第一章 线性规划

第八节 对偶单纯形法

- ■基本思想
- ▶ 迭代原理
- 举例求解
- ■影子价格

第一章 线性规划

第七节 对偶理论——原规划和对偶规划最优解 之间的关系

- ■弱对偶定理
- 强对偶定理
- 松紧定理

一. 弱对偶定理:

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

定理1-7:

设X 和 λ 分别是(P)和(D)的可行解,则有 $CX \geq \lambda b$.

推论1:

若 X^0 和 λ^0 分别是(P)和(D)的可行解,且 $CX^0 = \lambda^0 b$,则 X^0 和 λ^0 分别是(P)和(D)的最优解。 $\min S = \max Z$

二. 强对偶定理:
$$(P)$$
 $\min S = CX$ (D) $\max Z = \lambda b$ $AX = b$ $\lambda A \le C$ $X \ge 0$

定理1-8:

(P)有有限的最优解 X^* ⇔ (D)有有限的最优解 λ^* ,且相应的目标函数值相等,即 $CX^* = \lambda^*b$ 。

推论3:

若 X^* 是(P)的最优基本可行解,B是相应的最优基,则单纯形乘子 $\pi = C_B B^{-1}$ 是(D)的最优解。

推论1:

若(P)和(D)中有一个有可行解,但没有有限的最优解,则另一个问题无可行解。

线性规划1-7

第一章 线性规划

第八节 对偶单纯形法

- 基本思想
 - 迭代原理
 - 举例求解
 - ■影子价格

一. 基本思想:
$$(P) \min S = CX \min S = C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N$$

$$AX = b X \ge 0 \qquad X_B + B^{-1}NX_N = B^{-1}b X_B, X_N \ge 0$$

最优表

		X_{J_1}	X_{J_2}	$\dots \chi_{J_j}$	χ_{J_m}	• • •	x_k	• • •	X_{j}	<i>j</i> ∈ {	$[1,2,\cdot$	$\cdot\cdot,n$	}\{J	J_1, J_2	₂ ,,	$\{\boldsymbol{J}_m\}$
	$-y_{00}$	0	0	0	0	•••	y_{0k}	•••	y_{0j}	• • •	(C - ($C_{B}I$	3^{-1}	4 >	:0
X_{J_1}	y_{10}	1				•	y_{1k}	•	y_{1j}		(y_0)	= (~ <u> </u>	\boldsymbol{C}	R^{-1} r	2)
$\mathfrak{X}_{J_{\gamma}}^{-}$	y_{20}		1					•			(7 0,	j	j	\mathbf{C}_{B}	o p	j)
_	y_{r0}			-	1		y_{rk}		y_{rj}							
III	y_{m0}				1		y_{mk}		y_{mj}							

 $B^{-1}b \geqslant \{J_1,J_2,\dots,J_m\}$ 是基变量下标集

单纯形法是保持 $B^{-1}b \ge 0$ 使迭代向实现 $C - C_p B^{-1}A \ge 0$ 进行。

对偶单纯形法是保持 $C - C_R B^{-1} A \ge 0$ 使迭代向实现 $B^{-1} b \ge 0$ 进行。

(P)
$$\min S = CX$$
 (D) $\max Z = \lambda b$
 $AX = b$
 $X \ge 0$ $\lambda A \le C$

对偶可行解,正则基:

 $\dot{a}(P)$ 的一个基B,使得单纯形乘子 $\lambda = C_B B^{-1}$ 是(D)的可行解 $(C-\lambda A=C-C_BB^{-1}A\geq 0)$,则(P)相应的基本解

$$(P) \min S = CX \qquad (D) \max Z = \lambda b$$

$$AX = b$$

$$X \ge 0$$

$$\lambda A \le C$$

对偶可行解,正则基:

若(P)的一个基B,使得单纯形乘子 $\lambda = C_B B^{-1}$ 是(D)的可行解

$$(C-\lambda A = \underline{C-C_BB^{-1}A \ge 0})$$
,则 (P) 相应的基本解 $X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ 称为

对偶可行解,B称为正则基。若 $B^{-1}b \ge 0$,则X是(P)的最优解。

理解:

- 1) 一个基B对应一个单纯形乘子 $\lambda = C_B B^{-1}$
- 2) $\lambda = C_B B^{-1}$ 是(D)的可行解 $\longleftrightarrow C C_B B^{-1} A \ge 0$
 - ₽相应的单纯形表的检验数行≥0
- 3) 对应正则基的单纯形乘子是(D)的可行解;
- ·4) 对应最优基的单纯形乘子是(D)的最优解。

シスコエクルヘリュー

$$(P) \min S = CX \qquad (D) \max Z = \lambda b$$

$$AX = b$$

$$X \ge 0 \qquad \lambda A \le C$$

对偶可行解,正则基:

 $\dot{z}(P)$ 的一个基B,使得单纯形乘子 $\lambda = C_B B^{-1}$ 是(D)的可行解

$$(C-\lambda A = C-C_BB^{-1}A \ge 0)$$
,则 (P) 相应的基本解 $X = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ 称为

对偶可行解,B称为正则基。若 $B^{-1}b \ge 0$,则X是(P)的最优解。

基	可行基	正则基	最优基
B 可逆	$B^{-1}b \geq 0$	$C - C_B B^{-1} A \ge 0$	$B^{-1}b \ge 0$ $C - C_B B^{-1}A \ge 0$
基本解	基本可行解	对偶可行解	最优基本可行解

