Sequential Circuits

Sequential Circuits

- 1. Synchronous Sequential Circuit
- 2. Asynchronous Sequential Circuit

Synchronous Clocked sequential Circuits

Storage Elements: Latches

S-R Latch

Logic Circuit

S	R	Q	Q'	. SK
1	0	1	0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
0	0	1	0	(after $S = 1, R = 0$)
0	1	0	1	
0	0	0	1	(after $S = 0, R = 1$)
1	1	0	0	(forbidden)

SR Latch (NAND Gate)

Logic Circuit

S	R	Q	Q'	_
1 1 0 1 0	0 1 1 1 0	0 0 1 1 1	1 1 0 0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
1 0 1 0	1 1 1 0	0 1 1 1	1 0 0 1	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)

Function Table

SR Latch with Control Input

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

Logic Circuit

Function Table

D Latch

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

Function Table

Clock Response

Triggering of Flip-flops

Edge Triggered D Flip-Flop

J-K Flip flop

Flip-Flop Characteristic Tables

JK I	JK Flip-Flop						
J	K	Q(t + 1)					
0	0	Q(t)	No change				
0	1	0	Reset				
1	0	1	Set				
1	1	Q'(t)	Complement				

T Flip flop

T	Flip-Flop	
T	Q(t + 1)	
0	Q(t) $Q'(t)$	No change Complement

Flip-flops - Summary

D Flip-Flop

D	Q(t + 1)	
0	0	Reset
1	1	Set

$$Q(t+1) = D$$

JK Flip-Flop

J	K	Q(t + 1)	I)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

$$Q(t+1) = JQ' + K'Q$$

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

$$Q(t+1) = T \oplus Q$$
$$= TQ' + T'Q$$

Counters

- Ripple Counter
- Synchronous Counter

The input that sets the flip-flop to 1 is called *preset* or *direct set*. The input that clears the flip-flop to 0 is called *clear* or *direct reset*.

Frequency Divider

4 bit Binary Ripple Counter

Reset

	CK	A ₃	A ₂	A _{1.}	A _o
	0	0	0	0	0
	1	0	0	0	1
	2	0	0	1	0
	3	0	0	1	1
-	4	0	1	0	0
	5	0	1	0	1
	6	0	1	1	0
L	7	0	1	1	1
	8	1	0	0	0
	9	1	0	0	1
_	10	1	0	1	0
_	11	1	0	1	1
	12	1	1	0	0
Š	13	1	1	0	1
	14	1	1	1	0
	15	1	1	1	1
-					