Homework 1

Max marks: 80

Due on September 10, 2021, before class.

Problem 1 Use algebraic manipulation to find the minimum sum-of-products expression for the function $f = x_1x_3 + x_1\bar{x}_2 + \bar{x}_1x_2x_3 + \bar{x}_1\bar{x}_2\bar{x}_3$. [1, Prob 2.12][10 marks]

Solution

$$f = x_1 x_3 + x_1 \bar{x}_2 + \bar{x}_1 x_2 x_3 + \bar{x}_1 \bar{x}_2 \bar{x}_3 \qquad (1)$$

To find the minimum sum-of-products expression, we will fill the K-map step by step. f has 4 terms. We will fill K-map for each term separately and then join them together to get the full K-map.

- 1. K-map for the $_{\rm term}$ x_1x_3 is, \bar{x}_1 x_1 \bar{x}_2 x_2 \bar{x}_3 0 $0 \mid 0$ 0 | 1 x_3
- 2. <u>K-map</u> for the term $x_1\bar{x}_2$ is: $\frac{\begin{vmatrix} \bar{x}_1 & | & x_1 \\ & \bar{x}_2 & | & x_2 & | & \bar{x}_2 \end{vmatrix}}{\bar{x}_3 & | & 0 & | & 0 & | & 0 & | & 1}$ $x_3 & | & 0 & | & 0 & | & 0 & | & 1$
- 4. K-map for the term $\bar{x}_1\bar{x}_2\bar{x}_3$ is:

Taking OR of the four K-maps, we get the K-map for $f = x_1x_3 + x_1\bar{x}_2 + \bar{x}_1x_2x_3 + \bar{x}_1\bar{x}_2\bar{x}_3$:

This K-map can be decomposed into the sum of three K-maps with two minterms each:

which corresponds to the expression, x_2x_3 .

which corresponds to the expression, $x_1\bar{x}_2$.

which corresponds to the expression, $\bar{x}_2\bar{x}_3$.

Taking the OR of previous 3 K-maps, we get the minimum SOP expression for $\,$

$$f = x_2 x_3 + x_1 \bar{x}_2 + \bar{x}_2 \bar{x}_3 \tag{2}$$

However, this problem specifically asks for finding the minimal sum-of-products expression using algebraic manipulation.

From the K-map solution, we note that the first expression x_2x_3 in (2) corresponds to the region in K-map that comes from x_1x_3 and $\bar{x}_1x_2x_3$ in (1). This means we should be able to write x_2x_3 from $x_1x_3 + \bar{x}_1x_2x_3$.

$$x_{1}x_{3} + \bar{x}_{1}x_{2}x_{3}$$

$$= x_{1} \cdot 1 \cdot x_{3} + \bar{x}_{1}x_{2}x_{3} \qquad \because 1 \cdot z = z$$

$$= x_{1}(x_{2} + \bar{x}_{2})x_{3} + \bar{x}_{1}x_{2}x_{3} \qquad \because 1 = z + \bar{z}$$

$$= x_{1}x_{2}x_{3} + x_{1}\bar{x}_{2}x_{3} + \bar{x}_{1}x_{2}x_{3} \qquad \text{dist. prop.}$$

$$= (x_{1} + \bar{x}_{1})x_{2}x_{3} + x_{1}\bar{x}_{2}x_{3} \qquad \text{dist. prop.}$$

$$= x_{2}x_{3} + x_{1}\bar{x}_{2}x_{3} \qquad \because z + \bar{z} = 1$$

$$(3)$$

From the K-map solution, we also note that second term $x_1\bar{x}_2$ need not change. Although it can be combined with $\bar{x}_1\bar{x}_2\bar{x}_3$ to get the third term $\bar{x}_2\bar{x}_3$ of the (2).

$$x_{1}\bar{x}_{2} + \bar{x}_{1}\bar{x}_{2}\bar{x}_{3}$$

$$= x_{1}\bar{x}_{2}(1 + \bar{x}_{3}) + \bar{x}_{1}\bar{x}_{2}\bar{x}_{3} \qquad \because 1 + z = 1$$

$$= x_{1}\bar{x}_{2} + x_{1}\bar{x}_{2}\bar{x}_{3} + \bar{x}_{1}\bar{x}_{2}\bar{x}_{3} \qquad \text{dist. prop.}$$

$$= x_{1}\bar{x}_{2} + (x_{1} + \bar{x}_{1})\bar{x}_{2}\bar{x}_{3} \qquad \text{dist. prop.}$$

$$= x_{1}\bar{x}_{2} + \bar{x}_{2}\bar{x}_{3} \qquad (4$$

Taking OR of (3) and (4), we get f on the LHS, but on the RHS we have an additional term of $x_1\bar{x}_2x_3$,

$$f = x_2 x_3 + x_1 \bar{x}_2 x_3 + x_1 \bar{x}_2 + \bar{x}_2 \bar{x}_3. \tag{5}$$

