

## ميغراة توظيف أسائذة النطيم الناتوي الأطر النظامية للأعلىيميات دورة يثاير 2023 العوضوع



| أريع ساعات | مدة<br>الإجتر : | المشيئر في مادة أو مواد التفصص | JAN    |
|------------|-----------------|--------------------------------|--------|
| 10         | المعامل         | الزياضيات                      | التقعص |

## Consignes et instructions importantes :

- 1. L'épreuve comporte 100 questions de la question Q1 à la question Q100
- 2. Chaque question comporte 4 choix de réponses (A, B, C, D) dont une seule réponse est juste ;
- 3. Chaque candidat(e) n'a le droit d'utiliser qu'une seule feuille réponse. Il est impossible de remplacer la feuille réponse initiale du candidat(e) par une autre ;
- 4. Avec un stylo à bille (bleu ou noir) cochez <u>sur la feuille réponse</u> à l'intérieur de la case correspondante à chaque réponse juste de la manière suivante : 

  ou remplissez cette case de la manière suivante : 

  ou remplissez cette case de la manière suivante :
- 5. La rature ou l'utilisation du Blanco sur la seuille réponse sont strictement INTERDITES ;
- 6. L'usage de la calculatrice est de la laterdit ;
- La possession des téléphones de lout appareil électronique intelligent et des documents papiers est strictement INTERDITE dans la salle de passation;
- 8. Toute réponse ne respectant pas les règles citées ci-dessus sera rejetée ;
- 9. Chaque question sera notée avec 1 point;
- 10. Chaque réponse incorrecte sera notée par zéro (0).

Soient a et b deux réels tels que a > b > 0:

Si  $\ln\left(\frac{a+b}{4}\right) = \frac{1}{2}(\ln a + \ln b)$  alors  $\frac{a}{b}$  est égal : (O)

- B

Pour toute matrice M de  $M_n(\mathbb{R})$  diagonalisable, on a : Q2

- $Tr(M^2) = 2Tr(M)$
- $Tr(M^2) = (Tr(M))^2$ В
- $Tr(M^2) > Tr(M)$
- $Tr(M^2) \ge 0$ D

Soit u un endomorphisme non nul de  $\mathbb{R}^n$  et  $a \in \mathbb{R}^n$ .

La différentielle de u en a est:

- 11
- u(a) $\mathbf{B}$
- Tr(u).IdD

Soit E et F deux ensembles non vides et f une application de E dans F.

Si A et B sont deux parties de E, alors on a:

- $\mathbf{B}$

مباراة توظيف أساتذة التطيم الثانوي الأطر النظامية للأكاديميات ـ دورة بناير 2023 الموضوع الاختيار : اختيار في مادة أو مواد التقصص التقصص : الرياضيات

| (QE) | Soit une série entière $\sum_{n\geq 1} a_n x^n$ de rayon de convergence égal à 1.<br>Alors cette série converge : |
|------|-------------------------------------------------------------------------------------------------------------------|
| A    | normalement sur [0;1]                                                                                             |
| В    | uniformément sur [0;1]                                                                                            |
| С    | uniformément sur[0;1[                                                                                             |
| D    | normalement sur $[0;a]$ pour tout $0 \le a < 1$                                                                   |

| Q6 | La matrice réelle $M_a = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$ est semblable à la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ . |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | pour tout réel $\alpha$                                                                                                                                 |
| В  | pour $\alpha$ non nul                                                                                                                                   |
| C  | seulement pour $\alpha = 1$                                                                                                                             |
| D  | seulement pour $\alpha > 0$                                                                                                                             |

| Q7 | Soit G un groupe fini, de neutre 1, et x un élément de G tel que : $x^{11} \neq 1$ et $x^{12} = 1$ . Alors le cardinal du groupe engendré par x : |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | est 12                                                                                                                                            |
| В  | divise 12                                                                                                                                         |
| C  | est 11                                                                                                                                            |
| D  | est un multiple de 12                                                                                                                             |

| Q8  | Soit F la fraction rationnelle définie par : $F(X) = \overline{(X+1)^2(X-1)}$ |
|-----|-------------------------------------------------------------------------------|
| 3.7 | La décomposition de $F(X)$ en éléments simples dans $\mathbb{R}(X)$ est :     |
| A   | $F(X) = 1 + \frac{1}{2(X+1)^2} - \frac{7}{4(X+1)} + \frac{1}{4(X-1)}$         |
|     | $F(X) = X + 1 + \frac{1}{2(X+1)^2} - \frac{7}{4(X+1)} - \frac{1}{4(X-1)}$     |
| С   | $F(X) = X - 1 - \frac{1}{2(X+1)^2} + \frac{7}{4(X+1)} + \frac{1}{4(X-1)}$     |
| D   | $F(X) = -1 - \frac{1}{2(X+1)^2} + \frac{7}{4(X+1)} + \frac{1}{4(X-1)}$        |

| الصقعة | A |
|--------|---|
| 4      | 4 |
| /27    |   |

مباراة توظيف استذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة يتاير 2023 الموضوع الاختبار : اختبار في مادة أو مواد التخصص التخصص : الرياضيات

|         |       | <br> | 3     | - G- 34 |
|---------|-------|------|-------|---------|
|         |       |      |       |         |
|         |       |      |       |         |
| lla aus | 0/ 21 | <br> | 112.4 |         |

| Q9 | Soit (a, | une suite réelle telle que : $a_n = O(n^2)$ | . Alors on peut dire que : |
|----|----------|---------------------------------------------|----------------------------|
|----|----------|---------------------------------------------|----------------------------|

$$A \quad a_n = o(n)$$

B 
$$\exists c \in \mathbb{R}^*, a_n \sim cn^2$$

$$C = n = o(a_n)$$

$$\mathbf{D} \quad a_n = o(n^3)$$

| 7.XXX | Soit f | une fonction non constante continue et convexe et bornée sur l<br>: | R+ |
|-------|--------|---------------------------------------------------------------------|----|
| W.V.  | On a   |                                                                     |    |

