Lecture 3: Cost of Communications

September 27, 2022

How Long Does It Take to Communicate?

Sending a message along a network link

- Reasonable to assume $T = \alpha + n \times \beta$, where
 - n = message size (bits)
 - $ightharpoonup \alpha = latency (s)$
 - ► MPI layer, OS, NICs, Switches, ...
 - $ightharpoonup \beta = 1/\text{ bandwidth (s / bit)}.$
- Assumption: full-duplex
 - NICs can send & receive at the same time

Latency VS Bandwidth

Cluster	Year	Interconnect	$1/\beta$	$lpha$ (μ s)	$\mathbf{n}\beta=\alpha$
PPTI	20??	1Gbit ethernet	64MB/s	50.0	3.2K
sagitaire	2006	1Gbit ethernet	116MB/s	65.0	7.5K
taurus	2012	10Gbit ethernet	1156MB/s	25.9	30K
gros	2019	25Gbit ethernet	2480MB/s	8.9	22K
grcinq	2013	56Gbit InfiniBand	2488MB/s	1.2	3K
grimoire	2016	56Gbit InfiniBand	4248MB/s	1.1	4.6K
drac	2015	100Gbit InfiniBand	7760MB/s	1.7	13K
grvingt	2018	100Gbit OmniPath	12100MB/s	0.9	11K

Broadcast

Lower bound

- 1. *n* elements exit from the root
 - $ightharpoonup T > n\beta$

("bandwidth term")

- 2. Reach everybody ("disease propagation")
 - $ightharpoonup [\log_2 p]$ successive messages

("latency term")

$$\implies T \ge \lceil \log_2 p \rceil \alpha + n\beta$$

Summary

ightharpoonup p - 1 successive messages of size n

$$T = (\mathbf{p} - 1)\alpha + (\mathbf{p} - 1)\mathbf{n}\beta$$

- ► Pipelining: *k* "phases"
 - ightharpoonup Naive broadcasts of size n/k
- ▶ k + p 2 successive messages of size n/k

$$T = (k + p - 2)\alpha + \left(1 + \frac{p - 2}{k}\right)n\beta$$

k = p - 2 makes sense; best choice: $k = \sqrt{(p-2)\beta n/\alpha}$)

▶ $2\sqrt{p}$ successive messages of size n

$$\mathit{T} = 2\sqrt{\mathit{p}}\alpha + 2\sqrt{\mathit{p}}\mathit{n}\beta$$

Scatter/Gather: Lower Bound

- 1. $(p-1)\frac{n}{p}$ elements exit from (resp. enter into) root
 - $T \geq (p-1)\frac{n}{p}\beta$ ("bandwidth term")
- 2. Reach everybody ("disease propagation")
 - $ightharpoonup \lceil \log_2 p \rceil$ successive messages ("latency term")

$$\Longrightarrow T \ge \lceil \log_2 p \rceil \alpha + (p-1) \frac{n}{p} \beta$$

Scatter With Linear Network

Scatter With Linear Network

Summary

- ▶ p-1 successive messages of size n/p
- ► Parallel communications ("pipeline")

$$T = (\mathbf{p} - 1)\alpha + (\mathbf{p} - 1)\frac{\mathbf{n}}{\mathbf{p}}\beta$$

Gather-to-All

Allgather

P_0	P_1	P_2	P_3	P_4	P_5
а	а	а	а	а	а
Ь	Ь	Ь	b	Ь	Ь
С	С	С	С	С	С
d	d	d	d	d	d
е	e	е	е	e	e
f	f	f	f	f	f

1. $(p-1)\frac{n}{p}$ elements exit from each node

$$T \geq (p-1)\frac{n}{p}\beta$$

("bandwidth term")

- 2. Reach everybody ("disease propagation")
 - $ightharpoonup \lceil \log_2 p \rceil$ successive messages

("latency term")

$$\Longrightarrow T \ge \lceil \log_2 p \rceil \alpha + (p-1) \frac{n}{p} \beta$$

- Step 1: send you own data; step i + 1: send what you just received
- ▶ p-1 successive messages of size n/p

$$T = (p-1)\alpha + \left(\frac{p-1}{p}\right)n\beta$$

Performance of collective operations...

... heavily affected by network topology

Topology

Bipartite graph with (NIC, Switch) nodes and link edges

How Long Does It Take to Communicate (redux)?

P_i sends a message to **any other** process P_j

- ► Reasonable to assume $T = \alpha + n \times \beta$, where
 - n = message size (bits)
 - $ightharpoonup \alpha = latency (s)$
 - $\beta = 1/\text{bandwidth}$ (s / bit).
- Assumption: full-duplex
 - Processes can send & receive at the same time
- Tindependent of i, j (no weird topology)
- Tindependent from actions of other processes
 - No congestion

Realistic?

