Задачи к лекции 8

- **1.** Пусть K поле характеристики p>0. Докажите, что $(a+b)^p=a^p+b^p$ для любых $a,b\in K$. Пусть $K\subseteq F$ расширение полей. Для каждого элемента $\alpha\in F$ обозначим через $K(\alpha)$ пересечение всех подполей в F, содержащих K и α .
- **2.** Докажите, что $K(\alpha)=\{\frac{f(\alpha)}{g(\alpha)}\mid f,g\in K[x]$ и $g(\alpha)\neq 0\}.$
- **3.** В зависимости от значения параметра $a \in \mathbb{Q}$ найдите степень расширения $[\mathbb{Q}(\alpha) : \mathbb{Q}]$, где α действительный корень уравнения $x^3 = a$.
- **4.** Избавьтесь от иррациональности в знаменателе выражения $\frac{1-\sqrt[3]{3}}{1+\sqrt[3]{3}-\sqrt[3]{9}}$.
- **5.** Пусть α комплексный корень многочлена $x^3 3x + 1$. Представьте элемент

$$\frac{3\alpha^2 + 4}{\alpha^4 + \alpha^3 - 2\alpha^2 + 1} \in \mathbb{Q}(\alpha)$$

в виде $f(\alpha)$, где $f(x) \in \mathbb{Q}[x]$ и $\deg f(x) \leqslant 2$.

- **6.** Найдите минимальный многочлен для числа $\sqrt{2} + \sqrt{3}$ над \mathbb{Q} .
- 7. Найдите все натуральные числа $n \le 10$, для которых существует конечное поле из n элементов.
- **8.** Составьте таблицы сложения и умножения в поле \mathbb{F}_4 .
- 9. Постройте явно поле из 9 элементов.
- **10.** Пусть $K \subseteq F$ конечное расширение полей. Докажите, что все элементы поля F являются алгебраическими над K.
- **11.** Пусть $K \subseteq F$ конечное расширение полей. Какие значения может принимать его степень в случаях, когда $K = \mathbb{C}$ и $K = \mathbb{R}$?
- **12.** Пусть $K \subseteq F$ расширение полей. Докажите, что все элементы в F, алгебраические над K, образуют подполе в F.

Домашнее задание

- **1.** Избавьтесь от иррациональности в знаменателе дроби $\frac{51-44\sqrt[3]{5}+\sqrt[3]{25}}{1-\sqrt[3]{5}-4\sqrt[3]{25}}$ и упростите полученное выражение.
- **2.** Найдите минимальный многочлен для числа $\sqrt{6} \sqrt{5} + 1$ над \mathbb{Q} .
- **3.** Постройте явно поле \mathbb{F}_8 и составьте для него таблицы сложения и умножения.
- **4.** Пусть $K \subseteq F$ расширение полей и $\alpha \in F$. Положим $K[\alpha] = \{f(\alpha) \mid f \in K[x]\}$. Докажите, что если $K[\alpha]$ конечномерно как векторное пространство над K, то $K[\alpha] = K(\alpha)$.