Quantum Computation and Quantum Information-Michael A. Nielsen and Isaac L. Chuang

Chapter 2. Introduction to Quantum Mechanics
Selected Problems Set-I

Exercises: 2.16, 2.60, 2.67, 2.73, 2.78, 2.80, 2.81, 2.82

Problems: 1, 2 and 3

2.16) Show that any linear operator P defined on a vector space V is a projector if and only if $P^2 = P$.

Solution:

$$P \text{ is a projector} \Rightarrow P^2 = P$$
:

Suppose W is the k-dimensional vector subspace of the d-dimensional vector space V. Using the Gram-Schmidt procedure it is possible to construct an orthonormal basis $|1\rangle, |2\rangle, \ldots, |d\rangle$ for V such that $|1\rangle, |2\rangle, \ldots, |k\rangle$ is an orthonormal basis for W. By definition,

$$P \equiv \sum_{i=1}^{k} |i\rangle\langle i| \tag{1}$$

is a projector onto the subspace *W*.

$$P^{2} = \left(\sum_{i=1}^{k} |i\rangle\langle i|\right) \left(\sum_{j=1}^{k} |i\rangle\langle i|\right)$$

$$\Rightarrow P^{2} = \sum_{i,j=1}^{k} |i\rangle\underbrace{\langle i|j\rangle}_{0 \text{ for } i\neq j}\langle j|$$

We see that $|i\rangle$ and $|j\rangle$ being orthonormal results to $\langle i|j\rangle = 0$ for $i \neq j$ and $\langle i|j\rangle = 1$ for i = j. Hence,

$$\Rightarrow P^2 = \sum_{i,j=1}^k |i\rangle\langle i|j\rangle\langle j| = \sum_{i,j=1}^k |i\rangle\langle j|\delta_{ij} = \sum_{i=1}^k |i\rangle\langle i| = P \quad \Rightarrow \quad P^2 = P$$

$$P^2 = P \Rightarrow P$$
 is a projector:

It is given that $P: V \to V$ is a linear operator defined on the vector space V such that $P = P^2$. We show that P is a projector by showing:

- *P* is the identity operator on the subspace $U = \operatorname{im}(P)$, i.e. $\forall |u\rangle \in U$, $P|u\rangle = |u\rangle$.
- $V = U \oplus W$, where the subspace $W = \ker(P)$, i.e. $\forall |v\rangle \in V$, $|v\rangle = |u\rangle + |w\rangle$, where $|u\rangle = P|v\rangle$ and $|w\rangle = (I P)|v\rangle$ and $|u\rangle \in U$, $|w\rangle \in W$.
- a) First, we show that the operator P is an identity matrix on the subspace U. U is the image of P which is defined as

$$\operatorname{im}(P) = U = \left\{ |u\rangle \in V \middle| P|v\rangle = |u\rangle \text{ for some } |v\rangle \in V \right\}$$

Suppose the vector space V is spanned by the orthonormal basis $\{|v_1\rangle, |v_2\rangle, ..., |v_d\rangle\}$. Using the Gram-Schmidt procedure we can produce the orthonormal basis $\{|x_1\rangle, |x_2\rangle, ..., |x_k\rangle\}$ that

spans the subspace U. It is given that $P = P^2$. So, for some $|u\rangle \in U$ (and some $|v\rangle \in V$) we have $P|u\rangle = P(P|v\rangle) = P^2|v\rangle = P|v\rangle = |u\rangle$.

Hence

$$P|u\rangle = |u\rangle \quad \Rightarrow \quad P|u\rangle = \sum_{i=1}^{k} \langle x_i | u \rangle |x_i\rangle = \sum_{i=1}^{k} |x_i\rangle \langle x_i | u\rangle$$

$$P|u\rangle = \left(\sum_{i=1}^{k} |x_i\rangle \langle x_i|\right) |u\rangle \quad \Rightarrow \quad P \equiv \sum_{i=1}^{k} |x_i\rangle \langle x_i| \underbrace{\qquad \qquad }_{\substack{\text{Completeness} \\ \text{Relation}}} I$$

Hence, P is an identity matrix on the subspace U.

b) Next, we show that any vector $|v\rangle \in V$ can be uniquely decomposed into a sum of the vector $|u\rangle \in U$ and a vector $|w\rangle \in W$. We also show that the set of vectors in the intersection $U \cap W$ is $\{0\}$. W is the kernel of P which is defined as

$$\ker(P) = W = \left\{ |w\rangle \in V \middle| P |w\rangle = 0 \right\}$$

Consider a vector $|x\rangle \in V$. Since it is given that $P^2 = P$, we note that $P|x\rangle = P^2|x\rangle \Rightarrow P(I|x\rangle - P|x\rangle) = |0\rangle \Rightarrow P(|x\rangle - P|x\rangle) = |0\rangle$. Hence, we can define a vector $|w\rangle \in V$ as $|w\rangle = |x\rangle - P|x\rangle$ where $|x\rangle \in V$. Clearly, $|w\rangle$ satisfies $P|w\rangle = 0$. And so we can redefine the subspace $W = \ker(P)$ as

$$\ker(P) = W = \left\{ |w\rangle \in V \,\middle|\, |w\rangle = |x\rangle - P \,|x\rangle \text{ for some } |x\rangle \in V \right\} \tag{2}$$

Therefore, every vector $|x\rangle \in V$ can be decomposed as $|x\rangle = P\,|x\rangle + |x\rangle - P\,|x\rangle$. By definition of U and $W, P\,|x\rangle \in U$ and $(|x\rangle - P\,|x\rangle) \in W$. Next, we show that such a decomposition is unique by showing that $U \cap V = \{0\}$. Consider some $|z\rangle \in U \cap V$. Because $|z\rangle \in U$, $|z\rangle = P\,|v\rangle$ for some $|v\rangle \in V$. Applying P on both sides we get $P\,|z\rangle = P^2\,|z\rangle$. Also, $|z\rangle \in W$. So, $0 = P\,|z\rangle = P^2\,|v\rangle = P\,|v\rangle = |z\rangle$. Hence for some $|z\rangle \in U \cap W$ we have $|z\rangle = 0$. So, $U \cap W = \{\emptyset\}$. Hence,

$$V = U \oplus W$$
 i.e. $V = \operatorname{im}(P) \oplus \ker(P)$ (3)

Therefore, $P: V \to V$ with $P = P^2$ is a projector.

2.60) Show that $\vec{v} \cdot \vec{\sigma}$ has eigenvalues ± 1 , and that the projectors on the corresponding eigenspaces are given by $P_{\pm} = (I \pm \vec{v} \cdot \vec{\sigma})/2$.

Solution:

We use the definition of the Pauli matrices, $\sigma_1, \sigma_2, \sigma_3$. Also, \vec{v} is a unit vector which means $\sqrt{v_1^2 + v_2^2 + v_3^2} = 1$. Let λ be the eigenvalue of $\vec{v} \cdot \vec{\sigma}$.

$$\vec{v} \cdot \vec{\sigma} = v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$|\lambda - \vec{v} \cdot \vec{\sigma}| = 0$$

$$\Rightarrow (\lambda - v_3)(\lambda + v_3) + (iv_2 - v_1)(iv_2 + v_1) = 0$$

$$\Rightarrow \lambda^2 = v_3^2 + v_2^2 + v_1^2 = 1$$

$$\Rightarrow \lambda = \pm 1$$

Let $\lambda_+ = 1$ and $\lambda_- = -1$. And, P_+ be the projector onto the eigenspace of $\vec{v} \cdot \vec{\sigma}$ corresponding to $\lambda_+ = 1$ and P_- be the projector onto the eigenspace of $\vec{v} \cdot \vec{\sigma}$ corresponding to $\lambda_- = -1$. We can see that the observable $\vec{v} \cdot \vec{\sigma}$ is Hermitian.

$$(\vec{v} \cdot \vec{\sigma})^{\dagger} = \left(\begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}' \right)^{\star} = \begin{bmatrix} v_3 & v_1 + iv_2 \\ v_1 - iv_2 & -v_3 \end{bmatrix}^{\star} = \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix} = \vec{v} \cdot \vec{\sigma}$$

Then, we have

$$\vec{v} \cdot \vec{\sigma} = \lambda_+ P_+ + \lambda_- P_- = P_+ - P_- \tag{4}$$

Also, projectors are Hermitian operators, which means they are self adjoint, i.e. $P^{\dagger} = P$. Also, $P^2 = P$. Hence from the completeness relation $\sum P^{\dagger}P = \sum PP = \sum P^2 = \sum P = I$, we have the following.

$$P_+ + P_- = I \tag{5}$$

Solving (2) and (3) we get $P_+ = (I + \vec{v} \cdot \vec{\sigma})/2$ and $P_- = (I - \vec{v} \cdot \vec{\sigma})/2$.

2.67) Suppose V is a Hilbert space with a subspace W. Suppose $U: W \to V$ is a linear operator which preserves inner products, i.e. for any $|w_1\rangle$ and $|w_2\rangle$ in W we have

$$\langle w_1|U^{\dagger}U|w_2\rangle = \langle w_1|w_2\rangle$$

Prove that there exists a Unitary operator $U': V \to V$ which extends U, i.e. $U'|w\rangle = U|w\rangle$ for all $|w\rangle \in W$, where U' is defined in the entire space V.

Solution:

It is given that $W \subset V$ is a subspace of V. Then $V = W \oplus W^{\perp}$, where $W^{\perp} \subset V$ is the orthogonal complement of W. Any vector in $W \subset V$ is orthogonal to a vector in $W^{\perp} \subset V$. Let, the dimension of W, dim W = k, i.e. the subspace W has basis vectors, say $\left\{|w_1\rangle, |w_2\rangle, \dots, |w_k\rangle\right\}$. Then by Gram-Schmidt procedure we can add basis vectors $\left\{|w'_{k+1}\rangle, |w'_{k+2}\rangle, \dots, |w'_{k+m}\rangle\right\} \in W^{\perp}$, such that the basis vectors in the entire space V are $\left\{|w_1\rangle, |w_2\rangle, \dots, |w_k\rangle, |w'_{k+1}\rangle, |w'_{k+2}\rangle, \dots, |w'_{k+m}\rangle\right\}$. (Note that $\dim V = \dim W + \dim W^{\perp}$).

Now, by definition a vector in W is orthogonal to a vector in W^{\perp} . So, we have

$$\left\langle w_i \middle| w'_j \right\rangle = 0$$
 for
$$\begin{cases} i = 1, 2, \dots, k \\ j = k + 1, k + 2, \dots, k + m \end{cases}$$

Next, we see that

$$image(U) = \{U | w \rangle = |u \rangle \in V \mid |w \rangle \in W\}$$

Hence, $|u_i\rangle = U|w_i\rangle \in \operatorname{image}(U), i = 1, ..., k$. Now, the problem tells us that such a U is a linear operator that preserves inner products, i.e. for any $|w_1\rangle$ and $|w_2\rangle \in W$, we have $\langle u_1|u_2\rangle = \langle w_1|U^{\dagger}U|w_2\rangle = \langle w_1|w_2\rangle$. Hence, U preserves orthogonality.

Therefore, using Gram-Schmidt we can extend this for $i=k+1,\ldots,k+m$. We can add vectors $|u'_{k+1}\rangle,|u'_{k+2}\rangle,\ldots,|u'_{k+m}\rangle$ such that $|u'_{i}\rangle\in(\mathrm{image}(U))^{\perp}\subset V, i=k+1,\ldots,k+m$. Also, $\left\langle u_{i}\left|u'_{j}\right\rangle=0$ for $i=1,\ldots,k$ and $j=k+1,\ldots,k+m$. There is a linear map defined in W^{\perp} that maps vectors $|w'_{i}\rangle\in W^{\perp}$ to vectors $|u'_{i}\rangle\in V$.

Next, using $|w_i\rangle$, $|u_i\rangle$, $|w_i'\rangle$, $|u_i'\rangle$ we construct the following matrix.

$$\sum_{i=1}^{k} |u_i\rangle \langle w_i| + \sum_{i=k+1}^{k+m} |u_i'\rangle \langle w_i'|$$
 (6)

We operate the matrix constructed above on a vector $|v\rangle \in V$. We want to see if the matrix defined in (4) sends vectors defined in V to V itself. Since we have considered $V = W \oplus W^{\perp}$, any vector $|v\rangle \in V$ can be uniquely represented as $|v\rangle = \sum_{i=1}^k \alpha_i |w_i\rangle + \sum_{i=k+1}^{k+m} \beta_i |w_i'\rangle$.

$$\left(\sum_{i=1}^{k} |u_{i}\rangle\langle w_{i}| + \sum_{i=k+1}^{k+m} |u'_{i}\rangle\langle w'_{i}|\right) |v\rangle$$

$$= \left(\sum_{i=1}^{k} |u_{i}\rangle\langle w_{i}| + \sum_{i=k+1}^{k+m} |u'_{i}\rangle\langle w'_{i}|\right) \left(\sum_{i=1}^{k} \alpha_{i} |w_{i}\rangle + \sum_{i=k+1}^{k+m} \beta_{i} |w'_{i}\rangle\right)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_{j} |u_{i}\rangle\langle w_{i}|w_{j}\rangle + \sum_{i=1}^{k} \sum_{j=k+1}^{k+m} \beta_{j} |u_{i}\rangle\langle w'_{i}|w_{j}\rangle + \sum_{i=k+1}^{k+m} \sum_{j=k+1}^{k+m} \beta_{j} |u'_{i}\rangle\langle w'_{i}|w_{j}\rangle + \sum_{i=k+1}^{k+m} \sum_{j=k+1}^{k+m} \beta_{j} |u'_{i}\rangle\langle w'_{i}|w_{j}\rangle$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_{j} |u_{i}\rangle\delta_{ij} + \sum_{i=k+1}^{k+m} \sum_{j=k+1}^{k+m} \beta_{j} |u'_{i}\rangle\delta_{ij}$$

$$= \sum_{i=1}^{k} \alpha_{i} |u_{i}\rangle + \sum_{i=k+1}^{k+m} \beta_{i} |u'_{i}\rangle \in V$$

We see that in the four double summation terms above, the second and the third double summation terms vanish because of the fact that $|w_i\rangle \in W$ is orthogonal to $|w_j'\rangle \in W^{\perp}$. So, the matrix $\sum_{i=1}^k |u_i\rangle \langle w_i| + \sum_{i=k+1}^{k+m} |u_i'\rangle \langle w_i'|$ maps a $|v\rangle \in V$ to V. Next, we define this matrix as

$$U' = \sum_{i=1}^{k} |u_i\rangle \langle w_i| + \sum_{i=k+1}^{k+m} |u_i'\rangle \langle w_i'|.$$
 (7)

So, there exists a linear map U' that sends $|v\rangle \in V$ to V.

