# **SBML Model Report**

# Model name: "Lee2003 - Roles of APC and Axin in Wnt Pathway (without regulatory loop)"



May 17, 2018

#### 1. General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Varun Kothamachu Kothamachu<sup>1</sup> and Matthew Grant Roberts<sup>2</sup> at March 20<sup>th</sup> 2018 at 3:52 p. m. and last time modified at March 20<sup>th</sup> 2018 at 3:52 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 2        |
| species types     | 0        | species              | 16       |
| events            | 0        | constraints          | 0        |
| reactions         | 17       | function definitions | 3        |
| global parameters | 31       | unit definitions     | 3        |
| rules             | 7        | initial assignments  | 1        |

#### **Model Notes**

Lee2003 - Roles of APC and Axin in WntPathway (without regulatory loop)

<sup>&</sup>lt;sup>1</sup>Babraham Institute, kothamav@babraham.ac.uk

 $<sup>^2</sup> EMBL\text{-}EBI, \verb|mroberts@ebi.ac.uk|$ 

This model is described in the article: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. Lee E, Salic A, Krger R, Heinrich R, Kirschner MW. PLoS Biol. 2003 Oct; 1(1): E10

Abstract:

Wnt signaling plays an important role in both oncogenesis and development. Activation of the Wnt pathway results in stabilization of the transcriptional coactivator beta-catenin. Recent studies have demonstrated that axin, which coordinates beta-catenin degradation, is itself degraded. Although the key molecules required for transducing a Wnt signal have been identified, a quantitative understanding of this pathway has been lacking. We have developed a mathematical model for the canonical Wnt pathway that describes the interactions among the core components: Wnt, Frizzled, Dishevelled, GSK3beta, APC, axin, beta-catenin, and TCF. Using a system of differential equations, the model incorporates the kinetics of protein-protein interactions, protein synthesis/degradation, and phosphorylation/dephosphorylation. We initially defined a reference state of kinetic, thermodynamic, and flux data from experiments using Xenopus extracts. Predictions based on the analysis of the reference state were used iteratively to develop a more refined model from which we analyzed the effects of prolonged and transient Wnt stimulation on beta-catenin and axin turnover. We predict several unusual features of the Wnt pathway, some of which we tested experimentally. An insight from our model, which we confirmed experimentally, is that the two scaffold proteins axin and APC promote the formation of degradation complexes in very different ways. We can also explain the importance of axin degradation in amplifying and sharpening the Wnt signal, and we show that the dependence of axin degradation on APC is an essential part of an unappreciated regulatory loop that prevents the accumulation of beta-catenin at decreased APC concentrations. By applying control analysis to our mathematical model, we demonstrate the modular design, sensitivity, and robustness of the Wnt pathway and derive an explicit expression for tumor suppression and oncogenicity.

This model is hosted on BioModels Database and identified by: BIOMD0000000658.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

#### 2. Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

#### 2.1. Unit volume

Name volume

**Definition** ml

#### 2.2. Unit time

Name time

**Definition** 60 s

#### 2.3. Unit substance

Name substance

**Definition** µmol

#### 2.4. Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition**  $m^2$ 

#### 2.5. Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

# 3. Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

|                      |                      |     | _                  |      |                |          |         |
|----------------------|----------------------|-----|--------------------|------|----------------|----------|---------|
| Id                   | Name                 | SBO | Spatial Dimensions | Size | Unit           | Constant | Outside |
| Cytoplasm<br>Nucleus | Cytoplasm<br>Nucleus |     | 3 3                | 1 1  | litre<br>litre | <b>1</b> |         |

## 3.1. Compartment Cytoplasm

This is a three dimensional compartment with a constant size of one ml.

Name Cytoplasm

#### 3.2. Compartment Nucleus

This is a three dimensional compartment with a constant size of one ml.

