

CS1233/CS1239 系列芯片用户手册

具有 5 通道带高性能 24bits ADC REV1.2

通讯地址:深圳市南山区蛇口南海大道 1079 号花园城数码大厦 A 座 9 楼

邮政编码: 518067

公司电话: +(86 755)86169257 传 真: +(86 755)86169057 公司网站: www.chipsea.com

CS1233/CS1239 系列芯片用户手册

版本历史

	修改记录	日期
1.0	初始版本	2018/6/01
1.1	1、删除寄存器 ADC3 中 IDASL、IDACP,寄存器 ADC5 中	2018/6/26
	REG_NC,15 页	
	2、删除 PGA 正负端选择关于 TS 的选项, 16 页	
1.2	1、修正时钟频率,更改 VREF 电压,page 9	2018/10/16

目 录

版	本历史		2
目	录		3
冬	目录		5
表	目录		5
1	简介		6
	1.1	主要特性	6
	1.2	立	
	1.3	功能说明	
	1.4	极限值	
	1.5	电气特性	9
	1.6	可靠性指标	10
	1.7	产品型号及引脚	11
	1.8	典型应用电路	14
2	功能寄	存器说明	15
	2.1	功能寄存器列表	15
	2.2	功能寄存器说明	
	2.2.1	SYS —系统配置寄存器(地址 00H)	15
	2.2.2	ADC0— ADC 配置寄存器(地址 01H)	16
	2.2.3	ADC1— ADC 配置寄存器 1(地址 02H)	16
	2.2.4	ADC2—ADC 配置寄存器 2(地址 03H)	16
	2.2.5	ADC3—ADC 配置寄存器 3(地址 04H)	17
	2.2.6	ADC4— ADC 配置寄存器 4(地址 05H)	17
	2.2.7	ADC5—ADC 配置寄存器 5(地址 06H)	18
	2.2.8	ADO— ADC 转换数据寄存器(地址 09H)	
	2.2.9	ADS—ADC 转换数据读取标准寄存器(地址 0AH)	18
3	功能描	i述	19
	3.1	输入选择	19
	3.2	输入电平移位器	19
	3.3	PGA 和 ADC	20
	3.4	数字滤波器	22
	3.4.1	频率响应	22
	3.4.2	建立时间	22
	3.5	参考电压源	24
	3.6	内部时钟源	
	3.7	测量模式及其切换	
	3.8	多种工作模式	
	3.9	复位和断电(POR&power down)	25
4	转换有	效位	26
5	典型特	性	27
	5.1	ADC 典型特性	
	5.2	LDO 典型特性	
	5.3	内部时钟典型特性	27

28	三线串行通讯接口	6 三绀
29	1 读时序	6.1
29	2 写时序	6.2
31	封装	7 封装

图目录

图 1.1 CS1233/CS1239 原理框图	7
图 1.2 CS1233 SOP14 封装引脚图	11
图 1.3 CS1239 SOP16 封装引脚图	
图 1.4 CS1239 QFN16 封装引脚图	12
图 1.5 CS1233/CS1239 典型应用电路	14
图 3.1 模拟输入结构图	19
图 3.2 电平移位模块	20
图 3.3 PGA 和 ADC 结构图	
图 3.4 COMB 滤波器的频率响应特性(Fs=331Hz, DR=10Hz, 3 阶 COMB)	
图 3.5 COMB 建立过程	
图 3.6 CS1233/CS1239 低功耗工作示意图	
图 5.1 LDO 全电压全温度范围的典型特性(LDOS[1:0]=00,负载 1mA)	
图 5.2 内部时钟全电压全温度范围的典型特性	
图 6.1 读操作时序 1(读 AD 值)	
图 6.2 读操作时序 2(除 AD 值之外的寄存器)	
图 6.3 写操作时序	
图 7.1 芯片 SOP14 封装尺寸信息	
图 7.2 芯片 SOP16 封装尺寸信息	
图 7.3 芯片 QFN16 封装尺寸信息	33
→ →	
表目录	
表 1.1 CS1233/CS1239 极限值	8
表 1.2 CS1233/CS1239 电气特性	
表 1.3 CS1233 SOP14 封装引脚说明	
表 1.4 CS1239 SOP16 封装引脚说明	
表 1.5 CS1239 QFN16 封装引脚说明	13
表 2.1 功能寄存器列表	
表 2.2 SYS 寄存器说明	15
表 2.3 ADC0 寄存器说明	16
表 2.4 ADC1 寄存器说明	16
表 2.5 ADC2 寄存器说明	17
表 2.6 ADC3 寄存器说明	17
表 2.7 ADC4 寄存器说明	
表 2.8 ADC5 寄存器说明	18
表 2.9 ADO 寄存器说明	18
表 2.10ADO 寄存器说明	
表 3.1 PGA 和 ADGN 与 Gain 及输入信号的关系	
表 4.1 ADC 信号链不同 GAIN 及 DR 下的有效位(ENOB) ¹⁾	
表 6.1 串口通讯命令列表	
表 6.2 三线串行通讯接口时序表	30

1 简介

1.1 主要特性

- ◆ 输入
 - 支持单端输入
 - 支持多达5路输入、可组成多个差分输入对
 - 支持输入电平移位功能

◆ PGA

- 1/2/4/8/16/32/64/128 倍可选增益
- 高达 100Mohm 的等效输入阻抗

♦ ADC

- 24 bit 分辨率
- 输出速率 10~1280Hz 8 档可选
- ◆ 有效位
 - 2.35V 参考、40Hz 速率、128 倍增益下 19.5bits 有效位
- ◆ LDO 及内部参考电压(TBD)
 - 自带 LDO,输出 2.35/2.45/2.8/3.0V 可选,30ppm/℃,精度±1%
 - 自带低漂移基准,内部参考电压 2.048V 可选,30ppm/℃,精度±1%
- ◆ 支持性能、普通、低功耗、休眠模式
- ◆ 支持电压测量、温度测量、手动测量模式,单命令切换
- ◆ 低漂移片上时钟
- ◆ 三线串行通讯

