Random Variable	4
Definition	4
Sample Space, Ω	5
Measurable Space, E	5
Event	6
Event To Random Variable	6
Properties	7
Probability Function, PXx	8
Properties	10
Cumulative Distribution Function (CDF), $FX(x)$	
Properties	14
Moment Generating Function, MXt	
Properties	
Moments	16
Mean or Average, μX or Expectation, $E[X]$	16
Properties	17
Variance	18
Properties	18
Skew	18
Kurtosis	19
Quantiles	20
Median	21
Quartiles	22
Percentile	22
Distribution	23
Definition	23
Discrete	23
Bernoulli, $Bern(p)$	23

Binomial, Bin(n, p)	23
Negative Binomial/Pascal, NB(r, p)	24
Geometric, $Geo(p)$	24
Hypergeometric, HG(N, K, n)	25
Negative Hypergeometric, NHG(N, K,r)	26
Poisson, $Pos(\lambda)$	27
Uniform, <i>unif</i> (<i>a</i> , <i>b</i>)	27
Continuous	27
Uniform, <i>U</i> (<i>a</i> , <i>b</i>)	27
Normal, $N\mu$, $\sigma 2$	28
Log Normal, $LN\mu$, $\sigma 2$	29
Exponential, $E(\theta)$	30
Sequence (Sn)	32
Definition	32
Sample Space, ΩSn	33
Measurable Space, E	33
Event	33
Joint Probability Function, $PX0X1 Xn - 1x0, x1,, xn - 1$	34
Joint Cumulative Distribution Function (CDF), FX1, X2, Xnx1,, xn	37
Moment	38
Mean or Average, μX or Expectation, $E[X]$	38
Variance	40
Covariance	41
Correlation	42
Classification Of Sequence	43
Independent	43
Pairwise Independent	43

	Mutually Independent	43
	Independent and Identically Distributed	44
	Estimators	45
	Martingale	48
De	ependent	50
	Markov Chain	51
Process	3	53

Random Variable X is a function that maps elements from all the possible outcomes of an experiment (called *Sample Space* Ω) to a Measurable Space E

$$X: \Omega_X \to E$$

i.e., we perform an experiment which can have many outcomes (some repeating more than once), a Random Variable assigns a 'measurable number' (Integer, Boolean or Real) to each of the outcomes in Ω

Definition

Note: All repetitions from Ω_X maps to same value in range E.

	Set of all possible occurrences in an experiment.		
le Space, Ω	$\Omega_{\rm X}=\{e_0,e_0,,$ Theoretically elements in sample space are unique even if some element car probability, we would write all repetitions. (In the end the set will eat away intact).	a occur more than once in the experiment. But to assist in counting correct	
Sample	Discrete	Continuous	
SS	When number of outcomes of the experiment are finite then sample space is called <i>Discrete Sample Space</i> $\Omega_{\rm X} = \{e_0, e_0, \dots, e_1, e_1, \dots, e_{m-1}\}$	When number of outcomes of the experiment are countably infinite then sample space is called <i>Continuous Sample Space</i> $\Omega_{\rm X} = \{e_0, e_0, \dots, e_1, e_1, \dots, e_\infty\}$	
	Measurable space E consists of non-repeating countable values, $E = \{x_0, x_1, \dots, x_m\}$ Properties: 1. Measurable Space does not have any repetitions.		
Space, E	 2. E_{min}: Minimum value that X can take from E 3. E_{max}: Maximum value that X can take from E 		
	Discrete	Continuous	
able	If $E = Integer(I)$ then X is called Discrete Random Variable , i.e.,	If $E = Real(R)$ then X is called Continuous Random Variable, i.e.,	
Measurable	$X: \Omega_X \to I$	$X: \Omega_X \to R$	
\geq	For Example: $X: e_{-m} \to -m, e_{-1} \to -1, e_0 \to 0, e_1 \to 1, \dots, e_m \to m$ Then, E = $\{-m, \dots, -2, -1, 0, 1, 2, \dots, m\}$ with $E_{min} = -m \& E_{max} = m$	For Example: $X:e_r\to r\ where\ r\in R$ i.e., $E=\{-\infty,\dots,-2dx,-dx,0,dx,2dx,\dots,\infty\}$ with $E_{min}=-\infty$ &	
	mux mux	$E_{max} = \infty$	

Any possible subset of measurable space, E is called an Event. Represented by capital letters: A, B, C etc. There would be 2^{Ω_X} possible events. For Example

Event A: $\{x_0\}$ which can also be represented by saying outcome where $X = x_0$

Event B: $\{x_0, x_6\}$: Either outcome is x_0 or x_6 . In other words, $X = x_0$ or $X = x_6$

Event C: $\{x_i \text{ to } x_i\}$: All the continuous events from $x_i \text{ till } x_i, X \in [x_i, x_i]$

Given an Event A on sample space Ω_X , we can represent it as another random variable I_A which is equals to 1 when any of the outcome from sample space is in event A and 0 otherwise.

$$I_A = \begin{cases} 1, & e \in A \\ 0, & otherwise \end{cases}$$

Where e is any random outcome of the experiment from Ω_X This especial Random Variable which can only take two values is called Indicator Variable. Hence mathematically any occurrence of any event A can be represented by I_A

riable	Variable. Hence mathematically any occurrence of any event A can be represented by I_A	
Event To Random Va	Every Indicator Variable follows Bern(p) where p is probability of event A.	
	For example, $\Omega_X = \{1, 2, 3, 4\}$, (all outcomes are equally alike) then	
	Event (A)	Corresponding Indicator Variable (I_A) 's sample space (Ω_{I_A})
	{1,2}	$P_{I_A}(0) = \frac{1}{2}; P_{I_A}(1) = \frac{1}{2}; \Omega_{I_A} = \{1, 1, 0, 0\}$
	{2,3}	$P_{I_A}(0) = \frac{1}{2}; P_{I_A}(1) = \frac{1}{2}; \Omega_{I_A} = \{0, 1, 1, 0\}$
	{3,1}	$P_{I_A}(0) = \frac{1}{2}; P_{I_A}(1) = \frac{1}{2}; \Omega_{I_A} = \{1, 0, 1, 0\}$
	{1, 2, 3}	$P_{I_A}(0) = \frac{1}{4}; P_{I_A}(1) = \frac{3}{4}; \Omega_{I_A} = \{1, 1, 1, 0\}$

