BP-BASED SLAM ALGORITHM

 $q(\boldsymbol{x}_{n-1}); \ \ \tilde{q}\big(\boldsymbol{a}_{k,n-1}^{(j)}, 1\big) \ \ \text{and} \ \ \tilde{q}_{k,n-1}^{(j)}, \ k \in \mathcal{K}_{n-1}^{(j)}, \ j \in \{1, \dots, J\} \ \ \text{(from previous time step } n-1)$

PREDICTION:

- Calculate $\alpha(\boldsymbol{x}_n)$ according to (31)
- Calculate $\alpha_k(\tilde{\boldsymbol{a}}_{k,n}^{(j)}, 1)$ and $\alpha_{k,n}^{(j)}, k \in \mathcal{K}_{n-1}^{(j)}, j \in \{1, \dots, J\}$ according to (33), (34)

MEASUREMENT EVALUATION:

- (for legacy PFs) Calculate $\beta(c_{k,n}^{(j)}), k \in \mathcal{K}_{n-1}^{(j)}, j \in \{1, \dots, J\}$ according to (35)
- (for new PFs) Calculate $\xi(b_{m,n}^{(j)})$, $m \in \mathcal{M}_n^{(j)}$, $j \in \{1, \ldots, J\}$ according to (36), (37); this requires calculation of $f_{\mathbf{n},n}(\mathbf{a}_{\cdot,n}^{(j)}|\mathbf{x}_n)$ according to (50) and of $\mu_{\mathbf{n},n}^{(j)} = \int \int P_{\mathbf{d}}^{(j)}(\mathbf{x}_n, \mathbf{a}_{\cdot,n}^{(j)}) \lambda_{n|n-1}^{\mathbf{u}}(\mathbf{a}_{\cdot,n}^{(j)}) \alpha(\mathbf{x}_n) d\mathbf{a}_{\cdot,n}^{(j)} d\mathbf{x}_n$

ITERATIVE DATA ASSOCIATION:

• Calculate $\eta(c_{k,n}^{(j)})$, $k \in \mathcal{K}_{n-1}^{(j)}$, $j \in \{1,\ldots,J\}$ and $\varsigma(b_{m,n}^{(j)})$, $m \in \mathcal{M}_n^{(j)}$, $j \in \{1,\ldots,J\}$ according to (38)–(40)

MEASUREMENT UPDATE:

- (for agent) Calculate $\gamma_k^{(j)}(\boldsymbol{x}_n), \ k \in \mathcal{K}_{n-1}^{(j)}, \ j \in \{1,\dots,J\}$ according to (41)
- (for legacy PFs) Calculate $\gamma(\tilde{\boldsymbol{a}}_{k,n}^{(j)},1)$ and $\gamma_{k,n}^{(j)},\,k\in\mathcal{K}_{n-1}^{(j)},\,j\in\{1,\ldots,J\}$ according to (42), (43)
- (for new PFs) Calculate $\phi(\check{a}_{m,n}^{(j)},1)$ and $\phi_{m,n}^{(j)}, m \in \mathcal{M}_n^{(j)}, j \in \{1,\ldots,J\}$ according to (44), (45)

BELIEF CALCULATION:

- (for agent) Calculate $q(\boldsymbol{x}_n)$ according to (46)
- (for legacy PFs) Calculate $\tilde{q}(\tilde{\boldsymbol{a}}_{k,n}^{(j)},1)$ and $\tilde{q}_{k,n}^{(j)},\,k\in\mathcal{K}_{n-1}^{(j)},\,j\in\{1,\ldots,J\}$ according to (47)
- (for new PFs) Calculate $\check{q}(\check{\boldsymbol{a}}_{m,n}^{(j)},1)$, and $\check{q}_{m,n}^{(j)}, m \in \mathcal{M}_n^{(j)}, j \in \{1,\ldots,J\}$ according to (48)

PRUNING:

- Determine set $\tilde{\mathcal{K}}_n^{(j)} = \mathcal{K}_{n-1}^{(j)} \cup \mathcal{M}_n^{(j)}$
- For all $j \in \{1,\ldots,J\}$, reinterpret/reindex beliefs $\tilde{q}(\tilde{\boldsymbol{a}}_{k',n}^{(j)},1)$ and $\tilde{q}_{k',n}^{(j)}\left(k' \in \tilde{\mathcal{K}}_{n-1}^{(j)}\right)$ and beliefs $\check{q}(\check{\boldsymbol{a}}_{m,n}^{(j)},1)$ and $\check{q}_{m,n}^{(j)}\left(m \in \mathcal{M}_{n}^{(j)}\right)$ as beliefs $\tilde{q}(\tilde{\boldsymbol{a}}_{k,n}^{(j)},1)$ and $\tilde{q}_{k,n}^{(j)}$ of legacy PFs $k \in \tilde{\mathcal{K}}_{n}^{(j)}$
- For all $j \in \{1, \ldots, J\}$, calculate estimates $\hat{p}(r_{k,n}^{(j)} = 1 | \boldsymbol{z}_{1:n})$ of existence probabilities $p(r_{k,n}^{(j)} = 1 | \boldsymbol{z}_{1:n})$, $k \in \tilde{\mathcal{K}}_n^{(j)}$ according to (28) with $f(\boldsymbol{a}_{k,n}^{(j)}, r_{k,n}^{(j)} = 1 | \boldsymbol{z}_{1:n})$ replaced by $\tilde{q}(\tilde{\boldsymbol{a}}_{k,n}^{(j)}, 1)$ or $\check{q}(\boldsymbol{\breve{a}}_{m,n}^{(j)}, 1)$
- For all $j\in\{1,\ldots,J\}$, determine set $\mathcal{K}_n^{(j)}$ of legacy PFs k for which $\hat{p}\big(r_{k,n}^{(j)}=1\big|m{z}_{1:n}\big)>P_{\mathrm{prun}}$

$$q(\boldsymbol{x}_n); \ \tilde{q}(\tilde{\boldsymbol{a}}_{k,n}^{(j)}, 1) \ \text{and} \ \tilde{q}_{k,n}^{(j)}, \ k \in \mathcal{K}_n^{(j)}, \ j \in \{1, \dots, J\}$$
 (for processing at next time step $n+1$)

DETECTION AND ESTIMATION

see next page

 $q(\boldsymbol{x}_n); \ \hat{p}(r_{k,n}^{(j)} = 1 | \boldsymbol{z}_{1:n}), \ k \in \mathcal{K}_n^{(j)}, \ j \in \{1, \dots, J\}$

