NON-SYMPLECTIC AUTOMORPHISMS OF PRIME ORDER OF O'GRADY'S TENFOLDS AND CUBIC FOURFOLDS

SIMONE BILLI AND ANNALISA GROSSI

ABSTRACT. We give a lattice-theoretic classification of non-symplectic automorphisms of prime order of irreducible holomorphic symplectic manifolds of OG10 type. We determine which automorphisms are induced by a non-symplectic automorphism of prime order of a cubic fourfold on the associated Laza–Saccà–Voisin manifolds, giving a geometric and lattice-theoretic description of the algebraic and transcendental lattices of the cubic fourfold. As an application we discuss the rationality conjecture for a general cubic fourfold with a non-symplectic automorphism of prime order.

1. Introduction

An irreducible holomorphic symplectic (ihs) manifold is a simply connected, compact, complex, Kähler manifold X carrying a non-degenerate holomorphic symplectic form σ_X which spans $\mathrm{H}^0(X,\Omega_X^2)$. An automorphism of an ihs manifold is called symplectic if it acts trivially on the symplectic form, non-symplectic otherwise. A cyclic group $G \subset \mathrm{Aut}(X)$ is called non-symplectic if it is generated by a non-symplectic automorphism.

Cubic hypersurfaces in \mathbb{P}^5 admit a Hodge decomposition of K3 type, i.e. $H^4(Y,\mathbb{C}) = H^{3,1}(Y) \oplus H^{2,2}(Y) \oplus H^{1,3}(Y)$ and $h^{3,1}(Y) = 1$, hence there is a notion of symplectic and non-symplectic automorphisms. Namely, an automorphism of a cubic fourfold Y is symplectic if the induced action on $H^4(Y,\mathbb{Z})$ acts trivially on $H^{3,1}(Y)$, non-symplectic otherwise.

Giovenzana-Grossi-Onorati-Veniani [18] prove that any symplectic automorphism of finite order of an ihs manifold of O'Grady's 10-dimensional deformation type is trivial.

In this paper we classify non-symplectic automorphisms of prime order of an ihs manifold X of OG10 type. If X can be realized as a compactification of the intermediate jacobian fibration of the hyperplane sections of a cubic fourfold, referring to the model due to Laza–Saccà–Voisin [31, 56], we give a lattice-theoretic criterion to determine when such an automorphism is induced by an automorphism of the cubic fourfold. To this purpose, we study the induced action on $H^4(Y, \mathbb{Z})$ by

1

Date: May 10, 2024.

²⁰²⁰ Mathematics Subject Classification. 14J35, 14J42, 14J50.

Key words and phrases. Irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, cubic fourfolds.

Simone Billi was partially supported by the Curiosity Driven 2021 Project Varieties with trivial or negative canonical bundle and the birational geometry of moduli spaces of curves: a constructive approach - Programma nazionale per la Ricerca (PNR) DM 737/2021. Annalisa Grossi was partially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-2020-SyG-854361-HyperK) and by Funded by the European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title "Symplectic varieties: their interplay with Fano manifolds and derived categories", proposal code 2022PEKYBJ - CUP J53D23003840006. Simone Billi and Annalisa Grossi are members of the INdAM group GNSAGA.

a non-symplectic automorphism of prime order of a smooth cubic fourfold Y. Starting from these results we exhibit the algebraic and the transcendental lattice of a general cubic fourfold that admits a non-symplectic automorphism of prime order. Moreover, we give a geometric set of generators of the algebraic lattice in terms of planes or cubic scrolls. As a consequence, we discuss the rationality conjecture for cubic fourfolds with a non-symplectic automorphism of prime order.

The classification of the algebraic and the transcendental lattices of a cubic fourfold with a non-symplectic involution, and the discussion of the rationality conjecture for such a cubic, is the content of a recent paper by Marquand [35].

The classification of automorphisms of ihs manifolds of OG10 type is an extension of a result by Brandhorst–Cattaneo [9] that provide lattice-theoretic constraints of non-symplectic automorphisms of odd prime order of an ihs manifold in terms of isometries of unimodular lattices.

One of the advantages in studying induced automorphisms is to control the fixed locus. Automorphisms of ihs manifolds with empty fixed locus are needed to construct Enriques manifolds, the higher dimensional analogue of Enriques surfaces, see [7, 47] for more details. The authors together with Luca Giovenzana and Franco Giovenzana in an upcoming paper [3] use the results about induced automorphisms to investigate the existence of Enriques manifolds as free quotient of ihs manifolds of OG10 type.

1.1. Automorphisms of ihs manifolds and cubic fourfolds. Automorphisms of ihs manifolds can be classified studying the induced action on the second integral cohomology $H^2(X,\mathbb{Z})$, which carries a lattice structure provided by the Beauville–Bogomolov–Fujiki quadratic form. In particular, if X is an ihs manifold of OG10 type we know by [52] that $H^2(X,\mathbb{Z})$ is isometric to the abstract lattice $\mathbf{L} := \mathbf{U}^{\oplus 3} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$. A marking is an isometry $\eta \colon H^2(X,\mathbb{Z}) \to \mathbf{L}$ and, whenever we fix a marked pair (X,η) of OG10 type, the representation map

(1)
$$\eta_* : \operatorname{Aut}(X) \to \operatorname{O}(\mathbf{L}), \quad f \mapsto \eta \circ (f^{-1})^* \circ \eta^{-1}$$

is injective by a result of Mongardi–Wandel [44]. For this reason, we study automorphisms in terms of their induced action in cohomology. More precisely, if an isometry $\varphi \in O(\mathbf{L})$ verifies the assumptions of Hodge–theoretic Torelli theorem [34, Theorem 1.3], then there exists an automorphism $g \in \operatorname{Aut}(X)$ such that $\eta_*(g) = \varphi$.

If (X, η) is a marked pair of OG10 type, an isometry $\varphi \in O(\mathbf{L})$ is non-symplectic if the action on the Hodge structure of $\mathbf{L} \otimes \mathbb{C}$ (induced via the marking) is non-symplectic. A cyclic group $G \subset O(\mathbf{L})$ is called non-symplectic if G is generated by a non-symplectic isometry.

Similarly if Y is a cubic fourfold, the integral cohomology $H^4(Y,\mathbb{Z})$ with the intersection form, is an odd unimodular lattice isometric to $[1]^{\oplus 21} \oplus [-1]^{\oplus 3}$. Consider the square of an hyperplane section $\eta_Y \in H^4(Y,\mathbb{Z})$, then the primitive cohomology $H_p^4(Y,\mathbb{Z}) = \langle \eta_Y \rangle^{\perp}$ with the intersection form is an even lattice isometric to $\mathbf{F} := \mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8^{\oplus 2} \oplus \mathbf{A}_2$. We denote by $A(Y) := H^{2,2}(Y,\mathbb{C}) \cap H^4(Y,\mathbb{Z})$ the lattice of algebraic cycles of Y, and by $T(Y) = A(Y)^{\perp} \subset H^4(Y,\mathbb{Z})$ the transcendental lattice. We denote by $A_p(Y) := H^{2,2}(Y,\mathbb{C}) \cap H_p^4(Y,\mathbb{Z})$ the even lattice of algebraic primitive cycles. A marking is an isometry $\gamma \colon H_p^4(Y,\mathbb{Z}) \to \mathbf{F}$. Let (Y,γ) be a marked pair, an isometry $\varphi \in \mathrm{O}(\mathbf{F})$ is non-symplectic if the action on the Hodge structure of $\mathbf{F} \otimes \mathbb{C}$ (induced via the marking) is non-symplectic. Automorphisms of Y are identified with Hodge isometries of $H_p^4(Y,\mathbb{Z})$ by the Hodge—theoretic Torelli theorem [57], and then similar techniques to the ones used for ihs manifolds can be applied.

We recall the known results about automorphisms of other deformations types of ihs manifolds. Regarding prime order automorphisms of ihs manifolds of $K3^{[2]}$ type we refer to [1, 5, 6, 10, 13, 40,

48]. Non-symplectic automorphisms of ihs manifolds of $K3^{[n]}$ type are treated in [11, 12], while automorphisms of ihs manifolds of $K_n(A)$ type are classified in [43] for n = 2, and in [9] for every n. The classification of symplectic automorphisms of ihs manifolds of OG6 type is given in [21], while non-symplectic automorphisms of prime order are classified by in [20] the second named author. Symplectic birational transformations of ihs manifolds of OG10 type are studied in [36] and groups of symplectic birational transformations are studied in [37].

Automorphisms of prime order of a smooth cubic fourfold are calssified in [16, 19, 59] in terms of their actions on \mathbb{P}^5 and giving a general equation of Y. Groups of symplectic automorphisms of cubic fourfolds are studied in [16, 32]. The classification of algebraic and transcendental lattices of a cubic fourfold with an involution is the content of [35].

1.2. Contents of the paper. In §2 we introduce basic notions and results on lattice theory to study automorphisms of ihs manifolds and cubic fourfolds. Moreover, we recall Hodge–theoretic Torelli theorem for these manifolds and the construction due to Laza–Saccà–Voisin.

In §3 we classify cyclic groups $G \subset \operatorname{Aut}(X)$ of non-symplectic automorphisms of prime order of an ihs manifold X of OG10 type. We denote by \mathbf{L}^G the *invariant lattice* and by \mathbf{L}_G the *coinvariant lattice*. We provide a list of invariant and coinvariant sublattices of the induced action of G on \mathbf{L} up to isometry. To achieve this we consider the unique primitive embedding $\mathbf{L} \hookrightarrow \mathbf{\Lambda} := \mathbf{U}^{\oplus 5} \oplus \mathbf{E}_8(-1)^{\oplus 2}$ and we refer to [9] for a classification of odd prime order isometries of unimodular lattices.

Theorem 1.1 (see Theorem 3.7). Let $G \subset O(\mathbf{L})$ be a group of non-symplectic isometries of prime order p. Then there exists an ihs manifold X of OG10 type such that $G \subset \operatorname{Aut}(X)$ if and only if $2 \le p \le 23$ and the pairs $(\mathbf{L}^G, \mathbf{L}_G)$ appear in Table 6 and Table 7 for p = 2, and in Table 9 for $p \ge 3$.

In §4 we give a lattice-theoretic and a geometric classification of prime order non-symplectic automorphisms of a cubic fourfold, that can be of order two or three Bb [19,59].

Let $G \subset \operatorname{Aut}(Y)$ be a group of non-symplectic automorphisms of prime order of a general cubic fourfold Y, then the invariant lattice \mathbf{F}^G coincide with the primitive algebraic lattice $A_p(Y)$, and the coinvariant lattice \mathbf{F}_G coincides with the transcendental lattice T(Y). In §4.1 we classify the algebraic and the transcendental lattices of a general cubic fourfold with a non-symplectic automorphism of order three.

Theorem 1.2 (See Theorem 4.6). Let $G \subset O(\mathbf{F})$ be a group of non-symplectic isometries of order three. Then there exists a cubic fourfold Y such that $G \subset \operatorname{Aut}(Y)$ if and only if the pairs $(\mathbf{F}^G, \mathbf{F}_G)$ appears in Table 3. For such a general Y the algebraic lattice A(Y) appear in Table 4, and the class of η_Y is expressed in a basis of A(Y).

There are many examples of rational cubic fourfolds [8, 23, 27, 55], and it is conjectured that a cubic fourfold is rational if and only if it admits an associated K3 surface (i.e the transcendental cohomology is induced from a K3 surface) [23,26,27]. In §4.2 we provide a geometric set of generators for the algebraic lattice of a cubic fourfold that admits a non-symplectic automorphism of order three (see Proposition 4.18, Proposition 4.11, Proposition 4.13). Moreover, knowing the algebraic and the transcendental lattices, we determine if there exists an associated K3 surface via Torelli theorem. When there is an associated K3 surface we verify the conjecture proving the rationality of the cubic, we collect information related to the rationality of the cubic fourfolds in Table 1.

TABLE 1. Cubic fourfolds with a non-symplectic automorphism of order three, with notation as in Theorem 4.1.

No.	$\operatorname{rk}(A(Y))$	Associated K3	Rational
ϕ_3^1	1	No	?
ϕ_{3}^{5} ϕ_{3}^{5} ϕ_{3}^{7} ϕ_{2}^{2}	7	No	?
ϕ_3^7	9	Yes	Yes
ϕ_3^2	13	Yes	Yes

In §5 we relate an automorphism of a cubic fourfold Y to the induced automorphism of J(Y) and $J^t(Y)$, where J(Y) denotes the associated Laza–Saccà–Voisin manifold, and $J^t(Y)$ denotes the associated twisted Laza–Saccà–Voisin manifold. See §2.4 for precise definitions. A crucial result by Mongardi–Onorati, see Theorem 5.1, relates the primitive integral cohomology $H_p^4(Y,\mathbb{Z})$ to the integral cohomology $H^2(J(Y),\mathbb{Z})$, and a similar result holds true for the twisted case, see Proposition 5.2.

We obtain that any non-symplectic automorphism of a general cubic fourfold Y induces a non-symplectic automorphism of the associated J(Y) and $J^t(Y)$. Moreover, we characterize non-symplectic automorphisms of order two and three of Laza–Saccà–Voisin manifolds that are induced by non-symplectic automorphisms of a cubic fourfold.

Theorem 1.3 (See Theorem 5.12 and Theorem 5.13). Let Y be a general cubic fourfold and let $G \subset \operatorname{Aut}(Y)$ be group of non-symplectic automorphisms of prime order p. Then the automorphisms of G induce non-symplectic automorphisms of the ihs manifolds of OG10 type J(Y) and $J^t(Y)$, and the pairs $(\mathbf{L}^G, \mathbf{L}_G)$ for such induced actions are classified in Table 2. Viceversa, if X is a general ihs manifold of OG10 type and $G \subset \operatorname{Aut}(X)$ is a group of non-symplectic automorphisms of prime order such that $(\mathbf{L}^G, \mathbf{L}_G)$ appears in Table 2, then there exists a smooth cubic fourfold Y and a group of non-symplectic automorphisms $G \subset \operatorname{Aut}(Y)$ such that X is birational to J(Y) or $J^t(Y)$ and the group of automorphisms is induced by automorphisms of the cubic fourfold.

TABLE 2. Invariant and coinvariant lattices ($\mathbf{L}^G, \mathbf{L}_G$) of an ihs manifold of OG10 type X induced from a cubic fourfold via LSV constructions. The column $\mathrm{Aut}(Y)$ refers to notation of Theorem 4.1. The columns J(Y) and $J^t(Y)$ indicate whether X is birational to the models.

$\operatorname{Aut}(Y)$	\mathbf{L}_G	\mathbf{L}^G	$\operatorname{sgn}(\mathbf{L}^G)$	J(Y)	$J^t(Y)$	p
ϕ_2^1	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{E}_6(-2)$	(1,7)	yes	yes	2
	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 9}$	$[2] \oplus [-2] \oplus \mathbf{E}_6(-1) \oplus \mathbf{D}_4(-1)$	(1, 11)	yes	yes	2
$ \begin{array}{c} \phi_3^2 \\ \phi_3^1 \\ \phi_3^1 \\ \phi_3^5 \\ \phi_3^5 \\ \phi_3^7 \\ \phi_3^7 \end{array} $	$\mathbf{U}^{\oplus} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	U	(1,1)	yes	no	3
ϕ_3^1	$\mathbf{U}^{\oplus} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	U(3)	(1, 1)	no	yes	3
ϕ_3^5	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6 \oplus \mathbf{A}_2^{\oplus 3}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(1,7)	yes	no	3
ϕ_3^5	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6 \oplus \mathbf{A}_2^{\oplus 3}$	$\mathbf{U}(3) \oplus \mathbf{E}_6^*(-1)$	(1,7)	no	yes	3
ϕ_3^7	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$\mathbf{U}(3) \oplus \mathbf{E}_6^*(-1) \oplus \mathbf{A}_2(-1)$	(1,9)	yes	yes	3
		Continues on next page				

TD 11 0	C 11	c		
Table 2.	follows	from	previous page	

$\operatorname{Aut}(Y)$	\mathbf{L}_G	\mathbf{L}^G	$\operatorname{sgn}(\mathbf{L}^G)$	J(Y)	$J^t(Y)$	p
ϕ_3^2	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(1, 13)	yes	yes	3

Acknowledgments. We wish to warmly thank Simon Brandhorst and Stevell Muller for fruitful discussions and for introducing us to the use of the open source computational software OSCAR, Emanuele Macrì and Lisa Marquand for their hints and suggestions, Giovanni Mongardi, Enrico Fatighenti and Franco Giovenzana for useful discussions.

2. Preliminaries

2.1. Lattices. A lattice L is a a free \mathbb{Z} -module of finite rank with an integral bilinear form

$$(-,-):L\times L\to \mathbb{Z}$$

wich is non-degenerate. The signature (l_+, l_-) of L is the signature of the real extension of (-, -). The lattice is positive-definite if $l_- = 0$ and negative-definite if $l_+ = 0$, otherwise it is called indefinite. A lattice is hyperbolic if it is indefinite and $l_+ = 1$. A lattice L is called even if $x^2 := (x, x) \in 2\mathbb{Z}$ for any $x \in L$. The divisibility $\operatorname{div}(x, L)$ of an element $x \in L$ is the positive generator of the ideal $\{(x, y) | y \in L\} \subseteq \mathbb{Z}$.

Consider the dual lattice

$$L^{\vee} = \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z}) \cong \{ x \in L \otimes_{\mathbb{Z}} \mathbb{Q} | (x, l) \in \mathbb{Z} \forall l \in L \}$$

and observe that $L \subset L^{\vee}$ is a finite index subgroup, the quotient $A_L := L^{\vee}/L$ is called the discriminant group of L. The length $l(A_L)$ is the minimum number of generators of A_L . There is a well-defined \mathbb{Q} -bilinear form $b_{A_L} : A_L \times A_L \to \mathbb{Q}/\mathbb{Z}$ with associated quadratic form $q_{A_L} : A_L \times A_L \to \mathbb{Q}/\mathbb{Z}$.

A lattice L is called *unimodular* if the group A_L is the identity, or equivalently $\det(L) = \pm 1$. The lattice is called *p-elementary* for a prime number p if $A_L \cong (\mathbb{Z}/p\mathbb{Z})^k$ for some positive integer k.

Definition 2.1. Let L be an even lattice, define

$$\delta(L) := \begin{cases} 0 & \text{if } q_{A_L}(x) \in \mathbb{Z}/2\mathbb{Z} \text{ for any } x \in A_L \\ 1 & \text{otherwise} \end{cases}.$$

Definition 2.2. We call *short root* a vector $v \in L$ such that $v^2 = 2$ and $\operatorname{div}(v, L) = 1$. We call *long root* a vector $v \in L$ such that $v^2 = 6$ and $\operatorname{div}(v, L) = 3$.

A morphism of lattices $L \to M$ is a linear map that preserves the bilinear forms, an injective morphism of lattices is called an *embedding*. An embedding $L \hookrightarrow M$ is called *primitive* if its cokernel is free. If the embedding $L \hookrightarrow M$ has finite index, then we say that M is an *overlattice* of L. Recall that by [46, Proposition 1.4.1] there is a bijective correspondence between overlattices of L and isotropic subgroups of A_L . Moreover, if $L \hookrightarrow M$ is a primitive embedding, then M is an overlattice of $L \oplus L^{\perp}$ and hence the primitive embeddings $L \hookrightarrow M$ are determined by an anti-isometry between a subgroup of A_L and a subgroup of A_M , this subgroup is called the *gluing subgroup*, see [46, Proposition 1.15.1]. The *genus* of a lattice L is given by its signature $\operatorname{sign}(L)$ and discriminant quadratic form q_{A_L} , or equivalently [46, Corollary 1.9.4] by the isometry class of $U \oplus L$

where **U** denotes the unique even unimodular lattice of rank 2. Isometric lattices have the same genus, but lattices with the same genus might not be isometric. Typically, indefinite lattices tent to have a unique isometry class for a fixed genus and definite lattices tent to have more isometry classes for a fixed genus. If we consider a primitive embedding $L \hookrightarrow M$ up to isometries of M, this determines uniquely the genus of the orthogonal complement L^{\perp_M} but it might not determine its isometry class, see e.g. Example 2.3.

