Introduction

Algorithmique du texte

Notations et définitions

Sèverine Bérard

Définitions de base : mots et autres . . .

• À partir de mots

Période et bord

• Recherche de motif ou pattern matching

ISE-M – FDS, Université de Montpellier

Introduction

Introduction

• Le texte est l'une des représentations de l'information la plus simple et naturelle

• Les données à traiter se présentent souvent comme une suite de caractères (fichiers textes par exemple)

• Les textes sont l'objet central du traitement de texte sous toutes ses formes

• L'algorithmique du texte a des champs d'application dans la plupart des sciences et à chaque fois qu'il y a du traitement de l'information à réaliser

• La plupart des éditeurs de texte et des langages de programmation proposent des outils pour manipuler les textes (ou chaînes de caractères)

• La complexité des algorithmes de traitement de texte est un domaine de recherche très actif, où la théorie et la pratique sont très proches!

- Introduction
- Définitions de base : mots et autres . . .
- À partir de mots
- Période et bord
- Recherche de motif ou pattern matching

Définition 1 (Alphabet) Un alphabet Σ est un ensemble, non vide, fini ou infini de symboles

Exemple 1 Pour $k \ge 2$, l'alphabet $\Sigma_k = \{0, 1, \dots, k-1\}$. $\Omega = \{a, b\}$ est encore un autre alphabet

Définition 2 (Mot) Un mot (ou chaîne de caractères) de l'alphabet Σ est une liste de symboles issus de Σ

Exemple 2 15423 est un mot de l'alphabet Σ_6 , de l'alphabet Σ_{10} , mais pas de l'alphabet Σ_3 . Les mots aaa, b, ababbb sont des mots de Ω

Mot (2)

Remarques:

- 1. Un mot peut être fini ou infini
- 2. Un mot fini de longueur n peut être vu comme une application de $\{1,\dots,n\}$ vers Σ
- 3. Un mot de longueur n=0 est le mot vide, noté ϵ

Définition 3 (Ensemble des mots d'un alphabet) L'ensemble des mots finis d'un alphabet Σ est noté Σ^* . L'ensemble des mots finis non vides de l'alphabet Σ est noté Σ^+

Exemple 3
$$\Omega^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}.$$
 $\Sigma_3^* = \{\epsilon, 0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22, 000, 001, \ldots\}$

6 Mot (3)

Définition 4 (Longueur d'un mot) Si w est un mot fini, sa longueur (i.e. le nombre de symboles contenus dans w) est notée |w|

Exemple 4 Le mot six est de longueur 3 et anticonstitutionnellement de longueur 25. On a |15423|=5 et $|\epsilon|=0$

Définition 5 (Occurrence d'un symbole) Si $a \in \Sigma$ et $w \in \Sigma^*$, alors $|w|_a$ désigne le nombre d'occurrences du symbole a dans le mot w

Exemple 5 $|anticonstitutionnellement|_t = 5$, $|anticonstitutionnellement|_a = 1$, $|anticonstitutionnellement|_w = 0$

Définition 6 (Concaténation de deux mots) La concaténation de deux mots finis w et x est la juxtaposition des symboles de w et des symboles de x, notée wx ou w.x

Exemple 6 Si w = anti et x = pasti alors wx = antipasti

Remarque: La concaténation n'est pas commutative $wx \neq xw$, mais elle est associative : (xy)z = x(yz)

Remarque: La concaténation est notée comme la multiplication, c'est-à-dire que w^n désigne www...w (n fois)

L'ensemble Σ^* muni de la concaténation est un monoïde, avec comme élément identité le mot vide ϵ

Introduction

• Définitions de base : mots et autres . . .

• À partir de mots

Période et bord

Recherche de motif ou pattern matching

Facteur, préfixe, suffixe

Définition 7 (Facteur) On dit qu'un mot x est un facteur d'un $mot\ w\ s'il\ existe\ des\ mots\ y\ et\ z\ tels\ que\ w=yxz$ Un synonyme de facteur est sous-mot

Définition 8 (Préfixe) Le mot x est un préfixe du mot w s'il existe un mot y tel que w = xy

Définition 9 (Suffixe) Le mot x est un suffixe du mot w s'il existe un mot y tel que w = yx

Remarque: Les facteurs, préfixes et suffixes d'un mot w sont dits propres s'ils sont différents de w et de ϵ

Exemple 7 On considère w = algorithmique. Le mot x = algo est un préfixe de w, y = ue est un suffixe de w, et z = rithmi est un facteur de w

Sous-séquence

Notations:

- Si $w = a_1 a_2 \dots a_n$ alors pour $i \in \{1, \dots, n\}$, on définit : $w[i] = a_i$
- Si $i \in \{1, ..., n\}$ et $i \leq j \leq n$, on définit : $w[i..j] = a_i ... a_j$

Remarque: $w[i..i] = a_i$ et si j < i on définit $w[i..j] = \epsilon$

Définition 10 (Sous-séquence) Le mot x est une sous-séquence du mot w s'il existe |x|+1 mots $y_0,y_1,\ldots,y_{|x|}$ tels que $w = y_0 x[1] y_1 x[2] \dots y_{|x|-1} x[|x|] y_{|x|}$

Exemple 8 Toujours avec w = algorithmique. Les mots x = amie et y = aoiie sont des sous-séquences de w

Attention: Sous-séquence \neq sous-mot!

