

MEGA User's Guide

PLATINUM Series

Shop online at omega.com®

e-mail: info@omega.com For latest product manuals: www.omegamanual.info

CN32Pt, CN16Pt, CN16DPt, CN8Pt, CN8DPt, CN8EPt DP32Pt, DP16Pt, DP8Pt, DP8EPt **Serial Communication Protocol**

Servicing North America:

U.S.A.: Omega Engineering, Inc., P.O. Box 4047

Stamford, CT 06907-0047 USA

Toll-Free: 1-800-826-6342 (USA & Canada only)

Customer Service: 1-800-622-2378 (USA & Canada only) Engineering Service: 1-800-872-9436 (USA & Canada only)

Tel: (203) 359-1660 Fax: (203) 359-7700

e-mail: info@omega.com

For Other Locations Visit omega.com/worldwide

TABLE OF CONTENTS

1	Inti	roduction	6
	1.1	Purpose	. 7
	1.2	Definition of Terms and Acronyms	. 7
2	Har	dware	7
	2.1	Communications Interfaces	. 7
		2.1.1 RS-232	7
		2.1.2 RS-485	7
		2.1.3 USB Virtual Comm	7
		2.1.4 Ethernet	7
3	Pro	tocol Description	8
	3.1	Protocol	
	3.2	Command Structure	
	3.3	Response Format	. 9
	3.4	Error Messages	
4	Pla	tinum Series Messages	9
	4.1	Input Configuration	
	4.2	Filter Constant	
	4.3	Current Reading	11
	4.4	Peak Reading	12
	4.5	Valley Reading	
	4.6	TC Calibration Type	12
	4.7	TC Calibration Single Point	12
	4.8	TC Calibration Double Point Low	12
	4.9	TC Calibration Double Point High	12
	4.10	Process Reading 1 (Low)	13
	4.11	Process Range Input 1 (Low)	13
	4.12	Process Range Reading 2 (High)	13
	4.13	Process Range Input 2 (High)	13
	4.14	Tare Mode	14
	4.15	Tare Reset	14
	4.16	Number of Linearization Points	14
	4.17	Linearization Reading	14

4.18	Linearization Input	15
4.19	Annunciator Mode	15
4.20	Display Rounding	15
4.21	Rate Mode	15
4.22	Process Type	16
4.23	Display Configuration	16
4.24	Excitation Voltage	17
4.25	Safety Configuration	17
4.26	Loop Break Configuration	18
4.27	Set Point Low Limit	18
4.28	Set Point High Limit	18
4.29	Serial Communication Address	18
4.30	USB Communication Address	18
4.31	Ethernet Communication Address	19
4.32	Serial Communication Config	19
4.33	Serial Data Mode Config	20
4.34	Serial Modbus Mode	20
4.35	Serial Data Format	20
4.36	Serial Communications Parameters	21
4.37	USB Communications Configuration	22
4.38	USB Data Mode Configuration	22
4.39	USB Modbus Mode	22
4.40	USB Data Format	23
4.41	Ethernet Communications Configuration	23
4.42	Ethernet Data Mode Configuration	23
4.43	Ethernet Data Format	23
4.44	Ethernet Modbus Mode	23
4.45	Setpoint 1	23
4.46	Remote Setpoint Configuration	24
4.47	Setpoint 2	24
4.48	Remote Process Range Setpoint Min	24
4.49	Remote Process Range Setpoint Max	25
4.50	Remote Process Range Input Max	25
4.51	Remote Process Range Input Min	25
4.52	PID Configuration	25

4.53	PID Low Clamping Limit	26
4.54	PID High Clamping Limit	26
4.55	PID P Parameter	26
4.56	PID I Parameter	26
4.57	PID D Parameter	26
4.58	Output Mode	27
4.59	Output Type	27
4.60	Output ON/OFF Configuration	27
4.61	Output Alarm Configuration	28
4.62	Hi Value	29
4.63	Low Value	29
4.64	On Delay	29
4.65	Off Delay	29
4.66	HiHi Mode	29
4.67	HiHi Offset	30
4.68	Output Retransmission Reading 1	30
4.69	Output Retransmission Output 1	30
4.70	Output Retransmission Reading 2	30
4.71	Output Retransmission Output 2	30
4.72	Output Cycle Time/Pulse Width	30
4.73	Output Range	31
4.74	Time Format	31
4.75	Multi Ramp/Soak Configuration	31
4.76	Multi Ramp/Soak Profile Configuration	32
4.77	Multi Ramp/Soak Segment Event Configuration	32
4.78	Multi Ramp/Soak Profile Segment Ramp Time	32
4.79	Multi Ramp/Soak Profile Segment Soak Process Value	32
4.80	Multi Ramp/Soak Profile Segment Soak Time	32
4.81	INIT Password	33
4.82	Program Password	33
4.83	Version Number	33
4.84	Version Upgrade	33
4.85	Bootloader Version	34
4.86	Run Mode	34
4.87	Set Factory Defaults	34

1 Introduction

1.1 Purpose

Defining the Platinum Series Serial Communications Protocols.

