

第7章 级数

收敛性定义: 级数 $\sum_{n=1}^{\infty} a_n$ 收敛 \Leftrightarrow 部分和数列 $\{S_n\}$ 收敛. $(S_n = a_1 + a_2 + \cdots + a_n)$

收敛性判别: *(收敛必要条件) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} a_n = 0$. 即若 $\lim_{n\to\infty} a_n \neq 0$, $\sum_{n=1}^{\infty} a_n$ 发散.

*(**柯西收敛准则**) $\sum_{n=1}^{\infty} a_n$ 收敛 $\Leftrightarrow \{S_n\}$ 为柯西列.

两个常用级数: *(几何级数) $\sum_{n=0}^{\infty} q^n \Rightarrow \exists |q| < 1$ 时,收敛于 $\frac{1}{1-q}$; $\exists |q| \ge 1$ 时发散.

* $(p-\mathbf{3}$ 数) $\sum_{p=1}^{\infty} \frac{1}{n^p}$ \Rightarrow 当p>1时收敛; 当 $p\leq 1$ 时发散.

正项级数的收敛性判别:

由部分和数列 $\{S_n\}$ 严格单调增加得 $\sum a_n$ 收敛 $\Leftrightarrow \{S_n\}$ 有界.

- * 比较判别法及其极限形式
- * 达朗贝尔比值判别法及其极限形式
- * 柯西根值判别法及其极限形式
- * 柯西积分判别法

一般项级数的收敛性判别:

- *交错级数的莱布尼兹判别法.
- *绝对收敛级数必收敛.

(绝对收敛级数与条件收敛级数及其性质)

幂级数的收敛性、收敛域及和函数

- *以 x_0 为中心的幂级数: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, 阿贝尔定理, 收敛半径与收敛域.
- * 收敛半径 R: 当 $|x-x_0| < R$ 时, $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 绝对收敛;

当
$$|x-x_0| > R$$
时, $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 发散.

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}}$$
 (若极限存在) 或 $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}}$ (若极限存在)

- * 幂级数的和函数性质: 连续性、逐项可积性、逐项可导性.
- * 求幂级数的和函数; 函数的幂级数展开(间接展开).
- * 幂级数的应用.*

函数的傅里叶级数展开

* 三角函数系 1, $\cos \omega x$, $\sin \omega x$, $\cos 2\omega x$, $\sin 3\omega x$, $\cdots \cos n\omega x$, $\sin n\omega x$, \cdots 及其正交性.

* 傅里叶系数:
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega x + b_n \sin n\omega x)$$
, $T = \frac{2\pi}{\omega}$.

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos n \omega x dx, \quad n = 0,1,2,3...$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin n\omega x dx, \quad n = 1, 2, 3, \dots$$

- * 狄利克雷收敛定理.
- *将函数展开成正弦级数(奇延拓)和余弦级数(偶延拓).
- * Bessel不等式和Parseval等式及其应用.*

第8章 矢量代数与空间解析几何

(1) 矢量及其运算: $\mathbf{a} = (a_1, a_2, a_3)$, $\mathbf{b} = (b_1, b_2, b_3)$, $\mathbf{c} = (c_1, c_2, c_3)$.

*
$$\boldsymbol{a}//\boldsymbol{b} \iff \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} \iff \boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{0}.$$

*
$$\boldsymbol{a} \perp \boldsymbol{b} \iff a_1b_1 + a_2b_2 + a_3b_3 = 0 \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0.$$

*
$$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \not \equiv \overrightarrow{\boldsymbol{m}} \Leftrightarrow \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \Leftrightarrow (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = 0.$$

(2) 矢量的应用: $\mathbf{a} = (a_1, a_2, a_3)$, $\mathbf{b} = (b_1, b_2, b_3)$, $\mathbf{c} = (c_1, c_2, c_3)$.

* 三角形
$$\triangle ABC$$
 的面积 $S_{\triangle ABC} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$.

* 以 A, B, C, D 为顶点的四面体体积 $V = \frac{1}{6} | (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}|$.

•
$$A, B, C, D$$
 四点共面 $\Leftrightarrow (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} = 0$.

