# **Chemistry Reference Tables**

| Name                               | Value                                                                                         |
|------------------------------------|-----------------------------------------------------------------------------------------------|
| Avogadro's number                  | $6.022 \times 10^{23}$ particles/mole                                                         |
| Gas constant (R)                   | 0.0821 <u>L atm</u><br>mole K<br>62.4 <u>L mmHg</u><br>mole K<br>8.314 <u>L kPa</u><br>mole K |
| Standard pressure                  | 1.00 atm = 101.3 kPa = 760. mmHg = 760. torr                                                  |
| Standard temperature               | 0°C or 273K                                                                                   |
| Volume of 1 mole of any gas at STP | 22.4 L                                                                                        |

| Thermodynamic Constants       | Symbol                                | Value                                                                                                              |
|-------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Heat of fusion of water       | $H_f$ (water)                         | 334 J/g                                                                                                            |
| Heat of vaporization of water | $H_{_{\scriptscriptstyle V}}$ (water) | 2,260 J/g                                                                                                          |
| Specific heat of water        | $C_{p}$ (water)                       | 2.05 $\frac{J}{g^{\circ}C}$ for ice, 2.02 $\frac{J}{g^{\circ}C}$ for steam, 4.18 $\frac{J}{g^{\circ}C}$ for liquid |

| Metal     | Specific Heat $\frac{J}{g^{\circ}C}$ | <b>Density</b> (g/cm³) | Melting Point (°C) |
|-----------|--------------------------------------|------------------------|--------------------|
| Aluminum  | 0.897                                | 2.702                  | 660                |
| Copper    | 0.385                                | 8.92                   | 1083               |
| Gold      | 0.129                                | 19.31                  | 1064               |
| Iron      | 0.449                                | 7.86                   | 1535               |
| Lead      | 0.129                                | 11.3437                | 328                |
| Magnesium | 1.023                                | 1.74                   | 649                |
| Mercury   | 0.140                                | 13.5939                | -39                |
| Nickel    | 0.444                                | 8.90                   | 1455               |
| Titanium  | 0.523                                | 4.5                    | 1660               |
| Zinc      | 0.388                                | 7.14                   | 420                |

|                                                 | Organic Substances       |                    |                    |  |  |  |
|-------------------------------------------------|--------------------------|--------------------|--------------------|--|--|--|
| Name                                            | Density                  | Melting Point (°C) | Boiling Point (°C) |  |  |  |
| Ethanol<br>(CH <sub>3</sub> CH <sub>2</sub> OH) | 0.7893 g/cm <sup>3</sup> | -114               | 79                 |  |  |  |
| Glucose $(C_6H_{12}O_6)$                        | 1.56 g/cm <sup>3</sup>   | 146                | Decomposes         |  |  |  |
| Hexane<br>(C <sub>6</sub> H <sub>14</sub> )     | 0.6603 g/cm <sup>3</sup> | <b>-95</b>         | 69                 |  |  |  |
| Methane<br>(CH₄)                                | 0.716 g/L                | -182               | -161               |  |  |  |
| Methanol<br>(CH₃OH)                             | 0.7914 g/cm <sup>3</sup> | -98                | 65                 |  |  |  |
| Sucrose $(C_{12}H_{22}O_{11})$                  | 1.58 g/cm <sup>3</sup>   | 86                 | Decomposes         |  |  |  |

