TA 201

EXPANDING TABLE

Section W1 G4

Made under the guidance of Course

Instructor: Dr. Shashank Shekhar

Tutors: Dr. Vivek Verma

Lab in charge: Mr. Anil Kumar Verma

TA 201

Group members

Raj Verma 200761 **Shloak Bhagat** 200946 Pravalika 201105 Pratiksha Sharma 200714 **Adarsh Shukla** 200034 **Nirmit** 200642 **Rustam Pardhi** 200825 **Vipul Arora** 201125 Harsh Kumar 200413

EXPANDING TABLE

INDEX

S No.	TOPIC	PAGE NO.
1	Introduction	4
2	Motivation	5
3	Acknowledgement	6
4	Working animation and 3D renders	7
5	Basic parts list	8
6	Assembly animation	9
7	List of components and their details	10
8	Mechanism of the table	18
9	Group members and week wise work distribution	22
10	Manufacturing process	24
11	Weight and cost analysis	25

<u>INTRODUCTION</u>

As the name suggests, an expanding table is a table that has a **572.556 cm²** area when unopened or closed, but when opened or expanded, has an area of **873.757 cm²** area. Over **153%** of its original area.

It has various parts that are interconnected through joints and adhesives. The base roll is the main part on which the entire table is based. It has grooves on which the sliders move, and the table expands.

MOTIVATION

We present an expanding table. This table is designed to expand at the tabletop if an extra area is needed and conveniently closes to save some space. It uses sliders and channels, and tracks to make this possible. This is a lightweight multipurpose table. Our original inspiration was a curtain-style folding door that saves a lot of space but incorporating such a design into a table was difficult. It gave us numerous design challenges. The lack of patents and designs to look upon makes it even challenging but helped us a lot in learning new things. The result was a lovely looking table and when expanded, increasing its area by more than 50%.

ACKNOWLEDGEMENT

We want to express our sincere gratitude to our course instructor- **Dr. Shashank Shekhar** tutor- **Dr. Vivek Verma** and our Lab Technical

Personnel- **Mr. Gaurav Mishra**, for their support and valuable insights on this project. Their support was essential to the execution of this project. We would also like to thank Professor Shashank Shekhar, course instructor, for providing us with this opportunity to explore our creativity and design the whole process of manufacturing something through lab processes.

We want to thank our TA's insert name for their valuable guidance. Any omission in this brief does not imply a lack of gratitude.

WORKING VIDEO OF THE EXPANDING TABLE

Isometric drawings

ASSEMBLY OF THE EXPANDING TABLE

BASE

<u>Description</u>: base of the table relatively heavy than all other parts to avoid spinning.

Quantity: 1

Weight: 2500 grams

Material used: Cast Iron, mild

steel rod (2mm dia.)

Manufacturing process: Casting,

welding, cutting.

BASE ROLL

Description : crucial component of the table, spins on base.

Quantity: 1

Weight: 581 grams

Material used: Cast Iron, mild steel sheet (2mm), mild steel rod

(8mm dia.)

Manufacturing process: Casting, welding, shearing, bending.

CONNECTOR

<u>Description</u>: connects the slider to the rods extruding from the base and is responsible for motion of sliders.

Quantity: 8

Weight: 2 grams (each)

Material used: mild steel sheet

(1mm)

Manufacturing process:

Shearing, punching

SLIDER

Description: slides in and out in the groove on the base roll.

Quantity: 8

Weight: 3 grams (each)

Material used: Cast Iron

Manufacturing process: Casting

UP-SLIDER

<u>Description</u>: responsible of up and down motion of the up-board.

Quantity: 4

Weight: 5 grams (each)

Material used: Cast Iron

Manufacturing process: Casting

BOARD

<u>Description</u>: top board of the table remains on top when the table is closed.

Quantity: 4

Weight: 240 grams (each)

Material used: Cast Iron, mild

steel sheet (2mm)

Manufacturing process: Casting,

welding, shearing.

UP-BOARD

<u>Description</u>: up-board moves out and come out when the table is opened.

Quantity: 4

Weight: 90 grams (each)

Material used: mild steel sheet

(2mm), mild steel rod(3mm), mild

steel rod(3.5 mm)

Manufacturing process:

Shearing, Welding, grinding.

STAR

<u>Description</u>: star lies at the below board and up-board an comes in level of them once table is opened.

Quantity: 1

Weight: 60 grams

Material used: mild steel

sheet(1mm)

Manufacturing process: Shearing

MECHANISM

Radial in-&-out mechanism:

The video shows the mechanism involve in radial motion of Board and Up-Board. The table shows a full range of radial motion on a rotation of 54°. The connector is designed in such a manner that it allows complete closing of the table and the up-boards are designed in such a manner that they don't obstruct the motion of other components

Open table (expanded)

Closed table (collapsed)

Up-board lifting mechanism:

The up-board along with performing a radial motion also has a vertical motion that means it also needed to pop up as table opens.