Name Nucleus

# 4. Species

This model contains 16 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id                         | Name                       | Compartment | Derived Unit                          | Constant | Boundary<br>Condi-<br>tion |
|----------------------------|----------------------------|-------------|---------------------------------------|----------|----------------------------|
| Dsh_i                      | Dsh_i                      | Cytoplasm   | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |
| Dsh_a                      | Dsh_a                      | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          |                            |
| APC_axin_GSK3              | APC*/axin*/GSK3            | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          |                            |
| APC_axin_GSK3              | APC/axin/GSK3              | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          |                            |
| GSK3                       | GSK3                       | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          |                            |
| $APC_axin$                 | APC/axin                   | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          | $\Box$                     |
| APC                        | APC                        | Cytoplasm   | $\mu$ mol·ml <sup>-1</sup>            |          | $\Box$                     |
| B_catenin_APC<br>_axinGSK3 | B_catenin/APC*/axin*/GSK3  | Cytoplasm   | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |
| B_cateninAPC<br>_axinGSK3  | B_catenin*/APC*/axin*/GSK3 | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          |                            |
| B_catenin                  | B_catenin*                 | Cytoplasm   | $\mu mol \cdot ml^{-1}$               |          |                            |
| B_catenin_0                | B_catenin                  | Nucleus     | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |
| Axin                       | Axin                       | Cytoplasm   | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |
| TCF                        | TCF                        | Nucleus     | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |
| B_catenin_TCF              | B_catenin/TCF              | Nucleus     | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |
| B_catenin_APC              | B_catenin/APC              | Cytoplasm   | $\mu$ mol·ml <sup>-1</sup>            |          |                            |
| W                          | W                          | Cytoplasm   | $\mu \text{mol} \cdot \text{ml}^{-1}$ |          |                            |

# 5. Parameters

This model contains 31 global parameters.

Table 4: Properties of each parameter.

| Id                     | Name            | SBO     | Value                | Unit | Constant                     |
|------------------------|-----------------|---------|----------------------|------|------------------------------|
| k1                     | k1              |         | 0.182                |      |                              |
| k2                     | k2              |         | 0.018                |      | $\overline{\mathbf{Z}}$      |
| k3                     | k3              |         | 0.050                |      | $\overline{\mathbf{Z}}$      |
| k4                     | k4              |         | 0.267                |      | $   \overline{\mathscr{L}} $ |
| k5                     | k5              |         | 0.133                |      | $   \overline{\mathscr{L}} $ |
| k6                     | k6              |         | 0.091                |      | $\square$                    |
| k_6                    | k_6             |         | 0.909                |      | $\checkmark$                 |
| k7                     | k7              |         | 500.000              |      | $\checkmark$                 |
| $k_{-}7$               | k_7             |         | 25000.000            |      |                              |
| k8                     | k8              |         | 500.000              |      | $\checkmark$                 |
| k8                     | k_8             |         | 60000.000            |      |                              |
| k9                     | k9              |         | 206.000              |      |                              |
| k10                    | k10             |         | 206.000              |      | $\checkmark$                 |
| k11                    | k11             |         | 0.417                |      | $\square$                    |
| k12                    | k12             |         | 0.423                |      | $\square$                    |
| k13                    | k13             |         | $2.57 \cdot 10^{-4}$ |      | $\square$                    |
| k14                    | k14             |         | $8.22 \cdot 10^{-5}$ |      | $\checkmark$                 |
| k15                    | k15             |         | 0.167                |      | $\square$                    |
| k16                    | k16             |         | 500.000              |      |                              |
| $k_{-}16$              | k_16            |         | 15000.000            |      |                              |
| k17                    | k17             |         | 500.000              |      | $\square$                    |
| $k_{-}17$              | $k_{-}17$       |         | 600000.000           |      |                              |
| K_7                    | $K_{-}7$        | 0000282 | 50.000               |      | $\square$                    |
| K_8                    | $K_{-}8$        | 0000282 | 120.000              |      | $\square$                    |
| $K_{-}16$              | $K_{-}16$       | 0000282 | 30.000               |      | $\square$                    |
| $K_{-}17$              | $K_{-}17$       | 0000282 | 1200.000             |      | $\checkmark$                 |
| lambda                 | lambda          | 0000356 | 0.050                |      | $\checkmark$                 |
| t0                     | t0              |         | 40.000               |      | $\checkmark$                 |
| Dsh0                   | Dsh0            |         | 100.000              |      | $\checkmark$                 |
| Total_B-               | Total_B_Catenin |         | 34.984               |      |                              |
| $_{	extsf{L}}$ Catenin |                 |         |                      |      |                              |
| $Total\_Axin$          | Total_Axin      |         | 0.020                |      |                              |

