Генератори на случайни последователности в паралелна изпълнителна среда

Генератори
на
случайни последователности
в
паралелна изпълнителна среда

Милен Луканчевски

Русенски университет "Ангел Кънчев"

УДК 004.272 + 004.421.5 + 519.688

Генератори на случайни последователности в паралелна изпълнителна среда

© Автор д-р инж. Милен Луканчевски, 2013

Рецензенти: проф. д.т.н Райчо Иларионов, ТУ-Габрово

доц. д-р Лидия Георгиева, РУ "А. Кънчев"

Компютърна обработка: д-р инж. Милен Луканчевски

Националност на автора: **българска** Език на изданието: **български** Тип (жанр): **научен, монография**

Поредност: първо

ISBN 978-619-7071-26-9

Формат 64 х 90/16

Издателски център на Русенския университет "А. Кънчев", 2013.

На лицевата корица: Елементи от екрана на паралелната развойна среда *xTIMEcomposer Studio* на фирмата *XMOS*.

На задната корица: Част от опитната постановка, използвана за изследване и експериментиране с предложените реализации на генератори на случайни последователности.

Изследването и изданието са финансирани от автора и от ръководеното от него научно развойно направление *"Компютърни телекомуникационни системи"*.

На мислещите компютърни специалисти, призвани да преодолеят третата сингулярност

ПРЕДИСЛОВИЕ

лавните направления на развитие на компютърните архитектури на съвременния етап включват постепенен преход от последователния фоннойманов към паралелния изчислителен модел, както и изследването на възможностите за използване принципите на квантовата механика за съхранение, обработка и пренос на информацията.

Предпоставка за работите и при двете направления са физическите ограничения на класическия последователен изчислителен модел. Но докато при първото направление тези ограничения се преодоляват на макрониво, то при второто направление стремежът е да се използва скрития на квантово ниво потенциал за паралелна обработка.

От началото на 90-те години в катедра "Компютърни системи и технологии" на Русенския университет "А. Кънчев" се работи в областта на паралелните компютърни системи, което в голяма степен е стимулирано от резултатите в дисертационния труд на автора. Изследванията се основават на паралелния изчислителен модел *CSP* на Чарлз Хоар. Като елементна база са използвани скаларни микропроцесори с общо предназначение.

От 2009 година, както в изследователската, така и в учебната работа, авторът експериментира с новата *SMT/TLP* архитектура *XS1* на фирмата *XMOS*.

Като резултат от осмислянето на получените резултати и на основното противоречие в областта на компютърните архитектури и системи, авторът започва да развива от 2012 година тематика за изследване на квантовите явления чрез моделирането им в паралелна изпълнителна среда.

Възприет за водещ методологичен принцип е съвместното разглеждане на двете главни направления на развитие на компютърните архитектури: на макрониво и на квантово ниво. Акцентира се върху изоморфизма на изображението на структурата на изследвания обект или явление в модел с глобален структурен паралелизъм. Оттук произтича и избора на изпълнителната среда с глобален структурен паралелизъм XCORE/XC, базирана на SMT/ TLP архитектура XS1.

Като инициатор и ръководител на тези изследвания, авторът

се счита длъжен да представя в монографична форма найсъществените резултати от всеки отделен, логически завършен техен етап.

Предмет на тази монография са основните резултати от първия етап от изследванията, посветен на генераторите на случайни последователности в паралелната изпълнителна среда XCORE/XC.

Едновременно излиза от печат и другата монография, в която се обобщават резултатите от втория етап на изследванията - структурното моделиране на ключовите квантови явления поляризация, суперпозиция, квантова телепортация и сплитане [9].

По въпроси, свързани със съдържанието на работата, може да се обръщате на електронната поща mil@ieee.org на автора.

+++

Използвам случая да благодаря на своите студенти, участвали в работите. Най-вече на маг. инж. Бисер Николов за неговия младежки плам и отдаденост на професията.

