### **NPN Silicon RF Transistor**

- For medium power amplifiers
- Compression point P<sub>-1dB</sub> = +19 dBm at 1.8 GHz maximum available gain G<sub>ma</sub> = 14 dB at 1.8 GHz Noise figure F = 1.25 dB at 1.8 GHz
- Transition frequency  $f_T = 24 \text{ GHz}$
- Gold metalization for high reliability
- SIEGET <sup>®</sup> 25 Line
   Siemens Grounded Emitter Transistor
   25 GHz f<sub>T</sub> Line



## ESD: Electrostatic discharge sensitive device, observe handling precaution!

| Туре    | Marking | Ordering Code | Pin Configuration |       |       | Package |         |
|---------|---------|---------------|-------------------|-------|-------|---------|---------|
| BFP 450 | ANs     | Q62702-F1590  | 1 = B             | 2 = E | 3 = C | 4 = E   | SOT-343 |

### **Maximum Ratings**

| Parameter                                              | Symbol            | Value   | Unit |  |
|--------------------------------------------------------|-------------------|---------|------|--|
| Collector-emitter voltage                              | V <sub>CEO</sub>  | 4.5     | V    |  |
| Collector-base voltage                                 | V <sub>CBO</sub>  | 15      |      |  |
| Emitter-base voltage                                   | $V_{EBO}$         | 1.5     |      |  |
| Collector current                                      | I <sub>C</sub>    | 100     | mA   |  |
| Base current                                           | l <sub>B</sub>    | 10      |      |  |
| Total power dissipation, <i>T</i> <sub>S</sub> ≤ 96 °C | P <sub>tot</sub>  | 450     | mW   |  |
| Junction temperature                                   | $T_{i}$           | 150     | °C   |  |
| Ambient temperature                                    | T <sub>A</sub>    | -65+150 |      |  |
| Storage temperature                                    | $T_{ m stg}$      | -65+150 |      |  |
| Thermal Resistance                                     |                   |         |      |  |
| Junction - soldering point 1)                          | R <sub>thJS</sub> | ≤ 130   | K/W  |  |

<sup>1)</sup> TS is measured on the collector lead at the soldering point to the pcb

 $Z_{S} = Z_{Sopt}$ ,  $Z_{L} = Z_{Lopt}$ 

| Parameter                                                                                                                          | Symbol               |      | Values |      | Uni |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|--------|------|-----|
|                                                                                                                                    |                      | min. | typ.   | max. |     |
| DC characteristics                                                                                                                 |                      |      | !      | !    | !   |
| Collector-emitter breakdown voltage                                                                                                | V <sub>(BR)CEO</sub> | 4.5  | 5      | 6.5  | ٧   |
| $I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$                                                                                          |                      |      |        |      |     |
| Collector-base cutoff current                                                                                                      | I <sub>CBO</sub>     | -    | -      | 600  | nA  |
| $V_{\rm CB} = 5 \text{ V}, I_{\rm E} = 0$                                                                                          |                      |      |        |      |     |
| Emitter-base cutoff current                                                                                                        | I <sub>EBO</sub>     | -    | -      | 100  | μΑ  |
| $V_{\rm EB} = 1.5 \text{ V}, I_{\rm C} = 0$                                                                                        |                      |      |        |      |     |
| DC current gain                                                                                                                    | h <sub>FE</sub>      | 50   | 80     | 150  | -   |
| $I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 4 \text{ V}$                                                                            |                      |      |        |      |     |
| AC characteristics                                                                                                                 |                      |      |        |      |     |
| Transition frequency                                                                                                               | f <sub>T</sub>       |      |        |      | GH: |
| $I_{C} = 90 \text{ mA}, V_{CE} = 3 \text{ V}, f = 1 \text{ GHz}$                                                                   |                      | -    | 24     | -    |     |
| $I_{\rm C} = 90 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ f = 2 \text{ GHz}$                                                       |                      | 15   | 17     | -    |     |
| Collector-base capacitance                                                                                                         | $C_{cb}$             | -    | 0.48   | 0.75 | pF  |
| $V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}$                                                                                          |                      |      |        |      |     |
| Collector-emitter capacitance                                                                                                      | $C_{ce}$             | -    | 1.33   | -    |     |
| $V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}$                                                                                          |                      |      |        |      |     |
| Emitter-base capacitance                                                                                                           | C <sub>eb</sub>      | -    | 1.75   | -    |     |
| $V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}$                                                                                 |                      |      |        |      |     |
| Noise figure                                                                                                                       | F                    | -    | 1.25   | 1.6  | dB  |
| $I_{C} = 10 \text{ mA}, V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt},$                                                                   |                      |      |        |      |     |
| f = 1.8 GHz                                                                                                                        |                      |      |        |      |     |
| Power gain <sup>2)</sup>                                                                                                           | G <sub>ma</sub>      | -    | 14     | -    | dB  |
| $I_{C} = 50 \text{ mA}, V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt},$                                                 |                      |      |        |      |     |
| f = 1.8 GHz                                                                                                                        |                      |      |        |      |     |
| Insertion power gain                                                                                                               | $ S_{21} ^2$         | 8    | 11     | -    |     |
| $I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 2 \text{ V}, \ f = 1.8 \text{ GHz},$                                                    |                      |      |        |      |     |
| $Z_{S} = Z_{L} = 50\Omega$                                                                                                         |                      |      |        |      |     |
| Third order intersept point                                                                                                        | IP <sub>3</sub>      | -    | 29     | -    | dBr |
| $I_{\text{C}} = 50 \text{ mA}, \ V_{\text{CE}} = 3 \text{ V}, \ Z_{\text{S}} = Z_{\text{Sopt}}, \ Z_{\text{L}} = Z_{\text{Lopt}},$ |                      |      |        |      |     |
| f = 1.8 GHz                                                                                                                        |                      |      |        |      | 1   |
| 1dB Compression point                                                                                                              | P <sub>-1dB</sub>    | -    | 19     | -    |     |
| $I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 3 V, $f$ = 1.8 GHz,                                                                            |                      |      |        |      |     |

