Appunti di Complementi di AM 2

Francesco Sermi

Indice

1	Spa	zi euclidei	4
	1.1	Spazio euclideo e prodotto scalare	4
	1.2	Il prodotto vettoriale	6
	1.3	Topologia di \mathbb{R}^n	10
2	Suc	cessioni e funzioni continue	12
	2.1	Funzioni continue	13
	2.2	Accenni ai limiti in più variabili	16
3	Cal	colo differenziale	18
	3.1	Funzione differenziabile	18
	3.2	Spazio duale	21
	3.3	Interpretazione geometrica delle derivate prime	23
		Legame fra differenziabilità e continuità	

Notazioni

Riporto all'inizio del libro le notazioni adottate all'interno di questo documento:

```
lim limite
```

```
\frac{\partial f}{\partial x_i}, \partial_{e_i} f, \partial_{x_i} f, f_{x_i}derivata parziale rispetto a x_i
```

$$\frac{\partial f}{\partial v}, \partial_v f$$
 derivata direzionale rispetto a v

 ∇ gradiente

 $\nabla \cdot A$ divergenza del campo vettoriale A

 $\nabla \times A$ rotore del campo vettoriale A

 \underline{v} vettore (alcune volte senza il trattino)

 $||\cdot||, |\cdot|$ norma

 $\langle \cdot, \cdot \rangle$ prodotto scalare/hermitiano

 $a\times b, a\wedge b$ prodotto vettoriale

Int(A) parte interna di A

 \bar{A} chiusura di A

 ∂A derivato di A

 $B(x_0,r)$ palla aperta di raggio r centrata in x_0

 $\mathbb{B}(x_0,r)$ palla chiusa di raggio r centrata in x_0

o(f)o-piccolo di f

O(f) O-grande di f

Capitolo 1

Spazi euclidei

In questo capitolo, ci soffermeremo su alcuni risultati che possono essere ottenuti considerando uno spazio euclideo e sullo studio della sua topologia, siccome molti concetti dell'Analisi 1 devono essere concettualmente rivisti per poter essere generalizzati a spazi di dimensione diversa da 1.

1.1 Spazio euclideo e prodotto scalare

Partiamo ricordando al lettore la definizione di prodotto scalare/hermitiano e di spazio euclideo:

Definizione 1.1 (prodotto scalare/hermitiano). dato V spazio vettoriale sul campo \mathbb{R} (\mathbb{C}) si definisce prodotto scalare (hermitiano) un'applicazione $\varphi: V \times V \to \mathbb{R}$ ($\varphi: V \times V \to \mathbb{C}$) che gode delle seguenti proprietà:

(1) lineare nella prima componente, ovvero

$$\forall \underline{v}, \underline{w}, \underline{z}, \forall \alpha, \beta \in \mathbb{R}, \varphi(\alpha \underline{v} + \beta \underline{w}, \underline{z}) = \alpha \varphi(\underline{v}, \underline{z}) + \beta \varphi(\underline{w}, \underline{z})$$

(2) lineare nella seconda componente, ovvero

$$\forall \underline{v}, \underline{w}, \underline{z}, \forall \alpha \beta \in \mathbb{R}, \varphi(\underline{v}, \alpha \underline{w} + \beta \underline{z}) = \alpha \varphi(\underline{v}, \underline{w}) + \beta \varphi(\underline{v}, \underline{z})$$

(3) simmetrica, ovvero

$$\forall v, w \in V , \varphi(v, w) = \varphi(w, v)$$

(sostituendo C al posto di R si ottengono le proprietà che rendono identificano un prodotto hermitiano)

Definizione 1.2 (spazio euclideo). uno spazio vettoriale V munito di un prodotto scalare $\varphi: V \times V \to \mathbb{R}$ (analogamente nel caso di un prodotto hermitiano) definito positivo $(\forall \underline{v} \neq \underline{0}, \varphi(\underline{v}, \underline{v}) > 0)$ si dice **spazio euclideo**

Oss:. Quando un prodotto scalare/hermitiano è definito positivo, diciamo che è **coercivo**. Durante questo documento capiterà spesso di riferirci a questa proprietà con questo termine

Introduciamo qualche notazione a noi utile:

- E_n : spazio affine euclideo di dimensione finita n;
- \mathbb{E}_n : spazio vettoriale euclideo, ottenuto fissando un'origine in E_n ;

Sappiamo, dal corso di Geometria, che, fissando una base \mathcal{B} di \mathbb{E}_n , le coordinate di un generico vettore $\underline{x} \in \mathbb{E}_n$ sono univoche e definendo la funzione $\varphi : \mathbb{E}_n \to \mathbb{R}^n$ tale che $\underline{x} \in \mathbb{E}_n \mapsto [\underline{x}]_{\mathcal{B}}$, dove con $[\underline{x}]_{\mathcal{B}}$ indichiamo il vettore delle coordinate del vettore \underline{x} rispetto alla base \mathcal{B} nello spazio \mathbb{E}_n .

Per comodità, noi vorremmo che questa base fosse anche ortonormale per semplificare la trattazione (l'esistenza è garantita, ovviamente, dal teorema di Lagrange).

Definizione 1.3 (base ortonormale). sia $\mathcal{B} = \{\underline{v}_1, \dots \underline{v}_n\}$, diciamo che essa è una base ortonormale se

$$\langle \underline{v}_i, \underline{v}_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Oss:. Se con la norma indotta dal prodotto scalare lo spazio è completo, allora \mathbb{E}_n è uno spazio di Hilbert. Indichiamo adesso fissata la base ortonormale $(\underline{e}_1, \dots \underline{e}_n)$. Osserviamo che, dati $\underline{v}, \underline{w}$, allora

$$\langle \underline{v}, \underline{w} \rangle = \langle \sum_{j=1}^{n} x_{j} \underline{v}_{j}, \sum_{i=1}^{n} y_{i} \underline{v}_{i} \rangle = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{j} y_{i} \langle \underline{v}_{j}, \underline{v}_{i} \rangle = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{i} y_{i} \delta_{ij} = \sum_{i=1}^{n} x_{i} y_{i}$$

Definizione 1.4 (norma). Sia V uno spazio vettoriale reale (o complesso). Si definisce norma un'applicazione $||\cdot||:V\to\mathbb{R}\ (||\cdot||:V\to\mathbb{C})$ che verifica le seguenti condizioni:

- $(1) ||\underline{v}|| \ge 0 \ \forall \underline{v} \in V$
- $(2) ||v|| = 0 \iff v = 0$
- (3) $||\lambda v|| = |\lambda|||v|| \ \forall \lambda \in \mathbb{R}, \forall v \in V$
- (4) $||v + w|| \le ||v|| + ||w|| \ \forall v, w \in V$

(analogamente per uno spazio definito su \mathbb{C} sostituendo \mathbb{C} a \mathbb{R})

Notazione: la norma di un vettore verrà indicata all'interno di questo documento, per comodità, sia con $||\cdot||$ e sia con $|\cdot|$

Oss:. Osserviamo che se (V, φ) è uno spazio euclideo allora $||\cdot|| = \sqrt{\varphi(\cdot, \cdot)}$ è una norma: il prodotto scalare induce una norma su V. Mostreremo più avanti il punto 4 (ovvero la proprietà meno banale fra quelle) usando la norma indotta dal prodotto scalare

Sapendo che $\mathbb{E}_n \simeq \mathbb{R}^n$ (quando quest'ultimo è munito di un prodotto scalare definito positivo naturalmente) possiamo effettuare tutte le dimostrazioni in \mathbb{R}^n e queste saranno naturalmente valide in tutti gli spazi euclidei di dimensione finita n.

Teorema 1.1. Sia (V, φ) uno spazio euclideo. Allora

$$\forall v, w \in V, \langle v, w \rangle = ||v|| \, ||w|| \cos \hat{\theta}$$

dove $\hat{\theta}$ è l'angolo convesso fra i due vettori v e w

Dimostrazione. consideriamo due vettori $\underline{v} \in \mathbb{E}_2$ con $||\underline{v}|| = ||\underline{w}|| = 1$. Prendiamo per semplicità $\underline{v} = \underline{e}_1$ e si osserva che

$$\langle \underline{e}_1, \underline{w} \rangle = \cos \hat{\theta}$$

Questo segue banalmente dall'interpretazione geometrica del prodotto scalare canonico.

Per estendere la validità di questo risultato a tutti i $\underline{v} \neq \underline{e}_1$ si osserva che $\exists R \in SO(\mathbb{E}_2) : R\underline{e}_1 = \underline{v}$ e dunque, considerando $R^{-1}(\underline{w})$ (l'esistenza di un'inversa è garantita dal fatto che $R \in SO(2)$) e sappiamo che:

$$\langle \underline{e}_1, R^{-1}(\underline{w}) \rangle = \langle R\underline{e}_1, (R \circ R^{-1})\underline{w} \rangle = \cos \hat{\theta}$$

e, siccome A questo punto, dati due vettori qualunque \underline{v} e \underline{w} non di norma unitaria, possiamo utilizzare il ragionamento procedente osservando che:

$$\langle \frac{\underline{v}}{|v|}, \frac{\underline{w}}{|w|} \rangle = \cos \hat{\theta}$$

ma allora, si osserva che:

$$\frac{1}{|v|} \cdot \frac{1}{|w|} \langle \underline{v}, \underline{w} \rangle = \cos \hat{\theta} \implies \langle \underline{v}, \underline{w} \rangle = |\underline{v}| |\underline{w}| \cos \hat{\theta}$$

dunque la tesi (in \mathbb{E}_2). Per generalizzare questo concetto a qualunque spazio, noi sappiamo che possiamo considerare il piano $\pi = \operatorname{Span}(\underline{v}, \underline{w})$ e considerare il loro angolo $\hat{\theta}$ convesso giacente in questo piano.

Proposizione 1.1 (Disuguaglianza di Cauchy-Schwarz).

$$\forall v, w \in \mathbb{E}_n, |\langle v, w \rangle| \leq ||v|| ||w||$$

1. Spazi euclidei 6

Dimostrazione. Consideriamo $\lambda \in \mathbb{R}$ e sappiamo che, per coercività del prodotto scalare, che:

$$\forall \underline{v}, \underline{w} \in \mathbb{E}_n, \langle \underline{v} + \lambda \underline{w}, \underline{v} + \lambda \underline{w} \rangle > 0$$

ma per bilinearità del prodotto scalare abbiamo che

$$\langle v + \lambda w, v + \lambda w \rangle = \langle v, v \rangle + 2\lambda \langle v, w \rangle + \lambda^2 \langle w, w \rangle > 0$$

dunque l'equazione in λ

$$\langle v, v \rangle + 2\lambda \langle v, w \rangle + \lambda^2 \langle w, w \rangle = 0$$

non deve avere soluzione, il che implica che

$$\Delta = 4\langle v, w \rangle^2 - 4\langle v, v \rangle \langle w, w \rangle < 0 \implies \langle v, w \rangle^2 < \langle v, v \rangle \langle w, w \rangle \implies |\langle v, w \rangle| < ||v|| ||w||$$

Proposizione 1.2 (Disuguaglianza triangolare).

 $\forall v, w \in \mathbb{E}_n$,

- $(1) |v + w| \le |v| + |w|$
- (2) $||v| |w|| \le |v w|$

Dimostrazione. osserviamo che

$$|\underline{v} + \underline{w}|^2 = \langle \underline{v} + \underline{w}, \underline{v} + \underline{w} \rangle = \langle \underline{v}, \underline{v} \rangle + 2\langle \underline{v}, \underline{w} \rangle + \langle \underline{w}, \underline{w} \rangle = |\underline{v}|^2 + 2\langle \underline{v}, \underline{w} \rangle + |\underline{w}|^2 \overset{\text{dis. di Cauchy-Schwarz}}{\leq} |\underline{v}|^2 + 2|\underline{v}| |\underline{w}| + |\underline{w}|^2$$

dunque

$$|v + w|^2 \le |v|^2 + 2|v||w| + |w|^2 = (|v| + |w|)^2 \implies |v + w| \le |v| + |w|$$

e si ottiene la tesi del punto (1).

