Assignment 4 Question 5

150050020, 150050061, 150050054

October 9, 2017

To prove:

The direction f perpendicular to e for which f^tCf is maximized, is the eigenvector of C with the second highest eigenvalue assuming that all non-zero eigenvalues of C are distinct and that rank(C) > 2

Proof

We have to maximise f^tCf given the constraints that f is perpendicular to e and f is a unit vector and $e^tCe = \lambda_1$

We use the method of Lagrange multipliers to do so, as in the proof in class, with two constraints - $f^t f - 1 = 0$ and $f^t e = 0$

$$J(\mathbf{f}) = \mathbf{f}^{\mathbf{t}} \mathbf{C} \mathbf{f} - \lambda (\mathbf{f}^{\mathbf{t}} \mathbf{f} - 1) - \delta (\mathbf{f}^{\mathbf{t}} \mathbf{e})$$

Taking derivative of J(f) with respect to f^t and setting it to zero, we get

$$2Cf - 2\lambda f - \delta e = 0$$

Left multiplying both sides by e, we get

$$2e^tCf - 2\lambda e^tf - \delta e^te = 0$$

We have $Ce = \lambda_1 e$ or taking transpose both sides, $e^t C^t = \lambda_1 e^t$

Now, as C is a covariance matrix, hence it is symmetric as covariance of x_i and x_j is the same as covariance of x_j and x_i . Thus we have $e^tC = e^tC^t = \lambda_1e^t$.

Right Multiplying with f we get $e^t C f = \lambda_1 e^t f = 0$

Thus as $e^t f = 0$ (f and e are perpendicular) and $e^t C f = 0$, hence $\delta = 0$ and so

$$Cf - \lambda f = 0$$

$$f^t C f = \lambda$$

. To maximise f^tCf we have to choose the largest λ . As we have assumed that rank(C) > 2 and as e is the eigenvector corresponding to λ_1 hence the nest largest value of λ can be λ_2 (the second largest eigenvalue).

Thus f is the eigenvector corresponding to λ_2