1) Let
$$T: \mathbb{R}^{2} \to \mathbb{R}^{2}$$
 be a LT

Let $B = C = \{(1,0),(0,1)\}$

If $CTTB = \begin{bmatrix} 3.5 \\ 1.49 \end{bmatrix}$

find $T(X,Y)$
 $CVTC = [TTB] CVTB$

$$= \begin{bmatrix} 3.5 \\ 1.79 \end{bmatrix} [X7] = \begin{bmatrix} 3X+547 \\ 1.74 \end{bmatrix}$$

If $C(X,Y) = (3X+5Y), 4X+9Y$

2) Let $T: \mathbb{R}^{2} \to \mathbb{R}^{2}$ be a LT

Let $B = C = \{(1,0),(0,1)\}$
 $T(X,Y) = [TTB] CVTB$

$$= \begin{bmatrix} 3.5 \\ 1.79 \end{bmatrix} [X7] = \begin{bmatrix} 3X+547 \\ 1.79 \end{bmatrix} [X7+9Y]$$

If $C(X,Y) = [TTB] CVTB$

$$= \begin{bmatrix} 1.23 \\ 1.79 \end{bmatrix} [X7] = \begin{bmatrix} 3X+547 \\ 1.79 \end{bmatrix} [X7+9Y]$$

Let $C(X,Y) = [TTB] CVTB$

$$= \begin{bmatrix} 1.23 \\ 1.79 \end{bmatrix} [X7] = \begin{bmatrix} 1.79 \\ 1.79 \end{bmatrix} [X7+9Y]$$

Let $C(X,Y) = [TTB] CVTB$

Let $C(X,Y) = [TTB]$

```
3) Let T: R -> R be a 1T defined by
    T(a+bx+cx^2) = (a-b+c)+(3a+4b+2c)x+
          (2\alpha+5b+c)\chi^2
    find a basis for a kert b) Rng T
     To find the kernel
     (a) solve T(v) = 3
     (b) o list the equation
     o tum into matrix [ ]
      3 do RREF on the Mutrix
     (c) find the value of the variables
    a-b+c=0 (1-11:0) (10\frac{1}{7}0)

3a+4b+2c=0=3 (1-\frac{1}{7}0)

2a+5b+c=0 (1-\frac{1}{7}0)

(1-\frac{1}{7}0)

(1-\frac{1}{7}0)
      ひ=与七、り=
す七、こ=七
     KerT = {(-\frac{1}{2}, \frac{1}{2}, 1)}
   To find the Range
    Separate the variables from Tus
    factor but the variables
     set equation equal to 8
     turn into matrix
      do RREF
      RngT = \{ (1,3,2), (-1,4,5) \}
```