MDPs 2: Reinforcement Learning

Review: MDPs

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

T(s, a, s'): probability of s' if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

 $\mathsf{IsEnd}(s)$: whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

Review: MDPs

• Following a **policy** π produces a path (**episode**)

$$s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \dots; a_n, r_n, s_n$$

• Value function $V_{\pi}(s)$: expected utility if follow π from state s

$$V_{\pi}(s) = \begin{cases} 0 & \text{if IsEnd}(s) \\ Q_{\pi}(s, \pi(s)) & \text{otherwise.} \end{cases}$$

• **Q-value** function $Q_{\pi}(s,a)$: expected utility if first take action a from state s and then follow π

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\pi}(s')]$$

4

Unknown transitions and rewards

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

lsEnd(s): whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

reinforcement learning!

CS234 course: https://web.stanford.edu/class/cs234/

Mystery game

Example: mystery buttons-

For each round $r = 1, 2, \ldots$

- You choose A or B.
- You move to a new state and get some rewards.

Start

State: 5,0

Rewards: 0

From MDPs to reinforcement learning

-Markov decision process (offline)-

- Have mental model of how the world works.
- Find policy to collect maximum rewards.

Reinforcement learning (online)

- Don't know how the world works.
- Perform actions in the world to find out and collect rewards.

Reinforcement learning framework

CS221

Algorithm: reinforcement learning template

For t = 1, 2, 3, ...

Choose action $a_t = \pi_{\mathsf{act}}(s_{t-1})$ (how?)

Receive reward r_t and observe new state s_t

Update parameters (how?)

Volcano crossing

(or press ctrl-enter)

	-50	20	(2,1) W 0 (2,1) W 0 (2,1)
	-50		N 0 (1,1) W 0 (1,1) N 0 (1,1) E 0 (1,2)
2			S 0 (2,2) W 0 (2,1) N 0 (2,2) N 0 (3,2)
	S 0 (3,2)		

W 2 (3,1)

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

Model-Based Value Iteration

Data: $s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \dots; a_n, r_n, s_n$

Key idea: model-based learning

Estimate the MDP: T(s,a,s') and Reward(s,a,s')

Transitions:

$$\hat{T}(s,a,s') = \frac{\# \text{ times } (s,a,s') \text{ occurs}}{\# \text{ times } (s,a) \text{ occurs}}$$

Rewards:

$$\widehat{\mathsf{Reward}}(s, a, s') = r \text{ in } (s, a, r, s')$$

Model-Based Value Iteration

Data (following policy $\pi(s) = \text{stay}$):

[in; stay, 4, end]

- Estimates converge to true values (under certain conditions)
- With estimated MDP $(\hat{T}, \widehat{\mathsf{Reward}})$, compute policy using value iteration

Problem

Problem: won't even see (s, a) if $a \neq \pi(s)$ (a = quit)

CS221

Key idea: exploration-

To do reinforcement learning, need to explore the state space.

Solution: need π to **explore** explicitly (more on this later)

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

From model-based to model-free

$$\hat{Q}_{\mathrm{opt}}(s,a) = \sum_{s'} \hat{T}(s,a,s') [\widehat{\mathsf{Reward}}(s,a,s') + \gamma \hat{V}_{\mathrm{opt}}(s')]$$

All that matters for prediction is (estimate of) $Q_{opt}(s, a)$.

Model-free Monte Carlo

Data (following policy π):

$$s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \dots; a_n, r_n, s_n$$

Recall:

 $Q_{\pi}(s,a)$ is expected utility starting at s, first taking action a, and then following policy π Utility:

$$u_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \cdots$$

Estimate:

$$\hat{Q}_{\pi}(s,a) = \text{average of } u_t \text{ where } s_{t-1} = s, a_t = a$$

(and s, a doesn't occur in s_0, \dots, s_{t-2})

Model-free Monte Carlo

Data (following policy $\pi(s) = \text{stay}$):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Q_{π} now, not Q_{opt}

Definition: on-policy versus off-policy-

On-policy: estimate the value of data-generating policy Off-policy: estimate the value of another policy

Model-free Monte Carlo (equivalences)

