Supply Chain Case Competition A SAS Approach

Abhishek Bagepalli Keerthi Anand Sangeetha Rajan Krithiga Rajan Sangeetha Rajan Ramya Chowdhary Polineni

Business Problem

Objective: Find the optimal purchasing and storage usage plan to minimize total cost.

Is the Data Seasonal?

Forecasting Models

Why Auto Forecasting?

Model Generation

- ESM
- ARIMAX
- UCM

Model Selection

• No holdout samples

Forecasting Models

Why Regression?

Feature Extraction

- Observation index
- Observation index squared and cubed
- Seasonal dummy variables

Model Selection

• No holdout samples

Forecasting Models

Why Stacked Model?

Model Generation

- 1 hidden layer
- 16-32 neurons
- ReLU activation function

Model Selection

• No holdout samples

Forecasting in SAS Model Studio

Champion	Model Name	WMAE	↑ WMAPE	WMASE
*	Stacked Model (NN + TS)	734.1024	2.5232	0.1142
	Panel Series Neural Network	734.1024	2.5232	0.1142
	Regression for Time Series	3,836.4822	14.1614	0.5968
	Non-seasonal Model	5,855.1871	25.0351	0.9109
	Auto-forecasting	5,855.1871	25.0351	0.9109

Date	Gallons Cooling	Gallons Main
Feb 23 2025	21,155	33,716
Mar 02 2025	22,712	33,622
Mar 09 2025	24,107	33,873
Mar 16 2025	25,355	33,843

AUTOFORECAST MODEL

Date	Gallons Cooling	Gallons Main
Feb 23 2025	8,548	33,622
Mar 02 2025	8,315	33,873
Mar 09 2025	8,081	33,843
Mar 16 2025	7,847	33,913

0K 0

May 1, 23

Jul 1, 23

Sep 1, 23

Nov 1, 23

Jan 1, 24

Date	Gallons Cooling	Gallons Main
Feb 23 2025	21,431	33,709
Mar 02 2025	26,868	32,503
Mar 09 2025	34,902	41,444
Mar 16 2025	34,588	43,452

February 16, 2025

Jan 1, 25

Mar 1, 25

Mar 1, 24

May 1, 24

Date 🖈

Jul 1, 24

Sep 1, 24

Nov 1, 24

Date	Gallons Total
Feb 23 2025	55,140
Mar 02 2025	59,371
Mar 09 2025	76,346
Mar 16 2025	78,040

Optimization Model

The OPTMODEL Procedure		
Problem Summary		
Objective Sense	Minimization	
Objective Function	Total_Cost	
Objective Type	Linear	
Number of Variables	98	
Bounded Above	0	
Bounded Below	48	
Bounded Below and Above	50	
Free	0	
Fixed	0	
Binary	50	
Integer	0	
Number of Constraints	133	
Linear LE (<=)	40	
Linear EQ (=)	44	
Linear GE (>=)	49	
Linear Range	0	
Constraint Coefficients	309	

Solution Summary	
Solver MIL	
Algorithm	Branch and Cut
Objective Function	Total_Cost
Solution Status	Optimal
Objective Value	30591.695
Relative Gap	0
Absolute Gap	0
Primal Infeasibility	0
Bound Infeasibility	0
Integer Infeasibility	0
Best Bound	30591.695
Nodes	1
Solutions Found	2
Iterations	16
Presolve Time	0.00
Solution Time	0.00

Why MILP?

Mixed Integer Linear
Programming – some
decision variables are
continuous and some are
Integers

Why Branch and Cut Algorithm?

Hybrid of Branch-and-Bound & Cutting Plane Methods

Branch-and-Bound:

Systematically explores possible values of binary/integer variables

Cutting Plane Methods:

Helps eliminate unnecessary possibilities to speed up the search

Four steps in Branch and cut -

- 1. Relaxation (Ignore Integer Constraints Initially)
- 2. Branching (Branch-and-Bound)
- 3. Cutting Planes (Eliminating Bad Solutions)
- 4. Pruning (Discarding Unnecessary Paths)

Objective – 2: Optimization Results

1. Which contract tier provides XYZ Corporation with the lowest total water cost over the next four weeks while satisfying the business requirements described?

Answer – Tier 09

2. How much gallons are being purchased from The Water Co. each week? Answer – 50,000 in first 3 weeks and 58,530 in the final week.

3. How many gallons should XYZ use from their Water Storage Tank each week?

4. What is XYZ's projected total water cost at the end of the next four weeks?

Answer – \$ 30,591.695

Objective Value	30591.695
-----------------	-----------

5. What is XYZ's projected ending Water Storage Tank inventory at the end of each week?

Objective – 2: Optimization Results

6. How much money will XYZ save by choosing the recommended contract tier over each of the alternative contract tiers?

Tier List	Amount Saved
Tier 1	9858.985
Tier 2	9058.985
Tier 3	8658.985
Tier 4	6741.32
Tier 5	4423.655
Tier 6	3264.823
Tier 7	1905.99
Tier 8	800
Tier 10	6420.975

THANK YOU