Sea Suc(A, B) la siguiente fórmula:

$$\forall x (x \in B \leftrightarrow (x \in A \lor x = A))$$

Sea Suc(A, B) la siguiente fórmula:

$$\forall x (x \in B \leftrightarrow (x \in A \lor x = A))$$

Intuitivamente estamos diciendo que Suc(A, B) es cierto si y sólo si $B = A \cup \{A\}$.

Sea Suc(A, B) la siguiente fórmula:

$$\forall x (x \in B \leftrightarrow (x \in A \lor x = A))$$

Intuitivamente estamos diciendo que Suc(A, B) es cierto si y sólo si $B = A \cup \{A\}$.

¿Cómo sabemos que este conjunto existe?

Proposición

 $\Sigma_{ZFC} \models \forall A \exists B Suc(A, B)$

Proposición

 $\Sigma_{ZFC} \models \forall A \exists B Suc(A, B)$

Ejercicio

Demuestre la proposición.

Comencemos con el vacío: 0

Comencemos con el vacío: 0

¿Cuál es el conjunto B tal que $Suc(\emptyset, B)$? Llamamos a este conjunto el sucesor del vacío:

Comencemos con el vacío: 0

¿Cuál es el conjunto B tal que $Suc(\emptyset, B)$? Llamamos a este conjunto el sucesor del vacío: $\{\emptyset\}$

Comencemos con el vacío: 0

¿Cuál es el conjunto B tal que $Suc(\emptyset, B)$? Llamamos a este conjunto el sucesor del vacío: $\{\emptyset\}$

Sucesor de $\{\emptyset\}$:

Comencemos con el vacío: \emptyset ¿Cuál es el conjunto B tal que $Suc(\emptyset, B)$? Llamamos a este conjunto el sucesor del vacío: $\{\emptyset\}$ Sucesor de $\{\emptyset\}$: $\{\emptyset, \{\emptyset\}\}$

Comencemos con el vacío: \emptyset ¿Cuál es el conjunto B tal que $Suc(\emptyset, B)$? Llamamos a este conjunto el sucesor del vacío: $\{\emptyset\}$

Sucesor de $\{\emptyset\}$: $\{\emptyset, \{\emptyset\}\}$

Sucesor de $\{\emptyset, \{\emptyset\}\}$:

```
Comencemos con el vacío: \emptyset

¿Cuál es el conjunto B tal que Suc(\emptyset, B)? Llamamos a este conjunto el sucesor del vacío: \{\emptyset\}

Sucesor de \{\emptyset\}: \{\emptyset, \{\emptyset\}\}:

Sucesor de \{\emptyset, \{\emptyset\}\}: \{\emptyset, \{\emptyset\}, \{\emptyset\}\}\}
```

```
Comencemos con el vacío: \emptyset

¿Cuál es el conjunto B tal que Suc(\emptyset, B)? Llamamos a este conjunto el sucesor del vacío: \{\emptyset\}

Sucesor de \{\emptyset\}: \{\emptyset, \{\emptyset\}\}

Sucesor de \{\emptyset, \{\emptyset\}\}: \{\emptyset, \{\emptyset\}, \{\emptyset\}\}\}

Sucesor de \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}:
```

```
Comencemos con el vacío: \emptyset

¿Cuál es el conjunto B tal que Suc(\emptyset, B)? Llamamos a este conjunto el sucesor del vacío: \{\emptyset\}

Sucesor de \{\emptyset\}: \{\emptyset, \{\emptyset\}\}

Sucesor de \{\emptyset, \{\emptyset\}\}: \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}

Sucesor de \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}: \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}
```

```
Comencemos con el vacío: 0
¿Cuál es el conjunto B tal que Suc(\emptyset, B)? Llamamos a este conjunto el
sucesor del vacío: \{\emptyset\}
Sucesor de \{\emptyset\}: \{\emptyset, \{\emptyset\}\}
Sucesor de \{\emptyset, \{\emptyset\}\}: \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}
Sucesor de \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}: \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}
```

```
\begin{array}{|c|c|c|}\hline \text{conjunto} & \text{nombre} & \text{identidad}\\ \hline \emptyset \\ \{\emptyset\} \\ \{\emptyset, \{\emptyset\}\} \\ \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \} \\ \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \} \\ \end{array}
```

