665 hw1

 $Ty\ Darnell$

Problem 1

part a

```
ctab=function(a,b,c,d){
  tab=as.table(matrix(c(a,b,c,d),nrow=2,byrow = T))
  tab
}
tab1=ctab(23,52,38,37)
tab=tab1%>%addmargins()
row.names(tab)=c("P","T","Total")
kable(tab,col.names = c("F","U","Total"))%>%kable_styling(full_width = F,position = "left")
                 Total
Р
        23
            52
                    75
 Т
                    75
        38
            37
 Total
                  150
        61
            89
```

part b

```
\begin{array}{l} \text{ci=function(p,n)} \{\\ \text{se=sqrt(p*(1-p)/n)} \\ \text{ci=c(p-1.96*se,p+1.96*se)} \\ \text{ci} \\ \} \\ \\ p2=23/75 \\ p1=38/75 \\ n=75 \\ \text{ci1=ci(p2,n)} \\ \text{ci2=ci(p1,n)} \\ \\ p=n_{i1}/n_i \\ \\ 95\% \text{ CI for } p:p\pm 1.96\sqrt{p(1-p)/n} \\ P=\frac{23}{75}\approx .307\ 30.7\% \text{ favorable} \\ 95\% \text{ CI: (.202,.411)} \\ \end{array}
```

There is an estimated 30.7% favorable response in the test group with a 95% confidence interval of .202 and .411

Over repeated sampling we are 95% confident that the interval contains the true proportion of favorable responses

```
T = \frac{38}{75} \approx .507 \ 50.7\% favorable 95% CI: (.394, .620)
```

There is an estimated 50.7% favorable response in the test group with a 95% confidence interval of .394 and .620

Over repeated sampling we are 95% confident that the interval contains the true proportion of favorable responses

part c

```
d=p1-p2
vd=function(p1,p2,n1,n2){
    v=p1*(1-p1)/n1+p2*(1-p2)/n2
    v
}
v=vd(p1,p2,75,75)
a=1.96*sqrt(v)+1/75
cid=c(d-a,d+a)
```

Difference=Test-Placebo

$$d = p_1 - p_2 = .2$$

The estimated difference in proportions is .2, the test group has an estimated proportion of favorable outcomes than the placebo group.

$$v_d = \frac{p_1(1-p_1)}{75} + \frac{p_2(1-p_2)}{75} \approx .006$$

95% CI for the difference in proportions: $d \pm 1.96\sqrt{v_d} + \frac{1}{2}\left[\frac{1}{75} + \frac{1}{75}\right] = (.033, .367)$

The 95% CI does not contain 0, the null value thus the difference in proportions is significant. That is the proption of favorable outcomes in the two groups are not equal.

part d

```
chisq.test(tab1,correct = F)
```

```
## ## Pearson's Chi-squared test ## ## data: tab1 ## X-squared = 6.2166, df = 1, p-value = 0.01266 \chi^2 test
```

Two assumptions: each observation is independent and the row and column totals are fixed.

 H_0 : There is no association between treatment and response (treatments have equal effects)

```
\chi^2 = 6.217
```

Using $\alpha = .05$

p-value=.013 < .05 Thus reject H_0

There is evidence to suggest that there is an association between treatment and response (the treatments do not have the same proportion of favorable responses).

part e

See parts b,c,d for interpretations

Problem 2

part a,b

	\mathbf{S}	U
Η	53	17
L	23	35

```
cioddsr=function(ecases, enoncases, uecases, uenoncases) {
    a=ecases
    b=enoncases
    c=uecases
    d=uenoncases
    or=(a/c)*(d/b)
    se=sqrt(1/a+1/b+1/c+1/d)
    z=c(-1.96,1.96)
    ci=exp(log(or)+z*se)
    c("Odds Ratio"=or,"95 CI"=ci)
}
```

```
## Odds Ratio 95 CI1 95 CI2
## 4.744246 2.222167 10.128790
```

cioddsr(53,17,23,35)

The odds ratio for satisfactory response comparing high dose vs low dose in center A is 4.744 with a 95% CI (2.222,10.129)

part c

The 95% CI for the odds ratio does not contain the null value 1, thus there is evidence of an association between dose group and response.

part d

kable(btab)

	S	U
Η	7	3
L	2	5

Odds Ratio	
Odds Ratio	5.8333
Asymptotic Conf Limits	
95% Lower Conf Limit	0.6963
95% Upper Conf Limit	48.8725
Exact Conf Limits	
95% Lower Conf Limit	0.4918
95% Upper Conf Limit	86.2936

fisher.test(btab)

```
##
## Fisher's Exact Test for Count Data
##
## data: btab
```

```
## p-value = 0.1534
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4917861 86.1173986
## sample estimates:
## odds ratio
## 5.187129
```

The odds ratio for satisfactory response comparing high dose vs low dose in center b is 5.833. This means that the odds of a satisfactory response in the high doseage group are roughly 5.8 times as high as the odds for those in the low dosage group.

The table is sparse (not all values are at least 5) thus the usual asymptotic confidence limits are not appropriate, we will obtain exact confidence limits for the odds ratio by using the non-central hypergeometric distribution.

95% CI (.492,86.294) This is a much wider confidence interval than for center A. The 95% CI for the odds ratio does contain 1 (the null value) thus there is not sufficent evidence of an association between dose group and response for center B.

Fisher Exact Test:

 H_0 : True odds ratio = 1 p-value= .153>.05

Thus fail to reject H_0 , there is not sufficient evidence of an association between dose group and response for center B.

Problem 3

part a

	treatc	treatnc	Sum
placeboc	132	22	154
placebonc	53	33	86
Sum	185	55	240

placebo clear proporiton $p_p = 154/240 \approx .642$

treatment clear proportion $p_t = 185/240 \approx .771$

```
pval=1-pchisq(961/75,1)
mcnemar.test(tabm,correct = F)
```

```
##
## McNemar's Chi-squared test
##
## data: tabm
## McNemar's chi-squared = 22.464, df = 3, p-value = 5.223e-05
```

Running a McNemar test because we have matched pairs (left and right eye of each subject), the independence assumption between the eyes of each subject is violated.

 $H_0: \pi_p = \pi_t$ There is a no difference between the proportion of clearance of proteins between the placebo and treatment groups.

$$Q_M = \frac{(22 - 53)^2}{22 + 53} = 12.813 \approx \chi_1^2$$

 $\alpha = .05$

p-value $\approx .0003$

since p-value $< \alpha$ reject H_0

Conclude the there is a differnce in proportions of clearance between the two groups.

part b

The results do not imply if the new treatment is more effective, they only imply that there is a difference in proportions of clearance between the two groups.

part c

```
p=131/240
se=(1/240)*sqrt(75-31^2/240)
```

difference in proportions

$$p_t - p_p = \frac{185 - 154}{240} = \frac{131}{240} \approx .546$$

$$se(p_t - p_p) = \frac{1}{n} \sqrt{(n_{12} + n_{21}) - \frac{(n_{12} - n_{21})^2}{n}}$$

$$= (1/240) \sqrt{(53 + 22) - (53 - 22)^2/n} \approx .035$$

$$90\% \text{ CI} = (p_t - p_p) \pm Z_{1 - .1/2} * se = (.488, .604)$$

Problem 4

part a

	Test+	Test-	Sum
$\overline{\mathrm{D}}+$	106	24	130
D-	22	48	70
Sum	128	72	200

senstitivity=
$$n_{11}/n_{1+} = 106/130 \approx .815$$

specificity= $n_{22}/n_{2+} = 48/70 \approx .686$

part b

Statistics for Table of disease by outcome Column 1 Risk Estimates 90% Exact 90% Risk ASE | Confidence Limits | Confidence Limits Row 1 0.8154 0.0340 0.7594 0.8714 0.8693 Row 2 0.3143 0.0555 0.2230 0.4056 0.4175 0.6400 0.0339 0.5842 0.6965 0.6958 0.5804 Difference 0.5011 0.0651 0.3940 0 6082 Difference is (Row 1 - Row 2)

Exact 90% CI for sensitivity is (.750, .869)

part c

		Colum	n 2 Risk Es	stimates		
	Risk	ASE	99 Confiden		Exac Confiden	
Row 1	0.1846	0.0340	0.0970	0.2723	0.1061	0.2871
Row 2	0.6857	0.0555	0.5428	0.8286	0.5266	0.8188
Total	0.3600	0.0339	0.2726	0.4474	0.2743	0.4525
Difference	-0.5011	0.0651	-0.6688	-0.3334		
	[Differenc	e is (Row	1 - Row 2)		

Exact 99% CI for specificity is (.527, .819)

part d

$$\begin{split} P(D+) &= .7\ P(D-) = .3 \\ P(D-|T-) &= \frac{P(T-,D-)}{P(T-)} = \frac{spec*.3}{spec*.3+(1-sens)*.7} \approx .614 \\ \text{sn=106/130} \\ \text{sp=48/70} \end{split}$$

Problem 5

part a

	ional Te		o Proportion
Fixed So Distribution	cenario	Element	
	147.11		ct conditional
Method	Walter	s normal a	approximation
Group 1 Proportion			0.67
Group 2 Proportion			0.43
Nominal Power			0.9
Number of Sides			2
Alpha			0.05
Group 1 Weight			1
Group 2 Weight			1
	puted N Power 0.901	N Total	

Running fisher's exact conditonal test, we need a sample size of 194 to achieve .9 power using two-sided $\alpha=.05$

part b

isher's Exac			ocedure est for Tw	o Proportion
ı	Fixed So	cenario	Element	S
Distribution		Exact conditional		
Method		Walters normal approximation		
Alpha				0.01
Group 1 Pro	portion			0.67
Group 2 Pro	portion			0.43
Group 1 We	ight			2
Group 2 We	ight			1
Nominal Po	wer			0.8
Number of Sides				2
		puted N Power	Total N Total	
		0.800	240	

To achieve .8 power with a two-sided $\alpha = .01$ with twice as many patients in the test treatment group as in the control group we need a sample size of 240.

part c

Fived 9	itional Test for Two Proportion Scenario Elements
Distribution	Exact conditional
Method	Walters normal approximation
Group 1 Proportion	0.67
Group 2 Proportion	0.43
Total Sample Size	166
Number of Sides	2
Alpha	0.05
Group 1 Weight	1
Group 2 Weight	1

Under balanced allocation with a total sample size of 166, with two-sided $\alpha = .05$ the power is .846