Analysis II Homework 4

Nutan Nepal

March 13, 2023

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

1. Let $A \subseteq \mathbb{R}$ s.t. $m^*(A) = 0$. Show that for any $B \subseteq \mathbb{R}$, we have that $m^*(B) = m^*(A \cup B) = m^*(B \setminus A)$.

Since A has outer measure 0, it is measurable. Then we have $m^*(B) = m^*(B \cap A) + m^*(B \cap A^c)$. Since $m^*(A \cap B) \leq m^*(A) = 0$, we have $m^*(B) = m^*(B \cap A^c) = m^*(B \setminus A)$. Furthermore, $m^*(A \cup B) \leq m^*(A) + m^*(B) = m^*(B)$ and $m^*(B) = m^*(B \setminus A) \leq m^*(A \cup B)$. Thus, we have

$$m^*(B) = m^*(A \cup B) = m^*(B \setminus A).$$

2. Let $A \subseteq \mathbb{R}$ non-measurable. Let $E \in \mathcal{L}(\mathbb{R})$ s.t. $A \subseteq E$. Prove that $m^*(E \setminus A) > 0$.

If we assume that $m^*(E \setminus A) = 0$, then we see that $E \setminus A$ is a measurable set and since E is measurable and the difference is measurable, A must also be measurable. We have a contradiction and thus we must have $m^*(E \setminus A) > 0$.

3. A set function $\mu^*: \mathcal{P}(X) \to [0, \infty]$ is called an outer measure if $\mu^*(\emptyset) = 0$ and μ^* is countably monotone, i.e., if $E \subseteq \bigcup_{1}^{\infty} E_n$, then $\mu^*(E) \le \sum_{1}^{\infty} \mu^*(E_n)$.

We say that a subset $E \subset X$ is measurable if $\forall T \subset X$, we have

$$\mu^*(T) = \mu^*(T \cap E) + \mu^*(T \cap E^c).$$

Let \mathcal{M} be the collection of measurable sets in X. Show that \mathcal{M} is a σ -algebra.

Define $\mu = \mu^* \mid_{\mathcal{M}}$. Show that (X, \mathcal{M}, μ) is a complete measure space.

 \mathcal{M} is a σ -algebra:

(a) ...

 μ is a complete measure: We only need to show that if a set E has outer measure 0, then it is measurable. We have, for any set T, since $T \supset T \cap E^c$ and $\mu^*(T \cap E) \leq \mu^*(E) = 0$,

$$\mu^*(T) \ge \mu^*(T \cap E^c) = \mu^*(T \cap E^c) + \mu^*(T \cap E).$$

The converse inequality holds by the property of outer measure and thus we see that E is measurable.

4. Let S be a collection of subsets of X. Let μ be a set function $\mu: S \to [0, \infty]$, with $\mu(\emptyset) = 0$. Define $\bar{\mu}(\emptyset) = 0$, and for all $E \subset X$, $E \neq \emptyset$, define

$$\bar{\mu}(E) = \inf \left\{ \sum_{j} \mu(E_j) \mid E \subseteq \bigcup_{j} E_j, E_j \in S \right\}$$

Show that $\bar{\mu}$ is an outer measure on X (it is called the outer measure induced by μ).

We only need to show that $\bar{\mu}$ is countably subadditive. For $F \subseteq \bigcup_i F_i$, we have $\bar{\mu}(F_i) = \inf \left\{ \sum_j \mu(E_j^i) | F_i \subseteq \bigcup_i E_j^i, E_j^i \in S \right\}$. Then the set $\bigcup_{i,j} E_j^i$ also covers F. Then we have,

$$\bar{\mu}(F) = \inf \sum_{i,j} \mu(E_j^i) = \sum_j \bar{\mu}(F_j).$$

Hence $\bar{\mu}$ is an outer measure.

5. Let $E \in \mathcal{L}(\mathbb{R})$. Show that $E + \lambda = \{e + \lambda \mid e \in E\} \in \mathcal{L}(\mathbb{R}) \text{ and } m(E) = m(E + \lambda)$.

We first note that the outer measure is translation invariant. Now, for any set $A \subset \mathbb{R}$, we have $m^*(A) = m^*(A-\lambda) = m^*([A-\lambda]\cap E) + m^*([A-\lambda]\cap E^c)$ since E is a measurable set. We have $[A-\lambda]\cap E = \{x: x\in A-\lambda, x\in E\} = \{y+\lambda: y\in A, y\in E+\lambda\} = A\cap [E+\lambda]$ and similarly for $[A-\lambda]\cap E^c$, $[A-\lambda]\cap E^c = \{x: x\in A-\lambda, x\in E^c\} = \{y+\lambda: y\in A, y\in []E+\lambda]^c\} = A\cap [E+\lambda]^c$. Thus, we have $m^*(A) = m^*(A-\lambda) = m^*(A\cap [E+\lambda]) + m^*(A\cap [E+\lambda]^c)$. Hence $E+\lambda$ is measurable. Since this set is measurable, the measure is equal to the outer measure which is translation invariant and thus the Lebesgue measure is also translation invariant here.

6. Let $E \in \mathcal{L}(\mathbb{R})$ and let $\varepsilon > 0$. Show that there exist an open set G and a closed set F with $F \subset E \subset G$ so that $m(G \setminus F) < \varepsilon$. Then show that every Lebesgue measurable set is a union of a Borel set and a set of Lebesgue measure 0.

