PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-112824

(43) Date of publication of application: 21.04.2000

(51)Int.CI.

G06F 12/14

GO6F 12/06

G11C 16/02

(21)Application number: 10-282527

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

05.10.1998

(72)Inventor:

TANAKA YOSHIYUKI

SUKEGAWA HIROSHI NAKABAYASHI MIKITO NAKAMURA HIROSHI

(54) MEMORY SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a memory system capable of securing the protection of copyright at the time of using a flash memory card or the like. SOLUTION: In the memory system using detachable storage media A-C and data stored in these media A-C, individual information for individually identifying each storage medium is stored in the storage medium, and in the case of utilizing data stored in the storage medium, the individual information of the storage medium is required. Individual information for individually identifying each of storage media A-C is stored in the storage medium, information related to each individual information is stored in data stored in each storage medium. and in the case of utilizing the data stored in the storage medium, coincidence between the individual information stored in the storage medium and the relative information in the data is checked and then the use of the data in the system is permitted.

LEGAL STATUS

[Date of request for examination]

07,10,2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出版公開番号 特開2000-112824 (P2000-112824A)

(43)公開日 平成12年4月21日(2000.4.21)

(61) IntCl'		觀別記号	ΡI			テーマコード(参考)
G06F	12/14	320	G06F	12/14	320C	5B017
	12/06	515		12/06	515H	5B025
G11C	16/02		G11C	17/00	601E	5B060

審査請求 未請求 請求項の数5 OL (全 22 頁)

(21)出旗番号	特膜平10-282527	(71)出數人	000003078
		1	株式会社京芝
(22)出藏日	平成10年10月 5 日 (1998. 10.5)		神奈川県川崎市幸区堀川町72番地
		(72)発明者	田中養華
		ļ	神永川県川崎市学区堀川町580番1号 株
			式会社東芝半等体システム技術センター内
		(72) 発明者	勒川博
			神奈川県川崎市幸区堀川町580番1号 株
			式会社東芝半導体システム技術センター内
		(74)代組人	
			弁理士 外川 英明
			7. <u>- 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. </u>
		1	
			基础可计划之

(54) 【発明の名称】 メモリシステム

(57)【要約】

【課題】 フラッシュメモリカード等の利用に際し、著作権の保護が確保されるメモリシステムを提供する。 【解決手段】 着脱可能な記憶媒体と前記記憶媒体中に格納されたデータを使用するメモリシステムにおいて、前記記憶媒体には前記記憶媒体を個別に餞別するための個別情報が保持され、前記記憶媒体中に格納されるデータを使用する際は、前記記憶媒体の個別情報を必要とすることを特徴とするメモリシステム。

【特許請求の範囲】

【請求項1】 着脱可能な記憶媒体と、前記記憶媒体中 に格納されたデータを使用するメモリシステムにおい て、

前記記憶媒体には、前記記憶媒体を個別に触別するため の個別情報が保持され、前記記憶媒体中に格納されるデ ータを使用する際は、前記記憶媒体の個別情報を必要と することを特徴とするメモリシステム。

【請求項2】 着脱可能な記憶媒体と、前記記憶媒体中 に格納されたデータを使用するシステムにおいて、 前記記憶媒体には、前記記憶媒体を個別に識別するため の個別情報が保持され、前記記憶媒体中に格納されるデ ータには上記個別情報に関連付けられた情報が格納さ れ、前記記憶媒体中に格納されるデータを使用する際 は、前配記憶媒体の個別情報と前記データ中の関連付け られた情報の合致を確認後、前記システム中での前記デ ータの使用を許可するととを特徴とするメモリシステ

【請求項3】 前記個別情報の試み出しは、記憶媒体内 のデータの読み出しと異なる方法で行われることを特徴 20 とする髀求項1乃至2記載のメモリシステム。

【請求項4】 前配個別情報は、前記記憶媒体内に記憶 されるデータと異なるデータ記憶方式で記憶されるとと を特徴とする請求項3記載のメモリシステム。

【請求項5】 前記メモリシステムは、前記個別情報に アクセスするための情報を有し、前記情報を用いて、前 記記憶媒体内に記憶されるデータと同一のデータ記憶方 式で記憶される前記個別情報を、読み出すことを特徴と する請求項3配載のメモリシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体メモリを用い たメモリシステムにおいて、その著作権保護の目的に利 用されるものである。

[0002]

【従来の技術】近年図】に示すようなフラッシュメモリ カードがデジタルスチールカメラやPDA等の携帯情報 機器の記憶媒体として注目されている。このメモリカー ドは薄型のブラスチックパッケージにわずかな怪みが設 けられておりその度みに22ピンの平面電極を有するフ 40 ラッシュメモリが埋め込まれている。 本フラッシュメモ リカードは専用のコネクタを介してホストシステムに世 気的に接続され、データの入出力を行う。例えば、PC カードアダプターを利用すると、フラッシュメモリカー ド上のファイルを簡単にPCへ転送することが可能であ る.

[0003]

【発明が解決しようとする課題】しかしながら、上記っ ラッシュメモリ用いたメモリシステムにおいて、音楽デ ータ等、著作権が存在するファイルも自由にコピーする 50 を規定する。

ことが可能で、著作権が侵害されるという問題点があっ た。本発明は上記問題点に鑑みなされたもので、フラッ シュメモリカード等の利用に際し、着作権の保護が確保 されるメモリシステムを提供することを目的とする。 [0004]

【課題を解決するための手段】上記課題を解決するため に、本願発明の請求項 1 に係る発明においては、参脱可 能な記憶媒体と前記記憶媒体中に格納されたデータを使 用するメモリシステムにおいて、前記記憶媒体には前記 記憶媒体を個別に識別するための個別情報が保持され、 10 前記記憶媒体中に格納されるデータを使用する際は、前 記記憶媒体の個別情報を必要とするととを特徴とするメ モリシステムを提供する。

【0005】また、本顧発明の讚求項2に係る発明にお いては、着脱可能な配憶媒体と前配記憶媒体中に格納さ れたデータを使用するシステムにおいて、前記記憶媒体 には、前記記憶媒体を個別に微別するための個別情報が 保持され、前記記憶媒体中に格納されるデータには上記 個別情報に関連付けられた情報が格納され、前記記憶媒 体中に格納されるデータを使用する際は、前記記憶媒体 の個別情報と前配データ中の関連付けられた情報の合致 を確認後、前記システム中での前記データの使用を許可 することを特徴とするメモリシステムを提供する。

【0008】さらに、本願発明の請求項3に係る発明で は、請求項1乃至2に係る発明において、前記個別情報 の読み出しは、記憶媒体内のデータの読み出しと思なる 方法で行われることを特徴とするメモリシステムを提供 する.

【0007】さらに、本願発明の論求項4に係る発明で 30 は、請求項3に係る発明において、前記個別情報が前記 記憶媒体内に記憶されるデータと異なるデータ記憶方式 で記憶されることを特徴とするメモリシステムを提供す

【0008】さらに、本願発明の請求項5に係る発明で は、請求項3に係る発明において、前記メモリシステム が、前記個別情報にアクセスするための情報を有し、と の情報を用いて前配記憶媒体内に記憶されるデータと同 一のデータ記憶方式で記憶される前記個別情報を、読み 出すことを特徴とするメモリシステムを提供する。

[0009]

【発明の実施の形態】図1に示す小型のフラッシュメモ リカードを例に取る。とのメモリカードは模型のプラス チックパッケージにわずかな症みが設けられておりその 窪みに22ピンの平面電板を有するフラッシュメモリが 堙め込まれている。 本実施例では上記メモリカー Fに格 載されているフラッシュメモリとしてNAND型EEP ROMと呼ばれるフラッシュメモリを例に説明する。と のフラッシュメモリは市場でのデータの互換性を取るた め、データの格納方法を規定した物理フォーマット仕様

10

【0010】16MビットのNAND型フラッシュメモリの場合、図2に示すようにフラッシュメモリは512個の物理的なメモリブロックに分割されている。1ブロックはさちにPage0~Page15の16ページに分割される。1ページは書き込みおよび読み出しの基本的な単位となる。1ページは284バイトから構成され、うち258バイトはユーザーデータ領域(データ部)、残りの8バイト(冗長部)はエラー訂正符号および管理情報等の格納に使用される。

【0011】 通常パソコン等ではデータはセクタ(512パイト)単位で管理されるため、本メモリカードでも512パイト単位でデータ管理を基本とし2ページをペアとする。データ領域の内部データ構成を図3に示す。未使用の正常プロックは、データ部、冗長部とも"FFh"に設定されている。下記に各々のパイトの意味を説明する。Data Area-1は512パイトデータのうち、前半の0~255byteのデータが格納される。Data Area-2は512パイトデータのうち、後半の256~511byteのデータが格納される。

【0012】Data Status Areaはデータが正常でないととを示す。通常は "FFh" だが、正常でないデータが書き込まれている場合に "00h" が設定される。

【0013】Block Status Areaはプロックの良・不良の状態を示す。通常は"FFh"だが、不良プロックの場合、"00h" (初期不良プロック)、"FOh" (後発不良プロック)が設定される。2ピット以上"0"があった場合は、不良プロックであると判断する。なお、本データは同一プロック内では全て同じ値を書き込む。

【0014】Block Address Areaー1はブロックの論理アドレス情報を示す。なお、本データは同一ブロック内では全て同じ値を書き込む。Block Address Areaー2はBlock Address Areaー1のデータと同じ内容が書かれている。本メモリカードの制御では、データ更新時は消去済み領域に更新データを書き込み、元のデータが存在する領域を消去するという、追加舎き込み方式を採用しているため、ある論理ブロックに対応するデータが存在する物理ブロックは、固定では無く、常にメモリ内を移動している。

【0016】従って上述のどとく、物理ブロックの冗長部には自分がどの論理ブロックに対応するデータを保持しているかを示す論理ブロックアドレス情報を配慮している。通常は電源投入時に、全物理ブロックの散論理ブロックアドレス情報格納領域をサーチし、システムRAM上に、図4に示すような論理ブロックと物理ブロックの変換テーブルを作る。一度テーブルを作成した後は、

設テーブルを参照すれば、論理ブロックに対応する物理 ブロックがすぐに判断可能なため、全ブロックのサーチ 動作は電源投入時1回で良い。当然のととながら、デー タの更新を行い、対応する物理ブロックの位置が変化し た場合は、テーブルの更新作業を行い、次のアクセスに 備える。

【0016】ECC Area-1は偶数ページデータ (258パイト)の3パイトECCコードである。EC C Area-2は、奇数ページデータ(256パイト)の3パイトECCコードである。CCでECC(Er ror Correction Code)とはエラー訂正のための符号を さす。システムはCのエラー訂正用の符号を利用し、院 み出したデータにエラーがあるか否かを判定し、エラー が存在する場合、エラーを訂正することができる。

