Assignment 2

AI22MTECH02003 - Shrey Satapara

January 2022

Q57 Suppose $r_{1.23}$ and $r_{1.234}$ are sample multiple correlation coefficients of X_1 on X_2, X_3 and X_1 on X_2, X_3, X_4 respectively. Which of the following is possible?

- 1. $r_{1.23} = -0.3$ and $r_{1.234} = 0.7$
- 2. $r_{1.23} = 0.7$ and $r_{1.234} = 0.3$
- 3. $r_{1.23} = 0.3$ and $r_{1.234} = 0.7$
- 4. $r_{1.23} = 0.7$ and $r_{1.234} = -0.3$

Coefficient Of Multiple Correlation: The coefficient of multiple correlation, denoted R, is a scalar that is defined as the Pearson correlation coefficient between the predicted and the actual values of the dependent variable in a linear regression model that includes an intercept.

The coefficient of multiple correlation(R) is known as the square root of the coefficient of determination(\mathbb{R}^2)

for any multi-linear regression model \mathbb{R}^2 can be calculated using the formula given bellow

$$R^{2} = 1 - \frac{sumsquared regression(SSR)}{total sum of squares(SST)}$$
 (1)

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})}{\sum (y_{i} - \bar{y})}$$
 (2)

where,

 y_i is actual value, $\hat{y_i}$ is predicted value, and \bar{y} is mean of y values.

Solution From equation 2 we can see that value of coefficient of multiple correlation can't be negative, also if we introduce more variables, the \mathbb{R}^2 will always increase, it can never decrease. This follows mathematically from the

observation that,

$$(y - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_p - \beta_{p+1} x_{p+1})^2 \le (y - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_p)^2$$
 (3)

Hence by looking at options we can say that option $3(r_{1.23}=0.3)$ and $r_{1.234}=0.7$ is the correct answer