That is not a problem, because $x_1\bar{x}_3x_3$ can be easily absorbed by $x_1\bar{x}_2$,

$$x_1 \bar{x}_2 x_3 + x_1 \bar{x}_2$$

= $x_1 \bar{x}_2 (x_3 + 1)$ dist. prop.
= $x_1 \bar{x}_2$ $\therefore 1 + z = 1$ (6)

Putting (6) in (5), we get the desired simplest (in terms of number of inputs and number of gates) SOP expression by algebraic manipulation,

$$f = x_2 x_3 + x_1 \bar{x}_2 + \bar{x}_2 \bar{x}_3. \tag{7}$$

Problem 2 Use algebraic manipulation to find the minimum sum-of-products expression for the function $f = x_1\bar{x}_2\bar{x}_3 + x_1x_2x_4 + x_1\bar{x}_2x_3\bar{x}_4$. [1, Prob 2.13][10 marks]

Solution

Let's try another approach to illustrate this. This time let's color the K-maps according the product terms. Let's assign a color to each of the terms,

$$f = x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_4 + x_1 \bar{x}_2 x_3 \bar{x}_4. \tag{8}$$

This expression has 4-variables, so we need $2^4 = 16$ cell K-map,

		\bar{x}_1			x_1
		\bar{x}_2	x_2		\bar{x}_2
\bar{x}_3	\bar{x}_4	0	0	0	1
	x_4	0	0	1	1
x_3	$\begin{bmatrix} \bar{x}_4 \\ x_4 \\ x_4 \\ \bar{x}_4 \end{bmatrix}$	0	0	1	0
	\bar{x}_4	0	0	0	1

The ones in the K-map are already paired-up except the green 1, which we can pair up with one of the top red 1.

		\bar{x}_1		x_1		
		\bar{x}_2	x	2	\bar{x}_2	
\bar{x}_3	\bar{x}_4	0	0	0	1+1	
	x_4 x_4	0	0	1	1	
x_3		0	0	1	0	
	\bar{x}_4 \bar{x}_4	0	0	0	1	

Here we use 1+1 to highlight that the minterm $x_1\bar{x}_2\bar{x}_3\bar{x}_4$ is paired up with two terms: green and red. Now, we can read the K-map into an expression,

$$f = x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_4 + x_1 \bar{x}_2 \bar{x}_4 \tag{9}$$

To derive the same result from algebraic manipulation, it is clear that we only need to manipulate the red and green terms; the blue term stays untouched.

$$x_{1}\bar{x}_{2}\bar{x}_{3} + x_{1}\bar{x}_{2}x_{3}\bar{x}_{4}$$

$$= x_{1}\bar{x}_{2}\bar{x}_{3}(1 + \bar{x}_{4}) + x_{1}\bar{x}_{2}x_{3}\bar{x}_{4} \qquad \because 1 = 1 + z$$

$$= x_{1}\bar{x}_{2}\bar{x}_{3} + x_{1}\bar{x}_{2}\bar{x}_{3}\bar{x}_{4} + x_{1}\bar{x}_{2}x_{3}\bar{x}_{4} \qquad \text{dist. prop.}$$

$$= x_{1}\bar{x}_{2}\bar{x}_{3} + x_{1}\bar{x}_{2}(\bar{x}_{3} + x_{3})\bar{x}_{4} \qquad \text{dist. prop.}$$

$$= x_{1}\bar{x}_{2}\bar{x}_{3} + x_{1}\bar{x}_{2}\bar{x}_{4} \qquad \because z + \bar{z} = 1$$

$$(10)$$

Putting (10) in (8), we get,

$$f = x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_4 + x_1 \bar{x}_2 \bar{x}_4, \tag{11}$$

which is the simplest SOP expression.

Problem 3 Draw a timing diagram for the circuit in Figure 1. Show the waveforms that can be observed on all wires (f, g, h, k, l) in the circuit.[1, Prob 2.8][10 marks]

Figure 1: A three-input circuit

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Figure 2: A three-variable function

Solution

Problem 4 Represent the function in Figure 2 in the form of a Venn diagram and find its minimal sum-of-products form. [1, Prob 2.17][10 marks]

Solution

Minimal SOP form is,

$$f = x_1 \bar{x}_3 + \bar{x}_2 x_3$$

Problem 5 Use algebraic manipulation to prove that $(x + y) \cdot (x + \bar{y}) = x$. [1, Prob 2.2] [10 marks].

