3-nonlinear-dynamics-stability

goal: develop qualitative & guartitative tools to study nonlinear dynamics

topics:

1°. nonlinear dynamics

1. trajectories & visualization

12 equilibrium trajectories

2°. Stability

2! definition of stability

22. Stability of linear DE

23. parametric stability

[Nv7 Ch2] [AMv2 Ch5]

[Nv7 Ch 6]

[AMV2 Ch 6]

[Nv7 ch 8]

* read [AMV2 Ch 5.4] to learn about an advanced test for stability

1º nonlinear control systems

· consider a DE with state XEIR", mput NEIRP

$$\dot{x} = f(x, u)$$

· the simplest type of feedback sets u as a function of x, e.g. $u = \alpha(x)$, so

$$\mathring{x} = f(x_1 x(x)) = F(x)$$

-> we'll focus on $\dot{x} = F(x)$ below

- X: [0,00] -> Rn is a trajectory of DE with initial state

^{1:} trajectories & visualization

1. CIAJECTUTIES & VIDUATISATIONI $- x: [0,\infty) \rightarrow \mathbb{R}^n$ is a trajectory of DE with initial state x(0)if $\forall t > 0 : \dot{x}(t) = F(x(t))$ Ly so x is continuous and differentiable * function x satisfies on infinite number of equations L> we'll assume unique trajectories always exist, but this is not guaranteed in general; see [AMV2 ex 5.2, 5.3] ex: damped oscillator (i.e. RLC circuit; spring-mass-damper) ä+25ω, g+ω2g=0 - assume < < 1, i.e. lightly damped - setting $x = (x_1, x_2) = (g_1 g/w_0)_1$ $\dot{\hat{x}} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \omega_6 x_2 \\ -\omega_2 x_1 - 2 \xi \omega_0 x_2 \end{bmatrix} = F(x)$ \Rightarrow \times (t) = $\begin{bmatrix} \times_1(t) \\ \times_2(t) \end{bmatrix}$

 $= e^{-\zeta \omega_{s}t} \left[\chi_{1}(s) \cos \omega_{d}t + \frac{1}{\omega_{d}} (\omega_{s} \zeta \chi_{1}(s) + \chi_{2}(s)) \sin \omega_{d}t \right]$ $= \left[\chi_{2}(s) \cos \omega_{d}t + \frac{1}{\omega_{d}} (\omega_{s}^{2} \chi_{1}(s) + \omega_{s} \zeta \chi_{2}(s)) \sin \omega_{d}t \right]$ $\rightarrow \text{verify this function satis fies DE for all } t \geq 0$

lec-fa19 Page 2

• since $x \in \mathbb{R}^2$, $\dot{x} = F(x)$ can be visualized as a vector field

$$\overset{\times}{\bullet} = (\times_1, \times_2)$$

JF(x)

- F(x) specifies the direction (& rate) of change in X:

 $\chi(t)$ $\chi(\tau)$

· overlaging a representative collection of trajectories yields a phase portrait

L> "phase" terminology is inherited from physics (classical mechanics)

12 equilibrium trajectories

· some trajectories don't more — we say they are at equilibrium:

 $\dot{x}_e = F(x_e) = 0$

-> importantly, if system is initialized at x_e , it stays there: $x(o) = x_e \Rightarrow x(t) = x_e$, all $t \ge 0$

ex: inverted pendulum

(very simple) model for rocket flight

- state $x = (\theta, \hat{\theta})$

- input u - honzartal acceleration

of pivot point

- $ml^2\ddot{\theta} = mgl\sin\theta - Y\dot{\theta} + lu\cos\theta$ where Y is coefficient of rotational friction

- with no input (u=0), $\ddot{x}_e = (\ddot{\theta}_e | \ddot{\theta}_e) = 0 \iff \ddot{\theta}_e = 0$, $\sin\theta_e = 0$,

so $\theta_e = n\pi$, $n \in \{0, +1, -1, +2, -2, \dots\} = \mathbb{Z}$ -> what is the physical configuration

when n ever? n odd?