Since E and E^c are measurable, there are countable collection of open intervals $\{I_k\}$ and $\{J_k\}$ that cover E and E^c respectively. Then there exist the open set $G = \bigcup_k I_k$ and the closed set $F = (\bigcup_k J_k)^c$ such that $m^*(G - E) < \varepsilon/2$ and $m^*(E - F) < \varepsilon/2$ for some $\varepsilon > 0$. Since all these sets are measurable, we have $m(G \setminus F) < \varepsilon$.

7. Royden p. 43/ Problem 19 Let E have finite outer measure. Show that if E is not measurable, then there is an open set O containing E that has finite outer measure and for which

$$m^*(O \setminus E) > m^*(O) - m^*(E).$$

For some $O \supset E$, we have $O = (O \setminus E) \cup E$ and thus $m^*(O) \le m^*(O \setminus E) + m^*(E)$. But E is non-measurable and so we have strict inequality for at least one open set O containing E. We subtract $m^*(E)$ from both sides (as the outer measure is finite) to get the required inequality.

8. Royden p. 47/ Problem 26 Let $\{E_k\}_k$ be a countable disjoint collection of measurable sets. Prove that for any set A,

$$m^*\left(A\cap\bigcup_{k=1}^\infty E_k\right)=\sum_{k=1}^\infty m^*(A\cap E_k).$$

We see that $A \cap \bigcup_{k=1}^{\infty} E_k = \bigcup_k A \cap E_k$ and $\{A \cap E_k\}_k$ is a countable collection of disjoint sets. Clearly, $m^* (A \cap \bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^* (A \cap E_k)$ by the countably subadditivity of the outer measure. Conversely, we have

$$m^*\left(A\cap\bigcup_{k=1}^{\infty}E_k\right)\geq m^*\left(A\cap\bigcup_{k=1}^nE_k\right)=\sum_{k=1}^nm^*\left(A\cap E_k\right)$$

for all n. The last equality follows from proposition 6 in Royden by induction on n. Thus, since the inequality is true for all n we have $m^*(A \cap \bigcup_{k=1}^{\infty} E_k) \geq \sum_{k=1}^{\infty} m^*(A \cap E_k)$ and thus we obtain the required equality.

9. Let $0 < \varepsilon < 1$. Show how to construct an open set in [0,1] which is dense in [0,1] and which has Lebesgue measure ε .

We take the countable sequence (a_n) of rational numbers in $I_1 = [0, 1]$ and choose a subsequence (b_k) as follows: Take b_1 such that $(b_1 - \varepsilon/2^2, b_1 + \varepsilon/2^2) \subset I_1$. Now we consider $I_2 = I_1 \setminus (b_1 - \varepsilon/2^2, b_1 + \varepsilon/2^2)$ and choose b_2 such that $(b_2 - \varepsilon/2^3, b_2 + \varepsilon/2^3) \subset I_2$ and now we take $I_3 = I_2 \setminus (b_2 - \varepsilon/2^3, b_2 + \varepsilon/2^3)$ so on. Thus we take b_k such that $(b_k - \varepsilon/2^{k+1}, b_k + \varepsilon/2^{k+1}) \subset I_k$. Now we consider all the sets $J_k = I_{k+1} \setminus I_k$. This construction is possible since the total length of the intervals is just ε which is less than 1. Thus we take the set $(\mathbb{Q} \cup \mathbb{Q} \cup \mathbb{Q} \cup \mathbb{Q}) \cap I_1$. The measure of the collection is clearly ε since J_k are disjoint and countable and $\mathbb{Q} \cap I$ has measure 0.

- 10. With the same notation that we used in class for the Cantor set C, let $O_k = [0,1] \setminus C_k$. Define $O = \bigcup_{1}^{\infty} O_k$ (i.e. $[0,1] = C \cup O$). Note that for each k, O_k is a union of $2^k 1$ open intervals. Define a function ϕ on [0,1] in the following way:
 - On each O_k , ϕ takes the values $\frac{1}{2^k}$, $\frac{2}{2^k}$, $\frac{3}{2^k}$, ..., $\frac{2^k-1}{2^k}$ (i.e. on the 1st subinterval of O_k , it takes the value $\frac{1}{2^k}$, and so on...)
 - On C: $\phi(0) = 0$ and $\phi(x) = \sup{\{\phi(t) \mid t \in O \cap [0, x)\}}$ if $x \in C \setminus \{0\}$.

 ϕ is called the Cantor-Lebesgue function. Show that ϕ is an increasing continuous function that maps [0,1] into [0,1]. Moreover, its derivative exists on the open set O, $\phi' = 0$ on O, and M(O) = 1.

We note that, for each nth subinterval of O_k it becomes the 2nth subinterval of O_{k+1} . Then for each x in this interval, we have $\phi(x) = n/2^k = 2n/2^{k+1}$. Thus ϕ is constant on each open subintervals of O_k and and it is continuous there. phi is also increasing on O and because it is defined in terms of supremum in the interval [0, x), it is increasing on [0, 1]. If x is not in any subintervals of any O_k then, we consider the nth and (n+1)th subintervals of O_k and note that $|\phi(y) - \phi(z)| < 1/2^k$ for all y and z in a sufficiently small neighborhood of x. Thus ϕ is indeed continuous. We have $\phi(0) = 0$ and $\phi(1) = 1$ for all O_k and it is continuous and so ϕ maps [0, 1] to itself.

For each subintervals of O_k , the function is constant and thus the derivative exists and equals 0 on each subintervals. So the derivative exists on O and since M(C) = 0 we have M(O) = 1.