Sztochasztikus folyamatok jegyzet

Oktató: Várdainé Kollár Judit

2017

PPKE ITK Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar

Készítette: Jánossy Bálint

Mintaátlag:
$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum\limits_{i=1}^n x_i}{n}$$

Tapasztalati szórásnégyzet:
$$s_n^2 = \frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\ldots+(x_n-\overline{x})^2}{n} =$$

$$\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

Példa1.

Példa2.

Determinisztikus folyamat: Ha bizonyos körülmények együttese fennáll, az egyértelműen meghatározza az esemény folyását. (pl. 1 bar nyomáson a tiszta víz 100 °C fokon forr)

Sztochasztikus folyamat: Valamelyik szükséges körülmény hiányzik, az esemény lefolyása <u>bizonytalanná</u> válik. (pl. x bar nyomáson(x=?) a tiszta víz már nem biztos, hogy 100 °C fokon forr)

Véletlen jelenség: A lefolyását <u>nem</u> határozzák meg egyértelműen a körülmények.

Statisztikai minta: Véges sok, egymástól független, azonos eloszlású valószínűségi változó együttese. $(\xi_1,\xi_2,\ldots,\xi_n)$

Minta nagysága: Minta elemeinek száma. (pl. n=100 rúd, n=70 év

Empirikus(tapasztalati) jellemzők:

- mintaközép/mintaátlag: $\widehat{\xi} = \frac{\xi_1 + \xi_2 + \ldots + \xi_n}{n}$
- szórásnégyzet: $s_n^2 = \frac{\sum\limits_{i=1}^n (\xi_i \widehat{\xi})^2}{n}$

$$\bullet \ \, \textbf{korrigált tapasztalati szórásnégyzet} \colon \, s_n^{*2} = \frac{\sum\limits_{i=1}^n (\xi_i - \widehat{\xi})^2}{n-1} = \frac{n}{n-1} \cdot s_n^2$$

Becsléselmélet: X valószínűségi változó, ismerjük az eloszlás és a sűrűség függvényének a típusát. Ekkor:

$$f(x) = f(x, \Theta_1, \Theta_2, \dots, \Theta_n)$$

Torzítatlan becslés: $\widetilde{\Theta}=\widetilde{\Theta}(x_1,x_2,\ldots,x_n)$ és $E(\widetilde{\Theta})=\Theta$ (ahol $\widetilde{\Theta}$ a mi folyamatunnk, Θ elméletileg)

Megbízhatóság(konfidencia) intervallum: Tfh. $\widetilde{\Theta}$ torzítatlan becslés, Θ ismeretlen. A $[\alpha_1,\alpha_2]$ intervallumot megbízhatósági intervallumnak nevezzük, ha adott $\varepsilon>0$ -ra $P(\alpha_1\leq\Theta\leq\alpha_2)=1-\varepsilon$, ahol $P(\alpha_1\leq\Theta\leq\alpha_2)$ annak a valószínűsége, hogy $\Theta\in [\alpha_1,\alpha_2]$

Maximum-Likelihood módszer: Tfh. $\xi_1, \xi_2, \dots, \xi_n$ független, azonos eloszlású valószínűségi változó, sűrűség függvénye f_{ξ} Ekkor:

$$f_{\xi_1,\xi_2,\dots,\xi_n}(\xi_1,\xi_2,\dots,\xi_n) = \prod_{i=1}^n f_{\xi}(x_i) \xrightarrow{jel.} L(\widetilde{\Theta},x_1,x_2,\dots,x_n)$$

 $L(\widetilde{\Theta}, x_1, x_2, \dots, x_n)$ -t nevezzük Likelihood fv-nek.

Példa3.

Példa4.

Példa5.

Statisztikai hipotézisnek nevezzük a valószínűségi változók eloszlására vagy valamely paraméterére vonatkozó állításokat. (H_0, H_1)

Dönteni akarunk az állítás helyességéről.

 H_0 hipotézisünk, hogy az állítás igaz.

Statisztikai próba feladata, hogy az X valószínűségi változóra vonatkozó statisztikai minta alapján döntsünk a H_0 hipotézisről. H_0 -t vagy elfogadjuk, vagy elutasítjuk/elvetjük.

Statisztikai próba lényege: K kritikus tartomány megvalósítása, úgy hogy H_0 mellett számított $U=u(x_1,\ldots,x_n)$ vagy $T=t(x_1,\ldots,x_n)$ statisztikai érték kis valószínűséggel essen a K tartományba. (feladattól függ, hogy u-t vagy t-t számolunk)

Annak a valószínűségét, hogy H_0 fennáll és a próbastatisztika a K tartományba esik a **próba terjedelmének** nevezzük. (jel.: $P(u \in K) = \alpha$)

Hipotézis vizsgálat menete:

- Mintavétel
- ullet H_0 hipotézis megalkotása, (ebből a) H_1 ellenhipotézis megfogalmazása
- Megadunk $0<\alpha<1$ korlátot, az elsőfajú hiba $(H_0$ -t elvetjük, bár igaz) valószínűségére $(P(u\in K)=\alpha)$
- ullet Konstruálunk egy statisztikai függvényt(próba függvényt) a minta elemeiből, illetve a H_0 hipotézisből
- \bullet Meghatározzuk a próba függvény eloszlását, ha H_0 teljesül
- Az 5. lépésben kapott eloszlás alapján meghatározzuk E (elfogadási), és K(kritikus) tartományokat $(E \bigcup K = R \text{ és } E \bigcap K = \emptyset)$

Az elfogadási tartomány tipikusan lehet:

- $E = [-a_{\alpha}, a_{\alpha}]$
- $E = [-a_{\alpha}, \infty)$
- $E = (-\infty, a_{\alpha}]$

Ha $u \in E(\text{vagy } t \in E)$ elfogadjuk H_0 -t.

Ha $u \in K(\text{vagy } t \in K)$ elutasítjuk H_0 -t, és H_1 -et fogadjuk el.

Elsőfajú hiba: H_0 igaz, de $u \in K$, ezért H_0 -t elvetjük.

Másodfajú hiba: H_0 nem igaz $(H_1$ igaz), mégis $u \in E$, tehát H_0 -t elfogadjuk.

	H_0 -t elfogadjuk	H_0 -t elutasítjuk
H_0 igaz	$\sqrt{}$	elsőfajú hiba
H_0 hamis	másodfajú hiba	

 $(\sqrt{\ }$ = nincs hiba, minden renben)

Az elsőfajú hiba csökkentése a másodfajú hiba növekedésével jár.

u próba:

Adott n elemű minta ξ_1, \ldots, ξ_n , amely $N(m, \sigma)$ eloszlású és független, $\underline{\sigma}$ ismert.

• 1 mintás *u* próba:

$$H_0$$
 hipotézis: $\overline{\xi} = m$. $0 < \alpha < 1$

Kétoldali próba	$H_0: \overline{\xi} = m$ $H_1: \overline{\xi} \neq m$	$E = [a_{-\alpha}, a_{\alpha}]$	
	$H_1: \overline{\xi} \neq m$	$K = \mathbb{R} \setminus [a_{-\alpha}, a_{\alpha}]$	
Egyoldali próba	$H_0: \overline{\xi}=m$	$E = (-\infty, a_{\alpha}]$	
	$H_1: \overline{\xi} > m$	$K = \mathbb{R} \setminus [a_{-\alpha}, \infty)$	
	$H_0: \overline{\xi}=m$	$E = [a_{-\alpha}, \infty)$	
	$H_1: \overline{\xi} < m$	$K = \mathbb{R} \setminus (-\infty, a_{\alpha}]$	

Próba függvény:
$$u = \frac{\overline{\xi} - m}{\sigma / \sqrt{n}}, \ \ N(0, 1)$$

Szignifikancia szint(legtöbbször): $\alpha\cong 0,01;\ 0,05$ vagy 0,1 (elsőfajú hiba nagysága)

• 2 mintás *u* próba:

pl. gyárban 2 futószalag

Függetlennek kell lennie a 2 mintának(pl. nem független, ha 1 futószalag, csak 2 különböző napon)

 ξ_1,\ldots,ξ_{n_1} és η_1,\ldots,η_{n_2} független minták, $N(m_1,\sigma_1)$ és $N(m_2,\sigma_2)$ eloszlásúak, valamint $\sigma_1,\,\sigma_2$ ismert.

