

Privileged Estimate Fusion With Correlated Gaussian Keystreams

Conference on Decision and Control (CDC) 2022

Marko Ristic, Benjamin Noack

Autonomous Multisensor Systems Group Institute for Intelligent Cooperating Systems Faculty of Computer Science Otto von Guericke University, Magdeburg

9.12.2021

Security in Networks

Growing number of public networks

Increasingly used by distributed sensors, IoT devices, cloud computing, etc

- Greater need for security guarantees
- Affected users
 - Private
 - Commercial
 - Government

Privilege in Estimation

- Public measurements useable for state estimation
- Trusted or special users may be granted privilege
- Privileged users should perform better than unprivileged ones

Privilege in Estimation

- Public measurements useable for state estimation.
- Trusted or special users may be granted privilege
- Privileged users should perform better than unprivileged ones

• Security guarantee concerns proving the minimum difference in performance

Single Sensor Privilege

- Add generated Gaussian keystream to measurements
- Anyone holding generation key can remove added noise

Single Sensor Privilege

- Add generated Gaussian keystream to measurements
- Anyone holding generation key can remove added noise
 - System

$$\underline{x}_k = \mathbf{F}_k \underline{x}_{k-1} + \underline{w}_k$$

$$\underline{w}_k \sim \mathcal{N}(\underline{0}, \mathbf{Q}_k)$$

Measurement

$$\underline{y}_k = \mathbf{H}_k \underline{x}_k + \underline{v}_k$$

$$\underline{v}_k \sim \mathcal{N}(\underline{0}, \mathbf{R}_k)$$

Modified measurement

$$y_k' = y_k + g_k = \mathbf{H}_k \underline{x}_k + \underline{v}_k + g_k$$

$$\underline{v}_k \sim \mathcal{N}(\underline{0}, \mathbf{R}_k) \,, \ \underline{g}_k \stackrel{.}{\sim} \mathcal{N}(\underline{0}, \mathbf{Z})$$

Cryptographic Definition for Performance

Algorithms

$$\begin{split} \mathsf{Setup}\left(\mathcal{M}_S, \mathcal{M}_M, \kappa\right), \\ \mathsf{Noise}\left(\mathsf{pub}, \mathsf{sk}, k, \mathcal{M}_S, \mathcal{M}_M, \underline{y}_1, \dots, \underline{y}_k\right) \end{split}$$

Definitions

$$\begin{array}{l} estimator, \\ \mathsf{neglCov}_m(\kappa): \mathbb{N} \to \mathbb{R}^{m \times m} \end{array}$$

Covariance Privilege

(Setup, Noise) meets $\{\mathbf{D}_1, \mathbf{D}_2, \dots\}$ -Covariance Privilege for Models \mathcal{M}_S and \mathcal{M}_M if for any PPT estimator \mathcal{A} , there exists a PPT estimator \mathcal{A}' , such that

$$\begin{aligned} &\mathsf{Cov}\left[\mathcal{A}\left(k,\kappa,\mathsf{pub},\mathcal{M}_S,\mathcal{M}_M,\underline{y}_1',\ldots,\underline{y}_k'\right)-\underline{x}_k\right] \\ &-\mathsf{Cov}\left[\mathcal{A}'\left(k,\kappa,\mathsf{pub},\mathcal{M}_S,\mathcal{M}_M,\underline{y}_1,\ldots,\underline{y}_k\right)-\underline{x}_k\right] \\ &\succeq \mathbf{D}_k + \mathsf{neglCov}_m(\kappa) \end{aligned}$$

Complication of Fusion

• Multiple privileged sensors each adding Gaussian keystream

Complication of Fusion

Multiple privileged sensors each adding Gaussian keystream

- Two ways of getting better estimates
 - Hold keys to remove added noises (desired)
 - Fuse more measurements (desired only when keys are held as well)

Multisensor Estimation Problem

- Linear models considered
- Kalman Filter optimality in proofs

System

$$\underline{x}_k = \mathbf{F}_k \underline{x}_{k-1} + \underline{w}_k \qquad \underline{w}_k \sim \mathcal{N}(\underline{0}, \mathbf{Q}_k)$$

