Visual Recognition: An Introduction

Gang Pan
Zhejiang University

Slide credit: Stanford CS131

Outline

- Introduction
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline

What are the different visual recognition tasks?

Classification:

Does this image contain a building? [yes/no]

Classification:

Is this an beach?

Image search

Image search

Organizing photo collections

Detection:

Does this image contain a car? [where?]

Detection:

Which object does this image contain? [where?]

Detection:

Accurate localization (segmentation)

Detection: Estimating object semantic & geometric attributes

Categorization vs Single instance recognition

Does this image contain the Chicago Macy's building?

Categorization vs Single instance recognition

Where is the crunchy nut?

Applications

Recognizing landmarks in mobile platforms

+ GPS

Activity or Event recognition

What are these people doing?

Visual Recognition

- Algorithms that have the capability to:
 - Classify images or videos
 - Detect and localize objects
 - Estimate semantic and geometrical attributes
 - Classify human activities and events

Why is this challenging?

How many object categories are there? 10,000 to 30,00

Challenges: viewpoint

Michelangelo 1475-1564

Challenges: illumination

image credit: J. Koenderink

Challenges: scale

Challenges: deformation

Challenges: occlusion

Magritte, 1957

Challenges: background clutter

Kilmeny Niland. 1995

Challenges: intra-class variation

Outline

- Introduction
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline

The machine learning framework

- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

Slide credit: L. Lazebnik

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

Source: N. Goyal

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

partitioning of feature space for two-category 2D and 3D data

Source: D. Lowe

K-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{\bigcirc}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

1-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{a}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

3-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{a}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

5-nearest neighbor

Distance measure - Euclidean

$$Dist(X^n, X^m) = \sqrt{\mathop{\triangle}_{i=1}^{D} (X_i^n - X_i^m)^2}$$

K-NN: a very useful algorithm

- Simple, a good one to try first
- Very flexible decision boundaries
- With infinite examples, 1-NN provably has error that is at most twice Bayes optimal error (out of scope for this class).

K-NN: issues to keep in mind

Choosing the value of k:

- If too small, sensitive to noise points
- If too large, neighborhood may include points from other classes

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!

Cross validation

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)

Euclidean measure

011111111111

d = 1.4142

VS

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1$

d = 1.4142

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)
 - Solution: normalize the vectors to unit length

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!
- Can produce counter-intuitive results (using Euclidean measure)
 - Solution: normalize the vectors to unit length
- Curse of Dimensionality

Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of 5/5000=0.001 on the average to capture 5 nearest neighbors.
 - In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
 - In d dimensions, we must go $\left(0.001\right)^{1/d}$

Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of 5/5000=0.001 on the average to capture 5 nearest neighbors.
 - In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
 - In d dimensions, we must go $\left(0.001\right)^{1/d}$

K-NN: issues to keep in mind

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate
- Can produce counter-intuitive results (using Euclidean measure)
 - Solution: normalize the vectors to unit length
- Curse of Dimensionality
 - Solution: no good one

Many classifiers to choose from

K-nearest neighbor

Which is the best one?

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- RBMs
- Etc.

Generalization

Training set (labels known)

Test set (labels unknown)

 How well does a learned model generalize from the data it was trained on to a new test set?

Bias-Variance Trade-off

 Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

 Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Bias versus variance

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Slide credit: L. Lazebnik

Bias versus variance

No Free Lunch Theorem

In a supervised learning setting, we can't tell which classifier will have best generalization

Remember...

 No classifier is inherently better than any other: you need to make assumptions to generalize

- Three kinds of error
 - Inherent: unavoidable
 - Bias: due to over-simplifications
 - Variance: due to inability to perfectly estimate parameters from limited data

How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data

How do you reduce bias?

Last remarks about applying machine learning methods to object recognition

- There are machine learning algorithms to choose from
- Know your data:
 - How much supervision do you have?
 - How many training examples can you afford?
 - How noisy?
- Know your goal (i.e. task):
 - Affects your choices of representation
 - Affects your choices of learning algorithms
 - Affects your choices of evaluation metrics
- Understand the math behind each machine learning algorithm under consideration!

Outline

- Introduction
- K-nearest neighbor algorithm
- A simple Object Recognition pipeline

Object recognition: a classification framework

 Apply a prediction function to a feature representation of the image to get the desired output:

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Training Images

Input image

Input image

Input image

Global shape: PCA space

- ? Translation
- ? Scale
- ? Rotation (in-planar)
- ? Occlusion

Input image

Global shape: PCA space

- Translation
- ? Scale
- Rotation (in-planar)
- Occlusion

Input image

Invariance?

- Translation
- Scale
- Rotation
- Occlusion

Global shape: PCA space

Invariance?

- Translation
- ? Scale
- Rotation
- Occlusion

- ? Translation
- ? Scale
- ? Rotation (in-planar)
- ? Occlusion

Input image

Global shape: PCA space

Invariance?

- Translation
- ? Scale
- Rotation
- Occlusion

- Translation
- ? Rotation (in-planar)
- Occlusion

Input image

<u>Invariance?</u>

- Translation
- Scale
- Rotation
- Occlusion

Global shape: PCA space

- Translation
- ? Scale
- Rotation
- Occlusion

Input image

Global shape: PCA space

- Translation
- ? Scale
- Rotation
- Occlusion

Classifiers: Nearest neighbor

Slide credit: L. Lazebnik

Classifiers: Nearest neighbor

Slide credit: L. Lazebnik

Results

	Color	D_xD_y	Mag-Lap	PCA Masks	PCA Gray	Cont. Greedy	Cont. DynProg	Avg.
apple	57.56%	85.37%	80.24%	78.78%	88.29%	77.07%	76.34%	77.66%
pear	66.10%	90.00%	85.37%	99.51%	99.76%	90.73%	91.71%	89.03%
tomato	98.54%	94.63%	97.07%	67.80%	76.59%	70.73%	70.24%	82.23%
cow	86.59%	82.68%	94.39%	75.12%	62.44%	86.83%	86.34%	82.06%
dog	34.63%	62.44%	74.39%	72.20%	66.34%	81.95%	82.93%	67.84%
horse	32.68%	58.78%	70.98%	77.80%	77.32%	84.63%	84.63%	69.55%
cup	79.76%	66.10%	77.80%	96.10%	96.10%	99.76%	99.02%	87.81%
car	62.93%	98.29%	77.56%	100.0%	97.07%	99.51%	100.0%	90.77%
total	64.85%	79.79%	82.23%	83.41%	82.99%	86.40%	86.40%	80.87%

Dataset: ETH-80, by B. Leibe, 2003

Results

Category	Primary feature(s)	Secondary feature(s)
apple	PCA Gray	Texture $D_x D_y$
pear	PCA Gray / Masks	
tomato	Color	Texture Mag-Lap
cow	Texture Mag-Lap	Contour / Color
dog	Contour	
horse	Contour	
cup	Contour	PCA Gray / Masks
car	PCA Masks / Contour	Texture $D_x D_y$

Dataset: ETH-80, by B. Leibe, 2003