Relazione progetto

Apollonio Francesco Bianchi Andrea Mazzetti Francesca

January 20, 2022

Contents

1	Introduzione	1
	1.1 Il dataset	1
	1.2 Gli algoritmi	1
	1.3 I test	2
2	Analisi dei risultati	3
3	PSNR e MSE	6
4	Medie e Deviazioni standard	9
	4.1 PSNR - medie	9
	4.2 PSNR - deviazioni standard	9
	4.3 MSE - medie	10
	4.4 MSE - deviazioni standard	11
5		12

1 Introduzione

Il problema di Deblur consiste nella ricostruzione di un'immagine a partire da un dato acquisito mediante il modello:

$$b = Ax + \eta$$

Con b che è l'immagine corrotta, x l'immagine originale da ricostruire, la matrice A applica il blur gaussiano e η è il rumore aggiunto all'immagine sfocata, con distribuzione Gaussiana di media \mathbb{O} e deviazione standard σ .

1.1 Il dataset

Per eseguire i test richiesti è stato generato un dataset di otto immagini contenenti forme geometriche varie su sfondo nero a cui sono state aggiunte due ulteriori immagini fotografiche, delle quali una, la figura "sample9.png" molto contrastata e con pochi dettagli e l'altra, "sample10.png" meno contrastata ma più dettagliata.

1.2 Gli algoritmi

Per ricostruire le immagini danneggiate sono stati impiegati diversi algoritmi, in modo da poter poi confrontarne l'efficacia.

La soluzione naive Il primo tentativo di ricostruzione è stato fatto utilizzando un algoritmo semplice - per questo detto naive - per risolvere il problema di ottimizzazione:

$$x^* = \arg\min_{x} \frac{1}{2} ||Ax - b||_2^2$$

In questo caso la funzione da minimizzare è $f(x) = \frac{1}{2}||Ax - b||_2^2$ e il suo gradiente è $\nabla f(x) = A^T A x - A^T b$. La funzione è stata implementata usando il metodo dei gradienti coniugati, implementato dalla funzione minimize inclusa nella libreria numpy.

Regolarizzazione Dal momento che la funzione naive recupera sì la nitidezza dell'immagine, ma introduce un rumore elevato, è necessario introdurre un termine di regolarizzazione di Tikhonov, il problema di minimizzazione diventa quindi:

$$x^* = \arg\min_{x} \frac{1}{2} ||Ax - b||_2^2 + \frac{\lambda}{2} ||x||_2^2$$

La funzione da minimizzare è quindi $f(x) = \frac{1}{2}||Ax - b||_2^2 + \frac{\lambda}{2}||x||_2^2$ e il suo gradiente è $\nabla f(x) = A^T A x - A^T b + \lambda x$. La funzione è stata implementata sia tramite la funzione minimize di numpy che tramite il metodo del gradiente implementato a lezione. Sono poi stati eseguiti test con diversi valori di lambda.

Variazione totale Un altro termine di regolarizzazione adatto è dato dalla funzione di Variazione Totale. Data x l'immagine di dimensioni $n \times m$, la variazione totale TV di xè definita come:

$$TV(u) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sqrt{||\nabla u(i,j)||_{2}^{2} + \epsilon^{2}}$$

Il problema di minimo da risolvere diventa quindi:

$$x^* = \arg\min_{x} \frac{1}{2} ||Ax - b||_2^2 + \lambda TV(u)$$

il cui gradiente è:

$$\nabla f(x) = (A^T A x - A^T b) + \lambda \nabla T V(x)$$

La funzione è stata implementata usando il metodo del gradiente implementato a lezione e già usato per il punto precedente. Sono stati eseguiti test per diversi valori di λ . Infine, per risolvere il problema è stato necessario anche calcolare il gradiente della variazione totale, che è dato da:

$$x^* = \arg\min_{x} \frac{1}{2} ||Ax - b||_2^2 + \lambda TV(u)$$

il cui gradiente ∇f è dato da

$$\nabla f(x) = (A^T A x - A^T b) + \lambda \nabla T V(x)$$

1.3 I test

Dopo aver applicato il blur gaussiano e il disturbo alle immagini del dataset, abbiamo applicato diversi algoritmi per migliorare la qualità delle immagini. Per ogni immagine abbiamo eseguito un ciclo di test applicando diversi blur gaussiani, diversi valori di deviazione standard per il rumore e diversi valori per il parametro λ del termine di regolarizzazione di Tikhonov. In tutti i test i metodi sono stati limitati ad un numero massimo di iterazioni pari

Dim Kernel	Std dev Sigma Kernel	Std Dev Rumore	Lambda
5×5	0.5	0.01	0.01
7×7	1	0.02	0.05
9×9	1.3	0.03	0.08
N.A.	N.A.	0.04	0.32
N.A.	N.A.	0.05	1

Table 1: Valori assunti dai parametri nei test

a 100, per permettere di elaborare tutte e dieci le immagini in un tempo ragionevole. I valori usati sono riassunti nella tabella 1.

