

	An Aside:
-	Proof We will use Thales' theorem.
	Observe, DADE~DABC and Thales' theorem says:
	TABI TACI
	(Euclid style) "Move" triangle SABC so A coincides with A' and lines AB and A'B' coincide & lines AC and A'C' coincide
	(using $\angle CAB = \angle C'A'B'$)
	A=A' B B'
	Claim: 1ABI = 1ACI 1ABI 1ACI.
	We know $\angle ABC = \angle AiB'C'$ ($\triangle ABC \cap \triangle A'B'C'$). So BC & B'C' are parallel (corresponding angles are equal).
	Thates' theorem implies - [A'B'] = [A'C'] LABI [ACI
	Similarly for other Inequality (move AABC so B coincides W/B').
	How to avoid "moving" (ansmut points (" or A'c')
	B A' B' Such that $ A'B'' = AB $
	Then $\triangle ABC \cong \triangle A'B''C''$ (by SAS).
	Now prove as before) using DA'B"C" & DA'B'C'.
_	