1.2 应用场合

桥式传感器 四角平衡称重 压力检测 工业控制 化学分析

1.3 功能说明

CS1233/CS1239 原理框图如图 1 所示。

图 1.1 CS1233/CS1239 原理框图

CS1233/CS1239 是一个包括一个 ADC 信号链,其中 ADC 信号链包括有输入 MUXP/MUXN,可编程低噪声增益放大器(PGA),以及一个 Sigma-delta ADC 及数字滤波器 Digital Filter;其中 MUXP/MUXN 分别具有 8 输入通道,包括 5 个外部模拟输入通道和 3 个内部输入通道;MUXP/MUXN 之后有电平移位模块 LVSHIFT,可以对地轨附近的输入信号移位后送入 PGA;还具有可调电流源 IDAC1/0,可以调节输入信号的共模电压或补偿失调电压。PGA 和 ADC 具有多种增益选择,数字滤波器可配置为多种输出速率。

CS1233/CS1239 內置有低漂移 LDO 和电压基准 VREF, 高精度温度传感器 TempSensor, 可调电流源 IDAC1/0, 高精度振荡器 OSC 等。

CS1233/CS1239 可以通过 3 线串行接口进行多种功能模式的配置,例如用作桥式传感器应用、温度检测、单端输入应用等等。

1.4 极限值

表 1.1 示出了CS1233/CS1239的极限值。

表 1.1 CS1233/CS1239 极限值

名称	符号	最小	最大	单位	说明	
模拟电源电压	VDD	-0.3	6	V	VDD to GND	
电源瞬间电流			100	mA	Input Current momentary	
电源恒定电流			10	mA	Input Current continuous	
数字管脚输入 电压		-0.3	VDD+0.3	V	Digital Output	
数字输出管脚 电压		-0.3	VDD+0.3	V	Voltage to GND	
结温			150	$^{\circ}$	Max. Junction Temperature	
工作温度		-40	85	$^{\circ}$	Operating Temperature	
储存温度		-60	150	$^{\circ}$	Storage Temperature	
芯片管脚焊接 温度			300	$^{\circ}$	Lead Temperature (Soldering, 10s)	

电气特性 1.5

整个芯片供电电压为 2.4V-3.6V, 工作温度为-40℃-85℃, 设计指标如下所示:

表 1.2 CS1233/CS1239 电气特性

(Test Condition: VDD=3.0V,25 °C,VS=2.35V)

	参数	条件	最小值	典型值	最大值	单位
	满幅输入电压	,		±VREF/Gain	7.7	V
<u> </u>		PGA Buffer关闭	GND-0.1		VS+0.1	V
模拟输入	共模输入电压	PGA Buffer 打开		参见"PGA&ADC"一节		
DC19(1)147 C		PGA Buffer美闭	参见"PGA&ADC"一节			
	差分输入阻抗	PGA Buffer打开		100		ΜΩ
	分辨率	无失码		24		Bits
	Data Rate	九八円	10	40	1280	SPS
	建立时间		10	4	1200	转换周期
PGA & ADC		Gain=32×2 160Hz ¹⁾		95		nV
	噪声性能	Gain=1×1, 160Hz ²⁾		2.3		uV
	积分线性度	Gain=128		0.0015		% of FS
	失调误差	Gain=128		±8		uV
	大 阴 庆左	Gain=1		±100		uV
	中, 四, 日, 子, 河(4)	Gain=128		±0.5		nv/℃
	失调误差漂移	Gain=1		0.4		uv/℃
	124 34 311 24	Gain=128		±5		%
	增益误差	Gain=1		±1		%
	增益误差漂移	Gain=128		8		ppm/°C
		Gain=1		TBD		ppm/°C
Ī	输入REFP		VS/2		VDD+0.1	**
Ī	输入REFN		GND-0.1	GND	VS/2	
LDO & VREF	VS电压	LDOS[1:0]=00	2.32	2.35	2.38	V
	VS温漂			TBD		ppm/℃
	VREF电压		1.212	1.225	1.238	V
	VREF温漂			TBD		ppm/°C
温度传感	精度	单点校准		TBD		$^{\circ}$
	分辨率			0.01		$^{\circ}$
	频率			5.898		MHz
时钟 -	trim精度			1		%
b.) 44.	频率全温度变化			2		%
	频率全电压变化			1		%
	VIH		0.7×VDD		VDD+0.1	V
	VIL		GND		0.2×VDD	V
	VOH	Ioh=1mA	VDD-0.4		VDD	V
数字	VOL	IoL=1mA	GND		0.2+GND	V
-	IIH	VI=VDD			1	uA
	IIL	VI=GND	-1			uA
	Fsclk			_	Fosc/4	MHz
-	电源电压	VDD	2.4	3	3.6	V
		普通模式		0.6		mA
电源及模 块功耗	ADC工作电流	性能模式		1.1		mA
		Power down		0.1	1	uA
	LDO工作电流			160 4)		uA
	VREF工作电流	启动温度补偿		280 5)		
	* KLI F ~ 10 lb	不启动温度补偿		210 6)		uA
	OSC工作电流	Freq=5.898MHz		78		uA

