

T-Roof Rail: Stiffness, strength and toughness, combined with good surface appearance.

Oven Handle: High stiffness, low discoloration and distortion, and light color availability.

Coil Bobbin: Excellent dielectric properties, outstanding heat resistance, combined with lasting adhesion.

Encapsulated Motor Stator: All-in-one molded stator assembly, lower production time, and cooler operation.

Start with DuPont

Identity and Trademark Standards

Guidelines for Customer Use—Joint ventures and authorized resellers

Only joint ventures and resellers who have signed special agreements with DuPont to resell DuPont products in their original form and/or packaging are authorized to use the Oval trademark, subject to the approval of an External Affairs representative.

Guidelines for Customer Use—All other customers

All other customer usage is limited to a product signature arrangement, using Times Roman typography, that allows mention of DuPont products that serve as ingredients in the customer's products. In this signature, the phrase, "Only by DuPont" follows the product name.

Rynite® PET only by DuPont or Rynite® PET
Only by DuPont

A registration notice ® or an asterisk referencing the registration is required. In text, "Only by DuPont" may follow the product name on the same line, separated by two letter-spaces (see above example). When a DuPont product name is used in text, a ® or a reference by use of an asterisk must follow the product name. For example, "This device is made of quality DuPont Rynite® PET polyester elastomer for durability and corrosion resistance."

Rynite® PET is a DuPont registered trademark.

Rev. August 1995

Table of Contents

Chapter 1—Introduction and General Properties General Description Product Descriptions (Compositions) Data Tables (Typical Properties of Rynite® PET)	2 . 3
Chapter 2—Mechanical Properties	. 9
Tensile Strength	10
Flexural Modulus	13
Flexural Creep	14
Fatigue Resistance	
Effect of Foaming	
Effect of Fiber Orientation	
Properties from Machined versus	
Molded Samples	21
Chapter 3—Thermal Properties	23
Thermal Characteristics	24
Thermal Conductivity	24
Specific Heat/Heat Capacity	24
Chapter 4—Electrical Properties and	
Flammability	26
Dielectric Strength	28
Ignition Properties	29
Combustibility	29

s 1	Chapter 5—Environmental	
2	Temperature	
3	Weathering	. 35
5	Chemical Resistance	. 38
9	Chapter 6—Government and Agency Approvals	45
10	Underwriters' Laboratories Ratings	. 46
	Military Specification MIL-M-24519	
13	Food and Drug Administration (FDA)	
14	<u> </u>	
19	National Sanitation Foundation (NSF)	
20	ASTM D5927-96	. 46
	Chantan 7 Anniisations	40
21	Chapter 7—Applications	
	General Decorating Techniques	. 50
21	Hot Stamping	. 50
21	Inks	. 50
23	Painting	. 50
	Adhesion	
24	Adile31011	

Introduction and General Properties

General Description

Rynite® PET thermoplastic polyester resins contain uniformly dispersed glass fibers or mineral/glass fiber combinations in polyethylene terephthalate (PET) resin that has been specially formulated for rapid crystallization during the injection molding process. Rynite® PET thermoplastic polyester resins are among the strongest and stiffest engineering resins available. As an engineering polymer resin family, Rynite® PET thermoplastic polyester resins offer a unique combination of properties—high strength, stiffness, excellent dimensional stability, outstanding chemical and heat resistance, and good electrical properties.

Specific grades of Rynite® PET thermoplastic polyester resin are formulated with special emphasis on strength, low warp and dimensional stability, toughness, high-temperature color stability, electrical properties, and excellent UL flammability and relative temperature index ratings.

Rynite® PET thermoplastic polyester resins are noted for their excellent flow characteristics in thin wall applications, close molding tolerances, and high productivity from multicavity molds. Several compositions are exceptional in encapsulation applications. The properties, processing characteristics, and competitive price of Rynite® PET thermoplastic polyester resins lead to high value-in-use and lower part cost and weight as compared to metals such as zinc or aluminum.

Among the many successful applications for Rynite® PET thermoplastic polyester resins are housings and covers, support brackets, pump parts, electrical sensor housings, motor parts, lamp sockets, terminal blocks, switches, bobbins, oven handles and control panels, small appliance housings, automotive support brackets, exterior components, headlamp retainers, ignition components, and luggage racks.

Table 1 Compositions

Standard Compositions	Characteristics	Candidate Uses
General-Purpose	Grades	
Rynite® 520	20% glass-reinforced modified polyethylene terephthalate—good balance of strength, stiffness, specific gravity, and toughness with good surface appearance.	Housings, electrical components, covers, frames, bobbins.
Rynite® 530	30% glass-reinforced modified polyethylene terephthalate—outstanding balance of strength, stiffness, and toughness, excellent electrical properties, surface appearance, and chemical resistance.	Electrical/electronic parts such as ignition components, relay bases, lamp sockets, bobbins; housings and other parts for pumps; mechanical components including gears, sprockets, vacuum cleaner parts, motor end bells; chair arms, casters, and other furniture parts.
Rynite® 545	45% glass-reinforced modified polyethylene terephthalate—greater strength and stiffness, excellent dimensional stability, and creep resistance.	Lamp housings, compressor housings, fuel, air, and temperature sensor housings, sunroof frames, spools, bobbins, transmission components, medical devices.
Rynite® 555	55% glass-reinforced modified polyethylene terephthalate—superior stiffness, dimensional stability, heat resistance, and outstanding resistance to creep.	Structural support brackets, housings and covers, auto parts, bicycle components, propellors.
Low Warp Grade	es	
Rynite® 935	35% mica/glass-reinforced modified polyethylene terephthalate—exceptionally low warpage, excellent electrical properties, high stiffness, and high heat resistance.	Exterior body parts, structural housings and frames, irrigation components, electrical components including transformer and ignition coil housings.
Rynite® 940	40% mica/glass-reinforced modified polyethylene terephthalate—greater strength, stiffness, and low warpage.	Frames, exterior body parts; structural supports.
Toughened Grad	es	
Rynite® 408	30% glass-reinforced modified polyethylene terephthalate with improved impact resistance. Excellent balance of strength, stiffness, toughness, and temperature resistance.	Water pump housings, structural housings and brackets, electrical and electronic housings, luggage rack components.
Rynite® 415HP	15% glass-reinforced modified polyethylene terephthalate—improved for easy, fast processing over a broad molding range—excellent balance of strength, stiffness, and temperature resistance.	Snap fit applications, encapsulation of sensors, coils, etc.
Rynite® SST 35	35% stiffened, super-tough, glass-reinforced modified polyethylene terephthalate—superior combination of toughness and stiffness. Excellent surface appearance, moldability, and temperature resistance.	Automotive parts, wheels, yard and shop tools, sporting goods, luggage components, appliance housings, structural furniture components.

(continued)

Table 1 Compositions (continued)

Standard Compositions	Characteristics	Candidate Uses
Flame-Retardant G	Grades*	
Rynite® FR330	Flame-retardant, 30% glass-reinforced modified polyethylene terephthalate. Recognized by UL as 94 V-0 at 0.032". Has a 140°C (284°F) temperature index. Excellent balance of electrical and mechanical properties. High temperature resistance and flow.	Electrical and electronic connectors and components such as relays, switches, lamp sockets, and fans. Used in structural components such as office equipment, fans, fan housings, and oven handles.
Rynite® FR515	Flame-retardant, 15% glass-reinforced modified polyethylene terephthalate. Recognized by UL as 94 V-0 at 0.034". Has a 140°C (284°F) temperature index. Excellent balance of electrical and mechanical properties. High temperature resistance and flow.	Electrical and electronic connectors and components such as relays, switches, lamp sockets, and fans.
Rynite® FR530	Flame-retardant, 30% glass-reinforced modified polyethylene terephthalate. Recognized by UL as 94 V-0 at 0.014". Has a 150°C (302°F) temperature index. Outstanding balance of properties and excellent flow characteristics.	Electrical and electronic connectors and other components requiring flame-retardant characteristics. Used in applications employing vapor phase and wave soldering techniques.
Rynite® FR543	Flame-retardant, 43% glass-reinforced polyethylene terephthalate. Has a 155°C (311°F) temperature index—equivalent to many thermosets. Recognized by UL as 94 V-0 at 0.032″.	Electrical/electronic applications such as relays, switches, lighting ballasts, and terminal blocks.
Rynite® FR943	Flame-retardant, 43% glass-reinforced modified polyethylene terephthalate. Recognized by UL as 94 V-0 at 0.014". Has a 155°C (311°F) temperature index. Excellent balance of electrical and mechanical properties. Low warp characteristics.	Electrical and electronic connectors and other components requiring low warp characteristics. Used in electronic applications such as connector bodies and terminal blocks.
Rynite® FR945	Flame-retardant, 45% mineral/glass-reinforced modified polyethylene terephthalate. Recognized by UL as 94 V-0 at 0.032". Has a 150°C (302°F) temperature index. Low warpage, high stiffness, and economical price.	Electrical and electronic components. Economical for large parts requiring flame- retardant characteristics, such as motor housings, bobbins, terminal blocks, and fans.
Rynite® FR946	Flame-retardant, 46% glass-reinforced modified polyethylene terephthalate. Recognized by UL as 94 V-0 at 0.032". Has a 150°C (302°F) temperature index. Excellent balance of stiffness, strength, toughness, good surface appearance, and electrical properties.	Electrical and electronic components. Economical for large parts requiring flame- retardant characteristics, such as connector bodies, bobbins, and terminal blocks.

^{*}This numerical flame spread rating is not intended to reflect hazards presented by this or any other material under actual fire conditions.

