AL/2021(2022)/10/S-II

සියලු ම හිමිකම් ඇවිරිණි / (භුගූට යුණිට්ටුfිකරුටුකෙට යුණු/All Rights Reserved]

ශී ලංකා විභාග දෙපාර්තමේන්තුව ශී ලංකා විභාග දෙපාර්තමේන්තුව ලින්න දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව ශී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கை**, Still **நடிமைத்** திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் ශී ලංකා විභාග අදපාර්තමේන්තුව ශි ලංකා විභාග අදපාර්තමේන්තුව ලින්නුව ලෙන විභාග දෙපාර්තමේන්තුව ලින්නුව ලින්නුව ලින්නුව ලින්නුව ලින්නුව ලින්නුව ලින්නුව ලින්නුව ලෙන විභාග දෙපාර්තමේන්තුව ලෙන විභාග දෙපාර්තමේන්තුව ලින්නුව ලෙන විභාග දෙපාර්තමේන්තුව ලෙන විභාග දෙපාර්තමේන්තුව ලින්නුව ලින්නුව ලෙන විභාග දෙපාර්තමේන්තුව ලෙන විභාග දෙපාර්තමේන්තුව ලින්නුව ලෙන විභාග දෙපාර්තමේන්තුව ලෙන දෙපාර ලෙන්නුව ලෙන දෙපාර්තමේන්තුව ලෙන දෙපාර්තමේන්තුව ලෙන දෙපාර්තමේන්තුව ලෙන දෙපාර්තමේන්තුව ලෙන දෙපාර්තමේන්තුව ලෙන දෙපාර ලෙන්නුව ලෙන දෙ

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහ්ඛාධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

සංයුක්ත ගණිතය II இணைந்த கணிதம் **II** Combined Mathematics **II**

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අ**මතර කියවීම් කාලය** - **මිනිත්තු 10** යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

	1			\neg
විභාග අංකය				

උපදෙස්:

💥 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

 ${f A}$ කොටස (පුශ්න 1 - 10) සහ ${f B}$ කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

🔆 B කොටස:

පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය**, B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- * මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය II		
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
\mathbf{A}	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

	එකතු ව
ඉලක්කමෙන්	
අකුරිත්	

_		සංකේත අංක	_
උත්තර පතු පරීක්ෂ	ක		
පරීක්ෂා කලේ:	1 2		
අධීක්ෂණය කළේ:			

	A කොටස
1.	ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය $2m$ වූ Q අංශුවක් සුමට තිරස් මේසයක් මත එකම සරල රේඛාවෑ
	දිගේ පිළිවෙළින් $4u$ හා u චේගවලින් එකිනෙක දෙසට චලනය වෙමින් සරල ලෙස
	ගැවේ. P හා Q අතර පුතාාගති සංගුණකය $\frac{4}{5}$ වේ. ගැටුමෙන් පසු P හා Q අංශු $\stackrel{\longleftarrow}{m}$ $\stackrel{4u}{\longleftarrow}$ $\stackrel{u}{\longleftarrow}$
	එකිනෙකට පුතිවිරුද්ධ දිශාවලට චලනය වන බව පෙන්වන්න.
	ගැටුමෙන් පසු P හා Q එකිනෙකට a දුරකින් පිහිටීම සඳහා ගතවන කාලය සොයන්න.
•	රූපයේ දැක්වෙන පරිදි, තිරස් ගෙබිමක සිට a සිරස් දුරකින් වූ O ලක්ෂායක \sqrt{ga}
	සිට \sqrt{ga} ආරම්භක පුවේගයකින් හා තිරසට $\alpha\left(0<\alpha<\frac{\pi}{2}\right)$ කෝණයකින් $\uparrow o$
	අංශුවක් පුක්ෂේප කරනු ලැබේ. අංශුව, O සිට a තිරස් දුරකින් ගෙබීම හා ගැටේ.
	$ an \ a = 1 + \sqrt{2}$ බව පෙන්වන්න.
	$-\frac{\sqrt{a}}{\sqrt{a}}$