# 6. Initialassignment

This is an overview of one initial assignment.

#### **6.1. Initialassignment** Dsh\_i

**Derived unit** contains undeclared units

**Math**  $Dsh0 - [Dsh_a]$ 

#### 7. Function definitions

This is an overview of three function definitions.

#### 7.1. Function definition Constant\_flux\_\_irreversible

Name Constant flux (irreversible)

Argument v

**Mathematical Expression** 

I (1)

#### 7.2. Function definition function\_for\_v1

Name function for v1

Arguments k1, x1, [W]

**Mathematical Expression** 

$$k1 \cdot x1 \cdot [W] \tag{2}$$

#### **7.3. Function definition** function\_for\_v3

Name function for v3

Arguments k3, x2, x4

**Mathematical Expression** 

$$k3 \cdot x2 \cdot x4 \tag{3}$$

#### 8. Rules

This is an overview of seven rules.

#### 8.1. Rule Total\_B\_Catenin

Rule Total\_B\_Catenin is an assignment rule for parameter Total\_B\_Catenin:

$$Total\_B\_Catenin = [B\_catenin\_APC\_axin\_GSK3] + [B\_catenin\_APC\_axin\_GSK3] + [B\_catenin] + [B\_catenin\_0] + [B\_catenin\_TCF] + [B\_catenin\_APC]$$

$$(4)$$

**Derived unit**  $\mu mol \cdot ml^{-1}$ 

#### 8.2. Rule Total\_Axin

Rule Total\_Axin is an assignment rule for parameter Total\_Axin:

$$Total\_Axin = [APC\_axin\_GSK3] + [APC\_axin\_GSK3] + [APC\_axin] + [B\_catenin\_APC\_axin\_GSK3] + [B\_catenin\_APC\_axin\_GSK3] + [Axin]$$

$$(5)$$

**Derived unit**  $\mu mol \cdot ml^{-1}$ 

#### 8.3. Rule k\_16

Rule k\_16 is an assignment rule for parameter k\_16:

$$k_{-}16 = k_{1}6 \cdot K_{-}16$$
 (6)

#### **8.4. Rule** k\_7

Rule k\_7 is an assignment rule for parameter k\_7:

$$k_{-}7 = k7 \cdot K_{-}7 \tag{7}$$

#### **8.5. Rule** k\_17

Rule k\_17 is an assignment rule for parameter k\_17:

$$k_{-}17 = k_{1}7 \cdot K_{-}17$$
 (8)

#### **8.6. Rule** k\_8

Rule k\_8 is an assignment rule for parameter k\_8:

$$k_{-}8 = k8 \cdot K_{-}8 \tag{9}$$

#### 8.7. Rule W

Rule W is an assignment rule for species W:

$$W = \begin{cases} 0 & \text{if time} < t0 \\ \exp(1 \cdot \text{lambda} \cdot (\text{time} - t0)) & \text{otherwise} \end{cases}$$
 (10)

