5/Max /19 (61) Random Variable And Robability Distributions : 4 - Random Variable: Function that associates a real number with each element in sample space egt Toss a coin thrice 1 HHH, HHT , HTH, THH , HTT , THT, TTH, TTT } Let X = No. of Heads Total = 7 {RR, RB, BR, BB} Yet Y-Red

O 1 → BB Y4 }

1 2 → RB, BR 2/4 Probability distribution since 'y' is discrete it is called biscrete Probability distribution (OR) Probability Mass Function * Probability density Tunction -> continuous wriable

can be represented graphically.

V			0
- '	5	P(Y)	2
0	$1 \rightarrow II$	1	Histogram
1	2 → DI, ID	74	U
2	4	2/4	
	1 -> 00	+ /4	

-> Probability Mass Function:

2.
$$\frac{1}{2} f(x) = 1$$

3. $P(X = x) = f(x)$

Eg# 01 PmF: F(x) = (x/6), x = 1,2,3

(i) Distribution Function and graph.

×	P(d)	F(x)	メくり つつし
1	1/6	1/6	15262 310
2	3/6	3/6	26765 76
3	3/6	6/6	351776

(99)

= F(4.5) - F(1.5) P(a<x<b) = f(b) -f(a) = 1 - 1/6 = 5/6

1411 -0 1< 1<2 -> 1/6 2 < x -> 3/6 3 5 1 ->

and the same				
119 6	3			
1/4/04/10	2			
Eg #02				
p(x=2) - f(2)		F(1) =		×<0
f(x=2) = F(2) - F(1)	1		1/16	0 < x < 1
= 1/16 - 5/16	-		16	1 × × × 2
			15/46	2 \ \ \ < 3
9#03			1	3/4/KILLIA X 24
[1) F(x) = (2+2)/5	-tor x	1,2,3	uc	
(99) F(x) = 4Cx/25	tor,	-011	23.4	4
Pmf = ?	0 1	-011	P1-11	
11 Function must be	non-ne	alive	3 Cond	utions of
11 Sum = 1			1	PmF.
x P(x)	P(4)			
0	1/25			
1 3/5	4/25			N META
2 4/5	6/25			
3 5/5	4/25			
4 6/5 +	+ 1/25			
5 + 75	1/2			
5				
(i) and (ii) both	cannol s	eive as	pmf	
		William William		
(TO 10)	B			
	A CONTRACTOR OF THE PARTY OF TH			

(c)
$$F(4) = f(4) + f(3) + f(2) + f(1)$$

= $\frac{1}{16} + \frac{1}{18} + \frac{1}{14} + \frac{1}{12}$
= $\frac{15}{16}$
(or) $F(4) = \frac{31}{32} - \frac{1}{32} = \frac{15}{16}$

$$F(x) = 1 - (\frac{1}{2})^{4}(x+1)$$
, for $x = 0, 1, 2, ...$

-
$$F(3)$$
 - $F(2)$ = $[1 - (\frac{1}{2})^4] - [1 - (\frac{1}{2})^3] = \frac{1}{16}$

" Single variable elistribilion

35 (a)
$$f(x) = c(x^2+4)$$
, $for x = 0,1,2,3$

$$\frac{3}{4-0} c(x^2+4) = 1$$

$$f(0) + f(1) + f(2) + f(3) = 1$$

(b)
$$f(x) = c(\frac{2}{x})(\frac{3}{3-x})$$
 for $x = 0, 1, 2$

$$\sum_{\chi=0}^{2} c\binom{2}{\chi}\binom{3}{3-\chi} = 1$$

$$f(0) + f(1) + f(2) = 1$$

$$c\binom{2}{0}\binom{3}{3-0}+c\binom{2}{1}\binom{3}{3-1}+c\binom{2}{2}\binom{3}{3-2}=1$$