Kétoldali próba	$H_0: m_1 = m_2$	$E = [a_{-\alpha}, a_{\alpha}]$
Retoldan proba	$H_1: m_1 \neq m_2$	$K = \mathbb{R} \setminus [a_{-\alpha}, a_{\alpha}]$
Egyoldali próba	$H_0: m_1=m_2$	$E = (-\infty, a_{\alpha}]$
	$H_1: m_1 > m_2$	$K = \mathbb{R} \setminus [a_{-\alpha}, \infty)$
	$H_0: m_1=m_2$	$E = [a_{-\alpha}, \infty)$
	$H_1: m_1 < m_2$	$K = \mathbb{R} \setminus (-\infty, a_{\alpha}]$

Próba függvény:
$$u = \frac{\overline{\xi} - \overline{\eta}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}, \quad N(0, 1)$$

Student féte t próba:

Normális eloszlású valószínűségi változó várható értékékére vonatkozó hipotézis.

A szórás ismeretlen, becsüljük
$$s_n^* = \sqrt{\frac{\sum\limits_{i=1}^n (\xi_i - \widehat{\xi})^2}{n-1}}.$$

• 1 mintás t próba:

$$\xi_1,\dots,\xi_n$$
 eloszlása ismert $N(m,\sigma),\,-\infty < m < \infty;\,\sigma > 0.$ H_0 hipotézis: $E(\xi)=m$ próba függvény(próbastatisztika): $t=\frac{\overline{\xi}-m}{s_n^*/\sqrt{n}}$ Az n elemű mintát $(n-1)$ szabadság fokúnak nevezzük. $P(|t|>t_\alpha)=\alpha$ (egy/két oldali) $1-\alpha$ szignifikancia szinten

• 2 mintás t próba:

$$\xi_1,\dots,\xi_{n_1}$$
 és η_1,\dots,η_{n_2} független minták, σ_1 , σ_2 ismeretlen. Próba függvény: $t_{(n_1-1+n_2-1)}=rac{\overline{\xi}-\overline{\eta}}{\sqrt{(n_1-1){s_1^*}^2+(n_2-1){s_2^*}^2}}\cdot\sqrt{rac{n_1n_2(n_1+n_2-2)}{n_2+n_2}}$ Paraméteres próba eloszlás valamelyik paraméterére vonatkozó hipotézis igazságát vizsgáljuk.

F próba:

 \mathcal{H}_0 hipotézis: 2 minta szórása megegyezik az adott szignifikancia szinten.

$$H_0$$
: $s_{\xi}^* = s_{\eta}^*$

Próbastatisztika:

$$F_{\xi,\eta}^* = \max\left(\frac{s_{\xi}^*}{s_{\eta}^*}; \frac{s_{\xi}^*}{s_{\eta}^*}\right) > 1$$

Ism. u, t próbát alkalmazunk, ha a szórásuk megegyezett.

Fisher féle F próba:

$$\left. egin{array}{ll} x \\ y \end{array}
ight. \left. egin{array}{ll} \text{Normál eloszlású,} & n \text{ db minta} \\ \end{array}
ight. \left. \begin{array}{ll} x \\ y \end{array} \right. \left. \begin{array}{ll} x \\ y \end{array} \right.$$

$$H_0: \sigma_x = \sigma_y$$

 $H_1: \sigma_x \neq \sigma_y$

$$F^* = \frac{\max(s_x^{*2}, s_y^{*2})}{\min(s_x^{*2}, s_y^{*2})} = \frac{f_1}{f_2} \xrightarrow{\quad f_1 \text{ szabadságfoka}(s_x^{*2} > s_y^{*2} \text{sesetén}) : \quad n-1}{\quad f_2 \text{ szabadságfoka}(s_x^{*2} > s_y^{*2} \text{sesetén}) : \quad m-1}$$

$$F_{krit.} < F_{emp.}^* \to H_0$$
-t elvetjük $1-\alpha$ szignifikancia szinten. $F_{emp.}^* < F_{krit.} \to H_0$ -t elfogadjuk.

Eddig paraméteres próbákat néztünk. u,t-nél m volt azonos, F-nél a $\sigma.$

Nem paraméteres póbák: χ^2 próbák

Legyenek ξ_1,ξ_2,\ldots,ξ_n , N(0,1), független valószínűségi változók. Legyen $\eta=\xi_1^2+\ldots+\xi_n^2$. Ekkor η eloszlását n szabadságfokú χ^2 eloszlásnak nevezzük. $E(\eta)=n$ és $D^2(\eta)=2n$

Megjegyzés: Cetrális határeloszlás-tétel alapján nagy n-re a χ^2 eloszlása normális eloszlással közelíthető.

Legyen A_1, \ldots, A_r teljes eseményrendszer ($\sum_{i=1}^r A_i = I$ és $A_i \cap A_j = \emptyset$ ahol $i \neq j$ és I a teljes esemény halmaz).

Vizsgáljuk H_0 -t: $P(A_i) = p_i$. Ahol p_i i = 1, ..., r nevezetes eloszlás. $(\sum_{i=1}^r p_i = 1)$ Ezt a hipotézis vizsgálatot nevezzük χ^2 **próbának**.

Tfh. n kisérlet során A_i ν_i -szer(ν = nű) következik be. $\sum_{i=1}^r \nu_i = n$ ν_i valószínűségi változók binomiális eloszlásúak. $E(A_i) = np_i$

$$P(\nu_1 = k_1, \nu_2 = k_2, \dots, \nu_r = k_r | H_0) \xrightarrow{fln.} P(\nu_1 = k_1) \cdot P(\nu_2 = k_2) \cdot \dots \cdot P(\nu_r = k_r) = \frac{n!}{k_1! k_2! \dots k_r!} p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$$

Ez a Polinomiális eloszlás.

Megj.: Két változó esetén a binomiális eloszlást kapjuk.

$$\chi^{2} = \sum_{i=1}^{r} \frac{(\nu_{i} - np_{i})^{2}}{np_{i}}$$

 H_0 hipotézis akkor igaz, ha $\nu_i \approx np_i$. Azaz, ha χ^2 kicsi, akor jó a próba.

 $\chi^2:r$ db standardizált binomiális eloszlású valószinűségi változók négyzetének összege.

Megj.: A binomiális eloszlás nagy n és kicsi p esetén közelíthető normál eloszlással. (np>10)

$$P(\chi^2 < \chi^2_{r-1}(x)) = 1 - \alpha$$

 $r-1$ szabadságfokú χ^2 eloszlás.

Ahány paraméter becsült az eloszlásból, az annyival csökkenti a szabadságfokát (az r-1-et). (pl. ha becsüljük a λ -t a poisson eloszlásnál, a szabadságfok máris r-2 lesz)

Illeszkedés vizsgálat

Van egy megfigyelt adatunk, és ehhez feltételezünk egy eloszlást.

Megfigyelt valószínűségi változók eloszlása megeggyezik-e az előre megadottal. Lehet diszkrét, vagy folytonos.

Diszkrét

Adott $(x_i, p_i(?))$ eloszlás i = 1, ..., k valamint $q_i(?) = P(X = x_i)$

Megfigyelés: ξ_i, \dots, ξ_n valószínűségi változók függetlenek és azonos eloszlásúak. Jelöljük q_1, \ldots, q_k -val az eloszlásuk. (Azt adják meg, hogy x_i -t milyen valószínűséggel

 $\nu_i = \{m: \xi_m = x_i\}$ (Megadja, hogy a megfigyelés során hányszor vette fel az elméleti értéket)

 $H_0: q_i = p_i$ azaz a két eloszlás megegyező $\forall i = 1, \dots, r$ -re.

 $H_1: q_i \neq p_i$ legalább egy *i*-re.

(Ha(?)) $\nu_i \approx np_i$, alkalmazhatjuk a χ^2 próbát.

 $q(\xi_1,\ldots,\xi_n)=rac{\sum_{i=1}^k(
u_i-np_i)^2}{np_i}$ (Ahol u_i azt adja meg, hogy gyakorlatilag hányszor következett be. Az np_i pedig, hogy nevezetesen(az elméleti eloszlás szerint(?)) hányszor következett be.

Ez egy (k-1) szabadságfokú χ^2 eloszlás.

 $P(H_0 \text{ igaz}; g > c_k) = \alpha$, ahol g a kiszámolt, c_k az elméleti(táblázatból) (elsőfajú hiba) Az α -t adjuk meg, így minimalizáljuk az elsőfajú hibát.

Ha $g > c_k$ elvetjük H_0 -t Ha $q < c_k$ elfogadjuk H_0 -t

Folytonos

Felosztjuk részintervallumokra, és ezeken nézem a ν_i -t és az np_i -t. (r intervallum esetén i = 1, ..., r) Majd ezeket vizsgálom.

