DOCUMENT RESUME

ED 053 927

SE 011 332

AUTHOR TITLE Brant, Vincent
Trigonometry, A Tentative Guide Prepared for Use
with the Text Plane Trigonometry with Tables.
Baltimore County Public Schools, Towson, Md.

INSTITUTION PUB DATE NOTE

65 99p.

AVAILABLE FROM

Baltimore County Public Schools, Office of Curriculum Development, Towson, Maryland 21204 (\$2.00)

EDRS PRICE DESCRIPTORS

EDRS Price MF-\$0.65 HC-\$3.29 Curriculum, *Curriculum Guides, Instruction, Mathematics, *Secondary School Mathematics, *Teaching Guides, *Trigonometry

ABSTRACT

This teacher's guide for a semester course in trigonometry is prepared for use with the text "Plane Trigonometry with Tables" by E. R. Heineman. Included is a daily schedule of topics for discussion and homework assignments. The scope of each lesson and teaching suggestions are provided. The content for the course includes trigonometric functions, solution of right triangles, trigonometric equations and identities, oblique triangles, and inverse trigonometric functions. Also included are two supplementary units on special right triangles and set theory. (Author/CT)

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY

BALTIMORE COUNTY PUBLIC SCHOOLS

A TENTATIVE GUIDE

TRIGONOMETRY

1965

C. 011 332

CURRICULUM GUIDE

TRIGONOMETRY

A Tentative Guide

Prepared for Use with the Text

Plane Trigonometry with Tables

by

E. R. Heineman

Guide Produced by

Vincent Brant
Supervisor of Senior High School Mathematics

William S. Sartorius, Superintendent Towson, Maryland 1965

BOARD OF EDUCATION OF BALTIMORE COUNTY Aighurth Manor Towson, Maryland 21204

T. Bayard Williams, Jr. President

Mrs. John M. Crocker Vice-President

H. Emslie Parks

Mrs. Robert L. Berney

Ramsay B. Thomas, M. D.

H. Russell Knust

Richard W. Tracey, D. V. M.

فعد

William S. Sartorius Secretary-Treasurer and Superintendent of Schools

Foreword

This tentative guide has been written to aid teachers in presenting an updated course in trigonometry. The function concept as a set of ordered pairs and the analytic approach are key features of this guide. The lessons as well as the homework assignments are given as suggestions. The teacher should feel free to modify the lesson structure as may be appropriate for the student in his class. This guide serves as a framework within which the teacher should base the course in trigonometry. If teachers desire to alter the course to a considerable degree, they should discuss this with their department chairman or supervisor. Since this guide is tentative and will be revised after being used in the classroom, teachers are encouraged to offer suggestions and criticisms which will strengthen the outline.

Teachers should not overlook the excellent transparency projectuals which are in each mathematics department. Visual and graphic means should be used whenever possible.

MATERIALS OF THE COURSE IN TRIGONOMETRY

Plane Trigonometry with Tables by E. R. Heineman will be used as the basic text.

The references to the right of the scope in the outline indicate helpful or additional materials for the teacher and pupils.

Code		Title of Reference
RWM		Rosenbach, Whitman, Moskowitz. Plane Trigonometry with Tables. New York: Ginn and Company. 1943
FSM	-	Freilich, Shanholt, McCormack. Plane Trigonometry. Morristown, N. J.: Silver Burdett Company. 1957.
В	-	Brant, Vincent. Relations, Functions, and Graphs. Towson, Maryland: Board of Education of Baltimore County. 1962.
AK	-	Aiken and Beseman. Modern Mathematics: Topics and Problems. (Teacher's Edition). New York: McGraw-Hill Book Company.
BW	-	Butler and Wren. Trigonometry for Secondary Schools. Boston: D. C. Heath and Company. 1948.
M	••	May, K. O. Elements of Modern Mathematics. Reading, Massachusetts: Addison-Wesley Publishing Company. 1959.
Br	-	Brady Transparency Projectuals

CONTENTS

UNIT	ONE	-	THE TRIGONOMETRIC FUNCTIONS	1
UNIT	TWO	-	SOLUTION OF RIGHT TRIANGLES 3	2
UNIT	THREE	-	LINE REPRESENTATION OF TRIGONOMETRIC FUNCTION VALUES	6
UNIT	FOUR	-	SIMPLE IDENTITIES AND EQUATIONS 5	2
UNIT	FIVE	-	FUNCTIONS OF TWO ANGLES	9
UNIT	SIX	-	TRIGONOMETRIC EQUATIONS 6	3
UNIT	SEVEN	-	LOGARITHMS 6	4
UNIT	EIGHT	-	LOGARITHMIC SOLUTION OF RIGHT TRIANGLES. 6	7
UNIT	NINE	-	OBLIQUE TRIANGLES 6	8
UNIT	TEN	-	INVERSE TRIGONOMETRIC FUNCTIONS 7	5
UNIT	ELEVEN	1 -	COMPLEX NUMBERS 7	8
APPI	ENDIX I	•••	SPECIAL RIGHT TRIANGLES	
APPI	ENDIX II	-	REVIEW OF ELEMENTARY SET CONCEPTS	

•	SCOPE AND TEA	D	The Trigon	Introduction (1-1)	Trigonometry is a subject which is well as in other branches of mather a college subject. It was studied be to chart the colonial wilderness, as Easter. However, with new naviga and the assistance of observatories practical measurement aspect of the Today, the analytic treatment of treemphasis. This course will stress solution of triangles. Directed Segments (1-2) The Rectangular Coordinate System (1-Coordinate axes: x-axis, y-axis Origin Plotting a point Radius vector Quadrants The Distance Formula (1-4) SUGGES
	LESSON			—	
ERIC TRUITBAX Provided by EBIC	H				7

\GE						2,3	5.	
CODE PAGE		····	н 1		н 2	H 2	H 4,	
SCOPE AND TEACHING SUGGESTIONS	UNIT ONE	The Trigonometric Functions	Introduction (1-1)	Trigonometry is a subject which is important in physics and engineering as well as in other branches of mathematics. Two hundred years ago, it was a college subject. It was studied by sea captains for navigation, by surveyors to chart the colonial wilderness, and by ministers to calculate the date of Easter. However, with new navigational methods, specialization of surveying, and the assistance of observatories in calculating the dates of Easter, the practical measurement aspect of trigonometry has declined in importance. Today, the analytic treatment of trigonometric functions is receiving greater emphasis. This course will stress this modern point of view as well as the solution of triangles.	Directed Segments (1-2)	The Rectangular Coordinate System (1-3) Coordinate axes: x-axis, y-axis Origin Flotting a point Radius vector Quadrants	The Distance Formula (1-4)	SUGGESTED ASSIGNMENT Hpp. 5, 6 : Ex. 1, 5, 7, 9, 10, 11, 13
LESSON			;					

G	,-		
	LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	2	Trigonometric Angles (1-5)	Н 5
•	<u> </u>	Students who have studied the SMSG Geometry with Coordinates have been taught that an angle is the union of two noncollinear rays with a common endpoint. Such a concept excludes the zero angle, and angles equal to or greater than 180°.	
		Students who have taken the course in regular Geometry have been taught that an angle is the union of two distinct rays which have a common endpoint. Such a concept excludes the zero angle and angles greater than 180° but includes an angle of 180°.	
8		It should be pointed out to the student that the restrictions of degree measure as noted above were necessary for a postulational treatment of angles. The student should be taught that certain extensions and modifications of the angle concept will be made in this course since the purposes in trigonometry are different from synthetic geometry. For example, engineers who deal with things like rotating shafts of motors will find such angles as 0°, 180°, 270°, 1750°, -50°, and others quite useful in his work. Thus trigonometry will deal with measures of angles which were not permitted in synthetic geometry on the basis of the postulates. The dynamic interpretation of an angle as the rotation of a terminal ray with respect to an initial ray is also useful in trigonometry.	
		Experience has shown that students become quite confused with the angle concept unless teachers carefully explain the distinction in the purposes of the course.	
	mandand for the 11° shall become		
	The desires transfer on the Contract of the Co		

SCOPE AND TEACHING SUGGESTIONS	The text offers a definition of "angle" in terms of "an amount of rotation." The text uses the idea of angle in two senses: one, as the name of the angle, and the symbol " θ " is used in some cases as the name of the angle. For example, the symbol " θ " is used in some cases as the name of the angle, and in other cases as the number of degrees or radians as the measure of the angle. It would be more precise if the symbol " θ " were used as the name of the angle, and the symbol " $m(\theta)$ " were used as the real number which is the measure of the angle. However, the student will have to judge in what sense the symbol " θ " is used in this text. It is well for the teacher to use the following ideas in clarifying the dual use of "angle."	The trigonometric angle is the union of two rays, (not necessarily different) having a common endpoint.	The measure of a trigonometric angle is the number assigned as the magnitude of the angle in terms of sexigesimal or radian measure.	Observe that this definition permits the measure of angles 0, 180, as well as those which are greater than 180 or negative.	The angle is still the union of two rays, not necessarily different. It is still a set concept.	The measure of an angle is different than the angle. The measure is a number; the angle is a set of points.	Make an agreement with the class that the symbol " θ " as used in the text may have two meanings one as a set of points and the other as a number. The appropriate use may be judged from the context of the discussion. It has been shown that students accept this dual use of " θ " without much difficulty provided the above ideas are explained.
LESSON	2 (cont'd)			9			

REFERENCE CODE | PAGE

ERIC Part of the

()

()

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
8	Special Right Triangles	Geometry Cour se of
	The special right triangles such as the	Study Appendix I
	a. 3, 4, 5 triangle b. 5, 12, 13 triangle	Special Right
		Triangles
	are used extensively in this course. The teacher should review this topic carefully. Provide sufficient practice in the 30-60-90 and 45-45-90 triangles so that the students may be able to calculate mentally the lengths of the two remaining sides of the triangle when they are given the length of any one side. This skill will be most useful in finding the values of the trigonometric functions of special angles. Use the unit in Appendix I on Special Right Triangles in the Geometry Course of Study. Copies of this unit may be obtained from your department chairman and loaned to students for this lesson. This is essentially review work so that the teacher can easily provide refresher experiences.	
	SUGGESTED ASSIGNMENT	
	Appendix I: pp. 125 - 127: Ex. 1 - 10	

-5-

(_)

REFERENCE CODE PAGE
H65-69 RWM 83-88
SMSG,
Functions
243-245

(

(:

The second of th

(]-

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
4 (cont'd)	The teacher should develop the relationship between radian and sexagesimal measure in an intuitive fashion. It is helpful to write out the words "radian" and "degrees" in using the approach suggested below.	
	Since the radius of a circle is contained 2π times in the circumference of a circle, we may say:	
	2π radians = 360 degrees	
	π radians = 180 degrees (multiplying by $\frac{1}{2}$)	
	From this last basic formula the students can always obtain the relationships:	
	$\frac{180}{\pi}$ degrees (multiplying by $\frac{1}{\pi}$)	
	or	
	$\frac{\pi}{180}$ radians = 1 degree (multiplying by $\frac{1}{180}$)	
	SUGGESTED ASSIGNMENT	
	H pp. 68, 69: Ex. 1, 2, 3, 5, 6, 7, 9, 10, 11, 17, 19, 21, 23, 25, 27, 29,	
	57, 58, 59	

(_)