Solution

$$\begin{aligned} \text{LHS} &= (x+y)cdot(x+\bar{y}) \\ &= (x+y)x + (x+y)\bar{y} & \text{dist. prop.} \\ &= x \cdot x + yx + x\bar{y} + y \cdot \bar{y} & \text{dist. prop.} \\ &= x + yx + x\bar{y} + 0 & \because y \cdot \bar{y} = 0 \\ &= x(1+y+\bar{y}) & \text{dist. prop.} \\ &= x \cdot 1 & \because 1+z=1 \\ &= x = \text{RHS} & \because x \cdot 1 = x \end{aligned}$$

Problem 6 Determine whether or not the following expressions are valid, i.e., whether the left- and right-hand sides represent the same function. [1, Prob 2.7][10 marks]

1.
$$x_1\bar{x}_3 + x_2x_3 + \bar{x}_2\bar{x}_3 = (\bar{x}_1 + \bar{x}_2 + x_3)(x_1 + x_2 + \bar{x}_3)(\bar{x}_1 + x_2 + \bar{x}_3)$$

2.
$$(x_1 + x_3)(\bar{x}_1 + \bar{x}_2 + \bar{x}_3)(\bar{x}_1 + x_2) = (x_1 + x_2)(x_2 + x_3)(\bar{x}_1 + \bar{x}_3)$$

Solution 6.1

LHS =
$$x_1\bar{x}_3 + x_2x_3 + \bar{x}_2\bar{x}_3$$

= $x_1(x_2 + \bar{x}_2)\bar{x}_3 + (x_1 + \bar{x}_1)x_2x_3$
+ $(x_1 + \bar{x}_1)\bar{x}_2\bar{x}_3$
= $x_1x_2\bar{x}_3 + x_1\bar{x}_2\bar{x}_3 + x_1x_2x_3 + \bar{x}_1x_2x_3$
+ $x_1\bar{x}_2\bar{x}_3 + \bar{x}_1\bar{x}_2\bar{x}_3$
= $\sum m(6, 4, 7, 3, 4, 0) = \sum m(0, 3, 4, 6, 7)$

RHS =
$$(\bar{x}_1 + \bar{x}_2 + x_3)(x_1 + x_2 + \bar{x}_3)(\bar{x}_1 + x_2 + \bar{x}_3)$$

= $\prod M(6, 1, 5)$
= $\sum m(0, 2, 3, 4, 7)$

Since LHS \neq RHS, hence the expression (1) is not valid.

Solution 6.2

Take the inversion of both sides of the equation, (2) is valid if and only if

$$\overline{(x_1 + x_3)(\bar{x}_1 + \bar{x}_2 + \bar{x}_3)(\bar{x}_1 + x_2)}
= \overline{(x_1 + x_2)(x_2 + x_3)(\bar{x}_1 + \bar{x}_3)}.$$
or $\bar{x}_1\bar{x}_3 + x_1x_2x_3 + x_1\bar{x}_2 = \bar{x}_1\bar{x}_2 + \bar{x}_2\bar{x}_3 + x_1x_3$

LHS =
$$\bar{x}_1\bar{x}_3 + x_1x_2x_3 + x_1\bar{x}_2$$

= $\bar{x}_1(x_2 + \bar{x}_2)\bar{x}_3 + x_1x_2x_3 + x_1\bar{x}_2(x_3 + \bar{x}_3)$
= $\bar{x}_1x_2\bar{x}_3 + \bar{x}_1\bar{x}_2\bar{x}_3 + x_1x_2x_3 + x_1\bar{x}_2x_3$
+ $x_1\bar{x}_2\bar{x}_3$
= $\sum m(2,0,7,5,4) = \sum m(0,2,4,5,7)$

RHS =
$$\bar{x}_1\bar{x}_2 + \bar{x}_2\bar{x}_3 + x_1x_3$$

= $\bar{x}_1\bar{x}_2(x_3 + \bar{x}_3) + (x_1 + \bar{x}_1)\bar{x}_2\bar{x}_3$
+ $x_1(x_2 + \bar{x}_2)x_3$
= $\bar{x}_1\bar{x}_2x_3 + \bar{x}_1\bar{x}_2\bar{x}_3 + x_1\bar{x}_2\bar{x}_3 + \bar{x}_1\bar{x}_2\bar{x}_3$
+ $x_1x_2x_3 + x_1\bar{x}_2x_3$
= $\sum m(1, 0, 4, 0, 7, 5)$

Since LHS \neq RHS the expression is not valid.

Problem 7 Design the simplest sum-of-products circuit that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7)$. [1, Prob 2.21][10 marks]

Solution

	\bar{x}	1	$\overline{x_1}$		
	\bar{x}_2	x	2	\bar{x}_2	
\bar{x}_3	0	0	1	1	
x_3	0	1	1	0	

Simplest SOP expression is, $f(x_1, x_2, x_3) = x_1 \bar{x}_3 + x_2 x_3$.

Problem 8 Design the simplest product-ofsums circuit that implements the function $f(x_1, x_2, x_3) = \prod M(0, 2, 5)$. [1, Prob 2.22][10 marks]

Solution

$$\bar{f}(x_1, x_2, x_3) = \sum m(0, 2, 5)$$
 (13)

Simplest SOP expression for $\bar{f}(x_1, x_2, x_3) = \bar{x}_1 \bar{x}_3 + x_1 \bar{x}_2 x_3$.

By DeMorgan's theorem, we get the simplest POS expression is, $f(x_1, x_2, x_3) = (x_1 + x_3)(\bar{x}_1 + x_2 + \bar{x}_3)$.

References

[1] S. Brown and Z. Vranesic. Fundamentals of Digital Logic with Verilog Design: Third Edition. McGraw-Hill Higher Education, 2013.