算法设计与分析

Lecture 6: Dynamic Programming

卢杨 厦门大学信息学院计算机科学系 luyang@xmu.edu.cn

Fibonacci sequence is defined by

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} - F_{n-2}$, for $n \ge 2$

```
Fib1(n)

1 if n \le 1 then

2 return n

3 else

4 return Fib1(n - 1) + Fib1(n - 2)
```


- Idea of improvement: record the values somewhere!
 - Store F_i somewhere after we have computed its value.
 - Afterward, we don't need to re-compute F_i . We can retrieve its value from our memory.

Fib2(n)

1 **if** F[n] < 0 **then**

 $2 F[n] \leftarrow \text{Fib2}(n-1) + \text{Fib2}(n-2)$

3 return F[n]

Main()

 $1 F[0] = F[1] \leftarrow 1$

2 for $i \leftarrow 2$ to n do

3 F[i] = -1

4 **print** Fib2(n)

- Can we do even better?
 - Although we didn't waste time on repeated computation, we make a lot of recursive function calls.
 - Must we use recursion?
- Idea to further improve
 - Compute the values in bottomup fashion.
 - That is, compute F_2 (we already know $F_0 = F_1 = 1$), then F_3 , then F_4 ...

```
Fib3(n)

1  F[0] \leftarrow 1

2  F[1] \leftarrow 1

3  for i \leftarrow 2 to n do

4  F[i] \leftarrow F[i-1] + F[i-2]

5  return F[n]
```

This new implementation saves lots of overhead.

Recursion vs. Dynamic Programming

Recursion:

- Too slow.
- Time complexity: $O(2^n)$.

```
Fib1(n)

1 if n \le 1 then

2 return n

3 else

4 return Fib1(n - 1) +
Fib1(n - 2)
```

Dynamic Programming:

- Efficient!
- Time complexity: O(n).

```
Fib3(n)

1  F[0] \leftarrow 1

2  F[1] \leftarrow 1

3  for i \leftarrow 2 to n do

4  F[i] \leftarrow F[i-1] + F[i-2]

5  return F[n]
```


Dynamic Programming

- Write down a formula that relates a solution of a problem instance with those of small instances.
 - E.g. F(n) = F(n-1) + F(n-2).
- Index the sub-problems so that they can be stored and retrieved easily in a table (i.e., array).
- Fill the table in some bottom-up manner; start filling the solution of the smallest instance.
 - This ensures that when we solve a particular instance, the solutions of all the smaller instances that it depends are available.

Dynamic Programming

- For historical reasons, we call such methodology Dynamic Programming (动态规划).
- It was developed by American applied mathematician Richard Ernest Bellman in 1950s.
- It is also called Bellman equation in optimization field.

Richard Ernest Bellman (1920-1984)

Divide-and-Conquer vs. Dynamic Programming

- Common: Problem is partitioned into one or more subproblem, then the solution of subproblem is combined.
- Divide-and-conquer method
 - Subproblem is independent.
 - 2. Subproblem is solved repeatedly.
- Dynamic programming
 - 1. Subproblem is not independent.
 - 2. Subproblem is just solved once.
- DP reduces computation by
 - 1. Solving subproblems in a bottom-up fashion.
 - 2. Storing solution to a subproblem the first time it is solved.
 - 3. Looking up the solution when subproblem is met again.

Dynamic Programming

- Key idea:
 - Top-down design: Determine structure of optimal solutions.
 - Bottom-up solve: Avoid repeated computation.
- Dynamic programming is typically applied to optimization problems. It is broken into a sequence of four steps.
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution in a bottom-up fashion.
 - 4. Construct an optimal solution from computed information.

ASSEMBLY-LINE SCHEDULING

Assembly-Line Scheduling

Assembly-line scheduling (装配线调度) problem:

- There are two assembly lines (装配线), each with n stations (装配点).
- An automobile chassis (汽车 底盘) enters the factory needs to go though all n stations.

- The jth station on line i (i = 1 or 2) is denoted $S_i[j]$ and the assembly time at that station is $a_i[j]$.
- \blacksquare At the beginning, a chassis takes e_i time to enter the factory.
- After going through the jth station on a line, the chassis goes on to the (j + 1)st station on either line.

- There is no transfer cost if it stays on the same line, but it takes time $t_i[j]$ to transfer to the other line after station $S_i[j]$.
- After exiting the nth station on a line, it takes x_i time for the completed auto to exit the factory.
- The problem is to determine which stations to choose from line
 1 and line 2 in order to minimize the total time.

- $S_i[j]$: The jth station on line i (i = 1 or 2).
- $a_i[j]$:The assembly time required at station $S_i[j]$.
- $t_i[j]$: The transfer cost from $S_i[j]$ to another line.
- e_i :Entry time.
- x_i : Exit time.

Brute-Force Solution

Brute-force solution (暴力解法):

- Enumerate all possibilities of selecting stations.
- Compute how long it takes in each case and choose the minimum one.

- How many possible ways? 2^n
- Is it possible for large n? No!

Structure of an Optimal Solution

- Let's consider the fastest way possible to get from the starting point through station $S_1[j]$.
 - If j = 1: determine how long it takes to get through $S_1[1]$.
 - If $j \ge 2$, have two choices of how to get to $S_1[j]$:
 - Through $S_1[j-1]$, then directly to $S_1[j]$.
 - Through $S_2[j-1]$, then transfer over to $S_1[j]$.
- Similar for the case through $S_2[j-1]$.

Structure of an Optimal Solution

- Suppose that the fastest way through station $S_1[j]$ is through station $S_1[j-1]$. The chassis must have taken a fastest way from the starting point through station $S_1[j-1]$.
 - If from $S_1[j-1]$ to $S_1[j]$ is optimal, $S_1[j-1]$ is also optimal.
- Why?
- Prove by contradiction: If there were a faster way to get through station $S_1[j-1]$, we could substitute this faster way to yield a faster way through station $S_1[j]$: a contradiction.
 - If $S_1[j-1]$ is not optimal, from $S_1[j-1]$ to $S_1[j]$ is also not optimal,

Optimal Substructure

- Generalization: an optimal solution to the problem find the fastest way through $S_1[j]$ contains within it an optimal solution to subproblems: find the fastest way through $S_1[j-1]$ or $S_2[j-1]$.
- This is referred to as the optimal substructure property (最优子 结构性质).
- Optimal substructure property is one of the hallmarks of the applicability of dynamic programming.
 - We use this property to construct an optimal solution to a problem from optimal solutions to subproblems.

