無機化学

目次	
第1部 非金属元素	2
1 水素	2
1.1 同位体	2
1.2 製法	2
1.3 反応	2
2 貴ガス	2
2.1 性質	2
2.2 生成	2
2.3 ヘリウム He	2
2.4 ネオン Ne	2
2.5 アルゴン Ar	2
3 ハロゲン	3
3.1 単体	3
3.2 ハロゲン化水素	4
3.3 ハロゲン化銀	5
3.4 次亜塩素酸塩	5
3.5 水素酸カリウム	5
4 酸素	6
4.1 酸素原子	6
4.2 酸素	6
4.3 オゾン	6
4.4 酸化物の分類	7
4.5 水の特異性	7
5 硫黄	8
5.1 硫黄	8
5.2 硫化水素	8
5.3 二酸化硫黄(亜硫酸ガス)	8
5.4 硫酸	8
5.5 チオ硫酸ナトリウム(ハイポ)	9
5.6 重金属の硫化物	10
6 窒素	10
6.1 窒素	10
6.2 アンモニア	10

第Ⅱ部	5 金属元素	11
7	APPENDIX	12
7.1	気体の乾燥剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12

無機化学 1/12

第I部

非金属元素

1 水素

無色無臭の気体 *1 最も軽く、水に溶けにくい

1.1 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.2 製法

- ナフサの電気分解 工業的製法
- 赤熱した $\frac{1-\rho_Z}{1}$ に $\frac{x \, \overline{x} \, \overline{y}}{1}$ を吹き付ける $\frac{x \, \overline{x} \, \overline{y}}{1}$ $\frac{x \, \overline{y}}{1}$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- \bullet イオン化傾向が H_2 より大きい金属と希薄強酸
 - $\boxed{\textbf{M}}$ Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

1.3 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2\,\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow \mathrm{H}_2\mathrm{O}$
- 加熱した酸化銅(II)と水素 $CuO + H_2 \longrightarrow Cu + H_2O$
- 水酸化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

- 無色・無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い。
- イオン化エネルギーが極めて大きい。
- 電子親和力は極めて小さい(ほぼ0)。
- 電気陰性度は定義されない。

2.2 牛成

⁴⁰K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 N_2 , O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

無機化学 2/12

^{*1} 融点 14K 沸点 20K

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	${\rm I}_2$
分子量	小	\	\rightarrow	大
分子間力 (反応性)	弱(強)		\rightarrow	強(弱)
沸点・融点	低	\	\rightarrow	高
常温での状態	<u>気体</u>	<u>気体</u>	液体	<u>固体</u>
色	<u>淡黄</u> 色	黄緑色	赤褐色	<u>黒紫</u> 色
特徴	<u>特異</u> 臭	刺激臭	揮発性	昇華性
H ₂ との反応	<u>冷暗所</u> でも	<u>常温</u> でも <u>光</u> で	<u>加熱</u> して	高温で平衡状態
	爆発的に反応	爆発的に反応	<u>触媒</u> により反応	<u>加熱</u> して <u>触媒</u> により一部反応
水との反応	水を酸化して酸素を発生	一部とけて反応	一部とけて反応	反応しない
/	激しく反応			KIaq には可溶
用途	保存が困難	<u>ClO</u> -による	C=C ❖	<u>ヨウ素デンプン</u> 反応で
用处	Kr や Xe と反応	殺菌・漂白 作用	C≡C の検出	青紫色

