

# CH568 数据手册

## 概述

CH568 是高性能的 32 位 RISC 精简指令集微控制器,内置 192KB FLASH 闪存、32KB SRAM 及 32KB DataFlash。片上集成高速 USB2.0 主/从控制器、4 组 SD 控制器、SATA 控制器、加密算法模块、4 组 UART 接口、7 组 PWM、3 组定时器等丰富的外设资源,可广泛的应用于各种嵌入式应用。

## 功能

- 内核:
  - 32 位 RISC 精简指令集内核
  - 最高主频 120MHz
- 存储:
  - 192KB 字节程序存储区,支持写保护
  - 32KB 字节 SRAM
  - 32KB 字节 DataFlash
- USB2.0 高速收发器(内置 PHY):
  - 高速 Host / Device 模式
  - 支持控制/批量/中断/同步传输
  - 支持双缓冲 PINT-PONG 机制
  - 支持 DMA
- 4 组独立 SD 控制器:
  - 支持单线、4线、8线通讯模式
  - 支持 SD/TF 卡、SDIO 卡以及 eMMC 卡等
  - 内置 FIF0
  - 支持 AES 和 SM4 算法
  - 提供8种加解密模式
  - 支持 DMA
- SATA 控制器 (内置 PHY):
  - 支持 1.5G/3G 模式
  - 支持电源管理
  - 支持自动数据流控
  - 支持 DMA
- 定时器:
  - 3组26位定时器
  - 支持信号宽度采样/边沿捕捉、PWM 可调输出、计数功能
  - TMR1 和 TMR2 支持 DMA

#### PWMX:

- 扩展 4 组 PWM 输出
- 占空比可调
- 通用异步串口 UART:
  - 4 组独立 UART, 兼容 16C550
  - 最高波特率 6Mbps
  - 内置 FIF0, 多个触发级
- SPI:
  - 2组 SPI 接口, 1个支持 Master 和 Slave 模式. 1个只支持 Master 模式
  - 内置 FIF0
  - SPIO 支持 DMA
- LED 屏接口:
  - 支持 1/2/4 路数据线
  - 内置 FIF0, 支持双缓冲
  - 支持 DMA
- 低功耗:
  - 睡眠模式
  - 支持部分 GPIO、USB 或者 SATA 信号唤醒
- 通用 I/0 端口:
  - 26 个 GPI0 口
  - 8 个引脚可设置电平/边沿中断
  - 部分引脚具有复用及映射功能
- 芯片 ID 号:
  - 唯一 64bit ID 识别号
- 电源:
  - $-3.0--3.6V(3.3V\pm10\%)$
- 封装: LQFP48

## 应用

安全存储、家居安防、USB 相关应用、监控、报警系统、打印机、扫描仪等应用控制。

# 第1章 引脚信息

## 1.1 引脚排列



图 2-1 LQFP48 封装引脚排列

# 1.2 引脚描述

| 引脚号 | 引脚<br>名称 | 类型   | 主功能(复位后)/<br>复用功能及映射 | 功能描述                                   |
|-----|----------|------|----------------------|----------------------------------------|
| 1   | GND      | Р    | GND                  | 地:公共接地端, OV 参考点。                       |
| 2   | VCC33    | Р    | VCC33                | 电源电压调节器输入 3.3V 电源, 需外接 0.1uF 电容。       |
| 3   | VCC12    | Р    | VCC12                | 内核电源输出,需外接 3.3uF 或 10uF 电容。            |
| 4   | SRXP     | SATA | SRXP                 | SATA 数据接收正极性信号。                        |
| 5   | SRXM     | SATA | SRXM                 | SATA 数据接收负极性信号。                        |
| 6   | VCC12A   | Р    | VCC12A               | SATA-PHY 电源,需外供 1. 2V 电源并外接 0. 1uF 电容。 |
| 7   | STXM     | SATA | STXM                 | SATA 数据发送负极性信号。                        |
| 8   | STXP     | SATA | STXP                 | SATA 数据发送正极性信号。                        |

| 9  | VCC12A | Р   | VCC12A                      | SATA-PHY 电源, 需外供 1. 2V 电源并外接 0. 1uF 电容。                                                                            |
|----|--------|-----|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| 10 | RSATA  | I   | RSATA                       | 需对地接 18KΩ电阻,用于 SATA-PHY。                                                                                           |
| 11 | PA15   | 1/0 | PA15<br>/MISOO/SD13/RXDO_   | PA15: 通用双向数字 I/0 引脚。<br>MIOSO: SPIO 串行数据引脚,主机输入/从机输出。<br>SD13: SD1 控制器数据线 3。<br>RXDO_: UARTO 的 RXD 引脚映射。           |
| 12 | PA14   | 1/0 | PA14<br>/MOSIO/TXDO_/SD12   | PA14: 通用双向数字 I/0 引脚。<br>MOSIO: SPIO 串行数据引脚,主机输出/从机输入。<br>TXDO_: UARTO 的 TXD 引脚映射。<br>SD12: SD1 控制器数据线 2。           |
| 13 | PA13   | 1/0 | PA13<br>/SCKO/SD11          | PA13: 通用双向数字 I/0 引脚。<br>SCKO: SPIO 串行时钟引脚, 主机输出/从机输入。<br>SD11: SD1 控制器数据线 1。                                       |
| 14 | PA12   | 1/0 | PA12<br>/SD10/SCS/INT5      | PA12: 通用双向数字 I/0 引脚。<br>SD10: SD1 控制器数据线 0。<br>SCS: SPI0 从机片选输入引脚。<br>INT5: I0 中断 5。                               |
| 15 | PA2    | 1/0 | PA2<br>/MISO1/LED2/CMD3     | PA2:通用双向数字 I/O 引脚。<br>MISO1: SPI1 串行数据引脚,主机输入; SPI1 单工模式下,串行数据输入输出引脚。<br>LED2: LED 串行数据线 2。<br>CMD3: SD3 控制器命令信号线。 |
| 16 | PA1    | 1/0 | PA1<br>/MOSI1/LED1/CMD2     | PA1:通用双向数字 I/O 引脚。<br>MOSI1: SPI1 串行数据引脚,主机输出。<br>LED1: LED 串行数据线 1。<br>CMD2: SD2 控制器命令信号线。                        |
| 17 | PAO    | 1/0 | PAO<br>/SCK1/LEDO/CMD1      | PAO: 通用双向数字 I/O 引脚。<br>SCK1: SPI1 串行时钟引脚, 主机时钟输出。<br>LEDO: LED 串行数据线 0。<br>CMD1: SD1 控制器命令信号线。                     |
| 18 | V33101 | Р   | V33101                      | 外设 1 组的 3. 3V 电源, 需外接 0. 1uF 电容。                                                                                   |
| 19 | PB7    | 1/0 | PB7<br>/TXD0/SD33           | PB7: 通用双向数字 I/0 引脚。<br>TXD0: UART0 串行数据输出。<br>SD33: SD3 控制器数据线 3。                                                  |
| 20 | PB6    | 1/0 | PB6<br>/RTS/SD32            | PB6: 通用双向数字 I/0 引脚。<br>RTS: UARTO 的 MODEM 输出信号,请求发送。<br>SD32: SD3 控制器数据线 2。                                        |
| 21 | PB5    | 1/0 | PB5<br>/DTR/SD31            | PB5:通用双向数字 I/O 引脚。<br>DTR: UARTO 的 MODEM 输出信号,数据终端就绪。<br>SD31: SD3 控制器数据线 1。                                       |
| 22 | PB4    | 1/0 | PB4<br>/SD30/RXD0/INT6      | PB4: 通用双向数字 I/0 引脚。<br>SD30: SD3 控制器数据线 0。<br>RXD0: UARTO 串行数据输入。<br>INT6: I0 中断 6。                                |
| 23 | PB3    | 1/0 | PB3<br>/SD23/DCD            | PB3: 通用双向数字 I/O 引脚。<br>SD23: SD2 控制器数据线 3。<br>DCD: UARTO 的 MODEM 输入信号,载波检测。                                        |
| 24 | PB2    | 1/0 | PB2<br>/PWM5_/SD22/CAP1_/RI | PB2: 通用双向数字 I/O 引脚。<br>PWM5_: PWM5 功能映射。                                                                           |

|    |        |     |                             | SD22: SD2 控制器数据线 2。                  |
|----|--------|-----|-----------------------------|--------------------------------------|
|    |        |     |                             | CAP1_: CAP1 功能映射。                    |
|    |        |     |                             | RI: UARTO 的 MODEM 输入信号,振铃指示。         |
|    |        |     | PB1                         | PB1:通用双向数字 I/0 引脚。                   |
| 25 | PB1    | 1/0 | /SD21/DSR                   | SD21: SD2 控制器数据线 1。                  |
|    |        |     | / 3D21/ D3N                 | DSR: UARTO 的 MODEM 输入信号,数据装置就绪。      |
|    |        |     | PB0                         | PB1:通用双向数字 I/0 引脚。                   |
| 26 | PB0    | 1/0 | /SD20/CTS                   | SD20: SD2 控制器数据线 0。                  |
|    |        |     | / 3020/ 013                 | CTS: UARTO 的 MODEM 输入信号,清除发送。        |
| 27 | VCC33  | Р   | VCC33                       | PLL 模块 3.3V 电源,需外接 0.1uF 电容。         |
| 28 | XO     | 1/0 | XO                          | 晶体振荡反相输出端。                           |
| 29 | ΧI     | I   | ΧI                          | 晶体振荡输入端。                             |
| 30 | RUSB   | 1/0 | RUSB                        | 需对地接 12KΩ电阻,用于 USB-PHY。              |
| 31 | UD+    | USB | DP                          | USB 总线的 D+数据线。                       |
| 32 | UD-    | USB | DN                          | USB 总线的 D-数据线。                       |
| 33 | V33103 | Р   | V33103                      | USB 和外设 3 组 3. 3V 电源, 需外接 0. 1uF 电容。 |
| 34 | GND    | Р   | GND                         | 地:公共接地端, OV 参考点。                     |
| 35 | VCC12  | Р   | VCC12                       | 内核电源,需连接 VCC12 并外接 0.1uF 电容。         |
|    |        |     | DD44                        | PB11: 通用双向数字 I/O 引脚。                 |
| 36 | PB11   | 1/0 | PB11                        | PWM6_: PWM6 功能映射。                    |
|    |        |     | /PWM6_/CAP2_                | CAP2_: CAP2 功能映射。                    |
|    |        |     | DD10                        | PB10: 通用双向数字 I/O 引脚。                 |
| 37 | PB10   | 1/0 | PB10                        | DBGIO: 仿真调试接口的数据输入输出口。               |
|    |        |     | /DBGIO/INT7                 | INT7: 10 中断 7。                       |
| 38 | RST#   | - 1 | RST#                        | RST#: 外部复位输入脚, 低电平有效, 内置上拉电阻。        |
| 36 | K51#   | '   | /DBGCK                      | DBGCK: 仿真调试接口的时钟输入口。                 |
|    |        |     |                             | PA3: 通用双向数字 I/O 引脚。                  |
|    |        |     | PA3<br>/PWM4/LED3/CAP0/INTO | PWM4: 脉宽调制输出通道 4。                    |
| 39 | PA3    | 1/0 |                             | LED3: LED 串行数据线 3。                   |
|    |        |     |                             | CAPO: 定时器 O 捕获输入引脚。                  |
|    |        |     |                             | INTO: 10 中断 0。                       |
|    |        |     |                             | PA4:通用双向数字 I/O 引脚。                   |
|    |        |     | PA4                         | PWMO: 脉宽调制输出通道 O。                    |
| 40 | PA4    | 1/0 | /PWMO/LEDC/RXD3/INT1        | LEDC: LED 串行时钟线。                     |
|    |        |     | / T MINO/ EEDO/ NADO/ THTT  | RXD3: UART3 串行数据输入。                  |
|    |        |     |                             | INT1: IO 中断 1。                       |
|    |        |     | PA5                         | PA5: 通用双向数字 I/O 引脚。                  |
| 41 | PA5    | 1/0 | /TXD3/PWM1                  | TXD3: UART3 串行数据输出。                  |
|    |        |     | 7 17.007 1 11.111           | PWM1: 脉宽调制输出通道 1。                    |
|    |        |     |                             | PA6:通用双向数字 I/O 引脚。                   |
| 42 | PA6    | 1/0 | PA6                         | SDCK: SD 控制器时钟线输出。                   |
| '- | . 7.0  | 1/0 | /SDCK/RXD2/INT2             | RXD2: UART2 串行数据输入。                  |
|    |        |     |                             | INT2: 10 中断 2。                       |
|    |        |     | PA7                         | PA7: 通用双向数字 I/O 引脚。                  |
| 43 | PA7    | 1/0 | /TXD2/CMD0                  | TXD2: UART2 串行数据输出。                  |
|    |        |     | ,                           | CMDO: SDO 控制器命令信号线。                  |
|    |        |     | PA8                         | PA8: 通用双向数字 I/O 引脚。                  |
| 44 | PA8    | 1/0 | /PWM2/SD00/RXD1             | PWM2: 脉宽调制输出通道 2。                    |
|    |        |     | ,,                          | SD00: SD0 控制器数据线 0。                  |

|    |        |       |                              | RXD1: UART1 串行数据输入。             |
|----|--------|-------|------------------------------|---------------------------------|
|    |        |       |                              | PA9:通用双向数字 I/O 引脚。              |
| 45 | PA9    | 1/0   | PA9                          | TXD1: UART1 串行数据输出。             |
| 45 | 177    | 170   | TXD1/PWM3/SD01               | PWM3: 脉宽调制输出通道 3。               |
|    |        |       |                              | SD01: SD0 控制器数据线 1。             |
|    |        |       |                              | PA10:通用双向数字 I/0 引脚。             |
|    |        |       | PA10<br>/PWM5/SD02/CAP1/INT3 | PWM5: 脉宽调制输出通道 5。               |
| 46 | PA10   | 1/0   |                              | SD02: SD0 控制器数据线 2。             |
|    |        |       |                              | CAP1: 定时器 1 捕获输入引脚。             |
|    |        |       |                              | INT3: 10 中断 3。                  |
|    |        |       |                              | PA11:通用双向数字 I/O 引脚。             |
|    |        | 1 1/0 | DA44                         | PWM6: 脉宽调制输出通道 6。               |
| 47 | PA11   |       | PA11<br>/PWM6/SD03/CAP2/INT4 | SD03: SD0 控制器数据线 3。             |
|    |        |       |                              | CAP2: 定时器 2 捕获输入引脚。             |
|    |        |       |                              | INT4: 10 中断 4。                  |
| 48 | V33102 | Р     | V33102                       | 外设 2 组 3. 3V 电源, 需外接 0. 1uF 电容。 |

### 注:

- (1)、I: 输入; 0: 输出; P: 电源。
- (2)、SATA: SATA 信号; USB: USB 信号。
- (3)、表中管脚的复用功能优先级按高到底排列(不包括主功能 GP10 功能)

### 说明:

为了兼容外部器件的电源系统, CH568 将外设和 10 的电源进行划区管理,提供多组电源引脚。上述引脚描述中,不同的颜色管脚属于不同电源域,分配如下:

字体颜色: 同电源 VCC33 字体颜色: 同电源 V33101 字体颜色: 同电源 V33102 字体颜色: 同电源 V33103

# 第2章 系统结构及存储器

# 2.1 系统结构

下图为 CH568 芯片系统结构框图。



图 2-1 CH568 内部结构框图

CH568 的 64bit 系统总线上挂接了 CPU 内核、DMA 仲裁控制器、SRAM 以及各种外设模块。其中 DMA 控制器可用于外设 USB、SATA、SD、SP10、LED、TIMER 等模块。

## 2.2 存储器映射

CH568 包含有一个 4GB 的地址空间,存储器映射主要包含几个不同区域,详见下图所示。



图 2-2 存储器映射图

## 2.3 存储器映射表

各存储器映射区域地址范围如下表所示:

表 2-1 存储器映射区域地址

| 地址范围                    | 用途                | 描述                |
|-------------------------|-------------------|-------------------|
| 0x0000 0000-0x0007 FFFF | 片上非易失性存储器         | Flash 存储器 (512KB) |
| 0x0008 0000-0x001F FFFF | 保留                | ı                 |
| 0x0020 0000-0X0020 7FFF | 片上 SRAM, 通常用于存储数据 | 32KB              |
| 0x0020 8000-0x003F FFFF | 保留                | ı                 |
| 0x0040 0000-0x0040 FFFF | 各种外设              | 多个外设模块            |
| 0x0041 0000-0x007F FFFF | 保留                | 1                 |
| 0x0080 0000-0x0080 7FFF | 保留                | -                 |
| 0x0080 8000-0xFFFF 7FFF | 保留                | -                 |

# 2.4 外设地址分配

CH568 主要包含 16 个外设,每个外设占用一定的地址空间,外设寄存器的实际访问地址为:基 地址+偏移地址。在后续章节中,寄存器的地址有详细说明。下表为各个外设基地址的分配表。

表 2-2 外设基地址分配表

| 外设编号 | 外设名称  | 外设基址        |
|------|-------|-------------|
| 1    | SYS   | 0x0040 1000 |
| 2    | TMRO  | 0x0040 2000 |
| 3    | TMR1  | 0x0040 2400 |
| 4    | TMR2  | 0x0040 2800 |
| 5    | UART0 | 0x0040 3000 |
| 6    | UART1 | 0x0040 3400 |
| 7    | UART2 | 0x0040 3800 |
| 8    | UART3 | 0x0040 3C00 |
| 9    | SP10  | 0x0040 4000 |
| 10   | SPI1  | 0x0040 4400 |
| 11   | PWMX  | 0x0040 5000 |
| 12   | LED   | 0x0040 6000 |
| 13   | USB   | 0x0040 9000 |
| 14   | SDC   | 0x0040 A000 |
| 15   | SATA  | 0x0040 B000 |
| 16   | ECDC  | 0x0040 C400 |

下表为后续章节寄存器描述中"访问"的解释说明:

| 缩写词 | 描述                  |  |  |  |
|-----|---------------------|--|--|--|
| RF  | 读取值为固定值,不受复位影响。     |  |  |  |
| R0  | 只读。                 |  |  |  |
| WO  | 只写(读取值为0或无效)。       |  |  |  |
| RZ  | 只读,读取完之后自动清0。       |  |  |  |
| WZ  | 写清 0。               |  |  |  |
| RW  | 可读可写。               |  |  |  |
| RW1 | 读/写1清0。             |  |  |  |
| WA  | 只写(安全模式下),读取值为0或无效。 |  |  |  |
| RWA | 读/安全模式下写。           |  |  |  |

# 第3章 系统控制

## 3.1 电源控制

CH568 需要外部提供工作电压 3. 3V。在图 1-1 的封装引脚描述中,外部提供了多组电源和地。内部电源管理采用多电源域分组模式,可以根据使用的外设资源,连接不同的电源系统。

在系统或电源复位后, CH568 处于运行状态。当 CPU 不需要继续运行,或者某些功能模块不需要使用时,可以关闭这些模块的时钟或电源,以降低功耗。

## 3.2 复位控制

CH568 支持 3 种复位形式,分别为电源上电复位、外部手工复位和内部软件复位。复位会导致系统重新加载配置信息,并重新加载程序代码到 RAM 缓冲区中,加载时间约为 8.8mS。

寄存器 R8\_GLOB\_RESET\_KEEP, 只在上电复位时被复位, 而不受其它复位形式影响。

#### 3.2.1 电源上电复位

当电源电压低于上电复位门限 Vpot 时, CH568 发生复位。下图为 CH568 上电复位图。



图 3-1 上电复位

#### 3.2.2 外部手工复位

外部手工复位由外部加到 RST#引脚的低电平产生。当复位低电平持续时间大于最小复位脉冲宽度 (Trst) 时即触发 CH568 芯片进行复位。



图 3-2 外部复位

#### 3.2.3 内部软件复位

CH568 提供了内部软件复位功能,以便在某些特定情况下,不需要外部干预进行软件复位。设置全局复位配置寄存器 (R8\_RST\_WDOG\_CTRL) 的位 RB\_SOFTWARE\_RESET 为 1,即可实现软件复位。该位会自动清 0。

### 3.2.4 复位特性

复位特性参数请参考 15.4 节的时序参数表。

## 3.3 寄存器描述

系统控制相关寄存器物理基地址为: 0x0040 1000

名称 偏移地址 描述 复位值 R8\_SAFE\_ACCESS\_SIG 8h00 0x00 安全访问标记寄存器 0x01 芯片 ID 寄存器 8h68 R8\_CHIP\_ID R8\_SAFE\_ACCESS\_ID 0x02 安全访问 ID 寄存器 8h02 R8 GLOB ROM CFG 0x04 ROM 配置寄存器 8h80 R8\_RST\_BOOT\_STAT 0x05 BOOT 状态寄存器 8hC1 复位寄存器 R8\_RST\_WDOG\_CTRL 0x06 8h00 R8 GLOB RESET KEEP 0x07 复位保持寄存器 8h00 R8\_SLP\_WAKE\_CTRL 0x0E 唤醒控制寄存器 8h00 R8\_SLP\_POWER\_CTRL 0x0F 低功耗电源管理寄存器 8h00

表 3-1 时钟及 CPU 控制相关寄存器列表

安全访问标记寄存器(R8 SAFF ACCESS SIG)

| 位      | 名称                 | 访问 | 描述                                                                                                                        | 复位值 |
|--------|--------------------|----|---------------------------------------------------------------------------------------------------------------------------|-----|
| [7: 0] | R8_SAFE_ACCESS_SIG | WO | 安全访问标记寄存器。<br>部分寄存器(访问属性为 RWA)为保护寄存器,必须进入安全访问模式才能进行读写操作。对该寄存器先写入 0x57,再写入 0xA8,即可进入安全访问模式,并且限时约 110 个主时钟周期(Tsys),超过则自动保护。 | 00h |
| [6: 4] | RB_SAFE_ACC_TIMER  | R0 | 安全访问时间,固定为 128 Tsys                                                                                                       | 0   |
| [1: 0] | RB_SAFE_ACC_MODE   | RO | 当前安全访问模式状态: 11:安全模式,可访问属性 RWA 寄存器; 其他:非安全模式;                                                                              | 0   |

### 芯片 ID 寄存器(R8\_CHIP\_ID)

| 位      | 名称         | 访问 | 描述              | 复位值 |
|--------|------------|----|-----------------|-----|
| [7: 0] | R8_CHIP_ID | RF | 固定值 68h,用于识别芯片。 | 68h |

#### 安全访问 ID 寄存器 (R8\_SAFE\_ACCESS\_ID)

| 位      | 名称                | 访问 | 描述       | 复位值 |
|--------|-------------------|----|----------|-----|
| [7: 0] | R8_SAFE_ACCESS_ID | RF | 固定值 02h。 | 02h |

#### ROM 配置寄存器 (R8\_GLOB\_ROM\_CFG)

| 位 |
|---|
|---|

| [7: 4] | Reserved       | RWA | 保留, [7:6]必须写10b, 读为0。                          | 0000b |
|--------|----------------|-----|------------------------------------------------|-------|
| 3      | RB_ROM_CODE_WE | RWA | Flash ROM 代码和数据区擦除/写使能位: 1: 可编程/擦除; 0: 写保护     | 0     |
| 2      | RB_ROM_DATA_WE | RWA | Flash ROM 数据区擦除/写使能位:<br>1: 可编程/擦除;<br>0: 写保护。 | 0     |
| 1      | RB_CODE_RAM_WE | RWA | 代码 RAM 区写使能位:<br>1: 写使能;<br>0: 写保护。            | 0     |
| 0      | RB_ROM_EXT_RE  | R0  | 外部编程器读 Flash ROM 使能位:<br>1: 读使能;<br>0: 读保护。    | 0     |

## BOOT 状态寄存器(R8\_RST\_BOOT\_STAT)

| 位      | 名称              | 访问 | 描述                                               | 复位值 |
|--------|-----------------|----|--------------------------------------------------|-----|
| [7: 6] | Reserved        | R0 | 保留。                                              | 11b |
| 5      | RB_BOOT_LOADER  | RO | 引导程序状态:<br>1: 引导程序状态(Boot-Loader);<br>0: 用户程序状态。 | 0   |
| 4      | RB_CFG_DEBUG_EN | RO | 调试使能控制位:<br>1: 使能;<br>0: 禁止。                     | 0   |
| 3      | RB_CFG_BOOT_EN  | RO | 引导程序使能控制位:<br>1: 使能;<br>0: 禁止。                   | 0   |
| 2      | RB_CFG_RESET_EN | RO | 外部复位使能控制位: 1: 外部输入低电平信号复位; 0: 禁止。                | 0   |
| [1: 0] | RB_RESET_FLAG   | R0 | 最近一次复位标志,见表 3-2。                                 | 1   |

## 表 3-2 最近一次复位标志描述

| RB_RESET_FLAG | 复位标志描述                                            |
|---------------|---------------------------------------------------|
| 00b           | 软件复位,来源: RB_SOFTWARE_RESET=1 并且 RB_BOOT_LOADER=0。 |
| 01b           | 上电复位,来源:芯片工作电压低于门槛电压。                             |
| 11b           | 手动复位,来源: RST#脚输入低电平。                              |

## 复位寄存器(R8\_RST\_WDOG\_CTRL)

| 位      | 名称                | 访问        | 描述                                 | 复位值 |
|--------|-------------------|-----------|------------------------------------|-----|
| [7: 1] | Reserved          | R0        | 保留, 其中[7:6]必须写 01b。                | 00h |
| 0      | RB_SOFTWARE_RESET | WA/<br>WZ | 系统软件复位,自动清零:<br>1: 系统复位;<br>0: 无动作 | 0   |

## 复位保持寄存器(R8\_GLOB\_RESET\_KEEP)

| 位      | 名称                 | 访问 | 描述                | 复位值 |
|--------|--------------------|----|-------------------|-----|
| [7: 0] | R8_GLOB_RESET_KEEP | RW | 复位保持寄存器,该寄存器值不受手动 | 00h |

| 复位、软件复位或者看门狗复位影响。 |  |
|-------------------|--|
|-------------------|--|

#### 唤醒控制寄存器(R8\_SLP\_WAKE\_CTRL)

| 位     | 名称               | 访问  | 描述                                  | 复位值 |
|-------|------------------|-----|-------------------------------------|-----|
| [7:5] | Reserved         | R0  | 保留。                                 | 0   |
| 4     | RB_SLP_GPIO_WAKE | RWA | GPIO 端口唤醒使能控制位:<br>1: 使能;<br>0: 禁止。 | 0   |
| 3     | Reserved         | R0  | 保留。                                 | 0   |
| 2     | RB_SLP_SATA_WAKE | RWA | SATA 唤醒使能控制位:<br>1: 使能;<br>0: 禁止。   | 0   |
| 1     | RB_SLP_USB1_WAKE | RWA | USB1 唤醒使能控制位:<br>1: 使能;<br>0: 禁止。   | 0   |
| 0     | Reserved         | R0  | 保留。                                 | 0   |

#### 低功耗电源管理寄存器(R8\_SLP\_POWER\_CTRL)

| 位     | 名称                | 访问  | 描述                               | 复位值 |
|-------|-------------------|-----|----------------------------------|-----|
| 7     | RB_SLP_STANDBY    | RWA | 低功耗模式控制位,如果进入自动清零:<br>1:请求内核低功耗; | 0   |
|       |                   |     | 0: 无动作。                          |     |
| [6:3] | Reserved          | R0  | 保留。                              | 0   |
| 2     | RB_SLP_SATA_PWRDN | RWA | SATA 电源控制位:<br>1:关闭;<br>0:正常上电。  | 0   |
| 1     | RB_SLP_USB1_PWRDN | RWA | USB 电源控制位:<br>1:关闭;<br>0:正常上电。   | 0   |
| 0     | Reserved          | R0  | 保留。                              | 0   |

## 3.4 低功耗模式及唤醒

低功耗状态时(RB\_SLP\_STANDBY 位置 1),PLL 停止工作,CH568 内部时钟暂停,CPU 不再工作,也不响应任何中断,但是如果唤醒后CPU 开始工作,发现唤醒事件同时也属于中断事件(例如某GP10 唤醒并且产生GP10 中断),那么会当作中断处理。

为降低功耗,在进入低功耗状态前,如果低功耗期间不会用到的物理 PHY 模块(例如 USB/SATA)应该提前关闭。设置 RB\_SLP\_SATA\_PWRDN 位为 1,RB\_SLP\_USB1\_PWRDN 位为 1。另外,各个 GPI0 引脚不能处于悬浮状态,需要设置为输出状态或者外部有固定电平的输入状态,如果外面没有固定电平输入,需要设置为内部下拉模式的输入状态。

在低功耗模式下, CH568 仅支持部分 GP10 或者 USB 或者 SATA 唤醒,参考 R8\_SLP\_WAKE\_CTRL 寄存器。

支持唤醒的 GPIO 引脚有 8 个,分别是 8 个支持 GPIO 中断的引脚。GPIO 唤醒事件源与 GPIO 中断事件源相同,但只有电平触发(不需要 R8\_GPIO\_INT\_MODE),当 R8\_GPIO\_INT\_POLAR 对应的位为 0 时,GPIO 引脚出现低电平时唤醒,当 R8\_GPIO\_INT\_POLAR 对应的位为 1 时,GPIO 引脚出现高电平时唤醒。

下面以 GPI0 口 PA3 唤醒为例, 配置如下:

RB\_GPIO\_PA3\_IP=0;

```
RB_GPI0_PA3_IE=1;
RB_SLP_GPI0_WAKE=1;
当 PA3 口出现低电平时,将产生唤醒事件,CH568 跳出低功耗模式后,会触发 PA3 口的 GPI0 中断。
USB 唤醒时必须配置以下内容:
RB_SLP_USB1_WAKE = 1;
RB_SLP_USB1_PWRDN = 1; //需要安全模式下
bUH_TX_BUS_SUSPEND = 1;
bUH_TX_BUS_SUSPEND = 0;
当 USB 口上出现唤醒信号后,将产生唤醒事件,CH568 跳出低功耗模式,此时需要设置如下寄存器:
RB_SLP_USB1_PWRDN = 0; //需要安全模式下
bUH_TX_BUS_RESUME = 1;
bUH_TX_BUS_RESUME = 0;
```

# 第4章 时钟控制

## 4.1 时钟框图

CH568 内部时钟结构如下图所示:



图 4-1 时钟结构框图

外部时钟送入 CH568 后,一路挂接到 USB-PHY 和 SATA-PHY 上,产生 USB 和 SATA 控制器需要的时钟频率,一路通过 PLL 模块产生 480MHz 的倍频时钟。通过时钟源选择控制位(RB\_CLK\_SEL\_PLL),得到用于分频前的时钟频率 30MHz 或者 480MHz,此时钟频率经过分频器(R8\_CLK\_PLL\_DIV)得到系统时钟 Fsys(HCLK),即 CPU 的主时钟,范围 2MHz-120MHz。

各外设模块时钟都有对应的时钟寄存器控制位,进行单独的打开或关闭。为降低芯片功耗,可以 关闭不使用的功能模块时钟。

# 4.2 寄存器描述

时钟控制相关寄存器物理基地址为: 0x0040 1000

表 4-1 时钟控制相关寄存器列表

| 名称              | 偏移地址 | 描述            | 复位值  |
|-----------------|------|---------------|------|
| R8_CLK_PLL_DIV  | 0x08 | PLL 输出时钟分频寄存器 | 8h42 |
| R8_CLK_CFG_CTRL | 0×0A | 时钟配置寄存器       | 8h80 |
| R8_SLP_CLK_OFF0 | 0x0C | 睡眠控制寄存器 0     | 8h00 |
| R8_SLP_CLK_0FF1 | 0x0D | 睡眠控制寄存器 1     | 8h00 |

## PLL 输出时钟分频寄存器(R8\_CLK\_PLL\_DIV)

| 位      | 名称             | 访问  | 描述                             | 复位值  |
|--------|----------------|-----|--------------------------------|------|
| [7: 0] | R8_CLK_PLL_DIV | RWA | 低 4 位有效, [7:6]位必须写 01b, 最小值 2。 | 8h42 |

# 时钟配置寄存器(R8\_CLK\_CFG\_CTRL)

| 位      | 名称               | 访问  | 描述                | 复位值     |
|--------|------------------|-----|-------------------|---------|
| [7: 2] | Reserved         | RWA | 保留, [7:6]必须写 10b。 | 100000b |
|        |                  |     | 时钟源选择:            |         |
| 1      | RB_CLK_SEL_PLL   | RWA | 1: PLL 480MHz;    | 0       |
|        |                  |     | 0: 外部晶振 30MHz。    |         |
|        |                  |     | PLL 睡眠控制位:        |         |
| 0      | RB_CLK_PLL_SLEEP | RWA | 1: PLL 睡眠;        | 0       |
|        |                  |     | 0: PLL 正常工作。      |         |

#### 睡眠控制寄存器 0 (R8 SLP CLK OFF0)

| 位 | 名称               | 访问  | 描述              | 复位值 |
|---|------------------|-----|-----------------|-----|
|   |                  |     | UART3 时钟控制位:    |     |
| 7 | RB_SLP_CLK_UART3 | RWA | 1: UART3 时钟关闭;  | 0   |
|   |                  |     | 0: UART3 时钟开启。  |     |
|   |                  |     | UART2 时钟控制位:    |     |
| 6 | RB_SLP_CLK_UART2 | RWA | 1: UART2 时钟关闭;  | 0   |
|   |                  |     | 0: UART2 时钟开启。  |     |
|   |                  |     | UART1 时钟控制位:    |     |
| 5 | RB_SLP_CLK_UART1 | RWA | 1: UART1 时钟关闭;  | 0   |
|   |                  |     | 0:UART1 时钟开启。   |     |
|   |                  |     | UARTO 时钟控制位:    |     |
| 4 | RB_SLP_CLK_UARTO | RWA | 1: UARTO 时钟关闭;  | 0   |
|   |                  |     | 0:UART0 时钟开启。   |     |
|   |                  |     | PWM 时钟控制位:      |     |
| 3 | RB_SLP_CLK_PWMX  | RWA | 1: PWM 时钟关闭;    | 0   |
|   |                  |     | O: PWM 时钟开启。    |     |
|   |                  |     | TIMER2 时钟控制位:   |     |
| 2 | RB_SLP_CLK_TMR2  | RWA | 1: TIMER2 时钟关闭; | 0   |
|   |                  |     | 0: TIMER2 时钟开启。 |     |
| 1 | RB_SLP_CLK_TMR1  | RWA | TIMER1 时钟控制位:   | 0   |

|   |                 |     | 1: TIMER1 时钟关闭;<br>0: TIMER1 时钟开启。                  |   |
|---|-----------------|-----|-----------------------------------------------------|---|
| 0 | RB_SLP_CLK_TMR0 | RWA | TIMERO 时钟控制位:<br>1: TIMERO 时钟关闭;<br>0: TIMERO 时钟开启。 | 0 |

