High-Throughput Sequencing Course Count Models for RNA-Seq

Biostatistics and Bioinformatics

Summer 2019

Two Approaches for Analysis of RNA-Seq

- ► Two-stage method: Convert counts to "Expression" and then use statistical methods for microarrays (e.g., t-test)
- ► One-stage method: Relate the counts directly to the phenotype
- ► This is done through using statistical methods for modeling counts
- ▶ We generally promote the latter approach for data analysis

DESEQ FOR RNA-SEQ

- ► The goal is to provide sufficient background to understand the DESeq method
- ► We are not suggesting that DESeq is the best approach for analysis of RNA-Seq data
- ▶ We are considering it in this course as one, of many other methods, that adhere to the one-stage approach principle
- ► Added bonus: Nicely written R extension package (important feature for teaching)
- ▶ DESeq has many limitations (e.g., it cannot directly deal with quantitative and censored outcomes)
- ▶ Also some of the theoretical details (e.g., the effect of using plugin estimates for nuisance parameters) have seemingly not been fully fleshed out

RNA-SEQ: GENE COUNTS AND DEPTH

expid CNAG_00001 CNAG_00002 CNAG_00003 CNAG_00004 CNAG_00005

<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

A tibble: 4 × 10

expid	ngenemap	namb	nmulti	nnofeat	nunmap	depth	prob.gene	prob.nofeat	prob.unique
<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	4660549	606	95540	26923	21162	4804780	0.9699818	0.005603378	0.9755851
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	4591006	638	94070	26053	19644	4731411	0.9703249	0.005506391	0.9758313
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	4715846	615	97787	27257	19307	4860812	0.9701766	0.005607499	0.9757841
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	4681095	607	98723	26775	17356	4824556	0.9702644	0.005549733	0.9758141

THREE DISTRIBUTIONS FOR COUNT DATA

- ► RNA-Seq data are counts (not continuous measurements)
- ► To properly model RNA-Seq data, we need to consider distributions to model counts
- ▶ We will consider three important distributions for counts:
 - ► Binomial
 - ► Poisson
 - ► Negative Binomial
- ► There are many other distributions for counts (e.g., geometric distribution) that will not be discussed
- ▶ Brief notes on multinomial distribution

DISTRIBUTION FOR COUNTS: SUPPORT

- ► A count is a non-negative (zero or positive) integer
- ▶ When considering a distribution of a count variable, we first have to determine its *support*
- ► The support of the distribution consists of the values that could occur with positive probability
- ▶ For example, if we toss a coin once and we count the number of heads, the support is $\{0,1\}$
- ▶ If we flip it twice, the support is $\{0, 1, 2\}$
- ▶ Why is 3 not in the support? How about -1?
- ► These values are not *possible* (they have zero probability)
- ► The probability to observed three heads among two tosses is zero.

DISTRIBUTION FOR COUNTS: PROBABILITY MASS FUNCTION

ightharpoonup Example: we toss a fair coin once and we count the number of heads (call it K)

$$P(K=0)=\frac{1}{2} \text{ and } P(K=1)=\frac{1}{2}$$

and

$$P(K=k)=0$$

if k is not 0 or 1

- ightharpoonup The probability mass function (PMF) determines the probability that K assumes value k in the support
- ► Sometimes we use the terms "distribution" and "PMF" interchangeably

DISTRIBUTION FOR COUNTS: PROBABILITY MASS FUNCTION

ightharpoonup Example: we toss a fair coin twice and we count the number of heads (call it K)

$$P(K=0) = \frac{1}{4}$$
 and $P(K=1) = \frac{1}{2}$ and $P(K=2) = \frac{1}{4}$

- ► Why?
- Note that if once adds up P(K = k) over all k in the support the sum should be one

$$\sum_{k} P(K = k) = 1$$

EXERCISE: SUPPORT AND PMF

- \blacktriangleright we toss a biased coin twice and we count the number of heads (call it K)
- ▶ the probability that any toss lands a head is $\pi = \frac{1}{3}$
- ▶ What is the support of the distribution
- ▶ What is the PMF
- ▶ Repeat the last steps if π is any arbitrary number (between 0 and 1 of course)

