

TRUZZION

Department of Computer Science and Engineering

Program: BE

Date	18 June 2024	Maximum Marks	50
Course Code	CD343AI	Duration	90 min
4 th Sem	IV Semester	CIE-I	

Design and	Analysis	of Algorithms
(Common t	o AIML/CS	SE/CD/CY/ISE)

		M	L	co
Sl. No.	Test Questions			
1a	Summarise the framework for analysis of algorithms.	05	L1	CO2
1b	With suitable notations and graphs, explain the different asymptotic notations. Give two examples in each case.	05	L2	CO1
2a	Design a recursive algorithm to find the sum of cubes of first n' natural numbers. Set up a recurrence, solve and determine the time complexity of the algorithm.	05	L2	CO1
2b	Write an algorithm to arrange the numbers in ascending order using Selection Sort. Evaluate the time complexity. Compare it with merge-sort algorithm.	05	L1	соз
3a	Sort the following functions in the increasing order of growth. n^3 , 2^n , $\log_5 n$, $3n$, $\log_2 n$, \sqrt{n} , $n\log n$ Indicate how much the functions value will change if its argument is increased four-fold.	05	L2	CO2
3b	Write the pseudocode for merge sort and describe the process. Setup a recurrence and decide the time complexity.	05	L2	COI
(4a)	Apply Master's theorem to following recurrence and indicate the efficiency class. $i.T(n) = 2T\left(\frac{n}{2}\right) + n \qquad ii. \ T(n) = 8T\left(\frac{n}{2}\right) + 5n^2$	04	L3	con
4b	Derive the worst-case efficiency class for the quick sort. Show the first split for the following array by considering the leftmost element as the pivot: 38, 81, 22, 48, 18, 50, 31, 58		L3	cos
5a	Mention the 3 variations of decrease-and-conquer and give an example algorithm in each case.	04	L1	co
5b	 Consider the graph shown in Fig 5b. i. Apply DFS algorithm by considering vertex '1' as the source and write the traversal sequence. Show the contents of stack during DFS and also draw the DFS forest. 	06	L3	СО

Course Outcomes

CO1	Apply know	wledge of	comp	uting an	d ma	athematics t	o algorithm a	nalysis and d	lesign
CO2	Analyze a	problem	and	identify	the	computing	requirements	appropriate	for
	solution								

Date	July 2024	Maximum Marks	10+50
Course Code	CD343AI	Duration	120 min
Sem	IV	CIE-II	
	Design and Analysi	s of Algorithms	

(Common to AIML/CSE/CD/CY/ISE)

	AND THE RESIDENCE OF THE PARTY			
Si. No.	Questions	M	L	CO
	PART A			
1.1	Is it possible to find transitive closure of a digraph using Depth First Search (DFS) or Breadth-first search (BFS)? Justify the answer	2	L3	CO2
1.2	Given a text of length n=30 and a pattern of length m=4, how many shifts will the Horspool algorithm perform in the worst case?	2	L3	CO2
1.3	In a max heap containing n elements, the smallest element can be found in worst time	2	L1	CO1
1.4	Why Floyd-Warshall Algorithm better for Dense Graphs and not for Sparse Graphs?	2	L3	CO2
1.5	List any four limitations of Distribution Counting Sort	2	L2	CO1
	PART B			
1a	Apply DFS traversal to find the topological order of the graph shown in figure 1a from the vertex p (break the ties by the alphabetical order of the vertices)	06	L3	CO3
.:1b	Compare the brute force approach and Instance simplification variant of transform and conquer approach to solve checking element uniqueness in an array.		L1	CO1

