

ESERCITAZIONE 8: FAMILIARIZZAZIONE CON ARDUINO

G. Galbato Muscio

L. Gravina

L. Graziotto

11 Dicembre 2018

Gruppo 11

Abstract

Si studia il tempo impiegato dal microcontrollore Arduino UNO a svolgere determinate istruzioni, da operazioni aritmetiche, a calcolo di funzioni, a operazioni di Input/Output. Si studia il comportamento dei pin dotati di *pulse width modulation*. Si realizza, mediante la funzione di lettura analogica, un ADC, e se ne calcolano i valori di calibrazione. Si compie infine un campionamento digitale di un segnale analogico periodico.

Indice

1	Comunicazione seriale	2
2	Pulse Width Modulation	2
3	Calibrazione ADC	2
4	Acquisizione dati dall'ADC	3

1 Comunicazione seriale

Si realizza un programma per Arduino finalizzato a misurare i tempi impiegati per lo svolgimento di alcune istruzioni, e la dipendenza di tali tempi dall'ordine di grandezza dei numeri da manipolare. La funzione micros() permette di registrare i tempi di esecuzione, che vengono riportati in Tabella 1: in questa prima fase, i numeri sono di tipo float con una cifra dopo la virgola, e il tempo di esecuzione è misurato escludendo quello impiegato per la scrittura su schermo del risultato.

Tabella 1: Misure per la stima dei tempi di esecuzione

Operazione	t_0 [µs]	t_1 [µs]	$\Delta t [\mu s]$
a+b			
$a \cdot b$			
a/b			
\sqrt{a}			
sin(a)			
$max\{a,b\}$			

Per ottenere una stima più precisa, si ripete ogni operazione inserendola all'interno di un ciclo for che la iteri per N=1000 volte; quindi si ottiene il tempo medio di esecuzione come $(t_1-t_0)/N$. Si riportano i risultati in Tabella 2; anche in questo caso non sono inclusi i tempi necessari alla scrittura a schermo.

Tabella 2: Misure per la stima dei tempi di esecuzione, con N=1000 iterazioni

Operazione	t_0 [µs]	t_1 [µs]	$\Delta t/N$ [µs]
a+b			
$a \cdot b$			
a/b			
\sqrt{a}			
sin(a)			
$max\{a,b\}$			

Per l'operazione di moltiplicazione, si studia la dipendenza del tempo di esecuzione dal numero di cifre: con il ciclo for si varia il numero a da moltiplicare per 10 e si misura volta per volta il tempo di esecuzione. Il grafico che descrive l'andamento di t al variare di a è riportato in Figura $\ref{eq:total_sigma}$: si osserva che esso risulta

essere dipendente solo dal numero di cifre di cui a è composto.

Per stimare il tempo impiegato a scrivere su schermo si realizza una stringa di caratteri di lunghezza via via maggiore, che viene quindi stampata a video, come da Listato riportato. Si riporta in Figura ?? il grafico del tempo di esecuzione dell'istruzione di output a video in funzione del numero di caratteri della stringa.

2 Pulse Width Modulation

Si utilizzano i pin digitali in modalità pulse width modulation (PWM), che permette di ottenere un'onda quadra con duty cycle variabile scegliendo un valore compreso tra 0 e 255. La frequenza è fissata: per il pin 9 è di 111 Hz, mentre per il pin 6 di 111 Hz, misurate entrambe con l'oscilloscopio.

Si connette innanzitutto al pin dotato di PWM un LED protetto verso massa da una resistenza $R=111\,\mathrm{k}\Omega$, misurata con il multimetro: si osserva l'aumento di luminosità del LED al crescere del duty cycle. Successivamente si connette direttamente il pin 9 al canale CH1 dell'oscilloscopio, e si riportano le istantanee per valori del duty cycle del 111% e del 111% rispettivamente nelle Figure ?? e ??.

Si ripete l'operazione di scrittura analogica con la PWM utilizzando un'onda triangolare, e si riporta in Figura ?? l'istantanea dell'oscilloscopio, e un'onda sinusoidale, riportando in Figura ?? lo screenshot dell'oscilloscopio. I listati sono riportati nel seguito.

3 Calibrazione ADC

Si utilizza il pin 3 di ingresso analogico, al quale è inviata una tensione continua compresa tra 0 e 5V mediante il generatore di tensione. Mediante il Listato seguente, si converte il valore analogico della tensione $V_{\rm in}$ in un valore digitale ${\rm Val}_V$ a 10 bit (dunque compreso tra 0 e $2^{10}-1=1023$), proporzionale al primo. La tensione in ingresso $V_{\rm in}$ è misurata con il multimetro, mentre la tensione corrispondente al valore digitale acquisito da Arduino è

$$V_x = 5.0 \,\mathrm{V} \frac{\mathrm{Val}_V}{1023}.$$

Si riportano in Tabella 3 le misure per la calibrazione dell'ADC.

Tabella 3: Misure per la calibrazione dell'ADC

$$V_{\text{in}}$$
 [V] | Val_V | V_x [V]

Nel grafico di Figura ?? sono riportati i punti sperimentali e la retta y = mx + q che meglio li interpola, di coefficiente angolare $m = 111 \,\mathrm{V}^{-1}$ e intercetta q = 111, compatibili con i valori previsti $m^{(\mathrm{atteso})} = 1023/5.0 \,\mathrm{V}$ e $q^{(\mathrm{atteso})} = 0$. Il chi quadro è, inoltre, $\chi^2 = 111$, che si confronta con il numero di gradi di libertà (111).

Invertendo la relazione per il coefficiente angolare, si ottiene la costante di calibrazione k dell'ADC, per cui si avrà, nel seguito

$$V_r = \text{Val}_V \cdot k = \text{Val}_V \cdot 111.$$

4 Acquisizione dati dall'A-DC

Si esegue un campionamento digitale di un segnale analogico, utilizzando l'ADC studiato nella Sezione precedente. La frequenza del campionamento è variabile fino ad un massimo imposto dalle caratteristiche di Arduino di circa 9 kHz, dunque si sceglierà una frequenza inferiore, come da Listato seguente.

Si invia pertanto, mediante il generatore di segnali, un segnale sinusoidale di ampiezza picco-picco 111 V e frequenza 111 kHz; si agisce inoltre sull'offset affinché l'onda abbia tensione sempre positiva. Il codice scritto per Arduino esegue il campionamento e lo salva su file, quindi esso viene analizzato successivamente. Si riporta in Figura $\ref{eq:substanto}$ l'acquisizione del segnale sinusoidale, con V_x calcolata a partire dal valore digitale mediante la costante di calibrazione ricavata in precedenza. Si riporta inoltre in Figura $\ref{eq:substanto}$ un'istantanea dell'oscilloscopio per questa configurazione.

Si ripete il campionamento per un segnale triangolare, e si riportano in Figura $\ref{eq:sigma}$ il grafico di V_x acquisita in funzione del tempo e in Figura $\ref{eq:sigma}$ l'istantanea dell'oscilloscopio per questa configurazione.