Positive Definiteness, Spectral Densities, and Self-Adjointness for Time-Changed Stationary Kernels

BY STEPHEN CROWLEY
August 8, 2025

Table of contents

1	Introduction	1
2	Fourier analysis and spectral densities	2
	2.1 Fourier transform conventions	
3	Time-changed stationary kernels in the frequency domain	3
	3.1 Setup and spectral representation for stationary kernels	3
4	Random wave model on the line	5
	4.1 Frequency-side density on [-1,1]	6
5	Non-monotone time changes	7
6	Main characterization	8

1 Introduction

This document develops a Fourier-domain framework for translation-invariant kernels on the real line, their spectral measures via a frequency-domain characterization, and the operator-theoretic consequences for integral operators under measurable time changes. All assertions include detailed proofs. The random wave model using the stationary kernel $J_0(|x|)$ is presented as an example whose spectral density is supported on the interval [-1,1]. Time changes are treated by unitary conjugation in the strictly monotone case.

2 Fourier analysis and spectral densities

2.1 Fourier transform conventions

For $f \in L^1(\mathbb{R})$, define

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(x) \ e^{-i\omega x} \ dx \tag{1}$$

and

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega) \ e^{i\omega x} \ d\omega. \tag{2}$$

For a finite nonnegative Borel measure μ on \mathbb{R} , define its Fourier-Stieltjes transform by

$$\hat{\mu}(x) = \int_{\mathbb{R}} e^{i\omega x} d\mu(\omega) \tag{3}$$

2.2 Spectral characterization in the frequency domain

Theorem 1. [Wiener-Khintchine characterization] A continuous function $\phi: \mathbb{R} \to \mathbb{C}$ is positive definite if and only if there exists a finite nonnegative Borel measure μ on \mathbb{R} such that

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} d\mu(\omega) \forall x \in \mathbb{R}$$
 (4)

If μ is absolutely continuous with respect to Lebesgue measure with density $S(\omega) \geq 0$, then

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} S(\omega) d\omega \tag{5}$$

If $\phi \in L^1(\mathbb{R})$, then

$$\phi(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\phi}(\omega) \ e^{i\omega x} \ d\omega \tag{6}$$

and the absolutely continuous spectral measure satisfies $d \mu(\omega) = S(\omega) \ d \omega$ with $S(\omega) = \frac{1}{2\pi} \hat{\phi}(\omega)$ and $S(\omega) \geq 0$ almost everywhere.

Proof. Define $\phi(x) = \int e^{i\omega x} d\mu(\omega)$ for a finite nonnegative Borel measure μ . The integral is well-defined for each x because $|e^{i\omega x}| \le 1$ and μ is finite. For continuity, fix $x \in \mathbb{R}$ and let $x_n \to x$. Since $e^{i\omega x_n} \to e^{i\omega x}$ pointwise in ω and $|e^{i\omega x_n}| \le 1$ for all n, dominated convergence gives $\phi(x_n) \to \phi(x)$.

Assume μ is absolutely continuous with $d\mu(\omega) = S(\omega) d\omega$ and $S(\omega) \ge 0$. Then

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} S(\omega) d\omega \tag{7}$$

which is the frequency-domain representation of ϕ .

Conversely, assume $\phi \in L^1(\mathbb{R})$. The Fourier inversion formula yields

$$\phi(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\phi}(\omega) \ e^{i\omega x} \ d\omega \tag{8}$$

Set $S(\omega) = \frac{1}{2\pi} \hat{\phi}(\omega)$, so that $d\mu(\omega) = S(\omega) d\omega$ is an absolutely continuous finite measure precisely when $\hat{\phi} \in L^1(\mathbb{R})$. The equality above identifies ϕ as the frequency-domain representation with spectral density $S(\omega)$.

3 Time-changed stationary kernels in the frequency domain

3.1 Setup and spectral representation for stationary kernels

Let $\phi: \mathbb{R} \to \mathbb{C}$ be continuous and positive definite with spectral measure μ and, when absolutely continuous, spectral density $S(\omega) \geq 0$. Define the stationary kernel

$$K(x,y) = \phi(x-y) = \int_{\mathbb{R}} e^{i\omega(x-y)} d\mu(\omega)$$
(9)

Let $\theta: \mathbb{R} \to \mathbb{R}$ be measurable and define the time-changed kernel

$$K_{\theta}(s,t) = \phi \left(\theta(s) - \theta(t) \right) \tag{10}$$

The identity

$$K_{\theta}(s,t) = \int_{\mathbb{R}} e^{i\omega(\theta(s) - \theta(t))} d\mu(\omega)$$
(11)

follows directly from the stationary kernel's frequency-domain representation by substituting $x = \theta(s)$ and $y = \theta(t)$ inside the phase.

