Fraud Detection of Mobile Platform Transaction Data

Ariel Li, Divya Ravindran, Glory Scheel, Sneha Vasudevan

Agenda

- Problem Statement
- Exploratory Data Analysis
- Feature Engineering
- Data Transformation and Assumptions
- Modeling
- Future Work

Problem Statement

As online transactions become prevalent, so do frauds. Fraudulent transactions are detrimental to customers' accounts as well as the reputation of the transactional platform, so fraud detection has become paramount in financial services.

To protect customer accounts, this project aims to develop machine learning models to accurately detect and intercept frauds in mobile transactions.

EDA and Feature Engineering

Data Summary

Data Source:
Kaggle Synthetic
Financial Dataset for
Fraud Detection

Dataset:
PaySim-generated mobile
money transactions
(6.3+ million records)

Time Range: 1-month simulation, 743 unit hours Number of Variables: 11

Target Variable: Is_Fraud

Valid Transactions: 6,354,407

Fraudulent Transactions: 8,213

0.13% of the transactions are frauds.

Highly imbalanced

Exploratory Data Analysis

Total Transactions

Cash-in: 1399284

Cash-out: 2237500

Debit: 41432

Payment: 2151495

Transfer: 532909

Frauds

Cash-in: 0

Cash-out: 4116

Debit: 0

Payment: 0

Transfer: 4097

Feature Engineering

- Error Amount in Balance
 - Error in origination account
 - Error in destination account
- Day (of data simulation)
- One-hot encoding of transaction types
 - Cash-in, cash-out, payment, transfer, debit
- Account Types
 - "CC" (Customer to Customer)
 - "CM" (Customer to Merchant)
 - "MC" (Merchant to Customer
 - "MM" (Merchant to Merchant)

- 0.75

-0.50

- 0.25

- 0.00

Data Transformation and Assumptions

Sampling Techniques

- Undersampling Technique Used :
 Random Undersampling (XGBoost)
- Oversampling Technique Used:
 ADASYN (Logistic Regression, MLP)

Assumptions and Considerations

Assumptions on Simulated Data

- Simulated data is as prudent as the original dataset
- Data simulated preserves the multivariate relationships between variables

Modelling Considerations

- Sampling techniques address imbalance without bias
- Outliers are correlated with the anomalies (outlier detection models)
- Normalization over standardization as the latter assumes Gaussian distribution (MLP, Autoencoder, Log Reg)

Modeling

Evaluation Metrics

Recall (class 1):

Tells us the proportion of frauds correctly classified

Precision (class 0):

Tells us the proportion of true valid transactions out of the predicted valid transactions

How many selected

items are relevant?

How many relevant items are selected?

Tree-Based Models with Undersampling

Train Model	True Positive Rate	False Positive Rate	True Negative Rate	False Negative Rate
Random Forest	0.999242	0.00000	1.00000	0.000758
AdaBoost	0.996208	0.00091	0.99909	0.003792
GradientBoost	0.996208	0.00091	0.99909	0.003792
XGBoost	0.995601	0.00000	1.00000	0.004399
Test Model	True Positive Rate	False Positive Rate	True Negative Rate	False Negative Rate
Test Model Random Forest	True Positive Rate 0.997531	False Positive Rate 0.000148	True Negative Rate 0.999852	False Negative Rate 0.002469
Random Forest	0.997531	0.000148	0.999852	0.002469

Best Model (XGBoost): Gamma: 4.5, learning rate = 0.3, max_depth: 2, n_estimators = 700

XGBoost with Weight Adjustment

Parameter Tuning:

scale_pos_weight = sqrt(ratio(non-fraud/fraud))

Method: Randomized search

Best model parameters:

• gamma: 4

learning rate = 0.8

max_depth: 1

• n_estimators = 550

Outlier Detection

Local Outlier Factor

- Unsupervised detection method
- Samples that are substantially lower in density are considered outliers

Classification Report of Local Outlier Model - 0.8 - 0.6 - 0.4 - 0.2 - 0.2

Isolation Forest

- Identifies normal vs. abnormal observations and classifies abnormal as outliers
- Calculates anomaly score scores closer to 1 are considered anomalies, below 0.5 is normal

Auto Encoder

Process

- 1. Train network on the training data without any instances of fraud
- 2. Predict on test data
- 3. Calculate error
- 4. Where error passes certain threshold (MSE>0.007) we predict as anomaly.

Weighted Logistic Regression

Base model

Low recall for class 1

Weighted logistic regression

- Assign more weights to the minor class to heavily penalize misclassification
- Grid search for best class weights: {0: 1, 1: 1200}

Logistic regression on oversampled data

Almost perfect class 1 recall

Classification Report of Logistic Regression Base Model - 0.90 - 0.75 - 0.60 - 0.45 - 0.30 - 0.15 - 0.19

Multi-Layer Perceptron

Base model

Low recall for class 1

Weighted MLP

- Assign more weights to the minor class to heavily penalize misclassification
- Class weights: {0: 1, 1: 780}

MLP on oversampled data

Almost perfect class 1 recall

Predicted label

Model Selection

Best performance on both classes: XGBoost Classifier

High performance and efficiency: Multi-Layer Perceptron

Challenges and Future Work

Challenges

- Struggle of classification on extremely imbalanced datasets (< 1:100)
- Oversampling on 6+ million data points is computationally intensive

Future Work

- Use ensemble modeling to improve prediction performance
- Modify cost function to reflect real costs to the stakeholder, i.e. punish false negatives and false positives differently

Thank you!