Next, we want to show that such a linear map defined in the entire space V agrees with

U defined in *W* on any $|w\rangle \in W$, i.e., $U|w\rangle = U'|w\rangle$.

$$U'|w\rangle = \left(\sum_{i=1}^{k} |u_i\rangle \langle w_i| + \sum_{i=k+1}^{k+m} |u_i'\rangle \langle w_i'|\right) |w\rangle$$
$$= \sum_{i=1}^{k} |u_i\rangle \langle w_i|w\rangle + \sum_{i=k+1}^{k+m} |u_i'\rangle \langle w_i'|w\rangle$$

Now, any $|w\rangle \in W$ can be written in terms of its basis vectors $|w_i\rangle$. And because $|w_i'\rangle \in W^{\perp}$ is orthogonal to $|w_i\rangle \in W$, the terms in the second summation evaluate to zero. Hence, we have

$$U'|w\rangle = \sum_{i=1}^{k} |u_i\rangle \langle w_i|w\rangle = \left(\sum_{i=1}^{k} |u_i\rangle \langle w_i|\right) |w\rangle = U|w\rangle \tag{8}$$

where $\sum_{i=1}^{k} |u_i\rangle\langle w_i|$ is the outer product expression for the matrix U defined in the subspace W.

Next, we check that such a U' as defined above is unitary. We want to show that $U'^{\dagger}U' = I$.

$$U'^{\dagger}U' = \left(\sum_{i=1}^{k} |w_i\rangle \langle u_i| + \sum_{i=k+1}^{k+m} \left|w_i'\rangle \langle u_i'\right|\right) \left(\sum_{i=1}^{k} |u_i\rangle \langle w_i| + \sum_{i=k+1}^{k+m} \left|u_i'\rangle \langle w_i'\right|\right)$$

There are double summation terms that involve inner products $\langle u_i|u_i'\rangle$ and $\langle w_i|w_i'\rangle$ which are zero by virtue of orthogonality. The reduced expression reads

$$U'^{\dagger}U' = \sum_{i=1}^{k} \sum_{j=1}^{k} |w_{i}\rangle \langle u_{i}|u_{j}\rangle \langle w_{j}| + \sum_{i=k+1}^{k+m} \sum_{j=k+1}^{k+m} |w'_{i}\rangle \langle u'_{i}|u'_{j}\rangle \langle w'_{j}|$$

$$= \sum_{i=1}^{k} |w_{i}\rangle \langle u_{i}|u_{i}\rangle \langle w_{i}| + \sum_{i=k+1}^{k+m} |w'_{i}\rangle \langle u'_{i}|u'_{i}\rangle \langle w'_{i}|$$

$$= \sum_{i=1}^{k} |w_{i}\rangle \langle w_{i}| + \sum_{i=k+1}^{k+m} |w'_{i}\rangle \langle w'_{i}|$$

$$= I$$

Hence, $U'^{\dagger}U' = I$. Similarly, we can show that $U'U'^{\dagger} = I$. Hence, U' is unitary.

2.73) Let ρ be a density operator. A minimum ensemble is an ensemble $\{p_i, |\psi_i\rangle\}$ containing a number of elements equal to the rank of ρ . Let $|\psi\rangle$ be any vector in the support of ρ . A support for a Hermitian operator is the space spanned by the eigenvectors with non-zero eigenvalues. Show that there is a minimum ensemble for ρ containing $|\psi\rangle$. In any such ensemble $|\psi\rangle$ may appear with a probability

$$p_i = \frac{1}{\left\langle \psi_i \middle| \rho^{-1} \middle| \psi_i \right\rangle}$$

Solution:

Let the dimension for the state space of the entire system be d. Since the density opera-

tor, ρ is positive, it has a spectral decomposition. So, $\rho = \sum_{j=1}^d \lambda_j |x_j\rangle\langle x_j|$, where λ_j 's are the eigenvalues and $|x_j\rangle$'s are the corresponding eigenvectors. The support of ρ is the space spanned by the eigenvectors corresponding to the non-zero eigenvalues. Let the dimension of the support be $k \ (\leq d)$, i.e. the number of $|x_j\rangle$'s spanning the support is k. Hence, the spectral decomposition can be rewritten as $\rho = \sum_{j=1}^k \lambda_j |x_j\rangle\langle x_j|$.

Next, consider a state vector $|\psi_i\rangle$ in the support of ρ . We can write $|\psi_i\rangle$ as a linear combination of $|x_j\rangle$'s since the $|x_j\rangle$'s span the support of ρ . So, $|\psi_i\rangle = \sum_{i=1}^k c_{ij}|x_j\rangle$.

In order to show that there exists a minimal ensemble containing any such $|\psi_i\rangle$ we create an ensemble of states $\{|\psi_i\rangle\}_{i=1}^k$ and show that the density matrix obtained from such a set is equal to the density $\rho = \sum_{j=1}^k \lambda_j |x_j\rangle\langle x_j|$.

Next, ρ when considered as an operator acting on its own support is full rank. This can be inferred from the diagonal representation of $\rho = \sum_{i=1}^k \lambda_i |x_i\rangle \langle x_i|$, where all the $|x_i\rangle$'s are the eigenvectors corresponding to non-zero λ_i 's. Consider a density matrix $\sum_{i=1}^k p_i |\psi_i\rangle \langle \psi_i|$ where p_i is the probability of the states $|\psi_i\rangle$ in the support of ρ . Define a unitary relationship between $|\psi_i\rangle$ and $|\lambda_j\rangle$ as follows:

$$\sqrt{p_i} |\psi_i\rangle = \sum_{j=1}^k \sqrt{\lambda_j} u_{ij} |x_j\rangle$$

where u_{ij} is a unitary matrix of complex numbers with indices i and j. Plugging in the expression for $|\psi_i\rangle$, i.e. $|\psi_i\rangle = \sum_{j=1}^k c_{ij}|x_j\rangle$ in the above expression and comparing term-by-term we have

$$\sqrt{p_{i}} \sum_{j=1}^{k} c_{ij} \left| x_{j} \right\rangle = \sum_{j=1}^{k} \sqrt{\lambda_{j}} u_{ij} \left| x_{j} \right\rangle \Rightarrow \sqrt{p_{i}} c_{ij} = \sqrt{\lambda_{j}} u_{ij} \Rightarrow u_{ij} = \frac{\sqrt{p_{i}} c_{ij}}{\sqrt{\lambda_{j}}}$$

Since u_{ij} are the elements of a unitary matrix, it must satisfy $\sum_{j=1}^{k} |u_{ij}|^2 = 1$. Plugging in the expression for u_{ij} obtained above we have

$$\sum_{j=1}^{k} \frac{p_{i} |c_{ij}|^{2}}{\lambda_{j}} = 1 \Rightarrow p_{i} \sum_{j=1}^{k} \frac{|c_{ij}|^{2}}{\lambda_{j}} = 1 \Rightarrow p_{i} = \frac{1}{\sum_{j=1}^{k} \frac{|c_{ij}|^{2}}{\lambda_{j}}} = \left(\sum_{j=1}^{k} \frac{|c_{ij}|^{2}}{\lambda_{j}}\right)^{-1} \quad (\star)$$

Now, we show that the density matrix $\sum_{i=1}^{k} p_i |\psi_i\rangle \langle \psi_i|$ refer to the same density matrix $\rho = \sum_{i=1}^{k} \lambda_j |x_j\rangle \langle x_j|$.

$$\begin{split} &\sum_{i=1}^{k} p_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right| = \sum_{i=1}^{k} \sqrt{p_{i}} \left| \psi_{i} \right\rangle \sqrt{p_{i}} \left\langle \psi_{i} \right| = \sum_{i=1}^{k} \sum_{j=1}^{k} \sqrt{\lambda_{j}} u_{ij} \left| x_{j} \right\rangle \sum_{j=1}^{k} \sqrt{\lambda_{j}} u_{ji}^{\star} \left\langle x_{j} \right| \\ &= \sum_{i=1}^{k} \sum_{jl} \sqrt{\lambda_{j} \lambda_{l}} u_{ij} u_{li}^{\star} \left| x_{i} \right\rangle \left\langle x_{l} \right| = \sum_{jl} \sqrt{\lambda_{j} \lambda_{l}} \underbrace{\sum_{i=1}^{k} u_{ij} u_{li}^{\star}}_{\delta_{il}} \left| x_{i} \right\rangle \left\langle x_{l} \right| = \sum_{j=1}^{k} \lambda_{j} \left| x_{j} \right\rangle \left\langle x_{j} \right| = \rho \end{split}$$

where $\sum_{i=1}^{k} u_{ij} u_{li}^{\star} = \delta_{jl}$ since u_{ij} is a unitary matrix.

Hence we have shown that $\sum_{i=1}^k p_i |\psi_i\rangle\langle\psi_i| = \rho = \sum_{j=1}^k \lambda_j |x_j\rangle\langle x_j|$. So the sets $\{p_i, |\psi_i\rangle\}_{i=1}^k$ and $\{\lambda_j, |x_j\rangle\}_{j=1}^k$ generate the same density matrix. Therefore, we have shown that we can construct a minimal ensemble $\{p_i, |\psi_i\rangle\}_{i=1}^k$ containing the state $|\psi_i\rangle$ in the support of ρ .

Now, we want to obtain the expression of the probability p_i of the state $|\psi_i\rangle$ in the minimal ensemble we just constructed.

Since ρ is full rank (when acting on its own support), it is invertible, i.e. ρ^{-1} exists. We can also see this from the eigen-decomposition of ρ which is $\sum_{j=1}^k \lambda_j |x_j\rangle \langle x_j|$. Since $\det(\rho) = \lambda_1 \lambda_2 \cdots \lambda_k$ and all the λ_j 's are non-zero, we can see that ρ^{-1} exists. In fact, ρ^{-1} is also Hermitian. This is due to one of the properties of Hermitian matrices which states that the inverse of an invertible Hermitian matrix is Hermitian. Indeed, suppose if A is Hermitian and invertible then $A^{-1}A = AA^{-1} = I$.

Then $I^{\dagger} = I \Rightarrow (AA^{-1})^{\dagger} = AA^{-1} \Rightarrow (A^{-1})^{\dagger}A^{\dagger} = AA^{-1} \Rightarrow (A^{-1})^{\dagger}A^{\dagger} = A^{-1}A \Rightarrow (A^{-1})^{\dagger}A = A^{-1}A$ and hence $(A^{-1})^{\dagger} = A^{-1}$.

Next, the eigenvalues of ρ^{-1} are λ_j^{-1} for $i=1,\ldots,k$ and the eigen-decomposition is $\rho^{-1}=\sum_{j=1}^k\lambda_j^{-1}|x_j\rangle\langle x_j|$. So, ρ^{-1} can be considered as an observable with outcomes λ_j^{-1} in the support of ρ .

Therefore, the probability of $|\psi_j\rangle$ in the minimal ensemble can be obtained as shown below.

$$\langle \psi_i | \rho^{-1} | \psi_i \rangle = \langle \psi_i | \left(\sum_{j=1}^k \lambda_j^{-1} | x_j \rangle \langle x_j | \right) \langle \psi_i | = \sum_{j=1}^k \lambda_j^{-1} \langle \psi_i | x_j \rangle \langle x_j | \psi_i \rangle = \sum_{j=1}^k \lambda_j^{-1} | \langle \psi_i | x_j \rangle |^2$$

Now, from $\psi_i = \sum_{j=1}^k c_{ij} |x_j\rangle$ we have $\langle \psi_i | x_j \rangle = c_{ij}$ and hence

$$\langle \psi_{i} | \rho^{-1} | \psi_{i} \rangle = \sum_{j=1}^{k} \lambda_{j}^{-1} |\langle \psi_{i} | x_{j} \rangle|^{2} = \sum_{j=1}^{k} \lambda_{j}^{-1} |c_{ij}|^{2} = \sum_{j=1}^{k} \frac{|c_{ij}|^{2}}{\lambda_{j}} \underbrace{=}_{\text{From } (\star)} p_{i}^{-1}$$

$$\Rightarrow p_{i} = \left(\langle \psi_{i} | \rho^{-1} | \psi_{i} \rangle \right)^{-1} = \frac{1}{\langle \psi_{i} | \rho^{-1} | \psi_{i} \rangle}$$

2.78) a) Prove that a state $|\psi\rangle$ of a composite system AB is a product state if and only if it has a Schmidt number 1. b) Prove that $|\psi\rangle$ is a product state if and only if ρ_A (and thus ρ_B) are pure states.

