ARES : Plan du cours 4/5

- Rappels
- Intégration TCP/IP
- Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie
 - ullet Routage Interne : OSPF

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Routage externe : BGP

UPMC

Architecture des Réseaux (ARES) 4/5 : Réseaux

La couche réseau Adressage et contrôle IPv⁴ Routage

Couche Réseau

La **Couche Réseau** achemine les paquets de la source vers les destinataires en effectuant des sauts entre les différents **nœuds intermédaires**

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Version 6.2

• de bout-en-bout (end-to-end)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

- connaissance de la topologie
- calcul du chemin (routage)
- adressage virtuel
- abstraction des technologies sous-jacentes
 - encapsulation sur chaque technologie
 - fragmentation
 - conversion d'adresses

UPMC

La couche réseau Adressage et contrôle IPv4

Rappels
Intégration TCP/IP
Structure du paguet IPv

ARES: Plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie
 - Routage Interne : OSPF
 - Routage externe : BGF

Couche Réseaux : OSI

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv4

Couche Réseau : Encapsulation

La couche réseau fait abstraction des technologies sous-jacentes

- les données doivent pouvoir circuler de réseaux en réseaux
- les couches supérieures ne doivent faire aucune hypothèse sur les couches basses

sera approfondie dans les cours sur les Architectures supports

Couche Réseau : approche circuit virtuel ou datagramme

pictures from Tanenbaum A. S. Computer Networks 3rd editio

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARFS) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Rappels
Intégration TCP/IP
Structure du paguet IP

Couche Réseau : Fragmentation

pictures from TANENBAUM A. S. Computer Networks 3rd editionome

La couche réseau Adressage et contrôle IPv4 Routage

Intégration TCP/IP
Structure du paquet IPv4

Couche Réseau : Adressage

La couche réseau définit un **adressage virtuel** valide sur tous les réseaux

- identification unique d'un équipement
- masquage des mécanismes d'adressages spécifiques à une technologie

sera aussi approfondi dans les cours sur les **Architectures** supports

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paguet IPv4

ARES: Plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie
 - Routage Interne : OSPF
 - Routage externe : BGP

Couche Réseau : Routage

Calcul du chemin

- initial (circuits virtuels)
- à chaque paquet (sans mémoire)

Décisions de routage basée :

- table de routage
 - statique
 - dynamique
 - algorithmes de routage
 - protocoles de routage...
- sera approfondi dans la suite du chapitre

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 · Réseau

La couche réseau Adressage et contrôle IPv4

Rappels Intégration TCP/IP Structure du paguet IP

Couche Réseaux : TCP/IP

■ IP est l'interface universelle

Service en mode non connecté à remise non garantie (best effort)

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Routage

IPv4 : Structure

-		32 bits (4 octets) —			
Ver	Hlen	TOS	Packet Length] 1		
	lden	tifier	Frag. offset	20 octets)		
Т	TL	Header checksum	min 5 lignes (min 20 octets)			
IP source address						
	IP destination address					
Options						
Segment / datagram / (transport data)						

ARES: Plan du cours 4/5

- 1 La couche réseau

 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

IPv4 : Version

— 32 bits (4 octets) — →								
Ver HI	len	TOS	Packet Length					
lo	den	tifier	Frag. offset	min 5 lignes (min 20 octets)				
TTL		Protocol	Header checksum					
	IP source address							
IP destination address								
Options								

- 4 bits
- IP actuel : version 4
- IP next génération : version 6
 - w voir l'U.E. ING

Rappels
Intégration TCP/IP
Structure du paquet IPv4

IPv4 : Longueur de l'entête

— 32 bits (4 octets) — >								
Ver	Ver Hlen TOS Packet Length							
	Iden	Frag. offset	min 5 lignes (min 20 octets)					
Т	ΓL	Protocol	Header checksum					
	IP source address							
IP destination address								
Options								

- 4 bits (valeur 15 max)
 - indique le nombre de lignes de 32 bits dans l'entête IP
 - nécessaire car le champ option est de longueur variable (20 à 60 octets)
 - valeur de 5 (pas d'options)
 à 15 (10 lignes d'options,
 soit 40 octets)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv4

IPv4: Taille du paquet

- 16 bits (64 Koctets maximum)
 - taille totale du paquet avec entête
 - exprimé en octets
 - le réseau support doit accepter un MTU^a > 576 octets^b

 a MTU : Maximum Transmission Unit b 576 octets = 512 de données applicative + 64 de surcoût protocolaires (entêtes IP et transport)

La couche réseau Adressage et contrôle IPv4 Routage

Intégration TCP/IP
Structure du paquet IPv4

IPv4: TOS

Type Of Service (8 bits):

- 3 bits de priorité (precedence)
- 000 : Routine
 - 001 : Priority
 - 010 : Immediate
 - 011 : Flash
 - 100 : Flash override
 - 110 : Internetwork control
 - 111 : Network control
- 3 bits de service
 - Delay
 - Throughput
 - Reliability
 - (Cost)

non utilisé... voir l'U.E. ING (DiffServ Byte)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv

IPv4: Identificateur

- 16 bits (boucle tous les 64 Kpaquets)
- défini de manière unique pour chaque paquet
- pour réassembler les fragments d'un même paquet
- habituellement, incrément d'un compteur pour chaque paquet successif

La couche réseau
Adressage et contrôle IPv4
Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv4

IPv4 : Fragmentation

Ver Hlen TOS Packet Length Identifier Frag. offset TTL Protocol Header checksum IP source address IP destination address Options

