ExcelShift 使用文档

1. 简介

ExcelShift是一个基于配置的excel数据提取框架,该框架支持多种数据提取模式,包括单个对象、普通列表、行组列表以及垂直列表等。

2. 项目结构

```
ExcelShift4/
2
   ├─ src/
  | └─ main/
3
       ├─ java/
4
5
        └─ excel/
6
7
                └─ shift/
8
                   ├─ excel/
                                  # 核心提取器实现
9
                    ├─ model/
                                  # 数据模型类
                    ├─ result/
                                  # 结果处理类
10
                    └─ util/
                                  # 工具类
11 |
12
       └─ resources/
                                  # 配置文件目录
# 项目依赖管理
```

3. 快速开始

3.1 添加依赖

在您的 pom.xml 中添加以下依赖:

3.2 创建配置文件

首先创建一个JSON配置文件来定义数据映射规则。例如:

```
{
1
2
      "wellTestData": {
        "targetClass": "com.your.package.WellTestData",
3
4
        "description": "井测试数据提取配置",
5
        "order": 1,
       "resultType": "LIST", // 代表返回类型为list类型
6
7
        "startRow": "5",
8
        "startColumn": "A",
        "endRow": null,
9
       "table": {
10
          "columns": {
11
12
            "depthMd": {
```

```
13
               "order": 1,
14
               "javaFieldName": "depthMd",
15
               "javaFieldType": "Double",
               "columnCell": "E",
16
               "description": "深度(MD) m"
17
18
            },
            "sandBody": {
19
              "order": 2,
20
               "javaFieldName": "sandBody",
21
22
               "javaFieldType": "String",
23
               "columnCell": "C",
               "description": "砂体",
24
              "isMergeType": true
25
26
          }
27
        }
28
29
      }
30 }
```

3.3 创建数据模型类

创建与配置对应的Java实体类:

```
1 @Data
2 public class WellTestData {
3 private Double depthMd; // 深度(MD)
4 private String sandBody; // 砂体
5 // 其他字段...
6 }
```

3.4 使用ExcelExtractor提取数据

```
1 // 指定Excel文件路径
 2
   String excelPath = "path/to/your/excel/file.xlsx";
 3
   // 配置文件路径
   String configPath = "path/to/your/config.json";
 4
 5
 6
   // 需要提取的类列表
 7
   List<Class<?>> classList = new ArrayList<>();
8
   classList.add(WellTestData.class);
9
10
   // 创建提取器
   ExcelExtractor extractor = new ExcelExtractor(excelPath, configPath,
11
    classList);
12
13
   // 提取指定工作表的数据
    SheetExtractionResult result = extractor.extractSheetByIndex(0); // 解析第一个
14
    excel的sheet
15
   // 获取提取结果
16
   if (result.isSuccess()) {
17
18
       List<WellTestData> dataList = result.getResultList(WellTestData.class);
     // 如果是single类型的类,那么使用getResult 来接受单个对象。
19
       // 处理提取的数据
```

```
dataList.forEach(System.out::println);

// 或者提取excel所有工作表数据 适用于与当前配置一样的sheet否则只有部分成功。

ExtractionResult allResults = extractor.extractAllSheet();
```

4. 配置文件详解

4.1 提取器类型

ExcelShift支持四种提取器类型说明我们以这个日报举例说明:

