Induction and Inductance

30-1 FARADAY'S LAW AND LENZ'S LAW

Learning Objectives

After reading this module, you should be able to ...

- 30.01 Identify that the amount of magnetic field piercing a surface (not skimming along the surface) is the magnetic flux Φ through the surface.
- 30.02 Identify that an area vector for a flat surface is a vector that is perpendicular to the surface and that has a magnitude equal to the area of the surface.
- 30.03 Identify that any surface can be divided into area elements (patch elements) that are each small enough and flat enough for an area vector $d\vec{A}$ to be assigned to it, with the vector perpendicular to the element and having a magnitude equal to the area of the element.
- **30.04** Calculate the magnetic flux Φ through a surface by integrating the dot product of the magnetic field vector \vec{B} and the area vector $d\vec{A}$ (for patch elements) over the surface, in magnitude-angle notation and unit-vector notation.
- 30.05 Identify that a current is induced in a conducting loop while the number of magnetic field lines intercepted by the loop is changing.

- 30.06 Identify that an induced current in a conducting loop is driven by an induced emf.
- 30.07 Apply Faraday's law, which is the relationship between an induced emf in a conducting loop and the rate at which magnetic flux through the loop changes.
- 30.08 Extend Faraday's law from a loop to a coil with multiple loops.
- **30.09** Identify the three general ways in which the magnetic flux through a coil can change.
- 30.10 Use a right-hand rule for Lenz's law to determine the direction of induced emf and induced current in a conducting loop.
- 30.11 Identify that when a magnetic flux through a loop changes, the induced current in the loop sets up a magnetic field to oppose that change.
- **30.12** If an emf is induced in a conducting loop containing a battery, determine the net emf and calculate the corresponding current in the loop.

Key Ideas

 \bullet The magnetic flux Φ_{B} through an area A in a magnetic field \overrightarrow{B} is defined as

$$\Phi_B = \int \vec{B} \cdot d\vec{A},$$

where the integral is taken over the area. The SI unit of magnetic flux is the weber, where $1~Wb=1~T\cdot m^2$.

• If \vec{B} is perpendicular to the area and uniform over it, the flux is

$$\Phi_B = BA \quad (\vec{B} \perp A, \vec{B} \text{ uniform}).$$

• If the magnetic flux Φ_B through an area bounded by a closed conducting loop changes with time, a current and

an emf are produced in the loop; this process is called induction. The induced emf is

$$\mathscr{E} = -\frac{d\Phi_B}{dt}$$
 (Faraday's law).

ullet If the loop is replaced by a closely packed coil of N turns, the induced emf is

$$\mathscr{E} = -N \frac{d\Phi_B}{dt}.$$

• An induced current has a direction such that the magnetic field *due to the current* opposes the change in the magnetic flux that induces the current. The induced emf has the same direction as the induced current.

What Is Physics?

In Chapter 29 we discussed the fact that a current produces a magnetic field. That fact came as a surprise to the scientists who discovered the effect. Perhaps even more surprising was the discovery of the reverse effect: A magnetic field can produce an electric field that can drive a current. This link between a magnetic field and the electric field it produces (*induces*) is now called *Faraday's law of induction*.

The observations by Michael Faraday and other scientists that led to this law were at first just basic science. Today, however, applications of that basic science are almost everywhere. For example, induction is the basis of the electric guitars that revolutionized early rock and still drive heavy metal and punk today. It is also the basis of the electric generators that power cities and transportation lines and of the huge induction furnaces that are commonplace in foundries where large amounts of metal must be melted rapidly.

Before we get to applications like the electric guitar, we must examine two simple experiments about Faraday's law of induction.

Two Experiments

Let us examine two simple experiments to prepare for our discussion of Faraday's law of induction.

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive ammeter. Because there is no battery or other source of emf included, there is no current in the circuit. However, if we move a bar magnet toward the loop, a current suddenly appears in the circuit. The current disappears when the magnet stops. If we then move the magnet away, a current again suddenly appears, but now in the opposite direction. If we experimented for a while, we would discover the following:

- 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears when the relative motion between them ceases.
- **2.** Faster motion produces a greater current.
- **3.** If moving the magnet's north pole toward the loop causes, say, clockwise current, then moving the north pole away causes counterclockwise current. Moving the south pole toward or away from the loop also causes currents, but in the reversed directions.

The current produced in the loop is called an **induced current**; the work done per unit charge to produce that current (to move the conduction electrons that constitute the current) is called an **induced emf**; and the process of producing the current and emf is called **induction**.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2, with the two conducting loops close to each other but not touching. If we close switch S, to turn on a current in the right-hand loop, the meter suddenly and briefly registers a current—an induced current—in the left-hand loop. If we then open the switch, another sudden and brief induced current appears in the left-hand loop, but in the opposite direction. We get an induced current (and thus an induced emf) only when the current in the right-hand loop is changing (either turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently caused when something changes—but what is that "something"? Faraday knew.

Faraday's Law of Induction

Faraday realized that an emf and a current can be induced in a loop, as in our two experiments, by changing the *amount of magnetic field* passing through the loop. He further realized that the "amount of magnetic field" can be visualized in terms of the magnetic field lines passing through the loop. **Faraday's law of induction,** stated in terms of our experiments, is this:

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number of magnetic field lines that pass through the loop is changing.

Figure 30-1 An ammeter registers a current in the wire loop when the magnet is moving with respect to the loop.

Figure 30-2 An ammeter registers a current in the left-hand wire loop just as switch S is closed (to turn on the current in the right-hand wire loop) or opened (to turn off the current in the right-hand loop). No motion of the coils is involved.

The actual number of field lines passing through the loop does not matter; the values of the induced emf and induced current are determined by the *rate* at which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from the north pole of the magnet. Thus, as we move the north pole closer to the loop, the number of field lines passing through the loop increases. That increase apparently causes conduction electrons in the loop to move (the induced current) and provides energy (the induced emf) for their motion. When the magnet stops moving, the number of field lines through the loop no longer changes and the induced current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current), there are no field lines. However, when we turn on the current in the right-hand loop, the increasing current builds up a magnetic field around that loop and at the left-hand loop. While the field builds, the number of magnetic field lines through the left-hand loop increases. As in the first experiment, the increase in field lines through that loop apparently induces a current and an emf there. When the current in the right-hand loop reaches a final, steady value, the number of field lines through the left-hand loop no longer changes, and the induced current and induced emf disappear.

A Quantitative Treatment

To put Faraday's law to work, we need a way to calculate the *amount of magnetic field* that passes through a loop. In Chapter 23, in a similar situation, we needed to calculate the amount of electric field that passes through a surface. There we defined an electric flux $\Phi_E = \int \vec{E} \cdot d\vec{A}$. Here we define a *magnetic flux:* Suppose a loop enclosing an area A is placed in a magnetic field \vec{B} . Then the **magnetic flux** through the loop is

$$\Phi_B = \int \vec{B} \cdot d\vec{A} \quad \text{(magnetic flux through area A)}. \tag{30-1}$$

As in Chapter 23, $d\vec{A}$ is a vector of magnitude dA that is perpendicular to a differential area dA. As with electric flux, we want the component of the field that *pierces* the surface (not skims along it). The dot product of the field and the area vector automatically gives us that piercing component.

Special Case. As a special case of Eq. 30-1, suppose that the loop lies in a plane and that the magnetic field is perpendicular to the plane of the loop. Then we can write the dot product in Eq. 30-1 as B dA cos $0^{\circ} = B$ dA. If the magnetic field is also uniform, then B can be brought out in front of the integral sign. The remaining $\int dA$ then gives just the area A of the loop. Thus, Eq. 30-1 reduces to

$$\Phi_B = BA \quad (\vec{B} \perp \text{area } A, \vec{B} \text{ uniform}). \tag{30-2}$$

Unit. From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the tesla–square meter, which is called the *weber* (abbreviated Wb):

1 weber = 1 Wb = 1 T ·
$$m^2$$
. (30-3)

Faraday's Law. With the notion of magnetic flux, we can state Faraday's law in a more quantitative and useful way:

The magnitude of the emf \mathscr{E} induced in a conducting loop is equal to the rate at which the magnetic flux Φ_B through that loop changes with time.

As you will see below, the induced emf & tends to oppose the flux change, so

Faraday's law is formally written as

$$\mathscr{E} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's law)},\tag{30-4}$$

with the minus sign indicating that opposition. We often neglect the minus sign in Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of N turns, an induced emf appears in every turn and the total emf induced in the coil is the sum of these individual induced emfs. If the coil is tightly wound (*closely packed*), so that the same magnetic flux Φ_B passes through all the turns, the total emf induced in the coil is

$$\mathscr{E} = -N \frac{d\Phi_B}{dt} \quad \text{(coil of } N \text{ turns)}. \tag{30-5}$$

Here are the general means by which we can change the magnetic flux through a coil:

- **1.** Change the magnitude *B* of the magnetic field within the coil.
- 2. Change either the total area of the coil or the portion of that area that lies within the magnetic field (for example, by expanding the coil or sliding it into or out of the field).
- **3.** Change the angle between the direction of the magnetic field \vec{B} and the plane of the coil (for example, by rotating the coil so that field \vec{B} is first perpendicular to the plane of the coil and then is along that plane).

Checkpoint 1

The graph gives the magnitude B(t) of a uniform magnetic field that exists throughout a conducting loop, with the direction of the field perpendicular to the plane of the loop. Rank the five regions of the graph according to the magnitude of the emf induced in the loop, greatest first.

Sample Problem 30.01 Induced emf in coil due to a solenoid

The long solenoid S shown (in cross section) in Fig. 30-3 has 220 turns/cm and carries a current i = 1.5 A; its diameter D is 3.2 cm. At its center we place a 130-turn closely packed coil C of diameter d = 2.1 cm. The current in the solenoid is reduced to zero at a steady rate in 25 ms. What is the magnitude of the emf that is induced in coil C while the current in the solenoid is changing?

Figure 30-3 A coil C is located inside a solenoid S, which carries current *i*.

KEY IDEAS

- **1.** Because it is located in the interior of the solenoid, coil C lies within the magnetic field produced by current i in the solenoid; thus, there is a magnetic flux Φ_B through coil C.
- **2.** Because current *i* decreases, flux Φ_B also decreases.
- **3.** As Φ_B decreases, emf \mathscr{E} is induced in coil C.
- **4.** The flux through each turn of coil C depends on the area A and orientation of that turn in the solenoid's magnetic field \vec{B} . Because \vec{B} is uniform and directed perpendicular to area A, the flux is given by Eq. 30-2 ($\Phi_B = BA$).
- 5. The magnitude B of the magnetic field in the interior of a solenoid depends on the solenoid's current i and its number n of turns per unit length, according to Eq. 29-23 $(B = \mu_0 i n)$.