| Inorganic Substances |                                        |      |                           |  |  |  |
|----------------------|----------------------------------------|------|---------------------------|--|--|--|
| Name                 | Name *Density @ STP Melting Point (°C) |      | <b>Boiling Point</b> (°C) |  |  |  |
| Chlorine             | 3.21 g/L                               | -101 | -35                       |  |  |  |
| Hydrogen             | 0.0899 g/L                             | -259 | -253                      |  |  |  |
| Hydrogen<br>chloride | 1.640 g/L                              | -115 | -85                       |  |  |  |
| Hydrogen sulfide     | 1.54 g/L                               | -85  | -61                       |  |  |  |
| Nitrogen             | 1.25 g/L                               | -210 | -196                      |  |  |  |
| Nitrogen monoxide    | 1.34 g/L                               | -164 | -152                      |  |  |  |
| Oxygen               | 1.43 g/L                               | -218 | -183                      |  |  |  |
| Sodium carbonate     | 2.532 g/cm <sup>3</sup>                | 851  | Decomposes                |  |  |  |
| Sodium chloride      | 2.165 g/cm <sup>3</sup>                | 801  | 1413                      |  |  |  |
| Sulfur dioxide       | 2.92 g/L                               | -73  | -10                       |  |  |  |
| *Water (at 4°C)      | 1.00 g/cm <sup>3</sup>                 | 0    | 100                       |  |  |  |

# **Formulas**

$$D = \frac{m}{V}$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$P_t = P_1 + P_2 + P_3 + \dots$$

$$M_1V_1 = M_2V_2$$

$$PV = nRT$$

$$M = \frac{\text{moles of solute}}{\text{liter of solution}}$$

$$q = mC_p \Delta T$$

$$q = mH_v$$

$$q = mH_{f}$$

$$pH + pOH = 14$$

$$pH = -log[H^+]$$

$$pOH = -log[OH^{-}]$$

$$K_w = [H^+][OH^-] = 1 \times 10^{-14}$$

$$[H^+] = 10^{-pH}$$

$$[OH^{-}] = 10^{-pOH}$$

$$D = density$$

$$m = mass$$

$$V = \text{volume}$$

$$K = Kelvin$$

$$P = pressure$$

$$R = gas constant$$

$$T = temperature$$

$$M = molarity$$

$$n = \text{number of moles}$$

$$q =$$
 quantity of heat energy

$$C_p$$
 = specific heat

$$H_{v}$$
 = heat of vaporization

$$H_f$$
 = heat of fusion

$$K_w$$
 = equilibrium constant for  
the ionization of water

# **PERIODIC TABLE**

| 1<br>IA                              |                                       |                                        |                                            |                                        |                                         |                                       |                                       |                                         |
|--------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|
| 1<br>H<br>Hydrogen<br>1.008          | 2<br>IIA                              |                                        |                                            |                                        |                                         |                                       |                                       |                                         |
| 3<br><b>Li</b><br>Lithium<br>6.941   | 4<br><b>Be</b><br>Beryllium<br>9.012  |                                        |                                            |                                        |                                         |                                       |                                       |                                         |
| 11<br><b>Na</b><br>Sodium<br>22.99   | 12<br><b>Mg</b><br>Magnesium<br>24.31 | 3<br>IIIB                              | 4<br>IVB                                   | 5<br>VB                                | 6<br>VIB                                | 7<br>VIIB                             | 8<br>VIIIB                            | 9<br>VIIIB                              |
| 19<br>K<br>Potassium<br>39.10        | 20<br><b>Ca</b><br>Calcium<br>40.08   | 21<br><b>Sc</b><br>Scandium<br>44.96   | 22<br><b>Ti</b><br>Titanium<br>47.88       | 23<br><b>V</b><br>Vanadium<br>50.94    | 24<br>Cr<br>Chromium<br>51.99           | 25<br><b>Mn</b><br>Manganese<br>54.94 | 26<br><b>Fe</b><br>Iron<br>55.85      | 27<br><b>Co</b><br>Cobalt<br>58.93      |
| 37<br><b>Rb</b><br>Rubidlum<br>85.47 | 38<br>Sr<br>Strontium<br>87.62        | 39<br><b>Y</b><br>Yttrium<br>88.91     | 40<br><b>Zr</b><br>Zirconium<br>91.22      | 41<br><b>Nb</b><br>Niobium<br>92.91    | 42<br><b>Mo</b><br>Molybdenum<br>95.94  | 43<br>Tc<br>Technetium<br>(98)        | 44<br>Ru<br>Ruthenium<br>101.07       | 45<br><b>Rh</b><br>Rhodium<br>102.91    |
| 55<br><b>Cs</b><br>Cesium<br>132.91  | 56<br><b>Ba</b><br>Barium<br>137.38   | 57<br><b>La</b><br>Lanthanum<br>138.91 | 72<br><b>Hf</b><br>Hafnium<br>178.49       | 73<br><b>Ta</b><br>Tantalum<br>180.95  | 74<br><b>W</b><br>Tungsten<br>183.84    | 75<br><b>Re</b><br>Rhenium<br>186.21  | 76<br><b>Os</b><br>Osmium<br>190.23   | 77<br><b>Ir</b><br>Iridium<br>192.22    |
| 87<br>Fr<br>Francium<br>(223)        | 88<br><b>Ra</b><br>Radium<br>(226)    | 89<br>Ac<br>Actinium<br>(227)          | 104<br><b>Rf</b><br>Rutherfordium<br>(261) | 105<br><b>Db</b><br>Dubnium<br>(262)   | 106<br><b>Sg</b><br>Seaborgium<br>(263) | 107<br><b>Bh</b><br>Bohrium<br>(264)  | 108<br><b>Hs</b><br>Hassium<br>(269)  | 109<br>Mt<br>Meitnerium<br>(268)        |
|                                      |                                       | 58<br><b>Ce</b><br>Cerium<br>140.12    | 59<br><b>Pr</b><br>Praseodymium<br>140.91  | 60<br><b>Nd</b><br>Neodymium<br>144.24 | 61<br>Pm<br>Promethium<br>(145)         | 62<br>Sm<br>Samarium<br>150.36        | 63<br><b>Eu</b><br>Europium<br>151.96 | 64<br><b>Gd</b><br>Gadolinium<br>157.25 |
|                                      |                                       | 90<br>Th                               | 91<br><b>Pa</b><br>Protactinium            | 92<br><b>U</b><br>Uranium              | 93<br>Np<br>Neptunium                   | 94<br>Pu<br>Plutonium                 | 95<br><b>Am</b><br>Americium          | 96<br><b>Cm</b><br>Curium               |

