Geocomputation Accessibility Analysis

This week

- Transport network and accessibility analysis.
- Spatial network structure.
- Dijkstra's shortest path algorithm.
- An example of transport network and accessibility analysis.

Spatial interaction

- We have mostly dealt with static events: events that happen at a particular point in time and space.
- Spatial interaction is concerned with the idea that there are relations between different locations (e.g. measured in people or goods travelling).

Spatial interaction

Accessibility Land-use component locations and characteristics of demand demand, supply competition locations and characteristics of opportunities

= direct relationship = indirect relationship = feedback loop

Time geography

- Proposed by Torsten Hägerstrand in the 1970s.
- Time geography describes the life of an individual as a continuous path through time and space, constituted by movements through space and activities localised in space.
- All activities are governed by three constraints: physiological constraints, capability constraints, and coupling constraints.
- These constraints can mitigate but also reinforce one another's impacts on activity participation and travel behaviour.
- When people meet their individual space-time paths form a bundle.

Time geography

Time geography

Household "bundle"

School "bundle"

Typical questions where accessibility analysis comes in:

- How many jobs / shops / people can I reach within 15 / 30 / 45 / 60 minutes of travel?
- How long do I need to travel to reach N jobs / shops / people?
- How does accessibility differ spatially?
- How does accessibility differ temporally?

To quantitatively measure accessibility in a GIS we need at least:

- A set of origins (e.g. set of fast-food outlets).
- A set of destinations (e.g. set of schools in an area).
- Some form of a digital spatial network to connect origins and destinations.

В

Spatial network

- A spatial network is an organised system or collection of nodes and edges embedded in geographic space.
- Nodes can be a representation of physical objects in geographical space,
 and edges show what connections are formed between the objects.
- Examples of networks: street configuration, transportation and shipping routes, river basins, telecommunication lines, etc.

Characteristics of a polyline vector in a GIS data model:

- Series of XY locations (coordinates) that form a line.
- Has a direction (importance when it comes to roads, rivers, etc.).
- Can be connected to other polyline vectors to form a network.
- Geometry consists of 2 nodes and can have one or more vertices.

FeatureID	Туре	Length
0040	Bicycle lane	1,500

FeatureID	Туре	Length
0040	Bicycle lane	1,650

FeatureID	Туре	Length
0040	Bicycle lane	600
0041	Bicycle lane	1,050

- Shortest path
- Quickest path
- Cheapest path

ABC ABD ABE B – AB

..

ABD

ABE

B – AB

C – ABC 6

ABDG	13
ABEJ	13
ABEH	13
ABDF	14
ABEI	20
B – AB	4
C – ABC	6
D – ABD	9

E – ABE

.

ABDF	14
ABDGK	15
ABDGF	15
ABDGL	16
ABEI	20
B – AB	4
C – ABC	6
D – ABD	9
E – ABE	9
G – ABDG	13
H – ABEH	13
J – ABEJ	13

ABDGK 15 16 **ABDGL** 16 **ABDFN** ABDFM 17 20 ABEI B – AB C – ABC D - ABD E – ABE

13

13

13

14

G – ABDG

H – ABEH

J – ABEJ

F – ABDF

16 **ABDGL** 16 **ABDFN ABDFM** 17 **ABDGKO** 17 **ABDGKN** 17 20 **ABDGKP** 20 ABEI B – AB C – ABC D - ABD E – ABE G – ABDG 13 H – ABEH 13 13 J - ABEJ F – ABDF 14

K – ABDGK

15

ABDFNM 17 **ABDGKO** 17 18 **ABDFNZ ABDGKP** 20 20 **ABEI** B - ABC – ABC D - ABD E – ABE G - ABDG 13 13 H – ABEH 13 J – ABEJ F – ABDF 14 K – ABDGK 15 16 L – ABDGL

N – ABDFN

16

.

ABDFNZ	18
ABDFMN	18
ABDFMI	18
B – AB	4
C – ABC	6
D – ABD	9
E – ABE	9
G – ABDG	13
H – ABEH	13
J – ABEJ	13
F – ABDF	14
K – ABDGK	15
L – ABDGL	16
N – ABDFN	16
M – ABDFM	17
O – ABDGKO	17

To measure accessibility

... with Dijkstra's algorithm we need

- A set of origins (e.g. set of fastfood outlets).
- A set of destinations (e.g. set of schools in an area).
- Some form of a digital spatial network to connect origins and destinations.
- Impedance values per mode of transport / costs for each network segment
- If available: access indicators to construct a weighted graph

To consider

- Completeness are all areas covered?
- Attributes are they correct?
- Connectivity are all network segments that should be connected, connected?
- Topology are all network segments connected the way they should be?
- Coverage is the full network covered?

Topology

Topology

Topology

Typical questions where accessibility analysis comes in:

- How many jobs / shops / people can I reach within 15 / 30 / 45 / 60 minutes of travel?
- How long do I need to travel to reach N jobs / shops / people?
- How does accessibility differ spatially?
- How does accessibility differ temporally?

Järv et al. 2018

Conclusion

- Pretty much talked about modelling accessibility scenarios using transport network analysis. Accessibility needs to be operationalised accessibility in terms of what?
- Need at least some origins, some destinations, some form of network.
- Shortest path between origins and destinations is typically calculated using Dijkstra's Algorithm.
- Network properties are important especially connectivity, but coverage can make a big difference.
- Lots of open-source tools available: dodgr, R⁵ (r5r, r5py), stplanr.

Questions

Justin van Dijk j.t.vandijk@ucl.ac.uk