		REFERENCE
LESSON	SCOPE AND TEACHING SUGGESTIONS	CODE PAGE
2	Length of a Circular Arc	H69-73 RWM 88-90
	Note: Linear and Angular Velocity may be presented later in the course, if time permits.	
	SUGGESTED ASSIGNMENT	
	H pp. 71-73: Ex. 1, 2, 5, 6, 7, 13, 14, 18, 19	
9	Relations, Function, and Graphs	BRe-
	The text mentions the idea of a trigonometric function as a special set of ordered pairs, but for the most part treats trigonometric functions	Functions, and Graphs
	as special ratios. In this course, however, we shall emphasize a more modern approach. Hence, it will be necessary to review concepts of	AK1-139
. dansid b	algebra and geometry. This should be a rapid review. Student review	
	chairman.	
	In this lesson, the teacher should review the following ideas:	
o produced by any gar recovery	a. Set is an undefined term. We may describe a set as a collection of things or objects.	
	b. Set notation	
	1. The phrase method	
	Example: the set of the (names of) the vertices of Δ . ABC.	
		10.000
-	i i	

ころのの日	SCOPE AND TEACHING SUGGESTIONS	KEFENCE CODE DACE
9	2. The roster (listing) method	TAGOO 1
(cont'd)	Example. Using same set as in (1); { A, B, C }	·
	3. The rule method	
	Example: Using same set as in (1) and (2);	
	$\{x \mid x \text{ is a vertex of } \Delta ABC \}$	
	c. The empty set	
	The set which contains no elements is the empty set. The symbol for the empty set is "\phi"	
	d. Subset of a given set	
	Set A is a subset of set B (denoted ".AC B") if and only if each element of A is also an element of B.	
	Example: Let $B = \{1, 2, 3, 4, 5\}$	
	$A = \{1, 3, 4\}$ $C = \{4\}$	
	$D = \{2, 5, 3, 4, 1\}$	
	Then: $A \subset B$; $C \subset B$; $D \subset B$; $C \subset A$;	
	Also $\phi \subset A$; $\phi \subset B$; $\phi \subset D$	
	e. Cartesian Product	
All Many particular particular for ex-	The Cartesian Product of two sets A and B (not necessarily different) is the set of all ordered pairs in which the first coordinate belongs to	
	The Cartesian Product of A and B is denoted as	Parameter 12 money
	$A \times B$ (read "A cross B") Example: Let A = { a, b, c, }; Let B = { 1, 2 } Then $A \times B = \{(1, 1), (1, 1), (2, 2), (2, 2)\}$	

(_)

ERIC Page and Page 100

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE
9	f. Relation	
(cont'd)	A relation is a set of ordered pairs.	
	Or	
	A relation from A to B is a subset of A × B.	
	Example: Let $A = \{a, b, c\}$; let $B = \{1, 2\}$	
	Some relations from A to B are:	
	Relation R = { (a, 1), (b, 2), (c, 1) } Relation Q = { (a, 2) } Relation T = { (a, 1), (b, 1), (c, 1) }	
	Of course, A × B is also a relation. Furthermore, the empty set, φ, is a relation.	
	g. Domain and range of a relation	
	The domain of a relation is the set of all the first coordinates of the ordered pairs of the relation.	
<u> </u>	The range of a relation is the set of all the second coordinates of the ordered pairs of the relation.	
	Example: Let Relation $T = \{ (a, 2), (b, 3), (a, 5), (c, 2) \}$	
	Then, Domain of $T = \{a, b, c\}$ Range of $T = \{2, 3, 5\}$	

1
(3)
ERIC
Full Text Provided by ERIC

(_)

LESSON	SCOPE AND TEACHING SUGGESTIONS	CODE PAGE
-	h. Function	
(cont.d)	A function from A to B is a special kind of relation such that for each first coordinate there is one and only one second coordinate.	
	Stated differently, no two ordered pairs of a function may have the same first coordinate. Hence, the first coordinates in the ordered pairs of the function must be different. However, the second coordinate may be the same.	
	Examples: D = { (1, a), (2, b), (3, c) } is a function. H = { (1, a), (2, b), (1, c) } is not a function; it is a relation.	
	$K = \{ (1, a), (2, a), (3, a) \}$ is a functiona constant function.	
	Note: Domain of $K = \{1, 2, 3, \}$; Range of $K = \{a\}$	
	$I = \{ (x, y) \mid y = x \}$	
	Note: Domain of I = the set of real numbers Range of I = the set of real numbers	
	i. Tests for a function	
	1. The ordered pair test	
	A relation is a function prpvided the first coordinates of the ordered pairs are different.	
	2. The vertical line test	
	The relation is a function provided every vertical line intersects the graph of the relation in exactly one point. If at least one vertical line intersects the graph in more than one point, then the graph	

REFERENCE CODE PAGE	1 sely lly	·,		te s			Die Galleri karanda bel	wangan ka di tanin ana waka ka mana di kabawa na aka di kabawa na aka di kabawa na aka di kabawa na aka di kab	
SCOPE AND TEACHING SUGGESTIONS	j. Value of a function The teacher should be very careful and precise with the language used in discussing functions. In the past, such language has been used loosely and imprecisely, leading to fuzzy and vague notions. This is especially true when discussing the idea of "the value of the function."	The following ideas should be emphasized when discussing a function such as:	<pre>f = { (x, y) y = 5x } l. The function f is the entire set of ordered pairs</pre>	2. The function is NOT "y = 5x" Instead, "y = 5x" is a sentence which defines the function. This sentence assigns to each real number used as a first coordinate another real number 5 times as large for its corresponding second coordinate.	3. "y", "5" or "f(x)" are different names for the second coordinate. Thus, the function f might also be written in the followning notations:	$f = \{ (x, y) y = 5x \}$ $f = \{ (x, f(x)) f(x) = 5x \}$	$f = \{ (x, 5x) \mid x \text{ is a real number } \}$	4. " $f(x)$ " is translated as "f at x" or "f of x"	
LESSON	6 (cont'd)		,						

ID TEACHING SUGGESTIONS CODE PAGE PAGE	SUGGESTED ASSIGNMENT (continued)	y = x }	~	y>5x	$y = x^2 $	~ · <u>></u>	$X = \{ (x, y) \mid x^2 + y^2 = 25 \}$	$ \mathbf{xy} = 12 $	$(x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	x=3	Study Assignment: Study Mimeographed Sheet, "Review of Elementary Set Concepts"
LESSON SCOPE AND THE	(cont'd)	4. $R = \{ (x, y) \mid y = \}$		$T = \{ (x, y) \mid y$	$U = \{ (x, y) \mid A = A = A = A = A = A = A = A = A = A$	8. $V = \{ (x, V(x)) Y = (0, Y) Y = (0, $	10. $X = \{ (x, y) \mid x^2 \}$	11. $Y = \{ (x, y) \mid xy = 12 \}$	12. $G = \{ (x, G(x)) \mid G(x) = 5 \}$	13. $H = \{ (x, y) x = 3 \}$	Study Assignment: "Review of Elementa

(j

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
7	Definitions of the Trigonometric Functions of a General Angle (1-7)	H7-10
	The teacher should present the definitions of the trigonometric functions in a manner consistent with the concept of function as reviewed in the previous lesson. Observe that the text does mention the function as a special set of ordered pairs, but then reverts to loose expressions when speaking of the function and its value. The teacher should define the trigonometric functions as follows:	
	sine (or $\sin \theta = \{(\theta, \sin \theta) \mid \sin \theta = \frac{y}{r} \}$	
	Observe that	
	(1) The symbol "sin" indicates a set of ordered pairs	
	(2) θ is a numbera number that measures the magnitude of the angle in degrees or radians.	
	(3) Sin θ is a number the number which is assigned as the second coordinate by the defining sentence $\sin \theta = \frac{X}{r}$	
	(4) Sin θ is NOT the function.	
	Sin θ is the name of the second coordinate.	
	Sin θ is the VALUE of the function at θ .	
	(5) Each ordered pair of the sine function has real numbers for the first and second coordinates.	

SCOPE AND TEACHING SUGGESTIONS	cosine (or cos) = { $(\theta, \cos \theta) \mid \cos \theta = \frac{x}{r}$ }	tangent (or tan) = { $(\theta, \tan \theta) \mid \tan \theta = \frac{X}{x}$ }	cotangent (or cot) = { $\{\theta, \cot \theta\} \mid \cot \theta = \frac{x}{y} \}$	secant (or sec) = { $\{\theta, \sec \theta\} \mid \sec \theta = \frac{r}{x} \}$	cosecant (or scs) = $\{ (\theta, scs \theta)_{i} \mid csc \theta = \frac{r}{y} \}$			
LESSON	7 (cont'd)					22	 	

T.

	; عا
(3)	

	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	Thus, the trigonometric functions are called sin, cos, tan, cot, sec, and csc.	
	The values of the trigonometric functions (or second coordinates of the ordered pairs) are $\sin \theta$, $\cos \theta$, $\tan \theta$, $\cot \theta$, $\sec \theta$, and $\csc \theta$.	
	Emphasize the fact that the domain of each of the above functions consists of all real numbers θ for which the corresponding ratios have a nonzero denominator, since division by zero is impossible (not defined).	
	Stress the fact that the value of the trigonometric functions depends solely upon the magnitude of the angle and not upon the lengths of the sides used in the ratios.	
Cons	Consequences of the Definitions (1-8)	H10,11
	1. Reciprocal relations	
, ,	2. Theorem on coterminal angles: The value of the trigonometric function of an angle is equal to the value of the trigonometric function of any angle coterminal the given angle.	
	SUGGESTED ASSIGNMENT	
	Hp.14; Ex. 1, 2, 6, 7, 19, 21, 22, 23, 25, 26, 27, 29, 30	

REFERENCE CODE PAGE									
SCOPE AND TEACHING SUGGESTIONS	Signs of the values of the trigonometric functions The presentation of this topic in the text is poor and should not be used. Instead, the teacher should provide an opportunity for discovery in this topic by presenting the following diagrams and charts. Have the students complete the chart so that they discover the generalization and formulate the rule.	Function value I III IV	sin θ + = + + + + + + + + + + + + + + + + +	- = + = + = + = + = + = + = + = + = + =	tan θ + = +	cot θ + + + +	sec θ + + +	+=+	o
LESSON	8 (cont'd)				÷.				

