4: EA for Eight Queens Puzzle

- Eight Queens puzzle
- EA solution
- Typical EA behaviors
- EA and global optimization
- EA and neighborhood search
- Textbook Chapters 3.4.1, and 3.5

General scheme of EAs

The eight queens puzzle

Task: place 8 queens on an 8 by 8 chessboard

Goal: no two queens check each other

Brute force: 64*63*62*61*60*59*58*57 = 178,462,987,637,760

The eight queens puzzle: EA

- Represent the problem solution? phenotype? genotype?
- Evaluate fitness?
- Recombination and mutation?

The eight queens puzzle: representation

- Phenotype
 - a board configuration

Genotype

1 3 5 2 6 4 7 8

a permutation of the numbers 1 to 8

The eight queens puzzle: fitness

- Penalty of a configuration: the number of checking queen pairs
- Penalty is to be minimized
- Fitness of a configuration: inverse penalty to be maximized

The eight queens puzzle: mutation

- Operates on the genotype
- Small variation in one permutation
 - swapping values of two randomly chosen positions

The eight queens puzzle: recombination

- Operates on the genotype
- Combine two permutations into two new ones
 - choose random crossover point
 - copy first parts into offspring
 - create second part by inserting values from the other parent (in the original order, beginning after crossover point, skipping values already in the offspring)
 - "cut and crossfill"

The eight queens puzzle: selection

Parent selection

- Pick five parents and take the fittest two to undergo crossover and mutation

Survivor selection

- Insert a new offspring into the population to replace an existing member by
 - sorting the whole population by decreasing fitness
 - enumerating the list from high to low
 - replacing the first member with a fitness lower than the given offspring

The eight queens puzzle: summary

Representation	Permutations
Recombination	'Cut-and-crossfill' crossover
Recombination probability	100%
Mutation	Swap
Mutation probability	80%
Parent selection	Best 2 out of random 5
Survival selection	Replace worst
Population size	100
Number of offspring	2
Initialisation	Random
Termination condition	Solution or 10,000 fitness evaluations

Table 3.4. Description of the EA for the eight-queens problem

Typical behavior of an EA

- Phrases in optimizing on a 1-dimensional fitness landscape
- Exploration vs. exploitation

Early phase: quasi-random population distribution

Middle phase: population arranged around/on hills

Late phase: population concentrated on high hills

Typical run: progression of fitness

Anytime behavior

Is it worth expending effort on smart initialization?

Are long runs beneficial?

- It depends: how much you want the last bit of progress
- It may be better to do more shorter runs

EAs in context

- There are many views on the use of EAs as robust problem solving tools
- For most problems a problem-specific tool may:
 - perform better than a generic search algorithm on most instances
 - have limited utility
 - not do well on all instances
- Goal is to provide robust tools that have:
 - evenly good performance
 - over a range of problems and instances

EAs as problem solvers: Goldberg's 1989 view

Special, problem tailored method

Scale of "all" problems

EAs and domain knowledge

- Trends:
 - adding problem specific knowledge to EAs
 - (special variation operators, repair, etc)
- Result: EA performance curve "deformation":
 - better on problems of the given type
 - worse on problems different from given type
 - amount of added knowledge is variable
- Theory suggests the search for an "all purpose" algorithm may be fruitless

EAs as problem solvers: Michalewicz's 1996 view

EC and global optimization

- Global optimization: search for finding best solution x^* out of some fixed set S
- Deterministic approaches allowed to run to completion
 - guarantee to find x^* , but may run in super-polynomial time
- Heuristic approaches (generate-and-test)
 - rules for deciding which x from S to generate next
 - no guarantees that best solutions found are globally optimal

EC and neighborhood search

- Many heuristics impose a neighborhood structure on S
- Such heuristics may guarantee that best point found is locally optimal, like hill-climbers
 - but problems often exhibit many local optima
 - often very quick to identify good solutions
- EAs are distinguished by:
 - use of population -> intrinsic parallelism
 - use of multiple search operators with different arity
 - stochastic operators of variation and selection