Optimal Substructure

- Denote $f_i[j]$ as the fastest time to get from the starting point through station $S_i[j]$.
- Fastest way through $S_1[j]$ is either:
 - fastest way through $S_1[j-1]$ then directly through $S_1[j]$:

$$f_1[j] = f_1[j-1] + a_1[j]$$

• fastest way through $S_2[j-1]$, transfer from line 2 to line 1, then through $S_1[j]$:

$$f_1[j] = f_2[j-1] + t_2[j-1] + a_1[j]$$

In summary:

$$f_1[j] = \min(f_1[j-1] + a_1[j], f_2[j-1] + t_2[j-1] + a_1[j])$$

 $S_1[j]$

 $S_1[j-1]$

Recursive Equation

The recursive equation:

$$f_1[j] = \begin{cases} a_1[1] + e_1 & j = 1\\ \min(f_1[j-1] + a_1[j], f_2[j-1] + t_2[j-1] + a_1[j]) & j > 1 \end{cases}$$

$$f_2[j] = \begin{cases} a_2[1] + e_2 & j = 1\\ \min(f_2[j-1] + a_2[j], f_1[j-1] + t_1[j-1] + a_2[j]) & j > 1 \end{cases}$$

The optimal solution when finishing:

$$f^* = \min\{f_1[n] + x_1, f_2[n] + x_2\}.$$

How to solve? How about recursion?

Exponential running time!

(i) 厦门大学信息学院

Computing the Optimal Solution

■ For $j \ge 2$, each value $f_i[j]$ depends only on the values of:

$$f_1[j-1]$$
 and $f_2[j-1]$.

• Compute the values of $f_i[j]$ in increasing order of j.

Calculate column by column in increasing order of j

- Bottom-up approach:
 - First find optimal solutions to subproblems.
 - Find an optimal solution to the problem from the subproblems.

Additional Information

- f^* only records the optimal cost. How can we know the decisions at each step?
- To construct the optimal solution, we need the sequence of what line has been used at each station:
 - $l_i[j]$: the line number (1 or 2) whose previous station (j-1) has been used to get in fastest time through $S_i[j]$, j=2,3,...,n.
 - l^* : the line whose station n is used to get in the fastest way through the entire factory.

	2	3	4	5
$l_1[j]$				
$l_2[j]$				

Calculate column by column in increasing order of j


```
DPFastestWay(a, t, e, x, n)
   f_1[1] \leftarrow e_1 + a_1[1]; \ f_2[1] \leftarrow e_2 + a_2[1]
   for j \leftarrow 2 to n do
         if f_1[j-1] \le f_2[j-1] + t_2[j-1] then
               f_1[j] \leftarrow f_1[j-1] + a_1[j]
                                                                        From line 1 to line 1
               l_1|j| \leftarrow 1
                                                                                                       \boldsymbol{\cdot} S_1[j]
         else f_1[j] \leftarrow f_2[j-1] + t_2[j-1] + a_1[j]
6
                                                                        From line 2 to line 1
               l_1|j| \leftarrow 2
         if f_2[j-1] \le f_1[j-1] + t_1[j-1] then
               f_2[j] \leftarrow f_2[j-1] + a_2[j]
9
                                                                        From line 2 to line 2
10
               l_2[i] \leftarrow 2
          else f_2[j] \leftarrow f_1[j-1] + t_1[j-1] + a_2[j]
11
                                                                        From line 1 to line 2
12
               l_2[j] \leftarrow 1
    if f_1[n] + x_1 \le f_2[n] + x_2 then
     f^* \leftarrow f_1[n] + x_1
14
15 l^* \leftarrow 1
                                                                        Running time: \Theta(n)
16 else f^* \leftarrow f_2[n] + x_2
                                                                                                            26
         l^* \leftarrow 2
17
```

Example

j	1	2	3	4	5	6
$f_1[j]$	9	18	20	24	32	35
$f_2[j]$	12	16	22	25	30	37

$$f^* = 38$$

j	2	3	4	5	6
$l_1[j]$	1	2	1	1	2
$l_2[j]$	1	2	1	2	2

$$l^* = 1$$

Construct an Optimal Solution

• After calculating, how can we know the optimal solution?

```
PrintStations(l, n)

1 i \leftarrow l^*

2 print "line" i ", station" n

3 for j \leftarrow n downto 2 do

4 i \leftarrow l_i[j]

5 print "line" i ", station" j - 1
```


Output:

line 1, station 6

line 2, station 5

line 2, station 4

line 1, station 3

line 2, station 2

line 1, station 1

Construct an Optimal Solution

The fastest assembly way: $f^* = 38$

Optimal Solutions

- Dynamic programming not only solves the optimal solution for n=6, but for all n ($n \le 6$).
 - Each cell in the table records the optimal solution.
- Every optimal solution is built upon previous optimal solutions.
 Thus, everything in the table is an optimal solution!

j	1	2	3	4	5	6
$f_1[j]$	9	18	20	24	32	35
$f_2[j]$	12	16	22	25	30	37

j	2	3	4	5	6
$l_1[j]$	1	2	1	1	2
$l_2[j]$	1	2	1	2	2

Classroom Exercise

Write the table of f[j] and l[j] for the following problem and determine the optimal solution:

Classroom Exercise

j	1	2	3
$f_1[j]$	8	17	22
$f_2[j]$	11	17	20
	$f^* = 22$		

j	2	3
$l_1[j]$	1	1
$l_2[j]$	1	2
	1* =	= 2

MATRIX-CHAIN MULTIPLICATION

Matrix-Chain Multiplication

Matrix-chain multiplication (矩阵链乘法) problem:

• Given a chain A_1, A_2, \ldots, A_n of n matrices, where for $i = 1, 2, \ldots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

$$A_1 \cdot A_2 \cdot \cdots A_i \cdot A_{i+1} \cdot \cdots A_n$$

 $p_0 \times p_1 \quad p_1 \times p_2 \quad p_{i-1} \times p_i \quad p_i \times p_{i+1} \quad p_{n-1} \times p_n$

- Matrix production satisfies the associative law (结合律). Thus, the order of calculation doesn't influence the production result, but influence the efficiency.
- Goal: fully parenthesize (加括号) the product $A_1A_2 ... A_n$ in a way that minimizes the number of scalar multiplications.

Matrix Multiplication

■ To multiply an $n \times m$ matrix with a $p \times q$ matrix using the standard method, it is necessary to do $n \times m \times q$ elementary multiplications.

```
MatrixMultiply(A, B)

1 if m \neq p then

2 print "Two matrices cannot multiply"

3 else for i \leftarrow 1 to n

4 for j \leftarrow 1 to q do

5 C[i,j] \leftarrow 0

6 for k \leftarrow 1 to m do

7 C[i,j] \leftarrow C[i,j] + A[i,k]B[k,j]

8 return C
```

Running time: $\Theta(nmq)$

Consider the chained matrix multiplication:

$$A \times B \times C \times D$$

20×2 2×30 30×12 12×8

The total number of elementary multiplications depends on the multiplication order.

$$A(B(CD)): 30 \times 12 \times 8 + 2 \times 30 \times 8 + 20 \times 2 \times 8 = 3,680$$

$$(AB)(CD)$$
: $20 \times 2 \times 30 + 30 \times 12 \times 8 + 20 \times 30 \times 8 = 8,880$

$$A((BC)D)$$
: $2\times30\times12 + 2\times12\times8 + 20\times2\times8 = 1,232$

$$((AB)C)D$$
: $20 \times 2 \times 30 + 20 \times 30 \times 12 + 20 \times 12 \times 8 = 10{,}320$

$$(A(BC)D)$$
: $2\times30\times12 + 20\times2\times12 + 20\times12\times8 = 3,120$

Counting the Number of Parenthesizations

- Brute-force solution: Find them all and pick the smallest!
- How many ways can we parenthesize the product of a matrix chain?
 - Denote P(n): The number of alternative parenthesizations of a sequence of n matrices.
 - We can split a sequence of n matrices between the kth and (k+1)st matrices for any $k=1,2,\ldots,n-1$ and then parenthesize the two resulting subsequences independently.

$$(A_1A_2 \dots A_k)(A_{k+1}A_{k+2} \dots A_n)$$

• Sum over all k = 1, 2, ..., n - 1 with recursive calculation.