EXERCISE: SUPPORT AND PMF

- \blacktriangleright the support is as in the previous example $\{0,1,2\}$
- ► Why is it unchanged

$$P(K = 0) = \frac{4}{9}$$
 and $P(K = 1) = \frac{4}{9}$ and $P(K = 2) = \frac{1}{9}$

► More generally

$$P(K = 0) = (1 - \pi)^{2}$$
$$P(K = 1) = 2\pi(1 - \pi)$$
$$P(K = 2) = \pi^{2}$$

► Note: Relationship to Hardy-Weinberg equilibrium (number of copies of risk allele)

FLIPPING THE COIN

- ► Throughout this discussing we will consider flipping a coin
- ► The coin lands a head with probability π (could be biased) or tail with probability 1π
- ► For convenience, we will recode H as 1 and T as 0
- ightharpoonup We will flip it n times.
- ► Notation:
 - ightharpoonup n is to denote the number of *trials*
 - ► On any trial (or flip), if we land an H we will call it an event (or success)
 - ▶ or if we land a T we will call it a failure
- ► RNA-seq connection: You can think of a read mapping to a gene to be an event

Three Variants of the Coin Tossing Experiment

- 1. Fix the number of trials (n) upfront and then toss the coin n times
 - ightharpoonup The number of events (among n trials) is random
- 2. Toss the coin a large number of times and assume that each one of these many trials has a small probability of being an event
 - ▶ Here n is large and π is small (close to 0)
- 3. Fix the number of desired events upfront, then toss the coin repeatedly to achieve that number
 - \blacktriangleright Here the number of trials n is random

OUTLINE FOR TODAY (AND MAYBE THUR)

- ► Provide an overview of the properties of the three distributions
- ► PMF, Mean and Variance
- ▶ Discuss relationship between the three distributions
- ► Need to introduce some notation (unfortunately)
- ► The goal is develop a regression model for counts
- ► We motivate this first using linear regression
- ► And then through logistic regression
- ▶ Before moving on to discussing a regression model based on negative binomial distribution
- ▶ Provide some insight on how these models are estimated

Example: Fixed n

- ▶ We flip the coin n = 6 times
- ▶ Observed sequence: TTHTTH
- \triangleright We recode this as 001001
- ► This corresponds to
 - ightharpoonup n = 6 trials
 - ▶ 2 events (or successes)
 - ▶ or equivalently 4 failures

Number of Possible Outcomes

- ▶ Example 1: Suppose that n = 2
 - ▶ 4 possible outcomes: {00, 10, 01, 11}
 - lacktriangledark $4 = 2 \times 2 = 2^2$
- ▶ Example 2: Suppose that n = 3
 - ► Eight possible outcomes: {000, 100, 101, 001, 110, 011, 101, 111}
 - $8 = 2 \times 2 \times = 2^3$
 - ightharpoonup Example 3: n=6
 - \blacktriangleright 64 = 2⁶ outcomes
- ▶ The number of possible outcomes based on n trials is 2^n
- ▶ But we are not interested in counting outcomes
- ▶ We want to count the number of outcomes corresponding to K = 0, K = 1, ..., K = n

Number of Successes

- ightharpoonup Example 1: Suppose that n=2
 - ▶ 4 possible outcomes: {00, 10, 01, 11}
 - ▶ Number outcomes corresponding to K = 0 is 1
 - \blacktriangleright Number outcomes corresponding to K=1 is 2
 - ▶ Number outcomes corresponding to K = 2 is 1
- ▶ Example 2: Suppose that n = 3
 - ► Eight possible outcomes: {000, 100, 010, 001, 110, 011, 101, 111}
 - ▶ Number outcomes corresponding to K = 0 is 1
 - ▶ Number outcomes corresponding to K = 1 is 3
 - \blacktriangleright Number outcomes corresponding to K=2 is 3
 - ▶ Number outcomes corresponding to K = 3 is 1
- \blacktriangleright What does this look like for a general n?
- ightharpoonup If you toss the coin n times, how many outcomes correspond to k events?

