```
1. (a)
   Let L = [0] * (n+1) // store the length of langest path () (n)
   Let P = [-1] * (n+1) // store the predension of each vertex () (n)
   for vertex n from 1 to n:
                                     m edges in total OCM)
       for edges (u,v) with u < v:
           if L[u]+1 > L[v]: O(1)
               L[v] = L[u] +1 O(1)
               P[v] = u 0(1)
   \Lambda = 0 O(1)
   for i in range (1, N+1): O(N)
       if L[i] > L[v]: 0(1)
                           0(1)
            V=i
    Path = [v] Ou)
    While P[v] ≠-1:
                                o(n)
       path = path.append (P[V]) O(1)
                             0 (I)
       v. P[v]
                           0(n)
    Path.reverse()
                           0(1)
    return path.
     In total: O(m+n)
 (b).
   We let the sequence be A = [A_1, A_2, A_3, \cdots A_n] with vertex set V = \{1, 2, \cdots, n\}
   Then for each pair of vertices in V, cu, v) with u<v, add cu, v) to edge set
    Eif Sn < Sv.
   Now we run the algorithm in (a) for (V, E). Then we can find the
   largest increasing subsequence.
```

2. (a) let OPT[i] be the moximum revenue ending at position i. O(n)
for $i = -k-1,, -1: 0(k) = 0(n)$
0PT [i] = 0. (OC1)
for $i = 0,, n-1$: $O(n)$
· OPT [i] = max (R[i] + OPT[i-k-1], OPT[i-1]) O(1)
return OPT[n-1] O(1) 0 1 2 ···· n-3 n-2 n-1
In total O(n). R
OPT 0 0 1 1
k+1 +1mes
For $i = -k-1,, -1$, we let OPT [i] = 0, which would not affect the revenues
generated on real positions.
For i = 0k, we have OPT[i] = max({P[o], P[i],, P[i]}),
because we can only set one billboards from spot 0 to spot k,
· · · · · · · · · · · · · · · · · · ·
so mondimum revenue including up to position is is max(1RCi]+OPTCi-k-1], RCi-1]}).
(b). let OPT[i][j] be a 2d array () (Mn)
Here OPT [i] [j] is the maximum revenue including up to position i and number j
of billboords.
OPT[i][0] = 0 # since no billboards. O(1)
-
OPT[i][j]=0 # since position is negative O(1)
-tor i = 0,, n-1; 0 (n)
for j=1,, M: OCM)
OPT[i][j] = nox(2[i]+OPT[i-k-1][j-1], OPT[i-1][j] O(1)
return OPT [n-1][M] O (1) In total: O(Mn)

3. Let OPT_I [i] be the longest zigzagging subsequence with last 2 elements increasing of
let OPT_2[i] be the longest zigangging subsequence with last 2 elements decreasing o
it A[i] > A[j]: O(1)
OPT_1[i] = mox (OPT_1[i], OPT_2[j]+1) 0(1)
if A[i] ≤ A[j]; O(1)
OPT_2[i] = max(OPT_2[i],OPT_1[j]+1) ()(1)
return max (OPT_1[n-1], OPT_2[n-1]). OCI).
In total: O(n2).

(b). Let OPT[S][v] = {False};, with S as set of vertices and v be a vertex.OCM.n)

for each vertex v in V(G); O(n)

OPT[{v}][v] = True // Single vertex is a Hamiltonian circle.

for each set S of Size le from 2 to n: O(Z|22 (12)) = O(21)

for v in S: O(n)

for u in si (v): O(n)

if OPT[S][v] == True && edge (u,v) exists: O(1)

OPT[S][v] = True O(1)

for v in V(G): O(N)
if OPT[V][v] = True, O(1)

return True Oc1)

return False (C1).

In total: O(n22n).

Here, we use the fact that a path is Hamiltonian only if the prefix of It is Hamiltonian.

(c). $\lim_{n\to\infty} \frac{z^n \cdot n^2}{n! \cdot n} = \lim_{n\to\infty} \frac{z^n}{(n-1)!} = \lim_{n\to\infty} \left(\frac{z}{n-1} \cdot \frac{z}{n-2} \cdot \frac{z}{n-3} \cdot \dots \cdot \frac{z}{2} \cdot \frac{z}{1} \cdot 2\right) = 0$.

Thus, (b) is an asymptotic improvement from part (a).