STATISTICS: FORMULA SHEET

 S_{TATS}

August 30, 2023

E/EA THOMPSON(THEY/THEM), PHYSICS AND MATH HONORS

Solo Pursuit of Learning

Contents

1	Pro	obability Basics	2
	1.1	Terminology	2
	1.2	Set-Theoretic Identities	3
	1.3	Conditional Probability	3
	1.4	Counting	5
2	Dis	screte Random Variables	7
	2.1	Basic Terminology	7
	2.2	Expected Values and Variance	8
	2.3	Bernoulli Random Variables	9
	2.4	Binomial Random Variables	10
	2.5	Negative Binomial Random Variables	11
	2.6	Geometric Random Variables	12
	2.7	Hypergeometric Random Variables	13
	2.8	Poisson Random Variables	14
	2.9		15
3	Co	ntinuous Random Variables	17
	3.1	Basic Definitions: Continuous Random Variables	17
	3.2	Uniform Random Variables	18
	3.3	Normal Random Variables	19
	3.4	Gamma Random Variables	20
	3.5	Exponential Random Variables	22
	3.6	Beta Random Variables	23
4	Biv	variate Probabilities	25
	4.1	Bivariate Data Structures	25

Chapter 1

Probability Basics

1.1.0 Terminology

Definition 1.1.1. A **random experiment** is a process that leads to a single outcome, which cannot be predicted with certainty.

Definition 1.1.2. A <u>sample space</u> (denoted S) is the collection of all possible outcomes for a given experiment.

Definition 1.1.3. An **event** is a subset of the sample space **S** for a given experiment.

Definition 1.1.4. The <u>probability</u> of an event X, denoted P(X), is the measurement of the likelihood that X will occur when an experiment is performed.

1.1.5. Axioms of Probability Suppose event **A** is a subset of a sample space **S**. Then:

Axiom 1: $0 \le P(A) \le 1$

Axiom 2: P(S) = 1

Axiom 3: If $A_1, A_2, A_3, ...$ is a collection of events that do not share the same elements in **S** (i.e. they are mutually disjoint as sets), then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(\mathbf{A}_i)$$

1.2.0 Set-Theoretic Identities

Proposition 1.2.1. Let **A** be a subset of some universal set **S** of interest. Then the **complement rule** states that:

$$P(\mathbf{A}) + P(\mathbf{A}^C) = 1$$

Proposition 1.2.2. Let **A** and **B** be subsets of some universal set **S** of interest. Then the <u>additive</u> rule states that:

$$P(\mathbf{A} \cup \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{A}^C) - P(\mathbf{A} \cap \mathbf{B})$$

Proposition 1.2.3. Let A and B be subsets of some universal set S of interest. Then the <u>law of</u> total probability states that:

$$P(\mathbf{A}) = P(\mathbf{A} \cap \mathbf{B}^C) + P(\mathbf{A} \cap \mathbf{B})$$

Theorem 1.

DeMorgan's Laws Let A and B be subsets of some universal set S of interest. Then the <u>DeMorgan's Laws</u> state that:

$$P(\mathbf{A}^C \cap \mathbf{B}^C) = P((\mathbf{A} \cup \mathbf{B})^C)$$

and

$$P(\mathbf{A}^C \cup \mathbf{B}^C) = P((\mathbf{A} \cap \mathbf{B})^C)$$

Proposition 1.2.4. Let A, B, and C be subsets of some universal set S of interest. Then the <u>distributive laws</u> state that:

$$P(A \cap (B \cup C) = P((A \cap B) \cup (A \cap C))$$

and

$$P(\mathbf{A} \cup (\mathbf{B} \cap \mathbf{C}) = P((\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{A} \cup \mathbf{C}))$$

The associative laws state that:

$$P(\mathbf{A} \cap (\mathbf{B} \cap \mathbf{C}) = P((\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C})$$

and

$$\textit{P}(\textbf{A} \cup (\textbf{B} \cup \textbf{C}) = \textit{P}((\textbf{A} \cup \textbf{B}) \cup \textbf{C})$$

1.3.0 Conditional Probability

Definition 1.3.1. A <u>conditional probability</u> is a probability that reflects additional knowledge that may affect the outcome of an experiment.

Precisely, if **A** and **B** are events in a sample space **S**, then the probability of **A** given **B**, written $P(\mathbf{A}|\mathbf{B})$, is calculated by:

$$P(\mathbf{A}|\mathbf{B}) = \frac{P(\mathbf{A} \cap \mathbf{B})}{P(\mathbf{B})}$$

where $P(\mathbf{B}) > 0$.

