Symmetric space

Bowen Liu

Mathematics Department of Tsinghua University

2023/08/16

- Overview
- 2 A guick review of basic facts we need
- **3** Geometric viewpoints of symmetric space
- 4 Algebraic viewpoints of symmetric space
- **5** Curvature of Riemannian symmetric space
- **6** Classifications and examples

- Overview

In this talk we give an introduction about Riemannian symmetric space, and it contains the following parts:

- Firstly we give a quick review of basic facts in Riemannian geometry we used.
- Basic definitions and properties of Riemannian symmetric space, and the relations between symmetric, locally symmetric and homogenous spaces.
- The Cartan decomposition of Lie algebra, and how to use Killing form to compute curvatures.
- A brief introduction to the classification of Riemannian symmetric space and some basic examples.

- Overview
- 2 A quick review of basic facts we need
- 3 Geometric viewpoints of symmetric space
- 4 Algebraic viewpoints of symmetric space
- 5 Curvature of Riemannian symmetric space
- 6 Classifications and examples

Let $\varphi, \psi : (M, g_M) \to (N, g_N)$ be two local isometries between Riemannian manifolds, and M is connected. If there exists $p \in M$ such that

$$\varphi(p) = \psi(p)$$
$$(d\varphi)_p = (d\psi)_p$$

then $\varphi = \psi$.

Theorem (Myers-Steenrod)

Let (M,g) be a Riemannian manifold and G = Iso(M,g). Then

- G is a Lie group with respect to compact-open topology.
- 2 for each $p \in M$, the isotropy group G_p is compact.
- **3** G is compact if M is compact.

Theorem (Cartan-Ambrose-Hicks)

Let (M,g) and (M,\widetilde{g}) be two Riemannian manifold, and $\Phi_0: T_pM \to T_{\widetilde{p}}M$ is a linear isometry, where $p \in M, \widetilde{p} \in M$. For $0 < \delta < \min\{\inf_{n}(M), \inf_{\widetilde{n}}(\widetilde{M})\}$, The following statements are equivalent.

- **1** There exists an isometry $\varphi \colon B(p,\delta) \to B(\widetilde{p},\delta)$ such that $\varphi(p) = \widetilde{p}$ and $(\mathrm{d}\varphi)_p = \Phi_0$.
- **2** For $v \in T_p M$, $|v| < \delta$, $\gamma(t) = \exp_p(tv)$, $\widetilde{\gamma}(t) = \exp_{\widetilde{p}}(t\Phi_0(v))$, if we define

$$\Phi_t = P_{0,t;\widetilde{\gamma}} \circ \Phi_0 \circ P_{t,0;\gamma} \colon T_{\gamma(t)} M \to T_{\widetilde{\gamma}(t)} \widetilde{M}$$

then Φ_t preserves curvature, that is $(\Phi_t)^*R = R$.

Lemma

Let (M,g) be a Riemannian manifold, $\gamma: I \to M$ a smooth curve and $P_{s,t;\gamma}$: $T_{\gamma(s)}M \to T_{\gamma(t)}M$ is the parallel transport along γ . For any $s \in I$ with $v = \gamma'(s)$, one has

$$\nabla_{\mathbf{v}}R = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=s} (P_{s,t;\gamma})^* R_{\gamma(t)}$$

In particular, if $\nabla R = 0$ then

$$(P_{s,t;\gamma})^* R_{\gamma(t)} = R_{\gamma(s)}$$

holds for arbitrary $t, s \in I$.

Lemma

If $\pi: (M, \widetilde{g}) \to (M, g)$ is a Riemannian covering, then M is complete if and only if M is.

Let (M, g_M) be a complete Riemannian manifold and $f:(M,g_M)\to (N,g_N)$ be a local isometry. Then f is a Riemannian covering map.

- Overview
- 2 A quick review of basic facts we need
- **3** Geometric viewpoints of symmetric space
 - Basic definitions and properties

 Symmetric space, locally symmetric space and homogeneous space
- 4 Algebraic viewpoints of symmetric space
- 6 Curvature of Riemannian symmetric space
- 6 Classifications and examples

- **3** Geometric viewpoints of symmetric space Basic definitions and properties

Definition (symmetric space)

A Riemannian manifold (M, g) is called a Riemannian symmetric space if for each $p \in M$ there exists an isometry $\varphi \colon M \to M$, which is called a symmetry at p, such that $\varphi(p) = p$ and $(d\varphi)_p = -id$.

Remark.

Note that Theorem 1, that is rigidity property of isometry, implies if symmetry at point p exists, then it's unique.

Let g_{can} be the Euclidean metric on \mathbb{R}^n . For each $p \in \mathbb{R}^n$, the reflection

$$\varphi(x)=2p-x$$

is a symmetric at point p. Thus (\mathbb{R}^n, g_{can}) is a Riemannian symmetric space.

Example

Let g_{can} be the metric of S^n induced from $(\mathbb{R}^{n+1}, g_{can})$. For each $p \in S^n$, the reflection

$$\varphi(x) = 2\langle x, p \rangle p - x$$

is a symmetric at point p. Thus (S^n, g_{can}) is a Riemannian symmetric space.

The following statements are equivalent.

- (M,g) is a Riemannian symmetric space.
- **2** For each $p \in M$, there exists an isometry $\varphi \colon M \to M$ such that $\varphi^2 = \text{id}$ and p is an isolated fixed point of φ .

Proof.

From (1) to (2). Let φ be a symmetry at $p \in M$. Since $(\mathrm{d}\varphi^2)_p = (\mathrm{d}\varphi)_p \circ (\mathrm{d}\varphi)_p = \mathrm{id}$ and $\varphi^2(p) = p$, one has $\varphi^2 = \mathrm{id}$ by Theorem 1. If p is not an isolated fixed point, then there exists a sequence $\{p_i\}_{i=1}^{\infty}$ converging to p such that $\varphi(p_i) = p_i$. For $0 < \delta < \text{inj}(p)$, there exists sufficiently large k such that $p_k \in B(p, \delta)$, and we denote $v = \exp_p^{-1}(p_k)$. Since φ is an isometry, one has $\varphi(\exp_p(tv))$ and $\exp_p(tv)$ are two geodesics connecting p and p_k .

By uniqueness of geodesic, one has

$$\varphi(\exp_p(tv)) = \exp_p(tv)$$

In particular, one has $v = (d\varphi)_p v$, which is a contradiction. From (2) to (1). From $\varphi^2 = \operatorname{id}$ we have $(d\varphi)_n^2 = \operatorname{id}$, so only possible eigenvalues of $(d\varphi)_p$ are ± 1 . Now it suffices to show all eigenvalues of $(d\varphi)_p$ are -1. Otherwise if it has an eigenvalue 1, there exists some non-zero $v \in T_p M$ such that $(d\varphi)_p v = v$. Since φ is an isometry, one has $\varphi(\exp_p(tv))$ and $\exp_p(tv)$ are geodesics with the same direction at p. Thus

$$\varphi(\exp_p(tv)) = \exp_p(tv)$$

for 0 < t < inj(p). In particular, p is not an isolated fixed point, which is a contradiction.

