2024-January Session-01-31-2024-shift-1 1-15

AI24BTECH11031 - Shivram S

1)	For $0 < c < b < a$, let $(a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b) = 0$ and	$\alpha \neq 1$	l be
	one of its roots. Then, among the two statements		

- (I) If $\alpha \in (-1,0)$, then b cannot be the geometric mean of a and c
- (II) If $\alpha \in (0, 1)$, then b may be the geometric mean of a and c
- a) Both (I) and (II) are true

- c) Only (II) is true
- b) Neither (I) nor (II) is true
- d) Only (I) is true
- 2) Let a be the sum of all coefficients in the expansion of $(1 2x + 2x^2)^{2023}(304x^2 +$ $(2x^3)^{2024}$ and $b = \lim_{x \to 0} \left(\frac{\int_0^x \frac{\log(1+r)}{t^2} dt}{\frac{x^2}{t^2}} \right)$. If the equations $cx^2 + dx + e = 0$ and $2bx^2 + ax + 4 = 0$ 0 have a common root, where $c, d, e \in R$, then d : c : e equals
 - a) 2:1:4
- b) 4:1:4
- c) 1:2:4
- d) 1:1:4

1

- 3) If the foci of a hyperbola are same as that of the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$ and the eccentricity of the hyperbola is $\frac{15}{8}$ times the eccentricity of the ellipse, then the smaller focal distance of the point $(\sqrt{2}, \frac{14}{3}, \sqrt{\frac{2}{5}})$ on the hyperbola, is equal to
- a) $7\sqrt{\frac{2}{5}} \frac{8}{3}$ b) $14\sqrt{\frac{2}{5}} \frac{4}{3}$ c) $14\sqrt{\frac{2}{5}} \frac{16}{3}$ d) $7\sqrt{\frac{2}{5}} + \frac{8}{3}$
- 4) If one of the diameters of the circle $x^2 + y^2 10x + 4y + 13 = 0$ is a chord of another circle C, whose center is the point of intersection of the lines 2x + 3y = 12 and 3x - 2y = 5, then the radius of the circle C is
 - a) $\sqrt{20}$
- b) 4

c) 6

d) $3\sqrt{2}$

5) The area of the region

$$\left\{ (x,y) : y^2 \le 4x, x < 4, \frac{xy(x-1)(x-2)}{(x-3)(x-4)} > 0, x \ne 3 \right\}$$

is

d) 4

$3x - y + \beta z = 3$									
has infinitely many solutions, then $12\alpha + 13\beta$ is equal to									
a) 60	b) 64	c) 54	d) 58						
9) The solution curve of the differential equation $y\frac{dx}{dy} = x(\log_e x - \log_e y + 1), x > 0, y > 0$ passing through the point $(e, 1)$ is									
a) $\left \log_e \frac{y}{x}\right = x$	b) $\left \log_e \frac{y}{x}\right = y^2$	c) $\left \log_e \frac{x}{y}\right = y$	$d) \left \log_e \frac{x}{y} \right = y + 1$						
10) Let $\alpha, \beta, \gamma, \delta \in Z$ and let $A(\alpha, \beta)$, $B(1, 0)$, $C(\gamma, \delta)$ and $D(1, 2)$ be the vertices of a parallelogram $ABCD$. If $AB = 10$ and the points A and C lie on the line $3y = 2x + 1$, then $2(\alpha + \beta + \gamma + \delta)$ is equal to									
a) 10	b) 5	c) 12	d) 8						
11) Let $y = y(x)$ be the solution of the differential equation									
$\frac{dy}{dx} = \frac{(\tan x) + y}{\sin x(\sec x - \sin x \tan x)}, x \in \left(0, \frac{\pi}{2}\right)$									
satisfying the condition $y\left(\frac{\pi}{4}\right) = 2$. Then $y\left(\frac{\pi}{3}\right)$ is									
a) $\sqrt{3}(2 + \log_e \sqrt{3})$ b) $\frac{\sqrt{3}}{2}(2 + \log_e 3)$ c) $\sqrt{3}(1 + 2\log_e 3)$ d) $\sqrt{3}(2 + \log_e 3)$									
12) Let $\overrightarrow{d} = 3\hat{i} + \hat{j} - 2\hat{k}$, $\overrightarrow{b} = 4\hat{i} + \hat{j} + 7\hat{k}$ and $\overrightarrow{c} = \hat{i} - 3\hat{j} + 4\hat{k}$ be three vectors. If a vector \overrightarrow{p} satisfies $\overrightarrow{p} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{p} \cdot \overrightarrow{d} = 0$, then $\overrightarrow{p} \cdot (\hat{i} - \hat{j} - \hat{k})$ is equal to									

b) $\frac{64}{3}$ c) $\frac{8}{3}$ d) $\frac{32}{3}$

6) If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$ and (fof)(x) = g(x), where $g: \mathbb{R} - \left\{\frac{2}{3}\right\} \to \mathbb{R} - \left\{\frac{2}{3}\right\}$ then (gogog)(4) is equal to

c) -4

x - 2y + z = -4 $2x + \alpha y + 3z = 5$

b) does not exist c) is equal to 1 d) is equal to 2

a) $\frac{16}{3}$

a) $-\frac{19}{20}$

7) $\lim_{x\to 0} \frac{e^{2|\sin x|} - 2|\sin x| - 1}{x^2}$

a) is equal to -1

b) $\frac{19}{20}$

8) If the system of linear equations

\ 04	1) 26	\ 2 0	1) 22
a) 24	b) 36	c) 28	d) 32

13) The sum of the series $\frac{1}{1-3\cdot 1^2+1^4} + \frac{2}{1-3\cdot 2^2+2^4} + \frac{3}{1-3\cdot 3^2+3^4} + \dots$ upto 10 terms is

a)
$$\frac{45}{109}$$
 b) $-\frac{45}{109}$ c) $\frac{55}{109}$ d) $-\frac{55}{109}$

14) The distance of the point Q(0,2,-2) from the line passing through the point P(5,-4,3) and perpendicular to the lines $\overrightarrow{r}=(-3\hat{i}+2\hat{k})+\lambda(2\hat{i}+3\hat{j}+5\hat{k}), \lambda\in\mathbb{R}$ and $\overrightarrow{r}=(\hat{i}-2\hat{j}+\hat{k})+\mu(-\hat{i}+3\hat{j}+2\hat{k}), \mu\in\mathbb{R}$ is

a)
$$\sqrt{86}$$
 b) $\sqrt{20}$ c) $\sqrt{54}$ d) $\sqrt{74}$

15) For $\alpha, \beta, \gamma \neq 0$, if $\sin^{-1} \alpha + \sin^{-1} \beta + \sin^{-1} \gamma = \pi$ and $(\alpha + \beta + \gamma)(\alpha - \gamma + \beta) = 3\alpha\beta$ then γ is equal to

a)
$$\frac{\sqrt{3}}{2}$$
 b) $\frac{1}{\sqrt{2}}$ c) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ d) $\sqrt{3}$