

SÍLABO RESISTENCIA DE MATERIALES

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-I1.3 Código de la asignatura : 09128006050

1.4Ciclo: VI1.5Créditos: 51.6Horas semanales totales: 10

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 6 (T=4, P=0, L=02)

1.6.2. Horas no lectivas : 4

1.7 Condición del Curso : Obligatorio

1.8 Requisito(s) : 09008605040 Materiales de Ingeniería

09008705050 Mecánica Aplicada

1.9 Docentes : Ing. Luis Carlos A. Rojas Torres

II. SUMILLA

La asignatura se desarrolla de forma teórico-práctica con el propósito de formar al estudiante en el análisis de cargas, determinación de esfuerzos y deformaciones, y selección de elementos de uso industrial que cumplan con las normas técnicas vigentes y brinden seguridad durante su vida útil.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Concepto de esfuerzo y deformación bajo carga axial. II. Torsión y flexión pura. III. Esfuerzos cortantes y transformación de esfuerzos y deformaciones. IV. Deflexión en vigas prismáticas estáticas e hiperestáticas

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Aplicar los métodos básicos de la Estática para la determinación de esfuerzos normales directos.
- Evaluar los esfuerzos normales en elementos sometidos a cargas axiales.
- Seleccionar perfiles estructurales comerciales sometidos a esfuerzos.
- Analizar los esfuerzos y las deformaciones en elementos sometidos a carga axial, utilizando la ley de Hooke y la relación de Poisson.
- Resolver problemas estáticamente indeterminados.
- Interpretar los esfuerzos de concentración de esfuerzos en cambios de sección y área de conexiones.

3.2 Componentes

- o Integra y valora los conceptos de la matemática vectorial a la solución de problemas reales.
- Utiliza software para la solución de sistemas de ecuaciones.
- Puede interpretar estructuras cotidianas como puentes y andamios y vigas
- Entiende la importancia de diferentes modelos o abstracciones para resolver problemas e. g. concepto de partícula y cuerpo libre.

Contenidos actitudinales

- o Aplica los conocimientos impartidos en clase en el análisis de estructuras en el laboratorio.
- Aplica conceptos del cálculo integral para obtener propiedades de diferentes estructuras.
- Tiene las capacidades para diseñar sus propios elementos de máquinas.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : Concepto de esfuerzo y deformación bajo carga axial.

CAPACIDAD: Integra y valora los conceptos de la matemática vectorial a la solución de problemas reales.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HC L	RAS T.I.
1	Primera sesión: Introducción al concepto de esfuerzo Segunda Sesión: Problemas de carga axial.	Desarrolla los conceptos básicos y necesarios para el buen desempeño del curso. Entender los diferentes modelos jerárquicos que existen para un mismo problema.	Lectivas (L): Introducción al tema - 2 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
2	Primera sesión: Esfuerzos cortantes y de apoyo. Segunda sesión: Esfuerzo en condiciones generales de carga Asignación del Ensayo de Laboratorio N° 1: Esfuerzos y Deformaciones en una Armadura Plana.	Aplica los conceptos de fuerza aplicada sobre un área para resolver problemas estructurales.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
3	Primera sesión: Elasticidad lineal. Problemas estáticamente indeterminados. Segunda sesión: Problemas termo-mecánicos. Relación de Poisson y ley de Hooke generalizada. Concentradores de esfuerzos	Entiende el concepto de LINEALIDAD en ingeniería. Comprensión del uso de ejes para transmisión de momentos. Capacidad para simplificar sistemas de fuerzas en varias dimensiones.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
4	Primera sesión: Deformación de ejes circulares en el rango elástico. Segunda sesión: Diseño de ejes de transmisión.	Diseña ejes de transmisión manteniéndolos en el rango elástico para cualquier carga.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD II: Torsión y flexión pura.

CAPACIDAD: Utiliza software para la solución de sistemas de ecuaciones.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
5	Primera sesión: Flexión pura en elementos simétricos. Esfuerzos y deformaciones en el rango elástico. Segunda sesión: Deformaciones de una sección transversal. Flexión en materiales compuestos. Entrega en la Oficina de Coordinación Académica del informe del Ensayo de Laboratorio N° 1: Esfuerzos y deformaciones en una armadura plana.	Analiza y calcula deformaciones para elementos fabricados en materiales compuestos. Aplica la teoría lineal elástica para el cálculo de tensiones para una deformación dada.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
6	Primera sesión: Flexión asimétrica. Segunda sesión: Flexión de elementos curvos. Deflexión en vigas vigas prismáticas con dos apoyos. Asignación del Ensayo de Laboratorio N° 2: Deflexión en Vigas prismáticas con dos apoyos.	Aplica los conceptos de flexión a vigas con carga transversal de dos apoyos.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	- 6	4
7	Primera sesión: Esfuerzos cortantes en vigas. Segunda sesión: Esfuerzos cortantes en tipos comunes de vigas	Calcula los esfuerzos cortantes en miembros sometidos a flexión.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
8	Primera sesión Examen parcia Segunda sesión Revisión del examen parciall		Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD III: Esfuerzos cortantes y transformación de esfuerzos y deformaciones.

