

Contents

1 OoD概述

2 预处理

3 IRM

4 VREx

OoD概述

Out-of-Distribution

Out-of-Distribution

Diversity shift

Out-of-Distribution

Correlation shift

Colored MNIST

LeNet

• 输入层: INPUT

• 卷积层: C1、C3、C5

• 池化层: S2、S4

• 全连接层: F6

• 输出层: OUTPUT

在Colored MNIST上训练和测试LeNet

- 优化器(Optimizer): SGD
- 损失函数(Loss function): Cross-entropy loss function
- 批尺寸(Bach size): 128
- 训练次数(Epoch): 50

```
Colored MNIST dataset already exists
Colored MNIST dataset already exists
Epoch 10/50, Train Loss: 0.3521, Train Accuracy: 89.89%, Test Loss: 1.8687, Test Accuracy: 10.20%
Epoch 20/50, Train Loss: 0.3404, Train Accuracy: 89.89%, Test Loss: 2.0372, Test Accuracy: 10.20%
Epoch 30/50, Train Loss: 0.3380, Train Accuracy: 89.89%, Test Loss: 2.0222, Test Accuracy: 10.20%
Epoch 40/50, Train Loss: 0.3362, Train Accuracy: 89.89%, Test Loss: 2.0147, Test Accuracy: 10.20%
Epoch 50/50, Train Loss: 0.3345, Train Accuracy: 89.89%, Test Loss: 2.0145, Test Accuracy: 10.20%
```


• 结果:

```
Colored MNIST dataset already exists

Epoch 10/50, Train Loss: 0.6901, Train Accuracy: 53.79%, Test Loss: 0.6819, Test Accuracy: 53.54%

Epoch 20/50, Train Loss: 0.6858, Train Accuracy: 55.62%, Test Loss: 0.6774, Test Accuracy: 63.55%

Epoch 30/50, Train Loss: 0.6834, Train Accuracy: 55.80%, Test Loss: 0.6745, Test Accuracy: 64.19%

Epoch 40/50, Train Loss: 0.6811, Train Accuracy: 56.41%, Test Loss: 0.6788, Test Accuracy: 54.48%

Epoch 50/50, Train Loss: 0.6779, Train Accuracy: 57.63%, Test Loss: 0.6802, Test Accuracy: 54.86%
```

• 对比图:

• 删去色彩抖动:

```
Colored MNIST dataset already exists
Colored MNIST dataset already exists
Epoch 10/50, Train Loss: 0.3438, Train Accuracy: 89.89%, Test Loss: 2.0837, Test Accuracy: 10.20%
Epoch 20/50, Train Loss: 0.3415, Train Accuracy: 89.89%, Test Loss: 2.0616, Test Accuracy: 10.20%
Epoch 30/50, Train Loss: 0.3401, Train Accuracy: 89.89%, Test Loss: 2.0514, Test Accuracy: 10.20%
Epoch 40/50, Train Loss: 0.3387, Train Accuracy: 89.89%, Test Loss: 2.0471, Test Accuracy: 10.20%
Epoch 50/50, Train Loss: 0.3374, Train Accuracy: 89.88%, Test Loss: 2.0461, Test Accuracy: 10.20%
```

• 保留色彩抖动:

```
Colored MNIST dataset already exists

Epoch 10/50, Train Loss: 0.6901, Train Accuracy: 53.79%, Test Loss: 0.6819, Test Accuracy: 53.54%

Epoch 20/50, Train Loss: 0.6858, Train Accuracy: 55.62%, Test Loss: 0.6774, Test Accuracy: 63.55%

Epoch 30/50, Train Loss: 0.6834, Train Accuracy: 55.80%, Test Loss: 0.6745, Test Accuracy: 64.19%

Epoch 40/50, Train Loss: 0.6811, Train Accuracy: 56.41%, Test Loss: 0.6788, Test Accuracy: 54.48%

Epoch 50/50, Train Loss: 0.6779, Train Accuracy: 57.63%, Test Loss: 0.6802, Test Accuracy: 54.86%
```

可能的处理方法

- 随机调整数字颜色
- 数字颜色的统一化
- 数字背景分离
- 多任务学习
- 模型集成
- 预训练

IRM

IRM

• 目标: 让模型学习到causal feature并利用它来决定结果,减小spurious correlation的干扰

• 方式:引入IRM惩罚项

计算各个环 境下的损失

反向传播优 化模型参数 求出各个环 境下的梯度

模型在不同环境中具有相似的梯度并使其向0逼近以达到最优,从而减小环境偏差的影响同时提高预测能力

与ERM损失结 合成总损失 用梯度算出 IRM惩罚项

IRM

• 结果:

```
Performance on train1 set: Average loss: 0.5201, Accuracy: 14845/20000 (74.22%)

Performance on train2 set: Average loss: 0.5071, Accuracy: 14863/20000 (74.31%)

Performance on test set: Average loss: 0.8663, Accuracy: 12311/20000 (61.55%)
```

