ALGEBRA SUPERIOR 2

Grupo 4098

Soluciones y Demostraciones

ALUMNOS:

- Palacios Rodríguez Ricardo Rubén
- Rosas Hernandez Oscar Andres
- José Martín Panting Magaña
- Raúl Leyva Cedillo
- Angel Mariano Guiño Flores
- Gloria Guadalupe Cervantes Vidal
- David Iván Morales Campos
- Aaron Barrera Tellez
- Elias Garcia Alejandro
- Víctor Hugo García Hernández
- Oscar Márquez Esquivel

PROFESOR:

Leonardo Faustinos Morales

12 de Septiembre de 2017

ÍNDICE

$\mathbf{\acute{I}ndice}$

1.	Divisibilidad	2
	1.1. Problema 1	2
	1.2. Problema 3	4
	1.3. Problema 5	8
	1.4. Problema 7	8
	1.5. Problema 9	8
	1.6. Problema 11	8
	1.7. Problema 15	9
	1.8. Problema 17	9
	1.9. Problema 17.1	9
	1.10. Problema 19	10
	1.11. Problema 21	10
	1.12. Problema 23	10
	1.13. Problema 25	11
	1.14. Problema 29	11
	1.15. Problema 31	11
	1.16. Problema 33	13
	1.17. Problema 35	13
2.	Primos	14
4.		
	2.1. Problema 2	14
	2.2. Problema 3	14
	2.3. Problema 10	15
	2.4. Problema 11	15
	2.5. Problema 28	16

1. Divisibilidad

1.1. Problema 1

Algoritmo de Euclides: Encontrar el GCD(A, B)

Calcular el GCD(2947, 3997)

$$(a:2947) = (b:3997)(q:0) + (r:2947)$$

$$(a:3997) = (b:2947)(q:1) + (r:1050)$$

$$(a:2947) = (b:1050)(q:2) + (r:847)$$

$$(a:1050) = (b:847)(q:1) + (r:203)$$

$$(a:847) = (b:203)(q:4) + (r:35)$$

$$(a:203) = (b:35)(q:5) + (r:28)$$

$$(a:35) = (b:28)(q:1) + (r:7)$$

$$(a:28) = (b:7)(q:4) + (r:0)$$

Así que GCD(2947, 3997) = 7

Calcular el GCD(2689, 4001)

$$(a:2689) = (b:4001)(q:0) + (r:2689)$$

$$(a:4001) = (b:2689)(q:1) + (r:1312)$$

$$(a:2689) = (b:1312)(q:2) + (r:65)$$

$$(a:1312) = (b:65)(q:20) + (r:12)$$

$$(a:65) = (b:12)(q:5) + (r:5)$$

$$(a:12) = (b:5)(q:2) + (r:2)$$

$$(a:5) = (b:2)(q:2) + (r:1)$$

$$(a:2) = (b:1)(q:2) + (r:0)$$

Así que GCD(2689, 4001) = 1

1 DIVISIBILIDAD 1.1 PROBLEMA 1

Calcular el GCD(7469, 2464)

$$(a:7469) = (b:2464)(q:3) + (r:77)$$

$$(a:2464) = (b:77)(q:32) + (r:0)$$

Así que GCD(7469, 2464) = 77

Calcular el GCD(2947, 3997)

•
$$(a:2947) = (b:3997)(q:0) + (r:2947)$$

$$(a:3997) = (b:2947)(q:1) + (r:1050)$$

$$(a:2947) = (b:1050)(q:2) + (r:847)$$

$$(a:1050) = (b:847)(q:1) + (r:203)$$

$$(a:847) = (b:203)(q:4) + (r:35)$$

$$(a:203) = (b:35)(q:5) + (r:28)$$

•
$$(a:35) = (b:28)(q:1) + (r:7)$$

$$(a:28) = (b:7)(q:4) + (r:0)$$

Así que GCD(2947, 3997) = 7

Calcular el GCD(1109, 4999)

