

March 2013

MC78LXXA / LM78LXXA 3-Terminal 0.1 A Positive Voltage Regulator

Features

- · Maximum Output Current of 100 mA
- Output Voltage of 5 V, 6 V, 8 V, 12 V, and 15 V
- Thermal Overload Protection
- · Short-Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance

Description

The MC78LXXA / LM78LXXA series of fixed-voltage monolithic integrated circuit voltage regulators are suitable for applications that required supply current up to 100 mA.

Ordering Information

Product Number	Package	Packing Method	Output Voltage Tolerance	Operating Temperature
LM78L05ACZ		Bulk		
LM78L05ACZX		Tape & Reel		
LM78L05ACZXA		Ammo		
LM78L12ACZ		Bulk		
LM78L12ACZX		Tape & Reel		
MC78L05ACP	TO-92	Bulk		
MC78L05ACPXA		Ammo		
MC78L06ACP		Bulk	±5%	0 to +125°C
MC78L08ACP		Bulk		
MC78L15ACP		Bulk		
MC78L15ACPXA		Ammo		
MC78L05ACD	8-SOIC	Rail		
MC78L05ACDX	6-30IC	Tape & Reel		
MC78L05ACHX	SOT-89	Tape & Reel		
MC78L08ACHX	301-09	Tape & Reel		

1

Block Diagram

Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Parameter Va			
V _I Input Voltage	Input Voltage	$V_O = 5 \text{ V to 8 V}$		V	
	input voitage	V _O = 12 V to 15 V	35	V	
T_J	Operating Junction Temperature Range		0 to +150	°C	
T _{STG}	Storage Temperature Range		-65 to +150	°C	
$R_{\theta JC}$	Thermal Resistance, Junction-Case	TO-92	50	°C/W	
		TO-92	150	°C/W	
R _{0JA} Therm	Thermal Resistance, Junction-Air	SOT-89	225	°C/W	
		8-SOIC	160	°C/W	

Electrical Characteristics (MC78L05A / LM78L05A)

 $V_I = 10 \text{ V, } I_O = 40 \text{ mA, } 0^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \text{ } \mu\text{F, } C_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$

Symbol	Paramete	Parameter		ditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		4.8	5.0	5.2	V
41/	Line Regulation ⁽¹⁾		T _{.I} = 25°C	7 V ≤ V _I ≤ 20 V		8	150	mV
ΔV _O	Line Regulation 7		1j = 25 C	8 V ≤ V _I ≤ 20 V		6	100	mV
$\Delta V_{\mathbf{O}}$	Load Regulation ⁽¹⁾		T _{.I} = 25°C	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$		11	60	mV
ΔvO	Load Regulation(1)		1 j = 25 C	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$		5.0	30.0	mV
V-	Output Voltage		$7 \text{ V} \leq \text{V}_1 \leq 20 \text{ V}$	1 mA \leq I _O \leq 40 mA			5.25	V
Vo			$7 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{MAX}}^{(2)}$	1 mA \leq I _O \leq 70 mA	4.75		5.25	V
ΙQ	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_{Q}	Quiescent Current	With Line	$8~V \leq V_I \leq 20~V$				1.5	mA
ΔI_{Q}	Change	With Load	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$	1			0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz	≤ f ≤ 100 kHz		40		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-0.65		mV/°C
RR	Ripple Rejection		f = 120 Hz, 8 V ≤ \	$V_{\rm I} \le 18 \text{ V}, T_{\rm J} = 25^{\circ}\text{C}$	41	80		dB
V _D	Dropout Voltage		T _J = 25°C			1.7		V

- 1. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 2. Power dissipation $P_D \le 0.75$ W.

Electrical Characteristics (MC78L06A)

 $V_{I}=12~\text{V, I}_{O}=40~\text{mA},~0^{\circ}\text{C} \leq T_{J} \leq 125^{\circ}\text{C},~C_{I}=0.33~\mu\text{F},~C_{O}=0.1~\mu\text{F, unless otherwise specified}.$