【0017】図2を別の観点から書き下したものが図5 になる。ここではCIS (Card Information Structure) というものを定義する。上述したように上記メモリカードでは市場での互換性を取るためにデータの格納方法を規定している。上記のCISはメモリカードが規定したデータ格納方法に準拠しているかどうかを判断するための識別領域である。CISは有効なブロックのうち先頭のブロックに配置される。図5に示すように先頭のブロックが不良ブロックでなければ、CISブロックはチップの先頭に配置される。もしチップの先頭のブロックが不良ブロックであれば、図6に示すように2番目のブロックに配置される。

【0018】CISは、図7に示す様に2個の領域に分割される。一つは固定のデータ領域(領域A)である。 との固定領域の先頭10パイトを用いて、規定されたデータ格納方法に準拠しているか否かを判断する。システムは電源投入時、CISブロックの先頭10パイトを読み、その値が規定されたものと一致すれば、そのカード規定されたデータ格納方法に準拠しているものとし、処理を進める。もし規定された10パイトが読み出せなければ、未知のフォーマット品という判断をし、データの破壊防ぐため以降の処理を中止する。

【0018】CIS領域は、システム(例えばアダブターカード中のコントローラ)のみが参照可能な領域で、一般のエンドユーザーが参照するととはできない。例えば、アダブターカードを介してファイルを格納する場合、ファイルはファイルの管理領域(マスターブートセクタ、パーティションブートセクタ、FAT、ディレクトリ等)およびファイルデータ本体を含めてCIS領域以外の場所を利用して格納される。従ってCIS領域はPC上からは、特殊な手段を使用しない限り見えない。CISのもう一つの領域(領域B)は任意のデータが設定できるわけではない。本フラッシュメモリカードが出荷される段階、もしくは特殊なツールによってデラタが設定される。

【0020】以下に上記のような規定のフラッシュメモ リカード上においての着作権保護のための方法を1から 11の実施例を用いて具体的に説明する。著作権保護さ れるべきものとしては、例えばクラシック音楽やポピュ ラーミュージックといった音楽のデータ、英会話等の語 学教材のデータ、文学や雑誌、新聞等の文字データ、公 演やインタビュー、整語、漫才等の音声データ、アニメ の人気キャラクター等のキャラクターデータ、風景等の 画像データ、地図データ、音声ガイダンスデータ、地域 **憎報データ、人物画等の画像データ等、法的に著作権が 10** 発生するものはすべて含まれる。また著作権が発生しな いデータに対してなんらかのコピープロテクト等のデー タ保護の需要がある場合も全く同様に取り扱うととが可 能である。以下の説明においてはこれらを総称して著作 物またはコンテンツ等と配載する。

【0021】 (第1の実施例) 以下に、本願発明のメモ リシステムの第1の実施例を説明する。本実施例は、フ ラッシュメモリにあらかじめ著作物を記憶した状態での 販売を目的としたものである。

【0022】著作保護のレベルは種々考えられるが、フ ラッシュメモリカードのCIS領域(図7の領域B、任 意のデータ設定可能な領域)に識別コードをあらかじめ 番き込んでおく.

【0023】例えば、図8に示すように、第1の実施例 のシステム機器(例えば、音楽再生機、画像表示機等) はフラッシュメモリーカードのCISの餓別情報として "ABC" の文字列を期待している。 フラッシュメモリ ーカードとしてCISの織別情報に"ABC"と書き込 まれたもの(A)と "DEF" と巻き込まれたもの

3文字には限られず、文字数(英数字等もふくむ)は多 い方が良い。ととでは説明を簡略化するため3文字の場 合を例に説明する。図8のケースでは、システム機器は CISの識別情報として "ABC" の文字列を期待して いるので、(A)のカードがシステムに挿入された場合 は正常に使用が可能である。しかし(B)のカードは期 待された職別コードを持っていないので本システム機器 で使用できない。識別コードは一般には公開されないも ので、との場合"ABC"の識別コードを書き込んで販 売されたメモリカードのみがシステム機器で使用可能と 40 なり、メモリカード内部の著作物の権利が保護される。

【0024】(B)の場合、使用不可のレベルは多くの ケースが想定できる。例えば音楽であれば、全く音楽が 聞けないという状態のほかに、一部分だけ音楽が聞ける ということが想定される。これは例えば、プロモーショ ン用に一部分だけば聞けても良いといったケースに歓当 する。またシステムが画像表示機であれば、画像が全く 見えないというプロテクト方法のほかに、一部分だけ囲 像が見える、スクランブルがかかったような(モザイク 画面等)状態の画像のみが見える、小さいサムネイル画 50 C"をそのまま取り込むケースを想定する。

像等のみが見える、または正規のカードではあれば非常 に高精細な画像が見え、それ以外の場合は精細度の低い 粗い画像のみが見えるようにしても良い。また正規のカ ードであれば、ある機能が使え、それ以外であれば、あ る種の機能が使用できないようにしてもかまわない。例 えば音楽の場合、正規のカードでは、CDプレイヤーと 同様に頭出しの機能が使えるが、それ以外のカードでは その機能が使用できない等、システム機器の機能になん らかの制限が加わっても良い。期待された正規の識別コ ードを有するカードとそれ以外のカードで、何らかの差 があれば目的が達成されることになる。

【0025】ただし、上記方法では、期待される世別コ ード "ABC" が書き込まれたカードであれば、全て正 規のカードとみなされ、記憶されているファイル自身の 正当性が判断できない可能性がある。すなわち状況によ っては "ABC" の識別コードがあるカードを一度入手 してしまえば、そのカード上にインタネット上の不正な WEBサイトから入手した不正データが使用可能となる ケースが想定される。また、システム機器製造時に期待 20 する識別子を一義的に(本実施例の場合は、"AB C") 決めてしまうと、"ABC"以外の識別子を持っ て正規のカードを販売しようとしてもできない。とのた め、何らかの手段を用いて期待値の変更または追加をす る機能を持つことが考えられる。例えば、正規のカード 自身にシステム機器の期待値を変更、または追加するソ フト等を入れておいて、それを用いてシステム機器の期 待値を変更、追加する等の手段を持っても良い。または システム機器の期待値を変更、追加するソフトはシスチ ム自身があらかじめ持っておき、変更値のみが何らかの (B)の2種類を想定する。実際の場合は、識別情報は 30 約束事を持ってメモリカード上に存在させてもよい。も ちるんカード上の情報によって期待値の変更をおこなう のではなく、例えばシステム機器がPC等とケーブル等 で接続されそれによって期待値が変更されるようなシス テムでも良い。システム機器の出荷後、何らかの手法に よって期待値が変更、追加される機能を持っていれば良 44.

> 【0026】(第2の実施例)次に、本頭発明のメモリ ンステムの第2の実施例を説明する。本実施例も第1の 実施例同様、フラッシュメモリにあらかじめ著作物を記 憶した状態での販売を目的としたものである。

> 【0027】第2の実施例の概要を図9に示す。本実施 例ではフラッシュメモリカードのCIS領域に截別コー ドを記憶させると同時に、格納されるファイル自身にも CISに記憶させた機則コードと関連した情報を取り込 む様にする。

> 【0028】例えば、図9の(A)に示すように、本メ モリカードのCISの識別コードが "ABC" の場合、 カード中のファイルの中に識別コード "ABC" に関連 した情報を取り込む。 簡略化のために文字列 "AB

【0029】システム機器はまずフラッシュメモリカー ドのCIS中の識別コードを読む。図8(A)の場合 "ABC"が読み出される。次にシステムはメモリカー ド中のファイル中の所定の場所を読み出す。との時 "A BC"が読み出されれば、そのファイルを正規のファイ ルと認識する。

【0030】仮に図8(B)のように、ファイルの所定 領域から文字列 "ABC" ではなく例えば "DEF" が 読み出された場合は、そのファイルは、PC等を経由し て別のフラッシュメモリカードからコピーされてきたフ 10 ァイルと判断し、システム機器上での使用を禁止または 制限する。制限の具体的な内容については実施例の1で 説明した内容に準ずる。

【0031】実施例1と異なる点は、図9(C)に示す ように、CIS中の餓別コードとファイル中の餓別コー ドが一致すれば、システム機器の製造時のそれらの情報 を知らなくても使用可能となる点である。例えば、シス テム機器が音楽の再生機の場合、CIS領域中の識別コ ードは歌手名にまたはアルバム名等に相当する。本実施 例は、システム機器は、新たな歌手が登場したり、あら 20 たなアルバムが作られた後も、正規のフラッシュメモリ カードに記憶される音楽であれば再生することができる ので、問題なく販売することができる。

【0032】本実施例は上記方法に限られない。フラッ シュメモリーカードと著作物に適当な関係付けができれ ば良い。上記例では、CIS領域中の文字列をそのまま ファイル中に取り込む場合を説明したが、発明の主旨に 添った範囲で種々変更可能である。例えば、ファイル中 に取り込む文字列はCIS領域に格納された文字列と必 ずしも完全に一致する必要はない。 "ABC" に対し て、逆転した"CBA"と格納するようにしてもよい し、 "ABC" に対してアルファベット順に一文字ずら した "BCD" としてもよいし、数文字ずらしてもよ い。また、 "ABC" の文字に対しアルファベット順に 数字を割り振り "123" としても良い。 なんらかの規 定に従い、CIS領域中の識別コードと、ファイル中の 識別コードとの関係が成立すれば本発明の主旨に合致し ていることになる。また、CIS中の餓別コードと文字 数が一致している必要もない。 "ABC" に対し、 "A BCDEF" または "ABCABC" 等文字数を変えて 40 格納しても、何らかの規定が存在すれば全く問題ない。 【0033】さらに信頼性を向上させる方法としては、 単純にCIS領域中の識別コードをファイル中に格納す るのではなく、CIS領域中の識別コードに関連した情 報を、ファイル中の他のデータと包括して暗号化するよ うなことをしても良い。単純にファイル中に格納した場 合、別の識別コードを持つ数枚のメモリカードのファイ ルデータを比較することにより、識別コードに関連する 情報の格納位置を特定される可能性がある。これを避け

等の方法により、数枚のカードのファイルデータの相違 個所を増やし、信頼性を向上できる。暗号化されたもの を解く暗号キーは、システム機器側のASIC中等に持 てば良い。または暗号キーそのものが、著作物と一緒に 販売されるような形式でもかまわない。また、CIS傾 域の截別子に関連付けられた情報は、各々にファイルに 必ずしも入っている必要はない。著作物の内容に関連し たした別のファイル(例えば、楽曲名が格納されたファ イル)が統合的に持ってもかまわない。

