CLAIMS

1	1. A crystallization parameter optimization process comprising the
2	steps of:
3	selecting a plurality of physical characterization input variables to
4	define a total crystallization experiment permutation number for a crystallant;
5	performing a plurality of crystallization experimental samples, said
6	plurality of crystallization experimental samples being less than the total
7	crystallization experiment permutation number;
8	training a predictive crystallization function through analysis of said
9	plurality of crystallization experimental samples; and
10	determining an optimal physical crystallization parameter from said
11	predictive crystallization function.
1	2. The process of claim 1 wherein said predictive crystallization
2	function is a neural network.
1	3. The process of claim 1 wherein said crystallant is a protein.
1	4. The process of claim 1 wherein each of said plurality of physical
2	crystallization input variables is selected from a group consisting of:
3	temperature, protein dilution, anionic precipitate, organic precipitate, buffer
4	pH, precipitation strength, organic moment, percent glycerol, additive, divalent
5	ion, gravity, light, magnetism, atmosphere identity, and atmosphere pressure.

2

1	5. The process of claim 1 wherein the plurality of crystallization
2	experimental samples performed is less than 5% of the total crystallization
3	experiment permutation number.
1	6. The process of claim 1 wherein the plurality of crystallization
2	experimental samples performed is less than 0.1% of the total crystallization
3	experiment permutation number.
1	7. The process of claim 1 wherein said predictive crystallization
2	function analyzes a crystallization experimental sample as to a status selected
3	from the group consisting of: clear drop, phase change, precipitate, and
4	spherulettes.
1	8. The process of claim 1 wherein said predictive crystallization
2	function trains through back propagation.
1	9. The process of claim 8 wherein said predictive crystallization
2	function includes a hidden layer intermediate between input values and said
3	optimal physical crystallization parameter.
	2 11
1	10. The process of claim 1 wherein the performance of said

plurality of crystallization experimental samples is automated.

1

2

1

2

3

4

- 1 11. The process of claim 10 further comprising the step of communicating said plurality of physical crystallization input variables between a manufacturing execution system performing said plurality of experimental samples and said predictive crystallization function.
- 1 12. The process of claim 1 further comprising the step of communicating said predictive crystallization function to a database.
- 1 13. The process of claim 12 wherein said database includes 2 characteristics of a crystallization sample.
- 1 14. The process of claim 1 further comprising the steps of 2 attempting crystal growth using said optimal physical crystallization parameter.
 - 15. The process of claim 14 further comprising the step of communicating on said crystal growth attempt to a shared database.
 - 16. The process of claim 15 further comprising the step of classifying said crystal growth attempt on a basis selected from the group consisting of: said optimal physical crystallization parameter, said predictive crystallization function, and a physical property of a crystallant.

1	17. The process of claim 1 wherein performing said plurality of
2	crystallization experimental samples comprises the steps of:
3	controlling a plurality of variables where each of said plurality of
4	variables assumes an index value or plurality of index values; and
5	performing a Chernov analysis to derive a minimized combined
6	quantity representative of said total crystallization permutation number.
1	18. The process of claim 1 wherein said plurality of crystallization
2	experimental samples are converted to vectors prior to the training of said
3	predictive crystallization function.
1 2	19. The process of claim 18 further comprising the step of clustering said vectors.
1	20. The process of claim 19 wherein clustering occurs through the
2	application of an analysis selected from the group consisting of: a neural net, a
3	Chernov algorithm, a Bayesian net, a Bayesian classification schema, and a
4	Bayesian decomposition.
1	21. A crystallization parameter optimization process comprising the
2	steps of:

selecting a plurality of physical characterization input variables for a
known crystallant to define a total crystallization experiment permutation
number;
performing a plurality of crystallization experimental samples on said
known crystallant;
training a predictive crystallization function through analysis of said
plurality of crystallization experimental samples;
determining an optimal physical crystallization parameter for said
known crystallant;
storing said optimal physical crystallization parameters and a physical
property of said known crystallant sample in a classification system; and
comparing an unknown crystallization sample to the classification of
said known crystallant.
22. The process of claim 21 wherein said predictive crystallization
function is a neural network.
23. The process of claim 21 wherein said classification system is
based on an aspect selected from the group consisting of: nodal basis functions,
nodal construction similarities, and contribution of a particular physical
characterization input variable.

1

24.

