

基于学生早期行为的学业困难识别研究

模式识别期末大作业实验报告

姓名	吴怡宁、向娅萌、杨羔
学号	22336245,
学院	计算机学院
专业	计算机科学与技术

2025年7月2日

目录

1	实验	:背景	1
	1.1	问题定义描述	1
	1.2	数据集介绍	1
	1.3	算法原理介绍	1
		1.3.1 线性分类器	1
		1.3.2 非线性分类器	1
		1.3.3 决策树	1
		1.3.4 集成方法	2
		1.3.5 聚类算法	2
		1.3.6 神经网络	2
2	实验	·····································	3
	2.1	实验设置	3
		2.1.1 数据预处理	3
		2.1.2 评估标准	3
	2.2	线性分类器训练流程	3
	2.3	非线性分类器(XGBoost)训练流程	3
	2.4	随机森林模型训练流程	4
	2.5	集成方法	5
	2.6	聚类算法	5
	2.7	神经网络	5
3	实验	·····································	5
	3.1	线性分类器	5
		3.1.1 实验输出分析	5
		3.1.2 特征重要性分析	5
		3.1.3 模型局限性与改进方向	5
	3.2	非线性分类器 (XGBoost)	5
		3.2.1 实验输出分析	5
		3.2.2 特征重要性分析	6
		3.2.3 模型优势与改进方向	7
	3.3	随机森林	7
		3.3.1 实验输出分析	7
		3.3.2 特征重要性分析	8
		3.3.3 模型局限性与改进方向	8
	3.4	集成方法	9

基于学生早期行为的学业困难识别研究

	3.4.1	实验输出分析	9
	3.4.2	特征重要性分析	9
	3.4.3	模型局限性与改进方向	9
3.5	聚类算	法	9
	3.5.1	实验输出分析	9
	3.5.2	特征重要性分析	9
	3.5.3	模型局限性与改进方向	9
3.6	神经网	络	9
	3.6.1	实验输出分析	
	3.6.2	特征重要性分析	9
	3.6.3	模型局限性与改进方向	9
3.7	模型优	· 3分析	9

1 实验背景

1.1 问题定义描述

在现代在线教育平台中,及时识别可能存在学业困难的学生对于实现个性化干预和 提高课程完成率具有重要意义。学生在学习初期的行为数据(如资源访问频率、作业完 成情况等)中,往往潜藏着影响学习结果的关键信号。

本实验旨在利用学生在课程前四周内的学习行为数据,构建分类模型预测其是否存在学业困难。我们以学生最终成绩为主标签(Fail 视为"困难学生"),同时结合点击频率、活跃天数、测验提交情况和得分等多维行为特征,通过训练不同类型的分类模型,探索模型对学业风险学生的识别能力与适用性。

实验中将使用六种机器学习算法(线性分类器、非线性分类器、决策树、集成方法,聚类算法(如 K-Means、层次聚类)、神经网络)进行对比,分析其在准确性、效率、鲁棒性和可解释性等维度的表现差异,并探讨模型对不同行为特征的敏感度和预测贡献。

1.2 数据集介绍

OULAD 官网地址

1.3 算法原理介绍

1.3.1 线性分类器

线性分类器是一类通过线性决策边界将样本进行分类的模型。其基本思想是使用一个线性函数对输入特征进行加权求和,并通过阈值进行二分类。典型的线性分类器包括感知机(Perceptron)和逻辑回归(Logistic Regression)。例如,逻辑回归通过 sigmoid 函数将线性组合的结果映射到 [0,1] 区间,从而输出概率。

1.3.2 非线性分类器

非线性分类器通过引入非线性映射或核函数,将原始特征空间映射到高维空间,使得在新空间中可以使用线性分类器完成非线性分类任务。支持向量机(SVM)在使用核函数(如 RBF 核、多项式核)时就是一种非线性分类器。

1.3.3 决策树

决策树是一种树状结构的分类与回归模型。它通过对特征空间进行条件划分,将样本划分为不同的子集,最终形成一棵从根节点到叶节点的决策路径。每个内部节点表示一个特征的判定,叶节点表示分类结果。常用的划分标准包括信息增益、信息增益率和基尼指数。

