## Math 110 Sect

Midterm 2

Name

November 02, 2004

Instructor: Charles Cuell

Stude



All solutions are to be presented on the exam paper in the space provided. Each question is worth two (2) marks. A disorganized or messy solution will result in a mark of zero for that question. There are nine (9) questions in total on five (5) pages. Time for the exam is 80 minutes.



(1) Compute the following. 1 mark each.

(a)  $\tan(\frac{3\pi}{4})$ 





(b)  $\cos(3\pi)$ 





(c) 
$$\sec(-\frac{\pi}{6})$$









(2) Find the solution sets for the following. 1 mark each.

(a)  $x^2 - 4 > 0$ 





2'=3-x

$$2 = 3 - X$$
 $-1 = -X$ 
 $X = 1$ 

(c)  $\sin x = \frac{1}{\sqrt{2}}$  for  $x \in [-2\pi, 2\pi]$ 



(d)  $\cos(2x) = 1$  for  $x \in [0, 2\pi]$ 



(a)  $\lim_{x\to 1^{-}} \frac{x^2+x+1}{x-1}$  >



 $= \frac{1}{XT}$ As  $X \to 1$ ,  $f(x) \to \infty$ 

(b) 
$$\lim_{x\to\infty} \frac{\sqrt{x^2+1}}{x+1} \left( \frac{\sqrt{x^2+1}}{\sqrt{x^2+1}} \right)$$



(c)  $\lim_{x\to 0^-} \log_4(-x)$ 



 $\frac{X}{X} = \frac{ais}{x} \frac{de}{dx} \frac{det}{sign}$ 

(4) Use the limit definition of a derivative to find f'(x) when  $f(x) = \frac{1}{2-x}$ . 4 marks.

 $\frac{L'M}{h \to 0} = \frac{f(x+h) - f(x)}{h}$ 



(5) Compute the derivatives of the following functions. 2 marks each.

(a)  $f(x) = 2x^3 - 6x + 1$ 

$$= 6\chi^{2} - 610$$

$$= 6\chi^{2} - 6 = 6 (\chi^{2} - 1)$$
(b)  $f(x) = \frac{x^{2} + 1}{e^{x}}$ 

2X (xx) - (x2/1)

$$(c) f(x) = (x^8 + 4x^2 - 1)(e^x)$$

$$- (8x^2 + 9x)e^x + (x^8 + 9x^2 - 1)(e^x) = e^x (x^8 + 9x^2 + 9x^2 + 9x^2 + 9x^2 - 1)$$

$$(6) \text{ Prove that } d(x^2) = e^x (x^8 + 9x^2 +$$

(6) Prove that  $\frac{d}{dx}(cx) = c$ , c a constant directly from the limit definition of the derivative. 4 marks and a deep sense of satisfaction.

Lim 
$$f(x+h) - f(x)$$
 $h \to c$ 
 $f(x+h) - f(x)$ 
 $f(x+h) - f(x)$ 
 $f(x+h) + f(x)$ 
 $f(x+h) - f(x)$ 
 $f(x+h) -$ 

(7) Find the equation of the tangent line to  $f(x) = x^2 + 3^x$  at x = 1. 4 marks.

$$f(x) = 2X + (1n3)^{x}$$

$$N = 2 + 1n3$$

$$(2 + 1n3)^{x}(x - 1)$$

(8) Let f(1) = 2 and f'(1) = 3 Evaluate the following. 2 marks each.

(a)  $\frac{d}{dx} \left( \frac{f(x)}{x} \right) \Big|_{x=1}$ .

$$f(x) = \frac{f(x)}{x^2}$$

$$= \frac{2-3}{1}$$

(b) 
$$\frac{d}{dx}(x^2f(x))|_{x=1}$$

$$2\lambda\left(f(\chi)\right) + \chi^2f(\chi) = 2 + 3 = 5$$

(9) Where is the following function continuous? Analyze any discontinuities and classify as a removeable, jump, or infinite discontinuity. Sketch the graph of this function. 6 marks.

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x < 1\\ x^2 & \text{if } x \ge 1 \end{cases}$$

