

Discrete Mathematics MH1812

Topic 2.1 - Propositional Logic I Dr. Gary Greaves

What's in store...

P roposition and Paradox

L)ogical Operators

D e Morgan's Laws

C)ontradiction and Tautology

E quivalent Expressions

By the end of this lesson, you should be able to...

- Explain what is a proposition and a paradox.
- Use logical operators to combine statements.
- Apply De Morgan's Laws.
- Explain what is a contradiction and a tautology.
- Identify equivalent expressions.
- Demonstrate that two expressions are equivalent.

Proposition and Paradox: Logic

- Accepted rules for making precise statements
- Logic for computer science:
 - Programming
 - Artificial intelligence
 - Logic circuits
 - Database
- Logic:
 - Represents knowledge precisely
 - Helps to extract information (inference)

Proposition and Paradox: Proposition

A proposition is a declarative statement that is either true or false.

Examples of propositions

- "1 + 1 = 2"... True
- "1 + 1 > 3"... False
- "Singapore is in Europe."... False

```
gap> (5>3);
true
gap> (1>3);
false
gap>
```

Proposition and Paradox: Proposition

A proposition is a declarative statement that is either true or false.

Examples that are not propositions

- "1 + 1 > x"... X
- "What a great book!"...X
- "Is Singapore in Asia?"...X

Proposition and Paradox: Paradox

A declarative statement that cannot be assigned a truth value is called a paradox.

- A paradox is not a proposition.
- E.g., the liar paradox: "This statement is false".

Relativity Lattice (M.C. Escher)

Logical Operators: Symbolic Logic

Use symbols to represent statements (both have the same truth values)

Use logical operators to combine statements:

Compound Propositions

Propositions Combined with Logical Operator(s)

Logical Operators: Three Basic Operators

Logical Operators: Negation

• Negation (not) of $p: \neg p$ ($\sim p$ is also used)

p	¬р
Т	F
E	Т

Truth Table

 $\neg p$: You may not enter

Logical Operators: Disjunction

Disjunction (or) of p with q: p ∨ q

p	q	p∨q	q∨p
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

True when "at least one" of them is true

Truth Table

```
p \lor q \equiv q \lor p i.e., operator \lor commutes

Means "equivalent"
```

```
gap>
gap> (5>3) or (1>5);
true
gap>
```

Logical Operators: Conjunction

• Conjunction (and) of p with $q: p \land q$

p	q	p∧q	$q \wedge p$
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	F	F

True only when "both" of them are true

Truth Table

∧ is also commutative:

$$p \land q \equiv q \land p$$

```
gap> (5>3) and (7>5);
true
gap>
gap>
gap> (5>3) and (1>5);
false
```


De Morgan's Laws: Definition

pq	¬р	$\neg q$	p∧q	$\neg (p \land q)$	$\neg p \lor \neg q$
TT	F	F	Т	F	F
ΤF	F	Т	F	Т	Т
FΤ	Т	F	F	Т	Т
FF	Т	Т	F	Т	Т

Augustus De Morgan (1806 - 1871)

Augustus De Morgan by Sophia Elizabeth De Morgan under WikiCommons (PD-US)

Contradiction and Tautology: Definition

A compound proposition that is always false is called a contradiction.

This course is easy "and" this course is not easy.

$$p \wedge (\neg p) \equiv F$$

р	¬р	р∧¬р
Т	F	F
F	Т	F

Contradiction and Tautology: Definition

A compound proposition that always gives a true value is called a tautology.

$$p \lor (\neg p) \equiv \mathsf{T}$$

р	¬р	$p \lor \neg p$	
Т	F	Т	Always
F	Т	Т_	true!

