ЛЕКЦИЯ 4. СИСТЕМЫ ПЕРЕДАЧИ ДАННЫХ С ПРИМЕНЕНИЕМ ПОМЕХОУСТОЙЧИВЫХ КОДОВ, ОБНАРУЖИВАЮЩИХ ОШИБКИ

1.Применение помехоустойчивых кодов с проверкой на четность и их характеристика

$$(n,k) = (k+1,k)$$

Абсолютная избыточность кода - (*n*–*k*)=1, а относительная – $\eta = \frac{n-k}{n} = \frac{1}{n}$.

Относительная кодовая скорость равна $R = \frac{k}{n} = \frac{n-1}{n-1} = 1 - \frac{1}{n} = 1 - \frac{1}{n}$.

Любая разрешенная кодовая комбинация имеет четное число "1", число разрешенных кодовых комбинаций равно $2^k = 2^{n-1}$, т.е. ровно половине от общего числа *п*-элементных двоичных комбинаций.

Алгоритм кодирования. Информационная комбинация $(a_0, a_1, a_2, ..., a_{k-1})$.

Проверочный элемент "b" : $b = \sum_{i=1}^{k-1} a_i \pmod{2}$.

Образующая матрица :
$$G = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 1 \\ 0 & 1 & 0 & \dots & 0 & 1 \\ 0 & 0 & 1 & \dots & 0 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix} \qquad d_{\min} = 2. \qquad t_{oo} = d_{\min} - 1.$$

$$d_{\min}=2$$
. $t_{oo}=d_{\min}-1$

$$E_{k\times k}$$
 $R_{1\times k}$

Проверочная матрица *H* :

$$H = \left\lceil R^T E_{(n-k)\times(n-k)} \right\rceil = \left\lceil R^T E_{1\times 1} \right\rceil,$$

 $G \cdot H^T = 0$

$$H = \left[\underbrace{111...}_{\mathsf{R}^\mathsf{T}}\underbrace{1\,1}_{\mathsf{E}_{\mathsf{1x1}}}\right]$$

Принятая комбинация $(c_0, c_1, c_2, ..., c_{n-1}),$ $S = \sum_{i=0}^{n-1} c_i \pmod{2}.$

$$P_{\text{min}} = (1-p)^n; \qquad P_{\text{oo}} = \sum_{i=1,3,5,\dots} C_n^i p^i (1-p)^{n-i} = \frac{1}{2} \Big[1 - (1-2p)^n \Big];$$

$$P_{\text{HO}} = \sum_{i=2,4,6,\dots} C_n^i p^i (1-p)^{n-i} = \frac{1}{2} \Big[1 + (1-2p)^n \Big] - (1-p)^n.$$

$$P_b = \frac{1}{n} \sum_{i=2,4,\dots} iP(i,n) = \frac{1}{n} \sum_{i=2,4,\dots} iC_n^i p^i (1-p)^{n-i}.$$

КОИ-7 (ASCII – American Standard Code for Information Interchange),

Аналогом кода ASCII является международный код МТК-5, версия МККТТ.

Определим вероятностные характеристики кода с проверкой на четность КОИ-7 в соответствии для канала ДСК с вероятностью ошибки *p*=10⁻³:

$$\begin{split} P_{\text{min}} &= (1-p)^8 = (0,999)^8 = 0,992; \\ P_{\text{oo}} &= \frac{1}{2} \Big[1 - (1-2p)^8 \, \Big] = \frac{1}{2} \Big[1 - (0,998)^8 \, \Big] = 7,9 \cdot 10^{-3}; \\ P_{\text{HO}} &= \frac{1}{2} \Big[1 + (1-2p)^8 \, \Big] - (1-p)^8 = \frac{1}{2} \Big[1 + (0,998)^8 \, \Big] - (0,999)^8 = 2,8 \cdot 10^{-5}. \\ P_{b} &= \frac{1}{8} \sum_{i=2,4,6,8} i P(i,8) = \frac{1}{8} \sum_{i=2,4,6,8} i C_8^i p^i (1-p)^{8-i} \approx \frac{1}{8} 2 C_8^2 p^2 (1-p)^6 = 6,9 \cdot 10^{-6}. \end{split}$$

Протокол передачи файлов Xmodem

Двухбайтовый номер (01FE) \rightarrow в двоичной системе (0000 0001 1111 1110). Имеем 8 комбинаций простейшего помехоустойчивого кода (n,k)=(2,1) с проверкой на нечетность

Однократные ошибки в двухэлементных комбинациях будут обнаруживаться, а двукратные ошибки обнаруживаться не будут и приведут к неверному определению номера блока.

Характеристики такого двухбайтового кода будут следующие.

