

TODAY'S AGENDA

- (1) Gathering data to make it tidy
- 2 Factors for categories
- 3 Setting up projects, getting data into R

But first...

Subset Variables (Columns)

FIGURE 3.9: Diagram of select() columns.

```
flights %>%
    select(carrier, flight)
```

```
flights_no_year <- flights %>%
select(-year)
```

What is tidy data?

Each variable is a column

Each observation is a row

Data is "long", not "wide"

Extremely untidy

Country	Beer servings	Wine servings	Spirit servings
Canada	240	122	100
South Korea	140	16	9
USA	249	128	84
Key			
North America			
Asia			
Surprisingly hig	h		
Surprisingly low			

Tidy

.....

.....

Country	Type	Servings	Continent	Surprise
Canada	Beer	240	North America	High
South Korea	Beer	140	Asia	NA
USA	Beer	249	North America	High
Canada	Wine	122	North America	NA
South Korea	Wine	16	Asia	Low
USA	Wine	128	North America	NA
Canada	Spirits	100	North America	NA
South Korea	Spirits	9	Asia	Low
USA	Spirits	84	North America	NA

Untidy data

Average stats for each Pokemon type

```
``{r pokemon-type-stats}
type_power =
  pokemon %>%
  group_by(type1) %>%
  summarise(attack = mean(attack),
            hp = mean(hp),
            defense = mean(defense),
            speed = mean(speed))
type_power
```

Untidy data

.....

.....

type1 <chr></chr>	attack <dbl></dbl>	hp <dbl></dbl>	defense <dbl></dbl>	speed <dbl></dbl>
bug	70.12500	56.72222	70.84722	63.56944
dark	87.79310	72.55172	70.51724	75.31034
dragon	106.40741	79.85185	86.25926	76.11111
electric	70.82051	60.51282	61.82051	85.41026
fairy	62.11111	73.94444	68.16667	53.66667
fighting	99.17857	71.42857	66.39286	64.28571
fire	81.50000	68.73077	67.78846	73.34615
flying	66.66667	68.00000	65.00000	99.66667
ghost	72.74074	63.37037	79.51852	58.33333
grass	73.76923	65.35897	70.87179	59.02564

.....

Untidy data

Say I want to make the plot below:

How?

ggplot(type_power, aes(x = ???, y = ???, fill = ???)) + geom_col(position = "dodge")

type1 <chr></chr>	attack <dbl></dbl>	hp <dbl></dbl>	defense <dbl></dbl>	speed <dbl></dbl>
bug	70.12500	56.72222	70.84722	63.56944
dark	87.79310	72.55172	70.51724	75.31034
dragon	106.40741	79.85185	86.25926	76.11111
electric	70.82051	60.51282	61.82051	85.41026
fairy	62.11111	73.94444	68.16667	53.66667
fighting	99.17857	71.42857	66.39286	64.28571
fire	81.50000	68.73077	67.78846	73.34615
flying	66.66667	68.00000	65.00000	99.66667
ghost	72.74074	63.37037	79.51852	58.33333
grass	73.76923	65.35897	70.87179	59.02564

Can't be done

Need one variable, "average" for y-axis

But I have averages for 4 Pokemon stats

I need *one* variable, "stat", with values "attack, defense, speed, hp"

type1 <chr></chr>	stat <chr></chr>	average <dbl></dbl>
bug	attack	70.12500
dark	attack	87.79310
dragon	attack	106.40741
electric	attack	70.82051
fairy	attack	62.11111
fighting	attack	99.17857
fire	attack	81.50000
flvina	attack	66.66667

We need long data

attack <dbl></dbl>	hp <dbl></dbl>	defense <dbl></dbl>	speed
		\ubiz	<dbl></dbl>
70.12500	56.72222	70.84722	63.56944
87.79310	72.55172	70.51724	75.31034
.06.40741	79.85185	86.25926	76.11111
70.82051	60.51282	61.82051	85.41026
62.11111	73.94444	68.16667	53.66667
99.17857	71.42857	66.39286	64.28571
81.50000	68.73077	67.78846	73.34615
66.66667	68.00000	65.00000	99.66667
72.74074	63.37037	79.51852	58.33333
73.76923	65.35897	70.87179	59.02564
	87.79310 .06.40741 70.82051 62.11111 99.17857 81.50000 66.66667 72.74074	87.7931072.55172.06.4074179.8518570.8205160.5128262.1111173.9444499.1785771.4285781.5000068.7307766.6666768.0000072.7407463.37037	87.79310 72.55172 70.51724 .06.40741 79.85185 86.25926 70.82051 60.51282 61.82051 62.11111 73.94444 68.16667 99.17857 71.42857 66.39286 81.50000 68.73077 67.78846 66.66667 68.00000 65.00000 72.74074 63.37037 79.51852

type1	stat	average
<chr></chr>	<chr></chr>	average <dbl></dbl>
bug	attack	70.12500
dark	attack	87.79310
dragon	attack	106.40741
electric	attack	70.82051
fairy	attack	62.11111
fighting	attack	99.17857
fire	attack	81.50000
flying	attack	66.66667
ghost	attack	72.74074
grass	attack	73.76923

Wide vs. Long

Wide

religion	<\$10k	\$10-20k	\$20–30k	\$30–40k	\$40–50k	\$50–75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Long

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100–150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

"Gathering" data from wide to long

Ordered categories

	clean_test	n
	<chr></chr>	<int></int>
1	dubious	142
2	men	194
3	notalk	514
4	nowomen	141
5	ok	803

Ordered categories

What if we wanted the plot to reflect order of test?

	clean_test	n	
	<chr></chr>	<int></int>	
1	dubious	142	
2	men	194	
3	notalk	514	
4	nowomen	141	
5	ok	803	

Factors

Factors let us impose order on categories

Levels: nowomen < notalk < men < dubious < ok

Two most common ways of using factors

By hand

```
factor(variable, levels = c("first", "second", ...))
```

Order by frequency of value

fct_infreq(variable)

Order by another variable

fct_reorder(variable, 2nd variable)

Projects and working directories

Everything on your computer has a location

The location has an "address" called a file path

You can find the path for any file via right-click, info

/Users/JuamnTellez/Dropbox/poli-301/lectures/07-projects.key

Projects and working directories

Most times we use data that lives in our computer

How does R know where it is?


```
# read data
movies = read_csv("Data/movies.csv")

# clean up movie data
movies_clean =
    movies %>%
    # exclude movies made before 1980
    filter(year >= 1980) %>%
    # create a column called profit = gross - budget
    mutate(profit = gross - budget) %>%
    # download by million to get profit in millions
    mutate(profit = profit/1000000)
movies_clean
    ...
```

Projects and working directories

Rstudio projects help keep you organized

Keep projects in one folder

They establish a working directory (a point of reference) for your file paths

/Users/JuamnTellez/Dropbox/poli-301/problem-sets/answers/ps1/Data/movies.csv

VS

Data/movies.csv

Make new project for each homework

Put it somewhere you can find!

Workflow

Make a folder for data

Double-click on .Rproj file to start coding