MATH 425A HW4, DUE 09/23/2022, 6PM

JUAN SERRATOS

2.4 in Chapter 3.

Chapter 2. §5.

Exercise 0.1 (5.2.). Let a_1, a_2, \ldots be any enumeration of the negative rational numbers; let b_1, b_2, \ldots be any enumeration of the positive rational numbers. Show that the following two equalities hold:

$$\bigcap_{j=1}^{\infty} (a_j, b_j) = \{0\}, \bigcup_{j=1}^{\infty} (a_j, b_j) = \mathbf{R}$$

Proof. For the first equality, take $\ell \in T = \bigcap_{j=1}^{\infty} (a_j, b_j)$, that is, ℓ is in every $(a_j, b_j) \subseteq \mathbf{R}$. So then $a_j < \ell < b_j$ for $\ell \in \overline{\mathbf{R}}$, but as a_j is essentially a negative rational number, and b_j is a positive rational, then we have that ℓ is squished between every negative and positive rational number.

Chapter 2. § 6.

Exercise 0.2 (6.1.). Prove that the addition and multiplication operations in $(\mathbf{C}, +, \cdot)$ satisfy the field axioms of Definition 2.1.

Proof. We essentially need to show that five axioms hold true from Definition 2.1. From now on, let $x, y, z \in \mathbf{R} \times \mathbf{R} (= \mathbf{C})$, which is the underlying set of \mathbf{C} , where x = (a, b), y = (c, d), z = (s, t) where $a, b, c, d, s, t \in \mathbf{R}$.

- (1) The set $\mathbf{C} := (\mathbf{C}, +, \cdot)$, as the operations are defined in Chapter 2, §6., is closed since $x+y=(a,b)+(c,d)=(a+c,b+d)\in \mathbf{R}\times\mathbf{R}$ and $xy=(a,b)\cdot(c,d)=(ac-bd,ad+bc)\in \mathbf{R}\times\mathbf{R}$ since $a+c,b+d,ac-bd,ad+bc\in \mathbf{R}$ as \mathbf{R} is a field, and so $x+y\in \mathbf{C}$ and $xy\in \mathbf{C}$.
- (2) For commutativity: x + y = (a, b) + (c, d) = (a + c, b + d) = (c + a, d + b) = (c, d) + (a, b) = y + x since **R** is a field, and, similarly, $xy = (a, b) \cdot (c, d) = (ac bd, ad + bc) = (ca db, cb + da) = (c, d) \cdot (a, b) = yx$ as **R** is a field. Now for associativity:

$$x + (y + z) = (a, b) + ((c, d) + (s, t)) = (a, b) + (c + s, d + t)$$

$$= (a + (c + s), b + (d + t)) = ((a + c) + s, (b + d) + t))$$
 (**R** is a field)
$$= (a + c, b + d) + (s, t) = (x + y) + z$$

$$x(yz) = (a,b) \cdot ((c,d) \cdot (s,t)) = (a,b) \cdot (cs-dt,ct+ds)$$

$$= (a(cs-dt)-b(ct+ds),a(ct+ds)+b(cs-dt)) \qquad \qquad (\mathbf{R} \text{ is a field})$$

$$= (acs-adt-bct-bds,act+ads+bcs-bdt) \qquad \qquad (\mathbf{R} \text{ is a field})$$

$$= ((ac-bd)s-(ad+bc)t,(ad+bc)s+(ac-bd)t) \qquad \qquad (\mathbf{R} \text{ is a field})$$

$$= (ac-bd,ad+bc) \cdot (s,t) = ((a,b) \cdot (c,d)) \cdot (s,t)$$

$$= (xy)z$$

Therefore we have associativity and commutativity with the defined operations on C.

Date: September 17, 2022

Department of Mathematics, University of Southern California.

