Ala Lys Ser Ser Ala Arg Arg Trp
245 250 255

Ala Lys Arg Asp Arg Thr Thr Arg Arg Ala Leu Pro Ala Glu Glu Glu
260 265 270

Tyr His Ser Asn Ala Lys Ala Thr Val Arg Gln Asn Lys Pro Arg Arg
275 280 285

His Gln Ser Gly Ala Lys Glu Lys Lys Gln His Asn Glu His Ala Ala
290 295 300

Ala Gln Tyr Ala Ala Arg Ser Lys Glu Thr Asp Arg Lys Gln Pro Val
305 310 315 320

Gly Asp Asn Gln Gly Glu Thr Lys Pro Pro Gly Arg Lys Arg Glu Gly
325 330 335

Glu Glu Arg Thr Ala Gly Pro Asn Lys Glu Arg Asn Ser Arg His
340 345 350

<210> 149
<211> 223
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> X=any amino acid

<400> 149

Ala Phe Ala Xaa Gly Gly Glu Arg Gly Glu His Ala Met Lys Ala Ser
1 5 10 15

Gly Thr Leu Arg Glu Tyr Lys Val Val Gly Arg Cys Leu Pro Thr Pro
20 25 30

182

Lys Cys His Thr Pro Pro Leu Tyr Arg Met Arg Ile Phe Ala Pro Asn
35 40 45

His Val Val Ala Lys Ser Arg Phe Trp Tyr Phe Val Ser Gln Leu Lys
50 55 60

Lys Met Lys Lys Ser Ser Gly Glu Ile Val Tyr Cys Gly Gln Val Phe
65 70 75 80

Glu Lys Ser Pro Leu Arg Val Lys Asn Phe Gly Ile Trp Leu Arg Tyr
85 90 95

Asp Ser Arg Ser Gly Thr His Asn Met Tyr Arg Glu Tyr Arg Asp Leu
100 105 110

Thr Thr Ala Gly Ala Val Thr Gln Cys Tyr Arg Asp Met Gly Ala Arg
115 120 125

His Arg Ala Arg Ala His Ser Ile Gln Ile Met Lys Val Glu Glu Ile
130 135 140

Ala Ala Ser Lys Cys Arg Arg Pro Ala Val Lys Gln Phe His Asp Ser
145 150 155 160

Lys Ile Lys Phe Pro Leu Pro His Arg Val Leu Arg Arg Gln His Lys
165 170 175

Pro Arg Phe Thr Thr Lys Arg Pro Asn Asn Leu Leu Ser Arg Cys Arg
180 185 190

Ala Leu Val Arg Gly Val Pro Pro Asn Lys Leu Arg Asn Ala Pro Lys
195 200 205

Val Gln Ala Ala Val Pro Asp Asp Phe Lys Asp Phe Ser Leu Leu
210 215 220

<210> 150

<211> 260

<212> PRT

<213> Homo sapien

<400> 150

Thr Ala Val Leu Ser Pro Gly Pro Arg Leu Pro Ser His Ser Ala Arg
1 5 10 15

183

Cys Ala Cys Glu Gly Leu Ala Ala Leu Gly Thr Gly Gly Ala Ala Arg
20 25 30

Gly Val Arg Val Gly Val Arg Glu Gly Ser Thr Gln Asp Leu Arg Thr
35 40 45

Leu Leu Trp Gly Arg Thr Lys His Leu Pro Gly Ala Gly Gly Ala Pro
50 55 60

Gly Thr Arg Arg Phe Arg Gln Leu Gly Ala Leu Gly Ile Cys Gly Leu
65 70 75 80

Arg Pro Gly Asp Gly Leu Gly Gly His Ala His Ala Leu Gly Leu Thr
85 90 95

Glu Cys Asp Arg Ala Arg Gly Arg Ala Lys Arg Gly Gly Arg Ala Arg
100 105 110

Arg Arg Lys Glu Gly Leu Val Arg Pro Ala Gln Pro Asp Gln Cys Arg
115 120 125

Gly Gly Asn Gly Leu Gly Ala Gly Pro Ile Arg Ala Gly Gly Phe Leu
130 135 140

Arg Arg Arg Pro Ser Pro Gln Leu Leu Asp Cys Ser Gly Ala Gly Gly
145 150 155 160

Thr Asn Thr Trp Arg Phe Phe Arg Arg Gly Glu Asp Phe Leu Arg Ala
165 170 175

Gln Arg Ile His Phe Leu His Ile Asn Leu Ser Cys Trp Arg Asp Thr
180 185 190

Ala Gly Lys Arg Arg Pro Ile Phe Val Gln Arg Thr Leu Asp Leu Gly
195 200 205

Arg Asn Lys Asp Asp Leu Asp Pro Cys Pro His Tyr Leu Glu Phe Ser
210 215 220

Met Leu Ala Lys Ile Trp Thr Arg Ala Val Pro Glu Gly Arg Gly Pro
225 230 235 240

Trp Arg Glu Ala Pro Val Thr Ala His Pro Gly Val Gly Leu Trp Ala
245 250 255

Leu Leu Leu Cys

184

260

<210> 151
<211> 259
<212> PRT
<213> Homo sapien

<400> 151

Ser Arg Val Val Ala Arg Pro Arg Leu Pro Ser His Ser Ala Arg Cys
1 5 10 15

Ala Cys Glu Gly Leu Ala Ala Leu Gly Thr Gly Gly Ala Ala Arg Gly
20 25 30

Val Arg Val Gly Val Arg Glu Gly Ser Thr Gln Asp Leu Arg Thr Leu
35 40 45

Leu Trp Gly Arg Thr Lys His Leu Pro Gly Ala Gly Gly Ala Pro Gly
50 55 60

Thr Arg Arg Phe Arg Gln Leu Gly Ala Leu Gly Ile Cys Gly Leu Arg
65 70 75 80

Pro Gly Asp Gly Leu Gly Gly His Ala His Ala Leu Gly Leu Thr Glu
85 90 95

Cys Asp Arg Ala Arg Gly Arg Ala Lys Arg Gly Gly Arg Ala Arg Arg
100 105 110

Arg Lys Glu Gly Leu Val Arg Pro Ala Gln Pro Asp Gln Cys Arg Gly
115 120 125

Gly Asn Gly Leu Gly Ala Gly Pro Ile Arg Ala Gly Gly Phe Leu Arg
130 135 140

Arg Arg Pro Ser Pro Gln Leu Leu Asp Cys Ser Gly Ala Gly Gly Thr
145 150 155 160

Asn Thr Trp Arg Phe Phe Arg Arg Gly Glu Asp Phe Leu Arg Ala Gln
165 170 175

Arg Ile His Phe Leu His Ile Asn Leu Ser Cys Trp Arg Asp Thr Ala
180 185 190

Gly Lys Arg Arg Pro Ile Phe Val Gln Arg Thr Leu Asp Leu Gly Arg
195 200 205

Asn Lys Asp Asp Leu Asp Pro Cys Pro His Tyr Leu Glu Phe Ser Met
210 215 220

Leu Ala Lys Ile Trp Thr Arg Ala Val Pro Glu Gly Arg Gly Pro Trp
225 230 235 240

Arg Glu Ala Pro Val Thr Ala His Pro Gly Val Gly Leu Trp Ala Leu
245 250 255

Leu Leu Cys

<210> 152
<211> 650
<212> PRT
<213> Homo sapien

<400> 152

Met Gln Gln Asp Gly Leu Gly Val Gly Thr Arg Asn Gly Ser Gly Lys
1 5 10 15

Gly Arg Ser Val His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro Leu
20 25 30

Arg Tyr Phe Gly Arg Asp Ala Arg Ala Arg Arg Ala Gln Thr Ala Ala
35 40 45

Met Ala Leu Leu Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser His Pro
50 55 60

Ala Ala Ala Gly Arg Asp Ala Val Val Phe Val Trp Leu Leu Leu Ser
65 70 75 80

Thr Trp Cys Thr Ala Pro Ala Arg Ala Ile Gln Val Thr Val Ser Asn
85 90 95

Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr
100 105 110

Tyr Gln Met Thr Ser Thr Pro Thr Gln Pro Ile Val Ile Trp Lys Tyr
115 120 125

Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser
130 135 140

Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Gly Asn Pro Gly Tyr

186

145	150	155	160
Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg Val Val			
165		170	175
Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly			
180	185	.	190
Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr			
195	200		205
Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln			
210	215	220	
Asp Leu Gln Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Gly			
225	230	235	240
Arg Thr Ser Gly Val Ala Glu Leu Leu Pro Gly Phe Gln Ala Gly Pro			
245	250		255
Ile Glu Asp Trp Leu Phe Val Val Val Val Cys Leu Ala Ala Phe Leu			
260	265		270
Ile Phe Leu Leu Leu Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr			
275	280		285
Cys Cys Cys Tyr Val Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Cys			
290	295	300	
Pro Glu Ala Leu Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro			
305	310	315	320
Ser Ile Tyr Ala Pro Ser Thr Tyr Ala His Leu Ser Pro Ala Lys Thr			
325	330		335
Pro Pro Pro Pro Ala Met Ile Pro Met Gly Pro Ala Tyr Asn Gly Tyr			
340	345		350
Pro Gly Gly Tyr Pro Gly Asp Val Asp Arg Ser Ser Ser Ala Gly Gly			
355	360	365	
Gln Gly Ser Tyr Val Pro Leu Leu Arg Asp Thr Asp Ser Ser Val Ala			
370	375	380	
Ser Glu Val Arg Ser Gly Tyr Arg Ile Gln Ala Ser Gln Gln Asp Asp			
385	390	395	400

Ser Met Arg Val Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp
405 410 415

Pro Ser Arg Pro Gly Pro Pro Ser Gly Arg Val Glu Arg Ala Met Ser
420 425 430

Glu Val Thr Ser Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg
435 440 445

Gly Pro Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp Gly Gly His Ser
450 455 460

Pro Arg Ser Pro Arg Gly Trp Asp Gln Glu Pro Ala Arg Glu Gln Ala
465 470 475 480

Gly Gly Gly Trp Arg Ala Arg Arg Pro Arg Ala Arg Ser Val Asp Ala
485 490 495

Leu Asp Asp Leu Thr Pro Pro Ser Thr Ala Glu Ser Gly Ser Arg Ser
500 505 510

Pro Thr Ser Asn Gly Gly Arg Arg Ser Arg Ala Tyr Met Pro Pro Arg
515 520 525

Ser Arg Ser Arg Asp Asp Leu Tyr Asp Gln Asp Asp Ser Arg Asp Phe
530 535 540

Pro Arg Ser Arg Asp Pro His Tyr Asp Asp Phe Arg Ser Arg Glu Arg
545 550 555 560

Pro Pro Ala Asp Pro Arg Ser His His Arg Thr Arg Asp Pro Arg
565 570 575

Asp Asn Gly Ser Arg Ser Gly Asp Leu Pro Tyr Asp Gly Arg Leu Leu
580 585 590

Glu Glu Ala Val Arg Lys Lys Gly Ser Glu Glu Arg Arg Arg Pro His
595 600 605

Lys Glu Glu Glu Glu Ala Tyr Tyr Pro Pro Ala Pro Pro Pro Tyr
610 615 620

Ser Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn
625 630 635 640

188

Leu Ala Leu Ser Arg Glu Ser Leu Val Val
645 650

<210> 153
<211> 388
<212> PRT
<213> Homo sapien

<400> 153

Met Ser Lys Glu Ala Leu Gln Arg Arg Gly Arg Leu Gly Lys Glu Val
1 5 10 15

Gln Ala Gln Val Pro Pro Glu Pro Asn Gly Tyr Gly Ala Ala Trp Leu
20 25 30

Leu Pro His Pro Pro Ser Pro Val Asp Cys Val Leu Thr Val Tyr Ala
35 40 45

Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro Ser
50 55 60

Thr Tyr Ala His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro Ala Met
65 70 75 80

Ile Pro Met Gly Pro Ala Tyr Asn Gly Tyr Pro Gly Gly Tyr Pro Gly
85 90 95

Asp Val Asp Arg Ser Ser Ser Ala Gly Gly Gln Gly Ser Tyr Val Pro
100 105 110

Leu Leu Arg Asp Thr Asp Ser Ser Val Ala Ser Glu Val Arg Ser Gly
115 120 125

Tyr Arg Ile Gln Ala Ser Gln Gln Asp Asp Ser Met Arg Val Leu Tyr
130 135 140

Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Pro Gly Pro
145 150 155 160

Pro Ser Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu His
165 170 175

Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro Ala Leu Thr Pro
180 185 190

Ile Arg Asp Glu Glu Trp Gly Gly His Ser Pro Arg Ser Pro Arg Gly

189

195

200

205

Trp Asp Gln Glu Pro Ala Arg Glu Gln Ala Gly Gly Gly Trp Arg Ala
210 215 220

Arg Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Leu Thr Pro
225 230 235 240

Pro Ser Thr Ala Glu Ser Gly Ser Arg Ser Pro Thr Ser Asn Gly Gly
245 250 255

Arg Arg Ser Arg Ala Tyr Met Pro Pro Arg Ser Arg Ser Arg Asp Asp
260 265 270

Leu Tyr Asp Gln Asp Asp Ser Arg Asp Phe Pro Arg Ser Arg Asp Pro
275 280 285

His Tyr Asp Asp Phe Arg Ser Arg Glu Arg Pro Pro Ala Asp Pro Arg
290 295 300

Ser His His His Arg Thr Arg Asp Pro Arg Asp Asn Gly Ser Arg Ser
305 310 315 320

Gly Asp Leu Pro Tyr Asp Gly Arg Leu Leu Glu Glu Ala Val Arg Lys
325 330 335

Lys Gly Ser Glu Glu Arg Arg Pro His Lys Glu Glu Glu Glu Glu
340 345 350

Ala Tyr Tyr Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp Ser Gln
355 360 365

Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser Arg Glu
370 375 380

Ser Leu Val Val
385

<210> 154
<211> 83
<212> PRT
<213> Homo sapien

<400> 154

Met Lys Pro Gly Glu Gly Gly Gln Val Ala Pro Ser Leu Pro Gly Ser
1 5 10 15

190

Gly Gln Thr Cys Leu Glu Ser Gln Gly Arg Thr Arg Ser Ser Asn Pro
20 25 30

Pro Thr Ala Pro Ser Arg Leu Pro Ala Arg Pro Thr Ser His Ser Leu
35 40 45

Gly Ser His Gly Ala Asp Arg Pro Arg Arg Glu His Thr Pro Pro Val
50 55 60

Cys Ala Leu Ser Arg Ser Gln Arg Pro Arg Gly His Arg Ala Met His
65 70 75 80

Ala Pro Asn

<210> 155

<211> 379

<212> PRT

<213> Homo sapien

<400> 155

Ala Ser His Leu Leu Pro Gln Ala Pro Thr Ala Ser Pro Cys Val Leu
1 5 10 15

Gln Glu Thr Tyr Lys Leu Pro His Arg Leu Ile Glu Lys Lys Arg Arg
20 25 30

Asp Arg Ile Asn Glu Cys Ile Ala Gln Leu Lys Asp Leu Leu Pro Glu
35 40 45

His Leu Lys Leu Thr Thr Leu Gly His Leu Glu Lys Ala Val Val Leu
50 55 60

Glu Leu Thr Leu Lys His Val Lys Ala Leu Thr Asn Leu Ile Asp Gln
65 70 75 80

Gln Gln Gln Lys Ile Ile Ala Leu Gln Ser Gly Leu Gln Ala Gly Glu
85 90 95

Leu Ser Gly Arg Asn Val Glu Thr Gly Gln Glu Met Phe Cys Ser Gly
100 105 110

Phe Gln Thr Cys Ala Arg Glu Val Leu Gln Tyr Leu Ala Lys His Glu
115 120 125

Asn Thr Arg Asp Leu Lys Ser Ser Gln Leu Val Thr His Leu His Arg

191

130 135 140

Val Val Ser Glu Leu Leu Gln Gly Gly Thr Ser Arg Lys Pro Ser Asp
145 150 155 160

Pro Ala Pro Lys Val Met Asp Phe Lys Glu Lys Pro Ser Ser Pro Ala
165 170 175

Lys Gly Ser Glu Gly Pro Gly Lys Asn Cys Val Pro Val Ile Gln Arg
180 185 190

Thr Phe Ala His Ser Ser Gly Glu Gln Ser Gly Ser Asp Thr Asp Thr
195 200 205

Asp Ser Gly Tyr Gly Gly Glu Ser Glu Lys Gly Asp Leu Arg Ser Glu
210 215 220

Gln Pro Cys Phe Lys Ser Asp His Gly Arg Arg Phe Thr Met Gly Glu
225 230 235 240

Arg Ile Gly Ala Ile Lys Gln Glu Ser Glu Glu Pro Pro Thr Lys Lys
245 250 255

Asn Arg Met Gln Leu Ser Asp Asp Glu Gly His Phe Thr Ser Ser Asp
260 265 270

Leu Ile Ser Ser Pro Phe Leu Gly Pro His Pro His Gln Pro Pro Phe
275 280 285

Cys Leu Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr Ala Tyr Leu Pro
290 295 300

Met Leu Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro Val Leu Tyr Pro
305 310 315 320

Gly Leu Asn Ala Ser Ala Ala Leu Ser Ser Phe Met Asn Pro Asp
325 330 335

Lys Ile Ser Ala Pro Leu Leu Met Pro Gln Arg Leu Pro Ser Pro Leu
340 345 350

Pro Ala His Pro Ser Val Asp Ser Ser Val Leu Leu Gln Ala Leu Lys
355 360 365

Pro Ile Pro Pro Leu Asn Leu Glu Thr Lys Asp
370 375

192

<210> 156
<211> 379
<212> PRT
<213> Homo sapien

<400> 156

Ala Ser His Leu Leu Pro Gln Ala Pro Thr Ala Ser Pro Cys Val Leu
1 5 10 15

Gln Glu Thr Tyr Lys Leu Pro His Arg Leu Ile Glu Lys Lys Arg Arg
20 25 30

Asp Arg Ile Asn Glu Cys Ile Ala Gln Leu Lys Asp Leu Leu Pro Glu
35 40 45

His Leu Lys Leu Thr Thr Leu Gly His Leu Glu Lys Ala Val Val Leu
50 55 60

Glu Leu Thr Leu Lys His Val Lys Ala Leu Thr Asn Leu Ile Asp Gln
65 70 75 80

Gln Gln Gln Lys Ile Ile Ala Leu Gln Ser Gly Leu Gln Ala Gly Glu
85 90 95

Leu Ser Gly Arg Asn Val Glu Thr Gly Gln Glu Met Phe Cys Ser Gly
100 105 110

Phe Gln Thr Cys Ala Arg Glu Val Leu Gln Tyr Leu Ala Lys His Glu
115 120 125

Asn Thr Arg Asp Leu Lys Ser Ser Gln Leu Val Thr His Leu His Arg
130 135 140

Val Val Ser Glu Leu Leu Gln Gly Gly Thr Ser Arg Lys Pro Ser Asp
145 150 155 160

Pro Ala Pro Lys Val Met Asp Phe Lys Glu Lys Pro Ser Ser Pro Ala
165 170 175

Lys Gly Ser Glu Gly Pro Gly Lys Asn Cys Val Pro Val Ile Gln Arg
180 185 190

Thr Phe Ala His Ser Ser Gly Glu Gln Ser Gly Ser Asp Thr Asp Thr
195 200 205

193

Asp Ser Gly Tyr Gly Gly Glu Ser Glu Lys Gly Asp Leu Arg Ser Glu
210 215 220

Gln Pro Cys Phe Lys Ser Asp His Gly Arg Arg Phe Thr Met Gly Glu
225 230 235 240

Arg Ile Gly Ala Ile Lys Gln Glu Ser Glu Glu Pro Pro Thr Lys Lys
245 250 255

Asn Arg Met Gln Leu Ser Asp Asp Glu Gly His Phe Thr Ser Ser Asp
260 265 270

Leu Ile Ser Ser Pro Phe Leu Gly Pro His Pro His Gln Pro Pro Phe
275 280 285

Cys Leu Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr Ala Tyr Leu Pro
290 295 300

Met Leu Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro Val Leu Tyr Pro
305 310 315 320

