Scientific Computing - Condition and Stability

Mateusz Pełechaty

23 October 2022

1 Exercise 1

Repeat exercise 5 from previous assignment list, but delete last 9 in x_4 and last 7 in x_5 . What influence does it have on the results?

1.1 Solution and results

Previously

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

As stated in assignment, we will use

x' = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]

Table 1: Scalar product $x \cdot y$ with different x and precision

	Float32 x	Float32 x'	Float64 x	Float64 x'
Front	-0.4999443	-0.4999443	1.0251881368296672e-10	-0.004296342739891585
Back	-0.4543457	-0.4543457	-1.5643308870494366e-10	-0.004296342998713953
Big To Small	-0.5	-0.5	0.0	-0.004296342842280865
Small to Big	-0.5	-0.5	0.0	-0.004296342842280865

1.2 Conclusions

As we can see small changes in data completely changes solution. Thus we can observe that calculating scalar product is ill-conditioned problem.

2 Exercise 2

2.1 Draw graph of $f(x) = e^x ln(1 + e^{-x})$ in any two graphing tools.

Figure 1: Desmos

Figure 2: Geogebra

As we can see, for 30 < x < 37, graph go wild and for $x \ge 37$: f(x) = 0

2.2 Calculate $\lim_{x\to\infty} f(x)$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{\ln(1 + e^{-x})}{e^{-x}} = (\star)$$

Note that

$$\lim_{x \to \infty} \ln(1 + e^{-x}) = \lim_{x \to \infty} e^{-x} = 0$$

Because of it we can use L'Hôpital's rule. Let's calculate derivatives.

$$\frac{d}{dx}ln(1+e^{-x}) = \frac{-e^{-x}}{1+e^{-x}} = \frac{-1}{e^x+1}$$
$$\frac{d}{dx}e^{-x} = -e^{-x}$$

With this we can continue

$$(\star) = \lim_{x \to \infty} \frac{-1}{e^x + 1} \cdot \frac{-1}{e^{-x}} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = \frac{1}{1 + 0} = 1$$

So $\lim_{x\to\infty} f(x) = 1$

2.3 Conclusions

Problem is ill-conditioned, because on the graphs small rounding errors change results of graph when 30 < x < 37. After it f(x) = 0, because $1 + e^{-x} \approx 1$ when x is big. Then $ln(1 + e^{-x}) \approx ln(1) = 0$. **Geogebra** and **Desmos** results doesn't match limit calculated by me.

3 Exercise 3

Consider task of solving system of linear equations

$$Ax = b$$

 $A \in \mathbb{R}^{N \times N}$ - Matrix of coefficients

b - vector of right sides

Consider two methods of generating A

a. $A = H_n, n \in \{1, 2, 3, \dots, 20\}$, where H_n is Hilbert's of n degree generated by A=hilb(n)

b. $A = R_n, n \in \{5, 10, 20\}$, where R_n is random matrix of n degree generated with given condition $c \in \{1, 10, 10^3, 10^7, 10^{12}, 10^{16}\}$ generated by function A = matcond(n, c)

Vector b is given as b = Ax, where $x = (1, ..., 1)^T$

3.1 Solve Ax = b with $x = \frac{b}{A}$

Results can be found in Table 2

Table 2: Hilbert's Matrix

n	cond(A)	rank(A)	A\b error	inv(A)*b error
1	1.0	1	0.0	0.0
2	19.28147006790397	2	5.661048867003676e-16	1.4043333874306803e-15
3	524.0567775860644	3	8.022593772267726e-15	0.0
4	15513.73873892924	4	4.137409622430382e-14	0.0
5	476607.2502425855	5	1.6828426299227195e-12	3.3544360584359632e-12
6	1.4951058642254734e7	6	2.618913302311624e-10	2.0163759404347654e-10
7	4.753673567446793e8	7	1.2606867224171548e-8	4.713280397232037e-9
8	$1.5257575538060041\mathrm{e}{10}$	8	6.124089555723088e-8	3.07748390309622e-7
9	4.9315375594102344e11	9	3.8751634185032475e-6	4.541268303176643e-6
10	$1.602441698742836\mathrm{e}{13}$	10	8.67039023709691e-5	0.0002501493411824886
11	$5.222701316549833\mathrm{e}{14}$	10	0.00015827808158590435	0.007618304284315809
12	1.7515952300879806e16	11	0.13396208372085344	0.258994120804705
13	3.1883950689209334e18	11	0.11039701117868264	5.331275639426837
14	$6.200786281355982\mathrm{e}{17}$	11	1.4554087127659643	8.71499275104814
15	$3.67568286586649\mathrm{e}{17}$	12	4.696668350857427	7.344641453111494
16	$7.046389953630175\mathrm{e}{17}$	12	54.15518954564602	29.84884207073541
17	1.249010044779401e18	12	13.707236683836307	10.516942378369349
18	2.2477642911280653e18	12	10.257619124632317	24.762070989128866
19	6.472700911391398e18	13	102.15983486270827	109.94550732878284
20	1.1484020388436145e18	13	108.31777346206205	114.34403152557572