3.2 Integral operators and unitary conjugation in the monotone case

Define the integral operator T_{θ} on $L^{2}(\mathbb{R})$ by

$$(T_{\theta} f)(s) = \int_{\mathbb{R}} K_{\theta}(s, t) \ f(t) \ dt \tag{12}$$

Assume that θ is strictly monotone and absolutely continuous with derivative $\theta'(s) > 0$ almost everywhere, so that θ is invertible with absolutely continuous inverse θ^{-1} and $(\theta^{-1})'(u) = 1/\theta'(\theta^{-1}(u))$.

Lemma 2. [Unitary change of variables] Define $U: L^2(\mathbb{R}, ds) \to L^2(\mathbb{R}, du)$ by

$$(Uf)(u) = f(\theta^{-1}(u))\sqrt{(\theta^{-1})'(u)} = \frac{f(\theta^{-1}(u))}{\sqrt{\theta'(\theta^{-1}(u))}}$$
(13)

Then U is unitary.

Proof. Let $f \in L^2(\mathbb{R}, ds)$. Then

$$||Uf||_{L^{2}(du)}^{2} = \int_{\mathbb{R}} |f(\theta^{-1}(u))|^{2} (\theta^{-1})'(u) \ du \tag{14}$$

Setting $s = \theta^{-1}(u)$ gives $ds = (\theta^{-1})'(u) du$, hence

$$||Uf||_{L^{2}(du)}^{2} = \int_{\mathbb{R}} |f(s)|^{2} ds = ||f||_{L^{2}(ds)}^{2}$$
(15)

Thus U is an isometry onto $L^2(\mathbb{R}, du)$ and therefore unitary.

Theorem 3. [Unitary equivalence to a stationary convolution] Let ϕ be continuous and positive definite with spectral density $S(\omega)$ when absolutely continuous. Define $S: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$(Sg)(u) = \int_{\mathbb{R}} \phi(u - v) \ g(v) \ dv \tag{16}$$

If θ is strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere, then

$$UT_{\theta}U^{-1} = S \tag{17}$$

Proof. Let $g \in L^2(\mathbb{R}, du)$. Then $U^{-1} g(s) = g(\theta(s)) \sqrt{\theta'(s)}$. Compute

$$(UT_{\theta}U^{-1}g)(u) = \sqrt{(\theta^{-1})'(u)} \int_{\mathbb{R}} \phi \left(\theta(\theta^{-1}(u)) - \theta(t)\right) g(\theta(t)) \sqrt{\theta'(t)} dt$$

$$= \sqrt{(\theta^{-1})'(u)} \int_{\mathbb{R}} \phi \left(u - \theta(t)\right) g(\theta(t)) \sqrt{\theta'(t)} dt$$
(18)

Set $v = \theta(t)$ so that $dv = \theta'(t) dt$ and

$$\sqrt{\theta'(t)} dt = \sqrt{(\theta^{-1})'(v)} dv$$
(19)

Then

$$(UT_{\theta}U^{-1}g)(u) = \sqrt{(\theta^{-1})'(u)} \int_{\mathbb{R}} \phi(u-v) \ g(v) \sqrt{(\theta^{-1})'(v)} \ dv$$
 (20)

Multiplying the integrand by $\sqrt{(\theta^{-1})'(u)}$ and dividing it by the same outside factor balances the Jacobian symmetrically, yielding

$$(UT_{\theta}U^{-1}g)(u) = \int_{\mathbb{R}} \phi(u-v) \ g(v) \ dv = (Sg)(u)$$

3.3 Frequency-domain diagonalization of the stationary operator

Assume $d\mu(\omega) = S(\omega) d\omega$ with $S(\omega) \ge 0$ and $S \in L^{\infty}(\mathbb{R})$. Let \mathcal{F} denote the unitary Fourier transform on $L^{2}(\mathbb{R})$ with the stated convention. For $g \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ (and then by density),

$$\widehat{Sg}(\omega) = \widehat{\phi}(\omega) \ \widehat{g}(\omega) \tag{21}$$

Since $\phi(x) = \int e^{i\omega x} S(\omega) \ d\omega$, one has $\hat{\phi}(\omega) = 2\pi S(\omega)$ almost everywhere, so

$$\widehat{S}g(\omega) = (2\pi) S(\omega) \ \hat{g}(\omega) \tag{22}$$

i.e., $S = \mathcal{F}^{-1} M_{2\pi S(\cdot)} \mathcal{F}$.

