Preference modelling

Elise Bonzon
elise.bonzon@mi.parisdescartes.fr

 $\label{lipade} \begin{tabular}{ll} LIPADE - Universit\'e Paris Descartes \\ http://www.math-info.univ-paris5.fr/\backsimbonzon/ \end{tabular}$

- 1. Introduction
- 2. Preference structures
- 3. Preference models
- 4. Valued structures
- 5. Conclusion

Bibliography

- D. Bouyssou et P. Vincke, Relations binaires et modélisation des préférences. Concepts et méthodes pour l'aide à la décision.
 Hermes. 2006.
- M. Ozturk, A. Tsoukias et P. Vincke. Preference modelling. Multiple Criteria Decision Analysis: State of the Art Surveys. Springer Verlag. 2005

Introduction

Introduction

Lemma

- if you have no preferences...
- there is no need to worry about decisions!

Introduction

Lemma

- if you have no preferences...
- there is no need to worry about decisions!
- ightarrow We need to have concepts to represent preferences
 - in a variety of disciplines:
 - economics, psychology, political science, operational research, multiple criteria decision making...
- → preference modelling

Binary relation

Binary relation

Let A be a set of objects, alternatives, candidates...

A binary relation R on the set A is a subset of $A \times A$.

We write $(a, b) \in R$, or aRb.

Binary relation

Binary relation

Let A be a set of objects, alternatives, candidates...

A binary relation R on the set A is a subset of $A \times A$.

We write $(a, b) \in R$, or aRb.

- A possible interpretation of aRb is: a is preferred to b
- Another one:
 - $A = \{alan, bonnie, clara, diana, eddy, fanny\}$
 - R = "wants to see tonight"
 - $R = \{(a,c),(c,a),(d,e),(b,f),(a,e)\}$

Representation of a binary relation

• Matrix representation:

ightharpoons	а	Ь	С	d	e	f
а	0	0	1	0	1	0
Ь	0	0	0	0	0	1
С	1	0	0	0	0	0
d	0	0	0	0	1	0
е	0	0	0	0	0	0
f	0	0	0	0	0	0

• Graphical representation:

Set operations

Let R and T be two binary relations on the same set A:

- Inclusion: $R \subseteq T$ iff $aRb \Rightarrow aTb$
- Union: $a(R \cup T)b$ iff aRb or (inclusive) aTb
- Intersection: $a(R \cap T)b$ iff aRb and aTb
- Relative Product: a(R.T)b iff $\exists c \in A$ s.t. aRc and cTb

A binary relation R on a set A is, $\forall a, b, c, d \in A$:

• reflexive iff aRa,

- reflexive iff aRa,
- irreflexive iff not(aRa),

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \land bRa \Rightarrow a = b$

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \wedge bRa \Rightarrow a = b$
- transitive iff $aRb \land bRc \Rightarrow aRc$

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \wedge bRa \Rightarrow a = b$
- transitive iff $aRb \wedge bRc \Rightarrow aRc$
- semi-transitive iff $aRb \land bRc \Rightarrow aRd \lor dRc$

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \wedge bRa \Rightarrow a = b$
- transitive iff $aRb \wedge bRc \Rightarrow aRc$
- semi-transitive iff $aRb \land bRc \Rightarrow aRd \lor dRc$
- negatively transitive iff $not(aRb) \land not(bRc) \Rightarrow not(aRc)$

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \wedge bRa \Rightarrow a = b$
- transitive iff $aRb \wedge bRc \Rightarrow aRc$
- semi-transitive iff $aRb \land bRc \Rightarrow aRd \lor dRc$
- negatively transitive iff $not(aRb) \land not(bRc) \Rightarrow not(aRc)$
- Ferrers iff $aRb \land cRd \Rightarrow aRd \lor cRb$

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \wedge bRa \Rightarrow a = b$
- transitive iff $aRb \wedge bRc \Rightarrow aRc$
- semi-transitive iff $aRb \land bRc \Rightarrow aRd \lor dRc$
- negatively transitive iff $not(aRb) \land not(bRc) \Rightarrow not(aRc)$
- Ferrers iff $aRb \land cRd \Rightarrow aRd \lor cRb$
- complete iff aRb ∨ bRa