The fundamental group of a Riemannian symmetric space is abelian.

Corollary

A surface of genus $g \ge 2$ does not admit a Riemannian metric with respect to which it is a symmetric space.

Definition (locally Riemannian symmetric space)

A Riemannian manifold (M,g) is called a locally Riemannian symmetric space if each $p \in M$ has a neighborhood U such that there exists an isometry $\varphi \colon U \to U$ such that $\varphi(p) = p$ and $(\mathrm{d}\varphi)_p = -\mathrm{id}.$

$\mathsf{Theorem}$

Let (M,g) be a complete Riemannian manifold. The following statements are equivalent.

- (M,g) is a locally Riemannian symmetric space.
- $\mathbf{Q} \nabla R = 0.$

Proof.

From (1) to (2). If φ is the symmetry at point $p \in M$, then it's an isometry such that $(d\varphi)_p = -id$, and thus for $u, v, w, z \in T_pM$, one has

$$-\nabla_{u}R(v,w)z = (d\varphi)_{p} (\nabla_{u}R(v,w)z)$$

$$= \nabla_{(d\varphi)_{p}u}((d\varphi)_{p})v, (d\varphi)_{p}w)(d\varphi)_{p}z$$

$$= \nabla_{u}R(v,w)z$$

This shows $(\nabla R)_p = 0$, and thus $\nabla R = 0$ since p is arbitrary. From (2) to (1). For arbitrary $p \in M$, it suffices to show

$$\varphi = \exp_{p} \circ \Phi_{0} \circ \exp_{p}^{-1} \colon B(p, \delta) \to B(p, \delta)$$

is an isometry, where $0 < \delta < \text{inj}(p)$ and $\Phi_0: T_pM \to T_pM$ is — id

Continuation.

For $v \in T_n M$ with $|v| < \delta$ and $\gamma(t) = \exp_{\rho}(tv), \widetilde{\gamma}(t) = \exp_{\rho}(t\Phi_0(v)), \text{ if we define}$ $\Phi_t = P_{0,t;\widetilde{\gamma}} \circ \Phi_0 \circ P_{t,0;\gamma}$, then direct computation shows

$$\Phi_t^* R_{\widetilde{\gamma}(t)} = (P_{t,0;\gamma})^* \circ \Phi_0^* \circ (P_{0,t;\widetilde{\gamma}})^* R_{\widetilde{\gamma}(t)} \\
\stackrel{(a)}{=} (P_{t,0;\gamma})^* \circ \Phi_0^* R_{\widetilde{\gamma}(0)} \\
\stackrel{(b)}{=} (P_{t,0;\gamma})^* R_{\gamma(0)} \\
\stackrel{(c)}{=} R_{\gamma(t)}$$

where (a) and (c) holds from Lemma 4, and (b) holds from $\widetilde{\gamma}(0) = \gamma(0)$ and R is a (0,4)-tensor.

Then by Theorem 3, that is Cartan-Ambrose-Hicks's theorem, φ is an isometry, which completes the proof.

- Overview
- 2 A quick review of basic facts we need
- 3 Geometric viewpoints of symmetric space Basic definitions and properties Symmetric space, locally symmetric space and homogeneous space
- 4 Algebraic viewpoints of symmetric space
- 6 Curvature of Riemannian symmetric space
- 6 Classifications and examples

$\mathsf{Theorem}$

Let (M,g) be a complete, simply-connected locally Riemannian symmetric space. Then (M,g) is a Riemannian symmetric space.

Proof.

For $p \in M$ and $0 < \delta < \operatorname{inj}(p)$, suppose $\varphi : B(p, \delta) \to B(p, \delta)$ is an isometry such that $\varphi(p) = p$ and $(d\varphi)_p = -id$. For arbitrary $q \in M$, we use $\Omega_{p,q}$ to denote all curves γ with $\gamma(0) = p, \gamma(1) = q$, and for $c \in \Omega_{p,q}$ we choose a covering $\{B(p_i, \delta_i)\}_{i=0}^k$ of c such that

- $\mathbf{0} < \delta_i < \operatorname{inj}(p_i).$
- **2** $B(p_0, \delta_0) = B(p, \delta)$ and $p_k = q$.
- **3** $p_{i+1} \in B(p_i, \delta_i)$.

21 / 87

¹Since injective radius is a continuous function, it has a positive minimum on curve c, so such covering exists.

If we set $\varphi=\varphi_0$, then we can define isometries $\varphi_i\colon B(p_i,\delta_i)\to M$ such that $\varphi_i(p_i)=\varphi_{i-1}(p_i)$ and $(\mathrm{d}\varphi_i)_{p_i}=(\mathrm{d}\varphi_{i-1})_{p_i}$ by using Cartan-Ambrose-Hicks's theorem successively, and by Theorem 1 one has φ_i and φ_{i+1} coincide on $B(p_i,\delta_i)\cap B(p_{i+1},\delta_i)$. The covering together with isometries we construct is denoted by $\mathcal{A}=\{B(p_i,\delta_i),\varphi_i\}_{i=0}^k$. For arbitrary $x\in[0,1]$, if $c(x)\in B(p_m,\delta_m)$, we may define

$$\varphi_{\mathcal{A}}(c(x)) := \varphi_{m}(c(x))$$
$$(d\varphi_{\mathcal{A}})_{c(x)} := (d\varphi_{m})_{c(x)}$$

In particular, $\varphi_{\mathcal{A}}(q) := \varphi_k(q)$. If $\mathcal{B} = \{\widetilde{B}(\widetilde{p}_i, \widetilde{\delta}_i), \widetilde{\varphi}_i\}_{i=0}^l$ is another covering of c, let's show $\varphi_{\mathcal{A}}(q) = \varphi_{\mathcal{B}}(q)$. Consider

$$I = \{x \in [0,1] \mid \varphi_{\mathcal{A}}(c(x)) = \varphi_{\mathcal{B}}(c(x)), (\mathrm{d}\varphi_{\mathcal{A}})_{c(x)} = (\mathrm{d}\varphi_{\mathcal{B}})_{c(x)}\}$$

- 4 ロ ト 4 御 ト 4 注 ト 4 注 ト り 9 0 0

Continuation.

It's clear $I \neq \emptyset$, since $0 \in I$. Now it suffices to show it's both open and closed to conclude $1 \in I$.

