1.2 ОСНОВНОЕ УРАВНЕНИЕ КИНЕТИЧЕСКОЙ ТЕОРИИ ГАЗОВ

В этом разделе будет использован статистический метод исследования молекулярных процессов. На основании исследования совокупного действия молекул будут получены такие термодинамические параметры, как давление и температура.

Для расчетов воспользуемся *моделью идеального газа* с точки зрения молекулярно-кинетической теории: 1) молекулы газа непрерывно и хаотично движутся; 2) молекулы взаимодействуют только во время удара; 3) удары молекул абсолютно упругие; 4) размеры молекул малы по сравнению с расстояниями между ними.

Пусть в сосуде кубической формы объемом $V = l^3$, где l— длина ребра (рисунок 1.2), число молекул равно n_0 . Молекулы движутся хаотично и, соударяясь со стенкой площадью $S = l^2$, оказывают на нее давление. Результаты расчета давления на стенку не изменятся, если хаотическое движение молекул заменить направленным движением их вдоль осей x, y и z. Тогда со стенкой, площадью S, будет соударяться третья часть от всех молекул, равная

 $n = n_0 l^3 / 3. (1.8)$

При каждом соударении со стенкой молекула передает ей импульс, равный $m\upsilon_1-(-m\upsilon_1)=2m\upsilon_1$, где m — масса молекулы, υ_1 — ее скорость. За время Δt молекула соударится со стенкой число раз, равное $\upsilon_1 \Delta t/2l$, и передаст стенке импульс $\Delta P_1 = m\upsilon_1^2 \Delta t/l$. Просуммируем импульс, переданный стенке всеми n молекулами: $\Delta P = (m \Delta t/l) (\upsilon_1^2 + \upsilon_2^2 + ... + \upsilon_n^2)$. В данном выражении находится сумма квадратов скоростей. Статистическое усреднение будет заключаться в том, что мы введем новую среднюю величину — среднеквадратичную скорость — по формуле $\upsilon_{\text{кв}}^2 = (\upsilon_1^2 + \upsilon_2^2 + ... + \upsilon_n^2)/n$. Следует заметить, что $\upsilon_{\text{кв}}$ приблизительно на 10% больше, чем средняя скорость молекулы, которая определяется по формуле:

 $\upsilon_{\rm cp} = (\upsilon_1 + \upsilon_2 + ... + \upsilon_n)/n$. Используя выражение для $\upsilon_{\rm kB}^2$, получим $\Delta P = m\upsilon_{\rm kB}^2 \Delta t \, n/l$. По второму закону Ньютона на стенку будет действовать сила $F = \Delta P/\Delta t = m\upsilon_{\rm kB}^2 \, n/l$. Давление газа на стенку найдем по формуле $p = F/S = F/l^2$ или $p = m\upsilon_{\rm kB}^2 \, n/l^3$. Используя формулу (1.8), получим окончательно:

$$p = \frac{1}{3} n_0 m v_{KB}^2 = \frac{2}{3} n_0 \left(m v_{KB}^2 / 2 \right). \tag{1.9}$$

Мы получили **основное уравнение кинетической теории газов**, которое связывает макроскопический параметр — давление газа — с микроскопическими параметрами молекул. Величина $n_0 \left(m \upsilon_{\text{кв}}^2 / 2 \right)$ есть кинетическая энергия молекул, заключенная в единице объема. Отсюда можно сказать, что *давление есть мера плотности кинетической энергии молекул*.

Сравнивая формулы (1.9) и (1.7), получим выражение для средней кинетической энергии молекулы:

$$mv_{KB}^2/2 = (3/2)kT$$
. (1.10)

Итак, мы пришли к важному выводу: кинетическая энергия молекул зависит только от абсолютной температуры. Отсюда следует физический смысл температуры: абсолютная температура есть мера средней энергии поступательного движения молекул. Из формулы (1.10) можно найти среднеквадратичную скорость движения молекул: $\upsilon_{\text{кв}}^2 = 3kT/m = 3RT/\mu$. Для кислорода при комнатной температуре $\upsilon_{\text{кв}} \approx 480 \,\text{м/c}$ и сравнима со скоростью пули.