Solution:

a) Schmidt Number = 1 \Rightarrow $|\psi\rangle$ is a product state:

It is given that the Schmidt number is 1. So, there exists only one non-zero λ_i such that $|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle = \lambda |i_A\rangle |i_B\rangle$. The condition $\sum_i \lambda_i^2 = 1$ and the fact that there is only one such λ_i implies that $\lambda_i = \lambda = 1$. Hence, $|\psi\rangle = \lambda |i_A\rangle |i_B\rangle = |i_A\rangle |i_B\rangle = |i_A\rangle \otimes |i_B\rangle$.

In addition, we see that

$$\rho_{AB} = |\psi\rangle\langle\psi| = |i_A\rangle\langle i_B\rangle\langle i_A|\langle i_B|. \tag{9}$$

Now, $\rho_A = \operatorname{tr}_B(\rho_{AB}) = \operatorname{tr}_B|i_A\rangle|i_B\rangle\langle i_A|\langle i_B| = |i_A\rangle\langle i_A|\langle i_B|i_B\rangle = |i_A\rangle\langle i_A|$.

Similarly, $\rho_B = \operatorname{tr}_A(\rho_{AB}) = |i_B\rangle\langle i_B|$. We take the (tensor) product of the two density matrices ρ_A and ρ_B .

$$\rho_A \otimes \rho_B = |i_A\rangle \langle i_A| \otimes |i_B\rangle \langle i_B| = |i_A\rangle \otimes |i_B\rangle \langle i_A| \otimes \langle i_B| = |i_A\rangle |i_B\rangle \langle i_A| \langle i_B| = \rho_{AB}$$
 (10)

where we have used the property of tensor products: $(S_1T_1) \otimes (S_2T_2) = (S_1 \otimes S_2)(T_2 \otimes T_2)$.

$|\psi\rangle$ is a product state \Rightarrow Schmidt number = 1:

The Schmidt number is always greater than or equal to 1.

Now, we are given that $|\psi_{AB}\rangle = |\psi_{A}\rangle \otimes |\psi_{B}\rangle$. We assume that the states $|\psi_{A}\rangle$ and $|\psi_{B}\rangle$ are normalized, i.e. they are of unit length. We claim that $|\psi_{AB}\rangle$ is already in the Schmidt decomposed form. This is because $|\psi_{A}\rangle$ and $|\psi_{B}\rangle$ are unit vectors (by assumption). And we can find normalized states $\{|\psi_{A}'\rangle\}$ and $\{|\psi_{B}'\rangle\}$ that are orthogonal to $\{|\psi_{A}\rangle\}$ and $\{|\psi_{B}\rangle\}$ respectively and write the decomposition as $|\psi_{AB}\rangle = |\psi_{A}\rangle \otimes |\psi_{B}\rangle + \sum 0 \cdot |\psi_{A}'\rangle \otimes |\psi_{B}'\rangle$. This shows that the Schmidt number of $|\psi_{AB}\rangle = |\psi_{A}\rangle \otimes |\psi_{B}\rangle$ is 1.

Next, we show that $|\psi\rangle$ is a product state if and only if ρ_A and ρ_B are pure states.

b) $|\psi\rangle$ is a product state $\Rightarrow \rho_A$ and ρ_B are pure states:

 $|\psi\rangle$ is a product state. As shown in part a) of the problem the Schmidt number is equal to 1. Hence, the Schmidt decomposition of $|\psi\rangle$ is $|\psi\rangle = \lambda |i_A\rangle |i_B\rangle$ and because λ must satisfy the condition $\lambda^2 = 1$ and $\lambda \ge 0$, we have $\lambda = 1$. So, $|\psi\rangle = |i_A\rangle |i_B\rangle$. Therefore, the density matrix for $|\psi\rangle$ is $\rho_{AB} = |\psi\rangle \langle \psi| = |i_A i_B\rangle \langle i_A i_B|$. Taking the partial trace with respect to A and B respectively gives us ρ_A and ρ_B .

$$\rho_A = \operatorname{tr}_B \rho_{AB} = \operatorname{tr}_B (|i_A i_B\rangle \langle i_A i_B|) = |i_A\rangle \langle i_A| \operatorname{tr}(|i_B\rangle \langle i_B|) = |i_A\rangle \langle i_A| \langle i_B|i_B\rangle = |i_A\rangle \langle i_A|$$

Taking the trace of ρ_A^2 gives us the following:

$$\operatorname{tr}\left(\rho_{A}^{2}\right)=\operatorname{tr}(\left|i_{A}\right\rangle\left\langle i_{A}\right|i_{A}\rangle\left\langle i_{A}\right|)=\operatorname{tr}(\left|i_{A}\right\rangle\left\langle i_{A}\right|)=\operatorname{tr}\rho_{A}=1$$

Similarly, obtaining ρ_B using $\operatorname{tr}_A \rho_{AB}$ and taking the trace $\operatorname{tr}(\rho_B^2)$ we get $\operatorname{tr}(\rho_B^2) = 1$. Hence, ρ_A and ρ_B are pure states.

ρ_A and ρ_B are pure states $\Rightarrow |\psi\rangle$ is a product state:

Consider the Schmidt decomposition: $|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle$.

Given that ρ_A and ρ_B are pure states, we show that $|\psi\rangle$ is a product state, i.e. the Schmidt decomposition turns out to be $|\psi\rangle = |i_A\rangle |i_B\rangle$. It suffices to show that the Schmidt number of $|\psi\rangle$ is equal to 1. Now, we have $\rho_A = \sum_i \lambda_i^2 |i_A\rangle \langle i_A|$ and $\rho_B = \sum_i \lambda_i^2 |i_B\rangle \langle i_B|$ by taking the partial trace of ρ_{AB} with respect to B and A respectively.

Also,

$$\rho_A^2 = \sum_i \lambda_i^2 \left| i_A \right\rangle \left\langle i_A \right| \sum_i \lambda_i^2 \left| i_A \right\rangle \left\langle i_A \right| = \sum_{ij} \lambda_i^2 \lambda_j^2 \left| i_A \right\rangle \underbrace{\left\langle i_A \right| j_A \right\rangle}_{=\delta_{ii}} \left\langle j_A \right| = \sum_i \lambda_i^4 \left| i_A \right\rangle \left\langle i_A \right|$$

Similarly, $\rho_B^2 = \sum_i \lambda_i^4 |i_B\rangle \langle i_B|$. Since ρ_A and ρ_B are pure states,

$$\begin{split} &\operatorname{tr}\left(\rho_{A}^{2}\right) = \operatorname{tr}\left(\sum_{i}\lambda_{i}^{4}\left|i_{A}\right\rangle\left\langle i_{A}\right|\right) = 1\\ &\operatorname{tr}\left(\rho_{B}^{2}\right) = \operatorname{tr}\left(\sum_{i}\lambda_{i}^{4}\left|i_{B}\right\rangle\left\langle i_{B}\right|\right) = 1 \end{split}$$

Note that $\{|i_A\rangle\}$ and $\{|i_B\rangle\}$ are respectively sets of orthonormal states. By Gram-Schmidt procedure we can extend them to orthonormal basis sets. And hence $\sum_i \lambda_i^4 |i_A\rangle \langle i_A|$ and $\sum_i \lambda_i^4 |i_B\rangle \langle i_B|$ are the diagonal representations of ρ_A^2 and ρ_B^2 respectively. The trace conditions (obtained above) for both of them show that $\sum_i \lambda_i^4 = 1$. Also, since ρ_A and ρ_B are densities, by their expressions obtained from the partial trace of ρ_{AB} we must have $\mathrm{tr}\rho_A = \mathrm{tr}\rho_B = \sum_i \lambda_i^2 = 1$. Hence, λ_i 's must satisfy: $\sum_i \lambda_i^4 = \sum_i \lambda_i^2 = 1$ with the constraint $\lambda_i \geq 0$ (with at least one $\lambda_i > 0$). The only permissible solution is: $\lambda_i = 1$ for some index i and the rest $\lambda_{\neq i} = 0$.

Hence, we have shown that the Schmidt number is 1 and therefore, the Schmidt decomposition of $|\psi\rangle$ turns out to be $|i_A\rangle|i_B\rangle$ which shows that it is a product state.

2.80) Suppose $|\psi\rangle$ and $|\phi\rangle$ are two pure states of a composite quantum system with components A and B, with identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that $|\psi\rangle = (U \otimes V)|\phi\rangle$.

Solution:

We represent the pure states of the composite quantum system AB in their Schmidt decomposition form. The states $|\psi\rangle$ and $|\phi\rangle$ can be written as

$$\begin{aligned} \left| \psi \right\rangle &= \sum_{i} \lambda_{i} \left| x_{i}^{A} \right\rangle \left| x_{i}^{B} \right\rangle \\ \left| \phi \right\rangle &= \sum_{i} \lambda_{i} \left| y_{i}^{A} \right\rangle \left| y_{i}^{B} \right\rangle \end{aligned}$$

The vectors $|x_i^A\rangle$, $|x_i^B\rangle$, $|y_i^A\rangle$, $|y_i^B\rangle$ are orthonormal bases. λ_i is the Schmidt coefficient.

Note: In *Nielsen and Chuang* $|x_i^A\rangle$, $|x_i^B\rangle$, $|y_i^A\rangle$, $|y_i^B\rangle$ have been referred to as orthonormal states. However, it depends on how we choose to see it. If we allow $\lambda_i = 0$ in the expression for Schmidt decomposition, we can refer $|x_i^A\rangle$, $|x_i^B\rangle$, $|y_i^A\rangle$, $|y_i^B\rangle$ as orthonormal bases. The following example explains it further.

For the state $|\psi\rangle = \frac{1}{2}(|00\rangle - |01\rangle - |10\rangle + |11\rangle)$ in the composite system AB we can write $|\psi\rangle$ in the Schmidt decomposition formula as $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |-\rangle|-\rangle$ with a Schmidt coefficient of $\lambda_1 = 1$. However, we can also see it as $|\psi\rangle = 1 \times |-\rangle|-\rangle + 0 \times |+\rangle|+\rangle$. And $|-\rangle\left(=\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right)$ and $|+\rangle = \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right)$ are orthonormal bases for the state space of both A and B.

Next, we define linear maps $U: A \rightarrow A$ and $V: B \rightarrow B$ as follows.

$$U = \sum_{i} \left| x_{i}^{A} \right\rangle \left\langle y_{i}^{A} \right| \quad V = \sum_{i} \left| x_{i}^{B} \right\rangle \left\langle y_{i}^{B} \right|$$

We can check that they are unitary, i.e. they satisfy $U^{\dagger}U = UU^{\dagger} = I$ and $V^{\dagger}V = VV^{\dagger} = I$.

$$U^{\dagger}U = \left(\sum_{i}\left|x_{i}^{A}\right\rangle\left\langle y_{i}^{A}\right|\right)^{\dagger}\left(\sum_{i}\left|x_{i}^{A}\right\rangle\left\langle y_{i}^{A}\right|\right) = \left(\sum_{i}\left|y_{i}^{A}\right\rangle\left\langle x_{i}^{A}\right|\right)\left(\sum_{i}\left|x_{i}^{A}\right\rangle\left\langle y_{i}^{A}\right|\right) = \sum_{ij}\left|y_{i}^{A}\right\rangle\underbrace{\left\langle x_{i}^{A}\left|x_{j}^{A}\right\rangle}_{=\delta_{ij}}\left\langle y_{j}^{A}\right| = \underbrace{\sum_{i}\left|y_{i}^{A}\right\rangle\left\langle y_{i}^{A}\right|}_{=I}$$

Since $|y_i^A\rangle$'s are orthonormal $|y_i^A\rangle\langle y_i^A|$'s are projective measurements and they follow the completeness relation, i.e. $\sum_i |y_i^A\rangle\langle y_i^A| = I$. The same is true for $|x_i^A\rangle$'s.

$$UU^{\dagger} = \left(\sum_{i} \left|x_{i}^{A}\right\rangle \left\langle y_{i}^{A}\right|\right) \left(\sum_{i} \left|x_{i}^{A}\right\rangle \left\langle y_{i}^{A}\right|\right)^{\dagger} = \left(\sum_{i} \left|x_{i}^{A}\right\rangle \left\langle y_{i}^{A}\right|\right) \left(\sum_{i} \left|y_{i}^{A}\right\rangle \left\langle x_{i}^{A}\right|\right) = \sum_{ij} \left|x_{i}^{A}\right\rangle \underbrace{\left\langle y_{i}^{A} \left|y_{j}^{A}\right\rangle \left\langle x_{i}^{A}\right|}_{=\delta_{ij}} = \underbrace{\sum_{i} \left|x_{i}^{A}\right\rangle \left\langle x_{i}^{A}\right|}_{=I}$$

Similarly, we can show that $V = \sum_i |x_i^B\rangle\langle y_i^B|$ satisfies $V^{\dagger}V = VV^{\dagger} = I$. Hence, both U and V are unitary.

