

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 17.11.2016

Gliederung

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

2 Formale Sprache

Übersetzung und Kodierung

Was ist überhaupt vollständige Induktion?

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Beweisverfahren

- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Behauptung: (*kurz* **Beh.:**)
Beweis: (*kurz* **Bew.:**)

- Induktionsanfang: (kurz IA:)
 - \blacksquare Zeigen, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Lukas Bach, lukas.bach@student.kit.edu

Aufgabe

Vollständige Induktion

Formale Sprache

Übersetzung und

Kodierung

 $x_0 := 0$

Für alle $n \in \mathbb{N}_0 : x_{n+1} := x_n + 2n + 1$

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

$$x_n = n^2$$

gilt.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Übersetzung und Kodierung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

Als Beispiel von vorigen Folien:

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele *b*'s? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort *ab* nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache L₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$
 - $L_4 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Ubersetzung und Kodierung

Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - \bullet $e := {\varepsilon}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

- **■** *o* := ∅

 (M, \cdot) ist damit keine Gruppe, es existieren keine Invers-Element.

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung un Kodierung

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$
 - $L_2^{\frac{5}{2}} = (\{ab\}^{\frac{1}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$
- $L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Konkatenationsabschluss

Vollständige Induktion

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Formale Sprache

ε -freie Konkatenationsabschluss

Übersetzung und Kodierung

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$
- $L := \{aa, bc\}.L^* = \{\varepsilon, aa, bc, aa \cdot aa, aa \cdot bc, bc \cdot aa, bc \cdot bc, aa \cdot aa \cdot aa, \ldots\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb und abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb und abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus $L^*! \rightarrow L^* = \{a, b\}^*$.

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Beweisaufgabe

Beweise: $L^* \cdot L = L^+$.

 \subseteq : Vorraussetzung: $w \in L^* \cdot L$

mit $w = w'w'', w' \in L^*$ und $w'' \in L$.

Dann existiert ein $i \in \mathbb{N}_0$ mit

 $w' \in L^i$, also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Weil $i + \mathbb{N}_+$, gilt: $L^{i+1} \subseteq L^+$, also $w \in L^+$.

 \supseteq

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da

Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

 $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also

Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L_1^3 aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?
- Wie sieht $(L_1^*)^0 \cdot L_2^+$ aus?

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.
- Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

Lukas Bach Jukas.bach@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Vollständige

Was ist $Num_{10}(123)$?

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Formale Sprache Übersetzung und

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Kodierung

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) =$

 $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Yay!

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übungen zu Zahlendarstellungen

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

- Num₈(345).
- \bullet *Num*₂(11001).
- Num₂(1000).
- Num₄(123).
- \blacksquare Num₁₆(4DF). (Zusatz)

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*.

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Lösungen:

Formale Sprache

Übersetzung und Kodierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25.$
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- $Num_{16}(4DF) = 1247$.

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Formale Sprache

Es gilt:

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^4\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$ Daher, einfachere Rechenweise:

Übersetzung und

Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(11111111111) = 1023.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- $Num_{16}(14) = 20.$

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Fülle die Tabelle aus:

											10		
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	0

Informationen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul