

Welcome to this session: Counterfactual Analysis

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

What is Safeguarding?

Safeguarding refers to actions and measures aimed at protecting the human rights of adults, particularly vulnerable individuals, from abuse, neglect, and harm.

To report a safeguarding concern reach out to us via email: safeguarding@hyperiondev.com

Live Lecture Housekeeping:

 The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.

- No question is daft or silly ask them!
- For all non-academic questions, please submit a query:

www.hyperiondev.com/support

- To report a safeguarding concern reach out to us via email:
 - safeguarding@hyperiondev.com
- If you are hearing impaired, please kindly use your computer's function through Google chrome to enable captions.

Learning Outcomes

- ❖ **Define** and **Explain** Counterfactual Reasoning
- Apply Counterfactual Algorithms to Real-World Scenarios
- Evaluate the Impact of Counterfactual Analysis on Policy and Business Decisions
- Identify and Address Ethical Concerns in Counterfactual Modeling
- * Formulate and Communicate Counterfactual Insights Effectively

- A. To describe the current state of events based on observational data.
- B. To estimate the probability of an event occurring in the future.
- C. To explore "what if" scenarios by considering hypothetical alternatives to past events.
- D. To determine the correlation between two variables without considering causality.

- A. Proximity The counterfactual world should be close to reality.
- B. Plausibility The scenario must be logically possible.
- C. Complexity The counterfactual must include as many changes as possible.
- D. Minimality Only necessary changes should be introduced to generate the counterfactual.

Lecture Overview

- → Introduction
- → Algorithms & Techniques
- → Real-World Applications
- → Ethical Considerations

Introduction to Counterfactual Analysis

- Counterfactual analysis is the study of hypothetical alternatives to past events,
- Asking "What would have happened if things had been different?"
- It is fundamental in causal inference, allowing us to estimate causal effects by comparing observed outcomes with imagined counterfactual scenarios.

Why do they matter?

• Decision-Making:

 Helps policymakers, businesses, and scientists understand the impact of their decisions.

Causal Reasoning:

 Differentiates correlation from causation by isolating the effect of a specific variable.

• Prediction & Optimisation:

 Allows models to anticipate changes before applying interventions.

- A **counterfactual statement** typically takes the form:
 - "If X had happened, Y would (or would not) have happened."
- For example:
 - "If Germany had won World War II, the global political landscape would be different today."
 - "If a student had studied harder, they would have passed the exam."

 These statements describe alternative realities and are used in multiple fields to test hypotheses, simulate possible outcomes, and improve decision-making.

Counterfactual Thinking vs Causal Inference

- Causal inference:
 - Estimates the causal effect of a treatment or action
 - Uses observational data, experiments, and statistical methods
 - "Did a policy increase employment?"

- Counterfactual:
 - Constructs an alternative world to explore "what if" scenarios
 - Uses logic, simulation, and machine learning to model alternate outcomes
 - "If the policy had been stricter, how much unemployment would have occurred?"

Counterfactual Algorithms: How Do We Generate "What If" Scenarios?

Nearest Neighbor Matching (Instance-Based)

- Finds the most similar real-world case that did not experience the event.
- **Example:** Predicting whether a customer would have purchased a product if they had seen a different ad by comparing them to similar customers.

- GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders) generate synthetic counterfactuals.
- **Example:** Al reconstructs what a tumor would have looked like if a patient had undergone a different treatment.

- Uses directed graphs to model causal relationships and counterfactuals.
- **Example:** If smoking had been banned in the 1950s, what would lung cancer rates be today?

- Uses Monte Carlo simulations or agent-based modeling.
- **Example:** Predicting how traffic congestion would have changed if a new highway had been built.

- How do we ensure counterfactuals are meaningful?
 - Proximity The counterfactual world should be close to reality.
 - Plausibility The scenario should be possible within known constraints.
 - Minimality Only the necessary changes should be made to create the counterfactual.

BREAK

Real-World Applications of Counterfactual Analysis

Legal Reasoning: Establishing Liability

Courts use counterfactuals to determine whether someone is responsible for damages.

Example: If the doctor had diagnosed the disease earlier, would the patient have survived?

Business and Policy Decisions

Simulating economic and social policies.

Example: If lockdowns had started two weeks earlier, how many COVID-19 deaths would have been prevented?

Ethical Considerations in Counterfactual Reasoning

Misuse of Counterfactuals

Manipulating historical facts for political propaganda.

Example: Fake claims that elections were rigged based on unverifiable counterfactuals.

Counterfactual Fairness in Al

Ensuring AI-generated counterfactuals do not reinforce discrimination.

Example: AI models should not suggest "If you were a man, you would have gotten the job."

Privacy Risks

Counterfactual simulations may require personal data, leading to privacy concerns.

Example: Predicting whether a person would have committed a crime based on their digital footprint.

The Power and Limitations of Counterfactual Thinking

What Counterfactuals Do Well

- Help in decision-making, AI fairness, law, medicine, and economics.
- Allow us to explore alternative worlds without real-world risks.
- Improve AI explainability and causal reasoning.

What They Struggle With

- Counterfactuals are hypothetical, so they require strong assumptions.
- Not all counterfactuals are verifiable—we can never know for sure what would have happened.
- Ethical challenges arise when counterfactuals are misused for manipulation.

*Which of the following is an example of counterfactual reasoning?

- A. "If a person smokes, they are more likely to develop lung cancer."
- B. "If John had left his house earlier, he would not have missed his flight."
- C. "Higher education levels correlate with higher income."
- D. "Countries with stronger economies tend to have better healthcare systems."

In Ai and machine learning, counterfactual analysis is commonly used for which of the following?

- A. Identifying random patterns in large datasets.
- B. Generating alternative outcomes to explain algorithmic decisions.
- C. Replacing traditional statistical models with neural networks.
- D. Creating entirely new datasets without considering real-world data.

Q & A SECTION

Please use this time to ask any questions relating to the topic, should you have any.