Definition 1.3.2. Let **A** and **B** be two events in a sample space **S**. Then we say **A** and **B** are **independent** if and only if the three following equivalent conditions hold:

- 1. P(A|B) = P(A)
- 2. P(B|A) = P(B)
- 3. $P(\mathbf{A} \cap \mathbf{B}) = P(\mathbf{A})P(\mathbf{B})$

Proposition 1.3.1. If **A** and **B** are independent events, then so are **A** and \mathbf{B}^C , \mathbf{A}^C and **B**, and \mathbf{A}^C and \mathbf{B}^C .

Definition 1.3.3. A **contingency table** for two events **A** and **B** in a sample space **S** is given by:

	A	\mathbf{A}^C	
В	$P(\mathbf{A} \cap \mathbf{B})$	$P(\mathbf{A}^C \cap \mathbf{B})$	$P(\mathbf{B})$
\mathbf{B}^{C}	$P(\mathbf{A} \cap \mathbf{B}^C)$	$P(\mathbf{A}^C \cap \mathbf{B}^C)$	$P(\mathbf{B}^C)$
	$P(\mathbf{A})$	$P(\mathbf{A}^C)$	$P(\mathbf{S})$

Theorem 2.

Law of Total Probability Let $A_1, A_2, ..., A_n$ be events which partition the sample space S. That is,

$$\bigcup_{i=1}^n \mathbf{A}_i = \mathbf{S}$$

and $\mathbf{A}_i \cap \mathbf{A}_j = \emptyset$ for all $i \neq j$, and $P(\mathbf{A}_i) > 0$ for all i. Then

$$P(\mathbf{B}) = \sum_{i=1}^{n} P(\mathbf{B} \cap \mathbf{A}_i) = \sum_{i=1}^{n} P(\mathbf{B}|\mathbf{A}_i) P(\mathbf{A}_i)$$

Theorem 3.

Bayes' Theorem Given events $A_1, A_2, ..., A_n$ which partition the sample space S, for each event B with P(B) > 0 we have for each $j \in \{1, 2, ..., n\}$:

$$P(\mathbf{A}_j, \mathbf{B}) = \frac{P(\mathbf{A}_j \cap \mathbf{B})}{P(\mathbf{B})} = \frac{P(\mathbf{B}|\mathbf{A}_j)P(\mathbf{A}_j)}{\sum_{i=1}^n P(\mathbf{B}|\mathbf{A}_i)P(\mathbf{A}_i)}$$

Definition 1.3.4. A <u>tree diagram</u> for two events **A** and **B**, where **A** is a condition for **B** is given by:

1.4.0 Counting

Proposition 1.4.1. Let $\{A_i\}_{i=1}^n$ be a collection of a sample space **S**. Then the set of events is **mutually independent** if and only if for every $k \le n$, and every k-sized subset of events $\{B_i\}_{i=1}^k \subseteq \{A_i\}_{i=1}^k$ we have

$$P\left(\bigcap_{i=1}^k \mathbf{B}_i\right) = \prod_{i=1}^k P(\mathbf{B}_i)$$

Proposition 1.4.2. The multiplication principle states that $A_1, ..., A_n$ are events, then

$$|\mathbf{A}_1 \times ... \times \mathbf{A}_n| = |\mathbf{A}_1| \cdot ... \cdot |\mathbf{A}_n|$$

Definition 1.4.1. A <u>permutation</u> is an arrangement of objects in which order matters. If there are a total of *n* objects, the number of ways we can order *r* of them is:

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

Definition 1.4.2. A <u>combination</u> is an arrangement of objects in which order doesn't matters. If there are a total of n objects, the number of ways we can select r of them is:

$$_{n}C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$$

Theorem 1.4.3. The binomial theorem states that

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$

Definition 1.4.3. The number of ways of partitioning N objects into k distinct groups containing

 $n_1, n_2, ..., n_k$ objects, respectively, is given by the multinomial coefficient

$$\binom{N}{n_1 n_2 ... n_k} := \binom{N}{n_1} \binom{N - n_1}{n_2} ... \binom{N - \sum_{i=1}^{k-1} n_i}{n_k} = \frac{N!}{n_1! n_2! ... n_k!}$$

Chapter 2

Discrete Random Variables

2.1.0 Basic Terminology

Definition 2.1.1. A random variable for a sample space **S** is a function

$$X:S\to\mathbb{R}$$

Definition 2.1.2. A <u>discrete random variable</u> is a function $X : S \to \mathbb{R}$ with a finite, or countably infinite, image. That is, the possible values X can take can be arranged in a (possibly infinite) sequence.

