Measuring Frequency of Square Wave

(3

Counter Settings

Prescaler (PS... 0

Counter Mode Up

Counter Perio... 65535

Internal Clock... No Division

Repetition Co... 0

auto-reload or Nicable

با تنظیمات بالا برای تایمر آزمایش را ادامه میدهیم

با توجه به مقادیر بالا و روش استفاده شده، حداقل فرکانس قابل اندازه گیری بر ابر $\frac{84M}{(65536)}$ هر تز و حداکثر فرکانس قابل اندازه گیری بر ابر $\frac{84M}{8}=10.5$ هر تز است. اما در عمل به دلیل اینکه پروتئوس قادر به شبیه سازی درست میکروکنتر لر در فرکانس بالا نیست، تا حدود 5000 هر تز را میتوان دید.

چون فرکانس اندازه گیری شده از معادله $\frac{84M}{8*Count}$ اندازه گیری میشود که Count برابر شمارش تایمر در زمان اندازه گیری بین دو لبه بالا رونده موج است، پس حداکثر خطا برای 0.5 ،Count واحد است. با توجه به رابطه فوق هر چه فرکانس بالاتر رود دقت پابین می اید، مثلا برای اندازه گیری فرکانس 237 هرتز داریم $\frac{84M}{8*44304}$ که خطایی بسیار ناچیز است، اما برای اندازه گیری فرکانس 17Khz داریم $\frac{84M}{8*44304}$ که یعنی $\frac{84M}{8*618}$ که یعنی $\frac{84M}{8*618}$ که یعنی $\frac{84M}{8*618}$ که یعنی $\frac{84M}{8*618}$

در فرکانس های پایین که خطای کمتر از 1Hz داریم صفحه نمایش به دلیل داشتن رزولوشن 1Hz محدود کننده دقت است

میتوان گفت در محدوده $frequency \pm 1$ است ما برابر $[160Hz \sim 3000Hz]$ است

فركانس هاى ورودى 500Hz و 162Hz. نتايج شبيه سازى گفته هاى بالا را تابيد ميكند

فرکانس تایمر را طوری تنظیم کردیم که هر 800ms اینتراپت دهد. پس فرکانس آن برابر 1.25Hz است، پس حداقل فرکانس قابل اندازه گیری میشود. اما با توجه به فرکانس قابل اندازه گیری میشود. اما با توجه به اینکه پروتئوس نمیتواند مدار را در فرکانس های بالا شبیه سازی کند، در عمل تا حدود 10KHz را میتوان اندازه گرفت. ضمنا، عدد 65536 با توجه به تعداد بیت شمارنده تایمر ((16)) گفته شده است، یعنی اگر متغیری بیشتر از این مقدار بیت به عنوان شمارشگر استفاده کنیم، فرکانس های بیشتری را میتوان اندازه گیری کرد.

فرکانس در این سیستم از رابطه $\frac{count}{0.8}$ به دست می آید که Count برابر تعداد لبه های بالا رونده دیده شده در ورودی است. با توجه به رابطه رزولوشن این سیستم برابر 1.25 است اما چون صفحه نمایش بدون رقم اعشاری فرکانس را نشان میدهد در حالت کلی رزولوشن 1 و دقت برابر 1 1 است.

آزمایش های عملی هم نتایج فوق را تایید میکند

(5

مزیت روش دوم نسبت به روش اول، دقت ثابت در همه فرکانس ها حتی فرکانس های بالا، قابلیت اندازه گیری فرکانس های بالا، فرکانس های بالا، فرکانس های بالا، دقت کمتر از 160Hz، و عیب روش دوم نسبت به روش یک، محدودیت در اندازه گیری فرکانس های بالا، دقت کمتر در اندازه گیری فرکانس های پایین و همچنین زمان محاسبه بیشتر است.

