771

Register No.:

April 2019

Time - Three hours (Maximum Marks: 75)

[N.B:- (1) Answer any FIVE questions in each of PART-A & PART-B and any two divisions of each question in PART-C.

(2) Each question carries 2(two) marks in PART-A, 3(three) marks in PART-B and 5(five) marks for each division in PART-C.]

PART - A

1. Find
$$x$$
 if $\begin{vmatrix} x & 4 \\ 9 & x \end{vmatrix} = 0$.

2. Find the adjoint matrix of $\begin{pmatrix} 2 & 2 \\ 3 & -5 \end{pmatrix}$.

3. If $Z_1 = 1 + i$ and $Z_2 = 3 + 2i$, find $3Z_1 + 4Z_2$.

4. Simplify: $(\cos \theta + i \sin \theta)^2 (\cos 3\theta + i \sin 3\theta)$.

5. Show that $\frac{\tan 23^{\circ} + \tan 22^{\circ}}{1 - \tan 23^{\circ} \tan 22^{\circ}} = 1$.

6. Find the value of 2 sin 15° cos 15°

7. Find $\frac{dy}{dx}$ if $y = e^x \cos x$.

8. Form the differential equation by eliminating the constant 'a' in $x^2 + y^2 = a^2$.

PART - B

9. If $A = \begin{pmatrix} 3 & 6 \\ 1 & -2 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 0 \\ 2 & 3 \end{pmatrix}$, show that $(AB)^T = B^T A^T$.

10. Simplify: $\frac{\cos 3\theta - i \sin 3\theta}{\cos 2\theta + i \sin 2\theta}$

11. Find all the values of $(1)^{1/3}$.

12. If $\cos\theta = \frac{1}{3}$, find the value of $\cos 3\theta$.

13. Prove that $\cos 80^{\circ} + \cos 40^{\circ} - \cos 20^{\circ} = 0$.

14. If $u = x^4 + y^3 + 2x^2y^2 + 3x^2y$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$

15. Find $\frac{dy}{dx}$ if $y = e^{\sin^{-1}x}$

16. Find $\frac{dy}{dx}$ if $y = x^2 e^x \sin x$.

PART - C

- 17. (a) Using cramer's rule, solve the given equations x + y + z = 3, 2x y + z = 2 and 3x + 2y 2z = 3.
 - (b) Find the rank of the matrix $\begin{pmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{pmatrix}$
 - (c) Find the coefficient of x^5 in the expansion of $\left(x \frac{1}{x}\right)^{11}$
- 18. (a) Prove that the complex numbers 2-2i, 8+4i, 5+7i and -1+i form a rectangle.
 - (b) Using Demoivre's theorem simplify: $\frac{(\cos 3\theta + i\sin 3\theta)^4(\cos 4\theta + i\sin 4\theta)^2}{(\cos 2\theta + i\sin 2\theta)^5(\cos 5\theta + i\sin 5\theta)^3}$
 - (c) Solve $x^5 + 1 = 0$.
- 19. (a) If $\sin A = \frac{8}{17}$ and $\sin B = \frac{5}{13}$ prove that $\sin(A + B) = \frac{171}{221}$
 - (b) Prove that $\frac{\sin 3A}{1+2\cos 2A} = \sin A$.
 - (c) Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{\sqrt{3}}{8}$.
- 20. (a) Prove that $sin^{-1}(2x\sqrt{1-x^2}) = 2sin^{-1}x$.
 - (b) Evaluate: $\lim_{x \to 2} \frac{Lt}{x^3-2^3}$.
 - (c) Find $\frac{dy}{dx}$ if (i) $y = \frac{5}{x^2} + \frac{2}{x} + \frac{3}{\cos x} + \frac{1}{8}$ (ii) $y = xe^x \log x$.
- 21. (a) Find $\frac{dy}{dx}$ if (i) $y = e^{3x}cos^2x$ (ii) $y = a + xe^y$
 - (b) If $xy = ae^x + be^{-x}$, prove that $xy_2 + 2y_1 = xy$
 - (c) If $u = \frac{x^3y^3}{x^3+y^3}$, shows that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u$

தமிழ் வடிவம்

- [குறிப்பு : (1) பகுதி—அ மற்றும் பகுதி—ஆ, ஆகிய ஒவ்வொரு பகுதியிலிருந்து ஏதேனும் ஐந்து வினாக்களுக்கும், மற்றும் பகுதி—இ—யில் ஒவ்வொரு வினாவிலிருந்து ஏதேனும் இரு பிரிவுகளுக்கும் விடையளிக்கவும்.
 - (2) ஒவ்வொரு வினாவும் பகுதி—அ—வில் 2 (இரண்டு) மதிப்பெண்கள், பகுதி—ஆ—வில் 3 (மூன்று) மதிப்பெண்கள் மற்றும் பகுதி—இ—யில் ஒவ்வொரு பிரிவும் 5 (ஐந்து) மதிப்பெண்கள் பெறும்.]

