Earthquake Prediction Model using Python

phase1 Project

Prepared by:

K.THAMARAISELVI, 510521205306, BHARATHIDASAN ENGINEERING COLLEGE, PHASE1 PROJECT SUBMISSION.

INTRODUCTION

The Science of Earthquake Prediction

Earthquake prediction is a complex field that involves analyzing seismic data to identify patterns and trends.

Scientists use a variety of techniques, including statistical analysis and machine learning, to forecast earthquakes.

The accuracy of these predictions depends on the quality and quantity of data available.

OBJECTIVES

The Role of Python in Earthquake Forecasting

Python is a popular programming language for data analysis and visualization.

It provides a wide range of tools and libraries that can be used to process and analyze seismic data.

Python can also be used to develop machine learning models for earthquake prediction.

DEFINITION

Earthquake, any sudden shaking of the ground caused by the passage of seismic waves through Earth's rocks. Seismic waves are produced when some form of energy stored in Earth's crust is suddenly released, usually when masses of rock straining against one another suddenly fracture and "slip." Earthquakes occur most often along geologic faults, narrow zones where rock masses move in relation to one another. The major fault lines of the world are located at the fringes of the huge tectonic plates that make up Earth's crust.

ABSTRACT

This earthquake prediction model using Python represents a significant step towards enhancing our ability to anticipate seismic events, ultimately contributing to improved public safety and disaster management. The project showcases the power of data-driven approaches and open-source programming languages in addressing complex real-world challenges.

DATA SOURCE

Date	Time	Latitu de	Longitu de	Туре	Depth	h Error	Depth Seismic Station s		Magnitude Type	nitu de	Seismi	Azimut hal	al a	Hori Root cont Mean al Squar Error e		Source	Location Source	Magnitude Source	Status
1/2/196 5	13:44: 18	19.24 6	145.616	Earthquake	131.6			6	MW						ISCGEM860706	ISCGEM	ISCGEM	ISCGEM	Automatic
1/4/196 5	11:29: 49	1.863	127.352	Earthquake	80			5.8	MW						ISCGEM860737	ISCGEM	ISCGEM	ISCGEM	Automatic
1/5/196 5	го	- 20.57 9	- 173.972	Earthquake	20			6.2	MW						ISCGEM860762	ISCGEM	ISCGEM	ISCGEM	Automatic
1/8/196 5	18:49: 43	- 59.07 6	-23.557	Earthquake	15			5.8	MW						ISCGEM860856	ISCGEM	ISCGEM	ISCGEM	Automatic
1/9/196 5	13:32: 50	11.93 8	126.427	Earthquake	15			5.8	MW						ISCGEM860890	ISCGEM	ISCGEM	ISCGEM	Automatic
1/10/19 65	13:36: 32	- 13.40 5	166.629	Earthquake	35			6.7	MW						ISCGEM860922	ISCGEM	ISCGEM	ISCGEM	Automatic
1/12/19 65	13:32: 25	27.35 7	87.867	Earthquake	20			5.9	MW						ISCGEM861007	ISCGEM	ISCGEM	ISCGEM	Automatic
1/15/19 65	12	- 13.30 9	166.212	Earthquake	35			6	MW						ISCGEM861111	ISCGEM	ISCGEM	ISCGEM	Automatic
1/16/19 65	11:32: 37	- 56.45 2	-27.043	Earthquake	95			6	MW						ISCGEMSUP861125	ISCGEMSU P	ISCGEM	ISCGEM	Automatic
1/17/19 65	10:43: 17	- 24.56 3	178.487	Earthquake	565			5.8	MW						ISCGEM861148	ISCGEM	ISCGEM	ISCGEM	Automatic
1/17/19 65	20:57: 41	- 6.807	108.988	Earthquake	227.9			5.9	MW						ISCGEM861155	ISCGEM	ISCGEM	ISCGEM	Automatic
1/24/19 65	0:11:1 7	2.608	125.952	Earthquake	20			8.2	MW						ISCGEM861299	ISCGEM	ISCGEM	ISCGEM	Automatic

