Crush Optimism with Pessimism: Structured Bandits Beyond Asymptotic Optimality

Kwang-Sung Jun (presenter) and Chicheng Zhang

Structured bandits

e.g., linear $\mathcal{A} = \{a^1, ..., a^K \in \mathbb{R}^d\}$ $\mathcal{F} = \{a \mapsto \theta^\top a \colon \theta \in \mathbb{R}^d\}$

• Input: Arm set \mathcal{A} , hypothesis class $\mathcal{F} \subset (\mathcal{A} \to \mathbb{R})$

"the set of possible configurations of the mean rewards"

• Initialize: The environment chooses $f^* \in \mathcal{F}$ (unknown to the learner)

For
$$t = 1, ..., n$$

- Learner: chooses an arm $a_t \in \mathcal{A}$
- Environment: generates the reward $r_t = f^*(a_t) + (zero-mean stochastic noise)$
- Learner: receives r_t
- Goal: Minimize the cumulative regret

$$\mathbb{E} \operatorname{Reg}_{n} = \mathbb{E} \left[n \cdot \left(\max_{a \in \mathcal{A}} f^{*}(a) \right) - \sum_{t=1}^{n} f^{*}(a_{t}) \right]$$

Note: stochastic bandits with realizability

Structured bandits

Why relevant?

Techniques developed here may extend to RL (e.g., ergodic RL [Ok+18])

- Naive strategy: UCB
 - $\Rightarrow \frac{K}{\Delta} \log n$ regret bound (instance-dependent)
 - Scales with the number of arms K
 - Instead, the **complexity** of the hypothesis class \mathcal{F} should appear.
- The asymptotically optimal regret is well-defined.
 - E.g., linear bandits : $c^* \cdot \log n$ for some well-defined $c^* \ll \frac{K}{\Delta}$.

The goal of this paper

Achieve the **asymptotic optimality** with improved **finite-time** regret for any \mathcal{F} .

Asymptotic optimality

- Optimism in the face of uncertainty (e.g., UCB, Thompson sampling)
 - \Rightarrow optimal asymptotic / worst-case regret in K-armed bandits.
- Linear bandits: optimal worst-case rate = $d\sqrt{n}$
- Asymptotically optimal regret? ⇒ No!

The End of Optimism?
An Asymptotic Analysis of Finite-Armed Linear Bandits

Tor Lattimore Indiana University, Bloomington

Csaba Szepesvári University of Alberta, Edmonton

(AISTATS'17)

Do they like orange or apple?

Maybe have them try lemon and see if they are sensitive to sourness..

Asymptotic optimality: lower bound

•
$$\mathbb{E} \operatorname{Reg}_n \geq c(f^*) \cdot \log n$$
 (asymptotically)
$$c(f^*) = \min_{\substack{\gamma_1, \dots, \gamma_K \geq 0 \\ x = 1}} \sum_{a=1}^K \gamma_a \cdot \Delta_a$$
 s.t. $\forall g \in \mathcal{C}(f)$,
$$\sum_{a=1}^K \gamma_a \cdot \operatorname{KL}_{\nu} \big(f(a), g(a) \big) \geq 1$$
 $\text{KL divergence with noise distribution } \nu$

- $\gamma^* = (\gamma_1^*, ..., \gamma_K^*) \ge 0$: the solution
- Suggests that we must pull arm a like $\gamma_a^* \cdot \log n$ times.
- What if $c(f^*) = 0$? Bounded regret! (except for pathological ones)

Existing asymptotically optimal algorithms

- Mostly uses forced exploration. [Lattimore+17,Combes+17,Hao+20]
 - \implies ensures **every arm**'s pull count is an **unbounded** function of n such as $\frac{\log n}{1 + \log \log n}$.

$$\implies \mathbb{E} \operatorname{Reg}_n \leq c(f^*) \cdot \log n + K \cdot \frac{\log n}{1 + \log \log n}$$

- Issues
 - 1. K appears in the regret* \implies what if K is exponentially large?
 - 2. **cannot** achieve **bounded** regret when $c(f^*) = 0$
- Parallel studies avoid forced exploration, but still depend on K. [Menard+20, Degenne+20]

Contribution

Research Question

Assume \mathcal{F} is finite. Can we design an algorithm that

- enjoys the asymptotic optimality
- adapts to bounded regret whenever possible
- does not necessarily depend on K?

Proposed algorithm: CRush Optimism with Pessimism (CROP)

- No forced exploration \(\text{\center}\)
- The regret scales not with K but with $K_{\psi} \leq K$ (defined in the paper).
- An interesting log log n term in the regret*

CROP, just the core part.

At time t,

- Maintain a confidence set $\mathcal{F}_t \subseteq \mathcal{F}$
- Do all $f \in \mathcal{F}_t$ agree on the best arm?
 - YES: pull that arm.
 - NO:
 - Compute the pessimism: $\overline{f_t} = \arg\min_{f \in \mathcal{F}_t} \max_{a \in \mathcal{A}} f(a)$
 - Compute $\gamma^* \coloneqq$ solution of the optimization problem $c(\overline{f_t})$
 - (Tracking) Pull $a_t = \arg\min_{a \in \mathcal{A}} \frac{\text{pull_count}(a)}{\gamma_a^*}$

```
Cf. optimism: \widetilde{f}_t = \arg \max_{f \in \mathcal{F}_t} \max_{a \in \mathcal{A}} f(a)
```

Most existing approaches: Replace $\overline{f_t}$ with the empirical risk minimizer.

 \Rightarrow requires forced sampling!

Preview of the paper, no details.

- Full version of CROP deals with
 - "docile" hypotheses. ⇒ bounded terms in the regret
 - "conflicting" hypotheses $\Rightarrow \log \log n$ terms
- The **risk** of naively pursuing the asymptotic optimality
 - The oracle who plays according to $\gamma^*(f^*)$ may suffer a **linear regret** in the worst-case sense (finite time).

• It may not be the end of optimism: we achieve both the worst-case and the asymptotic optimality by leveraging optimism (for a special \mathcal{F} only).

Come to our poster after this session, find me in rocket chat, or email me/Chicheng for questions/discussions!