计算机系统综合实验

计33 伍一鸣 2012011347

August 19, 2016

Contents

1	实验	目标及完成	茂州	青る	兄															2
	1.1																			2
	1.2	完成情况																		2
2	项目	分工																		2
3	指令	机器码																		3
	3.1	逻辑操作																		3
	3.2	移位操作																		5
	3.3	移动操作																		7
	3.4	算术操作																		8
	3.5	转移指令																		10
	3.6	存储指令	和多	3	旨名	>														12
4	指令	对比																		13
5	数据	通路																		14
6	流水	线设计																		15
	6.1	取指阶段																		15
	6.2	译码阶段																		15
	6.3	执行阶段																		15
	6.4	访存阶段																		15
	6.5	回写阶段		•																15
7	冲突	问题																		15
8	模块	接口																		16
	8.1	PC模块																		16
	8.2	Regfile模块	夬																	16
	8.3	ID模块.																		17
	8.4	EX模块																		18
	8.5	MEM模块																		18
9	监控	程序																		19
10	化拉	与总结																		21

1 实验目标及完成情况

1.1 实验目标

实现32位mips指令系统的五级流水线CPU,在CPU上运行监控程序。

1.2 完成情况

完成了32位mips指令系统的五级流水线CPU,未能运行监控程序,在CPU上运行了一个fibonacci数列计算的程序。

2 项目分工

- 设计数据通路和指令集: 杜华峰, 郭栋, 伍一鸣
- CPU代码实现与调试: 杜华峰, 郭栋
- 监控程序的修改: 伍一鸣
- 所有文档撰写: 伍一鸣

3 指令机器码

rd,rs,rt均为寄存器

3.1 逻辑操作

指令编码	31-26	25-21											
7日マ洲一	000000	rs	rt	rd	00000	100100							
指令格式	AND rd	AND rd rs rt											
指令功能	$R[d] \leftarrow 1$	R[s] & F	R[t]										
功能说明	将rs 与r	将rs 与rt 的值相与后的结果保存至rd 中											

Γ.	指令编码	31-26	25-21	20-16	15-11	10-6	5-0
1	日マー洲一	000000	rs	rt	rd	00000	100101
3	指令格式	OR rd r	s rt				
3	指令功能	$R[d] \leftarrow 1$	$R[s] \mid R[$	[t]			
-	功能说明	将rs 与r	t 的值相	或后的纟	吉果保存	至rd 中	

指令编码	31-26	25-21	20-16	15-11	10-6	5-0					
1日マ洲一	000000	rs	rt	$^{\mathrm{rd}}$	00000	100110					
指令格式	XOR rd	XOR rd rs rt									
指令功能	$R[d] \leftarrow$	$R[s] \wedge R$	t[t]								
功能说明	将rs 与r	将rs 与rt 的值相异或后的结果保存至rd 中									

指令编码	31-26	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -										
7日7 洲心	000000	rs	rt	rd	00000	100111						
指令格式	NOR rd	NOR rd rs rt										
指令功能	$R[d] \leftarrow \sim$	$R[d] \leftarrow \sim (R[s] \mid R[t])$										
功能说明	将rs 与r	将rs 与rt 的值或非后的结果保存至rd 中										

指令编码	31-26	25-21	20-16	15-11 10-6 5-0							
1日 7 3 7 7	001100	rs	rt		immed	liate					
指令格式	ANDI rt	ANDI rt rs immediate									
指令功能	$R[t] \leftarrow I$	$R[t] \leftarrow R[s] \& Zero-extend(immediate)$									
功能说明	将rs 的化	直与立即	数零扩展	展后相与的结果保存至rt 中							

指令编码	31-26	25-21	20-16	15-11	15-11 10-6 5-0						
7日 マ 洲~一	001110	rs	rt	immediate							
指令格式	XORI rt	rs imm	ediate	•							
指令功能	$R[t] \leftarrow I$	$R[s] \wedge Zero-extend(immediate)$									
功能说明	将rs 的信	直与立即	数零扩展	零扩展后相异或的结果保存至rt 中							

指令编码	31-26	37 27 27 27 27 27 27 27								
祖マ洲河	001111	00000	rt	im	mediate	9				
指令格式	LUI rt i	mmediat	e	•						
指令功能	$R[t] \leftarrow i$	$R[t] \leftarrow immediate * 65536$								
功能说明	将16 位立即数放至rt 的高16 位中									

