Mounted at /content/drive
Mounted at /content/gdrive
/content
/content/gdrive/MyDrive/Colab Notebooks/SEMESTRE_7/Modulo1/Mercurio
EvidenciaEstadistica_2.ipynb mercurio.csv

Reporte final de "Los peces y el mercurio"

Inteligencia Artificial Avanzada para la ciencia de datos (grupo 101)

Diego Solis Higuera

A00827847

18 de septiembre de 2022

	X1	X2	Х3	X4	X5	Х6	X7	X8	Х9	X10	X11	X12
0	1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	1.43	1.53	1
1	2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	1.90	1.33	0
2	3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	0.06	0.04	0
3	4	Blue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	0.84	0.44	0
4	5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	1.50	1.33	1

 X_1 = número de indentificación

 X_2 = nombre del lago

X₃ = alcalinidad (mg/l de carbonato de calcio)

 $X_4 = PH$

 X_5 = calcio (mg/l)

 X_6 = clorofila (mg/l)

 X_7 = concentración media de mercurio (parte por millón) en el tejido muscualar del grupo de peces estudiados en cada lago

X₈ = número de peces estudiados en el lago

X₉ = mínimo de la concentración de mercurio en cada grupo de peces

X₁₀ = máximo de la concentración de mercurio en cada grupo de peces

 X_{11} = estimación (mediante regresión) de la concentración de mercurio en el pez de 3 años (o promedio de mercurio cuando la edad no está disponible)

X₁₂ = indicador de la edad de los peces (0: jóvenes; 1: maduros)

Cálculo de medias estadísticas

Variables cuantitativas

	Х3	Х4	X5	Х6	X7	X8	Х9	X10	
count	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	53.000000	5:
mean	37.530189	6.590566	22.201887	23.116981	0.527170	13.056604	0.279811	0.874528	
std	38.203527	1.288449	24.932574	30.816321	0.341036	8.560677	0.226406	0.522047	1
min	1.200000	3.600000	1.100000	0.700000	0.040000	4.000000	0.040000	0.060000	(
25%	6.600000	5.800000	3.300000	4.600000	0.270000	10.000000	0.090000	0.480000	(
50%	19.600000	6.800000	12.600000	12.800000	0.480000	12.000000	0.250000	0.840000	(
75%	66.500000	7.400000	35.600000	24.700000	0.770000	12.000000	0.330000	1.330000	1
max	128.000000	9.100000	90.700000	152.400000	1.330000	44.000000	0.920000	2.040000	

Varianza de variables cuantitativas

Alcalinidad	1459.5094557329464
PH	1.6601015965166905
Calcio	621.6332656023222
Clorofila	949.6456676342525
Concentracion Mid Hg	0.11630529753265603
Num Peces Lago	73.28519593613936
Min Concentracion Hg	0.05125957910014513
Max Concentracion Hg	0.27253294629898406
Concentracion Hg 3 Years	0.1147375907111756

Moda de variables cuantitativas

Moda	
Repeticiones	Valor
2	17.3
4	5.8
2	3
3	1.6
4	0.34
20	12
6	0.04
2	0.06
4	0.16
43	1

Variables cualitativas

Moda de variables cualitativas

Nombre Lago

0		Alligator
1		Annie
2		Apopka
3		Blue Cypress
4		Brick
5		Bryant
6		Cherry
7		Crescent
8		Deer Point
9		Dias
10		Dorr
11		Down
12	East	Tohopekaliga
13		Eaton
14		Farm-13
15		George
16		Griffin
17		Harney
18		Hart
19		Hatchineha
20		Iamonia
21		Istokpoga
22		Jackson
23		Josephine
24		Kingsley
25		Kissimmee
26		Lochloosa
27		Louisa
28		Miccasukee
29		Minneola
30		Monroe
31		Newmans
32		Ocean Pond
33		Ocheese Pond
34		Okeechobee
35		Orange
36		Panasoffkee
37		Parker
38		Placid
39		Puzzle
40		Rodman
41		Rousseau
42		Sampson
43		Shipp
44		Talquin
45		Tarpon
46		Tohopekaliga
47		Trafford
48		Trout
49		Tsala Apopka
50		Weir
51		Wildcat