Homogenitás vizsgálat

$$\left. egin{array}{l} x_i, \dots, x_n \\ y_i, \dots, y_n \end{array}
ight.
ight. \left. \left. egin{array}{l} \text{az } i \text{ intervallumba eső} \\ \mu_i \end{array}
ight.
ight. \left. \left. egin{array}{l} \text{az } i \text{ intervallumba eső} \\ \text{minta elemek száma/gyakoris} \end{array}
ight.
ight.
ight.
ight. \left. \left. egin{array}{l} \text{az } i \text{ intervallumba eső} \\ \text{minta elemek száma/gyakoris} \end{array}
ight.
ig$$

$$\chi^2 = n \cdot m \sum_{i=1}^r \left(\frac{\left(\frac{\nu_i}{n} - \frac{\mu_i}{m}\right)^2}{\nu_i + \mu_i} \right) r - 1 \text{ szabadságfokú } \chi^2 \text{ eloszlást ad.}$$

$$\sum_{i=1}^r \nu_i = n, \sum_{i=1}^r \mu_i = m, \text{ I-t r részre osztjuk.}$$

$$H_0: P(X < x) = P(Y < y) \quad p_i = q_i$$

$$\sum_{i=1}^{r} \nu_i = n$$
, $\sum_{i=1}^{r} \mu_i = m$, I -t r részre osztjuk.

$$H_0: P(X < x) = P(Y < y) \ p_i = q_i$$

 $H_1: p_i \neq q_i$

Függetlenség vizsgálat

2 teljes esemény rendszert vizsgál, hogy van-e köztük kapcsolat.

 A_1, \ldots, A_r és B_1, \ldots, B_s teljes eseményrendszer

 H_0 : $P(A_i \cap B_j) = P(A_i)P(B_j)$ azaz A_i, B_j független $\forall i = 1, ..., r \ j = 1, ..., s$ -re.

 H_1 : nem függetlenek.

 $\nu_{ij} = A_i \cap B_j$ gyakorisága n független kisérletben.

Próbastatisztika:

$$\xi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(\nu_{ij} - np_{i}q_{i})^{2}}{bp_{i}q_{i}} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(\nu_{ij} - \frac{\nu_{i}\nu_{j}}{n}\right)^{2}}{\frac{\nu_{i}\nu_{j}}{n}}$$

Ha $\xi_{(r-1)(s-1)}^2 < c_k$, elfogadjuk $1 - \alpha$ szinten H_0 -t

Hipotézis vizsgálat vége, sztochasztikus folyamatok/Idősorok kezdete

Sztochasztikus folyamatok

Def: Legyen x_t ; $t \in N$ valószínűségi változók halmaza. Ezt **diszkrét idejű** sztochasztikus folyamatnak nevezzük.

Megjegyzés: t = 0: x_0 - most mérem, vizsgálom, észlelem

t > 0: x_t - jövő

Def: Legyen x_t ; $t \in Z$ valószínűségi változók halmaza, diszkrét idejű sztochasztikus folyamat.

 $x_t \begin{cases} t < 0 : \text{múlt} & \text{Ezt fogjuk vizsgálni.} \\ t = 0 : \text{jelen} & \text{Ezt fogjuk vizsgálni.} \\ t > 0 : \text{jövő} & \text{Ezt akarjuk becsülni, sejteni.} \end{cases}$

t bármi lehet (pl. év, hónap, perc, stb.)

Def: $x_t: \Omega \to R$ függvény valmailyen véletlen esemény értéke a t időpontban.

 $\omega \in \Omega$ - az eseménytér egy fix állapota.

 $x_0(\omega), x_1(\omega), \dots, x_n(\omega)$ számsorozat a folyamat $\omega \in \Omega$ -hoz tartozó trajektóriája/magvalósulása

Példa: ε_t - fehér zaj, ha független, azonos eloszlású valószínűségi változót jelöl. $E(\varepsilon_t) = 0$

Példa: x_t ; $t \in N$ kockadobás értéke $P(x_t = l) = \frac{1}{6}$, $l = 1, \dots, 6$ esetén.

Példa: Véletlen bolyongás

"kis átmérőjű csőben bolyongtatunk egy részecskét"

Legyen ε_i egy lépés jelölése.

$$\left. \begin{array}{ll} P(\varepsilon_j = -1) & = & \frac{1}{2} & \text{(balra léptem)} \\ P(\varepsilon_j = 1) & = & \frac{1}{2} & \text{(jobbra léptem)} \end{array} \right\} \Rightarrow c_j\text{-k azonos eloszlásúak, függetlenek}$$

$$P(x_{t+1} = x_t + 1) = \frac{1}{2}$$
$$P(x_{t+1} = x_t - 1) = \frac{1}{2}$$

Ennek egy alfajtája, amikor 2-t léphetek balra vagy jobbra.

Def: Az időben változatlan viselkedésű egyensúlyban lévő rendszereket nevezzük **stacionárius**nak.

(Pl. eső esésének valószínűsége + eső mennyiség várhatóérték)

Def: Egy x_t ; $t \in Z$ folyamatot **erősen stacionáriusnak** nevezünk, ha $\forall k \in Z$ -re az (x_0, \ldots, x_n) eloszlása megegyezik $(x_{0+k}, \ldots, x_{n+k})$ eloszlásávan. Azaz az eloszlásáára teljesül az *időinvariáns tulajdonság*.

Def: Az x_t ; $t \in Z$ gyengén stacionárius folyamat, ha

- $E(x_t^2) < \infty \quad \forall t \in Z$
- $E(x_t) = E(x_0) \quad \forall t \in Z$
- $cov(x_0,x_m)=cov(x_{0+k},x_{m+k}) \quad \forall k,m\in Z$ (időinvaráns)

 $cov(x_t,x_s)$ a t. és s. időpontban lévő folyamatot hasonlítja össze.

Csak a t és az s távolságától függ (pl. t-s=1)

Def: Legyen x_t ; $t \in Z$ gyengén stacionáris folyamat, ekkor $R_x(k) = cov(x_0, x_k)$ $k \in Z$ kovariancia függvényt.

Állítás: Az így definiált konvariancia függvény tulajdonsgai:

- $R_x(0) = D^2(x_t)$
- $R_x(k) = R_x(-k)$ (páros függvény)
- $cov(x_l, x_m) = R_x(m-l)$

Biz:

- $R_x(0) = cov(x_0, x_0)$ gyengén stac. $cov(x_t, x_t) = D^2(x_t)$
- $R_x(k) = cov(x_0, x_k) \xrightarrow{\text{idő inv.}} cov(x_{0-k}, x_{k-k}) = cov(x_{-k}, x_0) = R_x(-k)$
- $cov(x_l, x_m) \stackrel{-l}{=} cov(x_{l-l}, x_{k-l}) = cov(x_0, x_{m-l}) = R_x(m-l)$

Ezen tulajdonságokból adódóan:

(Emlékeztető: ε_t fehér zaj, ha $E(\varepsilon_t)=0,\,D^2(\varepsilon_t)=\sigma^2>0$)

fehér zaj tulajdonságai:

- $\bullet \ cov(x_0, x_0) = \sigma^2$
- $cov(x_i, x_j) = 0$ $i \neq j$
- Az előző átalakítva: $R_x(i-j)=0$

Fehér zaj pl. $\varepsilon_t \to N(0,1)$ Mivel függetlenek $\to cov(\varepsilon_i, \varepsilon_j) = 0$

MA foylamat - Mozgó átlag folyamat

Legyen $\xi_t = \sum_{j=-m}^n \alpha_j \varepsilon_{t-j}$ $t \in \mathbb{Z}$; ε_t fehér zaj, α_j együtthatók.

(pl.
$$3\varepsilon_{t-2} + 4\varepsilon_{t-1} + 3\varepsilon_t + 2\varepsilon_{t+1} = \xi_t$$
)
Ha $n = m \ \alpha_j = \frac{1}{2n+1} \ (\forall -m \le j \le m)$

$$\xi_t = \frac{1}{2n+1} \sum_{j=-m}^{m} \varepsilon_{t-j}$$

Álltalánosan:

$$\sum_{j \in Z} \alpha_j^2 < \infty$$

$$\Theta_t = \sum\limits_{j=-\infty}^{\infty} lpha_j arepsilon_{t-j}$$
 végtelen MA folyamat.

Kauzális MA folyamat:

ha $\alpha_j = 0$ j < 0 esetén

$$\Theta_t = \sum_{j=0}^{\infty} \alpha_j \varepsilon_{t-j}$$

A jövő csak a jelentől és a múltól függ ??

$$R_{\Theta}(k) = \sum_{j=0}^{\infty} \alpha_j \alpha_{j+k} \sigma^2$$

Def: Azť mondjuk, hogy x_t **autoregresszív(AR)** folyamat, ha x_t gyengén stacionárius és előáll $x_{t+1} = \Phi x_t + \varepsilon_{t+1}$ rekurzióval. Ahol $\Phi \in R$, ε_{t+1} fehér zaj.