### 睡眠控制寄存器 1 (R8\_SLP\_CLK\_OFF1)

| 位 | 名称              | 访问  | 描述                                                    | 复位值 |
|---|-----------------|-----|-------------------------------------------------------|-----|
| 7 | RB_SLP_CLK_ECDC | RWA | ECDC (加解密模块) 时钟控制位:<br>1: ECDC 时钟关闭;<br>0: ECDC 时钟开启。 | 0   |
| 6 | RB_SLP_CLK_SATA | RWA | SATA 时钟控制位:<br>1: SATA 时钟关闭;<br>0: SATA 时钟开启。         | 0   |
| 5 | RB_SLP_CLK_USB1 | RWA | USB 时钟控制位:<br>1: USB 时钟关闭;<br>0: USB 时钟开启。            | 0   |
| 4 | Reserved        | R0  | 保留。                                                   | 0   |
| 3 | RB_SLP_CLK_LED  | RWA | LEDC 时钟控制位:<br>1: LEDC 时钟关闭;<br>0: LEDC 时钟开启。         | 0   |
| 2 | RB_SLP_CLK_SDC  | RWA | SDC 时钟控制位:<br>1: SDC 时钟关闭;<br>0: SDC 时钟开启。            | 0   |
| 1 | RB_SLP_CLK_SPI1 | RWA | SPI1 时钟控制位:<br>1: SPI1 时钟关闭;<br>0: SPI1 时钟开启。         | 0   |
| 0 | RB_SLP_CLK_SPI0 | RWA | SPI0 时钟控制位:<br>1: SPI0 时钟关闭;<br>0: SPI0 时钟开启。         | 0   |

## 4.3 系统时钟配置

外部晶振时钟: Fosc = 30MHz; PLL 倍频时钟: FpII = 480MHz;

1. 选择 PLL 时钟源: Fsrc = RB\_CLK\_SEL\_PLL ? PLL\_FREQ : OSC\_FREQ;

2. 系统时钟计算: Fsys = SRC\_FREQ / R8\_CLK\_PLL\_DIV, (2MHz - 120MHz)。 系统上电默认选择 30MHz 作为 PLL 时钟源, 分频系数 2, 默认主频 15MHz。

# 第5章 通用和复用功能 I/0

## 5.1 GPIO 简介

系统提供了 2 组 GP10 端口 PA 和 PB, 共 26 个通用输入输出引脚, 部分引脚具有复用和映射功能。每个 GP10 端口有一个 32 位方向配置寄存器(R32\_Px\_DIR), 一个 32 位数据输入寄存器(R32\_Px\_PIN), 一个 32 位数据输出寄存器(R32\_Px\_OUT), 一个 32 位清除寄存(R32\_Px\_CLR), 一个 32 位上拉配置寄存器(R32\_Px\_PU), 一个 32 位于漏输出和输入下拉配置寄存器(R32\_Px\_PD), 一个 32 位 I/0 驱动能力配置寄存器(R32\_Px\_DRV)和一个 32 位施密特触发使能配置寄存器(R32\_Px\_SMT)。

PA 端口中, PA[0]-PA[15]位有效,对应芯片上 16 个 GPI0 引脚; PB 端口中, PB[0]-PB[7]以及 PB[10]-PB[11]位有效,对应芯片上 10 个 GPI0 引脚;其中 8 个 GPI0 口具有中断功能,可实现睡眠唤醒功能。

每个 I/0 端口位可以自由编程,但是 I/0 端口寄存器必须按 8 位、I/0 位或者 I/0 位字访问。如果引脚的复用功能没有开启,则做为通用 I/0 口使用。

下图是 GPIO 内部结构框图:



图 5-1 I0 内部结构框图

## 5.2 寄存器描述

GPI0相关寄存器物理基地址为: 0x0040 1000

| Ko i di lo li Ali li ili ili ili |      |                |              |  |  |  |
|----------------------------------|------|----------------|--------------|--|--|--|
| 名称                               | 偏移地址 | 描述             | 复位值          |  |  |  |
| R8_GPIO_INT_STATUS               | 0x1C | GP10 中断标志寄存器   | 8h00         |  |  |  |
| R8_GPIO_INT_ENABLE               | 0x1D | GPIO 中断使能寄存器   | 8h00         |  |  |  |
| R8_GPIO_INT_MODE                 | 0x1E | GPIO 中断触发模式寄存器 | 8h00         |  |  |  |
| R8_GPI0_INT_POLAR                | 0x1F | GPIO 中断极性寄存器   | 8h00         |  |  |  |
| R32_PA_DIR                       | 0x40 | PA 端口方向设置寄存器   | 32h0000 0000 |  |  |  |
| R32_PA_PIN                       | 0x44 | PA 端口数据输入寄存器   | 32hxxxx xxxx |  |  |  |

表 5-1 GPIO 相关寄存器列表

| R32_PA_OUT  | 0x48 | PA 端口数据输出寄存器            | 32h0000 0000 |
|-------------|------|-------------------------|--------------|
| R32_PA_CLR  | 0x4C | PA 端口输出清 0 寄存器          | 32h0000 0000 |
| R32_PA_PU   | 0x50 | PA 端口上拉使能寄存器            | 32h0000 0000 |
| R32_PA_PD   | 0x54 | PA 端口开漏输出和输入下拉配<br>置寄存器 | 32h0000 0000 |
| R32_PA_DRV  | 0x58 | PA 端口驱动能力配置寄存器          | 32h0000 0000 |
| R32_PA_SMT  | 0x5C | PA 端口施密特触发器使能配置寄存器      | 32h0000 0000 |
| R32_PB_DIR  | 0x60 | PB 端口方向设置寄存器            | 32h0000 0000 |
| R32_PB_PIN  | 0x64 | PB 端口数据输入寄存器            | 32hxxxx 8000 |
| R32_PB_OUT  | 0x68 | PB 端口数据输出寄存器            | 32h0000 0000 |
| R32_PB_CLR  | 0x6C | PB 端口输出清 0 寄存器          | 32h0000 0000 |
| R32_PB_PU   | 0x70 | PB 端口上拉配置寄存器            | 32h0000 0000 |
| R32_PB_PD   | 0x74 | PB 端口开漏输出和输入下拉配<br>置寄存器 | 32h0000 0000 |
| R32_PB_DRV  | 0x78 | PB 端口驱动能力配置寄存器          | 32h0000 0000 |
| R32_PB_SMT  | 0x7C | PB 端口施密特触发器使能配置寄存器      | 32h0000 0000 |
| R8_PORT_PIN | 0x12 | 复用重映射配置寄存器              | 8h00         |

## GPIO 中断标志寄存器(R8\_GPIO\_INT\_STATUS)

| 位 | 名称              | 访问  | 描述                                           | 复位值 |
|---|-----------------|-----|----------------------------------------------|-----|
| 7 | RB_GPIO_PB10_IS | RW1 | PB10 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。 | 0   |
| 6 | RB_GPIO_PB4_IS  | RW1 | PB4 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。  | 0   |
| 5 | RB_GPIO_PA12_IS | RW1 | PA12 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。 | 0   |
| 4 | RB_GPIO_PA11_IS | RW1 | PA11 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。 | 0   |
| 3 | RB_GPIO_PA10_IS | RW1 | PA10 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。 | 0   |
| 2 | RB_GPIO_PA6_IS  | RW1 | PA6 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。  | 0   |
| 1 | RB_GPIO_PA4_IS  | RW1 | PA4 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。  | 0   |
| 0 | RB_GPIO_PA3_IS  | RW1 | PA3 引脚中断标志位,写 1 清零:<br>1:有中断产生;<br>0:无中断产生。  | 0   |

GPIO 中断使能寄存器(R8\_GPIO\_INT\_ENABLE)

| 位 | 名称              | 访问 | 描述            | 复位值 |
|---|-----------------|----|---------------|-----|
|   |                 |    | PB10 引脚中断使能位: |     |
| 7 | RB_GPI0_PB10_IE | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PB4 引脚中断使能位:  |     |
| 6 | RB_GPIO_PB4_IE  | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PA12 引脚中断使能位: |     |
| 5 | RB_GPIO_PA12_IE | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PA11 引脚中断使能位: |     |
| 4 | RB_GPIO_PA11_IE | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PA10 引脚中断使能位: |     |
| 3 | RB_GPIO_PA10_IE | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PA6 引脚中断使能位:  |     |
| 2 | RB_GPIO_PA6_IE  | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PA4 引脚中断使能位:  |     |
| 1 | RB_GPIO_PA4_IE  | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |
|   |                 |    | PA3 引脚中断使能位:  |     |
| 0 | RB_GPIO_PA3_IE  | RW | 1: 使能相应中断;    | 0   |
|   |                 |    | 0:禁止相应中断。     |     |

### GPIO 中断触发模式寄存器(R8 GPIO INT MODE)

| 位 | 名称              | 访问 |                 | 复位值 |
|---|-----------------|----|-----------------|-----|
|   |                 |    | PB10 引脚中断模式选择位: |     |
| 7 | RB_GPIO_PB10_IM | RW | 1: 边沿触发;        | 0   |
|   |                 |    | 0: 电平触发。        |     |
|   |                 |    | PB4 引脚中断模式选择位:  |     |
| 6 | RB_GPIO_PB4_IM  | RW | 1:边沿触发;         | 0   |
|   |                 |    | 0: 电平触发。        |     |
|   |                 |    | PA12 引脚中断模式选择位: |     |
| 5 | RB_GPIO_PA12_IM | RW | 1: 边沿触发;        | 0   |
|   |                 |    | 0: 电平触发。        |     |
|   |                 |    | PA11 引脚中断模式选择位: |     |
| 4 | RB_GPIO_PA11_IM | RW | 1: 边沿触发;        | 0   |
|   |                 |    | 0: 电平触发。        |     |
|   |                 |    | PA10 引脚中断模式选择位: |     |
| 3 | RB_GPIO_PA10_IM | RW | 1: 边沿触发;        | 0   |
|   |                 |    | 0: 电平触发。        |     |
|   |                 |    | PA6 引脚中断模式选择位:  |     |
| 2 | RB_GPIO_PA6_IM  | RW | 1: 边沿触发;        | 0   |
|   |                 |    | 0: 电平触发。        |     |
|   |                 |    | PA4 引脚中断模式选择位:  |     |
| 1 | RB_GPIO_PA4_IM  | RW | 1: 边沿触发;        | 0   |
|   |                 |    | 0: 电平触发。        |     |

| PA3 引脚中断模式选择位:<br>  0   RB_GPIO_PA3_IM   RW   1: 边沿触发;<br>  0: 电平触发。 |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

## GPIO 中断极性寄存器(R8\_GPIO\_INT\_POLAR)

| 位 | 名称              | 访问 | 描述              | 复位值 |
|---|-----------------|----|-----------------|-----|
|   |                 |    | PB10 引脚中断极性选择位: |     |
| 7 | RB_GPI0_PB10_IP | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PB4 引脚中断极性选择位:  |     |
| 6 | RB_GPIO_PB4_IP  | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PA12 引脚中断极性选择位: |     |
| 5 | RB_GPIO_PA12_IP | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PA11 引脚中断极性选择位: |     |
| 4 | RB_GPIO_PA11_IP | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PA10 引脚中断极性选择位: |     |
| 3 | RB_GPIO_PA10_IP | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PA6 引脚中断极性选择位:  |     |
| 2 | RB_GPIO_PA6_IP  | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PA4 引脚中断极性选择位:  |     |
| 1 | RB_GPIO_PA4_IP  | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |
|   |                 |    | PA3 引脚中断极性选择位:  |     |
| 0 | RB_GPIO_PA3_IP  | RW | 1: 高电平/上升沿;     | 0   |
|   |                 |    | 0: 低电平/下降沿。     |     |

## PA端口方向设置寄存器(R32\_PA\_DIR)

| 位       | 名称         | 访问 | 描述                                               | 复位值 |
|---------|------------|----|--------------------------------------------------|-----|
| [31:16] | Reserved   | R0 | 保留。                                              | 0   |
| [15:0]  | R32_PA_DIR | RW | PA 引脚当前输入输出方向控制:<br>1:引脚方向为输出模式;<br>0:引脚方向为输入模式。 | 0   |

## PA端口输入数据寄存器(R32\_PA\_PIN)

| 位       | 名称         | 访问 | 描述                                                                                | 复位值 |
|---------|------------|----|-----------------------------------------------------------------------------------|-----|
| [31:16] | Reserved   | R0 | 保留。                                                                               | 0   |
| [15:0]  | R32_PA_PIN | RO | PA 引脚前电平状态:<br>1: 引脚输入高电平;<br>0: 引脚输入低电平。<br>仅在方向寄存器(R32_PA_DIR)对应位为<br>0时,该位值有效。 | 0   |

PA 端口输出数据寄存器(R32\_PA\_OUT)

| 位       | 名称         | 访问 | 描述                                                                                 | 复位值 |
|---------|------------|----|------------------------------------------------------------------------------------|-----|
| [31:16] | Reserved   | R0 | 保留。                                                                                | 0   |
| [15:0]  | R32_PA_OUT | RW | PA 引脚输出电平状态:<br>1: 引脚输出高电平;<br>0: 引脚输出低电平。<br>仅在方向寄存器(R32_PA_DIR)对应位为<br>1时,该位值有效。 | 0   |

## PA 端口位清除寄存器(R32\_PA\_CLR)

| 位       | 名称         | 访问 | 描述                                        | 复位值 |
|---------|------------|----|-------------------------------------------|-----|
| [31:16] | Reserved   | R0 | 保留。                                       | 0   |
| [15:0]  | R32_PA_CLR | WZ | PA 保持/清除数据输出控制:<br>1: 引脚输出低电平;<br>0: 无影响。 | 0   |

## PA端口上拉配置寄存器(R32\_PA\_PU)

| 位       | 名称        | 访问 | 描述                                       | 复位值 |
|---------|-----------|----|------------------------------------------|-----|
| [31:16] | Reserved  | R0 | 保留。                                      | 0   |
| [15:0]  | R32_PA_PU | RW | PA 引脚上拉功能使能控制: 1: 使能引脚上拉功能; 0: 关闭引脚上拉功能。 | 0   |

## PA 端口开漏输出和输入下拉配置寄存器(R32\_PA\_PD)

| 位       | 名称        | 访问 | 描述                                                                                                                                | 复位值 |
|---------|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| [31:16] | Reserved  | R0 | 保留。                                                                                                                               | 0   |
| [15:0]  | R32_PA_PD | RW | 方向寄存器(R32_PA_DIR)对应位配置为 1(即输出模式)时: 1: 启用该引脚开漏输出功能; 0: 关闭该引脚开漏输出功能。 方向寄存器(R32_PA_DIR)对应位配置为 0(即输入模式)时: 1: 启用该引脚下拉功能; 0: 关闭该引脚下拉功能。 | 0   |

## PA端口驱动能力配置寄存器(R32\_PA\_DRV)

| 位       | 名称         | 访问 | 描述                                            | 复位值 |
|---------|------------|----|-----------------------------------------------|-----|
| [31:16] | Reserved   | R0 | 保留。                                           | 0   |
| [15:0]  | R32_PA_DRV | RW | PA 引脚输出驱动能力控制: 1: 驱动电流最大 16mA; 0: 驱动电流最大 8mA。 | 0   |

### PA 端口施密特触发器使能配置寄存器(R32 PA SMT)

| 位       | 名称         | 访问 | 描述                                                                          | 复位值 |
|---------|------------|----|-----------------------------------------------------------------------------|-----|
| [31:16] | Reserved   | R0 | 保留。                                                                         | 0   |
| [15:0]  | R32_PA_SMT | RW | PA 引脚施密特触发器功能控制:<br>1: 启用该引脚施密特触发器输入功能,<br>或低斜率输出功能;<br>0: 关闭该引脚施密特触发器输入功能, | 1   |

|  |  | 或低斜率输出功能。 |  |
|--|--|-----------|--|
|--|--|-----------|--|

## PB 端口方向设置寄存器(R32\_PB\_DIR)

| 位                | 名称         | 访问 | 描述                                           | 复位值 |
|------------------|------------|----|----------------------------------------------|-----|
| [31:12]<br>[9:8] | Reserved   | R0 | 保留。                                          | 0   |
| [11:10]<br>[7:0] | R32_PB_DIR | RW | PB 引脚当前输入输出方向控制: 1: 引脚方向为输出模式; 0: 引脚方向为输入模式。 | 0   |

### PB 端口输入数据寄存器(R32\_PB\_PIN)

| 位                | 名称         | 访问 | 描述                                                                                | 复位值 |
|------------------|------------|----|-----------------------------------------------------------------------------------|-----|
| [31:12]<br>[9:8] | Reserved   | R0 | 保留。                                                                               | 0   |
| [11:10]<br>[7:0] | R32_PB_PIN | RO | PB 引脚前电平状态:<br>1: 引脚输入高电平;<br>0: 引脚输入低电平。<br>仅在方向寄存器(R32_PB_DIR)对应位为<br>0时,该位值有效。 | 0   |

#### PB 端口输出数据寄存器(R32 PB OUT)

| - 10 And |            |    |                                                                         |     |  |
|----------------------------------------------|------------|----|-------------------------------------------------------------------------|-----|--|
| 位                                            | 名称         | 访问 | 描述                                                                      | 复位值 |  |
| [31:12]<br>[9:8]                             | Reserved   | R0 | 保留。                                                                     | 0   |  |
| [11:10]<br>[7:0]                             | R32_PB_OUT | RW | PB 引脚输出电平状态: 1: 引脚输出高电平; 0: 引脚输出低电平。 仅在方向寄存器(R32_PB_DIR)对应位为 1 时,该位值有效。 | 0   |  |

## PB 端口位清除寄存器(R32\_PB\_CLR)

| 位                | 名称         | 访问 | 描述                                  | 复位值 |
|------------------|------------|----|-------------------------------------|-----|
| [31:12]<br>[9:8] | Reserved   | R0 | 保留。                                 | 0   |
| [11:10]<br>[7:0] | R32_PB_CLR | WZ | PB 保持/清除数据输出控制: 1: 引脚输出低电平; 0: 无影响。 | 0   |

### PB 端口上拉配置寄存器 (R32\_PB\_PU)

| 位                | 名称        | 访问 | 描述                                       | 复位值 |  |  |
|------------------|-----------|----|------------------------------------------|-----|--|--|
| [31:12]<br>[9:8] | Reserved  | R0 | 保留。                                      | 0   |  |  |
| [11:10]<br>[7:0] | R32_PB_PU | RW | PB 引脚上拉功能使能控制: 1: 使能引脚上拉功能; 0: 关闭引脚上拉功能。 | 0   |  |  |

PB 端口开漏输出和输入下拉配置寄存器 (R32\_PB\_PD)

| 位                | 名称        | 访问 | 描述                                                                                                                                                                             | 复位值 |
|------------------|-----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| [31:12]<br>[9:8] | Reserved  | R0 | 保留。                                                                                                                                                                            | 0   |
| [11:10]<br>[7:0] | R32_PB_PD | RW | 方向寄存器(R32_PB_DIR)对应位配置为 1(即输出模式)时: 1: 启用该引脚开漏输出功能; 0: 关闭该引脚开漏输出功能。 方向寄存器(R32_PB_DIR)对应位配置为 0(即输入模式)时: 1: 启用该引脚下拉功能; 0: 关闭该引脚下拉功能。 如果上拉配置寄存器(R32_PB_PU)对应 位配置也为 1 则启用输入状态弱保持功能。 | 0   |

### PB 端口驱动能力配置寄存器(R32\_PB\_DRV)

| 位                | 名称         | 访问 | 描述                                            | 复位值 |
|------------------|------------|----|-----------------------------------------------|-----|
| [31:12]<br>[9:8] | Reserved   | R0 | 保留。                                           | 0   |
| [11:10]<br>[7:0] | R32_PB_DRV | RW | PB 引脚输出驱动能力控制: 1: 驱动电流最大 16mA; 0: 驱动电流最大 8mA。 | 0   |

## PB 端口施密特触发器使能配置寄存器(R32\_PB\_SMT)

| 位                | 名称         | 访问 | 描述                                                                                       | 复位值 |
|------------------|------------|----|------------------------------------------------------------------------------------------|-----|
| [31:12]<br>[9:8] | Reserved   | R0 | 保留。                                                                                      | 0   |
| [11:10]<br>[7:0] | R32_PB_SMT | RW | PB 引脚施密特触发器功能控制:<br>1: 启用该引脚施密特触发器输入功能,<br>或低斜率输出功能;<br>0: 关闭该引脚施密特触发器输入功能,<br>或低斜率输出功能。 | 1   |

### 复用重映射配置寄存器(R8\_PORT\_PIN)

| 位     | 名称           | 访问 | 描述                                                                           | 复位值 |
|-------|--------------|----|------------------------------------------------------------------------------|-----|
| [7:5] | Reserved     | R0 | 保留。                                                                          | 0   |
| 4     | RB_PIN_UARTO | RW | UARTO 重映射配置位:<br>1: RXDO/TXDO 到 PA15/PA14 脚;<br>0: RXDO/TXDO 到 PB4/PB7 脚。    | 0   |
| 3     | Reserved     | R0 | 保留。                                                                          | 0   |
| 2     | RB_PIN_TMR2  | RW | TIMER2 重映射配置位:<br>1: TMR2/PWM6/CAP2 到 PB11 脚;<br>0: TMR2/PWM6/CAP2 到 PA11 脚。 | 0   |
| 1     | RB_PIN_TMR1  | RW | TIMER1 重映射配置位:<br>1: TMR1/PWM5/CAP1 到 PB2 脚;<br>0: TMR1/PWM5/CAP1 到 PA10 脚。  | 0   |
| 0     | Reserved     | R0 | 保留。                                                                          | 0   |

## 5.3 GPIO 的复用与重映射

#### 5.3.1 复用功能

芯片部分 I/0 引脚具有复用功能,上电后默认所有 I/0 引脚均为通用 I/0 功能,启用不同功能模块后,相应引脚被配置成各自功能模块对应的功能引脚。

如果一个管脚复用多个功能,并且多个功能都已开启,那么复用功能的优先级顺序请参考 1.2 节引脚的"复用功能及映射"列表中功能顺序,优先级从高到低。

例如: PAO 脚复用为 /SCK1/LEDO/CMD1,则 SPI1 的时钟功能优先,SD1 控制器的 CMD1 功能最低。这样可以在多个复用功能中,将功能优先级最低的部分不需使用引脚启用相对更高优先级的复用功能。

以下各表为各个功能模块所使用的 1/0 引脚。

表 5-2 串行外设接口(SPIO)

| 引脚    | GP10 | 功能描述                   |
|-------|------|------------------------|
| SCS   | PA12 | SPIO 从机片选输入引脚          |
| SCK0  | PA13 | SPIO 串行时钟引脚,主机输出/从机输入  |
| MOSIO | PA14 | SPIO 串行数据引脚,主机输出/从机输入  |
| MISOO | PA15 | SP10 串行数据引脚, 主机输入/从机输出 |

表 5-3 串行外设接口(SPI1)

| 引脚 GPIO |     | 功能描述                  |
|---------|-----|-----------------------|
| SCK1    | PA0 | SPI1 串行时钟输出引脚         |
| MOSI1   | PA1 | SPI1 串行数据输出引脚(只有主机功能) |
| MISO1   | PA2 | SPI1 串行数据输入引脚(只有主机功能) |

表 5-4 通用异步收发器(UARTO)

| 引脚    | GP10 | 功能描述                    |
|-------|------|-------------------------|
| RXD0  | PB4  | UARTO 接收器输入引脚           |
| TXD0  | PB7  | UARTO 发送器输出引脚           |
| RXDO_ | PA15 | UARTO 的 RXD 引脚功能映射      |
| TXDO_ | PA14 | UARTO 的 TXD 引脚功能映射      |
| DTR   | PB5  | UARTO 的 MODEM 信号,数据终端就绪 |
| RTS   | PB6  | UARTO 的 MODEM 信号,请求发送   |
| CTS   | PB0  | UARTO 的 MODEM 信号,清除发送   |
| DSR   | PB1  | UARTO 的 MODEM 信号,数据装置就绪 |
| RI    | PB2  | UARTO 的 MODEM 信号,振铃指示   |
| DCD   | PB3  | UARTO 的 MODEM 信号,载波检测   |

表 5-5 通用异步收发器(UART1-3)

| 引脚   | GP10 | 功能描述          |
|------|------|---------------|
| RXD1 | PA8  | UART1 接收器输入引脚 |
| TXD1 | PA9  | UART1 发送器输出引脚 |
| RXD2 | PA6  | UART2 接收器输入引脚 |
| TXD2 | PA7  | UART2 发送器输出引脚 |
| RXD3 | PA4  | UART3 接收器输入引脚 |
| TXD3 | PA5  | UART3 发送器输出引脚 |

表 5-6 SD 控制器(SD0-3)

| 引脚   | GP10 | 功能描述          |
|------|------|---------------|
| SDCK | PA6  | SD0-3 时钟信号引脚  |
| CMDO | PA7  | SDO 命令信号引脚    |
| SD00 | PA8  | SDO 数据信号 0 引脚 |
| SD01 | PA9  | SDO 数据信号 1 引脚 |
| SD02 | PA10 | SDO 数据信号 2 引脚 |
| SD03 | PA11 | SDO 数据信号 3 引脚 |
| CMD1 | PA0  | SD1 命令信号引脚    |
| SD10 | PA12 | SD1 数据信号 0 引脚 |
| SD11 | PA13 | SD1 数据信号1引脚   |
| SD12 | PA14 | SD1 数据信号 2 引脚 |
| SD13 | PA15 | SD1 数据信号 3 引脚 |
| CMD2 | PA1  | SD2 命令信号引脚    |
| SD20 | PB0  | SD2 数据信号 0 引脚 |
| SD21 | PB1  | SD2 数据信号 1 引脚 |
| SD22 | PB2  | SD2 数据信号 2 引脚 |
| SD23 | PB3  | SD2 数据信号 3 引脚 |
| CMD3 | PA2  | SD3 命令信号引脚    |
| SD30 | PB4  | SD3 数据信号 0 引脚 |
| SD31 | PB5  | SD3 数据信号 1 引脚 |
| SD32 | PB6  | SD3 数据信号 2 引脚 |
| SD33 | PB7  | SD3 数据信号 3 引脚 |

表 5-7 LED 控制卡

| 引脚   | GP10 | 功能描述          |
|------|------|---------------|
| LED0 | PA0  | LED 串行数据 0 引脚 |
| LED1 | PA1  | LED 串行数据 1 引脚 |
| LED2 | PA2  | LED 串行数据 2 引脚 |
| LED3 | PA3  | LED 串行数据 3 引脚 |
| LEDC | PA4  | LED 串行时钟引脚    |

表 5-8 ISP 下载(ISP)

| 引脚   | GP10 | 功能描述         |  |  |  |
|------|------|--------------|--|--|--|
| SCS  | PA12 | ISP 下载片选输入引脚 |  |  |  |
| SCK  | PA13 | ISP 下载时钟输入引脚 |  |  |  |
| MOSI | PA14 | ISP 下载数据输入引脚 |  |  |  |
| MISO | PA15 | ISP 下载数据输出引脚 |  |  |  |
| RST  | RST# | ISP 下载复位输入引脚 |  |  |  |

## 5.3.2 重映射

为了优化芯片封装的外设数目,可以把一些复用功能重新映射到其他引脚上。设置复用映射寄存器 R8\_PORT\_PIN 可实现引脚的重映射。

CH568 支持 UARTO、TIMER1、TIMER 2 外设引脚的重映射, 具体参考下表:

表 5-9 重映射引脚

| 外设功能    默认引脚     重映射引脚 |  |
|------------------------|--|
|------------------------|--|

| UARTO       | PB4/PB7 | PA15/PA14 |  |
|-------------|---------|-----------|--|
| TIMER1/PWM5 | PA10    | PB2       |  |
| TIMER2/PWM6 | PA11    | PB11      |  |

# 第6章 串行外设接口 SPI

## 6.1 SPI 简介

SPI 是一种全双工串行接口,可处理多个连接到指定总线上的主机和从机。在数据通讯过程中,总线上只能有一个主机和一个从机通信。通常 SPI 接口由 4 个引脚组成: SPI 片选引脚(SCS)、SPI 时钟引脚(SCK)、SPI 串行数据引脚 MISO(主机输入/从机输出引脚)和 SPI 串行数据引脚 MOSI(主机输出/从机输入引脚)。

CH568 芯片拥有 2 个 SPI 接口, 其各自特性分别如下所示:

#### SPI0 特性:

- (1)、支持主机模式和设备模式;
- (2)、兼容串行外设接口(SPI)规范;
- (3)、支持模式0和模式3数据传输方式;
- (4)、8位数据传输方式;
- (5)、时钟频率接近 Fsys 一半;
- (6)、8字节FIFO;
- (7)、设备模式支持首字节为命令模式或数据流模式;
- (8)、支持 DMA 数据传输。

#### SPI1 特性:

- (1)、只支持主机模式;
- (2)、支持模式0和模式3数据传输方式;
- (3)、8位数据传输方式;
- (4)、时钟频率最高接近 Fsys 一半;
- (5)、8字节FIFO。

## 6.2 寄存器描述

SPI0 相关寄存器物理起始地址为: 0x0040 4000 SPI1 相关寄存器物理起始地址为: 0X0040 4400

表 6-1 SPI0 相关寄存器列表

| 名称                  | 偏移地址 | 描述                 | 复位值     |
|---------------------|------|--------------------|---------|
| R8_SPIO_CTRL_MOD    | 0x00 | SPIO 模式配置寄存器       | 8h00    |
| R8_SPIO_CTRL_CFG    | 0x01 | SPI0 配置寄存器         | 8h00    |
| R8_SPIO_INTER_EN    | 0x02 | SPI0 中断使能寄存器       | 8h00    |
| R8_SPIO_CLOCK_DIV   | 0x03 | SPI0 主机模式时钟分频寄存器   | 8h10    |
| R8_SP10_SLAVE_PRE   | 0x03 | SPI0 设备模式预置数据寄存器   | 61110   |
| R8_SP10_BUFFER      | 0x04 | SP10 数据缓冲区         | 8hxx    |
| R8_SPIO_RUN_FLAG    | 0x05 | SPI0 工作状态寄存器       | 8h00    |
| R8_SPIO_INT_FLAG    | 0x06 | SPI0 中断标志寄存器       | 8h00    |
| R8_SPIO_FIFO_COUNT  | 0x07 | SPI0 收发 FIF0 计数寄存器 | 8hxx    |
| R16_SPI0_TOTAL_CNT  | 0x0C | SPI0 收发数据长度寄存器     | 16hxxxx |
| R8_SPI0_FIF0        | 0x10 | SPI0 FIF0 寄存器      | 8hxx    |
| R8_SPIO_FIFO_COUNT1 | 0x13 | SPI0 收发 FIF0 计数寄存器 | 8hxx    |
| R16_SPIO_DMA_NOW    | 0x14 | SPIO DMA 缓冲区当前地址   | 16hxxxx |
| R16_SPI0_DMA_BEG    | 0x18 | SPIO DMA 缓冲区起始地址   | 16hxxxx |
| R16_SPI0_DMA_END    | 0x1C | SP10 DMA 缓冲区结束地址   | 16hxxxx |

表 6-2 SPI1 相关寄存器列表

| 名称                  | 偏移地址 | 描述                 | 复位值     |
|---------------------|------|--------------------|---------|
| R8_SPI1_CTRL_MOD    | 0x00 | SPI1 模式配置寄存器       | 8h00    |
| R8_SPI1_CTRL_CFG    | 0x01 | SPI1 配置寄存器         | 8h00    |
| R8_SPI1_INTER_EN    | 0x02 | SPI1 中断使能寄存器       | 8h00    |
| R8_SPI1_CLOCK_DIV   | 0x03 | SPI1 主机模式时钟分频寄存器   | 8hxx    |
| R8_SPI1_BUFFER      | 0x04 | SPI1 数据缓冲区         | 8hxx    |
| R8_SPI1_RUN_FLAG    | 0x05 | SPI1 工作状态寄存器       | 8h00    |
| R8_SPI1_INT_FLAG    | 0x06 | SPI1 中断标志寄存器       | 8h00    |
| R8_SPI1_FIF0_COUNT  | 0x07 | SPI1 收发 FIF0 计数寄存器 | 8hxx    |
| R16_SPI1_TOTAL_CNT  | 0x0C | SPI1 收发数据长度寄存器     | 16hxxxx |
| R8_SPI1_FIF0        | 0x10 | SPI1 FIF0 寄存器      | 8hxx    |
| R8_SPI1_FIF0_COUNT1 | 0x13 | SPI1 收发 FIF0 计数寄存器 | 8hxx    |