(a) It's open: For $x \in I$, we assume $c(x) \in B(p_m, \delta_m) \cap \widetilde{B}(\widetilde{p}_n, \widetilde{\delta}_n)$. that is

$$\varphi_m(c(x)) = \widetilde{\varphi}_n(c(x))$$
$$(d\varphi_m)_{c(x)} = (d\widetilde{\varphi}_n)_{c(x)}$$

Then one has

$$\varphi_{m} \circ \exp_{c(x)}(v) = \exp_{\varphi_{m}(c(x))} \circ (d\varphi_{m})_{c(x)}(v)$$

$$= \exp_{\widetilde{\varphi}_{n}(c(x))} \circ (d\widetilde{\varphi}_{n})_{c(x)}(v)$$

$$= \widetilde{\varphi}_{n} \circ \exp_{c(x)}(v)$$

Since $\exp_{c(x)}$ maps onto a neighborhood of c(x), it follows that some neighborhood of x also lies in I, and thus I is open.

Continuation.

(b) It's closed: Let $\{x_i\}_{i=1}^{\infty} \subseteq I$ be a sequence converging to x. Without lose of generality we may assume $\{x_i\}_{i=1}^{\infty} \subseteq B(p_m, \delta_m) \cap \widetilde{B}(\widetilde{p}_n, \widetilde{\delta}_n)$, then one has

$$\varphi_m(c(x_i)) = \widetilde{\varphi}_n(c(x_i))$$
$$(d\varphi_m)_{c(x_i)} = (d\widetilde{\varphi}_n)_{c(x_i)}$$

By taking limit we obtain the desired results.

Since $\varphi_{\mathcal{A}}(q)$ is independent of the choice of covering, we denote it as $\varphi(q)$ for convenience, and as a consequence we obtain the following map

$$F: \Omega_{p,q} \to M$$

$$c \mapsto \varphi(q)$$

Note that F(c) is locally constant, and thus it's independent of the choice of homotopy classes of c.

Since M is simply-connected, one has $F\colon \Omega_{p,q}\to M$ is constant, so we obtain a local isometry $\varphi\colon M\to M$ which extends $\varphi\colon B(p,\delta)\to B(p,\delta)$. By Lemma 6 φ is a Riemannian covering map since M is complete, and thus φ is a diffeomorphism since M is simply-connected, which implies φ is an isometry. \square

Corollary

Let (M,g) be a complete locally Riemannian symmetric space. Then it's isometric to $(\widetilde{M}/\Gamma,\widetilde{g})$ where $(\widetilde{M},\widetilde{g})$ is a Riemannian symmetric space and Γ is a discrete Lie group acting on \widetilde{M} freely, properly and isometrically.

As a consequence, above argument about analytic continuation can be used to give a proof of Hopf's theorem.

Theorem (Hopf)

Let (M,g) be a complete, simply-connected Riemannian manifold with constant sectional curvature K. Then (M,g) is isometric to

$$(\widetilde{M}, g_{can}) = egin{cases} (\mathbb{S}^n(rac{1}{\sqrt{K}}), g_{can}) & K > 0 \ (\mathbb{R}^n, g_{can}) & K = 0 \ (\mathbb{H}^n(rac{1}{\sqrt{-K}}), g_{can}) & K < 0 \end{cases}$$

Proof.

For $p \in M$, $\widetilde{p} \in M$ and $\delta < \min\{\inf(p), \inf(\widetilde{p})\}$. By Cartan-Ambrose-Hicks's theorem, there exists an isometry $\varphi \colon B(p,\delta) \to B(\widetilde{p},\delta)$ such that $\varphi(p) = \widetilde{p}$ and $(\mathrm{d}\varphi)_p$ equals to a given linear isometry, since both (M,g) and $(\widetilde{M},\widetilde{g})$ have constant sectional curvature K. By the same argument in proof of Theorem 15, there is an isometry $\varphi: (M,g) \to (M,\widetilde{g})$ which extends $\varphi \colon B(p,\delta) \to B(\widetilde{p},\delta)$. In particular, this completes the proof.

Definition (Riemannian homogeneous space)

A Riemannian manifold (M, g) is called a Riemannian homogeneous space, if Iso(M, g) acts on M transitively.

Lemma

Let (M,g) be a Riemannian homogeneous space. If there exists a symmetry at some point $p \in M$, then (M,g) is a Riemannian symmetric space.

Proof.

Let φ be a symmetry at $p \in M$. For arbitrary $q \in M$, there exists an isometry $\psi \colon M \to M$ such that $\psi(p) = q$ since (M,g) is a Riemannian homogeneous space. Then

$$\varphi_{\mathbf{q}} := \psi \circ \varphi \circ \psi^{-1}$$

is the desired symmetry at q.

Let (M,g) be a Riemannian symmetric space. Then

- (M,g) is complete.
- ② for any isometry $\varphi \colon M \to M$ with $(d\varphi)_p = -id$ and $\varphi(p) = p$, if $v \in T_pM$, then

$$\varphi(\exp_p(v)) = \exp_p(-v)$$

3 the isometry group Iso(M,g) acts transitively on M.

Proof.

For (1). For arbitrary geodesic $\gamma\colon [0,1]\to M$ with $\gamma(0)=p,\gamma'(0)=v$, the curve $\beta(t)=\varphi(\gamma(t))\colon [0,1]\to M$ is also a geodesic with $\beta(0)=p$ and $\beta'(0)=-v$.

Now we obtain a smooth extension γ' : $[0,2] \to M$ of γ , given by

$$\gamma'(t) = \begin{cases} \beta(1-t), & t \in [0,1] \\ \gamma(t-1), & t \in [1,2] \end{cases}$$

Repeat above process to extend γ to a geodesic defined on \mathbb{R} , this shows completeness.

For (2). Note that $\varphi(\exp_n(tv))$ and $\exp_n(-tv)$ are geodesics starting at p with the same direction since φ is an isometry, and thus $\varphi(\exp_p(tv)) = \exp_p(-tv)$. Furthermore, since (M,g) is complete, one has $\varphi(\exp_p(tv))$ and $\exp_p(-tv)$ are defined on \mathbb{R} . In particular, one has $\varphi(\exp_n(v)) = \exp_n(-v)$ by considering t = 1.

For (3). Let $\gamma: [0,1] \to M$ be a geodesic connecting $p, q \in M$, and $\varphi_m \colon M \to M$ is the symmetry at $m = \gamma(\frac{1}{2})$. If we consider $\beta(t) = \varphi_m(\gamma(\frac{1}{2} - t))$, then $\beta(0) = m, \beta'(0) = \gamma'(\frac{1}{2})$, which implies $\beta(t) = \gamma(\frac{1}{2} + t)$. Therefore $q = \gamma(1) = \beta(\frac{1}{2}) = \varphi_m(\gamma(0)) = \varphi_m(p).$

Corollary

The Riemannian symmetric space (M,g) is a Riemannian homogeneous space.

Algebraic viewpoints of symmetric space

- 2 A quick review of basic facts we need
- Geometric viewpoints of symmetric space
- 4 Algebraic viewpoints of symmetric space
 A quick review of Killing fields
 Riemannian symmetric space as a quotient
 Riemannian symmetric pair
 Transportion
- 6 Curvature of Riemannian symmetric space
- 6 Classifications and examples

32 / 87

- 2 A quick review of basic facts we need
- Geometric viewpoints of symmetric space
- Algebraic viewpoints of symmetric space A quick review of Killing fields Riemannian symmetric space as a quotient Riemannian symmetric pair
- Curvature of Riemannian symmetric space
- 6 Classifications and examples

Lemma

Let (M,g) be a Riemannian manifold and X be a Killing field.