A f tend vers 0 en  $+\infty$ 

B f admet un minimum

C f est décroissante

 $\mathbf{p} = f$  est non monotone

Soit f la fonction numérique définie sur  $\mathbb{R}$  par :  $f(x) = \ln(1+x-x^3)$ . Le développement limité de f à l'ordre 2 en 0 est :

$$A = x + \frac{x^2}{2} + o(x^2)$$

$$\mathbf{B} \quad x - \frac{x^2}{2} - x^3 + o\left(x^3\right)$$

$$C \quad x - \frac{x^2}{2} + o(x^2)$$

$$\mathbf{D} = x + o(x^2)$$

On considère la suite de fonction  $(f_n)_{n\in\mathbb{N}}$  définie sur ]-1;1[ par :

$$f_n(x) = 1 + x + x^2 + .... + x^{n-1}$$
. Alors  $(f_n)_{n \in \mathbb{N}}$  converge sur ]-1;1[

A simplement vers la fonction  $f: x \mapsto \frac{1}{1-x^2}$ 

B simplement vers la fonction  $f: x \mapsto \frac{1}{1-x}$ 

C uniformément vers la fonction  $f: x \mapsto \frac{1}{1-x}$ 

**D** simplement vers la fonction  $f: x \mapsto \frac{x}{1-x}$ 

| r  | Indian. | 1 |
|----|---------|---|
| I  | 5/27    | a |
| II | 1/27    |   |

مهاراة توطليف أمدانة التعليم الثالوي الأملر اللطامية للأعاديميات - دورة يلايد 2023 العوشوع الاعتبار ؛ اعتبار لمي مادة أو مواد التقصص

التغميص ؛ الرياضيات

| QB | Soit $t > 0$ , si $\int_0^{t^2} xf(x)dx = \frac{2}{5}t^5$ . Alors $f\left(\frac{4}{25}\right)$ est égale à : |
|----|--------------------------------------------------------------------------------------------------------------|
| A  | <u>2</u> 5                                                                                                   |
| В  | $-\frac{2}{5}$                                                                                               |
| С  | $\frac{2}{\sqrt{5}}$                                                                                         |
| D  | $-\frac{2}{\sqrt{5}}$                                                                                        |

| Q14        | Dans l'anneau $\mathbb{R}[X]$ , le sous-ensemble $\mathbb{Z}[X]$ est : |
|------------|------------------------------------------------------------------------|
| A          | un sous-groupe mais pas un sous- anneau de $\mathbb{R}[X]$             |
| В          | un sous-anneau de $\mathbb{R}[X]$                                      |
| С          | un idéal de $\mathbb{R}[X]$                                            |
| . <b>D</b> | un sous-corps de $\mathbb{R}[X]$                                       |

| ωв | Soit F la fonction définie set $f(x) = \int_x^{x^2} \frac{dt}{\ln t}$<br>Alors $F'(x)$ est égale à : |
|----|------------------------------------------------------------------------------------------------------|
| Α  | $\frac{x-1}{\ln x}$                                                                                  |
| В  | $\frac{x}{\ln x}$                                                                                    |
| С  | $\frac{x+1}{\ln x}$                                                                                  |
| D  | $\frac{x-2}{\ln x}$                                                                                  |

المان المان

|   | Q16 | Soit f is fonction de R' dans R'définie par : $f(x,y) = x^2 - y^2 - x$ .<br>Alors is fonction f admet |
|---|-----|-------------------------------------------------------------------------------------------------------|
| - | A   | un maximum focat en $\left(-\frac{\sqrt{3}}{3},0\right)$                                              |

B un minimum tocal en  $(\frac{\sqrt{3}}{3},0)$ 

C un maximum local en (-1,6)

D un minimum local en (1,0)

| <b>0</b> 5) | On considère $e_i = (1,0,0)$ ; $e_i = (0,1,0)$ et $e_i = (1,1,0)$ dans $\mathbb{R}^1$ .<br>Alors la famille $(e_i, e_j, e_i)$ est : |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| A           | génératrice mais pas libre                                                                                                          |
|             | libre mais pas génératrice                                                                                                          |
| C           | tune base                                                                                                                           |
| D           | ni libre, ni pénératrice                                                                                                            |

| Sout $(x, y, y, )$ such     |   |          | into telle que c                |   |
|-----------------------------|---|----------|---------------------------------|---|
| $\sum_{i=1}^{20} z_i = 192$ | ī | 2. y 195 | $=\sum_{i=1}^{N} x_i y_i = 110$ | 4 |

La covariance de cette série sustimue est égale à :

A 1,5
B 2,5
C 3
D 5

(ID

1-1-all 8

00

ميزاة توظيف أستنة التعليم الثانوي الأطر النظامية للاكاديميات ـ دورة يثاير 2023 الموضوع الاختيار : اختيار في مادة أو مواد التخصص التخصص : الرياضيات

 $\mathbb{R}^2$  est muni de la base canonique  $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  et  $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ .

Les coordonnées de  $2e_1 + e_2$  dans la base orthogonale,  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,  $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$  de  $\mathbb{R}^2$  sont :

- A  $\left(\frac{3}{2}, -\frac{1}{2}\right)$
- B (3,-1)
- $\mathbf{C} = \left(\frac{3}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$
- $\mathbf{D} = \left(3\sqrt{2}, -\sqrt{2}\right)$

On lance 248 fois de suite une pièce équilibrée. Soit X la variable aléatoire égale au nombre de fois où l'on obtient pile. Alors Var(X) est égale à :

A 62

B 124
C 31
D 24

Soient x et y deux entiers naturells. On considère l'équation (E)  $x^{10} = y^2 + 15$ 

Le nombre de solutions de (E) est :

A 8
B 6
C 4

 $\mathbf{D} = 0$ 

Soit E un espace préhilbertien réel et  $y \in E$ . La valeur de  $\sup_{x \neq 0} \frac{\langle x | y \rangle}{\|x\|}$  est :

A +∞

B | y

 $C ||y||^2$ 

D I

| الصلعة      | الراة توظيف أسلطة التطيم الناتوي الأطر النظامية للأكاديميات - دورة يتاير 2023                                                                                                                                                                                                                      |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /27         | (344,344)                                                                                                                                                                                                                                                                                          |
| 21          | الاختبار : اختبار في مادة أو مواد التخصص التخصص : الرياضيات                                                                                                                                                                                                                                        |
| QE          | La valeur de $I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}$ est égale à :                                                                                                                                                                                                 |
| A           | $\frac{\pi}{12}$                                                                                                                                                                                                                                                                                   |
| В           | $\frac{\pi}{6}$                                                                                                                                                                                                                                                                                    |
| С           | $\frac{\pi}{4}$                                                                                                                                                                                                                                                                                    |
| D           | $\frac{\pi}{3}$                                                                                                                                                                                                                                                                                    |
| Q21         | Pour toute matrice $A$ de $M_n(\mathbb{R})$ , Laquelle de ces relations permet de dire que $A$ est diagonalisable                                                                                                                                                                                  |
| A           | $A^2 + A + I_n = 0$                                                                                                                                                                                                                                                                                |
| B<br>C      | $A^3 = A$ $A^3 = -A$                                                                                                                                                                                                                                                                               |
| D           | $\frac{(A-I_n)^2=0}{\left(A-I_n\right)^2=0}$                                                                                                                                                                                                                                                       |
|             | $(H-I_n)=0$                                                                                                                                                                                                                                                                                        |
| Q25         | Soit $\varphi$ l'endomorphisme de $\mathbb{S}_{\mathcal{A}}$ définie par $\varphi(P) = P(X+1) - P(X)$ .<br>Pour tout $P$ . Alors $\varphi$ est de rang :                                                                                                                                           |
| Q3<br>A     | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .                                                                                                                                                                                                          |
| A<br>B      | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .                                                                                                                                                                                                          |
|             | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .<br>Pour tout $P$ . Alors $\varphi$ est de rang :                                                                                                                                                         |
| В           | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .<br>Pour tout $P$ . Alors $\varphi$ est de rang : $1$ $n-1$                                                                                                                                               |
| B<br>C<br>D | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .<br>Pour tout $P$ . Alors $\varphi$ est de rar $g$ : $1$ $n-1$                                                                                                                                            |
| B<br>C<br>D | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .  Pour tout $P$ . Alors $\varphi$ est de rang: $n-1$ $n$ $n+1$ Soit $E$ un $K$ – espace vectoriel et $f$ et $g$ deux endomorphismes de $E$ .                                                              |
| B<br>C<br>D | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ définie par $\varphi(P) = P(X+1) - P(X)$ .<br>Pour tout $P$ . Alors $\varphi$ est de rarg: $\frac{1}{n-1}$ $\frac{n}{n+1}$ Soit $E$ un $K$ - espace vectoriel et $f$ et $g$ deux endomorphismes de $E$ .<br>Alors $f(Ker(g \circ f))$ est égale à : |
| B<br>C<br>D | Soit $\varphi$ l'endomorphisme de $\mathbb{C}$ i définie par $\varphi(P) = P(X+1) - P(X)$ .  Pour tout $P$ . Alors $\varphi$ est de rat $g$ : $n-1$ $n$ $n+1$ Soit $E$ un $K$ – espace vectoriel et $f$ et $g$ deux endomorphismes de $E$ .  Alors $f(Ker(g \circ f))$ est égale à :  Im $g$       |

مباراة توظيف أساتذة التطيم الثانوي الأطر النظامية للكاديميات - دورة يثاير 2023 الموضوع الالحتبار : الحتبار في مادة أو مواد التخصص

التخصص: الرياضيات

| Q27 | L'équation de la parabole de foyer $F(0;1)$ et de direction $y=-1$ est : |  |  |  |
|-----|--------------------------------------------------------------------------|--|--|--|
| A   | $y=x^2$                                                                  |  |  |  |

 $y = -x^2$  $\mathbf{B}$ 

 $y = 1 + x^2$ 

D

| Q28 | $\lim_{(x,y)\to(0,0)} \frac{1-\cos(xy)}{x^2y} \text{ est égale à :}$ |  |
|-----|----------------------------------------------------------------------|--|
| A   | 0                                                                    |  |
| В   | 1                                                                    |  |
| С   | 2                                                                    |  |
| D   | 3                                                                    |  |

| الله نصنعة | Soient $f$ et $g$ deux fonctions de classe $C^2$ de $\mathbb{R}$ dans $\mathbb{R}$ .         |  |
|------------|----------------------------------------------------------------------------------------------|--|
| 020        | On pose $u(x,y) = f(x+3y) + g(x-3y)$ . Alors $\frac{\partial^2 u}{\partial^2 x}$ est égale à |  |
| A          | $\frac{\partial^2 u}{\partial x^2 y}$                                                        |  |
| В          | $\frac{\partial^2 u}{\partial \partial^2 y}$                                                 |  |
| С          | $\frac{\partial^2 u}{\partial \theta^2 y}$                                                   |  |
| D          | $\frac{\partial^2 u}{12\partial^2 y}$                                                        |  |

| Q30 | Soit A et B deux points distincts du plan. L'ensemble des points M du plan tel que : $MA = 2MB$ est : |
|-----|-------------------------------------------------------------------------------------------------------|
| A   | vide                                                                                                  |
| В   | un cercle                                                                                             |
| C   | une droite                                                                                            |
| D   | une ellipse                                                                                           |

مهاراة توظيف أساتذة التعليم الناتوي الأطر النظامية للأكاديميات - دورة يثاير 2023 الموضوع الاغتبار : اختبار في مادة أو مواد التخصص

التخصص: الرياضيات

On donne dans le tableau ci-dessous la moyenne et l'écart-type d'une série statistique

| La moyenne m   | 4.2  |
|----------------|------|
| L'écart-type σ | 1,62 |

Si on multiplie toutes les valeurs de la série statistique par -1,5 la moyenne et l'écart-type deviennent :

| Α | m'= | 6,3 | et | $\sigma' =$ | 2, | 43 |
|---|-----|-----|----|-------------|----|----|
|   |     |     |    |             |    |    |

B 
$$m' = 6,3 \text{ et } \sigma' = 3,64$$

C 
$$m'=4,2$$
 et  $\sigma'=1,62$ 

D 
$$m' = -6,3$$
 et  $\sigma' = 2,43$ 

| Q32 | Laquelle des parties suivantes de $\mathbb{R}^2$ est un sous-espace vectoriel? |
|-----|--------------------------------------------------------------------------------|
| A   | $\{(x,y), y=2x\}$                                                              |
|     |                                                                                |
| C   | $\{(x,y), y+x=1\}$ $\{(x,y), yx=1\}$                                           |
|     | $\{(x,y),yx=0\}$                                                               |

| (OEE) | Soit $(u_n)_{n\geq 2}$ la suite définie par : $u_n = \frac{n}{1+n^2} + \frac{n}{2^2+n^2} + \dots + \frac{n}{n^2+n^2}$ . $\lim_{n\to +\infty} u_n$ est égale à : |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | $\frac{\pi}{4}$                                                                                                                                                 |
| В     | $\frac{\pi}{6}$                                                                                                                                                 |
| С     | $\frac{\pi}{8}$                                                                                                                                                 |
| D     | $\frac{\pi}{10}$                                                                                                                                                |

مباراة توظيف أسلتذة التعليم الثانوي الأطر النظامية للاكاديميات - دورة يلاير 2023

التغصص: الرياضيات

الاختبار: اختبار في مادة أو مواد التخصص

Soient a, b et c trois réels non nuls.

