```
In [200]:
            ₩ #Name: Paul Galvez
                #Date: 4/27/23
                #Course: DSC 550
                #Week 7 Part 1
In [201]:

    #importing libraries

               import pandas as pd
                import numpy as np
               import matplotlib.pyplot as plt
            ▶ #importing the housing CSV data
In [202]:
               df = pd.read_csv('HousingData.csv')
In [203]:

    df.head()

    Out[203]:
                   Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fenc
                0 1
                               60
                                         RL
                                                    65.0
                                                                        NaN
                                                                                  Reg
                                                                                                     AllPub ...
                                                            8450
                                                                  Pave
                                                                                                LvI
                                                                                                                      0
                                                                                                                           NaN
                                                                                                                                  Nal
                   2
                               20
                                         RL
                                                   80.0
                                                            9600
                                                                  Pave
                                                                        NaN
                                                                                  Reg
                                                                                                LvI
                                                                                                     AllPub ...
                                                                                                                           NaN
                                                                                                                                  Nal
                2 3
                               60
                                         RL
                                                   68.0
                                                           11250
                                                                  Pave
                                                                        NaN
                                                                                   IR1
                                                                                                     AllPub ...
                                                                                                                           NaN
                                                                                                                                  Nal
                3
                               70
                                         RL
                                                   60.0
                                                                        NaN
                                                                                   IR1
                                                                                                     AllPub ...
                                                            9550
                                                                  Pave
                                                                                                Lvl
                                                                                                                           NaN
                                                                                                                                  Nal
                 4 5
                               60
                                         RL
                                                   84.0
                                                          14260
                                                                        NaN
                                                                                   IR1
                                                                                                     AllPub ...
                                                                                                                           NaN
                                                                                                                                  Nal
                                                                  Pave
                                                                                                Lvl
                5 rows × 81 columns
```

In [204]: ▶ df.describe()

Out[204]:

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrAre
count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1452.00000
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808	1984.865753	103.68526
std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	30.202904	20.645407	181.06620
min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000	1950.000000	0.00000
25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.000000	1967.000000	0.00000
50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.000000	1994.000000	0.00000
75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.000000	2004.000000	166.00000
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000	2010.000000	1600.00000

8 rows × 38 columns

In [205]:

▶ #Drop the "Id" column and any features that are missing more than 40% of their values.

df.drop(['Id'], axis=1, inplace=True)
df.dropna(axis=1, thresh=len(df)*.4, inplace=True)

In [206]:

#the updated dataframe without the ID and the updated features that are missing #40% of their values column shown below

df

Out[206]:

<u></u>	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	 Enclosed
0	60	RL	65.0	8450	Pave	Reg	LvI	AllPub	Inside	Gtl	
1	20	RL	80.0	9600	Pave	Reg	LvI	AllPub	FR2	Gtl	
2	60	RL	68.0	11250	Pave	IR1	LvI	AllPub	Inside	Gtl	
3	70	RL	60.0	9550	Pave	IR1	LvI	AllPub	Corner	Gtl	
4	60	RL	84.0	14260	Pave	IR1	LvI	AllPub	FR2	Gtl	
1455	60	RL	62.0	7917	Pave	Reg	LvI	AllPub	Inside	Gtl	
1456	20	RL	85.0	13175	Pave	Reg	LvI	AllPub	Inside	Gtl	
1457	70	RL	66.0	9042	Pave	Reg	LvI	AllPub	Inside	Gtl	
1458	20	RL	68.0	9717	Pave	Reg	LvI	AllPub	Inside	Gtl	
1459	20	RL	75.0	9937	Pave	Reg	LvI	AllPub	Inside	Gtl	

1460 rows × 76 columns

In [208]: ▶ #the dataframe below with the missing data for the median value and mode

df

Out[208]:

		MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfig	LandSlope	 Enclosed
	0	60	RL	65.0	8450	Pave	Reg	Lvl	AllPub	Inside	Gtl	
	1	20	RL	80.0	9600	Pave	Reg	LvI	AllPub	FR2	Gtl	
	2	60	RL	68.0	11250	Pave	IR1	LvI	AllPub	Inside	Gtl	
	3	70	RL	60.0	9550	Pave	IR1	LvI	AllPub	Corner	Gtl	
	4	60	RL	84.0	14260	Pave	IR1	LvI	AllPub	FR2	Gtl	
14	155	60	RL	62.0	7917	Pave	Reg	LvI	AllPub	Inside	Gtl	
14	15 6	20	RL	85.0	13175	Pave	Reg	LvI	AllPub	Inside	Gtl	
14	1 57	70	RL	66.0	9042	Pave	Reg	LvI	AllPub	Inside	Gtl	
14	158	20	RL	68.0	9717	Pave	Reg	LvI	AllPub	Inside	Gtl	
14	1 59	20	RL	75.0	9937	Pave	Reg	LvI	AllPub	Inside	Gtl	

1460 rows × 76 columns

```
    df.isna().sum()

In [209]:
    Out[209]: MSSubClass
                                0
              MSZoning
                                0
              LotFrontage
              LotArea
              Street
                                0
              MoSold
                                0
              YrSold
              SaleType
                                0
              SaleCondition
                                0
              SalePrice
              Length: 76, dtype: int64
In [210]:
           ▶ # Convert the categorical columns to dummy variables.
              df = pd.get_dummies(df, drop_first=True)
```

In [211]: ► df.head(10)

Out[211]:

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2
0	60	65.0	8450	7	5	2003	2003	196.0	706	(
1	20	80.0	9600	6	8	1976	1976	0.0	978	(
2	60	68.0	11250	7	5	2001	2002	162.0	486	(
3	70	60.0	9550	7	5	1915	1970	0.0	216	C
4	60	84.0	14260	8	5	2000	2000	350.0	655	C
5	50	85.0	14115	5	5	1993	1995	0.0	732	C
6	20	75.0	10084	8	5	2004	2005	186.0	1369	C
7	60	69.0	10382	7	6	1973	1973	240.0	859	32
8	50	51.0	6120	7	5	1931	1950	0.0	0	C
9	190	50.0	7420	5	6	1939	1950	0.0	851	(

10 rows × 237 columns

In [212]: ► df.shape

Out[212]: (1460, 237)

In [213]: ► df.describe

Out[213]:	<pre><bound \<="" built="" methor="" pre=""></bound></pre>	od NDFram	e.describe	of M	ISSubClas:	s Lot	Frontage	e LotArea	OverallQual	OverallCond	Year
	0	60	65.0	8450		7		5 20	03		
	1	20	80.0	9600		6			76		
	2	60	68.0	11250		7			01		
	3	70	60.0	9550		7			15		
	4	60	84.0	14260		8			00		
	• • •	• • •	• • •	• • •	•	• •	•		• •		
	1455	60	62.0	7917		6			99		
	1456	20	85.0	13175		6			78		
	1457	70	66.0	9042		7			41		
	1458	20	68.0	9717		5		6 19	50		
	1459	20	75.0	9937		5		6 19	65		
	YearR	emodAdd	MasVnrArea	BsmtFinSF	1 BsmtF:	inSF2	S	aleType_Cor	LI \		
	0	2003	196.0	76		0), <u> </u>	0		
	1	1976	0.0	97		0			0		
	2	2002	162.0	48		0	• • •		0		
	3	1970	0.0	21		0	• • •		0		
	4	2000	350.0	65		0	• • •		0		
					•			•	• •		
	1455	2000	0.0		0	0			0		
	1456	1988	119.0	79	00	163			0		
	1457	2006	0.0	27	' 5	0			0		
	1458	1996	0.0	4	.9	1029			0		
	1459	1965	0.0	83	80	290	• • •		0		
	SaleT	ype_ConLw	. SaleTyne	New SaleT	vne Oth	SaleT	ype_WD	\			
	0	9PC_CONEN		0	9PC_0CH 0	Juici	γρс <u>_</u> ND 1	`			
	1	0		0	0		1				
	2	0		0	0		1				
	3	0		0	0		1				
	4	0		0	0		1				
		_		_			_				
	1455			0			1				
	1455	·		•	•		_				
	1456	0		0	0		1				
	1457	0		0	9		1				
	1458	0		0	0		1				
	1459	0	l	0	0		1				
	SaleC	ondition_	AdjLand Sa	leConditio	n_Alloca	Sale	Condition	on_Family	\		
	0		0		0			0			
	1		0		0			0			

```
2
                                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                                                                                                                   0
                 3
                 4
               1455
                                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                                                                                                                    0
               1456
               1457
               1458
                1459
                                                SaleCondition_Normal SaleCondition_Partial
                 0
                                                                                                                                                    1
                1
                                                                                                                                                    1
                                                                                                                                                                                                                                                                               0
                 2
                                                                                                                                                    1
                 3
                 4
                                                                                                                                                    1
                 . . .
                1455
               1456
               1457
                                                                                                                                                    1
               1458
                                                                                                                                                    1
               1459
                                                                                                                                                    1
               [1460 rows x 237 columns]>
#Split the data into a training and test set, where the SalePrice column is the target.
              X = df.drop(['SalePrice'], axis=1)
              y = df['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

X_train, X_test, y_train, y_test_size=0.3, random_state=0)

X_train, X_test_size=0.3, random_state=0.3, ran
```