பகுதி – அ

- 1. $\begin{vmatrix} x & 4 \\ 9 & x \end{vmatrix} = 0$ எனில் x-யைக் காண்க.
- 2. $\begin{pmatrix} 2 & 2 \\ 3 & -5 \end{pmatrix}$ –ன் சேர்ப்பு அணி காண்க.
- 3. $Z_1 = 1 + i$, $Z_2 = 3 + 2i$ எனில் $3Z_1 + 4Z_2$ ன் மதிப்பைக் காண்க.
- 4. கருக்குக $(\cos \theta + i \sin \theta)^2 (\cos 3\theta + i \sin 3\theta)$.
- 5. $\frac{\tan 23^{\circ} + \tan 22^{\circ}}{1 \tan 23^{\circ} \tan 22^{\circ}} = 1$ எனக் காட்டுக.
- 6. 2 sin 15° cos 15° –ன் மதிப்பைக்காண்க.
- 7. $y = e^x \cos x$ எனில் $\frac{dy}{dx}$ –ஐக் காண்க.
- 8. $x^2 + y^2 = a^2$ இல் உள்ள நிலையான மாறிலி 'a' –ஐ நீக்குவதன் மூலம் வகைகெழுச் சமன்பாட்டை அமைக்க.

பகுதி– ஆ

- 9. $A = \begin{pmatrix} 3 & 6 \\ 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 0 \\ 2 & 3 \end{pmatrix}$ எனில் $(AB)^T = B^T A^T$ எனக் காட்டுக.
- 10. சுருக்குக $\frac{\cos 3\theta i \sin 3\theta}{\cos 2\theta + i \sin 2\theta}$
- 11. $(1)^{1/3}$ –ன் அனைத்து மதிப்புகளையும் காண்க.
- 12. $\cos \theta = \frac{1}{3}$ எனில், $\cos 3\theta$ –ன் மதிப்பைக் காண்க.
- 13. cos 80° + cos 40° cos 20° = 0 என நிரூபி.
- 14. $u=x^4+y^3+2x^2y^2+3x^2y$ எனில், $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ —ஐக் காண்க.
- 15. $y = e^{\sin^{-1}x}$ எனில், $\frac{dy}{dx}$ —ஐக் காண்க.
- 16. $y = x^2 e^x \sin x$ எனில், $\frac{dy}{dx}$ -ஐக் காண்க.

பகுதி –இ

- 17. (அ) கிராமரின் விதியைப்பயன்படுத்தி x+y+z=3, 2x-y+z=2 மற்றும் 3x+2y-2z=3 என்ற சமன்பாடுகளைத் தீர்க்க.
 - $\begin{pmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{pmatrix}$ என்ற அணியின் அணி வரிசையைக் காண்க.
 - (இ) $\left(x-\frac{1}{x}\right)^{11}$ இன் விரிவில் x^5 -இன் குணகத்தைக் காண்க.
- 18. (அ) 2-2i, 8+4i, 5+7i மற்றும் -1+i ஆகிய சிக்கலெண்கள் ஒரு செவ்வகத்தை ஏற்படுத்தும் என நிரூபி.
 - (ஆ) டி—மாவியரின் தேற்றத்தைப் பயன்படுத்தி சுருக்குக $\frac{(\cos 3\theta + i \sin 3\theta)^4 (\cos 4\theta + i \sin 4\theta)^2}{(\cos 2\theta + i \sin 2\theta)^5 (\cos 5\theta + i \sin 5\theta)^3}$
 - (இ) தீர்க்க $x^5 + 1 = 0$.
- 19. (அ) $\sin A = \frac{8}{17}$ மற்றும் $\sin B = \frac{5}{13}$ எனில் $\sin(A+B) = \frac{171}{221}$ என நிரூபி.
 - (ஆ) $\frac{\sin 3A}{1+2\cos 2A} = \sin A$ என நிரூபி.
 - (இ) $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{\sqrt{3}}{8}$ என நிரூபி.
- 20. (அ) $sin^{-1}(2x\sqrt{1-x^2}) = 2sin^{-1}x$ என நிரூபி.
 - (ஆ) மதிப்பிடுக : $\frac{Lt}{x \to 2} = \frac{x^5 2^5}{x^3 2^3}$.
 - (இ) (i) $y = \frac{5}{x^2} + \frac{2}{x} + \frac{3}{\cos x} + \frac{1}{8}$, (ii) $y = xe^x \log x$ எனில், $\frac{dy}{dx}$ —ஐக் காண்க.
- 21. (அ) (i) $y = e^{3x} \cos^2 x$ எனில் $\frac{dy}{dx}$ -ஐக் காண்க.
 - (ii) $y = a + xe^y$ எனில் $\frac{dy}{dx}$ -ஐக் காண்க.
 - (ஆ) $xy = ae^x + be^{-x}$ எனில் $xy_2 + 2y_1 = xy$ என நிரூபி.
 - (இ) $u = \frac{x^3y^3}{x^3+y^3}$ எனில் $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3u$ என நிரூபி.