Gly Leu Asn Ala Ser Ala Ala Leu Ser Ser Phe Met Asn Pro Asp
325 330 335

Lys Ile Ser Ala Pro Leu Leu Met Pro Gln Arg Leu Pro Ser Pro Leu
340 345 350

Pro Ala His Pro Ser Val Asp Ser Ser Val Leu Leu Gln Ala Leu Lys
355 360 365

Pro Ile Pro Pro Leu Asn Leu Glu Thr Lys Asp
370 375

<210> 157
<211> 358
<212> PRT
<213> Homo sapien

<400> 157

Met Lys Pro Gly Glu Gly Gly Gln Val Ala Pro Ser Leu Pro Gly Ser
1 5 10 15

Gly Gln Thr Cys Leu Glu Ser Gln Gly Arg Thr Arg Ser Ser Asn Pro
20 25 . 30

Pro Thr Ala Pro Ser Arg Leu Pro Ala Leu Pro His Phe Ser Phe Thr
35 40 45

Trp Leu Ala Arg Arg Arg Gln Thr Ala Gln Gly Ala His Thr Ala Ser
50 55 60

Leu Cys Ala Glu Ser Glu Pro Glu Ala Ala Gly Thr Pro Gly His Ala
65 70 75 80

Arg Pro Gln Leu Lys Leu His Leu Lys Ala Glu Asp Ser Ser Ser Pro
85 90 95

Gly Asp Phe Lys Glu Leu Arg Leu Arg Gly Thr Ser Ala Glu Arg Pro
100 105 110

Pro Lys Pro Ser Pro Gly Gln Ser Ser Ser Arg Arg Ser Ala Ser Ala
115 120 125

Asp Arg Ser Ala Gln Trp Pro Arg Leu Ala Ala Pro Trp Ser Gly Ser
130 135 140

Pro Ala Arg Asn His Pro Pro Pro Ala Cys Pro Lys His Arg Asp Trp
145 150 155 160

Ser Thr Glu Thr Tyr Gln Gly Lys Leu Ala Leu Leu Gly Pro Ser Ser
165 170 175

Leu Asn Cys Ser Pro Met Leu Cys Ala Thr Leu Asn Leu Glu Gln Leu
180 185 190

Arg Ala His Arg Glu Val Leu Ala Arg Gln Asn Ala Cys Ser Arg Ala
195 200 205

Gln Ala Val Thr Thr Leu Pro Gly Leu Ser Ser Cys Arg Met Tyr Pro
210 215 220

Ala His Met Tyr Gln Val Tyr Lys Ser Arg Arg Gly Ile Lys Arg Ser
225 230 235 240

Glu Asp Ser Lys Val Ser Lys Cys Thr Pro Arg Asp Pro Ala Leu Ser
245 250 255

Pro Ser Arg Ala Leu Ser Phe Gln Glu Lys Phe Ser Arg Phe Glu Val
260 265 270

Gly Glu Gly Met Gln Gly Val Gly Ser Val Pro Leu Leu Ser Asp Leu
275 280 285

195

Glu Lys Lys Gly Gln Thr Met Val Leu Gly Ala Thr Leu Leu Leu Cys
290 295 300

Ser Ser Ala Gly Leu Leu Leu Arg Gly Trp Glu Asp Arg Leu Leu Ile
305 310 315 320

Ser Phe Pro Lys Arg Pro Pro Pro Pro Arg Ala Ser Cys Arg Arg Pro
325 330 335

Thr Asn Cys Arg Thr Gly Ser Ser Arg Lys Arg Asp Val Thr Gly Leu
340 345 350

Thr Ser Ala Ser Pro Ser
355

<210> 158

<211> 329

<212> PRT

<213> Homo sapien

<400> 158

Leu Gln Pro Thr His Arg Ser Leu Pro Pro Pro Arg Pro Pro His Phe
1 5 10 15

Ser Phe Thr Trp Leu Ala Arg Arg Gln Thr Ala Gln Gly Ala His
20 25 30

Thr Ala Ser Leu Cys Ala Glu Ser Glu Pro Glu Ala Ala Gly Thr Pro
35 40 45

Gly His Ala Arg Pro Gln Leu Lys Leu His Leu Lys Ala Glu Asp Ser
50 55 60

Ser Ser Pro Gly Asp Phe Lys Glu Leu Arg Leu Arg Gly Thr Ser Ala
65 70 75 80

Glu Arg Pro Pro Lys Pro Ser Pro Gly Gln Ser Ser Arg Arg Ser
85 90 95

Ala Ser Ala Asp Arg Ser Ala Gln Trp Pro Arg Leu Ala Ala Pro Trp
100 105 110

Ser Gly Ser Pro Ala Arg Asn His Pro Pro Pro Ala Cys Pro Lys His
115 120 125

Arg Asp Trp Ser Thr Glu Thr Tyr Gln Gly Lys Leu Ala Leu Leu Gly

196

130

135

140

Pro Ser Ser Leu Asn Cys Ser Pro Met Leu Cys Ala Thr Leu Asn Leu
145 150 155 160

Glu Gln Leu Arg Ala His Arg Glu Val Leu Ala Arg Gln Asn Ala Cys
165 170 175

Ser Arg Ala Gln Ala Val Thr Thr Leu Pro Gly Leu Ser Ser Cys Arg
180 185 190

Met Tyr Pro Ala His Met Tyr Gln Val Tyr Lys Ser Arg Arg Gly Ile
195 200 205

Lys Arg Ser Glu Asp Ser Lys Val Ser Lys Cys Thr Pro Arg Asp Pro
210 215 220

Ala Leu Ser Pro Ser Arg Ala Leu Ser Phe Gln Glu Lys Phe Ser Arg
225 230 235 240

Phe Glu Val Gly Glu Gly Met Gln Gly Val Gly Ser Val Pro Leu Leu
245 250 255

Ser Asp Leu Glu Lys Lys Gly Gln Thr Met Val Leu Gly Ala Thr Leu
260 265 270

Leu Leu Cys Ser Ser Ala Gly Leu Leu Leu Arg Gly Trp Glu Asp Arg
275 280 285

Leu Leu Ile Ser Phe Pro Lys Arg Pro Pro Pro Pro Arg Ala Ser Cys
290 295 300

Arg Arg Pro Thr Asn Cys Arg Thr Gly Ser Ser Arg Lys Arg Asp Val
305 310 315 320

Thr Gly Leu Thr Ser Ala Ser Pro Ser
325

<210> 159

<211> 425

<212> PRT

<213> Homo sapien

<400> 159

Cys Arg Gln Glu Arg Ala Val Ala Pro Ala Arg Arg Ala Met Glu Arg
1 5 10 15

197

Ile Pro Ser Ala Gln Pro Pro Pro Ala Cys Leu Pro Lys Ala Pro Gly
20 25 30

Leu Glu His Gly Asp Leu Pro Gly Met Tyr Pro Ala His Met Tyr Gln
35 40 45

Val Tyr Lys Ser Arg Arg Gly Ile Lys Arg Ser Glu Asp Ser Lys Glu
50 55 60

Thr Tyr Lys Leu Pro His Arg Leu Ile Glu Lys Lys Arg Arg Asp Arg
65 70 75 80

Ile Asn Glu Cys Ile Ala Gln Leu Lys Asp Leu Leu Pro Glu His Leu
85 90 95

Lys Leu Thr Thr Leu Gly His Leu Glu Lys Ala Val Val Leu Glu Leu
100 105 110

Thr Leu Lys His Val Lys Ala Leu Thr Asn Leu Ile Asp Gln Gln Gln
115 120 125

Gln Lys Ile Ile Ala Leu Gln Ser Gly Leu Gln Ala Gly Glu Leu Ser
130 135 140

Gly Arg Asn Val Glu Thr Gly Gln Glu Met Phe Cys Ser Gly Phe Gln
145 150 155 160

Thr Cys Ala Arg Glu Val Leu Gln Tyr Leu Ala Lys His Glu Asn Thr
165 170 175

Arg Asp Leu Lys Ser Ser Gln Leu Val Thr His Leu His Arg Val Val
180 185 190

Ser Glu Leu Leu Gln Gly Gly Thr Ser Arg Lys Pro Ser Asp Pro Ala
195 200 205

Pro Lys Val Met Asp Phe Lys Glu Lys Pro Ser Ser Pro Ala Lys Gly
210 215 220

Ser Glu Gly Pro Gly Lys Asn Cys Val Pro Val Ile Gln Arg Thr Phe
225 230 235 240

Ala His Ser Ser Gly Glu Gln Ser Gly Ser Asp Thr Asp Thr Asp Ser
245 250 255

198

Gly Tyr Gly Gly Glu Ser Glu Lys Gly Asp Leu Arg Ser Glu Gln Pro
260 265 270

Cys Phe Lys Ser Asp His Gly Arg Arg Phe Thr Met Gly Glu Arg Ile
275 280 285

Gly Ala Ile Lys Gln Glu Ser Glu Glu Pro Pro Thr Lys Lys Asn Arg
290 295 300

Met Gln Leu Ser Asp Asp Glu Gly His Phe Thr Ser Ser Asp Leu Ile
305 310 315 320

Ser Ser Pro Phe Leu Gly Pro His Pro His Gln Pro Pro Phe Cys Leu
325 330 335

Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr Ala Tyr Leu Pro Met Leu
340 345 350

Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro Val Leu Tyr Pro Gly Leu
355 360 365

Asn Ala Ser Ala Ala Ala Leu Ser Ser Phe Met Asn Pro Asp Lys Ile
370 375 380

Ser Ala Pro Leu Leu Met Pro Gln Arg Leu Pro Ser Pro Leu Pro Ala
385 390 395 400

His Pro Ser Val Asp Ser Ser Val Leu Leu Gln Ala Leu Lys Pro Ile
405 410 415

Pro Pro Leu Asn Leu Glu Thr Lys Asp
420 425

<210> 160
<211> 425
<212> PRT
<213> Homo sapien

<400> 160

Cys Arg Gln Glu Arg Ala Val Ala Pro Ala Arg Arg Ala Met Glu Arg
1 5 10 15

Ile Pro Ser Ala Gln Pro Pro Ala Cys Leu Pro Lys Ala Pro Gly
20 25 30

Leu Glu His Gly Asp Leu Pro Gly Met Tyr Pro Ala His Met Tyr Gln
35 40 45

199

Val Tyr Lys Ser Arg Arg Gly Ile Lys Arg Ser Glu Asp Ser Lys Glu
50 55 60

Thr Tyr Lys Leu Pro His Arg Leu Ile Glu Lys Lys Arg Arg Asp Arg
65 70 75 80

Ile Asn Glu Cys Ile Ala Gln Leu Lys Asp Leu Leu Pro Glu His Leu
85 90 95

Lys Leu Thr Thr Leu Gly His Leu Glu Lys Ala Val Val Leu Glu Leu
100 105 110

Thr Leu Lys His Val Lys Ala Leu Thr Asn Leu Ile Asp Gln Gln Gln
115 120 125

Gln Lys Ile Ile Ala Leu Gln Ser Gly Leu Gln Ala Gly Glu Leu Ser
130 135 140

Gly Arg Asn Val Glu Thr Gly Gln Glu Met Phe Cys Ser Gly Phe Gln
145 150 155 160

Thr Cys Ala Arg Glu Val Leu Gln Tyr Leu Ala Lys His Glu Asn Thr
165 170 175

Arg Asp Leu Lys Ser Ser Gln Leu Val Thr His Leu His Arg Val Val
180 185 190

Ser Glu Leu Leu Gln Gly Gly Thr Ser Arg Lys Pro Ser Asp Pro Ala
195 200 205

Pro Lys Val Met Asp Phe Lys Glu Lys Pro Ser Ser Pro Ala Lys Gly
210 215 220

Ser Glu Gly Pro Gly Lys Asn Cys Val Pro Val Ile Gln Arg Thr Phe
225 230 235 240

Ala His Ser Ser Gly Glu Gln Ser Gly Ser Asp Thr Asp Thr Asp Ser
245 250 255

Gly Tyr Gly Gly Glu Ser Glu Lys Gly Asp Leu Arg Ser Glu Gln Pro
260 265 270

Cys Phe Lys Ser Asp His Gly Arg Arg Phe Thr Met Gly Glu Arg Ile
275 280 285

200

Gly Ala Ile Lys Gln Glu Ser Glu Glu Pro Pro Thr Lys Lys Asn Arg
290 295 300

Met Gln Leu Ser Asp Asp Glu Gly His Phe Thr Ser Ser Asp Leu Ile
305 310 315 320

Ser Ser Pro Phe Leu Gly Pro His Pro His Gln Pro Pro Phe Cys Leu
325 330 335

Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr Ala Tyr Leu Pro Met Leu
340 345 350

Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro Val Leu Tyr Pro Gly Leu
355 360 365