Symbol	Paramete	er	Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage		$T_J = 25^{\circ}C$		5.75	6.0	6.25	V
41/	Line Regulation ⁽³⁾		T - 25°C	$8.5 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}$		64	175	mV
ΔV_{O}	Line Regulation 47		1j = 25°C	$8.5 \text{ V} \le \text{V}_1 \le 20 \text{ V}$ $9 \text{ V} \le \text{V}_1 \le 20 \text{ V}$		54	125	mV
41/	Load Regulation ⁽³⁾		T _{.1} = 25°C	$1 \text{ mA} < I_{\odot} < 100 \text{ mA}$		12.8	80.0	mV
ΔV_{O}	Load Regulation (*)		1j = 25 C	$1 \text{ mA} \le I_O \le 70 \text{ mA}$		5.8	40.0	mV
V	Output Voltage		8.5 V ≤ V _I ≤	≤ 20 V, 1 mA ≤ I _O ≤ 40 mA	5.7		6.3	V
Vo			8.5 V ≤ V _I ≤	$\leq V_{MAX}^{(4)}$, 1 mA $\leq I_{O} \leq$ 70 mA	5.7		6.3	V
	Outro and Outro		$T_J = 25^{\circ}C$				5.5	mA
ΙQ	Quiescent Current		$T_{J} = 125^{\circ}C$			3.9	6.0	mA
ΔI_{Q}	Quiescent Current	With Line	9 V ≤ V ₁ ≤ 2	20 V			1.5	mA
ΔI_{Q}	Change	With Load	1 mA ≤ I _O ≤	≤ 40 mA			0.1	mA
V _N	Output Noise Voltage		T _A = 25°C,	10 Hz ≤ f ≤ 100 kHz		40		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			0.75		mV/°C
RR	Ripple Rejection		f = 120 Hz,	$10 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}, \text{T}_{\text{J}} = 25^{\circ}\text{C}$	40	46		dB
V_D	Dropout Voltage		$T_J = 25^{\circ}C$			1.7		V

^{3.} The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.
4. Power dissipation P_D ≤ 0.75 W.

Electrical Characteristics (MC78L08A)

 $V_I = 14 \text{ V, } I_O = 40 \text{ mA, } 0^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \text{ } \mu\text{F, } C_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$

Symbol	Parameter	Parameter		Conditions		Тур.	Max.	Unit
Vo	Output Voltage		$T_J = 25^{\circ}C$		7.7	8.0	8.3	V
41/	Line Regulation ⁽⁵⁾		T 050C	$10.5 \text{ V} \le \text{V}_{\text{I}} \le 23 \text{ V}$		10	175	mV
ΔV_{O}	Line Regulation 7		$T_J = 25^{\circ}C$	11 V ≤ V _I ≤ 23 V		8	125	mV
41/	Load Regulation ⁽⁵⁾		T _ 25°C	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$		15	80	mV
ΔνΟ	ΔV _O Load Regulation ⁽⁵⁾		$T_J = 25^{\circ}C$	1 mA ≤ I _O ≤ 40 mA		8	40	mV
Vo	Output Voltage		$10.5V \le V_I \le 23V$	1 mA \leq I _O \leq 40 mA	7.6		8.4	V
٧٥			$10.5V \le V_I \le V_{MAX}^{(6)}$	$1 \text{ mA} \le I_{O} \le 70 \text{ mA}$	7.6		8.4	V
ΙQ	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_{Q}	Quiescent Current	With Line	11 $V \le V_1 \le 23 V$				1.5	mA
ΔI_{Q}	Change	With Load	$1 \text{ mA} \le I_O \le 40 \text{ mA}$				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C, 10 \text{ Hz} \le f$	≤100 kHz		60		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-0.8		mV/°C
RR	Ripple Rejection		f = 120 Hz, 11 V ≤ V _I	≤ 21 V, T _J = 25°C	39	70		dB
V_D	Dropout Voltage		T _J = 25°C			1.7		V

- 5. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 6. Power dissipation $P_D \le 0.75$ W.

Electrical Characteristics (MC78L12A / LM78L12A)

 $V_I = 19 \text{ V, } I_O = 40 \text{ mA, } 0^{\circ}C \leq T_J \leq 125^{\circ}C, \ C_I = 0.33 \ \mu\text{F, } C_O = 0.1 \ \mu\text{F, unless otherwise specified.}$

Symbol	Parame	Parameter		tions	Min.	Тур.	Max.	Unit
Vo	Output Voltage		$T_J = 25^{\circ}C$		11.5	12.0	12.5	V
41/	Line Regulation (7	')	T _{.l} = 25°C	14.5 V ≤ V _I ≤ 27 V		20	250	mV
ΔV_{O}	Line Regulation	<i>'</i>	1j = 25 C	16 V ≤ V _I ≤ 27 V		15	200	mV
41/	Load Regulation (7)	T _{.l} = 25°C	$1 \text{ mA} \le I_O \le 100 \text{ mA}$		20	100	mV
ΔνΟ	ΔV _O Load Regulation ⁽⁷⁾		1 j = 25 C	1 mA ≤ I _O ≤ 40 mA		10	50	mV
V/ -	Output Voltage		$14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$	11.4		12.6	V
Vo			$14.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(8)}$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$	11.4		12.6	٧
ΙQ	Quiescent Current		$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_{Q}	Quiescent	With Line	$16 \text{ V} \leq \text{V}_{\text{I}} \leq 27 \text{ V}$				1.5	mA
ΔI_Q	Current Change	With Load	1 mA ≤ I _O ≤ 40 mA				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C, 10 \text{ Hz} \le f$	≤ 100 kHz		80		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-1.0		mV/°C
RR	Ripple Rejection		f = 120 Hz, 15 V ≤ V _I	≤ 25 V, T _J = 25°C	37	65		dB
V_D	Dropout Voltage		T _J = 25°C		_	1.7		V

- 7. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 8. Power dissipation $P_D \le 0.75$ W.