(3) The additive identity of **C** is defined to be $0 = (0,0) \in \mathbf{R} \times \mathbf{R}$, and so x + 0 = (a,b) + (0,0) = (a+0,b+0) = (a,b) = (0+a,0+b) = (0,0) + (a,b) = 0+x. Similarly, the multiplicative identity is defined to be 1 = (1,0), and so $x \cdot 1 = (a,b) \cdot (1,0) = (a(1) - b(0), a(0) + b(1)) = (a,b) = x = 1 \cdot x = (1,0) \cdot (a,b) = (1(a) - 0(b), 1(b) + 0(a)) = (a,b) = x$.

(4) The multiplicative inverse of x=(a,b), where $x\neq 0$, can be found to be $x^{-1}=\left(\frac{a}{a^2+b^2},\frac{-b(\frac{a}{a^2+b^2})}{a}\right)$, and we can tediously calculate to get that

$$x \cdot x^{-1} = (a,b) \cdot \left(\frac{a}{a^2 + b^2}, \frac{-b(\frac{a}{a^2 + b^2})}{a}\right) = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = (1,0) = 1.$$
 (1)

The additive inverse is much easier: for y = (c, d), the additive inverse is -y = (-c, -d), and so y + (-y) = (c + (-c), d + (-d)) = (0, 0) = 0.

(5) Lastly, we need to check distributivity: Let t := y + z = (c + s, d + t). Now

$$x \cdot t = (a,b) \cdot (c+s,d+t) = (a(c+s) - b(d+t), a(d+t) + b(c+s))$$

$$= (ac + as - bd - bt, ad + at + bc + bs)$$

$$= ((ac - bd) + (as - bt), (ad + bc) + (at + bs))$$

$$= (a,b) \cdot (c,d) + (a,b) \cdot (s,t)$$

Therefore the distributive law holds.

Hence C is indeed a field.

Exercise 0.3 (6.2.). Prove that there exists no order \leq that makes $(\mathbf{C}, +, \cdot, \leq)$ into an ordered field. (Hint: If there were such an ordering, then $i = \sqrt{-1}$ would necessarily be either positive or negative.)

Proof. Suppose that there does exists an ordering that makes ${\bf C}$ into an ordered field. Then, by definition, we have that either $i \leq 0$ or $i \leq 0$, but we do not have that i=0, so we simply have that either i is negative or positive. Suppose, for the first case, that i<0. Then 0<-i so $0^2<(-i)^2=1(-1)=-1$ and once again, $0^2<(-1)^2=1$; hence a contradiction. Thus we cannot have that i is negative. Now, for the second/last case, then assume that i>0. Then $i^2=-1>0^2=0$ and so (-1)+1=0>0+1=1, and multiplying by $1, i\cdot 0=0>1\cdot i=i$; thus a contradiction. Hence we cannot have that i is not positive either. Therefore we cannot have that there exists an order on ${\bf C}$ that makes it into an ordered field.

1. Chapter 3. § 1

Exercise 1.1 (1.1.). Let $\|\cdot\|$ be a norm on a real vector space V. Prove the *reverse triangle inequality:*

$$|||x|| - ||y||| \le |||x - y|||$$

Exercise 1.2 (1.2.). Prove that any complex inner product is conjugate linear in its second argument; that is,

$$\langle x, \lambda y + z \rangle = \overline{\lambda} \langle x, y \rangle + \langle x, z \rangle,$$

for any scalar λ . (Note that this implies that any real inner product is linear in its second argument.)

