PRÁCTICA 13: INTEGRACIÓN NUMÉRICA

Programar el algoritmo de Simpson (1/3) para evaluar numéricamente la integral

$$I = \int_0^1 x^2 e^{-x} dx$$

Programar el método de las cuadraturas gaussianas con 6 puntos. Encontrar el número de subintervalos necesarios en el método de Simpson (1/3) para obtener un error numérico de la integral similar al método de la cuadratura gaussiana con 6 puntos, para la integral de la práctica. Realizar el mismo estudio para el método trapezoidal.

AYUDA.

1. El error numérico se define como el valor absoluto de la diferencia entre la solución exacta y la solución numérica. La solución exacta para la integral del ejercicio es:

$$\int_0^1 x^2 e^{-x} dx = 2 - 5 e^{-1}$$

2. Cuadratura gaussian con 6 puntos

$$\int_{-1}^{1} f(x)dx = \sum_{j=0}^{M-1} w_j f(x_j)$$

donde M=6

\overline{j}	x	ω
0	0.9324695142	0.1713244924
1	-0.9324695142	0.1713244924
2	0.6612093865	0.360761573
3	-0.6612093865	0.360761573
4	0.2386191861	0.4679139346
5	-0.2386191861	0.4679139346