問1 正解は②です。

- ①利益見込み z を最大化する問題です。印刷教材 1.2 例 1 を確認してください。
- ②疑問点があれば、印刷教材 1.2 例 1 を確認してください。
- ③使用できる原料は36kg以下,使用できる水は15トン以下,機械稼働時間は22時間以下なので,制約式の不等号の向きが逆です。印刷教材1.2例1を確認してください。
- ④使用できる原料は36kg以下,使用できる水は15トン以下,機械稼働時間は22時間以下なので,制約式は等式ではなく不等式になります。印刷教材1.2例1を確認してください。

問2 正解は①です。

- ①疑問点があれば、印刷教材 1.3 例 2 を確認してください。
- ②栄養素 1 を 250 単位以上摂取するという制約,栄養素 2 を 300 単位以上摂取するという制約を定式化する必要がありますが,食品 A を $x_A(g)$,食品 B を $x_B(g)$ 摂取すると,栄養素 1 を 30 x_A +18 x_B (単位),栄養素 2 を 22 x_A +40 x_B (単位)摂取したことになります。印刷教材 1.3 例 2 を確認してください。
- ③目的関数は食費ですから、食品 A、B を各々 x_A , x_B (g) 摂取するとするときの食費は $70x_A+80x_B$ (円) となります。栄養素 1 を 250 単位以上摂取するという制約、栄養素 2 を 300 単位以上摂取するという制約を定式化する必要がありますが、一つ目の制約は、栄養素 1 の摂取量に関する制約なので、250 単位以上、二つ目の制約は、栄養素 2 の摂取量に関する制約なので、300 単位以上となる必要があります。印刷教材 1.3 例 2 を確認してください。
- ④目的関数は食費ですから、食品 A、B を各々 x_A 、 x_B (g) 摂取するとするときの食費は $70x_A+80x_B$ (円) となります。栄養素 1 を 250 単位以上摂取するという制約、栄養素 2 を 300 単位以上摂取するという制約を定式化する必要がありますが、食品 A を x_A (g)、食品 B を x_B (g) 摂取すると、栄養素 1 を $30x_A+18x_B$ (単位) 摂取したことになり、栄養素 2 を $22x_A+40x_B$ (単位) 摂取したことになります。印刷教材 1.3 例 2 を確認してください。

問3 正解は①です。

- ①疑問点があれば、印刷教材 1.4 例 3 を確認してください。
- ②送出元 \mathbf{S}_i から受取先 \mathbf{D}_j に \mathbf{x}_{ij} (トン) 輸送するので、送出元 \mathbf{S}_i から受取先 \mathbf{D}_j への 1トン当たりの輸送コストを \mathbf{c}_{ij} とすると、 \mathbf{z} は \mathbf{c}_{ij} \mathbf{x}_{ij} の和になります。この定式化では、 \mathbf{c}_{ij} と \mathbf{x}_{ij} の組み合わせが不適切です。印刷教材 1.4 例 3 を確認してください。

③非負条件以外の制約として、送出元 S1、S2、S3 における送出量の制約、受取先 D1、D2 における受け取り量の制約が必要です。この定式化では、送出量、受け取り量の制約としては x_{ii} の送出元と受取先が逆になっています。

例えば、最初の制約式は、 $\mathbf{S}1$ における送出量の制約としては、 $x_{11}+x_{12}=120$ とするべきです。印刷教材 1.4 例 3 を確認してください。

④送出元 \mathbf{S}_i から受取先 \mathbf{D}_j に \mathbf{x}_{ij} (トン) 輸送するので,送出元 \mathbf{S}_i から受取先 \mathbf{D}_j への 1トン当たりの輸送コストを \mathbf{c}_{ij} とすると, \mathbf{z} は \mathbf{c}_{ij} \mathbf{x}_{ij} の和になります。この定式化では, \mathbf{c}_{ii} と \mathbf{x}_{ij} の組み合わせが不適切です。

また,非負条件以外の制約として,送出元 S1,S2,S3 における送出量の制約,受取先 D1,D2 における受け取り量の制約が必要です。この定式化では,送出量,受け取り量の制約としては x_{ij} の送出元と受取先が逆になっています。例えば,最初の制約式は,S1 における送出量の制約としては, $x_{11}+x_{12}=120$ とするべきです。印刷教材 1.4 例 3 を確認してください。

問5 正解は④です。

-zの行で係数が負なのは x_1 だけです。すなわち次の基底の交換で基底に入るのは x_1 だけです。 x_1 の値を0から増加させた時, x_2 の行の制約を満たすには, x_2 の値(=24)が非負条件を満たす範囲で減少させます。その場合, x_1 は24/(1/3)=72まで増加させることができます。