Counting the Number of Parenthesizations

We obtain the recursive equation:

$$P(n) = \begin{cases} 1 & n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & n \ge 2 \end{cases}$$

■ The solution to the above recursive equation is $\Omega(2^n)$.

- Assume we have found an optimal solution for parenthesizing $A_1A_2 \dots A_n$.
- The optimal parenthesization must be with some k, for $1 \le k \le n-1$:

$$(A_1 \dots A_k)(A_{k+1} \dots A_n)$$

- Then, the parenthesization for $A_1 \dots A_k$ and $A_{k+1} \dots A_n$ must also be optimal.
 - Why? Prove by contradiction again!
- We find the optimal substructure: An optimal solution to an instance of the matrix-chain multiplication is constructed by the optimal solutions to subproblems.

■ Therefore, we need to consider the optimal solution for $A_iA_{i+1}\cdots A_j$, for arbitrary $1 \le i \le j \le n$.

Recursive Equation

- We define $A_{i...j} = A_i A_{i+1} \cdots A_j$ and let m[i,j]=the minimum number of multiplications needed to compute $A_{i...j}$.
- Suppose that an optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} , where $i \le k < j$:

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$
 Optimal cost to Optimal cost to Cost to calculate calculate $A_{i...k}$ calculate $A_{k+1...j}$ $(A_{i...k})(A_{k+1...j})$

Now, if we have known all the optimal costs to the small instances, how to construct the optimal cost to the current instance?

Iterate over all k for $i \le k < j$ and select the minimum one!

Recursive Equation

- There are j i possible values for k: k = i, i + 1, ..., j 1.
- Minimizing the cost of parenthesizing $A_{i...j}$ becomes:

$$m[i,j] = \begin{cases} 0 & i = j\\ \min_{i \le k < j} m[i,k] + m[k+1,j] + p_{i-1}p_k p_j & i < j \end{cases}$$

- The original problem is solved by calculating m[1, n].
- How to calculate?

Recursion does lots of repeated computation, which isn't faster than brute-force approach. We should apply bottom-up approach with dynamic programming!

- To avoid repeated computation, we use a table to store computed values of m[i,j].
- Given the recursive equation

$$m[i,j] = \min_{i \le k < j} m[i,k] + m[k+1,j] + p_{i-1}p_k p_j$$

what components do we need to calculate m[i, j]?

- Fix i, all m[i, k] for $i \le k < j$.
- Fix j, all m[k+1,j] for $i \le k < j$.

- Calculating m[i, j] only requires:
 - m[k+1,j] for $i \le k < j$: The columns behind m[i,j] on the same row.
 - m[i,k] for $i \le k < j$: The rows below m[i,j] on the same column.

Given the recursive equation:

$$\min_{i \le k < j} m[i, k] + m[k+1, j] + p_{i-1}p_k p_j$$

• Calculating m[2,5]:

$$\min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 & k = 2\\ m[2,3] + m[4,5] + p_1 p_3 p_5 & k = 3\\ m[2,4] + m[5,5] + p_1 p_4 p_5 & k = 4 \end{cases}$$

Can we filling the table in this order?

How about this order?

Filling the table diagonal by diagonal.

Given:

• A_1 : 10×100 ($p_0 \times p_1$)

• A_2 : 100×5 $(p_1 \times p_2)$

• A_3 : 5×50 $(p_2 \times p_3)$

Calculate:

- m[i, i] = 0 for i = 1,2,3.
- (A_1A_2) : $m[1,2] = m[1,1] + m[2,2] + p_0p_1p_2 = 0 + 0 + 10 \times 100 \times 5 = 5,000$.
- (A_2A_3) : $m[2,3] = m[2,2] + m[3,3] + p_1p_2p_3 = 0 + 0 + 100 \times 5 \times 50 = 25,000$.
- $(A_1(A_2A_3))$: $m[1,1] + m[2,3] + p_0p_1p_3 = 75,000$.
- $((A_1A_2)A_3): m[1,2] + m[3,3] + p_0p_2p_3 = 7,500.$

	1	2	3
3	7500	25000	0
2	5000	0	
1	0		

Reconstructing the Optimal Solution

- Again, we need additional information to maintain the optimal solution to the optimal cost.
- Let s[i,j]=a value of k at which we can split the product $A_{i...j}$ in order to obtain an optimal parenthesization.

Pseudocode

```
DPMatrixChain(p)
     for i \leftarrow 1 to n do \leftarrow First diagonal
          m[i,i] \leftarrow 0
     for c \leftarrow 2 to n do \longleftarrow From 2nd to nth diagonal
          for i \leftarrow 1 to n - c + 1 do
                j \leftarrow i + c - 1 Given c, determine the
                m[i,j] \leftarrow \infty
                                          jth column and ith row
                for k \leftarrow i to j - 1 do
                     q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
                     if q < m[i, j] then
9
                          m[i,j] \leftarrow q; \ s[i,j] \leftarrow k
10
11
      return m and s
```

Running time: $\Theta(n^3)$

Construct the Optimal Solution

• s[i,j] stores the value of k such that the optimal solution of $A_{i...j}$ splits the product int $A_{i...k}$ and $A_{k+1...j}$.

		1	2	3	<i>i</i> 4	5	6
	6	3	3	3	5	5	-
	5	3	3	3	4	I	
;	4	3	3	3	-		
j	3	1	2	ı			
	2	1	-				
	1	-					

$$A_{1...n} = A_{1...s[1,n]} \cdot A_{s[1,n]+1...n}$$

$$A_{1...6} = A_{1...3} A_{4...6}$$

$$A_{1...3} = A_{1...1} A_{2...3}$$

$$A_{4...6} = A_{4...5} A_{6...6}$$

PrintParens
$$(s, i, j)$$

1 if $i = j$ then print " A_i "

2 else print "("

3 PrintParens $(s, i, s[i, j])$

4 PrintParens $(s, s[i, j] + 1, j)$

5 print ")"

		i					
	_	1	2	3	4	5	6
	6	3	3	3	5	5	1
	5	3	3	3	4	ı	
;	4	3	3	3	ı		
j	3	1	2	ı			
	2	1	ı				
	1	1					

Function call	Printed value
PrintParens $(s, 1, 6)$	(
PrintParens(s, 1, 3)	((
PrintParens(s, 1, 1)	$((A_1$
PrintParens(s, 2, 3)	$((A_1($
PrintParens(s, 2, 2)	$((A_1(A_2$
PrintParens(s, 3, 3)	$((A_1(A_2A_3$
PrintParens $(s, 4, 6)$	$((A_1(A_2A_3))($
PrintParens $(s, 4, 5)$	$((A_1(A_2A_3))(($
PrintParens(s, 4, 4)	$((A_1(A_2A_3))((A_4$
PrintParens $(s, 5, 5)$	$((A_1(A_2A_3))((A_4A_5))$
PrintParens $(s, 6, 6)$	$((A_1(A_2A_3))((A_4A_5)A_6)$
Finish	$((A_1(A_2A_3))((A_4A_5)A_6))$

