

计算机视觉与模式识别 (CVPR)

课程实验——相机标定

西安交通大学人工智能学院

辅导教师:姚慧敏 办公室:科学馆347

Email:hmyao267@mail.xjtu.edu.cn

目录

- 一. 实验目的
- 二. 实验环境与器材
- 三. 实验原理
- 四. 实验步骤及要求
- 五. 实验报告

一、实验目的

- 1. 掌握针孔相机成像原理, 了解相机的内外参数 与畸变参数;
- 2. 掌握张氏相机标定方法的基本原理与标定过程;
- 3. 熟悉相机标定编程工具,完成实验任务要求。

二、实验环境与器材(1/4)

- 实验环境:编程语言不限
- Matlab:

Camera Calibration Toolbox for Matlab 网址: http://www.vision.caltech.edu /bouguetj/calib doc/

 Python、c++: opencv cv2.findChessboardCorners cv2.calibrateCamera

二、实验环境与器材(2/4)

• 实验器材: 计算机、定焦相机、平面棋盘格

工业相机

镜头

标定板

逐环境与器材(3/4)

华谷动力 WP-US 微型 USB3.0 工业相机 用户手册

型号: WP-US200 / WP-US200M, 200 万像素相机

相机型号	WP-US200 彩色	WP-US200M 黑白				
传感器型号	TBD					
快门类型	卷帘快门					
传感器尺寸	(7.2m	nm x 5.4mm)				
像元尺寸	(3.8 微	(米)				
曝光时间	57us~1 杪 16ms					
八龙龙龙/市岸龙	1920 X 1080 (MAX) 92 帧/秒					
分辨率/帧率	任意尺寸 ROI					
信噪比	39db	41db				
光谱响应	390~650nm	390~1050nm				
ADC 精度	10Bit					
触发方式	硬件触发 / 软件触发					
输出图像格式	Raw8、Raw12 (原始图像)					
	BayerGB8, BayerGB12	Mono8, Mono12				
拍照支持格式	RAW, BMP, JPEG, PNG					
外形尺寸	29×29×29mm (不包含镜头座)					
重量	< 45 克					
镜头接口	С接口					
执行标准	CE, GenICam, USB3.0 Vision, IP30, RoHS					

WP-US200 光谱响应曲线图 WP-US200M 光谱响应曲线图

QE = 50% DE = 30% 700 Wavelength (nm)

0755-28285220/28286220/28289220

7/38

序号	型 号	焦距 (mm)	光圈范围	工作距离 (mm)	滤镜安装	畸变	重量 (g)	搭配芯片	视场角度 (水平*垂直*对角)														
							82	1/1.8"	84.4°	68.6°	97.2°												
1	WP-2M0420-C	4	2.0~16	100-∞	M30.5*P0.5	<1.6%		1/2.5"	71.4°	56.3°	83.7°												
								1/3"	62.2°	48.6°	74.0°												
							62	1/1.8"	60.0°	47.3°	71.8°												
2	WP-2M0620-C	6	2.0~16	100-∞	M27*P0.5	<1.2%		1/2.5"	49.0°	37.4°	59.2°												
								1/3"	42.4°	32.1°	51.5°												
	3 WP-2M0814-C 8			100-∞ M				1/1.8"	47.5°	36.9°	57.8°												
2			8 1.4~16		M27*P0.5	P0.5 <0.8%	78	1/2.5"	38.3°	29.0°	46.8°												
3		°						1/3"	33.8°	24.7°	41.0°												
																				2/3"	55.4°	47.1°	68.6°
									1/1.8 "	34.2 °	26.2°	42.2°											
	WD 0141014 C	10	1414			1/2.5 "	27.4°	20.4°	33.7°														
4	WP-2M1214-C	12	1.4~16	1.4~16	100-∞ M2/*P0.	100-8	100-∞	M27*P0.5	<0.9%	57	1/3 "	23.0°	17.3°	28.6°									
								2/3 "	40.1°	33.7°	50.7°												
	5 WP-2M1614-C	16 1.4~16	100-∞ M27*P0.8	1407*P0 F 40.007	<0.8% 46		1/1.8 "	26.2°	20.0°	32.5°													
_						1/2.5 "	20.8°	15.7°	25.9°														
5				M2/*P0.5		46	1/3 "	17.6°	13.3°	21.9°													
										2/3 "	30.8°	25.8°	39.4°										