# 9. Reactions

This model contains 17 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| N⁰ | Id  | Name | Reaction Equation SBO                               |  |  |
|----|-----|------|-----------------------------------------------------|--|--|
| 1  | v1  | v1   | $Dsh\_i \xrightarrow{W} Dsh\_a$                     |  |  |
| 2  | v2  | v2   | $Dsh_a \longrightarrow Dsh_i$                       |  |  |
| 3  | v3  | v3   | $APC_axin_GSK3 \xrightarrow{Dsh_a} GSK3 + APC_axin$ |  |  |
| 4  | v4  | v4   | $APC_axin_GSK3 \longrightarrow APC_axin_GSK3$       |  |  |
| 5  | v5  | v5   | APC_axin_GSK3 → APC_axin_GSK3                       |  |  |
| 6  | v6  | v6   | $GSK3 + APC_axin \rightleftharpoons APC_axin_GSK3$  |  |  |
| 7  | v7  | v7   | $APC + Axin \Longrightarrow APC_axin$               |  |  |
| 8  | v8  | v8   | APC_axin_GSK3 +                                     |  |  |
|    |     |      | B_catenin_0 <del>===</del> B_catenin_APCaxinGSK3    |  |  |
| 9  | v9  | v9   | B_catenin_APC_axin_GSK3 → B_catenin_APC_axin_GSK3   |  |  |
| 10 | v10 | v10  | B_cateninAPCaxinGSK3 → B_catenin +                  |  |  |
|    |     |      | APC_axin_GSK3                                       |  |  |
| 11 | v11 | v11  | $B_{-}$ catenin $\longrightarrow \emptyset$         |  |  |
| 12 | v12 | v12  | $\emptyset \longrightarrow B_{catenin}_{0}$         |  |  |
| 13 | v13 | v13  | $B_{\text{catenin}} = 0 \longrightarrow \emptyset$  |  |  |
| 14 | v14 | v14  | $\emptyset \longrightarrow Axin$                    |  |  |
| 15 | v15 | v15  | $Axin \longrightarrow \emptyset$                    |  |  |
| 16 | v16 | v16  | B_catenin_0+TCF ⇒ B_catenin_TCF                     |  |  |
| 17 | v17 | v17  | APC + B_catenin_0 \ightharpoonup B_catenin_APC      |  |  |

#### 9.1. Reaction v1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name v1

#### **Reaction equation**

$$Dsh_{-}i \xrightarrow{W} Dsh_{-}a \tag{11}$$

#### Reactant

Table 6: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| Dsh_i | Dsh_i |     |

#### **Modifier**

Table 7: Properties of each modifier.

| Id | Name | SBO |
|----|------|-----|
| W  | W    |     |

#### **Product**

Table 8: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| Dsh_a | Dsh_a |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_1 = \text{vol}(\text{Cytoplasm}) \cdot \text{function\_for\_v1}(k1, [\text{Dsh\_i}], [\text{W}])$$
 (12)

$$function\_for\_v1(k1,x1,[W]) = k1 \cdot x1 \cdot [W]$$

$$(13)$$

$$function\_for\_v1(k1,x1,[W]) = k1 \cdot x1 \cdot [W]$$
 (14)

#### 9.2. Reaction v2

This is an irreversible reaction of one reactant forming one product.

Name v2

#### **Reaction equation**

$$Dsh_a \longrightarrow Dsh_i$$
 (15)

#### Reactant

Table 9: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| Dsh_a | Dsh_a |     |

#### **Product**

Table 10: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| Dsh_i | Dsh_i |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_2 = \text{vol}\left(\text{Cytoplasm}\right) \cdot \text{k2} \cdot [\text{Dsh\_a}] \tag{16}$$

#### 9.3. Reaction v3

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name v3

## **Reaction equation**

$$APC\_axin\_GSK3 \xrightarrow{Dsh\_a} GSK3 + APC\_axin$$
 (17)

#### Reactant

Table 11: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| APC_axin_GSK3 | APC/axin/GSK3 |     |

#### **Modifier**

Table 12: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| Dsh_a | Dsh_a |     |

#### **Products**

Table 13: Properties of each product.

| Id                | Name     | SBO |
|-------------------|----------|-----|
| GSK3              | GSK3     |     |
| ${\tt APC\_axin}$ | APC/axin |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{Cytoplasm}) \cdot \text{function\_for\_v3}(\text{k3}, [\text{Dsh\_a}], [\text{APC\_axin\_GSK3}])$$
 (18)

#### 9.4. Reaction v4

This is an irreversible reaction of one reactant forming one product.