3.1.1 Conclusions

We can see that in Hilbert's Matrix, $cond(A) = \theta(2^n)$ and because of it, both methods of generating solution has got huge rounding errors. We can guess that solving system of equations is ill-conditioned problem

3.2 Solve Ax = b with $x = A^{-1} \cdot b$

3.2.1 Results

Results can be found in Table 3

3.2.2 Conclusions

For $c = k, k \in \{1, 10, 10^3, 10^7, 10^{12}, 10^{16}\}$ we get very similar results no matter what n it is. It shows that what is important is condition indicator.

Table 3: Random Matrix

n	c	cond(A)	rank(A)	A\b error	inv(A)*b error
5	1.0	1.00000000000000007	5	2.3288234633381846e-16	1.9860273225978183e-16
5	10.0	10.000000000000005	5	3.1401849173675503e-16	9.930136612989092e-17
5	1000.0	999.9999999998918	5	1.7587138213947747e-14	2.7747580858440746e-14
5	1.0e7	1.0000000002864836e7	5	1.1200819603238923e-10	7.917097832969997e-11
5	1.0e12	9.999750894774873e11	5	9.330538290671272e-6	8.986830894004628e-6
5	1.0e16	1.873964439700235e16	4	0.2958796386644769	0.2942316529964103
10	1.0	1.0000000000000013	10	2.4575834280036907e-16	1.4043333874306804e-16
10	10.0	10.000000000000000000000000000000000000	10	3.274687455368547e-16	3.3857251850959236e-16
10	1000.0	999.999999999555	10	4.6641419326660214e-14	4.9392224007846006e-14
10	1.0e7	1.000000000641046e7	10	1.9222994028809006e-10	1.7540944047859128e-10
10	1.0e12	9.999829164270026e11	10	1.1469317000942926e-5	9.060690243558819e-6
10	1.0e16	6.36137650086178e15	9	0.3067271248359218	0.28474392278413946
20	1.0	1.0000000000000018	20	4.852068387831067e-16	5.01447318807467e-16
20	10.0	9.99999999999991	20	5.4672143489065705e-16	4.902612130890297e-16
20	1000.0	1000.0000000000065	20	1.1644117316690922e-15	2.6700806038273252e-15
20	1.0e7	1.000000000092331e7	20	1.3006518187937346e-10	1.4732691292968656e-10
20	1.0e12	9.999657722483511e11	20	6.126439881933294e-6	9.331277994518528e-6
20	1.0e16	1.346974920376682e16	19	0.2891037414898818	0.31773928298705056

4 Exercise 4

In this exercise we will refer to

P(x) as to Wilkinson's polynomial in it's general form.

p(x) as to Wilkinson's polynomial in factorial form

4.1 Use roots function from Polynomials to compute roots of P(x) Compare results with real roots by computing $|P(z_k)|$, $|p(z_k)|$, $|z_k - k|$ and explain discrepancies.