1.3.4 集成方法

集成方法通过结合多个基学习器来提高模型的稳定性和预测性能。常见的集成方法包括 Bagging(如随机森林)和 Boosting(如 AdaBoost、Gradient Boosting)。随机森林通过构建多个决策树并取其多数投票结果,提升了抗过拟合能力;而 Boosting 通过迭代地训练弱分类器,并关注前一轮错误分类的样本,从而提升整体准确率。

1.3.5 聚类算法

聚类是一种无监督学习方法,用于将样本按照相似度划分为不同的簇。

K-Means 第法通过迭代优化目标函数最小化样本到簇中心的距离,来划分 K 个聚类。初始阶段随机选择 K 个中心点,接着在每轮迭代中进行样本分配与中心更新,直至收敛。

层次聚类 层次聚类通过构建一棵聚类树(dendrogram)来逐步合并或划分样本。自底向上(凝聚型)方法从每个样本开始逐步合并最近的聚类;自顶向下(分裂型)方法则从整体开始逐步分裂为子簇,直到满足停止条件。

1.3.6 神经网络

神经网络模拟生物神经元连接结构,由输入层、若干隐藏层和输出层构成。每个神经元接收来自前一层的输入,进行加权求和后通过激活函数(如 ReLU、Sigmoid)输出结果。

多层感知机(MLP) 多层感知机是前馈神经网络的典型结构,由多个全连接层构成。通过反向传播算法(Backpropagation)进行权重更新,使得损失函数最小化。

卷积神经网络(CNN) CNN 主要用于处理具有空间结构的数据(如图像),通过卷积层提取局部特征,再通过池化层降维,最终由全连接层输出分类结果。其优势在于参数共享与局部连接,适合高维输入。

循环神经网络(RNN) RNN 适用于序列数据建模。其隐层状态在时间步之间传递,能够捕捉时间上的依赖性。改进版本如 LSTM(长短期记忆网络)和 GRU(门控循环单元)能够更有效处理长期依赖问题。

2 实验流程

2.1 实验设置

本实验基于 OULAD (Open University Learning Analytics Dataset)数据集,选取课程 FFF-2013J 中的学生为研究对象,旨在利用其前 4 周学习行为预测最终是否 Fail。采用的特征包括:

- VLE 点击行为(点击次数、活跃天数、点击密度等)
- 资源使用分布(对各种类型资源的点击总数)
- 评估成绩(前4周测验平均分、测验次数、分数标准差)
- 注册信息(注册时间、持续天数)

2.1.1 数据预处理

- 仅保留课程代码为 FFF, 呈现时间为 2013J 的数据;
- 删除特征重要性低的资源点击类特征,如 sharedsubpage, dataplus;
- 缺失值填充为 0。

2.1.2 评估标准

为了充分评估对 Fail 类学生的识别能力,本实验采用以下评估指标:

- Accuracy (准确率)
- Precision (精确率)
- Recall (召回率)
- F1-Score (综合评价)
- 特征重要性分析

2.2 线性分类器训练流程

2.3 非线性分类器(XGBoost)训练流程

在 train_xgboost.py 中,我们使用了 XGBoost 分类器进行建模,其核心优势在于非线性建模能力强、处理类别不平衡灵活。

模型初始化时设置了适应类别不平衡的 scale_pos_weight 参数, 计算如下:

```
scale_pos_weight = (y_train == 0).sum() / (y_train == 1).sum()
```

模型构建如下:

```
1  xgb_clf = xgb.XGBClassifier(
2    objective='binary:logistic',
3    n_estimators=200,
4    max_depth=6,
5    learning_rate=0.05,
6    subsample=0.8,
7    colsample_bytree=0.8,
8    scale_pos_weight=scale_pos_weight,
9    random_state=42,
10    use_label_encoder=False,
11    eval_metric='logloss',
12  )
13   xgb_clf.fit(X_train, y_train)
```

预测时同样使用了阈值调整策略:

```
1  y_prob = xgb_clf.predict_proba(X_test)[:, 1]
2  y_pred = (y_prob >= 0.65).astype(int)
```

最后输出包括准确率、分类报告、AUC 分数与特征重要性排名。该模型更能捕捉复杂行为特征与测验得分的交互关系,对于提升 Recall (尤其是 Fail 类)表现较明显。

