Tutorial Sheet-ODD Semester 2022

15B11Cl212 Theoretical Foundation of Computer Science

Tutorial 7 Solutions

Q1. Define an operation * on R as x * y = x + y + xy. Prove or disprove: (R, *) is a group

Solution:

- a. [Closure] Obvious.
- b. [Associativity] We have (x*y)*z = (x+y+xy)*z = (x+y+xy)+z+(x+y+xy)z = x+y+z+xy+xz+yz+xyzx*(y*z) = x*(y+z+yz) = x+(y+z+yz)+x(y+z+yz) = x+y+z+xy+xz+yz+xyz, i.e., (x*y)*z = x*(y*z).
- c. [Identity] It is easy to check that 0 is the identity with respect to *.
- d. [Inverse] Let $x \in R$ have the inverse $y \in R$, i.e., x * y = x + y + xy = 0, i.e., $y = -x \cdot 1 + x$, i.e., $y = x \cdot 1 + x \cdot 1 +$
- Q2. Prove or disprove that the set $G = \{1, 3, 7, 9\}$ is a group under multiplication modulo 10.

Solution: The composition table of G with respect to ⊙10 is as follows:

\odot_{10}	1	3	7	9	
1	1	3	7	9	_
3	3	9	1	7	
7	7	1	9	3	
9	9	7	3	1	

From the composition table, we have

- a. $a \odot b \in G \forall a, b \in G$
- b. $(a \odot b) \odot c = a \odot (b \odot c) \forall a, b \in G$
- c. $a \odot 1 = a \forall a \in G$
- d. The inverse elements of 1, 3, 7, 9 are 1, 7, 3, 9 respectively.
- Q3. If G is a group such that $(ab)^2 = a^2b^2$ for all a, b \in G, then show that G must be abelian.

Solution: abab = a^2b^2 apply a $^{-1}$ from left and b $^{-1}$ from right. We obtain ba = ab for all a, b \in G. Hence G is abelian.

- Q4. let (A,+,.) be a ring such that a.a =a for all a in A.
- a. Show that a + a = 0 for all a, where 0 is the additive identity.
- b. Show that the operation . is commutative.

Solution:

```
(A, +, ·) is a ring
a) Let 0 be the additive identity.

Then a · 0 = 0 · a = 0 for all a is A

(a + a) · a = a · a + a · a = a + a = a · (a + a)

Hence a + a = 0
b) (a + b) · (a + b) = a + b

a · a + b · a + a · b + b · b = a + b

a + b · a + a · b + b = a + b

Hence b · a + a · b = 0

But a · b + a · b = 0

Hence a · b and b · a are additive inverse of a · b.

Since the additive inverse is unique b · a = a · b.

Hence · is commutative.
```

Q.5 Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum of (n, m). Show that (Z, *) is a semi group. Is (Z, *) a monoid ?. Justify your answer

Solution: Let a , b and c are any three integers. Closure property: Now, a * b = maximum of (a, b) \in Z for all a,b \in Z Associativity : (a * b) * c = maximum of {a,b,c} = a * (b * c) \therefore (Z, *) is a semi group. Identity : There is no integer x such that a * x = maximum of (a, x) = a for all a \in Z \therefore Identity element does not exist. Hence, (Z, *) is not a monoid.

Q.6 Show that the set of all strings S is a monoid under the operation concatenation of strings. Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation concatenation of strings by +. Let s1, s2, s3 are three arbitrary strings in S. Closure property: Concatenation of two strings is again a string. i.e., s1+s2 \in S Associativity: Concatenation of strings is associative. (s1+ s2) + s3 = s1+ (s2 + s3) Identity: We have null string, $I \in S$ such that s1 + I = S. \therefore S is a monoid. Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

Q.7 If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.