4.1.1 Results

Results can be found in Table 4

4.1.2 Conclusions

roots function didn't compute roots numbered from 1 to 20. This is because coefficients of Wilkinson's Polynomial at lower exponents are 18 digits long and Float64 precision is \approx 16 digits. Because of it Polynomial's coefficients are saved with rounding error. By looking at the table we can also guess that problem of computing roots is ill-conditioned. Small changes made by rounding error, make that $|p(z_k)|$ is nowhere near 0

4.2 Swap coefficients from -210 to $-210 - 2^{-23}$. Explain results

4.2.1 Results can be found in Table 5

4.2.2 Conclusions

If the coefficient of x^{19} is decreased by 2^{-23} then some roots collided to double root. Leading to complex number and it's conjugated version. displayed as a root. This further proves that Wilkinson's polynomial is very ill-conditioned.

Table 4: Results of 4.1

7		D/ \	1 / \1	1 1
k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999996989	35696.50964788257	5.518479490350445e6	3.0109248427834245e-13
2	2.0000000000283182	176252.60026668405	$7.37869762990174\mathrm{e}{19}$	2.8318236644508943e-11
3	2.9999999995920965	279157.6968824087	3.3204139316875795e20	4.0790348876384996e-10
4	3.9999999837375317	3.0271092988991085e6	8.854437035384718e20	1.626246826091915e-8
5	5.000000665769791	$2.2917473756567076\mathrm{e}7$	1.8446752056545688e21	6.657697912970661e-7
6	5.999989245824773	1.2902417284205095e8	3.320394888870117e21	1.0754175226779239e-5
7	7.000102002793008	4.805112754602064e8	5.423593016891273e21	0.00010200279300764947
8	7.999355829607762	1.6379520218961136e9	8.262050140110275e21	0.0006441703922384079
9	9.002915294362053	4.877071372550003e9	1.196559421646277e22	0.002915294362052734
10	9.990413042481725	$1.3638638195458128\mathrm{e}{10}$	1.655260133520688e22	0.009586957518274986
11	11.025022932909318	3.585631295130865e10	2.24783329792479e22	0.025022932909317674
12	11.953283253846857	7.533332360358197e10	2.886944688412679e22	0.04671674615314281
13	13.07431403244734	$1.9605988124330817\mathrm{e}{11}$	3.807325552826988e22	0.07431403244734014
14	13.914755591802127	3.5751347823104315e11	4.612719853150334e22	0.08524440819787316
15	15.075493799699476	8.21627123645597e11	5.901011420218566e22	0.07549379969947623
16	15.946286716607972	1.5514978880494067e12	7.010874106897764e22	0.05371328339202819
17	17.025427146237412	3.694735918486229e12	$8.568905825736165\mathrm{e}22$	0.025427146237412046
18	17.99092135271648	7.650109016515867e12	1.0144799361044434e23	0.009078647283519814
19	19.00190981829944	1.1435273749721195e13	1.1990376202371257e23	0.0019098182994383706
20	19.999809291236637	$2.7924106393680727\mathrm{e}{13}$	1.4019117414318134e23	0.00019070876336257925

Table 5: Coefficients after swapping

k	z'_k
1	$0.999999999998357+0.0\mathrm{im}$
2	$2.000000000550373 + 0.0 \mathrm{im}$
3	$2.9999999660342+0.0\mathrm{im}$
4	$4.000000089724362+0.0\mathrm{im}$
5	$4.99999857388791+0.0\mathrm{im}$
6	$6.000020476673031+0.0\mathrm{im}$
7	$6.99960207042242+0.0\mathrm{im}$
8	$8.007772029099446+0.0\mathrm{im}$
9	$8.915816367932559+0.0\mathrm{im}$
10	$10.095455630535774 - 0.6449328236240688 \mathrm{im}$
11	$10.095455630535774 + 0.6449328236240688 \mathrm{im}$
12	11.793890586174369 - 1.6524771364075785im
13	$11.793890586174369 + 1.6524771364075785 \mathrm{im}$
14	13.992406684487216 - 2.5188244257108443im
15	13.992406684487216 + 2.5188244257108443im
16	16.73074487979267 - 2.812624896721978im
17	$16.73074487979267 + 2.812624896721978 \mathrm{im}$
18	$19.5024423688181 - 1.940331978642903 \mathrm{im}$
19	$19.5024423688181 + 1.940331978642903 \mathrm{im}$
20	$20.84691021519479+0.0\mathrm{im}$

