Homework

Subject: Introduction to Nuclear and Particle Physics

Due date: Friday 20th January 2023 6pm

Submission type: on paper

Credits: 12 points, Each exercise is worth 1 point.

This homework counts as a quiz. The aim of the homework is to practice some calculations and better understand nuclear decay. Copying solutions from any source will result in a 0 grade.

Nuclear mass data table: https://www-nds.iaea.org/amdc/ame2020/mass_1.mas20.txt

- 1. Find the decay constant (disintegration constant) for ⁹¹Sr if the half life is 9.70 h.
- 2. A radioactive sample initially contains 2.4×10^{-2} mol of a radioactive material whose half-life is 6.00 h. How many moles of the same radioactive material remain after 6.00 h? After 12.0 h? After 36.0 h?
- 3. An old campfire is uncovered during an archaeological dig. Its charcoal is found to contain less than 1/1000 the normal amount of 14 C. Estimate the minimum age of the charcoal, noting that 2^{10} =1024 and the half life of 14 C is 5700 years.
- 4. Find the Q value (total released energy) for the following decays:

247
Bk \rightarrow 243 Am + α

$$^{242}\mathrm{Pu} \rightarrow ^{238}\mathrm{U} + \alpha$$

$$^{208}\text{Po} \rightarrow ^{196}\text{Pt} + ^{12}\text{C}$$

- 5. Find the kinetic energy for the daughter particles in exercise 4.
- 6. In the decay of 242 Cm to 238 Pu, the maximum α energy is 6112.9 ± 0.1 keV. Given the mass of 238 Pu = 238.049558 u, find the mass of 242 Cm.
- 7. Use the semi-empirical mass formula to estimate the α -decay energy of $^{242}\mathrm{Cf}$ and compare with the measured value of 7.351MeV. Do the two values agree, what is the reason?
- 8. Compute the Q values for the following decays:

$$^{65}\mathrm{Ni}
ightarrow ^{65}\mathrm{Cu}$$

$$^{10}\mathrm{C} \rightarrow {}^{10}\mathrm{B}$$

- 9. The maximum kinetic energy of the positron spectrum emitted in the decay $^{11}\text{C} \rightarrow ^{11}\text{B}$ is 1.983 ± 0.003 MeV. Use this information and the known mass of $^{11}\text{B}{=}11.009305$ u to calculate the mass of ^{11}C .
- 10. In the decay of 47 Ca to 47 Sc, what energy is given to the neutrino when the electron has a kinetic energy of 1.100 MeV
- 11. Classify the following decays according to degree of forbiddenness (e.g. first forbidden decay, second forbidden decay etc.):
 - (a) ${}^{89}\mathrm{Sr}(\frac{5}{2}^+) \to {}^{89}\mathrm{Y}(\frac{1}{2}^-)$
 - (b) ${}^{36}\text{Cl}(2^+) \rightarrow {}^{36}\text{Ar}(0^+)$
 - (c) $^{26}\text{A1}(5^+) \rightarrow ^{26}\text{Mg*}(2^+)$
 - (d) ${}^{26}\mathrm{Si}(0^+) \rightarrow {}^{26}\mathrm{A1}^*(0^+) \rightarrow {}^{26}\mathrm{Mg}(0^+)$
- 12. Add the missing parts of the decays:
 - (a) $\bar{\nu} + {}^{3}\text{He} \rightarrow$
 - $(b)^6 \text{He} \rightarrow {}^6 \text{Li} + \text{e}^-$
 - (c) $e^- + {}^8B \rightarrow$
 - (d) ν + $^{1}2C$ \rightarrow
 - (e) $^{40}\mathrm{K} \rightarrow \nu$
 - (f) $^{40}\mathrm{K} \rightarrow \bar{\nu}$