The decay of direct-inverse systems

Guillaume Jacques, CNRS-CRLAO Anton Antonov, INALCO-CRLAO

February 13, 2014

Most languages with direct-inverse systems are either isolates or belong to very small families.

- Most languages with direct-inverse systems are either isolates or belong to very small families.
- Only two large language families with such systems: Algic and Sino-Tibetan.

- Most languages with direct-inverse systems are either isolates or belong to very small families.
- ► Only two large language families with such systems: Algic and Sino-Tibetan.
- ► In Algic, direct-inverse is reconstructible to proto-Algonquian, but comparison with Wiyot and Yurok is inconclusive.

- Most languages with direct-inverse systems are either isolates or belong to very small families.
- ► Only two large language families with such systems: Algic and Sino-Tibetan.
- ► In Algic, direct-inverse is reconstructible to proto-Algonquian, but comparison with Wiyot and Yurok is inconclusive.
- Sino-Tibetan languages offer a tremendous diversity in their hierarchical systems, and allow us to gain important insights from a typological point of view on the origin and evolution of these systems.

What is a direct-inverse system?

Table: Idealized proto-typical inverse

	1	2	3	3'
1		1>2	1>3	
2	2>1		2>3	
3	3>1	3>2		3>3'
3'			3'>3	
INTR	1	2	3	

Example of a quasi-prototypical system: Zbu Rgyalrong

Table : Zbu Rgyalrong transitive and intransitive paradigms (adapted from ?)

	1sg	1DU	1PL	2sg	2DU	2PL	3sg	3DU	3PL	3'
1sg							Σ_3 -ŋ	Σ ₃ -ŋ-ndẓə	Σ_3 -ŋ-ɲə	
1DU				$te-\Sigma_1$	te-∑₁-ndzə	te-∑₁-nə		Σ_1 -tçə	•	
1PL								Σ_1 -jə		
2sg	tə-wə- Σ_1 -ŋ							tə- Σ_3		
2DU	tə-wə-∑ı-ŋ-ndzə	tə-wə-Σ₁-tçə	tə-wə-Σ₁-jə					tə-Σ₁-ndẓə		
2pl	tə-wə- Σ_1 -ŋ-ɲə							tə-Σ₁-ɲə		
3sg	wə- Σ_1 -ŋ									Σ_3
3DU	wə-Σ₁-ŋ-ndzə	wə-∑₁-tçə	wə- Σ_1 -jə	tə-wə- Σ_1	tə-wə-Σ₁-ndẓə	tə-wə-Σ₁-ɲə				Σ ₁ -ndzə
3pl	wə- Σ_1 -ŋ-ŋə									Σ ₁ -ɲə
3'							wə- Σ_1	wə- Σ_1 -ndzə	wə- Σ_1 -лә	
INTR	Σ_1 -ŋ	Σ_1 -tçə	Σ_1 -jə	tə- Σ_1	tə-Σ₁-ndzə	tə-Σ₁-ɲə	Σ_1	Σ_1 -nd z ə	Σ ₁ -ɲə	

Example of an opaque hierarchical system: Bantawa (?, 145-8)

	1sg	1DI	1DE	1PI	1PE	2sg	2DU	2PL	3sg	3DU	3PL
1sg						Σ-na	Σ-naci	Σ-nanin	Σ-uŋ	Σ-u	iŋcɨŋ
1DI									Σ-cu	Σ-	cuci
1DE							Σ-ni		Σ-cu?a	Σ-c	uci?a
1PI									Σ -um	Σ-u	mcim
1PE							Σ-ni		Σ-umka	Σ-um	ıcɨmka
2sg	ti-∑-ŋa								t i -Σ-u	t i -Σ	:-uci
2 _{DU}	ti-Σ-ŋaŋciŋ		ti-Σ-ni(n)		ti-Σ-ni(n)				t i -Σ-cu	ti-Σ	-cuci
2 _{PL}	tɨ-Σ-ŋaŋnɨŋ								t i -Σ-um	t i -Σ-ι	ımcum
3sg	i-Σ-ŋa		(n)i-Σ-aci?a		(n)i-Σ-inka				Σ-u	Σ-	uci
3DU	i-Σ-ŋaŋcɨŋ	n i -∑-ci	n i -Σ-aci?a	mɨ-Σ	n i -Σ-inka	$ni-\Sigma$	n i -Σ-ci	n i -Σ-in	i-Σ-cu	i-∑	-cuci
3PL	ni-Σ-ŋa								i-Σ	mi-	Σ-uci
INTR	Σ-ŋa	Σ-ci	Σ-ca	Σ -in	Σ-inka	t i -Σ	t i -Σ-ci	t i -Σ-in	Σ	Σ-ci	mi- Σ