Example 2.3. Consider the following positive definite lattices

$$\mathbf{A} := \begin{pmatrix} 12 & 1 \\ 1 & 2 \end{pmatrix}, \mathbf{B} := \begin{pmatrix} 6 & 1 \\ 1 & 4 \end{pmatrix}.$$

The lattices $\mathbf{U} \oplus \mathbf{A}$ and $\mathbf{U} \oplus \mathbf{B}$ are isometric. On the other hand, \mathbf{A} and \mathbf{B} are not isometric but they have the same genus. This shows that \mathbf{U} admits two different primitive embeddings in $M := \mathbf{U} \oplus \mathbf{A} \cong \mathbf{U} \oplus \mathbf{B}$ such that the respective orthogonal complements are not isometric. Note that since \mathbf{U} is unimodular, by [46, Proposition 1.15.1] there is a unique embedding of \mathbf{U} in M up to isometries.

There is a natural map $O(L) \to O(A_L)$ between the group of isometries of the lattice L and the group of isometries of the discriminant group A_L . The Cartan-Dieudonné theorem [39, Theorem 9.10] guarantees that $O(L \otimes_{\mathbb{Z}} \mathbb{R})$ is generated by reflections with respect to non-isotropic vectors, hence it is possible to give the following

Definition 2.4. The *spinor norm* spin: $O(L) \to \{\pm 1\}$ is the group homomorphism that takes value +1 on reflections for a vector v with $v^2 < 0$.

The kernel of the spinor norm is denoted by $O^+(L)$ and consists of elements that preserve the orientation of a positive-definite subspace of $L \otimes_{\mathbb{Z}} \mathbb{R}$ of maximal rank.

Definition 2.5. If $G \subseteq O(L)$ is a group of isometries, we call $L^G := \{x \in L \mid g(x) = x, \forall g \in G\}$ the invariant lattice and we call $L_G := (L^G)^{\perp_L}$ the coinvariant lattice.

Lemma 2.6 (see [4, Lemma 5.3], [43, Lemma 1.8]). Let L be a lattice and $G \subset O(L)$ the group generated by an isometry of prime order p. Then, $m := \text{rk}(L_G)/(p-1)$ is an integer and

$$\frac{L}{L^G \oplus L_G} \cong (\mathbb{Z}/p\mathbb{Z})^a$$

as groups, where $a \leq m$. Moreover, there are natural embeddings of $\frac{L}{L^G \oplus L_G}$ in the discriminant groups A_{L^G} and A_{L_G} .

Let p be a prime number, we recall the following p-elementary lattices that will be useful in §3:

$$\mathbf{K}_p := \begin{pmatrix} -(p+1)/2 & 1 \\ 1 & -2 \end{pmatrix}, \mathbf{H}_p := \begin{pmatrix} (p-1)/2 & 1 \\ 1 & -2 \end{pmatrix}.$$

We also consider the 3-elementary lattice

$$\mathbf{E}_{6}^{*}(3) := \begin{pmatrix} 4 & 2 & -1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 1 & -2 & 2 \\ -1 & 1 & 4 & 1 & -2 & -1 \\ 2 & 1 & 1 & 4 & -2 & -1 \\ -1 & -2 & -2 & -2 & 4 & -1 \\ 1 & 2 & -1 & -1 & -1 & 4 \end{pmatrix},$$

and the 17-elementary lattice

$$\mathbf{L}_{17} := \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 1 & 0 & -1 & 4 \end{pmatrix}.$$

Finally, we introduce the lattices

$$\mathbf{N}_{69} := \begin{pmatrix} 6 & 3 \\ 3 & -10 \end{pmatrix}, \mathbf{N}_{15} := \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}.$$

If L is a lattice and k is an integer, we denote by L(k) the lattice whose bilinear form is obtained by the one of L by multiplying by k. We denote by $\mathbf{A}_n, \mathbf{D}_n, \mathbf{E}_n$ the positive-definite lattices associated to the ADE Dynkin diagrams. We recall that \mathbf{U} denotes the even unimodular lattice of rank two, and we denote by [k] the rank one lattice generated by an element of square $k \in \mathbb{Z}$.

2.2. Automorphisms of ihs manifolds of OG10 type. Let X be an ihs manifold with a marking $\eta \colon H^2(X,\mathbb{Z}) \to L$, then there is a representation map

$$\operatorname{Aut}(X) \to \operatorname{O}(L)$$
.

which is injective if X is of OG10 type. The following theorem allows to study automorphisms in terms of Hodge isometries using the previous representation map.

Proposition 2.7 (see, for instance, [45, §3]). If (X, η) is a marked ihs manifold with marking $\eta \colon H^2(X, \mathbb{Z}) \to L$ and $G \subseteq O(L)$ is a group of non-symplectic isometries, then $L^G \subseteq NS(X)$ and $T(X) \subseteq L_G$.

We say that an ihs manifold X endowed with the action of $G \subseteq \text{Aut}(X)$ a group of non-symplectic automorphisms is *general* if one of the above inclusions is an equality, accordingly to [45, §3].

By [49] if X is an ihs manifold of OG10 type with a marking $\eta: H^2(X, \mathbb{Z}) \to \mathbf{L}$, the monodromy group $\mathrm{Mon}^2(X)$ coincides with the subgroup of index two of orientation preserving isometries $\mathrm{O}^+(\mathbf{L}) \subset \mathrm{O}(\mathbf{L})$.

Lemma 2.8. If X is an ihs manifold of OG10 type and $G \subseteq Aut(X)$ is a group of non-symplectic automorphisms of prime order p then $p \le 23$.

Proof. Once a marking is fixed, we have $G \subseteq O^+(\mathbf{L})$ and by Lemma 2.6 we know that p-1 divides $\mathrm{rk}(\mathbf{L}_G)$. Since $\mathrm{rk}(\mathbf{L}) = 24$ we conclude.

Moreover, if X is an ihs manifold of OG10 type, numerical wall divisors and numerical prime exceptional divisors are computed in [42]:

$$\mathcal{W}_{\mathrm{OG10}}^{pex} = \{ v \in \mathbf{L} | v^2 = -2 \} \cup \{ v \in \mathbf{L} | v^2 = -6, \operatorname{div}(v, \mathbf{L}) = 3 \},$$

$$\mathcal{W}_{\text{OG10}} = \mathcal{W}_{\text{OG10}}^{pex} \cup \{v \in \mathbf{L} | v^2 = -4\} \cup \{v \in \mathbf{L} | v^2 = -24, \operatorname{div}(v, \mathbf{L}) = 3\}.$$

Hyperplanes orthogonal to classes in $W_{OG10} \cap NS(X)$ give a wall–and–chamber decomposition of the positive cone. The chamber that contains a Kähler class is the Kähler cone of X.

2.3. Cubic fourfolds and their automorphisms. Let $Y \subset \mathbb{P}^5$ be a smooth cubic fourfold. The moduli space of smooth cubic fourfold \mathcal{M} is constructed in [28]. We denote by

$$\mathcal{D}/\Gamma = \{x \in \mathbb{P}(\mathrm{H}_n^4(Y,\mathbb{Z}) \otimes \mathbb{C}) | x^2 = 0, x \cdot \overline{x} < 0\}^+/\Gamma$$

the global period domain of cubic fourfolds. The period map

$$\mathcal{P}: \mathcal{M} \to \mathcal{D}/\Gamma$$

associates $[Y] \in \mathcal{M}$ to its Hodge structure of the middle cohomology. To describe the image of this period map we define two divisors in \mathcal{D}/Γ . Namely the set of short roots in $H_p^4(Y,\mathbb{Z})$ determines a Γ -invariant hyperplane arrangement H_2 in \mathcal{D} . Let $\mathcal{C}_2 := H_2/\Gamma \subset \mathcal{D}/\Gamma$ be the associated divisor. Similarly the set of long roots in $H_p^4(Y,\mathbb{Z})$ determines a Γ -invariant hyperplane arrangement H_6 in \mathcal{D} . Let $\mathcal{C}_6 := H_6/\Gamma \subset \mathcal{D}/\Gamma$ be the associated divisor.

Theorem 2.9 (Voisin, Hassett, Laza, Looijenga). The period map

$$\mathcal{P}: \mathcal{M} \to \mathcal{D}/\Gamma \setminus (\mathcal{C}_2 \cup \mathcal{C}_6)$$

is an isomorphism.

Definition 2.10. Let Y be a cubic fourfold, then a d-labeling is a rank 2 saturated sublattice $K_d \subseteq A(Y)$ of discriminant d containing the class η_Y . Denote by \mathcal{C}_d the locus of the moduli space of smooth cubic fourfolds \mathcal{M} admitting a d-labeling.

Cubic fourfolds with a labeling form a divisor, as proved by Hassett [23].

Theorem 2.11 (see [23, §3]). The locus C_d is non-empty if and only if d > 6 and $d \equiv 0, 2$ (6), if it is not empty then it is an irreducible divisor in the moduli space \mathcal{M} .

Cubic fourfolds which are cohomologically related to a K3 suface are of remarkable interest.

Definition 2.12. We say that a polarized K3 surface (S, h) is associated with a cubic fourfold Y if there exists a d-labeling K_d and there is a Hodge isometry

$$\mathrm{H}^4(Y,\mathbb{Z}) \supset K_d^{\perp} \cong h(-1)^{\perp} \subset \mathrm{H}^2(S,\mathbb{Z})(-1).$$

In fact, the existence of an associated K3 surface only depends on the discriminant d of the d-labeling and not on the lattice K_d . Labelings for which there exists an associated K3 surface are called admissible and are numerically described in [23].

We have a representation map $\operatorname{Aut}(Y) \to \operatorname{O}(\operatorname{H}^4(Y,\mathbb{Z}))$ which is injective. The following theorem gives a precise description of the group of automorphisms of a smooth cubic fourfold.

Theorem 2.13 (Hodge theoretic Torelli theorem, see [60]). Let Y_1, Y_2 be smooth cubic fourfolds. Suppose $f: H^4(Y_2, \mathbb{Z}) \xrightarrow{\cong} H^4(Y_1, \mathbb{Z})$ is an isometry of polarized Hodge structures, then there exists a unique isomorphism $\phi: Y_1 \xrightarrow{\cong} Y_2$ such that $\phi^* = f$. In particular, we have an isomorphism

$$\operatorname{Aut}(Y) \cong \operatorname{O}_{Hdg}(\operatorname{H}^{4}(Y,\mathbb{Z}), \eta_{Y})$$

where $O_{Hdq}(H^4(Y,\mathbb{Z}),\eta_Y)$ denotes the group of Hodge isometries of $H^4(Y,\mathbb{Z})$ fixing the class η_Y .

For this reason it is natural to study isometries of $H_p^4(Y,\mathbb{Z}) \cong \mathbf{F}$. Similarly to Proposition 2.7, if $G \subseteq \operatorname{Aut}(Y)$ is a group of non-symplectic automorphisms then we have $\mathbf{F}^G \subseteq A_p(Y)$ and $T(Y) \subseteq \mathbf{F}_G$. We say that a cubic fourfold Y with $G \subseteq \operatorname{Aut}(Y)$ a group of non-symplectic automorphisms is general if one of the above inclusions is an equality.

2.4. Laza-Saccà-Voisin manifolds. In this section we recall the construction of two geometric models of an ihs manifold of OG10 type due to Laza-Saccà-Voisin [31,58]. Consider $Y \subset \mathbb{P}^5$ a smooth cubic fourfold. The dual projective space $(\mathbb{P}^5)^{\vee}$ parametrizes hyperplane sections $Y_H = Y \cap H \subset Y$, and $U \subset (\mathbb{P}^5)^{\vee}$ is the open set of the smooth ones. We will often write \mathbb{P}^5 instead of $(\mathbb{P}^5)^{\vee}$ if it does not lead to confusion. Denote by

$$\operatorname{Jac}(Y_H) = \operatorname{H}^1(Y_H, \Omega_{Y_H}^2)^{\vee} / \operatorname{H}_3(Y_H, \mathbb{Z})$$

the intermediate Jacobian of the hyperplane section, which is a principally polarized abelian fivefold. Over U consider the Donagi–Markman fibration

$$\pi_U: J_U(Y) \to U$$

whose fiber over the smooth hyperplane section Y_H consists of the intermediate Jacobian $Jac(Y_H)$. It is proved in [15] that $J_U(Y)$ is quasi-projective and it admits a symplectic form σ_U for which π_U is a Lagrangian fibration.

Following [58], there is another Lagrangian fibration

$$\pi_{II}^t: J_{II}^t(Y) \to U$$

whose fiber over Y_H is given by the torsor $\operatorname{Jac}^1(Y_H)$ parametrizing degree 1 cycles.

Theorem 2.14 (see [31,56], and [58] for the twisted case). Let Y be a smooth cubic fourfold. There exist smooth projective compactifications J(Y) and $J^t(Y)$ of $J_U(Y)$ and $J^t_U(Y)$ respectively, with projective flat morphisms $\pi: J(Y) \to \mathbb{P}^5$ and $\pi^t: J^t(Y) \to \mathbb{P}^5$ extending π_U and π^t_U respectively. Moreover, J(Y) and $J^t(Y)$ are smooth ihs manifolds of OG10 type.

The compactification J(Y) is called the LSV manifold associated to Y, while $J^t(Y)$ is called the twisted LSV manifold associated to Y. There is an effective relative theta divisor $\Theta \subset J(Y)$ obtained as the closure of the union of theta divisors of the smooth fibers, it has the property that $q_{J(Y)}(\Theta) = -2$. There is another class $L = \pi^* \mathcal{O}_{\mathbb{P}^5}(1)$, that together with Θ span a hyperbolic lattice $\mathbf{U}_Y := \langle L, \Theta \rangle \subset \mathrm{NS}(J(Y))$. For a very general cubic fourfold Y one has $\mathrm{NS}(J(Y)) = \mathbf{U}_Y$, in particular the family can not be locally complete since there are always two algebraic classes in the LSV manifolds. Similarly, in the twisted case there are classes $L^t, \Theta^t \in \mathrm{NS}(J^t(Y))$ spanning a lattice $\mathbf{U}_Y^t := \langle L^t, \Theta^t \rangle \cong \mathbf{U}(3)$ and for a general cubic fourfold we have $\mathrm{NS}(J^t(Y)) = \mathbf{U}_Y^t$.

3. Classification of non-symplectic automorphisms of OG10

In this section we consider the abstract lattice $\mathbf{L} := \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 3} \oplus \mathbf{A}_2(-1)$ isometric to the second integral cohomology lattice of an ihs manifold of OG10 type. Recall that there is a unique embedding $\mathbf{L} \hookrightarrow \mathbf{\Lambda}$ in the unimodular lattice $\mathbf{\Lambda} := \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 5}$, and the orthogonal complement is the rank two lattice $\mathbf{L}^{\perp} \cong \mathbf{A}_2$. The lattice \mathbf{L} is 3-elementary and the discriminant group is the cyclic group $A_{\mathbf{L}} \cong \mathbb{Z}/3\mathbb{Z}$. We classify non-symplectic automorphisms of prime order p by listing the possible invariant and coinvariant lattices of their induced action on the second integral cohomology \mathbf{L} . This is achieved giving the classification of isometries of the unimodular lattice $\mathbf{\Lambda}$.

3.1. Isometries of Λ . We treat separately the case of involutions and higher order automorphisms.

Proposition 3.1. Let $G \subset O(\Lambda)$ be a group of isometries of order 2. If $sgn(\Lambda_G) = (2, rk(\Lambda_G) - 2)$ or $sgn(\Lambda_G) = (3, rk(\Lambda_G) - 3)$ then the pairs (Λ^G, Λ_G) appear in Table 5.

Proof. Since G is cyclic of order 2 and Λ is unimodular, then Λ^G and Λ_G must be 2-elementary lattices and their discriminant groups are anti-isometric by Lemma 2.6, in particular they have the same length. We use [46, Theorem 3.6.2] to get all the possible isometry classes of such lattices by varying the signature, the length a and the invariant δ . Any pair of such lattices are invariant and coinvariant lattices for the isometry that acts trivially on the invariant lattice and as - id on the coinvariant lattice. Since they are all 2-elementary and so - id acts trivially on the discriminant group.

The following result is a direct consequence of [9, Theorem 1.1].

Proposition 3.2. Let $G \subset O(\Lambda)$ be a group of isometries of prime order $3 \le p \le 23$. If $sgn(\Lambda_G) = (2, rk(\Lambda_G) - 2)$ then the pair (Λ^G, Λ_G) appears in Table 8.

Proof. If $G \subset O(\Lambda)$ has order p then by Lemma 2.6 the lattices Λ_G and Λ^G are p-elementary. The numerical criterion in [9, Theorem 1.1] determines which lattices can be invariant and coinvariant lattices of the group of isometries G, then we conclude combining [46, Corollary 1.13.5] and [54, Section 1].

Remark 3.3. We point out that there is only one conjugacy class for such isometries, apart from the case p=23 where there are three conjugacy classes which are determined by the Steinitz class of Λ_G . The reader can refer [9] for more details.

3.2. Invariant and coinvariant lattices of L. In this subsection we relate isometries of the lattice L with isometries of the lattice Λ , depending on the image of the group $G \subset O(L)$ via the map $O(L) \to O(A_L)$. In this section we fix the (unique) primitive embedding $L \hookrightarrow \Lambda$, whose orthogonal complement is $L^{\perp} \cong \Lambda_2$.

Lemma 3.4. If $\varphi \in O(\mathbf{L})$ is an isometry such that $\overline{\varphi} = id \in O(A_{\mathbf{L}})$ then it extends to and element $\tilde{\varphi} \in O(\Lambda)$ acting trivially on $\mathbf{L}^{\perp} \subset \Lambda$. If $\varphi \in O(\mathbf{L})$ is an isometry such that $\overline{\varphi} = -id \in O(A_{\mathbf{L}})$, then φ extends to an isometry $\tilde{\varphi} \in O(\Lambda)$ that acts on the rank 2 lattice $\mathbf{L}^{\perp} \subset \Lambda$ permuting the generators.

Proof. Let a,b be generators of $\mathbf{A}_2(-1) \subset \mathbf{L}$ and consider the generator $[\frac{a-b}{3}] = [\frac{a+2b}{3}]$ of $\mathbf{L} \cong \mathbb{Z}/3\mathbb{Z}$. If $\varphi \in \mathrm{O}(\mathbf{L})$ is such that $\overline{\varphi} = \mathrm{id}$ then $\overline{\varphi}([\frac{a-b}{3}]) = [\frac{a-b}{3}]$ hence $\varphi(a-b) = a-b+3w$ with $w \in \mathbf{L}$. Let c,d be generators of $\mathbf{L}^{\perp} \cong \mathbf{A}_2$, its discriminant group is also $\mathbb{Z}/3\mathbb{Z}$ and it is generated by $[\frac{c-d}{3}]$ with discriminant form given by $q(\frac{c-d}{3}) = 2/3$. Notice that $\mathbf{L} \oplus \mathbf{A}_2$ has an overlattice isometric to $\mathbf{\Lambda}$ which is generated by \mathbf{L} , $\frac{a-b+c-d}{3}$ and $\frac{a+2b+c+2d}{3}$. We extend φ to $\mathbf{L} \oplus \mathbf{A}_2$ by imposing $\varphi(c) = c$ and $\varphi(d) = d$ and we obtain an extension $\tilde{\varphi}$ of φ on $\mathbf{\Lambda}$ as follows:

$$\tilde{\varphi}(\frac{a-b+c-d}{3}) = \frac{\varphi(a-b)+c-d}{3}$$

and

$$\tilde{\varphi}(\frac{a+2b+c+2d}{3}) = \frac{\varphi(a+2b)+c+2d}{3}.$$

If $\varphi \in O(\mathbf{L})$ is such that $\overline{\varphi} = -\operatorname{id}$ then $\overline{\varphi}([\frac{a-b}{3}]) = [\frac{b-a}{3}]$ hence we extend φ to $\mathbf{L} \oplus \mathbf{A}_2$ by imposing $\varphi(c) = d$ and $\varphi(d) = c$ and we obtain an extension $\tilde{\varphi}$ of φ on Λ as follows:

$$\tilde{\varphi}(\frac{a-b+c-d}{3}) = \frac{\varphi(a-b)+d-c}{3}$$

and

$$\tilde{\varphi}(\frac{a+2b+c+2d}{3}) = \frac{\varphi(a+2b)+d+2c}{3}.$$

Proposition 3.5. Let $G \subset O(\mathbf{L})$ be a subgroup of prime order p and consider its image $\overline{G} \subset O(A_{\mathbf{L}})$. Let c and d be the generators of $\mathbf{A}_2 = \mathbf{L}^{\perp} \subset \mathbf{\Lambda}$.