1.8

2.4

3

4

1.25

1.45

1.7

2.1

### **Common Emitter S-Parameters**

| f                          | S                                   | 11                       | S <sub>21</sub> |       | S <sub>12</sub> |         | S <sub>22</sub>     |                   |  |  |
|----------------------------|-------------------------------------|--------------------------|-----------------|-------|-----------------|---------|---------------------|-------------------|--|--|
| GHz                        | MAG                                 | ANG                      | MAG             | ANG   | MAG             | ANG     | MAG                 | ANG               |  |  |
| <i>V</i> <sub>CE</sub> = 2 | $V_{CE} = 2V, I_{C} = 50 \text{mA}$ |                          |                 |       |                 |         |                     |                   |  |  |
| 0.01                       | 0.143                               | -30.7                    | 69.9            | 174.8 | 0.0018          | 85.2    | 0.904               | -6.6              |  |  |
| 0.1                        | 0.469                               | -121.7                   | 51.98           | 125.6 | 0.0139          | 59.6    | 0.744               | -64.2             |  |  |
| 0.5                        | 0.681                               | -172.4                   | 14.86           | 90.7  | 0.0289          | 51.4    | 0.466               | -146.1            |  |  |
| 1                          | 0.705                               | 173.1                    | 7.26            | 74.6  | 0.047           | 55.7    | 0.464               | -172.2            |  |  |
| 2                          | 0.73                                | 154.7                    | 3.42            | 55    | 0.08            | 51.2    | 0.491               | 163.6             |  |  |
| 3                          | 0.752                               | 139.5                    | 2.22            | 38.4  | 0.1183          | 42      | 0.529               | 145.5             |  |  |
| 4                          | 0.783                               | 124.1                    | 1.62            | 22.4  | 0.1461          | 30.3    | 0.587               | 131.9             |  |  |
| 5                          | 0.797                               | 112.5                    | 1.23            | 8.8   | 0.1633          | 20.7    | 0.606               | 119.5             |  |  |
| 6                          | 0.813                               | 103.7                    | 1.01            | -2.9  | 0.1864          | 12.6    | 0.625               | 108.9             |  |  |
| Comm                       | Common Emitter Noise Parameters     |                          |                 |       |                 |         |                     |                   |  |  |
| f                          | F <sub>min</sub> 1)                 | <i>G</i> <sub>a</sub> 1) | $\Gamma_{opt}$  |       | R <sub>N</sub>  | $r_{n}$ | $F_{50\Omega}^{2)}$ | $ S_{21} ^{2}$ 2) |  |  |
| GHz                        | dB                                  | dB                       | MAG             | ANG   | Ω               | -       | dB                  | dB                |  |  |
| <i>V</i> CE = 2            | $V_{CE} = 2V$ , $I_{C} = 10mA$      |                          |                 |       |                 |         |                     |                   |  |  |
| 0.9                        | 0.9                                 | 15.5                     | 0.29            | 175   | 2.7             | 0.054   | 0.98                | 16                |  |  |