(237)

(244)

232.04

231.04

238.04

(247)

(243)

# **OF THE ELEMENTS**

|                                    |                                              |                                      |                                       |                                       |                                       |                                        |                                      | 18<br>VIIIA                         |
|------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------|
|                                    |                                              |                                      | 13<br>IIIA                            | 14<br>IVA                             | 15<br>VA                              | 16<br>VIA                              | 17<br>VIIA                           | 2<br><b>He</b><br>Helium<br>4.003   |
|                                    |                                              |                                      | 5<br><b>B</b><br>Boron<br>10.81       | 6<br><b>C</b><br>Carbon<br>12.01      | 7<br><b>N</b><br>Nitrogen<br>14.01    | 8<br><b>O</b><br>Oxygen<br>16.00       | 9<br><b>F</b><br>Fluorine<br>19.00   | 10<br><b>Ne</b><br>Neon<br>20.18    |
| 10<br>VIIIB                        | 11<br>IB                                     | 12<br>IIB                            | 13<br><b>Al</b><br>Aluminum<br>26.98  | 14<br><b>Si</b><br>Silicon<br>28.09   | 15<br>P<br>Phosphorus<br>30.97        | 16<br><b>S</b><br>Sulfur<br>32.07      | 17<br><b>CI</b><br>Chlorine<br>35.45 | 18<br><b>Ar</b><br>Argon<br>39.95   |
| 28<br><b>Ni</b><br>Nickel<br>58.69 | 29<br><b>Cu</b><br>Copper<br>63.55           | 30<br><b>Zn</b><br>Zinc<br>65.39     | 31<br><b>Ga</b><br>Gallium<br>69.72   | 32<br><b>Ge</b><br>Germanium<br>72.61 | 33<br><b>As</b><br>Arsenic<br>74.92   | 34<br><b>Se</b><br>Selenium<br>78.96   | 35<br><b>Br</b><br>Bromine<br>79.90  | 36<br><b>Kr</b><br>Krypton<br>83.80 |
| 46 Pd Palladium 106.42             | 47<br><b>Ag</b><br>Silver<br>107.87          | 48<br><b>Cd</b><br>Cadmium<br>112.41 | 49<br><b>In</b><br>Indium<br>114.82   | 50<br><b>Sn</b><br>Tin<br>118.71      | 51<br><b>Sb</b><br>Antimony<br>121.76 | 52<br><b>Te</b><br>Tellurium<br>127.60 | 53<br><b>I</b><br>Iodine<br>126.90   | 54<br><b>Xe</b><br>Xenon<br>131.29  |
| 78<br>Pt<br>Platinum<br>195.08     | 79<br><b>Au</b><br><sup>Gold</sup><br>196.97 | 80<br><b>Hg</b><br>Mercury<br>200.59 | 81<br><b>TI</b><br>Thallium<br>204.38 | 82<br><b>Pb</b><br>Lead<br>207.20     | 83<br><b>Bi</b><br>Bismuth<br>208.98  | 84<br>Po<br>Polonium<br>(209)          | 85<br>At<br>Astatine<br>(210)        | 86<br><b>Rn</b><br>Radon<br>(222)   |
| 110 Ds Darmstadtium (271)          | 111<br><b>Rg</b><br>Roentgenium<br>(272)     | 112<br>Cn<br>Copernicium<br>(285)    |                                       |                                       |                                       |                                        |                                      |                                     |
| 65                                 | 66                                           | 67                                   | 68                                    | 69                                    | 70                                    | 71                                     |                                      |                                     |