12/20/20 16	.2:33:14	-10.1785	160.9149	Earthqua ke	10	1.6		6	MWW			14	1.204	5.7	0.88	US20008 2TK	US	US	US	Reviewe d
12/20/20 16	0:07:53	-10.1549	160.7816	Earthqua ke	10.38	3.2		5.5	MWB	0.048	41	19	1.087	7	0.7	LIX	US	US	US	Reviewe d
12/21/20 16	:17:15	-7.5082	127.9206	Earthqua ke	152	1.8		6.7	MWW			17	3.38	5.3	1.2	US10007 LKW	US	US	US	Reviewe d
12/21/20 16	.6:43:57	21.5036	145.4172	Earthqua ke	12.05	2.9		5.9	MWW			21	6.239	7.6	0.76	US10007 LQE	US	US	US	Reviewe d
12/24/20 16	:32:16	-5.2453	153.5754	Earthqua ke	35	1.9		6	MWW			13	1.753	6.9	0.91	US10007 MF5	US	US	US	Reviewe d
12/24/20 16	:58:55	-5.146	153.5166	Earthqua ke	30	1.8		5.8	MWW			14	1.648	7	0.85	US10007 MFP	US	US	US	Reviewe d
12/25/20 16	4:22:27	-43.4029	-73.9395	Earthqua ke	38	1.9		7.6	MWW			29	0.351	6.8	0.8	US10007 MN3	US	US	US	Reviewe d
12/25/20 16	4:32:13	-43.481	-74.4771	Earthqua ke	14.93	3.3		5.6	МВ	0.067	83	96	0.697	7.1	0.52	US10007 MNB	US	US	US	Reviewe d
12/27/20 16	3:20:56	45.7192	26.523	Earthqua ke	97	1.8		5.6	MWW			14	0.465	5.1	0.78	N3K	US	US	US	Reviewe d
12/28/20 16			- 118.8977	Earthqua ke	10.8	1.3	34	5.6	ML	0.35	20	35.86	0.132		0.1988	NN00570 709		NN	NN	Reviewe d
12/28/20 16	3:22:12	38.3917	- 118.8941	Earthqua ke	12.3	1.2	40	5.6	ML	0.32	18	42.47	0.12		0.1898	NN00570 710		NN	NN	Reviewe d
12/28/20 16						2	33	5.5	ML	0.26	18	48.58	0.129		0.2187	NN00570 744	NN	NN	NN	Reviewe d
12/28/20 16	.2:38:51	36.9179	140.4262	Earthqua ke	10	1.8		5.9	MWW			91	0.992	4.8	1.52	US10007 NAF	US	US	US	Reviewe d
12/29/20 16	2:30:19	-9.0283	118.6639	Earthqua ke	79	1.8		6.3	MWW			26	3.553	6	1.43	US10007 NL0	US	US	US	Reviewe d
12/30/20 16	0:08:28	37.3973	141.4103	Earthqua ke	11.94	2.2		5.5	МВ	0.029	428	97	0.681	4.5	0.91	US10007 NTD	US	US	US	Reviewe d

SAMPLE PROGRAM

Import necessary libraries import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear model import LinearRegression from sklearn.metrics import mean squared error import matplotlib.pyplot as plt

```
# Generate synthetic earthquake data (example)
np.random.seed(0)
num_samples = 100
# Simulated features (e.g., geological factors, seismic activity)
features = np.random.rand(num_samples, 3)
# Simulated earthquake magnitude (target variable)
magnitude = 5 * features[:, 0] + 3 * features[:, 1] + 2 * features[:, 2] +
np.random.randn(num samples)
```

```
# Split the data into training and testing sets
X = data[['Feature1', 'Feature2', 'Feature3']]
y = data['Magnitude']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Create a linear regression model
model = LinearRegression()
# Train the model
model.fit(X train, y train)
# Make predictions
predictions = model.predict(X_test)
```

```
# Evaluate the model
mse = mean_squared_error(y_test, predictions)
print(f"Mean Squared Error: {mse:.2f}")
# Plot actual vs. predicted magnitudes
plt.scatter(y_test, predictions)
plt.xlabel("Actual Magnitude")
plt.ylabel("Predicted Magnitude")
plt.title("Actual vs. Predicted Magnitude")
plt.show()
```

Sample Output:

"plaintext

Earthquake Prediction Model Output:

Model Training and Evaluation:

- Model: Linear Regression

- Dataset: Synthetic earthquake data

- Features: Feature1, Feature2, Feature3

- Target Variable: Magnitude

Training Set Size: 80% of data

Testing Set Size: 20% of data

Mean Squared Error (MSE) on Test Set: 3.42

Sample Predictions:

Actual Magnitude Predicted Magnitude

0	7.12	7.05

- 1 4.98 4.89
- 2 6.53 6.58
- 3 5.21 5.19

VISUALIZATION

Mapping The World's Major Earthquakes from 1956–2022:

This map shows all earthquakes with a magnitude greater than 4.5, around the world between 1956 and 2022. Data Source - https://www.usgs.gov/programs/earthquake-hazards/earthquakes

METHODOLOGY

Data Collection and Preparation

The first step in earthquake forecasting is to collect and prepare the data.

This involves gathering seismic data from various sources and cleaning and preprocessing the data to remove noise and other anomalies.

Python provides powerful tools for data cleaning and preparation.

Feature Extraction and Selection

Once the data is cleaned and prepared, the next step is to extract relevant features from the data.

This involves identifying patterns and trends in the data that can be used to predict earthquakes.

Python provides a range of tools for feature extraction and selection, including statistical analysis and machine learning algorithms.

Building Machine Learning Models

Machine learning models can be used to predict earthquakes based on the extracted features.

Python provides a range of machine learning libraries, including scikit-learn and TensorFlow, that can be used to build and train these models.

These models can then be used to make predictions on new data.

Future Directions

As technology and data collection methods continue to improve, there is great potential for data-driven approaches to revolutionize earthquake forecasting. By combining traditional methods with machine learning and other data analysis techniques, we can improve our ability to predict earthquakes and mitigate their impact on communities.

TOOLS

1.Numpy and Pandas 2.Matplotlib and Seaborn 3.SciPy 4.Scikit-learn 5.TensorFlow or PyTorch 6.ObsPy 7.Generic Mapping Tools 8.Jupyter Notebook 9.GIS Software 10.Data Sources

CONCLUSION

In conclusion, data-driven approaches using Python can provide valuable insights into earthquake forecasting. By leveraging the power of machine learning and other data analysis techniques, we can improve our ability to predict earthquakes and reduce their impact on communities. It is important to continue to refine and improve these methods to better prepare for future earthquakes.

Thanks!