

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2009; month=1; day=22; hr=16; min=26; sec=44; ms=514;]

=====

Reviewer Comments:

<210> 56

<211> 17752

<212> DNA

<213> *Phaeodactylum tricornutum*, *Physcomitrella patens*

<210> 71

<211> 17061

<212> DNA

<213> *Phaeodactylum tricornutum*, *Physcomitrella patens*, *Caenorhabditis elegans*

The above <213> responses for sequence id#'s 56 and 71 are both invalid, only one organism response is allowed for this line.

<210> 100

<211> 25

<212> DNA

<213> unknown

<220>

<221> misc_feature

<222> (1)..(25)

<223> ACtrau-5'

<210> 103

<211> 22
<212> DNA
<213> unknown

<220>
<221> misc_feature
<222> (1)..(22)
<223> YES-HIS-5'

Please explain the above <223> responses for sequence id#s 100 and 103.
FYI, please do not use foreign language in U.S. applications. Please
correct the remaining sequences showing similar errors.

Application No: 10552013 Version No: 2.0

Input Set:

Output Set:

Started: 2009-01-07 16:25:11.916
Finished: 2009-01-07 16:25:23.759
Elapsed: 0 hr(s) 0 min(s) 11 sec(s) 843 ms
Total Warnings: 109
Total Errors: 51
No. of SeqIDs Defined: 148
Actual SeqID Count: 148

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 402	Undefined organism found in <213> in SEQ ID (16)
W 402	Undefined organism found in <213> in SEQ ID (17)
W 402	Undefined organism found in <213> in SEQ ID (18)
W 402	Undefined organism found in <213> in SEQ ID (19)
W 402	Undefined organism found in <213> in SEQ ID (28)
W 402	Undefined organism found in <213> in SEQ ID (29)
W 402	Undefined organism found in <213> in SEQ ID (30)
W 402	Undefined organism found in <213> in SEQ ID (31)
W 402	Undefined organism found in <213> in SEQ ID (32)
W 402	Undefined organism found in <213> in SEQ ID (33)
W 402	Undefined organism found in <213> in SEQ ID (36)
W 402	Undefined organism found in <213> in SEQ ID (37)
W 213	Artificial or Unknown found in <213> in SEQ ID (52)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (52)
W 213	Artificial or Unknown found in <213> in SEQ ID (53)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (53)
W 213	Artificial or Unknown found in <213> in SEQ ID (54)

Input Set:

Output Set:

Started: 2009-01-07 16:25:11.916
Finished: 2009-01-07 16:25:23.759
Elapsed: 0 hr(s) 0 min(s) 11 sec(s) 843 ms
Total Warnings: 109
Total Errors: 51
No. of SeqIDs Defined: 148
Actual SeqID Count: 148

Error code	Error Description
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (54)
W 213	Artificial or Unknown found in <213> in SEQ ID (55)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (55)
W 402	Undefined organism found in <213> in SEQ ID (56)
W 402	Undefined organism found in <213> in SEQ ID (57)
W 402	Undefined organism found in <213> in SEQ ID (58)
W 402	Undefined organism found in <213> in SEQ ID (59)
W 213	Artificial or Unknown found in <213> in SEQ ID (60)
W 213	Artificial or Unknown found in <213> in SEQ ID (61)
W 213	Artificial or Unknown found in <213> in SEQ ID (62)
W 213	Artificial or Unknown found in <213> in SEQ ID (63)
W 213	Artificial or Unknown found in <213> in SEQ ID (64)
W 213	Artificial or Unknown found in <213> in SEQ ID (65)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (65)
W 213	Artificial or Unknown found in <213> in SEQ ID (66)
W 213	Artificial or Unknown found in <213> in SEQ ID (67)
W 213	Artificial or Unknown found in <213> in SEQ ID (68)
W 402	Undefined organism found in <213> in SEQ ID (71)
W 402	Undefined organism found in <213> in SEQ ID (72) This error has occurred more than 20 times, will not be displayed
W 213	Artificial or Unknown found in <213> in SEQ ID (75)

Input Set:

Output Set:

Started: 2009-01-07 16:25:11.916
Finished: 2009-01-07 16:25:23.759
Elapsed: 0 hr(s) 0 min(s) 11 sec(s) 843 ms
Total Warnings: 109
Total Errors: 51
No. of SeqIDs Defined: 148
Actual SeqID Count: 148

