

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS Universidad del Perú, DECANA DE AMERICA FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

EXAMEN PARCIAL DE MATEMÁTICA BÁSICA II

- 1. a) Demostrar que $\vec{a} + \vec{b}$ y $\vec{a} \vec{b}$ son ortogonales si y solo si $||\vec{a}|| = ||\vec{b}||$.
 - b) Si el vector \vec{c} es ortogonal a los vectores \vec{a} y \vec{b} ; además $m \not = (\vec{a}, \vec{b}) = 30^\circ$ Sabiendo que $||\vec{a}|| = 6$, $||\vec{b}|| = 3$ y $||\vec{c}|| = 3$, halle $[\vec{a}\vec{b}\vec{c}]$.
- 2. a) Encontrar la ecuación de la recta que pasa por el punto P(7, -2,9) y es ortogonal a las rectas:

 $\mathcal{L}_1: \frac{x-2}{2} = \frac{y}{-2} = \frac{z-3}{3}$ $y \ \mathcal{L}_2: \frac{x+4}{2} = \frac{y-2}{5} = \frac{z}{-2}$

b) Halle la ecuación de la recta \mathcal{L} que es paralela a los planos: $\pi_1: 3x + 12y - 3z = 5$ y $\pi_2: 3x - 4y + 9z = -7$ y que corta a las rectas:

$$\mathcal{L}_1: \frac{x+5}{2} = 3 - y = \frac{z+1}{3}$$
 y $\mathcal{L}_2: \frac{3-x}{2} = \frac{y+1}{3} = \frac{z-4}{2}$

3. a) Sean las matrices A y D de orden nxn: $D = \begin{bmatrix} d_{ij} \end{bmatrix} \text{ tal que } d_{ij} = i \text{ , si } i = j \text{ y } d_{ij} = 0 \text{ , si } i \neq j.$

 $A=[a_{ki}]$ tal que $a_{ki}=i$, si i=k y $a_{ki}=a$, si $i\neq k$. Calcule AD^n , si $n\in\mathbb{N}$.

- b) Sea la matriz $A = [a_{ij}]$ de orden nxn, donde $a_{ij} = min\{i, j\}$, halle |A|.
- 4. Dado el sistema de ecuaciones lineales:

y+az+bt=0 -x+cz+dt=0 ax+cy-et=0 bx+dy+ez=0

¿Qué condiciones deben satisfacer las constantes a,b.c,d y e para que el sistema tenga dos variables arbitrarias o libres ?