Raphaël Forien, Lucas Gerin, Ludovic Sacchelli, Nicole Spillane

Exploration de données : visualisation et clustering

Pour n = 100 joueurs de tennis on dispose de p = 6 statistiques : pourcentage de 1er services réussis, de balles de break sauvées, etc. Le but est d'analyser ces données de façon automatique :

- les représenter graphiquement de façon pertinente,
- déterminer des corrélations entre variables,
- classer les joueurs en différentes catégories.

1 Données

Question 1. Télécharger sur le moodle du cours le fichier TennisChiffresTop100_2016.xls et l'importer dans matlab avec la commande

[DonneesBrutes, NomsJoueurs, tab] = xlsread('TennisChiffresTop100.xls')

2 Visualisation : Analyse en Composantes Principales

2.1 Principe théorique

On note $X_{i,j}$ la j-ème statistique du joueur i. Les données sont donc formées de n points dans \mathbb{R}^p , on souhaite les représenter dans \mathbb{R}^2 de la façon la plus pertinente possible.

On définit la matrice des données centrées réduites $(\tilde{X}_{i,j})_{i \leq n,j \leq p}$ par :

$$\tilde{X}_{i,j} = \frac{X_{i,j} - \text{mean}(X_{\bullet j})}{\text{std}(X_{\bullet j})}$$

où mean $(X_{\bullet j})$ est la moyenne du vecteur colonne $X_{\bullet j} = \begin{pmatrix} X_{1,j} \\ \dots \\ X_{n,j} \end{pmatrix}$, et $\mathrm{std}(X_{\bullet j})$ en est l'écart-type. La

matrice $\frac{1}{n}\tilde{X}^T\tilde{X}$ est la matrice $p \times p$ des *corrélations*, elle est symétrique positive, donc diagonalisable de valeurs propres réelles positives $\lambda_1 \geq \cdots \geq \lambda_p \geq 0$. On peut par ailleurs la diagonaliser dans une base orthogonale $\mathbf{u}_1, \ldots, \mathbf{u}_p$.

Question 2. Calculer la matrice de corrélation (vous pouvez utiliser mean(X), std(X)). Quelles variables sont les plus corrélées?

Le point de vue de l'ACP est de chercher le vecteur $\mathbf{u} = (u_1, \dots, u_p) \in \mathbb{R}^p$ tel que la projection du nuage de points sur \mathbf{u} ait une inertie maximale. Le résultat théorique est le suivant (voir par exemple le Théorème 1.1 dans [1]):

Théorème 1 Soit $X=(X_1,\ldots,X_p)$ une variable aléatoire à valeurs dans \mathbb{R}^p , le vecteur propre $\mathbf{u}^1=(u_1^1,\ldots,u_p^1)$ associé à λ_1 est le vecteur qui maximise

$$\mathbf{u} \mapsto \operatorname{Var}(\langle X, \mathbf{u} \rangle).$$

De même, le vecteur propre \mathbf{u}^2 associé à λ_2 est celui qui maximise $\mathrm{Var}(< X, \mathbf{u}^2 >)$ parmi les vecteurs orthogonaux à \mathbf{u}^1 .

2.2 Mise en oeuvre

Question 3. Compte tenu du résultat théorique, projeter les données suivant les deux composantes principales. Autrement dit :

- Calculer $\mathbf{u}^1, \mathbf{u}^2$,
- Tracer les n points de coordonnées $(a_i, b_i) := (\langle X_{i \bullet}, \mathbf{u}^1 \rangle, \langle X_{i \bullet}, \mathbf{u}^2 \rangle).$

Vous aurez besoin des commandes suivantes : eig(A), plot,... Pour faire apparaître le nom des joueurs, la commande text(a,b,'texte') écrit la chaîne de caractères texte à la position (a,b).

2.3 Disque des corrélations

Pour un paramètre $i \leq p$, on pose

$$r_{i,1} = u_i^1 \sqrt{\lambda_1}, \qquad r_{i,2} = u_i^2 \sqrt{\lambda_2}.$$

Question 4. Tracer les p points de coordonnées $(r_{i,1}, r_{i,2})$ ainsi que le cercle unité.

Les points $A_i = (r_{i,1}, r_{i,2})$ se trouvent à l'intérieur du cercle unité. Le dessin obtenu s'interprète de la façon suivante : les variables significatives se trouvent au bord du cercle. Pour celles-ci,

 $\begin{array}{ccc} \widehat{A_iOA_j} \approx 0^{\circ} & \Rightarrow & \text{variables } i,j \text{ positivement corr\'el\'ees} \\ \widehat{A_iOA_j} \approx 180^{\circ} & \Rightarrow & \text{variables } i,j \text{ n\'egativement corr\'el\'ees} \\ \widehat{A_iOA_j} \approx 90^{\circ} & \Rightarrow & \text{variables } i,j \text{ d\'ecorr\'el\'ees} \\ \end{array}$

(pour une justification théorique, voir [1], Section 1.6).

3 Clustering: l'algorithme k-means

Au vu des résultats de l'ACP, il apparaît que les données des n joueurs ne sont pas homogènes. On souhaite partitionner l'ensemble des n points en k sous-ensembles (ou cluster), selon la proximité des projections (a_i, b_i) .

Question 5. Vu le nuage de points obtenu après ACP, quel k choisir?

Question 6. Implémenter l'algorithme k-means :

Paramètres:

k: nombre de cluster

 $(a_1, b_1), \ldots, (a_n, b_n)$: points à partitionner

 $(x_1,y_1),\ldots,(x_k,y_k)$: centres initiaux des cluster, choisis arbitrairement parmi les n points

Itérer jusqu'à stabilisation:

Pour chaque $1 \le i \le n$

Placer i dans le cluster dont le centre est le plus proche de (a_i, b_i) :

 $i \to \text{cluster } r \text{ tel que } ||(x_r, y_r) - (a_i, b_i)|| \text{ est minimal.}$

Mettre à jour le centre (x_r, y_r) .

Question 7. Sur le graphique de l'ACP, représenter les points en différentes couleurs selon le cluster.

Question 8. [Théorique] Justifier que l'algorithme k-means termine. Trouver un exemple qui montre que la partition donnée par k-means peut dépendre des positions initiales $(x_1, y_1), \ldots, (x_k, y_k)$.

Références

[1] A.Tsybakov. Apprentissage statistique. Cours de l'École Polytechnique (2014).