M74LS138P

3-LINE TO 8-LINE DECODER/DEMULTIPLEXER

DESCRIPTION

The M74LS138P is a semiconductor integrated circuit consisting of a 3-bit binary-octal decoder/demultiplexer with enable inputs.

FEATURES

- 3 classes of enable inputs
- 4 to 16 decorder/demultiplexer functions are provided without use of external components.
- Wide operating temperature range ($T_a = -20 \sim +75^{\circ}C$)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

For use as a decoder, specify inputs D_A , D_B , and D_C in 3-bit binary code. In the case of decoding function, the E_1 is kept in high state while $\overline{E_2}$ and $\overline{E_3}$ are kept low. If E_1 , $\overline{E_2}$ and $\overline{E_3}$ are not in these conditions, all the outputs become high, irrespective of the status of $D_A \sim D_C$. For use as a demultiplexer, $\overline{E_1}$, $\overline{E_2}$ and E_3 are used as data inputs and D_A , D_B , and D_C as selection inputs. This forms a 1-line to 8-line demultiplexer.

3-LINE TO 8-LINE DECODER/DEMULTIPLEXER

FUNCTION TABLE (Note 1)

Εt	Ēχ	Dc	DB	DA	$\overline{Y_0}$	<u>Y</u> 1	Ÿ ₂	Y 3	Y ₄	<u>Y</u> 5	Y ₆	Y ₇
X	Н	×	×	X	Н	Н	н	Н	Н	н	Н	I
L	Х	×	×	×	Н	н	н	Н	Н	н	Н	н
н	L	L	L	L	L	н	Н	• н	Н	Н	н	н
н	L	L	L	Н	Н	L	Н	н	н	Н	Н	Н
Н	L	L	Н	L	н	н	L	Н	Н	н	н	Н
н	L	L	н	н	Н	Н	Н	L	Н	н	Н	Н
Н	L	H	L	L	Н	Н	Н	Н	L	Н	Н	н
Н	L	Н	L	Н	Н	Н	Н	н	Н	L	н	н
Н	Ļ	н	Н	Ļ	Н	Н	н	н	н	н	L	н
Н	L	Ħ	н	Н	Н	Н	н	Н	н	Н	Н	L

Note 1: $\overline{E_X} = \overline{E_2} + \overline{E_3}$ X: irrelevant

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~+7	V
VI	Input voltage		-0.5~+15	
Vo	Output voltage	High-level state	-0.5~ V _{CC}	V
Topr	Operating free-air ambient temperature range		−20~+75	°C
Tstg	Storage temperature range		- 65 - + 150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 - +75^{\circ}C$, unless otherwise noted)

	_					
Symbol	Parame	ter	Min	Тур	Max	Unit
Vcc	Supply voltage		4.75	5	5.25	٧
Юн	High-level output current	V _{0H} ≥2.7V	0		-400	μА
1. 1		V _{OL} ≦0.4V	0		4	mA
lor	Low-level output current	V _{0L} ≤0.5V	0		8	mA

ELECTRICAL CHARACTERISTICS ($T_a = -20 - +75^{\circ}C$, unless otherwise noted)

0 1 1		Test conditions		Limits			
Symbol	Parameter			Min	Тур∗	Max	Unit
ViH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
Vic	Input clamp voltage	V _{CC} =4.75V, I _{IC} =-18mA				-1.5	V
V _{OH}	High-level output voltage	$V_{CC} = 4.75V$, $V_1 = 0.8V$ $V_1 = 2V$, $I_{OH} = -400\mu A$		2,7	3.4		٧
VóL	Low-level output voltage	V _{CC} =4.75V V _I =0.8V, V _I =2V	I _{OL} = 4 mA		0.25 0.35	0.4	V
	Web to all the second	V _{CC} =5.25V, V _I =2.	7V			20	μА
Ιн	High-level input current	V _{OC} =5.25V, V _I =10V				0.1	mA
fil.	Low-level input current	V _{CC} =5.25V, V ₁ =0.4V				-0.4	mA
los	Short-circuit output current (Note 2)	V _{CC} =5.25V, V _O =0V		- 20		- 100	mA
loc	Supply current	V _{CC} =5.25V (Note 3)			6.3	10	mA

^{* :} All typical values are at V_{CC} = 5V, Ta = 25°C.

Note 2: All measurements should be done quickly, and not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with all output off-state.

3-LINE TO 8-LINE DECODER/DEMULTIPLEXER

SWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$, unless otherwise noted)

				Limits			Unit
Symbol	Parameter		Test conditions	Min	Тур	Max	Oilli
tpLH		delay gate stages			9	20	ns
tpHL	Low-to-high-level, high-to-low-level output propagation time, from inputs D _A , D _B , D _C to output $\overline{Y}_0 - \overline{Y}_7$	2			12	41	ns
telh		delay gate stages			16	27	ns
t _{PHL}		3			14	39	ns
tpLH	Low-to-high-level, high-to-low-level	delay gate stages	C _L = 15 pF (Note 4)		10	18	ns
tpHL	output propagation time, from inputs	2			15	32	ns
tpLH	Low-to-high-level, high-to-low-level	delay gate stages			8	26	ns
tpHL	output propagation time, from input	3			15	38	ns

Note 4: Measurement circuit

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = $3V_{P,P}$, Z_O = 50Ω
- (2) C_L includes probe and jig capacitance.

TIMING DIAGRAM (Reference level = 1.3V)

APPLICATION EXAMPLE

4-line to 16-line decorder/demultiplexer

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