Apply heapsort to arrange the list 8, 12, 15, 3, 5, 1, 43, -7 in	04	L2 L3
	06	13
ascending order by using array representation of heap.		120
programming	04	L2
Apply floyd's algorithm to find all pairs shortest path for the digraph shown in with the weight matrix (0 2 ∞ 1 8)		
6 0 3 2 ∞	10	.L3
3 ∞ ∞ ∞ 0)		
Use input enhancement technique for the pattern RNARNAKARNA and apply Boyer Moore algorithm to find the occurrence of this pattern in the text RAVANAKARNA_RAMAYANA_EPIC _SEETHA	10	L3
Course Outcomes		
CO1 Apply knowledge of computing and mathematics to algorithm analysi	is and	desig
CO2 Analyze a problem and identify the computing requirements appr	ropria	ate for
solution		
CO3 Apply mathematical foundations, algorithmic principles, and com	puter	scier
theory to the modeling, and evaluation of computer-based solutions demonstrates comprehension of the trade-offs involved in design choice.	in a	way th

Show the state of each pass and final array after applying

PAMAN STAUM BHOST JOURS MAMAR

24578

Department of Computer Science and Engineering

Program: BE

Date	26 Aug 2024	Maximum Marks	60
Course Code	CD343AI	Duration	90 min
4 th Sem	IV Semester	CIE-I	

(Common to AIML/CSE/CD/CY/ISE)

Sl. No.	Impr	ovement	Quiz Ques	stions	M	L
	Define spanning tree.				2	1
	Find the compression ratio fo A = 8 = 40%, B = 2 = 10%, C = Using Huffman coding the characteristics.	=4=20%	D = 3 = 15	5%,_ = 3 = 15%	2	2
		Α	0			
2		В	100			
		С	110			
		D	101			
	The second secon	Kasalana.	111	All the second		
3	Explain how Dijkrasta's algori	ithm differ	from Prin	n's algorithm	2	2
	Define a state-space tree in th				2	1
4	Deline a state space cross.	0 00		7/200	2	1

Sl.	Improvement Test Questions	M	L
No.	· 大學學的學術學的學術學的學術學的學術學的學術學的學術學的學術學的學術學的學術學的	10	3
1	Apply 0/1 Knapsack, find the maximum profit for the given data C= 5 Wi 2 1 3 2 Pi 8 6 16 11 Tree (MST) for the given		
2	Apply Prim's algorithm to find the Minimum Spanning Tree (MST) for the given graph. Write the spanning tree after finding the MST	10	3

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
3 a	Compare Backtracking and Branch & bound.	4	2	2
3 b	Write the decision tree for finding minimum of three numbers.	6	2	1
	Consider an assignment problem where you have to assign n people to n jobs in such a way that the total cost of the assignment is minimized. The cost matrix for assigning each person to each job is given below: Job/Person Job 1 Job 2 Job 3 Job 4			
	Person 1 9 2 7 8			
4	Person 2 6 4 3 7	10	3	3
	Person 3 5 8 1 8			
	Person 4 7 6 9 4			
	(a) Calculate the lower bound for this assignment problem. (b) Find the solution using branch and bound			
5:	Briefly discuss P and NP problems used in problem solving	6	2	2
5	Define greedy technique, how it differs from dynamic programming?	4	2	1

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

IV Semester B. E. Examinations Sept/Oct – 2024

Common to CD/CY/CSE/ISE/AIML

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A

M BT CO

1	1.1 What does it mean for an algorithm to be optimal? Theoretically how do you determine whether an algorithm's performance is optimal or not?	02	2	
	1.2 Consider the following algorithm	12	2	1
	ALGORITHM F(n)			THE
MI II E	// Computes n! recursively			
RE WILLIAM	// Input: A non – negative integer n		18.3	30 23
13.	// Output: The value of n!			
THE REAL PROPERTY.	if n = 0	39	4.1	
THE .	return 1			
	else $return F(n-1) * n$			
	Write the recurrence relation for the above algorithm by	1		
		02	2	2
1.		02	4	4
	the binary search uses? What is the corresponding time			
	complexity of this algorithm?	02	1	1
1.	Give example scenario where insertion sort exhibits its worst case			
	performance and its time complexity.	02	2	2
1.3	State the purpose of the following:			
	i. Floyd algorithm			1-4
	ii. Warshall Algorithm	02	1	2
1.6	Differentiate Divide and Conquer and Transform and Conquer	02	2	2
1.7	ALGORITHM algo (n)			1
	sort the array A		K	
	$for i \leftarrow 0 to n - 2 do$		1	book
	if A[i] = A[i+1]	196		1010
	return false			
	return true.	188		
	Also identify the purpose of the above algorithm. Compute time	12 2		
	complexity assuming efficient sorting.	02	2	2
1.8	Explain how Dijkrasta's algorithm differ from Prim's algorithm	02	2	1
1.9	Describe the concept of a state-space tree in the context of		160	
	Backtracking algorithm.	02	1	2
1.10	- 1 GIG 111 1 C - 1 Cuffer table for the given	1		
1.10	pattern RAORAR 2557	02	2	2
	pattern worth			