5 Exercise 5

Consider following reccurence equation that represents population growth

$$p_{n+1} := p_n + rp_n(1 - p_n), n \in \{0, 1, 2, \dots\}$$
(1)

r - constant

 $r(1-p_n)$ - coefficient of population growth

 p_0 - starting size of population as a percent of maximum population size

5.1 Calculate p_{40} for $p_0 = 0.01$ and r = 3. Then calculate p_{10} . Then let $p'_{10} := trunc(p_{10}, 3)$ and compute p'_{40} . Compare p_{40} and p'_{40}

5.1.1 Results

Results can be found on Table 6

Table 6: 5.1 Difference between normal and interrupted iteration of p

i	p_i	p_i'	$ p_i - p_i' $
9	0.21559286	0.21559286	0.0
10	0.7229306	0.722	0.0009306073
11	1.3238364	1.3241479	0.00031149387
12	0.037716985	0.036488414	0.0012285709
13	0.14660022	0.14195944	0.004640773
14	0.521926	0.50738037	0.0145456195
15	1.2704837	1.2572169	0.013266802
16	0.2395482	0.28708452	0.047536314
17	0.7860428	0.9010855	0.11504269
18	1.2905813	1.1684768	0.122104526
19	0.16552472	0.577893	0.4123683
:	:	:	:
39	1.2652004	0.3839622	0.88123816
40	0.25860548	1.093568	0.8349625

5.2 Calculate p_{40} for $p_0 = 0.01$ and r = 3 in Float32 and Float64. Compare the results

5.2.1 Results

Results can be found on Table 7

Table 7: 5.2 Difference between calculating pi with different precisions p

i	Float32	Float64	Float32 - Float64
0	0.01	0.01	2.2351741811588166e-10
1	0.0397	0.0397	1.4781951912512525e-9
2	0.15407173	0.15407173000000002	3.3555221379266698e-9
3	0.5450726	0.5450726260444213	1.089778434160138e-8
4	1.2889781	1.2889780011888006	9.863419747624391e-8
5	0.1715188	0.17151914210917552	3.3946635324966223e-7
:	:	:	:
37	1.0813814	0.6822410727153098	0.39914036744734893
38	0.81736827	1.3326056469620293	0.5152373779953545
39	1.2652004	0.0029091569028512065	1.262291219607769
40	0.25860548	0.011611238029748606	0.24699424216434318

5.3 Conclusions

In 5.1, at the beginning small discrepancy was made and that completely changed results for p_40 .

In 5.2, discrepancies were made by rounding errors all the time. It also completely changed the sequences for p_40

Overall by looking at these examples we can say that sequence p_n is unstable.

Exercise 6

Consider reccurence equation

$$x_{n+1} := x_n^2 + c, n \in \{0, 1, 2, \dots\}$$

where c - constant

For the following data, compute x_{40} and observe behaviour of generated sequences

ID	c	x_0
1	-2	1
2	-2	2
3	-2	1.99999999999999
4	-1	1
5	-1	-1
6	-1	0.75
7	-1	0.25

Table 8: Data to conduct experiment

5.4 Drawings

We can look at graphic iterations of these sequences

Figure 3: c = -1.0, $x_0 = -1.0$, we can see that value didn't stabilise and flips between -1 and 0

Figure 4: $c=-1.0,\ x_0=0.25,$ we can see that after some time x_n started flipping between -1 and 0

Figure 5: $c=-1.0,\ x_0=0.75,$ we can see that after some time x_n started flipping between -1 and 0

Figure 6: $c=-1.0,\ x_0=1.0,$ we can see that value didn't stabilise and flips between -1 and 0

Figure 7: $c=-2.0,\ x_0=1.0,$ we can see that value doesn't stabilise and flips between -1 and 0

Figure 8: c = -2.0, $x_0 = 1.999999999999$, x_n will never stabilise, because for x_n to become -1 or 2, it first needs to be -1 or 2 respectively.

Figure 9: We can see that x_n stabilised

5.5 Conclusions

For sequence to stabilise it needs to start in one of the fixed points. Fixed points x are the ones that meet equation

$$x = x^2 + c$$

Otherwise it will never reach it. We can even see on Figure 8 that even small discrepancy in in	put data
can make huge discrepancies later on. Thus this problem is ill-conditioned.	