Space Complexity

Motivation

Complexity classes correspond to bounds on resources

One such resource is space: the number of tape cells a TM uses when solving a problem

Introduction

- · Objectives:
 - To define space complexity classes
- · Overview:
 - Space complexity classes
 - Low space classes: L, NL
 - Savitch's Theorem
 - Immerman's Theorem
 - TQBF

Space Complexity Classes

For any function $f:N \rightarrow R^+$, we define:

SPACE(f(n))={ L : L is decidable by a deterministic O(f(n)) space TM}

 $NSPACE(f(n))=\{L:L \text{ is decidable by a } non-deterministic } O(f(n)) \text{ space } TM\}$

Low Space Classes

Definitions (logarithmic space classes):

- · L = SPACE(logn)
- NL = NSPACE(logn)

Problem!

How can a TM use only logn space if the input itself takes n cells?!

3 Tape Machines

Example

Question: How much space would a TM that decides {anbn | n>0} require?

Note: to count up to n, we need logn bits

Graph Connectivity

CONN

An undirected version is also worth considering

- Instance: a directed graph G=(V,E) and two vertices s,t∈V
- Problem: To decide if there is a path from s to t in G?

Graph Connectivity

CONN is in NL

- Start at s
- For i = 1, .., |V| {
 - Non-deterministically choose a neighbor and jump to it
 - Accept if you get to t
- If you got here reject!

- Counting up to|V| requireslog |V| space
- Storing the current position requires log|V|
 space

Log-Space Reductions

Definition:

A is log-space reducible to B, written $A \leq_L B$,

if there exists a log space TM M that, given input w, outputs f(w) s.t.

 $w \in A \text{ iff } f(w) \in B$

the reduction

· <u>L</u>, <u>NL</u>, <u>P</u>, <u>NP</u>, <u>PSPACE</u> and <u>EXPTIME</u> are closed under log-space reductions.

Do Log-Space Reductions Imply what they should?

Suppose $A_1 \leq_L A_2$ and $A_2 \in L$; how to construct a log space TM which decides A_1 ?

Log-Space reductions

```
Claim: if
   1. A_1 \leq A_2 - f is the log-space reduction
   2. A_2 \in L - M is a log-space machine for A_2
Then, A_1 is in L
<u>Proof</u>: on input x, in or not-in A_1:
Simulate M and
whenever M reads the ith symbol of its input
    tape
run f on x and wait for the ith bit to be
```

outputted

NL Completeness

Definition:

- A language B is NL-Complete if
- 1. B∈NL
- 2. For every $A \in NL$, $A \leq_{L} B$.

If (2) holds, B is NL-hard

CONN is NL-Complete

Theorem: CONN is NL-Complete

Proof: by the following reduction:

"Does M accept x?"

"Is there a path from s to t?"

Technicality

Observation:

Without loss of generality, we can assume all NTM's have exactly one accepting configuration.

Configurations Graph

A Computation of a NTM M on an input x can be described by a graph $G_{M,x}$:

Configurations

Which objects determine the configuration of a TM of the new type?

- The content of the work tape
- The machine's state
- The head position on the input tape
- The head position on the work tape
- The head position on the output tape

If the TM uses logarithmic space, there are polynomially many configurations

Configurations

How many distinct configurations may a TM with input-size N and work-tape of size 5 have? Content: Head Content: Head machine's input work sition: position: tape tape ITIS X

Correctness

<u>Claim:</u> For every non-deterministic logspace Turing machine M and every input x,

M accepts x iff there is a path from s to t in $G_{M,x}$

CONN is NL-Complete

Corollary: CONN is NL-Complete

Proof: We've shown CONN is in NL.

We've also presented a reduction
from any NL language to CONN which
is computable in log space (Why?) ■

A Byproduct

Claim: NL P

Proof:

- Any NL language is log-space reducible to CONN
- Thus, any NL language is poly-time reducible to CONN
- CONN is in P
- · Thus any NL language is in P. ■

Savitch's Theorem

```
Theorem:

\forall S(n) \ge log(n)

NSPACE(S(n)) \subseteq SPACE(S(n)^2)

Proof:

First we'll prove NL\subseteq SPACE(log^2n)

then, show this implies the general case
```

Savitch's Theorem

Theorem:

 $NSPACE(logn) \subseteq SPACE(log^2n)$

Proof:

- 1. First prove CONN is NL-complete (under log-space reductions)
- 2. Then show an algorithm for CONN that uses $\log^2 n$ space

What Next?

We need to show CONN can be decided by a deterministic TM in O(log²n) space.

The Trick

"Is there a vertex z, so there is a path from u to z of size \[\d/2 \] and one from z to v of size \[\d/2 \]?"

