Семинар 11

Статистический смысл энтропии. Флуктуации.

Теория

Статистическое определение энтропии: $S = k_{\scriptscriptstyle E} \ln W$

Среднее значение: $\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f_i = \sum_{i=1}^{N} P_i f_i$ $\Delta f_i = f_i - \langle f \rangle = > \langle \Delta f \rangle_i = 0$

Среднеквадратическая флуктуация: $\delta_f = \left[\left\langle \left(\Delta f\right)^2\right\rangle\right]^{1/2}$

Относительная среднеквадратическая флуктуация: $\varepsilon_f = \frac{\delta_f}{\langle f \rangle}$.

 $\delta_f^2 = \left\langle f^2 \right\rangle - \left\langle f \right\rangle^2$

 $F_N = \sum_{i=1}^N f_i = > \langle F \rangle = N \langle f \rangle, \qquad \qquad \varepsilon_F = \frac{\varepsilon_f}{\sqrt{N}}.$

Биноминальное распределение: $P_n = \frac{N!}{n!(N-n)!} p^n q^{N-n}, \ q = 1-p$.

 $\langle n \rangle = \sum_{n=0}^{N} n P_n = N p$, $\varepsilon_n = \frac{1}{\sqrt{\langle n \rangle}}$