Two-Experiment Plan: $\sigma\textsc{-}\mbox{Uniform}$ vs. $\tau\textsc{-}\mbox{Uniform}$ Metrology in QFT

Protocol Addendum to LTQG

October 15, 2025

Principle

Observables are invariant under monotone reparameterizations of time, but measurement protocols need not be. Uniform sampling in $\sigma = \log(\tau/\tau_0)$ redistributes resolution towards early proper times. We propose two numerically reproducible experiments with acceptance criteria.

1 Experiment A: Bogoliubov Coefficients in Expanding FLRW

Model. Real scalar field on spatially flat FLRW with $a(\tau) = (\tau/\tau_*)^p$, $p \in \{\frac{1}{2}, \frac{2}{3}\}$. Use canonical variable $v = a^{3/2}u$ with mode equation

$$v_k'' + \omega_k(\tau)^2 v_k = 0, \qquad \omega_k^2 = k^2 a^{-2} + m^2 - \frac{a''}{a} - \frac{3}{2} \left(\frac{a'}{a}\right)^2,$$
 (1)

primes denoting τ -derivatives. Impose $W[v_k, \bar{v}_k] = i$ at a shared early-time slice.

Protocol. Integrate modes over a fixed physical interval in the scale factor (e.g. $a \in [a_i, a_f]$). Construct instantaneous adiabatic vacuum and extract (α_k, β_k) via the KG inner product on common slices. Repeat with sampling grids: (i) N samples uniform in τ , (ii) N samples uniform in σ .

Hypothesis. β_k estimates converge to the same continuum limit, but σ -uniform sampling reduces bias/variance at fixed N for spectra with early-time structure.

Acceptance criteria. For k in a fixed decade and N fixed,

$$\max_{k} \left| \beta_{k} \right|_{\tau\text{-grid}}^{2} - \left| \beta_{k} \right|_{\sigma\text{-grid}}^{2} \right| \leq \varepsilon_{1}(N), \tag{2}$$

$$MSE_{\sigma}(N) < MSE_{\tau}(N)$$
 by a factor $\geq 1 + \delta$, (3)

with typical targets $\varepsilon_1 \sim 10^{-6}$, $\delta \sim 0.2$.

2 Experiment B: Near-Horizon Phase Accumulation (Unruh-DeWitt Detector)

Model. Static Schwarzschild exterior with detector on a stationary worldline at areal radius $r > r_s$. Proper time increment is $d\tau = \sqrt{1 - r_s/r} dt$. Consider a detector with switching function $\chi(\cdot)$ and energy gap Ω ; the response function is

$$\mathcal{F} \propto \int d\tau \, d\tau' \, \chi(\tau) \chi(\tau') e^{-i\Omega(\tau - \tau')} W(\tau, \tau'), \tag{4}$$

with W the pullback of the Wightman function.

Protocol. Compare two families of compactly supported switching functions of equal L^1 -mass: (i) Uniform windows in τ of width $\Delta \tau$; (ii) Uniform windows in $\sigma = \log(\tau/\tau_0)$ mapped back to τ with Jacobian $d\tau = \tau d\sigma$ (thus earlier τ receive finer weight). Evaluate \mathcal{F} numerically (or via near-horizon Rindler approximation).

Hypothesis. For windows that extend towards smaller τ (closer to the horizon or early-time segments), the σ -uniform protocol *stabilizes* phase accumulation and exhibits reduced sensitivity to ultraviolet transients, consistent with the "asymptotic silence" scaling.

Acceptance criteria. For matching support endpoints,

$$|\mathcal{F}_{\sigma} - \mathcal{F}_{\tau}| \le \varepsilon_2$$
 (invariance), (5)

$$\operatorname{Var}[\mathcal{F}_{\sigma}] < \operatorname{Var}[\mathcal{F}_{\tau}]$$
 over grid refinements, by $\geq 1 + \delta$. (6)

3 Reproducibility Notes

- Use shared random seeds and identical physical slices for comparisons.
- Track Wronskian drift and KG norm as sanity checks: target $\leq 10^{-8}$.
- Publish code and config files; report (N, grid type) and wall-clock, to quantify efficiency gains from σ -uniform sampling.