On small-time local controllability

Saber Jafarpour¹

Queen's University

7th Meeting on System and Control Theory, Kingston, 12 May 2016

¹Department of Mathematics and Statistics, Queen's University () () ()

Introduction

Definition

A **control system** on \mathbb{R}^n is a finite family of vector fields $\Sigma = \{X_1, X_2, \dots, X_m\}.$

- We assume that the vector fields X_1, X_2, \dots, X_m are real analytic.
- A trajectory of Σ is a concatenation of integral curves of the vector fields $\{X_1, X_2, \dots, X_m\}$.

Reachable sets

Given a control system $\Sigma = \{X_1, X_2, \dots, X_m\}$ on \mathbb{R}^n and a point $x_0 \in \mathbb{R}^n$, we define

• Reachable set of Σ from the point x_0 :

$$R_{\Sigma}(x_0) = \{ \phi_{t_1}^{X_{i_1}} \circ \phi_{t_2}^{X_{i_2}} \circ \dots \circ \phi_{t_k}^{X_{i_k}}(x_0) \mid t_i > 0, \ i_1, i_2, \dots, i_k \in \{1, 2, \dots, m\} \}.$$

• Reachable set of Σ in times less than T from the point x_0 :

$$\begin{split} \mathrm{R}_{\Sigma}(<\mathcal{T},x_0) &= \{\phi_{t_1}^{X_{i_1}} \circ \phi_{t_2}^{X_{i_2}} \circ \ldots \circ \phi_{t_k}^{X_{i_k}}(x_0) \mid \\ t_i &> 0, \ \sum_{i=1}^k t_k < \mathcal{T}, \ i_1,i_2,\ldots,i_k \in \{1,2,\ldots,m\}\}. \end{split}$$

Accessibility

Local accessibility

A control system Σ is **locally accessible** from x_0 if $\mathrm{R}_\Sigma(x_0)$ has nonempty interior.

 \mathbb{R}^2

Accessibility

Small-time local accessibility

A control system Σ is **small-time locally accessible** from x_0 if, for every small enough t, the set $R_{\Sigma}(< t, x_0)$ has nonempty interior.

Controllability

Local controllability

A control system Σ is **locally controllable** from x_0 if $R_{\Sigma}(x_0)$ contains a neighbourhood of x_0 .

Controllability

Small-time local controllability

A control system Σ is **small-time locally controllable** from x_0 if, for small enough t, the set $R_{\Sigma}(< t, x_0)$ contains a neighbourhood of x_0 .

 \mathbb{R}^2

Characterization of small-time local accessibility

• Small-time local accessibility of a real analytic control system Σ from x_0 can be characterized in terms of Lie brackets of vector fields of the family Σ at the point x_0 .

Theorem (H. J. Sussmann and V. Jurdjuvic 1972)

A real analytic control system $\Sigma=\{X_1,X_2,\ldots,X_m\}$ is small-time locally accessible from x_0 if and only if

$$\mathrm{span}\left(\mathrm{Lie}(\{X_1,X_2,\ldots,X_m\})\right)(x_0)=\mathbb{R}^n.$$

 Is there a similar characterization for STLC of Σ form x₀ using the Lie brackets of vector field of Σ at x₀?

Small-time local controllability

- Sufficient condition:
 - 10 H. J. Sussmann 1978, 1983, 1986,
 - 2 R. M. Bianchini and G. Stefani 1993,
 - 3 R. Hirschorn and A. D. Lewis 2004,
 - M. I. Krastanov 2009.
- Necessary condition:
 - G. Stefani 1986,
 - M. Kawski 1987,
 - M. I. Krastanov 1998.
- Necessary and Sufficient conditions for some specific classes of systems:
 - C. O. Aguilar and A. D. Lewis 2012,

Reachability and finite differentiation

 A nice feature of small-time local accessibility is that it is recognizable in finite number of differentiation.

Example

Consider the system $\Sigma = \{X_1, X_2\}$ on \mathbb{R}^2 such that

$$X_1(x,y) = \frac{\partial}{\partial x}, \quad X_2(x,y) = -x\frac{\partial}{\partial y},$$

It is easy to see that

$$[X_1,X_2](0,0)=-\tfrac{\partial}{\partial y},$$

and

$$\mathrm{span}\,\{X_1(0,0),[X_1,X_2](0,0)\}=\mathbb{R}^2.$$

Therefore Σ is small-time locally accessible from (0,0).