52 Yale

dtype: object
Edad Peces

0 1

dtype: int64

Tablas de distribución de frecuencias


```
~~~ Nombre Lago ~~~
Alligator
                        1
Louisa
                        1
Minneola
                        1
Monroe
                        1
Newmans
                        1
Ocean Pond
                        1
                        1
Ocheese Pond
Okeechobee
                        1
Orange
                        1
Panasoffkee
                        1
Parker
                        1
Placid
                        1
Puzzle
                        1
Rodman
                        1
                        1
Rousseau
Sampson
                        1
Shipp
                        1
                        1
Talquin
Tarpon
                        1
Tohopekaliga
                        1
{\tt Trafford}
                        1
                        1
Trout
Tsala Apopka
                        1
Weir
                        1
```

```
Wildcat
                    1
Miccasukee
                    1
Lochloosa
                    1
Annie
                    1
Kissimmee
                    1
Apopka
                    1
Blue Cypress
                    1
Brick
                    1
Bryant
                    1
                    1
Cherry
Crescent
                    1
Deer Point
Dias
                    1
Dorr
                    1
Down
                    1
Eaton
East Tohopekaliga
Farm-13
George
Griffin
                    1
                    1
Harney
Hart
                    1
Hatchineha
                    1
Iamonia
Istokpoga
Jackson
Josephine
                    1
Kingsley
                    1
Yale
Name: X2, dtype: int64
~~~ Edad Peces ~~~
1
    43
    10
Name: X12, dtype: int64
```

Valores nulos

Al dentificar cantidad de valores nulos en dataset observamos que no hay valores nulos.

```
Х1
        0
X2
Х3
X4
Х5
Х6
х7
X8
Х9
X10
        0
        0
X11
X12
dtype: int64
```

Identificar los nombres de los lagos (Valores únicos)

Podemos observar que cada fila corresponde a 1 lago, no hay datos repetidos para cada lago

53

Explora los datos usando herramientas de visualización

Variables categóricas

Variables Cuantitativas

Podemos observar un scatter matrix, el cual nos permite ver de manera visual cómo se comportan los datos y cómo se relacionan entre sí. Por ejemplo, vemos cómo X7 tiene una línea de tendencia con X9, X10 y X11.

<Figure size 432x432 with 0 Axes>

Correlación entre variables

A continuación, podemos observar una matriz de correlación, que nos permite anazlizar la correlación entre variables. Esta nos permitirá encontrar las variables que mejor se ajusten para generar un modelo.

En este caso, como mencioné anteriormente, X9, X10 y X11 son las variables que mayor correlación tienen con X7, por lo que para elegir una de las 3 y evitar colinealidad, analizamos la correlación que tiene cada una con las otras variables, y se determinó que X9 es la mejor opción, pues tiene baja correlación con las demás variables, lo que puede mejorar nuestro modelo.

Por lo tanto, se eligieron X9, X12, X8, X6 y X5 como variables independendientes.

Medidas de posición

A continuación, podemos observar los boxplots de cada una de nuestras variables, donde se pueden apreciar los cuartiles, el rango intercuartílico, así como nuestros datos atípicos.

	Х6	X8	Х9
0	0.7	5	0.85
1	3.2	7	0.92
2	128.3	6	0.04
3	3.5	12	0.13
4	1.8	12	0.69

Creación del modelo

Modelo 1

En primera instancia, creamos un modelo con las variables mencionadas anteriormente. Analizamos los resultados, y vemos que no existe evidencia para determinar que X12 y X5 producen un efecto significativo en nuestro modelo; por lo tanto las eliminamos.

OLS Regression Results

Dep. Variable			х7	D car	ared:		0.903
Model:	= •		OLS	_	R-squared:		0.893
Method:		Toogt Ca		_	atistic:		87.60
		Least Squ					
Date:		Mon, 19 Sep			(F-statistic)	•	1.21e-22
Time:		02:4	15:26	_	Likelihood:		44.168
No. Observat:			53	AIC:			-76.34
Df Residuals	•		47	BIC:			-64.51
Df Model:			5				
Covariance Ty	ype:	nonro	bust				
=========	coef	std err	=====	+	P> t		0 9751
							0.975]
Intercept	0.1585				0.005	0.049	0.268
X5	-0.0005	0.001	_(0.756	0.453	-0.002	0.001
Х6	-0.0015	0.001	-2	2.490	0.016	-0.003	-0.000
X8	0.0062	0.002	;	3.308	0.002	0.002	0.010
Х9	1.3216	0.077	1	7.212	0.000	1.167	1.476
X12	-0.0438	0.042	-:	1.034	0.306	-0.129	0.041
Omnibus:	======	·========= 6	====== 5.384	Durb	========= in-Watson:	=======	2.000
Prob(Omnibus):				ue-Bera (JB):		6.166
Skew:	, -		835	_	, ,		0.0458
Kurtosis:			2.968		, ,		261.
	=======		. •	-=====	. 110 . 	=======	201.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

Modelo 2

Repetimos el mismo paso, esta vez utilzando solamente 3 variables; X6, X8 y X9.