	数字工作电流	正常工作	230		uA uA mA mA
	数于工作电流	Power down	0.2	1.3	uA
整体功耗	ADC+LDO+数字	ADC普通模式	1		mA
	ADC+LDO+数字	ADC性能模式	1.5		mA
	ADC+LDO+数字	ADC占空比模式	0.4		mA

^{1),2):} 以上噪声特性是指 PMODE[1:0]=01、BUFBP=0,且 CHOPM[1:0]、IDAC、LVSHIFT、FIL_EN 为默 认配置时的噪声特性;使用以上选项的一项或多项时的噪声特性请参考第四章"噪声和有效位"的相关描述;

1.6 可靠性指标

- (1) ESD) = +/-4KV(成品接触放电+/-4KV; 空气放电+/-8KV), 芯片不损坏
- (4) 80M~2G 射频干扰, 18 位 ADC 跳动小于 30 个码

^{3):}该电流值为限流电阻为 2Kohm 时,正弦频率为 50KHz 时的典型值;调节限流电阻可以调节该电流大小,且电流随正弦频率不同略有差别。

^{4),5),6):}LDO 和 VREF工作电流均包括了内部 Bandgap 模块的工作电流;因此两个模块同时打开时,电流不是简单相加;LDO+VREF(不启动温度补偿)电流为 260uA。

1.7 产品型号及引脚

CS1233 具有 3 个模拟输入通道、采用 SOP-14 封装,而 CS1239 具有 5 个模拟输入通道,采用 SOP-16 和 QFN-16 封装。

图 1.2 CS1233 SOP14 封装引脚图

图 1.3 CS1239 SOP16 封装引脚图

图 1.4 CS1239 QFN16 封装引脚图

表 1.3 CS1233 SOP14 封装引脚说明

引脚序号	引脚名称	输入/输出	说明
1	VDD	P	电源
2	GND	P	地
3	VS	О	LDO 输出端口
4	REFP	I	正端参考电压输入
5	REFN	I	负端参考电压输入
6	GND	P	地
7	AIN2	I	模拟信号输入通道 2
8	AIN1	I	模拟信号输入通道 1
9	AIN0	I	模拟信号输入通道 0
10	$\overline{\text{CS}}$	I	片选信号端口
11	SCLK	I	串行通讯时钟端口
12	SDA	I/O	串行通讯数据端口
13	GND	P	地
14	VDD	P	电源

表 1.4 CS1239 SOP16 封装引脚说明

引脚序号	引脚名称	输入/ 输出	说明
1	REFN	Ι	负端参考电压输入
2	AIN0	Ι	模拟信号输入通道 0

3	AIN1	I	模拟信号输入通道 1
4	CIP	I/O	模拟信号滤波端口正端
5	CIN	I/O	模拟信号滤波端口负端
6	AIN4	I	模拟信号输入通道 4
7	AIN3	I	模拟信号输入通道3
8	AIN2	I	模拟信号输入通道 2
9	\overline{CS}	I	片选信号端口
10	SCLK	I	串行通讯时钟端口
11	SDA	I/O	串行通讯数据端口
12	GND	P	地
13	VDD	P	电源
14	GND	P	地
15	VS	О	LDO 输出端口
16	REFP	I	正端参考电压输入端口

表 1.5 CS1239 QFN16 封装引脚说明

引脚序号	引脚名称	输入/	说明
		输出	
1	REFP	I	正端参考电压输入端口
2	REFN	I	负端参考电压输入
3	AIN0	I	模拟信号输入通道 0
4	AIN1	I	模拟信号输入通道 1
5	CIP	I/O	模拟信号滤波端口正端
6	CIN	I/O	模拟信号滤波端口负端
7	AIN4	I	模拟信号输入通道 4
8	AIN3	I	模拟信号输入通道3
9	AIN2	I	模拟信号输入通道 2
10	$\overline{\text{CS}}$	I	片选信号端口
11	SCL	I	串行通讯时钟端口
12	SDA	I/O	串行通讯数据端口
13	GND	P	地
14	VDD	P	电源
15	GND	P	地
16	VS	O	LDO 输出端口

1.8 典型应用电路

ADC 系列 CS1233/CS1239 典型应用包括桥式传感器的测量,如图

图 1.5 CS1233/CS1239 典型应用电路

2 功能寄存器说明

2.1 功能寄存器列表

表 2.1 功能寄存器列表

答	 存器		比特位						默认	
地址	名称	BIT7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	值
00H	SYS	TMOE	DE[1:0]	PMOD	DE[1:0]	ENREF	ENADC	ENLDO		00H
01H	ADC0	IMOD	FS_SEL		INNS[2:0]			INPS[2:0]		00H
02H	ADC1		DR[2:0] BUFBP			PG.	GA[1:0] ADGN[1:0]			00H
03H	ADC2									00H
04H	ADC3	GTCSL		GTC[2:0]		LVSCP	LVSHIFT			00H
05H	ADC4	CHOP	M[1:0]	ACCU_NU	M[1:0]	ADRI	EFS[1:0]	LDC	OS[1:0]	40H
06H	ADC5				EXFIL_EN		FIL_EN	FIL_CON1	FIL_CON0	00H
09H	ADOH		ADO[23:16]							00H
	ADOM		ADO[15:8]						00H	
	ADOL		ADO[7:0]						00H	
0AH	ADS	ADS	RST							00H