FACTORIAL FUNCTION

- ▶ Integers are "whole" numbers $\ldots, -2, -1, 0, 1, 2, \ldots$
- ▶ Consider a non-negative integer k (0, 1, 2, ...)
- ightharpoonup 0! = 1
- ▶ 1! = 1
- $ightharpoonup 2! = 2 \times 1 = 2$
- $ightharpoonup 3! = 3 \times 2 \times 1 = 6$
- $ightharpoonup 4! = 4 \times 3 \times 2 = 24$
- **>** ...
- $k! = k \times (k-1) \times (k-2) \times \dots \times \times \times \times 1$

Number of Combinations

ightharpoonup The number of possible combinations on the basis of k events among n trials

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

ightharpoonup Example 1: Suppose that n=3 and k=1

$$\binom{3}{1} = \frac{3!}{1!(2-1)!} = \frac{3 \times 2 \times 1}{1 \times 2 \times 1} = 3$$

 \blacktriangleright Example 2: Suppose that n=4 and k=2

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1} = \frac{24}{4} = 6$$

Toss the coin n times

- ightharpoonup Toss the coin n times
- \blacktriangleright Number of possible outcomes: 2^n
- \blacktriangleright Number outcomes corresponding to K=0 is 1.
- \blacktriangleright Number outcomes corresponding to K=1 is n.
- ▶ Number outcomes corresponding to K = n 1 is n.
- \blacktriangleright Number outcomes corresponding to K=n is 1.
- ▶ Number outcomes corresponding to K = k is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for $k = 0, 1, 2, \dots$

- ▶ Do the results for K = 0, 1, n 1, K = n agree with the formula?
- ► Related to the Pascal Triangle

PASCAL TRIANGLE

n = 0							1						
n = 1						1		1					
n = 2					1		2		1				
n = 3				1		3		3		1			
n = 4			1		4		6		4		1		
n = 5		1		5		10		10		5		1	
n = 6	1		6		15		20		15		6		1

Bernoulli Distribution

- ► Suppose that we toss the coin just once
- ▶ In other words n=1
- ▶ We say that the number of events follows a Bernoulli distribution with parameter π
- ► The PMF is

$$P(K = k) = \pi^k (1 - \pi)^{1-k}, k = 0, 1$$

```
set.seed(12324)
# Simulate 10 Bernoulli random variables with parameter pi=0.5
rbinom(10, 1, 0.5)
## [1] 1 1 1 1 1 1 0 0 0 0 0
# Simulate 5 Bernoulli random variables with parameter pi=0.23
rbinom(5, 1, 0.23)
## [1] 0 0 0 0 0
```

BINOMIAL DISTRIBUTION

- ▶ For the Bernoulli distribution n = 1
- ▶ More generally (when $n \ge 1$) the number of events K is said to follow a Binomial distribution with parameters n and π
- ▶ The distribution is

$$P[K=k] = \binom{n}{k} \pi^k (1-\pi)^{n-k},$$

 $k = 0, 1, 2, \dots, n$

- Note that when n = 1 the Binomial reduces to a Bernoulli distribution . Why?
- ▶ Why is does this distribution have $\binom{n}{k}$?
- ► The average count for this distribution is $n\pi$
- ▶ The variance for this distribution is $n\pi(1-\pi)$

```
{\tt set.seed(12324)} # Simulate 10 Binomial random variables with parameter n=2 and pi=0.5 {\tt rbinom(10,\ 2,\ 0.5)}
```

Poisson Distribution

- ► The Poisson distribution is used to model the count of the occurrence of events
- ► Classical application: Model for earthquakes
- ► The PMF is

$$P(K = k) = \frac{e^{-\lambda} \lambda^k}{k!},$$

where k = 0, 1, 2, ...

