Izbor lidera u prstenovima

Prstenasta mreža

Osećaj pravca

Linkovi su dvosmerni za poruke Najviše jedna poruka u svakom smeru

Anonimni prsten

Eponimni (ne-anonimni) prsten

Izbor lidera

Početno stanje

Konačno stanje

Algoritmi izbora lidera zavise od sl. faktora:

Anonimni prsten Eponimni prsten

Veličina mreže n je poznata Veličina mreže n je nepoznata

Sinhroni algoritam Asinhroni algoritam

Sinhroni anonimni prsteni

Svaki procesor izvršava isti algoritam

Svaki procesor obavlja potpuno istu obradu

Početno stanje

Konačno stanje

Ako je jedan čvor izabran za lidera, onda je svaki čvor izabran za lidera

Zaključak 1:

Izbor lidera
se ne može rešiti
u sinhronim
anonimnim prstenima

Konačno stanje

Zaključak 2:

Konačno stanje

Izbor lidera
ne može se rešiti
ni u <u>asinhronim</u>
anonimnim prstenima

Zašto?

Asinhroni prsten se može ponašati kao sinhroni prsten

Asinhroni eponimni prsteni

Čvor sa max id se izabira za lidera

Svaki čvor šalje poruku sa svojim id svom levom susedu

Ako: čvor primi svoju spostvenu poruku

Onda: on izabira sebe za lidera

Ako: čvor primi svoju spostvenu poruku

Onda: on izabira sebe za lidera

Lider šalje poruku kroz mrežu deklarišući sebe za "lidera prstena"

Vreme izvršenja: O(n)

n čvorova

n poruka

n-1 poruka

n-2 poruka

Ukupno poruka:

Napomene:

ne mora biti poznato algoritmu

Algoritam se može pretvoriti u asinhroni

Algoritam sa O(n log n) poruka

Ponovo se izabira za lidera čvor sa max id

k-komšiluk

Faza 1: pošalji id u 1-komšiluk

Ako: primljen id > tekući id Onda: pošalji odgovor

Ako: čvor primi oba odgovora
Onda: on postaje privremeni lider

Faza 2: pošalji id u 2-komšiluk

Ako: primljen id > tekući id Onda: prosledi poruku

U drugom koraku:
Ako: primljen id > tekući id

Onda: pošalji odgovor

Ako: čvor primi oba odgovora Onda: on postaje privremeni lider

Faza 3: pošalji id u 2^2 -komšiluk

Ako: primljen id > tekući id

Onda: prosledi poruku

$U 2^2$ koraku:

Ako: primljen id > tekući id

Onda: pošalji odgovor

Ako: čvor primi oba odgovora

Onda: on postaje lider

U opštem slučaju:

n čvorova $\longrightarrow \log n$ faza

Faza i: pošalji id u 2^{i-1} -komšiluk

Vreme izvršenja

Lider troši vreme u

```
Fazi 1: 2
```

Fazi 2: 4

• • •

Fazi i: 2^{l}

• • •

Fazi $\log n$: $2^{\log n}$

Uku. vreme: $2^{\log n+1} - 2 = O(2^{\log n}) = O(n)$

Broj poruka

Poruka po lideru

Faza 1: 4

Faza 2: 8

• • •

Faza i: 2^{i+1}

• • •

Faza $\log n$: $2^{\log n+1}$

Max #lidera

n

n/2

 $n/2^{i-1}$

 $n/2^{\log n-1}$

Poruka po lideru

Max #lidera

Faza 1: 4

X

n = 4n

Faza 2: 8

X

n/2 = 4n

=4n

Faza i: 2^{i+1}

X

 $n/2^{i-1} = 4n$

Faza $\log n$: $2^{\log n+1}$

X

 $n/2^{\log n-1} = 4n$

Ukupno poruka: $O(n \cdot \log n)$

Napomene:

Algoritam ne mora da poznaje n

Može se pretvoriti u asinhroni algoritam

Sinhroni algoritam sa O(n) poruka

n je poznato

Čvor sa <u>najmanjim</u> id se izabira za lidera

Postoje runde:

Ako u rundi i postoji čvor sa id i

- · on je novi lider
- algoritam se završava

Runda 1 (n vrem. koraka): nešalju se poruke

Runda 2 (*n* vrem. koraka): nešalju se poruke

Runda 9

Runda 9 (n vrem. koraka): pošalje se n poruka

Runda 9 (n vrem. koraka): pošalje se n poruka

Algoritam se završava

Runda 9 (n vrem. koraka): pošalje se n poruka

Ukupan broj poruka: n

Drugi O(n) sinhroni algoritam

n <u>nije poznato</u>

Čvor sa <u>najmanjim</u> id se izabira za lidera

Algoritam:

· Svaki čvor ubrizgava poruku sa svojim id

Poruka sa id i se ubrizgava i prenosi sa učestanošću $\frac{1}{2^i}$

 Čvorovi koji su videli manje id apsorbuju poruke sa većim id

Perioda prenosa $2^0 = 1$

Broj poruka

Predpost. lider ima (najmanji) id $ilde{t}$

Ukupno vreme za algoritam: $n \cdot 2^l$

U slučaju da je $i=\Omega(n)$, algoritam je eksponencijalno spor

Uzmimo čvor sa prvim većim id

Ukupan broj poruka:

$$\frac{\text{ukupno vreme algoritma}}{\text{kašnjenje poruke na svakom luku}} = \frac{n \cdot 2^{i}}{2^{k}} \le \frac{n}{2}$$

Uzmimo čvor sa prvim većim id

Ukupan broj poruka:

$$\frac{n\cdot 2^i}{2^l}\leq \frac{n}{4}$$

$$i$$
 i n
 k $n/2$
 $viši$ l $n/4$

Ukupno poruka:
$$n + \frac{n}{2} + \frac{n}{4} + \cdots \leq 2n$$

Donja granica $\Omega(n \log n)$

Predpostavimo da imamo algoritme u kojima:

- · mreža je asinhrona
- · za lidera se izabira čvor sa max id
- svi čvorovi moraju poznavati lidera
- \cdot veličina mreže n <u>nije</u> poznata

Dokazaćemo:

da je potrebno barem $\Omega(n\log n)$ poruka da bi se izabrao lider

Postoji moguće asinhrono izvršenje sa otvorenim lukom

Ako luk ostane otvoren, onda će izvršenje na kraju doći do mirnog stanja gde više nema poruka koje se prenose u prstenu

U mirnom stanju, čvor može poslati poruku samo nakon što primi poruku (zato nema poruka na prstenu)

Ovo može izazvati propagaciju poruka do završetka algoritma

Ovo može izazvati propagaciju poruka do završetka algoritma

Ovo može izazvati propagaciju poruka do završetka algoritma

Posle k vremenskih koraka, radijus uticaja je k

Konačno, prsten se stabilizuje sa nekim liderom

Pokazaćemo, da postoji neko izvršenje sa n čvorova takvo da:

· postoji otvoren luk

 \cdot primljeno je barem M(n) poruka

gde je
$$M(2)=1$$

$$M(n) = 2M\left(\frac{n}{2}\right) + \frac{n}{4}$$

Dokaz pomoću indukcije

Osnovni sl.
$$n=2$$

y bi trebao ovo da zna

Zato se šalje jedna poruka: M(2) = 1

Poruka se može poslati po jednom luku

Slučaj n > 2

Iz indukcione hipoteze, imamo neko izvršenje:

Slučaj n > 2

Iz indukcione hipoteze, imamo neko izvršenje:

Opservacija: Ako nema ovuda poslatih por.

onda prsten R_1 nemože razlikovati ta dva scenarija

(slično za prsten R_2)

Zato, isti broj poruka mora biti poslat po pod-prstenima

Svi čvorovi u R_2 treba da doznaju za x

(predpost. da je max id u R_1)

Svi čvorovi u R_2 treba da doznaju za x

Zato, nakon što se otvoreni lukovi zatvore, barem $\frac{n}{2}$ poruka biva poslato

Pretpost. lukovi se zatvore u trenutku t

Barem jedna poruka je poslata

vreme t+1

Barem jedna poruka je poslata

vreme t+2

Barem 2 poruke su poslate nakon trenutka †

vreme t + k

Barem k poruka je poslato nakon trenutka t

Barem $\frac{n}{4}$ poruka je poslato nakon trenutka t

Barem $\frac{n}{4}$ poruka je poslato u jednoj oblasti

Pošto su oblasti nezavisne, mogli smo zatvoriti samo jedan luk

Poruke

vreme
$$f + \frac{n}{4}$$

 $\frac{n}{n}$

4 max id

otvoren luk

Ukupno poruka (po Master teor.)

radijus

Indukciona Hipoteza

$$M(n) = 2M\left(\frac{n}{2}\right) + \frac{n}{4} = \Omega(n\log n)$$