Data (following policy π):

$$s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \dots; a_n, r_n, s_n$$

-Original formulation-

$$\hat{Q}_{\pi}(s,a) = \text{average of } u_t \text{ where } s_{t-1} = s, a_t = a$$

 \vdash Equivalent formulation (convex combination) \vdash

On each
$$(s, a, u)$$
:

$$\begin{split} \eta &= \frac{1}{1 + (\# \text{ updates to } (s,a))} \\ \hat{Q}_{\pi}(s,a) &\leftarrow (1-\eta) \hat{Q}_{\pi}(s,a) + \eta u \end{split}$$

Model-free Monte Carlo (equivalences)

 ${}_{ extsf{ iny Equivalent}}$ formulation (convex combination) ${}_{ extsf{ iny I}}$

On each (s, a, u):

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$$

-Equivalent formulation (stochastic gradient)-

On each (s, a, u):

$$\hat{Q}_{\pi}(s,a) \leftarrow \hat{Q}_{\pi}(s,a) - \eta \underbrace{[\hat{Q}_{\pi}(s,a) - \underbrace{u}_{\text{target}}]}_{\text{prediction}}$$

Implied objective: least squares regression

$$(\hat{Q}_{\pi}(s,a) - u)^2$$

Volcanic model-free Monte Carlo

Run (or press ctrl-enter)

CS221 36

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

Using the utility

Data (following policy $\pi(s) = \text{stay}$):

$$[\text{in; stay, 4, end}] \qquad \qquad u=4$$

$$[\text{in; stay, 4, in; stay, 4, end}] \qquad \qquad u=8$$

$$[\text{in; stay, 4, in; stay, 4, in; stay, 4, end}] \qquad \qquad u=12$$

$$[\text{in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end}] \qquad u=16$$

Algorithm: model-free Monte Carlo-

On each (s, a, u):

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{u}_{\text{data}}$$

Using the reward + Q-value

Current estimate: $\hat{Q}_{\pi}(s, \text{stay}) = 11$

Data (following policy $\pi(s) = \text{stay}$):

[in; stay, 4, end]
$$4+0$$
 [in; stay, 4, in; stay, 4, end] $4+11$ [in; stay, 4, in; stay, 4, end] $4+11$ [in; stay, 4, in; stay, 4, in; stay, 4, end] $4+11$

Algorithm: SARSA

On each (s, a, r, s', a'):

$$\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta \underbrace{\left[\underbrace{r}_{\text{data}} + \gamma \underbrace{\hat{Q}_{\pi}(s', a')}_{\text{estimate}}\right]}_{\text{estimate}}$$

Model-free Monte Carlo versus SARSA

Key idea: bootstrapping-

SARSA uses estimate $\hat{Q}_{\pi}(s,a)$ instead of just raw data u.

u

based on one path

unbiased

large variance

wait until end to update can update immediately

 $r + \hat{Q}_{\pi}(s', a')$

based on estimate

biased

small variance

Question

Which of the following algorithms allows you to estimate $Q^*(s, a)$ (select all that apply)?

- (a) model-based value iteration
 - (b) model-free Monte Carlo
- (c) SARSA

CS221 46

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

Q-learning

Problem: model-free Monte Carlo and SARSA only estimate Q_{π} , but want Q_{opt} to act optimally

Outp	ut MDP	reinforcement learning
Q_{π}	policy evaluation	model-free Monte Carlo, SARSA
Q_{opt}	value iteration	Q-learning

Q-learning

Bellman optimality equation:

$$Q_{\mathsf{opt}}(s,a) = \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\mathsf{opt}}(s')]$$

Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s'):

$$\hat{Q}_{\mathrm{opt}}(s,a) \leftarrow (1-\eta) \underbrace{\hat{Q}_{\mathrm{opt}}(s,a)}_{\mathrm{prediction}} + \eta \underbrace{(r+\gamma \hat{V}_{\mathrm{opt}}(s'))}_{\mathrm{target}}$$

Recall: $\hat{V}_{\text{opt}}(s') = \max_{a' \in \text{Actions}(s')} \hat{Q}_{\text{opt}}(s', a')$