• SINGLE: 提取单个对象,如表头、表格概述等例如标题、某某公司等信息

• LIST: 提取普通表格数据,每行对应一个对象 例如上面图中的井斜数据、作业计划等等

• GROUP_LIST:提取行组数据,多行组成一个对象如下 4、5、6 三行组成一个逻辑上的对象。

1													HZ19	-6-1	d井录	井油	气显え	示表									
2	序	井利	Pand	厚度	#8	₹Tvd	垂厘		岩	石定名	钻时				气	测 1	直(%)					荧光		岩样	適照	含油	槽面
2	号	(n		(n)		n)	垂厚 (m)	层位	颜色	岩性	(min/m)	全量	C1	C2	C3	104	nC4	105	nC5	CO2	面积	级别	颜色	反应	颜色	产状	槽面 显示
4	Ī										2.79	0.1015	0.0099	0.0013	0.0010	0.0007	0.0004	0.0006	0.0004								
5	1	2720.00	2726.00	6.00	2626.16	2631.83	5.67	珠江组	浅灰色	荧光泥质粉砂岩	~	~	~	~	~	~	~	~	~	0.01	10	D	暗黄色	慢速	乳白色	荧光	无
6											5, 01	0.1311	0.0200	0.0020	0.0022	0.0017	0.0008	0.0011	0.0007								
7											2.79	0.1071	0.0115	0.0010	0.0011	0.0009	0.0005	0.0006	0.0006							П	
8	2	2739.00	2740.00	1.00	2644.07	2645.01	0.94	珠江组	浅灰色	荧光泥质粉砂岩	~	~	~	~	~	~	~	~	~	0.01	5	D	暗黄色	慢速	乳白色	荧光	无
9											5.01	0.1842	0.0334	0.0039	0.0051	0.0037	0.0019	0.0024	0.0011								i
10											2.48	0.1210	0.0143	0.0015	0.0016	0.0013	0.0007	0.0009	0.0006								
11	3	2771.00	2775.00	4.00	2674.18	2677. 94	3.76	珠江组	浅灰色	荧光泥质粉砂岩	~	~	~	~	~	~	~	~	~	0.01	30	С	亮黄色	中連	乳白色	荧光	无

• VERTICAL_LIST: 提取垂直表格数据,每列对应一个对象,每行是对象的不同属性如下图

4	Α	В	С	D	E	F	G	Н	1
1	Conc					HZ19-6-	1d井RUN1A电	缆地层测试取	以样数据表
2	井名:		HZ19	9-6-1d	仪器名称:	MDT	入井序号:	RUN1A	
3	ŧ	羊品编号		RUN1A_1#_3745	RUN1A_2#_2348	RUN1A_3#_2629	RUN1A_4#_3570	RUN1A_5#_30040	
4	取样	深度	m	4091.03	4091.03	4091.03	4016.99	4016.99	
5	探针	类型		速星封隔器(SATURN)探头	速星封隔器(SATURN)探头	速星封隔器(SATURN)探头	超大探针 (XLD)	超大探针 (XLD)	
6	测前钻井	液柱压力	psi	7422.37	7422.37	7422.37	7282.40	7282.40	
7	测后钻井	液柱压力	psi	7402.82	7402.82	7402.82	7280.39	7280.39	
8	泵抽前地层	恢复压力	psi	5180.71	5180.71	5180.71	5054.74	5054.74	
9	取样后地层	恢复压力	psi	5180.70	5180.70	5180.70	5054.48	5054.48	
10	取样后日	E恢流度	mD/cP	11.000	11.000	11.000	124.730	124.730	
11	关样筒时	样筒压力	psi	11691.00	11636.00	11708.00	11147.00	10908.00	
12	泵抽!	时间	min	186.80	327.00	334.00	145.00	165.00	
13	泵抽流·	体体积	L	70.80	131.10	132.30	54.50	60.50	
14	取样	时间	min	1.50	1.50	1.50	1.50	1.50	
15	样筒:	容积	cm³	420.00	420.00	420.00	420.00	420.00	
16	样筒地	面压力	psi			0.00		0.00	
17		气	cm³					200	
18		油	cm ³			0		0	
19	样品体积	油气描述				微量气		少量气	
20	11-10114代	水	cm³						
21		钻井液滤液	cm³						
22		水+钻井液滤液	cm³			400		400	
23		氯根	ppm			31500		18000	
24	液样	电阻率	Ω·m			0.13		0.21	
25		温度	℃			24.60		25.30	
26		氯根	ppm	89000	89000	89000	89000	89000	
27	占进时钻井液滤液	电阻率	Ω·m	0.04	0.04	0.04	0.04	0.04	

