Experimental Problem 1 -- Solutions

Method #1

$$Q = mc\Delta T = m \int c \, dT$$
$$Q = L \, \Delta M_{\text{LN}_2}$$

 $m = 19.4 \pm 0.1 \text{ g}$

	total mass	clock time	time
	153 g	0:00.0	0
	152	0:36.8	36.8
	151	1:19.1	79.1
	150	2:00.7	120.7
	149	2:40.5	160.5
	148	3.23.1	203.1
Add Al mass			
	150 (130.6)	5:31.8	331.8
	149 (129.6)	6:21.6	381.6
	148 (128.6)	7:17.3	457.3
	147 (127.6)	8:08.6	488.6
	146 (126.6)	9:00.9	540.9
	145 (125.6)	9:54.6	594.6

 $\Delta M_{\rm LN_2} = 146.5 - 132.0$ = 14.5 ± 0.3 g

Method #1 (cont'd)

$$\int_{77}^{293} c \, dT \approx (0.3)(293 - 77) + (173)(0.5)$$

$$\approx 64.8 + 86.5 = 151 \pm 2 \, \text{J/g}$$

$$Q = \int m \, c \, dT = (19.4 \pm 0.1 \, \text{g})(151 \pm 2 \, \text{J/g})$$

$$= 2930 \pm 42 \, \text{J}.$$

$$L = \frac{Q}{\Delta M_{\rm LN2}} = \frac{2930 \pm 42 \,\text{J}}{14.5 \pm 0.3 \,\text{g}} = 202 \pm 5 \,\text{J/g}$$

Method #2

$$P = IV = V^2/R = I^2R$$

$$P = \Delta Q/\Delta t$$

$$Q = M_{LN_2}L$$

$$R = 23.0 \Omega \text{ (in LN}_2)$$

$$V = 12.7 \text{ V}$$

$$I = 0.56 \text{ A}$$

$$S_{P\neq0}$$
 = -0.054 ± 0.001 g/s
 $\langle S_{P=0} \rangle$ = -0.020 ± 0.001 g/s

Power =
$$P = \left| \frac{Q}{\Delta t} \right| = L \left| \frac{\Delta M_{\text{LN2}}}{\Delta t} \right|$$

 $P = IV = 7.11 \text{ W}$
 $P = I^2R = 7.21 \text{ W}$
 $P = V^2/R = 7.01 \text{ W}$

$$|\Delta M_{\rm LN_2}/\Delta t| = 0.054 - 0.020 = 0.034 \pm 0.0014 \, \text{J/s}$$

$$L = \frac{P}{\Delta M_{\rm LN2}/\Delta t} = \frac{7.1 \pm 0.1}{0.034 \pm 0.0014} = 209 \pm 9 \,\text{J/g}$$

Experimental Problem 1: Grading Scheme

Method No. 1 (5 points maximum)

- 1) 0.5 Uses $Q = mc\Delta T$ or $Q = m \int c dT$
- 2) 0.5. Uses $Q = L\Delta M_{LN_2}$
- 3) 0.5 Measures mass of aluminum correctly
- 4) 0.5 Measures ΔM_{LN_2} in some way
- 5) 0.5 Takes into account "thermal leakage" in some way and corrects for aluminum added to container
- 6) 0.5 Takes into account "thermal leakage" not being constant in time
- 7) 0.5 Uses reasonable values for c and ΔT or does $\int c \, dT$ integral in a reasonable way
- 8) 0.5 No mistakes made in computing L
- 9) 0.5 Error estimate is reasonable for methods used
- 10) 0.5 Value for L is within bounds set by grading team using good procedures

Method No. 2 (5 points maximum)

- 1) 0.5 Uses $P = \Delta Q/\Delta t$
- 2) 0.5 Uses $P = IV = I^2R = V^2/R$
- 3) 0.5 Uses $Q = LM_{LN_2}$
- 4) 0.5 Measures two parameters (to get P) correctly
- 5) 0.5 Measures M_{LN_2} in some way
- 6) 0.5 Takes into account "thermal leakage" in some way
- 7) 0.5 Takes into account "thermal leakage" not being constant in time
- 8) 0.5 No mistakes made in computing L
- 9) 0.5 Error estimate is reasonable for methods used
- 10) 0.5 Value for L is within bounds set by grading team using good procedures