00_Basic_stat.md 2/15/2022

STATISTICS

• collection of methodsfor collecting, displaying, analyzing and drawing conclusion from data.

Descriptive statistics

Descriptive statistics is the branch of statistics that involves organizing, displaying, and describing data.

Inferential statistics

Inferential statistics is the branch of statistics that involves drawing conclusions about a population based on information contained in a sample taken from that population.

- average
- maximum
- minimum
- percentage
- liklihood
- variance
- t test
- anova

data types-1

- Cross sectional
- Time series

data types-2

- univariate
- multivariate

Variable Types-1

- binomial
- multinomial

Variable Types-2

- ordinal variable

00_Basic_stat.md 2/15/2022

Variable Types-3

- ratio data

Variable Types-4

- interval data

Measure of central tendancy

- mode (repeated value)
- median (middle Value, outliers don't affect)
- mean (Average value, outliers affects)

parameters

A parameter is a number that summarizes some aspect of the population as a whole.

population vs samples

A population is any specific collection of objects of interest. A sample is any subset or subcollection of the population, including the case that the sample consists of the whole population, in which case it is termed a census. **Sample mean** = $x = (\Sigma xi) / n$ **Population mean** = $\mu = (\Sigma Xi) / n$

notions and terms

find basic stat (summary) by

```
import pandas as pd
df=pd.read_csv("iris.csv)
print(df.describe())
```

Measurement od dispersion

- ** variability ,scatter or disperse**
 - is about how much value disperse around the mean
 - also called
 - standard deviation (std)
 - o standard error (se)
 - variance
 - o bell curve
 - range= minimum_to_maximum

00 Basic stat.md 2/15/2022

Example – Calculation of variance and standard deviation

Let's calculate the variance of the follow data set: 2, 7, 3, 12, 9.

The first step is to calculate the **mean**. The sum is 33 and there are 5 data points. Therefore, the mean is $33 \div 5 = 6.6$. Then you take **each** value in data set, **subtract the mean and square the difference**. For instance, for the first value:

$$(2 - 6.6)2 = 21.16$$

The squared differences for all values are added:

The sum is then divided by the number of data points:

$$69.20 \div 5 = 13.84$$

The **variance** is 13.84. To get the **standard deviation**, **you calculate the square root of the variance**, which is 3.72.

mean with std is more usefull than only mean by itself

- mean is incomplete without std
- mean only gives small picture

Variable type matters while plotting graphs

- for catagorical type variables (qualitative) use count plot etc.
- for continous variables (quantitative) use scatter plot etc.