Reachability and finite differentiation

Example

Now consider another control system $\Theta = \{ \textit{Y}_1, \textit{Y}_2 \}$ defined as

$$Y_1(x,y) = \frac{\partial}{\partial x}, \quad X_1(x,y) = \frac{\partial}{\partial x},$$

$$Y_2(x,y) = \left(x + x^2 + xy\right) \frac{\partial}{\partial y}, \quad X_2(x,y) = x \frac{\partial}{\partial y},$$

Then

$$[Y_1, Y_2](0,0) = -\frac{\partial}{\partial y},$$

and therefore Θ is small-time locally accessible from (0,0).

• Conclusion: any perturbation of Σ around (0,0) by terms of order 2 or higher is still small-time locally accessible.

Reachability and finite differentiation

• Do we have similar feature for STLC?

Conjecture A (A. Agrachev 1999)

Let Σ be a real analytic control system which is STLC from x_0 . Then there exists $N \in \mathbb{N}$ such that any other control system Θ with the same Taylor polynomials of order N around x_0 is STLC from x_0 ?

Control Variations

• A useful tool for studying STLC is control variation.

Control Variations

Let $\mathcal{U} = \{(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,1)\}$. Then a control variation is a map $u_s:[0,s]\to\mathcal{U}$.

• we define the time-varying vector field $X(t, x, u_s)$ as

$$X(t, x, u_s) = X^i(x),$$
 if $u_s(t) = (0, 0, ..., 1, 0, ..., 0).$

 Control variation: approximate the reachable sets of a system for small-enough time.

Control Variations

Higher-order tangent vectors

Let u_s be a control variation for Σ and $m \in \mathbb{Z}_{\geq 0}$. Let $x(t, u_s)$ be the solution of the initial value problem

$$\frac{dx}{dt}(t)=X(t,u_s).$$

Then $v \in \mathbb{R}^n$ is called an m-th order tangent vector to Σ at point x_0 if we have

$$x(s, u_s) = x_0 + vs^m + o(s^m).$$

where $\lim_{s\to 0} \frac{o(s^m)}{s^m} = 0$.

- the cone generated by all *m*-th order tangent vectors of Σ at point x_0 is denoted by K^m_{Σ,x_0} .
- For $l \leq m$, we have $K_{\Sigma,x_0}^m \subseteq K_{\Sigma,x_0}^l$.

Open mapping theorem

- Control variations can be used to find admissible **directions** in the reachable set of the system for small enough time.
- How to show STLC using control variations? We use a suitable open mapping theorem.

Theorem (M. Kawski 1990)

If $K^m_{\Sigma,x_0}=\mathbb{R}^n$, then there exists $C,\,T>0$ such that

$$B(x_0, Ct^m) \subseteq R_{\Sigma}(\langle t, x_0 \rangle), \quad \forall t \in [0, T].$$

Example

Example

Consider the control system $\Sigma = \{X_1, X_2, X_3, X_4\}$ on \mathbb{R}^2 .

$$\begin{split} X_1(x,y) &= \frac{\partial}{\partial x}, \quad X_3(x,y) = -\frac{\partial}{\partial x}, \\ X_2(x,y) &= x\frac{\partial}{\partial y}, \quad X_4(x,y) = -x\frac{\partial}{\partial y}. \end{split}$$

Then we have

cone
$$(X_1(0,0), X_2(0,0), X_3(0,0), X_4(0,0)) = x$$
-axis.

By choosing the control variation $u_s:[0,s] o \mathcal{U}$ as

$$u_{s}(t) = \begin{cases} (1,0,0,0) & t \in [0,\frac{s}{4}), \\ (0,1,0,0) & t \in [\frac{s}{4},\frac{s}{2}), \\ (0,0,1,0) & t \in [\frac{s}{2},\frac{3s}{4}), \\ (0,0,0,1) & t \in [\frac{3s}{4},s). \end{cases}$$

Example

Example

Then we have

$$\begin{aligned} x(s, u_s) &= \phi_{\frac{s}{4}}^{X_1} \circ \phi_{\frac{s}{4}}^{X_2} \circ \phi_{\frac{s}{4}}^{-X_1} \circ \phi_{\frac{s}{4}}^{-X_2} \\ &= \frac{1}{16} [X_2, X_1] (0, 0) s^2 + o(s^2) = \frac{1}{16} \frac{\partial}{\partial y} s^2 + o(s^2). \end{aligned}$$

Thus $[X_2, X_1](0,0)$ is a tangent vector of order 2. Similarly, we can show that $[X_1, X_2](0,0)$ is a tangent vector of order 2.

$$\mathrm{cone}(X_1(0,0),X_3(0,0),[X_1,X_2](0,0),[X_2,X_1](0,0))=\mathbb{R}^2.$$

This implies that Σ is STLC form (0,0). Moreover, for small enough t, we have

$$B(\mathbf{0}, Ct^2) \subseteq R_{\Sigma}(\langle t, \mathbf{0})$$

The growth rate of reachable sets

Suppose that we have a real analytic control system Σ . We find a finite family of control variations for Σ at point x_0 such that

- lacktriangledown their associated higher-order tangent vectors are of order at most m,
- ② the cone generated by these higher-order tangent vectors is the whole \mathbb{R}^n .