Classroom Exercise

- Given the following matrices, fill in the table to get the optimal parenthesization:
 - $A_1: 2 \times 2$
 - $A_2: 2 \times 4$
 - $A_3:4\times2$
 - *A*₄: 2×6

Classroom Exercise

		i						
		1	2	3	4			
	4	48	40	48	0			
i	3	24	16	0				
J	2	16	0					
	1	0						

			l	,	
		1	2	3	_4
	4	3	3	3	-
i	3	1	2	ı	
J	2	1	1		
	1	ı			

m[i,j] s[i,j]

 $((A_1(A_2A_3))A_4)$

THE LONGEST-COMMON-SUBSEQUENCE PROBLEM

The Longest-Common-Subsequence Problem

- In biological applications, one goal of comparing two strands of DNA is to determine how "similar" the two strands are, as some measure of how closely related the two organisms are.
- One way to measure the similarity between S_1 and S_2 is by finding a third strand S_3 : the bases in S_3 appear in each of S_1 and S_2 ; these bases must appear in the same order, but not necessarily consecutively.

The Longest-Common-Subsequence Problem

- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a subsequence (子序列) of X if there exists a strictly increasing sequence $i_1, i_2, ..., i_k$ of indices of X such that for all j = 1, 2, ..., k, we have $x_{i_j} = z_j$.
- Given two sequences X and Y, we say that a sequence Z is a common subsequence (公共子序列) of X and Y if Z is a subsequence of both X and Y.
- In the longest-common-subsequence (最长公共子序列) problem, we are given two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ and wish to find a maximum-length common subsequence of X and Y.

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- $\langle B, C, B, A \rangle$ and $\langle B, D, A, B \rangle$ are longest common subsequences of X and Y (length = 4).
- \blacksquare $\langle B, C, A \rangle$ is a common subsequence, but not the longest.

Brute-Force Solution

- For every subsequence of X, check whether it's a subsequence of Y.
- There are 2^m subsequences of X to check.
- **Each** subsequence takes $\Theta(n)$ time to check.
 - Scan Y from the first element, and check if it is matched with the subsequence.
- Running time: $\Theta(n2^m)$.

- Given two sequences $X_m = \langle x_1, x_2, ..., x_m \rangle$ and $Y_n = \langle y_1, y_2, ..., y_n \rangle$, assume the $Z_k = \langle z_1, z_2, ..., z_k \rangle$ is a LCS.
- If the last element of X_m and Y_n is same, i.e. $x_m = y_n$, they are also same as the last element of Z_k :

$$z_k=x_m=y_n=\blacksquare$$

$$X_m=\langle X_{m-1},\blacksquare\rangle, \qquad Y_n=\langle Y_{n-1},\blacksquare\rangle, \qquad Z_k=\langle Z_{k-1},\blacksquare\rangle$$

- In this case, Z_{k-1} is also a LCS of X_{m-1} and Y_{n-1} .
 - Prove by contradiction.

- Given two sequences $X_m = \langle x_1, x_2, ..., x_m \rangle$ and $Y_n = \langle y_1, y_2, ..., y_n \rangle$, assume the $Z_k = \langle z_1, z_2, ..., z_k \rangle$ is a LCS.
- If the last element of X_m and Y_n is different, i.e. $x_m \neq y_n$:
 - If $z_k \neq x_m$,

$$X_m = \langle X_{m-1}, \blacksquare \rangle, \qquad Y_n, \qquad Z_k = \langle Z_{k-1}, \spadesuit \rangle$$

no matter $z_k = y_n$ or not, Z_k is a LCS of X_{m-1} and Y_n .

• If $z_k \neq y_n$,

$$X_m$$
, $Y_n = \langle Y_{n-1}, \blacksquare \rangle$, $Z_k = \langle Z_{k-1}, \spadesuit \rangle$

no matter $z_k = x_m$ or not, Z_k is a LCS of X_m and Y_{n-1} .

- Denote c[i,j] as the length of a LCS of the sequences $X_i = \langle x_1, x_2, ..., x_i \rangle$ and $Y_j = \langle y_1, y_2, ..., y_j \rangle$.
- If $x_i = y_j$, the LCS composes of the LCS of X_{i-1} and Y_{j-1} with x_i : c[i,j] = c[i-1,j-1] + 1.
- If $x_i \neq y_j$, the LCS is either the LCS of X_{i-1} and Y_j , or the LCS of X_i and Y_{j-1} . We choose the longer one:

$$c[i,j] = \max\{c[i-1,j], c[i,j-1]\}.$$

• Case 1: $x_i = y_i$

$$X_i = \langle A, B, D, E \rangle, \qquad Y_j = \langle Z, B, E \rangle, \qquad Z_k = \langle B, E \rangle$$
 $X_{i-1} = \langle A, B, D \rangle, \qquad Y_{i-1} = \langle Z, B \rangle, \qquad Z_{k-1} = \langle B \rangle$

• Case 2: $x_i \neq y_j$

$$X_i = \langle A, B, D, G \rangle, \qquad Y_j = \langle Z, B, D \rangle, \qquad Z_k = \langle B, D \rangle$$

 Z_k is either the LCS of X_{i-1} and Y_j ($\langle B, D \rangle$) or the LCS of X_i and Y_{j-1} ($\langle B \rangle$).

Recursive Equation

■ The recursive equation:

$$c[i,j] = \begin{cases} 0 & i = 0 \text{ or } j = 0\\ c[i-1,j-1] + 1 & i,j > 0 \text{ and } x_i = y_j\\ \max\{c[i-1,j],c[i,j-1]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- In the case of i = 0 or j = 0, the length of LCS is 0 because it is empty.
- Using recursion, is there any repeated computation?

$$c[i,j] = \begin{cases} 0 & i = 0 \text{ or } j = 0\\ c[i-1,j-1] + 1 & i,j > 0 \text{ and } x_i = y_j\\ \max\{c[i-1,j], c[i,j-1]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

	0	1	2		•	n
0	0	0	0	0	0	0
1	0					
2	0					
<i>Z</i>	0			c[i-1,j-1]	c[i-1,j]	
:	0			$c[i,j-1] \leftarrow$	c[i,j]	
m	0					

Additional Information

- c[i,j] only records the length of LCS, we need to record additional information for constructing LCS.
- b[i,j] records the choices made to obtain the optimal value.

if
$$x_i = y_j$$

$$b[i,j] = " "$$
else if $c[i-1,j] \ge c[i,j-1]$

$$b[i,j] = " "$$
else
$$b[i,j] = " \leftarrow "$$

	\dot{j}								
	0	1	2	• •	•	n			
0	0	0	0	0	0	0			
1	0								
2	0								
:	0								
	0				7				
m	0	-							

