TD 2 - DUALITÉ

† Premiers exemples

Exercice 1. Soit $E = \mathbb{R}^3$,

- 1. Soit $f \in E^*$ telle que f(4,2,0) = 2, f(1,2,-3) = -7 et f(0,2,5) = -1, déterminer f(x,y,z).
- 2. Montrer que le formes linéaires $f_1(x, y, z) = 2x + 4y + 3z$, $f_2(x, y, z) = y + z$, $f_1(x, y, z) = 2x + 2y z$ forment une base de E^* , quelle est sa base antéduale?

Exercice 2. Soit E un k-espace vectoriel de dimension finie et $\alpha, \beta \in E^* \setminus \{0\}$, montrer que Ker $\alpha = \text{Ker } \beta$ si et seulement si il existe $\lambda \in k \setminus \{0\}$ tel que $\beta = \lambda \alpha$.

Exercice 3. Soit k un corps de caractéristique 0, et $\alpha \in k$. Montrer que la famille $1, (X - \alpha), (X - \alpha)^2, \dots, (X - \alpha)^n$ forme une base de $E_n := k_n[X]$. Déterminer sa base duale.

Exercice 4. On considère $E := \mathcal{M}_n(k)$ l'espace des matrices carrées de taille n sur un corps k.

- 1. Montrer que l'application $f: E \times E \to k$ envoyant (A, B) sur tr(AB) est une forme bilinéaire symétrique.
- 2. Montrer que f est non dégénérée.
- 3. En déduire que toute forme linéaire sur E s'écrit sous la forme $M \mapsto \operatorname{tr}(AM)$ pour une certaine matrice A.
- † Orthogonalité au sens des formes linéaires

Exercice 5. Soit E un k-espace vectoriel, on rappelle que pour $A \subset E$ et $F \subset E^*$, on note

$$A^o = \{ \varphi \in E^* \mid \forall x \in A, \varphi(x) = 0 \} \text{ et } {}^o F = \{ x \in E \mid \forall \varphi \in F, \varphi(x) = 0 \}.$$

- 1. Montrer que A^o (resp. oF) est un sous-espace vectoriel de E^* (resp. de E).
- 2. Montrer les assertions suivantes :
 - a) Si $A \subset A' \subset E$, alors $A'^o \subset A^o$.
 - b) Si $B \subset B' \subset E^*$, alors ${}^oB' \subset {}^oB$.
 - c) Si $A \subset E$, alors $A^o = (\text{Vect } A)^o$.
 - d) Si $B \subset E^*$, alors ${}^oB = {}^o(\text{Vect }B)$.
- 3. On suppose que E est de dimension finie, et que $A \leqslant E$ est un sous-espace vectoriel de E, montrer que $\dim A + \dim A^o = \dim E$ et que $o(A^o) = A$.

(Remarque, on a de même si E est de dimension finie, et que $B \leqslant E^*$ est un sous-espace vectoriel de E^* , dim $B + \dim^o B = \dim E^*$ et $({}^o B)^o = B$).

Exercice 6. Soient E un k-espace vectoriel, $\varphi_1, \ldots, \varphi_p$ des formes linéaires sur E, et $\Phi : E \to k^p$ définie par $\Phi(x) = (\varphi_1(x), \ldots, \varphi_p(x))$.

- 1. Montrer que, si Φ est surjective, alors la famille $(\varphi_1, \ldots, \varphi_p)$ est libre.
- 2. Réciproquement, on suppose que $(\varphi_1, \ldots, \varphi_p)$ est libre. On note $F \subset k^p$ l'image de Φ . En considérant F^o , montrer que Φ est surjective.

Exercice 7. Soit E un \mathbb{R} -espace vectoriel, muni d'un produit scalaire $\langle ., . \rangle$.

- 1. Soit $x \in E$, on note $\sigma_x : E \to \mathbb{R}$ l'application définie par $\sigma_x(y) = \langle x, y \rangle$. Montrer que $\sigma_x \in E^*$.
- 2. Montrer que l'application $\Sigma: x \mapsto \sigma_x$ est un isomorphisme de k-espaces vectoriels de E vers E^* .
- 3. On rappelle que, pour F un sous-espace vectoriel de E, on pose $F^{\perp} := \{x \in E \mid \forall y \in F, \langle x, y \rangle = 0\}$. Montrer que $\Sigma(F^{\perp}) = F^{o}$.

Exercice 8. Soient E et F deux k-espaces vectoriels (pas forcément de dimension finie) et $f: E \to F$ une application linéaire.

- 1. Montrer que $(\operatorname{Im} f)^o = \operatorname{Ker}({}^t f)$.
- 2. En déduire que si E et F sont de dimension finie, f et tf ont même rang et que par conséquent, pour $A \in \mathcal{M}_{p,n}(k)$, A a le même rang que sa transposée.
- 3. Contre exemple en dimension infinie : Considérons k[X], et $\partial: k[X] \to k[X]$ envoyant P(X) sur le polynôme dérivé P'(X).
 - a) Soit $\varphi \in k[X]^*$ une forme linéaire, montrer que Ker $^t\partial(\varphi)$ contient les polynômes constants.
 - b) En déduire que ∂ est surjective et pas ${}^t\partial$.

† Dualité et dimension

Exercice 9. Soit $E = k^{\mathbb{N}}$ l'espace vectoriel des suites à valeurs dans k, et $F = k^{(\mathbb{N})}$ le sous espace formé des suites nulles à partir d'un certain rang.

