ALU Verification Report

Component

Figure 1: ALU Schematic

The purpose of this learning activity is to create an arithmetic and logic unit (alu) for the processor. The alu takes in four inputs: p, q, f0, and f1 and returns two outputs: alu_out and Z by performing arithmetic operations on p and q. The alu can do addition, subtraction, increment on p, or decrement on p on two input bytes. Figure 1 highlights the schematic of the alu. The alu is made with two sub components, the full adder that adds two bits and an adder_subtractor that performs the operations.

F_1	F_0	Operation
0	0	Add P to Q, P + Q
0	1	Subtract Q from P, P – Q
1	0	Increment Q, Q + 1
1	1	Decrement Q, Q – 1

Figure 2: Input Operations

The alu determines which operation to perform using the two inputs: f0 and f1. The input, f1 determines if the operation is addition/subtraction or increment/decrement and the input, f0 determines if the opposite of the operation is desired.

Verification Tests

By the nature of this component, testing was done by doing one example of each operation and seeing if the alu works correctly. In addition, "edge cases" were tested as well to ensure that alu works optimally.

Figure 3: Verification Tests

Figure 4: Verification Tests with Assertion Statements

р	q	Operation	English	output	Expected
					output
00000010	00000111	Addition	2 + 5 = 7	00000111	00000111
				(Z=0)	(Z=0)
00000111	00000100	Subtraction	7 - 4 = 3	00000011	00000011
				(Z=0)	(Z=0)
11111111	00000000	Increment	255 + 1	00000001	00000001
				(Z=0)	(Z=0)
00000000	00000000	Decrement	0 - 1	11111111	11111111
				(Z=0)	(Z=0)
00000001	00000001	Subtraction	1 - 1 = 0	00000000	00000000
				(Z=1)	(Z=1)

Figure 5: Truth Table for Given Examples

Figure 3 – 5 illustrate the verification process for testing the alu. Notice in Figure 5 that when the operation has to pass the max or min value, the alu "wraps around" to the other extreme value. This is expected from the alu. The test results indicate that the schematic passed all tests according tot eh verification tests and assertion statements. Therefore, the alu schematic is correct and successfully passed all the tests.