Un peu de complexité de Kolmogorov Distance d'information Distance d'information normalisée Bonus : La distance du Web

Distance d'Information Normalisée

Ou: Comment avec un peu de théorie de la calculabilité on peut classifier des choses dont on ne sait rien

Meven Bertrand

7 Février 2018

Plan

- 1 Un peu de complexité de Kolmogorov
- Distance d'information
- Distance d'information normalisée
- Bonus : La distance du Web

Comment mesurer la complexité d'un mot?

Comment mesurer la complexité d'un mot?

VS

L'idée : ce qui est compliqué est ce qui est dur à décrire

Comment mesurer la complexité d'un mot?

VS

L'idée : ce qui est compliqué est ce qui est dur à décrire

La complexité de Kolmogorov

On va utiliser abondamment :

- un langage Σ (typiquement $\{0,1\}$)
- des mots sur ce langage : des éléments de $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$
- la longueur len d'un mot

Définition

La complexité $C_{lang}(x)$ du mot x dans le langage lang est la longueur du plus petit programme écrit en lang qui produit le mot x.

On définit aussi $C_{lang}(x|y)$ complexité de x sachant y, où on donne au programme y

La complexité de Kolmogorov

On va utiliser abondamment :

- un langage Σ (typiquement $\{0,1\}$)
- des mots sur ce langage : des éléments de $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$
- la longueur len d'un mot

Définition

La complexité $C_{lang}(x)$ du mot x dans le langage lang est la longueur du plus petit programme écrit en lang qui produit le mot x.

On définit aussi $C_{lang}(x|y)$ complexité de x sachant y, où on donne au programme y

La complexité de Kolmogorov

On va utiliser abondamment :

- un langage Σ (typiquement $\{0,1\}$)
- des mots sur ce langage : des éléments de $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$
- la longueur len d'un mot

Définition

La complexité $C_{lang}(x)$ du mot x dans le langage lang est la longueur du plus petit programme écrit en lang qui produit le mot x.

On définit aussi $C_{lang}(x|y)$ complexité de x sachant y, où on donne au programme y

Universalité

Théorème d'universalité

Il existe un langage univ « universel » : si lang est un autre langage, il existe $c_{lang} \in \mathbb{N}$ tel que

$$C_{univ}(w) \le C_{lang}(w) + c_{lang}$$

On pose $K(x) = C_{univ}(x)$, c'est la complexité de Kolmogorov de x

De même, langage universel pour la complexité conditionnelle $\to K(x|y)$ complexité de x sachant y

Universalité

Théorème d'universalité

Il existe un langage univ « universel » : si lang est un autre langage, il existe $c_{lang} \in \mathbb{N}$ tel que

$$C_{univ}(w) \le C_{lang}(w) + c_{lang}$$

On pose $K(x) = C_{univ}(x)$, c'est la complexité de Kolmogorov de x

De même, langage universel pour la complexité conditionnelle $\to K(x|y)$ complexité de x sachant y

Universalité

Théorème d'universalité

Il existe un langage univ « universel » : si lang est un autre langage, il existe $c_{lang} \in \mathbb{N}$ tel que

$$C_{univ}(w) \le C_{lang}(w) + c_{lang}$$

On pose $K(x) = C_{univ}(x)$, c'est la complexité de Kolmogorov de x

De même, langage universel pour la complexité conditionnelle $\to K(x|y)$ complexité de x sachant y

Définition

Si φ est une fonction récursive, on prend $C_{\varphi}(x) = \min_{\{p \in \Sigma^* | \varphi(p) = x\}} \operatorname{len}(p)$. Idem pour $C_{\varphi}(x|y) = \min_{\{p \in \Sigma^* | \varphi(p,y) = x\}} \operatorname{len}(p)$