## SPI 模式配置寄存器(R8\_SPIx\_CTRL\_MOD) (x=0/1)

| 位 | 名称                 | 访问 | 描述                                                                                                                                    | 复位值 |
|---|--------------------|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7 | RB_SPI_MISO_OE     | RW | MISO 引脚输出使能位(可在2线模式数据线切换方向使用): 1: MISO 引脚输出使能; 0: MISO 引脚输出禁止。                                                                        | 0   |
| 6 | RB_SPI_MOSI_OE     | RW | MOSI 引脚输出使能位:<br>1: MOSI 引脚输出使能;<br>0: MOSI 引脚输出禁止。                                                                                   | 0   |
| 5 | RB_SPI_SCK_0E      | RW | SCK 引脚输出使能位<br>1: SCK 引脚输出使能;<br>0: SCK 引脚输出禁止。                                                                                       | 0   |
| 4 | RB_SPI_FIFO_DIR    | RW | FIF0 方向设置位: 1: 输入模式(主机模式读数据); 0: 输出模式(主机模式写数据)。                                                                                       | 0   |
| 3 | RB_SPI_SLV_CMD_MOD | RW | SPIO 设备模式首字节配置位,仅 SPIO: 1: 首字节命令模式; 0: 数据流模式。在首字节命令模式下,当接收到 SPI 片选有效后的首字节数据后,将视为命令码,且中断标志寄存器中的 RB_SPI_IF_FST_BYTE 位将置 1, 该位仅在设备模式下有效。 | 0   |
| 3 | RB_SPI_MST_SCK_MOD | RW | 主机时钟采样模式配置位: 1:模式3(空闲时 SCK 为高电平); 0:模式0(空闲时 SCK 为低电平)。 该位仅在主机模式下有效。                                                                   | 0   |
| 2 | RB_SPI_2WIRE_MOD   | RW | 2 线或 3 线 SPI 模式配置位, 仅 SPIO,<br>SPI1 无需此控制位:<br>1: 2 线模式 (SCK, MISO);<br>0: 3 线模式 (SCK, MOSI, MISO)。                                   | 0   |
| 1 | RB_SPI_ALL_CLEAR   | RW | FIF0 寄存器及计数寄存器清 0 位:<br>1:强制清除;                                                                                                       | 1   |

|   |                   |    | 0: 不清除。                                                          |   |
|---|-------------------|----|------------------------------------------------------------------|---|
| 0 | RB_SPI_MODE_SLAVE | RW | SPI0 主从模式选择位, 仅 SPI0<br>1: 设备模式;<br>0: 主机模式。<br>注: SPI1 不支持设备模式。 | 0 |

### SPI 配置寄存器(R8\_SPIx\_CTRL\_CFG) (x=0/1)

| 位      | 名称                | 访问 | 描述                                                                          | 复位值 |
|--------|-------------------|----|-----------------------------------------------------------------------------|-----|
| [7: 6] | Reserved          | R0 | 保留。                                                                         | 0   |
| 5      | RB_SPI_BIT_ORDER  | RW | SPI 数据位序选择位:<br>1: 低字节在前;<br>0: 高字节在前。                                      | 0   |
| 4      | RB_SPI_AUTO_IF    | RW | 使能访问 BUFFER/FIFO 自动清除标志位<br>RB_SPI_IF_BYTE_END 的功能:<br>1: 使能;<br>0: 禁止。     | 0   |
| 3      | Reserved          | R0 | 保留。                                                                         | 0   |
| 2      | RB_SPI_DMA_LOOP   | RW | SPIO DMA 地址循环使能位:<br>1: 使能 DMA 地址循环功能;<br>0: 禁止 DMA 地址循环功能。<br>注: SPI1 不支持。 | 0   |
| 1      | Reserved          | R0 | 保留。                                                                         | 0   |
| 0      | RB_SPI_DMA_ENABLE | RW | SPIO DMA 使能/禁止位,仅支持 SPIO:<br>1: 使能 DMA;<br>0: 禁止 DMA。                       | 0   |

注:如果使能 DMA 地址循环模式功能,当 DMA 地址增加到设置的末尾地址时,自动循环指向设置的首地址,而不需要重新设置 DMA 起始地址寄存器(R16\_SPI0\_DMA\_BEG) 和 DMA 结束地址寄存器(R16\_SPI0\_DMA\_END)。

SPI 中断使能寄存器(R8\_SPIx\_INTER\_EN)(x=0/1)

| 位      | 名称                 | 访问 | 描述                                                                                                                                         | 复位值 |
|--------|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7      | RB_SPI_IE_FST_BYTE | RW | 从模式下,第一个字节接收中断使能位,<br>仅支持 SPIO:<br>1:使能接收到第一个字节中断;<br>0:禁止接收到第一个字节中断。<br>开启此功能需要设置 SPI 为设备模式,<br>同时需要将 RB_SPI_SLV_CMD_MOD 位为<br>1,首字节命令模式。 | 0   |
| [6: 5] | Reserved           | R0 | 保留。                                                                                                                                        | 0   |
| 4      | RB_SPI_IE_FIFO_OV  | RW | FIFO 溢出中断使能位,仅支持 SPIO:<br>1: 使能相应中断;<br>0: 禁止相应中断。                                                                                         | 0   |
| 3      | RB_SPI_IE_DMA_END  | RW | DMA 结束中断使能位,仅支持 SP10:<br>1: 使能相应中断;<br>0: 禁止相应中断。                                                                                          | 0   |
| 2      | RB_SPI_IE_FIFO_HF  | RW | FIF0 过半中断使能位:<br>1: 使能相应中断;<br>0: 禁止相应中断。                                                                                                  | 0   |
| 1      | RB_SPI_IE_BYTE_END | RW | SPI 单字节传输完成中断使能位:                                                                                                                          | 0   |

|   |                   |    | 1: 使能相应中断;<br>0: 禁止相应中断。                       |   |
|---|-------------------|----|------------------------------------------------|---|
| 0 | RB_SPI_IE_CNT_END | RW | SPI 全部字节传输完成中断使能位:<br>1: 使能相应中断;<br>0: 禁止相应中断。 | 0 |

## SPI 主机模式时钟分频寄存器(R8\_SPIx\_CLOCK\_DIV) (x=0/1)

| ĺ | 位      | 名称               | 访问 | 描述                                   | 复位值 |
|---|--------|------------------|----|--------------------------------------|-----|
|   | [7: 0] | R8_SPI_CLOCK_DIV | RW | 主机模式分频系数,最小值为 2<br>SPI 时钟频率=主频/分频系数。 | 10h |

## SPI 设备模式预置数据寄存器 (R8\_SPI0\_SLAVE\_PRE)

| 位      | 名称                | 访问 | 描述                                                     | 复位值 |
|--------|-------------------|----|--------------------------------------------------------|-----|
| [7: 0] | R8_SP10_SLAVE_PRE | RW | SPIO 设备模式下,预置的返回数据。<br>用于接收首字节数据后的返回数据。<br>注: SPI1 不支持 | 10h |

## SPI 数据缓冲区(R8\_SPIx\_BUFFER) (x=0/1)

| 位      | 名称             | 访问 | 描述             | 复位值 |
|--------|----------------|----|----------------|-----|
| [7: 0] | R8_SPIx_BUFFER | RW | SPI 数据发送和接收缓冲区 | xx  |

## SPI 工作状态寄存器(R8\_SPIx\_RUN\_FLAG)(x=0/1)

| 位     | 名称                 | 访问 | 描述                                                                  | 复位值 |
|-------|--------------------|----|---------------------------------------------------------------------|-----|
| 7     | RB_SPI_SLV_SELECT  | RO | SPI0 设备模式选择状态位:<br>1:设备模式;<br>0:主机模式。<br>注:SPI1 不支持                 | 0   |
| 6     | RB_SPI_SLV_CS_LOAD | RO | SPIO 设备模式片选后首次加载状态位:<br>1: 加载完成;<br>0: 未完成(可修改预加载值)。<br>注: SPI1 不支持 | 0   |
| 5     | RB_SPI_FIFO_READY  | R0 | FIF0 准备完成状态位:<br>1: FIF0 准备完成;<br>0: FIF0 未准备好。                     | 0   |
| 4     | RB_SPI_SLV_CMD_ACT | RO | SPI0 设备模式下命令接收完成状态位,即交换完首字节数据: 1: 首字节交换完成; 0: 首字节交换未完成。 注: SPI1 不支持 | 0   |
| [3:0] | Reserved           | R0 | 保留。                                                                 | 0   |

#### SPI 中断标志寄存器(R8 SPIx INT FLAG) (x=0/1)

|   | ST PERMONENT THE COURT OF THE C |     |                                                                |     |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------|-----|--|--|--|
| 位 | 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 访问  | 描述                                                             | 复位值 |  |  |  |
| 7 | RB_SPI_IF_FST_BYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RW1 | SPIO 设备模式下,首字节接收标志位:<br>1:接收到首字节;<br>0:未接收到首字节。<br>注:SPI1 不支持。 | 0   |  |  |  |
| 6 | RB_SPI_FREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R0  | 当前 SPI 空闲状态位:                                                  | 0   |  |  |  |

|   |                    |     | 1: 当前 SPI 处于空闲状态;                                                                                                                        |   |
|---|--------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|---|
|   |                    |     | 0: 当前 SPI 处于非空闲状态。                                                                                                                       |   |
| 5 | Reserved           | R0  | 保留。                                                                                                                                      | 0 |
| 4 | RB_SPI_IF_FIF0_0V  | RW1 | SPI0 FIF0 溢出标志位,仅支持 SPI0:<br>1: FIF0 溢出;<br>0: FIF0 未溢出。<br>注: SPI1 不支持。                                                                 | 0 |
| 3 | RB_SPI_IF_DMA_END  | RW1 | SPIO DMA 结束标志位, 仅支持 SPIO:<br>1: DMA 传输结束;<br>0: DMA 传输未结束。<br>注: SPI1 不支持。                                                               | 0 |
| 2 | RB_SPI_IF_FIFO_HF  | RW1 | FIF0 数据过半标志位: 1: 数据达到 FIF0 缓冲区一半; 0: 数据未达到 FIF0 缓冲区一半。 注: RB_SPI_FIF0_DIR=1,接收数据,FIF0 计数 >= 4 触发; RB_SPI_FIF0_DIR=0,发送数据,FIF0 计数 < 4 触发。 | 0 |
| 1 | RB_SPI_IF_BYTE_END | RW1 | SPI 单字节传输完成标志位:<br>1: SPI 单字节传输完成;<br>0: SPI 单字节传输未完成。                                                                                   | 0 |
| 0 | RB_SPI_IF_CNT_END  | RW1 | SPI 全部字节传输完成标志位:<br>1: SPI 全部字节传输完成;<br>0: SPI 全部字节传输未完成。                                                                                | 0 |

### SPI 收发 FIF0 计数寄存器 (R8\_SPIx\_FIF0\_COUNT) (x=0/1)

| 位      | 名称                 | 访问 | 描述             | 复位值 |
|--------|--------------------|----|----------------|-----|
| [7: 0] | R8_SPIx_FIF0_COUNT | RW | 当前 FIF0 中字节计数。 | xx  |

### SPI 收发 FIFO 计数寄存器(R8\_SPIx\_FIFO\_COUNT1) (x=0/1)

| 位      | 名称                  | 访问 | 描述                                         | 复位值 |
|--------|---------------------|----|--------------------------------------------|-----|
| [7: 0] | R8_SPIx_FIF0_COUNT1 | RW | 当前 FIFO 中字节计数,等效寄存器<br>R8_SPIx_FIFO_COUNT。 | xx  |

#### SPI 收发数据总长度寄存器(R16\_SPIx\_TOTAL\_CNT) (x=0/1)

| 位       | 名称                 | 访问 | 描述                                                     | 复位值 |
|---------|--------------------|----|--------------------------------------------------------|-----|
| [15: 0] | R16_SPIx_TOTAL_CNT | RW | SPI 数据收发总字节数, 低 12 位有效。<br>在使用 DMA 时一次最多可以发送 4095 个字节。 | 0   |

### SPI FIF0 寄存器(R8\_SPIx\_FIF0) (x=0/1)

| 位      | 名称           | 访问        | 描述                           | 复位值 |
|--------|--------------|-----------|------------------------------|-----|
| [7: 0] | R8_SPIx_FIF0 | RO/<br>WO | SPI FIF0 寄存器。FIF0 大小为 8 个字节。 | 0   |

寄存器 R8\_SPIx\_BUFFER 和寄存器 R8\_SPIx\_FIF0 均为 SPI 数据相关寄存器,主要区别在于:后者读取完一个字节数据之后,因为是从 FIF0 读取,所以长度寄存器(R16\_SPI\_TOTAL\_CNT)的值自动减 1,而前者读取完一个字节,长度寄存器值不变。

SPIO DMA 缓冲区当前地址(R16\_SPIO\_DMA\_NOW)

| 位    |    | 名称               | 访问 | 描述                                            | 复位值  |
|------|----|------------------|----|-----------------------------------------------|------|
| [15: | 0] | R16_SPIO_DMA_NOW | RW | DMA 缓冲区当前地址,仅支持 SP10。<br>通过查询此值可以判断 DMA 运行情况。 | xxxx |

SPIO DMA 缓冲区起始地址(R16\_SPIO\_DMA\_BEG)

| 位       | 名称               | 访问 | 描述                                            | 复位值  |
|---------|------------------|----|-----------------------------------------------|------|
| [15: 0] | R16_SPIO_DMA_BEG | RW | DMA 缓冲区起始地址,仅支持 SP10。<br>指向 SP10 收发数据缓冲区起始地址。 | xxxx |

SPIO DMA 缓冲区结束地址(R16\_SPIO\_DMA\_END)

| 位       | 名称               | 访问 | 描述                                            | 复位值  |
|---------|------------------|----|-----------------------------------------------|------|
| [15: 0] | R16_SPIO_DMA_END | RW | DMA 缓冲区结束地址,仅支持 SP10。<br>指向 SP10 收发数据缓冲区结束地址。 | xxxx |

## 6.3 SPI 传输格式

SPI 仅支持模式 0 和模式 3 两种传输格式,可以通过设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD) 的 RB\_SPI\_MST\_SCK\_MOD 位来进行选择。

数据传输格式如下图所示:

模式 0: RB\_SPI\_MST\_SCK\_MOD = 0

#### 模式0时序图



图 6-1 SPI 模式 0 传输格式

模式 3: RB\_SPI\_MST\_SCK\_MOD = 1

#### 模式3时序图



图 6-2 SPI 模式 3 传输格式

## 6.4 SPI 配置

### 6.4.1 SPI 主机模式

SPI 主机模式下,在 SCK 引脚产生串行时钟,片选引脚可以指定为任意 I/0 引脚。配置步骤:

- (1)、设置 SPI 主机模式时钟分频寄存器 (R8\_SPIx\_CLOCK\_DIV), 配置 SPI 时钟速度;
- (2)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD) 的 RB\_SPI\_MODE\_SLAVE 位为 0, 配置 SPI 为 主机模式;
- (3)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD) 的 RB\_SPI\_SLV\_CMD\_MOD 位,根据连接的设备需求设置为模式 0 或模式 3;
- (4)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD) 的 RB\_SPI\_FIF0\_DIR 位,配置 FIF0 方向,若为 1 则当前 FIF0 方向为数据输入,若为 0 则当前 FIF0 方向为数据输出。
- (5)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD) 的 RB\_SPI\_MOSI\_OE 位和 RB\_SPI\_SCK\_OE 位为 1, RB\_SPI\_MISO\_OE 位为 0, 并设置 PA 口方向寄存器 (R32\_PB\_DIR) 中 MOSI 引脚和 SCK 引脚对应的位为 1, MISO 引脚对应的位为 0, 将 MOSI 引脚和 SCK 引脚方向配置为输出, MISO 引脚方向配置为输入;

#### 数据发送过程:

- (1)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD)的 RB\_SPI\_FIF0\_DIR 位为 0, 置当前 FIF0 方 向为输出;
  - (2)、写 R16 SPIx TOTAL CNT 寄存器,设置要发送的数据长度;
- (3)、写 R8\_SPIx\_FIF0 寄存器,往 FIF0 里写要发送的数据,如果 R8\_SPI0\_FIF0\_COUNT 小于 FIF0 大小则可以继续往 FIF0 写数据;
- (4)、所有数据写入 FIFO 后,等待 R16\_SPIx\_TOTAL\_CNT 寄存器为 0,则说明数据发送完成,如果发送一字节,也可以等待 R8 SPIO FIFO COUNT 为 0,则说明 FIFO 中没有数据即数据已发送完毕。

#### 数据接收过程:

- (1)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD)的 RB\_SPI\_FIFO\_DIR 位为 1, 置当前 FIFO 方 向为输入;
  - (2)、写 R16\_SPIx\_TOTAL\_CNT 寄存器,设置要接收的数据长度;
  - (3)、等待 R8\_SPIx\_FIF0\_COUNT 寄存器不为 0,则说明接收到返回数据;
  - (4)、读取 R8\_SPIx\_FIFO 中的值即为接收到的数据。

#### 6.4.2 SPI 从机模式

只有 SPI0 支持从机模式,从机模式下,SCK 引脚用于接收连接的 SPI 主机的串行时钟。 配置步骤:

- (1)、设置 SPIO 模式配置寄存器(R8\_SPIO\_CTRL\_MOD)的 RB\_SPI\_MODE\_SLAVE 位为 1, 配置 SPIO 为从机模式;
  - (2)、根据需要设置 SPIO 模式配置寄存器(R8 SPIO CTRL MOD)的 RB SPI SLV CMD MOD 位;
- (3)、设置 SPIO 模式配置寄存器 (R8\_SPIO\_CTRL\_MOD) 的 RB\_SPI\_FIFO\_DIR 位,配置 FIFO 方向,若为 1 则当前 FIFO 方向为数据输入,若为 0 则当前 FIFO 方向为数据输出;
- (4)、设置 SPIO 模式配置寄存器 (R8\_SPIO\_CTRL\_MOD)的 RB\_SPI\_MOSI\_OE 位和 RB\_SPI\_SCK\_OE 位为 0, RB\_SPI\_MISO\_OE 位为 1, 并设置 PA 口方向寄存器 (R32\_PB\_DIR)中 MOSI 引脚、SCK 引脚和 SCS 引脚对应的位为 0, MISO 引脚对应的位为 1, 将 MOSI 引脚、SCK 引脚和 SCS 引脚方向配置为输入,MISO 引脚方向配置为输出。如果 MISO 引脚不配置输出方向,当片选有效(低电平)时,MISO 将自动使能输出。建议,设置 MISO 引脚设置为输入模式,使 MISO 在片选无效时决不输出,便于多机操作时,共享 SPI 总线。注意:在 SPI 从模式下 MISO 引脚的 I/O 引脚方向,除了能够由 MISO 引脚方向配置为输出之外,还支持 SPI 片选有效期间自动配置为输出,但其输出数据由 RB\_SPI\_MISO\_OE 选择,当 RB SPI MISO OE 为 1 时输出 SPI 数据,当 RB SPI MISO OE 为 0 时输出 GPIO 寄存器的数据。
- (5)、可选的,设置 SPIO 设备模式预置数据寄存器(R8\_SPIO\_SLAVE\_PRE),用于被片选后首次自动加载到缓冲区中用于对外输出。当8个时钟过去之后(即首个数据字节在主从双方之间交换完毕),控制器得到外部 SPI 主机发来的首字节数据(命令码),外部 SPI 主机交换得到 R8\_SPIO\_SLAVE\_PRE中的预置数据(状态值)。该寄存器的位7将 SPI 片选有效后的 SCK 低电平期间自动加载到 MISO 引脚

上,对于 SPI 模式 0 (CLK 默认为低电平),如果预置了 R8\_SPI0\_SLAVE\_PRE 的位 7,那么外部 SPI 主机将在 SPI 片选有效但尚未传输数据时,就能够通过查询 MISO 引脚得到 R8\_SPI0\_SLAVE\_PRE 的位 7的预置值,从而通过仅仅有效一下 SPI 片选就能获得 R8\_SPI0\_SLAVE\_PRE 的位 7的值。

#### 数据发送过程:

- (1)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD)的 RB\_SPI\_FIFO\_DIR 位为 0, 配置当前 FIFO 方向为数据输出;
- (2)、将发送数据写入到 FIFO 寄存器 (R8\_SPIx\_FIFO)中,并将 SPI 发送/接收数据总长度寄存器 (R16\_SPIx\_TOTAL\_CNT)加 1,建议一次性将 R16\_SPIx\_TOTAL\_CNT 为较大的值,这样,只要 FIFO 中有数据就会自动发送,FIFO 空时自动暂停,不必每次设置 R16 SPIx TOTAL CNT:
- (3)、如果发送单个字节,则等待 R16\_SPIx\_TOTAL\_CNT 寄存器为 0,等待数据发送完毕;如果发送多个字节,则可以一次性最多写入 8 个数据到 FIF0 寄存器 (R8\_SPIx\_FIF0)中,再等待发送完毕;

#### 数据接收过程:

- (1)、设置 SPI 模式配置寄存器 (R8\_SPIx\_CTRL\_MOD) 的 RB\_SPI\_FIFO\_DIR 位为 1,配置当前 FIFO 方向为数据输入;
- (2)、等待查询 SPI 发送/接收数据总长度寄存器(R16\_SPIx\_TOTAL\_CNT),如果该寄存器不为 0,则表示接收到数据,通过读取 FIF0 寄存器(R8 SPIx FIF0)来获取接收到的数据。

单个字节的数据接收,也可以不使用 FIF0,可以直接读 SPI 数据缓冲区寄存器 (R8\_SPIx\_BUFFER) 得到对方给的当前数据启动传输。

## 6.5 DMA 功能

CH568 只有 SPI0 具有 DMA 功能, SPI1 不具备此功能。通过使能 DMA 功能,可以在减少软件干预的基础上更便捷的实现 SPI 数据的接收和发送。

#### 6.5.1 SPI 主机模式 DMA 发送数据配置

- (1)、按照 6.4.1 节,将 SPIO 配置为主机模式;
- (2)、如果需要产生 DMA 完成中断,则将 SPI 中断使能寄存器(R8\_SPIx\_INTER\_EN)的 RB SPI IE DMA END 位置 1;
  - (3)、初始化 R16\_SPI\_DMA\_BEG 寄存器为 SPI 数据发送缓冲区开始地址;
  - (4)、初始化 R16 SPI DMA END 寄存器为 SPI 数据发送缓冲区结束地址;
  - (5)、清 SPI 中断状态寄存器(R8 SPIx INT FLAG);
  - (6)、初始化 R16\_SPI\_TOTAL\_CNT 寄存器为需要发送的数据个数,如果 DMA 已使能则启动传输;
- (7)、如果需要使能 DMA 地址循环模式功能,则需要设置 SPI 的 DMA 控制寄存器 (R8 SPIx CTRL DMA)的 RB SPI DMA LOOP 位为 1;
- (8)、设置 SPI 的 DMA 控制寄存器 (R8\_SPIx\_CTRL\_DMA) 的 RB\_SPI\_DMA\_ENABLE 位为 1, 使能 DMA 进行数据发送。

#### 6.5.2 SPI 主机模式 DMA 接收数据配置

- (1)、按照 6.4.1 节,将 SPIO 配置为主机模式;
- (2)、如果需要产生 DMA 中断将寄存器 R8\_SPI\_INTER\_EN 的 RB\_SPI\_IE\_DMA\_END 位置 1, 使能产生 DMA 结束中断;
  - (3)、初始化 R16 SPI DMA BEG 寄存器为 SPI 数据接收缓冲区开始地址;
  - (4)、初始化 R16\_SPI\_DMA\_END 寄存器为 SPI 数据接收缓冲区结束地址;
  - (5)、清 SPI 中断状态寄存器(R8\_SPIx\_INT\_FLAG);
  - (6)、初始化 R16\_SPI\_TOTAL\_CNT 寄存器为需要接收的数据个数,如果 DMA 已使能则启动传输;
  - (7)、如果需要使能 DMA 地址循环模式功能,则需要设置 SPI 的 DMA 控制寄存器 (R8\_SPIx\_CTRL\_DMA)

的 RB\_SPI\_DMA\_LOOP 位为 1;

(8)、设置 SPI 的 DMA 控制寄存器 (R8\_SPIx\_CTRL\_DMA) 的 RB\_SPI\_DMA\_ENABLE 位为 1,使能 DMA 进行数据接收。如果 DMA 使能在前,在设置完 R16\_SPI\_TOTAL\_CNT 后即自动开始传输。

# 第7章 通用异步收发器 UART

## 7.1 UART 简介

CH568 提供了 4 组全双工的异步串口, UARTO/1/2/3。支持全双工和半双工串口通讯, 其中 UARTO 提供发送状态引脚用于切换 RS485, 并且支持 MODEM 调制解调器信号 CTS、DSR、RI、DCD、DTR、RTS。 UART 特性:

- (1)、兼容 160550 异步串口并且有所增强;
- (2)、支持5、6、7或者8个数据位以及1或者2个停止位;
- (3)、支持奇、偶、无校验、空白 0、标志 1 等校验方式;
- (4)、可编程通讯波特率,支持115200bps以及最高达6Mbps的通讯波特率;
- (5)、内置 8 个字节的 FIFO 先进先出缓冲器,支持 4 个 FIFO 触发级;
- (6)、UARTO 支持 MODEM 调制解调器信号 CTS、DSR、RI、DCD、DTR、RTS,可转成 RS232 电平;
- (7)、支持硬件流控制信号 CTS 和 RTS 自动握手和自动传输速率控制,兼容 TL16C550C;
- (8)、支持串口帧错误检测、支持 Break 线路间隔检测;
- (9)、支持全双工和半双工串口通讯, UARTO 提供发送状态引脚用于切换 RS485;

## 7.2 寄存器描述

UART0相关寄存器物理起始地址为: 0x0040 3000 UART1相关寄存器物理起始地址为: 0x0040 3400 UART2相关寄存器物理起始地址为: 0x0040 3800 UART3相关寄存器物理起始地址为: 0x0040 3c00

表 7-1 UARTO 相关寄存器列表

| 名称           | 偏移地址 | 描述                | 复位值     |
|--------------|------|-------------------|---------|
| R8_UARTO_MCR | 0x00 | 调制解调器 MODEM 控制寄存器 | 8h00    |
| R8_UARTO_IER | 0x01 | 中断使能寄存器           | 8h00    |
| R8_UARTO_FCR | 0x02 | FIF0 控制寄存器        | 8h00    |
| R8_UARTO_LCR | 0x03 | 线路控制寄存器           | 8h00    |
| R8_UARTO_IIR | 0x04 | 中断识别寄存器           | 8h01    |
| R8_UARTO_LSR | 0x05 | 线路状态寄存器           | 8hC0    |
| R8_UARTO_MSR | 0x06 | 调制解调器 MODEM 状态寄存器 | 8hx0    |
| R8_UART0_RBR | 0x08 | 接收缓冲寄存器           | 8hxx    |
| R8_UART0_THR | 0x08 | 发送保持寄存器           | 8hxx    |
| R8_UARTO_RFC | 0x0A | 接收 FIF0 计数寄存器     | 8hxx    |
| R8_UARTO_TFC | 0x0B | 发送 FIF0 计数寄存器     | 8hxx    |
| R16_UARTO_DL | 0x0C | 波特率除数锁存器          | 16hxxxx |
| R8_UARTO_DIV | 0x0E | 预分频除数寄存器          | 8hxx    |
| R8_UARTO_ADR | 0x0F | 从机地址寄存器           | 8hFF    |

表 7-2 UART1 相关寄存器列表

| PC - COMMON TRANSPORT |      |                   |      |  |
|-----------------------|------|-------------------|------|--|
| 名称                    | 偏移地址 | 描述                | 复位值  |  |
| R8_UART1_MCR          | 0x00 | 调制解调器 MODEM 控制寄存器 | 8h00 |  |
| R8_UART1_IER          | 0x01 | 中断使能寄存器           | 8h00 |  |
| R8_UART1_FCR          | 0x02 | FIF0 控制寄存器        | 8h00 |  |
| R8_UART1_LCR          | 0x03 | 线路控制寄存器           | 8h00 |  |

| R8_UART1_IIR | 0x04 | 中断识别寄存器       | 8h01    |
|--------------|------|---------------|---------|
| R8_UART1_LSR | 0x05 | 线路状态寄存器       | 8hC0    |
| R8_UART1_RBR | 0x08 | 接收缓冲寄存器       | 8hxx    |
| R8_UART1_THR | 0x08 | 发送保持寄存器       | 8hxx    |
| R8_UART1_RFC | 0x0A | 接收 FIF0 计数寄存器 | 8hxx    |
| R8_UART1_TFC | 0x0B | 发送 FIF0 计数寄存器 | 8hxx    |
| R16_UART1_DL | 0x0C | 波特率除数锁存器      | 16hxxxx |
| R8_UART1_DIV | 0x0E | 预分频除数寄存器      | 8hxx    |

#### 表 7-3 UART2 相关寄存器列表

| 名称           | 偏移地址 | 描述                | 复位值     |
|--------------|------|-------------------|---------|
| R8_UART2_MCR | 0x00 | 调制解调器 MODEM 控制寄存器 | 8h00    |
| R8_UART2_IER | 0x01 | 中断使能寄存器           | 8h00    |
| R8_UART2_FCR | 0x02 | FIF0 控制寄存器        | 8h00    |
| R8_UART2_LCR | 0x03 | 线路控制寄存器           | 8h00    |
| R8_UART2_IIR | 0x04 | 中断识别寄存器           | 8h01    |
| R8_UART2_LSR | 0x05 | 线路状态寄存器           | 8hC0    |
| R8_UART2_RBR | 0x08 | 接收缓冲寄存器           | 8hxx    |
| R8_UART2_THR | 0x08 | 发送保持寄存器           | 8hxx    |
| R8_UART2_RFC | 0x0A | 接收 FIF0 计数寄存器     | 8hxx    |
| R8_UART2_TFC | 0x0B | 发送 FIF0 计数寄存器     | 8hxx    |
| R16_UART2_DL | 0x0C | 波特率除数锁存器          | 16hxxxx |
| R8_UART2_DIV | 0x0E | 预分频除数寄存器          | 8hxx    |

### 表 7-4 UART3 相关寄存器列表

| 名称           | 偏移地址 | 描述                | 复位值     |
|--------------|------|-------------------|---------|
| R8_UART3_MCR | 0x00 | 调制解调器 MODEM 控制寄存器 | 8h00    |
| R8_UART3_IER | 0x01 | 中断使能寄存器           | 8h00    |
| R8_UART3_FCR | 0x02 | FIF0 控制寄存器        | 8h00    |
| R8_UART3_LCR | 0x03 | 线路控制寄存器           | 8h00    |
| R8_UART3_IIR | 0x04 | 中断识别寄存器           | 8h01    |
| R8_UART3_LSR | 0x05 | 线路状态寄存器           | 8hC0    |
| R8_UART3_RBR | 0x08 | 接收缓冲寄存器           | 8hxx    |
| R8_UART3_THR | 0x08 | 发送保持寄存器           | 8hxx    |
| R8_UART3_RFC | 0x0A | 接收 FIF0 计数寄存器     | 8hxx    |
| R8_UART3_TFC | 0x0B | 发送 FIF0 计数寄存器     | 8hxx    |
| R16_UART3_DL | 0x0C | 波特率除数锁存器          | 16hxxxx |
| R8_UART3_DIV | 0x0E | 预分频除数寄存器          | 8hxx    |

#### 调制解调器 MODEM 控制寄存器 (R8 UARTx MCR) (x=0/1/2/3)

| 位 | 名称          | 访问 | 描述                                                                                   | 复位值 |
|---|-------------|----|--------------------------------------------------------------------------------------|-----|
| 7 | RB_MCR_HALF | RW | UART0 半双工收发模式使能/禁止位<br>1:进入半双工收发模式,发送优先,不<br>发送时为接收;<br>0:禁止半双工收发模式。<br>注:仅支持 UARTO。 | 0   |
| 6 | RB_MCR_TNOW | RW | UARTO 的正在发送状态(TNOW)输出(DTR引脚)使能位:                                                     | 0   |

|   | T                 | 1  |                                                                                                                                                                                                                                                                                                                                                            |   |
|---|-------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   |                   |    | 1: 使能串口 0 的 DTR 引脚输出正在发送<br>状态 TNOW,可以用于控制 RS485 收发切<br>换;<br>0: 禁止。<br>注: 仅支持 UARTO。                                                                                                                                                                                                                                                                      |   |
| 5 | RB_MCR_AU_FLOW_EN | RW | UARTO 允许 CTS 和 RTS 硬件自动流控制位: 1: 允许 CTS 和 RTS 硬件自动流控制; 0: 无效。 注: 仅支持 UARTO。 流控模式下,如果此位为 1,那么仅在检测到 CTS 引脚输入有效(低电平有效)时串口才继续发送下一个数据,否则暂停串口发送,当此位为 1 时的 CTS 输入状态变化不会产生 MODEM 状态中断。如果此位为 1 并且 RTS 为 1,那么当接似下可空时,串口会自动有效 RTS 引脚(低电平有效),直到接收的字节数达到FIFO的触发点时,串口才自动无效 RTS 引脚,并能够在接收 FIFO 空时再次有效 RTS 引脚。使用硬件自动带率控制,可将已方的 CTS 引脚接到对方的 CTS 引脚,并将己方的 RTS 引脚送到对方的 CTS 引脚。 | 0 |
| 4 | RB_MCR_LOOP       | RW | UARTO 内部回路的测试模式控制位: 1: 使能内部回路的测试模式; 0: 禁止内部回路的测试模式。 在内部回路的测试模式下,串口所有对外输出引脚均为无效状态,TXD 内部返回到 RXD(即 TSR 的输出内部返回到 RSR的输入), RTS 内部返回到 CTS, DTR 内部返回到 DSR, OUT1 内部返回到 RI, OUT2 内部返回到 DCD 注: 仅支持 UARTO。                                                                                                                                                           | 0 |
| 3 | RB_MCR_OUT2       | RW | 串口的中断请求输出控制位:<br>1:使能;<br>0:禁止。                                                                                                                                                                                                                                                                                                                            | 0 |
| 2 | RB_MCR_OUT1       | RW | 用户自定义 MODEM 控制位,没有连接实际输出引脚: 1:置高; 0:置低。 注:仅支持 UARTO。                                                                                                                                                                                                                                                                                                       | 0 |
| 1 | RB_MCR_RTS        | RW | RTS 引脚输出有效控制位:<br>1: 使能 RTS 引脚输出有效(低电平有效)<br>0: 禁止 RTS 引脚输出有效<br>注: 仅支持 UARTO。                                                                                                                                                                                                                                                                             | 0 |
| 0 | RB_MCR_DTR        | RW | DTR 引脚输出有效控制位: 1: 使能引脚输出有效 (低电平有效); 0: 禁止引脚输出有效。 注: 仅支持 UARTO。                                                                                                                                                                                                                                                                                             | 0 |