Write Insertion sort algorithm. Sort the given array using insertion sort and write the time complexity. Array: 5,4,10,1,6,2 OR Along with any example graph and DFS (Depth First Search) algorithm discuss one favored by the complexity of the c	
Consider the problem of computing min-max in an unsorted array. Algorithm A1 can compute in X comparisons using divide and conquer technique while Algorithm A2 can computer in Y comparisons by traversing the array linearly. Being a developer which algorithm would you choose to maximize efficiency? Illustrate your choice with an example. Write Insertion sort algorithm. Sort the given array using insertion sort and write the time complexity. Array: 5,4,10,1,6,2 OR Along with any example graph and DFS (Depth First Search) algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method OR Along With any example graph and DFS (Depth First Search) algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method	2 1
Along with any example graph and DFS (Depth First Search) algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method A B C DACBGFE	2 2
algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method A B C D D	2 2
DACBGFE DACBGFE	
	M Show
08	
	3 3
Design an algorithm to compute the mode of the list with O(nlogn) complexity using the presort method. The mode is the value that appears most frequently in the list. Discuss three variations of transform and conquer techniques. Discuss the Counting Sort algorithm and its time complexity. Show tracing for array: 94,73,26,11,05,77,31.	2 3
700 2	. 2
OR OX	
Deplatif the steps of Horspool algorithm in detail to seems to	2 2
Pattern Mind within the text (COMPITTER SCIENCE AND WOLL)	
ENGINEERING'. What are the key shifts and comparisons made	2
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process.	3 3
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process. Input: 1,4,2,6,5,17,13	3 3
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process. Input: 1,4,2,6,5,17,13.	3 3
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process. Input: 1,4,2,6,5,17,13	3 3

			141.3.3
b Apply $0/1$ Knapsack to find the maximum profit for the given data $C = 5$.			
Wi(Weight) 2 1 3 2			
Vi (Profit) 12 10 20 15	08	3	3
OR			
Apply Prim's algorithm to find the Minimum C			
Apply Prim's algorithm to find the Minimum Spanning Tree (MST) for the graph shown in 8a.			
3 b 1 c 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
Write the spanning tree after finding the MST Given the following set of characters and their frequencies, apply Huffman Coding to construct the Huffman Tree and determin the binary codes for each character: A= 8= 40 % > 0 · 4 B= 2 = 10% > 0 · 1 C= 4= 20% > 0 · 1 D=3 = 15% > 0 · 1 Show the step- by- step process of building the Huffman Tree and provide the final Huffman codes for each character.		3	2
9 a Discuss the N-Queen problem, specifically for placing 4 queens on			
a 4 x4 chessboard. Include a detailed explanation of the state space tree used in the solution process. Give the count of non-promising nodes.	08	3	3
b Along with example problem, compare Backtracking and Branch and Bound design techniques	08	3	3
	00		
OR		431	
How do decision trees represent the sequence of comparisons and decisions made during "Finding the minimum of three numbers"? Illustrate with an example. Discuss NP and NP- complete problems, providing a detailed explanation of their definitions, characteristics and significance in	08	3	4
problem solving	08	2	3