Kholle 14 filière MP* Planche 1

- 1. Définir la loi de Poisson de paramètre λ . Démontrer qu'une variable aléatoire suivant une loi de Poisson est d'espérance finie et déterminer cette espérance.
- 2. Soit $\alpha \in \mathbb{R}$. A quelle condition nécessaire et suffisante sur α , la famille

$$((i+j)^{\alpha})_{(i,j)\in(\mathbb{N}^*)^2}$$

est-elle sommable?

- 3. Soit s > 1, on note $\zeta(s) = \sum_{n=1}^{+\infty} n^{-s}$.
 - (a) Démontrer que l'on définit une mesure de probabilité \mathbb{P}_s sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ en imposant $\forall n \in \mathbb{N}^*, \mathbb{P}_s(\{n\}) = n^{-s}/\zeta(s)$.
 - (b) Soit $k \in \mathbb{N}^*$. Déterminer $\mathbb{P}_s(k\mathbb{N}^*)$.
 - (c) On note $\mathcal P$ l'ensemble des nombres premiers. Montrer que la famille des $(p | \mathbb N^*)_{p \in \mathcal P}$ est une famille d'événements indépendants dans leur ensemble.

Kholle 14 filière MP* Planche 2

- 1. Définir la loi géométrique de paramètre *p*. Démontrer qu'une variable aléatoire suivant une loi géométrique est d'espérance finie et déterminer cette espérance.
- 2. Pour tout entier naturel non nul n, on note d_n le nombre de ses diviseurs positifs. Montrer que la série entière $\sum d_n z^n$ a un rayon de convergence non nul, puis que pour tout complexe z dans un voisinage de 0,

$$\sum_{n=1}^{+\infty} d_n z^n = \sum_{n=1}^{+\infty} \frac{z^n}{1 - z^n}$$

- 3. On note a=2.1 et on suppose que la probabilité qu'une famille ait n enfants suit une loi de Poisson de paramètre a. On suppose de plus qu'un enfant naît avec une probabilité 1/2 d'être une fille.
 - (a) Calculer la probabilité qu'une famille ait au moins une fille.
 - (b) On suppose que les enfants d'une famille ne comporte qu'une fille. Quelle est la probabilité que cette famille possède deux enfants?

Kholle 14 filière MP* Planche 3

- 1. Énoncer et démontrer les propriétés de linéarité et de croissance de l'espérance.
- 2. Soit $n \in \mathbb{N}^*$. Soit $(A, B) \in M_n(\mathbb{C})^2$. Montrer que

$$AB = BA \iff \forall t \in \mathbb{R}, \exp(t(A+B)) = \exp(tA)\exp(tB)$$

3. Comparer la probabilité d'obtenir au moins un 6 en lançant 4 fois un dé et la probabilité d'obtenir au moins un double 6 en lançant 24 fois deux dés.

Indication: on admet que 24 ln(7) + 20 ln(5) > 44 ln(6).

Kholle 14 filière MP* Planche 4

- 1. Soit X et Y deux variables aléatoires indépendantes. Que peut-on dire de f(X) et g(Y)? Le démontrer.
- 2. On se donne une matrice nilpotente N d'indice de nilpotence m, et on introduit la fonction

$$D: \mathbb{R} \to M_n(\mathbb{C}), t \mapsto \sum_{k=1}^{m-1} (-1)^{k-1} \frac{t^k}{k} N^k$$

puis la fonction $S: t \mapsto \exp(D(t))$. En étudiant ces deux fonctions, montrer que $\exp(D(1)) = I + N$.

3. On considère $(A_n)_{n\in\mathbb{N}}$ une suite d'événements mutuellement indépendants d'un espace probabilisé $(\Omega,\mathcal{T},\mathbb{P})$, puis B l'événement défini par « aucun des A_n n'est réalisé ». Montrer que

$$\mathbb{P}(B) \leqslant \exp\left(-\sum_{n=0}^{+\infty} \mathbb{P}(A_n)\right)$$