OLS Regression Results

=========			=======			
Dep. Variable	e:		X7 R-	squared:		0.899
Model:			OLS Ad	j. R-squared:		0.893
Method:		Least Squa	res F-	statistic:	145.5	
Date:	M	Ion, 19 Sep 2	022 Pr	ob (F-statist	ic):	2.12e-24
Time:		02:45	:26 Lo	g-Likelihood:		43.097
No. Observati	ions:		53 AI	C:		-78.19
Df Residuals:	•		49 BI	C:		-70.31
Df Model:			3			
Covariance Ty	ype:	nonrob	oust			
=========	=======	========			:=======	
	coef	std err		P> t	[0.025	0.975]
Intercept	0.1107	0.042	2.65	7 0.011	0.027	0.194
X6	-0.0015	0.001	-2.72	0.009	-0.003	-0.000
X8	0.0060	0.002	3.28	0.002	0.002	0.010
Х9	1.3336	0.075	17.79	0.000	1.183	1.484
Omnibus:		6.	105 Du:	========= cbin-Watson:		 1.943
Prob(Omnibus)):	0.	047 Ja:	rque-Bera (JB	3):	6.020
Skew:		0.	822 Pr	ob(JB):		0.0493
Kurtosis:		2. 		nd. No.		207.

Notes:

Distribución de variables

Como podemos observar, nuestras variables no tienen una distribución normal, por lo que no podemos explicar los efectos de mercurio en la saludo humana con el modelo generado. Las 3 tienen un sesgo a la derecha.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

^{&#}x27;\nX2 = sm.add_constant(X)\nest2 = sm.OLS(y, X2).fit()\nprint(est2.summary())\n'

Ajuste de modelo

Transformación de datos

Al observar que prácticamente todas nuestras distribuciones tienen un sesgo positivo, se aplicará una transformación logarítmica para normalizar la distribución de datos. Esto nos permitirá generar un mejor modelo.

Boxplots

A continuación, podemos ver los boxplots de nuestras variables independientes, y vemos la gran cantidad de datos atípicos que contiene X8, lo que también puede afectar los resultados del modelo.

Normalización

Una vez se aplicó la función logarítmica, podemos ver cómo prácticamente desapareció el sesgo en las tres.

Eliminación de datos atípicos

A continuación, limpiamos nuestros, datos; calculamos el rango intercuartílico y quitamos todos los datos atípicos.

X	6
X	8
X	C

ХЭ												
	X1	X2	Х3	X4	Х5	Х6	X7	X8	Х9	X10	X11	X12
0	1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	1.43	1.53	1
1	2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	1.90	1.33	0
2	3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	0.06	0.04	0
3	4	Blue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	0.84	0.44	0
4	5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	1.50	1.33	1
5	6	Bryant	19.6	7.3	4.5	44.1	0.27	14	0.04	0.48	0.25	1
6	7	Cherry	5.2	5.4	2.8	3.4	0.48	10	0.30	0.72	0.45	1
7	8	Crescent	71.4	8.1	55.2	33.7	0.19	12	0.08	0.38	0.16	1
8	9	Deer Point	26.4	5.8	9.2	1.6	0.83	24	0.26	1.40	0.72	1
9	10	Dias	4.8	6.4	4.6	22.5	0.81	12	0.41	1.47	0.81	1
10	11	Dorr	6.6	5.4	2.7	14.9	0.71	12	0.52	0.86	0.71	1
11	12	Down	16.5	7.2	13.8	4.0	0.50	12	0.10	0.73	0.51	1
12	13	Eaton	25.4	7.2	25.2	11.6	0.49	7	0.26	1.01	0.54	1
13	14	East Tohopekaliga	7.1	5.8	5.2	5.8	1.16	43	0.50	2.03	1.00	1
14	15	Farm-13	128.0	7.6	86.5	71.1	0.05	11	0.04	0.11	0.05	0
15	16	George	83.7	8.2	66.5	78.6	0.15	10	0.12	0.18	0.15	1
16	17	Griffin	108.5	8.7	35.6	80.1	0.19	40	0.07	0.43	0.19	1
17	18	Harney	61.3	7.8	57.4	13.9	0.77	6	0.32	1.50	0.49	1
18	19	Hart	6.4	5.8	4.0	4.6	1.08	10	0.64	1.33	1.02	1
19	20	Hatchineha	31.0	6.7	15.0	17.0	0.98	6	0.67	1.44	0.70	1
20	21	lamonia	7.5	4.4	2.0	9.6	0.63	12	0.33	0.93	0.45	1
21	22	Istokpoga	17.3	6.7	10.7	9.5	0.56	12	0.37	0.94	0.59	1
22	23	Jackson	12.6	6.1	3.7	21.0	0.41	12	0.25	0.61	0.41	0
23	24	Josephine	7.0	6.9	6.3	32.1	0.73	12	0.33	2.04	0.81	1
24	25	Kingsley	10.5	5.5	6.3	1.6	0.34	10	0.25	0.62	0.42	1
25	26	Kissimmee	30.0	6.9	13.9	21.5	0.59	36	0.23	1.12	0.53	1
26	27	Lochloosa	55.4	7.3	15.9	24.7	0.34	10	0.17	0.52	0.31	1