Asn Ala Ser Ala Ala Ala Leu Ser Ser Phe Met Asn Pro Asp Lys Ile
370 375 380

Ser Ala Pro Leu Leu Met Pro Gln Arg Leu Pro Ser Pro Leu Pro Ala
385 390 395 400

His Pro Ser Val Asp Ser Ser Val Leu Leu Gln Ala Leu Lys Pro Ile
405 410 415

Pro Pro Leu Asn Leu Glu Thr Lys Asp
420 425

<210> 161
<211> 64
<212> PRT
<213> Homo sapien

<400> 161

His Val Leu Glu Leu Leu Pro Gly Gln Leu Glu Gln Asp Asp Ser Gly
1 5 10 15

Pro Gly Val Thr Ser Gly Gln Cys Ala Gly Val Lys Asp Leu Thr Gly
20 25 30

Leu Arg Arg Asp Leu Arg Phe Arg Pro Gly Ser Gly Ala Val Lys Leu
35 40 45

Pro Val Glu Leu Ala Leu Ala Phe Arg Asn Ser Ser Ser Phe Cys Arg
50 55 60

<210> 162

201

<211> 111
<212> PRT
<213> Homo sapien

<400> 162

Asn Phe Lys Gln Ala Val Ser Thr Gly Leu Asn Ser Pro His Pro His
1 5 10 15

Gln Pro Pro Phe Cys Leu Pro Phe Tyr Leu Ile Pro Pro Ser Ala Thr
20 25 30

Ala Tyr Leu Pro Met Leu Glu Lys Cys Trp Tyr Pro Thr Ser Val Pro
35 40 45

Val Leu Tyr Pro Gly Leu Asn Ala Ser Ala Ala Leu Ser Ser Phe
50 55 60

Met Asn Pro Asp Lys Ile Ser Ala Pro Leu Leu Met Pro Gln Arg Leu
65 70 75 80

Pro Ser Pro Leu Pro Ala His Pro Ser Val Asp Ser Ser Val Leu Leu
85 90 95

Gln Ala Leu Lys Pro Ile Pro Pro Leu Asn Leu Glu Thr Lys Asp
100 105 110

<210> 163
<211> 145
<212> PRT
<213> Homo sapien

<400> 163

Met Gly Lys Ser Arg Cys Pro Glu Gly Phe Pro Ile Ala Glu Val Phe
1 5 10 15

Thr Leu Lys Pro Leu Glu Phe Gly Lys Pro Asn Thr Leu Val Cys Phe
20 25 30

Val Ser Asn Leu Phe Pro Pro Met Leu Thr Val Asn Trp Gln His His
35 40 45

Ser Val Pro Val Glu Gly Phe Gly Pro Thr Phe Val Ser Ala Val Asp
50 55 60

Gly Leu Ser Phe Gln Ala Phe Ser Tyr Leu Asn Phe Thr Pro Glu Pro
65 70 75 80

202

Ser Asp Ile Phe Ser Cys Ile Val Thr His Glu Ile Asp Arg Tyr Thr
85 90 95

Ala Ile Ala Tyr Trp Val Pro Arg Asn Ala Leu Pro Ser Asp Leu Leu
100 105 110

Glu Asn Val Leu Cys Gly Val Ala Phe Gly Leu Gly Val Leu Gly Ile
115 120 125

Ile Val Gly Ile Val Leu Ile Ile Tyr Phe Arg Lys Pro Cys Ser Gly
130 135 140

Asp
145

<210> 164
<211> 270
<212> PRT
<213> Homo sapien

<400> 164

Leu Leu Pro Thr Val Trp Gln Glu Gly Met Gly His Glu Gln Asn Gln
1 5 10 15

Gly Ala Ala Leu Leu Gln Met Leu Pro Leu Leu Trp Leu Leu Pro His
20 25 30

Ser Trp Ala Val Pro Glu Ala Pro Thr Pro Met Trp Pro Asp Asp Leu
35 40 45

Gln Asn His Thr Phe Leu His Thr Val Tyr Cys Gln Asp Gly Ser Pro
50 55 60

Ser Val Gly Leu Ser Glu Ala Tyr Asp Glu Asp Gln Leu Phe Phe Phe
65 70 75 80

Asp Phe Ser Gln Asn Thr Arg Val Pro Arg Leu Pro Glu Phe Ala Asp
85 90 95

Trp Ala Gln Glu Gln Gly Asp Ala Pro Ala Ile Leu Phe Asp Lys Glu
100 105 110

Phe Cys Glu Trp Met Ile Gln Gln Ile Gly Pro Lys Leu Asp Gly Lys
115 120 125

Ile Pro Val Ser Arg Gly Phe Pro Ile Ala Glu Val Phe Thr Leu Lys
130 135 140

203

Pro Leu Glu Phe Gly Lys Pro Asn Thr Leu Val Cys Phe Val Ser Asn
145 150 155 160

Leu Phe Pro Pro Met Leu Thr Val Asn Trp Gln His His Ser Val Pro
165 170 175

Val Glu Gly Phe Gly Pro Thr Phe Val Ser Ala Val Asp Gly Leu Ser
180 185 190

Phe Gln Ala Phe Ser Tyr Leu Asn Phe Thr Pro Glu Pro Ser Asp Ile
195 200 205

Phe Ser Cys Ile Val Thr His Glu Ile Asp Arg Tyr Thr Ala Ile Ala
210 215 220

Tyr Trp Val Pro Arg Asn Ala Leu Pro Ser Asp Leu Leu Glu Asn Val
225 230 235 240

Leu Cys Gly Val Ala Phe Gly Leu Gly Val Leu Gly Ile Ile Val Gly
245 250 255

Ile Val Leu Ile Ile Tyr Phe Arg Lys Pro Cys Ser Gly Asp
260 265 270

<210> 165

<211> 180

<212> PRT

<213> Homo sapien

<400> 165

His Ser Gly Leu Phe Leu Cys Leu Phe Val Ala Glu Leu Glu Pro Ala
1 5 10 15

Ile Leu Phe Asp Lys Glu Phe Cys Glu Trp Met Ile Gln Gln Ile Gly
20 25 30

Pro Lys Leu Asp Gly Lys Ile Pro Val Ser Arg Gly Phe Pro Ile Ala
35 40 45

Glu Val Phe Thr Leu Lys Pro Leu Glu Phe Gly Lys Pro Asn Thr Leu
50 55 60

Val Cys Phe Val Ser Asn Leu Phe Pro Pro Met Leu Thr Val Asn Trp
65 70 75 80

204

Gln His His Ser Val Pro Val Glu Gly Phe Gly Pro Thr Phe Val Ser
85 90 95

Ala Val Asp Gly Leu Ser Phe Gln Ala Phe Ser Tyr Leu Asn Phe Thr
100 105 110

Pro Glu Pro Ser Asp Ile Phe Ser Cys Ile Val Thr His Glu Ile Asp
115 120 125

Arg Tyr Thr Ala Ile Ala Tyr Trp Val Pro Arg Asn Ala Leu Pro Ser
130 135 140

Asp Leu Leu Glu Asn Val Leu Cys Gly Val Ala Phe Gly Leu Gly Val
145 150 155 160

Leu Gly Ile Ile Val Gly Ile Val Leu Ile Ile Tyr Phe Arg Lys Pro
165 170 175

Cys Ser Gly Asp
180

<210> 166
<211> 796
<212> PRT
<213> Homo sapien

<400> 166

Met Ser Leu Asp Asp Asn Leu Ser Gly Thr Ser Gly Met Glu Val Asp
1 5 10 15

Asp Arg Val Ser Ala Leu Glu Gln Arg Leu Gln Leu Gln Glu Asp Glu
20 25 30

Leu Ala Val Leu Lys Ala Ala Leu Ala Asp Ala Leu Arg Arg Leu Arg
35 40 45

Ala Cys Glu Glu Gln Gly Ala Ala Leu Arg Ala Arg Gly Thr Pro Lys
50 55 60

Gly Arg Ala Pro Pro Arg Leu Gly Thr Thr Ala Ser Val Cys Gln Leu
65 70 75 80

Leu Lys Gly Leu Pro Thr Arg Thr Pro Leu Asn Gly Ser Gly Pro Pro
85 90 95

Arg Arg Val Gly Gly Tyr Ala Thr Ser Pro Ser Ser Pro Lys Lys Glu
100 105 110

205

Ala Thr Ser Gly Arg Ser Ser Val Arg Arg Tyr Leu Ser Pro Glu Arg
115 120 125

Leu Ala Ser Val Arg Arg Glu Asp Pro Arg Ser Arg Thr Thr Ser Ser
130 135 140

Ser Ser Asn Cys Ser Ala Lys Lys Glu Gly Lys Thr Lys Glu Val Ile
145 150 155 160

Phe Ser Val Glu Asp Gly Ser Val Lys Met Phe Leu Arg Gly Arg Pro
165 170 175

Val Pro Met Met Ile Pro Asp Glu Leu Ala Pro Thr Tyr Ser Leu Asp
180 185 190

Thr Arg Ser Glu Leu Pro Ser Cys Arg Leu Lys Leu Glu Trp Val Tyr
195 200 205

Gly Tyr Arg Gly Arg Asp Cys Arg Ala Asn Leu Tyr Leu Leu Pro Thr
210 215 220

Gly Glu Ile Val Tyr Phe Val Ala Ser Val Ala Val Leu Tyr Ser Val
225 230 235 240

Glu Glu Gln Arg Gln Arg His Tyr Leu Gly His Asn Asp Asp Ile Lys
245 250 255

Cys Leu Ala Ile His Pro Asp Met Val Thr Ile Ala Thr Gly Gln Val
260 265 270

Ala Gly Thr Thr Lys Glu Gly Lys Pro Leu Pro Pro His Val Arg Ile
275 280 285

Trp Asp Ser Val Ser Leu Ser Thr Leu His Val Leu Gly Leu Gly Val
290 295 300

Phe Asp Arg Ala Val Cys Cys Val Gly Phe Ser Lys Ser Asn Gly Gly
305 310 315 320

Asn Leu Leu Cys Ala Val Asp Glu Ser Asn Asp His Met Leu Ser Val
325 330 335

Trp Asp Trp Ala Lys Glu Thr Lys Val Val Asp Val Lys Cys Ser Asn
340 345 350

Glu Ala Val Leu Val Ala Thr Phe His Pro Thr Asp Pro Thr Val Leu
355 360 365

Ile Thr Cys Gly Lys Ser His Ile Tyr Phe Trp Thr Leu Glu Gly Gly
370 375 380

Ser Leu Ser Lys Arg Gln Gly Leu Phe Glu Lys His Glu Lys Pro Lys
385 390 395 400

Tyr Val Leu Cys Val Thr Phe Leu Glu Gly Asp Val Val Thr Gly
405 410 415

Asp Ser Gly Gly Asn Leu Tyr Val Trp Gly Lys Gly Gly Asn Arg Ile
420 425 430

Thr Gln Ala Val Leu Gly Ala His Asp Gly Gly Val Phe Gly Leu Cys
435 440 445

Ala Leu Arg Asp Gly Thr Leu Val Ser Gly Gly Arg Asp Arg Arg
450 455 460

Val Val Leu Trp Gly Ser Asp Tyr Ser Lys Leu Gln Glu Val Glu Val
465 470 475 480

Pro Glu Asp Phe Gly Pro Val Arg Thr Val Ala Glu Gly His Gly Asp
485 490 495

Thr Leu Tyr Val Gly Thr Thr Arg Asn Ser Ile Leu Gln Gly Ser Val
500 505 510

His Thr Gly Phe Ser Leu Leu Val Gln Gly His Val Glu Glu Leu Trp
515 520 525

Gly Leu Ala Thr His Pro Ser Arg Ala Gln Phe Val Thr Cys Gly Gln
530 535 540

Asp Lys Leu Val His Leu Trp Ser Ser Asp Ser His Gln Pro Leu Trp
545 550 555 560

Ser Arg Ile Ile Glu Asp Pro Ala Arg Ser Ala Gly Phe His Pro Ser
565 570 575

Gly Ser Val Leu Ala Val Gly Thr Val Thr Gly Arg Trp Leu Leu Leu
580 585 590

207

Asp Thr Glu Thr His Asp Leu Val Ala Ile His Thr Asp Gly Asn Glu
595 600 605

Gln Ile Ser Val Val Ser Phe Ser Pro Asp Gly Ala Tyr Leu Ala Val
610 615 620

Gly Ser His Asp Asn Leu Val Tyr Val Tyr Thr Val Asp Gln Gly Gly
625 630 635 640

Arg Lys Val Ser Arg Leu Gly Lys Cys Ser Gly His Ser Ser Phe Ile
645 650 655

Thr His Leu Asp Trp Ala Gln Asp Ser Ser Cys Phe Val Thr Asn Ser
660 665 670

Gly Asp Tyr Glu Ile Leu Tyr Trp Asp Pro Ala Thr Cys Lys Gln Ile
675 680 685

Thr Ser Ala Asp Ala Val Arg Asn Met Glu Trp Ala Thr Ala Thr Cys
690 695 700

Val Leu Gly Phe Gly Val Phe Gly Ile Trp Ser Glu Gly Ala Asp Gly
705 710 715 720

Thr Asp Ile Asn Ala Val Ala Arg Ser His Asp Gly Lys Leu Leu Ala
725 730 735

Ser Ala Asp Asp Phe Gly Lys Val His Leu Phe Ser Tyr Pro Cys Cys
740 745 750

Gln Pro Arg Ala Leu Ser His Lys Tyr Gly Gly His Ser Ser His Val
755 760 765

Thr Asn Val Ala Phe Leu Trp Asp Asp Ser Met Ala Leu Thr Thr Gly
770 775 780

Gly Lys Asp Thr Ser Val Leu Gln Trp Arg Val Val
785 790 795

<210> 167
<211> 627
<212> PRT
<213> Homo sapien

<400> 167

Met Phe Leu Arg Gly Arg Pro Val Pro Met Met Ile Pro Asp Glu Leu
1 5 10 15

Ala Pro Thr Tyr Ser Leu Asp Thr Arg Ser Glu Leu Pro Ser Cys Arg
20 25 30

Leu Lys Leu Glu Trp Val Tyr Gly Tyr Arg Gly Arg Asp Cys Arg Ala
35 40 45

Asn Leu Tyr Leu Leu Pro Thr Gly Glu Ile Val Tyr Phe Val Ala Ser
50 55 60

Val Ala Val Leu Tyr Ser Val Glu Glu Gln Arg Gln Arg His Tyr Leu
65 70 75 80

Gly His Asn Asp Asp Ile Lys Cys Leu Ala Ile His Pro Asp Met Val
85 90 95

Thr Ile Ala Thr Gly Gln Val Ala Gly Thr Thr Lys Glu Gly Lys Pro
100 105 110

Leu Pro Pro His Val Arg Ile Trp Asp Ser Val Ser Leu Ser Thr Leu
115 120 125

His Val Leu Gly Leu Gly Val Phe Asp Arg Ala Val Cys Cys Val Gly
130 135 140

Phe Ser Lys Ser Asn Gly Gly Asn Leu Leu Cys Ala Val Asp Glu Ser
145 150 155 160

Asn Asp His Met Leu Ser Val Trp Asp Trp Ala Lys Glu Thr Lys Val
165 170 175

Val Asp Val Lys Cys Ser Asn Glu Ala Val Leu Val Ala Thr Phe His
180 185 190

Pro Thr Asp Pro Thr Val Leu Ile Thr Cys Gly Lys Ser His Ile Tyr
195 200 205

Phe Trp Thr Leu Glu Gly Gly Ser Leu Ser Lys Arg Gln Gly Leu Phe
210 215 220

Glu Lys His Glu Lys Pro Lys Tyr Val Leu Cys Val Thr Phe Leu Glu
225 230 235 240

Gly Gly Asp Val Val Thr Gly Asp Ser Gly Gly Asn Leu Tyr Val Trp
245 250 255

209

Gly Lys Gly Gly Asn Arg Ile Thr Gln Ala Val Leu Gly Ala His Asp
260 265 270

Gly Gly Val Phe Gly Leu Cys Ala Leu Arg Asp Gly Thr Leu Val Ser
275 280 285

Gly Gly Gly Arg Asp Arg Arg Val Val Leu Trp Gly Ser Asp Tyr Ser
290 295 300

Lys Leu Gln Glu Val Glu Val Pro Glu Asp Phe Gly Pro Val Arg Thr
305 310 315 320

Val Ala Glu Gly His Gly Asp Thr Leu Tyr Val Gly Thr Thr Arg Asn
325 330 335

Ser Ile Leu Gln Gly Ser Val His Thr Gly Phe Ser Leu Leu Val Gln
340 345 350

Gly His Val Glu Glu Leu Trp Gly Leu Ala Thr His Pro Ser Arg Ala
355 360 365

Gln Phe Val Thr Cys Gly Gln Asp Lys Leu Val His Leu Trp Ser Ser
370 375 380

Asp Ser His Gln Pro Leu Trp Ser Arg Ile Ile Glu Asp Pro Ala Arg
385 390 395 400

Ser Ala Gly Phe His Pro Ser Gly Ser Val Leu Ala Val Gly Thr Val
405 410 415

Thr Gly Arg Trp Leu Leu Leu Asp Thr Glu Thr His Asp Leu Val Ala
420 425 430

Ile His Thr Asp Gly Asn Glu Gln Ile Ser Val Val Ser Phe Ser Pro
435 440 445

Asp Gly Ala Tyr Leu Ala Val Gly Ser His Asp Asn Leu Val Tyr Val
450 455 460

Tyr Thr Val Asp Gln Gly Gly Arg Lys Val Ser Arg Leu Gly Lys Cys
465 470 475 480

Ser Gly His Ser Ser Phe Ile Thr His Leu Asp Trp Ala Gln Asp Ser
485 490 495

210

Ser Cys Phe Val Thr Asn Ser Gly Asp Tyr Glu Ile Leu Tyr Trp Asp
500 505 510

Pro Ala Thr Cys Lys Gln Ile Thr Ser Ala Asp Ala Val Arg Asn Met
515 520 525

Glu Trp Ala Thr Ala Thr Cys Val Leu Gly Phe Gly Val Phe Gly Ile
530 535 540

Trp Ser Glu Gly Ala Asp Gly Thr Asp Ile Asn Ala Val Ala Arg Ser
545 550 555 560

His Asp Gly Lys Leu Leu Ala Ser Ala Asp Asp Phe Gly Lys Val His
565 570 575

Leu Phe Ser Tyr Pro Cys Cys Gln Pro Arg Ala Leu Ser His Lys Tyr
580 585 590

Gly Gly His Ser Ser His Val Thr Asn Val Ala Phe Leu Trp Asp Asp
595 600 605

Ser Met Ala Leu Thr Thr Gly Gly Lys Asp Thr Ser Val Leu Gln Trp
610 615 620

Arg Val Val
625

<210> 168
<211> 627
<212> PRT
<213> Homo sapien

<400> 168

Met Phe Leu Arg Gly Arg Pro Val Pro Met Met Ile Pro Asp Glu Leu
1 5 10 15

Ala Pro Thr Tyr Ser Leu Asp Thr Arg Ser Glu Leu Pro Ser Cys Arg
20 25 30

Leu Lys Leu Glu Trp Val Tyr Gly Tyr Arg Gly Arg Asp Cys Arg Ala
35 40 45

Asn Leu Tyr Leu Leu Pro Thr Gly Glu Ile Val Tyr Phe Val Ala Ser
50 55 60

Val Ala Val Leu Tyr Ser Val Glu Glu Gln Arg Gln Arg His Tyr Leu
65 70 75 80

211

Gly His Asn Asp Asp Ile Lys Cys Leu Ala Ile His Pro Asp Met Val
85 90 95

Thr Ile Ala Thr Gly Gln Val Ala Gly Thr Thr Lys Glu Gly Lys Pro
100 105 110

Leu Pro Pro His Val Arg Ile Trp Asp Ser Val Ser Leu Ser Thr Leu
115 120 125

His Val Leu Gly Leu Gly Val Phe Asp Arg Ala Val Cys Cys Val Gly
130 135 140

Phe Ser Lys Ser Asn Gly Gly Asn Leu Leu Cys Ala Val Asp Glu Ser
145 150 155 160

Asn Asp His Met Leu Ser Val Trp Asp Trp Ala Lys Glu Thr Lys Val
165 170 175

Val Asp Val Lys Cys Ser Asn Glu Ala Val Leu Val Ala Thr Phe His
180 185 190

Pro Thr Asp Pro Thr Val Leu Ile Thr Cys Gly Lys Ser His Ile Tyr
195 200 205

Phe Trp Thr Leu Glu Gly Gly Ser Leu Ser Lys Arg Gln Gly Leu Phe
210 215 220

Glu Lys His Glu Lys Pro Lys Tyr Val Leu Cys Val Thr Phe Leu Glu
225 230 235 240

Gly Gly Asp Val Val Thr Gly Asp Ser Gly Gly Asn Leu Tyr Val Trp
245 250 255

Gly Lys Gly Gly Asn Arg Ile Thr Gln Ala Val Leu Gly Ala His Asp
260 265 270

Gly Gly Val Phe Gly Leu Cys Ala Leu Arg Asp Gly Thr Leu Val Ser
275 280 285

Gly Gly Gly Arg Asp Arg Arg Val Val Leu Trp Gly Ser Asp Tyr Ser
290 295 300

Lys Leu Gln Glu Val Glu Val Pro Glu Asp Phe Gly Pro Val Arg Thr
305 310 315 320

212

Val Ala Glu Gly His Gly Asp Thr Leu Tyr Val Gly Thr Thr Arg Asn
325 330 335

Ser Ile Leu Gln Gly Ser Val His Thr Gly Phe Ser Leu Leu Val Gln
340 345 350

Gly His Val Glu Glu Leu Trp Gly Leu Ala Thr His Pro Ser Arg Ala
355 360 365

Gln Phe Val Thr Cys Gly Gln Asp Lys Leu Val His Leu Trp Ser Ser
370 375 380

Asp Ser His Gln Pro Leu Trp Ser Arg Ile Ile Glu Asp Pro Ala Arg
385 390 395 400

Ser Ala Gly Phe His Pro Ser Gly Ser Val Leu Ala Val Gly Thr Val
405 410 415

Thr Gly Arg Trp Leu Leu Leu Asp Thr Glu Thr His Asp Leu Val Ala
420 425 430

Ile His Thr Asp Gly Asn Glu Gln Ile Ser Val Val Ser Phe Ser Pro
435 440 445

Asp Gly Ala Tyr Leu Ala Val Gly Ser His Asp Asn Leu Val Tyr Val
450 455 460

Tyr Thr Val Asp Gln Gly Gly Arg Lys Val Ser Arg Leu Gly Lys Cys
465 470 475 480

Ser Gly His Ser Ser Phe Ile Thr His Leu Asp Trp Ala Gln Asp Ser
485 490 495

Ser Cys Phe Val Thr Asn Ser Gly Asp Tyr Glu Ile Leu Tyr Trp Asp
500 505 510

Pro Ala Thr Cys Lys Gln Ile Thr Ser Ala Asp Ala Val Arg Asn Met
515 520 525

Glu Trp Ala Thr Ala Thr Cys Val Leu Gly Phe Gly Val Phe Gly Ile
530 535 540

Trp Ser Glu Gly Ala Asp Gly Thr Asp Ile Asn Ala Val Ala Arg Ser
545 550 555 560

213

His Asp Gly Lys Leu Leu Ala Ser Ala Asp Asp Phe Gly Lys Val His
565 570 575

Leu Phe Ser Tyr Pro Cys Cys Gln Pro Arg Ala Leu Ser His Lys Tyr
580 585 590

Gly Gly His Ser Ser His Val Thr Asn Val Ala Phe Leu Trp Asp Asp
595 600 605

Ser Met Ala Leu Thr Thr Gly Gly Lys Asp Thr Ser Val Leu Gln Trp
610 615 620

Arg Val Val
625

<210> 169
<211> 483
<212> PRT
<213> Homo sapien

<400> 169

Met Leu Glu Arg Arg Ala Leu Leu Trp Gln Arg Glu Ala Gly Pro Gly
1 5 10 15

Trp Gly Asp Arg Ala Arg Ala Gly Thr Gly Gly Ala Gly Gly Cys
20 25 30

Gly Gly Ala Met Ala Glu Arg Gly Pro Ala Phe Cys Gly Leu Tyr Asp
35 40 45

Thr Ser Ser Leu Leu Arg Tyr Cys Asn Asp Asp Asn Leu Ser Gly Thr
50 55 60

Ser Gly Met Glu Val Asp Asp Arg Val Ser Ala Leu Glu Gln Arg Leu
65 70 75 80

Gln Leu Gln Glu Asp Glu Leu Ala Val Leu Lys Ala Ala Leu Ala Asp
85 90 95

Ala Leu Arg Arg Leu Arg Ala Cys Glu Glu Gln Gly Ala Ala Leu Arg
100 105 110

Ala Arg Gly Thr Pro Lys Gly Arg Ala Pro Pro Arg Leu Gly Thr Thr
115 120 125

Ala Ser Val Cys Gln Leu Leu Lys Gly Leu Pro Thr Arg Thr Pro Leu
130 135 140

214

Asn Gly Ser Gly Pro Pro Arg Arg Val Gly Gly Tyr Ala Thr Ser Pro
145 150 155 160

Ser Ser Pro Lys Lys Glu Ala Thr Ser Gly Arg Ser Ser Val Arg Arg
165 170 175

Tyr Leu Ser Pro Glu Arg Leu Ala Ser Val Arg Arg Glu Asp Pro Arg
180 185 190

Ser Arg Thr Thr Ser Ser Ser Asn Cys Ser Ala Lys Lys Glu Gly
195 200 205

Lys Thr Lys Glu Val Ile Phe Ser Val Glu Asp Gly Ser Val Lys Met
210 215 220

Phe Leu Arg Gly Arg Pro Val Pro Met Met Ile Pro Asp Glu Leu Ala
225 230 235 240

Pro Thr Tyr Ser Leu Asp Thr Arg Ser Glu Leu Pro Ser Cys Arg Leu
245 250 255

Lys Leu Glu Trp Val Tyr Gly Tyr Arg Gly Arg Asp Cys Arg Ala Asn
260 265 270

Leu Tyr Leu Leu Pro Thr Gly Glu Ile Val Tyr Phe Val Ala Ser Val
275 280 285

Ala Val Leu Tyr Ser Val Glu Glu Gln Arg Gln Arg His Tyr Leu Gly
290 295 300

His Asn Asp Asp Ile Lys Cys Leu Ala Ile His Pro Asp Met Val Thr
305 310 315 320

Ile Ala Thr Gly Gln Val Ala Gly Thr Thr Lys Glu Gly Lys Pro Leu
325 330 335

Pro Pro His Val Arg Ile Trp Asp Ser Val Ser Leu Ser Thr Leu His
340 345 350

Val Leu Gly Leu Gly Val Phe Asp Arg Ala Val Cys Cys Val Gly Phe
355 360 365

Ser Lys Ser Asn Gly Gly Asn Leu Leu Cys Ala Val Asp Glu Ser Asn
370 375 380

215

Asp His Met Leu Ser Val Trp Asp Trp Ala Lys Glu Thr Lys Val Val
385 390 395 400

Asp Val Lys Cys Ser Asn Glu Ala Val Leu Val Ala Thr Phe His Pro
405 410 415

Thr Asp Pro Thr Val Leu Ile Thr Cys Gly Lys Ser His Ile Tyr Phe
420 425 430

Trp Thr Leu Glu Gly Gly Ser Leu Ser Lys Arg Gln Gly Leu Phe Glu
435 440 445

Lys His Glu Lys Pro Lys Tyr Val Leu Cys Val Thr Phe Leu Glu Gly
450 455 460

Gly Asp Val Val Thr Gly Asp Ser Gly Gly Asn Leu Tyr Val Trp Gly
465 470 475 480

Lys Gly Pro

<210> 170
<211> 605
<212> PRT
<213> Homo sapien

<400> 170

Met Ser Ser Phe Gly Ala Gly Lys Thr Lys Glu Val Ile Phe Ser Val
1 5 10 15

Glu Asp Gly Ser Val Lys Met Phe Leu Arg Gly Arg Pro Val Pro Met
20 25 30

Met Ile Pro Asp Glu Leu Ala Pro Thr Tyr Ser Leu Asp Thr Arg Ser