指令编码	31-26	25-21	20-16	15-11	10-6	5-0				
祖女洲"与	001101	rs	rt	immediate						
指令格式	ORI rt 1	rt rs immediate								
指令功能	$R[t] \leftarrow R[s] \mid Zero\text{-extend}(immediate)$									
功能说明	将rs与五	こ即数im	mediate	e 零扩展后相或的结果保存至rd 中						

3.2 移位操作

指令编码	31-26	25-21	20-16	15-11	10-6	5-0					
相文编码	000000	00000	rt	rd	immediate	000000					
指令格式	SLL rd i	SLL rd rt immediate									
指令功能	$R[d] \leftarrow 1$	$R[d] \leftarrow R[t] \ll immediate$									
功能说明	将rt 中的	将rt 中的值左移立即数immediate 位后的结果保存至rd 中									

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0						
	相マ洲一	000000	00000	rt	rd	immediate	000010						
	指令格式	SRL rd	SRL rd rt immediate										
	指令功能	$R[d] \leftarrow 1$	$R[d] \leftarrow R[t] >> immediate(logical)$										
ĺ	功能说明	将rt 中旬	将rt 中的值逻辑右移立即数immediate 位后的结果保存至rd 中										

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0						
	相マ洲一	000000	00000	rt	$^{\mathrm{rd}}$	immediate	000011						
ſ	指令格式	SRA rd	SRA rd rt immediate										
	指令功能	$R[d] \leftarrow 1$	$R[d] \leftarrow R[t] >> immediate(arithmetic)$										
	功能说明	将rt 中的	将rt 中的值算术右移立即数immediate 位后的结果保存至rd 中										

指令编码	31-26 25-21 20-16 15-11 10-6 5-								
相マ洲一	000000	rs	rt	rd	00000	000100			
指令格式	SLLV rd rt rs								
指令功能	$R[d] \leftarrow R[t] << R[s]$								
功能说明	将rt 中的	将rt 中的值左移rs 位后的结果保存至rd 中							

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
加マ洲心	000000	rs	rt	rd	00000	000110			
指令格式	SRLV rd rt rs								
指令功能	$R[d] \leftarrow R[t] >> R[s](logical)$								
功能说明	将rt 中的	将rt 中的值逻辑右移rs 位后的结果保存至rd 中							

指令编码	31-26	25-21	20-16	15-11	10-6	5-0		
相マ洲一	000000	rs	rt	rd	00000	000111		
指令格式	SRAV rd rt rs							
指令功能	$R[d] \leftarrow R[t] >> R[s](arithmetic)$							
功能说明	将rt 中的值算术右移rs位后的结果保存至rd 中							

3.3 移动操作

指令编码	31-26	25-21	20-16	15-11	10-6	5-0		
加マ洲心	000000	rs	rt	rd	00000	001011		
指令格式	MOVN rd rt rs							
指令功能	if $rt \neq 0$	if $rt \neq 0$ then $rd \leftarrow rs$						
功能说明	若rt不为	若rt不为0,则将rs的值赋给rd						

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
10 4 24V2	000000	rs	rt	$^{\mathrm{rd}}$	00000	001010			
指令格式	MOVZ rd rt rs								
指令功能		if $rt = 0$ then $rd \leftarrow rs$							
功能说明	若rt为0,则将rs的值赋给rd								

3.4 算术操作

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
相マ洲一	000000	$_{ m rs}$	rt	rd	00000	100001			
指令格式	ADDU rd rs rt								
指令功能	$R[d] \leftarrow R[s] + R[t]$								
功能说明	将rs 与r	将rs 与rt 的值相加后的结果保存至rd 中							

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
相マ洲一	000000	rs	rt	rd	00000	100011			
指令格式	SUBU rd rs rt								
指令功能	$R[d] \leftarrow R[s] - R[t]$								
功能说明	将rs 与r	将rs 与rt 的值相减后的结果保存至rd 中							

