En los ejemplos anteriores no nos hemos interesado en encontrar la función f a la cual la serie de potencias converge, o bien, define.

Encontrar esta función no es sencillo y solo lo hemos hecho para una serie de potencias de forma geométrica pues contábamos con el resultado de la suma de dichas series, sin embargo no siempre será posible hacerlo.

## Operaciones con series de potencias:

Se puede demostrar que en su intervalo de convergencia una serie de potencias se comporta en muchos aspectos como un polinomio.

Se puede, por ejemplo, evaluar a la función en un punto  $x_0$  a través de evaluar la serie en el mismo punto  $x_0$ , o también aplicar el cálculo de límites.

En particular la derivada de una serie de potencias puede obtenerse derivando término a término. También la integral de la serie es igual a la serie de la integral de cada término. Enunciamos, sin demostración, que:

- 1) Si  $\sum_{n=0}^{\infty} a_n x^n$  tiene radio de convergencia  $R \neq 0$  y la serie converge a f(x) para |x| < R, entonces f es derivable en |x| < R y su derivada vale:  $f'(x) = D \sum_{n=0}^{\infty} a_n x^n = \sum_{n=1}^{\infty} n \ a_n x^{n-1}$
- 2) Si  $\sum_{n=0}^{\infty} a_n x^n$  tiene radio de convergencia  $R \neq 0$  y la serie converge a f(x) para |x| < R, entonces f es integrable en |x| < R y vale:  $\int_{0}^{\infty} f(t) dt = \sum_{n=0}^{\infty} a_n \int_{0}^{x} t^n dt = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}$

<u>Serie de Taylor:</u> Ahora nos ocuparemos del problema inverso al planteado, dada una función encontrar una serie de potencias que la represente, o bien, sea convergente a ella.

Si f admite derivadas en todos los órdenes en un intervalo con centro en x = a, que contenga al punto c, y si el resto  $R_n(x)$  en la fórmula de Taylor tiende a cero con n tendiendo a infinito  $\lim R_n = 0$  para todo x del intervalo, entonces f está representada por:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n} \text{ en } |x-a| < R$$

En donde el segundo miembro de la igualdad anterior es la Serie de Taylor de f en x = a, R es el radio de convergencia de la serie.

Donde  $R_n(x) = \frac{f^n(c)}{n!} (x-a)^n$ , a < c < x es el resto de Lagrange de la fórmula de Taylor.

En particular si a = 0 la serie se denomina Serie de MacLaurin de f.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}$$
 en  $|x| < R$ 

Hemos visto que una serie de potencias se puede obtener utilizando series geométricas, por ejemplo:

$$f(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots + (-1)^n x^{2n} + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Entonces tomando en cuenta lo anterior enunciamos que: "Una serie de potencias, en su intervalo de convergencia, es la serie de Taylor o de MacLaurin de la función f". Obtengamos algunos desarrollos en serie, y para eso utilicemos los polinomios de Taylor y MacLaurin de algunas funciones y generemos así la serie.

Desarrollo en serie de MacLaurin de algunas funciones, verifique el intervalo de convergencia.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots \Rightarrow e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 en  $I$ 

Calculemos ahora el intervalo de convergencia para ver donde es válida esta última igualdad.

$$\lim_{n \to \infty} \left| \frac{x^{n+1} \ n!}{x^n \ (n+1)!} \right| < 1 \quad \Rightarrow \quad |x| \lim_{n \to \infty} \frac{1}{n+1} < 1 \quad \Rightarrow \quad |x| \ 0 < 1, \text{ el desarrollo es válido para todo } x.$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \Re$$

$$\operatorname{sen} x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} + \dots \Rightarrow \operatorname{sen} x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} \quad \forall x \in \Re$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{2n!} + \dots \Rightarrow \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n!} \quad \forall x \in \Re$$

Desarrollo en serie de Taylor de  $f(x) = \ln x$  en x = 1

$$\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots \Rightarrow \ln x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n} \text{ en } I$$

Hallemos el intervalo de convergencia:  $\lim_{n \to \infty} \left| \frac{(x-1)^{n+1} n}{(x-1)^n (n+1)} \right| < 1 \implies |x-1| \lim_{n \to \infty} \frac{n}{n+1} < 1$ 

$$|x-1| 1 < 1 \implies 0 < x < 2$$

Estudiamos los extremos:

Si x = 0, la serie numérica resultante es:  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(-1)^n}{n} = \sum_{n=1}^{\infty} \frac{-1}{n}$  armónica negativa, divergente.

Si x = 2, la serie resulta:  $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{n} = \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n}$  armónica alternada, convergente.

Por lo tanto el intervalo de convergencia es I = (0, 2] finalmente podemos escribir:

$$\ln x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n} \quad \text{en} \quad (0, 2]$$

Si observamos el resultado anterior podemos calcular el valor de ln 2 a través de la serie y este es:

$$\ln 2 = \sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

Evidentemente se trata de la serie armónica alternada como vimos en el cálculo del intervalo de convergencia. Esto muestra que la serie armónica alternada converge a ln2, o sea su suma es  $S = \ln 2$ , si ahora reordenamos la misma de forma de poner un término positivo seguido de dos negativos obtendríamos otra suma para la serie y esta era  $\frac{S}{2}$  según deducimos anteriormente, por lo tanto.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \dots = \ln 2$$

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots = \frac{\ln 2}{2} = \ln \sqrt{2}$$

De esta forma las series de potencias nos permiten encontrar la suma de series numéricas.

