

Fall semester - 2024

Dr. Eng. Valentin Leplat Innopolis University August 27, 2024

Outline

- 1 Information on the course
- 2 General Introduction
- 3 Few examples
- 4 Optimization: Taxonomy and Terminology

Information on the course

General information on the course

- ▶ Instructor: Valentin Leplat
- ▶ Teaching Assistant: Ramil Nasibullin
- ► Contacting the Instructors:
 - 1. Students are strongly encouraged to contact the instructors and the teaching assistants any time they face problems with the course:
 - ▶ via email: v.leplat@innopolis.ru
 - ▶ via Telegram: @vleplat (from 9:00 am to 3:00 pm you may text).
 - ▶ Meeting in my office: Wednesday 11:00 12:00, Office 401.
 - 2. For simple and short questions-answers: use the Telegram channel or Moodle.

Prerequisite courses

- ► Calculus
- ▶ Linear Algebra
- ▶ Numerical Methods

Resources and supporting materials

Course Outline

1. Part 1 - Linear Programming:

 Formulation(s), geometry, simplex method, duality and integer programming (branch and bound).

2. Part 2 - Nonlinear Programming:

formulation, optimality conditions, convexity, local methods (descent direction), duality,
 Alternating Direction Method of Multipliers, etc

This course is relatively new, hence it may evolve a bit along iterations:).

Course Outline

Course activities and grading breakdown:

Activity Type	Percentage of the overall course grade
Midterm	30
Final exam	30
Project in group	30
Attendance	10
Total	100

Project info:

- $\,\blacktriangleright\,$ Theme: Sending an encrypted message on a channel with sparse noise.
- ▶ When: the project's description will be provided in week 2.

Remark: additional project on non-linear programming possible <u>on request</u> for motivated students with previous background - grade obtained can be used to avoid a question during final exam.

Course Outline

Course grading range:

Grade	Range	Comment
A. Excellent	90-100	
B. Good	70-89	
C. Satisfactory	60-69	
D. Fail	0-59	If your attendance is $\leq 50\%$, then "D".

How to get the highest grade?

- 1. Attend classes:
 - Lectures
 - Labs
- 2. Solve quick exercises/assignments (mentioned during lectures) on your own
- 3. Read books
- 4. Work in team on the project
- 5. Contact instructors when you have (serious :)) questions

Timeline

Week no	Date	Topics	
1	August 27th	Introduction	
2	September 3rd	Formulations	✓
3	September 10th	Geometry of polyhedra	✓
4	September 17th	Simplex algorithm	✓
5	September 24th	Duality	✓
6	October 1st	Integer programming	
7	October 8th	Dikin's Method + Nonlinear programming: introduction	
8	October 15th	$Mid\text{-}term\ exam$	
9	October 22nd	Optimality conditions	
10	October 29th	Convexity	✓
11	November 5th	First-order methods	✓
12	November 12th	Duality	√
13	November 19th	Alternating Direction Method of Multipliers	✓
14	November 26th ¹	Introduction to Stochastic Optimization	
15	≥ December 10th	Final exam	X

¹Project(s) deadline

Dr. Eng. Valentin Leplat

More info on Projects

1. **Build** your team: communicate by emails to the instructors before September 10th. the participants of each group

Dear Instructor, Mr. Black and I (Ms. Brown) have agreed to work together on the linear programming project.

Response: You will receive a unique ID group.

- 2. What: report + code
- 3. When: \leq November 26th
- 4. **How**: upload a zip file on Moodle Platform named "project_linearprog_group_ID" and send a notification email to instructors.
- 5. Monitoring: Right after mid-term exam, feedback's will be gathered via a google form:
 - 5.1 Estimation of your percentage of advancement: from 0 to 100%.
 - 5.2 Level of confidence in the accuracy of the tasks performed: from 0 to 100%.
 - 5.3 Level of difficulty: too easy, adapted, challenging but ok, or too hard.

If you want to share a feedback before or "after" (\leq November 12th), feel free to do so at the end of labs or lectures.

General Introduction

Opening Remark and Credit

About more than 264 years ago.....