Name v4

#### **Reaction equation**

$$APC\_axin\_GSK3 \longrightarrow APC\_axin\_GSK3$$
 (21)

#### Reactant

Table 14: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| APC_axin_GSK3 | APC/axin/GSK3 |     |

#### **Product**

Table 15: Properties of each product.

| Id            | Name            | SBO |
|---------------|-----------------|-----|
| APC_axin_GSK3 | APC*/axin*/GSK3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_4 = \text{vol}\left(\text{Cytoplasm}\right) \cdot \text{k4} \cdot \left[\text{APC\_axin\_GSK3}\right]$$
 (22)

#### 9.5. Reaction v5

This is an irreversible reaction of one reactant forming one product.

#### Name v5

#### **Reaction equation**

$$APC\_axin\_GSK3 \longrightarrow APC\_axin\_GSK3$$
 (23)

#### Reactant

Table 16: Properties of each reactant.

| Id          | Name            | SBO |
|-------------|-----------------|-----|
| APCaxinGSK3 | APC*/axin*/GSK3 |     |

#### **Product**

Table 17: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| APC_axin_GSK3 | APC/axin/GSK3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_5 = \text{vol}(\text{Cytoplasm}) \cdot \text{k5} \cdot [\text{APC}\_\text{axin}\_\text{GSK3}]$$
 (24)

#### 9.6. Reaction v6

This is a reversible reaction of two reactants forming one product.

Name v6

#### **Reaction equation**

$$GSK3 + APC_axin \Longrightarrow APC_axin_GSK3$$
 (25)

#### **Reactants**

Table 18: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| GSK3     | GSK3     |     |
| APC_axin | APC/axin |     |

#### **Product**

Table 19: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| APC_axin_GSK3 | APC/axin/GSK3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_6 = vol\left(Cytoplasm\right) \cdot \left(k6 \cdot [GSK3] \cdot [APC\_axin] - k\_6 \cdot [APC\_axin\_GSK3]\right) \tag{26}$$

#### 9.7. Reaction v7

This is a reversible reaction of two reactants forming one product.

Name v7

#### **Reaction equation**

$$APC + Axin \Longrightarrow APC - axin$$
 (27)

#### **Reactants**

Table 20: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| APC  | APC  |     |
| Axin | Axin |     |

#### **Product**

Table 21: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| APC_axin | APC/axin |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{Cytoplasm}\right) \cdot \left(\text{k7} \cdot [\text{APC}] \cdot [\text{Axin}] - \text{k\_7} \cdot [\text{APC\_axin}]\right) \tag{28}$$

#### 9.8. Reaction v8

This is a reversible reaction of two reactants forming one product.

Name v8

#### **Reaction equation**

$$APC\_axin\_GSK3 + B\_catenin\_0 \Longrightarrow B\_catenin\_APC\_axin\_GSK3$$
 (29)

#### **Reactants**

Table 22: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| APCaxinGSK3     | APC*/axin*/GSK3 |     |
| $B_{catenin_0}$ | B_catenin       |     |

#### **Product**

Table 23: Properties of each product.

| Id                    | Name                      | SBO |
|-----------------------|---------------------------|-----|
| B_catenin_APCaxinGSK3 | B_catenin/APC*/axin*/GSK3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_8 = k8 \cdot [APC\_axin\_GSK3] \cdot [B\_catenin\_0] - k\_8 \cdot [B\_catenin\_APC\_axin\_GSK3]$$
 (30)

#### 9.9. Reaction v9

This is an irreversible reaction of one reactant forming one product.

