## lockchainbased voting

### potential & limitations

Jeremy Clark (@PulpSpy)
Concordia Institute for Information Systems Engineering



Time Stamping



Prediction Markets



Anonymity



Solvency



Usability



History & SoK

## Part 1: Scaling Bitcoin in terms of users

Part 2:
Blockchain-based voting

### A First Look at the Usability of Bitcoin Key Management

Shayan Eskandari\*, David Barrera<sup>†</sup>, Elizabeth Stobert<sup>‡</sup>, and Jeremy Clark\*
\*Concordia University, <sup>†</sup>ETH Zürich, <sup>‡</sup>Carleton University

#### The Other Side of the Coin: User Experiences with Bitcoin Security and Privacy\*

Katharina Krombholz, Aljosha Judmayer, Matthias Gusenbauer, and Edgar Weippl

#### Of Two Minds, Multiple Addresses, and One Ledger: Characterizing Opinions, Knowledge, and Perceptions of Bitcoin Across Users and Non-Users

Xianyi Gao, Gradeigh D. Clark, Janne Lindqvist Rutgers University

| 15:25 - 15:50 Sia                                   | David Vorick                 |
|-----------------------------------------------------|------------------------------|
| 15:50 - 16:20 Fidelity: Bitcoin usability & scaling | Dave Weissburg Raghav Chawla |
| 16:20 - 16:45 Identity                              | Christian<br>Lundkvist       |

## Who are the Bitcoin non-users & what do they think

#### Average Bitcoin User

- male (95%)
- 32 (average age)
- american (44%)
- libertarian (47%)

Non-users: residual humans

#### Non-users think Bitcoin is:

- speculative
- for black market sales
- difficult to use
- complicated

#### Non-users don't use Bitcoin b/c:

- don't understand it
- no need for it
- have to mine to get it
- don't know any accepting merchants

### Non-users think a better financial system would be:

- faster transactions
- error-prevention/recovery
- lower fees
- cross-device portability

## When non-users turn into users, they meet new concerns:

- price volatility
- security
- et cetera



#### On security

- 46% (/1000) use a hosted wallet
- Coinbase has most users
- Bitcoin Core & Armory has most value however
- 0% use an air-gap device
- 22% have lost money
  - Hardware failure (eg hard-drive)
  - Software failure (eg wallet.dat)
  - Malware

### What is wrong with keys?

- 1) Lost user didn't memorize, no resets
- 2) Stolen user is fully liable, no protection
- 3) Use protection & availability trade-off

| Catagomi                        | Example         | Malw | he Resistant | Kepi Offin | e Third P | arty Physici | A Theft  Resilie | d Observation | and Loss Charles | Julia Access | o Funds<br>Software<br>Cross-device | Portability |
|---------------------------------|-----------------|------|--------------|------------|-----------|--------------|------------------|---------------|------------------|--------------|-------------------------------------|-------------|
| Category  Keys in Local Storage | Bitcoin Core    | -    | •            | •          |           | •            |                  |               |                  | ,            |                                     |             |
|                                 |                 |      |              | •          |           | •            | •                | •             | •                |              |                                     |             |
| Password-protected Wallets      | MultiBit        |      | 0            | •          | 0         | •            |                  | •             | •                |              |                                     |             |
| Offline Storage                 | Bitaddress      | 0    | •            | •          |           |              | •                |               |                  |              | •                                   |             |
| Air-gapped Storage              | Armory          | 0    | •            | •          |           | •            | •                | •             |                  |              |                                     |             |
| Password-derived Keys           | Brainwallet     |      | •            | •          | 0         |              |                  | •             | •                | •            | •                                   |             |
| Hosted Wallet (Hot)             | Coinbase.com    |      |              |            |           |              | •                | •             | •                | •            | •                                   |             |
| Hosted Wallet (Cold)            |                 | 0    | •            |            |           |              | •                | •             |                  | •            | •                                   |             |
| Hosted Wallet (Hybrid)          | Blockchain.info |      | 0            | 0          |           |              | •                | •             | •                | •            | •                                   |             |
| Cash                            |                 | •    | •            | •          |           | •            | •                | •             | •                | •            | •                                   |             |
| Online Banking                  |                 |      |              |            |           |              | •                | •             | •                | •            | •                                   |             |