$$(a:1109) = (b:4999)(q:0) + (r:1109)$$

$$(a:4999) = (b:1109)(q:4) + (r:563)$$

$$(a:1109) = (b:563)(q:1) + (r:546)$$

$$(a:563) = (b:546)(q:1) + (r:17)$$

$$(a:546) = (b:17)(q:32) + (r:2)$$

$$(a:17) = (b:2)(q:8) + (r:1)$$

•
$$(a:2) = (b:1)(q:2) + (r:0)$$

Así que GCD(1109, 4999) = 1

1 Divisibilidad 1.2 Problema 3

1.2. Problema 3

Algoritmo de Euclides Extendido y Coeficientes de Bezut

Encontremos los coeficientes de 243x + 198y = 9

- (a:243) = (b:198)(q:1) + (r:45)
- (a:198) = (b:45)(q:4) + (r:18)
- (a:45) = (b:18)(q:2) + (r:9)
- (a:18) = (b:9)(q:2) + (r:0)

El proceso para encontrar los coeficientes de Bezut son:

- (a': 243) = (a': 243)(m:1) + (b': 198)(n:0)
- $\bullet (b':198) = (a':243)(m:0) + (b':198)(n:1)$
- (r:45) = (a:243) (b:198)(1:1) = (a':243)(m:1) + (b':198)(n:-1)
- (r:18) = (a:198) (b:45)(1:4) = (a':243)(m:-4) + (b':198)(n:5)
- (r:9) = (a:45) (b:18)(1:2) = (a':243)(m:9) + (b':198)(n:-11)
- (r:0) = (a:18) (b:9)(1:2) = (a':243)(m:-22) + (b':198)(n:27)

Por lo tanto el GCD(243, 198) = 9

Y los números de Bezut son (243, 198) = (9, -11)

Y la Identidad de Bezut es: (GCD:9) = (a':243)(m:9) + (b':198)(n:-11)

1 DIVISIBILIDAD 1.2 PROBLEMA 3

Encontremos los coeficientes de 71x + 50y = 1

•
$$(a:71) = (b:50)(q:1) + (r:21)$$

$$(a:50) = (b:21)(q:2) + (r:8)$$

•
$$(a:21) = (b:8)(q:2) + (r:5)$$

$$(a:8) = (b:5)(q:1) + (r:3)$$

$$(a:5) = (b:3)(q:1) + (r:2)$$

•
$$(a:3) = (b:2)(q:1) + (r:1)$$

$$(a:2) = (b:1)(q:2) + (r:0)$$

El proceso para encontrar los coeficientes de Bezut son:

$$(a':71) = (a':71)(m:1) + (b':50)(n:0)$$

$$(b':50) = (a':71)(m:0) + (b':50)(n:1)$$

$$(r:21) = (a:71) - (b:50)(1:1) = (a':71)(m:1) + (b':50)(n:-1)$$

$$(r:8) = (a:50) - (b:21)(1:2) = (a':71)(m:-2) + (b':50)(n:3)$$

$$(r:5) = (a:21) - (b:8)(1:2) = (a':71)(m:5) + (b':50)(n:-7)$$

$$(r:3) = (a:8) - (b:5)(1:1) = (a':71)(m:-7) + (b':50)(n:10)$$

$$(r:2) = (a:5) - (b:3)(1:1) = (a':71)(m:12) + (b':50)(n:-17)$$

$$(r:1) = (a:3) - (b:2)(1:1) = (a':71)(m:-19) + (b':50)(n:27)$$

$$(r:0) = (a:2) - (b:1)(1:2) = (a':71)(m:50) + (b':50)(n:-71)$$

Por lo tanto el GCD(71, 50) = 1

Y los números de Bezut son (71, 50) = (-19, 27)

Y la Identidad de Bezut es: (GCD:9) = (GCD:1) = (a':71)(m:-19) + (b':50)(n:27)

Grupo 4098 5 VE AL ÍNDICE

1 DIVISIBILIDAD 1.2 PROBLEMA 3

Encontremos los coeficientes de 43 + 64 = 1

$$(a:43) = (b:64)(q:0) + (r:43)$$

•
$$(a:64) = (b:43)(q:1) + (r:21)$$

$$(a:43) = (b:21)(q:2) + (r:1)$$

$$(a:21) = (b:1)(q:21) + (r:0)$$

El proceso para encontrar los coeficientes de Bezut son:

$$(a':43) = (a':43)(m:1) + (b':64)(n:0)$$

$$(b':64) = (a':43)(m:0) + (b':64)(n:1)$$

$$(r:43) = (a:43) - (b:64)(1:0) = (a':43)(m:1) + (b':64)(n:0)$$

$$(r:21) = (a:64) - (b:43)(1:1) = (a':43)(m:-1) + (b':64)(n:1)$$

$$(r:1) = (a:43) - (b:21)(1:2) = (a':43)(m:3) + (b':64)(n:-2)$$

$$(r:0) = (a:21) - (b:1)(1:21) = (a':43)(m:-64) + (b':64)(n:43)$$

Por lo tanto el GCD(43, 64) = 1

Y los números de Bezut son (43,64) = (3,-2)

