Recommender systems

Alaa BAKHTI

The course

- 5 sessions 21 hours
- Each session = 2h course + 2h
 practical work
- Grading
 - Research paper analysis
 - Exam (*)
- Bonus
 - Participation

Syllabus

- Session 1: Introduction to recommender systems
- Session 2: Content-based filtering
- Session 3: Memory-based collaborative filtering
- Session 4: Model-based collaborative filtering
- Session 5: Evaluation of recommender systems and
 Application of deep learning in this domain.

Do you know?

```
TF IDF
Embedding space
   word2vec
Cosine similarity
      SVD
      NMF
      EDA
 Loss function
L2 regularization
  AB testing?
```

Introduction

The long tail problem

Information overload

The paradox of choice

Too many choices?

24 choices of jam attracted 60% of the shoppers 3% of shoppers bought jam

6 choices of jam attracted 40% of the shoppers of shoppers bought jam

Source: Mark Rowland - Your marketing rules

The paradox of choice by Barry Schwartz (book review) - Youtube video

Recommender systems

- → Help users find compelling content in a large corpora.
- → Reduce information overload by estimating relevance.
- → Personalise the user experience.

Applications and business value

Many domains where the recommender systems can be used

Where the RecSys is used?

- E-commerce websites
- Search engines
- Social networks
- Movie or music streaming sites
- mobile app stores
- etc

75%

of the watched content is from some sort of recommendation

Netflix: movie recommendation

\$1B

per year is the estimated business value of recommendation

35%

of Amazon sales originate from cross-sales (recommendation)

60%

of the clicks on the home screen are on the recommendations

Problem formulation

How to determine items that the user may be interested in?

Rating matrix

How to determine the user rating of items he didn't **explicitly** rate?

User interactions feedback

Explicit

- Data provided by users intentionally.
- Example : Press the like button on a YouTube video.
- Problem: it requires effort from the user=> doesn't scale.

Implicit

- Data generated based on the user interaction with items (easier to collect).
- Example: purchased an item => high rating.
- Problem: poorly learns low ratings (what the user doesn't like).

Recommender systems use the combination of explicit and implicit user feedbacks.

NETFLIX

How to determine the user ratings for items he interacted with?

How to extrapolate the user ratings for items he didn't interact with?

Recommender system architecture

Candidate generation : generate a small subset of candidates from a huge corpus.

Scoring: score and rank the candidates in order to select the set of items to display to the user.

Re-ranking: re-rank the items depending on additional constraints (boost the score of fresh content for example). This step help ensure diversity, freshness, and fairness.

Figure 2: Recommendation system architecture demonstrating the "funnel" where candidate videos are retrieved and ranked before presenting only a few to the user.

Paper presentations

- 1. Recommender Systems, Not Just Recommender Models
- 2. Recommender system architecture design: <u>System Design for Recommendations and Search</u>
- 3. Bandits for Recommender Systems
- 4. Recommending What Video to Watch Next: A Multitask Ranking System
- 5. <u>A multi-task framework for metric learning with common subspace</u> + <u>Homepage feed multi-task learning using TensorFlow l</u>
 <u>LinkedIn Engineering</u>
- 6. How do we use AutoML, multi-task learning and multi-tower model in Pinterest Ads Katastros
- 7. DGCN: Diversified Recommendation with Graph Convolutional Networks
- 8. <u>Personalized recommendations IV (two tower models for retrieval)</u> (+ research paper to identify and read)
- 9. A survey of autoencoder-based recommender systems
- 10. Applying Deep Learning To Airbnb Search
- 11. Implicit feedback in Recommender systems

Practical work

Subject

- Exploratory Data Analysis (EDA) on the <u>movielens</u> dataset (<u>ml-latest-small.zip</u>) (another more complex dataset <u>the</u>
 <u>Movies dataset</u>)
- Final dataset will be used in the next sessions

Grading criteria

- Respect of the submission instructions (git, repository structure, documentation, quoting ressources, etc)
- Logical sequence of exploration (illustrate problems and then resolve them)
- Comment the identified problem and the solution you propose
- Focus your exploration on the user-movie recommendation use case
- Save the processeed dataset with the newly generated features at the end of the notebook
- Notebook presentation (Titles, spelling mistakes, etc)