Universitatea din București Facultatea de Matematică și Informatică

CURS nr. 5 - TEHNICI DE SIMULARE

Simularea unor variabile aleatoare continue

Lect. dr. Bianca Mogoș

Conținut

- 1. Simularea variabilelor aleatoare:
 - 1.1 Exponențială(λ)
 - 1.2 Gamma
 - 1.3 Beta(a, b), a, b > 0
- 2. Alte metode de simulare a variabilelor aleatoare
- 3. Simularea unor variabile aleatoare înrudite cu repartiția normală

1.1 Simularea variabilei aleatoare Exponențiale (1)

▶ Densitatea de repartiție a v.a. $X \sim Exp(\lambda), \lambda > 0$ este

$$f(x) = \begin{cases} 0, & \text{dacă } x \le 0 \\ \lambda e^{-\lambda x} & \text{dacă } x > 0 \end{cases}$$
 (1)

- ▶ Dacă $Z \sim Exp(1)$ atunci $X = \frac{Z}{\lambda} \sim Exp(\lambda)$
- ▶ V.a. $Z \sim Exp(1)$ se poate simula folosind o variantă a Teoremei șirului descendent:

"Se consideră în Teorema șirului descendent $Z_0 = U_0, Z_i = U_i, i \geq 1$, unde $U_0, U_i, i \geq 1$ sunt v.a. uniforme pe [0,1]. Dacă notăm cu N numărul aleator de subșiruri descendente respinse până se acceptă un subșir, atunci $X = N + Z_0 \sim Exp(1)$, unde Z_0 este cel acceptat (din ultimul subșir descendent)."

1.1 Demonstrația teoremei care fundamentează algoritmul de simulare a v.a. Exponențiale (2)

▶ Pentru $x \in [0, 1]$ avem

$$P(Z_0 \le x \mid K = \text{nr. impar}) = \frac{1}{\rho_a} \int_0^x e^{-x} dx =$$

$$= \frac{1 - e^{-x}}{\rho_a}, \rho_a = 1 - e^{-1}$$
(2)

- ▶ Cum $p_a = P(K = \text{nr. impar}, Z_0 \in \mathbb{R})$, rezultă că probabilitatea de a respinge un șir descendent de forma $Z_0 \geq Z_1 \geq \ldots \geq Z_{K-1} < Z_K$ este $p_r = 1 p_a = e^{-1}$.
- ▶ Deducem $P(N = n) = e^{-n}(1 e^{-1})$.

1.1 Demonstrația teoremei care fundamentează algoritmul de simulare a v.a. Exponențiale (3)

Vrem să arătăm că

$$P(N+Z_0 \le x) = \begin{cases} 0, & \text{dacă } x < 0 \\ 1 - e^{-x}, & \text{dacă } x \ge 0 \end{cases} . \tag{3}$$

▶ Pentru un x > 0 dat, notăm $x = k + z, k = [x], z \in [0,1)$, și avem

$$\begin{split} P(N+Z_0 \leq x) &= P(N+Z_0 \leq k+z) \\ &= P(N < k) + P(N = k, Z_0 \leq z) = \\ &= \sum_{j=0}^{k-1} (1-e^{-1})e^{-j} + (1-e^{-1})\frac{e^{-k}}{1-e^{-1}} \int_0^z e^{-u} du = \\ &= 1 - e^{-k} + e^{-k}(1-e^{-z}) = 1 - e^{-(k+z)} = 1 - e^{-x}. \end{split}$$

1.1 Algoritm de simulare a unei v.a. Exponențiale(1) (4)

Intrare	Pp. că știm să generăm v.a. $Z_i \hookrightarrow G(x), i \geq 1$ și $Z_0 \hookrightarrow G_0(x)$
	Repetă Pas 1 – Pas 2 până când $K=$ nr. impar
Pas 1	Se generează val. de selecție z_0 a v.a. $Z_0 \hookrightarrow G_0(x)$ și z_1 a v.a. $Z_1 \hookrightarrow G(x)$. Se ia $z*=z_0$, $K=1$;
Pas 2	Repetă Pas 3 - Pas 4 cât timp $z_0 \geq z_1$
Pas 3	$K=K+1;\ z_0=z_1$
Pas 4	Se generează o val. de selecție z_1 a v.a. $Z_1 \hookrightarrow G(x)$
Pas 5	Se consideră $x = z*$
leșire	Valoarea de selecție, x , a v.a. $X \hookrightarrow F(x)$

Bibliografie I

I. Văduva (2004), *Modele de simulare: note de curs*, Editura Universității din București, București