	••
	•••••
	••••••

3.	සුමට තිරස් මේසයක් මත ස්කන්ධය m වූ P අංශුවක් තබා, එය මේසයේ දාරයෙහි වූ A ලක්ෂායෙහි ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක් මගින් සුමට සැහැල්ලු Q කප්පියකට සම්බන්ධ කර ඇත. රූපයේ පෙන්වා
	ඇති පරිදි, Q කප්පිය මතින් යන සැහැල්ලු අවිතනෳ තන්තුවකින් ස්කන්ධ $2m$ හා $\bigcirc Q$
	3 <i>m</i> වන අංශු සම්බන්ධ කර ඇත. අංශු හා තන්තු සිරස් තලයක පිහිටයි. තන්තු තදව
	ඇතිව පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. $m{Q}$ හි ත්වරණය නිර්ණය කිරීමට
	පුමාණවත් සමීකරණ ලබාගන්න. (2m)
	3w
4.	
	ත්වරණයකින් ගමන් කරයි. එහි චලිතයට R N නියත පුතිරෝධයක් ඇත. එහි වේගය $36~{ m km}~{ m h}^{-1}$ සිට $72~{ m km}~{ m h}^{-1}$
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	ත්වරණයකින් ගමන් කරයි. එහි චලිතයට K N නියත පුතිටොධයක් ඇති. එහි වෙගය 50 km h සිය 72 km k දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර 500 m වේ. එහි වේගය 54 km h ව වන විටදී කාරය යෙදූ ජවය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබාගන්න.
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය
	දක්වා වැඩි කිරීමට කාරය ගමන් කළ දුර $500~\mathrm{m}$ වේ. එහි වේගය $54~\mathrm{km}~\mathrm{h}^{-1}$ වන විටදී කාරය යෙදූ පවය

	දිග $2a$ වූ සැහැල්ලු අවිතනාෳ තන්තුවක එක කෙළවරක් සුමට තිරස් A
	මේසයක සිට a සිරස් දුරක් ඉහළින් වූ A අවල ලක්ෂායකට ඇදා ඇත. a a a a
	තන්තුවේ අනෙක් කෙළවරට ඇඳා ඇති ස්කන්ධය m වූ P අංශුවක්,
	තන්තුව තදව ඇතිව $\sqrt{rac{ga}{2}}$ ඒකාකාර වේගයෙන් තිරස් වෘත්තයක මේසය $_$
	මත චලනය වේ (රූපය බලන්න). මේසය මගින් P මත ඇති කරන අභිලම්බ පුතිකිුයාවේ විශාලත්වය $rac{5}{6}$ mg බැපෙන්වන්න.
ó.	සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙළින
	$2\mathbf{i}-3\mathbf{j}$ හා $\mathbf{i}-2\mathbf{j}$ වේ. $\overrightarrow{AO}\cdot\overrightarrow{AB}$ භාවිතයෙන්, $O\widehat{AB}$ සොයන්න.
	C යනු OA මත $O\hat{C}B = \frac{\pi}{2}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු. \overrightarrow{OC} සොයන්න.

