

Global United Technology Services Co., Ltd.

Report No.: GTS201808000235F03

FCC Report (WIFI)

Applicant: Beat A/S

Address of Applicant: Klingseyvej 15B, 2720 Vanloese, Denmark

Manufacturer/Factory: MELE TECHNOLOGIES(SHENZHEN) CO.,LTD

Address of 1F, Bldg#2, 28 Cuijing Road, Pingshan District, Shenzhen,

PR China. Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Mini PC

Model No.: **MIB 12**

FCC ID: 2AFGT-MIB12

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: August 31, 2018

Date of Test: September 01-10, 2018

Date of report issued: September 11, 2018

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	September 11, 2018	Original

Prepared By:	Bill. Yvan	Date:	September 11, 2018
	Project Engineer		
Check By:	Andy w	Date:	September 11, 2018

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
		GENERAL DESCRIPTION OF EUT	
	5.1 5.2	TEST MODE	_
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
	5.6	Additional Instructions	
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	11
	7.1	ANTENNA REQUIREMENT	11
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1 7.6.2		
	7.0.∠ 7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2		
8	TES	T SETUP PHOTO	71
9	FUT	CONSTRUCTIONAL DETAILS	72

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

Product Name:	Mini DC		
	Mini PC		
Model No.:	MIB 12		
Serial No.:	0000001		
Hardware Version:	PCG35-GML1-272-V1.10		
Software Version:	V4.0.0		
Test sample(s) ID:	GTS201808000235-1		
Sample(s) Status	Engineer sample		
Operation Frequency:	2412MHz~2462MHz(802.11b/802.11g/802.11n(HT20))		
	2422MHz~2452MHz(802.11n(HT40))		
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11		
	802.11n(HT40):7		
Channel separation:	5MHz		
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)		
	802.11g/802.11n(H20)/802.11n(HT40):		
	Orthogonal Frequency Division Multiplexing (OFDM)		
Antenna Type:	Integral Antenna		
	Main Antenna: 2.00dBi (Max.), for TX/RX (Bluetooth and WLAN)		
Antenna gain:	Aux Antenna: 2.00dBi(Max.), for TX/RX (WLAN)		
	Two antennas cannot synchronous transmission.		
Power supply:	SWITCHING ADAPTER		
	MODEL:ADS-25D-12 12024E		
	INPUT: AC 100-240V, 50/60Hz, Max 0.7A		
	OUTPUT: DC 12V, 2.0A		

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot abannal	Frequen	cy (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)
Lowest channel	2412MHz	2422MHz
Middle channel	2437MHz	2437MHz
Highest channel	2462MHz	2452MHz

Page 7 of 72

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.6 Additional Instructions

EUT Fixed Frequency Settings:

Power level setup			
Support Units	Description	Manufacturer	Model
	Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500
Mode	Channel	Frequency (MHz)	Level Set
802.11b/g/n(HT20)	CH1	2412	
	CH6	2437	
	CH11	2462	TV lovel v defevilt
802.11n(HT40)	CH3	2422	TX level : default
	CH6	2437	
	CH9	2452	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019

Conc	lucted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019

RF C	RF Conducted:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019		
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The Main and Aux antenna is integral antenna, the best case gain of the antenna is 2.00dBi. Two antennas cannot synchronous transmission.

7.2 Conducted Emissions

ANCI CC2 40-2042					
ANSI 063.10.2013		ANSI C63.10:2013			
150KHz to 30MHz					
RBW=9KHz, VBW=30KHz, Sv	veep time=auto				
Francisco (MIII-)	Limit (d	BuV)			
. , ,	Quasi-peak	Average			
0.15-0.5		56 to 46*			
+		46			
		50			
	of the frequency.				
AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow				
 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 					
Refer to section 6.0 for details					
Refer to section 5.2 for details					
AC 120V, 60Hz					
Pass					
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm Reference Plane LISN LISN Equipment LISN Line impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details AC 120V, 60Hz	RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators are connected to the maline impedance stabilization network (L.I.S.N.). The 50ohm/50uH coupling impedance for the measuri 2. The peripheral devices are also connected to the LISN that provides a 50ohm/50uH coupling impedate termination. (Please refer to the block diagram of photographs). 3. Both sides of A.C. line are checked for maximum interference. In order to find the maximum emissic positions of equipment and all of the interface cab according to ANSI C63.10:2013 on conducted me Refer to section 5.2 for details Refer to section 5.2 for details Refer to section 5.2 for details			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Probe:	Line