"Nothing takes place in the world whose meaning is not that of some maximum or minimum."

Leonhard Euler (1707-1783)

Why?

Help to make the **best** decision.

```
 \left\{ \begin{array}{ll} \text{Decision:} & \text{vector of variables } x \\ \text{Best:} & \text{objective function } f(x) \\ \text{Constraints:} & \text{feasible set } \mathcal{X} \end{array} \right\} \to \begin{array}{l} \text{Optimization} \\ \end{array}
```

$$\min_{x \in \mathcal{X}} f(x)$$

- ▶ Many applications in practice
- Efficient methods in practice
- ► Modelling and resolution of large-scale problems

Notations and formulation

Minimization of function $f: \mathbb{R}^n \to \mathbb{R}$ over a feasible set \mathcal{X} writes as:

$$\min_{x} \qquad f(x)$$

such that $x \in \mathcal{X}$

▶ The feasible set is usually defined with functional constraints:

$$\mathcal{X} = \{x \in \mathbb{R}^n | h_i(x) = 0 \quad \forall i \in \mathcal{E}, \quad h_j(x) \ge 0 \quad \forall j \in \mathcal{I}\}$$

- ▶ The constraints h_i, h_j are functions $h_i, h_j : \mathbb{R}^n \to \mathbb{R}$:
 - $h_i(x) = 0$ is an equality constraint
 - $h_j(x) \ge 0$ is an inequality constraint
- \triangleright \mathcal{E} and \mathcal{I} are set of indices.

Notations and formulation

The general optimization problem can be therefore written as follows:

$$\min_{x} f(x)$$
such that $h_{i}(x) = 0 \quad \forall i \in \mathcal{E}$

$$h_{j}(x) \ge 0 \quad \forall j \in \mathcal{I}$$

Particular case: all the functions are linear!

▶ If all the functions $f(.), h_i(.), h_j(.)$ are linear, the general problem can be simplified as:

 $\min_{x} c^{T}x$ such that $Ax \ge b$

- ▶ The constraints $Ax \ge b$ defines a feasible set that is a polyhedron (a polytope if bounded and non-empty).
- ▶ The objective function $c^T x$ forms a translating hyperplane in space.

In most cases: an optimal solution will be one of the vertices of the polyhedron

Dr. Eng. Valentin Leplat General Introduction 18/47

Particular case: all the functions are linear!

Why the linear programming?

- ▶ Because many problems can be modelled as linear programs
- ▶ Because there is a very efficient algorithm (the simplex algorithm) for solving these problems
- $\,\blacktriangleright\,$ Because these problems have a very rich structure (properties of optimality, duality)

Dr. Eng. Valentin Leplat General Introduction 19/47

Particular case: all the functions are linear!

Why the linear programming?

- ▶ Because many problems can be modelled as linear programs
- ▶ Because there is a very efficient algorithm (the simplex algorithm) for solving these problems
- \blacktriangleright Because these problems have a very rich structure (properties of optimality, duality)

Why studying non-linear programming?

- ▶ Because some problems are impossible to model linearly
- ▶ Because the simplex algorithm for linear programming is inapplicable to non-linear problems

Few examples

Outline

1 Information on the course

2 General Introduction

3 Few examples

4 Optimization: Taxonomy and Terminology

Dr. Eng. Valentin Leplat Few examples

21 / 47

Example 1 - Optimal distribution of resources

- ▶ Three resources: A (wood), B (nails) and C (fabrics) are used to obtain two products, that are T (tables) and L (beds).
- ▶ We need:
 - 1. two units of wood to build a table, three for a bed,
 - 2. two units of nails for a table, and one for a bed,
 - 3. one unit of fabric for a table, and three for a bed.
- We have at disposal 13 units of A, 11 of B and 9 of C.
- ightharpoonup T and L products earn 300 and 400 Rubles per unit produced, respectively.
- ightharpoonup Question: How many units of L and T must be produced to maximize profit?