线性规划1-8

第一章 线性规划

第八节 对偶单纯形法

- ✓基本思想
- 迭代原理
 - 举例求解
 - ■影子价格

二. 迭代原理:
$$(LP)\min S = CX / \min S = C_B B^{-1}b + (C_N - C_B B^{-1}N)X_N$$

$$AX = b X_B + B^{-1}NX_N = B^{-1}b$$

$$X \ge 0 X_B, X_N \ge 0$$

准备工作:

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

$$\lambda A \leq C \longrightarrow \lambda(p_1, p_2, \dots, p_n) \leq (c_1, c_2, \dots, c_n)$$

$$(\lambda p_1, \lambda p_2, \dots, \lambda p_n) \leq (c_1, c_2, \dots, c_n) \qquad \lambda p_j \leq c_j \quad j = 1, 2, \dots, n$$

$$E = B^{-1}B = B^{-1}(p_{J_1}, p_{J_2}, \dots, p_{J_m}) = (B^{-1}p_{J_1}, B^{-1}p_{J_2}, \dots, B^{-1}p_{J_m}) = \begin{bmatrix} \mathbf{1}_{J_1} \\ \mathbf{1}_{J_2} \\ \mathbf{1}_{J_2} \end{bmatrix}$$

$$B^{-1}p_{J_{j}} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \qquad B^{-1}p_{J_{j}} = \begin{pmatrix} u^{1} \\ \vdots \\ u^{i} \\ \vdots \\ u^{m} \end{pmatrix} p_{J_{j}} = \begin{pmatrix} u^{1}p_{J_{j}} \\ u^{i} p_{J_{j}} \\ u^{m} p_{J_{j}} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$\longrightarrow u^{i} p_{J_{j}} = \begin{cases} \mathbf{0}, & i \neq j \\ \mathbf{1}, & i = j \end{cases}$$

$$\vec{j} = 1, 2, \dots, n$$

$$B^{-1}p_{J_j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \vec{j} \qquad u^i p_{J_j} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

二. 迭代原理:
$$(P) \min S = CX$$
 $AX = b$ $X \ge 0$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

设
$$B = (p_{J_1}, p_{J_2}, \dots, p_{J_m})$$
 是 (P) 的一个正则基,则 $C - \underline{C_B B^{-1} A} \ge 0 \longrightarrow \lambda A \le C \longrightarrow \lambda$ 是 (D) 的可行解 $\lambda p_i \le c_i, j = 1, 2, \dots, n$

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

不是最优解,因此进行换基运算,得到新表。

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

1. 确定离基变量:
$$r = \min(i | y_{i0} < 0, 1 \le i \le m)$$

则第r个方程的基变量 x_{J_r} 离基。

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

			X_{J_1}	X_{J_2}	• • • /	$\chi_{\overline{J}_r}$.	$\cdot \chi_{J_m}$	• • •	\mathcal{X}_k	• • •	X_j	€{1	,2,	$\cdot,n\}\setminus\{J_1,J_2,\cdots,J_m\}$
	_	$-y_{00}$	0	0	• • •	0 ·	·· 0	• • •	y_{0k}	• • •	y_{0j}	• • •		$C - C_B B^{-1} A \geqslant 0$
	\mathcal{X}_{J_1}	y_{10}	1						y_{1k}		y_{1j}		(y_{0j})	$_{j}=C_{j}-C_{B}B^{-1}p_{j})$
	X_{J_2}	y_{20}		1					y_{2k}				· ·	v
4	$-x_{J_r}$	y_{r0}	<0			1			y_{rk}		y_{ri}			
	X_{J_m}	y_{m0}	$B^{-1}b$	≱ 0			1		y_{mk}	;	В	=(p	J_1, p	$(p_{J_2},\cdots p_{J_r},\cdots,p_{J_m})$
2.	确定	定进	基	变	量:						\bar{B}	=(p	Q_{J_1}, I	$(p_{J_2},\cdots p_k,\cdots,p_{J_m})$

2. 佣正进基受重:

 $:: \lambda = C_R B^{-1}$ 不是(D)的最优解, $:: \lambda b = C_R B^{-1} b$ 不是(D)的最优值. 所以(D)有可行解 $\overline{\lambda}$ 使目标值 \uparrow ,即 $\lambda b > \lambda b$.

$$\overline{\lambda} = C_{\bar{B}} \overline{B}^{-1}$$

$$|\bar{\lambda} = C_{\bar{B}}\bar{B}^{-1}| \quad |C - C_{\bar{B}}\bar{B}^{-1}A \ge 0$$

(D)
$$\max Z = \lambda b$$

$$\lambda A \leq C$$

1)
$$\forall t \in 0, \overline{\lambda b} = \lambda b - \varepsilon \underline{u^r b} = \lambda b - \varepsilon y_{r0}$$

$$\frac{\lambda p_{j} \leq c_{j}}{j=1,2,\cdots,n} \underbrace{u^{r}b = y_{r0}}_{j=1,2,\cdots,n} \underbrace{u^{r}p_{j} = y_{rj}}_{j}$$

$$B^{-1}p_{J_{j}} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \qquad i^{i}p_{J_{j}} = \begin{pmatrix} 0, i \neq j \\ 1, i = j \end{pmatrix}$$

