

Università degli Studi di Milano – Bicocca Master's Degree in Data Science Academic Year 2021/2022

Foundations of Deep Learning

Semantic Segmentation for Multispectral Images

Silvia GROSSO, 881993 Niccolò ROCCHI, 881404 Julia BUI XUAN, 882385

RIT-18 DATASET

Train data

Image: 9393x5642x7 Mask: 9393x5642x1

Validation data

Image: 8833x6918x7 Mask: 8833x6918x1

Test data

Image: 12446x7654x7

RGB component of Training, Validation and Test Image (Left to Right)

OBJECTIVES

RIT-18 image dataset

- Captured by a drone over a park
- 18 classes
- o 3 near-infrared channels that provide a clearer separation of the classes

Main purposes

- o Semantic segmentation, that involves labelling each pixel in an image with a class
- Track vegetation cover for environmental purposes

Multispectral Image

Semantic

Seamentation

Labeled Image Water Pond Water Lake Sand Beach Grass_Laws LowLevelVegetation Rocks OrangeLandingPad WhiteWoodPanel BlackWoodPanel PicnicTable LifeguardChair Person Vehicle

DATA ANALYSIS

Class imbalance problem

- Other Class/Image Border is the most represented class (26% for training, 23.3% for validation)
- 11 classes are present with a frequency under 1%

U-NET ARCHITECTURE

The network is based on a **fully convolutional network**, whose architecture was modified to yield more precise segmentation.

Symmetric architecture

- 1. Contracting path
- Convolution blocks
- Downsampling

Low-resolution, highly efficient feature maps

- 2. Expansive path
- Upsampling & skip connections
- Convolution blocks

Full-resolution segmentation maps

DATA AUGMENTATION - IMAGE MANIPULATIONS

Pair of train - mask image must be resized to 256x256xC.

no overlapped crops 800 images

overlapped crops 1600 images

Overlapped crop is always random.

In 90% of the cases:

- Horizontal flip (prob = 0.4)
- Vertical flip (prob = 0.4)
- Colour transformation (prob = 0.5)
- Greed distortions (prob = 1)

FIRST APPROACH U-NET 1

Layers of Downsampler block x4

- 2 Convolutions
- Dropout
- MaxPooling2D

Layers of Base block

- o 2 convolutions
- Dropout

Layers of Upsampler block x4

- Transpose Convolution
- Skip Connections
- 2 Convolutions
- Dropout

Output layer

Convolution

SECOND APPROACH U-NET 1

Small improvements obtained by adding **Batch Normalization** layers at Downsampler and Upsampler blocks of the same net.

Results			
	Train	Validation	
Accuracy	87.4%	65.6%	
Precision	95.0%	72.6%	
Recall	76.4%	61.6%	
OneHotMean IoU	30.8%	14.0%	
Focal Loss	0.004	0.015	

- Early stopping: patience = 10, monitor = validation loss
- Epochs = 50
- Optimizer = Adam
- Learning rate = 0.001
- Bach size = 8

U-NET 2

THIRD APPROACH U-NET 2

Two methods were implemented based on different learning rates: 0.0001 and 0.001.

The latter one was chosen, providing better results.

Results			
	Train	Validation	
Accuracy	84.2%	72.8%	
Precision	92.1%	78.4%	
Recall	74.8%	65.8%	
OneHotMean IoU	29.8%	21.2%	
Focal Loss	0.005	0.015	

- Early stopping: patience = 10, monitor = validation loss
- \circ Epochs = 50
- Optimizer = Adam
- Learning rate = 0.001
- Bach size = 8

RESULTS - VALIDATION IMAGE

RESULTS – TEST IMAGE

DATA AUGMENTATION - DEEP LEARNING APPROACH

A Generative Adversarial Network (**GAN**), defined as *pix2pix*, was trained with the previously obtained 1600 images.

It is composed by:

- 1. A generator ("the artist")
- 2. A discriminator ("the critic")

This net was fed with a new mask cropped into 800 images of size 256x256x1, generating new data of size 256x256x6.

New image of the park downloaded from the web

Corresponding mask obtained with the GAN

- Learning rate = 0.001
- Loss function = Cross-entropy based
- Epochs = 20
- Batch size = 1

FOURTH APPROACH U-NET 2

U-NET 2 trained with the approach of **data** generation.

generation

generation

Results			
	Train	Validation	
Accuracy	66.7%	52.1%	
Precision	85.6%	61.0%	
Recall	48.7%	43.6%	
OneHotMean IoU	21.6%	12.9%	
Focal Loss	0.010	0.025	

- Early stopping: patience = 10, monitor = validation loss
- Epochs = 50
- Optimizer = Adam
- Learning rate = 0.001
- Bach size = 8

CONCLUSIONS

Best model: U-NET 2 without data generation and a learning rate of 0.001

- Accuracy = 72.8%
- OneHotMean IoU = 21.2%
- Focal Loss =0.015

Finally, the percentage of **vegetation cover** was evaluated:

Validation image: 52.06%Predicted image: 56.31%

Validation Image

Segmented Validation Image

Thank you for your attention!

s.grosso9@campus.unimib.it n.rocchi@campus.unimib.it j.buixuan@campus.unimib.it