Математическое программирование, лекция 11 Тема 4. Методы нелинейного программирования.

- 1. Постановка задачи с ограничениями равенствами
- 2. Метод множителей Лагранжа
- 3. Постановка задачи с ограничениями неравенствами
- 4. Условия Куна-Таккера
- 5. Достаточность условий Куна-Таккера

1. Постановка задачи с ограничениями равенствами

Минимизировать целевую функцию f(x), где $x=(x_1,\ldots,x_n)^T$ - вектор переменных при ограничениях $h_k(x_1,x_2,\ldots,x_n)=0.\ k=1,\ldots,K.$

Эта задачи может быть решена как задача безусловной оптимизации (при К <= n), если исключить из целевой функции К независимых переменных с помощью заданных равенств. Наличие ограничений в виде равенств фактически позволяет уменьшить размерность исходной задачи с n до n-К и свести к задаче безусловной минимизации.

Однако данный метод исключения переменных применим лишь в тех случаях, когда уравнения, представляющие ограничения можно разрешить относительно некоторого конкретного набора независимых переменных. При наличии большого числа ограничений в виде равенств или ограничений, представляющих сложные аналитические выражения, процесс исключения переменных становится весьма трудоемкой процедурой.

2. Метод множителей Лагранжа

Поясним этот метод на задаче с двумя переменными $z=f(x_1,x_2)$ и единственным ограничением $h(x_1,x_2)=0$ Предположим, что рассматриваемые функции $z=f(x_1,x_2)$ и $h(x_1,x_2)$ непрерывно дифференцируемы, а из функции $h(x_1,x_2)$ x_2 выражается в явном виде через x_1 , т.е. $x_2=\phi(x_1)$. Требуется получить необходимые условия, которым должна удовлетворять точка локального минимума.

Функцию $z=f(x_1,x_2)$ можно записать как функцию одной независимой переменной $x_1:z=f[x_1,\phi(x_1)].$ необходимым условием минимума функции z будет равенство нулю первой производной:

$$dz/dx_1 = 0$$
, => $dz/dx_1 = df/dx_1 + df/d\phi * d\phi/dx_1 = 0$

Функция Лагранжа:

$$L(x_1,x_2,lamda)=f(x_1,x_2)+lamda*h(x_1,x_2)$$

Отсюда **необходимые условия существования минимума (экстремума) 1-ого порядка** $z = f(x_1, x_2)$ и записать следующим образом

$$egin{aligned} \{dL/dx_1=df/dx_1+lamda*dh/dx_1=0\ \{dL/dx_2=df/dx_2+lamdadh/dx_2=0\ \{dL/dlambda=h(x_1,x_2)=0\ \end{aligned}$$

- 1. Составление функции Лагранжа
- 2. Получение системы уравнений
- 3. Отыскание решения этой системы, т.е. нахождение стационарных точек функции Лагранжа
- 4. Проверка достаточности условий минимума.

Метод множителей Лагранжа можно распространить на случай функций п переменных при наличии К ограничений в виде равенств (K < n), Т.е. если рассмотреть общую задачу оптимизации, содержащую несколько ограничений в виде равенств: минимизировать целевую функцию $z = f(x_1, x_2, \dots, x_n)$, при ограничениях $h_k(x_1, x_2, \dots, x_n) = 0$, $k = 1, \dots, K$,

Достоинства: Задача условной оптимизации сводится к задаче безусловной оптимизации

Недостатки:

- 1. Необходимость решения системы безусловной системы уравнений
- 2. Возможны случаи, когда экстремальные точки существуют, а система уравнений неразрешима. В

этом случае для нахождения всех возможных решений данной системы можно использовать численные методы поиска.

3. Постановка задачи с ограничениями неравенствами