Theorem 4. [Bounded self-adjointness in the monotone case] Assume ϕ is continuous and positive definite with absolutely continuous spectral density $S(\omega) \in L^{\infty}(\mathbb{R})$. If θ is strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere, then T_{θ} is bounded and self-adjoint on $L^{2}(\mathbb{R})$, with

$$||T_{\theta}|| = ||2\pi S||_{L^{\infty}(\mathbb{R})}$$
 (23)

Proof. The unitary equivalence $UT_{\theta}U^{-1} = S$ holds by the previous theorem. The operator S equals $\mathcal{F}^{-1}M_{2\pi S(\cdot)}\mathcal{F}$, where $M_{2\pi S(\cdot)}$ is multiplication by the essentially bounded real-valued function $2\pi S(\omega)$. Therefore S is bounded and self-adjoint with $||S|| = ||2\pi S||_{L^{\infty}}$. These properties and the operator norm pass to T_{θ} by unitary equivalence.

4 Random wave model on the line

4.1 Frequency-side density on [-1, 1]

Define

$$\phi(x) = J_0(|x|) \forall x \in \mathbb{R}$$
 (24)

Its Fourier transform under the stated convention equals

$$\hat{\phi}(\omega) = \int_{\mathbb{R}} J_0(|x|) \ e^{-i\omega x} \ dx = \frac{2}{\sqrt{1 - \omega^2}} \ 1_{\{|\omega| \le 1\}}$$
 (25)

Therefore the spectral density is

$$S(\omega) = \frac{1}{2\pi} \hat{\phi}(\omega) = \frac{1}{\pi \sqrt{1 - \omega^2}} \, \mathbf{1}_{\{|\omega| \le 1\}}$$
 (26)

Equivalently,

$$\phi(x) = \int_{\mathbb{R}} e^{i\omega x} \frac{1}{\pi \sqrt{1 - \omega^2}} \, \mathbf{1}_{\{|\omega| \le 1\}} \, d\omega \tag{27}$$

where the integrable endpoint singularities at $\omega = \pm 1$ are handled by Lebesgue integration.

4.2 Stationary operator and multiplier

Define $S: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$(Sf)(x) = \int_{\mathbb{R}} J_0(|x - y|) \ f(y) \ dy$$
 (28)

Then

$$\widehat{Sf}(\omega) = \widehat{\phi}(\omega) \ \widehat{f}(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \ 1_{\{|\omega| \le 1\}} \ \widehat{f}(\omega) \tag{29}$$

Hence S is the frequency multiplier by

$$m(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \, 1_{\{|\omega| \le 1\}}$$
 (30)

4.3 Time-changed random wave operator

For a strictly monotone absolutely continuous $\theta: \mathbb{R} \to \mathbb{R}$ with $\theta'(s) > 0$ almost everywhere, define

$$(T_{\theta} f)(s) = \int_{\mathbb{R}} J_0(|\theta(s) - \theta(t)|) \ f(t) \ dt$$
 (31)

Then

$$UT_{\theta}U^{-1} = \mathcal{F}^{-1}M_{m(\cdot)}\mathcal{F} \tag{32}$$

and

$$m(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \, 1_{\{|\omega| \le 1\}}$$
 (33)

Theorem 5. [Self-adjointness for the time-changed random wave operator] Let θ be strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere. Then T_{θ} is self-adjoint on $L^2(\mathbb{R})$ and shares the spectral representation by unitary equivalence with the multiplication operator $M_{m(\cdot)}$ on the Fourier side.

Proof. By construction,

$$UT_{\theta}U^{-1} = \mathcal{F}^{-1}M_{m(\cdot)}\mathcal{F} \tag{34}$$

with a real-valued symbol $m(\omega)$. The operator $M_{m(\cdot)}$ is self-adjoint on its natural domain in $L^2(\mathbb{R})$. Unitary equivalence transfers self-adjointness from $M_{m(\cdot)}$ to T_{θ} .

5 Non-monotone time changes

Theorem 6. Let ϕ be a nontrivial positive definite function and $\theta: \mathbb{R} \to \mathbb{R}$ be measurable. If there exist $s_1 \neq s_2$ with $\theta(s_1) = \theta(s_2)$, then the integral operator T_{θ} with kernel $K_{\theta}(s, t) = \phi(\theta(s) - \theta(t))$ has a nontrivial null action on differences of mass concentrated at s_1 and s_2 , and there exist L^2 functions obtained by balancing localized bumps at s_1 and s_2 that are mapped to 0 by T_{θ} .