ſ	指令编码	31-26	25-21	20-16	15-11	10-6	5-0		
	1日7洲一	000000	rs	rt	$^{\mathrm{rd}}$	00000	101010		
	指令格式	SLT rd rs rt							
	指令功能	if(R[s] < R[t]) then R[d] = 1,else R[d] = 0							
	功能说明	比较rs 与	frt 的值	并根据组	吉果将rd	赋值			

指令编码	31-26	25-21	20-16	15-11	10-6	5-0		
祖文洲河	000000	rs	rt	rd	00000	101011		
指令格式	SLTU rd rs rt							
指令功能	if(R[s] < R[t]) then R[d] = 1,else R[d] = 0							
功能说明	比较rs 与rt 的无符号值并根据结果将rd 赋值							

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
1	日マ洲一	001001	rs	rt	immediate					
7	指令格式	ADDIU rt rs immediate								
7	指令功能	$R[t] \leftarrow R[s] + (sign extended)immediate$								
-	功能说明	对立即数immediate进行符号扩展后与rs的值求和,保存到rt中,不检查溢出								

指令编码	31-26	25-21	20-16	15-11	10-6	5-0					
1日7洲4月	001010 rs rt immediate										
指令格式	SLTI rt	SLTI rt rs immediate									
指令功能	/ []	if $(R[s] < (sign extended)$ immediate) then $R[t]=1$, else $R[t]=0$									
功能说明	对立即数	对立即数immediate进行符号扩展后与rs的值无符号比较并根据结果将rt 赋值									

指令编码	31-26	25-21	20-16	15-11	10-6	5-0				
相マ洲一	001011									
指令格式	SLTIU rt rs immediate									
指令功能	if $(R[s] < (sign extended)$ immediate) then $R[t]=1$, else $R[t]=0$									
功能说明	对立即数	对立即数immediate进行符号扩展后与rs的值有符号比较并根据结果将rt 赋值								

3.5 转移指令

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
	相マ洲一	000000	rs	00000	00000	00000	001000			
ſ	指令格式	JR rs	JR rs							
	指令功能	$PC \leftarrow R$	$PC \leftarrow R[s]$							
ſ	功能说明	无条件跳转至rs 中所存地址执行								

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
相交易	000000	rs	00000	$^{\mathrm{rd}}$	00000	001001			
指令格式	JALR re	JALR rd rs 或者JALR rs $PC \leftarrow R[s], R[d] \leftarrow RPC$							
指令功能	$PC \leftarrow R$								
功能说明	无条件员	无条件跳转至rs 中所存地址执行,将延时槽后一条指令							
初起此为	的地址保存到rd中作为返回地址,rd默认为\$31								

指令编码	31-26	25-21	20-16	15-11	10-6	5-0				
相交易	000010	instr index								
指令格式	J target	J target								
指令功能	$PC \leftarrow (1$	$PC \leftarrow (PC+4)[31,28] target*4$								
功能说明	跳转至新地址执行,新地址低28位为target乘以4的值, 新地址高4位为PC+4的高4位									

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
相マ洲心	000011	000011 instr index							
指令格式	JAL tar	JAL target							
指令功能	$PC \leftarrow ($	$PC \leftarrow (PC+4)[31,28] target*4, \$31 \leftarrow RPC$							
功能说明						get乘以4的值,			
70 BE 100 97	新地址	高4位为	PC+4的	的高4位,i	医回地丸	业保存到\$31中			

以上四条指令都要在转移之前先执行延迟槽指令

指令编码	31-26	25-21	20-16	15-11	10-6	5-0				
相交漏码	000100	rs	rt	offset						
指令格式	BEQ rs	BEQ rs rt offset								
指令功能	if $(rs = 1)$	if $(rs = rt)$ then $PC = PC+4+(signed extend(offset * 4))$								
功能说明	若rs等于rt则执行跳转操作									

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
相交易	000111	rs	rs 00000 offset						
指令格式	BGTZ rs offset								
指令功能	if (rs >	if $(rs > 0)$ then $PC = PC+4+(signed\ extend(offset * 4))$							
功能说明	若rs大于0则执行跳转操作								

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
		000110	rs	00000		O	ffset			
Γ	指令格式	BLEZ rs	BLEZ rs offset							
ſ	指令功能	if (rs \le \)	if $(rs \le 0)$ then $PC = PC+4+(signed\ extend(offset\ *4))$							
ſ	功能说明	若rs不大	若rs不大于0则执行跳转操作							