$$(P) \min S = CX \qquad (D) \max Z = \lambda b$$

$$AX = b \qquad \qquad \lambda A \le C$$

$$x_{J_1} x_{J_2} \dots x_{J_r} \dots x_{J_m} \dots x_k \dots x_j j \in \{1, 2, \dots, n\} \setminus \{J_1, J_2, \dots, J_m\}$$

$$-y_{00} \quad 0 \quad 0 \quad \dots \quad 0 \quad \dots \quad y_{0k} \quad \dots \quad y_{0j} \quad \dots \quad C - C_B B^{-1} A \geqslant 0$$

$$x_{J_1} \quad y_{10} \quad 1 \qquad \qquad y_{1k} \quad y_{1j} \quad (y_{0j} = C_j - C_B B^{-1} p_j)$$

$$x_{J_2} \quad y_{20} \quad 1 \qquad \qquad y_{2k} \quad y_{2j}$$

$$x_{J_r} \quad y_{r0} < 0 \qquad 1 \qquad y_{rk} \quad y_{rj}$$

 y_{mk} y_{mi} $B^{-1}p_j$

(D) $\max Z = \lambda b$

令 $\lambda = \lambda - \varepsilon \underline{u}^r, \underline{u}^r$ 是 B^{-1} 的第r个行向量, $\varepsilon > 0$ $\lambda A \leq C$ 1) 对 $\forall \varepsilon > 0, \lambda b = \lambda b - \varepsilon \underline{u}^r \underline{b} = \lambda b - \varepsilon \underline{y}_{r_0} > \lambda b (\lambda \overline{\psi}(D))$ 目标值 ↑)

$$\frac{\lambda p_{j} \leq c_{j}, \quad u^{r}b = y_{r0} \quad u^{r}p_{j} = y_{rj}}{\lambda b = \lambda b - \varepsilon y_{r0}}$$

$$B^{-1}p_{J_{j}} = \begin{cases} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{cases} \quad u^{i}p_{J_{j}} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

(D) $\max Z = \lambda b$

$$\lambda A \leq C$$

- 1) 对 $\forall \varepsilon > 0, \overline{\lambda b} = \lambda b \varepsilon \underline{u^r b} = \lambda b \varepsilon y_{r_0} > \lambda b (\overline{\lambda} \oplus (D))$ 目标值个)
- 2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\lambda A \leq C \Leftrightarrow \lambda p_j \leq c_j$, j=1,2,...,n 对偶单纯形法的求解过程:

线性规划1-8

(D) $\max Z = \lambda b$

 $\diamondsuit \overline{\lambda} = \lambda - \varepsilon u^r, u^r 是 B^{-1}$ 的第r个行向量, $\varepsilon > 0$

 $\lambda A \leq C$

- 1) 对 $\forall \varepsilon > 0$, $\overline{\lambda b} = \lambda b \varepsilon \underline{u''b} = \lambda b \varepsilon y_{r0} > \lambda b (\overline{\lambda} \oplus (D))$ 目标值个)
- 2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\lambda A \leq C \Leftrightarrow \lambda p_j \leq c_j, j=1,2,\cdots,n$
- [1]不离基的基列 p_{J_i} $\lambda p_{J_i} = \lambda p_{J_i} \varepsilon \underline{u^r p_{J_i}}$ $i \neq r$

$$x_{J_1}, x_{J_2}, \cdots x_{J_r}, \cdots, x_{J_m}$$

$$B = (p_{J_1}, p_{J_2}, \cdots p_{J_r}, \cdots, p_{J_m})$$

$$A = (p_{J_1}, p_{J_2}, \cdots p_{J_r}, \cdots, p_{J_m}, \cdots p_k, \cdots p_j, \cdots)$$

(D) $\max Z = \lambda b$

 $\lambda A \leq C$

1) 对 $\forall \varepsilon > 0$, $\lambda b = \lambda b - \varepsilon \underline{u}^r \underline{b} = \lambda b - \varepsilon y_{r0} > \lambda b (\lambda \oplus D)$ 目标值个)

2) 取 ϵ 使 $\overline{\lambda}$ 是(D)的可行解,即 $\lambda A \leq C \Leftrightarrow \lambda p_j \leq c_j, j = 1, 2, \dots, n$

[1] 不离基的基列 p_{J_i} $\lambda p_{J_i} = \lambda p_{J_i} - \varepsilon \underline{u}^r p_{J_i} = \lambda p_{J_i} = C_B \underline{B}^{-1} p_{J_i}$ $= (c_{J_1}, \dots, c_{J_i}, \dots, c_{J_m})$ $x_{J_1}, \dots x_{J_i}, \dots, x_{J_m}$

$$\frac{\lambda p_{j} \leq c_{j}, \quad u^{r}b = y_{r0}}{j = 1, 2, \dots, n} \frac{u^{r}b = y_{r0}}{\lambda b = \lambda b - \varepsilon y_{r0}}$$

$$B^{-1}p_{J_{j}} = \begin{cases} 0, i \neq j \\ \vdots \\ 0 \end{cases}$$

$$u^{i}p_{J_{j}} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

线性规划1-8

(D) $\max Z = \lambda b$

1) 对 $\forall \varepsilon > 0$, $\lambda b = \lambda b - \varepsilon \underline{u''b} = \lambda b - \varepsilon y_{r0} > \lambda b (\lambda \oplus D)$ 目标值个)

2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\overline{\lambda}A \leq C \Leftrightarrow \overline{\lambda}p_j \leq c_j, j=1,2,\cdots,n$