| 65        | 66          | 67          | 68        | 69          | 70        | 71         |
|-----------|-------------|-------------|-----------|-------------|-----------|------------|
| <b>Tb</b> | <b>Dy</b>   | <b>Ho</b>   | <b>Er</b> | <b>Tm</b>   | <b>Yb</b> | <b>Lu</b>  |
| Terbium   | Dysprosium  | Holmium     | Erbium    | Thulium     | Ytterbium | Lutetium   |
| 158.93    | 162.50      | 164.93      | 167.26    | 168.93      | 173.04    | 174.97     |
| 97        | 98          | 99          | 100       | 101         | 102       | 103        |
| <b>Bk</b> | <b>Cf</b>   | Es          | <b>Fm</b> | Md          | No        | Lr         |
| Berkelium | Californium | Einsteinium | Fermium   | Mendelevium | Nobelium  | Lawrencium |
| (247)     | (251)       | (252)       | (257)     | (258)       | (254)     | (262)      |

#### **SOLUBILITY RULES**

#### Soluble:

- All Nitrates, Acetates, Ammonium, and Group 1 (IA) salts
- All Chlorides, Bromides, and Iodides, except Silver, Lead, and

Mercury(I)

- All Fluorides except Group 2 (IIA), Lead(II), and Iron(III)
- All Sulfates except Calcium, Strontium, Barium, Mercury, Lead(II), and Silver

### Insoluble (0.10 M or greater):

- All Carbonates and Phosphates except Group 1 (IA) and Ammonium
- All Hydroxides except Group 1 (IA), Strontium, Barium, and Ammonium
- All Sulfides except Group 1 (IA),
   2 (IIA), and Ammonium
- All Oxides except Group 1 (IA)

# **Guidelines for Predicting the Products of Selected Types of Chemical Reactions**

Key: **M** = Metal **NM** = Nonmetal

#### 1. SYNTHESIS:

- a. Formation of binary compound:  $A + B \rightarrow AB$
- b. Metal oxide and water:  $MO + H_2O \rightarrow base$
- c. Nonmetal oxide and water: (NM)O +  $H_2O \rightarrow acid$

#### 2. **DECOMPOSITION:**

- a. Binary compounds:  $AB \rightarrow A + B$
- b. Metallic carbonates: MCO<sub>3</sub> → MO + CO<sub>2</sub>
- c. Metallic hydrogen carbonates:  $MHCO_3 \rightarrow MCO_3(s) + H_2O(l) + CO_2(g)$
- d. Metallic hydroxides:  $MOH \rightarrow MO + H_2O$
- e. Metallic chlorates:  $MCIO_3 \rightarrow MCI + O_2$
- f. Oxyacids decompose to nonmetal oxides and water:  $acid \rightarrow (NM)O + H_2O$