- **1** If γ is a geodesic, then $J(t) = X(\gamma(t))$ is a Jacobi field.
- Por any two vector fields Y, Z,

$$\nabla_{Y}\nabla_{Z}X - \nabla_{\nabla_{Y}Z}X + R(X,Y)Z = 0$$

Corollary

Let (M,g) be a complete Riemannian manifold and $p \in M$. Then a Killing field X is determined by the values X_p and $(\nabla X)_p$ for arbitrary $p \in M$.

Proof.

The equation $\mathcal{L}_X g \equiv 0$ is linear in X, so the space of Killing fields is a vector space. Therefore, it suffices to show if $X_p = 0$ and $(\nabla X)_p = 0$, then $X \equiv 0$. For arbitrary $q \in M$, let $\gamma \colon [0,1] \to M$ be a geodesic connecting p and q with $\gamma'(0) = v$. Since $J(t) = X(\gamma(t))$ is a Jacobi field, and a direct computation shows

$$(\nabla_{\nu}X)_p=J'(0)$$

Thus $J(t) \equiv 0$, since Jacobi field is determined by two initial values. In particular, $X_q = J(1) = 0$, and since q is arbitrary, one has X=0

Corollary

The dimension of vector space consisting of Killing fields < n(n+1)/2.

Killing field on a complete Riemannian manifold (M, g) is complete.

Proof.

For a Killing field X, we need to show the flow $\varphi_t \colon M \to M$ generated by X is defined for $t \in \mathbb{R}$. Otherwise, we assume φ_t is defined on (a, b). Note that for each $p \in M$, curve $\varphi_t(p)$ is a curve defined on (a, b) having finite constant speed, since φ_t is isometry. Then we have $\varphi_t(p)$ can be extended to the one defined on \mathbb{R} , since M is complete.

$\mathsf{Theorem}$

Let (M,g) be a complete Riemannian manifold and g the space of Killing fields. Then g is isomorphic to the Lie algebra of $G = \operatorname{Iso}(M, g)$.

It's clear $\mathfrak g$ is a Lie algebra since $[\mathcal L_X,\mathcal L_Y]=\mathcal L_{[X,Y]}$. Now let's see it's isomorphic to Lie algebra consisting of Killing field as Lie algebra.

- lacktriangle Given a Killing field X, by Lemma 25, one deduces that the flow $\varphi \colon \mathbb{R} \times M \to M$ generated by X is a one parameter subgroup $\gamma \colon \mathbb{R} \to G$, and $\gamma'(0) \in T_eG$.
- 2 Given $v \in T_eG$, consider the one-parameter subgroup $\gamma(t) = \exp(tv)$: $\mathbb{R} \to G$ which gives a flow by

$$\varphi \colon \mathbb{R} \times M \to M$$
$$(t,p) \mapsto \exp(tv) \cdot p$$

Then the vector field X generated by this flow is a Killing field.

This gives a one to one correspondence between Killing fields and Lie algebra of G, and it's a Lie algebra isomorphism.

Corollary (Cartan decomposition)

Let (M,g) be a complete Riemannian manifold and G = Iso(M,g)with Lie algebra g. The Lie algebra g of G has the following decomposition as vector spaces

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

where

$$\mathfrak{k} = \{ X \in \mathfrak{g} \mid X_p = 0 \}$$

$$\mathfrak{m} = \{ X \in \mathfrak{g} \mid (\nabla X)_p = 0 \}$$

and they satisfy

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k},\quad [\mathfrak{k},\mathfrak{m}]\subseteq\mathfrak{m}$$

The decomposition follows from Corollary 23 and Theorem 26, and it's easy to see

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k}$$

For arbitrary $X \in \mathfrak{k}$, $Y \in \mathfrak{m}$ and $v \in T_pM$, one has

$$\nabla_{v}[X, Y] = \nabla_{v}\nabla_{X}Y - \nabla_{v}\nabla_{Y}X$$

$$= -R(Y, v)X + \nabla_{\nabla_{v}X}Y + R(X, v)Y - \nabla_{\nabla_{v}Y}X$$

$$= 0$$

since
$$X_p = 0$$
 and $(\nabla Y)_p = 0$. This shows $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$.

- Overview
- 2 A quick review of basic facts we need
- Geometric viewpoints of symmetric space
- Algebraic viewpoints of symmetric space A quick review of Killing fields Riemannian symmetric space as a quotient Riemannian symmetric pair Transvection
- 6 Curvature of Riemannian symmetric space
- 6 Classifications and examples

An automorphism σ of G is called an involution if $\sigma^2 = id_G$.

Definition (Cartan decomposition)

Let σ be an involution of G. The eigen-decomposition of g given by $(d\sigma)_e$ is called Cartan decomposition, that is,

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

where

$$\mathfrak{t} = \{ X \in \mathfrak{g} \mid (\mathrm{d}\sigma)_{e}(X) = X \}$$
$$\mathfrak{m} = \{ X \in \mathfrak{g} \mid (\mathrm{d}\sigma)_{e}(X) = -X \}$$

Let $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$ be a Cartan decomposition given by $\sigma.$ Then

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{k},\mathfrak{m}]\subseteq\mathfrak{m},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k}$$

Proof.

It follows from
$$(d\sigma)_e([X,Y]) = [(d\sigma)_e(X), (d\sigma)_e(Y)]$$
, where $X, Y \in \mathfrak{g}$.

Lemma

Suppose (M_1, g_1) and (M_2, g_2) are two Riemannian homogeneous spaces with the same isometry group G. If there exists a G-equivalent diffeomorphism φ such that $(d\varphi)_p$ is an isometry for some $p \in M$, then (M_1, g_1) is isometric to (M_2, g_2) .

Let (M,g) be a Riemannian symmetric space and G be the identity component of lso(M,g). For $p \in M$, K denotes the isotropic group of G_p .

- **1** The mapping $\sigma \colon G \to G$, given by $\sigma(g) = s_p g s_p$ is an involution automorphism of G.
- **2** If G^{σ} is the set of fixed points of σ in G, and $(G^{\sigma})_0$ is the identity component of G^{σ} , then $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$.
- **3** If $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is the Cartan decomposition given by σ , then \mathfrak{k} is the Lie algebra of K.
- **4** There is a left invariant metric on G which is also right invariant under K, such that G/K with the induced metric is isometric to (M,g).