conjunto	nombre	identidad
\emptyset	0	
$ \{\emptyset\} $		
$\{\emptyset, \{\emptyset\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
\emptyset	0	
$ \{\emptyset\} $	1	
$\{\emptyset, \{\emptyset\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
\emptyset	0	
$\{\emptyset\}$	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
\emptyset	0	
$\{\emptyset\}$	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
Ø	0	
$ \{\emptyset\} $	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$		
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
\emptyset	0	
$ \{\emptyset\} $	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$	3	
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
\emptyset	0	
$\{\emptyset\}$	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$	3	$3 = \{0, 1, 2\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$		

conjunto	nombre	identidad
Ø	0	
$ \{\emptyset\} $	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$	3	$3 = \{0, 1, 2\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$	4	

conjunto	nombre	identidad
\emptyset	0	
$\{\emptyset\}$	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$	3	$3 = \{0, 1, 2\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$	4	$4 = \{0, 1, 2, 3\}$

conjunto	nombre	identidad
\emptyset	0	
$\{\emptyset\}$	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$	3	$3 = \{0, 1, 2\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$	4	$4 = \{0, 1, 2, 3\}$

conjunto	nombre	identidad
Ø	0	
$ \{\emptyset\} $	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$	3	$3 = \{0, 1, 2\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$	4	$4 = \{0, 1, 2, 3\}$

Están apareciendo los números naturales.

conjunto	nombre	identidad
Ø	0	
$\{\emptyset\}$	1	$1 = \{0\}$
$\{\emptyset, \{\emptyset\}\}$	2	$2 = \{0, 1\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$	3	$3 = \{0, 1, 2\}$
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$	4	$4 = \{0, 1, 2, 3\}$

Están apareciendo los números naturales.

Pero qué nos asegura que existe el conjunto de todos los sucesores?

La noción de conjunto inductivo

Sea Ind(A) la siguiente fórmula:

$$\forall x (\mathsf{Vac}(x) \to x \in A) \land \forall x \forall y ((x \in A \land \mathsf{Suc}(x, y)) \to y \in A)$$

La noción de conjunto inductivo

Sea Ind(A) la siguiente fórmula:

$$\forall x (Vac(x) \rightarrow x \in A) \land \forall x \forall y ((x \in A \land Suc(x, y)) \rightarrow y \in A)$$

Recuerde que el conjunto vacío existe y es único, así que $\operatorname{Ind}(A)$ también se podría escribir de la siguiente forma:

$$\exists x \, (\mathsf{Vac}(x) \land x \in A) \land \forall x \forall y ((x \in A \land \mathsf{Suc}(x, y)) \rightarrow y \in A)$$

El axioma de infinitud

Intuitivamente Ind(A) nos dice que A es un conjunto inductivo.

El axioma de infinitud

Intuitivamente Ind(A) nos dice que A es un conjunto inductivo.

El axioma de infinitud $\varphi_{\rm I}$ se define como:

 $\exists A \operatorname{Ind}(A)$

El axioma de infinitud

Intuitivamente Ind(A) nos dice que A es un conjunto inductivo.

El axioma de infinitud $\varphi_{\rm I}$ se define como:

 $\exists A \operatorname{Ind}(A)$

 φ_{I} es otro axioma que incluimos en Σ_{ZFC} .

La definición formal de los números naturales

Sea Nat(A) la siguiente fórmula:

$$\forall x (x \in A \leftrightarrow \forall B (Ind(B) \rightarrow x \in B))$$

La definición formal de los números naturales

Sea Nat(A) la siguiente fórmula:

$$\forall x (x \in A \leftrightarrow \forall B (Ind(B) \rightarrow x \in B))$$

Esta fórmula define al conjunto de los números naturales.