Proof. We are considering a complex inner product and so we have a mapping $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbf{C}$ with some properties. Let $x, y, z \in V$ and $\lambda \in \mathbf{C}$. Then $\langle x, \lambda y + z \rangle = \overline{\langle \lambda y + z, x \rangle} = \overline{\lambda \langle y, x \rangle} + \overline{\langle z, x \rangle} = \overline{\lambda \langle y, x \rangle} + \overline{\langle z, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, y \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} + \overline{\lambda \langle x, x \rangle} = \overline{\lambda \langle x, x \rangle} + \overline$

Exercise 1.3 (1.3.-Polarization identity). If $(V, \langle \cdot, \cdot \rangle)$ is a real inner product space, then

$$\langle v, w \rangle = \frac{1}{4} [\|v + w\|^2 - \|v - w\|^2], \text{ for all } v, w \in V.$$

If $(V, \langle \cdot, \cdot \rangle)$ is a complex inner product space, then

$$\langle v, w \rangle = \frac{1}{4} \left[(\|v + w\|^2 - \|v - w\|^2) + i(\|v + iw\|^2 - \|v - iw\|^2) \right]$$

Proof. Suppose that $(V, \langle \cdot, \cdot \rangle)$ is a real inner product space. Then $||v + w||^2 = \langle v + v \rangle$ $\begin{aligned} w, v + w \rangle &= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle, \text{ and, similarly,} \\ \|v - w\|^2 &= \langle v - w, v - w \rangle = \langle v, v \rangle - \langle v, w \rangle - \langle w, v \rangle + \langle w, w \rangle = \langle v, v \rangle - 2 \langle v, w \rangle + \langle w, w \rangle. \end{aligned}$

$$\begin{split} \frac{1}{4} \left[\left\| v + w \right\|^2 - \left\| v - w \right\|^2 \right] &= \frac{1}{4} \left[\left\langle v, v \right\rangle + 2 \left\langle v, w \right\rangle + \left\langle w, w \right\rangle - \left(\left\langle v, v \right\rangle - 2 \left\langle v, w \right\rangle + \left\langle w, w \right\rangle \right) \right] \\ &= \frac{1}{4} \left[2 \left\langle v, w \right\rangle + 2 \left\langle v, w \right\rangle \right] \\ &= \frac{1}{4} \left[4 \left\langle v, w \right\rangle \right] = \left\langle v, w \right\rangle. \end{split}$$

Suppose that $(V, \langle \cdot, \cdot \rangle)$ is a complex inner product. Similar to the first computations we did for the real case, we can find that $||v+w||^2 = \langle v,v \rangle = \langle v,w \rangle + \overline{\langle v,w \rangle} + \langle w,w \rangle$, and $\|v-w\|^2 = \langle v,v \rangle - \langle v,w \rangle - \overline{\langle v,w \rangle} + \langle w,w \rangle$. Moreover, $\|v+iw\| = \langle w,w \rangle + i\langle w,v \rangle - \langle w,w \rangle + i\langle w,w \rangle$ $i\langle v,w\rangle+\langle v,v\rangle$, and $||v-iw||=\langle w,w\rangle-i\langle w,v\rangle+i\langle v,w\rangle+\langle v,v\rangle$. Now:

$$||v + w||^2 - ||v - w||^2 = 2\langle v, w \rangle + 2\langle w, v \rangle$$
, and $||v + iw||^2 - ||v - iw||^2 = 2i\langle w, v \rangle - 2i\langle v, w \rangle = 2i[\langle w, v \rangle - \langle v, w \rangle]$

Thus:

$$\begin{split} \frac{1}{4} \left[\left(2\langle v, w \rangle + 2\langle w, v \rangle \right) + i \left(2i (\langle w, v \rangle - \langle v, w \rangle) \right] &= \frac{1}{4} \left[2\langle v, w \rangle + 2\langle w, v \rangle + \left(-2\langle w, v \rangle + 2\langle v, w \rangle \right) \right] \\ &= \frac{1}{4} \left[4\langle v, w \rangle + 2\langle w, v \rangle - 2\langle w, v \rangle \right] \\ &= \frac{1}{4} \left[4\langle v, w \rangle \right] &= \langle v, w \rangle. \end{split}$$

2. Chapter 3 §2

Exercise 2.1 (2.2). For each of (a), (b), and (c), determine whether the given function d_i is a metric on **R**, and prove that your answer is correct.

