

IFSP – SÃO JOÃO DA BOA VISTA CIÊNCIA DA COMPUTAÇÃO

Sistemas Operacionais

SEMANA 1

Prof.: Ederson Borges

- Conceitos iniciais
- Objetivos de um SO
- Funcionalidades
- Categorias
- Histórico

- Conceitos iniciais
 - Sistemas computacionais
 - Hardware
 - Circuitos (processador, memória, etc)
 - Periféricos (Impressora, Teclado, Mouse...)
 - Software
 - Aplicativos (Editor de texto, navegadores,...)

- Conceitos iniciais
 - Sistemas computacionais
 - Intermediário entre Hardware e Software
 - Sistema Operacional
 - » É uma camada de software que opera entre o hardware e os programas aplicativos voltados ao usuário final
 - » Estrutura de software ampla e complexa
 - » Incorpora componentes de baixo nível
 - Drivers
 - Gerência de memória
 - » Incorpora componentes de alto nível
 - Programas utilitários
 - Interface gráfica

Introdução a Sistemas Operacionais

Conceitos iniciais

Introdução a Sistemas Operacionais

Objetivos de um SO

- Abstração
 - Acesso a recursos de hardware de forma transparente, sem que exista a necessidade de conhecer detalhes específicos

- Gerência

 Controlar processos, processadores, memória de forma que não ocorra esgotamento de recursos ou parada de aplicativos

- Abstração
 - Prover interfaces de acesso aos dispositivos
 - Disco, CD, DVD, arquivos
 - Tornar os aplicativos independentes de hardware
 - Mesmo com o surgimento de novas formas de armazenamento, os aplicativos não necessitam ser alterados
 - Disco rígido
 - CD
 - DVD
 - Pen Drive
 - SSD
 - **—** ...

- Abstração
 - Definir interfaces de acesso homogêneas para dispositivos com tecnologias distintas
 - Não existe a necessidade de conhecer o tipo de dispositivo que está sendo acessado para abrir/ler um arquivo

Introdução a Sistemas Operacionais

Gerência

- Todos os aplicativos acabam utilizando algum hardware para executar suas tarefas
- Existem mais aplicativos (tarefas) do que processadores no computador
 - Uso distribuído entre as tarefas sendo executadas
- Alguns periféricos só podem ser acessados por um aplicativo por vez
 - Impressora só imprime um trabalho por vez

- Gerência
 - Proteção
 - Atualmente ataques a servidores têm se tornado ações recorrentes
 - O sistema operacional deve ser capaz de gerenciar as ações de forma a não permitir que um único usuário tenha recursos ilimitados, impedindo que novas tarefas sejam executadas

- Funcionalidades dos SO
 - Gerência do processador
 - Ou gerência de processos
 - Distribuição **justa** do tempo de uso do processador
 - Capacidade de "mascarar" a existência de um processador por processo
 - Sistemas mais interativos, tarefas não devem afetar outras tarefas

- Funcionalidades dos SO
 - Gerência de memória
 - Áreas de memória são alocadas para aplicativos de forma a não existir concorrência entre aplicações por mesmas áreas
 - Torna o sistema mais seguro e evita respostas inapropriadas de aplicações

- Funcionalidades dos SO
 - Gerência de memória
 - Alocação transparente de espaço em disco para memória quando memória RAM se torna insuficiente
 - Atraso nas trocas de dados (normalmente, disco é mais lento)
 - Memória virtual: desvincular endereços de memória vistos por cada aplicação dos endereços acessados pelo processador

- Funcionalidades dos SO
 - Gerência de dispositivos
 - Um usuário (sendo ele final ou programador) não deve ter que se preocupar como é feito o acesso a uma placa de rede, impressora ou diferentes dispositivos de armazenamento

- Funcionalidades dos SO
 - Gerência de dispositivos
 - Também conhecido como gerência de entrada/saída
 - Interação com cada dispositivo é feito por drivers, sistema operacional cria uma interface única de acesso para dispositivos com mesmo objetivo
 - Diferentes dispositivos para armazenamento de dados

- Funcionalidades dos SO
 - Gerência de arquivos
 - Cria um sistema de arquivos e diretórios
 - Define a interface de acesso e regras de uso
 - Permissões
 - Sistemas como UNIX
 - Consideram arquivos também os acessos a rede

- Funcionalidades dos SO
 - Além disso:
 - Interface gráfica
 - Suporte a redes
 - Multimídia
 - Fontes de energia...

