5

10

15

## 

## PROCESS FOR DESIGNING AN OPTIMAL VIBRATION ISOLATION MOUNT FOR A DISC DRIVE

## ABSTRACT OF THE DISCLOSURE

An optimal vibration mount for a disc drive is designed by computing external,  $\Xi$ , and internal,  $\Theta$ , disturbance models for the disc drive and defining an inertia matrix, M, for the disc drive. A state estimator, such as a Kalman filter, is defined based on the inertia matrix and external and internal disturbance models, and a covariance matrix,  $\Sigma$ , is derived based on the filter algebraic Riccati equation. The state estimator gain, H, is calculated from  $\Sigma(I \ 0)'\Theta^{-1}$ , and the optimal mount damping, B, and stiffness, K, parameters are derived from the state estimator gain and inertia matrix,  $H = \begin{pmatrix} M^{-1}B \\ M^{-1}K \end{pmatrix}$ .