Análise do Artigo:

"O uso do gráfico de controle \overline{X} e R no monitoramento do volume de envase de refrigerante"

André Felipe Berdusco Menezes

Departamento de Estatística, Universidade Estadual de Maringá

Maringá, PR, Brasil

1 Introdução

O presente trabalho tem por objetivo realizar uma resenha critica do artigo de Kappel e Rodrigues (2008) intitulado "O uso do gráfico de controle \overline{X} e R no monitoramento do volume de envase de refrigerante" publicado em 2008 na revista FAMAT em revista.

O artigo inicia com a discussão acerca das causas de variação que podem estar presentes em um processo de produção. Segundo os autores, existem duas causas de variação, sendo elas: causas especiais e causas comuns. Na terminologia de Montgomery (2013) os autores querem dizer que em um processo de produção as amostras (características) estão suscetíveis a causas inerentes (naturais) de variabilidade ou causas atribuíveis (conhecidas) de variabilidade. Nesse sentido, um processo que esta operando apenas devido ao acaso é dito estar em controle estatístico.

O principal objetivo do artigo foi empregar técnicas de controle de qualidade, especificamente os gráficos de controle \overline{X} e R, para monitorar o processo de produção de refrigerantes da Indústria de Refrigerante Ltda (IRL) no que tange o volume de envase nas embalagens PET de 2 litros.

Segundo os autores o acompanhamento do volume de refrigerante no processo de envase é fundamental para evitar perdas por excesso, bem como apresentar volumes abaixo do nominal, isto é, aquele volume estipulado no rotulo. Tais fatos, podem causar multas por órgãos de fiscalização e insatisfação ou perda de clientes. Dessa forma, o controle estatístico de qualidade é imprescindível para acompanhar, fornecer suporte, manter um padrão e assegurar as características do produto final para o consumidor.

Para melhor organização a presente resenha foi dividia em três seções. Na seção 2, será discutida a forma em que os dados foram coletados, bem como a metodologia estatística empregada para analisa-los. Apresentação e discussão dos resultados obtidos são expostos na seção 3. A resenha finaliza com algumas considerações finais e alternativas ao artigo estudado.

2 Materiais e Métodos

2.1 Coleta dos dados

O conjunto de dados utilizados foram cedidos pela Indústria de Refrigerantes Ltda (IRL) de Uberaba-MG. A variável (característica) de interesse foi o volume de envase de refrigerantes em garrafas PET de 2 litros, na qual é obtida por uma máquina envasadora.

Conforme Montgomery (2013) o uso do gráfico de controle envolve aplicação da **fase** I e **fase II**. Na fase I um conjunto de dados é coletado e analisado afim de determinar os parâmetros do processo bem como limites de controle confiáveis. Para tal, é necessário que o processo esteja operando apenas devido ao acaso. Logo, se for detectada uma amostra fora de controle a mesma deve ser descartada ou então iniciar uma nova coleta. Na fase II o gráfico de controle é utilizado para monitorar o processo, comparando as estatísticas amostrais (média, amplitude e desvio-padrão) com o limites de controle estabelecidos na fase I.

No artigo, para a fase I foram coletadas m=20 amostras de tamanho n=5 com intervalos de t=15 minutos entre cada amostra. Já para a fase II, cujo o objetivo é avaliar o monitoramento futuro, m=15 amostras foram coletadas de tamanho n=5 e intervalos de t=15 minutos entre cada amostra.

2.2 Gráficos de controle

Assumindo que uma característica de qualidade X tem distribuição Normal com média μ e desvio padrão σ , em que ambos μ e σ são conhecidos. Seja x_1, \ldots, x_n uma amostra aleatória de tamanho n da variável X, então a média amostral

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

também tem distribuição Normal com média μ e desvio padrão $\sigma_{\overline{x}} = \sigma/\sqrt{n}$.