Calculations: Because coil C consists of more than one turn, we apply Faraday's law in the form of Eq. 30-5 $(\mathscr{E} = -N d\Phi_B/dt)$, where the number of turns N is 130 and $d\Phi_B/dt$ is the rate at which the flux changes.

Because the current in the solenoid decreases at a steady rate, flux Φ_B also decreases at a steady rate, and so we can write $d\Phi_B/dt$ as $\Delta\Phi_B/\Delta t$. Then, to evaluate $\Delta\Phi_B$, we need the final and initial flux values. The final flux $\Phi_{B,f}$ is zero because the final current in the solenoid is zero. To find the initial flux $\Phi_{B,i}$, we note that area A is $\frac{1}{4}\pi d^2$ (= 3.464 × 10⁻⁴ m²) and the number n is 220 turns/cm, or 22 000 turns/m. Substituting Eq. 29-23 into Eq. 30-2 then leads to

$$\Phi_{B,i} = BA = (\mu_0 in)A$$
= $(4\pi \times 10^{-7} \,\mathrm{T \cdot m/A})(1.5 \,\mathrm{A})(22 \,000 \,\mathrm{turns/m})$
 $\times (3.464 \times 10^{-4} \,\mathrm{m}^2)$
= $1.44 \times 10^{-5} \,\mathrm{Wb}$.

Now we can write

$$\frac{d\Phi_B}{dt} = \frac{\Delta\Phi_B}{\Delta t} = \frac{\Phi_{B,f} - \Phi_{B,i}}{\Delta t}$$

$$= \frac{(0 - 1.44 \times 10^{-5} \text{ Wb})}{25 \times 10^{-3} \text{ s}}$$

$$= -5.76 \times 10^{-4} \text{ Wb/s}$$

$$= -5.76 \times 10^{-4} \text{ V}.$$

We are interested only in magnitudes; so we ignore the minus signs here and in Eq. 30-5, writing

$$\mathscr{E} = N \frac{d\Phi_B}{dt} = (130 \text{ turns})(5.76 \times 10^{-4} \text{ V})$$

$$= 7.5 \times 10^{-2} \text{ V}$$

$$= 75 \text{ mV}. \qquad (Answer)$$

PLUS Additional examples, video, and practice available at WileyPLUS

Lenz's Law

Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz devised a rule for determining the direction of an induced current in a loop:

An induced current has a direction such that the magnetic field due to the current opposes the change in the magnetic flux that induces the current.

Furthermore, the direction of an induced emf is that of the induced current. The key word in Lenz's law is "opposition." Let's apply the law to the motion of the north pole toward the conducting loop in Fig. 30-4.

1. Opposition to Pole Movement. The approach of the magnet's north pole in Fig. 30-4 increases the magnetic flux through the loop and thereby induces a current in the loop. From Fig. 29-22, we know that the loop then acts as a magnetic dipole with a south pole and a north pole, and that its magnetic dipole moment $\vec{\mu}$ is directed from south to north. To oppose the magnetic flux increase being caused by the approaching magnet, the loop's north pole (and thus $\vec{\mu}$) must face toward the approaching north pole so as to repel it (Fig. 30-4). Then the curled-straight right-hand rule for $\vec{\mu}$ (Fig. 29-22) tells us that the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be induced in the loop. Now, however, the loop will have a south pole facing the retreating north pole of the magnet, so as to oppose the retreat. Thus, the induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no magnetic flux passes through the loop. As the north pole of the magnet then nears the loop with its magnetic field B directed downward, the flux through the loop increases. To oppose this increase in flux, the induced current i must set up its own field \vec{B}_{ind} directed *upward* inside the loop, as shown in Fig. 30-5a; then the upward flux of field \vec{B}_{ind} opposes the increasing downward flux of field \vec{B} . The curled-straight right-hand rule of Fig. 29-22 then tells us that i must be counterclockwise in Fig. 30-5a.

Figure 30-4 Lenz's law at work. As the magnet is moved toward the loop, a current is induced in the loop. The current produces its own magnetic field, with magnetic dipole moment $\vec{\mu}$ oriented so as to oppose the motion of the magnet. Thus, the induced current must be counterclockwise as shown.

Heads Up. The flux of \vec{B}_{ind} always opposes the *change* in the flux of \vec{B} , but \vec{B}_{ind} is not always opposite \vec{B} . For example, if we next pull the magnet away from the loop in Fig. 30-4, the magnet's flux Φ_B is still downward through the loop, but it is now decreasing. The flux of \vec{B}_{ind} must now be downward inside the loop, to oppose that *decrease* (Fig. 30-5b). Thus, \vec{B}_{ind} and \vec{B} are now in the same direction. In Figs. 30-5c and d, the south pole of the magnet approaches and retreats from the loop, again with opposition to change.

Increasing the external Decreasing the external Increasing the external Decreasing the external field \overrightarrow{B} induces a current with a field \overrightarrow{B}_{ind} that opposes the change. opposes the change. opposes the change. opposes the change. $\overrightarrow{B}_{\text{ind}}$ The induced current creates this field, trying to offset the change. The fingers are in the current's direction; the thumb is in the induced field's direction. $\overrightarrow{B}_{\text{ind}}$ (b) (c) (d)

Figure 30-5 The direction of the current i induced in a loop is such that the current's magnetic field \vec{B}_{ind} opposes the *change* in the magnetic field \vec{B} inducing i. The field \vec{B}_{ind} is always directed opposite an increasing field \vec{B} (a, c) and in the same direction as a decreasing field \vec{B} (b, d). The curled–straight right-hand rule gives the direction of the induced current based on the direction of the induced field.

Checkpoint 2

The figure shows three situations in which identical circular conducting loops are in uniform magnetic fields that are either increasing (Inc) or decreasing (Dec) in magnitude at identical rates. In each, the dashed line coincides with a diameter. Rank the situations according to the magnitude of the current induced in the loops, greatest first.

Sample Problem 30.02 Induced emf and current due to a changing uniform B field

Figure 30-6 shows a conducting loop consisting of a half-circle of radius r=0.20 m and three straight sections. The half-circle lies in a uniform magnetic field \vec{B} that is directed out of the page; the field magnitude is given by $B=4.0t^2+2.0t+3.0$, with B in teslas and t in seconds. An ideal battery with emf $\mathcal{E}_{\text{bat}}=2.0$ V is connected to the loop. The resistance of the loop is $2.0~\Omega$.

(a) What are the magnitude and direction of the emf \mathscr{E}_{ind} induced around the loop by field \vec{B} at t = 10 s?

KEY IDEAS

- **1.** According to Faraday's law, the magnitude of \mathscr{E}_{ind} is equal to the rate $d\Phi_B/dt$ at which the magnetic flux through the loop changes.
- 2. The flux through the loop depends on how much of the loop's area lies within the flux and how the area is oriented in the magnetic field \vec{B} .
- **3.** Because \vec{B} is uniform and is perpendicular to the plane of the loop, the flux is given by Eq. 30-2 ($\Phi_B = BA$). (We don't need to integrate B over the area to get the flux.)
- **4.** The induced field B_{ind} (due to the induced current) must always oppose the *change* in the magnetic flux.

Magnitude: Using Eq. 30-2 and realizing that only the field magnitude B changes in time (not the area A), we rewrite Faraday's law, Eq. 30-4, as

$$\mathscr{E}_{\text{ind}} = \frac{d\Phi_B}{dt} = \frac{d(BA)}{dt} = A \frac{dB}{dt}.$$

Because the flux penetrates the loop only within the half-circle, the area A in this equation is $\frac{1}{2}\pi r^2$. Substituting this and the given expression for B yields

$$\mathcal{E}_{\text{ind}} = A \frac{dB}{dt} = \frac{\pi r^2}{2} \frac{d}{dt} (4.0t^2 + 2.0t + 3.0)$$
$$= \frac{\pi r^2}{2} (8.0t + 2.0).$$

Figure 30-6 A battery is connected to a conducting loop that includes a half-circle of radius r lying in a uniform magnetic field. The field is directed out of the page; its magnitude is changing.

At t = 10 s, then,

$$\mathcal{E}_{\text{ind}} = \frac{\pi (0.20 \text{ m})^2}{2} [8.0(10) + 2.0]$$

= 5.152 V \approx 5.2 V. (Answer)

Direction: To find the direction of \mathscr{E}_{ind} , we first note that in Fig. 30-6 the flux through the loop is out of the page and increasing. Because the induced field B_{ind} (due to the induced current) must oppose that increase, it must be *into* the page. Using the curled–straight right-hand rule (Fig. 30-5c), we find that the induced current is clockwise around the loop, and thus so is the induced emf \mathscr{E}_{ind} .

(b) What is the current in the loop at t = 10 s?

KEY IDEA

The point here is that *two* emfs tend to move charges around the loop.

Calculation: The induced emf \mathscr{E}_{ind} tends to drive a current clockwise around the loop; the battery's emf \mathscr{E}_{bat} tends to drive a current counterclockwise. Because \mathscr{E}_{ind} is greater than \mathscr{E}_{bat} , the net emf \mathscr{E}_{net} is clockwise, and thus so is the current. To find the current at t = 10 s, we use Eq. 27-2 $(i = \mathscr{E}/R)$:

$$i = \frac{\mathscr{E}_{\text{net}}}{R} = \frac{\mathscr{E}_{\text{ind}} - \mathscr{E}_{\text{bat}}}{R}$$

= $\frac{5.152 \text{ V} - 2.0 \text{ V}}{2.0 \Omega} = 1.58 \text{ A} \approx 1.6 \text{ A}.$ (Answer)

Sample Problem 30.03 Induced emf due to a changing nonuniform B field

Figure 30-7 shows a rectangular loop of wire immersed in a nonuniform and varying magnetic field \vec{B} that is perpendicular to and directed into the page. The field's magnitude is given by $B=4t^2x^2$, with B in teslas, t in seconds, and x in meters. (Note that the function depends on *both* time and position.) The loop has width W=3.0 m and height H=2.0 m. What are the magnitude and direction of the induced emf $\mathscr E$ around the loop at t=0.10 s?

KEY IDEAS

- 1. Because the magnitude of the magnetic field \vec{B} is changing with time, the magnetic flux Φ_B through the loop is also changing.
- **2.** The changing flux induces an emf $\mathscr E$ in the loop according to Faraday's law, which we can write as $\mathscr E = d\Phi_B/dt$.
- **3.** To use that law, we need an expression for the flux Φ_B at

If the field varies with position, we must integrate to get the flux through the loop.

We start with a strip so thin that we can approximate the field as being uniform within it.

