7. 객체지향 설계

학습목표

- ❖ 설계를 위한 객체지향 개념
- ❖ 객체지향 설계 프로세스
- ❖ 설계 진화

객체지향 설계 프로세스

- ❖ 객체지향 개발은 seamless transition
- Seam

http://blog.naver.com/com2001v

70~80년대 초의 구조적 분석 및 설계

❖ 구조적 분석 및 설계는 뚜렷한 seam(단계의 구분)을 가짐

객체지향 분석 및 설계

❖ 객체지향 분석 및 설계는 seamless transition

분석

클래스 다이어그램 순차 다이어그램

설계

클래스 다이어그램 순차 다이어그램

[참고] 요구사항의 유형

[참고] 요구사항 정의 단계의 특징

[참고] 분석 단계의 역할

[참고] 분석 단계의 특징

설계

요구사항 명세서

분석 모델

설계 모델

시스템 아키텍처 (분산 아키텍처 플랫폼 소프트웨어) 응용 소프트웨어 (컴포넌트 설계 클래스)

플랫폼 소프트웨어와 응용 소프트웨어

플랫폼 소프트웨어와 응용 소프트웨어

분석 단계와 설계 단계의 차이점

❖ 분석은 기능적 요구사항만을 고려하여 수행된다

분석 단계와 설계 단계의 차이점

❖ 분석 단계는 응용 소프트웨어 계층만을 대상으로 한다.

설계를 위한 객체지향 개념

❖ 객체

객체는 상태와 그 상태에 적용되는 연산의 집합을 가지는 개체이다. 상태는 객체의 속성들의 집합으로 표현된다. 객체에 연관된 연산들은 어떤 연산이 요구될 때서비스를 요청하는 다른 객체(클라이언트)들에게 서비스를 제공한다.

❖ 클래스

객체들은 클래스 정의에 따라 생성된다. 클래스 정의는 객체를 생성하기 위한 타입 명세와 템플릿 모두이다. 클래스 정의는 클래스의 객체에 연관되어야 하는 모든 속성들과 연산들에 대한 선언을 포함한다.

학생 클래스와 일반화 계층

❖ 학생 클래스

학생 이름:스트링 주소: 스트링 학번: 정수 주민등록번호: 정수 학과: 스트링 지도교수: 스트링 학년: 정수 상태: {재학중, 휴학중, 졸업} 장학금코드: 정수 성별: 입학() 졸업() 전과() 휴학()

❖ 일반화 계층

연관

[참고] 클래스 다이어그램의 요소

❖ 클래스 다이어그램의 관계

관계	표기법	의미
연관 관계	A 1* B	클래스 A와 클래스 B는 연관 관계를 가지고 있다.
포함 관계	A 1* B	클래스 B는 클래스 A의 부분 이다.
일반화 관계	A B	클래스 B는 클래스 A의 하위 클래스이다.
의존 관계	A	클래스 A는 클래스 B에 의존 한다.
인터페이스 실현 관계	< <interface>> A B</interface>	클래스 B는 인터페이스 A를 실현한다.
인터페이스 의존 관계	A >	클래스 A는 인터페이스 B에 의존한다.

객체지향 설계 프로세스

- ❖ Sommerville이 제안한 방식
 - ① 유스케이스 모델을 정의한다.
 - ② 시스템 아키텍처를 설계한다.
 - ③ 시스템의 주요 객체를 식별한다.
 - ④ 설계 모델을 개발한다.
 - ⑤ 객체 인터페이스를 명세화한다.

사례: 빅 데이터 분석 시스템의 아키텍처

유스케이스 모델

유스케이스 다이어그램

항목	설명	
이름	보고	
개요	요약된 데이터가 SNS 데이터 수집 시스템에 전송된다.	
관련 액터	SNS 데이터 수집 시스템, SNS 시스템	
우선순위	1 중요도 1(상) 난이도 1(상)	
선행 조건	SNS 데이터 수집 시스템은 다양한 SNS 시스템과 네트워크를 설정하고 데 이터의 전송을 요청한다.	
후행 조건		
	SNS 데이터 스자기는 스자 기가 도아 다야하 SNS 시스테이르브다 스지되	

유스케이스 명세서

시나리오

SNS 데이터 수집기는 수집 기간 동안 다양한 SNS 시스템으로부터 수집된 SNS 데이터의 요약을 SNS 데이터 수집 시스템으로 전송한다. 전송된 데이터는 ...이다.