- (a) $d_1(x, y) = \sqrt{|x y|}$ (b) $d_2(x, y) = |x 2y|$ (c) $d_3(x, y) = \frac{|x y|}{1 + |x y|}$

Proof. (a) Indeed a metric. We need to show that $d_1: X \times X \to \mathbf{R}$ satisfies nonnegativity, symmetry, and the triangle inequality:

Firstly, let's fix some arbitrary $(x,y) \in X \times X$. Then $d_1(x,y) = \sqrt{|x-y|}$, which is the root of some positive number, or 0, in **R**, and so $d_1(x,y) \geq 0$; if x = y, then $\sqrt{|x-y|} =$ $\sqrt{|x-x|}=0$, and if we first assumed $d_1(x,y)=0$, then $d_1(x,y)=\sqrt{|x-y|}=0$ and so |x-y|=0 and in either case of $x-y\geq 0$ or x-y<0, we get that x=y.

For symmetry, suppose we have $d_1(x,y)$ and $(x,y) \in X \times X$. Now, consider $d_1(x,y)$ – $d_1(y,x)$, and so $\sqrt{|x-y|} - \sqrt{|y-x|}$ —if x-y>0 then 0>y-x, which implies $\sqrt{x-y}$ $\sqrt{-(y-x)} = \sqrt{x-y} - \sqrt{x-y} = 0 \text{ and so } d_1(x,y) = d_1(y,x) \text{ if } x-y > 0; \text{ if } x-y < 0$ then 0 < y-x, so $\sqrt{-(x-y)} - \sqrt{y-x} = \sqrt{y-x} - \sqrt{y-x} = 0$ and so $d_1(x,y) = d_1(y,x)$ if x-y < 0; if x-y = 0 then x = y and $d_1(x,y) = \sqrt{|x-y|} = \sqrt{|y-x|} = d_2(y,x)$. Thus d_1 is symmetric. [Could use instead the fact that $|\cdot|$ is a metric, and so $(d_1(x,y))^2 =$ $|x-y| = |y-x| = (d_1(y,x))^2$, and so $d_1(x,y) = d_1(y,x)$.

Lastly, we need to show that the triangle inequality holds. This is shown easiest if we show that, for any $s,t\in \mathbf{R}$ such that $s,t\geq 0$, we have that $\sqrt{s}+\sqrt{t}\geq \sqrt{s+t}$. This is true as we clearly have that $2\sqrt{st}\geq 0$ and so this leads to $s+\sqrt{2st}+t\geq s+t$ which is the same as $(\sqrt{s}+\sqrt{t})^2\geq s+t$, and thus $\sqrt{s}+\sqrt{t}\geq \sqrt{s+t}$. Now, $d_1(x,y)=\sqrt{|x-y|}=\sqrt{|(x-z)+(z-y)|}\leq \sqrt{|x-z|}+\sqrt{|z-y|}=d_1(x,z)+d_1(z,y)$ —note that if x-y<0 then the inequality would still work out in the end.

Therefore we have that $d_1: X \times X \to \mathbf{R}$ where $d_1: (x,y) \mapsto \sqrt{|x-y|}$ does define a metric.

- (b) $d_2(x,y) = |x-2y|$ does not define a metric on \mathbf{R} , since it does not, at the very least, satisfy the symmetry condition: Let $X = \mathbf{R}$. Then $d_2 \colon \mathbf{R} \times \mathbf{R} \to \mathbf{R}$, where $d_2 \colon (x,y) \mapsto |x-2y|$, is not a metric since, for example, $d_2(2,3) = |2-2(3)| = |2-6| = |-4| = 4$ but $d_2(3,2) = |3-2(2)| = |3-4| = |-1| = 1$, and so a counter example against the symmetry property.
 - (c) Indeed a metric.