Table 2
Typical Properties of Rynite® PET

	Typical Flope						1 1				Flamo_Ratardant								
					General-				Warp		oughene		Flame-Retardant						<u> </u>
	Property ¹	Method	Unit	Rynite® 520	Rynite® 530	Rynite® 545	Rynite® 555	Rynite® 935	Rynite® 940	Rynite® 408	Rynite® 415HP	Rynite® SST 35	Rynite® FR330	Rynite® FR515	Rynite® FR530	Rynite® FR543	Rynite® FR943	Rynite® FR945	Rynite® FR946
	Tensile Strength -40°C -40°F 23°C 73°F 90°C 194°F 150°C 300°F	ASTM D638	MPa kpsi MPa kpsi MPa kpsi MPa kpsi	148 21.5 114 16.5 58.6 8.5 41.4 6.0	214 31.0 159 23.0 83.4 12.1 56.5 8.2	242 35.1 186 27.0 91.7 13.3 66.9 9.7	220 31.9 189 27.5 95.8 13.9 70.0	121 17.5 89.6 13.0 40.7 5.9 29.7 4.3	152 22.0 117 17.0 55.2 8.0 38.6 5.6	206 29.9 126 18.3 70.3 10.2 55.2 8.0	145 21.0 79.0 11.5 44.8 6.5 35.9 5.2	190 27.5 103 15.0 55.2 8.0 44.8 6.5	193 28.0 138 20.0 72.4 10.5 44.8 6.5	138 20.0 107 15.5 55.2 8.0 38.0 5.5	193 28.0 138 20.0 72.4 10.5 44.8 6.5	210 30.5 172 25.0 86.5 12.5 55.2 8.0	155 22.5 124 18.0 65.5 9.5 40.0 5.8	139 20.2 104 15.1 51.0 7.4 31.7 4.6	145 21.0 103 15.0 55.2 8.0 34.5 5.0
Strength	Elongation at Break -40°C (-40°F) 23°C (73°F) 90°C (194°F) 150°C (300°F)	ASTM D638	% % %	2.1 2.3 6.0 7.0	2.5 2.7 5.7 6.5	1.7 2.1 4.5 6.0	1.5 1.6 3.5 4.0	1.8 2.0 5.0 7.0	1.6 1.9 5.5 6.5	3.0 3.3 7.0 7.5	3.0 6.0 13 14	3.2 5.0 8.5 8.5	1.9 2.1 3.5 4.0	2.5 2.6 4.7 6.7	1.9 2.1 3.5 4.0	1.7 1.8 4.3 5.5	1.3 1.5 3.0 4.5	1.4 1.4 4.0 5.0	1.2 1.2 3.0 4.0
Str	Tensile Modulus -40°C -40°F 23°C 73°C 90°C 194°F 150°C 300°F	ASTM D638	MPa kpsi MPa kpsi MPa kpsi MPa kpsi	8,280 1,200 7,240 1,050 3,370 488 2,090 303	11,300 1,640 10,700 1,550 4,540 658 3,090 448	16,400 2,380 15,500 2,250 8,410 1,220 5,100 740	20,500 2,970 17,900 2,590 9,100 1,320 6,380 925	11,200 1,620 9,930 1,440 3,170 460 2,420 351	13,900 2,010 11,600 1,680 4,450 645 3,190 462	9,790 1,420 9,310 1,350 3,280 475 2,700 392	6,400 928 4,220 612 1,830 265 1,690 245	10,900 1,580 7,590 1,100 3,240 470 2,300 333	12,500 1,810 11,000 1,590 5,580 809 3,890 564	7,100 1,030 6,890 999 3,040 441 2,280 331	12,500 1,810 11,000 1,590 5,580 809 3,890 564	17,100 2,480 16,500 2,390 8,210 1,190 5,050 732	15,700 2,280 11,900 1,720 6,470 939 4,300 628	16,400 2,380 12,300 1,780 5,900 857 2,450 355	15,800 2,290 14,500 2,100 4,920 713 3,610 523
	Shear Strength 23°C 73°F	ASTM D732	MPa kpsi	_	79.0 11.5	86.5 12.5	82.7 12.0	53.7 7.8	60.7 8.8		40.0 5.8	38.0 5.5	60.0 8.7	52.0 7.5	60.0 8.7	58.6 8.5	55.2 8.0	48.3 7.0	52.0 7.5
də	Flexural Strength -40° C -40° F 23° C 73° F 90° C 194° F 150° C 300° F	ASTM D790	MPa kpsi MPa kpsi MPa kpsi MPa kpsi	200 29.0 172 25.0 90.3 13.1 55.9 8.1	269 39.0 235 34.0 114 16.5 75.8 11.0	324 47.0 283 41.0 141 20.5 96.5 14.0	345 50.0 290 42.0 159 23.0 110	176 25.5 141 20.5 62.1 9.0 42.7 6.2	261 37.9 198 28.7 73.1 10.6 49.0 7.1	266 38.6 193 28.0 86.2 12.5 60.0	210 30.5 93.1 13.5 48.3 7.0 34.5 5.0	276 40.0 145 21.0 69.0 10.0	262 38.0 200 29.0 107 15.5 69.0	179 26.0 158 23.0 69.0 10.0 44.8 6.5	262 38.0 200 29.0 107 15.5 69.0 10.0	310 45.0 248 36.0 138 20.0 79.3	227 33.0 186 27.0 103 15.0 64.1 9.3	210 30.5 154 22.3 95.2 13.8 66.9 9.7	207 30.0 165 24.0 96.5 14.0 55.2 8.0
	Flexural Modulus -40°C -40°F 23°C 73°F 90°C 194°F 150°C 300°F	ASTM D790	MPa kpsi MPa kpsi MPa kpsi MPa kpsi	7,590 1,100 6,480 940 2,690 390 1,870 271	10,300 1,500 8,960 1,300 3,580 520 2,690 390	15,200 2,200 17,900 2,000 5,510 800 4,000 580	20,700 3,000 17,900 2,600 9,210 1,330 5,730 832	11,700 1,700 9,600 1,400 3,370 489 2,200 320	13,200 1,920 11,700 1,700 3,580 520 2,100 300	8,900 1,290 8,280 1,200 3,010 436 2,250 326	5,860 850 3,600 525 1,280 185 1,100	8,970 1,300 6,890 1,000 2,480 360 1,900 275	11,000 1,600 10,300 1,500 4,650 674 2,650 384	6,550 950 5,860 850 2,410 350 1,520 220	11,000 1,600 10,300 1,500 4,650 674 2,650 384	15,200 2,200 14,500 2,100 6,890 1,000 2,900 450	14,500 2,100 13,100 1,900 5,860 850 3,440 500	14,500 2,100 11,700 1,690 4,480 650 2,900 420	13,800 2,000 12,400 1,800 5,860 850 3,280 475
ss and Creep	Compressive Strength 23°C 73°F	ASTM D695	MPa kpsi	172 25.0	227 33.0	235 34.0	241 35.0	141 20.5	175 25.4	148 21.5	93.0 13.5	81.0 11.7	200 29.0	172 24.9	200 29.0	231 33.5	193 28.0	168 24.4	193 28.0
Stiffness	Deformation Under Load 27.6 MPa (4,000 psi) 23°C (73°F) 50°C (122°F)	ASTM D621	% %		0.4 1.6	0.4 1.2			0.6 1.5		2.2 4.4	2.8 4.6	0.3 1.7	0.3 1.1	0.5 1.2	0.1 0.3	0.3 1.7	0.4 1.2	0.3 0.8
	Flexural Creep 27.6 MPa (4,000 psi) 5,000 hr 23°C (73°F) 60°C (60°F) 125°C (257°F)	ASTM D2990	% % %		0.56 1.18 1.65	0.32 0.70 1.14	0.19 — 0.81	0.50 0.91 2.50	0.51 1.29 1.80		1.98 2.94	1.22 1.43 2.84	0.37 0.87 1.59	0.70 1.18 2.99	0.46 1.01 1.86	0.37 0.63 1.39	0.39 0.72 1.48	0.46 0.87 1.83	0.40 0.50 1.20
	Heat Deflection Temp. 1.8 MPa (264 psi) 0.46 MPa (66 psi)	ASTM D648	°C °F °C °F	210 410 240 465	224 435 247 477	226 440 248 478	229 445 246 475	215 420 241 466	211 412 241 466	220 428 240 465	207 405 235 454	220 428 246 475	222 432 247 477	215 420 244 471	224 435 246 475	224 435 247 477	220 428 245 473	200 392 237 459	225 437 250 482
																	- (contin	upd)

(continued)

¹ These values are for natural color (NC010) resins only (except 940 BK505). Colorants or other additives may alter some or all of these properties. The data listed here fall within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design.

Table 2
Typical Properties of Rynite® PET (continued)