Fragmentation non transparente

- 1 bit réservé
- 1 bit DF : Don't fragment (=1 interdit la fragmentation)
- 1 bit MF : More fragment (=0 pour le dernier fragment)
- 13 bits fragment offset en octets/8 (shift 3)

exemples:

0x0000 paquet entier (offset=0)
0x2000 premier fragment (offset=0)
0x20A0 fragment central (offset=1280)
0x00B0 dernier fragment (offset=1408)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv4

IPv4 : Temps de vie

Time To Live

- 8 bits
 - unité initiale : seconde
 - valeur maximum fixé par l'émetteur (255, 128, 64...)
 - décrément dans chaque routeur
 - minimum 1 par routeur
 - m nombre de sauts
 - max 255 secondes ou sauts
 - évite les boucles

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv4

IPv4 : Fragmentation

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Rappels
Intégration TCP/IP
Structure du paguet IPv

IPv4 : Protocole transporté

 démultiplexage vers les protocoles de la couche supérieure :

Unix> cat /etc/protocols 1 # internet control message protocol # gateway-gateway protocol # IP encapsulated in IP # ST datagram mode # transmission control protocol # exterior gateway protocol 17 # user datagram protocol 27 # "reliable datagram" protocol rdp iso-tp4 29 # ISO Transport Protocol class 4 36 # Xpress Tranfer Protocol 45 # Inter-Domain Routing Protocol 46 # Reservation Protocol 47 # General Routing Encapsulation 89 # Open Shortest Path First IGP...

8 bits

IPv4 : Contrôle d'erreur sur l'entête

Ver	Hlen	TOS	Packet Length				
Identifier			OM	Frag. offset			
Т	ΓL	Protocol	Header checksum				
		IP source	ad	eader checksum dress			
	IP destination address						
		Ont					
		Opt	ons				

- 16 bits
- idem UDP/TCP mais que sur l'entête
- émetteur :

•
$$checksum^a = \overline{\sum mot_{16bits}}$$

- récepteur :
 - ullet recalcul de $\sum mot_{16 \mathrm{bits}}$
 - = 0 : pas d'erreur détectée toujours possible...
 - ≠ 0 : erreur (destruction silencieuse)

^aSomme binaire sur 16 bits avec report de la retenue débordante ajoutée au bit de poid faible

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels
Intégration TCP/IP
Structure du paquet IPv4

IPv4 : Adresse destination

- adresse IP 32 bits
- utilisée pour le routage
 - indique le réseau (ou l'agrégation de réseau) du destinataire
 - identifie l'interface du destinataire dans son réseau

IPv4: Adresse source

- adresse IP 32 bits
- identifie l'émetteur du paquet
- permet de retourner un message à l'émetteur (ICMP, UDP...)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage

Rappels Intégration TCP/IP Structure du paquet IP

IPv4: Options

32 bits (4 octets)						
Ver	Hlen	TOS	Packet Length			
	Iden	tifier	Frag. offset			
Т	ΓL	Protocol	Header checksum			
	IP source address					
IP destination address						
Options						

- système TLV identique à TCP
- analysées dans chaque routeur
- exemple :
 - enregistrement de la route
 - routage à la source strict
 - routage à la source relâché
 - estampilles temporelles
 - sécurité
 - ...
- 0 à 40 octets (alignés sur 32 bits)
- A éviter!

ARES: Plan du cours 4/5

- 1 La couche réseau

 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

Adressage : Classes

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Adressage: principe

- 2 parties de taille variable
- identifiants du réseau (netId) et de l'hôte (hostId) dans celui-ci :

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

Adressage: Masques

Application de masques binaires

classe	masque binaire	netmask	prefixe
Α	111111110000000000000000000000000000000	255.0.0.0	/8
В	111111111111111110000000000000000000000	255.255.0.0	/16
С	111111111111111111111111100000000	255.255.255.0	/24

Extraction du netId								
	132.227.	60.1	.35			netId.h	ost	Ιd
&&	255.255.	0.	0		&&	netmask		
	132.227.	0.	0			netId.	0.	0

Extrac	ction o	lu hostId		
	132.2	27. 60.135		netId.hostId
&&	0.	0.255.255	&&	!netmask
		60.135		hostId

Adressage : Adresses particulières

Adresses particulières :

- pour chaque réseau (netId), 2 adresses de réservées :
 - netId.000....000 identification de ce réseau
 - netId.111....111

 → adresse de diffusion de ce réseau
- autres :
 - 000....000 **→** adresse source inconnue
 - 111....111 → adresse de diffusion locale
 - 127.x.y.z adresse de rebouclage logiciel (loopback)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Adressage CIDR Messages de contrôle

Adressage: Subneting (2)

UPMC

Adressage : Subneting (1)

Taille de l'identifiant de réseau (netId) initiale :

- 132.77.0.0 /16 (notation par **préfixe**)
- 132.77.0.0 netmask 255.255.0.0 (notation par masque)

Subdivision possible:

- 132.77.12.0 /22
- 132.77.12.0 netmask 255.255.252.0

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Adressage CIDR Messages de contro Mécanismes associ

Adressage : Subneting (3)

Adressage et contrôle IPv4

Adressage : affectation

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

Routage: Longest Préfix Match

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
20.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	if1
30.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	if2
40.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	if3
30.3.0.0	20.1.2.3	255.255.0.0	UG	0	0	0	if1
30.1.2.3	20.1.0.1	255.255.255.255	UGH	0	0	0	if1
60.126.6.0	30.0.0.1	255.255.255.0	UG	0	0	0	if2uamc
default	30.0.0.1	0.0.0.0	UG	0	0	0	if2 SORBONNE UNIVERSITÉS

IPv4 : Logique de routage

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.33.182.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
10.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	atm0
154.18.2.0	0.0.0.0	255.255.255.0	U	0	0	0	eth1
132.77.0.0	154.18.2.254	255.255.0.0	UG	0	0	0	eth1
default	192.33.182.254	0.0.0.0	UG	0	0	oUr	ethc

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

Adressage sans classe

L'attribution des adresses IP avec classe est inefficace

- adresses allouées par blocs de 256, 65K ou 16M
 - les sous-réseaux permettent une meilleure gestion
- un adressage sans classe augmente la souplesse dans l'attribution des adresses :
 - les adresses :
 - 192.77.16.0/24
 - 192.77.17.0/24
 - 192.77.18.0/24
 - 192.77.19.0/24
 - peuvent être regroupées en :
 - notation par préfixe : 192.77.16.0/22
 - notation par masque :

192.77.16.0 netmask 255.255.252.0

La couche réseau Adressage et contrôle IPv4

Adressage: CIDR (Classless InterDomain Routing)

- permet d'agréger des blocs d'adresses contigües (et à préfixe identique)
- permet aux routeurs de maintenir une seule entrée de table de routage
- utilisé initialement par les ISP pour grouper des adresses de classe C
 - le préfixe réseau par défaut pour la classe C est /24
 - les valeurs de préfixes réseau /23, /22, /21, etc. décrivent des agrégations d'adresses de classe C
 - 197.88.0.0/16 agrège 256 adresses de classe C
- actuellement utilisé pour toutes tailles de bloc d'adresses possible
 - dans tout l'espace d'adressage des ex-classes A, B et C
 - 81.152.12.0/22

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4

Adressage : découpage des blocs CIDR

Les blocs d'adresses CIDR se divisent en sous-bloc selon le principe du découpage en sous-réseau (subneting)

UPMC

Adressage: Calcul CIDR

Un bloc CIDR est donc l'agrégation d'un ensemble d'adresses

- bits réseau (netId) d'un bloc CIDR correspondent aux N bits les plus à gauche (/N définit le masque réseau du bloc CIDR)
- bits hôte (hostId) du bloc CIDR correspondent aux 32 N bits restants
- ensemble des adresses attribuables dans un bloc CIDR :

• premier hôte : hostId = 000...0001 • dernier hôte : hostId = 111...1110

• adresse de diffusion : hostId = 111...1111

exemple :

Bloc CIDR -> 192.77.20.0/22 @ premier hôte : 192.77.20.1

@ dernier hôte : 192.77.23.254 @ de diffusion : 192.77.23.255

uzmc

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4

Adressage : Affectation

La couche réseau Adressage et contrôle IPv4

IPv4: Adresses privées

Adressage public

tout hôte connecté à l'Internet doit avoir une adresse unique valide

Privé

pour un usage de TCP/IP déconnecté de l'Internet

- gestion autonome d'un plan d'adressage (adresses uniques)
- utilisation de plages d'adresses spécifiques recommandée :
 - adresses non routées (adresses privées) :

10.0.0.0/8 (1 ex-classe A)

172.16.0.0/12 (16 ex-classe B)

192.168.0.0/16 (256 ex-classes C)

169.254.0.0/16 (link local block pour l'auto-configuration)

- utilisable dans chaque internet privé
- même en cas de connexion à l'Internet, trafic non relayé
- communication vers l'Internet possibile (proxy, NAT...)

nc

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseaux

La couche réseau Adressage et contrôle IPv4

IPv4: NAT, DNAT et NAPT

Plusieurs approches de la conversion d'adresses :

NAT statique : correspondance fixe d'adresses

NAT dynamique: correspondance dynamique d'adresses

table d'adresses dynamique :

adresse privée	adresse publique
10.0.0.3	192.33.182.117
10.0.0.4	192.33.182.118

NAPT (NAT overload): correspondance dynamique vers une adresse (ou plusieurs adresses) avec surcharge

ports + table dynamique (pour chaque protocole) :

proto	adr. privée	port privée	adr. publique	port public	
TCP	10.0.0.3	1027	192.33.182.117	1027	
TCP	10.0.0.4	1027	192.33.182.117	1028	
UDP	10.0.0.4	31765	192.33.182.117	31765	
				1001	ORBONNE UNIVERSITÉS

IPv4: NAT (Network Address Translation)

pictures from Tanenbaum A. S. Computer Networks 4rd edition

UZMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4

IPv4: Mécanismes NAPT

Où sont modifiée les adresses?

au niveau de la carte d'interface :

NAT en entrée processus de routage NAT en sortie

Modifications annexes:

- le checksum des entêtes doit être recalculé
 - **NAT** IP, TCP et UDP (adresse + pseudo-header)
 - **NAPT** IP, TCP et UDP (adresse + pseudo-header + port)
- les adresses et ports paramètres de protocoles applicatifs doivent être aussi modifiées (commande PORT de FTP)
- les messages ICMP sont analysés

IPv4: NAT et IETF (RFC 1631)

- NAPT fortement utilisé actuellement.
 - entreprises (flexibilité)
 - fournisseurs de services (mangue d'adresses)
 - particuliers (n'ont qu'une adresse)
- pose ggs problèmes
 - architecturaux :
 - les ports doivent identifier des processus et non des machines
 - modification de paramètres de la couche transport par le
 - principe de bout-en-bout : 2 hôtes doivent communiquer directement
 - sécuritaires : incompatible avec les mécanismes
 - d'authentification
 - techniques : comment "entrer" dans le réseau translaté
- solutions
 - court terme conversions statiques, serveurs intermédaires

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

IPv4: ICMP (Internet Control Message Protocol, RFC792)