Pseudocode

```
LCSLength(X, Y, m, n)
1 for i \leftarrow 1 to m do c[i, 0] \leftarrow 0
2 for j \leftarrow 0 to n do c[0,j] \leftarrow 0
   for i \leftarrow 1 to m do
         for j \leftarrow 1 to n do
                  if x_i = y_i then
                        c[i,j] \leftarrow c[i-1,j-1] + 1
                        b[i,j] \leftarrow " \setminus "
                  else if c[i-1,j] \ge c[i,j-1] then
                        c[i,j] \leftarrow c[i-1,j]
                        b[i,j] \leftarrow " \uparrow "
10
                  else c[i,j] \leftarrow c[i,j-1]
11
                        b[i,j] \leftarrow " \leftarrow "
12
      return c and b
```

Running time: $\Theta(nm)$

$$0 \quad x_{i}$$

$$1 \quad A$$

$$2 \quad B$$

$$Y = \langle A, B, C, B, D, A \rangle$$

$$3 \quad C$$

$$4 \quad B$$

$$5 \quad D$$

$$6 \quad A$$

				j			
	0	1	2	3	4	5	6
_	y_j	В	D	C	A	В	A
	0	0	0	0	0	0	0
	0	\uparrow	\uparrow	\uparrow	1	←1	1
	0	1	← 1	← 1	<u>†</u>	2	←2
	0	1	↑ 1	2	←2	† 2	↑ 2
	0	1	1	↑ 2	↑ 2	3	←3
	0	<u>†</u>	2	↑ 2	<u>↑</u> 2	↑ 3	↑ 3
	0	1	<u>↑</u> 2	↑ 2	3	↑ 3	4
	0	1	† 2	↑ 2	↑ 3	4	1 4

B

• Constructing a LCS: Start at b[m, n] and follow the arrows. When we encounter a " \setminus " in b[i, j], it means $x_i = y_j$ and it is an element of the LCS.

	$\operatorname{rintLCS}(b, X, i, j)$
1	if $i = 0$ or $j = 0$ then return 0
2	if $b[i,j] = $ " then
3	PrintLCS(b, X, i - 1, j - 1)
4	print x_i
5	else if $b[i,j] = " \uparrow "$ then
6	PrintLCS(b, X, i - 1, j)
7	else PrintLCS $(b, X, i, j - 1)$

0	1	2	3	4	5	6
y_j	В	D	C	A	В	A
0	0	0	0	0	0	0
0	\uparrow	\uparrow	\uparrow	1	← 1	1
0	1	(1)	← 1	<u>†</u>	2	←2
0	<u>†</u>	1 1	2	(2)	<u>↑</u> 2	↑ 2
0	1	1	<u>↑</u> 2	\uparrow	3	←3
0	1	2	† 2	<u>↑</u>	(3)	↑ 3
0	1	<u>†</u>	<u>†</u>	3	↑ 3	4
0	1	1 2	↑ 2	↑ 3	4	4

Output: BCBA

 x_i

1 *A*

2 *B*

4 *B*

5 D

6 *A*

B

Uniqueness

- This algorithm is deterministic. However, the LCS is not unique. Why?
- We set $b[i,j] \leftarrow$ "\(\tau\)" when c[i-1,j] = c[i,j-1]. However, $b[i,j] \leftarrow$ "\(\tau\)" is also optimal in this case.

```
5 if x_i = y_j then

6 c[i,j] \leftarrow c[i-1,j-1] + 1

7 b[i,j] \leftarrow " \ "

8 else if c[i-1,j] \ge c[i,j-1] then

9 c[i,j] \leftarrow c[i-1,j]

10 b[i,j] \leftarrow " \ "

11 else c[i,j] \leftarrow c[i,j-1]

12 b[i,j] \leftarrow " \ "
```


Uniqueness

BCBA

BCAB

BDAB

Space Improvement

- How each entry c[i, j] is computed?
 - It depends only on c[i-1,j-1], c[i-1,j], and c[i,j-1].
- If we only need the length of the LCS, we only need the row being computed and the previous row.
 - We can reduce the asymptotic space requirements by storing only these two rows.

Classroom Exercise

Draw the table of LCS of the following sequences, and find a LCS:

$$X = \langle A, C, D, A \rangle$$
 $Y = \langle A, D, C, A \rangle$

Classroom Exercise

	0	1	2	3	4
	y_j	A	D	C	A
$0 x_i$	0	0	0	0	0
1 A	0	1	←1	← 1	1
2 C	0	<u>↑</u>	<u>†</u>	2	←2
3 D	0	<u>†</u>	2	<u>↑</u>	<u>↑</u> 2
4 A	0	1	↑ 2	<u>↑</u>	3

ACA

0/1 KNAPSACK PROBLEM

0/1 Knapsack Problem

0/1 knapsack (0/1背包) problem:

- There are n items: the ith item is worth v_i dollars and weights w_i kg.
- \blacksquare The capacity of knapsack is W kg.
- Items must be taken entirely or left behind.
- Which items should we take to maximize the total value?

0/1 Knapsack Problem

■ Mathematical description: Given an item set $s = \langle 1, 2, ..., n \rangle$, and two n-tuples of positive numbers $\langle v_1, v_2, ..., v_n \rangle$ and $\langle w_1, w_2, ..., w_n \rangle$, and W > 0, we wish to determine the subset $s' \subseteq \{1, 2, ..., n\}$ that

maximize
$$\sum_{i \in s'} v_i$$

subject to $\sum_{i \in s'} w_i \le W$

Example

- Weight capacity W = 5 kg.
- The possible ways to fill the knapsack:
 - {1, 2, 3} has value \$37 with weight 4kg.
 - {3, 4} has value \$35 with weight 5kg.
 - {1, 2, 4} has value \$42 with weight 5kg. (optimal)

i	v_i	w_i
1	\$10	1kg
2	\$12	1kg
3	\$15	2kg
4	\$20	3kg

- lacktriangleright The variables we should use in recursive equation must be the maximum profit V.
- How a *V* can be decomposed into the *V*s with smaller instance?
 - Item subset?
 - Smaller weight?

- Consider the most valuable load that weights at most w kg.
- If item i is in the load and we remove it, the remaining load must be the most valuable load weighing at most $w-w_i$ that can be taken from the remaining i-1 items.
 - Prove by contradiction: if the remaining load is not the most valuable, there exists a more valuable load and adding item i into it makes the original load not the most valuable.

- V[i, w]: the maximum profit that can be obtained from items 1 to i, if the knapsack has size w.
 - Case 1: take item i

$$V[i, w] = V[i - 1, w - w_i] + v_i$$

Case 2: do not take item i

$$V[i, w] = V[i - 1, w]$$

How to decide whether take item i or not?

Simply compare and select the maximum one.

Recursive Equation

■ The recursive equation:

$$V[i, w] = \begin{cases} V[i-1, w] & w_i > w \\ \max\{V[i-1, w], V[i-1, w-w_i] + v_i\} & w_i \le w \end{cases}$$

- $w_i > w$: we can't take w_i more than capacity w.
- $w_i \le w$: decide whether to take item i or not.