22 / 47

Dr. Eng. Valentin Leplat Few examples

- 1. Choice of variables: x_1 units of T, x_2 units of L.
- 2. Constraints:

- 1. Choice of variables: x_1 units of T, x_2 units of L.
- 2. Constraints:

$$2x_1 + 3x_2 \le 13$$
, (resource A)

Dr. Eng. Valentin Leplat Few examples 23/47

- 1. Choice of variables: x_1 units of T, x_2 units of L.
- 2. Constraints:

$$2x_1 + 3x_2 \le 13$$
, (resource A)

$$2x_1 + x_2 \le 11$$
, (resource B)

- 1. Choice of variables: x_1 units of T, x_2 units of L.
- 2. Constraints:

$$2x_1 + 3x_2 \le 13$$
, (resource A)

$$2x_1 + x_2 \le 11$$
, (resource B)

$$x_1 + 3x_2 \le 9$$
, (resource C)

- 1. Choice of variables: x_1 units of T, x_2 units of L.
- 2. Constraints:

$$2x_1 + 3x_2 \le 13$$
, (resource A)
 $2x_1 + x_2 \le 11$, (resource B)
 $x_1 + 3x_2 \le 9$, (resource C)
 $x_1, x_2 \ge 0$.

- 1. Choice of variables: x_1 units of T, x_2 units of L.
- 2. Constraints:

$$2x_1 + 3x_2 \le 13$$
, (resource A)
 $2x_1 + x_2 \le 11$, (resource B)
 $x_1 + 3x_2 \le 9$, (resource C)
 $x_1, x_2 \ge 0$.

3. Objective function:

$$\max_{x_1, x_2} \quad 300x_1 + 400x_2.$$

Example 1 - Geometrical Interpretation

The pairs (x_1, x_2) for which

$$2x_1 + 3x_2 \leqslant 13,$$

$$2x_1 + x_2 \leqslant 11,$$

$$x_1 + 3x_2 \le 9$$
, and

$$x_1, x_2 \geqslant 0.$$

is a polyhedron of \mathbb{R}^2 .

Example 1 - Geometrical Interpretation

The pairs (x_1, x_2) for which

$$2x_1 + 3x_2 \le 13,$$

 $2x_1 + x_2 \le 11,$
 $x_1 + 3x_2 \le 9,$ and
 $x_1, x_2 \ge 0.$

is a polyhedron of \mathbb{R}^2 .

- ▶ For a given scalar z, the set $\{x = (x_1, x_2) \in \mathbb{R}^2 \mid 300x_1 + 400x_2 = z\}$ is a perpendicular line to vector c = (3, 4).
- ightharpoonup The straight lines obtained for different values of z are parallel.
- ▶ An optimal solution is obtained by translating this line as far as possible. The optimum solution is obtained at a vertex of the polyhedron.

Example 1 - Geometrical Interpretation

The pairs (x_1, x_2) for which

$$2x_1 + 3x_2 \le 13,$$

 $2x_1 + x_2 \le 11,$
 $x_1 + 3x_2 \le 9,$ and

$$x_1, x_2 \geqslant 0.$$

is a polyhedron of \mathbb{R}^2 .

- For a given scalar z, the set $\{x = (x_1, x_2) \in \mathbb{R}^2 \mid 300x_1 + 400x_2 = z\}$ is a perpendicular line to vector c = (3, 4).
- ightharpoonup The straight lines obtained for different values of z are parallel.
- ▶ An optimal solution is obtained by translating this line as far as possible. The optimum solution is obtained at a vertex of the polyhedron.

Solution: 1 units of L and 5 units of T for a profit of 1900. • Colab File

Example 1 - Graphics

Example 1 - Graphics

Example 1 - Graphics

Example 2: Problem of mixing (or dietetics)

- ▶ This week, your sports coach (or dietician or dentist) recommends that you consume 10 units of vitamin A, 8 units of vitamin B and 7 units of vitamin C.
- ▶ All you want to eat are apples and bananas, whose vitamin content and price per unit is:

	Vit. A	Vit. B	Vit. C	Price
Apples	2	1	1	4
Bananas	1	2	1	3
Total to be consumed	10	8	7	

Table: Data (per unit).

