Khôlles de Mathématiques - Semaine 10

Kylian Boyet, George Ober, Hugo Vangilluwen, Felix Rondeau 01 décembre 2024

1 Convergence d'une suite si ses sous-suites paires et impaires convergent

Démonstration. Soit $(a_n)_{n\in\mathbb{N}}$ telle que $(a_{2n})_{n\in\mathbb{N}}$ et $(a_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ . Montrons que a converge vers ℓ .

Soit $\varepsilon > 0$. On veut construire un $N \in \mathbb{N}$ tel que $\forall n \geq N, |a_n - \ell| \leq \varepsilon$.

Appliquons la définition de la limite de $(a_{2n})_{n\in\mathbb{N}}$ et $(a_{2n+1})_{n\in\mathbb{N}}$:

$$\exists N_1 \in \mathbb{N} : \forall n \geqslant N_1, |a_{2n} - \ell| \leqslant \varepsilon$$

$$\exists N_2 \in \mathbb{N} : \forall n \geqslant N_2, |a_{2n+1} - \ell| \leqslant \varepsilon$$

FIGURE 1 – Les termes pairs et impairs sont contenus dans un voisinnage de ℓ après certains rangs

Posons $N = \max(2N_1, 2N_2 + 1)$ et vérifions que ce rang convient. Soit $n \in \mathbb{N}$ tel que $n \ge N$.

 \star Si n est pair, $\exists p \in \mathbb{N} : n = 2p$

$$n \geqslant N \geqslant 2N_1 \implies 2p \geqslant 2N_1 \implies p \geqslant N_1$$

Donc d'après la définition de la convergence de $(a_{2n})_{n\in\mathbb{N}}$, on a

$$|a_{2n} - \ell| \leqslant \varepsilon \implies |a_n - \ell| \leqslant \varepsilon$$

* Si n est impair, $\exists p \in \mathbb{N} : n = 2p + 1$

$$n \geqslant N \geqslant 2N_2 + 1 + \implies 2p + 1 \geqslant 2N_2 + 1 \implies p \geqslant N_2$$

Donc d'après la définition de la convergence de $(a_{2n+1})_{n\in\mathbb{N}}$, on a

$$|a_{2p+1} - \ell| \leqslant \varepsilon \implies |a_n - \ell| \leqslant \varepsilon$$

Donc $|a_n - \ell| \leq \varepsilon$ Donc a tend vers ℓ .

Remarque: Si les deux suites ne convergent pas vers la même limite, comme pour $((-1)^n)_{n\in\mathbb{N}}$, la suite n'admet pas de limite.

2 Toute sous-suite d'une suite qui converge vers $\ell \in \mathbb{C}$ converge vers $\ell \in \mathbb{C}$

 $D\acute{e}monstration$. Soient u une suite complexe et v une sous-suite quelconque de u. Par définition d'une sous-suite,

$$\exists \varphi : \mathbb{N} \longrightarrow \mathbb{N} \text{ strictement croissante } : \forall n \in \mathbb{N}, v_n = u_{\varphi(n)}$$

Soit $\varepsilon \in \mathbb{R}_+^*$ fixé quelconque. Appliquons la définition de la convergence de u vers ℓ pour $\varepsilon \leftarrow \varepsilon > 0$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N} \implies |u_n - \ell| \leqslant \varepsilon$$

Fixons un tel N. Soit $n \in \mathbb{N}$ fixé quelconque tel que $n \geqslant N$. Alors

$$|v_n - \ell| = |u_{\varphi(n)} - \ell| \leqslant \varepsilon$$

car φ étant strictement croissante,

$$\varphi(n) \geqslant n \geqslant N$$

ce qui permet d'appliquer la définition précédente.

3 Théorème de Césarò

Soit $u \in \mathbb{R}^{\mathbb{N}}$ qui converge vers $\ell \in \mathbb{R}$.

Alors la moyenne arithmérique des $n \in \mathbb{N}$ premiers termes (appelée moyenne de Césarò) converge vers ℓ .

