Práctica 1

Objetivo: Analizar las consultas enfocándose en la capacidad de la realización de consultas, almacenaje y memoria principal.

Para las siguientes tablas

- Movie_Ratings: Es una tabla de Películas que fueron evaluadas por usuarios, dándoles un puntaje del 1 al 5.
- MovieLens Datasets: Es un datasets que contiene 943 usuarios que califican a 1682 películas.

Archivo u.data contiene los siguientes atributos: user id | item id | rating | timestamp

a) Analizar el contenido del datasets y consultas en memoria.

- Movie_Ratings:
 - 1. ¿Cuántas películas fueron calificadas por Thomas?
 - 2. ¿Cuántas películas fueron calificadas por Matt?
 - 3. ¿Qué película fue la más calificada por los usuarios?, ¿cuántos usuarios la calificaron? Disgregue por número de usuarios que la calificaron con un determinado puntaje.
 - 4. ¿Qué película fue la menos calificaron?, ¿cuántos usuarios la calificaron? Disgregue por número de usuarios que la calificaron con un determinado puntaje.
- MovieLens:
 - 5. ¿Qué película fue la más calificada por los usuarios?, ¿cuántos usuarios la calificaron? Disgregue por número de usuarios que la calificaron con un determinado puntaje.
 - 6. ¿Qué película fue la menos calificaron?, ¿cuántos usuarios la calificaron? Disgregue por número de usuarios que la calificaron con un determinado puntaje.
- b) Analizar lectura/escritura en el disco y almacenamiento en memoria

Coeficiente de Correlación de Pearson

	Blues Traveler	Norah Jones	Phoenix	The Strokes	Weird Al
Clara	4.75	4.5	5	4.25	4
Robert	4	3	5	2	1

4.5 Norah
The Strokes

Weird Al

3.5

3 1 2 3 4 5

Robert

Usuarios tienen diferentes escalas

Coeficiente de Correlación de Pearson

Aproximación de Pearson:

$$r = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}} \sqrt{\sum_{i=1}^{n} y_{i}^{2} - \frac{(\sum_{i=1}^{n} y_{i})^{2}}{n}}}$$

Phoenix

Norah

Jones 5

Blues

Traveler

Aproximación de Pearson
$$r = \frac{\sum_{i=1}^{n} x_i y_i - \frac{\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n}}{\sqrt{\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}} \sqrt{\sum_{i=1}^{n} y_i^2 - \frac{(\sum_{i=1}^{n} y_i)^2}{n}}}$$

Clara	4.75	4.5	5	4.25	4	
Robert	4	3	5	2	1	
$\sum_{i=1}^{n} x_i y_{i-1}$	- (4 75×	4)+(4.5×3	8)+(5×5)-	+(4.25×2)+	+(4×1)=7($\sqrt{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}} = \sqrt{101.875 - 101.25} = \sqrt{.625} = .790$
$\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i$	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	$x_i = 4.75 + 4.5$ $y_i = 4 + 3 + 5 + 2$	+5+4.25+4 = 2+1 = 15	22.5	((//1)	$\sqrt{\sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n}} = \sqrt{55 - 45} = 3.162277$
$=\frac{22.5\times15}{5}=67.5$						$r = \frac{2.5}{.79057(3.162277)} = \frac{2.5}{2.5} = 1.00$
$\sum_{i=1}^{n} x_i^2 = ($	$(4.75)^2 + ($	$(4.5)^2 + (5)^2$	$+(4.25)^2+$	$-(4)^2 = 101.8$	375	
$\frac{\sum_{i=1}^{n} x_i^2}{n} =$	$=\frac{22.5^2}{5}$	= 101.25				

The Strokes Weird Al

7. Calcular la Aproximación de Pearson para:

Movie_Ratings

Para los usuarios que obtuvieron como respuesta en la pregunta 3 y 4.

8. MovieLens

Para los usuarios que obtuvieron como respuesta en la pregunta 5 y 6.

Para el datasets MovieLens

- 9. ¿Cuánto tiempo se demoró en realizar las consultas?
- 10. ¿Cuánto ocupó su RAM? Comparar antes de realizar las consultas y luego de realizarlas
- 11. Cómo mejoró los tiempos en almacenamiento.