Comparing dominance of tennis' big three via multiple-output Bayesian quantile regression models

Bruno Santos

University of Kent

Bologna, COMPSTAT 2022

Big Three

- Roger Federer
- Rafael Nadal
- Novak Djokovic
- Won 63 out of 77 Grand Slam tournaments, between Wimbledon in 2003 until 2022.

Dominance

List of Grand Slam Winners:

Table 1: January-2022

Player	Titles
1. Roger Federer	20
1. Rafael Nadal	20
1. Novak Djokovic	20
4. Pete Sampras	14
5. Roy Emerson	12

Table 2: Currently, August-2022

-	
Player	Titles
1. Rafael Nadal	22
2. Novak Djokovic	21
3. Roger Federer	20
4. Pete Sampras	14
5. Roy Emerson	12

Dominance

List of Grand Slam Winners:

Table 1: January-2022

ΡI	ayer	Titles
1.	Roger Federer	20
1.	Rafael Nadal	20
1.	Novak Djokovic	20
4.	Pete Sampras	14
5.	Roy Emerson	12

Table 2: Currently, August-2022

Player	Titles
1. Rafael Nadal	22
2. Novak Djokovic	21
3. Roger Federer	20
4. Pete Sampras	14
5. Roy Emerson	12

Question: Who is more dominant between the Big Three?

How to measure dominance in a tennis match

Important notes:

- A tennis match is divided into sets and games.
- A player with most sets wins the match.
- A player can win more games, but still lose the match.
 - Example: 7-6, 0-6, 7-6.

How to measure dominance in a tennis match

Important notes:

- A tennis match is divided into sets and games.
- A player with most sets wins the match.
- A player can win more games, but still lose the match.
 - Example: 7-6, 0-6, 7-6.
- Solution:
 - ▶ **Relative points:** ratio points won/lost in a match.
 - Duration of the match.

Data

- Data organised by Jeff Sackmann in the repository:
 - https://github.com/JeffSackmann/tennis_atp
- All matches from the Big Three, between 1998 and the US Open in 2021.
 - Excluding Davis Cup and Olympic Games matches.
 - Also matches played on carpet.

Data

- Data organised by Jeff Sackmann in the repository:
 - https://github.com/JeffSackmann/tennis_atp
- ▶ All matches from the Big Three, between 1998 and the US Open in 2021.
 - Excluding Davis Cup and Olympic Games matches.
 - Also matches played on carpet.
- We should condition on some variables:
 - type of tournament (Grand Slam, Masters 1000, ...);
 - surface (clay, grass and hard courts);
 - wins and losses;
 - rank of opponent.

Data distribution

Bayesian quantile regression for multiple output response variables

Directional quantile regression model

- Response variable is defined as $Y \in \mathbb{R}^k$.
- Directional index can be defined by $\tau \in \mathcal{B}^k := \{v \in \mathbb{R}^k : 0 < ||v|| < 1.\}.$
 - $\tau = \tau u, \tau \in (0, 1).$
- lackbox Define Γ_u , an arbitrary k imes (k-1) matrix of unit vectors.
 - $(u : \Gamma_u)$ is an orthonormal basis of \mathbb{R}^k .

DEFINITION:

The $au{}$ th quantile of Y is the $au{}$ th quantile hyperplane obtained from the regression:

 $Y_u:=u^{'}Y$ on the marginals of $Y^{\perp}:=\Gamma_u^{\ '}Y$ with an intercept term.

Estimation setup

The $\tau{\rm th}$ quantile of Y is any element of the collection Λ_τ of hyperplanes

$$\lambda_{\tau}:=\{y\in\mathbb{R}^{k}:u^{'}y=\hat{b}_{\tau}\Gamma_{u}^{'}y+\hat{a}_{\tau}\},$$

such that $(\hat{a}_{\tau},\hat{b}_{\tau})$ are the solutions of the minimization problem

$$\min_{(a_{\tau},b_{\tau})\in\mathbb{R}^{k}}E[\rho_{\tau}(u^{'}y-b_{\tau}\Gamma_{u}^{'}y-a_{\tau})].$$

where $\rho_{\tau}(u)$ is a known loss function in the quantile regression literature defined as

$$\rho_{\tau}(u) = u(\tau - \mathbb{I}(u < 0)), \quad 0 < \tau < 1.$$

Upper and lower halfspaces

With predictor variables, we have

$$\lambda_{\tau}(X) = \{u^{'}y = \hat{b}_{\tau}\Gamma_{u}^{'}y + x^{'}\hat{\beta}_{\tau} + \hat{a}_{\tau}\},$$