平面方程

(1) 平面方程: 法向量 $\mathbf{n} = (A, B, C)$, 过点 $P_0(x_0, y_0, z_0)$.

* 点法式
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
.

* 一般式
$$Ax + By + Cz + D = 0$$
.

* 截距式
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
, 平面不过原点,与三个坐标轴皆相交.

(2) 点 $P_1(x_1, y_1, z_1)$ 到平面 Ax + By + Cz + D = 0 的距离.

$$d = \left| \overrightarrow{P_0 P_1} \cdot \boldsymbol{n}^0 \right| = \frac{\left| Ax_1 + By_1 + Cz_1 + D \right|}{\sqrt{A^2 + B^2 + C^2}}.$$

直线方程

(1) 直线方程: 直线方向 $\mathbf{u} = (a,b,c)$, 过点 $P_0(x_0,y_0,z_0)$.

* 点向式 (对称式)
$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$
.

* 一般式
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$
 (两个平面的交线)

* 参数式
$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$, $t \in (-\infty, +\infty)$.

(2) 点
$$P_1(x_1, y_1, z_1)$$
 到直线 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$ 的距离.

$$d = \frac{|\overrightarrow{P_0P_1} \times \boldsymbol{u}|}{|\boldsymbol{u}|}. \qquad \overrightarrow{P_0P_1} = (x_1 - x_0, y_1 - y_0, z_1 - z_0), \ \boldsymbol{u} = (a, b, c).$$

平面和直线之间的位置关系等

(1) 两条异面直线之间的距离: $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$, $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$

$$d = \frac{\left| (\mathbf{u}_{1} \times \mathbf{u}_{2}) \cdot \overrightarrow{P_{1}P_{2}} \right|}{\left| \mathbf{u}_{1} \times \mathbf{u}_{2} \right|}, \quad \mathbf{u}_{i} = (a_{i}, b_{i}, c_{i}), \quad i = 1, 2. \quad \overrightarrow{P_{1}P_{2}} = (x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}).$$

(2) 平面東方程: 过直线方向 $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ 的所有平面为

$$\lambda(A_1x + B_1y + C_1z + D_1) + \mu(A_2x + B_2y + C_2z + D_2) = 0. \quad (\lambda^2 + \mu^2 \neq 0)$$

(3) 平面之间、直线之间、平面与直线之间的位置关系

曲面方程和曲线方程

(1) 曲面方程:

- * 显式方程 $z = f(x, y), (x, y) \in D \subset \mathbb{R}^2$.
- * 隐式方程 F(x, y, z) = 0.
- * 参数方程 x = x(u, v), y = y(u, v), z = z(u, v), $(u, v) \in T \subset \mathbb{R}^2$.
- (2) 曲线方程:

* 隐式方程
$$\begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0. \end{cases}$$

- * 参数方程 x = x(t), y = y(t), z = z(t), $t \in [a, b]$.
- (3) 旋转曲面方程、柱面方程、锥面方程; 投影柱面、投影曲线.

常见的二次曲面

(1) 椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

(2) 椭圆抛物面:
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
.

(3) 椭圆锥面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$
.

(4) 单叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
. (直纹面)

(5) 双叶双曲面:
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

(6) 双曲抛物面(马鞍面):
$$z = -\frac{x^2}{a^2} + \frac{y^2}{b^2}$$
. (直纹面)

第9章 多元函数微分学

- (1) 多元函数(数量场)的概念:定义、图像(二元)等
 - * 多元函数的极限,特别是 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$. * 多元函数的连续及连续函数的性质等.
- (2) 偏导数和全微分:偏导数、全微分的定义及意义.
 - *(二元函数)连续,可偏导,可微及偏导数连续的关系

- (3) 高阶偏导数的定义及计算(莱布尼兹公式).
- (4) 复合函数求偏导的链式法则; 隐函数存在定理*及求偏导数和全微分方法.
- (5) 多元函数的泰勒定理(二元函数的泰勒公式)

偏导数的应用

- (1) 多元函数的极值与最大最小值 (驻点、极值判定定理等)
 - * 多元函数条件极值(拉格朗目乘数法)
- (2) 方向导数: 定义, 意义及计算方法
 - *数量场(多元函数)的梯度 **函数沿梯度方向的方向 导数最大,最大值为梯度的模.**
- (3) 向量函数的定义及其极限、连续和导数等.
 - *空间曲线的切线与法平面方程;曲面的切平面与法线方程.
- (4) 向量场的概念;向量场的极限、连续和导数(雅可比矩阵*).