7.	දිග $8a$ හා බර W වූ AB ඒකාකාර දණ්ඩක, එහි A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දිග $4a$ වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් දණ්ඩ මත $AC=3a$ වන පරිදි වූ C ලක්ෂායට ඇදා ඇති අතර අනෙක් කෙළවර A ට සිරස්ව ඉහළින් $AD=5a$ වන පරිදි වූ D අවල ලක්ෂායකට ඇදා ඇත (රූපය බලන්න). දණ්ඩ සමතුලිතතාවයේ පවතී. තන්තුවේ ආතතිය $\frac{16}{15}W$ බව පෙන්වන්න. A හි පුතිකියාවේ තිරස් සංරචකය ද සොයන්න.
8.	තිරසට $\frac{\pi}{4}$ කෝණයකින් ආනත රළු නලයක් මත ස්කන්ධය m වූ P අංශුවක් තබා ඇත. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇදා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී. $\frac{1}{2\sqrt{2}} \le \lambda \le \frac{3}{2\sqrt{2}}$ බව පෙන්වන්න. (අදාළ බල රූපයෙහි ලකුණු කර ඇත.)
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.
8.	තබා ඇති. රූපයෙහි දක්වා ඇති පරිදි, ආනත තලයේ දාරයට A හි දී සවිකර ඇති අචල කුඩා සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් P අංශුවට ද අනෙක් කෙළවර ස්කන්ධය λ mg වූ Q අංශුවකට ද ඇඳා ඇත. P අංශුව හා ආනත තලය අතර සර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. PA රේඛාව, ආනත තලයේ උපරිම බෑවුම් රේඛාවක් වන අතර තන්තුව තදව ඇතිව P හා Q අංශු දෙක සමතුලිතතාවයේ පවතී.

$P(B)=rac{3}{4}$ බව දී ඇත. $Pig(A\cup Big)$, $Pig(Aig A\cup Big)$ හා $Pig(Big A'ig)$ සොයන්න; මෙහි A' මගින් A හි අනුළු සිද්ධිය දැක්වේ.
•••••••••••••••••••••••••••••••••••••••
••••••
•••••••••••••••••••••••••••••••••••••••
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධානනාය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ මධාෘස්ථය, මාතයන්ගෙන් වෙනස් වේ නම්, නිරීක්ෂණ පහ සොයන්න.
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෳය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෳය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෘය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ
ධන නිඛිලමය නිරීක්ෂණ පහක කුලකයක මධාෘනාෳය 6 ද පරාසය 10 ද වේ. එයට මාතයන් දෙකක් අ

සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

සංයුක්ත ගණිතය

 \mathbf{II} II

Combined Mathematics

இணைந்த கணிதம்

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

- 11.(a) P අංශුවක් O ලක්ෂායක සිට සිරස්ව උඩු අතට u m s^{-1} පුවේගයකින් පුක්ෂේප කරනු ලැබ තත්පර 4 කට පසුව A ලක්ෂායක් වෙත ළඟා වන අතර, තවත් තත්පර 2 කට පසුව නැවත A වෙත පැමිණෙයි. P අංශුව දෙවනවරට A හි ඇති මොහොතේදී තවත් Q අංශුවක් O හි සිට සිරස්ව උඩු අතට එම $u \; {
 m m \; s^{-1}}$ පුවේගයෙන්ම පුක්ෂේප කරනු ලැබේ. එකම රූපසටහනක, P හා Q හි චලිත සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන් අඳින්න.
 - **ඒ නයින්**, g ඇසුරෙන් u හි අගය ද OA හි උස ද, P සමග ගැටීමට Q ගන්නා කාලය ද සොයන්න.
 - (b) S නැවක් පොළොවට සාපේක්ෂව u km h^{-1} ඒකාකාර වේගයෙන් උතුරු දෙසට යාතුා කරයි. එක්තරා මොහොතකදී, S වලින් d km දුරක් නැගෙනහිරින් P බෝට්ටුවක් පිහිටන අතර S වලින් $\sqrt{3} \ d$ km දුරක් දකුණෙන් වෙනත් Q බෝට්ටුවක් පිහිටයි. P බෝට්ටුව, පොළොවට සාපේක්ෂව $2u~{
 m km}\,{
 m h}^{-1}$ ක ඒකාකාර වේගයෙන් සරල රේඛීය පෙතක, S අල්ලා ගැනීමේ අපේක්ෂාවෙන් ගමන් කරන අතර $oldsymbol{Q}$ බෝට්ටුව පොළොවට සාපේක්ෂව $3u~{
 m km}~{
 m h}^{-1}$ ඒකාකාර වේගයෙන් සරල රේඛීය පෙතක P අල්ලා ගැනීමේ අපේක්ෂාවෙන් ගමන් කරයි.
 - (i) P බෝට්ටුවට, S නැව අල්ලා ගැනීමට ගතවන කාලය $\frac{d}{\sqrt{3}}$ h බව ද
 - (ii) Q බෝට්ටුව P බෝට්ටුව අල්ලා ගැනීමට පෙර P බෝට්ටුව S නැව අල්ලා ගන්නා බව ද පෙන්වන්න.
- 12.(a) රූපයෙහි ABC සමපාද තිුකෝණය, AB=BC=AC=6a ද වන, BC අඩංගු මුහුණත සුමට තිරස් ගෙබිමක් මත තබන ලද ස්කන්ධය 3*m* වන සුමට ඒකාකාර කුඤ්ඤයක ගුරුත්ව කේන්දුය තුළින් වූ සිරස් හරස්කඩ වේ. ABහා AC රේඛා, ඒවා අඩංගු මුහුණත්වල උපරිම බෑවුම් රේඛා වේ. D ලක්ෂාය, AD තිරස් වන පරිදි ABC තලයෙහි කුඤ්ඤයෙහි B ලක්ෂායෙහි සිට a දුරකින් වූ සිරස් බිත්තිය මත වූ අචල ලක්ෂායකි. A හි සවිකර ඇති කුඩා සුමට කප්පියක් මතින් යන දිග 5a වූ සැහැල්ලු අවිතන ${f x}$ තන්තුවක එක් කෙළවරක් AC මත තැබූ ස්කන්ධය 2m වූ P අංශුවකට ඇඳා ඇති අතර අනෙක් කෙළවර බිත්තිය මත

