Matemática

Sequências e Séries

Prof. Edson Alves

Faculdade UnB Gama

Sequências

Definição de sequência e de subsequência

Definição

Uma **sequência** a_n é uma função cujo domínio é um subconjunto A dos números naturais.

Definição

Uma subsequência b_n de $a_n:A\to X$ é uma sequência $b_n:B\subset A\to X$ tal que, para quaisquer índices i< j, existem índices r< s tais que $b_i=a_r$ e $b_j=a_s$.

Monotonicidade

Definição

Uma sequência a_n é **monotamente crescente**, ou não-decrescente, se $a_j \geq a_i$ para todos $i,j \in A$, com i < j.

Uma sequência a_n é **monotamente decrescente**, ou não-crescente, se $a_j \leq a_i$ para todos $i, j \in A$, com i < j.

Sequência aritmética

Definição

Uma **sequência** (ou progressão) **aritmética** é uma sequência cuja diferença entre dois termos consecutivos é constante. Esta diferença recebe o nome de **razão** da progressão aritmética.

Termo geral da progressão aritmética

Proposição

O k-ésimo termo de uma progressão aritmética a_n de razão r é dado por

$$a_k = a_1 + (k-1)r,$$

onde a_1 é o primeiro termo da sequência.

De modo geral,

$$a_k = a_m + (k - m)r,$$

onde a_m é o m-ésimo termo.

Sequência geométrica

Definição

Uma **sequência** (ou progressão) **geométrica** é uma sequência cuja quociente entre dois termos consecutivos é constante. Este quociente recebe o nome de **razão** da progressão geométrica.

Termo geral da progressão geométrica

Proposição

O $k\text{-}\mathrm{\acute{e}simo}$ termo da progressão geométrica a_n de razão q é dado por

$$a_k = a_1 q^{k-1},$$

onde a_1 é o primeiro termo da progressão.

Séries

Definição

O k-ésimo termo da série S_n é determinado pela soma dos primeiros k termos de uma sequência a_n , isto é

$$S_k = \sum_{i=1}^k a_i = a_1 + a_2 + \ldots + a_k$$

Série da progressão aritmética

Proposição

O k-ésimo termo da série definida pela progressão aritmética a_n de razão r é dado por

$$S_k = \frac{k(a_1 + a_k)}{2}$$

Esta expressão pode ser deduzida através da soma das expressões

$$S_k = a_1 + (a_1 + r) + (a_1 + 2r) + \dots + (a_1 + (k-1)r)$$

$$S_k = (a_k - (k-1)r) + (a_k - (k-2)r) + \dots + (a_k - r) + a_k$$

Série da progressão geométrica

Proposição

O k-ésimo termo da série definida pela progressão geométrica a_n de razão q é dado por

$$S_k = \frac{a_1(1 - q^k)}{1 - q}$$

Esta expressão pode ser deduzida através da diferença das expressões

$$S_k = a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{k-1}$$

$$qS_k = a_1 q + a_1 q^2 + a_1 q^3 + \dots + a_1 q^k$$

Soma da progressão geométrica infinita

Se a_n é uma progressão geométrica de razão |q| < 1, então a série S_n converge para o limite S quando n tende ao infinito:

$$S = \sum_{i=1}^{\infty} a_i$$

$$= \lim_{n \to \infty} S_n$$

$$= \lim_{n \to \infty} \frac{a_1(1 - q^n)}{1 - q}$$

$$= \frac{a_1}{1 - q}$$

Séries notáveis

1. Soma dos n primeiros naturais:

$$S_n = \sum_{i=1}^n i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

2. Soma dos quadrados dos n primeiros naturais:

$$S_n = \sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Séries notáveis

3. Soma dos cubos dos n primeiros naturais:

$$S_n = \sum_{i=1}^n i^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

4. Soma dos n primeiros ímpares:

$$S_n = \sum_{i=1}^n 2i - 1 = 1 + 3 + 5 + \dots + (2n - 1) = n^2$$

Série de Newton

Definição

A série de Newton é formada pelos termos da equação de diferenças finitas de Newton. Ela consiste em uma versão discreta da série de Taylor:

$$f(x) = \sum_{k=0}^{\infty} \frac{\Delta^k[f](a)}{k!} (x - a)_k,$$

onde

$$\Delta^{k}[f](a) = \Delta(\Delta^{k-1}[f](a)), \quad \Delta^{1}[f](a) = \Delta[f](a) = f(a+1) - f(a)$$

е

$$x_k = x(x-1)(x-2)\dots(x-k+1)$$

Representação de sequências arbitrárias por meio de polinômios

A série de Newton pode ser utilizada para obter um polinômio p(x) que gera uma sequência finita a_n qualquer. Por exemplo, seja $a_n=3,7,13,21,31.$ O quadro abaixo computa as diferenças finitas para esta sequência.

x	$f = \Delta^0$	Δ^1	Δ^2	Δ^3
1	3			
2	7	4		
3	13	6	2	
4	21	8	2	0
5	31	10	2	0

Exemplo de representação de sequências arbitrárias por meio de polinômios

Conforme pode ser observado, $\Delta^k=0$ para todo k>2. Isto significa que a sequência a_n pode ser representada por um polinômio de grau 2. Este polinômio pode ser obtido por meio da substituição dos termos Δ da fórmula apresentada (em negrito na tabela):

$$f(x) = \Delta^0 \cdot 1 + \Delta^1 \cdot \frac{(x-1)_1}{1!} + \Delta^2 \cdot \frac{(x-1)_2}{2!}$$
$$= 3 \cdot 1 + 4(x-1) + 2 \cdot \frac{(x-1)(x-2)}{2}$$
$$= x^2 + x + 1$$

Referências

- 1. Byju's Classes. Sequence And Series. Acesso em 03/02/2021.
- 2. **Wikipédia**. Arithmetic progression. Acesso em 03/02/2021.
- 3. Wikipédia. Finite Difference. Acesso em 03/02/2021.
- 4. Wikipédia. Geometric progression. Acesso em 03/02/2021.
- 5. **Wikipédia**. Sequence. Acesso em 03/02/2021.