三重积分

第10章 重积分

- (1) 二重积分的定义、意义、可积性*和性质
- (2) 二重积分的计算方法
 - * 直角坐标系下的计算(累次积分)和交换积分次序
 - * 极坐标系下的计算: $\iint_D f(x,y) dx dy = \int_{\alpha}^{\beta} d\theta \int_{r_1}^{r_2} f(r\cos\theta, r\sin\theta) \cdot r dr$
 - * 二重积分的一般变量替 换*: $\iint_D f(x,y) dx dy = \iint_T f[x(u,v),y(u,v)] \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$
- (3) 利用对称性和积分变量的轮换性简化二重积分的计算

$$\iint_{D} f(x,y) dxdy = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(\xi_{i},\eta_{i}) \Delta \sigma_{i}, \quad \forall \text{ fill } P, \quad \forall \text{ fin } (\xi_{i},\eta_{i}).$$

重製粉分

第10章 重积分

- (1) 三重积分的定义、意义、可积性*和性质
- (2) 三重积分的计算方法
 - * 直角坐标系下的计算(累次积分: 投影法、截面法)和交换积分次序
 - * 柱面坐标系下的计算: $x = r \cos \theta$, $y = r \sin \theta$, z = z.
 - * 球面坐标系下的计算: $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$.
 - * 三重积分的一般变量替换*:

$$\iiint\limits_V f(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint\limits_V f[x(u,v,w),y(u,v,w),z(u,v,w)] \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| \mathrm{d}u \mathrm{d}v \mathrm{d}w.$$

(3) 利用对称性和积分变量的轮换性简化三重积分的计算

重积分的应用

几何应用 求平面图形面积,立体体积: $A(D) = \iint_{\Omega} 1 dx dy$, $V(\Omega) = \iiint_{\Omega} 1 dx dy dz$.

 $V(\Sigma) = \iint_{\Sigma} f(x,y) dxdy$, 其中 D 为立体的顶面 Σ : z = f(x,y) 在 xoy 平面上的投影区域.

求质量、重心(形心)、转动惯量及物体间的 万有引力等 物理应用

* 质量: 平面薄片 $M_D = \iint \rho(x,y) dxdy$; 立体 $M_V = \iiint \rho(x,y,z) dxdydz$.

* 重心: 平面薄片 $x^* = \frac{\iint_D x \rho(x, y) dx dy}{M_D}$, $y^* = \frac{\iint_D y \rho(x, y) dx dy}{M_D}$.

空间物体
$$x^* = \frac{\iiint\limits_V x \rho(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{M_V}$$
, $y^* = \frac{\iiint\limits_V y \rho(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{M_V}$, $z^* = \frac{\iiint\limits_V z \rho(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z}{M_V}$

* 转动惯量: 平面薄片 $I_l = \iint_D \rho(x,y) \cdot d^2(x,y) dxdy$ 空间物体 $I_l = \iiint_V \rho(x,y,z) d^2(x,y,z) dxdydz$

第11章 曲线积分

(1) 曲线的表示

* 参数方程
$$\begin{cases} x = x(t), \\ y = y(t), & t \in [a, b]; \\ z = z(t), \end{cases}$$
 * 一般方程
$$\begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0. \end{cases}$$

(2) 弧长微分与弧长的计算

*
$$ds = \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$
. * $s = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$.

平面曲线弧长微分:
$$x = x(t), y = y(t) \rightarrow ds = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

- 显式方程 y = f(x) \rightarrow $ds = \sqrt{1 + [f'(x)]^2} dx$.
- 极坐标方程 $r = r(\theta)$ \rightarrow $ds = \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta$.