Pour trouver ψ universelle, on prend

- $(\varphi_n)_{n\in\mathbb{N}}$ énumération (calculable) des fonctions récursives
- ψ telle que $\varphi(n,y,p)=\psi_n(y,p)$
- alors pour $n \in \mathbb{N}$, $C_{\psi}(x) \leq C_{\varphi_n}(x|y) + c_n$ où c_n ne dépend que de n

Ce n'est pas tout à fait fini, avec ça on n'est pas sûr que $C_{\psi}(xy) \leq C_{\psi}(x) + C_{\psi}(y)$

Définition

Si φ est une fonction récursive, on prend $C_{\varphi}(x) = \min_{\{p \in \Sigma^* \mid \varphi(p) = x\}} \operatorname{len}(p)$. Idem pour $C_{\varphi}(x|y) = \min_{\{p \in \Sigma^* \mid \varphi(p,y) = x\}} \operatorname{len}(p)$

Pour trouver ψ universelle, on prend

- $(\varphi_n)_{n\in\mathbb{N}}$ énumération (calculable) des fonctions récursives
- ψ telle que $\varphi(n,y,p) = \psi_n(y,p)$
- alors pour $n \in \mathbb{N}$, $C_{\psi}(x) \leq C_{\varphi_n}(x|y) + c_n$ où c_n ne dépend que de n

Ce n'est pas tout à fait fini, avec ça on n'est pas sûr que $C_{\psi}(xy) \leq C_{\psi}(x) + C_{\psi}(y)$ \to programmes autodélimitants (de la forme $1^{\mathrm{len}(p)}0p$)

Définition

Si φ est une fonction récursive, on prend $C_{\varphi}(x) = \min_{\{p \in \Sigma^* | \varphi(p) = x\}} \operatorname{len}(p)$. Idem pour $C_{\varphi}(x|y) = \min_{\{p \in \Sigma^* | \varphi(p,y) = x\}} \operatorname{len}(p)$

Pour trouver ψ universelle, on prend

- $(\varphi_n)_{n\in\mathbb{N}}$ énumération (calculable) des fonctions récursives
- $\bullet \ \psi \ {\rm telle} \ {\rm que} \ \varphi(n,y,p) = \psi_n(y,p)$
- \bullet alors pour $n\in\mathbb{N}$, $C_{\psi}(x)\leq C_{\varphi_n}(x|y)+c_n$ où c_n ne dépend que de n

Ce n'est pas tout à fait fini, avec ça on n'est pas sûr que $C_{\psi}(xy) \leq C_{\psi}(x) + C_{\psi}(y)$ \to programmes autodélimitants (de la forme $1^{\mathrm{len}(p)}0p$)

Définition

Si φ est une fonction récursive, on prend $C_{\varphi}(x) = \min_{\{p \in \Sigma^* | \varphi(p) = x\}} \operatorname{len}(p)$. Idem pour $C_{\varphi}(x|y) = \min_{\{p \in \Sigma^* | \varphi(p,y) = x\}} \operatorname{len}(p)$

Pour trouver ψ universelle, on prend

- $(\varphi_n)_{n\in\mathbb{N}}$ énumération (calculable) des fonctions récursives
- $\bullet \ \psi \ {\rm telle} \ {\rm que} \ \varphi(n,y,p) = \psi_n(y,p)$
- ullet alors pour $n\in\mathbb{N}$, $C_{\psi}(x)\leq C_{arphi_n}(x|y)+c_n$ où c_n ne dépend que de n

Ce n'est pas tout à fait fini, avec ça on n'est pas sûr que $C_{\psi}(xy) \leq C_{\psi}(x) + C_{\psi}(y)$

 \rightarrow programmes autodélimitants (de la forme $1^{len(p)}0p$)

Quelques inégalités bien utiles

Disclaimer

- les log sont en base 2
- les (in)égalités sont rarement vraiment vraies, mais elles sont moralement vraies

- $K(x) \le \operatorname{len}(x)$ (au pire, on réécrit tout x)
- $K(x,y) \le K(x) + K(y|x) + O(1)$ (au pire, on construit tout x, puis tout y)
- K(x,y) = K(x) + K(y|x) = K(y) + K(x|y) (à un terme $O(\log(K(xy)))$ près)

