Дизајн на алгоритми

Стрингови

Стефан Милев | 206055

1. Балансиран бит стринг

Опис

Бит стринг е стринг што се состои само од 0 и 1. Бит стрингот е \mathbf{k} - балансиран ако секој подстринг од големина \mathbf{k} има еднаков број на 0 и 1 карактери.

Даден е позитивен цел број \mathbf{k} и стринг \mathbf{s} составен од карактерите 0, 1 и ?. Треба да се одреди дали може да се направи \mathbf{k} - балансиран бит стринг со заменување на сите ? карактери во \mathbf{s} со 0 или 1.

Стринг a е подстринг на стринг b ако a може да се добие од b со бришење на 0 или повеќе карактери од почетокот и крајот на стрингот.

Влез

Влезот е во формат:

n

k

s

каде што n е должината на стрингот, k е должината на подстрингот, s е стрингот.

Излез

YES - ако е возможно да се замени секој ? карактер со 0 или 1 така што добиениот стринг е ${\bf k}$ - балансиран,

NO - инаку.

Ограничувања

s содржи само 0, 1 или ? $2 \le k \le n \le 3 \cdot 10^5$

#	Влез	Излез
1	6 4 100110	YES
2	3 2 1?1	YES
3	3 2 1?0	NO
4	4 4 ????	YES
5	7 4 1?0??1?	YES
6	10 10 11??11??11	NO
7	4 2 1??1	NO
8	4 4 70?0	YES
9	6 2 ????00	NO
10	5 2 1?0?1	NO
11	26 2 1111?0?11?1???1010??10?0?0	NO

#	Влез	Излез
12	7 2 ???????	YES
13	31 2 1??1??11?1??1?1??1?????	NO
14	21 2 01?101?0010?0??1000??	NO
15	114 2 1?111???11????????1???111111?11?11?11?1	NO
16	6 2 ?0?00?	NO
17	10 2 ?????????	YES
18	16 2 11111?????10111?	NO
19	16 2 ?101110??1?1?	NO
20	80 2 ???????0???0?0???0?0???0?0????0????	YES

Решение

Нека имаме стринг $s[0 \dots n-1]$ и бит стринг $t[0 \dots k-1]$ кој произлегува од s.

За секое i важи: $0 \le i < n - k$, $t_i = t_i + k$. Подстринговите со должина k почнувајќи од индекс i и i + 1 ги делат истите k - 1 карактери $t_{i+1} \dots t_{i+k-1}$. За да биде ист бројот на единици, карактерите t_{i+1} и t_{i+k-1} мора и двете да бидат 1 или и двете да бидат 0.

 $t_i = t_j$ ако $i \equiv j \pmod{k}$. За секое i во опсегот $0 \le i < k$ треба да се одреди дали сите s_j за кои важи $i \equiv j \pmod{k}$ може да се додели истата вредност (или 0 или 1). Карактерот t_i мора да биде 0 доколку барем еден s_j е 0, а мора да биде 1 доколку барем еден s_j е 1, а може да биде или 0 или 1 доколку сите s_j се ?.

Доволно е да се провери дали бит стрингот $t[0 \dots k-1]$ има точно половина карактери 1 (или половина карактери 0). Доколку има неодлучени карактери (места со ?), тогаш треба да се провери дали бројот на 0 и 1 карактери не надминуваат k/2 (должината на бит стрингот), во кој случај може ? карактерите да бидат сменети со 0 или 1 за да има изедначен број на 0 и 1 карактери.

Дадено е Python решение.

Комплексност

Комплексноста на алгоритамот е O(n).

За секој t_i во бит стрингот, се проверува дали и сите s_j за кои важи $i \equiv j \pmod{k}$ дали се истиот карактер. Се итерираат сите t_i во t_i итерации, додека се итерираат сите t_i во t_i итерации, од каде доаѓа дека комплексноста е t_i 0.

Решение - Python

```
def main():
   n = int(input())
   s = input()
   zeros = 0
   ones = 0
    for i in range(k):
       temp = -1
           if s[j] != '?':
                if temp != -1 and int(s[j]) != temp:
                temp = int(s[j])
       if temp == 0:
            zeros += 1
       elif temp == 1:
            ones += 1
    return 'YES' if max(zeros, ones) <= k // 2 else 'NO'</pre>
if __name__ == '__main__':
```

2. Добивање стринг

Опис

Дадени се 3 стрингови s, t, z така што s и t се составени од мали латинични букви, а z е празен. Целта е z да стане еднаков со t. Можната акција е додавање било која подниза од s на крај на z. Стрингот s не се менува.

Се бара најмалиот број на операции за да се претвори стрингот z во t.

Подниза е секвенца добиена со бришење на нула или повеќе елементи без менување на редоследот на останатите.

Влез

Влезот е во формат:

s

t

Излез

Минималниот број на операции за да се претвори z во t доколку е возможно, инаку -1.

Ограничувања

$$1 \le |s| \le 10^5$$

$$1 \le |t| \le 10^5$$

#	Влез	Излез
1	aabce ace	1
2	abacaba aax	-1
3	ty yyt	3
4	a aaaaaaaaaaa	11
5	cba abcabcabcabcabcabc	15
6	bvdhsdvlbelrivbhxbhie x	1
7	abacabadabacaba abacabadabacaba	1
8	abacabadabacaba baabaabcaa	1
9	aabab aaababbbaaaabbab	5
10	t y	-1
11	u u	1
12	abcdefghijk kjihgfedcba	11
13	abcdefghijk kjihgfdecba	10
14	abb ababbbbb	4
15	a aaab	-1

#	Влез	Излез
16	bab aaa	3
17	abbabb ba	1
18	bbbbbba abbb	2
19	bbaa bbbabab	4
20	aaab bbabbaba	6

Решение

Ако има карактер во t кој го нема во s, може да се заклучи дека нема решение.

Во обратниот случај, се пополнува низа dp на следниов начин: dp[i][j] = минимум индекс x од i до |s| така што $s_x = j$ или бесконечно доколку не постои таков.

Нека res = 1, pos = 0

Нека имаме стринг $\mathbf{z}[\mathbf{t}_0 \dots \mathbf{t}_{i-1}]$ и нека е \mathbf{s}_{pos} последниот земен карактер. Тогаш:

- 1. ако $dp[pos][i] \neq 6$ есконечно, тогаш i += 1 и pos = dp[pos + 1][i]
- 2. инаку, **pos = 0** и **res += 1**

Дадено е Python решение.

Комплексност

Комплексноста на алгоритамот е O(|S| + |T|).

Низата dp се пополнува во O(|S|) итерации, додека главниот циклус го наоѓа решението во најмногу O(|T|) итерации.

Решение - Python

```
def main():
   s = input()
   dp = [[2 ** 63 for in range(26)] for in range(len(s) + 1)]
           dp[i][j] = dp[i + 1][j]
       dp[i][ord(s[i]) - ord('a')] = i
   res = 1
   pos = 0
       if pos == len(s):
           pos = 0
           res += 1
       if dp[pos][ord(t[i]) - ord('a')] == 2 ** 63:
           pos = 0
           res += 1
       if dp[pos][ord(t[i]) - ord('a')] == 2 ** 63 and pos == 0:
       pos = dp[pos][ord(t[i]) - ord('a')] + 1
   return res
if name == ' main ':
```