Démonstration. Soient u une telle suite, $\varepsilon \in \mathbb{R}_+^*$ et $\ell \in \mathbb{R}$ ladite limite de u. Appliquons la définition de la convergence de u pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N \implies |u_n - \ell| \leqslant \frac{\varepsilon}{2}.$$

Fixons un tel N. Posons

$$\omega = \sum_{k=0}^{N-1} |u_k - \ell| \in \mathbb{R}$$

Soit $n \in \mathbb{N}$ tel que $n \ge N$. Calculons :

$$\left|\frac{1}{n}\sum_{k=0}^{n-1}u_k-\ell\right|=\left|\frac{1}{n}\left(\sum_{k=0}^{n-1}u_k-n\ell\right)\right|=\left|\frac{1}{n}\sum_{k=0}^{n-1}(u_k-\ell)\right|\leqslant \frac{1}{n}\underbrace{\sum_{k=0}^{N-1}|u_k-\ell|}_{=\;\omega\in\mathbb{R}}+\underbrace{\frac{1}{n}\underbrace{\sum_{k=N}^{n}|u_k-\ell|}}_{\leqslant\;\frac{\varepsilon}{2}}\leqslant \frac{\omega}{n}+\underbrace{\frac{\varepsilon}{2n}}_{\leqslant\;\frac{\varepsilon}{2}}.$$

Ces majorations sont issues de l'inégalité triangulaire et de la convergence de u. De plus, comme la suite $(v_n)_{n\in\mathbb{N}} = \left(\frac{\omega}{n}\right)_{n\in\mathbb{N}}$ converge vers 0, on écrit sa définition pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N' \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N' \implies |v_n| \leqslant \frac{\varepsilon}{2}.$$

On fixe un tel N' et on pose $\Lambda = \max(N, N')$ qui a bien un sens car $\{N, N'\}$ est une partie finie de \mathbb{N} . De la même manière qu'auparavant, pour $n \in \mathbb{N}$ tel que $n \ge \Lambda$, on a :

$$\left| \frac{1}{n} \sum_{k=0}^{n-1} u_k - \ell \right| \leqslant \underbrace{\frac{\omega}{n}}_{\leqslant \frac{\varepsilon}{2}} + \frac{\varepsilon}{2} \leqslant \varepsilon.$$

C'est le théorème souhaité.

4 Théorème de la convergence monotone

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite monotone :

- 1. Si u est croissante
 - (i) Soit u est majorée, et dans ce cas, $\lim u = \sup\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $+\infty$.
- 2. Si u est décroissante :
 - (i) Soit u est minorée, et dans ce cas, $\lim u = \inf\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $-\infty$.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ monotone fq.

- 1. Supposons que u est croissante.
 - (i) Supposons que u est majorée.

Alors
$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, u_n \leq M$$
. Fixons un tel M.

$$\Omega = \{u_k | k \in \mathbb{N}\} \text{ est}$$

- une partie de $\mathbb R$
- non vide car u_0 y appartient
- majorée par M

donc elle admet un borne supérieure et notons-la σ .

Soit
$$\epsilon \in \mathbb{R}_+^*$$
 fq.

 $\sigma - \epsilon < \sigma \text{ donc } \sigma - \epsilon \text{ ne majore pas } \Omega. \text{ Donc } \exists N \in \mathbb{N} : u_N > \sigma - \epsilon. \text{ Fixons un tel N.}$

Soit
$$n \in \mathbb{N}$$
 fq tq $n \geqslant N$.

Alors
$$u_n \geqslant u_N \geqslant \sigma - \epsilon$$
 et $u_n \leqslant \sigma$.

par définition de σ

Ainsi,

$$\sigma - \epsilon \leqslant u_n \leqslant \sigma \implies -\epsilon \leqslant u_n - \sigma \leqslant 0$$
$$\implies |u_n - \sigma| \leqslant \epsilon$$

Donc
$$u_n \xrightarrow[n \to +\infty]{} \sigma$$
.

(ii) Supposons que u n'est pas bornée.

Soit
$$A \in \mathbb{R}$$
 fq.

$$u$$
 n'est pas bornée donc $\exists N \in \mathbb{N} : u_N > A$.

Or
$$u$$
 est croissante donc $\forall n \in \mathbb{N}, n \geqslant N \implies u_n \geqslant A$.

Donc
$$u_n \xrightarrow[n \to +\infty]{} +\infty$$
.

2. Supposons que u est décroissante.

Il suffit dans la preuve ci-dessus de remplacer les inégalités inférieures par des inégalités supérieures et inversement et d'utiliser la notion de borne inférieure plutôt que de borne supérieure.

- (i) Si u est minorée, $u_n \xrightarrow[n \to +\infty]{} \inf\{u_k | k \in \mathbb{N}\}.$
- (ii) Si u n'est pas bornée, $u_n \xrightarrow[n \to +\infty]{} -\infty$.