Il punto (2) si ottiene come corollario del primo punto osservando che

$$|\underline{v}| = |\underline{v} + \underline{w} - \underline{w}| \le |\underline{v} - \underline{w}| + |\underline{w}| \implies |\underline{v}| - |\underline{w}| \le |\underline{v} - \underline{w}|$$

ma ragionando in maniera identica sul vettore w si osserva che

$$|w| = |w - v + v| \le |w - v| + |v| \implies |w| - |v| \le |w - v| = |v - w|$$

dunque possiamo concludere che

$$||\underline{v}| - |\underline{w}|| \le |\underline{v} - \underline{w}|$$

ottenendo la tesi

Oss:. Come avevo detto in una osservazione, ogni prodotto scalare definito positivo induce sempre una norma. La dimostrazione qua sopra non fa uso di nessuna proprietà specifiche del prodotto scalare canonico di \mathbb{R}^n , dunque può essere usata per ogni norma indotta dal prodotto scalare definito positivo di qualunque spazio euclideo

1.2 Il prodotto vettoriale

In \mathbb{R}^3 (ma in generale in qualunque spazio euclideo di dimensione 3) è anche possibile definire l'operazione di prodotto vettoriale, molto utile per trattare (come vedremo più avanti) l'orientazione delle superfici.

Fissando una base ortonormale $\{\underline{e_1},\underline{e_2},\underline{e_3}\}$ di \mathbb{E}_3 , definendo questa operazione $\times: V \times V \to V$ assegnando i prodotti elementari secondo l'invarianza per permutazioni cicliche, ponendo che

$$e_1 \times e_2 = e_3$$

e, per invarianza per permutazioni cicliche, dovremo avere che

$$\underline{e_3} \times \underline{e_1} = \underline{e_2}$$

$$\underline{e_2} \times \underline{e_3} = \underline{e_1}$$

Le permutazioni non cicliche invece fanno variare il segno dunque avremo, per il vettore e_1

$$\begin{cases} \underline{e_1} \times \underline{e_2} = \underline{e_3} \\ \underline{e_1} \times \underline{e_3} = -\underline{e_2} \\ \underline{e_2} \times \underline{e_3} = \underline{e_1} \end{cases}$$

$$(1.1)$$

Le regole che abbiamo visto possono essere anche facilmente ottenute tramite la cosiddetta regola della mano destra: indicando la direzione del primo vettore con il pollice (in questo caso e_1) e con l'indice il secondo vettore (in questo caso e_2), ottenendo sul pollice la direzione del terzo vettore.

Vogliamo inoltre che questo prodotto vettoriale sia bilineare.

Dati adesso due vettori \underline{v} e $\underline{w} \in E_3$ abbiamo che $\underline{v}, \underline{w} \in \text{Span}(e_1, e_2, e_3)$ dunque avremo che:

$$\underline{v} = x_1 e_1 + x_2 e_2 + x_3 e_3$$
 $\underline{w} = y_1 e_1 + y_2 e_2 + y_3 e_3$

e studiamo quali saranno le coordinate del prodotto vettoriale fra questi due:

$$\underline{v} \times \underline{w} = (x_1 \underline{e_1} + x_2 \underline{e_2} + x_3 \underline{e_3}) \times (y_1 \underline{e_1} + y_2 \underline{e_2} + y_3 \underline{e_3}) =$$

$$= (x_1 y_2 - x_2 y_1)(e_1 \times e_2) + (x_1 y_3 - x_3 y_1)(e_1 \times e_3) + (x_2 y_3 - x_3 y_2)(e_2 \times e_3)$$

dunque definiamo una matrice C di questa forma:

$$C = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} \tag{1.2}$$

e ne consideriamo i minori:

$$M_{ij}(C) = \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i$$
 (1.3)

dunque otteniamo una nuova formula:

$$\underline{v} \times \underline{w} = M_{12}(C)(e_1 \times e_2) + M_{23}(C)(e_2 \times e_3) + M_{13}(C)(e_1 \times e_3) = M_{12}(C)e_3 + M_{23}(C)e_1 - M_{13}(C)e_2$$

usando le proprietà del determinante, sappiamo che $M_{13}(C) = -M_{31}(C)$ dunque

$$\underline{v} \times \underline{w} = M_{12}(C)e_3 + M_{23}(C)e_1 + M_{31}e_2$$

abbiamo dunque dimostrato la seguente proposizione

Proposizione 1.3. dati i vettori $\underline{v}, \underline{w} \in \mathbb{E}_3$ allora $\exists x_1, \dots, x_3, y_1, \dots y_3 \in \mathbb{R}$ tali che $\underline{v} = x_1\underline{e_1} + x_2\underline{e_2} + x_2\underline{e_3}$ e $\underline{w} = y_1\underline{e_1} + y_2\underline{e_2} + y_3\underline{e_3}$. Posta la matrice C tale che

$$C = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$$

allora

$$\underline{v} \times \underline{w} = M_{23}(C)\underline{e_1} + M_{31}(C)\underline{e_2} + M_{12}(C)\underline{e_3}$$
(1.4)

Oss:. si noti come i numeri siano tutti disposti secondo permutazioni cicliche: questo può essere un buon trucco per ricordarsela.

Corollario 1.1.1 (matrice del prodotto vettoriale). siano $\underline{v}, \underline{w} \in \mathbb{E}_3$ e siano $x_1, \dots x_3$ e $y_1, \dots y_3$ le rispettive coordinate rispetto alla base ortonormale $\mathcal{B} = \{e_1, e_2, e_3\}$ di $\overline{\mathbb{E}_3}$. Allora

$$\underline{v} \times \underline{w} = \det \begin{pmatrix} x_1 & y_1 & \underline{e_1} \\ x_2 & y_2 & \underline{e_2} \\ x_3 & y_3 & \underline{e_3} \end{pmatrix}$$
 (1.5)

1. Spazi euclidei 8

Dimostrazione, si osservi che, procedendo con uno sviluppo di Laplace lungo la terza colonna abbiamo che:

$$\det\begin{pmatrix} x_1 & y_1 & \underline{e_1} \\ x_2 & y_2 & \underline{e_2} \\ x_3 & y_3 & \underline{e_3} \end{pmatrix} = \underline{e_1} M_{23}(C) - \underline{e_2} M_{13}(C) + \underline{e_3} M_{12}(C) = M_{23}(C) \underline{e_1} + M_{31}(C) \underline{e_2} + M_{12}(C) \underline{e_3}$$

Proposizione 1.4 (matrice del prodotto misto). siano dati i vettori $\underline{v} = x_1\underline{e_1} + x_2\underline{e_2} + x_3\underline{e_3}$ e $\underline{w} = y_1\underline{e_1} + y_2\underline{e_2} + y_3\underline{e_3}$ e $\underline{z} = \xi_1e_1 + \xi_2e_2 + \xi_3z_3$. Allora

$$\langle \underline{v} \times \underline{w}, \underline{z} \rangle = \det \begin{pmatrix} x_1 & y_1 & \xi_1 \\ x_2 & y_2 & \xi_2 \\ x_3 & y_3 & \xi_3 \end{pmatrix}$$
 (1.6)

 $\begin{array}{ll} \textit{Dimostrazione.} \ \ \text{sappiamo che} \ \underline{v} \times \underline{w} = M_{23}(C)\underline{e_1} + M_{31}(C)\underline{e_2} + M_{12}(C)\underline{e_3} \ \text{dunque} \ \langle \underline{v} \times \underline{w}, \underline{z} \rangle = M_{23}(C)\xi_1 + M_{31}(C)\xi_2 + M_{12}(C)\xi_3. \end{array}$ D'altra parte definendo la matrice

$$M = \begin{pmatrix} x_1 & y_1 & \xi_1 \\ x_2 & y_2 & \xi_2 \\ x_3 & y_3 & \xi_3 \end{pmatrix}$$

allora si osserva che

$$\langle \underline{v} \times \underline{w}, \underline{z} \rangle = \operatorname{cof}_{13}(M)\xi_1 + \operatorname{cof}_{23}(M)\xi_2 + \operatorname{cof}_{33}(M)\xi_3 = \det(M)$$

dunque la tesi.

Corollario 1.1.2 $(\underline{v} \times \underline{w} \perp \operatorname{Span}(\underline{v}, \underline{w}))$. Dati due vettori $\underline{v}, \underline{w} \in \mathbb{E}_3$ allora

$$\underline{v} \times \underline{w} \perp \operatorname{Span}(\underline{v}, \underline{w})$$

Dimostrazione. dalla proposizione 1.4 sappiamo che

$$\langle \underline{v} \times \underline{w}, \underline{v} \rangle = \det \begin{pmatrix} x_1 & y_1 & x_1 \\ x_2 & y_2 & x_2 \\ x_3 & y_3 & x_3 \end{pmatrix} = 0$$

per proprietà del determinante. Similmente per il vettore \underline{w} . Dunque abbiamo che $\underline{v} \times \underline{w} \perp \underline{v}$ e $\underline{v} \times \underline{w} \perp \underline{w}$ che implica che $\underline{v} \times \underline{w}$ è perpendicolare a qualunque combinazione lineare dei vettori \underline{v} e \underline{w} , quindi $\underline{v} \times \underline{w} \perp \operatorname{Span}(\underline{v},\underline{w})$ ovvero la tesi.

Corollario 1.1.3 (norma del prodotto vettoriale). Siano $\underline{v}, \underline{w} \in \mathbb{E}_3$ con $\underline{v} = x_1\underline{e_1} + x_2\underline{e_2} + x_3\underline{e_3}$ e $\underline{w} = y_1\underline{e_1} + y_2\underline{e_2} + y_3\underline{e_3}$. Allora, ponendo

$$C = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$$

allora

$$|\underline{v} \times \underline{w}| = \sqrt{M_{23}(C)^2 + M_{12}(C)^2 + M_{31}(C)^2}$$

Dimostrazione. Osserviamo, per la proposizione 1.4, che

$$\langle \underline{v} \times \underline{w}, \underline{v} \times \underline{w} \rangle = \det \left(\underline{v} \quad \underline{w} \quad \underline{v} \times \underline{w} \right) = M_{23}(C)(\underline{v} \times \underline{w})_1 + M_{31}(C)(\underline{v} \times \underline{w})_2 + M_{12}(C)(\underline{v} \times \underline{w})_3 = M_{23}(C)^2 + M_{31}(C)^2 + M_{12}(C)^2$$

dunque
$$|\underline{v} \times \underline{w}| = \sqrt{M_{23}(C)^2 + M_{31}(C)^2 + M_{12}(C)^2}$$

Proposizione 1.5. Sia $R \in SO(3)$ e siano dati $v, w \in \mathbb{E}_3$. Allora

$$R(\underline{v} \times \underline{w}) = R\underline{v} \times R\underline{w} \tag{1.7}$$

Dimostrazione. Sia $u \in \mathbb{E}_3$ e consideriamo il seguente prodotto scalare:

$$\langle R\underline{v} \times R\underline{w}, R\underline{u} \rangle = \det \begin{pmatrix} R\underline{v} & R\underline{w} & R\underline{u} \end{pmatrix}$$