La definición formal de los números naturales

El siguiente teorema nos dice que los naturales están bien definidos en Σ_{ZFC} .

La definición formal de los números naturales

El siguiente teorema nos dice que los naturales están bien definidos en $\Sigma_{\text{ZFC}}.$

Teorema

$$\Sigma_{ZFC} \models \exists A \, Nat(A)$$

La definición formal de los números naturales

El siguiente teorema nos dice que los naturales están bien definidos en Σ_{ZFC} .

Teorema

$$\Sigma_{ZFC} \models \exists A \, Nat(A)$$

 $\Sigma_{ZFC} \models \forall A \forall B \, ((Nat(A) \land Nat(B)) \rightarrow A = B)$

Por esquema de separación tenemos que:

$$\Sigma_{\mathsf{ZFC}} \models \forall A \exists B \forall x \, (x \in B \leftrightarrow (x \in A \land \forall C \, (\mathsf{Ind}(C) \rightarrow x \in C))) \quad (\ddagger)$$

Por esquema de separación tenemos que:

$$\Sigma_{\mathsf{ZFC}} \models \forall A \exists B \forall x \, (x \in B \leftrightarrow (x \in A \land \forall C \, (\mathsf{Ind}(C) \rightarrow x \in C))) \quad (\ddagger)$$

Por axioma de infinitud sabemos que:

$$\Sigma_{\mathsf{ZFC}} \models \exists I \, \mathsf{Ind}(I)$$

Por esquema de separación tenemos que:

$$\Sigma_{\mathsf{ZFC}} \models \forall A \exists B \forall x \, (x \in B \leftrightarrow (x \in A \land \forall C \, (\mathsf{Ind}(C) \rightarrow x \in C))) \quad (\ddagger)$$

Por axioma de infinitud sabemos que:

$$\Sigma_{\mathsf{ZFC}} \models \exists I \mathsf{Ind}(I)$$

Reemplazando A por I en (\ddagger) obtenemos:

$$\Sigma_{\mathsf{ZFC}} \models \exists B \forall x (x \in B \leftrightarrow \forall C (\mathsf{Ind}(C) \rightarrow x \in C))$$

Vale decir, obtenemos que:

$$\Sigma_{\mathsf{ZFC}} \models \exists A \, \mathsf{Nat}(A)$$

Vale decir, obtenemos que:

$$\Sigma_{\mathsf{ZFC}} \models \exists A \, \mathsf{Nat}(A)$$

Finalmente, por axioma de extensionalidad obtenemos que:

$$\Sigma_{\mathsf{ZFC}} \models \forall A \forall B ((\mathsf{Nat}(A) \land \mathsf{Nat}(B)) \rightarrow A = B)$$

Considerando la forma en que definimos sucesor, la notación usual para los números naturales corresponde a lo siguiente:

Considerando la forma en que definimos sucesor, la notación usual para los números naturales corresponde a lo siguiente:

$$ightharpoonup$$
 0 = \emptyset

Considerando la forma en que definimos sucesor, la notación usual para los números naturales corresponde a lo siguiente:

- ightharpoonup 0 = \emptyset
- $ightharpoonup n = \{0, \ldots, n-1\}$ para cada n > 0

Considerando la forma en que definimos sucesor, la notación usual para los números naturales corresponde a lo siguiente:

$$ightharpoonup$$
 0 = \emptyset

▶
$$n = \{0, ..., n-1\}$$
 para cada $n > 0$

En particular, tenemos que:

$$n+1 = n \cup \{n\} = \{0, \ldots, n\}$$

En la teoría de conjuntos podemos definir la suma y multiplicación de números naturales.

En la teoría de conjuntos podemos definir la suma y multiplicación de números naturales.

Estas definiciones están basadas en la notación que acabamos de definir y coinciden con las definiciones usuales.

En la teoría de conjuntos podemos definir la suma y multiplicación de números naturales.