Additional Information

- V[i, w] only records the optimal value, we need to record additional information to record the items we take.
- b[i, w] records the choices made to obtain the optimal value.
 - Case 1: take item i

Case 2: do not take item i

$$b[i, w] = " \uparrow "$$

Filling Table

$$V[i, w] = \max\{V[i-1, w], V[i-1, w-w_i] + v_i\}$$

_	0	1		ν	v — 1	w_i		W			W
0	0	0	0	0	0	0	0	0	0	0	0
	0										
	0	+									
i-1	0	+		•	1			†			
i	0			•				7			
	0										
n	0										


```
DPKnapsack(S, W)
    for w ← 0 to w_1 - 1 do V[1, w] \leftarrow 0
    for w \leftarrow w_1 to W do V[1, w] \leftarrow v_1
    for i \leftarrow 2 to n do
       for w \leftarrow 0 to W do
          if w_i > w then
              V[i, w] \leftarrow V[i-1, w]
              b[i, w] \leftarrow " \uparrow "
           else if V[i-1, w] > V[i-1, w-w_i] + v_i then
9
                     V[i, w] \leftarrow V[i-1, w]
                      b[i,w] \leftarrow " \uparrow "
10
11
                else
                      V[i,w] \leftarrow V[i-1,w-w_i] + v_i
12
                      b[i, w] \leftarrow " \setminus "
13
      return V and b
```

$$W = 5$$

VV = S							
Item i	w_i	v_i					
1	2	12					
2	1	10					
3	3	20					
4	2	15					

$$V[i, w] = \begin{cases} V[i-1, w] & w_i > w \\ \max\{V[i-1, w], V[i-1, w-w_i] + v_i\} & w_i \le w \end{cases}$$

i .	0	1	2	3	4	5
0	0 🖊	0 🖊	0•		0	0
1	0 🔻	0	12	12	12	12
2	0	10_	12	22	22	22
3	0 🔻	10	12	22	30	32
4	0	10	<u>_15</u>	~ 25	30	- 37

$$V[1,1] = V[0,1] = 0$$

 $V[1,2] = \max\{12+0,0\} = 12$
 $V[1,3] = \max\{12+0,0\} = 12$
 $V[1,4] = \max\{12+0,0\} = 12$
 $V[1,5] = \max\{12+0,0\} = 12$

$$V[2,2] = \max\{10 + 0,12\} = 12$$

$$V[2,3] = \max\{10 + 12,12\} = 22$$

$$V[2,4] = \max\{10 + 12,12\} = 22$$

$$V[2,5] = \max\{10 + 12,12\} = 22$$

W

$$V[3,1] = V[2,1] = 10$$

 $V[3,2] = V[2,2] = 12$
 $V[3,3] = \max\{20 + 0,22\} = 22$
 $V[3,4] = \max\{20 + 10,22\} = 30$
 $V[4,5] = \max\{20 + 12,22\} = 30$

$$V[2,1] = \max\{10+0,0\} = 10$$
 $V[3,1] = V[2,1] = 10$ $V[4,1] = V[3,1] = 10$ $V[2,2] = \max\{10+0,12\} = 12$ $V[3,2] = V[2,2] = 12$ $V[4,2] = \max\{15+0,12\} = 15$ $V[2,3] = \max\{10+12,12\} = 22$ $V[3,3] = \max\{20+0,22\} = 22$ $V[4,3] = \max\{15+10,22\} = 25$ $V[2,4] = \max\{10+12,12\} = 22$ $V[3,4] = \max\{20+10,22\} = 30$ $V[4,4] = \max\{15+12,30\} = 30$ $V[2,5] = \max\{10+12,12\} = 22$ $V[4,5] = \max\{20+12,22\} = 32$ $V[4,5] = \max\{15+22,32\} = 37$

Reconstructing the Optimal Solution

- Start at V[n, W].
- When you go left-up, item *i* has been taken.
- When you go straight up, item *i* has not been taken.

Classroom Exercise

Fill the table to solve the following 0/1 knapsack problem when W=3.

i	v_i	w_i
1	\$10	1kg
2	\$12	1kg
3	\$15	2kg

Classroom Exercise

Solution:

$$W = 3$$

i	v_i	w_i
1	\$10	1kg
2	\$12	1kg
3	\$15	2kg

		W						
		0	1	2	3			
	0	0_	0 🔨	0 🔨	0			
i	1	0	10_	10,	10			
	2	0	12	22	22			
	3	0	12	22	_27			

OPTIMAL BINARY SEARCH TREES

- A binary search tree (BST) (二 叉搜索树) is a binary tree of keys that come from an ordered set, such that
 - Each node contains one key.
 - The keys in the left subtree of a given node are less than or equal to the key in that node.
 - The keys in the right subtree of a given node are greater than or equal to the key in that node.

- The number of comparisons done by search to locate a key is called the search time.
- We want to know the average search time of a BST while the keys do not have the same probability.
 - E.g. Tom is a common name is the United States. It has higher probability to be a search key.
 - Thus, put the node whose key has high probability to lower depth will decrease the average search time.

Given

- a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of n distinct keys in sorted order (so that $k_1 < k_2 \cdots < k_n$)
- n+1 "dummy keys (虚拟关键字)" $\langle d_0,d_1,d_2,...,d_n \rangle$ when the key is not in K, such that

$$d_0 < k_1 < d_1 < k_2 < \dots < k_i < d_i < k_{i+1} < \dots < k_n < d_n$$

- The search key x is not uniformly distributed. It follows the probability:
 - For each key k_i , we have a probability p_i that a search will be for k_i .
 - For each d_i , we have a probability q_i that a search will correspond to d_i .
- For each search, either some key k_i is found, or some dummy key d_i is found. Therefore, we have:

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

Where $\sum_{i=1}^{n} p_i$ is the probability for a successful search and $\sum_{i=1}^{n} q_i$ is the probability for a failed search.

- Assume that the actual cost of a search is the number of nodes examined, i.e., the depth of the node found by the search in T, plus 1.
- Then the expected cost of a search in T is

$$E(T) = \sum_{i=1}^{n} (d_T(k_i) + 1) \times p_i + \sum_{i=0}^{n} (d_T(d_i) + 1) \times q_i$$

where $d_T(k)$ is the depth of key k in tree T.

■ For a given set of probabilities, our goal is to construct a BST whose E(T) is smallest. This tree is called optimal BST (最优二义搜索树).

Example

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
$\overline{q_i}$	0.05	0.1	0.05	0.05	0.05	0.1

Example

$$E(T) = 2.8$$

node	depth	probability	contribution
$\overline{k_1}$	1	0.15	0.3
k_2	0	0.1	0.1
k_3	2	0.05	0.15
$\overline{k_4}$	1	0.1	0.2
k_5	2	0.2	0.6
$\overline{d_0}$	2	0.05	0.15
$\overline{d_1}$	2	0.1	0.3
$\overline{d_2}$	3	0.05	0.2
$\overline{d_3}$	3	0.05	0.2
$\overline{d_4}$	3	0.05	0.2
$\overline{d_5}$	3	0.1	0.4

- If a BST is optimal, all its subtrees are also optimal.
- Therefore, we should consider an arbitrary subtree of this problem.

