Tunnel diode 2024

YDS

2024-06-10

Введение

Туннельные диоды были открыты учёным Эсаки и используют эффект квантового туннелирования электронов через потенциальный барьер.

Этот эффект связан с волновой природой электронов, благодаря которой они могут попадать в классически запрещённые области.

Существует несколько видов туннельных диодов. Наиболее типичные сделаны на основе PN-переходов (рис. 1), но есть и другие (например, резонансно-туннельные диоды, диоды на основе свехрешёток и т.д.)

Рисунок 1. Схема туннельного диода Эсаки [1].

Туннельные диоды известны тем, что на их ВАХ наблюдается область отрицательного дифференциального сопротивления (отрицательной дифференциальной проводимости — ОДП). Дифференциальная проводимость определяется как:

$$\Omega_d = \frac{dI}{dV}$$

Обычная проводимость — отношение тока к напряжению — не может быть отрицательной, а дифференциальная может. При этом ток положительный, но начинает падать при росте напряжения. Это можно видеть на рис. 2.

Рисунок 2. ВАХ туннельного диода [1].

Участок ОДП может быть использован для генераторов переменного тока (генераторов колебаний), потому что он позволяет компенсировать внутреннее сопротивление цепи и избежать затухания колебаний.

Обзор литературы

Ток через туннельный диод можно рассчитать по формуле Эсаки [2].

$$I(V) = rac{em_ekT}{2\pi^2\hbar^3}\int_0^\infty T_c\left(E_\perp
ight)\left[\ln\!\left(1+\exprac{E_{Fn}\,+eV-E_\perp}{kT}
ight) - \ln\!\left(1+\exprac{E_{Fp}\,-E_\perp}{kT}
ight)
ight]\mathrm{d}E_\perp$$

Где T_c — вероятность (коэффициент) прохождения электронов через барьер, E_\perp — кинетическая энергия электронов в направлении границы между Р и N областями, которая отсчитывается от дна зоны проводимости E_c .

Логарифмы описывают распределение электронов по энергиям в Р и N областях.

Для работы туннельного диода области N и P должны быть сильно легированы, то там должно быть очень много примесей. Тогда при V=0 уровни Ферми будут находится внутри зоны проводимости в N области и внутри валентной зоны в P области, как изображено на рис. За.

Вероятность прохождения барьера может быть рассчитана с помощью квантовой механики для барьеров любой формы. В данном случае барьер похож на треугольный (рис. 4), но можно его считать и прямоугольным. При повышении напряжения уровни Ферми будут смещаться друг относительно друга и барьер между Р и N областями будет уменьшаться (рис. 3b).

Рисунок 4. Энергетический барьер.

Самый простой вид имеет коэффициент прохождения для очень узкого барьера в виде дельта-функции:

$$U(x) = \alpha \delta(x), \qquad \alpha = Ha$$
 (2)

где H — высота барьера в единицах энергии (эВ), а a — ширина барьера (например, в нм).

Для неё вероятность прохождения имеет вид:

$$T_c(E) = \frac{E}{E + \frac{m_e \alpha^2}{2\hbar^2}} \tag{3}$$

Основные формулы

Константы

Обозначение	Формула	Переменная	Значение	Единицы
k	k	k_boltzmann	8.62e-5	эВ \cdot К $^{-1}$
q	$rac{e}{\hbar}$	e_h	2.43e-4	А \cdot эВ $^{-1}$
K	$rac{\hbar^2}{m_0}$	h2_m0	0.0762	эВ \cdot нм 2
C	$\frac{e^2}{4\pi\varepsilon_0}$	e2_4pieps0	1.44	эВ∙нм

Исходные параметры

Величина	Обозначение	Переменная	Диапазон	Значение	Единицы
Ширина запр. зоны	E_g	band_gap	0.2 – 2	1.12	эВ
Эфф. масса эл.	m_e	eff_mass_e	0.01 – 1	0.19	m_0
Эфф. масса дыр.	m_h	eff_mass_h	0.01 – 1	0.49	m_0
Диэлектр. прониц.	arepsilon	dielectric	1 – 15	11.7	-
Температура	T	temperature	4 – 400	300	К
Конц. доноров	N_d	donor_conc	1e-4 – 0.1	0.1	${\sf HM}^{-3}$
Конц. акцепторов	N_a	accept_conc	1e-4 – 0.1	0.1	${\sf HM}^{-3}$