27	28	Louisa	3.9	4.5	3.3	7.0	0.84	8	0.59	1.38	0.87	1
28	29	Miccasukee	5.5	4.8	1.7	14.8	0.50	11	0.31	0.84	0.50	0
29	30	Minneola	6.3	5.8	3.3	0.7	0.34	10	0.19	0.69	0.47	1
30	31	Monroe	67.0	7.8	58.6	43.8	0.28	10	0.16	0.59	0.25	1
31	32	Newmans	28.8	7.4	10.2	32.7	0.34	10	0.16	0.65	0.41	1
32	33	Ocean Pond	5.8	3.6	1.6	3.2	0.87	12	0.31	1.90	0.87	0
33	34	Ocheese Pond	4.5	4.4	1.1	3.2	0.56	13	0.25	1.02	0.56	0
34	35	Okeechobee	119.1	7.9	38.4	16.1	0.17	12	0.07	0.30	0.16	1
35	36	Orange	25.4	7.1	8.8	45.2	0.18	13	0.09	0.29	0.16	1
36	37	Panasoffkee	106.5	6.8	90.7	16.5	0.19	13	0.05	0.37	0.23	1
37	38	Parker	53.0	8.4	45.6	152.4	0.04	4	0.04	0.06	0.04	0
38	39	Placid	8.5	7.0	2.5	12.8	0.49	12	0.31	0.63	0.56	1
39	40	Puzzle	87.6	7.5	85.5	20.1	1.10	10	0.79	1.41	0.89	1
40	41	Rodman	114.0	7.0	72.6	6.4	0.16	14	0.04	0.26	0.18	1
41	42	Rousseau	97.5	6.8	45.5	6.2	0.10	12	0.05	0.26	0.19	1
42	43	Sampson	11.8	5.9	24.2	1.6	0.48	10	0.27	1.05	0.44	1
43	44	Shipp	66.5	8.3	26.0	68.2	0.21	12	0.05	0.48	0.16	1
44	45	Talquin	16.0	6.7	41.2	24.1	0.86	12	0.36	1.40	0.67	1
45	46	Tarpon	5.0	6.2	23.6	9.6	0.52	12	0.31	0.95	0.55	1
46	51	Tohopekaliga	25.6	6.2	12.6	27.7	0.65	44	0.30	1.10	0.58	1
47	47	Trafford	81.5	8.9	20.5	9.6	0.27	6	0.04	0.40	0.27	0
48	48	Trout	1.2	4.3	2.1	6.4	0.94	10	0.59	1.24	0.98	1
49	49	Tsala Apopka	34.0	7.0	13.1	4.6	0.40	12	0.08	0.90	0.31	1
50	50	Weir	15.5	6.9	5.2	16.5	0.43	11	0.23	0.69	0.43	1
51	52	Wildcat	17.3	5.2	3.0	2.6	0.25	12	0.15	0.40	0.28	1
52	53	Yale	71.8	7.9	20.5	8.8	0.27	12	0.15	0.51	0.25	1

Prueba de modelo 2

Una vez hayamos realizado las modificaciones necesarias a nuestros datos para limpiarlos, volvemos a correr nuestro modelo, para ver el impacto que esto tuvo en el, y si es necesario realizar cambios.

Como podemos observar, nuestro modelo cambió bastante, podemos ver como las variables X6 y X8 no generan un impacto significativo en nuestro modelo. Además, nuestra R cuadrada ajustada disminuyó. Esta variable explica la manera en la que nuestro modelo se ajusta a los datos.