XGBoost 模型训练时间略长,但在召回率和 AUC 表现上优于随机森林,适合应用于需要高准确识别学业困难学生的场景。

2.4 随机森林模型训练流程

在 train random forest.py 中,我们首先调用了数据处理模块:

```
from data_processing import load_and_extract_features
X, y = load_and_extract_features()
```

随后,将数据划分为训练集与测试集,比例为 8:2,并采用了 stratify=y 保持类别分布一致。

模型使用了 Scikit-learn 的 RandomForestClassifier,为提高对不平衡类别的识别能力,设置 class weight='balanced':

预测阶段我们使用了调节阈值的方法来优化对 Fail 类的识别:

```
1  y_prob = rf_clf.predict_proba(X_test)[:, 1]
2  y_pred = (y_prob >= 0.65).astype(int)
```

最后,模型输出了准确率、分类报告和特征重要性,以便进一步分析重要行为特征。 该流程简单高效,训练时间短,适合快速迭代,并可通过特征重要性分析辅助教育 干预策略设计。

- 2.5 集成方法
- 2.6 聚类算法
- 2.7 神经网络

3 实验结果

- 3.1 线性分类器
- 3.1.1 实验输出分析
- 3.1.2 特征重要性分析
- 3.1.3 模型局限性与改进方向
- 3.2 非线性分类器 (XGBoost)
- 3.2.1 实验输出分析
 - 整体准确率为 0.856, 很好地捕捉到了早期行为与最终成绩之间的复杂关系。
 - 对"非 Fail"学生(类别 0)识别性能优异,precision = 0.90, recall = 0.92, f1-score 达到 0.91,能够准确识别大多数正常学习状态的学生。
 - 对 "Fail" 学生(类别 1)的识别能力增强,recall 达到 0.62,表明模型对高风险 学生的捕捉能力更强。

Accuracy: 0.85	557586837294	33		
Classification	Report: precision	recall	f1-score	support
0 1	0.90 0.66	0.92 0.62	0.91 0.64	434 113
accuracy macro avg weighted avg	0.78 0.85	0.77 0.86	0.86 0.77 0.85	547 547 547

图 1: XGBoost 模型在前 4 周数据下的分类结果

• **ROC-AUC 达到 0.873**,说明模型整体区分正负样本的能力较强,具有良好的判别性能。

Feature Importances:	
registration_days	0.139945
active_days_4w	0.074135
avg_score_4w	0.072214
resource_clicks_ouelluminate_4w	0.069077
total_clicks_4w	0.068359
score_std_4w	0.052600
resource_clicks_ouwiki_4w	0.052380
resource_clicks_quiz_4w	0.043555
resource_clicks_homepage_4w	0.041906
resource_clicks_resource_4w	0.040109
resource_clicks_subpage_4w	0.037549
quiz_count_4w	0.037463

resource_clicks_page_4w	0.036478
resource_clicks_forumng_4w	0.035259
resource_clicks_oucollaborate_4w	0.035000
resource_clicks_oucontent_4w	0.034560
resource_clicks_url_4w	0.033455
click_density_4w	0.032604
resource_clicks_glossary_4w	0.032449
date_registration	0.030902
resource_clicks_externalquiz_4w	0.000000

图 2: XGBoost 模型对早期行为特征的重要性排序

3.2.2 特征重要性分析

XGBoost 的特征重要性相对更分散、稳定,避免了单一特征的"过拟合式依赖":

- registration_days (0.140): 注册后在平台持续的时间仍是最关键的预测因子;
- active_days_4w (0.074)、avg_score_4w (0.072): 活跃天数和早期成绩是衡量参与度与学习表现的重要维度;
- resource_clicks_ouelluminate_4w (0.069): 在线课堂参与频率与 Fail 密切相关,可能反映课程互动程度;
- total_clicks_4w (0.068): 总体点击量是衡量投入的有效指标;

3.2.3 模型优势与改进方向

- Fail 类识别能力较强: 召回率提升至 0.62, f1-score 提升至 0.64, 更好支持对高风 险学生的早期干预。
- 非线性建模能力强: 能捕捉特征之间的交互关系, 适合复杂的教育行为数据;
- 整体性能更稳定:即便在样本不均衡的背景下,也能兼顾两类样本的表现,ROC-AUC 达 0.87。