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
 0.25	40.28	0.40	0.10	40.78	61.64	-20.86	QP
0.25	28.74	0.40	0.10	29.24	51.64	-22.40	Average
0.28	39.63	0.40	0.10	40.13	60.94	-20.81	QP
0.28	28.27	0.40	0.10	28.77	50.94	-22.17	Average
0.33	44.38	0.39	0.10	44.87	59.53	-14.66	QP
0.33	32.56	0.39	0.10	33.05	49.53	-16.48	Average
0.35	44.32	0.37	0.10	44.79	59.00	-14.21	QP
0.35	33.26	0.37	0.10	33.73	49.00	-15.27	Average
0.47	36.48	0.32	0.11	36.91	56.49	-19.58	QP
0.47	24.23	0.32	0.11	24.66	46.49	-21.83	Average
1.16	29.18	0.20	0.16	29.54	56.00	-26.46	QP
1.16	18.88	0.20	0.16	19.24	46.00	-26.76	Average

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHProbe:Neutral

rreq MHz	level dBuV	factor dB/m	loss dB	Level dBuV	level dBuV	limit dB	Remark
0. 15 0. 15 0. 26 0. 26 0. 28 0. 33 0. 33 0. 35 0. 35 0. 47 0. 47	42. 23 28. 34 39. 86 30. 81 40. 17 31. 41 43. 42 34. 05 46. 04 36. 93 35. 91 22. 73	0.40 0.40 0.40 0.40 0.40 0.39 0.39 0.37 0.37 0.33	0.07 0.07 0.10 0.10 0.10 0.10 0.10 0.10	42.70 28.81 40.36 31.31 40.67 31.91 43.91 34.54 46.51 37.40 36.35 23.17	65. 82 55. 82 61. 51 51. 51 60. 76 50. 76 59. 53 49. 53 59. 00 49. 00 56. 58 46. 58	-23. 12 -27. 01 -21. 15 -20. 20 -20. 09 -18. 85 -15. 62 -14. 99 -12. 49 -11. 60 -20. 23 -23. 41	QP Average
							_

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

Main Antenna:

Test CH		Peak Outp	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Lillill(GDIII)	Result
Lowest	15.68	13.85	13.43	12.59		
Middle	15.75	13.87	13.51	12.56	30.00	Pass
Highest	15.73	13.71	13.47	12.51		

Aux Antenna:

Test CH		Peak Outp	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(abin)	Nosun
Lowest	15.52	13.79	13.42	12.38		
Middle	15.63	13.81	13.47	12.45	30.00	Pass
Highest	15.61	13.70	13.45	12.48		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074 D01 DTS Meas Guidance V04	
Limit:	>500KHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Aux Antenna:

	Test CH		Channel B	Bandwidth (MHz)		Limit(KHz)	Result
	1031 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Lilliu(IXI IZ)	rvesuit
	Lowest	9.106	16.405	17.642	35.828		
	Middle	9.600	16.392	17.412	35.783	>500	Pass
	Highest	9.494	16.398	17.655	35.510		

Main Antenna:

Test CH		Channel E	Limit(KHz)	Result		
Test Off	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	- Lilliit(Ki iz)	Result
Lowest	9.564	16.397	17.744	36.119		
Middle	9.590	16.381	17.399	35.766	>500	Pass
Highest	9.146	16.406	17.372	35.527		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Aux Antenna:

Test mode:

802.11b

Lowest channel

Highest channel

Test mode: 802.11g

Lowest channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Highest channel

Main Antenna:

Test mode: 802.11b

Lowest channel

Highest channel

Test mode: 802.11g

Lowest channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	KDB558074 D01 DTS Meas Guidance V04	
Limit:	8dBm/3kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Aux Antenna:

Test CH		Power Spe	Limit	Result			
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Nesuit	
Lowest	-12.42	-15.45	-15.42	-17.27			
Middle	-10.06	-14.39	-14.24	-20.78	8.00	Pass	
Highest	-9.99	-14.52	-14.58	-19.71			