Megj. Ha $\Phi > 1$ $x_t \Phi$ ütemben nő,

ha $\Phi < 1$ $x_t \Phi$ ütemben csökken.

Példa

 x_t - a tó vízállása t időpontban

 $x_{t+1} = 0,9x_t + \varepsilon_{t+1}$, ahol ε_{t+1} a csapadék($\Phi < 1$ mert a tó vize párolog).

Def: Legyen Y_n valószínűségi változók sorozata és Y valószínűségi változó.

 $E(Y_n^2) < \infty$; $E(Y^2) < \infty$

Azt mondjuk, hogy Y_n L^2 értelemben tart Y-hoz $(Y_n \to Y)$, ha $E((Y_n - Y)^2) \to 0 (n \to \infty)$

Tétel $|\Phi| < 1$, ε_t fehér zaj, ekkor előállítható:

 $x_{t+1} = \Phi x_t + \varepsilon_{t+1}$ folyamat és ez AR folyamat lesz.

Def: Y_t , Y valószínűségi változók $E(Y_t^2) < \infty$ és $E(Y^2) < \infty$. Y_n L^2 értelemben tart Y-hoz, ha $\lim_{n\to\infty} E(Y_n-Y)^2=0$

Tétel: Legyen $|\Phi|<1$, ε_t fehér zaj, ekkor $\exists x_t,\ t\in\mathbb{Z}$ AR-nak MA előállítása, melyre $\lim_{k\to\infty} E(x_t-\sum_{k=0}^\infty \Phi^k \varepsilon_{t-k})=0$ x_t előáll $\varepsilon_i \propto \text{soraként}$.

Biz.

$$x_t = \Phi x_{t-1} + \varepsilon_t = \phi(\phi x_{t-2} + \varepsilon_{t-1}) + \varepsilon_t = \phi(\phi(\phi(x_{t-3} + \varepsilon_{t-2}) + \varepsilon_{t-1}) + \varepsilon_t = \dots = \phi^{n+1} x_{t-(n-1)} + \phi^n \varepsilon_{t-n} + \phi^{n-1} \varepsilon_{t-n+1} + \dots + \varepsilon_t$$

$$E(x_t - \sum_{n=0}^{\infty} \psi^n \varepsilon_{t-n})^2 = E(\phi^{n+1} x_{t-(n+1)})^2 = \lim_{n \to \infty} \phi^{2n+2} E(x_{t-(n+1)})^2 = 0$$

 x_t és az ε_{t+k} korrelálatlanok $k \geq 1$

Tehát
$$cov(x_t, \varepsilon_{t-k}) = 0$$

mivel stac.
$$D^2(x_t) = D^2(x_{t-1})$$

$$D^2(x_t) = D^2(\phi x_{t-1} + \varepsilon_t) = \phi^2 D^2(x_{t-1}) + \underbrace{D^2(\varepsilon_t)}_{\sigma^2} + \underbrace{2cov(\phi x_{t-1}, \varepsilon_t)}_{0} =$$
 Mivel stacionáriusak: $D^2(x_t) = D^2(x_{t-1})$ Valamint függetlenek, ezért a kovarian-

ciájuk 0. Tehát:

$$D^{2}(x_{t})[1-\phi^{2}] = \sigma^{2} \Rightarrow D^{2}(x_{t}) = \frac{\sigma^{2}}{1-\phi^{2}} \quad |\phi| < 1\text{-re \'erv\'enxes } (D^{2} > 0)$$

$$E(x_{t}) = E(\phi x_{t-1} + \varepsilon_{t}) = \phi E(x_{t-1}) + \underbrace{E(\varepsilon_{t})}_{0}$$

 ε_t fehér zaj, tehát $E(\varepsilon_t) = 0$.

$$E(x_t) = E(x_{t-1})$$

Mivel $\phi < 1$:

$$E(x_t) = 0$$

$$R_x(k)$$
 $k=0$ $\frac{\sigma^2}{1-\sigma^2}=R_x(0)$

$$R_x(k)$$
 $k \neq 0$ $R_x(-k) = R_x(k) = \sum_{j=0}^{\infty} \phi^j \phi^{j+k} \sigma^2 = \sigma^2 \phi^k \sum_{j=0}^{\infty} \phi^{2j} = \sigma^2 \phi^k \frac{1}{1-\phi^2} = \sigma^2 \phi^k \frac{1}{1-\phi^2}$

 $R_x(k)$ Legyen x_t , $t \in \mathbb{Z}$ -re tetszőleges sztochaszikai folyamat. Ekkor $zx_t = x_{t-1}$ kifejezésben z a visszaléptatési operátor.

Pl.

$$(3 - z^{2} - 4z + 5)x_{t} = 3x_{t-2} - 4x_{t-1} + 5x_{t}$$

$$x_{t} = 4\varepsilon_{t-3} + 5\varepsilon_{t-2} - 2\varepsilon_{t} \Rightarrow x_{t} = (4z^{3} + 5z^{2} - 2)\varepsilon_{t}$$

$$x_{t} = \phi x_{t-1} + \varepsilon_{t} \Rightarrow x_{t}(1 - \phi z) = \varepsilon_{t}$$

Def: ARMA

 $x_t, t \in \mathbb{Z}$ stacionárius folyamat (p,q)-ad rendű ARMA folyamatnak nevezzük, ha:

$$x_t + \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \ldots + \alpha_p x_{t-p} = \beta_0 \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + \ldots + \beta_q \varepsilon_{t-q}$$

ahol α_0 mindig 1, $\alpha_1, \ldots, \alpha_p$ és β_0, \ldots, β_q rögzített konstansok, valamint ε_t fehér zaj.

$$x_t + \alpha_1 z x_t + \alpha_2 z^2 x_t + \ldots + \alpha_p z^p x_t = \beta_0 \varepsilon_t + \beta_1 z \varepsilon_t + \beta_2 z^2 \varepsilon_t + \ldots + \beta_q z^q \varepsilon_t$$
$$x_t (1 + \alpha_1 z + \alpha_2 z^2 + \ldots + \alpha_p z^p) = \varepsilon_t (\beta_0 + \beta_1 z + \beta_2 z^2 + \ldots + \beta_q z^q)$$

$$A(z)x_t = B(z)\varepsilon_t$$

Tétel 1. Ha A(z) polinom \forall gyöke a koplex sík egységkörén kívül van, azaz $\forall |z_i| > 1$ ha $A(z_i) = 0$, akkor az x_t ARMA folyamatnak $\exists MA(\infty)$ előállítása:

$$x_t = \sum_{j=0}^{\infty} \varphi_j \varepsilon_{t-j}$$

Biz. Legyenek A(z) gyökei $z_1,\ldots,z_p\in\mathbb{Z}$ vagy $\in\mathbb{C}$, mind különböző. Ekkor $A(z)=\alpha_p(z-z_1)(z-z_2)\ldots(z-z_p)$

Ekkor
$$A(z) = \alpha_p(z - z_1)(z - z_2) \dots (z - z_p)$$

$$x_t \frac{B(z)}{A(z)} \varepsilon_t = \frac{B(z)}{\alpha_p} \frac{1}{(z-z_1)(z-z_2)\dots(z-z_p)} \varepsilon_t =$$
 Parciális törtekre bontható:
$$\frac{B(z)}{\alpha_p} \left[\frac{L_1}{z-z_1} + \frac{L_2}{z-z_2} + \dots + \frac{L_p}{z-z_p} \right] \varepsilon_t =$$
 Minden elem mértani sorra bontható:

$$\frac{B(z)}{\alpha_p} \left[\frac{L_1}{z - z_1} + \frac{L_2}{z - z_2} + \ldots + \frac{L_p}{z - z_p} \right] \varepsilon_t =$$

$$\frac{L_{j}}{z - z_{j}} = -\frac{L_{j}}{z_{j}} \frac{1}{1 - \frac{z}{t}} = -\frac{L_{j}}{z_{j}} \sum_{i=0}^{\infty} \left(\frac{z}{z_{j}}\right)^{i}$$

$$=\frac{B(z)}{\alpha_p}\left[\sum_{j=1}^p\left(-\frac{L_j}{z_j}\right)\sum_{i=1}^\infty\left(\frac{z}{z_j}\right)^i\right]\varepsilon_t=\sum_{i=0}^\infty\varphi_iz^i\varepsilon_t=\sum_{i=0}^\infty\varphi_i\varepsilon_{t-i} \text{ ahol } \varphi_i \text{ egy konstans}(z^i-z_j)^i$$

Def: A(z) $x_t = B(z)\varepsilon_t$ ARMA folyamat invertálható, ha $\exists \varepsilon_t = \sum_{j=0}^{\infty} \lambda_j x_{t-j}$ előállítása.

