

原子の電子配置 ⇔ 価数

			原子価
Н	(1s) ¹		1 価
В	$(1s)^2(2s)^2(2p)^1$	†	1,3 価
С	$(1s)^2(2s)^2(2p)^2$	↑ ↑	2,4 価
N	$(1s)^2(2s)^2(2p)^3$	<u> </u>	3 価
0	$(1s)^2(2s)^2(2p)^4$	<u> </u>	2 価
F	$(1s)^2(2s)^2(2p)^5$	<u> </u>	1 価
		2p	

•p軌道の線型結合

8.2 混成軌道

CH₄, C₂H₄, C₂H₂の結合

・実際の分子中では、2s 軌道も結合に関与する。

原子軌道の再配列

↓ } } }

混成軌道

・結合性を最大にする様に、また軌道間の反発を最小にする様に軌道を再配列・変形させる。

昇位エネルギー ~100 kcal/mol 4 価の C (2s)¹(2p_x)¹(2p_y)¹(2p_z)¹ 2 価の C (2s)²(2p_x)¹(2p_y)¹ 2×ΔE 結合エネルギー

昇位による不安定化より結合が二 本さらに増えた方が有利

・3種類の混成

(I) **sp**³ (飽和炭素)

$$\begin{cases} \psi_1 = \frac{1}{2}(s + p_x + p_y + p_z) \\ \psi_2 = \frac{1}{2}(s + p_x - p_y - p_z) \\ \psi_3 = \frac{1}{2}(s - p_x + p_y - p_z) \\ \psi_4 = \frac{1}{2}(s - p_x - p_y + p_z) \end{cases}$$

sとpの混成 sの正の成分によって pの正側は強く pの負側は弱くなる。

(Ⅱ) **sp**²混成()ー)

(Ⅲ) **sp**混成 (-)

実際にはH₂O, NH₃等でも sp³混成に近い。

 sp^3 : \angle HCH=109.47°

Ip(lone pair)間の反発は一番強く, bp(bond pair)間の反発が一番弱い。

反発の強さ: Ip-Ip > Ip-bp > bp-bp

前回の復習

・混成軌道

$$CH_4 \cdots sp^3$$

 $CH_2 = CH_2 \cdots sp^2$
 $C_2H_2 \cdots sp$

spⁿ混成軌道 … s軌道とn個のp軌道が混 ざって等価な(n+1)個の混成軌道を作る。 この混成軌道が他の水素や炭素原子と共有結 合をつくる。

8.3 共役 元電子系 62

・電子の入る ϕ_1 , ϕ_2 ともに $\mathbf{C}_1 - \mathbf{C}_2$, $\mathbf{C}_3 - \mathbf{C}_4$ 間は結合性である。 $\mathbf{C}_2 - \mathbf{C}_3$ 間は (ϕ_1) における結合性) $> (\phi_2)$ における反結合性) \Rightarrow 部分的な π 結合性

形式的には

の様な古典的な構造(極限構造)の混成体が 実在構造であると考えることも出来る。

→ 共鳴理論

・寄与の大きな極限構造は安定なもの(結合の本数が多いもの)である。

実在構造は極限構造よりさらに安定である。

・ベンゼンの共鳴構造

Kekule 構造

Dewar 構造

ベンゼンの6π電子は6ヶの炭素上を動きま わり非局在化し、より安定化している。

共役二重結合

π電子は単結合を通じて,隣りのπ結合へと 非局在化し、安定化している。 ・ポリエンの共役鎖の長さと光の極大波長 (自由電子モデル)

H
$$2N-\pi$$
電子系 $\Rightarrow \phi_1 \rightarrow \phi_N$ まで電子が 2π すの ϕ_N まで電子が 2π すの ϕ_N 表る。光を吸収して励起 状態 $\phi_N \rightarrow \phi_{N+1}$ に遷移。

$$h\mathbf{v} = h\frac{c}{\lambda} = \frac{h^2}{8ma^2} \{(N+1)^2 - N^2\}$$

$$\lambda = \frac{8mc}{h} \cdot \frac{a^2}{2N+1} = \frac{8mc}{h} \cdot \frac{4N^2R_{CC}^2}{2N+1}$$
$$= \frac{32mcR_{CC}^2}{h} \cdot \frac{N^2}{2N+1} \stackrel{\rightleftharpoons}{=} 258 \frac{N^2}{2N+1} (nm)$$