【0034】本実施例によって、例えば、正規の方法に よって1枚の著作物の入ったメモリカードを購入した人 物が、その著作物のファイルを一旦PC上に転送し、別 の空のメモリカードにファイルを転送したとすると、フ ァイルの転送は正常にできるが、新たにファイルが転送 された従来の空のメモリカード上では、CIS領域の職 別コードと転送されてきたファイル中の他別コードに関 連付けられた情報との間に正当な関係が成り立たないの でシステム機器側で容易にそれが判断できる。とれによ って不正なコピーの使用が制限される。これは汎用のア ダブターカード等を用いてPCへデータを転送する際、 アダプターカード中のコントローラは標準のフォーマッ トに準拠しているか否かを確認するためCIS領域にア クセスするが、PC上のソフト等はCIS領域にアクセ スすることは、特殊な方法を用いない限りできず、ファー イルは転送可能でもCIS領域中の歳別コード自身は他 のメモリカードに転送されるととが無いという仕組みを 巧みに利用したものである。との例の概要を図1.0に例 を示す。正規のフラッシュメモリーカードにはCIS領 域の徴別コードとして"ABC"が入っており、またフ ァイル中の識別コードも "ABC" である。 とのフラッ シュメモリーカードのファイルを一旦PCへ転送する。 次にPCから別のフラッシュメモリーカードへファイル を転送する。との場合、転送先のメモリカードのCIS 領域の鼬別コードは"DEF"であり、転送されたファ イル中の戦別子" ABC "とは一致しない、従ってシス テム側は両者の不一致を認識し、不正にコピーされたも のと判断する事が可能である。

【0035】またCIS領域の識別コードは、著作物と とに割り振られたコードでもかまわないし、フラッシュ メモリカード1枚毎に固有、またはあるグループに対し て固有のコードでもかまわない。単純に1パイトを識別 コード領域に割り振った場合、00hからFFhまでの 258通りの設定が可能である。 フラッシュメモリカー ド1枚ずつに順番に幽別コードを書き込んでいった場 合、258枚に1枚の強率で同じ識別コードを持つメモ リカードが存在する事になるが、一般のエンドユーザー が、同じ戦別コードを持った別のメモリカードを探し当 てる確率は非常に小さい。織別コードをバイト数を増や すとその確率は限りなくゼロに近づける事ができる。〕 るために、ある程度の広い領域にわたって、暗号化する 50 パイトのみ割扱る場合でも、例えばアルバム毎にその番 号を割り振れば良い。仮に同じ戦別コードを持ったメモ リカードが発見されたとしても、互いにコピー可能なフ ァイルは同一のファイルであり、両者とも正当に権利を 買った著作物であるので、コピーをする事に全く意味が ない。

【0036】また、ファイル中の識別コードに関連付け られた情報とは広義である。ファイルが全体的あるいは 部分的に暗号化されており、その暗号を解くカギが識別 コードそのもの、または餓別コードと関係付けられたも のでも良い。との場合、識別コードとファイル中の識別 10 コードに関連づけられた情報との、合致および不一致 は、正常に暗号が解ける、解けないと言い換えることが 可能である。

【0037】以上のように、フラッシュメモリカードモ のものと著作物の関連付けを行う事により、不正な著作 物のコピーが防止される。

(第3の実施例)次に、本職発明のメモリシステムの第 3の実施例を説明する。本実施例は、上記第1、第2の 実施例では、フラッシュメモリカードにあらかじめ著作 物を格納した状態で完売するケースを考えたが、本実施 20 例は著作物の情報そのものの販売を目的とし、著作物を 通常に販売されているフラッシュメモリカードにダウン ロードするという形で入手するようなケースについてで ある.

【0038】例えば、コンピニエンスストアや駅その他 に専用の鑑末を置き、その端末を介して情報をダウンロ ードする。これらは専用の端末であり、CIS領域を自 由に参照、または書き替えをする事が可能である。すな わち上記専用端末上でデータを書き込んだ結果が、実施 メモリカードの販売時の状態と同じになっていれば良 い。すなわち情報の格納時にCIS領域の識別コードを **掛き替え、それと関連付けられた情報を取り込んだファ** イルとして著作物が格納されれば良い。

【0039】この時、CIS領域を書き替える事により 従来格納していた著作物の利用は不可能となる。ただ し、CIS中の識別コードを複数個持つ様にすれば、複 数回のデータダウンロードに対して既に存在していた正 規のファイルの使用を中止することなく利用できる。

【0040】データを書き込む専用蟾末としては、上記 40 例に限られない。世の中に広く普及しているジュース等 の自動販売機などにとの上記専用健末の機能を持たせて とれを利用しても良い。との場合、若作物の更新は自動 販売機の販売物の補充の際、同時に行ってもかまわない し、PHS機能等の無線機能または有線によって販売す る著作物の更新をしてもかまわない。

【0041】また、公衆電話等を用いることも可能であ る。公衆電話等にフラッシュメモリカードの挿入可能な コネクタをつけ、公衆回線を利用し著作物の配布を行っ

定可能である。または衛風放送等やCATVからデータ を受信するようなケースも想定可能である。勿論PCで も同様の事は可能である。CIS領域のデータを外部に 睨み出すととにできる機能を持ったツールを用意しても よい。PCのUSBポート、シリアルポート、またはブ リンタポート、ISAパススロット等に接続可能なツー ルを専用のソフトウェアで制御すれば、専用端末と同様 にCIS領域にアクセスし餓別コード等を参照したり、 変更したりすることも可能である。 アダプターでも上記 説明はPCカードATAインタフェースのようにPCに 標準でデバイスドライバを持った汎用のアダプターを想 定したが、例えばPCカードATAインタフェースには **準拠せずユーザーが自らデバイスドライバをインストー** ルするようなタイプのアダプターカードで、CIS領域 にアクセス可能な物をまたは、同様の機能をもつものを 使用し、専用のダウンロードソフトを利用すれば良い。 【0042】また本発明は図1に示したフラッシュメモ リーカード以外にも適用が可能である。例えば、PCカー ドATAインタフェースに堆拠したフラッシュメモリカ ードの場合を次に説明する。

10

【0043】PCカードATAインタフェースはIDE 仕様のハードディスクのプロトコルをそのままPCカー ドに適用したものである。一般的に上記ATAカードの 内部にはフラッシュメモリのほかに、コントローラやバ ッファ用のRAM、ファームウエアを格納するための小 規模のフラッシュメモリ(コントローラ内蔵されていて も良い) 等が搭載されている。

【0044】上記実施例のCIS領域の識別コードに相 当するものをこのATAカード中に格納する方法は多種 例の1および2で説明したあらかじめ著作物を格納した 30 考えられる。例えば、PCカードにはアトリビュートメ モリ空間が定義されており、ホストシステムはこの領域 を参照することにより、カードの種別(例えば、ATA カード、モデムカード、LANカード等)を判断してい る。このアトリビュートメモリ空間の内容はタブルと呼 ばれ、PCカードスタンダード等で標準化されている。 との仕様中には、カードベンダーが、ベンダー情報や製 品情報を設定できる領域がある。この領域を使用すれ は、上記実施例の主旨に添った動作は可能となる。この 場合の設定値は、コントローラ中の不揮発性メモリ上に 持っても良いし、コントローラと接続されたフラッシュ メモリ等の不揮発性メモリに持っても良いし、カード中 のファイル格納用のメインのフラッシュメモリ中に持っ てもよい。また上記アトリビュートメモリ空間以外でも 同様の動作が可能である。ATAのプロトコルの中に は、Identify Driveというコマンドがある(Hex Code E d) 本コマンドはハードディスクとしての仕様値(例 えば、セクタ数、シリンダ数、ヘッド数)をホスト側に 通知するためのコマンドである。 本コマンドの返り値の 中にはモデルナンバーや、内蔵マイクロコードのバージ ても良い。PHSや携帯電話等を介しても同様の事が想 50 gン等を格納する領域がある。本領域に上記実施例のC

IS領域の識別コードに相当するものを格納すれば良 い。上述のことくその値をATAカード中の何所に格納 するかは任意である。またその値は汎用性を考え書き換 えが可能な状態でも良いし、セキュリティを高める目的 で消去や書き替えが不可能な状態としてもよい。

【0045】また、新たなペンダースニークなコマンド を使用してもかまわない。ATAのプロトコルで規定さ れている以外のコマンドを用いて、上記実施例のCIS 領域の戦別コードに相当する値を出力する使用にしても よい。例えば、F3hを識別コード読み出しコマンドと 10 設定しても良いし、FSh-F4h等の複数回のコマン ド入力を必要としても良い。カードからの出力方法とし ては、1パイト目から識別コードを出力しても良いし、 1パイト目もしくは規定されたパイト数で本コマンドを サポートしている事を示す何らかの値(例えばAah) 等を出力するようにしても良い。勿論本コマンドをサポ ートしているか否かを判断するための別コマンドを用意 してもかまわない。歳別子のバイト数は任意である。他 のコマンドとの整合性を持たせるため1セクタ(通常5 12パイト)分のデータを読み出す仕様でも全くかまわ 20 願発明のメモリシステムの第4の実施例を説明する。本 ない。また従来から存在するコマンドを使用して意味合 いを拡張するようにしてももかまわない。例えば、Read Tong コマンド(22h/23h)は、5 1 2 バイトデータ転送 の後、ドライブからホストにECCバイトを含みデータ を転送する。とのバイト中に識別コードに相当する情報 が入っていても良い。また、ある特定のセクタにアクセ スすると上記識別コードに相当するものが出力されるよ うに規定をしても良いし、サポートしているアドレス空 間(セクタ数)以外のセクターをアクセスすることによ って同情報が得られるように決めても良い。また、カー 30 ド中に搭載されているコントローラがみずから戦別コー ドとファイル中に格納された上記識別コードに関する情 報とを比較し、異なる場合はファイルの出力を禁止する ようにしても良い。以上にようにメモリカードが何らか の方法によって戦別コードを格納し、さらにファイル中 にも同識別コードに関連付けられた情報が取り込まれ、 両者が比較できるような機能をシステム全体として持つ 事ができれば良い。

【0048】また、本実施例の適用は上記ATAカード のみに限られない。コントローラを搭載していない各種 40 のメモリカード、ATA仕様とは異なるタイプのコント ローラ(必ずしもCPUを搭載している必要はなく、比 較的な簡単なASIC等で構成されていても良い)を搭 載したカード、さらにはフラッシュメモリ以外のメモリ (FRAM、SRAM、MROM、DRAM等) 老搭載 したカードでも良いし、各種のメモリが混載されていて も良い。 フラッシュメモリも図1化示したメモリカード で使用されているNAND型フラッシュメモリの他、A ND型、NOR型、DINOR型、フラッシュメモリ種 別にこだわらないし、パイト型EEPROM、シリアル 50 PC上へファイルを転送しようとした場合、ファイルA

EEPROM、EPROM等フラッシュメモリ以外の不 揮発性メモリに対しても適用可能である。またCDRO M、DVD、MD、LD、HDD、FDといった半導体 以外の配憶媒体に対しても全く同様に離論するととが可 能である。配憶媒体と記憶媒体に格納されたファイルが あり、記憶媒体中に固有の識別コードが記憶され、ファ イル中に上記識別コードに関連付けられた情報が格納さ れていれば、本発明の主旨を満足している。

【0047】また、ファイル中の識別コードに関連付け られた情報とは広義である。ファイルが全体的あるいは 部分的に暗号化されており、その暗号を解くカギが識別 コードそのもの、または触別コードと関係付けられたも のでも良い。この場合、識別コードとファイル中の強則 コードに関連づけられた情報との、合致および不一致 は、正常に暗号が解ける、解けないと言い換えることが 可能である。

