Sub Model

Subword models

- Word embeddings as we have covered them so far assume atomic words and a fixed vocabulary.
- In practical applications, we will often encounter words that we do not have an embedding for.
- One way to deal with this problem is to use models that work at the subword level, such as character-based model

Different types of subword models

- Type 1: Use the same types of architectures that we find in word-based models, but apply them to subword units.
- Type 2: Augment the architectures of word-based models with submodels that compose word representations from characters.
- Type 3: Give up on word-based architectures altogether and process language as a connected sequence of characters.

WordPiece tokenization in BERT

Raw text:

The history of morphological analysis dates back to the ancient Indian linguist Pāṇini, who formulated the 3,959 rules of Sanskrit morphology in the text Aṣṭādhyāyī by using a constituency grammar.

WordPiece tokenization:

The history of m ##or ##phological analysis dates back to the ancient Indian linguist P ##ā ##n ##ini, who formulated the 3, 95 ##9 rules of Sanskrit morphology in the text A ##ṣ ##ṭ ##ā ##dh ##y ##ā ##y ##ī by using a constituency grammar.

WordPiece tokenization in BERT

Raw text:

The history of morphological analysis dates back to the ancient Indian linguist Pāṇini, who formulated the 3,959 rules of Sanskrit morphology in the text Aṣṭādhyāyī by using a constituency grammar.

WordPiece tokenization:

The history of m ##or ##phological analysis dates back to the ancient Indian linguist P ##ā ##n ##ini, who formulated the 3, 95 ##9 rules of Sanskrit morphology in the text A ##ṣ ##ṭ ##ā ##dh ##y ##ā ##y ##ī by using a constituency grammar.

Byte Pair Encoding algorithm

- Initialize the word unit vocabulary with all characters. plus a special end-of-word marker, here denoted by \$
- Generate a new word unit by combining two units from the current vocabulary, increasing vocabulary size by one. Choose the new unit as the most frequent pair of adjacent units.
- Repeat the previous step as long as the vocabulary size does not exceed a maximal size.

Byte Pair Encoding algorithm

occurrences in data **Merged pair Vocabulary size** Step Words low\$/5 lower\$/2 newest\$/6 widest\$/3 0 11 es/9 lows lowers new[es]ts wid[es]ts 12 1 [es]t/9 lows lowers new[est]\$ wid[est]\$ 13 2 [est]\$/9 lows lowers new[ests] wid[ests] 3 14 lo/7 [lo]w\$ [lo]wer\$ new[est\$] wid[est\$] 15 [low] \$ [low] er\$ new[est\$] wid[est\$] [lo]w/7 16

Example from Sennrich et al. (2016)

number of

Composing word representations from characters

- Character-level word representations are typically built using convolutional neural networks or recurrent neural networks.

combined (augmented) model

purely character-based model

<pad></pad>	0.00 0.50	0.00 0.10	0.00 0.10
d	0.08 1.00	0.95 0.20	0.85 0.20
0	0.98 0.50	0.78 0.10	0.02 0.10
с	0.32	0.13	0.82
t	0.64	0.28	0.92
0	0.05	0.25	0.77
r	0.88	0.59	0.66
<pad></pad>	0.00	0.00	0.00

<pad></pad>	0.00 0.10	0.00 0.50	0.00 0.10
d	0.08 0.20	0.95 1.00	0.85 0.20
O	0.98 0.10	0.78 0.50	0.02 0.10
с	0.32	0.13	0.82
t	0.64	0.28	0.92
o	0.05	0.25	0.77
r	0.88	0.59	0.66
<pad></pad>	0.00	0.00	0.00

1.010	1.626	
1.615	1.727	
1.520	1.144	
1.262	0.978	
1.259	1.159	
1.257	1.050	

<pad></pad>	0.00 0.10	0.00 0.10	0.00 0.50
d	0.08 0.20	0.95 0.20	0.85 1.00
O	0.98 0.10	0.78 0.10	0.02 0.50
С	0.32	0.13	0.82
t	0.64	0.28	0.92
o	0.05	0.25	0.77
r	0.88	0.59	0.66
ana als			

0.00

0.00

0.00

1.010	1.626	1.242
1.615	1.727	1.355
1.520	1.144	1.648
1.262	0.978	1.974
1.259	1.159	1.859
1.257	1.050	1.369