- (1) is clear. For (2). It follows from the following two steps:
- (a) To show $K \subseteq G^{\sigma}$. For any $k \in K$, in order to show $k = s_{\rho}ks_{\rho}$, it suffices to show they and their differentials agree at p since both of them are isometries.
- (b) To see $(G^{\sigma})_0 \subseteq K$. Let $\exp(tX) \subseteq (G^{\sigma})_0$ be a one-parameter subgroup. Since $\sigma(\exp(tX)) = \exp(tX)$, then

$$s_p \exp(tX)s_p(p) = s_p \exp(tX)(p) = \exp(tX)(p)$$

But p is an isolated fixed point of s_p , which implies $\exp(tX)(p) = p$ for all t. This shows the one-parameter subgroup lies in K. Since exponential map of Lie group is a diffeomorphism in a small neighborhood of identity element e and $(G^{\sigma})_0$ can be generated by a neighborhood of e, which implies the whole $(G^{\sigma})_0 \subseteq K$.

For (3). Note that $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$, it suffices to show $\mathfrak{k} \cong \text{Lie } G^{\sigma}$ If $X \in \mathfrak{k}$, then $\gamma_2(t) = \sigma(\exp(tX))$: $\mathbb{R} \to G$ is a one-parameter subgroup. Indeed, note that

$$egin{aligned} \gamma_2(t) \cdot \gamma_2(s) &= s_p \exp(tX) s_p \cdot s_p \exp(sX) s_p \ &= \sigma(\exp(tX + sX)) \ &= \gamma_2(t+s) \end{aligned}$$

Furthermore, $\gamma_2(t) = \sigma(\exp(tX))$ and $\gamma_1(t) = \exp(tX)$ are two one-parameter subgroups of G such that $\gamma_1(0) = \gamma_2(0)$ and $\gamma_2'(0) = (\mathrm{d}\sigma)_e(X) = X = \gamma_1'(0)$. Then $\gamma_1(t) = \gamma_2(t)$, and thus $\exp(tX) \in G^\sigma$ for all $t \in \mathbb{R}$. This shows $\mathfrak{k} \subseteq \mathrm{Lie}\ G^\sigma$, and the converse inclusion is clear, so one has $\mathfrak{k} = \mathrm{Lie}\ G^\sigma$.

For (4). Let $\pi: G \to M$ be the natural projection given by $\pi(g) = gp$. Then for $k \in K$ and $X \in \mathfrak{g}$ one has

$$(d\pi)_{e}(Ad_{k}X) = (d\pi)_{e} \left(\frac{d}{dt}\Big|_{t=0} k \exp(tX)k^{-1}\right)$$

$$= \frac{d}{dt}\Big|_{t=0} \pi(k \exp(tX)k^{-1})$$

$$= \frac{d}{dt}\Big|_{t=0} k \exp(tX)k^{-1} \cdot p$$

$$= \frac{d}{dt}\Big|_{t=0} k \exp(tX) \cdot p$$

$$= k_{*}(d\pi)_{e}(X)$$

By using the equivalent isomorphism $(d\pi)_e|_{\mathfrak{m}} : \mathfrak{m} \to T_p M$, one has an Ad(K)-invariant metric on \mathfrak{m} .

Continuation.

Then we can extend it to an Ad(K)-invariant metric on $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ by choosing arbitrary Ad(K)-invariant metric on \mathfrak{k} such that $\mathfrak{m} \perp \mathfrak{k}$. This shows one has a left-invariant metric on G which is also right invariant with respect to K. Now it suffices to show G/K with the induced metric is isometric to (M,g). For any $gK \in G/K$, consider the following communicative diagram

$$\mathfrak{m} = T_{eK}G/K \xrightarrow{(\mathrm{d}\pi)_e|_{\mathfrak{m}}} T_pM$$

$$\downarrow^{\mathrm{d}L_g} \qquad \qquad \downarrow^{\mathrm{d}L_g}$$

$$T_{gK}G/K \longrightarrow T_{gp}M$$

Since both $(d\pi)_e|_{\mathfrak{m}}$ and (dL_g) are linear isometries, one has $T_{gK}G/K$ is isometric to $T_{gp}M$, and thus G/K with induced metric is isometric to (M, g).

- 1 Overview
- 2 A quick review of basic facts we need
- Geometric viewpoints of symmetric space
- 4 Algebraic viewpoints of symmetric space A quick review of Killing fields Riemannian symmetric space as a quotient Riemannian symmetric pair Transvection
- 6 Curvature of Riemannian symmetric space
- 6 Classifications and examples

In Theorem 32 one can see that if (M,g) is a symmetric space, then it gives a pair of Lie groups (G, K) with an involution σ on Gsuch that

$$(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$$

Then there exists a left-invariant metric on G/K such that G/Kwith this metric is isometric to (M,g). This motivates us an effective way to construct Riemannian symmetric spaces from a pair of Lie groups with certain properties, and such a pair is called a Riemannian symmetric pair. Unless otherwise specified, we assume G is a connected Lie group with Lie algebra \mathfrak{g} .

Definition (Riemannian symmetric pair)

Let K be a compact subgroup of G. The pair (G, K) is called a Riemannian symmetric pair if there exists an involution $\sigma \colon G \to G$ with $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$.

Example

G = SO(n+1) and K = SO(n) is a Riemannian symmetric pair given by

$$\sigma \colon \mathsf{SO}(n+1) \to \mathsf{SO}(n+1)$$

 $a \mapsto sas^{-1}$

where $s = diag\{-1, 1, \dots, 1\}$. Indeed,

$$\mathsf{SO}(n+1)^{\sigma} = \{ a \in \mathsf{SO}(n+1) \mid \mathsf{sa} = \mathsf{as} \} = \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & b \end{pmatrix} \mid b \in \mathsf{O}(n) \right\}$$

which implies $(SO(n+1)^{\sigma})_0 = SO(n) \subseteq SO(n+1)$.

Example

 $G = SL(n, \mathbb{R})$ and K = SO(n) is a Riemannian symmetric pair given by

$$\sigma \colon \mathsf{SL}(n,\mathbb{R}) \to \mathsf{SL}(n,\mathbb{R})$$

$$g \mapsto (g^{-1})^T$$

Indeed.

$$(\mathsf{SL}(n,\mathbb{R}))^{\sigma}=\mathsf{SO}(n)$$

Example

Let K be a compact Lie group and $G = K \times K$. Then (G, K) is a Riemannian symmetric pair given by σ , where $\sigma \colon G \to G$ is given by $(x, y) \mapsto (y, x)$, since

$$G^{\sigma} = \{(a, a) \mid a \in K\} \cong K$$

Lemma

Let (G, K) be a symmetric pair given by σ . Then there is an isomorphism as Lie algebras

$$\mathfrak{k} \cong \operatorname{Lie} K$$

and an isomorphism as vector spaces

$$\mathfrak{m}\cong T_{eK}G/K$$

Proof.

 $\mathfrak{k} \cong \operatorname{Lie} K$ follows from the same as proof of (3) in Theorem 32, and $\mathfrak{m} \cong T_{eK}G/K$ is an immediate consequence.

Corollary

Let $\widetilde{\sigma} \colon G/K \to G/K$ be the automorphism of G/K induced σ . Then $(d\widetilde{\sigma})_{eK} = -\operatorname{id}_{G/K}$.