-171

-159

-147

-127

3

3.5

5.5

15.5

0.47

0.56

0.62

0.66

11.8

10.9

8.5

6.6

0.06

0.07

0.11

0.31

1.74

2.23

3.05

4.49

9.5

6.8

4.7

1.9

For more and detailed S- and Noise-parameters please contact your local Siemens distributor or sales office to obtain a Siemens Application Notes CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm

<sup>1)</sup> Input matched for minimum noise figure, output for maximum gain

<sup>2)</sup>  $Z_{S} = Z_{L} = 50\Omega$ 



## SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

#### **Transistor Chip Data**

| IS =  | 0.13125  | fA | BF =  | 76.123  | -   | NF =   | 0.79652  | -  |
|-------|----------|----|-------|---------|-----|--------|----------|----|
| VAF = | 24.165   | V  | IKF = | 0.58905 | Α   | ISE =  | 28.341   | pА |
| NE =  | 1.5563   | -  | BR =  | 21.254  | -   | NR =   | 1.2966   | -  |
| VAR = | 13.461   | V  | IKR = | 0.25878 | Α   | ISC =  | 0.012292 | Α  |
| NC =  | 0.70543  | -  | RB =  | 2.1659  | Ω   | IRB =  | 0.013181 | mA |
| RBM = | 5.403    | Ω  | RE =  | 0.45346 |     | RC =   | 0.50084  | Ω  |
| CJE = | 3.2276   | fF | VJE = | 0.95292 | V   | MJE =  | 0.48672  | -  |
| TF =  | 7.5068   | ps | XTF = | 0.69972 | -   | VTF =  | 0.66148  | V  |
| ITF = | 0.017655 | mA | PTF = | 0       | deg | CJC =  | 1049.5   | fF |
| VJC = | 1.1487   | V  | MJC = | 0.50644 | -   | XCJC = | 0.28285  | -  |
| TR =  | 2.6912   | ns | CJS = | 0       | F   | VJS =  | 0.75     | V  |
| MJS = | 0        | -  | XTB = | 0       | -   | EG =   | 1.11     | eV |
| XTI = | 3        | -  | FC =  | 0.91274 | -   | TNOM   | 300      | K  |

### C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) :

|      | 0.5 |    |     | 4.05 |   | 150  |   |   |
|------|-----|----|-----|------|---|------|---|---|
| 15 = | 25  | īΑ | N = | 1.05 | - | RS = | 5 | Ω |

All parameters are ready to use, no scalling is necessary

## Package Equivalent Circuit:



The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

Extracted on behalf of SIEMENS Small Signal Semiconductors by: Institut für Mobil-und Satellitentechnik (IMST)
© 1996 SIEMENS AG

For examples and ready to use parameters please contact your local Siemens distributor or sales office to obtain a Siemens CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/35.htm



#### For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of thereverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequenties < 100MHz.</li>
   For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

#### Note:

 This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.



**Transistor Schematic Diagram** 

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.

The AC characteristics are verified by random sampling.

# Total power dissipation $P_{tot} = f(T_A^*, T_S)$

\* Package mounted on epoxy



# Permissible Pulse Load $R_{thJS} = f(t_p)$



# Transition frequency $f_T = f(I_C)$

f = 1 GHz

 $V_{CE}$  = parameter in V



## **Permissible Pulse Load**

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ 



Power gain  $G_{\text{ma}}$ ,  $G_{\text{ms}}$ ,  $|S_{21}|^2 = f(f)$  $V_{\text{CE}} = 2\text{V}$ ,  $I_{\text{C}} = 50 \text{ mA}$ 



Power gain  $G_{\text{ma}}$ ,  $G_{\text{ms}} = f(V_{\text{CE}})$ 

 $I_{\rm C} = 50 \, {\rm mA}$ 

f = Parameter in GHz



Power gain  $G_{ma}$ ,  $G_{ms} = f(I_C)$ 

 $V_{CE} = 2V$ 

f = parameter in GHz



# Collector-base capacitance $C_{CD} = f(V_{CB})$

 $V_{\text{BE}} = 0$ , f = 1 MHz



Noise figure  $F = f(I_C)$ 

$$V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}$$



Noise figure F = f(f)

$$V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}$$



## Noise figure $F = f(I_C)$

$$V_{CE} = 2 \text{ V}, f = 1.8 \text{ GHz}$$



# Source impedance for min.

Noise Figure versus Frequency

$$V_{CE} = 2 \text{ V}, I_{C} = 10 \text{ mA} / 50 \text{ mA}$$



1998-11-01