Bellman Ford Algorithm

- How the Bellman Ford algorithm works
- Example from the book, figure 24.4
- Step by step
- v.d is shown in the vertices and shaded edges show predecessors

Initialization

$$(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$$

First pass of the 1st nested loop:

We relax:

(s,t)

(s,y)

The others don't relax because of the infinite values

$$(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$$

Second pass of the 1st nested loop:

$$(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$$

Third pass of the 1st nested loop:

$$(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$$

Fourth pass of the 1st nested loop:

$$(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$$

Second for loop

In the last verification, no comparison makes us return false

for each edge
$$(u, v) \in G.E$$

if $v.d > u.d + w(u, v)$
return FALSE

$$(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$$