Абсолютная избыточность по элементам равна 8, а относительная избыточность -0.5; кодовая скорость будет R=1/2.

Вероятностные характеристики для канала ДСК : $P_{\text{min}} = (1-p)^{16}$;

$$P_{\text{oo}} = \sum_{i=1}^{8} C_8^i \theta^i (1-\theta)^{8-i},$$

где $\theta = 2p(1-p)$ – вероятность однократной ошибки в двухэлементной двоичной комбинации;

$$P_{\text{HO}} = \sum_{i=1}^{8} C_8^i p^{2i} (1-p)^{16-2i}.$$

Расчетные значения этих вероятностей для канала ДСК с $p = 10^{-3}$ равны:

$$P_{nn} = 0.9841; P_{oo} = 0.01587; P_{ho} = 3.10^{-5}$$

Вероятностные характеристики двухбайтового кода с проверкой на нечетность , использующегося в протоколе Xmodem

- 2. Методы обнаружения ошибок в блоках данных с использованием контрольной суммы.
- 2.1. Метод формирования контрольной суммы блока по mod255.

Алгоритм реализован в упомянутом ранее протоколе передачи файлов между компьютерами XModem.

Блок данных в этом протоколе состоит из 128 байт.

Ошибки в блоке будут обнаружены, если контрольные суммы, вычисленные на передаче и на приеме, не совпадают.

Не обнаруженными ошибки в блоке будут в том случае, когда суммарные десятичные значения ошибочных позиций среди "1" в исходном блоке будут компенсироваться суммарными десятичными значениями ошибочных позиций среди "0" в исходном блоке, например, $\sum_{n_i} 2^{n_i} = \sum_{m_j} 2^{m_j}$,

где n_i – ошибочные позиции среди "1", m_j – ошибочные позиции среди "0" в исходном блоке. Так как блок имеет байтовую структуру, то значения n_i и m_j могут принимать значения от 0 до 7 по всему множеству байтов от 1 до 128. Получение точного аналитического выражения для вероятности появления необнаруживаемых ошибок в блоке представляет собой довольно трудоемкую задачу. Поэтому целесообразно ограничиться приближёнными оценками или оценить вероятность необнаруживаемых ошибок путем моделирования

Вероятностные характеристики для канала ДСК

$$P_{\text{IIII}} = \left[(1-p)^8 \right]^{128}$$
.

Так как "1" и "0" предполагаются равновероятными, то для приближённых расчетов можно принять, что в каждой из 8 строк блока будет в среднем 64 единицы и 64 нуля. Тогда вероятность двукратной необнаруживаемой ошибки в блоке можно приближенно оценить выражением:

$$P_{\text{Ho}}(t=2) = C_8^1 \left[C_{64}^1 p (1-p)^{63} \right]^2 (1-p)^{128\cdot7} = 32768 p^2 (1-p)^{1022}.$$

При этих условиях вероятность трёхкратных необнаруживаемых ошибок можно определить из выражения:

$$P_{\text{\tiny HO}}(t=3) = 2 \cdot 7 \left\{ C_{64}^1 p (1-p)^{63} (1-p)^{64} \right\} \cdot \left\{ C_{64}^2 p^2 (1-p)^{62} (1-p)^{64} \right\} (1-p)^{128 \cdot 6}.$$

В таблице ниже приведены расчетные значения суммы $P_{\text{но}}(t=2)$ и $P_{\text{нo}}(t=3)$.

р	10-2	10 ⁻³	10 ⁻⁴
P _{HO} (t=2)	1,1.10-4	1,2·10 ⁻²	2,9.10-4
P _{HO} (t=3)	6,3.10-5	6,44.10-4	1,61·10 ⁻⁶
$P_{HO}(t=2)+P_{HO}(t=3)$	1,7.10-4	1,21·10 ⁻²	2,9.10-4

Вероятностные характеристики кода с обнаружением ошибок на основе контрольной суммы по mod255, использующегося в протоколе Xmodem в канале ДСК

2.2. Метод формирования контрольной суммы с проверкой на четность по строкам.