命名规则

CVPR课程实验——相机标定

F值表示镜头的最大光圈

搭配原则: 小尺寸靶面的 CCD可使用对应规格更大 的镜头,反之则不行。

6/18

二、实验环境与器材(4/4)

相机型号

规格参数	WP-US130M	WP-US200M	WP-UT030M	WP-UT050M	WP-UT130M
传感器尺寸	1/2.7英寸	1/1.8英寸	1/4英寸	1/3.6英寸	1/2英寸
像元尺寸	4.0um	3.8um	4.8um	4.8um	4.8um
分辨率	1280×1024	1920×1080	640×480	800×600	1280×1024
帧率	213 f/s	92 f/s	815 f/s	545 f/s	210 f/s

镜头型号

规格参数	WP-2M0420-C	WP-2M0620-C	WP-2M0814-C	WP-2M1214-C	WP-2M1614-C
焦距	4mm	6mm	8mm	12mm	16mm
支持的最大 相机靶面	1/2英寸	1/2英寸	2/3英寸	2/3英寸	2/3英寸

棋盘格: 1) 30mm, 9×12 2) 35mm, 9×12 3) 45mm, 9×12

三、实验原理(1/4)

张氏标定法:

ICCV Zhang' 99: "Flexible Calibration by Viewing a Plane From Unknown Orientations"

Space Image Space
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv K \begin{bmatrix} R & t \end{bmatrix} \mathbf{X}_{w} = K \begin{bmatrix} r_{1} & r_{2} & r_{3} & t \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ 0 \\ 1 \end{bmatrix}$$

$$= K \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix} = H \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

三、实验原理(2/4)

从单应矩阵H中估计相机内参和外参:

从单应矩阵H中估计相机内参和外参:
$$K = \begin{bmatrix} s_x & \alpha & t_u \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} h_1 & h_2 & h_3 \end{bmatrix} = \lambda K \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \Rightarrow \begin{cases} h_1^T K^{-T} K^{-1} h_2 = 0 \\ h_1^T K^{-T} K^{-1} h_1 = h_2^T K^{-T} K^{-1} h_2 \Rightarrow Vb = \vec{0} \end{cases}$$

$$1_{K-1} \qquad 1_{K-1} \qquad 1_{K-$$

$$r_1 = \frac{1}{\lambda} K^{-1} h_1, \quad r_2 = \frac{1}{\lambda} K^{-1} h_2, \quad r_3 = r_1 \times r_2, \quad t = \frac{1}{\lambda} K^{-1} h_3$$

求解相机的畸变参数——径向畸变

$$\begin{aligned}
\ddot{x} &= x + x \left[k_1 (x^2 + y^2) + k_2 (x^2 + y^2)^2 + k_3 (x^2 + y^2)^3 \right] \\
\ddot{y} &= x + x \left[k_1 (x^2 + y^2) + k_2 (x^2 + y^2)^2 + k_3 (x^2 + y^2)^3 \right] \\
\end{aligned}
\begin{cases}
x = u - u_0 \\
y = v - v_0
\end{cases}$$

三、实验原理(3/4)

求解相机的畸变参数——径向畸变

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv H \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

$$\vec{k} = \left(D^T D\right)^{-1} D^T d$$

求解相机的畸变参数——切向畸变

$$\ddot{x} = x + \left[2p_1 xy + p_2 (r^2 + 2x^2) \right]$$

$$\ddot{y} = y + \left[p_1 (r^2 + 2y^2) + 2p_2 xy \right]$$

$$\vec{p} = \left(D_p^T D_p\right)^{-1} D_p^T d$$

三、实验原理(4/4)

非线性最小二乘法——Levenberg-Marquardt-LM优化

$$S(K, \vec{k}, \vec{p}, R, t) = \sum_{i=1}^{n} \sum_{j=1}^{m} ||x_{ij} - f(K, \vec{k}, \vec{p}, R_i, t_i, X_j)||^2$$

