

Deep Learning-Based Credit card fraud transaction detection

Group #10
Jean-Gabriel Gaudreault
Sandeep Reddy Venna

○

Outline

- 1. Project Context
- 2. Exploration of the Data & Preprocessing
- 3. Methodology
- 4. Models Comparisons
- 5. Architecture Optimization
- 6. AutoEncoders
- 7. Conclusions

Introduction

Objectives:

- Find out and prevent fraudulent credit card transactions in order to protect customers.
- Test our knowledge of multiple Deep Neural Network (DNN) algorithms

Dataset:

- Contains transactions made by credit cards in September 2013 by European cardholders.
- Presents transactions that occurred in two days with 492 frauds out of a total of 284,807 transactions.
- Highly unbalanced, positive class (frauds) accounts for 0.172% of all transactions.

[Source: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud]

Exploratory Data Analysis

- Total number of features: 30
- 28 anonymized variables, 1 "amount" variable, 1 "time" variable and 1 target variable..

	Target	Count	percent
0	0	284315	99.83
1	1	492	0.17

Data Preprocessing

- 1. Skewness Reduction (*PowerTransformer*)
 - Goal: Make the distributions of the features that present a high skew more Gaussian-like.
 - Performed on features with skewness higher than [-1,1].
 - Performed on 19 Features.

- 1. Standardization (StandardScaler)
 - **Goal**: Scale all data to be in a common range which can help improve model's performance.
 - Using "Standardization Scaling", i.e. Removing the mean and scaling to the variance.

Performance Evaluation

Problem: Since data is highly imbalanced, metrics such as accuracy can't be used effectively.

- Manually compare the confusion matrices
- Use Precision, Recall and F1-Score for performance evaluation.
- F1-Score combines both precision and recall (harmonic mean) for ease of comparison.

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Methodology

1. Baseline Model on imbalanced data

- Loss Optimization: Binary Cross Entropy
- Input Layer (29 features input, 16 neurons)
- Dense Layer (24 neurons, ReLU activation)
- Dropout Layer (*Frequency of 0.5*)
- Dense Layer (20 neurons, ReLU activation)
- Dense Layer (24 neurons, ReLU activation)
- Output Layer (Sigmoid activation)

2. Model on balanced data using SMOTE

- Oversampling the minority class (Fraudulent Transaction) to reach an equal amount of samples in both classes.
- Using the same architecture as the baseline model.
- 3. AutoML to improve model's architecture
- 4. AutoEncoders + Logistic Regression

Models Comparison

Imbalanced Data vs. SMOTE Resampled Data

Imbalanced Data (Baseline)

Precision: 0.856
Recall: 0.769
F-1 Score: 0.810

SMOTE Resampled Data

Precision: 0.996Recall: 0.999

F-1 Score: 0.998

Architecture Optimization Baseline Architecture vs. AutoML Optimized Architecture

	lm	balanced Da	ata	SMOTE Resampled Data								
	Precision	Recall	F-1 Score	Precision	Recall	F-1 Score						
Baseline Architecture	0.856	0.769	0.810	0.996	0.999	0.998						
AutoML Optimized Architecture	0.903	0.762	0.827	0.998	1.0	0.999						

Optimized Architecture (Resampled Data):

	normalization	Normalization		dense	Dense		re_lu	ReLU] [dropout	Dropout	de	nse_1	Dense		re_lu_1	ReLU		dropout_1	Dropout		dense_2	Dense	1	e_lu_2	ReLU		dropout_2	Dropout		dense_3	Dense
	input:	output:		input:	output:	1.	input:	output:		input:	output:	ir	put:	output:		input:	output:		input:	output:		input:	output:		input:	output:	1.	input:	output:		input:	output:
1	(None, 29)		_	(None, 29)			(None, 512)			(None, 512)			(None, 512)		_	(None, 32)		(None, 32)		_	(None, 32)			(None, 32)			(None, 32)		_	(None	e, 32)	
	(None, 29)			(None, 512)]	(None, 512) (N		(None	(None, 512)		(None, 32)			(None, 32)			(Non	(None, 32)		(Non	e, 32)		(Non	ie, 32)		(None	e, 32)		(Non	ie, 1)	
																								_								

Semi-Supervised Learning AutoEncoder + Logistic regression

Precision: 1.0

Recall: **0.916**

F1-score: **0.956**

Conclusions

Class Imbalance:

- Class Imbalance has a really big impact on model's performance.
- Without changing the model itself, we managed to substantially improve the model's performance by simply equalizing the class.
- Common problem (Anomaly Detection, Fraud Detection, etc.)

AutoEncoders:

- Too many samples of data are not required
- No need of any complex model to classify

Model Architecture:

- Model's precision improved substantially on imbalanced data, small improvements on balanced data.
- Computationally expensive, trials were limited to 5 in our case to stay at a manageable level, model architecture could potentially be improved much more.

General Conclusions:

 Once the dataset was balanced, a model could easily be fitted on the data. Performing the same experiments on a more complex dataset (multiclass, etc.) could be the next step forward and lead to interesting results.

Thanks!

Any questions?

You can find us at:

- jgaud042@uottawa.ca
- svenn075@uottawa.ca

