Part 2. Roots of Equations Chapter 5. Bracketing Methods

Lecture 5

Bisection Method

5.2

Homeyra Pourmohammadali

Roots of equation

• values that satisfy homogeneous equation, solutions to implicit equation

Graphical Method

• graph function, locate roots where curve crosses x axis → predict # of roots, approximate location

Recall

• general "rules of thumb" for root prediction based on graphical methods: f(x) changes sign on the opposite side the root

Incremental Search Methods

- Locate, divide an interval where function changes sign
- One approach is bisection method (make interval in half)

Bracketing Method

- 2 initial guesses for the root are required.
- These guesses must bracket (be on either side of) the root.
- If one root of a real and continuous function, f(x)=0, is bounded by values $x = x_1$, $x = x_u$ then:

$$f(x_l) \cdot f(x_u) < 0$$

(The function changes sign on opposite sides of the root)

Algorithm for Bisection Method

For the arbitrary equation of one variable, f(x)=0

- 1. Pick x_1 and x_u such that they bound the root of interest, check if $f(x_1).f(x_u) < 0$.
- 2. Estimate the root by evaluating $f[(x_1 + x_u) / 2]$ (evaluating at midpoint)
- 3. Find the pair:

Algorithm for Bisection Method

• If
$$f(x_l) \cdot f[(x_l + x_u)/2] < 0$$

root lies in the lower interval, then $x_u = (x_1 + x_u)/2$ and go to step 2.

• If
$$f(x_1) \cdot f[(x_1 + x_u)/2] > 0$$

root lies in the upper interval, then $x_1 = [(x_1 + x_u) / 2$, go to step 2.

• If
$$f(x_1)$$
. $f[(x_1 + x_u)/2] = 0$

then root is the midpoint at $(x_1+x_1)/2$, and terminate.

Bisection Method

4. Compare ε_s with ε_a

5. If $\varepsilon_a < \varepsilon_{s_s}$ stop. Otherwise repeat the process.

$$\frac{\left|\frac{x_{l} - \frac{x_{l} + x_{u}}{2}}{\left|\frac{x_{l} + x_{u}}{2}\right|} \prec 100\%\right|}{\left|\frac{x_{l} + x_{u}}{2}\right|} \prec 100\%$$

$$\frac{\left|\frac{x_{l} - \frac{x_{l} + x_{u}}{2}}{2}\right|}{\left|\frac{x_{l} + x_{u}}{2}\right|} \prec 100\%$$

Example 1. Bisection Method

Find roots of $f(x) = x^2 - e^{-x}$ using the bisection method and calculate the approximate relative error up to 4 iterations

Compare relative approximate error to relative true error

Number of iterations to achieve desired error level

• Absolute error (0 iteration)

$$E_a^0 = \Delta X^0 = X_u^0 - X_l^0$$

• After 1 iteration

$$E_a^1 = \Delta X^o / 2$$

• After 2 iterations

$$E_a^2 = \Delta X^1 / 2 = \Delta X_o / 2^2$$

• After n iterations

$$E_a^n = \Delta X^o / 2^n$$

• Solve for n:

Example 2. Bisection Method-Number of Iterations

For $f(x) = x^2 - e^{-x}$ find the number of iterations in bisection method that is required to reach to 0.001 desired level of error (choose the same boundary (0, 1))

iteration #	x low	x high	хr	f(x low)	f(x high)	f(x r)
0	0	1	0.5	-1	0.632121	-0.35653
1	0.5	1	0.75	-0.35653	0.632121	0.090133
2	0.5	0.75	0.625	-0.35653	0.090133	-0.14464
3	0.625	0.75	0.6875	-0.14464	0.090133	-0.03018
4	0.6875	0.75	0.71875	-0.03018	0.090133	0.02924
5	0.6875	0.71875	0.703125	-0.03018	0.02924	-0.00065
6	0.703125	0.71875	0.710938	-0.00065	0.02924	0.014249
7	0.703125	0.710938	0.707031	-0.00065	0.014249	0.006787
8	0.703125	0.707031	0.705078	-0.00065	0.006787	0.003065
9	0.703125	0.705078	0.704102	-0.00065	0.003065	0.001206
10	0.703125	0.704102	0.703613	-0.00065	0.001206	0.000277

Evaluation of Bisection Method

Pros

- Easy & robust
- Always find root
- Number of iterations required to attain an absolute error can be computed a priori.

Cons

- Slow convergence
- Cannot handle multiple roots
- Take no account on magnitude of f(x₁) and f(x_u), if f(x₁) is closer to zero, then root may be closer to x₁ than x_u.

Part 2. Roots of Equations Chapter 6. Open Methods

Lecture 6

Fixed-Point Iteration & Newton-Raphson

6.1, 6.2

Homeyra Pourmohammadali

Open Methods

Open methods are based on formulas that require only a single starting value of x or two starting values that do not necessarily bracket the root.

a) Bracketing methods, b) & c) Open methods

Simple Fixed-point Iteration

Rearrange the function so that x is on the left side of the equation:

$$f(x) = 0 \implies g(x) = x$$

 $x_k = g(x_{k-1}) \qquad x_o \text{ given, } k = 1, 2, ...$

- Bracketing methods are "convergent".
- Fixed-point methods may sometime "diverge", depending on the stating point (initial guess) and how the function behaves.

Convergence: Simple Fixed-Point Iteration

 x=g(x) can be expressed as a pair of equations:

$$y_1 = x$$
 $y_2 = g(x)$
(component equations)

• Plot them separately.

Convergence: Simple Fixed-Point Iteration

• Fixed-point iteration converges if

$$|g'(x)| < 1$$
 (slope of the line $f(x) = x$)

•When the method converges, the error is roughly proportional to or less than the error of the previous step, therefore it is called "linearly convergent."

Example. Fixed-point Iteration

$$f(x) = e^{-x} - x$$

What about different initial value? Does method always converge?

$$f(x) = e^{-x} - x$$

Newton-Raphson Method

- Most widely used method.
- Based on Taylor series expansion:

$$f(x_{i+1}) = f(x_i) + f'(x_i)\Delta x + f''(x_i)\frac{\Delta x^2}{2!} + O\Delta x^3$$

The root is the value of x_{i+1} when $f(x_{i+1}) = 0$

Rearranging,

$$0 = f(x_i) + f(x_i)(x_{i+1} - x_i)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton-Raphson Method

 Convenient for functions whose derivatives can be evaluated analytically.

Not convenient for functions whose derivatives cannot be

evaluated analytically.

Algorithm for Newton-Raphson

- **Step 1.** Choose one initial guess near the root
- Step 2. Find slope of f(x)
- Step 3. Extend f'(x) t x-axis to find x i+1 and apply:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

(follow tangent line to x-axis)

• **Step 4.** Repeat (until converged)

Example. Newton-Raphson Method

$$f(x) = x^2 - e^{-x}$$

Potential problems: Newton-Raphson

Potential problems: Newton-Raphson

Notes: Newton-Raphson

- Faster convergence compared to other methods
- Simple algorithm compared to bi-section (no if else)
- Cannot handle multiple roots, can diverge if initial value not chosen properly