Electrical Characteristics (MC78L15A)

 $V_I = 23 \text{ V, I}_O = 40 \text{ mA, } 0^{\circ}\text{C} \leq \text{T}_J \leq 125^{\circ}\text{C, C}_I = 0.33 \text{ } \mu\text{F, C}_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$

Symbol	Parame	Parameter		tions	Min.	Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		14.4	15.0	15.6	V
41/	Line Regulation ⁽⁹⁾	1	T _{.1} = 25°C	17.5 V ≤ V _I ≤ 30 V		25	300	mV
ΔV_{O}	Line Regulation		1 J = 25 C	20 V ≤ V _I ≤ 30 V		20	250	mV
$\Delta V_{\mathbf{O}}$	Load Regulation ^{(§}	9)	T _{.1} = 25°C	1 mA ≤ I _O ≤ 100 mA		25	150	mV
ΔνΟ	Load Regulation(9)		1 j = 25 C	1 mA ≤ I _O ≤ 40 mA		12	75	mV
W	Output Valtage		$17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$	$1 \text{ mA} \le I_{O} \le 40 \text{ mA}$	14.25		15.75	V
Vo	Output Voltage		$17.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(10)}$	$1 \text{ mA} \le I_{O} \le 70 \text{ mA}$	14.25		15.75	V
IQ	Quiescent Current		$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_{Q}	Quiescent	With Line	$20~V \leq V_I \leq 30~V$				1.5	mA
ΔI_{Q}	Current Change	With Load	1 mA \leq I _O \leq 40 mA				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C, 10 \text{ Hz} \le f \le$	100 kHz		90		μV/Vo
$\Delta V_{O}/\Delta T$	Temperature Coefficient of V _O		$I_O = 5 \text{ mA}$			-1.3		mV/°C
RR	Ripple Rejection		$f = 120 \text{ Hz}, 18.5 \text{ V} \le \text{V}_{\text{I}}$	≤28.5 V, T _J = 25°C	34	60		dB
V_D	Dropout Voltage		T _J = 25°C			1.7		V

- 9. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 10. Power dissipation $P_D \le 0.75 \text{ W}$.

Typical Application

Figure 2. Typical Application

- 13. To specify an output voltage, substitute voltage value for "XX".
- 14. C_1 is required if the regulator is located an appreciable distance from the power supply filter. Though C_0 is not needed for stability, it improves transient response. Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator.

Physical Dimensions

SOT-89

Figure 3. 3-Lead, SOT-89, JEDEC TO-243, Option AA

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packaging/tr/sot89 tr.pdf.

Physical Dimensions (Continued)

TO-92 Straight Lead for Bulk Packing

Figure 4. 3-Lead, TO-92, MOLDED STD STRAIGHT LEAD (NO EOL CODE)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packaging/tr/to92pdd tr.pdf.

Physical Dimensions (Continued)

TO-92 Formed Lead For T&R and Ammo Packing

Figure 5. 3-Lead, TO-92, MOLDED 0.200 IN LINE SPACING LD FORM (J61Z OPTION)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area:

http://www.fairchildsemi.com/packaging/tr/to92 tr.pdf.

Physical Dimensions (Continued)

8-SOIC

Figure 6. 8-Lead, SOIC, JEDEC MS-012, 0.150" NARROW BODY

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packaging/tr/soic8 tr.pdf.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ AccuPower™ F-PFS™ AX-CAP®, FRFET® BitSiC™ Global Power ResourceSM GreenBridge™ Build it Now™

CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™

Gmax™ CROSSVOLT™ CTL^TM GTO™ Current Transfer Logic™ IntelliMAX™ ISOPLANAR™ **DEUXPEED®**

Making Small Speakers Sound Louder Dual Cool™

EcoSPARK® and Better™ EfficientMax™ MegaBuck™ $\mathsf{ESBC}^{\mathsf{TM}}$ ■® MicroFET™

Fairchild® MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ FACT' mWSaver™ FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™

MICROCOUPLER™ MicroPak™ MotionMax™

PowerTrench® PowerXS™

Programmable Active Droop™

OFET' QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEAL TH™ SuperFET SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

SYSTEM SYSTEM

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

UHC Ultra FRFET™ UniFFT™ **VCX™** VisualMax™ VoltagePlus™

uSerDes™

OPTOPLANAR®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.