

Пусть экономическая система состоит из N предприятий, могущих иметь взаимные долги. Обозначим долги n-го предприятия m-му через x_{nm} , где 1 < n, m < N ($x_{nm} < 0$, если первое предприятие должно второму, и x_{nm} , > 0 в обратном случае). Ясно, что

$$x_{nm} = -x_{nm}, \quad x_{mn} = x_{mm} = 0,$$

т.е. совокупность долгов описывается кососимметричной матрицей размера $N \times N$ с нулевой диагональю ($x_{nm} = 0$, поскольку предприятие самому себе должно быть не может).

Сумма всех взаимных долгов вычисляется через индивидуальные долги по простой формуле

$$X = \sum_{n=1}^{N} \sum_{m=1}^{N} |x_{nm}|.$$

Величина служит одной из интегральных количественных характеристик финансового положения системы: если она сопоставима с суммой всех свободных средств предприятий X_0 , т.е.

$$X \ge X_0 = \sum_{n=1}^N x_n,$$

то описываемая неравенством ситуация и означает кризис неплатежей (здесь $x_{nm} \ge 0$ — индивидуальные свободные средства предприятий) .

Еще одна важная характеристика — баланс кредитов и долгов (сальдо) каждого предприятия

$$S_n = \sum_{m=1}^N x_{nm},$$

причем, как из этого выражения очевидно, возможны варианты $S_n > 0$, $S_n < 0$, $S_n = 0$. При $S_n > 0$ предприятие является в некотором смысле кредитором предприятий-должников

, т.е. тех, у кого $S_n < 0$ (при $S_n = 0$ предприятие в отношении долгов «нейтрально»). При $S_n < x_n$ индивидуальное финансовое состояние предприятия по существу нормальное, поскольку его реальные суммарные долги (или кредиты, «данные» им другим) меньше его свободных средств.

Аналогично, суммарное абсолютное сальдо системы

$$S = \sum_{n=1}^{N} \left| S_n \right|$$

служит макропоказателем ее возможного финансового «здоровья». Если $S < X_0$, то свободных средств в системе больше, чем действительных долгов, и потенциально она может

успешно функционировать (подобно системе трех предприятий из приведенного выше примера).

Между величинами X и S всегда существует определенное соотношение. Для любой произвольной матрицы долгов выполняется неравенство

$$X \ge S$$
,

т.е. суммарный долг никак не может быть меньше суммарного сальдо.

Задача погашения взаимных долгов состоит в том, чтобы, зная матрицу x_{nm} , найти матрицу x'_{nm} «новых» долгов, для которой выполнялось бы X < X. Очевидно, что идеальным ее решением было бы X' = S, т.е. когда неравенство $X \ge S$ становится равенством. Заметим, что тогда для благополучной по существу системы с $S \leq X_0$ достигалось бы соотношение $X' = S \le X_0$, и после взаимозачета она могла бы нормально работать (хотя уменьшение величины Xв любом случае полезно).

Процедура прослеживания цепочек неплатежей, примененная выше для трех предприятий, не только трудновыполнима для N предприятий, но имеет также и принципиальный недостаток. Действительно, рассмотрим сначала цепочку, в которой каждое предприятие с первого по M-е $(M \le N)$ должно другому одинаковую сумму, и такую же сумму должно M-е предприятие первому. Цепочка замкнута, и решение очевидно – все долги в цепочке погашаются.

Пусть теперь M-е предприятие не должно первому. Тогда цепочка разомкнута, и этот метод неприменим. В то же время простое решение заключается в том, что долги предприятий со второго по (M-1)-е аннулируются, а долг первого переадресовывается M-му). Экономический смысл переадресации соответствует вексельному обращению, когда долговое обязательство меняет своих хозяев, и в результате у должника (первое предприятие) появляется новый кредитор (M-е предприятие).

В отличие от ситуации с долгами в цепочках полная система долгов по всем цепочкам замкнута, так как рассматриваются взаимные долги. В самом деле, из свойства $x_{nm} = -x_{mn}$ следует, что

$$\sum_{n=1}^{N} \sum_{m=1}^{N} x_{nm} = 0$$

для любой совокупности неплатежей.

Учитывая, что
$$S_n = \sum_{m=1}^N x_{nm}$$
, из последнего равенства получаем
$$\sum_{m=1}^N S_n = 0, \quad \text{или} \quad \sum_{S_n>0} S_n = -\sum_{S_n<0} S_n = \frac{S}{2},$$

т.е. сумма положительных сальдо предприятий равна по абсолютной величине сумме отрицательных сальдо. Рассматриваемая на макроуровне система взаимных долгов обладает свойством «симметричной консервативности» (второе уравнение), а «закон сохранения» (первое уравнение) — аналог обычных законов сохранения (массы, энергии и т. д.) применительно к изучаемой ситуации.

