B-16 (ANSYS)

Формулировка задачи:

Дано: Ферма с жёстким брусом; нагрузка силовая (точки B и E) и термическая (стержень GC охлаждается на Δt).

Haŭmu: N_i , σ_i , n_T , v_A , v_B , v_C , v_D .

Аналитический расчёт (см. В-16) даёт следующие решения:

$$\begin{split} N_{I} &= \frac{2}{27} \cdot \left[8 \cdot F_{I} - F_{2} - 3 \cdot \alpha \cdot \Delta t \cdot E \cdot A \right] = 8649 \ H \,; \\ N_{2} &= \frac{2}{9} \cdot \left[F_{I} + F_{2} + 3 \cdot \alpha \cdot \Delta t \cdot E \cdot A \right] = 14053 \ H \,; \\ N_{3} &= \frac{1}{27} \cdot \left[5 \cdot F_{I} + 23 \cdot F_{2} - 12 \cdot \alpha \cdot \Delta t \cdot E \cdot A \right] = -1702 \ H \,; \\ N_{4} &= \frac{1}{27} \cdot \left[5 \cdot F_{I} - 4 \cdot F_{2} - 12 \cdot \alpha \cdot \Delta t \cdot E \cdot A \right] = -2702 \ H \,; \\ V_{A} &= -0.2162 \quad \text{MM}; \\ V_{B} &= -0.1101 \quad \text{MM}; \\ V_{D} &= 0.1101 \quad \text{MM}; \\ V_$$

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > 
Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > 
Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

№	Действие	Результат
	Задаём параметры расчёта – базовые величины задачи:	
	<pre>U_M > Parameters > Scalar Parameters ></pre>	Scalar Parameters
	A=80e-6 > Accept >	Items
	E=2e11 > Accept >	A = 8.00000000E-05 ABAB = 1000000
	<i>l</i> =0.4 > Accept >	AL = 0.4
	al= l > Accept >	DELTAT = 80 E = 2.00000000E+11
1	EBAR=E > Accept >	EBAR = 2.000000000E+11 F1 = 20000
1	ABAR=1e6 > Accept >	F2 = 1000 = 1
	IzBAR=1e6 > Accept >	Selection
	F1=20e3 > Accept >	
	F2=1e3 > Accept >	
	DeltaT=80 > Accept >	Accept Delete Close Help
	Alpha=11e-6 > Accept >	Accept Delete Close Help
	nu=0.3 > Accept > Close	
2	Первая строчка в таблице конечных элементов — плоский балочный BEAM3, вторая строчка —плоский фермовый LINK1: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter C_P > ET,2,LINK1 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types: Type 1 BEAM3 Type 2 LINK1 Add Options Delete Close Help

№	Действие	Результат
3	Таблица реальных констант: Площадь поперечного сечения, изгибный момент инерции поперечного сечения и высота поперечного сечения жёсткого бруса: С_P > R,1, ABAR, IzBAR, l/20 > Enter Площадь поперечного сечения остальных стержней: С_P > R,2,A > Enter Посмотрим таблицу реальных констант: М_M> Preprocessor > Real Constants > Add/Edit/Delete > Close	Real Constants Defined Real Constant Sets Set 1 Set 2 Add Edit Delete Close Help

No	Действие		Результат
5	Координаты точек конструкции: Определяемся с координатами точек (узлов фермы).	$P(0,-l,0)$ $A(0,-2\cdot l,0)$	$2 \cdot l \qquad \qquad H(3 \cdot a, -l, 0)$ $a \qquad \qquad a \qquad \qquad D(3 \cdot a, -2 \cdot l, 0)$

№	Действие		Результ	гат	
	Конечноэлементная модель				
	Узлы 1, 2, 3, 4, 5, 6, 7 и 8 в точках A, B, C, D, P, S, G и H соответственно:				
	M_M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X,Y,Z пишем 0,-2*l,0 > Apply > NODE пишем 2 X,Y,Z пишем al,-2*l,0 > Apply > NODE пишем 3 X,Y,Z пишем 3 X,Y,Z пишем 2*al,-2*l,0 > Apply > NODE пишем 4	1 NODES NODE NUM		.6	.7
6	X,Y,Z пишем 3*al,-2*l,0 > Apply > NODE пишем 5 X,Y,Z пишем 0,-l,0 > Apply > NODE пишем 6 X,Y,Z пишем 2*al,0,0 > Apply > NODE пишем 7	.5	2	.3	.8
	X,Y,Z пишем 3*al,0,0 > Apply > NODE пишем 8 X,Y,Z пишем 3*al,-l,0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit				