1. Choice of variables:

1. Choice of variables: x_1 is the quantity of apples purchased, x_2 the quantity of bananas

- 1. Choice of variables: x_1 is the quantity of apples purchased, x_2 the quantity of bananas
- 2. Constraints:

- 1. Choice of variables: x_1 is the quantity of apples purchased, x_2 the quantity of bananas
- 2. Constraints:

$$2x_1 + x_2 \geqslant 10$$
, (vitamin A)

Dr. Eng. Valentin Leplat Few examples 27 / 47

1. Choice of variables: x_1 is the quantity of apples purchased, x_2 the quantity of bananas

2. Constraints:

$$2x_1 + x_2 \geqslant 10$$
, (vitamin A)

$$x_1 + 2x_2 \geqslant 8$$
, (vitamin B)

Dr. Eng. Valentin Leplat Few examples 27 / 47

1. Choice of variables: x_1 is the quantity of apples purchased, x_2 the quantity of bananas

2. Constraints:

$$2x_1 + x_2 \ge 10$$
, (vitamin A)
 $x_1 + 2x_2 \ge 8$, (vitamin B)
 $x_1 + x_2 \ge 7$, (vitamin C)

- 1. Choice of variables: x_1 is the quantity of apples purchased, x_2 the quantity of bananas
- 2. Constraints:

$$2x_1 + x_2 \ge 10$$
, (vitamin A)
 $x_1 + 2x_2 \ge 8$, (vitamin B)
 $x_1 + x_2 \ge 7$, (vitamin C)
 $x_1, x_2 \ge 0$.

3. Objective function: total cost is minimum

$$\min_{x_1, x_2} 4x_1 + 3x_2.$$

$$\min_{x_1, x_2} \quad 4x_1 + 3x_2$$
such that
$$2x_1 + x_2 \ge 10,$$

$$x_1 + 2x_2 \ge 8,$$

$$x_1 + x_2 \ge 7,$$

$$x_1, \quad x_2 \ge 0.$$

$$\min_{x_1, x_2} \quad 4x_1 + 3x_2$$
such that
$$2x_1 + x_2 \ge 10,$$

$$x_1 + 2x_2 \ge 8,$$

$$x_1 + x_2 \ge 7,$$

$$x_1, \quad x_2 \ge 0.$$

- ▶ Can you solve this problem geometrically?
- ▶ What if there are many more foods (i.e. variables) and vitamins to obtain (i.e. constraints)?
- ▶ Answering this question is one of the main objectives of this course.

Dr. Eng. Valentin Leplat Few examples 28/47

Example 2: Graphics

Example 2: Graphics

Example 2: Graphics

Example 3: Transportation problems

- \blacktriangleright A product is transported from m origins to n destinations.
- The product is available in quantities a_1, a_2, \ldots, a_m at origins and the demands at destinations are b_1, b_2, \ldots, b_n .
- From origin i to destination j is c_{ij} (for example, the distance between i and j).

30 / 47Dr. Eng. Valentin Leplat Few examples

Example 3: Transportation problems

- \blacktriangleright A product is transported from m origins to n destinations.
- The product is available in quantities a_1, a_2, \ldots, a_m at origins and the demands at destinations are b_1, b_2, \ldots, b_n .
- From origin i to destination j is c_{ij} (for example, the distance between i and j).

Our goal: we want to determine the quantities of product to be transported from i to j so as to satisfy demand while minimizing total transport costs.

Dr. Eng. Valentin Leplat Few examples 30 / 47

1. Choice of variables:

1. Choice of variables: x_{ij} the quantity of product to be transported from i to j.

1. Choice of variables: x_{ij} the quantity of product to be transported from i to j.

2. Constraints:

1. Choice of variables: x_{ij} the quantity of product to be transported from i to j.

2. Constraints:

$$\sum_{i=1}^{n} x_{ij} \leqslant a_i \ \forall i, \qquad \text{(resource available in } i)$$