REFERENCE CODE PAGE	_1														
SCOPE AND TEACHING SUGGESTIONS	SUMMARY CHART FOR SIGNS OF FUNCTION VALUES		$\sin \theta > 0$ all function values	$csc \theta > 0$ are positive	ıα πα	vi a m	$tan \theta > 0$ $cos \theta > 0$	$\cot \theta > 0$ $\sec \theta > 0$	Use of inequality symbols	1, $\sin \theta > 0$ means that the value of the sine is positive.	2. $\sin \theta < 0$ means that the value of the sine is negative.	Observe the incorrect language used by the text in Examples 31-38 on page 15. The interpretation of "sin $\theta = +$ " means that a number is the same as the positive symbol. This is incorrect, because equality in a sentence means "names the same object as", or "is another name for." Direct your students to rewrite these in proper form; example 31 should be properly written as	$\sin \theta < 0$ and $\tan > 0$.	The use of set intersection is helpful in solving problems such as example 31 above. The presentation of the solution might be as follows:	
LESSON	8	(cont'd)										ione delicated and services are services and services and services and services and services and services are services are services and services are services are services and services are services and services are services are services are services are services are	Lagurgia agan haift (

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
8	Let x be the quadrant or quadrants in which the given angle terminates.	
(cont a)	Now, $M = \{x \mid \sin \theta < 0\} = \{III, IV\}$	
	$N = \{ x \mid \tan \theta > 0 \} = \{ I, III \}$	
•	Hence, $M \cap N = \{x \mid \sin \theta < 0\} \cap \{x \mid \tan \theta > 0\}$	
	$= \{ \operatorname{III, IV} \} \cap \{ \operatorname{I, III} \}$	
	= { III }	
	Representation of the quadrants by set notation	
	Let R be the set of real numbers.	
	Then $R \times R$ is the set of ordered pairs of real numbers, and its graph is the entire plane.	
	Hence, $A = \{ (x, y) \mid x > 0 \};$	
	The graph of A is the set of all points of the plane or the half-plane to the right of the y axis.	
	X	
* 180 87 **********		
	×	
	-02-	

ERIC

()

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
8 (cont	$B = \{ (x,y) \mid x < 0 \}$ The graph of B is the set of all points of the plane or the half-plane to the left of the y axis.	
	$C = \{ (x,y) \mid y > 0 \}$ The graph of C is the set of all points of the plane or the half-plane above the x axis.	
	$D = \{\ (x,y) \mid y < 0\ \}$ The graph of D is the set of all points of the plane or the half-plane below the x axis.	
	Hence, $A \cap C = \{ (x, y) \mid x > 0 \text{ and } y > 0 \}$; its graph is Quadrant I.	
	B \cap C = { (x, y) x < 0 and y > 0 }; its graph is Quadrant II.	
27	$B \cap D = \{ (x, y) \mid x < 0 \text{ and } y < 0 \}; \text{ its graph is Quadrant III.}$	
7	$A \cap D = \{ (x, y) \mid x > 0 \text{ and } y < 0 \}$; its graph is Quadrant IV.	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	HOMEWORK ASSIGNMENT	4
	The teacher should either ditto or write on the board the problems below which are not in the text.	
	1. In what quadrants must the angle whose measure is θ terminate under the following conditions:	
	(a) $\sin \theta > 0$; (b) $\cos \theta < 0$; (c) $\tan \theta < 0$; (d) $\sec \theta > 0$	
	 (Refer to page 11 in the text for model illustrations) Express the function values of sin, cos, tan of the angles given below as function values of angles between zero and 360. 	
	(a) 390° (b) 890° (c) -34° (d) -590°	
	In problems 31 - 38 on page 15,	
	(1) Rewrite the problem in correct notation using inequalities.	
	(2) Identify the quadrant in which the given angle, whose measure is θ , terminates in order to satisfy the conditions.	
		n · h · han

Ĩ.

REFERENCE CODE PAGE H	50-52 RWM 21-26				
SCOPE AND TEACHING SUGGESTIONS Function values of special angles	It is wise at this time to provide further practice in finding the function values	of angles by using the ratios of the sides of the 30-60-90 and 45-45-90 triangles. The text does this in different sections. In this guide, however, the trigonometric function values of such angles as 330°, - 135°, 600° and the quadrantal	In this section teachers should use radian and sexagesimal measure interchangeably.	The following ideas are important in this lesson:	1. The related (or reference angle) as the positive acute angle between the horizontal (or x) axis and the terminal side of the given angle.
LESSON	•				

T.

3. The 30-60-90 triangle as a special related triangle.

The related (or reference) triangle as the triangle formed by drawing segments representing the abscissa and the ordinate of a point on the

4. The 45-45-90 triangle as a special related triangle.

The unit circle and the coordinates of the points where the x and y axes intersect the circle. 5.

The teacher should present the diagrams and charts on the next page and let the students complete the chart after a suitable explanation has been made concerning the procedure in finding the function values.

terminal side.

2:

C

ERIC

REFERENCE CODE PAGE														
SCOPE AND TEACHING SUGGESTIONS	C. The function values of angles related to angle of $\frac{\pi}{4}$ radians or 45°.		+1 +1 (135° 225° 315°	45)	+\lambda_2	COMPLETE THE CHART	Function Angle $\frac{1}{4} \pi \text{ or } 45^{\circ}$ $\frac{3}{4} \pi \text{ or } 135^{\circ}$ $\frac{5}{4} \pi \text{ or } 225^{\circ}$ $\frac{7}{4} \pi \text{ or } 315^{\circ}$	$\sin \theta \qquad \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	cos θ - <u>√2</u>	tan θ 1	cot θ	sec 6 \(\sigma \frac{2}{\sigma}\)	csc θ	
LESSON	9 (cont'd)													
,		•	*					32	,					

LESSON	SCO	SCOPE AND TEACHING SUGGESTIONS	NG SUGGEST	IONS		CODE PAGE
6	D. Quadrantal angles; that is,	; that is, angles	angles whose measure is 0,	e is 0, $\frac{\pi}{2}$, π ,	$\frac{3\pi}{2}$ radians	2
(cont'd)	Use a unit circle and point P representing the intersection of the radius	and point Prepre	senting the in	tersection of	the radius	
	vector and the circle.	cle.	(0,1)	(-		
		(0,1)	064	(6)	007	
				L	100	
					<u>p</u>	
		0	± 2	11	34	
	Abscissa (x)	1	0	-1	0	
	Ordinate (y)	0	1	0	-1	
	Radius vector (r)	1	1	- 4	1	
	F unction	0 or 0°	$\frac{1}{2}$ or 90°	п от 180°	$\frac{3}{2}$ π or 270°	
	sin 6	$\frac{y_{=0}}{r} = 0$		$-\frac{1}{1} = -1$		
	cos θ	x = 1 = 1				
	tan 0	$\frac{y}{x} = \frac{0}{1} = 0$	$\frac{1}{0}$ not $\frac{1}{0}$ defined			
	cot θ	$\frac{x}{y} = \frac{1}{0} = \text{not de}$				
	ec θ					
	မ ၁၈၁					

LESSON	SCOPE AND TEACHING SUGGESTIONS	CODE PAGE
9 (cont'd)	The teacher may wish to let the students complete the charts for homework and announce a short quiz on this topic for the next day, or the teacher may wish to have the charts completed in class and assign additional problems for home study. In that case, the suggested assignment is given below.	1
	SUGGESTED ASSIGNMENT	
	Hp.23: Ex. 1, 2, 5, 6	
	Hp. 61, 62: Ex. 1, 2, 6, 9, 10	
	Hp. 69; Ex. 37, 39, 41, 43, 45, 49, 51 97	
	-28-	

ţ

EDI
Full Text Provided by

REFERENCE CODE PAGE				M 284-294							
SCOPE AND TEACHING SUGGESTIONS	Given One Trigonometric Function Value of an Angle, To Draw the Angle and Find the Other Trigonometric Functions.	Students should be shown that this topic actually reverses the procedure practiced in the previous lessons. In prior sections, students were primarily interested in finding the second coordinate of an ordered pair when the first coordinate was given; that is,	od av	To find θ when $\sin \theta = \frac{1}{2}$ means to fill in the slot in $($	(1) the interchange of the first and second coordinates (2) the resulting set of ordered pairs also be a function	Note that ordered pairs in such an interchange would give rise to such ordered pairs as	$(\frac{1}{2}, 30^{\circ}), (\frac{1}{2}, 150^{\circ}), (\frac{1}{2}, 390^{\circ}), (\frac{1}{2}, 510^{\circ}), \text{ etc.}$	Since the first coordinates in the ordered pair of a function must be different, interchanging the coordinates would not result in a function. Of course, with suitable restrictions, a function may result.	The following procedure is helpful in the solution of a problem such as	Given: $\sin \theta = \frac{1}{2}$; locate the terminal side of the angle.	
LESSON	10										

(

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
10	Procedure for solution of: Given $\sin \theta = \frac{1}{2}$; draw the angle in standard position.	
(cont'd)	1. Determine the quadrant or quadrants from the sign of the function value.	
-	Keep emphasizing the importance of this first step. In the above problem	****

1	1. Determine the quadrant or quadrants from the sign of the function value.	Keep emphasizing the importance of this first step. In the above problem	the sine value is positive and hence the angle must lie in Quadrant I or	Quadrant II.	2. Write the defining sentence of the sin function, and the given ratio as below.

7	2. Write the defining sentence of the sin function, and the given fatto as 50. This will enable the student to assign lengths to a related (or reference)
	triangle.

of course, the fraction cannot be represented as
$$\frac{-1}{-2}$$
 because the radius vector is defined to be a positive quantity. However, in the tangent or cotangent ratio, either the numerator or denominator can take on either positive or negative values. In the secant and cosecant ratio, the numerator must always be a positive quantity.

3. Make a drawing using the parts found in part 2.

36

- The third side may be found by the Pythagorean relation. In this case, students should recognize the ratio of the sides 1: $\sqrt{3:}2$ as belonging to the 30-60-90 triangle. 4.
- 5. Hence the related angle is 30°, and $\theta = 30^\circ$ and 150°.

SUGGESTED ASSIGNMENT

H....p.17; Ex. 1, 3, 5, 7, 9, 11

REFERENCE CODE PAGE				_					 W	
SCOPE AND TEACHING SUGGESTIONS	Reinforcement of Lesson 10	SUGGESTED ASSIGNMENT	The exercises in RWM are excellent and more challenging. You will want to copy these on the board or ditto them.	RWM pp. 20,21: Ex. 1, 3, 17, 19, 21, 24(a)	Review for test	Test				
LESSON	=	· ·		- -	12	13	9 <i>"</i>	 n y de majorina de plano de parte de la composición de la composición de la composición de la composición de l	 	······································

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	ONI TWO	
	Solution of Right Angles	
14	Trigonometric Functions of an Acute Angle (2-10)	H18,19 RWM 28-30
	Cofunctions (2-11) Theorem 1: Any trigonometric function value of an acute angle is equal to the cofunction value of its complementary angle.	H20 RWM 30
	Theorem 2: If two acute angles, A and B, have any function value of one equal to the confunction value of the other, then the angles A and B are complementary. (Converse of Theorem 1)	RWM 30
	The topic of variation of the function values at this point is too limited in scope. Hence, it will be deferred to a later section dealing with line representations of trigonometric functions.	
	SUGGESTED ASSIGNMENT	
	 Hp.19: Exercise 5: Examples 1, 2, 3, 4 Hp.23: Exercise 6: Examples 9, 10, 11, 13, 14 RWMp.31: Examples 1, 3, 5, 12, 17 	

EDIC	
Full Text Provided by ERIC	

Total Control

(.