[1]不离基的基列 p_{J_i} $\overline{\lambda}p_{J_i} = \lambda p_{J_i} - \varepsilon \underline{u}^r p_{J_i} = \lambda p_{J_i} = C_B \underline{B}^{-1} p_{J_i}$

$$= (c_{J_1}, \dots, c_{J_i}, \dots, c_{J_m}) \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = c_{J_i}$$

$$x_{J_1}, \dots, x_{J_i}, \dots, x_{J_m} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

[2] 离基的基列 p_{J_r} $\overline{\lambda}p_{J_r} = \lambda p_{J_r} - \varepsilon u^r p_{J_r}$

$$x_{J_1}, x_{J_2}, \cdots x_{J_r}, \cdots, x_{J_m}$$

$$B = (p_{J_1}, p_{J_2}, \cdots p_{J_r}, \cdots, p_{J_m})$$

$$\frac{\lambda p_{j} \leq c_{j}, \quad u^{r}b = y_{r0}}{j = 1, 2, \dots, n} \qquad \frac{u^{r}p_{j} = y_{rj}}{\lambda b = \lambda b - \varepsilon y_{r0}}$$

$$B^{-1}p_{J_{j}} = \begin{cases} 0 \\ \vdots \\ 1 \end{cases} \qquad j \qquad u^{i}p_{J_{j}} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

(D) $\max Z = \lambda b$

令 $\overline{\lambda} = \lambda - \varepsilon u^r, u^r 是 B^{-1}$ 的第r个行向量, $\varepsilon > 0$

1) 对 $\forall \varepsilon > 0$, $\lambda b = \lambda b - \varepsilon \underline{u''b} = \lambda b - \varepsilon y_{r0} > \lambda b (\lambda \oplus D)$ 目标值个)

2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\lambda A \leq C \Leftrightarrow \lambda p_i \leq c_i, j = 1, 2, \dots, n$

[1] 不离基的基列 p_{J_i} $\overline{\lambda}p_{J_i} = \lambda p_{J_i} - \varepsilon \underline{u^r p_{J_i}} = \lambda p_{J_i} = C_B \underline{B^{-1}p_{J_i}}$

$$= (c_{J_1}, \dots, c_{J_i}, \dots, c_{J_m}) \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = c_J$$

 $= (c_{J_1}, \dots, c_{J_i}, \dots, c_{J_m}) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = c_{J_i}$ $= (c_{J_1}, \dots, c_{J_r}, \dots, c_{J_m}) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = c_{J_i}$ $= (c_{J_1}, \dots, c_{J_r}, \dots, c_{J_m}) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \varepsilon = c_{J_r} - \varepsilon < c_{J_r}$

$$= (c_{J_1}, \dots, c_{J_r}, \dots, c_{J_m}) \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{pmatrix} - \varepsilon = c_{J_r} - \varepsilon < c_{J_r}$$

(D) $\max Z = \lambda b$

 $\diamondsuit \overline{\lambda} = \lambda - \varepsilon u^r, u^r 是 B^{-1}$ 的第r个行向量, $\varepsilon > 0$

 $\lambda A \leq C$

1) 对 $\forall \varepsilon > 0$, $\lambda b = \lambda b - \varepsilon \underline{u''b} = \lambda b - \varepsilon y_{r0} > \lambda b (\lambda \oplus (D))$ 目标值个)

2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\lambda A \leq C \Leftrightarrow \lambda p_j \leq c_j$, $j=1,2,\cdots,n$

[1]不离基的基列 p_{J_i} [2] 离基的基列 p_{J_r}

[3] 非基列 $p_j = \lambda p_j - \varepsilon \underline{u}^r p_j$

$$A = (p_{J_1}, p_{J_2}, \cdots p_{J_r}, \cdots, p_{J_m}, \cdots p_k \cdots p_j \cdots)$$

(D) $\max Z = \lambda b$

 $\lambda A \leq C$

- 1) 对 $\forall \varepsilon > 0$, $\lambda b = \lambda b \varepsilon \underline{u''b} = \lambda b \varepsilon y_{r0} > \lambda b (\lambda \oplus D)$ 目标值个)
- 2) 取 ϵ 使 $\overline{\lambda}$ 是(D)的可行解,即 $\lambda A \leq C \Leftrightarrow \lambda p_j \leq c_j$, $j=1,2,\cdots,n$
- [1]不离基的基列 p_{J_i} [2] 离基的基列 p_{J_r}

[3] 非基列 $p_j \neq r$ $\lambda p_j = \lambda p_j - \varepsilon \underline{u}^r p_j = \lambda p_j - \varepsilon y_{rj} = C_B B^{-1} p_j - \varepsilon y_{rj}$ $= c_j - (c_j - C_B B^{-1} p_j) - \varepsilon y_{rj} = c_j - y_{0j} - \varepsilon y_{rj}$

$$\frac{\lambda p_{j} \leq c_{j}, \quad u^{r}b = y_{r0}}{j = 1, 2, \dots, n} \frac{u^{r}p_{j} = y_{ri}}{\lambda b = \lambda b - \varepsilon y_{r0}}$$

$$B^{-1}p_{J_{j}} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

线性规划1-8_

(D) $\max Z = \lambda b$

 $\lambda A \leq C$

2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\overline{\lambda}A \leq C \Leftrightarrow \overline{\lambda}p_j \leq c_j, j=1,2,\cdots,n$