Definition 2.1.3. A <u>continuous random variable</u> are functions $X : S \to \mathbb{R}$ in which the image of X is uncountable, and X satisfies certain other conditions to be discussed later.

Definition 2.1.4. The **probability distribution** of a discrete random variable is a listing or graph that specifies every possible value that a random variable can assume along with the probabilities associated with each of these values.

Definition 2.1.5. The **probability distribution table** for a finite random variable **X** is given by:

where $P(\mathbf{X} = x) = P(x) = p_{\mathbf{X}}(x)$ is the **probability mass function (pmf)** for \mathbf{X} , which assigns the likelihood that any event or element in the sample space can occur.

Definition 2.1.6. The probability mass function for a discrete random variable X must satisfy the following conditions:

1.
$$0 < P(\mathbf{X} = x_i) < 1 \text{ for } i \in \{1, 2, ..., n\}$$

2.
$$\sum_{i=1}^{n} P(\mathbf{X} = x_i) = 1$$

Definition 2.1.7. A **probability distribution graph** plots probability on the y-axis and the values of the random variable on the x-axis.

A **symmetric** graph is one that is invariant under reflection about some vertical line, located at it's "middle."

A <u>right-skewed</u> graph is one that has a "tail" pointing off in the right direction (the mass of the graph is on the left-hand side).

A **left-skewed** graph is one that has a "tail" pointing off in the left direction (the mass of the graph is on the right-hand side).

2.2.0 Expected Values and Variance

Definition 2.2.1. The <u>expected value</u> of a discrete random variable X is the long-run average value of X over an infinite number of repetitions of an experiment:

$$E[\mathbf{X}] = \mu_{\mathbf{X}} = \mu = \sum_{i=1}^{n} x_i P(\mathbf{X} = x_i)$$

where x_i is the *i*th value that **X** can assume.

Proposition 2.2.1. Let X be a discrete random variable, and let g(X) be a real-valued function of X. Then the expected value of g(X) is given by:

$$E[g(\mathbf{X})] = \sum_{all\ x} g(x)P(\mathbf{X} = x)$$

Proposition 2.2.2. Let **X** be a discrete random variable, $g(\mathbf{X}), g_1(\mathbf{X}), ..., g_k(\mathbf{X})$ real-valued functions of **X**, and $c \in \mathbb{R}$. Then:

- 1. E[c] = c
- 2. $E[cg(\mathbf{X})] = cE[g(\mathbf{X})]$

3.
$$E\left[\sum_{i=1}^k g_i(\mathbf{X})\right] = \sum_{i=1}^k E[g_i(\mathbf{X})]$$

Definition 2.2.2. The <u>variance</u> of a discrete random variable X is a measure of the variability of X over an infinite number of repetitions of an experiment. It determines the average squared

deviation from the expected value of **X**:

$$VAR[\mathbf{X}] = V[\mathbf{X}] = \sigma_{\mathbf{X}}^2 = \sigma^2 = E[(\mathbf{X} - \mu)^2] = E[\mathbf{X}^2] - E[\mathbf{X}]^2$$

Definition 2.2.3. The **standard deviation** of a discrete random variable X is another measure of variability of X and is the positive square root of the variance:

$$SD[\mathbf{X}] = \sigma_{\mathbf{X}} = \sigma = \sqrt{VAR[\mathbf{X}]}$$

Proposition 2.2.3. Let **X** be a discrete random variable and $c \in \mathbb{R}$. Then:

- 1. VAR[c] = 0
- 2. $VAR[c\mathbf{X}] = c^2 VAR[\mathbf{X}]$

2.3.0 Bernoulli Random Variables

Definition 2.3.1. A scenario or experiment with the following characteristics produces a **Bernoulli** random variable:

- The experiment consists of a single trial
- The trial results in one of two outcomes (a "success" or a "failure")
- The probability of a "success" denoted p is the same for all similar trials
- The **Bernoulli random variable** itself takes on a value of 1 if a "success" is achieved and a value of 0 if a "failure" is achieved

Such an experiment is called a **Bernoulli trial**.

Definition 2.3.2. The values that define a random variable's probability distribution are called **parameters**.