- \triangleright λ is the average number of events for this distribution
- \triangleright λ is also the variance of this distribution

```
set.seed(13224)
# Simulate 10 Poisson variates with m
rpois(10, 0.1)
## [1] 0 1 0 0 0 0 1 0 0 0
```

RELATIONSHIP BETWEEN BINOMIAL AND POISSON

DISTRIBUTION Consider tossing the coin a large number of times

```
n = 1e+06

p = 1/n
```

- Note that we have $n = 10^6$ trials with a low success probability of $p = 10^{-6}$
- ▶ The expected number of events among these 10^6 trials is $n \times p = 1$. Why?
- ► Now simulate 99999 numbers from this binomial distribution

```
set.seed(9988)
x <- rbinom(B9, n, p)
length(x)
## [1] 99999</pre>
```

▶ What is the expected number of events (i.e., the expected number of events (among n trials) across B = 99999 simulations)?

```
mean(x)
## [1] 1.00055
```

RELATIONSHIP BETWEEN BINOMIAL AND POISSON DISTRIBUTION

► Now compare the empirical distributions to the Poisson distributions

```
round(dpois(0:7, lambda = 1), 3)
## [1] 0.368 0.368 0.184 0.061 0.015 0.003 0.001 0.000
round(table(x)/B9, 3)
## x
## 0 1 2 3 4 5 6 7
## 0.367 0.369 0.183 0.061 0.016 0.003 0.000 0.000
```

NEGATIVE BINOMIAL DISTRIBUTION

- ▶ How many times do you have to flip a coin to get r > 0 events
- ightharpoonup Model the number of random trials needed to get r events
- ► This distribution is called the negative binomial distribution
- ► The probability distribution is

$$P[K = k] = {\binom{k+r-1}{r-1}} \pi^r (1-\pi)^k,$$

where k = r, r + 1, r + 2, ...

```
set.seed(13224) # Simulate the number of trials needed to get k=5 events rnbinom(10, 5, 0.1)
```

MEAN AND VARIANCE OF NEGATIVE BINOMIAL

- ► A negative binomial distribution can be parameterized in terms of
 - ightharpoonup r and p
 - \blacktriangleright or μ and σ^2
 - ightharpoonup or μ and a dispersion parameter α (more on this later)
- ► The relationship between these two parametrizations is given by

$$\mu = r \frac{1-p}{p} \text{ and } \sigma^2 = r \frac{1-p}{p^2},$$

and

$$p = \frac{\mu}{\sigma^2}$$
 and $r = \frac{\mu^2}{\sigma^2 - \mu}$

- ▶ If you provide r and p, you can calculate μ and σ^2
- \blacktriangleright Or, if you provide μ and σ^2 , you can recover r and p.

Negative Binomial PMF in terms of μ and α

▶ The NB PMF parametrized in terms of p and r (the number of events) is

$$P[K = k] = {\binom{k+r-1}{r-1}} \pi^r (1-\pi)^k,$$

where k = r, r + 1, r + 2, ...

▶ The NB PMF parametrized in terms of the mean μ and the dispersion parameter α is

$$P[K=k] = \frac{\Gamma[k+\alpha^{-1}]}{\Gamma[\alpha^{-1}]\Gamma[k+1]} \left(\frac{1}{1+\mu\alpha}\right)^{\alpha^{-1}} \left(\frac{\mu}{\alpha^{-1}+\mu}\right)^k,$$

where k = 0, 1, ...

- ► The variance is $\mu(1 + \alpha \mu)$
- \blacktriangleright As α shrinks to 0 (no-dispersion), the distribution becomes Poisson

NEGATIVE BINOMIAL PMF FOR RNA-SEQ

► We will use the mean/dispersion parameter representation for RNA-Seq

$$P[K=k] = \frac{\Gamma[k+\alpha^{-1}]}{\Gamma[\alpha^{-1}]\Gamma[k+1]} \left(\frac{1}{1+\mu\alpha}\right)^{\alpha^{-1}} \left(\frac{\mu}{\alpha^{-1}+\mu}\right)^k,$$

where k = 0, 1, ...