Възможността за провеждане на изследванията се дължат на подкрепата, която срещам от научно-изследователското направление "Компютърни телекомуникационни системи" към катедра "Компютърни системи и технологии" на Русенския университет "А. Кънчев".

Рецензентите на представената работа - проф. д.т.н. Райчо Иларионов и доц. д-р Лидия Георгиева поеха с желание отговорността да помогнат за повишаване на нейното ниво чрез своите бележки, коментари и препоръки.

Благодаря на майка си - моят най-верен приятел, вдъхновител и ориентир!

Милен Луканчевски, IEEE Computer Society, IEEE Communications Society & ACM Member

Русе, октомври 2013 г.

СЪДЪРЖАНИЕ

ПРЕДИСЛОВИЕ	. /
СПИСЪК НА СЪКРАЩЕНИЯТА	12
въведение	14
1. ФОРМУЛИРОВКА НА ПРОБЛЕМА	21
ВЪВЕДЕНИЕ 1. ФОРМУЛИРОВКА НА ПРОБЛЕМА 1.1. ОСНОВНИ МЕТОДИ ЗА ГЕНЕРАЦИЯ НА СЛУЧАЙ	ΊНИ
ПОСЛЕДОВАТЕЛНОСТИ	22
1.2. ПАРАЛЕЛНА SMT/TLP APXИТЕКТУРА XS1	31
1.3. РАЗВОЕН КИТ ХК-1 1.4. ЦЕЛ И ЗАДАЧИ НА ИЗСЛЕДВАНЕТО	37
1.4. ЦЕЛ И ЗАДАЧИ НА ИЗСЛЕДВАНЕТО	40
2. РЕАЛИЗАЦИЯ И ИЗСЛЕДВАНЕ НА ГРУПА ГЕНЕРАТО	
НА СЛУЧАЙНИ ПОСЛЕДОВАТЕЛНОСТИ В ПАРАЛЕЈ	1HA
ИЗПЪЛНИТЕЛНА СРЕДА 2.1. ГЕНЕРАТОРИ С ИЗМЕСТВАЩИ РЕГИСТРИ С ЛИНЕЙ	41
2.1. ГЕНЕРАТОРИ С ИЗМЕСТВАЩИ РЕГИСТРИ С ЛИНЕИ	1HA
ОБРАТНА ВРЪЗКА	42
2.2. ГЕНЕРАТОРИ, БАЗИРАНИ НА ПРИМИТИВНА ФУНКЦ	
НА ИЗПЪЛНИТЕЛНАТА СРЕДА	51
2.3. ГЕНЕРАТОРИ, БАЗИРАНИ НА ЕНТРОПИЕН ИЗТОЧІ	
ОТ ИЗПЪЛНИТЕЛНАТА СРЕДА	54
2.4. ГЕНЕРАТОРИ, БАЗИРАНИ НА ВГРАДЕНИЯ	
АЛТЕРНАТИВНАТА КОМАНДА НЕДЕТЕРМИНИЗЪМ 2.5. ТЕХНИКА ЗА ВГРАЖДАНЕ НА НЕДЕТЕРМИНИЗЪІ	 OC
ОПЕРАТОРА SELECT	02 HΔ
ГЕНЕРИРАНАТА ПОСЛЕДОВАТЕЛНОСТ В РЕАЛНО ВРЕМЕ	
3. ЕКСПЕРИМЕНТАЛНА ОЦЕНКА НА ПРЕДЛОЖЕН	
РЕШЕНИЯ	
изводи	81
ЛИТЕРАТУРА	83
ПРИЛОЖЕНИЯ	87
ПРИЛОЖЕНИЕ П1: ПРОЕКТ І-Т001	88
ПРИЛОЖЕНИЕ П2: ПРОЕКТ I-T002	96
ПРИЛОЖЕНИЕ ПЗ: ПРОЕКТ І-Т003	
ПРИЛОЖЕНИЕ П4: ПРОЕКТ І-Т004	
ПРИЛОЖЕНИЕ П5: ПРОЕКТ І-Т005	