Definition 2.3.3. A Bernoulli random variable depends on one parameter:

$$p$$
 – the probability of a success

If a random variable **X** follows a Bernoulli distribution we write

$$\mathbf{X} \sim Bernoulli(p)$$

Definition 2.3.4. The pmf for a Bernoulli random variable **X** is

$$P(\mathbf{X} = x) = p^{x}(1-p)^{1-x} = \begin{cases} 1-p, & x=0\\ p, & x=1 \end{cases}$$

Definition 2.3.5. The MGF for a Bernoulli random variable **X** is:

$$M_{\mathbf{X}}(t) = pe^t + (1 - p)$$

Definition 2.3.6. Let $X \sim Bernoulli(p)$. Then

$$E[\mathbf{X}] = p$$

and

$$VAR[\mathbf{X}] = p(1-p) = pq$$

2.4.0 Binomial Random Variables

Definition 2.4.1. A scenario or experiment with the following characteristics produces a **binomial** random variable:

- The experiment consists of a fixed number of *n* independent, identical Bernoulli trials
- Each trial results in one of two outcomes (a "success" or a "failure")
- The probability of a "success" denoted *p* is the same from trial to trial
- The binomial random variable itself is the number of successes out of the n trials

Definition 2.4.2. A binomial random variable depends on two parameters:

p — the probability of a success

n – the number of trials

If a random variable **X** follows a binomial distribution we write

$$\mathbf{X} \sim binomial(n, p)$$

Definition 2.4.3. The pmf for a binomial random variable **X** is

$$P(\mathbf{X} = x) = \binom{n}{x} p^{x} (1 - p)^{n-x}$$

Definition 2.4.4. Let $X \sim binomial(n, p)$. Then

$$E[\mathbf{X}] = np$$

$$VAR[\mathbf{X}] = np(1-p) = npq$$

Definition 2.4.5. The MGF for a binomial random variable **X** is:

$$M_{\mathbf{X}}(t) = [pe^t + (1-p)]^n$$

Definition 2.4.6. Let $X \sim binomial(n, p)$. To find P(X = a) in R, write:

$$dbinom(a, size = n, prob = p)$$

To find $P(\mathbf{X} \leq a)$ in R, write:

pbinom(a, size = n, prob = p) or sum(dbinom(start:a, size = n, prob = p))

2.5.0 Negative Binomial Random Variables

Definition 2.5.1. A scenario or experiment with the following characteristics produces a <u>negative</u> binomial random variable:

- The experiment consists of independent, identical Bernoulli trials
- Each trial results in one of two outcomes (a "success" or a "failure")
- The probability of a "success" denoted p is the same from trial to trial
- The <u>negative binomial random variable</u> itself is the number of trials needed to yield r successes

Definition 2.5.2. A negative binomial random variable depends on two parameters:

p – the probability of a success

r – the number of successes we are interested in observing

If a random variable **X** follows a negative binomial distribution we write

$$\mathbf{X} \sim negative\ binomial(r, p)$$

Definition 2.5.3. The pmf for a binomial random variable **X** is

$$P(\mathbf{X} = x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$

Definition 2.5.4. Let $X \sim negative\ binomial(r, p)$. Then

$$E[\mathbf{X}] = \frac{r}{p}$$

$$VAR[\mathbf{X}] = \frac{r(1-p)}{p^2} = \frac{rq}{p^2}$$

Definition 2.5.5. The MGF for a negative binomial random variable **X** is:

$$M_{\mathbf{X}}(t) = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r$$

Definition 2.5.6. Let $X \sim negative\ binomial(r, p)$. To find P(X = a) in R, write:

$$dnbinom(a-r, size = r, prob = p)$$

To find $P(X \le a)$ in R, write:

pnbinom(a-r, size = r, prob = p) or sum(dnbinom(start:a-r, size = r, prob = p))

2.6.0 Geometric Random Variables

Definition 2.6.1. A scenario or experiment with the following characteristics produces a **geometric random variable**:

- The experiment consists of independent, identical Bernoulli trials
- Each trial results in one of two outcomes (a "success" or a "failure")
- The probability of a "success" denoted p is the same from trial to trial
- The **geometric random variable** itself is the number of the trial on which the first success occurs

Definition 2.6.2. A geometric random variable depends on one parameters:

$$p$$
 – the probability of a success

If a random variable **X** follows a geometric distribution we write

$$\mathbf{X} \sim geometric(p)$$

Definition 2.6.3. The pmf for a geometric random variable **X** is

$$P(\mathbf{X} = x) = (1 - p)^{x-1}p$$

Definition 2.6.4. Let $X \sim geometric(p)$. Then

$$E[\mathbf{X}] = \frac{1}{p}$$

$$VAR[\mathbf{X}] = \frac{(1-p)}{p^2} = \frac{q}{p^2}$$

Definition 2.6.5. The MGF for a geometric random variable **X** is:

$$M_{\mathbf{X}}(t) = \frac{pe^t}{1 - (1 - p)e^t}$$

Definition 2.6.6. Let $X \sim geometric(p)$. To find P(X = a) in R, write:

$$dgeom(a-1, prob = p)$$

To find $P(X \le a)$ in R, write:

pgeom(a-1, prob = p) or sum(dgeom(start:a-1, prob = p))