2.2 功能寄存器说明

2.2.1 SYS —系统配置寄存器(地址 00H)

表 2.2 SYS 寄存器说明

Bits	描述		权限	默认值
[7:6]	TMODE[7:6]	测量模式控制位 11:NA 10:电源电压测量模式 (置 ENREF=1,INPS[2:0]=100, INNS[2:0]=100, LVSHIFT=0, PGA[1:0]=00, BUFBP=0, ADGN[1:0]=00,ADREFS[1:0]=10, FS_SEL=0,IMOD=0,相应寄存器配置无效;其他由寄存器决定) 01:NA 00:手动测量模式 (自由配置)	r/w	00'b
[5:4]	PMODE[1:0]	工作模式控制位(仅在TMODE=00 时) 11:自由模式 (ADC自由配置) 10:占空比模式,DR=640Hz (FS_SEL=0, BUFBP=0, IMOD=0, ENADC和ENLDO受控制) 01:性能模式 (FS_SEL=1, BUFBP=0, IMOD=1, 相应寄存器配置无效;其他配置由相应寄存器决定) 00:普通模式(当前不可用) (FS_SEL=0,BUFBP=1,IMOD=0, 相应寄存器配置无效;其他配置由相应寄存器决定)	r/w	00'b
[3]	ENREF	VREF 模块使能信号 1:VREF 使能 0:VREF 关闭	r/w	0'b
[2]	ENADC	ADC 模块使能位 1:ADC 使能 0:ADC 关闭	r/w	0'b
[1]	ENLDO	LDO 模块使能位 1:LDO 使能 0:LDO 关闭	r/w	0'b
[0]	NA		r/w	0'b

2.2.2 ADC0—ADC 配置寄存器(地址 01H)

表 2.3 ADC0 寄存器说明

Bits	描述		权限	默认值
[7]	IMOD	调制器MOD 电流控制位	r/w	0'b
		1:性能模式电流=普通模式电流×2		
		0:普通模式电流		
[6]	FS_SEL	采样频率选择位	r/w	0'b
		1:662.22KHz		
		0:331.11KHz		
[5:3]	INNS[2:0]	PGA 负端输入信号选择位	r/w	000'b
		111: NA		
		110:NA		
		101:1/2 VS(共模电压)		
		100:GND(仅在 TMODE=10 有效)		
		011~000:AIN4~AIN1		
[2:0]	INPS[2:0]	PGA 正端输入信号选择位	r/w	000'b
		111: NA		
		110: NA		
		101: 1/2 VS(共模电压)		
		100: 1/8 VDD(仅在 TMODE=10 有效)		
		011~000:AIN3~AIN0		

2.2.3 ADC1—ADC 配置寄存器 1(地址 02H)

表 2.4 ADC1 寄存器说明

Bits	描述		权限	默认值
[7:5]	DR[2:0]	ADC 输出速率选择位	r/w	000'b
		111:1280Hz		
		110:640Hz		
		101:320Hz		
		100:160Hz		
		011:80Hz		
		010:40Hz		
		001:20Hz		
		000:10Hz		
[4]	BUFBP	Buffer 控制位	r/w	0'b
		1:Buffer 关闭		
		0:Buffer 开启		
[3:2]	PGA[1:0]	PGA 增益选择位	r/w	00'b
		11:Gain =32		
		10:Gain=16		
		01:Gain=1		
		00:Gain=1		
[1:0]	ADGN[1:0]	调制器增益选择位	r/w	00'b
		11:Gain=8(DR 下降为 1/4)		
		10:Gain=4(DR 下降为 1/2)		
		01:Gain=2		
		00:Gain=1		

2.2.4 ADC2—ADC 配置寄存器 2(地址 03H)

表 2.5 ADC2 寄存器说明

Bits	描述	权限	默认值
[7:0]	N/A	r/w	00H

2.2.5 ADC3—ADC 配置寄存器 3(地址 04H)

表 2.6 ADC3 寄存器说明

Bits	描述		权限	默认值
[7]	GTCSL	增益温漂补偿粗细选择位:	r/w	0'b
		1:粗调=精调×6,用于补偿传感器温漂		
		0:精调,用于调整芯片自身温漂		
[6:4]	GTC[2:0]	增益温漂补偿选择位(CTCSL=0):	r/w	000'b
		111:15 ppm/℃		
		110:10 ppm/°C		
		101:5 ppm/°C		
		100:0		
		000:0		
		001:-5 ppm/℃		
		010:-10 ppm/℃		
		011:-15ppm/°C		
[3]	LVSCP	电平移位模块斩波使能位(LVSHIFT=1 时有	r/w	0'b
		<i>效</i>):		
		1:斩波使能,斩波频率=Fs/128		
		0:斩波不使能		
[2]	LVSHIFT	电平移位模块使能位:	r/w	0'b
		1:电平移位使能		
		0:电平移位不使能		
[1:0]	N/A		r/w	00'b

2.2.6 ADC4—ADC 配置寄存器 4(地址 05H)

表 2.7 ADC4 寄存器说明

Bits	描述					权限	默认值
[7:6]	CHOPM[1:0]	仪放(IA)及调制器(MOD) 斩波频率控制位				r/w	01'b
		11: 仪	放斩波频率为 fs_@	clk/64,调制器	折波		
		频率为	J fs_clk/128				
		10: 仪	放斩波频率为 fs_@	clk/32,调制器	折波		
		频率为	J fs_clk/128				
		01:仪注	放斩波频率为 fs_c	lk/32,调制器转	斤波频		
		率为f	s_clk/256				
		00:不是	干斩波				
		fs_clk	为 MOD 采样频率	\$			
		注意:	默认斩波打开,	请按推荐值使	用		
[5:4]	ACCU_NUM [1:0]	占空は	比模式下COMB 数	据累加个数法	<i>选择</i>	r/w	00'b
			ACCU_NUM	累加个数			
			00	8			
			01	16			
			10	32			