Dr. Eng. Valentin Leplat Few examples 31/47

1. Choice of variables: x_{ij} the quantity of product to be transported from i to j.

2. Constraints:

$$\sum_{j=1}^{n} x_{ij} \leqslant a_i \,\,\forall i, \qquad \text{(resource available in } i)$$

$$\sum_{j=1}^{m} x_{ij} \geqslant b_j \,\,\forall j, \qquad \text{(resource required in } j.)$$

31 / 47

1. Choice of variables: x_{ij} the quantity of product to be transported from i to j.

2. Constraints:

$$\sum_{j=1}^{n} x_{ij} \leq a_i \, \forall i, \qquad \text{(resource available in } i)$$

$$\sum_{j=1}^{m} x_{ij} \geq b_j \, \forall j, \qquad \text{(resource required in } j.)$$

$$x_{ij} \geq 0.$$

1. Choice of variables: x_{ij} the quantity of product to be transported from i to j.

2. Constraints:

$$\sum_{j=1}^{n} x_{ij} \leq a_i \, \forall i, \qquad \text{(resource available in } i)$$

$$\sum_{j=1}^{m} x_{ij} \geq b_j \, \forall j, \qquad \text{(resource required in } j.)$$

$$x_{ij} \geq 0.$$

3. Objective function: total cost is minimum

$$\min_{x} \quad \sum_{i,j} c_{ij} x_{ij}.$$

Question. What is a necessary and sufficient condition for the problem to be solvable?

Applications

- ▶ Planning, management and scheduling Production, schedules, crew composition, etc.
- Design and conception
 Sizing and optimization of structures and networks
- ► Economy and finance
 Portfolio selection, balance calculation
- ► Location and transport
 Relocation of depots, integrated circuits, tours
- ▶ Data analysis, machine learning Recommendation systems (Netflix, Amazon, etc.), image analysis (e.g. segmentation), automatic document classification, clustering, etc.
- ▶ And many more · · ·

The two faces of optimization

1. Modeling

Translating the problem into mathematical language (more delicate than it looks)

Formulation of an optimization problem

33 / 47

2. Solving

Development and implementation of efficient resolution algorithms in theory and practice.

The two faces of optimization

1. Modeling

Translating the problem into mathematical language (more delicate than it looks)

Formulation of an optimization problem

2. Solving

Development and implementation of efficient resolution algorithms in theory and practice.

Close relationship:

- ► Formulating models/programs that can be solved
- ▶ Developing methods applicable to realistic models/programs.

The two faces of optimization

Premature optimization is the root of all evil.

- Donald Ervin Knuth,

The Art of Computer Programming.

Dr. Eng. Valentin Leplat Few examples 34/47

Optimization: Taxonomy and Terminology

Outline

- 1 Information on the course
- 2 General Introduction
- 3 Few examples
- 4 Optimization: Taxonomy and Terminology

Optimization

- ▶ Optimization problems often have thousands of variables and constraints. They rarely have an analytical solution.
- ▶ We're looking for optimization algorithms that are fast, easy to implement, require little computation time and memory, are not sensitive to rounding errors, are guaranteed to converge, and allow post-optimal analysis (ideally!).
- ▶ Modeling is a crucial aspect of optimization.
- ▶ A model is just a model. We live in a world of satisfying approximation. We don't always seek to optimize exactly, but often to optimize satisfactorily.
- ▶ Each model has its own resolution method. The more precise the model class, the more efficient the method used.
- ▶ In general, compromise between model quality, complexity and resolution method (exact or approximate resolution heuristics).

$$\min_{x=(x_1,x_2,\dots,x_n)^T\in\mathbb{R}^n} f(x_1,x_2,\dots,x_n)$$

in the feasible set, that is $(x_1, x_2, \dots, x_n)^T \in \mathcal{D}$.

▶ Variables: continuous, discrete, binary, etc.

$$\min_{x=(x_1,x_2,\dots,x_n)^T\in\mathbb{R}^n} f(x_1,x_2,\dots,x_n)$$

in the feasible set, that is $(x_1, x_2, \dots, x_n)^T \in \mathcal{D}$.