No solutions, only trade-offs

#### Hosted Wallet Manifesto

- Security people hate hosted wallets
- They are arguably against Bitcoin's principles
- BUT they offer the best shot at user scalability
- Idea: stop shaming people for using online wallets or keeping their BTC on exchanges
- Instead work at making these as secure as possible

Proof of Solvencies — snapshot in time
 Give users privacy-preserving proof

#### Provisions: Privacy-preserving Proofs of Solvency for Bitcoin Exchanges

Gaby G. Dagher Concordia University

Benedikt Bünz Stanford University Joseph Bonneau (⊠)<sup>\*</sup>
Stanford University

Jeremy Clark Concordia University Dan Boneh Stanford University

- Proof of Solvencies snapshot in time
   Give users privacy-preserving proof
- 2) Bitcoin covenants slow theft down Composed with solvency

#### **Bitcoin Covenants**

Malte Möser<sup>1</sup>, Ittay Eyal<sup>2</sup>, and Emin Gün Sirer<sup>2</sup>

Department of Information Systems, University of Münster, Germany Department of Computer Science, Cornell University, USA

- 1) Proof of Solvencies snapshot in time Give users privacy-preserving proof
- 2) Bitcoin covenants slow theft down Composed with solvency: limited liability



- 1) Proof of Solvencies snapshot in time Give users privacy-preserving proof
- 2) Bitcoin covenants slow theft down Composed with solvency: limited liability

3) Divert liability to company — eliminate impact Established & diversified banks; insurance

</part1>

### Voting

Cryptographic voting systems prove your ballot is included and unmodified

The hard questions for any new blockchain proposal:

- 1) Eligibility
- 2) Ballot secrecy
- 3) Integrity



### Eligibility

#### One vote per:

- 1) Unrestricted no issue
- 2) Voter requires an external roster (TTP)
- 3) Mined block (work) novel for Bitcoin+
- 4) BTC unit (stake) Provisions can do this
- 5) Algorithmic description novel for Ethereum+

#### Ballot Secrecy

For public votes, no problem (shareholder votes, etc)

For work, stake, & algorithmic eligibility: anonymity of underlying crypto-currency

For roster-based w/ secrecy, you have a real challenge

- You can build an external cryptographic structure to link IDs to addresses [JCJ, Civitas, Selections, etc]
- You can even prevent coercion with indistinguishable fake addresses, however heavy lifting is external

#### Integrity

All cryptographic voting systems use a "bulletin board:" an append-only broadcast channel (sometimes anonymous)

Conventional elections typically ban "running tallies"

Blockchains are the best bulletin boards we have ever seen, better than purpose-build ones (esp. on equivocation)

Blockchains offer lightweight time-stamping (via network consensus) and strong "carbon-dating": backdating a message = forking and catching up to the work



#### Scantegrity II Municipal Election at Takoma Park: The First E2E Binding Governmental Election with Ballot Privacy

| Richard Carback  UMBC CDL                  | David Chaum                   | Jeremy Clark University of Waterloo | John Conway  UMBC CDL |
|--------------------------------------------|-------------------------------|-------------------------------------|-----------------------|
| Aleksander Essex<br>University of Waterloo | Paul S. Herrnson<br>UMCP CAPC | Travis Mayberry UMBC CDL            | Stefan Popoveniuc     |
| Ronald L. Rivest MIT CSAIL                 | Emily Shen MIT CSAIL          | Alan T. Sherman<br>UMBC CDL         | Poorvi L. Vora<br>GW  |



| Summary           |                                                           |
|-------------------|-----------------------------------------------------------|
| Size              | 258 (bytes)                                               |
| Received Time     | Oct 18, 2011 1:26:00 PM                                   |
| Mined Time        | Oct 18, 2011 1:26:00 PM                                   |
| Included in Block | 0000000000000b304a21bd0e83769f0065a0d291cbe5296af52590fb8 |

#### **Details**



#### Take-away

Play to Bitcoin+'s comparative advantages

Don't try and replace conventional voting with blockchain solutions

Don't be a solution looking for a problem

Find interesting new areas that can be democratized with novel definitions of eligibility enabled by Bitcoin+

# Questions

@PulpSpy j.clark@concordia.ca