

FIGURA 20

SOLUÇÃO As superfícies de nível são $x^2 + y^2 + z^2 = k$, onde $k \ge 0$. Elas formam uma família de esferas concêntricas com raio \sqrt{k} . (Veja a Figura 20.) Assim, enquanto (x, y, z) varia sobre qualquer esfera com centro O, o valor de f(x, y, z) permanece fixo.

Funções com qualquer número de variáveis podem ser consideradas. Uma **função com** n variáveis é uma regra que associa um número $z = f(x_1, x_2, \ldots, x_n)$ a uma n-upla (x_1, x_2, \ldots, x_n) de números reais. Denotamos por \mathbb{R}^n o conjunto de todas essas n-uplas. Por exemplo, se uma companhia usa n ingredientes diferentes na fabricação de um produto alimentício, c_i é o custo por unidade do i-ésimo ingrediente e x_i unidades do ingrediente são usadas; então o custo total C dos ingredientes é uma função das n variáveis x_1, x_2, \ldots, x_n :

$$C = f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

A função de f é de valor real cujo domínio é um subconjunto de \mathbb{R}^n . Por vezes, usamos uma notação vetorial para escrever estas funções de maneira mais compacta: Se $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$, frequentemente escrevemos $f(\mathbf{x})$ no lugar $f(x_1, x_2, \dots, x_n)$. Com essa notação, podemos reescrever a função definida na Equação 3 como

$$f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$$

onde $\mathbf{c} = \langle c_1, c_2, \dots, c_n \rangle$ e $\mathbf{c} \cdot \mathbf{x}$ denota o produto escalar dos vetores \mathbf{c} e \mathbf{x} em V_n .

Em vista da correspondência de um-para-um entre os pontos (x_1, x_2, \ldots, x_n) em \mathbb{R}^n e seus vetores posição $\mathbf{x} = \langle x_1, x_2, \ldots, x_n \rangle$ em V_n , temos três maneiras de ver uma função f definida em um subconjunto de \mathbb{R}^n :

- **1.** Como uma função de n variáveis reais x_1, x_2, \ldots, x_n
- **2.** Como uma função de um único ponto *n*-dimensional (x_1, x_2, \dots, x_n)
- **3.** Como uma função de um único vetor *n*-dimensional $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$

Veremos que todos os três pontos de vista são úteis.

14.1 Exercícios

- 1. No Exemplo 2 consideramos a função W = f(T, v), onde W era o índice de sensação térmica, T é a temperatura real, e v é a velocidade do vento. A representação numérica foi fornecida pela Tabela 1.
 - (a) Qual é o valor de f(-15, 40)? Qual é o seu significado?
 - (b) Descreva em palavras o significado da questão "Para quais valores de v é verdade que f(-20, v) = -30?". Em seguida, responda à questão.
 - (c) Descreva o significado da questão "Para quais valores de T é verdade que f(T, 20) = -49?". Em seguida, responda à questão.
 - (d) Qual o significado da função W = f(-5, v)? Descreva seu comportamento.
 - (e) Qual o significado da função W = f(T, 50)? Descreva seu comportamento.
- **2.** O *índice I de temperatura-umidade* (ou simplesmente *humidex*) é a temperatura aparente do ar quando a temperatura real é T e a umidade relativa é h, de modo que podemos escrever I = f(T, h). A tabela seguinte com valores de I foi extraída de uma tabela do Environment Canada.

TABELA 3Temperatura aparente como função da temperatura e da umidade
Umidade relativa(%)

Temperatura real (°C)	T	20	30	40	50	60	70
	20	20	20	20	21	22	23
	25	25	25	26	28	30	32
	30	30	31	34	36	38	41
	35	36	39	42	45	48	51
	40	43	47	51	55	59	63

- (a) Qual é o valor de f(35, 60)? Qual é o seu significado?
- (b) Para que valor de h temos f(30, h) = 36?
- (c) Para que valor de T temos f(T, 40) = 42?
- (d) Quais são os significados das funções I = f(20, h) e I = f(40, h)? Compare o comportamento dessas duas funções de h.

