Vahe Gharakhanyan

📞 (510) 333-6330 | ☑ vg2471@columbia.edu | 😭 gvahe.github.io | 🥥 gvahe | **in** vahegharakhanyan

Education

Columbia University

August 2019 - present

PHD MATERIALS SCIENCE AND ENGINEERING

GPA: 4.04 / 4.00

 Relevant Coursework: Machine Learning, Atomistic Simulations, Computing Electronic Structure, Phonon Calculations, Electric and Magnetic Properties, Mechanical Properties, Crystallography, Thermodynamics and Kinetics.

University of California, Berkeley

August 2015 - May 2019

BS MATERIALS SCIENCE AND ENGINEERING, BS CHEMICAL ENGINEERING

Minor Electrical Engineering and Computer Sciences

GPA: 3.61 / 4.00

• Relevant Coursework: Optical Engineering, Integrated Circuit Design, Information Systems, Dynamics and Control, Polymeric Materials, Thin Films, Materials Production and Design, Mass and Energy Transport, Fluid Dynamics, Phase Transformations and Kinetics, Reactor Engineering, Crystal Defects, Corrosion, Quantum Mechanics, Data Science, Data Structures, Discrete Math and Probability.

Work and Research Experience

AI Resident - Chemical Reaction Optimization with Machine Learning

May 2021 - September 2021

X - THE MOONSHOT FACTORY (FORMERLY Google[x]), MOUNTAIN VIEW, CA

• X is Alphabet's moonshot factory. The mission is to invent and launch moonshot technologies that make the world a radically better place. I am part of an early stage, confidential team.

Quantitative Research Intern - Machine Learning

August 2020 - February 2021

THE QUANT EDGE, NEW YORK, NY

- Worked towards predicting soccer match results using a team-strength metric and a Poisson model for goal scoring.
- Developed a machine learning method for predicting horse racing results by examining each pair of participants using Random Forest Classification.

Machine Learning for Optimization of Battery Devices for Energy Storage

October 2019 - present

SUPERVISOR: PROF. ALEXANDER URBAN, COLUMBIA UNIVERSITY

- Working towards using symbolic regression to understand different forms of melting within clusters of materials.
- Working towards learning about different forms of melting from short-time molecular dynamics (MD) simulations.
- Engineered features to allow for element permutations by including mathematical moments of physical parameters.
- Used Graph Neural Network (GNN) architecture for materials (MEGNet) to predict melting points of materials.

Density Functional Theory for Properties of Charged Defects

March 2018 - May 2019

SUPERVISOR: PROF. MARK ASTA, UNIVERSITY OF CALIFORNIA, BERKELEY

- Employed DFT to understand how the surrounding of each atom changes after charged defect incorporation in TiO₂.
- Used Python Charged Defect Toolkit (PyCDT) to post-process charged defect calculations.

Publications

- J.A.G. Torres, V. Gharakhanyan, N. Artrith, T.H. Eegholm and A. Urban (2021). Predicting chemical reactions at high temperatures with machine learning and 0-Kelvin quantum mechanics. [in revision for Nat. Commun.]
- V. Gharakhanyan, J.A.G. Torres, E. Eisenberg and A. Urban (2021). Boosting Prediction of Melting Temperatures with Clustering. [in preparation]

Presentations

- Combined Clustering and Regression for Predicting Melting Temperatures of Solids. 2022 TMS Annual Meeting, March 2022, Anaheim, CA.
- Predicting Melting Temperatures of Solids via a Combined Model based on Clustering and Regression. 2021 MRS Fall Meeting, December 2021, Boston, MA.

