- * 'Compuation of all relevant derivatives for the RBA article *
 - * 'here Log [z] gives the natural logarithm of z (logarithm to base e) see manual WolframAlpha Mathematica 12 Version 12.0 \times .0 \times .0 ' \star

Wolfram Alpha

In[19]:=

 $TB = B*(c^h/(c^h + K^h))^g + b*c$

Out[19]=
$$b c + B \left(\frac{c^h}{c^h + K^h}\right)^g$$

In[20]:= D[TB, B]

leite ab

Out[20]=
$$\left(\frac{c^h}{c^h + K^h}\right)^{g}$$

In[21]:= **D[TB, K]**

leite ab

$$\text{Out[21]= } - \frac{\text{B } c^h \text{ g } \text{ h } \text{K}^{-1+h} \left(\frac{c^h}{c^h + \text{K}^h} \right)^{-1+g}}{\left(c^h + \text{K}^h \right)^2}$$

In[22]:= **D[TB, h]**

leite ab

$$\text{Out[22]= B g} \left(\frac{c^h}{c^h + K^h} \right)^{\!\!-1+g} \left(\frac{c^h \, \text{Log[c]}}{c^h + K^h} - \frac{c^h \, (c^h \, \text{Log[c]} + K^h \, \text{Log[K]})}{(c^h + K^h)^2} \right)$$

In[23]:= **D[TB, g]**

leite ab

Out[23]=
$$B\left(\frac{c^h}{c^h + K^h}\right)^g Log\left[\frac{c^h}{c^h + K^h}\right]$$

In[24]:= **D[TB, b]**

leite ab

Out[24]= **C**

In[25]:= **D[TB, c]**

leite ab

 $\text{Out}[25] = b + B g \left(\frac{c^h}{c^h + K^h} \right)^{-1+g} \left(-\frac{c^{-1+2h}h}{\left(c^h + K^h\right)^2} + \frac{c^{-1+h}h}{c^h + K^h} \right)$

 $ln[36] := SB = B * (c^h / (c^h + K^h))^g$

Out[36]= $B\left(\frac{c^h}{c^h + K^h}\right)^g$

In[27]:= **D[SB, B]**

leite ab

Out[27]= $\left(\frac{c^h}{c^h + K^h}\right)^g$

In[28]:= D[SB, K]

leite ab

Out[28]=
$$-\frac{B c^h g h K^{-1+h} \left(\frac{c^h}{c^h + K^h}\right)^{-1+g}}{(c^h + K^h)^2}$$

In[29]:= **D[SB, h]**

leite ab

$$\text{Out[29]= B g} \left(\frac{c^h}{c^h + K^h} \right)^{\!\!-1+g} \left(\frac{c^h \, \text{Log[c]}}{c^h + K^h} - \frac{c^h \, (c^h \, \text{Log[c]} + K^h \, \text{Log[K]})}{\left(c^h + K^h\right)^2} \right)$$

In[37]:= **D[SB, g]**

leite ab

Out[37]=
$$B\left(\frac{c^h}{c^h + K^h}\right)^g Log\left[\frac{c^h}{c^h + K^h}\right]$$

In[38]:=

D[SB, c]

leite ab

$$\text{Out} [38] = B g \left(\frac{c^h}{c^h + K^h} \right)^{\!\!-1+g} \left(\!\!\! - \frac{c^{-1+2\,h}\,h}{\left(c^h + K^h\right)^2} + \frac{c^{-1+h}\,h}{c^h + K^h} \right)$$

In[39]:=	NSB = b * c
Out[39]=	b c
In[40]:=	D[NSB, b] Leite ab
Out[40]=	c
In[41]:=	D[NSB, c] Leite ab
Out[41]=	b