Process Mining: Data Science in Action

Evaluating Mining Results

Where innovation starts

Evaluating (data/process) mining results

Confusion matrix and related measures

Straight Ahead

Confusion matrix for decision tree

Another example

Confusion matrix for binary classification

- True Positives (TP): positive instances predicted to be positive.
- True Negatives (TN): negative instances predicted to be negative.
- False Positives (FP): negative instances predicted to be positive.
- False Negatives (FN): positive instances predicted to be negative.

Quality measures

(based on confusion matrix)

- error = (FP+FN)/K
- accuracy = (TP+TN)/K
- precision = TP/P' = TP/(TP+FP)
- recall = TP/P = TP/(TP+FN)
- F1-score =
 (2 x precision x recall)/(precision + recall)
 (harmonic mean of precision and recall)

Question: Compute precision, recall, and the F1-score before and after splitting

Answer

precision = 546/(546+314) = 0.635recall = 546/(546+0) = 1.000F1-score = 0.777

		predicted class	
		bunok	plo
actual class	young	546	0
	old	314	0

		predicted class	
		young	old
actual class	young	544	2
	old	251	63

Cross-validation

Evaluation

Straight Ahead

Consider your 10 best friends

You can create a decision tree that accurately predicts the length of a friend based on his/her birth date and eye color.

... but the model will be overfitting the data set and will most likely not apply to any new friends.

Overfitting and underfitting

- Overfitting: the model is too specific for the data set used to learn the model and performs poorly on new instances.
 - If birth date = 16-05-1998 and eye color = blue, then length = 172.8 cm.
- Underfitting: the model is too general and does not exploit the data.
 - If gender = male, then length > 1 meter.

Cross-validation

k-fold cross-validation

Possible complications

- Concept drift (model should change over time).
- No negative examples (we only know about sick customers that complained afterwards).

• ...

Part I: Preliminaries Part III: Beyond Process Discovery Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 1 Process Modeling and Data Mining Introduction Conformance Mining Additional **Operational Support** Analysis Checking Perspectives Part II: From Event Logs to Process Models Part IV: Putting Process Mining to Work Chapter 11 Chapter 4 Chapter 5 Chapter 6 Chapter 10 Process Discovery: An Getting the Data Advanced Process **Tool Support** Analyzing "Lasagna Analyzing "Spaghetti Introduction

2 Springer

Chapter 9

Chapter 12