Um fabricante modelou sua função P da produção anual (o valor monetário de toda a produção em milhões de dólares) como uma função de Cobb-Douglas

$$P(L, K) = 1,47L^{0.65}K^{0.35}$$

onde L é o número de horas trabalhadas (em milhares) e K é o capital investido (em milhões de dólares). Encontre P(120, 20) e interprete-o.

Verifique se, para a função de produção de Cobb-Douglas

$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

discutida no Exemplo 3, a produção dobrará se as quantidades de trabalho e a de capital investido forem dobradas. Determine se isso também é verdade para uma função de produção genérica

$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

Um modelo para a área da superfície de um corpo humano é dado pela função

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

onde w é o peso (em libras), h é a altura (em polegadas) e S é medida em pés quadrados.

- (a) Encontre f(160, 70) e interprete-a.
- (b) Qual é sua própria área de superfície?
- O indicador de sensação térmica W discutido no Exemplo 2 foi modelado pela seguinte função:

$$W(T, v) = 13,12 + 0,6215T - 11,37v^{0,16} + 0,3965Tv^{0,16}$$

Verifique quão próximo este modelo está dos valores da Tabela 1 para alguns valores de T e v.

- A altura h de ondas em mar aberto depende da velocidade do vento v e do tempo t durante o qual o vento se manteve naquela intensidade. Os valores da função h = f(v, t), dados em metros, são apresentados na Tabela 4.
 - (a) Qual é o valor de f(80, 15)? Qual é o seu significado?
 - (b) Qual o significado da função h = f(60, t)? Descreva seu comportamento.
 - (c) Qual o significado da função h = f(v, 30)? Descreva seu comportamento.

Duração (horas)

Velocidade do vento (km/h)	v t	5	10	15	20	30	40	50
	20	0,6	0,6	0,6	0,6	0,6	0,6	0,6
	30	1,2	1,3	1,5	1,5	1,5	1,6	1,6
	40	1,5	2,2	2,4	2,5	2,7	2,8	2,8
	60	2,8	4,0	4,9	5,2	5,5	5,8	5,9
	80	4,3	6,4	7,7	8,6	9,5	10,1	10,2
	100	5,8	8,9	11,0	12,2	13,8	14,7	15,3
	120	7,4	11,3	14,4	16,6	19,0	20,5	21,1

Uma empresa fabrica caixas de papelão de três tamanhos: pequena, média e grande. O custo é de \$ 2,50 para fabricar uma caixa pequena, \$4,00 para uma caixa média e \$4,50 para uma caixa grande. Os custos fixos são de \$ 8.000.

- (a) Expresse o custo da fabricação de x caixas pequenas, y caixas médias e z caixas grandes como uma função de três variáveis: C = f(x, y, z).
- (b) Encontre *f* (3 000, 5 000, 4 000) e interprete-a.
- (c) Qual o domínio de f?
- Seja $g(x, y) = \cos(x + 2y)$.
 - (a) Calcule g(2, -1).
 - (b) Determine o domínio de g.
 - (c) Determine a imagem de g.
- **10.** Seja $F(x, y) = 1 + \sqrt{4 y^2}$.
 - (a) Calcule F(3,1).
 - (b) Determine e esboce o domínio de F.
 - (c) Determine a imagem de F.
- **11.** Seja $f(x, y, z) = \sqrt{x} + \sqrt{y} + \sqrt{z} + \ln(4 x^2 y^2 z^2)$.
 - (a) Calcule f(1, 1, 1).
 - (b) Determine o domínio de f.
- **12.** Seja $g(x, y, z) = x^3 y^2 z \sqrt{10 x y z}$.
 - (a) Calcule g(1, 2, 3).
 - (b) Determine o domínio de *g*.
- 13–22 Determine e esboce o domínio da função.