3.1.2 製法

- フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液 の電気分解 $\boxed{\mathrm{T**obs}}$ KHF_2 \longrightarrow KF + HF
- 水酸化ナトリウム</mark>の電気分解 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 酸化マンガン(IV) に濃硫酸 を加えて加熱 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\wedge} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$
- 高度さらし粉と塩酸 ${\rm Ca(ClO)_2\cdot 2\,H_2O+4\,HCl} \longrightarrow {\rm CaCl_2} + 2\,{\rm Cl_2} \uparrow + 4\,{\rm H_2O}$
- <u>さらし粉</u>と<u>塩酸</u> ${\rm CaCl}({\rm ClO}) \cdot {\rm H_2O} + 2 \, {\rm HCl} \, \longrightarrow \, {\rm CaCl_2} + {\rm Cl_2} \uparrow \, + \\ 2 \, {\rm H_2O}$
- 臭化マグネシウムと塩素 $\mathrm{MgBr_2} + \mathrm{Cl_2} \longrightarrow \mathrm{MgCl_2} + \mathrm{Br_2}$
- ヨウ化カリウムと塩素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- 塩素と水素 ${\rm H}_2 + {\rm Cl}_2 \xrightarrow{\Re {\rm E} {\rm e} {\rm H}_{\rm C} {\rm e} {\rm e}$
- 臭素と水素 $\mathrm{H_2} + \mathrm{Br_2} \xrightarrow{ \bar{\mathrm{ala}}^{\mathrm{c} \bar{\mathrm{C}} \bar{\mathrm{C}} \bar{\mathrm{C}} \bar{\mathrm{C}} }} 2\,\mathrm{HBr}$
- ヨウ素と水素 $\mathrm{H}_2 + \mathrm{I}_2 \xrightarrow{\stackrel{\mathrm{Gall}}{\longleftarrow}} 2\,\mathrm{HI}$
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 $\operatorname{Cl}_2 + \operatorname{H}_2\operatorname{O} \Longrightarrow \operatorname{HCl} + \operatorname{HClO}$
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 $I_2 + I^- \longrightarrow I_3^-$

無機化学 3/12

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 \downarrow 濃硫酸に通す $(H_2O$ の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 ・・・酸素を含む酸性物質

+ VII	$\frac{\mathrm{HClO_4}}{}$	過塩素酸	$\begin{bmatrix} O \\ H-O-Cl-O \\ I \\ O \end{bmatrix}$
			O
+ V	HClO_3	塩素酸	H - O - Cl - O
+ III	HClO_2	亜塩素酸	H-O-Cl-O
+ I	HClO	次亜塩素酸	H - O - Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HF HCl		HI			
色・臭い	無色 <mark>煮</mark> 魚						
沸点	20°C	$-85^{\circ}\mathrm{C}$	−67°C	$-35^{\circ}\mathrm{C}$			
水との反応	よく溶ける						
水溶液	フッ化水素酸	塩酸	臭化水素酸	ヨウ化水素酸			
(強弱)	弱質	<u>竣</u> ≪ <u>強酸</u> < <u>強</u>	酸 < 強酸) -			
用途	<u>ガラス</u> と反応	<mark>アンモニア</mark> の検出	半導体加工	インジウムスズ			
一	⇒ ポリエチレン瓶	各種工業	下守肸加工	酸化物の加工			

3.2.2 製法

- <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱(<u>弱酸遊離</u>) $\text{CaF}_2 + \text{H}_2\text{SO}_4 \xrightarrow{\Delta} \text{CaSO}_4 + 2\,\text{HF}\uparrow$
- 水素と塩素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2 HCl \uparrow$

• $\frac{$ 塩化ナトリウムに $<math> \frac{ \vdots }{ \vdots }$ に加えて加熱($\frac{ GRW}{ \vdots }$ 酸 $\frac{ }{ \vdots }$ を $\frac{ }{ \vdots }$ を $\frac{ }{ \vdots }$ の追い出し) NaCl + $\frac{ H_2SO_4}{ \Delta}$ NaHSO $_4$ + $\frac{ }{ \vdots }$ HCl \uparrow

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

無機化学 4/12

3.3 ハロゲン化銀 3 ハロゲン

• <u>塩化水素</u>による<u>アンモニア</u>の検出 $AgO_2 + 2HF \longrightarrow 2AgF + H_2O$

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	黄褐色	<u>白</u> 色	淡黄色	黄色
水との反応	よく溶ける	ほとんど溶けない		
光との反応	感光	感光性 (→ <mark>Ag</mark>)		

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 ${\rm Ag_2O} + 2\,{\rm HF} \longrightarrow 2\,{\rm AgF} + {\rm H_2O}$
- ハロゲン化水素イオンを含む水溶液と<mark>硝酸銀水溶液</code> $\mathrm{Ag^+} + \mathrm{X^-} \longrightarrow \mathrm{AgX} \downarrow$ </mark>

3.4 次亜塩素酸塩

3.4.1 性質

<u>酸化</u>剤として反応(<u>殺菌・漂白</u>作用 $ClO^- + 2H^+ + 2e^- \longrightarrow H_2O + Cl^-$

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素 $2\,\mathrm{NaOH} + \mathrm{Cl_2} \longrightarrow \mathrm{NaCl} + \mathrm{NaClO} + \mathrm{H_2O}$
- 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O}$

3.5 水素酸カリウム

化学式: KClO₃

3.5.1 性質

<u>酸素</u>の生成(<u>二酸化マンガン</u>を触媒に加熱) $2 \, \text{KClO}_3 \, \xrightarrow{\text{MnO}_2} 2 \, \text{KClO} + 3 \, \text{O}_2 \, \uparrow$

