CE KMITL

วิชา Data Communication Laboratory ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 8 Pulse Code Modulation

วัตถประสงค์

- 1. ศึกษาเกี่ยวกับการชักตัวอย่างสัญญาณ (Sampling)
- 2. ศึกษาเกี่ยวกับการเข้ารหัสสัญญาณของการมอดูเลตแบบรหัสพัลส์ (PCM)
- 3. อธิบายถึงความสัมพันธ์ระหว่างอัตราการสุ่มตัวอย่างกับการมอดูเลต

การทดลองที่ 8.1 การเปรียบเทียบผลลัพธ์ของเสียงที่มีการปรับเปลี่ยนคุณสมบัติของ PCM

- 1. ดาวน์โหลดไฟล์ข้อมูลเสียงต้นฉบับ MAGNIFICAT_16bits_96kHz.flac จาก https://goo.gl/XhKvsx
- 2. ใช้โปรแกรม Matlab ทำการอ่านข้อมูลเสียงต้นฉบับ ด้วยคำสั่ง

```
filename='d:\MAGNIFICAT_16bits_96kHz.flac';
[y, Fs]=audioread(filename);
nBits=24;
playerObj=audioplayer(y(:,1), Fs, nBits);
get(playerObj);
play(playerObj);
```

Note: ถ้าต้องการหยุดฟังให้ใช้คำสั่ง

stop(playerObj);

3. แสดงกราฟเสียงที่อ่านได้ ด้วยคำสั่ง

```
plot(y(:,1));
```

- 4. ทำการปรับค่าพารามิเตอร์ของตัว Quantizer กุณสมบัติของ PCM โดยเปลี่ยนค่า Fs และ nBits ตามข้อ 5 และ 6 แล้วเปรียบเทียบเสียงผลลัพธ์ที่ได้ โดย
 - 4.1. สร้าง และตรวจสอบคุณสมบัติของไฟล์เสียงที่ต้องการเล่นด้วยคำสั่ง

```
playerObj=audioplayer(y, Fs, nBits);
get(playerObj);
```

4.2. ทคลองฟังเสียงที่ได้ ด้วยคำสั่ง

```
play(playerObj);
```

5. ทดลองปรับค่า Sampling Frequency (Fs) ให้มากกว่า และ น้อยกว่าค่า Fs ที่อ่านได้จากไฟล์เสียงต้นฉบับ (โดยที่กำหนดค่า nBits (Bit Depth: Bits/Sample) คงเดิม) ให้ นศ. บอกค่า Fs ที่ทำให้เกิดความแตกต่างเมื่อ เทียบกับต้นฉบับ พร้อมอธิบายความแตกต่างของคุณภาพเสียงที่ได้ฟัง เมื่อเทียบกับเสียงที่ฟังจากไฟล์ ต้นฉบับ

5.	ทคลองปรับค่า Bit Depth (Bit Resolution) ให้มากกว่า และน้อยกว่า ค่า nBits ที่อ่านได้จากใฟล์เสีย
	ต้นฉบับ (โคยปรับ fs ให้มีค่าเท่ากับต้นฉบับ) ให้ นศ. บอกค่า nBits ที่ทำให้เกิดความแตกต่างเมื่อเทียบกัว
	ต้นฉบับ พร้อม นศ. อธิบายความแตกต่างของคุณภาพเสียงที่ได้ฟัง เมื่อเทียบกับเสียงที่ฟังจากไฟล์ต้นฉบับ

ลายเซ็นอาจารย์ผู้ตรวจการทคลอง ~ .

การทดลองที่ 8.2 ศึกษาการลักษณะของ Pulse Code Modulation จากโปรแกรม Matlab และ Simulink

1. เปิดโปรแกรม Matlab ดังรูปที่ 8.1 (ก) หลังจากนั้นพิมพ์คำสั่ง simulink เพื่อเรียกใช้ Simulink Library Browser ได้ผลดังในรูปที่ 8.1 (ข)

(ก) โปรแกรม Matlab

(V) Simulink Library Browser

รูปที่ 8.1 ภาพแสดงโปรแกรม Matlab และ Simulink Library Browser

- 2. ใน Simulink Library Browser เลือกเมนู File -> New -> Model หรือใช้คำสั่ง (Ctrl + N) เพื่อสร้างโมเคล สำหรับทคลอง
- 3. สร้างโมเคล การมอดูเลตแบบรหัสพัลส์ (PCM) คังรูปที่ 8.2 โคยที่ส่วนประกอบของโมเคลนำมาจาก Simulink Library Browser คังตารางที่ 8.1

รูปที่ 8.2 แสดงโมเคล การมอคูเลตแบบรหัสพัลส์ (PCM)

ตารางที่ 8.1 ตารางแสดงส่วนประกอบของ โมเดล การมอดูเลตแบบรหัสพัลส์ (PCM)

ส่วนประกอบของโมเดล	สัญญูลักษณ์	Simulink Library Browser
Scope		Cincolinde XCindro
To Workspace	simout	Simulink→Sinks
Pulse Generator	ПП	Simulink→Sources
Signal Generator	□□□□ ◇◇	Simulink—7Sources
Product	×	Simulink→Math Operations
Sampled Quantizer Encode	Scalar quantizer	Communications Blockset→Sources Coding
Quantizer Decode	Quantizer decode	หรือ http://www.kmitl.ac.th/~ksjirasa/tool_pcm.mdl
Bit to Integer Converter	Bit to Integer Converter	Communications Pleakset - Altility Functions
Integer to Bit Converter	> Integer to Bit Converter	Communications Blockset→Utility Functions