Tétel 2. Ha B(z) polinom olyan, hogy \forall gyöke kívül van az egységkörön ($\forall |z_i| > 1$ ha $B(z_i) = 0$), akkor **invertálható**, és:

$$\varepsilon_t = \frac{A(z)}{B(z)} x_t$$

$$x_t - \frac{1}{4}x_{t-1} = 3\varepsilon_t + \varepsilon_{t-1} \ (2,1)$$
 ARMA folyamat.

1. Feladat: Létezik-e az ARMA folyamatnak végtelen MA előállítása? Ha igen, adja meg!

$$x_t(1 - \frac{1}{4}z^2) = \varepsilon_t(3 + z)$$

 $A(z) = 1 - \frac{1}{4}z^2 = 0 \Rightarrow z_{1,2} = \pm 2$

A Tétel1. szerint előáll $x_t = \sum_{j=0}^{\infty} \varphi_j \varepsilon_{t-j}$. Most:

$$x_t = \frac{3+z}{1-\frac{1}{4}z^2}\varepsilon_t$$

$$\frac{3+z}{\left(1-\frac{1}{2}z\right)\left(1+\frac{1}{2}z\right)} = \frac{A}{1-\frac{z}{2}} + \frac{B}{1+\frac{z}{2}} = \frac{A+\frac{1}{2}Az+B-\frac{1}{2}Bz}{1-\frac{1}{4}z^2}$$

$$3 = A + B$$

$$1 = \frac{1}{2}A - \frac{1}{2}B \quad \} \cdot 2$$

$$5 = 2A \Rightarrow A = 2, 5$$
$$3 = 2, 5 + b \Rightarrow B = 0, 5$$

$$x_{t} = \left[\frac{2,5}{1-0,5z} + \frac{0,5}{1+0,5z}\right] \varepsilon_{t} = \left[2,5 \sum_{j=0}^{\infty} 0,5^{j}z^{j} + 0,5 \sum_{j=0}^{\infty} (-0,5)^{j}z^{j}\right] \varepsilon_{t} = \left[2,5 \sum_{j=0}^{\infty} 0,5^{j}\varepsilon_{t-j} + 0,5 \sum_{j=0}^{\infty} (-0,5)^{j}\varepsilon_{t-j}\right] = \left[\sum_{j=0}^{\infty} 2,5 \cdot 0,5^{j} + 0,5 \cdot (-0,5)^{j}\right] \varepsilon_{t-j}$$

2. Feladat: Invertálható-e az ARMA folyamat? Ha igen, adja meg az előállítását!

$$B(z) = 3 + z \Rightarrow z_{1,2} = \pm 3$$

A Tétel2. szerint invertálható. Tehát:

$$\varepsilon_t = \frac{1 - \frac{1}{4}z^2}{3 + z}x_t$$

Mivel a számlálóban is van z, és nehéz egyszerűsíteni, ezért polinom oszást végzek:

$$-\frac{1}{4}z^2 + 1: z + 3 = -\frac{1}{4}z + \frac{3}{4} - \frac{5}{4(z+3)}$$

$$\ominus -\frac{1}{4}z^2 - \frac{3}{4}z$$

$$\frac{\frac{3}{4}z + 1}{\ominus \frac{3}{4}z + \frac{9}{4}}$$

$$-\frac{5}{4}$$

A polinom oszás után:

$$\varepsilon_{t} = \left[-\frac{1}{4}z + \frac{3}{4} - \frac{5}{4(z+3)} \right] x_{t} = \frac{3}{4}x_{t} - \frac{1}{4}x_{t-1} - \frac{5}{4 \cdot 3} \underbrace{\frac{1}{1 + \frac{z}{3}}}_{\text{mértent sor}} x_{t}$$

Amiből a mértani sor miatt:

$$\varepsilon_t = \frac{3}{4}x_t - \frac{1}{4}x_{t-1} - \frac{5}{12}\sum_{i=0}^{\infty} \left(-\frac{1}{3}\right)^j z^j x_t$$
 ahol $z^j x_t = x_{t-j}$

Sztochasztikus folyamatok - ELŐREJELZÉS

Adottak x_1, \ldots, x_T minták. Ekkor x_{T+1} megközelítése \hat{x}_{T+1} .

Megj. Vannak előre jelezhető és előre nem jelezhető, bizonytalan folyamatok.

Feltevések: x_t (p,q) ARMA, stabil, invertálható.

Def: Oyan $\widehat{x}_t = \sum_{j=1}^{\infty} \delta_j x_{t-j}$ becslést keresünk, ahol x_t $(x_{t-1}, x_{t-2}, \ldots)$ múlból állítjuk elő, melyre $\overline{E}(x_t - \widehat{x}_t)^2$ a legkisebb négyzetes közelítés.

$$x_t = rac{B(z)}{A(z)} arepsilon_t = \sum_{j=0}^\infty \psi_j arepsilon_{t-j}, \quad \psi_k$$
-k számolhatók.

$$\widehat{x}_t = \sum_{j=1}^{\infty} \gamma_j arepsilon_{t-j}$$
 ($j=1$ -től megy, mert előre jelzést akarunk)

<u>Lemma:</u> $x_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$ ez a legjobb négyzetes közelítés. (azaz akkor a legjobb, ha $\gamma_j = \psi_j \ \forall j = 1, \ldots$)

Biz. Tfh. $y_t = \sum_{j=1}^{\infty} \gamma_j \varepsilon_{t-j}$ x_t -nek egy becslése/előrejelzése.

A becslés, akkor a legjobb, ha az $E(x_t - y_t)^2$ a lehető legkisebb.

A becslés, akkor a legjobb, ha az
$$E(x_t - y_t)^2$$
 a lehető legkisebb.
$$E(x_t - y_t)^2 = E(\sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} - \sum_{j=1}^{\infty} \gamma_j \varepsilon_{t-j})^2 = E(\psi_0 \varepsilon_t + \sum_{j=0}^{\infty} (\psi_j - \gamma_j) \varepsilon_{t-j})^2 = \psi_0^2 \underbrace{E(\varepsilon_t)^2}_{\sigma^2} + \sum_{j=0}^{\infty} (\psi_j - \gamma_j) \varepsilon_{t-j}$$

$$(\gamma_j)^2 \underbrace{E(\varepsilon_{t-j})^2}_{\sigma^2}$$

A köztes tag (2nem tudom mi) 0, mert ε_t fehér zaj $\Rightarrow E(\varepsilon_t) = 0 \quad \forall t \in \mathbb{Z}$

Akkor a legkisebb, ha $\psi_j = \gamma_j$

$$\widehat{x}_t = \sum_{j=1}^\infty \psi_j \varepsilon_{t-j} \text{ alakban a legjobb}$$

$$x_t = \frac{B(z)}{A(z)} \varepsilon_t = \sum_{j=0}^\infty \psi_j \varepsilon_{t-j}$$

$$\widehat{x}_t = \sum_{j=1}^\infty \psi_j \ z^j \ \varepsilon_t$$

$$\widehat{x}_t = \sum_{j=1}^\infty \psi_j \ z^j \ \varepsilon_t$$

Mivel j = 1-től megy a j = 0 tag az 0.

Azaz a számláló első tagja: $\beta_0 - 1\psi_0 = 0$

Amiből adódik, hogy $\psi_0 = \beta_0$

Tehát:

$$\widehat{x}_t = \frac{B(z) - A(z)\beta_0}{A(z)} \varepsilon_t$$

Mivel x_t -kel akarjuk előállítani, felhasználjuk, hogy $\varepsilon_t = \frac{A(z)}{B(z)}x_t$.

$$\widehat{x}_t = \frac{B(z) - A(z)\beta_0}{A(z)} \frac{A(z)}{B(z)} x_t = \frac{B(z) - A(z)\beta_0}{B(z)} x_t$$

Pl.: Van egy x_t mérési mintánk A(z), B(z) imert.

$$25x_t - x_{t-2} = 8\varepsilon_t - 2\varepsilon_{t-1} - \varepsilon_{t-2}$$

$$A(z) = 25x^2 - 1$$

$$B(z) = 8z^2 - 2z - 1$$

$$\beta_0 = 8$$

Statisztikai folyamat paramétereinek becslése x_t stacionárius folyamat $m=E(x_t) \ \forall t \in \mathbb{Z}, \ R_x(k)=cov(x_0,x_t) \ \forall k \in \mathbb{Z}$

Például ε_t független azonos eloszlású, és $E(\varepsilon_0)=0,\ D^2(\varepsilon_t)<\infty$, konstans (tehát fehér zaj)

$$\varepsilon_t$$
 $t=0,\ldots,T$

$$\overline{\varepsilon}=\frac{\varepsilon_0+\varepsilon_1+\ldots+\varepsilon_T}{T+1}$$
, ami a nyagyszámok törvénye miatt: $E\varepsilon_0$
Def: $x_t,t\in\mathbb{Z}$ gyengén stacionárius folyamate

Def: $x_t, t \in \mathbb{Z}$ gyengén stacionárius folyamatot **ergodikus**nak nevezzük, ha $\frac{x_1+x_2+\ldots+x_t}{T}$ tart az $E(x_0)$ -hoz L^2 értelemben. $\left(\lim_{T\to\infty}(E(\frac{x_1+\ldots+x_T}{T}-E(x_0))^2)=0\right)$

Tétel: Ha $R_x(k)$ kovariancia függvény olyan, hogy az $\lim_{k\to\infty} R_x(k)=0$, akkor x_t folyamat **ergodikus**.