5 Théorème de passage à la limite dans une inégalité.

Soient $(u, v) \in \mathbb{R}^{\mathbb{N}}$:

(*i*) Si

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies u_n \geqslant 0 \quad \text{et} \quad u \text{ converge}$$

Alors $\lim u \geqslant 0$

(ii) Si

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies u_n \leqslant v_n \quad \text{et} \quad u \text{ et } v \text{ convergent}$$

3

Alors $\lim u \leq \lim v$

Démonstration.

(i) L'hypothèse $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies u_n \geqslant 0$ permet d'affirmer que u et |u| coïncident à partir d'un certain rang.

Par ailleurs, la convergence de u et la continuité de $|\cdot|$ sur $\mathbb R$ donc en $\lim u$ donnent |u| converge vers $|\lim u|$.

Le caractère asymptotique de la limite permet de conclure que u et |u| ont la même limite. Donc $\lim u = |\lim u| \geqslant 0$.

(ii) $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies u_n \leqslant v_n \implies v_n - u_n \geqslant 0$ $u \text{ et } v \text{ convergent } \implies v - u \text{ converge vers } \lim v - \lim u.$

On applique (i) pour $u \leftarrow v - u$, autorisé car u et v convergent.

On obtient $\lim v - \lim u \ge 0$ d'où $\lim u \le \lim v$.

6 Théorème d'existence de la limite par encadrement

Démonstration.

Résultat préliminaire : théorème « sans nom ».

Théorème : Soient $u \in \mathbb{K}^{\mathbb{N}}, \ell \in \mathbb{K}$ et $(\varepsilon_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$. Si

$$\begin{cases} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies |u_n - \ell| \leqslant \varepsilon_n \\ \lim \varepsilon = 0 \end{cases}$$

alors la suite u converge vers ℓ .

 $D\acute{e}monstration:$ Soit $\delta \in \mathbb{R}^*_{\perp}$ fixé quelconque.

Appliquons la définition de la convergence de (ε_n) vers 0 pour $\varepsilon \leftarrow \delta > 0$:

$$\exists N_0 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_0 \implies |\varepsilon_n - 0| \leqslant \delta$$

Fixons un tel N_0 . Soit N tel que

$$\forall n \in \mathbb{N}, k \geqslant N \implies |u_n - \ell| \leqslant \varepsilon$$

Posons $N_1 = \max\{N_0, N\}$. Soit $n \in \mathbb{N}$ fixé quelconque tel que $n \geqslant N_1$. alors

$$|u_n - \ell| \leqslant \varepsilon_n \leqslant |\varepsilon_n| \leqslant \delta$$

ce qui conclut la preuve.

Théorème d'existence de la limite par encadrement Soient $(u, v, w) \in \mathbb{R}^{\mathbb{N}^3}$ trois suites. Supposons

$$\begin{cases} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \implies u_n \leqslant v_n \leqslant w_n \\ u \text{ et } w \text{ convergent vers } u_\infty \text{ et } w_\infty \\ u_\infty = w_\infty \end{cases}$$

En retranchant u_n ,

$$\forall n \in \mathbb{N}, 0 \leqslant v_n - u_n \leqslant w_n - u_n$$

donc

$$|v_n - u_n| \leqslant w_n - u_n$$

et de plus, w et u convergent vers $\ell-\ell=0$ si bien que le théorème sans nom s'applique pour $a\leftarrow v-u, \ \ell\leftarrow 0$ et $b\leftarrow w-u$ et établit la convergence de v-u vers 0. Ainsi, comme u converge vers ℓ , la combinaison linéaire de suites convergentes v-u+u converge vers $0+\ell=\ell$, si bien que la suite v converge vers ℓ .

7 Théorème des suites adjacentes

Soient u et v deux suites réelles adjacentes. Alors u et v convergent et ont la même limite.

 $D\acute{e}monstration$. Soient u et v de telles suites. Quitte à inverser les rôles desdites suites, prenons ucroissante et v décroissante.

On a donc:

$$\forall n \in \mathbb{N}, \ (u_n \leqslant v_n \leqslant \underbrace{v_0}_{\in \mathbb{R}}) \land (\underbrace{u_0}_{\in \mathbb{R}} \leqslant u_n \leqslant v_n),$$

car la monotonie des suites induit ces inégalités. D'après le théorème de limite monotone, u étant croissante et majorée elle converge, v étant décroissante et minorée elle converge. Il s'en suit que par définition des suites adjacentes :

$$0 = \lim_{n \to +\infty} (u_n - v_n) = \lim_{u,v \text{ convergent}} \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n.$$

Ainsi, $\lim u = \lim v$.

