An introduction to Nichols algebras and bosonization

Matteo Misurati

University of Ferrara

NCG&T Prague, Pre-Seminar, April 1st 2025

Summary

- We will introduce all the ingredients necessary to the construction of Nichols algebras in Yetter-Drinfeld modules category.
- We define Nichols algebras and give some simple examples.
- We will show how regular and braided Hopf algebras are related through Radford-Majid bosonization.
- If time permits, we will conclude by showing the role of Nichols algebras in the classification of pointed Hopf algebras.

Unless otherwise stated, we denote by H a Hopf algebra with invertible antipode over an algebraically closed field k of characteristic 0. For this talk $\mathbb{N} \ni 0$.

Braided monoidal category

A monoidal category $\mathcal C$ is called braided when endowed with a natural isomorphism $c_{X,Y}:X\otimes Y\to Y\otimes X$ such that the hexagon axioms hold:

- The hexagon axioms imply the Yang-Baxter equation for c.
- c plays in C the role of the transposition τ in Vec_k .
- The braiding is, in general, not unique: $(C, c) \leadsto (C, c^{-1})$.

(left) Center construction

Starting from any monoidal category C, we can construct a braided monoidal category $\mathcal{L}_L(C)$, where:

• Objects: (Z, γ) , where $Z \in \mathcal{C}$ and $\gamma_X : X \otimes Z \to Z \otimes X$ nat. iso. s.t.

• Morphisms between (Z, γ) and (Z', γ') : maps $f: Z \to Z'$ in $\mathcal C$ s.t.

$$(f \otimes id)\gamma_X = {\gamma'}_X(id \otimes f), \text{ for all } X \in \mathcal{C}.$$

- Tensor product: $(Z \otimes Z', \tilde{\gamma})$, where $\tilde{\gamma}$ is defined by γ , γ' and a.
- Braiding: $c_{(Z,\gamma),(Z',\gamma')} = \gamma'_Z$.

Example:
$$\mathcal{L}_L(H\mathcal{M}) \cong {}_H^H \mathcal{YD}$$
.

(left-left) Yetter-Drinfeld modules

Objects in ${}_{H}^{H}\mathcal{YD}$ are vector spaces V endowed with

- a H-action $\cdot : H \otimes V \rightarrow V : h \otimes v \mapsto h \cdot v$
- a H-coaction $\lambda: V \to H \otimes V: v \mapsto v_{[-1]} \otimes v_{[0]}$

such that $h_1v_{[-1]}\otimes (h_2\cdot v_{[0]})=(h_1\cdot v)_{[-1]}h_2\otimes (h_1\cdot v)_{[0]}$, while morphism are H-linear and H-colinear maps.

${}_{H}^{H}\mathcal{YD}$ is braided monoidal:

- ullet $V\otimes W$ is the tensor product between vector spaces
- *H*-action on $V \otimes W$: $h \cdot (v \otimes w) = h_1 \cdot v \otimes h_2 \cdot w$
- *H*-coaction on $V \otimes W$: $\lambda(v \otimes w) = v_{[-1]}w_{[-1]} \otimes v_{[0]} \otimes w_{[0]}$
- Braiding: $c_{V,W}(v \otimes w) = v_{[-1]} \cdot w \otimes v_{[0]}$
- Inverse of the braiding: $c_{W,V}^{-1}(v\otimes w)=w_{[0]}\otimes S^{-1}(w_{[-1]})\cdot v$

Monoids and comonoids

A monoid in a monoidal category $\mathcal C$ is a triple (M,μ,u) , where $\mu:M\otimes M\to M$ and $u:1\to M$ are morphisms in $\mathcal C$ s.t.

A comonoid in a monoidal category $\mathcal C$ is a triple $(\mathcal C,\delta,\epsilon)$, where $\delta:\mathcal C\to\mathcal C\otimes\mathcal C$ and $\epsilon:\mathcal C\to 1$ are morphisms in $\mathcal C$ s.t.

Example: A monoid in Vec_k^G is a G-graded algebra.

