PYTHON DATA SCIENCE

Project 1

DocID	Version	Language	Date	Page
PY/DS/PR01	1.0	En	19 th Sept 2024	1

Contents

nstructions before the project execution	2
Project Overview	3
Python Libraries for Data Science	3
NumPy	3
Pandas	3
Matplotlib and Seaborn	3
Data Manipulation and Analysis with Pandas	3
Importing and Exporting Data	3
Data Cleaning and Preparation	3
Data Transformation	3
Data Aggregation and Grouping	3
Exploratory Data Analysis (EDA)	4
Data Visualization Techniques	4
Importance of Data Visualization	4
Types of Visualizations	4
Basic Plotting with Matplotlib	4
Advanced Visualization with Seaborn	4
Interactive Visualization with Plotly	4
Basic Chart Types	4
Bar Charts	4
Line Charts	4
Pie and Donut Charts	4
Analysis to be done	5
Descriptive Statistics:	5
Trend Analysis:	5
Customer Segmentation:	5
Account Type Analysis:	5
Transaction Type Analysis:	5
City-wise Analysis:	5
Time-based Insights:	5
Correlation Analysis:	5

DocID	Version	Language	Date	Page
PY/DS/PR01	1.0	En	19 th Sept 2024	2

Instructions before the project execution

- READ THE ENTIRE DOCUMENT BEFORE BEGINNING
- Write down the understanding
- PLAN properly start to end the path of working on this project
- Do not use any code generation tools for completion
- In the project review, questions about any of the above can be asked, including code, logic and the reasoning. hence it is advised to do the project independently.
- Document the project execution from start to finish

DocID	Version	Language	Date	Page
PY/DS/PR01	1.0	En	19 th Sept 2024	3

Project Overview

The goal of this project is to give you hands-on experience in applying Python-based data science techniques using libraries like Pandas, NumPy, Matplotlib, and Seaborn, with a dataset of 10,000 financial transactions. You will explore various aspects of data manipulation, cleaning, and visualization, with Python, pandas, matplotlib, numpy and seaborn to achieve the results.

Python Libraries for Data Science

NumPy

- Array creation, indexing, and manipulation
- Basic statistical operations (mean, sum, std)

Pandas

- DataFrames and Series objects
- Loading the financial transactions dataset
- · Viewing and summarizing data

Matplotlib and Seaborn

- Basic plotting (bar charts, line charts, etc.)
- Customizing visualizations (labels, colors, grids)

Data Manipulation and Analysis with Pandas

Importing and Exporting Data

· Loading .csv financial data

Data Cleaning and Preparation

- Handling missing values
- Dropping unnecessary columns

Data Transformation

- Changing data types, adding new columns
- Working with date/time formats in financial transactions

Data Aggregation and Grouping

Grouping by categories (e.g., transaction types)
 Copyright © Kiran VVN. 2000-2024, All rights reserved

No part of this document shall be reused, copied in any from either in full/partial without exclusive written permission from kvvn@me.com

DocID	Version	Language	Date	Page
PY/DS/PR01	1.0	En	19 th Sept 2024	4

• Aggregating data to compute statistics like sum, count

Exploratory Data Analysis (EDA)

- Descriptive statistics (mean, median, mode)
- Visualizing distributions, trends, and correlations

Data Visualization Techniques

Importance of Data Visualization

• Why visual representation matters in data analysis

Types of Visualizations

• Line charts, bar charts, histograms, scatter plots

Basic Plotting with Matplotlib

- Line charts for time-based transaction data
- Bar charts to compare transaction types

Advanced Visualization with Seaborn

- Heatmaps, pair plots, correlation matrices
- Customizing visual aesthetics (themes, palettes)

Interactive Visualization with Plotly

• Line and scatter plots with tooltips and zoom

Basic Chart Types

Bar Charts

- Visualizing transaction types by volume
- Grouped and stacked bars for comparing categories

Line Charts

Plotting transaction amounts over time

Pie and Donut Charts

Visualizing categorical distributions (e.g., payment methods)
Copyright © Kiran VVN. 2000-2024, All rights reserved
No part of this document shall be reused, copied in any from either in full/partial without exclusive written permission from kvvn@me.com

DocID	Version	Language	Date	Page
PY/DS/PR01	1.0	En	19 th Sept 2024	5

Analysis to be done.

Descriptive Statistics:

- Average transaction amount by city, account type, or transaction type.
- Total number of transactions per customer or per city.
- Distribution of transaction amounts (mean, median, mode).

Trend Analysis:

- Time-series analysis of transactions over the last two years.
- Monthly or quarterly trends of deposits and withdrawals.

Customer Segmentation:

- Group customers based on transaction amounts (e.g., high-value vs. low-value customers).
- Analyze behavior by customer location (e.g., average transaction amount per city).

Account Type Analysis:

• Compare transaction amounts and frequency across checking, savings, and credit accounts.

Transaction Type Analysis:

- Breakdown of transactions by type (e.g., deposit vs. withdrawal vs. transfer).
- Analyze patterns in transaction types over time.

City-wise Analysis:

- Identify cities with the highest volume of transactions.
- Compare average transaction sizes across different cities.

Time-based Insights:

- Analyze peak transaction times (e.g., by hour of the day, day of the week, or month).
- Seasonal patterns in spending or saving behavior.

Correlation Analysis:

- Correlate transaction amounts with customer location or account type.
- Analyze relationships between different variables like account type and transaction type.