Epoch = 35

IRM算法的改进

VREx

VREx

Colored MNIST

Algorithm	Colored MNIST	CelebA	NICO	Average	Prev score	Ranking score
VREx [37]	$56.3 \pm 1.9^{\uparrow}$	87.3 ± 0.2	71.0 ± 1.3	71.5	-1	+1
GroupDRO [62]	$32.5 \pm 0.2^{\uparrow}$	87.5 ± 1.1	71.8 ± 0.8	63.9	-1	+1
ERM [68]	29.9 ± 0.9	87.2 ± 0.6	71.4 ± 1.3	62.8	0	0
MTL [15]	29.3 ± 0.1	87.0 ± 0.7	70.2 ± 0.6	62.2	-2	0
ERDG [79]	$31.6 \pm 1.3^{\uparrow}$	$84.5 \pm 0.2^{\downarrow}$	70.6 ± 1.3	62.2	-2	0
ARM [78]	$34.6 \pm 1.8^{\uparrow}$	86.6 ± 0.7	$63.9 \pm 1.8^{\downarrow}$	61.7	-3	0
MMD [41]	$50.7 \pm 0.1^{\uparrow}$	$86.0 \pm 0.5^{\downarrow}$	$68.3 \pm 1.0^{\downarrow}$	68.3	+2	-1
IGA [36]	29.7 ± 0.5	$86.2 \pm 0.7^{\downarrow}$	70.5 ± 1.2	62.1	0	-1
IRM [7]	$60.2 \pm 2.4^{\uparrow}$	$85.4 \pm 1.2^{\downarrow}$	$67.6 \pm 1.4^{\downarrow}$	71.1	-1	-1
MLDG [40]	$32.7 \pm 1.1^{\uparrow}$	$85.4 \pm 1.3^{\downarrow}$	$51.6 \pm 6.1^{\downarrow}$	56.6	-4	-1
SagNet [49]	30.5 ± 0.7	$85.8 \pm 1.4^{\downarrow}$	$69.3 \pm 1.0^{\downarrow}$	61.9	+1	-2
CORAL [64]	30.0 ± 0.5	$86.3 \pm 0.5^{\downarrow}$	$68.3 \pm 1.4^{\downarrow}$	61.5	-1	-2
ANDMask [51]	$27.2 \pm 1.4^{\downarrow}$	$86.2 \pm 0.2^{\downarrow}$	72.2 ± 1.2	61.9	-2	-2
Mixup [76]	$27.6 \pm 1.8^{\downarrow}$	87.5 ± 0.5	$66.6 \pm 0.9^{\downarrow}$	60.6	-2	-2
RSC [34]	$28.6 \pm 1.5^{\downarrow}$	$85.9 \pm 0.2^{\downarrow}$	$69.7 \pm 0.3^{\downarrow}$	61.4	+2	-3
DANN [24]	$24.5 \pm 0.8^{\downarrow}$	$86.0 \pm 0.4^{\downarrow}$	$68.6 \pm 1.1^{\downarrow}$	59.7	-2	-3
Average	34.5	68.4	86.4	63.1	-	-

Performance of ERM and OoD generalization algorithms on datasets dominated by correlation shift

VREx

• 目标: 解决分布偏移问题, 提高模型分布外泛化能力

• 方式:引入VREx惩罚项——训练风险的方差,通过它减小各训练领域的风险差异

• 公式:

$$\mathcal{R}_{\text{V-REx}}(\theta) \doteq \beta \text{ Var}(\{\mathcal{R}_1(\theta), ..., \mathcal{R}_m(\theta)\}) + \sum_{e=1}^m \mathcal{R}_e(\theta)$$

 $β \in [0, ∞)$,β的取值决定了是向降低平均风险还是向令各领域的风险一致优化。当β = 0时,就变成了普通的ERM,而当β -> ∞时V - REx就迫使各个领域的风险严格一致,使方差为0。通过调整合适的值,可以获得最佳性能的模型。

VREx • 结果

Restart 0		3		
step	train nll	train acc	rex penalty	irmv1 penalty
test acc				
0	0.68907	0.54244	4.57316e-06	8.45346e-06
0.44890				
100	0.36482	0.85138	0.01908	0.00399
0.10990				
200	0.57021	0.70808	7.42565e-06	2.81167e-07
0.66830				
300	0.56621	0.71182	7.70136e-06	1.82156e-07
0.66840				
400	0.56065	0.71680	1.00755e-05	1.89763e-07
0.66600				
500	0.55410	0.72240	1.35928e-05	2.03200e-07
0.66520				
highest tes	t acc this run: 0	.6684		
Final train	acc (mean/std acc	ross restarts so	far):	
0.7224 0.0				
Final test	acc (mean/std acro	oss restarts so	far):	
0.6652 0.0				
Highest tes	t acc (mean/std ad	cross restarts so	o far):	

VREx vs IRM

• 在Colored MNIST上的结果:

VREx vs IRM

• 协变量转变(Covariate shift)

Method	Invariant Prediction	Cov. Shift Robustness	Suitable for Deep Learning
DRO	×	/	✓
(C-)ADA	×	1	✓
ICP	/	×	X
IRM	/	×	✓
REx	/	1	✓

• 协变量转变: 训练数据和测试数据之间的输入特征分布发生变化

VREx vs IRM

• 在协变量转变下的Colored MNIST上的结果:

三幅图分别带表三种不同的协变量转变情况:

- 1. Class imbalance: varying $p = P(shape(x) \in \{0, 1, 2, 3, 4\})$.
- 2. Digit imbalance: varying $p = P(shape(x) \in \{1, 2\} \cup \{6, 7\})$; digits 0 and 5 are removed.
- 3. Color imbalance: We use 2 versions of each color, for 4 total channels: R1, R2, G1, G2. We vary p = P(R1|Red) = P(G1|Green).

参考

- [1] Ye N, Li K, Bai H, et al. Ood-bench: Quantifying and understanding two dimensions of out-of-distribution generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 7947-7958.
- [2] Krueger D, Caballero E, Jacobsen J H, et al. Out-of-distribution generalization via risk extrapolation (rex)[C]//International Conference on Machine Learning. PMLR, 2021: 5815-5826.
- [3] https://www.analyticsvidhya.com/blog/2017/07/covariate-shift-the-hidden-problem-of-real-world-data-science/
- [4] Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization[J]. arXiv preprint arXiv:1907.02893, 2019.
- [5] https://baike.baidu.com/item/LeNet-5/61427772?fr=ge_ala

Thanks