#### Lect-05

#### **Connected Components**

By Hizbullah Khattak

#### The Heaviest Stone



There are *n* stones of different weights.
An expert knows the weights and wants to convince the court that a particular stone is the

heaviest one. For this, he repeatedly uses a pan balance to compare the weights of some two stones. What is the minimum number of comparisons required?

### Guarini Puzzle, Revisited



can we check this automatically instead of manually?

#### Hm...

- What do these two unrelated puzzles have in common?
- They both can be solved by analyzing connected components of an underlying graph!

#### **Outlines**

- Connected Components
- Guarini Puzzle: Problem
- Lower Bound
- The Heaviest Stone
- Directed Acyclic Graphs
- Strongly Connected Components













### **Connected Graphs**

- Consider an undirected graph
- Two nodes are connected, if there is a path between them
- It is transitive: if u and vare connected and vand ware connected, then u and ware connected, too
- A graph is connected, if any two of its nodes are connected. In other words, there is a path between any two of its nodes

### **Connected Components**

The nodes of any undirected graph can be partitioned into subsets called connected components:

- Any node belongs to exactly one connected component
- Any two nodes from the same connected component are connected
- Any two nodes from different connected components are not connected











### Revisiting the Guarini Puzzle





Given two configurations, check whether one is reachable from the other one

# **Graph of Configurations**

- Consider a graph where the set of nodes is the set of all configurations, i.e., all possible 3 × 3 boards with two white knights and two black knights
- Join two nodes by an edge if their configurations are within a single move from each other

# **Graph of Configurations**













# **Graph of Configurations**



#### Solution

Then, one configuration is reachable from the other one, if and only if they belong to the same connected component!

#### Lower Bound

#### **Theorem**

An undirected graph G(V, E) has at least |V| - |E| connected components.

- If a graph is connected, then |E| ≥ |V| 1 (indeed, if |E| ≤ |V| 2, then, by the theorem, the graph has at least 2 connected components)
- If |E| = 0, then every node forms a connected component
- The theorem is useless for graphs with  $|E| \ge |V|$

#### **Proof**

- Start with an empty graph (containing no edges)
- Initially, the number of connected components is |V|, it is indeed at least
   |V| |E| = |V|
- Each time when we add a new edge,
   |V| |E| decreases by 1
- At the same time, the number of connected components either decreases by 1 or stays the same

### Illustration



decreases

#### Illustration



decreases

stays the same

#### The Heaviest Stone



There are *n* stones of different weights.
An expert knows the weights and wants to convince the court that a particular stone is the

heaviest one. For this, he repeatedly uses a pan balance to compare the weights of some two stones. What is the minimum number of comparisons required?

### **Upper Bound**

- n-1 comparisons are definitely enough:
  - the expert might compare the heaviest stone with all other n — 1 stones
  - the expert can also order the stones by their weight (w<sub>1</sub> < w<sub>2</sub> < ··· < w<sub>n</sub>) and then perform comparisons w<sub>1</sub> < w<sub>2</sub>, w<sub>2</sub> < w<sub>3</sub>, ..., w<sub>n-1</sub> < w<sub>n</sub>; this will reveal the full order on stones
- but is it optimal?
- yes!

#### **Proof**

- Consider the following graph: nodes are stones, two stones are joined by an edge if they were compared by the expert
- Note that we are not even interested in the results of comparisons performed by the expert
- If there were less than n 1 comparisons, then the graph contains at least two connected components
- But this means that the court is still not sure about the heaviest stone!

### Directed Acyclic Graphs

#### **Definition**

A directed acyclic graph, or simply a DAG, is a directed graph without cycles.





### Citation Graph



## Prerequisite Graph



# Dependency Graph



### Dependency Graph

- Consider the following (directed) dependency graph: nodes are jobs, there is a directed edge from A to B if the job A must be processed before B
- We want to process jobs one by one
- How to find an order of jobs satisfying all constraints?
- If there is a cycle in the graph, then there is no such order
- It turns out that this is the only obstacle: if the graph is acyclic, then there is an ordering of its vertices satisfying all the constraints!

# **Topological Ordering**

#### Definition

A topological ordering of a directed graph is an ordering of its vertices such that, for each edge (u, v), u comes before v.



#### Every DAG can be Oredered

#### Theorem

Every DAG has a topological ordering.

#### **Proof**

- We'll show that every DAG has a sink a node with no outgoing edges
- Take a sink, put it to the end of the ordering, remove it from the graph (this keeps the graph acyclic), and repeat





































#### Every DAG Has a Sink

- Assume that a DAG does not have a sink: for every node, there is at least one outgoing edge
- Start a walk from any vertex:



A contradiction!

# Strongly Connected Components Is This Graph Connected?



- On one hand, this graph is connected: it cannot be "pulled apart"
- On the other hand, it is not connected:
   e.g., there is no path from A to C

#### **Strongly Connected Components**

- In a directed graph, nodes u, vare connected, if there is a path from u to v and a path from v to u
- Nodes of any directed graph can be partitioned into subsets called strongly connected components (SCCs):
  - every node belongs to exactly one SCC
  - nodes from the same SCC are connected
  - nodes from different SCCs are not connected





