MININISASI LOGIC

KAYYISA ZAHRATULFIRDAUS 18320011

PUTRI ALFIYYAHDIANTI 18320041

EKSPLORASI ALGORITMA MINIMISASI LOGIC FUNCTION

BOOLEAN ALGEBRA

Sebuah set aturan yang digunakan dalam melakukan penyederhanaan fungsi rangkaian logika.

Terdapat 3 bagian :

- 1.Postulates
- 2. Properties
- 3. Theorem

BOOLEAN ALGEBRA PROPERTIES.

1a:
$$A \cdot 0 = 0$$

1b:
$$A+0=A$$

2a:
$$A \cdot 1 = A$$

$$3a: A \cdot A = A$$

3b:
$$A+A=A$$

4a:
$$A \cdot \overline{A} = 0$$

4b:
$$A + \overline{A} = 1$$

5a:
$$\overline{\overline{A}} = A$$

5b:
$$A = \overline{\overline{A}}$$

6a:
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

6b:
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Postulates

Commutative	
-------------	--

$$A \cdot B = B \cdot A$$
 $A + B = B + A$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$A+(B+C)=(A+B)+C$$

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

1a:
$$A=1$$
 (if $A \neq 0$)

1b:
$$A=0$$
 (if $A \ne 1$)

2a:
$$0.0=0$$

2b:
$$0+0=0$$

4a:
$$1.0=0$$

5a:
$$\bar{1} = 0$$

5b:
$$\overline{0} = 1$$

7a:
$$A \cdot (A+B) = A$$

7b:
$$A+A\cdot B=A$$

8a:
$$(A+B)\cdot (A+\overline{B})=A$$

8b:
$$A \cdot B + A \cdot \overline{B} = A$$

9b: $A \cdot \overline{B} + B = A + B$

9a:
$$(A+\overline{B})\cdot B=A\cdot B$$

10:
$$A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

11:
$$A \odot B = \overline{A} \cdot \overline{B} + A \cdot B$$

$$\oplus$$
 = XOR, \odot = XNOR

Theorems

KARNAUGH MAPS

Pengaplikasiannya menggunakan tabel dengan bentuk tabel dan jumlah kolom dibentuk berdasarkan jumlah variabel .

```
Ada 2 jenis:
1.SOP (Sum of Product)
2.POS (Product of Sum)
```

Karnaugh Maps

Bentuk tabel K-maps 3 variabel dengan penyelesaian SOP (sum of Product)

Bentuk tabel K-maps 3 variabel dengan penyelesaian POS (Product of Sum)

QUINE MCCLUSKEY

Minimisasi logic dengan prime implicant. Metode ini biasanya digunkan untuk jumlah variabel yang besar (di atas 6).

Proses penyelesaian cukuppanjang namun terstruktur .

Quine McCluskey

Contoh Penyelesaian Metode Quine McCluskey

F(A,B,C,D) = M(0,1,3,7,8,9,11,15)

Tabel 2.3.1. Pengubahan Ke Biner					
0	0000				
1	0001				
3	0011				
7	0111				
8	1000				
9	1001				
11	1011				
15	1111				

Group	Minterm	Bin Rep (ABCD)
0	M0	0000
1	M1	0001
4	M8	1000
2	M3	0011
	M9	1001
3	M7	0111
	M11	1011

1111

M15

Tabel 2.3.2. Pengelompokkan Berdasarkan Jumlah "1"

Tabel 2.3.4. Prime Implicant 1					
Group	Matched Pairs	Bin . Rep			
0	M0-M1	000-			
	M0-M8	-000			
1	M1-M3	00-1			
	M1-M9	-001			
	M8-M9	100-			
2	M3-M7	0-11			
	M3-M11	-011			
_	M9-M11	10-1			
3	M7-M15	-111			
	M11-M15	1-11			

Quine McCluskey

Tabel 2.3.5. Prime Implicant II					
Gro up	Matched Pairs	Bin . Rep (ABCD)	Prime Impicant		
0	M0-M1- M8-M9	-00-	BC		
	M0-M8- M1-M9	-00-			
1	M1-M3- M9-M11	-0-1	$\bar{B}D$		
	M1-M9- M3-M11	-0-1			
2	M3-M7- M11-M15	11	CD		
	M3-M11- M7-M15	11			

Prime	Minterm	0	1	3	7	8	9	11	15
Implicant	Involved								
\overline{BC}	0,1,8,9	X^*	X			X*	X		
$\bar{B}D$	1,3,9,11		Х	X			X	Х	
CD	3,7,11,15			X	X^*			X	X*

Kemudian pilih prime Implicant yang memiliki 1 buah "X" pada kolomnya . Dan hasil akhir persamaan adalah (-B-C + -CD)

PENGIMPLEMENTASIAN PROGRAM BAHASA C


```
initial_var
    inputData()
      sort()
  searchIdxMin()
     delNode()
   arrMinterms()
     groupby()
simplificationTab()
   removeLast()
```

```
compare()
initial_implicants()
      reduce()
    showImpli()
    showTable()
    implicant()
    finalNode()
   changetoVar()
   finalResult()
```


TERIMA KASIH