

FIG. 1 PRIOR ART

NON-CENTERLINE SLOT

FIG. 2 PRIOR ART

בוכ ז

SCHEMATIC FOR ENERGY BALANCE ON AN INFINITESIMAL GUIDE SECTION

EFFECT OF USING A LINEAR SLOT PROFILE

NORMALIZED LOCAL DISSIPATION: LINEAR SLOT WITH SAME DISSIPATION AT BOTH ENDS

LINEAR SLOT DISSIPATION PROFILE AS A FUNCTION OF STARTING SLOT HEIGHT ,

F/G. 5

PLOTS OF THE RANGE OF CURVED-SLOT-COMPENSATED WAVEGUIDE AS A FUNCTION OF h_0/b , THE RATIO OF THE STARTING SLOT HEIGHT TO THE GUIDE BREADTH. CURVES ARE DRAWN FOR DIFFERENT VALUES OF ϵr "t IN METERS. THE VALUES OF ϵr "t PLOTTED ARE LISTED BELOW. THE CURVES DROP TO LOWER VALUES AS ϵr "t INCREASES.

b=0.072 GUIDE BREADTH IN m
f=2.45·10⁹ FREQUENCY IN Hz
$$5\cdot10^{-6}$$
 $5\cdot10^{-6}$ $5\cdot10^{-5}$ $5\cdot10^{-4}$ $5\cdot10^{-3}$ 0.05

FIG. 6

THE SHAPE OF A SLOT CURVE FOR A GIVEN εr"t AND h_o/b

 $\varepsilon rt := 10^{-4}$ WEB IMAGINARY DIELECTRIC CONSTANT TIMES THICKNESS IN METERS

NUMBER OF DATA POINTS IN A SLOT N := 1000**CURVE PLOT**

i := 0..N-1ITERATION PARAMETER FOR RANGE PLOTS

homin := .15 STARTING RATIO OF h/b

$$zmax := \frac{b \cdot \left(\frac{1}{\sin(\pi \cdot homin)^2} - 1\right)}{2 \cdot \omega \cdot Z \cdot \varepsilon_o \cdot \varepsilon rt} \quad MAXIMUM VALUE \\ OF COMPENSATED z$$

VALUES FOR SLOT HEIGHT PLOTS $z_i := .99 \cdot z_{\text{max}} \cdot \frac{J}{N-1}$

$$h_{j} := \left(\frac{t}{\pi}\right) \cdot asin \begin{bmatrix} \frac{1}{sin(\pi \cdot homin)^{2}} - 2 \cdot \omega \cdot Z \cdot \epsilon_{o} \cdot \frac{\epsilon rt}{b} \cdot z_{j} \end{bmatrix}^{\frac{-1}{2}} \begin{array}{c} SLOT \\ HEIGHT VALUES \\ NORMALIZED TO b \\ AS A FUNCTION OF z \\ 0.4 \\ h_{j} & 0.3 \\ 0.2 \\ 0.1_{0} & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\ z_{j} & & & & \\ \end{array}$$

HEIGHT OF THE SLOT DIVIDED BY THE GUIDE BREADTH AS A FUNCTION OF GUIDE LENGTH IN METERS

> zmax = 14.443 RANGE OF COMPENSATION **IN METERS**

RATIO OF THE E FIELD INTENSITY AT THE GUIDE CENTER TO ITS INITIAL VALUE AS A FUNCTION OF z FOR THE SAME PARAMETERS AS IN THE SLOT SHAPE CURVE

$$\text{EoS}_j := \left(1 - 2 \cdot \omega \cdot Z \cdot \epsilon_o \cdot \frac{\epsilon rt}{b} \cdot z_j \cdot \sin(\pi \cdot \text{homin})^2\right) \begin{array}{l} \text{THE RATIO OF Eo SQUARED} \\ \text{TO Eoo TO SQUARED AS A} \\ \text{FUNCTION OF } Z. \end{array}$$

PLOT OF THE RELATIVE CENTER GUIDE FIELD INTENSITY VERSUS GUIDE LENGTH FOR AN IMS OPTIMUM COMPENSATED SLOTTED WAVEGUIDE. THE z AXIS IS IN METERS AND THE y AXIS IS INTENSITY RATIOED TO ITS VALUE AT z=0.