Fat Tree (Infiniband / Omnipath)

Fat tree (2 levels)

- ▶ **non-blocking** *R*-port "basic" switches
- $ightharpoonup (R^2/2)$ -port switch using 1.5R basic switches
- ▶ Infiniband : $R = 36 \rightsquigarrow 648$ ports

Infiniband 648-port "Director" switch

image: (c) Mellanox

image: (c) UTexas

Fat tree (3 levels)

- Same technique, recursively
- $(R^3/4)$ -ports with $1.25R^2$ basic R-port switches
- ▶ Infiniband : $R = 36 \rightsquigarrow 11644$ ports
- ▶ Used in Summit with 9 216 CPUs
 - ▶ 1 rack = 18 nodes = 36 CPUs = 36 NICs
 - Two 36-port switches per rack
 - 256 racks
 - ▶ 15 "director" (level-2) switches

It ends up looking like this

► Split machine in 3

- Split machine in 3
- All nodes on the left send messages to nodes on the right

- Split machine in 3
- All nodes on the left send messages to nodes on the right
- Assumption = no congestion
 - \leadsto Need $\ensuremath{\textit{P}}/3$ parallel network links across the middle
 - \rightsquigarrow Length $\geq h/3$

- Split machine in 3
- All nodes on the left send messages to nodes on the right
- Assumption = no congestion
 - \rightarrow Need P/3 parallel network links across the middle
 - \rightarrow Length $\geq \dot{h}/3$
- \implies cable length $\geq hP/9 = \Omega(P^{1.5})$
 - ► Fat tree a viable options with "small" #nodes (≤ 10k)

Cost-Saving Alternatives

3D Torus (IBM BlueGene/P, Cray XT3, ...)

- ► Cable length proportional to #Nodes
- Used on very large machines
 - ► E.g. $48 \times 72 \times 24 \approx 100$ k Nodes

Cost-Saving Alternatives

5D Torus (IBM BlueGene/Q)

Compromise

Dragonfly (Cray "Aries" Interconnect)

On Grid5000?

Except in special case, all nodes of a cluster connected to a switch MPI All-to-All:

On Grid5000?

Ring algorithm:

Scatter/Gather Again: Binary Tree Algorithm

- ▶ $2^{h+1} 1$ nodes in total; 2h successive messages
- $ightharpoonup 2^{h-i}$ nodes of height *i*. Each transfers:
 - ▶ Upwards $(2^{i+1}-1)n/p$ items
 - Nownwards $2 \times (2^{i} 1)n/p$ items

$$\Rightarrow T \leq \frac{2}{\log_2 P} \alpha + \frac{2(p-1)}{pn\beta}$$

Scatter/Gather Again: Binomial Tree Algorithm

- \triangleright 2^h nodes; h successive messages
- Nodes of height *i* transfer $2^i n/p$ items (synchronously)

$$T=$$
 message of size $1+\cdots+$ message of size $n/2$
$$=\alpha\lceil\log_2 p\rceil+(p-1)\frac{n}{p}\beta \qquad \text{(optimal)}$$

Interlude: Binomial Tree

- \triangleright $B_i = \text{root} + B_0 + B_1 + \dots B_{i-1}$
- $ightharpoonup B_i = B_{i-1} + B_{i-1}$
- $ightharpoonup {h \choose i}$ nodes at height i

$$T = \operatorname{msg}$$
 of size $n/p + \cdots + \operatorname{msg}$ of size $n/4 + \operatorname{msg}$ of size $n/2$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

$$T = \operatorname{msg}$$
 of size $n/p + \cdots + \operatorname{msg}$ of size $n/4 + \operatorname{msg}$ of size $n/2$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

$$T = \operatorname{msg}$$
 of size $n/p + \cdots + \operatorname{msg}$ of size $n/4 + \operatorname{msg}$ of size $n/2$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

$$T = \operatorname{msg}$$
 of size $n/p + \cdots + \operatorname{msg}$ of size $n/4 + \operatorname{msg}$ of size $n/2$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

$$T = \operatorname{msg}$$
 of size $n/p + \cdots + \operatorname{msg}$ of size $n/4 + \operatorname{msg}$ of size $n/2$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

$$T = \operatorname{msg\ of\ size\ } n/p + \cdots + \operatorname{msg\ of\ size\ } n/4 + \operatorname{msg\ of\ size\ } n/2$$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7
а	a	а	а	а	а	а	а
Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь
С	C	С	С	С	С	С	С
d	d	d	d	d	d	d	d
e	e	e	e	e	e	e	e
f	f	f	f	f	f	f	f
8	8	8	8	8	8	8	8
h	h	h	h	h	h	h	h

$$T = \operatorname{msg}$$
 of size $n/p + \cdots + \operatorname{msg}$ of size $n/4 + \operatorname{msg}$ of size $n/2$

$$= \alpha \log_2 p + (p-1) \frac{n}{p} \beta \qquad \text{(optimal)}$$

Algorithms for Broadcast / Reduce

Binomial Tree

- $T = \lceil \log_2 p \rceil (\alpha + n\beta)$
- "Bandwidth" term sub-optimal
- (bad for large messages)

Van de Geijn

- ► Broadcast = AllGather ∘ Scatter
 - Recursive doubling / Binomial tree
- $T = \frac{2}{(\log_2 p)} \alpha + \frac{2}{2} \left(1 \frac{1}{p} \right) n\beta$
- $\rightarrow 2 \times$ lower bound