니	LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	15	Tables of Trigonometric Function Values (2-14)	H 23, 24
		Given an Angle, To Find the Value of One of Its Functions (2-15)	H 24
		Given the Function Value of an Angle, To Find the Angle (2-16)	H24
		SUGGESTED ASSIGNMENT H,p.25: Exercise 7; Examples 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23	
· •	16	Interpolation (2-17)	H25-27
39		SUGGESTED ASSIGNMENT H p. 27, 28: Exercise 8: Examples 1, 2, 3, 9, 10, 11, 13 17, 18, 19, 21, 22	
	17	Interpolation (Second day for further reinforcement of skills)	H 25-27
		Approximations and Signifi cant Figures (2-18) An excellent treatment of this topic may be found in Butler and Wren	H28-30 BW41-44
		SUGGESTED ASSIGNMENT Hp.27,28: Exercise 8: Examples 5, 6, 7, 14, 15 25, 26, 27, 29, 30	
		Hp. 30: Exercise 9: Examples 1, 2, 3, 5, 6, 1, 9, 10, 11	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
18	The Solution of Right Triangles (2-19)	H30-33
	Insist upon a neat format for the solution of the right triangles. Such a format might be patterned after the following:	
	Given: 2A = 38°50' b = 311 c a To find: 2B = a = c = c = c = c = c = c = c = c = c	
	$A \longrightarrow 38^{\circ}50^{\circ}$ $b = 311$	
	find 2B (2) To find a (3) To find	
	an A = 2 Cos 1	
	a = 5 Tan A a = 311 Tan 38°50' a = 311 (0.8050) c = Cos A 311 c = 250	
	66E = 399	
	SUGGESTED ASSIGNMENT	
	H pp. 33-34; Exercise 10; Examples 1, 3, 5, 7, 9, 15	

20			
20	Angles of Elevation and Depression (2-20)	H 34-36	9
50	Bearing of a Line (2-20)	H 34-36	يو.
50	SUGGESTED ASSIGNMENT		
50	H pp. 36, 37: Exercise 11: Examples 1, 3, 5, 7, 11, 13		
	Angles of Elevation and Depression; Bearing of a Line (Second Day)		
	SUGGESTED ASSIGNMENT		
	H pp. 36-39: Exercise 11: Examples 14, 15, 21, 22, 23, 28		
₹ 41	Review		
22	Test		
		No. 00 (100 (100 (100 (100 (100 (100 (100	

REFERENCE CODE PAGE									
SCOPE AND TEACHING SUGGESTIONS	UNIT THREE	Line Representation of Trigonometric Function Values	Introduction	Previously, the trigonometric functions of the general angle have been expressed as the ratio of two segments represented by the abscissa, ordinate or the length of the radius vector of a point on the terminal side of the radius vector. It is possible and often convenient to represent the trigonometric function values as the lengths of a single line segment. This can be done by representing the angle in the lengths of a single line segment.	1.	It is unfortunate that the text which is excellent in many respects chooses to omit this material since it provides an interesting graphic method by which the student may chart the variation of the trigonometric function values. Furthermore, the line representations thus developed will be used to develop the basic trigonometrials.	ric identities through graphic methods. The references by RWM and FSM provide an excellent presentation of this topic.	and the sec might be discussed in class with the csc assigned for homework.	
LESSON									

-

rions	tan and sec simultaneously and the cot and csc teacher preference and to his judgment of estudents in his class. In any case, the collowing ideas:			projectuals		
SCOPE AND TEACHING SUGGESTIONS	For slower classes, the teacher may wish to develop all of these in class. Some teachers prefer to teach tan and sec simultaneously and the cot and simultaneously. This is left to teacher preference and to his judgment of the best way to present it to the students in his class. In any case, the teacher should emphasize the following ideas:	(1) domain and range of the function	(2) amplitude and periodicity (3) graphical representation	Ask your department chairman for the excellent transpare ncy projectuals which you sh ould use in presenting this topic.		
LESSON					 	

SCOPE AND T	Line Representation of the Sin Function Value A. Geometric derivation O W A M	Definition: The line representa unit circle with radi the x axis; negative,	Representation of the sine value (sin θ)
TEACHING SUGGESTIONS		1. Draw 2. sin 6 tion of the sine us vector OP. if measured b	lue in each quadrant
	Unit circle O with angle θ , point P the intersection of the unit radius vector and the unit circle.	v PM \(\begin{align*} \text{DOX} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	nis (-)
REFREDITE CODE PAGE	H76-82, 115- 123 FSM61, 63 66-68 RWM.232-234 239-244		Λ 0

Complete the chart of variation for the sine values. Angle $0 \frac{1}{6} \frac{1}{4} \frac{1}{4} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{5}{4} \frac{5}{6} \frac{7}{4} \frac{7}{6} \frac{5}{4} \frac{4}{3} \frac{3}{2} \frac{5}{4} \frac{7}{3} \frac{5}{4} \frac{7}{6} \frac{13}{4}$
$0 \frac{1}{6}\pi \frac{1}{4}\pi \frac{1}{3}\pi \frac{2}{2}\pi \frac{3}{3}\pi \frac{5}{4}\pi \frac{5}{6}\pi \pi \frac{7}{6}\pi \frac{5}{4}\pi \frac{4}{3}\pi \frac{3}{2}\pi \frac{5}{3}\pi \frac{7}{4}\pi$
runction value of sin 0 .5 .71
Graphic representation of the sine function
Sine curve (sinusoid) defined by $y = \sin \theta$; domain; range
Feriod; amplitude; continuity
Graph of (a) the function defined by $y = \frac{1}{2} \sin \theta$
(b) the function defined by $y = 2 \sin \theta$
(c) the function defined by $y = 3 \sin \theta$
Comparison of the graphs of (a), (b), (c) with respect to amplitude and period.
Graph of (a) the function defined by $y = \sin \frac{1}{2} \theta$
(b) the function defined by $y = \sin 2\theta$
(c) the function defined by $y = \sin 3\theta$
Comparison of the graphs of (a), (b), (c), with respect to amplitude and period.
Generalizations concerning the period and amplitude
NOTE: To save time, the teacher may wish to let one row of students graph 3(a), another row 3(b), etc., and let the students draw the graphs on one set of coordinate axis to make comparisons and generalizations.

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
23	SUGGESTED ASSIGNMENT	
(cont'd)	Repeat the classroom discussion for the line representation for cos values. Be sure to include the following ideas:	H 76-78, 82,
-	A. Geometric derivation (Hint: Observe the abscissa of the point.	FSM. 61-63 66-68
	B. Definition	RW M 232234 239-245
	C. Line representation of the cos value in each quadrant	
	D. Graphic representation of the cosine curve.	
	1. Cosine curve defined by $y = \cos \theta$; domain; range	
	2. Period; amplitude; continuity	
_	3. Graph of (a) the function defined by $y = \frac{1}{2} \cos \theta$ (b) the function defined by $y = 2 \cos \theta$	
	the function defined by y =	
	Compare the graphs of (a), (b), (c) with respect to amplitude and period.	
	4. Graph of (a) the function defined by $y = \cos \frac{1}{2} \theta$	
	(b) the function defined by $y = \cos 2\theta$	
	(c) the function defined by y = cos 30	
****	Compare the graphs of (a), (b), (c) with respect to period and amplitude.	
	5. Make a generalization concerning amplitude and period for the cos curves.	
-		

REFERENCE CODE PAGE	FSM.61-63, 65 69-71 RWM 235-237 246
SCOPE AND TEACHING SUGGESTIONS	 W. Line representation of the tangent function A. Geometric derivation A. Geometric derivation A. Geometric derivation B. Draw PM
LESSON	47

REFFRENCE		
SCOPE AND TEACHING SUGGESTIONS	C. Representation of the tangent function in each quadrant tan θ (+) (+) (+) (+) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	(+) (-)
LESSON	24 (cont'd)	

REFERENCE CODE! PAGE	H83 RWM.238-240 247
SCOPE AND TEACHING SUGGESTIONS	 VI. Line representation of the cotangent function A. Geometric derivation A. Geometric derivation A. Geometric derivation A. Geometric derivation Boint P the intersection of the unit radius vector and the unit circle. 1. Draw PM — OX 2. Draw QK tangent to circle O at point of contact Q. This is the standard position of the cotangent in line representation of functions. 3. Extend radius vector OP to intersect tangent QK at W 4. cot θ = OM 5. ΔPMO ~ ΔQWO 6. OM = OW 7. cot θ = QW 8. cot ε = QW 9. cot θ = QW
LESSON	(cont'd)
	SCOPE AND TEACHING SUGGESTIONS

REFERENCE		
SCOPE AND TEACHING SUGGESTIONS	B. Definition: The line representation of the cotangent value is the length of the tangent (whose point of contact is always the intersection of the unit circle and the positive side of the y axis) measured to the right or left from the point of contact to the intersection of the horizontal tangent and the radius vector (axtended, if necessary). It is positive if measured to the right; negative, if measured to the left.	C. Representation of the cotangent function in each quadrant cot $\theta(+)$ cot cot cot $\theta(+)$ cot cot $\theta(+)$ cot cot cot $\theta(+)$ cot
LESSON	24 (cont'd)	

-45-

ĺ

<u>(</u>_.

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
52	V. Line representation of the secant function	H84
	A. Geometric derivation	547 247
· · · · · · · · · · · · · · · · · · ·	R	
	1. Draw PM OX	
	2. Draw TV tangent to circle O at point of contact	
52	3. Extend radius vector OP intersecting TV at R	
)	4. $\sec \theta = \frac{OP}{OM}$	
	5. $\Delta OMP \sim \Delta RTO$	
	$6. \frac{OP}{OM} = \frac{OR}{OT}$	
	7. $\sec \theta = \frac{OR}{OT}$	
	$\varepsilon_{\bullet} \sec \theta = \frac{OR}{1}$	
	ς. sec θ ≈ OR	

REFERENCE CODE PAGE		<u></u>			Parameters have be traditionally a
SCOPE AND TEACHING SUGGESTIONS	B. Definition: radius vector extended, measured from the origin to its intersection with the tangent. It is positive if measured in the same direction as the direction of the given radius vector; negative, if the radius vector must be extended through the origin in the opposite direction of the given radius vector in order to intersect the tangent in the standard position.	Representation of the secant function in each quadrant sec θ	D. Complete the chart of variation for the tangent function. (Kerer to chart I(D) of this unit.)E. Graphic representation of the secant function	1. Secant curve defined by $y = \sec \theta$ 2. Period; discontinuity at π and $\frac{3\pi}{2}$; asymptotes.	
LESSON	25 (cont'd)				

Repeat the classroom discussion for the losecant value. Be sure to include the following ideas: A. Geometric derivation B. Definition C. Representation of cosecant value in D. Chart of variation in the cosecant E. Graphic representation of the coseperiod, asymptotes; discontinuity. (NOTE: The above assignment is given or outline for the teacher's use.)	SCOPE AND TEACHING SUGGESTIONS CODE PAGE
	SUGGESTED ASSIGNMENT
Be sur A. B. C. C. D. E.	Repeat the classroom discussion for the line representation of the cosecant value.
A. B. C. C. E.	the following ideas:
B. C. D.	tivation
C. D. E.	
D. E.	Representation of cosecant value in each quadrant
E. (NOTE:	Chart of variation in the cosecant values
(NOTE: The above a outline for	Graphic representation of the cosecant function; period, asymptotes; discontinuity.
	assignment is given on pages 46 and 47 of this the teacher's use.)
•	

(]:

ERIC Matter resolutor tree

REFERENCE CODE PAGE	H84 ESM.61-63 RVM 238-39 247	
SCOPE AND TEACHING SUGGESTIONS	 VII. Line representation of the cosecant function A. Geometric derivation Given: Unit circle O with angle θ, point P the intersection of the unit radius vector and the unit circle. 	 Draw PM OX OK tangent to circle O at point of contact Q Extend radius vector OP to intersect tangent OK at W csc θ = OP OQ AMPO AQWO csc θ = OW OQ csc θ = OW OQ csc θ = OW csc θ = OW csc θ = OW csc θ = OW
LESSON	25 (cont'd)	

SCOPE A	B. Definition: radius vector (e from the origin and the horizont same direction vector must be tion of the given tal tangent in th	C. Representation of the contest of w	
SCOPE AND TEACHING SUGGESTIONS	The line representation of the cosecant value is the length of the radius vector (extended to meet the horizontal tangent) measured from the origin to the intersection of the radius vector extended and the horizontal tangent. It is positive if it is measured in the same direction as the given radius vector; negative, if the radius vector must be extended through the origin in the opposite direction of the given radius vector in order to intersect the horizontal tangent in the standard position.	Representation of the cosecant function in each quadrant $ \cos \theta (+) \cos \theta (+) $ $ \cos \theta (+) \cos \theta (+) $ $ \cos $	cosecant curve y y = csc θ ymptotes
REFERENCE CODE PAGE	a, ^T J . w w ! ,		