_	General-Purpose Low Warp Toughened									<i>100</i> 7	Fla	00 D-4r -	dont						
				Rynite®		·	Rynite®	Rynite®	_ •		oughene Rynite®		Rynite®	Rynite®		ne-Retar	dant Rynite®	Rynite®	Rynite®
	Property ¹	Method	Unit	520	530	545	555	935	940	408	415HP	SST 35	FR330	FR515	FR530	FR543	FR943	FR945	FR946
ess	Unnotched Impact Strength -40°C -40°F 23°C 73°F	ASTM D4812	J/m ft lb/in J/m ft lb/in	385 7.2 510 9.5	750 14 960 18	800 15 1,000 19	585 11 855 16	280 5.2 425 8.0	415 7.8 530 9.9	960 18 960 18	640 12 855 16	1,070 20 1,200 23	535 10 695 13	350 6.6 530 9.9	535 10 585 11	510 9.5 750 14	385 7.2 480 9.0	285 5.3 375 7.0	375 7.0 375 7.0
Toughness	Izod Impact Strength -40°C -40°F 23°C 73°F	ASTM D256	J/m ft lb/in J/m ft lb/in	53 1.0 69 1.3	96 1.8 101 1.9	123 2.3 117 2.2	107 2.0 107 2.0	43 0.8 64 1.2	69 1.3 75 1.4	101 1.9 133 2.5	69 1.3 133 2.5	160 3 235 4.4	85 1.6 91 1.7	59 1.1 69 1.3	80 1.5 91 1.7	91 1.7 96 1.8	53 1.0 64 1.2	43 0.8 48 0.9	37 0.7 48 0.9
	Fatigue Endurance at 10 ⁶ Cycles	ASTM D671	MPa kpsi	_	40.7 5.9	51.0 7.4	53.8 7.8	33.1 4.8	42.7 6.2	34.5 5.0	20.7 3.0	26.9 3.9	41.3 6.0	44.1 6.4	41.3 6.0	50.2 7.3	45.0 6.5	38.0 5.5	37.2 5.4
	Melting Point	DSC	° C °F	254 489	254 489	254 489	254 490	252 485	250 482	254 489	250 482	250 482	254 489	254 489	254 489	254 489	250 482	250 482	254 489
rmal	Coeff. of Linear Thermal Expansion Flow Direction -40° to 23°C -40° to 73°F 22 to 55°C 73 to 131°F 55 to 160°C 131 to 320°F		10-4 mm/mm/°C 10-4 in/in/°F 10-4 in/in/°F 10-4 in/in/°F 10-4 in/in/°F	0.31 0.17 0.25 0.14 0.11 0.06	0.22 0.12 0.10 0.06 0.04 0.02	0.18 0.10 0.13 0.07 0.05 0.03	0.13 0.07 0.08 0.04 0.01 0.01	0.26 0.14 0.16 0.09 0.14 0.08	0.22 0.12 0.15 0.08 0.06 0.03	0.24 0.13 0.14 0.08 0.08 0.04	0.40 0.22 0.20 0.11 0.32 0.18	0.21 0.12 0.06 0.03 0.13 0.07	0.21 0.12 0.16 0.09 0.06 0.03	0.33 0.18 0.18 0.10 0.10 0.12	0.22 0.12 0.19 0.11 0.10 0.06	0.16 0.09 0.11 0.06 0.07 0.04	0.21 0.12 0.19 0.11 0.06 0.03	0.17 0.09 0.13 0.07 0.03 0.02	0.19 0.11 0.14 0.08 0.07 0.04
Thermal	Cross Flow -40° to 23° C -40° to 73° F 23 to 55° C 73 to 131° F 55 to 160° C 131 to 320° F		10-4 mm/mm/°C 10-4 in/in/°F 10-4 mm/mm/°C 10-4 in/in/°F 10-4 mm/mm/°C 10-4 in/in/°F	0.72 0.40 0.93 0.52 0.90 0.50	0.67 0.37 0.81 0.45 1.07 0.59	0.54 0.30 0.71 0.39 0.95 0.53	0.54 0.30 0.75 0.42 0.95 0.53	0.53 0.29 0.52 0.29 0.81 0.45	0.54 0.30 0.60 0.33 0.84 0.47	0.85 0.47 0.85 0.47 0.92 0.51	0.98 0.54 1.17 0.65 1.09 0.61	1.13 0.63 1.26 0.70 1.12 0.62	0.62 0.34 0.76 0.42 0.72 0.40	0.70 0.39 0.88 0.49 1.05 0.58	0.68 0.38 0.92 0.51 0.98 0.54	0.55 0.31 0.79 0.44 0.96 0.53	0.51 0.28 0.65 0.36 0.84 0.47	0.49 0.27 0.65 0.36 0.82 0.46	0.35 0.19 0.36 0.20 0.59 0.33
	Thermal Conductivity	ASTM C177	W/m K Btu/hr/ft²/ °F/in	1 1	0.29 2.0	0.32 2.2	0.33 2.3	0.26 1.8	1 1	_	0.26 1.8	_	0.25 1.7	0.23 1.6	0.25 1.7	0.22 1.49	0.31 2.3	0.24 1.65	0.37 2.6
	Volume Resistivity	ASTM D257	ohm-cm	_	1015	1015	_	10 ¹⁵	10 ¹⁵	10 ¹⁵	10 ¹³	1014	10 ¹⁵	10 ¹⁵	1015	10 ¹⁵	10 ¹⁵	10 ¹⁵	10 ¹⁵
	Surface Resistivity	ASTM D257	ohm/Sq		10 ¹⁴	1014	_	10 ¹⁴	1014	10 ¹⁴	10 ¹³	10 ¹³	10 ¹³	10 ¹³	10 ¹⁴	10 ¹³	10 ¹³	10 ¹³	1014
	Dielectric Strength, 500 V/s, Short Time in Oil 1.59 mm at 23°C ½ in disk at 73°F 1.59 mm at 95°C ½ in disk at 203°F	ASTM D149	kV/mm V/mil kV/mm V/mil	25.0 635 22.5 570	25.5 650 22.5 570	24.5 620 22.5 570	24.5 620 22.5 570	29.5 750 25.5 650	23.0 585 19.0 485	26.5 675 24.0 610	24.0 610 15.5 395	25.5 650 16.0 405	25.0 635 23.5 600	26.0 660 26.5 675	25.0 635 23.5 600	23.5 600 21.5 550	25.0 635 23.0 585	24.5 620 23.0 585	24.5 620 24.5 620
_	1.59 mm at 150°C 1/16 in disk at 300°F		kV/mm V/mil	14.5 375	15.5 395	16.0 405	16.5 420	14.5 375	15.0 380	14.5 375	8.5 215	9.5 240	13.0 330	13.0 330	13.0 330	13.5 340	12.0 300	13.0	22.0
Electrical	3.18 mm at 23°C 1/8 in disk at 73°F		kV/mm V/mil	20.0 510	20.5 520	20.0 510	20.0 510	23.5 600	16.5 415	21.5 550	18.0 460	19.5 495	18.0 460	18.5 470	18.0 460	17.0 430	18.0 460	17.0 430	18.0 460
ä	3.18 mm at 95°C 1/8 in disk at 203°F 3.18 mm at 150°C		kV/mm V/mil kV/mm	17.5 445 11.5	16.5 420 12.0	17.5 445 12.5	17.0 430 12.5	19.5 495 12.0	14.0 355 10.5	17.5 445 12.0	11.0 280 6.5	10.5 270 7.5	18.0 460 9.0	22.0 560	18.0 460 9.0	16.0 405 12.0	18.0 460 10.5	17.5 445 10.5	20.5 520 17.0
	½ in disk at 300°F		V/mil	295	300	320	320	300	265	300	170	190	230	11.0 280	230	300	265	265	430
	Step by Step 3.18 mm at 23°C ½ in disk at 73°F	_	kV/mm V/mil	_	17.5 445	17.5 445	_	21.0 530	19.0 485	_	16.5 420	17.0 430	16.0 405	17.0 430	14.0 355	15.0 380	17.0 430	15.0 380	15.5 395
	Dielectric Constant 10³ Hz 10 ⁶ Hz	ASTM D150		3.2 3.0	3.6 3.5	4.0 3.9	_	3.8 3.7	3.8 3.7	3.4 3.3	3.9 3.7	<u> </u>	3.3 3.3	3.1 3.0	3.8 3.7	4.1 4.1	4.1 4.1	4.1 4.0	3.7 3.6
	Dissipation Factor 10³ Hz 10 ⁶ Hz	ASTM D150		0.010 0.015	0.005 0.012	0.005 0.011	_	0.008 0.010	0.007 0.015	0.010 0.015	0.019 0.022	 0.023	0.005 0.014	0.004 0.015	0.011 0.018	0.009 0.017	0.010 0.015	0.009 0.017	0.007 0.014
	Arc Resistance	ASTM D495	S	300– 360	120– 180	120- 180	120- 180	120- 180	_	_	60– 120	_	60- 120	0– 60	60– 120	120- 180	60– 120	120- 180	60- 120

(continued)

¹These values are for natural color (NC010) resins only only (except 940 BK505). Colorants or other additives may alter some or all of these properties. The data listed here fall within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design.

Table 2
Typical Properties of Rynite® PET (continued)

					0	. D	_	1	W	T .					FI.	D.4	d =4		
				Rynite®		I-Purpos			Warp Rvnite®		Dunita®		Rynite®	Rynite®	F1a Rynite®	me-Retar	Rynite®	Rynite®	Rynite®
	Property ¹	Method	Unit	Kynite [®] 520	530	Kynite [®] 545	Kynite [®]	Hynite [®] 935	940	Kynite [®]	415HP	SST 35	FR330	FR515	FR530	Rynite® FR543	FR943	FR945	FR946
	UL Flammability ^{2,3}	UL-94		НВ	НВ	НВ	НВ	НВ	НВ	НВ	НВ	НВ	V-0 at 0.86 mm 1/32 in 5V at 1.57 mm 1/16 in	V-0 at 0.81 mm 1/32 in 5V at 1.57 mm 1/16 in	V-0 at 0.35 mm 1/64 in 5V at 1.57 mm 1/16 in	V-0 at 0.80 mm 1/32 in	V-0 at 0.35 mm 1/64 in 5V at 1.57 mm 1/16 in	V-0 at 0.80 mm 1/32 in	V-0 at 0.80 mm 1/32 in
billity	Oxygen Index	ASTM D2863	% O ₂	_	20	20	_	_	_	_	19	_	29	30	33	35	31	33	35
Flammability	High-Current Arc Ignition	_	No. of arcs	60- 120	60- 120	60- 120	60- 120	60– 120	_	30- 160	>120	>120	60– 120	60- 120	60- 120	60- 120	30- 60	60- 120	15– 30
-	High-Voltage Arc Tracking	_	mm/min	80– 150	25- 80	10- 25	10- 25	10– 25	_	0– 10	25– 80	80– 150	80– 150	>150	10- 25	10- 25	10- 25	10- 25	10– 25
ŀ	Hot Wire Ignition	UL-746A	S	>120	>120	>120	>120	>120	_	>120	>120	60– 120	>120	>120	>120	>120	>120	>120	>120
ľ	Comparative Tracking Index	_	V	175– 250	250- 400	250- 400	175– 250	250- 400	_	250- 400	250– 400	400– 600	175– 250	175– 250	250- 400	175– 250	250– 400	250- 400	175– 250
Bu	Electrical	UL-746B	°C	140	140	140	140	140	_	140	140	150	140	140	150	155	155	150	150
Temp. Indexing	Mechanical w/Impact	UL-746B	°C	140	140	140	140	140	_	140	120	150	140	140	150	155	155	150	150
Temp.	Mechanical w/o Impact	UL-746B	°C	140	140	140	140	140	_	140	140	150	140	140	150	155	155	150	150
	Specific Gravity	ASTM D792		1.47	1.56	1.70	1.81	1.58	1.64	1.51	1.39	1.52	1.65	1.55	1.67	1.79	1.79	1.85	1.84
ŀ	Water Absorption 24 hr at 23°C (73°F)	ASTM D570	%	_	0.05	0.04	0.04	0.05	0.05	0.06	0.24	0.25	0.07	0.07	0.05	0.06	0.04	0.05	0.04
ľ	Poisson's			0.40	0.41	0.39	0.37	0.38	0.36	0.45	0.49	0.49	0.40	0.41	0.40	0.38	0.35	0.38	0.33
•	Hardness, Rockwell M R	ASTM D785		90 120	95 120	95 120	100 120	75 115	75 115	70 115	55 110	50 105	95 120	95 120	95 120	95 120	95 120	95 120	95 120
sneons	Coefficient of Friction Against Self Against Steel	ASTM D1894		_ _	0.18 0.17	0.17 0.20	0.27 0.18	0.21 0.19	_ _		0.42 0.27		0.24 0.18	0.21 0.18	0.18 0.19	0.18 0.16	0.29 0.18	0.20 0.20	0.27 0.18
Miscellaneous	Taber Abrasion CS-17 Wheel, 1,000 g	_	mg/1,000 cycles	_	30	44	_	_	81	_	35	82	88	88	38	69	82	81	74
•	Mold Shrinkage ⁴ for 3.18 mm (½ in) 104°C (220°F) Mold Flow Transverse	_	% %	0.35 0.90	0.25 0.80	0.20 0.75	0.20 0.70	0.35 0.65	0.30 0.70	0.20 0.75	0.40 0.95	0.25 0.85	0.25 0.75	0.50 0.95	0.25 0.75	0.20 0.65	0.35 0.70	0.35 0.70	0.25 0.45
	Mold Shrinkage ⁴ for 1.57 mm (½ in) 104°C (220°F) Mold Flow Transverse	_	% %	0.23 0.82	0.18 0.78	0.15 0.67	0.13 0.66	0.28 0.52	0.17 0.55	0.21 0.63	0.24 0.67	0.13 0.59	0.16 0.69	0.34 0.69	0.16 0.68	0.13 0.48	0.22 0.57	0.22 0.71	0.20 0.40
	Melt Temperature	_	°C	280-300							270-290		270-290	270-290	270-290	270-290	270-290	270-290	
	Range Mold Temperature	_	°F °C	535–570 > 95	>95	>95	535–570 > 95	>95	>95	>95	>95	>95	520–555 > 95	>95	520–555 > 95	520–555 > 95	>95	520–555 > 95	>95
Processing	Range Drying Time,	_	°F	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205	>205
Pro	Dehumidifed Dryer Drying Temperature	_	h °C °F	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250	4 120 250
	Processing Moisture Content	_	%	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
\exists	Acid Resistance	Good at re	oom tempe										0.02	0.02	0.02	0.02	0.02	0.02	0.02
ıica	Base Resistance		oom tempe																
Chemical	Solvent Resistance	Excellent	resistance		variety of	fluids sı	uch as ga	asoline, ı					carbons, a	and organ	ic solvent	s. Some a	bsorption	by keton	es and

These values are for natural color (NC010) resins only (except for 940 BK505). Colorants or other additives may alter some or all of these properties. The data listed here fall within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design.

