MOVIE RECOMMANDATION SYSTEM

A Minor Project Report

in partial fulfillment of the degree

Bachelor of Technology in Computer Science & Artificial Intelligence

By

2103A52126 Sanjana Bimireddy

2103A52165 Akshitha Reddy Pailla

2103A52072 Sreenija Danda

Under the Guidance of

Srinivas Aluvala

Submitted to

SCHOOL OF COMPUTER SCIENCE & ARTIFICIAL INTELLIGENCE SR UNIVERSITY, ANANTHASAGAR, WARANGAL April, 2024.

SCHOOL OF COMPUTER SCIENCE & ARTIFICIAL INTELLIGENCE

CERTIFICATE

This is to certify that this project entitled "MOVIE RECOMMENDATION SYSTEM" is the bonafied work carried out by B.SANJANA, P.AKSHITHA REDDY, D. SREENIJA as a Minor Project for the partial fulfillment to award the degree BACHELOR OF TECHNOLOGY in COMPUTER SCIENCE & ARTIFICIAL INTELLIGENCE during the academic year 2022-2023 under our guidance and Supervision.

Dr. Srinivas Aluvala

Designation,

SR University,

Ananthasagar, Warangal.

Dr. M.Sheshikala

Assoc. Prof. & HOD (CSE),

SR University,

Ananthasagar, Warangal.

External Examiner

ACKNOWLEDGEMEN

We owe an enormous debt of gratitude to our project guide **Dr. Srinivas Aluvala**, **Assistant Professor** as well as Head of the CSE Department **Dr. M.Sheshikala**, **Associate Professor** for guiding us from the beginning through the end of the Minor Project with their intellectual advices and insightful suggestions. We truly value their consistent feedback on our progress, which was always constructive and encouraging and ultimately drove us to the right direction.

We express our thanks to the project co-ordinators **Dr. P Praveen, Assoc. Prof** for their encouragement and support.

We wish to take this opportunity to express our sincere gratitude and deep sense of respect to our beloved Dean, **Dr. C.V. Guru Rao**, for his continuous support and guidance to complete this project in the institute.

Finally, we express our thanks to all the teaching and non-teaching staff of the department for their suggestions and timely support.

Sanjana Bimireddy

Akshitha Reddy Pailla

Sreenija Danda

ORGANIZATION OF THESIS

- 1. Title page
- 2. Certificate
- 3. Acknowledgement
- 4. Abstract
- 5. Table of Contents

The content should be:

- 1. INTRODUCTION
 - 1.1. EXISTING SYSTEM
 - 1.2. PROPOSED SYSTEM
- 2. LITERATURE SURVEY
- 3. DESIGN
 - 3.1. REQUIREMENT SPECIFICATION(S/W & H/W)
- 4. IMPLEMENTATION
- 5. CODING AND RESULTS
- 6. CONCLUSION
- 7. FUTURE SCOPE

ABSTRACT

The ever-growing library of movies can make choosing what to watch overwhelming. This project aims to develop a movie recommendation system that suggests films tailored to individual user preferences. The system will leverage machine learning techniques to analyze user data, such as past watch history and ratings, to identify patterns and correlations. Social media marketing heavily relies on artificial intelligence. It also covers any intelligence demonstrated by a computer, a robot, or any other machine that resembles human intellect. This study examines how artificial intelligence affects Recommendation systems. They employ machine learning and AI to serve users the material that interests them, identify visuals, recommend tag choices, recognize people in photos, and serve adverts to generate user-specific offers and promotions. Recommendation System is a major area which is very popular and useful for people to take proper automated decisions. It is a method that helps user to find out the information which is beneficial to him/her from variety of data available. When it comes to Movie Recommendation System, recommendation is done based on similarity between users (Collaborative Filtering) or by considering particular user's activity (Content Based Filtering) which he wants to engage with. To overcome the limitations of collaborative and content based filtering generally, combination of collaborative and content based filtering is used so that a better recommendation system can be developed.