Proof.

Since $K \subseteq G^{\sigma}$, one has $\sigma \colon K \to K$, and thus $\widetilde{\sigma} \colon G/K \to G/K$ is well-defined. By construction one has $(d\tilde{\sigma})_{eK} = (d\sigma)_e|_{m}$. Then $(d\widetilde{\sigma})_{eK} = -\operatorname{id}_{G/K}$ since $\mathfrak{m} = \{X \in \mathfrak{g} \mid (d\sigma)_e X = -X\}.$

Theorem

Let (G, K) be a Riemannian symmetric pair given by σ . Then there exists a left-invariant metric on G which is also right invariant on K such that the induced metric on G/K making it to be a Riemannian symmetric space.

Proof.

For convenience we use M to denote G/K. Note that a left-invariant metric on G which is also right invariant on K is equivalent to a metric on \mathfrak{g} which is Ad(K)-invariant. Since K is compact, it admits a Ad(K)-invariant metric, and it can be extended to a Ad(K)-invariant metric on g as what we have done in the proof of (4) in Theorem 32. Furthermore, by Corollary 38 one has $(d\widetilde{\sigma})_{eK} = -\operatorname{id}_{M}$.

communicative diagram

Now it suffices to show for any $gK \in M$, $(\mathrm{d}\widetilde{\sigma})_{gK} \colon T_{gK}M \to T_{\sigma(g)K}M$ is an isometry. Note that $\widetilde{\sigma}(ghK) = \sigma(g)\sigma(h)K = \sigma(g)\widetilde{\sigma}(hK)$ holds for all $h \in G$. This shows $\widetilde{\sigma} \circ L_g = L_{\sigma(g)} \circ \widetilde{\sigma}$, where $L_g : M \to M$ is given by $L_g(hK) = ghK$. By taking differential one has the following

$$\begin{array}{ccc} T_{eK}M & \xrightarrow{(\mathrm{d}\widetilde{\sigma})_{eK}} & T_{eK}M \\ & & & \downarrow^{(\mathrm{d}L_g)_{eK}} & & \downarrow^{(\mathrm{d}L_{\sigma(g)})_{eK}} \\ T_{gK}M & \xrightarrow{\mathrm{d}\widetilde{\sigma})_{gK}} & T_{\sigma(g)K}M \end{array}$$

Since $(dL_g)_{eK}$, $(dL_{\sigma(g)})_{eK}$, $(d\widetilde{\sigma})_{eK}$ are isometries, one has $(d\widetilde{\sigma})_{gK}$ is also an isometry as desired.

- 4 Algebraic viewpoints of symmetric space A quick review of Killing fields Transvection

56 / 87

Algebraic viewpoints of symmetric space

Let (M,g) be a Riemannian manifold and g be the Lie algebra of isometry group. Recall in Corollary 27 we have the following decomposition

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

In this section we will give more explicit descriptions for this decomposition in case of Riemannian symmetric space.

Theorem

Let (M,g) be a complete Riemannian manifold with isometry group G. For any $p \in M$, the Lie algebra of the isotropy subgroup G_p is isomorphic to

$$\mathfrak{k} = \{ X \in \mathfrak{g} \mid X_p = 0 \}$$

where \mathfrak{q} is the Lie algebra of G.

Proof.

Let $X \in \mathfrak{g}$ with $X_p = 0$, and $\varphi_t : M \to M$ the flow of X. It suffices to show $\varphi_t(p) = p$ for all $t \in \mathbb{R}$. If we use $\gamma_p(t)$ to denote $\varphi_t(p)$, then for any smooth function $f: M \to \mathbb{R}$ and $s \in \mathbb{R}$, we have

$$\gamma_p'(s)f = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=s} f \circ \gamma_p(t)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} f \circ \gamma_p(t+s)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} f \circ \varphi_s \circ \varphi_t(p)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (f \circ \varphi_s)(\gamma_p(t))$$

$$= \gamma_p'(0)(f \circ \varphi_s)$$

$$= X_p(f \circ \varphi_s) = 0$$

Definition (transvection)

Let (M,g) be a Riemannian symmetric space and γ a geodesic. The transvection along γ is defined as

$$T_t = s_{\gamma(\frac{t}{2})} \circ s_{\gamma(0)}$$

where s_p is the symmetry at point p.

Lemma

Let (M,g) be a Riemannian symmetric space, γ a geodesic and T_t the transvection along γ . Then

- **1** For any $a, t \in \mathbb{R}$, $s_{\gamma(a)}(\gamma(t)) = \gamma(2a t)$.
- 2 T_t translates the geodesic γ , that is $T_t(\gamma(s)) = \gamma(t+s)$.
- 3 $(dT_t)_{\gamma(s)}: T_{\gamma(s)}M \to T_{\gamma(t+s)}M$ is the parallel transport $P_{s,t+s;\gamma}$.
- **4** T_t is one-parameter subgroup of lso(M, g).

Proof.

For (1). It follows from the uniqueness of geodesics with given initial value.

Continuation.

For (2). By (1) one has

$$egin{aligned} T_t(\gamma(s)) &= s_{\gamma(rac{t}{2})} \circ s_{\gamma(0)}(\gamma(s)) \ &= s_{\gamma(rac{t}{2})}(\gamma(-s)) \ &= \gamma(t+s) \end{aligned}$$

For (3). Let X be a parallel vector field along γ . By uniqueness of parallel vector fields with given initial data, we have $(\mathrm{d} s_{\gamma(0)})_{\gamma(s)} X_{\gamma(s)} = -X_{\gamma(-s)}$ for all s, since $(ds_{\gamma(0)})_{\gamma(0)}X_{\gamma(0)} = -X_{\gamma(0)}$. Thus

$$(\mathrm{d}T_t)_{\gamma(s)}X_{\gamma(s)} = (\mathrm{d}s_{\gamma(\frac{t}{2})})_{\gamma(-s)}(-X_{\gamma(-s)})$$
$$= X_{\gamma(t+s)}$$

This shows $(dT_t)_{\gamma(s)} = P_{s,t+s;\gamma}$.

4 D > 4 A > 4 B > 4 B >

Continuation.

For (4). In order to show $T_{t+s} = T_t \circ T_s$, it suffices to check they're same at some point, so do their derivatives, since isometry can be determined by these two values. Note that

$$T_{t+s}(\gamma(0)) = \gamma(t+s)$$

$$= T_t \circ T_s(\gamma(0))$$

$$(dT_{t+s})_{\gamma(0)} = P_{0,t+s;\gamma}$$

$$= P_{s,t+s;\gamma} \circ P_{0,s;\gamma}$$

$$= (dT_t)_{\gamma(s)} \circ (dT_s)_{\gamma(0)}$$

$$= (d(T_t \circ T_s))_{\gamma(0)}$$

This completes the proof.

Let (M,g) be a Riemannian symmetric space. For any point $p \in M$ and any $v \in T_pM$, the infinitesimal generator X of transvections T_t along γ_v is given by

$$X_p = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} T_t(p)$$

This Killing field X is called an infinitesimal transvection.