Recycling Space

The two recursive invocations can use the same space

The Algorithm

```
Boolean PATH(a,b,d) {
   if there is an edge from a to b then
         return TRUE
   else {
      if d=1 return FALSE
      for every vertex v {
             if PATH(a,v, \lceil d/2 \rceil) and PATH(v,b, \lfloor d/2 \rfloor)
             then return TRUE
      return FALSE
```

O(log²n) Space DTM

<u>Claim:</u> There is a deterministic TM which decides CONN in O(log²n) space.

Proof:

To solve CONN, we invoke PATH(s,t,|V|)The space complexity:

$$S(n)=S(n/2)+O(\log n)=O(\log^2 n)$$

Conclusion

Theorem:

 $NSPACE(logn) \subseteq SPACE(log^2n)$

The Padding Argument

Motivation: Scaling-Up Complexity Claims

We have:

space

can be simulated by...

space

+ non-determinism

+ determinism

We want:

space

can be simulated

space

+ non-determinism

+ determinism

Formally

 $s_i(n)$ can be computed with space $s_i(n)$

Claim: For any two space constructible functions $s_1(n), s_2(n) \ge \log n$, $f(n) \ge n$:

simulation overhead

$$NSPACE(s_1(n)) \subseteq SPACE(s_2(n))$$

 $\overline{\mathsf{NSPACE}(s_1(f(n)))} \subseteq \mathsf{SPACE}(s_2(f(n)))$

E.g $NSPACE(n) \subseteq SPACE(n^2) \Rightarrow NSPACE(n^2) \subseteq SPACE(n^4)$

Idea

space: $s_1(.)$ in the size of its input

Padding argument

- · Let L∈NPSPACE(s₁(f(n)))
- There is a 3-Tape-NTM M_L:

Padding argument

- Let L' = { x0f(|x|)-|x| | x∈L }
- We'll show a NTM $M_{L'}$ which decides L' in the same number of cells as M_{l} .

 $O(s_1(f(|x|))$

Padding argument - M_{L'}

In $O(\log(f(|x|))$ space

- 1. Count backwards the number of 0's and check there are f(|x|)-|x| such. in $O(s_1(f(|x|)))$ space
- 2. Run M_L on x.

Total space: $O(s_1(f(|x|)))$ f(|x|)Input Work $O(s_1(f(|x|)))$

- We started with L∈NSPACE(s₁(f(n)))
- We showed: $L' \in NSPACE(s_1(n))$
- Thus, $L' \in SPACE(s_2(n))$
- Using the DTM for L' we'll construct a DTM for L, which will work in $O(s_2(f(n)))$ space.

 The DTM for L will simulate the DTM for L' when working on its input concatenated with zeros

- When the input head leaves the input part, just pretend it encounters 0s.
- maintaining the simulated position (on the imaginary part of the tape) takes O(log(f(|x|))) space.
- Thus our machine uses $O(s_2(f(|x|)))$ space.
- \Rightarrow NSPACE($s_1(f(n)))\subseteq SPACE(s_2(f(n)))$

Savitch: Generalized Version

Theorem (Savitch):

 $\forall S(n) \ge \log(n)$ $NSPACE(S(n)) \subseteq SPACE(S(n)^2)$

Proof: We proved NL⊆SPACE(log²n). The theorem follows from the padding argument. ■

Corollary

Corollary: PSPACE = NPSPACE

Proof: Clearly, PSPACE_NPSPACE. By Savitch's theorem, NPSPACE_PSPACE. ■

Space Vs. Time

- We've seen space complexity probably doesn't resemble time complexity:
 - Non-determinism doesn't decrease the space complexity drastically (Savitch's theorem).
- · We'll next see another difference:
 - Non-deterministic space complexity classes are closed under completion (Immerman's theorem).

NON-CONN

NON-CONN

- Instance: A directed graph G and two vertices s,t∈V.
- Problem: To decide if there is no path from s to t.

NON-CONN

- · Clearly, NON-CONN is coNL-Complete.
- (Because CONN is NL-Complete. See the coNP lecture)
- If we'll show it is also in NL, then NL=coNL.
 (Again, see the coNP lecture)

An Algorithm for NON-CONN

We'll see a log space algorithm for counting reachability

- 1. Count how many vertices are reachable from s.
- 2. Take out t and count again.
- 3. Accept if the two numbers are the same.

