Exercise 10.1

Q.1 In the given figure

 $\angle 1 \cong \angle 2$ and AB \cong CB

Prove that

 $\triangle ABD \cong \triangle CBE$

Proof

Statemen	its	Reasons
In $\triangle ABD \leftrightarrow \triangle CBE$		
$\overline{AB} \cong \overline{CB}$	G	<mark>Pive</mark> n
$\angle BAD \cong \angle BCE$	G	<mark>6iven</mark> ∠1 ≅ ∠2
∠ABD ≅ ∠CBE	C	<mark>Common</mark>
$\triangle ABD \cong \triangle CBE$	S.	$A.A \cong S.A.A$

Q.2From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in measure.

Given

BD is bisector of \(\angle ABC. \) P is point on BD and PL PM \overline{AB} and \overline{CB} are perpendicular to are respectively

To prove

 $\overline{PL} \cong \overline{PM}$

Proof

triangles

D

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 1 OF 4]

Q.3 In a triangle ABC, the bisects of $\angle B$ and $\angle C$ meet in point I prove that I is equidistant from the three sides by $\triangle ABC$

Given

In $\triangle ABC$, the bisector of $\angle B$ and $\angle C$ meet at I and \overline{IL} , \overline{IM} , and \overline{IN} are perpendiculars to the three sides of $\triangle ABC$.

To prove

 $\overline{IL} \cong \overline{IM} \cong \overline{IN}$

Proof

Statements	Reasons
In $\Delta ILB \leftrightarrow \Delta IMB$	
$\overline{\mathrm{BI}}\cong\overline{\mathrm{BI}}$	Common
∠IBL ≅ ∠IBM	Given BI is bisector of ∠B
$\angle ILB \cong \angle IMB$	Given each angle is rights angles
$\Delta ILB \cong \Delta IMB$	$SAA \cong S.A.A$
∴ <u>IL</u> ≅ <u>IM</u> (i)	Corresponding sides of $\cong \Delta$'s
Similarly	
$\Delta IAC \cong \Delta INC$	
So $\overline{IL} \cong \overline{IN}$ (ii)	Corresponding sides of ~ As
from (i) and (ii)	Corresponding sides of $\cong \Delta s$
$\overline{IL} \cong \overline{IM} \cong \overline{IN}$	5 10
∴ I is equidistant from the three sides of	
ΔABC.	

Theorem 10.1.2

If two angles of a triangles are congruent then the sides opposite to them are also congruent A

Given

In $\triangle ABC$, $\angle B \cong \angle C$

To prove

 $\overline{AB} \cong \overline{AC}$

Construction

Draw the bisector of $\angle A$, meeting \overline{BC} at point D

Proof

Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle ACD$	
$\overline{AD} \cong \overline{AD}$	Common
$\angle B \cong \angle C$	Given
∠BAD ≅ ∠CAD	Construction
$\Delta ABD \cong \Delta ACD$	$S.A.A \cong S.A.A$
Hence $\overline{AB} \cong \overline{AC}$	(Corresponding sides of congruent triangles)

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 4]

Example 1

If one angle of a right triangle is of 30°, the hypotenuse is twice as long as the side opposite to the angle.

Given

In \triangle ABC,m \angle B=90° and $m\angle$ C = 30°

To prove

 $m\overline{AC}=2m\overline{AB}$

Constructions

At, B construct∠CBD of 30°

Let \overline{BD} cut \overline{AC} at the point D.

Proof

 $m\angle ABD = m\angle ABC, mCBD = 60^{\circ}$

 \therefore mADB = 60°

∴ ∆ABD is equilateral

 $\therefore \overline{AB} \cong \overline{BD} \cong \overline{CD}$

In $\triangle BCD$, $\overline{BD} \cong \overline{CD}$

Thus
$$m\overline{AC}$$
 = $m\overline{AD} + m\overline{CD}$
= $m\overline{AB} + m\overline{AB}$
= $2(m\overline{AB})$

Reasons
$$m\angle ABC=90^{\circ}, m\angle C=30^{\circ}$$

$$m\angle ABC = 90^{\circ}, m\angle CBD = 30^{\circ}$$

Sum of measures of \angle s of a \triangle is 180°

Each of its angles is equal to 60°

Sides of equilateral Δ

$$\angle C = \angle CBD$$
 (each of 30),

$$\overline{AD} \cong \overline{AB} \text{ and } \overline{CD} \cong \overline{BD} \cong \overline{AB}$$

Example 2

If the bisector of an angle of a triangle bisects the side opposite to it, the triangle is isosceles.

Given

In $\triangle ABC$, \overline{AD} bisect $\angle A$ and $\overline{BD} \cong \overline{CD}$

To prove

 $\overline{AB} \cong \overline{AC}$

Construction

Produce \overline{AD} to E, and take $\overline{ED} \cong \overline{AD}$

Joint C to E

Proof

Statements	Reasons
$In \Delta ADB \leftrightarrow EDC$	
$\overline{AD} \cong \overline{ED}$	Construction
$\angle ADB \cong \angle EDC$	Vertical angles
$\overline{BD} \cong \overline{CD}$	Given
$\therefore \Delta ADB \cong \Delta EDC$	S.A.S. Postulate
$\therefore \overline{AB} \cong \overline{EC} \dots (i)$	Corresponding sides
and $\angle BAD \cong \angle E$	Corresponding angles
But $\angle BAD \cong \angle CAD$	Given
$\therefore \angle E \cong \angle CAD$	Each≅ ∠BAD
In $\triangle ACE$, $\overline{AC} \cong \overline{EC}$ (ii)	$\angle E \cong \angle CAD$ (proved)
Hence $\overline{AB} \cong \overline{AC}$	From (i) and (ii)

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 4 OF 4]