- If $|\overline{G}| = 1$ there exists $G' \subset O(\Lambda)$ a subgroup of order two such that G' restricts to G on \mathbf{L} and $\mathbf{L}_G = \Lambda_{G'}$. In particular, we have $\operatorname{sgn}(\mathbf{L}_G) = \operatorname{sgn}(\Lambda_{G'})$ and $\operatorname{sgn}(\mathbf{L}^G) = \operatorname{sgn}(\Lambda^{G'}) (2,0)$.
- If $|\overline{G}| = 2$ there exists $G' \subset O(\Lambda)$ a subgroup of order two such that G' restricts to G on \mathbf{L} and $\mathbf{L}_G = (c-d)^{\perp} \subset \Lambda_{G'}$, $\mathbf{L}^G \cong (c+d)^{\perp} \subset \Lambda^{G'}$. In particular, we have $\operatorname{sgn}(\mathbf{L}_G) = \operatorname{sgn}(\Lambda_{G'}) (1,0)$ and $\operatorname{sgn}(\mathbf{L}^G) = \operatorname{sgn}(\Lambda^{G'}) (1,0)$.

Proof. We apply Lemma 3.4 to a generator of G.

Proposition 3.6. Let $G \subset O(\mathbf{L})$ be a group of prime order p generated by a non-symplectic isometry, then there exists a marked pair (X, η) of OG10 type such that $G \subset \operatorname{Aut}(X)$ is a group of nonsymplectic automorphisms of prime order p.

Proof. A generator φ of G is non-symplectic and hence one can endow $\mathbf{L}_{\mathbb{C}} = \mathbf{L} \otimes_{\mathbb{Z}} \mathbb{C}$ with a weight-two Hodge structure such that $\mathbf{L}^G = \mathbf{L}_{\mathbb{C}}^{1,1} \cap \mathbf{L}$. By the surjectivity of the period map there exists a manifold X of OG10 type and a marking $H^2(X,\mathbb{Z}) \cong \mathbf{L}$ which is an isomorphism of Hodge structures. By construction G consists of Hodge isometries, moreover since all the algebraic classes are fixed then the positive cone is fixed, and so the Kähler cone is. In this case we know that $\mathrm{Mon}^2(X) = \mathrm{O}^+(\mathbf{L})$, and we want to prove that $G \subset \mathrm{O}^+(\mathbf{L})$. This is clear when $p \neq 2$ since it is odd and $\varphi^p = \mathrm{id}$. If p = 2 by [20, Lemma 2.4] we have $\mathrm{spin}(\varphi) = +1$, and $\mathrm{sign}(\mathbf{L}_G) = (2, \mathrm{rk}(\mathbf{L}_G) - 2)$, so that $\varphi \in \mathrm{O}^+(\mathbf{L})$ in any case. Since $G \subset \mathrm{Mon}^2_{Hdg}(X)$ and a Kähler class is preserved by G we can conclude using the Hodge-theoretic Torelli theorem [34, Theorem 1.3], as the representation map on the second cohomology is injective for manifolds of OG10 type. In particular, X is projective by Huybrecht's projectivity criterion.

Theorem 3.7. Let $G \subset O(\mathbf{L})$ be a non-symplectic group of prime order p. Then there exists a manifold X of OG10 type such that $G \subset \operatorname{Aut}(X)$ if and only if $2 \le p \le 23$ and the pairs $(\mathbf{L}^G, \mathbf{L}_G)$ appear in Table 6 and Table 7 for p = 2, and in Table 9 for $p \ge 3$.

Proof. Let $G \subset \operatorname{Aut}(X)$ be a subgroup of prime order p, notice that by Lemma 2.8 we have $p \leq 23$, and consider the induced action $G \subset \operatorname{O}(\mathbf{L})$. According to Proposition 3.5, one can extend it to an action $G' \subset \operatorname{O}(\Lambda)$. The two different extensions lead to the possible cases where $\mathbf{L}_G = \Lambda_{G'}$ or there are inclusions $\mathbf{L}_G \subset \Lambda_{G'}$ and $\mathbf{L}^G \subset \Lambda^{G'}$ with complement of rank 1.

In the first case we have $\mathbf{L}^G = \mathbf{A}_2^{\perp \Lambda^{G'}}$ since the orthogonal complement of the embedding $\mathbf{L} \hookrightarrow \Lambda$

In the first case we have $\mathbf{L}^G = \mathbf{A}_2^{\perp \mathbf{\Lambda}^G}$ since the orthogonal complement of the embedding $\mathbf{L} \hookrightarrow \mathbf{\Lambda}$ is isometric to \mathbf{A}_2 . We compute the possible embeddings $\mathbf{A}_2 \hookrightarrow \mathbf{\Lambda}^{G'}$ and orthogonal complements for $\mathbf{\Lambda}^{G'}$ in Table 5 and Table 8.

In the second case (it happens only for p=2) we consider the unique primitive embedding $\mathbf{A}_2 \hookrightarrow \mathbf{\Lambda}$ and observe that in this case $[2] = \langle a+b \rangle$ is G'-invariant, where a,b are generators of $\mathbf{A}_2 = \mathbf{L}^{\perp} \subset \mathbf{\Lambda}$, since G' permutes them. We consider the lattices $\mathbf{\Lambda}^{G'}$ in Table 5 and compute the list of possible $\mathbf{L}^G = [2]^{\perp \mathbf{\Lambda}^{G'}}$ for all the primitive embeddings $[2] \hookrightarrow \mathbf{\Lambda}^{G'}$. Finally, we obtain \mathbf{L}_G as the orthogonal complement of the primitive embedding $\mathbf{L}^G \hookrightarrow \mathbf{L}$ when such an embedding exists.

Orthogonal complements of the previous embeddings are uniquely determined up to isometry because of [46, Proposition 1.14.2].

Viceversa, given a pair $(\mathbf{L}^G, \mathbf{L}_G)$, one can endow \mathbf{L} with a Hodge structure that makes \mathbf{L}^G and \mathbf{L}_G the invariant and coinvariant lattices of a non-symplectic automorphism, then we conclude by Proposition 3.6.

4. Non-symplectic automorphisms of order three of a cubic fourfold

Finite order automorphisms of a cubic fourfold $Y \subset \mathbb{P}^5$ are linear transformations of \mathbb{P}^5 that restrict to Y.

According to [19, Theorem 2.8], there exist four families of non-symplectic automorphisms of order three of a cubic fourfold, and there are no non-symplectic automorphisms of prime order greater than three. In this section we give a lattice theoretic classification of non-symplectic automorphisms of order three of a smooth cubic fourfold.

The lattice-theoretic classification is carried on with the same techniques used for ihs manifolds of OG10 type. Definite lattices are often not uniquely determined by their genus (see Example 2.3) and enumeration of definite lattices is demanding, but the rank of lattices we look for is known thanks to the construction of moduli spaces of cubic fourfolds with a group action given in [59].

4.1. The algebraic and transcendental lattices. In this section we compute the algebraic and the transcendental lattice of a general cubic fourfold that admits a non-symplectic automorphism of order three (see Theorem 4.6). Here below we recall a classification result of prime order non-symplectic automorphisms of a cubic fourfold $Y \subset \mathbb{P}^5$ in terms of the induced action of \mathbb{P}^5 and giving a general equation of Y. In the following theorem we denote by ϕ_i^j the j-th automorphism of order i, respecting the numbering of the list that is given in [59].

Theorem 4.1 (see [19], and also [16,59]). Let $Y = \{F = 0\} \subset \mathbb{P}^5$ be a smooth cubic fourfold with a non-symplectic automorphism $\phi \in \operatorname{Aut}(Y)$ of prime order p. After a linear change of coordinates that diagonalizes ϕ we have $\phi(x_0 : \ldots : x_5) = (\xi^{\sigma_0} x_0 : \ldots : \xi^{\sigma_5} x_5)$ and we denote by $(\sigma_0, \ldots, \sigma_5)$ such an action. If d denotes the dimension of the family of cubic fourfolds with the automorphism ϕ , then we have the following possibilities:

•
$$\phi_2^1$$
: $p = 2$, $\sigma = (0, 0, 0, 0, 0, 1)$, $d = 14$,

$$F = L_3(x_0, \dots, x_4) + x_5^2 L_1(x_0, \dots, x_4),$$

• ϕ_2^3 : p = 2, $\sigma = (0, 0, 0, 1, 1, 1)$, d = 10,

$$F = L_3(x_0, x_1, x_2) + x_0 L_2(x_3, x_4, x_5) + x_1 M_2(x_3, x_4, x_5) + x_2 N_2(x_3, x_4, x_5),$$

• ϕ_3^1 : p = 3, $\sigma = (0, 0, 0, 0, 0, 1)$, d = 10,

$$F = L_3(x_0, \dots, x_4) + x_5^3,$$

• ϕ_3^2 : p = 3, $\sigma = (0, 0, 0, 0, 1, 1)$, d = 4,

$$F = L_3(x_0, \dots, x_3) + M_3(x_4, x_5),$$

• ϕ_3^5 : p = 3, $\sigma = (0, 0, 0, 1, 1, 2)$, d = 7,

$$F = L_3(x_0, x_1, x_2) + M_3(x_3, x_4) + x_5^3 + x_3x_5L_1(x_0, x_1, x_2) + x_4x_5M_1(x_0, x_1, x_2),$$

• ϕ_3^7 : p = 3, $\sigma = (0, 0, 1, 1, 2, 2)$, d = 6

 $F = x_2 L_2(x_0, x_1) + x_3 M_2(x_0, x_1) + x_4^2 L_1(x_0, x_1) + x_4 x_5 M_1(x_0, x_1) + x_5^2 N_1(x_0, x_1) + x_4 N_2(x_2, x_3) + x_5 O_2(x_2, x_3)$ where L_i, M_i, N_i and O_i are homogeneous polynomials of degree i.

From now on, non-symplectic automorphisms of order three of a smooth cubic fourfolds are denoted by $\phi_3^1, \phi_3^2, \phi_3^5, \phi_3^7$.

Recall that if Y is a smooth cubic fourfold and if $G \subset Aut(Y)$ is a finite group, there is an irreducible moduli space \mathcal{M}_G of cubic fourfolds with an action of G, as constructed in [59] via GIT. Let $Y \in \mathcal{M}_G$ and let ξ be the character of the action on $H^{3,1}(Y)$, denote by $(\mathbf{F} \otimes \mathbb{C})_{\xi}$ the ξ -eigenspace for a fixed marking $\gamma: \mathrm{H}^4_n(Y,\mathbb{Z}) \to \mathbf{F}$.

Theorem 4.2 (see [59]). There is an isomorphism

$$\mathfrak{P}_G:\mathcal{M}_G\stackrel{\cong}{\longrightarrow} (\mathcal{D}\setminus\mathcal{H})/\Gamma$$

where \mathcal{D} is the period domain associated with $(\mathbf{F} \otimes \mathbb{C})_{\xi}$, \mathcal{H} is a Γ -invariant hyperplane arrangement and Γ is an arithmetic group acting properly and discontinuously on \mathcal{D} .

In the previous statement \mathcal{D} is a symmetric domain of type IV if $\xi = \overline{\xi}$, and a complex hyperbolic ball otherwise.

The following result gives properties of invariant and coinvariant lattices for a prime order automorphism of a cubic fourfold.

Lemma 4.3. Let Y be a cubic fourfold and let $G \subset Aut(Y)$ be a group of prime order p. Then

- $A_{\mathbf{F}_G} \cong (\mathbb{Z}/p\mathbb{Z})^a$ and $A_{\mathbf{F}^G} \cong (\mathbb{Z}/p\mathbb{Z})^a \oplus \mathbb{Z}/3\mathbb{Z}$ for some integer $a \geq 0$, if $p \neq 3$. $A_{\mathbf{F}_G} \cong (\mathbb{Z}/p\mathbb{Z})^{a-1}$ and $A_{\mathbf{F}^G} \cong (\mathbb{Z}/p\mathbb{Z})^{a\pm 1}$ for some integer $0 \leq a+1 \leq \min(\operatorname{rk} \mathbf{F}_G, \operatorname{rk} \mathbf{F}^G)$,
- ullet \mathbf{F}_{G}^{-} is positive definite if G is symplectic
- \mathbf{F}^{G} is positive definite if G is non-symplectic

Proof. The action of G on the unimodular lattice $H^4(Y,\mathbb{Z})$ is trivial on $\langle \eta_Y \rangle \cong [3]$ hence the action is trivial on the discriminant group $A_{\langle \eta_Y \rangle} \cong A_{\mathbf{F}}$. As a consequence, we have an isometry $\mathrm{H}^4(Y,\mathbb{Z})_G \cong \mathbf{F}_G$ and then \mathbf{F}_G is p-elementary by Lemma 2.6. The possible discriminant groups of \mathbf{F}^G are determined by [46, Proposition 1.5.1]. The statement about the signatures is standard. \square

Lemma 4.4. Let S be a lattice such that $S \hookrightarrow \mathbf{F}$ is a primitive embedding with embedding subgroup $A_{\mathbf{F}} \cong \mathbb{Z}/3\mathbb{Z}$. Denote by **N** the smallest primitive lattice containing $\mathbf{S} \oplus \langle \eta_Y \rangle \subset \mathrm{H}^4(Y,\mathbb{Z})$. Then there exists $v \in \mathbf{S}$ with $v^2 = 6$ and divisibility $\operatorname{div}(v, \mathbf{F}) = 3$ if and only if there exists $w \in \mathbf{N}$ such that

Proof. The gluing subgroup of $\mathbf{F} \oplus \langle \eta_Y \rangle \subset \mathrm{H}^4(Y,\mathbb{Z})$ is $A_{\langle \eta \rangle} \cong \mathbb{Z}/3\mathbb{Z}$ and, by hypothesis, also the gluing subgroup $\mathbf{S} \oplus \langle \eta_Y \rangle \subset \mathbf{N}$ is $A_{\langle \eta_Y \rangle} \cong \mathbb{Z}/3\mathbb{Z}$. Suppose there exists a vector $v \in \mathbf{S}$ with $v^2 = 6$ and $\operatorname{div}(v, \mathbf{F}) = 3$, then $w = \frac{v - \eta_Y}{3} \in \mathbf{N}$ is such that $w^2 = 1$. Viceversa, if there is $w \in \mathbf{N}$ such that $w^2 = 1$ then $v = 3w + \eta_Y \in \mathbf{S}$ and $v^2 = 6$ and $\operatorname{div}(v, \mathbf{F}) = 3$.

The following lemma gives a formula to compute the rank of \mathbf{F}^G and \mathbf{F}_G knowing the dimension of \mathcal{M}_G .

Lemma 4.5. Let Y be a cubic fourfold and let $G \subset Aut(Y)$ be a finite group of prime order p. Let ξ be the associated character. Let \mathcal{M}_G be the moduli space of cubic fourfolds with an action of G. The following holds:

- $\operatorname{rk} \mathbf{F}^G = \dim \mathcal{M}_G + 2$ if G is symplectic,
- $\operatorname{rk} \mathbf{F}_G = \dim \mathcal{M}_G + 2$ if G is non-symplectic and p = 2,
- $\operatorname{rk} \mathbf{F}_G = 2 \dim \mathcal{M}_G + 2$ if G is non-symplectic and $p \geq 3$.

Proof. By Theorem 4.2 the dimension of \mathcal{M}_G equals the dimension of the associated symmetric domain, which is given by $\dim(\mathbf{F}\otimes\mathbb{C})_{\xi}-2$ if $\xi=\overline{\xi}$ and by $\dim(\mathbf{F}\otimes\mathbb{C})_{\xi}-1$ if $\xi\neq\overline{\xi}$, where we denote by $(\mathbf{F}\otimes\mathbb{C})_{\xi}$ the ξ -eigenspace. Suppose G is generated by a symplectic automorphism, then $\xi=\overline{\xi}\equiv 1$ and $\mathrm{rk}\,\mathbf{F}^G=\dim(\mathbf{F}\otimes\mathbb{C})_1$. Let now G be generated by a non-symplectic automorphism of order p. If p=2 we have $\xi=\overline{\xi}$ and $\mathrm{rk}\,\mathbf{F}_G=\dim(\mathbf{F}\otimes\mathbb{C})_{\xi}$. If $p\geq 3$ then $\xi\neq\overline{\xi}$ and $\mathrm{rk}\,\mathbf{F}_G=\dim(\mathbf{F}\otimes\mathbb{C})_{\xi}+\dim(\mathbf{F}\otimes\mathbb{C})_{\overline{\xi}}=2\dim(\mathbf{F}\otimes\mathbb{C})_{\xi}$.

Non-symplectic involutions on cubic fourfolds are studied by Marquand in [35] with a similar approach to the one that we adopt for non-symplectic automorphisms of order three. We recall that if Y is general and $G \subset \operatorname{Aut}(Y)$ is a group of non-symplectic automorphisms then we have $T(Y) = \mathbf{F}_G$ and $\mathbf{F}^G = A_p(Y)$.

Theorem 4.6. Let $G \subset O(\mathbf{F})$ be a group of non-symplectic isometries of order three. Then there exists a cubic fourfold Y such that $G \subset \operatorname{Aut}(Y)$ if and only if the pairs $(\mathbf{F}^G, \mathbf{F}_G)$ appears in Table 3. For such a general Y the algebraic lattice A(Y) appear in Table 4, and the class of η_Y has the following coordinates expressed in a basis of A(Y):

- $\eta_Y = (1) \text{ for } \phi_3^1;$
- $\eta_Y = (1, 0, 0, 0, 0, 0, 0)$ for ϕ_3^5 ;
- $\eta_Y = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)$ for ϕ_3^7 ;
- $\eta_Y = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$ for ϕ_3^2 .

Proof. Using Lemma 4.5 we can determine the rank of \mathbf{F}^G and \mathbf{F}_G , since the dimensions of \mathcal{M}_G are available at [59, Theorem 6.1]. Consider the composition of the two natural primitive embeddings $\mathbf{F}_G \hookrightarrow \mathbf{F} \hookrightarrow \mathrm{H}^4(Y,\mathbb{Z})$ and notice that $\mathbf{F}_G \cong \mathrm{H}^4(Y,\mathbb{Z})_G$. Since $\mathrm{H}^4(Y,\mathbb{Z})$ is unimodular, we can apply [9, Theorem 1.1] to determine the list of the possible lengths of \mathbf{F}_G . Note that since \mathbf{F}_G is indefinite and 3-elementary, to know the length is equivalent to determine its isometry class. To determine the length of \mathbf{F}_G we can consider $\mathbf{F}^G = A_p(Y)$, and by Lemma 4.3 determines the list of possible lengths of \mathbf{F}^G . We know by Torelli theorem for cubic fourfolds Theorem 2.9 that $A_n(Y)$ does not contain short roots and long roots. We exclude isometry classes of lattices that contain short roots via the sphere packing argument used in [18] or by computer algebra (we refer to OSCAR [50]) for the remaining cases. By Lemma 4.4, to check the existence of long roots in \mathbf{F}^G is equivalent to determine the gluing isometry between $A_{\mathbf{F}^G}$ and $A_{\langle \eta_{Y} \rangle}$. This is equivalent to determine the isometry class of A(Y). To do that, we compute via computer algebra, the possible isometry classes for A(Y) and discard the ones containing a vector of square one. Then, for the remaining cases we compute the orthogonal complement of all the possible vectors of square three (candidates for η_Y) and check if they are isometric to $A_n(Y)$. This happens only in one case, as we expect by Theorem 2.13, this gives A(Y) and the coordinates of η_Y in A(Y). The length of T(Y)equals the one of A(Y) because they are orthogonal complements in a unimodular lattice and this allows us to know the isometry class of T(Y). The result of these computations is summarized in Table 4 and Table 3, where the cases are listed in an increasing order for $rk(\mathbf{F}^G)$.

Given such a pair $(\mathbf{F}^G, \mathbf{F}_G)$, the existence of a cubic fourfold with those invariant and coinvariant lattices is guaranteed using Theorem 2.13 with the fact that the action of the group is trivial on the discriminant group of \mathbf{F} .

Table 3. Pairs $(\mathbf{F}^G, \mathbf{F}_G)$ for a cubic fourfold with a non-symplectic automorphism of order three.

