# glmpathcr: An R Package for Ordinal Response Prediction in High-dimensional Data Settings

#### Kellie J. Archer

Virginia Commonwealth University

#### Abstract

This paper describes an R package, **glmpathcr**, that provides a function for fitting a penalized continuation ratio model when interest lies in predicting an ordinal response. The function, **glmpath.cr** uses the coordinate descent fitting algorithm as implemented in **glmpath** and described by (Park and Hastie 2007a). Methods for extracting all estimated coefficients, extracting non-zero coefficient estimates, obtaining the predicted class, and obtaining the class-specific fitted probabilities have been implemented. Additionally, generic methods from **glmpath** including **summary**, **print**, and **plot** can be applied to a **glmpath.cr** object.

Keywords: ordinal response, penalized models, LASSO, L<sub>1</sub> constraint, R.

### 1. Introduction

High-throughput genomic experiments are frequently conducted for the purpose of examining whether genes are predictive of or significantly associated with phenotype. In many biomedical settings where histopathological or health status data are collected, phenotypic variables are recorded on an ordinal scale. Nevertheless, most often investigators neglect the ordinality of the phenotypic data and rather dichotomize the ordinal class then apply statistical methods suitable for two-class comparisons and predictions. This tendency to analyze ordinal data using dichotomous class methodologies may be due to the lack of available statistical methods and software for modeling an ordinal response in the presence of a high-dimensional covariate space. The approach of collapsing ordinal categories may neglect important information in the study (Armstrong and Sloan 1989).

A variety of statistical modeling procedures, namely, proportional odds, adjacent category, stereotype logit, and continuation ratio models can be used to predict an ordinal response. In this paper, we focus attention to the continuation ratio model because its likelihood can be easily re-expressed such that existing software can be readily used for model fitting. The backward formulation of the continuation ratio models the logit as

$$log\left(\frac{P(Y=k|X=x)}{P(Y\leq k|X=x)}\right) = \alpha_k + \beta_k^T \mathbf{x}$$
(1)

whereas the forward formulation models the logit as

$$log\left(\frac{P(Y=k|X=x)}{P(Y>k|X=x)}\right) = \alpha_k + \beta_k^T \mathbf{x}.$$
 (2)

Rather than describe both formulations in detail, here we present the backward formulation, which is commonly used when progression through disease states from none, mild, moderate, severe is represented by increasing integer values, and interest lies in estimating the odds of more severe disease compared to less severe disease (Bender and Benner 2000). Suppose each observation, i = 1, ..., n, belongs to one ordinal class k = 1, ..., K. Therefore for i = 1, ..., n we can construct a vector  $\mathbf{y}_i$  to represent ordinal class membership, such that  $\mathbf{y}_i = (y_{i1}, y_{i2}, ..., y_{iK})^T$ , where  $y_{ik} = 1$  if the response is in category k and 0 otherwise, so that  $n_i = \sum_{k=1}^K y_{ik} = 1$ . Using the logit link, the equation representing the conditional probability for class k is

$$\delta_k(x) = P(Y = k | Y \le k, X = x) = \frac{exp(\alpha_k + \boldsymbol{\beta}^T \mathbf{X})}{1 + exp(\alpha_k + \boldsymbol{\beta}^T \mathbf{X})}.$$
 (3)

The likelihood for the continuation ratio model is then the product of conditionally independent binomial terms (Cox 1975), which is given by

$$L(\boldsymbol{\beta}|\mathbf{y},\mathbf{x}) = \prod_{i=1}^{n} \delta_{2}^{y_{i2}} (1 - \delta_{2})^{n_{i} - \sum_{k=2}^{K} y_{ik}} \delta_{3}^{y_{i3}} (1 - \delta_{3})^{n_{i} - \sum_{k=3}^{K} y_{ik}} \times \dots \times \delta_{K}^{y_{iK}} (1 - \delta_{K})^{n_{i} - y_{iK}}$$
(4)

where here we have simplified our notation by not explicitly including the dependence of the conditional probability  $\delta_k$  on  $\mathbf{x}$ . Further, simplifying our notation to let  $\boldsymbol{\beta}$  represent the vector containing both the thresholds  $(\alpha_2, \ldots, \alpha_K)$  and the log odds  $(\beta_1, \ldots, \beta_p)$  for all K-1 logits, the full parameter vector is

$$\boldsymbol{\beta} = (\alpha_2, \beta_{21}, \beta_{22}, \dots, \beta_{2p}, \alpha_3, \beta_{31}, \beta_{32}, \dots, \beta_{3p}, \alpha_K, \beta_{K,1}, \beta_{K,2}, \dots, \beta_{K,p})^T$$
(5)

which is of length (K-1)(p+1). As can be seen from equation 4, the likelihood can be factored into K-1 independent likelihoods, so that maximization of the independent likelihoods will lead to an overall maximum likelihood estimate for all terms in the model (Bender and Benner 2000). Typically, to promote parsimony and interpretation, the model is constrained such that for each of the K-1 vectors,  $(\beta_{k1}, \beta_{k2}, \ldots, \beta_{kp})$ , are equal, thus yielding a constrained continuation ratio model.