Равенство

$$\sum_{S_n > 0} S_n = -\sum_{S_n < 0} S_n = \frac{S}{2}$$

проясняет построение математической модели идеального взаимозачета, который производится при следующих естественных условиях:

- 1) все долги x_{nm} известны и признаются предприятиями;
- 2) при проведении взаимозачета сальдо предприятий S_n остаются неизменными: $S'_n = S_n$, т.е. индивидуальное финансовое положение каждого из них в этом смысле не изменяется;
- 3) часть долгов x_{nm} списывается, а часть переадресовывается, т.е. у предприятий могут появиться новые должники и кредиторы и исчезнуть часть старых.

Суть макропроцедуры взаимозачета состоит в том, что вместо величин x_{nm} рассматриваются величины S_n . Предприятия с $S_n < 0$ объявляются должниками (в размере своих сальдо), а предприятия с $S_n > 0$ — кредиторами (в тех же размерах). Затем долги предприятий с $S_n < 0$ каким-то образом распределяются между кредиторами, т.е. находится новая система долгов x'_{nm} . При этом выполнены закон сохранения

$$\sum_{m=1}^{N} S_n = 0,$$

условие 2) и достигается равенство X = S; поэтому решение задачи является оптимальным.

Таких оптимальных решений может быть, вообще говоря, много, так как распределять долги между кредиторами можно разными способами. Приведем два наиболее простых и наглядных. Первое из них дается несложной формулой, по которой новые долги вычисляются через старые:

$$x'_{nm} = \frac{S_n \left| S_m \right| - S_m \left| S_n \right|}{S}.$$

Согласно этому алгоритму долг любого предприятия (равный S_n , если $S_n < 0$) расписывается по предприятиям-кредиторам в долях, пропорциональных величинам их сальдо (равным S_m , если $S_m > 0$). Предприятиям с большим положительным сальдо причитается от каждого из должников большая часть его долгов, причем в сумме они дают величину S_m . Для предприятий с нулевым сальдо взаимозачет сводится к погашению всех их долгов и всех долгов им.

Заметим, что в решении

$$x'_{nm} = \frac{S_n \left| S_m \right| - S_m \left| S_n \right|}{S}.$$

для новых долгов имеем $x_{nm}^{,} = 0$ при $S_n < 0, S_m < 0$ либо при $S_n > 0$, $S_m >$ (после взаимозачета должники не должны должникам, а кредиторы – кредиторам). Это означает, что число получившихся финансовых связей между предприятиями значительно меньше максимально возможного, когда каждое предприятие является должником или кредитором любого другого, и матрица долгов не имеет нулевых элементов (кроме, разумеется, диагональных).

Количество связей может быть значительно уменьшено, если провести предварительное упорядочивание предприятий по абсолютным значениям их сальдо и установить непосредственные связи между должниками и кредиторами одного масштаба (крупных с крупными, мелких с мелкими и т. д.). Эта процедура допускает простую геометрическую

интерпретацию. На рисунке на верхней прямой линии описано распределение сальдо кредиторов (в убывающем порядке). Длина отрезков этой прямой равна величине сальдо каждого предприятия $S_p>0,\,1< p< N,$ а её общая длина, очевидно, равна S/2. На нижней прямой описано распределение сальдо должников $S_q<0,\,1< q< N,$ $p+q\leq N$ (сальдо взяты с обратным знаком) также в убывающем порядке. Ее длина равна S/2. Штриховые линии, проведенные из узлов нижней прямой, делят «прямую кредиторов» на q отрезков, равных величине долга каждого предприятия. Этот долг либо достается одному кредитору, либо делится между несколькими в соответствии с расположением узлов верхней прямой относительного данного отрезка.

Описанный алгоритм оптимален по критерию X = S и представляется наилучшим по числу связей, остающихся после взаимозачета.

Пример подобного взаимозачета в системе с N=10 и начальной матрицей долгов с 90 ненулевыми недиагональными элементами приведен ниже. Конечная матрица содержит лишь 7 ненулевых элементов. В специальных случаях у одного должника остается один кредитор, и наоборот.

	1	2	3	4	5	6	7	8	9
		Ha	напьи	ая ма	трица	(X=3)	729)	****	=======================================
2	-25								
3	-1	-20							
4	4	25	-2						
5	25	-450	25	30					
6	-15	150	-30	20	-928				
7	3	-40	3	3	5	25			
8	1	-22	-2	-2	4	-15	5		
9	10	322	-15	-25	498	-800	-10	20	
10	1	-25	-2	1	-20	15	-1	-3	30

350	1	2	3	4	5	6	7	8	9
		Коне	чная м	иатри	ща (Х'	=S=	62)		
2	2								
3	0	0							
4	0	0	0						
5	0	0	0	0					
6	0	0	0	0	-28				
7	1	0	0	0	0	0			
8	0	-7	0	0	0	0	0		
9	0	-18	0	0	-2	0	0	0	
10	0	0	0	0	0	4	0	0	0

Задачи для самостоятельно решения

• Вариант 1

- 1. Придумать матрицу взаимодолгов 15 предприятий.
- 2. Провести взаимозачет для смоделированной ситуации.

• Вариант 2

- 1. Придумать матрицу взаимодолгов 20 предприятий.
- 2. Провести взаимозачет для смоделированной ситуации.