Hiday

1	1	١
1	0	Į
6	/	

1001	9	(10)	
8/Mail			
		tical Expectation	7 :
→ I	achema	uca cope	SX
eg#00	Find	Expected value	x2 P(x)
×	P(x)	x.P(x)	
0	4/30	0	0
V.	5/30	5/30	5/30
2	8/30	16/30	32/30
3	13/30	39/30_	117/30
		60/30=2	154/30
647	perted 3	730 -	750
71 30	3	0/1	- ^^
		$\chi P(\chi) =$	2 = Mean
GIPU	we of X=		
E(X)	= 2	x - F(x) = 1	54/00
Variance &	of Landonn	value of + ?	
V(z)	- 1	E(x2) - [E(x)]	2
		(()	
	=	54 - (2)2	
	~ 3	30	
V(-	x) =	1.133	
0	< 7 < 1		
	0.12	-> Continuous	
	1113	Dianote	
	ELJ	= 4 []	

(1) Joint Probability Dristribution: The function f(x,y) is a goint probability distribution or probability mass function of the discrete Landon variables 1. P(x,y) =0 for all (x,y) 2. \(\frac{1}{2} \) \(\frac^ For any region A in my plane
P[17,4) & A] = £ & floxing) Total - 8, Blue = 3, Green = 3, Red = 2 Selected = 2 X . No of Blue selected 4. No of Red selected Total 10/28 15/28 3/28 28/28

Marginal Problems of Y

Find joint probability function f(x,y)

f(0,0)=3/28, f(0,1)=6/28, f(0,2)=1/28

P(1,0) - 9/28, F(1,1) = 4/28, F(2,0) = 3/28

o) P[(x1y) ∈ A) where A & the region {(x1y) 1 y < 19

 $= \frac{15 + 12}{28} = \frac{27}{28}$

(OR) \$10,0) + f(0,1) + f(1,0) + f(1,1) + f(210) = 21/28

Marginal Distribution of 1

7	0	1	2	9(x) = 5
F(1)	10/28	15/28	3/18	200

Marginal Distribution of y

y 0 1 2

f(y) 15/18 12/18 12/18

角(y)-をf(zy)

F(x, y)

> Concutional Distribution:

$$f(\lambda|x) = \frac{d(x)}{d(x)}$$

for independent:
$$f(y|x) - g(x)h(y) = h(y)$$

$$g(x)$$

*
$$P(X=0|Y=1) = \frac{f(X|Y)}{h(Y=1)} = \frac{3/4}{3/7} = \frac{1}{2}$$

8(x14)

A	× 0	1	2	Total
0	3/28	9/28	3/28	15/28
1	3/14	3/14	0	3/7
2	1/28	0	0	1/28
Total	5/14	15/28	3/28	1

$$P(x=1|Y=0) = f(x,y) = \frac{9}{15/28} = \frac{3}{5}$$

$$P(y=0|x=1) = \frac{f(y_1y)}{g(x)} = \frac{9/28}{15/28} = \frac{3}{5}$$

	(H)	
Statistical Independent	x and y are	Talistically independent
af and only	9(2) h(1)	ge
g#9 show x &	y are share	al independent at f(0,1)
f(0,1) - g(z -	3/7	
hence x, y	are not states	theal independent
eg#10 Joint	prob distribution (x+y)/20 x	of X and $Y = 3$, or $x = 0, 1, 2, 3$
y	0,730	y=0,1,2
2 0 0 1 1/30 2/30	1 2 1/30 2/30 2/30 3/30	707al 3/30. 6/30
3/30	3/30 4/30 1/30 5/30 10/30 14/30	9/30

Find.

a)
$$P(x \le 2, Y = 1) = F(0,1) + F(1/1) + F(2,1)$$

= $\frac{1}{5}$

(6)
$$P(x > 2, 4 \le 1) = 7$$
 $F(3, 0) + F(3, 1) = 730$

(c)
$$P(x > 4) = f(1,0) + f(2,1) + f(3,1) + f(3,2) + f(2,0) + f(3,0) = \frac{1}{30} + \frac{3}{30} + \frac{3}{3$$