Error code	Error Description
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (75)
W 213	Artificial or Unknown found in <213> in SEQ ID (76)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (76)
W 213	Artificial or Unknown found in <213> in SEQ ID (77)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (77)
W 213	Artificial or Unknown found in <213> in SEQ ID (78)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (78)
W 213	Artificial or Unknown found in <213> in SEQ ID (79)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (79)
W 213	Artificial or Unknown found in <213> in SEQ ID (80)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (80)
W 213	Artificial or Unknown found in <213> in SEQ ID (81) This error has occurred more than 20 times, will not be displayed
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (81)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (82)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (83)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (84)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (85)

Input Set:

Output Set:

Started: 2009-01-07 16:25:11.916
Finished: 2009-01-07 16:25:23.759
Elapsed: 0 hr(s) 0 min(s) 11 sec(s) 843 ms
Total Warnings: 109
Total Errors: 51
No. of SeqIDs Defined: 148
Actual SeqID Count: 148

Error code	Error Description
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (86)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (87)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (88)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (89) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Renz, Andreas
Sozer, Nursen
Frentzen, Margit
Bauer, Jorg
Keith, Stobart
Fraser, Thomas
Lazarus, Colin M
Qi, Baoxiu
Abbadie, Amine
Heinz, Ernst

<120> NOVEL PLANT ACYLTRANSFERASES SPECIFIC FOR LONG-CHAINED, MULTIPLY UNSATURATED FATTY ACIDS

<130> 13478-00002-US

<140> 10552013

<141> 2005-09-30

<150> PCT/EP2004/003224

<151> 2004-03-26

<150> DE103 14 759.4

<151> 2003-03-31

<150> DE103 48 996.7

<151> 2003-10-17

<160> 148

<170> PatentIn version 3.3

<210> 1

<211> 1047

<212> DNA

<213> Thraustochytrium

<220>

<221> CDS

<222> (38) .. (952)

<223> LPAAT

<400> 1

ggcggtgtc cggccgttcg agcgctgtgg cgcacatg agc gcg tgg acg agg	55
Met Ser Ala Trp Thr Arg	
1	5
gcc aag acc gcc gtg ggc ctc ctg acg ctg gcg cct gcg cgg ata gtg	103
Ala Lys Thr Ala Val Gly Leu Leu Thr Leu Ala Pro Ala Arg Ile Val	
10	15
ttc ctc gtg act gtc ctg ggc acg tac ggg ctc acg gtc gcg gcc tgc	151
Phe Leu Val Thr Val Leu Gly Thr Tyr Gly Leu Thr Val Ala Ala Cys	
25	30
acg cga ctt ggc gtc ccg aaa agc ttc gtg ctg ggc ctg acg cgg tgc	199

