

Asynchronous Deep Learning Methods for *Super Mario Bros.*

Matthew Jones and Campbell Sinclair

Super Mario Bros. - Background

- 2D platformer for the NES
- State is an RGB frame of the game, actions are NES controller buttons
- Reward is based on distance traveled to the right, score, time, and whether the level is beaten

Method

- Resize images to 84x84 then grayscale, stack, and normalize the images
- We implemented three asynchronous variants of algorithms we learned in class [Mnih et al, 2016]:
 - 1-step Q-learning
 - N-step Q-learning
 - Asynchronous Advantage Actor-critic (A3C)

Asynchronous Algorithms

- Thread-specific environment and parameters
- Act using thread-specific parameters
- Periodically copy global parameters to thread-specific parameters
- Each learner accumulates gradients using the same target as their respective non-asynchronous algorithm

Experiments and Results

- We trained our three implementations on World 1-1 for 6 million steps
- Compared to a DDQN implementation and random agent as baselines
- Evaluated the best agent produced by each method

Figure 2: Training performance on level 1 using various algorithms

Algorithm	Average Score	First level wins
A3C	271.33	100
1-step Q-learning	47.65	0
N-step Q-learning	121.40	16
Pytorch Tutorial DDQN	59.27	0
Random Agent	44.85	0

Table 1: Average score over 100 episodes of the best model from training.

Experiments and Results

- Used our A3C implementation on World 1-1
- Varied the set of actions available to the agent

Experiments and Results

- Tested our A3C implementation on different levels of the game
- It is difficult for our agent to learn more than 1 level with the same set of parameters

Demo

```
TERMINAL
.3 rl_project % python trainer.py a3
.8/site-packages/gym/envs/registrat
n `v3` with the environment ID `Sup
```


Demo

```
k=frame_stack)
p_num)
 TERMINAL
.3 rl_project % python trainer.py a3
.8/site-packages/gym/envs/registrat
n `v3` with the environment ID `Sup
.8/site-packages/gym/envs/registrat
  `v3` with the environment ID `Sup
```


Demo

```
k=frame_stack)
p_num)
 TERMINAL
.3 rl_project % python trainer.py a3
.8/site-packages/gym/envs/registrat
n 'v3' with the environment ID 'Sup
```

```
k=frame_stack)
p_num)
 TERMINAL
.3 rl_project % python trainer.py a3
.8/site-packages/gym/envs/registrat
on 'v3' with the environment ID 'Sup
.8/site-packages/gym/envs/registrat
n `v3` with the environment ID `Sup
```


References

Recht, Benjamin / Re, Christopher / Wright, Stephen / Niu, Feng(2011): Hogwild!: A lock-free approach to parallelizing stochastic gradient descent.

Mnih, Volodymyr u.a.(2015): Human-level control through deep reinforcement learning, 7540: 529-533.

Mnih, Volodymyr / Badia, Adrià Puigdomènech / Mirza, Mehdi / Graves, Alex / Lillicrap, Timothy P. / Harley, Tim / Silver, David / Kavukcuoglu, Koray(2016): Asynchronous Methods for Deep Reinforcement Learning.

Arras, Leila / Arjona-Medina, Jose A. / Widrich, Michael / Montavon, Grégoire / Gillhofer, Michael / Müller, Klaus-Robert / Hochreiter, Sepp / Samek, Wojciech(2019): Explaining and Interpreting LSTMs.

Feng, Yuansong / Subramanian, Suraj / Wang, Howard / Guo, Steven (2022): Training a Mario-Playing RL Agent
https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html.

Kauten, Christian (2018): Super Mario Bros for OpenAI Gym https://github.com/Kautenja/gym-super-mario-bros.

Kingma, Diederik P. / Ba, Jimmy (2014): Adam: A Method for Stochastic Optimization

Kostrikov, Ilya (2018): PyTorch Implementations of Asynchronous Advantage Actor Critic https://github.com/ikostrikov/pytorch-a3c.

mariowiki.com (2022): Super Mario Bros. https://www.mariowiki.com/Super Mario Bros.

Sadeq, Amine / Sakhi, Otmane (2019): Exploring Deep Reinforcement Learning with Super Mario Broshttps://github.com/sadeqa/Super-Mario-Bros-RI.

Sutton, Richard S / Barto, Andrew G (2018): Reinforcement learning: An introduction. , MIT press.

Zhang, Shangtong (2018): DeepRL https://github.com/ShangtongZhang/DeepRL/releases/tag/v0.1.