第一类曲线积分(弧长积分)

- (1) 定义及性质: $\int_C f(x,y,z) ds$ 意义: 线密度为 f(x,y,z) 的曲线 C 的质量.
- (2)第一类曲线积分的计算 (积分下限小于积分上限)

*
$$\int_C f(x, y, z) ds = \int_a^b f[x(t), y(t), z(t)] \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt.$$

(3) 第一类曲线积分的应用: 质线的质量、重心、转动惯量等.

第二类曲线积分

- (1) $\not\equiv \chi$: $\int_C (\vec{f}(x,y,z) \cdot \boldsymbol{\tau}^0) ds = \int_C \vec{f}(x,y,z) ds = \int_C P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz.$
 - 意义: 力场 $\vec{f}(x,y,z)$ 沿曲线 C 移动质点所作的功. 其中 C 为 x = x(t), y = y(t), z = z(t).
- (2) 第二类曲线积分的计算(积分下限为起点参数值,积分上限为终点参数值)
- * $\int_{C} P dx + Q dy + R dz = \int_{a}^{b} \{P[x(t), y(t), z(t)]x'(t) + Q[x(t), y(t), z(t)]y'(t) + R[x(t), y(t), z(t)]z'(t)\}dt.$
- *化作第一类曲线积分计算: $\int_C P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_C (\vec{f}(x,y,z) \cdot \boldsymbol{\tau}^0) ds.$
- *利用Stokes 公式化作曲面积分计算 (闭曲线C):

$$\oint_C P dx + Q dy + R dz = \iint_S \left(\operatorname{rot} \vec{f} \cdot \boldsymbol{n}^0 \right) dS = \iint_S \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

平面曲线: 参数方程代入直接计算; 利用格林公式计算 $\int_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$.

曲线积分与道路无关性

(1) 有势场(保守场)的概念,积分与路径无关的概念,势函数的计算. (曲线积分的第一基本定理;曲线积分的第二基本定理)

(2) **四个等价条件:** 设 $D \subset \mathbb{R}^2$ 为单连通区域, P,Q 偏导数连续,则以下命 题等价.

- $\vec{f} = (P(x, y), Q(x, y))$ 在 D 内为有势场;
- \vec{f} 在 D 内的曲线积分与路径无 关;
- \vec{f} 在 D 内沿任意分段光滑曲线 的曲线积分为零;
- \vec{f} 在 D 内恒有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.

第12章 曲面积分

(1) 曲面的表示

- * 参数方程 $\sigma(u,v) = (x(u,v), y(u,v), z(u,v)), (u,v) \in T \subset \mathbb{R}^2 \implies 基本法向量 <math>\vec{N} = \frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v}.$
- * 显式方程 $z = f(x,y), (x,y) \in D \subset \mathbb{R}^2 \Rightarrow$ 基本法向量 $\vec{N} = \left(-f_x'(x,y), -f_y'(x,y), 1\right)$
- * 隐式方程 F(x,y,z)=0, ⇒ 基本法向量 $\vec{N}=\frac{1}{F_z'}(F_x',F_y',F_z')$.

(2) 曲面面积的计算

*
$$S = \iint_T \left| \frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v} \right| du dv = \iint_D \sqrt{1 + [f'_x]^2 + [f'_y]^2} dx dy = \iint_{D_{xy}} \frac{\sqrt{[F'_x]^2 + [F'_y]^2 + [F'_z]^2}}{|F'_z|} dx dy.$$

第一类曲面积分

- (1) 定义及性质: $\iint_S f(x,y,z) dS$ 意义: 面密度为 f(x,y,z) 的曲面 S 的质量.
- (2) 第一类曲面积分的计算

*
$$\iint_{S} f(x, y, z) dS = \iint_{T} f[x(u, v), y(u, v), z(u, v)] \left| \frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v} \right| du dv;$$

*
$$\iint_{S} f(x, y, z) dS = \iint_{D} f[x, y, z(x, y)] \sqrt{1 + (f'_{x})^{2} + (f'_{y})^{2}} dxdy$$
, $\sharp \vdash S : z = z(x, y), (x, y) \in D$.