無機化学 5/12

4 酸素

4.1 酸素原子

同<u>位</u>体:酸素 (O_2) ,<u>オゾン</u> (O_3) 地球の地殻に<mark>最も多く</mark>存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 無色無臭の気体
- 沸点 -183°C

4.2.2 製法

- 液体空気の分留 工業的製法
- 水 (水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 \uparrow + \operatorname{O}_2 \uparrow$
- <u>過酸化水素水</u> (<u>オキシドール</u>) の分解 $2 \, \mathrm{H_2O_2} \xrightarrow{\mathrm{MnO_2}} \mathrm{O_2} \uparrow + 2 \, \mathrm{H_2O}$
- <u>塩素酸カリウム</u>の熱分解 $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KClO} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: O_3

4.3.1 性質

- <u>ニンニク</u>臭(特異臭)を持つ<u>淡青</u>色の気体(常温)
- 水に少し溶ける
- 殺菌・脱臭作用

オゾンにおける酸素原子の運動

4.3.2 製法

酸素中で<u>無声放電</u>/強い<mark>紫外線</mark>を当てる $3O_2 \longrightarrow 2O_3$

4.3.3 反応

- 酸化剤としての反応 $O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$
- 湿らせた<u>ヨウ化カリウムでんぷん紙</u>を<u>青</u>色に変色 $O_3 + 2 \text{ KI} + \text{H}_2 \text{O} \longrightarrow \text{I}_2 + O_2 + 2 \text{ KOH}$
- 酸化カルシウムと水 ${\rm CaO} + {\rm H_2O} \longrightarrow {\rm Ca(OH)_2}$
- 二酸化窒素と水 $3\,\mathrm{NO_2} + \mathrm{H_2O} \longrightarrow 2\,\mathrm{HNO_3} + \mathrm{NO}$
- 酸化銅(II)と塩化水素 ${\rm CuO} + 2\,{\rm HCl} \longrightarrow {\rm CuCl_2} + {\rm H_2O}$
- 酸化アルミニウムと硫酸 ${\rm Al_2O_3} + 3\,{\rm H_2SO_4} \longrightarrow {\rm Al_2(SO_4)_3} + 3\,{\rm H_2O}$
- 酸化アルミニウムと水酸化ナトリウム水溶液
 Al₂O₃ + 2 NaOH ---- 3 H₂O ---- 2 Na[Al(OH)⁺]

4.4 酸化物の分類 4 酸素

4.4 酸化物の分類

	塩基性酸化物	両性酸化物	酸性酸化物
元素	<u>陽性</u> の <u>大き</u> い <u>金属</u> 元素	<u>陽性</u> の <u>小さ</u> い <u>金属</u> 元素	非金属元素
水との反応	塩基性	ほとんど溶けない	<u>酸性</u> (⇒オキソ酸)
中和	酸と反応	<u>酸・塩基</u> と反応	<u>塩基</u> と反応

両性酸化物 \cdots \underline{r} ルミニウム (\underline{Al}) , $\underline{\underline{m}}$ (\underline{Zn}) , \underline{ZZ} (\underline{Sn}) , $\underline{\underline{3}}$ $(\underline{Pb})^{*2}$

4.5 水の特異性

● 極性分子

● 周りの4つの分子と水素結合

● 異常に<mark>高い</mark>沸点

<u>隙間の多い</u>結晶構造(密度:固体液体)

● 特異な<mark>融解曲線</mark>

無機化学 7/12

 st^2 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

	斜方硫黄	単斜硫黄	ゴム状硫黄
化学式	S_8	S_8	S_x
色	<u>黄</u> 色	<u>黄</u> 色	<u>黄</u> 色
構造	塊状結晶	針状結晶	<u>不定形</u> 固体
融点	113°C	119°C	不定
構造	S S S		S S S S S S S S S S S S S S S S S S
CS_2 との反応	溶ける	溶ける	溶けない

 CS_2 ··· 無色・芳香性・揮発性 \Rightarrow <mark>無極性</mark>触媒

5.1.2 反応

- 高温で多くの金属(Au、Pt を除く)との反応 $Fe + S \longrightarrow FeS$
- 空気中で<u>青</u>色の炎を上げて燃焼 $S + O_2 \longrightarrow SO_2$

