Departamento de Análisis Matemático, Universidad de Granada

Prueba intermedia de Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Ejercicio 1. (**4 puntos**) Probar que la serie $\sum_{n\geqslant 0}\frac{\cos(nz)}{3^n}$ converge absolutamente en todo punto del dominio $\Omega=\{z\in\mathbb{C}: -\ln(3)<\operatorname{Im} z<\ln(3)\}$. Estudiar la convergencia uniforme en subconjuntos de Ω . Probar que la función $g:\Omega\to\mathbb{C}$ dada por

$$g(z) = \sum_{n=0}^{\infty} \frac{\cos(nz)}{3^n}$$
 $(z \in \Omega)$

es continua en Ω y calcular $\int_{C(0,1)} \frac{g(z)}{z} dz$.

Ejercicio 2. (3 puntos) Estudiar la derivabilidad de las funciones $f,g:\mathbb{C}\to\mathbb{C}$ dadas por

$$f(z) = \operatorname{sen}(\overline{z})$$
 $g(z) = z(z-1)f(z)$ $(z \in \mathbb{C}).$

Ejercicio 3. (3 puntos) Sean $a, b \in \mathbb{C}$ con $a \neq b$ y sea R > 0 de modo que $R > \max\{|a|, |b|\}$. Probar que, si f es una función entera, se tiene que:

$$\int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz = 2\pi i \frac{f(b) - f(a)}{b-a}.$$

Deducir que toda función entera y acotada es constante (Teorema de Liouville).