【0048】 識別コードの保持方法、両者の情報の比較 方法、および相違が有った場合の処理の方法については 非常に広い任意性を有する。 (第4の実施例) 次に、本 実施例は、上記実施例1から3の場合の信頼性をさらに 向上させる方法を以下に説明する。本実施例は、実施例 1から3と組み合わせても使用可能であるし、また実施 例4単独で使用するととも可能である。本実施例は既に 説明した標準的なデータの格納仕様(物理フォーマッ ト)の仕組みを利用するものであり、標準的な物理フォ ーマットで正常に格納された状態と一部異なる状態を意 図的に形成することを特徴とする。

[0049]例表は、Data Status Are aを使用する方法がある。 記述のようにData St atus Areaは格納されている情報が正常でない ことを示す。 通常は "FFh" だが、正常でないデータ が書き込まれている場合に"OOh"が設定される。例 えばアダプターカードの場合Data StatusA reaにマークが施されているセクタ(データが正常で ない)にホストシステムからアクセスが有った場合はエ ラーを返す。従ってPC等でData Status ATeaにマークがついた領域を含むファイルを転送す ることはできない。 このことを使用して不正なコピーを 防止することが可能である。

【0050】図11に本実施例の概要を示す。ファイル Aはファイル中のゲータのいずわかにData Sta tus Areaにマークが施されているものである。 ファイルBのData Status Areaは正常 である。例えばあらかじめメモリカードに著作物を格納 した状態で販売するケースを想定するとファイルAがそ れに該当する。港作物を格納する段階でData St atus Areaにマークを付与してファイルを格納 する。との状態で汎用のアダプターカード等を利用して

の格納領域にアクセスがあると、アダプターカード中の コントローラは該当データが正常でないと判断し、ホス トに対してエラーを返す。この時例えばPC上では「ド ライブに異常がある」とのメッセージ等が画面上に表示 され、ファイルの転送は中断される。Data Sta tus Areaにマーキングの無いファイルBは自由 にPCヘデータ転送が可能である。

【0051】 このように、意図的にデータが正常でない 事を示すマークを付与した状態でファイル格納をする事 により、著作物の不正なファイルコピーを防止すること 10 ができる。勿論システム側(例えば音楽再生機)は、D ata Status Areaのマークが意図的につ けられたものであることを理解し、正しいデータが格納 されているものとして取り扱う。従ってData St atus Areaに意図的にマークをつける場合はあ らかじめどの領域にマークをつけるのか決めておく必要 がある。マークの付与位置は様々なケースが想定でき る。例えば、各ファイルにマーク胞す場合を考える。勿 論ファイル全体の各セクタに対しマークを施しても良 い。また、一部分のみ施しても良い。例えばファイルの 20 第何番目のセクタをその目的に使用すると決めておく方 法である。マークを施すデータをあらかじめ設定しても 良い。例えば、1セクタのデータをすべてFFhとし、 そのセクタに対しマークを施す仕様にしておいても良 い。マークを施す位置はファイル中とは限られない。例 えば、DOSのファイル管理傾域でもよい。マスターブ ートセクタ領域やパーティションブートセクタ、FAT 領域、ルートディレクトリ領域、サブディレクトリ領域 等にマークを施してもよい。マスタープートセクタ領域 等にマークをつけるとPC上からはドライブとして認識 30 a 等を参照してテーブルを作成するルーチンを中止し次 できなくなるため、ファイルの転送は不可能となる。D ata Status Areaのマークは、リード助 作に対して有効である。新たに同領域に書き込み命令が 発行されれば、新しいデータが書き込まれ、Data Status Areaのマークは消滅する。従って、 音楽再生用に本発明によってコピー防止機構がついたカ ードも、該当のファイルが不用になれば、別のファイル を書き込んでも良いし、別のシステムで再利用するとと も可能である。本実施例は、本来の正常な状態とは一部 異なるなる状態を意図的に形成し汎用のシステムがその 40 カードの識別情報等を見かけ上の不良ブロックに格納す 状態を判断することによって不正なコピーが防止できる という主旨の範囲で種々変更して適用可能である。別の **旨い方をするとデータ本体に付加的に記憶された管理情** 報の内容によりデータの読み出し動作を許可したり禁止 したりする。ATAアダプターカードでは内蔵のコント ローラが該当領域を見てエラーを返すが、コントローラ を内蔵しないタイプのアダプターカード等ではPC上の デバイスドライバーが同様の判断することは言うまでも ない。エラーの返し方としても各種の方法が考えられ

み取りエラーが発生した旨ホストに通知しても良いし、 不正なコマンドが入力された旨通知(コマンドアボー ト)しても良いし、指定されたセクタが発見できなかっ た等を意味するエラーコードを返しても良い。エラーの 返し方としては任意である。

[0052]次K、Block Status Are aを使用する方法を示す。記述のどとくBlock S tatus Areaはブロックの良・不良の状態を示 す。通常は "FFh" だが、不良ブロックの場合、 "O Oh" (初期不良ブロック)、"FOh" (後発不良ブ ロック) が設定される。2 ビット以上"0"があった場 合は、不良プロックであると判断する。

【0053】システムは通常は電源投入時に、全物理プ ロックの該論理ブロックアドレス情報格納領域をサーチ し、システムRAM上に、図4に示すような論理プロッ クと物理ブロックの変換テーブルを作る。一度テーブル を作成した後は、該テーブルを参照すれば、論理ブロッ クに対応する物理プロックがすぐに判断可能なため、全 ブロックのサーチ動作は電源投入時1回で良い。当然の ととながら、データの更新を行い、対応する物理ブロッ クの位置が変化した場合は、テーブルの更新作業を行 い、次のアクセスに備える。図4に示されるのテーブル 作成時の全ブロックサーチの際、システムはまずBlo ck Status Areaを最初に参照する。こと で、Block Status Areaにマークが施 されていると(電気的に不良なブロックで、消去できな いもしくは害込みができない、または訂正不可能なエラ ーが発生した等の症状を持っている)、システムは該当 プロックに対してBlock Address Are のブロックへ処理を移す。従って次の電源再投入まで不 良ブロックが再びアクセスされることはない。ゆえに汎 用のシステムではBlock Address Are aにマークのついた不良ブロックの内部データを参照す るととはない.

【0054】との仕組みを利用して著作物の保護を行う 方法を以下に記す。すなわち不良ブロックの登録された ブロックに記憶された情報を著作権保護に利用する。例 えば、上記実施例1から3にて記載したように、メモリ る。図12に模要を示す。システム(例えば音楽再生 機)は、不良ブロック内に記憶された低別コードとファ イル中に埋め込まれた上記銭別コードと関連付けられた。 情報との合致を期待している。 図 1 2 (A) のカードで は、不良プロック内の酸別コードは "ABC" でファイ ルに埋め込まれた戦別コードも "ABC" であり回者が 一致するので、本メモリカードに記憶されている著作物 は正規の著作物と判断することが可能である。一方、図 12の(B) および(C) は不良ブロック内の識別コー る。ATAアダプターカードの場合は、訂正不可能な読 50 ドとでファイルに埋め込まれた職別コードに差異が見ら

10

れるため、記憶されている著作物が不正に入手されたものと判断して処理に制限を加える。以上のように不良ブロック内の截別コードと、ファイル中に埋め込まれた職別情報に関係づけられた情報を比較検討することで、正規の著作物を判別する事ができる。

【0055】メモリカードの中には先天性もしくは後天 性の不良ブロックが存在している。歳別コードが格納さ れている不良ブロックを特定するための方法は様々考え られる。例えば織別コードが入っていることを確認する ためのデータが該当ブロックに記憶されていれば良い。 例えば、ブロックの先頭ページの最初のパイトに"AA h-55h* といったデータを書いておく。または識別 コード自身を複数(1セクタもしくは複数セクタ)個書 き込んでも良いし、歳別コードをそれを用いてなんらか の計算を実行した(例えばパリティや、チェックサム) **結果と共に格納しても良い。真の不良ブロックにたまた** ま存在しているデータが、偶然識別コードを格納する方 法と一致するか確率が低くなる手法が盛り込まれてさえ いれば良い。また、チップの先頭または最後に近いプロ ックから使用する等のルールを決めておくと酸当ブロッ クが見つかるのが早い。見かけ上の不良ブロックに格納 する情報としては、上記機別コードに限られない。例え ばシステムが音楽再生機の場合、酸当のメディアで聞く 率のできるファイル名に関連付けられた情報が入ってい て、それ以外の楽曲ファイルの再生は禁止するようにし てもよい。汎用のシステムがアクセスすることのない領 域を意図的に形成し、その領域に格納したデータを基に 着作物の正当性が確認可能な手段を持つ事が本発明の本 質である。

[0056]上述のCとく、Data Status Area#LUBlock Status AreaK ついて説明した、図3中に示す他の領域においても同様 の動作が可能である。現在、将来の使用のためRese τ Vedされている4バイトの領域も同様の主旨で使用 する事は可能であるし、阿様にBlock Statu 8 Areaを使用することも可能である。Block Status Areaは各セクターに2個づつ同じ 物が格納されており、例えば16メガヒット(2メガバ イト) 品では1個のブロック内に16個のエリアが存在 する。通常システムが各プロックの先頭または最後のセ 40 クタのBlock Address Areaしか参照 しない。従ってブロック内の中間セクタのBlock Address Areaをこれまで説明を加えてきた ものと同様の主旨によって使用することも可能である。 LiReserved Area⇔Block Add Tess Areaの利用も、標準的な物理フォーマッ トで正常に格納された状態と一部異なる状態を意図的に 形成することを特徴とする面ではBlook Stat us Areabick. Data Status A reaの使用方法と同じ主旨である。

【0057】図3の各エリアのうち、ECC符号のエリアのみはまだ説明を加えていないが、勿論との領域は上記例と同様に使用する事も可能であるが、また別の観点から使用する事が可能である。

15

【0058】図1に示したフラッシュメモリカードでは ECC (エラー訂正コード)が使用されている。ECC の方式の詳細については、とこでは本発明の主旨と直接 関係ないので省略するが、1セクタに対し(正確には1 セクタを2分割し、各々の256パイトに対し)2ビットエラーの検出および1ビットエラーの訂正の能力を持つECCを使用している。

【0059】ととでは、とれまでの議論と同様にフラッ シュメモリカードに著作物をあらかじめ格納した状態で の販売、または専用端末からのダウンロードする場合を 想定する。例えば、意図的にECCエラーが発生した状 態で著作物を格納する。 との場合概要を図13を用いて 説明する。ととでは説明を簡略化するためファイル名の 格納領域に意図的にECCエラーを発生させた状態を作 り出す。ファイル名を "ABC" とすると実際のデータ としては41h、42h、43hと格納されている。と とで、ECCの符号を顕整し、"ABC"の領域にあた かもエラーが発生しているような状態とする。例えば、 ECC符号で訂正されると "ACC" (41h、48 h、43h)となるように調整する。システム(例えば 音楽再生機)中のコントローラ等は、意図的にECCェ ラーが発生している個所を認識している。従って、シス テムは41h、43h、43と書き込んであるファイル のみが正規の著作物と認識する。ことでアダプターカー 下等を介してファイルを化上へ転送し、さらに別のメモ リカードにファイルを転送するとする。この場合、正規 のメモリカードからPCへファイルが転送される際、ア ダプターカード中のコントローラによって、意図的に形 成されたエラーが自動的に訂正され、ファイル名称が "ABC" から "ACC" に突ってしまう。 最終的に別

