Short CAGD

Ida Hönigmann

I. GENERAL

Definition 1 (Combinations).

Linear Combination	$\sum_{i=1}^{n} \lambda_i v_i$	$v_i \in \mathbb{R}^d, \lambda_i \in \mathbb{R}$
Affine Combination	$\sum_{i=1}^{n-1} \lambda_i v_i$	above and $\sum_{i=1}^{n} \lambda_i = 1$
Convex Combination	$\sum_{\substack{i=1\\ \sum_{i=1}^{n} \lambda_i v_i\\ \sum_{i=1}^{i} \lambda_i v_i}}^{n} \lambda_i v_i$	above and $\forall i: \lambda_i \geq 0$

Definition 2 (Affine Transformation).

$$\alpha:\mathbb{R}^n\to\mathbb{R}^m \text{ with }$$

$$\exists l:\mathbb{R}^n\to\mathbb{R}^m \text{ ... linear } \exists v\in\mathbb{R}^m:\alpha(x)=l(x)+v$$

Definition 3 (Convex Set, Convex Hull).

$$M...convex \iff \forall x, y \in M \forall t \in [0, 1] : tx + (1 - t)y \in M$$
$$conv(M) := \{ \sum_{i=0}^{n} \lambda_i v_i : v_i \in M, \lambda_i \ge 0, \sum_{i=0}^{n} \lambda_i = 1, n \in \mathbb{N} \}$$

Definition 4 (Described by Same Parameter). ϕ is described over f, \tilde{f} by the same parameter, iff f, \tilde{f} ... bij.

$$\phi: f(U) \to \tilde{f}(U), x \mapsto \tilde{f} \circ f^{-1}(x)$$

II. PARAMETERIZED CURVES

Definition 5 (Tangential Vector, Velocity).

$$tangent := \dot{c}(t)$$
 $vel := ||\dot{c}(t)||$

Definition 6 (Regular, Singular).

$$regular \iff \dot{c}(t) \neq 0 \quad singular \iff \dot{c}(t) = 0$$

Definition 7 (Curvature, Torsion).

$$\begin{split} \kappa(t) &:= \frac{\det(\dot{c}(t), \ddot{c}(t))}{||\dot{c}(t)||^3} & \quad \textit{for } c: I \to \mathbb{R}^2 \\ \kappa(t) &:= \frac{||\dot{c}(t) \times \ddot{c}(t)||}{||\dot{c}(t)||^3} & \quad \textit{for } c: I \to \mathbb{R}^3 \\ \tau(t) &:= \frac{\det(\dot{c}(t), \ddot{c}(t), \ddot{c}(t))}{||\dot{c}(t) \times \ddot{c}(t)||^2} & \quad \textit{for } c: I \to \mathbb{R}^3 \end{split}$$

Definition 8 (Vertex). c(t) with $\dot{\kappa}(t) = 0$

Definition 9 (Length).

$$L(c) := \int_{I} ||\dot{c}(t)|| dt$$

Definition 10 (Isometric = Preserving Length).

$$\forall c: I \to M: L(\phi(c)) = L(c)$$

III. BEZIER CURVES

Algorithm 1 (of de Casteljou).

$$b_i^0(t) := b_i$$
 $b_i^j(t) := (1-t)b_i^{j-1}(t) + tb_{i+1}^{j-1}(t)$ $b(t) := b_0^n(t)$

Definition 11 (Bernstein Polynomials).

$$B_i^n(t) := \binom{n}{i} t^i (1-t)^{n-i} \in \mathbb{R}[t]$$

Theorem 1 (Bernstein Representation of Bezier Curve).

$$b_i^j(t) = \sum_{l=0}^{j} B_l^j(t) b_{i+l}$$

Proof. Induction over j using the fact that $B_l^j(t)=(1-t)B_l^{j-1}(t)+tB_{l-1}^{j-1}(t).$

Lemma 1 (Properties of Bernstein Polynomials).

$$\sum_{i=1}^{n} B_i^n(t) = 1$$

$$t \in [0,1] \implies B_i^n(t) \ge 0$$

$$B_i^n(\alpha t) = \sum_{j=0}^{n} B_i^j(\alpha) B_j^n(t)$$

 $\{B_0^n(t),...,B_n^n(t)\}$ forms a basis of Π_n

Lemma 2 (Endpoint Interpolating).