²Based on specimens 0.8 mm (½ in) thick unless otherwise stated.

 $^{^3\}mbox{This small test does not indicate combustion characteristics under actual fire conditions.}$

 $^{^476.2\}times127\times3.18~\text{mm (3 in}\times5~\text{in}\times\%~\text{in) end-gated plaques and}~76.2\times127\times1.6~\text{mm (3 in}\times5~\text{in}\times\%~\text{in) end-gated plaques.}$

Mechanical Properties

Tensile Strength

Rynite® PET thermoplastic polyester resins exhibit high tensile strength over a wide temperature range. Stress-strain data for various Rynite® PET thermoplastic polyester resins at temperatures from –40 to 150°C (–40 to 300°F) are shown in **Figures 1** through **15**. For all Rynite® PET thermoplastic

Figure 1. Rynite® 520 NC010 Stress-Strain Curves

polyester resins, the pull rate for tensile testing is 5 mm (0.2 in)/min. Before testing, sample bars are conditioned for a minimum of 40 hr at 23°C (73°F) and 50% RH. Conditioning reduces the tensile strength by about 5% from the values obtained on bars tested without conditioning.

Figure 3. Rynite® 545 NC010 Stress-Strain Curves

Figure 2. Rynite® 530 NC010 Stress-Strain Curves

Figure 4. Rynite® 555 NC010 Stress-Strain Curves

Figure 5. Rynite® 935 NC010 Stress-Strain Curves

Figure 8. Rynite® 415HP NC010 Stress-Strain Curves

Figure 6. Rynite® 940 BK505 Stress-Strain Curves

Figure 9. Rynite® SST 35 NC010 Stress-Strain Curves

Figure 7. Rynite® 408 NC010 Stress-Strain Curves

Figure 10. Rynite® FR515 NC010 Stress-Strain Curves

Figure 11. Rynite® FR530 NC010 Stress-Strain Curves

Figure 14. Rynite® FR945 NC010 Stress-Strain Curves

Figure 12. Rynite® FR543 NC010 Stress-Strain Curves

Figure 15. Rynite® FR946 NC010 Stress-Strain Curves

Figure 13. Rynite® FR943 NC010 Stress-Strain Curves

Flexural Modulus

The effect of temperature on the flexural modulus of Rynite® PET thermoplastic polyester resins is shown in **Figures 16** through **20**. As with all other physical tests performed on Rynite® PET thermoplastic polyester resins, samples are conditioned a minimum of 40 hr at 23°C (73°F) and 50% RH before testing.

Figure 16. Flexural Modulus versus Temperature

Figure 17. Flexural Modulus versus Temperature

Figure 18. Flexural Modulus versus Temperature

Figure 19. Flexural Modulus versus Temperature

Figure 20. Flexural Modulus versus Temperature

Flexural Creep

Deformation under load with time is called creep. The amount of creep depends on composition (type of plastic, fillers, etc.), time, temperature, the applied stress level, and molding conditions. For Rynite® PET thermoplastic polyester resins, creep is decreased as crystallinity of the sample increases. Maximum resin crystallinity in a part is achieved by using a hot (≥93°C [200°F]) mold. The creep characteristics of Rynite® PET thermoplastic polyester resins molded in hot molds (≥93°C [200°F]) are shown in **Figures 21** through **50**. These data, determined according to ASTM D2990, indicate that Rynite® PET thermoplastic polyester resins have good resistance to creep at high temperatures and stress levels.

Figure 21. Rynite® 530 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 22. Rynite® 545 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 23. Rynite® 555 Flexural Creep at 6.9 MPa (1,000 psi) Stress

Figure 24. Rynite® 555 Flexural Creep at 13.8 MPa (2,000 psi) Stress

Figure 25. Rynite® 555 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 28. Rynite® 935 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 26. Rynite® 935 Flexural Creep at 6.9 MPa (1,000 psi) Stress

Figure 29. Rynite® 940 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 27. Rynite® 935 Flexural Creep at 13.8 MPa (2,000 psi) Stress

Figure 30. Rynite® 415HP Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 31. Rynite® SST 35 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 34. Rynite® FR943 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 32. Rynite® FR515 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 35. Rynite® FR946 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 33. Rynite® FR530 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 36. Rynite® 530 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 37. Rynite® 545 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 40. Rynite® 555 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 38. Rynite® 555 Flexural Creep at 6.9 MPa (1,000 psi) Stress

Figure 41. Rynite® 935 Flexural Creep at 6.9 MPa (1,000 psi) Stress

Figure 39. Rynite® 555 Flexural Creep at 13.8 MPa (2,000 psi) Stress

Figure 42. Rynite® 935 Flexural Creep at 13.8 MPa (2,000 psi) Stress

Figure 43. Rynite® 935 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 46. Rynite® SST 35 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 44. Rynite® 940 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 47. Rynite® FR515 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 45. Rynite® 415HP Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 48. Rynite® FR530 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 49. Rynite® FR943 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Figure 50. Rynite® FR946 Flexural Creep at 27.6 MPa (4,000 psi) Stress

Fatigue Resistance

Fatigue failure can occur in materials at stress levels below their ultimate tensile strength when they are cyclically stressed. Fatigue endurance is the cyclical stress level at which test specimens will not break up to one million cycles. Fatigue endurance is used to evaluate the life expectancy of parts subjected to cyclical stress. However, actual or

simulated end-use testing of parts (at the required stress level, temperature, and environment, etc.) is the preferred way of evaluating the fatigue performance of a material for a specific application.

Rynite® PET thermoplastic polyester resin fatigue resistance properties are shown in **Figures 51** through **55**. These flexural fatigue data were determined according to ASTM D671.

Figure 51. Flexural Fatigue at 23°C (73°F)— Rynite® 530, Rynite® 545, Rynite® 555

Figure 52. Flexural Fatigue at 23°C (73°F)— Rynite® 935, Rynite® 940

Figure 53. Flexural Fatigue at 23°C (73°F)—
Rynite® 408, Rynite® 415HP, Rynite® SST 35

Figure 55. Flexural Fatigue at 23°C (73°F)— Rynite® FR943, Rynite® FR945, Rynite® FR946

Figure 54. Flexural Fatigue at 23°C (73°F)—
Rynite® FR515, Rynite® FR530, Rynite® FR543

Effect of Foaming

Rynite® PET thermoplastic polyester resins can be foamed with commercial foaming agents to reduce weight in very thick parts and reduce sinks under bosses and ribs. The amount of property loss is directly related to solids reduction and a solids reduction of 25% is the general limit. The tensile strength, izod impact, and flexural modulus of Rynite® 530, Rynite® 545, Rynite® 935, and Rynite® 940 as a function of solids level are shown in **Figure 56**. The 100% solids level refers to Rynite® PET without foaming agent.

Figure 56. Properties after Foaming Rynite® 530, Rynite® 545, Rynite® 935, Rynite® 940

Effect of Fiber Orientation

The properties of all glass-reinforced plastics are affected by fiber orientation. The data in **Table 3** lists the effect of glass fiber orientation on tensile strength, flexural modulus, and izod impact for several Rynite® PET thermoplastic polyester resins. These data were determined on test specimens machined from plaques as shown in **Figure 57**.

Figure 57. Preparation of Tensile Specimens

Table 3
Property Reduction (%) Due to Fiber Orientation

Property	Rynite® 530	Rynite® 545	Rynite® 555	Rynite® 935	Rynite® FR530
Tensile Strength Perpendicular to flow versus flow direction	32	32	35	20	41
Flexural Modulus Perpendicular to flow versus flow direction	43	51	51	_	45
Izod Impact Perpendicular to flow versus flow direction	53	49	58	_	59

Properties from Machined versus Molded Samples

The properties of glass-reinforced plastics are substantially different if the part is machined versus being molded. The difference is particularly important on the izod impact. The data in **Table 4** lists the reduction on tensile strength, flexural modulus, and izod impact of test bars machined in the flow direction versus molded test bars.

Table 4
Property Reduction (%), Machined versus Molded Parts

Property	Rynite® 530	Rynite [®] 545	Rynite® 555	Rynite® FR530
Tensile Strength machined in flow direction versus molded	24	30	36	34
Flexural Modulus machined in flow direction versus molded	3	9	14	3
Izod Impact machined in flow direction versus molded	45	56	53	9

Chapter 3

Thermal Properties

Thermal Characteristics

This section provides additional thermal data from what is found in the typical properties table (**Table 2**) in Chapter 1 of this Design Guide.

Thermal Conductivity

Thermal conductivity is a measure of the rate of heat transfer through a material. When compared to metals, plastics are good insulators and poor conductors of heat. As shown in **Table 5**, the thermal conductivity of Rynite® PET compositions is constant over a wide range of temperatures. Thermal conductivity is affected by the amount and type of fillers used.

Specific Heat/Heat Capacity

Heat capacity is the amount of heat absorbed by a substance over a given temperature range and the units are J/°C. Specific heat is the heat capacity per gram of substance and has units J/g°C or J/kg K. Specific heat relative to water (a dimensionless number) is the ratio of the amount of heat required to warm 1 g of a substance through 1°C to the amount of heat similarly required for water.

Table 6 shows the effect of temperature on the specific heat of several Rynite® PET compositions. This data is collected by starting at the melt temperature and cooling the sample. The sharp rise in specific heat between 200 and 210°C (392 and 410°F) is caused by the polymer freezing between these temperatures. The specific heat of all Rynite® PET compositions at room temperature is essentially the same while, in the melt, the specific heat increases as glass level decreases.