Encapsulé dans un paquet IP (mais appartient à la couche 3)

• test et diagnostique du réseau :

ICMP Type	Code	Description
0	0	<i>⇔echo reply</i>
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	6	destination network unknown
3	7	destination host unknown
4	0	source quench
8	0	<i>→echo request</i>
9	0	router advertisement
10	0	router discovery
11	0	TTL expired
11	1	reassembly time exeeded
12	0	IP header bad

ARES: Plan du cours 4/5

- 1 La couche réseau

 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4

ICMP: ECHO

Type	Code	Checksum	Identifier	Seq. Num.	Data
8 (Echo Request)	0				
0 (Echo Response)	0				
1 octet	1	2	2	2	

Teste l'accessibilité d'un équipement

- utilisé par la commande ping :
 - indique la connectivité et la disponibilité d'IP chez le destinataire
 - plusieurs messages permettent d'estimer le RTT et le taux de perte

La couche réseau Adressage et contrôle IPv4

ICMP: Destination inaccessible

ĺ	Туре	Code	Checksum	Unused	Data
	3	0 (Net Unreachable)			IP Header
		1 (Host Unreachable)			+ 64 bits
		2 (Protocol Unreachable)			
		3 (Port Unreachable)			
ı	1 octet	1	4	2	(IHL * 4) + 8

Messages émis lorsque la destination n'est pas accessible.

- l'entête IP et une partie de la couche transport sont retournés
 - @ source = créateur du message ICMP
 - @ destination = @ source de l'émetteur du paquet en cause

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4

ICMP : Autres messages

- Source Quench (Type 4)
 - indique une congestion à la source
 - pas de signalisation de fin de congestion
- Redirection (Type 5)
 - indique si une meilleure route est disponible
 - configuration minimale des hôtes
- autres messages principalement pour l'autoconfiguration

ICMP: Timeout

Type	Code	Checksum	Unused	Data
11	0 (Time To Live Exceeded)			IP Header
	1 (Frag. Reass. Time Exceeded)			+ 64 bits
1 octet	1	4	2	(IHL * 4) + 8

Messages émis lorsque le temps de vie ou de réassemblage est dépassé.

- l'entête IP et une partie de la couche transport sont retournés
 - @ source = créateur du message ICMP
 - @ destination = @ source de l'émetteur du paquet en cause
- utilisé par la commande traceroute

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4

ARES: Plan du cours 4/5

- 1 La couche réseau

 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage

Adressage CIDR
Messages de contrôle
Mécanismes associés

IPv4 : RARP (*Reverse Adresse Résolution Protocol*, RFC 903)

Inverse du protocole ARP (réseaux à diffusion)

- obtention d'une @ IP à partir de @ MAC au démarrage
 - hôtes sans disques (terminaux X, imprimantes...)
 - hôtes mobiles (portable changé de réseau...)
- utilisation d'un serveur (rarpd)
 - mise en correspondance de /etc/ethers et de /etc/hosts
- format des trames identique à ARP
 - type Ethernet: 0x8035
 - ocode 3 pour une requête RARP
 - ocode 4 pour une réponse RARP
- exemple d'autoconfiguration :
 - la nouvelle station déclanche un échange RARP
 - la station demande le netmask par un echange ICMP
 - la station demande au serveur RARP son programme de démarrage par tftp

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Adressage CIDR Messages de contrôle Mécanismes associés

IPv4 : DHCP (*Dynamic Host Configuration Protocol*, RFC 2131)

Extension compatible de BOOTP avec gestion dynamique des @IP

- attribution dynamique par **bail** (*lease*) limité dans le temps
 - bail renouvelé périodiquement si nécessaire
- nouvelles options DHCP (extensions BOOTP) :

DHCPDISCOVER	C ™ S	localisation du serveur
DHCPOFFER	S ™ C	proposition au client
DHCPREQUEST	C ™ S	confirmation d'une propositon
DHCPACK	S → C	validation d'une configuration
DHCPNACK	S → C	invalidation d'une configuration
DHCPDECLINE	C ™ S	refus d'une configuration invalide
DHCPRELEASE	C ™ S	libération d'une configuration
DHCPINFORM	C ™ S	demande d'information autre que @ IP
DHCPFORCERENEW	S ™ C	demande de reconfiguration

La couche réseau Adressage et contrôle IPv4 Routage Adressage CIDR
Messages de contrôle
Mécanismes associés

IPv4: BOOTP (BOOT Protocol, RFC 951 et RTF 1542)

- protocole portable, sur UDP
 - requête sur le port 68, réponse sur le port 67
 - quelles addresses IP utiliser lorqu'on n'en connait aucunes?
 - @ IP de diffusion (255.255.255.255)
 - @ IP par défaut (0.0.0.0)
 - permet d'atteindre un serveur sur un autre réseau
 - à travers des agents BOOTP relais
 - nombreuses extensions (RFC 1533)
 - netmask
 - liste des routeurs du sous-réseau
 - liste de serveurs NTP
 - liste des serveurs de noms (DNS)
 - liste des serveurs d'impression (LPD et autres)
 - hostname et domainname
 - TTL par défaut ...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARFS) 4/5 · Réseau

La couche réseau Adressage et contrôle IPv4 Routage Adressage CIDR Messages de contrô Mécanismes associé

IPv4: Mécanismes de DHCP

Tunneling

- encapsulation alternative à la traduction (translation)
- traversées de zones avec des protocoles différents
 - ex : relier des ilots avec des protocoles non généralisés (IPmulticast, IPv6...)
- contrôle du flux de T1 à T2 (IPv4 dans IPv4, VPN...)
 VPN...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Adressage CIDR Messages de contrôle Mécanismes associés

IPv4 : Filtrage d'adresses

Firewall...

pictures from Tanenbaum A. S. Computer Networks 3rd edition

UPMC

Couche IPv4: VPN

- intégration avec des mécanismes de sécurité, automatisation
 - IPSEC : confidentialité et integrité (RFC 4301 à 4309)
 - AAA (Authentification, Autorisation, Accounting)
- autres approches VPN au niveau de la couche 2 (PPP)...

