Abstract Algebra by Pinter, Chapter 19

Amir Taaki

Abstract

Chapter 19 on Quotient Rings

${\bf Contents}$

1	A. Examples of Quotient Rings	2
	1.1 Q1	2
	1.2 Q2	2
	1.3 Q3	3
2	B. Examples of the Use of the FHT	3
	2.1 Q1	3
	2.2 Q2	4
	2.3 Q3	4
	2.4 Q4	5
3	C. Quotient Rings and Homomorphic Images in $\mathcal{F}(\mathbb{R})$	5
Ū	3.1 Q1	5
	3.2 Q2	5
	3.3 Q3	5
	3.4 Q4	5
4	D. Elementary Applications of the Fundamental Homomorphism Theorem	6
4	4.1 Q1	6
	4.2 Q2	6
	4.3 Q3	6
	4.4 Q4	6
_		_
5	E. Properties of Quotient Rings A/J in Relation to Properties of J	7
	5.1 Q1	7
	5.2 Q2	7
	5.3 Q3	7
	5.4 Q4	7
	5.5 Q5	7
	5.6 Q6	8
6	F. Prime and Maximal Ideals	8
	6.1 Q1	8
	6.2 Q2	8
	6.3 Q3	9
	6.4 Q4	9
7	G. Further Properties of Quotient Rings in Relation to Their Ideals	9
	7.1 Q1	9
	7.2 Q2	9
	7.3 Q3	9
	7.4 Q4	10
	7.5 Q5	10
8	H. \mathbb{Z}_n as a Homomorphic Image of \mathbb{Z}	10
	8.1 Q1	10
	8.2 Q2	10

8.3	Q3																 								 		10
8.4	Q4																 								 		11
8.5	Q5						 										 							 	 		11
8.6	Q6						 										 							 	 		11
8.7	Q7						 										 							 	 		12
8.8	08																										12

1 A. Examples of Quotient Rings

1.1 Q1

$$A = \mathbb{Z}_{10}, J = \{0, 5\}$$

$$J = J + 0 = \{0, 5\}$$

$$J + 1 = \{1, 6\}$$

$$J + 2 = \{2, 7\}$$

$$J + 3 = \{3, 8\}$$

$$J + 4 = \{4, 9\}$$

1.2 Q2

$$A = P_3, J = \{\emptyset, \{a\}\}\$$

$$J = J + 0 = \{\emptyset, \{a\}\}$$

$$J + \{b\} = \{\{b\}, \{a, b\}\}$$

$$J + \{c\} = \{\{c\}, \{a, c\}\}$$

$$J + \{b, c\} = \{\{b, c\}, \{a, b, c\}\}$$

1.3 Q3

$$A = \mathbb{Z}_2 \times \mathbb{Z}_6, J = \{(0,0), (0,2), (0,4)\}$$

$$J = \{(0,0), (0,2), (0,4)\}$$
$$J + (0,1) = \{(0,1), (0,3), (0,5)\}$$
$$J + (1,0) = \{(1,0), (1,2), (1,4)\}$$
$$J + (1,1) = \{(1,1), (1,3), (1,5)\}$$

2 B. Examples of the Use of the FHT

2.1 Q1

$$f(x) = x \mod 5$$

$$\ker f = \{0, 5, 10, 15\} = \langle 5 \rangle$$

$$\mathbb{Z}_5 \cong \mathbb{Z}_{20} / \langle 5 \rangle$$

$$J = J + 0 = \{0, 5, 10, 15\}$$

$$J + 1 = \{1, 6, 11, 16\}$$

$$J + 2 = \{2, 7, 12, 17\}$$

$$J + 3 = \{3, 8, 13, 18\}$$

$$J + 4 = \{4, 9, 14, 19\}$$

Tables are exact same for mod 5.

2.2 Q2

$$f(x) = x \mod 3$$
$$\ker f = \{0, 3\} = \langle 3 \rangle$$
$$\mathbb{Z}_3 \cong \mathbb{Z}_6 / \langle 3 \rangle$$

$$J = J + 0 = \{0, 3\}$$
$$J + 1 = \{1, 4\}$$
$$J + 2 = \{2, 5\}$$

Tables are exact same for mod 3.