35 40 45

Glu Leu Pro Ser Cys Arg Leu Lys Leu Glu Trp Val Tyr Gly Tyr Arg
50 55 60

Gly Arg Asp Cys Arg Ala Asn Leu Tyr Leu Leu Pro Thr Gly Glu Ile
65 70 75 80

Val Tyr Phe Val Ala Ser Val Ala Val Leu Tyr Ser Val Glu Glu Gln
85 90 95

Arg Gln Arg His Tyr Leu Gly His Asn Asp Asp Ile Lys Cys Leu Ala

216
100 105 110

Ile His Pro Asp Met Val Thr Ile Ala Thr Gly Gln Val Ala Gly Thr
115 120 125

Thr Lys Glu Gly Lys Pro Leu Pro Pro His Val Arg Ile Trp Asp Ser
130 135 140

Val Ser Leu Ser Thr Leu His Val Leu Gly Leu Gly Val Phe Asp Arg
145 150 155 160

Ala Val Cys Cys Val Gly Phe Ser Lys Ser Asn Gly Gly Asn Leu Leu
165 170 175

Cys Ala Val Asp Glu Ser Asn Asp His Met Leu Ser Val Trp Asp Trp
180 185 190

Ala Lys Glu Thr Lys Val Val Asp Val Lys Cys Ser Asn Glu Ala Val
195 200 205

Leu Val Ala Thr Phe His Pro Thr Asp Pro Thr Val Leu Ile Thr Cys
210 215 220

Gly Lys Ser His Ile Tyr Phe Trp Thr Leu Glu Gly Gly Ser Leu Ser
225 230 235 240

Lys Arg Gln Gly Leu Phe Glu Lys His Glu Lys Pro Lys Tyr Val Leu
245 250 255

Cys Val Thr Phe Leu Glu Gly Gly Asp Val Val Thr Gly Asp Ser Gly
260 265 270

Gly Asn Leu Tyr Val Trp Gly Lys Gly Gly Asn Arg Ile Thr Gln Ala
275 280 285

Val Leu Gly Ala His Asp Gly Gly Val Phe Gly Leu Cys Ala Leu Arg
290 295 300

Asp Gly Thr Leu Val Ser Gly Gly Arg Asp Arg Arg Val Val Leu
305 310 315 320

Trp Gly Ser Asp Tyr Ser Lys Leu Gln Glu Val Glu Val Pro Glu Asp
325 330 335

Phe Gly Pro Val Arg Thr Val Ala Glu Gly His Gly Asp Thr Leu Tyr
340 345 350

Val Gly Thr Thr Arg Asn Ser Ile Leu Gln Gly Ser Val His Thr Gly
355 360 365

Phe Ser Leu Leu Val Gln Asp Pro Ala Arg Ser Ala Gly Phe His Pro
370 375 380

Ser Gly Ser Val Leu Ala Val Gly Thr Val Thr Gly Arg Trp Leu Leu
385 390 395 400

Leu Asp Thr Glu Thr His Asp Leu Val Ala Ile His Thr Asp Gly Asn
405 410 415

Glu Gln Ile Ser Val Val Ser Phe Ser Pro Asp Gly Ala Tyr Leu Ala
420 425 430

Val Gly Ser His Asp Asn Leu Val Tyr Val Tyr Thr Val Asp Gln Gly
435 440 445

Gly Arg Lys Val Ser Arg Leu Gly Lys Cys Ser Gly His Ser Ser Phe
450 455 460

Ile Thr His Leu Asp Trp Ala Gln Asp Ser Ser Cys Phe Val Thr Asn
465 470 475 480

Ser Gly Asp Tyr Glu Ile Leu Tyr Trp Asp Pro Ala Thr Cys Lys Gln
485 490 495

Ile Thr Ser Ala Asp Ala Val Arg Asn Met Glu Trp Ala Thr Ala Thr
500 505 510

Cys Val Leu Gly Phe Gly Val Phe Gly Ile Trp Ser Glu Gly Ala Asp
515 520 525

Gly Thr Asp Ile Asn Ala Val Ala Arg Ser His Asp Gly Lys Leu Leu
530 535 540

Ala Ser Ala Asp Asp Phe Gly Lys Val His Leu Phe Ser Tyr Pro Cys
545 550 555 560

Cys Gln Pro Arg Ala Leu Ser His Lys Tyr Gly Gly His Ser Ser His
565 570 575

Val Thr Asn Val Ala Phe Leu Trp Asp Asp Ser Met Ala Leu Thr Thr
580 585 590

218

Gly Gly Lys Asp Thr Ser Val Leu Gln Trp Arg Val Val
595 600 605

<210> 171
<211> 495
<212> PRT
<213> Homo sapien

<400> 171

Met Ser Ser Phe Gly Ala Gly Lys Thr Lys Glu Val Ile Phe Ser Val
1 5 10 15

Glu Asp Gly Ser Val Lys Met Phe Leu Arg Gly Arg Pro Val Pro Met
20 25 30

Met Ile Pro Asp Glu Leu Ala Pro Thr Tyr Ser Leu Asp Thr Arg Ser
35 40 45

Glu Leu Pro Ser Cys Arg Leu Lys Leu Glu Trp Val Tyr Gly Tyr Arg
50 55 60

Gly Arg Asp Cys Arg Ala Asn Leu Tyr Leu Leu Pro Thr Gly Glu Ile
65 70 75 80

Val Tyr Phe Val Ala Ser Val Ala Val Leu Tyr Ser Val Glu Glu Gln
85 90 95

Arg Gln Arg His Tyr Leu Gly His Asn Asp Asp Ile Lys Cys Leu Ala
100 105 110

Ile His Pro Asp Met Val Thr Ile Ala Thr Gly Gln Val Ala Gly Thr
115 120 125

Thr Lys Glu Gly Lys Pro Leu Pro Pro His Val Arg Ile Trp Asp Ser
130 135 140

Val Ser Leu Ser Thr Leu His Val Leu Gly Leu Gly Val Phe Asp Arg
145 150 155 160

Ala Val Cys Cys Val Gly Phe Ser Lys Ser Asn Gly Gly Asn Leu Leu
165 170 175

Cys Ala Val Asp Glu Ser Asn Asp His Met Leu Ser Val Trp Asp Trp
180 185 190

Ala Lys Glu Thr Lys Val Val Asp Val Lys Cys Ser Asn Glu Ala Val

219

195

200

205

Leu Val Ala Thr Phe His Pro Thr Asp Pro Thr Val Leu Ile Thr Cys
210 215 220

Gly Lys Ser His Ile Tyr Phe Trp Thr Leu Glu Gly Gly Ser Leu Ser
225 230 235 240

Lys Arg Gln Gly Leu Phe Glu Lys His Glu Lys Pro Lys Tyr Val Leu
245 250 255

Cys Val Thr Phe Leu Glu Gly Gly Asp Val Val Thr Gly Asp Ser Gly
260 265 270

Gly Asn Leu Tyr Val Trp Gly Lys Gly Gly Asn Arg Ile Thr Gln Ala
275 280 285

Val Leu Gly Ala His Asp Gly Gly Val Phe Gly Leu Cys Ala Leu Arg
290 295 300

Asp Gly Thr Leu Val Ser Gly Gly Arg Asp Arg Arg Val Val Leu
305 310 315 320

Trp Gly Ser Asp Tyr Ser Lys Leu Gln Glu Val Glu Val Pro Glu Asp
325 330 335

Phe Gly Pro Val Arg Thr Val Ala Glu Gly His Gly Asp Thr Leu Tyr
340 345 350

Val Gly Thr Thr Arg Asn Ser Ile Leu Gln Gly Ser Val His Thr Gly
355 360 365

Phe Ser Leu Leu Val Gln Gly His Val Glu Glu Leu Trp Gly Leu Ala
370 375 380

Thr His Pro Ser Arg Ala Gln Phe Val Thr Cys Gly Gln Asp Lys Leu
385 390 395 400

Val His Leu Trp Ser Ser Asp Ser His Gln Pro Leu Trp Ser Arg Ile
405 410 415

Ile Glu Asp Pro Ala Arg Ser Ala Gly Phe His Pro Ser Gly Ser Val
420 425 430

Leu Ala Val Gly Thr Val Thr Gly Arg Trp Leu Leu Leu Asp Thr Glu
435 440 445

220

Thr His Asp Leu Val Ala Ile His Thr Asp Gly Asn Glu Gln Ile Ser
450 455 460

Val Val Ser Phe Ser Pro Gly Pro Phe Gln Phe Tyr His Pro Pro Gly
465 470 475 480

Leu Gly Pro Gly Gln Gln Leu Leu Cys His Gln Leu Arg Gly Leu
485 490 495

<210> 172

<211> 536

<212> PRT

<213> Homo sapien

<400> 172

Ile Gly Arg Gly Arg Pro Gly Gln Val Ala Gly Thr Thr Lys Glu Gly
1 5 10 15

Lys Pro Leu Pro Pro His Val Arg Ile Trp Asp Ser Val Ser Leu Ser
20 25 30

Thr Leu His Val Leu Gly Leu Gly Val Phe Asp Arg Ala Val Cys Cys
35 40 45

Val Gly Phe Ser Lys Ser Cys Ser Asn Glu Ala Val Leu Val Ala Thr
50 55 60

Phe His Pro Thr Asp Pro Thr Val Leu Ile Thr Cys Gly Lys Ser His
65 70 75 80

Ile Tyr Phe Trp Thr Leu Glu Gly Ser Leu Ser Lys Arg Gln Gly
85 90 95

Leu Phe Glu Lys His Glu Lys Pro Lys Tyr Val Leu Cys Val Thr Phe
100 105 110

Leu Glu Gly Asp Val Val Thr Gly Asp Ser Gly Gly Asn Leu Tyr
115 120 125

Val Trp Gly Lys Gly Gly Asn Arg Ile Thr Gln Ala Val Leu Gly Ala
130 135 140

His Asp Gly Gly Val Phe Gly Leu Cys Ala Leu Arg Asp Gly Thr Leu
145 150 155 160

221

Val Ser Gly Gly Arg Asp Arg Arg Val Val Leu Trp Gly Ser Asp
165 170 175

Tyr Ser Lys Leu Gln Glu Val Glu Val Pro Glu Asp Phe Gly Pro Val
180 185 190

Arg Thr Val Ala Glu Gly His Gly Asp Thr Leu Tyr Val Gly Thr Thr
195 200 205

Arg Asn Ser Ile Leu Gln Gly Ser Val His Thr Gly Phe Ser Leu Leu
210 215 220

Val Gln Asp Pro Ala Thr Lys Ser Leu Thr Pro Ser Thr Ala Glu Gly
225 230 235 240

Pro Gln Ala Pro Ala Pro Thr Val Leu Pro Pro Ala Thr Leu Ile Gly
245 250 255

Gly Gly Thr Leu Gln Gly His Val Glu Glu Leu Trp Gly Leu Ala Thr
260 265 270

His Pro Ser Arg Ala Gln Phe Val Thr Cys Gly Gln Asp Lys Leu Val
275 280 285

His Leu Trp Ser Ser Asp Ser His Gln Pro Leu Trp Ser Arg Ile Ile
290 295 300

Glu Asp Pro Ala Arg Ser Ala Gly Phe His Pro Ser Gly Ser Val Leu
305 310 315 320

Ala Val Gly Thr Val Thr Gly Arg Trp Leu Leu Leu Asp Thr Glu Thr
325 330 335

His Asp Leu Val Ala Ile His Thr Asp Gly Asn Glu Gln Ile Ser Val
340 345 350

Val Ser Phe Ser Pro Asp Gly Ala Tyr Leu Ala Val Gly Ser His Asp
355 360 365

Asn Leu Val Tyr Val Tyr Thr Val Asp Gln Gly Gly Arg Lys Val Ser
370 375 380

Arg Leu Gly Lys Cys Ser Gly His Ser Ser Phe Ile Thr His Leu Asp
385 390 395 400

Trp Ala Gln Asp Ser Ser Cys Phe Val Thr Asn Ser Gly Asp Tyr Glu

222
405 410 415

Ile Leu Tyr Trp Asp Pro Ala Thr Cys Lys Gln Ile Thr Ser Ala Asp
420 425 430

Ala Val Arg Asn Met Glu Trp Ala Thr Ala Thr Cys Val Leu Gly Phe
435 440 445

Gly Val Phe Gly Ile Trp Ser Glu Gly Ala Asp Gly Thr Asp Ile Asn
450 455 460

Ala Val Ala Arg Ser His Asp Gly Lys Leu Leu Ala Ser Ala Asp Asp
465 470 475 480

Phe Gly Lys Val His Leu Phe Ser Tyr Pro Cys Cys Gln Pro Arg Ala
485 490 495

Leu Ser His Lys Tyr Gly Gly His Ser Ser His Val Thr Asn Val Ala
500 505 510

Phe Leu Trp Asp Asp Ser Met Ala Leu Thr Thr Gly Gly Lys Asp Thr
515 520 525

Ser Val Leu Gln Trp Arg Val Val
530 535

<210> 173
<211> 544
<212> PRT
<213> Homo sapien

<400> 173

Arg Leu Gly Ser Gly Leu Gly Val Asn Gly Arg Gly Arg Pro Gly Gln
1 5 10 15

Val Ala Gly Thr Thr Lys Glu Gly Lys Pro Leu Pro Pro His Val Arg
20 25 30

Ile Trp Asp Ser Val Ser Leu Ser Thr Leu His Val Leu Gly Leu Gly
35 40 45

Val Phe Asp Arg Ala Val Cys Cys Val Gly Phe Ser Lys Ser Cys Ser
50 55 60

Asn Glu Ala Val Leu Val Ala Thr Phe His Pro Thr Asp Pro Thr Val
65 70 75 80

223

Leu Ile Thr Cys Gly Lys Ser His Ile Tyr Phe Trp Thr Leu Glu Gly
85 90 95

Gly Ser Leu Ser Lys Arg Gln Gly Leu Phe Glu Lys His Glu Lys Pro
100 105 110

Lys Tyr Val Leu Cys Val Thr Phe Leu Glu Gly Gly Asp Val Val Thr
115 120 125

Gly Asp Ser Gly Gly Asn Leu Tyr Val Trp Gly Lys Gly Gly Asn Arg
130 135 140

Ile Thr Gln Ala Val Leu Gly Ala His Asp Gly Gly Val Phe Gly Leu
145 150 155 160

Cys Ala Leu Arg Asp Gly Thr Leu Val Ser Gly Gly Arg Asp Arg
165 170 175

Arg Val Val Leu Trp Gly Ser Asp Tyr Ser Lys Leu Gln Glu Val Glu
180 185 190

Val Pro Glu Asp Phe Gly Pro Val Arg Thr Val Ala Glu Gly His Gly
195 200 205

Asp Thr Leu Tyr Val Gly Thr Thr Arg Asn Ser Ile Leu Gln Gly Ser
210 215 220

Val His Thr Gly Phe Ser Leu Leu Val Gln Asp Pro Ala Thr Lys Ser
225 230 235 240

Leu Thr Pro Ser Thr Ala Glu Gly Pro Gln Ala Pro Ala Pro Thr Val
245 250 255

Leu Pro Pro Ala Thr Leu Ile Gly Gly Thr Leu Gln Gly His Val
260 265 270

Glu Glu Leu Trp Gly Leu Ala Thr His Pro Ser Arg Ala Gln Phe Val
275 280 285

Thr Cys Gly Gln Asp Lys Leu Val His Leu Trp Ser Ser Asp Ser His
290 295 300

Gln Pro Leu Trp Ser Arg Ile Ile Glu Asp Pro Ala Arg Ser Ala Gly
305 310 315 320

224

Phe His Pro Ser Gly Ser Val Leu Ala Val Gly Thr Val Thr Gly Arg
325 330 335

Trp Leu Leu Leu Asp Thr Glu Thr His Asp Leu Val Ala Ile His Thr
340 345 350

Asp Gly Asn Glu Gln Ile Ser Val Val Ser Phe Ser Pro Asp Gly Ala
355 360 365

Tyr Leu Ala Val Gly Ser His Asp Asn Leu Val Tyr Val Tyr Thr Val
370 375 380

Asp Gln Gly Gly Arg Lys Val Ser Arg Leu Gly Lys Cys Ser Gly His
385 390 395 400

Ser Ser Phe Ile Thr His Leu Asp Trp Ala Gln Asp Ser Ser Cys Phe
405 410 415

Val Thr Asn Ser Gly Asp Tyr Glu Ile Leu Tyr Trp Asp Pro Ala Thr
420 425 430

Cys Lys Gln Ile Thr Ser Ala Asp Ala Val Arg Asn Met Glu Trp Ala
435 440 445

Thr Ala Thr Cys Val Leu Gly Phe Gly Val Phe Gly Ile Trp Ser Glu
450 455 460

Gly Ala Asp Gly Thr Asp Ile Asn Ala Val Ala Arg Ser His Asp Gly
465 470 475 480

Lys Leu Leu Ala Ser Ala Asp Asp Phe Gly Lys Val His Leu Phe Ser
485 490 495

Tyr Pro Cys Cys Gln Pro Arg Ala Leu Ser His Lys Tyr Gly Gly His
500 505 510

Ser Ser His Val Thr Asn Val Ala Phe Leu Trp Asp Asp Ser Met Ala
515 520 525

Leu Thr Thr Gly Gly Lys Asp Thr Ser Val Leu Gln Trp Arg Val Val
530 535 540

<210> 174
<211> 482
<212> PRT
<213> Homo sapien

225

<220>
<221> MISC_FEATURE
<222> (2)...(2)
<223> X=any amino acid

<220>
<221> MISC_FEATURE
<222> (6)...(6)
<223> X=any amino acid

<400> 174

Ser Xaa Gly His Cys Xaa Asp Phe Ile Trp Pro Gly His Trp Leu Ser
1 5 10 15

Thr Trp His Trp Ser Arg Gln Arg Pro Ser Trp Gly Lys Leu Met Phe
20 25 30

Thr Gly Gly Arg Asn Pro Pro Tyr Leu Gln Ala Ala Ser Gln Pro Gln
35 40 45

Glu Ala Thr Arg Leu Ala Glu Ser His Val Glu Ser Ala Ser Asn Met
50 55 60

Glu Gln Leu Thr Arg Glu Thr Glu Asp Tyr Ser Lys Gln Ala Leu Ser
65 70 75 80

Leu Val Arg Lys Ala Leu His Glu Gly Val Gly Ser Gly Ser Gly Ser
85 90 95

Pro Asp Gly Ala Val Val Gln Gly Leu Val Glu Lys Leu Glu Lys Thr
100 105 110

Lys Ser Leu Ala Gln Gln Leu Thr Arg Glu Ala Thr Gln Ala Glu Ile
115 120 125

Glu Ala Asp Arg Ser Tyr Gln His Ser Leu Arg Leu Leu Asp Ser Val
130 135 140

Ser Arg Leu Gln Gly Val Ser Asp Gln Ser Phe Gln Val Glu Glu Ala
145 150 155 160

Lys Arg Ile Lys Gln Lys Ala Asp Ser Leu Ser Ser Leu Val Thr Arg
165 170 175

His Met Asp Glu Phe Lys Arg Thr Gln Lys Asn Leu Gly Asn Trp Lys
180 185 190

Glu Glu Ala Gln Gln Leu Leu Gln Asn Gly Lys Ser Gly Arg Glu Lys
195 200 205

Ser Asp Gln Leu Leu Ser Arg Ala Asn Leu Ala Lys Ser Arg Ala Gln
210 215 220

Glu Ala Leu Ser Met Gly Asn Ala Thr Phe Tyr Glu Val Glu Ser Ile
225 230 235 240

Leu Lys Asn Leu Arg Glu Phe Asp Leu Gln Val Asp Asn Arg Lys Ala
245 250 255

Glu Ala Glu Glu Ala Met Lys Arg Leu Ser Tyr Ile Ser Gln Lys Val
260 265 270

Ser Asp Ala Ser Asp Lys Thr Gln Gln Ala Glu Arg Ala Leu Gly Ser
275 280 285

Ala Ala Ala Asp Ala Gln Arg Ala Lys Asn Gly Ala Gly Glu Ala Leu
290 295 300

Glu Ile Ser Ser Glu Ile Glu Gln Glu Ile Gly Ser Leu Asn Leu Glu
305 310 315 320

Ala Asn Val Thr Ala Asp Gly Ala Leu Ala Met Glu Lys Gly Leu Ala
325 330 335

Ser Leu Lys Ser Glu Met Arg Glu Val Glu Gly Glu Leu Glu Arg Lys
340 345 350

Glu Leu Glu Phe Asp Thr Asn Met Asp Ala Val Gln Met Val Ile Thr
355 360 365

Glu Ala Gln Lys Val Asp Thr Arg Ala Lys Asn Ala Gly Val Thr Ile
370 375 380

Gln Asp Thr Leu Asn Thr Leu Asp Gly Leu Leu His Leu Met Asp Gln
385 390 395 400

Pro Leu Ser Val Asp Glu Glu Gly Leu Val Leu Leu Glu Gln Lys Leu
405 410 415

Ser Arg Ala Lys Thr Gln Ile Asn Ser Gln Leu Arg Pro Met Met Ser
420 425 430

227

Glu Leu Glu Glu Arg Ala Arg Gln Gln Arg Gly His Leu His Leu Leu
435 440 445

Glu Thr Ser Ile Asp Gly Ile Leu Ala Asp Val Lys Asn Leu Glu Asn
450 455 460

Ile Arg Asp Asn Leu Pro Pro Gly Cys Tyr Asn Thr Gln Ala Leu Glu
465 470 475 480

Gln Gln

<210> 175
<211> 454
<212> PRT
<213> Homo sapien

<400> 175

Met Leu Met Phe Thr Gly Gly Arg Asn Pro Pro Tyr Leu Gln Ala Ala
1 5 10 15

Ser Gln Pro Gln Glu Ala Thr Arg Leu Ala Glu Ser His Val Glu Ser
20 25 30

Ala Ser Asn Met Glu Gln Leu Thr Arg Glu Thr Glu Asp Tyr Ser Lys
35 40 45

Gln Ala Leu Ser Leu Val Arg Lys Ala Leu His Glu Gly Val Gly Ser
50 55 60

Gly Ser Gly Ser Pro Asp Gly Ala Val Val Gln Gly Leu Val Glu Lys
65 70 75 80

Leu Glu Lys Thr Lys Ser Leu Ala Gln Gln Leu Thr Arg Glu Ala Thr
85 90 95

Gln Ala Glu Ile Glu Ala Asp Arg Ser Tyr Gln His Ser Leu Arg Leu
100 105 110

Leu Asp Ser Val Ser Arg Leu Gln Gly Val Ser Asp Gln Ser Phe Gln
115 120 125

Val Glu Glu Ala Lys Arg Ile Lys Gln Lys Ala Asp Ser Leu Ser Ser
130 135 140

Leu Val Thr Arg His Met Asp Glu Phe Lys Arg Thr Gln Lys Asn Leu
145 150 155 160

Gly Asn Trp Lys Glu Glu Ala Gln Gln Leu Leu Gln Asn Gly Lys Ser
165 170 175

Gly Arg Glu Lys Ser Asp Gln Leu Leu Ser Arg Ala Asn Leu Ala Lys
180 185 190

Ser Arg Ala Gln Glu Ala Leu Ser Met Gly Asn Ala Thr Phe Tyr Glu
195 200 205

Val Glu Ser Ile Leu Lys Asn Leu Arg Glu Phe Asp Leu Gln Val Asp
210 215 220

Asn Arg Lys Ala Glu Ala Glu Glu Ala Met Lys Arg Leu Ser Tyr Ile
225 230 235 240

Ser Gln Lys Val Ser Asp Ala Ser Asp Lys Thr Gln Gln Ala Glu Arg
245 250 255

Ala Leu Gly Ser Ala Ala Ala Asp Ala Gln Arg Ala Lys Asn Gly Ala
260 265 270

Gly Glu Ala Leu Glu Ile Ser Ser Glu Ile Glu Gln Glu Ile Gly Ser
275 280 285

Leu Asn Leu Glu Ala Asn Val Thr Ala Asp Gly Ala Leu Ala Met Glu
290 295 300

Lys Gly Leu Ala Ser Leu Lys Ser Glu Met Arg Glu Val Glu Gly Glu
305 310 315 320

Leu Glu Arg Lys Glu Leu Glu Phe Asp Thr Asn Met Asp Ala Val Gln
325 330 335

Met Val Ile Thr Glu Ala Gln Lys Val Asp Thr Arg Ala Lys Asn Ala
340 345 350

Gly Val Thr Ile Gln Asp Thr Leu Asn Thr Leu Asp Gly Leu Leu His
355 360 365

Leu Met Asp Gln Pro Leu Ser Val Asp Glu Glu Gly Leu Val Leu Leu
370 375 380

Glu Gln Lys Leu Ser Arg Ala Lys Thr Gln Ile Asn Ser Gln Leu Arg
385 390 395 400

Pro Met Met Ser Glu Leu Glu Glu Arg Ala Arg Gln Gln Arg Gly His
405 410 415

Leu His Leu Leu Glu Thr Ser Ile Asp Gly Ile Leu Ala Asp Val Lys
420 425 430

Asn Leu Glu Asn Ile Arg Asp Asn Leu Pro Pro Gly Cys Tyr Asn Thr
435 440 445

Gln Ala Leu Glu Gln Gln
450

<210> 176
<211> 340
<212> PRT
<213> Homo sapien

<400> 176

Met His Asp Val Lys Asn His Arg Thr Phe Leu Lys Arg Thr Lys Tyr
1 5 10 15

Asp Asn Leu His Leu Glu Asp Leu Phe Ile Gly Asn Lys Val Asn Val
20 25 30

Phe Ser Arg Gln Leu Val Leu Ile Asp Tyr Gly Asp Gln Tyr Thr Ala
35 40 45

Arg Gln Leu Gly Ser Arg Lys Glu Lys Thr Leu Ala Leu Ile Lys Pro
50 55 60

Asp Ala Ile Ser Lys Ala Gly Glu Ile Ile Glu Ile Ile Asn Lys Ala
65 70 75 80

Gly Phe Thr Ile Thr Lys Leu Lys Met Met Leu Ser Arg Lys Glu
85 90 95

Ala Leu Asp Phe His Val Asp His Gln Ser Arg Pro Phe Asn Glu
100 105 110

Leu Ile Gln Phe Ile Thr Thr Gly Pro Ile Ile Ala Met Glu Ile Leu
115 120 125

Arg Asp Asp Ala Ile Cys Glu Trp Lys Arg Leu Leu Gly Pro Ala Asn
130 135 140

Ser Gly Val Ala Arg Thr Asp Ala Ser Glu Ser Ile Arg Ala Leu Phe

230

145	150	155	160
Gly Thr Asp Gly Ile Arg Asn Ala Ala His Gly Pro Asp Ser Phe Ala			
165		170	175
Ser Ala Ala Arg Glu Met Glu Leu Phe Phe Pro Ser Ser Gly Gly Cys			
180		185	190
Gly Pro Ala Asn Thr Ala Lys Phe Thr Asn Cys Thr Cys Cys Ile Val			
195		200	205
Lys Pro His Ala Val Ser Glu Gly Leu Leu Gly Lys Ile Leu Met Ala			
210		215	220
Ile Arg Asp Ala Gly Phe Glu Ile Ser Ala Met Gln Met Phe Asn Met			
225	230	235	240
Asp Arg Val Asn Val Glu Glu Phe Tyr Glu Val Tyr Lys Gly Val Val			
245		250	255
Thr Glu Tyr His Asp Met Val Thr Glu Met Tyr Ser Gly Pro Cys Val			
260		265	270
Ala Met Glu Ile Gln Gln Asn Asn Ala Thr Lys Thr Phe Arg Glu Phe			
275		280	285
Cys Gly Pro Ala Asp Pro Glu Ile Ala Arg His Leu Arg Pro Gly Thr			
290	295	300	
Leu Arg Ala Ile Phe Gly Lys Thr Lys Ile Gln Asn Ala Val His Cys			
305	310	315	320
Thr Asp Leu Pro Glu Asp Gly Leu Leu Glu Val Gln Tyr Phe Phe Lys			
325		330	335
Ile Leu Asp Asn			
340			