For this, the base roll is designed with ramps on alternate arms that enables the up-board to

pop up when the table expands.

Arrows indicating ramps on alternate arms

Location of parts when table is closed

Result:

Group Members & work distribution

Member	Roll no.	Week 1	Week 2	Week 3	Week 4	Week 5
Raj Verma	200761	Discussion on 4 ideas and finalizing one.	Worked on base roll, connector's design and discussing better design ideas with team members.	Isometric drawing of component and the material to be used, assembly of all the parts, making a working CAD model, design solutions	Tackling various design difficulties and making the final CAD design, updating the components where required, materials used.	Animated assembly video, screen recordings and final presentation.
Shloak Bhagat	200946	Discussing ideas and finalizing one, given the final idea.	Worked on star, discussed design ideas.	Isometric drawing of component and the material to be used.	Worked on various design possibilities.	presentation
Pravalika	200034	Discussion on 4 ideas and finalizing one.	Worked on board. (blue color board)	Isometric drawing of component and the material to be used.	Manufacturing and joining process of various components.	
Pratiksha Sharma	201105	Discussion on 4 ideas and finalizing one.	Worked on upboard. (red color board)	Isometric drawing of component and the material to be used.	Cost analysis of various process and materials.	presentation

Group Members & work distribution

Member	Roll no.	Week 1	Week 2	Week 3	Week 4	Week 5
Adarsh Shukla	200034	Discussion on 4 ideas and finalizing one.	Worked on board. (blue color board)	Isometric drawing of component and the material to be used.	Material used and various new design ideas	
Vipul Arora	201125	Discussion on 4 ideas and finalizing one.	Worked on Up- slider	Isometric drawing of component and the material to be used.	Design ideas and joining processes	
Rustam Pardhi	200825	Discussion on 4 ideas and finalizing one.	Worked on Base of the table.	Isometric drawing of component and the material to be used.		
Nirmit	200642	Discussion on 4 ideas and finalizing one.	Worked on Slider	Isometric drawing of component and the material to be used.		
Harsh Kumar	200413	Discussion on 4 ideas and finalizing one.	Worked on Base of table	Isometric drawing of component and the material to be used.		

Material used & process involved

COMPONENT	QUANTITY	MATERIALS USED (each)	<u>DETAILS</u> (each)	MANUFACTURING PROCESS	JOINING PROCESS
BASE	1	Mild Steel sheet (2 mm)Mild Steel rod (2mm dia.)Cast Iron	114 cm² 68 mm 2 kg	Shearing Cutting Casting	Welding
BASE ROLL	1	Mild Steel sheet (2mm)Mild Steel rod (8mm dia.)Cast Iron	50 cm ² 76 mm 400 grams	Shearing Cutting, Bending Casting	Welding
CONNECTOR	8	 Mild Steel sheet (1mm) 	6 cm ²	Shearing, punching	-
SLIDER	8	Cast Iron	3 grams	Casting	-
UP-SLIDER	4	Cast Iron	5 grams	Casting	-
BOARD	4	Mild Steel sheet (2mm)Cast Iron	144 cm² 50 grams	Shearing Casting	Welding, Mechanical fastening
UP-BOARD	4	 Mild Steel sheet (2mm) Mild Steel rod (3mm dia.) Mild Steel rod (3.5mm dia.) 	121 cm² 4 mm 8 mm	Shearing Cutting, grinding Cutting	Welding
STAR	1	 Mild Steel sheet (1mm) 	160 cm ²	Shearing	-

Weight & Cost Analysis

COMPONENT	QUANTITY	<u>MATERIALS</u>	<u>WEIGHT</u> (each)	TOTAL WEIGHT Quantity × Weight	COST*
BASE	1	Iron	2500 grams	2500	₹113
BASE ROLL	1	Iron, Mild Steel	581 grams	581	₹27
CONNECTOR	8	Mild Steel	2 grams	16	₹10
SLIDER	8	Iron	3 grams	24	₹10
UP-SLIDER	4	Iron	5 grams	20	₹10
BOARD	4	Mild Steel, Iron	240 grams	960	₹44
UP-BOARD	4	Mild Steel	90 grams	360	₹17
STAR	1	Mild Steel	60 grams	60	₹10

TOTAL : ₹241

* Price of iron/mild steel : ₹45/kg

Process & Labour Cost Analysis

<u>PROCESS</u>	COST/UNIT TIME	ESTIMATED TIME	NET COST
Sand Mould Casting for Iron	₹ 150/hr	2 hour	₹300
Welding	₹ 100/hr	1.5 hour	₹150
Shearing, Punching	₹ 50/hr	1 hour	₹50
Bending	₹ 50/hr	0.5 hour	₹25
TOTAL	₹525		
GRAND TO	₹766		

70 K