A formal definition of limit

We say that f(x) approaches the limit L as x approaches a, and we write

$$\lim_{x \to a} f(x) = L,$$

if the following condition is satisfied:

for every number $\epsilon > 0$ there exists a number $\delta > 0$, possibly depending on ϵ , such that if $0 < |x - a| < \delta$, then x belongs to the domain of f and

$$|f(x) - L| < \epsilon$$
.

$$\forall \varepsilon > 0$$
, $\exists s > 0$ such that $0 < 1x - a < s \implies |f(x) - L| < \varepsilon$.

for every number $\epsilon > 0$ there exists a number $\delta > 0$, possibly depending on ϵ , such that if

$$0 < |x - a| < \delta$$
,

then x belongs to the domain of f and

$$|f(x) - L| < \epsilon$$
.

EXAMPLE

(Two important limits) Verify: (a) $\lim_{x \to a} x = a$ and

(b) $\lim_{x \to a} k = k$ (k = constant).

EXAMPLE

(Two important limits) Verify: (a) $\lim_{x \to a} x = a$ and

(b) $\lim_{x \to a} k = k$ (k = constant).

Solution

(a) Let $\epsilon > 0$ be given. We must find $\delta > 0$ so that

$$0 < |x - a| < \delta$$
 implies $|x - a| < \epsilon$.

Clearly, we can take $\delta = \epsilon$ and the implication above will be true. This proves that $\lim_{x\to a} x = a$.

EXAMPLE

(Two important limits) Verify: (a) $\lim_{x \to a} x = a$ and

(b) $\lim_{x \to a} k = k$ (k = constant).

Solution

(b) Let $\epsilon > 0$ be given. We must find $\delta > 0$ so that

$$0 < |x - a| < \delta$$
 implies $|k - k| < \epsilon$.

Since k - k = 0, we can use any positive number for δ and the implication above will be true. This proves that $\lim_{x \to a} k = k$.

EXAMPLE Verify that $\lim_{x\to 2} x^2 = 4$.

Other Kinds of Limits

Right limits

We say that f(x) has **right limit** L at a, and we write

$$\lim_{x \to a+} f(x) = L,$$

if the following condition is satisfied:

for every number $\epsilon > 0$ there exists a number $\delta > 0$, possibly depending on ϵ , such that if $a < x < a + \delta$, then x belongs to the domain of f and

$$|f(x) - L| < \epsilon$$
.

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that $a < x < \alpha + \delta \implies |f(x) - L| < \varepsilon$.

Other Kinds of Limits

If $a < x < a + \delta$, then $|f(x) - L| < \epsilon$

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to 0+} \sqrt{x} = 0$$
.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to 0+} \sqrt{x} = 0$$
.

Solution Let $\epsilon > 0$ be given.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to 0+} \sqrt{x} = 0$$
.

Solution Let $\epsilon > 0$ be given. If x > 0, then $|\sqrt{x} - 0| = \sqrt{x}$.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to 0+} \sqrt{x} = 0$$
.

Solution Let $\epsilon > 0$ be given. If x > 0, then $|\sqrt{x} - 0| = \sqrt{x}$. We can ensure that $\sqrt{x} < \epsilon$ by requiring $x < \epsilon^2$. Thus we can take $\delta = \epsilon^2$ and the condition of the definition will be satisfied:

$$0 < x < \delta = \epsilon^2$$
 implies $|\sqrt{x} - 0| < \epsilon$.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to 0+} \sqrt{x} = 0$$
.

Solution Let $\epsilon > 0$ be given. If x > 0, then $|\sqrt{x} - 0| = \sqrt{x}$. We can ensure that $\sqrt{x} < \epsilon$ by requiring $x < \epsilon^2$. Thus we can take $\delta = \epsilon^2$ and the condition of the definition will be satisfied:

$$0 < x < \delta = \epsilon^2$$
 implies $|\sqrt{x} - 0| < \epsilon$.

Therefore, $\lim_{x\to 0+} \sqrt{x} = 0$.

Other Kinds of Limits

Limit at infinity

We say that f(x) approaches the limit L as x approaches infinity, and we write

$$\lim_{x \to \infty} f(x) = L,$$

if the following condition is satisfied:

for every number $\epsilon > 0$ there exists a number R, possibly depending on ϵ , such that if x > R, then x belongs to the domain of f and

$$|f(x) - L| < \epsilon$$
.

$$Y \in SO$$
, $\exists R$ such that $X > R \implies |f(X) - L| < \varepsilon$.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

Solution Let ϵ be a given positive number.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

Solution Let ϵ be a given positive number. For x > 0 we have

$$\left|\frac{1}{x} - 0\right| = \frac{1}{|x|} = \frac{1}{x} < \epsilon$$
 provided $x > \frac{1}{\epsilon}$.

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

Solution Let ϵ be a given positive number. For x > 0 we have

$$\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} = \frac{1}{x} < \epsilon$$
 provided $x > \frac{1}{\epsilon}$

Other Kinds of Limits

EXAMPLE Show that
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

Solution Let ϵ be a given positive number. For x > 0 we have

$$\left|\frac{1}{x} - 0\right| = \frac{1}{|x|} = \frac{1}{x} < \epsilon$$
 provided $x > \frac{1}{\epsilon}$.