- ▶ Variables: continuous, discrete, binary, etc.
 - 1
- ▶ Constraints: (none), linear, convex, integer, Boolean, etc.

$$\min_{x=(x_1,x_2,\dots,x_n)^T\in\mathbb{R}^n} f(x_1,x_2,\dots,x_n)$$

in the feasible set, that is $(x_1, x_2, \dots, x_n)^T \in \mathcal{D}$.

- ▶ Variables: continuous, discrete, binary, etc.
 - 1
- ► Constraints: (none), linear, convex, integer, Boolean, etc.
- ▶ **Objective**: linear, quadratic, non-linear, non-differentiable, polynomial, convex, etc.

$$\min_{x=(x_1,x_2,...,x_n)^T \in \mathbb{R}^n} f(x_1,x_2,...,x_n)$$

in the feasible set, that is $(x_1, x_2, \dots, x_n)^T \in \mathcal{D}$.

- ▶ Variables: continuous, discrete, binary, etc.
- ▶ Constraints: (none), linear, convex, integer, Boolean, etc.
- ▶ **Objective**: linear, quadratic, non-linear, non-differentiable, polynomial, convex, etc.

But also...

 ${\bf Models:}\ {\bf Multi-criteria}\ {\bf optimization},\ {\bf stochastic}\ {\bf models},\ {\bf temporal}\ {\bf models},\ {\bf etc.}$

$$\min_{x=(x_1,x_2,\ldots,x_n)^T\in\mathbb{R}^n} f(x_1,x_2,\ldots,x_n)$$

in the feasible set, that is $(x_1, x_2, \dots, x_n)^T \in \mathcal{D}$.

- ▶ Variables: continuous, discrete, binary, etc.
- ▶ Constraints: (none), linear, convex, integer, Boolean, etc.
- ▶ **Objective**: linear, quadratic, non-linear, non-differentiable, polynomial, convex, etc.

But also...

Models: Multi-criteria optimization, stochastic models, temporal models, etc.

Change category: sometimes possible via reformulation

Terminology: feasibility

Problems in finite dimensions

```
 \begin{array}{ccc} \text{Decision} & \leftrightarrow & \text{vector of variables } x \\ \text{Best} & \leftrightarrow & \text{Objective function } f \\ \text{Constraints} & \leftrightarrow & \text{feasible set } \mathcal{D} \end{array} \right\} \Rightarrow \underset{x \in \mathbb{R}^n}{\text{Optimisation}}
```

Terminology: feasibility

Problems in finite dimensions

```
 \begin{array}{ccc} \text{Decision} & \leftrightarrow & \text{vector of variables } x \\ \text{Best} & \leftrightarrow & \text{Objective function } f \\ \text{Constraints} & \leftrightarrow & \text{feasible set } \mathcal{D} \end{array} \right\} \Rightarrow \begin{array}{c} \text{Optimisation} \\ \end{array}
```

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in \mathcal{D}$

- ► Any point x belonging to the feasible set is called feasible solution.
- When $\mathcal{D} \neq \emptyset$, the problem is said to be possible or feasible.
- When $\mathcal{D} = \emptyset$, the problem is said to be impossible or infeasible.

Terminology: optimal value

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in \mathcal{D}$.

▶ The optimal value of the problem, denoted f^* , is the infimum of objective function values for feasible solutions, i.e.

$$f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

Terminology: optimal value

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in \mathcal{D}$.

▶ The optimal value of the problem, denoted f^* , is the infimum of objective function values for feasible solutions, i.e.

$$f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

• When f^* is finite, the problem is said to be bounded.

Terminology: optimal value

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in \mathcal{D}$.

▶ The optimal value of the problem, denoted f^* , is the infimum of objective function values for feasible solutions, i.e.

$$f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

- When f^* is finite, the problem is said to be bounded.
- When $f^* = -\infty$, the problem is called unbounded.

Terminology: optimal value

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in \mathcal{D}$.

▶ The optimal value of the problem, denoted f^* , is the infimum of objective function values for feasible solutions, i.e.

$$f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

- When f^* is finite, the problem is said to be bounded.
- When $f^* = -\infty$, the problem is called unbounded.
- ▶ When the problem is impossible, we conventionally set $f^* = +\infty$ (worst possible value for a minimum).