$\mathsf{Theorem}$

Let (M,g) be a Riemannian symmetric space and X an infinitesimal transvection of transvection T_t along geodesic $\gamma = \exp_{n}(tv)$. Then

$$X_p = v$$
, $(\nabla X)_p = 0$

It's clear $X_p = v$. For any $w \in T_p M$, let c be a curve in M with c(0) = p and c'(0) = w. Then

$$\begin{split} \nabla_{w} X &= \left. \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}s}} X(c(s)) \right|_{s=0} \\ &= \left. \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}s}} \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} T_{t}(c(s)) \right|_{t=s=0} \\ &= \left. \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}s}} T_{t}(c(s)) \right|_{t=s=0} \\ &= \left. \widehat{\nabla}_{\frac{\mathrm{d}}{\mathrm{d}t}} \left((\mathrm{d}T_{t})_{p}(w) \right) \right|_{t=0} \\ &= 0 \end{split}$$

The space of infinitesimal transvection is exactly \mathfrak{m} , and there is an isomorphism between $\mathfrak{m} \cong T_pM$ given by $X \mapsto X_p$.

- Overview
- 2 A quick review of basic facts we need
- 3 Geometric viewpoints of symmetric space
- Algebraic viewpoints of symmetric space
- 5 Curvature of Riemannian symmetric space
- 6 Classifications and examples

 $\mathfrak{m} \cong T_pM$. Then for any $X \in \mathfrak{m}$, one has

Let (M,g) be a Riemannian symmetric space and G = Iso(M,g) with Lie algebra \mathfrak{g} . For any $p \in M$, one has Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where \mathfrak{k} is Lie algebra of isotropy group G_p and

$$B(X,X) \leq 0$$

where B is the Killing form of \mathfrak{g} . Furthermore, the identity holds if and only if X=0.

Proof.

Since a Killing field is determined by X_p and $(\nabla X)_p$, one has elements in \mathfrak{k} is determined by $(\nabla X)_p$, and note that ∇X is a skew-symmetric matrice, so

$$\mathfrak{k}\cong\{(\nabla X)\in\mathfrak{so}(T_pM)\mid X\in\mathfrak{k}\}$$

Bowen Liu

Mathematics Department of Tsinghua University

67 / 87

Continuation.

By using this identification, there is a natural metric on £ given by

$$\langle S_1, S_2 \rangle = -\operatorname{tr}(S_1 S_2)$$

Then one has metric on \mathfrak{g} since there is a metric on \mathfrak{m} obtained from $\mathfrak{m} \cong T_p M$. For any $S \in \mathfrak{k}$, we claim with respect to this metric, $ad_S: \mathfrak{g} \to \mathfrak{g}$ is skew-symmetric. Indeed, for $X_1, X_2 \in \mathfrak{k}$, one has

$$\langle \mathsf{ad}_S \, X_1, X_2 \rangle = -\operatorname{tr}(\mathsf{ad}_S \, X_1 X_2)$$

= $-\operatorname{tr}((SX_1 - X_1 S) X_2)$
= $\operatorname{tr}(X_1 (SX_2 - X_2 S))$
= $-\langle X_1, \mathsf{ad}_S \, X_2 \rangle$

For $Y_1, Y_2 \in \mathfrak{m}$, since $S_p = 0$ and $(\nabla S)_p$ is skew-symmetric, one has

$$\begin{split} \langle \mathsf{ad}_{\mathcal{S}} \ Y_1, \ Y_2 \rangle &= \langle \nabla_{\mathcal{S}} \ Y_1 - \nabla_{Y_1} \mathcal{S}, \ Y_2 \rangle \\ &= -\langle \nabla_{Y_1} \mathcal{S}, \ Y_2 \rangle \\ &= \langle \nabla_{Y_2} \mathcal{S}, \ Y_1 \rangle \\ &= -\langle Y_1, \nabla_{\mathcal{S}} \ Y_2 - \nabla_{Y_2} \mathcal{S} \rangle \\ &= -\langle Y_1, \mathsf{ad}_{\mathcal{S}} \ Y_2 \rangle \end{split}$$

Then one has

$$\begin{split} B(S,S) &= \mathsf{tr}(\mathsf{ad}_S \circ \mathsf{ad}_S) \\ &= \sum \langle \mathsf{ad}_S \circ \mathsf{ad}_S(e_i), e_i \rangle \\ &= - \sum \langle \mathsf{ad}_S(e_i), \mathsf{ad}_S(e_i) \rangle \leq 0 \end{split}$$

Continuation.

Furthermore, if B(S,S)=0, then $ad_S=0$ and for any $X\in\mathfrak{g}$, one has

$$0 = \mathsf{ad}_{S}(X) = [S, X] = \nabla_{S}X - \nabla_{X}S = -\nabla_{X}S$$

since
$$S_p = 0$$
. This implies $(\nabla S)_p = 0$, and thus $S = 0$.

$\mathsf{Theorem}_{\mathsf{l}}$

Let (M,g) be a Riemannian symmetric space and G = Iso(M,g). For any $p \in M$, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ with $\mathfrak{m} \cong T_p M$.

1 For any $X, Y, Z \in \mathfrak{m}$, there holds

$$R(X, Y)Z = -[Z, [Y, X]]$$

Ric(Y, Z) = $-\frac{1}{2}B(Y, Z)$

$$Ric(Y,Z) = -\frac{1}{2}B(Y,Z)$$

2 If $Ric(g) = \lambda g$, then for $X, Y \in \mathfrak{m}$, one has

$$2\lambda R(X,Y,Y,X) = -B([X,Y],[X,Y])$$

Proof.

For (1). For any $X, Y, Z \in \mathfrak{m}$, direct computation shows

$$R(X,Y)Z \stackrel{(a)}{=} R(X,Z)Y - R(Y,Z)X$$

$$\stackrel{(b)}{=} \nabla_{Z}\nabla_{Y}X - \nabla_{\nabla_{Z}Y}X - \nabla_{Z}\nabla_{X}Y + \nabla_{\nabla_{Z}X}Y$$

$$\stackrel{(c)}{=} -\nabla_{Z}[X,Y]$$

$$\stackrel{(d)}{=} -[Z[X,Y]]$$

where

- (a) holds from the first Bianchi identity.
- (b) holds from (2) of Lemma 22.
- (c) holds from $X, Y \in \mathfrak{m}$, and thus $(\nabla X)_p = (\nabla Y)_p = 0$.
- (d) holds from $\nabla_Z[X,Y] \nabla_{[X,Y]}Z = [Z,[X,Y]]$, and $(\nabla Z)_p = 0.$

Bowen Liu

Hence we obtain

$$B(Y,Y)=\operatorname{tr}(\operatorname{ad}_Y\circ\operatorname{ad}_Y|_{\mathfrak{k}})+\operatorname{tr}(\operatorname{ad}_Y\circ\operatorname{ad}_Y|_{\mathfrak{m}})=2\operatorname{tr}(\operatorname{ad}_Y\circ\operatorname{ad}_Y|_{\mathfrak{m}})$$

