Problem Set 4

Advanced Logic 6th October 2022

Throughout this problem set, A is some arbitrary set, and A^* is the set of lists over A; s, t, u are arbitrary members of A^* . \oplus denotes the list concatenation operation on A^* , defined to obey the following recursion clauses:

$$[] \oplus t = t$$
$$(a:s) \oplus t = a:(s \oplus t)$$

Note that you can and should rely on earlier results in proving later ones.

1. (15%) Prove that if $s \oplus t = s$ then t = [].

By induction on s, generalizing over t.

Base case: since $[] \oplus t = t$ for all t, if $[] \oplus t = []$ then t = [].

Induction step: suppose that for any t such that $s \oplus t = s$, t = []. Let $a \in A$, and consider some t such that $(a : s) \oplus t = (a : s)$. Then $(a : s \oplus t) = (a : s)$, so $s \oplus t = s$ by the Injective Property of lists, so t = [] by the induction hypothesis.

2. (15%) Prove that if $s \oplus t = []$ then s = t = [].

If $s \oplus t = []$ then there can't be any $a \in A$ and $s' \in A^*$ such that s = (a : s'), since then we would have $[] = (a : s') \oplus t = (a : s \oplus t)$, which is ruled out by the Injective Property of lists. So the only remaining possibility is that s = []. And then since $[] \oplus t = []$ we have t = [] by the previous result.

(This can also be formatted as an induction.)

3. (15%) Prove that if $s \oplus t = (a : u)$ then either s = [] or s = (a : s') for some s'.

Suppose $s \oplus t = (a:u)$. For every list s, either s = [] or there is some $b \in A$ and $s' \in A^*$ such that s = (b:s'). In the first case we are done, so let s = (b:s'). But then we have $s \oplus t = (b:s') \oplus t = b:(s \oplus t) = a:u$, which implies b = a (as well as $s \oplus t = u$) by the Injective Property of lists.

For the following problems, we define a function final : $A^* \to \mathcal{P}(A^*)$ recursively as follows:

final
$$[] = \{[]\}$$

final $(a:s) = \text{final } s \cup \{(a:s)\}$

We say that *s* is a *final sublist* of *t* iff $s \in \text{final } t$.

4. (15%) Prove that [] is a final sublist of every list.

By induction. Base case: $[] \in \text{final}[]$ by definition.

Induction step: suppose $[] \in \text{final } s$, and consider $a \in A$. Then $\text{final}(a : s) = \text{final } s \cup \{(a : s)\}$, so

 $[] \in \text{final}(a:s).$

5. (10%) Prove that every list is a final sublist of itself.

By induction. Base case: [] is a final sublist of itself by definition.

Induction step: suppose $s \in \text{final } s$, and consider $a \in A$. Then $\text{final}(a : s) = \text{final } s \cup \{(a : s)\}$, so since $(a : s) \in \{(a : s)\}$, $(a : s) \in \text{final}(a : s)$.

6. (10%) Prove that *t* is a final sublist of $s \oplus t$.

By induction on s, for a given arbtrary t. Base case: t is a final sublist of $[] \oplus t = t$ by the previous problem.

Induction step: suppose $t \in \text{final}(s \oplus t)$ and $a \in A$. Then $\text{final}((a : s) \oplus t) = \text{final}(a : (s \oplus t)) = \text{final}(s \oplus t) \cup \{a : (s \oplus t)\}$, and so we also have $t \in \text{final}((a : s) \oplus t)$.

7. (10%) Prove that if *s* is a final sublist of *t*, then $t = u \oplus s$ for some *u*.

By induction on t, generalizing over s.

Base case: if *s* is a final sublist of [] then s = [] and since [] = [] \oplus [] we have $t = [] \oplus s$.

Induction step: suppose that whenever s is a final sublist of t then $t = u \oplus s$ for some u. Now suppose that s is a final sublist of (a:t). Then eiter s is a final sublist of t or s = (a:t). In the first case, by the IH there exists u such that $t = u \oplus s$ and hence $(a:t) = a:(u \oplus s) = (a:u) \oplus s$. In the second case, we have $(a:t) = [] \oplus s$.

8. (10%) Prove that if $s \oplus s' = t \oplus t'$ then either s' is a final sublist of t' or t' is a final sublist of s'.

By induction on s, generalizing over s', t, t'.

Base case: $[] \oplus s' = s'$, so if $[] \oplus s' = t \oplus t'$ we have $s' = t \oplus t'$ and thus $t' \in \text{final } s'$ by problem 6 above.

Induction step: suppose for induction that for any s', t, t' such that $s \oplus s' = t \oplus t'$, either s' is a final sublist of t' or t' is a final sublist of s'. Fix $a \in A$, and further suppose that $(a : s) \oplus s' = t \oplus t'$. Then by problem 3 above, either t = [] or there is a u such that t = (a : u).

In the first case, we have $t' = [] \oplus t' = (a : s) \oplus s'$, so s' is a final sublist of t' by problem 6 above.

In the second case, we have $(a:s) \oplus s' = (a:u) \oplus t'$, hence $a:(s \oplus s') = a:(u \oplus t')$, hence $s \oplus s' = u \oplus t'$ (by the Injective Property of Lists), and thus either $s' \in \text{final } t'$ or $t' \in \text{final } s'$ by the IH.

9. (10% extra credit) Play through the level 'Advanced Multiplication World' in the Lean Natural Numbers Game (https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/). To show that you've completed the levels, send us a screenshot of the last level of Advanced Multiplication World open on your computer screen, with your name showing somewhere in the screenshot (e.g. in a text editor window).

See last week's problem set solutions for a link to a document with all the solutions to this game.