<210> 177
<211> 304
<212> PRT
<213> Homo sapien

<220>
<221> MISC_FEATURE
<222> (264)..(264)
<223> X=any amino acid

<400> 177

Thr Gly Pro Val Ala Met Gly Arg Val Ile Arg Gly Gln Arg Lys Gly
1 5 10 15

Ala Gly Ser Val Phe Arg Ala His Val Lys His Arg Lys Gly Ala Ala
20 25 30

Arg Leu Arg Ala Val Asp Phe Ala Glu Arg His Gly Tyr Ile Lys Gly
35 40 45

Ile Val Lys Asp Ile Ile His Asp Pro Gly Arg Gly Ala Pro Leu Ala
50 55 60

Lys Val Val Phe Arg Asp Pro Tyr Arg Phe Lys Lys Arg Thr Glu Leu
65 70 75 80

Phe Ile Ala Ala Glu Gly Ile His Thr Gly Gln Phe Val Tyr Cys Gly
85 90 95

Lys Lys Ala Gln Leu Asn Ile Gly Asn Val Leu Pro Val Gly Thr Met
100 105 110

Pro Glu Gly Thr Ile Val Cys Cys Leu Glu Glu Lys Pro Gly Asp Arg
115 120 125

Gly Lys Leu Ala Arg Ala Ser Gly Asn Tyr Ala Thr Val Ile Ser His
130 135 140

Asn Pro Glu Thr Lys Lys Thr Arg Val Lys Leu Pro Ser Gly Ser Lys
145 150 155 160

Lys Val Ile Ser Ser Ala Asn Arg Ala Val Val Gly Val Val Ala Gly
165 170 175

Gly Gly Arg Ile Asp Lys Pro Ile Leu Lys Ala Gly Arg Ala Tyr His
180 185 190

Lys Tyr Lys Ala Lys Arg Asn Cys Trp Pro Arg Val Arg Gly Val Ala
195 200 205

Met Asn Pro Val Glu His Pro Phe Gly Gly Asn His Gln His Ile
210 215 220

Gly Lys Pro Ser Thr Ile Arg Arg Asp Ala Pro Ala Gly Arg Lys Val
225 230 235 240

232

Gly Leu Ile Ala Ala Arg Arg Thr Gly Arg Leu Arg Gly Thr Lys Thr
245 250 255

Val Gln Glu Asn Met Trp Ala Xaa Ser Gly Phe Ala Glu Lys Asn Thr
260 265 270

Thr Thr Gln Thr Gln Arg Gln Thr Tyr Arg Lys Lys Gly Gly Tyr Arg
275 280 285

Gly Arg His Ser Arg Gly Asn Ile Ile Ala Ala Glu Asp Arg Gly Gly
290 295 300

<210> 178

<211> 185

<212> PRT

<213> Homo sapien

<400> 178

Met Pro Glu Gly Thr Ile Val Cys Cys Leu Glu Glu Lys Pro Gly Asp
1 5 10 15

Arg Gly Lys Leu Ala Arg Ala Ser Gly Asn Tyr Ala Thr Val Ile Ser
20 25 30

His Asn Pro Glu Thr Lys Lys Thr Arg Val Lys Leu Pro Ser Gly Ser
35 40 45

Lys Lys Val Ile Ser Ser Ala Asn Arg Ala Val Val Gly Val Val Ala
50 55 60

Gly Gly Gly Arg Ile Asp Lys Pro Ile Leu Lys Ala Gly Arg Ala Tyr
65 70 75 80

His Lys Tyr Lys Ala Lys Arg Asn Cys Trp Pro Arg Val Arg Gly Val
85 90 95

Ala Met Asn Pro Val Glu His Pro Phe Gly Gly Asn His Gln His
100 105 110

Ile Gly Lys Pro Ser Thr Ile Arg Arg Asp Ala Pro Ala Gly Arg Lys
115 120 125

Val Gly Leu Ile Ala Ala Arg Arg Thr Gly Arg Leu Arg Gly Thr Lys
130 135 140

233

Thr Val Gln Glu Asn Met Trp Ala His Lys Trp Val Cys Arg Glu Lys
145 150 155 160

Thr Gln Gln Arg Lys His Lys Gly Lys His Ile Glu Lys Lys Gly Ala
165 170 175

Thr Gly Ala Asp Thr Leu Glu Val Ile
180 185

<210> 179
<211> 484
<212> PRT
<213> Homo sapien

<400> 179

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val
340 345 350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

235

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 180

<211> 483

<212> PRT

<213> Homo sapien

<400> 180

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Trp Ser
1 5 10 15

Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met
20 25 30

Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp
35 40 45

Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser
50 55 60

Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val Val
65 70 75 80

Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr Phe
85 90 95

Thr Leu Gly Lys Gly Thr Glu Val Val Cys Ala Val Asn Ala Leu
100 105 110

Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp Phe
115 120 125

Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp Ile

236

130 135 140

Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu Asn
145 150 155 160

Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp Lys
165 170 175

Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp Phe
180 185 190

Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile Leu
195 200 205

Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu Ala
210 215 220

Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala Trp Leu Gly Tyr Ser
225 230 235 240

Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly Trp
245 250 255

Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met Arg
260 265 270

Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu Met
275 280 285

Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp Met
290 295 300

Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr Ser
305 310 315 320

Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val Pro
325 330 335

Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val Ile
340 345 350

Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile Asp
355 360 365

Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu Met
370 375 380

Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val Gly
385 390 395 400

Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser Val
405 410 415

Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu His
420 425 430

Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met Pro
435 440 445

Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val Lys
450 455 460

Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro Ala
465 470 475 480

Gln Glu Asn

<210> 181
<211> 484
<212> PRT
<213> Homo sapien

<400> 181

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

238

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val

239

340

345

350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 182
<211> 484
<212> PRT
<213> Homo sapien

<400> 182

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

240

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

241

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val
340 345 350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 183
<211> 249
<212> PRT
<213> Homo sapien

<400> 183

Arg Met Ala Gly Pro Gly Glu Cys Asp Asp Gly Pro Asp Phe Pro Ser
1 5 10 15

Trp Arg Gln Glu Arg Leu Arg Gln Phe Lys Val Lys Val Gly Ala Asp
20 25 30

Leu Gln Asp Asp Met Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly
35 40 45

Pro Glu Lys Thr Leu Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro
50 55 60

Glu Ala Val Glu Trp Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp
65 70 75 80

Ile Glu Glu Pro Thr Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile
85 90 95

Ser Lys Ala Leu Val Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln
100 105 110

Cys His Asn Arg Val Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu
115 120 125

Gln Phe Leu Gln Ile Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn
130 135 140

Leu Ser Val Leu Leu Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro
145 150 155 160

His Ala Gly Gly Val Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile
165 170 175

Phe Asp Tyr Ile Ser Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu
180 185 190

Tyr Val Asp His Leu His Glu His Phe Lys Tyr Pro Val Met Ile Gln
195 200 205

Arg Ala Ser Tyr Met Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met
210 215 220

Lys Glu Glu Ser Val Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp
225 230 235 240

Lys Lys Leu Leu Pro Ala Gln Glu Asn
245

<210> 184
<211> 221
<212> PRT

243

<213> Homo sapien

<400> 184

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Trp Ser
1 5 10 15

Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met
20 25 30

Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp
35 40 45

Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser
50 55 60

Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val Val
65 70 75 80

Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr Phe
85 90 95

Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala Leu
100 105 110

Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp Phe
115 120 125

Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp Ile
130 135 140

Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu Asn
145 150 155 160

Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp Lys
165 170 175

Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp Phe
180 185 190

Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile Leu
195 200 205

Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Gly Gly Leu
210 215 220

<210> 185

244

<211> 416

<212> PRT

<213> Homo sapien

<400> 185

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

245

Ala Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Val Ser Asp Ala Pro
340 345 350

Asn Arg Trp Met Thr Ser Pro Trp Gly Gln Tyr Thr Leu Thr Ser Asp
355 360 365

Arg Gly His Ser Cys Val Leu Gly Ser Ile Thr Cys Cys Thr Leu Ser
370 375 380

Trp Glu Ile Phe Ile Ile Leu Glu Thr Gly Ser Phe Tyr Gln Ser Leu
385 390 395 400

Glu Ser Asp Ile Glu Lys Val Cys Gly Tyr Phe Ser Asn Leu Tyr Asp
405 410 415

<210> 186
<211> 415
<212> PRT
<213> Homo sapien

<400> 186

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Trp Ser
1 5 10 15

Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met

246

20

25

30

Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp
35 40 45

Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser
50 55 60

Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val Val
65 70 75 80

Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr Phe
85 90 95

Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala Leu
100 105 110

Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp Phe
115 120 125

Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp Ile
130 135 140

Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu Asn
145 150 155 160

Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp Lys
165 170 175

Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp Phe
180 185 190

Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile Leu
195 200 205

Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu Ala
210 215 220

Gln Gly Tyr Pro Ala Tyr Thr Ser Cys Ala Trp Leu Gly Tyr Ser
225 230 235 240

Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly Trp
245 250 255

Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met Arg
260 265 270

Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu Met
275 280 285

Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp Met
290 295 300

Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr Ser
305 310 315 320

Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val Pro
325 330 335

Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Val Ser Asp Ala Pro Asn
340 345 350

Arg Trp Met Thr Ser Pro Trp Gly Gln Tyr Thr Leu Thr Ser Asp Arg
355 360 365

Gly His Ser Cys Val Leu Gly Ser Ile Thr Cys Cys Thr Leu Ser Trp
370 375 380

Glu Ile Phe Ile Ile Leu Glu Thr Gly Ser Phe Tyr Gln Ser Leu Glu
385 390 395 400

Ser Asp Ile Glu Lys Val Cys Gly Tyr Phe Ser Asn Leu Tyr Asp
405 410 415

<210> 187

<211> 484

<212> PRT

<213> Homo sapien

<400> 187

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

248

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr

249

305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val
340 345 350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 188
<211> 349
<212> PRT
<213> Homo sapien

<400> 188

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

250

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

251

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Gly Val
340 345

<210> 189

<211> 305

<212> PRT

<213> Homo sapien

<400> 189

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
1 5 10 15

Asp Ala Met Val Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser
20 25 30

Ala Ala Tyr Val Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly
35 40 45

Cys Gly Ile Thr Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys
50 55 60

Ala Val Asn Ala Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp
65 70 75 80

Ile Val Gly Asp Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly
85 90 95

Gln Leu Arg Trp Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr
100 105 110

Ala Ala Val Leu Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly
115 120 125

Lys Pro Val Trp Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val
130 135 140

252

Ser Cys Ile Asp Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp
145 150 155 160

Ala Leu Glu Ile Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu
165 170 175

Lys Gln Met Leu Ala Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala
180 185 190

Trp Leu Gly Tyr Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala
195 200 205

Leu Lys Asp Gly Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu
210 215 220

Gln Asp Asp Met Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro
225 230 235 240

Glu Lys Thr Leu Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu
245 250 255

Ala Val Glu Trp Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile
260 265 270

Glu Glu Pro Thr Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser
275 280 285

Lys Ala Leu Val Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Gly
290 295 300

Val
305

<210> 190
<211> 484
<212> PRT
<213> Homo sapien

<400> 190

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

253

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu

254

275

280

285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val
340 345 350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 191
<211> 484
<212> PRT
<213> Homo sapien

<400> 191

255

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

256

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val
340 345 350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 192
<211> 484
<212> PRT
<213> Homo sapien

<400> 192

His Gly Lys Arg Gly Arg His Gly Lys Arg Gly Arg His Gly Met Val
1 5 10 15

Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala
20 25 30

Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala
35 40 45

Asp Ala Met Val Ser Ala Asp Ala Met Val Ser Ala Asp Ala Met Val
50 55 60

Ser Ala Asp Ala Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val
65 70 75 80

Val Ile Glu Thr Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr
85 90 95

Phe Thr Leu Gly Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala
100 105 110

Leu Ala His His Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp
115 120 125

Phe Arg Gly Phe Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp
130 135 140

Ile Gly Pro Glu Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu
145 150 155 160

Asn Ala Val Trp Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp
165 170 175

Lys Leu Leu Val Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp
180 185 190

Phe Arg Tyr Ile Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile
195 200 205

258

Leu Gln Lys Gly Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu
210 215 220

Ala Gln Gly Tyr Pro Ala Tyr Thr Thr Ser Cys Ala Trp Leu Gly Tyr
225 230 235 240

Ser Asp Asp Thr Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly
245 250 255

Trp Thr Arg Phe Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met
260 265 270

Arg Arg Cys Gln Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu
275 280 285

Met Met Asp Ala Asn Gln Arg Trp Asp Val Pro Glu Ala Val Glu Trp
290 295 300

Met Ser Lys Leu Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr
305 310 315 320

Ser Pro Asp Asp Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val
325 330 335

Pro Leu Gly Ile Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val
340 345 350

Ile Phe Lys Gln Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile
355 360 365

Asp Ser Cys Arg Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu
370 375 380

Met Ala Lys Lys Phe Glu Ile Pro Val Cys Pro His Ala Gly Gly Val
385 390 395 400

Gly Leu Cys Glu Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser
405 410 415

Val Ser Ala Ser Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu
420 425 430

His Glu His Phe Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met
435 440 445

259

Pro Pro Lys Asp Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val
450 455 460

Lys Lys His Gln Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro
465 470 475 480

