Graph Theory - Sheet 4 - November 19, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 13

Theorem 1.1. If a graph has an ear-decomposition, then it is 2-connected.

Proof. By Menger's Theorem, a graph G is k-connected if and only if for any two vertices a, b in G there exist k independent a-b-paths. We find those 2 paths for any ear-composable graph.

Problem 14

For $0 < l < m \le d$, we will construct a graph F(d, l, m) with

- $\delta(F(d, l, m)) = d$
- $\kappa(F(d,l,m)) = l$
- $\kappa'(F(d,l,m)) = m$

Problem 15

I will prove that any block-cut-vertex graph is a tree, by showing by contradiction that any block-cut-vertex graph is acyclic and connected.

Theorem 3.1. The block-cut-vertex graph G = (V, E) of any connected graph G' = (V', E') is a tree.

Proof. Let's assume for the sake of contradiction that G has a cycle $C = (b_1b_2...b_1)$. Let's denote the subgraphs $B_1, B_2, ...B_n$ of G' which are the 2-connected components and bridges corresponding to the nodes $b_1, b_2, ...b_n$ of G. Let B_1 and B_2 be as stated above two different subgraphs of G'. Because the corresponding nodes b_1 and b_2 are adjacent in G, B_1 and B_2 have to share a vertex $x \in V(B_1) \cap V(B_2)$. We can use the same argument for each pair B_i, B_{i+1} . Additionally, we know because each component B_j is either 2-connected or a bridge. Thus we can find a circle through all the components $B_1, B_2...B_n$ which is 2-connected, this is a contradiction to $B_1, B_2...B_n$ being the blocks of an block-cut-vertex graph, because by definition these blocks are either bridges or maximal 2-connected components.

Problem 16