Measurements

$$\underline{y}_{k,i} = \mathbf{H}_{k,i}\underline{x}_k + \underline{v}_{k,i} \qquad \underline{v}_{k,i} \sim \mathcal{N}(\underline{0}, \mathbf{R}_{k,i}), \ 1 \le i \le n$$

Modified measurements and keys

$$\underline{y}'_{k,i}$$
, sk_i $1 \le i \le n$

Sequential Assumption

- Estimators can access q measurements $(1 \le q \le n)$
- Estimators have privilege p (the number of keys they hold) $(0 \le p \le n)$

 $e^{[privilege, access]}$

Sequential Assumption

- Estimators can access q measurements $(1 \le q \le n)$
- Estimators have privilege p (the number of keys they hold) $(0 \le p \le n)$

 $e^{[privilege, access]}$

- Estimators have access to sequential measurements
- Estimators have access to all measurements for which they hold a key

Sequential Assumption

- Estimators can access q measurements $(1 \le q \le n)$
- Estimators have privilege p (the number of keys they hold) $(0 \le p \le n)$

$$_{\mathbf{e}}[\text{privilege, access}]$$

- Estimators have access to sequential measurements
- Estimators have access to all measurements for which they hold a key

$$\mathbf{e}^{[0,q]}$$
 Access to: $\underline{y}'_{k,i}$, $1 \leq i \leq q$
$$\mathbf{e}^{[p,p]}$$
 Access to: $\underline{y}'_{k,i}$, sk_i , $1 \leq i \leq p$
$$\mathbf{e}^{[p,q]}$$
 Access to: $\underline{y}'_{k,i}$, $1 \leq i \leq q$ sk_j , $1 \leq j \leq p$

• Capture desired performance differences in multisensor environment

• Capture desired performance differences in multisensor environment

Performance Loss Lower Bound

• Capture desired performance differences in multisensor environment

Performance Gain Upper Bound

• Capture desired performance differences in multisensor environment

Performance Loss Lower Bound $e^{[0,n]} = e^{[p,p]}$

Time

Both bounds desired for each privilege p

Correlated Noise Generation

Uncorrelated component

- Generate uniform keystreams from sk_i for $1 \le i \le n$
- Correlated uniform keystreams with Box-Muller transform

$$egin{bmatrix} \underline{g}_{k,1} \ \vdots \ \underline{g}_{k,n} \end{bmatrix} \sim \mathcal{N}\left(\underline{0},\mathbf{S}^{(n)}
ight) \qquad \mathbf{S}^{(n)} = egin{bmatrix} \mathbf{Z} & \cdots & \mathbf{Z} \ \vdots & \ddots & \vdots \ \mathbf{Z} & \cdots & \mathbf{Z} \end{bmatrix} + egin{bmatrix} \mathbf{Y} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \ddots & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{Y} \end{bmatrix}$$

Correlated component

Correlated Noise Generation

- Generate uniform keystreams from sk_i for $1 \le i \le n$
- Correlated uniform keystreams with Box-Muller transform

$$egin{bmatrix} \underline{g}_{k,1} \ \vdots \ \underline{g}_{k,n} \end{bmatrix} \sim \mathcal{N}\left(\underline{0},\mathbf{S}^{(n)}
ight) \qquad \mathbf{S}^{(n)} = egin{bmatrix} \mathbf{Z} & \cdots & \mathbf{Z} \ \vdots & \ddots & \vdots \ \mathbf{Z} & \cdots & \mathbf{Z} \end{bmatrix} + egin{bmatrix} \mathbf{Y} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \ddots & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{Y} \end{bmatrix}$$

• Add generated keystreams to measurements

$$\underline{y}'_{k,i} = \underline{y}_{k,i} + \underline{g}_{k,i} = \mathbf{H}_{k,i}\underline{x}_k + \underline{v}_{k,i} + \underline{g}_{k,i} \qquad \underline{v}_k \sim \mathcal{N}(\underline{0}, \mathbf{R}_{k,i})$$

Correlated Noise Reconstruction

- Each added noise depends on multiple keys!
- Need to correctly reconstruct partial noises when p < n
- Lower-triangular decomposition (e.g. Cholesky) in Box-Muller transform ensures

$$\underline{g}_{k,i} \quad \text{depends on} \quad \operatorname{sk}_j \,, \,\, 1 \leq j \leq i$$