ERIC

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
56	This lesson should be devoted to further practice with line representations of functions, and sketching of graphs.	
	SUGGESTED ASSIGNMENT	
	H pp. 84-86: Exercise 21, Examples 1, 2, 3, 5, 5, 7, 39, 41, 42, 43	
27	Review for test	
28	Test	
de la companya de la		
	-13-	_

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE	
	UNIT FOUR		
	Simple Identities and Equations		
5.9	L. The Fundamental Relation (3-2)	H 40-44	
	The eight basic identities given on page 41 of the text may be proved by algebraic or geometric means. Since the geometric approach presents a more intuitive and graphic approach, this guide will capitalize upon the work done in the last unit on the line representations of function values. Students find these derivations simple and satisfying. The drills in this section should emphasize work with fractions and radicals.		
	II. Pythagorean Identities		
	$A. \sin^2 \theta + \cos^2 \theta = 1$		
	Geometric derivation		
	sin		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
			1

REFERENCE CODE PAGE		
SCOPE AND TEACHING SUGGESTIONS The line function representations are valid for the general angle of any kind of rotation, positive or negative. It can be seen that the reason for approaching the derivation of the identities geometrically first, and then showing the alge-	braic interpretation second is due to the fact that the geometric approach is a powerful method, capable of dealing with angles in any amount of rotation. It is wise to let the students prove these relations for themselves by considering angles in different quadrants and also for quadrantal angles. The following figures show the verity of the identity, $\sin \theta + \cos^2 \theta + \cos^2 \theta = 1$, in the various quadrants and quadrantal positions.	$\begin{cases} (-1) & \sin \theta & \sin \theta \\ (-1) & (+1) \\ \cos \theta & \cos \theta \\ (-1) & (-1) \\ \cos \theta & \cos \theta \\ (-1) & (-1) \\ \cos \theta & (-1) \\ (-1) & (-1) \\ \cos \theta & (-1) \\ (-1) & (-1) \\ \cos \theta & (-1) \\ (-1) & (-1) \\ $
LESSON 29 (cont'd)		

		REFERENCE
LESSON	SCOPE AND TEACHING SUGGESTIONS	CODE PAGE
53	B. $tan^2\theta + 1 = sec^2\theta$	
(cont'd)	sec θ (+)	
	$(tan \theta)$	
	(+)	
		`.
	04+ ni morrim mundaham oda [[-3 [[-3 []]]]	

The discussion of this relation should follow the pattern given in the previous section for $\sin^2\theta + \cos^2\theta = 1$

C.
$$\cot^2\theta + 1 = \csc^2\theta$$

60

The discussion of this relation should follow the pattern given in the previous section for $\sin^2\theta + \cos^2\theta = 1$ REFERENCE CODE PAGE The discussion of these relations should follow the pattern given in the previous sections for $\sin^2\theta + \cos^2\theta = 1$ SCOPE AND TEACHING SUGGESTIONS $\langle \sin \theta \rangle$ cos θ (+) A. $tan\theta = \frac{\sin \theta}{\cos \theta}$; $(\cos \theta \neq 0)$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$; $(\sin \theta \neq 0)$ ordinate abscissa abscissa ordinate 2. $tan\theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$ III. Quotient identities 1. $\cot \theta =$ 1. $tan \theta =$ Derivation Derivation 2, n 29 (cont'd) LESSON

e,

(

(]

REFERENCE CODE PAGE	
SCOPE AND TEACHING SUGGESTIONS	IV. Reciprocal identities A. $\sin \theta = \frac{1}{\csc \theta}$ or $\sin \theta \csc \theta = 1$ 1. $\Delta PMO \sim \Delta \Omega WO$ by a. a. = a. a. 2. $\frac{PM}{OP} = \frac{OQ}{OW}$ 3. But $CP = OQ = 1$; $\sin \theta = PM$; $\csc \theta = OW$ B. $\cos \theta = \frac{1}{\sec \theta}$ or $\cos \theta$ $\sec \theta = 1$ 4. $\therefore \sin \theta = \frac{1}{\csc \theta}$ or $\sin \theta$ $\csc \theta = 1$ B. $\cos \theta = \frac{1}{\sec \theta}$ or $\cos \theta$ $\sec \theta = 1$ 2. $\frac{OM}{OP} = \frac{OP}{OR}$ 2. $\frac{OM}{OP} = \frac{OP}{OR}$ 3. But $OP = OP = 1$ 3. But $OP = OP = 1$ 4. $\therefore \cos \theta = OM$ $\sec \theta = OM$ $\sec \theta = OM$
LESSON	(cont 'd)

REFERENCE CODE PAGE	•				in Commission .
SCOPE AND TEACHING SUGGESTIONS C. $tan \theta = \frac{1}{\cot}$ or $tan \theta \cot \theta = 1$	Derivation $ \begin{array}{cccccccccccccccccccccccccccccccccc$	3. But OT = OQ = 1; $\tan \theta = TR$; $\cot \theta = QW$ 4 $\tan \theta = \frac{1}{\cot \theta}$ or $\tan \theta \cot \theta = 1$ The discussion of these relations should follow the nattern given in the	previous section for $\sin^2\theta + \cos^2\theta = 1$. V. The teacher should give an announced quiz on the statement of these eight basic identities on the following day.	SUGGESTED & SSIGNMENT H pp. 44, 45: Exercise 12: Examples 1, 2, 3, 5, 6, 7, 9, 10 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 29, 30	
LESSON 29 (cont'd)					

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
30	Algebraic Operations with the Trigonometric Functions (3-22)	H45-43
	SUGGESTED ASSIGNMENT	
	H pp. 47, 48: Exercise 13: Examples 1,2,3,5,6,7,9,	
31	Identities and Conditional Equations (3-23)	H 48-50
	Trigonometric Identities (3-24)	H 50-57
	SUGGESTED ASSIGNMENT	
	Hpp. 53, 54: Exercise 14: Examples 1,2,5,6,7,9,10,11	
32	Trigonometric Identities (Second Day)	H 50-57
	SUGGESTED ASSIGNMENT	
	Hp. 54:Exercise 14: Examples 13, 14, 15, 17, 18, 19, 21, 22	
33	Trigonometric Identities (Third Day)	H50-57
	SUGGESTED ASSIGNMENT	
	Hpp. 55-57: Exercise 14: Examples 25, 26, 33, 35, 37, 39, 45, 47	
34	Review for test	
35	Test	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	UNIT FIVE	
	Functions of Two Angles	
36	Trigonometric Function Values of Negative Angles (4-27)	H62-64
	This text requires the derivation of trigonometric function values of negative angles so that it may be used in the derivation of sin (A + B) and cos (A + B). Teachers will observe that this sequence is reversed in the prior course of study (1960) in which the trigonometric function values of negative angles were a logical consequence of the derivations of sin (A - B) and cos (A - B). Either approach is satisfactory. However, it would be wise to use the approach in the text so that students may refer to the proofs in the text when necessary.	
	Even functions	H 63
	Odd functions	H64
	SUGGESTED ASSIGNMENT	
	Hp. 64; Exercise 17: Examples 1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 18	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
37	Introduction	Н87-92
	The approach to the derivation of fundamental identities of composite angles using the distance formula of analytic geometry is gaining favor because of its simplicity and its application to deriving the reduction formulas and the addition and subtraction formulas for the trigonometric functions. The unit circle will still be retained. The angles used may be of any size or rotation. It will be necessary to introduce students to the labeling of coordinates by means of trigonometric functions and to review the distance formula between two points.	·
	Labeling the Coordinates of Points on a Unit Circle by means of Trigonometric Function Values Function Val	
	Derivation of sin(A + B) and cos(A + B) (7-39)	
	SUGGESTED ASSIGNMENT Hp. 92: Exercise 22: Examples 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14	
	-09-	

(

LE	LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	38	Reinforcement of formulas $sin(A + B)$ and $cos(A + B)$	H 87-94
		SUGGESTED ASSIGNMENT	
 -		H pp. 93-94: Exercise 22: Examples 17, 18, 21, 22, 23, 25, 29, 30	
	39	Derivation of Tan(A + B) (7-41)	Н 94, 95
-		Derivation of Sin(A - B)	
_		Derivation of Cos(A - B)	
		Derivation of Tan(A - B)	
	-	SUGGESTED ASSIGNMENT	
		H pp. 96-98: Exercise 23: Examples 1, 2, 3, 5, 7, 9, 10, 11, 13	
	40	Reinforcement of Lesson 39	
		SUGGESTED ASSIGNMENT	
		H pp. 97, 98: Exercise 23: Examples 14, 17, 18, 19, 25, 27, 31, 32	
	41	Double Angle Formulas (7-43)	Н 98, 99
		Half Angle Formulas (7-44)	H99-101
• •		SUGGESTED ASSIGNMENT	
		H pp. 101-104: Exercise 24: Examples 1, 5, 6, 7, 9, 10, 11, 13, 14, 17, 21	- 4-

LESSON Reinforceme 43 Product to S 44 Reinforceme	SCOPE AND TEACHING SUGGESTIONS	40 44 4400
-		CODE PAGE
-	Reinforcement of Lesson 41 (7-43, 44)	H90-101
	SUGGESTED ASSIGNMENT	
	H pp. 102-104: Exercise 24: Examples: 25, 26, 27, 29, 30, 31, 41, 42, 43, 49, 50, 55, 61	
	Product to Sum Formulas; Sum to Product Formulas (7-45)	H104-106
	SUGGESTED ASSIGNMENT	•
	Hpp.106,107: Exercise 25: Examples 1,2,3,5,6,7,	
	Reinforcement of Lesson 43 (7-45)	H 90-101
	SUGGESTED ASSIGNMENT	
-	Hpp.106,107; Exercise 25; Examples 4, 8, 12, 14,	
45 Review		
46 Test		

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	UNIT SIX	
	Trigonometric Equations	
47	Trigonometric Equations (8-46)	H., 108-112
	Solving a Trigonometric Equation (8-46)	
	SUGGESTED ASSIGNMENT	
ı	Hp. 112: Exercise 26: Examples 1, 2, 3, 5, 6, 7, 9, 11, 13	
48	Reinforcement of Lesson 47	
	SUGGESTED ASSIGNMENT	
	H pp. 112, 113: Exercise 26: Examples 10, 15, 17, 18, 19, 21, 23, 30	
49	Reinforcement of Lessons 47 and 48	
	SUGGESTED ASSIGNMENT	
	H p. 113: Exercise 26: Examples 31, 33, 35, 37, 39	
	Extra Credit: Study (7-42) pp. 95, 96; then do Example 47 and 49 on page 113	
50	Review	
51	Test	
	-63-	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	UNIT SEVEN	
·	LOGARITHMS	
	Introduction	
	It may well be that students have already studied some work in logarithms in Algebra II or in the Review of Academic Mathematics. In that event the teacher will wish to proceed rapidly through this unit.	
52	The Uses of Logarithms (10-53)	H 125
	Some Laws of Exponents (10-54)	H125 _g ,
	Definition of Logarithm (10-55)	H126,
	SUGGESTED ASSIGNMENT	
	H pp. 127, 128: Exercise 28: Odd numbered examples from 1-39	
53	Properties of Logarithms (10-56)	
	Students should be held responsible for the proofs of these theorems.	
	SUGGESTED ASSIGNMENT	
	Hpp.129,130: Exercise 29: Odd numbered examples from 1-39	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE
54	Systems of Logarithms (10-57)	
		134
	Characteristic and Mantissa (10-58)	
	Method of Determining Characteristics (10-59)	
	SUGGESTED ASSIGNMENT	
	Hp. 134: Exercise 30: Odd numbered examples 1-27	
55	A Five-Place Table of Mantissas (10-60)	H135
	Given N, To Find Log N (10-61)	H135
	Given Log N, To Find N (10-62)	E 135,
	SUGGESTED ASSIGNMENT	
	Hp. 136: Exercise 31: Odd numbered examples 1-23	
99	Interpolation (10-63)	H136-
	SUGGESTED ASSIGNMENT	
	H pp. 138, 139: Exercise 32: Examples 1, 5, 9, 13, 15, 17, 21, 25, 29, 31	
57	Logarithmic Computation (10-64)	H139-
	SUGGESTED ASSIGNMENT	
	H pp. 141-143: Exercise 33: Examples 3, 5, 9, 13, 14, 17, 19	

