# Verification of the altitude controller of the nano quadcopter Crazyflie

Research project

IP Paris Émilie THOMÉ

February 26, 2021

#### **Outlines**

- 1 Introduction
  - Project objective
  - Formal verification
- 2 Formal methods
  - Lyapunov stability
  - Reachability analysis
- 3 Model
  - Modelling the environment
  - Modelling the altitude controller
  - Equation system
  - Linearizing model equations around equilibrium
- 4 Lyapunov function

- Method
- Candidate
- 5 Simulation
  - Simulation of the dynamics
  - Simulations of the Lyapunov candidate
- 6 Verification of the candidate
  - An SOS problem
  - Reachability analysis
  - Checking the candidate
- 7 Conclusion
- 8 References
- 9 Appendix

### Introduction

### **Project objective**

The main objective of this project is to **demonstrate the stability** of the Crazyflie UAV's altitude controller.

It will be necessary to:

- define how to ensure stability of a system,
- model this controller,
- demonstrate altitude controller stability of the UAV using formal methods



#### Formal verification

**Formal verification** is proving the correctness of a system using formal methods. **Formal methods** are techniques, **mathematically based**, to validate suppositions.

**Method used** to prove the correctness of the Crazyflie's altitude controller:

- study over drone's stability will give conditions to achieve a certain property,
- **reachability analysis** to select situations that meet the previous conditions.

### Formal methods

### Lyapunov stability

A system is **Lyapunov stable** for an equilibrium point  $x_e$  if all movement in the neighborhood of  $x_e$  remains in the neighborhood of this point.



### Lyapunov stability

#### Lyapunov's stability theorem:

Let a system described by a differential equation of the type  $\dot{x} = f(x, t)$ . WLOG: the equilibrium point of interest is  $x_e = 0$ .

■ If there is a function  $V:(x,t)\to V(x,t)$  continuously differentiable defined positive such that  $\dot{V}$  is semi defined negative and that  $V(x,t)\xrightarrow{||x||\to\infty}\infty$  then 0 is a **stable equilibrium point**.

**NB:** These conditions are similar to those that potential energy must verify for an equilibrium point of physical system to be stable.

### Reachability analysis

A Lyapunov function is **specific to a dynamics and its operating boundaries**. We will bound the state study space, using the reachability analyzer **Flow\*** [3].



Flow\* computes a finite number of Taylor models containing all reachable states in a time  $\Delta$ , it over-approximates. If a given state is not included then it is absolutely unreachable.

### Model

### Modelling the environment

- Fundamental principle of dynamics:  $\sum F = m\dot{v_z}$  donc  $\dot{v_z} = \frac{F_z}{m} g$
- Force generated by each propeller:  $T_i = C_T \omega_i^2$
- By symmetry:  $F_z = 4 * C_T \omega^2$ .
- Link between motor signal and angular speed:  $\omega = C_1 * PWM + C_2$
- Then:  $F_z = (4C_T C_1^2) * PWM^2 + (8C_T C_1 C_2) * PWM + 4C_T C_2^2$

However, we will use the values found experimentally in [2] :

$$F_z = 4(k_1 * PWM^2 + k_2 * PWM + k_3)$$

### Modelling the altitude controller



#### Modelling the altitude controller

The equations we can draw from the C code of the Crazyflie firmware are the following:

$$\mathbf{v}_c = K_{pz}(z_c - z) + K_{iz} \int (z_c - z) dt$$

• thrustRaw = 
$$K_{pv}(v_c - v_z) + K_{iv} \int (v_c - v_z) dt$$

$$ightharpoonup PWM = Scale * thrustRaw + Base$$

#### Equation system

**Added states:**  $u_1 = \int (2(z_c - z) + 0.5 \int (z_c - z) dt - v_z) dt$  et  $u_2 = \int (z_c - z) dt$ 

New constants:  $K_p = \text{Scale} * K_{pv}$  et  $K_i = \text{Scale} * K_{iv}$ 

**Centred altitude:**  $z \leftarrow z - z_c$ 

$$\begin{cases} \dot{z} = v_z \\ \dot{v_z} = \frac{4k_1}{m} * PWM^2 + \frac{4k_2}{m} * PWM + \frac{4k_3}{m} - g \\ \dot{u_1} = -2z + 0.5u_2 - v_z \\ \dot{u_2} = -z \\ PWM = K_p \dot{u_1} + K_i u_1 + \text{Base} \end{cases}$$