8 Facultative Théorème de Bolzano-Weierstrass

Toute suite bornée réelle admet une sous-suite convergente.

L'ensemble des valeurs d'adhérence d'une suite réelle bornée est non vide.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ fixée quelconque bornée.

Alors $\exists M \in \mathbb{R}_+ : \forall n \in \mathbb{N}, |u_n| \leq M$.

Construisons une suite de segments dans [-M; M] de plus en plus petits par dichotomie. Posons $a_0 = -M$, $b_0 = M$ et définissons les suites c et I pour tout n dans \mathbb{N} par $c_n = \frac{a_n + b_n}{2}$ et $I_n = [a_n; b_n].$

Soit $n \in \mathbb{N}$ fq. Supposons a_n et b_n construits et $\{k \in \mathbb{N} \mid u_k \in I_n\}$ infini. Construisons les termes

d'indices
$$n+1$$
.
Posons $\begin{vmatrix} I_n^- &= \{k \in \mathbb{N} \mid u_k \in [a_n; c_n]\} \\ I_n^+ &= \{k \in \mathbb{N} \mid u_k \in [c_n; b_n]\} \end{vmatrix}$
Nous avons $I_n^- \cup I_n^+ = \{k \in \mathbb{N} \mid u_k \in I_n\}$ donc I_n^- ou I_n^+ est infini.

- Si I_n^- est infini, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \end{vmatrix}$ Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^-$ est infini.
- Si I_n^+ est infini, posons $\begin{vmatrix} a_{n+1} &= c_n \\ b_{n+1} &= b_n \end{vmatrix}$ Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^+$ est infini.

Étudions la suite $(I_n)_{n\in\mathbb{N}}$.

- Nous avons toujours $a_n \leq b_n$ donc $\forall n \in \mathbb{N}, I_n \neq \emptyset$
- Par construction, $\forall n \in \mathbb{N}, I_{n+1} \subset I_n$
- $|I_{n+1}|=|a_{n+1}-b_{n+1}|=\frac{1}{2}|a_n-b_n|=\frac{1}{2}|I_n|$ donc la suite des cardinaux est une suite géométrique de raison $^1\!/_2$. Donc $|I_n|\xrightarrow[n\to+\infty]{}0$.

Donc, d'après le théorème des segments emboîtés, $\exists ! l\ell \in \mathbb{R} : \bigcap_{n \in \mathbb{N}} I_n = \{\ell\}$. Fixons un tel ℓ .

Construisons maintenant une extractrice φ de u.

Posons $\varphi(n) = 0$.

Soit $n \in \mathbb{N}$ fq. Supposons $\varphi(n)$ construite.

$$\varphi(n+1) = \min\{k \in \mathbb{N} | u_k \in I_{n+1} \land k > \varphi(n)\}\$$

 $\varphi(n+1)$ est bien définie car $\{k \in \mathbb{N} | u_k \in I_{n+1}\}$ est une partie de \mathbb{N} non bornée (car infinie).

Ainsi, nous avons construit $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante. Nous pouvons extraire une sous-suite de u. Or $\forall n \in \mathbb{N}, u_{\varphi(n)} \in I_n$ donc

$$\forall n \in \mathbb{N}, \quad \underbrace{a_n}_{n \to +\infty} \ell \leqslant u_{\varphi(n)} \leqslant \underbrace{b_n}_{n \to +\infty} \ell$$

Donc, d'après le théorème d'existence de limite par encadrement, $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$. Ainsi $\ell \in L_u$.

9 Facultative Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.

Soit u une suite bornée. u converge si et seulement si il existe $\ell \in \mathbb{K}$ tel que L(u) est le singleton ℓ

 $D\acute{e}monstration$. Traitons le cas réel, celui sur \mathbb{C} est à adapter sans peine.

Supposons que u converge et posons $\lim u = \ell \in \mathbb{R}$. Toutes les sous-suites de u convergent vers ℓ donc $L(u) = {\ell}$.

Supposons maintenant qu'il existe un unique $\ell \in \mathbb{R}$ tel que $L(u) = \{\ell\}$. Par l'absurde, supposons que u ne converge pas vers ℓ , c'est-à-dire :

$$\exists \varepsilon \in \mathbb{R}_+^* : \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N} : n \geqslant N \text{ et } |u_n - \ell| > \varepsilon.$$

Fixons un tel ε .