(d)
$$P(x+4=4) \rightarrow f(2,2)+f(3,1)$$

= $8/30 = 1/5$

Y = No of times machine will malfunction 4. No of times technician is called

			×		(6)
2	(x, y)	1	2	3	Marginal (Y)
-	1	0.05	0.05	0.10	0.20
X	3	0.05	0.10 -	0.35	0.50
a)	5	0.00	0-20	0.10	0.30
Margina	((x)	0.10	0.35	0.55	1

$$P(y-3|x=2) = F(3,2) = 0.10$$

 $g(x=2)$ 0.35

$$\frac{Q}{x!} = \frac{e^{-2} 2^{x}}{x!}, \quad x = 0, 1, 2, 3, 4, 5, 6$$

$$\frac{Q}{x!} = \frac{e^{-2} 2^{x}}{x!} + \frac{1}{2} = 0, 1, 2, 3, 4, 5, 6$$

La) PMF	(b) Plat	Graph of PMF	(C) CDF
×	f(x)	$F(x) = P(X \le x)$	
0	0.135	0.135	
1	0 - 270	0-405	
2	0.270	0.675	
3	0.180	0-855	
4	0.090	0.945	
5	0.036	0.981	
6	0.012	0.993	

0.3

0.2

0.1

$$= \frac{5y}{8b} \Big|_{\frac{3}{5}b} - \frac{5y}{8b} - \frac{5(\frac{3}{5}b)}{8b}$$

(b)
$$P(Y \le b)$$

 $= F(b) - F(\frac{2}{5}b)$
 $= S(b) - 1 - S(\frac{2}{5}b) + 1$
 $= 8b + 4 + 8b + 4$
 $= \frac{5}{8} - \frac{1}{4} \cdot \frac{3}{8}$

eg#04
$$f(x) = \begin{cases} 20000/(x+100)^3, x>0 \\ 0, elsewhere \end{cases}$$

(a)
$$P(X \ge 200)$$

$$= \int_{0.000}^{\infty} 20000 \text{ ol} \chi = 20000 \int_{0.000}^{\infty} (x + 100)^{-3} dx$$

$$= \int_{0.0000}^{\infty} 20000 \text{ ol} \chi = 20000 \int_{0.0000}^{\infty} (x + 100)^{-3} dx$$

$$- 20000 \left(\frac{1}{1+100} \right)^{-2} \Big|^{00} = \frac{1}{9}$$

 $= 1 - P(x < y) \ge P(x < y) = F(y) - F$ $= 1 - \sqrt{3}x^{-4}dx \qquad P(x > y) - 1 - P(x < y)$ () P(x >4)

$$= 1 - (3x^{-4}) = 1$$

$$= 1 - (1 - 4^{-3}) = 1 - (F(1)^{-3})$$

= 1 (using pdf) 4

 $P(x \times 4) = \int_{0}^{3} x^{-4} dx$ $P(x \times 4) = 1 - \int_{0}^{3} x^{-4} dx$

= /64

> Joint Density Function for Continuous Variable:

1. f(x,y)>0 + (x,y)

2. 50 f(x,y) dx dy = 1

(BU) $f(x,y) = {2/5(2x+3y), 0 \le x \le 1, 0 \le y \le 1}$ 401 (a) 1 1 (3x + 3y) dx dy 35.5 (x2+32y) dy = 75 5 (1 + 3y) dy = 45 [y + 34/2] = 2/5 (1+3/2) = 1 hence it is joint density function (6) P (0<x<1/2, 1/4 < y < 1/2) $= \sqrt{\frac{1}{2} \int_{0}^{1/2} \int_{0}^{1/2} (2x+3y) dxdy}$ $= \frac{27}{5} \int_{1/4}^{1/2} (x^{2} + 3xy)^{1/2} dy$ $= \frac{27}{5} \int_{1/4}^{1/2} (\frac{1}{4} + \frac{3}{2}y) dy$

(86) #10 F(x1y)- [3 (2x+3y), 0 < x < 1, 0 < y < 1 Expeded value of x (x) - of x.g(x)dx E(y) = . [y.h(y)dy $V(x) = E(x^2) - [E(x)]^2 / V(y) = E(y^2) - [E(y)]$ $E(x^2) = \int x^2 g(x) dx$, $E(y^2) = \int y^2 h(y) dy$ - f(x,y) = 10 xy2, 0<x y<1. g(x) = ?, h(y) = ?, f(y|x) = ?g(x) = 510xy2dy = 10x4/3/2 g(x) - 10/3x - 10x/3 $g(x) = 10x/3(1-x^3). \rightarrow 0< x<1$

(a)
$$g(x) = \int_{0}^{3} x(1+3y^{2})/y dy$$

$$= \frac{\pi}{4} \left(y + y^{3} \right)_{0}^{3} = \frac{\pi}{2} \rightarrow 0 < x < 2$$

