Introduction

Exercise 1:
(a)
$$2^{15}-1=32,767$$

 $\alpha=3$, $b=5$
 $xy=(2^{5}-1)\cdot(1+2^{5}+2^{10})$
 $xy=31\cdot(1+32+1024)$
 $xy=31\cdot1057$

(b)
$$2^{32.767} - 1$$
 $a = 1057$, $b = 31$ $x = 2^{31} - 11 = 2,147,483,647$

Exercise 2:

-	- To be with the							
	12	Tsn	prine?	31	<u> </u>	Is 32-1		
	0	ges		0	1	no: 8	- 1 0	
	3	yes		26	1	no:26		
	4	NO: 4	=5.5	80		no:80	= 21.40	
	2	yes		242		no:242	=2.121	
	6	No: 6=	=213	728		no:762	= 2.364	
	7	yes		2186		hu: 2,186	= 2.1093	
	8	NO:8		6,560		no:6,560	= 2.312	36
	9	NO:9=	3.3	19,682	1	hu:19,682	2= 2.9,84	1
	0	no:10)=2.5	59,049		10:59,0	18=2-29,	524

Conjecture: Stipposo n is an inleger larger than I and n is prime.
Then 3 n-1 is knot prime.

Exercise 1:

$$x = (s+1)! + 2$$

Thus: 722, 723, 724, 725, 726

Exercise 5: IF 2n-1 is prime, then 2n-1(2n-1) is perfect.

$$2^{(5-1)}(2^{5-1}) = 2^{4}(31) = 496$$

Exercise 6:

Proof: Let n be any prime number greater than 3. Consider the sequence:

n, n+2, n+4. Note that every third consecutive number is dissible

by 3. Two coses (since n is prime):

· Care 1: 2/3 has a remainder of I. Thus, 2+2 is divisible by 3.

· Cased: n/3 has a remainder of 2. Thus, n+4 is divisible by 3.

Thus, either n+2 or n+4 is divisible by 3, and therefore

it cannot be the case that n, n+2, n+4 are all prime.

Exercise 7:

- (a) 1+2+4+5+10+11+20+22+44+55+110=284
- (4) 1+2+4+71+142=200