Practical performance enhancements to the evaluation model of the Hazel programming environment

Jonathan Lam¹ Prof. Fred Fontaine, Advisor¹ Prof. Robert Marano, Co-advisor¹ Prof. Cyrus Omar²

 1 Electrical Engineering The Cooper Union for the Advancement of Science and Art

²Electrical Engineering and Computer Science Future of Programming Lab (FPLab), University of Michigan

2022/04/29

Overview I

Project context

Implementation-based Mostly practically-driven

Functional programming Context for PL theory

Hazel live programming environment An experimental editor with typed holes aimed at solving the "gap problem," developed at UM

Overview II

Project scope

Evaluation with environments Lazy variable lookup for performance Hole instances to hole closures Redefining hole instances for performance Implementing fill-and-resume (FAR) Efficiently resume evaluation

Project evaluation

Empirical evaluation Measure performance gain of motivating cases Informal metatheory State metatheorems and provide proof sketches

Table of Contents

- Primer on PL theory
- 2 The Hazel live programming environment
- 3 Evaluation using the environment model
- 4 Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

A programming language is a specification

Syntax is the grammar of a valid program

Semantics describes the behavior of a syntactically valid program

$$\begin{split} \tau &::= \tau \rightarrow \tau \mid b \mid (\!|\!|\!) \\ e &::= c \mid x \mid \lambda x : \tau.e \mid e \mid e \mid e \mid \tau \mid (\!|\!|\!|\!) \mid (\!|\!|e|\!|\!) \end{split}$$

Figure: Hazelnut grammar

Static and dynamic semantics

Statics Edit actions, type-checking, elaboration ("compile-time")

Dynamics Evaluation ("run-time")

$$rac{e_1 \Downarrow \lambda x. e_1' \qquad e_2 \Downarrow e_2' \qquad [e_2'/x]e_1' = e}{e_1 \ e_2 \Downarrow e}$$
 EAp

Figure: Evaluation rule for function application using a big-step semantics

A brief primer on the λ -calculus

Untyped λ -calculus Simple universal model of computation by Church Simply-typed λ -calculus Extension of the ULC with static type-checking Gradually-typed λ -calculus Optionally-typed, with "pay-as-you-go" benefits of static typing

$$e ::= x$$

$$\mid \lambda x.e \qquad \qquad \frac{e_1 \Downarrow \lambda x.e_1' \qquad [e_2/x]e_1' \Downarrow e}{e_1 e_2 \Downarrow e} \land \text{-EAp}$$

Figure: The untyped λ -calculus

(a) Grammar

(b) Dynamic semantics

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

The Hazel programming language and environment

Live programming Rapid static and dynamic feedback ("gap problem") Structured editor Elimination of syntax errors

Bidirectionally typed Simple type inference

Gradually typed Hole type and cast-calculus based on Siek et al. [1, 2] Purely functional Avoids side-effects and promotes commutativity

RE

(a) The Hazelgrove organization

(b) Implemented in ReasonML and JSOO

Figure: Hazel implementation

The Hazel programming interface

Figure: The Hazel interface

Hazelnut: A bidirectionally-typed static semantics

(Typed) expression holes Internalize "red squiggly underlines"
Action semantics Structural editing behavior, ensures always well-typed

Figure 1. Constructing the increment function in Hazelnut.

now assume $incr : num \rightarrow num$				
#	Z-Expression	Next Action	Rule	
14	D(I)⊲	construct var incr	(13c)	
15	⊳incr⊲	construct ap	(13h)	
16	$incr(\triangleright (\lozenge \triangleleft) \triangleleft)$	construct var incr	(13d)	
17	incr((⊳incr⊲))	construct ap	(13h)	
18	$incr((incr(\triangleright()\triangleleft)))$	construct lit 3	(13j)	
19	$incr((incr(\triangleright 3 \triangleleft)))$	move parent	(8j)	
20	$incr((\triangleright incr(3) \triangleleft))$	move parent	(8p)	
21	$incr(\triangleright(incr(3))\triangleleft)$	finish	(16b)	
22	$incr(\triangleright incr(\underline{3})\triangleleft)$	_	_	

Figure 2. Applying the increment function.

