2022-23 Second Semester MATH1063 Linear Algebra II (1003)

Assignment 8 Suggested Solutions

(b) For
$$A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$
, $\det(A - \lambda I_n) = -(3 - \lambda)^2 (3 + \lambda) = 0$.

$$\rightarrow \lambda_1 = \lambda_2 = 3, \lambda_3 = -3.$$

For
$$\lambda=3$$
, eigenvectors: $\vec{v}_1=\begin{bmatrix}2\\0\\1\end{bmatrix}$, $\vec{v}_2=\begin{bmatrix}0\\2\\1\end{bmatrix}$.

For
$$\lambda = -3$$
, eigenvector: $\vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$.

Let
$$P = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
 and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$, then $A = PDP^{-1}$. Notice that A is

Remark: Since \vec{v}_1 and \vec{v}_2 are both eigenvectors relating to $\lambda = 3$, their linear combinations are also eigenvectors of A corresponding to $\lambda = 3$. By performing Gram-Schmidt process on $\{\vec{v}_1, \vec{v}_2\}$, we obtain two orthonormal eigenvectors

2. If A has a singular value decomposition $U\Sigma V^T$, then A^T has a singular value decomposition as $V\Sigma^T U^T$. The matrices Σ and Σ^T have the same nonzero diagonal elements. Thus A and A^T have the same nonzero singular values.

3. The eigenvalues of A^TA are $\lambda_1 = 16$ and $\lambda_2 = 4$ with $\lambda_1 \geq \lambda_2$ since

$$A^{T}A = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 3 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}, \quad \det(A^{T}A - \lambda I) = (16 - \lambda)(4 - \lambda) = 0.$$

Thus the singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 4$ and $\sigma_2 = \sqrt{\lambda_2} = 2$.

For $\lambda_1 = 16$, an eigenvector is $\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. For $\lambda_2 = 4$, an eigenvector is $\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Let
$$\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{4\sqrt{2}} \begin{pmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $\mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

Since \mathbf{u}_3 and \mathbf{u}_4 are orthonormal vectors in $N(A^T)$, take $\mathbf{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{u}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

Thus,

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}.$$

4. Columns in V which are related to nonzero singular values form an orthonormal basis for $\operatorname{Col}(A^T)$: $\mathbf{v}_1 = \frac{1}{3}(2,2,1)^T, \mathbf{v}_2 = \frac{1}{3}(-2,1,2)^T.$

Columns in V that belong to zero singular values form an orthonormal basis for N(A): $\mathbf{v}_3 = \frac{1}{3}(1, -2, 2)^T$.

Columns in U which belong to nonzero singular values form an orthonormal basis for Col(A): $\mathbf{u}_1 = \frac{1}{2}(1, 1, 1, 1)^T$, $\mathbf{u}_2 = \frac{1}{2}(1, -1, -1, 1)^T$.

Columns in U which belong to zero singular values form an orthonormal basis for $N(A^T)$: $\mathbf{u}_3 = \frac{1}{2}(1, -1, 1, -1)^T, \mathbf{u}_4 = \frac{1}{2}(1, 1, -1, -1)^T.$

- 5. If A is a symmetric matrix, then $A^TA = A^2$. Thus the eigenvalues of A^TA are $\lambda_1^2, \lambda_2^2, \cdots, \lambda_n^2$. The singular values of A are the positive square roots of the eigenvalues of A^TA .
- 6. If σ is a singular value of A, then let \mathbf{x} be an eigenvector of A^TA corresponding to its eigenvalue σ^2 . It follows that

$$A^{T}A\mathbf{x} = \sigma^{2}\mathbf{x} \rightarrow \mathbf{x}^{T}(A^{T}A\mathbf{x}) = \mathbf{x}^{T}(\sigma^{2}\mathbf{x}) = \sigma^{2}\mathbf{x}^{T}\mathbf{x}$$
$$\|A\mathbf{x}\|^{2} = \sigma^{2}\|\mathbf{x}\|^{2} \rightarrow \sigma = \frac{\|A\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$$