Na prática μ e σ são desconhecidos, portanto devemos estima-los a partir de amostras preliminares retiradas quando o processo esta em controle. Suponha que m amostras estão disponíveis, cada uma contendo n observações da variável de interesse. Seja $\overline{x}_1, \ldots, \overline{x}_m$ a média de cada amostra. Logo, uma estimativa para μ é dada por

$$\overline{\overline{x}} = \frac{1}{m} \sum_{i=1}^{m} \overline{x}_i. \tag{1}$$

Assim, $\overline{\overline{x}}$ será utilizado como linha central (CL) no gráfico \overline{X} . A amplitude amostral é a diferença entre o maior e menor valor observado, isto é, $R_i = x_{\max_i} - x_{\min_i}$, $i = 1, \dots, m$.

Logo, o valor médio das amplitudes é dado por

$$\overline{R} = \frac{1}{m} \sum_{i=1}^{m} R_i \tag{2}$$

que será utilizado como linha central (CL) no gráfico \overline{R} .

Os limites de controle para o gráfico \overline{X} podem ser obtidos por dois métodos. Os autores utilizam o método 3- σ , portanto os limites superior e inferior são definidos, respectivamente, por

$$UCL = \overline{\overline{x}} + 3 \frac{S_d}{\sqrt{n}}$$

$$LCL = \overline{\overline{x}} - 3 \frac{S_d}{\sqrt{n}}$$
(3)

sendo que

$$S_d = \frac{\overline{R}}{d_2} \tag{4}$$

em que \overline{R} foi definido em (2) e d_2 uma constante que depende do tamanho amostral, pode-se consultar o Apêndice VI do livro de Montgomery (2013) para obter os valores de d_2 .

A variabilidade do processo foi monitorada utilizando as amplitudes amostrais. Segundo Montgomery (2013) os limites superior e inferior para o gráfico \overline{R} , são definidos, respectivamente, por

$$UCL = D_4 \overline{R}$$

$$LCL = D_3 \overline{R}$$
(5)

em que D_3 e D_4 são constantes dependentes dos tamanhos amostra e que estão tabuladas no Apêndice VI do livro de Montgomery (2013).

2.3 Implementação computacional

Os autores conduziram as análise utilizando software Minitab. Em contrapartida, neste trabalho funções foram implementadas no ambiente estatístico R (R Core Team, 2016), e a biblioteca ggplot2 (WICKHAM, 2009) foi empregada para construção dos gráficos de controle. Alternativamente, pode-se utilizar a biblioteca qcc (SCRUCCA, 2004) a qual contém recursos específicos para análise de dados de controle de qualidade.

3 Resultados

Inicialmente, foi verificado se é possível supor uma distribuição Normal para as médias das m amostras de ambas as fases I e II. Para tal, os testes de Kolmogorov-Smirnov (KS), Shapiro-Wilk (SW), Cramér-von-Mises (CvM) e Anderson-Darling (AD) foram uti-

lizados. Uma inspeção visual da normalidade dos dados foi empregada comparando as probabilidades empíricas com as teóricas (ver Figura 1). Pelos resultados apresentados na Tabela 1 temos evidências que os dados de ambos as fases seguem distribuição Normal. Tais resultados também são sustentados pelos PP-Plots da Figura 1.

Tabela 1: Estatísticas (valor-p) dos testes de aderência de acordo com a fase.

Teste	Fase I	Fase II
SW	$0.9345 \ (0.1881)$	$0.9521 \ (0.5580)$
KS	$0.2198 \ (0.2887)$	$0.1429 \ (0.9195)$
CvM	$0.1224 \ (0.4893)$	$0.0497 \ (0.8851)$
AD	$0.6154 \ (0.6314)$	$0.3168 \ (0.9240)$

Figura 1: PP-Plots para avaliar a normalidade das médias das m amostras conforme as fases.

Para estimar os parâmetros do processo (média e desvio padrão) amostras preliminares foram retiradas e então pode-se determinar os limites de controle, supondo que as amostras não foram influenciadas por causas conhecidas. Na Figura 2 apresentam-se os gráficos de controle \overline{X} e R para o monitoramento do volume de envase na fase 1.

Observa-se que as amostras 1, 3, 11, 12 e 16 estão fora do limite de controle, indicando que o processo não esta operando como deveria. Segundo os autores foi constatado que essas amostras foram influenciadas por causas conhecidas. Portanto, elas devem ser removidas para que o limite de controle seja estimado na presença apenas de causas inerentes ao processo.

Figura 2: Gráficos de controle \overline{X} e R para o monitoramento do volume de envase, fase 1.