i– prefix (corresponds to the Zbu wa– prefix, inverse-like but restricted to 3sg,DU→1sg and 3DU→3, 3pL→3sg; absence of proximate/obviative constrast)

Example of an opaque hierarchical system: Bantawa (?, 145-8)

-	1sg	1DI	1DE	1PI	1PE	2sg	2DU	2PL	3sg	3DU	3pl
1sg						Σ-na	Σ-naci	Σ-nanin	Σ-uŋ	Σ-u	ŋcɨŋ
1DI									Σ-cu	Σ-0	cuci
1DE							Σ-ni		Σ-cu?a	Σ-c1	ıci?a
1PI									Σ -um	Σ-uı	ncim
1PE							Σ-ni		Σ-umka	Σ-um	cimka
2sg	ti-∑-ŋa								t i -Σ-u	t i -Σ	-uci
2 _{DU}	ti-∑-ŋaŋcɨŋ		ti-∑-ni(n)		ti-Σ-ni(n)				t i -Σ-cu	t i -Σ	-cuci
2 _{PL}	ti-∑-ŋaŋniŋ								t i -Σ-um	t i -Σ-u	ımcum
3sg	i-Σ-ŋa		(n)i-Σ-aci?a		(n) i -Σ-inka				Σ-u	Σ-	uci
3 _{DU}	i-Σ-ŋaŋcɨŋ	n i -Σ-ci	n i -Σ-aci?a	$mi-\Sigma$	n i -Σ-inka	$n_{i-\Sigma}$	n i -Σ-ci	n i -Σ-in	i-Σ-cu	i-Σ	-cuci
3 _{PL}	n i -Σ-ŋa								i- Σ	mi-	Σ-uci
INTR	Σ-ŋa	Σ-ci	Σ-ca	Σ-in	Σ-inka	ti-Σ	t i -Σ-ci	t i -Σ-in	Σ	Σ-ci	mɨ-Σ

- i- prefix (corresponds to the Zbu wa- prefix, inverse-like but restricted to 3sg,DU→1sg and 3DU→3, 3pL→3sg; absence of proximate/obviative constrast)
- ▶ ni– prefix (3PL \rightarrow 1SG, 3 \rightarrow 1DU,1PE,2; plural marker spread to the 3SG? Should it be analyzed as ni+i?)

Example of an opaque hierarchical system: Bantawa (?, 145-8)

			1			0	0		0	0	0
	1sg	1DI	1DE	1PI	1PE	2sg	2DU	2PL	3sg	3DU	3pl
1sg						Σ-na	Σ-naci	Σ-nanin	Σ-uŋ	Σ-u	ıŋcɨŋ
1DI									Σ-cu	Σ-	cuci
1DE							Σ-ni		Σ-cu?a	Σ -c	uci?a
1PI									Σ -um	Σ-u	mcim
1PE							Σ-ni		Σ -umka	Σ-um	ıcɨmka
2sg	ti-Σ-ŋa								t i -∑-u	t i -Σ	l-uci
2DU	ti-∑-ŋaŋcɨŋ		ti-∑-ni(n)		ti-Σ-ni(n)				t i -Σ-cu	t i -Σ	-cuci
2 _{PL}	ti-∑-ŋaŋniŋ								t i -Σ-um	t i -Σ-ι	ımcum
3sg	i-Σ-ŋa		(n)i-Σ-aci?a		(n)i-Σ-inka				Σ-u	Σ-	uci
3DU	i-Σ-ŋaŋciŋ	n i -Σ-ci	n i -Σ-aci?a	$mi-\Sigma$	n i -Σ-inka	$n_{i-\Sigma}$	n i -Σ-ci	n i -Σ-in	i-Σ-cu	i-∑	-cuci
3 _{PL}	n i -Σ-ŋa								i-Σ	mi-	Σ-uci
INTR	Σ-ŋa	Σ-ci	Σ-ca	Σ-in	Σ-inka	t i -Σ	t i -Σ-ci	t i -Σ-in	Σ	Σ-ci	m i -Σ