Tensor product of monoids

Given two monoids (M, μ_M, u_M) and (N, μ_N, u_N) in a (strict) braided monoidal category C, we can give a monoid structure to the tensor product $M \otimes N$:

$$M \underline{\otimes} N = (M \otimes N, \mu_{M \otimes N}, u_{M \otimes N})$$

where $\mu_{M\otimes N}$ and $u_{M\otimes N}$ are morphisms defined by the compositions

We call monoids and comonoids in ${}^H_H\mathcal{YD}$, respectively, algebras and coalgebras in ${}^H_H\mathcal{YD}$.

Braided Hopf algebras

A bialgebra in ${}^H_H\mathcal{YD}$ is a collection $(B, \mu, u, \Delta, \epsilon)$ such that

- (B, μ, u) is an algebra (monoid) in ${}^H_H \mathcal{YD}$,
- (B, Δ, ϵ) is a coalgebra (comonoid) in ${}^H_H \mathcal{YD}$,
- $\Delta: B \to B \underline{\otimes} B$ is a morphism of algebras.

A Hopf algebra in ${}^H_H\mathcal{YD}$ is a bialgebra B in ${}^H_H\mathcal{YD}$ such that $id_B \in Hom_{\mathcal{C}}(B,B)$ has an inverse \underline{S} w.r.t. the convolution product *, meaning a morphism $\underline{S}: B \to B$ such that $\underline{S}*id_B = id_B*\underline{S} = u \circ \epsilon$,

i.e.
$$\underline{S}(b_1)b_2 = b_1\underline{S}(b_2) = \epsilon(b)u(1_k)$$
 for all $b \in B$.

Hopf algebras in braided monoidal categories are usually called braided Hopf algebras.

We will see noan example of a braided Hopf algebra in ${}^H_H\mathcal{YD}$ that will be central in defining Nichols algebras.

Tensor algebra

Let $V \in {}_{H}^{H}\mathcal{YD}$. Set $T^{0}(V) = k$ and $T^{n+1}(V) = V \otimes T^{n}(V)$. The tensor algebra over V is $T(V) = \bigoplus_{n \in \mathbb{N}} T^{n}(V)$, and is a graded algebra in ${}_{H}^{H}\mathcal{YD}$ with multiplication obtained from the (trivial) associativity constraints on the graded components of $T(V) \otimes T(V)$

$$\mu_{m,n}: T^m(V) \otimes T^n(V) \longrightarrow T^{m+n}(V)$$
$$(v_1 \otimes \ldots \otimes v_m) \otimes (v_{m+1} \otimes \ldots \otimes v_{m+n}) \longmapsto v_1 \otimes \ldots \otimes v_{m+n}$$

and unit $1_k \in T^0(V) \subseteq T(V)$

Let $i: V = T^1(V) \hookrightarrow T(V)$ be the inclusion. Every linear map $\varphi: V \to A$, where A is an algebra, factorizes through a morphism of algebras $\Phi: T(V) \to A$ s.t. $\Phi \circ i = \varphi$. $(\Phi(v_1 \otimes \ldots \otimes v_n) = \varphi(v_1) \ldots \varphi(v_n))$

Tensor coalgebra 1

By the universal property, the linear map $\delta: V \to T(V) \underline{\otimes} T(V)$, given by $\delta(v) = v \otimes 1_k + 1_k \otimes v$, extends to $\Delta: T(V) \to T(V) \underline{\otimes} T(V)$, which induces a (graded) Hopf algebra structure on T(V) in ${}^H_H \mathcal{YD}$, with S(v) = -v.

T(V) can be endowed with another graded coalgebra structure in ${}^H_H\mathcal{YD}$, denoted by $T^c(V)$, through the map $\Delta^c: T(V) \to T(V) \underline{\otimes} T(V)$ defined by

 $\Delta^{c}(v_{1}\otimes \ldots \otimes v_{n}) := \sum_{j=0}^{n} (v_{1}\otimes \ldots \otimes v_{j}) \otimes (v_{j+1}\otimes \ldots \otimes v_{n}).$

While $\Delta^c(v) = v \otimes 1_k + 1_k \otimes v$, we have $\Delta^c \neq \Delta$ and Δ^c is not multiplicative w.r.t. the standard product in T(V), indeed:

$$\Delta^{c}(v \otimes w) = (v \otimes w) \otimes 1_{k} + v \otimes w + 1_{k} \otimes (v \otimes w) \neq \Delta^{c}(v)\Delta^{c}(w)$$
$$= (v \otimes w) \otimes 1_{k} + v \otimes w + 1_{k} \otimes (v \otimes w) + v_{-1} \cdot w \otimes v_{0}$$

Tensor coalgebra 2

However, $T^c(V)$ is a braided Hopf algebra when considering the multiplication $\mu^c: T(V) \underline{\otimes} T(V) \to T(V)$, defined as

$$(v_1 \otimes \ldots \otimes v_i) \cdot (v_{i+1} \otimes \ldots \otimes v_n) = \sum_{\omega \in \mathbb{S}_{i,n-i}} c_{\omega}(v_1 \otimes \ldots \otimes v_n)$$

where $\mathbb{S}_{i,n-i}$ denotes (i,n-i) shuffles, $\omega \in \mathbb{S}_n$ such that $\omega(1) < \omega(2) < \ldots < \omega(i)$ and $\omega(i+1) < \omega(i+2) < \ldots < \omega(n)$

$$\omega = \left(\begin{array}{ccc|c} 1 & 2 & \dots & i & i+1 & \dots & n-1 & n \\ \omega(1) & \omega(2) & \dots & \omega(i) & \omega(i+1) & \dots & \omega(n-1) & \omega(n) \end{array}\right).$$

To define the morphism $c_{\omega}: T^n(V) \to T^n(V)$, we need a small digression.

Braid group

Let n > 0. The braid group \mathbb{B}_n is the group generated by σ_i , where $i \in \{1, \dots, n\}$, with relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad \text{for } |i - j| \ge 2$$

 $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, \quad \text{for } |i - j| = 1$

The symmetric group \mathbb{S}_n is generated by the simple transpositions $\tau_i = (i \ i + 1)$, with relations

$$au_i^2 = e, \quad \text{for all } 1 \le i < n$$
 $au_i au_j = au_j au_i, \quad \text{for } |i - j| \ge 2$
 $au_i au_j au_i = au_j au_i au_j, \quad \text{for } |i - j| = 1$

The length function $I: \mathbb{S}_n \to \mathbb{N}$ measures the minimum decomposition of a permutation as a product of simple transpositions.

Matsumoto section

By this presentation of S_n , there is a surjective morphism of groups

$$\pi: \mathbb{B}_n \longrightarrow \mathbb{S}_n: \sigma_i \longmapsto \tau_i.$$

At the level of sets, π admits a section $M: \mathbb{S}_n \to \mathbb{B}_n$ such that $\tau_i \mapsto \sigma_i$, called the Matsumoto section, which is not a group homomorphism. However, for any $\omega, \omega' \in \mathbb{S}_n$:

$$M(\omega \circ \omega') = M(\omega)M(\omega'), \text{ if } I(\omega \circ \omega') = I(\omega) + I(\omega')$$

Example: Consider $\omega = (1\ 3\ 4\ 2) \in \mathbb{S}_4$. A minimal length decomposition of ω is $(1\ 3\ 4\ 2) = (2\ 3)(1\ 2)(3\ 4) = \tau_2\tau_1\tau_3$. Then

$$M((1\ 3\ 4\ 2)) = M(\tau_2\tau_1\tau_3) = M(\tau_2)M(\tau_1)M(\tau_3) = \sigma_2\sigma_1\sigma_3,$$

since
$$I(\tau_2\tau_1\tau_3) = 3 = I(\tau_2) + I(\tau_1) + I(\tau_3)$$
.