4.2 配置项说明

配置文件的完整示例结构如下,一个配置文件可以包含多个单个类的配置:

```
1 | {
                                  // 提取器唯一标识 用于动态表达式计算的引用
2
     "extractorId": {
      "targetClass": "com.example.Data", // 目标Java类的全限定名,必填
3
      "description": "配置描述", // 配置描述,用于说明该提取器的用途
4
5
      "order": 1,
                                 // 提取器执行顺序,必填,数字越小越先执行
      "resultType": "LIST",
                                 // 结果类型,必填,可选值:
6
   SINGLE/LIST/GROUP_LIST/VERTICAL_LIST 一个类只能选则一种
7
       // 注意:startRow是以直接数据行作为设置的 例如数据从第一行开始那么startrow为1 而不
   是他的表头行。其余定位也是如此以数据行作为起始来设置位置信息。
      "startRow": "5",
                                  // 开始行号,从1开始计数 如果通过startFlag进
8
   行确定,则设置为null 否则必填 可以填动态表达式
9
      "startColumn": "A",
                                  // 开始列名,使用Excel列名(A,B,C...)
                                  // 结束行号,可选, null表示动态计算 如果通过
10
      "endRow": null,
   endFlag进行确定,则设置为null 否则必填 可以填动态表达式
11
      "endColumn": null,
                                  // 结束列名,可选,用于VERTICAL_LIST类型
12
      "isDynamic": true,
                                  // 类里面是否包含动态表达式的计算 例如
   {operationRecord1.endRow + 1} 默认false
                                  // 表格结束行数不确定并且下方 包含其他的结构
      "isDynamicRows": true,
13
   需要结合endFlag,startflag来使用来确定endRow或者startRow , startFlag和endFlag 其中
   之一不为null则该值必须为true
14
      "groupRowCount": 3,
                                 // 每组包含的行数,仅用于GROUP_LIST类型
                                  // 开始标志配置,用于动态范围识别起始行 结合
      "startFlag": {
15
   isDynamicRows使用
16
        "text": "作业概况",
                                // 标志文本
        "columnCell": "B"
17
                                 // 标志所在列
18
      },
      "endFlag": {
19
                                 // 结束标志配置,用于动态范围识别结束行 结合
   isDynamicRows使用
        "text": "作业计划",
                                // 标志文本
20
21
        "columnCell": "B"
                                 // 标志所在列
22
      },
23
      "fields": {
                                  // SINGLE类型的字段映射
        "fieldName": { // 对应的实体类属性名最好和下面javaFieldName 保持一致
24
25
          "order": 1,
                                  // 字段顺序,必填
          "javaFieldName": "fieldName", // Java类中的字段名, 必填
26
```

```
"javaFieldType": "String", // Java字段类型,必填
27
28
          "excelCell": "B4",
                                 // Excel单元格坐标,必填 可以包含动态表达式例
   如"C${operationRecord1.endRow + 1}",
29
          "description": "字段描述",
                                 // 字段描述
          "extractPattern": "井名: (.*)", // 正则表达式提取模式
30
          "defaultValue": "" // 默认值
31
32
        ... // 下面还可以包含其余类似的filed字段
33
34
      },
      "table": {
                                  // LIST/GROUP_LIST/VERTICAL_LIST类型的字
35
   段映射
        "columns": {
36
          "fieldName": { // 对应的实体类属性名最好和下面javaFieldName 保持一致
37
            "order": 1,
                                  // 字段顺序,必填
38
            "javaFieldName": "fieldName", // Java类中的字段名, 必填
39
            "javaFieldType": "String", // Java字段类型,必填
40
            "columnCell": "A", // Excel列名,用于LIST和GROUP_LIST类型
41
           "rowCell": "3",
                                // Excel行号,用于VERTICAL_LIST类型 用于
42
   确定垂直的excel的字段的行
           "groupRowIndex": 1,
43
                                // 组内行索引,仅用于GROUP_LIST类型 表示在组
   内的第几行取数据
           "description": "字段描述", // 字段描述
44
            "unit": "m",
45
                                  // 单位
           "extractPattern": "正则表达式", // 正则表达式提取模式
46
47
            "defaultvalue": "默认值", // 默认值
           "isMergeType": true // 是否为合并单元格 如果是合并单元格并且当前
48
   数据null,就会默认向上查询到第一个值作为当前的值
49
          }
50
        }
      }
51
52
     }
53
    "extractor2": { // 第二个类结构配置与上面类似,下面还可以定义其余类的配置
54
      . . .
55
      }
56
   }
```