Для сравнения эффективности такого помехоустойчивого кода с эффективностью предыдущего кода примем, что длина блока данных также состоит из 128 байт, включая контрольный. Тогда вероятность приема блока по каналу ДСК с необнаруживаемыми ошибками будет определяться выражением 。

$$P_{\text{HO}} = \sum_{j=1}^{5} C_8^j \theta^j (1-p)^{128(8-j)},$$

где θ – вероятность появления четного числа сшибок в одной строке, которая для нашего примера определяются выражением:

$$\theta = \sum_{i=2,4,6} C_{128}^{i} p^{i} (1-p)^{128-i}.$$

Расчетные значения вероятности *Р*но для некоторых *р* представлены в таблице:

р	10 ⁻²	10 ⁻³	10 ⁻⁴
θ	2,61·10 ⁻¹	7,2.10-1	1.10-4
$P_{\scriptscriptstyle{HO}}$	8,76·10 ⁻³ <i>J</i> = 1÷8	2,35·10 ⁻² J = 1	7,3·10 ⁻⁴ J = 1

Вероятностные характеристики кода с обнаружением ошибок на основе контрольной суммы с проверкой на четность по строкам для блока из 128 байт в канале ДСК

2.3. Метод контроля четности по строкам и столбцам блока.

Исходная информация в виде блока из k строк и n столбцов.

Блок помехоустойчивого кода: к каждой строке и к каждому столбцу добавляются по одному элементу – проверочному на четность.

Тогда кодовый блок будет содержать (k-1)·(n-1)= K информационных элементов из общего числа элементов в блоке, равном $N=k\cdot n$; $d_{\min}=4$.

Кодовая скорость:
$$R = \frac{K}{N} = \frac{(k-1)(n-1)}{kn}$$
, а число избыточных элементов — $(k+n+1)$.

Тогда в канале ДСК с вероятностью битовой ошибки *р* вероятность 4-х кратной необнаруживаемой ошибки в блоке определим из выражения:

$$P_{\text{HO}}(4,N) = C_n^2 \sum_{i=1}^{k-1} C_i^1 p^4 (1-p)^{N-4} = C_n^2 C_{k-1}^2 p^4 (1-p)^{N-4},$$

Аналогично вероятность 6-кратной необнаруживаемой ошибки :

$$P_{\text{HO}}(6,N) = C_n^2 \sum_{i=1}^{k-2} C_{i+1}^1 C_i^1 p^6 (1-p)^{N-6} = C_n^2 \sum_{i=1}^{k-2} i(i+1) p^6 (1-p)^{N-6}.$$

k=5 строк, n=6 столбцов

1	0	0	1	1	1
0	~	~	0	0	0
1	1	0	0	1	~
0	0	1	0	1	0
0	0	0	1	1	0

4-х кратная необнаруживаемая ошибка

1	0	0	1	1	1
0	~	0	0	~	0
1	~	0	0	~	1
0	0	0	0	0	0
0	0	0	1	1	0

Рассмотренный метод контроля за ошибками применяется в байториентированном асинхронном бинарном протоколе канального уровня с использованием кода ASCII (МТК-5). Для сравнительной оценки метода с ранее рассмотренными выберем длину кадра также равную 128 байтам. Тогда блок данных может быть представлен двоичной матрицей, состоящей из n = 128 столбцов и k = 8 строк. Таким образом, каждый байт является столбцом с одним проверочным элементом на четность, т.е. код (8,7), а каждая строка матрицы представляет собой код (128,127) с проверкой на четность.

Ниже в таблице приведены значения вероятностей необнаруживаемых ошибок такого матричного кода с d_{min}=4, для некоторых значений битовой вероятности ошибки в канале ДСК:

р	10-2	10 -3	10-4
$P_{\mu o}(t=4)$	8⋅10 ⁻⁸	8,2·10 ⁻⁸	2⋅10 ⁻¹¹
$P_{HO}(t=6)$	2,1·10 ⁻⁹	2,1·10 ⁻¹¹	5,2·10 ⁻¹⁷

Как видно из таблицы, данный матричный код по сравнению с ранее рассмотренными имеет существенное преимущество по обеспечению достоверности передачи данных. Это объясняется его конструктивными особенностями, прежде всего каскадной структурой, и существенно большей избыточностью — 135 бит, по сравнению с ранее рассмотренными, где контрольная сумма составляла всего один байт. Кроме того, из данных таблицы видно, что для оценки эффективности матричного кода можно ограничиться вероятностью 4-х кратной битовой ошибки в реальных каналах ДСК с $p = 10^{-2}$.

Графики вероятностей необнаруживаемых ошибок помехоустойчивым кодом в блоках из 128 байт на базе кода ASCII (МТК-5) с проверкой на четность по строкам и столбцам, используемым в байт-ориентированном асинхронном протоколе канального уровняв каналах ДСК с вероятностбю битовой ошибки р:

ЛИТЕРАТУРА

О. С. Когновицкий, В. М. Охорзин, С. С. Владимиров. ПРАКТИКА ПОМЕХОУСТОЙЧИВОГО КОДИРОВАНИЯ. Часть 1. Системы с обнаружением ошибок и обратной связью. Учебное пособие; СПбГУТ — СПб. 2018. — 100с. (Материал по лекции — стр. 31 — 37)