VLSI LAB REPORT K. Avinash, COE12B009 XILINX

Experiment 1: 4x1 MUX

RTL Schematic

Technology Schematic

Design statistics:

Number of Slices : 1

Number of 4 input LUTs : 2

Number of IOs : 7

Number of bonded IOBs : 7

Delay : 6.054ns (Levels of Logic = 4)

Experiment 2: Priority Encoder

RTL Schematic

Technology schematic

Design Statistics:

Number of Slices : 1

Number of 4 input LUTs : 2

Number of IOs : 6

Number of bonded IOBs : 5

Delay : 5.776ns (Levels of Logic = 3)

Experiment-3: Decoder

RTL Schematic

Technology Schematic

Design statistics:

Number of Slices : 2

Number of 4 input LUTs : 4

Number of IOs : 6

Number of bonded IOBs : 6

Delay : 5.895ns (Levels of Logic = 3)

Experiment-4: Full adder using half adders

RTL Schematic

Technology Schematic

Design statistics

Number of Slices : 1

Number of 4 input LUTs : 2

Number of IOs : 5

Number of bonded IOBs : 5

Delay : 5.776ns (Levels of Logic = 3)

Experiment 5: Binary to XS 3 Converter

RTL Schematic

Technology Schematic

Design statistics

Number of Slices : 2

Number of 4 input LUTs : 4

Number of IOs : 7

Number of bonded IOBs : 7

Delay : 5.895ns (Levels of Logic = 3)

Experiment 6: 2 bit multiplier

Design statistics:

Number of Slices : 2

Number of 4 input LUTs : 4

Number of IOs : 8

Number of bonded IOBs : 8

Delay : 5.895ns (Levels of Logic = 3)

Experiment 7: Latch

RTL Schematic

Technology Schematic

Design statistics

Number of Slices:1Number of 4 input LUTs:1Number of IOs:4

Number of bonded IOBs : 4

Delay : 5.776ns (Levels of Logic = 3)

Experiment-8: D Flip flop

RTL Schematic

Technology Schematic

Design Statistics

Number of Slices : 0

Macros : 1 Registers, 1 Flip-flops

Number of IOs : 4

Number of bonded IOBs : 4

Delay : Before clock: 2.258ns, after clock: 4.04ns

Experiment-9: Boundary scan register

Design statistics

Number of Slices : 2

Number of 4 input LUTs : 3

Number of IOs : 10

Number of bonded IOBs : 10

Macros : 4 Register, 4 Flip-Flops

Delay : Before clock: 2.589ns, after clock: 4.063ns

Experiment-10: Binary to XS 3 Parallelization

Design Statistics

Number of Slices:1Number of 4 input LUTs:2Number of IOs:7Number of bonded IOBs:7

Delay : 6.054ns (Levels of Logic = 4)

Experiment-11: Moore finite state machine (Sequence 10100)

State Diagram

Design Statistics

Number of Slices : 33

Number of 4 input LUTs : 61

Number of IOs : 4

Number of bonded IOBs : 4

Delay : Before clock: 2.054ns, after clock: 4.208ns

Experiment-12: Booth multiplier (4 Bit)

Design Statistics

Number of Slices:21Number of 4 input LUTs:37Number of IOs:16Number of bonded IOBs:16

Delay : 14.205ns (Levels of Logic = 12)

Design statistics

Number of Slices : 1

Number of 4 input LUTs : 1

Number of IOs : 5

Number of bonded IOBs : 5

Macros : 1 Register, 1 Flip-Flops

Delay : Before clock: 2.495ns, after clock: 4.063ns

Experiment-14: Mealy machine

RTL Schematic

Technology Schematic

Design statistics

Number of Slices : 3

Number of 4 input LUTs : 5

Number of IOs : 7

Number of bonded IOBs : 7

Macros : 4 Register, 4 Flip-Flops

Delay : Before clock: 2.677ns, after clock: 3.352ns