Thr Arg Leu Gly Val Pro Lys Ser Phe Val Leu Gly Leu Thr Arg Cys			
40	45	50	
gtc gcg cga ctc acg ctc tgg ggg ctt ggg ttc tac cac att gag gtc			247
Val Ala Arg Leu Thr Leu Trp Gly Leu Gly Phe Tyr His Ile Glu Val			
55	60	65	70
tct tgc gac gcc caa ggc ctt cgg gag tgg cgc cgc gtg att gtc gcg			295
Ser Cys Asp Ala Gln Gly Leu Arg Glu Trp Pro Arg Val Ile Val Ala			
75	80	85	
aac cac gtc tcg tac ctg gag atc ttg tac ttc atg tcg acc gtg cac			343
Asn His Val Ser Tyr Leu Glu Ile Leu Tyr Phe Met Ser Thr Val His			
90	95	100	
tgc ccg tct ttc gtc atg aag aag acc tgc ctc cga gtc ccg ctt gtc			391
Cys Pro Ser Phe Val Met Lys Lys Thr Cys Leu Arg Val Pro Leu Val			
105	110	115	
ggc tac att gcc atg gag ctg ggc ggt gtg att gtg gac cgc gag ggc			439
Gly Tyr Ile Ala Met Glu Leu Gly Gly Val Ile Val Asp Arg Glu Gly			
120	125	130	
ggc ggt caa agc gca tcg gcg atc att cgc gac cgc gtg cag gag cct			487
Gly Gly Gln Ser Ala Ser Ala Ile Ile Arg Asp Arg Val Gln Glu Pro			
135	140	145	150
cct cga gat tcg tcg agc gag aag cac cac gcg cag ccg ctt ctt gtg			535
Pro Arg Asp Ser Ser Ser Glu Lys His His Ala Gln Pro Leu Leu Val			
155	160	165	
ttc ccc gag ggg acc acc acc aat gga agc tgc ctg ctc caa ttc aag			583
Phe Pro Glu Gly Thr Thr Asn Gly Ser Cys Leu Leu Gln Phe Lys			
170	175	180	
acg gga gcc ttt cgt cct ggg gct ccg gtg ctt ccg gtc gtg ctt gag			631
Thr Gly Ala Phe Arg Pro Gly Ala Pro Val Leu Pro Val Val Leu Glu			
185	190	195	
ttt ccg att gac aaa gcg cgt ggt gac ttt tcc ccg gcg tac gaa tcg			679
Phe Pro Ile Asp Lys Ala Arg Gly Asp Phe Ser Pro Ala Tyr Glu Ser			
200	205	210	
gtc cac acg cca gct cac ctc ctt cgc atg ctc gca caa tgg agg cac			727
Val His Thr Pro Ala His Leu Leu Arg Met Leu Ala Gln Trp Arg His			
215	220	225	230
ccg ctt cgg gtg cgc tat ctt cct ctg tat gag ccc tct gcg gct gag			775
Arg Leu Arg Val Arg Tyr Leu Pro Leu Tyr Glu Pro Ser Ala Ala Glu			
235	240	245	
aag gtt gat gca gac ctt tat gcg cgg aac gtg cgc gac gaa atg gcg			823
Lys Val Asp Ala Asp Leu Tyr Ala Arg Asn Val Arg Asp Glu Met Ala			
250	255	260	
cgc gcg ctc aag gta ccc act gtg gag cag tct tac cgc gac aag ctc			871
Arg Ala Leu Lys Val Pro Thr Val Glu Gln Ser Tyr Arg Asp Lys Leu			
265	270	275	
gtc tac cac gcg gat ctc atg ccg cac tac cag aag gcc ggc ccc gga			919
Val Tyr His Ala Asp Leu Met Pro His Tyr Gln Lys Ala Gly Pro Gly			
280	285	290	
gcg ctc tat ctg tac gtc cga cct gac ctc ttg tagcactcat gcgcgcccc			972
Ala Leu Tyr Leu Tyr Val Arg Pro Asp Leu Leu			
295	300	305	
agcgggtccag caacgggaga ttaaaaacacg atttcttagc ctacaaaaaa aaaaaaaaaa			1032
aaaaaaaaaaaa aaaaa			1047

<210> 2

<211> 305

<212> PRT

<213> Thraustochytrium

<400> 2

Met Ser Ala Trp Thr Arg Ala Lys Thr Ala Val Gly Leu Leu Thr Leu
1 5 10 15
Ala Pro Ala Arg Ile Val Phe Leu Val Thr Val Leu Gly Thr Tyr Gly
20 25 30
Leu Thr Val Ala Ala Cys Thr Arg Leu Gly Val Pro Lys Ser Phe Val
35 40 45
Leu Gly Leu Thr Arg Cys Val Ala Arg Leu Thr Leu Trp Gly Leu Gly
50 55 60
Phe Tyr His Ile Glu Val Ser Cys Asp Ala Gln Gly Leu Arg Glu Trp
65 70 75 80
Pro Arg Val Ile Val Ala Asn His Val Ser Tyr Leu Glu Ile Leu Tyr
85 90 95
Phe Met Ser Thr Val His Cys Pro Ser Phe Val Met Lys Lys Thr Cys
100 105 110
Leu Arg Val Pro Leu Val Gly Tyr Ile Ala Met Glu Leu Gly Gly Val
115 120 125
Ile Val Asp Arg Glu Gly Gly Gln Ser Ala Ser Ala Ile Ile Arg
130 135 140
Asp Arg Val Gln Glu Pro Pro Arg Asp Ser Ser Ser Glu Lys His His
145 150 155 160
Ala Gln Pro Leu Leu Val Phe Pro Glu Gly Thr Thr Thr Asn Gly Ser
165 170 175
Cys Leu Leu Gln Phe Lys Thr Gly Ala Phe Arg Pro Gly Ala Pro Val
180 185 190
Leu Pro Val Val Leu Glu Phe Pro Ile Asp Lys Ala Arg Gly Asp Phe
195 200 205
Ser Pro Ala Tyr Glu Ser Val His Thr Pro Ala His Leu Leu Arg Met
210 215 220
Leu Ala Gln Trp Arg His Arg Leu Arg Val Arg Tyr Leu Pro Leu Tyr
225 230 235 240
Glu Pro Ser Ala Ala Glu Lys Val Asp Ala Asp Leu Tyr Ala Arg Asn
245 250 255
Val Arg Asp Glu Met Ala Arg Ala Leu Lys Val Pro Thr Val Glu Gln
260 265 270
Ser Tyr Arg Asp Lys Leu Val Tyr His Ala Asp Leu Met Pro His Tyr
275 280 285
Gln Lys Ala Gly Pro Gly Ala Leu Tyr Leu Tyr Val Arg Pro Asp Leu
290 295 300
Leu
305