Os gráficos de controle \overline{X} e R após retirada das amostras influenciadas são apresentados na Figura 3. Verifica-se que as amostras 1,10 e 13 estão fora dos limites, porém os autores argumentam que essas observações não foram afetadas por causas conhecidas. Embora o gráfico de controle \overline{X} não apresente um comportamento sistemático como existem pontos fora do limite, de acordo com Montgomery (2013) o processo ainda não esta operando em controle, logo o recomendado seria coletar novas amostras. Como isso não foi realizado os autores continuaram as análises considerando o limite de controle para \overline{X} e R obtido nos gráficos da Figura 3.

Figura 3: Gráficos de controle \overline{X} e R para o monitoramento do volume de envase após a eliminação, fase 1.

Considerando os limites de controle identificados na fase 1, então 15 amostras foram coletadas na fase 2 com intuito de monitorar o processo de envase. Na Figura 4 observa-se os gráficos de controle \overline{X} e R, sendo que a partir da linha vertical em azul apresentam-se as amostras de monitoramento. Pelo gráfico \overline{X} percebe-se que várias amostras estão fora do limite de controle indicando que o processo esta fora de controle, isto é, houve alteração na média do processo devido a causas não inerentes. Na variabilidade pode-se observar o mesmo fato, uma vez que diversos pontos localizam-se fora do limite de controle do gráfico da amplitude. Segundo os autores as amostras 16 e 17 foram coletadas no inicio turno o que pode ter afetado o processo.

Figura 4: Gráficos de controle \overline{X} e R para o monitoramento do volume de envase, fase 2.

A habilidade do gráfico \overline{X} em detectar mudanças na qualidade do processo é descrita por sua curva característica de operação (MONTGOMERY, 2013). Tal curva é construída calculando a probabilidade teórica de não detectar uma mudança quando ela de fato existir, isto é, o erro do tipo II para diferentes mudanças expressas na unidade de desvio padrão.

Montgomery (2013) mostra que a probabilidade do erro tipo II em um processo 3- σ é dada por

$$\beta = \Phi\left(L - k\sqrt{n}\right) - \Phi\left(-L - k\sqrt{(n)}\right) \tag{6}$$

em que $L=3,\ k$ é a mudança na média, n o tamanho amostral e Φ a distribuição acumulada da Normal padrão.

Na Figura 5 apresenta-se a curva característica de operação considerando diferentes

tamanhos amostrais e mudanças de 0 a 5 unidades de desvio padrão. Naturalmente, quanto maior o tamanho da amostra menor a probabilidade de não detectar uma mudança no processo quando de fato ela existir, isto é, maior o poder $(1 - \beta)$.

Figura 5: Curva característica de operação.

4 Considerações finais

Neste trabalho uma análise do artigo de Kappel e Rodrigues (2008) foi realizada. Os principais pontos levantados pelos autores foram discutidos e a análise foi refeita utilizando o software R.

Dentre os resultados discutidos destaca-se que (i) as amostras obtidas na fase 1, para estimação dos parâmetros do processo, não foi possível garantir que o processo estava em controle, portanto os limites obtidos não são confiáveis; (ii) das 15 amostras coletadas para a fase 2, de monitoramento, 10 estiveram fora do limite de controle, no entanto os autores não souberam explicar o motivo.

Por fim, para ilustrar a capacidade de detectar mudanças na qualidade do processo o a curva característica de operação foi construída variando o tamanho amostral (n) e a mudança na média do processo (k).

Referências

KAPPEL, M. A.; RODRIGUES, A. A. A. O uso do gráfico de controle \overline{X} e R no monitoramento do volume de envase de refrigerante. $FAMAT\ em\ Revista$, n. 10, p. 21–32, 2008.

MONTGOMERY, D. C. Introduction to Statistical Quality Control. Seventh Edition. John Willey & Sons, Inc, 2013.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2016. Disponível em: https://www.R-project.org/>.

SCRUCCA, L. qcc: An R package for quality control charting and statistical process control. *R News*, v. 4/1, p. 11–17, 2004. Disponível em: https://cran.r-project.org/doc/Rnews/.

WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN 978-0-387-98140-6. Disponível em: http://ggplot2.org.