1.2 Definition of Terms and Acronyms

I2C	2-wire serial interface	ADC	Analog to Digital Converter
Base Device	Device connected to slave device	DAC	Digital to Analog Converter
Smart Input	Device supporting 1 or more Input sensors	RS485	Electrical signals used for serial communications
Smart Output	Device supporting 1 or more Output Elements	RS232	Electrical signals used for serial communications
Sensor Element	One of the physical sensing elements on a Smart Output	CSV	Comma Separated Values
AC	Alternating Current	COTS	Commercially-Off-The-Shelf
DC	Direct Current	ESD	Electro Static Discharge
CS	Chip Select	FW	Firmware
RS232	Electrical signals used for serial communications	HW	Hardware
CSV	Comma Separated Values	1/0	Input/output
COTS	Commercially-Off-The-Shelf	LED	Light Emitting Diode
ESD	Electro Static Discharge	Hexadecimal	Values expressed using base 16 (24)

2 Hardware

2.1 Communications Interfaces

The Platinum Series Protocol is designed to be an updated version of the original iSeries protocol which can be used over serial connections using RS-232, RS-485, USB and serial over Ethernet.

2.1.1 RS-232

Point-to-point connections at baud rates up to 115,200.

Hardware flow control is not supported.

2.1.2 RS-485

Multi-point connections. Up to 200 individual addresses can be assigned.

Single Ending character is supported (e.g., carrier return 0x0D). Multiple Ending character is not supported (e.g. carrier return, line feed 0x0D 0x0A).

2.1.3 USB Virtual Comm

Point-to-point connections the same as RS-232.

2.1.4 Ethernet

The serial protocol is transmitted using TCP/IP on port 2000.

Platinum Echo mode ON is recommended.

3 Protocol Description

3.1 Protocol

The protocol is command/response, based on 4 command classes:

Get (G), Put (P), Read (R) and Write (W):

Get Reads the current value resident in RAM.

Put Writes a parameter to RAM without committing it to non-volatile memory.

Read Retrieves the value of a parameter stored in non-volatile memory.

Write Commits a parameter value to non-volatile memory.

3.2 Command Structure

The overall structure of a command packet is as follows:

- Start of frame (SOF) character usually '*'
- Command class (GPRW)
- Command ID a hex number identifying the message.
- Mandatory space if there are parameters following the command ID.
- Parameter List.
- An end of frame (EOF) character usually a carriage return.

A unit address is optional.

An address is a hex-encoded number in the range 0-199 (00 - C7 hex) between the start of frame and the command class.

<u>Example</u>: to get the current process value, without an address would be:

```
"*G110 <CR>"
```

In this case the command class is 'G', the command ID is 110 (hex) and this command takes no parameters.

• If this were addressed to unit 100 (hex value 64), the command would be:

[&]quot;*64G110 <CR>"

3.3 Response Format

The response format depends on whether a command echo has been selected. If selected, the address (if present), command class and command ID precede the parameters returned.

Example: if an echo is selected, the previous command would return:

"G110+32.0<CR>" (no address)

"64G110+32.0<CR> (if the unit responding had address = 64 (hex).

• If echo is not selected, in both cases, only "+32.0<CR>" would be returned.

For Put (P) and Write (W) type transactions, only the command is echoed if echo is on.

Thus, "*Pxxx yyyyyy<CR>" will echo "Pxxx<CR>".

3.4 Error Messages

In the event of an error in the message format, an error string is returned:

"Command Failed Decode 0"

4 Platinum Series Messages

4.1 Input Configuration

Input Configuration					
ID	Classes	Parameters			
0x100	RW	STYPE	SI1	SI2	

The parameters are as follows:

STYPE - Sensor Type		
Value	Туре	
0	Thermocouple	
1	RTD	
2	Process Input	
3	Thermistor	
4	Remote	

The meaning of the two sensor info fields, SI1 and SI2 depends on the sensor type indicated in the STYPE field.

For <u>thermocouple type</u> (STYPE = 0):

SI1 – Sensor Info 1 Thermocouple Type)		
Value	Туре	
0	J	
1	К	
2	Т	
3	E	
4	N	
5	Reserved	
6	R	
7	S	
8	В	
9	С	
10	Reserved	
11	Reserved	

For thermocouple, the SI2 field is irrelevant.

Example: to set input type to Type K thermocouple: "*W100 010<CR>"

For RTD Sensor type (STYPE = 1):

SI1 – Sensor Info 1 RTD Configuration		
Value	Туре	
0	2 Wire	
1	3 Wire	
2	4 Wire	

SI2 – Sensor Info 1 RTD ACRV Ohm Types		
Value	Туре	
0	385 Curve, 100 ohms	
1	385 Curve, 500 ohms	
2	385 Curve, 1000 ohms	
3	392 Curve, 100 ohms	
4	3916 Curve, 100 ohms	

For <u>Process Input</u> (STYPE = 2):

SI1 – Process Range			
Value	Range		
0	4 – 20 mA		
1	0 – 24 mA		
2	*NS		
3	*NS		
2	*NS		
5	+/- 10 Vdc		
6	+/ – 1.0 Vdc		
7	+/-0.1 Vdc		

^{*}NS – Not currently supported.