CAPACIDAD: Puede interpretar estructuras cotidianas como puentes y andamios y vigas

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
9	Primera sesión: Análisis de distribución de esfuerzos en una viga. Segunda sesión: Recipientes de pared delgadas.	Calcula los esfuerzos en una viga. Comprende los problemas en el diseño de recipientes de pared delgada.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h	6	4
9			Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
10	Primera sesión: Transformación de esfuerzo plano. Segunda sesión: Estado general de esfuerzos Entrega en la Oficina de Coordinación Académica del informe del Ensayo de Laboratorio N°2: Deflexión en Vigas prismáticas con dos apoyos.	Descompone y transforma esfuerzos en diferentes direcciones.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
11	Primera sesión: Circulo de Mohr, aplicaciones tridimensionales. Segunda sesión: Criterios de falla en materiales dúctiles. Asignación del Ensayo de Laboratorio N° 3: Esfuerzos y Deformaciones en elementos sometidos a Flexo-Torsión	Aplica el método del circulo de Mohr a problemas tridimensionales. Aplica los conceptos de ciencia de los materiales a las estructuras fabricadas en materiales dúctiles.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
12	Primera sesión: Criterios de falla para materiales frágiles. Segunda sesión: Esfuerzos en recipientes de pared delgada con presión interna.	Aplica los conceptos de ciencia de los materiales a las estructuras fabricadas en materiales frágiles. Calcula los efectos de la presión interna en recipientes de pared delgada.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4

UNIDAD IV: Deflexión en vigas prismáticas estáticas e hiperestáticas

CAPACIDAD: Entiende la importancia de diferentes modelos o abstracciones para resolver problemas e. g. concepto de partícula y cuerpo libre.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS
			ACTIVIDAD DE APRENDIZAJE		T.I.
13	Primera sesión: Transformación de deformación plana. Segunda sesión: Círculo de Mohr para deformación plana.	Aplica transformaciones a las deformaciones principales para hallar las componentes en cualquier ángulo.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
14	Primera sesión: Deformación de vigas bajo carga transversal. Ecuación de la curva elástica. Segunda sesión: Cálculo vigas estáticamente determinadas. Entrega en la Oficina de Coordinación Académica del informe del Ensayo de Laboratorio N° 3: Esfuerzos y Deformaciones en elementos sometidos a Flexo-Torsión	.Calcula la deformación transversal de una viga debido a cargas transversal. Calcula vigas estáticamente determinadas.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
15	Primera sesión: Calculo y análisis de vigas estáticamente indeterminada. Segunda sesión: Calculo de deflexión máxima en vigas.	. Calcula vigas estáticamente indeterminadas.	Lectivas (L): Desarrollo del tema - 2 h Ejemplos del tema - 2 h Ejercicios en aula - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	6	4
16	Examen final				
17	Entrega de promedios finales y acta del curso.				

V. ESTRATEGIAS METODOLÓGICAS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones, videos de estructuras, libros en formato digital.

Medios: uso de la red social como foro de preguntas y solución de dudas durante las horas no lectivas.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final se obtiene del modo siguiente:

PF = (PE+EP+EF)/3 PE = 0.6*PPR+0.4*PL PPR = (P1+P2)/2 PL = (Lb1+Lb2+Lb3)/3

Donde:

PF = Promedio Final

EP = Examen Parcial

EF = Examen Final

PE = Promedio de Evaluaciones = 0.6*PPR + 0.4*PL

PPR = Promedio de Practicas = (P1+P2)/2

PL = Promedio de ensayos de laboratorios = (Lb1 + Lb2 + Lb3)/3

VIII. FUENTES DE CONSULTA

7.1 Bibliográficas

- Beer, F., Johnston, R. & DeWolf, J. (2013). Mecánica de Materiales. 6ta. ed. México, D.F.: McGraw-Hill.,
- Beer, F., Johnston, R. & DeWolf, J. (2016). Mechanics of Materials. 7th. ed. EEUU, N.Y.: McGraw-Hill.,

7.2 Electrónicas

Versiones digitales de los libros antes mencionados.

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería		
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	R	
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	K	
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K	