Homework 6

Christophe Hunt March 10, 2017

Contents

Page 251: problem 2

Nutritional Requirements - A rancher has determined that the minimum weekly nutritional requirements for an average-sized horse include 40lb of protein, 20 lb of carbohydrates, and 45lb of roughage. These are obtain from the following sources in varying amounts at the prices indicated:

	Protein	Carbohy	Carbohydrate Roughage Co		
	(lb)	(lb)	(lb)		
Hay (per table)	0.5	2.0	5.0	\$1.80	
Oats (per sack)	1.0	4.0	2.0	3.50	
Feeding blocks (per block)	2.0	0.5	1.0	0.40	
High-protein concentrate (per sack)	6.0	1.0	2.5	1.00	
Requirements per horse (per week)	40.0	20.0	45.0		

Figure 1: image.

Formulate a mathematical model to determine how to meeting the minimum nutritional requirements at minimum cost.

Page 264: problem 6

Solve using graphical analysis

Maximize 10x + 35y subject to

$$2x + 3y \ge 6$$
$$3x - y \le 15$$
$$-x + y \le 4$$
$$2x + y \le 27$$
$$x \ge 0$$
$$y \ge 0$$

Page 268: problem 6 (i.e., only question #6 in section 7.2)

Using the Methods of 7.3 solve problems 6 from section 7.2

Maximize 10x + 35y subject to

$$2x + 3y \ge 6$$

$$3x - y \le 15$$

$$-x + y \le 4$$
$$2x + y \le 27$$
$$x \ge 0$$
$$y \ge 0$$

Page 278: problem 6 (i.e., only question #6 in section 7.2)

Using teh Simplex Method to resolve the problems. Using the Simplex Method to find both the maximum solution and the minimum solution to Problems 8-12. Assume $x \ge 0$ and $y \ge 0$ for each problem.

Maximize 10x + 35y subject to

$$2x + 3y \ge 6$$
$$3x - y \le 15$$
$$-x + y \le 4$$
$$2x + y \le 27$$
$$x \ge 0$$
$$y \ge 0$$

Page 284: problem 1

For the example problems in this section, determine the sensitivity of the optimal solution to a change in c_2 using the objective function $25x_1 + c_2x_2$.

Page 295: problem 3