Regular operations

Sipser 1.1 (pages 44 – 47)

Building languages

• If L is a language, then its **complement** is $L' = \{w \mid w \notin L\}$

- Let $A = \{w \mid w \text{ is a string of } as \text{ and } bs \text{ containing an odd number of } as \}.$ What is A'?
- Let $B = \{w \mid w \text{ is a string of over } \{a,b\} \text{ that starts and ends with the same symbol}\}. What is <math>B'$?

Which complements are regular?

- $A = \{w \mid w \text{ is a string of } as$ and bs containing an odd number of $as\}$
- What about A'?

What about B'?

Which complements are

Our first theorem

- Theorem: The class of regular languages is closed under the complement operator
- How do we prove it?

Our first proof

- Theorem: The class of regular languages is closed under the complement operation
- Proof:

Let A be a regular language. By definition, there exists a finite automaton

$$M = (Q, \Sigma, \delta, q_0, F)$$

that recognizes A = L(M). Since

$$N = (Q, \Sigma, \delta, q_0, F')$$

is a finite automaton that recognizes L(N)=A', A' is a regular language.

Union and Intersection

• Let A and B be languages

• Define their *union* $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

• Define their *intersection* $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Example: union

- $A = \{w \mid w \text{ is a string over } \{a,b\}$ containing an odd number of $as\}$
- $B = \{w \mid w \text{ is a string over } \{a,b\} \text{ that starts and ends with the same symbol} \}$

- What is $A \cup B$?
- Is $A \cup B$ regular?

Can we build a recognizer for union from previous machines?

Now do it in general... our second theorem

 Theorem: The class of regular languages is closed under the union operation

The proof

- Theorem: The class of regular languages is closed under the union operation
- Let A and B be regular languages. By definition, there exists finite automata

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ and } M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$$

that recognize $A=L(M_1)$ and $B=L(M_2)$, respectively.

What's left? Build a finite automaton M that recognizes $L(M) = A \cup B$.

What about intersection?

 Theorem: The class of regular languages is closed under the intersection operation

Proof formalities

We construct a new DFA Cartesian product
$$A \times B$$
 $M = (Q, Z, \delta, q_0, F)$, where $f(q,b)$ and $b \in B$?

 $Q = Q_1 \times Q_2$
 $g((r,p),\sigma) = (S_1(r,\sigma),S_2(p,\sigma))$
 $g((r,p),\sigma) = (S$