Next, we do the following.

$$(U \otimes V) \left| \phi \right\rangle = (U \otimes V) \sum_{i} \lambda_{i} \left| y_{i}^{A} \right\rangle \left| y_{i}^{B} \right\rangle = \sum_{i} \lambda_{i} U \left| y_{i}^{A} \right\rangle \otimes V \left| y_{i}^{B} \right\rangle$$

$$= \sum_{i} \lambda_{i} \underbrace{\left(\sum_{i} \left| x_{i}^{A} \right\rangle \left\langle y_{i}^{A} \right| \right) \left| y_{i}^{A} \right\rangle}_{=\left| x_{i}^{A} \right\rangle} \otimes \underbrace{\left(\sum_{i} \left| x_{i}^{B} \right\rangle \left\langle y_{i}^{B} \right| \right) \left| y_{i}^{B} \right\rangle}_{=\left| x_{i}^{A} \right\rangle} = \sum_{i} \lambda_{i} \left| x_{i}^{A} \right\rangle \left| x_{i}^{B} \right\rangle = \left| \psi \right\rangle$$

Note that $\left(\sum_{i}\left|x_{i}^{A}\right\rangle\left\langle y_{i}^{A}\right|\right)\left|y_{i}^{A}\right\rangle = \sum_{k}\left|x_{k}^{A}\right\rangle\left\langle y_{k}^{A}\right|y_{i}^{A}\right\rangle\delta_{ik} = \left|x_{i}^{A}\right\rangle$ and $\left(\sum_{i}\left|x_{i}^{B}\right\rangle\left\langle y_{i}^{B}\right|\right)\left|y_{i}^{B}\right\rangle = \sum_{k}\left|x_{k}^{B}\right\rangle\left\langle y_{k}^{B}\right|y_{i}^{B}\right\rangle\delta_{ik} = \left|x_{i}^{B}\right\rangle$. Hence, we have shown that there exists unitary transformations U on system A and V on system B such that $|\psi\rangle = (U \otimes V)|\phi\rangle$.

2.81) (**Freedom in purifications**) Let $|AR_1\rangle$ and $|AR_2\rangle$ be two purifications of a state ρ^A to a composite system AR. Prove that there exists a unitary transformation U_R acting on system R such that $|AR_1\rangle = (I_A \otimes U_R)|AR_2\rangle$.

Solution:

It is given that both pure states $|AR_1\rangle$ and $|AR_2\rangle$ are purifications of the impure state ρ^A (in system A). Hence, it must be that

$$\rho^{A} = \operatorname{tr}_{R} |AR_{1}\rangle \langle AR_{1}| = \operatorname{tr}_{R} |AR_{2}\rangle \langle AR_{2}| \tag{11}$$

Suppose the pure states $|AR_1\rangle$ and $|AR_2\rangle$ have Schmidt decomposition: $|AR_1\rangle = \sum_i \lambda_i \left|u_i^A\rangle \left|u_i^R\rangle\right|$ and $|AR_2\rangle = \sum_j \mu_j \left|v_j^A\rangle \left|v_j^A\rangle\right|$. We consider the states $|u_i^A\rangle, |u_i^R\rangle, |v_j^A\rangle, |v_j^A\rangle, |v_j^R\rangle$ to be orthonormal basis in systems A and R. Then the Schmidt number or Schmidt rank is the number of

non-zero λ_i (and μ_i) in the Schmidt decomposition of $|AR_1\rangle$ (and $|AR_2\rangle$). From (11) we have

$$\rho^{A} = \sum_{i} \lambda_{i}^{2} \left| u_{i}^{A} \right\rangle \left\langle u_{i}^{A} \right| = \sum_{j} \mu_{j}^{2} \left| v_{j}^{A} \right\rangle \left\langle v_{j}^{A} \right| \tag{12}$$

The Schmidt coefficients λ_i (and μ_j) are the square root of the eigenvalues of the reduced density matrix (impure state) ρ^A . The eigenvalues (and hence the coefficients) are unique, so for (2) we must have $\lambda_i = \mu_j$. With the assumption that the eigenvalues are non-degenerate, the eigenvectors $|u_i^A\rangle$ and $|v_j^A\rangle$ associated with λ_i and μ_j respectively are also uniquely determined. If $\lambda_i = \mu_j$, then it must be that $|u_i^A\rangle = |v_j^A\rangle$.

Next, we define $U_R = \sum_{i=1}^k |u_i^R\rangle\langle v_i^R|$ where $k = \operatorname{Sch}(AR_1) = \operatorname{Sch}(AR_2)$.

$$(I_A \otimes U_R)|AR_2\rangle = (I_A \otimes U_R) \sum_{j=1}^k \mu_j \left| v_j^A \right\rangle \otimes \left| v_j^R \right\rangle = \sum_{j=1}^k \mu_j I \left| v_j^A \right\rangle \otimes U_R \left| v_j^R \right\rangle = \sum_{j=1}^k \lambda_j \left| u_j^A \right\rangle \left| u_j^A \right\rangle = |AR_1\rangle$$

Hence, $|AR_1\rangle = (I_A \otimes U_R)|AR_2\rangle$.

Note:
$$U_R \left| v_j^R \right\rangle = \left(\sum_{i=1}^k \left| u_i^R \right\rangle \left\langle v_i^R \right| \right) \left| v_j^R \right\rangle = \sum_{i=1}^k \left| u_i^R \right\rangle \left\langle v_i^R \left| v_j^R \right\rangle \delta_{ij} = \left| u_j^R \right\rangle$$
.

- **2.82)** Suppose $\{p_i, |\psi_i\rangle\}$ is an ensemble of states generating a density matrix $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ for a quantum system A. Introduce a system R with an orthonormal basis $|i\rangle$.
- (1) Show that $\sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$ is a purification of ρ .
- (2) Suppose we measure R in the basis $|i\rangle$, obtaining outcome i. With what probability do we obtain the result i, and what is the corresponding state of system A?
- (3) Let $|AR\rangle$ be any purification of ρ to the system AR. Show that there exists an orthonormal basis $|i\rangle$ in which R can be measured such that the corresponding post-measurement state for system A is $|\psi_i\rangle$ with probability p_i .

Solution:

(1) We denote $\sum_{i} \sqrt{p_{i}} |\psi_{i}\rangle |i\rangle$ as $|AR\rangle$. $|\psi_{i}\rangle$ is any state in the system A (not necessarily orthonormal). $|AR\rangle = \sum_{i} \sqrt{p_{i}} |\psi_{i}\rangle |i\rangle$

$$\begin{split} |AR\rangle\langle AR| &= \left(\sum_{i}\sqrt{p_{i}}\left|\psi_{i}\right\rangle|i\rangle\right)\left(\sum_{i}\sqrt{p_{i}}\left|\psi_{i}\right\rangle|i\rangle\right)\\ \Rightarrow |AR\rangle\langle AR| &= \sum_{ij}\sqrt{p_{i}p_{j}}\left|\psi_{i}\right\rangle|i\rangle\langle\psi_{j}|\langle j|\\ \operatorname{tr}_{R}(|AR\rangle\langle AR|) &= \sum_{ij}\sqrt{p_{i}p_{j}}\left|\psi_{i}\right\rangle\langle\psi_{j}|\operatorname{tr}_{R}(|i\rangle\langle j|) = \sum_{ij}\sqrt{p_{i}p_{j}}\left|\psi_{i}\right\rangle\langle\psi_{j}|\langle j|i\rangle = \sum_{ij}\sqrt{p_{i}p_{j}}\left|\psi_{i}\right\rangle\langle\psi_{j}|\delta_{ij}\\ \Rightarrow \operatorname{tr}_{R}(|AR\rangle\langle AR|) &= \sum_{i}p_{i}\left|\psi_{i}\right\rangle\langle\psi_{i}| = \rho \end{split}$$

Hence $\sum_i p_i |\psi_i\rangle |i\rangle$ is a purification of ρ since the partial trace $\operatorname{tr}_R(|AR\rangle\langle AR|)$ gives the density matrix ρ generated by the ensemble of states $\{p_i, |\psi_i\rangle\}$.

(2) We want to obtain the outcome i by measuring system R in the basis $|i\rangle$. To measure in basis $|i\rangle$ means to perform projective measurement using the projectors $|i\rangle\langle i|$. We use the projective operator $I\otimes|i\rangle\langle i|$ in the space of system AR on the state $|AR\rangle=\sum_j\sqrt{p_j}|\psi_j\rangle|j\rangle$ to measure R. The probability of obtaining the outcome i is

$$\begin{split} \left(\sum_{j}\sqrt{p_{j}}\left|\psi_{j}\right\rangle|j\rangle\right)^{\dagger} &\left(I\otimes|i\rangle\langle i|\right) \left(\sum_{j}\sqrt{p_{j}}\left|\psi_{j}\right\rangle|j\rangle\right) \\ &= \left(\sum_{j}\sqrt{p_{j}}\left\langle\psi_{j}\right|\left\langle j\right|\right) \left(I\otimes|i\rangle\langle i|\right) \left(\sum_{j}\sqrt{p_{j}}\left|\psi_{j}\right\rangle|j\rangle\right) \\ &= \left(\sum_{j}\sqrt{p_{j}}\left\langle\psi_{j}\right|\left\langle j\right|\right) \left(\sum_{j}\sqrt{p_{j}}I\left|\psi_{j}\right\rangle\otimes|i\rangle\langle i|j\rangle\delta_{ij}\right) \\ &= \left(\sum_{j}\sqrt{p_{j}}\left\langle\psi_{j}\right|\left\langle j\right|\right) \sqrt{p_{i}}\left|\psi_{i}\right\rangle\otimes|i\rangle = \sum_{j}\sqrt{p_{j}}\sqrt{p_{i}}\left\langle\psi_{j}\middle|\psi_{i}\right\rangle\delta_{ij} = p_{i}\left\langle\psi_{i}\middle|\psi_{i}\right\rangle = p_{i} \end{split}$$

Hence, the probability of obtaining the outcome i by measuring R in the basis $|i\rangle$ is p_i . The post measurement state of the system AR is

$$\frac{\left(I\otimes\left|i\right\rangle\left\langle i\right|\right)\left|AR\right\rangle}{\sqrt{p_{i}}} = \frac{\left(I\otimes\left|i\right\rangle\left\langle i\right|\right)\sum_{j}\sqrt{p_{j}}\left|\psi_{j}\right\rangle\left|j\right\rangle}{\sqrt{p_{i}}} = \frac{\sqrt{p_{i}}\left|\psi_{i}\right\rangle\left|i\right\rangle}{\sqrt{p_{i}}} = \left|\psi_{i}\right\rangle\left|i\right\rangle$$

We see that the corresponding state of system *A* is $|\psi_i\rangle$.

(3) The density matrix generated by the ensemble of states $\left\{p_i, |\psi_i\rangle\right\}$ is $\sum_i p_i |\psi_i\rangle\langle\psi_i|$. We assume the states $|\psi_i\rangle$ to be normalized. However, they are not necessarily orthogonal. $|AR\rangle$ is a purification of ρ to the system AR. Let the orthonormal decomposition of ρ be $\sum_k \mu_k |u_k^A\rangle\langle u_k^A|$. As a consequence of Theorem 2.6 (unitary freedom in the ensemble of density matrices) we can say that $\rho = \sum_k \mu_k |u_k^A\rangle\langle u_k^A| = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ for normalized states $|u_k^A\rangle$ and $|\psi_i\rangle$ if and only if

$$\sqrt{\mu_k} \left| u_k^A \right\rangle = \sum_i v_{ik} \sqrt{p_i} \left| \psi_i \right\rangle$$

where v_{ik} are the entries of a unitary matrix and we can pad the smaller ensemble with zeroes to make the two ensembles the same size.

The Schmidt representation for the pure state $|AR\rangle$ is $\sum_k \sqrt{\mu_k} |u_k^A\rangle |k^R\rangle$ where $|k^R\rangle$ are a set of orthonormal states in system R. Substituting the expression for $\sqrt{\mu_k} |u_k^A\rangle$ we have the following

$$|AR\rangle = \sum_{k} \sqrt{\mu_{k}} \left| u_{k}^{A} \right\rangle \left| k^{R} \right\rangle = \sum_{k} \left(\sum_{i} \sqrt{p_{i}} v_{ik} \left| \psi_{i} \right\rangle \right) \left| k^{R} \right\rangle = \sum_{i} \sum_{k} \sqrt{p_{i}} v_{ik} \left| \psi_{i} \right\rangle \otimes \left| k^{R} \right\rangle = \sum_{i} \sqrt{p_{i}} \left| \psi_{i} \right\rangle \otimes \sum_{k} v_{ik} \left| k^{R} \right\rangle$$

Next, we define $|i\rangle = \sum_k v_{ik} |k^R\rangle$. We can check if $|i\rangle$ (as defined) is orthonormal.

$$\langle j|i\rangle = \left(\sum_{k} v_{jk}^{\star} \left\langle k^{R} \right| \right) \sum_{k} v_{ik} \left| k^{R} \right\rangle = \sum_{lk} v_{jl}^{\star} v_{ik}^{\star} \underbrace{\left\langle l^{R} \middle| k^{R} \right\rangle}_{=\delta_{lk}} = \underbrace{\sum_{l} v_{jl}^{\star} v_{il} = \delta_{ij}}_{\text{due to unitarity of } v_{il}}$$

We see that $|i\rangle = \sum_k v_{ik} |k^R\rangle$ is orthonormal. But it might not be a basis of system R. We can use Gram Schmidt method to extend it to an orthonormal basis for system R. So, there exists an orthonormal basis to measure R such that the corresponding post-measurement state for system A is $|\psi_i\rangle$ with probability p_i .