目标函数:
$$S(\beta) = \sum_{i=1}^{m} ||y_i - f(x_i, \beta)||^2$$

一阶Jacobi矩阵近似: $f(x_i, \beta + \delta) \approx f(x_i, \beta) + J_i \delta$

目标函数S的周边信息: $S(\beta+\delta) \approx \|\vec{y}-F(\beta)-J\delta\|^2$

$$J = \begin{bmatrix} \frac{\partial y_1}{\partial \beta_1} & \frac{\partial y_1}{\partial \beta_2} & \cdots & \frac{\partial y_1}{\partial \beta_n} \\ \frac{\partial y_2}{\partial \beta_1} & \frac{\partial y_2}{\partial \beta_2} & \cdots & \frac{\partial y_2}{\partial \beta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial \beta_1} & \frac{\partial y_m}{\partial \beta_2} & \cdots & \frac{\partial y_m}{\partial \beta_n} \end{bmatrix}$$

使S最小时:

$$(J^{T}J)\delta = J^{T}[\vec{y} - F(\beta)]$$

加入阻尼系数,得到:

$$(J^{T}J + \lambda I)\delta = J^{T}[\vec{y} - F(\beta)]$$

阻尼因子λ大时,接近最速下降法; λ小时,接近高斯-牛顿法,收敛快。

四、实验步骤及要求(1/6)

- 1. 安装相机驱动,采集若干棋盘格图片
 - UT and GE DriverV2.1.6
 - WorkVision5 driver (WP-UFV-US-GS-UC)
 - UT and GE_DriverV2.1.6
 - WorkVision5_driver (WP-UFV-US-GS-UC)

要求: 采集10张以上棋盘格不同位姿的图片;

四、实验步骤及要求(2/6)calib.m

2. 棋盘格角点检测

Image names	Read images	Extract grid corners	Calibration
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners
Add/Suppress images	Save	Load	Exit
Comp. Extrinsic	Undistort image	Export calib data	Show calib results

角点——像素坐标(u,v): x_1, x_2,.....; 世界坐标(x,y,0): X_1, X_2,

要求:1) 观测参数对角点检测的影响;2) 注意角点检测的数量和准确率;

四、实验步骤及要求(3/6)

3. 求解单应性矩阵——compute_homography.m

🚺 Camera Calibration Toolbox - Standard Vertion						
Image names	Read images	Ct grid corners	Calibration			
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners			
Add/Suppress images	Save	Load	Exit			
Comp. Extrinsic	Undistort ima _{s e}	Exp. it callib data	Show calib results			

function [H,Hnorm,inv_Hnorm] = compute_homography(m,M)

INPUT: m: homogeneous coordinates in the image plane (3xN matrix)

M: homogeneous coordinates in the plane in 3D (3xN matrix)

OUTPUT: H: Homography matrix (3x3 homogeneous matrix)

Hnorm: Normalization matrix used on the points before homography computation (useful for numerical stability is points in pixel coordinates)

inv_Hnorm: The inverse of Hnorm

四、实验步骤及要求(4/6)

3. 求解单应性矩阵——实验要求

Inv(H)

四、实验步骤及要求(5/6)

4. 估计理想无畸变的情况下,相机的内参和外参。

1) 初始化内参: init_intrinsic_param.m

要求: 1)运行代码, 计算出初始化的内参矩阵;

2)指出该代码中理想无畸变情况下,内参的约束条件;

2) 计算外参: comp_ext_calib.m 计算外参的主函数,对所有图像计算外参 compute_extrinsic_init.m 计算每幅图外参矩阵的初值 compute_extrinsic_refine.m 对初始外参矩阵进行优化

四、实验步骤及要求(6/6)

5. 用LM优化算法, 优化估计, 提升精度

优化代码: go_calib_optim_iter.m

重投影函数: project_points2.m

要求: 1)了解Jacobi矩阵的计算过程以及参数的优化过程;

- 2)解释五个畸变参数的含义;
- 3)调整阻尼因子,观察收敛速度(或迭代次数):
- 4)利用校正后的参数,wrap棋盘格图片,分析结果;
- _5)(选做)修改代码估计相机的倾斜因子alpha和畸变参数k(5);

五、实验报告

- 1. 两周之内提交
- 2. 页数: 纸质版4~6页, 电子版不限 将采集的图片和实验报告打包提交到网盘 每组至少提交一份实验报告、注明小组人员及分工
- 3. 实验报告内容: 注明相机、镜头型号,棋盘格规格 以实验要求、结果及分析为主 分析标定误差形成的原因

谢谢!