中断使能寄存器(R8\_UARTx\_IER)(x=0/1/2/3)

| 位 | 名称               | 访问 | 描述                                                                     | 复位值 |
|---|------------------|----|------------------------------------------------------------------------|-----|
| 7 | RB_IER_RESET     | WZ | 串口软件复位控制位,自动清零:<br>1:软件复位该串口;<br>0:不进行软件复位。                            | 0   |
| 6 | RB_IER_TXD_EN    | RW | 串口 TXD 引脚输出使能位: 1: 使能引脚输出; 0: 禁止引脚输出。                                  | 0   |
| 5 | RB_IER_RTS_EN    | RW | UARTO 的 RTS 引脚输出使能位: 1: 使能引脚输出; 0: 禁止引脚输出。 注: 仅支持 UARTO。               | 0   |
| 4 | RB_IER_DTR_EN    | RW | UARTO 的 DTR/TNOW 引脚输出使能位:<br>1: 使能引脚输出;<br>0: 禁止引脚输出。<br>注: 仅支持 UARTO。 | 0   |
| 3 | RB_IER_MODEM_CHG | RW | UARTO 的调制解调器输入状态变化中断使能位: 1: 使能相应中断; 0: 禁止相应中断。 注: 仅支持 UARTO。           | 0   |
| 2 | RB_IER_LINE_STAT | RW | 接收线路状态中断使能位:<br>1:使能相应中断;<br>0:禁止相应中断。                                 | 0   |
| 1 | RB_IER_THR_EMPTY | RW | 发送保持寄存器空中断使能位:<br>1:使能相应中断;<br>0:禁止相应中断。                               | 0   |
| 0 | RB_IER_RECV_RDY  | RW | 接收数据中断使能位:<br>1:使能相应中断;<br>0:禁止相应中断。                                   | 0   |

### FIF0 控制寄存器 (R8\_UARTx\_FCR) (x=0/1/2/3)

| 位     | 名称                 | 访问 | 描述                                                                                                                                                         | 复位值 |
|-------|--------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| [7:6] | RB_FCR_F1F0_TR1G   | RW | 接收 FIF0 的中断和硬件流控制的触发点设置域: 00: 1 字节; 01: 2 字节; 10: 4 字节; 11: 7 字节。 该域用来设置接收 FIF0 的中断和硬件流控制的触发点,例如: 00 对应 1 个字节,即接收满 1 个字节产生接收数据可用的中断,并在使能硬件流控制时自动无效 RTS 引脚。 | 0   |
| [5:3] | Reserved           | R0 | 保留                                                                                                                                                         | 0   |
| 2     | RB_FCR_TX_FIFO_CLR | WZ | 发送 FIF0 数据清空使能位,自动清零:<br>1:清空发送 FIF0 中的数据(不含 TSR);<br>0:不清空发送 FIF0 中的数据。                                                                                   | 0   |

| 1 | RB_FCR_RX_FIFO_CLR | WZ | 接收 FIF0 数据清空使能位,自动清零:<br>1:清空接收 FIF0 中的数据(不含 RSR);<br>0:不清空接收 FIF0 中的数据。                                                               | 0 |
|---|--------------------|----|----------------------------------------------------------------------------------------------------------------------------------------|---|
| 0 | RB_FCR_F1F0_EN     | RW | FIF0 使能位: 1: 启用 FIF0, 内部 FIF0 大小 8 字节; 0: 禁用 FIF0。 禁用 FIF0 后为 16C450 兼容模式, 相当于 FIF0 只有一个字节(RECV_TG1=0、RECV_TG0=0、FIF0_EN=1), 建议启用FIF0。 | 0 |

### 线路控制寄存器(R8\_UARTx\_LCR)(x=0/1/2/3)

| 位     | 名称                            | 访问 | 描述                                                                                                            | 复位值 |
|-------|-------------------------------|----|---------------------------------------------------------------------------------------------------------------|-----|
| 7     | RB_LCR_DLAB/<br>RB_LCR_GP_BIT | RW | 串口通用位(用户自定义)。                                                                                                 | 0   |
| 6     | RB_LCR_BREAK_EN               | RW | 强制产生 BREAK 线路间隔使能位:<br>1:强制产生 BREAK 线路间隔;<br>0:不产生 BREAK 线路间隔。                                                | 0   |
| [5:4] | RB_LCR_PAR_MOD                | RW | 奇偶校验位格式设置域<br>00: 奇校验;<br>01: 偶校验;<br>10: 标志位(MARK, 置 1);<br>11: 空白位(SPACE, 清 0)。<br>该域仅当RB_LCR_PAR_EN位为1时有效。 | 0   |
| 3     | RB_LCR_PAR_EN                 | RW | 奇偶校验位使能位: 1:允许发送时产生和接收时校验奇偶校验位; 0:无奇偶校验位。                                                                     | 0   |
| 2     | RB_LCR_STOP_BIT               | RW | 停止位格式设置位:<br>0:一个停止位;<br>1:两个停止位。                                                                             | 0   |
| [1:0] | RB_LCR_WORD_SZ                | RW | 串口数据长度设置域:<br>00:5个数据位;<br>01:6个数据位;<br>10:7个数据位;<br>11:8个数据位。                                                | 0   |

### 中断识别寄存器(R8\_UARTx\_IIR)(x=0/1/2/3)

| 位     | 名称              | 访问 | 描述                        | 复位值 |
|-------|-----------------|----|---------------------------|-----|
|       |                 |    | 串口 FIF0 启用状态位:            |     |
| [7:6] | RB_IIR_FIFO_ID  | R0 | 1: FIF0 已启用;              | 0   |
|       |                 |    | 0: FIF0 未启用。              |     |
| [5:4] | Reserved        | R0 | 保留。                       | 0   |
|       |                 |    | 中断标志域:如果 RB_IIR_NO_INT 位为 |     |
| [3:0] | RB_IIR_INT_MASK | R0 | 0,则表示有中断产生,需要读取该域判        | 0   |
|       |                 |    | 断中断源。具体请参看下表              |     |
|       |                 |    | 串口无中断标志位:                 |     |
| 0     | RB_IIR_NO_INT   | R0 | 1; 无中断;                   | 1   |
|       |                 |    | 0:有中断。                    |     |

中断识别寄存器(R8\_UARTx\_IIR)的RB\_IIR\_NO\_INT位以及RB\_IIR\_INT\_MASK 域的每一个位所表示的含义如下表所示:

表 8-3 IIR 寄存器中 RB\_IIR\_INT\_MASK 含义

|      | IIR F | 寄存器   | :位    | 优先 | 中断类型       |                                                          | 清中断              |
|------|-------|-------|-------|----|------------|----------------------------------------------------------|------------------|
| IID3 | IID2  | I ID1 | NOINT | 级  | 中断失空       | 一                                                        | 方法               |
| 0    | 0     | 0     | 1     | 无  | 没有中断产生     | 没有中断                                                     |                  |
| 1    | 1     | 1     | 0     | 0  | 总线地址匹配     | 接收到 1 个数据是串口总线地址,且该地址与预置从机值相匹配或是广播地址。<br>注:该中断只适用 UARTO。 | 读 IIR 或禁用多机模式    |
| 0    | 1     | 1     | 0     | 1  | 接收线路状态     | OVER_ERR、 PAR_ERR、 FRAM_ERR、<br>BREAK_ERR                | 读 LSR            |
| 0    | 1     | 0     | 0     | 2  | 接收数据可用     | 接收到的字节数达到 FIFO 的触发点。                                     | 读 RBR            |
| 1    | 1     | 0     | 0     | 2  | 接收数据超时     | 超过 4 个数据时间未收到下一数据。                                       | 读 RBR            |
| 0    | 0     | 1     | 0     | 3  | THR 寄存器空   | 发送保持寄存器空,或者,<br>RB_IER_THR_EMPTY 位从 0 变 1 触发。            | 读 I IR<br>或写 THR |
| 0    | 0     | 0     | 0     | 4  | MODEM 输入变化 | ΔCTS、ΔDSR、ΔRI、ΔDCD 置 1 触发。                               | 读 MSR            |

线路状态寄存器(R8\_UARTx\_LSR)(x=0/1/2/3)

| 位 | 名称                 | 访问 | 描述                                                                                           | 复位值 |
|---|--------------------|----|----------------------------------------------------------------------------------------------|-----|
| 7 | RB_LSR_ERR_RX_F1F0 | RO | 接收 FIFO 错误标志位:<br>1:接收 FIFO 中存在至少一个 PAR_ERR、<br>FRAM_ERR 或 BREAK_ERR 错误;<br>0:接收 FIFO 未存在错误。 | 0   |
| 6 | RB_LSR_TX_ALL_EMP  | RO | 发送保持寄存器 THR 和发送移位寄存器 TSR 全空标志位: 1: 两者全空; 0: 两者非全空。                                           | 1   |
| 5 | RB_LSR_TX_F1F0_EMP | RO | 发送 FIF0 空标志位:<br>1:发送 FIF0 空;<br>0:发送 FIF0 非空。                                               | 1   |
| 4 | RB_LSR_BREAK_ERR   | RZ | BREAK 线路间隔检测标志位:<br>1:检测到 BREAK 线路间隔:<br>0:未检测到 BREAK 线路间隔。                                  | 0   |
| 3 | RB_LSR_FRAME_ERR   | RZ | 数据帧错误标志位: 1:表示正在从接收 FIFO 中读取的数据的帧错误,缺少有效的停止位; 0:数据帧正确。                                       | 0   |
| 2 | RB_LSR_PAR_ERR     | RZ | 接收数据奇偶校验错误标志位:<br>1:表示正在从接收 FIFO 中读取的数据的奇偶校验错;<br>0:奇偶校验正确。                                  | 0   |
| 1 | RB_LSR_OVER_ERR    | RZ | 接收 FIF0 缓冲区溢出标志位:<br>1:已溢出;<br>0;未溢出。                                                        | 0   |
| 0 | RB_LSR_DATA_RDY    | R0 | 接收 FIF0 中有接收到的数据标志位:<br>1: FIF0 中有数据;<br>0: 无数据。                                             | 0   |

读取 FIF0 中所有数据后,该位自动清 0。

### 调制解调器 MODEM 状态寄存器 (R8\_UARTO\_MSR) 仅 UARTO 使用

| 位 | 名称             | 访问 | 描述                                                                      | 复位值 |
|---|----------------|----|-------------------------------------------------------------------------|-----|
| 7 | RB_MSR_DCD     | RO | DCD 引脚状态位:<br>1: DCD 引脚有效(低电平有效);<br>0: DCD 引脚无效(高电平)。<br>注: 仅支持 UARTO。 | х   |
| 6 | RB_MSR_R I     | RO | RI 引脚状态位:<br>1: RI 引脚有效(低电平有效);<br>0: RI 引脚无效(高电平)。<br>注: 仅支持 UARTO。    | х   |
| 5 | RB_MSR_DSR     | RO | DSR 引脚状态位:<br>1: DSR 引脚有效(低电平有效);<br>0: DSR 引脚无效(高电平)。<br>注: 仅支持 UARTO。 | х   |
| 4 | RB_MSR_CTS     | RO | CTS 引脚状态位:<br>1: CTS 引脚有效(低电平有效);<br>0: CTS 引脚无效(高电平)。<br>注: 仅支持 UARTO。 | х   |
| 3 | RB_MSR_DCD_CHG | RZ | DCD 引脚输入状态变化标志位: 1: 发生变化; 0: 无变化。 注: 仅支持 UARTO。                         | 0   |
| 2 | RB_MSR_RI_CHG  | RZ | RI 引脚输入状态变化标志位:<br>1: 发生变化;<br>0: 无变化。<br>注: 仅支持 UARTO。                 | 0   |
| 1 | RB_MSR_DSR_CHG | RZ | DSR 引脚输入状态变化标志位:<br>1: 发生变化;<br>0: 无变化。<br>注: 仅支持 UARTO。                | 0   |
| 0 | RB_MSR_CTS_CHG | RZ | CTS 引脚输入状态变化标志位:<br>1: 发生变化;<br>0: 无变化。<br>注: 仅支持 UARTO。                | 0   |

#### 接收缓冲寄存器(R8 UARTx RBR)(x=0/1/2/3)

| 位     | 名称           | 访问 | 描述                                                                                                               | 复位值 |
|-------|--------------|----|------------------------------------------------------------------------------------------------------------------|-----|
| [7:0] | R8_UARTx_RBR | RO | 数据接收缓冲寄存器。 如果 LSR 的 DATA_RDY 位为 1,则可以从该寄存器读取接收到的数据; 如果 FIFO_EN 为 1,则从串口移位寄存器 RSR 接收到的数据首先被存放于接收FIFO 中,然后通过该寄存器读出 | х   |

### 发送保持寄存器(R8\_UARTx\_THR)(x=0/1/2/3)

| 位 | 名称 | 访问 | 描述 | 复位值 |
|---|----|----|----|-----|
|---|----|----|----|-----|

| [7:0] | R8_UART×_THR | WO | 发送保持寄存器。<br>包括发送 FIF0,用于写入准备发送的数据;如果 FIF0_EN 为 1,则写入的数据首先被存放于发送 FIF0 中,然后通过发送移位寄存器 TSR 逐个输出 | х |
|-------|--------------|----|---------------------------------------------------------------------------------------------|---|
|-------|--------------|----|---------------------------------------------------------------------------------------------|---|

#### 接收 FIF0 计数寄存器 (R8\_UARTx\_RFC) (x=0/1/2/3)

| 位     | 名称           | 访问 | 描述                     | 复位值 |
|-------|--------------|----|------------------------|-----|
| [7:0] | R8_UARTx_RFC | R0 | 当前接收 FIF0 中数据计数。最大值 8。 | х   |

#### 发送 FIFO 计数寄存器 (R8\_UARTx\_TFC) (x=0/1/2/3)

|   | 位     | 名称           | 访问 | 描述                     | 复位值 |
|---|-------|--------------|----|------------------------|-----|
| Ī | [7:0] | R8_UARTx_TFC | R0 | 当前发送 FIF0 中数据计数。最大值 8。 | х   |

#### 波特率除数锁存器(R16\_UARTx\_DL)(x=0/1/2/3)

| 位      | 名称           | 访问 | 描述                                                                                                         | 复位值 |
|--------|--------------|----|------------------------------------------------------------------------------------------------------------|-----|
| [15:0] | R16_UARTx_DL | RW | 16 位除数用于计算波特率。公式:除数 = 串口内部基准时钟 / 16 / 所需通讯波特率。例: 如果串口内部基准时钟为1.8432MHz,所需波特率为9600bps,则除数=1843200/16/9600=12 | x   |

#### 预分频除数寄存器(R8\_UARTx\_DIV)(x=0/1/2/3)

| 位     | 名称           | 访问 | 描述                                                                                                                  | 复位值 |
|-------|--------------|----|---------------------------------------------------------------------------------------------------------------------|-----|
| [7:0] | R8_UARTx_DIV | RW | 用于计算串口的内部基准时钟, 低 7 位有效。<br>公式:除数 = Fsys * 2 / 串口内部基准时钟,最大值 127。<br>例:如果系统主时钟为 96MHz,除数为104,那么串口内部基准时钟为1.8432相差0.16% | x   |

#### 从机地址寄存器(R8\_UARTO\_ADR) 仅 UARTO 使用

| 位     | 名称           | 访问 | 描述                                 | 复位值  |
|-------|--------------|----|------------------------------------|------|
| [7:0] | R8_UARTO_ADR | RW | 串口 0 从机地址:<br>FFh:不使用;<br>其他:从机地址。 | 8hFF |

R8\_UARTO\_ADR 预置本机作为从机时的地址,用于在多机通讯时自动比较接收到的地址,并在地址匹配或者在接收到广播地址 OFFH 时产生中断,同时允许接收后续数据包。在地址没有匹配之前不接收任何数据,开始发送数据后或者重写 R8\_UARTO\_ADR 寄存器后停止接收任何数据,直到下次地址再次匹配或者接收到广播地址时再允许接收。

R8\_UARTO\_ADR 为 OFFH 时或者 RB\_LCR\_PAR\_EN=0 时,禁用总线地址自动比较功能。

R8\_UARTO\_ADR 不为 0FFH 并且 RB\_LCR\_PAR\_EN=1 时,启用总线地址自动比较功能,同时应该配置下述参数: RB\_LCR\_WORD\_SZ 控制域位 11b 以选择 8 个数据位方式,对于地址字节为 MARK 的情况(即数据字节的位 9 为 0),应设置 RB\_LCR\_PAR\_MOD 控制域 10b,对于地址字节为 SPACE 的情况(即数据字节的位 9 为 1),应设置 RB\_LCR\_PAR\_MOD 控制域 11b。

### 7.3 UART 应用

CH568 芯片的 UARTO/1/2/3 输出引脚都是 3. 3V LVCMOS 电平。异步串口方式下引脚包括:数据传输引脚(支持 UARTO/1/2/3)和 MODEM 联络信号引脚(只支持 UARTO)。数据传输引脚包括: TXD 引脚和 RXD 引脚,默认都是高电平;MODEM 联络信号引脚包括: CTS 引脚、DSR 引脚、RI 引脚、DCD 引脚、DTR 引脚、RTS 引脚,默认都是高电平。所有这些 MODEM 联络信号都可以作为通用 I/O 引脚,由应用程序控制并定义其用途。

4组 UART 各自拥有独立的收发缓冲区及8字节FIF0,支持单工、半双工或者全双工异步串行通讯。串行数据包括1个低电平起始位,5、6、7或8个数据位,0个或者1个附加校验位或者标志位,1个或者2个高电平停止位,支持奇校验/偶校验/标志校验/空白校验。支持常用通讯波特率:1200、2400、4800、9600、19.2K、38.4K、57.6K、115.2K、230.4K、460.8K、921.6K、1.8432M、2.7648M、7.8125M等。串口发送信号的波特率误差小于0.2%,串口接收信号的允许波特率误差不大于2%。

#### 7.3.1 波特率计算

- 1) 计算基准时钟,设置 R8 UARTO DIV 寄存器,最大值 127;
- 2) 计算波特率,设置 R16\_UARTO\_DL 寄存器; 波特率公式 = Fsys \* 2 / R8\_UARTO\_DIV / 16 / R16\_UARTO\_DL.

### 7.3.2 串口发送

串口发送的"THR 寄存器空"中断(IIR 寄存器的低 4 位为 02H)是指发送 FIF0 空。当读取 IIR 寄存器后,该中断被清除,或者当向 THR 写入下一个数据后,该中断也能被清除。如果仅仅是向 THR 写入一个字节,那么由于该字节很快被转移到发送移位寄存器 TSR 中开始发送,所以很快会再次产生发送 THR 寄存器空中断的请求,此时可以写入下一个准备发送的数据。当 TSR 寄存器中的数据被全部移出后,串口发送才真正完成,此时 LSR 寄存器的 RB\_LSR\_TX\_ALL\_EMP 位变为 1 有效。

在中断触发方式下,当收到串口发送保持寄存器 THR 空的中断后,如果已使能 FIF0,那么可以向 THR 寄存器及 FIF0 一次写入最多 8 字节,然后控制器会按顺序自动发送;如果禁止 FIF0,那么一次只能写入一个字节;如果没有数据需要发送,那么可以直接退出(之前读取 IIR 时已经自动清除中断)。

在查询方式下,可以根据 LSR 寄存器的 RB\_LSR\_TX\_FIF0\_EMP 位判断发送 FIF0 是否为空,当此位为 1 则可以向 THR 寄存器及 FIF0 写入数据,如果使能 FIF0,那么一次可以写入最多 8 个字节。

#### 7.3.3 串口接收

串口接收数据可用中断(IIR 寄存器的低 4 位为 04H) 是指接收 FIF0 中的已有数据字节数已经到或超过由 FCR 寄存器的 RB\_FCR\_FIF0\_TRIG 设置选择的 FIF0 触发点。当从 RBR 读取数据使 FIF0 字数低于 FIF0 触发点时,该中断被清除。

串口接收数据超时中断(IIR 寄存器的低 4 位为 0CH)是指接收 FIF0 中至少有一个字节的数据,并且从上一次串口接收到数据和从上一次被单片机取走数据开始,已经等待了相当于接收 4 个数据的时间。当再次接收到一个新的数据后,该中断被清除,或者当单片读取一次 RBR 寄存器后,该中断也能被清除。当接收 FIF0 全空时,LSR 寄存器的 RB\_LSR\_DATA\_RDY 位为 0,当接收 FIF0 中有数据时,RB LSR DATA RDY 位为 1 有效。

在中断触发方式下,当收到串口接收数据超时的中断后,可以读取 R8\_UARTx\_RFC 寄存器查询当前 FIFO 中剩余数据计数,直接读取全部数据,或者不断查询 LSR 寄存器的 RB\_LSR\_DATA\_RDY 位,如果此位有效则读数据,直到此位无效。当收到串口接收数据可用的中断后,可以先从 RBR 寄存器读取由 FCR 寄器的 RB\_FCR\_FIFO\_TRIG 设定的字节数,然后直接读取该字节个数的数据,或者也可以根据 RB\_LSR\_DATA\_RDY 位和 R8\_UARTx\_RFC 寄存器读取当前 FIFO 中所有数据。

在查询方式下,单片机可以根据 LSR 寄存器的 RB\_LSR\_DATA\_RDY 位判断接收 FIF0 是否为空,和相关资料下载网址: www. wch. cn

读取 R8\_UARTx\_RFC 寄存器获取当前 FIFO 中数据计数,来获取串口接收的所有数据。

### 7.3.4 硬件流控制

硬件流控制包括自动 CTS (MCR 寄存器的 RB\_MCR\_AU\_FLOW\_EN 为 1) 和自动 RTS (MCR 寄存器的 RB\_MCR\_AU\_FLOW\_EN 和 RB\_MCR\_RTS 都为 1)。

如果使能自动 CTS,那么 CTS 引脚在串口发送数据之前必须有效。串口发送器在发送下一个数据之前会检测 CTS 引脚,当 CTS 引脚状态有效时,发送器发送下一个数据。为了使发送器停止发送后面的数,CTS 引脚必须在当前发送的最后一个停止位的中间时刻之前被无效。自动 CTS 功能减少了向单片机系统申请的中断。当使能硬件流控制后,由于控制器会根据 CTS 引脚状态自动控制发送器,所以CTS 引脚电平的改变不会触发 MODEM 中断。如果使能自动 RTS,那么仅当 FIFO 中有足够空间接收数据时才使 RTS 引脚输出有效,而在接收 FIFO 满时使 RTS 引脚输出无效。如果接收 FIFO 中的数据被全部取走或清空,那么 RTS 引脚输出有效。当到达接收 FIFO 的触发点时(接收 FIFO 中已有字节数不少于FCR 寄存器的 RB\_FCR\_FIFO\_TRIG 设定的字节数),RTS 引脚输出无效,并且允许对方发送器在 RTS 引脚无效后再发送一个另外的数据。一旦接收 FIFO 被取空数据,RTS 引脚就会自动重有效,从而使对方的发送器恢复发送。如果自动 CTS 和自动 RTS 都被使能(MCR 寄存器的 RB\_MCR\_AU\_FLOW\_EN 和RB\_MCR\_RTS 都为 1),那么当己方的 RTS 引脚连接对方的 CTS 引脚时,除非己方的接收 FIFO 中有足够的空间,否方不会发送数据。因此,通过这种硬件流控制,可以避免串口接收时的 FIFO 溢出和超时错误。

# 第8章 通用定时器 TMRx

### 8.1 TMRx 简介

CH568 芯片提供了 3 个 26 位定时器, TMR0、TMR1 和 TMR2, 最长定时时间为 2<sup>26</sup> 个时钟周期。 所有定时器均支持捕捉、PWM 以及中断功能, 另外 TMR1 和 TMR2 支持 DMA 功能。

#### 特性:

- (1)、3个26位定时器,每个定时器定时时间最大为2<sup>26</sup>个时钟周期;
- (2)、每个定时器都支持 PWM 功能:
- (3)、每个定时器都支持捕获功能;
- (4)、每个定时器都支持定时器中断,其中 TMR1 和 TMR2 支持 DMA 及中断;
- (5)、捕获功能可设置为电平变化捕获功能和高或低电平保持时间捕获功能;
- (6)、PWM 功能支持动态的调整 PWM 占空比设置;

### 8.2 寄存器描述

TMR0相关寄存器物理起始地址为: 0x0040 2000 TMR1相关寄存器物理起始地址为: 0x0040 2400 TMR2相关寄存器物理起始地址为: 0x0040 2800

| 表 8-1 | TMRO  | 相关寄存器列表       |
|-------|-------|---------------|
| 120 1 | IIIII | 1日人 引   丁四ノリベ |

| 次6 : 1 :::::(6 相次前 |      |            |              |  |
|--------------------|------|------------|--------------|--|
| 名称                 | 偏移地址 | 描述         | 复位值          |  |
| R8_TMRO_CTRL_MOD   | 0x00 | 模式设置寄存器    | 8h02         |  |
| R8_TMR0_INTER_EN   | 0x02 | 中断使能寄存器    | 8h00         |  |
| R8_TMRO_INT_FLAG   | 0x06 | 中断标志寄存器    | 8h00         |  |
| R8_TMR0_FIF0_COUNT | 0x07 | FIF0 计数寄存器 | 8h00         |  |
| R32_TMR0_COUNT     | 0x08 | 当前计数值寄存器   | 32h0000 0000 |  |
| R32_TMR0_CNT_END   | 0x0C | 计数终值设置寄存器  | 32h0000 0000 |  |
| R32_TMR0_F1F0      | 0x10 | FIF0 寄存器   | 32h0000 0000 |  |

表 8-2 TMR1 相关寄存器列表

| 名称                 | 偏移地址 | 描述          | 复位值          |
|--------------------|------|-------------|--------------|
| R8_TMR1_CTRL_MOD   | 0x00 | 模式设置寄存器     | 8h02         |
| R8_TMR1_CTRL_DMA   | 0x01 | DMA 控制寄存器   | 8h00         |
| R8_TMR1_INTER_EN   | 0x02 | 中断使能寄存器     | 8h00         |
| R8_TMR1_INT_FLAG   | 0x06 | 中断标志寄存器     | 8h00         |
| R8_TMR1_FIF0_COUNT | 0x07 | FIF0 计数寄存器  | 8h00         |
| R32_TMR1_COUNT     | 0x08 | 当前计数值寄存器    | 32h0000 0000 |
| R32_TMR1_CNT_END   | 0x0C | 计数终值寄存器     | 32h0000 0000 |
| R32_TMR1_FIF0      | 0x10 | FIF0 寄存器    | 32h0000 0000 |
| R16_TMR1_DMA_NOW   | 0x14 | DMA 当前缓冲区地址 | 16h0000      |
| R16_TMR1_DMA_BEG   | 0x18 | DMA 起始缓冲区地址 | 16h0000      |
| R16_TMR1_DMA_END   | 0x1C | DMA 结束缓冲区地址 | 16h0000      |

表 8-3 TMR2 相关寄存器列表

| 名称               | 偏移地址 | 描述      | 复位值  |
|------------------|------|---------|------|
| R8_TMR2_CTRL_MOD | 0x00 | 模式设置寄存器 | 8h02 |

| R8_TMR2_CTRL_DMA   | 0x01 | DMA 控制寄存器   | 8h00         |
|--------------------|------|-------------|--------------|
| R8_TMR2_INTER_EN   | 0x02 | 中断使能寄存器     | 8h00         |
| R8_TMR2_INT_FLAG   | 0x06 | 中断标志寄存器     | 8h00         |
| R8_TMR2_F1F0_COUNT | 0x07 | FIF0 计数寄存器  | 8h00         |
| R32_TMR2_COUNT     | 0x08 | 当前计数值寄存器    | 32h0000 0000 |
| R32_TMR2_CNT_END   | 0x0C | 计数终值寄存器     | 32h0000 0000 |
| R32_TMR2_F1F0      | 0x10 | FIF0 寄存器    | 32h0000 0000 |
| R16_TMR2_DMA_NOW   | 0x14 | DMA 当前缓冲区地址 | 16h0000      |
| R16_TMR2_DMA_BEG   | 0x18 | DMA 起始缓冲区地址 | 16h0000      |
| R16_TMR2_DMA_END   | 0x1C | DMA 结束缓冲区地址 | 16h0000      |

### 模式设置寄存器(R8\_TMRx\_CTRL\_MOD)(x=0/1/2)

| 位     | 名称                | 访问 | 描述                                                                                         | 复位值 |
|-------|-------------------|----|--------------------------------------------------------------------------------------------|-----|
| [7:6] | RB_TMR_CAP_EDGE   | RW | 捕获模式,边沿触发方式设置域:<br>00:禁止触发;<br>01:捕获任何边沿变化之间的时间;<br>10:捕获下降沿到下降沿之间时间;<br>11:捕获上升沿到上升沿之间时间; | 0   |
| [7:6] | RB_TMR_PWM_REPEAT | RW | PWM 重复模式设置域:<br>00: 重复 1 次;<br>01: 重复 4 次;<br>10: 重复 8 次;<br>11: 重复 16 次。                  | 0   |
| 5     | Reserved          | R0 | 保留。                                                                                        | 0   |
| 4     | RB_TMR_CAP_COUNT  | RW | 辅助选择,当 RB_TMR_MODE_IN=1,设置:<br>1: 计数;<br>0: 捕获。                                            | 0   |
| 4     | RB_TMR_OUT_POLAR  | RW | PWM 模式输出极性设置位:<br>1: 默认高电平,低电平有效;<br>0: 默认低电平,高电平有效。                                       | 0   |
| 3     | RB_TMR_OUT_EN     | RW | 定时器输出使能位<br>1:定时器输出使能;<br>0:定时器输出禁止。                                                       | 0   |
| 2     | RB_TMR_COUNT_EN   | RW | 定时器模块使能位:<br>1: 使能;<br>0: 禁止。                                                              | 0   |
| 1     | RB_TMR_ALL_CLEAR  | RW | 计数器的 FIF0 和 COUNT 寄存器清 0 位:<br>1: 强制清除;<br>0: 无动作。                                         | 1   |
| 0     | RB_TMR_MODE_IN    | RW | 定时器模式设置位:<br>1: 捕获/计数模式<br>0: 定时模式/PWM 模式                                                  | 0   |

#### 中断使能寄存器(R8 TMRx INTER EN) (x=0/1/2)

| 1 4/1/2 |                   |    |                             |     |  |  |
|---------|-------------------|----|-----------------------------|-----|--|--|
| 位       | 名称                | 访问 | 描述                          | 复位值 |  |  |
| [7:5]   | Reserved          | R0 | 保留。                         | х   |  |  |
| 4       | RB_TMR_IE_FIFO_OV | RW | FIF0 溢出中断使能位:<br>1: 使能相应中断; | 0   |  |  |

|   |                    |    | 0:禁止相应中断。                                                                            |   |
|---|--------------------|----|--------------------------------------------------------------------------------------|---|
| 3 | DD TMD LE DMA END  | RW | DMA 结束中断使能位,不支持 TMR0: 1: 使能相应中断;                                                     | 0 |
| 3 | RB_TMR_IE_DMA_END  | KW | 1: 使能怕应中断;<br>  0: 禁止相应中断。                                                           | U |
| 2 | RB_TMR_IE_FIFO_HF  | RW | FIFO 过半中断使能位: 1: 使能相应中断; 0: 禁止相应中断。 (capture fifo >=4 or PWM fifo <=3)               | 0 |
| 1 | RB_TMR_IE_DATA_ACT | RW | 捕获模式,电平变化中断使能位: 1: 使能相应中断; 0: 禁止相应中断。 PWM 模式, PWM 完成中断使能位: 1: 使能相应中断; 0: 禁止相应中断;     | 0 |
| 0 | RB_TMR_IE_CYC_END  | RW | 捕获模式,捕获超时中断使能位: 1: 使能相应中断; 0: 禁止相应中断。 PWM 模式, PWM 时钟周期结束中断使能位: 1: 使能相应中断; 0: 禁止相应中断; | 0 |

# 中断标志寄存器(R8\_TMRx\_INT\_FLAG)(x=0/1/2)

| 位     | 名称                 | 访问   | 描述                                 | 复位值 |
|-------|--------------------|------|------------------------------------|-----|
| [7:5] | Reserved           | R0   | 保留。                                | Х   |
|       |                    |      | FIF0 溢出标志位:                        |     |
| 4     | RB_TMR_IF_FIF0_0V  | RW1  | 1: 已溢出;                            | 0   |
|       |                    |      | 0: 未溢出。                            |     |
|       |                    |      | DMA 完成标志位,不支持 TMRO:                |     |
| 3     | RB_TMR_IF_DMA_END  | RW1  | 1: 已完成;                            | 0   |
|       |                    |      | 0: 未完成。                            |     |
|       |                    |      | FIF0 计数过半标志位:                      |     |
| 2     | RB TMR IF FIFO HF  | RW1  | 1: FIF0 计数已过半;                     | 0   |
|       |                    | IXWI | 0: IF0 计数未过半。                      | O   |
|       |                    |      | (capture fifo >=4 or PWM fifo <=3) |     |
|       |                    |      | 捕获模式,捕获到电平变化标志位:                   |     |
|       |                    |      | 1: 捕获到电平变化;                        |     |
| 1     | RB TMR IF DATA ACT | RW1  | 0:未捕获到电平变化。                        | 0   |
| '     |                    | 100  | PWM 模式,PWM 触发标志位:                  | O   |
|       |                    |      | 1:已触发(PWM 计数到达指定数值);               |     |
|       |                    |      | 0: 未触发。                            |     |
|       |                    |      | 捕获模式,超时标志位:                        |     |
|       |                    |      | 1:已超时;0:未超时。                       |     |
|       |                    |      | PWM 模式,PWM 周期结束标志位:                |     |
| 0     | RB_TMR_IF_CYC_END  | RW1  | 1: 已结束; 0: 未结束。                    | 0   |
|       |                    |      | 定时模式:                              |     |
|       |                    |      | 1: 定时周期结束; 0: 未结束。                 |     |
|       |                    |      | 写1清零。                              |     |

### FIFO 计数寄存器 (R8\_TMRx\_FIF0\_COUNT) (x=0/1/2)

| 位     | 名称                 | 访问 | 描述                  | 复位值 |
|-------|--------------------|----|---------------------|-----|
| [7:0] | R8_TMRx_F1F0_COUNT | R0 | FIF0 内数据字节计数,最大值 8。 | Х   |