= $\det \begin{pmatrix} R \begin{pmatrix} v & w & u \end{pmatrix} \end{pmatrix}$

Usando il teorema di Binet abbiamo che

$$\langle R\underline{v} \times R\underline{w}, R\underline{u} \rangle = \det (R(\underline{v} \ \underline{w} \ \underline{u})) = \det(R)\det (\underline{v} \ \underline{w} \ \underline{u}) = \det (\underline{v} \ \underline{w} \ \underline{u})$$

dove abbiamo usato l'ipotesi che $R \in SO(3)$ dunque det(R) = 1 e siccome sappiamo che R è un'isometria allora

$$\langle R(\underline{v} \times \underline{w}), R\underline{u} \rangle = \det (\underline{v} \quad \underline{w} \quad \underline{u}) = \langle \underline{v} \times \underline{w}, \underline{u} \rangle = \langle R(\underline{v} \times \underline{w}), R\underline{u} \rangle$$

ma allora $\langle R\underline{v} \times R\underline{w}, R\underline{u} \rangle = \langle R(\underline{v} \times \underline{w}), R\underline{u} \rangle \implies \langle R(\underline{v} \times \underline{w}) - (R\underline{v} \times R\underline{w}), R\underline{u} \rangle = 0$. Ma allora, per la coercività del prodotto scalare, abbiamo necessariamente che

$$R(\underline{v} \times \underline{w}) = R\underline{v} \times R\underline{w}$$

Proposizione 1.6. Se $\underline{v}, \underline{w} \in \mathbb{R}^3, \underline{v} \perp \underline{w} \in |\underline{v}| = |\underline{w}| = 1$ allora

$$|v \times w| = 1$$

Dimostrazione. Dati \underline{v} e \underline{w} con $\underline{v} \perp \underline{w}$, allora $\{\underline{v},\underline{w},\underline{v} \times \underline{w}\}$ è una base. Siccome appartengono a \mathbb{R}^3 e sono perpendicolari, allora sappiamo che $\exists R \in SO(3) : R\underline{v} = e_1, \ R\underline{w} = e_2 \in R(\underline{v} \times \underline{w}) = e_3$ dunque

$$|\underline{v} \times \underline{w}| = 1 = |Re_1 \times Re_2| = |R(e_1 \times e_2)| = |\underline{v} \times \underline{w}| \implies |\underline{v} \times \underline{w}| = 1$$

Corollario 1.1.4 (modulo del prodotto vettoriale di vettori perpendicolari). siano $v, w \in \mathbb{E}_3$ e $v \perp w$ allora:

$$|v \times w| = |v| |w|$$

Dimostrazione. siccome $\underline{v} \perp \underline{w}$ allora $\frac{\underline{v}}{|\underline{v}|} \perp \frac{\underline{w}}{|\underline{w}|}$. Ma allora possiamo applicare a questi due vettori la proposizione precedente, dunque:

$$\left|\frac{\underline{v}}{|\underline{v}|} \times \frac{\underline{w}}{|\underline{w}|}\right| = 1 = \frac{1}{|\underline{v}|\,|\underline{w}|} |\underline{v} \times \underline{w}| \implies |\underline{v} \times \underline{w}| = |\underline{v}|\,|\underline{w}|$$

Proposizione 1.7 (area del parallelogramma). Siano $v, w \in \mathbb{E}_3$. Allora

$$|v \times w| = |v| |w| \sin \hat{\theta}$$

dove $\hat{\theta}$ è l'angolo convesso fra i due vettori

Dimostrazione. possiamo "ortogonalizzare" il vettore v usando il procedimento di Grand-Schmit, dunque

$$\begin{aligned} |\underline{v} \times \underline{w}|^2 &= \left| \left(\underline{v} - \frac{\langle \underline{v}, \underline{w} \rangle}{|\underline{w}|^2} \underline{w} \right) \times \underline{w} \right|^2 = \left| \underline{v} - \frac{\langle \underline{v}, \underline{w} \rangle}{|\underline{w}|^2} \underline{w} \right|^2 |\underline{w}|^2 = \langle \underline{v} - \frac{\langle \underline{v}, \underline{w} \rangle}{|\underline{w}|^2} \underline{w}, \underline{v} - \frac{\langle \underline{v}, \underline{w} \rangle}{|\underline{w}|^2} \underline{w} \rangle |\underline{w}|^2 = \\ &= |\underline{w}|^2 \left(\langle \underline{v}, \underline{v} \rangle - 2 \langle \underline{v}, \frac{\langle \underline{v}, \underline{w} \rangle}{|\underline{w}|^2} \underline{w} \rangle + \frac{(\langle \underline{v}, \underline{w} \rangle)^2}{|\underline{w}|^2} \langle \underline{w}, \underline{w} \rangle \right) = \\ &= |\underline{w}|^2 \left(\langle \underline{v}, \underline{v} \rangle - 2 \frac{\langle \underline{v}, \underline{w} \rangle}{|\underline{w}|^2} \langle \underline{v}, \underline{w} \rangle + \frac{(\langle \underline{v}, \underline{w} \rangle)^2}{|\underline{w}|^2} \langle \underline{w}, \underline{w} \rangle \right) = \\ &= |\underline{w}|^2 \left(\langle \underline{v}, \underline{v} \rangle - \frac{(\langle \underline{v}, \underline{w} \rangle)^2}{|\underline{w}|^2} \right) \end{aligned}$$

1. Spazi euclidei 10

Sappiamo adesso che $\langle v, w \rangle = |v| |w| \cos \hat{\theta}$, dunque

$$|\underline{w}|^2 \left(|\underline{v}|^2 - |\underline{v}^2| \cos^2 \hat{\theta} \right) = |\underline{v}|^2 |\underline{w}|^2 (1 - \cos^2 \hat{\theta}) = |\underline{v}|^2 |\underline{w}|^2 \sin^2 \hat{\theta}$$

ma allora se ne conclude che

$$|v \times w|^2 = |v|^2 |w|^2 \sin^2 \hat{\theta} \implies |v \times w| = |v| |w| \sin \hat{\theta}$$

e questo conclude la dimostrazione.

Oss:. Unendo quest'ultima proposizione con il corollario 1.1.3 possiamo facilmente vedere che

$$|v \times w| = |v| |w| \sin \hat{\theta} = \sqrt{M_{23}(C)^2 + M_{12}(C)^2 + M_{31}(C)^2}$$

Definizione 1.5 (base positivamente orientata). diremo che tre vettori $\underline{v}, \underline{w}, \underline{z} \in \mathbb{E}_3$ linearmente indipendenti sono una base positivamente orientata se

$$\det \begin{pmatrix} \underline{v} & \underline{w} & \underline{z} \end{pmatrix} > 0$$

Oss:. La base canonica di \mathbb{R}^3 è positivamente orientata, siccome

$$\det\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \det(I) = 1$$

Proposizione 1.8. Se $\underline{v}, \underline{w} \in \mathbb{R}^3$ sono linearmente indipendenti, allora l'insieme $\mathcal{B} = \{\underline{v}, \underline{w}, \underline{v} \times \underline{w}\}$ è una base positivamente orientata

Dimostrazione. banalmente

$$\det\left(\underline{v} \quad \underline{w} \quad \underline{v} \times \underline{w}\right) = \langle \underline{v} \times \underline{w}, \underline{v} \times \underline{w} \rangle = |\underline{v} \times \underline{w}|^2 > 0$$

Oss:. Una base positivamente orientata si può sempre rappresentare con la regola della mano destra: il vettore \underline{v} è rappresentato dall'indice, il vettore \underline{w} è rappresentato dal dito medio e il pollice invece rappresenta $\underline{v} \times \underline{w}$. Infine, per concludere per adesso la lista dei teoremi sul prodotto vettoriale, abbiamo che:

Proposizione 1.9. Una base ortonormale $\{v, w, v \times w\}$ è positivamente orientata se e solo se $z = v \times w$

Dimostrazione.

⇐ : già mostrato per la proposizione 1.8

 \Longrightarrow : supponiamo di avere la seguente base ortonormale positivamente orientata $\{\underline{i},\underline{j},\underline{k}\}$, allora abbiamo che questa segue la regola della mano destra, dunque $\underline{i} \times \underline{j} = \alpha \underline{k}$ con $k \in \mathbb{R}$. Ma allora, per la proposizione 1.6, abbiamo che $|\alpha \underline{k}| = 1$ (siccome $\underline{v} \perp \underline{w}$) dunque $\underline{i} \times \underline{j} = \underline{k}$.

1.3 Topologia di \mathbb{R}^n

Come visto dal corso di Analisi Matematica del primo anno, possiamo pensare \mathbb{R}^n come uno spazio metrico se consideriamo la distanza indotta dal prodotto scalare.

Possiamo dunque andare a definire le palle:

Definizione 1.6 (palle aperte e chiuse). Sia $x \in \mathbb{R}^n$ e fissiamo r > 0. Allora definiamo la palla aperta di raggio r nella seguente maniera

$$B(x, r) = \{ z \in \mathbb{R}^n : |z - x| < r \}$$

e la palla chiusa di raggio r nella seguente maniera

$$\mathbb{B}(x,r) = \{ z \in \mathbb{R}^n : |z - x| \le r \}$$

con centro x e raggio r.

11 1.3 Topologia di \mathbb{R}^n

Ma cosa vuol dire palla aperta? In generale possiamo definire la nozione di insieme aperto nella seguente maniera:

Definizione 1.7 (insieme aperto). $A \subset \mathbb{R}^n$ è un insieme aperto se $\forall y \in A \exists r > 0 : B(y, r_y) \subset A$

Esercizio 1.1. Mostrare che B(x,r) è un aperto $\forall x \forall r$

Svolgimento. Sia $x \in \mathbb{R}^n$ e sia fissato r > 0. Allora scelto $y \in B(x, r)$ sappiamo che preso $\varepsilon = r - |x - y| > 0$ allora possiamo definire la palla $B(y, \varepsilon)$ e prendere $z \in B(y, \varepsilon)$ e osservare che

$$|z - x| \le |z - y| + |y - x| < r - |x - y| + |x - y| = r$$

dunque |z - x| < r il che implica che $B(y, \varepsilon) \subset B(x, r)$

Esercizio 1.2. Siano $\{A_j : j \in J\}$ una famiglia di aperti (non necessariamente numerabile), allora $\bigcup_{j \in J} A_j$ è un insieme aperto.

 $Svolgimento. \text{ si osserva che, siccome } A_j \text{ è un insieme aperto } \forall j, \text{ allora } \forall a \in A_j \exists r > 0 : B(a,r) \subset A_j, \text{ ma allora } B(a,r) \subset \bigcup_{j \in J} A_j, \text{ dunque } \forall a \in \bigcup_{j \in J} A_j \exists r > 0 : B(a,r) \subset \bigcup_{j \in J} A_j$

Capitolo 2

Successioni e funzioni continue

In questo capitolo andremo a definire il concetto di successione e vedere il forte collegamento presente fra esse e il concetto di continuità in più variabili.

Ricordiamo al lettore che una successione a valori in un insieme A è una funzione $x_k : \mathbb{N} \to A$. Vediamo adesso come si definisce il concetto di successione convergente in più variabili

Definizione 2.1 (convergenza di una successione). diremo che $\{x_k\} \subset \mathbb{R}^n$ è una successione convergente a $z \in \mathbb{R}^n$ se $\lim_{k \to +\infty} |x_k - z| = 0$.