		11 64		
		注意: (Comb 数据累加个数+4)*ADC 输出		
		速率不能大于 Comb 速率 640Hz。		
[3:2]	ADREFS[1:0]	ADC 参考电压选择位	r/w	00'b
		11:正参考=内部 VREF,负参考=GND		
		10: 正参考=内部 VREF,负参考=GND		
		01:正参考=VREF 外接 REFP 再接回 ADC		
		负参考=外部 REFN		
		00:正参 考=外部 REFP,负参考=外部 REFN		
[1:0]	LDOS [1:0]	内部LDO 输出VS 电压选择位	r/w	00'b
		11:3.0V		
		10:2.8V		
		01:2.45V		
		00:2.35V		

2.2.7 ADC5—ADC 配置寄存器 5(地址 06H)

表 2.8 ADC5 寄存器说明

Bits	描述		权限	默认值
[7:5]	NA	NA		
[4]	EXFIL_EN	PGA 输入信号接外部滤波器使能位	r/w	0'b
		1:使用外部 RC 滤波器		
		0:不使用外部 RC 滤波器		
[3]	REG_NC	保留位		
[2]	FIL_EN	Comb 之后的低通滤波器使能控制信号	r/w	0'b
		1:滤波器打开		
		0:滤波器关闭		
		注:在占空比模式下不可以使用;速率为		
		10Hz、20Hz、40Hz、80Hz 不可以使用。		
[1]	FIL_CON1	滤波器级联控制	r/w	0'b
		0:滤波器使用级联结构		
		1:滤波器不使用级联结构		
[0]	FIL_CON2	滤波器系数控制	r/w	0'b
		0:使用系数 1		
		1:使用系数 2		

2.2.8 ADO—ADC 转换数据寄存器(地址 09H)

表 2.9 ADO 寄存器说明

Bits	描述		权限	默认值
ADOH[7:0]	ADO[23:16]	ADC 转换值的[23:16]位	r	00H
ADOM[7:0]	ADO[15:8]	ADC 转换值的[15:8]位	r	00H
ADOL[7:0]	ADO[7:0]	ADC 转换值的[7:0]位	r	00H

2.2.9 ADS—ADC 转换数据读取标准寄存器(地址 0AH)

表 2.10ADO 寄存器说明

Bits	描述		权限	默认值
[7]	ADS	ADO 中数据读取标志	r	0'b

		1:数据已经被读取 0:数据尚未被读取		
[6]	RST	<i>芯片上电复位标志位</i> 1:芯片上电复位完成 0:用户查询该标志后自动清零	r	0'b
[5:0]	NA			000000'b

3 功能描述

3.1 输入选择

CS1233/CS1239 中模拟输入通道及内部若干信号分别通过 MUXP 和 MUXN 后,再经过输入电平移位模块 LVSHIFT 接到 PGA 正端和负端,如图 3.1 所示。

图 3.1 模拟输入结构图

输入信号中 AINx(x=0~4)来自相应的模拟输入引脚,可以任意组合成差分对;REFN用来和 AINx 配对组成单端测量,此时REFN的引脚应该接GND(在某些封装下没有独立的REFN,但器件内部已经将REFN接至GND);1/8 VDD和REFN配对进行电源电压测量;1/2 VS用于内短进行失调校正。

3.2 输入电平移位器

在某些应用场合,输入信号的共模电压接近地轨、或者输入为一端接地的单端信号, 此时 PGA 将不能将信号进行正常放大。输入电平移位模块可以将上述接近地轨的信号的共 模电压抬高约 0.9V 使其可以被 PGA 正常放大。 如图 3.2 所示,当 LVSHIFT=1 时,INP 和 INN 经过电平移位器之后输出给 PGAP 和 PGAN;反之则 INP 和 INN 直通 PGAP 和 PGAN; LVSCP 控制是斩波控制位,开启后可以减小由于电平移位器自身引入的失调和低频噪声。

图 3.2 电平移位模块

3.3 PGA和ADC

CS1233/CS1239 通过一个低噪声,低漂移的 PGA 放大器将输入信号放大后送入一个 2 阶的 Sigma-Delta ADC 进行模数转换。 如图 3.3 所示为 PGA 和 ADC 的结构图,其中 PGA 的增益由 PGA[1:0]选择,具有 1\8\16\32 四档可选; ADC 的增益由 ADGN[1:0]所选择、具有 1\2\4\8 四档可选; 另外 ADC 参考电压来自输入的 REFP-REFN。

图 3.3 PGA 和 ADC 结构图

输入信号的增益 Gain 由 PGA 和 ADC 各自增益的乘积决定。

$$Gain = PGA \times ADGN \qquad (\vec{x} 3-1)$$

为了提高信号的建立表现,PGA 输出到 ADC 调制器输入还有 Buffer 作为缓冲;但同时提供 Buffer 旁路功能,将 BUFBP 置'1',则 Buffer 被旁路,PGA 输出信号直接接入 ADC 的调制器。CS1233/CS1239 的差分满幅输入范围 FS 由 Gain 决定,

$$FS = (REFP - REFN)/Gain \qquad (\vec{x} 3-2)$$

若差分输入通道 AINp-AINn=VIN,则为保证不溢出,VIN 的范围必须小于 FS。

在 PGA 开启的情况(包括 PGA \neq 1 和 PGA=1&BUFBP=0 的情况)下,输入通道的输入信号范围需要保证 PGA 能够正常工作,一般

$$VDD-1.0V > AINx > GND+0.2V$$
 (式 3-3)