Since Ricci tensor is trace of curvature tensor, and thus

$$\operatorname{Ric}(Y,Y) = -\operatorname{tr}(\operatorname{ad}_Y \circ \operatorname{ad}_Y|_{\mathfrak{m}}) = -\frac{1}{2}B(Y,Y)$$

Then by using Polarization identity, one has $Ric(Y, Z) = -\frac{1}{2}B(Y, Z).$ For (2). If $Ric(g) = \lambda g$, then

$$\begin{aligned} 2\lambda g(R(X,Y)Y,X) &= -2\lambda g(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= -2\operatorname{Ric}(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) = B(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= -B(\operatorname{ad}_Y X,\operatorname{ad}_Y X) = -B([X,Y],[X,Y]) \end{aligned}$$

Let (M,g) be a Riemannian symmetric space which is an Einstein manifold with Einstein constant λ . Then

- If $\lambda > 0$, then (M, g) has non-negative sectional curvature.
- 2 If $\lambda < 0$, then (M,g) has non-positive sectional curvature.
- **3** If $\lambda = 0$, then (M, g) is flat.

Proof.

By Theorem 47 one has

$$2\lambda R(X, Y, Y, X) = -B([X, Y], [X, Y]) \ge 0$$

since $[X,Y] \in [\mathfrak{m},\mathfrak{m}] \subseteq \mathfrak{m}$ and B is negative definite on \mathfrak{m} . This shows (1) and (2). If $\lambda=0$, one has $B([X,Y],[X,Y])\equiv 0$ for arbitrary X,Y. Then by Lemma 46 one has $[X,Y]\equiv 0$ for arbitrary X,Y, and thus (M,g) is flat.

- 6 Classifications and examples

- 6 Classifications and examples Irreducible symmetric space

Let (M,g) be a Riemannian symmetric space with G = Iso(M,g)and $K = G_p$ for some $p \in M$. If the identity component K_0 acts irreducibly on T_nM , then M is called irreducible. Otherwise M is called reducible.

Lemma

Let B_1 , B_2 be two symmetric bilinear forms on a vector space Vsuch that B_1 is positive definite. If a group K acts irreducibly on V such that B_1 and B_2 are invariant under K, then $B_2 = \lambda B_1$ for some constant λ .

Theorem

The irreducible Riemannian symmetric space is Einstein, and the metric is unique determined up to a scalar.

Proof.

Since isometries preserves the metric and curvature, and Ricci tensor is also a symmetric bilinear form, by Lemma 50 there exists smooth function λ such that

$$Ric(g) = \lambda g$$

Note that Riemannian curvature of Riemannian symmetric space is parallel, so is Ricci curvature. Thus we have λ is a constant. \Box

- 6 Classifications and examples

The classification of Riemannian symmetric space

Let (M,g) be a simply-connected Riemannian symmetric space. Then (M,g) is isometric to

$$(M_1,g_1)\times\cdots\times(M_k,g_k)$$

where (M_i, g_i) are irreducible Riemannian symmetric space for $i=1,\ldots,k$

- 6 Classifications and examples

Examples of Riemannian symmetric space

1 For $X, Y \in \mathfrak{gl}(n, \mathbb{R})$, one has

$$B(X, Y) = 2n\operatorname{tr}(XY) - 2\operatorname{tr}X \cdot \operatorname{tr}Y$$

2 For $X, Y \in \mathfrak{so}(n)$, one has

$$B(X,Y)=(n-2)\operatorname{tr}(X,Y)$$

3 For $X, Y \in \mathfrak{sl}(n, \mathbb{R})$, one has

$$B(X,Y)=2n\operatorname{tr}(XY)$$

4 For $X, Y \in \mathfrak{so}(k, l)$, one has

$$B(X,Y)=(k+l-2)\operatorname{tr}(X,Y)$$

In $\mathbb{R}^{k,l}$ with $k \geq 2, l \geq 1$, consider the following quadratic form

$$v^{t}I_{k,l}w = v^{t}\begin{pmatrix} I_{k} & 0\\ 0 & -I_{l} \end{pmatrix}w = \sum_{i=1}^{k} v_{i}w_{i} - \sum_{j=k+1}^{k+l} v_{j}w_{j}$$

The group of linear transformation X that preserves this quadratic form is denoted by O(k, l), that is $XI_{k,l}X^t = I_{k,l}$, and SO(k, l) are those with positive determinant. The Lie algebra $\mathfrak{so}(k, l)$ of SO(k, I) is

$$\mathfrak{so}(k, l)$$

$$= \{ X = \begin{pmatrix} X_1 & B \\ B^t & X_2 \end{pmatrix} \in \mathfrak{gl}(k + l, \mathbb{R}) \mid X_1 \in \mathfrak{so}(k), X_2 \in \mathfrak{so}(l), B \in M_{k \times l} \}$$

Example (Continuation)

Now consider set consisting of those oriented k-dimensional subspaces of $\mathbb{R}^{k,l}$ on which quadratic form $I_{k,l}$ are positive definite. This gives a manifold which is called the hyperbolic Grassmannian $M = \widehat{Gr}(k, \mathbb{R}^{k,l})$. It's clear G = O(k, l) acting transitively on M with isotropy group $G_n = SO(k) \times O(l)$. Then we have the decomposition of Lie algebra \mathfrak{g} of G as follows

$$\mathfrak{so}(k,l)\cong\mathfrak{so}(k)\oplus\mathfrak{so}(l)\oplus\mathfrak{m}$$

If we give the following metric on $\mathfrak{m} \cong T_n M$

$$\langle X, Y \rangle = \operatorname{tr}(XY) = \frac{1}{k+l-2}B(X, Y)$$

where B is the Killing form of $\mathfrak{so}(k, l)$.

Then the corresponding metric on M has the curvature formulas

$$Ric(g) = -\frac{B}{2} = -\frac{k+l-2}{2}g$$

$$R(X, Y, Y, X) = \frac{B([X, Y], [X, Y])}{k+l-2} \le 0$$

Hence the hyperbolic Grassmannian has non-positive curvatures.

Example

Let $G = SL(n, \mathbb{R}), K = SO(n)$ with Lie algebras g and \mathfrak{k} . Consider $M = SL(n, \mathbb{R})/SO(n)$, one has

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

If we give the following metric on $\mathfrak{m} \cong T_{\mathfrak{p}}M$

$$\langle X, Y \rangle = \operatorname{tr}(XY) = \frac{1}{2n}B(X, Y)$$

where B is the Killing form of $\mathfrak{so}(k, l)$. Then the corresponding metric on M has the curvature formulas

$$Ric(g) = -\frac{B}{2} = -ng$$

$$R(X, Y, Y, X) = \frac{B([X, Y], [X, Y])}{2n} \le 0$$