Tutorium 05: λ -Kalkül

Paul Brinkmeier

18. November 2019

Tutorium Programmierparadigmen am KIT

Heutiges Programm

Programm

- Übungsblatt 4
- λ -Kalkül: Basics + Church-Zahlen

Programm

- Übungsblatt 4
- ullet λ -Kalkül: Basics + Church-Zahlen
- λ-Kalkül in Haskell

Übungsblatt 4

2.1, 2.3 — AST: Datenstruktur

```
module AstType where
data Exp t
  = Var t
  | Const Integer
  | Add (Exp t) (Exp t)
  | Less (Exp t) (Exp t)
  | And (Exp t) (Exp t)
  | Not (Exp t)
  | If (Exp t) (Exp t) (Exp t)
```

- t ist Typvariable, um bspw. Ints als Namen zuzulassen
- Das kommt bspw. bei Compiler-Optimierungen zum Einsatz

2.2 — AST: Auswertung

```
module AstEval where
import AstType
type Env a = a -> Integer
eval :: Env a -> Exp a -> Integer
eval env (Var v) = env v
eval env (Const c) = c
eval env (Add e1 e2) = eval env e1 + eval env e2
```

2.3 — AST: Boolsche Ausdrücke

module AstEval2 where

```
eval :: Env a -> Exp a -> Integer
eval env (Less e1 e2) = b2i $
  (eval env e1) < (eval env e2)
eval env (And e1 e2) = b2i $
  (i2b $ eval env e1) && (i2b $ eval env e2)
eval env (Not e) = b2i $ not $ i2b $ eval env e</pre>
```

```
b2i b = if b then 0 else 1
i2b i = if i == 0 then False else True
```

- Aufgabe sorgfältig lesen, nur 0 ist "falsey" in C
- v kann einem in der Klausur in den Arsch beißen

2.4 — **AST**: Show

```
module AstShow where
import AstType
instance Show t => Show (Exp t) where
  show (Const c) = show c
  show (Var v) = show v -- Darf man wegen Show t
  show (Add a b) =
    "(" ++ show a ++ " + " ++ show b ++ ")"
-- etc.
```

 Show t ⇒ Show (Exp t) ⇔ "Wenn man ts anzeigen kann, kann man auch Exp ts anzeigen"

Wiederholung

Algebraische Datentypen

```
module DataExamples where
data Bool = True | False
data Category = Jackets | Pants | Shoes
  deriving Show
data Filter
  = InSale
  | IsCategory Category
  | PriceRange Float Float
```

- Keyword data definiert neuen Typ
- ..enum auf Meth"

Typklassen

```
module TypeClassExamples where
-- Ersatz für null in C-likes
-- Auch bekannt als "Maybe"
data Optional a = Present a | NoValue
instance Show a => Show (Optional a) where
  show (Present x) = show x
  show NoValue = "null"
```

- Typklassen stellen globale Operationen f
 ür Typen bereit
- Bspw. Eq und Ord für Vergleiche, Enum für Aufzählbarkeit

λ -Kalkül

λ -Kalkül

- Funktionales Gegenstück zur Turingmaschine
- Entsprechend theoretisch
- Wurde u.a. genutzt um Unlösbarkeit des Halteproblems zu zeigen
- Gibt saftig Punkte in der Klausur
 - 13P. im 19SS
 - 10P. (+15P.) im 18WS
 - 20P. (+15P.) im 18SS
- Nicht kompliziert aber "schwierig" (wie bspw. Go oder Schach)

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

- "λ-Term": rekursive Datenstruktur
- Semantik definieren wir später

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

- "λ-Term ": rekursive Datenstruktur
- Semantik definieren wir später
- Jetzt: Ergänzt das Modul Lambda um die fehlenden Typen
 - +Fragen zur ÜB-Korrektur

λ -Terme in Haskell

```
module Lambda where

data LambdaTerm
    = Var String -- Variable
    | App () () -- Funktionsanwendung: f a
    | Abs () () -- Abstraktion: \p.b
```

