CS2040S Data Structures and Algorithms

BFS, DFS, and Directed Graphs!

Roadmap

Last time: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs: BFS

What is a graph?

Graph
$$G = \langle V, E \rangle$$

- V is a set of nodes
 - At least one: |V| > 0.

- E is a set of edges:
 - $E \subseteq \{ (v,w) : (v \in V), (w \in V) \}$
 - e = (v,w)
 - For all e_1 , $e_2 \in E : e_1 \neq e_2$

2 x 2 x 2 Rubik's Cube

Configuration Graph

- Vertex for each possible state
- Edge for each basic move
 - 90 degree turn
 - 180 degree turn

Puzzle: given initial state, find a path to the solved state.

Trade-offs

Adjacency Matrix:

- Fast query: are v and w neighbors?
- Slow query: find me any neighbor of v.
- Slow query: enumerate all neighbors.

Adjacency List:

- Fast query: find me any neighbor.
- Fast query: enumerate all neighbors.
- Slower query: are v and w neighbors?

Goal:

- Start at some vertex s = start.
- Find some other vertex \mathbf{f} = finish.

Or: visit **all** the nodes in the graph;

Two basic techniques:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Graph representation:

Adjacency list

- Explore graph level by level.
- Calculate level[i] from level[i-1]


```
frontier = {s}
while frontier is not empty:
    next-frontier = {}
    for each node u in the frontier:
        for each edge (u,v) in the graph:
            if v has not yet been visited, add v to next-frontier
        frontier = next-frontier
```


What are the properties of the parent edges?

 Parent edges form a tree (No cycles.)

2. Parent edges are shortest paths from s.

2 x 2 x 2 Rubik's Cube

Layers define shortest paths:

reachable in two moves, but not one

Beware: each edge is distance 1.

Next week: graphs with distances on the edges.

Goal:

- Start at some vertex s = start.
- Find some other vertex \mathbf{f} = finish.

Or: visit **all** the nodes in the graph;

Two basic techniques:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Graph representation:

Adjacency list

Depth-First Search

Exploring a maze:

- Follow path until stuck.
- Backtrack along breadcrumbs until reach unexplored neighbor.
- Recursively explore.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it
- Don't repeat a vertex.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it
- Don't repeat a vertex.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it

Don't repeat a vertex.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it

Don't repeat a vertex.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it

Don't repeat a vertex.

Depth-First Search

```
DFS-visit(Node[] nodeList, boolean[] visited, int startId){
   for (Integer v : nodeList[startId].nbrList) {
      if (!visited[v]) {
           visited[v] = true;
           DFS-visit(nodeList, visited, v);
      }
   }
}
```

Depth-First Search

```
DFS(Node[] nodeList) {
 boolean[] visited = new boolean[nodeList.length];
 Arrays.fill(visited, false);
  for (start = i; start<nodeList.length; start++) {</pre>
     if (!visited[start]) {
           visited[start] = true;
           DFS-visit(nodeList, visited, start);
```


Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

Red = active frontier

Purple = next

Gray = visited

DFS parent edges

Red = Parent Edges
Purple = Non-parent edges

Which is true? (More than one may apply.)

- 1. DFS parent graph is a cycle.
- ✓2. DFS parent graph is a tree.
 - 3. DFS parent graph has low-degree.
 - 4. DFS parent graph has low diameter.
 - 5. None of the above.

DFS parent edges = tree

Red = Parent Edges
Purple = Non-parent edges

True or false: DFS parent graph contains shortest paths.

- 1. True
- ✓2. False

DFS parent edges = tree

Red = Parent Edges
Purple = Non-parent edges

Note: not shortest paths!

The running time of DFS is:

- 1. O(V)
- 2. O(E)
- **✓**3. O(V+E)
 - 4. O(VE)
 - 5. $O(V^2)$
 - 6. I have no idea.

Depth-First Search

Analysis:

- DFS-visit called only once per node.
 - After visited, never call DFS-visit again.

In DFS-visit, each neighbor is enumerated.

If the graph is stored as an adjacency matrix, what is the running time of DFS?

- 1. O(V)
- 2. O(E)
- 3. (V+E)
- 4. O(VE)
- **✓**5. O(V²)
 - 6. $O(E^2)$

Depth-First Search

Analysis:

- DFS-visit called only once per node.
 - After visited, never call DFS-visit again.

In DFS-visit, each neighbor is enumerated.

To implement an iterative version of DFS:

- 1. Use a queue.
- ✓2. Use a stack.
 - 3. Use a set.
 - 4. Use a tree.

BFS and DFS are the same algorithm:

- BFS: use a queue
 - Every time you visit a node, add all unvisited neighbors to the queue.

- DFS: use a stack
 - Every time you visit a node, add all unvisited neighbors to the stack.

Breadth-first search:

Same algorithm, implemented with a queue:

Add start-node to queue.

Repeat until queue is empty:

- Remove node v from the front of the queue.
- Visit v.
- Explore all outgoing edges of v.
- Add all unvisited neighbors of v to the queue.

Depth-first search:

Same algorithm, implemented with a stack:

Add start-node to stack.

Repeat until stack is empty:

- Pop node v from the front of the stack.
- Visit v.
- Explore all outgoing edges of v.
- Push all unvisited neighbors of v on the front of the stack.

BFS and DFS are the same algorithm:

- BFS: use a queue
 - Every time you visit a node, add all unvisited neighbors to the queue.