2.3 Q3

$$P_{2} = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}\}$$

$$P_{3} = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

$$K = K + \varnothing = \{\varnothing, \{c\}\}\}$$

$$K + \{a\} = \{\{a\}, \{a, c\}\}\}$$

$$K + \{b\} = \{\{b\}, \{b, c\}\}\}$$

$$K + \{a, b\} = \{\{a, b\}, \{a, b, c\}\}\}$$

$$f(X) = X \cap \{a, b\}$$

$$f: P_{3} \rightarrow P_{2}$$

$$P_{2} \cong P_{3} / \langle \{\varnothing, \{c\}\} \rangle$$

$$\frac{K + \{a\}}{K + \{a\}} \quad K + \{b\} \quad K + \{a, b\}}{K + \{a, b\}}$$

$$K + \{a, b\} \quad K + \{b\}$$

$$K + \{a, b\} \quad K + \{a, b\}$$

K

2.4 Q4

$$f: \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2$$
$$f((x,y)) = x$$
$$K = \{(0,0), (0,1)\}$$
$$K + (1,0) = \{(1,0), (1,1)\}$$

$$\begin{array}{c|ccccc} + & K & K + (1,0) \\ \hline K & K & K + (1,0) \\ K + (1,0) & K + (1,0) & K \\ \hline \cdot & K & K + (1,0) \\ \hline K & K & K \\ K + (1,0) & K & K + (1,0) \\ \end{array}$$

3 C. Quotient Rings and Homomorphic Images in $\mathcal{F}(\mathbb{R})$

3.1 Q1

$$\phi: \mathcal{F}(\mathbb{R}) \to \mathbb{R} \times \mathbb{R}$$
$$\phi(f) = (f(0), f(1))$$

- 1. $\phi(f+g) = ((f+g)(0), (f+g)(1)) = (f(0), f(1)) + (g(0), g(1)) = \phi(f) + \phi(g)$
- 2. $\phi(f \cdot g) = ((f \cdot g)(0), (f \cdot g)(1)) = (f(0), f(1))(g(0), g(1)) = \phi(f)\phi(g)$

Let f(x) = (a - b)x + b, then $f \in \mathcal{F}(\mathbb{R})$, f(0) = b and f(1) = a. Thus functions of this form can represent any value in $\mathbb{R} \times \mathbb{R}$ and so the homomorphism ϕ is *onto* $\mathbb{R} \times \mathbb{R}$.

$$K = \{ f \in \mathcal{F}(\mathbb{R}) : f(0) = 0 \text{ and } f(1) = 0 \}$$

3.2 Q2

$$J = \{ f \in \mathcal{F}(\mathbb{R}) : f(0) = 0 \text{ and } f(1) = 0 \}$$

Thus J is the kernel of the homomorphism ϕ . The kernel is also an ideal of $\mathcal{F}(\mathbb{R})$, so

$$\mathcal{F}(\mathbb{R})/J \cong \mathbb{R} \times \mathbb{R}$$

3.3 Q3

$$\phi:\mathcal{F}(\mathbb{R})\to\mathcal{F}(\mathbb{Q},\mathbb{R})$$

$$\phi(f)=f_{\mathbb{Q}}=\text{ the restriction of }f\text{ to }\mathbb{Q}$$

 ϕ is onto because $\forall g \in \mathcal{F}(\mathbb{Q}, \mathbb{R}), \exists f \in \mathcal{F}(\mathbb{R}) : g = f_{\mathbb{Q}}. \ \phi$ is a homomorphism since $\phi(f \cdot g) = \phi(f) \cdot \phi(g)$ and $\phi(f+g) = \phi(f) + \phi(g)$.

$$K = \{ f \in \mathcal{F}(\mathbb{R}) : f(x) = 0 \}$$

3.4 Q4

J is also the kernel of $\mathcal{F}(\mathbb{R})$, which means it is also an ideal. Thus

$$\mathcal{F}(\mathbb{R})/J \cong \mathcal{F}(\mathbb{Q})$$

4 D. Elementary Applications of the Fundamental Homomorphism Theorem

4.1 Q1

Note that ring is commutative then

$$(x+y)^2 = x(x+y) + y(x+y) = x^2 + xy + yx + y^2 = x^2 + 2xy + y^2 = x^2 + y^2$$