වූ අචල D ලක්ෂායට සවිකර ඇත. ස්කන්ධය m වූ Q අංශුවක් AB මත අල්වා තබා ඇත. රූපයේ දැක්වෙන පරිදි, AP=AQ=a ලෙස ඇතිව, පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. කුඤ්ඤය බිත්තියෙහි ගැටෙන මොහොතෙහිදී කුඤ්ඤයට සාපේක්ෂව $oldsymbol{Q}$ හි පුචේගය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබාගත්ත.

(b) රූපයේ දැක්වෙන පරිදි, ABCDEF තුනී කම්බියක් සිරස් කලයක සවි කර ඇත. ABC කොටස, කේන්දුය O හා අරය a වූ තුනී **සූමට** අර්ධ වෘත්තාකාර කම්බියක් වේ. CD කොටස, දිග a වූ තුනී **ජූමට** අර්ධ වෘත්තාකාර කම්බියක් වේ. AC හා DF විෂ්කම්හ සිරස් වේ. ස්කන්ධය m වූ කුඩා සුමට P පබලුවක් A හි නබා තිරස්ව u (>3 \sqrt{ag}) පුවේගයක් දෙනු ලබන අතර එය කම්බිය දිගේ චලිතය ආරම්භ කරයි. පබලුවෙහි C සිට D දක්වා චලිතය තුළ පබලුව මත කම්බිය මගින් ඇති කරන සර්ෂණ බලයේ විශාලත්වය $\frac{1}{2}mg$ බව දී ඇත. P පබලුවෙහි A සිට C දක්වා චලිතය තුළ \overrightarrow{OA} සමග θ ($0 \le \theta \le \pi$) කෝණයක් \overrightarrow{OP} සාදන විට එහි v වේගය $v^2 = u^2 - 2ag(1 - \cos\theta)$ මගින් දෙනු ලබන බව පෙන්වන්න.

F හිදී කම්බිය හැරයාමට මොහොතකට පෙර P පබලුවේ w වේගය $w^2=u^2-9ag$ මගින් දෙනු ලබන බව පෙන්වා, එම මොහොතේදී කම්බිය මගින් P පබලුව මත ඇති කරන පුතිකිුයාව සොයන්න.