5. 高级功能

5.1 合并单元格处理

通过设置 isMergeType: true, ExcelShift可自动处理合并单元格,从上方单元格提取数据。

5.2 正则表达式提取

使用 extractPattern 配置项可从单元格文本中提取指定模式的数据:

```
1 | "extractPattern": "井\\s*深: (\\d+\\.?\\d*)m"
```

5.3 动态范围识别

可通过设置开始和结束标志自动识别数据范围:

```
1 "startFlag": {
2 "text": "作业概况",
3 "columnCell": "B"
4 },
5 "endFlag": {
6 "text": "作业计划",
7 "columnCell": "B"
8 }
```

5.4外部创建配置对象然后传入

除了通过配置文件路径创建提取器外,还可以预先创建和修改配置对象:

```
1  // 创建配置对象
2  ExcelMappingConfig config = new ExcelMappingConfig(configPath);
3  // 可以对配置进行修改
4  // ...
5  // 使用配置对象创建提取器
7  ExcelExtractor extractor = new ExcelExtractor(excelPath, config, classList);
```

6. 支持的数据类型

ExcelShift支持以下Java数据类型的自动转换:

• String:字符串

• Integer/int: 整数

• Long/long: 长整数

• Double/double: 双精度浮点数

• Float/float: 单精度浮点数

• Boolean/boolean: 布尔值

7. 常见使用场景

7.1 提取表头数据或单个对象(SINGLE)

```
1
 2
      "reportHeader": {
        "targetClass": "com.example.ReportHeader",
 3
 4
        "resultType": "SINGLE",
 5
        "fields": {
          "wellName": {
 6
            "javaFieldName": "wellName",
 7
 8
            "javaFieldType": "String",
 9
            "excelCell": "B4",
            "extractPattern": "井名: (.*)"
10
11
12
        }
      }
13
14 }
```

7.2 提取表格数据(LIST)

```
1
    {
 2
      "gasTestData": {
 3
         "targetClass": "com.example.GasTestData",
 4
         "resultType": "LIST",
 5
         "startRow": "10",
 6
         "table": {
 7
           "columns": {
 8
             "depth": {
               "javaFieldName": "depth",
 9
               "javaFieldType": "Double",
10
               "columnCell": "A"
11
12
             },
             "totalGas": {
13
               "javaFieldName": "totalGas",
14
15
               "javaFieldType": "Double",
               "columnCell": "B"
16
             }
17
18
           }
19
        }
20
      }
    }
21
```

7.3 提取行组数据(GROUP_LIST)

```
1
    {
 2
      "wellLoggingData": {
 3
        "targetClass": "com.example.WellLoggingData",
 4
        "resultType": "GROUP_LIST",
 5
        "startRow": "5",
 6
        "groupRowCount": 3,
 7
        "table": {
 8
           "columns": {
9
             "depthStart": {
               "javaFieldName": "depthStart",
10
               "javaFieldType": "Double",
11
12
               "columnCell": "C",
13
               "groupRowIndex": 1
14
             },
             "c1Min": {
15
               "javaFieldName": "c1Min",
16
17
               "javaFieldType": "Double",
               "columnCell": "H",
18
               "groupRowIndex": 2
19
20
            }
21
           }
        }
22
23
      }
24
    }
```

