МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра вакуумной электроники

Отчёт о выполненной лабораторной работе Конвективная диффузия в молекулярно-электронных преобразователях

Выполняли студенты:

Дмитрий Нураев, Артём Логинов, Константин Марков Группа Б04-005

Цель работы:

Исследование процессов протекания тока в молекулярно-электронном преобразователе в стационарных и нестационарных условиях.

Теоретические сведения

Молекулярно-электронный преобразователь

Принципиальная схема молекулярно-электронного преобразователя, сокращенно МЭП:

Он представляет собой электродный узел — 2, помещённый в диэлектрическую трубку — 1, заполненную раствором электролита — 3. Внутри электродного узла установлены четыре плоских сетчатых электрода (аноды — 5 и катоды — 6) , разделённые пористыми перегородками — 4.

Математическое описание переноса тока в электрохимической ячей-ке

Расчёт тока, текущего через ЭЯ, сводится к решению уравнений гидродинамики и диффузии:

$$\frac{\delta v}{\delta t} + (v\nabla)v = -\frac{\nabla p}{\rho} + j\Delta v \tag{1}$$

$$divv = 0 (2)$$

$$\frac{\delta n}{\delta t} = D\Delta n + (\eta, \nabla)n \tag{3}$$

, где v (векторная) — скорость электролита, р — давление, ρ — плотность электролита, η — вязкость жидкости, n — концентрация носителей заряда (в нашем случае — ионов трийода), D — коэффициент их диффузии, j — плотность потока.

В системе с плоскими электродами эти уравнения являются одномерными.

Граничные условия:

- 1. Отсутствие потока активных ионов через диэлектрические поверхности.
- 2. Уравнения, определяющие скорости электрохимических реакций в зависимости от концентрации ионов и скачка потенциала на границе электрод/электролит.

Дополнительно накладывается интегральное соотношение, выражающее закон сохранения количества активных ионов:

$$\int \int \int n(x, y, z, t) dV = V n_0 \tag{4}$$

, где V – объем электролита, n_0 – равновесная концентрация.

Стационарный случай

Величина диффузионного тока, текущего через электрод, определяется выражением:

$$I_D = -eSD\nabla n \tag{5}$$

, где S – площадь электродов.

Электрохимическая ячейка с плоскими проницаемыми электродами:

Выражение для тока с учётом граничных условий:

$$I_D = -\frac{eSDn_0}{d}th(\frac{eU}{2k_{\rm B}T})$$

При $U\gg \frac{k_{\rm B}T}{e}$ ток практически не зависит от напряжения и близок к своему предельному значению:

 $I_0 = -\frac{eSDn_0}{d}$

Конвективная диффузия

Если жидкость в ЭЯ приходит в движение под действием каких-либо внешних сил, то, наряду с диффузионным, появляется также конвективный ток, обусловленный увлечением ионов движущейся жидкостью. В линейном приближении конвективный ток пропорционален скорости движущейся жидкости V и определяется соотношением:

$$I_k = eSnV$$

Точные расчёты дают формулу

$$I = -\frac{eSDn_0}{d}th(\frac{eU}{2kT})[1 - exp(i\omega t)(1-i)\sqrt{\frac{1}{2\omega D}}V_0th((1+i)\sqrt{\frac{\omega}{2D}}d)]$$

Зависимость модуля выходного тока МЭП от частоты в условиях конвективной диффузии:

Ход работы

Принципиальная схема экспериментальной установки

Экспериментальные данные и их обработка

U_{a-k} , MB	$U_{\text{цап}}$, мВ	I, мк A
0	152909.6	152.9
2	162627.4	162.6
5	173128.8	173.1
10	188476.4	188.5
15	199225.1	199.2
20	203762.2	203.8
30	215871	215.9
40	225410.4	225.4
50	234004.3	234
100	283023.5	283
150	333842.2	333.8

U на выходе, мВ	Частота, Гц
27116	0.1
26794	0.2
26309	0.5
21952	1
20983	2
14203	5
10168	10
6779	20

(b) Измерение АЧХ

(а) Измерение ВАХ

Далее построим графики BAX исследуемого МЭП и AЧX в двойном логарифмическом масштабе:

Вывод

Исследовали процессы протекания тока в молекулярно-электронном преобразователе в стационарных и нестационарных условиях. Построили графики ВАХ и АЧХ для экспериментальных данных МЭП.