Разделени разлики с кратни възли. Интерполационен полином на Ермит

Нека $a \le x_0 \le x_1 \le \cdots \le x_n \le b$ и $f \in C^n[a, b]$. Разделена разлика на функцията f(x) във възлите x_0, x_1, \dots, x_k се дефинира по следния начин:

$$f[x_0, x_1, \dots, x_k] = \begin{cases} \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}, x_0 \neq x_k \\ \frac{f^{(k)}(x_0)}{k!}, & x_0 = x_k \end{cases}$$

Интерполационният полином на Ермит се задава с формулата на Нютон:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$= \sum_{k=0}^{n} f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}).$$

Задача 1. Да се намери полином $p(x) \in \pi_4$, такъв че $p(-1) = \frac{1}{2}$, p(0) = 1, p'(0) = 0, p''(0) = -2, $p(1) = \frac{1}{2}$.

Решение: Имаме 5 интерполационни възела $x_0 = -1$, $x_1 = x_2 = x_3 = 0$, $x_4 = 1$. Нулата е трикратен възел. Можем да построим единствен полином от четвърта степен с тези условия по формулата на Нютон. За целта са ни необходими разделените разлики. Тях най-лесно можем да пресметнем от рекурентната връзка в следната таблица:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$p[x_i, \dots, x_{i+4}]$
-1	$\frac{1}{2}$	$\frac{1-\frac{1}{2}}{0-(-1)} = \frac{1}{2}$	$\frac{0-\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$	$\frac{-1+\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$	$\frac{\frac{1}{2} + \frac{1}{2}}{1 + 1} = \frac{1}{2}$
0	1	$\frac{p'(0)}{1!} = 0$	$\frac{p''(0)}{2!} = -1$	$\frac{-\frac{1}{2}+1}{1-0} = \frac{1}{2}$	
0	1	$\frac{p'(0)}{1!} = 0$	$\frac{-\frac{1}{2} - 0}{1 - 0} = -\frac{1}{2}$		
0	1	$\frac{\frac{1}{2} - 1}{1 - 0} = -\frac{1}{2}$			
1	$\frac{1}{2}$				

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}) =$$

$$= \frac{1}{2} + \frac{1}{2}(x + 1) - \frac{1}{2}(x + 1)(x - 0) - \frac{1}{2}(x + 1)x^2 + \frac{1}{2}(x + 1)x^3 = \frac{x^4}{2} - x^2 + 1.$$

Задача 2. Да се намери полином $p(x) \in \pi_4$, такъв че p(-1) = 4, p'(-1) = -11, p(1) = 2, p'(1) = 5, p''(1) = 10.

Решение: Преминаваме към попълване на таблицата с разделените разлики:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$p[x_i, \dots, x_{i+4}]$
-1	4	$\frac{p'(-1)}{1!} = -11$	$\frac{-1+11}{1-(-1)} = 5$	$\frac{3-5}{2} = -1$	$\frac{1+1}{1+1} = 1$
-1	4	$\frac{2-4}{1-(-1)} = -1$	$\frac{5+1}{1+1} = 3$	$\frac{5-3}{2}=1$	
1	2	$\frac{p'(1)}{1!} = 5$	$\frac{p''(1)}{2!} = 5$		
1	2	$\frac{p'(1)}{1!} = 5$			
1	2				

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, ..., x_k](x - x_0)(x - x_1) ... (x - x_{k-1}) =$$

$$= 4 - 11(x+1) + 5(x+1)^2 - 1(x+1)^2(x-1) + 1(x+1)^2(x-1)^2$$

$$= x^4 - x^3 + 2x^2.$$

Задача 3. Да се намери интерполационния полином на Ермит във възлите $x_0=-1, x_1=x_2=x_3=0, x_4=1$ за функцията $f(t)=\frac{1}{1+t^2}$ чрез функция на Wolfram Mathematica. Да се визуализира графиката на грешката.