N.D. Algorithm for reach_s(v, l)

```
reach<sub>s</sub>(v, I)
   1. length = l; u = s
  2. while (length > 0) {
       3. if u = v return 'YES'
       4. else, for all (u' \in V) {
               5. if (u, u') \in E nondeterministic switch:
                       5.1 u = u'; --length; break
                       5.2 continue
                                Takes up logarithmic space
```

6. return 'NO'

This N.D. algorithm might never stop

N.D. Algorithm for CRs

```
CR_s(d)
   1. count = 0
  2. for all u \in V
       3. count_{d-1} = 0
       4. for all v \in V
            5. nondeterministic switch:
               5.1 if reach(v, d - 1) then ++count<sub>d-1</sub> else fail
                    if (v,u) ∈ E then ++count; break
               5.2 continue
                                    Assume (v,v) \in E
       6. if count<sub>d-1</sub> < CR_s (d-1) fail
                                                   Recursive call!
   7.return count
```

N.D. Algorithm for CRs

```
CR_s ( d , C)
                                                        Main Algorithm:
                                                        CR<sub>s</sub>
   1. count = 0
                                                           C = 1
   2. for all u \in V
                                                           for d = 1..|V|
        3. count_{d-1} = 0
                                                               C = CR(d, C)
        4. for all v \in V
             5. nondeterministic switch:
                                                        return C
                 5.1 if reach(v, d - 1) then ++count<sub>d-1</sub> else fail
                      if (v,u) \in E then ++count; break
                 5.2 continue
        6. if count<sub>d-1</sub> < \mid C \mid
                                        fail
```

7.return count

parameter

Efficiency

<u>Lemma</u>: The algorithm uses O(log(n)) space.

Proof:

There is a constant number of variables $(d, count, u, v, count_{d-1})$. Each requires O(log(n)) space (range |V|).

Immerman's Theorem

<u>Theorem</u>[Immerman/Szelepcsenyi]: NL=coNL <u>Proof:</u>

- (1) NON-CONN is NL-Complete
- (2) NON-CONN∈NL

Hence, NL=coNL. ■

Corollary

Corollary:

```
\forall s(n) \geq log(n),

NSPACE(s(n)) = coNSPACE(s(n))
```

Proof: By a padding argument.

TQBF

- We can use the insight of Savich's proof to show a language which is complete for PSPACE.
- · We present TQBF, which is the quantified version of SAT.

TQBF

- Instance: a fully quantified Boolean formula
- Problem: to decide if φ is true

Example: a fully quantified Boolean formula

$$\forall x \exists y \forall z [(x \lor \neg y \lor z) \land (\neg x \lor y)]$$

Variables` range is {0,1}

TQBF is in PSPACE

- Theorem: TQBF = PSPACE
- Proof: We'll describe a poly-space algorithm A for evaluating ϕ : in poly time
- If ϕ has no quantifiers: evaluate it
- If $\phi = \forall x(\psi(x))$ call A on $\psi(0)$ and on $\psi(1)$; Accept if both are true.
- If $\phi=\exists x(\psi(x))$ call A on $\psi(0)$ and on $\psi(1)$; Accept if either is true.

Algorithm for TQBF

Efficiency

- Since both recursive calls use the same space,
- the total space needed is polynomial in the number of variables (the depth of the recursion)
- ⇒ TQBF is polynomial-space decidable ■

PSAPCE Completeness

Definition:

- A language B is PSPACE-Complete if
- 1. Bepspace standard Karp reduction
- 2. For every $A \in PSAPCE$, $A \leq_{P} B$.

If (2) holds, then B is PSPACE-hard

TQBF is PSPACE-Complete

Theorem: TQBF is PSAPCE-Complete Proof: It remains to show TQBF is PSAPCE-hard:

"Will the poly-space M accept x?"

"Is the formula true?"

TQBF is PSPACE-Hard

Given a TM M for a language $L \in PSPACE$, and an input x, let $f_{M,x}(u, v)$, for any two configurations u and v, be the function evaluating to TRUE iff M on input x moves from configuration u to configuration v

 $f_{M,x}(u, v)$ is efficiently computable

Formulating Connectivity

The following formula, over variables $u,v \in V$ and path's length d, is TRUE iff G has a path from u to v of length $\le d$

```
 \phi(u,v,1) \equiv f_{M,x}(u,v) \vee u=v 
 \phi(u,v,d) \equiv 
 \exists w \forall x \forall y [((x=u \land y=w) \lor (x=w \land y=v)) \rightarrow \phi(x,y,d/2)]
```

w is reachable from u in \[d/2 \] steps. v is reachable from w in \[d/2 \] steps.

simulates AND of $\phi(u,w,d/2)$ and $\phi(w,v,d/2)$

TQBF is PSPACE-Complete

<u>Claim:</u> TQBF is PSPACE-Complete Proof:

- $\phi = \phi(s,t,|V|)$ is TRUE iff there is a path from s to t.
- is constructible in poly-time.
- Thus, any PSPACE language is poly-time reducible to TQBF, i.e TQBF is PSAPCE-hard.
- Since TQBF∈PSPACE, it's PSAPCE-Complete.

Summary J

- We introduced a new way to classify problems: according to the space needed for their computation.
- We defined several complexity classes: L, NL, PSPACE.

- Our main results were:
 - Connectivity is NL-Complete
 - TQBF is PSPACE-Complete

By reducing decidability to reachability

- Savitch's theorem (NL⊆SPACE(log²))
- The padding argument (extending results for space complexity)
- Immerman's theorem (NL=coNL)