

8

6

BMS College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2018 Semester End Make Up Examinations

Duration: 3 hrs Course: **Fields and Waves** Course Code: 15ES3GCFAW Max Marks: 100 Date:12.01.2018 **Instructions**: Answer FIVE FULL questions, choosing one from each unit. UNIT 1 1 a Define Electric field intensity. Derive the expression for field at a point due to many 10 b Calculate the divergence of vector D at the points specified if, 10 i) $\mathbf{D} = 1/z^2 [10xyz \, \mathbf{a}_x + 5x^2z \, \mathbf{a}_y + (2z^3 - 5x^2y) \, \mathbf{a}_z]$ at P (-2,3,5). ii) $\mathbf{D} = 5z^2 \mathbf{a_r} + 10rz \mathbf{a_z}$ at P (3, -45⁰, 5). OR a Derive the expression for energy Density in an electric field 2 10 b Find E and J corresponding to a drift velocity of 6.0 x 10⁻⁴ m/s in the case of silver 5 conductor using the data: $\sigma_{\text{silver}} = 61.7 \times 10^6 \text{ S/m}$ and mobility $\mu_{\text{silver}} = 5.6 \times 10^{-3}$ H/m c At the boundary between glass ($\epsilon_r = 4$) and air, the lines of electric field make an 5 angle of 40° with normal to the boundary. If electric flux density in air is 0.25µC/m², determine the orientation and magnitude of electric flux density in glass. UNIT 2 3 a State and prove Biot-Savart's Law. 6 b Given vector magnetic potential $\mathbf{A} = x^2 \mathbf{a}_x + 2yz \mathbf{a}_y + (-x^2) \mathbf{a}_z$, find the magnetic flux 7 c Derive the boundary condition for tangential component of H in a steady magnetic 7 field. 4 a State and explain Faraday's law in integral and point form. 8 b List the Maxwell's equations in point and integral form for time varying fields. 8 c Given $\mathbf{E} = \mathbf{E}_{m} \operatorname{Sin} (\boldsymbol{\omega} \mathbf{t} - \boldsymbol{\beta} \mathbf{z}) \mathbf{a}_{v}$ in free space, calculate B. 4 **UNIT 4** 5 a Starting from Maxwell's equations obtain the general wave equation in electric and 6

c Determine i) attenuation constant ii) wavelength and iii) intrinsic impedance for a

magnetic fields.

b State and prove Poynting theorem

good conductor at a frequency of 1MHz given that ϵ_r = 12, μ_r = 1 and conductivity σ = $20x10^{-3}$ s/m.

UNIT 5

6		Define the terms i) Reflection coefficient and ii) Transmission coefficient. Also derive the relation between them.	8
	b	Write a short note on SWR.	6
	c	Given $\Gamma=0.5$, $\eta_1=100\Omega$, $\eta_2=300\Omega$, $E_i=100$ V/m. Calculate values of average power for the incident, reflected and transmitted wave.	6
		OR	
7	a	Derive the general expression for plane wave propagation in any arbitrary directions.	8
	b	Write a short note on Brewster angle.	6
	c	An electromagnetic wave traveling in free space is incident on a dielectric medium with relative dielectric constant equal to 2 at an angle of 45 ⁰ . Find the angle by which E tilts as the wave crosses the boundary.	6