Figure 30-7 A closed conducting loop, of width W and height H, lies in a nonuniform, varying magnetic field that points directly into the page. To apply Faraday's law, we use the vertical strip of height H, width dx, and area dA.

any time t. However, because B is not uniform over the area enclosed by the loop, we *cannot* use Eq. 30-2 (Φ_B = BA) to find that expression; instead we must use Eq. 30-1 $(\Phi_B = \int \vec{B} \cdot d\vec{A}).$

Calculations: In Fig. 30-7, \vec{B} is perpendicular to the plane of the loop (and hence parallel to the differential area vector dA); so the dot product in Eq. 30-1 gives B dA. Because the magnetic field varies with the coordinate x but not with the coordinate y, we can take the differential area dA to be the area of a vertical strip of height H and width dx(as shown in Fig. 30-7). Then dA = H dx, and the flux through the loop is

$$\Phi_B = \int \vec{B} \cdot d\vec{A} = \int B \, dA = \int BH \, dx = \int 4t^2 x^2 H \, dx.$$

Treating t as a constant for this integration and inserting the integration limits x = 0 and x = 3.0 m, we obtain

$$\Phi_B = 4t^2 H \int_0^{3.0} x^2 dx = 4t^2 H \left[\frac{x^3}{3} \right]_0^{3.0} = 72t^2,$$

where we have substituted H = 2.0 m and Φ_B is in webers. Now we can use Faraday's law to find the magnitude of \mathscr{E} at any time *t*:

$$\mathscr{E} = \frac{d\Phi_B}{dt} = \frac{d(72t^2)}{dt} = 144t,$$

in which \mathscr{E} is in volts. At t = 0.10 s,

$$\mathscr{E} = (144 \text{ V/s})(0.10 \text{ s}) \approx 14 \text{ V}.$$
 (Answer)

The flux of \vec{B} through the loop is into the page in Fig. 30-7 and is increasing in magnitude because B is increasing in magnitude with time. By Lenz's law, the field B_{ind} of the induced current opposes this increase and so is directed out of the page. The curled-straight right-hand rule in Fig. 30-5a then tells us that the induced current is counterclockwise around the loop, and thus so is the induced emf &.

PLUS Additional examples, video, and practice available at WileyPLUS

30-2 INDUCTION AND ENERGY TRANSFERS

Learning Objectives

After reading this module, you should be able to . . .

30.13 For a conducting loop pulled into or out of a magnetic field, calculate the rate at which energy is transferred to thermal energy.

30.14 Apply the relationship between an induced current and the rate at which it produces thermal energy.

30.15 Describe eddy currents.

Key Idea

 The induction of a current by a changing flux means that energy is being transferred to that current. The energy can then be transferred to other forms, such as thermal energy.

Induction and Energy Transfers

By Lenz's law, whether you move the magnet toward or away from the loop in Fig. 30-1, a magnetic force resists the motion, requiring your applied force to do positive work. At the same time, thermal energy is produced in the material of the loop because of the material's electrical resistance to the current that is induced by the motion. The energy you transfer to the closed loop + magnet system via your applied force ends up in this thermal energy. (For now, we neglect energy that is radiated away from the loop as electromagnetic waves during the induction.) The faster you move the magnet, the more rapidly your applied force does work and the greater the rate at which your energy is transferred to thermal energy in the loop; that is, the power of the transfer is greater.

Regardless of how current is induced in a loop, energy is always transferred to thermal energy during the process because of the electrical resistance of the loop (unless the loop is superconducting). For example, in Fig. 30-2, when switch S is closed and a current is briefly induced in the left-hand loop, energy is transferred from the battery to thermal energy in that loop.

Figure 30-8 shows another situation involving induced current. A rectangular loop of wire of width L has one end in a uniform external magnetic field that is directed perpendicularly into the plane of the loop. This field may be produced, for example, by a large electromagnet. The dashed lines in Fig. 30-8 show the assumed limits of the magnetic field; the fringing of the field at its edges is neglected. You are to pull this loop to the right at a constant velocity \vec{v} .

Flux Change. The situation of Fig. 30-8 does not differ in any essential way from that of Fig. 30-1. In each case a magnetic field and a conducting loop are in relative motion; in each case the flux of the field through the loop is changing with time. It is true that in Fig. 30-1 the flux is changing because \vec{B} is changing and in Fig. 30-8 the flux is changing because the area of the loop still in the magnetic field is changing, but that difference is not important. The important difference between the two arrangements is that the arrangement of Fig. 30-8 makes calculations easier. Let us now calculate the rate at which you do mechanical work as you pull steadily on the loop in Fig. 30-8.

Rate of Work. As you will see, to pull the loop at a constant velocity \vec{v} , you must apply a constant force \vec{F} to the loop because a magnetic force of equal magnitude but opposite direction acts on the loop to oppose you. From Eq. 7-48, the rate at which you do work—that is, the power—is then

$$P = Fv, (30-6)$$

where F is the magnitude of your force. We wish to find an expression for P in terms of the magnitude B of the magnetic field and the characteristics of the loop—namely, its resistance R to current and its dimension L.

As you move the loop to the right in Fig. 30-8, the portion of its area within the magnetic field decreases. Thus, the flux through the loop also decreases and, according to Faraday's law, a current is produced in the loop. It is the presence of this current that causes the force that opposes your pull.

Induced emf. To find the current, we first apply Faraday's law. When x is the length of the loop still in the magnetic field, the area of the loop still in the field is Lx. Then from Eq. 30-2, the magnitude of the flux through the loop is

$$\Phi_B = BA = BLx. \tag{30-7}$$

Figure 30-8 You pull a closed conducting loop out of a magnetic field at constant velocity \vec{v} . While the loop is moving, a clockwise current i is induced in the loop, and the loop segments still within the magnetic field experience forces \vec{F}_1 , \vec{F}_2 , and \vec{F}_3 .

As x decreases, the flux decreases. Faraday's law tells us that with this flux decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and using Eq. 30-7, we can write the magnitude of this emf as

$$\mathscr{E} = \frac{d\Phi_B}{dt} = \frac{d}{dt}BLx = BL\frac{dx}{dt} = BLv,$$
 (30-8)

in which we have replaced dx/dt with v, the speed at which the loop moves.

Figure 30-9 shows the loop as a circuit: induced emf $\mathscr E$ is represented on the left, and the collective resistance R of the loop is represented on the right. The direction of the induced current i is obtained with a right-hand rule as in Fig. 30-5b for decreasing flux; applying the rule tells us that the current must be clockwise, and $\mathscr E$ must have the same direction.

Induced Current. To find the magnitude of the induced current, we cannot apply the loop rule for potential differences in a circuit because, as you will see in Module 30-3, we cannot define a potential difference for an induced emf. However, we can apply the equation $i = \mathcal{E}/R$. With Eq. 30-8, this becomes

$$i = \frac{BLv}{R}. (30-9)$$

Because three segments of the loop in Fig. 30-8 carry this current through the magnetic field, sideways deflecting forces act on those segments. From Eq. 28-26 we know that such a deflecting force is, in general notation,

$$\vec{F}_d = i\vec{L} \times \vec{B}. \tag{30-10}$$

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are marked $\vec{F_1}$, $\vec{F_2}$, and $\vec{F_3}$. Note, however, that from the symmetry, forces $\vec{F_2}$ and $\vec{F_3}$ are equal in magnitude and cancel. This leaves only force $\vec{F_1}$, which is directed opposite your force \vec{F} on the loop and thus is the force opposing you. So, $\vec{F} = -\vec{F_1}$.

Using Eq. 30-10 to obtain the magnitude of \vec{F}_1 and noting that the angle between \vec{B} and the length vector \vec{L} for the left segment is 90°, we write

$$F = F_1 = iLB \sin 90^\circ = iLB.$$
 (30-11)

Substituting Eq. 30-9 for *i* in Eq. 30-11 then gives us

$$F = \frac{B^2 L^2 v}{R}.$$
 (30-12)

Because B, L, and R are constants, the speed v at which you move the loop is constant if the magnitude F of the force you apply to the loop is also constant.

Rate of Work. By substituting Eq. 30-12 into Eq. 30-6, we find the rate at which you do work on the loop as you pull it from the magnetic field:

$$P = Fv = \frac{B^2 L^2 v^2}{R}$$
 (rate of doing work). (30-13)

Thermal Energy. To complete our analysis, let us find the rate at which thermal energy appears in the loop as you pull it along at constant speed. We calculate it from Eq. 26-27,

$$P = i^2 R. (30-14)$$

Substituting for *i* from Eq. 30-9, we find

$$P = \left(\frac{BLv}{R}\right)^2 R = \frac{B^2 L^2 v^2}{R} \quad \text{(thermal energy rate)}, \tag{30-15}$$

which is exactly equal to the rate at which you are doing work on the loop (Eq. 30-13). Thus, the work that you do in pulling the loop through the magnetic field appears as thermal energy in the loop.

Figure 30-9 A circuit diagram for the loop of Fig. 30-8 while the loop is moving.

Figure 30-10 (a) As you pull a solid conducting plate out of a magnetic field, eddy currents are induced in the plate. A typical loop of eddy current is shown. (b) A conducting plate is allowed to swing like a pendulum about a pivot and into a region of magnetic field. As it enters and leaves the field, eddy currents are induced in the plate.

Eddy Currents

Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate. If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a), the relative motion of the field and the conductor again induces a current in the conductor. Thus, we again encounter an opposing force and must do work because of the induced current. With the plate, however, the conduction electrons making up the induced current do not follow one path as they do with the loop. Instead, the electrons swirl about within the plate as if they were caught in an eddy (whirlpool) of water. Such a current is called an *eddy current* and can be represented, as it is in Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate results in mechanical energy being dissipated as thermal energy. The dissipation is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to rotate about a pivot, is allowed to swing down through a magnetic field like a pendulum. Each time the plate enters and leaves the field, a portion of its mechanical energy is transferred to its thermal energy. After several swings, no mechanical energy remains and the warmed-up plate just hangs from its pivot.

Checkpoint 3

The figure shows four wire loops, with edge lengths of either L or 2L. All four loops will move through a region of uniform magnetic field \vec{B} (directed out of the page) at the same constant velocity. Rank the four loops according to the maximum magnitude of the emf induced as they move through the field, greatest first.

30-3 INDUCED ELECTRIC FIELDS

Learning Objectives

After reading this module, you should be able to . . .

- **30.16** Identify that a changing magnetic field induces an electric field, regardless of whether there is a conducting loop.
- **30.17** Apply Faraday's law to relate the electric field \vec{E} induced along a closed path (whether it has conducting
- material or not) to the rate of change $d\Phi/dt$ of the magnetic flux encircled by the path.
- **30.18** Identify that an electric potential cannot be associated with an induced electric field.

