Le robot roulant peut être équipé des capteurs suivants :

IMU (400Hz)	Accéléromètre	X, Y, Z
	Gyroscope	X, Y, Z
	Magnétomètre	X, Y, Z
Tachymètre (50Hz)	Vitesse/Distance	X
GPS (5Hz)	Position	Longitude, Latitude, Altitude

De manière générale (UAV), la composition de l'état du système à l'instant t est :

x(t)	Géo-Position	X, Y, Z
	Attitude	X, Y, Z
	Vitesse	X, Y, Z
	Bias gyroscope	X, Y, Z
	Bias accéléromètre	X, Y, Z

Dans le contexte d'un robot roulant (UGV), je propose de simplifier l'état du système :

x(t)	Géo-Position	X, Y
	Attitude / Cap	Z
	Vitesse	X
	Bias gyroscope	Z
	Bias accéléromètre	X

Notes :

- Le véhicule n'a pas de degré de liberté en Z, l'estimation de sa position en Z est inutile.
 - o Cette simplification fait l'hypothèse d'un circuit plan : OK
- Le contrôle de la trajectoire n'exploite pas le roulis et le tangage.
 - Cette simplification fait l'hypothèse d'un châssis à très faible débattement des suspensions.
 - Pas de correction en Gz et Ax avec impact potentiel sur l'estimation position, vitesse et attitude. A consolider.
- Le véhicule n'a pas de degré de liberté en Y, l'estimation de sa vitesse en Y est inutile.
 - L'estimation, voire le contrôle du glissement dans les virages, peut être recherché.

Les capteurs les plus réactifs peuvent service de **commande** à l'instant t :

u(t)	Accéléromètre X	ax (m/s ⁻²)
	Gyroscope Z	wz (rad/s)

La prédiction du filtre de Kalman s'exprime par :

$$x_t = A \cdot x_{t-1} + B \cdot u_t$$

οù

Α	1	0	0	dt*cos(cap)	0	-dt ² *cos(cap)/2
	0	1	0	dt*sin(cap)	0	-dt ² *sin(cap)/2
	0	0	1	0	-dt	0
	0	0	0	1	0	-dt
	0	0	0	0	1	0
	0	0	0	0	0	1

В	dt ² *cos(cap)/2	0
	dt ² *cos(cap)/2	0
	0	dt
	dt	0
	0	0
	0	0

Développements:

Position X_t = Position X_{t-1} + Vitesse X_{t-1} *dt*cos(cap_t) + ½*Accélération X_t *dt²*cos(cap_t)

 $PositionY_t = PositionY_{t-1} + VitesseX_{t-1}*dt*sin(cap_t) + \frac{1}{2}*AccélérationX_t*dt^2*sin(cap_t)$

 $Cap_t = Cap_{t-1} + (VitesseRotationZ_t - BiasGyroZ_{t-1})*dt$

 $\label{eq:VitesseXt} VitesseX_{t-1} + (AccélérationX_{t}\text{-}BiasAccéléromètreX_{t-1})*dt$

Note : **Q** comprend les variances de l'accéléromètre et du gyroscope.

Les capteurs les moins réactifs sont exploités pour l'observation :

z(t)	Géo-Position	X, Y	GPS (Lon,Lat)
	Attitude / Cap	Z	Magnétomètre
	Vitesse	Х	Tachymètre
	Bias gyroscope	Z	Moyenne GyroZ à l'arret
	Bias accéléromètre	Х	Moyenne AccX à l'arret

La mise à jour du filtre de Kalman s'exprime par :

$$z_t = C \cdot x_t$$

où **C** est une matrice identité.

Note : R comprend les variances du GPS, du magnétomètre et du tachymètre.