Awards

NSF Conference Fellowship

July 2021

MECHANISTIC ML AND DIGITAL TWINS (MMLDT-CSET) 2021 CONFERENCE

Data Science/Medical Research Program Fellowship

July 2020

TECHFOUNDATION, HARVARD MEDICAL SCHOOL

Paper on Mathematical Modelling of Viruses, President's Special Award President of The Republic of Armenia, Armen Sarkissian [link]	June 2020
Design Competition: The Energy Transition Challenge, 2nd award CHEVRON CORPORATION, BERKELEY, CA	May 2018
• Designed solar energy implementation into oil and gas company portfolios and inspired	the global energy transition
Outstanding Tutor Award University of California, Berkeley	December 2017
President's Annual Award for the Best Student in Information Technology Synopsys, Armenia	October 2013
International Chemistry Olympiad 2012 and 2013, Two Bronze medals Washington DC, US and Moscow, Russia	June 2012 - June 2013
Leadership Experience	
Treasurer - Columbia Materials Advantage Student Chapter	August 2021 - May 2022
UC Berkeley Achievement Award Program Scholarship Reviewer	May 2020
UC Berkeley Leadership Award Program Scholarship Reviewer	May 2020
Jury Member - Baltic Chemistry Olympiad	2019 - 2020
Chemical Engineering Jeopardy Team Member, AIChE, UC Berkeley	2017 - 2019
Volunteer - Wikimedia Armenia	2013 - 2015
Scholarships	
Armenian Professional Society Graduate Excellence Scholarship	October 2020
Chevron Scholarship, University of California, Berkeley	2019
T.Z. and Irmgard Chu Scholarship, University of California, Berkeley	2018
John M. Azarian Memorial Armenian Youth Scholarship	2018
Harut Barsamian Scholarship	2018
Hrayr Terzian Alumni Scholarship, University of California, Berkeley	2017
Margarian Scholarship for Excellence in Education	2017
Koomruian Educational Fund Scholarship	2017
Armenian Relief Society Scholarship	2016 - 2018
Jack Arpajian Educational Foundation Scholarship	2016 - 2019
Luys Foundation Scholarship	2015 - 2019
Teaching Experience	
TA for Atomistic Simulations course (CHEN 4880) COLUMBIA UNIVERSITY	Spring 2021
TA for Computational Math: Numerical Methods course (APMA 4300) COLUMBIA UNIVERSITY	Fall 2019, Spring 2020
Instructor for Statistics course Academic Success Program, Columbia University	Summer 2020, Summer 2021
TA for Quantum Mechanics course (Chem 120A) UNIVERSITY OF CALIFORNIA, BERKELEY	Fall 2018, Spring 2019
Workshop on Chemical Process Control and Dynamics Tumo Center for Creative Technologies, Yerevan, Armenia	Winter 2019

TA for General Chemistry course (Chem 1A)

University of California, Berkeley

Head Tutor of Engineering, Science and Math courses

COLLEGE OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, BERKELEY

Fall 2017 - May 2019

Skills

Python (TensorFlow, PyTorch, Scikit-learn, Pandas, SciPy, NumPy, Seaborn), **Programming/Technologies**

SQL, MATLAB, Simulink, C++, Java, Jupyter Notebook, Bash, Git

DFT (Quantum ESPRESSO, VASP), Molecular Dynamics, Monte Carlo, **Computational Simulations**

LAMMPS, AFLOW, Pymatgen, COMSOL, Zemax, Synopsys Tools (Sentaurus), Aspen

Analytical Analysis Methods HPLC, GC, FTIR, UV-VIS, NMR, MS, XRD

English, Russian, Armenian (working proficiency in all) Languages

Programming Projects ____

Compartmental Models in Epidemiology

March 2020 - June 2020

PYTHON

• Awarded a special prize for the work by the President of The Republic of Armenia, Armen Sarkissian. [link]

 Modelled virus spread using compartmental models of different complexity and fitted to the country data of Armenia for future predictions on COVID-19 spread in the country.

Predicting Taxi Ride Duration in New York City

March 2019 - May 2019

PYTHON

- Performed data selection and cleaning by assessing the impact of a historical event (January 2016 US blizzard).
- Used Principal Component Analysis (PCA) to divide up the map of Manhattan into three equipartitioned regions.
- Validated the performance of the linear regression model and used tree regression on categorical variables.

Voice-Controlled Robotic Car

January 2019 - May 2019

PYTHON, ENERGIA

• Profiled motor behavior and operating conditions and designed a closed-loop control.

- Applied Principal Component Analysis (PCA) on voice commands and implemented cluster formation algorithm.
- Built the front-end circuitry for the car and denoised sound signals by adding a bias to improve the classification.

Google-Yelp Maps

An algorithm to recommend best restaurants based on user's ratings and location PYTHON, JAVA

November 2016 - May 2017

- Created an image rendering algorithm to enable zoom in/out
- Interpreted data from xml file into a recognizable graph-map form for the program
- Implemented A* path-finding algorithm to find the shortest distance between two points
- Designed Voronoi diagram for restaurants that represents K-means unsupervised learning method for clustering

Engineering Projects

Design of an N-channel Silicon MOSFET

March 2019 - May 2019

SENTAURUS DEVICE

• Optimized channel/body dopant concentration, junction depth and spacer length to achieve off current ≤ 1 nA per micron channel width and on current ≥ 400 μA per micron channel width specifications.

Light-Fidelity (Li-Fi) Communications System

March 2019 - May 2019

ZEMAX

- Built a Li-Fi transmitter: converted data to binary information and passed through high illumination LED.
- Built a Li-Fi receiver: used a photodiode receiver and an inverting amplifier to recover the original signal.
- Modelled an optical filter as a 4f system to select the necessary data, remove noise and potential corruptions.

Control System for a Two-cut Splitter

March 2018 - May 2018

SIMULINK, MATLAB

- Designed Internal Model Control (IMC) system based on a nonlinear process model.
- Implemented cascade, feedforward/feedback controllers for quality control of bottoms and distillate concentrations.

Summer 2018