INTRODUCTION

In the vast ocean of cinema, finding the perfect movie to watch can feel like searching for a hidden treasure. We all have our favorite genres, directors, and actors, but sometimes we crave something new or simply can't decide. This is where movie recommendation systems come in, acting as personal guides to cinematic discovery. Machine learning has a subclass known as recommendation engines that often rankor rate people or items. A recommended system, broadly defined, is a system that anticipates the ratings a user would give to a certain item. These predictions will then be ranked and returned back to the user. They're used by various large name companies like Google, Instagram, Spotify, Amazon, Reddit, Netflix etc. often to increase engagement with users and the platform. Information that was relevant to the user's interests and preferences was missing. As a result, recommender systems are more in demand than ever. By selecting important information fragments from a huge quantity of dynamically created material based on the user's choices, interests, or observed behaviour about the item, recommender systems are information filtering systems that address the issue of information overload. Based on the user's profile, a recommender system can determine if a certain user will favour an item or not. Systems that provide recommendations are advantageous to both consumers and service providers. Many platforms like Netflix which suggest movies, Amazon which suggest products, Spotify that suggest music, Linked In that is used for recommending jobs or any social networking sites which suggest users, all these work on recommendation system.

EXISTING SYSTEM

Netflix

Amazon Prime

MovieLens

Tubi

many streaming services

Hulu

Disney+hotstar

YouTube

IMDb

Google

POPOSED SYSTEM

Python

Excel

Numpy

Pandas

Data collection

LITERATURE SURVEY

	el Used	Merits	Limitations	Drawbacks	Dataset	
& Year					Used	
Caesar Jude Matri	X	Enhanced user	Sparsity issue	Limited	MovieLens	
(2019) Facto	rization	experience		scalability	dataset	
Nguyen et al. Reinf	Forcement	Adaptive to user	Exploration-	Instability	Ta-Feng	
(2020) Learn	ning	preferences	exploitation	during training	dataset	
			trade-off			
Kim et al. Atten	tion	Captures user	Computational	Interpretability	Criteo	
(2021) Mech	anism	attention patterns	overhead	challenges	dataset	
Laxmi Shanker Conte	ext-	Considers	Data sparsity in	Complexity in	Last.fm	
maurya Awar	e	contextual	context	context	dataset	
(2021) Reco	mmender	information		modeling		
Syste	ms					
Krishnanshu Ensei	nble	Aggregates	Increased	Difficulty in	MovieLens	
Agarwal Meth	ods	multiple	computational	model	dataset	
(2021)		recommendation	complexity	interpretation		
		algorithms				
Sachin Bhoite Evolu	ıtionary	Handles dynamic	Convergence	Parameter	eBay	
(2022) Algor	rithms	user preferences	speed	tuning	dataset	
				challenges		
Krishna Fuzzy	y Logic	Handles	Interpretability	Lack of formal	Pinterest	
Gandhi (2022) Syste	ms	uncertainty	issues	modeling	dataset	
		in user preferences				
KS Kumar Deep		Learns complex	High	Limited	Steam	
(2023) Reinf	forcement	user-item	computational	interpretability	dataset	
Learn	ning	interactions	cost			
Zhang et al. Multi	-	Considers	Pareto	Increased	MovieLens	
(2023) Object	etive	conflicting	dominance	computational	dataset	
Optin	nization	objectives in		complexity		
		recommendations				
Mishra (2023) Bayes	sian	Incorporates	Cold start	Model	Amazon	
Perso	nalized	uncertainty in	problem	complexity	Product	
Rank	ing	preference			Reviews	
		estimation				

Kumar and Singh (2023)	Meta-Learning	Adapts quickly to new users/items	Limited data efficiency	Sensitivity to meta-parameter tuning	Goodreads dataset
Chatterjee	Neuro-	Integrates	Knowledge	Interpretability	Ta-Feng
(2023)	Symbolic	symbolic	acquisition	challenges	dataset
	AI	reasoning with	bottleneck	5	
		neural networks			
		110 011 011 110 110 1110			
Agarwal	Temporal	Considers	Cold start for	Difficulty in	Last.fm
(2023)	Dynamics	temporal changes	new items	capturing	dataset
	Modeling	in user preferences		long-term trends	
Huang et al.	Swarm	Mimics	Convergence	Limited	eBay
(2023)	Intelligence	Collective	speed	scalability	dataset
		behavior For			
		recommendations			
K.Rajput	Probabilistic	Captures	Computational	Limited	Pinterest
(2023)	Graphical	uncertainty in	complexity	scalability	dataset
	Models	recommendation			
		inference			
Nidhi Srivasta.	Graph-Based	Captures complex	Scalability	Difficulty in	Goodreads
(2020)	Recommender	user-item	issues	incorporating	dataset
	Systems	interactions	with large	temporal	
			datasets	dynamics	
Yang et al.	Adversarial	Generates robust	Computational	Lack of	Amazon
(2023)	Training	recommendations	overhead	interpretability	Product
		against adversarial			Metadata
		attacks			
.P.N.Shejwal	Collaborative	Personalized	Cold start	Lack of	Amazon
(2019)	Filtering	recommendations	problem	interpretability	Customer
					Reviews
Reddy et al.	Variational	Generates latent	Mode collapse	Limited	Movie
(2023)	Autoencoders	representations for		diversity	Tweetings
		recommendations			dataset
Krishna	Fuzzy Logic	Handles	Interpretability	Lack of formal	Pinterest
Gandhi (2022)	Systems	uncertainty	issues	modeling	dataset
		in user preferences			

