如果满足 $R1\cap R2\to R1$ 或 $R1\cap R2\to R2$,则分解R1, R2是无损分解。设 R1=(A,B,C), R2=(A,D,E),且 $R1\cap R2=A$ 。由于 $A\to BC$,因此 $A\to ABC$,即 $R1\cap R2\to R1$,所以该分解为无损分解。

7.13

 F_1 不包含任何箭头右侧为D的依赖关系, F_2 不包含任何箭头左侧为B的依赖关系。因此,为了保持 $B\to D$,必须存在 F_1^+ 中的函数依赖 $B\to \alpha$ 和 F_2^+ 中的 $\alpha\to D$ (这样 $B\to D$ 可以通过传递性推导出来)。由于两个模式交集是A,故 $\alpha=A$ 。注意到 $B\to A$ 不在 F_1^+ 中,因为 $B^+=BD$ 。

7.21

设R1=(A,B,C,E),R2=(B,D),由于 $R1\cap R2=B$, $B\to D$,所以 $B\to BD$, $R1\cap R2\to R2$,所以该分解为无损分解,且该分解为BCNF范式。

7.22

将R分解为(A,B,C),(C,D,E),(B,D),(A,E),该分解为无损分解,且依赖关系保留,并且是第三范式。

7.29

A	В	C	D	E
a1	<i>b</i> 1	c1	d1	e1
a2	b2	c1	d2	e2

按照R1 = (A, B, C), R2 = (C, D, E)进行分解后

$\Pi R1(r)$ 的结果为:

A	B	C
a1	b1	c1
a2	b2	c1

$\Pi R2(r)$ 的结果为

C	D	E
c1	d1	e1
c1	d2	e2

$\Pi R1(r) \bowtie \Pi R2(r)$ 的结果为:

a1	b1	c1	d1	e1

A	В	C	D	E
a1	b1	c1	d2	e2
a2	b2	c1	d1	e1
a2	b2	c1	d2	e2

显然, $\Pi R1(r)\bowtie\Pi R2(r)\neq r$ 。因此,这不是一个无损分解。