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
相マ洲一	000101	rs	rt	offset					
指令格式	BNE rs rt offset								
	if $(rs \neq rt)$ then $PC = PC+4+(signed\ extend(offset\ *\ 4))$								
功能说明	若rs不等于rt则执行跳转操作								

Γ	指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
		000001	rs	00000		C	offset			
	指令格式	BLTZ rs	BLTZ rs offset if $(rs < 0)$ then $PC = PC+4+(signed\ extend(offset\ *\ 4))$							
	指令功能	if (rs <								
ľ	功能说明	若rs小于0则执行跳转操作								

指令编码	31-26	25-21	20-16	15-11	10-6	5-0			
7日マ洲一	000001	rs	00001	offset					
指令格式	BLEZ rs	BLEZ rs offset							
指令功能	if (rs ≥	if $(rs \ge 0)$ then $PC = PC+4+(signed\ extend(offset * 4))$							
功能说明	若rs不小于0则执行跳转操作								

3.6 存储指令和空指令

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0				
		100011 base rt offset									
	指令格式	LW rt o	LW rt offset(base)								
	指令功能	$R[t] \leftarrow I$	$R[t] \leftarrow MEM[signed extended(offset) + GPR[base]]$								
	功能说明	从内存中指定的加载地址处,读取一个字,保存到rt中,要求地址对齐									

指令编码	31-26	25-21	20-16	15-11	10-6	5-0				
相交易	101011	base	rt			offset				
指令格式	SW rt o	SW rt offset(base)								
指令功能	$R[t] \rightarrow I$	$R[t] \rightarrow MEM[signed extended(offset)+GPR[base]]$								
功能说明	从rt处读取一个字,保存到内存中指定的加载地址中,要求地址对齐									

	指令编码	31-26	25-21	20-16	15-11	10-6	5-0
		000000	00000	00000	00000	00000	000000
ſ	指令格式	NOP					
	指令功能	无					
	功能说明	空指令					

4 指令对比

16位指令	32位对应指令		
ADDIU			
ADDIU3	ADDIU		
ADDSP			
ADDU	ADDU		
AND	AND		
В	BEQ		
BEQZ	XOR+BEQ		
BNEZ	XOR+BNE		
BTEQZ	XOR+BEQ		
CMP	SLT+ADDU		
JR	JR		
LI	XOR+ADDIU		
LW	LW		
LW_SP	LVV		
MFIH			
MFPC	XOR+ADDU		
MTIH	AON+ADD0		
MTSP			
NOP	NOP		
OR	OR		
SLL	SLL		
SRA	SRA		
SUBU	SUBU		
SW	SW		
SW_SP			

5 数据通路

6 流水线设计

6.1 取指阶段

- PC 模块: 给出指令地址, 其中实现指令寄存器PC, 该寄存器的值就是 指令地址。
- IF/ID模块:实现取指不译码阶段之间的寄存器,将取指阶段的结果在下一个时钟传递到译码阶段。

6.2 译码阶段

- ID 模块:对指令进行译码,译码结果包括运算类型、运算所需的源操作数、要写入的目的寄存器等。
- Regfile 模块:实现了32 个32 位通用寄存器,可以同时进行两个寄存器的 读操作和一个寄存器的写操作。
- ID/EX 模块:实现译码不执行阶段之间的寄存器,将译码阶段的结果在下一个时钟周期传递到执行阶段。

6.3 执行阶段

- EX 模块:依据译码阶段的结果,进行指定的运算,给出运算结果。
- EX/MEM 模块:实现执行不访存阶段之间的寄存器,将执行阶段的结果 在下一个时钟周期传递到访存阶段。

6.4 访存阶段

- MEM 模块:如果是加载、存储指令,那么会对数据存储器进行访问。
- MEM/WB 模块:实现访存不回写阶段之间的寄存器,将访存阶段的结果在下一个时钟周期传递到回写阶段。