SI2 – Sensor Info 2 Process Manual/Live		
0	Live	
1	Manual	

For <u>Thermistor Type</u> (STYPE = 3):

SE1 – Sensor Info 1 - Thermistor Type					
0	2.25 K				
1	5K				
2	10K				

The Sensor Info 2 Field is irrelevant when STYPE = 3.

For Remote Sensor Type (STYPE = 4).

This is not currently supported and is for future expansion.

4.2 Filter Constant

Filter Constant							
ID	Classes	Param	Parameters				
0x101	RW	FC					

The parameters are as follows:

FC					
Value	Effect				
0	No filtering (1 X rate)				
1	X 2 filtering				
2	X 4 filtering				
3	X 8 filtering				
4	X 16 filtering				
5	X 32 filtering				
6	X 64 filtering				
7	X 128 filtering				

Example: To set input filter to x2 "*W101 1<CR>"

4.3 Current Reading

Current Reading							
ID	Classes	Parameters					
0x110	G						

This does not take any parameters.

To get current process reading: "*G110<CR>"

4.4 Peak Reading

Peak Reading						
ID	Classes	Parameters				
0x111	G					

This command does not take any parameters.

4.5 Valley Reading

Valley Reading							
ID	Classes Parameters						
0x112	G						

This command does not take any parameters.

4.6 TC Calibration Type

	TC Calibration Type						
ID	Classes	Parameters					
0x120	RW	Mode	Mode				

The parameters are as follows:

Mode					
Value	Effect				
0	No Calibration				
1	1 Point				
2	2 Point				
3	Ice Point				

4.7 TC Calibration Single Point

TC Calibration Single Point						
ID	ID Classes Parameters					
0x121	0x121 RW Value (float)					

4.8 TC Calibration Double Point Low

	TC Calibration Double Point Low					
ID	ID Classes Parameters					
0x122	0x122 RW Value (float)					

4.9 TC Calibration Double Point High

	TC Calibration Double Point High					
ID	ID Classes Parameters					
0x123	0x123 GPRW Value (float)					

4.10 Process Reading 1 (Low)

Process Reading 1 (Low)						
ID	Classes Parameters					
0x130	RW	PR ML Value (float)				

PR – Process Range				
Value	Range			
0	4 – 20 mA			
1	0 – 24 mA			
2	*NS			
3	*NS			
4	*NS			
5	+/- 10 Vdc			
6	+/ – 1.0 Vdc			
7	+/ – 0.1 Vdc			

ML - Manual/Live				
Value Range				
0	Manual Mode			
1	Live Mode			

^{*}NS – not currently supported.

4.11 Process Range Input 1 (Low)

Process Range Input - Low								
ID	Classes		Parameters					
0x131	RW	PR ML Value (float)						

The parameters PR and ML, are the same as defined for command ID = 0x130.

4.12 Process Range Reading 2 (High)

Process Range Reading (High)								
ID	Classes		Parameters					
0x132	RW	PR ML Value (float)						

The parameters PR and ML, are the same as defined for command ID = 0x130.

4.13 Process Range Input 2 (High)

Process Range Input - High						
ID	Classes Parameters					
0x133	RW	PR ML Value (float)				

The parameters PR and ML, are the same as defined for command ID = 0x130.

4.14 Tare Mode

	Tare Mode						
ID	Classes		Parameters				
0x140	RW	TM	TM				

TM – Tare Mode				
Value Effect				
0	Tare Disabled			
1	Tare Enabled			
2	Tare Remote Control			

4.15 Tare Reset

	Tare Reset						
ID	Classes		Parameters				
0x141	GP	EN	EN EN				

EN – Enable Tare				
Value Action				
0	Disable Tare			
1	Enable Tare			

4.16 Number of Linearization Points

Number of Linearization Points							
ID	Classes		Parameters				
0x142	RW	N					

N – Number of Linearization Points				
Value Action				
[0A]	0 to 10 Number of Linearization points			

4.17 Linearization Reading

	Linearization Reading					
ID	ID Classes Parameters					
0x143	RW	P Value (float)				

P -Linearization Point					
Value Action					
[0A]	Select Linearization Point from 0 to 10				
Value Linearization Reading Value					

4.18 Linearization Input

	Linearization Input					
ID	ID Classes Parameters					
0x144	RW	P Value (float)				

P -Linearization Point					
Value Action					
[0A]	Select Linearization Point from 0 to 10				
Value	Linearization Input Value				

4.19 Annunciator Mode

Annunciator Mode								
ID	Classes		Parameters					
0x145	RW	N.ANN	Mode					

N.ANN - Annunciator Number					
Value Select					
[06] Select Annunciator Number from 0 to 6					