### 2. Penalized Models

For datasets where the number of covariates p exceeds the sample size n, the backwards stepwise procedure cannot be undertaken. Furthermore, for any problem using a forward selection procedure the discrete variable inclusion process can exhibit high variance. Moreover, for high-dimensional covariate spaces, the best subset procedure is computationally prohibitive. Two penalized methods, ridge and  $L_1$  penalization, places a penalty on a function of the coefficient estimates, thereby permitting a model fit even for high-dimensional data Tibshirani (1996, 1997). A generalization of these penalized models can be expressed as,

$$\tilde{\beta} = \arg\min_{\beta} \left( \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right)$$
 (6)

for  $q \ge 0$ . When q = 1 we have the an L<sub>1</sub> penalized model, when q = 2 we have ridge regression. Values of  $q \in (1,2)$  provide a compromise between the L<sub>1</sub> and ridge penalized

models. Because when q > 1 coefficients are no longer set exactly equal to 0, the elastic net penalty was introduced

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha)|\beta_j|). \tag{7}$$

# 3. Implementation

The glmpather package was written in the R programming environment (R Development Core Team 2009) and depends on the glmpath package (Park and Hastie 2007b). Similar to the Design package which includes a function cr.setup for restructuring a dataset for fitting a forward continuation ratio model, in this package the model is fit by restructuring the dataset then passing the restructured dataset to a penalized logistic regression fitting function. However, unlike cr.setup which produces an object of class list from which the response and restructured independent variables are extracted and passed to a model fitting algorithm, in the glmpather package the restructuring functions are transparent to the user. Specifically, the **glmpather** package fits either a forward or backward (default) penalized constrained continuation ratio model by specification of method="forward" in the glmpath.cr call. The glmpath.cr function restructures the dataset to represent the K-1conditionally independent likelihoods and then fits the penalized continuation ratio model using the glmpath framework. Therefore, the coordinate descent fitting procedure used by the glmpath function in the glmpath package are used in fitting the penalized continuation ratio model when invoking glmpath.cr. This allows fitting a penalized model for situations where the number of covariates p exceed the sample size n. In addition, methods for extracting the best fitting model from the path using AIC and BIC criteria, obtaining predicted class and fitted class probabilities, and returning coefficient estimates were written in addition to the print, summary, and plot methods copied from glmpath.

# 4. Example

A simulated dataset, data, consisting of 1,000 covariates and a three-class ordinal response with 30 observations in each class is included in the **glmpath** package for testing ordinal classification methodologies. The first column (V1) is stochastically associated with the ordinal response: for class 0, V1 is distributed as N(0,1); for class 1, V1 is distributed as N(1,1); and for class 2, V1 is distributed as N(3,1). All other predictor variables (V2-V1000) are multivariable normally distributed with mean vector  $\mathbf{0}$  and variance-covariance matrix  $\mathbf{I}$ . Therefore the Bayes Error associated with this dataset is 0.302. The last column in data is the ordinal response, class. The code for fitting a backward (default) continuation ratio model is given by

```
> library(glmpathcr)
> data(data)
> x <- data[, 1:1000]
> y <- data$class
> fit <- glmpath.cr(x, y)</pre>
```

As with glmpath model objects, methods such as summary and plot can be applied to glmpath.cr model objects, which are helpful for selecting the step at which to select the final model from the solution path.

