

Precision Medicine

Alessandra Marasi: <u>alessandra.marasi@polimi.it</u>

Francesca Fati: francesca.fati@polimi.it

Sofia Breschi: sofia.breschi@polimi.it

Eriberto Andrea Franchi: eribertoandrea.franchi@polimi.it

Agenda

- Precision Medicine
- Data in Healthcare
- Medical Al: Model-centric vs Data-centric Al
- Data Processing
- Hands-On: Heart Disease Dataset

Agenda

- Precision Medicine
- Data in Healthcare
- Medical AI: Model-centric vs Data-centric AI
- Data Processing
- Hands-On: Heart Disease Dataset

Precision Medicine: Definition

Traditional approach

Precision Medicine: Timeline

Precision Medicine: Ecosystem

Precision Medicine: Ecosystem

Agenda

- Precision Medicine
- Data in Healthcare
- Medical AI: Model-centric vs Data-centric AI
- Data Processing
- Hands-On: Heart Disease Dataset

It's all about data.

Large data sets (Big Data) to find insights, trends, and patterns.

Electronic Health Records

- Patient demographics
- Medical history
- Medication and allergies
- Laboratory test results
- Radiology images
- Vital signs
- Personal statistics (e.g., age and weight)

Imaging Data

- X-rays
- Magnetic Resonance Imaging (MRI)
- Computed Tomography (CT)
- Ultrasound
- Endoscopy

Genomics Data

- · Whole Genome Sequencing (WGS) Data
- · Whole Exome Sequencing (WES) Data
- Transcriptome Sequencing (RNA-Seq) Data
- Methylation Sequencing Data
- Single-Cell Sequencing Data

Wearables Devices

- Activity Trackers
- · Smart Health Watches
- Wearable ECG Monitors
- Blood Pressure Monitors
- Continuous Glucose Monitors
- Wearable Biosensors

Agenda

- Precision Medicine
- Data in Healthcare
- Medical AI Model-centric vs Data-centric AI
- Data Processing
- Hands-On: Heart Disease Dataset

Medical AI: Diabetic Retinopathy

Diabetic retinopathy

- Over 420 million people with diabetes globally
- High blood sugar levels associated with diabetes can lead to damage to the blood vessels of the retina.
- Early stages may cause mild vision problems. It can lead to blindness.

Medical AI: Diabetic Retinopathy

Diagnosis

Ophthalmoscopy or Fundus Photography

Treatment

- Laser Surgery
- Vitrectomy

Challenges:

- Early Detection: no noticeable symptoms, delaying diagnosis and treatment
- Variability: signs might be less apparent in some individuals
- Interpretation of Diagnostic Tests: the interpretation of fluorescein angiography requires expertise and experience, leading to under or overdiagnosis
- Differential Diagnosis: Other conditions can mimic the signs of diabetic retinopathy, such as retinal vein occlusions or age-related macular degeneration, complicating the diagnosis

Medical AI: ARDA

Automated Retinal Disease Assessment (ARDA)

- Al-based system which interprets retinal scans to detect diabetic retinopathy
- Large team of ophthalmologists
- Manually reviewing more than 100,000 de-identified retinal scans

Diabetic Retinopathy: **Yes/No**

Input: Retinal Scans

Al model

Output: DR Detection

Model-centric Al

Data-centric Al

Agenda

- Precision Medicine
- Data in Healthcare
- Medical Al: Model-centric vs Data-centric Al
- Data Processing
- ► Hands-On: Heart Disease Dataset

- i. Data Visualization
- ii. Handle Missing Data
- iii. Data Analytics
- iv. Data Augmentation

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Clinical Case: Glioblastomas

- The most common primary malignant brain tumor
- Annual incidence ranging from 6 to 10 cases per 100,000 population
- Glioblastomas (Grade IV) are the most aggressive primary brain tumor
- Median survival around 12-15 months

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Clinical Case: Glioblastomas

- Diagnosis and evaluation of treatment response: Medical Resonance Imaging (MRI)
 - TI MRI
 - TI contrast-enhanced MRI
 - T2 MRI
 - FLAIR MRI
- Surgery is the first-line treatment followed by radiotherapy
- Radiotherapy and Chemotherapy are also used when the surgical removal or the total resection is not possible

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Clinical Case: Glioblastomas

Tumor Enhancement

Tumor Necrosis

FLAIR Hyperintensities

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Clinical Case: Glioblastomas

Clinical Database

	Α	В	С	D	E	F	G	Н	J	K	L
1	CodicePz	diagn/rm	Istotipo	DataSIV	SIV	OS	Età DIAGN				
2	180320AL	13/02/2018	Glioblastoma	09/09/2023	1	5,572603	22				
3	150116AR	12/01/2015	Glioblastoma	02/05/2016	2	1,30411	53				
4	191008AL	15/08/2019	Glioblastoma	29/06/2020	2	0,873973	69		SIV AL 30/	11/23 (STA	ATO-IN-VITA)
5	160615AN	15/06/2016	Glioblastoma	12/12/2016	2	0,493151	75		1=IN VITA		
6	170830AR	19/08/2017	Glioblastoma	03/08/2018	2	0,956164	72		2= DECED	UTO	
7	170524AP	09/05/2017	Glioblastoma	14/05/2019	2	2,013699	70				
8	161027AA	13/10/2016	Glioblastoma	14/07/2017	2	0,750685	79		DIAGN/RN	/I=DATA DI	AGNOSI
9	190513AA	12/04/2019	Glioblastoma	10/10/2020	2	1,49863	53				