Correlated Noise Reconstruction

- Each added noise depends on multiple keys!
- Need to correctly reconstruct partial noises when p < n
- Lower-triangular decomposition (e.g. Cholesky) in Box-Muller transform ensures

$$\underline{g}_{k,i}$$
 depends on sk_j , $1 \leq j \leq i$

• Can reconstruct first p noises with sk_i , $1 \le i \le p$ exactly (recall sequential assumption)

$$egin{bmatrix} ar{egin{aligned} \underline{g}_{k,1} \ \underline{g}_{k,p} \end{aligned}} \sim \mathcal{N}\left(\underline{0}, \mathbf{S}^{(p)}
ight) \qquad \mathbf{S}^{(p)} = egin{bmatrix} \mathbf{Z} & \cdots & \mathbf{Z} \ \vdots & \ddots & \vdots \ \mathbf{Z} & \cdots & \mathbf{Z} \end{bmatrix} + egin{bmatrix} \mathbf{Y} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \ddots & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{Y} \end{bmatrix}$$

Observable Measurement Models

- Gaussian keystream indistinguishable from random without key
- Leads to three observable measurement models

Observable Measurement Models

- · Gaussian keystream indistinguishable from random without key
- Leads to three observable measurement models

$$\mathbf{e}^{[0,q]}$$
 $\underline{y}_k = \mathbf{H}_k^{(1:q)} \underline{x}_k + \underline{v}_k'$ $\underline{v}_k' \sim \mathcal{N}\left(\underline{0}, \mathbf{R}_k^{(1:q)} + \mathbf{S}^{(q)}\right)$

$$\mathbf{e}^{[p,p]}$$
 $\underline{y}_k = \mathbf{H}_k^{(1:p)} \underline{x}_k + \underline{v}_k'$ $\underline{v}_k' \sim \mathcal{N}\left(\underline{0}, \mathbf{R}_k^{(1:p)}\right)$

$$\mathbf{e}^{[p,q]} \quad \underline{y}_k = \mathbf{H}_k^{(1:q)} \underline{x}_k + \underline{v}_k' \qquad \underline{v}_k' \sim \mathcal{N} \left(\underline{0}, \begin{bmatrix} \mathbf{R}_k^{(1:p)} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}^{(q-p)} - \bar{\mathbf{Z}} \left(\mathbf{S}^{(p)} \right)^{-1} \bar{\mathbf{Z}} + \mathbf{R}_k^{(p+1:q)} \end{bmatrix} \right)$$

Notation

$$\mathbf{R}_k^{(1:q)} = egin{bmatrix} \mathbf{R}_{k,1} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \ddots & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{R}_{k,q} \end{bmatrix} \ ar{\mathbf{Z}} = egin{bmatrix} \mathbf{Z} & \cdots & \mathbf{Z} \ \vdots & \ddots & \vdots \ \mathbf{Z} & \cdots & \mathbf{Z} \end{bmatrix}$$

Proving Performance Loss and Gain Bounds

• Exact linear models mean optimal estimates

Proving Performance Loss and Gain Bounds

• Exact linear models mean optimal estimates

Performance Loss Lower Bound

$$\mathbf{P}_0 = \mathbf{0} \implies$$
 Lowest possible $\operatorname{tr}\left(\mathbf{P}_k
ight)$

Proving Performance Loss and Gain Bounds

• Exact linear models mean optimal estimates

Time

Performance Gain Upper Bound

$$\mathbf{P}_0 = \mathbf{0} \implies$$
 Lowest possible $\operatorname{tr}\left(\mathbf{P}_k
ight)$

Simulation Results

- n = 4
- Fixed fully correlated component Z and uncorrelated component Y

Simulation Results

- n = 4
- Varied $\mathbf{Z} = \Sigma_z \times \mathbf{I}$ and $\mathbf{Y} = \Sigma_y \times \mathbf{I}$

Simulation Results

•
$$n = 4$$

• Varied
$$\mathbf{Z} = \Sigma_z \times \mathbf{I}$$
 and $\mathbf{Y} = \Sigma_y \times \mathbf{I}$

Effect of Z and Y on bounds?

Future Work

- Search for correlation matrix parameters that affect bounds independently
- Relaxations of sequential assumption

Phone: +49 391 67 57591 Email: marko.ristic@ovgu.de Web: https://ams.ovgu.de

Thank you!