13.
$$f(x, y) = \sqrt{x + y}$$
 14. $f(x, y) = \sqrt{xy}$

14.
$$f(x, y) = \sqrt{xy}$$

15.
$$f(x, y) = \ln(9 - x^2 - 9y^2)$$
 16. $f(x, y) = \sqrt{x^2 - y^2}$

16.
$$f(x, y) = \sqrt{x^2 - y}$$

17.
$$f(x, y) = \sqrt{1 - x^2} - \sqrt{1 - y^2}$$

18.
$$f(x, y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$$

19.
$$f(x, y) = \frac{\sqrt{y - x^2}}{1 - x^2}$$

20.
$$f(x, y) = \arcsin(x^2 + y^2 - 2)$$

21.
$$f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$$

22.
$$f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2)$$

23-31 Esboce o gráfico da função.

23.
$$f(x, y) = 1 + y$$

24.
$$f(x, y) = 2 - x$$

25.
$$f(x, y) = 10 - 4x - 5y$$
 26. $f(x, y) = e^{-y}$

26.
$$f(x, y) = e^{-x}$$

27.
$$f(x, y) = y^2 + 1$$

28.
$$f(x, y) = 1 + 2x^2 + 2y^2$$

29.
$$f(x, y) = 9 - x^2 - 9y^2$$

30.
$$f(x, y) = \sqrt{4x^2 + y^2}$$

31.
$$f(x, y) = \sqrt{4 - 4x^2 - y^2}$$

32. Faça uma correspondente entre a função e seu gráfico (identificado por I-VI). Justifique sua escolha.

(a)
$$f(x, y) = |x| + |y|$$

$$\mathbf{(b)} f(x, y) = |xy|$$

(c)
$$f(x, y) = \frac{1}{1 + x^2 + y^2}$$
 (d) $f(x, y) = (x^2 - y^2)^2$

(d)
$$f(x, y) = (x^2 - y^2)^2$$

(e)
$$f(x, y) = (x - y)^2$$

(f)
$$f(x, y) = \text{sen}(|x| + |y|)$$

33. Um mapa de contorno de uma função f é apresentado. Use-o para estimar os valores de f(-3, 3) e f(3, -2). O que você pode dizer sobre a forma do gráfico?

- **34.** Um mapa de contorno da pressão atmosférica na América do Norte é mostrado em 12 de agosto de 2008. Nas curvas de nível (chamadas isobáricas) a pressão é indicada em milibares (mb).
 - (a) Estime a pressão em C (Chicago), N (Nashville), S (São Francisco) e V (Vancouver).
 - (b) Em quais desses lugares os ventos eram mais fortes?

35. As curvas de nível (isotérmicas) são mostradas para a temperatura da água (em °C) em Long Lake (Minnesota) em 1998 como

uma função de profundidade e da época do ano. Estime a temperatura do lago em 9 de junho (dia 160) em uma profundidade de 10 m e em 29 de junho (dia 180) em uma profundidade de 5 m.

36. Dois mapas de contorno são mostrados na figura. Um é de uma função *f* cujo gráfico é um cone. O outro é de uma função *g* cujo gráfico é um paraboloide. Qual é qual? Por quê?

37. Localize os pontos *A* e *B* no mapa da Montanha Solitária (Figura 12). Como você descreveria o terreno perto de *A*? É perto de *B*?

39–42 Um mapa de contorno de uma função é mostrado. Use-o para fazer um esboço do gráfico da f.

42.

43-50 Faça o mapa de contorno da função mostrando várias curvas de nível.

43.
$$f(x, y) = (y - 2x)^2$$

44.
$$f(x, y) = x^3 - y$$

45.
$$f(x, y) = \sqrt{x} + y$$

46.
$$f(x, y) = \ln(x^2 + 4y^2)$$

47.
$$f(x, y) = ye^x$$

48.
$$f(x, y) = y \sec x$$

49.
$$f(x, y) = \sqrt{y^2 - x^2}$$

50.
$$f(x, y) = y/(x^2 + y^2)$$

51-52 Faça o esboço do mapa de contorno e do gráfico da função e compare-os.