Braid group representation

Let $V \in {}_{H}^{H}\mathcal{YD}$. We can come back to define $c_{\omega} : T^{n}(V) \to T^{n}(V)$. The following assignment defines a representation $\rho_{n} : \mathbb{B}_{n} \to GL(T^{n}(V))$

$$\sigma_{i} \longmapsto c_{i} = id_{\mathcal{T}^{j-1}(V)} \otimes c_{V,V} \otimes id_{\mathcal{T}^{n-j-1}(V)}$$

$$c_{i}(v_{1} \otimes \ldots \otimes v_{n}) = \ldots v_{j-1} \otimes v_{i[-1]} \cdot v_{i+1} \otimes v_{i[0]} \otimes v_{j+2} \ldots$$

Through the Matsumoto section, we can now define $c_{\omega} := \rho_n(M(\omega))$ for all $\omega \in \mathbb{S}_n$. In particular, if $\omega = \tau_{i_1} \dots \tau_{i_m}$ is a minimal decomposition, $c_{\omega} = \rho_n(M(\omega)) = \rho_n(M(\tau_{i_1} \dots \tau_{i_m})) = \rho_n(M(\tau_{i_1})) \dots \rho_n(M(\tau_{i_m})) = \rho_n(\sigma_{i_1}) \dots \rho_n(\sigma_{i_m}) = c_{i_1} \dots c_{i_m}$.

Example: Consider $\omega = (1 \ 3 \ 4 \ 2) = \tau_2 \tau_1 \tau_3 \in \mathbb{S}_4$. Then $c_\omega = \rho_n(M(\omega)) = \rho_n(M(\tau_2 \tau_1 \tau_3)) = \rho_n(\sigma_2)\rho_n(\sigma_1)\rho_n(\sigma_3) = c_2 c_1 c_3$.

Nichols algebras 1

Let $V \in {}^H_H \mathcal{YD}$. Consider T(V) and $T^c(V)$ in ${}^H_H \mathcal{YD}$ and the inclusion $V \hookrightarrow T^c(V)$; by the universal property of T(V), there exist an algebra map $\Omega: T(V) \to T^c(V)$ s.t. $\Omega(v) = v$ for all $v \in V$.

The map has additionally the following properties:

- $\Omega = \sum_{n} \Omega_n$ is a graded map, with $\Omega_n = \Omega_{|T^n(V)}$,
- Ω is a coalgebra morphism between T(V) and $T^c(V)$,
- Ω is a morphism in ${}_{H}^{H}\mathcal{YD}$.

Nichols algebras 2

Definition

The Nichols algebra $\mathcal{B}(V)$ is the image of the map Ω in $T^c(V)$.

If
$$I(V) := \ker \Omega$$
 and $I^n(V) := \ker \Omega_n$, then $I(V) = \bigoplus_{n \geq 2} I^n(V)$.

Then
$$\mathcal{B}(V) = \bigoplus_{n \geq 0} \mathcal{B}^n(V) \simeq \frac{T(V)}{I(V)}$$
, where $\mathcal{B}^n(V) \simeq \frac{T^n(V)}{I^n(V)}$

By induction, one can characterize the graded components of $\boldsymbol{\Omega}$ as follows.

Proposition

For all
$$n \ge 2$$

$$\Omega_n = \sum_{\omega \in \mathbb{S}_n} c_\omega : \mathcal{T}^n(V) o \mathcal{T}^n(V)$$

Example:

- As we have seen before, $\Omega_2 = id + c_1$.
- $\Omega_3 = id + c_1 + c_2 + c_1c_2 + c_2c_1 + c_1c_2c_1$.

Alternative characterizations of Nichols algebras

Proposition

I(V) is the maximal element in the set

$${J\subseteq\bigoplus_{n\geq 2}T^n(V)\mid}$$

J is a graded Hopf ideal and a submodule of T(V) in ${}_H^H \mathcal{YD}$ $\}$.

Proposition

A graded Hopf algebra B in ${}^H_H\mathcal{YD}$ is isomorphic to $\mathcal{B}(V)$ if and only if:

- B is generated as an algebra by V.
- B is coradically graded, meaning the coradical filtration and the filtration induced by the grading coincide.

Proofs for both can be found in section 2 of ¹ or section 1.6 of ².

¹N. Andruskiewitsch, H.-J. Schneider, *Pointed Hopf algebras*, (2002).