<u>Aplicaciones de Series de Potencias:</u> Hay veces que es más fácil obtener un desarrollo a partir de uno dado que deducirlo según las serie de Taylor o MacLaurin, como lo muestra estos ejemplos:

- 1) Desarrollo de MacLaurin de  $f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots$  si |x| < 1 reemplacemos x por (-x) y obtengamos el desarrollo de  $f(x) = \frac{1}{1+x}$  es decir:  $f(x) = \frac{1}{1+x} = 1 x + x^2 x^3 + x^4 x^5 + \dots + (-1)^n x^n + \dots$  en I.
- 2) Derivamos sen  $x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} \quad \forall x \in \Re$

$$(\operatorname{sen} x)' = \left\{ \sum_{n=1}^{\infty} \left( -1 \right)^{n+1} \frac{x^{2n-1}}{\left( 2n-1 \right)!} \right\}' = \sum_{n=1}^{\infty} \left( -1 \right)^{n+1} \left( 2n-1 \right) \frac{x^{2n-2}}{\left( 2n-1 \right)!} = \sum_{n=1}^{\infty} \left( -1 \right)^{n+1} \frac{x^{2n-2}}{\left( 2n-2 \right)!} \quad \forall x \in \Re$$

 $\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{x^{2n-2}}{(2n-2)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$  hemos encontrado el desarrollo en serie de  $\cos x$  a expensas de derivar el desarrollo de  $\sin x$  en su intervalo de convergencia.

3) Definimos  $\int_{1+t^2}^{x} \frac{dt}{1+t^2} = \arctan x$ , obtengamos el desarrollo MacLaurin de la función  $f(t) = \frac{1}{1+t^2}$  operando sobre la base de serie geométrica.

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \dots = \sum_{n=0}^{\infty} (-1)^n t^{2n} , |t| < 1$$

Integremos el desarrollo:

$$\int_{0}^{\infty} \frac{dt}{1+t^{2}} = \sum_{n=0}^{\infty} (-1)^{n} \int_{0}^{\infty} t^{2n} dt = \sum_{n=0}^{\infty} (-1)^{n} \frac{t^{2n+1}}{2n+1} \bigg|_{0}^{x}$$

$$\sum_{n=0}^{\infty} \left(-1\right)^n \frac{t^{2n+1}}{2n+1} \bigg|_{0}^{x} = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{x^{2n+1}}{2n+1} , \left|x\right| < 1$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \arctan x , \quad |x| < 1$$

Hemos encontrado el desarrollo en serie de arctg x integrando el desarrollo de  $\frac{1}{1+t^2}$  en su intervalo de convergencia.

• Podemos calcular con series de potencias, sea el caso:

$$sen x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} \quad \forall x \in \Re$$

$$sen \pi = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\pi^{2n-1}}{(2n-1)!}$$

$$0 = \pi - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \dots$$

• También resolver límites indeterminados: Determine las constantes a y b tal que:

$$\lim_{n \to 0} \frac{e^{-x} - (1 + ax + bx^2)}{x^2} = 0$$

Reemplacemos la función  $e^{-x}$  por su serie de potencias de MacLaurin que la representa para todo valor de x, entonces en un entorno de cero también, y de esta forma convertimos el límite en un límite de funciones polinómicas.

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}, \forall x \in \Re$$

Entonces el límite resulta:

$$\lim_{n \to 0} \frac{e^{-x} - (1 + ax + bx^2)}{x^2} = \lim_{x \to 0} \frac{\left(1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} - \dots\right) - 1 - ax - bx^2}{x^2} = 0$$

$$\lim_{x \to 0} \frac{x(-1-a) + x^2 \left(\frac{1}{2} - b\right) - \frac{x^3}{6} + \frac{x^4}{4} - \dots}{x^2} = \lim_{x \to 0} \left(\frac{-1-a}{x} + \frac{1}{2} - b\right) + \lim_{x \to 0} \left(-\frac{x}{6} + \frac{x^2}{4} - \dots\right) = 0$$

 $\lim_{x\to 0} \left( \frac{-1-a}{x} + \frac{1}{2} - b \right) = 0 \quad \text{para que este último se anule debe ser: } -1-a = 0 \quad \text{y} \quad \frac{1}{2} - b = 0$ 

$$a = -1 \wedge b = \frac{1}{2}$$

• Halle el área limitada por la gráfica de la función  $\frac{\sin x}{x}$  y el eje x, si  $1 \le x \le \pi$ 



Existen funciones cuya primitiva no puede expresarse como una combinación de un número finito de funciones elementales, y este es un caso.

Como el cálculo del área mediante integrales exige el cálculo de la primitiva nos ayudaremos mediante series de potencias:

$$\frac{\operatorname{sen} x}{x} = \frac{1}{x} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$$

$$A = \int_{n=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{(2n-1)!} dx = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!(2n-1)} \Big|_{1}^{\pi}$$

$$A = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)!(2n-1)} \Big[ \pi^{2n-1} - 1 \Big]$$