[1]不离基的基列 p_{J_i} [2] 离基的基列 p_{J_r}

[3] 非基列 p_j $\overline{\lambda}p_j = c_j - y_{0j} - \varepsilon y_{rj}$

1 若对 $\forall j \in \{1,2,\dots,n\} \setminus \{J_1,J_2,\dots,J_m\}$, 都有 $y_{rj} \geq 0$,

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

			X_{J_1}	X_{J_2}	$\dots \chi_J$	$_{r}\cdots \chi _{J_{m}}$	• • •	\mathcal{X}_k	• • •	x_j	∈{1,	2,…	$\{J_1,J_2,\cdots,J_m\}$
		$-y_{00}$	0	0	· · · · C	0	• • •	y_{0k}	• • •	y_{0j}	• • •		$C - C_B B^{-1} A \geqslant 0$
•	X_{J_1}	y_{10}	1										$= C_j - C_B B^{-1} p \geqslant 0$
	\mathcal{X}_{J_2}	y_{20}		1				y_{2k}		y_{2j}			
+	\mathbf{x}_{J_r}	y_{r0}	<0			1		y_{rk}		y_{rj}			
	X_{J_m}	y_{m0}	$B^{-1}b$			1		y_{mk}	-	y_{mj}	B^{-1}	\boldsymbol{j}_{j}	

(D) $\max Z = \lambda b$

 $\lambda A \leq C$

2) 取 ϵ 使 $\overline{\lambda}$ 是(D)的可行解,即 $\overline{\lambda}A \leq C \Leftrightarrow \lambda p_j \leq c_j, j=1,2,...,n$

[1]不离基的基列 P_{J_i} [2] 离基的基列P $C-C_BB^{-1}A \ge 0$

 $C - C_B B^{-1} A \geqslant \mathbf{0}$ $y_{0j} = C_j - C_B B^{-1} p_j \geqslant \mathbf{0}$

[3] 非基列 $p_j \overline{\lambda} p_j = c_j - y_{0j} - \varepsilon y_{rj}$

1 若对 $\forall j \in \{1,2,\dots,n\} \setminus \{J_1,J_2,\dots,J_m\}$, 都有 $y_{ij} \geq 0$,

则 $\overline{\lambda}_{p_j} = c_j - y_{0j} - \varepsilon y_{ij} \le c_j$ 即对 $\forall \varepsilon > 0, \overline{\lambda}$ 是(D)的可行解。

但 $\overline{\lambda b} = \lambda b - \varepsilon y_{r_0}$

$$\frac{\lambda p_{j} \leq c_{j}, \quad u^{r}b = y_{r0}}{j = 1, 2, \dots, n} \frac{u^{r}b = y_{r0}}{\lambda b} \frac{u^{r}p_{j} = y_{rj}}{\lambda b = \lambda b - \varepsilon y_{r0}}$$

$$B^{-1}p_{J_{j}} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

线性规划1-8

(D) $\max Z = \lambda b$

 $\lambda A \leq C$

- 2) 取 ϵ 使 $\overline{\lambda}$ 是(D)的可行解,即 $\overline{\lambda}A \leq C \Leftrightarrow \overline{\lambda}p_j \leq c_j, j=1,2,\cdots,n$
- [1]不离基的基列 p_{J_i} [2] 离基的基列 p_{J_r}
- [3] 非基列 $p_j \overline{\lambda} p_j = c_j y_{0j} \varepsilon y_{rj}$
 - 1 若对 $\forall j \in \{1,2,\dots,n\} \setminus \{J_1,J_2,\dots,J_m\}$, 都有 $y_{rj} \geq 0$,

则 $\overline{\lambda}_{p_j} = c_j - y_{0j} - \varepsilon y_{ij} \le c_j$ 即对 $\forall \varepsilon > 0, \overline{\lambda}$ 是(D)的可行解。

但 $\lambda b = \lambda b - \varepsilon y_{r0} \xrightarrow{\varepsilon \to +\infty} +\infty$ 即(D)没有有限的最优解,

2 若∃j ∈ {1,2,···,n}\{ J_1,J_2,\cdots,J_m }使 y_{rj} < 0,

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

			X_{J_1}	X_{J_2}	$\dots \chi_{J_r} \dots$	\mathcal{X}_{J_m}	• • •	\mathcal{X}_k	• • •	$X_{j}j\in$	{1,2,	$\cdot,n\}\setminus\{J_1,J_2,\cdots,J_m\}$
		$-y_{00}$	0	0	0	. 0	• • •	y_{0k}	• • •	y_{0j} .	• •	$C - C_B B^{-1} A \geqslant 0$
•		y_{10}										$\mathbf{C}_{0j} = \mathbf{C}_j - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{p}_j$
	X_{J_2}	y_{20}		1				y_{2k}		y_{2j}		
+		y_{r0}			1		_	y_{rk}		y_{rj}		
	\mathcal{X}_{J_m}	y_{m0}	$B^{-1}b$			1		y_{mk}		y_{mj}	$B^{-1}p_j$	_

(D)
$$\max Z = \lambda b$$

$$\lambda A \leq C$$

- 2) 取 ε 使 $\overline{\lambda}$ 是(D)的可行解,即 $\overline{\lambda}A \leq C \Leftrightarrow \overline{\lambda}p_j \leq c_j, j=1,2,\cdots,n$
- [1]不离基的基列 p_{J_i} [2] 离基的基列 p_{J_r}
- [3] 非基列 $p_j \overline{\lambda} p_j = c_j y_{0j} \varepsilon y_{rj}$
 - 1 若对 $\forall j \in \{1,2,\dots,n\} \setminus \{J_1,J_2,\dots,J_m\}$, 都有 $y_{rj} \geq 0$,
 - (D)没有有限的最优解,所以(P)无可行解。
 - 2 若 $\exists j \in \{1,2,\dots,n\} \setminus \{J_1,J_2,\dots,J_m\}$ 使 $y_{rj} < 0$,