Key Ideas

ullet An emf is induced by a changing magnetic flux even if the loop through which the flux is changing is not a physical conductor but an imaginary line. The changing magnetic field induces an electric field \vec{E} at every point of such a loop; the induced emf is related to \vec{E} by

$$\mathscr{E} = \oint \vec{E} \cdot d\vec{s}.$$

• Using the induced electric field, we can write Faraday's law in its most general form as

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's law)}.$$

A changing magnetic field induces an electric field \vec{E} .

Induced Electric Fields

Let us place a copper ring of radius r in a uniform external magnetic field, as in Fig. 30-11a. The field—neglecting fringing—fills a cylindrical volume of radius R. Suppose that we increase the strength of this field at a steady rate, perhaps by increasing—in an appropriate way—the current in the windings of the electromagnet that produces the field. The magnetic flux through the ring will then change at a steady rate and—by Faraday's law—an induced emf and thus an induced current will appear in the ring. From Lenz's law we can deduce that the direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the ring because an electric field is needed to do the work of moving the conduction electrons. Moreover, the electric field must have been produced by the changing magnetic flux. This **induced electric field** \vec{E} is just as real as an electric field produced by static charges; either field will exert a force $q_0\vec{E}$ on a particle of charge q_0 .

By this line of reasoning, we are led to a useful and informative restatement of Faraday's law of induction:

A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if there is no copper ring. Thus, the electric field would appear even if the changing magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except the copper ring has been replaced by a hypothetical circular path of radius r. We assume, as previously, that the magnetic field \vec{B} is increasing in magnitude at a constant rate dB/dt. The electric field induced at various points around the

Figure 30-11 (a) If the magnetic field increases at a steady rate, a constant induced current appears, as shown, in the copper ring of radius r.(b) An induced electric field exists even when the ring is removed; the electric field is shown at four points. (c) The complete picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within the region of changing magnetic field. A smaller emf is induced around path 3, which only partially lies in that region. No net emf is induced around path 4, which lies entirely outside the magnetic field.

circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b shows.* Hence, the circular path is an electric field line. There is nothing special about the circle of radius r, so the electric field lines produced by the changing magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is *increasing* with time, the electric field represented by the circular field lines in Fig. 30-11c will be present. If the magnetic field remains *constant* with time, there will be no induced electric field and thus no electric field lines. If the magnetic field is *decreasing* with time (at a constant rate), the electric field lines will still be concentric circles as in Fig. 30-11c, but they will now have the opposite direction. All this is what we have in mind when we say "A changing magnetic field produces an electric field."

A Reformulation of Faraday's Law

Consider a particle of charge q_0 moving around the circular path of Fig. 30-11b. The work W done on it in one revolution by the induced electric field is $W = \mathcal{E}q_0$, where \mathcal{E} is the induced emf—that is, the work done per unit charge in moving the test charge around the path. From another point of view, the work is

$$W = \int \vec{F} \cdot d\vec{s} = (q_0 E)(2\pi r), \tag{30-16}$$

where q_0E is the magnitude of the force acting on the test charge and $2\pi r$ is the distance over which that force acts. Setting these two expressions for W equal to each other and canceling q_0 , we find that

$$\mathscr{E} = 2\pi r E. \tag{30-17}$$

Next we rewrite Eq. 30-16 to give a more general expression for the work done on a particle of charge q_0 moving along any closed path:

$$W = \oint \vec{F} \cdot d\vec{s} = q_0 \oint \vec{E} \cdot d\vec{s}. \tag{30-18}$$

(The loop on each integral sign indicates that the integral is to be taken around the closed path.) Substituting $\mathcal{E}q_0$ for W, we find that

$$\mathscr{E} = \oint \vec{E} \cdot d\vec{s}. \tag{30-19}$$

This integral reduces at once to Eq. 30-17 if we evaluate it for the special case of Fig. 30-11b.

Meaning of emf. With Eq. 30-19, we can expand the meaning of induced emf. Up to this point, induced emf has meant the work per unit charge done in maintaining current due to a changing magnetic flux, or it has meant the work done per unit charge on a charged particle that moves around a closed path in a changing magnetic flux. However, with Fig. 30-11b and Eq. 30-19, an induced emf can exist without the need of a current or particle: An induced emf is the sum—via integration—of quantities $\vec{E} \cdot d\vec{s}$ around a closed path, where \vec{E} is the electric field induced by a changing magnetic flux and $d\vec{s}$ is a differential length vector along the path.

If we combine Eq. 30-19 with Faraday's law in Eq. 30-4 ($\mathscr{E} = -d\Phi_B/dt$), we can rewrite Faraday's law as

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's law)}.$$
(30-20)

^{*}Arguments of symmetry would also permit the lines of \vec{E} around the circular path to be *radial*, rather than tangential. However, such radial lines would imply that there are free charges, distributed symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there are no such charges.

This equation says simply that a changing magnetic field induces an electric field. The changing magnetic field appears on the right side of this equation, the electric field on the left.

Faraday's law in the form of Eq. 30-20 can be applied to *any* closed path that can be drawn in a changing magnetic field. Figure 30-11*d*, for example, shows four such paths, all having the same shape and area but located in different positions in the changing field. The induced emfs $\mathscr{E} (= \oint \vec{E} \cdot d\vec{s})$ for paths 1 and 2 are equal because these paths lie entirely in the magnetic field and thus have the same value of $d\Phi_B/dt$. This is true even though the electric field vectors at points along these paths are different, as indicated by the patterns of electric field lines in the figure. For path 3 the induced emf is smaller because the enclosed flux Φ_B (hence $d\Phi_B/dt$) is smaller, and for path 4 the induced emf is zero even though the electric field is not zero at any point on the path.

A New Look at Electric Potential

Induced electric fields are produced not by static charges but by a changing magnetic flux. Although electric fields produced in either way exert forces on charged particles, there is an important difference between them. The simplest evidence of this difference is that the field lines of induced electric fields form closed loops, as in Fig. 30-11c. Field lines produced by static charges never do so but must start on positive charges and end on negative charges. Thus, a field line from a charge can never loop around and back onto itself as we see for each of the field lines in Fig. 30-11c.

In a more formal sense, we can state the difference between electric fields produced by induction and those produced by static charges in these words:

Electric potential has meaning only for electric fields that are produced by static charges; it has no meaning for electric fields that are produced by induction.

You can understand this statement qualitatively by considering what happens to a charged particle that makes a single journey around the circular path in Fig. 30-11b. It starts at a certain point and, on its return to that same point, has experienced an emf & of, let us say, 5 V; that is, work of 5 J/C has been done on the particle by the electric field, and thus the particle should then be at a point that is 5 V greater in potential. However, that is impossible because the particle is back at the same point, which cannot have two different values of potential. Thus, potential has no meaning for electric fields that are set up by changing magnetic fields.

We can take a more formal look by recalling Eq. 24-18, which defines the potential difference between two points i and f in an electric field \vec{E} in terms of an integration between those points:

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}. \tag{30-21}$$

In Chapter 24 we had not yet encountered Faraday's law of induction; so the electric fields involved in the derivation of Eq. 24-18 were those due to static charges. If i and f in Eq. 30-21 are the same point, the path connecting them is a closed loop, V_i and V_f are identical, and Eq. 30-21 reduces to

$$\oint \vec{E} \cdot d\vec{s} = 0.$$
(30-22)

However, when a changing magnetic flux is present, this integral is *not* zero but is $-d\Phi_B/dt$, as Eq. 30-20 asserts. Thus, assigning electric potential to an induced electric field leads us to a contradiction. We must conclude that electric potential has no meaning for electric fields associated with induction.

Checkpoint 4

The figure shows five lettered regions in which a uniform magnetic field extends either directly out of the page or into the page, with the direction indicated only for region a. The field is increasing in magnitude at the same steady rate in all five regions; the regions are identical in area. Also shown are four numbered paths along which $\oint \vec{E} \cdot d\vec{s}$ has the magnitudes given below in terms of a quantity "mag." Determine whether the magnetic field is directed into or out of the page for regions b through e.

Path 1 2 3 4
$$\oint \vec{E} \cdot d\vec{s}$$
 mag 2(mag) 3(mag) 0

Sample Problem 30.04 Induced electric field due to changing B field, inside and outside

In Fig. 30-11*b*, take R = 8.5 cm and dB/dt = 0.13 T/s.

(a) Find an expression for the magnitude E of the induced electric field at points within the magnetic field, at radius r from the center of the magnetic field. Evaluate the expression for r = 5.2 cm.

KEY IDEA

An electric field is induced by the changing magnetic field, according to Faraday's law.

Calculations: To calculate the field magnitude E, we apply Faraday's law in the form of Eq. 30-20. We use a circular path of integration with radius $r \le R$ because we want E for points within the magnetic field. We assume from the symmetry that \vec{E} in Fig. 30-11b is tangent to the circular path at all points. The path vector $d\vec{s}$ is also always tangent to the circular path; so the dot product $\vec{E} \cdot d\vec{s}$ in Eq. 30-20 must have the magnitude E ds at all points on the path. We can also assume from the symmetry that E has the same value at all points along the circular path. Then the left side of Eq. 30-20 becomes

$$\oint \vec{E} \cdot d\vec{s} = \oint E \, ds = E \oint ds = E(2\pi r). \quad (30-23)$$

(The integral $\oint ds$ is the circumference $2\pi r$ of the circular path.)

Next, we need to evaluate the right side of Eq. 30-20. Because \vec{B} is uniform over the area A encircled by the path of integration and is directed perpendicular to that area, the magnetic flux is given by Eq. 30-2:

$$\Phi_B = BA = B(\pi r^2). \tag{30-24}$$

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping

the minus sign, we find that

$$E(2\pi r) = (\pi r^2) \frac{dB}{dt}$$

$$E = \frac{r}{2} \frac{dB}{dt}.$$
 (Answer) (30-25)

Equation 30-25 gives the magnitude of the electric field at any point for which $r \le R$ (that is, within the magnetic field). Substituting given values yields, for the magnitude of \vec{E} at r = 5.2 cm,

$$E = \frac{(5.2 \times 10^{-2} \text{ m})}{2} (0.13 \text{ T/s})$$

= 0.0034 V/m = 3.4 mV/m. (Answer)

(b) Find an expression for the magnitude E of the induced electric field at points that are outside the magnetic field, at radius r from the center of the magnetic field. Evaluate the expression for r = 12.5 cm.

