

ELEC3441 Hw2_gp- 32 Bit version

Bao Xinyang 3035952989

Jiang Feiyu 3035770800

This is the riscV-32 version, which all the program is run by modifying makefile:

CC = riscv32-unknown-elf-gcc

And then make clean, make

spike --ic=128:1:32 --dc=256:1:32 --l2=1024:2:128 pk {folder}

B1.4

Tabels generated with ./src/auto.py , the raw data can refer to ./src/result.csv and ./src/result_32.xlsx .

kmean has the best performance with L1 I\$, fir has the best performance with L1 D\$, mm has the best performance with L2\$, but the worst performance with L1 D\$. quicksort has the worst performance with L1 I\$, bfs matrix has the worst performance with L2\$.

MISS RATE			
Benchmark	I\$ Miss Rate	D\$ Miss Rate	L2\$ Miss Rate
mm	0.01%	25.10%	0.28%
bfs_matrix	0.14%	9.07%	15.28%
quicksort	2.15%	2.87%	0.90%
fir	0.00%	1.39%	8.94%
sobel	0.01%	2.63%	3.41%
kmean	0.00%	1.93%	1.48%
conv2D	0.06%	1.75%	4.67%
bfs_pointer	0.69%	5.38%	6.78%

- 2. L1 I\$ has a line size of 32bytes/4=8words, and capasity of $128\times1\times32=4KiB$. The cache access time is 240ps.
 - L1 D\$ has a line size 32bytes/4 = 8words, and capasity of $256 \times 1 \times 32 = 8KiB$. The cache access time is 280ps.
 - L2\$ has a line size of 128 bytes/4 = 32 words, this configuration is not included in table B.1 .

(b) cache line size = 8 words										
assoc \ size	4KB	8KB	16KB	32KB	64KB	128KB	256KB	512KB	1MB	2MB
1	0.24	0.28	0.30	0.36	0.47	0.54	0.70	0.92	1.15	1.62
2	0.51	0.53	0.54	0.56	0.60	0.65	0.75	0.96	1.27	1.80
4	N/A	0.73	0.74	0.76	0.80	0.83	0.87	1.07	1.44	2.21
8	N/A	N/A	1.13	1.14	1.18	1.21	1.24	1.66	2.24	3.14
16	N/A	N/A	N/A	1.80	1.94	1.97	1.98	2.63	3.34	4.47
32	N/A	N/A	N/A	N/A	2.55	2.37	3.56	3.85	4.65	6.35
64	N/A	N/A	N/A	N/A	N/A	4.50	5.23	5.78	6.47	7.20
	(2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									

3. For the processor without L2, the cache access time is less than 600ps, so the cycle time is 600ps. For the processor with L2, the cache access time of L2 is more than 600ps, so the cycle time is the cache access time of L2.

4. For MP, we assume it's $100+7\times5=135$, as there are 8 words in one line; For CT, we assume it's 600ps, discussed in B.1.4.3. The general formula is:

 $CPI = 1.2 + rac{D\ read\ miss + D\ write\ miss + I\ read\ miss}{I\ read\ accesses\ No.} imes rac{135}{0.6}$

Avg CPI											
Benchmark	MP	CT(ns)	[MP/CT]	CPI Base	D\$ Read Mis	D\$ Write Mis	I\$ Read Miss	I\$ Write Miss	#instructions		CPI
mm	135	6.00E-01	225	1.2	794712	10274	3179	0	43389464	0.01862584	5.39081289
bfs_matrix	135	6.00E-01	225	1.2	139465	132512	15822	0	11201166	0.02569366	6.98107449
quicksort	135	6.00E-01	225	1.2	114679	64850	373959	0	17420270	0.03177264	8.34884442
fir	135	6.00E-01	225	1.2	81170	65902	8277	0	389934707	0.0003984	1.28963943
sobel	135	6.00E-01	225	1.2	28340	33677	4336	0	48558823	0.00136645	1.50745031
kmean	135	6.00E-01	225	1.2	210643	20079	4227	0	625848798	0.00037541	1.28446693
conv2D	135	6.00E-01	225	1.2	12090	7823	3234	0	5108809	< 0.0045308	2.21943036
bfs_pointer	135	6.00E-01	225	1.2	3113	2813	2208	0	320988	0.02534051	6.90161501