要使
$$\bar{\lambda}p_{j} = c_{j} - y_{0j} - \varepsilon y_{rj} \le c_{j} \longrightarrow -y_{0j} - \varepsilon y_{rj} \le 0 \longrightarrow \varepsilon \le \frac{y_{0j}}{-y_{rj}}$$

$$\longrightarrow \varepsilon = \min\{\frac{y_{0j}}{-y_{ri}} | y_{rj} < 0\} = \frac{y_{0k}}{-y_{rk}} \longrightarrow x_{k}$$
为进基变量, y_{rk} 为主元

3. 进行换基运算: 得到新的单纯形表

$$\varepsilon = \min\{\frac{y_{0j}}{-y_{rj}} | y_{rj} < 0\} = \frac{y_{0k}}{-y_{rk}} \longrightarrow x_k 为进基变量$$

以y_{rk}为主元进行换基运算,得到新的单纯形表。

 $:: \bar{\lambda}b = C_{\bar{B}}\bar{B}^{-1}b > \lambda b = C_{\bar{B}}B^{-1}b$,所以新表对应的基本解目标值个

两种算法比较:

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

单纯形法

$$\begin{array}{c|c}
-C_B B^{-1} b & C - C_B B^{-1} A \geqslant 0 \\
\hline
B^{-1} b \geq 0 & B^{-1} A
\end{array}$$

$$y_{0q} < 0 \rightarrow x_q$$
进基 $2)\min S$

$$S^1 = y_{00} + y_{0q}\theta < y_{00} = S^0$$

$$\theta =$$
最小非负比值 $\rightarrow x_p$ 离基 $\varepsilon =$ 最小非负比值 $\rightarrow x_k$ 进基
$$\rightarrow B^{-1}b \ge 0$$

对偶单纯形法 $\overline{\lambda} = \lambda - \varepsilon u^r$,

$$\overline{\lambda} = \lambda - \varepsilon u^r$$
.

$$y_{r0} < 0 \rightarrow x_{Jr}$$
 离基 $\frac{1}{20 \text{max } Z}$ $\frac{\lambda b}{\lambda b} = \lambda b - \varepsilon y_{r0} > \lambda b$

$$C - C_B B^{-1} A \ge 0$$

第一章 线性规划

第八节 对偶单纯形法

- ✓基本思想
- ✓迭代原理
- 举例求解
 - ■影子价格

三. 举例:

注意: 对偶单纯形法开始于一个正则基B,即 $C-C_BB^{-1}A \ge 0$ 所以适用于 $C \ge 0$ 且不等式约束都是" \ge "的问题。

例1-17:
$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 \ge 5 \\ 2x_1 + 2x_2 + x_3 \ge 6 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$C = (3,4,5) \ge 0$$

正则基
$$B = (p_4, p_5) = E$$

$$C_B = (0,0) \quad C - C_B B^{-1} A \ge 0$$

$$C = (3,4,5,0,0)$$

$$-\min S = 3x_1 + 4x_2 + 5x_3$$

$$x_1 + 2x_2 + 3x_3 - x_4 = 5$$

$$2x_1 + 2x_2 + x_3 - x_5 = 6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$
正则基

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$x_1 - 2x_2 - 3x_3 + x_4 = -5$$

$$2x_1 - 2x_2 - x_3 + x_5 = -6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$y_{0j} = c_j - C_B B^{-1} p_j \ge 0$$

$$p_1 \quad p_2 \quad p_3 \quad p_4$$

$$A = \begin{pmatrix} p_1 & p_2 & p_3 & p_4 & p_5 \\ -1 & -2 & -3 & 1 & 0 \\ -2 & -2 & -1 & 0 & 1 \end{pmatrix}$$

$$B = (p_4, p_5)$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

正则基

$$B^{-1}b \geq 0$$

$$\varepsilon = \min\{\frac{y_{0j}}{-y_{rj}} | y_{rj} < 0\} = \min\{\frac{3}{1}, \frac{4}{2}, \frac{5}{3}\} = \frac{5}{3} \longrightarrow x_3$$
为进基变量

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	x_5	
y_{0j}	0	3	4	5	0	0	
x_3	5/3	1/3	2/3	1	-1/3	0	
\mathcal{X}_{5}	-6	-2	-2	-1	0	1	

 $\times (-1/3)$

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	\mathcal{X}_5	
y_{0j}	0	3	4	5	0	0	
x_3	5/3	1/3	2/3	1	-1/3	0	
X_5	-13/3	-5/3	-4/3	0	-1/3	1	•

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_5]
y_{0j}	-25/3	4/3	2/3	0	5/3	0	h
x_3	5/3	1/3	2/3	1	-1/3	0	×(-5)
X_5	-13/3	-5/3	-4/3	0	-1/3	1	