#### Name v9

#### **Reaction equation**

$$B\_catenin\_APC\_axin\_GSK3 \longrightarrow B\_catenin\_APC\_axin\_GSK3$$
 (31)

#### Reactant

Table 24: Properties of each reactant.

| Id                    | Name                      | SBO |
|-----------------------|---------------------------|-----|
| B_catenin_APCaxinGSK3 | B_catenin/APC*/axin*/GSK3 |     |

#### **Product**

Table 25: Properties of each product.

| Id                      | Name                       | SBO |
|-------------------------|----------------------------|-----|
| B_catenin_APC_axin_GSK3 | B_catenin*/APC*/axin*/GSK3 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_9 = \text{vol}(\text{Cytoplasm}) \cdot \text{k9} \cdot [\text{B\_catenin\_APC\_axin\_GSK3}]$$
 (32)

#### **9.10. Reaction** v10

This is an irreversible reaction of one reactant forming two products.

#### Name v10

#### **Reaction equation**

$$B_{\text{catenin}} - APC_{\text{-}axin} - GSK3 \longrightarrow B_{\text{catenin}} + APC_{\text{-}axin} - GSK3$$
 (33)

#### Reactant

Table 26: Properties of each reactant.

| Id                      | Name                       | SBO |
|-------------------------|----------------------------|-----|
| B_catenin_APC_axin_GSK3 | B_catenin*/APC*/axin*/GSK3 |     |

#### **Products**

Table 27: Properties of each product.

| Id                       | Name                       | SBO |
|--------------------------|----------------------------|-----|
| B_catenin<br>APCaxinGSK3 | B_catenin* APC*/axin*/GSK3 |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{Cytoplasm}\right) \cdot \text{k10} \cdot \left[\text{B\_catenin\_APC\_axin\_GSK3}\right]$$
 (34)

#### **9.11. Reaction** v11

This is an irreversible reaction of one reactant forming no product.

Name v11

#### **Reaction equation**

$$B_{\text{-}catenin} \longrightarrow \emptyset$$
 (35)

#### Reactant

Table 28: Properties of each reactant.

| Id              | Name       | SBO |
|-----------------|------------|-----|
| $B_{-}$ catenin | B_catenin* |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{11} = \text{vol}(\text{Cytoplasm}) \cdot \text{k11} \cdot [\text{B\_catenin}]$$
 (36)

#### **9.12. Reaction** v12

This is an irreversible reaction of no reactant forming one product.

Name v12

#### **Reaction equation**

$$\emptyset \longrightarrow B_catenin_0$$
 (37)

#### **Product**

Table 29: Properties of each product.

| Id          | Name      | SBO |
|-------------|-----------|-----|
| B_catenin_0 | B_catenin |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{12} = \text{vol}(\text{Nucleus}) \cdot \text{Constant\_flux\_irreversible}(\text{k}12)$$
 (38)

$$Constant\_flux\_irreversible(v) = v$$
 (39)

Constant\_flux\_\_irreversible 
$$(v) = v$$
 (40)

#### **9.13. Reaction** v13

This is an irreversible reaction of one reactant forming no product.

Name v13

#### **Reaction equation**

$$B_{\text{catenin}} = 0 \longrightarrow \emptyset$$
 (41)

#### Reactant

Table 30: Properties of each reactant.

| Id          | Name      | SBO |
|-------------|-----------|-----|
| B_catenin_0 | B_catenin |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{Nucleus}) \cdot \text{k13} \cdot [\text{B\_catenin\_0}]$$
 (42)

#### 9.14. Reaction v14

This is an irreversible reaction of no reactant forming one product.

Name v14

#### **Reaction equation**

$$\emptyset \longrightarrow Axin$$
 (43)

## **Product**

Table 31: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| Axin | Axin |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{14} = \text{vol}\left(\text{Cytoplasm}\right) \cdot \text{Constant\_flux\_irreversible}\left(\text{k14}\right)$$
 (44)

Constant\_flux\_irreversible 
$$(v) = v$$
 (45)

Constant\_flux\_irreversible 
$$(v) = v$$
 (46)

#### **9.15. Reaction** v15

This is an irreversible reaction of one reactant forming no product.