2.7.0 Hypergeometric Random Variables

Definition 2.7.1. A scenario or experiment with the following characteristics produces a **hyper-geometric random variable**:

- The experiment involves randomly selecting *n* elements (without replacement) from a total number of elements *N*
- Each trial results in one of two outcomes (a "success" or a "failure")
- The total number of "successes" is known to be a certain number r
- The <u>hypergeometric random variable</u> itself is the number of successes in the set of *n* selected elements drawn from *N*

Definition 2.7.2. A hypergeometric random variable depends on three parameters:

r – the the total number of "successes" in N

N – the total number of elements we are drawing from (the "population")

n – the number of elements drawn from N (the "sample")

If a random variable **X** follows a hypergeometric distribution we write

$$\mathbf{X} \sim hyper\ geometric(r, N, n)$$

Definition 2.7.3. The pmf for a binomial random variable **X** is

$$P(\mathbf{X} = x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

Definition 2.7.4. Let $X \sim negative\ binomial(r, p)$. Then

$$E[\mathbf{X}] = \frac{nr}{N}$$

and

$$VAR[\mathbf{X}] = n \cdot \frac{r}{N} \cdot \frac{N-r}{N} \cdot \frac{N-n}{N-1}$$

Definition 2.7.5. Let $X \sim hyper geometric(r, N, k)$. To find P(X = a) in R, write:

$$dhyper(a, m = r, n = N - r, k = k)$$

To find $P(X \le a)$ in R, write:

phyper(a,
$$m = r$$
, $n = N - r$, $k = k$) or sum(dhyper(start:a, $m = r$, $n = N - r$, $k = k$)

2.8.0 Poisson Random Variables

Definition 2.8.1. A scenario or experiment with the following characteristics produces a **Poisson** random variable:

- The experiment involves an event occurring during a given interval (of time, area, distance, volume, etc.)
- The probability that an event occurs in an interval is the same for all other equal intervals
- The number of events that occur in one interval is independent of the number of events that occur in other intervals
- There is a known average or expected number of events, λ , that occur during/in the interval
- The Poisson random variable itself is the number of times an event has occurred in a given interval

Definition 2.8.2. A Poisson random variable depends on one parameter:

 λ – the average number of events during a specified interval

If a random variable X follows a Poisson distribution we write

$$\mathbf{X} \sim Poisson(\lambda)$$

Definition 2.8.3. The pmf for a Poisson random variable **X** is

$$P(\mathbf{X} = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Definition 2.8.4. Let $X \sim Poisson(\lambda)$. Then

$$E[\mathbf{X}] = \lambda$$

and

$$VAR[\mathbf{X}] = \lambda$$

Definition 2.8.5. The MGF for a Poisson random variable **X** is:

$$M_{\mathbf{X}}(t) = \exp[\lambda(e^t - 1)]$$

Definition 2.8.6. Let $\mathbf{X} \sim Poisson(\lambda)$. To find $P(\mathbf{X} = a)$ in R, write:

$$dpois(a, lambda = lambda)$$

To find $P(\mathbf{X} \leq a)$ in R, write:

ppois(a, lambda = lambda) or sum(dpois(start:a, lambda = lambda))

2.9.0 Moment-Generating Functions

Definition 2.9.1. The kth moment of a random variable X about the origin (the **standardized moment**) is defined as $E[X^k]$ where

$$E[X^k] = \sum_{\text{all } x} x^k P(X = x)$$

The *k*th moment of a random variable *X* about its mean (the **central moment**) is defined as $E[(X - \mu)^k]$ where

$$E[(X - \mu)^k] = \sum_{\text{all } x} (x - \mu)^k P(X = x)$$

Definition 2.9.2. The first standardized moment is the <u>mean</u>. It is a measure of central tendency and gives an idea of where our distribution is centered.

Definition 2.9.3. The second central moment is the <u>variance</u>. It is a measure of spread, and gives the squared deviation of the random variable from its mean.

Definition 2.9.4. The third central moment is the **skewness**. It gives an idea of the symmetry of the probability distribution about the mean. A perfectly symmetric distribution will have a skewness of 0, a left-skewed distribution will have a negative skewness, and a right-skewed distribution will have a positive skewness.

Definition 2.9.5. The fourth central moment is **kurtosis**. It gives an idea of how "thick" the tails of a distribution are in comparison to the normal distribution of the same variance.

