Equilibrio químico en fase gas

PROBLEMAS

Con datos do equilibrio

- Nun reactor de 5 dm³ introdúcense 15,3 g de CS₂ e 0,82 g de H₂. Ao elevar a temperatura ata 300 °C alcánzase o seguinte equilibrio: $CS_2(g) + 4H_2(g) \rightleftharpoons 2H_2S(g) + CH_4(g)$, onde a concentración de metano no equilibrio é de 0,01 mol/dm³.
 - a) Calcula as concentracións molares das especies $CS_2(g)$, $H_2(g)$ e $H_2S(g)$ no equilibrio.
 - b) Determina o valor de K_c e discute razoadamente que lle sucederá ó sistema en equilibrio se engadimos máis cantidade de CS₂(g) mantendo o volume e a temperatura constantes.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

Rta.: a) $[CS_2] = 0.0302$; $[H_2] = 0.0413$; $[H_2S] = 0.0200 \text{ mol/dm}^3$; b) $K_c = 45.3$; Desprázase cara á dereita.

- A 670 K, un recipiente de 2 dm³ contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e 0,024 moles de ioduro de hidróxeno, segundo a reacción: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$. Nestas condicións, calcula:
 - a) O valor de K_c e K_p .
 - b) A presión total no recipiente e as presións parciais dos gases na mestura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa (O cloro gas pódese obter segundo a reacción: $4 \text{ HCl}(g) + O_2(g) \rightarrow 2 \text{ Cl}_2(g) + 2 \text{ H}_2O(g)$.

Introdúcense 0,90 moles de HCl e 1,2 moles de O₂ nun recipiente pechado de 10 dm³ no que previamente se fixo o baleiro. Quéntase a mestura a 390 °C e, cando se alcanza o equilibrio a esta temperatura, obsérvase a formación de 0,40 moles de Cl₂.

- c) Calcula o valor da constante K_c .
- d) Calcula a presión parcial de cada compoñente no equilibrio e a partir delas calcula o valor de K_p . Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 19)

Rta.: a) $K_c = 2.56 \cdot 10^3$; b) p(HCl) = 0.544 atm; $p(O_2) = 5.44$ atm; $p(Cl_2) = p(H_2O) = 2.18$ atm; $K_p = 47.0$.

- Nun recipiente de 2,0 L introdúcense 2,1 moles de CO2 e 1,6 moles de H2 e quéntase a 1800 °C. Unha vez alcanzado o seguinte equilibrio: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ analízase a mestura e atópanse 0,90 moles de CO₂. Calcula:
 - a) A concentración de cada especie no equilibrio.
 - b) O valor das constantes K_c e K_p a esa temperatura.

(A.B.A.U. ord. 17)

Rta.: a) $[CO_2] = 0.45 \text{ mol/dm}^3$; $[H_2] = 0.20 \text{ mol/dm}^3$; $[CO] = [H_2O] = 0.60 \text{ mol/dm}^3$; b) $K_p = K_c = 4.0$.

- Considera o seguinte equilibrio: $CO_2(g) + H_2S(g) \rightleftharpoons COS(g) + H_2O(g)$. Introdúcense 4,4 g de CO_2 nun recipiente de 2 dm³ a 337 ℃ e unha cantidade suficiente de H₂S para que, unha vez alcanzado o equilibrio, a presión total sexa de 10 atm. Se na mestura en equilibrio hai 0,01 moles de auga, calcula:
 - a) As concentracións de cada unha das especies no equilibrio.
 - b) Os valores de K_c e K_p á devandita temperatura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. extr. 22)

Rta.: a) $[CO_2] = 0.045$: $[H_2S] = 0.145$; $[COS] = [H_2O] = 0.00500 \text{ mol/dm}^3$; b) $K_c = K_p = 0.0038$.

- Introdúcense 0,2 moles de Br₂ nun recipiente de 0,5 L de capacidade a 600 °C. Unha vez establecido o equilibrio $Br_2(g) \rightleftharpoons 2 Br(g)$ nestas condicións, o grao de disociación é 0,8.
 - a) Calcula K_c e K_p .
 - b) Determina as presións parciais exercidas por cada compoñente da mestura no equilibrio.

Datos: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. (A.B.A.U. extr. 17)

Rta.: a) $K_c = 5.12$; $K_p = 367$; b) $p(Br_2) = 5.7$ atm; p(Br) = 45.9 atm.

b) Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N₂O₄ e quéntase a 35 °C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ e cando se alcanza o equilibrio a presión total é de 2,27 atm. Calcula a porcentaxe de N₂O₄ disociado.

Datos:
$$R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$
; 1 atm = 101,3 kPa. (A.B.A.U. extr. 19) **Rta.**: b) $\alpha = 69 \%$.

- 7. Nun reactor de 10 L introdúcense 2,5 moles de PCl₅ e quéntase ata 270 °C, producíndose a reacción: PCl₅ (g) ⇌ PCl₃ (g) + Cl₂ (g). Unha vez alcanzado o equilibrio compróbase que a presión no reactor é de 15,7 atm. Calcula:
 - a) O número de moles de todas as especies presentes no equilibrio.
 - b) O valor das constantes K_c e K_p a devandita temperatura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 18) **Rta.**: a) $n(\text{PCl}_5) = 1,48 \text{ mol PCl}_5$; $n(\text{PCl}_3) = n(\text{Cl}_2) = 1,02 \text{ mol}$; b) $K_c = 0,0708$; $K_p = 3,15$.