<210> 3

<211> 1701

<212> DNA

<213> Physcomitrella patens

<220>

<221> misc_feature

<223> LPAAT

<400> 3

ggcacgaggg aaattggctt tctatgtggc cgtacttatt cgaggaggc aacgaaacaa	60
aggtatgtct tattaatgaa aatgtctcca cacatgtatg ttgttttaggt atattctgtc	120
aactgaaaac ttgttttaat ttttcttaa attgaaattc tgcgcctgaa agccaactct	180
aggccatca taatgttagca atatgatca aagcgctcaa atgtgtcgtaa aaggtttgt	240
tttgcattt tctttgctg ttaacctatt gattatgtt gaaccacaat acagacgctg	300
cttcaattca ttcttatggc aatgaatgtc gtatgtattc cggttaattt catcctacag	360
gatatggat gttgtaaagg tgatgtttgc aggtgataaa gtacctaagg agaaccgtgt	420
gatggtcattg tgcaaccatc gtaccgaagt ggactggatg tacatttgg aacttagcaat	480
tcggaaaggc aagattgggt actgcaagta tgcggtaag aactcagtga aaaacttacc	540
cttgcattt tgggcatttt acgttttgc gtttctgtatg ctgcataagaa agtggaaagt	600
ggatgctccc gtcatcaaga catacattga cagtttcaa gataaaagag atccctctgt	660
gctagtcgtg ttccatgttgc gcacagattt ttcgttaaggc tgaagtaccc atccatggct	720
ttgatgtata tctgcatttct tctctataat ctgcattttat tctctgttgc ttctctagca	780
agtaaatcat acttgcttaa tgcatttgc aatttgcatt tttgactt ttgtgtatgt	840
aatgtgattt actactatga cagtgaagcg aaacgggaca cgggcaatgc aattggaaaga	900
gagaaaggct atccggagct tgcatttgc cttcaacccgc gactcgtgg ctttgcact	960
tgcccttc aatcgctg ctctttggat gcagttatg acctcactat agggtacaag	1020
aagcggtgtc ctttttcat caacaatgtt ttcggaaaccg atccatcgga agtgcacatt	1080
cacattcgcc gaataccat ttctgagatt cctcaatcag aagacggat gacgcagtgg	1140
ctgtatgatc tattttatca aaaggaccatg atgttggcca gtttttagt gacaggctt	1200
ttccctgaca gtggaaatttgc agagagccct ttgaacatag tggaaagggtgt ttgcaatgtt	1260
gctctacacg tagtccttag cggttgggtt ttctgtgtct tgtttcatc gttttgggtt	1320
aagttttagt tggcttcgc tagtttgc ttcgcgttta gtacctattt tgattggaga	1380
cctaaaccgg ttactcttag tctacgtact aaaagaaaaa tcgtttaaaa taaattcggt	1440
agttgttaatt gtttttttta ttccgattcc aaagctgagt ttaagggtga ggctccttctt	1500
taagctgatt ttgcatttatttgc tttgcatttgc cccttgcatttgc tctgcgttta attggcttta	1560
atacgggtgtt ctctgttgc tgaacccttgc tgcatttgc tgcatttgc ttttagcattt	1620
ctcccttacc catcttgacc agatgcaaaa ctcgcatttgc agcagatcaa taggtcgtgc	1680
cccaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa a	1701

<210> 4

<211> 714

<212> DNA

<213> *Physcomitrella patens*

<220>

<221> CDS

<222> (1)..(714)

