COLONIES - COMPUTE CONTINUUMS ACROSS PLATFORMS

A PREPRINT

Johan Kristiansson

Department of Computer Science RISE Research Institutes of Sweden Luleå, Sweden johan.kristiansson@ri.se

Thomas Ohlson Timoudas

Department of Computer Science RISE Research Institutes of Sweden Luleå, Sweden thomas.ohlson.timoudas@ri.se

Henrik Forsgren

Department of Computer Science RISE Research Institutes of Sweden Luleå, Sweden thomas.ohlson.timoudas@ri.se

March 28, 2023

ABSTRACT

Running AI/ML models in production is becoming more widespread, and maintaining these systems is more complex

This paper presents a novel framework for managing computational workload across heterogeneous platforms. Colonies is based on a loosly coupled microservice architecture where complex workflows are broken down in composable functions that are executed by independently deployable executors. Using a HTTP protocol, workflows can be expressed declarative in any computer language and be executed across platforms by so-called executors, independently deployed in the cloud, edge, devices, or even in web browser creating compute continuums across platforms. Colonies supports both real-time processing and batch jobs while at the same time offer full tracability and zero-trust security. The paper

Keywords Serverless computing · Parallel computing · Workflow orchestration

1 Introduction

TODO https://modelserving.com/blog/why-do-people-say-its-so-hard-to-deploy-a-ml-model-to-production

2 The Colonies framework

2.1 Architecture

TODO

2.1.1 Workflows

TODO

dt = -1000000000 * 60 * 60 * 24 process.PriorityTime = int64(process.FunctionSpec.Priority)*dt + submission-Time.UnixNano()

Figure 1: cron management

Figure 2: cron management

2.1.2 Cron

TODO

2.1.3 Generators

TODO

2.1.4 Zero-trust security

TODO

3 Evaluation

3.1 Implementation

```
gen_nums = Function(gen_data, colonyid, executortype="edge")
square1 = Function(square, colonyid, executortype="cloud")
square2 = Function(square, colonyid, executortype="cloud")
sum = Function(square, colonyid, executortype="browser")

wf = ColoniesWorkflow("localhost", 50080, colonyid, executor_prvkey)
wf >> gennums
gennums >> square1
gennums >> square2
[square1, square2] >> sum
res = wf.execute()
```

3.2 References

TODO

Figure 3: cron management

Table 1: Function Specifications

Function Spec	Function	Executor Type	Priority	Max Exec Time	Max Retries
$\overline{F_1}$	gen_nums()	Edge	1	200 s	5
F_2	square()	Cloud	1	200 s	5
F_3	square()	Cloud	1	200 s	5
F_4	sum()	Browser	1	200 s	5

Table 2: Snapshot of Process Table as in Step 2

Process Id	Function Spec	Wait for Parents	Assigned Executor Id	State	Priority Time
P_1	F_1	False	E_1	Successful	1679906715352024000
P_2	F_2	False	E_1	Running	1679906715353453000
P_3	F_3	False	E_2	Running	1679906715354286000
P_4	F_4	True	-	Waiting	1679906715355188000

Table 3: Dependency Table

Process Id	Name	Dependencies
P_1	$Task_1$	-
P_2	$Task_2$	$Task_1$
P_3	$Task_3$	$Task_1$
P_4	$Task_4$	$Task_2, Task_3$

Table 4: Input/Output Table

Process Id	Input	Output
P_1		[2,3]
P_2	2	4
P_3	3	9
P_4	[4,9]	13

Figure 4: Sample figure caption.