No.	$\operatorname{rk}(\mathbf{F}^G)$	$\mathbf{F}_G \supseteq T(Y)$	$\mathbf{F}^G \subseteq A_p(Y)$	$\mathrm{sgn}((\mathbf{F}_G)$	$l(\mathbf{F}^G)$
ϕ_3^1	0	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8^{\oplus 2} \oplus \mathbf{A}_2$	$ \begin{bmatrix} 4 & 2 & -1 & 1 & 2 & -2 \\ 2 & 4 & 1 & 2 & 1 & -1 \end{bmatrix} $	(20, 2)	0
ϕ_3^5	6	$\mathbf{U}\oplus\mathbf{U}(3)\oplus\mathbf{E}_{6}\oplus\mathbf{A}_{2}^{\oplus3}$	$\begin{bmatrix} -1 & 1 & 4 & 2 & -2 & -1 \\ 1 & 2 & 2 & 4 & -1 & -2 \\ 2 & 1 & -2 & -1 & 4 & -1 \\ -2 & -1 & -1 & -2 & -1 & 4 \end{bmatrix}$	(14, 2)	5
ϕ_3^7	8	$\mathbf{U}\oplus\mathbf{U}(3)\oplus\mathbf{A}_2^{\oplus 5}$	$\begin{bmatrix} 6 & 3 & 3 & 3 & 3 & 3 & -3 & 3 \\ 3 & 6 & 0 & 0 & 0 & 0 & -3 & 0 \\ 3 & 0 & 6 & 0 & 3 & 0 & 0 & 3 \\ 3 & 0 & 0 & 6 & 0 & 3 & 0 & 3 \\ 3 & 0 & 3 & 0 & 6 & 0 & 0 & 3 \\ 3 & 0 & 0 & 3 & 0 & 6 & -3 & 0 \\ -3 & -3 & 0 & 0 & 0 & -3 & 6 & 0 \\ 3 & 0 & 3 & 3 & 3 & 0 & 0 & 6 \end{bmatrix}$	(12, 2)	8
ϕ_3^2	12	$\mathbf{U}\oplus\mathbf{U}(3)\oplus\mathbf{A}_2^{\oplus 3}$	$ \begin{bmatrix} 4 & 1 & -2 & -2 & 1 & 2 & -2 & -1 & -2 & -2$	(8, 2)	6

Table 4. Pairs (A(Y),T(Y)) for a general cubic fourfold with a non-symplectic automorphism of order three.

No.	$\operatorname{rk}(A(Y))$	T(Y)	A(Y)	$\operatorname{sgn}(T(Y))$	l(A(Y)
ϕ_3^1	1	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8^{\oplus 2} \oplus \mathbf{A}_2$	$\begin{bmatrix} 3 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 2 & -1 & 1 & 2 & -2 \end{bmatrix}$	(20, 2)	1
ϕ_3^5	7	$\mathbf{U}\oplus\mathbf{U}(3)\oplus\mathbf{E}_{6}\oplus\mathbf{A}_{2}^{\oplus3}$	$\begin{bmatrix} 0 & 2 & 4 & 1 & 2 & 1 & -1 \\ 0 & -1 & 1 & 4 & 2 & -2 & -1 \\ 0 & 1 & 2 & 2 & 4 & -1 & -2 \\ 0 & 2 & 1 & -2 & -1 & 4 & -1 \\ 0 & -2 & -1 & -1 & -2 & -1 & 4 \end{bmatrix}$	(14, 2)	6
ϕ_3^7	9	$\mathbf{U}\oplus\mathbf{U}(3)\oplus\mathbf{A}_2^{\oplus 5}$	\begin{array}{cccccccccccccccccccccccccccccccccccc	(12, 2)	7
ϕ_3^2	13	$\mathbf{U}\oplus\mathbf{U}(3)\oplus\mathbf{A}_2^{\oplus 3}$	$\begin{bmatrix} 3 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 0 & 1 & 0 & 1 & 0 \\ -1 & 3 & 1 & -1 & 1 & -1 & -1 & -1 & -1$	(8, 2)	5

- 4.2. Geometry of cubic fourfolds with a non-symplectic automorphism of order three. The algebraic lattice A(Y) of a cubic fourfold Y encodes geometric information about the cubic and its conjectural rationality, since knowing the algebraic lattice allows to determine on which Hassett divisors the cubic lies. The purpose of this subsection is to describe the generators of the algebraic lattices A(Y) in terms of the geometry of the general cubic fourfold that admits a non-symplectic automorphism of order three.
- 4.3. Cubic fourfolds with automorphism ϕ_3^1 or ϕ_3^5 . A general cubic fourfold Y with the non-symplectic automorphism of order three ϕ_3^1 or ϕ_3^5 has a primitive algebraic lattice $A_p(Y)$ computed in Table 3.

We show that such cubic fourfolds have no associated K3 surface and contain no planes.

Lemma 4.7. Let Y be a general cubic fourfold with automorphism of order three ϕ_3^1 or ϕ_3^5 , then Y does not have an associated K3 surface.

Proof. Suppose the cubic has an associate K3 surface, then there exists a primitive embedding of T(Y)(-1) in the K3 lattice, which is given by $\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_8(-1)^{\oplus 2}$. It is easy to see that this is not possible for the lattices T(Y) in Table 4 corresponding to ϕ_3^1 and ϕ_3^5 .

Remark 4.8. According to [24], there is also a notion of twisted K3 surface associated to a cubic fourfold. We observe that if Y is a general cubic fourfold with the automorphism ϕ_3^5 , then Y has an associated twisted K3 surface. Namely $Y \in \mathcal{C}_{12}$ and 12 satisfies condition (ii) of [25, Proposition 6.23]. A general cubic fourfold with automorphisms ϕ_3^1 or ϕ_3^5 is conjecturally irrational. Moreover, a general cubic fourfold with the automorphism ϕ_3^1 does not lie on any Hassett divisor.

Lemma 4.9. Let Y be a general cubic fourfold with an automorphism of order three of type ϕ_3^5 , then $Y \notin \mathcal{C}_d$ for $d \equiv 2$ (6).

Proof. Any primitive lattice K_d containing η_Y is of the form $\langle \eta_Y, a\eta_Y + v \rangle$ for $0 \neq v \in A_p(Y)$ and $a \in \mathbb{Z}$. We can suppose $K_d = \langle \eta_Y, v \rangle$ after applying a linear transformation, hence d = 3k in virtue of Theorem 4.6, where $k = v^2$ and k is an even number.

The divisor C_8 parametrizes cubic fourfolds containing a plane. In particular, a general cubic fourfold with automorphism ϕ_3^5 does not contain a plane since $Y \notin C_8$ but such a cubic belongs to C_{12} , which is the closure of the locus of cubic fourfolds containing a rational cubic scroll.

Proposition 4.10. Let Y be the general cubic fourfold with automorphism ϕ_3^5 , then the Fano variety of lines F(Y) contains 54 classes of rational curves.

Proof. By the numerical description of the extremal rays of the Mori cone for hyperkähler manifolds of $K3^{[2]}$ type in [41, Proposition 2.12], we know that divisors of square -2 and divisors of square -10 and divisibility 2 in $\mathrm{H}^2(F(Y),\mathbb{Z})$ correspond to extremal rays of the Mori cone, in particular they are classes of rational curves on F(Y). By [2], there is an isomorphism of integral Hodge structures $\mathrm{H}^4_p(Y,\mathbb{Z})(-1)\cong\mathrm{H}^2_p(F(Y),\mathbb{Z})$. We know that there are no short roots in $A_p(Y)$, then the only possibility is to have vectors in $\mathrm{H}^{1,1}(F(Y),\mathbb{Z})$ of square -10 and divisibility 2 in $\mathrm{H}^2(F(Y),\mathbb{Z})$. Recall that the polarization H of F(Y) has square 6 and divisibility 2 in $\mathrm{H}^2(F(Y),\mathbb{Z})$. The lattice $A_p(Y)(-1)\cong\mathrm{H}^{1,1}(F(Y),\mathbb{Z})$ is 3-elementary, hence vectors $v\in\mathrm{H}^{1,1}(F(Y),\mathbb{Z})$ of divisibility 2 in $\mathrm{H}^2(F(Y),\mathbb{Z})$ are of the form v=H+2a with $a\in\mathrm{H}^{1,1}_p(F(Y),\mathbb{Z})$. To get $v^2=-10$ we need $4a^2=-16$ and then $a^2=-4$. By the classification in Table 3 there are exactly 54 vectors of square 4 in $A_p(Y)$ for Y a general cubic fourfold with an action of ϕ_3^5 .

Proposition 4.11. Let Y be the general cubic fourfold with automorphism ϕ_3^5 , then Y contains 27 families of cubic scrolls $\{T_i, T_i^{\vee}\}_{i=1}^{27}$ such that $[T_i] + [T_i^{\vee}] = 2\eta_Y$. Moreover, the algebraic lattice A(Y) is generated by the classes $[T_i]$ for $i = 1, \ldots, 27$.

Proof. Every class of a rational curve on F(Y) corresponds to the class of a rational ruled surface on the cubic fourfold Y. Since, by construction, every such a surface is contained in an hyperplane section of Y, then the cubic surface is a rational cubic scroll. By Proposition 4.10, we have 54 rational cubic scrolls and by [22, Example 7.16] on a fixed cubic fourfold these scrolls are parametrized by two distinct copies of \mathbb{P}^2 . Given a cubic scroll $[T_i]$, there is a residual scroll (the dual cubic scroll) $[T_i^{\vee}]$ which is obtained by intersecting a linear hyperplane and a quadratic hypersurface containing $[T_i]$, as in [23] (each one of them correspond to a distinct (-10) class, as we found). One can easily check (using computer algebra [50]) that $A_p(Y)$ contains exactly 54 vectors of square 4 that generate the entire lattice, moreover the classes $\alpha_i := [T_i] - \eta_Y$ and $\alpha_i^{\vee} := [T_i^{\vee}] - \eta_Y$ have square 4.

4.4. Cubic fourfolds with automorphism ϕ_3^7 . A general cubic fourfold Y with the non-symplectic automorphism of order three ϕ_3^7 has a primitive algebraic lattice $A_p(Y)$ computed in Table 3. We prove that the cubic has an associated K3 surface and it is rational. Moreover we show that the algebraic lattice of such a cubic fourfold is generated by classes of planes.

Lemma 4.12. Let Y be a general cubic fourfold with automorphism ϕ_3^7 , then Y has an associated K3 surface and Y is rational.

Proof. Consider a general cubic fourfold Y with automorphism ϕ_3^7 , then it is easy to see that the lattice T(Y)(-1) in Table 4 corresponding to ϕ_3^7 admits a primitive embedding in a K3 lattice, hence Y has an associated K3 surface. Moreover if Y admits an automorphism ϕ_3^7 then $Y \in \mathcal{C}_{14}$, as $K_{14} = \langle \eta_Y, m_1 + m_2 \rangle$ gives a labeling if $(\eta_Y, m_1, \ldots, m_8)$ is a basis for the matrix of A(Y) in Table 4. It is well known that any cubic fourfold on \mathcal{C}_{14} is rational [2].

Proposition 4.13. Let Y be a general cubic fourfold with automorphism ϕ_3^7 . Then the cubic fourfold contains exactly nine disjoint planes F_1, \ldots, F_9 and a basis of A(Y) is given by $\{\eta_Y, [F_1], \ldots, [F_8]\}$.

Proof. If a plane is contained in Y it has to be invariant for the action of ϕ_3^7 on \mathbb{P}^5 . If a plane is invariant for the action of ϕ_3^7 it has equation

$$F_{\{a,b,c,d,e,f\}} := \{ax_0 = bx_1, cx_2 = dx_3, ex_4 = fx_5\}.$$

We want to study the intersection $Y \cap F_{\{a,b,c,d,e,f\}}$. The equation of a cubic fourfold Y with an action of ϕ_3^7 is given in Theorem 4.1 and it is straightforward to see that $Y \cap F_{\{a,b,c,d,e,f\}}$ coincides with

$$\{x_0^2x_2P_{\{2,1,0\}}(a,b,c,d,e,f)+x_4^2x_0P_{\{1,0,2\}}(a,b,c,d,e,f)+x_2^2x_4P_{\{0,2,1\}}(a,b,c,d,e,f)=0\},$$

where $P_{\{i,j,k\}}$ are polynomials of multi-degrees (i,j,k) in $\mathbb{P}^1_{[a:b]} \times \mathbb{P}^1_{[c:d]} \times \mathbb{P}^1_{[e:f]}$. From this description, we deduce that the planes contained in Y correspond to the set

$$S:=\{([a:b],[c:d],[e:f]) \text{ such that } P_{\{2,1,0\}}=P_{\{1,0,2\}}=P_{\{0,2,1\}}=0\} \subset \mathbb{P}^1_{[a:b]} \times \mathbb{P}^1_{[c:d]} \times \mathbb{P}^1_{[e:f]}.$$

Consider the projections $p_{a,b}, p_{c,d}, p_{e,f}$ from $\mathbb{P}^1_{[a:b]} \times \mathbb{P}^1_{[c:d]} \times \mathbb{P}^1_{[e:f]}$ to its factors, and denote by f_1, f_2, f_3 the fibers of these three projections. The set S coincides with the intersection of the following three

divisors:

(2)
$$2f_1 + f_2, f_1 + 2f_3, 2f_2 + f_3,$$

then S is a finite set of degree $(2f_1 + f_2)(f_1 + 2f_3)(2f_2 + f_3) = 9$. This means that the intersection of these three divisors gives exactly none points in $\mathbb{P}^1_{[a:b]} \times \mathbb{P}^1_{[c:d]} \times \mathbb{P}^1_{[e:f]}$, that correspond to the nine planes that we denote by F_1, \ldots, F_9 . Observe that the lattice generated by the classes $\{\frac{1}{3}\sum_{i=1}^9 [F_i], [F_1], \ldots, [F_8]\}$ has intersection matrix as in Table 4 and it is a saturated sublattice of A(Y), it follows that $\eta_Y = \frac{1}{3}\sum_{i=1}^9 [F_i]$ and $A(Y) = \langle \eta_Y, [F_1], \ldots, [F_8] \rangle$. In particular, by construction the planes are disjoint as claimed.

4.5. Cubic fourfolds with automorphism ϕ_3^2 . A cubic fourfold Y with the non-symplectic automorphism of order three ϕ_3^2 has a primitive algebraic lattice $A_p(Y)$ computed in Table 3.

In this section we explore the geometry of a cubic fourfold with such an action making a couple of complementary remarks, referring to [30, $\S 2$]. In particular, we prove that a cubic fourfold Y with such an action contains eightyone invariant planes that are related to the existence of three Eckardt points on Y.

Lemma 4.14. Let Y be a general cubic fourfold with automorphism ϕ_3^2 , then Y has an associated K3 surface and Y is rational.

Proof. Same proof as Lemma 4.12, where the labeling is given by $K_{14} = \langle \eta_Y, -m_6 + m_7 \rangle$ where $(\eta_Y, m_1, \dots, m_{12})$ is a basis for the matrix of A(Y) in Table 4.

Here we recall the definition of an Eckardt point for a cubic fourfold given in [30, Definition 1.5], where we only consider smooth cubic fourfolds.

Definition 4.15. Let Y be a smooth cubic fourfold. We say that $p \in Y$ is an *Eckardt point* if p has multiplicity 3 in $T_pY \cap Y$, equivalently if $T_pY \cap Y$ is a cone with vertex p over a cubic surface.

We prove that a cubic fourfold with the automorphism ϕ_3^2 contains three Eckardt points.

Proposition 4.16. Let Y be a general cubic fourfold with an order three non-symplectic automorphism ϕ_3^2 . Then Y contains exactly eightyone (invariant) planes, associated to three fixed Eckardt points $P_1, P_2, P_3 \in Y$.

Proof. Recall that a general cubic fourfold Y with an action of automorphism ϕ_3^2 is described as

$$L_3(x_0,\ldots,x_3) + M_3(x_4,x_5) = 0,$$

where L_3 and M_3 are two homogeneous polynomials of degree 3 in x_0, \ldots, x_3 and x_4, x_5 respectively. If P = [0:0:0:0:p:q] is a zero of the polynomial $M_3(x_4,x_5)$, then we can write

$$M_3(x_4, x_5) = (qx_4 - px_5)M_2(x_4, x_5).$$

Note that the equation of the tangent plane T_PY is $\{qx_4 - px_5 = 0\}$ since $\frac{\partial F}{\partial x_4}|_P = q$ and $\frac{\partial F}{\partial x_5}|_P = p$. Then the intersection $T_PY \cap Y$ is a cone with vertex P over the invariant cubic surface $S = Y \cap \{x_4 = x_5 = 0\}$, hence P is an Eckardt point. There are three such Eckardt points P_1, P_2, P_3 corresponding to the points $M_3 = 0$. By the argument above each one of them gives an invariant Eckardt point $P_i = [0:0:0:0:a_i:b_i] \in Y$ for i=1,2,3. The cone over the invariant surface with vertex any of the Eckardt points is still invariant and contained in Y. The cubic surface S contains

exactly 27 lines, then any Eckardt point determines 27 invariant planes passing through the lines of the surface. If $F \subset Y$ is a plane, then by [57], its cohomology class is such that $[F]^2 = 3$ and $[F] \cdot \eta_Y = 1$, moreover any class with these numerical properties is represented by a unique plane. Using computer algebra, one can check that there are exactly eightyone such classes in A(Y). \square

Corollary 4.17. Let Y be a cubic with an automorphism ϕ_3^2 , then $\mathbb{Z}/3\mathbb{Z} \times D_4 \subset \operatorname{Aut}(Y)$, where D_4 denotes the dihedral group.

Proof. The automorphism of order three is given by ϕ_3^2 and, according to [30] for any Eckardt point there is an associated involution given by a hyperplane reflection. From the matrix description of the automorphisms, choosing an appropriate set of coordinates, the reflections generate the dihedral group and commute with the automorphism ϕ_3^2 .

Proposition 4.18. Let Y be a general cubic fourfold with automorphism ϕ_3^2 . In the notation of the proof of Proposition 4.16, consider the 6 disjoint lines on the cubic surface S contained in Y, and consider the classes of the planes $[F_{ij}]$ for $i \in \{1, 2, 3\}$ and for $j \in \{1, ..., 6\}$ that are the unique planes passing through the Eckardt point P_i and one of the disjoint lines in S. Then the algebraic lattice A(Y) has a basis given by the classes of the following planes:

- $[F_{1,j}]$ for all $j \in \{1, \ldots, 6\}$
- $[F_{2,k}]$ for $k \in \{1,\ldots,5\}$
- $[F_{1,0}]$ and $[F_{2,0}]$

where $F_{1,0}$ and $F_{2,0}$ are classes of the the cones of the pullback of a general line via $S = Bl_6 \mathbb{P}^2 \to \mathbb{P}^2$ with vertex, respectively, the Eckardt points P_1 and P_2 .

Proof. The intersection numbers of the classes corresponding to planes in the cone with vertex an Eckardt point are described in [30, Lemma 2.4], the cases where the planes pass thought different Eckardt points can be easily deduced. The classes $[F_{1,0}]$ and $[F_{2,0}]$ correspond to a union of planes $P_0 + P'_0 + P''_0$ and $Q_0 + Q'_0 + Q''_0$ respectively, where P_0 shares a line with P'_0 and P''_0 and the intersection $P'_0 \cap P''_0$ is a point (and the same behaviour for Q_0, Q'_0, Q''_0) (see [53]). The rank 13 sublattice of A(Y) generated by $\{[F_{1,j}], [F_{2,k}], [F_{1,0}], [F_{2,0}]\}_{j,k}$ coincides with A(Y) since the intersection matrix has the same determinant as the one of A(Y) in Table 4.

Remark 4.19. According to [14, Proposition 3.3] for a hypersurface of degree d=3 in \mathbb{P}^5 the Eckardt points of the hypersurface have to be at most d=3 points on a line l not contained in Y. This configuration is actually verified for a general cubic fourfold with an order three non-symplectic automorphism ϕ_2^2 .

Note that in [29, Theorem 1.8] and in [30] the authors study the minimal algebraic lattice that a cubic fourfold Y needs to have in order to admit an Eckardt point, and they find that a cubic fourfold Y with a non-symplectic involution ϕ_2^1 has an Eckardt point. In this situation they prove that $A_p(Y) \cong \mathbf{E}_6(2)$ and the cubic fourfold has no associated K3 surface by [35, Theorem 1.2]. In the case of a cubic fourfold with an automorphism of order three ϕ_3^2 the cubic fourfold has more algebraic classes, it admits also the involution ϕ_2^1 as we showed in Corollary 4.17, but it is rational and has an associated K3 surface, as we prove in Lemma 4.14.

Remark 4.20. Note that by lattice-theoretic considerations we can detect that a cubic fourfold with automorphism ϕ_3^2 contains an Eckardt point. Namely let Y be a general cubic fourfold with an order three non-symplectic automorphism ϕ_3^2 , then it is easy to see that there exists a primitive embedding $\mathbf{E}_6(2) \hookrightarrow A_p(Y)$, and this is enough to conclude that Y contains an Eckardt point by [30, Proposition 2.8].

5. INDUCED ACTION ON LAZA-SACCA-VOISIN MANIFOLDS

In this section we study non-symplectic automorphisms of ihs manifolds of OG10 type that are constructed as Laza–Saccà–Voisin manifolds and we investigate when these automorphisms are induced by non-symplectic automorphisms of the underlying cubic fourfold.