<223> LPAAT

<400> 4

atg gct ttg atg tat atc tgc aat ctt ctc tat aat ctg cat tta ttc	48
Met Ala Leu Met Tyr Ile Cys Asn Leu Leu Tyr Asn Leu His Leu Phe	
1 5 10 15	
tct gtt gtt tct cta gca agt aaa tca tac ttg ctt aat gta ctt agc	96
Ser Val Val Ser Leu Ala Ser Lys Ser Tyr Leu Leu Asn Val Leu Ser	
20 25 30	
aat ttg tca ttt ttg act tat tgt gat gta aat gtg att gac tac tat	144
Asn Leu Ser Phe Leu Thr Tyr Cys Asp Val Asn Val Ile Asp Tyr Tyr	

35	40	45	
gac agt gaa gcg aaa cgg gac acg ggc aat gca att gga aga gag aaa			192
Asp Ser Glu Ala Lys Arg Asp Thr Gly Asn Ala Ile Gly Arg Glu Lys			
50	55	60	
ggc tat ccg gag ctt gtc aat gtg ctt caa cct cgc act cgt ggc ttt			240
Gly Tyr Pro Glu Leu Val Asn Val Leu Gln Pro Arg Thr Arg Gly Phe			
65	70	75	80
gtg act tgc ctt tct caa tcg cgc tgc tct ttg gat gca gtt tat gac			288
Val Thr Cys Leu Ser Gln Ser Arg Cys Ser Leu Asp Ala Val Tyr Asp			
85	90	95	
ctc act ata ggg tac aag aag cgg tgt ccc ttg ttc atc aac aat gta			336
Leu Thr Ile Gly Tyr Lys Lys Arg Cys Pro Leu Phe Ile Asn Asn Val			
100	105	110	
ttc gga acc gat cca tcg gaa gtg cac att cac att cgc cga ata cca			384
Phe Gly Thr Asp Pro Ser Glu Val His Ile His Ile Arg Arg Ile Pro			
115	120	125	
att tct gag att cct caa tca gaa gac ggt atg acg cag tgg ctg tat			432
Ile Ser Glu Ile Pro Gln Ser Glu Asp Gly Met Thr Gln Trp Leu Tyr			
130	135	140	
gat cta ttt tat caa aag gac cag atg ttg gcc agt ttt agt aag aca			480
Asp Leu Phe Tyr Gln Lys Asp Gln Met Leu Ala Ser Phe Ser Lys Thr			
145	150	155	160
ggc tct ttc cct gac agt gga att gaa gag agc cct ttg aac ata gtg			528
Gly Ser Phe Pro Asp Ser Gly Ile Glu Glu Ser Pro Leu Asn Ile Val			
165	170	175	
gaa ggt gtt tgc aat gtt gct cta cac gta gtc ctt agc ggt tgg gta			576
Glu Gly Val Cys Asn Val Ala Leu His Val Val Leu Ser Gly Trp Val			
180	185	190	
ttc tgg tgc ttg ttt cat tcg gtt tgg ttg aag ctt tat gtg gct ttc			624
Phe Trp Cys Leu Phe His Ser Val Trp Leu Lys Leu Tyr Val Ala Phe			
195	200	205	
gct agt ttg ctg ctc gcg ttt agt acc tat ttt gat tgg aga cct aaa			672
Ala Ser Leu Leu Leu Ala Phe Ser Thr Tyr Phe Asp Trp Arg Pro Lys			
210	215	220	
ccg gtt tac tct agt cta cgt act aaa aga aaa atc gtg taa			714
Pro Val Tyr Ser Ser Leu Arg Thr Lys Arg Lys Ile Val			
225	230	235	

<210> 5

<211> 237

<212> PBT

<213> *Physcomitrella patens*

<400> 5

Met	Ala	Leu	Met	Tyr	Ile	Cys	Asn	Leu	Leu	Tyr	Asn	Leu	His	Leu	Phe
1				5					10					15	
Ser	Val	Val	Ser	Leu	Ala	Ser	Lys	Ser	Tyr	Leu	Leu	Asn	Val	Leu	Ser
								20			25			30	
Asn	Leu	Ser	Phe	Leu	Thr	Tyr	Cys	Asp	Val	Asn	Val	Ile	Asp	Tyr	Tyr
						35			40			45			
Asp	Ser	Glu	Ala	Lys	Arg	Asp	Thr	Gly	Asn	Ala	Ile	Gly	Arg	Glu	Lys
							50			55			60		