OLS Regressi	ion Results
--------------	-------------

===========									
Dep. Variable:	X	R-squared:	0.790						
Model:	OLS	S Adj. R-squared:	0.777						
Method:	Least Squares	F-statistic:	61.40						
Date:	Mon, 19 Sep 2022	Prob (F-statistic)	1.27e-16						
Time:	02:45:28	B Log-Likelihood:	23.660						
No. Observations:	53	B AIC:	-39.32						
Df Residuals:	49	BIC:	-31.44						
Df Model:	3	3							
Covariance Type:	nonrobust								
co	ef std err	t P> t	[0.025 0.975]						
Intercept 1.03	14 0.126	8.161 0.000	0.777 1.285						
X6 -0.02	10 0.020	-1.073 0.289	-0.060 0.018						
X8 0.02	34 0.048	0.491 0.626	-0.072 0.119						
X9 0.31	10 0.027	11.588 0.000	0.257 0.365						
Omnibus:	======================================	Durbin-Watson:	1.661						
Prob(Omnibus):	0.036	Jarque-Bera (JB):	2.439						
Skew:	0.100	_ ` '	0.295						
Kurtosis:	1.968	Cond. No.	24.7						

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

Modelo 3

Una vez realizado el análisis anterior, determinamos que la variable X9 es la que mejor describe nuestra variable dependiente, por lo que nuestro modelo de regresión lineal múltiple se convierte en un modelo de regresión lineal simple. Podemos ver cómo incrementó nuestro R-cuadrado ajustado con respecto al modelo anterior.

OLS Regression Results

============	=======================================	=======	========	=======	
Dep. Variable:	X.	7 R-squ	ared:		0.784
Model:	OLS	_	R-squared:		0.780
Method:	Least Squares	s F-sta	tistic:		185.2
Date:	Mon, 19 Sep 2022	2 Prob	(F-statistic)	:	1.32e-18
Time:	02:45:28	B Log-I	ikelihood:		22.935
No. Observations:	53	3 AIC:			-41.87
Df Residuals:	5:	1 BIC:			-37.93
Df Model:		1			
Covariance Type:	nonrobus	t			
	==========	=======	:========	=======	
	f std err			[0.025	0.975]
	7 0.045			0.969	1.149
X9 0.323	0.024	13.608	0.000	0.276	0.372
Omnibus:	 7.162	======= 2 Durbi	======== n-Watson:	=======	1.695
Prob(Omnibus):	0.028	B Jarqu	e-Bera (JB):		2.928
Skew:	0.260) Prob(JB):		0.231
Kurtosis:	1.97	3 Cond.	No.		4.71

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

Prueba de modelo 3

A continuación, una vez generado nuestro modelo, podemos generar las predicciones de X7, nuestra variable dependiente. Posteriormente, obtenemos los residuos.

Residuos

Interpretación

Como podemos observar, generamos una QQPlot, la cual nos permite determinar la normalidad de nuestros residuos; como podemos observar, nuestros residuos se acercan a una recta diagonal, lo que indica un supuesto de que tenemos un buen modelo que puede explicar la concentración media de mercurio. Por otro lado, realizamos la prueba de Shapiro-Wilk, la cual sugiere que nuestros residuos se comportan de manera normal, pues el valor-p obtenido es significativamente menor que nuestro alfa de 0.05.

<Figure size 1080x576 with 0 Axes>

ShapiroResult(statistic=0.9524779319763184, pvalue=0.03442264720797539)

Anova

Tenemos nuestra variable categórica X12, que es un indicador de la edad de los peces. Para responder a la siguiente pregunta:

¿Habrá diferencia significativa entre la concentración de mercurio por la edad de los peces?

Podemos concluir que no existe una diferencia significativa entre ambos grupos de edad de peces, pues tenemos un valor-p que supera 0.05.

	sum_sq	df	F	PR(>F)
X12	0.071511	1.0	0.610248	0.438306
Residual	5.976364	51.0	NaN	NaN

Conclusiones

¿Cuáles son los principales factores que influyen en el nivel de contaminación por mercurio en los peces de los lagos de Florida?

Una vez finalizado el análisis anterior, podemos concluir que el principal factor que influye en el nivel de contaminación es el mínimo de la concentración de mercurio en cada grupo de peces. Esto también nos lleva a responder una pregunta paralela, donde podemos concluir que las concentraciones de alcalinidad, clorofila y calcio en el agua no influyen de manera significativa en los niveles de contaminación por mercurio. Además, pudimos observar cómo la interacción con las distintas variables no tenía un efecto significativo en el efecto final que buscábamos. A pesar de que algunas variables parecieran redundantes, pudimos descartarlas de nuestros modelos por su baja correlación o si baja significancia.