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in \mathcal{D} \quad \text{et} \quad f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

An optimal solution, denoted x^* , is a feasible solution that possesses the optimal value, i.e.

 x^* is an optimal solution \Leftrightarrow $x^* \in \mathcal{D}$ and $f(x^*) = f^*$.

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in \mathcal{D} \quad \text{et} \quad f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

▶ An optimal solution, denoted x^* , is a feasible solution that possesses the optimal value, i.e.

 x^* is an optimal solution \Leftrightarrow $x^* \in \mathcal{D}$ and $f(x^*) = f^*$.

► This last property can be equivalently reformulated as

$$x^* \in \mathcal{D}$$
 and $f(x^*) \leq f(y)$ for all feasible solution $y \in \mathcal{D}$, or

 $x^* \in \mathcal{D}$ and none feasible solution $y \in \mathcal{D}$ satisfies $f(y) < f(x^*)$.

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in \mathcal{D} \quad \text{et} \quad f^{\star} = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

▶ An optimal solution, denoted x^* , is a feasible solution that possesses the optimal value, i.e.

 x^* is an optimal solution \Leftrightarrow $x^* \in \mathcal{D}$ and $f(x^*) = f^*$.

▶ This last property can be equivalently reformulated as

$$x^* \in \mathcal{D}$$
 and $f(x^*) \leq f(y)$ for all feasible solution $y \in \mathcal{D}$, or

$$x^* \in \mathcal{D}$$
 and none feasible solution $y \in \mathcal{D}$ satisfies $f(y) < f(x^*)$.

▶ A problem that has (at least) one optimal solution is said to be solvable, otherwise it is called unsolvable.

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in \mathcal{D} \quad \text{et} \quad f^{\star} = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

▶ An optimal solution, denoted x^* , is a feasible solution that possesses the optimal value, i.e.

$$x^*$$
 is an optimal solution \Leftrightarrow $x^* \in \mathcal{D}$ and $f(x^*) = f^*$.

▶ This last property can be equivalently reformulated as

$$x^* \in \mathcal{D}$$
 and $f(x^*) \leq f(y)$ for all feasible solution $y \in \mathcal{D}$, or

$$x^* \in \mathcal{D}$$
 and none feasible solution $y \in \mathcal{D}$ satisfies $f(y) < f(x^*)$.

- ▶ A problem that has (at least) one optimal solution is said to be solvable, otherwise it is called unsolvable.
- An impossible or unbounded problem is never solvable, but there are also possible, bounded and unsolvable, for instance:

 $\min \frac{1}{x}$ such that x > 0 gives $f^* = 0$ but is unsolvable...

Dr. Eng. Valentin Leplat Optimization: Taxonomy and Terminology

$$\min_{x_1, x_2} \quad c_1 x_1 + c_2 x_2 = c^T x$$
tel que
$$-x_1 + x_2 \le 1,$$

$$x_1, x_2 \ge 0.$$

•
$$c = (1,1)$$
. Unique optimal solution $x^* = (0,0)^T$

$$\min_{x_1, x_2} c_1 x_1 + c_2 x_2 = c^T x$$
tel que $-x_1 + x_2 \le 1$,
$$x_1, x_2 \ge 0$$
.

- c = (1,1). Unique optimal solution $x^* = (0,0)^T$
- c = (1,0). Infinite, bounded set of optimal solutions: $\{(0,x_2)|0 \le x_2 \le 1\}$

$$\min_{x_1, x_2} c_1 x_1 + c_2 x_2 = c^T x$$
tel que $-x_1 + x_2 \le 1$,
$$x_1, x_2 \ge 0$$
.

