# Antisymmetrization cancellations

### Nilin

## February 2022

We consider the numerical stability of the explicitly antisymmetrized function  $% \left( 1\right) =\left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right)$ 

$$Af(x) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) f(x_\sigma), \qquad x_\sigma := x_{\sigma(1)}, \dots, x_{\sigma(n)},$$

Specifically we may consider the case when f is given by a two-layer neural network

$$f(x) = \sum_{k=1}^{m} a_k \tau(w_k \cdot x) = \sum_{k=1}^{m} \tau(u_k \cdot x),$$
 (1)

where  $\tau$  is the ReLU activation function,  $w_k \in \mathbb{R}^{nd}$ ,  $a_k \in \mathbb{R}$ , and  $u_k = a_k w_k$ . We use the He initialization of (1) such that  $a_k \sim \mathcal{N}(0, 2/m)$  and  $w_k \sim \mathcal{N}(0, 2/(nd))^{\otimes nd}$  for  $k = 1, \ldots, m$ .

# 1 Correlations between x and Af(x) for fixed f

In the following we sample  $x \in \mathbb{R}^{nd}$  uniformly from the unit sphere.

#### 1.1 Distance to degenerate subspaces

An antisymmetric function g = Af is zero on each of the subspaces

$$V_{ij} = \{x \in \mathbb{R}^{nd} | x_i = x_j\}$$

of co-dimension d, for  $i \neq j$ . We investigate the relationship between f(x) and the  $L^{\infty,2}$ -distance to the union of these subspaces,

$$\delta(x) = \min\{||x_i - x_j|| : i \neq j\}.$$

For d = 3, n = 5 particles, m = 1000 layers, we get a correlation coefficient of

$$\operatorname{corr}(\delta^2(X), Af^2(X)) \approx 0.3$$



Figure 1: x axis:  $\delta(X)$ , y axis: |Af(X)|

# 2 Uncorrelated function values hypothesis

Suppose that the following holds:

**Hypothesis 1.** The unsymmetrized function f is such that f(x) carries little information about  $f(x_{\sigma})$  for a nontrivial permutation  $\sigma$ .

Under hypothesis 1 we would expect that

$$Af(X) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) f(X_{\sigma}) \approx_{\text{distribution}} \operatorname{RS}(\hat{X}, S) := \sum_{i=1}^{n!} Sf(\hat{X}_i),$$

where S is a Rademacher R.V. and  $\hat{X}$  is drawn from the same distribution as X. Here RS is for 'resample'.

### 2.1 Oscillating activation function

To illustrate the hypothesis we consider a chaotic f with activation function  $\tilde{\tau}(x) = \sin(100x)$ . Parameters n = 8, d = 3, m = 10. The distributions of the outputs from the antisymmetrized function Af (blue) and the resampled distributions (red) are



Figure 2: Af(X) (blue) vs RS(X,S) (red) for oscillating activation. n=8

Thus we see that the hypothesis of uncorrelated function values holds for an oscillatory activation function.

Here the raw (un-symmetrized) function values f(X) have the distribution:



Figure 3: distribution of f(X) for chaotic f

## 2.2 ReLU activation

For the ReLU activation function the distribution of f(X) appears identical to a rescaling of the chaotic function.



Figure 4: distribution of f(X) for ReLU activation

However, the antisymmetrized function has much more cancellation with the ReLU activation:



Figure 5: Af(X) (blue) vs resampled RS(X,S) (red) for ReLU activation. n=8

Thus the hypothesis of uncorrelated f values does not hold for (1) with the ReLU activation.

# 3 n-dependence of $\operatorname{Var} f(X)$ and $\operatorname{Var} Af(X)$

The He initialization yields the correct scaling of the unsymmetrized f when X is a standard Gaussian:



Figure 6:  $\operatorname{Var} f(X)$  as a function of n. Each data point is the median variance of 20 networks sampled with the He initialization.



Figure 7:  $\log \operatorname{Var} Af(X)$  (red) and the number of antisymmetrization terms  $\log(n!)$  (blue) as a function of n. d=3, m=10. Each data point shows the median variance of 10 networks sampled with the He initialization.

Similar plots result when we sample X from the sphere of radius  $\sqrt{nd}$ .