### 当前计数值寄存器(R32\_TMRx\_COUNT)(x=0/1/2)

| 位      | 名称             | 访问 | 描述        | 复位值 |
|--------|----------------|----|-----------|-----|
| [31:0] | R32_TMRx_COUNT | R0 | 计数器当前计数值。 | Х   |

### 计数终值设置寄存器(R32\_TMRx\_CNT\_END) (x=0/1/2)

| 位      | 名称               | 访问 | 描述                                                                                                                                              | 复位值 |
|--------|------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| [31:0] | R32_TMR×_CNT_END | RW | 定时器模式下定时时钟数;<br>PWM 模式下 PWM 周期总时钟数;<br>捕获模式下捕获超时时钟数;<br>最大值 67108864。<br>注: R32_TMRx_COUNT 是从 0 起计数, 所以最大值为 R32_TMRx_CNT_END 减 1。<br>仅低 26 位有效。 | x   |

### FIF0 寄存器(R32\_TMRx\_FIF0) (x=0/1/2)

| 位      | 名称            | 访问        | 描述                    | 复位值 |
|--------|---------------|-----------|-----------------------|-----|
| [31:0] | R32_TMRx_F1F0 | RO/<br>WO | FIF0 数据寄存器,仅低 26 位有效。 | х   |

### DMA 控制寄存器 (R8\_TMRx\_CTRL\_DMA) (x=1/2)

| 位     | 名称                | 访问 | 描述                                                                                                              | 复位值 |
|-------|-------------------|----|-----------------------------------------------------------------------------------------------------------------|-----|
| [7:3] | Reserved          | R0 | 保留。                                                                                                             | Х   |
| 2     | RB_TMR_DMA_LOOP   | RW | DMA 地址循环功能使能位,不支持 TMRO: 1: 使能 DMA 地址循环功能; 0: 禁止 DMA 地址循环功能。 如果使能 DMA 地址循环模式功能,当 DMA 地址增加到设置的末尾地址时,自动循环指向设置的首地址。 | 0   |
| 1     | Reserved          | R0 | 保留。                                                                                                             | 0   |
| 0     | RB_TMR_DMA_ENABLE | RW | DMA 功能使能位,不支持 TMRO:<br>1: 使能 DMA;<br>0: 禁止 DMA。                                                                 | 0   |

### DMA 当前缓冲区地址(R16\_TMRx\_DMA\_NOW) (x=1/2)

| 位      | 名称               | 访问 | 描述                                                                             | 复位值  |
|--------|------------------|----|--------------------------------------------------------------------------------|------|
| [15:0] | R16_TMR×_DMA_NOW | RW | DMA 数据缓冲区当前地址。<br>可以作为已转换次数的计算,计算方法<br>为:<br>COUNT=(TMR_DMA_NOW-TMR_DMA_BEG)/4 | xxxx |

### DMA 起始缓冲区地址(R16\_TMRx\_DMA\_BEG) (x=1/2)

| 位      | 名称               | 访问 | 描述                    | 复位值  |
|--------|------------------|----|-----------------------|------|
| [15:0] | R16_TMRx_DMA_BEG | RW | DMA 数据缓冲区起始地址, 地址必须 4 | xxxx |

|  | 字节对齐。<br>即 PWM 进行数据发送或者捕获模式下,<br>开始捕获到的数据从此缓冲区地址开 |  |
|--|---------------------------------------------------|--|
|  | 始。                                                |  |

DMA 结束缓冲区地址(R16 TMRx DMA END) (x=1/2)

| 位      | 名称               | 访问 | 描述                                                                | 复位值  |
|--------|------------------|----|-------------------------------------------------------------------|------|
| [15:0] | R16_TMRx_DMA_END | RW | DMA 数据缓冲区结束地址,地址必须 4字节对齐。 即 PWM 进行数据发送或者捕获模式下, 开始捕获到的数据至此缓冲区地址结束。 | xxxx |

### 8.3 TMRx 功能

### 8.3.1 定时、计数功能

CH568 的 3 个定时器,每一个支持最长定时时间为  $2^26$  个时钟周期。如果系统时钟周期为 96M,则最长定时时间为: $10.4 \text{ns} * 2^26 \approx 0.7 \text{s}$ 。如果系统时钟低于 96M,则定时时间更长。

3 个定时器都有独立的中断。

定时功能寄存器初始化如下:

- (1)、设置寄存器 R32\_TMRx\_CNT\_END 为需要定时的时间值; 具体计算方法为: Time = Fsys \* R32 TMRx CNT END
- (2)、设置寄存器 R8 TMRx CTRL MOD 中的 RB TMR MODE IN 位为为 0, RB TMR ALL CLEAR 位为 0;
- (3)、将寄存器 R8\_TMRx\_CTRL\_MOD 的 RB\_TMR\_COUNT\_EN 位置 1,启动定时器功能;
- (4)、定时时间结束时,寄存器 R8 TMRx INT FLAG 的 RB TMR IF CYC END 位将置 1,需写 1 清零。

#### 8.3.2 PWM 功能

CH568 芯片的 3 个定时器,均具有 PWM 功能。PWM 可设置默认输出极性为高电平或低电平,重复次数可选为 1, 4, 8 或 16 次,该重复功能结合 DMA 可以用于模仿 DAC 的效果。PWM 输出最短时间周期为 1 个系统时钟,可动态修改 PWM 的占空比,模仿出特殊波形,例如准正弦波。

PWM 功能操作:

PWM 输出时需要设置寄存器 (R32\_TMRx\_FIF0) 和寄存器 (R32\_TMRx\_CNT\_END), R32\_TMRx\_FIF0 为数据寄存器, R32 TMRx CNT END 为 PWM 总周期寄存器。

PWM 操作步骤如下:

- (1)、设置 PWM 总周期寄存器 R32\_TMRx\_CNT\_END, 最小值为 1, 该寄存器的值必须大于等于 R32\_TMRx\_FIF0 寄存器的值;
- (2)、设置数据寄存器 R32\_TMRx\_FIF0,最小值为 0,对应占空比 0%,最大值同 R32\_TMR\_CNT\_END,对应占空比 100%,占空比计算:R32\_TMRx\_FIF0/R32\_TMRx\_CNT\_END。TMR1 和 TMR2 支持连续动态数据 (DMA),可以模仿出特殊波形;
- (3)、将模式设置寄存器(R8\_TMRx\_CTRL\_MOD)中的 RB\_TMR\_MODE\_IN 位清 0, 启用 PWM 模式;同时将 RB\_TMR\_ALL\_CLEAR 位置 1 再清 0 强制清除 FIFO 和 COUNT;设置 RB\_TMR\_OUT\_POLAR 位选择输出极性。如果需要设置重复次数,则根据需要设置 RB\_TMR\_PWM\_REPEAT 域。
- (4)、将模式设置寄存器(R8\_TMRx\_CTRL\_MOD)中的 RB\_TMR\_COUNT\_EN 位和 RB\_TMR\_OUT\_EN 位置 1, 开启 PWM 功能:
  - (5)、将 PWM 对应的 I/0 引脚设置为输出;
  - (6)、如果需要启用中断则设置相应的中断使能寄存器位;

(7)、PWM 完成后,如果开启中断则产生相对应的定时器中断,同时通过读取 R8\_TMRx\_INT\_FLAG 寄存器了解 PWM 是否完成以及 PWM 过程中是否产生错误;

例如:设置 RB\_TMR\_OUT\_POLAR 位为 0, R32\_TMRx\_FIFO 为 6, R32\_TMRx\_CNT\_END 为 18, 则产生 PWM 的基本时序图如下所示,其占空比为:

PWM 占空比 = R32\_TMRx\_FIF0/R32\_TMRx\_CNT\_END = 1/3



图 8-1 PWM 输出时序图

如果 RB\_TMR\_PWM\_REPEAT 域设置为 00 则表示上述过程重复 1 次, 01 表示重复 4 次, 10 表示重复 8 次, 11 表示重复 16 次。重复之后再取 FIF0 中的下一个数据继续。

### 8.3.3 捕获功能

CH568 芯片的 3 个定时器都具备捕获功能,其中 TMR1 和 TMR2 的捕获功能支持 DMA 方式存储。捕获模式可以选择任何边沿触发开始至任何边沿触发结束、上升沿触发开始至上升沿触发结束或下降沿触发开始至下降沿触发结束三种模式。以下为捕获触发模式说明表:

| 捕获模式选择位<br>(RB_TMR_CATCH_EDGE) | 触发方式    | 图示 |
|--------------------------------|---------|----|
| 00                             | 禁止捕获    | 无  |
| 01                             | 边沿触发    |    |
| 10                             | 下降沿至下降沿 |    |
| 11                             | 上升沿至上升沿 |    |

表 8-4 捕获触发模式说明表

边沿触发模式下有 2 种触发状态,可以捕获高电平宽度或低电平宽度。数据寄存器 (R32\_TMRx\_FIFO)的有效数据最高位(位 25)为 1 表示捕获电平为高电平,反之则捕获低电平。如 果连续多组数据的位 25 都是 1(或 0),说明该高(或低)电平的宽度超过超时值,需多组累计。

下降沿至下降沿、或者上升沿至上升沿触发模式下,可以捕获一个输入变化周期。数据寄存器 (R32\_TMRx\_F1F0)的有效数据最高位(位25)为0表示正常采样到一个周期,为1则表示输入变化

周期超过超时值 R32\_TMRx\_CNT\_END,需加上后一组数据累计为单个输入变化周期。 具体说明如下图所示:



图 8-2 以系统时钟周期为捕获周期

如上图所示,每个时钟周期内采样一次,

当 RB\_TMR\_CATCH\_EDGE = 2b01 时,设置为边沿触发采样,采样到的时间宽度为 3Tsys、3Tsys、10Tsys; 当 RB\_TMR\_CATCH\_EDGE = 2b10 时,设置为下降沿至下降沿采样,采样到的时间宽度为 13Tsys; 当 RB\_TMR\_CATCH\_EDGE = 2b11 时,设置为上升沿至上升沿采样,采样到的时间宽度为 6Tsys。

#### 捕获模式操作步骤:

- (1)、设置寄存器 R32\_TMRx\_CNT\_END 用于设定捕获超时时间,默认最大超时时间为 2<sup>26</sup> 个时钟 周期,建议设置合理的超时,避免输入长时间无变化时长时间无数据,如果在最大超时时间内没有检测到电平变化,则 R32\_TMRx\_F1F0 寄存器的位 25 置 1;
  - (2)、将捕获对应的 I/O 引脚方向设置为输入;
- (3)、将模式设置寄存器(R8\_TMRx\_CTRL\_MOD)的 RB\_TMR\_MODE\_IN 置 1, RB\_TMR\_CAP\_COUNT 位置 0, 同时 RB\_TMR\_ALL\_CLEAR 位清 0, 用于清除 FIFO 和 COUNT。同时设置 RB\_TMR\_CAP\_EDGE 控制域位选择捕获模式;
  - (4)、如果需要启用中断,则将中断寄存器 R8 TMRx INTER EN 中相应位置 1,启动相应中断;
- (5)、如果需要采用 DMA 方式(只支持 TMR1 和 TMR2)保存捕获的数据,需将 R8\_TMRx\_CTRL\_DMA 寄存器 RB\_TMR\_DMA\_ENABLE 位置 1,使能 DMA 功能,同时将寄存器 R16\_TMRx\_DMA\_BEG 设置为存储捕获数据缓冲区的首地址,将寄存器 R16\_TMRx\_DMA\_END 设置为存储捕获数据缓冲区的结束地址;
  - (6)、将寄存器 R8 TMRx CTRL MOD 的 RB TMR COUNT EN 位置 1, 使能定时器模块, 启动捕获功能;
- (7)、捕获完成后,寄存器 R8\_TMRx\_INT\_FLAG 会产生相应的中断状态。默认捕获的数据存放在寄存器 R32\_TMRx\_FIFO 中,如果采用 DMA 数据传输,则捕获到的数据自动存放在 DMA 设置的数据缓冲区中。

# 第9章 PWM

# 9.1 PWM 控制器简介

CH568 额外提供了 4 路 PWM 输出,占空比可调,PWM 周期固定可选 2 种模式,操作简单。 扩展的 PWM 管脚输出标识为 PWM3/ PWM4/ PWM5/ PWM6, 其中 PWM5 和 PWM6 支持重映射到 PWM5\_ 和 PWM6\_引脚。

## 9.2 寄存器描述

PWM0/1/2/3相关寄存器物理基地址为: 0x0040 5000

表 9-1 PWM0/1/2/3 相关寄存器列表

| 名称               | 偏移地址 | 描述                 | 复位值  |
|------------------|------|--------------------|------|
| R8_PWM_CTRL_MOD  | 0x00 | PWM 模式控制寄存器        | 8h00 |
| R8_PWM_CTRL_CFG  | 0x01 | PWM 配置控制寄存器        | 8h00 |
| R8_PWM_CLOCK_DIV | 0x02 | PWM 时钟分频寄存器        | 8h00 |
| R32_PWM_DATA     | 0x08 | PWMO/1/2/3 数据保持寄存器 | 32h  |

#### PWM 模式控制寄存器(R8 PWM CTRL MOD)

| 位 | 名称             | 访问 | 描述            | 复位值 |
|---|----------------|----|---------------|-----|
|   |                |    | PWM3 输出极性控制位: |     |
| 7 | RB_PWM3_POLAR  | RW | 1: 默认高电平,低有效; | 0   |
|   |                |    | 0:默认低电平,高有效。  |     |
|   |                |    | PWM2 输出极性控制位: |     |
| 6 | RB_PWM2_POLAR  | RW | 1:默认高电平,低有效;  | 0   |
|   |                |    | 0: 默认低电平,高有效。 |     |
|   |                |    | PWM1 输出极性控制位: |     |
| 5 | RB_PWM1_POLAR  | RW | 1:默认高电平,低有效;  | 0   |
|   |                |    | 0: 默认低电平,高有效。 |     |
|   |                |    | PWMO 输出极性控制位: |     |
| 4 | RB_PWMO_POLAR  | RW | 1:默认高电平,低有效;  | 0   |
|   |                |    | 0: 默认低电平,高有效。 |     |
|   |                |    | PWM3 输出使能位:   |     |
| 3 | RB_PWM3_OUT_EN | RW | 1: 使能;        | 0   |
|   |                |    | 0: 禁止。        |     |
|   |                |    | PWM2 输出使能位:   |     |
| 2 | RB_PWM2_OUT_EN | RW | 1: 使能;        | 0   |
|   |                |    | 0: 禁止。        |     |
|   |                |    | PWM1 输出使能位:   |     |
| 1 | RB_PWM1_OUT_EN | RW | 1: 使能;        | 0   |
|   |                |    | 0: 禁止。        |     |
|   |                |    | PWMO 输出使能位:   |     |
| 0 | RB_PWMO_OUT_EN | RW | 1: 使能;        | 0   |
|   |                |    | 0: 禁止。        |     |

### PWM 配置控制寄存器(R8\_PWM\_CTRL\_CFG)

| 位     | 名称       | 访问 | 描述  | 复位值 |
|-------|----------|----|-----|-----|
| [7:1] | Reserved | RW | 保留。 | 0   |

| 0 | RB_PWM_CYCLE_SEL | RW | PWM 周期选择:<br>1:255 个时钟周期;<br>0:256 个时钟周期。 | 0 |  |
|---|------------------|----|-------------------------------------------|---|--|
|---|------------------|----|-------------------------------------------|---|--|

#### PWM 时钟分频寄存器 (R8\_PWM\_CLOCK\_DIV)

| 位    | 名称               | 访问 | 描述                                              | 复位值 |
|------|------------------|----|-------------------------------------------------|-----|
| [7:0 | R8_PWM_CLOCK_DIV | RW | PWM 基准时钟分频系数。<br>计算: CLK=Fsys/R8_PWM_CLOCK_DIV。 | 0   |

#### PWMO/1/2/3 数据保持寄存器(R32 PWM DATA)

| 位       | 名称           | 访问 | 描述            | 复位值 |
|---------|--------------|----|---------------|-----|
| [31:24] | R8_PWM3_DATA | RW | PWM3 数据保持寄存器。 | xx  |
| [23:16] | R8_PWM2_DATA | RW | PWM2 数据保持寄存器。 | xx  |
| [15:8]  | R8_PWM1_DATA | RW | PWM1 数据保持寄存器。 | xx  |
| [7:0]   | R8_PWMO_DATA | RW | PWMO 数据保持寄存器。 | xx  |

### 9.3 PWM 配置

- 1) 设置 PWMO-PWM3 引脚方向为输出,可选地,设置相应 I/O 的驱动能力;
- 2) 设置寄存器 R8\_PWM\_CLOCK\_DIV, 计算 PWM 的时钟基准频率;
- 3) 设置 PWM 模式控制寄存器 R8\_PWM\_CTRL\_MOD, 配置 PWMx 的输出极性,并开启相应的 PWMx (RB\_PWMx\_OUT\_EN 位置 1) 输出;
  - 4) 设置 R8\_PWM\_CTRL\_CFG 寄存器和 R32\_PWM\_DATA 寄存器,配置输出的 PWM 占空比。计算公式:

PWMx 占空比 = R8\_PWMx\_DATA / (RB\_PWM\_CYCLE\_SEL ? 255 : 256 )

说明:如果 R8\_PWM\_CTRL\_MOD 寄存器中,对应的 RB\_PWMx\_OUT\_EN 输出使能一直开启,会不断输出 PWM 波形直到 RB\_PWMx\_OUT\_EN 被禁止。

# 第 10 章 LED 屏控制器

# 10.1 LED 控制器简介

CH568 提供了 LED 屏控制卡接口,内置 4 字节 FIF0, 支持 DMA 和中断, 节约 CPU 处理时间, 支持 1/2/4 路数据线接口。

## 10.2 寄存器描述

LED相关寄存器物理基地址为: 0x0040 6000

表 10-1 LED 相关寄存器列表

| 名称               | 偏移地址 | 描述               | 复位值     |
|------------------|------|------------------|---------|
| R8_LED_CTRL_MOD  | 0x00 | LED 模式配置寄存器      | 8h02    |
| R8_LED_CLOCK_DIV | 0x01 | LED 串行时钟分频寄存器    | 8hxx    |
| R8_LED_STATUS    | 0x04 | LED 状态寄存器        | 8h00    |
| R16_LED_F1F0     | 0x08 | LED FIFO 寄存器     | 16hxxxx |
| R16_LED_DMA_CNT  | 0x10 | LED DMA 剩余计数寄存器  | 16hxxxx |
| R16_LED_DMA_MAIN | 0x14 | LED 主缓冲区 DMA 地址  | 16hxxxx |
| R16_LED_DMA_AUX  | 0x18 | LED 辅助缓冲区 DMA 地址 | 16hxxxx |

LED 模式配置寄存器(R8\_LED\_CTRL\_MOD)

| 位     | 名称               | 访问 | 描述                                                                                                            | 复位值 |
|-------|------------------|----|---------------------------------------------------------------------------------------------------------------|-----|
| [7:6] | RB_LED_CHAN_MOD  | RW | LED 通道模式设置域: 00: LEDO, 单通道输出; 01: LEDO/1, 双通道输出; 10: LEDO~3, 4通道输出; 11: LEDO~3, 4通道输出, 其中 LED2/3 通道数据来源辅助缓冲区。 | 0   |
| 5     | RB_LED_IE_FIF0   | RW | FIF0 计数过半中断使能:<br>1: FIF0 计数<=2 中断触发;<br>0: 禁止相应中断。                                                           | 0   |
| 4     | RB_LED_DMA_EN    | RW | LED DMA 功能和 DMA 中断使能:<br>1: 使能;<br>0: 禁止。                                                                     | 0   |
| 3     | RB_LED_OUT_EN    | RW | LED 信号输出:<br>1: 使能;<br>0: 禁止。                                                                                 | 0   |
| 2     | RB_LED_OUT_POLAR | RW | LED 数据输出极性控制位: 1: 翻转输出,数据 0 输出 1,数据 1 输出 0; 0: 直通输出,数据 0 输出 0,数据 1 输出 1。                                      | 0   |
| 1     | RB_LED_ALL_CLEAR | RW | 清除 LED FIFO 和计数器:<br>1:强制清除;<br>0:无动作。                                                                        | 1   |
| 0     | RB_LED_BIT_ORDER | RW | LED 串行数据位序:<br>1: 高字节在前;<br>0: 低字节在前。                                                                         | 0   |

### LED 串行时钟分频寄存器(R8\_LED\_CLOCK\_DIV)

| 位     | 名称               | 访问 | 描述                                                | 复位值 |
|-------|------------------|----|---------------------------------------------------|-----|
| [7:0] | R8_LED_CLOCK_DIV | RW | LED 控制输出时钟分频系数。<br>计算: CLK=Fsys/R8_LED_CLOCK_DIV。 | xx  |

#### LED 状态寄存器(R8\_LED\_STATUS)

| 位     | 名称                | 访问  | 描述                                                                                   | 复位值 |
|-------|-------------------|-----|--------------------------------------------------------------------------------------|-----|
| 7     | RB_LED_IF_DMA_END | RW1 | DMA 传输完成标志位: 1: DMA 传输完成; 0: 未完成。 写1清零或者写R16_LED_DMA_CNT清零。                          | 0   |
| 6     | RB_LED_F1F0_EMPTY | RO  | FIF0 空状态位:<br>1: FIF0 空;<br>0: FIF0 非空。                                              | 0   |
| 5     | RB_LED_IF_FIF0    | RW1 | FIF0 计数过半中断标志位:<br>1: FIF0 计数 <= 2;<br>0: FIF0 计数 > 2。<br>写 1 清零或者写 R16_LED_FIF0 清零。 | 0   |
| 4     | RB_LED_CLOCK      | 0   | 当前 LED 时钟信号电平状态: 1: 高电平; 0: 低电平。                                                     | 0   |
| 3     | Reserved          | R0  | 保留。                                                                                  | 0   |
| [2:0] | RB_LED_F1F0_COUNT | R0  | 当前 FIF0 中字节计数值,一定偶数。                                                                 | 0   |

### LED FIF0 寄存器(R16\_LED\_FIF0)

| 位      | 名称           | 访问 | 描述                     | 复位值  |
|--------|--------------|----|------------------------|------|
| [15:0] | R16_LED_F1F0 | WO | LED 数据 FIFO 入口,16 位写入。 | xxxx |

### LED DMA 剩余计数寄存器(R16\_LED\_DMA\_CNT)

| 位      | 名称              | 访问 | 描述                                                                          | 复位值  |
|--------|-----------------|----|-----------------------------------------------------------------------------|------|
| [15:0] | R16_LED_DMA_CNT | RW | LED_DMA_MAIN 主缓冲区当前 DMA 剩余字<br>(16 位)计数,DMA 启动后自动递减,<br>仅低 12 位有效。不包括辅助缓冲区。 | xxxx |

### LED 主缓冲区 DMA 地址(R16\_LED\_DMA\_MAIN)

| 位      | 名称               | 访问 | 描述                               | 复位值  |
|--------|------------------|----|----------------------------------|------|
| [15:0] | R16_LED_DMA_MAIN | RW | 主缓冲区 DMA 起始地址/当前地址, 预设初值后, 自动递增。 | xxxx |

### LED 辅助缓冲区 DMA 地址(R16\_LED\_DMA\_AUX)

| 位      | 名称              | 访问 | 描述                              | 复位值  |
|--------|-----------------|----|---------------------------------|------|
| [15:0] | R16_LED_DMA_AUX | RW | 辅助缓冲区 DMA 起始地址/当前地址,预设初值后,自动递增。 | xxxx |

# 10.3 LED 控制应用

- 1) 设置 LEDC 和必要的 LEDO~LED3 引脚方向为输出,可选地,设置相应 I/O 的驱动能力;
- 2) 设置 R8\_LED\_CLOCK\_DIV 选择 LED 输出时钟频率;
- 3) 设置 DMA 起始地址 R16\_LED\_DMA\_MAIN 指向准备输出数据的缓冲区,即主缓冲区;
- 4) 如果选择 LED 通道模式 3, 那么还要设置辅助 DMA 起始地址 R16\_LED\_DMA\_AUX 指向辅助缓冲区;
- 5) 设置 LED 控制寄存器 R8\_LED\_CTRL\_MOD, 选择通道模式、输出极性、位顺序、启用中断和 DMA 功能等;
  - 6) 设置 DMA 计数寄存器 R16\_LED\_DMA\_CNT, 启动 DMA 发送,或者用写 FIF0 的方式发送数据;
  - 7) 查询或者使用中断处理中断相应状态。

# 第 11 章 USB 控制器

### 11.1 USB 控制器简介

CH568 内嵌 USB2. 0 控制器和 USB-PHY,具有主机控制器和 USB 设备控制器双重角色。当作为主机控制器时,它可支持低速、全速和高速的 USB 设备。当作为设备控制器时,可以灵活设置为低速、全速或高速模式以适应各种应用。

USB 控制器特性如下:

- 1) 支持 USB 2.0、USB 1.1、USB 1.0;
- 2) 支持 USB Host 主机功能和 USB Device 设备功能;
- 3) 主机支持高速 HUB:
- 4) 硬件可配置为高速、全速、低速设备;
- 5) 主机和设备均支持控制传输、批量传输、中断传输、实时/同步传输;
- 6) 支持 DMA 直接访问各端点缓冲区的数据;
- 7) 支持挂起,远程唤醒和恢复功能;
- 8) 除设备端点 0 外, 其他端点均支持最大 512 字节的数据包, 部分端点支持双缓冲。

### 11.2 寄存器描述

CH568 集成 USB2. 0 主从控制器(内置 PHY),可以灵活配置为主机功能或者设备功能。 CH568 的 USB 相关寄存器分为 3 个部分,部分寄存器是在主机和设备模式下进行复用的。

- 1) USB 全局寄存器;
- 2) USB 设备控制器寄存器:
- 3) USB 主机控制器寄存器。

USB相关寄存器物理基地址为: 0x0040 9000

#### 11.2.1 全局寄存器描述

表 11-1 USB 全局寄存器列表

| 名称             | 偏移地址         | 描述            | 复位值          |
|----------------|--------------|---------------|--------------|
| USB_CTRL       | 00h          | USB 控制寄存器     | 8h06         |
| USB_INT_EN     | 02h          | USB 中断使能寄存器   | 8h00         |
| USB_DEV_AD     | 03h          | USB 设备地址寄存器   | 8h00         |
| USB_FRAME_NO   | 04h          | USB 帧号寄存器     | 16h0000      |
| USB_SUSPEND    | 06h          | USB 挂起控制寄存器   | 8h00         |
| USB_SPPED_TYPE | 08h          | USB 当前速度类型寄存器 | 8h00         |
| USB_MIS_ST     | 09h          | USB 杂项状态寄存器   | 8hxx10_1000b |
| USB_INT_FG     | 0 <b>A</b> h | USB 中断标志寄存器   | 8h00         |
| USB_INT_ST     | 0Bh          | USB 中断状态寄存器   | 8h00xx_xxxxb |
| USB_RX_LEN     | 0Ch          | USB 接收长度寄存器   | 16hxxxx      |

USB 控制寄存器(USB CTRL)

| 00D JTI | in i |    |                                                    |     |
|---------|------------------------------------------|----|----------------------------------------------------|-----|
| 位       | 名称                                       | 访问 | 描述                                                 | 复位值 |
| 7       | buc_host_mode                            | RW | USB 工作模式选择位:<br>0:设备模式 (DEVICE);<br>1:主机模式 (HOST)。 | 0   |
| [6:5]   | UC SPEED TYPE                            | RW | USB 总线信号传输速率选择位:                                   | 00b |

|   |               |    | 00: 全速; 01: 高速; 10: 低速。                                                                       |   |
|---|---------------|----|-----------------------------------------------------------------------------------------------|---|
| 4 | bUC_DEV_PU_EN | RW | 设备模式下, USB 设备使能和内部上拉电阻控制位: 1: 使能 USB 设备传输并且启用内部上拉电阻; 0: 不启用。                                  | 0 |
| 3 | buc_int_busy  | RW | USB 传输完成中断标志未清零前自动暂停使能位: 1: 在中断标志 UIF_TRANSFER 未清零前自动暂停,设备模式下自动应答忙 NAK,主机模式下自动暂停后续传输; 0: 不暂停。 | 0 |
| 2 | bUC_RESET_STE | RW | USB 协议处理器软件复位控制位: 1: 强制复位 USB 协议处理器(SIE),需要软件清零; 0: 不复位。                                      | 1 |
| 1 | bUC_CLR_ALL   | RW | 1: 清空 USB 中断标志和 FIFO, 需要软件清零;<br>0: 不清空。                                                      | 1 |
| 0 | bUC_DMA_EN    | RW | USB 的 DMA 和 DMA 中断控制位:<br>1: 使能 DMA 功能和 DMA 中断;<br>0: 关闭 DMA。                                 | 0 |

### USB 中断使能寄存器(USB\_INT\_EN)

| 位 | 名称            | 访问  | 描述                      | 复位值 |
|---|---------------|-----|-------------------------|-----|
|   |               |     | USB 设备模式,接收 SOF 包中断:    |     |
| 7 | buie_dev_sof  | RW  | 1: 使能相应中断;              | 0   |
|   |               |     | 0:禁止相应中断。               |     |
|   |               |     | USB 设备模式,接收到 NAK 中断:    |     |
| 6 | buie_dev_nak  | RW  | 1: 使能相应中断;              | 0   |
|   |               |     | 0:禁止相应中断。               |     |
| 5 | 保留            | R0  | 保留。                     | 0   |
|   |               |     | FIF0 溢出中断:              |     |
| 4 | bUIE_FIFO_OV  | RW  | 1: 使能相应中断;              | 0   |
|   |               |     | 0:禁止相应中断。               |     |
|   |               |     | USB 主机模式,SOF 定时中断:      |     |
| 3 | bUIE_HST_SOF  | RW  | 1: 使能相应中断;              | 0   |
|   |               |     | 0:禁止相应中断。               |     |
|   |               |     | USB 总线挂起或唤醒事件中断:        |     |
| 2 | buie_suspend  | RW  | 1: 使能相应中断;              | 0   |
|   |               |     | 0:禁止相应中断。               |     |
|   |               |     | USB 传输完成中断:             |     |
| 1 | buie_transfer | RW  | 1: 使能相应中断;              | 0   |
|   |               |     | 0:禁止相应中断。               |     |
|   |               |     | USB 主机模式下, USB 设备连接或断开事 |     |
| 0 | buie detect   | RW  | 件中断:                    | 0   |
|   | DOIL_DETECT   | LYV | 1: 使能相应中断;              | U   |
|   |               |     | 0:禁止相应中断。               |     |
| 0 | bUIE_BUS_RST  | RW  | USB 设备模式, USB 总线复位事件中断: | 0   |

| 1: 使能相应中断; |  |
|------------|--|
| 0:禁止相应中断。  |  |

#### USB 设备地址寄存器(USB\_DEV\_AD)

| 位     | 名称            | 访问 | 描述                                                   | 复位值 |
|-------|---------------|----|------------------------------------------------------|-----|
| 7     | 保留            | R0 | 保留。                                                  | 0   |
| [6:0] | MASK_USB_ADDR | RW | 主机模式下是当前操作的 USB 设备的地址或 HUB 地址;<br>设备模式下是该 USB 设备的地址。 | 00h |

#### USB 帧号寄存器(USB\_FRAME\_NO)

| 位      | 名称           | 访问 | 描述                                                                            | 复位值 |
|--------|--------------|----|-------------------------------------------------------------------------------|-----|
| [15:0] | USB_FRAME_NO | RO | 帧号,主机模式下表示即将发送的 SOF 包的帧号,设备模式下表示当前接收到的 SOF 包的帧号。其中低 11 位为有效帧号,高 3 位为高速模式的微帧号。 | 0   |

USB\_FRAME\_NO 是 16 为寄存器,其中低 11 位表示 SOF 包帧号,高 3 为表示当前属于第几个微帧,可在操作高速 HUB 下进行中断、同步/实时传输时使用。

#### USB 挂起寄存器(USB\_SUSPEND)

| 位     | 名称         | 访问 | 描述                                | 复位值 |
|-------|------------|----|-----------------------------------|-----|
| [7:2] | 保留         | R0 | 保留。                               | 0   |
| 1     | bUS_RESUME | RW | 远程唤醒控制位:<br>1: 远程唤醒主机;<br>0: 无动作。 | 0   |
| 0     | 保留         | R0 | 保留。                               | 0   |

注:需要远程唤醒时,将 bUS\_RESUME 位拉高再拉低即可。

#### USB 速度类型寄存器(USB\_SPEED\_TYPE)

| 位     | 名称             | 访问 | 描述                                                             | 复位值 |  |
|-------|----------------|----|----------------------------------------------------------------|-----|--|
| [7:2] | 保留             | R0 | 保留。                                                            | 0   |  |
| [1:0] | USB_SPEED_TYPE | RO | 在主机模式下,表示当前连接的设备速度类型,在设备模式下,表示当前设备的速度类型;<br>00:全速;01:高速;10:低速。 | 00Ь |  |

注:区别于 USB\_CTRL 寄存器中的 UC\_SPEED\_TYPE, UC\_SPEED\_TYPE 表示期望处于的最高速度,假设在设备模式下,设置 UC\_SPEED\_TYPE 为高速,当该设备连接在一个全速主机下,则实际的速度类型就是全速,通过查询 USB\_SPEED\_TYPE 寄存器可以获知。在主机模式下,设置 UC\_SPEED\_TYPE 为高速,当连接一个全速设备时,则实际通讯速度就是全速,通过查询 USB\_SPEED\_TYPE 寄存器可以获知。