一方, x_4 の行の制約を満たすには, x_4 の値(=48)を非負条件を満たす範囲で減少させます。その場合, x_1 は48/(7/3) \simeq 20.6まで増加させることができます。

また、 x_5 の行の制約を満たすには、 x_5 の値(=22)を非負条件を満たす範囲で減少させます。その場合、 x_1 は22/(11/3)=6まで増加させることができます。

全ての制約を満たすには、 x_1 の増加は最大 $\min\{72,20.6,6\}=6$ となります。 x_1 を 6 増加させると、 x_5 が 0 になるので、基底の交換で x_5 が基底から出ます。疑問点があれば、印刷教材の 2.4 を確認してください。

問6 正解は③です。

[イ]を含む等式は点 2 における出入りを表しています。左辺の [イ] 以外の部分は、点 2 から点 1 、点 3 、点 4 への出を表し、[イ] は点 1 、点 3 から点 2 への入りを表します。点 2 が最短路に含まれる場合、点 1 、点 3 の一方から点 2 に入り、点 2 から点 1 、点 3 、点 4 のうちの一つに出ます。点 2 が最短路に含まれない場合,出も入りもありません。したがって、いずれの場合も

$$x_{21} + x_{23} + x_{24} - (x_{12} + x_{32}) = 0$$

が成り立ちます。疑問点があれば、印刷教材 3.1 例 1 を確認してください。

問7 正解は①です。

- ①疑問点があれば、印刷教材 3.2 例 2 を確認して下さい。
- ②③④ [ア] を含む等式は点 2 における流量保存の制約を表しています。[イ] を含む等式は点 3 における流量保存の制約を表しています。すなわち,始点終点以外の点では,その点に入る流量の合計と,その点から出る流量の合計は等しくなります。例えば,点 2 から点 4 と点 5 に出ていますので,[ア] を含む等式の $x_{24}+x_{25}$ は点 2 から出る流量の合計を表しています。一方,点 2 へは点 1 から入っていますので,点 2 に入る流量の合計は x_{12} です。点 2 では流量保存が成り立つので,[ア]には $-x_{12}$ が入ります。点 3 についても同様です。印刷教材 3.2 例 2 を確認して下さい。

問8 正解は④です。

下図に示すように作業Aは時刻1に開始すれば、点3の最遅節点時刻に間に合います。 また、作業Dは時刻8に開始すれば、点4の最遅節点時刻に間に合います。

疑問点があれば、印刷教材 4.1.2 を確認してください。

問 11 正解は①です。

リードタイムが 5 日になると、 $K_{\mu}=\mu L=16\times 5=80$ (トン)、 $S=k(\alpha)\sqrt{L}\,\sigma=1.65\times\sqrt{5}\,\times 8\simeq 29.5$ (トン)となることから、発注点は $K=k_{\mu}+S\simeq 110$ (トン)となります。発注量は変化しません。疑問点があれば、印刷教材 5.3 例 2 を確認してください。

問 12 正解は②です。

重要度の計算は下表のようになります。

	機能	デザイン	価格	幾何平均	重要度
機能	1	2	3	$(1 \times 2 \times 3)^{1/3} \simeq 1.8$	0.54
デザイン	1/2	1	2	1	0.30
価格	1/3	1/2	1	$(1/3\times1/2\times1)^{1/3} \simeq 0.56$	0.17
幾何平均の合計				1.8 + 1 + 0.56 = 3.36	

有効桁の取り方により多少値が変わりますが、価格の幾何平均を $0.5\sim0.6$ のいずれの値にしても、機能の重要度は小数第2位を四捨五入すれば0.5になります。疑問点があれば、印刷教材6.1.4を確認してください。

問 15 正解は③です。

プレイヤーA が確率 p で戦略 1 を選択し、プレイヤーB が確率 q で戦略 2 を選択する とする。プレイヤーA の期待利得 u_A は、

 $u_A=pq+5\,p(1-q)+5(1-p)\,q+(1-p)(1-q)=(4-8q)\,p+4q+1$ となります。(4-8q)=0,すなわち, $q=0.5\,$ の時には,pの値に関わらず, $u_A=3$ となります。

一方, プレイヤーB の期待利得 u_B は,

 $u_B=5$ pq+p(1-q)+(1-p) q+5(1-p)(1-q)=(8 p-4) q-4 p+5 となります。(8 p-4)=0,すなわち,p=0.5 の時には,q の値に関わらず, $u_B=3$ となります。

p,q がこれら以外の値をとる時には、最適反応戦略は均衡しません。疑問点があれば、印刷教材 7.3 を確認してください。