- Consider any subtree T' of a BST. It must contain keys in a contiguous (连续的) range $k_i, ..., k_j$, for some $1 \le i \le j \le n$.
- In addition, a subtree that contains keys $k_i, ..., k_j$ must also have as its leaves the dummy keys $d_{i-1}, ..., d_i$.

- If an optimal BST T has a subtree T' containing keys $k_i, ..., k_j$, then this subtree T' must be optimal as well for the subproblem with keys $k_i, ..., k_j$ and dummy keys $d_{i-1}, ..., d_j$.
 - Prove in contradiction. If there were a subtree T" whose expected cost is lower than that of T', then we could cut T' out of T and paste in T", resulting in a BST of lower expected cost than T, thus contradicting the optimality of T.

- The subtree T' must have a root k_r for $i \le r \le j$.
 - Left subtree of k_r contains k_i , ..., k_{r-1} .
 - Right subtree of k_r contains k_{r+1}, \dots, k_i .
- Given contiguous keys k_i , ..., k_j , how to recursively find an optimal subtree?
- Examine all candidate roots k_r , for $i \le r \le j$, and select the one with minimal cost.

- For example, the subtree T has contiguous keys $k_3, ..., k_5$ and dummy keys $d_2, ..., d_5$.
- We construct all the subtree cases and select the one with minimum expected search time.

Recursive Equation

- Define e[i,j] as expected search cost of optimal BST for k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_{j} .
- If $j \ge i$, select a root k_r , for some $i \le r \le j$ and recursively make an optimal BST.
 - for $k_i, ..., k_{r-1}$ as the left subtree, and
 - for $k_{r+1}, ..., k_i$ as the right subtree.

Example

- If k_r is selected as the root of the subtree T', e[i,j] only relates to e[i,r-1] and e[r+1,j].
- If j = i 1, the subtree contains no key but a single dummy key, then $e[i,j] = q_{i-1}$.
- Now, does the following equation hold?

$$e[i,j] = e[i,r-1] + e[r+1,j]$$

Recursive Equation

- The total search cost is composed by three parts:
 - The search time for the root: p_r .
 - The search time for the left subtree: $e[i, r-1] + \sum_{l=i}^{r-1} p_l + \sum_{l=i-1}^{r-1} q_l$.
 - The search time for the left subtree: $e[r+1,j] + \sum_{l=r+1}^{j} p_l + \sum_{l=r}^{j} q_l.$
- Let $w[i,j] = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$, the total is:

$$e[i,j] = e[i,r-1] + e[r+1,j] + w[i,j].$$

Because the subtrees have one more depth, we should add the probabilities of all their keys and dummy keys.

	i	0	1	2	3	4	5
	p_i		0.15	0.1	0.05	0.1	0.2
Example	q_i	0.05	0.1	0.05	0.05	0.05	0.1

$$e[3,3] = 1 \times p_3 + 2 \times (q_2 + q_3)$$

$$e[5,5] = 1 \times p_5 + 2 \times (q_4 + q_5)$$

$$e[3,5] = 1 \times p_4$$

$$+(1+1) \times p_3 + (2+1) \times (q_2 + q_3)$$

$$+(1+1) \times p_5 + (2+1) \times (q_4 + q_5)$$

$$= e[3,3] + e[5,5]$$

$$+ \sum_{l=3}^{5} p_l + \sum_{l=2}^{5} q_l$$

$$= e[3,3] + e[5,5] + w[3,5]$$

Recursive Equation

• We iterate over all k_r and select the one with minimal cost:

$$e[i,j] = \begin{cases} q_{i-1} & j = i-1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & i \le j \end{cases}$$

■ To avoid repeated computation, we can also recursively calculate $w[i,j] = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$:

$$w[i,j] = \begin{cases} q_{i-1} & j = i-1 \\ w[i,j-1] + p_j + q_j & 1 \le i \le j \le n \end{cases}$$

■ Both e[i,j] and w[i,j] are tables with i=1,...,n+1,j=0,...,n.

	$w[i,j] = w[i,j-1] + p_j + q_j$								
	1	2	3	4	5	6			
5									
4	~	w[i,j]							
3		w[i,j-1]							
2									
1									
0									

Pseudocode

```
DPOptimalBST(p, q, n)
1 for i \leftarrow 1 to n + 1 do
                                  First diagonal
        e[i, i-1] \leftarrow q_{i-1}
    w[i, i-1] \leftarrow q_{i-1}
4 for c \leftarrow 1 to n do \leftarrow From 2nd to nth diagonal
         for i \leftarrow 1 to n - c + 1 do
             j \leftarrow i + c - 1 Given c, determine the
                                         jth column and ith row
             e[i,j] \leftarrow \infty
             w[i,j] \leftarrow w[i,j-1] + p_i + q_i
             for r \leftarrow i to j do
10
                    t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]
11
                    if t < e[i, j] then
12
                              e[i,j] \leftarrow t
13
                              root[i, j] \leftarrow r
14 return e and root
```

Running time: $\Theta(n^3)$

$$e[i,j] = \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} \qquad w[i,j] = w[i,j-1] + p_j + q_j$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{5}$$

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{5}$$

$$\frac{1}{4} \frac{2}{1} \frac{3}{1} \frac{4}{3} \frac{5}{5} \frac{6}{6}$$

$$\frac{1}{5} \frac{2}{1} \frac{2}{1} \frac{3}{1} \frac{4}{3} \frac{5}{5} \frac{6}{6}$$

$$\frac{1}{5} \frac{2}{1} \frac{3}{1} \frac{4}{5} \frac{5}{6} \frac{6}{6}$$

$$\frac{1}{5} \frac{2}{1} \frac{3}{1} \frac{4}{5} \frac{5}{5} \frac{6}{6}$$

$$\frac{1}{5} \frac{2}{1} \frac{3}{1} \frac{4}{5} \frac{5}{5} \frac{6}{6}$$

$$\frac{1}{5} \frac{2}{1} \frac{3}{1} \frac{4}{5} \frac{5}{5} \frac{5}{6}$$

$$\frac{1}{5} \frac{1}{1} \frac{0.8}{0.5} \frac{0.6}{0.5} \frac{0.5}{0.5} \frac{0.15}{0.05} \frac{0.05}{0.5}$$

$$\frac{1}{5} \frac{0.55}{0.35} \frac{0.35}{0.15} \frac{0.15}{0.05} \frac{0.05}{0.5}$$

$$\frac{1}{6} \frac{0.45}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05}$$

$$\frac{1}{6} \frac{0.3}{0.1} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05}$$

$$\frac{1}{6} \frac{0.3}{0.1} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05}$$

$$\frac{1}{6} \frac{0.3}{0.1} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05} \frac{0.1}{0.05}$$

$$\frac{1}{6} \frac{0.3}{0.1} \frac{0.1}{0.05} \frac{0.1}{0.05$$

Find the optimal BST with the following key probabilities:

i	0	1	2	3	
p_i		0.25	0.3	0.15	
q_i	0.05	0.1	0.05	0.1	

		i						
	i	1	2	3	4			
	3	2	1.25	0.45	0.1			
i	2	1.35	0.6	0.05				
J	1	0.55	0.1					
	0	0.05						
	ļ		6	?				