输入信号的共模电压为 VCM, VCM=(AINp+AINn)/2,则 VCM 的范围也受 PGA 决定,

$$VDD - 1.0V - VIN \times PGA/2 > VCM > GND + 0.2V + VIN \times PGA/2$$
 (\(\pi \)3-4)

当 PGA=1 且 BUFBP=1 时,PGA 被旁路,此时输入信号直接进入 ADC,则输入信号的范围由 ADC 决定,一般

$$VDD + 0.1V > AINx > GND - 0.1V$$
 (式 3-5)

VCM 的范围也受 ADC 决定,

 $VDD+0.1V-VIN\times ADGN/2>VCM>GND-0.1V+VIN\times ADGN/2$ (式 3-6) 以上各种情况还会影响输入通道的等效输入阻抗,详细请参考表 3.1。

表 3.1 PGA 和 ADGN 与 Gain 及输入信号的关系

Gain =	PGA	× ADGN	BUFBP	输入阻抗	输入信号范围	共模输入范围
1	1	1	0	>100Mohm	(式 3-3)	(式 3-4)
2	1	2	0			
4	1	4	0			
8	1	8	0			
16	16	1	0			
32	32	1	0			
64	32	2	0			
128	32	4	0			
1	1	1	1	~800Kohm	(式 3-5)	(式 3-6)
2	1	2	1	~400Kohm		
4	1	4	1	~200Kohm		
8	1	8	1	~100Kohm		
16	16	1	1	>100Mohm	(式 3-3)	(式 3-4)
32	32	1	1			
64	32	2	1			
128	32	4	1			

当输入信号接近地轨,例如单端信号,同时又希望开启 PGA 以获得大的 Gain 和输入阻抗时,可以开启 LVSHIFT 功能,可以将输入信号上移约 0.9V 后送入 PGA 中,这也等效于开启 LVSHIFT 功能后,开启 PGA 情况下的输入信号下限下移约 0.9V。

对于桥式传感器,当输入信号共模电压较高又需要开启 PGA 时,可以开启 IDACx 来进行共模电压调节。

CS1233/CS1239 的 ADC 采用 2 阶 sigma-delta 调制器实现,内部采样频率为 331.11KHz (普通模式)或 662.22KHz(性能模式)。

CS1233/CS1239 的 ADC 带有内部增益温漂补偿功能,通过 GTCSL 以及 GTC[2:0]可以配置。当 GTCSL=1 时为粗调档,此时对应 GTC[2:0]增益温漂补偿的一个步长为 30ppm/℃,可用于补偿外部传感器的温漂;而当 GTCSL=0 时,相应步长为 5ppm/℃,可用于调整芯片内部的增益温漂。

3.4 数字滤波器

从 Sigma-delta ADC 出来的数据是 1 位的高速比特流数据,并且包含了大量的高频噪声,因此需要数字滤波器对该比特流数据进行滤波和比特率转换,将高频噪声滤除、同时完成降采样,将 1 位高速比特流数据变成 24-bit 的二进制码数据。这个工作通过多阶的COMB 滤波器完成。COMB 滤波器之后可以选择是否使用滤波器进一步进行滤波。

3.4.1 频率响应

图 3.4 COMB 滤波器的频率响应特性(Fs=331Hz,DR=10Hz,3 阶 COMB)

3.4.2 建立时间

正常模式下数字 COMB 在低速是 3 阶(10Hz、20Hz、40Hz、80Hz), 高速时是 4 阶或 5 阶(160Hz、320Hz、640Hz、1280Hz); 占空比模式下,数字 COMB 是 4 阶或 5 阶。数据建立时间跟 COMB 的阶数有关,3 阶 COMB 的数据在第三个能够建立好;4 阶 COMB 的数据在第四个能够建立好;5 阶 COMB 的数据在第五个能够建立好。

图 3.5 COMB 建立过程

如果 FIL_EN 设置为 1,数据建立时间更长,所需时间如下表所示(数据误差收敛到在万分之一以内的时间)。

FILCON1	FILCON0	建立时间
0	0	COMB 数据建立时间+300ms
0	1	COMB 数据建立时间+590ms
1	0	COMB 数据建立时间+230ms
1	1	COMB 数据建立时间+460ms

3.5 参考电压源

CS1233/CS1239 内部集成一个低漂移的 LDO,可以输出电压给 VS 和/或 REFP,具有 4 档可选,其中 2.4V/2.6V/2.8V/3.0V 主要提供给 VS 使用,用于给外部桥式传感器供电、以及内部 ADC 部分供电,负载电流最大 10mA。还包括一个内部参考电压源 VREF,输出 为 1.225V,主要用于做测量的参考电压提供给 REFP(外接电容提高精度)或者作为内部 参考电压 VREF。参考电压源的输出电压初始精度为±1%,典型的温漂系数为 30ppm/° C(- $40\sim85^{\circ}$ C)。

3.6 内部时钟源

CS1233/CS1239 内部提供一个低漂移的 RC 时钟,时钟频率为 5.898MHz, 在-40~85℃ 变化范围内漂移小于 2%, 在 2.4~3.6V 的 VDD 电压范围内, 变化小于 1%。

3.7 测量模式及其切换

CS1233/CS1239除了5个外部模拟信号输入通道,内部也具有电源电压信号。通过配置 TMODE[1:0]寄存器在电源电压测量以及手动模式之间切换。每种模式下,通道选择、增益配置及输出速率三个参数都是内部固定配置好,不需要用户干预,手动模式下用户可以随意配置相关参数;手动模式下切换至其余任意模式再切换回手动模式时,用户的设置保持不变。