$$b(0) = b_0 \qquad \qquad b(1) = b_n$$

Lemma 3 (Tangent of Bezier Curves).

$$\dot{b}(t) = n(b_1^{n-1}(t) - b_0^{n-1}(t))$$

Proof. Calculation using the fact that $\frac{d}{dt}B_i^n(t) = n(B_{i-1}^{n-1}(t) - B_i^{n-1}(t)).$

Theorem 2 (Invariant under Affine Transformations).

$$\alpha(b(t)) = \sum_{i=0}^{n} B_i^n(t)\alpha(b_i)$$

Theorem 3 (Bezier Curve is in Convex Hull).

$$t \in [0,1] \implies b(t) \in conv(\{b_0,...,b_n\})$$

Theorem 4 (Bezier Curve is Symmetric).

$$b(t)$$
 from points $b_0, ..., b_n$ $\tilde{b}(t)$ from points $b_n, ..., b_0$ $\implies b(t) = \tilde{b}(1-t)$

Theorem 5 (Sub-division property).

$$\tilde{b}(t) := b(\alpha t)$$
 $\hat{b}(t) := b((1 - \alpha)t + \alpha)$

Then

$$\tilde{b}$$
 from points $b_0^0(\alpha), ..., b_0^n(\alpha)$
 \hat{b} from points $b_0^n(\alpha), b_1^{n-1}(\alpha), ..., b_n^0(\alpha)$

and "gluing" them together results in b(t).

Theorem 6. Every polynomial curve is a Bezier curve.

Theorem 7 (Corner-cutting).

$$P_0 := (b_0, ..., b_n)$$
 $P_n :=$ sub-divide n times with $n = 1/2$ $\implies P_n \to b(t)$

IV. B-SPLINE AND NURBS

Definition 12 (B-Spline). Composition of Bezier Curves.

Definition 13 (B-Spline Base Functions).

$$\alpha_i^r(t) := \begin{cases} \frac{t - t_i}{t_{i+r} - t_i} & t_{i+r} - t_i \neq 0, \\ 0, & \textit{else} \end{cases}$$

$$N_i^0(t) := \begin{cases} 1, & t \in [t_i, t_{i+1}) \\ 0, & \textit{else} \end{cases}$$

 $N_i^r(t) := \alpha_i^r(t) N_i^{r-1}(t) + (1 - \alpha_i^r(t)) N_{i+1}^{r-1}(t)$

Lemma 4 (Properties of B-Spline Base Functions).

$$\sum_{i=0}^{m} N_i^n(t) = 1 \qquad N_i^n(t) \ge 0$$

Theorem 8 (B-Spline Representation). m ... number control points, n ... degree, $T=(t_0,...,t_{m+n+1})$... knot vector with $t_i \leq t_{i+1}, \ t_i < t_{i+n+1}$

$$s(t) = \sum_{i=0}^{m} N_i^n(t)c_i$$

Definition 14 (NURBS). Construction by:

- 1) homogenize control points
- 2) scale by weight
- 3) construct B-Spline
- 4) project back onto $1 \times \mathbb{R}^d$
- 5) dehomogenize

Lemma 5. B-Spline curve with m = n is a Bezier curve. NURBS with $w_i = w$ is a B-Spline.

Remark 1. w_i bigger \implies curve is attracted towards c_i .

Remark 2. NURBS can construct conic sections (such as circles).

Lemma 6. B-Spline and NURBS are both affine invariant.

V. FREE FORM SURFACES

Definition 15 (Free Form Surface). $b_{00}, b_{01}, ..., b_{mn} \in \mathbb{R}^d,$ $g(s) = \sum_{i=0}^m D_i(s) p_i, \ h(t) = \sum_{j=0}^n E_j(t) q_j$

$$f(s,t) := \sum_{i=0}^{m} \sum_{j=0}^{n} D_i(s) E_j(t) b_{ij}$$

Remark 3. Many same theorems as in Bezier, B-Spline and NURBS hold.