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Ar

Architecture des Réseaux (ARFS) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Algorithmes de base Hiérarchie Routage Interne : OSF Routage externe : BG

ARES: Plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie
 - Routage Interne : OSPF
 - Routage externe : BGP

Couche Réseau

La Couche Réseau achemine les paquets de la source vers les destinataires en effectuant des sauts entre les différents nœuds intermédaires

- acheminement de bout-en-bout (end-to-end)
 - adressage virtuel
- connaissance locale de la topologie
 - besoin d'informations pour orienter les PDU
 - statique : configuration manuelle
 - dynamique : algorithmes et protocoles de routage
- adaptation à la taille du réseau
 - structure hiérarchique (AS)
 - routage interne : RIP, EIGRP, OSPF, IS-IS
 - routage externe : BGP-4

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

Routage dans l'hôte : GNU/Linux

```
Unix> /sbin/ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:20:ED:87:FD:E6
     inet addr:132.227.61.122 Bcast:132.227.61.255 Mask:255.255.25.0
     UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
     RX packets:1115393 errors:0 dropped:0 overruns:0 frame:0
     TX packets:966470 errors:0 dropped:0 overruns:0 carrier:0
     collisions:0 txqueuelen:100
     RX bytes:445681702 (425.0 Mb) TX bytes:370060277 (352.9 Mb)
     Interrupt:9 Base address:0x6f00
```

Unix> /sbin/route

Kernel IP routing table

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
132.227.61.0	*	255.255.255.0	U	0	0	0	eth0
127.0.0.0	*	255.0.0.0	U	0	0	0	lo
default	132.227.61.200	0.0.0.0	UG	0	0		eth©

La couche réseau Adressage et contrôle IPv4 Routage

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

Routage dans l'hôte : MS Windows

C:\Program Files\Support Tools>ipconfig

```
Ethernet carte Connexion au réseau local :
        Suffixe DNS spéc. à la connexion. :
        Adresse IP. . . . . . . . . . : 132.227.61.136
        Masque de sous-réseau . . . . . : 255.255.255.0
        Passerelle par défaut . . . . . : 132.227.61.200
C:\Program Files\Support Tools>route print
--
0x1 ..... MS TCP Loopback interface
0x1000003 ...00 03 47 7c b9 d5 ..... Intel(R) PRO Adapter
_____
Itinéraires actifs :
 Destination réseau
                 Masque réseau Adr. passerelle Adr. interface Métr.
                     0.0.0.0 132.227.61.200 132.227.61.136
                                          127.0.0.1
       127.0.0.0
                   255.0.0.0
                              127.0.0.1
     132.227.61.0 255.255.255.0 132.227.61.136 132.227.61.136
   132.227.61.136 255.255.255.255
                               127.0.0.1
                                           127.0.0.1
   132.227.61.255 255.255.255.255 132.227.61.136
                                       132.227.61.136
       224.0.0.0
                   224.0.0.0 132.227.61.136 132.227.61.136
  255.255.255.255 255.255.255.255 132.227.61.136 132.227.61.136
Passerelle par défaut : 132.227.61.200
```


Routeur

Routage et "relayage" (forwarding)

- interfaces (terminaisons physiques, encapsulation...)
- files d'attente
- système de **relayage** (mémoire partagée, bus ou *crossbar*)
- système de routage
 - table, algorithmes et protocoles de routage

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Architecture des Réseaux (ARES) 4/5 : Rése

Adressage et contrôle IPv4

ARES: Plan du cours 4/5

- 1 La couche réseau

 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base

Types de routage

Configuration du routeur :

- statique
- dynamique (en particulier lorsqu'il y a des liens redondants)
 - protocoles et algorithmes de routage
 - ordinateurs: Unix avec logiciels routed, gated, GNU Zebra, UPMC
 - matériels dédiés : Cisco, Juniper, Alcatel, Hp...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

Algorithmes de routage

Optimisation d'un critère

- plus court chemin
 - vecteurs de distance
 - état des liaisons
- routage politique
 - vecteurs de chemin
- routage multipoint
 - plus court chemin
 - coût minimum (arbre de steiner)
 - arbres centrés
 - voir le module ING

Routage par vecteurs de distance

Algorithme simple basé sur :

- l'échange d'informations entre routeurs adjacents (liaison directe)
 - vecteur de distance (≠ table de routage)
- o propagation de proche en proche de l'accessibilité du réseau
- ... mais limité à des réseaux de taille réduite
 - utilisé sur des sites avec quelques routeurs pour éviter les configurations manuelles
 - problème avec les informations de seconde main

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

Exemple de table issue des vecteurs de distance

La couche réseau Adressage et contrôle IPv4 Routage

Principe du routage à vecteur de distance

Les routeurs ne connaissent initialement que leurs propres liaisons. Ils diffusent leurs vecteurs de distance (table de routage sans les interface) à leur voisins

Algorithme de Bellman-Ford distribué (ou Ford-Fulkerson 1962) A la réception d'un vecteur, un routeur intégre l'information dans sa table:

- raiout des entrées nouvelles en indiquant l'interface d'arrivée
- modifier le coût des entrées
 - si un plus court chemin est proposé
 - si un plus long chemin est proposé par la même interface que celle de la table

échanges successifs doivent amener à la convergence Olivier Fourmaux (olivier.fourmaux@upmc.fr)

> La couche réseau Adressage et contrôle IPv4 Routage

Limitations du routage à vecteur de distance

Plusieurs problèmes sont apparus avec ces algorithmes :

- convergence lente
- risques de boucle
 - horizon partagé (split horizon)

- envoi de vecteurs avec tous les réseaux de la table de routage
 - taille de réseau limitée

Comment s'adapter à des réseaux importants tout en évitant la propagation des informations de proche en proche?