2	relates said known crystallant and said unknown crystallization sample.
1	25. The process of claim 21 wherein said classification system is
2	self-learning.
1 2	26. The process of claim 21 wherein said classification system is self-organized.
1	27. The process of claim 21 wherein each of said plurality of
2	physical crystallization input variables is selected from a group consisting of:
3	temperature, protein dilution, anionic precipitate, organic precipitate, buffer
4	pH, precipitation strength, organic moment, percent glycerol, additive, divalent
5	ion, gravity, light, magnetism, atmosphere identity, and atmosphere pressure.
1	28. The process of claim 21 wherein the performance of said
2	plurality of crystallization experiments is automated.
1	29. The process of claim 21 further comprising the steps of
2	attempting crystal growth using said optimal physical crystallization parameter.
1	30. The process of claim 21 wherein performing said plurality of
2	crystallization experimental samples comprises the steps of:

The process of claim 21 wherein a comparative neural network

1

2

3

4

5

6

7

1

3	controlling a plurality of variables where each of said plurality of
4	variables assumes an index value or plurality of index values; and
5	performing a Chernov analysis to derive a minimized combined

6 quantity representative of said total crystallization permutation number.

- database wherein said shared database also stores at least one type of protein information selected from the group consisting of: protein expression gene; protein characteristics; protein class hierarchy; actual protein chemical structure including primary, secondary, tertiary and where applicable quaternary structures; protein crystal generation recipe parameters; and optimal crystallization screen design.
- 32. A protein crystal derived by the process of claim 1.
- 1 33. A neural network having been trained through analysis of a 2 plurality of crystallization experimental samples to predict optimal 3 crystallization conditions for a protein.
- 1 34. The network of claim 33 wherein said plurality of samples 2 comprises samples failing to yield crystals.

1	35. A system for crystallization parameter optimization, the system
2	comprising:
3	a database having a plurality of input variables, each of said plurality of
4	input variables having a value range;
5	an incomplete factorial screen program having a trainable predictive
6	crystallization function;
7	a computer capable of executing the incomplete factorial screen
8	program to determine an optimal crystallization parameter; and
9	a manufacturing execution system for automatically acquiring of a
10	datum from each of a plurality of crystallization experimental samples,
11	analyzing and archiving of data from the incomplete factorial screen program.
1	36. The system of claim 35 wherein said manufacturing execution
2	system controls at least one piece of crystallization hardware selected from the
3	group consisting of: a liquid dispenser, a crystallant dispenser, a robotic
4	handler, an imaging system, a sample centering motor relative to a camera
5	focal plane, and a lighting system.
1	37. The system of claim 36 wherein said sample centering motor is
2	coupled to at least one of: a sample stage and said camera for automatically
3	positioning the specimen within the focal plane of said camera.

1

38.

2	indexing each of said plurality of samples.
1	39. The system of claim 36 further comprising a centering algorithm
2	coupled to said motor for converging a central region of the specimen with a
3	central region of the camera focal plane.
1	40. The system of claim 39 wherein said centering algorithm operates automatically.
1	41. The system of claim 35 further comprising a drop identification
2	algorithm for evaluating a liquid drop associated with each of said plurality of
3	samples.
1 2	42. The system of claim 41 wherein the liquid drop is classified into a preselected plurality of classes.
1 2	43. The system of claim 42 wherein said drop identification algorithm operates automatically.
1 2	44. The system of claim 36 wherein said motor is coupled to said camera.

The system of claim 35 further comprising a barcode for

45.

1

2	interfaced with said robotic handler.
1	46. The system of claim 37 wherein said scheduling software is
2	interfaced with said sample stage.
1	47. The system of claim 35 further comprising a database that stores
2	crystal relevant parameters.
1	48. The system of claim 47 wherein said crystal relevant parameters
2	include at least one parameter of the group consisting of: crystal weight,
3	crystal specimen pH, crystal specimen temperature, crystal specimen protein
4	type, detergents present, additives present, preservatives present, reservoir
5	buffer present, reservoir buffer concentration, reservoir buffer pH, crystal
6	specimen volume, notes, crystal specimen score, and crystal specimen drop
7	descriptor.
1	49. The system of claim 47 wherein said database is relational
2	between said predictive crystallization function and said crystal parameters.
1	50. The system of claim 47 wherein said database is connected to a
1	·
2	structured query language database.

The system of claim 36 further comprising scheduling software

- 1 51. A protein crystal derived from a system of claim 35.
- 1 52. A process according to claim 1 substantially as described herein
- 2 in any of the examples.