Ala Gln Glu Asn

<210> 193
<211> 138
<212> PRT
<213> Homo sapien

<400> 193

Trp Ile Val Val Ala Ala Arg Tyr Arg Ile Arg Leu Gly Leu Tyr Leu
1 5 10 15

Thr Leu Ala Ser Glu Val Tyr Tyr Thr Arg Leu Gly Asn Asp Phe His
20 25 30

Thr Asn Lys Arg Val Cys Glu Glu Ile Ala Ile Ile Pro Ser Lys Lys
35 40 45

Leu Arg Asn Lys Ile Ala Gly Tyr Val Thr His Leu Met Lys Arg Ile
50 55 60

Gln Arg Gly Pro Val Arg Gly Ile Ser Ile Lys Leu Gln Glu Glu Glu
65 70 75 80

Arg Glu Arg Arg Asp Asn Tyr Val Pro Glu Val Ser Ala Leu Asp Gln
85 90 95

Glu Ile Ile Glu Val Asp Pro Asp Thr Lys Glu Met Leu Lys Leu Leu
100 105 110

Asp Phe Gly Ser Leu Ser Asn Leu Gln Val Thr Gln Pro Thr Val Gly
115 120 125

Met Asn Phe Lys Thr Pro Arg Gly Pro Val
130 135

<210> 194
<211> 386
<212> PRT
<213> Homo sapien

<400> 194

260

Met Pro Trp Ala Met Ile Trp Asp Phe Thr Glu Pro Val Cys Arg Gly
1 5 10 15

Cys Val Asn Tyr Glu Gly Ala Asp Arg Val Glu Phe Val Ile Glu Thr
20 25 30

Ala Arg Gln Leu Lys Arg Ala His Gly Cys Phe Pro Glu Gly Arg Ser
35 40 45

Pro Pro Gly Ala Ala Ala Ser Ala Ala Ala Lys Pro Pro Pro Leu Ser
50 55 60

Ala Lys Asp Ile Leu Leu Gln Gln Gln Gln Leu Gly His Gly Gly
65 70 75 80

Pro Glu Ala Ala Pro Arg Ala Pro Gln Ala Leu Glu Arg Tyr Pro Leu
85 90 95

Ala Ala Ala Ala Glu Arg Pro Pro Arg Leu Gly Ser Asp Phe Gly Ser
100 105 110

Ser Arg Pro Ala Ala Ser Leu Ala Gln Pro Pro Thr Pro Gln Pro Pro
115 120 125

Pro Val Asn Gly Ile Leu Val Pro Asn Gly Phe Ser Lys Leu Glu Glu
130 135 140

Pro Pro Glu Leu Asn Arg Gln Ser Pro Asn Pro Arg Arg Gly His Ala
145 150 155 160

Val Pro Pro Thr Leu Val Pro Leu Met Asn Gly Ser Ala Thr Pro Leu
165 170 175

Pro Thr Ala Leu Gly Leu Gly Arg Ala Ala Ala Ser Leu Ala Ala
180 185 190

Val Ser Gly Thr Ala Ala Ala Ser Leu Gly Ser Ala Gln Pro Thr Asp
195 200 205

Leu Gly Ala His Lys Arg Pro Ala Ser Val Ser Ser Ser Ala Ala Val
210 215 220

Glu His Glu Gln Arg Glu Ala Ala Ala Lys Glu Lys Gln Pro Pro Pro
225 230 235 240

261

Pro Ala His Arg Gly Pro Ala Asp Ser Leu Ser Thr Ala Ala Gly Ala
245 250 255

Ala Glu Leu Ser Ala Glu Gly Ala Gly Lys Ser Arg Gly Ser Gly Glu
260 265 270

Gln Asp Trp Val Asn Arg Pro Lys Thr Val Arg Asp Thr Leu Leu Ala
275 280 285

Leu His Gln His Gly His Ser Gly Pro Phe Glu Ser Lys Phe Lys Lys
290 295 300

Glu Pro Ala Leu Thr Ala Gly Arg Leu Leu Gly Phe Glu Ala Asn Gly
305 310 315 320

Ala Asn Gly Ser Lys Ala Gly Arg Gly Cys Glu Val Arg Gly Ser
325 330 335

Arg Gly Glu Lys Gly Thr Glu Ser Arg Gly Arg Val Val Leu Trp Ile
340 345 350

His His Phe Thr Pro Ala Gln Lys Gln Gln Thr Pro His Phe Leu Ile
355 360 365

Cys Leu Arg Arg Asn Gln Cys Leu Val Ala Thr Cys Ser Cys Ala Glu
370 375 380

Ala Ala
385

<210> 195
<211> 492
<212> PRT
<213> Homo sapien

<400> 195

Met Pro Trp Ala Met Ile Trp Asp Phe Thr Glu Pro Val Cys Arg Gly
1 5 10 15

Cys Val Asn Tyr Glu Gly Ala Asp Arg Val Glu Phe Val Ile Glu Thr
20 25 30

Ala Arg Gln Leu Lys Arg Ala His Gly Cys Phe Pro Glu Gly Arg Ser
35 40 45

Pro Pro Gly Ala Ala Ala Ser Ala Ala Lys Pro Pro Pro Leu Ser
50 55 60

Ala Lys Asp Ile Leu Leu Gln Gln Gln Gln Leu Gly His Gly Gly
65 70 75 80

Pro Glu Ala Ala Pro Arg Ala Pro Gln Ala Leu Glu Arg Tyr Pro Leu
85 90 95

Ala Ala Ala Ala Glu Arg Pro Pro Arg Leu Gly Ser Asp Phe Gly Ser
100 105 110

Ser Arg Pro Ala Ala Ser Leu Ala Gln Pro Pro Thr Pro Gln Pro Pro
115 120 125

Pro Val Asn Gly Ile Leu Val Pro Asn Gly Phe Ser Lys Leu Glu Glu
130 135 140

Pro Pro Glu Leu Asn Arg Gln Ser Pro Asn Pro Arg Arg Gly His Ala
145 150 155 160

Val Pro Pro Thr Leu Val Pro Leu Met Asn Gly Ser Ala Thr Pro Leu
165 170 175

Pro Thr Ala Leu Gly Leu Gly Gly Arg Ala Ala Ala Ser Leu Ala Ala
180 185 190

Val Ser Gly Thr Ala Ala Ala Ser Leu Gly Ser Ala Gln Pro Thr Asp
195 200 205

Leu Gly Ala His Lys Arg Pro Ala Ser Val Ser Ser Ala Ala Val
210 215 220

Glu His Glu Gln Arg Glu Ala Ala Ala Lys Glu Lys Gln Pro Pro Pro
225 230 235 240

Pro Ala His Arg Gly Pro Ala Asp Ser Leu Ser Thr Ala Ala Gly Ala
245 250 255

Ala Glu Leu Ser Ala Glu Gly Ala Gly Lys Ser Arg Gly Ser Gly Glu
260 265 270

Gln Asp Trp Val Asn Arg Pro Lys Thr Val Arg Asp Thr Leu Leu Ala
275 280 285

Leu His Gln His Gly His Ser Gly Pro Phe Glu Ser Lys Phe Lys Lys
290 295 300

263

Glu Pro Ala Leu Thr Ala Val Ala Arg Thr Ala Arg Lys Arg Lys Pro
305 310 315 320

Ser Pro Glu Pro Glu Gly Glu Val Gly Pro Pro Lys Ile Asn Gly Glu
325 330 335

Ala Gln Pro Trp Leu Ser Thr Ser Thr Glu Gly Leu Lys Ile Pro Met
340 345 350

Thr Pro Thr Ser Ser Phe Val Ser Pro Pro Pro Pro Thr Ala Ser Pro
355 360 365

His Ser Asn Arg Thr Thr Pro Pro Glu Ala Ala Gln Asn Gly Gln Ser
370 375 380

Pro Met Ala Ala Leu Ile Leu Val Ala Asp Asn Ala Gly Gly Ser His
385 390 395 400

Ala Ser Lys Asp Ala Asn Gln Val His Pro Leu Trp Gln Pro Val Pro
405 410 415

Arg Cys Ala Ala Pro Ser Ala Thr Ser Gly Trp Arg Thr Pro Ile Leu
420 425 430

Cys Ser Ala Arg Pro Ser Leu Arg Thr Ser Ser Ala Ser Leu Ala Pro
435 440 445

Asp Lys Ala Ser Asn Ser Arg Glu Leu Val Glu Arg Ser Ile Val Pro
450 455 460

Val Gly Lys Asn Ala Leu Leu Trp Ala Pro Met Ser Pro Gly Pro Leu
465 470 475 480

Cys Lys Gly Lys Leu Gln Pro Ser Leu Leu Glu Met
485 490

<210> 196
<211> 358
<212> PRT
<213> Homo sapien

<400> 196

Met Ser Gly Val Arg Pro Pro Ile Met Asn Gly Pro Leu His Pro Arg
1 .5 10 15

Pro Leu Val Ala Leu Leu Asp Gly Arg Asp Cys Thr Val Glu Met Pro

264

20 25 30

Ile Leu Lys Asp Val Ala Thr Val Ala Phe Cys Asp Ala Gln Ser Thr
35 40 45

Gln Glu Ile His Glu Lys Val Leu Asn Glu Ala Val Gly Ala Leu Met
50 55 60

Tyr His Thr Ile Thr Leu Thr Arg Glu Asp Leu Glu Lys Phe Lys Ala
65 70 75 80

Leu Arg Ile Ile Val Arg Ile Gly Ser Gly Phe Asp Asn Ile Asp Ile
85 90 95

Lys Ser Ala Gly Asp Leu Gly Ile Ala Val Cys Asn Val Pro Ala Ala
100 105 110

Ser Val Glu Glu Thr Ala Asp Ser Thr Leu Cys His Ile Leu Asn Leu
115 120 125

Tyr Arg Arg Ala Thr Trp Leu His Gln Ala Leu Arg Glu Gly Thr Arg
130 135 140

Val Gln Ser Val Glu Gln Ile Arg Glu Val Ala Ser Gly Ala Ala Arg
145 150 155 160

Ile Arg Gly Glu Thr Leu Gly Ile Ile Gly Leu Gly Arg Val Gly Gln
165 170 175

Ala Val Ala Leu Arg Ala Lys Ala Phe Gly Phe Asn Val Leu Phe Tyr
180 185 190

Asp Pro Tyr Leu Ser Asp Gly Val Glu Arg Ala Leu Gly Leu Gln Arg
195 200 205

Val Ser Thr Leu Gln Asp Leu Leu Phe His Ser Asp Cys Val Thr Leu
210 215 220

His Cys Gly Leu Asn Glu His Asn His His Leu Ile Asn Asp Phe Thr
225 230 235 240

Val Lys Gln Met Arg Gln Gly Ala Phe Leu Val Asn Thr Ala Arg Gly
245 250 255

Gly Leu Val Asp Glu Lys Ala Leu Ala Gln Ala Leu Lys Glu Gly Arg
260 265 270

265

Ile Arg Gly Ala Ala Leu Asp Val His Glu Ser Glu Pro Phe Ser Phe
275 280 285

Ser Gln Gly Pro Leu Lys Asp Ala Pro Asn Leu Ile Cys Thr Pro His
290 295 300

Ala Ala Trp Tyr Ser Glu Gln Ala Ser Ile Glu Met Arg Glu Glu Ala
305 310 320

Ala Arg Glu Ile Arg Arg Ala Ile Thr Gly Arg Ile Pro Asp Ser Leu
325 330 335

Lys Asn Phe Cys Pro Val Ser Phe Ala Phe Leu Val Lys Gln Lys Lys
340 345 350

Ser Val Val Ile Leu Pro
355

<210> 197

<211> 364

<212> PRT

<213> Homo sapien

<400> 197

Met Gly Pro Gly His Gly Val Met Ala Ser Arg Pro Asp Leu Gln Pro
1 5 10 15

Leu Gln His Leu Gly Thr Pro Gly Ser Pro Gly Leu Asp Val Gln Pro
20 25 30

Gln Glu Glu Thr Pro Pro Gln Gly Gln Tyr Gln Pro Ala Ala Pro Gly
35 40 45

Ala Thr Asp Pro Leu Ala Gly Arg Gly Gln Ala Ala Cys Pro Pro Ile
50 55 60

Arg Ala Pro Pro Thr Arg Asp Leu Glu Ile Lys Ser Leu Gly Leu Pro
65 70 75 80

His Pro Pro Leu Ser Gly Ala Pro Gly Val Ser Asp Gly Pro Gly Ala
85 90 95

Val Leu Leu Ser Ser Ala Ser Leu Pro Ser Arg Ala Gly Pro Trp Gly
100 105 110

266

Leu Trp Phe Pro Gly Arg Ala Pro His Arg Gly Phe Gln Cys Gln Pro
115 120 125

Pro Pro Leu Arg Thr Gln Pro Gln His Ser Gly Cys Thr Asp His Ala
130 135 140

Cys Ala Val Pro Ser Phe Ser Gln Gly Pro Leu Lys Asp Ala Pro Asn
145 150 155 160

Leu Ile Cys Thr Pro His Ala Ala Trp Tyr Ser Glu Gln Ala Ser Ile
165 170 175

Glu Met Arg Glu Glu Ala Ala Arg Glu Ile Arg Arg Ala Ile Thr Gly
180 185 190

Arg Ile Pro Asp Ser Leu Lys Asn Cys Val Asn Lys Asp His Leu Thr
195 200 205

Ala Ala Thr His Trp Ala Ser Met Asp Pro Ala Val Val His Pro Glu
210 215 220

Leu Asn Gly Ala Ala Tyr Ser Arg Gly Thr Leu Arg Ala Trp Trp Ala
225 230 235 240

Trp Pro Pro Leu Ala Ser Gln Leu Leu Trp Lys Val Ser Ser Pro Ala
245 250 255

Pro Cys Pro Cys Pro Thr Ala Cys Pro Leu Trp Pro Thr Arg Pro Thr
260 265 270

Pro Leu Leu Leu Ala Lys Pro Ser Ser Pro Arg Arg Ile Glu Thr Thr
275 280 285

Pro Val Thr Ser Cys Ser Pro Gly Gly Ala Leu Gln Pro Arg Arg Leu
290 295 300

Gly Arg Gly Pro Gly Asn Pro Arg Thr Arg Val Cys Gly Gly Gly Ile
305 310 315 320

Cys Val Val Ala Leu Ala Leu Gln Arg Leu Val Arg Ala Val Arg Arg
325 330 335

Arg Glu Gly Ala Ala Leu Gly Leu Val Ser Leu Val Val Val Arg Pro
340 345 350

Val Gly Ala Leu Pro Cys Val Leu Arg Val Pro Arg

267

355

360

<210> 198
<211> 192
<212> PRT
<213> Homo sapien

<400> 198

Ala Gln Pro Ala Cys Arg Ala Glu Arg Gly Arg Gly Val Cys Gly Ser
1 5 10 15

Gln Ala Gly Pro Pro Thr Gly Gly Ser Ser Ala Gln Pro Pro Pro Leu
20 25 30

Arg Thr Gln Pro Gln His Ser Gly Cys Thr Asp His Ala Cys Ala Val
35 40 45

Pro Ser Phe Ser Gln Gly Pro Leu Lys Asp Ala Pro Asn Leu Ile Cys
50 55 60

Thr Pro His Ala Ala Trp Tyr Ser Glu Gln Ala Ser Ile Glu Met Arg
65 70 75 80

Glu Glu Ala Ala Arg Glu Ile Arg Arg Ala Ile Thr Gly Arg Ile Pro
85 90 95

Asp Ser Leu Lys Asn Cys Val Asn Lys Asp His Leu Thr Ala Ala Thr
100 105 110

His Trp Ala Ser Met Asp Pro Ala Val Val His Pro Glu Leu Asn Gly
115 120 125

Ala Ala Tyr Arg Tyr Pro Pro Gly Val Val Gly Val Ala Pro Thr Gly
130 135 140

Ile Pro Ala Ala Val Glu Gly Ile Val Pro Ser Ala Met Ser Leu Ser
145 150 155 160

His Gly Leu Pro Pro Val Ala His Pro Pro His Ala Pro Ser Pro Gly
165 170 175

Gln Thr Val Lys Pro Glu Ala Asp Arg Asp His Ala Ser Asp Gln Leu
180 185 190

<210> 199
<211> 178
<212> PRT

268

<213> Homo sapien

<400> 199

Met Arg Glu Glu Ala Pro Phe Ser Phe Ser Gln Gly Pro Leu Lys Asp
1 5 10 15

Ala Pro Asn Leu Ile Cys Thr Pro His Ala Ala Trp Tyr Met Asp Pro
20 25 30

Ala Val Val His Pro Glu Leu Asn Gly Ala Ala Tyr Ser Arg Gly Thr
35 40 45

Leu Arg Ala Trp Trp Ala Trp Pro Pro Leu Ala Ser Gln Leu Leu Trp
50 55 60

Lys Val Ser Ser Pro Ala Pro Cys Pro Cys Pro Thr Ala Cys Pro Leu
65 70 75 80

Trp Pro Thr Arg Pro Thr Pro Leu Leu Ala Lys Pro Ser Ser Pro
85 90 95

Arg Arg Ile Glu Thr Thr Pro Val Thr Ser Cys Ser Pro Gly Gly Ala
100 105 110

Leu Gln Pro Arg Arg Leu Gly Arg Gly Pro Gly Asn Pro Arg Thr Arg
115 120 125

Val Cys Gly Gly Ile Cys Val Val Ala Leu Ala Leu Gln Arg Leu
130 135 140

Val Arg Ala Val Arg Arg Arg Glu Gly Ala Ala Leu Gly Leu Val Ser
145 150 155 160

Leu Val Val Val Arg Pro Val Gly Ala Leu Pro Cys Val Leu Arg Val
165 170 175

Pro Arg

<210> 200
<211> 162
<212> PRT
<213> Homo sapien

<400> 200

Arg Met His Pro Thr Ser Ser Ala Pro Pro Met Leu His Gly Thr Trp
1 5 10 15

Thr Pro Pro Ser Cys Thr Leu Ser Ser Met Gly Leu Pro Ile Gly Thr
20 25 30

Leu Arg Ala Trp Trp Ala Trp Pro Pro Leu Ala Ser Gln Leu Leu Trp
35 40 45

Lys Val Ser Ser Pro Ala Pro Cys Pro Cys Pro Thr Ala Cys Pro Leu
50 55 60

Trp Pro Thr Arg Pro Thr Pro Leu Leu Ala Lys Pro Ser Ser Pro
65 70 75 80

Arg Arg Ile Glu Thr Thr Pro Val Thr Ser Cys Ser Pro Gly Gly Ala
85 90 95

Leu Gln Pro Arg Arg Leu Gly Arg Gly Pro Gly Asn Pro Arg Thr Arg
100 105 110

Val Cys Gly Gly Ile Cys Val Val Ala Leu Ala Leu Gln Arg Leu
115 120 125

Val Arg Ala Val Arg Arg Glu Gly Ala Ala Leu Gly Leu Val Ser
130 135 140

Leu Val Val Val Arg Pro Val Gly Ala Leu Pro Cys Val Leu Arg Val
145 150 155 160

Pro Arg

<210> 201
<211> 272
<212> PRT
<213> Homo sapien

<400> 201

Ala Ser Cys Gly Val Gly Arg Leu Val Gly Trp Gly Ile Ser Gly Gly
1 5 10 15

Gly Ala Ser Leu Gly Pro Gly His Leu Gly Gly Ala Ser Trp Gly
20 25 30

Arg Gly Ile Ser Glu Gly Ala Ser Gly Gly Trp Ser Ile Leu Gly Gly
35 40 45

270

Gly Ser Arg Trp Gln Arg Gly Phe Pro Gln Leu Ala Gly Gly Val Ile
50 55 60

Leu Gly Val Ala Leu Trp Leu Arg His Asp Pro Gln Thr Thr Asn Leu
65 70 75 80

Leu Tyr Leu Glu Leu Gly Asp Lys Pro Ala Pro Asn Thr Phe Tyr Val
85 90 95

Gly Ile Tyr Ile Leu Ile Ala Val Gly Ala Val Met Met Phe Val Gly
100 105 110

Phe Leu Gly Cys Tyr Gly Ala Ile Gln Glu Ser Gln Cys Leu Leu Gly
115 120 125

Thr Phe Phe Thr Cys Leu Val Ile Leu Phe Ala Cys Glu Val Ala Ala
130 135 140

Gly Ile Trp Gly Phe Val Asn Lys Asp Gln Ile Ala Lys Asp Val Lys
145 150 155 160

Gln Phe Tyr Asp Gln Ala Leu Gln Gln Ala Val Val Asp Asp Asp Ala
165 170 175

Asn Asn Ala Lys Ala Val Val Lys Thr Phe His Glu Thr Leu Asp Cys
180 185 190

Cys Gly Ser Ser Thr Leu Thr Ala Leu Thr Thr Ser Val Leu Lys Asn
195 200 205

Asn Leu Cys Pro Ser Gly Ser Asn Ile Ile Ser Asn Leu Phe Lys Glu
210 215 220

Asp Cys His Gln Lys Ile Asp Asp Leu Phe Ser Gly Lys Leu Tyr Leu
225 230 235 240

Ile Gly Ile Ala Ala Ile Val Val Ala Val Ile Met Ile Phe Glu Met
245 250 255

Ile Leu Ser Met Val Leu Cys Cys Gly Ile Arg Asn Ser Ser Val Tyr
260 265 270

<210> 202
<211> 303
<212> PRT
<213> Homo sapien

271

<400> 202

Met Ser Gly Ala Val Thr Ser His Leu Pro Gln Ala Gly Leu Phe Cys
1 5 10 15

Thr Ala Cys Leu Gly Arg Trp Trp Glu Ser Leu Trp Pro Ser Ala Leu
20 25 30

Pro Trp Gln Trp Gly Gln Leu Gly His Leu Gly Gly Ala Arg Leu Pro
35 40 45

Gln Ala Arg Pro Trp Asp Leu Ser Arg Cys Leu Val Val Ala Cys Phe
50 55 60

Ser Pro Gly Met Trp Glu Arg His Gln Thr Gln Asp Val Pro Leu Pro
65 70 75 80

Ala Pro Glu Ala Pro Ser Pro Asp Glu Leu Ala Gly Gly Val Ile Leu
85 90 95

Gly Val Ala Leu Trp Leu Arg His Asp Pro Gln Thr Thr Asn Leu Leu
100 105 110

Tyr Leu Glu Leu Gly Asp Lys Pro Ala Pro Asn Thr Phe Tyr Val Gly
115 120 125

Ile Tyr Ile Leu Ile Ala Val Gly Ala Val Met Met Phe Val Gly Phe
130 135 140

Leu Gly Cys Tyr Gly Ala Ile Gln Glu Ser Gln Cys Leu Leu Gly Thr
145 150 155 160

Phe Phe Thr Cys Leu Val Ile Leu Phe Ala Cys Glu Val Ala Ala Gly
165 170 175

Ile Trp Gly Phe Val Asn Lys Asp Gln Ile Ala Lys Asp Val Lys Gln
180 185 190

Phe Tyr Asp Gln Ala Leu Gln Gln Ala Val Val Asp Asp Asp Ala Asn
195 200 205

Asn Ala Lys Ala Val Val Lys Thr Phe His Glu Thr Leu Asp Cys Cys
210 215 220

Gly Ser Ser Thr Leu Thr Ala Leu Thr Thr Ser Val Leu Lys Asn Asn
225 230 235 240

272

Leu Cys Pro Ser Gly Ser Asn Ile Ile Ser Asn Leu Phe Lys Glu Asp