52

SARSA versus Q-learning

Algorithm: SARSA-

On each (s, a, r, s', a'):

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta(r+\gamma\hat{Q}_{\pi}(s',a'))$$

Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s'):

$$\hat{Q}_{\mathsf{opt}}(s, a) \leftarrow (1 - \eta) \hat{Q}_{\mathsf{opt}}(s, a) + \eta (r + \gamma \max_{a' \in \mathsf{Actions}(s')} \hat{Q}_{\mathsf{opt}}(s', a'))]$$

Volcanic SARSA and Q-learning

Run (or press ctrl-enter)

Utility: 2

CS221 56

Off-Policy versus On-Policy

Definition: on-policy versus off-policy-

On-policy: evaluate or improve the data-generating policy
Off-policy: evaluate or learn using data from another policy

on-policy off-policy

policy evaluation

Monte Carlo SARSA

policy optimization

Q-learning

Reinforcement Learning Algorithms

Algorithm	Estimating	Based on
Model-Based Monte Carlo	\hat{T},\hat{R}	$s_0, a_1, r_1, s_1, \dots$
Model-Free Monte Carlo	\hat{Q}_{π}	u
SARSA	\hat{Q}_{π}	$r + \hat{Q}_{\pi}$
Q-Learning	\hat{Q}_{opt}	$r + \hat{Q}_{opt}$

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

Exploration

Algorithm: reinforcement learning template

For t = 1, 2, 3, ...

Choose action $a_t = \pi_{\mathsf{act}}(s_{t-1})$ (how?)

Receive reward r_t and observe new state s_t

Update parameters (how?)

$$s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3; \dots; a_n, r_n, s_n$$

Which **exploration policy** π_{act} to use?

No exploration, all exploitation

(2,1)

E 0 (2,2) S 0 (3,2) W 2 (3,1)

Attempt 1: Set
$$\pi_{\mathsf{act}}(s) = \arg\max_{a \in \mathsf{Actions}(s)} \hat{Q}_{\mathsf{opt}}(s, a)$$

Run (or press ctrl-enter)

Average (lifetime) utility: 1.95

Problem: $\hat{Q}_{\text{opt}}(s, a)$ estimates are inaccurate, too greedy!

No exploitation, all exploration

S2(3,1)

Attempt 2: Set $\pi_{act}(s) = random from Actions(s)$

Average (lifetime) utility: -19.15

Problem: average utility is low because exploration is not guided

Exploration/exploitation tradeoff

Key idea: balance-

Need to balance exploration and exploitation.

Examples from life: restaurants, routes, research

Epsilon-greedy

Algorithm: epsilon-greedy policy-

$$\pi_{\mathsf{act}}(s) = \begin{cases} \arg\max_{a \in \mathsf{Actions}} \hat{Q}_{\mathsf{opt}}(s, a) & \mathsf{probability} \ 1 - \epsilon, \\ \mathsf{random} \ \mathsf{from} \ \mathsf{Actions}(s) & \mathsf{probability} \ \epsilon. \end{cases}$$

Run (or press ctrl-enter)

99.8 100 100 100	99.6 100 -50 100	-50	100	a W N	r s (2,1) 0 (2,1) 0 (1,1)
100 100 100 2	100 100 -50 100	-50	100 -50 100 100	S W W E	0 (2,1) 0 (2,1) 0 (2,1) 0 (2,2)
2	2 100 100	-50 100 100 100	100 100 100 100	S E E N	0 (3,2) 0 (3,3) 0 (3,4) 0 (2,4)

Average (lifetime) utility: 30.71 N 100 (1,4)

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

Generalization

Problem: large state spaces, hard to explore

Average (lifetime) utility: 0.44

CS221

Q-learning

Stochastic gradient update:

$$\hat{Q}_{\mathsf{opt}}(s,a) \leftarrow \hat{Q}_{\mathsf{opt}}(s,a) - \eta [\underbrace{\hat{Q}_{\mathsf{opt}}(s,a)}_{\mathsf{prediction}} - \underbrace{(r + \gamma \hat{V}_{\mathsf{opt}}(s'))}_{\mathsf{target}}]$$

