ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Επεισόδιο 2

Διάλεξη: 8 Οκτωβρίου 2020

Περίληψη προηγουμένου επεισοδίου

ΣΔΕς Ιης τάξης:
$$\frac{dy}{dx} = f(x,y)$$
 $y(x) = \frac{Q}{x}$

Υπάρχουν άπειρες λύσεις (γενική λύση) π.χ. $y(x) = \frac{Q}{x}$

Το Q προσθιορίζεται με των βούθεια συνθήμης π.χ. $y(1) = 1 \Rightarrow y(x) = \frac{1}{x}$

Μοντέλο-Λύση ΔΕ - Έλεγχης λύσης - Αγάλμης λύσης

Ο Χωριγομένων μεταβλητών $\frac{dy}{dx} = \frac{f(x)}{Q(y)} \Rightarrow \int Q(y) dy = \int f(x) dx + K$

Αλλαχή μεταβλητής π.χ. $\mu = \frac{y}{x} \rightarrow \mu$ ετατροπή σε χωριγομένων

Παράβειγμα $3: 2xy \frac{dy}{dx} = y^2 \times 2 \rightarrow \cdots \rightarrow y(x) = \pm \sqrt{Qx-x^2}$

$$\begin{aligned}
& | (1) = 1 & | = \pm \sqrt{Q - 1} \Rightarrow | = \sqrt{Q - 1} \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = +\sqrt{2x - x^2} & | (x) = Q - 1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x) = -1 \Rightarrow Q = 2 \\
& | (x)$$

Παράδειγμα 4. Μεταφορά Θερμότητας RPUQ VUXTA TOU XEIMWYA, ÉSW D°C (GTAJERNI). ZTIS 10 TO BRASU K> Eivete Tui Déphavoy. To Dephohetpo Seixvei 20°C. Ta MEDAVUX Ta Mate via unvo, to dephonetho Seixver 18°C. (a) Τι θερμουρασία θα έχει στις β το Πρωί που θα δυπνήσετε (τοσπίτι);
(β) 11 " Το σπίτι μετά απο πολύ χρόνο. Λύση Βήμα Ο Μοντελοποίηση. Υποθέτουμε ότι όλο το σπίτι έχει των is a dephonpasia. $d\theta = K(\theta_n - \theta)$ dephonpasia $\frac{\partial \mathcal{E}_{phototo}}{\partial \mathcal{E}_{phototo}} = \frac{\partial \mathcal{E}_{phototo}}{\partial \mathcal{E}_{phototo}} = \frac{\partial$

Bipal:
$$\frac{\partial \Theta}{\partial t} = -K\Theta \Rightarrow \frac{\partial \Theta}{\partial t} = -Kdt \Rightarrow \frac{\partial \Theta}{\partial t} = -Jkdt + (\Rightarrow e^{L}) \Rightarrow (n \Theta = -Kt + (\Rightarrow e^{L}) \Rightarrow e^{L}) \Rightarrow (n \Theta = -Kt + (\Rightarrow e^{L}) \Rightarrow e^{L}) \Rightarrow (n \Theta = -Kt + (\Rightarrow e^{L}) \Rightarrow e^{L}) \Rightarrow (n \Theta = -Kt + (\Rightarrow e^{L}) \Rightarrow e^{L}) \Rightarrow (n \Theta = -Kt + (\Rightarrow e^{L}) \Rightarrow ($$

Brya3 (Euproy K) (2)=18

AVTIK. 5 Tu, SISINA JUGA: $18 = 20e^{-k2} \Rightarrow 0.9 = e^{-2k} \Rightarrow \ln 0.9 = -2k$

Bipa 4:
$$G(t) = 20e^{-0.053t}$$

(a) 8 to repuir
$$\rightarrow t=10$$

(b) (10) = 20 $e^{-0.053}$ 10 = 20 $e^{-0.53}$ = 11.8° (

(+=Ø, 10 Ta Graiss)