Problem 2.1: (Functions of Pauli Matrices) Let $f(\cdot)$ be any function from complex numbers to complex numbers. Let \vec{n} be a normalized vector in three dimensions, and let θ be real. Show that

$$f(\theta \vec{n} \cdot \vec{\sigma}) = \frac{f(\theta) + f(-\theta)}{2} I + \frac{f(\theta) - f(-\theta)}{2} \vec{n} \cdot \vec{\sigma}$$
 (13)

Solution: $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ are the Pauli matrices. In Problem 2.60 it was already shown that $\vec{n} \cdot \vec{\sigma} = n_1 \sigma_1 + n_2 \sigma_2 + n_3 \sigma_3$ has eigenvalues ± 1 . Suppose $|v_+\rangle$ and $|v_-\rangle$ are the eigenvectors corresponding to the eigenvalues ± 1 and ± 1 . Then we can write $\vec{n} \cdot \vec{\sigma}$ as

$$\vec{n} \cdot \vec{\sigma} = |v_{+}\rangle \langle v_{+}| - |v_{-}\rangle \langle v_{-}| \tag{14}$$

Also, because $|v_+\rangle\langle v_+|$ and $|v_-\rangle\langle v_-|$ are measurement operators they add up to I.

$$|v_{+}\rangle\langle v_{+}| + |v_{-}\rangle\langle v_{-}| = I \tag{15}$$

Given a function from complex numbers to complex numbers it is possible to define a corresponding operator function. If $A = \sum_a a |a\rangle \langle a|$ is the spectral decomposition of the operator A then $f(A) = \sum_a f(a) |a\rangle \langle a|$. Using this we can proceed with the given problem as shown below.

$$\theta \vec{n} \cdot \vec{\sigma} = \theta |v_{+}\rangle \langle v_{+}| + (-\theta)|v_{-}\rangle \langle v_{-}|$$

$$f(\theta \vec{n} \cdot \vec{\sigma}) = f(\theta)|v_{+}\rangle \langle v_{+}| + f(-\theta)|v_{-}\rangle \langle v_{-}|$$

$$f(\theta \vec{n} \cdot \vec{\sigma}) = \frac{f(\theta) + f(-\theta) - f(-\theta) + f(\theta)}{2} |v_{+}\rangle \langle v_{+}| + \frac{f(-\theta) + f(\theta) - f(\theta) + f(-\theta)}{2} |v_{-}\rangle \langle v_{-}|$$

$$= \frac{f(\theta) + f(-\theta)}{2} |v_{+}\rangle \langle v_{+}| + \frac{f(\theta) - f(-\theta)}{2} |v_{+}\rangle \langle v_{+}| + \frac{f(\theta) + f(-\theta)}{2} |v_{-}\rangle \langle v_{-}| + \frac{f(-\theta) - f(\theta)}{2} |v_{-}\rangle \langle v_{-}|$$

$$= \frac{f(\theta) + f(-\theta)}{2} \left(|v_{+}\rangle \langle v_{+}| + |v_{-}\rangle \langle v_{-}| \right) + \frac{f(\theta) - f(-\theta)}{2} \left(|v_{+}\rangle \langle v_{+}| - |v_{-}\rangle \langle v_{-}| \right)$$

$$\Rightarrow f(\theta \vec{n} \cdot \vec{\sigma}) = \frac{f(\theta) + f(-\theta)}{2} I + \frac{f(\theta) - f(-\theta)}{2} \vec{n} \cdot \vec{\sigma} \quad \text{from (4) and (5)}$$

Problem 2.2: (Properties of the Schmidt Number) Suppose $|\psi\rangle$ is a pure state of a composite system with components A and B.

- (1) Prove that the Schmidt number of $|\psi\rangle$ is the rank of the reduced density matrix $\rho_A = \mathrm{tr}_B |\psi\rangle\langle\psi|$. (Note that the rank of a Hermitian operator is equal to the dimension of its support).
- (2) Suppose $\sum_{j} |\alpha_{j}\rangle |\beta_{j}\rangle$ is a representation for $|\psi\rangle$, where $|\alpha_{j}\rangle$ and $|\beta_{j}\rangle$ are (unnormalized) states for systems *A* and *B*, respectively. Prove that the number of terms in such a decomposition is greater than or equal to the Schmidt number of $|\psi\rangle$, Sch(ψ).
- (3) Suppose $|\psi\rangle = \alpha |\phi\rangle + \beta |\gamma\rangle$. Prove that

$$Sch(\psi) \ge |Sch(\phi) - Sch(\gamma)|$$
 (16)

Solution:

1) Let the Schmidt decomposition of $|\psi\rangle$ be $\sum_i \lambda_i |u_i\rangle |v_i\rangle$, where we consider $|u_i\rangle$ and $|v_i\rangle$ as the orthonormal basis of systems A and B respectively. The Schmidt number is the number of non-zero λ_i 's in the Schmidt decomposition of $|\psi\rangle$. The reduced density matrix obtained by taking the partial trace of $|\psi\rangle\langle\psi|$ with respect to B is $\mathrm{tr}_B |\psi\rangle\langle\psi| = \rho_A = \sum_i \lambda_i^2 |u_i\rangle\langle u_i|$. This is the diagonal representation of ρ_A since $|u_i\rangle$ is an orthonormal basis set in A.

Next, by the Rank-Nullity theorem we see that the rank of ρ_A is the number of non-zero λ_i 's in the expression $\sum_i \lambda_i^2 |u_i\rangle \langle u_i|$. Since this expression is obtained by taking the partial trace of $|\psi\rangle \langle \psi|$ wrt B, it follows that the Schmidt number of $|\psi\rangle$ is the rank of the reduced density density matrix $\rho_A = \mathrm{tr}_B |\psi\rangle \langle \psi|$. And since the support of ρ_A (a Hermitian operator) is the space spanned by its eigenvectors corresponding to non-zero eigenvalues, it follows that the rank of ρ_A is the dimension of its support.

(2) We start with the Schmidt decomposition of $|\psi\rangle$.

 $|\psi\rangle = \sum_{i=1}^{I} \lambda_i |i_A\rangle |i_B\rangle$, where $I = \mathrm{Sch}(\psi) \leq \min(d_A, d_B)$ and $d_A = \dim(A), d_B = \dim(B)$. We know the states $|i_A\rangle$ and $|i_B\rangle$ are orthonormal.

Rewriting the Schmidt decomposition as $|\psi\rangle = \sum_{i=1}^{I} \sqrt{\lambda_i} |i_A\rangle \sqrt{\lambda_i} |i_B\rangle = \sum_{i=1}^{I} |\tilde{i}_A\rangle |\tilde{i}_B\rangle$, we see that the states $|\tilde{i}_A\rangle = \sqrt{\lambda_i} |i_A\rangle$ and $|\tilde{i}_B\rangle = \sqrt{\lambda_i} |i_B\rangle$ are un-normalized states.

Next, we write $|\tilde{i}_B\rangle$ in the standard basis $|k\rangle$ of B: $|\tilde{i}_B\rangle = \sum_{k=1}^{d_B} c_{ik} |k\rangle$. Plugging this in the expression of $|\psi\rangle$ we have

$$\left|\psi\right\rangle = \sum_{i=1}^{I} \left|\tilde{i}_{A}\right\rangle \left|\tilde{i}_{B}\right\rangle = \sum_{i=1}^{I} \left|\tilde{i}_{A}\right\rangle \left(\sum_{k=1}^{d_{B}} c_{ik} \left|k\right\rangle\right) = \underbrace{\sum_{i=1}^{I} \sum_{k=1}^{d_{B}}}_{\substack{\text{Re-index} \\ j=1 \text{ to } Id_{B}}} \underbrace{\left|\tilde{i}_{A}\right\rangle c_{ik} \left|k\right\rangle}_{\left|\beta_{j}\right\rangle} = \underbrace{\sum_{j=1}^{I} \left|\alpha_{j}\right\rangle \left|\beta_{j}\right\rangle}_{\substack{\text{Re-index} \\ \text{of } Id_{B}}}$$

where $|\alpha_j\rangle$ and $|\beta_j\rangle$ are un-normalized.

In the expression $\sum_{j} |\alpha_{j}\rangle |\beta_{j}\rangle$ the number of terms Id_{B} is greater than or equal to $I = Sch(\psi)$.

(3) $|\psi\rangle = \alpha |\phi\rangle + \beta |\gamma\rangle$. Expressing $|\psi\rangle, |\phi\rangle$ and $|\gamma\rangle$ in the standard basis we have

$$\begin{split} \left|\psi\right\rangle &=\alpha\left|\phi\right\rangle +\beta\left|\gamma\right\rangle \\ \Rightarrow \sum_{jk}a_{jk}\left|j\right\rangle \left|k\right\rangle &=\alpha\sum_{jk}b_{jk}\left|j\right\rangle \left|k\right\rangle +\beta\sum_{jk}c_{jk}\left|j\right\rangle \left|k\right\rangle =\sum_{jk}\left(\alpha b_{jk}+\beta c_{jk}\right)\left|j\right\rangle \left|k\right\rangle \end{split}$$

Comparing term by term we have $a_{jk} = \alpha b_{jk} + \beta c_{jk}$. Each of the terms a_{jk}, b_{jk}, c_{jk} are entries of matrices \mathbf{A}, \mathbf{B} and \mathbf{C} respectively. Using singular value decomposition (svd) we have $\mathbf{A} = \mathbf{U}_{\mathbf{A}}\mathbf{D}_{\mathbf{A}}\mathbf{V}_{\mathbf{A}}$ where $\mathbf{D}_{\mathbf{A}}$ is a diagonal matrix with non-negative entries and $\mathbf{U}_{\mathbf{A}}$ and $\mathbf{V}_{\mathbf{A}}$ are unitary matrices. The rank of \mathbf{A} is the number of non-zero entries of $\mathbf{D}_{\mathbf{A}}$. Likewise, we can use svd on \mathbf{B} and \mathbf{C} . From $a_{jk} = \alpha b_{jk} + \beta c_{jk}$ we have $\mathbf{A} = \alpha \mathbf{B} + \beta \mathbf{C}$. One of the classical inequalities in Linear Algebra is the rank-sum inequality that states

$$|\operatorname{rank}(\mathbf{B}) - \operatorname{rank}(\mathbf{C})| \le \operatorname{rank}(\mathbf{B} + \mathbf{C}) \le \operatorname{rank}(\mathbf{B}) + \operatorname{rank}(\mathbf{C})$$

Hence for $\mathbf{A} = \alpha \mathbf{B} + \beta \mathbf{C}$ we have

$$rank(\mathbf{A}) \ge |rank(\mathbf{C})| \tag{17}$$

Now rank(\mathbf{A}) is equal to the rank of $\mathbf{D}_{\mathbf{A}}$, i.e. the diagonal matrix in its singular value decomposition, which in turn is equal to the number of non-zero entries along the diagonal. Hence, rank(\mathbf{A}) = rank($\mathbf{D}_{\mathbf{A}}$) = Sch(ψ). Likewise, rank(\mathbf{B}) = Sch(ϕ) and rank(\mathbf{C}) = Sch(γ). Therefore, from (7) we have

$$Sch(\psi) \ge |Sch(\phi) - Sch(\gamma)|$$

Problem 2.3: (Tsirelson's Inequality) Suppose $\vec{Q} = \vec{q} \cdot \vec{\sigma}$, $\vec{R} = \vec{r} \cdot \vec{\sigma}$, $\vec{S} = \vec{s} \cdot \vec{\sigma}$, $\vec{T} = \vec{t} \cdot \vec{\sigma}$ where $\vec{q}, \vec{r}, \vec{s}, \vec{t}$ are real unit vectors in three dimensions. Show that

$$(Q \otimes S + R \otimes S + R \otimes T - Q \otimes T)^{2} = 4I + [Q, R] \otimes [S, T]$$
(18)

Use this result to prove that

$$\langle Q \otimes S \rangle + \langle R \otimes S \rangle + \langle R \otimes T \rangle - \langle Q \otimes T \rangle \le 2\sqrt{2}$$
 (19)

so the violation of the Bell inequality is the maximum possible in quantum mechanics.

Solution:

In problem 2.60 we showed that the observable $Q = \vec{q} \cdot \vec{\sigma}$ has eigenvalues ± 1 and the corresponding eigenspaces have projectors $P_{\pm} = (I \pm \vec{q} \cdot \vec{\sigma})/2$. Hence, Q can be written as $Q = \vec{q} \cdot \vec{\sigma} = (+1)P_{+} + (-1)P_{-}$. Note that $P_{\pm}^{2} = P_{\pm}$.

