sMulticlass Tsetlin machine

19 February 2025 20:35

Part A : Structure of Tsetlin Machine Part B : Training of Tsetlin Machine

For Multiclass TM using MNIST Dataset

10 Classes, images consist of hand written digits from $\,$

0-9, size = 28X28, train = 60K, testing = 10K.

Structure

1 0 0 1 1 0 ······ 1 0

1) TA_STATE

Clauses	X0		X1			X2		хз		X4	Х5			X782	X783	
0	10	11	11	1	1	11	10	10	10						11	11
1																
2																
3																
4																
5																
998																
999																

2) CLAUSE_COUNT

0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0

3) CLAUSE_SIGN

CLASSES CLAUSES	0	1	2			98	99	
0	INDEX, 0 SIGN, 1	1 -1	2 1				99	-1
1								
2								
3								
4								
5								
6								
7								
8								
9								

CLAUSE_COUNT

0	1	2	3	4	5	6	7	8	9
100	100	100	100	100	100	100	100	100	100

4) CLAUSE_OUTPUT

INDEX	0	1	2						998	999
OUTPUT	0	0	0						0	0

5) CLASS_SUM

CLASS	0	1	2	3	4	5	6	7	8	9
CLASS_SUM	0	0	0	0	0	0	0	0	0	0

6) FEEDBACK_TO_CLAUSES

USE	0	1	2	3		998	999
DBACK	0	0	0	0		0	0

This is structure, till code line number 36

Functions in MCTM class

1) ACTION(state)

TA

Exclude space = 0							1	nclude	space	= 1	1					
		,				_			_		,	_		,	 _	

2) GET_STATE(clause, feature, automaton_type)

Clauses	X0		X	1)	K2		>	к3		X4	X5	X782	X783	
0	10	11		11	11		11	10		10	10				11	11
1																
2																
3																
4																
5																
998																
999																

Clause 0 , ~X2 = 10

3) CALCULATE_CLAUSE_OUTPUT(X)

EXAMPLE 1: CLAUSE 732: X4 & X34 & X76 AND IN THE INPUT IF X4 = 1, X34 = 1, X76=0 THEN OUTPUT = 0

EXAMPLE 2: CLAUSE 970: ~X2 & ~X480 & X702 AND IN THE INPUT IF X2 = 1, X480 = 0, X702=1 THEN OUTPUT = 0

4) SUM_UP_CLASS_VOTES()

4) PREDICT(X)

CLASS	0	1	2	3	4	5	6	7	8	9
CLASS_SUM	25	32	44 .	11	31	9	04	20	10	19
	\neg									

5) EVALUATE(X, Y, number_of_features)

FILL THIS FROM INPUT VECTOR, GET PREDICTION, IF WRONG ERROR += 1

6) UPDATE(X, target_class): ! ATTENTION TO FEEDBACKS

TARGET_CLASS AND NEGATIVE/ANTI_TARGET_CLASS != TARGET CLASS

CALCULATE_CLAUSE_OUTPUT(X)

SUM_UP_CLASS_VOTES()

FOR ALL CLAUSES WITH POSITIVE FEEDBACK IF CLAUSE_OUTPUT = 0 , --> ERASE IT

IF X[K] = 1 MEANING, INPUT VECTOR CONTAINS LITERAL IN TRUE FORM SO

IF X[K] = 0 MEANING, INPUT VECTOR CONTAINS LITERAL IN COMPLIMENTERY FORM SO

FOR ALL CLAUSES WITH NEGATIVE FEEDBACK IF CLAUSE_OUTPUT = 1, --> MAKE IT 0

IF X[K] = 0 AND IT IS IN EXCLUDE SPACE THEN TRY TO BRING X_K TO INCLUDE SPACE SO --> CLAUSE_OUTPUT = 0

IF X[K] = 1 AND IT IS IN EXCLUDE SPACE THEN TRY TO BRING $^{\sim}X_K$ TO INCLUDE SPACE SO --> CLAUSE_OUTPUT = 0

7) FIT(X, Y, number_of_examples, epoch)

Finally use this function to train by calling update function.

