An Algebraic Characterisation of First-Order Logic with Neighbour

Amaldev Manuel¹

Dhruv Nevatia²

¹Indian Institute of Technology, Goa

²Chennai Mathematical Institute, India

Define the following predicates,

- N(x, y) := x and y are neighbouring positions, e.g., x = y + 1 or y = x + 1.
- min, is the left-most position.
- max, is the right-most position.

Define the following predicates,

- N(x, y) := x and y are neighbouring positions, e.g., x = y + 1 or y = x + 1.
- min, is the left-most position.
- max, is the right-most position.

Define the following predicates,

- N(x, y) := x and y are neighbouring positions, e.g., x = y + 1 or y = x + 1.
- min, is the left-most position.
- max, is the right-most position.

FO(N, min, max)

$$\phi = P_{a}(\min) \land P_{b}(\max) \land (\forall x, y.((P_{a}(x) \land \mathbb{N}(x, y) \rightarrow P_{b}(y)) \land (P_{b}(x) \land \mathbb{N}(x, y) \rightarrow P_{a}(y))))$$

$$L(\phi) = (ab)^+$$

MSO(<)
=
MSO(bet,min,max)

 $FO(N, min, max) \subsetneq FO(+1)$

$$\mathsf{FO}(\mathsf{N},\mathsf{min},\mathsf{max}) \subsetneq \mathsf{FO}(+1)$$

$$L = c^* abc^*$$

$$FO(N, min, max) \subsetneq FO(+1)$$

$$L = c^* abc^*$$

Use Ehrenfeucht-Fraïssé argument

$$\textit{L} \notin \mathsf{FO}(\mathsf{N}, \mathsf{min}, \mathsf{max})$$

- FO(N, min, max) is a natural fragment of logic
- It would be interesting to characterize precisely the FO(N, min, max) definable languages!

Let t, k > 0.

Let t, k > 0.

Define congruence on the free monoid, Σ^* .

 $w \approx_k^t w'$

Let t, k > 0.

Define congruence on the free monoid, Σ^* .

$$w \approx_k^t w'$$

$$|w| < k$$

$$w = w'$$

Let t, k > 0.

Define congruence on the free monoid, Σ^* .

$$w \approx_k^t w'$$

- |w| < k
 - w = w'
- $|w| \geq k$,
 - w' is of length at least k
 - number of times v appears in w is the same as the number of times v appears in w' upto the threshold t, for all $v \in A^{\leq k}$
 - both have same suffix of length k-1
 - both have same prefix of length k-1

A language is *locally threshold testable* (LTT) if it is a union of \approx_k^t -equivalence classes, for some t, k > 0.

A language is *locally threshold testable* (LTT) if it is a union of \approx_k^t -equivalence classes, for some t, k > 0.

Using Hanf's theorem,

$$FO(+1) = LTT$$

Define a new congruence on the free monoid, Σ^* .

$$w \stackrel{r}{\approx}_{k}^{t} w'$$

Define a new congruence on the free monoid, Σ^* .

$$w \stackrel{r}{\approx}_{k}^{t} w'$$

$$|w| < k$$

$$w = w'$$

Define a new congruence on the free monoid, Σ^* .

$$w\stackrel{r}{\approx}^t_k w'$$

- $\bullet |w| < k$
 - $\bullet w = w'$
- $|w| \geq k$,
 - w' is of length at least k
 - number of times v or v^r appears in w is the same as the number of times v or v^r appears in w' upto the threshold t, for all $v \in A^{\leq k}$
 - ullet both have same suffix of length k-1
 - ullet both have same prefix of length k-1

A language is weakly locally reversible threshold testable (wLRTT) if it is a union of $\stackrel{r}{\approx}_{k}^{t}$ -equivalence classes, for some t, k > 0.

A language is weakly locally reversible threshold testable (wLRTT) if it is a union of $\stackrel{r}{\approx}_{k}^{t}$ -equivalence classes, for some t, k > 0.

Using Hanf's theorem,

$$FO(N, min, max) = wLRTT$$

Membership problem

Membership problem

Approach

Approach

Approach

Since we enrich our languages with the reverse operation, it's only natural to enrish our recognizers with a similar notion as well.

Definitions

Involutory Varieties

For an *involutory* alphabet (Σ, \star) , the set of languages $\mathcal{V}((\Sigma, \star)^*)$ over this alphabet are closed under.

- · boolean operations
- auotients
- · inverse morphisms
- if $\mathsf{L} \in \mathcal{V}((\Sigma,\star)^*)$ then
 - $\mathsf{L}^\star \in \mathcal{V}((\Sigma,\star)^\star).$

Involutory pseudovarieties

Closed under finite direct products, sub-*-semigroups and quotients.

Eilenberg-type correspondence

Involutory Varieties

For an *involutory* alphabet (Σ, \star) , the set of languages $\mathcal{V}((\Sigma, \star)^*)$ over this alphabet are closed under.

- · boolean operations
- quotients
- · inverse morphisms
- if L $\in \mathcal{V}((\Sigma,\star)^*)$ then
 - $\mathsf{L}^\star \in \mathcal{V}((\Sigma,\star)^*)$.

Involutory pseudovarieties

Closed under finite direct products, sub-*-semigroups and quotients.

Semidirect product

A language is in LTT iff it recognized by a monoid which is the semidirect product of an aperiodic-commutative semigroup and a locally trivial semigroup.

Semidirect product

A language is in LTT iff it recognized by a monoid which is the semidirect product of an aperiodic-commutative semigroup and a locally trivial semigroup.

$$\mathsf{LTT} = \mathsf{Acom} * \mathsf{LI}$$

Is there a similar algebraic characterisation for wLRTT?

Locally hermitian semidirect product

Let (S, \star) and (T, \dagger) be involution semigroups.

Locally hermitian semidirect product

Let (S, \star) and (T, \dagger) be involution semigroups.

A two-sided action of T on S is involutory if $(tst')^* = t'^\dagger s^* t^\dagger$.

Locally hermitian semidirect product

Let (S, \star) and (T, \dagger) be involution semigroups.

A two-sided action of T on S is involutory if $(tst')^* = t'^\dagger s^* t^\dagger$.

An involutory action of T on S is locally hermitian if for all idempotents e, e' of T, $ese^{\dagger} = es^{\star}e^{\dagger}$.

A bilateral semidirect product of S and T with respect to a locally hermitian involutory action is called a locally hermitian semidirect product.

Main result

 $\mathsf{LTT} = \mathsf{Acom} * \mathsf{LI}$

Main result

Main result

Generalizes to any involution on languages, not just reverse.

Decidability of membership

S

 \in

 $\mathsf{LTT} = \mathsf{Acom} * \mathsf{LI}$

Decidability of membership

Decidability of membership

Thank you!