- 8. Nun recipiente pechado de 5 dm³, no que previamente se fixo o baleiro, introdúcense 0,4 moles de SO_2Cl_2 e quéntase a 400 °C, descompoñéndose segundo a reacción: $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$. Cando se alcanza o equilibrio, obsérvase que se descompuxo o 36,5 % do SO_2Cl_2 inicial. Calcula:
 - a) As presións parciais de cada compoñente da mestura no equilibrio.
 - b) O valor de K_c e K_p á devandita temperatura.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. ord. 22)

Rta.: a) a) $p(SO_2Cl_2) = 2.81$ atm; $p(SO_2) = p(Cl_2) = 1.61$ atm; b) $K_c = 0.0168$; $K_p = 0.927$.

- 9. Nun recipiente pechado introdúcense 2,0 moles de CH_4 e 1,0 mol de H_2S á temperatura de 727 °C, establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o equilibrio, a presión parcial do H_2 é 0,20 atm e a presión total é de 0,85 atm. Calcule:
 - a) Os moles de cada substancia no equilibrio e o volume do recipiente.
 - b) O valor de K_c e K_p .

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1.80 \text{ mol}$; $n_e(H_2S) = 0.60 \text{ mol}$; $n_e(CS_2) = 0.200 \text{ mol}$; $n_e(H_2) = 0.800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0.0079$; $K_c = 1.2 \cdot 10^{-6}$.

- 10. Ao quentar HgO(s) nun recipiente pechado no que se fixo o baleiro, disóciase segundo a reacción: 2 HgO(s)

 ≥ 2 Hg(g) + O₂(g). Cando se alcanza o equilibrio a 380 °C, a presión total no recipiente é de 0,185 atm. Calcula:
 - a) As presións parciais das especies presentes no equilibrio.
 - b) O valor das constantes K_c e K_p da reacción.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 18)

Rta.: a) p(Hg) = 0.123 atm; $p(O_2) = 0.0617$ atm; b) $K_c = 6.1 \cdot 10^{-9}$; $K_p = 9.4 \cdot 10^{-4}$.

Coa constante como dato

- 1. Para a reacción $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2g$, o valor de $K_c = 5$ a 530 °C. Se reaccionan 2,0 moles de CO(g) con 2,0 moles de $H_2O(g)$ nun reactor de 2 L:
 - a) Calcula a concentración molar de cada especie no equilibrio á devandita temperatura.
 - b) Determina o valor de K_p e razoa como se verá afectado o equilibrio se introducimos no reactor máis cantidade de CO(g) sen variar a temperatura nin o volume.

(A.B.A.U. extr. 23)

Rta.: a) [CO] = 0,309; [H₂O] = 0,309; [CO₂] = 0,691; [H₂] = 0,691 mol/dm³; b)
$$K_p = 5,00$$
.

- 2. Nun recipiente de 10 litros introdúcense 2 moles de N_2O_4 gasoso a 50 °C producíndose o seguinte equilibrio de disociación: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. Se a constante K_p a devandita temperatura é de 1,06; calcula:
 - a) As concentracións dos dous gases tras alcanzar o equilibrio e a porcentaxe de disociación do N₂O₄.
 - b) As presións parciais de cada gas e a presión total no equilibrio.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. extr. 21)

Rta.: a) $[N_2O_4] = 0.160 \text{ mol/dm}^3$; $[NO_2] = 0.0800 \text{ mol/dm}^3$; $\alpha = 20.0 \%$;

b) $p(N_2O_4) = 4{,}24$ atm = 430 kP; $p(N_2O_4) = 2{,}12$ atm = 215 kPa; $p = 6{,}36$ atm = 645 kPa.

- 3. Considera o seguinte equilibrio que ten lugar a 150 °C: I_2 (g) + Br_2 (g) \rightleftharpoons 2 lBr (g) cunha K_c = 120. Nun recipiente de 5,0 dm³ de capacidade introdúcense 0,0015 moles de iodo e 0,0015 moles de bromo. Calcula:
 - a) A concentración de cada especie cando se alcanza o equilibrio.
 - b) As presións parciais e a constante K_p .

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 21)

Rta.: a) $[I_2] = [Br_2] = 4,63 \cdot 10^{-5} \text{ mol/dm}^3$; $[IBr] = 5,07 \cdot 10^{-4} \text{ mol/dm}^3$;

b) $p(I_2) = p(Br_2) = 163 \text{ Pa} = 0.00161 \text{ atm}; p(IBr) = 1.79 \cdot 10^3 \text{ Pa} = 0.0176 \text{ atm}; K_p = 120.$

4. Introdúcese fósxeno (COCl₂) nun recipiente baleiro de 2 dm³ de volume a unha presión de 0,82 atm e unha temperatura de 227 °C, producíndose a súa descomposición segundo o equilibrio:

 $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$. Sabendo que nestas condicións o valor de K_p é 0,189; calcula:

- a) A concentración de todas as especies presentes no equilibrio.
- b) A presión parcial de cada unha das especies presentes no equilibrio.

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 20)

Rta.: a) $[COCl_2]_e = 0.0124 \text{ mol/dm}^3$; $[CO]_e = [Cl_2]_e = 0.00756 \text{ mol/dm}^3$;

b) $p_e(COCl_2) = 0.510$ atm; $p_e(CO) = p_e(Cl_2) = 0.310$ atm.

♦ CUESTIÓNS

1. Para a reacción en equilibrio: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) \Delta H^0 < 0$; explica razoadamente como se desprazará o equilibrio se se engade $H_2(g)$.

(A.B.A.U. ord. 20)

2. a) Dada a reacción: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$, $\Delta H^o < 0$, razoa como inflúe sobre o equilibrio un aumento da temperatura.

(A.B.A.U. extr. 19)

Cuestións e problemas das <u>probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.