№	Действие	Результат
	Конечные элементы – упругие стержни фермы:	
	M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [ТҮРЕ]установить "2 LINK1" [МАТ]установить "2" [REAL]установить "2" > OK	
	M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 5 и 1 > ОК	1 E-N X_X 6 7
7	M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [MAT] установить "3" > OK	3 2 8
7	M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 6 и 3 > OK	1 4 1 1 2 3 A
	M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes [MAT] установить "2" > OK	Сравниваем номера конечных элементов с номерами участков на <i>рис. 1</i> . Они должны совпадать.
	M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем узлы 7 и 8 > Apply > 8 и 4 > OK	
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	

№	Действие	Результат
	Конечные элементы – отрезки жёсткого бруса:	
	M_M> Preprocessor> Modeling> Create> Elements> Elem Attributes	
	[ТҮРЕ]установить "1 ВЕАМЗ"	E-N Y
	[МАТ] установить "1"	6 ,7
	[REAL] установить "1"	
	> OK	3
8	<pre>M_M > Preprocessor > Modeling > Create > Elements ></pre>	.5 2 8
	Левой кнопкой мыши последовательно кликаем узлы	1 4
	1 и 2 > Apply >	
	2 и 3 > Apply >	1 5 2 6 3 7 4
	3 и 4 > OK	
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	

http://www.tychina.pro

http://www.tychina.pro

№	Действие	Результат
	Temnepamypy (а не нагрев!) прикладываем к узлам: 20° = температура, при которой собиралась конструкция: M_M> Preprocessor> Loads> Define Loads> Settings> > Uniform Temp> [TUINF] пишем 20 > OK	
12	20° = температура, от которой отсчитывается начало температурных деформаций: M_M> Preprocessor> Loads> Define Loads> Settings> > Reference Temp> [TREF] пишем 20 > OK	
	20°-Дt° = температура узлов фермы в финале нагружения: M_M > Preprocessor > Loads > Define Loads > Apply > > Structural > Temperature > On Nodes > Pick All > [BF] устанавливаем "Constant value" VAL1 пишем 20-DeltaT > OK	

No	Действие	Результат
	Просмотр результатов	
15	Деформированная форма конструкции: M_M > General Postproc > Plot Results >	DISPLACEMENT STEP=1 SUB =1 TIME=1 DMX =.216E-03 5 2 8 4 1

No	Действие	Результат
№	Вертикальные перемещения точек жёсткого бруса: М_М > General Postproc > List Results > Nodal Solution >	PRINT U NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOH LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOH RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM ***********************************
	и вертикальное перемещение точки D (узла N 24) $UY = 0,1101 \ \text{мм} \qquad (положительное, то есть вверх) точное совпадение с puc.1. Чем больше перемещение точки, тем с меньшей относительной погрешностью оно определено.$	

No	Действие	Результат
17	Из всех конечных элементов конструкции выделяем только фермовые: Прорисовываем все конечные элементы элементы: U_M > Plot > Elements Bыделяем нужные: U_M > Select > Entities > Устанавливаем "Elements" и "By Num/Pick" Селектор на "From Full" > ОК Кликаем левой кнопкой мыши на упругие стержни — элементы 1, 2, 3 и 4 > ОК Прорисовываем: U_M > Plot > Replot	1 ELEMENTS ELEM NUM 2 X 6 7 3 5 2 8 1 4 1 3 4
18	Pacчёт внутренних осевых растягивающих сил в фермовых элементах: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "1" > OK > > Close	E=N Country Cyclined Data and Status. Label Item Corny Time Stamp Status A Corne Autorian Ensert Tain Inves James Basel Status Status James Basel Status Status James Basel Status Sta

№	Действие	Результат
21	P аспечатка значений осевых напряжений σ_i в конечных элементах: М_M > General Postproc > List Results > Elem Table Data > Отметить мышью строчку LS1 > OK Точностью до сотых долей процента получаем тот же результат, что и на $puc.\ 1:$ $\sigma_1 = 108,1\ M\Pi a$; $\sigma_2 = 175,7\ M\Pi a$; $\sigma_3 = -21,27\ M\Pi a$; $\sigma_4 = -33,77\ M\Pi a$.	File PRINT ELEMENT TABLE ITEMS PER ELEMENT ****** POST1 ELEMENT TABLE LISTING ****** STRT CURRENT ELEM LS1 1 0.10811E+09 2 0.17568E+09 3 -0.21265E+08 4 -0.33765E+08 HINIHUM VALUES ELEM 4 VALUE -0.33765E+08 HAXIMUM VALUES ELEM 2 VALUE 0.17568E+09
22	Коэффициент запаса прочности по текучести: $\sigma_{max} = max\Big(\left \sigma_1 \right , \left \sigma_2 \right , \left \sigma_3 \right \Big) = \left \sigma_2 \right = 175,7 \ M\Pi a ;$ $n_T = \frac{\sigma_T}{\sigma_{max}} = \frac{210}{175,7} = 1,19 .$	

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.