Numerical Integration II

Marcin Chrząszcz, Danny van Dyk mchrzasz@cern.ch, danny.van.dyk@gmail.com

University of Zurich

Numerical Methods, 31 October, 2016

Reminder

- \Rightarrow On the last lecture with prof. van Dyk :P we learned how to do numerical integration.
- ⇒ The standard solution is to use the Newton-Coates Quadrature:

$$I^{NC} = \sum_{k=0}^{K} \omega_k f(x_k), \quad x_k = a + (b-a) \frac{k}{K}$$

- ⇒ In practical application we use low order quadratures:
- Simplicity.
- Not easy to calculate high order differentials.
- Rundge effect.
- It's more effective to use the composite quadratures.

Practical information

- \Rightarrow There are 4 closed Newton-Cotes methods you need to remember (no more nor less):
- ⇒ Trapezoid rule:

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{2} (f_0 + f_1)$$
$$E = -\frac{1}{12} (b-a)^3 f''(\zeta)$$

⇒ Simpson rule:

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{6} (f_0 + 4f_1 + f_2)$$
$$E = -\frac{1}{90} \left(\frac{b-a}{2}\right)^5 f^{(4)}(\zeta)$$

Practical information

- \Rightarrow There are 4 closed Newton-Cotes methods you need to remember (no more nor less):
- \Rightarrow 3/8 rule:

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$
$$E = -\frac{3}{80} \left(\frac{b-a}{3}\right)^5 f^{(4)}(\zeta)$$

⇒ Boole rule:

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{90} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$$
$$E = -\frac{8}{945} \left(\frac{b-a}{4}\right)^{7} f^{(6)}(\zeta)$$

Composite quadratures

- \Rightarrow In practice instead of using high order interpolating polynomial it's beneficial to divide the domain [a,b] into smaller domains and use lower order Newton-Cotes method.
- \Rightarrow The procedure can be iterated \mapsto more divisions.
- \Rightarrow When dividing we can re-use the old points \mapsto evaluating function is the most expensive part of the calculation.
- \Rightarrow To re-use the points we need the close versions of the Newton-Cotes methods.

- \Rightarrow Division of the integration domain leads towards reduction of the error of the integral.
- \Rightarrow For example let's say we calculate the integral with trapezoid rule. We are getting an error:

$$\hat{E} = -\frac{1}{12}(b-a)^3 f^{(2)}(\xi_0)$$

⇒ Now let's divide the domain in two:

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{(a+b)/2} f(x)dx + \int_{(a+b)/2}^{b} f(x)dx$$

⇒ And the error:

$$\hat{E} = -\frac{1}{12} \left(\frac{b-a}{2} - a\right)^3 f^{(2)}(\xi_1) - \frac{1}{12} \left(b - \frac{a+b}{2}\right)^3 f^{(2)}(\xi_2) = -\frac{1}{4} \frac{1}{12} (b-a)^3 f^{(2)} \frac{f^{(2)}(\xi_1) + f^{(2)}(\xi_2)}{2}$$

⇒ Now using the average value theorem:

$$\xi_1 \in [a, (a+b)/2], \quad \xi_2 \in [(a+b)/2, b]$$

$$\frac{f^{(2)}(\xi_1) + f^{(2)}(\xi_2)}{2} = f^{(2)}(\xi_3)$$

⇒ We get in the end:

$$\hat{E} = -\frac{1}{4} \frac{1}{12} (b - a)^3 f^{(2)}(\xi_3)$$

- ⇒ We reduced the error by factor of 4!
- \Rightarrow In general for n divisions:

$$\hat{E} = \sum_{i=1}^{n} \left(-\frac{1}{12}\right) \left(\frac{b-a}{2}\right)^{n} f^{(2)}(\xi_{i}) = -\frac{1}{12} \frac{(b-a)^{3}}{n^{2}} \frac{1}{n} \sum_{i=1}^{n} f^{(2)}(\xi_{i}) = -\frac{1}{n^{2}} \frac{(b-a)^{3}}{12} f^{(2)}(\xi_{i})$$

⇒ Remember for trapezoid formula we need to just to remember the sum when we will make the domain more dense:

$$I_N \sim h(\frac{1}{2}f_0 + f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N)$$