• 局限性:

- 部分资源特征(如 resource_clicks_externalquiz_4w)重要性为 0,可删除以简化模型;
- 调参复杂,需通过网格搜索等方式进一步优化超参数;
- 模型可解释性略差,需借助 SHAP 等工具进一步解释个体预测。

3.3 随机森林

3.3.1 实验输出分析

Accuracy: 0.83	546617915904	93		
Classification	Report]: precision	recall	f1-score	support
0 1	0.88 0.62	0.91 0.53	0.90 0.57	434 113
accuracy macro avg weighted avg	0.75 0.83	0.72 0.84	0.84 0.73 0.83	547 547 547

图 3: 随机森林模型在前 4 周数据下的分类结果

- **整体准确率达到了 0.835**, 表现良好,说明模型能够较好地识别大部分学生是否 会 Fail。
- 对"非 Fail"学生(类别 0)识别表现优异,precision = 0.86,recall = 0.90,说明模型在识别正常学生方面具有很高的准确性。

Feature Importances:	
registration_days	0.247068
avg_score_4w	0.082592
total_clicks_4w	0.075624
active_days_4w	0.061290
resource_clicks_forumng_4w	0.052155
resource_clicks_ouwiki_4w	0.051158
resource_clicks_quiz_4w	0.049459
resource_clicks_homepage_4w	0.049186
click_density_4w	0.045644
resource_clicks_oucontent_4w	0.040359
resource clicks subpage 4w	0.039733

score_std_4w	0.035569
date_registration	0.034826
resource_clicks_resource_4w	0.032402
resource_clicks_page_4w	0.026890
resource_clicks_url_4w	0.022524
quiz_count_4w	0.018918
resource_clicks_oucollaborate_4w	0.018453
resource_clicks_ouelluminate_4w	0.012740
resource_clicks_glossary_4w	0.003134
resource_clicks_externalquiz_4w	0.000275
dtype: float64	

图 4: 随机森林模型对早期行为特征的重要性排序

3.3.2 特征重要性分析

随机森林相对更依赖于单一特征 registration_days, 容易导致过拟合:

- registration_days (0.247): 注册后持续的天数
- avg_score_4w (0.082): 前 4 周平均分
- total_clicks_4w (0.076): 点击总数
- activate days 4w (0.061): 活跃天数

3.3.3 模型局限性与改进方向

- 对 "Fail" 学生(类别 1)的召回率偏低,仅为 0.53, F1 分数为 0.57,说明模型 存在漏判高风险学生的风险。
- **样本不均衡影响模型表现**,由于 Fail 学生相对较少,模型更倾向于预测为多数类, 导致 recall 不足。
- 特征过多但信息量有限,一些资源点击(如 resource_clicks_externalquiz_4w)重要性趋近于 0,可能引入噪声。
- 对资源点击类型的依赖较强, 跨课程泛化能力待验证;
- 阈值调整需根据实际业务目标精细控制;

3.4 集成方法

- 3.4.1 实验输出分析
- 3.4.2 特征重要性分析
- 3.4.3 模型局限性与改进方向
- 3.5 聚类算法
- 3.5.1 实验输出分析
- 3.5.2 特征重要性分析
- 3.5.3 模型局限性与改进方向
- 3.6 神经网络
- 3.6.1 实验输出分析
- 3.6.2 特征重要性分析
- 3.6.3 模型局限性与改进方向
- 3.7 模型优劣分析

表 1: 不同算法在多个维度下的对比分析(转置形式)

算法	准确率	问题学生 Recall	最重要特 征	训练时长	数据特征敏 感度	参数调整 难度
线性分类器	٠	¿.	¿.		岠	负
非线性分类器	¢.	<i>~</i> ·	registration_days	lays '慢	恒	#
随机森林	¢.	<i>~</i> ·	<u> </u>	中	#	#
集成方法	¢.	<i>~</i> ·		中等偏慢	皊	硘
聚类算法	¢.	<i>~</i> ·	<i>د</i> .	中)	负
神经网络	?	;		歐	亚	画