Y la Identidad de Bezut es: (GCD:1) = (a':43)(m:3) + (b':64)(n:-2)

1 DIVISIBILIDAD 1.2 PROBLEMA 3

Encontremos los coeficientes de 93 + 81 = 3

$$(a:93) = (b:81)(q:1) + (r:12)$$

•
$$(a:81) = (b:12)(q:6) + (r:9)$$

$$(a:12) = (b:9)(q:1) + (r:3)$$

$$(a:9) = (b:3)(q:3) + (r:0)$$

El proceso para encontrar los coeficientes de Bezut son:

$$(a':93) = (a':93)(m:1) + (b':81)(n:0)$$

$$(b':81) = (a':93)(m:0) + (b':81)(n:1)$$

$$(r:12) = (a:93) - (b:81)(1:1) = (a':93)(m:1) + (b':81)(n:-1)$$

$$(r:9) = (a:81) - (b:12)(1:6) = (a':93)(m:-6) + (b':81)(n:7)$$

$$(r:3) = (a:12) - (b:9)(1:1) = (a':93)(m:7) + (b':81)(n:-8)$$

$$(r:0) = (a:9) - (b:3)(1:3) = (a':93)(m:-27) + (b':81)(n:31)$$

Por lo tanto el GCD(93, 81) = 3

Y los números de Bezut son (93, 81) = (7, -8)

Y la Identidad de Bezut es: (GCD:3) = (a':93)(m:7) + (b':81)(n:-8)

Encontremos los coeficientes de 10x + 15y = 5 ... Espera, este es muy obvio, es simplemente (GCD:5) = (a':10)(m:-1) + (b':15)(n:1)

Mientras que el de 6x + 5y = 1 es (GCD:1) = (a':6)(m:1) + (b':5)(n:-1)

Por lo tanto: (GCD:1) = (a':6)(m:1) + (b':10)(n:1) + (c':15)(o:-1)

Grupo 4098 7 VE AL ÍNDICE

1 DIVISIBILIDAD 1.3 PROBLEMA 5

1.3. Problema 5

¿Cuantos enteros hay entre 100 y 1000 que sean divisibles entre 7?

Empecemos porque el primero es 105, de ahi hay 127 más, pues 105 + (127 * 7) = 994.

Por lo tanto son 128 enteros.

Otro truco es aplicar el algoritmo de la división y ver que 1000 = 7(142) + 6 y 100 = 7(14) + 2 y 142 - 14 = 128.

1.4. Problema 7

Mostrar 3 enteros que son relativos, pero no primos relativos a pares

Esto simplemente no se puede, si un conjunto es primo relativo, entonces lo será cada par de sus elementos.

1.5. Problema 9

Si bc|ac entonces a|c

Demostración:

Si c = 0 esto se reduce a 0|0 lo cual es cierto.

Si bc|ac entonces ac=q(bc), por lo tanto ya que estamos en los enteros podemos cancelar y ver que a=bq es decir b|a.

1.6. Problema 11

Nunca se cumple que $4|n^2+2$

Demostración:

Suponga que n es par, por lo tanto tenemos que: $(2k)^2 + 2$ se puede expresar como $4k^2 + 2$, por lo tanto no es divisible entre cuatro.

Si n es impar, tenemos que $(2k+1)^+2$ se puede expresar como $4k^2+4k+1+2$ es decir $4(k^2+k)+3$, por lo tanto tampoco es divisible entre cuatro.