Figure: Sample Hazelnut action sequence [3]

Hazelnut Live: A bidirectionally-typed dynamic semantics

Internal language Cast calculus from Siek et al. [1, 2] for dynamic typing Hole evaluation Evaluation continues *around* holes, captures environment

Figure: Illustration of Hazelnut Live context inspector [4]

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

Evaluation using environments vs. substitution

[TODO: comparison table, illustration of how each one works]

Updated evaluation rules

 $\sigma \vdash d \Downarrow d' \mid d$ evaluates to d' given environment σ

$$\frac{\sigma \vdash (\lambda x : \tau.d) \Downarrow [\sigma](\lambda x : \tau.d')}{\sigma, x \leftarrow d \vdash x \Downarrow d} \, \mathsf{EVar}$$

$$\frac{\sigma \vdash d_1 \Downarrow [\sigma'] \lambda x : \tau.d'_1 \qquad \sigma \vdash d_2 \Downarrow d'_2 \qquad \sigma', x \leftarrow d'_2 \vdash d'_1 \Downarrow d}{\sigma \vdash d_1 \ d_2 \Downarrow d} \, \mathsf{EAp}$$

$$\frac{\sigma \vdash d_1 \Downarrow [\sigma'] \wedge x : \tau.d'_1 \qquad \sigma \vdash d_2 \Downarrow d'}{\sigma \vdash (d)^u \Downarrow [\sigma] \wedge d'} \, \mathsf{EvalB-NEHole}$$

Figure: Big-step semantics for evaluation with environments

Handling recursion

Fixpoint form Useful for a pure implementation of recursive functions, from Plotkin's System PCF

$$\frac{\sigma \vdash d \Downarrow [\sigma']d'}{\sigma \vdash \operatorname{fix} f : \tau.d \Downarrow [\sigma, f \leftarrow \operatorname{fix} f : \tau.[\sigma']d']d'} \operatorname{EFix}$$

$$\frac{d \neq \operatorname{fix} f : \tau.d'}{\sigma, x \leftarrow d \vdash x \Downarrow d} \operatorname{EVar} \qquad \frac{\sigma \vdash \operatorname{fix} f : \tau.d \Downarrow d'}{\sigma, x \leftarrow \operatorname{fix} f : \tau.d \vdash x \Downarrow d'} \operatorname{EUnwind}$$

Figure: Big-step semantics for evaluation of fixpoints

Matching the result from evaluation using substitution

$$\frac{d \uparrow_{\parallel} \ d'}{c \uparrow_{\parallel} \ c} \ d \text{ is substitutes to } d' \text{ inside the evaluation boundary}$$

$$\frac{d \uparrow_{\parallel} \ d'}{c \uparrow_{\parallel} \ c} \ PPI_{\parallel} Const$$

$$\frac{d \uparrow_{\parallel} \ d'_{\parallel} \ d_{2} \uparrow_{\parallel} \ d'_{2}}{d \uparrow_{\parallel} \ d_{2} \uparrow_{\parallel} \ d'_{2}} \ PPI_{\parallel} Ap$$

$$\frac{\sigma \uparrow_{\parallel} \ \sigma' \qquad \sigma' \vdash d \uparrow_{\parallel} \ d'}{[\sigma] d \uparrow_{\parallel} \ d'} \ PPI_{\parallel} Closure$$

$$\frac{\sigma \vdash d \uparrow_{\parallel} \ d'}{c \uparrow_{\parallel} \ c} \ PPO_{\parallel} Const$$

$$\frac{\sigma \vdash d \uparrow_{\parallel} \ d'}{\sigma \vdash d \uparrow_{\parallel} \ d'} \ PPO_{\parallel} BoundVar$$

$$\frac{\sigma \vdash d \uparrow_{\parallel} \ d'}{\sigma \vdash \lambda x . d \uparrow_{\parallel} \ \lambda x . d'} \ PPO_{\parallel} Lam$$

$$\frac{\sigma \vdash d \uparrow_{\parallel} \ d'_{1} \qquad \sigma \vdash d_{2} \uparrow_{\parallel} \ d'_{2}}{\sigma \vdash d_{1} (d_{2}) \uparrow_{\parallel} \ d'_{1} (d'_{2})} \ PPO_{\parallel} Ap$$

$$\frac{\sigma \vdash d \uparrow_{\parallel} \ d'}{\sigma \vdash d_{1} (d_{2}) \uparrow_{\parallel} \ d'_{1} (d'_{2})} \ PPO_{\parallel} NEHole$$

$$\frac{\sigma \vdash d \uparrow_{\parallel} \ d'}{\sigma \vdash (d \uparrow_{\parallel}) \stackrel{d'}{\uparrow_{\parallel}} \ pPO_{\parallel} NEHole}$$