5.2 硫化水素

化学式: H_2S

5.2.1 性質

- 無色・腐卵臭
- 弱酸性

$$\begin{cases} \frac{\text{H}_2\text{S} \Longrightarrow \text{H}^+ + \text{HS}^-}{\text{HS}^- \Longrightarrow \text{H}^+ + \text{S}^-} & K_1 = 9.5 \times 10^{-8} \text{ mol/L} \\ \hline K_2 = 1.3 \times 10^{-14} \text{ mol/L} \end{cases}$$

5.2.2 製法

- 酸化鉄(Ⅱ)と希塩酸
 FeS+2HCl → FeCl₂+H₂S↑
- 酸化鉄(II)と希硫酸 ${\rm FeS} + {\rm H_2SO_4} \longrightarrow {\rm FeSO_4} + {\rm H_2S} \uparrow$

5.2.3 反応

5.3 二酸化硫黄(亜硫酸ガス)

化学式: <u>SO₂</u> 電子式: : O: S:: O

5.3.1 性質

無色、刺激臭の気体

- 水に溶けやすい
- 弱酸性

 $\mathrm{H_2O} + \mathrm{SO_2} \Longrightarrow \mathrm{H^+} + \mathrm{HSO_3}^- \quad K_1 = 1.4 \times 10^{-2} \; \mathrm{mol/L}$

● 還元剤 (漂白作用)

$$SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$$

• 酸化剤($\underline{H_2S}$ などの強い還元剤に対して) $SO_2 + 4\overline{H^+} + 4e^- \longrightarrow S + 2\overline{H_2O}$

5.3.2 製法

- 硫黄や硫化物の燃焼 工業的製法 $2 \, \mathrm{H_2S} + 3 \, \mathrm{O_2} \longrightarrow 2 \, \mathrm{SO_2} + 2 \, \mathrm{H_2O}$
- <u>亜硫酸ナトリウム</u>と希硫酸 $\mathrm{Na_2SO_3} + \mathrm{H_2SO_4} \xrightarrow{\Delta} \mathrm{NaHSO_4} + \mathrm{SO_2} \uparrow + \mathrm{H_2O}$
- 銅と<u>熱濃硫酸</u> $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$

5.3.3 反応

- 二酸化硫黄の水への溶解
 SO₂ + H₂O → H₂SO₃
- 二酸化硫黄と硫化水素 $SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$
- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄 $2\,{\rm KMnO_4}\,+\,5\,{\rm SO_2}\,+\,2\,{\rm H_2O}\,\,\longrightarrow\,\,2\,{\rm MnSO_4}\,+\,\\2\,{\rm H_2SO_4}+{\rm K_2SO_4}$

5.4 硫酸

5.4.1 性質

- 無色無臭の液体
- 水に非常によく溶ける
- 溶解熱が非常に大きい
- 水に濃硫酸を加えて希釈
- 不揮発性で密度が大きく、粘度が大きい 濃硫酸
- 吸湿性・脱水作用 濃硫酸
- 強酸性 希硫酸

 $\left(\begin{array}{c} \underline{\mathrm{H}_{2}\mathrm{SO}_{4}} & \Longrightarrow \underline{\mathrm{H}^{+}} + \underline{\mathrm{HSO}_{4}}^{-} & K_{1} > 10^{8}\mathrm{mol/L} \end{array}\right)$

- 弱酸性 濃硫酸 (水が少なく、H₃O⁺の濃度が小さい)
- 酸化剤として働く 熱濃硫酸 ${\rm H_2SO_4} + 2 \, {\rm H}^+ + 2 \, {\rm e}^- \longrightarrow {\rm SO_4} + 2 \, {\rm H_2O}$

▼ルカリ性土類金属 (<u>Ca,Be</u>)、<u>Pb</u>と難容性の塩を生成 希硫酸

5.4.2 製法

接触法工業的製法

1. 黄鉄鉱 FeS。の燃焼

$$\begin{split} 4\operatorname{FeS}_2 + 11\operatorname{O}_2 &\longrightarrow 2\operatorname{Fe}_2\operatorname{O}_3 + 8\operatorname{SO}_2\\ (\operatorname{S} + \operatorname{O}_2 &\longrightarrow \operatorname{SO}_2) \end{split}$$

2. <u>酸化バナジウム</u>触媒で酸化

$$2\operatorname{SO}_2 + \operatorname{O}_2 \xrightarrow{\operatorname{V_2O_5}} 2\operatorname{SO}_3$$