Therefore, the condition of the definition is satisfied with $R=1/\epsilon$. We have shown that

$$\lim_{x\to\infty} 1/x = 0.$$

Other Kinds of Limits

Infinite limits

We say that f(x) approaches infinity as x approaches a and write

$$\lim_{x \to a} f(x) = \infty,$$

if for every positive number B we can find a positive number δ , possibly depending on B, such that if $0 < |x - a| < \delta$, then x belongs to the domain of f and f(x) > B.

$$\forall B>0$$
, $\exists 8>0$ such that $0<|x-a|<8 \implies f(x)>B$

Other Kinds of Limits

EXAMPLE Verify that
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Other Kinds of Limits

EXAMPLE Verify that
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Solution Let B be any positive number.

Other Kinds of Limits

EXAMPLE Verify that
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Solution Let B be any positive number. We have

$$\frac{1}{x^2} > B$$
 provided that $x^2 < \frac{1}{B}$.

Other Kinds of Limits

EXAMPLE Verify that
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Solution Let B be any positive number. We have

$$\frac{1}{x^2} > B$$
 provided that $x^2 < \frac{1}{B}$.

Other Kinds of Limits

EXAMPLE Verify that
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$
.

Solution Let B be any positive number. We have

$$\frac{1}{x^2} > B$$
 provided that $x^2 < \frac{1}{B}$.

$$0<|x|<\delta\quad \Rightarrow\quad x^2<\delta^2=\frac{1}{B}\quad \Rightarrow\quad \frac{1}{x^2}>B.$$

Other Kinds of Limits

EXAMPLE Verify that
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

Solution Let B be any positive number. We have

$$\frac{1}{x^2} > B$$
 provided that $x^2 < \frac{1}{B}$.

$$0<|x|<\delta\quad \Rightarrow\quad x^2<\delta^2=\frac{1}{B}\quad \Rightarrow\quad \frac{1}{x^2}>B.$$

Therefore $\lim_{x\to 0} 1/x^2 = \infty$.

Differentiation

A tangent line to a circle has the following properties

L is tangent to C at P

A tangent line to a circle has the following properties

(i) It meets the circle at only one point.

L is tangent to C at P

A tangent line to a circle has the following properties

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.

L is tangent to C at P

A tangent line to a circle has the following properties

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

L is tangent to C at P

What about tangents to a general curve?

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

What about tangents to a general curve?

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

What about tangents to a general curve?

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

L meets C only at P but is not tangent to C

What about tangents to a general curve?

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

What about tangents to a general curve?

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

L is tangent to C at P but crosses C at P

What about tangents to a general curve?

- (i) It meets the circle at only one point.
- (ii) The circle lies on only one side of the line.
- (iii) The tangent is perpendicular to the line joining the centre of the circle to the point of contact.

many curves do NOT have centre!

Secant lines PQ approach tangent line L as Q approaches P along the curve C

Secant lines PQ approach tangent line L as Q approaches P along the curve C

Nonvertical tangent lines

Suppose that the function f is continuous at $x = x_0$ and that

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = m$$

exists. Then the straight line having slope m and passing through the point $P = (x_0, f(x_0))$ is called the **tangent line** (or simply the **tangent**) to the graph of y = f(x) at P. An equation of this tangent is

$$y = m(x - x_0) + y_0.$$

EXAMPLE

Find an equation of the tangent line to the curve $y = x^2$ at the point (1, 1).

EXAMPLE
$$f(x) = \sqrt[3]{x} = x^{1/3}$$

The y-axis is tangent to $y = x^{1/3}$ at the origin

EXAMPLE
$$f(x) = x^{2/3}$$

This graph has no tangent at the origin

Vertical tangents

If f is continuous at $P = (x_0, y_0)$, where $y_0 = f(x_0)$, and if either

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \infty \quad \text{or} \quad \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty,$$

then the vertical line $x = x_0$ is tangent to the graph y = f(x) at P. If the limit of the Newton quotient fails to exist in any other way than by being ∞ or $-\infty$, the graph y = f(x) has no tangent line at P.

EXAMPLE

Does the graph of y = |x| have a tangent line at x = 0?

EXAMPLE

Does the graph of y = |x| have a tangent line at x = 0?

y = |x| has no tangent at the origin

DEFINITION

The slope of a curve

The **slope** of a curve C at a point P is the slope of the tangent line to C at P if such a tangent line exists. In particular, the slope of the graph of y = f(x) at the point x_0 is

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Normals

If a curve C has a tangent line L at point P, then the straight line N through P perpendicular to L is called the **normal** to C at P. If L is horizontal, then N is vertical; if L is vertical, then N is horizontal. If L is neither horizontal nor vertical, then, the slope of N is the negative reciprocal of the slope of L, that is,

slope of the normal
$$=\frac{-1}{\text{slope of the tangent}}$$
.

EXAMPLE

Find an equation of the normal to $y = x^2$ at (1, 1).

DEFINITION

The **derivative** of a function f is another function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists (i.e., is a finite real number). If f'(x) exists, we say that f is **differentiable** at x.

Values of x in $\mathcal{D}(f)$ where f is not differentiable and that are not endpoints of $\mathcal{D}(f)$ are singular points of f.

DEFINITION

The **derivative** of a function f is another function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists (i.e., is a finite real number). If f'(x) exists, we say that f is **differentiable** at x.

Values of x in $\mathcal{D}(f)$ where f is not differentiable and that are not endpoints of $\mathcal{D}(f)$ are singular points of f.

Remark The value of the derivative of f at a particular point x_0 can be expressed as a limit in either of two ways:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

In the second limit $x_0 + h$ is replaced by x, so that $h = x - x_0$ and $h \to 0$ is equivalent to $x \to x_0$.

$$f'_{+}(a) = \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h}$$

right derivative

$$f'_{-}(b) = \lim_{h \to 0-} \frac{f(b+h) - f(b)}{h}$$

left derivative