Quelques inégalités bien utiles

Disclaimer

- les log sont en base 2
- les (in)égalités sont rarement vraiment vraies, mais elles sont moralement vraies

- $K(x) \leq \operatorname{len}(x)$ (au pire, on réécrit tout x)
- $K(x,y) \le K(x) + K(y|x) + O(1)$ (au pire, on construit tout x, puis tout y)
- $\bullet \ K(x,y) = K(x) + K(y|x) = K(y) + K(x|y)$ (à un terme $O(\log(K(xy)))$ près)

Plan

- Un peu de complexité de Kolmogorov
- 2 Distance d'information
- Distance d'information normalisée
- Bonus : La distance du Web

Comment mesurer la différence entre deux mots?

But du jeu : dire que des mots sont « proches » ou « lointains » :

VS

ou vs

ou vs

Quelques idées qui ne marchent pas

K(x|y)

Pas symétrique...

$$K(x|\varepsilon)=K(x) \text{ mais } K(\varepsilon|x)=O(1)$$

K(x|y) + K(y|x)

C'est trop gros : il y a de la redondance entre $x \to y$ et $y \to x$

Solution

$$E(x,y) = \max(K(x|y), K(y|x))$$

Quelques idées qui ne marchent pas

K(x|y)

Pas symétrique...

$$K(x|\varepsilon) = K(x)$$
 mais $K(\varepsilon|x) = O(1)$

K(x|y) + K(y|x)

C'est trop gros : il y a de la redondance entre $x \to y$ et $y \to x$

Solution

$$E(x,y) = \max(K(x|y), K(y|x))$$

Quelques idées qui ne marchent pas

K(x|y)

Pas symétrique...

$$K(x|\varepsilon) = K(x)$$
 mais $K(\varepsilon|x) = O(1)$

K(x|y) + K(y|x)

C'est trop gros : il y a de la redondance entre $x \to y$ et $y \to x$

Solution

$$E(x,y) = \max(K(x|y), K(y|x))$$

Aparté : Mais pourquoi diable ce truc est-il bien?

Formellement, si φ est calculable, on définit

$$E_{\varphi}(x,y) = \min_{\{p \in \mathbb{N} | \varphi(p,x) = y \land \varphi(p,y) = x\}} (\operatorname{len}(p))$$

comme pour C, il y a ψ universelle, i.e. telle que

$$E_{\psi}(x,y) = E_{\varphi}(x,y) + O(1)$$

Et on montre

Relation pas facile

$$E_{\psi}(x,y) = \max(K(x|y), K(y|x)) + O(\log \max(K(x|y), K(y|x)))$$

donc E n'est pas loin de la distance universelle E_{ψ} .

Universalité de E

Distance d'information

Une distance d'information admissible est une fonction (totale, pas forcément symétrique) $D: \Sigma^* \times \Sigma^* \to \mathbb{R}_+$ qui :

- \bullet vérifie D(x,y)=0 ssi x=y
- vérifie $\sum_{x \neq y} 2^{-D(x,y)} \leq 1$ et $\sum_{y \neq x} 2^{-D(x,y)} \leq 1$
- est approximable par le haut

Universalité de *F*

Alors E est une distance d'information admissible, vérifie l'inégalité triangulaire, et est universelle :

$$E(x,y) \le D(x,y) + O(1$$

Universalité de E

Distance d'information

Une distance d'information admissible est une fonction (totale, pas forcément symétrique) $D: \Sigma^* \times \Sigma^* \to \mathbb{R}_+$ qui :

- vérifie D(x,y)=0 ssi x=y
- vérifie $\sum_{x \neq y} 2^{-D(x,y)} \leq 1$ et $\sum_{y \neq x} 2^{-D(x,y)} \leq 1$
- est approximable par le haut

Universalité de ${\cal E}$

Alors E est une distance d'information admissible, vérifie l'inégalité triangulaire, et est universelle :

$$E(x,y) \le D(x,y) + O(1)$$

Plan

- Un peu de complexité de Kolmogorov
- Distance d'information
- 3 Distance d'information normalisée
- Bonus : La distance du Web

Comment normaliser?