The state equilibrium is reached when every derivative is zero.

$$\begin{cases}
0 = v_{ze} \\
0 = 4(k_1 * PWM_e^2 + k_2 * PWM_e + k_3) - mg \\
0 = -2z_e + 0.5u_2 - v_{ze} \\
0 = -z_e \\
PWM_e = K_i u_{1e} + Base
\end{cases}$$

Then the equilibrium is:

$$\begin{cases} PWM_e \approx 37287 \\ z_e = 0 \\ v_{ze} = 0 \\ u_{1e} = \frac{PWM_e - \text{Base}}{K_i} \approx 0.0858 \\ u_{2e} = 0 \end{cases}$$

Taylor's first-order expansion:

$$\begin{cases} \Delta \dot{z} = \Delta v_z \\ \Delta \dot{v_z} = \frac{8k_1}{m} * PWM_e * \Delta PWM + \frac{4k_2}{m} * \Delta PWM \\ \Delta \dot{u_1} = -2\Delta z + 0.5\Delta u_2 - \Delta v_z \\ \Delta \dot{u_2} = -\Delta z \\ \Delta PWM = K_p \Delta \dot{u_1} + K_i \Delta u_1 \end{cases}$$

#### New equation system

Noting 
$$\left\{ \begin{array}{l} \Delta x = [\Delta z \ \Delta v_z \ \Delta u_1 \ \Delta u_2]^t \\ \Delta \dot{x} = [\Delta \dot{z} \ \Delta \dot{v_z} \ \Delta \dot{u_1} \ \Delta \dot{u_2}]^t \end{array} \right. \ \, \text{then:}$$

$$\begin{cases} \Delta \dot{x} = A * \Delta x \\ \Delta PWM = B * \Delta x \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2K_p * \alpha & -K_p * \alpha & K_i * \alpha & \frac{K_p}{2} * \alpha \\ -2 & -1 & 0 & 0.5 \\ -1 & 0 & 0 & 0 \end{bmatrix} \text{ with } \alpha = \frac{8(2k_1 * PWM_e + k_2)}{m}$$

$$B = \begin{bmatrix} -2 * K_p & -K_p & K_i & 0.5 * K_p \end{bmatrix}$$

## Lyapunov function

#### Method

Equilibrium linearization is used to construct a Lyapunov function. Suppose P and Q are symmetric and defined positive such that :

$$A^t P + PA = -Q$$

Then the function  $V: x \to x^t P x$  is defined positive and  $-\dot{V}: x \to -\nabla V A x = x^t Q x$  too.

We then have to solve this so-called **Lyapunov equation**.

#### **Candidate**

$$Q = I \text{ imply that } P = \begin{bmatrix} 2.01656529 & 0.08342414 & 0.11486412 & -1.29171207 \\ 0.08342414 & 0.07182875 & -0.08901516 & -0.04613902 \\ 0.11486412 & -0.08901516 & 1.35166103 & -0.56806025 \\ -1.29171207 & -0.04613902 & -0.56806025 & 2.44792802 \end{bmatrix}$$

The eigen values of P are 3.65640661, 1.40539696, 0.76532165 and 0.06085787. So the matrix is definitely defined positive.

We therefore have a potential candidate for the Lyapunov function of the initial system.

## **Simulation**

#### Simulation of the dynamics

## Simulation of the initial system dynamics:

The altitude controller seems stable:



### Simulation of the dynamics

## Simulation of the linearized system dynamics:

The linearized system is very similar to the initial one.