- connaitre son voisinage
- construire une synthèse de l'info locale
- diffuser l'info locale à tous les routeurs
- o construire un graphe représentant le réseau
- calculer le **plus court chemin** (SPF) vers tous les routeurs

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4

Etat des liaisons : Construction des paquets

			Lir	ηk	State			F	Pac	kets	3							
F	4		В		ВС			D			E			F	=			
Se	q.		Seq.		Seq.		Seq.		Seq.		Seq.		Seq.			Seq.		
Αç	ge		Αç	ge		Age			Αç	ge		Αç	ge		Αç	је		
В	4		Α	4		В	2		С	3		Α	5		В	6		
Е	5		С	2		D	3		F	7		С	1		D	7		
		•	F	6		Е	1	'				F	8		Е	8		
	(b)																	

pictures from Tanenbaum A. S. Computer Networks 3rd edition

La couche réseau Adressage et contrôle IPv4

Etat des liaisons : Acquisition du voisinage

But : création d'un graphe équivalent

- envoi de paquets de détection sur les liaisons
- supports partagés (LAN) remplacés par un seul nœud virtuel

Pour pondérer les liaisons, possibilité de réaliser des mesures

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

Etat des liaisons : Distribution des paquets

Les routeurs doivent recevoir les messages de tous les routeurs :

- besoin d'une distribution fiable
 - numéro de séquence
 - age de la connexion
- diffusion de routeur en routeur sans modification du contenu des messages

Problème de **consistance** pendant la diffusion de changements

Routage Interne : OSPF

Etat des liaisons : Calcul des routes

Algorithme du plus court chemin de Dijkstra :

pictures from $\operatorname{Tanenbaum}$ A. S. Computer Networks 3rd edition

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Algorithmes de base
Hiérarchie
Routage Interne : OSPF
Routage externe : RGP

Organisation de très grand réseaux : Internet

La couche réseau Adressage et contrôle IPv4 Routage Hiérarchie
Routage Interne : OSPF

ARES: Plan du cours 4/5

- 1 La couche réseau
 - Rappels
 - Intégration TCP/IP
 - Structure du paquet IPv4
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage
 - Algorithmes de base
 - Hiérarchie
 - Routage Interne : OSPF
 - Routage externe : BGP

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Algorithmes de base Hiérarchie Routage Interne : OSP Routage externe : BGF

AS (Autonomous System, RFC 1930)

Un AS est un ensemble d'un ou plusieurs préfixes IP interconnectés et gérés par un ou plusieurs opérateurs de réseaux qui fonctionnent avec une **unique** politique de routage **clairement définie**.

AS: Organisation externe (1)

Les relations entre AS sont basées sur la notion de client/fournisseur

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

AS: Routage simple

Pour un réseau d'extrémité (stub network):

- Annonce directe:
 - ses préfixes sont annoncés pour qu'il recoive son trafic entrant
 - le réseau d'extrémité envoie tout son trafic sortant vers le reste de l'Internet

Adressage et contrôle IPv4
Routage

AS: Organisation externe (2)

Relation économique :

- les fournisseurs font payer leurs clients
 - les pairs échangent gratuitement du trafic
 - les contrats sont secrets!
- *Tier-1*: les plus gros fournisseurs (11)
 - L3 (Level(3), ex-Genuity/BBN), GBLX (Global Crossing), AT&T (Worldnet), NTT (ex-Verio), Quest, Sprint, Tata (ex-Teleglobe), Vérizon (ex-UUnet), Savvis (ex-MCI), TeliaSonera, Tinet (ex-Tiscali).
 - a network that c an reach every other network on the Internet without purchasing IP transit or paying settlements
 - infrastructure mondiale et possèdent leur propre réseau physique

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

AS: Routage entre multiples AS

Pour les réseaux d'infrastructure (transit network) :

Comment trouver son chemin à travers plusieurs possibilités?

UPMC

AS : Critère optimal du routage

Routage politique (critère commercial) :

Ce n'est pas forcément le plus court chemin!

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4

AS : Routage hiérarchique

Deux catégories de protocole :

- **IGP** (Interior Gateway Protocols)
 - Routage à l'intérieur d'un AS (basé sur le plus court chemin)
 - RIP-2, EIGRP, IS-IS, OSPF
- **EGP** (Exterior Gateway Protocols)
 - Routage entre AS (basé sur les aspects politiques)
 - o il n'y en a qu'un : BGP-4

AS : Routage politique

Intégration des contraintes politiques :

- nouvelles règles :
 - un AS accepte le trafic de ou vers ses clients
 - un AS n'accepte pas le trafic de transit entre deux clients de ses concurents
 - besoin d'un nouveau type de routage!
- but simple :
 - un FAI route le trafic en provenance d'un des ses clients
 - le trafic est routé à un FAI pair ou à un FAI de niveau supérieur
 - le FAI du destinaire route le trafic vers son client destinataire
- mais plus complexe :
 - les AS peuvent être rattachés à plusieurs FAI (multihoming)
 - souvent plusieurs chemins possibles