13. ස්වභාවික දිග 4a වූ සැහැල්ලු පුතාාස්ථ තන්තුවක එක් කෙළවරක් අචල O ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇඳා ඇත. අංශුව O ට 5a දුරක් පහළින් සමතුලිතතාවයේ එල්ලෙයි. තන්තුවේ පුතාාස්ථතා මාපාංකය 4mg බව පෙන්වන්න.

දැන්, ස්කන්ධය m වූ වෙනත් Q අංශුවක් සිරස්ව ඉහළට ගමන් කර P සමග ගැටී හාවී R සංයුක්ත අංශුවක් සාදයි. P අංශුව සමග ගැටීමට මොහොතකට පෙර Q අංශුවේ වේගය $\sqrt{2kga}$ වේ. R චලිකවීමට පටන් ගන්නා පුවේගය සොයන්න. තන්තුව නොබුරුල්ව ඇතිව පසුව සිදුවන චලිකයේදී R සංයුක්ත අංශුවට O සිට දුර වන x යන්න $\ddot{x} + \frac{g}{2a}(x-6a) = 0$ සමීකරණය තෘප්ත කරන බව පෙන්වන්න. X = x - 6a ලෙස ලියමින්, $\ddot{X} + \omega^2 X = 0$ බව පෙන්වන්න; මෙහි $\omega = \sqrt{\frac{g}{2a}}$ වේ. ඉහත සරල අනුවර්තී චලිකයේ කේන්දය ද, $\ddot{X}^2 = \omega^2(c^2 - X^2)$ සූතුය භාවිතයෙන් c විස්තාරය ද සොයන්න.

/ අපුතාහස්ථ ගෙබිම

 $\frac{15a}{2}$

k>3 නම් තන්තුව බුරුල් වන බව පෙන්වන්න.

දැන්, k=8 යැයි ගනිමු. P හා Q අංශු හාවූ මොහොතේ සිට O ලක්ෂායට $\frac{15}{2}a$ දුරක් පහළින් වූ **අපුතනස්ථ** තී්රස් ගෙවීමක ගැටීමට R සංයුක්ත අංශුව ගන්නා කාලය සොයන්න.

R සංයුක්ත අංශුව ගෙබිම සමග ගැටුණු පසු ළඟා වන උපරිම උස ද සොයන්න.

14.(a) **a** හා **b** ශුනාා නොවන හා සමාන්තර නොවන දෛශික යැයි ද $\lambda, \mu \in \mathbb{R}$ යැයි ද ගනිමු. $\lambda \mathbf{a} + \mu \mathbf{b} = \mathbf{0}$ නම්, $\lambda = 0$ හා $\mu = 0$ බව පෙන්වන්න.

ABC තිුකෝණයක් යැයි ගනිමු. AB හි මධා ලක්ෂාය D ද CD හි මධා ලක්ෂාය E ද වේ. AE (දික්කළ) හා BC රේඛා F හි දී හමුවේ. $\overrightarrow{AB} = \mathbf{a}$ හා $\overrightarrow{AC} = \mathbf{b}$ යැයි ගනිමු. තිකෝණ ආකලන නියමය භාවිතයෙන් $\overrightarrow{AE} = \frac{\mathbf{a} + 2\mathbf{b}}{A}$ බව පෙන්වන්න.

 $\overrightarrow{AF}=lpha\overrightarrow{AE}$ හා $\overrightarrow{CF}=eta\overrightarrow{CB}$ වන්නේ ඇයි දැයි පැහැදිලි කරන්න; මෙහි $lpha,eta\in\mathbb{R}$ වේ.

ACF තිකෝණය සැලකීමෙන් $(\alpha-4\beta)\mathbf{a}+2(\alpha+2\beta-2)\mathbf{b}=\mathbf{0}$ බව පෙන්වන්න.

ඒ නයින්, lpha හා eta හි අගයන් සොයන්න.

