El aprendizaje automático en sistemas embebidos

Por Ignacio Latre Ayen (735913@unizar.es)
2024

En el dispositivo (no embebido)

Coma flotante

Consumo

Introducción

Paralelismo

En el dispositivo (embebido)

Velocidad

Eficiencia

Tamaño

Paralelismo

Precio

Optimización

¿Y sí no es posible utilizar hardware especializado?

Sustituir el formado de coma flotante a coma fija

Usar las
arquitecturas
adecuadas y evitar
algoritmos muy
pesados como las
redes neuronales
profundas

- -Técnicas de poda
- -Técnicas de cuantización
- -Técnica de destilación
- -Técnicas de regularización