のメモリカードに転送されたファイルの名称は *AC C"となる。このメモリカードをシステムに挿入した場 合、システム中のコントローラはファイル名称が期待し ている "ABC" ではないので設当ファイルが不正にコ ピーされたものであるとの認識が可能である。ととでは 説明を簡略化するためファイル名称を例にあげたが、フ ァイル名称はエンドユーザーがPCで容易に書き替える ことができるので実際に本実施例を適用するのは、別の 領域がふさわしい。意図的にエラーを仕込んでいる場所 をあらかじめ規定しておけば問題ない。また意図的にエ ラーを発生される個所は1ヵ所に限られず複数個所でも かまわない。マークを施す位置はファイル中でも良い。 例えば、DOSのファイル管理領域でもよい。マスター プートセクタ領域やパーティションブートセクタ、FA T領域、ルートディレクトリ領域、サブディレクトリ領 50 城等にマークを施してもよい。汎用アダプター等を介し

てPCへ転送されたファイルが、転送元の正規のファイ ルと何らかの差異を持ってコピーされれば、その主旨を 満足している。

17

【0060】上記実施例では訂正可能な1ヒットエラー を意図的に発生させたが、訂正不可能な2 ビット以上の エラーを意図的に発生させても良い。との場合、汎用の アダプターカード等を利用してファイルをPCへ転送し ようとするとアダプターカード中のコントローラが、訂 正不可能エラーを検知しPCへエラーの発生を通知しフ ァイルの転送は中断される。結果として正規のメモリカ 10 ードからファイルがコピーされるのが防止されたととと なる。勿論、上述のように2ピットエラーを意図的に発 生させる場所は任意である。また3ビット以上のエラー を意図的に発生させた場合、エラーが検知されない、も しくは誤訂正される可能性がある、との仕組みを利用し ても良い。また、ファイル中の識別コードに関連付けら れた情報とは広義である。ファイルが全体的あるいは部 分的に暗号化されており、その暗号を解くカギが識別コ ードそのもの、または識別コードと関係付けられたもの でも良い。との場合、歳別コードとファイル中の裁別コ 20 ードに関連づけられた情報との、合致および不一致は、 正常に暗号が解ける、解けないと言い換えることが可能

【0061】 (第5の実施例) 次に、本願発明のメモリ システムの第5の実施例を説明する。上記実施例1から 4では、フラッシュメモリーカードに著作物をあらかじ め記憶させた状態での販売を考えてきたが、本実施例で は、インタネット上からPCを介してファイルがダウン ロードされる場合を想定し、特に既存のハードの使用が 前挺となる。例えば、汎用のアダプターカードを想定す 30 る。インタネット上からいったんPCのハードディスク 上にファイルとしてダウンロードされ、餃当ファイルを 汎用アダプターを介してフラッシュメモリーカードに転 送する場合、上記実施例1から4のような物理フォーマ ットの階層を利用した著作権保護の仕組みは使用できな いケースが想定される。なぜなら、例えばPCからアダ ブタカードを介してファイルをフラッシュメモリカード に転送する際、PCはメモリカードのCIS領域を参照 することはできないからである。したがってCIS領域 中の餓別コードをファイル中に取り込むような操作は不 40 可能となる。

【0082】このようなダウンロードシステムでの著作 権保護の概要の仕組みを図14に示す。 ここでシステム 機器(例えば音楽再生機)にはシステム機器個々に固有 の情報(以下説明を簡便化するため単に機器番号と記 す)が付与されている。機器番号は1台1台を完全に蝕 別可能なものが望ましいが、2台の機器があったときに その2台が同じ機器番号を持っている確率が小さければ 良い。また連続的な番号でも良いし、乱数のようなもの

と一体化していても良い。機器番号の付与方法は確々者 えられる。システム機器の外装部分に金属プレートを貼 り付けるような方法でも良いし、内装部分(例えば電池 格納部分)にあっても良い。またシステム機器のディス プレイ上に表示されるような仕組みでもかまわないし、 音声で案内されても良いし、取り扱い説明書、保証書等 に記載されても良い。すなわち、エンドユーザーがシス テム機器の機器番号を認識できる仕組みがあれば良い。 さらにこの機器番号はシステム機器内部のコントローラ が自由に参照可能であることが必要である。例えば、b コントローラ内部の不揮発性メモリ上に記憶されていて も良いし、バスを介してコントローラと接続される不復 発性メモリ上に格納されていても良い。電池でバックア ップされるならば、SRAM、DRAM等のメモリ上に 記憶されていても良い。またディップスイッチ等の機械 的な手段によって記憶されていても良い。コントローラ の相当するものが電気的な手段によって参照できれば良

【0083】インタネット上からのダウンロード方法を 具体的に配す。音楽配信を行うウェブ(WEB)上で、 ダウンロードしたい楽曲を選定し、所有しているシステ ム機器(音楽再生機)の機器番号を入力する。その後、 ファイル中に機器番号もしくは機器番号と密接に間違し た情報等が取り込まれた形でユーザーのPCのハードデ ィスク等化ダウンロードされる。もちろんクレジットカ ード番号の入力などの方法で適正な課金がされる。

【0064】結果的にエンドユーザーの手元には、所有 しているシステム機器の機器番号に関連する情報が取り 込まれたファイルが例えばハードディスク上に残ること になる。ユーザーは例えば汎用のアダプターカードを用 いてファイルをフラッシュメモリーカードに転送する。 とのフラッシュメモリーカードがシステム機器に挿入さ れた場合システムは、ファイル中の機器番号に関連付け られた情報の格納領域を参照する。もしシステム自身の 機器番号とファイル中の機器番号に関連した情報に合致 が確認された場合、システムはそのファイルが正規のフ ァイルであることを認識し楽曲の再生を許可する。合致 が得られなければ不正に入手されたファイルと認識し異 曲の再生を禁止する。したがって本実施例に従えばイン タネットを通じて入手したファイルは特定のシステム機 器のみで使用するととが可能である。上記のフラッシュ メモリーカードは他のシステム機器に挿入した場合、機 器番号とファイル中の情報が合致しないので使用すると とはできない。したがってこの実施例でのデータ配信は 特定のフラッシュメモリーカードに対して実行されたの ではなく、特定のシステム機器向けに実行されたととに なる。ことでハードディスク上に残っているファイルを 別のフラッシュメモリーカードに転送した場合を考え る。との場合ハードディスク上にあるファイルは完全な でも良いし、それらはメーカーの製造番号のようなもの 50 状態で他のフラッシュメモリーカードに無限にコピーす るととが可能である。ただし、それらのメモリカードの中に転送されたファイルの中には、そのファイルが動作するシステムとして元々のシステムの機器番号が取り込まれている。したがってコピーは無尽蔵にできるものの、それを使用できるシステムはあくまで特定のシステム機器に制限されており、著作権が保護されるととになる。

【0065】上記実施例では、あるファイルはある特定 のシステムのみで使用するととができたが、複数のシス テムで使用できるようにしても良い。インタネットから ダウンロードする際、上記実施例では1個のみの機器番 号が入力可能であったが、少なくても2個以上の機器番 号を設定可能にしても良い。1個人が複数の機器を有し ている場合を考えると有効である。使用可能な機器番号 の他、使用を禁じる機器番号も格納できるような手段、 例えば管理フラグを持っても良い。例えば当初2台の機 器が登録されていた場合に、そのうち1台システム機器 上でのファイルの使用権を放棄するような場合に、機器 登録を抹消するような動作が可能となる。使用可能な機 器の登録数を増やす場合の手段としては、登録数を増や 20 したファイル自身がインタネット上から転送されて来て も良いし、ハードディスク上等に保管されているファイ ルに対し、登録機器の追加の操作を行うソフトウェアの みが転送されてきても良い。すなわちシステム機器の機 器固有の番号と、該当機器番号に関連つけられた情報を 盛り込んだ形で入手されるファイルが存在し、システム 機器が両情報の合致を確認して動作の可否を判定するシ ステムにおいて、なんらかの手段により、機器番号の追 加、抹消等、登録機器数の変更が可能な手段を持てば本 発明の主旨に合致する。

【0066】上記実施例では、ファイルを使用する機器 の数に変動があった場合に、ファイルの中に格納された サポート機器情報を更新するととによって対応したが、 ンステム機器側で、その機器番号を変更するような方法 を取っても良い。機器番号100番の機器と200番の システム機器をエンドユーザーが所有していた場合、機 **器番号100番を前提に何らかの方法(例えばインタネ** ット上から)で入手したファイルを数多く使用していた とする。エンドユーザーがとれらのファイルを200番 の機器で使用したいと考えた場合、上記実施例で説明し 40 たファイル中のサポート機器番号の更新によって対応す るのは、ファイルの数量によっては大変な手数が必要と なる可能性がある。この場合200番の機器番号を10 0番に変更可能な手段を持てば良い。 すなわち2台の機 器番号が統一されれば、ファイルの種類は1種類で共通 化して使用するととが可能である。機器番号変更の具体 的な手段としては各種の方法が考えられる。例えば、シ ステム機器の入力キーの操作によって実現されても良い し、機器番号変更のソフトウエアがインタネット上から 配信され、それをフラッシュメモリーカード上に転送

し、システム機器上で眩当ソフトを実行させることにより機器番号が変更されても良い。無制限に機器番号が変更可能なことは問題があるので、上記の機器番号変更ソフトウェアは、変更されるシステム機器の元々の機器番号を特定した形で配信されれば良い。また単純な変更だけではなく、1台のシステム機器が複数の機器番号を持つような形にしても良い。例えば、100番の機器番号を持つ機器が、200番の機器番号をあわせ持つような形にすれば、100番用のファイルの他、元々200番の機器で使用していたファイルもあわせて使えるようになる。

【0087】このように、本実施例の主旨は、システム 機器に固有の機器番号情報等が、変更、追加、削除等を 含めて更新できることを特徴としている。また機器番号 が一個に固定されず、複数の機器番号を持つような形に することも特徴である。また機器番号の変更は、システム 機器の製造または販売サイドで行うようにしても良い。例えば所有しているシステム機器が故障し新たはレステム 機器を購入する場合、上記製造または販売サイド に元のシステム機器を送付した上で、同じ機器番号を 設けても良い。追加でシステム機器を購入する場合も、 現在システム機器を所有していることを 証明する手段と 共に、新しく購入するシステム機器に対してれまで所有 している機システム器と同じ機器番号が設定されたもの を購入できるようにしても良い。