KEY IDEAS

Here again an electric field is induced by the changing magnetic field, according to Faraday's law, except that now we use a circular path of integration with radius $r \ge R$ because we want to evaluate E for points outside the magnetic field. Proceeding as in (a), we again obtain Eq. 30-23. However, we do not then obtain Eq. 30-24 because the new path of integration is now outside the magnetic field, and so the magnetic flux encircled by the new path is only that in the area πR^2 of the magnetic field region.

Calculations: We can now write

$$\Phi_R = BA = B(\pi R^2). \tag{30-26}$$

Substituting this and Eq. 30-23 into Eq. 30-20 (without the minus sign) and solving for E yield

$$E = \frac{R^2}{2r} \frac{dB}{dt}.$$
 (Answer) (30-27)

Because E is not zero here, we know that an electric field is induced even at points that are outside the changing magnetic field, an important result that (as you will see in Module 31-6) makes transformers possible.

With the given data, Eq. 30-27 yields the magnitude of \vec{E} at r = 12.5 cm:

$$E = \frac{(8.5 \times 10^{-2} \text{ m})^2}{(2)(12.5 \times 10^{-2} \text{ m})} (0.13 \text{ T/s})$$
$$= 3.8 \times 10^{-3} \text{ V/m} = 3.8 \text{ mV/m}. \quad \text{(Answer)}$$

Equations 30-25 and 30-27 give the same result for r = R. Figure 30-12 shows a plot of E(r). Note that the inside and outside plots meet at r = R.

Figure 30-12 A plot of the induced electric field E(r).

PLUS Additional examples, video, and practice available at WileyPLUS

30-4 INDUCTORS AND INDUCTANCE

Learning Objectives

After reading this module, you should be able to . . .

30.19 Identify an inductor.

30.20 For an inductor, apply the relationship between inductance L, total flux $N\Phi$, and current i.

30.21 For a solenoid, apply the relationship between the inductance per unit length L/l, the area A of each turn, and the number of turns per unit length n.

Key Ideas

 An inductor is a device that can be used to produce a known magnetic field in a specified region. If a current i is established through each of the N windings of an inductor, a magnetic flux Φ_B links those windings. The inductance L of the inductor is

$$L = \frac{N\Phi_B}{i}$$
 (inductance defined).

- The SI unit of inductance is the henry (H), where 1 henry = $1 H = 1 T \cdot m^2 / A.$
- The inductance per unit length near the middle of a long solenoid of cross-sectional area A and n turns per unit length is

$$\frac{L}{l} = \mu_0 n^2 A \quad \text{(solenoid)}.$$

Inductors and Inductance

We found in Chapter 25 that a capacitor can be used to produce a desired electric field. We considered the parallel-plate arrangement as a basic type of capacitor. Similarly, an **inductor** (symbol XXX) can be used to produce a desired magnetic field. We shall consider a long solenoid (more specifically, a short length near the middle of a long solenoid, to avoid any fringing effects) as our basic type of inductor.

If we establish a current i in the windings (turns) of the solenoid we are taking as our inductor, the current produces a magnetic flux Φ_B through the central region of the inductor. The inductance of the inductor is then defined in terms of that flux as

$$L = \frac{N\Phi_B}{i} \quad \text{(inductance defined)}, \tag{30-28}$$

The Royal Institution/Bridgeman Art Library/NY

The crude inductors with which Michael Faraday discovered the law of induction. In those days amenities such as insulated wire were not commercially available. It is said that Faraday insulated his wires by wrapping them with strips cut from one of his wife's petticoats.

in which N is the number of turns. The windings of the inductor are said to be *linked* by the shared flux, and the product $N\Phi_B$ is called the *magnetic flux linkage*. The inductance L is thus a measure of the flux linkage produced by the inductor per unit of current.

Because the SI unit of magnetic flux is the tesla-square meter, the SI unit of inductance is the tesla-square meter per ampere $(T \cdot m^2/A)$. We call this the **henry** (H), after American physicist Joseph Henry, the codiscoverer of the law of induction and a contemporary of Faraday. Thus,

Through the rest of this chapter we assume that all inductors, no matter what their geometric arrangement, have no magnetic materials such as iron in their vicinity. Such materials would distort the magnetic field of an inductor.

Inductance of a Solenoid

Consider a long solenoid of cross-sectional area A. What is the inductance per unit length near its middle? To use the defining equation for inductance (Eq. 30-28), we must calculate the flux linkage set up by a given current in the solenoid windings. Consider a length l near the middle of this solenoid. The flux linkage there is

$$N\Phi_B = (nl)(BA),$$

in which n is the number of turns per unit length of the solenoid and B is the magnitude of the magnetic field within the solenoid.

The magnitude B is given by Eq. 29-23,

$$B = \mu_0 i n$$

and so from Eq. 30-28,

$$L = \frac{N\Phi_B}{i} = \frac{(nl)(BA)}{i} = \frac{(nl)(\mu_0 in)(A)}{i}$$

= $\mu_0 n^2 lA$. (30-30)

Thus, the inductance per unit length near the center of a long solenoid is

$$\frac{L}{l} = \mu_0 n^2 A \quad \text{(solenoid)}. \tag{30-31}$$

Inductance—like capacitance—depends only on the geometry of the device. The dependence on the square of the number of turns per unit length is to be expected. If you, say, triple n, you not only triple the number of turns (N) but you also triple the flux $(\Phi_B = BA = \mu_0 i nA)$ through each turn, multiplying the flux linkage $N\Phi_B$ and thus the inductance L by a factor of 9.

If the solenoid is very much longer than its radius, then Eq. 30-30 gives its inductance to a good approximation. This approximation neglects the spreading of the magnetic field lines near the ends of the solenoid, just as the parallel-plate capacitor formula $(C = \varepsilon_0 A/d)$ neglects the fringing of the electric field lines near the edges of the capacitor plates.

From Eq. 30-30, and recalling that n is a number per unit length, we can see that an inductance can be written as a product of the permeability constant μ_0 and a quantity with the dimensions of a length. This means that μ_0 can be expressed in the unit henry per meter:

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T \cdot m/A}$$

= $4\pi \times 10^{-7} \,\mathrm{H/m}$. (30-32)

The latter is the more common unit for the permeability constant.

30-5 SELF-INDUCTION

Learning Objectives

After reading this module, you should be able to . . .

30.22 Identify that an induced emf appears in a coil when the current through the coil is changing.

30.23 Apply the relationship between the induced emf in a coil, the coil's inductance *L*, and the rate *di/dt* at which the current is changing.

30.24 When an emf is induced in a coil because the current in the coil is changing, determine the direction of the emf by using Lenz's law to show that the emf always opposes the change in the current, attempting to maintain the initial current.

Key Ideas

• If a current i in a coil changes with time, an emf is induced in the coil. This self-induced emf is

$$\mathscr{E}_L = -L \, \frac{di}{dt}.$$

ullet The direction of \mathscr{C}_L is found from Lenz's law: The self-induced emf acts to oppose the change that produces it.

Self-Induction

If two coils—which we can now call inductors—are near each other, a current i in one coil produces a magnetic flux Φ_B through the second coil. We have seen that if we change this flux by changing the current, an induced emf appears in the second coil according to Faraday's law. An induced emf appears in the first coil as well.

An induced emf \mathscr{E}_L appears in any coil in which the current is changing.

This process (see Fig. 30-13) is called **self-induction**, and the emf that appears is called a **self-induced emf**. It obeys Faraday's law of induction just as other induced emfs do.

For any inductor, Eq. 30-28 tells us that

$$N\Phi_B = Li. \tag{30-33}$$

Faraday's law tells us that

$$\mathscr{E}_L = -\frac{d(N\Phi_B)}{dt}. (30-34)$$

By combining Eqs. 30-33 and 30-34 we can write

$$\mathscr{E}_L = -L \frac{di}{dt} \quad \text{(self-induced emf)}. \tag{30-35}$$

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf appears whenever the current changes with time. The magnitude of the current has no influence on the magnitude of the induced emf; only the rate of change of the current counts.

Direction. You can find the *direction* of a self-induced emf from Lenz's law. The minus sign in Eq. 30-35 indicates that—as the law states—the self-induced emf \mathscr{C}_L has the orientation such that it opposes the change in current i. We can drop the minus sign when we want only the magnitude of \mathscr{C}_L .

Suppose that you set up a current i in a coil and arrange to have the current increase with time at a rate di/dt. In the language of Lenz's law, this increase in the current in the coil is the "change" that the self-induction must oppose. Thus, a self-induced emf must appear in the coil, pointing so as to oppose the increase in the current, trying (but failing) to maintain the initial condition, as

Figure 30-13 If the current in a coil is changed by varying the contact position on a variable resistor, a self-induced emf \mathscr{E}_L will appear in the coil while the current is changing.

Figure 30-14 (a) The current i is increasing, and the self-induced emf \mathcal{C}_L appears along the coil in a direction such that it opposes the increase. The arrow representing \mathcal{C}_L can be drawn along a turn of the coil or alongside the coil. Both are shown. (b) The current i is decreasing, and the self-induced emf appears in a direction such that it opposes the decrease.

shown in Fig. 30-14a. If, instead, the current decreases with time, the self-induced emf must point in a direction that tends to oppose the decrease (Fig. 30-14b), again trying to maintain the initial condition.

Electric Potential. In Module 30-3 we saw that we cannot define an electric potential for an electric field (and thus for an emf) that is induced by a changing magnetic flux. This means that when a self-induced emf is produced in the inductor of Fig. 30-13, we cannot define an electric potential within the inductor itself, where the flux is changing. However, potentials can still be defined at points of the circuit that are not within the inductor—points where the electric fields are due to charge distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference V_L across an inductor (between its terminals, which we assume to be outside the region of changing flux). For an ideal inductor (its wire has negligible resistance), the magnitude of V_L is equal to the magnitude of the self-induced emf \mathscr{C}_L .

If, instead, the wire in the inductor has resistance r, we mentally separate the inductor into a resistance r (which we take to be outside the region of changing flux) and an ideal inductor of self-induced emf \mathcal{E}_L . As with a real battery of emf \mathcal{E}_L and internal resistance r, the potential difference across the terminals of a real inductor then differs from the emf. Unless otherwise indicated, we assume here that inductors are ideal.

Checkpoint 5

The figure shows an emf \mathscr{C}_L induced in a coil. Which of the following can describe the current through the coil: (a) constant and rightward, (b) constant and leftward,

(c) increasing and rightward, (d) decreasing and rightward, (e) increasing and leftward, (f) decreasing and leftward?

30-6 RL CIRCUITS

Learning Objectives

After reading this module, you should be able to . . .

