Hamming Codes: A Hardware Implementation

Tyler Ewald, Zayn Patel, Manu de Tezanos Pinto, Tane Koh

What is a Hamming Code?

- Length 4 messages to length 7 codewords
 - Codewords are n and messages are k

What is a Hamming Code?

- Length 4 messages to length 7 codewords
- Single error correcting

Hamming Codes from Multiple Perspectives

Message to Codeword

Generator Matrix

Hardware

1100 — 1100 _ _ _

To get p_1 we will use: $m_1 + m_2 + m_4 \mod 2$

To get
$$p_1$$
 we will use: $m_1 + m_2 + m_4 \mod 2$
1 + 1 + 0 mod 2 = 0

To get p_2 we will use: $m_1 + m_3 + m_4 \mod 2$

To get
$$p_2$$
 we will use: $m_1 + m_3 + m_4 \mod 2$
1 + 0 + 0 mod 2 = 1

To get p_3 we will use: $m_2 + m_3 + m_4 \mod 2$

To get
$$p_3$$
 we will use: $m_2 + m_3 + m_4 \mod 2$
1 + 0 + 0 mod 2 = 1

Final Encoding of 1100 with mod 2

We can use the general (n, k) equations to verify what we learned earlier:

- $k \le 2^r 1 r$ with r parity bits
- $n \ge 2^r 1$ with r parity bits

XOR operator is the same as mod 2

Parity bit equations with mod 2

$$p_1 = m_1 + m_2 + m_4 \mod 2$$

$$p_2 = m_1 + m_3 + m_4 \mod 2$$

$$p_3 = m_2 + m_3 + m_4 \mod 2$$

XOR operator is the same as mod 2

Parity bit equations with mod 2

$$p_1 = m_1 + m_2 + m_4 \mod 2$$

$$p_2 = m_1 + m_3 + m_4 \mod 2$$

$$p_3 = m_2 + m_3 + m_4 \mod 2$$

Parity bit equations with XOR

$$p_1 = m_1 \oplus m_2 \oplus m_4$$

$$p_2 = m_1 \oplus m_3 \oplus m_4$$

$$p_3 = m_2 \oplus m_3 \oplus m_4$$

Hamming Code Efficiency

In general we say the efficiency of a code is:

k (message length)

n (codeword)

Hamming Code Efficiency

k (message length)

In general we say the efficiency of a code is:

n (codeword)

Hamming (7,4)
$$Rate = \frac{4}{7} = 57.1\%$$

Hamming (15,11) $Rate = \frac{11}{15} = 73.3\%$
Hamming (31,26) $Rate = \frac{26}{31} = 83.9\%$

High rate means more efficiency of redundancy bits. But, only one error can be corrected.

Hamming Codes from Multiple Perspectives

Message to Codeword

Generator Matrix

Hardware

Facts about Generator Matrices

- 1x4 matrix message
- 4x7 generator matrix
 - 1x7 codeword
- Matrix multiplication is faster and more efficient than manual adding of parity bits
- 1-1 and onto mapping from message to codeword
- Easy to store information

Encoding 1100 using Generator Matrix

These are the parity bits. They follow the same equations from earlier.

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 1 & 1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 & 1 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
+ 0 \times 0 & + 0 \times 0 & + 0 \times 0 & + 1 \times 0 & + 1 \times 0 & + 1 \times 0 \\
1 & 1 & 0 & 0 & 0 & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 1 & 0 \times 1 & 1 \times 0 \\
+ 0 \times 0 & + 0 \times 0 & + 1 \times 0 & + 1 \times 0 & + 1 \times 0 \\
1 & 1 & 0 & 0 & 0 & 2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0 \\
1 \times 0 \times 0 & 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 0 & 1 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 0 & 1 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 0 \times 0 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 0 \times 1 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 0 \times 1 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 0 \times 1 & 1 \times 0 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 & 1 \times 0 \\
0 \times 0 \times 0 \times 1 & 0 \times 1 & 1 \times 0 \\
0 \times 0 \times 0 \times 1 & 0 \times 1 & 1 \times 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 \\
0 \times 0 \times 0 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times 1 & 0 \times$$

(1100011)

Facts about Parity Check Matrices

- 3x7 parity check matrix
- 7x1 codeword
 - 3x1 error ("syndrome")
- Identifies the error bit very easily
- Easy to store information

Facts about the Syndrome Vector

- Output of parity check matrix multiplied by codeword, transposed
- If there is no error the syndrome is a 3x1 zero vector
- If there is an error the syndrome is a 3x1 vector identical to a column in parity check matrix

Decoding with the Parity Check Matrix (General Form)

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad = \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The syndrome identifies no error column so we received the correct codeword.

The syndrome identifies the error column (and index of bit string) and we flip this bit.

Hamming Codes from Multiple Perspectives

Message to Codeword

Generator Matrix

Hardware

Arduino Encoding

```
void ProcessMessage(String message)
    // Process command only if it is 4 bits long
    if (message.length() == 4)
     // Show user what message they are sending
     Serial.print("Sending message: ");
     Serial.println(message);
     // Encode the message to local variables
     String bit_1 = message.substring(0, 1);
     String bit 2 = message.substring(1, 2);
     String bit_3 = message.substring(2, 3);
     String bit 4 = message.substring(3, 4);
     if (bit_1 == "1")
       digitalWrite(og bit 1, HIGH);
     else if (bit 1 == "0")
       digitalWrite(og_bit_1, LOW);
```

```
if (bit_2 == "1")
  digitalWrite(og bit 2, HIGH);
else
 digitalWrite(og bit 2, LOW);
if (bit 3 == "1")
 digitalWrite(og_bit_3, HIGH);
else
  digitalWrite(og_bit_3, LOW);
if (bit 4 == "1")
  digitalWrite(og bit 4, HIGH);
else
  digitalWrite(og_bit_4, LOW);
```

Output Serial Monitor ×

Message (Enter to send message to 'Arduino UNO R4 Minima' on 'COM8'

Received: 11111111111111

Invalid code. Received: 1101

Sending message: 1101

Message Sent Received: 1111

Sending message: 1111

Message Sent Received: 0000

Sending message: 0000

Message Sent

Parity Bit Generation

Mathematical Approach with mod 2

$$p_1 = m_1 + m_2 + m_4 \mod 2$$

$$p_2 = m_1 + m_3 + m_4 \mod 2$$

$$p_3 = m_2 + m_3 + m_4 \mod 2$$

Parity bit equations with XOR

$$p_1 = m_1 \oplus m_2 \oplus m_4$$

$$\mathsf{p}_2 = \mathsf{m}_1 \oplus \mathsf{m}_3 \oplus \mathsf{m}_4$$

$$p_3 = m_2 \oplus m_3 \oplus m_4$$

Formation using gates

Error Detection

Linear Algebra Approach

Hardware Approach

Parity bit equations with XOR

$$\mathsf{E}_1 = (\mathsf{\sim}\mathsf{m}_1 \oplus \mathsf{\sim}\mathsf{m}_2) \oplus (\mathsf{\sim}\mathsf{m}_4 \oplus \mathsf{\sim}\mathsf{p}_1)$$

$$\mathsf{E}_2 = (\mathsf{\sim}\mathsf{m}_1 \oplus \mathsf{\sim}\mathsf{m}_3) \oplus (\mathsf{\sim}\mathsf{m}_4 \oplus \mathsf{\sim}\mathsf{p}_2)$$

$$\mathsf{E}_{3} = (\sim \mathsf{m}_{2} \oplus \sim \mathsf{m}_{3}) \oplus (\sim \mathsf{m}_{4} \oplus \sim \mathsf{p}_{3})$$

Detection using gates

Error Correction

Linear Algebra Approach

Hardware Approach

Logic Equations

$$m_1 = (E_1 \times E_2 \times \bar{E}_3) \oplus \sim m_1$$

$$m_2 = (E_1 \times \bar{E}_2 \times E_3) \oplus \sim m_2$$

$$m_3 = (\bar{E}_1 \times E_2 \times E_3) \oplus \sim m_3$$

$$m_4 = (E_1 \times E_2 \times E_3) \oplus \sim m_4$$

Correction using gates

Hardware Demo

Sources we used

 https://docs.google.com/document/d/1dmfaHM1yQhStLPJ9fYwTUpYEeFIZNqfZtUVphUjjrq s/edit?usp=sharing

Extra slides

The syndrome identifies the wrong error column (column 1) when column 6 and 7 caused the error.