Understanding past climate through the cryosphere

Durban G Keeler

16 April 2019

Overview

- Introduction to paleoclimatology
 - Brief overview of history of Earth's climate
- Introduction to temperature proxy records
- Glaciology-specific temperature proxy records
 - Glacial geomorphology
 - Ice core reconstructions

Paleoclimatology

- Study of the climate (temperature, moisture, wind vectors, etc.) prior to direct, quantitative observations of climatological variables
- Why would we want to know about climate in the past?

- What's the difference between climatology and paleoclimatology
- How do we measure temperature?

- How do we measure temperature?
 - Mercury displacement (traditional thermometers)
 - Changes in electrical properties (digital thermometers)
 - Emission spectrum (satellites, infrared sensors)

- Direct temperature measurements only go back a few hundred years
- How can we estimate temperature before thermometers?

Paleoclimate proxies

- An indirect measurement of a variable (i.e. the proxy) that is correlated with some other variable of interest (e.g. temperature)
- Percentage of people wearing a coat

Paleoclimate proxies

- Examples of temperature proxies:
 - Coral distributions
 - Tree ring widths
 - Types and fequency of vegetation/pollen
 - Fossil assemblages
 - Marine sediment records
 - Geologic units and transitions

Brief overview of Earth's climate history

Figure 1: Mean global Earth temperature 540 Ma to present. (Source: https://commons.wikimedia.org/wiki/File:All_palaeotemps.png)

Figure 2

Figure 3: Mean global Earth temperature 540 Ma to present. (Source: $https://commons.wikimedia.org/wiki/File:All_palaeotemps.png)$

- Focus on two specific temperature proxies
 - What are they
 - How they work
 - Advantages and limitations
- Glacial geomorphology
- Isotopes in ice cores

Glacial geomorphology

Figure 4

Durban G Keeler Paleoclimate 16 April 2019

13 / 45

Review of glacier mass balance

Figure 5

$$\dot{b} = accumulation - ablation$$

- What happens if temperatures increase?
- What happens if more snow falls?

$\dot{b} = accumulation - ablation$

Figure 6

Glacial geomorphology

- Changes in landscape due to presence of or changes in nearby glaciers
 - Glacier valleys
 - Moraines
 - Meltwater planes
 - Glacial scouring
 - Glacial erratics

Example of glacial erratic

Figure 7

18 / 45

Example of glacial scour

Figure 8

19 / 45

Moraines

- Mass of rock and debris pushed by movement of glacier (best preserved in equilibrium)
- Records the extent of a glacier at a specific point in time
- Three types of moraines:
 - Lateral
 - Medial
 - Terminal

Figure 9

Moraines

- We can use moraine positions to reconstruct glacier growth/retreat over time
- We can then make inferences about the changes in climate driving those glacial changes

Figure 10

- Glacial geomorphology used to determine relative age/magnitudes of the glacial advances
- Our earliest understanding of ice ages came largely from studies of glacial geomorphology

Timeline of ice ages

Glaciation stadial	Time
Last Glacial Period (Wisconsinan Stage) Penultimate Glacial Period (Illinoian Stage)	~115 ka to 11.7 ka ~194 ka to ~135 ka

- Any ideas on how they got those names?
- Locations of major moraine sets used to determine the ice age!

Figure 11

Complications

- Different glaciers respond to climate differently
- Features can erode naturallly, or overridden by later glacial events
- Difficult to seperate effects of different climatic variables (e.g. temperature or precipitation?)
- Can be difficult to place a specific moraine set to an absolute point in time

Ice cores

Figure 12

Durban G Keeler Paleoclimate 16 April 2019

27 / 45

Ice cores

Figure 13

 Durban G Keeler
 Paleoclimate
 16 April 2019
 28 / 45

Stable water isotopes

- Focus specifically on two isotope species
 - Deuterium (${}^{2}H$) and oxygen-18 (${}^{18}O$)
- Stable isotopes (i.e. they do not decay over time)
- Naturally occurring, but in much lower abundance
- Isotopes behave chemically similar to more abundant variety
 - Forms water molecules (e.g. $H_2^{18}O$ and $^1H^2H^{18}O$)

Isotope review

• Same element with differing number of neutrons in the nucleus

Figure 15

Fractionation physics

- Although chemically similar, isotopes respond slightly differently due to differences in bond strength and diffusion velocity
- Heavier isotopes (e.g. 2H and ^{18}O) vibrate at a lower frequency and diffuse more slowly (conservation of momentum)
 - Energetically more favorable in lower energy states
- This leads to a fractionation effect i.e. a preference of heavier isotopes go into/remain in lower energy phases
 - Isotopic ratio changes during a phase change

Figure 16

Table 2.1: Natural abundances of oxygen and hydrogen isotopes. After Mook (2001).

Oxygen		Hydrogen	
Isotope	Abundance (%)	Isotope	Abundance (%)
¹⁶ O ¹⁷ O	99.76 0.038	¹ H ² H(D)	99.985 0.015
¹⁸ O	0.200	³ H(T)*	$< 10^{-15}$
		*radioactive isotope	

radioactive isotope

Figure 17: Stable water isotope abundances

- Measure isotopic values as a ratio between the rare isotope and the more common form
 - E.g. ${}^{18}R = \frac{[H_2^{18}O]}{[H_2^{16}O]}$
- More informative when we express these ratios relative to a standard (V-SMOW)
 - $\delta^{18}O = \frac{{}^{18}R_{sample} {}^{18}R_{std}}{{}^{18}R_{std}} \times 1000$

 Evaporation leads to a water vapor depleted in heavier isotopes, and remnant liquid water enriched

Figure 18: Fractionation and transport

16 April 2019

36 / 45

Durban G Keeler

Equilibrium fractionation

- ullet Equilibrium and kinetic fractionation influence final δ values
- In regards to precipitation cycles, most of the isotopic fractionation is governed by equilibrium effects
- Vapor transport gives sufficient time for liquid/vapor constituents to remain in equilibrium
- The amount of equilibrium fractionation is governed by a reaction constant (the 'fractionation factor' α)

$$\alpha^{18} O_{water-vapor} = \frac{\binom{18}{O}}{\binom{18}{O}} \binom{16}{O}_{vapor}}{\binom{18}{O}} \binom{16}{O}_{vapor}}$$

 At lower temperatures, this fractionation constant is highly temperature-dependent

$$10^3 \cdot \ln(\alpha_b^a) = \frac{A \cdot 10^6}{T^2} + B$$

• (A and B are constants unique to the substances in exchange)

$$10^3 \ln(\alpha_b^a) \approx \delta_a - \delta_b = \Delta_b^a$$

• Dansgaard determined an empirical estimate of temperature from $\delta^{18}O$ values:

$$\delta^{18}$$
 $O \approx 0.62 \cdot T - 15.25$

• Can be subject to localized variation as well

Paleoclimate reconstruction

Figure 19

Paleoclimate reconstruction

Figure 20

Advantages of ice core reconstructions

- Very high resolution (annually resolved for 10s of 100s of thousands of years)
- Highly correlated with temperature (very good proxy)
- Many other records can be extracted as well
 - Dust content
 - Aerosals
 - Atmospheric composition

Complications

- Mostly limited to polar regions
- Complications in flowing ice
- Limited to ~1 Ma or later
- Other chemical interactions can affect isotope values
- Subject to high frequency variability (not always regionally representative)

Future climate scenarios

Figure 21

Durban G Keeler Paleoclimate

Summary