Introduction to Logic

Problem 3.7 - Fitch System

Given $\neg (p \land q)$, use the Fitch system to prove $(\neg p \lor \neg q)$.

Start from the given premises. Apply rules of inference by checking the lines you wish to use as premises and click the button for the desired rule of inference. Reiteration allows you to repeat an earlier item. To delete one or more lines from a proof, check the desired lines and click Delete. Whenever entering expressions, use Ascii characters only. Use \sim for \neg ; use & for \wedge ; use | for \vee ; use => for \Rightarrow ; and use <=> for \Leftrightarrow .

Proof Editor					
1.	~(p & q)	Premise			
2.	~(~p ~q)	Assumption			
3.	~p	Assumption			
4.	~p ~q	Or Introduction: 3			
5.	~p => ~p ~q	Implication Introduction: 4			
6.	~p	Assumption			
7.		Reiteration: 2			
8.	$\sim p \Longrightarrow \sim (\sim p \mid \sim q)$	Implication Introduction: 7			
9.	~~p	Negation Introduction: 5, 8			
10.	p	Negation Elimination: 9			
11.	~q	Assumption			
12.	~p ~q	Or Introduction: 11			
13.	$\sim q \Rightarrow \sim p \mid \sim q$	Implication Introduction: 12			
14.	~q	Assumption			
15.	~(~p ~q)	Reiteration: 2			
16.	\sim q => \sim (\sim p \sim q)	Implication Introduction: 15			
17.	~~q	Negation Introduction: 13, 16			
18.	q	Negation Elimination: 17			
19.	p & q	And Introduction: 10, 18			

		Pro	blem 3.7 - Fitch S	System	
20. 21.	~(~p ~(~	$ \sim q) \Rightarrow p \& q$ $\sim p \sim q)$			Implication Introduction: 19 Assumption
22.	~(p	0 & q)			Reiteration: 1
23.	~(~p	~q) => ~(p & q)			Implication Introduction: 22
24.		p ~q)			Negation Introduction: 20, 23
25.	~p ~	~q			Negation Elimination: 24
Goal	~p ~q		Complete		
		Assumption	Negation I	ntroduction	Implication Introduction
		Reiteration	Negation I	Elimination	Implication Elimination
	Delete		And Introduction		Biconditional Introduction
			And Elimination		Biconditional Elimination
			Or Introduction		
			Or Elimination		
	Reset Show XML				
II .					