⇒ The division can be stopped when we reach the wanted precision:

$$\frac{|I_{k+1} - I_k|}{|I_k| + \epsilon'} < \epsilon$$

- \Rightarrow Using the composite quadratures we are getting sequence of numbers that will converge to the value of the integral.
- ⇒ Now in the "normal" composite quadrature we just use the final value, but in principle the previous calculated one might be also useful!
- ⇒ The simplest algorithm that uses them is the Richardson extrapolation:
- We divide the [a,b] in the n and 2n divisions:

$$I = I_n - \frac{(b-a)^3}{12n^2} f^{(2)}(\xi_n)$$
$$I = I_{2n} - \frac{(b-a)^3}{12(2n)^2} f^{(2)}(\xi_{2n})$$

 \Rightarrow Now if we assume that $f^{(2)}(\xi_{2n}) \simeq f^{(2)}(\xi_{2n})$ we can calculate:

$$I \simeq \frac{4I_{2n} - I_n}{3}$$

- \Rightarrow Now this will work only if the assumption is true: $f^{(2)}(\xi_{2n}) \simeq f^{(2)}(\xi_{2n})$.
- \Rightarrow This is true if the sequence I_k is monotonically approaching the true value.

10/22

- \Rightarrow Now this will work only if the assumption is true: $f^{(2)}(\xi_{2n}) \simeq f^{(2)}(\xi_{2n})$.
- \Rightarrow This is true if the sequence I_k is monotonically approaching the true value.
- ⇒ Aka. the function always underestimates the integral.

10/22

- \Rightarrow Now this will work only if the assumption is true: $f^{(2)}(\xi_{2n}) \simeq f^{(2)}(\xi_{2n})$.
- \Rightarrow This is true if the sequence I_k is monotonically approaching the true value.
- ⇒ Aka. the function always underestimates the integral.
- ⇒ Aka. Convex of the function doesn't change much.
- \Rightarrow If the convex of teh function changes the application of Richardson extrapolation might now be a good idea.

10/22

⇒ For example let's try to calculate:

$$I = \int_{1}^{2} \frac{dx}{x}$$

- \Rightarrow the exact solution is $I = \ln 2 = 0.69314718...$
- ⇒ now using the trapezoid method:

$$I_1 = \frac{1}{2} (f(1) + f(2)) = 0.75$$

⇒ making more dense domain:

$$I_2 = \frac{1}{2} \left(\frac{1}{2} f(1) + f(1.5) + \frac{1}{2} f(2) \right) = \frac{1}{2} \frac{17}{12} = 0.708333...$$

 \Rightarrow making more² dense domain:

$$I_4 = \frac{1}{4} \left(\frac{1}{2} f(1) + f(1.5) + \frac{1}{2} f(2) \right) + \frac{1}{4} \left(f(1.25) + f(1.75) \right) =$$

$$\frac{1}{4} \frac{17}{12} + \frac{1}{4} \left(\frac{4}{5} + \frac{4}{7} \right) = 0.69702381$$

 \Rightarrow The I_1 , I_2 , I_4 make a monotonic sequnce of integral approximations. Applying the Richardson extrapolation to I_4 and I_2 :

$$\frac{4 \cdot 69702381 + 0.708333}{3} = 0.69325397$$

Romberg method

- ⇒ There is a way to do better the Richardson extrapolation. The prove of this is non trivial but let's just see how this works.
- \Rightarrow Let $A_{0,k}$ be trapezoid approximation with 2^k subdivisions.
- ⇒ We know that:

$$\lim_{k \to \infty} A_{0,k} = I$$

⇒ Now if we define the:

$$A_{n,k} = \frac{1}{4^n - 1} \left(4^n A_{n-1,k+1} - A_{n-1,k} \right)$$

Romberg method

 \Rightarrow Now the order to calculate the $A_{n,k}$ is:

$$A_{0,0}$$

$$A_{0,1} \xrightarrow{\rightarrow} A_{1,0}$$

$$A_{0,2} \xrightarrow{\rightarrow} A_{1,1} \xrightarrow{\rightarrow} A_{2,0}$$

$$A_{0,3} \xrightarrow{\rightarrow} A_{1,2} \xrightarrow{\rightarrow} A_{2,1} \xrightarrow{\rightarrow} A_{3,0}$$

$$A_{0,4} \xrightarrow{\rightarrow} A_{1,3} \xrightarrow{\rightarrow} A_{2,2} \xrightarrow{\rightarrow} A_{3,1} \xrightarrow{\rightarrow} A_{4,0}$$

$$\dots \xrightarrow{\rightarrow} \dots \xrightarrow{\rightarrow} \dots \xrightarrow{\rightarrow} \dots \xrightarrow{\rightarrow} \dots$$

- ⇒ Arrows indicate which elements are needed to calculate the next one.
- ⇒ In practice we don't need to remember all of them, but the last row.