【0068】また、ファイル中の観別コードに関連付けられた情報とは広義である。ファイルが全体的あるいは部分的に暗号化されており、その暗号を解くカギが観別30 コードそのもの、または識別コードと関係付けられたものでも良い。との場合、鐵別コードとファイル中の識別コードに関連づけられた情報との、合致および不一致は、正常に暗号が解ける、解けないと言い換えることが可能である。

【0069】(第8の実施例)次に、本願発明のメモリシステムの第6の実施例を説明する。上記1から5の実施例は、フラッシュメモリーカードやシステム機器を個別に配職する手法を取ったが、本実施例では、ユーザー個人を認識させるというものである。

【0070】説明を簡略化するため、とこでは個人の生年月日を例に説明する。個人の識別情報としては、生年月日のみに限られない。氏名でもかまわないし、任意に設定される暗証番号でも良いし、クレジットカードの会員番号、社会保障番号等でもよく、また100%の確率で他人と異なっていれば、良い。システム機器(ここでば音楽再生機を例に取る)を購入したエンドユーザーがインタネット上から音楽ファイルを購入する場合を例に取る。

【0071】システム機器には、上記の個人識別情報が50 取り込まれている。取り込む方法は任意である。店でシ

21 ステム機器を購入する際、販売者側が設定しても良い し、購入後エンドスーザーが自ら設定してもかまわな い。エンドユーザーはインタネット上からファイルを開 入する際、指定された個人職別情報を設定する。(例え ば生年月日)ファイルの中には生年月日もしくはそれに 関連付けられた情報が取り込まれるようにする。システ ム機器は、機器上に保持されている個人識別情報とファ イル中に取り込まれた個人識別情報を比較し、合致がみ られる場合にのみ音楽の再生を許可する。本実施例の特 徴は、ファイルに個人の識別情報が取り込まれる事によ 10 り、例えばエンドユーザーが複数のシステム機器を有し ていた場合、1つのファイルを全ての機器上で共通に使 用する事が可能となる。エンドユーザーがシステム機器 を追加購入する場合や、複数所持している機器いずれか に故障が発生した場合を想定すると非常に利便性が高 い。生年月日の代わりに個人の氏名を使用した場合も同 様である。ファイルはハードディスクから複数のフラッ シュメモリーカードに自由にコピーすることが可能であ る。ただし再生は、ファイルを購入した個人が所有する システム機器以外では再生することができない。同じ生 20 年月日を持つ人や、同姓同名の人の間では再利用可能で あるが、その確率が非常に低い。勿論、複数の個人戦別 情報を組み合わせて使用すれば(生年月日と氏名)、そ の確率が事実上ゼロとなり、著作権が保護される。また 機器上の個人識別情報や、ファイル中の個人識別情報 は、追加、変更、削除などができるようにしておく。婚 烟等により氏名が変更になった場合や、権利を他人に薛 度することが可能となる。

【0072】また、ファイル中の識別コードに関連付け られた情報とは広義である。ファイルが全体的あるいは 30 御を実行する。 部分的に暗号化されており、その暗号を解くカギが識別 コードそのもの、または餞別コードと関係付けられたも のでも良い。との場合、識別コードとファイル中の識別 コードに関連づけられた情報との、合致および不一致 は、正常に暗号が解ける、解けないと言い換えるととが 可能である。

【0073】(第7の実施例)次に、さらにセキュリテ ィーを高める方法として、本願発明のメモリシステムの 第7の実施例を説明する。 これまでの実施例は、一般の エンドユーザーを対象に著作権保護の方法を記載したも 40 のだが、本実施例では、悪意を持った第三者が不正行為 を実行するのを防止する観点に立っている。例えば、フ ラッシュメモリカードの電気的なインタフェース仕様は インタネット上の情報等を介して一般に公開されてい る。従ってメモリカー下中のデータをファイル単位では なく、単なるバイナリーデータの集合体として、あるメ モリカードから、別のメモリカードへパイト単位で虫実 にデッドコピーするような特殊ツールを作成することが 技術的には不可能ではない。この場合オリジナルのメモ リカードと完全に同じデータ列を持った別のメモリカー 50 【0077】また、上記実施例では、既存のIDリード

ドができる事になり、システム機器はこれらを判別する ことは困難である。 本実施例は上記問題点を鑑みなされ たもので、デッドコピー操作に対する対抗策を提示する ものである。

【0074】本実施例の主旨は、一般に公開されている 情報ではアクセスできない領域、またはアクセスされた としても自由なデータ書き換えができない領域に、メモ リカードを個別に識別する機別コードを持たせ、かつフ ァイル中にも同識別コード、または関連付けられた情報 を取り込み、システム機器が両者の情報の合致を確認す るという事である。

【0075】例えば、図1に示したフラッシュメモリカ ードを含む不揮発性半導体メモリは一般的にIDリード と呼ばれる動作モードを有している。本モードはメモリ の製造メーカーや、種別、容量、電気的な仕様等を外部 の通知するためのモードである。例えば、図1に提示し たフラッシュメモリーカードでは図15に示すような手 法によって実行される。【Dリードコマンド(ことでは 90h)を投入すると、製造メーカーを示すコード (Ma ker Code) およびメモリの種別を示すデバイスコード (Device Code)が順次出力される。例えば、株式会社 東芝製の64メガビットのフラッシュメモリカードを例に 取ると、1 バイト目にJEDIC ID98hが出力さ れ、2パイト目に64メガビットで、動作電源3.3V 品のNAND型フラッシュメモリであることを示すデバ イスコードE6hが出力される。おなじ64メガビット のメモリでもそれが、フラッシュメモリではなく、マス クロムであれば、D6hが出力される。システム機器は これらの情報を読み取り、デバイスの仕様に適合した制

【0076】本発明においては、この【Dリード動作の 動作を拡張させる。図18に示すように本来の1Dリー ド動作で必要な出力の後に、メモリカード固有の識別情 報を出力するようにする。 何パイト目から上記磯別情報 の出力が始まり、何パイト継続するのかは自由度があ る。従来の製品と本機能をサポートしている製品の判別 を確実に行うため、まずサポートしていること自身を提 示する出力(例えばAAh等、偶然パス上にデータが存 在している確率が小さいデータを設定)したのち、機別 コードを出力させるようにしても良い。既に記述のこと く、本識別コードは、全てのフラッシュメモリカード1 枚ずつにつき、ユニーク(固有)である必要はない(勿 鈴固有であることが望ましい)。例えば、戦別コードが 1パイトで形成された場合、取りうる値としては00h からFFhまでの25日通りである。従ってフラッシュ メモリーカードは256種類のグループに分類できると とになる。この場合でもエンドユーザーが2人いて同一 の戦別コードを有するメモリカードを有している確率を 考慮すると十分低いと考えられる。

コマンドを流用したが、新たに識別コードのリードコマ ンドを別途規定しても良い。アクセス方法が公開されて いるIDリードコマンドを使用するのに比べて安全性が高 い。との場合の概要を図17に示す。ととでは識別コー ドのリードコマンドとして1サイクルのコマンド設定を 例示したが、複数パイトのコマンド入力を必要としても 良い。

23

【0078】また、識別コードの決定方法は程々考えら れる。まずフラッシュメモリカードの製造段階で決定す る方法を例示する。設定値は、例えば通し番号に様に一 10 枚一枚をほぼ完全に機別するようしてもかまわないし、 乱数を発生させて決定しても良い、ウエハ単位で決定し ても良いし、チップ単位に設定しても良い。ある確率で メモリカードが他のメモリカードと異なる識別コードを 持つ様に値を設定するなら、本発明の主旨に完全に合致 している。メモリカードの製造メーカーで決定するので はなく、例えば著作物を記憶して販売するメーカーで決 定してもかまわない。

【0078】また、識別コードの香込み方法も種々考え られる。まずフラッシュメモリカードの製造段階で書き 20 込む方法を例示する。例えば、図18に示すようにヒュ ーズを使用する方法がある。ヒューズを切ったときと、 切らない時では、電源投入時に本回路が保持している値 が異なる。本回路を少なくても1個以上用意しておき、 設定する徴別コードの値によってヒューズを切るか切ら ないかを決定する。例えば、餓別コードのリードコマン ドが投入されると、本回路に保持されている領が、出力 パッファを介して外部へ出力される。ヒューズの種類と しては各種想定できる。レーザーで焼き切るもの、電流 を流して電気配線を触的に焼き切るもの、ヒューズ自身 30 法によってアクセスできるようにする。 がEEPROMのような不揮発性メモリで構成され、電 気ヒューズ等と同様の効果を発揮するもの等なんでも良 い。また、チップをアッセンブリする際のポンディング オブションとしてもよい。チップ上に金配線等を接続す るためのバッドを用意しておき、そのバッドを例えば、 電気的にVCCに接続するが、GRDに接続するかによ って、保持する値が変るようにしてもかまわない。ま た、製造時に使用する配線層のマスクを使い分けるとと によっても良い。例えば、製造の最終工程に近いアルミ の配線層を形成する工程でマスクを複数種類使い分けれ 40 ば、ある程度のバラエティーを持っ歳別コードの設定が 可能である。その他小型のディップスイッチを埋め込む ような形である程度機械的に設定可能なようにしても良 い。また観別コードを保持した別の不揮発性メモリー を、フラッシュメモリカードとは別に持つ様にし、その 別の不揮発性メモリから戦別コードの値が得られるよう にしてもかまわない。 すなわちフラッシュメモリカード 中に著作権保護のために使用する何らかのICや部品を フラッシュメモリと同時に搭載するようにすれば良い。

の銭別コードが書き込まれれば良い。銭別コードは電気 ヒューズを切る等によって以降、審き替えが不可能なよ うに設定しても良いし、EEPROM等をヒューズ代わ りに用いて、以降者を換えが可能な様な様金にしておい てもかまわない。この書き換えが可能な場合、必要に広 じある時点以降の書き換えを不可能とするような手段、 例えば電気ヒューズを切る事によって以降書き換えがで きなくなるようなモードを持つと汎用性が広がる。

【0080】また、ファイル中の識別コードに関連付け られた情報とは広義である。ファイルが全体的あるいは 部分的に暗号化されており、その暗号を解くカギがの識 別コードそのもの、または微別コードと関係付けられた ものでも良い。との場合、識別コードとファイル中の識 別コードに関連づけられた情報との、合致および不一致 は、正常に暗号が解ける、解けないと言い換えることが 可能である。

【0081】 (第8の実施例) 次に、上記第7の実施例 のさらに異なる形態として、本願発明のメモリンステム の第8の実施例を説明する。本実施例は上記実施例7と 異なり、フラッシュメモリ中にユーザーの使用領域と は、別のメモリ空間を準備し、そのメモリ空間上にフラ ッシュメモリーカードの個別の識別情報を格納するとと を主旨とする。

【0082】例えば、84メガビットのメモリの場合、 ユーザーが使用可能なメモリ空間は当然64メガビット 分確保されているが、との84メガビット分のメモリ空 間とは別のメモリ空間を持ち、その中に識別情報を保持 する。勿論、との冗長なメモリ空間は、84メガビット 分の正規のメモリ空間にアクセスする方法とは異なる方

