Conjectures on the Period Lengths of One-Dimensional Cut-and-Project Sequences

Dirk Kunert *

April 24, 2025

Abstract

With $\alpha, \beta \in \mathbb{N}$, $\alpha \perp \beta$, $x, y \in \mathbb{R}$, $\omega \in \mathbb{R}_{>0}$ and $i \in \mathbb{Z}$, we consider the points

$$\mathbf{P} = \left(\begin{pmatrix} x \\ y \end{pmatrix} \mid x \in \mathbb{Z}, \ y \in \left[\frac{\alpha}{\beta} (x - \omega), \ \frac{\alpha}{\beta} x + \omega \right] \cap \mathbb{Z} \right)$$
 (1)

projected vertically onto $f(x) = \frac{\alpha}{\beta}x$ and measure their euclidian distances $(d^{(i)})$. With

$$\Lambda_{\alpha,\beta} := \alpha + \beta + 1,$$

we propose the following conjectures concerning the period length λ of $(d^{(i)})$:

- 1. There is always a finite λ .
- 2. If $\omega \in (0,1)$, $\lambda_{\alpha,\beta} < \Lambda_{\alpha,\beta}$
- 3. If $\omega = 1$, $\lambda_{\alpha,\beta} = \Lambda_{\alpha,\beta}$.
- 4. If $\omega \in (1,2)$, $\lambda_{\alpha,\beta} \geq \Lambda_{\alpha,\beta}$
- 5. If $\omega > 2$, $\lambda_{\alpha,\beta} > \Lambda_{\alpha,\beta}$
- 6. If $\omega \neq 1$, $\lambda \approx \lfloor (\omega \Lambda_{\alpha,\beta} \rfloor$

We use numerical methods to support these conjectures.

Remark 1. We will show, that $\lambda_{\omega=0}=1$.

Remark 2. Conjecture 6 is the result of a conversation with ChatGPT o3-mini-high.

1 Introduction

In 2017, Yves Meyer (École Normale Supérieure Paris-Saclay, France) won the Abel Prize "for his pivotal role in the development of the mathematical theory of wavelets" (see [1]). Terence Tao (University of California, Los Angeles) held the announcement (see [2]) and presented Figure 1.

Observing the distances of the points (see Figure 1, right), he stated the following: "They repeat themselves, but not in a regular fashion."

These one-dimensional cut-and-project sequences are explored here. C and Python software is used to support our conjectures (see [4]).

2 Construction of the Set

2.1 Projection

In Figure 2, the function that is projected vertically onto is $f(x) = \frac{\alpha}{\beta}x$, the upper, passing through $(0,\omega)$, is given by $u(x) = \frac{\alpha}{\beta}x + \omega$, and the lower, passing through $(\omega,0)$, by $l(x) = \frac{\alpha}{\beta}(x-\omega)$, with $x \in \mathbb{R}$, $\alpha, \beta \in \mathbb{N}$, and the offset $\omega \in \mathbb{R}_{\geq 0}$.

^{*}Independent Researcher, Email: dirk.kunert@gmail.com

Figure 1: Screenshot from Terence Tao's presentation taken 60 seconds after the video's start

Figure 2: Illustration of the projection of points for $\frac{\alpha}{\beta}=2$ and $\omega=1$ within the interval [0,5]

Projecting the points shown in equation 1 vertically on $f(x) = \frac{\alpha}{\beta}x$, we get

$$\tilde{\mathbf{P}} = \frac{1}{\alpha^2 + \beta^2} \begin{pmatrix} \beta^2 & \alpha \beta \\ \alpha \beta & \alpha^2 \end{pmatrix} \mathbf{P}.$$
 (2)

Figure 2 shows that the first projected points are 1', 2', 3', 5', 4', 6', 7', 9', and 8'. They are not in the correct order. So, $\tilde{\mathbf{P}}$ must be sorted by the x-coordinates of its points. We get

$$\tilde{\mathbf{P}}_s = \left(\tilde{\mathbf{p}}_s^{(i)}\right),\tag{3}$$

with $i \in \mathbb{Z}$.

Remark 3. We use \mathbb{Z} instead of \mathbb{N} , because we have a "two-way infinite sequence" (see [3], p. 106).

Remark 4. Numerical experiments show, that sorting has no influence on λ .

For the numerical analysis we limit x to $[0, x_{max}]$, with $x_{max} \in \mathbb{N}$. Examining Figure 2 again, we observe the following squared distances:

Index	1	2	3	4	5	 18	19	20	21	22	23
Value	0.8	0.8	0.2	1.48	0.2	 0.8	0.2	1.48	0.2	0.8	0.8

Table 1: Squared distances in Figure 2 for $x_{max} = 5$

By choosing the interval [0,5], 0.8 is added at the beginning and at the end, making the sequence appear non-periodic despite the repetition of (0.8, 0.2, 1.48, 0.2). Indeed, if we choose the interval [0, 10], the series continues as expected:

Index	 22	23	24	25	
Value	 0.8	0.2	1.48	0.2	

Table 2: Squared distances in Figure 2 for $x_{max} = 10$

To solve this problem in the numerical experiments, we delete elements from the beginning and the end of P_s , while no finite λ is found. We limit the number of removed elements to 10% of the sequence length. This way we get K projected points.

2.2 Distance Calculation

The following applies to the euclidian distances of the ordered projected points with $\tilde{p}_{xs}^{(i)} \in [0, x_{max}]$:

$$\left(d^{(i)}\right)_{i=1}^{K-1} = \left\|\tilde{\mathbf{p}}_s^{(i+1)} - \tilde{\mathbf{p}}_s^{(i)}\right\| \tag{4}$$

Every injective function applied to the elements of $(d^{(i)})_{i=1}^{K-1}$ does not change λ . $f(x) = x^2$ is injective for $x \in \mathbb{R}_{\geq 0}$. Thus, we can use the squared distances $(s^{(i)})_{i=1}^{K-1}$ instead of the euclidian ones:

$$s^{(i)} = \left(\tilde{p}_{xs}^{(i+1)} - \tilde{p}_{xs}^{(i)}\right)^2 + \left(\tilde{p}_{ys}^{(i+1)} - \tilde{p}_{ys}^{(i)}\right)^2 \tag{5}$$

$$= \left(1 + \frac{\alpha^2}{\beta^2}\right) \left(\tilde{p}_{xs}^{(i+1)} - \tilde{p}_{xs}^{(i)}\right)^2,\tag{6}$$

because

$$\tilde{p}_{ys}^{(i)} = -\frac{\alpha}{\beta} \tilde{p}_{xs}^{(i)}. \tag{7}$$

 $f(x) = \gamma x$ and $f(x) = \sqrt{x}$ are injective for $\gamma \in \mathbb{R}_{\neq 0}$ and $x \in \mathbb{R}_{\geq 0}$ as well. We get

$$\tilde{s}^{(i)} = \left(\tilde{p}_{xs}^{(i+1)} - \tilde{p}_{xs}^{(i)} \right). \tag{8}$$

From equation (2) it follows that

$$\tilde{p}_{xs}^{(i)} = \frac{\beta}{\alpha^2 + \beta^2} \left(\beta p_{xs}^{(i)} + \alpha p_{ys}^{(i)} \right). \tag{9}$$

Here we also can omit the constant $\frac{\beta}{\alpha^2+\beta^2}$. Finally, we obtain

$$\left(\delta^{(i)}\right)_{i=1}^{K-1} = \left(\beta \left(p_{xs}^{(i+1)} - p_{xs}^{(i+1)}\right) + \alpha \left(p_{ys}^{(i+1)} - p_{ys}^{(i+1)}\right)\right)_{i=1}^{K-1}.$$
 (10)

This sequence is now examined for periodicity.

Remark 5. $\tilde{p}_{xs}^{(i)} = \tilde{p}_{xs}^{(j)}$ for $i, j \in \mathbb{Z}$ and $i \neq j$ may occur under specific conditions: For $\frac{\alpha}{\beta} = 1$ and $\omega = 1$ both points, (0,1) and (1,0), are projected to (0.5,0.5). Therefore $\left(\delta^{(i)}\right)_{i=1}^{K-1}$ is not discrete.