Si  $\int_1^{c} \left(ax^2 + bx + c\right) \ln x dx = \int_1^2 \left(ax^2 + bx + c\right) \ln x dx$  alors le polynôme  $ax^2 + bx + c$ 

- admet deux racines dans [1;2]
- admet une racine double dans[1;2] В
- il change de signe dans [2;e]
- admet une racine double dans [2;e] D

Soit  $(\Omega, P)$  un espace de probabilité fini, et E et D deux événements tels que P(E) = 0.6;  $P_E(D) = 0.7$  et  $P_{\overline{E}}(D) = 0.2$ .

Alors P(D) est égale à:

- 0,5
- 0,4 B
- 0,34
- 0,16

On pose:  $I_a = \int_{-a}^{a} \arctan(e^x) dx$  où a est un nombre réel. En utilisant le changement de variable / = - montre que l'intégrale I<sub>a</sub> est égale à :

- $2\pi a$
- $\pi a$ ·B
- $\pi a$
- $\pi a$

Soit  $(u_n)$  la suite définie par  $u_n = \frac{(-1)^n}{n}$ . Alors

- $\sum_{n\geq 1} u_n$  et  $\sum_{n\geq 1} u_n^2$  convergent toutes les deux
- $\sum_{n\geq 1} u_n \text{ et } \sum_{n\geq 1} u_n^2 \text{ divergent toutes les deux}$ B
- $\sum_{n\geq 1} u_n \text{ converge et } \sum_{n\geq 1} u_n^2 \text{ diverge}$ ·C
- $\sum_{n\geq 1} u_n \text{ diverge et } \sum_{n\geq 1} u_n^2 \text{ converge}$ D

ميارًا أ أو ظيف أن يوط التعليم التلاوي الإثمار اللطامية للأعاديميات - دورة يثايد 2023 الموشوع الموسود الاعتبار ؛ اعتبار في مادة أو مواد التقصيص

التغصص : الرياشيات

| A CONTRACT | Soit X une variable aléatoire suivant la loi de Poisson de paramètre $\lambda = 1$ .                                                                       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 038        | Soit X une variable aléatoire suivant la loi de Poisson de paramètre $\lambda = 1$ . Alors la probabilité de l'évènement contraire $(X > 1)$ est égale à : |
| A          | $1-2e^{-1}$                                                                                                                                                |

 $1 - e^{-1}$ B  $1 - 3e^{-1}$ 

autre réponse D

On considère les matrices  $J = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & -1 \\ -1 & 4 & 2 \end{pmatrix}$  et M = J + I

Pour tout entier  $n \ge 1$ , M'' est égale à :

 $nJ^2+J+I$ 

 $nJ^2 + nJ + I$ 

 $n(n-1)J^2 + nJ + I$ 

 $\frac{1}{2}n(n-1)J^2 + nJ + I$ 

Pour tout entier  $n \ge 2$ , l'équation x'' = x + n admet une unique solution  $u_n \in ]1;2]$ .

 $\lim_{n\to +\infty} u_n$  est égale à :

Pour une série de fonctions, on a :

convergence simple ⇒ convergence absolue

convergence normal ⇒ convergence uniforme

convergence uniforme ⇒ convergence absolue

convergence absolue ⇒ convergence normal

مبغراة توظيف استذة التطيم الثانوي الأطر النظامية للأكاديميات ـ دورة يناير 2023 الصلعة الموضوع الموضوع الموضوع الموضوع التخصص : الرياضيات الاختيار : اختيار في مادة أو مواد التخصص التخصص : الرياضيات الموضوع المواد التخصص الموضوع المواد التخصص الموضوع المواد المواد الموضوع المواد المواد الموضوع المواد المواد الموضوع المواد المواد

|        | x,          | 13  | 5 | 6 | лова | bilité donnée dans le tableau ci-dessous |
|--------|-------------|-----|---|---|------|------------------------------------------|
|        | $P(X=x_i)$  |     | - | - | 12   |                                          |
| (XIII) | 1 (31 - 37) | 1 - | 1 | 1 | 1 1  |                                          |
|        |             | 3   | 6 | 6 | 3    |                                          |

La valeur de  $E\left(\frac{1}{X}\right)$  est égale à :

| A | 0,5               |  |
|---|-------------------|--|
| В | 0,4<br>0,3<br>0,2 |  |
| C | 0,3               |  |
| D | 0,2               |  |

| Q43 | Soit $f:[0;1] \to \mathbb{R}$ continue sur $[0;1]$ . $\lim_{n \to +\infty} \int_0^1 f(x^n) dx$ est égale à : |
|-----|--------------------------------------------------------------------------------------------------------------|
| 1   | f(0)                                                                                                         |
| В   | f(1)                                                                                                         |
| С   | $\int_0^1 f(x)dx$                                                                                            |
| )   | 0                                                                                                            |

| QIJ | Le rayon de convergence de la satte entière $\sum_{n\geq 1} \frac{z^{2n}}{1+3^{2n}}$ est : |
|-----|--------------------------------------------------------------------------------------------|
| A   | 3                                                                                          |
| В   | $\sqrt{3}$                                                                                 |
| C   | $\sqrt{2}$                                                                                 |
| D   | 1                                                                                          |

مباراة توظيف أساتذة التعليم الثانوي الأطر النظامية للأكاديميات - دورة يثاير 2023 الموضوع الاختبار: اختبار في مادة أو مواد التخصص

التخصص: الرياضيات

Pour x > 0. On pose  $H(x) = \int_0^{+\infty} \frac{\sin t}{t} e^{-xt} dt$ . Alors H'(x) est égale à :

xH(x)

 $\frac{1}{1+x^2}$  $\mathbf{B}$ 

C

D

On a  $\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$ . Q16

La valeur de la dérivée 3ème de la fonction tangente en 0 est :

В

2 C

0 D

Laquelle des formes différentielles suivantes n'est pas exacte? Q47

 $\omega = xdx + ydy$ 

 $\omega = xdx - ydy$  $\mathbf{B}$ 

 $\omega = ydx + xdy$ 

 $\omega = ydx - xdy$ D

La matrice réelle  $A = \begin{bmatrix} 0 & 1 & b \\ 0 & 0 & 0 \end{bmatrix}$  est diagonalisable si est seulement si

a = 0

b = 0В

a = b = 1

a = b

مبارة عنوف أسلام التعلق الأول النظامية الأكافيميات - دورة بالبر 2023 الموضوع الموضوع التقصص: الرياضيات

| Q49 | Soit $n \in \mathbb{N}$ . La suite de fonction $(f_n)_{n \in \mathbb{N}}$ définie sur $\mathbb{R}^*$ par : $f_n(x) = \frac{x^n}{1+x^n}$ |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| Α   | ne converge pas simplement sur R*.                                                                                                      |
| В   | converge simplement mais non uniformément sur ℝ¹.                                                                                       |
| C   | converge uniformément mais non simplement sur ℝ*.                                                                                       |
| D   | converge simplement et uniformément sur R'.                                                                                             |

| Q50 | Soit Rune rotation d'un plan euclidien orienté d'angle $\theta$ et x un vecteur de norme 1. Le produit scalaire $\langle x r(x)\rangle$ vaut : |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| A   | 1                                                                                                                                              |
| В   | $\cos \theta$                                                                                                                                  |
| С   | $\sin \theta$                                                                                                                                  |
| D   | $\pm \cos \theta$                                                                                                                              |

| (O3) | Soit X une variable aléatoire suivant la loi géométrique de paramètre $p = \frac{2}{3}$ .<br>Alors $V(2X+3)$ est égale à : |  |
|------|----------------------------------------------------------------------------------------------------------------------------|--|
| A    | 1                                                                                                                          |  |
| В    | 2                                                                                                                          |  |
| C    | 3                                                                                                                          |  |
| D    | autre réponse                                                                                                              |  |

| <b>(033)</b> | Pour tout $n 	ext{ de } \mathbb{N}$ , on pose : $I_n = \int_0^{\frac{\pi}{4}} \tan^n x  dx$<br>Alors $I_n + I_{n+2}$ est égale à : |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| A            | $\frac{2}{n+2}$                                                                                                                    |
| В            | $\frac{3}{n+3}$                                                                                                                    |
| C            | $\frac{1}{n+1}$                                                                                                                    |
| D            | $\frac{4}{n+4}$                                                                                                                    |

مباراة توطيف لمدانا التعليم التقوى الأملر التطامية تلاكاتيميات - دورة يثاير 2023 الموطنوع الاغتيار : المتبار في مادة أو مواد التقصص التقصص ؛ الرياضيات

| NEW YES | La valeur de l'intégrale $\iint_R x \cos(x+y) dx dy$ où R est la région triangulaire de |
|---------|-----------------------------------------------------------------------------------------|
| -       | sommets $(0;0)$ , $(\pi;0)$ , $(\pi;\pi)$ est égale à:                                  |
| A       | <u>3π</u><br>2                                                                          |

| A | $\frac{3\pi}{2}$  |
|---|-------------------|
| В | $\frac{3\pi}{4}$  |
| С | $-\frac{3\pi}{2}$ |
| D | $-\frac{3\pi}{4}$ |

| Œ | La suite $\sum_{k=1}^{n} \sin\left(\frac{1}{k}\right)$ est équivalente à : |
|---|----------------------------------------------------------------------------|
| A | n                                                                          |
| В | $\frac{1}{n}$                                                              |
| C | ln(n)                                                                      |
| D | $n\sin\left(\frac{1}{n}\right)$                                            |

| Q55 | Dans l'anneau $\mathbb{Z}/12\mathbb{Z}$ , le nombre d'éléments vérifiant $x^2=1$ est |  |
|-----|--------------------------------------------------------------------------------------|--|
| A   | 1                                                                                    |  |
| В   | 2                                                                                    |  |
| C   | 4                                                                                    |  |
| D   | 6                                                                                    |  |

ميار ما يوطوف فدت و الاصليم الدين الاستر الدهامية الاكاموميات - دورة وداير 2023 الابتئيل ؛ اشتيل في سقة أو مواد التقصيص التلمس : الزياضيات Dans la base canonique du plan euclidien R2, la matrice de la rotation d'angle  $\frac{\pi}{3}$  est : B Soient  $n \in \mathbb{N}^*$  et f une fonction définie sur  $\mathbb{R}$  par : f(x) = (1+x)(1+2x)....(1+nx). Alors f'(0) est égale à: n+1 $\mathbf{B}$ n(n+1)n! D Soit f un endomorphisme de  $\mathbb{R}^n$  de rang p. Le degré du polynôme minimal de f est inférieur à : P p+1Έ n-pn-p+1Le nombre de diviseurs de 10" dans N° est : Q59 n n+1

 $(n+1)^2$ 

مياراة توطيف أسانة التعليم الناتوي الأملر النظامية للأعلايميات - دورة يثاير 2023 الموضوع الالمتبار : المتبار في مادة أو مواد التلمسص التغصص : الرياضيات Soit f une fonction paire et a un nombre réel. On pose  $H = \int_0^{\infty} f(x)dx$ . Alors  $\int_{-a}^{a} \frac{f(x)}{1+e^x} dx$  est égale à : H2HB H+2H+1D Soit X une variable aléatoire suivant la loi binomiale de paramètres n=20et Qol  $p = \frac{3}{5}$ . Soit p la probabilité de l'évènement  $(X \ge 1)$  alors : 0.8A 0,6 $\mathbf{B}$ 0,4C 0, 2D La valeur de  $\int_{0}^{1} \frac{e^{2x}}{1+x} dx - \int_{1}^{\infty} \frac{x}{1+10x} dx$  est égale à : 1+e A e-1 $\mathbf{B}$ 0 D La caractéristique de l'anneau produit  $A = (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/10\mathbb{Z})$  est : Q63 2 10 В 30 60 D Soient A et B deux matrices de  $M_n(\mathbb{R})$ . Les matrices AB et BA ont toujours même