【0083】図19にこのフラッシュメモリの物理プロ ックの概要を示す。例えば、64メガビットのフラッシ ュメモリの場合、メモリセルアレイは、64キロビット 単位に1024のブロック(消去単位)に分割されてい る。との1024個のブロックの他に例えば8個の冗長 なブロックを用意する。とれらの冗長ブロックは、一般 に知られているように、製造時に不良ブロックが発見さ れた際、ブロックの衝換を行う処理に用意されているブ ロックと兼用しても良いし、別途用意しても良い。との 冗長なブロックにアクセスするための特別なコマンドを 用意する(以降、冗長ブロックアクセスコマンドと呼 ふ)。本冗長ブロックには、メモリカードを個別に餞別 するための餓別コードが書き込まれる。 実施例7で説明 したように識別コードをどの段階で含き込むかは自由度 を持つ。例えば製造段階で本領域に識別コードが書き込 まれたとし、そのメモリカードに着作物を格納して販売 をするケースを考えると、著作物を書き込む際、書込み ツールは、冗長ブロックアクセスコマンドにより、冗長 ブロックに書き込まれた徴別コードを読み取る。次に、 製造股階で何らかの手法により、メモリカード内に個別 50 との読み取った識別コードまたは識別コードに関連付け

(14)

られた情報をファイル中に取り込み、メモリカードにフ ァイルを存き込む。システム機器は冗長ブロックに書き 込まれたメモリカードの敵別コードとファイル中に取り 込まれたメモリカードの識別情報を比較し、所定の条件 を満たした場合にシステム機器上での使用を許可する。 ファイルがあるメモリカードから別のメモリカードへハ ードディスク等を介して転送され、別のシステム機器上 で動作させようとしても、コピーファイルの転送先のメ モリカード中の冗長ブロックに書き込まれた識別コード と、コピーされたファイルに取り込まれたメモリカード の識別情報が合致しないので、使用できない。とれによ って著作物の権利が保護されるととになる。

【0084】との冗長ブロックへ書き込まれるメモリカ ードの識別情報の形態は、これまでの実施例の中で述べ てきたように罹々考えられる。メモリカードの戦別コー ドを単純に格納してもよいし、複数個格納して実際に使 用する際、比較して使用してもよい。また、識別コード の妥当性を判断するための付加的な情報を付けてもよ い。例えば、バリティを計算しその計算結果と共に格納 したり、エラー訂正用の符号とともに格納しエラーが発 20 ロックの他に例えば8個の冗長なブロックを用意する。 生した場合、エラー訂正が可能としてもよい。また戦別 コードをその補数(例えば説別コードがAAhならその 補数として55h)と共に格納するようにしてもよい。 また、図1のメモリカードで実際のファイルを格納する 際使用しているECCの方式がそのまま適用可能なよう にしてもよい。また図1に例示したフラッシュメモリで 例えば1ブロックが16ページで構成されているなら は、複数のページに微別コードを格納しても良い。ま ・ た、複数個のブロックに格納されてもかまわない。また 戦別コードのほかに、その冗長プロックが戦別コードを 30 格納しているととを確認するための情報(例えば規定さ れた1文字以上の文字列等)や、該当する冗長ブロック が電気的に正常なものか不良プロックかを示すフラグの ような管理データと共に格納されてもよい。例えば、戀 別コードを格納するための領域として2ブロック分(優 先度は設けても良い)を用意しておけば、仮にその一つ が不良のブロックとなっている場合でも、製造券留まり を落とさず化すむ。この場合システム機器としては、ま ず管理フラグをみて、正常なブロックか否かを判断し、 列の有無で判断する。規定の文字列が見つかったら、識 別コード妥当性をパリティその他の手段を使って判断し ながら、戦別コードを取得する。もし最初にアクセスし たブロックが不良ブロックであったら、次のブロックに アクセスに行くのは自明である。その他さまざまな方法 が考えられるが、実施例7で記述した選り、ユーザーが 簡単にアクセスできない領域に、メモリカード個別の識 別情報が格納されれば本発明の主旨に合致する。

【0085】また、ファイル中の識別コードに関連付け

部分的に暗号化されており、その暗号を解くカギが識別 コードそのもの、または敵別コードと関係付けられたも のでも良い。この場合、識別コードとファイル中の機別 コードに関連づけられた情報との、合数および不一致 は、正常に暗号が解ける、解けないと言い換えるととが 可能である.

【0086】(第9の実施例)次に、上述した第8の実 施例をさらに強化した形態の本願発明のメモリシステム の第9の実施例を説明する。実施例8では、識別コード の書き換えを禁止する方法を明示していないので、万が 一、冗長ブロックへのアクセス方法が流出した場合、該 当領域のデータを書き替える不正なツールが作られない とも限らない。本実施例は実施例8で開示した方法にさ らに、識別コードの書き換えを禁止する措置を付加した ものである。

【0087】図19を用いて具体的な例を説明する。例 えば64メガビットのフラッシュメモリの場合、メモリ セルアレイは、84キロビット単位に1024のブロッ ク(消去単位)に分割されている。との1024個のブ ことで示したプロックの各々には図20に示すようなロ ウデコーダがついている。このロウデコーダの機能につ いて説明を加える。

【0088】ロウデコーダ回路は、チップに入力される アドレスに従いブロックを選択し、ワード線等に周辺回 路中にて発生した電圧を転送する役割を担う。通常は、 データ書込み・データ消去・データ競出しの全てにおい て上記動作を行う。以下に、図20に従い、ロウデコー ダ回路の動作を説明する。

【0089】信号RDECはロウデコーダの起動信号で あり、春込み・消去・読出しの動作時には"H"とな る。信号ADDRESSはブロックアドレスを表す信号 であり、アドレスが選択されたブロックのみ複数のアド レス信号が全て "H" となり、ノードNAも "H" とな る。書込み動作時及び読出し動作時には、信号ERAS Eが "L" 、信号/ERASEが "H" となり、「信号 経路1」を介してノードNOに信号が伝わる、つまり退 択されたブロックではノードNOが "H" 、それ以外の ブロックでは"L"となる。すると、選択ブロックで 次に識別コードが格納されているかどうかを規定の文字 40 は、ノードN1=VPP(書込み・消去・院出し等を実 現するための高電圧)、/N1=OVとなり、周辺回路 部パスラインの電圧がワード線に伝わり(図の右下の破 線内回路参照)、ゲータの香込み・眺出しが実行され る。また、外選択ブロックでは、N1=0V、/N1= VPPとなり、周辺回路部パスラインとワード線が非接 統状態にある。

【0080】次に、消去助作中の詳細な動作について以 下に説明する。消去動作開始前には、信号RESETが "H"の状態にあるため、ノードNL、NRはそれぞれ られた情報とは広義である。ファイルが全体的あるいは 50 "H"、"L"のレベルにある。消去動作が開始する

と、信号RESETが"L"となり、またチップに入力 されたアドレスに従ってアドレス信号ADDRESSが 設定され、さらに信号LESTがある一定時間 "H" と なる。 選択プロックでは、 ノードNAが "H" にあるた め、FUSEが非切断状態にある場合には、FUSEを 介してノードNLがOVと接続されるため、ノードN L、NRがそれぞれ"L"、"H"となる。一方、FU SEが切断状態にあるブロックでは、ブロックの選択・ 身選択に依らず、ノードNL、NRはそれぞれ"H"、 "L"の状態が保たれる。続いて、信号ERASEが "H"、信号/ERASEが"L"となり、「信号経路 1」を介してノードNOに信号が伝わる。 つまりノード NRの電圧がNOに伝わり、ノードNRが"H"レベル にあるブロックに対してのみデータ消去が実行される。 【0091】以上述べたととから明らかなように、図2 0中のロウデコーダ回路では、データ書込み・読出し時 のブロックの選択/非選択は直接アドレス信号を用いて 行い、一方データ消去時のブロックの選択/非選択は回 路中のラッチ回路を用いて行う。従って、図20中の回 路を用いることにより、FUSEが切断されたブロック では、データの各込み・読出しは実行可能、データ消去 は実行不可能とすることができる。

【0092】上記ロウデコーダを使用した場合、下記の 様に制御を行う。例えば冗長ブロックにアクセスするコ マンドを用意する。本領域にメモリカードに固有の識別 コードを書き込む。餓別コードの舎込みフォーマットに 関しては様々な方法が想定可能な事は、既に実施例8等 に記載してある。本実施例では、織別コードを書き込ん だ後、FUSEを切断する。ヒューズの種類がレーザー カットのもの、電気ヒューズ、EEPROM等取りうる 30 ことは記述である。FUSEを切断すると記述のよう に、書込み・読み出しは可能となるが、消去動作は禁止 される。従って該当領域へのアクセス方法が仮に流出し たとしても、該当領域に格納された情報を自由に書き替 えることはできない。ただし、この実施例では、春込み 動作は禁止をしていない。従って追加の書込み動作は可 能である。本実施例中のフラッシュメモリは消去助作な しで"1"のデータを"0"に書き替えることは可能で あるが、"0"のデータを"1" に書き替えることはできな い。従って、メモリカードの識別情報を格納する際、餓 40 別コードのほかにその補数を同時書き込んでおけば良 い。例えば説別情報が、"AAh=10101010" とするとその補数は "55h=01010101" とな る。不正な操作により、識別コードのAAhの最上位の ビットを追加審込みして "2Ah=00101010" に書き替えたとしても、対応する補数格納領域を "D5 h=11010101" に書き替えることはできない。 従って熾別コードを補数と共に格納することにより、不 正な追加書込みが不可能となり、たとえ該当領域へのア

当領域に対し意味あるデータの書き換え行為ができない ことになる。従って本領域にメモリカードを個別に識別 する微別コードが舎かれ、微別コードまたは関連付けら れた情報がファイル中に取り込まれ、阿情報の比較によ ってシステム上での助作を制限する仕組みのシステム機 器においては、仮にファイルを別のメモリカードにコピ 一したとしても、転送先のメモリカードにも同様に識別 情報の格納領域があり、その情報の書き換えも同様に制 限されているので、その識別情報とファイル中の情報の 合致がなくシステム機器上で使用できず、著作物の権利 が保護されている。メモリカードの出荷後、著作物を格 納するメーカーの時点で回領域に情報を書き込む場合 は、識別情報格納後、例えば電気ヒューズであれば電気 的にヒューズを切断して以降の不正な識別情報の書き換 えを禁止する。ととでは消去動作のみを禁止したが、同 様の手段よって該当領域の書込み動作自身を禁止しても 良い。消去および書き込みを禁止する手段としてはロウ デコーダ近辺のヒューズのみに限られない、酸当領域に アクセスが有った場合、各込みおよび消去に必要な高電 圧の発生回路の動作を禁止するような手段をとっても良 いし、任意である。職別情報を格納した後、何らかの手 段によって、該当領域の消去動作または、書き込み動作 のいずれか一方もしくは両方の動作が禁止されれば本発 明の主旨を満足する。一旦禁止された消去または書き込 み動作が、更に複雑な手順を経て再び消去および普込み 動作が可能となるような方法を保持しておいてもかまわ ない。

