INTELIGÊNCIA COMPUTACIONAL

TRABALHO COMPUTACIONAL – 3

Alunos: Ana Luísa Pereira, Felipe Israel, Izabela Rodrigues - 10º Engenharia Computação

Questões:

Aproximação

- 1) Implemente o algoritmo de treinamento e o algoritmo de operação para aproximação de função da rede PMC. A rede deve ter uma camada oculta, com dois neurônios nessa camada e duas entradas.
- 2) Utilizando o script para geração de conjunto de dados, "gera bidata", obtenha os conjuntos de dados de treinamento e validação referentes ao problema.
- 3) Execute 5 treinamentos com a rede PMC, iniciando-se o vetor de pesos {w} em cada treinamento com valores aleatórios entre 0 e 1, de forma que em cada treinamento os valores não sejam os mesmos. Em cada treinamento experimente valores diferentes para a taxa de treinamento $\{\eta\}$ e valor de tolerância $\{\epsilon\}$. Anote o erro quadrático médio (EQM) ao final de cada treinamento.

Treinamento	η	3	EQM
1° (T1)	0.1	1x10-2	0.0051
2° (T2)	0.1	1x10-5	0.0017
3° (T3)	0.2	1x10-6	0.0185
4° (T4)	0.2	1x10-7	0.0129
5° (T5)	0.3	1x10-7	0.0133

4) Após o treinamento da rede PMC, utilize o algoritmo de operação para obter a saída de validação. Exiba o gráfico da saída da rede PMC na validação e compare-a com a curva da série temporal.

Primeiro treinamento

Segundo treinamento

5) Calcule o EQM do resultado da validação e comente sobre o resultado obtido.

Valores obtidos em cada treinamento respectivamente: 0.055, 0.028, 0.0226, 0.156 e 0.282.

Resposta: Este erro determina a diferença entre o estimador e o valor verdadeiro da amostra com os dados corretos. Portanto quanto menor o valor, mais precisas são as observações do estimador.

Classificação

- 1) Implemente o algoritmo de treinamento e o algoritmo de operação para classificação de padrões da rede PMC. A rede deve ter uma camada oculta, com dois neurônios nessa camada e dez entradas.
- 2) Utilizando o script para geração de conjunto de dados, "gera_bcw", obtenha os conjuntos de dados de treinamento e validação referentes ao problema.
- 3) Execute 5 treinamentos com a rede PMC, iniciando-se o vetor de pesos $\{w\}$ em cada treinamento com valores aleatórios entre 0 e 1, de forma que em cada treinamento os valores não sejam os mesmos. Em cada treinamento experimente valores diferentes para a taxa de treinamento $\{\eta\}$ e valor de tolerância $\{\epsilon\}$. Calcule e anote a taxa de classificação correta ao final de cada treinamento.

Treinamento	η	3	Taxa de classificação (%)
1° (T1)	0.1	1x10-2	95
2° (T2)	0.1	1x10-5	71
3° (T3)	0.2	1x10-6	95,7
4° (T4)	0.2	1x10-7	90,7
5° (T5)	0.3	1x10-7	88,6

- 4) Após o treinamento da rede PMC, utilize o algoritmo de operação para obter a saída de validação.
- 5) Calcule a taxa de classificação correta do resultado da validação e comente sobre o resultado obtido.

Resposta: A taxa de classificação correta determina, em porcentagem, a acurácia dos dados obtidos, ou seja, o quão assertivo foram os dados validados após o treinamento em relação aos dados de validação fornecidos antes do treinamento.