We see that

$$\begin{split} Q^2 &= (\vec{q} \cdot \vec{\sigma})^2 = ((+1)P_+ + (-1)P_-)^2 \\ \Rightarrow Q^2 &= P_+ P_+ - P_+ P_- - P_- P_+ + P_- - P_- P_+ + P_- \underbrace{\qquad \qquad }_{\text{Completeness}} I - P_+ P_- - P_- P_+ \\ \Rightarrow Q^2 &= I - \frac{1}{2} (I + \vec{q} \cdot \vec{\sigma}) \frac{1}{2} (I - \vec{q} \cdot \vec{\sigma}) - \frac{1}{2} (I - \vec{q} \cdot \vec{\sigma}) \frac{1}{2} (I + \vec{q} \cdot \vec{\sigma}) = I - \frac{1}{4} (I - (\vec{q} \cdot \vec{\sigma})^2) - \frac{1}{4} (I - (\vec{q} \cdot \vec{\sigma})^2) \\ \Rightarrow Q^2 &= I - \frac{1}{2} (I - (\vec{q} \cdot \vec{\sigma})^2) = I - \frac{1}{2} (I - Q^2) = \frac{1}{2} I + \frac{1}{2} Q^2 \\ \Rightarrow \frac{1}{2} Q^2 = \frac{1}{2} I \Rightarrow Q^2 = I \end{split}$$

This can be shown for R,S and T. Hence, $Q^2 = R^2 = S^2 = T^2 = I$.

Next, we show that $(Q \otimes S + R \otimes S + R \otimes T - Q \otimes T)^2 = 4I + [Q,R] \otimes [S,T]$.

$$\left(Q \otimes S + R \otimes S + R \otimes T - Q \otimes T\right)^2 = \left(Q \otimes (S - T) + R \otimes (S + T)\right)^2$$

$$= \left(Q \otimes (S - T)\right) \left(Q \otimes (S - T)\right) + \left(R \otimes (S + T)\right) \left(R \otimes (S + T)\right) + \left(Q \otimes (S - T)\right) \left(R \otimes (S + T)\right) + \left(R \otimes (S + T)\right) \left(Q \otimes (S - T)\right) \right)$$

$$= Q^2 \otimes (S - T)^2 + R^2 \otimes (S + T)^2 + QR \otimes (S - T)(S + T) + RQ \otimes (S + T)(S - T)$$

$$= I \otimes (S^2 + T^2 - ST - TS) + I \otimes (S^2 + T^2 + ST + TS) + QR \otimes ((S^2 + ST - TS - T^2) + RQ \otimes (S^2 - ST + TS - T^2)$$

$$= I \otimes (2I - ST - TS) + I \otimes (2I + ST + TS) + QR \otimes (I + ST - TS - I) + RQ \otimes (I - ST + TS - I)$$

$$= 2I \otimes I + 2I \otimes I - I \otimes ST - I \otimes TS + I \otimes ST + I \otimes TS + QR \otimes (ST - TS) + RQ \otimes (TS - ST)$$

$$= 4I \otimes I + QR \otimes (ST - TS) + RQ \otimes (TS - ST) = 4I + QR \otimes (ST - TS) - RQ \otimes (ST - TS)$$

$$\Rightarrow \left(Q \otimes S + R \otimes S + R \otimes T - Q \otimes T\right)^2 = 4I + \left(QR - RQ\right) \otimes \left(ST - TS\right) = 4I + \left[Q, R\right] \otimes \left[S, T\right]$$

The sup-norm of a tensor product satisfies $\|[Q,R] \otimes [S,T]\|_{\infty} \le \|[Q,R]\|_{\infty} \|[S,T]\|_{\infty}$. Next, $\|[Q,R]\|_{\infty} = \|[Q,R]\|_{\infty} \|[Q,R]\|_{\infty} = \|[Q,R]\|_{\infty} \|[Q,R]\|_{\infty}$ $\|QR - RQ\|_{\infty} \leq \|QR\|_{\infty} + \|RQ\|_{\infty} \leq \|Q\|_{\infty} \|R\|_{\infty} + \|R\|_{\infty} \|Q\|_{\infty} \leq 2\|Q\|_{\infty} \|R\|_{\infty}.$

Next, we show that $||Q||_{\infty} \le 1$.

$$\|Q\|_{\infty} = \max_{\|\psi\|=1} \langle \psi | Q | \psi \rangle = \max_{\|\psi\|=1} \operatorname{tr}(Q | \psi \rangle \langle \psi |) = \max_{\|\psi\|=1} \operatorname{tr}(Q \rho) = \max_{\|\psi\|=1} \operatorname{tr}(\vec{q} \cdot \vec{\sigma} \frac{1}{2} (I + \vec{n} \cdot \vec{\sigma}))$$

$$\operatorname{tr}(\vec{q} \cdot \vec{\sigma} \frac{1}{2} (I + \vec{n} \cdot \vec{\sigma})) = \frac{1}{2} \operatorname{tr}(\vec{q} \cdot \vec{\sigma} + (\vec{q} \cdot \vec{\sigma}) (\vec{n} \cdot \vec{\sigma})) = \frac{1}{2} \left(\operatorname{tr}(\vec{q} \cdot \vec{\sigma}) + \operatorname{tr}(\vec{q} \cdot \vec{\sigma}) (\vec{n} \cdot \vec{\sigma}) \right) = \frac{1}{2} \operatorname{tr}(\vec{q} \cdot \vec{\sigma}) (\vec{n} \cdot \vec{\sigma}) = \frac{1}{2} \operatorname{tr}(\vec{\sigma}) (\vec{n} \cdot \vec{\sigma}) = \frac{1}{2} \operatorname{tr}(\vec{\sigma}) (\vec{\sigma}) (\vec{\sigma}) = \frac{1}{2} \operatorname{tr}(\vec{\sigma}$$

Previously we had shown $\|[Q,R]\|_{\infty} \le 2\|Q\|_{\infty}\|R\|_{\infty}$. Hence, $\|[Q,R]\|_{\infty} \le 2 \cdot 1 \cdot 1 = 2$. Also, $||[S,T]||_{\infty} \le 2$.

So, $\|[Q,R] \otimes [S,T]\|_{\infty} \le \|[Q,R]\|_{\infty} \|[S,T]\|_{\infty} \le 2 \cdot 2 = 4$. Putting these results together we have

$$\left\| \left(Q \otimes \left(S - T \right) + R \otimes \left(S + T \right) \right)^2 \right\|_{\infty} = \left\| 4I + \left[Q, R \right] \otimes \left[S, T \right] \right\|_{\infty} \le 4 + \left\| \left[Q, R \right] \right\|_{\infty} \left\| \left[S, T \right] \right\|_{\infty} \le 4 + 4 = 8$$

Hence,

$$\begin{split} \left\| Q \otimes \left(S - T \right) + R \otimes \left(S + T \right) \right\|_{\infty} & \leq \sqrt{8} = 2\sqrt{2} \\ \Rightarrow \left\langle Q \otimes \left(S - T \right) + R \otimes \left(S + T \right) \right\rangle \leq \left\| Q \otimes \left(S - T \right) + R \otimes \left(S + T \right) \right\|_{\infty} \leq \sqrt{8} = 2\sqrt{2} \\ \text{i.e. } \left\langle Q \otimes S \right\rangle + \left\langle R \otimes S \right\rangle + \left\langle R \otimes T \right\rangle - \left\langle Q \otimes T \right\rangle \leq 2\sqrt{2} \end{split}$$

Quantum Computation and Quantum Information

-Michael A. Nielsen and Isaac L. Chuang

Chapter 2. Introduction to Quantum Mechanics Selected Problems

Set-II

2.20) (Basis changes) Suppose A' and A'' are matrix representations of an operator A on a vector space V with respect to two different orthonormal bases, $|v_i\rangle$ and $|w_i\rangle$. Then the elements of A' and A'' are $A'_{ij} = \langle v_i | A | v_j \rangle$ and $A''_{ij} = \langle w_i | A'' | w_j \rangle$. Characterize the relationship between A' and A''.

It is given that the vectors $|v_i\rangle$ and $|w_i\rangle$ are each a set of orthonormal bases on the vector space V. We define the matrix $U=\sum_i|v_i\rangle\langle w_i|$. We can check that the matrix U is a unitary matrix. $U^{\dagger}U=\sum_{ij}|w_i\rangle\langle v_i|v_j\rangle\langle w_j|=\sum_{ij}|w_i\rangle\delta_{ij}\langle w_j|=\sum_i|w_i\rangle\langle w_i|$. Each $|w_i\rangle\langle w_i|$ is a projection operator and hence by the completeness relation $\sum_i|w_i\rangle\langle w_i|=I$. Therefore, $U^{\dagger}U=I$. Similarly, we can check that $UU^{\dagger}=I$.

Next, with respect to the orthonormal bases $|v_i\rangle$, each entry for the matrix A' is

$$\begin{split} A'_{ij} &= \langle v_i | A \left| v_j \right\rangle = \langle v_i | U^\dagger U A U^\dagger U \left| v_j \right\rangle = \sum_{\alpha\beta\gamma\theta} \langle v_i | w_\alpha \rangle \left\langle v_\alpha \middle| v_\beta \right\rangle \left\langle w_\beta \middle| A \middle| w_\gamma \right\rangle \left\langle v_\gamma \middle| v_\theta \right\rangle \left\langle w_\theta \middle| v_j \right\rangle \\ &\Rightarrow A'_{ij} = \sum_{\alpha\beta\gamma\theta} \langle v_i | w_\alpha \rangle \delta_{\alpha\beta} \left\langle w_\beta \middle| A \middle| w_\gamma \right\rangle \delta_{\gamma\theta} \left\langle w_\theta \middle| v_j \right\rangle = \sum_{\alpha\gamma} \langle v_i | w_\alpha \rangle \underbrace{\langle w_\alpha | A \middle| w_\gamma \rangle}_{=A''_{\alpha\gamma}} \left\langle w_\gamma \middle| v_j \right\rangle \end{split}$$

Therefore, we can characterize the relationship between each entry of the matrices A' and A'' as:

$$A'_{ij} = \sum_{\alpha \gamma} A''_{\alpha \gamma} \langle v_i | w_{\alpha} \rangle \langle w_{\gamma} | v_j \rangle$$
 for all i, j

where A'_{ij} and $A''_{\alpha\gamma}$ are the entries of the matrices A' and A'' respectively.

2.21) Repeat the proof of spectral decomposition in Box 2.2 for the case when M is Hermitian, simplifying the proof wherever possible.

When M is Hermitian the spectral decomposition theorem reads: Any Hermitian operator M on a vector space V is diagonal with respect to some orthonormal basis for V. (Incomplete).

2.22) Prove that two eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal.

Let $|v_1\rangle$ be the eigenvector with respect to the eigenvalue λ_1 and $|v_2\rangle$ be the eigenvector with respect to the eigenvalue λ_2 . And $\lambda_1 \neq \lambda_2$. Then we have $H|v_1\rangle = \lambda_1|v_1\rangle$ and $H|v_2\rangle = \lambda_2|v_2\rangle$. Taking the adjoint of $H|v_1\rangle = \lambda_1|v_1\rangle$ we get $\langle v_1|H^\dagger = \lambda_1\langle v_1|$. Taking the inner product with $|v_2\rangle$ gives $\langle v_1|H^\dagger|v_2\rangle = \lambda_1\langle v_1|v_2\rangle$. Next $H^\dagger = H$, so $\langle v_1|H^\dagger|v_2\rangle = \langle v_1|H|v_2\rangle$ which is equal to $\lambda_2\langle v_1|v_2\rangle$. So we have $\lambda_1\langle v_1|v_2\rangle = \lambda_2\langle v_1|v_2\rangle$ which implies that $\langle v_1|v_2\rangle$ must necessarily be equal to 0 (and hence $|v_1\rangle$ and $|v_2\rangle$ are orthogonal) since $\lambda_1 \neq \lambda_2$.

2.23) Show that the eigenvalues of the projector *P* are all either 0 or 1.

Let P be a projector and $|v\rangle$ be an eigenvector with respect to the eigenvalue λ . Then we have $P^2|v\rangle = P|v\rangle$ which implies $P(P|v\rangle) = \lambda|v\rangle \Rightarrow P(\lambda|v\rangle) = \lambda|v\rangle \Rightarrow \lambda^2|v\rangle = \lambda|v\rangle$. Hence $(\lambda^2 - \lambda)|v\rangle = 0$. So, $\lambda(\lambda - 1) = 0$ which means λ is either 0 or 1. This is true for all such λ 's. Hence, the eigenvalues of the projector P are all either 0 or 1.

2.24 (Hermiticity of positive operators) Show that a positive operator is necessarily Hermitian. (*Hint*: Show that an arbitrary operator A can be written A = B + iC where B and C are Hermitian).

The book defines a positive operator A as an operator such that for any vector $|v\rangle$, $\langle v|A|v\rangle$ is real and non-negative. Next, we define $A=\frac{A+A^{\dagger}}{2}+i\frac{A-A^{\dagger}}{2i}$. So, A=B+iC where $B=\frac{A+A^{\dagger}}{2}$ and $C=\frac{A-A^{\dagger}}{2i}$. We can check that B and C are both Hermitian. $B^{\dagger}=\frac{1}{2}\left(A+A^{\dagger}\right)^{\dagger}=\frac{1}{2}\left(A^{\dagger}+A\right)=B$. And $C^{\dagger}=-\frac{1}{2i}\left(A-A^{\dagger}\right)^{\dagger}=-\frac{1}{2i}\left(A^{\dagger}-A\right)=\frac{1}{2i}\left(A-A^{\dagger}\right)=C$.