(b) ABC යනු පැත්තක දිග 2a වූ සමපාද තිකෝණයක් යැයි ද D,E,F යනු පිළිවෙළින් $\overrightarrow{AB},\overrightarrow{BC}$ හා \overrightarrow{AC} හි මධා ලක්ෂා යැයි ද ගනිමු. විශාලත්ව $2P,\sqrt{3}P,2\sqrt{3}P$ හා αP වූ බල පිළිවෙළින් $\overrightarrow{AB},\overrightarrow{AE},\overrightarrow{DC}$ හා \overrightarrow{BC} දිගේ කියාකරයි. මෙම බල පද්ධතියේ සම්පුයුක්තය, \overrightarrow{AC} ව සමාන්තරව කියාකරන බව දී ඇත. α හි අගය සොයන්න.

බල පද්ධතිය, A හරහා කියාකරන විශාලත්වය R වූ තනි බලයකට හා විශාලත්වය G වූ යුග්මයක් සමගින් තුලා වේ. R හා G හි අගයන් සොයන්න.

මෙම බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව ලියා දක්වා

සම්පුයුක්තයේ කිුිිිිිිිිිිි රේඛාව AB හමුවන ලක්ෂායට A හි සිට ඇති දුර සොයන්න.

දැන්, විශාලත්වය H වූ යුග්මයක් පද්ධතියට එකතු කරනු ලැබේ. මෙම අලුත් පද්ධතියේ සම්පුයුක්තය B ලක්ෂා හරහා කිුයාකරයි. H හි අගය හා මෙම යුග්මය කිුයාකරන අත සොයන්න.

15.(a) එක එකෙහි දිග 2a වන AB හා BC ඒකාකාර දඬු දෙකක් B අන්තයේදී සුමට ලෙස සන්ධි කර ඇත. AB හා BC දඬුවල බර පිළිවෙළින් W හා 2W වේ. A කෙළවර තිරස් ගෙබීමක් මත අචල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. $AD = \frac{a}{2}$ වන පරිදි AB දණ්ඩ මත වූ D ලක්ෂායට බර W වූ අංශුවක් සවී කර ඇත. රූපයේ දැක්වෙන පරිදි, පද්ධතිය සිරස් තලයක සමතුලිතව ඇත්තේ $B\hat{A}C = \theta$ ද BC දණ්ඩ C කෙළවර ඉහත තිරස් ගෙබීමෙහි රළු කොටසක ද තිබෙන පරිදි ය. BC දණ්ඩ හා ගෙබීම අතර සර්ෂණ සංගුණකය μ වේ. $\cot\theta \leq \frac{15}{7}\mu$ බව පෙන්වන්න. CB මහින් AB මත B සන්ධියෙහි දී ඇති කරන පුතිකියාව ද සොයන්න.

(b) රූපයේ දැක්වෙන රාමු සැකිල්ල, ඒවායේ අන්තවලදී සුමට ලෙස සන්ධි කළ සමාන දිගින් යුත් AB, BC, CD, DA හා DB සැහැල්ලු දඬු පහකින් සමන්විත වේ. W භාරයක් D සන්ධියෙන් එල්ලා ඇති අතර රාමු සැකිල්ල A හි දී අවල ලක්ෂායකට සුමට ලෙස සන්ධි කර සිරස් තලයක BD සිරස්ව සමතුලිතව තබා ඇත්තේ එයට C සන්ධියෙහි දී CD දණ්ඩට ලම්බව රූපයෙහි පෙන්වා ඇති දිශාවට යෙදූ P බලයක් මගිනි.

- (i) P හි අගය සොයන්න.
- (ii) බෝ අංකනය භාවිතයෙන්, C,B හා D සන්ධි සඳහා පුතාහබල සටහනක් අඳින්න. ඒ නයින්, දඬුවල පුතාහබල ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් ඒවා සොයන්න.

- ${f 16.}$ (i) අරය a වූ අර්ධ වෘත්තාකාර චාපයක හැඩයෙන් යුත් තුනී ඒකාකාර කම්බියක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{2a}{\pi}$ දුරකින් ද,
 - (ii) උස h වූ ඒකාකාර කුහර ඍජු වෘත්තාකාර කේතුවක ස්කන්ධ කේන්දුය එහි පතුලේ කේන්දුයේ සිට $\frac{1}{3}h$ දූරකින් ද,

පිහිටන බව පෙන්වන්න.