Definition 2.9.6. A moment generating function (MGF) is a function that allows us to find any moment of a distribution. In particular, for a random variable X its MGF exists if there is a constant b > 0 such that for $|t| \le b$ the expectation $E[e^{tX}]$ exists, and it is defined as:

$$M_X(t) = E[e^{tX}] = \begin{cases} \sum_{all\ x} e^{tx} P(X = x) & when\ discrete \\ \int_{0}^{all\ x} e^{tx} P(X = x) dx & when\ continuous \end{cases}$$

We can find the *k*th moment of *X* as follows:

$$E[X^k] = \frac{d^k}{dt^k} [M_X(t)]\Big|_{t=0} = M_X^{(k)}(t)\Big|_{t=0}$$

Remark 2.9.1. The moment-generating function uniquely determines the distribution. In particular if X and Y are random variables with cdf F_X and F_Y , then if $M_X(t) = M_Y(t)$ for all values of t, then $F_X(x) = F_Y(x)$ for all x.

Chapter 3

Continuous Random Variables

3.1.0 Basic Definitions: Continuous Random Variables

Properties 3.1.1. Let *X* be a continuous random variable. Then:

- For all $x \in \mathbb{R}$, P(X = x) = 0.
- For all $x \in \mathbb{R}$, $P(X \leqslant x) = P(X < x)$ and $P(X \geqslant x) = P(X > x)$.

Definition 3.1.2. The <u>cumulative distribution function</u> (cdf) F(x) of a random variable X gives the probability that X will take a value less than or equal to that value x:

$$F(X = x) = F(x) = P(X \leqslant x)$$

If *X* is continuous, then

$$F(x) = P(X \leqslant x) = P(X < x) = \int_{-\infty}^{x} f(t)dt$$

where $f(x) = \frac{d}{dx}F(x) = F'(x)$ is the **probability density function** (pdf) of X.

Remark 3.1.1. For a continuous random variable *X* we have that

$$P(a \le X \le b) = P(X \le b) - P(X < a) = F(b) - F(a) = \int_a^b f(x)dx$$

Properties 3.1.3. Let F(x) be a cdf. Then

- $F(-\infty) := \lim_{x \to -\infty} F(x) = 0$
- $F(\infty) := \lim_{x \to \infty} F(x) = 1$

• F(x) is a nondecreasing, nonnegative function of x, meaning that $x_1 < x_2 \implies F(x_1) < F(x_2)$

If *X* is a continuous random variable, then:

- $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- $\int_{-\infty}^{\infty} f(x)dx = 1$

Definition 3.1.4. The expected value for a continuous random variable X is given by:

$$E[X] = \mu_X = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

The limits of integration are called the **support** of *X*.

Theorem 3.1.1. Let X be a continuous random variable with pdf f(x) and let g(X) be a real-valued function of X. Then the expected value of g(X) is given by:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Definition 3.1.5. The variance for a continuous random variable *X* is defined as follows:

$$VAR[X] = V[X] = \sigma_X^2 = \sigma^2 = E[(X - \mu)^2] = E[X^2] - (E[X])^2$$

The standard deviation of *X* is defined as:

$$SD[X] = \sigma_X = \sigma = \sqrt{VAR[X]}$$

3.2.0 Uniform Random Variables

Definition 3.2.1. The continuous <u>uniform distribution</u> is a family of symmetric probability distributions such that all intervals of the same length on the distribution's support are equally likely/probable.

Definition 3.2.2. A uniform random variable depends on two parameters:

a – the minimum value of the support

b – the maximum value of the support

If a random variable X follows a uniform distribution we write

$$\mathbf{X} \sim uniform(a,b)$$

Definition 3.2.3. The pdf for a uniform random variable **X** is

$$f(x) = \begin{cases} \frac{1}{b-a} & a \leqslant x \leqslant b \\ 0 & elsewhere \end{cases}$$

The cdf for a uniform random variable **X** is

$$F(X = x) = P(X \leqslant x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \leqslant x < b \\ 1 & x \geqslant b \end{cases}$$

Definition 3.2.4. Let $X \sim uniform(a, b)$. Then

$$E[\mathbf{X}] = \frac{a+b}{2}$$

and

$$VAR[\mathbf{X}] = \frac{(b-a)^2}{12}$$

Definition 3.2.5. The MGF for a uniform random variable **X** is:

$$M_{\mathbf{X}}(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$$

Definition 3.2.6. Let $X \sim uniform(a, b)$. To find $P(X \le a)$ in R, write:

$$punif(a, min = min, max = max)$$

To find x_0 such that $P(\mathbf{X} \le x_0) = p$ in R, write:

$$qunif(p, min = min, max = max)$$

3.3.0 Normal Random Variables

Definition 3.3.1. The **normal or Gaussian distribution** is a family of symmetric probability distributions that are bell-shaped.

