

UNIVERSIDADE DE ITAUNA

Universidade de Itauna		Curso: Ciência Computação	ı da	Disciplina: Lógica - Teoria				
Professor (a): Da	Lista 11							
3º periodo	Turno: Noite		Semestre: 2°	Ano: 2021				
Sequência e Sucessão - Progressão aritmética								

Para a matemática são importantes as sequência que obedeçam a uma lei de formação.

$$a_1=4$$
 $a_2=4+5$

$$a_1=4$$
 $a_2=4+5$ $a_3=9+5$ $a_4=14+5$

$$a_5=19+5$$

Progressão Aritmética -> PA: Sequência de números reais ,onde cada um tem seus termos, a partir do segundo, é igual a soma do anterior com uma constante r, chamada de razão do PA.

 $(a_1,a_{n-1}+r)$ é PA => an= $a_{n-1}+r$ $(n \ge 2 e n \in \mathbb{N})$. Então:

$$a_1=1^{\circ} \text{ termo } a_2=a_1+r$$

$$a_3 = a_2 + r$$

$$a_1=1^{\circ}$$
 termo $a_2=a_1+r$ $a_3=a_2+r$ an= $a_{n-1}+r$ -> termo geral do PA

PA
$$(y-r, y, y+r)$$

$$r = (y-r) - y = (y+r) - (y+r)$$

PA de razão $r = 3 \implies (2,5,8,11...)$

PA de razão -2=>(4,2,0,-2,-4)

Podemos relacionar entre si, termos não consecutivos de uma PA

EX: estabelecer uma razão entre a3 e a7

$$a_7 = a_6 + r$$
$$a_7 = a_3 + 4r$$

$$a_5 + r + r$$

$$a_4 + r + r + r$$

$$a_8 = a_5 + 31$$

$$(8 - 5) = 3$$

então
$$(a_1,a_2...,a_{p-11},a_p,a_{p+11}...a_n)$$

$$a_p = \frac{a_{p-1} + a_{p+1}}{2}$$

Soma dos termos de uma PA $\frac{a_1 + a_n}{2}$.n

Si= soma dos termos impares

Sp= soma dos termos pares

$$TM = \frac{a_1 + a_n}{2}$$

Exercícios

1. O valor de K para que 2K-1,3K e 3K+2 formem nesta ordem uma PA.

PA(2K-1;3K;3K+2)

3K-(2K-1)=3K+2-3K

3K-2K+1=2

K=1

2. Determine o 15° termo da PA onde a1= -7 e r = 3.

an=an-1+r

a15= a1+14r

-7+14*3=35

3. Qual é a razão de uma PA de TM =23 termos, cujo primeiro termo é 8 e o ultimo é 74 ?

41-11R=8

41-8=11R

R=3

4. Sendo $n \in \mathbb{N}$, obtenha os quatro primeiros termos das sequências dadas por:

a)
$$a_n = 3n + 2$$
 (5,8,11,14)

b)
$$a_n = n^2 - n$$
 (0,2,6,12)

c)
$$a_n = \frac{n^2}{3}$$
 (1/3,4/3,3,16/3)

d)
$$a_n = n(3+n)$$
 (4,10,18,28)

e)
$$a_n = \frac{2n-1}{n}$$
 (1,3/2,5/3,7/4)

f)
$$a_n = (-2)^{n+1}$$
 (4,-8,16,-32)

g)
$$a_n = |n-4|$$
 (3,2,1,0)

h)
$$\frac{2n^2}{3}$$
 -1 (-1/3,5/3,5,29/3)

5) Verifique se cada uma das sequencias abaixo é PA e, em caso afirmativo, determine a razão:

PA de R=3

b)
$$\left(\frac{1}{3}, -\frac{1}{6}, -\frac{2}{3}\right)$$
 PA de R=-1/2

6) Determine **x** para a PA $\left(x, \frac{3}{2}, -\frac{2}{3}\right)$ **x=11/3**

7) Numa PA, o produto de seus três termos é igual a 15 e a sua soma é 9. Escreva essa PA.

DADOS: PA (y, y-r, y+r) PA= (1,3,5)

8) Escreva o termo geral das sequências:

a)
$$(1,4,9,16,25,...)$$
 an= n^2

b)
$$(3,6,9,12,...)$$
 an= 3n

c)
$$(2,5,8,11,14,...)$$
 an= 3n-1

9) Determine quais das seqüências abaixo são PA. Em caso afirmativo, determine a razão e classifique-as em crescente, decrescente ou constante:

- b) (22;18;14;12; ...) **NÃO É PG**
- c) (-3;-5;-7; ...) **PA, R=-2 DECRESCENTE**
- d) (5;5;5; ...) **PA, R=0 CONSTANTE**
- e) (1; -2; 3;-4; ...) **NÃO É PG**

10) Os números x^2 , $(x + 2)^2$ e $(x + 3)^2$ estão em PA nessa ordem. Deternine esses números.

PA= (1/4, 25/4, 49/4)

11)Determine o 10° termo da (2,8...)

r=6

 $a_{10} = a_1 + 9r = 2 + 54 = 56$