Next, we see that $\langle v|A|v\rangle = \langle v|B|v\rangle + i\langle v|C|v\rangle$. But it is given that A is a positive operator which means $\langle v|A|v\rangle \geq 0$ and real. This implies that $\langle v|C|v\rangle$ must vanish for all $|v\rangle$. And hence $\langle v|A|v\rangle = \langle v|B|v\rangle$ for all $|v\rangle$. So, $A = B = \frac{A+A^{\dagger}}{2} \Rightarrow 2A = A+A^{\dagger} \Rightarrow A = A^{\dagger}$ and hence A is Hermitian.

2.35) (Exponential of the Pauli matrices) Let \vec{v} be any real, three dimensional unit vector and θ be a real number. Prove that $\exp\{(i\theta\vec{v}\cdot\vec{\sigma})\} = \cos(\theta)I + i\sin(\theta)(\vec{v}\cdot\vec{\sigma})$ where $\vec{v}\cdot\vec{\sigma} = \sum_{i=1}^3 v_i\sigma_i$.

In the process of solving Problem 2.60 (in Set-I) we found that for a unit vector in $\vec{v} \in \mathbb{R}^3$, $\vec{v} \cdot \vec{\sigma}$ has eigenvalues 1 and -1 and we can write $\vec{v} \cdot \vec{\sigma}$ in the form $\vec{v} \cdot \vec{\sigma} = |v_+\rangle \langle v_+| - |v_-\rangle \langle v_-|$ where $|v_+\rangle$ and $|v_-\rangle$ are the eigenvectors corresponding to the eigenvalues 1 and -1 respectively. Hence we have

$$i\theta\vec{v}\cdot\vec{\sigma} = i\theta(|v_{+}\rangle\langle v_{+}| - |v_{-}\rangle\langle v_{-}|) \Rightarrow \exp(i\theta\vec{v}\cdot\vec{\sigma}) = e^{i\theta}|v_{+}\rangle\langle v_{+}| + e^{-i\theta}|v_{-}\rangle\langle v_{-}|$$

Also, $|v_+\rangle\langle v_+|$ and $|v_-\rangle\langle v_-|$ are projection operators that satisfy the completeness relation $|v_+\rangle\langle v_+|+|v_-\rangle\langle v_-|=I$. Solving the two equations $\vec{v}\cdot\vec{\sigma}=|v_+\rangle\langle v_+|-|v_-\rangle\langle v_-|$ and $|v_+\rangle\langle v_+|+|v_-\rangle\langle v_-|=I$ we get $|v_\pm\rangle\langle v_\pm|=\frac{1}{2}(I\pm\vec{v}\cdot\vec{\sigma})$. Hence we have

$$\begin{split} \exp(i\theta\vec{v}\cdot\vec{\sigma}) &= e^{i\theta} \left| v_+ \right\rangle \left\langle v_+ \right| + e^{-i\theta} \left| v_- \right\rangle \left\langle v_- \right| \\ \Rightarrow \exp(i\theta\vec{v}\cdot\vec{\sigma}) &= e^{i\theta} \left(\frac{I + \vec{v}\cdot\vec{\sigma}}{2} \right) + e^{-i\theta} \left(\frac{I - \vec{v}\cdot\vec{\sigma}}{2} \right) = \frac{e^{i\theta} + e^{-i\theta}}{2} I + \frac{e^{i\theta} - e^{-i\theta}}{2} \vec{v}\cdot\vec{\sigma} = \cos(\theta)I + i\sin(\theta)\vec{v}\cdot\vec{\sigma} \end{split}$$

where $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ and $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

- **2.39)** (Hilbert-Schmidt inner product on operators) The set L_V of linear operators on a Hilbert space V is obviously a vector space the sum of two linear operators is a linear operator, zA is a linear operator if A is a linear operator and z is a complex number, and there is a zero element 0. An important additional result is that the vector space L_V can be given a natural inner product structure, turning it into a Hilbert space.
- (1) Show that the function (\cdot,\cdot) on $L_V \times L_V$ defined by $(A,B) \equiv \operatorname{tr}(A^{\dagger}B)$ is an inner product function. This inner product is known as the Hilbert-Schmidt inner product or trace inner product.
- (2) If *V* has *d* dimensions show that L_V has dimension d^2 .
- (3) Find an orthonormal basis of Hermitian matrices for the Hilbert space L_V .
- (1) In order to show that the function (\cdot,\cdot) on $L_V \times L_V$ defined by $(A,B) \equiv \operatorname{tr}(A^{\dagger}B)$ is an inner product function we need to show a) Symmetry, b) Linearity and c) Positive-Definite.

a) Symmetry:

We have $A, B \in L_V$. Let $A = \sum_{ij} a_{ij} |i\rangle \langle j|$ and $B = \sum_{ij} b_{ij} |i\rangle \langle j|$ be the expansion of A and B in the standard basis. We show that $(A, B) = \overline{(B, A)}$. Using the definition of (\cdot, \cdot) we have

$$(A,B) = \operatorname{tr}(A^{\dagger}B) = \operatorname{tr}\left(\sum_{ij} a_{ij}^{\star} |j\rangle \langle i| \sum_{ij} b_{ij} |i\rangle \langle j|\right) = \operatorname{tr}\left(\sum_{ijkl} a_{ij}^{\star} b_{kl} |j\rangle \underbrace{\langle i|k\rangle}_{=\delta_{ik}} \langle l|\right) = \operatorname{tr}\left(\sum_{ijl} a_{ij}^{\star} b_{il} |j\rangle \langle l|\right) = \sum_{ij} a_{ij}^{\star} b_{ij}$$
(20)

$$(B,A) = \operatorname{tr}(B^{\dagger}A) = \operatorname{tr}\left(\sum_{ij} b_{ij}^{\star} |j\rangle \langle i| \sum_{ij} a_{ij} |i\rangle \langle j|\right) = \operatorname{tr}\left(\sum_{ijkl} b_{ij}^{\star} a_{kl} |j\rangle \underbrace{\langle i|k\rangle}_{=\delta_{ik}} \langle l|\right) = \operatorname{tr}\left(\sum_{ijl} b_{ij}^{\star} a_{il} |j\rangle \langle l|\right) = \sum_{ij} b_{ij}^{\star} a_{ij}$$

$$(21)$$

$$\Rightarrow (B,A) = \sum_{ij} b_{ij}^{\star} a_{ij} = \left(\sum_{ij} a_{ij}^{\star} b_{ij}\right)^{\star} = \overline{(A,B)}$$
 (22)

b) Linearity:

For some $\alpha \in \mathbb{C}$ we have

$$(\alpha A, B) = \operatorname{tr}\left((\alpha A)^{\dagger} B\right) = \operatorname{tr}\left(\alpha^{\star} A^{\dagger} B\right) = \alpha^{\star} \operatorname{tr}\left(A^{\dagger} B\right) = \alpha^{\star} (A, B) \tag{23}$$

$$(A, \alpha B) = \operatorname{tr}\left(A^{\dagger}(\alpha B)\right) = \operatorname{tr}\left(\alpha A^{\dagger}B\right) = \alpha \operatorname{tr}\left(A^{\dagger}B\right) = \alpha (A, B) \tag{24}$$

Next, for some $A,B,C \in L_V$ we have

$$(A+C,B) = \operatorname{tr}\left((A+C)^{\dagger}B\right) = \operatorname{tr}\left((A^{\dagger}+C^{\dagger})B\right) = \operatorname{tr}\left(A^{\dagger}B+C^{\dagger}B\right) = \operatorname{tr}\left(A^{\dagger}B\right) + \operatorname{tr}\left(C^{\dagger}B\right) = (A,B) + (C,B) \quad (25)$$

c) Positive-Definite:

$$(A,A) = \operatorname{tr}\left(A^{\dagger}A\right) = \operatorname{tr}\left(\sum_{ij} a_{ij}^{\star} |j\rangle \langle i| \sum_{ij} a_{ij} |i\rangle \langle j|\right) = \operatorname{tr}\left(\sum_{ijkl} a_{ij}^{\star} a_{kl} |j\rangle \underbrace{\langle i|k\rangle}_{=\delta_{ik}} \langle l|\right) = \operatorname{tr}\left(\sum_{ijl} a_{ij}^{\star} a_{il} |j\rangle \langle l|\right) = \sum_{ij} a_{ij}^{\star} a_{ij}$$

$$\operatorname{Hence}(A,A) = \sum_{ij} a_{ij}^{\star} a_{ij} = \sum_{ij} \left|a_{ij}\right|^{2} \ge 0 \text{ with equality iff } a_{ij} = 0 \text{ i.e. } A = 0$$

(2) Suppose $\{|1\rangle, |2\rangle, \dots, |d\rangle\}$ is the set of orthonormal basis for the vector space V. Then the dimension of V is the cardinality of the basis of V, i.e. d. L_V is the set of linear operators T on V such that $T:V\to V$. We want to show that the cardinality of the basis of L_V is d^2 . By the completeness relation we have $I_V=\sum_{i=1}^d|i\rangle\langle i|$. One application of the completeness relation is to give a means for representing an operator in the outer product notation. For $T:V\to V$ and $\{|i\rangle\}_{i=1}^d$, an orthonormal basis for V, using the completeness relation twice gives

$$T = I_V T I_V = \sum_{i=1}^d |i\rangle \langle i| T \sum_{i=1}^d |i\rangle \langle i| = \sum_{i=1}^d \sum_{j=1}^d |i\rangle \langle i| T |j\rangle \langle j| = \sum_{i=1}^d \sum_{j=1}^d \langle i| T |j\rangle |i\rangle \langle j|$$
(26)

which is the outer product representation for T. T has matrix element $\langle i|T|j\rangle$ in the ith row and the jth column, with respect to the input basis $|j\rangle$ and the output basis $|i\rangle$ (where i,j=1,2,...,d). In (26) we have shown that the elements $|i\rangle\langle j|$ span the space of L_V since the matrix representation of any linear operator $T:V\to V$ can be obtained by the linear combination of $|i\rangle\langle j|$. In order to show that the elements $|i\rangle\langle j|$ are indeed basis elements of L_V we need to also show that they are mutually linearly independent. From the matrix representation of any linear operator $T:V\to V$ as obtained in (26) we see that $\langle i|T|j\rangle$ are the weights (real/complex) for $|i\rangle\langle j|$ for all i,j=1,...,d. And $\sum_{i=1}^d \sum_{j=1}^d \langle i|T|j\rangle\langle j|=0$ if and only if $\langle i|T|j\rangle=0$ for all i,j=1,...,d. This shows that $\{|i\rangle\langle j|\}_{i,j=1}^d$ are linearly independent. So, (26) shows that there are d^2 such elements in the representation of a linear operator T. Hence the cardinality of the basis $\{|i\rangle\langle j|\}_{i,j=1}^d$ of L_V is d^2 , i.e. $\dim(L_V)$ is d^2 .

(3) Assuming a dimension of 2 the Pauli matrices $\sigma_1, \sigma_2, \sigma_3$ form an orthonormal basis of Hermitian matrices for the Hilbert space L_V . For higher dimensions we need some generalization of the Pauli matrices. Suppose we have the standard basis $\{|j\rangle\}_{j=1}^n$ (and n > 2) in the Hilbert space V. We define the following three types of matrices:

(1) Symmetric
$$\left(\frac{d(d-1)}{2} \text{ matrices}\right)$$
: $\Lambda_s^{jk} = |j\rangle\langle k| + |k\rangle\langle j|$, for $1 \le j < k \le n$ (27)

(2) Asymmetric
$$\left(\frac{d(d-1)}{2} \text{ matrices}\right)$$
: $\Lambda_a^{jk} = -i|j\rangle\langle k| + i|k\rangle\langle j|$, for $1 \le j < k \le n$ (28)

(3) Diagonal
$$(d-1 \text{ matrices})$$
: $\Lambda_d^l = \sqrt{\frac{2}{l(l+1)}} \left(\sum_{j=1}^l |j\rangle \langle j| - l |l+1\rangle \langle l+1| \right)$, for $1 \le l \le n-1$ (29)

The $\frac{n(n-1)}{2} + \frac{n(n-1)}{2} + n - 1 = n^2 - 1$ matrices in (27), (28) and (29) are the so-called *generalized Gell-Mann matrices*. They are a generalization of the Pauli matrices to dimensions greater than 2. By definition the matrices $\{\{\Lambda_s^{jk}\},\{\Lambda_a^{jk}\},\{\Lambda_d^l\}\}$ are Hermitian. Also, each of them have a trace equal to zero. They are orthogonal in the Hilbert-Schmidt sense, i.e. $\operatorname{tr}\left(\Lambda_i^{\dagger}\Lambda_j\right) = 2\delta_{ij}$.

For n = 2 and n = 3 the collection of matrices defined above recover the Pauli and Gell-Mann matrices respectively.

2.54) Suppose *A* and *B* are commuting Hermitian operators. Prove that $\exp(A)\exp(B) = \exp(A+B)$. (*Hint*: Use the results of section 2.1.9).