This is **rote learning**: every $\hat{Q}_{\mathsf{opt}}(s,a)$ has a different value

Problem: doesn't generalize to unseen states/actions

Function approximation

Key idea: linear regression model

Define **features** $\phi(s,a)$ and **weights** w:

$$\hat{Q}_{\mathsf{opt}}(s, a; \mathbf{w}) = \mathbf{w} \cdot \phi(s, a)$$

Example: features for volcano crossing-

$$\phi_1(s, a) = \mathbf{1}[a = W]$$
 $\phi_7(s, a) = \mathbf{1}[s = (5, a)]$

$$\phi_1(s, a) = \mathbf{1}[a = W] \qquad \phi_7(s, a) = \mathbf{1}[s = (5, *)]$$

$$\phi_2(s, a) = \mathbf{1}[a = E] \qquad \phi_8(s, a) = \mathbf{1}[s = (*, 6)]$$

Function approximation

Algorithm: Q-learning with function approximation-

On each
$$(s, a, r, s')$$
:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta [\underbrace{\hat{Q}_{\text{opt}}(s, a; \mathbf{w})}_{\text{prediction}} - \underbrace{(r + \gamma \hat{V}_{\text{opt}}(s'))}_{\text{target}}] \phi(s, a)$$

Implied objective function:

$$\underbrace{(\hat{Q}_{\text{opt}}(s, a; \mathbf{w}) - \underbrace{(r + \gamma \hat{V}_{\text{opt}}(s'))}^2}_{\text{prediction}})^2$$

Outline

MDPs: model-based methods

MDPs: model-free methods

MDPs: SARSA

MDPs: Q-learning

MDPs: epsilon-greedy

MDPs: function approximation

MDPs: recap and extensions

Summary of MDPs

- Markov decision processes (MDPs) cope with uncertainty
- Solutions are **policies** rather than paths
- Policy evaluation computes policy value (expected utility)
- Value iteration computes optimal value (maximum expected utility) and optimal policy
- ullet Main technique: write recurrences o algorithm

Summary of Reinforcement Learning

• Online setting: learn and take actions in the real world!

• Monte Carlo: estimate transitions, rewards, Q-values from data

• Bootstrapping: update towards target that depends on estimate rather than just raw data

Covering the unknown

Epsilon-greedy: balance the exploration/exploitation tradeoff

Function approximation: can generalize to unseen states

Challenges in reinforcement learning

Binary classification (sentiment classification, SVMs):

• Stateless, full supervision

Reinforcement learning (flying helicopters, Q-learning):

• Stateful, partial supervision

Key idea: partial supervision-

Reward feedback, but not given the solution directly.

Key idea: state

Rewards depend on previous actions \Rightarrow can have delayed rewards.

States and information

full supervisionstatelessstatefull supervisionsupervised learning (binary classification)imitation learning (structured prediction)partial supervisionmulti-armed banditsreinforcement learning

Deep reinforcement learning

just use a neural network for $\hat{Q}_{\text{opt}}(s,a)$, π_{opt} , T, etc

Playing Atari [Google DeepMind, 2013]:

- last 4 frames (images) \Rightarrow 3-layer NN \Rightarrow keystroke
- ϵ -greedy, train over 10M frames with 1M replay memory
- Human-level performance on some games (breakout), less good on others (space invaders)

Deep reinforcement learning

- ullet Policy gradient: train a policy $\pi(a\mid s)$ (say, a neural network) to directly maximize expected reward
- Google DeepMind's AlphaGo (2016), AlphaZero (2017)

• Stanford CS224R course:

CS221

https://cs224r.stanford.edu/

Applications

Robotics Applications: learning dexterous manipulation, control helicopter to do maneuvers in the air

Backgammon: TD-Gammon plays 1-2 million games against itself, human-level performance

Games: DQN solving Atari Games, openAl Five playing Dota.

Managing datacenters; actions: bring up and shut down machine to minimize time/cost

Routing Autonomous Cars: bring down the total latency of vehicles on the road

CS221 :

Markov decision processes: against nature (e.g., Blackjack)

Next time...

Adversarial games: against opponent (e.g., chess)

