[2学期授業用プリント No.11]

)

教科書 P.122~P.127 サポートノート P.70~P.73

1年()組()番 名前(

1 まずは次の機器を覚えよう。

●アクセスポイントは[Wi-Fi の電波を飛ばす機能]を持つ機器のこと

アクセスポイントを通じで PC などは電波を拾うことができる アクセスポイントは LAN を形成できるがインターネットには接続できない

●ルーターとは「インターネットにつなぐための機器」

最近ではアクセスポイントの機能を搭載しているルータが多い

② ネットワーク図を覚えよう アクセスポイント ネットワーク図

- →無線 LAN において規格に従って接続性が保証された機器に使われる名称を
- (⑥ wifi)という。※wifi-Alliance という会社が認めたもの

② 一体 LAN って何のこと?

LAN とは(① ローカルエリアネットワークの略。学校や家庭など限られた範囲で利用されるネットワーク)

WAN とは(② ワールドワイドエリアネットワークの略。企業と企業など広い範囲で利用されるネットワーク)

- 5 モバイル通信とデータ速度について
 - (1) 情報教室のパソコンの通信速度は?→

- (3)通信速度の計算について(P.123参照)通信速度では(② bps) (bits per second)という単位が用いられる。例)8Mbps→1秒間に8M ビットの通信メガバイトに直すと1秒間に1MBのデータを送ることができる。
- 6 伝送(転送)時間の求め方について

伝送時間=データ量÷伝送速度(通信速度)

(1) 最大通信速度(伝送速度)が 20Mbps のスマホで 10MB の動画データを伝送するのにかかる時間を計算しなさい。ただし、この時の伝送効率は 100%とする。

手順① 10M<u>B</u>をビット量に直す→ (① 80Mb) 手順② ①÷伝送速度→ (② 4 秒)

(2) 伝送速度が 20Mbps、伝送効率が 80%である通信回線において 10MB のデータ量を転送するのにかかる時間を計算しなさい。

① 20×0.8=16Mbps ②10×8=70Mbps

③ 80÷16=5 答え 5秒

(3) 1.5M ビット/秒の回線を用いて 12M バイトのデータを転送するのに、 必要な伝送時間は何秒か。ここで、伝送路の伝送効率は 50%とする。

(H27春 基本情報技術者試験)

	, ,,,_,	1 113 1K3/

3年()組()番 名前(

- 1 その他のネットワーク上(WAN)の通信方法について知ろう(P.124 参照)
 - (① 専用線)・・・ 大量のデータを安定した性能で通信するのに用いられる 大量の回線を用意して大きなデータを 1 つにまとめて 送ることができる。
 - (② 回線交換)・・・ 回線を複数の利用者が共有する方式 1本の通信回線を占有するので、ほかの人はその回線 を使って通信できない
- 2 パケット通信について知ろう。
 - (1) (① パケット交換)・・・データーをパケットという単位に分割して、宛先や 分割順序などをつけて送りだす方法。

☆パケット通信の利点についてまとめると

利点

- ・情報を細かいパケットに分割して送るので、1 つのパケットを送る 時間は短く、いつでも通信を切ったり、つないだりできる。
- ・一部のパケットが正常に届かなかった場合、そのパケットだけ送り 直せばよく、すべてのデータを再度送る必要はない。
- ・ネットワークが混雑しても、少しずつデータを送ることはでき、まったく通信できなくなる可能性は小さい。

)

※2年前に出題された情報 | サンプリング問題にも出題さているよ

- (2) ルータは宛先ごとに転送先を示した(② ルーティングテーブル)を持っている
 - ※通信プロトコルは何層かに分かれていてインターネット層のパケットは IP パケットと呼ばれている。

	第2層	送信先の情報機器がどこにあるかを見つけ、トランスポート層	· · · · /
インターネット層		でつくられたデータに対し,送信先の住所にあたる情報(IP ア	Internet Protocol)
		ドレス, ▶p.132)を追加する。	

- 6 通信プロトコルについて
 - (① 通信プロトコル)・・・通信するときの必要な手順や、情報の表現と 形式などに間する取り決め

名称	階層	機能	プロトコルの例
アプリケーション層 第4層 ネットの各サービスに応じたプロトコルを選び、減		「ウェブページを見る」、「電子メールを送る」などのインターネットの各サービスに応じたプロトコルを選び、通信したいデータに対し、各プロトコルに従った情報を追加する。	HTTP ($\mathbf{I}14\mathbf{F}1-\mathbf{F}1-\mathbf{F}1$), HyperText Transfer Protocol), SMTP ($\mathbf{I}2\mathbf{I}2\mathbf{I}2\mathbf{F}1-\mathbf{F}1$), Simple Mail Transfer Protocol)
トランスポート層	第3層	アプリケーション層でつくられたデータに対し,正しくデータを送信・受信するための情報を追加して,通信された内容が正しく届いたかどうかをチェックし,誤ったデータや不足したデータがあれば再送などの処理を行う。	TCP (ティーシーピー, Transmission Control Protocol)
インターネット層	第2層	送信先の情報機器がどこにあるかを見つけ、トランスポート層でつくられたデータに対し、送信先の住所にあたる情報 (IP アドレス、 \blacktriangleright p.132) を追加する。	IP (アイピー, Internet Protocol)
ネットワーク インタフェース層	第1層	インターネット層でつくられたデータに対し、通信機器に関する情報や通信線を通る信号(電流や光の強弱)などの情報を追加する。 処理されたデータは電気や光の信号に変換され、通信ケーブルでつながれた情報機器に送信・受信される。	イーサネット (ethernet)

2 通信がきちんと送られているか確認する方法を知ろう。

コンピュータネットワークにおける通信では、 様々な原因で情報が送信先に正しく届かないことがある

5

そのため通信がきちんと送られているか確認する方法がある!! 第3層(トランスポート層)にあたる部分であり TCP と呼ばれる。TCP は信頼を表す

N:	ランスポート層	第3層し	送信・受信するため	でつくられたデータに かの情報を追加して, をチェックし, 誤っ などの処理を行う。	通信された内容が正	E Transmission		ol)
4			•	。 定のビット列 <i>の</i> なす冗長なビッ		個か奇数個	かを	
	① を用いた	た検査を((② パリティヤ	倹査)と	いう。			
	(2) 例えば	8 ビットご	とにパリティ	ビットを持た ⁻	せた場合は			
8ビ	ットの中に含ま	₹れる 1 の		の場合	パリティビ _ン パリティビッ)
			「1」の数:4(偶数)	もとのデータ 0 1 0 通信後	- タで「1」が偶数個の場合 g···「1」の数:2(偶数) パリ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	「1」の数:2(偶数)		
5 パ	リティ検査の)問いをし ⁻	てみよう。					
問 1	4を参考に	して次のヒ	ごットの列にて	いて、正しく	通信されたか	どうか○か	\×で判定	きせよ
((1) 011000	101	(2) 111011	000 (3) 1010111	10		
問2 (次の8ビッ 1)0011101		?ーにパリティ 	ビットを追加 (2) 000		るか。		

☆パリティ検査で可能なのはパリティビットを含めて「1ビットの誤り」を <u>検出することだけ!「複数個の誤り」や「どのビットが</u>誤っているか」はわかりません!