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{bmatrix} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{bmatrix} A = \begin{bmatrix} A = \begin{bmatrix} A = 1 \\ A = 1 \end{bmatrix} \end{bmatrix}$$

$$y_{0j} = C_j - C_B B^{-1} p > 0$$

$$A = \begin{pmatrix} p_1 & p_2 & p_3 & p_4 & p_5 \\ -1 & -2 & -3 & 1 & 0 \\ -2 & -2 & -1 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} p_3, p_5 \end{pmatrix}$$
$$= \begin{pmatrix} -3 & 0 \\ -1 & 1 \end{pmatrix}$$

正则基

$$B^{-1}b \geq 0$$

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5
y_{0j}	-25/3	4/3	2/3	0	5/3	0
x_3	5/3	1/3	2/3	1	-1/3	0
X_2	13/4	5/4	1	0	1/4	-3/4

 $\times (-3/4)$

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5
y_{0j}	-25/3	4/3	2/3	0	5/3	0
x_3	-1/2	-1/2	0	1	-1/2	1/2
X_2	13/4	5/4	1	0	1/4	-3/4

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	X_4	x_5	
y_{0j}	-21/2	1/2	0	0	3/2 1	/2	٦
X_3	-1/2	-1/2	0	1	-1/2 1	1/2	
x_2	13/4	5/4	1	0	1/4 -:	3/4	\times (-2/3)

$$\varepsilon = \min\{\frac{y_{0j}}{-y_{rj}} \middle| y_{rj} < 0\} = \min\{\frac{\frac{1}{2}}{\frac{1}{2}}, \frac{3}{\frac{1}{2}}\} = \frac{1}{2} \longrightarrow x_1$$
为进基变量

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	\mathcal{X}_2	\mathcal{X}_3	X_4	\mathcal{X}_{5}	
y_{0j}	-21/2	1/2	0	0	3/2	1/2	
x_1	1	1	0	-2	1	1	×(-2)
\overline{x}_2	13/4	5/4	1	0	1/4	-3/4	

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	
y_{0j}	-21/2	1/2	0	0	3/2	1/2	
x_1	1	1	0	-2	1	-1	× (-5/4)
X_2	2	0	1	5/2	-1	1/2	

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

	b	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	
y_{0j}	-11	0	0	1	1	1] 🗂
x_1	1	1	0	-2	1	-1	×(-1/2)
X_2	2	0	1	5/2	-1	1/2	

$$\min S = 3x_1 + 4x_2 + 5x_3 \qquad y_{0j} = C_j - C_B B^{-1} p \geqslant 0$$

$$\begin{bmatrix}
x_1 - 2x_2 - 3x_3 + x_4 = -5 \\
2x_1 - 2x_2 - x_3 + x_5 = -6 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{bmatrix}
A = \begin{bmatrix}
-1 & -2 & -3 & 1 & 0 \\
-2 & -2 & -1 & 0 & 1
\end{bmatrix}$$

最优表

	b	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5
y_{0j}	-11	0	0	1	1	1
x_1	1	1	0	-2	1	-1
X_2	2	0	1	5/2	-1	1/2

$$B = (p_1, p_2)$$

$$= \begin{pmatrix} -1 & -2 \\ -2 & -2 \end{pmatrix}$$

正则基

最优基

$$B^{-1}b \ge 0$$

最优解
$$X^* = (1, 2, 0, 0, 0)^T, S^* = 11$$

原问题最优解 $X^* = (1,2,0)^T$

$$\min S = 3x_1 + 4x_2 + 5x_3$$

$$x_1 - 2x_2 - 3x_3 + x_4 = -5$$

$$2x_1 - 2x_2 - x_3 + x_5 = -6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$(D_1) \max Z = -5\lambda_1 - 6\lambda_2$$

$$\begin{cases} -\lambda_1 - 2\lambda_2 \le 3 \\ -2\lambda_1 - 2\lambda_2 \le 4 \\ -3\lambda_1 - \lambda_2 \le 5 \\ \lambda_1 \le 0 \\ \lambda_2 \le 0 \end{cases}$$

 $y_{0i} = C_i - C_B B^{-1} p_i$

$$(D_1) \max Z = -5\lambda_1 - 6\lambda_2$$

$$\begin{cases}
-\lambda_1 - 2\lambda_2 \le 3 \\
-2\lambda_1 - 2\lambda_2 \le 4 \\
-3\lambda_1 - \lambda_2 \le 5 \\
\lambda_1 \le 0 \\
\lambda_2 \le 0
\end{cases}$$

	b	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5
y_{0j}	-11	0	0	1	1	1
X_1	1	1	0	-2	1	-1
x_2	2	0	1	5/2	-1	1/2

最优基

$$B = (p_1, p_2)$$
$$= \begin{pmatrix} -1 & -2 \\ -2 & -2 \end{pmatrix}$$

$$(y_{04}, y_{05}) = (c_4 - C_B B^{-1} p_4, c_5 - C_B B^{-1} p_5) = -C_B B^{-1} (p_4, p_5) = -C_B B^{-1}$$

$$(1,1) \qquad 0 \qquad E$$

$$(D_1) 有最优解 \lambda^* = C_B B^{-1} = (3,4) \begin{pmatrix} -1 & -2 \\ -2 & -2 \end{pmatrix} = (-1,-1)$$

$$(3,4) \begin{pmatrix} -1 & -2 \\ -2 & -2 \end{pmatrix} = (-1,-1)$$

例1-17:

$$\min S = 3x_1 + 4x_2 + 5x_3$$

 $\begin{cases} x_1 - 2x_2 - 3x_3 + x_4 = -5 \\ 2x_1 - 2x_2 - x_3 + x_5 = -6 \end{cases}$ 对偶
 $\begin{cases} x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$ 对偶
标准形
 $\min S = 3x_1 + 4x_2 + 5x_3$ $(D_2) \max Z = 5y_1 + 6y_2$
 y_1 $\begin{cases} x_1 + 2x_2 + 3x_3 \ge 5 \\ y_2 \end{cases}$ 对偶
最优解 $X^* = (1,2,0)^T$
$$\begin{cases} y_1 + 2y_2 \le 3 \\ 2y_1 + 2y_2 \le 4 \\ 3y_1 + y_2 \le 5 \end{cases}$$
 $y_1 \ge 0$ $y_1 \ge 0$ $y_2 \ge 0$ $y_3 \ge 0$