51.
$$f(x, y) = x^2 + 9y^2$$

52.
$$f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$$

53. Uma placa fina de metal, localizada no plano xy, tem temperatura T(x, y) no ponto (x, y). As curvas de nível de T são chamadas isotérmicas porque todos os pontos em uma dessas curvas têm a mesma temperatura. Faça o esboço de algumas isotérmicas se a função temperatura for dada por

$$T(x, y) = \frac{100}{1 + x^2 + 2y^2}$$

Se V(x, y) é o potencial elétrico em um ponto (x, y) no plano xy, então as curvas de nível de V são chamadas curvas equipotenciais, porque em todos os pontos dessa curva o potencial elétrico é o mesmo. Esboce algumas curvas equipotenciais de $V(x, y) = c/\sqrt{r^2 - x^2 - y^2}$, onde c é uma constante positiva.

55–58 Utilize um computador para traçar o gráfico da função usando vários domínios e pontos de vista. Imprima a que, em sua opinião, oferece a melhor visão. Se seu programa também produz curvas de nível, trace o mapa de contorno da mesma função e compare.

55.
$$f(x, y) = xy^2 - x^3$$
 (se

(sela do macaco)

56.
$$f(x, y) = xy^3 - yx^3$$

(sela do cachorro)

57.
$$f(x, y) = e^{-(x^2+y^2)/3}(\operatorname{sen}(x^2) + \cos(y^2))$$

$$58. f(x, y) = \cos x \cos y$$

59-64 Faça uma correspondência entre a função (a) e seu gráfico (indicado por A-F a seguir), (b) e seus mapas de contorno (indicado por I-VI). Justifique sua escolha.

59.
$$z = \text{sen}(xy)$$

60.
$$z = e^x \cos y$$

61.
$$z = \text{sen}(x - y)$$

62.
$$z = \sin x - \sin y$$

63.
$$z = (1 - x^2)(1 - y^2)$$

63.
$$z = (1 - x^2)(1 - y^2)$$
 64. $z = \frac{x - y}{1 + x^2 + y^2}$

В

D

Е

F

Ш

65-68 Descreva as superfícies de nível da função.

65.
$$f(x, y, z) = x + 3y + 5z$$

66.
$$f(x, y, z) = x^2 + 3y^2 + 5z^2$$

67.
$$f(x, y, z) = y^2 + z^2$$

68.
$$f(x, y, z) = x^2 - y^2 - z^2$$

69–70 Descreva como o gráfico de g é obtido a partir do gráfico de f. Faça o gráfico da função

69. (a)
$$g(x, y) = f(x, y) + 2$$

(b)
$$g(x, y) = 2 f(x, y)$$

$$(c) g(x, y) = -f(x, y)$$

(d)
$$g(x, y) = 2 - f(x, y)$$

70. (a)
$$g(x, y) = f(x - 2, y)$$

(c) $g(x, y) = f(x + 3, y - 4)$

(b)
$$g(x, y) = f(x, y + 2)$$

71–72 Utilize um computador para traçar o gráfico da função usando vários domínios e pontos de vista. Imprima aquela que apresente melhor os "picos e vales". Você acha que essa função tem um valor máximo? Você poderia identificar os pontos do gráfico correspondentes aos "máximos locais"? E aos "mínimos locais"?

71.
$$f(x, y) = 3x - x^4 - 4y^2 - 10xy$$

72.
$$f(x, y) = xye^{-x^2-y^2}$$

73–74 Utilize um computador para traçar o gráfico da função usando vários domínios e pontos de vista. Comente o comportamento da função no limite. O que acontece quando x e y se tornam muito grandes? O que acontece quando (x, y) se aproxima da ori-

73.
$$f(x, y) = \frac{x + y}{x^2 + y^2}$$

73.
$$f(x,y) = \frac{x+y}{x^2+y^2}$$
 74. $f(x,y) = \frac{xy}{x^2+y^2}$

75. Use um computador para investigar a família de funções $f(x, y) = e^{cx^2 + y^2}$. De que maneira a forma do gráfico depende de c? **76.** Use um computador para investigar a família de superfícies

$$z = (ax^2 + by^2)e^{-x^2 - y^2}$$

Como a forma do gráfico depende dos números a e b?