ERIC
Full Text Provided by ERIC

	LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	58	Reinforcement of Lesson 57	
_		SUGGESTED ASSIGNMENT	
		H, p. 142; Exercise 33; Examples 33, 37, 40, 42, 43	·
	59	Logarithmic Equations (10-66)	H.,.,144-
		Exponential Equations (10-67)	H, 146
		Change of Base of Logarithms (10-68)	تى ، د ، 146، 147
		SUGGESTED ASSIGNMENT	
		H pp. 147, 148; Exercise 34; Examples 1, 5, 9, 11, 13, 17, 19, 23	
72	09	Review	
	61	Test	

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
	UNIT EIGHT	
	Logarithmic Solution of Right Triangles	
79	Logarithms of Trigonometric Functions (11-69)	H149-
	SUGGESTED ASSIGNMENT	3
	Hpp.150,151; Exercise 35; Examples 1,5,9,13,	,-
63	Logarithmic Solution of Right Triangles (11-70)	H , 151 -
	SUGGESTED ASSIGNMENT Hp.154: Exercise 36: Examples 1, 2, 3, 5, 9, 13, 17	
64	Vectors (11-71)	H154-
	SUGGESTED ASSIGNMENT	
	H 1, 3, 9, 10, 11	
99	Review	
99	Test	
	-29-	

ERIC PLATE TO PRODUCE THE TIME

a
FRIC
Full Text Provided by ERIC

(_)

introduction (12-72) The Law of Sines (12-73) The derivation of the entirely satisfactory, approach, the followichoose a rectangular triangle ABC is in standary.	duction (12-72) Law of Sines (12-73) The derivation of the Law of Sines as presented in the text is traditional, and entirely satisfactory. However, since the course is to emphasize the analytic approach, the following derivation is presented for the teacher.	H160 H160-
<u>Intro</u>	Obl Law of Sine However, ng derivation	•
rr	Law of Sine However, ng derivation	•
The Law of Sin The deriva entirely sapproach, Choose a triangle A	Law of Sine. However, ng derivatio	•
The derivation of the derivati	ation of the Law of Sines as presented in the text is traditional, and atisfactory. However, since the course is to emphasize the analytic, the following derivation is presented for the teacher.	•
Choose a definition of the character of		
<i>\rangle</i>	Choose a rectangular coordinate system so that the angle α (or LCAB) of triangle ABC is in standard position as given below. $\emptyset \ y$	
	β β 180-θ	
	A B B C	
l, The coordi	The coordinates of B are (c $\cos lpha$, c $\sin lpha$)	
2. If, howeve: in standard	If, however, the origin of the coordinate system is at C with angle [$180-\theta$] in standard position then the coordinates of B are	
	(a cos $[180 - 6]$, a sin $[180-6]$)	

REFERENCE	CODE PAGE										
	SCOPE AND TEACHING SUGGESTIONS 3. Since B is the same distance above the x-axis in either case, then the second coordinates of B are equal. Therefore, c sin (X = a sin [180-0]		5 c $\sin \alpha = a \sin \theta$	6. Dividing each member of (5) by sin eta sin $ heta$, we obtain	$\frac{c}{\sin \theta} = \frac{a}{\sin (\chi)}$	7. If the coordinate axes are chosen so that the origin is considered first at A with X in the standard position and then the origin is considered next at B with X in the standard position, the same argument yields,	$\frac{b}{\sin \beta} = \frac{a}{\sin \alpha}$	8. Hence $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \theta}$	SUGGESTED ASSIGNMENT	H pp. 164, 165/ Exercise 38/ Examples 3, 6, 9, 12, 18	
	LESSON 67 (cont'd)	-									

	REFERENCE CODE PAGE	H 165-			H165-	
	SCOPE AND TEACHING SUGGESTIONS	The Ambiguous Case: SSA (12-75)	SUGGESTED ASSIGNMENT	H pp. 169, 170; Exercise 39; Examples 1, 3, 5, 7, 9	The Law of Cosines (12-76)	The proof of the Law of Cosines as developed in the text applies only to triangles. It is a mistake to think that the Law of Cosines as being restricted only to triangles. Indeed, it is one of the most important identities of trigonometry. It is also useful in further investigations and development of trigonometry. For example, the formula of sin (A - B) can be derived by using the Law of Cosines. The teacher should present the derivation of this law as given on the next page. The proof is analytic in form and holds for angles of ANY measure, including, of course, the case when the angle is less than 180°, and thus may be an angle of a triangle.
8	LESSON	89			69	

REFERENCE	TOO TOO	
SCOPE AND TEACHING SUGGESTIONS	To emphasize the dual role of the Law of Cosines, two figures with identical lettering are used. Each step of the derivation applies to either figure. In Figure 1, θ is an obtuse angle in standard position. Figure II, θ is an angle in Quadrant III in standard position. Figure II, θ is an angle in Quadrant III in standard position.	/
NOSSA,1	(cont'd)	

1. Let P be a point on the initial side of 0 at a distance of a from the origin. Its coordinates are, therefore, (a, 0)

FIGURE II

FIGURE I

Let P' be a point on the terminal side of 0 at a distance of b from the origin. Its coordinates are (b cos θ , b sin θ). 2

- Now if PP' were drawn in Figure I, there would be formed a $\Delta PP'0$ in which sides a and b include the angle θ. However, this would not be true for Figure II since no angle of a triangle can exceed 180°. 3,
- 4. The distance formula is usually stated as

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$$

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
69	5. Substituting the coordinates of P and P' in this latter formula,	
(cont.d)	$PP^{12} = (b \cos \theta - a)^{2} + (b \sin \theta - 0)^{2}$	
	$= b^2 \cos^2 \theta - 2ab \cos \theta + a^2 + b^2 \sin^2 \theta$	
	$= b^2 \left(\sin^2 \theta + \cos^2 \theta \right) + a^2 - 2ab \cos \theta$	
	$PP^{12} = b^2 + a^2 - 2ab \cos \theta$	
	LAW OF COSINES	
	If θ is an angle in standard position and if a and b represent the respective distances from the origin of two points on the sides of the angle θ , then the square of the distance d between these two points is given by the formula:	
	$d^2 = a^2 + b^2 - 2ab \cos \theta$.	
	If the Law of Cosines is applied to any triangle ABC with sides a, b, c, then the cosine law may be written as	
	$a = b + c - 2bc \cos A$	
	$b^2 = a^2 + c^2 - 2ac \cos B$	
	$c = a + b - 2ab \cos C$	

REFERENCE CODE PAGE								H171-			
SCOPE AND TEACHING SUCCESTIONS	Thus, the Law of Cosines for triangles may be stated as:	The square of any side of a triangle equals the sum of the squares of the other two sides minus twice the product of those two sides and the cosine of the included angle.	e 0	$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	then the measure of the included angle may be found when the lengths of the three sides of a triangle are known.	Applications of the Law of Cosines: SAS and SSS (12-77)	SUGGESTED ASSIGNMENT	H pp. 173,174; Exercise 40; Examples 1,5,9,13,15	
LESSON	69	(cour.a)									

	REFERENCE CODE PAGE	H174,	H, 175,	2							
	SCOPE AND TEACHING SUGGESTIONS	Summary (12-78)	The Area of a Triangle (12-79)	SUGGESTED ASSIGNMENT	H, p. 177: Exercise 41: Examples 1, 3, 5, 7, 9, 11	Review	Test		\		
700	LESSON	02				- 21	72				
lic								80		 	

Inverse Trigonometric Functions Inverse Trigonometric Functions (13-80) Erincipal Values of the Inverse Trigonometric Functions (13-81) Principal Values of the Inverse Trigonometric Functions (13-81) Sin, cos, tan, cot, sec, and csc are all functions as defined in Lesson 6 since the ordered pairs in each function have different first coordinates. If the ordered pairs in any function, say the sin, are interchanged, some of the ordered pairs in any function, say the sin, are interchanged, some of the ordered pairs would be (\frac{1}{2}, 30^{\circ}), (\frac{1}{2}, 150^{\circ}), (\frac{1}{2}, 510^{\circ}), etc. The relation consisting of these interchanged ordered pairs is not a function. Difficulty arises when this relation of these interchanged ordered pairs is called an inverse, because we would like to reserve the concept of "inverse" for functions. It is much clearer to students if the following ideas are used: (1) The converse of a function R is the relation obtained by interchanging the first and second coordinates in each ordered pair of R. (2) The converse of a function is the inverse of R if and only if the converse is also a function.
rigonometric Functions (13-81) rigonometric Functions as defined in Lesson 6 ch function have different first coordinates. nction, say the sin, are interchanged, some $\frac{1}{2}$, 390°), $(\frac{1}{2}$, 510°), etc. 1. see interchanged ordered pairs is not a hen this relation of these interchanged reserve interchanged rerse, because we would like to reserve iunctions. It is much clearer to students d: In R is the relation obtained by interchanging linates in each ordered pair of R. In R may or may not be a function. In is the inverse of R if and only if the m.
defined in Lesson 6 t first coordinates. interchanged, some etc. pairs is not a interchanged like to reserve earer to students and by interchanging air of R. tfunction.
c are all functions as defined in Lesson 6 function have different first coordinates, tion, say the sin, are interchanged, some, 390°), (\frac{1}{2}, 510°), etc. interchanged ordered pairs is not a not interchanged ordered pairs is not a not interchanged ordered pairs is not a not is relation of these interchanged rise, because we would like to reserve octions. It is much clearer to students R is the relation obtained by interchanging nates in each ordered pair of R. R may or may not be a function. Is the inverse of R if and only if the
rs rad R Risis
n n n n n n n n n n n n n n n n n n n

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
73 (cont'd)	(4) To test whether the converse of a function is also the inverse, we may use either of	
	(1) the ordered pair test (2) the vertical line test	
	The graphs of the inverse functions in the text are not typical of most texts. Teachers should refer to the RWM reference for the graphs. The vertical line test applied to these graphs will show that the converse of every trigonometric function is not a function. However, when the domain of the trigonometric function is not a function.	
	becomes an inverse. This explanation is seldom seen in most texts. Thus the idea of "Arcsin" is involved with the restricted sin function.	
	Stress the idea that in finding the value of arcsin $(\frac{1}{2})$, we are simply trying to find the second coordinate of the ordered pair $(\frac{1}{2})$, which belongs to the con-	
	verse of the sin function. However, in finding the value of Arcsin $(\frac{1}{2})$, we are trying to find the second coordinate of the ordered pair $(\frac{1}{2})$ of $\frac{2}{2}$ the inverse of the restricted sin function.	
	SUGGESTED ASSIGNMENT	
	Hp. 185; Exercise 43; Examples 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21	
	7.6	