- reflexive iff aRa,
- irreflexive iff not(aRa),
- symmetric iff $aRb \Rightarrow bRa$,
- asymmetric iff $aRb \Rightarrow not(bRa)$
- antisymmetric iff $aRb \wedge bRa \Rightarrow a = b$
- transitive iff $aRb \wedge bRc \Rightarrow aRc$
- semi-transitive iff $aRb \land bRc \Rightarrow aRd \lor dRc$
- negatively transitive iff $not(aRb) \land not(bRc) \Rightarrow not(aRc)$
- Ferrers iff $aRb \land cRd \Rightarrow aRd \lor cRb$
- complete iff aRb ∨ bRa
- weakly complete iff $a \neq b \Rightarrow aRb \lor bRa$

Preference structures

Preference structures

Preference structure

A preference structure is a collection of binary relations defined on the set *A* and such that:

- $\forall a, b \in A$, at least one relation is satisfied
- $\forall a, b \in A$, if one relation is satisfied, another one cannot be satisfied

Preference structures

Preference structure

A preference structure is a collection of binary relations defined on the set *A* and such that:

- $\forall a, b \in A$, at least one relation is satisfied
- $\forall a, b \in A$, if one relation is satisfied, another one cannot be satisfied

A preference structure defines **a partition** of the set $A \times A$.

- Each preference relation in a preference structure is uniquely characterized by its properties (symmetry, transitivity...)
- Any preference structure can be characterized by a unique binary relation R (called characteristic relation)

Strict preferences, indifference and incomparability

Strict preferences: *P*

- There are clear and positive reasons for a significant preference for one of the two options,
- P is asymmetric

Indifference: /

- There are clear and positive reasons for an equivalence between the two options,
- I is symmetric and reflexive

Incomparability: J

- There are no clear and positive reasons for one of the above situations,
- *J* is symmetric and irreflexive

Preference structure

- $\{P, I, J\}$ is a preference structure if:
 - P is asymmetric
 - I is symmetric and reflexive
 - J is symmetric and irreflexive,
 - $P \cup I \cup J$ is complete,
 - P, I and J are exclusives
- Example:
 - $\bullet \ \ A = \{a, b, c, d, e\}$
 - $P = \{(b, a), (b, c), (b, d), (b, e), (d, c), (e, c)\}$
 - $I = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a)\}$
 - $J = \{(a, e), (e, a), (a, d), (d, a), (d, e), (e, d)\}$

Characterisation

Characterisation

Every preference structure is characterized by the relation $R = P \cup I$

$$(a,b) \in R \Leftrightarrow (a,b) \in P \text{ or } (a,b) \in I$$

• We have:

$$(a,b) \in P \Leftrightarrow (a,b) \in R \text{ and } (b,a) \notin R$$

 $(a,b) \in I \Leftrightarrow (a,b) \in R \text{ and } (b,a) \in R$
 $(a,b) \in J \Leftrightarrow (a,b) \notin R \text{ and } (b,a) \notin R$

- R is the characteristic relation of the preference structure $\{P, I, J\}$
- $(a,b) \in R$ means that: "a is at least as good as b"

Preference models

Preference models

Total preorder

Total preorder

All items can be ranked from the "best one" to the "least good". Some items can be equally ranked.

Total preorder

All items can be ranked from the "best one" to the "least good". Some items can be equally ranked.

Total preorder

R is a pre-order iff it satisfies the following properties:

- R is complete
- R is transitive

Total preorder

All items can be ranked from the "best one" to the "least good". Some items can be equally ranked.

Total preorder

R is a pre-order iff it satisfies the following properties:

- R is complete
- R is transitive
- The preference structure $\{P, I, J\}$ satisfies the following properties:
 - No incomparability $(J = \emptyset)$
 - P is transitive
 - I is transitive

Numerical representation of a total preorder:

$$\begin{cases} (a,b) \in P \Leftrightarrow g(a) > g(b) \\ (a,b) \in I \Leftrightarrow g(a) = g(b) \end{cases}$$

• The characteristic relation *R* is represented by:

$$(a,b) \in R \Leftrightarrow g(a) \geq g(b)$$

 Whenever a decision problem is reduced to the comparison of "profit", the underlying preference structure is a preorder.