VI. SUBDIVISION OF CURVES

Algorithm 2 (Chaikin). copy once, average twice

- \rightarrow quadratic B-Spline
- approximating
- affine invariant
- linear precision

Algorithm 3 (Lane-Riesenfeld). copy once, average n times

- \rightarrow B-Spline of degree n
- approximating
- affine invariant
- linear precision

Algorithm 4 (Four Point Scheme). $p_i^0 := p_i$ $p_i^l := -\frac{1}{16}p_{i-1}^{l-1} + \frac{9}{16}p_{i}^{l-1} + \frac{9}{16}p_{i+1}^{l-1} - \frac{1}{16}p_{i+2}^{l-1}$

- $\rightarrow C^1$ curve
- interpolating
- affine invariant
- linear precision

VII. SUBDIVISION OF MESHES

Algorithm 5 (Loop). triangle mesh

Fig. 1. Loop

- $\rightarrow C^2$ in generic (n=6) case
- $\rightarrow C^1$ otherwise
- approximating
- face splitting

Algorithm 6 (Modified Butterfly). triangle mesh

Fig. 2. Modified Butterfly

- $\rightarrow C^1$ surface
- interpolating
- face splitting

Algorithm 7 (Catmull Clark). square mesh

Fig. 3. Catmull Clark

- $\rightarrow C^2$ in generic (n=4) case
- approximating
- face splitting

Algorithm 8 (Doo Sabin). any mesh

Fig. 4. Doo Sabin

- $\rightarrow C^1$ surface
- approximating
- vertex splitting

Algorithm 9 (Kobbelt). square mesh

four point scheme horizontal or vertical, then four point scheme on results

- $\rightarrow C^1$ surface
- interpolating
- face splitting

VIII. CONFORMAL PATTERN MATCHING

Definition 16 (Möbius Transformation). *Composition of reflections on hyper-sphere.*

Definition 17 (Reflection on Sphere).

$$\tilde{\omega} := \frac{r^2}{||\omega||^2} \omega \qquad \qquad \tilde{0} := \infty \qquad \qquad \tilde{\infty} := 0$$

Definition 18 (Cross Ratio).

$$DV(a,b,c,d) := \frac{(a-b)(c-d)}{(b-c)(d-a)} \in \mathbb{C}$$

Theorem 9. Cross Ratio is invariant under Möbius transformations.

Theorem 10. Möbius transformations preserve angles (=conformal) and circles.

Definition 19 (Discrete Metric).

$$L: E \to \mathbb{R}_{>0}$$

$$\forall f \in F : l_{ij} \leq l_{jk} + l_{ki}, l_{jk} \leq l_{ki} + l_{ij}, l_{ki} \leq l_{ij} + l_{jk}, l_{ij} = l_{ji}$$

Definition 20 (Discrete Conform Equivalent). T, \tilde{T} .. combinatorial equivalent triangle meshes with

$$\exists \lambda : E \to \mathbb{R}_{\geq 0} \forall (i,j) \in E : \tilde{l}_{ij} = \lambda_i \lambda_j l_{ij}$$

Definition 21 (Length Cross Ratio).

$$LDV(v_i, v_j, v_k, v_m) := \frac{l_{ij}l_{km}}{l_{jk}l_{mi}}$$

Lemma 7. $(T,l), (\tilde{T},\tilde{l})$ are discrete conformal equivalent, iff $LDV(v_i,v_j,v_k,v_m) = LDV(\tilde{v}_i,\tilde{v}_j,\tilde{v}_k,\tilde{v}_m)$

Lemma 8. T ... triangle mesh, $l_{ij} := ||v_i - v_j||$, m ... Möbius transformation, then T, m(T) are discrete conformal equivalent.

Theorem 11. Let T be a triangle mesh and $\Phi_i \geq 0 \forall i \in V$. There exists a discrete conformal equivalent triangle mesh \tilde{T} , such that the sum of interior angles is $\Phi_i \forall i \in V$.

Proof. There is a function E(u) with $\frac{dE(u)}{du_i} = \Phi_i - \sum_{jk \in star(i)} \alpha^i_{jk}$, that can be extended to be a convex function on $\mathbb{R}^{\#V}$. Finding the critical points, that exist as E(u) is convex, gives us the equivalent mesh \tilde{T} .