СПИСЪК НА ФИГУРИТЕ И ТАБЛИЦИТЕ

Фиг. В1. Графика на развитието на производителността	15
Фиг. В2. Графика на изменението на тактовата честота	на
процесорите	.17
Фиг. 1.1. Класификация на основните видове <i>RNG</i>	.23
Фиг. 1.3. <i>LFSR</i> генератор – конфигурация Галоа	25
Фиг. 1.2. <i>LFSR</i> генератор – конфигурация Фибоначи	25
Фиг. 1.4. Блокова схема на физически генератор (RRNG)	26
Фиг. 1.5. Принципна схема на физически източник на шум	27
Фиг. 1.6. Схема на кръгов осцилатор	.28
Фиг. 1.7. Графика на ентропията при <i>n</i> = 2	
Фиг. 1.8. Структура на <i>CSP</i> машина	
Фиг. 1.9. Двуточково еднопосочно взаимодействие	
Фиг. 1.10. Връзка между абстрактната и реалната страна	на
CSP	.34
Фиг. 1.11. Процесори от фамилия XS1	.35
Фиг. 1.12. Ресурси на ядрото <i>XCORE</i>	.36
Фиг. 1.13. Физическо разположение на основните компонен	нти
на компютърния възел	.37
Фиг. 1.14. Блокова схема на компютърния възел	.38
Фиг. 2.1. Схема на връзките в паралелната система	.42
Фиг. 2.2. Управление на светодиодната индикация	.46
Фиг. 2.3. Част от осцилограмата на изходния сигнал на по	
oportRngBit при RNG LFSR-Фибоначи	.48
Фиг. 2.4. Част от осцилограмата на изходния сигнал на по	эрт
oportRngBit при RNG LFSR-Галоа	
Фиг. 2.5. Схематично представяне на реализацията	
	49
Фиг. 2.6. Диаграма на използваните апаратни ресурси	• •
Фиг. 2.7. Част от осцилограмата на изходния сигнал на по	
oportRngBit при RNG с примитивна функция на средата	
Фиг. 2.8. Схема на генератора, използващ кръгов	
осцилатори на средата	.55
Фиг.2.9. Осцилограмата на изходния сигнал на порт ор	
tRngBit при RRNG в момента на разпакетиране	
Фиг. 2.10. Граф на участъка от паралелната система с вград	-
	59
Фиг. 2.11. Част от осцилограмата на изходния сигнал на по	эрт

oportRngBit за изследването на вградения недетерминизъм Фиг. 2.12. Диаграма на състоянията при детерминиран избо	
	63
Фиг. 2.13. Диаграма на състоянията при недетерминира	λН
1 ••••••••••••••••••••••••••••••••••••	63
Фиг. 2.14. Паралелна система с недетерминизъм – дв	за
	64
Фиг. 2.15. Изходна последователност при система с дв	за
източника(6 5
Фиг. 2.16. Паралелна система с недетерминизъм – тр	И
източника (66
Фиг. 2.17. Изходна последователност при система с тр	И
източника (66
Фиг. 2.18. Включване на недетерминизъм при обработката н	ιа
събитията (67
Фиг. 2.19. Параметри на изчисляваната статистика	70
Фиг. 2.20. Таблица на разпределението χ^2 при степен н	ιа
свобода 1	73
Фиг. 2.21. Формиране на контролната плъзгаща се статисти	ка
в реално време	74
Фиг. 3.1. Схема на опитната постановка	
Фиг. 3.2. Снимка на опитната постановка	
Фиг. 3.3. Виртуален панел за управление на осцилоскопа	
Фиг. 3.4. Разположение на точките на прекъсване за цели	
-	77
Фиг. 3.5. Първоначален достъп до статистиката чрез дебъгер	oa
· · · · · · · · · · · · · · · · · · ·	78
Фиг. 3.6. Следващ достъп до статистиката чрез дебъгера н	_
·	79
Фиг. 3.7. Обобщени резултати от измерванията	
	ОТ
	79

