Chapter 1

Vector Spaces

Definition 1.1. A vector space over a field \mathbb{K} is a set V together with two operations, addition and scalar multiplication, that satisfy the following eight axioms:

(V1)
$$(\forall a, b \in V)(a + b = b + a)$$
.

(V2)
$$(\forall a, b, c \in V)((a+b) + c = a + (b+c)).$$

$$(V3) \ (\exists 0 \in V)(\forall a \in V)(0 + a = a).$$

$$(V4) \ (\forall a \in V)(\exists -a \in V)(a + -a = 0).$$

$$(V5) \ (\forall a \in V)(1 \cdot a = a).$$

(V6)
$$(\forall a \in V, \forall k, l \in \mathbb{K})((k \cdot l) \cdot a = k \cdot (l \cdot a)).$$

(V7)
$$(\forall a, b \in V, \forall k \in \mathbb{K})(k \cdot (a+b) = k \cdot a + k \cdot b).$$

(V8)
$$(\forall a \in V, \forall k, l \in \mathbb{K})((k+l) \cdot a = k \cdot a + l \cdot a).$$

Example 1.1 (Easy). The set of real numbers \mathbb{R} is a vector space over itself, with usual addition and multiplication as the operations.

Example 1.2 (Medium). The set of all polynomials with real coefficients, $P(\mathbb{R})$, is a vector space over the real numbers with polynomial addition and scalar multiplication defined as usual.

Example 1.3 (Hard). The set of all continuous real-valued functions defined on a closed interval [a,b], denoted by C([a,b]), is a vector space over the real numbers. The operations are function addition and scalar multiplication defined as follows: for $f,g \in C([a,b])$ and $c \in \mathbb{R}$,

$$(f+g)(x) = f(x) + g(x), \forall x \in [a, b],$$

$$(c \cdot f)(x) = c \cdot f(x), \forall x \in [a, b].$$

Proposition 1.1. Given a field \mathbb{K} , all vector spaces of dimension n over \mathbb{K} are isomorphic.

Proof. Let V and W be vector spaces of dimension n over \mathbb{K} . Let $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_n\}$ be bases for V and W, respectively. Define a function $T: V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_nw_n,$$

for $a_1, \ldots, a_n \in \mathbb{K}$. One can verify that T is a linear transformation. Since every vector in each vector space can be expressed as a linear combination of its basis vectors, T is surjective. Since the coefficients a_i are unique for each vector in the basis, T is also injective. Hence, T is a bijective linear transformation, i.e., an isomorphism, so $V \cong W$. Thus, all vector spaces of dimension n over \mathbb{K} are isomorphic.