EE 330 Section 5 Homework 4

Sean Gordon

September 19, 2019

This is just algebra busy work. There is little learning being done here.

1) Area of wafer = $\pi (300/2)^2 = 70685.8mm^2$ # Chips/Wafer: $70685.8/50 = 1413 \ chips$

Hours/Year: $365 \ days/yr * 24 \ hrs/day = 8760 hrs$

248 nm Machine: 193 nm Machine:

Wafers/Year: 80 wafers/hr * Wafers/Year: 20 wafers/hr * 8760 hr/yr = 700,800 wafers/yr 8760 hr/yr = 175,200 wafers/yr

Cost/Wafer: \$10M/700,800 = Cost/Wafer: \$40M/175,200 = \$14.27

Cost/Chip: \$14.27/1413 = \$0.01 Cost/Chip: \$228.31/1413 = \$0.162

Difference = \$0.162 - \$0.01 = \$0.152

2) Dielectrics: $SiO_2=3.9, HfO_2=25$. Thickness must be proportional to dielectric, therefore $t_{HfO_2}=25/3.9*2=12.82nm$

- 3) Vol $SiO_2 = .044nm^3$ $25A \rightarrow 2.5nm$ $7nm * 14nm * 2.5nm = 245nm^3 = 5568 molecules$
- 4) Resistivity of Aluminum = $2.8 * 10^{-8}\Omega m$
- 5) Silver. Expensive with high electron migration potential.
- 6) 300mm wafer thickness = 775 +/- 25um, + 150um for saw = 925um $2m/(925+/-25um)=2105 \rightarrow 2222~wafers$

7)