රූපයේ දැක්වෙන පරිදි, උඩත් හා යටත් වෘත්තාකාර ගැටීවල අරයන් පිළිවෙළින් 2aහා a වූ ද උස $rac{4a}{3}$ වූ ද කුහර සෘජු වෘත්තාකාර කේතු ජින්නකයක හැඩයෙන් යුත් ඒකාකාර තුනී ක්බොලකට, පහත දැක්වෙන කොටස් එක එකක් මෙම කබොල හමුවන ස්ථානවලදී දෘඪ ලෙස සවි කිරීමෙන් බාල්දියක් සාදා ඇත.

- ullet අරය a හා කේන්දුය O වූ ඒකාකාර තුනී වෘත්තාකාර තැටියක්,
- ullet අරය a හා උස $rac{2a}{3}$ වූ කුහර ඍජු වෘත්තාකාර සිලින්ඩරයක හැඩයෙන් යුත් ඒකාකාර තුනී කබොලක්,
- ullet අරය 2a හා කේන්දුය C වූ අර්ධ වෘත්තයක හැඩයෙන් යුත් ඒකාකාර තුනී කම්බියක්

බාල්දියෙහි ස්කන්ධ කේන්දුයට O සිට දුර $(10\pi+27)rac{a}{9\pi}$ බව පෙන්වන්න.

කම්බිය, ජිත්නකයේ උඩත් ගැටිය හමුවන A ලක්ෂායෙන් බාල්දිය සිරස් තන්තුවකින් නිදහසේ එල්ලනු ලැබූ විට සමතුලිත පිහිටීමේදී OC යටි අත් සිරස සමග සාදන කෝණය සොයන්න.

- (i) රතු පාට බෝල දෙකක් හා සුදු පාට බෝලයක් ඉවතට ගැනීමේ
- (ii) රතු පාට බෝල දෙකක් හා සුදු පාට බෝලයක් ඉවතට ගත් බව දී ඇති විට A පෙට්ටිය තෝරාගෙන තිබීමේ සම්භාවිතාව සොයන්න.
- (b) \overline{x} හා σ_x යනු පිළිවෙළින් $\{x_1,\,x_2,\,\ldots,\,x_n\}$ දත්ත කුලකයේ මධානාය හා සම්මත අපගමනය යැයි ද $i=1,2,\ldots,n$ සඳහා $y_i=rac{x_i-lpha}{eta}$ යැයි ද ගනිමු; මෙහි lpha හා eta (>0) තාත්ත්වික නියත වේ. $\overline{y}=rac{\overline{x}-lpha}{eta}$ හා σ_y = $\frac{\sigma_x}{B}$ බව පෙන්වන්න; මෙහි \overline{y} හා σ_y යනු පිළිවෙළින් $\{y_1,y_2,\dots,y_n\}$ දත්ත කුලකයේ මධානාග හා සම්මත අපගමනය වේ.

සමාගමක සේවකයින් 100 දෙනකුගේ රක්ෂණ සැලැස්මක් සඳහා මාසික වාරික පහත සංඛාාත වගුවෙන් දෙනු ලැබේ.

මාසික චාරිකය (රුපියල්) x	සේවකයින් ගණන
1500 – 3500	30
3500 - 5500	40
5500 – 7500	20
7500 – 9500	10

 $y = \frac{x - 500}{1000}$ පරිණාමනය භාවිතයෙන්, y හි මධානාසය හා සම්මත අපගමනය ද, $\frac{3$ (මධානාස – මධාස්ථය) සම්මත අපගමනය

 $\overline{2a}$

මගින් අර්ථ දැක්වෙන y හි කුටිකතා සංගුණකය ද නිමානය කරන්න.

ඒ නයින්, x හි මධානාය, සම්මත අපගමනය හා කුටිකතා සංගුණකය නිමානය කරන්න.