第一章 线性规划

第八节 对偶单纯形法

- ✓基本思想
- ✓迭代原理
- ✓举例求解
- 影子价格

作业: P96 10 (1) (2)

作业: P84 2 (1) (2)

第一章 线性规划

第八节 对偶单纯形法

- ✓基本思想
- ✓迭代原理
- ✓举例求解
- 影子价格

四. 影子价格:
$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

设B是(P)的最优基

则
$$X^0 = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$
是 (P) 的最优解, $\lambda^0 = C_B B^{-1}$ 是 (D) 的最优解。

且
$$S = CX^0 = \lambda^0 b = C_B B^{-1} b$$
 是最优值。
$$b = (b_1, b_2, \dots, b_m)^T$$
$$= \lambda_1^0 b_1 + \lambda_2^0 b_2 + \dots + \lambda_m^0 b_m \qquad \lambda^0 = (\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0)$$

 b_1,b_2,\cdots,b_m — 通常在实际问题中表示资源拥有量。

\(\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0 \rightarrow \lambda \opin\ \rightarrow \ri

例:

某工厂在计划期内要安排生产甲乙两种产品,它们需要在四种不同的设备上加工。加工工时数、可得利润、总工时数均列于下表。

问: 应如何安排生产才能获利最大?

	A	В	C	D	利润
甲	2	1	4	0	20
乙	2	2	0	4	30
总工时数	12	8	16	12	

(影子价格)

A, B, C, D的资源拥有量

(P)
$$\max S = 20x_1 + 30x_2$$
 (D) $\min Z = 12\lambda_1 + 8\lambda_2 + 16\lambda_3 + 12\lambda_4$

$$\begin{cases} 2x_1 + 2x_2 \le 12 & \lambda_1 \\ x_1 + 2x_2 \le 8 & \lambda_2 \\ 4x_1 + 0x_2 \le 16 & \lambda_3 \\ 0x_1 + 4x_2 \le 12 & \lambda_4 \\ x_j \ge 0, j = 1, 2 \end{cases}$$

$$\begin{cases} 2\lambda_1 + \lambda_2 + 4\lambda_3 + 0\lambda_4 \ge 20 \\ 2\lambda_1 + 2\lambda_2 + 0\lambda_3 + 4\lambda_4 \ge 30 \\ \lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0 \end{cases}$$

例 <u>:</u>		λ_1	λ_2	λ_3	λ_4 -	-A, B,
		A	В	C	D	利润
$\boldsymbol{x_1}$	甲	2	1	4	0	20
$\boldsymbol{x_2}$	Z	2	2	0	4	30
		12	8 ′	16	12	

A.B.C.D的资源拥有量

(P) max $S = 20x_1 + 30x_2$ (D) min $Z = 12\lambda_1 + 8\lambda_2 + 16\lambda_3 + 12\lambda_4$

最优解: $X^0 = (x_1^0, x_2^0)^T$ $\lambda^0 = (\lambda_1^0, \lambda_2^0, \lambda_3^0, \lambda_4^0)^T$

甲乙最优产量

4种设备单位工时的最优定价

总收入: $S^0 = 20x_1^0 + 30x_2^0 = 12\lambda_1^0 + 8\lambda_2^0 + 16\lambda_3^0 + 12\lambda_4^0$

自己生产的利润收入

对外出租的租金收入

C, D的单位资源的价格

(影子价格)

线性规划1-8

影子价格的经济解释:
$$(P)\min S = CX$$
 $(D)\max Z = \lambda b$ $AX = b$ $\lambda A \le C$

设 X^0 是(P)的最优解, $\lambda^0 = C_B B^{-1}$ 是(D)的最优解。

$$\exists S = CX^{0} = \lambda^{0}b = \lambda_{1}^{0}b_{1} + \lambda_{2}^{0}b_{2} + \dots + \lambda_{i}^{0}b_{i} + \dots + \lambda_{m}^{0}b_{m}$$

$$b_1,b_2,\cdots,b_m$$
 ——资源拥有量

$$\lambda_1^0, \lambda_2^0, \dots, \lambda_m^0$$
 ——单位资源的价格(影子价格)

第i 种资源 b_i 的影子价格

$$\lambda_i^0 = \frac{\partial S}{\partial b_i}$$
 — 可用来决定是否应增加第 i 种资源 b_i

当 $\lambda_i^0 = 0$,增加 b_i 一个单位时,S不增加,则不应增加该种资源。

当 $\lambda_i^0 > 0$,增加 b_i 一个单位时,S 增加,则 应增加该种资源。 越大 越多 越

线性规划1-8

第一章 线性规划

第八节 对偶单纯形法

- ✓基本思想
- ✓迭代原理
- ✓举例求解
- ✓影子价格