Mode - Annunciator Mode					
Value	Action				
0	Disable Annunciator				
1	Annunciator activated by Alarm 1				
2	Annunciator activated by Alarm 2				
3	Annunciator activated by Output 1				
4	Annunciator activated by Output 2				
5	Annunciator activated by Output 3				
6	Annunciator activated by Output 4				
7	Annunciator activated by RE.ON bit				
8	Annunciator activated by SE.ON bit				
9	Annunciator activated during any RAMP cycle				
10	Annunciator activated during any SOAK cycle				

4.20 Display Rounding

Display Rounding					
ID Classes Parameters					
0x146	RW	Value (float)			

4.21 Rate Mode

Rate Mode						
ID	ID Classes Parameters					
0x147 RW EN						

EN – Rate Mode					
Value Effect					
0 Disable Rate Mode					
1	Disable Rate Mode				

4.22 Process Type

Process Type						
ID	Classes		Parameters			
0x148	RW	PT				

PT – Process Type					
Value Type					
0	Single Ended				
1	Differential				
2	Ratiometric				

4.23 Display Configuration

Display Configuration							
ID	ID Classes Parameters						
0x200 RW DP UNIT COLOR BRT							

The parameters are as follows:

DP - Decimal Point				
Value Effect				
0	Display as F.FFF			
1	Display as FF.FF			

Units				
Value	Effect			
0	No units applied			
1	Values converted to °C			
2	Values converted to °F			

Color				
Value	Effect			
1	GREEN			
2	RED			
3	AMBER			

BRT - Brightness				
Value	Brightness			
0	LOW			
1 MEDIUM				
2	HIGH			

4.24 Excitation Voltage

	Excitation Voltage					
ID	Classes	Parameters				
0x210	RW	EV				

The parameters are as follows:

EV – Excitation Voltage			
Value	Voltage		
0	0 Volts		
1	5 Volts		
2	10 Volts		
3	12 Volts		
4	24 Volts		

4.25 Safety Configuration

	Safety Configuration					
ID	Classes	Parameters				
0x220	RW	POR OR LBE				

The parameters are as follows:

POR – Power On Run				
Value Voltage				
0	Go to standby when powered on			
1	Go to run when powered on			

OR – Operate Run			
Value Voltage			
0	Disabled		
1	Enabled		

LBE - Loop Break Enabled			
Value Enabled/Disabled			
0	Disabled		
1	Enabled		

4.26 Loop Break Configuration

	Loop Break Configuration							
ID	ID Classes Parameters							
0x221	RW	LBE	MINMS	MINLS	SECMS	SECLS		

LBE - Loop Break Enabled			
Value Enabled/Disabled			
0	Disabled		
1	Enabled		

The parameters MINMS, MINLS define the minutes in the loop break time. MINMS is the most significant part of the minutes, MINLS the least significant. Both are in hex format.

For example: to encode 100 minutes, MINMS = 6, MINLS = 4. (64 hex).

The second's portion of the loop break time is similarly defined in SECMS, SECLS.

4.27 Set Point Low Limit

Set Point Low Limit					
ID Classes Parameters					
0x222 RW Value (float)					

4.28 Set Point High Limit

Set Point High Limit				
ID Classes Parameters				
0x223 RW Value (float)				

4.29 Serial Communication Address

Serial Communications Address						
ID	Classes	Parameters				
0x300	RW	AMS	ALS			

The parameters are as follows:

AMS and ALS are the most significant and least significant nibble of the serial communications address in hex format. The address must be in the range 0 to 199 (decimal).

For example: if an address of 100 (decimal) is to be used, the hex value of the address would be 0x64 so AMs would be '6' and ALS would be '4'.

4.30 USB Communication Address

USB Communications Address							
ID	Classes		Parameters				
0x301	RW	AMS	ALS				

The format and parameter usage is the same as for the serial communications address.

4.31 Ethernet Communication Address

Ethernet Communications Address							
ID	Classes	Parameters					
0x302	RW	AMS	ALS				

The format and parameter usage is the same as for the serial communications address.

4.32 Serial Communication Config

Serial Communications Configuration							
ID	Classes		Parameters				
0x310	RW	PROT	DM	LFE	ECHO	SEP	

The parameters are as follows:

PROT- Protocol				
Value	Protocol			
0	Omega Protocol			
1	Modbus Protocol			

Data Mode – Data Mode				
Value Voltage				
0	Command			
1	Continuous			

LFE – Line Feed Enabled				
Value Voltage				
0	Don't insert line feed on responses			
1	Insert line feed			

ECHO – Response Echo Enabled				
Value	Voltage			
0	No echo.			
1	Echo command in response			

SEP - Separation Character (Omega Protocol)				
Value Effect				
0	Use <space> character between records</space>			
1	Use <cr> between records</cr>			

The Serial Communications Configuration must be set before the Serial Data Mode (ID = 0x311).