- ► The variance is $\mu(1 + \alpha \mu)$
- ► IMPORTANT:
 - If $\alpha > 0$, then the variance is greater than the mean. Why?
 - As α shrinks to 0 (no-dispersion), the distribution becomes Poisson
- ► More on over-dispersion later

MEANS AND VARIANCES

Distribution	Support	Mean	Variance
Bernoulli (π)	0,1	π	$\pi(1-\pi)$
Binomial (n,π)	$0,1,\ldots,n$	$n\pi$	$n\pi(1-\pi)$
$Poisson(\lambda)$	$0,1,2,\ldots,$	λ	λ
NB(p,r)	$r, r+1, r+2, \ldots,$	$r^{\frac{1-p}{p}}$	$r^{\frac{1-p}{p^2}}$
$NB(\mu, \alpha)$	$0, 1, \ldots,$	μ	$\mu(1+\alpha\mu)$

NEGATIVE BINOMIAL VS BINOMIAL OR POISSON

- ▶ The Binomial distribution has one parameter π
- ▶ The Poisson distribution has one parameter λ
- ▶ The Negative Binomial has two parameters μ and α
- ► Advantage: Having two parameters, gives NB more flexibility
- ▶ Disadvantage: The negative binomial distribution is poses a more challenging numerical optimization problem

Multinomial Model

- ► Suppose that there are 3 urns
- \blacktriangleright n balls are to be randomly distributed among these M urns
- ▶ Let K_j denote the number of balls assigned to urns j = 1, 2 or 3
- ▶ Let $\pi_j = \mathbb{P}[X_i = j]$ denote the probability that ball i = 1, ..., n is assigned to urn i = 1, 2, 3
- Finally let K_j denote the number of balls, among n, assigned to urn j
- ▶ (K_1, K_2, K_3) is said to have multinomial (trinomial) distribution with parameter $(3, \pi_1, \pi_2, \pi_3)$

MULTINOMIAL MODEL: A CHECK LIST

- ▶ Note that $K_1 + K_2 + K_3 = n$
- ► Why?
- ▶ Note that $\pi_1 + \pi_2 + \pi_3 = 1$
- ► Why?
- ▶ The support of K_j , the number of balls assigned to urn j, is $\{0, 1, ..., n\}$
- ► Why?
- ▶ The support if X_i , the urn to which ball i is assigned, is $\{1, 2, 3\}$
- ► Why?

Multinomial Model: Properties

▶ The PMF of X_i is

$$\pi_1 = \mathbb{P}[X_i = 1], \pi_2 = \mathbb{P}[X_i = 2]$$
 and $\pi_3 = \mathbb{P}[X_i = 3]$

► The PMF of

$$\mathbb{P}[K_1 = k_1, K_2 = k_2, K_3 = k_3] = \frac{n!}{k_1! k_2! k_3!} \pi_1^{k_1} \times \pi_2^{k_2} \times \pi_3^{k_3}$$

- ▶ The PMF of K_1 is binomial with parameter (n, π_1)
- ▶ The PMF of K_2 is binomial with parameter (n, π_2)
- ▶ The PMF of K_3 is binomial with parameter (n, π_3)

Multinomial: Relationship to RNA-Seq

- ► Suppose that the genome has only three genes (the urns)
- \triangleright n sequencing reads are to be mapped to these three genes
- \blacktriangleright K_1 is the number of reads mapped to gene 1
- \blacktriangleright K_2 is the number of reads mapped to gene 2
- ► $K_3 = n K_1 K_3$ is the number of reads mapped to gene 3
- ▶ The multinomial model provides a framework for thinking about the count model for (K_1, K_2, K_3)
- ► One can easily extend the multinomial distribution to arbitratry number of urns (genes)
- ► Caveat: Marginal PMFs do not account for overdispersion