Given that A and B are commuting Hermitian operators, i.e. $A^{\dagger} = A$, $B^{\dagger} = B$ and [A,B] = AB - BA = 0 we can use the simultaneous diagonalization theorem given in section 2.1.9 which says: If A and B are Hermitian. Then [A,B] = 0 if and only if there exists an orthonormal basis such that both A and B are diagonal with respect to that basis. We say that A and B are simultaneously diagonalizabe in that case.

Since [A,B]=0, A and B can be simultaneously diagonalized as $A=\sum_i \lambda_i |i\rangle\langle i|$ and $B=\sum_i \mu_i |i\rangle\langle i|$ where λ_i and μ_i are reals since A and B are Hermitian. Hence

$$\exp(A)\exp(B) = \left(\sum_{i} \exp(\lambda_{i})|i\rangle\langle i|\right) \left(\sum_{i} \exp(\mu_{i})|i\rangle\langle i|\right) = \sum_{i,j} \exp(\lambda_{i})\exp(\mu_{j})|i\rangle\underbrace{\langle i|j\rangle\langle j|}_{=\delta_{i,j}}$$

$$\Rightarrow \exp(A)\exp(B) = \sum_{i} \exp(\lambda_{i})\exp(\mu_{i})|i\rangle\langle i| = \sum_{i} \exp(\lambda_{i} + \mu_{i})|i\rangle\langle i| = \exp\left(\sum_{i} (\lambda_{i} + \mu_{i})|i\rangle\langle i|\right)$$

$$\Rightarrow \exp(A)\exp(B) = \exp\left(\sum_{i} \lambda_{i}|i\rangle\langle i| + \sum_{i} \mu_{i}|i\rangle\langle i|\right) = \exp(A + B)$$

2.55) Prove that $U(t_1, t_2)$ defined in Equation (2.91) is unitary.

 $U(t_1,t_2)$ is defined in Equation (2.91) as

$$U(t_1, t_2) = \exp\left(\frac{-iH(t_2 - t_1)}{\hbar}\right)$$

Using the spectral decomposition of the Hamiltonian $H = \sum_E E |E\rangle\langle E|$ and $\sum_E |E\rangle\langle E| = I$

$$\begin{split} U^\dagger(t_1,t_2)U(t_1,t_2) &= \exp\left(\frac{iH(t_2-t_1)}{\hbar}\right) \exp\left(\frac{-iH(t_2-t_1)}{\hbar}\right) \\ &= \exp\left(\frac{i(t_2-t_1)}{\hbar}\sum_E E\left|E\right\rangle\langle E\right|\right) \exp\left(-\frac{i(t_2-t_1)}{\hbar}\sum_E E\left|E\right\rangle\langle E\right|\right) \\ &\Rightarrow U^\dagger(t_1,t_2)U(t_1,t_2) = \left(\sum_E \exp\left(\frac{i(t_2-t_1)}{\hbar}E\right)|E\rangle\langle E|\right) \left(\sum_E \exp\left(-\frac{i(t_2-t_1)}{\hbar}E\right)|E\rangle\langle E|\right) \\ &\Rightarrow U^\dagger(t_1,t_2)U(t_1,t_2) = \sum_{E,E'} \exp\left(\frac{i(t_2-t_1)}{\hbar}E\right) \exp\left(-\frac{i(t_2-t_1)}{\hbar}E'\right)|E\rangle\underbrace{\langle E|E'\rangle}_{=\delta_{E,E'}}\langle E'| \\ &\Rightarrow U^\dagger(t_1,t_2)U(t_1,t_2) = \sum_{E,E'} \exp\left(\frac{i(t_2-t_1)}{\hbar}E-\frac{i(t_2-t_1)}{\hbar}E'\right)|E\rangle\underbrace{\langle E|E'\rangle}_{=\delta_{E,E'}}\langle E'| = \sum_E \exp\left(\frac{i(t_2-t_1)}{\hbar}E-\frac{i(t_2-t_1)}{\hbar}E\right)|E\rangle\langle E| \\ &\Rightarrow U^\dagger(t_1,t_2)U(t_1,t_2) = \sum_E \exp(0)|E\rangle\langle E| = \sum_E |E\rangle\langle E| = I \end{split}$$

With a similar approach we can show that $U(t_1,t_2)U^{\dagger}(t_1,t_2)=I$. Hence $U^{\dagger}(t_1,t_2)U(t_1,t_2)=U(t_1,t_2)U^{\dagger}(t_1,t_2)=I$. Hence $U(t_1,t_2)$ is unitary.

<u>Note</u>: In the expression $H = \sum_E E |E\rangle\langle E|$ of the Hamiltonian (a Hermitian operator), $|E\rangle$ is the

energy eigenstate or sometimes referred to as stationary state and E is the energy of the state $|E\rangle$. The lowest energy is known as the ground state energy for the system and the corresponding energy eigenstate (or eigenspace) is known as the ground state.

2.56) Use the spectral decomposition to show that $K \equiv -i \log(U)$ is Hermitian for any unitary U, and thus $U = \exp(iK)$ for some Hermitian K.

The unitary operator U satisfies $U^{\dagger}U = UU^{\dagger} = I$. Hence, U is normal and by the spectral decomposition theorem we have $U = \sum_{j} \lambda_{j} |j\rangle \langle j|$, where λ_{j} is the eigenvalue corresponding to the eigenvector $|j\rangle$. So, $\log(U) = \sum_{j} \log(\lambda_{j}) |j\rangle \langle j|$. Also, $|\lambda_{j}| = 1$. Let $\lambda_{j} = e^{i\theta_{j}}$ for $\theta_{j} \in \mathbb{R}$. Then $\log(U) = \sum_{j} \log(\lambda_{j}) |j\rangle \langle j| = \sum_{j} \log(e^{i\theta_{j}}) |j\rangle \langle j| = \sum_{j} i\theta_{j} |j\rangle \langle j|$. Hence, $K = -i\log(U) = -i\sum_{j} i\theta_{j} |j\rangle \langle j| = \sum_{j} \theta_{j} |j\rangle \langle j|$ we can check that K is Hermitian. $K^{\dagger} = \left(\sum_{j} \theta_{j} |j\rangle \langle j|\right)^{\dagger} = \sum_{j} \theta_{j}^{\star} |j\rangle \langle j| = \sum_{j} \theta_{j} |j\rangle \langle j| = K$ since $\theta_{j} \in \mathbb{R}$. Hence, $U = \exp(iK)$ for some Hermitian K. This shows that the exponential of i times a Hermitian operator is unitary. And so there is a one-to-one correspondence between the discrete-time description of dynamics using unitary operators, and the continuous time description using Hamiltonians.

2.57) (Cascaded measurements are single measurements) Suppose $\{L_l\}$ and $\{M_m\}$ are two sets of measurement operators. Show that a measurement defined by the measurement operators $\{L_l\}$ followed by a measurement defined by the measurement operators $\{M_m\}$ is physically equivalent to a single measurement defined by measurement operators $\{N_{lm}\}$ with the representation $N_{lm} \equiv M_m L_l$.

Suppose the state of the system immediately before the measurement is $|\psi\rangle$. Then the probability of obtaining the result l using the operator L_l is $p(l) = \langle \psi | L_l^{\dagger} L_l | \psi \rangle$ and the state of the system after the measurement is $|\phi\rangle = \frac{L_l |\psi\rangle}{\sqrt{\langle \psi | L_l^{\dagger} L_l |\psi\rangle}}$. Next, we use the operator M_m on the state $|\phi\rangle$. The state of the system after the measurement is

$$\begin{split} \frac{M_{m}\left|\phi\right\rangle}{\sqrt{\left\langle\phi\right|M_{m}^{\dagger}M_{m}\left|\phi\right\rangle}} &= \frac{\frac{M_{m}L_{l}\left|\psi\right\rangle}{\sqrt{\left\langle\psi\right|L_{l}^{\dagger}L_{l}\left|\psi\right\rangle}}}{\sqrt{\frac{\left\langle\psi\right|L_{l}^{\dagger}M_{m}^{\dagger}M_{m}L_{l}\left|\psi\right\rangle}{\left\langle\psi\right|L_{l}^{\dagger}L_{l}\left|\psi\right\rangle}}} = \frac{M_{m}L_{l}\left|\psi\right\rangle}{\sqrt{\left\langle\psi\right|L_{l}^{\dagger}L_{l}\left|\psi\right\rangle}} &= \frac{M_{m}L_{l}\left|\psi\right\rangle}{\sqrt{\left\langle\psi\right|L_{l}^{\dagger}M_{m}^{\dagger}M_{m}L_{l}\left|\psi\right\rangle}} = \frac{M_{m}L_{l}\left|\psi\right\rangle}{\sqrt{\left\langle\psi\right|L_{l}^{\dagger}M_{m}^{\dagger}M_{m}L_{l}\left|\psi\right\rangle}} \\ &= \frac{M_{m}L_{l}\left|\psi\right\rangle}{\sqrt{\left\langle\psi\right|\left(M_{m}L_{l}\right)^{\dagger}\left(M_{m}L_{l}\right)\left|\psi\right\rangle}} = \frac{N_{lm}\left|\psi\right\rangle}{\left\langle\psi\right|N_{lm}^{\dagger}N_{lm}\left|\psi\right\rangle} \end{split}$$

Hence the measurement using the operator L_l followed by the measurement using the operator M_m is physically equivalent to a single measurement using the operator $N_{lm} \equiv M_m L_l$. Next, we show that the probability of obtaining the outcome lm using the operator N_{lm} is the same as that of the cascaded measurement L_l followed by M_m .

The probability of obtaining lm using N_{lm} is $p(lm) = \langle \psi | N_{lm}^{\dagger} N_{lm} | \psi \rangle$. In the cascaded measurement we first use the operator L_l on the initial state $|\psi\rangle$ and obtain the outcome l with probability $p(l) = \langle \psi | L_l^{\dagger} L_l | \psi \rangle$ and obtain the post-measurement state $|\phi\rangle = \frac{L_l |\psi\rangle}{\sqrt{\langle \psi | L_l^{\dagger} L_l | \psi\rangle}}$. Next, we use the operator M_m on the state $|\phi\rangle$ and obtain the outcome m with probability

$$p(m) = \left\langle \phi \middle| M_m^{\dagger} M_m \middle| \phi \right\rangle = \frac{\left\langle \psi \middle| L_l^{\dagger} M_m^{\dagger} M_m L_l \middle| \psi \right\rangle}{\sqrt{\left\langle \psi \middle| L_l^{\dagger} L_l \middle| \psi \right\rangle} \sqrt{\left\langle \psi \middle| L_l^{\dagger} L_l \middle| \psi \right\rangle}} = \frac{\left\langle \psi \middle| L_l^{\dagger} M_m^{\dagger} M_m L_l \middle| \psi \right\rangle}{\left\langle \psi \middle| L_l^{\dagger} L_l \middle| \psi \right\rangle} = \frac{\left\langle \psi \middle| N_{lm}^{\dagger} N_{lm} \middle| \psi \right\rangle}{\left\langle \psi \middle| L_l^{\dagger} L_l \middle| \psi \right\rangle}.$$

Hence, the probability of observing the outcome lm in the cascaded scenario is $p(l)p(m) = \langle \psi | L_l^\dagger L_l | \psi \rangle \times \frac{\langle \psi | N_{lm}^\dagger N_{lm} | \psi \rangle}{\langle \psi | L_l^\dagger L_l | \psi \rangle} = \langle \psi | N_{lm}^\dagger N_{lm} | \psi \rangle$ which is equal to the probability p(lm) of obtaining the outcome lm using the operator N_{lm} .

2.76) Extend the proof of Schmidt decomposition to the case where A and B may have state spaces of different dimensionality.

We begin by stating the Schmidt decomposition theorem.

Suppose H_A and H_B are the Hilbert spaces of dimensions d_A and d_B respectively (with $d_A \ge d_B$). For any state $|\psi\rangle$ in the state space of $H_A \otimes H_B$ there exist orthonormal sets $|i_A\rangle$ and $|i_B\rangle$ such that $|\psi\rangle = \sum_{i=1} \lambda_i |i_A\rangle |i_B\rangle$ where λ_i is real, non-negative and satisfies $\sum_i \lambda_i^2 = 1$. Note that the orthonormal sets $|i_A\rangle$ and $|i_B\rangle$ can be extended to orthonormal basis by the Gram-Schmidt procedure.

Proof: Any state in the state space of $H_A \otimes H_B$ can be viewed as $|\psi\rangle = \sum_{j=1}^{d_A} \sum_{k=1}^{d_B} c_{jk} |j\rangle |k\rangle$, where $\{|j\rangle\}_{j=1}^{d_A}$ and $\{|k\rangle\}_{k=1}^{d_B}$ are the standard basis in the state space of H_A and H_B respectively. Then c_{jk} are the elements of a $d_A \times d_B$ matrix C. By the singular value decomposition theorem of a (real/complex) matrix we can find $d_A \times d_A$ unitary U, a $d_B \times d_B$ unitary V and a $d_B \times d_B$ positive semi-definite diagonal matrix D such that $C = UDV^{\dagger}$. Note that since we have assumed $d_A \geq d_B$ we can write C as $C = U \begin{pmatrix} D \\ 0 \end{pmatrix} V^{\dagger}$, where we have appended $d_A - d_B$ rows of 0's to the diagonal matrix D.