Main Antenna:

Test CH -		Power Spe	Limit	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	rvesuit
Lowest	-7.75	-14.91	-14.09	-18.15	8.00	Pass
Middle	-11.06	-14.62	-15.44	-16.80		
Highest	-12.70	-14.39	-14.81	-20.27		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Aux Antenna:

Test mode: 802.11b

Lowest channel

Highest channel

Test mode: 802.11g

Lowest channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Highest channel

Main Antenna:

Test mode: 802.11b

Lowest channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test mode: 802.11n(HT20)

Lowest channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB558074 D01 DTS Meas Guidance V04			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

Aux Antenna:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Main Antenna:

Lowest channel

Highest channel

Test mode:

Lowest channel

802.11g

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20)13						
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	ind's (2310MHz to			
Test site:	Measurement D							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
•		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Average	1MHz	3MHz	Average			
Limit:	Freque	Value						
			Limit (dBuV/ 54.0		Average			
	Above 1	GHz	74.0		Peak			
Test setup:	For radiated emissions above 1GHz Company Company							
Test Procedure:	1. The EUT was placed on the top of a rotating table 1.5 meters above							
	determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rota the the maximum 5. The test-rece Specified Bat 6. If the emission the limit specified	e position of the set 3 meters che was mounted height is varied the mand vertical polar to the pected emission antenna was to the set of the se	e highest race away from the don the top of the from one neximum value rizations of the from 0 decays set to Peal aximum Hole EUT in peaking could be	diation. The interference of a variable of a variable of the field of the field of the antenna and was arranged the from 1 m of the from 1 m o	meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find			

	 have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Test mode:		802.1	1b	Te	st channel:	I	_owest	
Peak value:								
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/iii)	(ubu v/iii)	(dB)	
2310.00	41.21	27.61	5.36	34.01	40.17	74.00	-33.83	Horizontal
2390.00	54.79	27.59	5.38	34.01	53.75	74.00	-20.25	Horizontal
2310.00	41.60	27.61	5.36	34.01	40.56	74.00	-33.44	Vertical
2390.00	57.48	27.59	5.38	34.01	56.44	74.00	-17.56	Vertical
Average va	lue:							
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line (dBuV/m)	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polarization
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/iii)	(ubu v/iii)	(dB)	
2310.00	33.69	27.61	5.36	34.01	32.65	54.00	-21.35	Horizontal
2390.00	40.07	27.59	5.38	34.01	39.03	54.00	-14.97	Horizontal
2310.00	34.45	27.61	5.36	34.01	33.41	54.00	-20.59	Vertical
2390.00	42.00	27.59	5.38	34.01	40.96	54.00	-13.04	Vertical
-		200.4						

Test mode: 802.11b	Test channel:	Highest
--------------------	---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	54.66	27.53	5.47	33.92	53.74	74.00	-20.26	Horizontal
2500.00	49.96	27.55	5.49	29.93	53.07	74.00	-20.93	Horizontal
2483.50	57.26	27.53	5.47	33.92	56.34	74.00	-17.66	Vertical
2500.00	52.78	27.55	5.49	29.93	55.89	74.00	-18.11	Vertical

Average value:

Fraguenay	Read	Antenna	Cable	Preamp	Lovol	Limit Line	Over	
Frequency	Level	Factor	Loss	Factor	Level		Limit	Polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2483.50	40.20	27.53	5.47	33.92	39.28	54.00	-14.72	Horizontal
2500.00	35.99	27.55	5.49	29.93	39.10	54.00	-14.90	Horizontal
2483.50	42.29	27.53	5.47	33.92	41.37	54.00	-12.63	Vertical