MH1812: Discrete Mathematics

Equivalent Expressions: Bob and Alice

1. Alice is not married but Bob is not single.

$$\neg h \land \neg b$$

2. Bob is not single and Alice is not married.

$$\neg b \land \neg h$$

3. Neither Bob is single nor Alice is married.

$$\neg (b \lor h)$$

These three statements are equivalent.

$$\neg h \land \neg b \equiv \neg b \land \neg h \equiv \neg (b \lor h)$$

Alice

Equivalent Expressions: The Statements

These three statements are equivalent:

$$\neg h \land \neg b \equiv \neg b \land \neg h \equiv \neg (b \lor h)$$

b h	¬ь	\neg_h	b V h	$\neg h \land \neg b$	$\neg b \land \neg h$	$\neg (b \lor h)$
TT	F	F	Т	F	F	F
ΤF	F	Т	Т	F	F	F
FT	T	F	Т	F	F	F
FF	Т	Т	F	Т	Т	Т

MH1812: Discrete Mathematics

Let's recap...

- We have covered:
 - Proposition (Compound Propositions)
 - Paradox
 - Contradiction
 - Tautology
 - Equivalent Expressions
- Basic logical operators (and De Morgan's laws):
 - Negation
 - Conjunction
 - Disjunction

Discrete Mathematics MH1812

Topic 2.2 - Propositional Logic II Dr. Gary Greaves

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Prove equivalence using logical equivalence laws.
- Use the conditional operator to combine propositions.
- Use the biconditional operator to combine propositions.

• Evaluate logical expressions using operator precedence.

Logical Equivalence Laws: Already Seen

Useful laws to transform one logical expression to an equivalent one

Axioms

T ≡ Tautology*C* ≡ Contradiction

$$\neg T \equiv F$$

$$\neg F \equiv T$$

$$\neg T \equiv C \equiv F$$

$$\neg C \equiv T \equiv T$$

De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Commutativity

$$p \wedge q \equiv q \wedge p$$

$$p \lor q \equiv q \lor p$$

Logical Equivalence Laws: More Laws

Double Negation

$$\neg(\neg p) \equiv p$$

Absorption

$$p \lor (p \land q) \equiv p$$

$$p \wedge (p \vee q) \equiv p$$

Idempotent

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

Logical Equivalence Laws: Distributive Law

Distributivity

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Conditional Operator: Known Operators

Conditional Operator: If Then

If p then $q: p \rightarrow q$.

By definition, when p is false, $p \rightarrow q$ is true.

This is called vacuously true or true by default.

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	T
F	F	T

```
gap>
gap> a:=10;; if (a>5) then Print("yes"); fi;
yes
gap> a:=1;; if (a>5) then Print("yes"); fi;
gap>
gap>
```

Not really the same!

Conditional Operator: Conversion Theorem

Theorem: $p \rightarrow q \equiv \neg p \lor q$

F	Proof						
	рq	$p \rightarrow q$	¬р	$\neg p \lor q$			
	ΤT	Т	F	Т			
	ΤF	F	F	F			
	FΤ	Т	Т	Т			
	FF	Т	Т	Т			

Conditional Operator: Converse, Inverse, Contrapositive

Statement	$p \rightarrow q$	
Converse	$q \rightarrow p$	
Inverse	$\neg p \to \neg q$	
Contrapositive	$\neg q \rightarrow \neg p$	

Theorem: $\neg q \rightarrow \neg p \equiv p \rightarrow q$

Proof

$$\neg q \rightarrow \neg p
 \equiv \neg (\neg q) \lor \neg p
 \equiv q \lor \neg p
 \equiv \neg p \lor q
 \equiv p \rightarrow q$$

Conditional Operator: Only If

- p only if $q \triangleq \neg q \rightarrow \neg p$
- $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$
- (If not q then not p) \equiv (p \Rightarrow q) (why?)

"Bob pays taxes only if his income $\geq 1000 "

 \triangleq "if Bob's income < \$1000 then he does not pay taxes"

 \equiv "if Bob pays tax then his income $\geq 1000 "

Conditional Operator: Sufficient and Necessary Conditions

When $p \rightarrow q$, p is called a sufficient condition for q, q is a necessary condition for p.

- Being an apple is a sufficient condition for being a fruit.
 - **≡** If it is an apple then it must be a fruit.
- Being a fruit is a necessary condition for being an apple.
 - **≡** If it is not a fruit then it cannot be an apple.