The main result that we recall here is the following theorem due to Mongardi-Onorati.

Theorem 5.1 (see [18, Addendum, Theorem 3.4]). Let Y be a cubic fourfold, and let J(Y) be the associated LSV manifold, then there is a Hodge isometry

$$\mathrm{H}_{n}^{4}(Y,\mathbb{Z})(-1) \xrightarrow{\cong} \mathrm{\mathbf{U}}_{Y}^{\perp} \subset \mathrm{H}^{2}(J(Y),\mathbb{Z}).$$

Proposition 5.2. Let Y be a cubic fourfold, and let $J^t(Y)$ be the associated twisted LSV manifold, then there is a Hodge isometry

$$\mathrm{H}^4_n(Y,\mathbb{Z})(-1) \xrightarrow{\cong} (\mathbf{U}_Y^t)^{\perp} \subset \mathrm{H}^2(J^t(Y),\mathbb{Z}).$$

Proof. The twisted LSV manifold is birational to the Li–Pertusi–Zhao manifold $\widetilde{\mathrm{M}}_{\sigma}(2(\lambda_{1}+\lambda_{2}),\mathcal{A}_{Y})$ by [33, Theorem 1.3]. Consider the symplectic resolution $\widetilde{\mathrm{M}}_{\sigma}(2(\lambda_{1}+\lambda_{2}),\mathcal{A}_{Y})$ of the moduli space of Bridgeland σ -semi-stable objects on the Kuznetsov component \mathcal{A}_{Y} of the cubic fourfold Y. We know by [17, Example 2.13] that there is a Hodge embedding $H_{p}^{4}(Y,\mathbb{Z})(-1) \hookrightarrow H^{2}(\widetilde{\mathrm{M}}_{\sigma}(2(\lambda_{1}+\lambda_{2}),\mathcal{A}_{Y}),\mathbb{Z})$ with orthogonal complement of (1,1) type and isometric to $\mathbf{U}(3)$. The moduli space $\widetilde{\mathrm{M}}_{\sigma}(2(\lambda_{1}+\lambda_{2}),\mathcal{A}_{Y})$ is birational to $J^{t}(Y)$ by [33, Theorem 1.3]. For a general cubic fourfold Y the algebraic lattice of $\widetilde{\mathrm{M}}_{\sigma}(2(\lambda_{1}+\lambda_{2}),\mathcal{A}_{Y})$ is isometric to $\mathbf{U}(3)$ and the algebraic lattice of $J^{t}(Y)$ is isometric to \mathbf{U}_{Y}^{t} , hence composing the Hodge isometries we get the following Hodge isometry

$$\mathrm{H}^4_p(Y,\mathbb{Z})(-1) \xrightarrow{\cong} (\mathbf{U}_Y^t)^{\perp} \subset \mathrm{H}^2(J^t(Y),\mathbb{Z}).$$

We give a numerical criterion for an ihs manifold of OG10 type to be birational to a LSV manifold J(Y) or a to twisted LSV manifold $J^t(Y)$.

Proposition 5.3 (see [37, Proposition 7.5] and [51]). Let X be an ihs manifold of OG10 type. There exists a smooth cubic fourfold Y such that X is birational to J(Y) if and only if $\mathbf{U} \subset \mathrm{NS}(X)$ and $\mathbf{U}^{\perp_{\mathrm{NS}(X)}} \cap \mathcal{W}_{pex}(X) = \emptyset$.

Proposition 5.4. Let X be an ihs manifold of OG10 type. There exists a smooth cubic fourfold Y such that X is birational to $J^t(Y)$ if and only if there is a primitive embedding $\mathbf{U}(3) \subset \mathrm{NS}(X)$ and $\mathbf{U}(3)^{\perp_{\mathrm{NS}(X)}} \cap \mathcal{W}_{pex}(X) = \emptyset$.

Proof. If X and $J^t(Y)$ are birational, then there is an Hodge isometry $\mathrm{H}^2(J^t(Y),\mathbb{Z})\cong\mathrm{H}^2(X,\mathbb{Z})$, so the embedding $\mathrm{U}_Y^t\subset\mathrm{NS}(J^t(Y))$ induces the embedding of $\mathrm{U}(3)$ in $\mathrm{NS}(X)$. We know by Proposition 5.2 that the lattice $(\mathrm{U}_Y^t)^\perp\subset\mathrm{H}^2(J(Y),\mathbb{Z})$ is Hodge-isometric to $\mathrm{H}_p^4(Y,\mathbb{Z})(-1)$. The description of the image of the period map of cubic fourfold Theorem 2.9 ensures that there are no long or short roots in $\mathrm{H}_p^4(Y,\mathbb{Z})$, which coincide with classes of prime exceptional divisors of ihs manifolds of OG10 type up to a sign (see §2.2).

Viceversa, if there are no short or long roots in $\mathbf{U}(3)^{\perp} \subset \mathrm{NS}(X)(-1)$ then by Theorem 2.9 we know that $\mathbf{U}(3)^{\perp} \subset \mathrm{H}^2(X,\mathbb{Z})(-1)$ is Hodge isometric to $\mathrm{H}^4_p(Y,\mathbb{Z})$ for a cubic fourfold Y, which is also Hodge isometric to $(\mathbf{U}_Y^t)^{\perp} \subset \mathrm{H}^2(J^t(Y),\mathbb{Z})(-1)$. Extending the Hodge isometry to the entire lattice $\mathrm{H}^2(X,\mathbb{Z}) \cong \mathrm{H}^2(J^t(Y),\mathbb{Z})$ via [46, Corollary 1.5.2], we conclude that X and $J^t(Y)$ are birational.

Remark 5.5. Combining [33, Theorem 1.3] with [17, Theorem 4.3] we obtain that J(Y) is birational to $J^t(Y)$ if and only if the cubic fourfold Y admits a d-labeling with $d \equiv 2(6)$. As an application of the results in §4, we obtain that J(Y) and $J^t(Y)$ are birational if Y is general with an automorphism ϕ_3^7 or ϕ_3^2 but they are not birational if Y is general with an automorphism out that by [35] it follows that J(Y) and $J^t(Y)$ are birational if Y is general with one of the non-symplectic involutions ϕ_2^1 or ϕ_2^2 . We collect this information in Table 2.

We study the induced action on the second integral cohomology of birational transformations of LSV manifolds induced by automorphisms of cubic fourfolds. Recall that an automorphism of a cubic fourfold Y induces a birational transformation of the LSV manifold J(Y).

Remark 5.6. An automorphism of the cubic fourfold Y induces a birational transformation of the twisted LSV manifold $J^t(Y)$. In fact, let $u: \mathcal{V}_U \to U \subset \mathbb{P}^5$ be the family of smooth hyperplane sections of Y, recall that Deligne-Belinson cohomology gives an exact sequence of sheaves of groups

$$0 \to J_U(Y) \to \mathrm{H}^4_{\mathcal{D}}(\mathcal{V}_U, \mathbb{Z}(2)) \xrightarrow{c} R^4 u_* \mathbb{Z} \to 0$$

where the sheaf $R^4u_*\mathbb{Z}$ is canonically isomorphic to \mathbb{Z} . By definition $J_U^t=c^{-1}(1)$, functoriality gives an automorphism of J_U^t .

Let $\phi \in \operatorname{Aut}(Y)$, we denote by $\widetilde{\phi} \in \operatorname{Bir}(J(Y))$ and by $\widetilde{\phi}^t \in \operatorname{Bir}(J^t(Y))$ the induced birational transformations.

Lemma 5.7 (see [42, Lemma 7.1] or [56, Lemma 3.2]). Let Y be a cubic fourfold, $\phi \in \text{Aut}(Y)$ is symplectic if and only if $\widetilde{\phi} \in \text{Bir}(J(Y))$ and $\widetilde{\phi}^t \in \text{Bir}(J^t(Y))$ are symplectic.

Proposition 5.8. Let Y be a general cubic fourfold with a non-symplectic automorphism $\phi \in \operatorname{Aut}(Y)$ of finite order and let $\widetilde{\phi} \in \operatorname{Bir}(J(Y))$ be the induced birational transformation on the LSV manifold J(Y). Then there is an isometry

$$(\mathrm{H}_{n}^{4}(Y,\mathbb{Z}))^{\phi}(-1) \cong (\mathbf{U}_{Y}^{\perp})^{\widetilde{\phi}} \subset \mathrm{H}^{2}(J(Y),\mathbb{Z})^{\widetilde{\phi}}.$$

The same statement holds for $J^t(Y)$, replacing \mathbf{U}_Y with $\mathbf{U}_Y^t \cong \mathbf{U}(3)$ and $\widetilde{\phi}$ with $\widetilde{\phi}^t$.

Proof. We prove the statement for the untwisted case, the twisted case is analogous.

By [56, Section 3.1] every birational transformation $\widetilde{\phi} \in \operatorname{Bir}(J(Y))$ of a LSV manifold which is induced by an automorphism $\phi \in \operatorname{Aut}(Y)$ of the cubic fourfold Y fixes the two generators of \mathbf{U}_Y . We consider the isometry $\widetilde{\phi}$ restricted on \mathbf{U}_Y^{\perp} , which is still a Hodge isometry since the two generators in \mathbf{U}_Y are of (1,1) type. According to [42, Lemma 7.1] there is an isogeny of Hodge structures

$$\alpha \colon \operatorname{H}_p^4(Y,\mathbb{Z})(-1) \to \mathbf{U}_Y^{\perp} \subset \operatorname{H}^2(J(Y),\mathbb{Z}),$$

where α is the restriction of the morphism $[Z]_* \circ q^* : H^4(Y,\mathbb{Z}) \to H^2(J(Y),\mathbb{Z})$. Here $q : \mathcal{U}_Y \to Y$ is the inclusion of linear sections and $[Z]_*(x) = \pi_{1*}(\pi_2^*x.Z)$ where $Z \in \mathrm{CH}^2(J(Y) \times_{\mathbb{P}^5} \mathcal{U}_Y)_{\mathbb{Q}}$ is the closure of a distinguished cycle $Z_U \in \mathrm{CH}^2(J_U(Y) \times_{\mathbb{P}^5} \mathcal{U}_U)_{\mathbb{Q}}$, and π_1, π_2 are the respective projections. For an integer k, it is well defined the cycle $\phi^k(Z_U) \in \mathrm{CH}^2(J_U(Y) \times_{\mathbb{P}^5} \mathcal{U}_U)_{\mathbb{Q}}$, consider its closure $\overline{\phi^k(Z_U)} \in \mathrm{CH}^2(J(Y) \times_{\mathbb{P}^5} \mathcal{U}_Y)_{\mathbb{Q}}$. Replacing Z with

$$\widetilde{Z} = \frac{1}{\sqrt{\operatorname{ord}(\phi)}} \sum_{k=0}^{\operatorname{ord}(\phi)} \overline{\phi^k(Z_U)}$$

in the above definition, since $\phi(\widetilde{Z}) = \widetilde{Z}$, one gets a $(\phi, \widetilde{\phi})$ -equivariant isogeny of Hodge structures

$$\widetilde{\alpha} \colon \operatorname{H}_p^4(Y,\mathbb{Z})(-1) \to \mathbf{U}_Y^{\perp} \subset \operatorname{H}^2(J(Y),\mathbb{Z}).$$

There is an isometry $A_p(Y)(-1) \cong (\mathbf{U}_Y^{\perp})^{1,1}$ by Theorem 5.1, and by the equivariance of $\widetilde{\alpha}$ it follows that $H_n^4(Y,\mathbb{Z})^{\phi}(-N) \subseteq (\mathbf{U}_Y^{\perp})^{\widetilde{\phi}}$ for some integer N>0. The cubic fourfold is general then we have $\operatorname{H}_{n}^{4}(Y,\mathbb{Z})^{\phi} \cong A_{n}(Y)$ and there are finite index embeddings

$$A_p(Y)(-N) \cong \mathrm{H}_p^4(Y,\mathbb{Z})^\phi(-N) \subseteq (\mathbf{U}_Y^\perp)^{\widetilde{\phi}} \subseteq (\mathbf{U}_Y^\perp)^{1,1},$$

we conclude by observing that the last embedding is primitive.

We can recover a cubic fourfold with an automorphism from a certain automorphism of a manifold of OG10 type.

Proposition 5.9. Let X be a manifold of OG10 type with a marking $H^2(X,\mathbb{Z}) \cong \mathbf{L}$ and let $f \in Bir(X)$ be a general non-symplectic birational transformation of prime order. Then f is induced by an automorphism of a cubic fourfold if and only if it acts trivially on the discriminant group $A_{\rm L}$. and one of the following holds:

- i) there is a primitive embedding $\mathbf{U} \hookrightarrow \mathrm{NS}(X)$ such that $\mathbf{U}^{\perp_{\mathrm{NS}(X)}} \cap \mathcal{W}_{Pex} = \emptyset$, ii) there is a primitive embedding $\mathbf{U}(3) \hookrightarrow \mathrm{NS}(X)$, such that $\mathbf{U}(3)^{\perp_{\mathrm{NS}(X)}} \cap \mathcal{W}_{Pex} = \emptyset$.

Proof. By generality assumption we have $\mathbf{L}^f = \mathrm{NS}(X)$. If f is natural the statement follows from Proposition 5.8 and Theorem 2.13.

Viceversa, assume $f \in Bir(X)$ is a non-symplectic birational transformation acting trivially on $\mathbf{A_L}$ and such that i) holds. Consider the lattice $\mathbf{N} := \mathbf{U}^{\perp_{\mathbf{L}(-1)}}$. Since $\mathbf{U}^{\perp_{\mathrm{NS}(X)}} \cap \mathcal{W}_{Pex} = \emptyset$ and prime exceptional divisors of an OG10 type manifold correspond to short and long roots up to the sign, by Theorem 2.9 there exits a smooth cubic fourfold Y such that $H_n^4(Y,\mathbb{Z}) \cong \mathbb{N}$ is a Hodge isometry. The restriction of the isometry f to $\mathbf N$ extends to an isometry of $\mathrm H^4(Y,\mathbb Z)$ that fixes the class $\langle \eta_Y \rangle = \mathrm{H}_p^4(Y,\mathbb{Z})^{\perp} \subset \mathrm{H}^4(Y,\mathbb{Z})$ if and only if f acts trivially on the discriminant group $A_{\mathbf{L}(-1)} \cong A_{\mathbf{N}}$, as in our assumption. We conclude by Proposition 5.8 and Theorem 2.13. The same proof holds true assuming ii).

Lemma 5.10. Let Y be a general cubic fourfold with a non-symplectic automorphism $\phi \in Aut(Y)$ of finite order. Then, the induced birational transformations $\widetilde{\phi} \in \text{Bir}(J(Y))$ and $\widetilde{\phi}^t \in \text{Bir}(J^t(Y))$ are automorphisms.

Proof. From Proposition 5.8 we know that from generality assumption $A_p(Y) = \operatorname{H}_p^4(Y,\mathbb{Z})^{\phi}$ then $NS(J(Y)) = H^2(J(Y), \mathbb{Z}))^{\widetilde{\phi}}$ and $NS(J^t(Y)) = H^2(J^t(Y), \mathbb{Z}))^{\widetilde{\phi}^t}$. By the Hodge theoretic Torelli theorem for ihs manifolds [34, Theorem 1.3] we conclude that the transformations are regular. \Box

Remark 5.11. This shows that the converse of [56, Proposition 3.11] does not hold. Namely, some birational transformations induced by automorphisms of a cubic fourfold extend to regular automorphisms even if the fibers of the Lagrangian fibration are reducible. Reducible fibers arise for cubic fourfolds containing planes or cubic scrolls, see [38].

Theorem 5.12. Let Y be a general cubic fourfold with a non-symplectic automorphism of prime order. Then, the invariant and coinvariant lattices of the induced actions on J(Y) and $J^{t}(Y)$ are described in Table 2.

Proof. We have a classification of possible invariant and coinvariant sublattices of $H_p^4(Y,\mathbb{Z})$ for non-symplectic automorphisms of a general Y. This is the content of [35, Theorem 1.1] for the case of involutions, and of Theorem 4.6 for the case of automorphisms of order three. Using Proposition 5.8 and Table 6 we conclude the statement.

Theorem 5.13. Let X be an ihs manifold of OG10 type and let $f \in \operatorname{Aut}(X)$ be a general non-symplectic automorphism of prime order, and let $G = \langle f \rangle$. If the pair $(\mathbf{L}^G, \mathbf{L}_G)$ appears in Table 2, then there exists a cubic fourfold Y with an automorphism $\phi \in \operatorname{Aut}(Y)$ such that X is birational to J(Y) or $J^t(Y)$ and f is compatible with $\widetilde{\phi} \in \operatorname{Aut}(J(Y))$ or $\widetilde{\phi}^t \in \operatorname{Aut}(J^t(Y))$ respectively.

Proof. Suppose $G \subset \operatorname{Aut}(X)$ is as in Table 2, then the hypothesis of Proposition 5.3 or Proposition 5.4 are satisfied so that X is birational to an LSV manifold. Finally, Proposition 5.9 concludes the proof.

APPENDIX A. TABLES OF INVARIANT AND COINVARIANT LATTICES OF NON-SYMPLECTIC AUTOMORPHISMS OF OG10

Here we collect tables of (isometry classes) of invariant and coinvariant lattices for the action on Λ and \mathbf{L} , i.e. pairs $(\mathbf{L}^G, \mathbf{L}_G)$ and (Λ^G, Λ_G) for a group G of prime order isometries, with given signatures.

A.1. p = 2.

TABLE 5. Pairs $(\mathbf{\Lambda}^G, \mathbf{\Lambda}_G)$ for $G \subset \mathrm{O}(\mathbf{\Lambda})$ of prime order p = 2 and $\mathrm{sgn}(\mathbf{\Lambda}_G) = (2, \mathrm{rk}(\mathbf{\Lambda}_G) - 2)$, i.e. trivial action on the discriminant group.