### > summary(fit)

```
\mathsf{Df}
                 Deviance
                                AIC
                                         BIC
           3 1.977502e+02 203.7502 212.7821
Step 1
Step 7
           4 1.268914e+02 134.8914 146.9339
           6 1.236720e+02 135.6720 153.7358
Step 9
           7 1.235747e+02 137.5747 158.6492
Step 10
           8 1.229605e+02 138.9605 163.0455
Step 12
Step 13
           9 1.213437e+02 139.3437 166.4394
          10 1.206910e+02 140.6910 170.7974
Step 15
Step 16
          11 1.206072e+02 142.6072 175.7241
Step 18
          12 1.185045e+02 142.5045 178.6321
Step 19
          13 1.140777e+02 140.0777 179.2160
          14 1.059049e+02 133.9049 176.0538
Step 21
Step 23
          15 1.052149e+02 135.2149 180.3744
Step 25
          16 1.025033e+02 134.5033 182.6735
          17 9.788337e+01 131.8834 183.0642
Step 27
Step 29
          18 9.250006e+01 128.5001 182.6915
Step 31
          19 8.937950e+01 127.3795 184.5816
Step 32
          20 8.936458e+01 129.3646 189.5773
Step 34
          21 8.913574e+01 131.1357 194.3591
Step 35
          22 8.740808e+01 131.4081 197.6421
Step 37
          23 8.391957e+01 129.9196 199.1642
Step 39
          24 8.211261e+01 130.1126 202.3679
Step 41
          25 7.883779e+01 128.8378 204.1037
Step 43
          26 7.744341e+01 129.4434 207.7199
          27 7.552956e+01 129.5296 210.8167
Step 45
Step 47
          28 7.464407e+01 130.6441 214.9419
Step 49
          29 7.331620e+01 131.3162 218.6246
Step 50
          30 7.128100e+01 131.2810 221.6001
Step 52
          31 7.032096e+01 132.3210 225.6506
          32 6.973133e+01 133.7313 230.0717
Step 54
          33 6.955485e+01 135.5548 234.9058
Step 56
Step 58
          34 6.941267e+01 137.4127 239.7743
Step 60
          35 6.655017e+01 136.5502 241.9224
Step 62
          36 6.591471e+01 137.9147 246.2976
Step 64
          37 6.396196e+01 137.9620 249.3555
          38 5.591195e+01 131.9120 246.3161
Step 67
Step 70
          39 4.964509e+01 127.6451 245.0599
Step 73
          40 4.588916e+01 125.8892 246.3146
Step 75
          41 4.518095e+01 127.1809 250.6170
Step 77
          42 4.439213e+01 128.3921 254.8388
          43 4.097572e+01 126.9757 256.4330
Step 80
```

```
44 3.855674e+01 126.5567 259.0247
Step 82
         45 3.771496e+01 127.7150 263.1935
Step 84
Step 86
         46 3.683175e+01 128.8317 267.3210
Step 88
         47 3.561162e+01 129.6116 271.1115
Step 90 48 3.533279e+01 131.3328 275.8433
Step 91
         48 3.389858e+01 129.8986 274.4091
Step 93 48 3.248141e+01 128.4814 272.9919
Step 95 49 3.148533e+01 129.4853 277.0065
Step 96
         49 3.115469e+01 129.1547 276.6758
Step 98
         49 2.906390e+01 127.0639 274.5850
Step 101 50 2.708599e+01 127.0860 277.6178
Step 103 51 2.597671e+01 127.9767 281.5191
Step 105 52 2.523697e+01 129.2370 285.7900
Step 107 53 2.454167e+01 130.5417 290.1053
Step 110 54 2.252000e+01 130.5200 293.0943
Step 111 55 2.248267e+01 132.4827 298.0676
Step 114 56 1.674256e+01 128.7426 297.3381
Step 116 57 1.643027e+01 130.4303 302.0365
Step 119 58 1.221607e+01 128.2161 302.8329
Step 121 59 1.160682e+01 129.6068 307.2343
Step 122 59 1.048302e+01 128.4830 306.1105
Step 124 59 1.036497e+01 128.3650 305.9925
Step 126 60 9.736097e+00 129.7361 310.3742
Step 129 61 8.882654e+00 130.8827 314.5314
Step 130 61 8.367347e+00 130.3673 314.0161
Step 133 61 7.613208e+00 129.6132 313.2620
Step 136 62 6.748127e+00 130.7481 317.4075
Step 139 63 5.756419e+00 131.7564 321.4264
Step 141 64 5.720197e+00 133.7202 326.4009
Step 144 65 4.672943e+00 134.6729 330.3642
Step 147 66 4.320249e+00 136.3202 335.0222
Step 152 67 2.735014e+00 136.7350 338.4476
Step 155 68 1.247403e+00 137.2474 341.9706
Step 158 69 9.716167e-01 138.9716 346.7055
Step 162 70 5.010593e-01 140.5011 351.2455
Step 165 71 3.818247e-01 142.3818 356.1369
Step 166 70 3.476473e-01 140.3476 351.0921
Step 170 70 8.522756e-02 140.0852 350.8297
Step 173 71 6.081049e-02 142.0608 355.8159
Step 174 71 3.708819e-02 142.0371 355.7922
Step 176 71 3.342187e-02 142.0334 355.7885
Step 177 71 2.938603e-02 142.0294 355.7845
Step 179 71 2.541967e-02 142.0254 355.7805
Step 180 72 1.844144e-02 144.0184 360.7842
Step 182 73 1.449531e-02 146.0145 365.7909