3
ERIC
Full Text Provided by ERIO

LESSON	SCOPE AND TEACHING SUGGESTIONS	REFERENCE CODE PAGE
74	Operations Involving Inverse Trigonometric Functions (13-82)	H 186- 189
	SUGGESTED ASSIGNMENT	
	Hpp.187,188: Exercise 44: Examples 1, 3, 5, 7, 9,11,13,	
75	Inverse Functions (13-83) (Optional) or Review	
	The teacher should omit this section if the students are not familiar with composite functions or the operation of composition. If the teacher does not present this, then the lesson should be used for review.	280, 281, 281, 298
	SUGGESTED ASSIGNMENT	
	H pp. 190, 191; Exercise 45: Examples 1, 2, 3,	
92	Test	

3
ERIC
Full Text Provided by ERIC
į,

REFERENCE CODE PAGE			H192-			ems	H196	Ef 197	H 197 -		from 1-27	H 200,	H.,201	KW 1M2611-	H 201,
SCOPE AND TEACHING SUGGESTIONS	UNIT ELEVEN	Complex Numbers	Complex Numbers (14-84)	This lesson should be a rapid review since students have studied this topic in earlier courses.	SUGGESTED ASSIGNMENT	H, p. 195: Exercise 46: Examples Odd numbers problems from 1-25	Graphical Representation of Complex Numbers (14-85)	Graphical Addition of Complex Numbers (14-85)	Trigonometric Form of a Complex Number (14-87)	SUGGESTED ASSIGNMENT	H pp. 199, 200; Exercise 47; Odd numbers problems from 1-27	Multiplication of Complex Numbers in Trigonometric Form (14-88)	DeMoivre's Theorem (14-89)		Roots of Corruplex Numbers (14-90)
LESSON			77				78					62			

79	SCOPE AND TEACHING SUGGESTIONS SUGGESTED ASSIGNMENT	CODE PAGE
(cont ¹ d)	H pp. 203, 204; Exercise 48; Examples, 1, 3, 5, 7, 9, 13, 17, 21, 23, 25, 34	
80	Review	
81	Test	
	For the final examination, it is recommended that you use the Cooperative Standardized Test in Trigonometry. You should ask your department chairman to procure these from the Testing Department at Alleghany Annex at least a month before finals. Scoring keys and norms are available also. This test requires about 45 minutes. Many teachers like to give this standardized test as one of a two part examination. The second part might include problems which require more applications and computations.	

(_;;

APPENDIX I

SPECIAL RIGHT TRIANGLES

Certain right triangles appear frequently in problems of the physical world such as engineering and in problems of related mathematics courses such as trigonometry. These special right triangles may be classified into sets of triangles, each set containing only triangles that are similar to one another. You should be able to recognize the special right triangles discussed in this unit, to understand the relationships that exist for each set, and to apply these relationships in the solution of problems.

I. The 3, 4, 5 right triangles.

Since $3^2 + 4^2 = 5^2$, the converse of the Pythagorean Theorem tells us that a triangle whose sides have measures 3, 4, 5 is a right triangle. In a similar manner, we can conclude that if any positive number k is used as a constant of proportionality, then a triangle whose sides measure 3k, 4k, 5k is a right triangle. For example, any triangle whose sides measure 6, 8, 10 or 150, 200, 250 is a member of this set of right triangles.

Example 1. Find the length of the hypotenuse of a right triangle if the length of the two legs of the triangle are 18 and 24.

You should note that the triangle is a 3, 4, 5 right triangle with 6 as the constant of proportionality since $18 = 6 \cdot 4$. Therefore, the length of the hypotenuse of the triangle is $6 \cdot 5$ or 30.

Example 2. Triangle ABC is a right triangle with \angle C as the right angle. AC = 75 and BC = 45. Find the length of AB.

Since the length of AC is 15 · 5 and the length of BC is 15 · 3, the triangle is a 3, 4, 5 triangle with 15 as the constant of proportionality. Therefore, AB must equal 15 · 4 or 60.

II. The 5, 12, 13 right triangles.

Explain why a triangle whose sides have measures of 5, 12, 13 is a right angle. Explain why a triangle whose sides have measures of 5k, 12k, and 13k is a right triangle if k is some positive number. Explain why all these triangles are similar. Give other examples of three numbers which are the respective measures of the sides of triangles in this set of similar right triangles.

Example 1. Find the length of the hypotenuse of a right triangle if the lengths of the two legs of the triangle are 15 and 36.

You should note that the triangle is a 5, 12, 13 right triangle with 3 as the constant of proportionality since $15 = 3 \cdot 5$ and $36 = 3 \cdot 12$. Therefore, the length of the hypotenuse of the right triangle is $3 \cdot 13$ or 39.

Example 2. Triangle ABC is a right triangle with \angle C as the right angle. If the hypotenuse of the triangle has a measure of 78 and one of the legs of the triangle has a measure of 72, find the measure of the other leg of the triangle.

Since $78 = 6 \cdot 13$ and $72 = 6 \cdot 12$, the triangle is a 5, 12, 13 triangle with 6 as the constant of proportionality. Therefore, the measure of the other leg is $6 \cdot 5$ or 30.

III. The 30, 60, 90 triangles.

Unlike the sets of triangles in (I) and (II), the triangles in this set are usually designated by measures of angles rather than lengths of sides. Suppose that in \triangle ABC, m \angle C = 90, m \angle B = 60, m \angle A = 30. We know by Theorem 5 • 7 on page 202 of your text, that the length of BC is one-half the length of AB.

If we let m(BC) = a, then m(AB) = c = 2a, and by the Pythagorean Theorem

$$a^{2} + b^{2} = (2a)^{2}$$
 $a^{2} + b^{2} = 4a^{2}$
 $b^{2} = 3a^{2}$
 $b = a \sqrt{3}$

Thus we see that if \triangle ABC is a 30, 60, 90 triangle (a, b, c) \bar{p} (1, $\sqrt{3}$, 2).

We can also prove the converse of this statement. If $\triangle A'B'C'$ is a triangle with $(B'C', C'A', A'B') \stackrel{?}{p} (1, \sqrt{3}, 2)$, then $\triangle A'B'C'$ is a 30, 60, 90 triangle.

We know that $\triangle A^{\dagger}B^{\dagger}C^{\dagger}$ is similar to \triangle ABC by the SSS Similarity Theorem. Therefore, m $\angle A^{\dagger} = 30$, m $\angle B^{\dagger} = 60$, and m $\angle C^{\dagger} = 90$ because corresponding angles of similar triangles are equal in measure.

The above discussion can be summarized in the following theorem and corollaries:

Theorem A. Triangle ABC is a right triangle with $m \angle A = 30$, $m \angle B = 60$, $m \angle C = 90$ if and only if $(a, b, c) p (1, \sqrt{3}, 2)$.

Corollary 1. In a right triangle whose acute angles have measures of 30 and 60, the shorter leg is one-half the hypotenuse. $(s_{30} = \frac{h}{2})$

Corollary 2. In a right triangle whose acute angles have measures of 30 and 60, the longer leg is equal to one-half the hypotenuse multiplied by $\sqrt{3}$. (s₆₀ = $\frac{h\sqrt{3}}{2}$)

Example 1. Find the length of the altitude of an equilateral triangle if the length of one of the sides is 8.

The altitude of an equilateral triangle bisects the vertex angle making a 30, 60, 90 triangle.

$$(4, x, 8) \stackrel{=}{p} (1, \sqrt{3}, 2).$$

The constant of proportionality is 4.

Therefore,
$$x = 4 \sqrt{3}$$
.

The problem can also be solved by using Corollary 2.

$$^{8}60 = \frac{h \sqrt{3}}{2}$$

$$^{8}60 = \frac{8 \cdot \sqrt{3}}{2}$$

$$s_{60} = 4\sqrt{3}$$
.

Example 2. Find the measures of the sides of a 30, 60, 90 triangle if the length of the longer leg of the triangle is 10.

(a, 10, c)
$$\bar{p}$$
 (1, $\sqrt{3}$, 2).

The constant of proportionality is $\frac{10}{\sqrt{3}}$.

Therefore,
$$a = \frac{10}{\sqrt{3}}$$
 and $c = \frac{2 \cdot 10}{3}$ or

$$a = \frac{10 \sqrt{3}}{3}$$
 and $c = \frac{20 \sqrt{3}}{3}$.

IV. The 45, 45, 90 triangles.

Since the triangles in this set have two angles that are equal in measure, they are sometimes called isosceles right triangles. We can prove that the lengths of the sides of any isosceles right triangle are proportional to $(1, 1, \sqrt{2})$.

In \triangle ABC. $m \angle$ C = 90, $m \angle$ A = $m \angle$ B = 45. If we let the length of AC = a, then the length of BC = a. Why? By the Pythagorean Theorem

$$c^2 = a^2 + a^2$$

$$c^2 = 2a^2$$

$$c = a \sqrt{2}$$
.

Therefore, we see that if \triangle ABC is a 45, 45, 90 triangle, (a, a, c) \bar{p} (1, 1, $\sqrt{2}$).

We shall now prove the converse of this statement. If $\triangle A'B'C'$ is a triangle with (a', b', c') \bar{p} (1, 1, $\sqrt{2}$), then $\triangle A'B'C'$ is a 45, 45, 90 triangle.

We know that $\triangle A^{\dagger}B^{\dagger}C^{\dagger}$ is similar to $\triangle ABC$ by SSS Similarity Theorem. Therefore, $m \angle C = 90$, $m \angle A = 45$, $m \angle B = 45$ because corresponding angles of similar triangles have equal measure.

The above discussion can be summarized in the following theorem and corollary.

> Triangle ABC is a right triangle with $m \angle A = m \angle B = 45$ and m \angle C = 90 if and only if (a, b, c) \bar{p} (1, 1, $\sqrt{2}$).

Corollary. In an isosceles right triangle, either leg of the triangle is equal to one-half the hypotenuse multiplied by $\sqrt{2}$, (s₄₅ = $\frac{h\sqrt{2}}{2}$)

Example 1. Find the length of the hypotenuse of a right isosceles triangle if each leg of the triangle has a measure of 6.

(6, 6, c)
$$\bar{p}$$
 (1, 1, $\sqrt{2}$)

The constant of proportionality is 6.

Therefore,
$$c = 6\sqrt{2}$$
.

Example 2. Find the length of each leg of an isosceles right triangle if the length of the hypotenuse is 5.

(a, a, 5)
$$\frac{1}{p}$$
 (1, 1, $\sqrt{2}$)

The constant of proportionality is $\frac{5}{\sqrt{2}}$.

Therefore, $a = \frac{5}{\sqrt{3}}$, or $\frac{5\sqrt{2}}{2}$.

Therefore,
$$a = \frac{5}{\sqrt{2}}$$
, or $\frac{5\sqrt{2}}{2}$.

The problem can also be solved by using the corollary.

$$s_{45} = \frac{h\sqrt{2}}{2}$$

$$s_{45} = \frac{5\sqrt{2}}{2}$$
.