Q64

 $\mathbf{B}$ 

rang

trace

diagonale

transposée

|           | _         |
|-----------|-----------|
| 1.0       | 31        |
| 11        | 10        |
| 110       | $\nu_{l}$ |
|           |           |
| 11 / 27 1 |           |

مياراة توظيف أستاة التعليم التقوي الأطر التقامية تلاكانيميات - دورة يناير 2023 الموضوع الاغتيار : تقتيار في مادة أو مواد التقصيص التقصيص : الرياضيات

| Q65 | Le sous-groupe du groupe (Z/12Z;+), engendré par la classe de 9 est isomorphe |
|-----|-------------------------------------------------------------------------------|
| Α   | Z/3Z                                                                          |
| В   | Z/4Z                                                                          |
| C   | Z/9Z                                                                          |
| D   | Z/12Z                                                                         |

|   | Soit $\alpha \in \mathbb{R}$ . La matrice $\begin{pmatrix} 1 & 2 \\ 2 & \alpha \end{pmatrix}$ est définie positive : |
|---|----------------------------------------------------------------------------------------------------------------------|
| A | pour tout réel $\alpha$                                                                                              |
| В | pour α non nul                                                                                                       |
| C | sculement pour $\alpha = 5$                                                                                          |
| D | seulement pour $\alpha > 4$                                                                                          |

| ÇX) | $N_1$ et $N_2$ sont deux normes un un espace vectoriel réel $E$ . Laquelle des applications suivantes n'est par summe? |
|-----|------------------------------------------------------------------------------------------------------------------------|
| A   | $2N_1$                                                                                                                 |
| В   | $N_1 + N_2$                                                                                                            |
| C   | $\max(N_1, N_2)$                                                                                                       |
| D   | $N_1N_2$                                                                                                               |

Soit X une partie ouverte d'un espace vectoriel réel normé E. A toute suite à termes dans E qui converge vers un vecteur a on considère les deux propositions suivantes :  $P: \text{``Il existe un rang } N \text{ tel que } x_* \in X \text{'`pour tout } n \geq N \text{'`}$   $Q: \text{``'} a \in X \text{''}$ Alors

A  $P \Rightarrow Q$ B  $Q \Rightarrow P$ C  $P \Leftrightarrow Q$ 

If n'y a sucure implication entre P et Q

D

89

مباراة توظيف أستذة التعليم الناتوي الأطر النظامية للأكاديميات - دورة يثاير 2023 العوضوع الموصر الاختبار: اختبار في مادة أو مواد التخصص التغصص: الرياضيات

Soient les trois normes  $||x||_1 = \sum_{i=1}^{i=n} |x_i|$  et  $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$  et  $||x||_2 = \sqrt{\sum_{i=1}^{i=n} x_i^2}$ Q69 définies sur  $\mathbb{R}^n$ . Pour tout  $x \in \mathbb{R}^n$  on a :  $||x||_{2} \le ||x||_{\infty} \le ||x||_{1} \le n||x||_{2}$ 

- $\left\|x\right\|_{\infty} \leq \left\|x\right\|_{2} \leq \left\|x\right\|_{1} \leq n\left\|x\right\|_{\infty}$ В
- $||x||_{1} \le ||x||_{2} \le ||x||_{2} \le n||x||_{1}$ C
- $||x||_{\infty} \leq ||x||_{1} \leq ||x||_{2} \leq n||x||_{\infty}$ D

Soit f l'application définie de  $\mathbb{R}^3$  vers  $\mathbb{R}$  par  $f(x,y,z) = x^2 + y^2 + xz$ .

Alors sa différentielle  $df_a$  au point a = (1,0,-1) est l'application linéaire qui à 070 chaque vecteur $(p,q,r) \in \mathbb{R}^3$  associe le vecteur

- $df_a(p,q,r) = p+q+r$
- $df_{p}(p,q,r) = q + r$  $\mathbf{B}$
- $df_a(p,q,r) = p+r$
- $df_a(p,q,r) = p-r$ D

En inversant l'ordre d'intégration, l'intégrale  $\int_{-\infty}^{4\sqrt{x}} f(x,y)dydx$  se transforme en :

- f(x,y)dxdy
- $\int f(x,y)dxdy$
- f(x,y)dxdy
- f(x,y)dxdyD

Fix (5)

مباراة توظيف أستذة النطيم الثانوي الأطر النظامية للأكاديميات ـ دورة يثاير 2023 الموضوع الاختبار : اختبار في مادة أو مواد التخصص التخصص : الرياضيات

| (023)II | ڔؙٛ | J. 3 | e(x2+ | v²) <sub>dydx</sub> | est | égal | à | : |
|---------|-----|------|-------|---------------------|-----|------|---|---|
| 03      | ]   | J    | e(x-, | dydx                | est | égal | à |   |

 $A = \frac{\pi}{2} \left( e^4 - 1 \right)$ 

B πe\*

 $C = \frac{\pi}{4}e^{i}$ 

D  $2\pi(e^4-1)$ 

(u,v,w) est un nouveau système de coordonnées défini par  $x = 2u\cos v$ ;  $y = 3u\sin v$  et z = 5w avec  $u \ge 0$  et  $0 \le v < 2\pi$  et w un élément arbitraire. Le jacobien  $J(u,v,w) = \frac{\partial(x,y,z)}{\partial(u,v,w)}$  est égal à :

A  $\frac{30u\cos v\sin v}{v}$ B 30u

C 10u

D 10v

Le champ de vecteurs  $F(x, y) = (6x \sin y, 3\cos x)$  n'admet pas ou admet quel potentiel?