In [214]:

In [215]:

In [216]:

```
#Run a linear regression and report the R2-value and RMSE on the test set.
In [217]:
              from sklearn.linear model import LinearRegression
              from sklearn.metrics import mean squared error
              from sklearn.metrics import r2 score
           ▶ | model linear regression = LinearRegression()
In [218]:
              model linear regression.fit(X train, y train)
              y pred = model linear regression.predict(X test)
In [219]:
           #Calculate the RMSE and R2-value.
              rmse = np.sqrt(mean_squared_error(y_test, y_pred))
              r2 = r2_score(y_test, y_pred)
              print(f'The RMSE value is: {rmse}')
              print(f'The R2 value is: {r2}')
              The RMSE value is: 47734.04133858645
              The R2 value is: 0.6643774377493321
In [220]:
           #Fit and transform the training features with a PCA so that 90% of the variance is retained
              from sklearn.decomposition import PCA
              my_pca = PCA(.9)
              my pca.fit(X train)
              X_train_pca = pca.transform(X_train)
              X test pca = pca.transform(X test)
In [221]:
           #How many features are in the PCA-transformed matrix?
              print('The total number of features in the PCA matrix is: {X train pca.shape[1]}')
              The total number of features in the PCA matrix is: {X train pca.shape[1]}
```

```
▶ #Repeat step 7 with your PCA transformed data.
In [222]:
              model linear regression = LinearRegression()
              model linear regression.fit(X train pca, y train)
             y_pred = model_linear_regression.predict(X_test_pca)
In [223]:
           mean squared error pca = np.sqrt(mean squared error(y test, y pred))
              r2 pca = r2 score(y test, y pred)
              print(f'The RMSE value is:: {mean squared error pca}')
              print(f'The R2 value is:: {r2 pca}')
              The RMSE value is:: 79269.9564392479
              The R2 value is:: 0.07442422802806481
           #Take your original training features (from step 6) and apply a min-max scaler to them.
In [224]:
              #Find the min-max scaled features in your training set that have a variance above 0.1
In [225]:
           | from sklearn.preprocessing import MinMaxScaler
              scaler = MinMaxScaler()
              scaler.fit(X train)
              X train scaled = scaler.transform(X train)
             X test scaled = scaler.transform(X test)
In [226]:
           # Transform but DO NOT fit the test features with the same steps applied in steps 11 and 12.
              # Repeat step 7 with the high variance data.
              model linear regression = LinearRegression()
              model linear regression.fit(X train scaled, y train)
              y pred = model linear regression.predict(X test scaled)
           mean squared error scaled = np.sqrt(mean squared error(y test, y pred))
In [227]:
              r2 scaled = r2 score(y test, y pred)
              print(f'The RMSE value is: {mean squared error scaled}')
              print(f'R2 value is: {r2 scaled}')
              The RMSE value is: 956664900243605.1
              R2 value is: -1.3480761307724928e+20
```