Oss:. Naturalmente se $\underline{x_k} = (x_{k_1}, x_{k_2}, \dots x_{k_n}) \in \mathbb{R}^n$ converge a $\underline{z} = (z_1, z_2, \dots z_n) \iff \lim_{k \to \infty} x_{k_i} = z_i \ \forall i \in 1, \dots n$

Esempio 2.1. Consideriamo la successione $\underline{x_k} = (e^{-k} + 1, (-1)^k)$. Per il precedente teorema questa successione è convergente.

Proposizione 2.1 (Unicità del limite). Il limite di una successione è unico. Se $\underline{x_k} \in \mathbb{R}^n \ \forall k$ converge a $\underline{z} \in \mathbb{R}^n$ allora z è unico.

Dimostrazione. Supponiamo per assurdo che \underline{x}_k converga a \underline{z} e y con $\underline{z} \neq y$. Allora

$$|\underline{z} - \underline{y}| \le |\underline{x_k} - \underline{z}| + |\underline{x_k} - \underline{y}| \stackrel{k \to +\infty}{\longrightarrow} 0 \implies z = y$$

Proposizione 2.2. Se $\underline{x_k} \to \underline{x}$ allora $|\underline{x_k}| \to |\underline{x}|$

Dimostrazione. si osserva che, dalla proposizione 1.2, si ha che

$$||\underline{x_k}| - |\underline{x}|| \le |\underline{x_k} - \underline{x}| \stackrel{k \to +\infty}{\to} 0$$

Mostriamo adesso una banale proposizione, le cui conseguenze non sono così "scontate".

Proposizione 2.3 (spazio vettoriale delle successioni convergenti). Se $\underline{x_k} \to \underline{x}$ e $\underline{y_k} \to \underline{y}$ allora $\forall \lambda, \mu \in \mathbb{R}$, $\lambda \underline{x_k} + \mu \underline{y_k} \to \lambda \underline{x} + \mu \underline{y}$

Dimostrazione. osserviamo che

$$|\lambda \underline{x_k} + \mu \underline{y_k} - \lambda \underline{x} - \mu \underline{y}| = |\lambda (\underline{x_k} - \underline{x}) + \mu (\underline{y_k} - \underline{y})|$$

Per la proposizione 1.2 abbiamo che

$$|\lambda(\underline{x_k} - \underline{x}) + \mu(y_k - y)| \le |\lambda||\underline{x_k} - \underline{x}| + |\mu||y_k - y| \stackrel{k \to +\infty}{\to} 0$$

dunque la tesi $\ \square$

2.1 Funzioni continue

Oss:. l'importanza di questa dimostrazione sta nel fatto che questo teorema dimostra che l'insieme delle successioni convergenti in \mathbb{R}^n forma uno spazio vettoriale che è chiuso rispetto all'addizione $+_{\mathbb{R}}$ e prendendo come prodotto per scalare $*_{\mathbb{R}}$

Adesso andiamo a mostrare una proprietà che segue direttamente dalla topologia di \mathbb{R}^n (in spazi topologici qualunque non è sempre valido)

Proposizione 2.4 (caratterizzazione degli insiemi chiusi). Un insieme $A \subset \mathbb{R}^n$ è chiuso se e solo se $\forall \underline{x_k} \to \underline{z}, \underline{x_k} \in A \ \forall k$ allora $z \in A$. Formalmente

$$(A \subset \mathbb{R}^n \grave{\text{e}} \text{ chiuso}) \iff (\forall \underline{x_k} \to \underline{z}, \underline{x_k} \in A \, \forall k \implies z \in A)$$

Dimostrazione.

 \Longrightarrow : Se A è chiuso, considerando una generica $\underline{x_k} \to \underline{z}, \underline{x_k} \in A \ \forall k$, allora $\forall r > 0$ dato che $|\underline{x_k} - \underline{z}| \to 0 \ \exists k_r \in \mathbb{N}$ tale che $|\underline{x_k} - \underline{z}| < r \ \forall k \ge k_r \implies \underline{x_k} \in B(z,r) \implies B(z,r) \cap A \neq \emptyset \implies z \in \bar{A}$. Siccome A è chiuso allora $\bar{A} = A$ dunque $z \in A$.

 \sqsubseteq : Sia $\underline{w} \in \overline{A} \implies B(\underline{w}, \frac{1}{k}) \cap A \neq \emptyset \, \forall k \geq 1$ quindi esiste una successione $\underline{x_k}$ (potremmo prendere per esempio $\underline{w} - \frac{1}{k}$). Ma allora $|\underline{x_k} - \underline{w}| < \frac{1}{k} \implies \underline{x_k} = \underline{w} \implies \underline{w} \in A$ per la seconda proprietà, ma allora $\overline{A} \subset A \implies \overline{A} = A$ e dunque A è chiuso per definizione.

Questa proprietà è molto importante, siccome garantisce l'equivalenza fra **chiusura sequenziale** e **chiusura** (che negli spazi topologici non è generalmente garantito) in \mathbb{R}^n .

In \mathbb{R}^n , dato un insieme $A \subset \mathbb{R}^n$, se vogliamo verificare che sia chiuso sarà dunque necessario verificare che ogni successione $\underline{x_k}$ tali che $\forall k, \underline{x_k} \in A$ avremo che $\underline{x_k} \to \underline{x} \in A$, ovvero che ogni successione convergente in A converga ad un punto che appartiene ad A.

2.1 Funzioni continue

Definizione 2.2 (funzioni continue). Una funzione $f:A\to\mathbb{R}$ con $A\subset\mathbb{R}^m$ si dice continua in $z\in A$ se

$$\forall \underline{x}_{\underline{k}} \in A, \underline{x}_{\underline{k}} \to \underline{z}, \lim_{k \to +\infty} f(\underline{x}_{\underline{k}}) = f(\underline{z})$$

Oss:. Diremo che $f: A \to \mathbb{R}$ con $A \subset \mathbb{R}^n$ è continua in A se è continua $\forall \underline{x} \in A$.

Andiamo a ricordare un concetto molto importante:

Definizione 2.3 (apertura relativa). Fissato $A \subset \mathbb{R}^n$ diremo che $S \subset A$ è aperto in A se $\exists \Omega \subset \mathbb{R}^n$ aperto tale che

$$S = A \cap \Omega$$

Dopo questa definizione siamo pronti per enunciare una serie di teoremi sulle funzioni continue che le caratterizzano in \mathbb{R}^n .

Teorema 2.1 (teorema C1). Sia $f: A \to \mathbb{R}^m$ con $A \subset \mathbb{R}^n$. Allora f è continua $\iff \forall U \subset \mathbb{R}^m$ aperto $f^{-1}(U)$ è aperto in A

Dimostrazione.

 \Longrightarrow : se f è continua, supponiamo per assurdo che esista $U \subset \mathbb{R}^m$ aperto tale che $f^{-1}(U)$ non è aperto in A. Allora $\exists z \in f^{-1}(U)$ tale che $\forall k \geq 1, B(\underline{z}, \frac{1}{k}) \not\subset f^{-1}(U)$. Ma questo implica che $\exists \underline{x_k} \in A \cap B(\underline{z}, \frac{1}{k})$ tale che $\underline{x_k} \notin f^{-1}(U)$. Ma allora

$$|\underline{x_k} - \underline{w}| < \frac{1}{k} \to 0 \implies f(\underline{x_k}) \to f(\underline{z})$$

ma allora $f(x_k) \in U^c$ (se appartenesse a U allora $\underline{x_k} \in f^{-1}(U)$ il che contraddice come abbiamo definito la successione).

Il fatto che $f(z) \notin U$ (siccome U^c è chiuso abbiamo che, per la proposizione 2.4, ogni successione a valori in U^c converge ad un punto appartenente in U^c) e ciò contraddice l'ipotesi iniziale che $z \in f^{-1}(U)$.

 \sqsubseteq : sappiamo che la preimmagine di aperti è aperta in A allora sia $\underline{x_k} \to \underline{z}$ con $\underline{x_k} \in A$ e $\underline{z} \in A$: se supponiamo,

per assurdo, $f(\underline{x}_k) \not\to f(\underline{z})$ allora $\exists \alpha : \mathbb{N} \to \mathbb{N}$ tale che $\alpha(k) \stackrel{k \to +\infty}{\to} +\infty$ ed esiste $\sigma > 0 : |f(\underline{x}_{\alpha(k)} - f(\underline{z})| \ge \sigma$. D'altra parte $f^{-1}(B(f(z), \sigma))$ è aperto in A (siccome preimmagine di una balla, che è aperta), dunque esiste $\delta > 0$ tale che $A \cap B(z, \delta) \subset f^{-1}(B(f(z), \sigma))$ ed esiste $k_0 \ge 1$ tale che $k_0 \ge 1$ ta

Teorema 2.2 (teorema della permanenza del segno). Sia $f:A\to\mathbb{R}$ continua in $z\in A$. Se f(z)>0 allora $\exists \delta>0$ tale che $\forall x\in A\cap B(z,\delta), f(x)>0$

Dimostrazione. Se neghiamo la tesi allora otteniamo che $\forall \delta > 0, \exists x \in A \cap B(z, \delta) : f(x) < 0$. Ma allora deduciamo che $\exists x_k \in A \cap B(z, \frac{1}{k}) : f(x_k) < 0$, ma $x_k \to z$ e $f(x_k) \to f(z) \le 0$ che rappresenta una contraddizione.

Teorema 2.3 (teorema C2). Siano $A \subset \mathbb{R}^n$, $f, g: A \to \mathbb{R}^m$ e $h: B \to \mathbb{R}^k$ con $f(A) \subset B \subset \mathbb{R}^m$. Se f e g sono continue in $z \in A$ e h è continua in $f(z) \in B$ allora valgono le seguenti proprietà:

- 1 $\forall \lambda, \mu \in \mathbb{R}$ abbiamo che $\lambda f + \mu g$ è continua in $z \in A$;
- ② Se m = 1, allora fg è continua in z;
- ③ Se m=1 e $g(z)\neq 0$ allora $\exists \delta>0$ per cui f/g è ben definita su $A\cap B(z,\delta)$ ed è continua in z;
- \bigcirc la composizione $h \circ f$ è continua in z

Dimostrazione. Per mostrare la (1) osserviamo che, prendendo $x_k \to z$, abbiamo che

$$\lambda f(x_k) + \mu g(x_k) \to \lambda f(z) + \mu g(z)$$

Per mostrare la (2) osserviamo che

$$x_k \to z \implies f(x_k)g(x_k) \to f(z)g(z)$$

Per mostrare la \Im si osserva che possiamo supporre che g(z) > 0 senza perdita di generalità da cui segue che

$$\exists \delta > 0: \forall x \in A \cap B(z,\delta), g(x) > 0 \implies \frac{f}{g}: B(z,\delta) \rightarrow \mathbb{R}$$

che ci permette di concludere che $\frac{f}{g}$ sia ben definita e $\lim_{k\to +\infty} \frac{f(x_k)}{g(x_k)} = \frac{f(z)}{g(z)}$ con $x_k\to z$.

La (4) segue banalmente dal fatto che presa $x_k \in A, x_k \to z$ allora

$$\lim_{k \to +\infty} h(f(x_k)) = h(\lim_{k \to +\infty} f(x_k)) = h(f(z))$$

per la continuità di h in $f(z) \in f(A)$ e di f in $z \in A$.

Proposizione 2.5. Sia $f: A \to \mathbb{R}^m$, dove $f(x) = (f_1(x), f_2(x), \dots f_m(x))$ e $f_j(x): A \to \mathbb{R} \ \forall j \in \{1, \dots m\}$ con $A \subset \mathbb{R}^n$. Allora abbiamo che

$$f$$
 è continua in $p \in A \iff f_j$ è continua in $p \in A \ \forall j \in \{1, \dots m\}$

Dimostrazione. Basta osservare che
$$f(x_k) \to f(z) \iff f_i(x_k) \to f_i(z) \ \forall i \in \{1, \dots m\}$$

Oss:. f è continua in $A \iff f_i$ è continua in $A \forall j \in \{1, \dots m\}$.

