Topology Homework 04

Ethan Jensen, Luke Lemaitre, Kasandra Lassagne

February 23, 2020

EXERCISE 2.1 Determine Int(A) and Cl(A) in each case.

- (a) A = (0, 1] in the lower limit topology on \mathbb{R} .
- **(b)** $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}.$
- (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$.
- (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$.
- (e) $A = (-1, 1) \cup \{2\}$ in the standard topology on \mathbb{R} .
- (f) $A = (-1, 1) \cup \{2\}$ in the lower limit topology on \mathbb{R} .
- (g) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R} \}$ in \mathbb{R}^2 with the standard topology.
- (h) $A = \{(0, y) \in \mathbb{R}^2 | y \in \mathbb{R} \}$ in \mathbb{R}^2 with the vertical interval topology.
- (i) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R} \}$ in \mathbb{R}^2 with the vertical interval topology.

(a)
$$Int(A) = (0,1), Cl(A) = (0,1]$$

(b)
$$Int(A) = \{a\}, Cl(A) = X$$

(c)
$$|\operatorname{Int}(A) = \{a\}, \operatorname{Cl}(A) = X$$

(d)
$$| \operatorname{Int}(A) = \emptyset, \ \operatorname{Cl}(A) = \{c, b\}$$

(e)
$$Int(A) = (-1,1), Cl(A) = [-1,1] \cup \{2\}$$

(f)
$$Int(A) = [-1, 1), Cl(A) = [-1, 1) \cup \{2\}$$

(g)
$$| Int(A) = \emptyset, Cl(A) = A$$

(h)
$$Int(A) = A$$
, $Cl(A) = A$

(i)
$$| Int(A) = \emptyset, Cl(A) = A |$$

EXERCISE 2.2 Prove Theorem 2.2, parts (ii), (iv), and (vi): Let X be a topological space and A and B be subsets of X.

- (a) If C is a closed set in X and $A \subseteq C$ then $Cl(A) \subseteq C$.
- (b) If $A \subseteq B$ then $Cl(A) \subseteq Cl(B)$.
- (c) A is closed if and only if A = Cl(A).

(a) Proof.

Let C be a closed set in X and $A \subseteq C$. By Definition,

$$Cl(A) = \bigcap_{A \subseteq C_i} C_i$$

Since $A \subseteq C$

$$\bigcap_{A\subseteq C_i} C_i\subseteq C$$

 \therefore Cl(A) \subseteq C.

(b) Proof.

Assume $A \subseteq B$.

Since $B \subseteq Cl(B)$, $A \subseteq Cl(B)$. By Theorem 2.2 part ii, $Cl(A) \subseteq Cl(B)$.

(c) Proof.

 (\rightarrow) Assume A is closed. We know that $A \subseteq Cl(A)$. By Definition,

$$Cl(A) = \bigcap_{A \subseteq C_i} C_i$$

Since A is a closed set and $A \subseteq A$,

 $Cl(A) \subseteq A$.

Thus, A = Cl(A).

 \Box

 (\leftarrow) Assume A = Cl(A).

A = Cl(A) is an intersection of closed sets and is closed.

EXERCISE 2.4 Consider the particular point topology PPX_p on a set X. Determine Int(A) and Cl(A) for sets A containing p and for sets A not containing p.

If A contains p, Int(A) = A, Cl(A) = X.

If A does not contain p, $Int(A) = \emptyset$, Cl(A) = A.

EXERCISE 2.6 Prove that $Cl(\mathbb{Q}) = \mathbb{R}$ in the standard topology on \mathbb{R} .

Proof.

Let \mathcal{T} be the standard topology on \mathbb{R} . Since $\mathrm{Cl}(\mathbb{Q})$ is closed, $\exists U \in \mathcal{T} \ni \mathbb{R} - \mathrm{Cl}(\mathbb{Q}) = U$ Since $\mathbb{Q} \subseteq \mathrm{Cl}(\mathbb{Q})$, $U \subseteq \mathbb{R} - \mathbb{Q}$.

So U does not contain any rational numbers. But, since $\mathbb Q$ is dense, every open interval contains rational numbers.

This means $U = \emptyset$.

$$\begin{array}{l} \mathbb{R} - \mathrm{Cl}(\mathbb{Q}) = \varnothing \\ \therefore \mathrm{Cl}(\mathbb{Q}) = \mathbb{R}. \end{array}$$

EXERCISE 2.10 Prove Theorem 2.5. Let X be a topological space, A be a subset of X and y be an element of X. Then $y \in Cl(A)$ if and only if every open set containing y intersects A.

Proof.

 (\rightarrow) Let $y \in Cl(A)$. By the defintion of Cl(A),

$$y \in \bigcap_{\substack{C \subseteq A \\ \text{C closed}}} C$$

By Demorgan's Law, we have

$$y \notin \bigcup_{\begin{array}{c} U \subseteq X - A \\ \text{U open} \end{array}} U$$

Thus, if $y \in U$, where U is open, then $U \nsubseteq X - A$.

.: Every open set containing y intersects A.

 (\leftarrow) Assume every open set containing y intersects A.

Let $U = X - \operatorname{Cl}(A)$.

Since Cl(A) is closed, U is open.

 $y \notin U$ since U does not intersect A.

Thus, $y \in X - U$.

 $\therefore y \in \mathrm{Cl}(A).$

 $\therefore y \in Cl(A)$ if and only if every open set containing y intersects A.

EXERCISE 2.11 Prove Theorems 2.6 parts (ii) and (iv): For sets A

and B in a topological space X, the following hold:

(a)
$$Cl(X - A) = X - Int(A)$$

(b)
$$\operatorname{Int}(A) \cap \operatorname{Int}(B) = \operatorname{Int}(A \cap B).$$

(a) Proof.

Theorem 2.6 part (i) states that for any $A \subseteq X$

$$Int(X - A) = X - Cl(A)$$

Substituting X - A for A we have

$$Int(A) = X - Cl(X - A)$$

$$\therefore \operatorname{Cl}(X - A) = X - \operatorname{Int}(A)$$

(b) Proof.

 (\rightarrow) Let $x \in Int(A) \cap Int(B)$

 $x \in Int(A)$ and $x \in Int(B)$.

 $\operatorname{Int}(A) \subseteq A \text{ and } \operatorname{Int}(B) \subseteq B$

 $x \in A$ and $x \in B$.

 $x \in A \cap B$.

 $Int(A) \cap Int(B) \subseteq Int(A) \cap B \subseteq A \cap B$.

Also, $Int(A) \cap Int(B)$ is an intersection of open sets, which is open.

So x is an element of an open subset of $A \cap B$.

Since $Int(A \cap B)$ is the union of open subsets of $A \cap B$ we can write $x \in \operatorname{Int}(A \cap B)$

$$Int(A) \cap Int(B) \subseteq Int(A \cap B)$$

 (\leftarrow) Let $x \in Int(A \cap B)$.

By Definition, $Int(A \cap B)$ is an open set.

 $Int(A \cap B) \subseteq A \cap B$

 $\operatorname{Int}(A \cap B) \subseteq A \text{ and } \operatorname{Int}(A \cap B) \subseteq B$

So x is in an open set in A and x is in an open set in B.

This means that $X \in Int(A)$ and $x \in Int(B)$.

Thus, $x \in Int(A) \cap Int(B)$.

 $Int(A \cap B) \subseteq Int(A) \cap Int(B)$

 $\operatorname{Int}(A) \cap \operatorname{Int}(B) = \operatorname{Int}(A \cap B).$