glossary

March 14, 2020

1 Glossary

Notation and terms used	d in time series analysis.
1.1 Notation	

Series Characteristics

- X_t the response variable.
- x_t the value of X_t at a particular time t.
- a_t the series white noise.
- μ_t the mean of all possible realizations of X_t for a given t.
- σ_t the varaince of all possible realizations of X_t for a given t.
- σ_a the white noise varaince of all possible realizations of X_t for a given t.
- γ_k the autocovariance of X_t for lag of k.
- ρ_k the autocorrelation of X_t for lag of k.
- $S_x(f)$ series spectral desnsity.

Periodic Signals

- *A* amplitude of the periodic signal.
- *f* frequency of a signal periodic signal.
- ω angular frequency of a periodic signal.
- ϕ phase shift of a periodic signal.

$$X_t = A\cos(2\pi f t + \phi)$$

Filtering

• *H* (*B*) - transfer function

ARIMA Modeling

• $\phi(B)$ - autoregressive polynomial.

- $\phi(B)$ moving average polynomial.
- ψ_k coefficients of model in GLP form.

$$X_{t} = \frac{\theta(B)}{\phi(B)} a_{t}$$

Forecasting

- *l* a forecast step.
- t_0 the forecast horizon.
- $\hat{X}_{t_0}(l)$ the forecast of X_t from t_0 at step l.
- $e_{t_0}\left(l\right)$ the forecast error; the error between $\hat{X}_{t_0}\left(l\right)$ and X_{t_0+l} .

1.2 Terms

• Alaising: A signal above the Niquist frequency that appears as a low frequency signal.

• **Autocovariance**: covariance between the a series and *k* lags of itself.

• **Autocorrelation**: The autocovariance normalized by the 0th order lag autocovariance (γ_0).

• Ensemble: The totality of all possible realizations of a time series.

• Forecast: The extrapolation of a model from a given time horizon and steps from the horizon.

• **Frequency**: The number of cycles per unit time.

• **Niquist frequency**: The highest observable frequency of a signal, which is half of the samlping frequency - $\frac{f_{sample}}{2}$

• **Period**: The amout of time for one cycle to complete.

• **Poles**: The roots of the autoregressive portion $(\phi(B))$ of an ARIMA model.

• **Psuedo-periodic Series** having a *similar* shape that repeats in a consistent cycle.

• **Realization**: The observed time series. The may be many or only one.

• **Spectral Density**: The frequency components (in the frequency domain) that exist in a time series; the frequency transfrom of a time series.

• Sample Spectral Density: An estimate of the Spectral Density based on periodically sampled data.

• **Transfer Function**: A ratio of polynomials that transforms a series i.e. $X_t \rightarrow Z_t$.

• **Zeros**: The roots of the moving average portion $(\theta(B))$ of an ARIMA model.

1.3 References

• [1] B. Salder, "Stationary", SMU, 2019

• [2] B. Salder, "Frequency Domain", SMU, 2019