

CSE211 - Formal Languages and Automata Theory

U1L10 - e-NFA to DFA Conversion

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
- E-closure of a state in e-NFA
- Example for identifying e-closure
- Equivalence of FAs
- Converting e-NFA to DFA
- Eliminating epsilon from e-NFA
- Example for e-NFA to DFA conversion

- Epsilon-Closures (ε-closures)
 - We have to define the ϵ -closure to define the extended transition function for the ϵ -NFA
 - The " ϵ -closure" of a state q is a set by following all transitions out of q that are labeled ϵ
 - Formal recursive definition of the set ECLOSE(q) for q:
 - State q is in ECLOSE(q) (including the state itself);
 - If p is in ECLOSE(q), then all states accessible from p through paths of ε 's are also in ECLOSE(q)

- Epsilon-Closures
 - ε-closure for a set of states *S*:

$$ECLOSE(S) = \bigcup_{q \in S} ECLOSE(q)$$

■ Example 2.19

- \blacksquare ECLOSE(1) = {1, 2, 3, 4, 6}
- ECLOSE({3, 5}) = ECLOSE(3)UECLOSE(5) = {3, 6}U{5, 7} = {3, 5, 6, 7}

- Extended Transitions & Languages for ε-NFA's
 - Induction: if w = xa, then (q, w) is computed as:

If
$$(q, x) = \{p_1, p_2, ..., p_k\}$$
 and $\delta(p_i, a) = \{r_1, r_2, ..., r_m\}$,
then $(q, w) = \text{ECLOSE}(\{r_1, r_2, ..., r_m\})$.

■ Computing \hat{s} (q_0 , 5.6) for ε -NFA

- Compute $\hat{\delta}$ (q₀, 5)
- Compute $\hat{\delta}(q_0, 5.)$
- Compute $\hat{\delta}$ (q₀, 5.6)

■ Computing \hat{s} (q_0 , 5.6) for ε -NFA

•
$$\hat{\delta}$$
 $(q_0, \varepsilon 5) = \text{ECLOSE}(\delta(q_0, 5) \cup \delta(q_1, 5))$
= $\text{ECLOSE}(\{q_1, q_4\}) = \text{ECLOSE}(\{q_1\}) \cup \text{ECLOSE}(\{q_4\})$
= $\{q_1, q_4\}$

- Eliminating ε-Transitions
 - The ε -transition is good for design of FA, but for implementation, they have to be eliminated
 - Given an ε-NFA, we can find an equivalent DFA (a theorem seen later).
 - Let $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$ be the given ε -NFA, the equivalent DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ is constructed as follows

■ Q_D is the set of subsets of Q_E , in which each accessible is an ε -closed subset of Q_E , i.e., are sets $S \subseteq Q_E$ such that S = ECLOSE(S).

In other words, each ε -closed set of states, S, includes those states such that any ε -transition out of one of the states in S leads to a state that is also in S.

- $q_D = ECLOSE(q_0)$ (initial state of D)
- $F_D = \{S \mid S \in Q_D \text{ and } S \cap F_E \neq \emptyset \}$ (continued in the next page)

- $\delta_D(S, a)$ is computed for each a in Σ and each S in Q_D in the following way:
 - Let $S = \{p_1, p_2, ..., p_k\}$
 - Compute $\delta(p_i, a)$ and let this set be $\{r_1, r_2, ..., r_m\}$
 - Set $\delta_D(S, a) = \text{ECLOSE}(\{r_1, r_2, ..., r_m\})$ $= \text{ECLOSE}(\bigcup_{i=1}^k \delta(p_i, a))$
- Technique to create accessible states in DFA D:
 - starting from the start state q_0 of ϵ -NFA E, generate ECLOSE(q_0) as start state q_D of D;
 - from the generated states to derive other states.

- = ECLOSE (q_0) = $\{q_0, q_1\}$ Start state q_D
- $\delta_D(\{q_0, q_1\}, +) = \text{ECLOSE}(\delta_E(q_0, +) \cup \delta_E(q_1, +))$
 - = $ECLOSE(\lbrace q_1 \rbrace \cup \varphi) = ECLOSE(\lbrace q_1 \rbrace) = \lbrace q_1 \rbrace, \dots$
- = ECLOSE($\delta_{\varepsilon}(q_0, 0) \cup \delta_{\varepsilon}(q_1, 0)$) • $\delta_D(\{q_0, q_1\}, 0)$
 - = ECLOSE $(\phi \cup \{q_1, q_4\})$ = ECLOSE $(\{q_1, q_4\})$ = $\{q_1, q_4\}$, ...
- $= ECLOSE(\delta_{\varepsilon}(q_0, .) \cup \delta_{\varepsilon}(q_1, .)) = \{q_2\}$ • $\delta_{D}(\{q_{0}, q_{1}\}, .)$