4.33 Serial Data Mode Config

Serial Communications Data Mode Config					
ID	Classes	Parameters			
0x311	RW	MODE	Interval - seconds (variable length - float)		

MODE – (Omega Protocol)		
0 Interactive command mode		
1	Continuous mode	

Serial Modbus Mode Config

The interval is specified as a floating point number in seconds when the continuous mode is specified.

<u>Example:</u> setting serial to continuous mode with 5 second interval:

4.34 Serial Modbus Mode

Serial Modbus Mode				
ID	Classes	Parameters		
0x314	RW	MODE		

MODE - Modbus			
Value Mode			
0	RTU		
1	ASCII		

4.35 Serial Data Format

	Serial Data Format						
ID	Classes	Parameters					
0x312	RW	AS	RE	PE	VE	UE	

AS – Alarm Status Enabled in Continuous Mode			
Value Voltage			
0	Don't send alarm status in cont. mode		
1	Send alarm status		

RE – Readings Enabled in Continuous Mode			
Value Voltage			
0	Don't send readings in cont. mode		
1	Send readings		

[&]quot;*P311 1 5.0<CR>"

PE – Peak Readings Enabled in Continuous Mode			
Value Voltage			
0	Don't send peak readings in cont. mode		
1	Send peak readings		

VE – Valley Readings Enabled in Continuous Mode			
Value Voltage			
0	Don't send valley readings in cont. mode		
1	Send valley readings		

UE – Valley Readings Enabled in Continuous Mode				
Value Voltage				
0	Don't append measurement units in cont. mode			
1	Append measurement units in cont. mode.			

4.36 Serial Communications Parameters

Serial Communications Parameters								
ID	Classes	Parameters						
0x313	RW	MODE	BR	PAR	DB	SB		

MODE - Serial Mode			
Value Mode			
0	RS232		
1	RS485		

BR - Serial Baud Rate				
Value	Rate			
0	300 Baud			
1	600 Baud			
2	1200 Baud			
3	2400 Baud			
4	4800 Baud			
5	9600 Baud			
6	19200 Baud			
7	38400 Baud			
8	57600 Baud			
9	115200 Baud			

PAR - Parity						
Value	Parity					
0	None					
1	Odd					
2	Even					

DB - Data Bits				
Value	Bits			
0	7			
1	8			

SB - Stop Bits				
Value	Bits			
0	1			
1	2			

4.37 USB Communications Configuration

	USB Communications Configuration								
ID	Classes	Parameters							
0x320	RW	PROT	DM	LFE	ECHO	SEP			

This is for use with a virtual com serial port. The usage of the parameters is the same as for the Serial Communications Message.

4.38 USB Data Mode Configuration

USB Communications Data Mode Config						
ID	Classes	Parameters				
0x321	RW	MODE Interval - seconds (float)				

The usage of the parameters for this command is the same as for the Serial Communications Data Mode (ID = 0x311).

4.39 USB Modbus Mode

	USB Modbus Mode						
ID	Classes	Parameters					
0x323	RW	MODE					

MODE - Modbus					
0	RTU				
1	ASCII				

4.40 USB Data Format

Serial Data Format							
ID	Classes	Parameters					
0x312	RW	AS	RE	PE	VE	UE	

The usage of the parameters for this command is the same as for the Serial Data Format (ID = 0x312).

4.41 Ethernet Communications Configuration

	Ethernet Communications Configuration								
Γ	ID	Classes		Parameters					
Γ	0x330	RW	PROT	DM	LFE	ECHO	SEP		

The usage of the parameters for this command is the same as for the Serial Communications Configuration (ID = 0x310).

4.42 Ethernet Data Mode Configuration

Ethernet Communications Data Mode Config						
ID	Classes	Parameters				
0x331	RW	MODE Interval - seconds (float)				

The usage of the parameters for this command is the same as for the Serial Communications Data Mode (ID = 0x311).

4.43 Ethernet Data Format

	Ethernet Data Format							
ID	Classes		Parameters					
0x332	RW	AS	RE	PE	VE	UE		

The usage of the parameters for this command is the same as for the Serial Data Format command (ID = 0x312).

4.44 Ethernet Modbus Mode

Ethernet Modbus Mode					
ID	Classes	Parameters			
0x333	RW	MODE			

MODE - Modbus				
0	RTU			
1 ASCII				

4.45 Setpoint 1

Setpoint 1				
ID Classes Parameters				
0x400	GPRW	Setpoint Value - variable length (float)		

4.46 Remote Setpoint Configuration

Remote Setpoint Configuration								
ID	Classes	Parameters						
0x401	RW	EN	PR					

EN – Enable Remote Setpoint			
Value Action			
0	Enable Remote Setpoint		
1	Disable Remote Setpoint		

PR - Output Process Range				
Value Range				
0	4 - 20 V			
1	0 – 24 V			
2	0 – 10 V			
3	0 – 1 V			

