Examen ¹ 29 Mai, 2021

Fie z și l ziua, respectiv, luna din data dumneavoastră de naștere ($z \in \{1, 2, 3, \ldots, 31\}$, $l \in \{1, 2, 3, \ldots, 12\}$) și $v = 5 + ((2 \cdot z + 5 \cdot l) \bmod 6)$. Scrieți valorile $z, \ l, \ v$ pe foaia de examen.

1. (a) Demonstrați corectitudinea următorului algoritm:

```
PrimitiveRootSafePrime (p) input: p prime, p=2q+1, q odd prime; output: a, a primitive root modulo p; begin generate randomly \gamma \in \{2,3,\ldots,p-2\}; a:=(-\gamma^2) \bmod p; return(a) end.
```

(2p)

- (b) Generați a, o rădăcină primitivă modulo 23 (1p)
- (c) Calculați $\log_a v \pmod{23}$ folosind unul din algoritmii discutați la curs (Shanks sau Pollard) (1p)
- (d) Calculați ordinul lui v modulo 23 (1p)
- 2. (a) Dați un exemplu de un număr a din \mathbf{Z}_{11}^* pentru care ecuația $x^2 \equiv a \ mod \ 11$ să nu aibă soluții întregi. Justificați răspunsul (1p)
 - (b) Folosind Lema lui Hensel, determinați o rădăcină pătratică a lui a modulo 121, unde $a=v^2$ (1p)
 - (c) Folosind algoritmul Tonelli-Shanks, determinați o rădăcină pătratică a lui a modulo 17, unde $a=v^2 \mod 17$ (non-reziduurile pătratice din \mathbb{Z}_{17}^* sunt 3, 5, 6, 7, 10, 11, 12, 14) (1p)
- 3. Fie curba eliptică peste \mathbf{Z}_{11} dată prin ecuația $y^2=x^3+x+1$. Decompresați punctul $\tilde{P}=(1,1)$ și calculați 3P. (2p)

¹Timp de lucru: 80 minute, plus înca maxim 10 minute pentru uploadarea fotografiilor soluțiilor în Google Classroom. La 9.30 fix se incheie preluarea solutiilor.