Решение: Намираме $f(-1) = f(1) = \frac{1}{2}$; f(0) = 1; f'(0) = 0; f''(0) = -2. Ще използваме вградената функция за намиране на интерполационен полином по зададени възли, техните функционални стойности и стойностите на производните. Така изглежда:

$$f[t_{-}] := 1/(1+t^2); \\ L[t_{-}] := InterpolatingPolynomial[{\{-1,1/2\},\{0,\{1,0,-2\}\},\{1,1/2\}\},t]}; \\ a = Expand[L[t]] \\ Plot[f[t]-a,\{t,-1,1\}]$$

Out [1] =
$$1 - t^2 + \frac{t^4}{2}$$

Крайни разлики

Крайни разлики използваме, когато интерполационните възли са равноотдалечени със стъпка h, т. е. възлите се задават се с формулата $x_k = x_0 + k$. h, k = 0,1,...,n. Означаваме функционалните стойности в тези възли с $f_k = f(x_k)$.

Разделена разлика за функцията f(x) във възлите $x_0 < x_1 < \cdots < x_n$ се дефинира по следния начин:

- от първи ред: $\Delta f_j = f_{j+1} f_i$;
- от k-ти ред рекурентно: $\Delta^k f_j = \Delta^{k-1} f_{j+1} \Delta^{k-1} f_j$.

На лекции са доказани следните формули:

1)
$$\Delta^n f_0 = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f_j;$$

2)
$$f[x_0, x_1, ..., x_n] = \frac{\Delta^n f_0}{n! h^n}$$

Доказали сме (в предходното упражнение), че:

a)
$$f[x_0, x_1, ..., x_n] = 0$$
, sa $f(x) = x^m, m = 0, 1, ..., n - 1$; (*)

6)
$$f[x_0, x_1, ..., x_n] = 1$$
, sa $f(x) = x^n$. (**)

Ще интерпретираме тези изводи в термините на крайни разлики.

Задача 4: Да се докаже тъждеството
$$\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} j^k = 0$$
 за $k=0,1,\dots,n-1$.

Доказателство: Лявата страна на равенството е крайна разлика за функцията $f_j = f(j) = j^k, k \in \{0,1,\dots,n-1\}$. Това са стойностите на функцията $f(x) = x^k \in \pi_{n-1}$ в точките $x_j = j, \ j = 0 \div n$. Интерполационните възли са равноотдалечени със стъпка h = 1. Но разделената разлика в (n+1) точки на полином от (n-1) степен е равна на нула, т. е. $x^k[x_0x_1,\dots,x_n] = 0, \ k = 0 \div n - 1$ и от връзката между разделена и крайна разлика 2) получаваме $\Delta^n f_0 = 0$, т.е. $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} j^k = 0$.

Задача 5: Да се докаже тъждеството
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^n = n!$$

Доказателство: Лявата страна на равенството е крайна разлика за функцията $f_j = f(j) = j^n$. Това са стойностите на функцията $f(x) = x^n \in \pi_n$ в точките $x_j = j$, $j = 0 \div n$. Интерполационните възли са равноотдалечени със стъпка h = 1. Но разделената разлика в (n+1) точки на полином от n-та степен е равна на едно, т. е. $x^n[x_0x_1, ..., x_n] = 1$ и от връзката между разделена и крайна разлика 2) получаваме $\Delta^n f_0 = n! \, h^n f[x_0, x_1, ..., x_n]$, т.е. $\sum_{j=0}^n (-1)^{n-j} {n \choose j} j^k = n!$

Задача 6: Да се намери
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{m+j}{k}$$
, където $m \in N, k = 0,1,\dots,n-1$.

Доказателство: Лявата страна на равенството е крайна разлика от n-ти ред за $f_j = f(j) = \binom{m+j}{k}$.

$$=> f(x) = {x+m \choose k} = \frac{(x+m)(x+m-1)...(x+m-k+1)}{k!} \in \pi_k \subseteq \pi_{n-1}.$$

Но $f[x_0,x_1,...,x_n]=0$ и от равенството 2) получаваме, че $\Delta^n f_0=0$ и следователно $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \binom{m+j}{k} = 0$.

Лема на Поповичу

Тя ни дава формула, по която да пресметнем разделената разлика на произведение на две функции в (n+1) интерполационни възли чрез раделените разлики на отделните функции. Лемата гласи:

$$(f.g)[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f[x_0, x_1, \dots, x_k].g[x_k, x_{k+1}, \dots, x_n].$$

Задача 7: Да се намери $x^{n+1}[x_0, x_1, ..., x_n]$.