- //github.com/pbrinkmeier/pp-tut
- Modul x liegt in slides/demos/x.hs

Begriffe im λ -Kalkül

Begriff	Formel	Bedeutung
lpha-Äquivalenz	$t_1\stackrel{lpha}{=} t_2$	t_1 , t_2 sind gleicher
		Struktur
η -Äquivalenz	$\lambda x.f \ x \stackrel{\eta}{=} f$	"Unterversorgung"
Freie Variablen	$fv(\lambda p.b) = b$	Menge der nicht durch
		λ s gebundenen Varia-
		blen
Substitution	$(\lambda p.b)[b \rightarrow c] = \lambda p.c$	Ersetzung nicht-freier
		Variablen
Redex	(λp.b) t	"Reducible expression"
β -Reduktion	$(\lambda p.b) \ t \Rightarrow b [p \rightarrow t]$	"Funktionsanwendung"

Freie Variablen

- fv(t) bezeichnet die frei vorkommenden Variablen im Term t
- Frei vorkommend \approx nicht durch ein λ gebunden
 - fv(x) = x, wenn x Variable
 - $fv(f x) = fv(f) \cup fv(x)$
 - $fv(\lambda p.b) = fv(b) \setminus p$
 - $fv(\lambda x.x) = \emptyset$
 - $fv(\lambda x.y) = y$

Freie Variablen

- fv(t) bezeichnet die frei vorkommenden Variablen im Term t
- ullet Frei vorkommend pprox nicht durch ein λ gebunden
 - fv(x) = x, wenn x Variable
 - $fv(f x) = fv(f) \cup fv(x)$
 - $fv(\lambda p.b) = fv(b) \setminus p$
 - $fv(\lambda x.x) = \emptyset$
 - $fv(\lambda x.y) = y$
- Implementiert fv :: LambdaTerm -> Set String
 - Benutzt Set, union, delete und fromList aus Data.Set

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f \times)[f \rightarrow g][x \rightarrow y] = g y$
 - $(\lambda x.f \ x)[x \rightarrow y] = \lambda x.f \ x \ (x \text{ ist nicht frei})$
 - $(\lambda x.f \ x)[f \rightarrow g] = \lambda x.g \ x \ (f \text{ ist frei})$

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f x)[f \rightarrow g][x \rightarrow y] = g y$
 - $(\lambda x.f \ x)[x \to y] = \lambda x.f \ x \ (x \text{ ist nicht frei})$
 - $(\lambda x.f \ x)[f \rightarrow g] = \lambda x.g \ x \ (f \text{ ist frei})$
- Implementiert

substitute :: (String, Term) -> Term -> Term

- type Term = LambdaTerm
- fv braucht ihr dafür nicht

α -Äquivalenz

- $t_1 \stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t_1 in t_2 allein durch (konsistente!) Substitution der Variablen möglich
 - Es gilt für Variablen a und b: $a \stackrel{\alpha}{=} a [a \rightarrow b] = b$

α -Äquivalenz

- $t_1\stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t₁ in t₂ allein durch (konsistente!)
 Substitution der Variablen möglich
 - Es gilt für Variablen a und b: $a \stackrel{\alpha}{=} a [a \rightarrow b] = b$
- Bspw.:
 - $x \stackrel{\alpha}{=} y$, denn $x \stackrel{\alpha}{=} x [x \rightarrow y] = y$
 - $\lambda x.x \stackrel{\alpha}{=} \lambda y.y$
 - $f(\lambda x.y) \stackrel{\alpha}{=} f(\lambda p.y)$
 - $\lambda x.y \stackrel{\alpha}{\neq} \lambda x.z$

α -Äquivalenz

- $t_1 \stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t_1 in t_2 allein durch (konsistente!) Substitution der Variablen möglich
 - Es gilt für Variablen a und b: $a \stackrel{\alpha}{=} a [a \rightarrow b] = b$
- Bspw.:
 - $x \stackrel{\alpha}{=} y$, denn $x \stackrel{\alpha}{=} x [x \rightarrow y] = y$
 - $\lambda x.x \stackrel{\alpha}{=} \lambda y.y$
 - $f(\lambda x.y) \stackrel{\alpha}{=} f(\lambda p.y)$
 - $\lambda x.y \stackrel{\alpha}{\neq} \lambda x.z$
- ullet Aufgabe: Implementiert instance Eq Term als lpha-Aquivalenz
 - Benutzt substitute!

