Logique mathématique

Durée 2 heures

Tout document interdit

Exercice 1. (2, 3, 2, 3)

On considère les ensembles E_0, E_1, E_2, \dots et les ensembles C_0, C_1, C_2, \dots C_k, \dots , du tableau ci-dessous.

- 1. Montrer que les ensembles Ei sont primitifs récursifs.
- Montrer, sans utiliser les résultats de la question 1, que les ensembles E_i sont récursivement énumérables?
- 3. Montrer que les ensembles Co, C1, C2, Ck,, sont primitifs récursifs
- Montrer, sans utiliser les résultats de la question 3, que les ensembles C₀, C₁, C₂, C_k,, sont récursivement énumérables.

Exemples:	The source of the second
$E_0 = \{0\}$	$C_0 = \{0, 1, 4, 9,\}$
$E_1 = \{1, 2, 3\}$	$C_1 = \{2, 5, 10, 17, \dots \}$
$E_2 = \{4, 5, 6, 7, 8\}$	$C_2 = \{3, 6, 11, 18, \dots \}$
$E_3 = \{9, 10, 11, 12, 13, 14, 15\}$	$C_3 = \{7, 12, 19, 29, \dots \}$
1	

	Co	C_1	C2	C3	C_4	C ₅	Ci	C ₁	C ₈	C,		\mathbf{C}_{i}	
E ₀	0		3									N	
\mathbf{E}_{1}	1	2	3		01		13						
\mathbf{E}_2	4	5	6	7	8						No.		
Ea	9	10	11	12	13	14	15						
E4	16	17	18	19	20	21	22	23	24	-			
						P		100					1
									10				

Exercice 2. (5)

2.1. Donner - s'il existe un facteur - pour chacune des deux clauses suivantes :

$$C_1: P(x,a) \vee P(f(y),y).$$

$$C_2: Q(x,y) \vee P(f(y),x).$$

2.2. On désigners, s'ils existent, par C_{1F} le facteur de C₁ et par C_{2F} le facteur de C₂.

C1 et C1F sont-elles logiquement équivalentes ?

C2 et C2F sont-elles logiquement équivalentes ?

Exercice 3 (2, 3)

Soit l'ensemble de phrases P : {p1, p2, p3, p4} tel que :

p1: Toutes les boîtes sont pleines ou toutes les boîtes sont vides.

P2: Une boîte au moins est pleine et une boîte au moins est vide.

Pa: Si une boîte est pleine, alors elle n'est pas vide.

P4: Si une boîte est vide, alors elle n'est pas pleine.

Questions

- Traduire les phrases p₁, p₂, p₃, p₄ dans le langage des prédicats du premier ordre.
- Montrer en utilisant le principe de la résolution que l'ensemble P est inconsistant. Indiquer le MGU à chaque étape de la résolution.
- N. B. Remettre, au plus, une double feuille et une intercalaire.

Bon Courage