Atividades

- 1. Quais os dois principais objetivos de um sistema operacional?
- 2. Por que a abstração de recursos é importante para os desenvolvedores de aplicações? Ela tem alguma utilidade para os desenvolvedores do próprio sistema operacional?
- 3. A gerência de tarefas permite compartilhar o processador, executando mais de uma aplicação ao mesmo tempo. Identifique as principais vantagens trazidas por essa funcionalidade e os desafios a resolver para implementá-la.

- Categorias
 - Batch (de lote)
 - Sistemas antigos
 - Utilizam uma fila para execução dos programas
 - Não existia interação com o usuário
 - Atualmente é utilizado para sistemas que não requerem interação com o usuário
 - O termo "em lote" também se refere a um conjunto de comando que deve ser executado em sequência

- Categorias
 - De rede
 - Suporte a operação em rede
 - Recursos localizados em computadores na rede são disponibilizados a aplicações locais
 - Impressora em rede
 - Arquivos em servidor de arquivos

- Categorias
 - Distribuído
 - Recursos disponíveis a toda rede de forma transparente
 - O usuário interage com uma aplicação, mas esta não está necessariamente executando em seu computador
 - Servidor X do Linux

- Categorias
 - Multiusuário
 - Sistema que suporta a identificação de usuário, considerando o dono de determinado recurso
 - Arquivos, processos, área de memória
 - Grande parte dos sistemas atuais

- Categorias
 - Servidor
 - Sistema que permite gestão eficiente de grandes quantidades de recursos
 - Memória
 - Disco
 - Processadores
 - Trabalha com prioridades e limites de uso por usuário

- Categorias
 - Desktop
 - Sistema operacional chamado "de mesa"
 - Usuário doméstico e corporativo
 - Atividades corriqueira e mais simples

- Categorias
 - Móvel
 - A computação móvel é a mais atual
 - Utilizado em dispositivos portáteis
 - Celulares, tablets, computadores compactos
 - Utilizam sensores
 - Bluetooth, GPS, NFC
 - Fazem gestão de eficiência energética

- Categorias
 - Embarcado
 - Embutido ou embedded
 - Hardware com poucos recursos de processamento e memória
 - Normalmente utilizados em sistemas de automação
 - Equipamentos domésticos
 - TVs, Leitores de DVDs, Centrais de alarme

- Categorias
 - Tempo real
 - Sistemas mais complexos
 - O tempo é o item essencial
 - Seu tempo de resposta é sempre previsível
 - Não necessariamente rápido
 - Sistema é construído para minimizar aguardos indesejados

- Histórico dos SOs
 - Anos 40
 - Execução de um programa único
 - Não existe SO

Introdução a Sistemas Operacionais

Histórico dos SOs

- Anos 40

ENIAC

- Electronic Numerical Integrator and Computer
- Criado pela
 Universidade da
 Pensilvânia
- Precisão para tabelas de faixa e trajetória das armas
- 1943 concluído em 1946
- Foi operado até 1955

- Histórico dos SOs
 - Anos 40

- Histórico dos SOs
 - Anos 50
 - Os sistemas de computação fornecem "bibliotecas de sistema"
 - Encapsulam o acesso aos periféricos
 - Facilitam a programação
 - Programa "monitor" auxilia a carga e descarga de aplicações e/ou dados entre a memória e periféricos
 - » Geralmente leitoras de cartão perfurado, fitas magnéticas e impressoras de caracteres