Problème : $E(x,y) = \max(K(x|y),K(y|x))$ dépend de la taille. . . Ne mesure pas la similarité \to il faut normaliser.

Par quoi diviser?

- la longueur : tue l'inégalité triangulaire
- $\bullet \ K(x,y): \text{si } K(x) \approx K(y) \approx K(x|y) \approx K(y|x), \ \frac{\max(K(x|y),K(y|x))}{K(x,y)} \approx \tfrac{1}{2} \text{ et pas } 1$
- $\max(K(x), K(y))$ marche!

$$e(x,y) = \frac{\max(K(x|y), K(y|x))}{\max(K(x), K(y))}$$

est dans [0; 1], est une distance et est universell

Comment normaliser?

Problème : $E(x,y) = \max(K(x|y),K(y|x))$ dépend de la taille. . . Ne mesure pas la similarité \to il faut normaliser.

Par quoi diviser?

- la longueur : tue l'inégalité triangulaire
- $\bullet \ K(x,y): \text{si } K(x) \approx K(y) \approx K(x|y) \approx K(y|x), \ \frac{\max(K(x|y),K(y|x))}{K(x,y)} \approx \frac{1}{2} \text{ et pas } 1$
- $\max(K(x), K(y))$ marche!

$$e(x,y) = \frac{\max(K(x|y), K(y|x))}{\max(K(x), K(y))}$$

est dans [0; 1], est une distance et est universelle

Compression : rendre un fichier le plus petit possible

ightarrow K, mais en pratique! Approximation de K par Z= taille de x une fois compressé

Et
$$K(x|y)$$
 ?

Rappel: K(xy) = K(x) + K(y|x), donc

$$e(x,y) = \frac{K(xy) - \min(K(x), K(y))}{\max(K(x), K(y))} \approx \frac{Z(xy) - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

On a gagné : c'est calculable !

Compression : rendre un fichier le plus petit possible $\to K$, mais en pratique! Approximation de K par Z= taille de x une fois compressé

Rappel :
$$K(x|y)$$
 ? Rappel : $K(xy) = K(x) + K(y|x)$, donc

$$e(x,y) = \frac{K(xy) - \min(K(x), K(y))}{\max(K(x), K(y))} \approx \frac{Z(xy) - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

On a gagné : c'est calculable !

Compression : rendre un fichier le plus petit possible $\to K$, mais en pratique! Approximation de K par Z= taille de x une fois compressé

Et
$$K(x|y)$$
 ?

Rappel :
$$K(xy) = K(x) + K(y|x)$$
, donc

$$e(x,y) = \frac{K(xy) - \min(K(x), K(y))}{\max(K(x), K(y))} \approx \frac{Z(xy) - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

On a gagné : c'est calculable !

Compression : rendre un fichier le plus petit possible $\to K$, mais en pratique! Approximation de K par Z= taille de x une fois compressé

Et
$$K(x|y)$$
? Rappel : $K(xy) = K(x) + K(y|x)$, donc

$$e(x,y) = \frac{K(xy) - \min(K(x), K(y))}{\max(K(x), K(y))} \approx \frac{Z(xy) - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

On a gagné : c'est calculable

Compression : rendre un fichier le plus petit possible $\to K$, mais en pratique! Approximation de K par Z= taille de x une fois compressé

Et
$$K(x|y)$$
? Rappel : $K(xy) = K(x) + K(y|x)$, donc

$$e(x,y) = \frac{K(xy) - \min(K(x), K(y))}{\max(K(x), K(y))} \approx \frac{Z(xy) - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

On a gagné : c'est calculable!

