VAESA: Learning A Continuous and Reconstructible Latent Space for Hardware Accelerator Design

Qijing Jenny Huang*, Charles Hong, John Wawrzynek, Mahesh Subedar[†], Yakun Sophia Shao

<u>jennyhuang@nvidia.com</u>
*NVIDIA, UC Berkeley, †Intel

Hardware acceleration is everywhere

Hardware acceleration is the driving force for many innovations.

Robots

Augmented Reality

Drones

Mobile phones

Autonomous Vehicles

Genomics

NVIDIA Drive Xavier SoC

Designing accelerators is challenging

Hardware design space exploration (DSE) challenges:

- 1. High-dimensional and discrete
- 2. Multi-objective and non-convex
- 3. Costly

Challenge #1: High-dimensional and discrete

Challenge #2: Multi-objective and non-convex

Performance of ResNet-50 as # of PEs and accumulation buffer size change

Challenge #3: Costly

HW-DNN Codesign Flow

HW-DNN Codesign Flow

Problem Statement

How can we efficiently navigate the accelerator design space for deep learning algorithms?

Prior HW DSE work: Search strategy oriented

Original Space Heuristic-Driven

Interstellar

Black-box Optimization

Apollo
NAAS
AutoSA

Gradient-based Optimization

EDD DiffTune Prime

Prior HW DSE work: Search strategy oriented

Black-box Gradient-based Heuristic-Driven Optimization **Optimization** Bayesian Opt EDD **Original** Apollo DiffTune Interstellar NAAS **Space** Prime **AutoSA** Focus on developing search strategies to explore the original design space

Prior HW DSE work: Search strategy oriented

Desirable hardware design space properties

Reduced dimensionality

2. Smooth surface 3. Reconstructible

Background: Variational Autoencoder (VAE)

A model that learns a compressed representation z of input data x

- The feed-forward model predicts x' from x through a bottleneck layer
- Training minimizes mean-squared error between x and x'

VAE Application: Image Synthesis

- VAE learns latent features by identifying structure in data
- Varying the latent space features generates different faces

VAE Application: Chemical Design

- Training a classifier jointly assigns categorical meaning to the latent space
- Molecules with desired properties can be generated by sampling the latent space

Our work: Search space oriented

Our Framework - VAESA

Step 1: Encode HW designs to a compact, continuous latent space

Dataset

VAESA Visualization (2D)

Learned latent space

Good clustering and structures are observed in the latent space designs

VAE Hyperparameter Tuning

Weighting KL divergence

Coefficient adjusts weight of KLD (closeness of a given point's mean+variance encoding to the standard normal) relative to reconstruction loss

VAE Hyperparameter Tuning

Latent space dimensionality

VAESA Visualization (2D)

Predicted performance: Latency

Good clustering and structures are observed in the latent space designs

VAESA Visualization (2D)

Predicted performance: Energy

(d) Real energy usage of decoded accelerator

Bayesian Optimization (BO)

 BO iteratively updates a statistical model to approximate the unknown objective function and uses an acquisition function to decide which input to sample next.

^{*} Ghahramani, Zoubin. "Probabilistic machine learning and artificial intelligence." Nature 521.7553 (2015): 452-459.

VAESA+BO

Black-box optimization on the latent space

Results

VAESA+BO Comparison

DeepBench Optimization

VAESA+BO improves the sample efficiency of BO and finds the best accelerator design

Gradient Descent (GD) for VAESA Inference

 GD is an iterative method for optimizing an objective function with suitable smoothness properties by take repeated steps in the opposite direction of the gradient of the function at the current point.

VAESA+GD

VAESA+GD

VAESA+GD

VAESA+GD

Results

Average EDP over 12 test DNN layers

GD on the latent space achieves better design points faster than GD on the original space.

Conclusion

In VAESA,

- We introduce an DSE framework where the search is performed on a continuous and reconstructible latent space
- We show that using learned latent design space enhances two state-of-the-art search algorithms: BO and GD

Email: jennyhuang@nvidia.com, charleshong@berkeley.edu
Git: https://github.com/ucb-bar/vaesa.git