ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

WINTER SEMESTER, 2018-2019

DURATION: 3 Hours

FULL MARKS:150

CSE 4703: Theory of Computing

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 8 (eight) questions. Answer any 6 (six) of them. Figures in the right margin indicate marks.

Prove that every nondeterministic Turing Machine has an equivalent deterministic Turing Machine.

8 12

Following is the state diagram of a TM, M, give the sequence of configurations that M enters when started on the input string 00#0100#.

Figure 1: State diagram of a Turing Machine M

Consider the grammar $G = \{S \rightarrow 0S \mid 0S1S \mid \epsilon\}$, show that the grammar G is ambiguous.

5

12

10

The classic game Pac-Man requires the player to navigate through a maze, eating pellets and avoiding the ghosts who chase him through the maze. Occasionally, Pac-Man can turn the a) tables on his pursuers by eating a power pellet, which temporarily grants him the power to eat the ghosts. When this occurs, the ghosts' behavior changes, and instead of chasing Pac-Man they try to avoid him. The ghosts in Pac-Man have five behaviors listed below:

1. Randomly wander the maze

2. Chase Pac-Man, when he is within line of sight

3. Flee Pac-Man, after Pac-Man has consumed a power pellet

4. If dead Return to the central base to regenerate

Game over after eats Pac-Man

Draw the state diagram of the NFA that emulates the behavior of a single ghost in Pac-Man. Convert the following CFG to Chomsky Normal Form (CNF).

 $S \rightarrow ABA$

 $A \rightarrow aA \mid \varepsilon$

 $B \to bB \mid \varepsilon$

The language (w | w contains the substring 0101), with five states. The language 0*1*0* with three states. ii.

each of the following languages. In all parts the alphabet is $\{0, 1\}$.

Prove the pumping lemma for context free languages. 7.

10

	Convert the regular expression (
	Convert the regular expression ((a U b) a)* to an NFA in a sequence of stages, starting from Write down the implementation level at the expression.	10
)	Write down the implementation sub-expression.	
′	Write down the implementation level description of the Turing machine deciding the language $B = \{w#w \mid w \in \{0, 1\} *\}$.	5
	Convert the following	
\mathcal{I}	Convert the following regular expression to NFA. (0 U 10) * 010 (0 U 1) +	5+4
	Show the computation of the Arr.	
)	For each of the following languages input 010110.	
	For each of the following languages, give two strings that are members and two strings that are not members of the languages. Assume the algebra $\Sigma = \{a,b\}$ in all parts	2+2
	are not members of the languages, give two strings that are members and two strings that $\Sigma^*a \Sigma^*b \Sigma^*a \Sigma^*$ Assume the alphabet $\Sigma^*a \Sigma^*b \Sigma^*a \Sigma^*$	
	(ii.) (a U ba U bb) Σ*	
)	Give regular expressions that generate each of the following languages. In all cases, the alphabet is $\Sigma = \{a, b\}$	2×6
	mp.most 20 = (u, o).	2.0
	(iii.) $L=\{w\in\Sigma^*: w \text{ is odd}\}$	
	L= { $w \in \Sigma^*$: w has an odd number of a's}	
	v. / L- {w w contains at least two a's, or exactly two b's}.	
	V . L^{-} { $W \in L^{+}$: w ends in a double letter}. [(A string contains a double letter if it	
	contains aa or bb as a substring.)]	
	yi. L= {w w has length at least 3 and its third symbol is a 0}	
	(wiii.) L= {w w doesn't contain the substring 110}	