Masters Presentation

Latent Variable Machine Learning Algorithms: Applications in a Nuclear Physics Experiment

Robert Solli

University of Oslo, Expert Analytics AS

November 12, 2019

Outline

- Introducing the Active Target Time Projection Chamber (AT-TPC)
- 2. Challenges with traditional analysis of AT-TPC data and the evangilization of Machine Learning
 - (i) Recap of central literature
 - (ii) Introducing thesis problem statements
- 3. An introduction to central Machine Learning concepts
- 4. The Auto-Encoder neural network
- 5. Results
- 6. Discussion, Summary, Conclusion and Outlook

AT-TPC

Figure: Diagram of the AT-TPC¹

The AT-TPC is an experiment set up at the rare isotopes facility on the Michigan State University campus. The AT-TPC is commissioned to capture reactions with exotic nuclei.

AT-TPC

Figure: Detector pad plane of the AT-TPC²

Each triangle represents spatial discrete regions of the detector surface. The pad-plane consists of some 10^4 sensor pads on a circle with r=29cm

²Bradt et al., "Commissioning of the Active-Target Time Projection Chamber". ▶ ◀ 🗇 ▶ ◀ 💆 ▶ ◀ 💆 ▶ 🧵 宁 🔾 🧇

AT-TPC Data

Figure: Simulated AT-TPC data in an experiment with ⁴⁶Ar

AT-TPC Data

Significant noise levels in the experiment, from unknown sources. Some 60% of the recorded events are from unidentified reactions.

Challenges with the AT-TPC

- I Expensive integration for each event a fit is computed
- II Assumptions of the integration technique:
 - (i) Each event is fit against parameters of the event of interest
 - (ii) The integration is sensitive to Noise and Breaks in the tracks

The amount of data is also significant: the experiment generates on the order of 10^5 events per hour running.

Idea

Solve the problem by training deep neural networks, a very flexible algorithm from the Machine Learning community.

Previous Work

- ► Work on applying ML to this data started with a supervised learning project by Kuchera et al.³.
- ► The authors explored a *supervised classification* problem of identifying reactions when ground-truth labels available.
- By fine tuning pre-trained networks the authors achieve very impressive performance.

One of the open questions is then, can we segment the events based on reactions without the ground truth labels?

ML background

Machine Learning (ML) is an amorphous set of algorithms for pattern recognition and function approximation. Bred as a mix between computer science and statistical learning theory, it includes algorithms like:

- I Linear Regression
- II Logistic Regression
- III Random Forest Classifiers
- IV Genetic Algorithms

And many others...

Deep Learning

A special sub-branch of Machine Learning is the field of Deep Learning, or more broadly: Differentiable Programming The premise of Deep Learning is to formulate an approximation to

some unknown function $f(\mathbf{x})$ with a model, \hat{f} , that maintains some set of parameters $\{\theta\}$.

Some examples of the unknown function, $f(\mathbf{x})$, we would want to approximate are:

- (a) a Hamiltonian of a system
- (b) a function which determines the thermodynamic phase of a system
- (c) a function which itentifies dog-species from a picture

Deep Learning

Then then model can be tuned with gradient methods, the simplest of which is a steepest descent update:

$$\theta_i \leftarrow \theta_i - \eta \frac{\partial \mathcal{C}(\mathbf{x}, f, \hat{f})}{\partial \theta_i},$$
 (1)

moderated by a learning rate η to ensure that the steps are small enough.

The functional $\mathcal C$ is the cost function for the problem and is commonly a variation of either, the Mean Squared Error:

$$C(\mathbf{x}, f, \hat{f}) = \sum (f(\mathbf{x})_i - \hat{f}(\mathbf{x})_i)^2,$$
 (2)

or the Cross Entropy

$$C(\mathbf{x}, f, \hat{f}) = -\sum f(\mathbf{x})_i \log \hat{f}(\mathbf{x})_i.$$
 (3)

Deep Learning: Neural Networks

Figure: A neural network with three input nodes, two hidden nodes, and one output node

Each of the *activations* **a** are computed as a matrix product fed through a nonlinear activation *activation function* g

$$\boldsymbol{a}^{[1]} = g(\boldsymbol{x}\boldsymbol{\theta}^{[1]})_D \tag{4}$$

Autoencoders

- Recall that we want to separate classes of reaction products
- Additionally we assume that we have access to very little or no ground truth labelled data

Idea

Learn the distribution over the events through two nonlinear maps which compress and inflate a representation of the events.

Central Hypothesis

If we can compress a representation of an event reconstruct it - the compression must be informative of the type of event.

Autoencoders

Figure: Autoencoder neural network schematic

An autoencoder is defined by an encoder/decoder pair of neural networks. We construct these such that

$$\dim(\hat{\mathbf{x}}) \gg \dim(\mathbf{z}),\tag{5}$$

and with the optimization objective

$$\mathcal{O} = \arg \min ||\hat{\mathbf{x}} - \text{Decoder}(\text{Encoder}(\hat{\mathbf{x}}))||_2^2.$$
 (6)

Experiment

- ▶ We chose to represent the data as 2D projections, neglecting the z-axis.
- ► An autoencoder network is then fit to the events in an end to end manner.
- After traing, we extract the compressed (or *latent*) expressions of the data.
- With varying amounts of labelled ground-truth data we fit a very simple classifier to the latent expressions

We wish to construct latent spaces that are as close to trivially separable, and so use a logistic regression classifier.

Results

- (a) Performance for an autoencoder with a naive architecture
- (b) Performance using a representation of the events as seen by a VGG16 network

$$recall = \frac{TP}{TP + FP}, \quad precision = \frac{TP}{TP + FN}.$$
 (7)

The f1 score is defined as the harmonic mean of precision and recall for each class. Formally we define it as

$$f1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}.$$
 (8)