7.4 提取垂直表格数据(VERTICAL_LIST)

```
1
    {
 2
      "sampleData": {
 3
         "targetClass": "com.example.SampleData",
 4
         "resultType": "VERTICAL_LIST",
 5
         "startRow": "3",
 6
         "startColumn": "D",
 7
         "table": {
 8
           "columns": {
 9
             "sampleCode": {
10
               "javaFieldName": "sampleCode",
               "javaFieldType": "String",
11
               "rowCell": "3"
12
13
             },
             "sampleDepth": {
14
15
               "javaFieldName": "sampleDepth",
               "javaFieldType": "Double",
16
               "rowCell": "4"
17
18
             }
19
           }
20
        }
21
22
    }
```

8. 实际应用示例

8.1 提取钻井报告数据

```
1
    public class DrillReportExample {
 2
        public static void main(String[] args) {
            String excelPath = "path/to/drill_report.xls";
 3
 4
            String configPath = "src/main/resources/originalConfig.json";
 5
 6
            List<Class<?>> classList = new ArrayList<>();
 7
            classList.add(DrillReport.class);
 8
            classList.add(OperationRecord.class);
9
            classList.add(SelectedItem.class);
            classList.add(InspectionItem.class);
10
11
            classList.add(WellDeviationData.class);
            classList.add(LayerDescription.class);
12
            classList.add(GasTestData.class);
13
14
            ExcelExtractor extractor = new ExcelExtractor(excelPath, configPath,
15
    classList);
16
            SheetExtractionResult result = extractor.extractSheetByIndex(9);
17
            if (result.isSuccess()) {
18
                // 获取钻井报告基本信息
19
20
                DrillReport report = result.getResult(DrillReport.class);
21
                // 获取各种列表数据
22
23
                List<OperationRecord> records =
    result.getResultList(OperationRecord.class);
```

```
List<LayerDescription> layerDescriptions =
24
    result.getResultList(LayerDescription.class);
                List<GasTestData> gasData =
25
    result.getResultList(GasTestData.class);
26
                List<InspectionItem> inspectionItems =
    result.getResultList(InspectionItem.class);
                List<SelectedItem> selectedItems =
27
    result.getResultList(SelectedItem.class);
                List<WellDeviationData> deviationData =
28
    result.getResultList(WellDeviationData.class);
29
                // 处理提取的数据
30
                System.out.println("钻井报告基本信息:");
31
                System.out.println(report);
32
33
                System.out.println("\n作业记录: ");
34
35
                records.forEach(System.out::println);
36
                // ... 处理其他数据
37
38
            }
39
        }
    }
40
```

8.2 提取电缆地层测试数据

```
public class CableLayerSampleDataExample {
 1
 2
        public static void main(String[] args) {
 3
            String excelPath = "path/to/cable_layer_test.xlsx";
            String configPath = "src/main/resources/verticalConfig.json";
 4
 5
            List<Class<?>> classList = new ArrayList<>();
 6
 7
            classList.add(CableLayerSampleData.class);
            classList.add(SampleVolume.class);
 8
 9
            ExcelExtractor extractor = new ExcelExtractor(excelPath, configPath,
10
    classList);
11
            SheetExtractionResult result = extractor.extractSheetByIndex(1);
12
13
            if (result.isSuccess()) {
                // 获取样品数据
14
                List<CableLayerSampleData> sampleData =
15
    result.getResultList(CableLayerSampleData.class);
16
                List<SampleVolume> volumeData =
    result.getResultList(SampleVolume.class);
17
                System.out.println("样品数据: ");
18
19
                sampleData.forEach(System.out::println);
20
                System.out.println("\n体积数据: ");
21
                volumeData.forEach(System.out::println);
22
23
            }
        }
24
25
    }
```

9. 常见问题

9.1 如何处理合并单元格?