6.5 回写阶段

• HILO 模块:实现寄存器HI、LO,在乘法指令的处理过程中会使用到这两个寄存器。

7 冲突问题

因为时间等因素,没有考虑冲突的问题,只是在fibonacci数列计算的程序中可能出现冲突的两条指令之间加上了4条NOP语句。

8 模块接口

8.1 PC模块

接口名	宽度	输入/输出	作用
rst	1	输入	复位信号
clk	1	输入	时钟信号
pc	32	输出	要读取的指令地址
ce	1	输出	指令存储器使能信号
branch_flag_i	1	输入	是否转移
branch_target_address_i	32	输入	转移地址
new_pc	32	输入	要读取的指令地址

8.2 Regfile模块

接口名	宽度	输入/输出	作用
rst	1	输入	复位信号
clk	1	输入	时钟信号
waddr	32	输出	要写入的寄存器地址
wdata	1	输出	要写入的数据
we	1	输入	写使能信号
raddr1	5	输入	第一个读端口地址
re1	1	输入	以一个读端口使能信号
rdata1	32	输出	第一个读端口的值
raddr2	5	输入	第二个读端口地址
re2	1	输入	以二个读端口使能信号
rdata2	32	输出	第二个读端口的值

8.3 ID模块

接口名	宽度	输入/输出	作用
rst	1	输入	复位信号
pc_i	32	输入	指令地址
$inst_i$	32	输入	译码阶段指令
reg1_data_i	32	输入	第一个读端口输入
reg2_data_i	32	输入	第二个读端口输入
reg1_read_o	1	输出	第一个读端口使能信号
reg2_read_o	1	输出	第二个读端口使能信号
reg1_addr_o	5	输出	第一个读端口地址
reg2_addr_o	5	输出	第二个读端口地址
aluop_o	8	输出	运算子类型
alusel_o	3	输出	运算类型
reg1_o	32	输出	源操作数1
reg2_o	32	输出	源操作数2
wd_o	5	输出	目的寄存器地址
wreg_o	1	输出	是否需要写入目的寄存器
ex_wreg_i	1	输入	处于执行阶段指令是否写
ex_wd_i	5	输入	处于执行阶段指令写地址
ex_wdata_i	32	输入	处于执行阶段指令写数据
mem_wreg_i	1	输入	处于访存阶段指令是否写
mem_wd_i	5	输入	处于访存阶段指令写地址
mem_wdata_i	32	输入	处于访存阶段指令写数据
branch_flag_o	1	输出	是否转移
branch_target_address_o	32	输出	转移目标地址
is_in_delayslot_o	1	输出	当前指令是否位于延迟槽
link_addr_o	32	输出	返回地址
next_inst_in_delayslot_o	1	输出	下一跳指令是否位于延迟槽
is_in_delayslot_i	1	输入	当前指令是否位于延迟槽

8.4 EX模块

接口名	宽度	输入/输出	作用
rst	1	输入	复位信号
aluop_i	8	输入	运算子类型
alusel_i	3	输入	运算类型
reg1_i	32	输入	源操作数1
reg2_i	32	输入	源操作数2
wd_i	5	输入	目的寄存器地址
wreg_i	1	输入	是否需要写入目的寄存器
wd_o	5	输出	目的寄存器地址
wreg_o	1	输出	是否需要写入目的寄存器
wdata_o	32	输出	写入目的寄存器的值
is_indelayslot_i	1	输出	是否位于延迟槽
link_address_i	32	输出	返回地址
mem_addr_o	32	输出	加载/存储地址
reg2_o	32	输出	要存的数据

8.5 MEM模块

接口名	宽度	输入/输出	作用
rst	1	输入	复位信号
wd_i	5	输入	目的寄存器地址
wreg_i	1	输入	是否需要写入目的寄存器
wdata_i	32	输入	目的寄存器的值
wd_o	5	输出	目的寄存器地址
wreg_o	1	输出	是否需要写入目的寄存器
wdata_o	32	输出	写入目的寄存器的值
reg2_i	32	输出	要存储的数据
mem_data_i	32	输入	读取的数据
mem_addr_i	32	输入	加载/存储地址
is_write	1	输出	是否写ram