Posons $\varphi(0) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon\}$, ce qui a du sens car c'est une partie non-vide de \mathbb{N} . Posons ensuite $\varphi(1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(0) < k\}$, ce qui a du sens pour les mêmes raisons. On construit en itérant ce procédé $\varphi(n)$ tel que :

$$\forall n \in \mathbb{N}, \ \varphi(n+1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(n) < k\}.$$

De cette manière, nous venons de construire une extractrice telle que :

$$\forall n \in \mathbb{N}, \ |u_{\varphi(n)} - \ell| > \varepsilon.$$

Par hypothèse u est bornée, donc il existe $M \in \mathbb{R}_+$ tel que :

$$\forall n \in \mathbb{N}, |u_n| \leqslant M,$$

donc pour tout n dans $\mathbb{N},\, |u_{\varphi(n)}|\leqslant M,$ donc $(u_{\varphi(n)})_{n\in\mathbb{N}}$ est bornée.

Par le théorème de Bolzano-Weierstrass, il existe ψ une extractrice et $\ell' \in \mathbb{R}$, avec $\varphi \circ \psi$ qui est aussi une extractrice par composition d'applications strictement croissantes, donc $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de u et $\ell' \in L(u) = \{\ell\}$.

Par ailleurs, pour tout n dans \mathbb{N} :

$$\underbrace{|u_{\varphi \circ \psi(n)} - \ell|}_{n \to +\infty} > \varepsilon,$$

donc en passant à la limite dans l'inégalité on a pour tout n dans \mathbb{N} , $|\ell' - \ell| \ge \varepsilon > 0$, ce qui n'est pas possible car ℓ est la seule valeur d'adhérence possible et ici la différence n'est pas nulle.

10 [Non demandée] Caractérisation de la densité d'une partie A de $\mathbb R$ dans une partie B de $\mathbb R$ la contenant avec des ε .

Soient $(A, B) \in \mathcal{P}(\mathbb{R})^2$ fq. Définition de la densité

$$A \text{ est dense dans } B \text{ si } \begin{cases} A \subset B \\ \text{et} \\ \forall (u, v) \in \mathbb{R}^2, B \cap]u; v[\neq \emptyset \implies A \cap]u; v[\neq \emptyset \end{cases}$$
 (1)

Caractérisation de la densité par les ε

$$A \text{ est dense dans } B \iff \begin{cases} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b - a| < \varepsilon \end{cases}$$
 (2)

Démonstration. Montrons la caractérisation de la densité Sens Direct Supposons A dense dans B

- Par déf $A\subset B$
- Soit $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fq

Appliquons le (ii) de la déf de Densité pour $u \leftarrow b - \varepsilon$ et $v \leftarrow b + \varepsilon$

$$B\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset\implies A\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset$$

Or, $B\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset$ est vraie donc $A\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset$

Ce qui permet de choisir $a \in A \cap]b - \varepsilon, b + \varepsilon[$. Un tel a vérifie $a \in A$ et $a \in]b - \varepsilon, b + \varepsilon[\iff |b - a| < \varepsilon$

 $\begin{array}{l} \textit{Sens r\'eciproque} \; \text{Supposons} \; \left\{ \begin{array}{l} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon \end{array} \right. \end{array}$

- On a donc $A\subset B$
- Soient $(u, v) \in \mathbb{R}^2$ fq tq $B \cap]u, v \neq \emptyset$

Soit $b \in B \cap]u,v[$ fq. Appliquons l'hypothèse pour $b \leftarrow b$ et $\varepsilon \leftarrow \min\{v-b,b-u\}$, qui est autorisé v-b et b-u sont positifs

Donc $\exists a \in A : |b - a| < \varepsilon$

Fixons un tel a, alors:

$$b - \varepsilon < a < b + \varepsilon$$

Donc

$$\left\{ \begin{array}{l} a < b + \varepsilon = b + \underbrace{\min\{v - b, b - u\}}_{\leqslant v - b} \leqslant b + v - b = v \\ \\ \text{et} \\ a > b - \varepsilon = b - \underbrace{\min\{v - b, b - u\}}_{\leqslant b - u} \geqslant b - (b - u) = u \end{array} \right.$$

Donc $a \in]u, v[$.