*
$$\iint_{S} f(x, y, z) dS = \iint_{D_{xy}} f[x, y, z(x, y)] \frac{\sqrt{(F'_{x})^{2} + (F'_{y})^{2} + (F'_{z})^{2}}}{|F'_{z}|} dxdy.$$

(3) 第一类曲面积分的应用: 曲面的质量、重心、转动惯量等.

第二类曲面积分

(1) 定义及性质:

$$\iint_{S} \left(\vec{f}(x, y, z) \cdot \boldsymbol{n}^{0} \right) dS = \iint_{S} \vec{f}(x, y, z) \, dS = \iint_{S} P(x, y, z) \, dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy.$$

意义: 向量场 $\vec{f}(x,y,z)$ 通过曲面 S 指定侧的通量(流量).

- (2) 第二类曲面积分的计算:
 - * 直接计算(投影到各坐标平面,注意曲面的方向)

$$\iint_{S} P(x,y,z) \, \mathrm{d}y \, \mathrm{d}z + Q(x,y,z) \, \mathrm{d}z \, \mathrm{d}x + R(x,y,z) \, \mathrm{d}x \, \mathrm{d}y = \pm \iint_{D_{yz}} P(x,y,z) \, \mathrm{d}y \, \mathrm{d}z \pm \iint_{D_{zx}} Q(x,y,z) \, \mathrm{d}z \, \mathrm{d}x \pm \iint_{D_{xy}} R(x,y,z) \, \mathrm{d}x \, \mathrm{d}y.$$

- * 化作第一类曲面积分计算 $\iint_{S} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iint_{S} \left(\vec{f}(x,y,z) \cdot \boldsymbol{n}^{0} \right) \, \mathrm{d}S, \ \vec{f}(x,y,z) = (P,Q,R).$
- * 利用高斯公式化作三重 积分计算(闭曲面 S) $\iint_S P dy dz + Q dz dx + R dx dy = \iiint_V \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$.

三个重要定理(公式)

格林定理: 设 D 为平面有界闭区域,其 边界 C 是分段光滑曲线, P(x,y), Q(x,y) 在 D 上

具有连续偏导数,则有
$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \mathrm{d}y = \oint\limits_{C} P(x, y) \mathrm{d}x + Q(x, y) \mathrm{d}y.$$

高斯定理: 设V 是空间有界闭区域,其边界S 为分片光滑闭曲面,P(x,y,z), Q(x,y,z), R(x,y,z)

在
$$V$$
 上具有连续偏导数,则有 $\iint_{S_{d,low}} P dy dz + Q dz dx + R dx dy = \iiint_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$.

斯托克斯定理: 设 P(x,y,z), Q(x,y,z), R(x,y,z) 在空间区域 K 内具有连续偏导数,曲面 S 是 K 内的分片光滑曲面,其边 界 L 为分段光滑曲线,S 的法向与的 L 方向符合右手法则,则 有

$$\iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy + R dz.$$

场论初步 向量场 $\vec{f}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z)).$

• \vec{f} 为**有势场** \Leftrightarrow $\exists \varphi(x,y,z)$, 使得 $\nabla \varphi = \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = \vec{f}$.

 $\nabla \varphi$ 为 φ 的 **梯度场**; 并称 φ 为 \vec{f} 的 **势函数**, 有势场亦称 **保守场**.

- div $\vec{f} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ 称为 \vec{f} 的**散度场**. 若 div $\vec{f} \equiv 0$,则称 \vec{f} 为**无源场**.
- rot $\vec{f} = \left(\frac{\partial R}{\partial y} \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right)$ 称为 \vec{f} 的**旋度场**. 若 rot $\vec{f} \equiv 0$, 则称 \vec{f} 为**无旋场**.

有势场 ⇔ 保守场 ⇔ 无旋场.

• 若 \vec{f} 既是无旋场又是无源场 ,则称 \vec{f} 为**调和场**. 此时其势函数 $\varphi(x,y,z)$ 满足

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0, \quad 此方程称为 调和方程 (Laplace 方程), \quad \varphi 称为 调和函数.$$