비기능적 요구사항 해당 없음

아키텍처 설계

객체 식별

- ❖ 객체를 식별하는 다양한 방법
 - ① 시스템을 자연 언어로 기술한 설명문에 문법적인 분석을 사용한다. 객체와 속성은 명사이며, 연산이나 서비스는 동사이다.
 - ② 응용 영역에 있는 유형의 개체(사물), 관리자와 같은 역할, 요청과 같은이벤트, 모임과 같은 상호작용, 사무실과 같은 장소, 기업과 같은 조직의 단위 등을 사용한다.
 - ③ 설계자가 시스템의 전반적인 행동을 먼저 이해하면 행위 접근법을 사용한다. 다양한 행동이 시스템의 여러 부분에 할당되고, 이런 행동을 누가 시작하고 참여하는가에 대해 이해한다. 중요한 역할을 수행하는 참여자를 객체로 식별한다.
 - ④ 시스템 사용에 대한 다양한 시나리오가 식별되고 분석되는 시나리오 중심 기법을 사용한다. 분석 팀은 각 시나리오를 분석하고 필요한 객체, 속성, 연산을 식별하여야 한다. 분석가와 설계자가 객체의 역할을 수행하는 CRC 카드라고 부르는 분석기법은 이런 시나리오 중심 접근법을 지원하는데 효과적이다.

객체 식별 사례

클래스

❖ 클래스는 시스템을 구성하는 실체로서 외부 입력으로부터 출력을 산출하는 실질적인 기능을 제공한다.

설계 모델

❖ 정적 모델

시스템의 정적인 구조를 시스템 객체 클래스와 객체 클래스간의 관계로서 묘사한다. 이 단계에서 문서화될 수 있는 중요한 관계는 일반화 관계, 합성 관계 등이다.

❖ 동적 모델

시스템의 동적인 구조를 묘사하고, 시스템 객체 사이의 상호작용을 보여준다. 문서화될 수
 있는 상호작용으로는 객체에 의해 만들어지는 서비스 요청의 순서, 시스템의 상태가 상호작용과 관련된 방식 등을 들 수 있다.

❖ SNS 데이터 수집기의 예

- ① 서브시스템 모델: 객체들을 논리적으로 그룹화하여 서브시스템으로 보여준다. 서 브시스템 모델은 각 서브시스템이 패키지로 표현되는 클래스 다이어그램 형식으로 나타낸다. 서브시스템 모델은 정적 모델이다.
- ② 순차 모델: 객체 상호작용의 순서를 보여준다. 순차 모델은 UML의 순차 다이어그램 혹은 통신 다이어그램을 사용하여 나타낸다. 순차 모델은 동적 모델이다.
- ③ 상태 모델: 개별적인 객체가 이벤트에 응답하여 자신의 상태를 바꾸는 방법을 보여준다. UML에서 상태 모델은 상태 다이어그램으로 표현된다. 상태 모델은 동적 모델이다.

SNS 데이터 수집기 패키지

SNS 데이터 수집기의 순차 다이어그램

SNSCollector의 상태 다이어그램

객체 인터페이스 명세

```
interface SNSCollector {
  public void SNSCollector();
  public void startup();
  public void startup(instrument i);
  public void shutdown();
  public void shutdown(instrument i);
  public void reportSNS();
  public void test();
  public void test(instrument i);
  public void calibrate(instrument i);
```

설계 개선

- ❖ 웹 로그 데이터 수집 기능 추가
 - ① WebRobot라고 하는 클래스가 SNSData와 동일한 수준에서 SNSCollector의 일부로 도입되어야 한다.
 - ② 웹 사이트 방문 정보를 중앙 컴퓨터로 전송하기 위해 reportWebRobot 연산을 SNSCollector에 추가해야 한다. SNS 데 이터 수집기 제어 소프트웨어는 최상위 수준의 SNSCollector 객체가 요청할 때 웹 로봇 측정치가 자동적으로 수집되도 록 수정되어야 한다.
 - ③ 웹 로봇 데이터의 유형을 나타내는 객체가 추가되어야 한다.

클래스 설계 원칙

- ❖ 단일 책임 원칙(SPR)
 - 하나의 클래스는 단 하나의 책임(기능)만을 가지도록 설계
- ❖ 개방 폐쇄 원칙(OCP)
 - 클래스는 확장에 대해서는 열려있지만 수정에 대해서는 닫혀있어야 함
- ❖ 리스코프의 치환 원칙(LSP)
 - 서브 타입(하위 클래스)은 어디에서나 자신의 베이스 타입(상위 클래스)으로 치환 가능해야 함
- ❖ 인터페이스 분리 원칙(ISP)
 - 각 클라이언트에 맞는 인터페이스만 분리하여 사용
 - 클래스는 자신이 사용하지 않는 인터페이스는 구현하지 말아야 함
- ❖ 의존성 역전 원칙(DIP)
 - 특정 클래스로부터 상속받으려면 상위 클래스를 추상 클래스나 인터페이스로 만 들어야 함(의존하도록 설계)