E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

Basics of Active and Nonlinear HF Electronics – Tutorial

We consider a FET and its nonlinear drain current source I_{DS} modeled by the below equation as a function of its control voltages V_{GS} and $V_{DS}\;$:

$$I_{DS} = I_{DSS} \left[1 - \frac{V_{GS}(t)}{V_{D}} \right]^{2} (1 + K.V_{DS}(t))$$

The model is accurate in the variation range $-1.5V < V_{GS} < 0V$; $1V < V_{DS} < 7V$

with I_{DSS} = 60 mA; V_P = -1.5 V; K = 0.05; C_{GS} = 0.5 pF; C_{DS} = 0.1 pF; R_I = 4 Ω .

The FET is biased at $V_{GS0} = -0.75 \text{ V}$ and $V_{DS0} = 4 \text{ V}$

The small signal linear model of the FET in these conditions is shown below:

Study of parallel-cells of FET

- 1) Draw the I_{DS}-V_{DS} curves in the variation range
- 2) Determine the values of transconductance g_m and drain conductance g_{DS} at the selected bias point.
- 3) Determine the small-signal linear model corresponding to n parallel-cells of the FET. Determine the variation laws that give equivalent elements ($C_{GS}(n)$...) of the parallel-cells as a function of the number of cells n and the equivalent elements ($C_{GS}(1)$...) of a single-cell FET.
- 4) Determine the maximum power gain G_{MAX} for an ideal power matching at small-signal (linear) level. Determine its cutoff frequency f_C and its maximum frequency f_{MAX} .
- 5) After determining the optimum power load in large signal class A operation, determine the maximum gain G_{MAX} in this loading condition. Estimate the maximum output power value in class A. Compare these values to G_{MAX} and its associated maximum output power when the FET is ideally matched to give optimum gain in small signal operation.
- 6) Same questions 4) and 5) in the case of n-parallel FETs