- 1. On considère, pour $i \in \mathbb{N}$, la suite e^i définie par $(e^i)_j = \delta_{i,j}$ (le symbole de Kronecker). Montrer que la famille $\{e^i\}_{i\in\mathbb{N}}$ forme une base de F, pourquoi ne forme-t-elle pas une base de E?
- 2. Montrer que F^* est isomorphe à E.
- 3. Bonus : Montrer que F est isomorphe à k[X] comme k-espace vectoriel.

Exercice 10. (Dimension du dual)

Soit E un k-espace vectoriel, muni d'une base $\{b_i\}_{i\in I}$ (une telle base existe toujours grâce à l'axiome du choix, quitte à avoir $|I| = \infty$ si E est de dimension infinie). Par définition, tout élément x de E s'écrit de manière unique sous la forme

$$x = \sum_{i \in I} \lambda_i b_i$$

où les λ_i sont nuls sauf pour $i \in I' \subset I$ un sous-ensemble fini.

- 1. Montrer que l'application b_k^* envoyant x sur λ_k est une forme linéaire.
- 2. Montrer que les $\{b_i^*\}_{i\in I}$ forment une famille libre de E^* .
- 3. Si E est de dimension finie, en déduire que les $\{b_i^*\}_{i\in I}$ forment une base de E^*
- 4. Si E est de dimension infinie, montrer que la somme infinie $\varphi := \sum_{i \in I} b_i^*$ est encore une forme linéaire bien définie sur E. En déduire que dim $E^* > \dim E$, et que ces deux espaces ne peuvent pas être isomorphes (indication : montrer que φ n'appartient pas à $\operatorname{Vect}(\{b_i\}_{i \in I})$).

Exercice 11. (Bidual)

Soit E un k-espace vectoriel

1. Pour $x \in E$, on définit $\operatorname{ev}_x : E^* \to k$ par

$$\forall \varphi \in E^*, \ \operatorname{ev}_x(\varphi) := \varphi(x)$$

(ev_x est l'évaluation en x des formes linéaires). Montrer que ev_x est une forme linéaire sur E^* (donc un élément du bidual E^{**}).

- 2. Montrer que l'application ev : $E \to E^{**}$ envoyant x sur ev_x est une application linéaire.
- 3. Montrer que ev est injective.
- 4. Si E est de dimension finie, en déduire que ev est un isomorphisme de E vers son bidual.
- 5. Si E est de dimension infinie, montrer que ev n'est jamais surjective (on pourra utilser la conclusion de l'exercice 10).

(Bonus : Si E et F sont de dimension finie, montrer que les isomorphisme $E \simeq E^{**}$ et $F \simeq F^{**}$ permettent d'identifier f à $^t(^tf)$ pour une application linéaire $f:E\to F$)

† À la rescousse de l'analyse numérique!

Exercice 12 (Lagrange). Soient k un corps, E = k[X] vu comme k-espace vectoriel, et $E_n := k_n[X]$ le k-espace vectoriel des polynômes de degré au plus n.

- 1. Quelle est la dimension de E_n ?
- 2. Pour tout $x \in k$, on pose $\varphi_x : E \to k$ donnée par $\varphi_x(P) := P(x)$. Montrer que $\varphi_x \in E^*$.
- 3. Montrer que, si x_1, \ldots, x_m sont distincts, alots $(\varphi_{x_1}, \ldots, \varphi_{x_m})$ est une famille libre de E^* .
- 4. On note encore φ_x la restriction de φ_x à E_n . Montrer que si k a au moins m+1 éléments distincts, alors E_n^* est engendré par les φ_x , $x \in k$. Cette condition est elle nécessaire.
- 5. Sous l'hypothèse précédente, quelle est la base antéduale de la famille $(\varphi_{x_1}, \dots, \varphi_{x_m})$?

Exercice 13 (Formules d'intégration).

Considérons l'espace $E := \mathcal{C}^0([-1,1],\mathbb{R})$ des fonctions continues sur [-1,1], il s'agit d'un \mathbb{R} -espace vectoriel, de dimension infininie, dont il est inenvisageable d'exhiber une base.

On considère la forme linéaire ϕ définie sur E par

$$\phi(f) = \int_{-1}^{1} f(t)dt.$$

Dans un monde parfait, on pourrait exprimer cette forme linéaire sur une base convenable de E^* , mais nous ne sommes pas dans un monde parfait.

Restreignons notre étude au sous espace F de E formé des polynômes de degré au plus 2 (que l'on voit comme des fonctions continues sur [-1,1]).

1. Montrer que les formes linéaires

$$\begin{cases} \varphi_{-1} : P \mapsto P(-1), \\ \varphi_0 : P \mapsto P(0), \\ \varphi_1 : P \mapsto P(1). \end{cases}$$

Forment une base de F^* (indication : regarder l'exercice précédent!). En calculer la base antéduale P_{-1}, P_0, P_1 .

2. Calculer $\phi(P_{-1}), \phi(P_0), \phi(P_1)$ et en déduire la formule suivante :

$$\forall P \in F, \int_{-1}^{1} P(t)dt = \frac{1}{3} \left(P(-1) + 4P(0) + P(1) \right).$$

Autrement dit, $\phi = \frac{1}{3}(\varphi_{-1} + 4\varphi_0 + \varphi_1)$ sur F, cette formule peut-être ensuite étendue en une forme linéaire sur E, dont on espère qu'elle est "assez proche" de la forme ϕ (vu qu'elles coïncident sur le sous-espace F).