Университет ИТМО

Лабораторная работа №4 «Транспортная задача. Методы нахождения начального решения транспортной задачи»

Выполнил: Федюкович С. А.

Факультет: МТУ "Академия ЛИМТУ"

Группа: S3100

Проверила: Авксентьева Е. Ю.

Санкт-Петербург

Теоретические основы лабораторной работы

Частным случаем задачи линейного программирования является транспортная задача, которая в общем виде состоит в определении оптимального плана перевозок некоторого груза из m пунктов отправления $A_1, A_2, ..., A_m$ в n пунктов назначения $B_1, B_2, ..., B_n$.

Теорема. Любая транспортная задача, у которой суммарный объем запасов совпадает с суммарным объемом потребностей, имеет решение.

Методы составления опорного плана транспортной задачи:

- 1. Метод северо-западного угла заключается в последовательном удовлетворении потребностей каждого j го потребиля за счет i го поставщика. Процесс продолжается до тех пор, пока все потребители не будут удовлетворены.
- 2. Метод минимальной стоимости заключается в том, что из всей таблицы стоимостей выбирается наименьшая, и в клетку, которая ей соответствует, помещается меньшее из чисел A_i , или B_j . Затем, из рассмотрения исключается либо строка, соответствующая поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
- 3. Метод аппроксимации Фогеля заключается в поиске наибольших разностей между двумя наимененьшими стоимостями перевозок, из которых после формируется опорный план.
- 4. Метод двойного предпочтения заключается в посике наименьших стоимостей в каждом столбце и строке и из их пересечений формируется опорное решение.

Решение заданий

Составить опорные планы различными методами, сравнить значения суммарной стоимости перевозок по каждому плану:

Задача 1

	B_1	B_2	B_3	B_4	A_i
A_1	2	3	2	4	30
A_2	3	2	5	1	40
A_3	4	3	2	6	20
B_j	20	30	30	10	90

Решение

Решим методом северо-западного угла:

	B_1	B_2	B_3	B_4	A_i
A_1	20^{2}	10^{3}	2	4	30
A_2	3	20^{2}	20^{5}	1	40
A_3	4	3	10^{2}	10^{6}	20
B_i	20	30	30	10	90

Стоимость: 290

Решим методом минимальной стоимости:

	B_1	B_2	B_3	B_4	A_i
A_1	2	3	30^{2}	4	30
A_2	3	30^{2}	5	10^{1}	40
A_3	20^{4}	3	2	6	20
B_j	20	30	30	10	90

Задача 2

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	2	7	3	6	2	30
A_2	9	4	5	7	3	70
A_3	5	7	6	2	4	50
B_j	10	40	20	60	20	150

Решение

Решим методом северо-западного угла:

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	10^{2}	20^{7}	3	6	2	30
A_2	9	20^{4}	20^{5}	30^{7}	3	70
A_3	5	7	6	30^{2}	20^{4}	50
B_j	10	40	20	60	20	150

Стоимость: 690

Решим методом минимальной стоимости:

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	10^{2}	7	3	6	20^{2}	30
A_2	9	40^{4}	20^{5}	10^{7}	3	70
A_3	5	7	6	50^{2}	4	50
B_j	10	40	20	60	20	150

Задача 3

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	4	2	5	7	6	20
A_2	7	8	3	4	5	110
A_3	2	1	4	3	2	120
B_j	70	40	30	60	50	250

Решение

Решим методом северо-западного угла:

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	20^{4}	2	5	7	6	20
A_2	50^{7}	40^{8}	20^{3}	4	5	110
A_3	2	1	10^{4}	50^{3}	60^{2}	120
B_j	70	40	30	60	50	250

Стоимость: 1120

Решим методом минимальной стоимости:

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	4	2	5	7	20^{6}	20
A_2	7	8	30^{3}	50^{4}	30^{5}	110
A_3	70^{2}	40^{1}	4	3	10^{2}	120
B_j	70	40	30	60	50	250

Задача 4

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	2	8	4	6	3	120
A_2	3	2	5	2	6	30
A_3	6	5	8	7	4	40
A_4	3	4	4	2	1	60
B_j	30	90	80	20	30	250

Решение

Решим методом северо-западного угла:

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	30^{2}	90^{8}	4	6	3	120
A_2	3	2	30^{5}	2	6	30
A_3	6	5	40^{8}	7	4	40
A_4	3	4	10^{4}	20^{2}	30^{1}	60
B_j	30	90	80	20	30	250

Стоимость: 1360

Решим методом минимальной стоимости:

	B_1	B_2	B_3	B_4	B_5	A_i
A_1	30^{2}	10^{8}	80^{4}	6	3	120
A_2	3	10^{2}	5	20^{2}	6	30
A_3	6	40^{5}	8	7	4	40
A_4	3	30^{4}	4	2	30^{1}	60
B_j	30	90	80	20	30	250