Következmény:
$$x_t$$
 ARMA, tehát $x_t = \sum_{i=1}^n \phi_i \varepsilon_{t-i}$, ekkor $R_x(k) = \sum_{j=-\infty}^\infty \phi_j \phi_{j+k} \sigma^2$

Mert:

 $R_x(k)$ számolásához felhasználjuk, hogy $x_t = \sum\limits_{i=1}^n \phi_i \varepsilon_{t-i}$

$$R_x(k) = cov(x_t, x_{t+k}) = cov(\sum_{j=-\infty}^{\infty} \phi_j \varepsilon_{t-j}, \sum_{i=-\infty}^{\infty} \phi_i \varepsilon_{t+k-i}) = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} \phi_j \phi_i cov(\varepsilon_{t-j}, \varepsilon_{t+k-i})$$

$$R_x(k) = \begin{cases} 0 & t - j \neq t + k - i \\ \phi_j \phi_i \sigma^2 & t - j = t + k - i \end{cases}$$
akkor nem 0, ha $i = j + k$

Tehát valóban $R_x(k) = \sum_{j=-\infty}^{\infty} \phi_j \phi_{j+k} \sigma^2$.

Tétel: Ha $\lim_{k\to\infty}R_x(k)=0$, akkor x_t Gauss folyamat (azaz normál eloszlású folyamat), ekkor $\lim_{k\to\infty}\widehat{R}^n_x(k)=R_x(k)$

Konklúzió
$$x_1, \ldots, x_n$$
, ekkor $\underbrace{E(x_t) \approx \overline{x}_n \text{ és } r_x(k) \approx \widehat{R}_x^n(k)}_{\text{legjobb becslések}}$ ($n > 50, n > 4k$ esetén)

Def: Legyen x_t $t \in \mathbb{Z}$ gyengén stacionárius folyamat, $R_x(k)$ $k \in \mathbb{Z}$ kovariancia függvény. Ekkor: $\Phi_x(u) = \sum_{u \in \mathbb{Z}} R_x(k) e^{-iuk}$ végtelen sort, ha konvergens, $u \in [-\pi, \pi]$

a folyamat **sprektrális sűrűségg függvény**nek nevezzük

Tulajdonságai:

1.
$$\Phi_x(u) = \Phi_x(-u)$$

Bizonyítás: $\Phi_x(u) = \sum_{k \in \mathbb{Z}} R_x(k) e^{-iuk} \xrightarrow{R_x(k) = R_x(-k)} \sum_{k \in \mathbb{Z}} R_x(-k) e^{-iuk} \xrightarrow{\text{új jelölés:} \atop -k = j} \sum_{j \in \mathbb{Z}} R_x(j) e^{iuj} = \sum_{i \in \mathbb{Z}} R_x(j) e^{-i(-u)j} = \Phi_x(-u)$

- 2. $\Phi_x(u) \ge 0$ Bizonyítás: $R_x(k) \sim \sigma^2 \ge 0$ $e^{-ix} \ge 0$ (e^{-ix} -ből cos-os alak lesz)
- 3. **Tétel:** Ha $\Phi_x(u)$ létezik, akkor páros, nem negatív **inverze** $R_x(k)=\frac{1}{2\pi}\int_{-\pi}^{\pi}\Phi_x(t)e^{itk}dt$

Def: x_1, x_2, \ldots, x_t valószínűségi változók sorozata **Markov lánc**ot alkot, ha t kezdőpillanatot követő x_{t+1} valószínűségi változó értéke <u>csak</u> x_t értékétől függ.

$$P(x_{t+1} = i_{t+1} | x_t = i_t, \underbrace{x_{t-1} = i_{t-1}, \dots, x_0 = i_0}) = P(x_{t+1} = i_{t+1} | x_t = i_t)$$
ezek nem befolyásolják

Def: Rögzített $n \in \mathbb{N}$ mellett $p_{i,j}(n)$ $i,j \in I$ valószínűségeket a Markov lánc n. lépéséhez tartozó egylépéses átmenet valószínűségének nevezzük.

P(n) az átmenet valószínűségéhez tartozó **átmenetivalószínűségi mátrix**.

$$P(n) = [p_{i,j}(n)]_{i,j \in I}$$

Markov lánc kezdeti eloszlása megadható $q=[q_i]$ sorvektorával. Ahol $q_i=P(x_0=i)$, amiből következik, hogy $\sum_{i=1}^k q_i=1$. (k a realizációk száma)

 π a folyamat dinamikáját adja meg. Tehát azt adja meg, hogy milyen valószínű-séggel jutatt 1 lépés alatt i-ből j-be.

Def: Egy α sorvektorról azt mondjuk, hogy **eloszlás**, ha $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_k]$ $\alpha_i \geq 0 \quad \forall i = 1 \dots k, \quad \sum_{i=0}^k \alpha_i = 1$

Az $\underline{\underline{A}}$ mátrix **sztochasztikus mátrix**, ha minden sorvektora eloszlás.

Def: Az x_t , $t \in \mathbb{N}$ Markov lánc **homogén**, ha $P(x_t = i_t | x_{t-1} = i_{t-1})$ független t-től.

Megjegyzés: Innentől kezdve csak homogén Markov láncokkal fogunk foglalkozni.

Tétel: $p_{i,j} = P(x_1 = j | x_0 = i) \ge 0$ $\forall i, j$ -re és $\sum_{j=0}^{n} p_{i,j} = 1$

Tétel: Legyen x_t valószínűségi változók sorozatának eloszlása $q(x_0)$. Ekkor $q(x_1)$ a következőképpen számolható:

$$q(x_1) = q(x_0)\pi$$
 ahol $q(x_1), q(x_0) \in \mathbb{R}^n$, $\pi \in \mathbb{R}^N \times \mathbb{R}^N$

Def: Az n **lépéses átmenet** valószínűség annak a valószínűsége, hogy i-ből kiindulva n lépés alatt eljutok k-ba.

$$p_{i,k}^{(n)} = P(x_n = k | x_0 = i)$$

Tétel: Chapman-Kolmogorov egyenlet:

$$\left[p_{i,j}^{(n)}\right] = \pi^n$$

Def: Az x_t $t \in \mathbb{N}$ Markov láncot **irreducibilis**nek nevezzük, ha $\forall i, j = 1, 2, \dots, N$ esetén $\exists n = n(i, j)$, hogy $p_{ii}^{(n)} > 0$.

Def: A Markov lánc állapotainak S halmaza **zárt**, ha az S halmazon kívül egyetlen állapot sem érhető el S állapotaiból.

Def: Az i. állapot **elnyelő** állapot, ha $p_{ii} = 1$. Minden elnyelő állapot zárt halmaz.

Def: Az i. állapot **tranziens**, ha \exists olyan j állapot, amely elérhető i-ből, de j-ből i nem érhető el. $p_{i,j}^{(n)} > 0 \quad \nexists m \; p_{j,i}^{(m)} > 0$ Ha nem tranziens, akkor **visszatérő**.

Def: Azt mondjuk, hogy i. kommunikál j-vel, ha $\exists n, m \ p_{ij}^{(n)}$ és $p_{ii}^{(m)} > 0$

Def: Az i. állapot **periodikus** k>1 periodussal, ha k az a legkisebb szám, amire igaz, hogy az i-ből i-be visszatérő lánc hohssza k, illetve k egész számú többszöröse.

$$\pi^{(k)} = egin{cases} p_{ij} = 0 & \text{ha } i
eq j \\ p_{ij} = 1 & \text{ha } i = j \end{cases}$$

A nem periodikus visszatérő állapot **aperiodikus**nak nevezzük.

 $\{n>0,p_{ij}^{(n)}\}$ halmaz legnagyobb közös osztója: d(i)>1, akkor i pertiodikus. Ha d(i)=1, akkor aperiodikus.

Def: A Markov lánc **aperiodikus**, ha $\forall i = 1, ..., N$ állopta aperiodikus.