- **30.25** Sketch a schematic diagram of an RL circuit in which the current is rising.
- **30.26** Write a loop equation (a differential equation) for an *RL* circuit in which the current is rising.
- **30.27** For an RL circuit in which the current is rising, apply the equation i(t) for the current as a function of time.
- 30.28 For an RL circuit in which the current is rising, find equations for the potential difference V across the resistor, the rate di/dt at which the current changes, and the emf of the inductor, as functions of time.
- **30.29** Calculate an inductive time constant τ_L .
- **30.30** Sketch a schematic diagram of an *RL* circuit in which the current is decaying.

- **30.31** Write a loop equation (a differential equation) for an *RL* circuit in which the current is decaying.
- **30.32** For an RL circuit in which the current is decaying, apply the equation i(t) for the current as a function of time.
- **30.33** From an equation for decaying current in an RL circuit, find equations for the potential difference V across the resistor, the rate di/dt at which current is changing, and the emf of the inductor, as functions of time.
- **30.34** For an *RL* circuit, identify the current through the inductor and the emf across it just as current in the circuit begins to change (the initial condition) and a long time later when equilibrium is reached (the final condition).

Key Ideas

• If a constant emf $\mathscr E$ is introduced into a single-loop circuit containing a resistance R and an inductance L, the current rises to an equilibrium value of $\mathscr E/R$ according to

$$i = \frac{\mathscr{E}}{R} (1 - e^{-t/\tau_L})$$
 (rise of current).

Here τ_L (= L/R) governs the rate of rise of the current and is called the inductive time constant of the circuit.

ullet When the source of constant emf is removed, the current decays from a value i_0 according to

$$i = i_0 e^{-t/\tau_L}$$
 (decay of current).

RL Circuits

In Module 27-4 we saw that if we suddenly introduce an emf $\mathscr E$ into a single-loop circuit containing a resistor R and a capacitor C, the charge on the capacitor does not build up immediately to its final equilibrium value $C\mathscr E$ but approaches it in an exponential fashion:

$$q = C_{\mathcal{E}}^{\mathcal{Q}}(1 - e^{-t/\tau_{\mathcal{C}}}). \tag{30-36}$$

The rate at which the charge builds up is determined by the capacitive time constant τ_C , defined in Eq. 27-36 as

$$\tau_C = RC. \tag{30-37}$$

If we suddenly remove the emf from this same circuit, the charge does not immediately fall to zero but approaches zero in an exponential fashion:

$$q = q_0 e^{-t/\tau_C}. (30-38)$$

The time constant τ_C describes the fall of the charge as well as its rise.

An analogous slowing of the rise (or fall) of the current occurs if we introduce an emf $\mathscr E$ into (or remove it from) a single-loop circuit containing a resistor R and an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the current in the resistor starts to rise. If the inductor were not present, the current would rise rapidly to a steady value $\mathscr E/R$. Because of the inductor, however, a self-induced emf $\mathscr E_L$ appears in the circuit; from Lenz's law, this emf opposes the rise of the current, which means that it opposes the battery emf $\mathscr E$ in polarity. Thus, the current in the resistor responds to the difference between two emfs, a constant $\mathscr E$ due to the battery and a variable $\mathscr E_L$ (= -L di/dt) due to self-induction. As long as this $\mathscr E_L$ is present, the current will be less than $\mathscr E/R$.

As time goes on, the rate at which the current increases becomes less rapid and the magnitude of the self-induced emf, which is proportional to di/dt, becomes smaller. Thus, the current in the circuit approaches \mathcal{E}/R asymptotically. We can generalize these results as follows:

Initially, an inductor acts to oppose changes in the current through it. A long time later, it acts like ordinary connecting wire.

Now let us analyze the situation quantitatively. With the switch S in Fig. 30-15 thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us apply the loop rule, starting at point x in this figure and moving clockwise around the loop along with current i.

- **1.** Resistor. Because we move through the resistor in the direction of current i, the electric potential decreases by iR. Thus, as we move from point x to point y, we encounter a potential change of -iR.
- **2.** *Inductor.* Because current i is changing, there is a self-induced emf \mathscr{E}_L in the inductor. The magnitude of \mathscr{E}_L is given by Eq. 30-35 as L di/dt. The direction of \mathscr{E}_L is upward in Fig. 30-16 because current i is downward through the inductor and increasing. Thus, as we move from point y to point z, opposite the direction of \mathscr{E}_L , we encounter a potential change of -L di/dt.
- **3.** *Battery.* As we move from point z back to starting point x, we encounter a potential change of $+\mathscr{E}$ due to the battery's emf.

Thus, the loop rule gives us

$$-iR - L\frac{di}{dt} + \mathscr{E} = 0$$

Figure 30-15 An RL circuit. When switch S is closed on a, the current rises and approaches a limiting value \mathcal{E}/R .

Figure 30-16 The circuit of Fig. 30-15 with the switch closed on a. We apply the loop rule for the circuit clockwise, starting at x.

or
$$L\frac{di}{dt} + Ri = \mathscr{E} \quad (RL \text{ circuit}). \tag{30-39}$$

Equation 30-39 is a differential equation involving the variable i and its first derivative di/dt. To solve it, we seek the function i(t) such that when i(t) and its first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial condition i(0) = 0 is satisfied.

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32 for an RC circuit, with i replacing q, L replacing R, and R replacing 1/C. The solution of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same replacements. That solution is

$$i = \frac{\mathscr{E}}{R} (1 - e^{-Rt/L}),$$
 (30-40)

which we can rewrite as

$$i = \frac{\mathscr{E}}{R} \left(1 - e^{-t/\tau_L} \right) \quad \text{(rise of current)}. \tag{30-41}$$

Here τ_L , the **inductive time constant**, is given by

$$\tau_L = \frac{L}{R}$$
 (time constant). (30-42)

Let's examine Eq. 30-41 for just after the switch is closed (at time t=0) and for a time long after the switch is closed ($t \to \infty$). If we substitute t=0 into Eq. 30-41, the exponential becomes $e^{-0}=1$. Thus, Eq. 30-41 tells us that the current is initially i=0, as we expected. Next, if we let t go to ∞ , then the exponential goes to $e^{-\infty}=0$. Thus, Eq. 30-41 tells us that the current goes to its equilibrium value of \mathscr{E}/R .

We can also examine the potential differences in the circuit. For example, Fig. 30-17 shows how the potential differences V_R (= iR) across the resistor and V_L (= L di/dt) across the inductor vary with time for particular values of \mathscr{E} , L, and R. Compare this figure carefully with the corresponding figure for an RC circuit (Fig. 27-16).

The resistor's potential difference turns on. The inductor's potential difference turns off.

Figure 30-17 The variation with time of (a) V_R , the potential difference across the resistor in the circuit of Fig. 30-16, and (b) V_L , the potential difference across the inductor in that circuit. The small triangles represent successive intervals of one inductive time constant $\tau_L = L/R$. The figure is plotted for $R = 2000 \ \Omega$, $L = 4.0 \ H$, and $\mathscr{E} = 10 \ V$.

To show that the quantity τ_L (= L/R) has the dimension of time (as it must, because the argument of the exponential function in Eq. 30-41 must be dimensionless), we convert from henries per ohm as follows:

$$1\frac{H}{\Omega} = 1\frac{H}{\Omega} \left(\frac{1 V \cdot s}{1 H \cdot A}\right) \left(\frac{1 \Omega \cdot A}{1 V}\right) = 1 s.$$

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and the second one is a conversion factor based on the relation V = iR.

Time Constant. The physical significance of the time constant follows from Eq. 30-41. If we put $t = \tau_L = L/R$ in this equation, it reduces to

$$i = \frac{\mathscr{E}}{R} (1 - e^{-1}) = 0.63 \frac{\mathscr{E}}{R}.$$
 (30-43)

Thus, the time constant τ_L is the time it takes the current in the circuit to reach about 63% of its final equilibrium value \mathscr{E}/R . Since the potential difference V_R across the resistor is proportional to the current i, a graph of the increasing current versus time has the same shape as that of V_R in Fig. 30-17a.

Current Decay. If the switch S in Fig. 30-15 is closed on a long enough for the equilibrium current \mathcal{E}/R to be established and then is thrown to b, the effect will be to remove the battery from the circuit. (The connection to b must actually be made an instant before the connection to a is broken. A switch that does this is called a *make-before-break* switch.) With the battery gone, the current through the resistor will decrease. However, it cannot drop immediately to zero but must decay to zero over time. The differential equation that governs the decay can be found by putting $\mathcal{E} = 0$ in Eq. 30-39:

$$L\frac{di}{dt} + iR = 0. (30-44)$$

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation that satisfies the initial condition $i(0) = i_0 = \mathcal{E}/R$ is

$$i = \frac{\mathscr{E}}{R} e^{-t/\tau_L} = i_0 e^{-t/\tau_L} \quad \text{(decay of current)}. \tag{30-45}$$

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL circuit are governed by the same inductive time constant, τ_L .

We have used i_0 in Eq. 30-45 to represent the current at time t = 0. In our case that happened to be \mathcal{E}/R , but it could be any other initial value.

Checkpoint 6

The figure shows three circuits with identical batteries, inductors, and resistors. Rank the circuits according to the current through the battery (a) just after the switch is closed and (b) a long time later, greatest first. (If you have trouble here, work through the next sample problem and then try again.)

Sample Problem 30.05 RL circuit, immediately after switching and after a long time

Figure 30-18a shows a circuit that contains three identical resistors with resistance $R=9.0~\Omega$, two identical inductors with inductance $L=2.0~\mathrm{mH}$, and an ideal battery with emf $\mathscr{E}=18~\mathrm{V}$.

(a) What is the current *i* through the battery just after the switch is closed?

KEY IDEA

Just after the switch is closed, the inductor acts to oppose a change in the current through it.

Calculations: Because the current through each inductor is zero before the switch is closed, it will also be zero just afterward. Thus, immediately after the switch is closed, the inductors act as broken wires, as indicated in Fig. 30-18b. We then have a single-loop circuit for which the loop rule gives us

$$\mathscr{E} - iR = 0.$$

Substituting given data, we find that

$$i = \frac{\mathscr{E}}{R} = \frac{18 \text{ V}}{9.0 \Omega} = 2.0 \text{ A}.$$
 (Answer)

(b) What is the current *i* through the battery long after the switch has been closed?

KEY IDEA

Long after the switch has been closed, the currents in the circuit have reached their equilibrium values, and the inductors act as simple connecting wires, as indicated in Fig. 30-18c.

Figure 30-18 (a) A multiloop RL circuit with an open switch. (b) The equivalent circuit just after the switch has been closed. (c) The equivalent circuit a long time later. (d) The single-loop circuit that is equivalent to circuit (c).