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

2500.00 37.93 27.55 5.49 29.93 41.04 54.00 -12.96 Vertical

Test mode:		802.1	l1g		Test channel:			Lowest	
Peak value:	:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line	I I imit	Polarization
2310.00	39.95	27.61	5.36	34.01	1	38.91	74.00	-35.09	Horizontal
2390.00	53.12	27.59	5.38	34.01	1	52.08	74.00	-21.92	Horizontal
2310.00	40.26	27.61	5.36	34.01	1	39.22	74.00	-34.78	Vertical
2390.00	55.47	27.59	5.38	34.01	1	54.43	74.00	-19.57	Vertical
Average value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line	I I imit	Polarization
2310.00	32.80	27.61	5.36	34.01	1	31.76	54.00	-22.24	Horizontal
2390.00	39.04	27.59	5.38	34.01	1	38.00	54.00	-16.00	Horizontal
2310.00	33.46	27.61	5.36	34.01	1	32.42	54.00	-21.58	Vertical
2390.00	40.88	27.59	5.38	34.01	1	39.84	54.00	-14.16	Vertical
Test mode:		802.1	11g		Tes	st channel:		Highest	
Peak value:	:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line	I I imit	Polarization
2483.50	52.87	27.53	5.47	33.92	2	51.95	74.00	-22.05	Horizontal
2500.00	48.57	27.55	5.49	29.93		51.68	74.00	-22.32	Horizontal
2483.50	55.21	27.53	5.47	33.92	2	54.29	74.00	-19.71	Vertical
2500.00	51.16	27.55	5.49	29.93	3	54.27	74.00	-19.73	Vertical
Average va	lue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line	I I imit	Polarization
2483.50	39.12	27.53	5.47	33.92	2	38.20	54.00	-15.80	Horizontal
2500.00	35.14	27.55	5.49	29.93	3	38.25	54.00	-15.75	Horizontal
2483.50	41.10	27.53	5.47	33.92	2	40.18	54.00	-13.82	Vertical
2500.00	37.04	27.55	5.49	29.93	3	40.15	54.00	-13.85	Vertical

Test mode:		802.1	802.11n(HT20)		st channel:	L	Lowest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	39.90	27.61	5.36	34.01	38.86	74.00	-35.14	Horizontal
2390.00	53.05	27.59	5.38	34.01	52.01	74.00	-21.99	Horizontal
2310.00	40.20	27.61	5.36	34.01	39.16	74.00	-34.84	Vertical
2390.00	55.39	27.59	5.38	34.01	54.35	74.00	-19.65	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	32.76	27.61	5.36	34.01	31.72	54.00	-22.28	Horizontal
2390.00	39.00	27.58	5.39	34.01	37.96	54.00	-16.04	Horizontal
2310.00	33.42	27.61	5.36	34.01	32.38	54.00	-21.62	Vertical
2390.00	40.83	27.58	5.39	34.01	39.79	54.00	-14.21	Vertical
Test mode:		802.1	1n(HT20)	Te	st channel:	H	lighest	
Peak value:	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.80	27.53	5.47	33.92	51.88	74.00	-22.12	Horizontal
2500.00	48.51	27.55	5.49	29.93	51.62	74.00	-22.38	Horizontal
2483.50	55.13	27.53	5.47	33.92	54.21	74.00	-19.79	Vertical
2500.00	51.09	27.55	5.49	29.93	54.20	74.00	-19.80	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.07	27.53	5.47	33.92	38.15	54.00	-15.85	Horizontal
2500.00	35.11	27.55	5.49	29.93	38.22	54.00	-15.78	Horizontal
2483.50	41.05	27.53	5.47	33.92	40.13	54.00	-13.87	Vertical
2500.00	37.00	27.55	5.49	29.93	40.11	54.00	-13.89	Vertical