Def: A Markov láncot **ergodikus**nak nevezzük, ha aperiodikus, és $\forall p_{ij} > 0 \quad \forall i, j = 1, ..., N$. (azaz ha aperiodikus és irreducibilis)

Tétel: Legyen Markov lánc ergodikus $(N \times N) - \mathbf{s} \; \pi$ mátrixszal adott. Ekkor

$$\exists m{x}(x_1,\ldots,x_N), \ \mathbf{hogy} \ \lim_{n \to \infty} \pi^n = egin{pmatrix} x_1 & x_2 & \ldots & x_N \\ x_1 & x_2 & \ldots & x_N \\ \vdots & & \vdots \\ x_1 & x_2 & \ldots & x_N \end{pmatrix}$$

 x_i valószínűség független a kiindulástól. ("elfelejti a múltját")

Def: A fenti $\boldsymbol{x}(x_1,\ldots,x_N)$ a Markov lánc **stacionárius állapota:** $\boldsymbol{x}=\boldsymbol{x}\pi$ másképp jelölve: $\boldsymbol{q}_{\infty}=\boldsymbol{q}_{\infty}\pi$ amit átalakítva: $(\pi-E)^T\boldsymbol{q}_{\infty}^T=\mathbf{0}$, ahol $q_{\infty_1}+q_{\infty_2}+\ldots+q_{\infty_N}=1$.

Tétel: Ha a Markov lánc irreducibilis és aperiodikus $\Rightarrow \exists$ stacionárius állapota.

Tömegkiszolgálási rendszerek

Érkeznek igények, amikből mindig egyet kiszolgálunk, majd kiszolgálás után távozik.

Fontos tulajdonságai:

- várhatós sorhossz
- átlagos várakozási idő
- optimális alkalmazott(kiszolgáló) száma

Diszkrét idejű rendszert tekintünk.

$$Y_n:=(n-1,n]$$
 között érkező igények száma
$$V_n:=(n-1,n]$$
 között kiszolgált igények száma
$$X_n:=n.$$
 időpontban várakozó igények száma A sor hossz érdekel minket:

$$X_{n+1} = (X_n - V_{n+1})^+ + Y_{n+1}$$

Ahol
$$(X_n-V_{n+1})^+=max(X_n-V_{n+1},0)=$$

$$\begin{cases} X_n-V_{n+1} & \text{ha } X_n-V_{n+1}>0\\ 0 & \text{k\"ul\"onben} \end{cases}$$
 Feltevések

- Y_n $n=1,2,\ldots$ független azonos eloszlású valószínűségi változó
- V_n $n=1,2,\ldots$ független azonos eloszlású valószínűségi változó
- $\{Y_n\}$ és $\{V_n\}$ sorozatok is függetlenek egymástól

<u>Állítás:</u> Legyen x_0 független (Y_n, V_n) -től. Ha a fenti feltevések igazak, akkor x_t homogén Markov lánc.

Tétel: Tekintsük a fenti tömeg kiszolgálási modelt:

<u>Tfh.</u> π főátlója alatt és felett csupa > 0 elem van, valamint $E(Y_i) < E(V_i)$ $\forall i=1,2,\ldots$ Ekkor x_t $t\in\mathbb{N}$ stabil Markov lánc. (\exists stacionáris állapota)

Gyakorlatról(05.02.):

Def: x_n irreducibilis Markov lánc átmenet valószínűségi mátrixa π . Az i. állapotból indulva a visszatéréshez szükséges lépések számának várható értéke:

$$E(T_{ii}) = \frac{1}{\pi(i)} \quad T = \min(n \ge 1; x_n = i)$$

$$T_{ij} = \min(n \ge 1 \ x_n = j | x_0 = i) \quad E(T_{hh}) = 2 + E(T_{ij})$$

Az x_t $t \in \mathbb{N}$ egy $\chi \infty$ állapottérben értelmezett.

Az irreducibilis és az aperiodikus tulajdonságok hasonlóak. $\pi=[p_ij]_{i,j\in\mathbb{N}}$, ahol $p_{ij} = P(x_1 = j | x_0 = i)$

Tétel: Ha a főátló alatt és felett minden elem pozitív $(p_{i,i-1} > 0; p_{i,i+1} > 0)$ és a főátlóban legalább egy $p_{ii} \neq 0$

Megjegyzés: Ha $x_t \infty$ állapottéren értelmezett, akkor az irreducibilitásból és aperiodikusságból nem következik a satabilitás.

Def: Eloszlási operátornak nevezzük $q(x_t) = (p(x_t = 0), p(x_t = 1), \dots, p(x_$ $k),\ldots)\in\mathbb{R}^N$.

Def: Az x_t $t \in \mathbb{N}$ Markov lánc **stabil**, ha $q_\infty \in \mathbb{R}^n$ eloszlási operátorra igaz, hogy $\forall q_{\infty}^i \in [0,1] \quad i \in \mathbb{N}\text{-re} \sum_{i=0}^{\infty} q_{\infty}^i = 1 \text{ \'es } \forall x_0\text{-ra } \lim_{t \to \infty} q^i(x_t) = q_{\infty}^i.$

Folytonos idejű Markov láncok

Az állapottér diszkrét $x_t \in S$ $S = \{1, 2, ...\}$ $t \ge 0$ $t \in \mathbb{R}^+ \bigcup \{0\}$

Def: x_t $t \in \mathbb{R}^+ \bigcup \{0\}$ **folytonos idejű** Markov láncnak nevezzük, ha $\forall n \geq 1$ -re $0 \le t_0 \le t_1 \le \ldots \le t_n$ -re az $x_0, x_0, x_1, \ldots, x_n \in S$ teljesül. $P(x(t_n) = x_n | x(t_{n-1}) = x_{n-1}, x(t_{n-2}) = x_{n-2}, \dots, x(t_0) = x_0) = P(x(t_n) = x_n | x(t_{n-1}) = x_n | x(t_{n-1}$ x_{n-1}) ha ezek a feltételes valószínűségek léteznek.

2 egymás utáni történés λ paraméterű exponencális eloszlású.

 x_t jelenti [0,t] hány történés volt.

 x_t Folytonos idejű Markov lánc eloszlása (λt) paraméretű Poisson eloszlás. $p_{ij}(t) =$ $e^{-(\lambda t)} \frac{(\lambda t)^{j-i}}{}$

Chapman-Kolmogorov:
$$p_{ij}(s+t) = \sum_{k \in S} P(x(s+t) = j, x(t) = k | x_0 = i) = \sum_{k \in S} P(x(s+t) = j | x(t) = k) P(x(t) = k | x(0) = i) = \sum_{k \in S} p_{ik}(t) p_{kj}(s) = \sum_{k \in S} p_{ik}(s) p_{kj}(t)$$

$$\pi(s+t) = \pi(s) \pi(t) = \pi(t) \pi(s)$$

Tfh.
$$p_{ij}(t)=\delta_{ij}=\begin{cases} 0 & \text{ha } i=j \text{ kicsi } t\text{-re } \begin{cases} p_{ii}=1 \\ p_{ij}=0 \end{cases}$$
 Tétel: Ha a Markov láncra igaz a feni feltétel, $p_{ij}(t)$ függvények differenciálha-

tóak $\forall t > 0$ -ra.

Jelölés:
$$q_{ij} = p'_{ij}(0)^+ = \lim_{t \to 0^+} \frac{p_{ij}(t) - \delta_{ij}}{t}$$

Def: $Q=[q_{ij}]=\pi'[0^+]$ mátrix a folyamat **ráta mátrix**nak nevezzük. $\sum_{i\in\mathbb{N}}q_{ij}=0$ (tehát van negatív eleme is)

Tétel: Ha a Markov láncra teljesül, hogy $\sum_{i\in\mathbb{N}}q_{ij}=0$ $\sum p_i'j=\sum_{k\in\mathbb{N}}q_{ik}p_{kj}(t)$ $\pi'(t) = Q\pi(t)$

Tétel: Folytonos idejű, véges állapotterű, irreducibilis Markov lánc, akkor **stabil**, ha $xQ = 0 \rightarrow Q^t x^t = 0^t$. (Ahol x a határeloszlás, Q a ráta mártix.)

Ez csak május 17-én kell:

Def: Egy pontfolyamatot **felújítási folyamat**nak nevezzük, ha a pontok közötti távolság azonos eloszlású, <u>tetszőleges</u> valószíműségi változók. Paraméterei: A/B/m/K/M

A - szomszédos igények beérkezése között eltelt idő eloszlásának kódja

B - kiszolgálási idő eloszlásásnak kódja

m - a rendszerben lévő kiszolgáló egységek száma

K - a rendszer befogadóképessége

M - igényforrások száma

A,B kódja lehet:

- M Markov tulajdonságú, exponencális eloszlású
- D Determinisztikus
- G tetszőleges eloszlású

K,M alapértelmezettként ∞

Például M/M/1, ahol az első M(az A kódja) utal a (λt) paraméterű Poisson eloszlásra, a második M(a B kódja) a (μ) paraméterű Exponencális eloszlásra, az 1 a kiszolgáló egységek száma, valamint K,M végtelen.