Calculations: We now have a circuit with three identical resistors in parallel; from Eq. 27-23, their equivalent resistance is $R_{\rm eq} = R/3 = (9.0 \ \Omega)/3 = 3.0 \ \Omega$. The equivalent circuit shown in Fig. 30-18d then yields the loop equation $\mathscr{E} - iR_{\rm eq} = 0$, or

$$i = \frac{\mathscr{E}}{R_{eq}} = \frac{18 \text{ V}}{3.0 \Omega} = 6.0 \text{ A}.$$
 (Answer)

Sample Problem 30.06 RL circuit, current during the transition

A solenoid has an inductance of 53 mH and a resistance of $0.37~\Omega$. If the solenoid is connected to a battery, how long will the current take to reach half its final equilibrium value? (This is a *real solenoid* because we are considering its small, but nonzero, internal resistance.)

KEY IDEA

We can mentally separate the solenoid into a resistance and an inductance that are wired in series with a battery, as in Fig. 30-16. Then application of the loop rule leads to Eq. 30-39, which has the solution of Eq. 30-41 for the current *i* in the circuit.

Calculations: According to that solution, current i increases exponentially from zero to its final equilibrium value of \mathcal{E}/R . Let t_0 be the time that current i takes to reach half its equilibrium value. Then Eq. 30-41 gives us

$$\frac{1}{2} \frac{\mathscr{E}}{R} = \frac{\mathscr{E}}{R} (1 - e^{-t_0/\tau_L}).$$

We solve for t_0 by canceling \mathscr{E}/R , isolating the exponential, and taking the natural logarithm of each side. We find

$$t_0 = \tau_L \ln 2 = \frac{L}{R} \ln 2 = \frac{53 \times 10^{-3} \text{ H}}{0.37 \Omega} \ln 2$$

= 0.10 s. (Answer)

30-7 ENERGY STORED IN A MAGNETIC FIELD

Learning Objectives

After reading this module, you should be able to . . .

30.35 Describe the derivation of the equation for the magnetic field energy of an inductor in an *RL* circuit with a constant emf source.

30.36 For an inductor in an RL circuit, apply the relationship between the magnetic field energy U, the inductance L, and the current i.

Key Idea

ullet If an inductor L carries a current i, the inductor's magnetic field stores an energy given by

$$U_B = \frac{1}{2}Li^2$$
 (magnetic energy).

Energy Stored in a Magnetic Field

When we pull two charged particles of opposite signs away from each other, we say that the resulting electric potential energy is stored in the electric field of the particles. We get it back from the field by letting the particles move closer together again. In the same way we say energy is stored in a magnetic field, but now we deal with current instead of electric charges.

To derive a quantitative expression for that stored energy, consider again Fig. 30-16, which shows a source of emf $\mathscr E$ connected to a resistor R and an inductor L. Equation 30-39, restated here for convenience,

$$\mathscr{E} = L\frac{di}{dt} + iR,\tag{30-46}$$

is the differential equation that describes the growth of current in this circuit. Recall that this equation follows immediately from the loop rule and that the loop rule in turn is an expression of the principle of conservation of energy for single-loop circuits. If we multiply each side of Eq. 30-46 by *i*, we obtain

$$\mathscr{E}i = Li\frac{di}{dt} + i^2R,\tag{30-47}$$

which has the following physical interpretation in terms of the work done by the battery and the resulting energy transfers:

- 1. If a differential amount of charge dq passes through the battery of emf $\mathscr E$ in Fig. 30-16 in time dt, the battery does work on it in the amount $\mathscr E$ dq. The rate at which the battery does work is $(\mathscr E dq)/dt$, or $\mathscr Ei$. Thus, the left side of Eq. 30-47 represents the rate at which the emf device delivers energy to the rest of the circuit.
- **2.** The rightmost term in Eq. 30-47 represents the rate at which energy appears as thermal energy in the resistor.
- 3. Energy that is delivered to the circuit but does not appear as thermal energy must, by the conservation-of-energy hypothesis, be stored in the magnetic field of the inductor. Because Eq. 30-47 represents the principle of conservation of energy for RL circuits, the middle term must represent the rate dU_B/dt at which magnetic potential energy U_B is stored in the magnetic field.

Thus

$$\frac{dU_B}{dt} = Li \frac{di}{dt}.$$
 (30-48)

We can write this as

$$dU_B = Li di$$
.

Integrating yields

$$\int_0^{U_B} dU_B = \int_0^i Li \, di$$

or
$$U_B = \frac{1}{2}Li^2$$
 (magnetic energy), (30-49)

which represents the total energy stored by an inductor L carrying a current i. Note the similarity in form between this expression for the energy stored in a magnetic field and the expression for the energy stored in an electric field by a capacitor with capacitance C and charge q; namely,

$$U_E = \frac{q^2}{2C}. (30-50)$$

(The variable i^2 corresponds to q^2 , and the constant L corresponds to 1/C.)

Sample Problem 30.07 Energy stored in a magnetic field

A coil has an inductance of 53 mH and a resistance of 0.35 Ω .

(a) If a 12 V emf is applied across the coil, how much energy is stored in the magnetic field after the current has built up to its equilibrium value?

KEY IDEA

The energy stored in the magnetic field of a coil at any time depends on the current through the coil at that time, according to Eq. 30-49 ($U_B = \frac{1}{2}Li^2$).

Calculations: Thus, to find the energy $U_{B\infty}$ stored at equilibrium, we must first find the equilibrium current. From Eq. 30-41, the equilibrium current is

$$i_{\infty} = \frac{\mathscr{E}}{R} = \frac{12 \text{ V}}{0.35 \Omega} = 34.3 \text{ A}.$$
 (30-51)

Then substitution yields

$$U_{B\infty} = \frac{1}{2}Li_{\infty}^2 = (\frac{1}{2})(53 \times 10^{-3} \text{ H})(34.3 \text{ A})^2$$

= 31 J. (Answer)

(b) After how many time constants will half this equilibrium energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time *t* will the relation

$$U_B = \frac{1}{2} U_{B\infty}$$

be satisfied? Using Eq. 30-49 twice allows us to rewrite this energy condition as

$$\frac{1}{2}Li^{2} = (\frac{1}{2})\frac{1}{2}Li_{\infty}^{2}$$

$$i = (\frac{1}{2\sqrt{2}})i_{\infty}.$$
(30-52)

This equation tells us that, as the current increases from its initial value of 0 to its final value of i_{∞} , the magnetic field will have half its final stored energy when the current has increased to this value. In general, we know that i is given by Eq. 30-41, and here i_{∞} (see Eq. 30-51) is \mathscr{E}/R ; so Eq. 30-52 becomes

$$\frac{\mathscr{E}}{R}\left(1-e^{-t/\tau_L}\right)=\frac{\mathscr{E}}{\sqrt{2}R}.$$

By canceling \mathscr{E}/R and rearranging, we can write this as

$$e^{-t/\tau_L} = 1 - \frac{1}{\sqrt{2}} = 0.293,$$

which yields

or

$$\frac{t}{\tau_L} = -\ln 0.293 = 1.23$$

or
$$t \approx 1.2\tau_L$$
. (Answer)

Thus, the energy stored in the magnetic field of the coil by the current will reach half its equilibrium value 1.2 time constants after the emf is applied.

30-8 ENERGY DENSITY OF A MAGNETIC FIELD

Learning Objectives

After reading this module, you should be able to . . .

30.37 Identify that energy is associated with any magnetic field.

30.38 Apply the relationship between energy density u_B of a magnetic field and the magnetic field magnitude B.

Key Idea

• If B is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy at that point is

$$u_B = \frac{B^2}{2\mu_0}$$
 (magnetic energy density).

Energy Density of a Magnetic Field

Consider a length l near the middle of a long solenoid of cross-sectional area A carrying current i; the volume associated with this length is Al. The energy U_B stored by the length l of the solenoid must lie entirely within this volume because the magnetic field outside such a solenoid is approximately zero. Moreover, the stored energy must be uniformly distributed within the solenoid because the magnetic field is (approximately) uniform everywhere inside.

Thus, the energy stored per unit volume of the field is

$$u_B = \frac{U_B}{Al}$$

or, since

$$U_B=\tfrac{1}{2}Li^2,$$

we have

$$u_B = \frac{Li^2}{2Al} = \frac{L}{l} \frac{i^2}{2A}.$$
 (30-53)

Here L is the inductance of length l of the solenoid. Substituting for L/l from Eq. 30-31, we find

$$u_R = \frac{1}{2}\mu_0 n^2 i^2,\tag{30-54}$$

where *n* is the number of turns per unit length. From Eq. 29-23 ($B = \mu_0 in$) we can write this *energy density* as

$$u_B = \frac{B^2}{2\mu_0}$$
 (magnetic energy density). (30-55)

This equation gives the density of stored energy at any point where the magnitude of the magnetic field is *B*. Even though we derived it by considering the special case of a solenoid, Eq. 30-55 holds for all magnetic fields, no matter how they are generated. The equation is comparable to Eq. 25-25,

$$u_E = \frac{1}{2}\varepsilon_0 E^2,\tag{30-56}$$

which gives the energy density (in a vacuum) at any point in an electric field. Note that both u_B and u_E are proportional to the square of the appropriate field magnitude, B or E.

Checkpoint 7

The table lists the number of turns per unit length, current, and cross-sectional area for three solenoids. Rank the solenoids according to the magnetic energy density within them, greatest first.

Solenoid	Turns per Unit Length	Current	Area
а	$2n_1$	i_1	$2A_1$
b	n_1	$2i_1$	A_1
c	n_1	i_1	$6A_1$

30-9 MUTUAL INDUCTION

Learning Objectives

After reading this module, you should be able to . . .

- **30.39** Describe the mutual induction of two coils and sketch the arrangement.
- **30.40** Calculate the mutual inductance of one coil with respect to a second coil (or some second current that is changing).
- 30.41 Calculate the emf induced in one coil by a second coil in terms of the mutual inductance and the rate of change of the current in the second coil.

Key Idea

• If coils 1 and 2 are near each other, a changing current in either coil can induce an emf in the other. This mutual induction is described by

$$\mathscr{E}_2 = -M \frac{di_1}{dt}$$

and

$$\mathscr{E}_1 = -M \frac{di_2}{dt}$$

where M (measured in henries) is the mutual inductance.

Mutual Induction

In this section we return to the case of two interacting coils, which we first discussed in Module 30-1, and we treat it in a somewhat more formal manner. We saw earlier that if two coils are close together as in Fig. 30-2, a steady current i in one coil will set up a magnetic flux Φ through the other coil (*linking* the other coil). If we change i with time, an emf $\mathscr E$ given by Faraday's law appears in the second coil; we called this process *induction*. We could better have called it **mutual induction**, to suggest the mutual interaction of the two coils and to distinguish it from *self-induction*, in which only one coil is involved.