MULTINOMIAL SIMULATION

```
set.seed(3213)
### Number of balls
n <- 100
### The three urn probabilities
pik <- c(2, 1, 4)/7
pik
## [1] 0.2857143 0.1428571 0.5714286
### Simulate two replicates from trinomial distribution with parameter
### (100,2/7,1/7,4/7)
K <- rmultinom(2, 100, pik)</pre>
       [,1] [,2]
## [1,] 32 29
## [2,] 17 11
## [3,] 51 60
### Add the two columns to verify they add up to n=100
apply(K, 2, sum)
## [1] 100 100
```

CONDITIONING

- ► Consider a standard deck cards
- ▶ 13 of each suit clubs, diamonds, hearts, and spades
- ► A cards is drawn at random from the deck
- ► It is revealed to be ace of spades
- ▶ What is the probability that the next card drawn from this deck is queen of hearts?

CONDITIONING

- ► Consider a standard deck cards
- ▶ 13 of each suit clubs, diamonds, hearts, and spades
- ► A cards is drawn at random from the deck
- ► It is revealed to be queen of heart
- ► What is the probability that the next card is queen of hearts?

CONDITIONING

- ► Consider a standard deck cards
- ▶ 13 of each suit clubs, diamonds, hearts, and spades
- ► A cards is drawn at random from the deck
- ► The card is *not* revealed
- ► What is the probability that the next card is queen of hearts?

RNA-SEQ: ONLY OBSERVE READ COUNTS

Is the binomial distribution reasonable for modeling the number of reads mapped to CNAG0002

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

RNA-SEQ: OBSERVE READ COUNTS AND DEPTH

Is the binomial distribution reasonable for modeling the number of reads mapped to CNAG0002

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

A tibble: 4 × 10

expid ngenemap namb nmulti nnofeat nunmap prob.nofeat prob.unique <int> <dhl> 1 2019 P M1 S1 L001 ReadsPerGene.out.tab 4660549 95540 26923 0.9755851 1 2019 P M1 S1 L002 ReadsPerGene.out.tab 94070 26053 0.9758313 1 2019 P M1 S1 L003 ReadsPerGene.out.tab 4715846 27257 19307 4860812 0.9701766 0.005607499 0.9757841 1 2019 P M1 S1 L004 ReadsPerGene.out.tab 4681095 17356 4824556 0.9702644 0.005549733 98723 26775 0.9758141

RNA-SEQ: ONLY OBSERVE READ COUNTS

Is the Poisson distribution reasonable for modeling the number of reads mapped to $\it CNAG0002$

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

RNA-SEQ: OBSERVE READ COUNTS AND DEPTH

Is the Poisson distribution reasonable for modeling the number of reads mapped to $\it CNAG0002$

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

A tibble: 4 × 10

expid	ngenemap	namb	nmulti	nnofeat	nunmap	depth	prob.gene	prob.nofeat	prob.unique
<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	4660549	606	95540	26923	21162	4804780	0.9699818	0.005603378	0.9755851
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	4591006	638	94070	26053	19644	4731411	0.9703249	0.005506391	0.9758313
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	4715846	615	97787	27257	19307	4860812	0.9701766	0.005607499	0.9757841
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	4681095	607	98723	26775	17356	4824556	0.9702644	0.005549733	0.9758141

RNA-SEQ: ONLY OBSERVE READ COUNTS

Is the negative binomial distribution reasonable for modeling the number of reads mapped to CNAG0002

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

RNA-Seq: observe read counts and depth

Is the negative binomial distribution reasonable for modeling the number of reads mapped to $\it CNAG0002$

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

A tibble: 4 × 10

expid ngenemap namb nmulti nnofeat nunmap prob.nofeat prob.unique <int> <dhl> 1 2019 P M1 S1 L001 ReadsPerGene.out.tab 4660549 95540 26923 0.9755851 1 2019 P M1 S1 L002 ReadsPerGene.out.tab 4591006 94070 26053 0.9758313 1 2019 P M1 S1 L003 ReadsPerGene.out.tab 4715846 27257 19307 4860812 0.9701766 0.005607499 0.9757841 1 2019 P M1 S1 L004 ReadsPerGene.out.tab 4681095 98723 26775 17356 4824556 0.9702644 0.005549733 0.9758141