Donc $A \cap]u, v \neq \emptyset$

11 [Non demandée] Théorème de la division pseudo-euclidienne dans \mathbb{R}

$$\forall (a,b) \in \mathbb{R} \times \mathbb{R}^*, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{R} : \begin{cases} a = bq + r \\ r \in [0; |b|] \end{cases}$$
 (3)

Démonstration. Unicité Soient deux tels entiers $(a,b) \in \mathbb{R}^2$ et deux couples $((q,r),(q',r')) \in (\mathbb{Z} \times \mathbb{R})^2$ tels que

$$\begin{cases} a = bq + r \\ r \in [0; |b|[\end{cases} \qquad \begin{cases} a = bq' + r' \\ r' \in [0; |b|[$$

Directement,

$$b(q - q') = r' - r,$$

mais comme -|b| < r' - r < |b|, il vient en divisant par |b| l'inégalité précédente :

$$-1 < q - q' < 1$$
,

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Existence Posons pour b > 0, $\Omega = \{k \in \mathbb{Z} \mid kb \leq a\}$

- $-\Omega \subset \mathbb{Z}$
- non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit ...)
- Ω est majoré par |a| car supposons, par l'absurde, que $\exists k \in \Omega : k > |a|$, alors kb > |a|b > a ce qui contradiction avec la définition d' Ω .

Donc Ω admet un plus grand élément, notons-le q.

Posons r = a - bq. Par construction, a = bq + r et comme $q = \max \Omega$ et $r \in \mathbb{R}$.

Par suite, $q \in \Omega$ donc $bq \leqslant a$ d'où $0 \leqslant r$. Et $q = \max \Omega$ donc b(q+1) > a d'où b > r, c'est-à-dire, $r \in [0, |b|]$.

Si b<0, il suffit de prendre $q\leftarrow -q$ dans la preuve précédente. C'est donc l'existence de la
dite écriture de a.

12 [Non demandée] $\mathbb Q$ est dense dans $\mathbb R$ et $\mathbb R\setminus\mathbb Q$ est aussi dense dans $\mathbb R$

Démonstration. Soit $x \in \mathbb{R}$ fq. Posons $\forall n \in \mathbb{N}, a_n = \frac{\lfloor 2^n x \rfloor}{2^n}$. Soit $n \in \mathbb{N}$ fq.

 $-a_n \in \mathbb{Q} \text{ car } [2^n x] \in \mathbb{Z} \text{ et } 2^n \in \mathbb{N}.$

$$a_n = \frac{\lfloor 2^n x \rfloor}{2^n} \implies \frac{2^n x - 1}{2^n} \leqslant a_n \leqslant \frac{2^n x}{2^n} \implies x - \frac{1}{2^n} \leqslant a_n \leqslant x$$

Or $1/2^n \xrightarrow[n \to +\infty]{n \to +\infty} 0$ donc d'après le théorème d'existence de limite par encadrement, $a_n \xrightarrow[n \to +\infty]{n \to +\infty} x$.

Donc d'après la caractérisation séquentielle de la densité, $\mathbb Q$ est dense dans $\mathbb R$.

Soit $x \in \mathbb{R}$ fa.

Alors $x + \sqrt{2} \in \mathbb{R}$. D'après la démonstration précédente, $\exists b \in \mathbb{Q}^{\mathbb{N}} : b_n \xrightarrow[n \to +\infty]{} x + \sqrt{2}$.

Fixons un telle suite b. Considérons $c = b - \sqrt{2}$.

Soit $n \in \mathbb{N}$ fq.

 $-c_n \in \mathbb{R} \setminus \mathbb{Q} \text{ car } b_n \in \mathbb{Q} \text{ et } \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$

$$\begin{cases} b_n & \xrightarrow{n \to +\infty} x + \sqrt{2} \\ c_n & = b_n - \sqrt{2} \end{cases} \implies c_n \xrightarrow[n \to +\infty]{} x$$

П

Donc d'après la caractérisation séquentielle de la densité, $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

13 [Non demandée] Preuve de l'unicité de la limite d'une suite convergente

Soit $u \in \mathbb{K}^{\mathbb{N}}$, $(\ell_1, \ell_2) \in \mathbb{K}^2$ Si u converge vers ℓ_1 et ℓ_2 , alors $\ell_1 = \ell_2$

Démonstration. Par l'absurde, supponsons que u converge vers ℓ_1 et ℓ_2 , et $\ell_1 \neq \ell_2$. On prendra $\varepsilon_0 = \varepsilon_1 = \varepsilon_2$ assez petit pour que les tubes soient disjoints. Posons donc $\varepsilon_0 = \frac{|\ell_1 - \ell_2|}{3}$

— Appliquons la définition de la convergence de u vers ℓ_1 , pour $\varepsilon \leftarrow \varepsilon_0$, ce qui est autorisé car $\varepsilon_0 \in \mathbb{R}_+^*$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell_1| \leqslant \varepsilon_0 \tag{4}$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_2 \implies |u_n - \ell_2| \leqslant \varepsilon_0 \tag{5}$$

Fixons de tels N_1 et N_2 .