СПИСЪК НА СЪКРАЩЕНИЯТА

- CSP Communicating Sequential Processes (Взаимодействащи последователни процеси)
- CRC Cyclic Redundancy Check (Цикличен контролен код, Полиномиален контролен код)
 - DLP Data Level Parallelism (Паралелизъм на ниво данни)
- DSP Digital Signal Processor/Digital Signal Processing (Процесор за цифрова обработка на сигналите/Цифрова обработка на сигналите, ЦОС)
- ILP Instruction Level Parallelism (Паралелизъм на ниво инструкции, локален паралелизъм, базиран на конвейеризацията на инструкциите)
- JTAG Joint Test Action Group (Стандартен интерфейс за връзка между инструменталната и целевата машина)
- LCG Linear Congruental Generator (Линеен конгруентен генератор)
- LFSR Linear Feedback Shift Register (Изместващ регистър с линейна обратна връзка)
- MAC Multiply And Accumulate (сложен оператор от вида "Умножи и натрупай", популярен при DSP)
- MLCG Multiplicative Linear Congruental Generator (Мултипликативен линеен конгруентен генератор)
 - MPP Massively-Parallel Processor (Масово-паралелен процесор)
- MTP Multithreading Parallelism (многонишков паралелизъм, паралелизъм на ниво нишки)
- OCCAM ОККАМ (Език за паралелно програмиране, базиран на CSP)
- OSI Open Systems Interconnection (Теоретичен модел, описващ принципния начин на комуникация и строежа на компютърните мрежи)
 - OTP Once-Time Programmable Memory (Постоянна памет, ROM)
 - PHY Physical Layer (Физическото ниво от OSI модела)
- PRNG Pseudo-Random Number Generator (Генератор на псевдослучайни числа)
- RISC Reduced Instruction Set Computer (Компютър с опростена система инструкции)
- RNG Random Number Generator (Генератор на случайни числа)

- RRNG Real Random Number Generator (Генератор на действително-случайни последователности)
- SMT Simultaneous Multithreading (Едновременно многонишково изпълнение; общоприето название на апаратната технология, позволяваща едновременното изпълнение на няколко нишки; фирмата Intel използва обозначението Hyperthreading)
- SPI Serial Peripheral Interface Bus (Сериен периферен инртерфейс)
- SRAM Static Random-Access Memory (Статична памет с произволен достъп)
- STL Standard Template Library (Стандартна библиотека от шаблони на C++)
 - TLP Task Level Parallelism (Паралелизъм на ниво задачи)
- TRNG True Random Number Generator (Генератор на действително-случайни последователности)
- UVLSI Ultra Very Large Scale Integration (СГИС, Свръхголеми интегрални схеми)
 - USB Universal Serial Bus (Универсална серийна шина)
- VLIW Very Large Instruction Word (RISC архитектура с много голяма дължина на инструкцията; един от методите за явен ILP)
- VLSI Very Large Scale Integration (ГИС, Големи интегрални схеми)
- XC XMOS C (паралелна версия на езика C за архитектурата XS1 на фирмата XMOS, разширение на езика C с паралелни конструкции, повечето от които се поддържат директно на апаратно ниво)
- XCORE паралелно ядро от фамилията XS1 на фирмата XMOS с глобален структурен паралелизъм; физическа реализация на CSP-машина с апаратна поддръжка на паралелизма
- XCORE/XC паралелна платформа на фирмата XMOS, базирана на паралелната архитектура XCORE и на езика за паралелно програмиране XC
- XDE XMOS Development Environment (Название на развойната среда на фирмата XMOS до версия 11; от версия 12 е част от окрупнената развойна среда $xTIMEcomposer\ Studio$ на фирмата XMOS)
 - XOR Exclusive Or (Изключващо ИЛИ)
- XS1 Фамилия паралелна архитектура от типа XCORE на фирмата XMOS