²I. Heckenberger, H.-J. Schneider, "Hopf algebras and root systems", 2020.

Examples 1

Consider a vector space $V \in {}^H_H \mathcal{YD}$ with trivial H-action and coaction, meaning $h \cdot v = \epsilon_H(h)v$ and $\lambda(v) = 1_H \otimes v$. Then $c_{V,V} = \tau$ and

$$\Omega_n(v_1 \otimes \ldots \otimes v_n) = \sum_{\omega \in \mathbb{S}_n} v_{\omega^{-1}(1)} \otimes \ldots \otimes v_{\omega^{-1}(n)}.$$

In particular, $\Omega_2(v_1 \otimes v_2) = v_1 \otimes v_2 + v_2 \otimes v_1$, therefore $\ker \Omega_2 = \{v \otimes w - w \otimes v \mid v, w \in V\}$. However, it can be proven that, in this case, $\ker \Omega_n = \langle \ker \Omega_2 \rangle \cap T^n(V)$, and so

$$I(V) = \ker \Omega = < v \otimes w - w \otimes v \mid v, w \in V > .$$

Therefore

$$\mathcal{B}(V) \simeq \frac{T(V)}{\langle v \otimes w - w \otimes v \mid v, w \in V \rangle} = \mathit{Sym}(V).$$

Examples 2

Let $\bar{V} \in {}_{k[C_2]}^{k[C_2]} \mathcal{YD}$ s.t. $g \cdot \bar{v} = -\bar{v}$ and $\lambda(\bar{v}) = g \otimes \bar{v}$, therefore $c_{V,V} = -\tau$. Then

$$\Omega_n(\bar{v}_1 \otimes \ldots \otimes \bar{v}_n) = \sum_{\omega \in \mathbb{S}_n} (-1)^{l(\omega)} \bar{v}_{\omega^{-1}(1)} \otimes \ldots \otimes \bar{v}_{\omega^{-1}(n)}.$$

In particular $\Omega_2(v \otimes w) = v \otimes w - w \otimes v$, so $\ker \Omega_2 = \{v \otimes w + w \otimes v\}$. As before, $\ker \Omega = \langle \ker \Omega_2 \rangle = \langle v \otimes w + w \otimes v \mid v, w \in \overline{V} \rangle$, therfore

$$\mathcal{B}(\bar{V}) \simeq \frac{T(\bar{V})}{< v \otimes w + w \otimes v \mid v, w \in \bar{V} >} = \Lambda(\bar{V}).$$

Let now $V_0, V_1 \in {}_{k[C_2]}^{k[C_2]}\mathcal{YD}$, such that $g \cdot v_i = (-1)^i v_i$ and $\lambda(v_i) = g^i \otimes v_i$. Then $V = V_0 + V_1 \in {}_{k[C_2]}^{k[C_2]}\mathcal{YD}$ is a super vector space, with braiding $c_{V,V}(v_i \otimes v_j) = (-1)^{ij}(v_j \otimes v_i)$. In this case $\mathcal{B}(V) \simeq \mathit{Sym}(V_0) \otimes \Lambda(V_1)$.

Bosonization/Radford's biproduct

We denote by H-BialProj the category of bialgebras with a projection:

- Objects: triples (A, i, π) , where A is a bialgebra and $i : H \hookrightarrow A$ and $\pi : A \to H$ are bialgebra morphisms such that $id_A = i \circ \pi$.
- Morphisms: $f:(A,i,\pi)\to (A',i',\pi')$, bialgebra maps $f:A\to A'$ such that $f\circ i=i'$ and $\pi'\circ f=\pi$.

To a bialgebra with a projection (A, i, π) one can associate a braided bialgebra structure on $B = A^{co(H)}$, where the right coaction on A is given by $\rho(a) = a_1 \otimes \pi(a_2)$, and the structure maps are induced by those of A and by i and π .

$$\begin{array}{c} \mathsf{Bialg}(^H_{\mathcal{H}}\mathcal{YD}) & \xrightarrow{\mathsf{biproduct}} & H\text{-BialProj} \\ & \mathsf{construction} \\ & (\mathsf{bosonization}) \end{array}$$

Biproduct Hopf algebras

Indeed, we can associate to each Hopf algebra B in ${}^H_H\mathcal{YD}$ a Hopf algebra $A=B\times H$ with a projection on H.