Note not all bell-shaped distributions are normal.

Definition 3.3.2. A normal random variable depends on two parameters:

$$\mu$$
 – the mean

 σ – the standard deviation

If a random variable **X** follows a normal distribution we write

$$\mathbf{X} \sim normal(\mu, \sigma)$$

Definition 3.3.3. The pdf for a normal random variable **X** is

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

The cdf for a normal random variable **X** is

$$F(X = x) = P(X \leqslant x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(t-\mu)^2}{2\sigma^2}} dt$$

Definition 3.3.4. Let $X \sim normal(\mu, \sigma)$. Then

$$E[\mathbf{X}] = \mu \approx \frac{\sum_{i=1}^{n} x_i}{n}$$
 (sample mean)

and

$$VAR[\mathbf{X}] = \sigma \approx \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$$
 (sample variance)

Definition 3.3.5. The MGF for a normal random variable **X** is:

$$M_{\mathbf{X}}(t) = \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$$

Definition 3.3.6. Let $X \sim normal(\mu, \sigma)$. To find $P(X \leq a)$ in R, write:

$$pnorm(a, mean = \mu, sd = \sigma)$$

To find x_0 such that $P(\mathbf{X} \le x_0) = p$ in R, write:

$$qnorm(p, mean = \mu, sd = \sigma)$$

Definition 3.3.7. The standard normal distribution is a special case of the normal distribution in which $\mu = 0$ and $\sigma = 1$.

If we let X be a normal random variable with mean μ and standard deviation σ , we define the **standardized score** or **z-score** of X to be:

$$Z = \frac{X - \mu}{\sigma}$$

3.4.0 Gamma Random Variables

Definition 3.4.1. The **gamma distribution** is a two-parameter family of continuous probability distributions which are always non-negative and right-skewed.

Definition 3.4.2. A gamma random variable depends on two parameters:

 α – the shape parameter (a format of skewness)

 β – the scale parameter (breadth of viable scope)

If a random variable **X** follows a gamma distribution we write

$$\mathbf{X} \sim gamma(\alpha, \beta)$$

Definition 3.4.3. The pdf for a gamma random variable **X** is

$$f(x|\alpha,\beta) = \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$$

The cdf for a gamma random variable \mathbf{X} is

$$F(X = x) = P(X \le x) = \int_0^x \frac{t^{\alpha - 1} e^{-t/\beta}}{\beta^{\alpha} \Gamma(\alpha)} dt$$

where $\Gamma(\alpha)$ is the gamma function.

Definition 3.4.4. The gamma function is defined for all complex numbers $\alpha \in \mathbb{C}$ such that $\Re(\alpha) > 0$, and is defined by:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx, \quad \Re(\alpha) > 0$$

The following are some properties of the gamma function:

- $\Gamma(n) = (n-1)!$ for all $n \in \mathbb{Z}^+$
- $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ for all $\Re(\alpha) > 0$
- $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- By definition we have the identity:

$$\int_0^\infty x^{\alpha-1} e^{-x/\beta} dx = \beta^{\alpha} \Gamma(\alpha)$$

or equivalently

$$\int_{0}^{\infty} x^{\alpha} e^{-x/\beta} dx = \beta^{\alpha+1} \Gamma(\alpha+1)$$

Definition 3.4.5. Let $X \sim gamma(\alpha, \beta)$. Then

$$E[\mathbf{X}] = \alpha \beta$$

$$VAR[\mathbf{X}] = \alpha \beta^2$$

Definition 3.4.6. The MGF for a gamma random variable **X** is:

$$M_{\mathbf{X}}(t) = (1 - \beta t)^{-\alpha}$$

Definition 3.4.7. Let $X \sim gamma(\alpha, \beta)$. To find $P(X \le a)$ in R, write:

$$pgamma(a, shape = \alpha, scale = \beta)(or \ rate = 1/\beta)$$

To find x_0 such that $P(\mathbf{X} \le x_0) = p$ in R, write:

$$qgamma(p, shape = \alpha, scale = \beta)$$

3.5.0 Exponential Random Variables

Definition 3.5.1. The <u>exponential distribution</u> is a special case of the gamma distribution when $\alpha = 1$

Definition 3.5.2. An exponential random variable depends on one parameter:

$$\beta$$
 – the scale parameter (breadth of viable scope)