A questo punto ricordiamo la definizione di massimo e minimo locale o globale

Definizione 2.4 (massimo globale). Sia $A \subseteq \mathbb{R}^n$ e sia $f: A \to \mathbb{R}$. Diremo che $z \in A$ è un punto di massimo assoluto, o globale, su A se

$$\forall x \in A, f(z) \ge f(x)$$

La definizione di minimo globale è analoga (basta sostituire il \geq con $\leq).$

Diamo adesso la definizione di massimo e minimo locale:

2.1 Funzioni continue

Definizione 2.5 (massimo locale). Sia $A \subseteq \mathbb{R}^n$ e sia $f: A \to \mathbb{R}$. Diremo che $z \in A$ è un punto di massimo locale su A se

$$\exists \delta > 0 : \forall x \in A \cap B(z, \delta), f(z) \ge f(x)$$

analogamente si ottiene la definizione di minimo locale.

Data una funzione $f:A\to\mathbb{R}$ con $A\subset\mathbb{R}^n$, introdurremo la seguente notazione

$$\max_{A} f$$
 $\min_{A} f$

per indicare, rispettivamente, il massimo e il minimo assoluto.

Enunciamo il seguente teorema, valido in \mathbb{R}^n , che garantisce l'esistenza del massimo e del minimo di una funzione continua quando mappa un insieme compatto ad un altro.

Teorema 2.4 (teorema di Weierstrass). Sia $A \subset \mathbb{R}^n$ un insieme compatto e sia $f: A \to \mathbb{R}$ una funzione continua su A. Allora $\exists \max_A f, \min_A f$.

Dimostrazione. Per caratterizzazione del sup_A f sappiamo che esiste una successione lim y_k dove $y_k \in f(A) \forall k \geq 1$ che vi ci tende. Siccome $y_k \in f(A)$ allora $\exists x_k \in A : f(x_k) = y_k \forall k \geq 1$. Ma allora noi sappiamo che, per al compattezza di A, che esiste una sottosuccessione $x_{\alpha(k)}$ tale che $x_{\alpha(k)} \to z \in A$, da cui si deduce che

$$f(z) = \lim_{k \to +\infty} f(x_{\alpha(k)}) = \lim_{k \to +\infty} y_{\alpha(k)} = \sup_{A} f$$

dove la prima uguaglianza segue dalla continuità di f e la terza uguaglianza segue dal fatto che $y_{\alpha(k)}$ è una sottosuccessione estratta di y_k , ma siccome y_k converge al sup f allora anche $y_{\alpha(k)}$ vi convergerà.

Tramite il seguente teorema viene mostrato che la continuità preserva anche la connessione per archi di un insieme:

Teorema 2.5 (teorema C4). Sia $f: C \to \mathbb{R}^m$ continua e sia C connesso per archi. Allora $f(C) \subset \mathbb{R}^m$ è connesso per archi

Dimostrazione. Siano $y, z \in f(C) \implies \exists x, u \in C$ tali che f(x) = y e f(u) = z, pertanto $\exists y : [0,1] \to C$ grazie alla connettività per archi di C per cui $\gamma(0) = x$ e $\gamma(1) = u$. Ma allora la curva $f \circ \gamma : [0,1] \to f(C)$ è continua (siccome composizione di funzioni continue) e $(f \circ \gamma)(0) = y$ e $(f \circ \gamma)(1) = z$, dunque f(C) è connesso per archi. \Box

Corollario 2.5.1. $f: C \to \mathbb{R}$ continua, C è connesso per archi $\Longrightarrow f(C) \subset \mathbb{R}$ è un intervallo.

Dimostrazione. Dal precedente teorema segue, naturalmente, che f(C) è connesso per archi. Mostriamo che è un intervallo: dati $t,s\in f(C), \exists \Gamma:[0,1]\to f(C)\subset \mathbb{R}$ continua tale che $\Gamma(0)=t$ e $\Gamma(1)=s$. Dunque $[t,s]\subseteq \Gamma([0,1])\subseteq f(C)\Longrightarrow f(C)$ è un intervallo

Da questo corollario è anche possibile anche dimostrare la seguente proposizione

Proposizione 2.6. Sia A connesso per archi e sia $f:A\to\mathbb{R}$ continua. Allora

① Se
$$\exists \max_{A} f, \min_{A} f$$
 allora $f(A) = [\min_{A} f, \max_{A} f]$

② Se
$$\nexists \max_{A} f, \exists \min_{A} f$$
 allora $f(A) = [\min_{A} f, \sup_{A} f)$

Esercizio 2.1. Mostrare la proposizione precedente

Dimostrazione. Per il corollario sappiamo che f(A) è un intervallo.

Se il minimo e il massimo della funzione sono ben definiti, allora l'immagine è banalmente contenuta fra il minimo e il massimo la cui esistenza è garantita dal teorema di Weierstrass.

Per quanto riguarda il secondo caso, possiamo supporre, senza perdere di generalità, che $\nexists \max_A f$. Naturalmente, per caratterizzazione del sup abbiamo che $\forall \varepsilon > 0$, sup $f - \varepsilon \in f(A)$, dunque $\exists x \in A : f(x) = \sup_A f$, dunque $[\min_A f, f(x)] \subseteq [\min_A f, \sup_A f)$, dunque f(C) è ancora un intervallo.

2.2 Accenni ai limiti in più variabili

Definizione 2.6 (definizione di limite). Sia data $f: A \to \mathbb{R}^k$, $A \subseteq \mathbb{R}^n$ e sia $x_0 \in \partial A$. Allora diciamo che f tende a $v \in \mathbb{R}^k$ per x che tende a x_0 e scriviamo che

$$\lim_{x \to x_0} f(x) = v \iff \forall \varepsilon > 0 \exists \delta > 0 : \forall x \in B(x_0, \delta) \cap A \setminus \{x_0\}, |f(x) - v| < \varepsilon$$

Diamo adesso la definizione di limite di f(x) che tende all'infinito:

Definizione 2.7. Sia data $f: A \to \mathbb{R}^k$, $A \subseteq \mathbb{R}^n$ illimitato. Diremo che f tende all'infinito per x che tende all'infinito e scriveremo che

$$\lim_{|x| \to \infty} f(x) = \infty \iff \forall M > 0, \exists N > 0 : \forall x \in A, |x| > N, |f(x)| > M$$

Oss:. In generale tutte queste definizioni che stiamo dando funzionano in qualunque spazio metrico (X,d) sostituendo al posto dell'usuale distanza euclidea definita in \mathbb{R}^n la distanza d.

Potremo scrivere anche le definizioni per gli altri due casi che ci restano, ma è banale e lo lasciamo come semplice esercizio teorico al lettore.

Teorema 2.6 (caratterizzazione del limite per successioni). Sia $f:A\to\mathbb{R}^m, A\subseteq\mathbb{R}^n, q\in\partial A, v\in\mathbb{R}^m$. Abbiamo che

$$\lim_{x \to a} f(x) = v \iff (\forall \{p_k\} \subseteq A \setminus \{q\}, p_k \to q) \implies \lim_{k \to +\infty} f(p_k) = v$$

Dimostrazione.

 \Longrightarrow : si osserva che, presa una qualunque successione p_k che soddisfa le ipotesi della proposizione sulla destra, avremo che il limite $\lim_{k\to +\infty} f(p_k)$ è un limite dove avviene la composizione della successione p_k con la funzione f e sono verificate tutte le ipotesi riguardo al cambio di variabile nel limite, dunque $\lim_{k\to +\infty} f(p_k) = \lim_{x\to q} f(x) = v$. \rightleftharpoons : osserviamo che se procedessimo per assurdo, negando la definizione di limite, avremo che $\exists \varepsilon : \forall \delta > 0, \exists x \in B(q,\delta) \cap A \setminus \{q\} : |f(x)-v| \geq \varepsilon$. Ma allora, restringendosi a degli intorni di q via via sempre più piccoli, come $V_k = (q - \frac{1}{k}, q + \frac{1}{k})$ esisterebbe $x_k \in A \cap V_k : |f(x_k) - v| > \varepsilon$. Ma questo è un assurdo, siccome $x_k \to q$ e ma $f(x_k) \not\to v$ contraddicendo la nostra ipotesi iniziale.

Da questo teorema importantissimo segue questo semplice corollario (la cui dimostrazione è omessa siccome è banale)

Teorema 2.7 (teorema del confronto). Siano $h, g, f: A \to \mathbb{R}, x_0 \in \partial A, l \in \mathbb{R}$ e supponiamo che $\exists \delta > 0$ con

$$h(x) \le f(x) \le g(x) \ \forall x \in A \cap B(x_0, \delta) \setminus \{x_0\}$$

Se

$$\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = l \implies \lim_{x \to x_0} f(x) = l$$

Dimostrazione. La dimostrazione è analoga a quella di Analisi 1 con qualche accorgimento sugli insiemi di definizione

Prima di procedere sulla parte del calcolo differenziale, diamo una breve introduzione ai simboli di Landau (i cosiddetti o-piccoli e O-grandi) che semplificano notevolmente il calcolo in più variabili:

Definizione 2.8 (o-piccolo). Siano $x_0 \in \partial A, A \subseteq \mathbb{R}^n$ e $f: A \to \mathbb{R}^m$ e $g: A \to \mathbb{R}^k$. Diremo che f è un o-piccolo di g per x che tende a x_0 , in simboli

$$f = o(g) \text{ per } x \to x_0$$

se

$$\forall \varepsilon > 0 \,\exists \delta > 0 : |f(x)| \le \varepsilon |g(x)| \,\forall x \in A \cap B(x_0, \delta) \setminus \{x_0\}$$

Definizione 2.9 (O-grande). Siano $x_0 \in \partial A, A \subseteq \mathbb{R}^n$ e $f: A \to \mathbb{R}^m$ e $g: A \to \mathbb{R}^k$. Diremo che f è un O-grande di g per x che tende a x_0 , in simboli

$$f = O(g) \text{ per } x \to x_0$$

se

$$\exists M > 0, \delta > 0 : |f(x)| \le M|g(x)| \forall x \in A \cap B(x_0, \delta) \setminus \{x_0\}$$

Esercizio 2.2. Se f è un o-piccolo di g allora f è O-grande di g

Dimostrazione. Segue direttamente dalla definizione, siccome se f = o(g) allora $\forall \varepsilon > 0 \exists \delta > 0 : |f(x)| \le \varepsilon |g(x)| \forall x \in A \cap B(x_0, \delta) \setminus \{x_0\}$, dunque fissando $M = \varepsilon > 0$ allora sappiamo che esiste un $\delta(\varepsilon)$ per cui

$$|f(x)| \le M|g(x)| \forall x \in A \cap B(x_0, \delta) \setminus \{x_0\}$$

dunque risulta che f è un O-grande di g, ovvero la tesi.