3. <u>濃硫酸</u>に吸収させて<u>発煙硫酸</u>とした後、希硫酸 を加えて希釈

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

$$\mathrm{KNO_3} + \mathrm{H_2SO_4} \longrightarrow \mathrm{HNO_3} + \mathrm{KHSO_4}$$

• スクロースと濃硫酸

$$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12\,C + 11\,H_2O$$

• 希硫酸と水酸化ナトリウム

$$\mathrm{H_2SO_4} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2SO_4} + 2\,\mathrm{H_2O}$$

• 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + \mathrm{SO}_2 + 2\,\mathrm{H}_2\mathrm{O}$$

• 塩化バリウム水溶液と希硫酸

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$$

5.5 チオ硫酸ナトリウム(ハイポ)

化学式:Na₂S₂O₃

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- 還元剤として反応

例水道水の脱塩素剤 (カルキ抜き)

$$2\,\mathrm{S_2O_3}^{2-} \longrightarrow \mathrm{S_4O_6} + 2\,\mathrm{e^-}$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

$$Na_2SO_4 + S_n \longrightarrow Na_2S_2O_3$$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

$$I_2 + 2 \operatorname{Na}_2 S_2 O_3 \longrightarrow 2 \operatorname{NaI} + \operatorname{Na}_2 S_4 O_6$$

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)						中性・	塩基性	で沈澱	(酸性では溶解)
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
<u>黒</u> 色	<u>黒</u> 色	<u>黒</u> 色	<u>黒</u> 色	褐色	<u>黒</u> 色	<u>黒</u> 色	<u>黒</u> 色	<u>白</u> 色	淡赤色

<u>低</u> イオン化傾向 <u>高</u> 極小 塩の溶解度積 (*K_{sp}*) 小

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- 無色無臭の気体
- 空気の 78% を占める
- 水に溶けにくい(無極性分子)
- 常温で不活性(食品などの酸化防止)
- 高エネルギー状態(高温・放電)では反応

6.1.2 製法

- 液体窒素の分留 工業的製法
- <u>亜硝酸アンモニウム</u>の<u>熱分解</u> $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

主糸と阪糸
$$N_2 + 2O_2 \longrightarrow 2NO_2 \left\{ \begin{array}{c} N_2 + O_2 \longrightarrow 2NO \\ 2NO + O_2 \longrightarrow 2NO_2 \end{array} \right.$$
 算書 とっぱさいけん

• 窒素とマグネシウム $3\,\mathrm{Mg} + \mathrm{N}_2 \longrightarrow \mathrm{Mg}_3\mathrm{N}_2$

6.2 アンモニア

化学式:NH₃

6.2.1 性質

- 無色刺激臭の気体
- 水素結合
- 水に非常によく溶ける (上方置換)
- 塩基性

$$\left(\begin{array}{c}
\frac{\text{NH}_3 + \text{H}_2\text{O} \Longrightarrow \text{NH}_4^+ + \text{OH}^-}{K_1 = 1.7 \times 10^{-5} \text{ mol/L}}
\end{array}\right)$$

6.2.2 製法

• ハーバーボッシュ法 工業的製法

<u>塩化アンモニウム</u>と水酸化カルシウムを混ぜて加熱
 2 NH₄Cl+Ca(OH)₂ → 2 NH₃↑+CaCl₂+2 H₂O

6.2.3 反応

 6.2
 アンモニア
 6
 窒素

第Ⅱ部

金属元素

無機化学 11/12

7 APPENDIX

7.1 気体の乾燥剤

固体の乾燥剤はU字管につめて、液体の乾燥剤は洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	十酸化四リン	$\underline{\mathrm{P_4O_{10}}}$	酸性・中性	塩基性の気体(<u>NH</u> ₃)
段江	濃硫酸	$\mathrm{H_2SO_4}$	1 段任、中任	+ <u>H₂S</u> (<u>還元剤</u>)
中性	塩化カルシウム	$CaCl_2$	ほとんど全て	NH_3
	シリカゲル	$\mathrm{SiO}_2 \cdot n\mathrm{H}_2\mathrm{O}$	はこんと主し	特になし
塩基性	酸化カルシウム	<u>CaO</u>	中性・塩基性	酸性の気体
	ソーダ石灰	CaO と NaOH	中は、塩基性	$\underline{\text{Cl}_2},\underline{\text{HCl}},\underline{\text{H}_2}\text{S},\underline{\text{SO}_2},\underline{\text{CO}_2},\underline{\text{NO}_2}$

無機化学 12/12