- Posons $n_0 = N_1 + N_2$
 - $n_0 \geqslant N_1$, donc (??) s'applique : $|u_{n_0} \ell_1| \leqslant \varepsilon_0$
 - $n_0 \geqslant N_2$, donc (??) s'applique : $|u_{n_0} \ell_2| \leqslant \varepsilon_0$

 $\begin{aligned} |\ell_1 - \ell_2| &= |\ell_1 - u_{n_0} + u_{n_0} - \ell_2| \\ &\leqslant \underbrace{|\ell_1 - u_{n_0}|}_{\leqslant \varepsilon_0} + \underbrace{|u_{n_0} - \ell_2|}_{\leqslant \varepsilon_0} \\ &\leqslant 2\frac{|\ell_1 - \ell_2|}{3} \\ \Longrightarrow 1 \leqslant \frac{2}{3} \end{aligned}$

Contradiction

14 [Non demandée] Description d'un segment de la droite réelle par les barycentres à coefficients positifs.

Soient $(x,y) \in \mathbb{R}^2$ tels que $x \leq y$.

$$[x, y] = \{z \in \mathbb{R} \mid x \le z \le y\} = \{tx + (1 - t)y \mid t \in [0, 1]\}$$

Démonstration. Le résultat est immédiat pour x = y: $\forall t \in [0, 1], xt + (1 - t)x = xt - xt + x = x = y$ Supposons que x < y. On procède par double inclusion.

* Soit $z \in \{xt + (1-t)y \mid t \in [0,1]\}$. $\exists t \in [0,1] : z = xt + (1-t)y$ Puisque $t \in [0,1], t \ge 0$ et $1-t \ge 0$. Donc

$$x < y \implies x \leqslant y \underset{t \geqslant 0}{\Longrightarrow} \begin{cases} tx \leqslant ty \\ (1-t)x \leqslant (1-t)y \end{cases}$$

$$\implies \begin{cases} tx + (1-t)y \leqslant ty + (1-t)y \\ tx + (1-t)x \leqslant tx + (1-t)y \end{cases}$$

$$\implies \begin{cases} z \leqslant y \\ x \leqslant z \end{cases}$$

$$\implies z \in [x, y]$$

* Réciproquement, soit $z \in [x, y]$. Cherchons le $t \in [0, 1]$ tel que tx + (1 - t)y = z.

$$tx + (1-t)y = z \iff t(x-y) = z - y \iff t = \frac{z-y}{x-y} = \frac{y-z}{y-x} \text{ (autoris\'e car } x < y \implies x-y \neq 0)$$

Vérifions si ce t convient : posons $t = \frac{y-z}{y-x}$.

• Vérifions d'abord que $t \in [0, 1]$

$$x\leqslant z\leqslant y\implies x-y\leqslant z-y\leqslant 0\implies y-x\geqslant y-z\geqslant 0\implies 1\geqslant \frac{y-z}{y-x}\geqslant 0\implies 0\leqslant t\leqslant 1$$

• Calculons

$$tx + (1 - t)y = \frac{y - z}{y - x}x + \left(1 - \frac{y - z}{y - x}\right)y = \frac{y - z}{y - x}x + \frac{z - x}{y - x}y = \frac{yx - zx + zy - xy}{y - x} = z$$

Donc ce t convient.

Donc $z \in \{xt + (1-t)y \mid t \in [0,1]\}.$

Donc
$$\{xt + (1-t)y \mid t \in [0,1]\} = [x,y].$$

15 [Non demandée] Une suite convergente est bornée

Démonstration. Soit $u \in \mathbb{K}^{\mathbb{N}}$ convergente. Posons $\ell = \lim u$ Appliquons la définition de la convergence pour $\varepsilon \leftarrow 1$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell| \leqslant 1$$

Fixons un tel N_1 Posons alors $M = \max\{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell| + 1\}$, qui est bien défini, car toute partie finie, non vide d'un ensemble totalement ordonné (ici (\mathbb{R}, \leq)) admet un pgE. Soit $n \in \mathbb{N}$ fq.

- Si $n \in [[0, N_1]], |u_n| \in \{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell| + 1\} \text{ donc } |u_n| \leq M$
- Sinon,

$$n > N_1 \implies |u_n - \ell| \le 1$$

$$\implies |u_n| - |\ell| \le 1$$

$$\implies |u_n| \le 1 + |\ell| \le M$$

Ainsi, $\forall n \in \mathbb{N}, |u_n| \leqslant M$.

16 [Non demandée] Caractérisation séquentielle de la borne supérieure

Soit $A \in \mathcal{P}(\mathbb{R})$ non vide et majorée. Soit $\sigma \in \mathbb{R}$

$$\sigma = \sup A \iff \begin{cases} \sigma \in M(A) \\ \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} : \lim_{n \to +\infty} a_n = \sigma \end{cases}$$

Démonstration. \star Supposons que $\sigma = \sup A$.

- Par définition d'une borne sup, $\sigma \in M(A)$.
- Soit $n \in \mathbb{N}$. Appliquons la caractérisation de la borne sup par les epsilon pour $\varepsilon \leftarrow \frac{1}{2^n}$. $\exists c \in A : \sigma \frac{1}{2^n} < c \leqslant \sigma$. Fixons un tel c et notons le a_n . En relâchant le caractère fixé de n, on a crée la suite $(a_n)_{n \in \mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \sigma - \frac{1}{2^n} < a_n \leqslant \sigma$$

Cette suite converge vers σ par encadrement.

- * Réciproquement, supposons que $\sigma \in M(A)$ et qu'il existe une suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A qui converge vers σ . Montrons que $\sigma = \sup A$ d'après la caractérisation par les ε .
 - $\sigma \in M(A)$

• Soit $\varepsilon > 0$. Appliquons la définition de la convergence de a pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$

$$\exists N \in \mathbb{N} : \forall n \geqslant N, |a_n - \sigma| \leqslant \frac{\varepsilon}{2} \implies \sigma - \frac{\varepsilon}{2} \leqslant a_n$$

En particulier $a_N \in A$ vérifie

$$\sigma - \varepsilon < \sigma - \frac{\varepsilon}{2} \leqslant a_N \underbrace{\leqslant}_{\sigma \in M(A)} \sigma$$

Ce qui permet de conclure. Donc $\sigma = \sup A$.

[Non demandée] Caractérisation séquentielle de la den-17 sité.

Soient $(A, B) \in (\mathcal{P}(\mathbb{R}) \setminus \{\emptyset\})^2$. Montrons que :

$$A \text{ est dense dans } B \iff \left\{ \begin{array}{l} A \subset B \\ \forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n) \text{ converge vers } b \end{array} \right.$$

Démonstration. Sens indirect : supposons $A \subset B$ et $\forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n)$ converge vers b :

- $\star~A\subset B$ par hypothèse.
- \star Montrons que $\forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon$ (on utilise la caractérisation de la densité

Soient $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fixés quelconques :

Par hypothèse appliquée pour $b \leftarrow b : \exists (a_n) \in A^{\mathbb{N}} : a_n \xrightarrow[n \to +\infty]{} b$

Appliquons la définition de la convergence de (a_n) vers b pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow |a_n - b| \leqslant \frac{\varepsilon}{2}$$

Fixons un tel N:

En particulier, $a_N \in A$ et $|a_N - b| \leqslant \frac{\varepsilon}{2} \leqslant \varepsilon$

Donc A est dense dans B.

Sens direct : supposons A dense dans B :

- \star Par définition, $A \subset B$
- \star Soit $b \in B$ fixé quelconque.

Soit $n \in \mathbb{N}$ fixé quelconque :

Appliquons la caractérisation de la densité par les ε pour $\varepsilon \leftarrow \frac{1}{2^n}$ (autorisé car $\frac{1}{2^n} > 0$), et $b \leftarrow b$:

$$\exists a \in A : |a - b| \leqslant \frac{1}{2^n}$$

Notons a_n un tel élément. Nous venons de construire $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ vérifiant :

 $\forall n \in \mathbb{N}, |a_n - b| \leqslant \frac{1}{2^n}$ Or: $\lim_{n \to +\infty} \frac{1}{2^n} = 0$

Ainsi, d'après le théorème sans nom, $(a_n)_{n\in\mathbb{N}}$ converge vers b.