<u>אינפי 2 - דף עזר בנו</u>שא אינטגרלים קווייים ומשפט גרין

 $\frac{.}{x}$ אינטגרל קווי מסוג $\frac{.}{x}$ פונקציה סקלרית רציפה.

$$\int_{\gamma} f ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt : t$$
נגדיר

- . אם $f\equiv 1$ אם , f אם .1
- . $\int_{\gamma}fds=\int_{\alpha}f(x,y(x))\sqrt{1+arphi'(x)^2}dx$ אז אי y=arphi(x) מתון בהצגה מפורשת 2.

$$, \alpha \leq \theta \leq \beta$$
 - כלומר: $x = \rho(\theta)\cos(\theta)$ ל- $x = \rho(\theta)\sin(\theta)$ אזי $x = \rho(\theta)\sin(\theta)$ ל- $x = \rho(\theta)\sin(\theta)$ ל- $x = \rho(\theta)\sin(\theta)$ אזי $x = \rho(\theta)\cos(\theta)$ אזי $x = \rho(\theta)\cos(\theta)$ ל- $x = \rho(\theta)\cos(\theta)$ ל- $x = \rho(\theta)\cos(\theta)$

 $.\vec{F}(x,y) = P(x,y)\hat{i} + Q(x,y)\hat{j}$ ייהא ע"י: רציף הנתון ע"י: \vec{F} שדה וקטורי רציף הנתון ע"י

$$a \le t \le b$$
 ל- $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ ל- $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$

$$\int_{\gamma} \vec{F} \cdot d\vec{r} \equiv \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt$$
 : נגדיר

<u>הערות:</u>

- . $\int\limits_{\gamma} P dx + Q dy$: אינטגרל קווי מסוג II מסומן .1
- .2 המשמעות הפיסיקלית שלו היא עבודת שדה לאורך מסלול. האינטגרל תלוי בכיוון המוגדר ע"י γ .

$$\int\limits_{\gamma}\vec{F}\cdot d\vec{r}\equiv\int\limits_{a}^{b}P(x,c)dx$$
 אם $\gamma=\{(x,c)\mid a\leq x\leq b\}$ (כלומר, מקביל לציר $\gamma=\{(x,c)\mid a\leq x\leq b\}$ אם .4

.(
$$y$$
 אם γ מקביל ציר $\int\limits_{\gamma}\vec{F}\cdot d\vec{r}\equiv\int\limits_{a}^{b}Q(c,y)dy$ (או,

משפט גרין:

עם מגמה חיובית (כלומר, בתנועה לאורך הא $\Gamma=\partial D$ תהא תהא קשיר ב R^2 - משמאל). R תמיד משמאל). תמיד D משמאל).

 \overline{D} על (כלומר, בעל נגזרות חלקיות רציפות) על C^1 - יהא \overline{f} שדה וקטורי ב

$$\iint_{\Gamma} \vec{F} \cdot d\vec{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
ייי:

 $rac{1}{2}\int_{\Gamma}xdy-ydx$ אז השטח של של , $\Gamma=\partial D$ מסקנה: אם אם , $\Gamma=\partial D$

. שדה וקטורי $\vec{F}(x,y) = P(x,y)\hat{i} + Q(x,y)\hat{j}$ שדה וקטורי

(כלומר, $\nabla \phi = \vec{F}(x,y) = (P,Q)$ המקיימת $\phi(x,y)$ הסקלרית פונקציה סקלרית $\frac{\partial \phi}{\partial x} = P, \frac{\partial \phi}{\partial y} = Q$

יי, והשדה ' \vec{F} נקראת "הפוטנציאל הסקלרי של ' \vec{F} ", והשדה ' $\phi(x,y)$ נקראת "הפוטנציאל הסקלרי של 'Pdx + Ody - במקרה 'זה נאמר ש

משפטים (אי תלות של אינטגרל קווי מסוג II במסלול):

- : שדה וקטורי רציף על תחום D אז התנאים הבאים שקולים. 1
 - . $\oint \vec{F} \cdot d\vec{r} = 0$: מתקיים בD ב ב D א. לכל מסלול סגור
- ו- א הנקודות את במסלול במסלול במסלול בין Aל בין אל מסלול אינו המחבר האינטגרל האינטגרל על מסלול בין אB- אינו מסלול בין $\int\limits_{AB} \vec{F} \cdot d\vec{r}$
 - . $\int_{AB} \vec{F} \cdot d\vec{r} = \phi(B) \phi(A) 1$ דיפרנציאל מדוייק, וdx + Qdy . ג
 - אם $ec{F}$ הוא התנאים הנייל שקולים הוא פשוט פשר, אז התנאים הנייל שקולים ב C^1 הוא .2
 - $. \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} . \tau$