3.8 多种工作模式

CS1233/CS1239 提供了多种工作模式可以选择,包括性能模式、正常模式、低功耗模式。

性能模式下,PGA 中 Buffer 打开,ADC 调制器的采样频率为 662.22KHz,此时 ADC 信号链精度最高,增益温漂、线性表现最好,同时 ADC 信号链功耗达到 1.5mA,可应用于需要 10Hz SPS,10000 点以上分度的测量场合。正常模式对性能和功耗进行了平衡,Buffer 旁路,采样频率降低为 331.11KHz,可应用于 10000 分度以下测量场合(例如人体称重),ADC 信号链功耗为 1.2mA。低功耗模式是采用占空比的方式来达到节省功耗的目的。在一个 10Hz 数据更新频率的周期内,数字滤波器以 640Hz 的输出速率工作,开启 ADC 后丢弃前 5 个数据,然后累加相应个数进行平均。

占空比模式下 VREF 输出和数字电路间歇性工作,以降低芯片功耗。

在占空比模式下,COMB 是 4 阶的,工作在高速,SPI 数据输出速率只有 10Hz,COMB 数据输出速率为 640Hz,64 个 COMB 周期 SPI 才输出一个数据,我们可以使COMB 只输出前 21 个数据(COMB 前 5 个数据丢失,累加 16 个数据平均输出(第 6 个到第 21 个)),后面 43 个数据周期关闭 COMB 和 VREF 输出,示意图如下。

图 3.6 CS1233/CS1239 低功耗工作示意图

注: COMB 数据输出速率和累加数据个数可以配置。

3.9 复位和断电(POR&power down)

当芯片上电时,内置上电复位电路会产生复位信号,使芯片自动复位。

当 SCLK 从低电平变高电平并保持在高电平超过 172 μs, CS1233/CS1239 即进入 PowerDwon模式。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。

当系统由 Power down 重新进入正常工作模式时,此时所有功能配置为 PowerDown 之前的状态,不需要进行功能配置。

4 转换有效位

表 4.1 ADC 信号链不同 GAIN 及 DR 下的有效位(ENOB)1)

VDD=3V, VS=2.35V, VIN= \pm VS/Gain, Tc=25°C, TT

G : PGA V ABGW			BUFBP	DR			
$Gain = PGA \times ADGN$		БОГБГ	10Hz	40Hz	160Hz	1280Hz	
1	1	1	0	22.3	21.2	20.9	18.8
2	1	2	0	21.6	20.6	19.7	18.2
4	1	4	0	21.2	20.3	19.3	17.7
8	1	8	0	20.3	19.7	18.8	17.2
16	16	1	0	22	21.2	20.3	18.7
32	32	1	0	21.4	20.8	19.7	18.3
64	32	2	0	20.8	20	19	17.5
128	32	4	0	20	19.5	18.6	16.9
1	1	1	1	TBD	TBD	TBD	TBD
2	1	2	1	TBD	TBD	TBD	TBD
4	1	4	1	TBD	TBD	TBD	TBD
8	1	8	1	TBD	TBD	TBD	TBD
8	8	1	1	TBD	TBD	TBD	TBD
16	16	1	1	TBD	TBD	TBD	TBD
32	32	1	1	TBD	TBD	TBD	TBD
64	32	2	1	TBD	TBD	TBD	TBD
128	32	4	1	TBD	TBD	TBD	TBD

^{1):} 以上噪声特性是指没有使用 PMODE[1:0]=01, IDAC\LVSHIFT 关闭, FIL_EN=0 时的噪声特性, 信号源为桥式电阻, 输入共模电压 VS/2, 内阻为 2Kohm, 共模电容 100pF, 差模滤波电容为 0.1uF;

1)

5 典型特性

5.1 ADC 典型特性

5.2 LDO 典型特性

图 5.1 LDO 全电压全温度范围的典型特性(LDOS[1:0]=00,负载 1mA)

5.3 内部时钟典型特性

图 5.2 内部时钟全电压全温度范围的典型特性

6 三线串行通讯接口

CS1233/CS1239 中,采用 3 线串行通信,其中CS为片选/复位信号,SCLK 为通讯时 钟、SDA 是双向数据线及数据转换完成标志。

 \overline{CS} : 串行接口片选信号,低电平有效,输入信号,内部悬空,建议外接上拉电阻; \overline{CS} 由高电平变为低电平时,表示当前芯片被选中,处于通讯状态; \overline{CS} 由低变电平变为高电平,表示通讯结束,通讯口复位处于空闲状态。

SCLK: 串行时钟输入脚,决定数据移出或移入 SPI 口的传输速率。所有的数据传输操作均与 SCLK 同步,在上升沿将数据从 SDA 引脚输出;在下降沿读取 SDA 上的数据。

SDA: 串行数据输入/输出脚。 \overline{CS} =1,SDA 输出 DRDY,表示 ADC 转换数据已准备好; \overline{CS} =0,SDA 串行通讯数据端口。

串行通讯的命令寄存器是一个 8bit 宽的寄存器。对于读写操作,命令寄存器的 bit7 用来确定本次数据传输操作的类型是读操作还是写操作,命令寄存器的 bit6-0 是读写的寄存器的地址。对于特殊命令操作,命令寄存器的 bit7-0 固定为 0xEA。

注: 当 SCLK 保持低电平 687us 左右进入通讯复位模式(只复位串行通讯接口,防止串行通讯接口进入异常无法通讯,不复位芯片)。

命令名称	命令寄存器	数据	描述		
读命令	{0,REG_ADR[6:0]}	Read_Data	从地址为 REG_ADR[6:0]的寄存器中读数据。 注:读无效地址,返回值为00h		
写命令	{1,REG_ADR[6:0]}	Write_Data	向地址为 REG_ADR[6:0]的寄存器中写数据		
复位指令	0xEA	0x96	复位指令,接收到指令之后,芯片复位。		

