Introduction

Préparation des machines virtuel

Client

Routeur

Configuration des interfaces réseau du routeur

Identifier les interfaces

Définir une adresse ip statique pour les 2 interfaces

Activation du mode routeur

Introduction

Nous allons transformer un système Debian en routeur afin d'interconnectée nos 2 réseaux, voir diagrame ci-dessous.

Préparation des machines virtuel

Dans notre exemples nous allons préparé des machines avec VirtualBox

Client

Dans un premier temp nous allons configurer l'interface réseau du client en réseau interne.

Ensuite l'on configurer l'adresse ip de notre client en ip statique, via le fichier /etc/network/interfaces.

```
sudo nano /etc/network/interfaces

source /etc/network/interfaces.d/*

auto lo
  iface lo inet loopback

auto enp0s3
  iface enp0s3 inet static
        address 172.20.228.2
        netmask 255.255.252.0
        gateway 172.20.228.1
```

Puis on redémarre le pc

```
sudo reboot
```

Et enfin l'on vérifie que les modification on bien était pris en compte

```
ip a
```

```
    lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever
    enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 08:00:27:3c:77:30 brd ff:ff:ff:ff:ff inet 172.20.228.2/22 brd 172.20.231.255 scope global enp0s3 valid_lft forever preferred_lft forever inet6 fe80::a00:27ff:fe3c:7730/64 scope link valid_lft forever preferred_lft forever
```

L'interface enp0s3 possède bien l'adress ip 172.20.228.2, la nouvelle configuration à donc était appliquer.

Routeur

Le routeur va avoir besoin de 2 cartes réseau, dans les paramètres réseau de la machine virtuel il va falloir activer 2 Adapter

Adapter 1 en Réseau interne

Adapter <u>1</u>	Adapter 2	Adapter <u>3</u>	Adapter <u>4</u>			
✓ <u>A</u> ctiver l'interface réseau						
<u>M</u> ode d	'accès réseau :	Réseau inte	erne	*		
	<u>N</u> om:	intnet				•
	Avancé					

Adapter 2 en Accès par pont

Configuration des interfaces réseau du routeur

Identifier les interfaces

Nous allons commencer par configurer les 2 interface réseau en IP fixes. Dans un premier temp nous il va falloir lister les interface

```
1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever

2: enp0s3: mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 08:00:27:c9:aa:a2 brd ff:ff:ff:ff: inet 192.168.1.26/24 brd 192.168.1.255 scope global dynamic enp0s3 valid_lft 84831sec preferred_lft 84831sec inet6 fe80::a00:27ff:fec9:aaa2/64 scope link valid_lft forever preferred_lft forever

3: enp0s8: mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether 08:00:27:02:eb:38 brd ff:ff:ff:ff:ff:
```

Le résultat de la commande ip a nous informe qu'il y a 3 interface réseau (lo, enp0s3, enp0s8)

lo = la boucle local du système

enp0s3 = Cette interface à récupérer un adresse ip 192.168.1.26 c'est dont l'interface en Accès par pont (Adapter 1)

enp0s8 = Vu que l'on a identifié l'Adapter 1 enp0s8 est donc l' Adapter 2 configurer en Réseau interne

Dans notre exemple l'identification des interfaces est simple car un serveur DHCP à fournie une adresse ip à l'interface en accès pas pont.

Définir une adresse ip statique pour les 2 interfaces

Pour pouvoir attribuer des adresse ip statique à nos 2 interface nous allons éditer les fichier /etc/network/interfaces.

```
sudo nano /etc/network/interfaces
```

Nous allons éditer le fichier pour qu'il ressemble à ça.

```
source /etc/network/interfaces.d/*
# Interface loopback
auto lo
iface lo inet loopback
# Interface Adapter 1
allow-hotplug enp0s3 enp0s8
iface enp0s3 inet static
        address 172,20,228,1
        netmask 255.255.252.0
        gateway 172.20.228.1
# Interface Adapter 2
allow-hotplug enp0s8
iface enp0s8 inet static
        address 192.168.1.26
        netmask 255.255.255.0
        gateway 192.168.1.1
```

On redémarre la machine

```
sudo reboot
```

Maintenant l'on va vérifié que la nouvelle configuration a bien était prise en compte, pour cela on va listant les interfaces.

```
ip a
```

```
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 08:00:27:c9:aa:a2 brd ff:ff:ff:ff
    inet 172.20.228.1/22 brd 172.20.231.255 scope global enp0s3
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fec9:aaa2/64 scope link
```

```
valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default qlen 1000
   link/ether 08:00:27:02:eb:38 brd ff:ff:ff:ff:
   inet 192.168.1.26/24 brd 192.168.1.255 scope global enp0s8
     valid_lft forever preferred_lft forever
   inet6 fe80::a00:27ff:fe02:eb38/64 scope link
   valid_lft forever preferred_lft forever
```

La nouvelle configuration à bien était appliquer, maintenant l'on vérifie la bonne communication de l'interface enp0s3 avec la passerelle. Pour cela on lance un ping depuis le router.

```
ping 192.168.1.1
```

```
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=1.01 ms

64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.954 ms

64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=1.06 ms

64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.976 ms

64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.975 ms
```

Activation du mode routeur

editer le fichier /etc/sysctl.conf

```
sudo nano /etc/sysctl.conf
```

Décommenter la ligne net.ipv4.ip_forward ou ajouter la

```
net.ipv4.ip_forward=1
```

Appliquer les changelent

```
sysctl -p
```

Vérification

```
sysctl net.ipv4.ip_forward
```

La valeur doit étre à 1