Figure: Big-step semantics for substitution postprocessing

Generalized closures

Interpretation	Sample expression	
Function closure	$[\sigma]\lambda x.d$	
Hole closure	$[\sigma](d)^u$	
Closure around unmatched let	$[\sigma](\text{let } x = d_1 \text{ in } d_2)$	
Closure around unmatched case	$[\sigma](case x of rules)$	
Closure around filled hole	$\llbracket \sigma rbracket d_{fill}$	

Table: Examples of generalized closures

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- 4 Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

19 / 50

Motivation for hole instances

```
let a = ()^1 in
let b = \lambda x . { ()^2 } in
f 3 + f 4
```

Figure: Illustration of hole instances

$$[a \leftarrow [\varnothing] ()^1, x \leftarrow 3] ()^2 + [a \leftarrow [\varnothing] ()^1, x \leftarrow 4] ()^2$$

Figure: Result of Figure 11

Motivation for hole closures/instantiations I

```
let a = (1)^1 in
let b = (1)^2 in
let c = (1)^3 in
let d = (1)^4 in
let e = (1)^5 in
let f = (1)^6 in
let g = (1)^7 in
let x = (1)^n in
(||)^{n+1}
```

Figure: A Hazel program that generates 2^N total hole instances

Motivation for hole closures/instantiations II

(a) Structure of the result

(b) Numbered hole instances in the result

Figure: Hole numbering in Figure 13

The hole numbering algorithm

$$\begin{array}{c} H, p \vdash d \Uparrow_i d' \dashv H' \\ \hline \\ \underbrace{(u,e) \not\in H \quad i = \operatorname{hid}(H,u) \quad H, (u,i) \vdash \sigma \Uparrow_i \sigma' \dashv H' \quad H'' = H, (u,e) \leftarrow (i,\{p\},\sigma')}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^{u:i} \dashv H''} \\ \\ \underbrace{\frac{H = H', (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'' = H, (u,e) \leftarrow (i,\{p_i\} \cup \{p\},\sigma'^e)}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^{u:i} \dashv H''} \\ \\ \underbrace{\frac{H = H', (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'' = H, (u,e) \leftarrow (i,\{p_i\} \cup \{p\},\sigma'^e)}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u \dashv H''} \\ \\ \underbrace{\frac{H, (u,e), \vdash \sigma \Uparrow_i \sigma' \dashv H' \quad H'' = H, (u,e) \leftarrow (i,\{p\},\sigma') \quad H'', p \vdash d \Uparrow_i d' \dashv H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u \dashv H'''} \\ \\ \underbrace{\frac{H'' = H, (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'', p \vdash d \Uparrow_i d' \dashv H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u \dashv H'''} \\ \\ \underbrace{\frac{H''' = H, (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'', p \vdash d \Uparrow_i d' \dashv H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u \parallel^u H'''} \\ \\ \underbrace{\frac{H''' = H, (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'', p \vdash d \Uparrow_i d' \dashv H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u \parallel^u H'''} \\ \\ \underbrace{\frac{H''' = H, (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'', p \vdash d \Uparrow_i d' \dashv H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u \parallel^u H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Uparrow_i [\sigma'^e] \Downarrow^u H'''} \\ \underbrace{\frac{H''' = H, (u,e) \leftarrow (i,\{p_i\},\sigma'^e) \quad H'', p \vdash d \Uparrow_i d' \dashv H'''}_{H, p \vdash [\sigma^e] \Downarrow^u \Pi_i [\sigma'^e] \Downarrow^u \Pi''}_{H, p \vdash [\sigma^e] \Downarrow^u \Pi_i [\sigma'^e] \Downarrow^u \Pi''}_{H, p \vdash [\sigma^e] \Downarrow^u \Pi''}_{$$

Figure: Hole closure numbering postprocessing semantics

A unified postprocessing algorithm

 $d \uparrow (H, d') \mid d$ postprocesses to d' with hole closure info H

$$\frac{d \Uparrow_{[]} d' \qquad \varnothing, \varnothing \vdash d' \Uparrow_{i} d'' \dashv H}{d \Uparrow d'' \dashv H} \text{ PP-Result}$$

