Graphs of Quadratic Expressions

Objectives

Determine the vertex and axis of symmetry of a quadratic function in standard form

Convert between standard and general form of quadratic expressions

Graphing Quadratic Expressions

We will be looking at graphing equations in the form

$$y = ax^2 + bx + c$$

where a, b, and c are real numbers with $a \neq 0$.

Graph of a Quadratic Expression

For $y = x^2$, the graph below is a parabola.

Graph of a Quadratic Expression

The point (0,0) is called the vertex of the parabola and can be either a minimum (smile) or maximum point (frown).

Graph of a Quadratic Expression

The point (0,0) is called the vertex of the parabola and can be either a minimum (smile) or maximum point (frown).

Through the vertex is a vertical line called the axis of symmetry that divides the parabola into 2 equal halves.

(a)
$$y = x^2 + 4x + 1$$

(a)
$$y = x^2 + 4x + 1$$

(a)
$$y = x^2 + 4x + 1$$

Vertex $(-2, -3)$

Vertex is a minimum

 $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$

Find the vertex, state whether the vertex is a maximum or minimum, and find the equation of the axis of symmetry for each.

(a)
$$y = x^2 + 4x + 1$$

Vertex
$$(-2, -3)$$

Vertex is a minimum

Axis of symmetry: x = -2

(b)
$$y = -2x^2 + 12x - 17$$

(b)
$$y = -2x^2 + 12x - 17$$

Vertex (3,1)

Vertex is a maximum

(b)
$$y = -2x^2 + 12x - 17$$

Vertex (3,1)

Vertex is a maximum

Axis of symmetry: x = 3

Objectives

Determine the vertex and axis of symmetry of a quadratic function in standard form

2 Convert between standard and general form of quadratic expressions

For a quadratic function:

• The general form is $y = ax^2 + bx + c$

- The general form is $y = ax^2 + bx + c$
 - a, b, and c are real numbers

- The general form is $y = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$

- The general form is $y = ax^2 + bx + c$
 - a, b, and c are real numbers
 - a ≠ 0
- The standard form is $y = a(x h)^2 + k$

- The general form is $y = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$
- The standard form is $y = a(x h)^2 + k$
 - Vertex is (h, k)

- The general form is $y = ax^2 + bx + c$
 - a, b, and c are real numbers
 - $a \neq 0$
- The standard form is $y = a(x h)^2 + k$
 - Vertex is (h, k)
 - a ≠ 0

- The general form is $y = ax^2 + bx + c$
 - a, b, and c are real numbers
 - a ≠ 0
- The standard form is $y = a(x h)^2 + k$
 - Vertex is (h, k)
 - a ≠ 0
 - a, h, and k are real numbers

Converting From General to Standard Form

To convert from general form $y = ax^2 + bx + c$ to standard form $y = a(x - h)^2 + k$

Converting From General to Standard Form

To convert from general form $y = ax^2 + bx + c$ to standard form $y = a(x - h)^2 + k$

- Find the vertex:
 - x-coordinate: $\frac{-b}{2a}$
 - y-coordinate: Evaluate expression at x-coordinate
 - Or use graphing technology
- ② Use the same value of a

Convert each to standard form.

(a)
$$y = x^2 - 4x + 3$$

Convert each to standard form.

(a)
$$y = x^2 - 4x + 3$$

Convert each to standard form.

(a)
$$y = x^2 - 4x + 3$$

$$x = \frac{-(-4)}{2(1)}$$

Convert each to standard form.

(a)
$$y = x^2 - 4x + 3$$

$$x = \frac{-(-4)}{2(1)}$$

$$x = 2$$

Convert each to standard form.

(a)
$$y = x^2 - 4x + 3$$

$$x=\frac{-(-4)}{2(1)}$$

$$x = 2$$

$$y = 2^2 - 4(2) + 3$$

Convert each to standard form.

(a)
$$y = x^2 - 4x + 3$$

$$x = \frac{-(-4)}{2(1)}$$

$$x = 2$$

$$y = 2^2 - 4(2) + 3$$

$$y = -1$$

(a)
$$y = x^2 - 4x + 3$$

Vertex:
$$(2,-1)$$

(a)
$$y = x^2 - 4x + 3$$

Vertex:
$$(2,-1)$$

$$a = 1$$

(a)
$$y = x^2 - 4x + 3$$

Vertex:
$$(2,-1)$$

$$a = 1$$

$$y=(x-2)^2-1$$

Convert each to standard form.

(b)
$$y = 6 - x - x^2$$

(b)
$$y = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

(b)
$$y = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

(b)
$$y = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

Vertex:
$$\left(-\frac{1}{2}, \frac{25}{4}\right)$$

(b)
$$y = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

Vertex:
$$\left(-\frac{1}{2}, \frac{25}{4}\right)$$

$$a = -1$$

(b)
$$y = 6 - x - x^2$$

$$g(x) = -x^2 - x + 6$$

Vertex:
$$\left(-\frac{1}{2}, \frac{25}{4}\right)$$

$$a = -1$$

$$y = -\left(x + \frac{1}{2}\right)^2 + \frac{25}{4}$$

Converting From Standard to General Form

To convert from

$$y = a(x - h)^2 + k$$

form to

$$y = ax^2 + bx + c$$

just do the math and remember your order of operations.

(a) Convert $y = (x+2)^2 - 3$ to general form.

(a) Convert $y = (x+2)^2 - 3$ to general form.

$$y=(x+2)^2-3$$

(a) Convert
$$y = (x+2)^2 - 3$$
 to general form.
$$y = (x+2)^2 - 3$$

 $v = x^2 + 4x + 4 - 3$

(a) Convert
$$y = (x + 2)^2 - 3$$
 to general form.
$$y = (x + 2)^2 - 3$$

$$y = x^2 + 4x + 4 - 3$$

$$y = x^2 + 4x + 1$$

(a) Convert $y = (x+2)^2 - 3$ to general form. $y = (x+2)^2 - 3$ $y = x^2 + 4x + 4 - 3$ $y = x^2 + 4x + 1$

 $v = x^2 + 4x + 1$

(b) Convert $y = -(x-7)^2 + 10$ to general form.

(b) Convert
$$y = -(x-7)^2 + 10$$
 to general form.
$$y = -(x-7)^2 + 10$$

(b) Convert
$$y = -(x-7)^2 + 10$$
 to general form.
$$y = -(x-7)^2 + 10$$

$$y = -(x^2 - 14x + 49) + 10$$

(b) Convert
$$y = -(x-7)^2 + 10$$
 to general form.
$$y = -(x-7)^2 + 10$$

$$y = -(x^2 - 14x + 49) + 10$$

$$y = -x^2 + 14x - 49 + 10$$

(b) Convert
$$y = -(x-7)^2 + 10$$
 to general form.
$$y = -(x-7)^2 + 10$$

$$y = -(x^2 - 14x + 49) + 10$$

$$y = -x^2 + 14x - 49 + 10$$

$$y = -x^2 + 14x - 48$$