Plan

- 1 Un peu de complexité de Kolmogorov
- Distance d'information
- Distance d'information normalisée
- Bonus : La distance du Web

Inégalité de Kraft et interprétation probabiliste

Ensemble préfixe $P\Rightarrow$ inégalité de Kraft : $\sum_{p\in P}2^{-\operatorname{len}(p)}\leq 1$

En particulier, $\sum_{x\in\Sigma^*}2^{-K(x|y)}\leq 1$ donc $m(x|y)=2^{-K(x|y)}$ ressemble à une probabilité !

Universalité

```
Si \mu: \Sigma^* \times \Sigma^* \to \mathbb{R}_+ est telle que :
```

- $\mu(\cdot,y)$ est une mesure sur Σ^* de masse ≤ 1
- ullet μ est approximable par le bas

alors
$$\mu(x|y) = O(m(x|y))$$

Inégalité de Kraft et interprétation probabiliste

Ensemble préfixe $P\Rightarrow$ inégalité de Kraft : $\sum_{p\in P}2^{-\ln(p)}\leq 1$

En particulier, $\sum_{x\in\Sigma^*}2^{-K(x|y)}\leq 1$ donc $m(x|y)=2^{-K(x|y)}$ ressemble à une probabilité !

Universalité

```
Si \mu: \Sigma^* \times \Sigma^* \to \mathbb{R}_+ est telle que :

• \mu(\cdot,y) est une mesure sur \Sigma^* de masse \leq 1

• \mu est approximable par le bas alors \mu(x|y) = O(m(x|y))
```


Inégalité de Kraft et interprétation probabiliste

Ensemble préfixe $P\Rightarrow$ inégalité de Kraft : $\sum_{p\in P}2^{-\ln(p)}\leq 1$

En particulier, $\sum_{x\in\Sigma^*}2^{-K(x|y)}\leq 1$ donc $m(x|y)=2^{-K(x|y)}$ ressemble à une probabilité !

Universalité

Si $\mu: \Sigma^* \times \Sigma^* \to \mathbb{R}_+$ est telle que :

- $\bullet \ \mu(\cdot,y) \ {\rm est \ une \ mesure \ sur} \ \Sigma^* \ {\rm de \ masse} \le 1$
- ullet μ est approximable par le bas

alors
$$\mu(x|y) = O(m(x|y))$$

La distance du Web

En approximant m(x) par $\frac{N(x)}{N_0}$ (N: nombre de résultats dans une recherche, $N_0:$ nombre de résultats totaux) :

$$e(x,y) \approx \frac{\max(\log N(x), \log N(y)) - \log N(x,y)}{\log N_0 - \min(\log N(x), \log N(y))}$$

Ce n'est plus du tout une distance! Mais c'est quand même bien pratique. .

La distance du Web

En approximant m(x) par $\frac{N(x)}{N_0}$ (N: nombre de résultats dans une recherche, $N_0:$ nombre de résultats totaux) :

$$e(x,y) \approx \frac{\max(\log N(x), \log N(y)) - \log N(x,y)}{\log N_0 - \min(\log N(x), \log N(y))}$$

Ce n'est plus du tout une distance! Mais c'est quand même bien pratique...

Training Data

Positive examples (21 cases)

11	13	17	19	2
23	29	3	31	37
41	43	47	5	53
59	61	67	7	71
73				

Negative examples (22 cases)

regative examples (22 cases)						
10	12	14	15	16		
18	20	21	22	24		
25	26	27	28	30		
32	33	34	4	6		
8	9					

Anchors (5 dimensions)

composite, number, orange, prime, record

Testing Results

	Positive tests	Negative tests
Positive	101, 103,	110
Predictions	107, 109,	
	79, 83,	
	89, 91,	
	97	
Negative		36, 38,
Predictions		40, 42,
		44, 45,
		46, 48,

49

Accuracy: 18/19 = 94.74%