A  $\varphi(x, y) = (3x^2 \sin y, 3\cos xy)$ 

A ((x,y) = (x,y), sees

 $\mathbf{B} \qquad \varphi(x,y) = 18\cos x \sin y$ 

C  $\varphi(x,y) = 3x^2 \sin y + C(y)$ 

D Il n'admet pas de potentiel

| Q75 | Laquelle | des | propositions | suivantes | est | vraie? |  |
|-----|----------|-----|--------------|-----------|-----|--------|--|
|-----|----------|-----|--------------|-----------|-----|--------|--|

A  $F(x,y) = (ye^{xy}, xe^{xy})$  n'est pas conservatif

B  $F(x,y) = (6x^2y, 2x^3 - 2y)$  n'est pas conservatif

C F(x,y) = (y,x) n'est pas conservatif

D Tous ces champs sont conservatifs

122 22 22

مباراة توظيف استذة النطيم الثانوي الأطر النظامية للأكاديميات ـ دورة يناير 2023 الموضوع الاختبار : الحتبار في مادة أو مواد التقصص التقصص : الرياضيات

| Q76 | Le nombre de parties de {1;2;;n} qui ne contient pas 1 est : |
|-----|--------------------------------------------------------------|
| Α   | 2"-1                                                         |
| В   | 2 <sup>n-1</sup>                                             |
| С   | $2^n-n$                                                      |
| D   | 2"+1                                                         |

| Q77 | Le flux sortant du champ $F(x,y) = (x+y,y+z,z+x)$ à travers la surface du cube $[-1,1]^3$ est : |
|-----|-------------------------------------------------------------------------------------------------|
| Α   | 1                                                                                               |
| В   | 3                                                                                               |
| C   | 8                                                                                               |
| D   | 24                                                                                              |

| Q78 | Le nombre de topologies qu'on peut définir sur l'ensemble $X = \{a,b\}$ est : |
|-----|-------------------------------------------------------------------------------|
| A   | 1                                                                             |
| В   | 2                                                                             |
| С   | 3                                                                             |
| D   | 4                                                                             |

| Q79 | Laquelle des propriétés suivantes n'est pas une propriété topologique ? |
|-----|-------------------------------------------------------------------------|
| A   | Être fermée                                                             |
| В   | Étre bornée                                                             |
| C   | Être connexe                                                            |
| D   | Être ouverte                                                            |

| Q80 | Le diamètre d'une partie A d'un espace métrique est égal à : |
|-----|--------------------------------------------------------------|
| A   | $Sup\left\{d(x,y)/(x,y)\in A^{2}\right\}$                    |
| В   | $Max\{d(x,y)/(x,y)\in A^2\}$                                 |
| С   | $Inf\left\{d(x,y)/(x,y)\in A^2\right\}$                      |
| D   | $Min\left\{d(x,y)/(x,y)\in A^2\right\}$                      |

|          | _  |
|----------|----|
| -        | 0/ |
| (Lester) | 18 |
|          |    |
| 1/23     |    |
| 112/20   |    |
| 11 / 27  |    |

مباراة توظيف أستفة النطيع النقوي الأطر النظامية للاكاديميات ـ دورة يناير 2023 الموضوع الاغتبار : الحتبار لمي مادة أو مواد التخصص التخصص : الرياضيات

| QSI | Quelle relation y a-t-il entre une partie A d'un espace métrique, sa frontière $Fr(A)$ et $\overline{A} = A \cap Fr(A)$ |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| A   | $\overline{A} = A \cap Fr(A)$                                                                                           |
| В   | $\overline{A} = A \cup Fr(A)$                                                                                           |

| Д | $A = A \cup Fr(A)$                 |
|---|------------------------------------|
| C | $\overline{A} = A \setminus Fr(A)$ |
| D | 7 .                                |

A = A

| Q82 | $(X,r)$ dénote un espace topologique. On prend $X = \{a,b,c\}$ .<br>Lequel des ensembles suivants ne définit pas une topologie sur $X$ |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| Α   | $\tau 1 = \{\emptyset, X\}$                                                                                                            |
| В   | $\tau 2 = \{\emptyset, X, \{a\}\}$                                                                                                     |
| C   | $\tau 3 = \{\emptyset, X, \{a\}, \{a, b\}\}$                                                                                           |
| D   | $\tau 4 = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}$                                                                                 |

| Q83 | Parmi les matrices de $M_2(\mathbb{R})$ suivantes laquelle n'est pas diagonalisable ? |
|-----|---------------------------------------------------------------------------------------|
| A   | $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$                                        |
| В   | $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$                                       |
| C   | $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$                                        |
| D   | $\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$                                       |

| QEH | Soit $(X, \tau)$ un espace topologique. Lequel des ensembles suivants est une base pour la topologie $\tau$ ? |
|-----|---------------------------------------------------------------------------------------------------------------|
| A   | $\{\{x\}; x \in X\}$                                                                                          |
| В   | $\{X\}$                                                                                                       |
| C   | $\{X,\varnothing\}$                                                                                           |
| D   | Aucun                                                                                                         |

NA STATE OF

المراق في المراق المرا

QXX

Le sous-groupe de (C(1) engendré par (1,7) est

- A (a + bi/ (a, b) a Z')
- H (1,-1, i,-i)
- C (a + b) (a, b) o Q2)
- D (

QRA

Un des ensembles suivants n'est pas un groupe pour la composition des applications, lequel ?

- A l'ensemble des bijections de [=1, 1] sur [=1, 1]
- B l'ensemble des bijections continues de [-1, 1] sur [-1, 1]
- C l'ensemble des bijections croissantes de [-1, 1] sur [-1, 1]
- D l'ensemble des bijections de classe C' de [-1, 1] sur [-1, 1]

(89

Let J sont deux idéaux d'un antient commutatif unitaire A et a est un élément de A. Lequel des ensembles suivants a'est pas tonjours un idéal de A?

- A Ind
- $\mathbf{B} = \{x + y / x \in let \ y \in J\}$
- C IUJ
- $\mathbf{D} \quad al = \{ax/x \in I\}$

Q88

Dans le groupe symétrique S, combien y a-t-il d'étéments qui engendrent un sousgroupe de cardinal 2 ?

- A 10
- B 25
- C 40
- D 60

Q89

Lequel des ensembles suivants est un sous-groupe du groupe linéaire  $(GL_2(\mathbb{R}),\times)$ ?

