第二章 质点动力学

王庆勇

东北师范大学物理学院

质点动力学的基本问题

质点动力学讨论的问题主要是物体(看成质点)周围的环境 与物体运动的相互关系。

第一类问题

已知作用于物体(质点)上的力,由力学规律来决定该物体的运动情况或平衡状态。

第二类问题

已知物体的运动情况或平衡状态,由力学规律来推究作用于物体 上诸力。

质点动力学的基本问题

质点动力学讨论的问题主要是物体(看成质点)周围的环境 与物体运动的相互关系。

第一类问题

已知作用于物体 (质点) 上的力,由力学规律来决定该物体的运动情况或平衡状态。

第二类问题

已知物体的运动情况或平衡状态,由力学规律来推究作用于物体 上诸力。

质点动力学的基本问题

质点动力学讨论的问题主要是物体(看成质点)周围的环境 与物体运动的相互关系。

第一类问题

已知作用于物体 (质点) 上的力,由力学规律来决定该物体的运动情况或平衡状态。

第二类问题

已知物体的运动情况或平衡状态,由力学规律来推究作用于物体上诸力。

质点动力学微分方程

$$m\ddot{\vec{r}} = \vec{f} = \vec{f}(\vec{r}, \ \dot{\vec{r}}, \ t) + \vec{f}'$$

约束

对物体运动的一定限制称为约束。

$$m\ddot{\vec{r}} = \vec{f}(\vec{r}, \, \dot{\vec{r}}, \, t) + \vec{f}'$$

约束方程

质点动力学微分方程

$$m\ddot{ec{r}}=ec{f}=ec{f}(ec{r},\ \dot{ec{r}},\ t)+ec{f}'$$

约束

对物体运动的一定限制称为约束。

$$m\ddot{\vec{r}} = \vec{f}(\vec{r}, \, \dot{\vec{r}}, \, t) + \vec{f}'$$

约束方程

质点动力学微分方程

$$m\ddot{\vec{r}} = \vec{f} = \vec{f}(\vec{r}, \ \dot{\vec{r}}, \ t) + \vec{f}'$$

约束

对物体运动的一定限制称为约束。

$$m\ddot{\vec{r}} = \vec{f}(\vec{r}, \dot{\vec{r}}, t) + \vec{f}'$$

约束方程

质点动力学微分方程

$$m\ddot{\vec{r}} = \vec{f} = \vec{f}(\vec{r}, \ \dot{\vec{r}}, \ t) + \vec{f}'$$

约束

对物体运动的一定限制称为约束。

$$m\ddot{\vec{r}} = \vec{f}(\vec{r}, \, \dot{\vec{r}}, \, t) + \vec{f}'$$

约束方程

质点动力学微分方程

$$m\ddot{\vec{r}} = \vec{f} = \vec{f}(\vec{r}, \ \dot{\vec{r}}, \ t) + \vec{f}'$$

约束

对物体运动的一定限制称为约束。

$$m\ddot{\vec{r}} = \vec{f}(\vec{r}, \dot{\vec{r}}, t) + \vec{f}'$$

约束方程

非自由质点动力学方程组

例 2.1 (单摆的运动)

不可伸长的摆线长度为 l,一端悬于固定点 O,一端与摆锤相连;摆锤质量为 m,可视为质点;系统在过 O 点的竖直平面内运动。试求单摆在小摆角情况下的运动学方程和摆线内的张力。

非自由质点动力学方程组

例 2.2 (阿特伍德机)

用一细绳跨过一定滑轮,在绳的两端各悬质量为 m_1 和 m_2 的物体,其中 $m_1 < m_2$,求它们的加速度及绳端的拉力。设滑轮和绳子质量可忽略,绳子与滑轮间没有相对滑动。

非自由质点动力学方程组

例 2.3 (沿斜面下滑的物体)

一质量为 m 的木块静置于质量为 M,倾角为 θ ,高为 h 的斜面的顶部,斜面置于水平面上,所有的接触面都是光滑的。求木块 m 相对斜面的加速度。

自由质点动力学方程

例 2.4 (有空气阻力的抛体运动)

如果空气阻力不能忽略,并设阻力与速度成正比,求抛射体的运动。设抛射体初速度的大小为 v_0 ,方向与地面成 θ 角。

$$y = \left(\frac{mg}{kv_{0x}} + \frac{v_{0y}}{v_{0x}}\right) + \frac{m^2g}{k^2}\ln(1 - \frac{kx}{mv_{0x}})$$

自由质点动力学方程

例 2.4 (有空气阻力的抛体运动)

如果空气阻力不能忽略,并设阻力与速度成正比,求抛射体的运动。设抛射体初速度的大小为 v_0 ,方向与地面成 θ 角。

$$y = \left(\frac{mg}{kv_{0x}} + \frac{v_{0y}}{v_{0x}}\right) + \frac{m^2g}{k^2}\ln(1 - \frac{kx}{mv_{0x}})$$