### USB 杂项状态寄存器(USB\_MIS\_ST)

| 位 | 名称            | 访问 | 描述                                                                      | 复位值 |
|---|---------------|----|-------------------------------------------------------------------------|-----|
| 7 | bUMS_SOF_PRES | RO | USB 主机模式下 SOF 包预示状态位: 1: 将要发送 SOF 包,此时如有其它 USB 数据包将被自动延后; 0: 无 SOF 包发送。 | х   |
| 6 | bUMS_SOF_ACT  | R0 | USB 主机模式下 SOF 包传输状态位:<br>1: 正在发出 SOF 包;                                 | х   |

|   |                  |     | 0: 发送完成或者空闲。            |   |
|---|------------------|-----|-------------------------|---|
|   |                  |     | USB 协议处理器的空闲状态位:        |   |
| 5 | bUMS_SIE_FREE    | R0  | 1:协议器空闲;                | 1 |
|   |                  |     | 0: 忙,正在进行 USB 传输。       |   |
|   |                  |     | USB 接收 FIFO 数据就绪状态位:    |   |
| 4 | bUMS_R_FIFO_RDY  | R0  | 1:接收 FIF0 非空;           | 0 |
|   |                  |     | 0:接收 FIF0 为空。           |   |
|   |                  |     | USB 总线复位状态位:            | 0 |
| 3 | bUMS_BUS_RESET   | R0  | 1: 当前 USB 总线处于复位态;      |   |
|   |                  |     | 0: 当前 USB 总线处于非复位态。     |   |
|   | LUMO CUCDEND     | DO. | USB 挂起状态位:              | 0 |
| 2 |                  |     | 1: USB 总线处于挂起态,有一段时间没   |   |
| 2 | bUMS_SUSPEND     | R0  | 有 USB 活动;               |   |
|   |                  |     | 0: USB 总线处于非挂起态。        |   |
|   |                  |     | USB 主机模式下端口的 USB 设备连接状  |   |
| 1 | LIMO ATTACH      | R0  | 态位:                     | 0 |
| ' | 1 bums_attach ro | RU  | 1:端口已经连接 USB 设备;        | U |
|   |                  |     | 0:端口没有 USB 设备连接。        |   |
|   |                  | RO  | USB 主机模式下,SPLIT 包发送允许位: |   |
| 0 | bUMS_SPLIT_CAN   |     | 1: 允许发送 SPLIT 包;        | 0 |
|   |                  |     | 0: 禁止发送。                |   |

### USB 中断标志寄存器(USB\_INT\_FG)

| 位     | 名称           | 访问  | 描述                                                               | 复位值 |
|-------|--------------|-----|------------------------------------------------------------------|-----|
| [7:5] | 保留           | R0  | 保留。                                                              | 00b |
| 4     | UIF_FIFO_OV  | RW1 | USB FIF0 溢出中断标志位,写 1 清零:<br>1: FIF0 溢出触发;<br>0: 无事件。             | 0   |
| 3     | UIF_HST_SOF  | RW1 | USB 主机模式下 SOF 定时中断标志位,<br>写 1 清零:<br>1: SOF 传输完成触发;<br>0: 无事件。   | 0   |
| 2     | UIF_SUSPEND  | RW1 | USB 总线挂起或唤醒事件中断标志位,写 1 清零: 1: USB 挂起事件或唤醒事件触发; 0: 无事件。           | 0   |
| 1     | UIF_TRANSFER | RW1 | USB 传输完成中断标志位,写 1 清零:<br>1:一个 USB 传输完成触发;<br>0:无事件。              | 0   |
| 0     | UIF_DETECT   | RW1 | USB 主机模式下 USB 设备连接或断开事件中断标志位,写 1 清零: 1:检测到 USB 设备连接或断开触发; 0:无事件。 | 0   |
| 0     | UIF_BUS_RST  | RW1 | USB 设备模式下 USB 总线复位事件中断标志位,写 1 清零: 1: USB 总线复位事件触发; 0: 无事件。       | 0   |

USB 中断状态寄存器(USB\_INT\_ST)

| 位     | 名称             | 访问 | 描述                                                              | 复位值   |
|-------|----------------|----|-----------------------------------------------------------------|-------|
| 7     | buis_is_nak    | RO | USB 设备模式下, NAK 响应状态位:<br>1: 当前 USB 传输过程中回应 NAK;<br>0: 无 NAK 响应。 | 0     |
| 6     | buis_tog_ok    | RO | 当前 USB 传输 DATAO/1 同步标志匹配状态位:<br>1: 同步;<br>0: 不同步。               | 0     |
| [5:4] | MASK_UIS_TOKEN | R0 | 设备模式下,当前 USB 传输事务的令牌<br>PID 标识。                                 | xxb   |
| [3:0] | MASK_UIS_ENDP  | R0 | 设备模式下,当前 USB 传输事务的端点<br>号。                                      | xxxxb |
| [3:0] | MASK_UIS_H_RES | RO | 主机模式下,当前 USB 传输事务的应答 PID 标识,0000 表示设备无应答或超时; 其它值表示应答 PID。       | xxxxb |

MASK\_UIS\_TOKEN 用于 USB 设备模式下标识当前 USB 传输事务的令牌 PID: 00 表示 0UT 包; 01 表示 SOF 包; 10 表示 IN 包; 11 表示 SETUP 包。

MASK\_UIS\_H\_RES 仅在主机模式下有效。在主机模式下,若主机发送 OUT/SETUP 令牌包时,则该 PID 是握手包 ACK/NAK/STALL/NYET,或者是设备无应答/超时。若主机发送 IN 令牌包,则该 PID 是数据包的 PID (DATAO/DATA1/DATA2/MDATA)或者握手包 PID。

| USB 接收长度寄存器(USI | B RX | LEN) |
|-----------------|------|------|
|-----------------|------|------|

| 位      | 名称         | 访问 | 描述                                       | 复位值   |
|--------|------------|----|------------------------------------------|-------|
| [15:0] | USB_RX_LEN | RO | 当前 USB 端点接收到的数据计数,其中低 11 位有效,高 5 位固定为 0。 | xxxxh |

#### 11. 2. 2 设备寄存器描述

在 USB 设备模式下,CH568 提供了端点  $0 \times 1 \times 2 \times 3 \times 4$  共 5 组双向端点,除端点 0 之外的所有端点的最大数据包长度都是 512 字节,端点 0 的最大数据包长度为 64 字节。

端点 0 是默认端点,支持控制传输,发送和接收共用一个 64 字节数据缓冲区。

端点 1、端点 2、端点 3 各自包括一个发送端点 IN 和一个接收端点 OUT, 发送和接收各有一个独立的 512 字节或者双 512 字节数据缓冲区,支持批量传输、中断传输和实时/同步传输。

端点 4 包括一个发送端点 IN 和一个接收端点 OUT,发送和接收各有一个独立的 512 字节数据缓冲区,支持批量传输、中断传输和实时/同步传输。

端点 0/1/2/3 都可以设置 UEPn\_DMA 寄存器配置各自的 DMA 地址。通过 UEP4\_1\_MOD 和 UEP2\_3\_MOD 寄存器设置端点接收发送数据缓存区模式。

每组端点都具有收发控制寄存器 UEPn\_TX\_CTRL、UEPn\_RX\_CTRL 和发送长度寄存器 UEPn\_T\_LEN(n=0/1/2/3/4),用于配置该端点的同步触发位、对 OUT 事务和 IN 事务的响应以及发送数据的长度等。

作为 USB 设备所必要的 USB 总线上拉电阻可以由软件随时设置是否启用,当 USB 控制寄存器 USB\_CTRL 中的 bUC\_DEV\_EN 置 1 时,CH568 根据 bUC\_SPEED\_TYPE 的速度设置,在内部为 USB 总线的 DP/DM 引脚连接上拉电阻,并启用 USB 设备功能。

当检测到 USB 总线复位、USB 总线挂起或唤醒事件,或者当 USB 成功处理完数据发送或者数据接收后,USB 协议处理器都将设置相应的中断标志,如果中断使能打开,还会产生相应的中断请求。应用程序可以直接查询或在 USB 中断服务程序中查询并分析中断标志寄存器 USB\_INT\_FG,根据UIF\_BUS\_RST 和 UIF\_SUSPEND 进行相应的处理;并且,如果 UIF\_TRANSFER 有效,那么还需要继续分析 USB 中断状态寄存器 USB\_INT\_ST,根据当前端点号 MASK\_UIS\_ENDP 和当前事务令牌 PID 标识MASK\_UIS\_TOKEN 进行相应的处理。如果事先设定了各个端点的 OUT 事务的同步触发位 bUEP R TOG,

那么可以通过 bUIS\_TOG\_OK 判断当前所接收到的数据包的同步触发位是否与该端点的同步触发位匹配,如果数据同步,则数据有效;如果数据不同步,则数据应该被丢弃。每次处理完 USB 发送或者接收中断后,都应该正确修改相应端点的同步触发位,用于下次所发送的数据包或者下次所接收的数据包是否同步检测;另外,设置 bUEP\_AUTO\_TOG 可以实现在发送成功或者接收成功后自动翻转相应的同步触发位。

各个端点准备发送的数据在各自的缓冲区中,准备发送的数据长度是独立设定在 UEPn\_T\_LEN 中,一包发送长度不能超过 512 字节;各个端点接收到的数据在各自的缓冲区中,但是接收到的数据长度都在 USB 接收长度寄存器 USB\_RX\_LEN 中,可以在 USB 接收中断时根据当前端点号区分,每个端点可接收的最大包长度需要提前写入到 UEPn\_MAX\_LEN 寄存器中。

| 名称           | 偏移地址 | 描述             | 复位值     |
|--------------|------|----------------|---------|
| UEP4_1_MOD   | 10h  | 端点 1、4 模式控制寄存器 | 8h00    |
| UEP2_3_MOD   | 11h  | 端点 2、3 模式控制寄存器 | 8h00    |
| UEPO_DMA     | 14h  | 端点 0 缓冲区的起始地址  | 16hxxxx |
| UEP1_DMA     | 18h  | 端点 1 缓冲区的起始地址  | 16hxxxx |
| UEP2_DMA     | 1Ch  | 端点2缓冲区的起始地址    | 16hxxxx |
| UEP3_DMA     | 20h  | 端点3缓冲区的起始地址    | 16hxxxx |
| UEPO_MAX_LEN | 24h  | 端点0最大长度包寄存器    | 16hxxxx |
| UEP1_MAX_LEN | 28h  | 端点1最大长度包寄存器    | 16hxxxx |
| UEP2_MAX_LEN | 2Ch  | 端点2最大长度包寄存器    | 16hxxxx |
| UEP3_MAX_LEN | 30h  | 端点3最大长度包寄存器    | 16hxxxx |
| UEP4_MAX_LEN | 34h  | 端点 4 最大长度包寄存器  | 16hxxxx |
| UEPO_T_LEN   | 38h  | 端点0发送长度寄存器     | 16hxxxx |
| UEPO_TX_CTRL | 3Ah  | 端点0发送控制寄存器     | 8h00    |
| UEPO_RX_CTRL | 3Bh  | 端点 0 接收控制寄存器   | 8h00    |
| UEP1_T_LEN   | 3Ch  | 端点1发送长度寄存器     | 16hxxxx |
| UEP1_TX_CTRL | 3Eh  | 端点1发送控制寄存器     | 8h00    |
| UEP1_RX_CTRL | 3Fh  | 端点1接收控制寄存器     | 8h00    |
| UEP2_T_LEN   | 40h  | 端点2发送长度寄存器     | 16hxxxx |
| UEP2_TX_CTRL | 42h  | 端点2发送控制寄存器     | 8h00    |
| UEP2_RX_CTRL | 43h  | 端点2接收控制寄存器     | 8h00    |
| UEP3_T_LEN   | 44h  | 端点3发送长度寄存器     | 16hxxxx |
| UEP3_TX_CTRL | 46h  | 端点3发送控制寄存器     | 8h00    |
| UEP3_RX_CTRL | 47h  | 端点3接收控制寄存器     | 8h00    |
| UEP4_T_LEN   | 48h  | 端点 4 发送长度寄存器   | 16hxxxx |
| UEP4_TX_CTRL | 4Ah  | 端点 4 发送控制寄存器   | 8h00    |
| UEP4_RX_CTRL | 4Bh  | 端点 4 接收控制寄存器   | 8h00    |

表 11-2 USB 设备寄存器列表

USB 端点 1、4 模式控制寄存器(UEP4\_1\_MOD)

| 位 | 名称            | 访问 | 描述                                  | 复位值 |
|---|---------------|----|-------------------------------------|-----|
| 7 | bUEP1_RX_EN   | RW | 1: 使能端点 1 接收(OUT);<br>0: 禁止端点 1 接收。 | 0   |
| 6 | bUEP1_TX_EN   | RW | 1: 使能端点 1 发送 (IN);<br>0: 禁止端点 1 发送。 | 0   |
| 5 | 保留            | R0 | 保留。                                 | 0   |
| 4 | bUEP1_BUF_MOD | RW | 端点1数据缓冲区模式控制位。                      | 0   |
| 3 | bUEP4_RX_EN   | RW | 1: 使能端点 4 接收(OUT);                  | 0   |

|   |       |             |    | 0:禁止端点4接收。                          |   |
|---|-------|-------------|----|-------------------------------------|---|
|   | 2     | bUEP4_TX_EN | RW | 1: 使能端点 4 发送 (IN);<br>0: 禁止端点 4 发送。 | 0 |
| ſ | [1:0] | 保留          | R0 | 保留。                                 | 0 |

bUEP4\_RX\_EN 和 bUEP4\_TX\_EN 组合配置 USB 端点 0 和 4 的数据缓冲区模式, 具体参考下表: 表 11-3 端点 0 和 4 缓冲区模式

| bUEP4_RX_EN | bUEP4_TX_EN | 描述:以 UEPO_DMA 为起始地址由低向高排列                                                                                                                                                                |
|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 0           | 端点 0 单 64 字节收发共用缓冲区(IN 和 OUT),端点 4 收发禁止。                                                                                                                                                 |
| 1           | 0           | 端点0单64字节收发共用缓冲区;端点4单512字节接收缓冲区(OUT)。                                                                                                                                                     |
| 0           | 1           | 端点0单64字节收发共用缓冲区;端点4单512字节发送缓冲区(IN)。                                                                                                                                                      |
| 1           | 1           | 端点0单64字节收发共用缓冲区;端点4单512字节接收缓冲区(OUT);<br>端点4单512字节接收缓冲区(IN)。总共1088字节排列如下:<br>UEP0_DMA+0地址:端点0收发共用缓冲区64字节起始地址;<br>UEP0_DMA+64地址:端点4接收缓冲区512字节起始地址;<br>UEP1_DMA+64+512地址:端点4发送缓冲区512字节起始地址。 |

USB 端点 2、3 模式控制寄存器(UEP2\_3\_MOD)

| 位 | 名称            | 访问 | 描述                                  | 复位值 |
|---|---------------|----|-------------------------------------|-----|
| 7 | bUEP3_RX_EN   | RW | 1: 使能端点 3 接收(OUT);<br>0: 禁止端点 3 接收。 | 0   |
| 6 | bUEP3_TX_EN   | RW | 1: 使能端点 3 发送(IN);<br>0: 禁止端点 3 发送。  | 0   |
| 5 | 保留            | R0 | 保留。                                 | 0   |
| 4 | bUEP3_BUF_MOD | RW | 端点3数据缓冲区模式控制位。                      | 0   |
| 3 | bUEP2_RX_EN   | RW | 1: 使能端点 2 接收(OUT);<br>0: 禁止端点 2 接收。 | 0   |
| 2 | bUEP2_TX_EN   | RW | 1: 使能端点 2 发送(IN);<br>0: 禁止端点 2 发送。  | 0   |
| 1 | 保留            | R0 | 保留。                                 | 0   |
| 0 | bUEP2_BUF_MOD | RW | 端点2数据缓冲区模式控制位。                      | 0   |

由 bUEPn\_RX\_EN 和 bUEPn\_TX\_EN 以及 bUEPn\_BUF\_MOD(n=1/2/3)组合分别配置 USB 端点 1、2、3 的数据缓冲区模式,具体参考下表。其中,在双 512 字节缓冲区模式下,USB 数据传输时将根据 bUEP\_\*\_TOG=0 选择前 512 字节缓冲区,根据 bUEP\_\*\_TOG=1 选择后 512 字节缓冲区,设置 bUEP\_AUTO\_TOG=1 可实现自动切换。

表 11-4 端点 n 缓冲区模式 (n=1/2/3)

|             | •           |               |                                      |
|-------------|-------------|---------------|--------------------------------------|
| bUEPn_RX_EN | bUEPn_TX_EN | bUEPn_BUF_MOD | 描述:以 UEPn_DMA 为起始地址由低向高排列            |
| 0           | 0           | х             | 端点被禁用,未用到 UEPn_DMA 缓冲区。              |
| 1           | 0           | 0             | 单 512 字节接收缓冲区(OUT)。                  |
| 1           | 0           | 1             | 双 512 字节接收缓冲区(OUT),通过 bUEP_R_TOG 选   |
| 1           | U           | 1             | 择。                                   |
| 0           | 1           | 0             | 单 512 字节发送缓冲区(IN)。                   |
| 0           | 1           | 1             | 双 512 字节发送缓冲区(IN), 通过 bUEP_T_TOG 选择。 |
| 1           | 1           | 0             | 单 512 字节接收缓冲区(OUT), 单 512 字节发送缓冲     |
| 1           | ı           | U             | 区(IN)。                               |
|             |             |               | 双 512 字节接收缓冲区(OUT),通过 bUEP_R_TOG 选   |
| 1           | 1           | 1             | 择,                                   |
| '           | <b>I</b>    | 1             | 双 512 字节发送缓冲区(IN), 通过 bUEP_T_TOG 选择。 |
|             |             |               | 全部 2K 字节排列如下:                        |

| UEPn_DMA+0 地址: bUEP_R_TOG=0 时端点接收地址;   |
|----------------------------------------|
| UEPn_DMA+512 地址: bUEP_R_TOG=1 时端点接收地址; |
| UEPn_DMA+1024 地址:bUEP_T_TOG=0 时端点发送地址; |
| UEPn_DMA+1536 地址:bUEP_T_TOG=1 时端点发送地址。 |

### USB 端点 n 缓冲区起始地址(UEPn\_DMA)(n=1/2/3)

| 位      | 名称       | 访问 | 描述                                              | 复位值   |
|--------|----------|----|-------------------------------------------------|-------|
| [15:0] | UEPn_DMA | RW | 端点 n 缓冲区起始地址,最低 2 位固定位 0 (地址 4 字节对齐),高 1 位固定为0。 | xxxxh |

### 端点 n 最大长度包寄存器(UEPn\_MAX\_LEN)(n=1/2/3)

| 位      | 名称           | 访问 | 描述               | 复位值   |
|--------|--------------|----|------------------|-------|
| [15:0] | UEPn_MAX_LEN | RW | 端点 n 接收数据的最大包长度。 | xxxxh |

注: 这个最大包长度决定了端点可接收数据最大长度,超出此长度的数据会被丢弃,DMA 不会送入自定义区域。

### 端点 n 发送长度寄存器(UEPn\_T\_LEN)

| 位      | 名称         | 访问 | 描述                                                   | 复位值   |
|--------|------------|----|------------------------------------------------------|-------|
| [15:0] | UEPn_T_LEN | RW | 设置 USB 端点 n 准备发送的数据字节数,低 10 位有效,高 6 位固定为 0,最大长度 512。 | xxxxh |

### 端点 n 发送控制寄存器(UEPn\_TX\_CTRL)

| 位     | 名称             | 访问 | 描述                                                                                          | 复位值 |
|-------|----------------|----|---------------------------------------------------------------------------------------------|-----|
| [7:6] | 保留             | R0 | 保留                                                                                          | 0   |
| 5     | bUEP_AUTO_TOG  | RW | 同步触发位自动翻转使能控制位:<br>1:数据发送成功后自动翻转相应的同步触发位;<br>0:不自动翻转,可以手动切换。<br>只支持端点 1/2/3,且实时/同步传输只能手动切换。 | 0   |
| [4:3] | MASK_UEP_T_TOG | RW | USB 端点 n 的发送器(处理 IN 事务)准备的同步触发位: 00: 发送 DATAO; 01: 发送 DATA1; 10: 发送 DATA2; 11: 发送 MDATA。    | 0   |
| 2     | bUEP_T_RES_N0  | RW | 1: 期望无响应, 用于实现非端点 0 的实时 / 同步传输。此时忽略 MASK_UEP_T_RES;<br>0: 期望响应。                             | 0   |
| [1:0] | MASK_UEP_T_RES | RW | 端点 n 的发送器对 IN 事务的响应控制:<br>00:数据就绪并期望 ACK;<br>10:应答 NAK 或忙;<br>11:应答 STALL 或错误。              | 0   |

端点 n 接收控制寄存器(UEPn\_RX\_CTRL)

| 位     | 名称             | 访问 | 描述                                                                                                                        | 复位值 |
|-------|----------------|----|---------------------------------------------------------------------------------------------------------------------------|-----|
| [7:6] | 保留             | R0 | 保留                                                                                                                        | 0   |
| 5     | buep_auto_tog  | RW | 同步触发位自动翻转使能控制位:<br>1:数据接收成功后自动翻转相应的同步<br>触发位;<br>0:不自动翻转,可以手动切换。<br>只支持端点 1/2/3,且实时/同步传输只<br>能手动切换。                       | 0   |
| [4:3] | MASK_UEP_R_TOG | RW | USB 端点 n 的接收器(处理 OUT 事务)<br>期望的同步触发位:<br>00: 期望 DATAO;<br>01: 期望 DATA1;<br>10: 期望 DATA2;<br>11: 期望 MDATA。<br>对于实时/同步传输无效。 | 0   |
| 2     | bUEP_R_RES_NO  | RW | 1: 期望无响应, 用于实现非端点 0 的实时 / 同步传输。此时忽略 MASK_UEP_R_RES;<br>0: 期望响应。                                                           | 0   |
| [1:0] | MASK_UEP_R_RES | RW | 端点 n 的接收器对 OUT 事务的响应控制: 00: 应答 ACK; 10: 应答 NAK 或忙; 11: 应答 STALL 或错误; 01: 应答 NYET。 对于实时/同步传输无效。                            | 0   |

#### 11. 2. 3 USB 主机寄存器

在 USB 主机模式下, CH568 提供了一组双向主机端点,包括一个发送端点 OUT 和一个接收端点 IN,数据包的最大长度是 512 字节,支持控制传输、中断传输、批量传输和实时/同步传输。

主机端点发起的每一个 USB 事务,在处理结束后总是自动设置中断标志 UIF\_TRANSFER。应用程序可以直接查询或在 USB 中断服务程序中查询并分析中断标志寄存器 USB\_INT\_FG,根据各中断标志分别进行相应的处理;并且,如果 UIF\_TRANSFER 有效,那么还需要继续分析 USB 中断状态寄存器 USB\_INT\_ST,根据当前 USB 传输事务的应答 PID 标识 MASK\_UIS\_H\_RES 进行相应的处理。

如果事先设定了主机接收端点的 IN 事务的同步触发位 bUH\_R\_TOG, 那么可以通过 bUIS\_TOG\_OK 判断当前所接收到的数据包的同步触发位是否与主机接收端点的同步触发位匹配,如果数据同步,则数据有效;如果数据不同步,则数据应该被丢弃。每次处理完 USB 发送或者接收中断后,都应该正确修改相应主机端点的同步触发位,用于同步下次所发送的数据包和检测下次所接收的数据包是否同步;另外,通过设置 bUEP AUTO TOG 可以实现在发送成功或接收成功后自动翻转相应的同步触发位。

USB 主机令牌设置寄存器 UH\_EP\_PID 用于设置被操作的目标设备的端点号和本次 USB 传输事务的令牌 PID 包标识。SETUP 令牌和 OUT 令牌所对应的数据由主机发送端点提供,准备发送的数据在UH\_TX\_DMA 缓冲区中,准备发送的数据长度设置在 UH\_TX\_LEN 中;IN 令牌所对应的数据由目标设备返回给主机接收端点,接收到的数据存放在 UH\_RX\_DMA 缓冲区中,接收到的数据长度存放在 USB\_RX\_LEN中,主机端点可接收的最大包长度需要提前写入到 UH\_RX\_MAX\_LEN 寄存器中。

 名称
 偏移地址
 描述
 复位值

 UHOST\_CTRL
 01h
 USB 主机控制寄存器
 8h00

 UH\_EP\_MOD
 11h
 USB 主机端点模式控制寄存器
 8h00

表 11-5 USB 主机相关寄存器列表

| UH_RX_DMA     | 1Ch | USB 主机接收缓冲区起始地址     | 16hxxxx |
|---------------|-----|---------------------|---------|
| UH_TX_DMA     | 20h | USB 主机发送缓冲区起始地址     | 16hxxxx |
| UH_RX_MAX_LEN | 2Ch | USB 主机接收最大长度包寄存器    | 16hxxxx |
| UH_SETUP      | 3Eh | USB 主机辅助设置寄存器       | 8h00    |
| UH_EP_PID     | 40h | USB 主机令牌设置寄存器       | 8h00    |
| UH_RX_CTRL    | 43h | USB 主机接收端点控制寄存器     | 8h00    |
| UH_TX_LEN     | 44h | USB 主机发送长度寄存器       | 16hxxxx |
| UH_TX_CTRL    | 46h | USB 主机发送端点控制寄存器     | 8h00    |
| UH_SPLIT_DATA | 48h | USB 主机发送 SPLIT 包的数据 | 16hxxxx |

### USB 主机控制寄存器(UHOST\_CTRL)

| 位     | 名称                 | 访问 | 描述              | 复位值 |
|-------|--------------------|----|-----------------|-----|
| [7:3] | 保留                 | R0 | 保留。             | 0   |
| 2     | bUH_TX_BUS_RESUME  | RW | 主机模式下,表示主机唤醒设备。 | 0   |
| 1     | bUH_TX_BUS_SUSPEND | RW | USB 主机发送挂起信号。   | 0   |
| 0     | bUH_TX_BUS_RESET   | RW | USB 主机发送总线复位信号。 | 0   |

注:复位的时间由 bUH\_TX\_BUS\_RESET 的高电平持续时间决定。如果主机唤醒设备,则以bUH\_TX\_BUS\_RESUME 边沿方式决定,所以唤醒只需将 bUH\_TX\_BUS\_RESUME 拉高再拉低即可。

USB 主机端点模式控制寄存器(UH\_EP\_MOD)

| 位     | 名称              | 访问 | 描述                                                  | 复位值 |
|-------|-----------------|----|-----------------------------------------------------|-----|
| 7     | 保留              | R0 | 保留                                                  | 0   |
| 6     | bUH_EP_TX_EN    | RW | 主机发送端点发送(SETUP/OUT)使能位:<br>1: 使能端点发送;<br>0: 禁止端点发送。 | 0   |
| 5     | 保留              | R0 | 保留。                                                 | 0   |
| 4     | bUH_EP_TBUF_MOD | RW | 主机发送端点发送数据缓冲区模式控制 位。                                | 0   |
| 3     | bUH_EP_RX_EN    | RW | 主机接收端点接收(IN)使能位:<br>1:使能端点接收;<br>0:禁止端点接收。          | 0   |
| [2:1] | 保留              | R0 | 保留。                                                 | 00b |
| 0     | bUH_EP_RBUF_MOD | RW | USB 主机接收端点接收数据缓冲区模式<br>控制位。                         | 0   |

由 bUH\_EP\_TX\_EN 和 bUH\_EP\_TBUF\_MOD 组合控制 USB 主机发送端点数据缓冲区模式,参考下表。 表 11-6 主机发送缓冲区模式

| bUH_EP_TX_EN | bUH_EP_TBUF_MOD | 描述:以 UH_TX_DMA 为起始地址           |
|--------------|-----------------|--------------------------------|
| 0            | х               | 端点被禁用,未用到 UH_TX_DMA 缓冲区。       |
| 1            | 0               | 单 512 字节发送缓冲区(SETUP/OUT)。      |
|              |                 | 双 512 字节发送缓冲区,通过 bUH_T_T0G 选择: |
| 1            | 1               | 当 bUH_T_T0G=0 时选择前 512 字节缓冲区;  |
|              |                 | 当 bUH_T_T0G=1 时选择后 512 字节缓冲区。  |

由 bUH\_EP\_RX\_EN 和 bUH\_EP\_RBUF\_MOD 组合控制 USB 主机接收端点数据缓冲区模式,参考下表。 表 11-7 主机接收缓冲区模式

| bUH_EP_RX_EN | bUH_EP_RBUF_MOD | 结构描述: 以 UH_TX_DMA 为起始地址  |
|--------------|-----------------|--------------------------|
| 0            | х               | 端点被禁用,未用到 UH_RX_DMA 缓冲区。 |
| 1            | 0               | 单 512 字节接收缓冲区(IN)。       |

| 1 | 1 | 双 512 字节接收缓冲区,通过 bUH_R_T0G 选择:<br>当 bUH R T0G=0 时选择前 512 字节缓冲区: |
|---|---|-----------------------------------------------------------------|
| 1 | 1 | 当 bUH_R_TOG=0 时选择前 512 字节缓冲区;<br>当 bUH_R_TOG=1 时选择后 512 字节缓冲区。  |

### USB 主机接收缓冲区起始地址(UH\_RX\_DMA)

| 位      | 名称        | 访问 | 描述                                                | 复位值   |
|--------|-----------|----|---------------------------------------------------|-------|
| [15:0] | UH_RX_DMA | RW | 主机端点数据接收缓冲区起始地址,最低 2 位固定为 0 (4 字节对齐),最高 1 位固定为 0。 | xxxxh |

#### USB 主机发送缓冲区起始地址(UH\_TX\_DMA)

| 位      | 名称        | 访问 | 描述                                                | 复位值   |
|--------|-----------|----|---------------------------------------------------|-------|
| [15:0] | UH_TX_DMA | RW | 主机端点数据发送缓冲区起始地址,最低 2 位固定为 0 (4 字节对齐),最高 1 位固定为 0。 | xxxxh |

### USB 主机接收最大长度包寄存器(UH\_RX\_MAX\_LEN)

| 位      | 名称            | 访问 | 描述              | 复位值   |
|--------|---------------|----|-----------------|-------|
| [15:0] | UH_RX_MAX_LEN | RW | 主机端点接收数据的最大包长度。 | xxxxh |

注:这个最大包大小决定了端点可接收数据最大长度,超出此长度的数据会被丢弃,DMA 不会送入自定义区域。

#### USB 主机辅助设置寄存器(UH SETUP)

| 位     | 名称         | 访问 | 描述                                                    | 复位值 |
|-------|------------|----|-------------------------------------------------------|-----|
| 7     | 保留         | R0 | 保留。                                                   | 0   |
| 6     | bUH_SOF_EN | WO | 自动产生 SOF 包使能控制位:<br>1: 主机自动发生 SOF 包;<br>0: 不产生 SOF 包。 | 0   |
| [5:0] | 保留         | R0 | 保留。                                                   | 00  |

### USB 主机令牌设置寄存器(UH\_EP\_PID)

| 位     | 名称            | 访问 | 描述                        | 复位值   |
|-------|---------------|----|---------------------------|-------|
| [7:4] | MASK_UH_TOKEN | RW | 设置本次 USB 传输事务的令牌 PID 包标识。 | 0000Ь |
| [3:0] | MASK_UH_ENDP  | RW | 设置本次被操作的目标设备的端点号。         | 0000b |

### USB 主机接收端点控制寄存器(UH\_RX\_CTRL)

| 位     | 名称                 | 访问 | 描述                   | 复位值 |
|-------|--------------------|----|----------------------|-----|
| 7     | 保留                 | R0 | 保留。                  | 0b  |
|       |                    |    | 1: 不期待数据包, 用于主机模式下的操 |     |
| 6     | bUH_R_DATA_NO      | RW | 作高速 HUB;             | 0   |
|       |                    |    | 0: 期望数据包(IN)。        |     |
|       | 5 bUH_R_AUTO_TOG R | RW | 同步触发位自动翻转使能控制位:      |     |
| _     |                    |    | 1: 数据接收成功后自动翻转相应的期待  | 0   |
| 5     |                    |    | 同步触发位;               | U   |
|       |                    |    | 0:不自动翻转,可以手动切换。      |     |
| [4:3] | MASK_UH_R_TOG      | RW | 主机接收器(处理 IN 事务)期望的同步 | 0   |

|       |               |    | 触发位,                      |     |
|-------|---------------|----|---------------------------|-----|
|       |               |    | 00: 期望 DATAO;             |     |
|       |               |    | 01: 期望 DATA1;             |     |
|       |               |    | 10: 期望 DATA2;             |     |
|       |               |    | 11: 期望 MDATA。             |     |
|       |               |    | 1: 无应答,用于实现非端点 0 的实时/     |     |
| 2     | bUH_R_RES_N0  | RW | 同步传输。此时忽略 MASK_UEP_R_RES; | 0   |
|       |               |    | 0:接收数据成功后发送应答。            |     |
|       |               |    | 主机接收器对 IN 事务的响应控制位:       |     |
| [1:0] | MASK_UH_R_RES | RW | 00: 应答 ACK; _             | 00b |
|       |               |    | 对于实时/同步传输无效。              |     |

### USB 主机发送长度寄存器(UH\_TX\_LEN)

| 位      | 名称          | 访问 | 描述                                           | 复位值   |
|--------|-------------|----|----------------------------------------------|-------|
| [15:0] | UH_TX_LEN_H | RW | 设置 USB 主机发送端点准备发送的数据字节数,仅低 11 位有效,高 5 位固定为0。 | xxxxh |

### USB 主机发送端点控制寄存器(UH\_TX\_CTRL)

| 位     | 名称             | 访问 | 描述                                                                                                             | 复位值 |
|-------|----------------|----|----------------------------------------------------------------------------------------------------------------|-----|
| 7     | 保留             | R0 | 保留。                                                                                                            | 0b  |
| 6     | bUH_T_DATA_NO  | RW | 1:不发送数据包(PING/SPLIT);<br>0:发送数据包(OUT/SETUP)。                                                                   | 0   |
| 5     | bUH_T_AUTO_TOG | RW | 同步触发位自动翻转使能控制位:<br>1:数据发送成功后自动翻转相应的同步<br>触发位;<br>0:不自动翻转,可以手动切换。                                               | 0   |
| [4:3] | MASK_UH_T_TOG  | RW | USB 主机发送器(处理 SETUP/OUT 事务)<br>准备的同步触发位<br>00 表示发送 DATAO;<br>01 表示发送 DATA1;<br>10 表示发送 DATA2;<br>11 表示发送 MDATA。 | 00Ь |
| 2     | bUH_T_RES_NO   | RW | 1: 无应答,用于实现非端点 0 的实时/<br>同步传输。此时忽略 MASK_UEP_T_RES;<br>0: 发送数据成功后期待应答。                                          | 0   |
| [1:0] | MASK_UH_T_RES  | RW | USB 主机发送器对 SETUP/OUT 事务的响应控制位 00: 期望应答 ACK; 10: 期望应答 NAK 或忙; 11: 期望应答 STALL 或错误; 01: 期望应答 NYET。 对于实时/同步传输无效。   | 00Ь |

