

Laser Printed Color Papers for different RGB Values

rue R	True G	True B	Reading R	Reading G	Reading B					
255	0	0	0.94	0.39	0.24	Black Reading	374	656	572	
240	0	0	0.96	0.44	0.22	White Reading	774	890	837	
200	0	0	0.93	0.34	0.27					
160	0	0	0.74	0.27	0.15					
123	0	0	0.4	0.16	0.09	Color Ratio =	(Color Read			
100	0	0	0.29	0.1	0.01	Cotor Ratio =	(White Read	ing — Blac	ck Readin	g)
0	255	0	0.27	0.78	0.34					
0	240	0	0.32	0.77	0.31					
0	200	0	0.23	0.74	0.35					
0	160	0		0.69	0.32					
0				0.44						
0	100	0	0.1	0.37	0.11					
0	0	255		0.48	0.78					
0	0	240	0.12	0.51	0.78					
0	0	200	0.05	0.4						
0	0	160		0.39						
0				0.34						
0		100	0.08	0.22	0.57					
255				0.98						
0	255			0.76						
255				0.26						
123				0.49						
0				0.32						
123				0.13						
255				0.64						
255				0.39						
123				0.8						
123				0.38						
0				0.77						
255				0.66						
123	123	255	0.44	0.73	0.89					

True B	True G	True R				RGB	BB	GG		В	G	
(0	0	337050	187425	229194	120326850	275625	412164	127449	525	642	357
25	255	255	739530	654870	702999	583489170	688900	793881	622521	830	891	789
(0	255	467622	480142	572949	358666074	391876	558009	588289	626	747	767
(0	240	472500	483840	576000	362880000	396900	562500	589824	630	750	768
(0	200	469368	477000	553500	352026000	404496	544644	562500	636	738	750
(0	160	438625	415635	498075	301335375	366025	525625	471969	605	725	687
(0	123	386400	304080	374670	209815200	313600	476100	294849	560	690	543
(0	100	381264	289896	347464	195969696	318096	456976	264196	564	676	514
(255	0	535619	318285	412335	265131405	413449	693889	245025	643	833	495
(240	0	538118	323000	416500	269059000	417316	693889	250000	646	833	500
(200	0	534060	307665	394956	254746620	416025	685584			828	477
	160	0	508560	293904	383865	239531760	389376	664225	221841	624	815	471
(123	0	431490	246810	327781	186835170	324900	573049	187489	570	757	433
(100	0	414756	224238	294462	165487644	315844	544644	159201	562	738	399
25!	0	0	582144	320634	324864	246246912	574564	589824	178929	758	768	423
240	0	0	584418	316086	321507	243702306	574564	594441	173889	758	771	417
200	0	0	570750	315750	320381	240285750	562500	579121	177241	750	761	421
160	0	0	562451	313546	319454	237354322	552049	573049	178084	743	757	422
123	0	0	525544	324348	332502	238071432	512656	538756	205209	716	734	453
100	0	0	496230	287035	294882	204942990	483025	509796	170569	695	714	413
	255	255	574365	504273	687645	446281605	421201	783225	603729	649	885	777
25!	255	0	685484	400820	410620	335887160	669124	702244	240100	818	838	490
	0	255	516186	546759	558294	396947034	505521	527076	591361	711	726	769
(123	123	449694	325360	433440	251828640	337561	599076	313600	581	774	560
123	123	0	463275	246015	279125	178360875	408321	525625	148225	639	725	385
123	0	123	436392	374946	416208	260962416	393129	484416	357604	627	696	598
(123	255	484605	467665	619173	374599665	366025	641601	597529	605	801	773
123	0	255	505855	520793	571415	387990785	461041	555025	588289	679	745	767
	255	123	530000	352500	478272	298920000		719104			848	564
25!	0	123		379846	383958	283744962	546121	558009			747	514
123	255	0	571290	337020	410328	281074680		695556			834	492
123	123	255	588224	565656	627816	457050048	529984	652864			808	777
25!	123	123	654337	443132	456476	363811372	635209	674041	309136		821	556

Non-Linear Hypothesis Equation

$$y_{1} = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{3}^{2} + \theta_{7}x_{1}x_{2}x_{3} + \theta_{8}x_{1}x_{2} + \theta_{9}x_{1}x_{3} + \theta_{10}x_{2}x_{3}$$

$$y_{2} = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{3}^{2} + \theta_{7}x_{1}x_{2}x_{3} + \theta_{8}x_{1}x_{2} + \theta_{9}x_{1}x_{3} + \theta_{10}x_{2}x_{3}$$

$$y_{3} = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{3}^{2} + \theta_{7}x_{1}x_{2}x_{3} + \theta_{8}x_{1}x_{2} + \theta_{9}x_{1}x_{3} + \theta_{10}x_{2}x_{3}$$

y1,y2,y3 = True RGB Values X1,x2,x3 = RGB readings

Normal Equation

$$\theta = (X^T X)^{-1} (X^T Y)$$

[array([7.80644240e+02, -4.13541438e+00, 1.59315003e+00, -3.45407759e+00, -9.54168462e-04, -2.08982170e-03, 2.71439925e-03, -6.38481761e-06, 7.25086177e-03, 5.62079704e-03, -6.56728901e-04]),
array([5.17850799e+03, -7.95412008e+00, -8.00483746e+00, -7.77173139e+00, -6.37863401e-04, -2.08148107e-04, -4.29135121e-03, -1.52957332e-05, 9.63670908e-03, 1.34797074e-02, 1.59249269e-02]),
array([2.40181999e+03, -5.53947782e+00, -2.49122749e+00, -4.34062003e+00, -4.89891584e-04, 1.92371330e-03, 4.32416302e-03, -9.86222636e-06, 6.19024560e-03, 9.65242368e-03, -1.46407617e-03])]

```
# theta = (XTX)'XTY
import numpy as np
file = open("readings1.csv","r")
data = file.read().split('\n')
data.pop()
thetas = []
nX = 10
X = np.array(list(map(lambda a: [1]+ [float(i) for i in a.split(',')[:nX]],data[1:])))
for i in range(3):
    Y = np.array(list(map(lambda a: float(a.split(',')[nX+i]),data[1:])))
    theta = np.matmul(np.linalg.inv(np.matmul(np.transpose(X),X)),np.matmul(np.transpose(X),Y))
    thetas.append(theta)
pred = np.array([1,433, 757 ,570, 187489, 573049, 324900 ,186835170, 327781 ,246810,
                                                                                            431490
])
for theta in thetas:
    print(np.dot(theta,pred))
print(thetas)
```