I dati raccolti possono essere trovati integralmente nella cartella "data" allegata, di seguito commenteremo i risultati più rilevanti.

2 Analisi dei risultati

Dai test effettuati sulle immagini (di seguito riporteremo solo due delle dieci immagini elaborate, le restanti immagini possono essere trovate nella galleria a fine documento) possiamo immediatamente notare come la correzione naive è largamente insufficiente ai fini di una ricostruzione accurata dell'immagine. I due metodi regolarizzati con parametro di Tikhonov danno risultati migliori e simili fra loro, mentre il metodo del gradiente regolarizzato con parametro TV offre un risultato migliore nel caso delle immagini con forme geometriche astratte ma genera immagini non del tutto nitide (quasi come se fosse un effetto "acquerello") nel caso di immagini fotografiche.

Ricordiamo comunque che dal momento che i metodi sono iterativi e le funzioni convergenti e che, nel caso dei nostri test, i metodi sono stati limitati a 100 iterazioni, possiamo aspettarci che la qualità dei risultati migliori all'aumentare del numero di iterazioni.

Figure 1: sample 5.png - Dim. Kernel: 9 × 9, σ : 1.3, Std. Dev.:0.05, λ : 0.08

Figure 2: sample 10.png - Dim. Kernel: 9×9, $\sigma:$ 1.3, Std. Dev.:0.05, $\lambda:$ 0.08

3 PSNR e MSE

L'analisi delle misure di PSNR e MSE va in contrasto con quanto osservato nelle immagini analizzate poc'anzi, in quando il valore di PSNR dell'algoritmo che implementa il metodo del gradiente con il parametro di regolarizzazione TV è sempre superiore a quello degli altri algoritmi, nonostante come già riportato le immagini fotografiche risultino qualitativamente inferiori (almeno nel caso di un massimo di 100 iterazioni).

Nel fare i test per raccogliere i dati sui valori di PSNR e MSE, abbiamo variato la dimensione del kernel, il valore di σ , la deviazione standard del rumore e il valore del parametro di regolarizzazione usando i valori indicati nella tabella 1. Di conseguenza abbiamo ottenuto 75 diversi valori del PSNR e del MSE per ogni algoritmo usato su una singola immagine, quindi 750 diversi valori per l'intero dataset. Dal momento che una tabella di simili dimensioni richiederebbe troppo spazio all'interno di questo documento, riportiamo in questa sede solo le tabelle con le medie dei valori ottenuti fra le 10 immagini di alcuni test scelti, mentre per i dati completi rimandiamo ai file .csv allegati.

I parametri sono indicati, per motivi di spazio, con la notazione KX_Y_Z; dove X indica la dimensione e il valore di sigma del kernel (K1 equivale ad un kernel di dimensione 5×5 con valore di $\sigma=0.5$, K2 equivale ad una dimensione di 7×7 con $\sigma=1$ e K3 indica un kernel di dimensione 9×9 con $\sigma=1.3$), Y indica il valore della deviazione standard del rumore e Z il valore del parametro λ

Parametri	Noised	Naive
K1_0.01_0.01	32.88894160008047	20.906620556841617
K1_0.02_0.05	30.763199597344958	14.8915184413088
K1_0.03_0.08	28.663883887898002	11.362064451498266
K1_0.04_0.32	26.830940497683315	8.861122389375282
K1_0.05_1	25.248405184567638	6.925775031538379
K2_0.01_0.01	30.6251433086292	8.963663561306513
K2_0.02_0.05	29.216164594604077	2.8832589955413335
K2_0.03_0.08	27.61380043143138	-0.6605537021630714
K2_0.04_0.32	26.084333732275887	-3.1717769592303964
K2_0.05_1	24.697711613529346	-5.12897412971146
K3_0.01_0.01	29.929334386094617	9.127820763357565
K3_0.02_0.05	28.696555087533152	3.0185527548672435
K3_0.03_0.08	27.238538348524095	-0.5508328107608824
K3_0.04_1	25.81293328683397	-3.06923303073812
K3_0.05_1	24.497025480815115	-5.031814263063739

