Formale Methoden Serie 10

Tobias Reincke Matrikelnummer: 218203884

January 15, 2020

1 A	uigabe 1
1.1 a)
1.2 b Ja, weil	dann alle Kreise initial markiert sind.
1.3 c Ja, sind) ein Subset der FC-Netze (Folie.)
1.4 d Nein.	1)
1.5 e Ja.)
1.6 f Nein.)
1.7 g ja.	

2 Aufgabe 2

	Zustandsmaschine	Synchronisationsgraph	Free-Choice-Netz
N_\$1\$	nein	nein	nein (s2 & s5 passen nicht), (s8 &6)
N_\$2\$	ja	ja	ja
N_\$3\$	n	ja	ja

3 Aufgabe 3

$$\label{eq:minimum} \begin{split} & \text{Minimum regionen:=}\{~\{0\}~,~\{1,2,3\}~,~\{4,5\}~,~\{6,7\}~\}\\ & \text{E}=\!\{~\{0,~\{a,b,c\},~\{1,2,3\}~\},~\{~\{1,2,3\},d,~\{4,5\}\}~,\{~\{1,2,3\},~e,~~6,7\}\} \end{split}$$

4 Aufgabe 4

Wie nach Hinweis, habe ich alle Falle und Siphone per Programm ausgetestet. Es ist offentsichtlich, dass der ganze Graph an sich ein Siphon und Falle ist.

a,b,c)

Das sollen Mengen sein, ich war nur zu faul, für die Mengennotation in Latex, ist anstrengend.

Mein Code zu finden auf: https://github.com/scary987/Petrinetstuff/blob/master/allcombinations.cpp

Siphone	s8,s9,s11	s8,s9,s11,s12	s8,s9,s12	s8,s10,s11,s12	s8,s10,s11	s8,s10,s12	s10,s12	
Marking:	s8,s9,s11	s8,s9,s11	-	-	-	ja	s10,s12	

Ich habe mir außerdem erlassen, den gesamten Graphen zu testen, da die Identität als Falle und Siphon trivial ist. (s8,s9,s10,s11,s12) {s8, s9, s10, s12}, {s8, s9, s10, s11} werden von meinem Code nicht ausgegeben, ergeben sich aber durch die Mengenvereinigung der Siphone, und ich habe das debugging noch nicht ganz geschafft. :({s9, s10, s11, s12} als Falle auch.

5 Bonus

Zerlegung von N_4 :

0 0						
s1, s2, t1, t	2	s3,t3	s4,t4	s5,t5	s6,t6	s7,s8,t7
Zerlegung von N ₅ :						
s1,t2,t3	s:	3,t4,t5	s2,t1			