Test mode:			802.1	1n(HT40)		Test channel:			Lowest	
Peak value:	1									
Frequency (MHz)	Read Level (dBuV)	Fa	enna actor 3/m)	Cable Loss (dB)	Prea Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization
2310.00	38.76	27	7.61	5.36	34.0)1	37.72	74.00	-36.28	Horizontal
2390.00	51.52	27	7.59	5.38	34.0)1	50.48	74.00	-23.52	Horizontal
2310.00	38.98	27	7.61	5.36	34.0)1	37.94	74.00	-36.06	Vertical
2390.00	53.55	27	7.59	5.38	34.0)1	52.51	74.00	-21.49	Vertical
Average va	Average value:									
Frequency (MHz)	Read Level (dBuV)	Fa	enna actor 3/m)	Cable Loss (dB)	Prea Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization
2310.00	31.95	27	7.61	5.36	34.0)1	30.91	54.00	-23.09	Horizontal
2390.00	38.06	27	7.59	5.38	34.0)1	37.02	54.00	-16.98	Horizontal
2310.00	32.51	27	7.61	5.36	34.0)1	31.47	54.00	-22.53	Vertical
2390.00	39.81	27	7.59	5.38	34.0)1	38.77	54.00	-15.23	Vertical
Test mode:			802.1	1n(HT40)		Tes	st channel:		Highest	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.16	27.53	5.47	33.92	50.24	74.00	-23.76	Horizontal
2500.00	47.25	27.55	5.49	29.93	50.36	74.00	-23.64	Horizontal
2483.50	53.26	27.53	5.47	33.92	52.34	74.00	-21.66	Vertical
2500.00	49.61	27.55	5.49	29.93	52.72	74.00	-21.28	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.08	27.53	5.47	33.92	37.16	54.00	-16.84	Horizontal
2500.00	34.34	27.55	5.49	29.93	37.45	54.00	-16.55	Horizontal
2483.50	39.96	27.53	5.47	33.92	39.04	54.00	-14.96	Vertical
2500.00	36.19	27.55	5.49	29.93	39.30	54.00	-14.70	Vertical

- 1. Only the worst case Main Antenna test data.
- 2. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 3. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 DTS Meas Guidance V04						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:

Aux Antenna:

Test mode: 802.11b

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11g

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

Test mode: 802.11n(HT20)

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11n(HT40)

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

Main Antenna:

Test mode: 802.11b

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

Test mode: 802.11g

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: 3	3m							
Receiver setup:	Frequency		Detector		W	VBW	Value			
	9KHz-150KHz	Qı	Quasi-peak		Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Qı	ıasi-peak	9KI	Ηz	30KHz	Quasi-peak			
	30MHz-1GHz	Qı	ıasi-peak	100k	(Hz	300KH	z Quasi-peak			
	Above 1GHz		Peak	1MI	Hz	3MHz	Peak			
	Above 19112		Peak	1MI	Hz	10Hz	Average			
Limit:	Frequency		Limit (u\	//m)	٧	/alue	Measurement Distance			
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m			
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	300m			
	1.705MHz-30MH	30m								
	30MHz-88MHz		100		QP					
	88MHz-216MHz		150		QP					
	216MHz-960MH	Z	200			QP	3m			
	960MHz-1GHz		500			QP				
	Above 1GHz		500		-	erage				
			5000		F	Peak				
Test setup:	For radiated emissions from 9kHz to 30MHz Compared to 30MHz									
	For radiated emiss	sions	from 30M	Hz to	1GH	Z				