(b)
$$h(y) = \int_{0}^{2} x(1+3y^{2})/y dx$$

$$= \frac{(1+3y^2)}{4} \int_{0}^{2} x \, dx = \frac{(1+3y^2)}{4} \cdot x^{2}$$

$$= \frac{1+3y^2}{4} \rightarrow 0 < y < 3$$

$$f(x|y) = \frac{x}{2}$$

$$=\int_{4}^{\sqrt{2}} \frac{1}{2} dx$$

eg#13 P(x,y) = { 2,0626441 (a) Find 16 X & Y are independent ? Condition of independence is $f(x,y) = g(x) \cdot h(x) \rightarrow A$ $g(x) = \int_{0}^{1} 2 dy = 2y|_{x} = 2(1-x)$ $h(y) = \int_{0}^{y} 2dx = 2x|_{0}^{y} = 2y$ Substitute (a) $f(x_1y) = 2(1-x) \cdot 2y$ in 2 \neq 4y(1-x) So $x \neq y$ are not independent (b) P(1/4 < x < 1/2 | 4 = 3/4) 8(x1y) = f(x,y)/h(y) $=\frac{2}{2y}=\frac{1}{y}$ P(1/4 < x < 1/2 | y = 3/4) = 5 1/y dx - /3.

(92) $f(x,y) = \begin{cases} 24xy & 0 \leq x, y \leq 1, x + y \leq 1 \\ 0, & \text{elsewhere} \end{cases}$, Y = Domeslic where X = Jurkish (a) P(x > 1/2) = (1-x)
g(x)dy→(a) x+y≤1
y≤1-x $g(x) = \int_{0}^{1-x} f(x,y) dy = \int_{0}^{1-x} 24xy dy$ = 24242 1-1 $g(x) = 12x(1-x)^{2}$ $\frac{1-x}{(1-x)^{2}}$ $= 6x(1-x)^{2} \cdot (y)^{1-x}$ $P(xx/2) = 6x(1-x)^{3}$ 6 h(y) = \f(x,y)dx $= \int_{0}^{1-3} 24 \pi y dx = 12y (x^{2})_{0}^{1-3}$ h(y) = 124(1-y)2 -> 0<4<1 P(x < 1/8 | y = 3/4) hie conditional prob And knien

THE REAL PROPERTY.		
	विडे	
P(x < 1/8) y=	$\frac{y_8}{3y_4} = 2x dx$	$= \int_{0}^{8} \frac{2x}{(1-3/4)^2} dx = \int_{0}^{8} \frac{32x}{32x} dx$
=	16 (x2) /8	0 $(1-3/4)^2$ 0 0 0 0 0 0 0 0 0 0
en#17 Expec	ctation = ?	
X \$	P(X-x)	4.P(x)
1000\$	0.3 x0.6 0.7 x0.6	
1500\$	0.3 x0.4	
2500\$	0.7 X0.4	12 an P
Total $E(x) =$	£ χ. P(χ) = \$	1300\$
ef#18 . Joint		
E(xiy)	= 22 2 2=0 y=0	xy f(x,y)
= (0)(0)(3	(28) + (0)(1)(01/2	8)+(0)(2)(3/28)+0
+ (1)(1	1(3/4) + (1)(2)	(0) +0+0+0.
E(x, y) =	3/14	
$\chi = \chi = \chi$	7(x) +1(15/28)+2(3/ 2//28
= 0 (4/4)	+1 (128) + 2((28) - 120
TO SECURE	102002223	

$$E(x) = 0 \int_{0}^{2} x \cdot \frac{3}{2} dx = \frac{x^{3}}{6} \Big|_{0}^{2} = \frac{8}{6}$$

(47)
$$E(4) = \int_{0}^{1} y \cdot h(y) dy$$

$$b(y) = \int_{0}^{2} \chi(1+3y^{2})/4 dx = (\frac{\chi^{2}}{8} + \frac{3\chi^{2}y^{2}}{8})^{2}$$

$$= \int (\frac{y}{2} + \frac{3}{2}y^3) dy =$$

(N)
$$V(x) = \delta x = E(x^2) - [E(x)]^2$$

$$V(g) = 5\dot{y} = E(y^2) - [E(y)]^2$$

= $73/960$.

