Tribhuvan University

Institute of Science and Technology 2070

Bachelor Level/First Year/First Semester/Science

Full Marks: 80 Pass Marks: 32

Computer Science and Information Technology (MTH:104)
(Calculus and analytical Geometry)

Time: 3 hours.

(Calculus and analytical Geometry)

Old Course

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt all questions.

Group A (10×2=20)

- 1. Define odd and even function, with example.
- **2.** Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n 5}{4^n} = -\frac{5}{4} + \frac{5}{16} \frac{5}{64} + \cdots$... Converges to -1.
- **3.** Test the convergence of the series $\frac{(2n!)}{n!n!}$.
- **4.** Find the eccentricity of the curve $2x^2 + y^2 = 4$.
- **5.** Find the angle between the planes 3x 6y 2z = 15 and 2x + y 2z = 5
- **6.** Find the velocity and acceleration of a particle whose position is

$$j(t) = (t+1)\vec{l} + (t^2-1)\vec{j}$$
, at $t=1$

- 7. Evaluate $\int_{\pi}^{2\pi} \int_{\infty}^{\pi} (\sin x + \cos y) dx dy.$
- **8.** Find the Jacobean j(u,v,w) if x=u+v, y=2 u,z=3w.
- **9.** Show that $y = x^2 + 5$ is the solution of $\frac{dy}{dx} = 2x$
- **10.** Find $\frac{df}{dx}$ and $\frac{df}{dy}$ at (1,2) of $f(x, y) = x^2 + 2xy + 5$.

Group B $(5\times4=20)$

- **11.** State Rolles's theorem and verify it for the function $f(x) = \sin x$ in $[0, \pi]$.
- **12.** Find the Taylors series and the Taylor polynomials generated by $f(x) = e^x at x = 0$.
- **13.** Find the length of the cardioids $r = 1 + \cos\theta$.
- **14.** Find the gradient vector of f(x,y) at a point $P(x_0, y_0)$. Find an equation for the tangent to the ellipse $x^2 + 4y^2 = 4$ at point (-2,1)
- **15.** Find the general solution of $y^2 z \frac{dz}{dx} x^2 z \frac{dz}{dv} = xy^2$

16. Find the area of the region bounded by $x = 2y^2$, x = 0 and y = 3.

Or

Investigates the convergence of the integrals

(a).
$$\int_{\infty}^{\infty} \frac{dx}{1+x^2}$$

(b)
$$\int_0^2 \frac{dx}{1-x}$$

(a). $\int_{\infty}^{\infty} \frac{dx}{1+x^2}$ (b) $\int_{0}^{2} \frac{dx}{1-x}$ **17.** Find the torsion ,normal and curvature for the space curve

$$\vec{r}(t) = (2\cos t)\vec{l} + (3\sin t)\vec{j} + t\vec{k}$$

- **18.** Evaluate $\int_1^1 \int_0^{\sqrt{1-x^2}} dy dx$.
- **19.** Find the local maximum, minimum and saddles point of $6x^2 2x^3 + 3y^2 + 6xy$.

OR

Find the greatest and smallest values that the function f(x,y) = xy takes on the ellipse $\frac{x^2}{8} - \frac{y^2}{2} = 1.$

Define the wave equation by the modeling of vibrating string. 20.