The structure of the biproduct $B \times H$ is as follows:

$$\begin{split} B\times H &= B\otimes H \text{ (as a vector space)},\\ (b\times h)(b'\times h') &= b\left(h_1\cdot b'\right)\times h_2h',\\ \Delta(b\times h) &= b_1\times (b_2)_{[-1]}h_1\otimes (b_2)_{[0]}\times h_2\quad,\\ \epsilon(h\times b) &= \epsilon_B(h)\epsilon_H(h),\quad 1_{B\times H} = 1_B\times 1_H,\\ S(b\times h) &= (1\times S_H(b_{-1}h))(S_B(b_0)\times 1_H). \end{split}$$

Moreover, the injection and projection on $B \times H$ are as follows:

$$i: H \hookrightarrow B \times H : h \mapsto 1 \times h$$

 $\pi: B \times H \rightarrow H : b \times h \mapsto \epsilon_B(b)h$

Via this structure, we can associate a Hopf algebra $\mathcal{B}(V) \times H$ to each Nichols algebra $\mathcal{B}(V)$ in ${}^H_H \mathcal{YD}$.

Examples of biproducts

One can think of the biproduct construction as a generalization of the semidirect product for groups. Consider, for instance, $\mathbb{S}_3 \simeq C_3 \rtimes C_2$; we have $k[\mathbb{S}_3] \simeq k[C_3] \times k[C_2]$, where $k[C_3]$ is seen as a Hopf algebra in $k[C_2] \mathcal{YD}$ with trivial coaction and $g \cdot x = x^2$, where $< x >= C^3$.

The simplest non-commutative non-cocommutative Hopf algebra is a biproduct; indeed

$$H_4 = \bar{B} \times k[C_2],$$

where $\bar{B}=k<1,\ n>$ is a 2-dimensional braided Hopf algebra in ${}^{k[C_2]}_{k[C_2]}\mathcal{YD}$, generated by the unit and a nilpotent primitive element n with $\lambda(n)=g\otimes n$ and $g\cdot n=-g$.

Nichols and pointed Hopf algebras

We conclude with a brief explenation of the role of Nichols algebras in the classification of pointed Hopf algebras.

Let A be a pointed Hopf algebra, meaning all simple A-comodules are 1-dimensional, with coradical filtration $\{A_i\}_{i\in\mathbb{N}}$. The graded Hopf algebra associated to the coradical filtration, fixing $A_{-1}=\{0\}$, is

$$gr(A) := \bigoplus_{n \in \mathbb{N}} A_n/A_{n-1}.$$

gr(A) is a Hopf algebra with a projection on $A_0 = k[G(A)]$. Therefore,

$$gr(A) \simeq \mathcal{R} \times k[G(A)],$$

where $\mathcal{R} = \bigoplus_{n \geq 0} \mathcal{R}^n$ is a coradically graded Hopf algebra in ${}^{A_0}_{A_0}\mathcal{YD}$. By setting $V = \mathcal{R}^1$, the algebra generated by V is isomorphic to the Nichols algebra $\mathcal{B}(V)$ and a subalgebra of \mathcal{R} .

References and further reading

Nichols algebras:

- N. Andruskiewitsch, An introduction to Nichols algebras, Quantization, Geometry and Noncommutative Structures in Mathematics and Physics. Springer, 135–195 (2017)
- I. Heckenberger, H.-J. Schneider, "Hopf algebras and root systems", *American Mathematical Soc.* **247**, 2020.
- N. Andruskiewitsch, H.-J. Schneider, *Pointed Hopf algebras*, New Directions in Hopf Algebras **43**, (2002).

Biproduct/Bosonization:

- D.E. Radford, "Hopf algebras", Series on Knots and Everything, University of Illinois at Chicago 2011.
- D.E. Radford, *The structure of Hopf algebras with a projection*, J. Algebra **92**, 322–347, (1985).