In certain applications we write $\beta = 1/\lambda$ to emphasize the relationship between the Exponential and Poisson distributions. If a random variable **X** follows an exponential distribution we write

$$\mathbf{X} \sim exponential(\beta)$$

Definition 3.5.3. The pdf for an exponential random variable **X** is

$$f(x|\beta) = \frac{e^{-x/\beta}}{\beta}$$

The cdf for an exponential random variable **X** is

$$F(X = x) = P(X \leqslant x) = \int_0^x \frac{e^{-t/\beta}}{\beta} dt$$

A useful result is that for x > 0,

$$F(X=x)=1-e^{-x/\beta}$$

Definition 3.5.4. Let $X \sim exponential(\beta)$. Then

$$E[\mathbf{X}] = \beta = \frac{1}{\lambda}$$

$$VAR[\mathbf{X}] = \beta^2 = \frac{1}{\lambda^2}$$

Definition 3.5.5. The MGF for an exponential random variable **X** is:

$$M_{\mathbf{X}}(t) = (1 - \beta t)^{-1}$$

Properties 3.5.6. If $X \sim exponential(\beta)$, then for any $a, b \in \mathbb{R}$,

$$P(X > t + s | X > t) = P(X > s)$$

and

$$P(X < t + s | X > t) = P(X < s)$$

Definition 3.5.7. Let $X \sim exponential(\beta)$. To find $P(X \le a)$ in R, write:

$$pexp(a, rate = 1/\beta)$$

To find x_0 such that $P(\mathbf{X} \leq x_0) = p$ in R, write:

$$qexp(p, rate = 1/\beta)$$

3.6.0 Beta Random Variables

Definition 3.6.1. The <u>beta distribution</u> is a two-parameter family of continuous probability distributions defined on the interval [0,1].

Definition 3.6.2. A beta random variable depends on two parameters:

$$\alpha$$
 – a shape parameter

$$\beta$$
 – a shape parameter

If a random variable **X** follows a beta distribution we write

$$\mathbf{X} \sim beta(\alpha, \beta)$$

Definition 3.6.3. The pdf for a beta random variable \mathbf{X} is

$$f(x|\alpha,\beta) = \begin{cases} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} & 0 \leq x \leq 1\\ 0 & elsewhere, \end{cases}$$

The cdf for a beta random variable **X** is

$$F(X=x) = P(X \leqslant x) = \int_0^x \frac{t^{\alpha-1}(t-1)^{\beta-1}}{B(\alpha,\beta)} dt$$

where $B(\alpha, \beta)$ is the beta function.

Definition 3.6.4. The **beta function** is defined for all complex numbers $\alpha, \beta \in \mathbb{C}$ such that $\Re(\alpha), \Re(\beta) > 0$, and is defined by:

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Definition 3.6.5. Let $X \sim beta(\alpha, \beta)$. Then

$$E[\mathbf{X}] = \frac{\alpha}{\alpha + \beta}$$

and

$$VAR[\mathbf{X}] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

Definition 3.6.6. Let $\mathbf{X} \sim beta(\alpha, \beta)$. To find $P(\mathbf{X} \leq a)$ in R, write:

$$pbeta(a, shape1 = \alpha, shape2 = \beta)$$

To find x_0 such that $P(\mathbf{X} \le x_0) = p$ in R, write:

$$qbeta(p, shape1 = \alpha, shape2 = \beta)$$

Chapter 4

Bivariate Probabilities

4.1.0 Bivariate Data Structures

Definition 4.1.1. The **joint probability function** for discrete random variables X and Y is

$$P(X = x \cap Y = y) = P(X = x, Y = y)$$

and it has the following properties:

- 1. $0 \le p(x, y) \le 1$; $\forall x \in Dom(X), \forall y \in Dom(Y)$.
- $2. \sum_{all \ x} \sum_{all \ y} p(x, y) = 1$

Definition 4.1.2. The **joint distribution function** for discrete random variables X and Y is

$$F(X = x \cap Y = y) = P(X \leqslant x, Y \leqslant y) = \sum_{t_1 \leqslant x} \sum_{t_2 \leqslant y} p(t_1, t_2)$$

Definition 4.1.3. Two random variables are **jointly continuous** if there exist a **joint density function** f(x, y) which satisfies the density function axioms:

- 1. $f(x,y) \ge 0, \forall x \in Dom(X), \forall y \in Dom(Y)$
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$

Definition 4.1.4. The <u>joint distribution function</u> for joint continuous random variables X and Y is

$$F(X = x \cap Y = y) = P(X \leqslant x, Y \leqslant y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t_1, t_2) dt_2 dt_1$$