Infrared Distance Sensor

Absolute Maximum Ratings

Ta = 25°C, $V_{CC} = 5$ VDC

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	-0.3 to +7	٧
Output Terminal Voltage	V _O	-0.3 to (V _{CC} +0.3)	V
Operating Temperature	Topr	-10 to +60	°C
Storage Temperature	Tstg	-40 to +70	°C

Operating Supply Voltage

PARAMETER	SYMBOL	RATING	UNIT
Operating Supply Voltage	V _{CC}	4.5 to 5.5	٧

Electro-optical Characteristics

Ta = 25°C, $V_{CC} = 5$ VDC

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTES
Measuring Distance Range	ΔL		4	_	30	cm	1, 2
Output Terminal Voltage	V _O	L = 30 cm	0.25	0.4	0.55	V	1, 2
Output Voltage Difference	ΔV _O	Output change at Δ L (30 cm – 4 cm)	1.95	2.25	2.55	V	1, 2
Average Supply Current	I _{CC}	L = 30 cm	_	33	50	mA	1, 2

L	4	6.6	9.2	11.8	14.4	17	19.6	22.2	24.8	27.4
Vo	2.7	1.9	1.38	1.1	0.91	0.78	0.684	0.61	0.55	0.51

پس حد اکثر خطای ممکن بر ابر $0.04cm=\frac{14.6}{(0.466)}-\frac{14.6}{(0.466)}=0.04cm$ خواهد بود، اما با توجه به اینکه معادله در ونیابی شده با متلب کامل بر معادله و اقعی منطبق نیست، خطای بیشتری (در عمل $\pm 0.3cm$) داریم. $accuracy=L\pm 0.3cm$

Incremental encoder

Digital Oscilloscope

برای محاسبه سرعت از روش دوم در سوال ۴ استفاده کردیم، پس حداقل فرکانس قابل اندازه گیری 1.25 است. سرعت بر حسب RPM از رابطه $60.\frac{count}{0.8(94)}$ به دست می آید که Count برابر تعداد لبه های بالا رونده در زمان RPM میباشد، پس حداقل سرعت قابل اندازه گیری برابر RRM RRM میباشد

حداكثر سرعت قابل اندازه گیری نیز برابر $\frac{81920}{94} = \frac{81920}{94} = \frac{60.89}{94}$ خواهد بود، اما حداكثر سرعت موتور طبق آزمایش برابر $\frac{1000RPM}{1000RPM}$ است.

دقت دستگاه برابر O.8RPM .

Ultrasonic Distance Sensor

رنگ زرد TR و رنگ آبیECHO

محدوده حسگر برابر $[3cm \sim 330cm]$ میباشد. و بعد از 330cm مقداری غلط نشان داده میشود.

سرعت صوت به صورت: $m/_{S}=344$ به دست می آید.

زمان را با دقت $2\mu s$ اندازه میگیریم، پس دقت محاسبه طول برابر $\frac{2}{29.04} = 0.068cm$ خواهد بود یعنی دقت اندازه گیری ما به صورت $Distance = d \pm 0.068cm$ میباشد.

Pressure Sensor

ORDERING INFORMATION										
Device Name	Package Case		Case # of Ports		Pressure Type			Device Marking		
Device Name	Options	No.	None	Single	Dual	Gauge	Differential	Absolute	Device Marking	
Unibody Package (N	Unibody Package (MPX4250 Series)									
MPX4250D	Tray	867	•				•		MPX4250D	
MPX4250GP	Tray	867B		•		•			MPX4250GP	
MPX4250DP	Tray	867C			•		•		MPX4250DP	

UNIBODY PACKAGES

با توجه به دیتاشیت، این نوع حسگر، فشار تفاضلی را برحسب پاسکال اندازه گیری میکند.

V	0	26	52	78	104	130	156	182	208	234
Pressure(kPa)	0.27	0.758	1.25	1.74	2.22	2.71	3.2	3.69	4.18	4.67

 $\frac{5}{4096} = 1.22 mV$: ADC دقت اندازه گیری

پس با توجه به معادله بدست آمده دقت $P \pm 0.06$ بست که چون نمایشگر ارقام اعشاری را نشان نمیدهد، دقت سیستم توسط میکروکنتر لر محدود نمیشود و فشار های مورد نظر بدون خطا روی صفحه، نمایش داده میشوند.

$$Accuracy = P \pm 0$$