New feature

```
(struct foo (bar baz quux) #:transparent)
```

Defines a new kind of thing and introduces several new functions:

- (foo e1 e2 e3) returns "a foo" with bar, baz, quux fields holding results of evaluating e1, e2, and e3
- (foo? e) evaluates e and returns #t if and only if the result is something that was made with the foo function
- (foo-bar e) evaluates e. If result was made with the foo function, return the contents of the bar field, else an error
- (foo-baz e) evaluates e. If result was made with the foo function, return the contents of the baz field, else an error
- (foo-quux e) evaluates e. If result was made with the foo function, return the contents of the quux field, else an error

An idiom

```
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)
```

For "datatypes" like exp, create one struct for each "kind of exp"

- structs are like ML constructors!
- But provide constructor, tester, and extractor functions
 - Instead of patterns
 - E.g., const, const-int
- Dynamic typing means "these are the kinds of exp" is "in comments" rather than a type system
- Dynamic typing means "types" of fields are also "in comments"

All we need

These structs are all we need to:

Build trees representing expressions, e.g.,

Build our eval-exp function (see code):

Attributes

- #:transparent is an optional attribute on struct definitions
 - For us, prints struct values in the REPL rather than hiding them, which is convenient for debugging homework
- #:mutable is another optional attribute on struct definitions
 - Provides more functions, for example:

```
(struct card (suit rank) #:transparent #:mutable)
; also defines set-card-suit!, set-card-rank!
```

- Can decide if each struct supports mutation, with usual advantages and disadvantages
 - As expected, we will avoid this attribute
- mcons is just a predefined mutable struct

The key difference

```
(struct add (e1 e2) #:transparent)
```

- The result of calling (add x y) is not a list
 - And there is no list for which add? returns #t
- struct makes a new kind of thing: extending Racket with a new kind of data
- So calling car, cdr, or mult-e1 on "an add" is a run-time error

Struct is special

Often we end up learning that some convenient feature could be coded up with other features

Not so with struct definitions:

- A function cannot introduce multiple bindings
- Neither functions nor macros can create a new kind of data
 - Result of constructor function returns #f for every other tester function: number?, pair?, other structs' tester functions, etc.

Rest of implementation

Interpreter or compiler

So "rest of implementation" takes the abstract syntax tree (AST) and "runs the program" to produce a result

Fundamentally, two approaches to implement a PL B:

- Write an interpreter in another language A
 - Better names: evaluator, executor
 - Take a program in B and produce an answer (in B)
- Write a compiler in another language A to a third language C
 - Better name: translator
 - Translation must preserve meaning (equivalence)

We call A the metalanguage

Crucial to keep A and B straight

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options

But in modern practice have both and multiple layers

A plausible example:

- Java compiler to bytecode intermediate language
- Have an interpreter for bytecode (itself in binary), but compile frequent functions to binary at run-time
- The chip is itself an interpreter for binary
 - Well, except these days the x86 has a translator in hardware to more primitive micro-operations it then executes

Racket uses a similar mix

Sermon

Interpreter versus compiler versus combinations is about a particular language **implementation**, not the language **definition**

So there is no such thing as a "compiled language" or an "interpreted language"

Programs cannot "see" how the implementation works

Unfortunately, you often hear such phrases

- "C is faster because it's compiled and LISP is interpreted"
- This is nonsense; politely correct people
- (Admittedly, languages with "eval" must "ship with some implementation of the language" in each program)

Interpreter or translater

Skipping parsing

- If implementing PL B in PL A, we can skip parsing
 - Have B programmers write ASTs directly in PL A
 - Not so bad with ML constructors or Racket structs
 - Embeds B programs as trees in A


```
; define B's abstract syntax
(struct call ...)
(struct function ...)
(struct var ...)
...
```

Already did an example!

- Let the metalanguage *A* = Racket
- Let the language-implemented *B* = "*Arithmetic Language*"
- Arithmetic programs written with calls to Racket constructors
- The interpreter is eval-exp

What we know

- Define (abstract) syntax of language B with Racket structs
 - B called MUPL in homework
- Write B programs directly in Racket via constructors
- Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:

- Interpreter can assume input is a "legal AST for B"
 - Okay to give wrong answer or inscrutable error otherwise
- Interpreter must check that recursive results are the right kind of value
 - Give a good error message otherwise

Legal ASTs

"Trees the interpreter must handle" are a subset of all the trees
 Racket allows as a dynamically typed language

```
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)
```

- Can assume "right types" for struct fields
 - const holds a number
 - negate holds a legal AST
 - add and multiply hold 2 legal ASTs
- Illegal ASTs can "crash the interpreter"

```
(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)
```

Interpreter results

- Our interpreters return expressions, but not any expressions
 - Result should always be a *value*, a kind of expression that evaluates to itself
 - If not, the interpreter has a bug
- So far, only values are from const, e.g., (const 17)
- But a larger language has more values than just numbers
 - Booleans, strings, etc.
 - Pairs of values (definition of value recursive)
 - Closures
 - **—** ...

Example

See code for language that adds booleans, number-comparison, and conditionals:

```
(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)
```

What if the program is a legal AST, but evaluation of it tries to use the wrong kind of value?

- For example, "add a boolean"
- You should detect this and give an error message not in terms of the interpreter implementation
- Means checking a recursive result whenever a particular kind of value is needed
 - No need to check if any kind of value is okay

Recall...

Our approach to language implementation:

- Implementing language B in language A
- Skipping parsing by writing language B programs directly in terms of language A constructors
- An interpreter written in A recursively evaluates

What we know about macros:

- Extend the syntax of a language
- Use of a macro expands into language syntax before the program is run, i.e., before calling the main interpreter function

Put it together

With our set-up, we can use language A (i.e., Racket) functions that produce language B abstract syntax as language B "macros"

- Language B programs can use the "macros" as though they are part of language B
- No change to the interpreter or struct definitions
- Just a programming idiom enabled by our set-up
 - Helps teach what macros are
- See code for example "macro" definitions and "macro" uses
 - "macro expansion" happens before calling eval-exp