Elettrotecnica LT - Ingegneria Informatica A.A. 2020-2021

Prof. Marco Ricci, Dr. Stefano Laureti marco.ricci@unical.it stefano.laureti@unical.it

Corso di Elettrotecnica Esercitazione 1

Testo di riferimento

Alexander C., Sadiku M., *Circuiti Elettrici*, McGraw Hill

o la versione originale in inglese

Alexander C., Sadiku M., Fundamentals of

La potenza elettrica è la variazione di energia (assorbita o erogata) nel tempo. Si misura in watt (W). watt=joule/secondo

$$p = \frac{dw}{dt}$$
 w: energia (J

$$P = \frac{\partial E}{\partial t}$$

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi$$

Per il principio di conservazione delle potenze: Potenza assorbita = - Potenza erogata

$$\sum p = 0$$

Potenza elettrica

Una batteria può fornire 85 mA per 12 ore. Quanta carica può erogare? Se la tensione al terminali è 1.2V, quanta energia può fornire?

Soluzione

q= it = 85 x10⁻³ x 12 x 60 x 60 = 3,672 C

E = pt = ivt = qv = 3672 x1.2 = 4406.4 J

Potenza elettrica

Legge di Kirchhoff per le tensioni (KVL)

 $\begin{array}{c} \text{(D)} + V_1 - V_3 - 3V = 0 \\ \text{(V)} + 2V + 5V = 0 \\ V_4 = 7V \end{array}$

Legge di Kirchhoff per le tensioni (KVL)

Esercizio Dato il circuito sottostante trovare v1,v2 e v3

$$-24 + v_1 + 10 + 12 = 0 \qquad v_1 = \underline{2V}$$

$$v_2 + 10 + 12 = 0$$
 $v_2 = -22V$ \leftarrow
 $-v_1 + 10 = 0$ $v_3 = 10V$

Serie e parallelo

Serie e parallelo

Serie e parallelo di resistori

 $CC. \bigvee = 0 \forall I$

Partitore di tensione

La tensione ai capi di una serie di resistori si ripartisce in maniera direttamente proporzionale alle loro resistenze.

Partitore di corrente

La corrente entrante in un parallelo di resistori si ripartisce in maniera inversamente proporzionale alle loro resistenze.

Esercizio Dato il circuito sottostante trovare io e vo e determinare la potenza dissipata sul resistore da $3\Omega\,$

Serie e parallelo

Soluziona

$$6\,\Omega\,\|\,3\,\Omega=\frac{6\times3}{6+3}=2\,\Omega$$

$$i = \frac{12}{4+2} = 2 \text{ A}$$

$$i_{\alpha} = \frac{6}{6+3}i = \frac{2}{3}(2 \text{ A}) = \frac{4}{3}\text{ A}$$

(Partitore di corrente al nodo a)

$$v_o = 3i_o = 4$$

$$p_o = v_o i_o = 4\left(\frac{4}{3}\right) = 5.333 \text{ W}$$

Serie e parallelo

Soluzione alternativa

$$6\,\Omega\,\|\,3\,\Omega=\frac{6\times3}{6+3}=2\,\Omega$$

$$v_o = \frac{2}{2+4} (12 \text{ V}) = 4 \text{ V}$$

$$v_o = 3i_o = 4$$
 \Rightarrow $i_o = \frac{4}{3}$ A

$$p_o = v_o i_o = 4\left(\frac{4}{3}\right) = 5.333 \text{ W}$$

Serie e parallelo Soluzione (continua) I resistori da 9 Ω 0 e 8 Ω 0 ono in parallelo, quindi vo è uguale su entrambi $v_o=9.000t_1=18.000t_2=\frac{80 \text{ V}}{1}$ Potenza fornita dal generatore $p_o=v_oi_o=180(30) \text{ mW} \rightarrow 5.4 \text{ W}$ Potenza assorbita dal resistore da 12 Ω 1 $p=iw=i_2(i_2R)=i_2^2R=(10\times 10^{-3})^2~(12.000)=1.2 \text{ W}$ Potenza assorbita dal resistore da 6 Ω 1 $p=i_2^2R=(10\times 10^{-3})^2~(6.000)=0.6 \text{ W}$ Potenza assorbita dal resistore da 9 Ω 1 $p=i_0^2R=$

Esercizio Dato il circuito sottostante trovare v1,v2,i1,i2 e la potenza dissipata sui resistori da 12Ω e 40Ω

Soluzione $\upsilon_1=5$ V, $i_1=416.7$ mA, $p_1=2.083$ W, $\upsilon_2=10$ V, $i_2=250$ mA, $p_2=2.5$ W.

Serie e parallelo

(a) 15 V, 20 V, (b) 75 mW, 20 mW, (c) 200 mW.

Serie e parallelo

Esercizio Dato il circuito sottostante trovare I e Vo

Serie e parallelo

Soluzione

$$20/(30+50) = 16, \ 24+16=40, \ 60/(20) = 15$$

$$R_{eq} = 10 + (15+25)/(40 = 10 + 20 = 30)$$

$$i = \frac{v_i}{R_{eq}} = \frac{15}{30} = \underline{0.5 \ A}$$

Se chiamiamo is la corrente nel resistore da 24 Ω e io la corrente nel resistore da 50 Ω , usando due partitori di corrente otteniamo

$$\begin{split} i_1 &= \frac{40}{40 + 40} i_1 = 0.25 \text{ A}, & i_n = \frac{20}{20 + 80} i_t = 0.05 \text{ A} \\ v_n &= 30 i_n = 30 \times 0.05 = 1.5 \text{ Y}. \end{split}$$