Departamento de Matemática e Aplicações

Exame de recurso de Cálculo A

Duração: 2 horas

Nome:	Nr.:	Curso:
		041501

GRUPO I (12 valores) Apresente apenas o resultado.

- 1. O valor real de x que satisfaz a equação $\arccos(2x) = \frac{\pi}{6}$ é:
- 2. Sendo $f(x) = \arccos(2\sqrt{x})$, a expressão de f'(x) é : _____
- 3. Decomponha a fracção $\frac{1}{(x^2+4)(x^2-4)}$ em fracções elementares, sem calcular as constantes.
- 4. Determine $P\left(\frac{4}{x \cdot \ln^2 x} + \frac{3x}{9 + x^2}\right)$:
- 5. Determine $P(t.e^{2t})$:
- 6. Escreva a equação, em coordenadas polares, que caracteriza o arco da curva $(x+1)^2 + y^2 = 1 \land y \ge 0 \land y + x \le 0$.
- 7. Considere o integral $\int_{\sqrt{3}}^{3} \frac{\sqrt{9+u^2}}{u} du$. Escreva o integral obtido depois de aplicar a substituição $u=3 \operatorname{tg} t$, de modo que a função integranda esteja escrita em termos das funções $\sin t$ e $\cos t$.
- 8. Sabendo que $\int_0^1 f(x)dx = \frac{3}{2}$ e que $\int_0^2 f(x)dx = -1$, determine o valor da área sombreada na figura.

$$\bullet \ \operatorname{sen} \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$$

$$\bullet \sin \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

•
$$\sin \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$$
 • $\sin \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ • $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

- 9. Considere a região plana limitada pelas curvas $y=x^3$ e y=4x.
 - (a) Escreva a expressão na forma mais simples, usando integrais, que permite calcular o volume do sólido obtido pela rotação dessa área em torno do eixo OX.

- (b) Escreva a expressão na forma mais simples, usando integrais, que permite calcular o perímetro da região indicada.
- 10. A soma da série $\sum_{n=1}^{+\infty} 4^{3-n}$ é:
- 11. Escreva a série $-10 + \frac{15}{4} \frac{20}{9} + \frac{25}{16} \cdots$ utilizando o símbolo de somatório_____

GRUPO II (8 valores)

Apresente todos os cálculos efectuados.

1. Considere a função definida em \mathbb{R} , $h(x)=\left\{\begin{array}{lll} x-1 & \text{se} & x\leq\pi\\ \sin^2x & \text{se} & x>\pi \end{array}\right.$

Determine $\int_0^{2\pi} h(x)dx$.

- 3. Considere a região plana definida da forma $y \le -x^2 + 5 \land y \ge (x-1)^2$.
 - (a) Faça o esboço da região plana indicada.

(b) Determine a área da região indicada.

4. Estude a natureza do integral impróprio $\int_{-\infty}^4 \frac{1}{\sqrt{4-x}} dx$ e se possível, indique o seu valor.

5. Estude a natureza da série $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{2n+3}}.$