Proposizione 2.7. Siano $A \subseteq \mathbb{R}^n$, $x_0 \in A$ e $f: A \to \mathbb{R}^m$ e $\alpha > 0$. Allora abbiamo

$$f(x) = o(|x - x_0|^{\alpha}) \text{ per } x \to x_0 \iff \lim_{x \to x_0} \frac{f(x)}{|x - x_0|^{\alpha}} = 0$$

Dimostrazione. la dimostrazione è banale, siccome

$$\forall \varepsilon > 0 \exists \delta > 0 : |f(x)| \le \varepsilon |x - x_0|^{\alpha} \, \forall x \in A \cap B(x_0, \delta) \setminus \{x_0\} \iff \forall \varepsilon > 0 \exists \delta > 0 : \frac{|f(x)|}{|x - x_0|^{\alpha}} \le \varepsilon \, \forall x \in A \cap B(x_0, \delta) \setminus \{x_0\} \iff \lim_{x \to x_0} \frac{f(x)}{|x - x_0|^{\alpha}} = 0$$

Proposizione 2.8. Siano $A \subseteq \mathbb{R}^n$, $x_0 \in A$, $f : A \to \mathbb{R}$ e $\alpha > 0$. Allora abbiamo che

$$f(x) = O(|x - x_0|^{\alpha}) \text{ per } x \to x_0 \iff \exists M, \delta > 0 : \frac{f(x)}{|x - x_0|^{\alpha}} \le M \,\forall x \in A \cap B(x_0, \delta) \setminus \{x_0\}$$

Dimostrazione. Analoga alla dimostrazione fatta sopra

L'ultima proposizione si può anche riscrivere dicendo che se $f = O(|x-x_0|^{\alpha})$ allora abbiamo necessariamente, per

$$x \to x_0$$
, che $\sup_{A \cap B(x_0, \delta) \setminus \{x_0\}} \left| \frac{f(x)}{|x - x_0|^{\alpha}} \right| < +\infty$.

Osserviamo che

$$\lim_{x \to x_0} f(x) = l \iff f(x) = l + o(1) \text{ per } x \to x_0$$

e quindi potremmo (con tanta buona volontà) andare a riscrivere tutta la teoria appena fatta sui limiti in più variabili tramite i simboli di Landau. Ciò non verrà fatto, ma li useremo per introdurre, come avevo accennato, il calcolo differenziale.

Capitolo 3

Calcolo differenziale

In questo capitolo andremo a sviscerare il concetto di derivata quando abbiamo a che fare con funzioni vettoriali (sia nell'insieme di definizione che nell'insieme di arrivo) e come sia possibile ottenere massimi e minimi di una funzione introducendo dei concetti sofisticati come la matrice jacobiana e la matrice hessiana.

3.1 Funzione differenziabile

Definizione 3.1 (funzione differenziabile in un punto e matrice jacobiana). Sia $\Omega \subseteq \mathbb{R}^n$ aperto e $x_0 \in \Omega$. Diremo che $f: \Omega \to \mathbb{R}^m$ è differenziabile in x_0 se $\exists L: \mathbb{R}^n \to \mathbb{R}^m$ lineare tale che

$$\frac{f(x_0+h)-f(x)-L(h)}{|h|} \stackrel{h\to 0}{\to} 0$$

dove l'applicazione $L = df(x_0) : \mathbb{R}^n \to \mathbb{R}^m$ è detto il differenziale di f in x_0 . La matrice $Df(x_0) \in \mathbb{R}^{m \times n}$ che rappresenta $df(x_0)$ rispetto alla base canonica è detta **matrice jacobiana** di f in x_0 .

Figura 3.1: Nozione di differenziabilità da un punto di vista geometrico: la funzione $x^2 + y^2$ è differenziabile nel punto $x_0 = (1, 2, 5)$ e, dunque, possiamo approssimare la funzione in un intorno di x_0 alla funzione alla funzione lineare L tale che L(x, y) = 5 + 2(x - 1) + 4(y - 2)

Oss:. Naturalmente diremo che f è differenziabile in Ω se è differenziabile $\forall x \in \Omega$.

3.1 Funzione differenziabile

Come avevo anticipato alla fine dello scorso capitolo, possiamo rendere molto semplice la trattazione del calcolo differenziabile tramite i simboli di Landau. Mostriamo per esempio la seguente proposizione:

Proposizione 3.1. $f: \Omega \to \mathbb{R}^m$ con $\Omega \subseteq \mathbb{R}^n$ aperto. Diremo che f è differenziabile in $x_0 \in \Omega \iff \exists L : \mathbb{R}^n \to \mathbb{R}^m$ lineare tale che $f(x_0 + h) = f(x_0) + L(h) + o(h)$ per $h \to 0 \iff$ (cambio di variabile) $\exists L : \mathbb{R}^n \to \mathbb{R}^m$ lineare tale che $f(x) = f(x_0) + L(x - x_0) + o(x - x_0)$ per $x \to x_0$.

Dimostrazione. Se f è differenziabile in $x_0 \in \Omega$, sappiamo che $\exists L : \mathbb{R}^n \to \mathbb{R}^m$ tale che

$$\frac{f(x_0 + h) - f(x_0) - L(h)}{|h|} \to 0 \implies f(x_0 + h) - f(x_0) - L(h) = o(|h|) \text{ per } h \to 0$$

che è equivalente (per cambiamento di variabile) a:

$$f(x) = f(x_0) + L(x - x_0) + o(|x - x_0|) \text{ per } x \to x_0$$

Il viceversa è analogo, siccome se

$$f(x_0+h)-f(x_0)-L(h)=o(|h|) \implies \frac{f(x_0+h)-f(x_0)-L(h)}{|h|} \to 0 \implies f \text{ è differenziabile in } x_0$$

Ma in sostanza che cosa vuol dire essere differenziabili? Come forse alcuni avranno potuto capire dalla definizione, essere differenziabili vuol dire che è possibile approssimare la funzione, in quel punto $x_0 \in \Omega$ in cui è differenziabile, ad una applicazione lineare affine del tipo

$$a(x) = f(x_0) + df(x_0)(x - x_0)$$

che sarebbe, in maniera impropria, ciò che, in gergo da fisici, diciamo essere un'approssimazione del primo ordine. Dopo questa definizione siamo persino pronti a definire il concetto di derivata direzionale, nozione strettamente connessa a quella di differenziabilità.

Definizione 3.2 (derivata direzionale). Sia $\Omega \subseteq \mathbb{R}^n$ aperto, $x_0 \in \Omega$, $f : \Omega \to \mathbb{R}^n$ e sia $v \in \mathbb{R}^n \setminus \{\underline{0}\}$. Definiamo la derivata direzionale rispetto a v il limite (se esiste!)

$$\partial_v f(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

Nel caso in cui $v = e_i$ la derivata direzionale è detta derivata parziale rispetto a x_i .

Oss:. La derivata parziale rispetto a x_i è, di fatto, la derivata di una funzione di una sola variabile. Pertanto queste posso essere svolte tenendo "costanti" le altre variabili x_j con $j \neq i$ e calcolare la derivata come usualmente si faceva ad Analisi 1

Ricollegandoci all'osservazione fatta qua sopra, infatti, possiamo osservare che:

$$\partial_{e_1} f(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_1) - f(x_0)}{t} = \lim_{t \to 0} \frac{f(x_1 + t, x_2, \dots) - f(x_1, x_2, \dots)}{t}$$

Siamo adesso pronti ad enunciare il seguente risultato, che ci dà qualche informazione su come sia il differenziale:

Teorema 3.1 (teorema DF1). Se $f: \Omega \to \mathbb{R}$ è differenziabile in x_0 allora $\exists \partial_v f \ \forall v \in \mathbb{R}^n \setminus \{0\}$ e vale che

$$df(x_0)(v) = \partial_v f(x_0)$$

Dimostrazione. Siccome f è differenziabile in $x_0 \in \Omega$ allora $\exists L : \mathbb{R}^n \to \mathbb{R}$ tale che $f(x_0+tv) = f(x_0)+L(tv)+o(|tv|)$ dove $|tv| \to 0$ per $v \in \mathbb{R}^n \setminus \{\underline{0}\}$. Ma questo allora implica che

$$\frac{f(x_0+tv)-f(x_0)-L(|tv|)}{t}\to 0 \implies \frac{f(x_0+tv)-f(x_0)-tL(v)}{t}\to 0 \implies \lim_{t\to 0}(\frac{f(x_0+tv)-f(x_0)}{t}-L(v))\to 0 \implies \exists \partial_v f(x_0)=L(v)=df(x_0)(v)$$

e.

3. Calcolo differenziale 20

Teorema 3.2 (rappresentazione e unicità del differenziale). Se $f: \Omega \to \mathbb{R}$ è differenziabile in $x_0 \in \Omega$ allora il differenziabile di f nel punto $x_0 \in \Omega$ è unico e

$$df(x_0)(\xi_1,\ldots\xi_n) = \sum_{j=1}^n \xi_j \frac{\partial f}{\partial x_j}(x_0)$$

Dimostrazione. Preso $v \in \mathbb{R}^n \setminus \{0\}$, allora

$$v = \sum \xi_i e_i \simeq (\xi_1, \dots, \xi_n) \implies df(x_0)(v) = \sum_{j=1}^n \xi_j df(x_0)(e_j) = \sum_{j=1}^n \xi_j \partial_{e_j} f(x_0)$$

dove abbiamo solamente sfruttato la linearità della funzione differenziabile e il fatto che $df(x_0)(e_j) = \frac{\partial f}{\partial x_j}(x_0)$. L'unicità del differenziabile deriva dal fatto che se supponiamo per assurdo che esista $L' \neq df(x_0)$ lineare, tali che $L(v) = df(x_0)(v) \, \forall v \in \mathbb{R}^n \setminus \{\underline{0}\}$ allora preso un $v \in \mathbb{R}^n \setminus \{\underline{0}\}$ avremo che:

$$L(v) = \sum_{j=1}^{n} \xi_{j} L(e_{j}) = \sum_{j=1}^{n} \xi_{j} df(x_{0})(e_{j}) = df(x_{0})(v)$$

dove tutte queste uguaglianze sono ottenute sfruttando la linearità di L e $df(x_0)$. L'unica possibilità (siccome questa è una relazione valida per ogni vettore) è che $L(e_j) = df(x_0)(e_j) \,\forall j$ ma allora queste due applicazioni lineari coincidono, giungendo ad un assurdo. Quindi il differenziale $df(x_0)$ è unico.

Possiamo dunque definire il concetto di gradiente:

Definizione 3.3 (gradiente di una funzione). Sia $f:\Omega\to\mathbb{R}$ con $\Omega\subseteq\mathbb{R}^n$, $x_0\in\Omega$ e f differenziabile in x_0 . Allora definiamo il gradiente

$$\nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} f(x_0) e_i \in \mathbb{R}^n$$

Oss:. Il gradiente di f nel punto x_0 è di fatto il vettore che ha come componenti le derivate parziali di f Dalla formula precedente è possibile ricavare che

$$df(x_0)(v) = \langle \nabla f(x_0), v \rangle$$

Oss:. Da qua possiamo vedere il grandissimo problema di definire il gradiente: per definire le derivate parziali, di fatto, abbiamo solamente fatto riferimento alla natura da "spazio metrico" di \mathbb{R}^n , quindi in generale potremmo andare a definire la derivata su una classe maggiore di insiemi rispetto che a \mathbb{R} e \mathbb{C} . Per definire il gradiente, però, abbiamo richiesto il prodotto scalare, che è una condizione decisamente più forte che alla semplice distanza.

Cerchiamo adesso di capire che cosa rappresenta il gradiente. Il gradiente possiamo vederlo come la direzione in cui la funzione ha la massima pendenza¹. Per vedere questo possiamo considerare il vettore $v = \frac{\nabla f(x_0)}{|\nabla f(x_0)|}$ e considerando il vettore $w \in \mathbb{R}^n$ tale che |w| = 1 allora

$$\partial_w f(x_0) = \langle \nabla f(x_0), w \rangle \leq |\nabla f(x_0)| |w| = |\nabla f(x_0)|$$

per la disuguaglianza di Cauchy-Schwarz. Tuttavia si osserva che

$$|\nabla f(x_0)| = \langle \nabla f(x_0), v \rangle = \langle \nabla f(x_0), \nabla f(x_0) \rangle \frac{1}{|\nabla f(x_0)|} = \partial_v f(x_0)$$

dunque

$$\partial_w f(x_0) \le \partial_v f(x_0)$$

¹questo è particolarmente comodo, per gli algoritmi locali di minimizzazione o massimizzazione, in cui si sfrutta la pendenza della funzione nel punto per trovare i massimi e i minimi locali.