- Histórico dos SOs
 - Anos 50

- Surgimento do transistor:
 - Univac 1101, um equipamento de 12 metros de comprimento e 6,1 metros de largura que usava 2.700 tubos a vácuo para seus circuitos lógicos

Introdução a Sistemas Operacionais

Histórico dos SOs

Anos 60

Do tamanho de um frigobar, o DEC PDP-8 foi a máquina com microprocessador mais vendida dos anos 1960

UNIX

- AT&T Bell Labs
 - Software mais objetivo e simplificado
 - Mainframes da época
 - 1969 => o sistema operacional proprietário apelidado de UNIX

- Histórico dos SOs
 - Anos 80
 - Com o desenvolvimento dos circuitos LSI (Large Scale Integration), chips que contém milhares de transístores, surgiu a idade do computador pessoal, com preços mais acessíveis

Introdução a Sistemas Operacionais

Histórico dos SOs

- Histórico dos SOs
 - 1981: a Microsoft lança o MS-DOS, um sistema operacional comprado da empresa Seattle Computer Products em 1980.
 - 1984: a Apple lança o sistema operacional Mac OS 1.0 para os computadores da linha Macintosh, o primeiro a ter uma interface gráfica totalmente incorporada ao sistema.
 - 1985: primeira tentativa da Microsoft no campo dos sistemas operacionais com interface gráfica, através do MS-Windows 1.0.
 - 1987: Andrew Tanenbaum, um professor de computação holandês, desenvolve um sistema operacional didático simplificado, mas respeitando a API do UNIX, que foi batizado como Minix.
 - 1987: IBM e Microsoft apresentam a primeira versão do OS/2, um sistema multitarefa destinado a substituir o MS-DOS e o Windows. Mais tarde, as duas empresas rompem a parceria; a IBM continua no OS/2 e a Microsoft investe no ambiente Windows.

Introdução a Sistemas Operacionais

Histórico dos SOs

 1991: Linus Torvalds, um estudante de graduação finlandês, inicia o desenvolvimento do Linux, lançando na rede Usenet o núcleo 0.01, logo abraçado por centenas de programadores ao redor do mundo.

- 1993:

- Windows NT, o primeiro sistema 32 bits da empresa, que contava com uma arquitetura interna inovadora.
- UNIX de código aberto FreeBSD e NetBSD.
- Apple lança o Newton OS, considerado o primeiro sistema operacional móvel, com gestão de energia e suporte para tela de toque.
- 1995: a AT&T lança o Plan 9, um sistema operacional distribuído
- 1999: VMWare lança um ambiente de virtualização para sistemas operacionais de mercado

- Histórico dos SOs
 - 2001: a Apple lança o MacOS X, derivado da família UNIX BSD
 - 2005: Minix 3, um sistema operacional micro-núcleo para aplicações embarcadas.
 - Faz parte do firmware dos processadores Intel mais recentes
 - 2006: lançamento do Windows Vista
 - **–** 2007:
 - iPhone e seu sistema operacional iOS
 - Android, no núcleo Linux para dispositivos móveis
 - 2010: Windows Phone, SO para celulares pela Microsoft
 - 2015: Microsoft lança o Windows 10

Atividades

- 1. O que caracteriza um sistema operacional de tempo real? Quais as duas classificações de sistemas operacionais de tempo real e suas diferenças?
- 2. Sobre as afirmações a seguir, relativas aos diversos tipos de sistemas operacionais, indique quais são incorretas, justificando sua resposta:
- a. Em um sistema operacional de tempo real, a rapidez de resposta é menos importante que a previsibilidade do tempo de resposta
- b. Um sistema operacional multi-usuários associa um proprietário a cada recurso do sistema e gerencia as permissões de acesso a esses recursos.
- c. Nos sistemas operacionais de rede a localização dos recursos é transparente para os usuários
- d. Um sistema operacional de tempo real deve priorizar as tarefas que interagem com o usuário
- e. Um sistema operacional embarcado é projetado para operar em hardware com poucos recursos