QUANTUM CRYPTOGRAPHY

Master of Logic, University of Amsterdam, 2017
TEACHERS: Jan Czajkowski, Yfke Dulek, and Christian Schaffner

Homework problem set 1

You do not have to hand in these exercises, they are for practicing only.

Problem 1:1

Purity of a quantum state is defined as ${\rm Tr} \rho^2$. Consider a d-dimensional quantum state $\rho \in \mathbb{C}^{d \times d}$.

- **(a)** What is the maximal value of purity, what class of states achieve this value.
- **(b)** What is the minimal value of purity, what state achieves this value.
- (c) Any qubit density matrix can be represented by the Bloch vector \vec{r} , satisfying $|\vec{r}| \leq 1$. For any quantum state $\tau \in \mathbb{C}^{2\times 2}$ we have that $\tau = \frac{1}{2} (\mathbb{1} + \vec{r} \cdot \vec{\sigma})$, where $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)^T$ is the vector of Pauli matrices. How does purity of τ relate to \vec{r} .

Problem 2: Minimum-error measurement of qubits

Alice is given one of the states $|\theta\rangle:=\cos\left(\frac{\theta}{2}\right)|0\rangle+\sin\left(\frac{\theta}{2}\right)|1\rangle, |-\theta\rangle=\cos\left(\frac{\theta}{2}\right)|0\rangle-\sin\left(\frac{\theta}{2}\right)|1\rangle$, each with probability $p:=\frac{1}{2}$. Design a measurement $\{\Pi_+,\Pi_-\}$, where $\Pi_+,\Pi_-\succeq 0$ and $\Pi_++\Pi_-=\mathbb{1}$, such that the probability of error is minimal. The probability of error is defined as $p_e:=p\mathrm{Tr}(\Pi_-|\theta\rangle\langle\theta|)+(1-p)\mathrm{Tr}(\Pi_+|-\theta\rangle\langle-\theta|)$.

Problem 3: Parity measurements (Exercise 1.5.1)

Use a projective measurement to measure the parity, in the Hadamard basis, of the state $|00\rangle\langle00|$. Compute the probabilities of obtaining measurement outcomes "even" and "odd", and the resulting post-measurement states. What would the post-measurement states have been if you had first measured the qubits individually in the Hadamard basis, and then taken the parity?

Problem 4: Partial trace (Exercise 1.6.1)

Verify that the state $\rho_A = \sum_x (\mathbbm{1} \otimes \langle u_x|) \rho_{AB} (\mathbbm{1} \otimes |u_x\rangle)$ does not depend on the choice of basis $\{|u_x\rangle\}$. [Hint: first argue that if two density matrices ρ , σ satisfy $\langle \phi | \rho | \phi \rangle = \langle \phi | \sigma | \phi \rangle$ for all unit vectors $|\phi\rangle$ then $\rho = \sigma$. Then compute $\langle \phi | \rho_A | \phi \rangle$, and use the POVM condition $\sum_x M_x = \mathbbm{1}$ to check that you can get an expression independent of $\{|u_x\rangle\}$. Conclude that ρ_A itself does not depend on $\{|u_x\rangle\}$.]

Problem 5: Robustness of GHZ and W states (Problem 6.1)

(a) Now we generalize to the N-qubit case. As you might expect, $|GHZ_N\rangle=\frac{1}{\sqrt{2}}(|0\rangle^{\otimes N}+|1\rangle^{\otimes N})$.

What is the overlap $\operatorname{Tr}\Big(\ket{GHZ_{N-1}}\bra{GHZ_{N-1}}\operatorname{tr}_N(\ket{GHZ_N}\bra{GHZ_N})\Big)$ in the limit $N\to\infty$?

(b) $|W_N\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^N \underbrace{|0\cdots 010\cdots 0\rangle}_{\text{1 at the } i\text{-th place}}$ is an equal superposition of all N-bit

strings with exactly one 1 and N-1 0's

What is the overlap $\mathrm{Tr}\Big(\ket{W_{N-1}}\bra{W_{N-1}}\mathrm{tr}_N\left(\ket{W_N}\bra{W_N}\right)\Big)$ in the limit $N\to\infty$?