3 Periodicity

We consider the finite sequence $(e^{(i)})_{i=1}^L$ with $L \in \mathbb{N}_{>1}$ to be periodic, if there exists a $\tilde{\lambda} \in [1, L//2]$ with

$$e^{(i+\tilde{\lambda})} = e^{(i)} \ \forall i \in [1, L - \tilde{\lambda}]. \tag{11}$$

The period length λ is defined as

$$\lambda := \min\left(\tilde{\lambda}^{(i)}\right). \tag{12}$$

Proof. $\lambda_{\omega=0}=1$: As sorting is not necessary, $\mathbf{P}_s=\mathbf{P}$. Thus,

$$\left(\delta^{(i)}\right)_{i=1}^{K-1} = \left(\beta \left(p_x^{(i+1)} - p_x^{(i)}\right) + \alpha \left(p_y^{(i+1)} - p_y^{(i)}\right)\right)_{i=1}^{K-1} \tag{13}$$

according to 10. As $p_x^{(i+1)}-p_x^{(i)}=1$ and $p_y^{(i+1)}-p_y^{(i)}=\frac{\alpha}{\beta}$, we get

$$\left(\delta^{(i)}\right)_{i=1}^{K-1} = \left(\beta + \frac{\alpha^2}{\beta}\right)_{i=1}^{K-1},$$
 (14)

which consists of constant elements. As $e^{(i+1)} = e^{(i)} \ \forall i \in [1, K-2], \ \lambda_{\omega=0} = 1.$

4 Conjectures

In very rare cases, we see that our C software is not able to calculate a finite period length because the size of the array containing the differences is not sufficient. This array consists of 8,000,000,000 elements with 64 bit and has a size of more than 60 GB.

4.1 Conjectures 1 to 5

Using the C software, we were able to support all conjectures listed in the abstract.

Remark 6. The fraction for $a = \sqrt{2}$, represented with 64 bit floating-point arithmetic, is

$$\tilde{a} = \frac{6,369,051,672,525,773}{4,503,599,627,370,496}. (15)$$

If conjecture 3 is correct, we would obtain

$$\lambda_{a=\tilde{a}, \omega=1} = 10,872,651,299,896,270.$$
 (16)

Such a sequence with 8 bit per element would take up around 11 PB of memory. Provided conjecture 3 was correct, there is no finite λ , because $\sqrt{2}$ can only be represented by infinitely large numerators and denominators.

4.2 Conjecture 6

We found conjecture 6 by providing *ChatGPT o3-mini-high* data created by the C function create_test_data and telling it, it should use XGBoost to predict λ . It created the Python function xgboost (see [4]).

When we sent ChatGPT the result of this computation, it wrote of an "indication that the four predictors o_n, o_d, a_n, a_d [$\omega = \frac{o_n}{o_d}$, $\alpha = a_n$ and $\beta = a_d$] are in a highly complex, non-linear relationship, which XGBoost captures excellently". Then we reported on conjecture 3 and told ChatGPT o3-mini-high, that we want to find a formula for λ .

Among other suggestions, it proposed the following:

$$\lambda = \omega \ \Lambda_{\alpha,\beta} \tag{17}$$

By experimenting with the C software we found that

$$\lambda = |\omega \Lambda_{\alpha,\beta}| \tag{18}$$

gives even better results. The lowest value we found for R^2 with the C function test_conjectures was 0.987994.

References

- [1] Page for Yves Meyer at the Abel Prize Homepage, available at: https://abelprize.no/abel-prize-laureates/2017, accessed on December 15, 2024.
- [2] Terence Tao on Yves Meyer's work on Wavelets, available at: https://youtu.be/AnkinNVPjyw, accessed on December 15, 2024.
- [3] Marjorie Senechal, Quasicrystals and geometry, 2009. ISBN: 978-0-521-57541-6.
- [4] D. Kunert, 2025, Code for this article, Available at https://github.com/dkunert/cut-and-project/tree/main/src.

5 Conclusion

TODO: Missing!