Лабораторная работа № 1 «Численные методы решения нелинейных уравнений»

Дано нелинейное уравнение f(x) = 0. Необходимо выполнить следующее:

- Графически отделить корень уравнения f(x) = 0.
- Сузить отрезок отделенного корня с помощью метода дихотомии с точностью $\epsilon = 10^{-2}$.
- Найти решение уравнения f(x) = 0 с точностью $\varepsilon = 10^{-7}$ (используя суженный отрезок) с помощью метода Ньютона с постоянной производной, метода Ньютона и метода секущих. Провести сравнительный анализ полученных результатов.

В содержание отчета должна быть включена следующая информация:

- Графики, которые использовались для отделения корня. Отрезок отделенного корня.
- Алгоритм метода дихотомии. Сводные данные по результатам работы метода дихотомии, оформленные в виде таблицы 1.

Структура таблицы 1:

k	$a_{\scriptscriptstyle k}$	$b_{\scriptscriptstyle k}$	$f(a_k)$	$f(b_k)$	$b_k - a_k$
•					
	•	•	•	•	•
•	•	•	•	•	•

• Алгоритмы метода Ньютона с постоянной производной, метода Ньютона и метода секущих. Сводные данные по результатам работы методов, оформленные в виде таблицы 2.

Структура таблицы 2:

	untype maoningot 2.							
]	Номер итерации k	Метод Ньютона с постоянной производной			Метод Ньютона		Метод секущих	
		X_k	$\left x_{k}-x_{k-1}\right $	X_k	$\left x_{k}-x_{k-1}\right $	X_k	$\left x_{k}-x_{k-1}\right $	
	0	:	_	:	_	:	_	
	:	:	: .	:	:	:	:	

- Выводы.
- Листинг программы с комментариями.

Варианты заданий

Г Т					
Номер	Нелинейное уравнение				
варианта	f(x) = 0				
1	$2^x - x^2 - 0.5 = 0, x < 0$				
2	$\ln(x+2) - x^2 = 0, x > 0$				
3	$\sqrt{1-x^2}-e^x+0.1=0, x>0$				
4	$\cos x + 0.25x - 0.5 = 0, x < 0$				
5	$\sin x - 2x^2 + 0.5 = 0, x < 0$				
6	$e^x - x^3 + 3x^2 - 2x - 3 = 0$, $x < 0$				
7	$xe^x + x^2 - 1 = 0, x < 0$				
8	$4^x - 5x - 2 = 0, x > 0$				
9	$\ln(x+1)-x^3+1=0, x>0$				
10	$3^x - 5x^2 + 1 = 0, x < 0$				
11	$\sqrt{x+2} - 2\cos x = 0, x > 0$				
12	$10^x - 5x - 2 = 0, x < 0$				