ECE568 笔记汇总

- Cryptography Block Ciphers
- Cryptography Ciphers
- Cryptography Hashes, MACs, and Digital-Signitures
- Cryptography Public-Key Cryptography
- Cryptography Stream Ciphers

Table of Contents

- ECE568 笔记汇总
- Block Cipher Design
 - Extension Attack
 - Pattern-Hiding
 - Design
 - Substitution-Permutation Network (SPN)
- DES, AES
 - DES Timeline
 - DES Architecture
 - DES Subkey Generation
 - DES Substitution
 - 3DES
 - AES Timeline
 - AES Architecture
- Block Cipher Encryption Modes
 - Electronic Codebook (ECB)
 - Cipher Block Chaining (CBC)
 - Other modes

Block Cipher Design

- Communication Theory of Secrecy Systems (Claude Shannon, 1949) foundation for modern cryptography
- 2 goals for good crypto-system
 - o Confusion obscuring of the relationship between PT and CT
 - make statistical analysis difficult, even if attacker has large PT-CT pairs
 - encoding should be non-linear to avoid extension attacks
 - Each character of the CT should depend on the entire key
 - o Diffusion spreading the influence of individual PT char over much of the CT
 - each output bit should result from a combination of many input bits
 - o flipping 1 bit of key/PT should change >50% of output bit
 - o any repetitive patterns in PT are spread over entire CT, hiding statistical info

Extension Attack

Insert CT in the middle of a CT to alter meaning

Pattern-Hiding

Design

- 2 simple weak ciphers are combined to design secure block ciphers
 - \circ **substitution cipher** replaces c in PT with c from same L, with 1-to-1 mapping (confusion)
 - **permutation cipher** transposes the PT (diffusion)
- iterated block cipher repeatedly applies these 2 ciphers in different combinations

Substitution-Permutation Network (SPN)

- · combine several rounds of substitution and permutation
- round keys derived from primary key, typically applied by XORing key with the output of each round of the encryption

DES, AES

- · Certified by US National Institute of Standards and Technology (NIST), 2 common iterated block ciphers
 - DES Data Encryption Standard 56 bit key, a block length of 64 bits
 - AES Advanced Encryption Standard -

DES Timeline

- · NIST wants to standardize encryption with a reliably strong, well-studied cipher
 - IBM introduced a one based on Lucifer Cipher, which won the DES competition in 1976
 - o Pronounced secure by NSA, invoked much distrust

DES Architecture

- · Feistel Network, consists of 16 rounds
- . In each round, the input is split into L and R
- · Halves are swapped, substitution function modifies half the input bits
 - \circ Each round uses a **subkey** K_n derived from the master encryption key

DES Subkey Generation

- 56 bit encryption key undergoes a key schedule to create 16 $\operatorname{\mathbf{sub-keys}} K_n$
 - o Split into 2 28-bit halves
 - Each half is shifted left by 1 or 2 bits (depending on the round)
 - o 24-bits are selected from each 28-bit halves to make 48-bit sub-key

DES Substitution

- Each $f(R_{n-1}, K_n)$ substitution box contains
 - Expansion permutation of 32-bit input into 48-bits
 - XOR with 48-bit K_n
 - S-box substitution that compress 48-bit into 32-bit output **non-linear element**
 - P-box permutation of 32-bit output

3DES

- 56-bit key has become inadequate (brute forcing 2^{56} key comb in less than a day)
 - one solution is to chain 3 DES, splitting 168-bit key into 3 56-bit parts

AES Timeline

- 1997, NIST ran a competition to replace DES
 - Symmetric BC
 - o Increasing key-len possible
 - o easily implemented in hardware/software

AES Architecture

- Supports variable key and block lengths
 - o 128-, 192-, 256 bit keys
 - o 128, 192, 256 bit blocks
 - o any combo is possible
 - o extensions to 160, 224 possible
- Based on rounds; number of rounds is based on key length and block size (10-14)

Block Cipher Encryption Modes

- Most secure way to encrypt multiple blocks?
- Block ciphers encrypt a block at a time and use modes to improve security
 - Security Is algorithm effective in hiding patterns in PT?
 - Error Propagation Impact of CT bit flip?
 - Error Recovery Error affect all blocks? Recoverable? How much data to retransmit?
 - o Performance What throughput is supported?

Electronic Codebook (ECB)

- Simplest mode
 - message is broken into block-sized chunks
 - padding added to last block
 - each chunk is encrypted independently

- Error Propagation errors only affect one PT block, changed completely randomly
- Error Recovery only retransmit affected blocks; during decryption just skip bad blocks
- Performance highly parallelizable
- Security POOR
 - o Adversary can add, delete, or re-order blocks
 - o PT block always encrypt to same CT block
 - o CT block can reveal macro-structure of PT data (since divided into blocks)

Cipher Block Chaining (CBC)

- Makes every block's input dependent on the CT output of previous block
 - $\circ~$ The Initialization Vector (IV) doesn't have to be secret
 - normally sent in PT along CT
 - IV should NOT be re-used

- Security Any change in PT affects all later blocks, modification to CT affects at most 2 blocks during decryption
- Performance encryption POOR, decryption can be parallelized
- Error Propagation only affect current block and following block
- Error Recovery can drop affected blocks and continue decryption

Other modes

- CFP (Cipher Feedback)
- OFB (Output Feedback)
 - o allow encryption and decryption in units of less than a full block at a time
 - o convert block ciphers into stream ciphers
 - **security, error propagation, recovery** similar to stream ciphers
 - more effective since no padding is necessary
 - CFB pipelining is possible
 - OFB key stream is independent of PT; allows performing CT ops in advance and supports ECC

CFB (Cipher Feedback)

OFB (Output Feedback)

