Complex Analysis Qualifying Exam Fall 1991

 \mathbb{R} is the set of real numbers, \mathbb{C} , the set of complex numbers $D(a, \rho) := \{z \in \mathbb{C} : |z - a| < \rho\}$ for any $a \in \mathbb{C}, 0 < \rho \in \mathbb{R}, \mathbb{D} := D(0, 1)$.

- 1. f is non-constant and holomorphic in the region Ω and |f| assumes a minimum over Ω at z_0 . Show that $f(z_0) = 0$.
- **2.** f is holomorphic in D(0,R) and bounded by $M<\infty$. Let $\sum_{n=0}^{\infty}c_nz^n$ be its Taylor series at 0. In terms of N,M and r estimate

$$\left| f(z) - \sum_{n=0}^{N} c_n z^n \right|$$

in D(0,r), where r < R.

HINT: "Cauchy estimates" on the coefficients.

3. Let C be the unit circle $\partial \mathbb{D}$ parameterized in the customary way. Show that

$$\int_C \frac{e^{\pi z}}{4z^2 + 1} dz = \pi i.$$

- 4. Name four important 19th-century analysts and give a complete statement of one theorem due to each.
- **5.** $S := \mathbb{R} \times] -1,1$ [and f is holomorphic and bounded in S. Suppose $\lim_{x\to+\infty} f(x) = 0$. Show that then $\lim_{x\to+\infty} f(x+iy) = 0$ for every $y\in]-1,1$ [.

HINT: For any sequence of real numbers $x_n \to +\infty$, the functions $f_n(z) := f(x_n + z)$ constitute a bounded sequence on S which converges to 0 pointwise on \mathbb{R} .

- 6. f is holomorphic and zero-free in the region Ω . Show how to construct a holomorphic logarithm for f, that is, a holomorphic function g in Ω such that $f = e^g$. Are any further hypotheses needed on Ω to accomplish this?
- 7. f is holomorphic in the annulus $A := \mathbb{D}\setminus\{0\}$ and satisfies $|f(z)| < |z|^{\pi/2}$ for all $z \in A$. Show that $|f(1/2)| \le 1/4$.

HINT: First see if the function g(z) := f(z)/z can be holomorphically extended into \mathbb{D} . What will its value at 0 have to be?

- **8.** f is continuous on $\overline{\mathbb{D}}$ holomorphic in \mathbb{D} and vanishes on some arc of positive length on $\partial \mathbb{D}$. Show that f = 0 throughout \mathbb{D} .
- **9.** f_n are holomorphic in the open subset U of \mathbb{C} and $f_n \to f$ uniformly on each compact subset of U. Must f be holomorphic in U? If U is an open subset of \mathbb{R} and the f_n are differentiable in U, must f be differentiable in U?