Table 5
Thermal Conductivity versus Temperature

Temperature, °C (°F)	Rynite® 555, W/m K	Rynite® SST 35, W/m K	Rynite® FR515, W/m K	Rynite® FR530, W/m K
280 (536)	0.37	0.29	0.21	0.27
260 (500)	0.41	0.27	0.23	0.28
240 (464)	_	0.28	0.25	0.29
220 (428)	0.42	0.30	0.25	0.31
200 (392)	0.44	0.29	0.25	0.30
180 (356)	0.42	0.28	0.24	0.30
160 (320)	0.42	0.28	0.23	0.31
140 (284)	0.41	_	0.23	0.29
120 (248)	0.40	0.29	0.24	0.29
100 (212)	0.39	0.29	0.23	0.28
80 (176)	0.38	_	0.23	0.29
60 (140)	0.38	0.28	0.23	0.29
40 (104)	_	_	0.23	0.29

Table 6
Specific Heat versus Temperature

Temperature, °C (°F)	Rynite® 530, J/kg K	Rynite [®] 555, J/kg K	Rynite® SST 35, J/kg K	Rynite® FR515, J/kg K	Rynite® FR530, J/kg K
290 (554)	_	1430	_	_	_
280 (536)	1600	1420	_	1640	1340
270 (518)	1600	1420	1720	1640	1340
260 (500)	1600	1340	1710	1640	1350
250 (482)	1600	1320	1700	1630	1350
240 (464)	1600	1290	1690	1610	1350
230 (446)	1590	1260	1670	1590	1350
220 (428)	1590	1240	1660	1590	1350
210 (410)	1610	1240	1670	3360	2260
200 (392)	2900	2820	3320	2280	1840
190 (374)	1880	1340	1900	1710	1450
180 (356)	1600	1240	1700	1580	1380
170 (338)	1490	1210	1630	1520	1340
160 (320)	1430	1180	1580	1460	1310
150 (302)	1360	1160	1540	1420	1280
140 (284)	1330	1140	1510	1380	1250
130 (266)	1290	1130	1480	1350	1230
120 (248)	1260	1120	1460	1320	1210
110 (230)	1230	1100	1430	1280	1190
100 (212)	1200	1090	1400	1250	1170
90 (194)	1160	1070	1370	1210	1140
80 (176)	1100	1050	1340	1180	1120
70 (158)	1040	1030	1300	1160	1140
60 (140)	1010	1010	1270	1140	1130

Electrical Properties and Flammability

Dielectric Strength

Dielectric strength is the maximum voltage a dielectric material can tolerate without breakdown. Higher dielectric strengths indicate a greater resistance of a material to dielectric failures. Over the temperature range of 23–150°C (73–300°F) Rynite® PET thermoplastic polyester resins have dielectric strengths between 7 and 30 kV/mm (200 and 750 V/mil).

Several factors affect the dielectric strength of Rynite® PET thermoplastic polyester resins including composition of the resin, voltage rate, test temperature, sample thickness, and processing.

Table 7 shows the effect of varying the applied voltage rate on Rynite® 530 and Rynite® FR530 with higher voltage rates giving higher values. The single point data listed in Chapter 1 was measured at a voltage rate of 500 V/sec. In general, carbon black pigments lower the dielectric strength of resins. **Table 8** shows the effect of carbon black as a pigment on the dielectric strength of Rynite® 935 and 530. The dielectric strength values measured on actual parts may be lower than those measured on test specimens, due to the presence of imperfections such as voids, weldlines, and bubbles.

Table 7
Dielectric Strength versus Voltage Rate

			Voltage Rate		
Resin	Thickness	Unit	500 V/sec	2,000 V/sec	5,000 V/sec
Rynite® 530 NC010					
23°C	3.2 mm	kV/mm	20.5	24.0	25.5
73°F	0.125 in	V/mil	520	615	650
95°C	3.2 mm	kV/mm	16.5	22.0	24.5
203°F	0.125 in	V/mil	420	560	620
Rynite® FR530 NC010					
23°C	3.2 mm	kV/mm	18.0	20.5	22.0
73°F	0.125 in	V/mil	460	520	560
95°C	3.2 mm	kV/mm	18.0	22.0	24.0
203°F	0.125 in	V/mil	460	560	615

ASTM D149, short-time in oil

Table 8
Dielectric Strength—Natural versus Carbon Black

Temperature	Thickness	Unit	935 NC010	935 BK505	530 NC010	530 BK503
23°C	1.57 mm	kV/mm	29.5	25.5	25.5	20.5
73°F	0.062 in	V/mil	750	650	650	520
95°C	1.57 mm	kV/mm	25.5	20.5	22.5	17.0
203°F	0.062 in	V/mil	650	520	570	430
150°C	1.57 mm	kV/mm	14.5	14.5	15.5	15.5
300°F	0.062 in	V/mil	375	375	395	395
23°C	3.2 mm	kV/mm	23.5	19.5	20.5	15.0
73°F	0.125 in	V/mil	595	495	520	380
95°C	3.2 mm	kV/mm	19.5	13.5	16.5	14.0
203°F	0.125 in	V/mil	495	340	420	355
150°C	3.2 mm	kV/mm	12.0	11.0	12.0	12.0
300°F	0.125 in	V/mil	300	280	300	300

ASTM D149, short-time in oil, 500 V/sec

Ignition Properties

Self-ignition temperature is the lowest initial temperature of air passing around a specimen at which, in the absence of an ignition source, the self-heating properties of the specimen lead to ignition or ignition occurs by itself, as indicated by an explosion, flame, or sustained glow.

Flash ignition temperature is the lowest initial temperature of air passing around a specimen at which a sufficient amount of combustible gas is evolved to be ignited by a small external pilot flame (**Table 9**).

Table 9 Ignition Temperature

Resin	Self-Ignition Temperature	Flash Ignition Temperature
FR515	430°C	340°C
FR530	_	370°C

Combustibility

The combustibility of Rynite® PET thermoplastic polyester resins has been measured by the MVSS (Motor Vehicle Safety Standard) 302 rating, the FAR-25-853B vertical burn test, and the IEC glow wire test. MVSS 302 ratings are shown in **Table 10**. No Rynite® PET thermoplastic polyester resins pass the entire FAR-25-853B test for panel surfaces

in airplanes. The flame-retardant grades pass the heat release portion, but fail the smoke generation portion, while other compositions pass the smoke test, but fail the heat release test. All Rynite® PET thermoplastic polyester resins may be used in airplanes as small components such as connectors, sockets, plugs, and brackets. The data in **Table 11** shows the results of the IEC glow wire test.

Table 10 MVSS 302 Ratings

Resin	Thickness, mm (in)	MVSS 302 Rating	Burning Rate, mm/min (in/min)
Rynite® 415HP	1.6 (0.062)	В	<38.1 (<1.5)
Rynite® 408	1.6 (0.062)	В	<19.0 (<0.75)
Rynite® SST 35	1.6 (0.062)	В	<19.0 (<0.75)
Rynite® 530	1.6 (0.062)	В	<19.0 (<0.75)
Rynite® 545	1.6 (0.062)	В	<19.0 (<0.75)
Rynite® 555	1.6 (0.062)	В	<19.0 (<0.75)
Rynite® 935	1.6 (0.062)	В	<19.0 (<0.75)
Rynite® 940	1.6 (0.062)	В	<19.0 (<0.75)

Table 11
Glow Wire Test/Extinction Time ≤30 sec

Resin	Test Standard	1 mm (0.040 in)	2 mm (0.080 in)	3 mm (0.120 in)	6.4 mm (0.25 in)
Rynite® 530	VDC/IEC	650	750	750	960
Rynite® 545	VDC/IEC	750	750	850	960
Rynite® FR530	VDC/IEC	960	960	960	_

Chapter 5

Environmental

Temperature

The effect of temperature on the properties of the Rynite® PET thermoplastic polyester resins is given in **Figures 58** through **70**. These data were determined by exposing test specimens in an air oven at various temperatures. The change in properties with time and temperature was measured. Oils, greases, water, etc., may have a different effect on the properties of the resins at elevated temperatures. See Chemical Resistance section.

Caution: Exposure of the Rynite® PET thermoplastic polyester resins—particularly natural and light colors—to high temperatures in air may result in discoloration, depending upon conditions.

Rynite® PET thermoplastic polyester resins stabilized to minimize discoloration at elevated temperatures are available.

Figure 58. Effect of Air Oven Aging on Tensile Strength—Rynite® 530

Figure 59. Effect of Air Oven Aging on Izod Impact— Rvnite® 530

Figure 60. Effect of Air Oven Aging on Tensile Strength—Rynite® 545

Figure 61. Effect of Air Oven Aging on Izod Impact— Rynite® 545

Figure 62. Effect of Air Oven Aging on Tensile Strength—Rynite® 555

Figure 63. Effect of Air Oven Aging on Tensile Strength—Rynite® 935

Figure 65. Effect of Air Oven Aging on Tensile Strength—Rynite® SST 35

Figure 64. Effect of Air Oven Aging on Tensile Strength—Rynite® 408

Figure 66. Effect of Air Oven Aging on Izod Impact— Rynite® FR530

Figure 67. Effect of Air Oven Aging on Tensile Strength—Rynite® FR530

Figure 68. Effect of Air Oven Aging on Tensile Strength—Rynite® FR543

Figure 69. Effect of Air Oven Aging on Tensile Strength—Rynite® FR943

Figure 70. Effect of Air Oven Aging on Tensile Strength—Rynite® FR945

Weathering Introduction

Rynite® PET thermoplastic polyester resins rank high among plastic engineering materials in their resistance to outdoor weathering. The effect of weathering on the properties of the Rynite® PET thermoplastic polyester resins has been determined by various methods, including accelerated carbon arc X-W Weather-O-Meter exposure, natural outdoor weathering in Arizona and Florida, and accelerated outdoor weathering in Arizona. The results obtained on test bars exposed in these environments indicate in general that the Rynite® PET thermoplastic polyester resins exhibit good property retention. Overall performance is improved, especially impact, by the addition of carbon black (>0.3% by weight) to the resin.

X-W Weather-O-Meter

In the X-W Weather-O-Meter, the test specimens are exposed to simulated sunlight by filtering carbon arc light through Corex D filters. During this exposure, the test samples are sprayed with 32°C (90°F) water for 18 min, which is then followed by a water evaporation cycle at 63°C (145°F) for 102 min. The whole 2-hr cycle is then repeated for the number of hours listed in the various tables. There is no precise correlation between outdoor weathering and the accelerated X-W Weather-O-Meter tests. However, it is estimated that 400 to 1,000 hr in the X-W Weather-O-Meter is equivalent to one year of outdoor weathering in Florida.

General-Purpose Resins

After 10,000 hr in the X-W Weather-O-Meter:

- Rynite[®] 530 NC010 and Rynite[®] 545 NC010 retained over 70% of their initial tensile strength and 55% of their original elongation properties.
- Pigmented Rynite® 530 resins retained higher tensile strength and elongation than the Rynite® 530 natural resin. For example, the Rynite® 530 black (BK503), white (WT501), gray (GY5054), and blue (BL503) retain over 87% of their original tensile strength and 75% of their original elongation properties, **Figures 71** and **72**.
- The Rynite® 530 resins listed above retained over 83% of their original Izod impact properties.
- The surface of the test samples exhibited an "etched," rough appearance, i.e., the surface gloss had been significantly reduced and glass fibers were exposed. There was a slight yellowing of the white (WT501) composition.

Figure 71. Percent Retention of Original Tensile Strength After Exposure in X-W Weather-O-Meter

Figure 72. Percent Retention of Original Tensile Strength After Exposure in X-W Weather-O-Meter

Toughened Resins

After 5,000 hr of exposure in the X-W Weather-O-Meter:

- Rynite® PET thermoplastic polyester resins modified for improved toughness retained over 85% of their original tensile properties and 80% of their original elongation at break properties.
- The surface of the test bars was "etched," but not chalked.

