Name: Solutions

_____/ 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [12 points] Find $\frac{dy}{dx}$. You do not have to simplify

a.
$$y = 1 - 2x + x \sec(x)$$

$$\frac{dy}{dx} = -2 + 1 \cdot \sec(x) + x \sec(x) + \tan(x)$$

b.
$$y = 8u^3$$
, $u = \tan(x)$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 8.3u^2 \cdot \sec^2 x = 24 + \tan^2(x) \sec^2(x)$$

c.
$$y = \frac{20}{\sqrt{x^3 - 2x}} = 20(x^3 - 2x)^{-1/2}$$

$$\frac{dy}{dx} = 20(\frac{1}{2})(x^3-2x)(3x^2-2) = \frac{-10(3x^2-2)}{(x^3-2x)^{3/2}}$$

$$\frac{dy}{dx} = 5\left(x + \cos\left(\frac{x}{\pi}\right)\right)^{5}$$

$$\frac{dy}{dx} = 5\left(x + \cos\left(\frac{x}{\pi}\right)\right)\left(1 - \frac{1}{\pi}\sin\left(\frac{x}{\pi}\right)\right)$$

1

UAF Calculus I

Sept 30, 2021 Math 251: Quiz 5

2. [5 points] Use the chart to determine the derivative of $h(x) = f(x^2 + 1) - (g(x))^2$ at x = 1.

X	$\int f(x)$	$\int f'(x)$	g(x)	g'(x)
0	2	-1	0	1
1	1	2	3	4
2	-1	-2	-3	-4
3	0	4	3	2

$$h'(x) = f'(x^{2}+1)(2x) - 2(g(x))(g'(x))$$

$$h'(1) = f'(1^{2}+1)(2) - 2(g(1))(g'(1))$$

$$= f'(2) \cdot 2 - 2 \cdot 3 \cdot 4 = -2 \cdot 2 - 24 = -28$$

3. [8 points] Given $f(x) = (3x - 8)^6 - 17x$

a. Find
$$f'(x)$$

$$f'(x) = 6(3x-8)^{5} \cdot 3 - 17$$

$$= 18(3x-8)^{5} - 17$$

b. Find all *x*-values when the tangent line to f is parallel to y = x - 2.

Find x so that
$$f'(x)=1$$
. $73x-8=1$
So $18(3x-8)^5-17=1$ $3x=9$
 $18(3x-8)^5=18$ $x=3$
 $(3x-9)^5=1$