		1	2	<i>i</i> 3	4		
	3	1	0.7	0.3	0.1		
į	2	0.75	0.45	0.05			
J	1	0.4	0.1				
	0	0.05					
	\overline{w}						

		i	
	1	2	3
3	2	3	3
2	1	2	
1	1		
•	í	roo	t
	2	3 2 2 1 1 1	1 2 3 2 3 2 1 2

游戏绝地求生中有头盔和防弹衣,分别分为3个等级:

- 头盔: 一级头, 二级头, 三级头.
- 护甲: 一级甲, 二级甲, 三级甲.

在游戏中一开始什么都没有,但是会在路上随机捡取装备.假设规定高级装备可以覆盖低级装备,也可以直接穿上,但是穿上高级装备后就无法再穿回低级装备.那么从什么都没有,到穿上三级头和三级甲,一共有多少种方式?

例如

- 一级头->二级甲->三级甲->三级头
- 三级头->三级甲
- **...**

耐久度:80

绝地求生防具属性

- 如果只考虑头盔, 那么穿上i级头有 2^{i-1} 种方式. 因为i级头一定要穿上, 但是1, ... i 1级头都可以选择穿与不穿.
- 当穿上i级头和i级甲时,可以分解为两种情况:
 - 已经穿上j级甲了, 就差i级头了, 这时候捡到i级头了.
 - 已经穿上i级头了, 就差j级甲了, 这时候捡到j级甲了.
- 因此, 假设 H(i,j)为穿上i级头和j级甲的方式数, 该问题的递归方程可以写为:

$$H(i,j) = \begin{cases} 2^{i-1} & i = 0 \text{ or } j = 0\\ \sum_{k < i} H(k,j) + \sum_{k < j} H(i,k) & i > 0, j > 0 \end{cases}$$

	i = 0	i = 1	i = 2	i = 3
j = 0	0	1	2	4
j = 1	1	2	5	12
j = 2	2	5	14	37
j = 3	4	12	37	106

ELEMENTS OF DYNAMIC PROGRAMMING

Optimal substructure

- 1. The solution to the problem consists of making a choice. Making this choice leaves one or more subproblems to be solved.
- 2. For a given problem, you are given the choice that leads to an optimal solution.
- 3. Given this choice, you determine which subproblems follow and how to best characterize the resulting space of subproblems.
- Solutions to the subproblems used within the optimal solution to the problem must themselves be optimal by proving by contradiction.

Optimal substructure varies across problem domains in two ways:

- 1. How many subproblems are used in an optimal solution to the original problem.
 - Assembly line: One subproblem $(f_1[j-1] \text{ or } f_2[j-1])$
 - Matrix multiplication: Two subproblems (subproducts $A_{i...k}$ and $A_{k+1...j}$)
- 2. How many choices we have in determining which subproblem(s) to use in an optimal solution.
 - Assembly line: Two choices (line 1 or line 2)
 - Matrix multiplication: j i choices for k (splitting the product)

- Dynamic programming uses optimal substructure in a bottom-up fashion.
- One should be careful not to assume that optimal substructure applies when it does not.
- Consider the following two problems in which we are given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from u to v consisting of the fewest edges.
 - Such a path must be simple, since removing a cycle from a path produces a path with fewer edges.
- This problem has optimal substructure.
 - Assume the shortest path from u to v goes through w. Then $u \to w$ and $w \to v$ is also the shortest.

- Unweighted longest simple path: Find a simple path from u to v consisting of the most edges.
 - Simplicity is necessary because otherwise we can traverse a cycle as many times as we like to create paths with an arbitrarily large number of edges.
- For unweighted shortest path, the problem does not have optimal substructure.
 - Assume the longest path from u to v goes through w. Then $u \to w$ may not be the longest. $u \to x \to v \to w$ is the longest.

Memorization

■ Memorization (备忘录) method still uses recursion but store values in the table after calculation.

```
LookUpChain(p, i, j)

1 if m[i, j] < \infty then return m[i, j]

2 if i = j then

3 m[i, j] \leftarrow 0

4 else for k \leftarrow i to j - 1 do

5 q \leftarrow \text{LookUpChain}(p, i, k) +

LookUpChain(p, k + 1, j) + p_{i+1}p_kp_j

6 if q < m[i, j] then

7 m[i, j] \leftarrow q

8 return m[i, j]
```

```
MemoizedMatrixChain(p)

1 for i \leftarrow 1 to n do

2 for j \leftarrow i to n do

3 m[i,j] \leftarrow \infty

4 return LookUpChain(p, 1, n)
```

Easier to implement because no diagonal trick is needed, but more recursive calls are required.

Dynamic Programming vs. Memorization

- Advantages of dynamic programming
 - No overhead (系统开销) for recursion, less overhead for maintaining the table.
 - The regular pattern of table accesses may be used to reduce time or space requirements.
- Advantages of memorization
 - Some subproblems do not need to be solved.

• Given an amount N and unlimited supply of coins with denominations d_1, d_2, \ldots, d_n , compute the smallest number of coins needed to get N.

Example:

- For N=86 (cents) and $d_1=1$, $d_2=2$, $d_3=5$, $d_4=10$, $d_5=25$, $d_6=50$, $d_7=100$.
- The optimal amount is 4 with changes: one 50, one 25, one 10, and one
 1.
- Give the recursive equation and draw the table with the case: $d_1 = 1$, $d_2 = 4$, $d_3 = 6$ and N = 8.

- Assume a set of coins d_1, d_2, \dots, d_n (be sorted) and an amount N.
- Use a table C[1 ... n, 0 ... N], where C[i, j] is the smallest number of coins used to pay j cents, using only coins $d_1, ..., d_i$.
- If C[i,j] is optimal and d_i is used, then $C[i,j-d_i]$ is also optimal.
- C[i, j] is calculated in two ways:
 - 1. Don't use coin d_i (even if it's possible):

$$C[i,j] = C[i-1,j]$$

2. Use coin d_i :

$$C[i,j] = 1 + C[i,j-d_i]$$

■ The recursive equation:

$$C[i,j] = \begin{cases} 0 & j = 0\\ \min(C[i-1,j], 1 + C[i,j-d_i]) & 0 < d_i \le j \end{cases}$$

Let $d_1 = 1$, $d_2 = 4$, $d_3 = 6$ and N = 8, the dynamic programming table will be:

		j								
		0	1	2	3	4	5	6	7	8
$d_1 = 1$	1	0	1	2	3	4	5	6	7	8
$d_2 = 4$	i 2	0	1	2	3	_ 1 _	2	3	4	2
$d_3 = 6$	3	0	1	2	3	1	2	1	2	2

Conclusion

After this lecture, you should know:

- The difference between divide-and-conquer and dynamic programming.
- Why is dynamic programming efficient.
- What is optimal substructure.
- The steps of designing a dynamic programming algorithm.

Homework

■ Page 92-94

6.2

6.3

6.5

6.7

6.9

6.12

Experiment

- 实现最长公共子序列算法, 并应用于文本匹配问题
 - 数据集和要求在spoc上下载.
- 用动态规划算法求解石材切割问题.

谢谢

有问题欢迎随时跟我讨论