- In a total preorder:
 - I is an equivalence relation: reflexive, symmetric and transitive
 - P is a weak order: asymmetric and negatively transitive
 - ullet Knowing P is enough to know all the structure

- In a total preorder:
 - I is an equivalence relation: reflexive, symmetric and transitive
 - P is a weak order: asymmetric and negatively transitive
 - Knowing P is enough to know all the structure

Total Order

A total order is a total preorder without equally-ranked candidates

- $I = \{(a, a), \forall a \in A\},\$
- P is a strict and total order

- In a total preorder:
 - I is an equivalence relation: reflexive, symmetric and transitive
 - P is a weak order: asymmetric and negatively transitive
 - Knowing *P* is enough to know all the structure

Total Order

A total order is a total preorder without equally-ranked candidates

- $I = \{(a, a), \forall a \in A\},\$
- P is a strict and total order

Total order

R is an order iff it satisfies the following properties:

- *R* is complete
- R is transitive
- *R* is antisymmetric

Preference models

Semiorder

Considering a threshold

Let $a, b, c \in A$ 3 elements, such that g(a) = 1000, g(b) = 1020 and g(c) = 1040.

If we assume that we have a threshold q=30, we will have $(a,b) \in I$, $(b,c) \in I$ and $(c,a) \in P$:

Considering a threshold

- A discrimination threshold aims to consider small differences as not significant
- The transitivity of the indifference relation is not compatible with the existence of such a threshold,
- Any preference structure underlying a threshold model verifies:

$$\left\{ \begin{array}{l} (a,b) \not\in J \ \ \text{(that is } J = \emptyset) \\ (a,b) \in P, \ (b,c) \in I, \ (c,d) \in P \Rightarrow (a,d) \in P \\ (a,d) \in I, \ (a,b) \in P, \ (b,c) \in P \Rightarrow (d,c) \in P \end{array} \right.$$

 Any preference structure that verifies the properties above can be represented by a threshold model (if A is finite or countable)

Semiorder

Semiorder

A reflexive relation $R = \langle P, I \rangle$, defined on A, is a semiorder if there exists a function g with values in IR, and a non-negative constant q such that $\forall a, b \in A$,

$$\begin{cases} (a,b) \in P & \Leftrightarrow & g(a) > g(b) + q, \\ (a,b) \in I & \Leftrightarrow & |g(a) - g(b)| \le q. \end{cases}$$

Semiorder

Semiorder

A reflexive relation $R=\langle P,I\rangle$, defined on A, is a semiorder if there exists a function g with values in IR, and a non-negative constant q such that $\forall a,b\in A$,

$$\begin{cases} (a,b) \in P & \Leftrightarrow & g(a) > g(b) + q, \\ (a,b) \in I & \Leftrightarrow & |g(a) - g(b)| \le q. \end{cases}$$

Semiorder

R is a semiorder iff it satisfies the following properties:

- R is complete
- R is Ferrers
- R is semi-transitive

Preference models

Interval Order

What if the threshold is variable?

- One may want to vary the threshold according to the level of the scale
- We introduce a variable threshold such that:

$$\left\{ \begin{array}{ll} (a,b) \in P & \Leftrightarrow & g(a) > g(b) + q(g(b)) \\ (a,b) \in I & \Leftrightarrow & \left\{ \begin{array}{ll} g(a) \leq g(b) + q(g(b)), \\ g(b) \leq g(a) + q(g(a)) \end{array} \right. \end{array} \right.$$

Consistency condition

Consistency Condition:

$$g(a) > g(b) \Rightarrow g(a) + q(g(a)) > g(b) + q(g(b))$$

- If the consistency condition is satisfied, then the underlying preference structure is a semiorder. The problem can be reduced (by transforming the functions g and q) to a model where the threshold is constant (with, for example, $q(g(a)) = \alpha g(a) + \beta$)
- If the consistency condition is not satisfied, then the underlying preference structure has to satisfy:

$$\begin{cases} (a,b) \not\in J \text{ (that is } J = \emptyset) \\ (a,b) \in P, (b,c) \in I, (c,d) \in P \Rightarrow (a,d) \in P \end{cases}$$

 A preference structure is an interval order if it can be represented by a variable threshold model

Interval orders

Interval order

R is an interval order iff it satisfies the following properties:

- R is complete
- R is Ferrers

Interval-actions

- It is sometimes difficult to translate the consequences of decisions by a precise numerical assessment
- The evaluation of each action can be apprehended by an interval of possible values for g(a): $[I_a, u_a]$
- \rightarrow How can we compare such interval-actions?

