Center

Definition

Let G be a group:

1). Let $a \in G$. G_a is the subset of G consisting of all elements in G that commute with a:

$$G_a = \{ g \in G \mid ga = ag \}$$

2). Let $S \subseteq G, S \neq \emptyset$. G_S is the subset of G consisting of all elements in G that commute with all elements in S:

$$G_S = \{ g \in G \mid \forall s \in S, gs = sg \}$$

Theorem

Let G be a group and $a \in G$:

$$G_a < G$$

Proof

Assume $x,y\in G_a$ $G_a\subseteq G$, so $x,y\in G$ G is a group, so $y^{-1}\in G$ Assume $g\in G$ xgy=gxy=gyx=ygx $y^{-1}xgy=y^{-1}ygx$ $xy^{-1}gy=gx$ $xy^{-1}gyy^{-1}=gxy^{-1}$ $xy^{-1}g=gxy^{-1}$ $xy^{-1}\in G_a$ \therefore by the subgroup test, $G_a\subseteq G$.

Theorem

Let G be a group and $S \subseteq G, S \neq \emptyset$:

$$G_S \leq G$$

Proof

Assume
$$x, y \in G_S$$

 $G_S \subseteq G$, so $x, y \in G$
 G is a group, so $y^{-1} \in G$
Assume $s \in S$
 $xsy = sxy = syx = ysx$
 $y^{-1}xsy = y^{-1}ysx$

$$\begin{aligned} xy^{-1}sy &= sx \\ xy^{-1}syy^{-1} &= sxy^{-1} \\ xy^{-1}s &= sxy^{-1} \\ xy^{-1} &\in G_S \\ \therefore \text{ by the subgroup test, } G_S \leq G. \end{aligned}$$

Definition

The *center* of a group G, denoted Z(G), is the subgroup of G whose elements commute with all elements in G:

$$Z(G) = G_G$$

Theorem

Let G be a group. Z(G) is abelian.

Proof

Assume $a,b\in Z(G)$ $Z(G)\subseteq G$, so $a,b\in G$ ab=ba $\therefore Z(G)$ is abelian.