2023 年博资考部分题目

目录

1	前言	2
2	代数拓扑	2
3	泛函分析	2
4	抽象代数	2
5	复分析	3
6	常微分方程	3
7	概率论	3

1 前言

本文档主要包含笔者自己当时做的题目,由于笔者是做基础数学的,因此做卷子的时候主要看的都是基础数学的几个科目.每个科目有两道题目,但是只允许选择一道计入总成绩,一共 11 个科目.不过笔者做的有些科目,做了一题后就没看另一个.

文档中, 汉字题号表示完整的一题. 做满任意五道可得满分.

2 代数拓扑

1. 设 $f: S^n \to S^n$ 是连续映射. 论述映射度的定义, 并叙述至少三个映射度的性质.

2. 叙述 Brouwer 不动点定理, 并用映射度证明.

一道关于单纯复形偶的 MV 序列, 具体不记得了, 可能是让用 zig-zag lemma 去作个长正合序列. 有第二问, 求 $S^m \vee S^n$ 的同调群.

3 泛函分析

记 $l^{\infty}_{\mathbb{R}}(\mathbb{N})$ 为有界实数列全体, $T: l^{\infty}_{\mathbb{R}}(\mathbb{N}) \to l^{\infty}_{\mathbb{R}}(\mathbb{N})$ 为左平移算子,

$$T(x_0, x_1, x_2, \cdots) = (x_1, x_2, \cdots).$$

证明存在 $l^{\infty}_{\mathbb{P}}(\mathbb{N})$ 上的实连续线性泛函 F 使得

- (1) 对任意 $x \in l_{\mathbb{P}}^{\infty}(\mathbb{N})$, 都有 FT(x) = F(x).
- (2) 当 $x = \{x_n\}$ 极限存在时, 有 $F(x) = \lim x_n$.
- (3) 对任意 $x \in l_{\mathbb{R}}^{\infty}(\mathbb{N})$, 都有 $\underline{\lim} x_n \leqslant F(x) \leqslant \overline{\lim} x_n$.

4 抽象代数

设 C 是范畴, A, B 为其中的对象.

证明集合 $\operatorname{Hom}_{\mathcal{C}}(B,A)$ 与 $\operatorname{Nat}(\operatorname{Hom}_{\mathcal{C}}(A,-),\operatorname{Hom}_{\mathcal{C}}(B,-))$ 之间存在双射. 这里 $\operatorname{Nat}(F,G)$ 表示全体从函子 F 到函子 G 的自然变换.

5 复分析

设 $f\colon \mathbb{D}\to\mathbb{C}$ 是单叶函数, 且 f(0)=0, f'(0)=1. 并设存在 R>1 使得对 $z\in\mathbb{D}$ 都有 |f(z)|< R. 记

$$r = \inf\{|w| : w \notin f(\mathbb{D})\}.$$

证明

$$\frac{R^2r}{(R+r)^2} \geqslant \frac{1}{4}.$$

6 常微分方程

设 u(t),v(t) 是区间 [a,b] 上的非负实值连续函数, 且存在常数 $\alpha,\beta>0$ 满足

$$u(t) \leqslant \alpha + \beta \int_{a}^{t} u(s)v(s)ds.$$

证明:

$$u(t) \leqslant \alpha \exp\left(\beta \int_a^t v(s) ds\right).$$

7 概率论

注: 本年级 2022 年的概率论基础课是 Elie 上的,这部分是英语题目,且 (可能要,至少我是) 用英语作答.可能是由于英语原因,难度相当低.

参数为 1 的指数分布是指在 \mathbb{R} 上 (关于 Lebesgue 测度) 具有密度函数 $e^{-x}1_{\{x\geqslant 0\}}$ 的分布.

设随机变量 X 服从参数为 1 的指数分布. 对 $k=1,2,3,\cdots$,记 $Y_k=1_{X\geqslant k},$ $S_n=\sum\limits_{k=1}^nY_k.$

- (1) 证明 S_n 几乎一定收敛到某个随机变量 S.
- (2) S_n 是否按 L^1 收敛到 S? 证明你的结论.
- (3) 求 S 的分布.

_

设有一列独立的随机变量 X_1, X_2, \cdots 均服从参数为 1 的指数分布, 并记 $M_n = \max_{1 \le k \le n} X_k$. 证明 $M_n - \log n$ 依分布收敛到某个随机变量, 并求出这个分布.