Romberg method

⇒ One can show:

$$\begin{pmatrix} A_{00} \\ A_{10} \\ A_{20} \\ \dots \\ A_{k0} \end{pmatrix} = \begin{pmatrix} c_{00} & 0 & 0 & \dots & 0 \\ c_{11} & c_{10} & 0 & \dots & 0 \\ c_{22} & c_{21} & c_{20} & \dots & 0 \\ \dots & & & & & \\ c_{kk} & c_{k,k-1} & c_{k,k-2} & \dots & c_{k,0} \end{pmatrix} \begin{pmatrix} A_{00} \\ A_{01} \\ A_{02} \\ \dots \\ A_{0,k} \end{pmatrix}$$

- \Rightarrow If it is true: $\lim_{k\to\infty}A_{0,k}=I$ then $\lim_{k\to\infty}A_{k,0}=I$
- \Rightarrow Now the numbers $A_{k,0}$ are the extrapolation of the extrapolation :) Yes I know how this sounds :P
- \Rightarrow The convergence of $A_{k,0}$ is much faster then $A_{0,k}$

Romberg method, in practice

- \Rightarrow The algorithm works as follows: we start from calculating the $A_{0,k}$ and our current estimator of the integral is $A_{k,0}$. (remember we have 2^k divisions)
- \Rightarrow Now we calculate the $A_{0,k+1}$ using the trapezoid method with 2^{k+1} divisions.
- ⇒ We calculate the whole row using eq. from two slides up.
- \Rightarrow The whole procedure is finished when the $A_{k,0}$ and $A_{k+1,0}$ are similar.

Warning:

There is not guarantee that the algorithm will converge! One has to set a maximum number of steps. If the algorithm doesn't converge since then the method might not be converging.

 \Rightarrow If the method converges the convergence is much faster then the trapezoid method.

Romberg method, example

⇒ Lest calculate the integral:

$$I = \int_{1}^{1.5} \frac{dx}{1 + 2x^2 - 0.25\sin(9x)}$$

with 10^{-8} accuracy.

- \Rightarrow To reach the required precision we need $2^5+1=33$ function evaluations. If we use classical Romberg method we would need $2^12+1=4097$.
- ⇒ This numbers are just an example. This is hugely case dependent.

Romberg method, example 2

⇒ Lest calculate the integral from previous example:

$$I = \int_1^2 \frac{dx}{x} = \ln 2$$

⇒ We get:

$$k = 0$$
 $I_1 = 0.75$
 $k = 1$ $I_2 = 0.70833333$ 0.69444444
 $k = 2$ $I_4 = 0.69702381$ 0.69325397 0.69317461

 \Rightarrow Now we see that evaluating the function 5 times we got precision of $3 \cdot 10^{-5}$

Integrals with ∞ boundary

⇒ What if we want to find an integral (we know it exists):

$$\int_0^\infty f(x)dx$$

⇒ To do so we use an old trick:

$$\int_0^\infty f(x)dx = \int_0^A f(x)dx + \int_A^\infty f(x)dx$$

- \Rightarrow With the information that the function has to approach 0 very fast at ∞ .
- \Rightarrow in practice we need to choose A to be large.
- \Rightarrow The A we choose in a way that for x>A the function $|f(x)|\leqslant Bg(x)$, where g(x) is fastly converging to 0 and $\int g(x)dx$ can be calculated analytically.

Multidimensional integrals

⇒ Most of the time we need to calculate integrals like:

$$\int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} dx_2 \dots \int_{a_n}^{b_n} dx_n f(x_1, x_2, \dots, x_n)$$

- \Rightarrow For $n \leq 3$ use Monte Carlo methods to calculate this!
- \Rightarrow So in practice we need to know how to calculate this in 2D.

Triangularization

Any multidimensional polygon can be covered by triangles Ω_i such that:

- $D = \bigcup_i \Omega_i$
- $\Omega_i \cap \Omega_j$, $i \neq j$ is :
 - empty
 - common vertex
 - common edge

Triangularization example

⇒ Which is correct which is not correct?

Multidimensional integral, algorithm

- ⇒ After we do triangulation of the domain.
- ⇒ Calculate the integral using Prism volume.
- ⇒ Do the traingularization again and calculate the next iteration of the integral.
- \Rightarrow Stop when the improvement is getting small.

 $^{22}/_{22}$

Backup

