Accelerated Policy Gradient: On the Nesterov Momentum for Reinforcement Learning

Yen-Ju Chen^{1*}, Nai-Chieh Huang^{1*}, Ping-Chun Hsieh¹

- ¹ Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- * Equal Contribution

Contribution

- ► We propose <u>Accerelated Policy Gradient (APG)</u>, which leverages the <u>Nesterov's momentum</u> scheme to accelerate the convergence performance of PG for RL.
- ► We show that APG enjoys a $\tilde{O}(1/t^2)$ convergence rate under softmax policy parameterization and bandit setting.
- ► Through <u>numerical validation</u> on both bandit and MDP problems, we confirm that APG exhibits $\tilde{O}(1/t^2)$ rate and hence substantially improves the convergence behavior over the standard PG.

Accelerated Policy Gradient (APG)

► Accelerated Policy Gradient (APG)

► Policy Gradient (PG)

$$\left. heta^{(t+1)} \leftarrow heta^{(t)} + \eta
abla_{ heta} V^{\pi_{ heta}}(\mu)
ight|_{ heta = heta^{(t)}}$$

A Motivating Example: Insights of reaching $\tilde{O}(1/t^2)$

► 2-armed Bandit

- \triangleright Policy parameters: $\theta = [\theta_1, \theta_2]$.
- ▷ Reward: r = [1, 0].

Asymptotic Global Convergence of APG under Bandit Setting

- ► Assumption 1 (Strict positivity of surrogate initial state distribution). The surrogate initial state distribution satisfies $\min_s \mu(s) > 0$.
- ► Assumption 2 (Bounded reward). $r(s, a) \in [0, 1], \forall s \in S, a \in A$.
- ► Assumption 3 (Unique optimal action).
- There is a unique optimal action a^* for each state $s \in S$.
- $\eta^{(t)}=rac{t}{t+1}\cdotrac{1}{5}$, we have $V^{\pi_{ heta}^{(t)}}(s) o V^*(s)$ as $t o\infty$, for all $s\in\mathcal{S}$.

Convergence Rate of APG under Bandit Setting

► Lemma 1 (Local Concavity; Informal).

The function $\theta \to \pi_{\theta}^{\top} \mathbf{r}$ is concave if $\theta_{\mathbf{a}^*} - \theta_{\mathbf{a}} > \delta$ for some $\delta > \mathbf{0}$, for all $\mathbf{a} \neq \mathbf{a}^*$.

Consider a tabular softmax parameterized policy π_{θ} . Under APG with

► Lemma 2 (Finite Time to Enter Local Concavity).

Consider a tabular softmax parameterized policy π_{θ} . Under APG with $\eta^{(t)} = \frac{t}{t+1} \cdot \frac{1}{5}$, given any $\delta > 0$, there exists a finite time T such that for all t > T, we have $\theta_{a^*} - \theta_a > \delta$, for all $a \neq a^*$.

► Theorem 2

► Theorem 1

Consider a tabular softmax parameterized policy π_{θ} . Under APG with $\eta^{(t)} = \frac{t}{t+1} \cdot \frac{1}{5}$, there exists a finite time T such that for all t > T, we have:

$$\left(\pi^* - \pi_{\theta}^{(t)}\right)^{\top} r \leq \frac{|\mathcal{A}| - 1}{(t - T)^2 + |\mathcal{A}| - 1} + \frac{10(2 + T) \left(\left\|\theta^{(T)}\right\| + 2\ln(t - T)\right)^2}{t(t + 1)}.$$

Difficulties in Analyzing Convergence: Non-Monotonic Improvement Under APG

► 3-armed Bandit

- ho Highly sub-optimal policy initialization $\pi_0(a^*) \ll \pi_0(a_2) \ll \pi_0(a_3)$.
- > Attributed to the momentum term.
- ⇒ Hard to reach first-order stationary points.

Numerical Validation - Bandit Setting

► 3-armed Bandit

- \triangleright Reward: r = [1, 0.99, 0].
- \triangleright Uniform policy initialization: $\pi_0 = [1/3, 1/3, 1/3]$.
- \triangleright Hard policy initialization: $\pi_0 \approx [0.016, 0.117, 0.867]$.

Numerical Validation - MDP Setting under Uniform Policy Initialization

► MDP with 5 states and 5 actions

 \triangleright Uniform policy initialization: $\pi_0(a|s) = 1/|\mathcal{A}|, \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}$.

Numerical Validation - MDP Setting under Hard Policy Initialization

► MDP with 5 states and 5 actions

 \triangleright Hard policy initialization: $\pi_0(a|s) < \pi_0(a'|s)$, if $Q^*(s,a) > Q^*(s,a')$, $\forall (s,a,a') \in \mathcal{S} \times \mathcal{A} \times \mathcal{A}$.

Challenges of Convergence Analysis of APG for the General MDPs

- ► Due to the lack of monotonic improvement in the value function, it is not possible to apply the monotone convergence theorem on the limiting value function.
- ► True gradients with respect to a specific action under bandit setting:

$$\frac{\partial \pi_{\theta}^{\top} \mathbf{r}}{\partial \theta_{\mathbf{a}}} = \pi_{\theta}(\mathbf{a}) \cdot (\mathbf{r}(\mathbf{a}) - \pi_{\theta}^{\top} \mathbf{r}).$$

► True gradients with respect to a specific state-action under the general MDP setting:

$$\left. rac{\partial V^{\pi_{ heta}}(\mu)}{\partial heta_{ extbf{s}, extbf{a}}} \right|_{ heta= heta} = rac{1}{1-\gamma} \cdot extbf{d}_{\mu}^{\pi_{ heta}}(extbf{s}) \cdot \pi_{ heta}(extbf{a}| extbf{s}) \cdot (extbf{Q}^{\pi_{ heta}}(extbf{s}, extbf{a}) - extbf{V}^{\pi_{ heta}}(extbf{s})).$$

► The interdependence of $\mathbf{Q}^{\pi_{\theta}}$ and $\mathbf{V}^{\pi_{\theta}}$ in the MDP setting poses challenges in tracking the gradient value and analyzing the limiting value function.