Benchmark	СРІ
mm	5.39081289
bfs_matrix	6.981074488
quicksort	8.348844421
fir	1.28963943
sobel	1.507450306
kmean	1.284466927
conv2D	2.21943036
bfs_pointer	6.901615014

The average CPI is 4.24041673.

5. According to the formula, $AMAT_{L2}=HT_{L2}+MR_{L2} imes MP_{L2}$, we assume the $MP_{L12}=100+7*15=205, HT_{L2}=10$, thus:

AMAT				
Benchmark	HT	MP	MR	AMAT
mm	10	205	0.28%	10.5781
bfs_matrix	10	205	15.28%	41.33015
quicksort	10	205	0.90%	11.8532
fir	10	205	8.94%	28.3311
sobel	10	205	3.41%	16.99255
kmean	10	205	1.48%	13.03195
conv2D	10	205	4.67%	19.56735
bfs_pointer	10	205	6.78%	23,9031

6. Calculate the average CPI for the benchmarks with L2 cache:

$$CPI = 1.2 + rac{D~read~miss + D~write~miss + I~read~miss}{I~read~accesses~No.} imes rac{AMAT_{L2}}{0.6}$$

Since there is no Cache access time table for L2, we assume the CT still equals to 600ps.

Avg CPI L2											
Benchmark	AMAT	CT(ns)	[AMAT/CT]	CPI Base	D\$ Read Mis	D\$ Write Mis	I\$ Read Miss	I\$ Write Miss	#instructions		CPI
mm	10.5781	0.6	17.6301667	1.2	794712	10274	3179	0	43389464	0.01862584	1.52837658
bfs_matrix	41.33015	0.6	68.8835833	1.2	139465	132512	15822	0	11201166	0.02569366	2.96987167
quicksort	11.8532	0.6	19.7553333	1.2	114679	64850	373959	0	17420270	0.03177264	1.82767913
fir	28.3311	0.6	47.2185	1.2	81170	65902	8277	0	389934707	0.0003984	1.21881173
sobel	16.99255	0.6	28.3209167	1.2	28340	33677	4336	0	48558823	0.00136645	1.238699
kmean	13.03195	0.6	21.7199167	1.2	210643	20079	4227	0	625848798	0.00037541	1.20815384
conv2D	19.56735	0.6	32.61225	1.2	12090	7823	3234	0	5108809	< 0,0045308	1.34775963
bfs_pointer	23.9031	0.6	39.8385	1.2	3113	2813	2208	0	320988	0.02534051	2.20952795

Benchmark	СРІ
mm	1.528376576
bfs_matrix	2.969871672
quicksort	1.827679131
fir	1.218811731
sobel	1.238698998
kmean	1.208153843
conv2D	1.347759635
bfs_pointer	2.209527954

The average CPI is 1.693609943.

7. L2\$ contributes positively to system performance by improving cache hit rate, reducing miss penalty, and increasing data and instruction availability. Therefore, it can be said that L2\$ helps enhance performance.

B1.5

Full code avaliable at ./src/5.sh and ./src/analysis.ipynb , full data avaliable at ./src/dc.csv and ./src_32/ranking.xlsx .

1	Data Cache	Mean
2	32768:2:32	0.53767919
3	65536:1:32	0.5443926
4	16384:4:32	0.54574562
5	8192:08:32	0.54675435
6	32768:1:32	0.55217645

The top configurations is:

Cache Configuration	Mean Miss Rate
32768:2:32	0.537679192%

which is one of the is the optimal cache configuration for the giving benchmarks.