- DFS: use a stack
 - Every time you visit a node, add all unvisited neighbors to the stack.

Common Mistake

What do BFS and DFS solve?

- They visit every node in the graph?
- They visit every edge in the graph?
- They visit every path in the graph?

Common Mistake

What do BFS and DFS solve?

- They visit every node in the graph? Yes.
- They visit every edge in the graph? Yes.
- They visit every path in the graph?

Problem: Make Money

- Start at source s.
- Go to destination d.
- Each edge e earns money m(e).
- Find the path that makes the most money.

NOT a solution:

- Start at source s.
- Run BFS (or DFS) to explore every path.
- Keep track of the best path.

Problem 1: Does not work.

- DFS or BFS do NOT explore every path.
- Once a node is visited, it is never explored again.

Problem 2: Too expensive.

- Some graphs have an exponential number of paths.
- It takes exponential time to explore all paths.

Example: $2^4 > 2^{n/4}$ different s->d paths.

Common Mistake

What do BFS and DFS solve?

- They visit every node in the graph? Yes.
- They visit every edge in the graph? Yes.
- They visit every path in the graph?

Roadmap

Directed Graphs

- What is a directed graph?
- Searching directed graphs (DFS / BFS)
- Topological Sort
- Connected Components

What is a directed graph? (Digraph)

Is it a directed graph?

- ✓ 1. Yes
 2. No.

Is it a directed graph?

Is it a directed graph?

- ✓ 1. Yes
 2. No.

What is a directed graph?

Graph consists of two types of elements:

Nodes (or vertices)

At least one.

Edges (or arcs)

- Each edge connects two nodes in the graph
- Each edge is unique.
- Each edge is directed.

What is a directed graph?

Graph
$$G = \langle V, E \rangle$$

- V is a set of nodes
 - At least one: |V| > 0.

- E is a set of edges:
 - E ⊆ { (v,w) : (v ∈ V), (w ∈ V) }
 e = (v,w)
 - For all e_1 , $e_2 \in E$: $e_1 \neq e_2$

What is a directed graph?

In-degree: number of incoming edges

Out-degree: number of outgoing edges

Representing a (Directed) Graph

Adjacency List:

- Array of nodes
- Each node maintains a list of neighbors
- Space: O(V + E)

Adjacency Matrix:

- Matrix A[v,w] represents edge (v,w)
- Space: O(V²)

Adjacency List

Graph consists of:

- Nodes: stored in an array
- Edges: linked list per node

Adjacency List

Directed Graph consists of:

Nodes: stored in an array

Outgoing Edges: linked list per node

Adjacency List in Java

```
class NeighborList extends ArrayList<Integer> {
class Node {
 int key;
 NeighborList nbrs;
                            a
                            b
class Graph {
 Node[] nodeList;
                            d
                            e
```

Representing a (Directed) Graph

Adjacency List:

- Array of nodes
- Each node maintains a list of neighbors
- Space: O(V + E)

Adjacency Matrix:

- Matrix A[v,w] represents edge (v,w)
- Space: O(V²)

Adjacency Matrix

Graph consists of:

- Nodes
- Edges = pairs of nodes

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	1	1	0	0	0	0
f	1	0	0	0	0	0

Adjacency Matrix

Directed Graph consists of:

- Nodes
- Edges = pairs of nodes

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	0	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	0	1	0	0	0	0
f	0	0	0	0	0	0

Adjacency Matrix

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \in E$$

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	0	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	0	1	0	0	0	0
f	0	0	0	0	0	0

Searching a (Directed) Graph

Breadth-First Search:

- Search level-by-level
- Follow outgoing edges
- Ignore incoming edges

Depth-First Search:

- Search recursively
- Follow outgoing edges
- Backtrack (through incoming edges)

Example of directed graphs

Directed Graphs

Is friendship always bidirectional?:

- Nodes are people
- Edge = friendship

Facebook: yes

Twitter: no

Directed Graphs

Markov text generation:

- Nodes are kgrams
- Edge = one kgram follows another

Scheduling

Set of tasks for baking cookies:

- Shop for groceries
- Put the cookies in the oven
- Clean the kitchen
- Beat the eggs in a bowl
- Measure the flour and sugar in a bowl
- Mix the eggs with the flour and sugar
- Turn on the oven
- Set the timer
- Take out the cookies

Scheduling

Ordering:

- Shop for groceries before beat the eggs
- Shop for groceries before measure the flour
- Turn on the oven before put the cookies in the oven
- Beat the eggs before mix the eggs with the flour
- Measure the flour before mix the eggs with the flour
- Put the cookies in the oven before set the timer
- Measure the flour before clean the kitchen
- Beat the eggs before clean the kitchen
- Mix the flour and the eggs before clean the kitchen

Scheduling

Topological Ordering

Topological Order

Properties:

1. Sequential total ordering of all nodes

1. shop

2. turn on oven

3. measure flour/sugar

4. eggs

Topological Order

Properties:

1. Sequential total ordering of all nodes

1. shop

2. turn on oven

3. measure flour/sugar

4. eggs

2. Edges only point forward

Does every directed graph have a topological ordering?

- 1. Yes
- **✓**2. No
 - 3. Only if the adjacency matrix has small second eigenvalue.

Today

Searching a graph

- BFS (finding shortest paths)
- DFS

Directed Graphs

- What is a directed graph?
- Searching directed graphs (DFS / BFS)
- Topological Sort
- Connected Components