Conditional Operator: Example

Let f: "you fix my ceiling", p: "I will pay my rent"

"You fix my ceiling or I won't pay my rent!"

$$f \lor \neg p \equiv p \rightarrow f$$

"If you do not fix my ceiling, then I won't pay my rent."

$$\neg f \to \neg p \equiv p \to f$$

Tenant

"I will pay my rent only if you fix my ceiling."

Biconditional Operator: Known Operators

Biconditional Operator: If and Only If

 \leftrightarrow

- The biconditional of p and q: $p \leftrightarrow q \triangleq (p \rightarrow q) \land (q \rightarrow p)$
 - True only when p and q have identical truth value
- If and only if (iff)

pq	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
TT	Т	Т	Т
TF	F	Т	F
FT	Т	F	F
FF	Т	Т	Т

Operator Precedence: High to Low

Operator Precedence: Leftmost and Rightmost

Leftmost Precedence

When equal priority instances of binary connectives are not separated by (), the leftmost one has precedence.

E.g.,
$$p \rightarrow q \rightarrow r \equiv (p \rightarrow q) \rightarrow r$$

High Low

Rightmost Precedence

When instances of ¬ are not separated by (), the rightmost one has precedence.

E.g.,
$$\neg\neg\neg p \equiv \neg(\neg(\neg p))$$

Operator Precedence: Example

Show that
$$p \lor q \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

$$p \lor q \rightarrow r$$

$$\equiv (p \lor q) \rightarrow r$$

$$\equiv \neg (p \lor q) \lor r$$

$$\equiv (\neg p \land \neg q) \lor r$$

$$\equiv (\neg p \lor r) \land (\neg q \lor r)$$

$$\equiv (p \rightarrow r) \land (q \rightarrow r)$$

Operator precedence

Why?

De Morgan's

Why?

Why?

Let's recap...

- Useful logical equivalence laws:
 - Proving equivalence using these laws
- Conditional and biconditional operators:
 - Sufficient and necessary conditions
- Operator precedence

Discrete Mathematics MH1812

Topic 2.3 - Propositional Logic III Dr. Gary Greaves

What's in store...

By the end of this lesson, you should be able to...

- Determine whether or not an argument is valid.
- Apply basic inference rules.

Arguments: Valid Argument

An argument is a sequence of statements. The last statement is called the conclusion. All the previous statements are called premises (or assumptions/hypotheses).

A valid argument is an argument where the conclusion is true if the premises are all true.

Arguments: Valid Argument

A valid argument is an argument where the conclusion is true if the premises are all true.

- "If you pay up in full then I will deliver it"
- "You pay up in full"

"I will deliver it"

Premises

Conclusion

Arguments: Valid Argument

A valid argument is an argument where the conclusion is true if the premises are all true.

A series of statements form a valid argument if and only if "the conjunction of premises implying the conclusion" is a tautology.

((Premise) ∧ (Premise)) → Conclusion

Arguments: A Valid Argument Template

- By definition, a valid argument satisfies: "If the premises are true, then the conclusion is true".
- To check if the above argument is valid, we need to check that $((p \rightarrow q) \land p) \rightarrow q$ is a tautology.

Arguments: Valid Argument Template

- Critical rows are rows with all premises true.
- If in all critical rows the conclusion is true, then the argument is valid (otherwise it is invalid).

р	q	$p \rightarrow q$	$(p \rightarrow q) \land p$	$((p \to q) \land p) \to q$
Т	Н	Т	Т	Т
Т	F	F	F	late
F	Т	Т	F	to calculate T
F	F	Т	Nother	Т

Arguments: Counterexample

If in all critical rows the conclusion is true, then the argument is valid (otherwise it is invalid).

A critical row with a false conclusion is a counterexample.

A counterexample:

- Invalidates the argument (i.e., makes the argument not valid)
- Indicates a situation where the conclusion does not follow from the premises

Arguments: Invalid Argument Example

- "If it is falling and it is directly above me then I'll run"
- "It is falling"
- "It is not directly above me"

Premises

"I will not run"

Conclusion

$$S = (f \land a \rightarrow r);$$

$$f;$$

$$\neg a;$$

$$\therefore \neg r$$

Premises

Conclusion

Arguments: Invalid Argument Example

Arguments: Fallacy

A fallacy is an error in reasoning that results in an invalid argument.