So $h(x) = x^2$ is a homomorphism since $h(x+y) = x^2 + y^2 = h(x) + h(y)$ and $h(xy) = x^2y^2 = h(x)h(y)$

$$J = \{x \in A : x^2 = 0\}$$
$$B = \{x^2 : x \in A\}$$

h is a homomorphism from A to B and the kernel is J

$$A/J \cong B$$

4.2 Q2

h(x) = 3x is a homomorphism because h(x+y) = 3x + 3y = h(x) + h(y) and h(xy) = h(x)h(y) because

$$h(xy) = 3xy = 6xy + 3xy = (3x)(3y) = h(x)h(y)$$

 $J = \{x : 3x = 0\}$ is the kernel and thus ideal of h. $B = \{3x : x \in A\}$ is a subring of A by the homomorphism shown above

$$A/J \cong B$$

4.3 Q3

$$\pi_a(xy) = axy = a^2xy = (ax)(ay) = \pi_a(x)\pi_a(y)$$

$$\pi_a(x+y) = a(x+y) = ax + ay = \pi_a(x) + \pi_a(y)$$

$$I_a = \{x \in A : ax = 0\} = \ker \pi_a$$

$$\pi_a(1) = a$$

$$\pi_a(x) = \pi_a(x \cdot 1) = a + \dots + a \in \langle a \rangle$$

$$\pi_a : A \to \langle a \rangle$$

$$A/I_a \cong \langle a \rangle$$

4.4 Q4

$$\phi(ab) = \pi_{ab} = \pi_a \pi_b = \phi(a)\phi(b)$$

$$\phi(a+b) = \pi_{a+b} = \pi_a + \pi_b = \phi(a) + \phi(b)$$

$$I = \{x \in A : ax = 0, \forall a \in A\}$$

$$\pi_a(x) = ax$$

$$\bar{A} = \{\pi_a : a \in A\}$$

$$\phi(a) = \pi_a$$

$$\ker \phi = \{x \in A : \phi(x) = \pi_0\}$$

$$\forall a \in A \qquad \pi_0(a) = 0$$

$$\therefore \ker \phi = I$$

$$\phi : A \to \bar{A}$$

$$A/I \cong \bar{A}$$

6

5 E. Properties of Quotient Rings A/J in Relation to Properties of J

5.1 Q1

Every element of A/J has a square root iff for every $x \in A$, there is some $y \in A$ such that $x - y^2 \in J$.

Let $J + x \in A/J$ then

$$J + x = (J + y)(J + y)$$

But J is ideal and so absorbs products in A

$$J + x = J + y^2$$

$$J + x - y^2 = J$$

$$x - y^2 \in J$$

5.2 Q2

Every element of A/J is its own negative iff $x + x \in J$ for every $x \in A$.

$$\forall x \in A, x + x \in J \implies J + x + x = J$$

$$\therefore \forall x \in A \qquad J + x = -(J + x)$$

5.3 Q3

A/J is a boolean ring iff $x^2 - x \in J$ for every $x \in A$.

$$(J+x)^2 - (J+x) = J^2 + Jx + xJ + x^2 - J - x$$

But noting J absorbs products

$$(J+x)^2 - (J+x) = J + x^2 - x$$

But $x^2 - x \in J$ so

$$J + x^2 - x = J$$

so A/J is a boolean ring.

5.4 Q4

If J is the ideal of all the nilpotent elements of commutative ring A, then A/J has no nilpotent elements (except zero).

$$a \in J \implies a^n = 0$$
 for some n

Let $x \in A : x \notin J \implies x^n \neq 0$

$$(J+x)^n = J + x^n \neq J$$

Thus $\forall x \in A : x \in J, J + x$ is not nilpotent.

5.5 Q5

Every element of A/J is nilpotent iff J has the following property: for every $x \in A$, there is a positive integer n such that $x^n \in J$.

$$\forall x \in A, x^n \in J$$

$$(J+x)^n = J + x^n = J$$

Thus every element of A/J is nilpotent.

5.6 Q6

A/J has a unity element iff there exists an element $a \in A$ such that $ax - x \in J$ and $xa - x \in J$ for every $x \in A$.

$$(J+a)(J+x) = J+x$$

$$= J+ax$$

$$(J+x)(J+a) = J+x$$

$$= J+xa$$

$$J + x = J + ax$$

$$J + ax - x = J$$

So $ax - x \in J$ Likewise

$$J + xa = J + x$$

$$J + xa - x = J$$

$$\implies xa - x \in J$$

6 F. Prime and Maximal Ideals

Let A be a commutative ring with unity, and J an ideal of A. Prove the following:

6.1 Q1

A/J is a commutative ring with unity.

(J+x)(J+y) = J+xy

But xy = yx

$$J + xy = J + yx$$

$$\implies (J+x)(J+y) = (J+y)(J+x)$$

$$(J+1_A)(J+x) = J+x$$

6.2 Q2

J is a prime ideal iff A/J is an integral domain.

Assume J is a prime ideal.

$$ab \in J \implies a \in J \text{ or } b \in J$$

$$J + ab = J + ac \implies J + b = J + c$$

Let J + ab = J + ac

$$J+ab-ac=J$$

$$a(b-c) \in J$$

But $a \notin J, b \notin J$ and $c \notin J$

$$\implies b - c \in J$$

$$J + b = J + c$$

Thus

$$J+ab=J+ac \implies J+b=J+c$$

For the converse, assume $a \notin J$, if $a \in J$, then we are done, otherwise

$$J + ab = J + a0 \implies J + b = J + 0$$

$$J + ab = J \implies J + b = J$$

$$a(b - c) \in J \implies b - c \in J$$

$$ab \in J \implies b \in J$$

6.3 Q3

Every maximal ideal of A is a prime ideal.

Let J be a maximal ideal of A.

Then A/J is a field.

Every field is an integral domain, so A/J is an integral domain.

Since A/J is an integral domain, so J is a prime ideal.

6.4 Q4

If A/J is a field, then J is a maximal ideal.

$$\phi(x) = J + x$$
$$j \in J, \phi(j) = J$$

A/J is a field, so ideal is J, which is maximal.

7 G. Further Properties of Quotient Rings in Relation to Their Ideals

7.1 Q1

Prove that A/J is a field iff for every element $a \in A$, where $a \notin J$, there is some $b \in A$ such that $ab - 1 \in J$.

$$(J+a)(J+b) = J+ab = J+1 \implies ab-1 \in J$$

7.2 Q2

Prove that every nonzero element of A/J is either invertible or a divisor of zero iff the following property holds, where $a, x \in A$: For every $a \notin J$, there is some $x \notin J$ such that either $ax \in J$ or $ax - 1 \in J$.

$$ax - 1 \in J \implies (J + a)(J + x) = J + 1$$

and thus J + a is invertible.

$$ax \in J \implies (J+a)(J+x) = J$$

and so J + a is a divisor of zero.

7.3 Q3

An ideal J of a ring A is called primary iff for all $a,b \in A$, if $ab \in J$, then either $a \in J$ or $b^n \in J$ for some positive integer n. Prove that every zero divisor in A/J is nilpotent iff J is primary.

Nilpotent means $(J+x)^n=J$, but $(J+x)^n=J+x^n$, that is $x^n\in J$. Every zero divisor in A/J means (J+a)(J+b)=J+ab=J or that $ab\in J$. Thus either $a^1\in J$ or $b^n\in J$. Thus we can say that J+b is nilpotent since $(J+b)^n=J$.

7.4 Q4

An ideal J of a ring A is called semiprime iff it has the following property: For every $a \in A$, if $a^n \in J$ for some positive integer n, then necessarily $a \in J$. Prove that J is semiprime iff A/J has no nilpotent elements (except zero).

A/J has no nilpotent elements means that $J+x^n\neq J$ for any integer n. Thus for every $a\in A: a\notin J$, then $a^n\notin J$. If A/J has a nilpotent element, then J cannot be semiprime because $a\notin J$ and $a^n\in J$ is a contradiction. This also holds true in reverse since $a^n\in J$ where $a\notin J$ would imply J is not semiprime.

7.5 Q5

Prove that an integral domain can have no nonzero nilpotent elements. Then use part 4, together with Exercise F2, to prove that every prime ideal in a commutative ring is semiprime.

Nilpotent elements are also zero divisors since $a^n = 0 = a \cdot a^{n-1}$. So an integral domain cannot have nilpotent elements.

From F2, we learn that if J is a prime ideal, then A/J is an integral domain (no nilpotent elements). From the last exercise, we see that if A/J has no nilpotent elements, then J is semiprime.

8 H. \mathbb{Z}_n as a Homomorphic Image of \mathbb{Z}

8.1 Q1

$$x^{2} - 7y^{2} - 24 = 0$$

$$\phi : \mathbb{Z} \to \mathbb{Z}_{7}$$

$$x^{2} - 3 = 0$$

$$x^{2} = 3$$

$$\forall x \in \mathbb{Z}_{7}, x^{2} \neq 3$$

No solution.

8.2 Q2

$$x^{2} + (x+1)^{2} + (x+2)^{2} = y^{2}$$
$$3x^{2} + 6x + 5 = y^{2}$$
$$\phi : \mathbb{Z} \to \mathbb{Z}_{3}$$
$$y^{2} = 2$$
$$\forall y \in \mathbb{Z}_{3}, y^{2} \neq 2$$

No solution.

8.3 Q3

$$x^{2} + 10y^{2} = 10n + a, a \in \{2, 3, 7, 8\}$$
$$\phi : \mathbb{Z} \to \mathbb{Z}_{10}$$
$$x^{2} = a$$

$$0^2 = 0$$

$$1^2 = 1$$

$$2^2 = 4$$

$$3^2 = 9$$

$$4^2 = 6$$

$$5^2 = 5$$

$$6^2 = 6$$

$$7^2 = 9$$

$$8^2 = 6$$

$$9^2 = 1$$

No solution.

8.4 Q4

$$3, 8, 13, 18, 23, \dots = \langle 3 \rangle$$

$$x \in \mathbb{Z}_5 : x^2 = 3$$

$$0^2 = 0$$

$$1^2 = 1$$

$$2^2 = 4$$

$$3^2 = 4$$

$$4^2 = 1$$

8.5 Q5

$$2, 10, 18, 26, \dots = \langle 2 \rangle$$

$$x \in \mathbb{Z}_8 : x^3 = 2$$

$$0^3 = 0$$

$$1^3 = 1$$

$$2^3 = 0$$

$$3^3 = 1$$

$$4^3 = 0$$

$$5^3 = 5$$

$$6^3 = 0$$

$$7^3 = 7$$

8.6 Q6

$$3, 11, 19, 27, \dots = \langle 3 \rangle$$

$$x \in \mathbb{Z}_8 : x^2 + y^2 = 3$$

$$0^{2} = 0$$
 $1^{2} = 1$
 $2^{2} = 4$
 $3^{2} = 1$
 $4^{2} = 0$
 $5^{2} = 1$
 $6^{2} = 4$

 $7^2 = 1$

For any $a \in \mathbb{Z}_8$, $a^2 = 1$ or $a^2 = 4$, so $\nexists x, y \in \mathbb{Z}_8 : x^2 + y^2 = 3$

8.7 Q7

$$n(n+1) = 10u + a, a \in \{0, 2, 6\}$$

$$\phi : \mathbb{Z} \to \mathbb{Z}_{10}$$

$$0 \cdot 1 = 0$$

$$1 \cdot 2 = 2$$

$$2 \cdot 3 = 6$$

$$3 \cdot 4 = 2$$

$$4 \cdot 5 = 0$$

$$5 \cdot 6 = 0$$

$$6 \cdot 7 = 2$$

$$7 \cdot 8 = 6$$

$$8 \cdot 9 = 2$$

$$9 \cdot 0 = 0$$

Thus $n(n+1) \in \{0, 2, 6\}$

8.8 Q8

$$n(n+1)(n+2) = 10u + a, a \in \{0, 4, 6\}$$

$$\phi : \mathbb{Z} \to \mathbb{Z}_{10}$$

$$0 \cdot 1 \cdot 2 = 0$$

$$1 \cdot 2 \cdot 3 = 6$$

$$2 \cdot 3 \cdot 4 = 4$$

$$3 \cdot 4 \cdot 5 = 0$$

$$4 \cdot 5 \cdot 6 = 0$$

$$5 \cdot 6 \cdot 7 = 0$$

$$6 \cdot 7 \cdot 8 = 6$$

$$7 \cdot 8 \cdot 9 = 4$$

$$8 \cdot 9 \cdot 0 = 0$$

$$9 \cdot 0 \cdot 1 = 0$$