4.47 *Setpoint 2*

	Setpoint 2			
ID	Classes	Parameters		
0x410	RW	TYPE	Setpoint Value - variable length (float)	

TYPE - Setpoint Type		
Value Action		
0	Setpoint value given as fixed constant	
1	Setpoint value is deviation (+/-) Setpoint 1 value	

4.48 Remote Process Range Setpoint Min

Remote Process Range Setpoint Minimum			
ID	Classes Parameters		
0x420	RW	PR	Setpoint Value (float – variable length)

The parameters are as follows:

PR - Output Process Range				
Value	Range			
0	4 - 20 V			
1	0 – 24 V			
2	0 – 10 V			
3	0 – 1 V			

4.49 Remote Process Range Setpoint Max

Remote Process Range Setpoint Maximum				
ID	ID Classes Parameters			
0x422	RW	PR	Setpoint Value (float – variable length)	

The process range parameter PR is as defined for the Remote Process Range Setpoint Min command (ID = 0x420).

4.50 Remote Process Range Input Max

Remote Process Range Input Maximum				
ID	Classes	Parameters		
0x423	RW	PR	Setpoint Value (float – variable length)	

The process range parameter PR is as defined for the Remote Process Range Setpoint Min command (ID = 0x420).

4.51 Remote Process Range Input Min

Remote Process Range Input Minimum				
ID Classes Parameters				
0x421	RW	PR	Setpoint Value (float – variable length)	

The process range parameter PR is as defined for the Remote Process Range Setpoint Min command (ID = 0x420).

4.52 PID Configuration

PID Configuration					
ID	Classes	Parameters			
0x500	RW	CA	AC		

CA - Control Action				
Value	Action			
0	Output active if P.V. < Setpoint			
1	Output active if P.V. > Setpoint			

AC – Adaptive Control				
Value	Action			
0	Enable Adaptive Control			
1	Disable Adaptive Control			

4.53 PID Low Clamping Limit

PID Low Clamping Limit								
ID	Classes	Parameters						
0x501	RW	CLMS	CLLS					

The hex-encoded byte fields CLMS, CLLS form the hex representation of the limit (percent) 0-100

For example: if the limit were to be 35 (decimal) the hex representation would be 23, so CLMS would equal 2 and CLLS 3.

4.54 PID High Clamping Limit

PID High Clamping Limit								
ID	Classes	Parameters						
0x502	RW	CLMS	CLLS					

The encoding of the high clamping limit is the same as for the low clamping limit.

4.55 PID P Parameter

PID P-Parameter					
ID Classes Parameters					
0x503	RW	P-parameter Value (float – variable length)			

4.56 PID I Parameter

PID I-Parameter				
ID Classes Parameters				
0x504	RW	I-parameter Value (float – variable length)		

4.57 PID D Parameter

PID D-Parameter					
ID Classes Parameters					
0x505	RW	D-parameter Value (float – variable length)			

4.58 Output Mode

Output Mode								
ID	Classes		Parameters					
0x600	RW	NOUT	MODE					

NOUT – the output number (1-4)

MODE - Output Mode					
Value	Mode				
0	Output maintained in OFF state				
1	Output control by PID control function				
2	Output controlled by ON-OFF control function				
3	Output retransmits the scaled process variable				
4	Output set by ALARM 1 state				
5	Output set by ALARM 2 state				
6	Output set by Ramp & Soak RE.ON control bit				
7	Output set by Ramp & Soak SE.ON control bit				

4.59 Output Type

Output Type								
ID	Classes		Parameters					
0x601	G	NOUT						

NOUT – the output number

This returns the output type for the specified output as a hex encoded string as follows:

Output Types						
Code Returned (hex encoded)	Туре					
000	No output available					
001	Single Poll Relay					
002	SSR output					
004	Double Poll Relay					
008	DC Pulse output					
010	Analog Output					
020	Isolated Analog Output					

4.60 Output ON/OFF Configuration

Output On/Off Config				
ID	Classes	Parameters		
0x610	RW	NOUT	RD	Dead Band Value (float – variable length)

NOUT is the output number (1-4)

RD – Reverse/Direct				
Value Action				
0	Reverse			
1	Direct			

4.61 Output Alarm Configuration

Output Alarm Configuration									
ID	Classes	Parameters							
0x620	RW	NAL	TYP	MODE	COLOR	HHEN	LAT	CNT	РО

NAL is the alarm number (1-2)

TYP- Alarm Type				
0	Alarm not active			
1	Alarm triggered if PV > ALM.H			
2	Alarm trigger if PV < ALM.L			
3	Alarm trigger if PV > ALM.H or PV < ALM.L			
4	Alarm trigger if PV > ALM.L and PV < ALM.H			

MODE - Alarm Mode				
Value	Mode			
0	Alarm setpoint is fixed constant			
1	Alarm is offset from Setpoint 1			
2	Alarm is offset from Setpoint 2			