DESIGN

REQUIREMENT SPECIFICATION

Phython programming language Excel for data set Numpy Library for numerical values Pandas Library for data set Difflib Library for comparing sequences

Simulation Set up and Implementation

Content-Based Filtering Watched by both Similar Users Watched by him Watched by him Recommended to him Content-Based Filtering

IMPLEMENTATION

We implemented our project in "GOOGLE COLAB" by using the python language and python library's.

Python

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. And it is IDLE (integrated development and learning environment) and it is used to execute a single statement and create, modify and execute the python program it compiles line by line. IDLE is a default editor and IDE is a software environment that usually consists of package development. we used python language to represent the recommendation systems works.

Excel

we used excel file for using of data sets of movies which the movies insert in the file according to their genres, titles, cast, crew, director etc; and customer data sets which movies are downloaded.

Pandas

To import data sets we are using pandas because pandas is python library Python library for data analysis. It is a powerful and flexible quantitative analysis tool, pandas has grown into one of the most popular Python libraries

Numpy

To get numerical in this research work we used numpy python library .NumPy is a Python library used for working with arrays. It also has functions for working in the domain of linear algebra, fourier transform, and matrices.

Data collection

We need to have the data of these movies and several details about them like director name, genres, description. Once we collect the data we need to perform this data.

Preprocessing data

We have to clean this data if there are any missing values and feature extraction. The main thing about movie data is that all data will be in the form of text right. we cannot use the textual data we can convert the textual data using preprocessing techniques called features vectors and we using the similarity score to find similar movies , and also used cosine similar we will try to find which movies are similar to each other by you know giving them a similarity score or we can call this as a similarity confidence score.

CODING

									Diox			
) 0s [3]	movies_data.head()											
		index	budget	genres	homepage	id	keywords	original_language	original_title	overview	popularity	
		index	budget	genres	homepage		keywords	original_language	original_title	overview	popularity	
			237000000	Action Adventure Fantasy Science Fiction	http://www.avatarmovie.com/	1999 <i>5</i>	culture clash future space war space colony so		Avatar	In the 22nd century, a paraplegic Marine is di	150.437577	
			300000000	Adventure Fantasy Action	http://disney.go.com/disneypictures/pirates/		ocean drug abuse exotic island east india trad		Pirates of the Caribbean: At World's End	Captain Barbossa, long believed to be dead, ha	139.08261 <i>5</i>	
			245000000	Action Adventure Crime	http://www.sonypictures.com/movies/spectre/	206647	spy based on novel secret agent sequel mi6	en	Spectre	A cryptic message from Bond's past sends him o	107.376788	

selected_features = ['genres','keywords','tagline','cast','director']
print(selected_features)

