Math 20250 Abstract Linear Algebra

Cong Hung Le Tran March 23, 2023 Course: MATH 20250: Abstract Linear Algebra

Section: 44

Professor: Zijian Yao

At: The University of Chicago

Quarter: Spring 2023

Course materials: Linear Algebra by Hoffman and Kunze (2nd Edition), Linear Algebra Done

Wrong by Treil

Disclaimer: This document will inevitably contain some mistakes, both simple typos and serious logical and mathematical errors. Take what you read with a grain of salt as it is made by an undergraduate student going through the learning process himself. If you do find any error, I would really appreciate it if you can let me know by email at conghungletran@gmail.com.

Contents

Lecture	e 1: Abelian Group, Field, Equivalence	1
1.1	Abelian Group	1
1.2	Finite Fields	2
1.3	Vector Spaces in brief	2

21 Mar 2023 20:10

Lecture 1: Abelian Group, Field, Equivalence

Goal. Vector spaces and maps between vector spaces (linear transformations)

1.1 Abelian Group

Definition 1.1 (Abelian Group). A pair (A, *) is an **Abelian group** if A is a set and * is a map: $A \times A \mapsto A$ (closure is implied) with the following properties:

1. (Additive Associativity)

$$(x*y)*z = x*(y*z), \forall \, x,y,z \in A$$

2. (Additive Commutativity)

$$x * y = y * x, \forall x, y \in A$$

3. (Additive Identity)

$$\exists \ 0 \in A : 0 * x = x * 0 = x, \forall \ x \in A$$

4. (Additive Inverse)

$$\forall x \in A, \exists (-x) \in A : x * (-x) = (-x) * x = 0$$

Remark. (* is just a symbol, soon to be +). Typically write as (A, +) or simply A

Example.

- 1. $(\mathbb{Z}, +)$ is an Abelian group
- 2. $(\mathbb{Q}, +)$ is an Abelian group
- 3. (\mathbb{Z}, \times) is **NOT** an Abelian group (because identity = 1, and 0 does not have a multiplicative inverse)
- 4. (\mathbb{Q}, \times) is also not an Abelian group (0 does not have a multiplicative inverse)
- 5. $(\mathbb{Q}\setminus\{0\},\times)$ is an Abelian group (identity is 1)
- 6. (\mathbb{N}, \times) is NOT a group

Remark. A crucial difference between \mathbb{Z} and $\mathbb{Q}\setminus\{0\}$ is that $\mathbb{Q}\setminus\{0\}$ has both + and \times while \mathbb{Z} only has +. This gives us inspiration for the definition of a field!

Definition 1.2 (Field). A field is a triple $(F, +, \cdot)$ such that

- 1. (F, +) is an Abelian group with identity 0
- 2. (Multiplicative Associativity)

$$(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in F$$

3. (Multiplicative Commutativity)

$$x \cdot y = y \cdot x, \forall x, y \in F$$

4. (Distributivity) (+ and \cdot talking in the following way)

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z), \forall x, y, z \in F$$

5. (Multiplicative Identity)

$$\exists 1 \in F : 1 \cdot x = x, \forall x \in F$$

6. (Multiplicative Inverse)

$$\forall x \in F \backslash \{0\}, \exists y \in F : x \cdot y = 1$$

Remark. In a field $(F, +, \cdot)$, assume that $1 \neq 0$

Example.

- 1. $(\mathbb{Z},+,\cdot)$ is not a field (because property 6 failed) 2. $(\mathbb{Q},+,\cdot)$ is a field

1.2 Finite Fields

Recall. $p \in \mathbb{Z}$ is a prime if $\forall m \in \mathbb{N} : m | p \Rightarrow m = 1$ or m = p

Definition 1.3 (\mathbb{F}_p for p prime).

$$\mathbb{F}_p = \{[0], [1], \dots, [p-1]\}$$

Then define the operations for $[a], [b] \in \mathbb{F}_p$

$$[a]+[b]=[a+b\mod p]; [a]\cdot [b]=[a\cdot b\mod p]$$

Then \mathbb{F}_p is a field, but this is not trivial.

Lemma 1.1.

- 1. $(\mathbb{F}_p, +)$ is an Abelian group

Example. $\mathbb{F}_5 = \{[0], [1], [2], [3], [4]\}$

$$[1] + [2] = [3], [2] + [4] = [1], [4] + [4] = [3], [2] + [3] = [0]$$

Then it is trivial that [0] is additive identity, and every element has additive inverse. [1] is multiplicative identity, and every element except [0] has multiplicative inverse. Therefore \mathbb{F}_5 is indeed a field.

Vector Spaces in brief

Intuition. The motivation for vector spaces and maps between them (linear transformations) is essentially to solve linear equations. Let $(\mathbb{K}, +, \cdot)$ be a field. We are then interested in systems of linear equations / K; if there are solutions, and if there are how many.

We then inspect a system of linear equations of n unknowns, m relations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots = \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where $a_{ij}, b_k \in \mathbb{K}$.

Example.

$$2x_1 - x_2 + x_3 = 0 (1)$$

$$x_1 + 3x_2 + 4x_3 = 0 (2)$$

over some field \mathbb{K} .

Explanation. Then, $3 \times (1) + (2)$ (carrying out the operations in \mathbb{K}) yields

$$7x_1 + 7x_3 = 0$$

$$7 \cdot (x_1 + x_3) = 0$$
(3)

Then, we have 2 cases.

Case 1: $7 \neq 0$ in \mathbb{K} , then $\exists 7^{-1} \in \mathbb{K} : 7^{-1} \cdot 7 = 1$.

Then (3) $\Rightarrow 7^{-1} \cdot (7 \cdot (x_1 + x_3)) = 0$

$$((7^{-1}) \cdot 7) \cdot (x_1 + x_3) = 0$$
$$1 \cdot (x_1 + x_3) = 0$$
$$\Rightarrow x_1 + x_3 = 0$$
$$\Rightarrow x_1 = -x_3$$

Let $x_3 = a \Rightarrow x_1 = -a \Rightarrow x_2 = 2x_1 + x_3 = -a$. $\Rightarrow \{(-a, -a, a) | a \in \mathbb{K}\}$ are solutions.

Case 2: 7 = 0 in \mathbb{K} (e.g. in \mathbb{F}_7) then (3) is automatically true. Let $x_1 = a, x_3 = b \Rightarrow x_2 = 2x_1 + x_3 = 2a + b$ $\Rightarrow \{(a, 2a + b, b) | a, b \in \mathbb{K}\}$ are solutions.

Remark. When doing $3 \times (1) + (2)$, how do we know if we're gaining or losing information? e.g in \mathbb{F}_7 we can just multiply by 7 and get nothing new! Therefore some kind of "equivalence" concept must be introduced!

Definition 1.4 (Linear combination). Suppose $S = \{\Sigma a_{ij}x_j = b_i\}_{1 \leq i \leq m, 1 \leq j \leq n}$ is a system of linear equations over \mathbb{K} . $S' = \{\Sigma a'_{ij}x_j = b_i\}_{1 \leq i \leq m, 1 \leq j \leq n}$ is another system of linear equations (not too important how many equations there are in S'). Then, S' is a **linear combination** of S if every linear equations $\Sigma a'_{ij}x_j = b_i$ in S' can be obtained as linear combinations of equations in S, i.e. $\Sigma a'_{ij}x_j = b'_i$ is obtained through

$$\Sigma c_i(\Sigma a_{ij}x_i) = \Sigma c_ib_i, 1 \leq i \leq m$$
, for some $c_i \in \mathbb{K}$

Definition 1.5 (Equivalence). 2 systems S, S' are equivalent if S' is a linear combination of S and vice versa. Denote $S \sim S'$

Example. In previous example, $S = \{(1), (2)\}, S' = \{(1), (3)\}, S'' = \{(2), (3)\}, S''' = \{(3)\}.$ Then, $S \not\sim S'', S \sim S'$ always, $S \sim S''$ only if 3 is invertible

Explanation

From S', (1) = (1), $(2) = (3) - 3 \cdot (1)$. Therefore S is a linear combination of S'. $\Rightarrow S \sim S'$. From S'', (2) = (2), $3 \cdot (1) = (3) - (2)$. If $3^{-1} \in \mathbb{K}$ (i.e. $3 \neq 0$) then $(1) = 3^{-1}((3) - (2))$ is thus recoverable from S'', then $S \sim S''$. Otherwise, no.