Monte Carlo Sampling Methods Homework 4

Zihan (Steven) Zhang

November 17, 2022

I have consulted and discussed the materials with Qianyu Zhu.

1 Exercise 39

In the simplest realization of the partial resampling principle, the transition of the Markov chain is drawn directly and independently from a conditional distribution:

$$p(t+1, y_{j_t}|t, x) = \pi(y_{j_t})$$
(1)

Markov chains of this type are called *Gibbs samplers*, in which samples are drawn independently from a conditional distribution of π . However, it is not applicable unless the coordinates can be chosen so that the conditional distribution of each component is very simple, like Gaussian. In this question, we aim to use a Gibbs sampler to generate samples of the Ising model and plot the histogram of the values of the magnetization:

$$f(\sigma) = \sum_{\vec{i} \in \mathbb{Z}_I^2} \sigma_{\vec{i}} \tag{2}$$

Also, following the lecture note, if we consider a vector σ indexed on the periodic 2-dimensional lattice \mathbb{Z}_L^2 and with values in $\{-1,1\}$. If we assign the density:

$$\pi(\sigma) = \frac{e^{\beta \sum_{\vec{i} \leftrightarrow \vec{j}} \sigma_{\vec{i}} \sigma_{\vec{j}}}}{\mathcal{Z}} \tag{3}$$

to the σ variables, this becomes the Ising model of statistical physics. Here $\vec{i}, \vec{j} \in \mathbb{Z}_L^2$ and $\vec{i} \leftrightarrow \vec{j}$ indicate that \vec{i} and \vec{j} are neighboring sites on the lattice. The constant $\beta > 0$ is related to a physical temperature via $k_B T = \beta^{-1}$ where k_B is the Boltzmann constant. Thus:

$$\pi(\sigma_{\vec{i}_t}|\sigma_{|\vec{i}_t|}) = \omega_+ \delta(\sigma_{\vec{i}_k} - 1) + \omega_- \delta(\sigma_{\vec{i}_k} + 1). \tag{4}$$

where:

$$w_{+} = \frac{e^{\beta \sum_{\vec{i} \leftrightarrow \vec{j}} \sigma_{\vec{i}}}}{e^{\beta \sum_{\vec{i} \leftrightarrow \vec{i}_{t}} \sigma_{\vec{i}}} + e^{-\beta \sum_{\vec{i} \leftrightarrow \vec{i}_{t}} \sigma_{\vec{i}}}}$$
(5)

and:

$$w_{-} = \frac{e^{-\beta \sum_{\vec{i} \leftrightarrow \vec{i}_{t}} \sigma_{\vec{i}}}}{e^{\beta \sum_{\vec{i} \leftrightarrow \vec{i}_{t}} \sigma_{\vec{i}}} + e^{-\beta \sum_{\vec{i} \leftrightarrow \vec{i}_{t}} \sigma_{\vec{i}}}}$$
(6)

We take $L=10, \beta=0.1$, and the maximum number of iterations is 10^6 for both the random and ordered flip positions and compute the integrated autocorrelation time for the magnetization. In Figure 1, we respectively select i randomly or sweep through the lattice deterministically. Both results of the magnetization of lattice approximated are like Gaussian random variables. However, the results are only reliable when $\beta<0.441$.

Firstly, we fix other parameters and use different lattice sizes from 5 to 30. Too large L would require a huge amount of iterations and exponentially increase the computation costs. Figure 2 describes the quadratic relationship between autocorrelation time and lattice dimension L for both randomized and structured Gibbs. The structured Gibbs has a faster convergence speed by a nearly constant factor.

Secondly, we fix other parameters and change the temperature. Figure 3 shows the inverse relationship between temperature T and ACT when $\beta < 0.441$. Similarly, the structured Gibbs sampler converges faster than the randomized version. Also, as β gradually grows, ACT would firstly increase, decrease, and then oscillate. Theoretically, ACT should increase exponentially with β . As previously mentioned, when $\beta > 0.441$, the results become unreliable since it becomes hard for

Figure 1: Examples of randomized Gibbs sampler (left) and structured Gibbs sampler (right).

Figure 2: The quadratic relationship between autocorrelation time (ACT) and lattice dimension L.

the chain to jump from one magnetization into another, as shown in Figure 4. When $\beta=0.1$, the magnetization is evenly distributed around 0. When $\beta=0.46$, the magnetization is always negative and changes in the sign very rarely when β is beyond the threshold, which would lead to a longer ACT time. Thus, when β increases and the chain's length is relatively short, the magnetization would have a smaller variance until the magnetization change sign.