- i- prefix (corresponds to the Zbu wa- prefix, inverse-like but restricted to 3sg,DU→1sg and 3DU→3, 3pL→3sg; absence of proximate/obviative constrast)
- ▶ ni– prefix (3PL \rightarrow 1SG, 3 \rightarrow 1DU,1PE,2; plural marker spread to the 3SG? Should it be analyzed as ni+i?)
- mi− prefix (3PL.INTR, 3PL→3NS, 3→1PI; plural marker used as a generic?)

Table: Bantawa non-local scenarios

	3sg	3DU	3PL
3sg	Σ -u	Σ -ι	ici
3 _{DU}	i-Σ-cu	i -∑-	cuci
3PL	i- Σ	mɨ-Σ	-uci

Table: Zbu non-local scenarios

	3sg	3du	3pl	3'
3sg				Σ_3
3DU				Σ_1 -ndzə
3pl				Σ_1 -лә
3'	wə- Σ_1	wə- Σ_1 -ndzə	wə- Σ_1 -ทอ	

Table: Rtau transitive and intransitive paradigms

AP	1	2	3
1s		Σ	Σ -w
1p 2			Σ-ã
2	v-Σ-ã		Σ -j
3	V-∠-a	7	y- Σ
INTR	Σ-ã		Σ

▶ The v- prefix corresponds to the Zbu inverse wə-.

Table: Rtau transitive and intransitive paradigms

AP	1	2	3	
1s		\sum	Σ -w	
1p 2			Σ-ã	
2	v-∑-ã		Σ -j	
3	v-∠-a	7	γ-Σ	
INTR	Σ-ã	Σ		

- ▶ The v- prefix corresponds to the Zbu inverse wə-.
- ▶ In non-local scenarios, as in Bantawa, there is no contrast between proximate 3>3' vs obviative 3'>3 agent.

Table: Rtau transitive and intransitive paradigms

AP	1	2	3	
1s		\sum	Σ -w	
1p 2			Σ-ã	
2	v-Σ-ã		Σ -j	
3	v-⊿-a	7	7- Σ	
INTR	Σ-ã	Σ		

- ▶ The v– prefix corresponds to the Zbu inverse wə–.
- ▶ In non-local scenarios, as in Bantawa, there is no contrast between proximate 3>3' vs obviative 3'>3 agent.
- ► The inverse form has been been generalized to all non-local scenarios.

Table: Rtau transitive and intransitive paradigms

AP	1	2	3	
1s		\sum	Σ -w	
1p 2			Σ-ã	
2	v-∑-ã		Σ -j	
3	v-∠-a	7	γ-Σ	
INTR	Σ-ã	Σ		

- ▶ The v– prefix corresponds to the Zbu inverse wə–.
- ▶ In non-local scenarios, as in Bantawa, there is no contrast between proximate 3>3' vs obviative 3'>3 agent.
- The inverse form has been been generalized to all non-local scenarios.
- ► Nevertheless it cannot be analyzed as an third person agent marker since it occurs in 2>1 scenarios.

Conclusion

 Opaque hierarchical-like systems can be shown to originate from prototypical or near prototypical direct-inverse systems.

Conclusion

- Opaque hierarchical-like systems can be shown to originate from prototypical or near prototypical direct-inverse systems.
- ▶ When the proximative-obviative constrast in non-local scenarios is lost, we observe either generalization of 3'→3 (Rtau, Lavrung), of 3→3' (Khaling, Limbu) or a mixture thereof (Bantawa, Puma).

Conclusion

- Opaque hierarchical-like systems can be shown to originate from prototypical or near prototypical direct-inverse systems.
- ▶ When the proximative-obviative constrast in non-local scenarios is lost, we observe either generalization of 3'→3 (Rtau, Lavrung), of 3→3' (Khaling, Limbu) or a mixture thereof (Bantawa, Puma).
- ► The animacy/saliency hierarchy governing the proximate/obviative contrast can be reanalyzed as a number hierarchy (SG > DU/PL)

References