We can say that each element $(\hat{a}_{\tau}, \hat{b}_{\tau}, \beta_{\tau})$ define an upper closed quantile halfspace

$$\begin{split} H^{+}_{\tau u} &= H^{+}_{\tau u}(\hat{a}_{\tau}, \hat{b}_{\tau}, \hat{\beta}_{\tau}) \\ &= \{ y \in \mathbb{R}^{k} : u^{'}y \geq \hat{b}_{\tau}\Gamma^{'}_{u}y + x^{'}\hat{\beta}_{\tau} + \hat{a}_{\tau} \} \end{split}$$

and an analogous lower open quantile halfspace switching \geq for <.

Properties

Probabilistic nature of quantiles:

$$P(Y \in H_{ au u}^-) = au,$$

Quantile region

Moreover, fixing τ we are able to define the τ quantile region $R(\tau)$ as

$$R(\tau) = \bigcap_{u \in \mathcal{S}^{k-1}} H_{\tau u}^+.$$

Bayesian directional quantile regression model

Consider the mixture representation of the asymmetric Laplace distribution

$$\begin{split} Y_i | w_i &\sim N(\mu + \theta w_i, \psi^2 \sigma w_i) \\ w_i &\sim \mathsf{Exp}(\sigma) \\ &\updownarrow \\ Y &\sim AL(\mu, \sigma, \tau) \end{split}$$

Then one can consider that, for each direction u,

$$Y_{u}|b_{\tau},\boldsymbol{\beta}_{\tau},\boldsymbol{\sigma},\boldsymbol{w}\sim N(Y^{\perp}b_{\tau}+\boldsymbol{x'}\boldsymbol{\beta}_{\tau}+\theta\boldsymbol{w}_{i},\psi^{2}\boldsymbol{\sigma}\boldsymbol{w}_{i}),$$

Application results

Model choices

- $ightharpoonup Y_1$: Relative points won.
- $ightharpoonup Y_2$: Minutes played.
- Covariates:
 - Player (Federer, Nadal, Djokovic);
 - Surface;
 - Win or loss;
 - Type of tournament;
 - Top 20 player opponent or not;
- For the model, we fix $\tau=0.25$ and consider 180 directions in the unit circle.
- We consider interaction effects between player and the other covariates.

Effect of win and losses

Effect of tournament

Effect of Top 20

Effect of surface

Final discussion

This model does not need to make any probability assumptions in order to reach its conclusions.

- ► This model does not need to make any probability assumptions in order to reach its conclusions.
- Nadal's dominance in clay courts is unmatched.

- This model does not need to make any probability assumptions in order to reach its conclusions.
- Nadal's dominance in clay courts is unmatched.
- Federer dominance in grass courts is also visible.

- This model does not need to make any probability assumptions in order to reach its conclusions.
- Nadal's dominance in clay courts is unmatched.
- Federer dominance in grass courts is also visible.
- ▶ The same way as Djokovic dominance in hard courts.

- This model does not need to make any probability assumptions in order to reach its conclusions.
- Nadal's dominance in clay courts is unmatched.
- Federer dominance in grass courts is also visible.
- ▶ The same way as Djokovic dominance in hard courts.
- In the time dimension, Federer shows an edge during wins.

- ➤ This model does not need to make any probability assumptions in order to reach its conclusions.
- Nadal's dominance in clay courts is unmatched.
- Federer dominance in grass courts is also visible.
- ▶ The same way as Djokovic dominance in hard courts.
- In the time dimension, Federer shows an edge during wins.
- For most comparisons, Djokovic seems the most dominant player.

Thank you!

b.santos@kent.ac.uk