Then Σ is STLC form x_0 . Moreover, there exists C, T > 0 such that

$$B(x_0, Ct^m) \subseteq R_{\Sigma}(\langle t, x_0 \rangle), \quad \forall t \in [0, T].$$

The growth rate of reachable sets

• Can we prove STLC of every system using the above method?

Conjecture B (A. Agrachev 1999)

Let Σ be a real analytic control system which is STLC from x_0 . Then there exist $N \in \mathbb{Z}_{>0}$ and C, T > 0 such that

$$B(x_0, Ct^N) \subseteq R_{\Sigma}(\langle t, x_0 \rangle, \quad \forall t \in [0, T].$$

Main theorem

Theorem

Let $\Sigma = \{X_1, X_2, \dots, X_m\}$ be a real analytic control system and there exist C, T > 0 such that

$$B(x_0, Ct^N) \subseteq R_{\Sigma}(\langle t, x_0 \rangle, \quad \forall t \in [0, T].$$

Let $\Theta = \{Y_1, Y_2, \dots, Y_m\}$ be another real analytic control system such that

• for every $i \in \{1, 2, ..., m\}$, the first N-terms in the Taylor series of X_i and Y_i around x_0 agree.

Then Θ is STLC from x_0 .

 In particular, this theorem proves that conjecture B implies conjecture A.

Brouwer fixed-point theorem

 The Brouwer fixed-point theorem is one of the most fundamental existence theorem in mathematics.

Brouwer fixed-point theorem

Let K be a compact and convex set in \mathbb{R}^n and $f:K\to K$ is continuous. Then f has at least one fixed point (i.e., there exists $x\in K$ such that f(x)=x).

 There are many different generalizations of the Brouwer fixed-point theorem.

Definition

A map $f: K \to K$ is **half-continuous** if, for every $x \in K$ such that $f(x) \neq x$, there exist $p \in \mathbb{R}^n$ and a neighbourhood U of x such that

$$p.(f(y)-y)>0, \forall y\in U.$$

Brouwer fixed-point theorem

Brouwer fixed-point theorem (P. Bich 2006)

Let K be a compact and convex set in \mathbb{R}^n and $f:K\to K$ be half-continuous. Then f has at least one fixed point.

Idea of the proof: For every t small enough, we have $\mathrm{B}(x_0,\frac{c}{2}t^N)\subseteq\mathrm{R}_\Theta(< t,x_0)$

• Fix t > 0 small enough.

ullet maps every $\phi_{t_1}^{X_{i_1}} \circ \phi_{t_2}^{X_{i_2}} \circ \ldots \phi_{t_k}^{X_{i_k}}(x_0)$ to $(t_1,t_2,\ldots,t_k,0,0,\ldots,0)$ in \mathbb{R}^p .

• η^t maps every (t_1,t_2,\ldots,t_p) in \mathbb{R}^p to $\phi^{Y_{i_1}}_{t_1}\circ\phi^{Y_{i_2}}_{t_2}\circ\ldots\phi^{Y_{i_p}}_{t_p}(x_0)$.

• $F^t : B(x_0, Ct^N) \rightrightarrows R_{\Theta}(\langle t, x_0) \text{ defined as } F^t = \eta^t \circ \xi^t.$

• Fix $y \in \mathrm{B}(x_0, \frac{C}{2}t^N)$ and define $G_y^t : \mathrm{B}(x_0, Ct^N) \rightrightarrows \mathbb{R}^p$ as

$$G_y^t(x) = x - F^t(x) + y.$$

- G_y^t is multi-valued and has a half-continuous selection $g_y^t: \mathrm{B}(x_0, Ct^N) \to \mathbb{R}^p$.
- Σ and Θ have the same Taylor polynomials of order N around x_0 , therefore $g_v^t(B(x_0, Ct^N)) \subseteq B(x_0, Ct^N)$.
- By the generalized Brouwer fixed point theorem g_y^t has a fixed point.

$$x \in x - F^{t}(x) + y \quad \Rightarrow \quad y \in F^{t}(x)$$

• $y \in R_{\Theta}(< t, x_0)$.