Name v15

## **Reaction equation**

$$Axin \longrightarrow \emptyset \tag{47}$$

#### Reactant

Table 32: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| Axin | Axin |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{15} = \text{vol}\left(\text{Cytoplasm}\right) \cdot \text{k15} \cdot [\text{Axin}]$$
 (48)

#### **9.16. Reaction** v16

This is a reversible reaction of two reactants forming one product.

#### Name v16

#### **Reaction equation**

$$B_{\text{catenin}} - 0 + \text{TCF} \Longrightarrow B_{\text{catenin}} - \text{TCF}$$
 (49)

#### **Reactants**

Table 33: Properties of each reactant.

| Id                 | Name             | SBO |
|--------------------|------------------|-----|
| B_catenin_0<br>TCF | B_catenin<br>TCF |     |

#### **Product**

Table 34: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| B_catenin_TCF | B_catenin/TCF |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{16} = \text{vol}\left(\text{Nucleus}\right) \cdot \left(\text{k16} \cdot \left[\text{B\_catenin\_0}\right] \cdot \left[\text{TCF}\right] - \text{k\_16} \cdot \left[\text{B\_catenin\_TCF}\right]\right)$$
 (50)

#### **9.17. Reaction** v17

This is a reversible reaction of two reactants forming one product.

Name v17

#### **Reaction equation**

$$APC + B\_catenin\_0 \Longrightarrow B\_catenin\_APC$$
 (51)

#### **Reactants**

Table 35: Properties of each reactant.

| Id                    | Name      | SBO |
|-----------------------|-----------|-----|
| APC                   | APC       |     |
| $B_{-} catenin_{-} 0$ | B_catenin |     |

#### **Product**

Table 36: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| B_catenin_APC | B_catenin/APC |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{17} = k17 \cdot [APC] \cdot [B\_catenin\_0] - k\_17 \cdot [B\_catenin\_APC]$$
 (52)

# 10. Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

#### 10.1. Species Dsh\_i

Name Dsh\_i

Initial concentration  $100 \ \mu mol \cdot ml^{-1}$ 

Initial assignment Dsh\_i

This species takes part in two reactions (as a reactant in v1 and as a product in v2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Dsh.i} = |v_2| - |v_1| \tag{53}$$

#### 10.2. Species Dsh\_a

Name Dsh\_a

Initial concentration  $0 \, \mu mol \cdot ml^{-1}$ 

This species takes part in three reactions (as a reactant in v2 and as a product in v1 and as a modifier in v3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Dsh}_{-a} = |v_1| - |v_2| \tag{54}$$

#### 10.3. Species APC\_axin\_GSK3

Name APC\*/axin\*/GSK3

Initial concentration  $0.00966~\mu mol \cdot ml^{-1}$ 

This species takes part in four reactions (as a reactant in v5, v8 and as a product in v4, v10).

$$\frac{d}{dt}APC_{-axin_{-}GSK3} = |v_4| + |v_{10}| - |v_5| - |v_8|$$
 (55)

#### 10.4. Species APC\_axin\_GSK3

Name APC/axin/GSK3

Initial concentration  $0.00483 \ \mu mol \cdot ml^{-1}$ 

This species takes part in four reactions (as a reactant in v3, v4 and as a product in v5, v6).

$$\frac{\mathrm{d}}{\mathrm{d}t} APC_{-}axin_{-}GSK3 = v_5 + v_6 - v_3 - v_4$$
 (56)

#### 10.5. Species GSK3

Name GSK3

Initial concentration 50 µmol·ml<sup>-1</sup>

This species takes part in two reactions (as a reactant in v6 and as a product in v3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GSK3} = |v_3| - |v_6| \tag{57}$$

#### 10.6. Species APC\_axin

Name APC/axin

Initial concentration  $9.8065 \cdot 10^{-4} \ \mu mol \cdot ml^{-1}$ 

This species takes part in three reactions (as a reactant in v6 and as a product in v3, v7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC}_{-}\mathrm{axin} = |v_3| + |v_7| - |v_6| \tag{58}$$

