Analysis of Bitcoin Market Sentiment and Hyperliquid Trader Performance

Name: Aman Kumar Date: May 13, 2025

Project: PrimeTrade Data Science Task

1. Introduction and Objective

This project analyses two key datasets:

- Bitcoin Market Sentiment (Fear & Greed Index)
- Historical Trader Data from Hyperliquid

The main objective is to uncover how market sentiment affects trader performance (PnL) and identify patterns and insights that can improve trading strategies.

2. Datasets

A. Hyperliquid Trader Data

- **Source:** historical_data.csv
- Key Columns:
 - o Account, Coin, Execution Price, Size USD, Side, Timestamp IST, Closed PnL, Fee
- Initial Observations:

Contains trade-level data across various cryptocurrencies.

- B. Bitcoin Market Sentiment (Fear & Greed Index)
 - **Source:** fear_greed_index.csv
 - Key Columns:
 - o timestamp, value (sentiment score), classification, date
 - Initial Observations:

Daily Bitcoin-specific market sentiment indicator.

3. Data Preprocessing & Preparation

Steps Taken:

Bitcoin Sentiment Data

- Converted date to datetime
- Renamed:
 - o value → sentiment_score
 - classification → sentiment_classification

Created timestamp_dt from Unix timestamp

Trader Data

- Converted Timestamp IST to datetime → TimestampIST dt
- Extracted normalized Trade Date
- Filtered only Bitcoin trades (Coin == 'BTC')
 - o Result: 26,064 BTC trades
- Converted columns (Execution Price, Size USD, Closed PnL, Fee) to numeric
- Filled NaNs:
 - \circ Closed PnL, Fee $\rightarrow 0$
 - o Dropped rows with NaNs in critical columns

Daily Aggregation

Grouped by Trade_Date and Account:

- daily_net_pnl_gross = sum(Closed PnL)
- daily_total_fees = sum(Fee)
- daily_trade_volume_usd = sum(Size USD)
- daily_trade_count = count(trades)
- Computed daily_net_pnl_net = daily_net_pnl_gross daily_total_fees
- **Result:** 667 rows (trader-day aggregates)

Merging Sentiment and Trader Data

- Merged on Trade_Date and Date
- Result: merged_df with 667 rows, no missing sentiment data
- 4. Exploratory Data Analysis (EDA) & Key Insights
- A. Sentiment Distribution
 - Histogram:
 - o Distribution of sentiment score
 - o [Insert visual description, e.g., "clustered toward Fear and Neutral"]
 - Count Plot:
 - o Most frequent: "Greed" and "Neutral"
 - Least frequent: "Extreme Fear"

B. Trader Net PnL vs. Sentiment

Box Plot Observations:

- Median PnL highest during "Fear"
- Lowest during "Extreme Greed"
- Volatility (IQR) widest during "Extreme Fear"

Insight 1 – PnL during Extreme Fear

- Mean PnL: [Insert Value] (N=[Count])
- Median PnL: [Insert Value]
- Losing trader-days %: [Insert Value]%
- Neutral Day Comparison:
 - Mean PnL: [Insert Value] (N=[Count])
 - o T-test: stat = [Value], p = [Value] → [Significant/Not significant]
- Conclusion: Traders [do/do not] perform worse on "Extreme Fear" days.

C. Trading Volume vs. Sentiment

Box Plot Observations:

- Highest volumes: "Greed" & "Extreme Greed"
- Lowest: "Fear"

Insight 2 – Volume in Greed States

- Mean Volume (Greed): [Value], N=[Count]
- Mean Volume (Extreme Greed): [Value], N=[Count]
- **Neutral Comparison:** Mean = [Value], N=[Count]
- T-tests:
 - Greed vs Neutral: stat = [V], p = [V]
 - Extreme Greed vs Neutral: Stat = [V], p = [V]
- Conclusion: Volume is [significantly/not significantly] higher during Greed phase

D. Market-Level Aggregation

- Metrics:
 - market_total_pnl_net
 - market_total_volume_usd
 - o sentiment_score
- Scatter Plot:
 - sentiment_score vs market_total_pnl_net
 - Slight negative trend
- Correlation Heatmap:
 - Market PnL vs Sentiment: [Value]
 - Market Volume vs Sentiment: [Value]
 - PnL vs Volume: [Value]

Observation:

- Weak [negative/positive] correlation between sentiment and PnL
- Volume shows [positive/negative] relationship with sentiment

E. Consistent Account Performance by Sentiment

Top Performers (examples to be filled):

- "Extreme Greed" → Account [ID], Avg PnL = [Value], Days = [N]
- "Fear" → Account [ID], Avg PnL = [Value], Days = [N]
- "Neutral" → Account [ID], etc.

Versatile Traders:

- [Number] accounts profitable in multiple sentiment states
 - o E.g., Account [X] profitable in [3] categories

Conclusion:

- Some traders specialize in specific sentiment states
- Others show consistent versatility across conditions

F. Outlier & Anomaly Detection

Extreme PnL Days:

- [N] days > ±3 std dev from mean (Mean = [Value])
 - E.g., Account [ID], Date: [Date], PnL = [Value] during [Sentiment]

Extreme Volume Days:

- [N] days > +3 std dev (Mean = [Value])
 - o E.g., Account [ID], Date: [Date], Volume = [Value]

Anomalous Win Rates:

• E.g., Account [ID], win rate = [X]% over [Y] days in [Sentiment]

Conclusion:

- Outliers concentrated in [sentiment state/not sentiment-specific]
- Some accounts show statistical anomalies in consistent performance

5. Statistical Tests

T-test: Fear vs Greed PnL

- Result:
 - o statistic = 2.22
 - p-value = 0.027
- Means:
 - Fear: [Value], Greed: [Value]
- Conclusion:
 - o Traders perform significantly [better/worse] during "Fear" days

ANOVA: Across All Sentiment States

- Result:
 - o F = 1.96
 - \circ p = 0.098
- Interpretation:
 - o No statistically significant difference across **all** sentiment groups

Lagged Sentiment Correlation

- Correlation:
 - o Market PnL vs Lagged Sentiment: -0.1838
- Conclusion:
 - Weak negative correlation → high sentiment yesterday → slightly lower PnL today
- 6. Conclusions & Strategic Takeaways
- 1. Sentiment Affects Profitability
 - Traders earn [more/less] on "Fear" vs "Greed" days
 - Strategy: Consider increasing exposure when fear is high
- 2. Volume Tracks Sentiment
 - Volumes are [higher/lower] during "Greed" and "Extreme Greed"
 - Strategy: Use volume spikes as sentiment confirmation
- 3. Trader Specialization
 - Some traders thrive under specific sentiments
 - Strategy: Identify personal sentiment sweet spots for optimal performance
- 4. Lagged Sentiment Offers Weak Predictive Signal
 - Strategy: Lagged sentiment alone isn't strong combine with price/action indicators

Future Work & Recommendations

1. Predictive Modeling

- o Implement advanced machine learning models such as Random Forest and **XGBoost** to predict daily_net_pnl_net using engineered features like **sentiment** scores, volume metrics, and time-based indicators.
- This phase will enhance forecasting capabilities and uncover deeper patterns.

2. Granular Trade-Level Analysis

- o Perform trade-level PnL analysis by correlating each individual trade with the prevailing sentiment at its timestamp.
- o This can help validate sentiment-driven trading hypotheses and detect micropatterns in trader behavior.

3. Robust Feature Engineering

- Derive a reliable "daily net direction" indicator from raw trade data, capturing overall market posture (bullish/bearish/neutral) for the day.
- This feature can serve as a powerful input for both classification and regression models.

4. Integration with Market Data

- Incorporate Bitcoin OHLCV (Open, High, Low, Close, Volume) data to contextualize sentiment within price action.
- Use technical indicators (e.g., RSI, MACD, Bollinger Bands) to augment the feature set and improve model robustness.

5. Model Optimization

- Apply hyperparameter tuning (e.g., Grid Search, Bayesian Optimization) and use time-series-aware cross-validation (e.g., walk-forward validation) to avoid data leakage and overfitting.
- Evaluate performance using metrics like RMSE, MAPE, and Sharpe Ratio (if used in strategy formulation).

6. **Backtesting Strategy Performance**

- Any strategies or signals generated from sentiment or predictive models should undergo rigorous backtesting.
- Simulate performance across different market conditions to assess reliability, drawdowns, and profitability.