

deeplearning.ai

Supervised ML and Sentiment Analysis

Outline

- Review Supervised ML
- Build your own tweet classifier!

Supervised ML (training)

Sentiment analysis

Tweet I am happy because I am learning NLP

Negative: 0

Logistic regression

Sentiment analysis

Summary

Features, Labels → Train → Predict

Extract features → Train LR → Predict sentiment

deeplearning.ai

Vocabulary and Feature Extraction

Outline

- Vocabulary
- Feature extraction
- Sparse representations and some of their issues

Vocabulary

Tweets:

[tweet_1, tweet_2, ..., tweet_m]

Lam happy because I am learning
NLP
...

I hated the movie

$$V =$$

[I, am, happy, because, learning, NLP, ... hated, the, movie]

I am happy because I am learning NLP

A lot of zeros! That's a sparse representation.

Problems with sparse representations

Summary

Vocabulary: set of unique words

• Vocabulary, Text——— [1 0 1 .. 0 .. 1 .. 0]

 Sparse representations are problematic for training and prediction times

deeplearning.ai

Negative and Positive Frequencies

Outline

Populate your vocabulary with a frequency count for each class

Corpus

I am happy because I am learning

NLP I am happy

I am sad, I am not learning NLP

I am sad

Vocabulary I am happy because learning NLP sad

not

Positive tweets

Negative tweets

I am happy because I am learning

NLP Lam happy I am sad, I am not learning NLP
I am sad

Positive tweets

I am <u>happy</u> because I am learning

NLP
I am <u>happy</u>

Negative tweets
I am_sad, I am_not learning NLP
I am_sad

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
<u> </u>	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	2
not	0	1

freqs: dictionary mapping from (word, class) to frequency

Summary

- Divide tweet corpus into two classes: positive and negative
- Count each time each word appears in either class

→ Feature extraction for training and prediction!

deeplearning.ai

Feature extraction with frequencies

Outline

 Extract features from your frequencies dictionary to create a features vector

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
<u> </u>	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	2
not	0	1

freqs: dictionary mapping from (word, class) to frequency

freqs: dictionary mapping from (word, class) to frequency

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	_1_
NLP	_1_
sad	-0-
not	-0-

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Vocabulary	NegFreq (0)
I	3
am	3
happy	0
because	0
learning	_1_
NLP	-1 -
sad	-2-
not	-1

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

I am sad, I am not learning NLP

$$X_{m} = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

$$X_{m} = [1, 8, 11]$$

Summary

Dictionary mapping (word, class) to frequencies

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

→ Cleaning unimportant information from your tweets

Preprocessing

Outline

- Removing stopwords, punctuation, handles and URLs
- Stemming
- Lowercasing

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

Stop words
and
is
are
at
has
for
a

Punctuation	
,	
•	
:	
!	
u	
ſ	

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are tuning a GREAT AI modeLat https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

Stop words
and
is
<u>are</u>
<u>at</u>
has
for
<u>a</u>

Punctuation	
7	
0	
0	
!	
((
(

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai

Stop words
and
is
а
at
has
for
of

Preprocessing: Handles and URLs

@YMourri @AndrewYNg tuning GREAT Al model https://deeplearning.ai tuning GREAT Al model

Preprocessing: Stemming and lowercasing

Preprocessed tweet: [tun, great, ai, model]

Summary

- Stop words, punctuation, handles and URLs
- Stemming
- Lowercasing
- Less unnecessary info
 Better times

deeplearning.ai

Putting it all together

Outline

- Generalize the process
- How to code it!

General overview

I am Happy Because i am learning NLP @deeplearning [happy, learn, nlp] Feature Extraction Bias ← [1, 4, → Sum negative 2] frequencies Sum positive frequencies

General overview

General Implementation

Summary

- Implement the feature extraction algorithm for your entire set of tweets
- Almost ready to train!

deeplearning.ai

Logistic Regression Overview

Outline

- Supervised learning and logistic regression
- Sigmoid function

Overview of logistic regression

Overview of logistic regression

$$h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} \underbrace{\frac{\widehat{\Theta}_{0.6}}{\widehat{\Xi}_{0.4}}}_{0.4}$$

Overview of logistic regression

Summary

- Sigmoid function
- $\bullet \quad \theta^T x^{(i)} \ge 0 \longrightarrow h(x^{(i)}, \theta) \ge 0.5$

, positive

 $\bullet \quad \theta^T x^{(i)} < 0 \longrightarrow h(x^{(i)}, \theta) < 0.5$

, negative

deeplearning.ai

Logistic Regression: Training

Outline

- Review the steps in the training process
- Overview of gradient descent

Training LR

Training LR Initialize parameters $h = h(X, \theta)$ Classify/predict $\nabla = \frac{1}{m} X^T (h - y)$ Get gradient Until good enough $\theta = \theta - \alpha \nabla$ Update $J(\theta)$ Get Loss

Summary

- Visualize how gradient descent works
- Use gradient descent to train your logistic regression classifier
- → Compute the accuracy of your model

deeplearning.ai

Logistic Regression: Testing

Outline

- Using your validation set to compute model accuracy
- What the accuracy metric means

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\begin{array}{c} h(X_{val}, \theta) \\ pred = h(X_{val}, \theta) \geq 0.5 \end{array} \begin{bmatrix} \begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \geq 0.5 = \begin{bmatrix} \underbrace{0.3 \geq 0.5} \\ 0.8 \geq 0.5 \\ \hline 0.5 \geq 0.5 \\ \vdots \\ pred_m \geq 0.5 \end{bmatrix} = \begin{bmatrix} \underbrace{0} \\ \underline{1} \\ \underline{1} \\ \vdots \\ pred_m \end{bmatrix}$$

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

$$\begin{bmatrix} \underline{0} \\ \underline{1} \\ 1 \\ \vdots \\ pred_m \end{bmatrix} == \begin{bmatrix} \underline{0} \\ \underline{0} \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} \\ \frac{1}{1} \\ \vdots \\ pred_m == Y_{val_m} \end{bmatrix}$$

$$Y_{val} = egin{bmatrix} 0 \ 1 \ 1 \ pred = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

$$(Y_{val} == pred) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$accuracy = \frac{4}{5} = 0.8$$

Summary

 $\bullet X_{val} Y_{val} \longrightarrow$

Performance on unseen data

• Accuracy $\longrightarrow \sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$

To improve model: step size, number of iterations, regularization, new features, etc.

deeplearning.ai

Logistic Regression: Cost Function

Outline

 Overview of the logistic cost function, AKA the binary cross-entropy function

$$J(\theta) = \left(-\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta))]\right)$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$0 \quad \text{any} \quad 0$$

$$1 \quad 0.99 \quad \text{-o}$$

$$1 \quad \text{-o} \quad \text{-inf}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$\frac{y^{(i)} h(x^{(i)}, \theta)}{1 \text{ any } 0}$$

$$0 \quad 0.01 \quad \sim 0$$

$$0 \quad \sim 1 \quad -\inf$$

$$J(\theta) = \bigcap_{m=1}^{\infty} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + \left[1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}, \theta) \right) \right]$$

Summary

- Strong disagreement = high cost
- Strong agreement = low cost
- Aim for the lowest cost!