- A l'ensemble des matrices inversibles à coefficients dans Z
- B l'ensemble des matrices à coefficients dans Z de déterminant l
- C l'ensemble des matrices de déterminant négatif
- **D** l'ensemble des matrices A vérifiant  $A^2 = I_2$

25 27 day

مباراة توظيف أسلاة النظيم الثانوي الأطر النظامية للأكاديميات - دورة يناير 2023 الموضوع الاختيار : اختيار في مادة أو مواد التقصص التقصص : الرياضيات

| Q90 | Lequel des groupes additifs suivants a le plus de générateurs ? |
|-----|-----------------------------------------------------------------|
| A   | $\left(\mathbb{Z}_{12\mathbb{Z}}^{\prime},+\right)$             |
| В   | $\left(\mathbb{Z}_{13\mathbb{Z}}^{,+}\right)$                   |
| С   | $\left(\mathbb{Z}_{14\mathbb{Z}}^{\prime},+\right)$             |
| D   | $\left(\mathbb{Z}_{15\mathbb{Z}}^{,+}\right)$                   |

| Q91 | Un corps commutatif           |  |
|-----|-------------------------------|--|
| A   | ne possède aucun idéal        |  |
| В   | possède un seul idéal         |  |
| C   | possède deux idéaux           |  |
| D   | possède une infinité d'idéaux |  |

| Q92 | Laquelle des familles suivantes n'est pas une base de $\mathbb{R}[X]$ ? |
|-----|-------------------------------------------------------------------------|
| A   | $((X+p)^p)_{p\in\mathbb{N}}$                                            |
| В   | $(X^p + p)_{p \in \mathbb{N}}$                                          |
| С   | $(X+X^p)_{p\in\mathbb{N}}$                                              |
| D   | $((X^p+p)^p)_{p\in\mathbb{N}}$                                          |

| 023 | Le rang de l'endomorphisme $u$ du $\mathbb{R}$ – espace vectoriel $M_n(\mathbb{R})$ defini par $u(M) = M + {}^tM$ est : |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| A   | n                                                                                                                       |
| В   | $\frac{n(n+1)}{2}$                                                                                                      |
| С   | $\frac{n(n-1)}{2}$                                                                                                      |
| D   | n+1                                                                                                                     |

| 26<br>27 | بة تانكانيميات - يورة يثاير 2023 | وقراة توظوف أمدتنة التعلوم الشالوي الأملز النظام    |
|----------|----------------------------------|-----------------------------------------------------|
| 27       |                                  | العوضو<br>الاشتيار : المتيار في مادة أو مواد التخصص |

| Q94 | Dans $\mathbb{R}[X]$ , lequel des ensembles suivants est un sous-espace vectoriel et admet un supplémentaire de dimension finie? |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| A   | $\left\{P(X^2)/P\in\mathbb{R}[X]\right\}$                                                                                        |
| В   | $\left\{P \in \mathbb{R}[X] / \int_{0}^{1} P(x) dx = 1\right\}$                                                                  |
| C   | $\left\{X^2P(X)/P\in\mathbb{R}[X]\right\}$                                                                                       |
| D   | $\{P(X)/P \text{ admet exactement deux racines}\}$                                                                               |



| Q96 | Soit $F$ (resp. $G$ ) l'ensemble des matrices triangulaires supérieures (resp. l'ensemble des matrices triangulaires inférieures ) de $M_*(\mathbb{R})$ . Alors : |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A   | $M_n(\mathbb{R})$ est la somme directe de $F$ et $G$ $M_n(\mathbb{R})$ est la somme non directe de $F$ et $G$                                                     |  |
| В   |                                                                                                                                                                   |  |
| С   | $M_n(\mathbb{R})$ n'est pas la somme de $F$ et $G$                                                                                                                |  |
| D   | $F$ et $G$ ne sont pas des sous-espaces de $M_{\mathfrak{o}}(\mathbb{R})$                                                                                         |  |

| Q97 | Soit la forme quadratique sur $\mathbb{R}^3$ définie par $q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 9x_3^2 - 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ alors : |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Α   | signature $(q) = (3,0)$ et rang $(q) = 3$                                                                                                   |  |
| В   | signature $(q) = (0,3)$ et rang $(q) = 3$                                                                                                   |  |
| C   | signature $(q) = (1,2)$ et rang $(q) = 3$                                                                                                   |  |
| D   | signature $(q) = (-3,0)$ et rang $(q) = 3$                                                                                                  |  |

| Malall de      |                                                                                             |
|----------------|---------------------------------------------------------------------------------------------|
| 27<br>27<br>27 | مياراة توظيف أسلاة التطيع الناتوي الأطر التظامية للاكاديميات - دورة يتاير 2023<br>المه شبوع |
| 27             |                                                                                             |
| 1              | الاغتبار في مادة أو مواد التقصص التقصص : الرياضيات                                          |

| <b>Q</b> 98 | Soit $\varphi$ la forme bilinéaire symétrique définie sur $\mathbb{R}_2[X]$                                                    |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| N.CO        | $\operatorname{par} \varphi(P,Q) = \int_0^1 P(t)Q(t)dt  \operatorname{pour tout} (P,Q) \in (\mathbb{R}_2[X])^2. \text{ Alors}$ |  |
| A           | ø est un produit scalaire                                                                                                      |  |
| В           | φ est définie négative                                                                                                         |  |
| С           | φ est dégénérée et la dimension de son noyau est 1                                                                             |  |
| D           | φ est dégénérée et la dimension de son noyau est 2                                                                             |  |

| 029 | Soit la forme quadratique définie sur $\mathbb{R}^4$ par $q(x_1, x_2, x_3, x_4) = x_1x_2 - x_3x_4$ et soit $H$ un hyperplan de $\mathbb{R}^4$ . La dimension de l'orthogonal de $H$ est : |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A   | 1                                                                                                                                                                                         |
| В   | 2                                                                                                                                                                                         |
| C   | 3                                                                                                                                                                                         |
| D   | 4                                                                                                                                                                                         |

| . ] | Sa matrice dans la base canonique |  |
|-----|-----------------------------------|--|
|     | (1 -2)                            |  |
|     | $\left(\frac{3}{2}  2\right)$     |  |
| _   | 2 -1                              |  |
|     | $\left(\frac{3}{2}  1\right)$     |  |
| 4   | 1 -1)                             |  |
|     | $\left(\frac{3}{2}  1\right)$     |  |
|     | 1                                 |  |

Fin