Interval-actions

Model 1:

• The intervals have to be disjoint in order to mark a preference:

$$\begin{cases} (a,b) \in P & \Rightarrow & l_a > u_b \\ (a,b) \in I & \Rightarrow & (a,b) \notin P \text{ and } (b,a) \notin P \end{cases}$$

- It is then an interval order structure
 - \rightarrow with $l_1=g(a)$ and $u_a=g(a)+q(g(a))$, it is a variable threshold model
- When the intervals are of identical length, it is a semiorder structure (the length of the intervals corresponds to a constant threshold)

Interval-actions

Model 2:

There is a preference as soon as an interval impinge on the other:

$$\left\{ \begin{array}{ll} (a,b) \in P & \Rightarrow & l_a > l_b \text{ and } u_a > u_b \\ (a,b) \in I & \Rightarrow & (a,b) \not \in P \text{ and } (b,a) \not \in P \end{array} \right.$$

• In this case *P* is a partial order, and *I* is the complementary relation

Preference models

Pseudo-orders

Taking two thresholds into account

- It may seem arbitrary to determine a value below which there is an indifference, and above which there is a strict preference
- There is often a hesitation area
- We introduce a preference threshold (in addition to the indifference threshold) beyond which there is a strict preference
- Between the indifference threshold and the preference threshold exists an ambiguous zone in which the decision maker hesitates between indifference and preference

Double threshold order

Double threshold order

Let $R = \langle P, Q, I \rangle$ be a relation on a finite set A. R is a double threshold order iff, $\forall a, b \in A$,

$$\left\{ \begin{array}{ll} (a,b) \in P & \Leftrightarrow & g(a) > g(b) + p(g(b)) \\ (a,b) \in Q & \Leftrightarrow & g(b) + p(g(b)) \geq g(a) > g(b) + q(g(b)) \\ (a,b) \in I & \Leftrightarrow & \left\{ \begin{array}{ll} g(b) + q(g(b)) \geq g(a) \\ g(a) + q(g(a)) \geq g(b) \end{array} \right. \end{array} \right.$$

• *Q* represents a "weak" preference relation, where one is hesitant between an indifference or a preference relation

Pseudo-order

 A pseudo-order is a particular case of double threshold order, such that the thresholds fulfil a coherence condition

Pseudo-order

Let $R = \langle P, Q, I \rangle$ be a relation on a finite set A. R is a pseudo-order iff, $\forall a, b \in A$,

$$\left\{ \begin{array}{l} \textit{R is a double threshold order} \\ g(\textit{a}) > g(\textit{b}) \Leftrightarrow \left\{ \begin{array}{l} g(\textit{a}) + q(g(\textit{a})) > g(\textit{b}) + q(g(\textit{b})) \\ g(\textit{a}) + p(g(\textit{a})) > g(\textit{b}) + p(g(\textit{b})) \end{array} \right. \end{array} \right.$$

Interval comparison

A three-way structure appears when we conpare intervals as follows:

$$\begin{cases} (a,b) \in P & \Leftrightarrow & l_a > u_b \\ (a,b) \in Q & \Leftrightarrow & u_a > u_b > l_a > l_b \\ (a,b) \in I & \Leftrightarrow & [l_a,u_a] \subseteq [l_b,u_b] \text{ or } [l_b,u_b] \subseteq [l_a,u_a] \end{cases}$$

Preference models

Incomparability

Partial models

Valued structures

Fuzzy preferences

- The preference models we have seen until now assume that the preference relation is unique (for a, b ∈ A)
- Each (a, b) ∈ P can be associated to a value v(a, b) representing the "degree" or the "validity" of the preference of a over b
- Let $v(a, b) \in [0, 1]$ such that
 - v(a, b) = 1: the degree of the preference of a over b is maximum,
 - v(a, b) = 0: the degree of the preference of a over b is minimum.
- Useful when a and b are compared several times during votes, polls, ...

