CS 207M Tutorial-2

1. Fix a positive integer m and consider the relation \sim on the set of integers, Z:

$$a \sim b$$
 if m divides $a - b$

Show that \sim is an equivalence relation. How many equivalence classes does \sim admit?

2. Let $f: X \to X$ be a function. We define a relation \sim on X as follows:

$$x \sim y$$
 if $\exists m \geq 0$ such that either $f^m(x) = y$ or $f^m(y) = x$

Is \sim reflexive/symmetric/anti-symmetric/transitive?

- 3. Let $f: X \to Y$ and $g: Y \to Z$ be two functions and $Graph(f) \subseteq X \times Y$ and $Graph(g) \subseteq Y \times Z$ be the associated relations. Prove that $Graph(g) \circ Graph(f) = Graph(g \circ f)$.
- 4. Let R be a relation on the set A. The converse of R, denoted R^{-1} is a relation on A such that $(a,b) \in R$ iff $(b,a) \in R^{-1}$, for all a,b in A. The identity relation on A is denoted by I.

Let R_1, R_2, R_3 be relations defined on a set A. Prove or disprove the following statements

- $R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3$.
- I is a subset of $R_1 \circ R_1^{-1}$.
- If R_1 , R_2 are reflexive/symmetric/transitive/antisymmetric then $R_1 \circ R_2$ also has the same property.
- If R_1, R_2 are reflexive/symmetric/transitive/antisymmetric then $R_1 \cup R_2$ also has the same property.
- If R_1, R_2 are reflexive/symmetric/transitive/antisymmetric then $R_1 \cap R_2$ also has the same property.
- $(R_1 \circ R_2)^{-1} = (R_2)^{-1} \circ (R_1)^{-1}$.
- 5. Let R be a relation on a set A. Recall that R^n , $n \ge 0$ is a relation on A defined inductively as: $R^0 = I$ and, for $n \ge 1$, $R^n = R^{n-1} \circ R$. We define R^+ to be the relation $\bigcup_{n \ge 1} R^n$. Similarly, $R^* = \bigcup_{n \ge 0} R^n$
 - Show that the relation R^+ is transitive.

- Show that if R is symmetric then so is R^n for all $n \ge 0$.
- Show that R is transitive iff $R^n \subseteq R$ for all $n \ge 1$.
- 6. Let R be a reflexive, transitive relation on a set A. Define a relation X on A as follows: for all a, b elements of A, aXb iff aRb and bRa. Show that X is an equivalence relation.
- 7. Show that the reflexive-transitive-closure of a relation R is $R^* = \bigcup_{n \geq 0} R^n$.
- 8. A relation R on X is said to be a flower if there exists $x \in X$ such that for all $y \in X$, $(x,y) \in R$. Let R be any relation on X. What is the flower-closure of R?
- 9. Show that the smallest equivalence relation containing R is $(R \cup R^{-1})^*$.