21 3.2 Spazio duale

3.2 Spazio duale

Ricordiamo la definizione di spazio duale:

Definizione 3.4 (spazio duale). Sia V uno spazio vettoriale sul campo \mathbb{K} , definiamo lo spazio duale V^* come lo spazio vettoriale dei funzionali lineari $f:V\to\mathbb{K}$. In simboli

$$V^* = \{f \mid f: V \to \mathbb{K}\}$$

Introduciamo, a questo punto, le funzioni proiezioni $\pi_i : \mathbb{R}^n \to \mathbb{R}$ tali che $x = (x_1, \dots, x_n) \mapsto x_i$, ovvero le funzioni che associano l'*i*-esima componente del vettore $x \in \mathbb{R}^n$.

Osserviamo naturalmente che

$$|\pi_i(x)| = |x_i| \le |x| \, \forall x \in \mathbb{R}^n$$

e notiamo che le funzioni proiezioni sono lineari e se $L: \mathbb{R}^n \to \mathbb{R}$ è lineare, allora

$$L(x) = L\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i L(e_i) = \sum_{i=1}^{n} \pi_i(x) L(e_i)$$

e, naturalmente, per come è definita L abbiamo che $L(e_i) = a_i \,\forall i$, quindi ogni funzione lineare da \mathbb{R}^n a \mathbb{R} è una combinazione lineare delle funzioni lineari π_i .

Passando in \mathbb{R}^n , osserviamo che queste funzioni proiezioni sono una base dello spazio duale $(\mathbb{R}^n)^*$ e definiamo $dx_i = \pi_i$.

Proposizione 3.2. Sia $f: \Omega \to \mathbb{R}$, f differenziabile in $x_0 \in \Omega$. Allora

$$df(x_0) = \sum_{i=1}^n \partial_{x_i} f(x_0) dx_i = \partial_{x_1} f(x_0) dx_1 + \ldots + \partial_{x_n} f(x_0) dx_n \in (\mathbb{R}^n)^*$$

Dimostrazione. Dato $v = (\xi_1, \dots \xi_n)$ allora

$$df(x_0)(v) = \sum_{i=1}^n \xi_i df(x_0)(e_i) = \sum_{i=1}^n \pi_i(v) \partial_{x_i} f(x_0)$$

dove l'ultima uguaglianza si è ottenuta osservando che $xi_j = \pi_j(v) = dx_j(v)$. A questo punto allora, ricordando che $df(x_0)(e_1) = \partial_{x_i} f(x_0)$ (per il teorema 3.1), otteniamo la tesi, siccome

$$\sum_{i=1}^{n} \partial_{x_i} f(x_0) dx_i(v) \implies df(x_0) = \sum_{i=1}^{n} \partial_{x_i} f(x_0) dx_i$$

Oss:. Data $f: \Omega \to \mathbb{R}$, possiamo allora vedere il differenziale come una funzione che ad ogni punto $p \in \Omega$ associa $df(p) \in (\mathbb{R}^n)^*$, ovvero $df: \Omega \mapsto (\mathbb{R}^n)^*$

$$df(p) = \sum_{i=1}^{n} df(p) dx_i \,\forall p \in \Omega$$

Alla luce dell'osservazione qua sopra possiamo dunque dare la seguente definizione:

Definizione 3.5 (1-forma differenziale). Diremo che $\omega:\Omega\to(\mathbb{R}^n)^*$ con $\Omega\subseteq\mathbb{R}^n$ aperto è una 1-forma differenziale su Ω . Inoltre, $\forall p\in\Omega$ avremo un'unica n-upla di coefficiente $(a_1(p),\ldots a_n(p))$ dipendenti da p tali che

$$\omega(x) = \sum_{i=1}^{n} a_i(x) dx_i$$

Oss:. Quando abbiamo a che fare con ω 1-forma differenziale possiamo andare a definrie delle funzioni $a_1(x), \dots a_n(x)$: $\Omega \to \mathbb{R}$ tali che

$$\omega(x) = \sum_{j=0}^{n} a_j(x) dx_j$$

3. Calcolo differenziale 22

Definizione 3.6 (campo vettoriale). Sia $\Omega \subseteq \mathbb{R}^n$ aperto, diremo che F è un campo vettoriale se $F: \Omega \to \mathbb{R}^n$, ovvero $F(p) = \sum_{j=1}^n f_j(p)e_j = (f_1(p), \dots f_n(p))$ ove $f_j: \Omega \to \mathbb{R}$ sono le componenti di F

Oss:. Se $\omega : \Omega \to (\mathbb{R}^n)^*$ è una 1-forma differenziale e $F : \Omega \to \mathbb{R}^n$ è un campo vettoriale, allora $\langle \omega, F \rangle : \Omega \to \mathbb{R}$ tale che $p \mapsto \omega(p)F(p)$ è uno scalare, ovvero è indipendente dal fatto che utilizziamo le basi canoniche per rappresentare ω e F. In questo caso diremo che la 1-forma differenziale ω si è contratta su F

Enunciamo adesso il risultato più importante di questo capitolo:

Teorema 3.3. Sia $\Omega \subseteq \mathbb{R}^n$ aperto, $p_0 \in \Omega$ e sia $f: \Omega \to \mathbb{R}^m$ ($\iff f = (f_1, \dots f_m)$ con $f_j: \Omega \to \mathbb{R} \ \forall j$). Allora f è differenziabile in $p_0 \iff$ ogni componente di f_j è differenziabile in p_0

In ogni caso avremo che

$$D(f(x_0)) = \begin{pmatrix} \nabla f_1(p_0) \\ \nabla f_2(p_0) \\ \vdots \\ \nabla f_m(p_0) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Dimostrazione.

 \Longrightarrow : se f è differenziabile allora possiamo definire la funzione $\pi_i \circ df(p_0) : \mathbb{R}^n \to \mathbb{R}$ e sappiamo che

$$f(x) = f(p_0) + df(p_0)(x - p_0) + o(x - p_0)$$
(3.1)

e osserviamo, ricordando che $x_i \leq |x|$ con dove x_i rappresenta l'i-esima, che

$$\frac{|\pi_i \circ o(x - p_0)|}{|x - p_0|} \le \frac{|o(x - p_0)|}{|x - p_0|} \to 0$$

$$\implies \pi_i \circ o(x - p_0) = o(x - p_0)$$

dove l'ultima affermazione segue, banalmente, dal teorema del confronto. Componendo π_i all'applicazione lineare affine otteniamo che

$$\pi_i \circ f(x) = f_i(p_0) + (df(p_0))_i(x - p_0) + o(x - p_0) \text{ per } x \to p_0$$

Per l'unicità del differenziale di f_i (che ricordiamo essere una funzione $\Omega \to \mathbb{R}$, dunque sappiamo, per il teorema precedente, che il suo differenziale è unico) segue che

$$\pi_i \circ L(x) = df_i(p_0)(x) = \langle \nabla f(p_0), x \rangle$$

il che naturalmente implica che

$$L(x) = \sum_{i=1}^{m} L_i(x)e_i = \sum_{i=1}^{m} (\pi_i \circ L)(x)e_i = \sum_{i=1}^{m} \langle \nabla f_i(x_0), x \rangle e_i = \begin{pmatrix} \partial_{x_1} f_1(p_0) & \dots & \partial_{x_n} f_1(p_0) \\ \vdots & \vdots & \vdots \\ \partial_{x_1} f_m(p_0) & \dots & \partial_{x_n} f_m(p_0) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = Df(x_0)x$$

E questo mostra la tesi.

 \Leftarrow : se f_i è differenziabile in $p_0 \forall i \in 1, ..., n$ definiamo $df_i(x_0) : \mathbb{R}^n \to \mathbb{R}$ e osserviamo che

$$f(p_0+h)-f(p_0)=\sum_{i=1}^m(f_i(p_0+h)-f_i(p_0))e_i=\sum_{i=1}^m(df_i(p_0)(h)+o(h))e_i=\sum_{i=1}^mdf_i(p_0)(h)e_i+\sum_{i=1}^mo_i(h)e_i=L(h)+o(h)\implies 0$$

 $\implies f$ è differenziale in p_0

dove, naturalmente, abbiamo che

$$L(h) = \sum_{i=1}^{m} \langle \nabla f(p_0), h \rangle e_i = Df(x_0)h$$

Abbiamo dunque ottenuto la tesi.

Corollario 3.3.1. Il teorema precedente mostra anche come il differenziale sia unico anche nel caso di funzioni vettoriali.

Teorema 3.4 (del differenziale totale). Sia $f:\Omega\to\mathbb{R}$, $\Omega\subseteq\mathbb{R}^n$ aperto e $p_0\in\Omega$. Se

$$\exists \partial_{x_i} f : B(p_0, r) \to \mathbb{R} \, \forall j \in \{1, \dots n\} \text{ con } B(p_0, r) \subseteq \Omega$$

e se

$$\partial_{x_i} f$$
 sono tutte continue in $p_0 \, \forall j \in \{1, \dots, n\}$

allora f è differenziale in p_0

Dimostrazione. Consideriamo $h = \sum_{j=1}^{n} h_j e_j = (h_1, \dots h_n)$. Osserviamo che posto

$$L(h) = \sum_{j=1}^{n} \partial_{j} f(p_{0}) h_{j}$$

possiamo notare come

$$f(p_0+h)-f(p_0)-L(h) = f(p_0+h)-f\left(p_0 + \sum_{i=1}^{n-1} h_i e_i\right) + f\left(p_0 + \sum_{i=1}^{n-1} h_j e_i\right) - f\left(p_0 + \sum_{i=1}^{n-2} h_j e_i\right) + f\left(p_0 + \sum_{i=1}^{n-2} h_j e_i\right) - \dots - f(p_0)$$

possiamo raggruppare a 2 a due i termini, notando che:

$$\left(f(p_0+h)-f(p_0+\sum_{i=1}^{n-1}h_je_j)+\left(f(p_0+\sum_{i=1}^{n-1}h_je_j)-f(p_0+\sum_{i=1}^{n-2}h_je_j)\right)+\ldots+\left(f(p_0+h_1)-f(p_0)\right)+\ldots+\left($$

al raggruppamento j-esimo teniamo fisso la n - j + 1 componente dell'argomento della funzione sulla sinistra, pertanto possiamo applicare il teorema di Lagrange se definiamo una funzione dipendente esclusivamente dalla variabile h_j , dunque:

$$f(p_0 + h) - f(p_0) - L(h) = \partial_{x_n} f(p_0 + \sum_{j=1}^{n-1} h_j e_j + \theta_n h_n e_n) h_n + \partial_{x_{n-1}} f(p_0 + \sum_{j=1}^{n-2} h_j e_j + \theta_{n-1} h_{n-1} e_{n-1}) h_{n-1} + \dots = o(1)h_n + \dots + o(1)h_1$$

e per $|h| \to 0$ osserviamo che $o(1)h_j \le o(1)|h| \implies \frac{o(1)h_j}{|h|} \le \frac{o(1)|h|}{|h|} = o(1) \implies o(j)h_j = o(h)$ e chiaramente $\frac{o(1)h_n + \dots o(1)h_1}{|h|} \to 0$. Dunque

$$f(p_0 + h) - f(p_0) - L(h) = o(h)$$

ovvero la tesi.