245 250 255

Cys His Gln Lys Ile Asp Asp Leu Phe Ser Gly Lys Leu Tyr Leu Ile
260 265 270

Gly Ile Ala Ala Ile Val Val Ala Val Ile Met Ile Phe Glu Met Ile
275 280 285

Leu Ser Met Val Leu Cys Cys Gly Ile Arg Asn Ser Ser Val Tyr
290 295 300

<210> 203

<211> 420

<212> PRT

<213> Homo sapien

<400> 203

Met Leu Pro Ser Gln Gly Ala Trp Gly Ser Ser Gly Gly Leu Ala Tyr
1 5 10 15

Thr Pro Trp Ser Ser Cys Pro Arg Trp Gly Ala Gly Leu Gln Pro Ser
20 25 30

Ala Gln Gly Leu Gly Ile Gln Leu Asp Pro Pro His Thr Ala Ala Arg
35 40 45

Phe Lys Cys Arg Ser Arg Asn Gly Ser Ala Ala Val Gln Pro Arg Leu
50 55 60

Gly Gly Arg Ser Gln Gln Gly Pro Pro Thr Leu Phe Ser His His Thr
65 70 75 80

Gly Glu Ala Ala Leu Val Pro Val Pro Val Pro Gly Leu Pro Ser Gln
85 90 95

Pro Arg Pro Thr Val Gly Pro Thr Leu Cys Leu Leu Met Pro Leu Pro
100 105 110

Pro His Ala Lys Ser Gln Arg Leu Trp Glu Arg Val Lys Ala Val Gly
115 120 125

Gly Gly Trp Gln Val Gln Ala Val Gly Gly Cys Gly Arg Trp Arg
130 135 140

Ala Pro Pro Gln Val Ser Ser Cys Glu Ala Pro Val Ala Ser Thr Gln

273

145

150

155

160

Ser Ala His Glu Val Pro Ser Pro His Val Ala Ser Leu Val Ser Val
165 170 175

Cys Val Met Glu Glu Val Thr Glu Ala Gln Lys Thr His Gln Ala Arg
180 185 190

Leu Gly Cys Glu Val Pro Cys Cys Ser Ser Leu Ala Val Ser Asn Pro
195 200 205

Thr Ser Ser Gln Leu Gly Gly Pro Trp Trp Val Arg His Pro Gly Pro
210 215 220

Ser Gly Val Leu Gly Cys Gly Glu Cys Val Gly Thr His Leu Val Ser
225 230 235 240

Leu Ser Pro Gln Gly Ile Tyr Ile Leu Ile Ala Val Gly Ala Val Met
245 250 255

Met Phe Val Gly Phe Leu Gly Cys Tyr Gly Ala Ile Gln Glu Ser Gln
260 265 270

Cys Leu Leu Gly Thr Phe Phe Thr Cys Leu Val Ile Leu Phe Ala Cys
275 280 285

Glu Val Ala Ala Gly Ile Trp Gly Phe Val Asn Lys Asp Gln Ile Ala
290 295 300

Lys Asp Val Lys Gln Phe Tyr Asp Gln Ala Leu Gln Gln Ala Val Val
305 310 315 320

Asp Asp Asp Ala Asn Asn Ala Lys Ala Val Val Lys Thr Phe His Glu
325 330 335

Thr Leu Asp Cys Cys Gly Ser Ser Thr Leu Thr Ala Leu Thr Thr Ser
340 345 350

Val Leu Lys Asn Asn Leu Cys Pro Ser Gly Ser Asn Ile Ile Ser Asn
355 360 365

Leu Phe Lys Glu Asp Cys His Gln Lys Ile Asp Asp Leu Phe Ser Gly
370 375 380

Lys Leu Tyr Leu Ile Gly Ile Ala Ala Ile Val Val Ala Val Ile Met
385 390 395 400

Ile Phe Glu Met Ile Leu Ser Met Val Leu Cys Cys Gly Ile Arg Asn
405 410 415

Ser Ser Val Tyr
420

<210> 204
<211> 247
<212> PRT
<213> Homo sapien

<400> 204

Ser Pro Ser Cys Val Met Glu Glu Val Thr Glu Ala Gln Lys Thr His
1 5 10 15

Gln Ala Arg Leu Gly Cys Glu Val Pro Cys Cys Ser Ser Leu Ala Val
20 25 30

Ser Asn Pro Thr Ser Ser Gln Leu Gly Gly Pro Trp Trp Val Arg His
35 40 45

Pro Gly Pro Ser Gly Val Leu Gly Cys Gly Glu Cys Val Gly Thr His
50 55 60

Leu Val Ser Leu Ser Pro Gln Gly Ile Tyr Ile Leu Ile Ala Val Gly
65 70 75 80

Ala Val Met Met Phe Val Gly Phe Leu Gly Cys Tyr Gly Ala Ile Gln
85 90 95

Glu Ser Gln Cys Leu Leu Gly Thr Phe Phe Thr Cys Leu Val Ile Leu
100 105 110

Phe Ala Cys Glu Val Ala Ala Gly Ile Trp Gly Phe Val Asn Lys Asp
115 120 125

Gln Ile Ala Lys Asp Val Lys Gln Phe Tyr Asp Gln Ala Leu Gln Gln
130 135 140

Ala Val Val Asp Asp Asp Ala Asn Asn Ala Lys Ala Val Val Lys Thr
145 150 155 160

Phe His Glu Thr Leu Asp Cys Cys Gly Ser Ser Thr Leu Thr Ala Leu
165 170 175

275

Thr Thr Ser Val Leu Lys Asn Asn Leu Cys Pro Ser Gly Ser Asn Ile
180 185 190

Ile Ser Asn Leu Phe Lys Glu Asp Cys His Gln Lys Ile Asp Asp Leu
195 200 205

Phe Ser Gly Lys Leu Tyr Leu Ile Gly Ile Ala Ala Ile Val Val Ala
210 215 220

Val Ile Met Ile Phe Glu Met Ile Leu Ser Met Val Leu Cys Cys Gly
225 230 235 240

Ile Arg Asn Ser Ser Val Tyr
245

<210> 205

<211> 236

<212> PRT

<213> Homo sapien

<400> 205

Met Gly Val Glu Gly Cys Thr Lys Cys Ile Lys Tyr Leu Leu Phe Val
1 5 10 15

Phe Asn Phe Val Phe Trp Leu Ala Gly Gly Val Ile Leu Gly Val Ala
20 25 30

Leu Trp Leu Arg His Asp Pro Gln Thr Thr Asn Leu Leu Tyr Leu Glu
35 40 45

Leu Gly Asp Lys Pro Ala Pro Asn Thr Phe Tyr Val Gly Ile Tyr Ile
50 55 60

Leu Ile Ala Val Gly Ala Val Met Met Phe Val Gly Phe Leu Gly Cys
65 70 75 80

Tyr Gly Ala Ile Gln Glu Ser Gln Cys Leu Leu Gly Thr Phe Phe Thr
85 90 95

Cys Leu Val Ile Leu Phe Ala Cys Glu Val Ala Ala Gly Ile Trp Gly
100 105 110

Phe Val Asn Lys Asp Gln Ile Ala Lys Asp Val Lys Gln Phe Tyr Asp
115 120 125

Gln Ala Leu Gln Gln Ala Val Val Asp Asp Asp Ala Asn Asn Ala Lys
130 135 140

276

Ala Val Val Lys Thr Phe His Glu Thr Leu Asp Cys Cys Gly Ser Ser
145 150 155 160

Thr Leu Thr Ala Leu Thr Thr Ser Val Leu Lys Asn Asn Leu Cys Pro
165 170 175

Ser Gly Ser Asn Ile Ile Ser Asn Leu Phe Lys Glu Asp Cys His Gln
180 185 190

Lys Ile Asp Asp Leu Phe Ser Gly Lys Leu Tyr Leu Ile Gly Ile Ala
195 200 205

Ala Ile Val Val Ala Val Ile Met Ile Phe Glu Met Ile Leu Ser Met
210 215 220

Val Leu Cys Cys Gly Ile Arg Asn Ser Ser Val Tyr
225 230 235

<210> 206

<211> 256

<212> PRT

<213> Homo sapien

<400> 206

Met Gly Val Glu Gly Cys Thr Lys Cys Ile Lys Tyr Leu Leu Phe Val
1 5 10 15

Phe Asn Phe Val Phe Trp Leu Ala Gly Gly Val Ile Leu Gly Val Ala
20 25 30

Leu Trp Leu Arg His Asp Pro Gln Thr Thr Asn Leu Leu Tyr Leu Glu
35 40 45

Leu Gly Asp Lys Pro Ala Pro Asn Thr Phe Tyr Val Gly Ile Tyr Ile
50 55 60

Leu Ile Ala Val Gly Ala Val Met Met Phe Val Gly Phe Leu Gly Cys
65 70 75 80

Tyr Gly Ala Ile Gln Glu Ser Gln Cys Leu Leu Gly Thr Phe Phe Thr
85 90 95

Cys Leu Val Ile Leu Phe Ala Cys Glu Val Ala Ala Gly Ile Trp Gly
100 105 110

277

Phe Val Asn Lys Asp Gln Ile Ala Lys Asp Val Lys Gln Phe Tyr Asp
115 120 125

Gln Ala Leu Gln Gln Ala Val Val Asp Asp Asp Ala Asn Asn Ala Lys
130 135 140

Ala Val Val Lys Thr Phe His Glu Thr Leu Asp Cys Cys Gly Ser Ser
145 150 155 160

Thr Leu Thr Ala Leu Thr Thr Ser Val Leu Lys Asn Asn Leu Cys Pro
165 170 175

Ser Gly Ser Asn Ile Ile Ser Asn Leu Phe Lys Glu Asp Cys His Gln
180 185 190

Lys Ile Asp Asp Leu Phe Ser Gly Lys Leu Tyr Leu Ile Gly Ile Ala
195 200 205

Ala Ile Val Val Ala Val Ile Met Ile Phe Glu Met Ile Leu Ser Met
210 215 220

Val Leu Asn Asp Asn Leu Cys Ile Ile Gly Lys Val Arg Ile Ser Gly
225 230 235 240

Arg Gln Gly Phe Tyr Pro Asn Gln Gln His Lys Arg Gln Tyr Asn Cys
245 250 255

<210> 207
<211> 210
<212> PRT
<213> Homo sapien

<400> 207

Met Gly Val Glu Gly Cys Thr Lys Cys Ile Lys Tyr Leu Leu Phe Val
1 5 10 15

Phe Asn Phe Val Phe Trp Leu Ala Gly Gly Val Ile Leu Gly Val Ala
20 25 30

Leu Trp Leu Arg His Asp Pro Gln Thr Thr Asn Leu Leu Tyr Leu Glu
35 40 45

Leu Gly Asp Lys Pro Ala Pro Asn Thr Phe Tyr Val Gly Ile Tyr Ile
50 55 60

Leu Ile Ala Val Gly Ala Val Met Met Phe Val Gly Phe Leu Gly Cys
65 70 75 80

278

Tyr Gly Ala Ile Gln Glu Ser Gln Cys Leu Leu Gly Thr Phe Phe Thr
85 90 95

Cys Leu Val Ile Leu Phe Ala Cys Glu Val Ala Ala Gly Ile Trp Gly
100 105 110

Phe Val Asn Lys Asp Gln Ile Ala Lys Asp Val Lys Gln Phe Tyr Asp
115 120 125

Gln Ala Leu Gln Gln Ala Val Val Asp Asp Asp Ala Asn Asn Ala Lys
130 135 140

Ala Val Val Lys Thr Phe His Glu Thr Leu Asp Cys Cys Gly Ser Ser
145 150 155 160

Thr Leu Thr Ala Leu Thr Thr Ser Val Leu Lys Asn Asn Leu Cys Pro
165 170 175

Ser Gly Ser Asn Ile Ile Ser Asn Leu Phe Lys Glu Asp Cys His Gln
180 185 190

Lys Ile Asp Asp Leu Phe Ser Gly Lys Leu Tyr Leu Ala Ala Thr Thr
195 200 205

Leu Arg
210

<210> 208
<211> 58
<212> PRT
<213> Homo sapien

<400> 208

Asn His Ile Glu Pro Leu Lys Ile Gln Trp Leu Asp Val Leu Gln Arg
1 5 10 15

Glu Pro Arg Pro Phe Pro Lys Leu Arg Ile Leu Arg Lys Val Glu Lys
20 25 30

Ile Asp Asp Phe Lys Ala Glu Asp Phe Gln Ile Glu Gly Tyr Asn Pro
35 40 45

His Pro Thr Ile Lys Met Glu Met Ala Val
50 55

279

<210> 209

<211> 91

<212> PRT

<213> Homo sapien

<400> 209

Lys Phe Ser Gly Ser Met Cys Phe Ser Glu Asn Pro Asp Leu Ser Gln
1 5 10 15

Ser Ser Gly Phe Phe Glu Lys Leu Arg Lys Leu Met Thr Ser Lys Leu
20 25 30

Lys Thr Phe Arg Leu Lys Gly Thr Ile Arg Ile Gln Leu Leu Lys Trp
35 40 45

Lys Trp Leu Phe Arg Val Leu Ser Lys Glu Leu Glu Gly Tyr Cys Gln
50 55 60

Ser Leu Gly Val Gly Leu Asp Ala Glu Val Lys Val Leu Phe Ala Leu
65 70 75 80

Lys Glu Lys Gly Thr Arg Ser Lys Ile Cys Pro
85 90

<210> 210

<211> 86

<212> PRT

<213> Homo sapien

<400> 210

Met Asp Asp Ser Glu Val Glu Ser Thr Ala Ser Ile Leu Ala Ser Val
1 5 10 15

Lys Glu Gln Glu Ala Gln Phe Glu Lys Leu Thr Arg Ala Leu Glu Glu
20 25 30

Glu Arg Arg His Val Ser Ala Gln Leu Glu Arg Val Arg Val Ser Pro
35 40 45

Gln Asp Ala Asn Pro Leu Met Ala Asn Gly Thr Ser Pro Phe Arg Lys
50 55 60

Lys Cys Lys Lys Lys Ser Ile Phe Ser Ser Arg Val Glu Leu Phe Lys
65 70 75 80

Glu Ser Lys Ile Ile Ser
85

280

<210> 211
<211> 107
<212> PRT
<213> Homo sapien

<400> 211

Met Ile Ile Tyr Tyr Met Val His Asn His Val Asp Ala Gln Cys Met
1 5 10 15

Ile Leu Gln Asn Arg Leu Ser Val Ser Arg Arg Val Leu Arg Gly Met
20 25 30

Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp
35 40 45

Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val
50 55 60

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly Phe
65 70 75 80

Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn
85 90 95

Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
100 105

<210> 212
<211> 90
<212> PRT
<213> Homo sapien

<400> 212

Tyr Cys Arg Ile Gly Leu Arg Val Ala Arg Val Leu Arg Gly Met Val
1 5 10 15

Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly
20 25 30

Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val Gly
35 40 45

Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly Phe Glu
50 55 60

Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn Leu
65 70 75 80

281

Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
85 90

<210> 213
<211> 193
<212> PRT
<213> Homo sapien

<400> 213

Met Asp Glu Arg Pro Pro Gly Gln Val Thr Gly Glu Ser Pro Gly Met
1 5 10 15

His Arg Pro Glu Ala Met Leu Leu Leu Thr Leu Ala Leu Leu Gly
20 25 30

Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly Lys Tyr
35 40 45

Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr Gly Leu Arg Val
50 55 60

Ser Val Gly Leu Leu Leu Val Lys Ser Val Gln Val Lys Leu Gly Asp
65 70 75 80

Ser Trp Asp Val Lys Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val
85 90 95

Thr Leu Gln Pro Gly Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln
100 105 110

Ala Phe Leu Arg Gly Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe
115 120 125

Tyr Phe Gly Lys Leu Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln
130 135 140

Glu Gly Gln Val Leu Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly
145 150 155 160

Ile Lys Ser Ile Gly Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr
165 170 175

Thr Glu Pro Pro Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly
180 185 190

282

Arg

<210> 214
<211> 189
<212> PRT
<213> Homo sapien

<400> 214

Ala Ala Ala Arg Ala Gly Gly Glu Ser Pro Gly Met His Arg Pro Glu
1 5 10 15

Ala Met Leu Leu Leu Leu Thr Leu Ala Leu Leu Gly Gly Pro Thr Trp
20 25 30

Ala Gly Lys Met Tyr Gly Pro Gly Gly Lys Tyr Phe Ser Thr Thr
35 40 45

Glu Asp Tyr Asp His Glu Ile Thr Gly Leu Arg Val Ser Val Gly Leu
50 55 60

Leu Leu Val Lys Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val
65 70 75 80

Lys Leu Gly Ala Leu Gly Asn Thr Gln Glu Val Thr Leu Gln Pro
85 90 95

Gly Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg
100 105 110

Gly Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys
115 120 125

Leu Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val
130 135 140

Leu Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile
145 150 155 160

Gly Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro
165 170 175

Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
180 185

<210> 215
<211> 202

283

<212> PRT

<213> Homo sapien

<400> 215

Met Asp Arg Pro Pro Gly Arg Trp Arg Val Pro Gly Thr Thr Arg Arg
1 5 10 15

Pro Val Thr Gly Glu Ser Pro Gly Met His Arg Pro Glu Ala Met Leu
20 25 30

Leu Leu Leu Thr Leu Ala Leu Leu Gly Gly Pro Thr Trp Ala Gly Lys
35 40 45

Met Tyr Gly Pro Gly Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr
50 55 60

Asp His Glu Ile Thr Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val
65 70 75 80

Lys Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly
85 90 95

Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr
100 105 110

Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val
115 120 125

Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly
130 135 140

Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val Gly
145 150 155 160

Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly Phe Glu
165 170 175

Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn Leu
180 185 190

Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
195 200

<210> 216

<211> 208

<212> PRT

<213> Homo sapien

284

<400> 216

Cys Arg Ala Ala Gln Cys Asp Gly Ser Ala Ala Gly Gln Val Glu Gly
1 5 10 15

Ala Arg His Asn Gln Thr Pro Ser His Gly Glu Ser Pro Gly Met His
20 25 30

Arg Pro Glu Ala Met Leu Leu Leu Thr Leu Ala Leu Leu Gly Gly
35 40 45

Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly Lys Tyr Phe
50 55 60

Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr Gly Leu Arg Val Ser
65 70 75 80

Val Gly Leu Leu Leu Val Lys Ser Val Gln Val Lys Leu Gly Asp Ser
85 90 95

Trp Asp Val Lys Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr
100 105 110

Leu Gln Pro Gly Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala
115 120 125

Phe Leu Arg Gly Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr
130 135 140

Phe Gly Lys Leu Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu
145 150 155 160

Gly Gln Val Leu Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile
165 170 175

Lys Ser Ile Gly Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr
180 185 190

Glu Pro Pro Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
195 200 205

<210> 217

<211> 189

<212> PRT

<213> Homo sapien

<400> 217

285

Met His Val Glu Arg Arg Ser Val Met Asp Arg Gly Arg Gly Glu Val
1 5 10 15

Ala Met Leu Leu Leu Leu Thr Leu Ala Leu Leu Gly Gly Pro Thr Trp
20 25 30

Ala Gly Lys Met Tyr Gly Pro Gly Gly Lys Tyr Phe Ser Thr Thr
35 40 45

Glu Asp Tyr Asp His Glu Ile Thr Gly Leu Arg Val Ser Val Gly Leu
50 55 60

Leu Leu Val Lys Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val
65 70 75 80