Problem Set

- In each of the following exercises, the lengths of a leg and the hypotenuse of a right triangle are given. Which of the measures belong to a triangle similar to the 3, 4, 5 triangle? to the 5, 12, 13 triangle? to the 1, $\sqrt{3}$, 2 triangle? to the 1, 1, $\sqrt{2}$ triangle?
 - (a) 6, 10
 - (b) 12, 15
 - (c) 24, 25
 - (d) 15, 39

- (e) 3, 6
- (f) 3, $2 \sqrt{3}$
- (g) 8, 10
- (h) 1.5, 2.5

- (i) 6, 6 · 5 (j) 24, 26 (k) $3 \sqrt{2}$, 5 $\sqrt{2}$ (1) $\sqrt{2}$, 2

- 2. In each part of Problem 1, find the length of the side which is not given.
- 3. Complete the table for the right isosceles triangle in the diagram.

	a	С
(a)	10	
(b)	5	
(c)	İ	9
(d)		6
(e)		3 √ 2
(f)	5√2	

4. Complete the table for the 30-60-90 triangle in the diagram.

a	ъ	<u>c</u>
10		
5		
	18	
	9√3	
		20 12 √ 3
		12 √ 3
		10 5

5. In each of the following exercises the length of one segment in the adjacent plane figure is given. Find the lengths of the remaining segments.

6. Use the three corollaries in this unit to find the length of AB and BC in each of the following plane figures. You should do all work mentally and write only the answer.

- 7. In the diagram, BC \perp AC and m/A = 30.
 - (a) If m(AB) = 6, find m(AC).
 - (b) If $m(AB) = 4 \sqrt{3}$, find m(AC).
 - (c) If m(AC) = 9, find m(AB).
 - (d) If $m(AC) = 6 \sqrt{3}$, find m(AB).

- 8. Repeat problem 7 if m/A = 60.
- In the diagram, ΔABC is an equilateral triangle which is inclined at an angle to plane K.
 The measure of the dihedral angle C-AB-X is 60;
 CX is perpendicular to plane K; CD is perpendicular to AB. Find the measure of each of the following segments if the measure of AB = 6.
 - (a) AC
- (d) CX
- (b) BC
- (e) AX
- (c) CD
- (f) BX

10. Repeat problem 9 if the measure of the dihedral angle is 30; (b) 45.

BALTIMORE COUNTY PUBLIC SCHOOLS

APPENDIX II

REVIEW OF ELEMENTARY SET CONCEPTS

by

Vincent Brant
Supervisor of Senior High School Mathematics

July 1965

REVIEW OF ELEMENTARY SET CONCEPTS

- 1. Member Each object in a set is called a <u>member</u> (or <u>element</u>) of the set.
- 2. The symbol "

 " means "belongs to" or "is a member of" or "is an element of."
- 3. Set Notation (1) The phrase method

 Example: the set of the (names of the) vertices of

 ABC
 - (2) The roster (listing) method
 Example: Using the same set as in (1) above:
 { A, B, C }
 - (3) The <u>rule</u> method
 Example: Using the same set as in (1) and (2) above:
 { x | x is a vertex of ΔABC }
 This is read as "the set of <u>all x such that x is a vertex of triangle ABC."</u>
- 4. Infinite set A set which is unending is called an infinite set.
- 5. Finite set A set in which the members can be listed and the listing terminates is called a <u>finite set</u>.
- 6. The empty set The set which contains no members is called the empty set or the <u>null</u> set.

The symbol for the empty set is "φ"

- 7. Equal sets Two sets are equal if and only if they have the same members.
- 8. Subset Set A is a subset of set B (denoted "A B") if and only if each member of A is also a member of B.

Every set is a subset of itself; that is, if A is a set, then A (A.

The empty set is a subset of every set; that is, if A is a set, then $\phi \subset A$.

Set A = set B if and only if A \subset B and B \subset A.

Set A is a proper subset of set B if and only if there is at least one member of B which is not a member of A.

Examples: Let A = { 1, 3, 4 }
B = { 1, 2, 3, 4, 5 }
C = { 4 }
D = { 2, 5, 4, 3, 1 }
E = { 3, 5, 6 }

Then, A C B; C C B

A C D and D C A; hence A = D

A and C are proper subsets of B

A C A; B C B; C C; D C D; E C E

\$\phi\$ is a subset of every set A, B, C, D, E.

E (B (E is not a subset of B)

9. Disjoint sets Two sets which have no members in common are called disjoint sets.

But

10. Intersection The intersection (denoted by " \cap ") of two sets A and B is the set consisting of all the members common to A and B.

Symbolically, $A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$

If A and B are disjoint sets, then $A \cap B = \phi$.

If two sets are said to <u>intersect</u> (verb form), then their intersection has at <u>least one</u> member; that is, their intersection is non-empty.

Examples: Let A = { 1, 2, 3, 4, 5 }
B = { 3, 4, 6, 7, }
C = { 1, 3, 4, 8 }
D = { 10, 11, 12 }

Then,
$$B \cap C = \{ 3, 4 \}$$

 $A \cap C = \{ 1, 3, 4 \}$
 $B \cap D = \emptyset$

11. Union The union (denoted by "U") of two sets A and B is the set consisting of all the members which are in at least one of the two given sets A and B.

Symbolically, $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$

Observe that the connective "or" in mathematics is used in the <u>inclusive</u> sense: that is, x is a member of A or x is a member of B or x is a member of both A and B.

Examples: Let A = { 1, 2, 3, 4, 5 }

B = { 3, 4, 6, 7 }

C = { 1, 3, 4, 8 }

Then, $A \cup B = \{ 1, 2, 3, 4, 5, 6, 7 \}$ $B \cup C = \{ 1, 3, 4, 6, 7, 8 \}$

12. Cartesian Product

The <u>Cartesian Product</u> of two sets A and B (not necessarily different) is the set of all ordered pairs in which the first coordinate belongs to A and the second coordinate belongs to B.

The Cartesian Product of A and B is denoted as:

 $A \times B$ (read "A cross B")

Example: Let $A = \{ a, b, c, \}$ and $B = \{ 1, 2 \}$ Then, $A \times B = \{ (a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2) \}$

13. Relation

A relation is a set of ordered pairs.

or

A relation from A to B is a subset of $A \times B$.

Example: Let $A = \{ a, b, c \}$; let $B = \{ 1, 2 \}$

Some relations from A to B are:

Relation R = $\{ (a, 1), (b, 2), (c, 1) \}$ Relation Q = $\{ (a, 2) \}$ Relation T = $\{ (a, 1), (b, 1), (c, 1) \}$

Of course, $A \times B$ is also a relation.

Also, the empty set, ϕ , is a relation.

- 14. Domain of a relation
- The domain of a relation is the set of all the first coordinates of the ordered pairs of the relation.
- 15. Range of a relation

The <u>range</u> of a relation is the <u>set</u> of all the second coordinates of the ordered pairs of the relation.

Example: Let Relation $T = \{ (a, 2), (b, 3), (a, 5), (c, 2) \}$ Then, Domain of $T = \{ a, b, c \}$ Range of $T = \{ 2, 3, 5 \}$ 16. Function: A function from A to B is a special kind of relation such that for each first coordinate there is one and only one second coordinate.

Stated differently, no two ordered pairs of a function may have the same first coordinate. Hence, the first coordinates in the ordered pairs of a function must be different. However, the second coordinate may be the same.

> Note: Domain of $K = \{ 1, 2, 3 \}$ Range of $K = \{ a \}$

> $I = \{ (x, y) \mid y = x \}$ is a function.

Note: Domain of I is the set of real numbers.

Range of I is the set of real numbers.

17. Tests for a function: (a) The ordered pair test

A relation is a function provided every first coordinate is different.

(b) The <u>vertical line test</u>

A relation is a function provided every vertical line intersects the graph of the relation in exactly one point. If at least one vertical line intersects the graph in more than one point, then the graph does not represent a function, but a relation.

18. Comparison of f and f(x): In the function, $f = \{ (x,y) \mid y = 5x \}$

- (a) the function f is the entire set of ordered pairs.
- (b) f(x) is not the function.
- (c) "y", "f(x)", "5x" are different names for the second coordinate. Thus the function f might be written in different forms, as:

(d) The function is not "y = 5x".

Instead, "y = 5x" is a sentence which defines the function. This sentence assigns to each real number used as first coordinate another real number 5 times as large for its corresponding second coordinate.

"f(x)" is read "f at x" or "f of x" or "the value of the function f at x".

The function, $f = \{ (x, y) \mid y = 5x \}$ is read:

the function f defined by y = 5x

HOMEWORK ASSIGNMENT

Study assignment: Study pages 1 - 5 in this Review of Elementary Set Concepts

Written assignment:

1. Construct the cartesian product of $A \times B$ where

$$A = \{ r, t, k \} \text{ and } B = \{ 6, 16, 1526 \}$$

2. Construct the cartesian product of R × S where

$$R = \{ 0, 2, 4, 6 \} \text{ and } S = \{ 1, 3, 5 \}$$

3. Construct the cartesian product of $E \times D$ where

$$D = \{a\}$$
and $E = \{l\}$

Directions for Examples 4 - 13:

Each of the following relations is a relation from R to R where R is the set of real numbers. In each example, complete the following parts:

- a. Draw the graph of the relation.
- b. State whether the relation is a function.
- c. State the domain of the relation.
- d. State the range of the relation.

4.
$$R = \{ (a, y) | y = x \}$$

5.
$$S = \{ (x, S(x)) \mid S(x) = \frac{1}{2}x \}$$

6.
$$T = \{ (x, y) \mid y > 5x \}$$

7.
$$U = \{ (x, y) \mid y = x^2 \}$$

8.
$$V = \{ (x, V(x)) \mid V(x) = 2x - 5 \}$$

9.
$$W = \{ (x, y) \mid y = x^3 \}$$

10.
$$X = \{ (x,y) \mid x^2 + y^2 = 25 \}$$

11.
$$Y = \{ (x, y) | xy = 12 \}$$

12.
$$G = \{ (x, G(x)) \mid G(x) = 5 \}$$

13.
$$H = \{ (x, y) \mid x = 3 \}$$

Trigonometric Functions

Let P with coordinates (x, y) be a point on the terminal side of an angle with measure θ in standard position. Let $r = \sqrt{x^2 + y^2}$ represent distance of P

from the origin.

The Sine Function

Sine (or sin) =
$$\{ (\theta, \sin \theta) \mid \sin \theta = \frac{y}{r} \}$$

Observe that:

- (1) θ is a number --- a number that measures the magnitude of the angle in degrees or radians.
- (2) $\sin \theta$ is a number ----the number which is assigned as the second coordinate by the defining sentence

$$\sin \theta = \frac{y}{r}$$

- (3) $\sin \theta$ is NOT the function. $\sin \theta$ is the name of the second coordinate in the sine function. $\sin \theta$ is the VALUE of the sine function at θ .
- (4) Each ordered pair of the sine function has real numbers for the first and second coordinates.

These ideas apply as well to the remaining trigonometric functions.

2. The Cosine Function

cosine (or cos) = {
$$(\theta, \cos \theta) \mid \cos \theta = \frac{x}{r}$$
 }

The Tangent Function

tangent (or tan) = {
$$(\theta, \tan \theta) \mid \tan \theta = \frac{y}{x}$$
 }

The Cotangent Function

cotangent (or cot) = {
$$(\theta, \cot \theta) \mid \cot \theta = \frac{x}{y}$$
 }

5. The Secant Function

secant (or sec) = {
$$(\theta, \sec \theta) \mid \sec \theta = \frac{r}{x}$$
 }

6. The Cosecant Function

cosecant (or csc) = {
$$(\theta, \csc \theta)$$
 | $\csc \theta = \frac{r}{y}$ }