Suppose $(x,y)\in X\times X$. Then $\frac{|x-y|}{1+|x-y|}$ is always positive since $|x-y|\geq 1$ for any choice $x\neq y$ and x=y gives us that $d_3(x,y)=0$. Now if x=y, then $\frac{0}{1+0}=0$. If instead assumed firstly that $\frac{|x-y|}{1+|x-y|}=0$, then: x-y>0 implies $\frac{x-y}{1+x-y}=0$ and so x=y clearly, and similarly, x-y<0 gives us $\frac{y-x}{1+y-x}=0$ and so x=y; if x-y=0, then the result follows immediately. Thus $d_3(x,y)\geq 0$ for all $x,y\in X$ and $d_3(x,y)=0$ if and only if x=y.

For symmetry, we proceed as follows. If x - y = 0 then the result is clear. Now if x - y > 0, then

$$\frac{|x-y|}{1+|x-y|} - \frac{|y-x|}{1+|y-x|} = \frac{x-y}{1+x-y} - \frac{-(y-x)}{1+(-1)(y-x)}$$
$$= \frac{x-y}{1+x-y} + \frac{y-x}{1+(x-y)} = 0.$$

Thus $d_1(x, y) = d_1(y, x)$ if x - y > 0. If x - y < 0, then

$$\begin{aligned} \frac{|x-y|}{1+|x-y|} - \frac{|y-x|}{1+|y-x|} &= \frac{-(x-y)}{1+(-1)(x-y)} - \frac{y-x}{1+y-x} \\ &= \frac{y-x}{1+y-x} + \frac{-y+x}{1+y-x} = 0. \end{aligned}$$

Thus $d_3(x,y) = d_3(y,x)$ if x - y < 0. Lastly, we have that if x - y = 0, then x = y, and so, trivially, $d_3(x,y) = d_3(y,x)$. Therefore d_3 is symmetric.

For the triangle inequality

$$\begin{split} \frac{|x-y|}{1+|x-y|} + \frac{|y-z|}{1+|y-z|} &\geq \frac{|x-y|}{1+|x-y|+|y-z|} + \frac{|y-z|}{1+|x-y|+|y-z|} \\ &= \frac{|x-y|+|y-z|}{1+|x-y|+|y-z|} \\ &= 1 - \frac{1}{1+|x-y|+|y-z|} \\ &\geq 1 - \frac{1}{1+|x-z|} = \frac{1+|x-z|-1}{1+|x-z|} = \frac{|x-z|}{1+|x-z|} = d_3(x,z). \end{split}$$

Therefore the triangle inequality holds and $d_3: X \times X \to \mathbf{R}$ defines a metric.

Exercise 2.2 (2.3). Consider the function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined by

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|, [x = (x_1, x_2), y = (y_1, y_2)]$$

(a) Prove that d is a metric on \mathbb{R}^2 .

- (b) On a sheet of graph paper, draw the set $B_d((5,1),3)$. Use dotted lines to indicate the boundary, which is not included in the set you are drawing. (Hint: it may be easier to figure out what the set looks like if you first consider $B_d((0,0),3)$.)
- (c) On the same graph as in the previous part, draw $B_{d_u}((3,2),1)$, where d_u denotes the square metric.

Proof. (a) We always have that $d(x,y) \ge 0$ since $|\cdot|$ is itself a metric, and so $|x_1 - y_1| \ge 0$ and $|x_2 - y_2| \ge 0$. Now if d(x,y) = 0. We want to show that $x = (x_1, x_2) = (y_1, y_2) = y$, i.e. $x_1 - x_2 = 0$ and $y_1 - y_2 = 0$.

We have that the symmetry property holds as a consequence of the fact that $|\cdot|$ is a metric, and so $d(x,y) = d((x_1,x_2),(y_1,y_2)) = |x_1 - y_1| + |x_2 - y_2| = |y_1 - x_1| + |y_2 - x_2| = d((y_1,y_2),(x_1,x_2)) = d(y,x)$.

 $Email\ address: {\tt jserrato@usc.edu}$

Department of Mathematics, University of Southern California, Los Angeles, CA 90007