0.1 LTI-system

Ett vanligt sätt att karakterisera ett system är att ange dess utsignal för en given och känd insignal. För insignalen $x(t) = \delta(t)$ blir utsignalen y(t) = h(t). Det kallas för systemets *impulssvar*. Motsvarande samband gäller för ett diskret system. Andra vanliga insignaler för att beskriva system är

$$\begin{array}{ccc} \text{In} & \Longrightarrow \text{ ut} \\ & \text{Enhetssteg} & \Longrightarrow \text{Stegsvar} \\ & \text{Sinusformad signal med } \omega = \omega_0 & \Longrightarrow \text{ Frekvenssvar} \end{array}$$

0.2 Samband mellan insignal, utsignal och LTI-system (i tidsdomänen)

0.2.1 Diskret fall

Anta att vi känner impulssvaret h[n] till ett diskret LTI-system.

Låt x[n] vara en godtycklig diskret signal.

Bilda $x[n] \cdot \delta[n] = x[0]\dot{\delta}[n]$ och därefter bilda $x[n] \cdot \delta[n-k] = x[k]\delta[n-k]$. Tydligen kan vi teckna x[n] som en summa av viktade och skiftade enhetsimpulser. Alltså

För ett LTI-system gäller

Insignal
$$\Longrightarrow$$
 Utsignal
$$\delta[n] \implies h[n]$$

$$\delta[n-k] \implies h[n-k]$$

$$x[k] \cdot \delta[n-k] \implies x[k]h[n-k]$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k] \implies y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$$

y[n] ovan kallas för Faltningssumman. Förenklat skrivs y[n] = x[n] * h[n]. Med en variabelsubstitution kan man visa att $x[n]*h[n] = h[n]*x[n] \implies \sum_{k=-\infty}^{\infty} x[k] \cdot$

$$h[n-k] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k].$$

0.2.2 Kontinuerligt fall

Anta att vi känner impulssvaret h(n) till ett kontinuerligt LTI-system. Låt också x(t) vara en godtycklig (in)signal och låt $\hat{x}(t)$ vara en approximation av x(t) där $\hat{x}(t)$ är summan av pulserna x_{-1}, x_0, x_1, \ldots o.s.v.

Vi definierar en enhetspuls som $\delta_{\epsilon}(t) = \frac{1}{\epsilon}$ när $0 \le t < \epsilon$ och 0 annars.

Figur 1

Våra pulser kan vi nu teckna som ..., $x_{-1} = \delta_{\epsilon}(t+\epsilon)x(-\epsilon)\epsilon$, $x_0 = \delta_{\epsilon}(t)x(0)\epsilon$, $x_1 = \delta_{\epsilon}(t-\epsilon)x(\epsilon)\epsilon$, ... och $\hat{x}(t) = \sum_{-\infty}^{\infty} \delta_{\epsilon}(t-k\epsilon)x(k\epsilon)\epsilon$. Låt $h_{\epsilon}(t)$ vara systemets utsignal för insignalen $\delta_{\epsilon}(t)$ (pulssvar). För ett LTI-system gäller då

Insignal
$$\Longrightarrow$$
 Utsignal
$$\delta_{\epsilon}(t) \Longrightarrow h_{\epsilon}(t)$$

$$\delta_{\epsilon}(t - k\epsilon) \Longrightarrow h_{\epsilon}(t - k\epsilon)$$

$$\delta_{\epsilon}(t - k\epsilon)x(k\epsilon)\epsilon \Longrightarrow h_{\epsilon}(t - k\epsilon)x(k\epsilon)\epsilon$$

$$\sum_{k = -\infty}^{\infty} \delta_{\epsilon}(t - k\epsilon)x(k\epsilon)\epsilon = \hat{x}(t) \Longrightarrow \sum_{k = -\infty}^{\infty} h_{\epsilon}(t - k\epsilon)x(k\epsilon)\epsilon = \hat{y}(t)$$

Låt $\epsilon \to 0$, då gäller

$$\begin{split} & \delta_{\epsilon}(t) \to \delta(t) \\ & h_{\epsilon}(t) \to h(t) \\ & k\epsilon \to \tau \text{ (En kontinuerlig variabel)} \epsilon \\ & \sum \to \int \\ & \hat{x}(t) \to x(t) \\ & \hat{y}(t) \to y(t) \end{split}$$

Vi får då

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau)x(\tau)d\tau$$

vilket kallas faltningsintegralen. Förenklat skrivsätt är y(t)=h(t)*x(t). Genom en variabelsubstitution kan man visa h(t)*x(t)=x(t)*h(t), alltså att $\int_{-\infty}^{\infty}h(t-\tau)x(\tau)\mathrm{d}\tau=\int_{-\infty}^{\infty}x(t-\tau)h(\tau)\mathrm{d}\tau$

"Det är backe upp här och backe ner där."

- Ants Silberberg

0.3 Systemegenskaper kopplade till impulssvar

0.3.1 Kausalt LTI-system

Diskret: h[k]=0 för k<0 och därmed $y[n]=\sum_{k=0}^{\infty}h[k]x[n-k]$. Motsvarande gäller för kontinuerliga system: $y(n)=\int_0^{\infty}h(\tau)x(t-\tau)\mathrm{d}\tau$

0.3.2 Stabilt LTI-system

Diskret: Anta $\forall n: |x[n]| \leq M_x < \infty$ d.v.s. att insignalen är begränsad. Utifrån det kan vi resonera att $|y[n]| = \left|\sum_{k=-\infty}^{\infty} h[k]x[n-k]\right|$ och eftersom $|a+b| \leq |a| + |b|$ gäller $|y[n]| \leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$ och än en gång, eftersom $|ab| = |a| \cdot |b|$ får vi $|y[n]| \leq \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$ men eftersom $|x[k]| \leq M_x$ vet vi att $|y[n]| \leq M_x \sum_{k=-\infty}^{\infty} |h[k]|$. Med kravet på stabila system att $\forall n: |y[n]| < \infty$ följer villkoret $\sum_{-\infty}^{\infty} |h[k]| < \infty$. Det kallar man att impulssvaret är absolutsummerbart. Samma gäller för kontinuerliga system, då får man villkoret $\int_{\infty}^{\infty} |h(\tau)| d\tau < \infty$ och det kallas för att impulssvaret är absolutintegrerbart.