1 Divisibilidad 1.7 Problema 15

1.7. Problema 15

Si x,y son impares entonces (x^2+y^2) es par pero no divisible entre 4

Demostración:

Pongamos que: $x = 2k_1 + 1$ y $x = 2k_2 + 1$, entonces:

$$x^{2} + y^{2} = (2k_{1} + 1)^{2} + (2k_{2} + 1)^{2}$$

$$= 4k_{1}^{2} + 4k_{1} + 1 + 4k_{2}^{2} + 4k_{2} + 1$$

$$= 4k_{1}^{2} + 4k_{1} + 4k_{2}^{2} + 4k_{2} + 2$$

$$= 4(k_{1}^{2} + k_{1} + k_{2}^{2} + k_{2}) + 2$$

$$= 2(2(k_{1}^{2} + k_{1} + k_{2}^{2} + k_{2}) + 1)$$

Gracias a la última línea vemos que que x^2+y^2 es par, y gracias a la penúltima línea es vemos que no puede ser divisible entre 4

1.8. Problema 17

$$GCD(n, n+1) = 1$$

Demostración:

Sea d = GCD(n, n+1), ahora tenemos que $d|n \ y \ d|n+1$, por lo tanto divide a cualquier combinación lineal como por ejempo d|(-1)n+1(n+1) entonces d|1 por lo tanto solo le queda a d ser uno.

1.9. Problema 17.1

$$LCM(n, n+1) = |n(n+1)|$$

Demostración:

Ya sabemos que GCD(n, n + 1) = 1 por lo tanto 1LCM(n, n + 1) = |n(n + 1)|

1 Divisibilidad 1.10 Problema 19

1.10. Problema 19

Cualquier conjunto de números primos pares, son primos relativos

Demostración:

Por contradicción, supón que hay un conjunto donde no son primos relativos, pero si sus pares de elementos son coprimos.

Sabemos que:

$$A = \{ a_1, a_2, a_3, \dots, a_{n-1}, a_n \} \text{ donde } (a_i, a_j) = 1 \ \forall i, j, i \neq j \}$$

Si el conjunto no fuera coprimo entonces pasaría que: $GCD(a_1, a_2, a_3, \dots, a_{n-1}, a_n) = d$ con $d \neq 1$

Y por definición sabemos que $d|a_i \ \forall a_i \in S$

Pero si para todos los pares de números tenemos que el único número que divide a ambos es el uno.

Así, ningún miembro de A tiene un divisor común con d lo que sea una contradicción.

Por lo tanto, el conjunto de enteros que son relativamente primos en pares es también relativamente primo.

1.11. Problema 21

Demuestre que cualquier entero de la forma 6k+1 es de la forma 3k-1 pero no de manera inversa

Demostración:

Si tenemos un número de la forma 6k + 1 entonces ve que 6k + 1 = 3(2k + 2) - 1

Pero veamos una contraprueba para su inversa: Dado un número de la forma 3k-1, por ejemplo 2, tenemos que no lo podemos escribir de la forma 6k+1, pues implica 6k+1=2 es decir 6k=1, lo cual obviamente no tiene solución en los enteros, por lo tanto queda demostrado que su inversa no es correcta.

1.12. Problema 23

$$n^2 = 3k$$
 ó $n^2 = 3k + 1$

Demostración:

Antes que nada recuerda que un cuadrado perfecto, lo podemos expresar como:

$$(3k+0)^2 = 9k^2 = 3(3k^2)$$

$$(3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$$

Grupo 4098 10 Ve al Índice

1 DIVISIBILIDAD 1.13 PROBLEMA 25

$$(3k+2)^2 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1$$

Es decir, todo cuadrado perfecto o es divisible entre 3 o es de la forma 3k + 1.

1.13. Problema 25

Demuestre que existe una cantidad infinita de enteros x, y tal que x + y = 100 y (x, y) = 5

Demostración:

Ve que una solución es 55+45=5 y (55,45)=5 Para encontrar todas las demás soluciones simplemente tenemos que:

- x = 55 + r
- y = 55 r

donde r = 100k y k es cualquier entero tal que (k, 55) = 1

1.14. Problema 29

$a, b \in \mathbb{Z}$ existen enteros x, y tal que GCD(x, y) = b y LCM(x, y) = a si y solo si b|a

Demostración:

Probemos por doble condicional.

Empecemos de ida:

Dado GCD(x, y) = b por lo tanto b|x y dado LCM(x, y) = a por lo tanto x|a y ya que la divisibilidad es transicitva tenemos por lo tanto que b|a.