- $\delta_D(\{q_1\}, 0) = \text{ECLOSE}(\delta_E(q_1, 0)) = \text{ECLOSE}(\{q_1, q_4\})$ = $\{q_1, q_4\}...$

$$\delta_D(\{q_1\}, 0) = \{q_1, q_4\}...$$

 $\delta_D(\{q_1\}, .) = \{q_2\}$

- $\delta_D(\{q_1, q_4\}, 0) = \text{ECLOSE}(\delta_E(q_1, 0) \cup \delta_E(q_4, 0))$ = $\text{ECLOSE}(\{q_1, q_4\} \cup \phi) = \{q_1, q_4\}...$
- $\delta_D(\{q_1, q_4\}, .) = \text{ECLOSE}(\delta_E(q_1, .) \cup \delta_E(q_4, .)) =$ $\text{ECLOSE}(\{q_2\} \cup \{q_3\}) = \text{ECLOSE}(q_2) \cup \text{ECLOSE}(q_3)$ $= \{q_2\} \cup \{q_3, q_5\} = \{q_2, q_3, q_5\}$

$$\delta_{D}(\{q_{1}, q_{4}\}, 0) = \{q_{1}, q_{4}\}...$$

$$\delta_{D}(\{q_{1}, q_{4}\}, .) = \{q_{2}, q_{3}, q_{5}\}$$

- $\delta_D(\{q_2\}, 0) = \text{ECLOSE}(\delta_E(q_2, 0)) = \text{ECLOSE}(\{q_3\}) = \{q_3, q_5\} \dots$
- $\delta_D(\{q_2, q_3, q_5\}, 0) = \text{ECLOSE}(\delta_E(q_2, 0) \cup \delta_E(q_3, 0) \cup \delta_E(q_3, 0)) = \text{ECLOSE}(\{q_3\} \cup \{q_3\} \cup \{$

SASTRA ENGINEERING MANAGEMENT LAW SCIENCES HUMANTIES EDUCATION DEEMED TO BE UNIVERSITY (U/S 3 OF THE UGC ACT. 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Converting e-NFA to DFA

• $\delta_D(\{q_3, q_5\}, 0) = \text{ECLOSE}(\delta_E(q_3, 0) \cup \delta_E(q_5, 0)) = \text{ECLOSE}(\{q_3\} \cup \phi)$ = $\text{ECLOSE}(q_3) = \{q_3, q_5\} \dots$

SASTRA ENGINEERING MANAGEMENT LAW SCIENCES HUMANTIES EDUCATION DEEMED TO BE UNIVERSITY (U/S 3 OF THE UGC ACT. 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Converting e-NFA to DFA

$$\delta_D(\{q_3, q_5\}, 0) = \{q_3, q_5\} \dots$$

Final equivalent DFA is...

Theorem

Theorem 2.22

- A language L accepted by some ε-NFA if and only if L is accepted by some DFA
- Proof: see the textbook yourself.

Summary

- Equivalence of FAs
- Converting e-NFA to DFA
- Eliminating epsilon from e-NFA
- Example for e-NFA to DFA conversion

Review

3 Types of Automata

- DFA ---good for soft/hardware implementation
 - $\delta: \mathcal{Q} \times \Sigma \to \mathcal{Q}$ is the transition function
- NFA ---intermediately intuitive
 - $\delta: \mathcal{Q} \times \Sigma \to 2^{\mathcal{Q}}$ is the transition function
- ε-NFA ---most intuitive
 - $\delta: \mathcal{Q} \times \Sigma \cup \{\epsilon\} \rightarrow 2^{\mathcal{Q}}$ is

the transition function

SASTRA ENGNEERIG- MANAGENIN'-LAW- SCIENCES - HUMANITIES - EDUCATION DEEMED TO BE USIN' VERSITY (U/S 3 OF THE UGC ACT. 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Summary

- What is Non-deterministic Finite Automata(NFA)?
- Examples for NFA
- Definition of NFA
- Epsilon-NFA
- E-closure of a state in e-NFA
- Example for identifying e-closure

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Converting NFA or e-NFA to DFA

THANK YOU.