η -Äquivalenz

- $\lambda x.f \ x \stackrel{\eta}{=} f$, wenn $x \notin fv(f)$
- Wie bei Haskell:

```
all list = foldl (&&) True list \Leftrightarrow all = \list -> foldl (&&) True list \Leftrightarrow all = foldl (&&) True
```

- Also:
 - ullet η -Äquivalenz: eher Umformungsschritt als Gleichheitskriterium
 - Formelle Definition von Unterversorgung

Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- (λp.b) a

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b) a \implies b[p \rightarrow a]$

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$
- "Ausführung" (besser: Auswertung) von λ -Termen: Anwenden der β -Reduktion, bis Term "konvergiert"
- ullet Term konvergiert pprox Normalform pprox enthält keinen Redex mehr
 - Notation: t ⇒

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$
- "Ausführung" (besser: Auswertung) von λ -Termen: Anwenden der β -Reduktion, bis Term "konvergiert"
- ullet Term konvergiert pprox Normalform pprox enthält keinen Redex mehr
 - Notation: t ⇒
- id $a = (\lambda x.x)$ $a \implies x[x \rightarrow a] = a \implies$

Auswertungsstrategien

- Welcher Redex soll zuerst ausgewertet werden?
- $\bullet \ \rightsquigarrow \ verschiedene \ Auswertungsstrategien$

Auswertungsstrategien

- Welcher Redex soll zuerst ausgewertet werden?
- \rightsquigarrow verschiedene Auswertungsstrategien

- Volle β-Reduktion Beliebiger Redex
- Normalreihenfolge "Linkester" Redex
- Call-by-Name Nur "Linkester Redex"
- Call-by-Value "Linkester Redex", der eine Normalform als Argument hat

Normalreihenfolge

```
module LambdaN where
```

data LambdaTerm

- = Var String
- | App LambdaTerm LambdaTerm
- | Abs String LambdaTerm
- Implementiert

```
normalBeta :: LambdaTerm -> LambdaTerm
```

- Führt einen β -Reduktionsschritt in Normalreihenfolge aus
- Wenn kein Redex vorkommt, wird derselbe Term zurückgegeben
- Bindet LambdaShow ein für instance Show LambdaTerm

Church-Zahlen im λ -Kalkül

Peano-Axiome

$$c_0 = ?$$
 $c_1 = s(c_0)$
 $c_2 = s(s(c_0))$
 $c_3 = s(s(s(s(s(s(s(c_0)))))))$

- 1. Die 0 ist Teil der natürlichen Zahlen
- 2. Wenn n Teil der natürlichen Zahlen ist, ist auch s(n) = n + 1 Teil der natürlichen Zahlen

Church-Zahlen

- ullet "Zahlen" im λ -Kalkül werden durch Funktionen in Normalform dargestellt
- n f x = f n-mal angewendet auf x
- Bspw. $(3 g y) = g (g (g y)) = g^3 y$ Mit $3 = \lambda f.\lambda x.f (f (f x))$
- ullet Schreibt eine λ -Funktion succ, die eine Church-Zahl nimmt und zu deren Nachfolger auswertet

Church-Zahlen

- ullet "Zahlen" im λ -Kalkül werden durch Funktionen in Normalform dargestellt
- n f x = f n-mal angewendet auf x
- Bspw. $(3 g y) = g (g (g y)) = g^3 y$ Mit $3 = \lambda f.\lambda x.f (f (f x))$
- Schreibt eine λ -Funktion succ, die eine Church-Zahl nimmt und zu deren Nachfolger auswertet
- Übertragt die Funktion in euren Haskell-Code und wertet succ
 c₀ durch wiederholtes Anwenden von normalBeta aus
- Vergleicht euer Ergebnis mit dem von Wavelength
 - //pp.ipd.kit.edu/lehre/misc/lambda-ide/Wavelength. html