Вторичные параметры

Обозначение	Формула	Переменная	Единицы	
N_c	$2\cdot \left(rac{m_e kT}{2\pi K} ight)^{3/2}$	n_c	${\sf HM}^{-3}$	
N_v	$2\cdot \left(rac{m_h kT}{2\pi K} ight)^{3/2}$	n_v	${\sf HM}^{-3}$	
$E_{Fn}-E_c$	$kT \ln igg(rac{N_d}{N_c}igg)$	fermi_n	эВ	
$E_{Fp}-E_v$	$kT \ln \left(rac{N_v}{N_a} ight)$	fermi_p	эВ	
$\Delta\Phi$	$E_{Fn}-E_c-(E_{Fp}-E_v)+E_g$	delta_phi	эВ	
W^3	$\frac{\pi CKkT}{m_e}\frac{N_aN_d}{N_a+N_d}$	transmission_parameter	э B^3	
A	$rac{qm_ek^2T^2}{2\pi^2K}$	richardson_constant	$A \cdot$ нм $^{-2}$	

Пояснение параметров

$$egin{split} 2 \cdot \left(rac{m_e m_0 k T}{2\pi \hbar^2}
ight)^{3/2} &= 2 \cdot \left(rac{m_e k T}{2\pi K}
ight)^{3/2} \ & \ 2 \cdot \left(rac{m_h m_0 k T}{2\pi \hbar^2}
ight)^{3/2} &= 2 \cdot \left(rac{m_h k T}{2\pi K}
ight)^{3/2} \ & \ E_{Fn} - E_{Fp} &= E_{Fn} - E_c - (E_{Fp} - E_v) + E_c - E_v = E_{Fn} - E_c - (E_{Fp} - E_v) + E_g \end{split}$$

$$egin{align} W^3 &= rac{e^2}{4arepsilon_0arepsilon}rac{\hbar^2kT}{m_e}rac{N_aN_d}{N_a+N_d} \ A &= rac{1}{2\pi^2}rac{e}{\hbar}rac{m_ek^2T^2}{\hbar^2} = rac{qm_ek^2T^2}{2\pi^2K} \end{split}$$

Окончательные формулы

Общий ток

$$I\left(V\right) = I_1\left(V\right) + I_2\left(V\right)$$

Туннельный ток

$$I_{1}\left(V
ight) = A \int_{0}^{b} rac{u \ln(1+w_{0}e^{-u})}{u+\left(\Delta\Phi-eV
ight)^{3}/W^{3}} du$$

Диодный ток

$$I_{2}\left(V
ight)=A\cdot s_{0}\left[\exp\!\left(rac{eV}{kT}
ight)-1
ight]$$

Параметры

$$w_0 = \exprac{E_F-E_c}{kT} \ s_0 = \exprac{E_F-E_c-\Delta\Phi}{kT}$$

Верхний предел интегрирования туннельного тока станет равным нулю для предельного значения напряжения, после которого туннелирование полностью прекратится. После этого надо учитывать только диодный ток.

$$b=rac{\Delta\Phi-E_g-eV}{kT}>0, \qquad eV<\Delta\Phi-E_g$$

Литература

- 1. Leo Esaki. Long Journey into Tunneling. Science, 22 March 1974, Volume 183, Number 4130.
- N. Moulin, Mohamed Amara, F. Mandorlo, M. Lemiti. Tunnel junction I (V) characteristics: Review and a new model for p-n homojunctions. Journal of Applied Physics, 2019, 126 (3), pp.033105. 10.1063/1.5104314. hal-03035269
- 3. Messaadi Lotfi and Dibi Zohir. A Spice Behavioral Model of Tunnel Diode: Simulation and Application. International Journal of Control and Automation Vol. 9, No. 4 (2016), pp. 39-50 http://dx.doi.org/10.14257/ijca.2016.9.4.05 (http://dx.doi.org/10.14257/ijca.2016.9.4.05)
- 4. D. Mtn, M. PATIL, J. CHEN. Solid-State ElectronicsVol. 32, No. 11, pp. 1025-1031, 1989