Figure: Overall postprocessing judgment

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

Motivating example

The FAR process

1-step vs. *n*-step FAR

Detecting a valid fill operation

The fill operation

The resume operation

The postprocessing operation

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

Evaluation with environments I

```
let f : Int \to Int = \lambda x . \{
case x of
| 0 \to 0
| 1 \Rightarrow 1
| n \Rightarrow f (n-1) + f (n-2)
end
| 1 \Rightarrow 1
| 1
```


(a) Source

(b) Performance

Figure: A computationally expensive Hazel program with no holes

Evaluation with environments II

```
let a = 0 in

let b = 0 in

let c = 0 in

let d = 0 in

let e = 0 in

let f : Int \rightarrow Int = \lambda x \cdot \{

    case x of

    | 0 \Rightarrow 0

    | 1 \Rightarrow 1

    | n \Rightarrow f (n - 1) + f (n - 2)

end

} in

f \ge 5
```


(a) Source

(b) Performance

Figure: Adding global bindings to the fib(n) program

Evaluation with environments III

```
let f: Int \rightarrow Int = \lambda x . {
    case x of | 0 \Rightarrow 0 | 1 \Rightarrow 1 | n \Rightarrow f (n - 1) + f (n - 2) | 0 \Rightarrow f 0 + f 0 + f 0 + f 0 end } in f 25
```


(a) Source

(b) Performance

Figure: Adding variable substitutions to unused branches

Hole numbering motivating example I

```
let a = (1)^1 in
let b = (1)^2 in
let c = (1)^3 in
let d = (1)^4 in
let e = (1)^5 in
let f = (1)^6 in
let g = (1)^7 in
let x = (1)^n in
()^{n+1}
```

Figure: A Hazel program that generates 2^N total hole instances

Hole numbering motivating example II

Figure: Performance of evaluating program in Figure 13

FAR motivating example I

Program	Steps	Steps (w/ FAR)	Step Δ	Cumulative Step Δ
let $f = \dots$ in let $a = (1)^{1}$ in $(1)^{2}$	7	-	0	0
<pre>let f = in let a = f in (()²</pre>	12	21	9	9
let $f = \dots$ in let $a = f \left(\right)^3$ in $\left(\right)^2$	17	=	0	9
<pre>let f = in let a = f 2 in ()²</pre>	58	69	11	20

Table: A program edit history with an expensive computation

FAR motivating example II

Program	Steps	Steps (w/ FAR)	Step ∆	Cumulative Step Δ
let f = in let a = f 25 in () ²	4762964	=	0	20
let f = in let a = f 25 in (1) ² + (1) ⁴	4762966	12	-4762954	-4762934
let f = in let a = f 25 in (1) ² + 2	4762966	21	-4762954	-9525879
let f = in let a = f 25 in a + 2	4792967	13	-4792954	-14288813

Table: A program edit history with an expensive computation, cont'd.

FAR motivating example III

Figure: Number of evaluation steps per edit in Table 2

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- 4 Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

Generalized closures

Unique hole closures

FAR as a generalization of evaluation

Table of Contents

- Primer on PL theory
- The Hazel live programming environment
- 3 Evaluation using the environment model
- 4 Identifying hole instances by physical environment
- 5 The fill-and-resume (FAR) optimization
- 6 Empirical results
- Theoretical results/innovations
- 8 Future work/conclusions

Future work

n-step FAR Integrate edit history into FAR
 Generalized memoization Unify notation and metatheory of memoization
 Formal evaluation of metatheory Check coverage and correctness of metatheorems using Agda

Conclusions

Evaluation with environments Expected performance gains, implementation remains functionally pure

Generalized closures Simplify many parts of the implementation, also useful for FAR

Memoization of environments Applicable for postprocessing, equality checking, resume operation

FAR PoC Including *n*-step detection, re-evaluation of closures Plausible metatheory For future work in Agda

References I

Jeremy G. Siek and Walid Taha.

Gradual typing for functional languages.

In IN SCHEME AND FUNCTIONAL PROGRAMMING WORKSHOP, pages 81–92, 2006.

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland.

Refined criteria for gradual typing.

In 1st Summit on Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer

Hazelnut: A Bidirectionally Typed Structure Editor Calculus.

In 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017), 2017.

References II

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer.

Live functional programming with typed holes.

PACMPL, 3(POPL), 2019.