Bord

14

15

- Introduction
- Définitions de base : mots et autres . . .
- À partir de mots
- Période et bord
- Recherche de motif ou pattern matching

Définition 11 (Période) Une période d'un mot w est un entier 0 tel que

$$\forall i \in \{1, \dots, |w| - p\} \ w[i] = w[i + p]$$

On note period(w) la plus petite période de w

Exemple 9 Les périodes de aataataa (de longueur 8) sont 3, 6, 7 et 8

	a	\overline{a}	t	\overline{a}	\overline{a}	t	\overline{a}	\overline{a}								
Période 3				a	a	t	a	a	t	a	a					
Période 6							a	a	t	a	a	t	a	a		
Période 7														a	a	
Période 8									a	a	t	a	a	t	a	a
	1	2	3	4	5	6	7	8	,							

Propriétés des périodes

Proposition 1 Soient x un mot non vide et p un entier tel que 0 . Alors les <math>5 propriétés suivantes sont équivalentes :

- 1. L'entier p est une période de x
- 2. Il existe deux mots u et $v \neq \epsilon$ et un entier k > 0 tels que $x = (uv)^k u$ avec |uv| = p
- 3. Il existe un mot t et un entier k>0 tels que x est un préfixe de t^k avec |t|=p
- 4. Il existe trois mots u, v et w tels que x = uw = wv et |u| = |v| = p
- 5. Il existe un mot t tel que x est préfixe de tx et |t|=p

Définition 12 (Bord) Un bord du mot x est un facteur de x, différent de x, qui est à la fois un préfixe et un suffixe de x

Exemple 10 Les bords du mot aataataa sont aataa, aa, a et ϵ

Remarque : Bord et période sont des notions duales

Périodes	Bords
3	aataa
6	aa
7	a
8	ϵ

Périodes et bords du mot aataataa de longueur 8

Définition 13 (Bord maximal) Soit x un mot non vide. On note border(x) le plus grand bord de xOn dit que x est sans bord si $border(x) = \epsilon$

Proposition 2 Soit x un mot et $k\geqslant 0$ le plus petit entier tel que $border^k(x)$ est vide. Alors

$$(border(x), border^2(x), \dots, border^k(x))$$

est la suite de tous les bords de \boldsymbol{x} ordonnés par longueur décroissante, et

$$(|x| - |border(x)|, |x| - |border^2(x)|, \dots, |x| - |border^k(x)|)$$

est l'ensemble de toutes les périodes de x en ordre croissant

Remarque : Le bord maximal d'un mot est le plus long chevauchement non trivial quand on essaye de faire co $\ddot{}$ ncider x avec lui-même

Remarque: Puisque border(x) est strictement plus petit que x, si on itère le processus on finit par tomber sur le mot vide ϵ .

Remarque: On a exactement period(x) = |x| - |border(x)|

Périodicité

Plan

18

19

Les résultats suivants sont utilisés dans les preuves combinatoires sur les mots.

Introduction

• Définitions de base : mots et autres . . .

Lemme 1 (Périodicité faible) Soient p et q deux périodes d'un mot x. Si $p+q \leq |x|$, alors pgcd(p,q) est aussi une période de x.

Période et bord

• À partir de mots

Lemme 2 (Périodicité) Soient p et q deux périodes d'un mot x. Si $p+q-pgcd(p,q) \le |x|$, alors pgcd(p,q) est aussi une période de x.

• Recherche de motif ou pattern matching

- Le problème le plus fondamental en algorithmique du texte est le pattern matching, ou recherche de motif dans un texte
- Il est nécessaire pour accéder à l'information
- Il est comparable, en terme d'utilité, aux tris sur les structures de données, ou aux opérations arithmétiques . . .
- L'expression la plus simple du problème : on recherche une chaîne de caractères de longueur m, le motif ou pattern, dans une autre chaîne de caractères de longueur $n \ge m$, le texte
- La longueur du motif et celle du texte peuvent être très grandes
 ⇒ il est impératif de considérer la complexité des algorithmes

Le motif peut être décrit simplement (motif exact) ou de manière à désigner plusieurs chaînes de caractères (motif approché)

- Recherche d'expression régulière (regexp) (grep)
- Recherche de répétitions ou plus généralement de régularité (sed)
- Recherche de motifs multiples (awk)
- Recherche de motifs arborescents (lex)
- Comparaison de textes : plus longue sous-séquence commune
 (PLSC) (diff) ou calcul de la distance d'édition (diff -ed)

Recherche de motif exact

Voici le problème que nous allons aborder lors des prochaines séances :

Trouver toutes les occurrences d'un motif P de longueur m à l'intérieur d'un texte T de longueur n

- 1. Algorithme naïf
- 2. Algorithmes de Morris-Pratt (MP) et Knuth-Morris-Pratt (KMP)
- 3. Algorithme de Boyer-Moore
- 4. Tour d'horizon des autres algorithmes de recherche exacte de motif