Решение: Можем да представим $x^{n+1} = x. x^n$. От (*) и (**) получаваме, че

$$x[x_0] = x_0, x[x_0, x_1] = 1, x[x_0, x_1, ..., x_k] = 0, x^n[x_0, x_1, ..., x_n] = 1.$$

Прилагаме лемата на Поповичу за функцията x^{n+1}

$$\begin{split} x^{n+1}[x_0,x_1,\ldots,x_n] &= \sum_{k=0}^n x[x_0,x_1,\ldots,x_k]. \, x^n[x_k,x_{k+1},\ldots,x_n] = \\ &= x[x_0]. \, x^n[x_0,x_1,\ldots,x_n] + \, x[x_0,x_1]. \, x^n[x_1,x_2,\ldots,x_n] + 0 = x_0 + \, x^n[x_1,x_2,\ldots,x_n]. \end{split}$$

Така получихме рекурентна връзка за разделените разлики на функциите x^{n+1} и x^n

Прилагаме отново лемата за $x^n[x_1, x_2, ..., x_n]$

$$x^{n+1}[x_0, x_1, ..., x_n] = x_0 + x^n[x_1, x_2, ..., x_n] = x_0 + x_1 + x^{n-1}[x_2, x_3, ..., x_n]$$

След многократно приложение на лемата на Поповичу окончателно получаваме

$$x^{n+1}[x_0, x_1, \dots, x_n] = \sum_{k=0}^n x_k.$$

Задача 8: Да се намери $\frac{1}{x}[x_0, x_1, ..., x_n]$, за $x_k \neq 0$, $\forall k$.

Решение: Можем да представим $1 = x.\frac{1}{x}$, но $1 \in \pi_0 => 1[x_0, x_1, ..., x_n] = 0$. Прилагаме лемата на Поповичу за константата 1, равенствата (*) и (**). Получаваме:

$$0 = 1[x_0, x_1, \dots, x_n] = \sum_{k=0}^n x[x_0, x_1, \dots, x_k] \cdot \frac{1}{x}[x_k, x_{k+1}, \dots, x_n] = x_0 \cdot \frac{1}{x}[x_0, x_1, \dots, x_n] + x[x_0, x_1] \cdot \frac{1}{x}[x_1, x_2, \dots, x_n] + 0 = x_0 \cdot \frac{1}{x}[x_0, x_1, \dots, x_n] + \frac{1}{x}[x_1, x_2, \dots, x_n].$$

От това равенство изразяваме $\frac{1}{x}[x_0,x_1,\ldots,x_n]$ и получаваме

$$\frac{1}{x}[x_0, x_1, \dots, x_n] = -\frac{1}{x_0} \cdot \frac{1}{x}[x_1, x_2, \dots, x_n]$$

Аналогично прилагаме лемата на Поповичу още (n-1) пъти и получаваме:

$$\frac{1}{x}[x_0, x_1, \dots, x_n] = \frac{(-1)^n}{x_0, x_1, \dots, x_n}.$$

Задача 9: Да се намери $\frac{1}{x^2}[x_0, x_1, ..., x_n]$, за $x_k \neq 0$, $\forall k$.

Решение: Можем да използваме намереното в Задача 8 и лемата на Поповичу.

$$\frac{1}{x^2} = \frac{1}{x} \cdot \frac{1}{x} = > \frac{1}{x^2} [x_0, x_1, \dots, x_n] =$$

$$= \sum_{k=0}^{n} \frac{1}{x} [x_0, x_1, \dots, x_k] \cdot \frac{1}{x} [x_k, x_{k+1}, \dots, x_n] =$$

$$= \sum_{k=0}^{n} \frac{(-1)^k}{x_0 \cdot x_1 \dots x_k} \cdot \frac{(-1)^{n-k}}{x_k \cdot x_{k+1} \dots x_n} = \frac{(-1)^n}{x_0 \cdot x_1 \dots x_n} \sum_{k=0}^{n} \frac{1}{x_k}.$$