77. Use um computador para investigar a família de superfícies $z = x^2 + y^2 + cxy$. Em particular, você deve determinar os valores de transição de c para os quais a superfície muda de um tipo de superfície quádrica para outro.

$$f(x, y) = \sqrt{x^2 + y^2}$$

$$f(x, y) = e^{\sqrt{x^2 + y^2}}$$

$$f(x, y) = \ln \sqrt{x^2 + y^2}$$

$$f(x, y) = \operatorname{m}(x + y)$$
$$f(x, y) = \operatorname{sen}(\sqrt{x^2 + y^2})$$

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$$

Em geral, se g(t) é uma função de uma variável, como obter o gráfico de

$$f(x, y) = g(\sqrt{x^2 + y^2})$$

a partir do gráfico de *g*?

(a) Mostre que, tomando logaritmos, a função geral de Cobb--Douglas $P = bL^{\alpha}K^{1-\alpha}$ pode ser expressa como

$$\ln \frac{P}{K} = \ln b + \alpha \ln \frac{L}{K}$$

(b) Se deixarmos $x = \ln(L/K)$ e $y = \ln(P/K)$, a equação no item (a) torna-se a equação linear $y = \alpha x + \ln b$. Use a Tabela 2 (no Exemplo 3) para fazer a tabela dos valores de ln(L/K) e ln(P/K) para os anos 1899–1922. Em seguida, use uma calculadora gráfica ou o computador para encontrar a linha de regressão dos quadrado mínimos pelos pontos (ln(L/K),ln(P/K)).

(c) Deduza que a função de produção de Cobb-Douglas é P = $1,01L^{0,75}K^{0,25}$.

Limites e Continuidade

Vamos comparar o comportamento das funções

$$f(x, y) = \frac{\text{sen}(x^2 + y^2)}{x^2 + y^2}$$
 e $g(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$

quando x e y se aproximam de 0 [e, portanto, o ponto (x, y) se aproxima da origem].

As Tabelas 1 e 2 mostram valores de f(x, y) e g(x, y), com precisão de três casas decimais, para pontos (x, y) próximos da origem. (Observe que nenhuma das funções está definida na origem.)

A função f é **contínua** em (a, b, c) se

$$\lim_{(x, y, z) \to (a, b, c)} f(x, y, z) = f(a, b, c)$$

Por exemplo, a função

$$f(x, y, z) = \frac{1}{x^2 + y^2 + z^2 - 1}$$

é uma função racional em três variáveis, e portanto é contínua em todo ponto de \mathbb{R}^3 , exceto onde $x^2 + y^2 + z^2 = 1$. Em outras palavras, é descontínua na esfera com o centro na origem

Se usarmos a notação vetorial introduzida no fim da Seção 14.1, poderemos escrever as definições de limite para as funções de duas ou três variáveis de uma forma compacta, como a seguir.

Se f é definida em um subconjunto D de \mathbb{R}^n , então $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ significa que para todo número $\varepsilon > 0$ existe um número correspondente $\delta > 0$ tal que

se
$$\mathbf{x} \in D$$
 e $0 < |\mathbf{x} - \mathbf{a}| < \delta$, então $|f(\mathbf{x}) - L| < \varepsilon$

