Data wrangling

Paul M. Magwene

2/7/2018

Tidy data

To facilitate downstream analyses, data should be organized in a manner such that...

- 1. Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

Real-world data is often messy

Data files you generate or will be given may. . .

- ► Be poorly organized
- Have missing values
- Contain extraneous information
- Confounds variables and labels

Example: Starting messy data

	$cond_{1,t_1}$	$cond_{1,t_2}$	 cond _n	$cond_{n,t_1}$	$cond_{n,t_2}$
gene ₁	0.01	0.8		2.1	1.4
gene ₂	1.1	NA		1.5	0.5
 gene _p	3.14	 1.4		 NA	 2.71
Beriep	5.14	1.7		14/1	2.11

Problems

- Missing column headers
- Are genes cases or variables?
- Confounds time and condition
- Blank columns used for visual organization in spreadsheet, but interferes with analysis

Tidying data: Fixing headers, dropping extraneous columns

gene.name	$cond_{1,t_1}$	$cond_{1,t_2}$	 $cond_{n,t_1}$	$cond_{n,t_2}$
gene ₁	0.01	0.8	 2.1	1.4
gene ₂	1.1	NA	 1.5	0.5
gene _p	3.14	1.4	 NA	2.71

Tidying data: converting from "wide" to "long" format

gene.name	cond.and.time	expression	
gene ₁	$cond_{1,t_1}$	0.01	
gene ₁	$cond_{1,t_2}$	8.0	
$gene_1$	$cond_{n,t_1}$	2.1	
$gene_1$	$cond_{n,t_2}$	1.4	
gene ₂	$cond_{n,t_1}$	1.1	
gene ₂	$cond_{n,t_2}$	NA	
gene _p	$cond_{n,t_1}$	NA	
gene _p	$cond_{n,t_2}$	2.71	

Tidying data: separating combined variables

gene.name	condition	time	expression
gene ₁	$cond_1$	t_1	0.01
gene ₁	$cond_1$	t_2	8.0
$gene_1$	$cond_n$	t_1	2.1
$gene_1$	$cond_n$	t_2	1.4
$gene_2$	$cond_n$	t_1	1.1
gene ₂	$cond_n$	t_2	NA
gene _p	$cond_n$	t_1	NA
gene _p	cond _n	<i>t</i> ₂	2.71

Tidy data facilitatesvisualization and analysis with minimum code

```
tidy.long %>%
  filter(gene %in% genes.of.interest) %>%
  ggplot(aes(x = time, y = expression, color = gene)) +
    geom_line() +
  facet_wrap(~ condition")
```


Figure 1: A visualization from tidy long data

Tidy, wide data is useful too if properly organized

condition	time	gene ₁	gene ₂	 gene _p
$cond_1$ $cond_1$	<i>t</i> ₁ <i>t</i> ₂	0.01 0.80	1.10 NA	 3.14 1.40
cond _n	 t ₂	1.40	0.50	 2.71

A visualization from tidy, wide data

```
tidy.wide %%
filter(!is.na(YAL022C) & !is.na(YAR018C))%>%
ggplot(aes(x = YAL022C, y = YAR018C)) +
  geom_point() +
  facet_wrap(~expt, nrow = 2, ncol = 2)
```


Exploiting both long and wide tidy data allows us to create sophisticated visualizations and understand interesting patterns in our data

Figure 3: A visualization built by combining tidy long and wide data representations