Primero empecemos de regreso:

Si b|a, entonces a=bq. Podemos decir que $GCD(b,a)=GCD(b,bq)=b\cdot GCD(1,q)$. Podemos decir que MCL(b,a)=MCL(b,bq)=bq=a.

Por lo tanto propongamos que x = a y a y = b entonces tenemos que se cumple la propiedad.

1.15. Problema 31

$$a-1|a^n-1$$

Demostración:

Es muy obvio esto si n = 1, pues a - 1|a - 1 y con n = 2, pues $a - 1|a^2 - 1$ ya que gracias a la diferencia de cuadrados tenemos que: a - 1|(a + 1)(a - 1).

1 DIVISIBILIDAD 1.15 PROBLEMA 31

Con una n par es también muy fácil pues basta con ver que podemos siempre factorizar un a-1, pero también podemos hacer lo mismo con un n impar, basta con ver la descomposición del polinomio.

1 DIVISIBILIDAD 1.16 PROBLEMA 33

1.16. Problema 33

$$\mathrm{GCD}(a,b,c)=\mathrm{GCD}((a,\,b),\,c)$$

Demostración:

Usando la factorización de primos tenemos que:

- $a = \prod_i p^{\alpha_i}$
- $b = \prod_i p^{\beta_i}$
- $c = \prod_i p^{\gamma_i}$

Entonces tenemos que:

$$GCD(a,b,c) = \prod_{i} p^{min(\alpha_{i},\beta_{i},\gamma_{i})} = \prod_{i} p^{min(min(\alpha_{i},\beta_{i}),\gamma_{i}))} = GCD((a,b),c)$$

1.17. Problema 35

Si
$$GCD(b,c) = 1$$
 y $r|b$ entonces $GCD(r,c) = 1$

Demostración:

Usando la Identidad de Bezut esto esta regalado pues tenemos que bx + cy = 1 y b = rq entonces r(qx) + cy = 1 por lo tanto GCD(r, c) = 1. Que facil son ciertas demostraciones.

2. Primos

2.1. Problema 2

Un número $n \in \mathbb{Z}$ es divisible entre 3 si y solo si la suma de digitos (en base 10) de n es divisible entre 3

Demostración:

Antes que nada, recuerda que a n lo puedes escribir como $n = a_0(10^0) + a_1(10^1) + a_2(10^2) + \cdots + a_k(10^k)$.

Ahora, también recuerda que $10 \equiv 1 \pmod{3}$.

Ahora 3|n si y solo si $n \equiv 0 \pmod{3}$ y recuerda que podemos poner a n escrito de otra forma: $a_0(10^0) + a_1(10^1) + a_2(10^2) + \cdots + a_k(10^k) \equiv 0 \pmod{3}$ y como recuerdas $(10 \equiv 1 \pmod{3})$ tenemos que esto ocurre si y solo si: $a_0 + a_1 + \cdots + a_k \equiv 0 \pmod{3}$, esto es lo mismo que $3|a_0 + a_1 + a_2 + \cdots$

Es decir, un número $n \in \mathbb{Z}$ es divisble entre 3 si y solo si la suma de digitos de n es divisible entre 3.

2.2. Problema 3

Cualquier número es divisible entre 11 si y solo si la diferencia de la suma de los dígitos impares y los dígitos pares son divisibles entre 11

Demostración:

Antes que nada, recuerda que a n lo puedes escribir como $n = a_0(10^0) + a_1(10^1) + a_2(10^2) + \cdots + a_k(10^k)$.

Ahora, veamos este curioso patrón donde esta la clave:

- $10 \equiv -1 \pmod{11}$
- $100 \equiv (10)(10) \equiv (-1)(-1) \equiv 1 \pmod{11}$
- $1000 \equiv (100)(10)(10) \equiv (-1)(-1)(-1) \equiv -1 \pmod{11}$
- **=** ...

