Московский Физико-Технический Институт (государственный университет)

Работа 4.2.1

Цель работы:

познакомиться с явлением интерференции в тонких пленках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются:

измерительный микроскоп с опак-иллюминатором; плоско-выпуклая линза; пластинка из черного стекла; ртутная лампа типа ДРШ; щель; линзы; призма прямого зрения; объектная шкала.

Экспериментальная установка

На рис. 1. представлена схема наблюдения колец Ньютона. Найти радиус кривизны сферической поверхности такой линзы можно зная формулы для радиусов темных и светлых колец. Радиус темных колец:

$$r_m = \sqrt{m\lambda R} \tag{1}$$

Радиус светлых колец:

$$r_m' = \sqrt{\frac{(m-1)\lambda R}{2}} \tag{2}$$

Рис. 1: Схема наблюдения колец Ньютона

В нашей установке кольца Ньютона образуются при интерференции световых волн отраженных от границ тонкой воздушной прослойки заклюлченной между выпуклой поверхностью линзы и плоской стеклянной пластинкой.

Линии постоянной разности хода представляют собой концентрические кольца с центром в точке соприкосновения. Для протяженного источника линии равной толщины локализованы на поверхности линзы, если пластинка лежит на линзе, и вблизи поверхности линзы, если линза лежит на пластинке, как в нашем случае.

Схема экспериментальной установки представлена на рис. 1. Опыт выполняется с помощью измерительного микроскопа. На столике микроскопа помещается держатель с пластинкой черного стекла, на которой находится исследуемая линза.

Источником света служит ртутная лампа. Монохраматический свет получается в результате применения монохроматор, состоящий из конденсатора K, коллиматора (щель S

Рис. 2: Схема установки для наблюдения колец Ньютона

и объектив О) и призмы прямого зрения П. Свет от монохроматора попадает на расположенный между объективом и окуляром микроскопа опак-иллюминатор (ОИ). Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка Р, наколоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив и попадает на исследуемый объект.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях с помощью винтов преперетоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микроскопического винта М. Пластинка в опак-иллюминаторе может поворачиваться вокруг горизонтальной оси X, сам опак-иллюминатор – вокруг вертикальной оси.

Выполнение работы

- 1. Настроим микроскоп и монохроматор так, чтобы в микроскоп было видно чередующиеся темные и светлые кольца. Вращая окулярный микрометрический винт убедимся, что перекрестие проходит через середину достаточно удаленного, но все еще отчетливо видимого тёмного кольца.
- 2. Перемещая перекрестие, будет последовательно устанавливать его на середины темных и светлых колец и записывать соответствующие показания окулярной шкалы и микрометра в таблицу:

	Темные кольца			Светлые кольца	
$m_{\scriptscriptstyle \mathrm{TM}}$	$l_{ m ok}$	$l_{{}_{ m MKM}}$	$m_{ m cB}$	$l_{ m ok}$	$l_{{}_{ m MKM}}$
0	3	61	1	2	84
1	2	45	2	2	18
2	1	94	3	1	75
3	1	55	4	1	38
4	1	26	5	1	11
5	0	91	6	0	84
6	0	71	7	0	60

3. Произведем калибровку окулярной шкалы и рассчитаем цену ее деления. Получим, что цена деления окулярной шкалы равняется $\triangle l_{\rm ok} \simeq 0, 1$ мм. Пользуясь полученным значением рассчитаем радиусы темных колец по формуле

$$r_m = |l_{\text{ok}0} - l_{\text{ok}m} + \frac{l_{\text{mkm}0} - l_{\text{mkm}m}}{100}| \cdot \triangle l_{\text{ok}},$$

аналогично рассчитаем радиусы светлых колец r'_m . Запишем получившиеся данные в таблицу:

	Темные кольца		Светлые кольца
$m_{\scriptscriptstyle ext{TM}}$	$l_{\scriptscriptstyle \mathrm{TM}},\ \mathrm{MM}$	$m_{ m cB}$	$l_{ m cb},~{ m MM}$
0	0	1	0,077
1	0,116	2	0,143
2	0,167	3	0,186
3	0,206	4	0,223
4	0,235	5	0,250
5	0,270	6	0,277
6	0,290	7	0,301

Погрешность цены деления будеем считать равной половине цены деления микрометра, то есть $\Delta l = 0,0005$ мм.

4. Построим график зависимости квадратов радиусов колец от их номера.

Рис. 3: График зависимости темных и светлых пятен от их номера

Получим зависимость вида $y = a \cdot x + b$:

	Темные кольца	Светлые кольца
a	$0,0142 \pm 0,0002$	$0,0141 \pm 0,0001$
b	$-0,0004 \pm 0,0008$	$-0,0077 \pm 0,0004$

5. Расфокусировем монохроматор и получим в микроскопе изображение биений. Посчитаем количество темных полос от центра одной четкой системы полос, до другой: $\Delta m = 14$. Оценим разность длины волн по формуле:

$$(\triangle m+1)\lambda_3 = \triangle m\lambda_{\mathsf{x}} \Rightarrow \triangle \lambda = \frac{\lambda_3}{\triangle m} \simeq 39 n_{\mathsf{M}},$$

здесь $\lambda_3 = 546$ нм. Теперь, подтвердив, что разность длин волн желтого и зеленого цвета: $\lambda_{\text{ж}} - \lambda_{\text{з}} \simeq 580 - 546 = 34$ примерно равны полученному нами значению, можем из графика посчитать радиус кривизны линзы R по формуле (1):

$$a_{\rm cb} = \lambda \cdot R$$

Наконец получим значение для R:

$$R = \frac{a_{\rm cb}}{\lambda_{\rm s}} = 2,60 \pm 0,04 {
m cm}$$

Вывод

Таким образом, мы подтвердили, что лампа излучает свет зеленого цвета. В результате определения того, что разница длин волн желтого и зеленого света ртутной лампы примерно равна $\Delta \lambda = 39$, в то время как табличный результат — 34 нм. Это может быть объяснено небольшой неточностью определения числа Δm из-за подрагиваний линзы, что осложняло подсчет колец с малой толщиной.

Также мы построили графики зависимости радиусов колец Ньютона от их номеров. Полученный результат позволил нам рассчитать радиус линзы — $R = (2, 60 \pm 0, 04)$.