When v(a, b) is considered, the properties of the preference relations must be redefined:

• $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting
- $v(a, b) + v(b, a) \le 1$ vote with abstention

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting
- $v(a,b) + v(b,a) \le 1$ vote with abstention
- $v(a,b) > Min(v(a,c),v(c,b)), \forall c \in A \longrightarrow \text{generalisation of transitivity}$

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting
- $v(a,b) + v(b,a) \le 1$ vote with abstention
- $v(a,b) > Min(v(a,c),v(c,b)), \forall c \in A \longrightarrow \text{generalisation of transitivity}$
- Max(v(a, b), v(c, d)) > Min(v(a, d), v(c, b)) → characteristics property of interval-orders

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting
- $v(a,b) + v(b,a) \le 1 \longrightarrow \text{vote with abstention}$
- $v(a,b) > Min(v(a,c),v(c,b)), \forall c \in A \longrightarrow \text{generalisation of transitivity}$
- Max(v(a, b), v(c, d)) > Min(v(a, d), v(c, b)) → characteristics property of interval-orders
- $v(a,c) = v(a,b) + v(b,c) \longrightarrow \text{additivity (notion of intensity of the preferences)}$

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting
- $v(a,b) + v(b,a) \le 1 \longrightarrow \text{vote with abstention}$
- $v(a,b) > Min(v(a,c),v(c,b)), \forall c \in A \longrightarrow \text{generalisation of transitivity}$
- Max(v(a, b), v(c, d)) > Min(v(a, d), v(c, b)) → characteristics property of interval-orders
- v(a, c) = v(a, b) + v(b, c) → additivity (notion of intensity of the preferences)
- α -cut of a valued relation: we keep only the couples (a,b) satisfying $v(a,b) \geq \alpha$

- $v(a,b) > 0 \Rightarrow v(b,a) = 0 \longrightarrow a$ sort of antisymmetry
- $v(a,b) + v(b,a) = 1 \longrightarrow$ notion of probability, used with voting
- $v(a,b) + v(b,a) \le 1$ vote with abstention
- $v(a,b) > Min(v(a,c),v(c,b)), \forall c \in A \longrightarrow \text{generalisation of transitivity}$
- Max(v(a, b), v(c, d)) > Min(v(a, d), v(c, b)) → characteristics property of interval-orders
- v(a, c) = v(a, b) + v(b, c) → additivity (notion of intensity of the preferences)
- α -cut of a valued relation: we keep only the couples (a,b) satisfying $v(a,b) \geq \alpha$
- A valued relation is max-min-transitive iff all α -cuts are transitive

Comparison of preferences gap

- It is possible to compare the gap between preferences
- Let $a, b, c, d \in A$ such that $(a, b) \in P$ and $(c, d) \in P$
- We consider the statement "The preference of a over b is stronger (less strong, equivalent, incomparable) than the preference of c over d"
- \Rightarrow Defines a preference structure over $A \times A$

Comparison of preferences gap

- Example: the additive model
- 2 preferences structures:
 - (1, P) over A
 - (\sim, \succ) over $A \times A$
- Defined by the function *g*:

$$\begin{cases} (a,b) \in P & \Leftrightarrow & g(a) > g(b) \\ (a,b) \in I & \Leftrightarrow & g(a) = g(b) \\ (a,b) \succ (c,d) & \Leftrightarrow & g(a) - g(b) > g(c) - g(d) \\ (a,b) \sim (c,d) & \Leftrightarrow & g(a) - g(b) = g(c) - g(d) \end{cases}$$

Conclusion

To conclude

- Brief survey of classical preference structures
- Vast and complex literature
- Some important questions we did not ask here:
 - the question of the approximation of preference structure by another one
 - the way to collect and validate preference information in a given context
 - the links between preference modeling and the question of meaningfulness in measurement theory
 - the statistical analysis of preference data
 - questions on the links between value systems and preferences