We can therefore hope that the Lyapunov function found is a Lyapunov function for the initial system.



We can see that the computed Lyapunov function can **check the conditions** to describe the stability of the linearized system.



### Simulations of the Lyapunov candidate

Hopping this function is also well suited for the initial system describing the altitude controller, the figure effectively suggests that **the function is a candidate**.



Verification of the candidate

### Verification of the candidate

### An SOS problem

The candidate V found is polynomial of order 2, defined positive.

Only condition to satisfy:  $-\dot{V}$  positive for your dynamics.

If we can prove that  $-\dot{V}$  is a sum of squares (SOS) of polynomials, then V is a Lyapunov function. V might not be a Lyapunov function for the entire space.

Bounding constraints are needed.

If exist 
$$\beta$$
 SOS such that  $-\dot{V}(x) = \beta_{1inf}(x) * (z - c_{1inf}) + [...] + \beta_{4sup}(x) * (c_{4sup} - u_2)$  then  $-\dot{V}(x) > 0$  for all  $x$  in bounds.

SOSTOOLS [1] makes it possible to formulate and solve this problem.

We now need to ensure that the chosen bounding contains all reachable states.

#### Reachability analysis

Boundings are found using **Flow\***. unsafe conditions are declared to be informed when states are out of bounds.



I can now use those bounds to check the Lyapunov candidate with **SOSTOOLS**.

### **Checking the candidate**

Bounds inputted, **SOSTOOLS** found the SOS polynomials  $\beta$ . The output of the solver is:

```
1 Residual norm: 5.4687e-10
2
3          iter: 15
4          feasratio: 1.0000
5          pinf: 0
6          dinf: 0
7          numerr: 0
8          r0: 1.1837e-11
9          timing: [0.1272 0.1862 0.0099]
10          wallsec: 0.3233
11          cpusec: 0.2700
```

**Precision:** Residual norm smaller than incertitude on the matrix P (robust over perturbations).

We can now conclude that the candidate is a Lyapunov function.

The system is stable for an initial state near the equilibrium.

## **Conclusion**

#### **Conclusion**

#### During this project I have:

- characterized a stability of a system
- modeled the Crazyflie's altitude controller
- linearized this system to simplify it
- found a Lyapunov candidate for the initial system
- and proved the Lyapunov candidate to be a Lyapunov function.

The next step in the formal verification of the Crazyflie's altitude controller system would be to include this proof in the SPARK code of the Crazyflie.

## References

#### References

- [1] G. Valmorbida S. Prajna P. Seiler A. Papachristodoulou J. Anderson and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Available from http://www.eng.ox.ac.uk/control/sostools, http://www.cds.caltech.edu/sostools and http://www.mit.edu/~parrilo/sostools. http://arxiv.org/abs/1310.4716, 2013.
- [2] J. Förster. "System Identification of the Crazyflie 2.0 Nano Quadrocopter". In: (2015).
- [3] Erika Ábrahám Xin Chen Sriram Sankaranarayanan. Flow\*. Available from https://flowstar.org/. 2017.

## Thank you.

Appendix

## **Appendix**

### All recorded constants for the Crazyflie model

| m              | 0.028                 |
|----------------|-----------------------|
| $k_1$          | 2.130295e - 11        |
| $k_2$          | 1.032633e - 6         |
| k <sub>3</sub> | 5.484560 <i>e</i> – 4 |
| Scale          | 1000                  |
| Base           | 36000                 |
| $K_{pz}$       | 2                     |
| $K_{iz}$       | 0.5                   |
| $K_{pv}$       | 25                    |
| Kiv            | 15                    |
| $K_p$          | 25000                 |
| Ki             | 15000                 |

The constants presented are in SI.

We can notice that  $k_3$  and  $k_2$  seem negligible in front of  $k_1$  which is itself not very big. However the values of PWM are important, which makes  $k_i$  not dispensable.

Reminder:  $PWM_e \simeq 37287$