- c = (1,1). Unique optimal solution $x^* = (0,0)^T$
- c = (1,0). Infinite, bounded set of optimal solutions: $\{(0,x_2)|0 \le x_2 \le 1\}$
- c = (0, 1). Infinite, unbounded set of optimal solutions: $\{(x_1, 0) | 0 \le x_1\}$.

$$\min_{x_1, x_2} \quad c_1 x_1 + c_2 x_2 = c^T x$$
tel que
$$-x_1 + x_2 \leqslant 1,$$

$$x_1, x_2 \geqslant 0.$$

- c = (1,1). Unique optimal solution $x^* = (0,0)^T$
- c = (1,0). Infinite, bounded set of optimal solutions: $\{(0,x_2)|0 \le x_2 \le 1\}$
- c = (0,1). Infinite, unbounded set of optimal solutions: $\{(x_1,0)|0 \le x_1\}$.
- c = (-1, -1). Unbounded optimal value $(f^* = -\infty)$. $(x_1 = x_2 \to +\infty)$

Terminology: problem types

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in \mathcal{D} \quad \text{and} \quad f^{\star} = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

- ▶ Without loss of generality, we can consider only the minimization.
- ▶ If maximization, we have equivalence between optimal solutions

$$x^* \text{ optimal for } \max_{x \in \mathcal{D} \subseteq \mathbb{R}^n} f(x) \quad \Leftrightarrow \quad x^* \text{ optimal for } \min_{x \in \mathcal{D} \subseteq \mathbb{R}^n} -f(x),$$

and for optimal values (with a double minus sign):

$$\sup\{f(x) \mid x \in \mathcal{D} \subseteq \mathbb{R}^n\} = -\inf\{-f(x) \mid x \in \mathcal{D} \subseteq \mathbb{R}^n\}.$$

Terminology: problem types

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in \mathcal{D} \quad \text{and} \quad f^* = \inf \{ f(x) \mid x \in \mathcal{D} \}.$$

- ▶ Without loss of generality, we can consider only the minimization.
- ▶ If maximization, we have equivalence between optimal solutions

$$x^* \text{ optimal for } \max_{x \in \mathcal{D} \subseteq \mathbb{R}^n} f(x) \quad \Leftrightarrow \quad x^* \text{ optimal for } \min_{x \in \mathcal{D} \subseteq \mathbb{R}^n} -f(x),$$

and for optimal values (with a double minus sign):

$$\sup\{f(x) \mid x \in \mathcal{D} \subseteq \mathbb{R}^n\} = -\inf\{-f(x) \mid x \in \mathcal{D} \subseteq \mathbb{R}^n\}.$$

▶ The problem of finding an admissible point (without an objective function) is a special case of an optimization problem, and can be formally expressed using a constant (or zero) objective function.

 $\min_{x \in \mathbb{R}^n} 0$ such that $x \in \mathcal{D}$.

Description of the feasible set - linear problems

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $h_i(x) = 0$ pour $i \in \mathcal{E}$ and $h_i(x) \ge 0$ pour $i \in \mathcal{I}$

is called a linear optimization problem when all functions are linear or affine:

- Objective function: $f(x) = c_1x_1 + c_2x_2 + \cdots + c_nx_n$ (constant term is useless)
- Constraints: $h_i(x) = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n b_i$

hence the equivalent formulation

$$\min_{x \in \mathbb{R}^n} c^T x \text{ such that } a_i^T x = b_i \text{ for } i \in \mathcal{E} \text{ and } a_i^T x \geqslant b_i \text{ for } i \in \mathcal{I},$$

with column vectors $c = (c_1 \ c_2 \ \cdots \ c_n)^T$, and $a_i = (a_{i1} \ a_{i2} \ \cdots \ a_{in})^T$ defined for all $i \in \mathcal{E} \cup \mathcal{T}$.

Summary

We have seen

- ▶ Notations and general formulation of an optimization problem (or programs),
- ▶ The special case of linear problems: all the functions are linear.
- ► A short geometrical interpretation of some linear problems.
- ► The two faces of optimization: Modeling and Solving
- ► Taxonomy and Terminology in optimization.

Preparations for the next lecture

- ► Master the terminology.
- ▶ Solve Example 2 with a linear solver from CVXPY² (take inspiration from the first example).

²open source Python-embedded modeling language for convex optimization problems

Goodbye, So Soon

THANKS FOR THE ATTENTION

- ▶ v.leplat@innopolis.ru
- ► sites.google.com/view/valentinleplat/