Color				
Value	Alarm Color			
0	No color			
1	GREEN			
2	RED			
3	AMBER			

HHEN – HiHi Mode				
Value	Action			
0	Enable Hi Hi Mode			
1	Disable Hi Hi Mode			

LAT- Alarm Latch Control		
Value	Action	
0	Alarm does not latch	
1	Alarm state will be latched, clear by front panel	
2	Alarm state will be latched, clear by digital input	
3	Alarm state latched, clear by front panel or input	

CNT – Contact Polarity			
Value Polarity			
0	Contacts OPEN until activated		
1	Contacts CLOSED until activated		

PO – Power On Enable		
0	Not active on power-on	
1	Active on power-on	

4.62 Hi Value

Alarm Hi Value				
ID	Classes	Parameters		
0x621	RW	NAL	Hi Value (float – variable length)	

NAL = alarm number (1-2).

4.63 Low Value

Alarm Low Value				
ID	Classes	Parameters		
0x622	RW	NAL	Low Value (float – variable length)	

4.64 On Delay

	Alarm On Delay					
ID	Classes	Parameters				
0x623	RW	NAL	On Delay - seconds (float – variable length)			

NAL = alarm number (1 - 2).

4.65 Off Delay

	Alarm Off Delay				
ID	Classes	Parameters			
0x624	RW	NAL	Off Delay - seconds (float – variable length)		

NAL – alarm number (1-2).

4.66 HiHi Mode

	HiHi Mode							
ID	Classes		Parameters					
0x625	RW	NAL	ON/OFF					

NAL – alarm number.

ON/OFF			
0	On		
1	Off		

4.67 HiHi Offset

	Alarm HiHi Offset			
ID	Classes	Parameters		
0x626	RW	NAL	Offset (float – variable length)	

4.68 Output Retransmission Reading 1

Output Retransmission Reading 1					
ID	Classes	Parameters			
0x630	RW	NOUT	Reading Value (float – variable length)		

NOUT – output number (1-4).

4.69 Output Retransmission Output 1

	Output Retransmission Output 1				
ID	Classes	Parameters			
0x631	RW	NOUT	Output Value (float – variable length)		

NOUT – output number (1-4).

4.70 Output Retransmission Reading 2

	Output Retransmission Reading 2				
ID	Classes	Parameters			
0x632	RW	NOUT	Reading Value (float – variable length)		

NOUT = output number (1-4).

4.71 Output Retransmission Output 2

	Output Retransmission Output 2				
ID	Classes	Parameters			
0x633	RW	NOUT	Output Value (float – variable length)		

NOUT – output number (1-4).

4.72 Output Cycle Time/Pulse Width

	Output Cycle Time/Pulse Width				
ID	Classes	Parameters			
0x650	RW	NOUT	OUT Cycle Time - seconds (float – variable length)		

NOUT – output number.

4.73 Output Range

Output Range								
ID	Classes		Parameters					
0x660	RW	NOUT	RANGE					

RANGE					
Value	Range				
0	0 – 10V				
1	0 – 5V				
2	0-20V				
3	4-20V				
4	0-24V				

4.74 Time Format

Time Format								
ID	Classes		Parameters					
0x700	RW	FMT						

FMT - Time Format						
0	MM.SS displayed					
1	HH.MM displayed					
2	S.MMM displayed					

4.75 Multi Ramp/Soak Configuration

Ramp/Soak Config								
ID	Classes		Parameters					
0x720	RW	RS						

RS – Ramp Soak Mode						
0	Ramp/Soak Disabled					
1	Ramp/Soak Enabled					
2	Ramp/Soak Remote Control					

4.76 Multi Ramp/Soak Profile Configuration

Multi Ramp/Soak Profile Config									
ID	Classes		Parameters						
0x721	RW	PMS	PLS	SC	TE				

PMS, PLS form the profile number in hex form. PMS is the most significant hex digit, PLS the least significant.

For example: segment 31 (0x1f) would be encoded as PMS = '1', PLS = 'F'

SC is the segment count (0-15) encoded as a single hex digit.

TE- Tracking Enabled						
0	Disabled					
1	Enabled					

4.77 Multi Ramp/Soak Segment Event Configuration

Multi Ramp/Soak Event Config								
ID	Classes		Parameters					
0x730	RW	NSEG	RE	SE				

PMS, PLS identify the profile number as in Multi Ramp/Soak Profile Configuration (ID = 0x721).

NSEG is the segment number encoded as a single hex digit (0-F).

RE – Ramp enabled (1) or disabled (0) for segment.

SE – Soak enabled (1) or disabled (0) for segment.

4.78 Multi Ramp/Soak Profile Segment Ramp Time

Multi Ramp/Soak Segment Ramp Time							
ID	Classes		Parameters				
0x731	RW	NSEG	Ramp Time Seconds (float, variable length)				

NSEG is a single hex digit identifying the segment number.

4.79 Multi Ramp/Soak Profile Segment Soak Process Value

Multi Ramp/Soak Segment Soak Process Value							
ID	Classes		Parameters				
0x732	RW	NSEG	Soak Value (float, variable length)				

NSEG is a single hex digit identifying the segment number.