3.3 Interpretazione geometrica delle derivate prime

Nel caso delle funzioni a singola variabile, la derivata di $f: \Omega \to \mathbb{R}$ (dove $\Omega \subseteq \mathbb{R}$ aperto) nel punto $x_0 \in \Omega$ rappresenta il coefficiente angolare della retta tangente al grafico della funzione f nel punto $(x_0, f(x_0))$. In più variabili la differenziabilità che significato ha?

Mostriamo innanzitutto che una funzione a singola variabile a valori in R derivabile è equivalente a dire che essa è differenziabile:

Proposizione 3.3 (differenzialità \iff derivabilità). Sia $f:\Omega\to\mathbb{R}$ con $\Omega\subseteq\mathbb{R}$ aperto e sia $x_0\in\Omega$. Allora

fè differenziabile in $x_0 \iff f$ è derivabile in x_0

3. Calcolo differenziale 24

Dimostrazione.

 \Longrightarrow : osserviamo che se f è derivabile in x_0 allora

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \implies \lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0$$

ma per definizione di o-piccolo abbiamo che

$$f(x) - f(x_0) - f'(x_0)(x - x_0) = o(x - x_0) \implies f(x_0 + h) - f(x_0) - f'(x_0)h = o(h)$$

dunque² f(x) è differenziabile siccome $L(h) = f'(x_0)(h)$ è una funzione lineare. \leftarrow : osserviamo che se f è differenziabile in x_0 allora

$$f(x) - f(x_0) - L(x - x_0) = o(x - x_0)$$

dove $L(x-x_0) = a(x_0)(x-x_0)$ (siccome le uniche funzioni lineari in \mathbb{R} sono le rette e, nel nostro caso, il coefficiente angolare dipenderà sicuramente dal punto x_0 considerato e questo motiva la notazione usata), ottenendo che

$$\frac{f(x) - f(x_0)}{x - x_0} - a(x_0) = 0 \text{ per } x \to x_0$$

dunque
$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = a(x_0) = f'(x_0)$$
 (per unicità del limite).

Dunque la differenziabilità è l'unica nozione che generalizza il concetto di derivabilità a dimensioni superiori a 1. Però ha ancora una valenza geometrica?

Per rispondere a questa domanda dobbiamo ricordare al lettore qualche concetto proveniente dal corso di Geometria: sappiamo che l'equazione di un piano in \mathbb{R}^3 è data dalla formula

$$ax + by + cz + d = 0$$

L'equazione per questo piano può essere ottenuta in due modi: il primo consiste nel trovare una base del piano e, successivamente, ricavare l'equazione prendendo la matrice che ha come colonne i vettori della base più il vettore v appartenente alla base, da cui si ottiene .Possiamo facilmente estendere questa definizione per dimensione arbitraria, osservando che presi $u < n = \dim \mathbb{R}^n$ vettori linearmente indipendenti allora possiamo individuare facilmente, tramite la nozione di prodotto scalare, il piano generato da tutti questi vettori ortogonali: infatti, se indichiamo con W^{\perp} il sottospazio vettoriale costituito da questi vettori u, basterà trovare una base per il radicale di W^{\perp} (che, grazie all'ipotesi di non degenerità del prodotto scalare euclideo, sappiamo essere $(W^{\perp})^{\perp} = W$) e possiamo banalmente concludere che ogni combinazione lineari dei vettori della base di W sarà dunque perpendicolare a ogni combinazione lineare dei vettori della base di W^{\perp} . Possiamo vedere che questo procedimento porta alla formula vista prima: sapendo che un piano π , in \mathbb{R}^3 , ha dimensione pari a 2, allora dim $(\pi)^{\perp} = \dim \mathbb{R}^3 - \dim \pi + \dim \pi \cap (\mathbb{R}^n)^{\perp} = 1$, possiamo prendere un generico vettore v = (a, b, c) (la base del nostro $(\pi)^{\perp}$) e osservare che, se vogliamo trovare l'equazione di un piano affine, allora, fissato un punto $P_0 = (x_0, y_0, z_0) \in \pi$ siamo interessati a verificare che, preso P = (x, y, z), allora

$$\vec{P_0P} \perp v$$

dunque

$$(x - x_0 \quad y - y_0 \quad z - z_0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

da cui possiamo facilmente ottenere che

$$ax + by + cz + d = 0$$

ponendo $d = -ax_0 - by_0 - cz_0$. Dunque, ripensando al procedimento effettuato, possiamo ben motivare la seguente definizione

 $^{^2}$ il cambio di variabile l'ho fatto per tirare fuori la definizione di differenziabilità per come l'avevamo espressa

Definizione 3.7 (piano in uno spazio euclideo). Un piano nello spazio euclideo \mathbb{R}^3 (oppure un iperpiano di dimensione n-1 in \mathbb{R}^{n-1}) si può vedere come il luogo geometrico dei punti perpendicolari ad una data direzione $v=(a,b,c)\neq 0_{\mathbb{R}^3}$ (equivalentemente, per l'iperpiano, $v=(x_1,\ldots x_n)\neq 0_{\mathbb{R}^n}$). Dunque, preso $p\in\mathbb{R}^3$ (per l'iperpiano $p\in\mathbb{R}^n$), possiamo trovare l'equazione cartesiana del piano passante per $p\in\mathbb{R}^3$ (per l'iperpiano $p\in\mathbb{R}^n$) perpendicolare a v tramite la seguente relazione:

$$\langle (x, y, z) - p, v \rangle \tag{3.2}$$

Sia adesso $f:\Omega\to\mathbb{R}$, con $\Omega\subseteq\mathbb{R}^m$ aperto con f differenziabile in $p_0\in\Omega$. Allora osserviamo che

$$\pi = \{(x, L_p(x)) : x \in \mathbb{R}^n\} = \{(x, t) \in \mathbb{R}^{n+1} : t = f(p) + \langle \nabla f(p), x - p \rangle\} = \{(x, t) \in \mathbb{R}^{n+1} : \langle (-\nabla f(x_0), 1), (x - p, t - f(p)) \rangle = 0\}$$

Dunque possiamo interpretare come la differenziabilità della funzione in un punto come quella funzione che descrive il piano tangente alla funzione nel punto.

3.4 Legame fra differenziabilità e continuità

Mostriamo adesso il legame fra differenziabilità e continuità. Per fare questo dobbiamo mostrare il seguente lemma:

Lemma 3.4.1. Ogni funzione lineare $L: \mathbb{R}^n \to \mathbb{R}^m$ continua e se $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ è la sua matrice allora $|Lx| \le ||A|| ||x|| \, \forall x \in \mathbb{R}^n$, dove

$$||A|| = \sqrt{\sum a_{ij}^2}$$
è la norma di Hilbert-Schmidt

Dimostrazione. Dalla regola del prodotto matriciale abbiamo che

$$|Lx| = \left| \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) e_{i} \right|^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right)^{2} \leq \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij}^{2} \right) \left(\sum_{j=1}^{n} x_{j}^{2} \right) = ||A||^{2} |x|^{2}$$

e possiamo osservare che L è continua, infatti se $x_0 \in \mathbb{R}^n$

$$|Lx - Lx_0| \le |L(x - x_0)| \le ||A|||x - x_0||$$

pertanto se $p_k \to x_0$ allora

$$|Lp_k - Lx_0| \le ||A|||p_k - x_0| \stackrel{k \to +\infty}{\to} 0$$

A questo punto possiamo dunque mostrare la seguente proposizione

Proposizione 3.4. Se $f: \Omega \to \mathbb{R}^m$, $p_0 \in \Omega$ differenziabile in p_0 , allora f è continua in p_0

Dimostrazione. Osserviamo che se f è differenziale in p_0 allora $\exists df(p_0): \Omega \to \mathbb{R}^m$ tale che

$$f(p_0 + h) = f(p_0) + df(p_0)h + o(h) \xrightarrow{h \to 0} f(p_0)$$

in quanto $df(p_0)$ è lineare e quindi continua in \mathbb{R}^n e $o(h) \overset{h \to 0}{\to} 0$

Teorema 3.5 (teorema di Fermat). Siano $\Omega \subseteq \mathbb{R}^n$ aperto e $f:\Omega \to \mathbb{R}$. Supponiamo che $x_0 \in \Omega$ sia un punto di minimo (o massimo) locale e che f sia differenziabile in x_0 . Allora

$$\nabla f(x_0) = 0$$
 oppure $df(x_0) = 0$

3. Calcolo differenziale 26

Dimostrazione. Possiamo supporre senza perdita di generalità che x_0 sia un punto di minimo locale e considerare la funzione g(t) tale che

$$t \stackrel{g}{\mapsto} f(x_0 + te_j) \text{ per } |t| < \sigma$$

ovvero $x_0 + te_i \in B(x_0, \sigma) \subseteq \Omega$, osservando che ha un minimo locale in t = 0

$$\frac{d}{dt} \left(f(x_0 + te_j) \right) \Big|_{t=0} = \partial_{x_j} f(x_0) = 0$$

dove l'ultima eguaglianza segue dal teorema di Fermat per funzioni di variabile singola. Possiamo ripetere lo stesso procedimento $\forall j \in \{1, ... n\}$ e dunque si ottiene la tesi.

Oss:. In realtà l'ipotesi che la funzione sia differenziabile non è indispensabile, siccome è più che sufficiente richiedere l'esistenza delle derivate parziale.

Definizione 3.8 (punto critico). Diremo che $x_0 \in \Omega$ è un punto critico di $f: \Omega \to \mathbb{R}$ differenziabile in x_0 se $\nabla f(x_0) = 0$. Similmente diremo che $f(x_0)$ è un valore critico di f.

Teorema 3.6 (differenziale della composizione). Sia $f: \Omega \to \mathbb{R}^m$, $g: U \to \mathbb{R}^k$ con $\Omega \subseteq \mathbb{R}^n$ aperto, $U \subseteq \mathbb{R}^m$ aperto,

$$g \circ f : \Omega \to \mathbb{R}^k$$
è differenziabile in p_0

Inoltre, in tal caso, avremo che

- (2) $D(g \circ f)(p_0) = (Dg(f(p_0))(Df(p_0))$

Dimostrazione. Osserviamo che, per l'ipotesi di differenziabilità di f, abbiamo che

$$f(x) = f(p_0) + df(p_0)(p - p_0) + o(|p - p_0|) \text{ per } p \to p_0 \in \Omega$$

e, siccome g è differenziabile in $f(p_0)$, abbiamo che

$$g(x) = g(f(p_0)) + dg(f(p_0))[f(x) - f(p_0)] + o(|f(x) - f(p_0)|)$$

ma allora

$$g(x) = g(f(p_0)) + dg(f(p_0))[df(p_0)(p - p_0) + o(|p - p_0|)] + o(|f(x) - f(p_0)|)$$

ovvero

$$g(x) = g(f(p_0)) + (dg(f(p_0)) \circ df(p_0))(x - p_0) + dg(f(x_0))o(|x - x_0|) + o(|f(x) - f(p_0)|)$$

Ma adesso osserviamo che

$$\left| \frac{dg(f(x_0))o(|x - x_0|)}{|x - x_0|} \right| \le ||Dg(f(x_0))|| \frac{o(|x - x_0|)}{|x - x_0|} = o(1) \implies dg(f(x_0))o(|x - x_0|) = o(|x - x_0|)$$

e, inoltre, osserviamo che

$$o(|f(x) - f(x_0)|) = o(|df(x_0)(x - x_0) + o(|x - x_0|)|)$$