表 6.1 串口通讯命令列表

6.1 读时序

工作过程:

外部设备在CS有效后,先通过 SDA 写入读命令字节, CS1233/CS1239 接收到读命令后,在 SCLK 的上升沿将数据按位从 SDA 引脚输出。注意:

- 1).以字节为单位传输,高比特位在前,低比特位在后;
- 2). 多字节寄存器, 先输出高字节内容, 再传输低字节内容;
- 3).外部设备在 SCLK 上升沿写命令字节, CS1233/CS1239 在 SCLK 上升沿将数据从 SDA 输出;
 - 4).数据字节之间的时间 t1 要大于等于 2 个系统时钟周期;
- 5).最后一个字节的 LSB 传送完毕, $\overline{\text{CS}}$ 由低变高结束数据传输。SCLK 下降沿和 $\overline{\text{CS}}$ 上 升沿之间的时间 t2 要大于等于 2 个系统时钟周期;

图 6.1 读操作时序 1(读 AD 值)

图 6.2 读操作时序 2(除 AD 值之外的寄存器)

6.2 写时序

工作过程:

外部设备在 \overline{CS} 有效后,先通过 SDA 写入命令字节,再写入数据字节。注意:

- 1).以字节为单位传输,高比特位在前,低比特位在后;
- 2).多字节寄存器,先传输高字节内容,再传输低字节内容;
- 3).外部设备在 SCLK 上升沿写数据, CS1233/CS1239 在 SCLK 下降沿沿读取数据;

- 4).数据字节之间的时间 t1 要大于等于 2 个系统时钟周期;
- 5).最后一个字节的 LSB 传送完毕, $\overline{\text{CS}}$ 由低变高结束数据传输。SCLK 下降沿和 $\overline{\text{CS}}$ 上升 沿之间的时间 t2 要大于等于 2 个系统时钟周期。
- 注意: 有写保护功能的寄存器在写操作之前要先写入写使能命令。

图 6.3 写操作时序

表 6.2 三线串行通讯接口时序表

(VDD=3V, GND=0V, Fosc=5.898MHz,常温)

名称	解释	Min	Тур	Max	Unit
t1	数据字节之间 SCLK 维持低电平的时间	2*sysclk	_	_	ns
t2	最后一个 SCLK 下降沿与 CS 上升沿之间的时间间隔	2*sysclk	_	_	ns
t3	CS 下降沿之前 SCLK 保持为低的时间	5	_	_	ns
t4	CS 上升沿之后 SCLK 保持为低的时间	5	-	_	ns
t5	在 SCLK 上升沿之前, SDA 上有效数据的建立时间	5	_	_	ns
t6	在 SCLK 下降沿之后, SDA 上有效数据的保持时间	sysclk	-	_	ns
t7	在 SCLk 上升沿之后, SDO 能稳定输出所需要的时间	50			ns
t8	SCLK 的高电平宽度	2*sysclk	_	170	us
t9	SCLK 的低电平宽度	2*sysclk	-	680	us

7 封装

CS1233 采用 SOP14,CS1239 采用 SOP16、QFN16。

SOP14L产品外形图

	MILLIMETER	?		
14717	MILLIMETER			
MIN NOM		MAX		
_	_	1. 75		
0.05	_	0. 225		
1. 30	1. 40	1.50		
0.60	0. 65	0.70		
0.39	_	0. 48		
0.38	0. 41	0. 43		
0. 21	_	0. 26		
0. 19	0. 20	0. 21		
8. 45	8. 65	8. 85		
5. 80	6. 00	6. 20		
3. 70	3. 70 3. 90			
	1.27BSC			
0. 25	_	0. 50		
0. 50	_	0.80		
1. 05BSC				
0	_	8°		
70*70)	90*110		
98*150				
100. 4*210				
	0. 05 1. 30 0. 60 0. 39 0. 38 0. 21 0. 19 8. 45 5. 80 3. 70 0. 25 0. 50			

图 7.1 芯片 SOP14 封装尺寸信息

SOP16L产品外形图

SYMBOL	MILLIMETER			
SOP16L	MIN	NOM	MAX	
A	_		1. 75	
A1	0.05		0. 225	
A2	1.30	1.40	1. 50	
A3	0. 60	0.65	0.70	
b	0. 39		0. 48	
b1	0. 38	0.41	0. 43	
С	0. 21		0. 26	
c1	0. 19	0. 20	0. 21	
D	9. 70	9. 90	10. 10	
Е	5. 80	6. 00	6. 20	
E1	3. 70	3. 90	4. 10	
е	1. 27BSC			
h	0. 25		0. 50	
L	0. 50	_	0.80	
L1	1. 05BSC			
θ	0		8°	

图 7.2 芯片 SOP16 封装尺寸信息

QFN16L产品外形图

SYMBOL	MILLIMETER			
STMBOL	MIN	NOM	MAX	
A	0.70	0.75	0.80	
A1	0	0.02	0.05	
b	0. 18	0.25	0.30	
b1		0.16REF		
С	0. 18	0.20	0. 25	
D	2. 90	3. 00	3. 10	
D 2	1. 55	1.65	1.75	
e	0. 50BSC			
Ne	1.50BSC			
Nd	1. 50 BSC			
Е	2. 90	3. 00	3. 10	
E2	1. 55	1.65	1.75	
L	0.35	0.40	0. 45	
h	0. 20	0. 25	0. 30	
L/F载体尺寸 (mil)	75x75			

图 7.3 芯片 QFN16 封装尺寸信息