Gly Tyr Pro Glu Leu Val Asn Val Leu Gln Pro Arg Thr Arg Gly Phe
 65 70 75 80
 Val Thr Cys Leu Ser Gln Ser Arg Cys Ser Leu Asp Ala Val Tyr Asp
 85 90 95
 Leu Thr Ile Gly Tyr Lys Lys Arg Cys Pro Leu Phe Ile Asn Asn Val
 100 105 110
 Phe Gly Thr Asp Pro Ser Glu Val His Ile His Ile Arg Arg Ile Pro
 115 120 125
 Ile Ser Glu Ile Pro Gln Ser Glu Asp Gly Met Thr Gln Trp Leu Tyr
 130 135 140
 Asp Leu Phe Tyr Gln Lys Asp Gln Met Leu Ala Ser Phe Ser Lys Thr
 145 150 155 160
 Gly Ser Phe Pro Asp Ser Gly Ile Glu Glu Ser Pro Leu Asn Ile Val
 165 170 175
 Glu Gly Val Cys Asn Val Ala Leu His Val Val Leu Ser Gly Trp Val
 180 185 190
 Phe Trp Cys Leu Phe His Ser Val Trp Leu Lys Leu Tyr Val Ala Phe
 195 200 205
 Ala Ser Leu Leu Ala Phe Ser Thr Tyr Phe Asp Trp Arg Pro Lys
 210 215 220
 Pro Val Tyr Ser Ser Leu Arg Thr Lys Arg Lys Ile Val
 225 230 235

<210> 6

<211> 507

<212> DNA

<213> *Physcomitrella patens*

<220>

<221> misc_feature

<223> LPAAT

<400> 6

accaggtcga	gatgccatt	attggactgt	ttttgcaagc	tttgcaaata	ataccctgg	60
accggactga	tgctcagtct	aggcaccatag	cggctggcaa	cggtcggcga	agggctgtgg	120
acaatatgtg	gtcccacgtc	atgttgttcc	cggagggcac	taccaccaat	ggcagagcaa	180
taatcgccct	caaaacagga	gcattttcgc	ctggctccc	tgtcagcca	atggttattta	240
gataccctca	caagtatgtc	aacccctctt	ggtgtgacca	aggaggtccg	ttggtcgttg	300
tgttgcagct	gatgactcag	ttcatcaacc	acatggaggt	tgaatatttg	ccggtcatga	360
agccaactgt	gagagagatg	aaataccctc	atgaattcgc	aagttaggtt	cgcagcgaga	420
tggctaaagc	gttaggcattc	gtgtgcacag	aacacagctt	tctggatatt	aagctagcgc	480
tggctgcaga	aaagctaaaa	cagcctt				507

<210> 7

<211> 1566

<212> DNA

<213> *Physcomitrella patens*

<220>

<221> CDS

<222> (1)...(1566)

<223> LPAAT

<400> 7

atg gag agc aca gca gat gtc gga atg tcc gac gac gat cct atc ctt	48
Met Glu Ser Thr Ala Asp Val Gly Met Ser Asp Asp Asp Pro Ile Leu	
1 5 10 15	
ctc aac ggg ctc gaa acg cca cta ctg gct gaa ttt cct ctt ggc gaa	96
Leu Asn Gly Leu Glu Thr Pro Leu Leu Ala Glu Phe Pro Leu Gly Glu	
20 25 30	
cgg cct aca ata ggg ccg gag gca cca gta aat ccc ttc cat gaa ccc	144
Arg Pro Thr Ile Gly Pro Glu Ala Pro Val Asn Pro Phe His Glu Pro	
35 40 45	
gat ggt ggt tgg aag acc aac gag tgg aat tac ttt caa atg atg	192
Asp Gly Gly Trp Lys Thr Asn Asn Glu Trp Asn Tyr Phe Gln Met Met	
50 55 60	
aaa tcc att ttg ctg att cca ctt ctt ctc gtt cgt cta gtg agc atg	240
Lys Ser Ile Leu Leu Ile Pro Leu Leu Val Arg Leu Val Ser Met	
65 70 75 80	
ata aca atc gta gca ttt gga tat gtg tgg atc agg att tgt ctg atc	288
Ile Thr Ile Val Ala Phe Gly Tyr Val Trp Ile Arg Ile Cys Leu Ile	
85 90 95	
ggc gtc aca gat ccc ttg ttt aag	