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHPolarziation:Horizontal

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHPolarziation:Vertical

■ Above 1GHz

Test mode:		802.11b		Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.53	31.79	8.62	32.10	48.84	74.00	-25.16	Vertical
7236.00	34.37	36.19	11.68	31.97	50.27	74.00	-23.73	Vertical
9648.00	32.82	38.07	14.16	31.56	53.49	74.00	-20.51	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.16	31.79	8.62	32.10	47.47	74.00	-26.53	Horizontal
7236.00	34.10	36.19	11.68	31.97	50.00	74.00	-24.00	Horizontal
9648.00	32.39	38.07	14.16	31.56	53.06	74.00	-20.94	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val							T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.60	31.79	8.62	32.10	37.91	54.00	-16.09	Vertical
7236.00	23.23	36.19	11.68	31.97	39.13	54.00	-14.87	Vertical
9648.00	23.16	38.07	14.16	31.56	43.83	54.00	-10.17	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.69	31.79	8.62	32.10	37.00	54.00	-17.00	Horizontal
7236.00	22.68	36.19	11.68	31.97	38.58	54.00	-15.42	Horizontal
9648.00	22.14	38.07	14.16	31.56	42.81	54.00	-11.19	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.55	31.85	8.66	32.12	47.94	74.00	-26.06	Vertical
7311.00	34.41	36.37	11.71	31.91	50.58	74.00	-23.42	Vertical
9748.00	33.82	38.27	14.25	31.56	54.78	74.00	-19.22	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.99	31.85	8.66	32.12	48.38	74.00	-25.62	Horizontal
7311.00	33.04	36.37	11.71	31.91	49.21	74.00	-24.79	Horizontal
9748.00	33.70	38.27	14.25	31.56	54.66	74.00	-19.34	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.38	31.85	8.66	32.12	38.77	54.00	-15.23	Vertical
7311.00	22.73	36.37	11.71	31.91	38.90	54.00	-15.10	Vertical
9748.00	23.07	38.27	14.25	31.56	44.03	54.00	-9.97	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	30.10	31.85	8.66	32.12	38.49	54.00	-15.51	Horizontal
7311.00	22.12	36.37	11.71	31.91	38.29	54.00	-15.71	Horizontal
9748.00	23.42	38.27	14.25	31.56	44.38	54.00	-9.62	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*	_				54.00		Horizontal
17059.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	45.22	31.90	8.70	32.15	53.67	74.00	-20.33	Vertical
7386.00	35.18	36.49	11.76	31.83	51.60	74.00	-22.40	Vertical
9848.00	37.18	38.62	14.31	31.77	58.34	74.00	-15.66	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.47	31.90	8.70	32.15	52.92	74.00	-21.08	Horizontal
7386.00	34.05	36.49	11.76	31.83	50.47	74.00	-23.53	Horizontal
9848.00	33.34	38.62	14.31	31.77	54.50	74.00	-19.50	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:			<u> </u>				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.11	31.90	8.70	32.15	44.56	54.00	-9.44	Vertical
7386.00	25.09	36.49	11.76	31.83	41.51	54.00	-12.49	Vertical
9848.00	25.68	38.62	14.31	31.77	46.84	54.00	-7.16	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.82	31.90	8.70	32.15	43.27	54.00	-10.73	Horizontal
7386.00	23.44	36.49	11.76	31.83	39.86	54.00	-14.14	Horizontal
9848.00	22.59	38.62	14.31	31.77	43.75	54.00	-10.25	Horizontal
12310.00	*	_				54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.01	31.79	8.62	32.10	48.32	74.00	-25.68	Vertical
7236.00	34.04	36.19	11.68	31.97	49.94	74.00	-24.06	Vertical
9648.00	32.58	38.07	14.16	31.56	53.25	74.00	-20.75	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.72	31.79	8.62	32.10	47.03	74.00	-26.97	Horizontal
7236.00	33.81	36.19	11.68	31.97	49.71	74.00	-24.29	Horizontal
9648.00	32.17	38.07	14.16	31.56	52.84	74.00	-21.16	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.11	31.79	8.62	32.10	37.42	54.00	-16.58	Vertical
7236.00	22.91	36.19	11.68	31.97	38.81	54.00	-15.19	Vertical
9648.00	22.94	38.07	14.16	31.56	43.61	54.00	-10.39	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	28.27	31.79	8.62	32.10	36.58	54.00	-17.42	Horizontal
7236.00	22.40	36.19	11.68	31.97	38.30	54.00	-15.70	Horizontal
9648.00	21.92	38.07	14.16	31.56	42.59	54.00	-11.41	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.11	31.85	8.66	32.12	47.50	74.00	-26.50	Vertical
7311.00	34.14	36.37	11.71	31.91	50.31	74.00	-23.69	Vertical
9748.00	33.63	38.27	14.25	31.56	54.59	74.00	-19.41	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.63	31.85	8.66	32.12	48.02	74.00	-25.98	Horizontal