No.	$\mathrm{rk}(\mathbf{\Lambda}^G)$	$oldsymbol{\Lambda}_G$	$\mathbf{\Lambda}^G$	$\operatorname{sgn}(\mathbf{\Lambda}_G)$	a	δ
1	4	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{U} \oplus [2]^{\oplus 2}$	(2, 20)	2	1
2	4	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 3}$	[2] ^{⊕3} ⊕ [−2]	(2, 20)	4	1
3	5	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [-2]$	$U^{\oplus 2} \oplus [2]$	(2, 19)	1	1
4	5	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 2}$	$\mathbf{U} \oplus [2]^{\overset{\circ}{\oplus}\overset{\circ}{2}} \oplus [-2]$	(2, 19)	3	1
5	5	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 2}$	(2, 19)	5	1
6	6	$\mathbf{E_8}(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2}$	$\mathbf{U}^{\oplus 3}$	(2, 18)	0	0
7	6	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{U}(2)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(2)$	(2, 18)	2	0
8	6	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus [-2]$	$U^{\oplus 2} \oplus [2] \oplus [-2]$	(2, 18)	2	1
9	6	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}(2)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2}$	(2, 18)	4	0
10	6	$\mathbf{E_8}(1)^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [2]^{\oplus 2}$	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	(2, 18)	4	1
11	6	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus \mathbf{U}(2)$	$U(2)^{\oplus 3}$	(2, 18)	6	0
12	6	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [2] \oplus [-2]$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 3}$	(2, 18)	6	1
13	7	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2]$	$\mathbf{U}^{\oplus 3} \oplus [-2]$	(2, 17)	1	1
14	7	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-2]$	$U^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 17)	3	1
15	7	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 3}$	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	(2, 17)	5	1
16	7	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 4}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 4}$	(2, 17)	7	1
17	8	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 2}$	$\mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 2}$	(2, 16)	2	1
18	8	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 3}$	(2, 16)	4	1
19	8	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [2]^{\oplus 2}$	$U \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4}$	(2, 16)	6	1
20	8	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 7}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 5}$	(2, 16)	8	1
21	9	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]$	$U^{\oplus 3} \oplus [-2]^{\oplus 3}$	(2, 15)	3	1
22	9	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	$U^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus [2]$	(2, 15)	5	1
23	9	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	(2, 15)	7	1
24	9	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 7}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 6}$	(2, 15)	9	1
25	10	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1)$	$U^{\oplus 2} \oplus U(2) \oplus D_4(-1)$	(2, 14)	4	0
26	10	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]$	$U^{\oplus 3} \oplus [-2]^{\oplus 4}$	(2, 14)	4	1
27	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_{4}(-1)$	(2, 14)	6	0
28	10	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 5}$	(2, 14)	6	1
29	10	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{D}_{4}(-1)^{\oplus 3}$	$U(2)^{\oplus 3} \oplus D_4(-1)$	(2, 14)	8	0
30	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]^{\oplus 4}$	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 6}$	(2, 14)	8	1

Table 5, follows from previous page

	Table 5, follows from previous page							
No.	$\mathrm{rk}(\mathbf{\Lambda}^G)$	$oldsymbol{\Lambda}_G$	$oldsymbol{\Lambda}^G$	$\operatorname{sgn}(\mathbf{\Lambda}_G)$	a	δ		
31	10	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 5}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 7}$	(2, 14)	10	1		
32	11	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 3}$	(2, 13)	3	1		
33	11	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-1]^{\oplus 2} \oplus [-1]$	-2] $U^{\oplus 3} \oplus [-2]^{\oplus 5}$	(2, 13)	5	1		
34	11	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 6}$	(2, 13)	7	1		
35	11	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 7}$	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 7}$	(2, 13)	9	1		
36	11	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 8}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 8}$	(2, 13)	11	1		
37	12	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2]^{\oplus 2}$	(2, 12)	2	1		
38	12	$\mathbf{E_8}(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 3}$ $\mathbf{E_8}(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4}$	$\mathbf{E}_{8}(-1) \oplus [2]^{\overset{\frown}{\oplus}3} \oplus [-2]$ $\mathbf{U}^{\oplus 3} \oplus [-2]^{\overset{\frown}{\oplus}6}$	(2, 12)	4	1		
39	12	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4}$	$\mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 6}$ $\mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 7}$	(2, 12)	6	1		
40	12	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 6}$	$U^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 1}$	(2, 12)	8	1		
41 42	12 12	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 7}$ $\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 11}$	$\begin{array}{c} \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 8} \\ [2]^{\oplus 3} \oplus [-2]^{\oplus 9} \end{array}$	(2, 12)	10 12	1 1		
43	13	$\mathbf{E}_{8}(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [2]$	(2, 12) $(2, 11)$	12	1		
44	13	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [-2] \oplus \mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2] \oplus 2$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]$	(2, 11) $(2, 11)$	3	1		
45	13	$\mathbf{E}_8(-1) \oplus \mathbf{O} \oplus [2] \oplus [-2]^+$ $\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus \mathbf{G} \oplus [2] + \oplus [-2]$ $\mathbf{E}_8(-1) \oplus [2] \oplus 3 \oplus [-2] \oplus 2$	(2, 11) $(2, 11)$	5	1		
46	13	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 5}$	$\mathbf{U}_{0}^{\oplus 3} \oplus [-2]^{\oplus 7}$	(2,11) $(2,11)$	7	1		
47	13	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2] \oplus \mathbf{G}$ $\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2] \oplus \mathbf{G}$	$U^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 8}$	(2,11) $(2,11)$	9	1		
48	13	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 7}$	$\mathbf{U}^{\oplus 2} \overset{\leftarrow}{\oplus} [2] \overset{\rightarrow}{\oplus} [-2] \overset{\oplus 8}{\oplus} \mathbf{U} \overset{\rightarrow}{\oplus} [2] \overset{\oplus 2}{\oplus} \overset{\rightarrow}{\oplus} [-2] \overset{\oplus 9}{\oplus} \mathbf{U}$	(2,11) $(2,11)$	11	1		
49	13	$[2]^{\oplus 2} \oplus [-2]^{\oplus 11}$	$[2]^{\oplus 3} \oplus [-2]^{\oplus 10}$	(2,11) $(2,11)$	13	1		
50	14	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 3}$	(2, 10)	0	0		
51	14	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2)$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{U}(2)$	(2, 10)	2	0		
52	14	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]$	(2, 10)	2	1		
53	14	$E_8(-1) \oplus U(2)^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2}$	(2, 10)	4	0		
54	14	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	(2, 10)	4	1		
55	14	$U \oplus U(2) \oplus D_4(-1)^{\oplus 2}$	$\mathbf{E_8}(-1) \oplus \mathbf{U}(2)^{\oplus 3}$	(2, 10)	6	0		
56	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 4}$	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 3} \oplus [-2]^{\oplus 3}$	(2, 10)	6	1		
57	14	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 2}$	$\mathbf{D}_{4}(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2}$	(2, 10)	8	0		
58	14	$\mathbf{D}_4(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 8}$	(2, 10)	8	1		
59	14	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{E}_{8}(-2)$	$\mathbf{D}_4(-1)^{\oplus 2} \oplus \mathbf{U}(2)^{\oplus 3}$	(2, 10)	10	0		
60	14	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 9}$	$\mathbf{D}_4(-1)^{\oplus 2} \oplus [2]^{\oplus 3} \oplus [-2]^{\oplus 3}$	(2, 10)	10	1		
61	14	$\mathbf{E}_8(-2) \oplus \mathbf{U}(2)^{\oplus 2}$	$\mathbf{E}_8(-2) \oplus \mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2}$	(2, 10)	12	0		
62	14	$[2]^{\stackrel{.}{\oplus}2} \oplus [-2]^{\stackrel{.}{\oplus}10}$	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 10}$	(2, 10)	12	1		
63	15	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 3} \oplus [-2]$	(2, 9)	1	1		
64	15	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 9)	3	1		
65	15	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	(2,9)	5	1		
66	15	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 4}$ $\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{E}_{8}(-1) \oplus [2]^{\oplus 3} \oplus [-2]^{\oplus 4}$ $\mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 9}$	(2,9)	7 9	1		
67 68	15 15	$[2]^{\oplus 2} \oplus [-2]^{\oplus 9}$	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [-2]^{\oplus 9}$	(2,9)	9 11	1 1		
69	16	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 2}$	(2, 9) (2, 8)	2	1		
70	16	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{O}^+ \oplus [-2]^+$ $\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus \mathbf{U} \oplus [2]^{\oplus 2}$	(2,8) $(2,8)$	4	1		
71	16	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 6}$	$\mathbf{F}_{0}(-1) \oplus \mathbf{I} \mathbf{I} \oplus [2] \oplus ^{2} \oplus [-2] \oplus ^{4}$	(2,8) $(2,8)$	6	1		
72	16	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 7}$	$\mathbf{E_8(-1)} \oplus \mathbf{G} \oplus [2] \oplus \mathbf{G} \oplus [-2] \oplus \mathbf{S}$ $\mathbf{E_8(-1)} \oplus [2] \oplus \mathbf{G} \oplus [-2] \oplus \mathbf{S}$ $\mathbf{U}^{\oplus 3} \oplus [-2] \oplus 10$	(2,8) $(2,8)$	8	1		
73	16	$[2]^{\oplus 2} \oplus [-2]^{\oplus 8}$	$\Pi_{\oplus 3}^{(1)} \oplus [-2]^{\oplus 10}$	(2,8)	10	1		
74	17	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D_4}(-1) \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 3}$	(2, 7)	3	1		
75	17	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 4}$	(2,7)	5	1		
76	17	$\mathbf{U} \oplus [2] \oplus [-2] \oplus 6$	$\mathbf{E}_{8}(-1) \oplus \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	(2,7)	7	1		
77	17	$[2]^{\oplus 2} \oplus [-2]^{\oplus 7}$	$\mathbf{E}_{8}(-1) \oplus [2]^{\oplus 3} \oplus [-2]^{\oplus 6}$	(2,7)	9	1		
78	18	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 3} \oplus \mathbf{D}_4(-1)$	(2,6)	2	0		
79	18	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1)$	(2, 6)	4	0		
80	18	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]$	(2, 6)	4	1		
81	18	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_4(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_4(-1)$	(2, 6)	6	0		
82	18	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 5}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	(2, 6)	6	1		
83	18	$[2]$ $\stackrel{\oplus}{=}$ $[2]$ $\stackrel{\oplus}{=}$ $[-2]$ $\stackrel{\oplus}{=}$ $[2]$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 3} \oplus [-2]^{\oplus 3}$	(2, 6)	8	1		
84	19	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 3}$	(2, 5)	3	1		
85	19	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 4}$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 5)	5	1		
86	19	$[2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	(2, 5)	7	1		
87	20	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2]^{\oplus 2}$	(2, 4)	2	1		
88	20	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 3} \oplus [-2]$	(2,4)	4	1		
89	20	$[2]^{\oplus 2} \oplus [-2]^{\oplus 4}$	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(2,4)	6	1		
90	21	$\mathbf{U}^{\oplus 2} \oplus [-2]$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [2]$	(2,3)	1	1		
91	21	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 2}$	$\mathbf{E_8}(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]$	(2,3)	3	1		
92	21	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 3}$ $\mathbf{U}^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 3} \oplus [-2]^{\oplus 2}$	(2,3)	5	1		
93	22		$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 3}$	(2,2)	0	0		
94	22	$\mathbf{U} \oplus \mathbf{U}(2)$	$\mathbf{E_8}(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{U}(2)$ $\mathbf{E_8}(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]$	(2,2)	2	0		
95 96	$\frac{22}{22}$	$\mathbf{U} \oplus [2] \oplus [-2]$ $\mathbf{U}(2)^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]$ $\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{U}(2)^{\oplus 2}$	(2,2)	2 4	1		
90	44	O(2)	$E_8(-1)^{\circ} \oplus U \oplus U(2)^{\circ}$ Continues on next page	(2, 2)	4	U		
			The same of the same same same same same same same sam					

Table 5, follows from previous page

No.	$\mathrm{rk}(\mathbf{\Lambda}^G)$	$oldsymbol{\Lambda}_G$	$oldsymbol{\Lambda}^G$	$\operatorname{sgn}(\mathbf{\Lambda}_G)$	a	δ
97	22	$[2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	(2, 2)	4	1
98	23	U ⊕[2]	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 3} \oplus [-2]$	(2, 1)	1	1
99	23	$[2]^{\oplus 2} \oplus [-2]$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2}$	(2,1)	3	1
100	24	$[2]^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 3} \oplus [-2]^{\oplus 2}$	(2, 0)	2	1

Table 6. Pairs $(\mathbf{L}^G, \mathbf{L}_G)$ for $G \subset \mathrm{O}(\mathbf{L})$ of prime order p=2 and $\mathrm{sgn}(\mathbf{L}_G)=\mathrm{sgn}(\mathbf{\Lambda}_G)$, i.e. trivial action on the discriminant group.

No.	$\mathrm{rk}(\mathbf{\Lambda}^G)$	\mathbf{L}_G	\mathbf{L}^G	$\operatorname{sgn}(\mathbf{L}_G)$	$a(\mathbf{L}_G)$	$\delta(\mathbf{L}_G)$
1	4	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2}$	$[2] \oplus [-6]$	(2, 20)	2	1
2	5	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [-2]$	$\mathbf{A}_2(-1) \oplus [2]$	(2, 19)	1	1
3	5	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 2}$	$[2] \oplus [-2] \oplus [-6]$	(2, 19)	3	1
1	6	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{A}_2(-1)$	(2, 18)	0	0
5	6	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{U}(2)$	$U(2) \oplus A_2(-1)$	(2, 18)	2	0
3	6	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus [-2]$	$\mathbf{A}_2(-1) \oplus [2] \oplus [-2]$	(2, 18)	2	1
7	6	$\mathbf{E}_8(-1) \oplus [-2]^{\oplus 2} \oplus [2]^{\oplus 2}$	$[2] \oplus [-2]^{\oplus 2} \oplus [-6]$	(2, 18)	4	1
3	7	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2]$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]$	(2, 17)	1	1
)	7	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-2]$	$\mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 17)	3	1
10	7	$\mathbf{E}_{\circ}(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_{4}(-1) \oplus [-2]^{\oplus 3}$	$[2] \oplus [-2]^{\oplus 3} \oplus [-6]$	(2, 17)	5	1
11	8	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 2}$	(2, 16)	2	1
12	8	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 2}$	$\mathbf{A}_{2}(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(2, 16)	4	1
13	8	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [2]^{\oplus 2}$	$[2] \oplus [-2]^{\oplus 4} \oplus [-6]$	(2, 16)	6	1
14	9	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 3}$	(2, 15)	3	1
15	9	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	$\mathbf{A}_2(-1) \oplus [-2]^{\oplus 4} \oplus [2]$	(2, 15)	5	1
16	9	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	$[2] \oplus [-2]^{\oplus 5} \oplus [-6]$	(2, 15)	7	1
17	10	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1)$	$\mathbf{U}(2) \oplus \mathbf{A}_2(-1) \oplus \mathbf{D}_4(-1)$	(2, 14)	4	0
.8	10	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]$	$U \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 4}$	(2, 14)	4	1
.9	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{E}_{6}(-2)$	(2, 14)	6	0
20	10	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 5}$	(2, 14)	6	1
21	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]^{\oplus 4}$	$[2] \oplus [-2]^{\oplus 6} \oplus [-6]$	(2, 14)	8	1
22	11	$\mathbf{E}_{8}(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{D}_{6}(-1) \oplus \mathbf{A}_{2}(-1) \oplus [2]$	(2, 13)	3	1
23	11	$\mathbf{E_8}(-1) \oplus \mathbf{D_4}(-1) \oplus [2]^{\oplus 2} \oplus [-2]$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 5}$	(2, 13) $(2, 13)$	5	1
24	11	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 6}$	(2, 13) $(2, 13)$	7	1
25	11	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 7}$	$\begin{array}{c} \mathbf{A}_{2}(-1) \oplus [2] \oplus [-2] \\ [2] \oplus [-2]^{\oplus 7} \oplus [-6] \end{array}$	(2, 13) $(2, 13)$	9	1
26	12	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-6]$	(2, 13) $(2, 12)$	2	1
20 27	12	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [-2] \oplus \mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2] \oplus 3$	$\mathbf{D}_{6}(-1) \oplus [2] \oplus [-6]$ $\mathbf{D}_{6}(-1) \oplus \mathbf{A}_{2}(-1) \oplus [2] \oplus [-2]$	(2, 12) $(2, 12)$	4	1
28	12	$\mathbf{E}_8(-1) \oplus \mathbf{G} \oplus [2] \oplus [-2]^+$ $\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4}$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]$ $\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2] \stackrel{\oplus 6}{=}$	(2, 12) $(2, 12)$	6	1
29	12	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D_4}(-1) \oplus [-2]^{\oplus 6}$	$\mathbf{A}_2(-1) \oplus [-2]^{\oplus 7}$ $\mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 7}$			
29 30	12	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2] \oplus \mathbf{I}$	$A_2(-1) \oplus [2] \oplus [-2]^{\oplus 8}$ $[2] \oplus [-2]^{\oplus 8} \oplus [-6]$	(2, 12)	8	1
		$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 7}$		(2, 12)	10	1
31	13	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus [2]$	(2, 11)	1	1
32	13	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2] \oplus [-6]$	(2, 11)	3	1
33	13	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 11)	5	1
34	13	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 5}$	$\mathbf{U} \oplus \mathbf{A}_{2}(-1) \oplus [-2]^{\oplus 7}$	(2, 11)	7	1
35	13	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 6}$	$\mathbf{U} \oplus [-2] \stackrel{\oplus 8}{\oplus} \oplus [-6]$	(2, 11)	9	1
86	13	$\mathbf{D}_4(-1) \oplus [2] \stackrel{\oplus 2}{\oplus} \oplus [-2] \stackrel{\oplus 7}{\oplus}$	$[2] \oplus [-2]^{\oplus 9} \oplus [-6]$	(2, 11)	11	1
7	14	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{A}_2(-1)$	(2, 10)	0	0
88	14	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2)$	$\mathbf{E}_8(-1) \oplus \mathbf{U}(2) \oplus \mathbf{A}_2(-1)$	(2, 10)	2	0
9	14	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]$	(2, 10)	2	1
0	14	$\mathbf{E}_8(-1) \oplus \mathbf{U}(2)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 10)	4	0
1	14	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 2} \oplus [-6]$	(2, 10)	4	1
2	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 4}$	$\mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(2, 10)	6	1
3	14	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_4(-1)^{\oplus 2}$	$\mathbf{D}_4(-1) \oplus \mathbf{U} \oplus \mathbf{E}_6(-2)$	(2, 10)	8	0
4	14	$\mathbf{D}_4(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 8}$	(2, 10)	8	1
5	14	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{E}_8(-2)$	$\mathbf{D}_4(-1) \oplus \mathbf{U}(2) \oplus \mathbf{E}_6(-2)$	(2, 10)	10	0
6	14	$U \oplus [2] \oplus [-2] \stackrel{\oplus 9}{\oplus 9}$	$[2] \oplus [-2] \oplus \mathbf{E}_6(-2) \oplus \mathbf{D}_4(-1) = \mathbf{U} \oplus \mathbf{M}$	(2, 10)	10	1
7	14	$U(2)^{\oplus 2} \oplus [-2]^{\oplus 8}$	$\mathbf{U}(2) \oplus [-2]^{\oplus 9} \oplus [-6]$	(2, 10)	12	1
8	15	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]$	(2, 9)	1	1
19	15	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(2,9)	3	1
50	15	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 3} \oplus [-6]$	(2,9)	5	1
51	15	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 4}$	$\mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 4}$	(2, 9)	7	1

Table 6, follows from previous page

No.	$\mathrm{rk}(\mathbf{\Lambda}^G)$	\mathbf{L}_G	\mathbf{L}^G	$\mathrm{sgn}(\mathbf{L}_G)$	a	δ
52	15	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$ $[2]^{\oplus 2} \oplus [-2]^{\oplus 9}$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 9}$	(2, 9)	9	1
53	15	$[2]^{\oplus 2} \oplus [-2]^{\oplus 9}$	$\mathbf{A}_2(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 9}$	(2, 9)	11	1
54	16	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 2}$	$\mathbf{E}_{8}(-1) \oplus \mathbf{D}_{4}(-1) \oplus [2] \oplus [-6]$	(2, 8)	4	1
55	16	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 6}$	$\mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{U} \oplus [-2]^{\oplus 4}$	(2, 8)	6	1
56	16	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 7}$	$D_6(-1) \oplus A_2(-1) \oplus [2] \oplus [-2]^{\oplus 5}$	(2, 8)	8	1
57	16	$[2]^{\oplus 2} \oplus [-2]^{\oplus 8}$	$\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 10}$	(2, 8)	10	1
58	17	$\mathbf{U} \oplus 2 \oplus \mathbf{D}_4(-1) \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 3}$	(2,7)	3	1
59	17	$U^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 4}$	(2,7)	5	1
60	17	$\mathbf{U} \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{E}_{8}(-1) \oplus [2] \oplus [-2]^{\oplus 5} \oplus [-6]$	(2,7)	7	1
61	17	$[2]^{\oplus 2} \oplus [-2]^{\oplus 7}$	$\mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 6}$	(2,7)	9	1
62	18	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{A}_2(-1) \oplus \mathbf{D}_4(-1)$	(2, 6)	2	0
63	18	$U \oplus U(2) \oplus D_4(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1)$	(2, 6)	4	0
64	18	$\mathbf{U} \oplus \mathbf{D}_{4}(-1) \oplus [2] \oplus [-2]$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]$	(2, 6)	4	1
65	18	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_4(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{E}_6(-2)$	(2, 6)	6	0
66	18	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 2} \oplus [-6]$	(2, 6)	6	1
67	18	$[2]^{\oplus 2} \oplus [-2]^{\oplus 6}$	$\mathbf{D}_4(-1) \oplus \mathbf{D}_6(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(2, 6)	8	1
68	19	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2]$	(2, 5)	3	1
69	19	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 4}$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{D}_4(-1) \oplus \begin{bmatrix} 2 \end{bmatrix} \oplus \begin{bmatrix} -2 \end{bmatrix}^{\oplus 2}$	(2, 5)	5	1
70	19	$[2]^{\oplus 2} \oplus [-2]^{\oplus 5}$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 3} \oplus [-6]$	(2, 5)	7	1
71	20	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2] \oplus [-6]$	(2, 4)	2	1
72	20	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]$	(2, 4)	4	1
73	20	$[2]^{\oplus 2} \oplus [-2]^{\oplus 4}$	$\mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(2, 4)	6	1
74	21	$\mathbf{U}^{\oplus 2} \oplus [-2]$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1) \oplus [2]$	(2, 3)	1	1
75	21	$U \oplus [2] \oplus [-2]^{\oplus 2}$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus [2] \oplus [-2] \oplus [-6]$	(2, 3)	3	1
76	21	$[2]^{\oplus 2} \oplus [-2]^{\oplus 3}$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_6(-1) \oplus \mathbf{A}_2(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 3)	5	1
77	22	$\mathbf{U}^{\oplus 2}$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{A}_2(-1)$	(2, 2)	0	0
78	22	$U \oplus U(2)$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1) \oplus \mathbf{U}(2)$	(2, 2)	2	0
79	22	$\mathbf{U} \oplus [2] \oplus [-2]$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{A}_{2}(-1) \oplus [2] \oplus [-2]$	(2, 2)	2	1
80	22	$\mathrm{U}(2)^{\oplus 2}$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 2)	4	0
81	22	$[2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2} \oplus [-6]$	(2, 2)	4	1
82	23	U ⊕[2]	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]$	(2, 1)	1	1
83	23	$[2]^{\overset{\circ}{\oplus}\overset{\circ}{2}}\overset{\circ}{\oplus}[-2]$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{A}_{2}(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(2, 1)	3	1
84	24	[2] ^{⊕2}	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus \mathbf{A}_2(-1) \oplus [-2]^{\oplus 2}$	(2,0)	2	1

Table 7. Pairs $(\mathbf{L}^G, \mathbf{L}_G)$ for $G \subset \mathrm{O}(\mathbf{L})$ of prime order p=2 and $\mathrm{sgn}(\mathbf{L}_G)=\mathrm{sgn}(\boldsymbol{\Lambda}_G)-(1,0)$, i.e. non-trivial action on the discriminant group.