- Estas definiciones están basadas en la notación que acabamos de definir y coinciden con las definiciones usuales.
- Además se puede definir todas las funciones usuales.

En la teoría de conjuntos podemos definir la suma y multiplicación de números naturales.

- Estas definiciones están basadas en la notación que acabamos de definir y coinciden con las definiciones usuales.
- Además se puede definir todas las funciones usuales.

Desde ahora en adelante usamos \mathbb{N} para denotar al conjunto de los números naturales que define la teoría de conjuntos.

Considere un conjunto P tal que $P \subseteq \mathbb{N}$.

Considere un conjunto P tal que $P \subseteq \mathbb{N}$.

► *P* es una propiedad de los números naturales que estamos tratando de demostrar que es cierta.

Considere un conjunto P tal que $P \subseteq \mathbb{N}$.

▶ P es una propiedad de los números naturales que estamos tratando de demostrar que es cierta.

Ejemplo

Considere el siguiente conjunto

$$P = \left\{ n \in \mathbb{N} \mid \sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2} \right\}$$

Sabemos que $P \subseteq \mathbb{N}$, y nos gustaría demostrar que $P = \mathbb{N}$.

¿Qué podemos concluir si demostramos que P es un conjunto inductivo? Vale decir,

¿Qué podemos concluir si demostramos que P es un conjunto inductivo? Vale decir,

¿Qué podemos concluir si demostramos que P es un conjunto inductivo? Vale decir,

- ▶ 0 ∈ P
- ▶ Si $n \in P$, entonces $n + 1 \in P$

¿Qué podemos concluir si demostramos que P es un conjunto inductivo? Vale decir,

- **▶** 0 ∈ *P*
- ightharpoonup Si $n \in P$, entonces $n+1 \in P$

Como $\mathbb N$ está contenido en todos los conjuntos inductivos, concluimos que $P=\mathbb N.$

¿Qué podemos concluir si demostramos que P es un conjunto inductivo? Vale decir,

- **▶** 0 ∈ *P*
- ightharpoonup Si $n \in P$, entonces $n+1 \in P$

Como $\mathbb N$ está contenido en todos los conjuntos inductivos, concluimos que $P=\mathbb N.$

La propiedad P es cierta para todos los números naturales.

Tenemos entonces un método para demostrar que una propiedad P se cumple para todos los números naturales.

Tenemos entonces un método para demostrar que una propiedad P se cumple para todos los números naturales.

ightharpoonup Caso base: demuestre que $0 \in P$

Tenemos entonces un método para demostrar que una propiedad P se cumple para todos los números naturales.

- ightharpoonup Caso base: demuestre que $0 \in P$
- ► Caso inductivo: suponiendo que $n \in P$, demuestre que $n + 1 \in P$

Tenemos entonces un método para demostrar que una propiedad P se cumple para todos los números naturales.

- ightharpoonup Caso base: demuestre que $0 \in P$
- ightharpoonup Caso inductivo: suponiendo que $n \in P$, demuestre que $n+1 \in P$

Esto es lo que se llama una demostración por inducción.

Tenemos entonces un método para demostrar que una propiedad P se cumple para todos los números naturales.

- ightharpoonup Caso base: demuestre que $0 \in P$
- ► Caso inductivo: suponiendo que $n \in P$, demuestre que $n + 1 \in P$

Esto es lo que se llama una demostración por inducción.

Esta es una herramienta muy poderosa que vamos a estudiar en detalle.

La teoría de conjuntos contiene otros axiomas.

La teoría de conjuntos contiene otros axiomas.

En particular contiene al axioma de regularidad que nos dice que $A \not\in A$ para todo conjunto A.

La teoría de conjuntos contiene otros axiomas.

- En particular contiene al axioma de regularidad que nos dice que $A \not\in A$ para todo conjunto A.
 - Este axioma nos dice más, en particular que no podemos tener cadenas de la forma:

$$A \in B \text{ y } B \in A$$

 $A \in B, B \in C \text{ y } C \in A$

. . .