7311.00	32.80	36.37	11.71	31.91	48.97	74.00	-25.03	Horizontal
9748.00	33.52	38.27	14.25	31.56	54.48	74.00	-19.52	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.98	31.85	8.66	32.12	38.37	54.00	-15.63	Vertical
7311.00	22.46	36.37	11.71	31.91	38.63	54.00	-15.37	Vertical
9748.00	22.88	38.27	14.25	31.56	43.84	54.00	-10.16	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.75	31.85	8.66	32.12	38.14	54.00	-15.86	Horizontal
7311.00	21.89	36.37	11.71	31.91	38.06	54.00	-15.94	Horizontal
9748.00	23.24	38.27	14.25	31.56	44.20	54.00	-9.80	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.47	31.90	8.70	32.15	52.92	74.00	-21.08	Vertical
7386.00	34.71	36.49	11.76	31.83	51.13	74.00	-22.87	Vertical
9848.00	36.84	38.62	14.31	31.77	58.00	74.00	-16.00	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.84	31.90	8.70	32.15	52.29	74.00	-21.71	Horizontal
7386.00	33.64	36.49	11.76	31.83	50.06	74.00	-23.94	Horizontal
9848.00	33.03	38.62	14.31	31.77	54.19	74.00	-19.81	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.42	31.90	8.70	32.15	43.87	54.00	-10.13	Vertical
7386.00	24.63	36.49	11.76	31.83	41.05	54.00	-12.95	Vertical
9848.00	25.35	38.62	14.31	31.77	46.51	54.00	-7.49	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.23	31.90	8.70	32.15	42.68	54.00	-11.32	Horizontal
7386.00	23.04	36.49	11.76	31.83	39.46	54.00	-14.54	Horizontal
9848.00	22.29	38.62	14.31	31.77	43.45	54.00	-10.55	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.95	31.79	8.62	32.10	48.26	74.00	-25.74	Vertical
7236.00	34.00	36.19	11.68	31.97	49.90	74.00	-24.10	Vertical
9648.00	32.56	38.07	14.16	31.56	53.23	74.00	-20.77	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.67	31.79	8.62	32.10	46.98	74.00	-27.02	Horizontal
7236.00	33.78	36.19	11.68	31.97	49.68	74.00	-24.32	Horizontal
9648.00	32.15	38.07	14.16	31.56	52.82	74.00	-21.18	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.06	31.79	8.62	32.10	37.37	54.00	-16.63	Vertical
7236.00	22.87	36.19	11.68	31.97	38.77	54.00	-15.23	Vertical
9648.00	22.91	38.07	14.16	31.56	43.58	54.00	-10.42	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.23	31.79	8.62	32.10	36.54	54.00	-17.46	Horizontal
7236.00	22.36	36.19	11.68	31.97	38.26	54.00	-15.74	Horizontal
9648.00	21.90	38.07	14.16	31.56	42.57	54.00	-11.43	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.06	31.85	8.66	32.12	47.45	74.00	-26.55	Vertical
7311.00	34.11	36.37	11.71	31.91	50.28	74.00	-23.72	Vertical
9748.00	33.60	38.27	14.25	31.56	54.56	74.00	-19.44	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.59	31.85	8.66	32.12	47.98	74.00	-26.02	Horizontal
7311.00	32.77	36.37	11.71	31.91	48.94	74.00	-25.06	Horizontal
9748.00	33.50	38.27	14.25	31.56	54.46	74.00	-19.54	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.94	31.85	8.66	32.12	38.33	54.00	-15.67	Vertical
7311.00	22.43	36.37	11.71	31.91	38.60	54.00	-15.40	Vertical
9748.00	22.86	38.27	14.25	31.56	43.82	54.00	-10.18	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.71	31.85	8.66	32.12	38.10	54.00	-15.90	Horizontal
7311.00	21.86	36.37	11.71	31.91	38.03	54.00	-15.97	Horizontal
9748.00	23.22	38.27	14.25	31.56	44.18	54.00	-9.82	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	t channel:	High	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.38	31.90	8.70	32.15	52.83	74.00	-21.17	4924.00
7386.00	34.65	36.49	11.76	31.83	51.07	74.00	-22.93	7386.00
9848.00	36.80	38.62	14.31	31.77	57.96	74.00	-16.04	9848.00
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.77	31.90	8.70	32.15	52.22	74.00	-21.78	Horizontal
7386.00	33.59	36.49	11.76	31.83	50.01	74.00	-23.99	Horizontal
9848.00	32.99	38.62	14.31	31.77	54.15	74.00	-19.85	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.34	31.90	8.70	32.15	43.79	54.00	-10.21	Vertical
7386.00	24.58	36.49	11.76	31.83	41.00	54.00	-13.00	Vertical
9848.00	25.32	38.62	14.31	31.77	46.48	54.00	-7.52	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.16	31.90	8.70	32.15	42.61	54.00	-11.39	Horizontal
7386.00	22.99	36.49	11.76	31.83	39.41	54.00	-14.59	Horizontal
9848.00	22.26	38.62	14.31	31.77	43.42	54.00	-10.58	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