Let us look a little more quantitatively at mutual induction. Figure 30-19a shows two circular close-packed coils near each other and sharing a common central axis. With the variable resistor set at a particular resistance R, the battery produces a steady current i_1 in coil 1. This current creates a magnetic field represented by the lines of \vec{B}_1 in the figure. Coil 2 is connected to a sensitive meter but contains no battery; a magnetic flux Φ_{21} (the flux through coil 2 associated with the current in coil 1) links the N_2 turns of coil 2.

We define the mutual inductance M_{21} of coil 2 with respect to coil 1 as

$$M_{21} = \frac{N_2 \Phi_{21}}{i_1},\tag{30-57}$$

Figure 30-19 Mutual induction. (a) The magnetic field \vec{B}_1 produced by current i_1 in coil 1 extends through coil 2. If i_1 is varied (by varying resistance R), an emf is induced in coil 2 and current registers on the meter connected to coil 2. (b) The roles of the coils interchanged.

which has the same form as Eq. 30-28,

$$L = N\Phi/i, \tag{30-58}$$

the definition of inductance. We can recast Eq. 30-57 as

$$M_{21}i_1 = N_2\Phi_{21}. (30-59)$$

If we cause i_1 to vary with time by varying R, we have

$$M_{21}\frac{di_1}{dt} = N_2 \frac{d\Phi_{21}}{dt}. (30-60)$$

The right side of this equation is, according to Faraday's law, just the magnitude of the emf \mathscr{E}_2 appearing in coil 2 due to the changing current in coil 1. Thus, with a minus sign to indicate direction,

$$\mathscr{E}_2 = -M_{21} \frac{di_1}{dt},\tag{30-61}$$

which you should compare with Eq. 30-35 for self-induction ($\mathscr{E} = -L \, di/dt$).

Interchange. Let us now interchange the roles of coils 1 and 2, as in Fig. 30-19b; that is, we set up a current i_2 in coil 2 by means of a battery, and this produces a magnetic flux Φ_{12} that links coil 1. If we change i_2 with time by varying R, we then have, by the argument given above,

$$\mathscr{E}_1 = -M_{12} \frac{di_2}{dt}. (30-62)$$

Thus, we see that the emf induced in either coil is proportional to the rate of change of current in the other coil. The proportionality constants M_{21} and M_{12} seem to be different. However, they turn out to be the same, although we cannot prove that fact here. Thus, we have

$$M_{21} = M_{12} = M, (30-63)$$

and we can rewrite Eqs. 30-61 and 30-62 as

$$\mathscr{E}_2 = -M \frac{di_1}{dt} \tag{30-64}$$

and
$$\mathscr{E}_1 = -M \frac{di_2}{dt}.$$
 (30-65)

Sample Problem 30.08 Mutual inductance of two parallel coils

Figure 30-20 shows two circular close-packed coils, the smaller (radius R_2 , with N_2 turns) being coaxial with the larger (radius R_1 , with N_1 turns) and in the same plane.

(a) Derive an expression for the mutual inductance M for this arrangement of these two coils, assuming that $R_1 \gg R_2$.

KEY IDEA

The mutual inductance M for these coils is the ratio of the flux linkage $(N\Phi)$ through one coil to the current i in the other coil, which produces that flux linkage. Thus, we need to assume that currents exist in the coils; then we need to calculate the flux linkage in one of the coils.

Calculations: The magnetic field through the larger coil due to the smaller coil is nonuniform in both magnitude and direction; so the flux through the larger coil due to the smaller coil is nonuniform and difficult to calculate. However, the smaller coil is small enough for us to assume that the magnetic field through it due to the larger coil is approximately uniform. Thus, the flux through it due to the larger coil is also approximately uniform. Hence, to find M we shall assume a current i_1 in the larger coil and calculate the flux linkage $N_2\Phi_{21}$ in the smaller coil:

$$M = \frac{N_2 \Phi_{21}}{i_1}. (30-66)$$

The flux Φ_{21} through each turn of the smaller coil is, from Eq. 30-2,

$$\Phi_{21} = B_1 A_2,$$

where B_1 is the magnitude of the magnetic field at points within the small coil due to the larger coil and A_2 (= πR_2^2) is the area enclosed by the turn. Thus, the flux linkage in the smaller coil (with its N_2 turns) is

$$N_2 \Phi_{21} = N_2 B_1 A_2. \tag{30-67}$$

To find B_1 at points within the smaller coil, we can use Eq. 29-26,

$$B(z) = \frac{\mu_0 i R^2}{2(R^2 + z^2)^{3/2}},$$

with z set to 0 because the smaller coil is in the plane of the larger coil. That equation tells us that each turn of the larger coil produces a magnetic field of magnitude $\mu_0 i_1/2R_1$ at points within the smaller coil. Thus, the larger coil (with its N_1 turns) produces a total magnetic field of magnitude

$$B_1 = N_1 \frac{\mu_0 i_1}{2R_1} \tag{30-68}$$

at points within the smaller coil.

Figure 30-20 A small coil is located at the center of a large coil. The mutual inductance of the coils can be determined by sending current i_1 through the large coil.

Substituting Eq. 30-68 for B_1 and πR_2^2 for A_2 in Eq. 30-67 yields

$$N_2\Phi_{21} = \frac{\pi\mu_0 N_1 N_2 R_2^2 i_1}{2R_1}.$$

Substituting this result into Eq. 30-66, we find

$$M = \frac{N_2 \Phi_{21}}{i_1} = \frac{\pi \mu_0 N_1 N_2 R_2^2}{2R_1}$$
. (Answer) (30-69)

(b) What is the value of M for $N_1 = N_2 = 1200$ turns, $R_2 = 1.1$ cm, and $R_1 = 15$ cm?

Calculations: Equation 30-69 yields

$$M = \frac{(\pi)(4\pi \times 10^{-7} \text{ H/m})(1200)(1200)(0.011 \text{ m})^2}{(2)(0.15 \text{ m})}$$

$$= 2.29 \times 10^{-3} \,\mathrm{H} \approx 2.3 \,\mathrm{mH}.$$
 (Answer)

Consider the situation if we reverse the roles of the two coils—that is, if we produce a current i_2 in the smaller coil and try to calculate M from Eq. 30-57 in the form

$$M=\frac{N_1\Phi_{12}}{i_2}.$$

The calculation of Φ_{12} (the nonuniform flux of the smaller coil's magnetic field encompassed by the larger coil) is not simple. If we were to do the calculation numerically using a computer, we would find M to be 2.3 mH, as above! This emphasizes that Eq. 30-63 ($M_{21} = M_{12} = M$) is not obvious.

893

Review & Summary

Magnetic Flux The *magnetic flux* Φ_B through an area A in a magnetic field \overrightarrow{B} is defined as

$$\Phi_B = \int \vec{B} \cdot d\vec{A}, \qquad (30-1)$$

where the integral is taken over the area. The SI unit of magnetic flux is the weber, where 1 Wb = 1 T·m². If \vec{B} is perpendicular to the area and uniform over it, Eq. 30-1 becomes

$$\Phi_B = BA \quad (\vec{B} \perp A, \vec{B} \text{ uniform}). \tag{30-2}$$

Faraday's Law of Induction If the magnetic flux Φ_B through an area bounded by a closed conducting loop changes with time, a current and an emf are produced in the loop; this process is called *induction*. The induced emf is

$$\mathscr{E} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's law)}. \tag{30-4}$$

If the loop is replaced by a closely packed coil of N turns, the induced emf is

$$\mathscr{E} = -N \frac{d\Phi_B}{dt}. (30-5)$$

Lenz's Law An induced current has a direction such that the magnetic field *due to the current* opposes the change in the magnetic flux that induces the current. The induced emf has the same direction as the induced current.

Emf and the Induced Electric Field An emf is induced by a changing magnetic flux even if the loop through which the flux is changing is not a physical conductor but an imaginary line. The changing magnetic field induces an electric field \vec{E} at every point of such a loop; the induced emf is related to \vec{E} by

$$\mathscr{E} = \oint \vec{E} \cdot d\vec{s},\tag{30-19}$$

where the integration is taken around the loop. From Eq. 30-19 we can write Faraday's law in its most general form,

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's law)}. \qquad (30\text{-}20)$$

A changing magnetic field induces an electric field \vec{E} .

Inductors An **inductor** is a device that can be used to produce a known magnetic field in a specified region. If a current i is established through each of the N windings of an inductor, a magnetic flux Φ_B links those windings. The **inductance** L of the inductor is

$$L = \frac{N\Phi_B}{i}$$
 (inductance defined). (30-28)

$$\frac{L}{l} = \mu_0 n^2 A \quad \text{(solenoid)}. \tag{30-31}$$

Self-Induction If a current *i* in a coil changes with time, an emf is induced in the coil. This self-induced emf is

$$\mathscr{E}_L = -L \frac{di}{dt}. ag{30-35}$$

The direction of \mathscr{C}_L is found from Lenz's law: The self-induced emf acts to oppose the change that produces it.

Series *RL* **Circuits** If a constant emf $\mathscr E$ is introduced into a single-loop circuit containing a resistance R and an inductance L, the current rises to an equilibrium value of $\mathscr E/R$:

$$i = \frac{\mathscr{E}}{R} \left(1 - e^{-t/\tau_L} \right) \quad \text{(rise of current)}. \tag{30-41}$$

Here τ_L (= L/R) is the **inductive time constant**. When the source of constant emf is removed, the current decays from a value i_0 according to

$$i = i_0 e^{-t/\tau_L}$$
 (decay of current). (30-45)

Magnetic Energy If an inductor L carries a current i, the inductor's magnetic field stores an energy given by

$$U_B = \frac{1}{2}Li^2$$
 (magnetic energy). (30-49)

If *B* is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy at that point is

$$u_B = \frac{B^2}{2\mu_0}$$
 (magnetic energy density). (30-55)

Mutual Induction If coils 1 and 2 are near each other, a changing current in either coil can induce an emf in the other. This mutual induction is described by

$$\mathscr{E}_2 = -M \frac{di_1}{dt} \tag{30-64}$$

and

$$\mathscr{E}_1 = -M \frac{di_2}{dt},\tag{30-65}$$

where M (measured in henries) is the mutual inductance.

Questions

into or out of the page?

- 1 If the circular conductor in Fig. 30-21 undergoes thermal expansion while it is in a uniform magnetic field, a current is induced clockwise around it. Is the magnetic field directed
- 2 The wire loop in Fig. 30-22a is subjected, in turn, to six uniform magnetic fields, each directed parallel to the z

Figure 30-21 Question 1.

Figure 30-22 Question 2.