【0093】上記実施例では、メモリカードの識別コー ドは冗長ブロックに格納したが、本発明はこれに限られ ない。冗長ブロック以外の通常のメモリ空間領域に格納 してもかまわない。図1に示したメモリカードでは記述 のようにブロック単位でブロックの不良登録が可能であ る。あるブロックを識別コードの格納ブロックと定義し てそとに観測コードを密き込んだ後、ヒューズと切断す る等の手段により不正な識別コードの書き換えを防ぐよ うにしても良い。との時通常のシステムが該当ブロック を通常のデータ格納領域として使用しようと試みるのを 防ぐため、戦別コードに関連する情報を格納するほか、 プロックのBlock StatusAreaKマーク をつけ不良プロック登録しておけば良い。記述のように これらのケースの場合も識別コードを格納していること が確認できるような情報を一緒に格納しておけば良い。 この方法を使用する場合は、あるメモリカードののデー タが、他のメディアにデッドコピーされてはいけないの で、全てのメモリカードの出荷時に截別コードを書き込 み、フューズを切断して以降の消去助作もしくは書込み 動作の一方もしくは両方の動作を禁止するようにすれば 良い。従って通常のメモリ空間に餓別コードを記憶し、 該当領域に対し、以降の消去動作もしくは番込み動作の クセス方法および追加書込み方法が分かったとしても該 50 一方もしくは両方の動作を禁止するような手段を持って

30

いれば本発明の主旨を満足する。また、上記実施例の1 から9中では説明を簡略化するために単にメモリカード の織別番号と記載しているが、それが単純化メモリカー ドの識別番号だけではなく、著作物を直接識別するため の情報(例えば音楽ファイルの場合、販売電や歌手、作 曲家、作詞家、製造者、レコードメーカー、アルバム 名、局名等メモリカード自身の固有性と直接関係なくて もよい)であってもかまわない。

【0094】また、ファイル中の識別コードに関連付け られた情報とは広義である。ファイルが全体的あるいは 10 部分的に暗号化されており、その暗号を解くカギが幽別 コードそのもの、または識別コードと関係付けられたも のでも良い。との場合、識別コードとファイル中の難別 コードに関連づけられた情報との、合致および不一致 は、正常に暗号が解ける、解けないと言い換えることが 可能である。

【0095】(第10の実施例)次に、本願発明のメモ リンステムの第10の実施例を説明する。本実施例はデ ータをデッドコピーするようなツールに対する防御機能 **化関するものである。**

【0096】ととではメモリの内部にランダムに適当な 頻度で不良ビットを持たせる。この時、記憶媒体である 不揮発性メモリの内容を複製しようと、元のメモリカー ドからデータを読み出して複製先のメモリカードにデッ ドコピーを行おうとしても、書き込み先のメモリに存在 する不良ビットの存在によりその部分に正しくデータを 書き込めず、正しくコピーするととは出来ず不正なデー タコピーは失敗に終わる。上記の不良ビットは先天性の 不良ビットでも人為的に配置された不良ビットでも同様 の効果が期待できる。また、さらに、不良はビットであ 30 る必要はなく、ビットの他にロー不良、カラム不良、ブ ロック不良、及びそれらの組み合わせを先天的に若しく は人為的に持つ不揮発性メモリでも同様の効果を期待で ŧð.

【0087】不良ピット、ロー、カラム、またはブロッ クを人為的に生じせしめる手段としては、レーザー照射 によるセルトランジスタ、ローデコーダ、カラムデコー ダ、若しくはブロックデコーダの破壊が考えられる。ま た、同様化ポリシリコンヒューズまたは電気ヒューズを セル、ロー、カラム若しくはプロックとぞれらのデコー 40 ダとの間に設け、それをレーザまた過電流で始断する手 法も考えられる。 きらにはOne Time PROM 等の不揮発性メモリのセルを設けそのセルに書き込みを 行う事により人為的に上記の不良の中の一つまたはそれ 5の組み合わせを作る等、本発明の起旨を逸脱しない節 囲で人為的に不良を作るととは可能である。実施例8ま たは8で説明したような手法により消去助作または書込 み助作の一方または阿動作を禁止してもよい。消去動作 のみを禁止する場合、あらかじめ設当領域に"0"デー タを書き込んでおけば、データのコピーができないので 50 号化技術と共に使用されても良い。

同様の効果が出る。データのデッドコピーを実行しよう とした際、なんらかの方法により、コピーが失敗するよ うな対策が施されていれば本実施例の主旨に合致すると と化なる。

【0098】(第11の実施例)次に、本願発明のメモ リンステムの第11の実施例を説明する。上記1から1 0の実施例において著作物の権利保護の仕組みについて 説明したが、着作物の権利保護機能を有するメモリカー ドとそうでないカードの判別が可能なようにしても良 い、判別の方法は種々考えられる。例えばメモリカード の外装表面に奢作権保護機能がついていることを表す文 章や、ロゴマークがついていても良い。また色や模様の 規定を行い、それが著作権保護機能を持っているという 事にしても良い。また製品名や製品型番から分かるよう にしても良い。またシステム機器の挿入された場合、例 えばディスプレイ上にメッセージが出るようにしても良 い。またPC上でファイルを取り扱う際、メッセージ等 が出るような仕組みでも良い。またシステム機器内のコ ントローラに相当する部分が判別可能なように、既に記 20 述したが、ある特定の操作(例えば著作権保護機能がつ いているかどうかを出力する特殊なコマンド等)によっ て判別できれば良い。

【0098】また、上記のような著作権の保護がされて いるかどうかをファイル単位またはディレクトリ単位で 料別可能なようにしてもよい。また、私的に作成された 音楽や、プロモーション用の音楽等の著作物で保護の必 要のないものを想定し、著作権保護の必要の無いものな のか、または不正にコピー等をされたものなのかを判別 できるようにしても良い。ファイル中の所定の領域に例 えばフラグを設けて、著作権保護の必要のないものと判 断されれば、これまで記載してきたような著作権保護に 関する条件が成立しなくてもシステム機器上で使用可能 なようにしてもよい。

【0100】上記1から11実施例において、フラッシ ュメモリカードを例に説明したが、本発明はフラッシュ メモリカード、さらには半導体メモリのみに限られな い。カードの全体がマスクROM (MROM) で様成さ れていても良いし(との場合、上述の実施例1から11 で説明した識別コード等もMROM化されていても良 い)、MROMと共に上述の実施例1から11で説明し たような機能を盛り込むためにデータ書込みや無知コー ドの設定が可能なフラッシュメモリや、OTP (On e Time PROM) やヒューズ等が付随していても かまわない。

【0101】さらに、本発明は上記実施例に限られるの でなく、主旨を逸脱しない範囲で種々変更して利用可能 である。また、これらの著作物の権利保護が上記実施例 1から11単独もしくは組み合わせたもののみで使用さ れなくてもかまわない。例えば、電子透かし技術や、暗

[0102]

【発明の効果】本願発明は、メモリカードを個別に識別する情報を保持する領域をメモリカード上に設け、この情報をもとにメモリカードに記憶されるデータを読み出す種々の方法を提供することで、メモリカード上のファイルに対し著作権保護を目的としたコピーガードの機能を附加するものである。

31

【図面の簡単な説明】

【図1】フラッシュメモリカードの外観を示す図である。

【図2】16MビットNAND型フラッシュメモリの物理ブロックの構成を示す図である。

【図3】18MビットNAND型フラッシュメモリのデータ領域内部の構成を示す図である。

【図4】16MビットNAND型フラッシュメモリの論理ブロック/物理ブロック変換テーブルの構成を示す図である。

【図5】16MビットNAND型フラッシュメモリの物理ブロックの構成を示す図である。

【図6】16MビットNAND型フラッシュメモリの物 20 ズ回路の一例を示す回路図である。 理ブロックの構成を示す図である。 【図19】本頭品明の第8の主体4

【図7】図5および図8に示すCIS領域の構成を示す図である。

【図8】本願発明の第1の実施例の概要を示す図である。

【図9】本願発明の第2の実施例の概要を示す図である。

*【図10】本願発明の第2の実施例の概要を示す図である。

【図11】本販発明の第4の実施例の概要を示す図である。

【図12】本願発明の第4の実施例の概要を示す図である。

【図13】本願発明の第4の実施例の概要を示す図である。

【図14】本顧発明の第5の実施例の概要を示す図であ 10 る。

【図15】従来のフラッシュメモリカードの1Dリードモード時の各信号波形を示した図である。

【図18】本願発明の第7の実施例に係るフラッシュメモリカードの【Dリードモード時の各信号波形を示した図である。

【図17】本願発明の第7の実施例に係るフラッシュメモリカードの【Dリードモード時の各信号波形を示した図である。

【図18】フラッシュメモリカードに搭載されるフューズ回路の一例を示す回路図である。

【図19】本願発明の第8の実施例に係るフラッシュメモリカードの物理ブロックの構成を示す図である。

【図20】本願発明に係るフラッシュメモリのロウデコーダ回路の一例を示す図である。

【符号の説明】

FUSE

ヒューズ

[図1]

C:		Q · 255	256 268
Block D	Page 0	データ保建(250パイト)	T-1000000
1	Page 1		120 KINGS (A)
	Page 15		
Block I	Page 0		<u> </u>
ł	Page 1		-
}			
	Page 15		-
!!!	1	1	
	,	3	1 ;
	:	;	i
1 : 1	•	!	1
Nock Bil			
	Ржаго О		
1	Page 1		
	Page 16		

【図6】

Sleck 0	不良プロッタ
Block, 1	CIS
Block 2	Data
:	
:	
;	
	,
	1
Block 511	Duta

[図3]

り)

② 兀長部		
142	偶般ページ	を放べージ
257 Rese	rved Area rved Area rved Area	ECC Area-2
	Status Area	Block Address Ares-2
251 Bloc	k Status Area k Address Ares-1	ECC Are 1

【図4】

OFFSET	Upper Byte	Lower Syte
Word((LBA=0)	Physical Block Address Pff	Physical Block Address Fix
Yordi (LEAPI)	Physical Block Address Pff	Physical Block Address For
Word2 (LEASE)	Physical Black Address + to	Physical Block Address For
Tord498 (LEA=497)	Physical Block Address Ett	Physical Block Address 下位
Tordes (BAMADA)	Physical Blook Address上位	Physical Block Address Edy
Word000 (LBA=699)	Physical Blook Address Ett	Physical Block Address FO

[図8]

【図10】

[図11]

[図13]

[2]12]

[214]

[図16]

[219]

【図18】

[図20]

フロントページの続き

(72)発明者 中林 幹戸

神奈川県川崎市幸区堀川町580番1号 株 式会社東芝半導体システム技術センター内

(72)発明者 中村 寛

神奈川県川崎市幸区堀川町580番1号 株 式会社東芝半導体システム技術センター内 Fターム(参考) 58017 AA06 AA07 BA04 BA05 BA07

BB08 CA11 CA12 CA14 CA16 58025 AE10

58060 AB26 AC12 MM09 MM12 MM16