Лабораторная работа № 5.1.1 Фотоэффект

Пазов Тенгиз, Кирилл Пальянов Сентябрь 2025

1 Теоретическая справка

Фотоэффект - испускание электронов фотокатодом, облучаемым светом - хорошо объясняется фотонной теорией света: фотон с энергией $\hbar\omega$ выбивает электрон из поверхности металла и сообщает электрону кинетическую энергию

Энергетический баланс этого взаимодействия описывается уравнением:

$$\hbar\omega = W + E_{max} \tag{1}$$

где W - работа выхода электрона из катода, E_{max} - максимальная кинетическая энергия электрона после выхода из фотокатода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывный - он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода располагают второй электрод(анод), на который подаётся потенциал. При достаточно большом ускоряющем напряжении(V>0) фототок достигает насыщения: все испущенные электроны попадают на анод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Данная зависимость изображена на рисунке 1.

Рис. 1. Зависимость фототока от напряжения на аноде

Подставляя в 1 уравнение $E_{max}=eV_0$, получаем уравнение Эйнштейна для фотоэффекта:

$$eV_0 = \hbar\omega - W \tag{2}$$

В самом простом случае, зависимость силы тока от напряжения $\sqrt{I} = f(V_0 - V)$.

Для экспериментальной проверки уравнения Эйнштейна, по графикам данной зависимости определяются потенциалы запирания при разных частотах света и строится зависимость $V_0(\omega)$, которая должна иметь вид:

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{3}$$

Получается, по наклону прямой можно найти постоянную Планка

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{4}$$

2 Экспериментальная установка

Схема установки приведена на рисунке 2. Свет от источника S с помощью конденсора фокусируется на входную щель призменного монохроматора YM-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента Φ -25

Рис. 2. Схема экспериментальной установки

Рис. 3. Схема монохроматора

Основные элементы монохроматора представлены на рисунке 3.

Входная щель 1 с микрометрическим винтом 9 для её открытия на нужную ширину(0,01 - 4 мм).

Коллиматорный объектив 2 с микрометрическим винтом 8, что позволяет смещать объектив относительно щели

Система призм 3, предназначенная для выделения частоты и поворота лучей на 90 градусов

Поворотный столик 6 с винтом 7 для вращения барабана с целью поворота призмы, чтобы в поле зрения были другие участки спектра

Зрительная труба с объективом 4, окуляром 5, острием указателя 10.

Корпус 10, оптическая скамья длярасположения линзы и источника, пульт управления.

3 Ход работы

Для начала подготовим установку к работе. Для этого:

- 1. Установили ручки "ПЛАВНО"и "ГРУБО"на блоке питания на минимум сигнала и включили в сеть блок питания и неоновую лампу, закрыли входную щель колпачком с крестиком, а также отцентрировали по высоте источник света и лампу.
- 2. Расположили конденсор на расстоянии 25-30 см. от щели, а также перемещая источник вдоль оптической оси, получили увеличенное его изображение в центре колпачка. Закрепили

рейтеры.

- 3. Открыли входную щель: сняли колпачок и установили флажок в положение "ОТКРЫТО". Включили подсветку окуляра, а также настроились на резкое изображение кончика указателя. Отрегулировали яркость освещения указателя.
- 4. Для выбора ширины входной щели определили начало отсчёта. Установили винт 9 вблизи нулевого деления. Также проверили, что барабан позволяет определить координаты всех необходимых линий.

Градуировка монохроматора

Пользуясь таблицой из методических материалом, проградуируем барабан монохроматора по спектру неоновой лампы. Для этого построим(по известным из таблицы данным и полученной информации об углах из эксперимента) график зависимости длины волны света от угла на барабане.

λ , Å						
φ	2166	2218	2409	2438	2506	2629

Таблица 1 – Таблица с длинами волн полос спектра и соответствующими им углами на барабане

Исследование зависимости фототока от величины запирающего потенциала

- 1. Подготовили установку к работе. 2. Для начала освободили опорный винт и сняли блок окуляра монохроматора. Далее установили блок фотоэлемента.
- 3. Убрали неоновую лампу, утсановили и включили электрическую лампу. Перемещая лампу, получили ее резкое изображение на колпачке входной щели. Далее сняли колпачок и при

закрытом входе монохроматора ручкой блока питания установили показание вольтметра близким к нулю.

4. После этого установили ширину входной щели монохроматора около 0,1 - 0,15 мм. Далее установили регуляторы напряжения на блоке питания на максимум(знак U:"+"). 5. Далее плавно открывая щель блока фотоэлемента, по началу увеличения фототока установили момент открытия щели и установили ширину щели фотоэлемента 0.1 мм.

$\lambda, ext{Å}$								
1869		2450		2060		2200		
$\sqrt{I}, A^{\frac{1}{2}},$	V, B	$\sqrt{I}, A^{\frac{1}{2}}$	V, B	$\sqrt{I}, A^{\frac{1}{2}}$	V, B	$\sqrt{I}, A^{\frac{1}{2}}$	V, B	
0,499	0,007	0,445	0,007	0,505	0,006	0,501	0,007	
0,551	0,309	0,628	0,752	0,536	0,135	0,526	0,081	
0,607	0,987	0,676	1,448	0,553	0,234	0,566	0,287	
0,626	1,275	0,675	3,039	0,572	0,379	0,613	0,688	
0,407	0,211	0,250	0,116	0,310	0,283	0,444	0,124	
0,116	0,471	0,111	0,195	0,156	0,395	0,340	0,216	
0,053	0,871	0	0,302	0,080	0,465	0,190	0,312	

Найдём коэффициенты k и b для полученных линейных зависимостей, а затем, приравняв фототок κ нулю, найдём потенциал насыщения.

λ , Å	$k, \frac{A^{\frac{1}{2}}}{B}$	$\sigma_k, \frac{A^{\frac{1}{2}}}{B}$	$b, A^{\frac{1}{2}}$	$\sigma_b, A^{\frac{1}{2}}$	V_0, B	σ_{V_0}, B
1869	0,207	$0,\!15\overline{4}$	0,154	0,306	-0,742	0,207
2450	-1,327	0,391	0,391	0,044	0,295	1,327
2060	-1,309	0,777	0,777	0,706	0,594	1,309
2200	0,424	0,255	0,255	0,163	-0,602	0,42

Далее построим график зависимости $V_0 = f(\omega)$. Получилось

Получается, $k=\frac{\hbar}{e}=-355.40\pm0,26\cdot10^{-18}\frac{\text{Дж.}c}{\text{Кл}}.$ $\hbar=0,6\pm0,1\cdot10^{-34}\text{Дж.}c.$

4 Вывод

В ходе данной работы было исследовано явление фотоэффекта, проверена справедливость уравнения Эйнштейна для фотоэффекта при помощи рассмотрения зависимостей, которые она задаёт между величинами. Получившееся значение $\frac{\hbar}{e}=-355, 40\pm0, 26\cdot10^{-18}\frac{\mathcal{I}_{\mathsf{K}\cdot\mathsf{C}}}{\mathsf{K}_{\mathsf{H}}}$, теоретическое же равно $6,57\cdot10^{-16}\frac{\mathcal{I}_{\mathsf{K}\cdot\mathsf{C}}}{\mathsf{K}_{\mathsf{H}}}$.