- phase portrait:

2° stability

o a fundamental goal of feedback is to ensure stability, that is, to ensure trajectories converge to steady-state

2' definition of stability

· giver an equilibrium x_e s.t. $\dot{x}_e = F(x_e) = 0$,

we'll say that xe is stable if trajectories that start close stay close & get closer over time:

- if S cannot be made arbitrarily large (when ε is large), stability is <u>local</u>; otherwise, stability is <u>alobal</u>

· if a trajectory is not stable, then we term it unstable:

22. stability of linear DE

o consider $\dot{X} = AX$

-> what is the shape of A?

- note that O (zero; the origin) is an equilibrium for every matrix A, smce

 $\dot{\bigcirc} = A \cdot \bigcirc = \bigcirc$

-> are there other equilibria xe +0?

(what does Axe = 0 tell you)

(about the matrix A?

-it turns out that stability of the origin is determined by the set of eigenvalues of A:

 $\lambda(A) = \left\{ s \in \mathbb{C} \mid \exists v \in \mathbb{C}^n : Av = sv \right\}$ $\downarrow s \quad \text{is an eigenvector}$ $v \mid \text{eigenvalue } s$

= $\{ sec \mid dot(sI-A) = 0 \}$ Ly det: $C^{n\times n} \rightarrow IR \text{ is the}$ determinant function

- recall that det(SI-A) is a polynomial expression in S,

 $\det(sI-A) = a_0 s^n + a_1 s^{n-1} + ... + a_{n-1} s + a_n,$ termed the characteristic polynomial — this terminology is not

termed the characteristic polynomial < - since $\lambda(A)$ is the set of roots of the n-th degree polynomial det(sI-A), there are (at most) in distinct eigenvalues: $\lambda(A) = \{ \lambda_1, \dots, \lambda_N, \dots, \lambda_N \}$ \rightarrow if se $\lambda(A)$ and $A \in \mathbb{R}^{N \times N}$, show that $s^* \in \lambda(A)$ (s* denotes complex-conjugate of SEC) · to see how eigenvalues determine stability, consider the special case of diagonal A:

 $\mathring{X} = AX = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

-clearly $\dot{x}_1 = \lambda_1 x_1 \in \text{doesn't depend on } x_2$ $\dot{x}_2 = \lambda_2 x_2$ doesn't depend on x_1

this terminology is not

accidental - related to

characteristic polynamial

of transfer functions

so $x_1(t) = e^{\lambda_1 t} x_1(0) + x_2(t) = e^{\lambda_2} x_2(0)$

 \rightarrow what condition on λ_1, λ_2 ensure $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is stable?

- more generally for XEIR", AEIR":

$$\dot{x} = A \times = \begin{bmatrix} \lambda_1 & 0 & - & - & 0 \\ 0 & \lambda_2 & 0 & - & - & 0 \\ 0 & 0 & \lambda_3 & - & - & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & - & - & \lambda_{n-1} & 0 \\ 0 & - & - & 0 & \lambda_{n-1} & \chi_{n-1} \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \vdots \\ \chi_{n-1} \\ \chi_{n-1} \end{bmatrix}$$

- clearly
$$\dot{x}_{i} = \lambda_{i} x_{j}$$
 (independent of $x_{i \neq j}$)

so $x_{j}(t) = e^{\lambda_{j}t} x_{j}(0)$,

so origin is stable if $\lambda_{j} < 0$, all $j \in \{1, ..., n\}$

· another special case:

$$-\dot{X} = \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix} X = AX$$

-> determine eigenvalues of A

$$(recall det([ab]) = ad-bc)$$

- we conclude that

$$x_1(t) = e^{\sigma t}(x_1(0)\cos\omega t + x_2(0)\sin\omega t)$$

$$X_2(t) = e^{st} (-x_1(0) \sin \omega t + x_2(0) \cos \omega t)$$

-> what cardition on o & w ensure the origin is stable?

- more generally, A could be block-diagonal:

$$\dot{x} = A x = \begin{bmatrix} \sigma_1 & \omega_1 & & & \\ -\omega_1 & \sigma_1 & & & \\ & & \ddots & & \\ & & & -\omega_m & \sigma_m \end{bmatrix} \begin{bmatrix} x_1 & & \\ x_2 & & \\ x_{2m-1} & & \\ x_{2m} & & \end{bmatrix}$$

- now eigenvalues $\lambda(A) = \{ \sigma_k \pm j \omega_k \}_{k=1}^m \text{ and }$

$$\begin{array}{l} x_{2k-1}(t) = e^{\sigma_k t} \left(x_{2k-1}(0) \cos \omega_k t + x_{2k}(0) \sin \omega_k t \right) \\ x_{2k}(t) = e^{\delta_k t} \left(-x_{2k-1}(0) \sin \omega_k t + x_{2k}(0) \cos \omega_k t \right) \\ \text{so origin is stable if } \sigma_k = \operatorname{Re} \lambda_k \end{array}$$

omost systems aren't (block) diagonal, but many can be transformed to be:

- -if $\lambda(A)$ consists of n distinct eignals, there exists invertible $T \in \mathbb{R}^{N \times N}$ such that $TAT^{-1} \in \mathbb{R}^{N \times N}$ is (black) diagonal
- applying the change-of-coordinates z = Tx yields $\dot{z} = T\dot{x} = TAx = TAT^{-1}z$

\rightarrow show that $\lambda(A) = \lambda(TAT^{-1})$

- now given a trajectory $z: [0,\infty) \rightarrow iR''$ for $z=TAT^{-1}z$, $x: [0,\infty) \rightarrow iR''$ defined by $x(t)=T^{-1}z(t)$ is a trajectory for $\dot{x}=Ax$, so stability of z determines stability of x

(e.g. PI control of 2nd-order system) semicolon implies u doesn't

- cansider $\dot{x} = F(x; \mu)$ where $x \in \mathbb{R}^n$ - states vary with time

^{23.} parametric stability

when designing a feedback controller, we've seen that model parameters can limit stabilizing controller parameters

 $\mu \in \mathbb{R}^{k}$ - parameters (eg. R, L, C; M, C, K; ...) and or controller parameters $(e.g. k_P, k_I, k_D, ...)$

- since equilibrium xe satisfies $x_e = F(x_e; \mu) = 0$, the equilibrium generally varies with parameters: xe(u)

o in linear systems, the equilibrium want move: $\ddot{o} = A(\mu) \cdot 0 = 0$

(we're always interested in $x_e=0$)

special notation

- plotting eigenvalues $\lambda(A(\mu)): IR \Rightarrow C$ function

as parameter μ varies $\mu \mapsto \{\lambda_j\}_{j=1}^n$

is termed a <u>root locus diagram</u> — <u>root</u> = eigenvalues lows = image/graph
of eigenvalues in C

ex: proportional-integral courtrol of first-order system

• Gyv =
$$\frac{P}{1+PC} = \frac{bs}{s^2 + (a+bkp)s+bk_I}$$

or choosing parameters $\alpha=1$, b=1, $k_p=10$, regarder real part

roots of s2+ (a+bkp)s+ bkI

Figure 4.5: Schematic views of a bicycle. The steering angle is δ , and the roll angle is φ . The center of mass has height h and distance a from a vertical through the contact point P_1 of the rear wheel. The wheel base b is the distance between P_1 and P_2 , and the trail c is the distance between P_2 and P_3 .

Figure 4.6: Block diagram of a bicycle with a front fork. The steering torque applied to the handlebars is T, the roll angle is φ and the steering angle is δ . Notice that the front fork creates a feedback from the roll angle φ to the steering angle δ that under certain conditions can stabilize the system.

can stabilize the system.

- Whipple (linearized) model rear wheel

$$M \begin{bmatrix} \dot{\psi} \\ \dot{S} \end{bmatrix} + C V_0 \begin{bmatrix} \dot{\psi} \\ \dot{S} \end{bmatrix} + (K_0 + K_2 V_0^2) \begin{bmatrix} \psi \\ S \end{bmatrix} = \begin{bmatrix} 0 \\ T \end{bmatrix}$$
 $ER^{2\times 2}$
 $ER^{$

Figure 5.18: Stability plots for a bicycle moving at constant velocity. The plot in (a) shows the real part of the system eigenvalues as a function of the bicycle velocity v_0 . The system is stable when all eigenvalues have negative real part (shaded region). The plot in (b) shows the locus of eigenvalues on the complex plane as the velocity v is varied and gives a different view of the stability of the system. This type of plot is called a *root locus diagram*.