4. ตั้งค่าภายใน Simulation Parameters (จาก Menu bar Simulation → Simulation Parameters หรือ Configuration Parameters) ตามรูปที่ 8.3 และตั้งค่าตัวแปรภายในส่วนประกอบของโมเดล Sampling ดัง ตารางที่ 8.2

รูปที่ 8.3 ภาพแสดงค่าภายใน Simulation Parameters (การทดลองการมอดูเลตแบบรหัสพัลส์ (PCM))

ตารางที่ 8.2 ตารางแสดงการตั้งค่าตัวแปรภายใน โมเดล การมอดูเลตแบบรหัสพัลส์ (PCM)

ส่วนประกอบของโมเดล	ตัวแปร	ค่า
Pulse Generator	Pulse type	Timebased
	Amplitude	1
	Period (secs)	0.01
	Pulse Width (% of period)	1
	Phase delays (secs)	0
	Interpret vector parameters as 1-D	Yes
Signal Generator	Wave form	Sine
	Amplitude	1
	Frequency	5
	Units	Hertz
	Interpret vector parameters as 1-D	Yes
Product	Number of inputs	2
	Multiplication	(.*)
Analog Filter Design	Design method	Butterworth
	Filter type	Lowpass
	Filter order	8
	Passband edge frequency (rads/sec)	5*2*pi

ส่วนประกอบของโมเดล	ตัวแปร	ค่า
Sampled Quantizer Encode	Quantization partition	[5 0 .5]
	Quantization codebook	[7525 .25 .75]
	Input signal vector length	1
	Sample time (*เปลี่ยนตาม Period ทุกครั้ง*)	.01
Integer to Bit Converter	Number of bit per integer	2
Bit to Integer Converter	Number of bit per integer	2
Quantizer Decode	Quantization codebook	[7525 .25 .75]
To Workspace	Variable name	(ชื่อตามในรูป)
	Limit data points to last	inf
	Decimation	1
	Sample time (*เปลี่ยนตาม Period ทุกครั้ง*)	0.01
	Save format	Array

- 5. สั่งให้โมเคลทำงาน (Start Simulation) แล้วบันทึกผลการทคลอง
 - 5.1. รูปการทดลองให้กด AutoScale 👛 เพื่อปรับให้สัญญาณมีขนาดเหมาะสมในการแสดงภาพ
 - 5.2. การบันทึกผลการทดลองให้ปรับสัญญาณให้อยู่ในรูปที่สามารถเข้าใจได้ โดยใช้ Zoom X-axis 🔑

7. ความถี่ \mathbf{f} , ในตารางที่ 8.3 เป็นเท่าใด (เติมค่าลงในตาราง)

ตารางที่ 8.3 ตารางแสดงการตั้งค่าตามการทดลองที่ข้อที่ 3

การทดลอง	\mathbf{f}_{s}	Pulse Generator Signal	Sampled Quantizer Encode	Signal Generator
			To Workspace	
ก	Hz	Period = 0.01	Sample time = .01	Amplitude = 1
ข	Hz	Period = 0.01	Sample time = .01	Amplitude = 0.1
ค	Hz	Period = 0.2	Sample time = .2	Amplitude = 1

*** เมื่อเปลี่ยนค่า Period ใน Signal Generator ให้เปลี่ยน Sample time ใน Sampled Quantizer Encode และ To Workspace ตามทุกครั้ง

0.8 1 8

สัญญาณจาก Signal Generator	สัญญาณที่ผ่านการ Sampling (Scope 1)
a didu	
สัญญาณที่เป็น PCM (Scope 3) หาก Amplitude สัญญาณจาก Signal Generato ต้องทำอย่างไร เมื่อทำสมบูรณ์แล้วเชิญอาจารย์	สัญญาณที่แปลงกลับ (Scope 4) r เป็น 2 V และต้องการใช้ระดับการควอนไตซ์เป็น ์ตรวจการทดลอง
หาก Amplitude สัญญาณจาก Signal Generato	r เป็น 2 V และต้องการใช้ระดับการควอนไตซ์เป็น
หาก Amplitude สัญญาณจาก Signal Generato	r เป็น 2 V และต้องการใช้ระดับการควอนใตซ์เป็น ์ตรวจการทดลอง
หาก Amplitude สัญญาณจาก Signal Generato ต้องทำอย่างไร เมื่อทำสมบูรณ์แล้วเชิญอาจารย์	r เป็น 2 V และต้องการใช้ระดับการควอนใตซ์เป็น ์ตรวจการทดลอง
หาก Amplitude สัญญาณจาก Signal Generato ต้องทำอย่างไร เมื่อทำสมบูรณ์แล้วเชิญอาจารย์	r เป็น 2 V และต้องการใช้ระดับการควอนใตซ์เป็น ์ตรวจการทดลอง
หาก Amplitude สัญญาณจาก Signal Generato ต้องทำอย่างไร เมื่อทำสมบูรณ์แล้วเชิญอาจารย์ ะวิเคราะห์ผลการทดลอง การเข้ารหัสสัญญาณข	r เป็น 2 V และต้องการใช้ระดับการควอนใตซ์เป็น ์ตรวจการทดลอง