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

ARES: Plan du cours 4/5

- 1 La couche réseau

 - Intégration TCP/IP
 - Structure du paquet IPv4
- Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage

 - Routage Interne : OSPF

Open Shortest Path First

- conçut par l'IETF dès 1988 pour :
 - dépasser l'approche de RIP
 - converger rapidement
 - s'adapter aux réseaux de grande taille
 - s'adapter au cas général :
 - LAN (broadcast)
 - NBMA
 - point-à-point
 - acquérir la topologie du réseau
 - calculer le plus court chemin sur le graphe associé au réseau
 - être non propriétaire

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

OSPF : Zones (2)

- 3 types de zone :
 - terminale (stub area) sans trafic de transit (Zone 1)
 - pas si terminale (NSSA, Not So Stubby Area)
 - transit (transit area) (Zones 0 et 3)

Adressage et contrôle IPv4
Routage

OSPF: Zones (1)

Pour limiter l'impact des changements (échanges, recalculs...)

- Zone (Areas) : sous-parties de l'AS où fonctionne OSPF
 - identificateur sur 32 bits
 - contiguës à un backbone (Zone 0)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

OSPF : Zones (3)

- 3 types de routeur :
 - bordure d'AS : échange d'info. avec l'extérieur (A et H)
 - frontière de zone : appartenant à deux zones (B, D et E)
 - interne : appartenant à 1 zone (C, F et G)

OSPF: Routage dans une zone

Diffusion de l'information dans sa zone

- LAN (broadcast) : routeur désigné
- inondation (ne pas propager une information déjà reçue)
 - les annonces de G sont transmise à D par F inutilement

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

OSPF: Communication avec l'extérieur de l'AS

Echange d'annonces avec l'extérieur

- informe des accessibilités locales
 - différencier les annonces externes pour ne pas tranformer le réseau en réseau de transit UPMC

OSPF: Echange entre zone

Annonces entre zones

- Zone 1 recoit les annonces du backbone et de Zone 3 par B
 - B est le routeur par défaut
- Zone 3 reçoit les annonces du backbone et de Zone 1 par Det E

 permet de choisir D ou E

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

OSPF: Protocoles

Version 2 (RFC 2328) incompatible avec OSPF v1

- définition complexe avec plusieurs sous-protocoles
 - hello : test des voisins et élection du routeur désigné (LAN)
 - tansfert de base : synchronisation
 - mise à jour : envoi de l'état des liaisons
 - acquittement : confirmation des mises à jours
 - demande de l'état des liaisons : connaissance des routeurs de la zone (NBMA)
- encapsulation directe dans un paquet IP (protocole 89)
- utilisation du multicast si disponible :
 - 224.0.0.5 : tous les routeurs du réseau
 - 224.0.0.6 : les routeurs désignés

OSPF : Entête générique

0	7		15	23	bit 31		
Version		Туре		Longueur	du paquet		
			Identité d	u routeur			
Indicateur de zone							
Checksum Type d'authentification							
Authentification							
données							

- Version = 2
- Type = 1 (Hello), 2 (transfert de base), 3 (demande de l'état des liaisons), 4 (mise à jour), 5 (acquittement)
- Longueur du paquet = taille avec entête
- Identité du routeur = unique même si plusieurs interfaces
- Indicateur de zone = zone où se trouve le routeur
- Authentification = permet l'utilisation de MD5
- données... nombreuses structures : voir le RFC 2328

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Routage

BGP: Introduction

Protocole de routage externe de facto

- chronologie des standards :
 - EGP (1984) : RFC 904
 - BGP-1 (1989): RFC 1195
 - BGP-2 (1990): RFC 1163
 - BGP-3 (1991): RFC 1267
 - BGP-4 (1995): RFC 1771, 1772 et 1773
 - support de CIDR
 - exploitation à grande échelle dès 95 avec la commercialisation d'Internet
- procole à vecteur de chemin :
 - similaire aux protocoles à vecteur de distance
 - permet d'appliquer des contraintes politiques

Adressage et contrôle IPv4
Routage

ARES: Plan du cours 4/5

- 1 La couche réseau
- 2 Adressage et contrôle IPv4
 - Adressage CIDR
 - Messages de contrôle
 - Mécanismes associés
- 3 Routage

 - Routage externe : BGP

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

BGP: Topologie

BGP se base sur un ensemble d'AS interconnectés.

- les AS sont représentés par des numéros sur 16 bits
 - attribués par les bureaux d'enregistrement (ARIN, RIPE-NCC...)
 - o comme pour les préfixes de réseau
 - env. 25000 attribués (64512 à 65535 privés)

BGP : Correspondance AS/Réseau

Un AS ne correspond pas forcément à un réseau

- les *Tier-1* fractionnent souvent leur réseau :
 - ATT: 5074, 6341, 7018...
 - MCI (UUnet): 284, 701, 702, 12199...
 - Sprint: 1239, 1240, 6211, 6242...

- un numéro d'AS peut être partagé :
 - ullet AS 7046 : Crestar Bank + NJIT + Hood Clg (clients AS 701)

• et de nombreux réseaux d'extrémité n'ont pas besoin de BGP et de numéro d'AS (routage statique en bordure du réseau)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

Adressage et contrôle IPv4

BGP: Connexion eBGP

exterior BGP

- interconnexion entre AS par les routeurs de frontière
- signalisation BGP sur connexion TCP (port 179) directe

Adressage et contrôle IPv4
Routage

BGP : Routeur de frontière

Border Gateway Routers

- passages vers les autres AS
- associés à deux types de connexion :
 - externe (eBGP)
 - interne (iBGP)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

BGP: Connexion iBGP

interior BGP

- interconnexion entre les routeurs de frontière dans un AS
- o connexion TCP (port 179) routée avec l'IGP de l'AS
- maillage complet (full mesh)

BGP : Informations échangées

Quelles sont les informations échangées entre AS?