Lys Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro
85 90 95

Gly Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg
100 105 110

Gly Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys
115 120 125

Leu Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val
130 135 140

Leu Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile
145 150 155 160

Gly Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro
165 170 175

Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
180 185

<210> 218
<211> 171
<212> PRT
<213> Homo sapien

<400> 218

Met Leu Glu Arg Arg Ile Val Asn Gly Ser Pro Gly Gln Val Gln Ser
1 5 10 15

Gln Met Tyr Gly Pro Gly Gly Lys Tyr Phe Ser Thr Thr Glu Asp

286

20

25

30

Tyr Asp His Glu Ile Thr Gly Leu Arg Val Ser Val Gly Leu Leu Leu
 35 40 45

Val Lys Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu
 50 55 60

Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu
 65 70 75 80

Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met
 85 90 95

Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp
 100 105 110

Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val
 115 120 125

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly Phe
 130 135 140

Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn
 145 150 155 160

Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
 165 170

<210> 219
 <211> 171
 <212> PRT
 <213> Homo sapien

<220>
 <221> MISC_FEATURE
 <222> (6)..(6)
 <223> X=any amino acid

<400> 219

His Ala Arg Ala Ala Xaa Cys Asp Gly Ser Pro Gly Gln Val Gln Ser
 1 5 10 15

Gln Met Tyr Gly Pro Gly Gly Lys Tyr Phe Ser Thr Thr Glu Asp
 20 25 30

Tyr Asp His Glu Ile Thr Gly Leu Arg Val Ser Val Gly Leu Leu Leu

287

35

40

45

Val Lys Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu
50 55 60

Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu
65 70 75 80

Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met
85 90 95

Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp
100 105 110

Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val
115 120 125

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly Phe
130 135 140

Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn
145 150 155 160

Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
165 170

<210> 220
<211> 156
<212> PRT
<213> Homo sapien

<400> 220

Met Val Leu Asp Ser Leu His Pro Gly Lys Glu Asp Gly Gly Ala Glu
1 5 10 15

Asp Pro Gly Cys Ala Gly Pro Ser Gln Ile Trp Thr Ser Lys Ala Leu
20 25 30

Pro Leu Ser Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val Lys
35 40 45

Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly
50 55 60

Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly
65 70 75 80

Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu
85 90 95

Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu
100 105 110

Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
115 120 125

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val
130 135 140

Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
145 150 155

<210> 221
<211> 156
<212> PRT
<213> Homo sapien

<400> 221

Trp Cys Trp Thr Leu Cys Ile Pro Gly Arg Arg Met Gly Ala Leu Arg
1 5 10 15

Thr Arg Asp Val Leu Gly His Pro Arg Ser Gly Arg Pro Lys Leu Cys
20 25 30

Leu Ser Pro Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val Lys
35 40 45

Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly
50 55 60

Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly
65 70 75 80

Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu
85 90 95

Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu
100 105 110

Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
115 120 125

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val

289

130

135

140

Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
145 150 155

<210> 222
<211> 76
<212> PRT
<213> Homo sapien

<400> 222

Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu
1 5 10 15

Asp Gly Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu
20 25 30

Val Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
35 40 45

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val
50 55 60

Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
65 70 75

<210> 223
<211> 139
<212> PRT
<213> Homo sapien

<400> 223

Leu Cys Arg Gly Gln Lys Glu Ser Ser Thr Thr Pro Ser Glu Val Leu
1 5 10 15

Trp Ile Ser Val Pro Val Pro Gln Ser Leu Lys Ser Gln Ala Ser Arg
20 25 30

Pro Pro Leu Pro Thr Val Pro His Pro Arg Pro Thr Gln Arg Ala Ser
35 40 45

Ala Gly His Ser Val Pro Gly Phe Ser Glu Cys Ser Arg Gly Leu Arg
50 55 60

Glu Ala Thr His Ser Ser Ile His Ser Ala Asn Ile Cys Gln Gly Arg
65 70 75 80

290

Val Leu Thr Arg Leu Ala Trp His Trp Gly Tyr Lys Glu Glu Ala Arg
85 90 95

Phe Gln Leu Ser Ala Tyr Thr Leu Trp Trp Gly Leu Val Gln Arg Gln
100 105 110

Ile Val Ala Val His Phe Ala Ile Cys Met Asp Gly Asp Thr Cys Arg
115 120 125

Ser Leu Cys Val Gly Thr Cys Pro Glu Val Arg
130 135

<210> 224
<211> 568
<212> PRT
<213> Homo sapien

<400> 224

Met Val Lys Leu Ala Lys Ala Gly Lys Asn Gln Gly Asp Pro Lys Lys
1 5 10 15

Met Ala Pro Pro Pro Lys Glu Val Glu Glu Asp Ser Glu Asp Glu Glu
20 25 30

Met Ser Glu Asp Glu Glu Asp Asp Ser Ser Gly Glu Glu Val Val Ile
35 40 45

Pro Gln Lys Lys Gly Lys Lys Ala Ala Ala Thr Ser Ala Lys Lys Val
50 55 60

Val Val Ser Pro Thr Lys Lys Val Ala Val Ala Thr Pro Ala Lys Lys
65 70 75 80

Ala Ala Val Thr Pro Gly Lys Lys Ala Ala Ala Thr Pro Ala Lys Lys
85 90 95

Thr Val Thr Pro Ala Lys Ala Val Thr Thr Pro Gly Lys Lys Gly Ala
100 105 110

Thr Pro Gly Lys Ala Leu Val Ala Thr Pro Gly Lys Lys Gly Ala Ala
115 120 125

Ile Pro Ala Lys Gly Ala Lys Asn Gly Lys Asn Ala Lys Lys Glu Asp
130 135 140

Ser Asp Glu Glu Glu Asp Asp Ser Glu Glu Asp Glu Glu Asp Asp
145 150 155 160

291

Glu Asp Glu Asp Glu Asp Glu Asp Glu Ile Glu Pro Ala Ala Met Lys
165 170 175

Ala Ala Ala Ala Ala Pro Ala Ser Glu Asp Glu Asp Asp Glu Asp Asp
180 185 190

Glu Asp Asp Glu Asp Asp Asp Asp Glu Glu Asp Asp Ser Glu Glu
195 200 205

Glu Ala Met Glu Thr Thr Pro Ala Lys Gly Lys Lys Ala Ala Lys Val
210 215 220

Val Pro Val Lys Ala Lys Asn Val Ala Glu Asp Glu Asp Glu Glu
225 230 235 240

Asp Asp Glu Asp Glu Asp Asp Asp Asp Glu Asp Asp Glu Asp Asp
245 250 255

Asp Asp Glu Asp Asp Glu Glu Glu Glu Glu Glu Glu Glu Pro
260 265 270

Val Lys Glu Ala Pro Gly Lys Arg Lys Lys Glu Met Ala Lys Gln Lys
275 280 285

Ala Ala Pro Glu Ala Lys Lys Gln Lys Val Glu Gly Thr Glu Pro Thr
290 295 300

Thr Ala Phe Asn Leu Phe Val Gly Asn Leu Asn Phe Asn Lys Ser Ala
305 310 315 320

Pro Glu Leu Lys Thr Gly Ile Ser Asp Val Phe Ala Lys Asn Asp Leu
325 330 335

Ala Val Val Asp Val Arg Ile Gly Met Thr Arg Lys Phe Gly Tyr Val
340 345 350

Asp Phe Glu Ser Ala Glu Asp Leu Glu Lys Ala Leu Glu Leu Thr Gly
355 360 365

Leu Lys Val Phe Gly Asn Glu Ile Lys Leu Glu Lys Pro Lys Gly Lys
370 375 380

Asp Ser Lys Lys Glu Arg Asp Ala Arg Thr Leu Leu Ala Lys Asn Leu
385 390 395 400

292

Pro Tyr Lys Val Thr Gln Asp Glu Leu Lys Glu Val Phe Glu Asp Ala
405 410 415

Ala Glu Ile Arg Leu Val Ser Lys Asp Gly Lys Ser Lys Gly Ile Ala
420 425 430

Tyr Ile Glu Phe Lys Thr Glu Ala Asp Ala Glu Lys Thr Phe Glu Glu
435 440 445

Lys Gln Gly Thr Glu Ile Asp Gly Arg Ser Ile Ser Leu Tyr Tyr Thr
450 455 460

Gly Glu Lys Gly Gln Asn Gln Asp Tyr Arg Gly Gly Lys Asn Ser Thr
465 470 475 480

Trp Ser Gly Glu Ser Lys Thr Leu Val Leu Ser Asn Leu Ser Tyr Ser
485 490 495

Ala Thr Glu Glu Thr Leu Gln Glu Val Phe Glu Lys Ala Thr Phe Ile
500 505 510

Lys Val Pro Gln Asn Gln Asn Gly Lys Ser Lys Gly Tyr Ala Phe Ile
515 520 525

Glu Phe Ala Ser Phe Glu Asp Ala Lys Glu Ala Leu Asn Ser Cys Asn
530 535 540

Lys Arg Glu Ile Glu Gly Arg Ala Ile Arg Leu Glu Ala Arg Arg Leu
545 550 555 560

Pro Arg Arg Gln Arg Arg Arg Arg
565

<210> 225
<211> 520
<212> PRT
<213> Homo sapien

<400> 225

Met Val Lys Leu Ala Lys Ala Gly Lys Asn Gln Gly Asp Pro Lys Lys
1 5 10 15

Met Ala Pro Pro Pro Lys Glu Val Glu Glu Asp Ser Glu Asp Glu Glu
20 25 30

Met Ser Glu Asp Glu Glu Asp Asp Ser Ser Gly Glu Glu Val Val Ile

293

35

40

45

Pro Gln Lys Lys Gly Lys Lys Ala Ala Ala Thr Ser Ala Lys Lys Val
50 55 60

Val Val Ser Pro Thr Lys Lys Val Ala Val Ala Thr Pro Ala Lys Lys
65 70 75 80

Ala Ala Val Thr Pro Gly Lys Lys Ala Ala Ala Thr Pro Ala Lys Lys
85 90 95

Thr Val Thr Pro Ala Lys Ala Val Thr Thr Pro Gly Lys Lys Gly Ala
100 105 110

Thr Pro Gly Lys Ala Leu Val Ala Thr Pro Gly Lys Lys Gly Ala Ala
115 120 125

Ile Pro Ala Lys Gly Ala Lys Asn Gly Lys Asn Ala Lys Lys Glu Asp
130 135 140

Ser Asp Glu Glu Glu Asp Asp Asp Ser Glu Glu Asp Glu Glu Asp Asp
145 150 155 160

Glu Asp Glu Asp Glu Asp Glu Ile Glu Pro Ala Ala Met Lys
165 170 175

Ala Ala Ala Ala Ala Pro Ala Ser Glu Asp Glu Asp Asp Glu Asp Asp
180 185 190

Glu Asp Asp Glu Asp Asp Asp Asp Asp Glu Glu Asp Asp Ser Glu Glu
195 200 205

Glu Ala Met Glu Thr Thr Pro Ala Lys Gly Lys Lys Ala Ala Lys Val
210 215 220

Val Pro Val Lys Ala Lys Asn Val Ala Glu Asp Glu Asp Glu Glu
225 230 235 240

Asp Asp Glu Asp Glu Asp Asp Asp Asp Glu Asp Asp Glu Asp Asp
245 250 255

Asp Asp Glu Asp Asp Glu Glu Glu Glu Glu Glu Glu Glu Pro
260 265 270

Val Lys Glu Ala Pro Gly Lys Arg Lys Lys Glu Met Ala Lys Gln Lys
275 280 285

294

Ala Ala Pro Glu Ala Lys Lys Gln Lys Val Glu Gly Thr Glu Pro Thr
290 295 300

Thr Ala Phe Asn Leu Phe Val Gly Asn Leu Asn Phe Asn Lys Ser Ala
305 310 315 320

Pro Glu Leu Lys Thr Gly Ile Ser Asp Val Phe Ala Lys Asn Asp Leu
325 330 335

Ala Val Val Asp Val Arg Ile Gly Met Thr Arg Lys Phe Gly Tyr Val
340 345 350

Asp Phe Glu Ser Ala Glu Asp Leu Glu Lys Ala Leu Glu Leu Thr Gly
355 360 365

Leu Lys Val Phe Gly Asn Glu Ile Lys Leu Glu Lys Pro Lys Gly Lys
370 375 380

Asp Ser Lys Lys Glu Arg Asp Ala Arg Thr Leu Leu Ala Lys Asn Leu
385 390 395 400

Pro Tyr Lys Val Thr Gln Asp Glu Leu Lys Glu Val Phe Glu Asp Ala
405 410 415

Ala Glu Ile Arg Leu Val Ser Lys Asp Gly Lys Ser Lys Gly Ile Ala
420 425 430

Tyr Ile Glu Phe Lys Thr Glu Ala Asp Ala Glu Lys Thr Phe Glu Glu
435 440 445

Lys Gln Gly Thr Glu Ile Asp Gly Arg Ser Ile Ser Leu Tyr Tyr Thr
450 455 460

Gly Glu Lys Gly Gln Asn Gln Asp Tyr Arg Gly Gly Lys Asn Ser Thr
465 470 475 480

Trp Ser Gly Glu Ser Lys Thr Leu Val Leu Ser Asn Leu Ser Tyr Ser
485 490 495

Ala Thr Glu Glu Thr Leu Gln Glu Val Phe Glu Lys Ala Thr Phe Ile
500 505 510

Lys Val Pro Arg Pro Arg Pro Arg
515 520

295

<210> 226
<211> 526
<212> PRT
<213> Homo sapien

<400> 226

Met Leu Arg Leu Pro Thr Val Phe Arg Gln Met Arg Pro Val Ser Arg
1 5 10 15

Val Leu Ala Pro His Leu Thr Arg Ala Tyr Ala Lys Asp Val Lys Phe
20 25 30

Gly Ala Asp Ala Arg Ala Leu Met Leu Gln Gly Val Asp Leu Leu Ala
35 40 45

Asp Ala Val Ala Val Thr Met Gly Pro Lys Gly Arg Thr Val Ile Ile
50 55 60

Glu Gln Ser Trp Gly Ser Pro Lys Val Thr Lys Asp Gly Val Thr Val
65 70 75 80

Ala Lys Ser Ile Asp Leu Lys Asp Lys Tyr Lys Asn Ile Gly Ala Lys
85 90 95

Leu Val Gln Asp Val Ala Asn Asn Thr Asn Glu Glu Ala Gly Asp Gly
100 105 110

Thr Thr Thr Ala Thr Val Leu Ala Arg Ser Ile Ala Lys Glu Gly Phe
115 120 125

Glu Lys Ile Ser Lys Gly Ala Asn Pro Val Glu Ile Arg Arg Gly Val
130 135 140

Met Leu Ala Val Asp Ala Val Ile Ala Glu Leu Lys Lys Gln Ser Lys
145 150 155 160

Pro Val Thr Thr Pro Glu Glu Ile Ala Gln Val Ala Thr Ile Ser Ala
165 170 175

Asn Gly Asp Lys Glu Ile Gly Asn Ile Ile Ser Asp Ala Met Lys Lys
180 185 190

Val Gly Arg Lys Gly Val Ile Thr Val Lys Asp Gly Lys Thr Leu Asn
195 200 205

Asp Glu Leu Glu Ile Ile Glu Gly Met Lys Phe Asp Arg Gly Tyr Ile

296

210

215

220

Ser Pro Tyr Phe Ile Asn Thr Ser Lys Gly Gln Lys Cys Glu Phe Gln
225 230 235 240

Asp Ala Tyr Val Leu Leu Ser Glu Lys Lys Ile Ser Ser Ile Gln Ser
245 250 255

Ile Val Pro Ala Leu Glu Ile Ala Asn Ala His Arg Lys Pro Leu Val
260 265 270

Ile Ile Ala Glu Asp Val Asp Gly Glu Ala Leu Ser Thr Leu Val Leu
275 280 285

Asn Arg Leu Lys Val Gly Leu Gln Val Val Ala Val Lys Ala Pro Gly
290 295 300

Phe Gly Asp Asn Arg Lys Asn Gln Leu Lys Asp Met Ala Ile Ala Thr
305 310 315 320

Gly Gly Ala Val Phe Gly Glu Glu Gly Leu Thr Leu Asn Leu Glu Asp
325 330 335

Val Gln Pro His Asp Leu Gly Lys Val Gly Glu Val Ile Val Thr Lys
340 345 350

Asp Asp Ala Met Leu Leu Lys Gly Lys Gly Asp Lys Ala Gln Ile Glu
355 360 365

Lys Arg Ile Gln Glu Ile Ile Glu Gln Leu Asp Val Thr Thr Ser Glu
370 375 380

Tyr Glu Lys Glu Lys Leu Asn Glu Arg Leu Ala Lys Leu Ser Asp Gly
385 390 395 400

Val Ala Val Leu Lys Val Gly Gly Thr Ser Asp Val Glu Val Asn Glu
405 410 415

Lys Lys Asp Arg Val Thr Asp Ala Leu Asn Ala Thr Arg Ala Ala Val
420 425 430

Glu Glu Gly Ile Val Leu Gly Gly Cys Ala Leu Leu Arg Cys Ile
435 440 445

Pro Ala Leu Asp Ser Leu Thr Pro Ala Asn Glu Asp Gln Lys Ile Gly
450 455 460

Ile Glu Ile Ile Lys Arg Thr Leu Lys Ile Pro Ala Met Thr Ile Ala
465 470 475 480

Lys Asn Ala Gly Val Glu Gly Ser Leu Ile Val Glu Lys Ile Met Gln
485 490 495

Ser Ser Ser Glu Val Gly Tyr Asp Ala Met Ala Gly Asp Phe Val Asn
500 505 510

Met Val Glu Lys Gly Ile Ile Asp Pro Thr Lys Val Asn Gly
515 520 525

<210> 227

<211> 121

<212> PRT

<213> Homo sapien

<400> 227

Gln Cys Asp Gly Phe Ala Ala Glu Val Ser Thr Val His Glu Ile Leu
1 5 10 15

Cys Lys Leu Ser Leu Glu Gly Asp His Ser Thr Pro Pro Ser Ala Tyr
20 25 30

Gly Ser Val Lys Ala Tyr Thr Asn Phe Asp Ala Glu Arg Asp Ala Leu
35 40 45

Asn Ile Glu Thr Ala Ile Lys Thr Lys Glu Ala Val Asp Glu Val Thr
50 55 60

Ile Val Asn Ile Leu Thr Asn Arg Ser Asn Ala Gln Arg Gln Asp Ile
65 70 75 80

Ala Phe Ala Tyr Gln Arg Arg Thr Lys Lys Glu Leu Ala Ser Ala Leu
85 90 95

Lys Ser Ala Leu Ser Gly His Leu Glu Thr Val Ile Leu Gly Leu Leu
100 105 110

Lys Thr Pro Ala Gln Tyr Asp Ala Ser
115 120

<210> 228

<211> 71

<212> PRT

<213> Homo sapien

298

<400> 228

Asn Ser His Gln Asp Gln Arg Gly Val Asp Glu Val Thr Ile Val Asn
1 5 10 15

Ile Leu Thr Asn Arg Ser Asn Ala Gln Arg Gln Asp Ile Ala Phe Ala
20 25 30

Tyr Gln Arg Arg Thr Lys Lys Glu Leu Ala Ser Ala Leu Lys Ser Ala
35 40 45

Leu Ser Gly His Leu Glu Thr Val Ile Leu Gly Leu Leu Lys Thr Pro
50 55 60

Ala Gln Tyr Asp Ala Ser Glu
65 70

<210> 229

<211> 242

<212> PRT

<213> Homo sapien

<400> 229

Met Leu Glu Arg Arg Ser Val Met Asp Val Val Ala Ala Glu Gly Arg
1 5 10 15

Ser Gln Leu Ser Ala His Gly Pro Ala Ser Phe Lys Met Ser Thr Val
20 25 30

His Glu Ile Leu Cys Lys Leu Ser Leu Glu Gly Asp His Ser Thr Pro
35 40 45

Pro Ser Ala Tyr Gly Ser Val Lys Ala Tyr Thr Asn Phe Asp Ala Glu
50 55 60

Arg Asp Ala Leu Asn Ile Glu Thr Ala Ile Lys Thr Lys Gly Val Asp
65 70 75 80

Glu Val Thr Ile Val Asn Ile Leu Thr Asn Arg Ser Asn Ala Gln Arg
85 90 95

Gln Asp Ile Ala Phe Ala Tyr Gln Arg Arg Thr Lys Lys Glu Leu Ala
100 105 110

Ser Ala Leu Lys Ser Ala Leu Ser Gly His Leu Glu Thr Val Ile Leu
115 120 125

299

Gly Leu Leu Lys Thr Pro Ala Gln Tyr Asp Ala Ser Glu Leu Cys Ser
130 135 140

Arg Thr Asn Gln Glu Leu Gln Glu Ile Asn Arg Val Tyr Lys Glu Met
145 150 155 160

Tyr Lys Thr Asp Leu Glu Lys Asp Ile Ile Ser Asp Thr Ser Gly Asp
165 170 175

Phe Arg Lys Leu Met Val Ala Leu Ala Lys Gly Arg Arg Ala Glu Asp
180 185 190

Gly Ser Val Ile Asp Tyr Glu Leu Ile Asp Gln Asp Ala Arg Asp Leu
195 200 205

Tyr Asp Ala Gly Val Lys Arg Val Lys Arg Lys Gly Thr Asp Val Pro
210 215 220

Lys Trp Ile Ser Ile Met Thr Glu Arg Ser Val Ala Pro Pro Pro Glu
225 230 235 240

Ser Ile

<210> 230
<211> 342
<212> PRT
<213> Homo sapien

<400> 230

Trp Ile Val Val Ala Ala Glu Gly Arg Ser Gln Leu Ser Ala His Gly
1 5 10 15

Pro Ala Ser Phe Lys Met Ser Thr Val His Glu Ile Leu Cys Lys Leu
20 25 30

Ser Leu Glu Gly Asp His Ser Thr Pro Pro Ser Ala Tyr Gly Ser Val
35 40 45

Lys Ala Tyr Thr Asn Phe Asp Ala Glu Arg Asp Ala Leu Asn Ile Glu
50 55 60

Thr Ala Ile Lys Thr Lys Gly Val Asp Glu Val Thr Ile Val Asn Ile
65 70 75 80

Leu Thr Asn Arg Ser Asn Ala Gln Arg Gln Asp Ile Ala Phe Ala Tyr

300
85 90 95

Gln Arg Arg Thr Lys Lys Glu Leu Ala Ser Ala Leu Lys Ser Ala Leu
100 105 110

Ser Gly His Leu Glu Thr Val Ile Leu Gly Leu Leu Lys Thr Pro Ala
115 120 125

Gln Tyr Asp Ala Ser Glu Leu Cys Ser Arg Thr Asn Gln Glu Leu Gln
130 135 140

Glu Ile Asn Arg Val Tyr Lys Glu Met Tyr Lys Thr Asp Leu Glu Lys
145 150 155 160

Asp Ile Ile Ser Asp Thr Ser Gly Asp Phe Arg Lys Leu Met Val Ala
165 170 175

Leu Ala Lys Gly Arg Arg Ala Glu Asp Gly Ser Val Ile Asp Tyr Glu
180 185 190

Leu Ile Asp Gln Asp Ala Arg Asp Leu Tyr Asp Ala Gly Val Lys Arg
195 200 205

Lys Gly Thr Asp Val Pro Lys Trp Ile Ser Ile Met Thr Glu Arg Ser
210 215 220

Val Pro His Leu Gln Lys Val Phe Asp Arg Tyr Lys Ser Tyr Ser Pro
225 230 235 240

Tyr Asp Met Leu Glu Ser Ile Arg Lys Glu Val Lys Gly Asp Leu Glu
245 250 255

Asn Ala Phe Leu Asn Leu Val Gln Cys Ile Gln Asn Lys Pro Leu Tyr
260 265 270

Phe Ala Asp Arg Leu Tyr Asp Ser Met Lys Gly Lys Gly Thr Arg Asp
275 280 285

Lys Val Leu Ile Arg Ile Met Val Ser Arg Ser Glu Val Asp Met Leu
290 295 300

Lys Ile Arg Ser Glu Phe Lys Arg Lys Tyr Gly Lys Ser Leu Tyr Tyr
305 310 315 320

Tyr Ile Gln Gln Asp Thr Lys Gly Asp Tyr Gln Lys Ala Leu Leu Tyr
325 330 335

301

Leu Cys Gly Gly Asp Asp
340

<210> 231
<211> 72
<212> PRT
<213> Homo sapien

<400> 231

Pro Arg Pro Leu Leu Ala Arg Arg Tyr Leu Cys Arg Val Thr Ser Cys
1 5 10 15

Phe Leu Ser Leu Ser Arg Ala Val Trp Trp Gln Gln Ala Gln Pro Gln
20 25 30

Ala Gln Ala Gln Pro Arg Asn Ala Glu Arg Arg Arg Arg Val Arg Gly
35 40 45

Pro Val Arg Ala Ala Glu Met Arg Pro Leu Ala Ile Ala Ser Ser Val
50 55 60

Pro Arg Thr Thr His Pro Ser Arg
65 70

<210> 232
<211> 103
<212> PRT
<213> Homo sapien

<400> 232

Leu Leu Pro Phe Ser Leu Ala Arg Gly Val Val Ala Ala Gly Ala Ala
1 5 10 15

Gly Ala Pro Ser Leu Glu Met Gln Asn Asp Ala Gly Glu Phe Val Asp
20 25 30

Leu Tyr Val Pro Arg Lys Cys Ser Ala Ser Asn Arg Ile Ile Gly Ala
35 40 45

Lys Asp His Ala Ser Ile Gln Met Asn Val Ala Glu Val Asp Lys Val
50 55 60

Thr Gly Arg Phe Asn Gly Gln Phe Lys Thr Tyr Ala Ile Cys Gly Ala
65 70 75 80

Ile Arg Arg Met Gly Glu Ser Asp Asp Ser Ile Leu Arg Leu Ala Lys

302
85 90 95

Ala Asp Gly Ile Val Ser Lys
100

<210> 233
<211> 112
<212> PRT
<213> Homo sapien

<400> 233

Leu Leu Pro Phe Ser Leu Ala Arg Gly Val Val Ala Ala Gly Ala Ala
1 5 10 15

Gly Ala Pro Ser Leu Glu Met Gln Asn Asp Ala Gly Glu Phe Val Asp
20 25 30

Leu Tyr Val Pro Arg Lys Cys Ser Ala Ser Asn Arg Ile Ile Gly Ala
35 40 45

Lys Asp His Ala Ser Ile Gln Met Asn Val Ala Glu Val Asp Lys Val
50 55 60

Thr Gly Arg Phe Asn Gly Gln Phe Lys Thr Tyr Ala Ile Cys Gly Ala
65 70 75 80

Ile Arg Arg Met Val Ser Val Ser Leu Gly Phe Ala His His Phe Gly
85 90 95

Thr Ser Trp Thr Leu Pro Cys Ala Leu Glu Cys Val Met Val Pro Glu
100 105 110

<210> 234
<211> 87
<212> PRT
<213> Homo sapien

<400> 234

Ala Arg Gly Ile Ala Arg Gly Val Val Ala Ala Gly Ala Ala Gly Ala
1 5 10 15

Gly Pro Ala Ser Lys Cys Arg Thr Thr Pro Ala Ser Ser Trp Thr Cys
20 25 30

Thr Cys Arg Gly Asn Ala Ser Ala Ser Asn Arg Ile Ile Gly Ala Lys
35 40 45

303

Asp His Ala Ser Ile Gln Met Asn Val Ala Glu Val Ser Trp Glu Pro
50 55 60

Gly Arg Arg Glu Gly Cys Asp Ile Cys Ala Gly Lys Ala Gly Cys Pro
65 70 75 80

Ile Val Glu Glu Pro Leu Gly
85

<210> 235
<211> 86
<212> PRT
<213> Homo sapien

<400> 235

Ala Arg Gly Ile Ala Arg Gly Val Val Ala Ala Gly Ala Ala Gly Ala
1 5 10 15

Pro Ser Leu Glu Met Gln Asn Asp Ala Gly Glu Phe Val Asp Leu Tyr
20 25 30

Val Pro Arg Lys Cys Ser Ala Ser Asn Arg Ile Ile Gly Ala Lys Asp
35 40 45

His Ala Ser Ile Gln Met Asn Val Ala Glu Val Ser Trp Glu Pro Gly
50 55 60

Arg Arg Glu Gly Cys Asp Ile Cys Ala Gly Lys Ala Gly Cys Pro Ile
65 70 75 80

Val Glu Glu Pro Leu Gly
85

<210> 236
<211> 77
<212> PRT
<213> Homo sapien

<400> 236

Met Arg Gly Arg Gly Arg Gly Thr Cys Arg Gly Asn Ala Ser Ala Ser
1 5 10 15

Asn Arg Ile Ile Gly Ala Lys Asp His Ala Ser Ile Gln Met Asn Val
20 25 30

Ala Glu Val Asp Lys Val Thr Gly Arg Phe Asn Gly Gln Phe Lys Thr
35 40 45

304

Tyr Ala Ile Cys Gly Ala Ile Arg Arg Met Gly Glu Ser Asp Asp Ser
50 55 60

Ile Leu Arg Leu Ala Lys Ala Asp Gly Ile Val Ser Lys
65 70 75

<210> 237
<211> 86
<212> PRT
<213> Homo sapien

<400> 237

Ile Met Pro Ser Gly Ala Ser Val Met Asp Ala Trp Ser Arg Pro Arg
1 5 10 15

Tyr Val Pro Arg Lys Cys Ser Ala Ser Asn Arg Ile Ile Gly Ala Lys
20 25 30

Asp His Ala Ser Ile Gln Met Asn Val Ala Glu Val Asp Lys Val Thr
35 40 45

Gly Arg Phe Asn Gly Gln Phe Lys Thr Tyr Ala Ile Cys Gly Ala Ile
50 55 60

Arg Arg Met Gly Glu Ser Asp Asp Ser Ile Leu Arg Leu Ala Lys Ala
65 70 75 80

Asp Gly Ile Val Ser Lys
85

<210> 238
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 238
tacgcagagc tcatcgcttc t

21

<210> 239
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 239

305

acaaccacga agagccagtc tt

22

<210> 240
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 240
tggctgagct cttacctggc tttcaggc

28