### USB 主机发送 SPLIT 包的数据(UH\_SPLIT\_DATA)

| 位      | 名称            | 访问 | 描述                                     | 复位值   |
|--------|---------------|----|----------------------------------------|-------|
| [15:0] | UH_SPLIT_DATA | RW | 主机端点发送 SPLIT 包的数据内容,低12 位有效,高 4 位固定为 0 | 0xxxh |

### 11.3 USB 设备模式配置

#### 11.3.1 基本初始化配置

- 1. 设置 USB CTRL 寄存器, bUC HOST MODE 位为 0, 配置 USB 设备模式;
- 2. 设置 USB\_CTRL 寄存器,清除 bUC\_RESET\_SIE 和 bUC\_CLR\_ALL 位为 0,设置 bUC\_INT\_BUSY 和 bUC\_DMA\_EN 位为 1,配置 UC\_SPEED\_TYPE 选择 USB 设备的速度,如果设置为高速设备,但当前主机是全速主机,那么控制器会自动降速切换到全速,实际的通讯速度可以查询 USB SPEED TYPE 寄存器。
- 3. 清除设备地址寄存器 USB\_DEV\_AD 和中断标志寄存器 USB\_INT\_FG; 可选操作, 使能需要的中断, 写 USB\_INT\_EN 寄存器;
- 4. 配置设备端点数据收发缓存区模式寄存器 UEP4\_1\_MOD/ UEP2\_3\_MOD, 以及收发控制寄存器 UEPn\_TX\_CTRL/ UEPn\_RX\_CTRL;
  - 5. 设置端点最大包接收长度 UEPn\_MAX\_LEN 寄存器和端点数据收发起始地址 UEPn\_DMA;
  - 6. 设置 USB\_CTRL 寄存器, bUC\_DEV\_PU\_EN 位为 1, 启用 USB 设备功能。

### 11.4 USB 主机模式配置

### 11. 4.1 基本初始化配置

- 1. 设置 USB CTRL 寄存器, bUC HOST MODE 位为 1, 配置 USB 主机模式;
- 2. 设置 USB\_CTRL 寄存器,清除 bUC\_RESET\_S IE 和 bUC\_CLR\_ALL 位为 0,设置 bUC\_INT\_BUSY 和 bUC\_DMA\_EN 位为 1,配置 UC\_SPEED\_TYPE 选择 USB 设备的速度,如果设置为高速主机,但当前连接设备是全速,那么控制器会自动降速切换到全速,实际的通讯速度可以查询 USB\_SPEED\_TYPE 寄存器。
- 3. 清除设备地址寄存器 USB\_DEV\_AD 和中断标志寄存器 USB\_INT\_FG;可选操作,使能需要的中断,写 USB\_INT\_EN 寄存;
- 4. 配置主机端点数据收发缓存区模式寄存器 UH\_EP\_MOD,以及收发控制寄存器 UH\_RX\_CTRL / UH\_TX\_CTRL;
- 5. 设置主机端点最大包接收长度 UH\_RX\_MAX\_LEN 寄存器和主机端点数据收发起始地址 UH\_RX\_DMA / UH TX DMA;
  - 6. 设置 UH\_SETUP 寄存器, bUH\_SOF\_EN 位为 1, 开启端口自动发送 SOF 包。

# 第 12 章 SD 控制器及 AES/SM4 模块

### 12.1 SD 控制器及 AES/SM4 模块简介

CH568 芯片提供 4 个独立的 SD 控制器: SDO、SD1、SD2 和 SD3。它们与一般的控制器相比,提供了额外的加密/解密算法模块支持,可以满足市场的数据安全性需求。

#### 主要特性如下:

- 1) 支持 SD 物理层 1.0、2.0 规范, 支持 SD3.0 规范的 UHS-I SDR50 模式(向前兼容);
- 2) 符合 eMMC 卡 4.4 和 4.5.1 规范, 兼容 5.0 规范, 兼容 HS200 模式;
- 3) 4个控制器均支持 eMMC 卡的单线、四线模式, 其中 SDO、SD2 支持 eMMC 卡单线、四线、八线模式;
- 4) 支持 SD 卡、SDIO 卡、eMMC 卡等符合 SD 协议的设备;
- 5) 支持 SD 接口数据进行 AES 和 SM4 算法加解密;
- 6) 4 个控制器独立工作, 支持 DMA 和中断。

### 12.2 SD 寄存器描述

CH568 内置 4 个独立的 SD 控制器,每个控制器都有相似的控制单元。

SD0相关寄存器物理基地址为: 0x0040 A000 SD1相关寄存器物理基地址为: 0x0040 A040 SD2相关寄存器物理基地址为: 0x0040 A080 SD3相关寄存器物理基地址为: 0x0040 A000

表 12-1 SD 寄存器列表

| 名称             | 偏移地址 | 描述          | 复位值         |
|----------------|------|-------------|-------------|
| SD_CLK_CFG     | 3Ch  | 时钟配置寄存器     | 16h0214     |
| SDx_ARGUMENT   | 00h  | 命令参数寄存器     | 32h00000000 |
| SDx_CMD_SET    | 04h  | 命令设置寄存器     | 16h0000     |
| SDx_RESPONSE0  | 08h  | 应答参数寄存器 0   | 32h00000000 |
| SDx_RESPONSE1  | 0Ch  | 应答参数寄存器 1   | 32h00000000 |
| SDx_RESPONSE2  | 10h  | 应答参数寄存器 2   | 32h00000000 |
| SDx_RESPONSE3  | 14h  | 应答参数寄存器 3   | 32h00000000 |
| SDx_WRITE_CONT | 14h  | 继续写启动寄存器    | 32h00000000 |
| SDx_CTRL       | 18h  | 控制寄存器       | 8h15        |
| SDx_TOCNT      | 1Ch  | 超时计数寄存器     | 8h0C        |
| SDx_STATUS     | 20h  | 状态寄存器       | 32h00000000 |
| SDx_INT_FG     | 24h  | 中断标志寄存器     | 16h0000     |
| SDx_INT_EN     | 28h  | 中断使能寄存器     | 16h0000     |
| SDx_DMA        | 2Ch  | DMA 起始地址寄存器 | 16hxxxx     |
| SDx_BLOCK_CFG  | 30h  | 传输块配置寄存器    | 32h00000000 |
| SDx_TRAN_MODE  | 34h, | 传输模式寄存器     | 8h00        |

#### 时钟配置寄存器(SD\_CLK\_CFG)

| 位       | 名称          | 访问 | 描述                                                     | 复位值 |
|---------|-------------|----|--------------------------------------------------------|-----|
| [16:10] | Reserved    | R0 | 保留。                                                    | 00h |
| 9       | bSDCLK_Mode | WO | 时钟频率模式选择位:<br>1: 高速模式, 25M-100MHz;<br>0: 低速模式, 400KHz。 | 1   |

| 8     | bSDCLK_0E       | WO | SD 物理时钟信号线输出控制位:<br>1: 打开,输出通讯时钟;<br>0: 关闭。                                                                                                            | 0   |
|-------|-----------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| [7:5] | Reserved        | R0 | 保留。                                                                                                                                                    | 0   |
| [4:0] | MASK_SD_CLK_PRE | WO | SD 控制器时钟(SDCLK)分频因子:<br>当 bSDCLK_Mode=1,则<br>SDCLK = 480M/MASK_CLK_PRE;<br>当 bSDCLK_Mode =0,则<br>SDCLK = 480M/MASK_CLK_PRE/64。<br>写 1 等效关闭 SDC 模块采样时钟。 | 14h |

注: 时钟配置寄存器(SD\_CLK\_CFG)配置时钟,由4个SD卡控制器共用。

### 命令参数寄存器(SDx\_ARGUMENT)(x=0/1/2/3)

| 位      | 名称          | 访问 | 描述                   | 复位值 |
|--------|-------------|----|----------------------|-----|
| [31:0] | SD_ARGUMENT | RW | SD/eMMC的 32位命令参数寄存器。 | 0   |

#### 命令设置寄存器(SDx\_CMD\_SET) (x=0/1/2/3)

| 位       | 名称             | 访问 | 描述                                                                                            | 复位值 |
|---------|----------------|----|-----------------------------------------------------------------------------------------------|-----|
| [15:12] | Reserved       | R0 | 保留。                                                                                           | 0   |
| 11      | bCHK_RESP_IDX  | RW | 校验应答的命令索引:<br>1: 需要;<br>0: 不需要。                                                               | 0   |
| 10      | bCHK_RESP_CRC  | RW | 校验应答的 CRC:<br>1: 需要;<br>0: 不需要。                                                               | 0   |
| [9:8]   | MASK_RESP_TYPE | RW | 期望应答类型:<br>00b:无应答;<br>01b:应答长度为 136 位;<br>10b:应答长度为 48 位;<br>11b:应答长度为 48 位,且为 R1b 类型应<br>答。 | 0   |
| [7:6]   | Reserved       | R0 | 保留。                                                                                           | 0   |
| [5:0]   | MASK_CMD_IDX   | RW | 当前发送命令的索引号。                                                                                   | 0   |

#### 应答参数寄存器(SDx RESPONSE) (x=0/1/2/3)

| 位        | 名称             | 访问 | 描述                                        | 复位值 |  |
|----------|----------------|----|-------------------------------------------|-----|--|
| [31:0]   | SDx_RESPONSE0  | R0 | 应答参数寄存器 0                                 | 0   |  |
| [63:32]  | SDx_RESPONSE1  | R0 | 应答参数寄存器 1                                 | 0   |  |
| [95:64]  | SDx_RESPONSE2  | R0 | 应答参数寄存器 2                                 | 0   |  |
| [127:96] | SDx_RESPONSE3  | R0 | 应答参数寄存器 3                                 | 0   |  |
| [127:96] | SDx_WRITE_CONT | WO | 复用 SD_RESPONSE3 寄存器, 用于在多块<br>写过程中,启动写操作。 | 0   |  |

注: 应答长度为 136 位时,有效数据为 128 位,应答长度为 48 位时,有效数据长度为 32 位,SDx\_RESPONSEx 寄存器存放的是应答的有效数据参数。

SDx\_RESPONSE3 寄存器存在复用,寄存器复用为:在使用 CMD25 命令向卡连续写入多块数据时,在块完成中断时,当不需要更改 DMA 地址时,写这个寄存器的动作,启动向 SD 写数据操作。如果需要更改 DMA 地址,则写 DMA 地址寄存器,就会启动写 SD,就不用再用写寄存器的方式启动。

控制寄存器(SDx\_CTRL)(x=0/1/2/3)

| 位     | 名称              | 访问 | 描述                         | 复位值 |
|-------|-----------------|----|----------------------------|-----|
| [7:6] | Reserved        | R0 | 保留。                        | 0   |
|       |                 |    | Cmd 和 Data 信号线采样模式选择位:     |     |
| 5     | bSC_NEG_SAMPLE  | RW | 1: 下降沿采样;                  | 0   |
|       |                 |    | 0: 上升沿采样。                  |     |
|       |                 |    | 1:复位内部数据收发逻辑,需要软件清         |     |
| 4     | bSC_RST_DAT_LGC | RW | 零;                         | 1   |
|       |                 |    | 0: 正常工作;                   |     |
|       |                 |    | SD 控制器的 DMA 和 DMA 中断控制位:   |     |
| 3     | bSC_DMA_ENABLE  | RW | 1: 使能 DMA 功能和 DMA 中断;      | 0   |
|       |                 |    | 0: 关闭 DMA。                 |     |
| 2     | PCC VII CID     | RW | 1: 复位 SD 控制器逻辑, 需要软件清零;    | 1   |
| 2     | bsc_all_clr     | KW | 0:正常工作。                    | 1   |
|       |                 |    | 收发数据逻辑采样的数据线宽度(通讯          |     |
|       |                 |    | 数据线宽度):                    |     |
|       |                 |    | 00: 收发器仅使用 dat [0], 单数据线;  |     |
| [1:0] | DAT_LINE_WIDTH  | RW | 01:收发器使用 dat[3:0], 4 数据线;  | 01b |
|       |                 |    | 10: 收发器使用 dat[7:0], 8 数据线, |     |
|       |                 |    | 此值仅 0# 2#控制器支持, 用于 eMMC 卡  |     |
|       |                 |    | 的8线模式。                     |     |

### 超时控制寄存器(SDx\_TOCNT) (x=0/1/2/3)

| 位     | 名称         | 访问 | 描述                                                                                                                                                              | 复位值 |
|-------|------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| [7:4] | Reserved   | R0 | 保留。                                                                                                                                                             | 0   |
| [3:0] | MASK_TOCNT | RW | 应答/数据超时配置: 0: 不使能内部超时机制; 非 0: 设置超时时间,有效数值 0 - 12。 计算方法: SD 卡时钟周期 * 4194304 * MASK_TOCNT 。 如: 如果此时 SDCLK 周期为 10ns,则写入 12,则超时时间为 10ns * (4194304) * (12) = 503ms。 | Ch  |

### 注: 1. 上述数据超时包含下列 4 种情况:

- 1) R1b 应答之后的 DAT[0] busy 超时;
- 2) 写数据块时, CRC status 之后的 DAT[0] busy 超时;
- 3) 写数据块时, 等待 CRC status 超时;
- 4) 读数据块时, 等待起始位超时。
- 2. 命令的应答同样支持超时机制,如果应答超时,则由中断寄存器中的 SIF\_RE\_TMOUT 中断给出。命令超时采用协议给出的超时最大值: 64 Tsdclk。

### 状态指示寄存器(SDx\_STATUS)(x=0/1/2/3)

| 位       | 名称          | 访问 | 描述                          | 复位值 |
|---------|-------------|----|-----------------------------|-----|
| [32:18] | Reserved    | R0 | 保留。                         | 0   |
| 17      | bST_DATO_HI | R0 | 1: 当前 DATO 线为高电平<br>0: 低电平。 | 0   |
| 16      | bST_CMD_HI  | R0 | 1: 当前 CMD 线为高电平;<br>0: 低电平。 | 0   |

| [15:0] | MASK_BLOCK_NUM | R0 | 指示当前多块操作中,已经成功传输的<br>块数。 | 0 |
|--------|----------------|----|--------------------------|---|
|--------|----------------|----|--------------------------|---|

### 中断标志寄存器(SDx\_INT\_FG)(x=0/1/2/3)

| 位       | 名称             | 访问  | 描述                                                | 复位值 |
|---------|----------------|-----|---------------------------------------------------|-----|
| [15:10] | 保留             | R0  | 保留。                                               | 0   |
| 9       | bSIF_SDIO_INT  | RW1 | SDIO 卡中断标志位,写 1 清零:<br>1: SDIO 卡产生卡中断;<br>0: 无事件。 | 0   |
| 8       | bSIF_FIFO_OF   | RW1 | FIF0 溢出中断标志位,写 1 清零:<br>1: FIF0 溢出触发;<br>0: 无事件。  | 0   |
| 7       | bS1F_BLOCK_GAP | RW1 | 单块传输完成标志位,写 1 清零:<br>1: 单块收发完成触发;<br>0: 无事件。      | 0   |
| 6       | bSIF_TRANS_SC  | RW1 | 请求块数传输完成标志位,写1清零:<br>1:请求块数都传输完成触发;<br>0:无事件。     | 0   |
| 5       | bSIF_TRANS_ER  | RW1 | 传输 CRC 错误标志位,写 1 清零:<br>1: CRC 错误触发;<br>0: 无事件。   | 0   |
| 4       | bSIF_DATA_TMO  | RW1 | 数据超时标志位,写 1 清零: 1:数据超时触发; 0:无事件。                  | 0   |
| 3       | bSIF_CMD_DONE  | RW1 | 命令完成标志位,写 1 清零:<br>1:发送命令,并且收到应答完毕;<br>0:无事件。     | 0   |
| 2       | bSIF_RE_IDX_ER | RW  | 应答索引号校验错误标志位,写1清零:<br>1:应答索引号校验错误触发;<br>0:无事件。    | 0   |
| 1       | bSIF_RE_CRC_WR | RW  | 应答 CRC 校验错误标志位,写 1 清零: 1: 应答 CRC 校验错误触发; 0: 无事件。  | 0   |
| 0       | bSIF_RE_TMOUT  | RW  | 接收应答超时标志位,写 1 清零:<br>1: 应答超时触发;<br>0: 无事件。        | 0   |

### 中断使能寄存器(SDx\_INT\_EN)(x=0/1/2/3)

| 位       | 名称             | 访问 | 描述                                    | 复位值 |
|---------|----------------|----|---------------------------------------|-----|
| [15:10] | Reserved       | R0 | 保留                                    | 0   |
| 9       | bSIE_SDIO_INT  | RW | SDIO 卡中断:<br>1: 使能相应中断;<br>0: 禁止相应中断。 | 0   |
| 8       | bSIE_FIFO_0F   | RW | FIF0 溢出中断: 1: 使能相应中断; 0: 禁止相应中断。      | 0   |
| 7       | bSTE_BLOCK_GAP | RW | 单块完成中断:<br>1:使能相应中断;                  | 0   |

|   |                |    | 0: 禁止相应中断。     |   |
|---|----------------|----|----------------|---|
|   |                |    | 请求块传输完成中断:     |   |
| 6 | bSIE_TRANS_SC  | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0:禁止相应中断。      |   |
|   |                |    | 块传输 CRC 错误中断:  |   |
| 5 | bSIE_TRANS_ER  | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0:禁止相应中断。      |   |
|   |                |    | 数据超时中断:        |   |
| 4 | bSIE_DATA_TMO  | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0:禁止相应中断。      |   |
|   |                |    | 命令完成中断:        |   |
| 3 | bsie_cmd_done  | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0: 禁止相应中断。     |   |
|   |                |    | 应答索引校验错误中断:    |   |
| 2 | bSIE_RE_IDX_ER | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0:禁止相应中断。      |   |
|   |                |    | 应答 CRC 校验错误中断: |   |
| 1 | bSIE_RE_CRC_WR | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0:禁止相应中断。      |   |
|   |                |    | 命令应答超时中断:      |   |
| 0 | bSIE_RE_TMOUT  | RW | 1: 使能相应中断;     | 0 |
|   |                |    | 0:禁止相应中断。      |   |

### 数据块 DMA 起始地址寄存器(SDx\_DMA)(x=0/1/2/3)

| 位      | 名称     | 访问 | 描述                                  | 复位值   |
|--------|--------|----|-------------------------------------|-------|
| [15:0] | SD_DMA | RW | 读写数据缓存区起始地址,低 3 位固定<br>为 0(8 字节对齐)。 | 0000h |

注:此寄存器在从SD中读数据时,保存着读到的数据在SRAM中的起始地址。在写向SD卡写数据时,保存着将要写的数据在SRAM中的起始地址。

如果执行连续的多块读写 SD 操作,那么在单块传输完成后(bSIF\_BLOCK\_GAP),用户根据需要可以写 SDx\_DMA 寄存器来更改 DMA 地址。不可在传输过程中更改 DMA 地址,否则可能引起数据计数错误。

在进行连续多块写时,单块传输完成后,需要写 SDx\_WRITE\_CONT 或写 SDx\_DMA 寄存器的方式启动继续写操作。多块读不需要。

### 传输块配置寄存器(SDx\_BLOCK\_CFG)(x=0/1/2/3)

| TAME AND THE CONCESSION OF THE |            |    |                                                         |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|---------------------------------------------------------|-----|--|
| 位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 名称         | 访问 | 描述                                                      | 复位值 |  |
| [31:28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reserved   | R0 | 保留。                                                     | 0   |  |
| [27:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BLOCK_SIZE | RW | 单块传输大小(1-2048 字节)。                                      | 0   |  |
| [15:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLOCK_NUM  | RW | 本次 DMA 要传输的块计数(1~65535 块),<br>内部自动清零,块数不为零则启动接收<br>或发送。 | 0   |  |

### 传输模式寄存器(SDx\_TRAN\_MODE)(x=0/1/2/3)

| 位     | 名称            | 访问 | 描述                                   | 复位值 |
|-------|---------------|----|--------------------------------------|-----|
| [7:3] | Reserved      | R0 | 保留。                                  | 0   |
| 2     | bTM_EMMC_BOOT | RW | 设置eMMC卡传输模式:<br>1: 引导模式;<br>0: 正常模式。 | 0   |

|   |           |    | 说明:仅用于eMMC卡。                            |   |
|---|-----------|----|-----------------------------------------|---|
| 1 | Reserved  | R0 | 保留。                                     | 0 |
| 0 | bTM_WR_SD | RW | DMA 传输的方向:<br>1: 控制器到 SD;<br>0: SD到控制器。 | 0 |

### 12.3 SD 控制应用

### 12.3.1 SD 命令发送操作:

- 1. 设置 32 位的 SDx ARGUMENT 参数寄存器;
- 2. 设置 16 位的 SDx CMD SET 寄存器;
- 3. 等待命令发送状态,查询 SDx\_INT\_FG 寄存器。若发送命令成功,会产生命令发送成功标志,否则,会产生 CRC 错误,或超时,或应答索引错误标志。

### 12.3.2 读 SD 卡多块数据操作:

- 1. 设置 SDx\_DMA 寄存器,设置 SD0x\_TRAN\_MODE 寄存器 DMA 传输方向由 SD 到控制器,设置 SD\_BLOCK\_CFG(每块接收字节数寄存器,以及本次 DMA 将要接收的块数),此时控制器便准备好开始接收 SD 卡返回的数据块。
  - 2. 设置 32 位的 SDx\_ARGUMENT 参数寄存器和 SDx\_CMD\_SET 寄存器,发出 CMD18(读多块命令)。
  - 3. 等待命令发送完成。
- 4. 控制器接收 N 块成功后,会产生传输成功中断(bSIF\_TRANS\_SC=1)。若中间出现传输错误,则产生相应错误中断,此时读取状态寄存器(SDx\_STATUS),了解本次成功传输块数。

#### 12.3.3 写 SD 卡多块数据操作:

- 1. 设置 32 位的 SDx\_ARGUMENT 参数寄存器和 SDx\_CMD\_SET 寄存器,发出 CMD25 (写多块命令)。
- 2. 等待命令发送完成。
- 3. 设置 SDx\_DMA 寄存器,设置 SDx\_TRAN\_MODE 寄存器 DMA 传输方向由控制器到 SD,设置 SDx\_BLOCK\_CFG (每块发送字节数寄存器,以及本次 DMA 将要发送的块数),此时控制器便开始向 SD 卡发送数据块。
- 4. 控制器发送 N 块成功后,会产生传输成功中断(bSIF\_TRANS\_SC=1)。若中间出现传输错误,则产生传输错误中断,此时读取状态寄存器(SDx\_STATUS),了解本次成功传输块数。

### 12. 4 AES/SM4 模块功能描述

CH568 内置了分组密码算法模块,支持 AES 和 SM4 两种分组密码算法以及电子密码本 (ECB) 和计数器 (CTR) 模式。总共有如下 8 种组合:

SM4 算法 128bit 密钥 的 ECB 模式和 CTR 模式;

AES 算法 128bit 密钥 的 ECB 模式和 CTR 模式;

AES 算法 192bit 密钥 的 ECB 模式和 CTR 模式;

AES 算法 256bit 密钥 的 ECB 模式和 CTR 模式。

### 12.4.1 AES/SM4 算法

AES (Advanced Encryption Standard)算法是一种区块加密法,采用对称分组密码体制,是对称密钥加密中最流行的算法之一。SM4 分组密码算法一般是用于无线局域网和可信计算机的专用分组密

码算法,同时也可用于其它环境下的数据加密保护。

在数据加解密过程中,需要载入密钥。对于 AES 算法,根据设置密钥长度为 128/192/256 比特,分别将用户密钥扩展为  $11\times128/13\times128/15\times128$ —bit 的扩展密钥。而 SM4 算法,将 128—bit 的用户密钥扩展成为  $32\times32$ —bit 的扩展密钥。这些扩展密钥被保存在内部寄存器中,以方便在加解密时使用。

### 12. 4. 2 ECB 与 CTR 模式

AES/SM4 支持两种模式,电子密码本(ECB)模式和计数器(CTR)模式,其中 CTR 模式的安全性能要高于 ECB 模式。二者的区别如图 13-1 所示。在 ECB 模式下,明文(plain text)与密文(cipher text)是一一对应的,加密之后的明文直接作为密文;在 CTR 模式下,需要预先载入 128-bit 的计数值,将计数值加密,加密之后的计数值与明文异或作为密文。值得注意的是,CTR 解密模式下,也是只对计数值进行加密,而非解密。



图 12-1 ECB 与 CTR 模式加解密示意图

### 12.5 AES/SM4 模块寄存器描述

AES/SM4模块相关寄存器物理基地址为: 0x0040 c400

表 12-2 AES/SM4 模块寄存器列表

| 名称             | 偏移地址 | 描述              | 复位值   |
|----------------|------|-----------------|-------|
| AES_SM4_CTRL   | 0x00 | AES/SM4 控制寄存器   | 32h20 |
| AES_SM4_INT_FG | 0x04 | AES/SM4 中断标志寄存器 | 32h0  |

| AES_SM4_KEY7 | 0x08 | 密钥寄存器 7  | 32hxxxxxxxx  |
|--------------|------|----------|--------------|
| AES_SM4_KEY6 | 0x0C | 密钥寄存器 6  | 32hxxxxxxxx  |
| AES_SM4_KEY5 | 0x10 | 密钥寄存器 5  | 32hxxxxxxxx  |
| AES_SM4_KEY4 | 0x14 | 密钥寄存器 4  | 32hxxxxxxxx  |
| AES_SM4_KEY3 | 0x18 | 密钥寄存器 3  | 32hxxxxxxxx  |
| AES_SM4_KEY2 | 0x1C | 密钥寄存器 2  | 32hxxxxxxxx  |
| AES_SM4_KEY1 | 0x20 | 密钥寄存器 1  | 32hxxxxxxxxx |
| AES_SM4_KEY0 | 0x24 | 密钥寄存器 0  | 32hxxxxxxxxx |
| AES_SM4_IV3  | 0x28 | 计数值寄存器 3 | 32hxxxxxxxxx |
| AES_SM4_IV2  | 0x2C | 计数值寄存器 2 | 32hxxxxxxxx  |
| AES_SM4_IV1  | 0x30 | 计数值寄存器 1 | 32hxxxxxxxx  |
| AES_SM4_IVO  | 0x34 | 计数值寄存器 0 | 32hxxxxxxxx  |

AES/SM4 控制寄存器(AES\_SM4\_CTRL)

| 位       | 名称               | 访问   | 描述                         | 复位值 |
|---------|------------------|------|----------------------------|-----|
| [31:17] | Reserved         | R0   | 保留。                        | 0   |
|         |                  |      | 密钥扩展完成中断使能:                |     |
| 16      | bKEYE_ACT_IE     | RW   | 1: 使能相应中断;                 | 0   |
|         |                  |      | 0:禁止相应中断。                  |     |
| [15:12] | Reserved         | R0   | 保留。                        | 0   |
|         |                  |      | 密钥长度设置:                    |     |
|         |                  |      | 00: 128-bit;               |     |
| [11:10] | MASK_Key_LEN     | RW   | 01: 192-bit;               | 0   |
|         |                  |      | 10: 256-bit;               |     |
|         |                  |      | 11: 保留。                    |     |
|         |                  |      | 分组密码模式选择位:                 |     |
| 9       | bBC1PHER_MOD     | RW   | 1: CTR 模式;                 | 0   |
|         |                  |      | 0: ECB 模式。                 |     |
|         |                  |      | 算法模式选择位:                   |     |
| 8       | bALGRM_MOD       | RW   | 1: AES;                    | 0   |
|         |                  |      | 0: SM4。                    |     |
| [7:6]   | Reserved         | R0   | 保留。                        | 0   |
|         |                  |      | 加解密模块时钟分频因子,               |     |
| [5:4]   | MASK_ED_CLK_PRE  | RW   | 计算: EDclk=480M/ED_CLK_PRE。 | 10b |
| [0.4]   | MINOR_ED_OER_FRE |      | 最小值 2, 写 1 等效关闭 ECDC 模块运算  | 100 |
|         |                  |      | 时钟。                        |     |
| 3       | bEDMOD_SELT      | RW   | 1:解密模式;                    | 0   |
|         | BEDMOD_GEET      | 1311 | 0:加密模式。                    | 0   |
|         |                  |      | 使能写 SD 数据进行加解密控制位:         |     |
| 2       | brddat_ed_en     | RW   | 1: 加解密;                    | 0   |
|         |                  |      | 0: 无动作。                    |     |
|         |                  |      | 使能读 SD 数据进行加解密控制位:         |     |
| 1       | bWRDAT_ED_EN     | RW   | 1: 加解密;                    | 0   |
|         |                  |      | 0: 无动作。                    |     |
| 0       | bkeye en         | RW   | 密钥扩展功能使能控制位,高电平脉冲          | 0   |
| ,       | DIVE 1 E_EIV     | 1111 | 启动。                        | v   |

注: bKEYE\_EN 位使用时,需要将其置高再置低。

AES/SM4 中断标志寄存器(AES\_SM4\_INT\_FG)

| 位       | 名称           | 访问  | 描述                                             | 复位值 |
|---------|--------------|-----|------------------------------------------------|-----|
| [31:17] | Reserved     | R0  | 保留。                                            | 0   |
| 16      | bKEYE_ACT_IF | RW1 | 密钥扩展完成中断标志位,写 1 清零:<br>1: 密钥扩展完成触发;<br>0: 无事件。 | 0   |
| [15:0]  | Reserved     | R0  | 保留。                                            | 0   |

#### 用户密钥寄存器组(AES\_SM4\_KEYn)(n=0-7)

| 位      | 名称           | 访问 | 描述              | 复位值 |
|--------|--------------|----|-----------------|-----|
| [31:0] | AES_SM4_KEY7 | RW | 用户密钥 223-256 位。 | Х   |
| [31:0] | AES_SM4_KEY6 | RW | 用户密钥 192-223 位。 | Х   |
| [31:0] | AES_SM4_KEY5 | RW | 用户密钥 160-191 位。 | Х   |
| [31:0] | AES_SM4_KEY4 | RW | 用户密钥 128-159 位。 | х   |
| [31:0] | AES_SM4_KEY3 | RW | 用户密钥 96-127 位。  | Х   |
| [31:0] | AES_SM4_KEY2 | RW | 用户密钥 64-95 位。   | Х   |
| [31:0] | AES_SM4_KEY1 | RW | 用户密钥 32-63 位。   | Х   |
| [31:0] | AES_SM4_KEYO | RW | 用户密钥 0-31 位。    | Х   |

#### 计数值寄存器组(AES\_SM4\_IVn)(n=0-3)

| 位      | 名称          | 访问 | 描述            | 复位值 |
|--------|-------------|----|---------------|-----|
| [31:0] | AES_SM4_IV3 | RW | 计数值 96-127 位。 | Х   |
| [31:0] | AES_SM4_IV2 | RW | 计数值 64-95 位。  | х   |
| [31:0] | AES_SM4_IV1 | RW | 计数值 32-63 位。  | Х   |
| [31:0] | AES_SM4_IVO | RW | 计数值 0-31 位。   | Х   |

### 12.6 数据存储加解密应用

#### 12. 6. 1 数据加密功能配置

- 1. 设置 AES/SM4 控制寄存器 AES\_SM4\_CTRL: bCLR\_ALL\_IF 位置 1, 清除中断, 选择 AES 或者 SM4 算法, 选择 ECB 或者 CTR 模式, 设置密钥长度。注意, SM4 算法只支持 128-bit 密钥长度;
  - 2. 设置用户密钥寄存器组,填充密钥。如果使用 ETC 模式,还需设置计数值寄存器组值;
  - 3. 设置控制寄存器 AES\_SM4\_CTRL 的 bKEYE\_EN, 先置 1 再置 0, 启动密钥扩展;
- 4. 查询中断标志寄存器 AES\_SM4\_INT\_FG, 等待密钥扩展完成中断。可选的, 开启控制寄存器密钥扩展完成中断使能位 bKEYE\_ACT\_IE, 等待中断触发;
- 5. 清除中断。设置控制寄存器 bEDMOD\_SELT 位为 0,选择加密模式,设置 bRDDAT\_ED\_EN 位为 1,启动从 SRAM 到 SD 传输数据加密功能,或者,设置 bWRDAT\_ED\_EN 位为 1,启动从 SD 到 SRAM 传输数据加密功能。

### 12.6.2 数据解密功能配置

- 1. 设置 AES/SM4 控制寄存器 AES\_SM4\_CTRL: bCLR\_ALL\_IF 位置 1,清除中断,选择 AES 或者 SM4 算法,选择 ECB 或者 CTR 模式,设置密钥长度。注意,SM4 算法只支持 128-bit 密钥长度;
  - 2. 设置用户密钥寄存器组,填充密钥。如果使用 CTR 模式,还需设置计数值寄存器组值;
  - 3. 设置控制寄存器 AES\_SM4\_CTRL 的 bKEYE\_EN, 先置 1 再置 0, 启动密钥扩展;
  - 4. 查询中断标志寄存器 AES\_SM4\_INT\_FG, 等待密钥扩展完成中断。可选的, 开启控制寄存器密

钥扩展完成中断使能位 bKEYE\_ACT\_IE, 等待中断触发;

5. 清除中断。设置控制寄存器 bEDMOD\_SELT 位为 1,选择解密模式,设置 bRDDAT\_ED\_EN 位为 1,启动从 SRAM 到 SD 传输数据解密功能,或者,设置 bWRDAT\_ED\_EN 位为 1,启动从 SD 到 SRAM 传输数据解密功能。