Table 2: PSNR medi in test scelti - 1 di 2

Tikhonov1	Tikhonov2	TV
28.85365975216535	29.397966691454165	40.31057299355923
27.670014350466612	27.671699656368297	36.08971920069892
25.762903812128762	25.762935837422873	34.484105543977385
21.422057375046727	21.422037850812796	30.933612242387806
15.829495558542666	15.829497008321814	26.091522177092646
29.434919420524473	30.134660830205746	36.80653808537427
28.629106610405227	28.630959404346584	33.33733899438458
26.92191582698042	26.921951594230443	32.15791844794761
21.414643285159894	21.414641102545374	29.54942833094263
15.785529121228809	15.785529964147633	26.568120871033337
29.72394757943159	30.262901407284858	35.82801086265471
28.697946979382618	28.699329252764294	32.24991178120849
27.07183421922942	27.071855677963207	31.34081689896302
15.764980436419147	15.764980341189448	26.29792488491205
15.759412904341838	15.759412782636478	26.28418529950803

Table 3: PSNR medi in test scelti - 2 di 2

Parametri	Noised	Naive
K1_0.01_0.01	0.0006202613738970486	0.008116005363064038
K1_0.02_0.05	0.0009200495559788917	0.03242379963657855
K1_0.03_0.08	0.0014203720800512248	0.07308063396449
K1_0.04_0.32	0.0021196805024182573	0.12998558476529137
K1_0.05_1	0.0030207608821427646	0.20296832304760967
K2_0.01_0.01	0.001085918247926105	0.12695419850205097
K2_0.02_0.05	0.0013847982893449005	0.5148542031796666
K2_0.03_0.08	0.0018846186466044122	1.1643121340880531
K2_0.04_0.32	0.002587434138046774	2.075795561872906
K2_0.05_1	0.0034893312156784517	3.2576827153152914
K3_0.01_0.01	0.0012855039280980532	0.12226438926550005
K3_0.02_0.05	0.001583168688714036	0.49907770364626425
K3_0.03_0.08	0.002083306295111171	1.135294215544004
K3_0.04_0.32	0.002786273571792625	2.0320524068670793
K3_0.05_1	0.0036816538874152203	3.185778647086994

Table 4: MSE medi in test scelti - 1 di 2

Tikhonov1	Tikhonov2	TV
0.0013027055116812667	0.001149583071691836	0.00021320361464072734
0.0017322871994439597	0.0017316356193361894	0.000596598574595035
0.002707055930029478	0.0027070368482852614	0.0008063338394220963
0.008381850944323768	0.00838187641387138	0.001683702537001512
0.03137426721230338	0.03137425830704766	0.003528737461077555
0.0011694542274754201	0.0010089745799529877	0.0004911022352847949
0.0014825924673268407	0.0014820683691548443	0.0009266279516767339
0.0021959540590343247	0.00219593956665443	0.001131476087049577
0.008531570044950317	0.008531577767220527	0.00198253005385718
0.031699589253196526	0.03169958175532764	0.003343142680843672
0.0011341308420553908	0.0010229958160226937	0.0006145258161427157
0.001514555806438736	0.0015141971884928065	0.0010756762721259318
0.002184168807002595	0.002184160725997061	0.001274423882446191
0.008660220493829075	0.008660213155263583	0.0021114846846985317
0.03187803763787521	0.031878038702191525	0.003484314494466365

Table 5: MSE medi in test scelti - 2 di 2

4 Medie e Deviazioni standard

Abbiamo poi calcolato, per alcuni parametri fissati, i valori medi e la deviazione standard di PSNR e MSE calcolati sull'intero set di immagini, di seguito riportati.

4.1 PSNR - medie

Parametri	Noised	Naive
K1_0.02_0.32	30.763768917410044	14.894662327258937
K1_0.04_0.08	26.828388450594588	8.878555041056844
K2_0.01_0.05	30.622021092621537	8.966179977846219
K2_0.03_0.01	27.6123416740849	-0.6712866218224003
K2_0.04_1	26.078864556711757	-3.1754732746047263
K3_0.01_0.32	29.93320745230278	9.123446234284177
K3_0.03_0.08	27.238538348524095	-0.5508328107608824
K3_0.05_0.05	24.494076785889234	-5.038541070382648