对于合并单元格,有两种处理方式:

- 1. 使用 isMergeType: true 配置,自动从上方单元格获取数据
- 2. 使用 extractPattern 配置,从合并单元格文本中提取所需数据

9.2 如何动态识别数据范围?

通过配置 startFlag 和 endFlag ,可以动态识别数据范围:

```
1 {
2
      "isDynamic": true,
3
      "isDynamicRows": true,
      "startFlag": {
4
        "text": "作业概况",
 5
        "columnCell": "B"
6
7
      },
8
      "endFlag": {
9
        "text": "作业计划",
10
        "columnCell": "B"
      }
11
12
    }
```

9.3 如何处理垂直表格数据?

对于垂直表格,使用 VERTICAL_LIST 类型,并使用 rowCell 指定行号:

```
1
   {
2
      "resultType": "VERTICAL_LIST",
3
      "startColumn": "D",
4
      "table": {
 5
        "columns": {
 6
          "fieldName": {
            "javaFieldName": "fieldName",
 7
8
            "javaFieldType": "String",
            "rowCell": "3"
9
10
          }
11
        }
12
      }
13
    }
```

10. 常用函数列表

10.1 ExcelExtractor 构造函数

```
1 // 方式1: 使用配置文件路径创建
2 public ExcelExtractor(String excelPath, String configPath, List<Class<?>>> classList)
3 // 方式2: 使用配置对象创建
```

```
public ExcelExtractor(String excelPath, ExcelMappingConfig config,
List<Class<?>> classList)
```

参数说明:

• excelPath: Excel文件路径

• configPath:配置文件路径

• config: ExcelMappingConfig配置对象

• classList:需要提取的类列表

10.2 数据提取方法

```
// 提取所有工作表数据 适用于一个excel文件里面的所有sheet结构相同的情况,否则只有部分会成功 public ExtractionResult extractAllSheet()

// 提取指定索引的工作表数据 public SheetExtractionResult extractSheetByIndex(int sheetIndex)

// 提取指定名称的工作表数据 public SheetExtractionResult extractSheetByName(String sheetName)
```

10.3 结果获取方法

```
1  // 获取单个对象结果
2  public <T> T getResult(Class<T> clazz)
3  
4  // 获取对象列表结果
5  public <T> List<T> getResultList(Class<T> clazz)
6  
7  // 获取提取是否成功
8  public boolean isSuccess()
```

10.4 使用示例

```
1 // 1. 基本使用
2 ExcelExtractor extractor = new ExcelExtractor(excelPath, configPath,
   classList);
3 SheetExtractionResult result = extractor.extractSheetByIndex(0);
4
   if (result.isSuccess()) {
5
       List<WellTestData> dataList = result.getResultList(WellTestData.class);
6
   }
7
8
   // 2. 提取多个工作表
   ExtractionResult allResults = extractor.extractAllSheet();
9
10  for (SheetExtractionResult sheetResult : allResults.getSheetResults()) {
       if (sheetResult.isSuccess()) {
11
12
           // 处理每个工作表的数据
13
       }
14
   }
```

10.5 配置对象操作

```
1 // 创建配置对象
2
   ExcelMappingConfig config = new ExcelMappingConfig(configPath);
4 // 获取所有提取器配置
 5
   List<ExtractorConfig> extractors = config.getAllExtractors();
6
   // 获取指定ID的提取器配置
8 ExtractorConfig extractor = config.getExtractor("extractorId");
9
10 // 获取配置描述
11
   String description = extractor.getDescription();
12
13 // 获取目标类
14 String targetClass = extractor.getTargetClass();
15
16 // 获取结果类型
   String resultType = extractor.getResultType();
17
```

10.6 注意事项

- 1. 数据提取顺序:
 - o 按照配置文件中 order 字段指定的顺序执行
 - 。 数字越小越先执行
 - 。 建议按照数据依赖关系设置顺序
- 2. 错误处理:
 - o 始终检查 isSuccess() 返回值