• principalement les **préfixes** IP et les **chemins** des AS vers ceux-ci

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

BGP: Attributs (1)

Value	Code	Reference
1	ORIGIN	[RFC1771]
2	AS_PATH	[RFC1771]
3	NEXT_HOP	[RFC1771]
4	MULTI_EXIT_DISC	[RFC1771]
5	LOCAL_PREF	[RFC1771]
6	ATOMIC_AGGREGATE	[RFC1771]
7	AGGREGATOR	[RFC1771]
8	COMMUNITY	[RFC1997]
9	ORIGINATOR_ID	[RFC1998]
10	CLUSTER_LIST	[RFC1998]
19-254	Unassigned	
255	reserved for development	

Annonce = prefixe + quelques attributs (pas tous)

Adressage et contrôle IPv4
Routage

BGP: Messages

Seulement 4 messages BGP:

- OPEN : ouverture de la connexion
- KEEPALIVE : maintien de la connexion
 - envois périodiques
- NOTIFICATION : terminaison de la connexion
- UPDATE : échange de préfixes avec attributs
 - toute l'information initialement
 - mise à jours ensuite
 - annonce (announcing) de nouvelles routes
 - abandon (withdrawing) de route dèjà annoncées

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

BGP: Attributs (2)

ORIGIN : d'ou provient la connaissance du préfixe

- IGP = vient de l'intérieur de l'AS
- EGP = vient de l'extérieur de l'AS
- INCOMPLETE = configuré manuellement

AS_PATH: suite de numéro d'AS parcouru par l'annonce

permet de détecter les boucles

NEXT_HOP: vers qui orienter le trafic du préfixe annoncé

dernier routeur de l'AS précédent

BGP: Attributs (3)

MULTI_EXIT_DISC: lorsqu'il y a plusieurs sorties d'un AS

priorité à la valeur la plus petite

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau

BGP: Annonces

Emission d'un message UPDATE

- quels préfixes annoncer?
 - choix de l'émetteur
- quelles valeurs d'attribut associer?
 - dépend de l'attribut
 - AS_PATH = AS_PATH précédent + numéro de l'AS actuel
 - MULTI_EXIT_DISC = dépend du choix de l'émetteur...

Réception d'un message UPDATE

- quels informations prendre en compte?
 - choix de préfixes (filtrage)
 - possibilité de modifier les attributs
- que faire des informations acceptées?
 - choisir les routes
 - utilisation d'un algorithme de décision...

Adressage et contrôle IPv4
Routage

BGP: Attributs (4)

LOCAL_PREF: préférence administrative

priorité à la valeur la plus élevée

192.33.182.0 \24 (24, 743, 947) LP=80 Prioritaire 192.33.182.0 \24 (9611, 947) LP=50

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

La couche réseau Adressage et contrôle IPv4 Routage

BGP : Algorithme de choix des routes

Critères de choix du plus fort au plus faible :

- 1 LOCAL_PREF le plus élevé
- ② AS_PATH le plus court
 - mais pas forcément le plus court chemin
- MULTI_EXIT_DISC le plus petit
- 4 priorité aux chemins appris par eBGP que par iBGP
- Some chemin le plus court pour atteindre le NEXT_HOP métrique IGP)
- 6 identifiant de routeur le plus petit

BGP : Et le choix politique?

Encore un attribut

COMMUNITY: permet de "colorier" les routes

- liste de valeurs indiquant à quelles communautés appartient un préfixe
 - 32bits (16bits AS colorieur + 16bits au choix)
 - les annonces sont généralement coloriés à l'entrée de l'AS
 - communauté client
 - communauté pair
 - communauté fournisseur
 - permet de filtrer à la sortie de l'AS
 - exemple : ne pas injecter les préfixes d'un pair à un autre pair (et ainsi se transformer en AS de transit)

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

BGP : Export de routes

Adressage et contrôle IPv4
Routage

BGP: Import de routes

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Adressage et contrôle IPv4 Routage

BGP : Connectivité

BGP garantit-il la connectivité?

- non, certains réseaux peuvent être injoignables
 - dépend des politiques rencontrées sur le chemin des annonces :

si "X" n'annonce pas "A" à "B"...

UPMC

La couche réseau Adressage et contrôle IPv4 Routage

Hiérarchie
Routage Interne : OS

BGP : Convergence

BGP garantit-il la convergence pour un routage stable?

- sans changement, il peut y avoir des oscillations (route flapping)
 - un routeur annonce un préfixe puis l'abandonne
 - lié à des liens défaillants
- avec changement, le nombre d'annonces est élevé
 - certains AS peuvent observer plus 10⁶ UPDATE par jours

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau

La couche réseau Adressage et contrôle IPv4 Routage Algorithmes de b Hiérarchie

Routage Interne : USPF Routage externe : BGP

BGP : Problèmes

- les erreurs ont une portée globale (sur tout l'Internet)
 - un AS avec une mauvaise configuration peut indiquer qu'il a la meilleur route pour tout les destinataires...
- croissance exponentielle du nombre des annonces
 - de plus en plus d'AS
 - préfixes de plus en plus petits
 - pas d'agrégation à cause du multihoming
- supervision complexe
 - le graphe des AS dépend du point de vue
- tentative d'amortissement du route flapping
 - utilisation du route dampening

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARES) 4/5 : Réseau