Step 183 74 1.278486e-02 148.0128 370.7998
Step 184 74 1.264285e-02 148.0126 370.7997
```

```
Step 185 74 1.207392e-02 148.0121 370.7991
Step 186 74 1.180871e-02 148.0118 370.7988
Step 187 74 1.160685e-02 148.0116 370.7986
Step 188 74 8.075618e-03 148.0081 370.7951
Step 189 74 7.642540e-03 148.0076 370.7947
Step 190 74 7.474924e-03 148.0075 370.7945
Step 191 73 7.421659e-03 146.0074 365.7838
Step 192 73 6.660177e-03 146.0067 365.7830
Step 193 74 6.538656e-03 148.0065 370.7936
Step 194 75 6.202576e-03 150.0062 375.8038
Step 195 76 6.109357e-03 152.0061 380.8144
Step 196 78 5.805791e-03 156.0058 390.8354
Step 197 78 5.801257e-03 156.0058 390.8354
Step 198 77 5.601975e-03 154.0056 385.8245
Step 199 77 5.504980e-03 154.0055 385.8244
Step 200 77 5.245695e-03 154.0052 385.8242
Step 202 77 4.752132e-03 154.0048 385.8237
Step 203 78 4.656521e-03 156.0047 390.8342
Step 204 79 4.530401e-03 158.0045 395.8447
Step 206 80 4.305395e-03 160.0043 400.8551
Step 207 80 4.293758e-03 160.0043 400.8551
Step 209 80 3.787662e-03 160.0038 400.8546
Step 211 81 3.650458e-03 162.0037 405.8651
Step 212 82 3.453881e-03 164.0035 410.8755
Step 213 82 3.423946e-03 164.0034 410.8755
Step 214 81 3.383232e-03 162.0034 405.8648
Step 215 82 3.274787e-03 164.0033 410.8754
Step 216 82 3.013102e-03 164.0030 410.8751
Step 217 82 2.942978e-03 164.0029 410.8750
Step 218 84 2.832763e-03 168.0028 420.8962
Step 219 84 2.771885e-03 168.0028 420.8961
Step 220 85 2.697916e-03 170.0027 425.9067
Step 222 86 2.487565e-03 172.0025 430.9171
Step 223 87 2.437891e-03 174.0024 435.9277
Step 224 89 2.375010e-03 178.0024 445.9489
Step 225 90 2.328724e-03 180.0023 450.9595
Step 226 91 2.279899e-03 182.0023 455.9701
Step 227 90 2.245480e-03 180.0022 450.9594
Step 228 90 2.151490e-03 180.0022 450.9593
Step 229 92 2.121618e-03 184.0021 460.9806
Step 230 93 2.093159e-03 186.0021 465.9912
Step 231 93 2.062546e-03 186.0021 465.9911
Step 232 92 2.029814e-03 184.0020 460.9805
Step 233 91 1.970488e-03 182.0020 455.9698
Step 234 91 1.919379e-03 182.0019 455.9697
Step 235 92 1.896475e-03 184.0019 460.9803
Step 236 93 1.828767e-03 186.0018 465.9909
```

```
Step 237 93 1.825758e-03 186.0018 465.9909
Step 238 92 1.821194e-03 184.0018 460.9803
Step 239 91 1.808816e-03 182.0018 455.9696
Step 240 90 1.762903e-03 180.0018 450.9589
Step 241 91 1.709718e-03 182.0017 455.9695
Step 242 93 1.642881e-03 186.0016 465.9907
Step 243 95 1.604030e-03 190.0016 476.0120
Step 244 97 1.575597e-03 194.0016 486.0332
Step 245 99 1.531090e-03 198.0015 496.0544
Step 246 100 1.488077e-03 200.0015 501.0650
Step 247 100 1.465819e-03 200.0015 501.0650
Step 248 100 1.409207e-03 200.0014 501.0649
Step 249 103 1.369562e-03 206.0014 516.0968
Step 250 106 1.332009e-03 212.0013 531.1287
Step 251 106 1.316473e-03 212.0013 531.1287
Step 252 106 1.312051e-03 212.0013 531.1287
Step 253 105 1.302143e-03 210.0013 526.1180
Step 254 104 1.298270e-03 208.0013 521.1074
Step 255 103 1.277893e-03 206.0013 516.0967
Step 256 104 1.243826e-03 208.0012 521.1073
Step 257 106 1.224708e-03 212.0012 531.1286
Step 258 106 1.211353e-03 212.0012 531.1286
Step 259 108 1.189521e-03 216.0012 541.1498
Step 260 109 1.149689e-03 218.0011 546.1604
Step 261 111 1.117974e-03 222.0011 556.1816
Step 262 112 1.107710e-03 224.0011 561.1923
Step 263 112 1.077822e-03 224.0011 561.1922
Step 264 113 1.067414e-03 226.0011 566.2029
Step 265 118 1.046297e-03 236.0010 591.2560
Step 266 119 1.040973e-03 238.0010 596.2666
Step 267 118 1.040083e-03 236.0010 591.2560
Step 268 118 1.021432e-03 236.0010 591.2560
Step 269 118 1.011200e-03 236.0010 591.2560
Step 271 117 9.713459e-04 234.0010 586.2453
Step 272 117 9.558112e-04 234.0010 586.2453
Step 273 117 9.164918e-04 234.0009 586.2452
Step 274 121 8.957896e-04 242.0009 606.2878
Step 275 124 8.861962e-04 248.0009 621.3197
Step 276 128 8.771551e-04 256.0009 641.3622
Step 277 129 8.600954e-04 258.0009 646.3728
Step 278 130 8.366869e-04 260.0008 651.3834
Step 279 135 8.173980e-04 270.0008 676.4366
Step 280 136 8.038641e-04 272.0008 681.4472
Step 281 138 7.826633e-04 276.0008 691.4685
Step 282 140 7.259221e-04 280.0007 701.4897
Step 284 143 6.836433e-04 286.0007 716.5215
```

```
> plot(fit, xvar = "step", type = "bic", plot.all.steps = TRUE,
+ breaks = FALSE)
```





