Learning algorithm

The algorithm used to solve this environment is Deep Deterministic Policy Gradient (DDPG), an extension of DQN to continuous action spaces on an actor-critic manner. The main difference is that instead of just one network that outputs the value for every action, we have two: the actor, a maximizer that outputs the action with the biggest value, and the critic, that takes this action and a state and outputs the value.

To update the value network, the critic, we use an target actor and critic (fixed parameters) to create an Q used as target to train the learning critic.

Then, we use our updated critic to calculate a value with which we will do gradient ascent on the actor.

Also, an Ornstein-Unlenbeck process is implemented as noise generator to favor exploration.

Hyperparameters

```
BUFFER_SIZE = int(5e5) # replay buffer size

BATCH_SIZE = 256 # minibatch size

GAMMA = 0.99 # discount factor

TAU = 1e-3 # for soft update of target parameters

LR_ACTOR = 2e-4 # learning rate of the actor

LR_CRITIC = 2e-4 # learning rate of the critic

WEIGHT_DECAY = 0.0 # L2 weight decay

OU_MU = 0.1

OU_SIGMA = 0.1

OU_THETA = 0.15
```

The hyperparameters selected are variations from the <u>original DDPG paper</u>, adapted by trial and error. The original values of the changed parameters are:

Buffer size :1e5Batch size: 64

Actor learning rate: 1e-4
Critic learning rate: 1e-3
Weigth decay: 1e-2.

OU mu: 0OU theta: 0.1

Model architectures

Both are neural networks with 2 hidden with 400 and 300 with batch normalization on the first hidden layer and ReLU as activation function. For the critic, the actions come in in the second hidden layer.

Plot of rewards

Objective: The agent is able to receive an average reward (over 100 episodes, and over all 20 agents) of at least +30.


```
Time: 2.15 min..
Episode 10
                Average Score: 0.74
Episode 20
                Average Score: 1.25
                                         Time:4.51 min..
Episode 30
                Average Score: 2.00
                                         Time: 7.18 min..
                                        Time:9.90 min..
Episode 40
                Average Score: 2.77
Episode 50
                Average Score: 3.82
                                         Time: 12.62 min.
Episode 60
                Average Score: 4.75
                                         Time:15.35 min.
                Average Score: 5.71
Episode 70
                                         Time: 18.07 min.
Episode 80
                Average Score: 6.65
                                         Time: 20.79 min.
Episode 90
                Average Score: 7.47
                                         Time:23.52 min.
Episode 100
                Average Score: 8.55
                                         Time:26.28 min.
Episode 110
                Average Score: 11.08
                                         Time:29.03 min.
Episode 120
                Average Score: 14.08
                                         Time:31.79 min.
Episode 130
                Average Score: 17.26
                                         Time:34.56 min.
Episode 140
                Average Score: 20.52
                                         Time:37.31 min.
Episode 150
                Average Score: 23.42
                                         Time:40.07 min.
Episode 160
                Average Score: 26.05
                                         Time: 42.84 min.
Episode 170
                Average Score: 28.45
                                         Time: 45.61 min.
Episode 178
                Average Score: 30.20
                                         Time:16.17 sec.Environment solved in 178 episodes!
                                                                                                  Average Score: 30.2
        Time:2867.58
```

Ideas for future work

- Prioritized replay experiences
- Using Generalized Advantage Estimation.
- Using on-policy training by not using the replay buffer.
- Try other algorithms: A3C, A2C, TRPO, TNPG, D4PG.