1	Fill in the blanks in these sentences. Use the words or phrases change of velocity , unbalanced , momentum . forces change an object's You can calculate the change in momentum by multiplying the mass by the
2	A $4~\mathrm{kg}$ cat speeds up from $2~\mathrm{m/s}$ to $5~\mathrm{m/s}$.
	(a) Calculate the change in velocity and state its direction.
	(b) Calculate the cat's momentum before it speeds up using the equation. $momentum (kg m/s) = mass (kg) \times velocity (m/s)$ $= 4 \times$ (c) Calculate the change of momentum using the equation
	(c) Calculate the change of momentum using the equation. momentum change (kg m/s) — mass (kg) — velocity change (m/s)
	momentum change (kg m/s) = mass (kg) \times velocity change (m/s) = 4 \times
3	A 4 kg cat slows down from 5 m/s to 3 m/s.
	(a) Calculate the change in velocity and state its direction.

- - (b) Calculate the change of momentum using the equation.

- (c) Calculate the change of momentum if the cat slows down from 3 m/s to rest.
- Calculate the change in momentum for:
 - (a) A $750 \, \mathrm{kg}$ car which speeds up from $12 \, \mathrm{m/s}$ to $24 \, \mathrm{m/s}$.
 - (b) A 200 kg lion who speeds up from 8.0 m/s to 18.0 m/s.
 - (c) A 9000 kg tram which slows down from 12 m/s to 5 m/s.
 - (d) A 2.0 kg bag of flour which hits the floor at 1.5 m/s then stops.

bounces and then goes the other way at 8 m/s. 7 Fill in the blanks in these sentences. Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A	5	A 0.16 kg cricket ball is bowled at 35 m/s and is hit in the other direction at 45 m/s.
(c) Calculate the change in momentum. (d) How much force would be needed to stop the ball in 1 s straight off the bat? 6 Calculate the change in momentum when a 0.80 kg basketball travelling at 12 r bounces and then goes the other way at 8 m/s. 7 Fill in the blanks in these sentences. Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A		
(d) How much force would be needed to stop the ball in 1 s straight off the bat? 6 Calculate the change in momentum when a 0.80 kg basketball travelling at 12 r bounces and then goes the other way at 8 m/s. 7 Fill in the blanks in these sentences. Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A force of will an object's by ea 8 A 2 kg trolley is moving at 1.0 m/s. It is then pushed forwards by a 4.0 N force for 0.5 (a) Calculate the momentum before it is pushed. (b) Calculate the change in momentum using the equation momentum change (kg m/s) = force (N) × time (s) (c) Calculate the momentum after it has been pushed.		(b) Calculate the momentum of the ball after it has been hit. State the direction.
6 Calculate the change in momentum when a 0.80 kg basketball travelling at 12 r bounces and then goes the other way at 8 m/s. 7 Fill in the blanks in these sentences. Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A		(c) Calculate the change in momentum.
bounces and then goes the other way at 8 m/s. 7 Fill in the blanks in these sentences. Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A		(d) How much force would be needed to stop the ball in $1\mathrm{s}$ straight off the bat?
Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A	6	Calculate the change in momentum when a $0.80~\rm kg$ basketball travelling at $12~\rm m/s$ bounces and then goes the other way at $8~\rm m/s$.
 (a) Calculate the momentum before it is pushed. (b) Calculate the change in momentum using the equation momentum change (kg m/s) = force (N) × time (s) = × (c) Calculate the momentum after it has been pushed. 9 A badger runs into a fence and stops. Its momentum reduces from 10 kg m/s to ze in 0.2 s. Calculate the force on the badger using the equation momentum change (kg m/s) = force (N) × time (s) 		
 (a) Calculate the momentum before it is pushed. (b) Calculate the change in momentum using the equation momentum change (kg m/s) = force (N) × time (s) = × (c) Calculate the momentum after it has been pushed. 9 A badger runs into a fence and stops. Its momentum reduces from 10 kg m/s to ze in 0.2 s. Calculate the force on the badger using the equation momentum change (kg m/s) = force (N) × time (s) 	7	Use the words $momentum$, $second$, 4 N, 4 kg m/s , $resultant$, $change$.
momentum change (kg m/s) = force (N) × time (s) =		Use the words momentum , second , 4 N , 4 kg m/s , resultant , change . A force of will an object's by each
9 A badger runs into a fence and stops. Its momentum reduces from 10 kg m/s to zero in 0.2 s . Calculate the force on the badger using the equation momentum change $(\text{kg m/s}) = \text{force (N)} \times \text{time (s)}$		Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A force of will an object's by each A 2 kg trolley is moving at 1.0 m/s. It is then pushed forwards by a 4.0 N force for 0.5 s.
in 0.2 s. Calculate the force on the badger using the equation $ \text{momentum change} \left(\text{kg m/s} \right) \ = \ \text{force} \left(\text{N} \right) \ \times \ \text{time} \left(\text{s} \right) $		Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A force of will an object's by each A 2 kg trolley is moving at 1.0 m/s. It is then pushed forwards by a 4.0 N force for 0.5 s. (a) Calculate the momentum before it is pushed. (b) Calculate the change in momentum using the equation momentum change (kg m/s) = force (N) × time (s) = ×
		Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A force of will an object's by each A 2 kg trolley is moving at 1.0 m/s. It is then pushed forwards by a 4.0 N force for 0.5 s. (a) Calculate the momentum before it is pushed. (b) Calculate the change in momentum using the equation momentum change (kg m/s) = force (N) × time (s) = ×
× 0.2	8	Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A force of will an object's by each A 2 kg trolley is moving at 1.0 m/s. It is then pushed forwards by a 4.0 N force for 0.5 s. (a) Calculate the momentum before it is pushed. (b) Calculate the change in momentum using the equation momentum change (kg m/s) = force (N) × time (s) = × (c) Calculate the momentum after it has been pushed.
	8	Use the words momentum, second, 4 N, 4 kg m/s, resultant, change. A

10	A $300000\mathrm{kg}$ train is moving at $25\mathrm{m/s}$. Its motors then provide an extra force forwards
	of 3 000 N for sixty seconds.

- (a) Calculate the momentum of the train before the extra force.
- (b) Calculate the change in momentum caused by the extra force.
- (c) Calculate the momentum of the train after the sixty seconds.
- (d) Calculate the new speed of the train.

- 11 How much force is needed to bowl a $0.16~{\rm kg}$ cricket ball at $36~{\rm m/s}$ if it takes $0.09~{\rm s}$ to throw it?
- 12 Write a word equation containing **momentum change**, **resultant force** and **time**. Make **resultant force** the subject of the equation.

resultant force =

- 13 An 80 kg coach passenger slows down from 30 m/s to 8 m/s in 18 s.
 - (a) Calculate the change in momentum.
 - (b) Calculate the force needed to slow the passenger down.
 - (c) Calculate the force if the passenger slowed down in 2.5 s instead.
- 14 Calculate the force needed to slow a $24\,000$ kg coach down from 30 m/s to 8 m/s in 10 s.