εrt=1·10⁻⁴ WEB IMAGINARY DIELECTRIC CONSTANT TIMES THICKNESS (m)

homin=0.15 INITIAL h/b

zmax=14.443 RANGE OF COMPENSATION IN METERS

FIG. 8

M :=4 NUMBER OF WEB RUNS

R=1.5 MAXIMUM RATIO OF ert OPERATION TO ert DESIGNED

m=0..M-1 ITERATION PARAMETER

$$\begin{split} &\mathsf{D0}_j := \mathsf{r}_0 \cdot \left(1 - 2 \cdot \omega \cdot Z \cdot \epsilon_o \cdot \frac{\epsilon rt}{b} \cdot \mathsf{z}_j \cdot \mathsf{sin}(\pi \cdot \mathsf{homin})^2\right)^{r_0 - 1} \\ &\mathsf{D1}_j := \mathsf{r}_1 \cdot \left(1 - 2 \cdot \omega \cdot Z \cdot \epsilon_o \cdot \frac{\epsilon rt}{b} \cdot \mathsf{z}_j \cdot \mathsf{sin}(\pi \cdot \mathsf{homin})^2\right)^{r_1 - 1} \\ &\mathsf{D2}_j := \mathsf{r}_2 \cdot \left(1 - 2 \cdot \omega \cdot Z \cdot \epsilon_o \cdot \frac{\epsilon rt}{b} \cdot \mathsf{z}_j \cdot \mathsf{sin}(\pi \cdot \mathsf{homin})^2\right)^{r_2 - 1} \\ &\mathsf{D3}_j := \mathsf{r}_3 \cdot \left(1 - 2 \cdot \omega \cdot Z \cdot \epsilon_o \cdot \frac{\epsilon rt}{b} \cdot \mathsf{z}_j \cdot \mathsf{sin}(\pi \cdot \mathsf{homin})^2\right)^{r_3 - 1} \end{split}$$

PLOTS OF THE WEB HEAT DISSIPATION RELATIVE TO THE HEAT DISSIPATION AT z=0 IN THE DESIGNED WAVEGUIDE AS A FUNCTION OF WAVEGUIDE LENGTH IN METERS. DIFFERENT CURVES HAVE DIFFERENT RATIOS OF ϵ rt OPERATING TO ϵ rt DESIGNED. THE ACTUAL RATIOS ARE LISTED BELOW AS r.

ert=1·10 -4 DESIGNED WEB IMAGINARY DIELECTRIC CONSTANT TIMES THICKNESS (m)

zmax=14.443 RANGE OF COMPENSATION IN METERS

homin=0.15 INITIAL h/b **FIG. 9**

TWO SERPENTINE MICROWAVE APPLICATOR CONFIGURATIONS: (a) SHORT AT TERMINATION END; (b) DUMMY LOAD AT TERMINATION END.

FIG. 10(a)

FIG. 10(b)

DEFINITION OF SLOT (AND PAPER) LOCATION WITHIN THE WAVEGUIDE.

FIG. 11

IDEAL SLOT SHAPES fo h_o/b = 0.1,0.25,0.4. **FIG. 13**

L/L0. EFFICIENCY VS. IDEAL DIMENSIONLESS LENGTH

FIG. 14

EFFICIENCY (AT IDEAL LENGTH) VS. INITIAL HEIGHT FIG. 15

DEPENDS ON THE PAPER BASIS WEIGHT AND ITS MOISTURE CONTENT, THE SLOT HEIGHT PROFILE, h(z), WHICH GIVES UNIFORM DRYING

ူ: ယ် THE OPTIMAL SLOT PROFILE IS

 $h(z) = (b/\pi)\sin^{-1}[(1/\sin^2(\pi h_0/b)-2Z\omega\epsilon_0\epsilon_n^{"}tz/b)^{-1/2}]$

WHERE h₀ REPRESENTS THE SLOT HEIGHT AT THE SOURCE SIDE OF THE WEB AND z IS THE DISTANCE ALONG THE WAVEGUIDE (CD).

PLOTS OF THE OPTIMAL SLOT HEIGHT DIVIDED BY THE WAVEGUIDE HEIGHT AS A FUNCTION OF DISTANCE IN METERS FROM A MICROWAVE SOURCE AT 2.45 GHz IN AN S-BAND WAVEGUIDE. THE SOLID LINE IS DESIGNED FOR A 200 g/m² BOARD AT 10% MOISTURE, WHEREAS THE DOTTED LINE IS FOR 7% MOISTURE.

F/G. 18

FIG. 19

The second way

FIG. 20A

FIG. 20B

FIG. 21A

FIG. 21B