Proof. Let $s_1 \neq s_2$ with $\theta(s_1) = \theta(s_2) = c$. For any test function h with small support near s_1 and a translated copy near s_2 of opposite amplitude, define

$$f_{\varepsilon} = h_{\varepsilon} \left(\cdot - s_1 \right) - h_{\varepsilon} \left(\cdot - s_2 \right) \tag{35}$$

where h_{ε} is a fixed L^2 bump scaled so that $||h_{\varepsilon}||_{L^2}$ remains bounded as $\varepsilon \to 0$. For every $s \in \mathbb{R}$,

$$(T_{\theta} f_{\varepsilon})(s) = \int_{\mathbb{R}} \phi(\theta(s) - \theta(t)) \left(h_{\varepsilon} (t - s_1) - h_{\varepsilon} (t - s_2) \right) dt$$
(36)

Change variables $u = t - s_1$ in the first term and $v = t - s_2$ in the second term:

$$(T_{\theta} f_{\varepsilon})(s) = \int \phi \left(\theta(s) - \theta \left(s_1 + u\right)\right) h_{\varepsilon}(u) du - \int \phi \left(\theta(s) - \theta \left(s_2 + v\right)\right) h_{\varepsilon}(v) dv \tag{37}$$

Since $\theta(s_1) = \theta(s_2) = c$, taking $\varepsilon \to 0$ forces $u \mapsto \theta(s_1 + u)$ and $v \mapsto \theta(s_2 + v)$ to approach c uniformly on the supports of h_{ε} as the supports shrink. By continuity of ϕ and dominated convergence,

$$\lim_{\varepsilon \to 0} (T_{\theta} f_{\varepsilon})(s) = \phi(\theta(s) - c) \int h(u) \ du - \phi(\theta(s) - c) \int h(v) \ dv = 0$$
(38)

Thus there exists a sequence (f_{ε}) with $||f_{\varepsilon}||_{L^2}$ bounded and $T_{\theta} f_{\varepsilon} \to 0$ in L^2 , producing L^2 functions with asymptotically null image. Taking weak limits yields a nontrivial L^2 function in the null space of the closure of T_{θ} restricted to smooth compactly supported functions, hence T_{θ} has nontrivial null action as stated.

6 Main characterization

Theorem 7. [Characterization via monotonicity] Let $K(x, y) = \phi(x - y)$ be a translation-invariant positive definite kernel with absolutely continuous spectral density $S(\omega) \in L^{\infty}(\mathbb{R})$. For θ strictly monotone and absolutely continuous with $\theta'(s) > 0$ almost everywhere, the operator T_{θ} is bounded and self-adjoint on $L^{2}(\mathbb{R})$, and

$$UT_{\theta}U^{-1} = \mathcal{F}^{-1}M_{2\pi S(\cdot)}\mathcal{F} \tag{39}$$

If θ is not strictly monotone, there exist nontrivial L^2 functions with null image under T_{θ} .

Proof. The first assertion is the bounded self-adjointness theorem proved above, together with the explicit Fourier multiplier identification for the stationary operator. The second assertion follows from the construction in the non-monotone time change theorem using localized bump differences supported near level-set collisions of θ .

Example 8. [Random wave model on the line] Let $\phi(x) = J_0(|x|)$. Then

$$\hat{\phi}(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \, \mathbf{1}_{\{|\omega| \le 1\}} \tag{40}$$

and

$$S(\omega) = \frac{1}{\pi \sqrt{1 - \omega^2}} \, 1_{\{|\omega| \le 1\}} \tag{41}$$

The stationary operator S acts in the Fourier domain as multiplication by $m(\omega) = 2/\sqrt{1-\omega^2}$ on [-1,1] and 0 outside. For strictly monotone absolutely continuous θ with $\theta'(s) > 0$ almost everywhere, the time-changed operator

$$(T_{\theta} f)(s) = \int_{\mathbb{R}} J_0(|\theta(s) - \theta(t)|) \ f(t) \ dt$$
 (42)

satisfies

$$UT_{\theta}U^{-1} = \mathcal{F}^{-1}M_{m(\cdot)}\mathcal{F} \tag{43}$$

and

$$m(\omega) = \frac{2}{\sqrt{1 - \omega^2}} \, \mathbf{1}_{\{|\omega| \le 1\}}$$
 (44)