TensorFlow Research at Scale

Graphs

```
import numpy as np
                                                                                                                                                                 train_min
                                                                                                                     gradients
                                                                                                                                 train min
import tensorflow as tf
# Model parameters
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
# Model input and output
x = tf.placeholder(tf.float32)
                                                                                                          start O
                                                                                                          delta O
linear_model = W * x + b
y = tf.placeholder(tf.float32)
# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# training data
x_{train} = [1, 2, 3, 4]
y_{train} = [0, -1, -2, -3]
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
                                                                                                                     train_min
                                                                                                         b
for i in range (1000):
  sess.run(train, {x:x_train, y:y_train})
# evaluate training accuracy
                                                                                                                                  train_min
                                                                                                                         W
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))
```

What if...

You can call TensorFlow ops directly from Python?

Eager Execution

Boilerplate

```
x = tf.placeholder(tf.float32, shape=[1, 1])
m = tf.matmul(x, x)
print(m)
# Tensor("MatMul:0", shape=(1, 1), dtype=float32)
with tf.Session() as sess:
  m_out = sess.run(m, feed_dict={x: [[2.]]})
print(m_out)
                                  Code like this...
# [[4.]]
```

Boilerplate

```
x = [[2.]]
m = tf.matmul(x, x)

print(m)
# tf.Tensor([[4.]], dtype=float32, shape=(1,1))
```

Becomes this

Instant Errors

x = tf.gather([0, 1, 2], 7)

```
InvalidArgumentError: indices = 7 is not in [0, 3) [Op:Gather]
```

Python Control Flow

```
a = tf.constant(6)
while not tf.equal(a, 1):
    if tf.equal(a % 2, 0):
        a = a / 2
    else:
        a = 3 * a + 1
    print(a)
```

```
# Outputs
tf.Tensor(3, dtype=int32)
tf.Tensor(10, dtype=int32)
tf.Tensor(5, dtype=int32)
tf.Tensor(16, dtype=int32)
tf.Tensor(8, dtype=int32)
tf.Tensor(4, dtype=int32)
tf.Tensor(2, dtype=int32)
tf.Tensor(1, dtype=int32)
```

Gradients

- Operations executed are recorded on a tape
- Tape is played back to compute gradients

Gradients

```
def square(x):
    return tf.multiply(x, x) # Or x * x

grad = tfe.gradients_function(square)
```

```
print(square(3.)) # tf.Tensor(9., dtype=tf.float32
print(grad(3.)) # [tf.Tensor(6., dtype=tf.float32))]
```

Gradients

```
def square(x):
  return tf.multiply(x, x) # 0r x * x
grad = tfe.gradients_function(square)
gradgrad = tfe.gradients_function(lambda x: grad(x)[0])
print(square(3.)) # tf.Tensor(9., dtype=tf.float32)
print(grad(3.)) # [tf.Tensor(6., dtype=tf.float32)]
print(gradgrad(3.)) # [tf.Tensor(2., dtype=tf.float32))]
```

Custom Gradients

```
def log1pexp(x):
    return tf.log(1 + tf.exp(x))
grad_log1pexp = tfe.gradients_function(log1pexp)

print(grad_log1pexp(0.))
    Works fine, prints [0.5]
```

Custom Gradients

```
def log1pexp(x):
    return tf.log(1 + tf.exp(x))
grad_log1pexp = tfe.gradients_function(log1pexp)

print(grad_log1pexp(100.))

[nan] due to numeric instability
```

Custom Gradients

```
@tfe.custom_gradient
def log1pexp(x):
  e = tf.exp(x)
  def grad(dy):
    return dy * (1 - 1 / (1 + e))
  return tf.log(1 + e), grad
grad_log1pexp = tfe.gradients_function(log1pexp)
# Gradient at x = 0 works as before.
print(grad_log1pexp(0.)) # [0.5]
# And now gradient computation at x=100 works as well.
print(grad_log1pexp(100.)) # [1.0]
```

Using GPUs

tf.device() for manual placement

```
with tf.device("/gpu:0"):
    x = tf.random_uniform([10, 10])
    y = tf.matmul(x, x)
    # x and y reside in GPU memory
```

It's not that different

A Collection of Operations

TensorFlow = Operation Kernels + Composition

- Session: One way to compose operations
- Eager execution: Compose using Python

Building Models

The same APIs as graph building (tf.layers, tf.train.Optimizer, tf.data etc.)

```
model = tf.layers.Dense(units=1, use_bias=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
```

Building Models

```
model = tf.layers.Dense(units=1, use_bias=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
# Define a loss function
def loss(x, y):
    return tf.reduce_mean(tf.square(y - model(x)))
```

Training Models

Compute and apply gradients

```
for (x, y) in get_next_batch():
   optimizer.apply_gradients(grad_fn(x, y))
```

Training Models

Compute and apply gradients

```
grad_fn = tfe.implicit_gradients(loss)

for (x, y) in get_next_batch():
   optimizer.apply_gradients(grad_fn(x, y))
```

No more graphs then?

Graphs are

Optimizable

- Automatic buffer reuse
- Constant folding
- Inter-op parallelism
- Automatic trade-off between compute and memory

Graphs are

Deployable

- TensorFlow Serving
- Mobile
- Any other C++/Java/other program
 Without loss in translation between runtimes

Graphs are

Transformable

- Carve out subgraphs to offload to accelerators
- Train with quantization in mind

Imperative to declarative and back

Write model definition code once

The exact same code can execute operations in one Python process and construct graphs in another (see examples)

• Checkpoints are compatible

Train eagerly, checkpoint, load in a graph, or vice-versa

Future:

Within the same Python process, selectively "compile" portions of your computations into graphs and execute

Start with eager

```
optimizer = tf.train.AdagradOptimizer(0.01)
for _ in xrange(num_iters):
   (images, labels) = iterator.next()
   optimizer.minimize(model_loss)
```

Run distributed

```
optimizer = tf.train.AdagradOptimizer(0.01)
step = tf.train.get_or_create_global_step()
train_op = optimizer.minimize(model_loss, global_step=step)
                                       Same model spec
hooks = [tf.train.StopAtStepHook(last_step=num_iters)]
with tf.train.MonitoredTrainingSession(hooks=hooks, ...) as mon_sess:
  while not mon sess.should stop():
    mon_sess.run(train_op)
```

Or even on TPUs

```
def model fn():
  optimizer = tf.train.AdagradOptimizer(0.01)
  optimizer = tpu.CrossShardOptimizer(optimizer)
  step = tf.train.get_or_create_global_step()
  train_op = optimizer.minimize(model_loss, global_step=step)
  return tf.estimator.EstimatorSpec(train_op=train_op, ...)
                                       Same model spec
```

estimator = tf.tpu_estimator.TPUEstimator(model_fn=model_fn, ...)

Thank you!

Rajat Monga