No.	$\mathrm{rk}(\mathbf{L}_G)$	$\mathbf{L}_G = (\mathbf{L}^G)^{\perp \mathbf{L}}$	$\mathbf{L}^G = [2]^{\perp \mathbf{\Lambda}^G}$	$\mathrm{sgn}(\mathbf{L}^G)$	$a(\mathbf{L}^G)$	$\delta(\mathbf{L}^G)$
1	3	$[2]^{\oplus 2} \oplus [-6]$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [-2]^{\oplus 3}$	(1, 20)	3	1
2	4	$[2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [-2]^{\oplus 2}$	(1, 19)	2	1
3	4	$[2]^{\oplus 2} \oplus [-2] \oplus [-6]$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 3}$	(1, 19)	3	1
4	5	$\mathbf{U} \oplus [2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [-2]$	(1, 18)	1	1
6	5	$[2]^{\oplus 2} \oplus [-2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2}$	(1, 18)	3	1
7	5	$[2]^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]$	(1, 18)	5	1
8	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}$	(1, 17)	0	0
9	6	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{U}(2)$	(1, 17)	2	0
11	6	$\mathbf{U} \oplus [2] \oplus [-2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2] \oplus [-2]$	(1, 17)	2	1
12	6	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2}$	(1, 17)	4	0
13	6	$[2]^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_6(-1) \oplus [-2]^{\oplus 2}$	(1, 17)	4	1
14	6	$[2]_{-}^{\oplus 2} \oplus [-2]^{\oplus 3} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 4}$	(1, 17)	6	1
15	7	$\mathbf{U}^{\oplus 2} \oplus [-2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]$	(1, 16)	1	1
16	7	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_6(-1) \oplus [-2]$	(1, 16)	3	1
17	7	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 3}$	(1, 16)	5	1
18	7	$[2]^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [-2]^{\oplus 7}$	(1, 16)	7	1
19	8	$\mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_6(-1)$	(1, 15)	2	0
20	8	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 2}$	(1, 15)	4	1
21	8	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2] \oplus [-6]$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(1, 15)	6	1
22	8	$[2]^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 7}$	(1, 15)	8	1
23	9	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]$	(1, 14)	3	1
24	9	$\mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 2}$ nues on next page	(1, 14)	5	1

Table 7 follows from previous page

		Table 7, follow	ws from previous page			
No.	$\operatorname{rk}(\mathbf{L}_G)$	$\mathbf{L}_G = (\mathbf{L}^G)^{\perp \mathbf{L}}$	$\mathbf{L}^G = [2]^{\perp \mathbf{\Lambda}^G}$	$\operatorname{sgn}(\mathbf{L}^G)$	$a(\mathbf{L}^G)$	$\delta(\mathbf{L}^G)$
25	9	$[2]^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 6}$	(1, 14)	7	1
26	9	$[2]^{\oplus 2} \oplus [-2]^{\oplus 6} \oplus [-6]$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]^{\oplus 5}$	(1, 14)	9	1
27	10	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_{0}(-1) \oplus \mathbf{D}_{4}(-1) \oplus \mathbf{U}(2)$	(1, 13)	4	0
28	10	$\mathbf{U} \oplus [2] \oplus [-2] \oplus \mathbf{D}_4(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_{8}(-1) \oplus \mathbf{D}_{4}(-1) \oplus [2] \oplus [-2]$ $\mathbf{U} \oplus \mathbf{D}_{4}(-1)^{\oplus 3}$	(1, 13)	4	1
29	10	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{D}_{4}(-1) \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 3}$	(1, 13)	6	0
30	10	$\mathbf{D}_{6}(-1) \oplus [2]^{\oplus 3} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 5}$	(1, 13)	6	1
31	10	$[2]^{\oplus 2} \oplus [-2]^{\oplus 6} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]^{\oplus 4}$	(1, 13)	8	1
32	10	$\mathbf{U}(2)^{\oplus 2} \oplus \mathbf{E}_{6}(-2)$	$\mathbf{U} \oplus \mathbf{E}_8(-2) \oplus \mathbf{D}_4(-1)$	(1, 13)	10	0
33	10	$[2]^{\oplus 2} \oplus [-2]^{\oplus 7} \oplus [-6]$	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 8}$	(1, 13)	10	1
34	11	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-6]$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [-2]^{\oplus 3}$	(1, 12)	3	1
35	11	$\mathbf{U} \oplus 2 \oplus [-2]^{\oplus 6} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 4}$	(1, 12)	5	1
36	11	$\mathbf{D}_4(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-6]$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]^{\oplus 3}$	(1, 12)	7	1
37	12	$\mathbf{D_4}(1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus [-6]$	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 7}$ $\mathbf{U} \oplus [-2]^{\oplus 11}$	(2, 12)	9	1
38	11	$[2]^{\oplus 2} \oplus [-2]^{\oplus 8} \oplus [-6]$ $\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$U \oplus [-2]^{\oplus 11}$	(1, 12)	11	1
39	12	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [-2]^{\oplus 2}$	(1, 11)	2	1
40	12	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [2] \oplus [-2]$ $\mathbf{E}_8(-1) \oplus [2] \oplus [2] \oplus [-2]$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 3}$	(1, 11)	4	1
41	12	$\mathbf{D}_{4}(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus \mathbf{A}_{2}(-1)$ $\mathbf{D}_{4}(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]^{\oplus 2}$	(1, 11)	6	1
42	12	$\mathbf{D_4}(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus \mathbf{A_2}(-1)$ $\mathbf{D_4}(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus [-6]$	$U \oplus D_4(-1) \oplus [-2]^{\oplus 6}$	(1, 11)	8	1
43	12	$D_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 3} \oplus [-6]$ $[2]^{\oplus 2} \oplus [-2]^{\oplus 9} \oplus [-6]$	$\mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 7}$ [2] $\oplus [-2]^{\oplus 11}$	(1, 11)	10	1
$\frac{44}{45}$	12 13	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [-2]$	(1, 11) (1, 10)	$\frac{12}{1}$	1
46	13	$\mathbf{E}_8(-1) \oplus \mathbf{G} \oplus [2] \oplus \mathbf{A}_2(-1)$ $\mathbf{E}_8(-1) \oplus \oplus [2] \oplus [-2]^{\oplus 2} \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{G} \oplus [-2]$ $\mathbf{E}_8(-1) \oplus [2] \oplus [-2]^{\oplus 2}$	(1, 10) $(1, 10)$	3	1
47	13	$\mathbf{U} \oplus \mathbf{D}_{4}(-1)^{\oplus 2} \oplus [2] \oplus \mathbf{A}_{2}(-1)$ $\mathbf{U} \oplus \mathbf{D}_{4}(-1)^{\oplus 2} \oplus [2] \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus [-2]$	(1, 10) $(1, 10)$	5	1
48	13	$\mathbf{U} \oplus \mathbf{D_4}(-1) \oplus [2] \oplus \mathbf{A_2}(-1)$ $\mathbf{U} \oplus \mathbf{D_4}(-1) \oplus [2] \oplus [-2]^{\oplus 4} \oplus \mathbf{A_2}(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus \begin{bmatrix} -2 \end{bmatrix} \oplus \mathbf{D}_4(-1) \oplus $	(1, 10) $(1, 10)$	7	1
49	13	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 8} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus [-2]^{\oplus 9}$	(1, 10) $(1, 10)$	9	1
50	13	$[2]^{\oplus 2} \oplus [-2]^{\oplus 9} \oplus \mathbf{A}_2(-1)$	$[2] \oplus [-2]^{\oplus 10}$	(1, 10) $(1, 10)$	11	1
51	14	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U}$	(1, 10) $(1, 9)$	0	0
52	14	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus \mathbf{U}(2)$	(1, 9)	2	0
53	14	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus [2] \oplus [-2]$	(1, 9)	2	1
54	14	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 2} \oplus [-6]$	$\mathbf{U} \oplus \mathbf{D}_6(-1) \oplus [-2]^{\oplus 2}$	(1, 9)	4	1
55	14	$\mathbf{U} \oplus \mathbf{U}(2) \oplus \mathbf{D}_4(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{U}(2) \oplus \mathbf{D}_4(-1)^{\oplus 2}$	(2, 9)	6	0
56	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 4} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 4}$	(1, 9)	6	1
57	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-2) \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-2)$	(1, 9)	8	0
58	14	$\mathbf{U} \oplus \mathbf{D_4}(-1) \oplus [2] \oplus [-2]^{\oplus 5} \oplus \mathbf{A_2}(-1)$	$\mathbf{D}_4(-1) \oplus [2] \oplus [-2]^{\oplus 5}$	(1, 9)	8	1
59	14	$U \oplus U(2) \oplus E_8(-2) \oplus A_2(-1)$	$\mathbf{E}_8(-2) \oplus \mathbf{U}(2)$	(1, 9)	10	0
60	14	$\mathbf{U} \oplus [2] \oplus [-2]^{\oplus 9} \oplus \mathbf{A}_2(-1)$	$[2] \oplus [-2]^{\oplus 9}$	(1, 9)	10	1
61	15	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2] \oplus \mathbf{A}_2(-1)$	$\mathbf{E}_8(-1) \oplus [2]$	(1, 8)	1	1
62	15	$\mathbf{E}_8(-1) \oplus \mathbf{D}_4(-1) \oplus [2]^{\oplus 2} \oplus [-2]$	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 3}$	(1, 8)	5	1
63	15	$\mathbf{U} \oplus \mathbf{D}_6(-1) \oplus [2] \oplus [-2]^{\oplus 4} \oplus \mathbf{A}_2(-1)$	$U \oplus [-2]^{\oplus 7}$	(1, 8)	7	1
64	15	$\mathbf{D}_6(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus \mathbf{A}_2(-1)$	$[2] \oplus [-2]^{\oplus 8}$	(1, 8)	9	1
65	16	$\mathbf{E}_{8}(-1) \oplus \mathbf{D}_{4}(-1) \oplus [2] \oplus 2 \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [-2]^{\oplus 2}$	(1, 7)	4	1
66	16	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus [-2]^{\oplus 6}$	(1, 7)	6	1
67	16	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus [-6]$	$[2] \oplus [-2]^{\oplus 7}$	(1, 7)	8	1
68	17	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus \mathbf{D}_4(-1) \oplus [2] \oplus \mathbf{A}_2(-1)$	$U \oplus D_4(-1) \oplus [-2]$	(1, 6)	3	1
69	17	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 4} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus [-2]^{\oplus 5}$	(1, 6)	5	1
70	17	$\mathbf{E}_8(-1) \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus \mathbf{A}_2(-1)$	$[2] \oplus [-2]^{\oplus 6}$	(1, 6)	7	1
71	18	$\mathbf{E}_{8}(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 4} \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus [-2]^{\oplus 4}$	(1, 5)	4	1
72	18	$\mathbf{E}_8(-1) \oplus \mathbf{U} \oplus [2] \oplus [-2]^{\oplus 5} \oplus \mathbf{A}_2(-1)$	$[2] \oplus [-2]^{\oplus 5}$	(1, 5)	6	1
73	19	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus [-6]$	$\mathbf{U} \oplus [-2]^{\oplus 3}$	(1, 4)	3	1
74	19	$\mathbf{E}_8(-1) \oplus \mathbf{U}^{\oplus 2} \oplus [-2]^{\oplus 5} \oplus \mathbf{A}_2(-1)$	$[2] \oplus [-2]^{\oplus 4}$	(1, 4)	5	1
75	20	$\mathbf{E}_8(-1)^{\oplus 2} \oplus [2]^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus [-2]^{\oplus 2}$	(1, 3)	2	1
76	20	$\mathbf{E_8}(-1) \stackrel{\oplus 2}{\oplus} \stackrel{\ominus}{=} [2] \stackrel{\oplus 2}{\oplus} \stackrel{\ominus}{=} [-2] \stackrel{\ominus}{=} [-6]$	$[2] \oplus [-2]^{\oplus 3}$	(1, 3)	4	1
77	21	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus [-2]$	(1, 2)	1	1
78	21	$\mathbf{E}_{8}(-1) \stackrel{\oplus 2}{\oplus 2} \oplus [2] \stackrel{\oplus 2}{\oplus 2} \oplus [-2] \oplus \mathbf{A}_{2}(-1)$	$[2] \oplus [-2]^{\oplus 2}$	(1, 2)	3	1
79	22	$\mathbf{E}_{8}(-1) \stackrel{\oplus 2}{\oplus} \mathbf{H}_{2} \stackrel{\oplus 1}{\oplus} \mathbf{A}_{2}(-1)$	U	(1,1)	1	1
80	22	$\mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{U} \oplus [2] \oplus [-2] \oplus \mathbf{A}_{2}(-1)$	$[2] \oplus [-2]$	(1, 1)	2	1
81	23	$\mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 2} \oplus [2] \oplus \mathbf{A}_2(-1)$	[2]	(1, 0)	1	1

Table 8. Pairs $(\mathbf{\Lambda}^G, \mathbf{\Lambda}_G)$ for $G \subset \mathrm{O}(\mathbf{\Lambda})$ of prime order $p \geq 3$ and $\mathrm{sgn}(\mathbf{\Lambda}_G) = (2, \mathrm{rk}(\mathbf{\Lambda}_G) - 2)$.

No.	$\mathrm{rk}(\mathbf{\Lambda}^G)$	$oldsymbol{\Lambda}_G$	$\mathbf{\Lambda}^G$	$\operatorname{sgn}(\mathbf{\Lambda}_G)$	a	p
1	24	\mathbf{A}_2	$\mathbf{U}_{-}^{\oplus 3} \oplus \mathbf{E}_{8}(-1)_{-}^{\oplus 2} \oplus \mathbf{A}_{2}(-1)$	(2,0)	1	3
2	22	$\mathbf{U}^{\oplus 2}$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_8(-1)^{\oplus 2}$	(2, 2)	0	3
3	22	$U \oplus U(3)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2}$	(2, 2)	2	:
4	20	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$U^{\oplus 3} \oplus E_8(-1) \oplus E_6(-1)$	(2, 4)	1	:
5	20	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E_8}(-1) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(2, 4)	3	5
6	18	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_6(-1)^{\oplus 2}$	(2, 6)	2	;
7	18	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1)^{\oplus 2}$	(2, 6)	4	:
8	16	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_6(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 8)	1	:
9	16	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 8)	3	
10	16	$U \oplus U(3) \oplus A_2(-1)^{\oplus 3}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{E}_{6}(-1) \oplus \mathbf{A}_{2}(-1)^{\oplus 2}$	(2, 8)	5	
11	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_8(-1)$	(2, 10)	0	
12	14	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)$	(2, 10) $(2, 10)$	2	:
13	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{A}_2(-1)^{\oplus 4}$	(2, 10) $(2, 10)$	4	:
14	14	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	(2, 10) $(2, 10)$	6	:
14 15	12	$U \oplus U(3) \oplus A_2(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_{6}(-1)$		1	
		$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_6(-1)$	(2, 12)		:
16	12	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1)$	(2, 12)	3	:
17	12	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{A}_{2}(-1)^{\oplus 3}$	(2, 12)	5	:
18	12	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{E}_{6}^{*}(-1)$ $\mathbf{U}^{\oplus 3} \oplus \mathbf{A}_{2}(-1)^{\oplus 2}$	(2, 12)	7	;
19	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_6(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 14)	2	3
20	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 14)	4	:
21	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{U}(3)^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 14)	6	:
22	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 6}$	$\mathbf{U}(3)^{\oplus 3} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 14)	8	;
23	8	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_6(-1)$	(2, 16)	1	;
24	8	$U \oplus U(3) \oplus E_8(-1) \oplus E_6(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)$	(2, 16)	3	;
25	8	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U} \oplus \mathbf{U}(3)^{\oplus 2} \oplus \mathbf{A}_{2}(-1)$	(2, 16)	5	;
25*	8	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_{6}(-1) \oplus \mathbf{A}_{2}(-1)^{\oplus 4}$	$\mathbf{U}(3)^{\oplus 3} \oplus \mathbf{A}_2(-1)$	(2, 16)	7	;
26	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E_8}(-1)^{\oplus 2}$	I1⊕3	(2, 18)	0	3
27	6	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(3)$	(2, 18)	2	3
28	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U} \oplus \mathbf{U}(3)^{\oplus 2}$	(2, 18)	4	:
29*	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_{6}(-1) \oplus \mathbf{A}_{2}(-1)^{\oplus 5}$	$\mathbf{U}(3)^{\oplus 3}$	(2, 18)	6	:
30	4	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{A}_2$	(2, 20)	1	:
31	4	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{U}(3) \oplus \mathbf{A}_2$	(2, 20)	3	3
32	22	$U \oplus H_5$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1)^{\oplus 2}$	(2, 20)	1	
32 33	18	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1)$	(2, 2) $(2, 6)$	2	
34	14		$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1)$	(2,0) $(2,10)$	1	
		$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1)$. , ,		
35	14	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)^{\oplus 2}$	(2, 10)	3	
36	10	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)$	(2, 14)	2	
37	10	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{U}(5) \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)$	(2, 14)	4	
38	6	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_5$	(2, 18)	1	į
39	6	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{U}(5) \oplus \mathbf{H}_5$	(2, 18)	3	į
40*	6	$\mathbf{U}(5)^{\oplus 2} \oplus \mathbf{A}_4(-1)$	$\mathbf{U}(5)^{\oplus 2} \oplus \mathbf{H}_5$	(2, 18)	5	į
41	20	$\mathbf{U}^{\oplus 2} \oplus \mathbf{K}_7(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_6(-1)$	(2, 4)	1	,
42	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)$	$\mathbf{U}_{-}^{\oplus 3} \oplus \mathbf{E}_{8}(-1)$	(2, 10)	0	,
43	14	$\mathbf{U} \oplus \mathbf{U}(7) \oplus \mathbf{E}_8(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(7) \oplus \mathbf{E}_8(-1)$	(2, 10)	2	,
44	8	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_6(-1)$	$U^{\oplus 3} \oplus K_7$	(2, 16)	1	7
45	8	$\mathbf{U} \oplus \mathbf{U}(7) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_6(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(7) \oplus \mathbf{K}_7$	(2, 16)	3	,
46	16	$K_{11} \oplus E_8(-1)$	$\mathbf{H}^{\oplus 3} \oplus \mathbf{A}_{10}(-1)$	(2, 8)	1	
47	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 3}$	(2, 18)	0	
48	6	$\mathbf{U} \oplus \mathbf{U}(11) \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{U}(11)$	(2, 18)	2	
49	14	$\mathbf{U} \oplus \mathbf{H}_{13} \oplus \mathbf{E}_{8}(-1)$	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_{13} \oplus \mathbf{E}_{8}(-1)$	(2, 10)	1	
50	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{L}_{17}(-1)$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{L}_{17}(-1)$	(2, 14)	1	-
		U ⊕ E ₈ (−1) ⊕ L ₁₇ (−1)				
51	8	$\mathbf{K}_{19} \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U}^{\oplus 3} \oplus \mathbf{K}_{19}(-1)$	(2, 16)	1	_
52	4	$U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus K_{23}(-1)$	$U \oplus K_{23}$	(2, 20)	1	

Table 9. Pairs $(\mathbf{L}^G, \mathbf{L}_G)$ for $G \subset \mathrm{O}(\mathbf{L})$ of prime order $p \geq 3$ and $\mathrm{sgn}(\mathbf{L}_G) =$ $\operatorname{sgn}(\mathbf{\Lambda}_G)$.