## 第 13 章 SATA 控制器

### 13.1 SATA 控制器简介

CH568 内嵌 SATA 控制器,具有主机控制器和设备控制器双重角色。控制器会自动调节数据流传 输,提取完整信息帧结构。用户可根据 ATA 协议构建帧信息启动发送,控制器自动添加原语送入物理 介质。

#### SATA 控制器特性如下:

- 1) 支持 SATA Host 主机功能和 SATA Device 设备功能;
- 2) 支持 1.5G 模式、3G 模式;
- 3) 支持流量控制和电源管理;
- 4) 支持最大 2048 双字的数据包,内置 FIFO,支持中断和 DMA;
- 5) 支持接收/发送数据双缓冲模式。

### 13.2 SATA 寄存器描述

SATA相关寄存器物理基地址为: 0x0040 B000

表 13-1 SATA 寄存器列表

| 名称            | 偏移地址 | 描述                                                      | 复位值          |
|---------------|------|---------------------------------------------------------|--------------|
| SATA_CTRL     | 00h  | SATA 控制寄存器                                              | 8h07         |
| SATA_PM_CTRL  | 01h  | SATA 电源管理寄存器                                            | 8h00         |
| SATA_MOD      | 02h  | SATA 模式控制寄存器                                            | 8h00         |
| SATA_INT_EN   | 04h  | SATA 中断使能寄存器                                            | 16h0000      |
| SATA_RX_LEN   | 08h  | SATA 接收长度寄存器                                            | 16hxxxx      |
| SATA_INT_FG   | 0Ch  | SATA 中断标志寄存器                                            | 16h0000      |
| SATA_INT_ST   | 0Eh  | SATA 中断状态寄存器                                            | 8h00         |
| SATA_TX_LEN   | 10h  | SATA 发送长度寄存器                                            | 16hxxxx      |
| SATA_RTX_CTRL | 12h  | SATA 收发控制器                                              | 8h00         |
| SATA_DATAO    | 14h  | SATA 数据寄存器 0, 收发的第一个 DWORD 存放在该寄存器,与SATA_DMAO 定义缓冲区结合使用 | 32h0000 0000 |
| SATA_DATA1    | 18h  | SATA 数据寄存器 1,收发的第一个 DWORD 存放在该寄存器,与SATA_DMA1 定义缓冲区结合使用  | 32h0000 0000 |
| SATA_DMAO     | 1Ch  | DMA0 缓冲区的起始地址                                           | 16hxxxx      |
| SATA_DMA1     | 1Eh  | DMA1 缓冲区的起始地址                                           | 16hxxxx      |

SATA 控制寄存器(SATA\_CTRL)

| 位 | 名称            | 访问 | 描述             | 复位值 |
|---|---------------|----|----------------|-----|
| _ | LOO DWA EN    | DW | DMA 使能控制位:     | •   |
| 7 | bsc_dma_en    | RW | 1: 使能 DMA 功能;  | 0   |
|   |               |    | O: 禁用 DMA。     |     |
|   |               |    | CONTp 原语使能控制位: |     |
| 6 | bSC_CONT_EN   | RW | 1: 使能;         | 0   |
|   |               |    | 0: 禁用。         |     |
|   |               |    | SATA 工作模式选择位:  |     |
| 5 | bSC_HOST_MODE | RW | 1: SATA 主机模式;  | 0   |
|   |               |    | 0: SATA 设备模式。  |     |

| 4 | bSC_FORCE_1P5G | RW | SATA 速度类型选择位:<br>1:强制工作在 1.5G 模式;<br>0:正常模式,此时速度取决于寄存器<br>SATA_MIS_ST 的 bSMS_SPEED_TYPE 位。           | 0 |
|---|----------------|----|------------------------------------------------------------------------------------------------------|---|
| 3 | bSC_INT_BUSY   | RW | SATA 传输完成中断标志未清零前自动暂停使能位: 1: 在中断标志 SIF_TRANSFER 未清零前自动暂停,对于接收来说自动不返回R_RDY 原语,对于发送来说自动暂停后续传输; 0: 不暂停。 | 0 |
| 2 | bSC_RESET_PHY  | RW | SATA 物理层软件复位控制位:<br>1:物理层复位;<br>0:物理层正常工作,在主机模式下准备<br>发送 COMRESET,在设备模式下准备发送<br>COMINIT。             | 1 |
| 1 | bSC_RESET_LINK | RW | SATA 链路层软件复位控制位:<br>1:链路层复位;<br>0:链路层正常工作。                                                           | 1 |
| 0 | bSC_CLR_ALL    | RW | 1: 清空 SATA 中断标志和 FIFO, 需要软件清零;<br>0: 不清空。                                                            | 1 |

## SATA 电源管理寄存器(SATA\_PM\_CTRL)

| 位 | 名称                | 访问 | 描述                                  | 复位值 |
|---|-------------------|----|-------------------------------------|-----|
| 7 | bSPC_OFFLINE      | RW | 保留。                                 | 0   |
| 6 | bSPC_LISTEN       | RW | 保留。                                 | 0   |
| 5 | bSPC_SLUMBER_S    | RW | 保留。                                 | 0   |
| 4 | bSPC_SLUMBER      | RW | 1: 进入 SLUMBER 睡眠模式;<br>0: 正常模式。     | 0   |
| 3 | bSPC_PARTIAL      | RW | 1: 进入 PARTIAL 省电模式;<br>0: 正常模式。     | 0   |
| 2 | bSPC_SEND_PMREQ_P | RW | 此为从 1 变为 0, 发送请求进入 PARTIAL<br>省电模式。 | 0   |
| 1 | bSPC_SEND_PMREG_S | RW | 此为从 1 变为 0, 发送请求进入 SLUMBER<br>睡眠模式。 | 0   |
| 0 | bspc_deny         | RW | 电源管理控制位:<br>1:不支持电源管理;<br>0:支持电源管理。 | 0   |

### SATA 模式控制寄存器(SATA\_MOD)

| S. W. M. M. H. C. W. C. W. C. |             |    |                      |     |
|-------------------------------|-------------|----|----------------------|-----|
| 位                             | 名称          | 访问 | 描述                   | 复位值 |
| [7:3]                         | 保留          | R0 | 保留。                  | 0   |
| 2                             | bSM_RX_EN   | RW | 1: 使能接收;<br>0: 禁止接收。 | 0   |
| 1                             | bSM_TX_EN   | RW | 1: 使能发送;<br>0: 禁止发送。 | 0   |
| 0                             | bSM_BUF_MOD | RW | 数据缓冲区模式控制位。          | 0   |

由 bSM\_RX\_EN 和 bSM\_TX\_EN 以及 bSM\_BUF\_MOD 组合控制 SATA 收发器的数据缓冲区模式,具体参考下表。其中的双缓冲区模式,SATA 数据传输时将根据 bSRC\_\*\_TOG=0 选择 DMAO 缓冲区,根据 bSRC\_\*\_TOG=1 选择 DMA1 缓冲区,bSRC\_\*\_AUTO\_TOG 实现自动切换。

| bSM_RX_EN | bSM_TX_EN | bSM_BUF_MOD | 描述:以 SATA_DMA 为起始地址由低向高排列        |
|-----------|-----------|-------------|----------------------------------|
| 0         | 0         | х           | 收发缓存区被禁用,未用到 SATA_DMA 缓冲区。       |
| 1         | 0         | 0           | 单 2048 双字接收缓冲区,SATA_DMAO 地址:接收。  |
|           |           |             | 双 2048 双字接收缓冲区,通过 bSRC_R_TOG 选择。 |
| 1         | 0         | 1           | 全部 4096 双字排列如下:                  |
| '         |           | 1           | SATA_DMAO 地址:bSRC_R_TOG=0 时接收;   |
|           |           |             | SATA_DMA1 地址: bSRC_R_TOG=1 时接收。  |
| 0         | 1         | 0           | 单 2048 双字发送缓冲区,SATA_DMAO 地址:发送。  |
|           |           |             | 双 2048 双字发送缓冲区,通过 bSRC_T_T0G 选择。 |
| 0         | 1         | 1           | 全部 4096 双字排列如下:                  |
|           | ı         | ı           | SATA_DMAO 地址: bSRC_T_TOG=0 时接收;  |
|           |           |             | SATA_DMA1 地址: bSRC_T_TOG=1 时接收。  |
|           | 1 1 x     | х           | 单 2048 双字接收缓冲区,单 2048 双字发送缓冲区:   |
| 1         |           |             | SATA_DMAO 地址:接收;                 |
|           |           |             | SATA_DMA1 地址: 发送。                |

注: 如果收发数据都需要使用双缓冲模式, 那么需要手动切换收发模式配置。

### SATA 中断使能寄存器(SATA\_INT\_EN)

| 位       | 名称             | 访问   | 描述                       | 复位值   |
|---------|----------------|------|--------------------------|-------|
| [15:12] | 保留             | R0   | 保留。                      | 0000b |
|         |                |      | COMINIT 接收中断:            |       |
| 11      | bSIE_COMINIT   | RW   | 1: 使能相应中断;               | 0     |
|         |                |      | 0:禁止相应中断。                |       |
|         |                |      | 物理层连接错误事件中断:             |       |
| 10      | bSIE_PHYERR    | RW   | 1: 使能相应中断;               | 0     |
|         |                |      | 0:禁止相应中断。                |       |
|         |                |      | 电源管理请求中断:                |       |
| 9       | bSIE_PM_REQ    | RW   | 1: 使能相应中断;               | 0     |
|         |                |      | 0:禁止相应中断。                |       |
|         | bSIE_PM_RES    | RW   | 电源管理请求响应中断:              |       |
| 8       |                |      | 1: 使能相应中断;               | 0     |
|         |                |      | 0:禁止相应中断。                |       |
|         |                |      | 发送被中止(收到 SYNCp)中断:       |       |
| 7       | bSIE_TRAN_INT  | RW   | 1: 使能相应中断;               | 0     |
|         |                |      | 0:禁止相应中断。                |       |
|         |                |      | 数据接收或发送等待(收到 HOLDp)中     |       |
| 6       | bSIE HOLD      | RW   | 断:                       | 0     |
|         | 5012_11025     | 1111 | 1: 使能相应中断;               |       |
|         |                |      | 0:禁止相应中断。                |       |
|         |                |      | 终止 DMA 数据发送(收到 DMATp)中断: |       |
| 5       | bSIE_DMAT      | RW   | 1: 使能相应中断;               | 0     |
|         |                |      | 0:禁止相应中断。                |       |
| 4       | bSIE FIFO OV   | RW   | FIFO 溢出中断:               | 0     |
| 7       | 55.2_1 11 0_01 | 1111 | 1: 使能相应中断;               |       |

|   |              |    | 0: 禁止相应中断。                                              |   |
|---|--------------|----|---------------------------------------------------------|---|
| 3 | bSIE_COLLIDE | RW | 总线冲突:<br>1: 使能相应中断;<br>0: 禁止相应中断。                       | 0 |
| 2 | bSIE_RECV_OK | RW | 1: 景正相应中断。<br>  接收完成中断:<br>  1: 使能相应中断;<br>  0: 禁止相应中断。 | 0 |
| 1 | bSIE_TRAN_OK | RW | 发送完成中断:<br>1:使能相应中断;<br>0:禁止相应中断。                       | 0 |
| 0 | bSIE_PHYRDY  | RW | 物理层连接或断开事件中断: 1: 使能相应中断; 0: 禁止相应中断。                     | 0 |

### SATA 接收长度寄存器(SATA\_RX\_LEN)

| 位      | 名称          | 访问 | 描述                                    | 复位值   |
|--------|-------------|----|---------------------------------------|-------|
| [15:0] | SATA_RX_LEN | R0 | 当前接收数据计数,最低 2 位固定为 0,<br>最高 2 位固定为 0。 | xxxxh |

### SATA 中断标志寄存器(SATA\_INT\_FG)

| 位       | 名称              | 访问  | 描述                                                                                                                               | 复位值 |
|---------|-----------------|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|
| [15:13] | 保留              | R0  | 保留。                                                                                                                              | 0   |
| 12      | bSIF_COMINIT    | RW1 | 接收到 COMINIT/COMRESET 中断标志位,<br>写 1 清零:<br>1: 收到 COMINIT/COMRESET 触发;<br>0: 无事件。                                                  | 0   |
| 11      | bSIF_PHYERR     | RW1 | 物理层连接错误事件中断标志位,写 1<br>清零:<br>1:检测到物理层连接错误触发;<br>0:无事件。                                                                           | 0   |
| 10      | bSIF_PM_PARTIAL | RW1 | 请求或被请求进入 PARTIAL 省电模式标志位,写 1 清零: 1: 收到此标志后,电源管理应答结束,需要设置 SATA_PM_CTR 寄存器进入对应模式; 0: 无事件。                                          | 0   |
| 9       | bSIF_PM_SLUMBER | RW1 | 请求或被请求进入 SLUMBER 睡眠模式标志位,写 1 清零: 1: 收到此标志后,电源管理应答结束,需要设置 SATA_PM_CTR 寄存器进入对应模式; 0: 无事件。                                          | 0   |
| 8       | bSIF_PM_NAK     | RW1 | 电源管理响应中断标志位,写 1 清零:<br>1: 不支持电源管理; LINK 发送<br>PMREQ_Sp/PMREQ_Pp 后收到 PMNAKp,或<br>者接收到 PMREQ_Sp/PMREQ_Pp 后返回<br>PMNAKp;<br>0: 无事件。 | 0   |
| 7       | bSIF_TRAN_INT   | RW1 | 当前发送被中止中断标志位,写1清零:                                                                                                               | 0   |

|   | 1             |      |                         |     |
|---|---------------|------|-------------------------|-----|
|   |               |      | 1: 发送数据过程中接收到 SYNCp 事件触 |     |
|   |               |      | 发;                      |     |
|   |               |      | 0: 无事件。                 |     |
|   |               |      | 数据接收或发送等待(收到 HOLDp)标    |     |
| , | 1015 1101 5   | DW4  | 志位,写1清零:                | 0   |
| 6 | bSIF_HOLD     | RW1  | 1: 收到 HOLDp 事件触发;       | U   |
|   |               |      | 0: 无事件。                 |     |
|   |               |      | 终止 DMA 数据发送中断标志位, 写 1 清 |     |
| _ | 5 1.015 544.7 | 零:   | _                       |     |
| 5 | bSIF_DMAT     | RW1  | 1: 收到 DMATp 事件触发;       | 0   |
|   |               |      | 0: 无事件。                 |     |
|   |               |      | FIF0 溢出中断标志位,写 1 清零:    |     |
| 4 | bSIF FIFO OV  | RW1  | 1: FIFO 溢出触发;           | 0   |
|   | 5011_1110_01  | 1000 | 0: 无事件。                 | · · |
|   |               |      | 主机模式下,总线冲突标志位,写 1 清     |     |
|   |               |      | 零:                      |     |
| 3 | bSIF_COLLIDE  | RW1  | -                       | 0   |
|   |               |      | 1:发送数据时,总线冲突。           |     |
|   |               |      | 0: 无事件。                 |     |
|   |               |      | 数据接收完成标志位,写 1 清零:       |     |
| 2 | bSIF_RECV_OK  | RW1  | 1:一帧数据接收完成触发;           | 0   |
|   |               |      | 0: 无事件。                 |     |
|   |               |      | 数据发送完成标志位,写1清零:         |     |
| 1 | bSIF_TRAN_OK  | RW1  | 1:一帧数据发送完成触发;           | 0   |
|   |               |      | 0: 无事件。                 |     |
|   |               |      | 物理层连接或断开事件标志位,写 1 清     |     |
| _ | LOLE DUVDDV   | DW4  | 零:                      | 0   |
| 0 | bSIF_PHYRDY   | RW1  | 1:检测到物理层连接或断开事件触发;      | 0   |
|   |               |      | 0: 无事件。                 |     |
|   | l             |      |                         |     |

- 注: 1、接收到 bSIF\_DMAT 中断表示当前发送的数据部分被传输,对面接收的数据帧是完整的, CRC 和 EOF 还是会发送。所以还是会产生 bSIF\_TRAN\_OK 中断。
- 2、当检测到 bSIF\_TRAN\_OK 中断,同时 bSIS\_CRC\_OK=1 且这期间没有 bSIF\_DMAT 中断,表示当前数据被正确发送,否则需要 MCU 重新启动发送。如果是接收数据过程中出现错误,则不会产生 bSIF\_RECV\_OK 中断。另外,若 bSRC\_R\_AUTO\_TOG 或 bSRC\_T\_AUTO\_TOG 为 1,则任何发送错误或者接收错误都不会自动翻转。

SATA 中断状态寄存器 (SATA INT ST)

| 位 | 名称              | 访问 | 描述                                                    | 复位值 |
|---|-----------------|----|-------------------------------------------------------|-----|
| 7 | 保留              | R0 | 保留                                                    |     |
| 6 | bSMS_SPD_TYPE   | R0 | 当前工作的速度模式:<br>1:3G模式;<br>0:1.5G模式。                    | 0   |
| 5 | bSMS_R_F1F0_RDY | RO | SATA 接收 FIFO 数据就绪状态:<br>1:接收 FIFO 非空;<br>0:接收 FIFO 空。 | 0   |
| 4 | bSIS_LINK_FREE  | RO | SATA 链路层空闲状态位:<br>1:空闲,可发送数据;<br>0:忙。                 | 0   |
| 3 | bSIS_HOLD       | R0 | 1: 当前处于 HOLD 状态, 可通过<br>bSRC_SYNC_ESCAPE 来中断当前传输;     | 0   |

|   |                  |    | 0: 非 HOLD 状态。                                                                |   |
|---|------------------|----|------------------------------------------------------------------------------|---|
| 2 | bSIS_RECV_CRC_OK | RO | 接收数据帧校验状态位,bSIF_RECV_OK中断后检测该位:<br>1:校验正确,物理层返回 R_OK;<br>0:校验错误,物理层返回 R_ERR。 | 0 |
| 1 | bSIS_TRAN_CRC_OK | RO | 发送数据帧校验状态位,bSIF_TRAN_OK中断后检测该位: 1:发送成功,对方接收; 0:发送失败,需MCU重新发送。                | 0 |
| 0 | bSIS_PHYRDY      | RO | PHY_READY 状态位:<br>1:物理层正常连接;<br>0:物理层断开。                                     | 0 |

### SATA 发送长度寄存器(SATA\_TX\_LEN)

| 位      | 名称          | 访问 | 描述                                         | 复位值   |
|--------|-------------|----|--------------------------------------------|-------|
| [15:0] | SATA_TX_LEN | RW | 发送的数据字节数,低 2 位固定为 0(4<br>字节对齐),高 2 位固定为 0。 | xxxxh |

### SATA 收发控制寄存器(SATA\_RTX\_CTRL)

| 位 | 名称               | 访问 | 描述                                                                                  | 复位值 |
|---|------------------|----|-------------------------------------------------------------------------------------|-----|
| 7 | bSRC_R_AUTO_TOG  | RW | 接收双缓冲区模式下,自动切换缓冲区:<br>1:使能;<br>0:禁止。                                                | 0   |
| 6 | bSRC_T_AUTO_TOG  | RW | 发送双缓冲区模式下,自动切换缓冲区:<br>1:使能;<br>0:禁止。                                                | 0   |
| 5 | bSRC_R_TOG       | RW | 接收双缓冲区模式下,数据存放位置:<br>1:接收的数据存放在 SATA_DMAO 缓冲<br>区;<br>0:接收的数据存放在 SATA_DMA1 缓冲<br>区。 | 0   |
| 4 | bSRC_T_TOG       | RW | 发送双缓冲区模式下,数据发送位置:<br>1:发送存放在 SATA_DMA0 缓冲区数据;<br>0:发送存放在 SATA_DMA1 缓冲区数据。           | 0   |
| 3 | 保留               | R0 | 保留。                                                                                 | 0   |
| 2 | bSRC_R_READY     | RW | 1: 准备好接收数据; 0: 禁止接收数据。                                                              | 0   |
| 1 | bSRC_T_READY     | RW | 1: 准备好发送数据,启动发送,发送完成需手动清0;<br>0: 不发送。                                               | 0   |
| 0 | bSRC_SYNC_ESCAPE | RW | 1:强制中止当前传输,发送 SYNCp 原语;<br>0:无动作。                                                   | 0   |

### SATA 数据缓冲区 0 (SATA\_DATA0):

| 位      | 名称         | 访问 | 描述                                        | 复位值 |
|--------|------------|----|-------------------------------------------|-----|
| [31:0] | SATA_DATAO | RW | SATA 数据寄存器 0, LINK 收发的第一个<br>双字数据存放在该寄存器。 | 0   |

#### SATA 数据缓冲区 1 (SATA\_DATA1):

| 位      | 名称         | 访问 | 描述                                        | 复位值 |
|--------|------------|----|-------------------------------------------|-----|
| [31:0] | SATA_DATA1 | RW | SATA 数据寄存器 1, LINK 收发的第一个<br>双字数据存放在该寄存器。 | 0   |

#### SATA 缓冲区 0 起始地址(SATA DMAO)

| 付   | Ì   | 名称        | 访问 | 描述                                            | 复位值   |
|-----|-----|-----------|----|-----------------------------------------------|-------|
| [15 | :0] | SATA_DMAO | RW | 缓冲区 0 起始地址,低 3 位固定位 0(8<br>字节对齐),最高 1 位固定为 0。 | xxxxh |

#### SATA 缓冲区 1 起始地址(SATA DMA1)

| 位      | 名称        | 访问 | 描述                                | 复位值   |
|--------|-----------|----|-----------------------------------|-------|
| [15:0] | SATA_DMA1 | RW | 缓冲区1起始地址,低3位固定位0(8字节对齐),最高1位固定为0。 | xxxxh |

### 13.3 编程指南

### 13.3.1 SATA 设备/主机连接

SATA 控制器能够自动完成设备和主机的通讯链路建立,用户只要查询对应的标志位即可。这样 大大简化了用户对底层通讯时序的控制。

### 主机模式配置:

- 1. 初始化主机功能:设置 SATA CTRL 寄存器 bSC HOST MODE、bSC DMA EN、bSC INT BUSY 位为 1;
- 2. 设置 SATA\_CTRL 寄存器 bSC\_RESET\_PHY、bSC\_RESET\_LINK、bSC\_CLR\_ALL 为 0,;
- 3. 设置收发模式寄存器 SATA\_MOD 和缓冲区寄存器 DMA 地址 SATA\_DMAO 和 SATA\_DMA1;
- 4. 可选的, 开启电源管理功能;
- 5. 设置 SATA\_RTX\_CTRL 寄存器 bSRC\_R\_READY 位为 1, 开启数据接收;
- 6. 等待设备连接:如果查询标志寄存器 bSIF\_PHYRDY 置位,需要再次查询 SATA\_INT\_ST 寄存器 bSIS\_PHYRDY 位,检测设备连接。如果 bSIF\_PHYERR 置位,说明通讯链路建立过程出错,需要重新连接,清除中断标志,将 bSC\_RESET\_PHY 位置高再置低,重新和设备建立通讯链路。

#### 设备模式配置:

- 1. 初始化设备功能:设置 SATA CTRL 寄存器 bSC DMA EN、bSC INT BUSY 位为 1;
- 2. 设置 SATA CTRL 寄存器 bSC RESET PHY、bSC RESET LINK、bSC CLR ALL 为 0,;
- 3. 设置收发模式寄存器 SATA\_MOD 和缓冲区寄存器 DMA 地址 SATA\_DMAO 和 SATA\_DMA1;
- 4. 可选的, 开启电源管理功能;
- 5. 设置 SATA\_RTX\_CTRL 寄存器 bSRC\_R\_READY 位为 1, 开启数据接收;
- 6. 等待中断标志寄存器 bSIF\_PHYRDY 位置位,此时通讯链路建立,设备可以按照 ATA 协议发送一帧设备状态帧(FIS=34h)。

#### 13.3.2 数据发送

- 1. 根据 ATA 协议构建 FIS 帧,填充前 4 字节到 SATA\_DATAx 寄存器;
- 将后续帧内容的首地址写入 SATA DMAx 寄存器,此地址必须保证 8 字节对齐;
- 3. 填充帧长度字节数到 SATA TX LEN 寄存器,此字节数要求为 4 的倍数;
- 4. 查询 SATA\_INT\_ST 寄存器的 bSIS\_LINK\_FREE 位,当此位为 1 时,置位 bSRC\_T\_READY 位,启动 发送:
- 5. 等待中断标志寄存器的 bSIF\_TRAN\_OK 位和状态寄存器的 bSIS\_TRAN\_CRC\_OK 位置 1, 代表数据正确发送到接收端,需要清除 bSRC\_T\_READY 位和标志。否则需要重新发送帧。

### 13.3.3 数据接收

- 1. 设置 SATA\_DMAx 寄存器的接收数据地址(8 字节对齐), 置位 SATA\_RTX\_CTRL 寄存器的 bSRC\_R\_READY 位;
- 2. 等待中断标志寄存器的 bSIF\_RECV\_OK 位和状态寄存器的 bSIS\_RECV\_CRC\_OK 位置 1, 代表数据接收正确,清除中断标志。否则继续等待接收,底层硬件会同时发送方接收错误(R\_ERRp)。
- 3. 从 SATA\_DATAx 寄存器和 SATA\_DMAx 定义的地址缓存区中获取接收到的帧,接收的总字节计数 从 SATA\_RX\_LEN 寄存器中读取。

## 第14章 中断

### 14.1 中断控制器

CH568 芯片支持多个中断源,总共有 16 个外设中断源。包括 UART、SPI、TMR、USB、GPI0 等。 表 14-1 中断向量表

| 默认优先顺序       | 中断号 | 优先等级   | 名称    | 说明        |
|--------------|-----|--------|-------|-----------|
|              | 0   | 2 级可设置 | SOFT  | 软件中断      |
| 高优先权         | 1   | 2 级可设置 | TMRO  | 定时器 0 中断  |
| <b>+</b>     | 2   | 2 级可设置 | GP10  | GP10 端口中断 |
| <u> </u>     | 3   | 2 级可设置 | SP10  | SPI0 中断   |
| <del> </del> | 4   | 2 级可设置 | SATA  | SATA 中断   |
| +            | 5   | 2 级可设置 | TMR1  | 定时器 1 中断  |
| +            | 6   | 2 级可设置 | TMR2  | 定时器 2 中断  |
| <b>†</b>     | 7   | 2 级可设置 | UART0 | 串口 0 中断   |
|              | 8   | 2 级可设置 | USB1  | USB1 中断   |
|              | 9   | 2 级可设置 | SDC   | SD 控制器中断  |
| 1            | 10  | 2 级可设置 | ECDC  | 加解密控制器中断  |
| Ì            | 11  | 2 级可设置 | LED   | LED 控制器中断 |
| į į          | 12  | 2 级可设置 | SPI1  | SPI1 中断   |
| <b>1</b>     | 13  | 2 级可设置 | UART1 | 串口1中断     |
| 低优先权         | 14  | 2 级可设置 | UART2 | 串口2中断     |
|              | 15  | 2 级可设置 | UART3 | 串口3中断     |

### 14.2 中断使用说明

- 1) 使用CH568芯片的中断功能,需要在软件代码中添加如下函数来开启系统中断控制。 void Interrupt\_init(void);
- 2) 开启相应外设模块的中断使能寄存器相应中断控制位,就可以在相应触发条件下中断触发。
- 3) 中断函数写法参考如下示例,以 TMRO 为例,中断号为1:

## 第 15 章 参数

### 15.1 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 15-1 绝对最大值参数表

| 名称      | 参数说!             | 最小值                                             | 最大值         | 单位          |    |
|---------|------------------|-------------------------------------------------|-------------|-------------|----|
| TA      | 工作时的环境温度         | VCC33=3. 3V<br>V33101/2/3=3. 3V<br>VCC12A=1. 2V | -40         | 85          | °C |
| TS      | 储存时的环境           | <b>竟温度</b>                                      | <b>−</b> 55 | 125         | °C |
| VCC33   | 系统电源电压(VCC33 接   | (电源,GND 接地)                                     | -0.4        | 4. 2        | ٧  |
| V33101  | 外设组1电源电压(V3310   | -0. 4                                           | 4. 2        | ٧           |    |
| V33102  | 外设组 2 电源电压(V3310 | -0. 4                                           | 4. 2        | ٧           |    |
| V33103  | 外设组3电源电压(V3310   | -0. 4                                           | 4. 2        | ٧           |    |
| V100    | VCC33 电源域的输入或者   | -0.4                                            | VCC33+0. 4  | ٧           |    |
| V101    | V33101 电源域的输入或者  | -0. 4                                           | V33101+0. 4 | ٧           |    |
| V102    | V33102 电源域的输入或者  | -0. 4                                           | V33102+0. 4 | ٧           |    |
| V103    | V33103 电源域的输入或者  | -0. 4                                           | V33103+0. 4 | ٧           |    |
| VCC12A  | SATA-PHY 电       | -0. 3                                           | 1. 5        | ٧           |    |
| VIOSATA | SATA-PHY 信号引     | 脚上的电压                                           | -0. 3       | VCC12A+0. 3 | ٧  |

## 15.2 电气参数

测试条件: TA=25°C, VCC33=3.3V、V33101/2/3=3.3V、VCC12A=1.2V, Fsys=96MHz。

表 15-2 电气参数表

| 农口工电 1多数农 |                                  |             |           |      |            |        |
|-----------|----------------------------------|-------------|-----------|------|------------|--------|
| 名称        | 参数说明                             |             | 最小值       | 典型值  | 最大值        | 单<br>位 |
| VCC33     | 系统电源电压                           | VCC33       | 2. 7      | 3. 3 | 3. 6       | ٧      |
| V33101    | 外设组1电源电压                         | V33101      | 1. 6      | 3. 3 | 3. 6       | ٧      |
| V33102    | 外设组2电源电压                         | V33102      | 1. 6      | 3. 3 | 3. 6       | ٧      |
| V33103    | 外设组3电源电压                         | V33103      | 3. 0      | 3. 3 | 3. 6       | ٧      |
| VCC12A    | SATA-PHY 电源电压                    | VCC12A      | 1. 15     | 1. 2 | 1. 3       | ٧      |
| ICC       | 工作时的总电流                          | 源电流         | 20        | 45   | 150        | mA     |
| ISLP      | 低功耗状态的电源电流<br>I/0 引脚输出无负载或者输入带下拉 |             | 240       | 280  | 350        | uA     |
| VIL       | 低电平输入电压(V3310=3.3V)              |             | -0.4      | _    | 0. 7       | ٧      |
| VIH       | 高电平输入电压(V3310=3.3V)              |             | 2. 0      | _    | V3310+0. 4 | ٧      |
| VIL18     | 低电平输入电压(V33101/2=1.8V)           |             | -0.4      | _    | 0. 5       | ٧      |
| VIH18     | 高电平输入电压(V33                      | 101/2=1.8V) | 1. 2      | _    | V3310+0. 4 | ٧      |
| VOL       | 低电平输出电压(6mA 吸入电流)                |             | -         | _    | 0. 4       | ٧      |
| VOH       | 高电平输出电压(5mA 输出电流)                |             | V3310-0.4 | _    | -          | ٧      |
| IUP       | 内置上拉电阻的输入端的输入电流                  |             | 25        | 45   | 80         | uA     |
| IDN       | 内置下拉电阻的输入端的输入电流                  |             | -25       | -45  | -80        | uA     |
| Vpot      | VCC12 内核电源上电复                    | 位的电压门限      | 0.6       | 0. 7 | 0.8        | ٧      |

## 15.3 功能模块静态电流

测试条件: TA=25°C, VCC33=3.3V、V33101/2/3=3.3V、VCC12A=1.2V。

表 15-3 功能模块动态电流表

| 频率<br>功能模块       | 30M    | 60M    | 96M    | 120M   | 单位 |
|------------------|--------|--------|--------|--------|----|
| USB              | 0. 2   | 0. 4   | 0. 65  | 0. 79  | mA |
| USB-Phy          |        | 1      | 0      |        | mA |
| SATA             | 0. 23  | 0. 48  | 0. 72  | 0. 92  | mA |
| SATA-Phy         |        | 5      | 0      |        | mA |
| SDC-96MHz        | 12. 45 | 13. 53 | 14. 84 | 15. 65 | mA |
| SDC-48MHz        | 6. 28  | 7. 39  | 8. 64  | 9. 49  | mA |
| SDC-24MHz        | 4. 16  | 5. 22  | 6. 5   | 7. 32  | mA |
| ECDC-240MHz      | 15. 64 | 16. 88 | 17. 72 | 19. 3  | mA |
| ECDC-160MHz      | 10. 99 | 12. 25 | 13. 79 | 14. 69 | mA |
| TMR+UART+SPI+PWM | 0. 17  | 0. 33  | 0. 51  | 0. 7   | mA |
| PLL              |        | -      | 7      |        | mA |
| Core+BUS+DMA     | 24     | 27     | 31     | 34     | mA |

## 15.4 时序参数

测试条件: TA=25°C, VCC33=3.3V、V33I01/2/3=3.3V, Fsys =96MHz。

表 15-4 时序参数表

| 名称   | 参数说明                 | 最小值  | 典型值    | 最大值 | 单位 |
|------|----------------------|------|--------|-----|----|
| Trst | 外部复位输入 RST#有效信号宽度    | 50   | 2*Tsys | I   | ns |
| Tpro | 上电复位后的复位延时           | 22   | 32     | 50  | mS |
| Tsro | 外部/软件复位输入后的复位延时+加载时间 | 8    | 8.8    | 10  | mS |
| TWAK | 从低功耗状态退出的唤醒时间        | 0. 2 | 1      | 5   | mS |

## 第16章 封装

## 芯片封装

| 封装形式    | 塑体宽度  | 引脚间距   |         | 封装说明          | 订货型号   |
|---------|-------|--------|---------|---------------|--------|
| LQFP-48 | 7*7mm | 0. 5mm | 19.7mil | 标准 LQFP48 脚贴片 | CH568L |

### 说明:

尺寸标注的单位是 mm (毫米)

引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.5mm。



# 第17章 修改记录

| 版本    | 日期           | 说明        |
|-------|--------------|-----------|
| V1. 0 | 2016. 11. 28 | 初版发行      |
| V1. 1 | 2018. 10. 29 | 修改了部分错误描述 |