

American International University- Bangladesh

[10]

[6]

Final-term Assignment, Fall'2021-22

Subject: Microprocessor and Embedded System

Mark: 30

Submission Deadline: 19/12/2021

Special Instruction: Only the hand-written assignment submitted in PDF is acceptable. Each page of the assignment should contain the 'Name' and 'ID' of the author. Assignment submitted as image/word file without name and ID will get "Zero" and there will be no second chance to submit it again.

Content

1. Design a 1-bit ALU for operations listed in Table-1.

2. Design a 4-bit shifter for the enlisted operation in Table-1.

TABLE 1: FUNCTIONS OF CONTROL VARIABLES

	Functions of selection variables										
Binary Code	A	В	D	F with C _{in} = 0	$F \text{ with }$ $C_{in} = 1$	Н					
000	Input Data	Input Data	None	A-1	A	1's to the output Bus					
0 0 1	R1	R1	R1	A+B	A+B+1	Shift Left with I _L =0					
010	R2	R2	R2	A-B-1	A-B	No Shift					
0 1 1	R3	R3	R3	A	A+1	Circulate Left with Carry					
100	R4	R4	R4	R4 \bar{A} X		0's to the output Bus					
1 0 1	R5	R5	R5	AXOR B X		-					
110	R6	R6	R6	A AND B X Circulate-		Circulate-Right with Carry					
111	R7	R7	R7	A OR B	Shift Right with I _R =0						

American International University- Bangladesh

3. Develop the control memory outputs for the sequence presented in Table-3 using the information listed in Table-1 and 4. In order to complete the memory outputs, use the microinstructions provided below-

[14]

TABLE 2: SYMBOLIC MICROPROGRAM FOR CONTROL MEMORY

ROM Address	Microinstruction
0	$X = 1$, if $(q_s = 1)$ then (go to 1), if $(q_a = 1)$ (then go to 2), if $(q_s$ and $q_a = 0)$ then (go to 0)
1	$Bs \leftarrow \bar{B}_s$
2	If $(S = 1)$ then (go to 4)
3	$A \leftarrow A + B, E \leftarrow C_{out}$ go to 0
4	$A \leftarrow A + \overline{B} + 1, E \leftarrow C_{out}$
5	If $(E = 1)$ then $(go to 0)$, $E \leftarrow 0$
6	$A \leftarrow \bar{A}$
7	$A \leftarrow A + 1$, $As \leftarrow \bar{A}_s$, go to 0

TABLE 3: CONTROL MEMORY BIT SEQUENCE

			ROM outputs													
	ROM Address		X	S_2	S_1	S_0	C_{in}	L	y	Z	\mathbf{w}	Address		SS	Select	
ROM			1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0														
0	0	1														
0	1	0														
0	1	1														
1	0	0														
1	0	1														
1	1	0														
1	1	1														

TABLE 4: MULTIPLEXER INPUT

Rom bits		MUX select function				
13	14					
0	0	Load input to CAR				
0	1	Increment CAR				
1	0	Load input to CAR if $E = 1$, increment CAR if $E = 0$				
1	1	Load inputs to CAR if $S = 1$, increment CAR if $S = 0$				