Vo.	$\operatorname{rk}(\mathbf{L}^G)$	\mathbf{L}_G	\mathbf{L}^G	$\operatorname{sgn}(\mathbf{L}_G)$	H	1
	22	\mathbf{A}_2	$\mathbf{U} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 0)	id	
	20	$U^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 2)	id	
	20	$U \oplus U(3)$	$\mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 2)	id	
	20	$U \oplus U(3)$	$\mathbf{U} \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 2)	$\mathbb{Z}/3\mathbb{Z}$;
	18	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$U \oplus E_8(-1) \oplus E_6(-1) \oplus A_2(-1)$	(2, 4)	id	
	18	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1)^{\oplus 2}$	(2, 4)	$\mathbb{Z}/3\mathbb{Z}$	
,	18	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	(2, 4)	id	
;	18	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_{2}(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)$	(2, 4)	$\mathbb{Z}/3\mathbb{Z}$;
)	16	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{E}_6(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 6)	id	;
.0	16	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_{2}(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{E}_6(-1)$	(2, 6)	$\mathbb{Z}/3\mathbb{Z}$	
.1	16	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 2}$	$\mathbf{U}(3) \oplus \mathbf{E}_6(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2,6)	id	:
2	16	$U \oplus U(3) \oplus A_2(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{E}_{6}(-1)^{\oplus 2} \oplus \mathbf{A}_{2}(-1)$	(2,6)	$\mathbb{Z}/3\mathbb{Z}$:
3	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_6(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus 2$	(2, 8)	id	
4	14	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{E}_{6}(-1) \oplus \mathbf{A}_{2}(-1)^{\oplus 3}$		id	:
		$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{-1}$ $\mathbf{U} \oplus \mathbf{E}_6(-1)^{\oplus 2}$	(2,8)		
.5	14	$\mathbf{H} \oplus \mathbf{H}_2(-1)^+$	$U \oplus \mathbf{E}_6(-1)^+$	(2,8)	$\mathbb{Z}/3\mathbb{Z}$:
.6	14	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(2, 8)	id	:
7	14	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(2, 8)	$\mathbb{Z}/3\mathbb{Z}$:
.8	12	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 10)	id	:
9	12	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)$	$\mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 10)	id	:
0	12	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 10)	$\mathbb{Z}/3\mathbb{Z}$:
21	12	$\mathbf{U}_{2}^{\oplus 2} \oplus \mathbf{A}_{2}(-1)_{2}^{\oplus 4}$	$\mathbf{U} \oplus \mathbf{A}_2(-1)^{\oplus 5}$	(2, 10)	id	;
2	12	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 10)	$\mathbb{Z}/3\mathbb{Z}$;
:3	12	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 5}$	(2, 10)	id	;
24	12	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U} \oplus \mathbf{A}_2(-1)^{\oplus 5}$	(2, 10)	$\mathbb{Z}/3\mathbb{Z}$:
25	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)$	(2, 12)	id	;
26	10	$U^{\oplus 2} \oplus E_8(-1) \oplus A_2(-1)$	$U \oplus E_8(-1)$	(2, 12)	$\mathbb{Z}/3\mathbb{Z}$;
27	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)$	(2, 12)	id	;
88	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)$	(2, 12)	$\mathbb{Z}/3\mathbb{Z}$;
9	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	(2, 12)	id	;
80	10	$\mathbf{U}^{\oplus 2} \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$U(3) \oplus E_6(-1) \oplus A_2(-1)$	(2, 12)	$\mathbb{Z}/3\mathbb{Z}$:
31	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$\mathbf{U}(3) \oplus \mathbf{E}_{6}^{*}(-1) \oplus \mathbf{A}_{2}(-1)$	(2, 12)	id	:
32	10	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 5}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	(2, 12)	id	;
3	8	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_{6}(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(2, 14)	id	:
34	8	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_{6}^{0}(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{E}_{6}(-1)$	(2, 14)	$\mathbb{Z}/3\mathbb{Z}$:
35	8	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1)^{\oplus 2}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(2, 14)	id	:
36	8	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_{6}(-1)^{\oplus 2}$			$\mathbb{Z}/3\mathbb{Z}$:
		$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1) \oplus 3$	$\mathbf{U}(3) \oplus \mathbf{E}_6(-1)$	(2, 14)		
37	8	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U}(3) \oplus \mathbf{E}_{6}^{*}(-1)$	(2, 14)	id 77 / 277	:
88	8	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 3}$	(2, 14)	$\mathbb{Z}/3\mathbb{Z}$:
9	8	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 6}$	$\mathbf{U}(3) \oplus \mathbf{E}_{6}^{*}(-1)$	(2, 14)	$\mathbb{Z}/3\mathbb{Z}$	- :
.0	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	$\mathbf{U} \oplus \mathbf{E}_6(-1)^{\oplus 2}$	(2, 16)	id	
1	6	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{E}_6(-1)$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 16)	id	;
12	6	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1) \oplus \mathbf{E}_6(-1)$	$\mathbf{U} \oplus \mathbf{A}_2(-1)^{\oplus 2}$	(2, 16)	$\mathbb{Z}/3\mathbb{Z}$	3
3	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_6(-1) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$U(3) \oplus A_2(-1)^{\oplus 2}$	(2, 16)	$\mathbb{Z}/3\mathbb{Z}$;
4	4	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$U \oplus A_2(-1)$	(2, 18)	id	;
5	4	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)$	(2, 18)	id	;
6	4	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2}$	$\mathbf{U} \oplus \mathbf{A}_2(-1)$	(2, 18)	$\mathbb{Z}/3\mathbb{Z}$;
7	4	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)^{\oplus 4}$	$\mathbf{U}(3) \oplus \mathbf{A}_2(-1)$	(2, 18)	$\mathbb{Z}/3\mathbb{Z}$:
8	2	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E_8}(-1)^{\oplus 2} \oplus \mathbf{A_2}(-1)$	U(3)	(2, 20)	id	
9	2	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E_8}(-1)^{\oplus 2} \oplus \mathbf{A_2}(-1)$	U	(2, 20)	$\mathbb{Z}/3\mathbb{Z}$:
0	4	$\mathbf{U} \oplus \mathbf{U}(3) \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	U (3)	(2, 20)	$\mathbb{Z}/3\mathbb{Z}$	
1	20	$U \oplus H_5$	$\mathbf{H}_5 \oplus \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{A}_2(-1)$	(2, 20)	id	
2	16	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)$	$\mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$ $\mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1) \oplus \mathbf{A}_2(-1)$	(2, 2) $(2, 6)$	id	
3	12	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1)$	$\mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{A}_2(-1) \oplus \mathbf{A}_2(-1)$	(2,0) $(2,10)$	id	į
4	12	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)^{\oplus 2}$	$\mathbf{H}_5 \oplus \mathbf{A}_4(-1) \oplus \mathbf{A}_2(-1)$ $\mathbf{H}_5 \oplus \mathbf{A}_4(-1) \oplus \mathbf{A}_2(-1)$	(2, 10) $(2, 10)$	id	
5	8	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1)$ $\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1)$	$\mathbf{H}_5 \oplus \mathbf{A}_4(-1) \oplus \mathbf{A}_2(-1)$ $\mathbf{H}_5 \oplus \mathbf{A}_4(-1) \oplus \mathbf{A}_2(-1)$	(2, 10) $(2, 14)$	id	
6	8	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{A}_4(-1) \oplus \mathbf{A}_4(-1)$	$\mathbf{U}(5) \oplus \mathbf{A}_4(-1) \oplus \mathbf{N}_{25}(-1)$ $\mathbf{U}(5) \oplus \mathbf{A}_4(-1) \oplus \mathbf{N}_{15}(-1)$	(2, 14) $(2, 14)$	id	
7	4	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{K}_4(-1)^{\oplus 2}$	$\mathbf{H}_5 \oplus \mathbf{A}_2(-1) \oplus \mathbf{N}_{15}(-1)$	(2, 14) $(2, 18)$	id	
		U				
8	4	$\mathbf{U} \oplus \mathbf{H}_5 \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_4(-1)^{\oplus 2}$	$\mathbf{U}(5) \oplus \mathbf{N}_{15}(-1)$	(2, 18)	id	
9	18	$\mathbf{U}^{\oplus 2} \oplus \mathbf{H}_7$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_6(-1) \oplus \mathbf{A}_2(-1)$	(2,4)	id	
60	12	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)$	$\mathbf{U} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 10)	id	
31	12	$\mathbf{U} \oplus \mathbf{U}(7) \oplus \mathbf{E}_8(-1)$	$\mathbf{U}(7) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1)$	(2, 10)	id	
52	6	$\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_6(-1)$	$\mathbf{U} \oplus \mathbf{K}_7(-1) \oplus \mathbf{A}_2(-1)$	(2, 16)	id	
3	6	$\mathbf{U} \oplus \mathbf{U}(7) \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_6(-1)$	$\mathbf{U}(7) \oplus \mathbf{K}_7(-1) \oplus \mathbf{A}_2(-1)$	(2, 16)	id	
4	14	$\mathbf{U} \oplus \mathbf{H}_{11} \oplus \mathbf{E}_8(-1)$	$H_{11} \oplus E_8(-1) \oplus A_2(-1)$	(2, 8)	$_{\mathrm{id}}$	

 $rk(\mathbf{L}^G)$

12

65

69

 \mathbf{L}_G

 $\overline{\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1)^{\oplus 2}}$

 $\mathbf{U} \oplus \mathbf{H}_{13} \oplus \mathbf{E}_8(-1)$

 $\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_8(-1) \oplus \mathbf{L}_{17}$

 $\frac{\mathbf{K}_{19} \oplus \mathbf{E}_{8}(-1)^{\oplus 2}}{\mathbf{U}^{\oplus 2} \oplus \mathbf{E}_{8}(-1)^{\oplus 2} \oplus \mathbf{K}_{23}}$

 \mathbf{L}^G $sgn(\mathbf{L}_G)$ H(2, 18) $\mathbf{U} \oplus \mathbf{A}_2(-1)$ id $\mathbf{U} \oplus \mathbf{U}(11) \oplus \mathbf{E}_8(-1)^{\oplus 2}$ $\begin{array}{c} \mathbf{U}(11) \oplus \mathbf{A}_2(-1) \\ \mathbf{H}_{13} \oplus \mathbf{E}_8(-1) \oplus \mathbf{A}_2(-1) \end{array}$

p

11

23

id

id

id

(2, 10)

(2, 14)

(2, 16)(2, 20)

Table 9, follows from previous page

 $\mathbf{U} \oplus \mathbf{L}_{17} \oplus \mathbf{A}_{2}(-1)$

 $\mathbf{U} \oplus \mathbf{A}_2(-1) \oplus \mathbf{K}_{19}(-1)$

References

1. Arnaud Beauville, Antisymplectic involutions of holomorphic symplectic manifolds, Journal of topology 4 (2011), no. 2, 300-304.

 $N_{69}(-1)$

- 2. Arnaud Beauville and Ron Donagi, La variété des droites d'une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703-706.
- 3. Simone Billi, Franco Giovenzana, Luca Giovenzana, and Annalisa Grossi, Fixed loci of natural automorphisms of LSV manifolds, In preparation.
- 4. Samuel Boissière, Automorphismes naturels de l'espace de Douady de points sur une surface, Canadian Journal of Mathematics **64** (2012), no. 1, 3–23.
- 5. Samuel Boissière, Chiara Camere, Giovanni Mongardi, and Alessandra Sarti, Isometries of ideal lattices and hyperkähler manifolds, Int. Math. Res. Not. IMRN (2016), no. 4, 963-977.
- 6. Samuel Boissière, Chiara Camere, and Alessandra Sarti, Classification of automorphisms on a deformation family of hyper-Kähler four-folds by p-elementary lattices, Kyoto J. Math. 56 (2016), no. 3, 465-499.
- 7. Samuel Boissière, Marc Nieper-Wißkirchen, and Alessandra Sarti, Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties, J. Math. Pures Appl. (9) 95 (2011), no. 5, 553-563.
- Michele Bolognesi, Francesco Russo, and Giovanni Staglianò, Some loci of rational cubic fourfolds, Math. Ann. **373** (2019), no. 1-2, 165–190.
- 9. Simon Brandhorst and Alberto Cattaneo, Prime order isometries of unimodular lattices and automorphisms of IHS manifolds, Int. Math. Res. Not. IMRN (2023), no. 18, 15584-15638.
- 10. Chiara Camere, Symplectic involutions of holomorphic symplectic four-folds, Bulletin of the London Mathematical Society 44 (2012), no. 4, 687-702.
- 11. Chiara Camere and Alberto Cattaneo, Non-symplectic automorphisms of odd prime order on manifolds of $K3^{[n]}$ type, Manuscripta Mathematica 163 (2020), no. 3-4, 299-342.
- 12. Chiara Camere, Alberto Cattaneo, and Andrea Cattaneo, Non-symplectic involutions on manifolds of $K3^{[n]}$ -type, Nagoya Mathematical Journal 243 (2021), 278–302.
- 13. Chiara Camere, Grzegorz Kapustka, Michał Kapustka, and Giovanni Mongardi, Verra four-folds, twisted sheaves, and the last involution, Int. Math. Res. Not. IMRN (2019), no. 21, 6661-6710.
- 14. Filip Cools and Marc Coppens, Star points on smooth hypersurfaces, J. Algebra 323 (2010), no. 1, 261–286.
- 15. Ron Donagi and Eval Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 1-119.
- 16. Lie Fu, Classification of polarized symplectic automorphisms of fano varieties of cubic fourfolds, Glasgow Mathematical Journal 58 (2016), no. 1, 17-37.
- 17. Franco Giovenzana, Luca Giovenzana, and Claudio Onorati, On the period of Li, Pertusi, and Zhao's symplectic variety, Canadian Journal of Mathematics (2023), 1–22.
- 18. Luca Giovenzana, Annalisa Grossi, Claudio Onorati, and Davide Cesare Veniani, Symplectic rigidity of O'Grady's tenfolds, Proc. Amer. Math. Soc., doi.org/10.1090/proc/16810 (2023), 1-8.
- 19. Víctor González-Aguilera and Alvaro Liendo, Automorphisms of prime order of smooth cubic n-folds, Arch. Math. (Basel) 97 (2011), no. 1, 25–37.
- 20. Annalisa Grossi, Nonsymplectic automorphisms of prime order on O'Grady's sixfolds, Revista Matemática Iberoamericana 38 (2022), no. 4, 1199–1218.
- 21. Annalisa Grossi, Claudio Onorati, and Davide Cesare Veniani, Symplectic birational transformations of finite order on O'Grady's sixfolds, Kyoto Journal of Mathematics 63 (2023), no. 3, 615-639.

- B. Hassett and Y. Tschinkel, Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal. 11 (2001), no. 6, 1201–1228.
- 23. Brendan Hassett, Special cubic fourfolds, Compositio Mathematica 120 (2000), no. 1, 1–23.
- 24. Daniel Huybrechts, The K3 category of a cubic fourfold, Compositio Mathematica 153 (2017), no. 3, 586-620.
- 25. _____, The geometry of cubic hypersurfaces, vol. 206, Cambridge University Press, 2023.
- 26. Alexander Kuznetsov, Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 219–243.
- 27. ______, Derived categories view on rationality problems, Rationality problems in algebraic geometry, Lecture Notes in Math., vol. 2172, Springer, Cham, 2016, pp. 67–104. MR 3618666
- 28. Radu Laza, The moduli space of cubic fourfolds via the period map, Ann. of Math. (2) 172 (2010), no. 1, 673-711.
- Maximally algebraic potentially irrational cubic fourfolds, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3209–3220.
- 30. Radu Laza, Gregory Pearlstein, and Zheng Zhang, On the moduli space of pairs consisting of a cubic threefold and a hyperplane, Adv. Math. **340** (2018), 684–722.
- Radu Laza, Giulia Saccà, and Claire Voisin, A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold, Acta Mathematica 218 (2017), no. 1, 55 – 135.
- 32. Radu Laza and Zhiwei Zheng, Automorphisms and periods of cubic fourfolds, Math. Z. 300 (2022), no. 2, 1455–1507.
- Chunyi Li, Laura Pertusi, and Xiaolei Zhao, Elliptic quintics on cubic fourfolds, O'Grady 10, and Lagrangian fibrations, Adv. Math. 408 (2022), no. part A, Paper No. 108584, 56.
- 34. Eyal Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 257–322.
- 35. Lisa Marquand, Cubic fourfolds with an involution, Trans. Amer. Math. Soc. 376 (2023), no. 2, 1373-1406.
- 36. Lisa Marquand and Stevell Muller, Classification of symplectic birational involutions of manifolds of OG10 type, preprint, arXiv:2206.13814v4, (2023).
- 37. _____, Finite groups of symplectic birational transformations of ihs manifolds of OG10 type, preprint, arXiv:2310.06580v2, (2024).
- 38. Lisa Marquand and Sasha Viktorova, The defect of a cubic threefold, preprint, arXiv:2312.05118, (2023).
- 39. Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. II, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 29–32.
- Giovanni Mongardi, Symplectic involutions on deformations of K3^[2], Open Mathematics 10 (2012), no. 4, 1472– 1485.
- 41. _____, A note on the Kähler and Mori cones of hyperkähler manifolds, Asian J. Math. 19 (2015), no. 4, 583-591.
- Giovanni Mongardi and Claudio Onorati, Birational geometry of irreducible holomorphic symplectic tenfolds of O'Grady type, Math. Z. 300 (2022), no. 4, 3497–3526.
- 43. Giovanni Mongardi, Kévin Tari, and Malte Wandel, Prime order automorphisms of generalised Kummer fourfolds, Manuscripta Math. 155 (2018), no. 3-4, 449–469.
- 44. Giovanni Mongardi and Malte Wandel, *Induced automorphisms on irreducible symplectic manifolds*, Journal of the London Mathematical Society **92** (2015), no. 1, 123–143.
- 45. Viacheslav V. Nikulin, Finite groups of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian), English translation: Trans. Moscow Math. Soc. 38 (1980), no. 2, 71–35.
- Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177 (Russian), English translation: Math USSR-Izv. 14 (1979), no. 1, 103–167 (1980). MR 525944
- 47. Keiji Oguiso and Stefan Schröer, Enriques manifolds, J. Reine Angew. Math. 661 (2011), 215–235.
- Hisanori Ohashi and Malte Wandel, Non-natural non-symplectic involutions on symplectic manifolds of K3^[2]type, preprint, arXiv:1305.6353v2, (2013).
- Claudio Onorati, On the monodromy group of desingularised moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom. 31 (2022), no. 3, 425–465.
- 50. Oscar open source computer algebra research system, version 1.0.0, 2024.
- Benedetta Piroddi and Ángel David Ríos Ortiz, On the transcendental lattices of hyperkähler manifolds, preprint, arXiv:2308.12869, (2023).
- 52. Antonio Rapagnetta, On the Beauville form of the known irreducible symplectic varieties, Mathematische Annalen 340 (2008), 77–95.

- Miles Reid, Chapters on algebraic surfaces, complex algebraic geometry, park city ut, usa (1993), IAS/Park City Math. Ser 3 (1997), 3.
- 54. Aleksei Nikolaevich Rudakov and Igor Rostislavovich Shafarevich, Surfaces of type K3 over fields of finite characteristic, Itogi Nauki i Tekhniki. Seriya" Sovremennye Problemy Matematiki. Noveishie Dostizheniya" 18 (1981), 115–207.
- 55. Francesco Russo and Giovanni Staglianò, Congruences of 5-secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J. **168** (2019), no. 5, 849–865. MR 3934590
- Giulia Saccà, Birational geometry of the intermediate jacobian fibration of a cubic fourfold, Geometry & Topology
 (2023), no. 4, 1479–1538.
- 57. Claire Voisin, Théoreme de Torelli pour les cubiques de P5, Inventiones mathematicae 86 (1986), no. 3, 577-601.
- 58. _____, Hyper-Kähler compactification of the intermediate Jacobian fibration of a cubic fourfold: the twisted case, Contemporary Mathematics 712 (2018), 341–355.
- Chenglong Yu and Zhiwei Zheng, Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties, Algebra & Number Theory 14 (2020), no. 10, 2647–2683.
- 60. Zhiwei Zheng, Orbifold aspects of certain occult period maps, Nagoya Mathematical Journal 243 (2021), 137-156.

(Simone Billi) Università di Genova, Dipartimento di Matematica, Via Dodecaneso, 35, 16146 Genova, Italy

Email address: simone.billi@edu.unige.it

(Annalisa Grossi) Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, Rue Michel Magat, Bât. 307, 91405 Orsay, France

Current address: Alma Mater studiorum Università di Bologna Dipartimento di Matematica, Piazza di Porta San Donato 5, Bologna, 40126 Italia

 $Email\ address: {\tt annalisa.grossi3@unibo.it}$