Figure 1: Plot of regularization path for glmpath.cr object using simulated dataset, data.

Note that when plotting, the horizontal axis can be norm, lambda, or step, however extractor functions for glmpath.cr generally require the step to be selected, so we have selected xvar = "step" in this example. The vertical axis can be coefficients, aic or bic. As one can see, there is a multitude of models fit from one call to glmpath.cr. To faciliate extraction of best fitting models using commonly used criterion, the model.select function can be used. The model.select function extracts the best fitting model from the solution path, where the which parameter allows one to select either AIC or by default, BIC.

```
> BIC.step <- model.select(fit)
> BIC.step
[1] 7
```

In this example, Step 7 corresponds to a 4 degree of freedom model having the minimum BIC of 146.9339.

The coef function returns all estimated coefficients for a glmpath.cr fitted model, where the model selected is indicated by step s. The nonzero.coef function returns only those non-zero coefficient estimates for a selected model.

Note that the glmpath.cr function fits a penalized constrained continuation ratio model; therefore for K classes, there will be K-1 intercepts representing the cutpoints between adjacent classes. In this package, the nomenclature for these cutpoints is to use "cpk" where  $k=1,\ldots,K-1$ . In this dataset, K=3 so the intercepts are cp1 and cp2 with Intercept being an offset. When using the BIC to select the final model, the only variables having a non-zero coefficient estimate are the truly important covariate V1 along with two noise covariates V285 and V497.

Continuation ratio models predicts conditional probabilities so a new method to extract the fitted probabilities and predicted class was created. The predict and fitted functions are equivalent, and return either the predicted class or the fitted probabilities from the penalized continuation ratio model for a glmpath.cr object. The user is required to supply the fitted glmpath.cr model object, a data matrix news that is either the same as the training data or an independent dataset having the same number and order of covariates as the training data, a vector news that provides the class labels of the ordinal response. These functions extract the fitted values for the best fitting model using the BIC criteria by default, which can be changed to extracting the best fitting AIC model by supplying which="AIC". By default, the predicted class is output. If one desired the fitted class-specific probabilities from the model, the type="probs" argument should be supplied.

```
> pred <- predict(fit)
> table(pred, y)

y
pred 0 1 2
    1 25 7 0
    2 5 18 8
    3 0 5 22

> pred <- predict(fit, which = "AIC", type = "probs")
> pred[1:10, ]
```

```
0 1 2

[1,] 0.8824815 0.11378793 0.0037305240

[2,] 0.4956481 0.47715531 0.0271965511

[3,] 0.9737725 0.02546851 0.0007589597

[4,] 0.9282863 0.06954289 0.0021708481

[5,] 0.8861740 0.11022681 0.0035991901

[6,] 0.9508358 0.04770922 0.0014550130

[7,] 0.7375813 0.25257227 0.0098464754

[8,] 0.7677757 0.22382923 0.0083950557

[9,] 0.6868516 0.30059848 0.0125499351

[10,] 0.6447785 0.34013329 0.0150882334
```