Flame-Retardant Grades

After 10,000 hr of exposure in the X-W Weather-O-Meter:

- Rynite® FR530 BK503 black retained 94% of its original tensile strength and 71% of its original elongation at break.
- Rynite[®] FR530 NC010 natural retained 80% of its original tensile strength and 59% of its original elongation at break.

Outdoor Weathering 45° South General-Purpose Resins

Rynite® 530 NC010 and BK503 and Rynite® 545 NC010 and BK504 resins have been exposed outdoors in Florida and Arizona facing 45° South for five years. The data determined on these exposed samples indicate that the resins have retained over 69% of their initial tensile strength and over 46% of their initial elongation. As expected, the compositions containing carbon black have a higher property retention (**Tables 13** and **14**). After five years, all the test samples were slightly "etched."

Low Warp Resins

After five years of exposure in Arizona, Rynite® 935 BK505 retained 99% of original tensile strength and 82% of original elongation (**Table 14**).

Accelerated Natural Weathering in Arizona

General-Purpose Resins

After 500,000 Langleys of exposure in the equatorially mounted mirror assisted (EMMA) and EMMA with water (EMMAQUA) environments, Rynite® 530 NC010 and BK503 and Rynite® 545 NC010 and BK504 resins retained over 90% of their original tensile strength and 73% of their original elongation properties. The EMMA and EMMAQUA environments have similar effects on the properties of the Rynite® 530 and Rynite® 545 resins (**Table 15**).

Test specimens had reduced gloss levels after exposure. On the average, samples exposed in Arizona received approximately 150,000 Langleys of sunlight per year. These tests correspond to about three and one-third years of natural weathering in Arizona.

Table 13
Outdoor Weathering Florida 45°South—% Retention of Original Physical Properties

Exposure: Florida 45°South—Yr	Rynite® 530 NC010	Rynite® 530 BK503	Rynite® 545 NC010	Rynite® 545 BK504
Tensile Strength				
0	100	100	100	100
0.5	98	100	89	88
1	92	100	84	90
2	82	93	75	91
3	76	98	72	91
5	77	100	69	92
Elongation				
o l	100	100	100	100
0.5	85	87	77	67
1	77	91	68	78
2	69	91	73	89
3	58	87	50	78
5	46	87	50	72

Table 14
Outdoor Weathering Arizona 45°South—% Retention of Original Physical Properties

Exposure: Arizona 45°South Yr	Rynite® 530 NC010	Rynite® 530 BK503	Rynite® 545 NC010	Rynite® 545 BK504	Rynite® 935 BK505
Tensile Strength					
0	100	100	100	100	100
0.5	100	98	98	94	100
1	98	100	88	97	100
2	90	98	87	94	100
3	87	98	82	90	97.5
5	80	97	76	90	99
Elongation					
ő	100	100	100	100	100
0.5	85	91	82	83	100
1	88	96	77	94	94
2	77	96	73	89	94
3	73	83	68	78	76
5	54	70	50	78	82

Table 15
Accelerated Natural Arizona Weathering—% Retention of Original Physical Properties

Exposure	Rynite® 530	Rynite® 530	Rynite® 545	Rynite® 545
	NC010	BK503	NC010	BK504
EMMA—500,000 Langleys* Tensile Strength Elongation	100	100	92	93
	85	87	73	89
EMMAQUA—500,000 Langleys* Tensile Strength Elongation	100 81	100 87	92 73	93 94

EMMA = Equatorially mounted mirror assisted EMMAQUA = EMMA assisted with water *150,000 Langleys ≈ One year

Chemical Resistance

Rynite® PET thermoplastic polyester resins exhibit excellent resistance to a wide variety of chemicals. Tables 17 and 18 detail the effects of various automotive-related chemicals, organic solvents, acids, bases, salt solutions, and water on the properties of Rynite[®] 530 and Rynite[®] 545 resins after exposure at various times and temperatures. These data are based on unstressed test bars that were molded via recommended molding conditions, e.g., hot >93°C (200°F) molds. The resistance of Rynite® PET thermoplastic polyester resins to certain chemicals (e.g., chlorinated hydrocarbons) at elevated temperatures depends on the surface crystallinity of the molded part. Annealed parts or parts molded in hot molds >93°C (200°F) will exhibit good resistance, whereas parts molded in cold molds may surface craze. We strongly recommend end-use testing be carried out on actual parts (as opposed to test bars) to determine the suitability of Rynite® PET thermoplastic polyester resins in any application.

All thermoplastic polyester resins will hydrolyze in hot water. The hydrolysis results in polymer degradation and a decrease in the physical properties of the resin. The rate of hydrolysis depends on exposure conditions; primarily time, temperature, and the composition of the specific polyester resin. We do not recommend that parts made from Rynite® PET thermoplastic polyester resins be used in an environment where there is continuous exposure to water at temperatures above 50°C (122°F) (**Table 16**).

Table 16
Hydrolysis Resistance of Rynite® 530 at 100% RH; Times to Reach One-Half of Initial Property Value

	*
Tensile	Strength
Temperature	Time (Weeks)
85°C (185°F)	4
70°C (160°F)	22
55°C (130°F)	100
40°C (105°F)	>104
Unnotch	ed Impact
Temperature	Time (Weeks)
85°C (185°F)	1
70°C (160°F)	6
55°C (130°F)	38
40°C (105°F)	60

Due to excessive degradation, we recommend that the maximum continuous exposure temperature of parts made from Rynite® PET thermoplastic polyester resins to oil be 121°C (250°F).

Tables 19 and **20** list the effect of various solvents used in cleaning electrical/electronic parts.

Table 17
Rynite® PET Solvent Resistance*

Chemical Media	Temperature, °C (°F)	Days of Immersion	% Retention of Original Tensile Strength	Weight Gain, %	Dimensional Change, %
Automotive-Related Environm	ents				
Diesel Fuel	23 (73)	21	90–95	1	0
Diesel Fuel + 15% Ethanol	121 (250)	2	60–70	2–2.5	_
		7 14	20–30 15–20	2 2	_
Diesel Fuel/Unleaded Gasoline (50/50)	23 (73)	21	95–99	1	0
Unleaded Gasoline	23 (73)	21	100	0.1	_
	42 (108) 60 (140)	84 84	100 90	0.1 0.5	0.01 0.1
Unleaded Gasoline/Methanol	23 (73)	21	90–95	1	0.04
(85/15)	60 (140)	21 84	70 45–50	1.8 2.3	0.1 0.2
Unleaded Gasoline/Ethanol (85/15)	23 (73)	21	85–90	1	0.01
Unleaded Gasoline + 5% Methanol + 2.5% Mixed Alcohols	42 (108)	28 84	90 73	1.5 2.9	0.1 0.2
Unleaded Gasoline + 5% Methanol + 3.2% Ethanol	42 (108)	28 84	86 75	1.9 3.1	0.1 0.2
Unleaded Gasoline + 5% Methanol + 4.1% Propanol	42 (108)	28 84	92 82	1.2 2.4	0.1
Unleaded Gasoline + 5% Methanol + 4.2% Mixed Alcohols	42 (108)	28 84	88 79	1.5 2.7	0.1 0.2
Unleaded Gasoline + 5% Methanol + 5% Butanol	42 (108)	28	100	1.2	0.1
Leaded Gasoline	23 (73)	7	90–95	1	0.03
Ford Motor Oil	121 (250)	28 112	95–99 15	_	_
Shell Motor Oil	121 (250)	14	90–95	_	_
		28 84	55–65 15	_	_
Synthetic Motor Oil	150 (300)	21 42	70 45	_	_
Omnilube 300	93 (200)	290	99	_	_
Turbo 33	93 (200)	290	99	_	_
Rotron Diester Oil	93 (200)	290	99	_	_

*Data based on Rynite® 530 and Rynite® 545

(continued)

Table 17
Rynite® PET Solvent Resistance* (continued)

Chemical Media	Temperature, °C (°F)	Days of Immersion	% Retention of Original Tensile Strength	Weight Gain, %	Dimensiona Change, %
Automotive-Related Environme	ents (continued)		-		_
Dextron Transmission Fluid	121 (250) 150 (300)	28 21	95–99 20–25	_	
GM Power Steering Fluid	23 (73) 121 (250)	21 14 90	97–100 85–90 50	0 0.1 0.22	0 0.08
Delco Supreme #1 Brake Fluid	23 (73) 66 (150) 121 (250)	21 28 14	95 80–90 30	0.15 — —	0.01 — —
Quaker State Lithium-Based Grease	23 (73)	21	95–100	1	0.01
Kendal 3 Star 80W160 Gear Lubricant	23 (73)	21	90–96	1	_
Permatex Hydraulic Jack Oil	23 (73)	21	94–100	0.15	0.01
Antifreeze (50%)	23 (73)	21	90–95	1	0.1
Ethylene Glycol (100%)	23 (73)	21	95–99	1	0.01
"Optikleen" Windshield Washe Solvent (100%)	er 23 (73)	21	90–95	1	0.02
"Optikleen"/Water (50/50)	23 (73)	21 90	90–95 85	1 1	0.01 0.01
Organic Solvents					
Acetone	23 (73)	21	70–80	5	0.1
Benzyl Alcohol	23 (73)	21	95	0.04	0
Ethanol	23 (73)	21	98–100	0	0.01
Ethyl Acetate	23 (73)	21	80–90	5	0.04
Ethyl Ether	23 (73)	21	85–95	0.15	0.01
Freon® F113	23 (73)	21	91–99	1	0.01
Iso-Octane	23 (73)	21 364	99 99	0 0.04	0.01 0.01
Isopropanol	23 (73)	21	95–99	0.1	0
Methanol	23 (73)	21	95–96	1	0.01
Methylene Chloride	23 (73)	21	45–50	8–10	0.3
Methyl Ethyl Ketone (MEK)	23 (73)	21	80–92	0.7	0.07
Nitromethane	23 (73)	21	70	4	0.12
Toluene	23 (73)	21	95–98	0.5	0.01

Table 17
Rynite® PET Solvent Resistance* (continued)

Chemical Media	Temperature, °C (°F)	Days of Immersion	% Retention of Original Tensile Strength	Weight Gain, %	Dimensional Change, %
Acids					
Acetic Acid (100%)	23 (73)	21	85–95	1	0.04
Hydrochloric Acid (10%)	23 (73)	21	92–96	1	0.01
Sulfuric Acid (10%)	23 (73)	21	91–96	1	0.02
Sulfuric Acid (Battery)	23 (73)	3	90–95	1	0.01
Bases					
Ammonium Hydroxide (10%)	23 (73)	21	85–93	0.3	0.02
Sodium Hydroxide (10%)	23 (73)	21	0–47	5	0.02
Other Solvents					
Bleach, "Clorox" (100%)	23 (73)	21	90–95	0.1	0.07
Calcium Chloride (10%)	23 (73)	21	85–95	0.25	0
Hydrogen Peroxide (30%)	23 (73)	21	90	0.25	0.02
Sodium Choride	23 (73)	21	90–95	0.31	0
1,1,1-Trichloroethane	23 (73)	21	90	0.3	0
WD-40	23 (73)	21	90	0.05	0.01
Zinc Chloride (10%)	23 (73)	21 91–96		1	0.01
Zinc Chloride (50%)	23 (73)	8	90–95	1	0.01