96

(41) Covariance $(X,Y) = E(X,Y) - E(X)^{E}(Y)$ $= \frac{S}{G} - \frac{4}{3} \left(\frac{S}{8}\right)$

Covariance = 0 hence X, Y are not linearly related

(419) Correlation = Cov(x,4) = 0

Discrete Probability Distribution.

* Bernoulli Process 3

O Experiment consists of repeated trials.

@ Each I vial results in an outcome either

"success" or "Jailure"

3) Probability of success, tempains constant from

4

Binomial Distribution: Sampling with replacement

X no of successes in n Besmoulli trials called a Binomial Random Variable.

Probability distribution of discrete random variable is called Binomial Distribution.

B(n,p)= nC, p (1-p)n-r

Eg#01 Coin tossed 3 times. Probability of getting

$$n = 3$$
, $k = 2$, $P = \frac{1}{2}$
 $P(x = 2) = {}^{3}C_{2}(\frac{1}{2})^{2}(1 - \frac{1}{2})^{2-1}$
 $= {}^{3}/8$

0	1/8	0	0
1	3/8	3/8	3/8
2	3/8	8/8	12/8
3	1/8	3/8	9/8
Total	8/8	13/8	24/8

$$P(X=3) = {}^{5}C_{3} \cdot {}^{5}C_{6} / {}_{10}C_{3}$$

= ${}^{1}/_{12} - 0.08$

29 #13

a b a+b

3 9 12

7-3

P(rejecting a lot) = 1 - P(x = 0)= $1 - (3C_6 \cdot 9C_3/12C_3)$. = $0 \cdot 618$.

geometric Distribution:

Outcomes -> success / failure:
Probability of success is same for each experiment

- Each experiment is independent

· - Experiment is repealed a variable number of times

Mean & variance

$$U = \frac{1}{p}$$
, $\delta^{2} = (1-p)/p^{2}$

Probability that fifth item inspected is first defective Hem Yound?

$$x = 5$$
, $P = x_{00}$
 $P(x = 5) = (0.01)(1 - 0.01)^{5-1}$
 $= 9.60 \times 10^{-3}$

eg#15

P = 0.85 , Probability -> pass on 3rd trial

 $P(X=3) = (0.85)(1-0.85)^{2}$ = 0.0191

eg#16

P=0.05 / X=5

 $P(x=5) = (0.05)(1-0.05)^4$ = 0.040

* Poisson Distribution:

Frequency Data Count Dolla

- · Average number of successes.
- . Time interval region is known.

$$P(X=x) = e^{-\lambda} \lambda^{x}$$

of X = no. of times event occur.

h = mean of X.

Radioactive Particles.

$$A = 4$$
, $X = 6$
 $P(X = 6) = 44^{6} \times e^{-4}$

18 Oil tankers arrival

$$P(x \ge 15) = 1 - P(x \le 15)$$

#19
Typographical Errors X = 3 $A = \frac{200}{500} = 0.4$

$$P(x=3) = e^{-0.4} (0.4)^3$$

g# 20

(a)
$$P(X \le 3) = P(X=0) + ... + P(X=3)$$

(b)
$$P(X \ge 3) = 1 - P(X \le 3)$$

(b)
$$P(x \ge 3) = 1 - P(x \le 3)$$

(c) $P(x \ge 5) = 1 - P(x \le 4)$

Marchla 100 0-8 Miscellaneous Problems 3-4 1.5 customers arrive per minute a) Atmost 4 will arrive $P(x \le 4) = \frac{4}{2} e^{-1.5} (1.5)^{\frac{7}{2}} = 0.98$ (6) At least 3 will arrive during an interval of 2 minutes $P(x \ge 3) = 1 - P(x \le 2)$ $= 1 - \frac{3}{2} e^{-3} 3^{\frac{1}{2}} = 0.576$ (1) Exactly 15 will arrive during an interval of 6 $P(X=15) = e^{-6(1.5)}(6(1.5))^{15}/157 = 0.019$

$$95.3$$
 (a) $F(x) = 1/10$ (b) $P(x < 4) = 3/10$