Por lo tanto vemos que que de manera general $10^n \equiv (-1)^n \pmod{11}$

Entonces si un número x es divisible entre 11 tendremos que $x \equiv 0 \pmod{11}$ Por lo tanto $(1)a_0 + (10)a_1 + \cdots + (10^k)a_k \equiv 0 \pmod{11}$ es decir $(1)a_0 + (-1)a_1 + (1)a_1 + \cdots + (-1)^{k-1}a_k \equiv 0 \pmod{11}$

Que si te das cuenta, es lo que queriamos demostrar :D

2 Primos 2.3 Problema 10

2.3. Problema 10

Si x, y son impares entonces $x^2 + y^2$ no puede ser un cuadrado perfecto

Demostración:

Esta demostración se deduce de manera inmediata del siguiente problema, pero ya que lo estoy haciendo en LATEXes tal fácil como un copy paste :D

Antes que nada recuerda que un cuadrado perfecto, lo podemos expresar como:

$$(3k+0)^2 = 9k^2 = 3(3k^2)$$

$$(3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$$

$$(3k+2)^2 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1$$

Es decir, todo cuadrado perfecto o es divisible entre 3 o es de la forma 3k + 1.

Dado esto tenemos que:

$$(3k_1 + 1)^2 + (3k_2 + 1)^2 = 9k_1^2 + 6k_1 + 1 + 9k_2^2 + 6k_2 + 1$$
$$= 9k_1^2 + 6k_1 + 9k_2^2 + 6k_2 + 2$$
$$= 9k_1^2 + 6k_1 + 9k_2^2 + 6k_2 + 2$$
$$= 3(3k_1^2 + 2k_1 + 3k_2^2 + 2k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.

2.4. Problema 11

Si x, y son coprimos con 3 entonces $x^2 + y^2$ no puede ser un cuadrado perfecto

Demostración:

Antes que nada recuerda que un cuadrado perfecto, lo podemos expresar como:

$$(3k+0)^2 = 9k^2 = 3(3k^2)$$

$$(3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$$

$$(3k+2)^2 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1$$

Es decir, todo cuadrado perfecto o es divisible entre 3 o es de la forma 3k + 1.

Veamos los casos posibles:

$$x = 3k_1 + 1$$
 y $y = 3k_2 + 1$

2 Primos 2.5 Problema 28

Dado esto tenemos que:

$$(3k_1 + 1)^2 + (3k_2 + 1)^2 = 9k_1^2 + 6k_1 + 1 + 9k_2^2 + 6k_2 + 1$$

$$= 9k_1^2 + 6k_1 + 9k_2^2 + 6k_2 + 2$$

$$= 9k_1^2 + 6k_1 + 9k_2^2 + 6k_2 + 2$$

$$= 3(3k_1^2 + 2k_1 + 3k_2^2 + 2k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.

 $x = 3k_1 + 1 y y = 3k_2 + 2$

Dado esto tenemos que:

$$(3k_1 + 1)^2 + (3k_2 + 2)^2 = 9k_1^2 + 6k_1 + 1 + 9k_2^2 + 12k_2 + 3 + 1$$
$$= 9k_1^2 + 6k_1 + 3 + 9k_2^2 + 12k_2 + 2$$
$$= 3(3k_1^2 + 2k_1 + 1 + 3k_2^2 + 4k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.

■ $x = 3k_1 + 2$ y $y = 3k_2 + 2$ Dado esto tenemos que:

$$(3k_1 + 2)^2 + (3k_2 + 2)^2 = 9k_1^2 + 12k_1 + 3 + 1 + 9k_2^2 + 12k_2 + 3 + 1$$
$$= 9k_1^2 + 12k_1 + 6 + 9k_2^2 + 12k_2 + 2$$
$$= 3(3k_1^2 + 6k_1 + 2 + 3k_2^2 + 6k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.

2.5. Problema 28

Todo número compuesto n tiene un divisor a tal que $a \leq \sqrt{n}$

Dado un entero particular, ¿Cómo podemos saber si es primo o no?

Si el número es compuesto, ¿Cómo podemos encontrar un divisor no trivial?

La primera idea es verificar si todos los enteros menores son divisores, si los únicos divisores son el 1 y el -1 entonces el número será primo.

Este método es simple pero costoso en términos de cómputo. Sin embargo la propiedad de arriba nos podría facilitar el cálculo.

Demostración:

En efecto, como n es compuesto, n = ab.

Si a=b, es decir si es un cuadrado perfecto entonces $a=b=a^2=\sqrt{n}$.

En caso contrario podemos suponer, que a < b, si multiplicamos por a tenemos que $a^2 < ab$. Por lo tanto $a^2 < n$. Por lo que $a < \sqrt{n}$.