

Institut für Mathematik Sommersemester 2025

Prof. Dr. Nejjar Dr. Stankewitz D. Bernal K. Kurien

4. Übungszettel "Stochastik - Modul MAT 1103 / MAT M3"

Abzugeben bis 09.5.25 um 12:00

Alle Angaben/ Nummern beziehen sich auf das Lehrbuch "Elementare Stochastik" von E. Behrends, zu finden unter

https://link.springer.com/book/10.1007/978-3-8348-2331-1.

1. (Dichtefunktionen)

4 Punkte

Sei $f:[a,b]\to [0,+\infty)$ eine stetige Dichtefunktion, d.h. $f\geq 0$ und $\int_a^b \mathrm{d}x f(x)=1$. Sei $\mathbb P$ das durch f induzierte Wahrscheinlichkeitsmaß.

- Sei $c \in [a, b]$. Zeigen Sie $\lim_{n \to \infty} \mathbb{P}([c 1/n, c + 1/n] \cap [a, b]) = 0$. Schliessen Sie, dass $\mathbb{P}(\{c\}) = 0$ für alle $c \in [a, b]$ gilt.
- Zeigen Sie für $c \in (a, b)$, dass $\lim_{n \to \infty} \mathbb{P}([c, c + 1/n]) * n = f(c)$ gilt

2. (Dichtefunktionen)

4 Punkte

Finden Sie - mit Beweis - ein Intervall [a, b], sodass die Sinusfunktion sin : $[a, b] \to \mathbb{R}$ eine Dichtefunktion ist.

3. (Exponential verteilung)

4 Punkte

Sei \mathbb{P}_{λ} die Exponentialverteilung mit Parameter λ . Berechnen Sie $\mathbb{P}_{\lambda}([s, +\infty))$ für beliebige $s \in [0, +\infty)$. Beantworten Sie anschließend die erste Frage in Aufgabe 2.2.3.

4. (Dichtefunktion)

4 Punkte

Lösen Sie Aufgabe 2.2.1