Zadanie 0. (wędrówka po szachownicy)

Dana jest szachownica A o wymiarach $n \times n$. Szachownica zawiera liczby wymierne. Należy przejść z pola (1,1) na pole (n,n) korzystając jedynie z ruchów "w dół" oraz "w prawo". Wejście na dane pole kosztuje tyle, co znajdująca się tam liczba. Proszę podać algorytm znajdujący trasę o minimalnym koszcie.

Zadanie 1. (Black Forest)

Black Forest to las rosnący na osi liczbowej gdzieś w południowej Anglii. Las składa się z n drzew rosnących na pozycjach \emptyset , ..., n-1. Dla każdego $i \in \{\emptyset, ..., n-1\}$ znany jest zysk c_i , jaki można osiągnąć ścinając drzewo z pozycji i. John chce uzyskać maksymalny zysk ze ścinanych drzew, ale prawo zabrania ścinania dwóch drzew pod rząd. Proszę zaproponować algorytm, dzięki któremu John znajdzie optymalny plan wycinki.

Zadanie 2. (spadające klocki)

Każdy klocek to przedział postaci [a, b]. Dany jest ciąg klocków [a1, b1], [a2, b2], ..., [an, bn]. Klocki spadają na oś liczbową w kolejności podanej w ciągu. Proszę zaproponować algorytm, który oblicza, ile klocków należy usunąć z listy tak, żeby każdy kolejny spadający klocek mieścił się w całości w tym, który spadł tuż przed nim.

Zadanie 3. (ładowanie promu)

Dana jest tablica *A[n]* z długościami samochodów, które stoją w kolejce, żeby wjechać na prom. Prom ma dwa pasy (lewy i prawy), oba długości *L*. Proszę napisać program, który wyznacza, które samochody powinny pojechać na który pas, żeby na promie zmieściło się jak najwięcej aut. Auta muszą wjeżdżac w takiej kolejności, w jakiej są podane w tablicy *A*.

Zadanie 4. (Głodna żaba)

Pewna żaba skacze po osi liczbowej. Ma się dostać z zera do n-1, skacząc wyłącznie w kierunku większych liczb. Skok z liczby i do liczby j (j>i) kosztuje ją j-i jednostek energii, a jej energia nigdy nie może spaść poniżej zera. Na początku żaba ma 0 jednostek energii, ale na szczęście na niektórych liczbach – także na zerze – leżą przekąski o określonej wartości energetycznej (wartość przekąski dodaje się do aktualnej energii żaby). Proszę zaproponować algorytm, który oblicza minimalną liczbę skoków potrzebną na dotarcie z 0 do n-1, mając daną tablicę A z wartościami energetycznymi przekasek na każdej z liczb.

Zadanie 5 (dwuwymiarowy problem plecakowy)

Proszę zaproponować algorytm dla dwuwymiarowej wersji dyskretnego problemu plecakowego. Mamy dany zbiór $P = \{p_1, \ldots, p_n\}$ przedmiotów i dla każdego przedmiotu p_i dane są

- $P = \{p_1, \ldots, p_n\}$ przedmiotow i dla kazdego przedmiotu p_i dane są następujące trzy liczby:
- 1. $v(p_i)$ wartość przedmiotu
- 2. $w(p_i)$ waga przedmiotu
- 3. $h(p_i)$ wysokość przedmiotu.

Złodziej chce wybrać przedmioty o maksymalnej wartości, których łączna waga nie przekracza danej liczby *W* oraz których łączna wysokość nie przekracza danej liczby *H* (przedmioty zapakowane są w kartony, które złodziej układa jeden na drugim). Proszę oszacować złożoność czasową swojego algorytmu oraz uzasadnić jego poprawność.

Zadanie 6 (ścieżka w drzewie)

Dane jest drzewo ukorzenione T, gdzie każdy wierzchołek v ma – potencjalnie ujemną – wartość value(v). Proszę zaproponować algorytm, który znajduje wartość najbardziej wartościowej ścieżki w drzewie T.

Zadanie 7. (sklejanie odcinków)

Dany jest ciąg przedziałów postaci [a, b]. Dwa przedziały można skleić jeśli mają dokładnie jeden punkt wspólny. Proszę wskazać algorytmy dla następujących problemów:

- 1. Problem stwierdzenia, czy da się uzyskać przedział [a,b] przez sklejanie odcinków.
- 2. Zadanie jak wyżej, ale każdy odcinek ma koszt i pytamy o minimalny koszt uzyskania odcinka [a,b].
- 3. Problem stwierdzenia jaki najdłuższy odcinek można uzyskać sklejając najwyżej *k* odcinków.