^{*}Data based on Rynite® 530 and Rynite® 545

Table 18 Rynite® 545 Immersed for One Year at 23°C (73°F)

	% Retention of Initial Tensile Strength	Weight Gain, %	Dimensional Change, %
Water	92	0.47	0.07
Methanol	87	0.6	0.07
Ethanol	97	0.13	0.02
Iso-Octane	100	0.04	0.01
Regular Gasoline	99	0.08	0.03
Toluene	90	0.99	0.05
Toluene 85% Volume Methanol 15% Volume	61	3.14	0.24
White Gasoline 85% Volume Methanol 15% Volume	84	1.06	0.09
Unleaded Gasoline 85% Volume Methanol 15% Volume	83	0.96	0.09
Unleaded Gasoline 85% Volume Ethanol 15% Volume	93	0.28	0.03

Table 19
Effect of Cleaning Solvents on Rynite® FR530

	Freon®				Methyl	Trichloro-	
Plastic	TM	TES	TMS	TMC	Chloroform	ethylene	
0.78 mm (0.031 in)							
Unstressed	0	0	0	1	1	1	
Stressed	0	0	0	1	1	1	
1.56 mm (0.062 in)							
Unstressed	0	0	0	1	1	1	
Stressed	0	0	0	1	1	1	

Effect Key:

- 0 = No visible effect
- 1 = Very slight effect
- 2 = Compatibility should be tested
- 3 = Probably not suitable
- 4 = Disintegrated or dissolved
- All test pieces exposed to solvent at the boiling point for 5 min.
- Immediately on removal from the solvent, the pieces were tested by bending, scraping, twisting, and visual observation to determine if any change or damage had occurred.
- All test pieces were of the thickness indicated \times 12.5 mm (0.50 in) wide \times 125 mm (5 in) long.
- 0.78 mm (0.031 in) stressed specimens were bent through a 180° angle for exposure testing. The 1.56 mm (0.062 in) stressed pieces were bent through an 80° angle. In both cases specimens were bent as far as possible without initiating fracture.

Table 20 Detailed Compatibility of Rynite® FR530 with Solvents

Condition	Solvent	Comments	Effect Key
0.78 mm [0.032 i	n] thick specimens		
Unstressed	Freon® TF	No change	0
Stressed	Freon® TF	No change	0
Unstressed	Freon® TES	No change	0
Stressed	Freon® TES	No change	0
Unstressed	Freon® TMS	No change	0
Stressed	Freon® TMS	No change	0
Unstressed	Freon® TMC	No change	1
Stressed	Freon® TMC	No change	1
Unstressed	Methyl Chloroform	Slightly easier to flex; lost some of its glossiness	1
Stressed	Methyl Chloroform	Slightly easier to flex; lost some of its glossiness	1
Unstressed	Trichloroethylene	Easier to flex; bleached out Easier to flex; bleached out	1
Stressed	Trichloroethylene		1
1.56 mm [0.062 i	n] thick specimens		
Unstressed	Freon® TF	No change	0
Stressed	Freon® TF	No change	0
Unstressed	Freon® TES	No change	0
Stressed	Freon® TES	No change	0
Unstressed	Freon® TMS	No change	0
Stressed	Freon® TMS	No change	0
Unstressed	Freon® TMC	No change	1
Stressed	Freon® TMC	No change	1
Unstressed	Methyl Chloroform	Lost its glossiness	1
Stressed	Methyl Chloroform	Lost its glossiness	1
Unstressed	Trichloroethylene	Slightly easier to flex and bleached out	1
Stressed	Trichloroethylene	Slightly easier to flex and bleached out	1

Note: See Table 19 for details on tests.

Government and Agency Approvals

Underwriters' Laboratories Ratings

Table 22 lists the UL ratings for the Rynite® PET thermoplastic polyester resins. For the latest on data, contact your nearest DuPont sales office.

Military Specification MIL-M-24519

Rynite® FR530 is listed in the Qualified Products List (QPL 24519-27).

Food and Drug Administration (FDA)

Rynite® PET thermoplastic polyester resins are not FDA compliant and should NOT be used in applications where FDA compliance is required.

National Sanitation Foundation (NSF)

There are currently no Rynite® PET thermoplastic polyester resins listed by DuPont for use in applications where NSF approval is required.

ASTM D5927-96

Table 21 shows the ASTM callouts for various PET resins. All Rynite® PET thermoplastic polyester resins meet these guidelines. Under this system, the Rynite® 530 callout would be D5927-96 TPES021G30.

Table 21
TPES Detail Requirements for Thermoplastic Polyester^a

Group	Description	Class	Description	Grade	Description ^b	Flow Rate, ISO 1133, g/10 min	Density, ISO 1183, g/cm³	Tensile Strength, ISO 527-1, -2,° Min., MPa	Flexural Modulus, ISO 178, ^d Min., GPa	Izod Impact Resistance, ISO 180,° Min., kJ/m²	Deflection Temp. at 1.8 MPa ISO 75-1, -2, ^f Min., °C
02	Polyethylene	1	Unmodified	1		<20.0 285/2.16 ^g	1.26-1.43	50	2.0	2.8	60
	terephthalate			0							
	(PET)			G15	15% Glass	_	1.26-1.52	75	4.0	4.0	180
				G20	20% Glass	_	1.43-1.60	80	6.0	5.0	190
				G30	30% Glass	_	1.46-1.65	115	8.0	5.0	200
				G40	40% Glass	_	1.59–1.73	120	11.0	5.0	200
				G45	45% Glass	_	1.64-1.85	120	12.0	5.0	210
				G55	55% Glass	_	1.76-1.86	160	12.0	5.0	220
				G00	Other	_	_	_	_	_	_
				R15	15% Filler	_	1.35–1.45	85	3.5	3.0	150
				R35	35% Filler	_	1.53-1.65	75	7.5	4.0	165
				R40	40% Filler	_	1.54–1.70	90	7.0	4.0	195
				R45	45% Filler	_	1.65–1.75	145	12.0	8.0	225
				R00	Other	_					
		2	Impact	G15	15% Glass	_	1.35-1.45	60	3.0	5	170
			modified	G30	30% Glass	_	1.46-1.56	100	7.0	10	205
				G35	35% Glass	_	1.49-1.59	85	6.0	15	200
				G00	Other	_	_	_	_	_	_
		3 F	lame-retardant	G15	15% Glass	_	1.50-1.67	70	4.5	3.5	175
				G20	20% Glass	_	1.56-1.70	80	5.5	4.5	190
				G30	30% Glass	_	1.62-1.78	95	9.0	4.0	200
				G40	40% Glass	_	1.71-1.83	100	11.5	6.0	200
				G45	45% Glass	_	1.75-1.85	140	12.0	10	215
				G00	Other	_	_	_	_	_	_
				R45	45% Filler	_	1.70-1.91	100	11.0	4.0	205
				R00	Other	_	_	_	_	_	_

^a Data on 4-mm test specimens are limited, and the minimum values may be changed in a later revision after a statistical data base of sufficient size is generated.

^b No descriptions are listed unless needed to describe a special grade under the class. All other grades are listed by requirement.

^c Tensile strength shall be determined using a Type 1A tensile specimen as described in ISO 527-2:1993. The crosshead speed shall be 50 mm/min ±10% for unreinforced materials and 5 mm/min ±20% for reinforced grades.

d Flexural modulus shall be determined on a specimen 80 ± 2 mm by 10 ± 0.2 mm by 4 ± 0.2 mm at a test speed of 2 mm/min $\pm 20\%$.

 $^{^{\}rm e}$ lzod shall be determined on a specimen 80 \pm 2 mm by 10 \pm 0.2 mm by 4 \pm 0.2 mm as described in ISO 180:1993, method 1A.

 $^{^{\}rm f}$ Deflection temperature shall be determined on an unannealed specimen 80 \pm 2 mm by 10 \pm 0.2 mm by 4 \pm 0.2 mm as described in ISO 75-2:1993, method Af.

^g Moisture content of the specimen shall be below 0.005%.

Table 22 Underwriters Laboratories Yellow Card Ratings

Underwriters Laboratories Yellow Card Ratings											
		Min	imum		Temperature Index, °C				High Current	High Voltage	IEC
		Thickness		UL94		Mechanical		Hot			
Material Designation	Color	mm	in	Flame Class	Elec- trical	_	Without Impact	Wire Ignition	Arc	Track Rate	Track (CTI)
Rynite® 408	All	0.75	0.029	94HB	140	140	140	1	2	_	_
11711110 400	/ "	1.50 3.00	0.060 0.120	94HB 94HB	140	140 140	140 140	1 0	2 2	_ 0	
Rynite® 415HP	AII	0.81	0.120	94HB	140	120	140	3	1		
Nymile 415HF	All	1.50 3.00	0.060 0.120	94HB 94HB	140 140 140	120 120 120	140 140 140	2 0	1 1	_ _ 2	
Rynite® 520 (f1)	NC, BK,	0.79	0.031	94HB	140	140	140	3	1	2	_
	GY	1.50 3.00	0.060 0.120	94HB 94HB	140 140	140 140	140 140	1 0	2 1	2 3	3
Rynite® 530 (f1)	All	0.81	0.032	94HB	140	140	140	2	1	_	_
		1.50	0.060	94HB	140	140	140	1	1		
		3.00 6.00	0.120 0.250	94HB 94HB	140	140 140	140 140	0 0	1 1	_	_
Rynite® 545 (f1)	AII	0.81	0.032	94HB	140	140	140	2	1	_	_
,	'	1.50	0.060	94HB	140	140	140	1	1	_	_
		3.00	0.120	94HB	140	140	140	0	1	1	2
Rynite® 555	All	0.81	0.032	94HB	140	140	140	2	1	1	_
		1.50 3.00	0.060 0.120	94HB 94HB	140	140 140	140 140	1 0	1 1	1 1	3
Rynite® 935 (f1)	NC, BK	0.79	0.030	94HB	140	140	140	2	1	1	_
,	110, 51	1.50	0.060	94HB	140	140	140	1	i i	1	_
		3.00	0.120	94HB	140	140	140	0	1	1	2
Rynite® 940	BK	0.75	0.030	94HB	75	75	75	_	—	-	_
Rynite® SST 35	NC, BK	0.81	0.032	94HB	150	150	150	3	0	-	_
		1.50 3.00	0.060 0.120	94HB 94HB	150 150	150 150	150 150	2 1	0	3	<u> </u>
Rynite® FR515	All	0.86	0.034	94V-0	140	140	140	0	0		<u>.</u>
Tryffic Thors		1.50	0.060	94V-0	140	140	140	0	ő	_	_
	NC, BK	1.50	0.060	94V-0 94-5VA	140	140	140	0	0	_	_
	All	3.00	0.120	94V-0	140	140	140	0	1	4	3
	NC, BK	3.00	0.120	94V-0 94-5VA	140	140	140	0	1	4	3
Rynite® FR330	AII	0.81	0.032	94V-0	140	140	140	_	_	_	_
	NC, BK	1.50 1.50	0.060 0.060	94V-0 94V-0	140 140	140 140	140 140	_			
	110, 51			94-5VA							
	All	3.00	0.120	94V-0	140	140	140	0	1	3	3 3
	NC, BK	3.00	0.120	94V-0 94-5VA	140	140	140	0	1	3	3
Rynite® FR530 (f1)	BK, NC	0.35	0.014	94V-0	l _	_	_	3	1	_	_
,	'	0.81	0.032	94V-0	150	150	150	2	1	1	_
		1.50	0.060	94V-0	150	150	150	0	1	1	_
	NC, BK	1.50	0.060	94-5VA 94V-0	150	150	150	0	1	1	_
	All	2.00	0.080	94V-0	150	150	150	0	1	1	_
		2.00	0.400	94-5VA	1	150	150	_	_		•
		3.00 3.00	0.120 0.120	94V-0 94V-0	150 150	150 150	150 150	0 0	1 1	1 1	2 2
		0.00	0.120	94-5VA	'30	.50	.55		'	'	_
Rynite® FR543	NC, BK	0.81	0.032	94V-0	155	155	155	0	1	1	_
		1.50	0.060	94V-0	155	155	155	0	1	1	_
		3.00	0.120	94-5VA 94V-0	155	155	155	0	1	1	3
				94-5VA					'		