#### 10.7. Species APC

Name APC

Initial concentration  $98 \mu mol \cdot ml^{-1}$ 

This species takes part in two reactions (as a reactant in v7, v17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC} = -|v_7| - |v_{17}| \tag{59}$$

#### 10.8. Species B\_catenin\_APC\_axin\_GSK3

Name B\_catenin/APC\*/axin\*/GSK3

Initial concentration  $0.00202 \ \mu mol \cdot ml^{-1}$ 

This species takes part in two reactions (as a reactant in v9 and as a product in v8).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{B}_{-} \operatorname{catenin}_{-} \mathbf{APC}_{-} \operatorname{axin}_{-} \mathbf{GSK3} = |v_8| - |v_9| \tag{60}$$

#### 10.9. Species B\_catenin\_APC\_axin\_GSK3

Name B\_catenin\*/APC\*/axin\*/GSK3

Initial concentration  $0.00202 \ \mu mol \cdot ml^{-1}$ 

This species takes part in two reactions (as a reactant in v10 and as a product in v9).

$$\frac{d}{dt}B_{\text{catenin}} - APC_{\text{-}axin} - GSK3 = v_9 - v_{10}$$
 (61)

#### 10.10. Species B\_catenin

Name B\_catenin\*

Initial concentration  $1 \ \mu mol \cdot ml^{-1}$ 

This species takes part in two reactions (as a reactant in v11 and as a product in v10).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{B}_{-} \operatorname{catenin} = |v_{10}| - |v_{11}| \tag{62}$$

#### 10.11. Species B\_catenin\_0

Name B\_catenin

Initial concentration 25.1 μmol·ml<sup>-1</sup>

This species takes part in five reactions (as a reactant in v8, v13, v16, v17 and as a product in v12).

$$\frac{d}{dt}B_{\text{catenin}} = |v_{12} - v_8| - |v_{13}| - |v_{16}| - |v_{17}|$$
(63)

#### 10.12. Species Axin

Name Axin

Initial concentration  $4.93 \cdot 10^{-4} \ \mu mol \cdot ml^{-1}$ 

This species takes part in three reactions (as a reactant in v7, v15 and as a product in v14).

$$\frac{d}{dt}Axin = |v_{14}| - |v_7| - |v_{15}| \tag{64}$$

#### 10.13. Species TCF

Name TCF

Initial concentration  $8.17 \, \mu mol \cdot ml^{-1}$ 

This species takes part in one reaction (as a reactant in v16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TCF} = -v_{16} \tag{65}$$

#### 10.14. Species B\_catenin\_TCF

Name B\_catenin/TCF

Initial concentration  $6.83 \ \mu mol \cdot ml^{-1}$ 

This species takes part in one reaction (as a product in v16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B}_{-}\mathrm{catenin}_{-}\mathrm{TCF} = v_{16} \tag{66}$$

#### 10.15. Species B\_catenin\_APC

Name B\_catenin/APC

Initial concentration 2.05 µmol⋅ml<sup>-1</sup>

This species takes part in one reaction (as a product in v17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B}_{-}\mathrm{catenin}_{-}\mathrm{APC} = v_{17} \tag{67}$$

#### 10.16. Species W

Name W

Initial concentration  $0 \, \mu \text{mol} \cdot \text{ml}^{-1}$ 

Involved in rule W

This species takes part in one reaction (as a modifier in v1). Not this but one rule determines the species' quantity because this species is on the boundary of the reaction system.

# A. Glossary of Systems Biology Ontology Terms

**SBO:0000282** dissociation constant: Equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions. The dissociation constant is usually denoted Kd and is the inverse of the affinity constant.

**SBO:0000356 decay constant:** Kinetic constant characterising a mono-exponential decay. It is the inverse of the mean lifetime of the continuant being decayed. Its unit is "per tim".

SBML2LATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany