

Universidade do Minho Licenciatura em Engenharia Informática

Investigação Operacional **Trabalho 2**

7 de Maio 2024

a97646 Pedro Silva Ferreira

a98352 Enzo Gabriel Barros Vieira

a100480 Nuno Alberto Gonçalves Aguiar

a100549 Luís Carlos Fragoso Figueiredo

a100656 Gustavo Manuel Marinho Barros

Introdução

Com este relatório, acompanha-se o desenvolvimento do 2º projeto da UC de Investigação Operacional proposto no ano letivo de 2023/24, relativo à capacidade de analisar sistemas complexos e de criação de modelos obtendo soluções para os mesmos.

Pergunta 0:

nxABCDE = 100656

Vértice	Capacidade
1	∞
2	60
3	70
4	8
5	70
6	120

Pergunta 1:

A resolução do problema passa primeiro por uma fase de transformação do grafo de forma a ter nele a noção de capacidade de cada vértice por via duma aresta. Tal faz-se com a introdução de vértices-linha, em que a aresta auxiliar (vértice vértice-linha) tem peso igual à capacidade do vértice.

Esta alteração fez com que cada vértice mantivesse os seus inputs consigo mas delegasse os outputs ao vértice-linha respectivo, passando a ter apenas um *out-degree=*1 correspondente à aresta auxiliar.

Por exemplo, **(22')** tem peso 60, pois o vértice 2 tem capacidade 60. Isto faz com que sejam as únicas arestas com capacidade limitada. Como é natural, este procedimento não se executou nos vértices origem e destino.

A etapa anterior implicou a conversão do grafo para direcional, pelo que qualquer aresta (ij) pré-definida desdobrou-se em duas, (ij) e (ji). Evidentemente, não existe qualquer aresta auxiliar (vértice-linha vértice).

Observe-se o facto do vértice origem ter *in-degree*=0 e o vértice destino ter *out-degree*=0.

Pergunta 2:

Para ser possível o relax4 ler o ficheiro, substituímos os vértices auxiliares (x') por outro número, no caso (2' = 7, 3' = 8, 5' = 9, 6' = 10).

Input do RELAX-IV:

```
1 3 0 1000
7 3 0 1000
8 2 0 1000
9 3 0 1000
10 5 0 1000
```

Pergunta 3:

```
NUMBER OF NODES = 10, NUMBER OF ARCS = 16
DEFAULT INITIALIZATION USED
Total algorithm solution time = 0.00345492363 sec.
OPTIMAL COST = -130.
NUMBER OF ITERATIONS = 2
NUMBER OF MULTINODE ITERATIONS = 0
NUMBER OF MULTINODE ASCENT STEPS = 0
NUMBER OF REGULAR AUGMENTATIONS = 0
          ------ begin dimacs-format results ------
c The RELAX-IV code is publicly available via anonymous ftp from the
c server "lids.mit.edu" in the "/pub/bertsekas/RELAX" directory. The
c code can be used for any noncommercial research purposes and for
c comparative test purposes, but cannot be used to satisfy commercial
c deliverables to government or industry without prior agreement with
c the authors.
s -130.
f 1 3 70
f 8 5 70
f 5 9 70
f 9 4 70
f 6 10 0
f 4 1 130
```

Pergunta 4:

O resultado da otimização é variação de 130 uds. de fluxo no vértice destino 4 (valor positivo indicativo de *inflow*) segundo variação de -130 uds. no vértice origem 1 (valor negativo indicativo de *outflow*).

Pergunta 5:

De forma a validar o modelo começamos por garantir que as capacidades dos vértices foram respeitadas durante o processo de otimização. Além disso, ao analisar os resultados obtidos pelo RELAX-IV, não tivemos qualquer suspeita de anomalias ou discrepâncias significativas. Portanto, conjecturamos que esta consistência entre as capacidades dos vértices e os resultados da otimização seja uma condição suficiente para declarar o modelo como válido.

Não obstante, como prova de redundância adicional, foi corrido um outro input com as arestas limitadas a uma capacidade de 129, que resultou num resultado no vértice destino de 129, reforçando ainda mais o caso.

```
s -129.

f 1 2 60

f 1 3 69

f 2 7 60

f 7 3 0

f 7 4 60

f 3 8 69

f 8 2 0

f 8 5 69

f 5 9 69

f 9 3 0

f 9 6 0

f 9 4 69

f 10 5 0

f 10 4 0

f 6 10 0

f 4 1 129
```

Conclusão:

Com este trabalho, abordou-se a otimização relativa ao fluxo em grafos, que pode ser aplicado a inúmeras situações, desde a previsão de caminhos mais curtos num GPS até à arquitetura de uma rede de saneamento numa cidade.

Concluímos o trabalho com maior confiança no nosso domínio deste tema e com ideias de possíveis formas de o aplicar em específico à área do software, pois vê-se próxima de campos como a análise de dados e inteligência artificial.