Homework#7

목차

- 1. Purpose of program
- 2. Experimental process
- 3. Result

1. Purpose of program

- Jacobi transformation을 이용해 matrix A의 eigenvalue&vector를 구한다.
- Jacobi transformation: 특정 rotation matrix를 반복 이용해 A의 대각성분 이외 의 성분을 0으로 만들어서 eigenvalue&vector를 구하는 방식.

2 .Experimental process

< matrix A 생성 >

Gaussian distribution(mean=0.0, standard deviation=1.0)을 이용해 11*11 matrix A를 생성한다.

< Jacobi transformation >

```
/* Jacobi transformation을 이용해 eigenvalue&vector 구하기*/
jacobi(A, N, d, v, &nrot):

/* A의 eigenvalues를 descending order로 정렬하기 */
eigsrt(d, v, N);
```

Jacobi transformation적용 후 descending order로 eigenvalue&vecotr 정렬한다.

3.Result

▶eigenvalue&vecotr 출력

eigenvalues: 1번째: 4.069288 2번째: 2.661546 3번째: 2.498589 5번째: 1.288102 6번째: 0.614441 7번째: -0.979729 9번째: -2.344517 10번째: -3.556933 11번째: -4.614582	4번째: 1.762021 8번째: −2.191173
eigenvector: 1번째: 0.527474 0.513359 -0.247665 -0.016987 0.035503 -0.343532 0.097505 -0.357878 0.279234	0.003958 0.248519
2번째: -0.175666 0.275778 0.381731 0.348510 -0.240325 0.025522 -0.426753 -0.322903 0.338499	0.070327 -0.401983
3번째: 0.201755 -0.457526 0.210202 0.468499 0.164549 0.089052 0.521188 -0.403192 0.088363	0.092173 -0.027877
4번째: 0.013513 0.301675 -0.037829 -0.228789 0.075603 0.428380 0.446098 0.269226 0.388826	0.343754 -0.353510
5번째: 0.111134 -0.240178 -0.515221 0.367920 0.408579 0.055043 -0.409839 0.241855 0.335869	0.115898 -0.080479
6번째: 0.516685 -0.009142 0.589297 0.023700 0.096399 0.049069 -0.241628 0.385598 -0.043093	0.312348 0.258709
7번째: -0.305117 -0.237325 -0.082653 -0.215738 -0.239444 0.049671 -0.106550 -0.241407 0.289798	0.575152 0.502983
8번째: -0.511656 0.396726 0.150068 0.392449 0.395029 -0.208773 0.205945 0.198312 -0.033024	0.085671 0.338340
9번째: -0.033921 -0.228370 0.107225 0.052757 -0.378748 -0.409744 0.203364 0.422001 0.548479	-0.312057 0.058520
10번째: 0.026798 0.128226 -0.002157 0.156476 -0.121891 0.683676 -0.049210 -0.018185 0.174088	-0.486237 0.454527
11번째: -0.118121 -0.141393 0.306186 -0.492607 0.600227 -0.055682 -0.117631 -0.222284 0.342896	-0.292295 -0.003040