Entrega: Homeomorfismos y conexidad

Alejandro Zubiri & David Mateos

1. Ejercicio 1 (6 puntos)

Demuestre que los únicos conjuntos conexos de \mathbb{R} son los intervalos, \mathbb{R} y el conjunto vacío.

1.1. Solución. Empezamos definiendo ambos elementos. Un subconjunto I es un intervalo si para todo $x, y \in I, x < z < y, z \in I$. Por otro lado, un conjunto E no es conexo si existen dos conjuntos abiertos G, H tal que $G \neq \phi, H \neq \phi, E = (E \cap G) \cup (E \cap H)$ y $G \cap H$.

Empezaremos demostrando que un conjunto es un intervalo sí y solo sí es conexo.

Si es un intervalo, es conexo: supongamos que existen dos conjuntos G, H abiertos que forman una desconexión en un intervalo I. Sea $a \in G \cap I$ y $b \in H \cap I$, y asumamos que a < b. Puesto que I es un intervalo, se tiene que $[a,b] \subseteq I$. Ahora definamos $c = \sup((I \cap G) \cap [a,b])$. Con esta definición, tenemos que $c \ge a$ y que $c \le b$, y puesto que I es un intervalo, $c \in I$. Si se cumple esto, hay dos opciones:

- Si $c \in G \cap I$, como G es abierto, $\exists \delta > 0 : (c \delta, c + \delta) \subseteq G$. Pero entonces c ya no sería el supremo, y por tanto c no pertenece a $G \cap I$.
- Si $c \in H \cap I$, se tiene que $c \in H$. Como H es abierto, tenemos que $\exists \delta > 0 : (c \delta, c) \subset H$. Como $a < c \delta$, tenemos que $(c \delta, c) \subset I$, por lo que $(c \delta, c) \subset H \cap I$, luego $(c \delta, c) \cap (G \cap I) = \phi$. Pero entonces $c < c \delta$, que es una contradicción, luego c no pertenece a I, que es una contradicción, luego I es conexo.

Si es conexo, es un intervalo: Sea I un conjunto conexo que no es un intervalo, entonces dados $a,b\in I, \exists c: a < c < b, c \notin I$. Sea entonces $U=(-\infty,c)$ y $V=(c,\infty)$. Tenemos que ambos son abiertos en \mathbb{R} , y que $a\in U$ y que $b\in V$, lo que implica que $I\cap U\neq \phi$ y que $I\cap V\neq \phi$. Teniendo que son disjuntos, que $(I\cap U)\cup (I\cap V)=I$, y que luego $(I\cap U)\cap (I\cap V)=\phi$, tenemos que I no es conexo, lo que es una contradicción, luego I es un intervalo.

Habiendo demostrado que todos los intervalos son conexos, podemos definir $\mathbb{R} = (-\infty, \infty)$, que es un intervalo, luego \mathbb{R} es conexo, y $\phi = (a, a)$ para cualquier $a \in \mathbb{R}$, luego \mathbb{R} , ϕ son conexos.

2. Ejercicio 2 (3 puntos)

Sea X un espacio topológico y sea $Y = \{0,1\}$ considerado como espacio topológico con la topología discreta. Demuestre que si X es conexo, entonces X no puede ser homeomorfo a Y.

- **2.1. Solución.** Si $X \cong Y$, existe una función continua y biyectiva $f: X \to Y$. Como Y tiene dos elementos, entonces hay dos casos:
 - Caso 1: X tiene más o menos de dos elementos: entonces la función ya no es biyectiva.
 - Caso 2: X tiene dos elementos: entonces X no es conexo.