- 1 Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2 The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3 "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT40)		Test	Test mode: 802.11n(HT40) Test channel: Lowest							
Peak value:													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization			
4844.00	39.37	31.81	8.63 32.11		47.70	74.00		-26.30	Vertical				
7266.00	33.63	36.28	11.69	31	.94	49.66	74.	00	-24.34	Vertical			
9688.00	32.30	38.13	14.21	31	.52	53.12	74.	00	-20.88	Vertical			
12060.00	*						74.	00		Vertical			
14472.00	*						74.	00		Vertical			
16884.00	*						74.	00		Vertical			
4844.00	38.18	31.81	8.63	32	.11	46.51	74.	00	-27.49	Horizontal			
7266.00	33.45	36.28	11.69	31	.94	49.48	74.	00	-24.52	Horizontal			
9688.00	31.91	38.13	14.21	31	.52	52.73	74.	00	-21.27	Horizontal			
12060.00	*						74.	00		Horizontal			
14472.00	*						74.	00		Horizontal			
16884.00	*						74.	00		Horizontal			

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	28.52	31.81	8.63	32.11	36.85	54.00	-17.15	Vertical
7266.00	22.52	36.28	11.69	31.94	38.55	54.00	-15.45	Vertical
9688.00	22.66	38.13	14.21	31.52	43.48	54.00	-10.52	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4844.00	27.77	31.81	8.63	32.11	36.10	54.00	-17.90	Horizontal
7266.00	22.05	36.28	11.69	31.94	38.08	54.00	-15.92	Horizontal
9688.00	21.67	38.13	14.21	31.52	42.49	54.00	-11.51	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test mode:		802.11n(H	IT40)	Test channel:		Middle		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.58	31.85	8.66	32.12	46.97	74.00	-27.03	Vertical
7311.00	33.80	36.37	11.71	31.91	49.97	74.00	-24.03	Vertical
9748.00	33.39	38.27	14.25	31.56	54.35	74.00	-19.65	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.18	31.85	8.66	32.12	47.57	74.00	-26.43	Horizontal
7311.00	32.51	36.37	11.71	31.91	48.68	74.00	-25.32	Horizontal
9748.00	33.30	38.27	14.25	31.56	54.26	74.00	-19.74	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.50	31.85	8.66	32.12	37.89	54.00	-16.11	Vertical
7311.00	22.14	36.37	11.71	31.91	38.31	54.00	-15.69	Vertical
9748.00	22.65	38.27	14.25	31.56	43.61	54.00	-10.39	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.33	31.85	8.66	32.12	37.72	54.00	-16.28	Horizontal
7311.00	21.61	36.37	11.71	31.91	37.78	54.00	-16.22	Horizontal
9748.00	23.03	38.27	14.25	31.56	43.99	54.00	-10.01	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test mode: 80		802.11n(H	802.11n(HT40)		Test channel:		Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	43.56	31.88	8.68	32.13	51.99	74.00	-22.01	Vertical
7356.00	34.13	36.45	11.75	31.86	50.47	74.00	-23.53	Vertical
9808.00	36.43	38.43	14.29	31.68	57.47	74.00	-16.53	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4904.00	43.07	31.88	8.68	32.13	51.50	74.00	-22.50	Horizontal
7356.00	33.13	36.45	11.75	31.86	49.47	74.00	-24.53	Horizontal
9808.00	32.65	38.43	14.29	31.68	53.69	74.00	-20.31	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	34.58	31.88	8.68	32.13	43.01	54.00	-10.99	Vertical
7356.00	24.07	36.45	11.75	31.86	40.41	54.00	-13.59	Vertical
9808.00	24.96	38.43	14.29	31.68	46.00	54.00	-8.00	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4904.00	33.50	31.88	8.68	32.13	41.93	54.00	-12.07	Horizontal
7356.00	22.55	36.45	11.75	31.86	38.89	54.00	-15.11	Horizontal
9808.00	21.93	38.43	14.29	31.68	42.97	54.00	-11.03	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201808000235F01

-----End-----