Arguments: Fallacy 1 (Converse Error)

It is a holiday. Therefore, it is Christmas!

Arguments: Fallacy 2 (Inverse Error)

- If it is raining then I will stay at home.
- It is not raining. Therefore, I will not stay at home!

$$p \rightarrow q;$$

$$\neg p;$$

$$\therefore \neg q$$

Arguments: Invalid Argument, Correct Conclusion

An argument may be invalid, but it may still draw a correct conclusion (e.g., by coincidence).

Example

- If New York is a big city then New York has tall buildings.
- New York has tall buildings.
 - So, New York is a big city.

So, what happened?

- We have just made an invalid argument,
 i.e., converse error!
- But the conclusion is true (a fact true by itself).

Inference Rules: Definition

A rule of inference is a logical construct which takes premises, analyses their syntax and returns a conclusion.

We already saw...

$$p \rightarrow q;$$
 $p;$
 $\therefore q$

Modus Ponens(Method of Affirming)

$$p \rightarrow q;$$
 $\neg q;$
 $\therefore \neg p$

Modus Tollens
(Method of Denying)

Inference Rules: More Inference Rules

Conjunctive Simplification (Particularising)

```
p∧q;
∴p
```

Disjunctive Syllogism (Case Elimination)

```
p ∨ q;
¬ p;
∴ q
```

Conjunctive Addition (Specialising)

Rule of Contradiction

$$\neg p \rightarrow C;$$

$$\therefore p$$

Disjunctive Addition (Generalisation)

Alternative Rule of Contradiction

$$\neg p \rightarrow F;$$

$$\therefore p$$

Inference Rules: Dilemma

Dilemma (case by case discussions)

```
\begin{array}{c}
p \lor q; \\
p \to r; \\
q \to r; \\
\therefore r
\end{array}
```

```
PVA
7PVr
7qVr
either Porq or both T
```


Inference Rules: Hypothetical Syllogism

Hypothetical Syllogism

Alice

- If I do not wake up, then I cannot go to work.
- If I cannot go to work, then I will not get paid.
- Therefore, if I do not wake up, then I will not get paid.

Inference Rules: Proof Hypothetical Syllogism

$(p \rightarrow q) \land (q \rightarrow r)$	(Hypotheses; Assumed True)
$\equiv (p \rightarrow q) \land (\neg q \lor r)$	(Conversion Theorem)
$\equiv [(p \rightarrow q) \land \neg q] \lor [(p \rightarrow q) \land r]$	(Distributive)
$\equiv [((p \rightarrow q) \land \neg q) \lor (p \rightarrow q)] \land [((p \rightarrow q) \land \neg q) \lor r]$	(Distributive)
$\equiv (p \rightarrow q) \land [((p \rightarrow q) \land \neg q) \lor r]$	(Recall absorption law: a \vee (a \wedge b) \equiv a, hence $[((p \rightarrow q) \wedge \neg q) \vee (p \rightarrow q)] \equiv p \rightarrow q)$
$\equiv (p \rightarrow q) \land [((\neg p \lor q) \land \neg q) \lor r]$	(Conversion)
$\equiv (p \rightarrow q) \land [((\neg p \land \neg q) \lor (q \land \neg q)) \lor r]$	(Distributive)
$\equiv (p \rightarrow q) \land [((\neg p \land \neg q) \lor F) \lor r]$	(Contradiction)
$\equiv (p \rightarrow q) \land [(\neg p \land \neg q) \lor r]$	(Unity)
$\equiv (p \rightarrow q) \land [(\neg p \lor r) \land (\neg q \lor r)]$	(Distributive)
$\equiv [(p \rightarrow q) \land (\neg q \lor r)] \land (\neg p \lor r)$	(Commutative; Associative)
$\therefore (\neg p \lor r) \equiv p \rightarrow r$	(Conjunctive Simplification; Conversion)

Let's recap...

- Arguments:
 - Valid arguments
 - Invalid arguments
 - Counterexample
 - Fallacy
- Inference rules:
 - Derive conclusions from a bunch of information
 - Some basic inference rules