['genres', 'keywords', 'tagline', 'cast', 'director']

```
for feature in selected_features:
    movies_data[feature] = movies_data[feature].fillna(")

(7] combined_features = movies_data['genres']+' '+movies_data['keywords']+' '+movies_data['tagline']+' '+movies_data['cast']+' '+movies_data['director']
```



```
print(feature_vectors)
 (0, 4286)
             0.24670722077000895
 (0.2636)
             0.42376670148663637
 (0, 15000)
             0.5031756916263855
 (0, 8337)
             0.5031756916263855
 (0,6039)
             0.5031756916263855
 (1, 2432)
             0.1727245809217606
 (1, 7756)
             0.11280622273881048
 (1, 13026)
             0.19423589153249152
 (1.10231)
             0.1605877650134377
 (1, 8758)
             0.22708864756885258
 (1, 14610)
             0.1515079656934613
 (1, 16671)
             0.19843217234080462
 (1, 14066)
             0.20596016266539263
 (1, 13321)
             0.21774588321071112
 (1, 17293)
             0.20197852906790242
 (1, 17010)
             0.23643141192699405
 (1, 13351)
             0.15021392977728537
 (1, 11505)
             0.27210994985780307
 (1, 11194)
             0.09049666204966293
 (1, 17001)
             0.1282147223488793
 (1, 15264)
             0.07096251084656019
 (1, 4945)
             0.24025653435518637
             0.2139207607825188
 (1, 14273)
 (1, 3225)
             0.2495992987133278
```

```
similarity = cosine_similarity(feature_vectors)
[12]
[13] print(similarity)
                            ... 0.
     [[1.
              0.
                                       0.
                      0.
                                               0.
      [0.
              1.
                      0.07220001 ... 0.
                                            0.
                                                    0.
      [0.
              0.07220001 1. ... 0.03575627 0.
                                                        0.
      [0.
              0.
                      0.03575627 ... 1.
                                            0.
                                                    0.026515551
      [0.
                             ... 0. 1. 0.
              0.
                      0.
              0.
                             ... 0.02651555 0.
      [0.
                      0.
                                                    1.
                                                           11
     print(similarity.shape)
O
     (4804, 4804)
```

```
| Customer_name = ('Jasmitha')

| dict=('Mohan':'Avatar','John':'Spectre','Abhiram':'bat man','Bhargav':'The Dark Knight Rises','Vamshi Krishna':'John Carter','Jasmitha':'Spider-Man 3'}
| movie_name = dict[customer_name]
| print("customer name:",customer_name)
| print("Customer favourite movie",movie_name)
| customer name: Jasmitha
| Customer favourite movie Spider-Man 3
```



```
print('Movies suggested for you : \n')
     i = 1
     for movie in sorted_similar_movies:
       index = movie[0]
       title_from_index = movies_data[movies_data.index==index]['title'].values[0]
       if (i<30):
         print(i, '.',title_from_index)
         i+=1
Movies suggested for you:
     1. John Carter
     2 . Heaven is for Real
     3. Alien
     4. The Specials
     5 . The Helix... Loaded
     6 . Finding Nemo
     7. Transformers
     8. Mission to Mars
     9. The Astronaut's Wife
     10 . American Psycho
     11. Max
     12. The English Patient
     13. The Last Temptation of Christ
     14 . Enter Nowhere
```

15. The Martian

Movies suggested for you: 1. John Carter 글 2. Heaven is for Real 3. Alien 4. The Specials 5. The Helix... Loaded 6 . Finding Nemo 7. Transformers 8. Mission to Mars 9. The Astronaut's Wife 10 . American Psycho 11 . Max 12 . The English Patient 13. The Last Temptation of Christ 14. Enter Nowhere 15. The Martian 16 . Notes on a Scandal 17. Sideways 18 . Spider-Man 3 19 . Daddy's Home 20. We Bought a Zoo 21 . George of the Jungle 22 . Treasure Planet 23 . Don McKay 24. Auto Focus 25 . Savages 26 . The Covenant

27 . X-Men Origins: Wolverine

28. Daybreakers

29. Gravity

CONCLUSION

In this project we have taken movie dateset from the internet. And we have created customers dateset, including their downloaded movies. Based on our code the recommended movie as shown via with recommended methods. A movie recommended system is a machine learning algorithm that predicts the likelihood of a user's preference for a particular movie based on their previous behavior, such as movie ratings, watch history, and browsing history.

FUTURE SCOPE

The weaknesses and limitations of each of these system methods and techniques developed in the research study have indicated the following areas as recommendations for further work. In the project those recommendation systems used in ott platforms to recommend movies which the users make more shows interested to watch more movies from ott platforms. In my observation these method these recommendations used in social media marketing as builds brand awareness and recognition, generates conversation around your brand, helps understand your target customers' Interests, Helps Provide Responsive customer service, helps build customer loyalty, drive traffic to your website, helps drive traffic to your website Another way of implementing of these project is how what the customer is search on google any product that will advertise in all platforms like Youtube, Facebook, instagram, and another sites and many webpages we visited these make more help to the companies these things which makes more marketise the users

REFERENCES

[1] https://link.springer.com/chapter/10.1007/978-981-15-0222-4_20

[2]https://scholar.google.co.in/scholar?q=social+media+marketing+using+recomm

 $endation + systems + methodology \&hl = en\&as_sdt = 0\&as_vis = 1\&oi = scholart$

[3] https://devrix.com/possible-measure-roi-social-media-marketing/

https://coschedule.com/blog/benefits-of-social-media-marketing-for-business

[4]https://www.wordstream.com/social-media-marketing

[5]https://blog.hubspot.com/marketing/social-media-marketing