9 监控程序

后来目标有所修改,所以监控程序并未完成,比较有用的代码是按照原本16位term的方式打的两张32位的表。

```
const AsmID RegsList[32]={
                {"zero",0},
               {"at",1},
{"v0",2},
{"v1",3},
{"a0",4},
                {"a1",5},
                ("a2",6),
                \{"a3",7\},\
                ("t0",8),
               {"t0",8},
{"t1",9},
{"t2",10},
{"t3",11},
{"t4",12},
                {"t5",13},
                {"t6",14},
                \{"t7", 15\},\
                {"s0",16},
               {"s1",17},
{"s2",18},
{"s3",19},
                {"s4",20},
                \{"s5", 21\},\
                \{"s6", 22\},\
                {"s0",22},

{"s7",23},

{"t8",24},

{"t9",25},

{"k0",26},

{"k1",27},
               {"gp",28},
{"sp",29},
{"fp",30},
                {"ra",31},
};
```

```
const struct TASM const_asm[] = {
    {"AND", 0X3FFF824, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"OR", 0X3FFF825, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"XOR", 0X3FFF826, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"NOR", 0X3FFF827, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"ANDI", 0 X33FF0000, 0 XFC1FFFFF, 0 XFFE0FFFF, 0 XFFFF0000},
    {"XORI",0X3BFF0000,0XFC1FFFFF,0XFFE0FFFF,0XFFFF0000},
    {"LUI",0X3C1F0000,0XFFE0FFFF,0XFFFF0000,0XFFFFFFFF}},
    {"ORI", 0X37FF0000, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF0000},
    {"SLL", 0X1FF800, 0XFFE0FFFF, 0XFFFF07FF, 0XFFFFF83F},
    {"SRL", 0 X1FF802, 0 XFFE0FFFF, 0 XFFFF77FF, 0 XFFFFF83F},
    {"SRA", 0X1FF802, 0XFFE0FFFF, 0XFFFF07FF, 0XFFFFF83F},
    {"SLLV",0X3FFF804,0XFC1FFFFF,0XFFE0FFFF,0XFFFF07FF},
    {"SRLV", 0X3FFF806, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"SRAV", 0X3FFF807, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"MOVN" .0X3FFF80B .0XFC1FFFFF .0XFFE0FFFF .0XFFFF07FF } .
    {"MOVZ", 0X3FFF80A, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"ADDU", 0X3FFF821, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"SUBU", 0X3FFF823, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"SLT", 0X3FFF82A, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"SLTU", 0X3FFF82B, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF07FF},
    {"SLTI", 0X281F0000, 0XFFE0FFFF, 0XFFFFF0000, 0XFFFFFFFF}},
    {"SLTIU",0X2CFF0000,0XFC1FFFFF,0XFFE0FFFF,0XFFFF0000}
    {"JR",0X3E00008,0XFC1FFFFF,0XFFFFFFF,0XFFFFFFF}}.
    {"JALR", 0X3E00009, 0XFC1FFFFF, 0XFFFF07FF, 0XFFFFFFFF}},
    {"J",0X10000000,0XFC000000,0X0XFFFFFFFF,0XFFFFFFF}}.
    {"JAL", 0X18000000, 0XFC000000, 0X0XFFFFFFFF, 0XFFFFFFF}}
    {"BEQ", 0 X13FF0000, 0 XFC1FFFFF, 0 XFFE0FFFF, 0 XFFFF0000},
    {"BNE", 0X17FF0000, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF0000},
    {"BGTZ",0X1FE00000,0XFC1FFFFF,0XFFFFF0000,0XFFFFFFFF}},
    {"BLEZ", 0X1BE00000, 0XFC1FFFFF, 0XFFFF0000, 0XFFFFFFFF}},
    {"BGEZ", 0 X7E10000, 0 XFC1FFFFF, 0 XFFFFF0000, 0 XFFFFFFFF}},
    {"BLTZ", 0X7E00000, 0XFC1FFFFF, 0XFFFFF0000, 0XFFFFFFFF}},
    {"LW", 0X8FFF0000, 0XFC1FFFFF, 0XFFE0FFFF, 0XFFFF0000},
    {"SW",0XAFFF0000,0XFC1FFFFF,0XFFE0FFFF,0XFFFF0000}
};
```

10 收获与总结

通过这次大作业的实践,让我们三个对于计算机组成原理的课程有了较为完整一次复习,对于计原的那些概念性的东西有了更深的理解。

在这次大作业的实践中让我们对于计划赶不上变化有了深刻的理解,以后在 作计划的时候要一切往前并留出50%的缓冲时间才能保证计划的顺利完成。