EL318: Lecture 3-1

Pipelining

With thanks to Srini Devadas at MIT and his course Computation Structures

Pipelining

Motivation: Adding a column of numbers

Brent's Theorem

Let A be a given algorithm with a parallel computation time of t. Suppose that A involves a total number of m computational operations. Then A can be implemented using p processors in O(m/p + t) parallel time.

Proof: Let m(i) be the number of computational operations performed (in parallel) in step i of A, the algorithm provided. Using p processors this can be simulated in m(i)/p+1 time. Now summing over all i, $1 \le i \le p$, we get the stated parallel computation time because $m=m(1)+m(2)+\cdots+m(p)$.

2005-02-21 EL3020/L3-2

Observe... An Assembly Line Observe... An Assembly Line

- Length L objects (and workers), moves at rate
 R objects/minute
- Each task should take at most ____ minutes
- An object is processed in _____ minutes
- Workers always have an object in front of them

Definitions

- Latency: Time for one object to pass through the system is L/R
- Throughput: Rate of objects going through is R

Adding Numbers: A Closer Look

Combinational Throughput and Latency

Latency =
$$2 t_{pd}$$

Throughput = $\frac{1}{2 t_{pd}}$

Pipelined Throughput and Latency

Inhomogenous Pipeline

ILL-Formed Pipelines

Pipeline Well-Formedness

- Same number of flip-flops along any path from any input to any output
 - Insures that every computational unit sees inputs in phase

k-Pipelines

- k flip-flops on each input-output path
- Always have flip-flops on each output

Clock period is maximum propagation delay from flip-flop output (or circuit input) to flip-flop input