Observe que se n=1, então $\mathbf{x}=x$ e $\mathbf{a}=a$ e $\boxed{5}$ é exatamente a definição do limite para as funções de uma única variável. Para o caso n = 2, temos $\mathbf{x} = \langle x, y \rangle$, $\mathbf{a} = \langle a, b \rangle$ e $|\mathbf{x} - \mathbf{a}| = \sqrt{(x-a)^2 + (y-b)^2}$, de modo que $\boxed{5}$ se torna a Definição 1. Se n = 3, então $\mathbf{x} = \langle x, y, z \rangle$, $\mathbf{a} = \langle a, b, c \rangle$, e $\boxed{5}$ é a definição de limite de uma função de três variáveis. Em cada caso, a definição de continuidade pode ser escrita como

$$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=f(\mathbf{a})$$

Exercícios

- Suponha que $\lim_{(x, y)\to(3, 1)} f(x, y) = 6$. O que podemos dizer do valor de f(3, 1)? E se a função f for contínua?
- Explique por que cada função é contínua ou descontínua.
 - (a) A temperatura externa como função da latitude, da longitude e do tempo.
 - (b) A altura acima do nível do mar como função da longitude, da latitude e do tempo.
 - (c) O custo da tarifa do táxi como função da distância percorrida e do tempo gasto.
- 3-4 Utilize uma tabela de valores numéricos de f(x, y) para (x, y)perto da origem para conjecturar sobre o limite de f(x, y) quando $(x, y) \rightarrow (0, 0)$. Em seguida, explique por que sua conjectura está
- $f(x,y) = \frac{x^2y^3 + x^3y^2 5}{2 xy}$ **4.** $f(x,y) = \frac{2xy}{x^2 + 2y^2}$
- 5-22 Determine o limite, se existir, ou mostre que o limite não existe.
- $\lim_{(x,y)\to(1,2)} (5x^3 x^2y^2) \qquad \qquad \textbf{6.} \quad \lim_{(x,y)\to(1,2)} e^{-xy} \cos(x+y)$
 - $\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2} \qquad \qquad \textbf{8.} \quad \lim_{(x,y)\to(1,0)} \ln\left(\frac{1+y^2}{x^2+xy}\right)$

- **9.** $\lim_{(x,y)\to(0,0)} \frac{x^4 {}^4y^4}{x^2 + 2y^2}$ **10.** $\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$
- **11.** $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2+y^2}$ **12.** $\lim_{(x,y)\to(1,0)} \frac{xy-y}{(x-1)^2+y^2}$
- **13.** $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$ **14.** $\lim_{(x,y)\to(0,0)} \frac{x^4-y^4}{x^2+y^2}$ **15.** $\lim_{(x,y)\to(0,0)} \frac{x^2ye^y}{x^4+4y^2}$ **16.** $\lim_{(x,y)\to(0,0)} \frac{x^2\operatorname{sen}^2y}{x^2+2y^2}$

- **17.** $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$ **18.** $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$
- **19.** $\lim_{(x, y, z) \to (\pi, \theta, 1)} e^{y^2} \operatorname{tg}(xz)$ **20.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz}{x^2 + y^2 + z^2}$
- **21.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^4}$ **22.** $\lim_{(x, y, z) \to (0, 0, 0)} \frac{yz}{x^2 + 4y^2 + 9z^2}$
- 23–24 Utilize um gráfico feito por computador para explicar por que
 - **23.** $\lim_{(x,y)\to(0,0)} \frac{2x^2 + 3xy + 4y^2}{3x^2 + 5y^2}$ **24.** $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2 + y^6}$

25–26 Determine h(x, y) = g(f(x, y)) e o conjunto no qual h é contínua.

25.
$$g(t) = t^2 + \sqrt{t}$$
, $f(x, y) = 2x + 3y - 6$

26.
$$g(t) = t + \ln t$$
, $f(x, y) = \frac{1 - xy}{1 + x^2y^2}$

27–28 Trace o gráfico da função e observe onde ela é descontínua. Em seguida, utilize a fórmula para explicar o que você observou.

27.
$$f(x, y) = e^{1/(x-y)}$$

28.
$$f(x, y) = \frac{1}{1 - x^2 - y^2}$$

29-38 Determine o maior conjunto no qual a função é contínua.