2 Exercise 42

From Example 22 in the lecture note, considering the Ising model and suppose we are constructing a chain $X^{(k)}$ with values in the set of $L \times L$ matrices with entries $\{-1,1\}$, and that, at each step of the chain $Y^{(k+1)}$ corresponds to flipping the sign of a single entry of $X^{(k)}$. Suppose that the index of the spin at which a sign flip is proposed at step k is \vec{i}_k , then:

$$\frac{\pi\left(Y^{(k+1)}\right)}{\pi\left(X^{(k)}\right)} = e^{-4\beta X_{\vec{i}_k}(k)\sum_{\vec{j}\leftrightarrow\vec{i}_k}X_{\vec{j}}(k)} \tag{7}$$

Thus, we need only sum the spins of the neighbors of \vec{i}_k , an operation much less costly than the $\mathcal{O}(L^2)$ operations required to evaluate π itself (ignoring the normalization constant which we do not need to know). Similar to Example 22, if the proposal is flipping the sign at $A[\vec{i}, \vec{j}]$, to achieve detailed balance, the acceptance rate is:

$$\min\left\{1, \frac{\pi(Y^{(t+1)})}{\pi(X^{(t)})}\right\} = \min\left\{1, e^{-2\beta X_{\vec{i}_k}(k)\sum_{\vec{j}\leftrightarrow\vec{i}_k} X_j(k)}\right\}$$
(8)

Figure 3: For $\beta < 0.441$ (red vertical line), the autocorrelation time increases with β , scaled inverse of temperature.

Figure 4: Relationship between magnetization and iteration when $\beta = 0.1$ and = 0.5 respectively.

When we fix the lattice size L=10 and the maximum number of iterations is 10^6 and change β . ACT time would grow exponentially with β , consistent with the Gibbs sampler, as shown in Figure 5. If we fix $\beta=0.1$, there is a quadratic relationship between L and ACT, also consistent with the Gibbs sampler, as shown in Figure 6. Moreover, the ACT for the Metropolis-Hasting algorithm is much smaller than that for randomized & structured Gibbs samplers.

3 Exercise 43

Referred to Section 4.7 in the lecture notes, we follow the procedures of Important MCMC sampling: Firstly generate N independent samples with equal initial weights and $\beta=0$, as unbiased Bernoulli random variables, then for each k, we could design \mathcal{T}_k such that $\pi_{k-1}\mathcal{T}_k=\pi_{k-1}\propto\pi^{(k-1)/N}\tilde{\pi}^{1-(k-1)/N}\propto\pi^{(k-1)/N}$. For Gibbs sampler with β , \mathcal{T}_k is the original transition matrix with $\beta_k=\frac{k-1}{N}\beta$. For Metropolis-Hasting with β , the acceptance rate is $p_k=p^{(k-1)/N}$ and the proposal is symmetric, namely $\beta_k=\frac{k-1}{N}\beta$!. We could then use that \mathcal{T}_k to update every sample in the ensemble. We use the Metropolis Hasting method to update every single sample, meaning that we propose a flip for this sample and accept the proposal with $p=\min\left(1,\frac{\pi_{k-1}(y)}{\pi_{k-1}(x)}\right)$. The weight ω will be used in the next step as $\frac{\pi_k(x)}{\pi_{k-1}(x)}$. To have a better convergence rate, at each kth step, we would make L^2 consecutive proposals for each sample. Thus, to update

Figure 5: Relationship of β and ACT when sampling the 2d-Ising model.

Figure 6: Relationship of L and ACT when sampling the 2d-Ising model.

each weight, we have $W^k \propto W^{k-1} \frac{\pi_k(x)}{\pi_{k-1}(x)} = W^{k-1}(x) \pi^{1/N} \tilde{\pi}^{-1/N} \propto W^{k-1}(x) \pi^{1/N}(x)$. In terms of resampling, we use the systematic resampling technique here. Finally, we could calculate the final magnetization using W^N and the final ensemble with a smaller bias.

Here we use 50 samples and 100 trials to calculate the variance with different values of N from 1 to 15, L = 5, $\beta = 0.2$. The parameters are chosen to make the computational cost not too expensive. Figure 7 shows the results with and without resampling, where the statistical variance decays with N increases. Also, after resampling, the variances largely decrease.

To compare Jarzynski's method and MH or Gibbs sampler, we first declare that Jarzynski's method is unbiased. When k is large, Jarzynski's method with $\pi_k = (\frac{\pi}{\pi})\tilde{\pi}$ will create $W^{(N)}$ such that $\log(W^{(N)}) \to \int V(x)\pi(dx)$, so the variance would vanish when $k \to \infty$. Still, the variance might be large and dominate the error when k is small. However, partial resampling with MH or Gibbs is biased if starting with a sample that is not generated from the target distribution. A longer chain would average out the bias, but when the dimension of lattice (L) or β is large, ACT would blow up, which leads to computational difficulty. In other words, we should use partial resampling with Metropolis-Hasting or Gibbs sampler for a small-scale problem since the bias would decrease when using a longer chain. However, for a large-scale problem, we should implement Jarzynski's method with resmpling which would have a small bias.

Figure 7: Jarzynski's method using Metropolis-Hasting sampling without (left) and with (right) resampling at each step.