Typically an unbiased estimate of error is desired. In this case, we can simulate a test dataset following the same procedure that was used to generate the original training set data. Afterward, we can apply the original model fit to the test set for estimating error. The set.seed function is used only to permit others to replicate these results.

```
> library(mvtnorm)
 > set.seed(9)
 > class1 <- rmvnorm(30, mean = rep(0, 1000), sigma = diag(1, nrow = 1000))</pre>
 > class2 <- rmvnorm(30, mean = c(1.5, rep(0, 999)), sigma = diag(1, rep(0, 999))
                             nrow = 1000)
 > class3 <- rmvnorm(30, mean = c(3, rep(0, 999)), sigma = diag(1, rep(0, 999)), sigma = diag(1
                             nrow = 1000))
 > class <- rep(0:2, each = 30)
 > testset <- data.frame(cbind(rbind(class1, class2, class3), class))</pre>
 > rm(class1, class2, class3, class)
 > pred <- predict(fit, newx = testset[, 1:1000])</pre>
 > table(pred, testset$class)
pred 0 1
               1 23 10 0
               2 6 13 9
                           1 7 21
```

For illustrative purposes, a forward continuation ratio model can be fit using the syntax

```
> fit <- glmpath.cr(x, y, method = "forward")</pre>
```

and the predicted class can be obtained using

```
> pred <- predict(fit)
> table(pred, y)

y
pred 0 1 2
    1 24 6 0
    2 6 19 7
    3 0 5 23
```

# Summary

Herein we have described the **glmpathcr** package which works in conjunction with the **glmpath** package in the R programming environment. The package provides methods for fitting either a forward or backward penalized continuation ratio model. When applied to a simulated dataset having Bayes' error of 0.302, the method reported a test set error of 0.367. Moreover, the likelihood-based penalized continuation ratios models have been demonstrated to have good performance when applied to microarray gene expression datasets (Archer and Williams 2010) in comparison to corresponding penalized Bayesian continuation ratio models (Kiiveri 2008). Therefore the **glmpathcr** package should be helpful when predicting an ordinal response for datasets where the number of covariates exceeds the number of available samples.

# Acknowledgments

This research was supported by the National Institute of Library Medicine R03LM009347.

## References

- Archer KJ, Williams AA (2010). "L<sub>1</sub> penalized continuation ratio models for ordinal response prediction using high-dimensional datasets." *Statistics in Medicine*, **under review**.
- Armstrong B, Sloan M (1989). "Ordinal regression models for epidemiologic data." *American Journal of Epidemiology*, **129**, 191–204.
- Bender R, Benner A (2000). "Calculating ordinal regression models in SAS and S-Plus." Biometrical Journal, 42, 677–699.
- Cox D (1975). "Partial likelihood." Biometrika, 62, 269–276.
- Kiiveri HT (2008). "A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations." BMC Bioinformatics, 9, 195.
- Park M, Hastie T (2007a). "L1-regularization path algorithm for generalized linear models." Journal of the Royal Statistical Society, B, 64, 659–677.
- Park MY, Hastie T (2007b). glmpath: L1 Regularization Path for Generalized Linear Models and Cox Proportional Hazards Model. R package version 0.94.
- R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Tibshirani R (1996). "Regression shrinkage and selection via the Lasso." *Journal of the Royal Statistical Society, B*, **58**, 267–288.
- Tibshirani R (1997). "The lasso method for variable selection in the Cox model." *Statistics in Medicine*, **16**, 385–395.

# Affiliation:

Kellie J. Archer Department of Biostatistics Virginia Commonwealth University Box 980032 Richmond, VA 23298-0032

Richmond, VA 23298-0032 E-mail: kjarcher@vcu.edu

URL: http://www.people.vcu.edu/~kjarcher/