29.
$$F(x, y) = \frac{xy}{1 + e^{x-y}}$$

30.
$$F(x, y) = \cos \sqrt{1 + x - y}$$

31.
$$F(x, y) = \frac{1 + x^2 + y^2}{1 - x^2 - y^2}$$
 32. $H(x, y) = \frac{e^x + e^y}{e^{xy} - 1}$

32.
$$H(x, y) = \frac{e^x + e^y}{e^{xy} - 1}$$

33.
$$G(x, y) = \ln(x^2 + y^2 - 4)$$

34.
$$G(x, y) = tg^{-1}((x + y)^{-2})$$

35.
$$f(x, y, z) = \arcsin(x^2 + y^2 + z^2)$$

36.
$$f(x, y, z) = \sqrt{y - x^2} \ln z$$

37.
$$f(x, y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 1 & \text{se } (x, y) = (0, 0) \end{cases}$$

38.
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$$

39-41 Utilize coordenadas polares para determinar o limite. [Se (r, θ) são as coordenadas polares do ponto (x, y) com $r \ge 0$, observe que $r \rightarrow 0^+$ quando $(x, y) \rightarrow (0, 0)$.]

39.
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

40.
$$\lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2)$$

41.
$$\lim_{(x,y)\to(0,0)} \frac{e^{-x^2-y^2}-1}{x^2+y^2}$$

$$f(x, y) = \frac{\text{sen}(x^2 + y^2)}{x^2 + y^2}$$

e conjecturamos que $f(x, y) \rightarrow 1$ quando $(x, y) \rightarrow (0, 0)$ com base em evidências numéricas. Utilize coordenadas polares para comprovar o valor do limite. Em seguida, faça o gráfico da função.

43. Trace o gráfico e analise a continuidade da função

$$f(x, y) = \begin{cases} \frac{\sin xy}{xy} & \text{se } xy \neq 0\\ 1 & \text{se } xy = 0 \end{cases}$$

44. Seja

M

$$f(x, y) = \begin{cases} 0 & \text{se } y \le 0 \text{ or } y \ge x^4 \\ 1 & \text{se } 0 < y < x^4 \end{cases}$$

- (a) Mostre que $f(x, y) \rightarrow 0$ quando $(x, y) \rightarrow (0, 0)$ por qualquer caminho da forma $y = mx^a$ passando por (0, 0) com a < 4.
- (b) Independentemente do item (a), mostre que f é descontínua em (0, 0).
- (c) Mostre que f é descontínua em duas curvas inteiras.
- Mostre que a função f dada por $f(\mathbf{x}) = |\mathbf{x}|$ é contínua em \mathbb{R}^n . [Dica: Considere $|\mathbf{x} - \mathbf{a}|^2 = (\mathbf{x} - \mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$.]
- Se $\mathbf{c} \in V_n$, mostre que a função f dada por $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$ é contínua em \mathbb{R}^n .

Derivadas Parciais 14.3

Temperatura real (°C)

Em um dia quente, a umidade muito alta aumenta a sensação de calor, ao passo que, se o ar está muito seco, temos a sensação de temperatura mais baixa que a indicada no termômetro. O Serviço Meteorológico do Canadá introduziu o humidex (ou índice de temperatura-umidade) para descrever os efeitos combinados da temperatura e umidade. O humidex I é a temperatura aparente do ar quando a temperatura real for T e a umidade relativa for H. Desse modo, I é uma função de T e H e podemos escrever I = f(T, H). A tabela de valores de I a seguir é a parte de uma tabela compilada pelo Serviço Meteorológico.

Umidade relativa (%)

T	40	45	50	55	60	65	70	75	80
26	28	28	29	31	31	32	33	34	35
28	31	32	33	34	35	36	37	38	39
30	34	35	36	37	38	40	41	42	43
32	37	38	39	41	42	43	45	46	47
34	41	42	43	45	47	48	49	51	52
36	43	45	47	48	50	51	53	54	56

TARFIA 1 Índice de calor I como função da temperatura e umidade