Agenda

- Precision Medicine
- Data in Healthcare
- Medical Al: Model-centric vs Data-centric Al
- Data Processing
- **▶** Hands-On: Heart Disease Dataset

Hands-On: Heart Disease Dataset

Data Visualization

https://tinyurl.com/3ywaw4wr

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Missing Data: observations that we planned to register but we could not

- Some patients lost the follow-up visits
- Partially-filled medical questionnaires
- Incomplete medical records
- Loss of data during transfer
- Limited availability for specific tests or assessments

Observation	Variable 1	Variable 2	Variable 3
1	Х	Х	Х
2	Х	Х	·
3			Х
4		Х	
5	Х	Х	Х
6			

MISSING DATA

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Missing Data: observations that we planned to register but we could not

- x Reduced reliability of study findings
- x Increase risk of bias
- x Reduced statistical power
- x Some populations may be under-represented

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Missing Mechanisms

There is no statistically significant difference between incomplete and complete cases I no relationship between the missing data to any other measured variables and itself

Example: In a clinical trial with 150 participants testing a new antidepressant, 7 participants have missing post-treatment depression scores. These missing values are randomly distributed across various demographic groups (age, gender, etc.)

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Missing Mechanisms

Dependency of a data point to be missing on some measured variables of the dataset and not to itself.

Example: In a dataset of 500 participants, missing cognitive test scores are observed more frequently among individuals aged 65 and above. Missingness based on age, a different variable.

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Missing Mechanisms

The missingness of a variable depends on the variable itself.

Example: In a clinical trial assessing the effectiveness of a weight loss program, participants who are not losing weight may avoid follow-up appointments. Out of 200 participants enrolled, 30 participants with missing weight data consistently report higher levels of dissatisfaction with the program.

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

- **Deletion** Methods
- Imputation Methods

- Identify the reason
- 2. Understand the data distribution
- 3. Choose for the best strategy

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Deletion Methods: Listwise

Only analyse cases with available data on each variable

- Simplicity and comparability across all analysis
- Reduce of statistical power (decreased sample size), do not use all information

List wise deletion

Gender	Manpower	Sales
M	25	343
F		280
M	33	332
M		272
F	25	
М	29	326
	26	259
M	32	297

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Deletion Methods: Pairwise

Analysis of all cases where the variable of interest is present

- Keeping of as many cases as possible, use of all information
- X Cannot compare analyses due to different sample size at each time, sample size varies for each variable

Pair wise deletion

Gender	Manpower	Sales	
М	25	343	
F	-	280	
М	33	332	
М	-	272	
F	25	-	
М	29	326	
	26	259	
М	32	297	

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

- Imputations Methods: Random Sample from a "Reasonable" Distribution
 - i. Data distribution (Normal, Bernoulli,...) identification and its parameters
 - ii. Replace missing values with random draws from the distribution

- Data distribution is preserved
- X The identification of data distribution may not be reliable

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Imputations Methods: Random Sample from a "Reasonable" Distribution

ID	Gender	Depression Rating
1	Male	6
2	Male	2
3	Female	1
4	Male	4
5	Female	5
6	Female	9
7	Male	3
8	Female	4
9	Female	7
10	Male	8
М	issing Value	

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

- Imputations Methods: Mean/Mode Substitution
 - i. Compute mean/median/mode values from the dataset
 - ii. Replace missing values the sample mean/median/mode

- ✓ Keeping of as many cases as possible, use of all information
- X Variability reduction

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Imputations Methods: Mean/Mode Substitution

Average_Age = 26.0

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	NaN	0
7	Berlin	30	1
8	Berlin	NaN	0
9	Berlin	25	1
10	Madrid	25	1

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	26	0
7	Berlin	30	1
8	Berlin	26	0
9	Berlin	25	1
10	Madrid	25	1

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Imputations Methods: Deterministic Regression Imputation

Replace missing values with predicted scores from regression

i. Select a regression model (linear, polynomial, logistic, etc.)

$$y_{2,i} = \beta_0 + \beta_1 y_{1,i}$$

- ii. Estimate regression parameters (β_0, β_1) from data
- iii. Replace missing data using regression estimators

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Imputations Methods: Deterministic Regression Imputation

$$y_{2,i} = \beta_0 + \beta_1 y_{1,i}$$

- ✓ Use of information from the observed data, more reliable results
- X Over-estimation of model fit and variance weakening

Strategies for Handling Missing Data

Imputations Methods: Stochastic Regression Imputation

Same method as deterministic one but a stochastic term (e_i) is added to the regression formula to consider the spread of the data along the regression line

$$y_{2,i} = \beta_0 + \beta_1 y_{1,i} + e_i$$

Usually, e_i has a zero mean and variance equal to the error variance in regression

Strategies for Handling Missing Data

Imputations Methods: Regression

Data Visualization

Handle Missing Data

Data Analytics

Data Augmentation

Strategies for Handling Missing Data

Imputations Methods: Multiple Imputation

Repeated imputation procedure and result combination

- . Introduce random variation into the process of imputing missing values (stochastic method) and generate multiple datasets, each with slightly different values
- ii. Analyse the datasets
- iii. Combine results into a single set of parameters estimates, standard errors, statistics
- Decreased risk of bias, good estimates of
- X More complex algorithm

Hands-On: Heart Disease Dataset

Missing Data

https://tinyurl.com/3ywaw4wr