PÉLDÁK

1.1.

100 db rudat megmérünk. Ezeknek a hossza: x_1, x_2, \dots, x_{100} mm. A névleges hosszuk 500 mm.

Legyen a rudak eloszlásfüggvénye a következő:

Normál eloszlást sejtet(Gauss görbe.)

Számoljuk ki a mintaátlagot:
$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum\limits_{i=1}^n x_i}{n}$$

Valamint a tapasztalati szórásnégyzetet: $s_n^2 = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n} = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n}$

$$\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

Legyen $\overline{x}_{100} = 500, 3mm$, és $s_{100} = 0, 05mm$.

Továbbá egy rúd az alábbi valószínűségekkel van az adott intevallumon:

Vissza

1.2.

Adott k, és n_k (lent táblázatban). Ahol k az árhullámok száma, n_k azt mutatja meg, hogy 70 év alatt hány évben volt k db árhullám.

Számolja ki a relatív gyakoriságot (g_k) !

Adja meg az eloszlását, és számolja ki a valószínűségeiket!

k	n_k	g_k	$E(x_k)$	P_k	$70 \cdot P_k$
0	22	0,31	$0 \cdot 22$	0,27	19
1	21	0,3	$1 \cdot 21$	0,35	24
2	15	0,21	$2 \cdot 15$	0,23	16
3	7	0,1	3 · 7	0,1	7
4	5	0,07	$4 \cdot 5$	0,05	4

A relatív gyakoriságot a $g_k = \frac{n_k}{n}$ képlettel számoltuk.

Poisson eloszlást követ, tehát $E(x) = \lambda = \frac{\sum E(x_k)}{n} = \frac{92}{70} = 1,3$

Ezután λ ismeretében kiszámolható az árhullámok számának a valószínűsége: $P_k = \frac{\lambda^k}{k!} e^{-\lambda}$

Vissza

1.3.

Becsüljük meg az $x_1, x_2, \dots, x_n \sim N(m, \sigma)$ normál eloszlást követő értékek várható értékét(m), úgy hogy a szórás(σ) ismert. Azaz $L(\Theta, x_1, x_2, \dots, x_n) = ?$ ahol $\Theta = m$. $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$

$$L(\Theta, x_1, x_2, \dots, x_n) = \frac{1}{\sigma^{n_1/2\pi^n}} e^{-\frac{\sum_{i=1}^{n} (x_i - m)^2}{2\sigma^2}}$$

 $L(\Theta,x_1,x_2,\ldots,x_n)=\frac{1}{\sigma^n\sqrt{2\pi}^n}e^{-\frac{\sum\limits_{i=1}^n(x_i-m)^2}{2\sigma^2}}$ A maximumát keresem, ezért logaritmusát veszem, majd deriválom m szerint hogy megtaláljam(a logaritusának ugyanott van a maximuma).

$$lnL(\Theta, x_1, x_2, \dots, x_n) = ln(2\pi)^{\frac{n}{2}} - n \cdot ln\sigma + ln(e) \cdot (-\frac{1}{2} \sum_{i=1}^{n} \frac{(x_i - m)^2}{\sigma^2})$$

Figyelembe véve, hogy az $ln(2\pi)^{\frac{n}{2}} - n \cdot ln\sigma$ konstans, és az ln(e) = 1, deriválva ezt kapom:

$$\frac{\partial lnL}{\partial \Theta} = \frac{\partial lnL}{\partial m} = -\frac{1}{2} \frac{\sum_{i=1}^{n} 2(x_i - m)(-1)}{n^{\sigma^2}} \stackrel{?}{=} 0$$

Akkor teljesül, ha $\sum_{i=1}^{n} (x_i - m) = 0$

Azaz, ha
$$\sum_{i=1}^{n} (x_i) - m \cdot n = 0$$

Ebből kifejezve m-et megkapjuk a becslésünket: $\widehat{m}=$

Tehát a normál eloszlás várható értékét a minta átlaggal becsülhetjük a Maximum-Likelihood módszer szerint.

Vissza

1.4.

Becsüljük meg az $x_1, x_2, \dots, x_n \sim N(m, \sigma)$ normál eloszlást követő értékek szórását(σ), úgy hogy a várható értéke(m) ismert. Azaz $L(\Theta, x_1, x_2, \dots, x_n) = ?$ ahol $\Theta = \sigma$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$$

$$L(\Theta, x_1, x_2, \dots, x_n) = \frac{1}{\sigma^n \sqrt{2\pi}^n} e^{-\frac{\sum\limits_{i=1}^n (x_i - m)^2}{2\sigma^2}}$$

Hasonlóan, mint az 1.1.3-as példáh

Hasonlóan, mint az 1.1.3-as példához, a maximumát keresem, ezért logaritmu-

sát veszem, majd deriválom σ szerint, hogy megtaláljam(a logaritusának ugyanott van a maximuma).

$$lnL(\Theta, x_1, x_2, \dots, x_n) = ln(2\pi)^{\frac{n}{2}} - n \cdot ln\sigma + ln(e) \cdot \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{(x_i - m)^2}{\sigma^2}\right)$$

Figyelembe véve, hogy az $ln(2\pi)^{\frac{n}{2}}$ konstans, és az ln(e) = 1, deriválva ezt kapom:

$$\frac{\partial \ln L}{\partial \Theta} = \frac{\partial \ln L}{\partial \sigma} = -n\frac{1}{\sigma} + \frac{-2}{\sigma^3} \cdot \frac{-1}{2} \left(\sum_{i=0}^{n} (x_i - m)^2 \right) \stackrel{?}{=} 0$$

 σ^3 -el szorozva, majd $n\sigma^2$ -et hozzáadva kapjuk, hogy: $\sum_{i=0}^{n} (x_i - m)^2 = n\sigma^2$

Amiből σ^2 -et kifejezve megkapjuk a becslésünket: $\sigma^2 = \frac{\sum\limits_{i=0}^{n}(x_i-m)^2}{n}$

Tehát a normál eloszlásnál a szórás Likelihood becslése a ťapasztalati szórás. Vissza

1.5. (Konfidencia(megbízhatósági) intervallum keresés)

Adott $x_1, x_2, \ldots, x_n \sim N(m, \sigma)$, ahol σ ismert.

Keressünk m-re $1 - \varepsilon$ szintű konfidenciaintervallumot!

$$P(\overline{x} - a < m < \overline{x} + a) = 1 - \varepsilon$$

$$P(-a < m - \overline{x} < a) = 1 - \varepsilon$$

$$P(|m-\overline{x}| < a) \xrightarrow{\text{szokás} \atop \text{kedvéért}} P(|\overline{x}-m| < a) \xrightarrow{\text{sztenderdizálom}} P(\frac{-a}{\frac{\sigma}{\sqrt{n}}} < \frac{\overline{x}-m}{\frac{\sigma}{\sqrt{n}}} < \frac{a}{\frac{\sigma}{\sqrt{n}}}) = \Phi(\frac{a}{\frac{\sigma}{\sqrt{n}}}) - \Phi(-\frac{a}{\frac{\sigma}{\sigma}}) = \Phi(\frac{a}{\frac{\sigma}{\sqrt{n}}}) = \Phi(\frac{a}{$$

Mivel
$$-\Phi(-\frac{a}{\frac{\sigma}{\sqrt{n}}}) = -(1-\Phi(\frac{a}{\frac{\sigma}{\sqrt{n}}}))$$
, ezért ez tovább egyenlő: $=2\Phi(\frac{a}{\frac{\sigma}{\sqrt{n}}})-1=1-\varepsilon$

$$=2\Phi(\frac{a}{\frac{\sigma}{\sqrt{a}}})-1=1-\epsilon$$

Otszok kettővel, majd, veszem a Φ^{-1} -ét: $\frac{a}{\frac{\sigma}{\sigma}} = \Phi^{-1}(\frac{1-\varepsilon}{2})$

$$a = \Phi^{-1}(\frac{1-\varepsilon}{2})\frac{\sigma}{\sqrt{n}}$$

Tehát m-re, az $1-\varepsilon$ szintű konfidencia
intervallum:

$$\left[\overline{x} - \Phi^{-1}(\frac{1-\varepsilon}{2})\frac{\sigma}{\sqrt{n}}, \overline{x} + \Phi^{-1}(\frac{1-\varepsilon}{2})\frac{\sigma}{\sqrt{n}}\right)$$