4.80 Multi Ramp/Soak Profile Segment Soak Time

Multi Ramp/Soak Segment Soak Time							
ID	Classes		Parameters				
0x733	RW	NSEG	Soak Time - seconds (float, variable length)				

PMS, PLS pair identify the profile number as in the Multi-Ramp Profile Config message (ID = 0x721).

NSEG is a single hex digit identifying the segment number.

4.81 INIT Password

INIT Password									
ID	Classes		Parameters						
0xF00	RW	EN	PWD3	PWD2	PWD1	PWD0			

EN – Enable Init (1) / Disable Init (0)

The parameters PWD0-3 form a hex encoded number. The range of each must be 0-9.

For Example; '1234' would be encoded as PWD3 = 1, PWD2 = 2, PWD1 = 3, PWD0 = 4.

4.82 Program Password

Program Password									
ID	Classes		Parameters						
0xF01	RW	EN	PWD3	PWD2	PWD1	PWD0			

EN – Enable Programming (1) / Disable Programming (0)

The parameters PWD0-3 form a hex encoded number. The range of each must be 0-9.

4.83 Version Number

Version Number								
ID	ID Classes Parameters							
0xF20	G							

This command returns the current firmware version number as a hex encoded string. The format is:

- Major (2 bytes)
- Minor (2 bytes)
- Fix (2 bytes)
- Build (2 bytes)

Example: If the current version is 01.00.05.00 the command "*GF20<CR>" would return "01000500"

4.84 Version Upgrade

Version Upgrade									
ID	Classes	Parameters							
0xF21	Р	SEL							

This command forces a firmware upgrade, followed by a reboot.

The SEL parameter determines the method to be used.

SEL – Firmware Upgrade Method							
1	EIP Serial Port						
2	User Serial Port						
3	USB Thumb drive.						

<u>Example:</u> to upgrade using the USB Thumb drive the drive would be inserted into the USB port, followed by the serial command "*PF21 3<CR>"

4.85 Bootloader Version

Bootloader Version Number								
ID	ID Classes Parameters							
0xF22	G							

This retrieves the bootloader version number in exactly the same manner as the version number command (ID = 0xF20).

4.86 Run Mode

Run Mode										
ID	Classes		Parameters							
0xF23	GP	SS								

	SS - System State							
0	LOAD	File transfer in progress						
1	IDLE	Idle, no control						
2	INPUT_ADJUST	Adjusting input value						
3	CONTROL_ADJUST	Adjusting output value						
4	MODIFY	Modify parameter in OPER mode						
5	WAIT	Waiting for RUN condition						
6	RUN	System is running						
7	STANDBY	Standby mode						
8	STOP	Stopped mode						
9	PAUSE	Paused mode						
10	FAULT	Fault detected						
11	SHUTDOWN	Shutdown condition detected						
12	AUTOTUNE	Autotune in progress						

4.87 Set Factory Defaults

Bootloader Version Number								
ID	ID Classes Parameters							
0xF30	Р	EN						

To reset factory defaults, use the command "*PF30 1<CR>"

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **61 months** from date of purchase. OMEGA's WARRANTY adds an additional one (1) month grace period to the **normal five (5) year product warranty** to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR <u>WARRANTY</u> RETURNS, please have the following information available BEFORE contacting OMEGA:

- Purchase Order number under which the product was PURCHASED,
- Model and serial number of the product under warranty, and
- Repair instructions and/or specific problems relative to the product.
- FOR <u>NON-WARRANTY</u> REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:
- Purchase Order number to cover the COST of the repair.
- 2. Model and serial number of the product, and
- Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2016 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

Shop online at omega.comsm

TEMPERATURE

☑ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies

Wire: Thermocouple, RTD & Thermistor

☐ Calibrators & Ice Point References

Recorders, Controllers & Process Monitors

☑ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

☑ Transducers & Strain Gages

☑ Displacement Transducers

☑ Instrumentation & Accessories

FLOW/LEVEL

☑ Rotameters, Gas Mass Flowmeters & Flow Computers

Air Velocity Indicators

☑ Turbine/Paddlewheel Systems

☑ Totalizers & Batch Controllers

pH/CONDUCTIVITY

PH Electrodes, Testers & Accessories

Benchtop/Laboratory Meters

☑ Controllers, Calibrators, Simulators & Pumps

☑ Industrial pH & Conductivity Equipment

DATA ACQUISITION

☑ Data Acquisition & Engineering Software

☐ Communications-Based Acquisition Systems

Plug-in Cards for Apple, IBM & Compatibles

☑ Data Logging Systems

☑ Recorders, Printers & Plotters

HEATERS

☑ Heating Cable

☑ Cartridge & Strip Heaters

☑ Immersion & Band Heaters

Flexible Heaters

☑ Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

☑ Refractometers

Pumps & Tubing

Air, Soil & Water Monitors

☑ Industrial Water & Wastewater Treatment