Table 6: PSNR medi - 1 di 2

Tikhonov1	Tikhonov2	TV
21.7819230199858	21.781917748686006	31.04209033931886
23.92319272116348	23.923228522409865	34.110429553506364
30.55319797402757	30.553647157775565	33.51094774693016
21.223671230137814	22.298241259606492	34.238199848360786
15.79135726226173	15.791357125229187	26.581916894483562
21.522526143402864	21.52254410032735	29.281069470119412
27.07183421922942	27.071855677963207	31.34081689896302
24.107064541547256	24.11033325395355	31.8493174993012

Table 7: PSNR medi - 2 di 2

4.2 PSNR - deviazioni standard

Parametri	Noised	Naive
K1_0.02_0.32	1.658802250557476	0.023664854688653286
K1_0.04_0.08	0.8413523869964247	0.04102936694626389
K2_0.01_0.05	2.528216342828928	0.037568339882867924
K2_0.03_0.01	1.5775909212341903	0.01929727323852776
K2_0.04_1	1.228694278540623	0.03144829034933194
K3_0.01_0.32	2.572979136502637	0.0794215973211503
K3_0.03_0.08	1.697988459722755	0.046787544568358645
K3_0.05_0.05	1.0727261062834132	0.019264568863773632

Table 8: PSNR deviazioni standard - 1 di $2\,$

Tikhonov1	Tikhonov2	TV
2.6414685642821576	2.641456531489875	4.47106635598741
0.582326403868461	0.582333109259285	4.472359920936679
2.1722265542187214	2.17262796777723	4.3623408325974715
0.168900366912713	0.23339988763221314	3.687345818425936
2.7438990012612074	2.743898990910928	3.5386199772849665
2.637030803854423	2.6370477655094087	3.8724018388912054
1.8319794710385187	1.8319870258907323	3.788504784930772
0.8245022506762851	0.8251210295802458	3.8001097668308756

Table 9: PSNR deviazioni standard - 2 di $2\,$

4.3 MSE - medie

Parametri	Noised	Naive
K1_0.02_0.32	0.0009206666823855502	0.03239964074415069
K1_0.04_0.08	0.0021212426730849833	0.12946843704967997
K2_0.01_0.05	0.0010866357436223138	0.12688146916889315
K2_0.03_0.01	0.0018846166708029646	1.1671668555503025
K2_0.04_1	0.002590376676267936	2.077584523963618
K3_0.01_0.32	0.00128372312619177	0.12238472318750179
K3_0.03_0.08	0.002083306295111171	1.135294215544004
K3_0.05_0.05	0.0036847659616542953	3.19049727608101

Table 10: MSE medi - 1 di 2

Tikhonov1	Tikhonov2	TV
0.007900640217740363	0.007900639024825434	0.0016697098088447424
0.00409047235378353	0.004090439494530687	0.0008328573198533096
0.0010267168608407377	0.00102667258212427	0.0009119679331085184
0.007550422585664756	0.005899698857127317	0.0006414251034730055
0.03167385690244734	0.0316738579974414	0.0033387537952859593
0.00844051248572419	0.008440491067906617	0.002072074921199472
0.002184168807002595	0.002184160725997061	0.001274423882446191
0.003964789023405572	0.003961935515935415	0.001133074851968335

Table 11: MSE medi - 2 di 2

4.4 MSE - deviazioni standard

Parametri	Noised	Naive
K1_0.02_0.32	0.0005096930780202533	0.00017572064849211516
K1_0.04_0.08	0.0005114466053173154	0.0012258348994327946
K2_0.01_0.05	0.0009890410172708824	0.0010922683146856853
K2_0.03_0.01	0.0009832177594471577	0.005180408030698784
K2_0.04_1	0.00099050366592391	0.01502025453372986
K3_0.01_0.32	0.001187843289307018	0.0022018586655526227
K3_0.03_0.08	0.0011858666882446796	0.01218816494147507
K3_0.05_0.05	0.0011872505890449152	0.01414467738591752

Table 12: MSE deviazioni standard - 1 di $2\,$

Tikhonov1	Tikhonov2	TV
0.004603955767830908	0.004603938366165981	0.002745589109251268
0.0005905215539182448	0.0005905230761723575	0.0014339795159147126
0.0007187297309404321	0.0007188617410990995	0.001516779348411557
0.0003070971067675332	0.0003376151566664521	0.0009514944202030993
0.01850031934813074	0.018500320607146282	0.0038579942140794968
0.0052155250808946325	0.005215518899080878	0.0029939518379029344
0.0012360152796652784	0.0012360212772982882	0.001885354597321474
0.0009180381710769759	0.0009181889991335728	0.0016709918592897892

Table 13: MSE deviazioni standard - 2 di $2\,$