(continued)

Table 22
Underwriters Laboratories Yellow Card Ratings (continued)

		Minimum			Temperature Index, °C						
		Thickness				Mechanical				l l	
Material Designation	Color	mm	in	UL94 Flame Class	Elec- trical	With Impact	Without Impact	Hot Wire Ignition	High Current Arc Ignition	High Voltage Track Rate	IEC Track (CTI)
Rynite® FR943	NC, BK	0.35	0.014	94V-0	75	75	75	_	_	_	_
•	NC, BK,	0.81	0.032	94V-0	155	155	155	2	4	—	_
	GY	1.50	0.060	94V-0	155	155	155	2	4	—	_
		2.30	0.090	94-5VA	155	155	155	_	_	_	_
		3.00	0.120	94V-0	155	155	155	0	4	1	2
Rynite® FR945	All	0.81	0.032	94V-0	150	150	150	2	2	_	_
		1.50	0.060	94V-0 94-5VA	150	150	150	0	2	_	_
		2.30	0.090	94V-0 94-5VA	150	150	150	0	2	_	_
		3.00	0.120	94V-0 94-5VA	150	150	150	0	1	1	2
Rynite® FR946	GN, BK	0.81	0.032	94V-0	150	140	140	0	3	_	_
,	GY, NC,	1.50	0.060	94V-0	150	150	150	0	3	_	_
	BL .	3.00	0.120	94V-0	150	150	150	0	3	1	3
	NC, BK	3.00	0.120	94-5VA	150	150	150	0	3	1	3

Hot-Wire Ignition (HWI)—		High Voltage Arc Tracking Rate (HVTR)—	
Mean Ignition Time	Assigned PLC	Tracking Rate (mm/min)	Assigned PLC
120 ≤ IT	0	0 < TR ≤	0
60 ≤ IT < 120	1	10 < TR ≤ 10	1
30 ≤ IT < 60	2	25 < TR ≤ 25	2
15 ≤ IT < 30	3	80 < TR ≤ 80	3
7 ≤ IT < 15	4	150 < TR 150	4
0 ≤ IT < 7	5	Comparative Track Index (CTI)—	
High Current Arc Ignition (HAI)—		Tracking Index (V)	Assigned PLC
Mean Number of Arcs to Cause Ignition (NA)	Assigned PLC	600 ≤ TI	0
120 ≤ NA	0	400 ≤ TI < 600	1
60 ≤ NA < 120	1	250 ≤ TI < 400	2
30 ≤ NA < 60	2	175 ≤ TI < 250	3
15 ≤ NA < 30	3	100 ≤ TI < 175	4
0 ≤ NA < 15	4	0 ≤ TI < 100	5

Chapter 7

Applications

General Decorating Techniques

Often, it is desirable to decorate parts injection molded from Rynite® PET thermoplastic polyester resins in post-molding operations. Below is a brief summary of several techniques. This information is intended as only a guide. Please consult the specific equipment or material suppliers for each technique for details.

Hot Stamping

Hot stamping has been used in a number of applications. A good clean polymer surface is usually needed, and no one set of operating conditions can be recommended. Die pressures, temperatures, and dwell times must be individually determined for each application; however, die temperatures of 215–245°C (420–473°F), dwell times of 0.2–2.0 sec, and pressures of 13–45 psi are common. In some applications, the temperature of the part and surface moisture content (time out of the mold) may also be important.

Inks

Many solvent-soluble inks can be used with Rynite® PET thermoplastic polyester resins. Flame, infrared, and oven baking "fixing" can also be used.

Painting

Cleaning the surface of molded parts to remove dirt, oil, dust, mold release, or other contaminants is important to achieving good paint adhesion. Parts may be wiped clean with alcohol, toluene, or other typical solvents and washes used to prepare a part surface prior to painting.

The excellent solvent resistance and the high heat distortion temperature of Rynite® PET thermoplastic polyester resins result in a broad flexibility when choosing a primer/topcoat system, including those that require high bake temperatures. The key to good paint adhesion and durability is the choice of primer.

Adhesion

Parts or stock shapes such as plaques of Rynite® PET thermoplastic polyester resin can be bonded to each other by the use of commercially available adhesives. A list of adhesives that have been tested with successful results in bonding Rynite® PET to Rynite® PET are listed in **Table 23**. For best results, surfaces should be cleaned with a solvent such as acetone prior to applying the adhesive. Procedures recommended by the adhesive suppliers should be followed.

One of the many uses of adhesive bonding is the joining of plaques to form a thick section for machining* of prototypes. Polyurethane adhesives have been used successfully in this manner, and parts produced have survived severe end-use testing conditions such as automotive under hood environment.

Table 23
Adhesive Recommendations—Rynite® PET to Rynite® PET Bonding

Adhesive	Supplier
Epoxy "Arathane" 8503 (and primer) Urethane "Arathane" 5540 (and primer)	Ciba-Geigy Corporation Formulated Systems Group 31601 Research Park Drive Madison Heights, MI 48071 Phone: (800) 672-1027 (800) 248-1306 (313) 585-7200
Urethane "UR 2139"	H.B. Fuller 3530 Lexington Avenue North St. Paul, MN 55126 Phone: (612) 645-3401
Acrylic "3100" (Temperature limit ~100°C [248°F])	ITW Adhesive Systems 37722 Enterprise Court Farmington Hills, MI 48331 Phone: (313) 489-9344
Anaerobic "Black Max 380" (Temperature limit ~100°C [248°F] intermittent) Cycanoacrylate "Super Bonder" 430, 496, 414	Loctite 705 N. Mountain Road Newington, CT 06111 Phone: (203) 278-1280
Urethane "Tyrite" 7500 (on PET types) Cyanoacrylate "Cylok" R, G, M	Lord Corporation Industrial Adhesives Division 2000 West Grandview Blvd. P.O. Box 10038 Erie, PA 16514-0038 Phone: (814) 868-3611
Cyanocrylate "Permabond" 910	Permabond International Corp. 480 S. Dean Street Englewood, NJ 07631 Phone: (210) 868-9494
Epoxy "Scotchweld" 2214	3M Aerospace Central Aerospace Materials Department 3M Center, Bldg. 223-IN-07 St. Paul, MN 55144 Phone: (800) 235-AERO

As every end use has its own requirements for bond strength and durability, the bonded part should be tested under actual end-use conditions prior to adopting any adhesive system.

In considering an adhesive for evaluation, consider both the end-use environment and the stresses the adhesive must endure. Pay particular attention to the bond strength requirements, differences in thermal expansion and contraction between the two bonded substrates, temperature requirements, humidity resistance, chemical resistance, weatherability, and oxidation resistance.

Questions on any specific adhesive system should be directed to the manufacturer of that system.

^{*} Plaques bonded with adhesive should be annealed, rough machined, and annealed again prior to final machining. Annealing conditions are 1–2 hr at 149°C (300°F) in air.

Start with DuPont

For more information on Engineering Polymers:

(302) 999-4592

http://www.dupont.com/enggpolymers/americas

For Automotive Inquiries:

(800) 533-1313

U.S.A.

East

DuPont Engineering Polymers Chestnut Run Plaza 713 P.O. Box 80713 Wilmington, DE 19880-0713 (302) 999-4592

Midwest

DuPont Engineering Polymers 100 Corporate North Suite 200 Bannockburn, IL 60015 (847) 735-2720

West

DuPont Engineering Polymers 2030 Main Street, Suite 1200 Irvine, CA 92714 (714) 263-6233

Automotive

DuPont Engineering Polymers Automotive Products 950 Stephenson Highway Troy, MI 48007-7013 (313) 583-8000

Asia Pacific

DuPont Asia Pacific Ltd. P.O. Box TST 98851 Tsim Sha Tsui Kowloon, Hong Kong 852-3-734-5345

Canada

DuPont Canada, Inc. DuPont Engineering Polymers P.O. Box 2200 Streetsville, Mississauga Ontario, Canada L5M 2H3 (905) 821-5953

Europe

DuPont de Nemours Int'l S.A. 2, chemin du Pavillon P.O. Box 50 CH-1218 Le Grand-Saconnex Geneva, Switzerland Tel.: ##41 22 7175111 Telefax: ##41 22 7175200

Japan

DuPont Kabushiki Kaisha Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153 Japan (011) 81-3-5434-6100

Mexico

DuPont S.A. de C.V. Homero 206 Col. Chapultepec Morales 11570 Mexico D.F. (011 525) 250-8000

South America

DuPont America do Sul Al. Itapecuru, 506 Alphaville—CEP: 06454-080 Barueri—Sao Paulo, Brasil Tel.: (055-11) 421-8531/8647 Fax: (055-11) 421-8513 Telex: (055-11) 71414 PONT BR

DuPont Argentina S.A. Avda.Mitre y Calle 5 (1884) Berazategui-Bs.As. Tel.: (541) 319-4484/85/86

Fax: (541) 319-4417

The data listed here fall within the normal range of properties, but they should not be used to establish specification limits nor used alone as the basis of design. The DuPont Company assumes no obligations or liability for any advice furnished or for any results obtained with respect to this information. All such advice is given and accepted at the buyer's risk. The disclosure of information herein is not a license to operate under, or a recommendation to infringe, any patent of DuPont or others. DuPont warrants that the use or sale of any material that is described herein and is offered for sale by DuPont does not infringe any patent covering the material itself, but does not warrant against infringement by reason of the use thereof in combination with other materials or in the operation of any process.

CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement," H-50102.