#### 3. SINGLE REPLACEMENT:

- a. Metal-Metal replacement:  $A + BC \rightarrow AC + B$
- b. Active metal replaces H from water:  $M + H_2O \rightarrow MOH + H_2$
- c. Active metal replaces H from acid:  $M + HX \rightarrow MX + H_2$
- d. Halide-Halide replacement:  $D + BC \rightarrow BD + C$

# 4. **DOUBLE REPLACEMENT:** $AB + CD \rightarrow AD + CB$

- a. Formation of a precipitate from solution
- b. Acid-Base neutralization

# 5. **COMBUSTION REACTION**

 $\mbox{Hydrocarbon} + \mbox{oxygen} \rightarrow \mbox{carbon dioxide} + \mbox{water}$ 

### **ACTIVITY SERIES of Halogens:**

 $F_2$   $CI_2$   $Br_2$   $I_2$ 

# **ACTIVITY SERIES of Metals**



| Polyatomic Ions                              |                  |  |  |  |
|----------------------------------------------|------------------|--|--|--|
| NH <sub>4</sub> <sup>+</sup>                 | Ammonium         |  |  |  |
| BrO <sub>3</sub>                             | Bromate          |  |  |  |
| CN <sup>-</sup>                              | Cyanide          |  |  |  |
| C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | Acatata          |  |  |  |
| (CH₃COO⁻)                                    | Acetate          |  |  |  |
| CIO <sub>4</sub>                             | Perchlorate      |  |  |  |
| CIO <sub>3</sub>                             | Chlorate         |  |  |  |
| CIO <sub>2</sub>                             | Chlorite         |  |  |  |
| CIO <sup>-</sup>                             | Hypochlorite     |  |  |  |
| IO <sub>3</sub>                              | Iodate           |  |  |  |
| MnO <sub>4</sub>                             | Permanganate     |  |  |  |
| NO <sub>3</sub>                              | Nitrate          |  |  |  |
| $NO_2^-$                                     | Nitrite          |  |  |  |
| OH-                                          | Hydroxide        |  |  |  |
| HCO <sub>3</sub>                             | Hydrogen         |  |  |  |
|                                              | carbonate        |  |  |  |
| HSO <sub>4</sub>                             | Hydrogen sulfate |  |  |  |
| SCN-                                         | Thiocyanate      |  |  |  |
| CO <sub>3</sub> <sup>2-</sup>                | Carbonate        |  |  |  |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | Dichromate       |  |  |  |
| CrO <sub>4</sub> <sup>2-</sup>               | Chromate         |  |  |  |
| SO <sub>4</sub> <sup>2-</sup>                | Sulfate          |  |  |  |
| SO <sub>3</sub> <sup>2-</sup>                | Sulfite          |  |  |  |
| PO <sub>4</sub> <sup>3-</sup>                | Phosphate        |  |  |  |



#### **Electromagnetic Spectrum** (measurement in meters)

 $10^4 \quad 10^3 \quad 10^2 \quad 10^1 \quad 10^0 \quad 10^{-1} \quad 10^{-2} \quad 10^{-3} \quad 10^{-4} \quad 10^{-5} \quad 10^{-6} \quad 10^{-7} \quad 10^{-8} \quad 10^{-9} \quad 10^{-10} 10^{-11} 10^{-12} \quad 10^{-13} \quad 10^{-10} \quad 10^{-10}$ X rays Microwaves-**Infrared** Ultraviolet-



Red Orange Yellow Violet Green Blue  $7.0\times10^{-7} \ 6.5\times10^{-7} \ 5.9\times10^{-7} \ 5.7\times10^{-7} \ 4.9\times10^{-7} \ 4.2\times10^{-7} \ 4.0\times10^{-7}$  NCDPI Reference Tables for Chemistry (2012)