

Circles Ex 16.4 Q5

Answer:

We have to prove that $\angle BOD = \angle A$

Since Circum center is the intersection of \perp^r bisectors of each side of the triangle

Now according to figure A, B, C are the vertices of $\triangle ABC$

In $\triangle BOC\ OD$ is \perp^r bisector of BC

So, BD = CD

BO = OC

And.

 $\angle BDO = \angle ODC = 90^{\circ}$

Therefore,

 $\Delta BDO \cong \Delta ODC$

 $\Rightarrow \angle BOD = DOC$

We know that angle formed any chord of the circle at the center is twice of the angle formed at the circumference by same chord

Therefore,

$$\angle BAC = \frac{1}{2} \angle BOC$$

$$\Rightarrow \angle BAC = \frac{1}{2} \times 2 \angle BOD$$

$$\Rightarrow \angle BAC = \angle BOD$$

Hence

Answer:

It is given that, $\angle ABC$ is on circumference of circle BD is passing through center

Construction: - meet A and C to form AC and increase OB to D that the point of \perp^r of BC

Now in ΔABD and ΔCBD we have

AD = DC (Because D is \perp^r bisector)

So $\angle ADB = \angle CDB = 90^{\circ}$

BD = BD (Common in both triangles)

Then triangles are congruent.

Hence AB = BC

********* END *******