INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPT./CENTRE:	Electronics and Computer Engineering					
1. Subject Code: EC - 351	ubject Code: EC - 351 Course Title: Design and Analysis of Algorithms					
2. Contact Hours:	L: 3	T: 1	P: 0		_	
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0		
4. Relative Weightage: CWS 25	PRS 00	MTE	25 ETE 5	0 PRE	00	
5. Credits: 0 4 6. Sen	nester $$	ımn	Spring [Both		

7. Pre-requisite: **EC - 251**

8. Subject Area: DCC

9. Objective: To familiarize students with the design strategies and bounds on the performance of different computer algorithms.

10. Details of the Course:

Sl.	Contents	
No.		Hours
1.	Review of Data Structures.	2
2.	Program Performance : Time and space complexity, asymptotic notation, complexity analysis, recurrence equations and their solution.	4
3.	Algorithmic Techniques: Algorithm design strategies, divide and conquer, merge sort, quick sort and its performance analysis, randomized quick sort, Strassen's matrix multiplication; Greedy method and its applications, knapsack problem; Dynamic programming and its performance analysis, optimal binary search trees, 0/1 knapsack problem; Traveling salesman problem; Back-tracking, n-queens problem, graph coloring, Hamiltonian cycles, knapsack problem; Branch and bound examples, 15-puzzle problem, 0/1 knapsack, traveling salesman.	14
4.	Graph Algorithms : DFS and BFS, spanning trees, biconnectivity; Minimum cost spanning trees: Kruskal's, Prim's and Sollin's algorithms; Path finding and shortest path algorithms; Topological sorting; Bipartite graphs.	6
5.	Infeasibility : P and NP-classes, NP-hard problems, reduction.	4
6.	Parallel Algorithms : Data and control parallelism, embedding of problem graphs into processor graphs, parallel algorithms for matrix multiplication.	6

7.	Other Algorithms: Number theoretic algorithms, string matching	6		
	algorithms, approximation algorithms, randomized algorithms.			
	Total	42		

11. Suggested Books:

Sl. No.	Name of Books / Authors	Year of Publication
1.	Sahni, S., "Data Structures, Algorithms and Applications in C++",	2001
	WCB/McGraw-Hill.	
2.	Mchugh, J.A., "Algorithmic Graph Theory", Prentice-Hall.	1990
3.	Quinn, M.J., "Parallel Computing Theory & Practice", McGraw-Hill.	1994
4.	Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.,	2002
	"Introduction to Algorithms", 2 nd Ed., Prentice-Hall of India.	
5.	Dasgupta, S., Papadimitriou, C. and Vazirani, U., "Algorithms", Tata	2008
	McGraw-Hill.	