	1. Probability of random variable I_A taking value 1 is same as Probability of the A from Ω_X .		
	$P_{I_A}(i_A = 1) = P(x \in A) = P_X(A)$		
	$E[A] = E[I_A] = P(A)$		
	$Var(A) = Var(I_A) = P(A) - P(A)^2 = P(A)Q(A)$		
	2. Given two events A and B,		
S	occurence of event $A \cap B = I_{AB}$		
Properties			
iad	$P_{I_{AB}}(i_{AB} = 1) = P(x \in A \& y \in B) = P_X(A \cap B)$		
Pro	$E[A \cap B] = E[I_{AB}] = P(A \cap B)$		
	$Var(A \cap B) = P(A \cap B) - P(A \cap B)^2$		
	$Cov(A, B) = P(A \cap B) - P(A)P(B)$		
	3. If n events are mutually independent then corresponding indicator variables are also mutually independent. (and vice versa is true as		
	well)		

A Function that assigns a value between [0, 1] to each element in Measurable Space, E , depending upon its occurrence in Ω_X . It represents the
likelihood of happening or occurrence of that element x where $x \in E$.

Probability of Random Variable *X* taking value *x* where $x \in E$, is denoted by $P_X(x)$.

	Discrete	Continuous	
=	Probability Mass Function (PMF), $P_X(x)$: Probability of X taking value x . It is calculated as	Probability Density Function (PDF), $f_X(x)$: Probability of X taking value between x to $x + dx$ per unit dx .	
X_{X}^{\prime}	$P_X(x) = \frac{count\ of\ x\ in\ \Omega_X}{total\ count\ in\ \Omega_X}$ Note: we specify all repetitions in Ω_X observed in the experiment, hence count will account for correct likelihood.	Then Probability of X taking between x to $x + dx$: $dF_X(x) = f_X(x)dx$ Where $F_X(x)$ is Cumulative Probably Function	
FLODADIIILY FUILCIUII,	Random Variable, X: Taking out two balls b1 & b2 from a bag with n red and m blue, assigning $(r,r) = 0$, $(r,b) = 1$, $(b,r) = 2$ & $(b,b) = 3$ E: $\{0,1,2,3\}$ Probability: $P_X(x) = \begin{cases} \frac{{}^{n}C}{m+np}, & x = 0 \\ \frac{{}^{n}C}{m+np}, & x = 1 \end{cases}$ $\frac{{}^{n}C^{n}C}{m+np}, & x = 2$ $\frac{{}^{n}C^{n}C}{m+np}, & x = 3$ Notice number of ways of selecting two balls from $m+n$ is not the domain rather occurrences of all the duplicates are counted towards the probability of each event. (This is all because of definition of random variable counting all possible (r, r) as one unique x_i)	Random Variable, X: n points placement on circle divided by a diameter line, assuming same side = 0, different side = 1 Domain: {0, 1} Probability:	

Random Variable, X: Number of heads in coin toss <i>n</i> times such
that probability of head is p .
Domain: {0, 1, 2,, n}
Probability:
$P_X(x) = {}_x^n C \times p^x \times (1-p)^{n-x}$
Random Variable, X: Sum of numbers on two fair dice throws.
Domain: {2, 3, 4,, 12}
Probability:
$P_X(x) = \frac{\min(x - 1, 13 - x)}{36}$
$P_X(x) = {36}$

1. For any **Event** A which is a subset of Measurable Space E, its Probability, $P_X(A)$ is sum or integral of probability of all its individual elements:

Discrete	Continuous
Given an Event $A = \{x_0, x_6,, x_m\}$ then	Given an Event $A = [x, x + \Delta x]$ then
$P_X(A) = \sum_{x \in A} P_X(x)$	$P_X(A) = \int_x^{x+\Delta x} f_X(x) dx$

2. Complement Event, \overline{A} : X takes all the values except for values in another event A:

$$1 - P_X(A)$$

- 3. Conditional Event, $\frac{A}{R}$: X taking values of event A conditioned on B (i.e. B has happened, now from that what's the probability of A)
 - a. Approach 1: use B as sample space and then find occurrence of A from B then use:

$$\frac{Count\ of\ x\in A\ \cap B}{Count\ of\ x\in B}$$

b. Approach 2:

$$P_X\left(\frac{A}{B}\right) = \frac{P_X(A \cap B)}{P_X(B)}$$

4. Given probabilities of A conditioned on B_i event $P\left(\frac{A}{B_i}\right) \ \forall i \in [0, m]$ such that all values of X in B_i are mutually exclusive and exhaustive to measurable space E, then:

$$P_X(A) = \sum_{i=0}^m P\left(\frac{A}{B_i}\right)$$

- 5. **Intersection Event,** $A \cap B$: X taking all the values which are common in both events A or B.
 - a. Approach 1
 - **i.** Find intersection of values of X from both the event sets A & B.
 - ii. Use Probability of that set.

b. Approach 2 (Multiplication Property)

$$P_X(A \cap B) = P_X(A)P_X\left(\frac{B}{A}\right) = P_X(B)P_X\left(\frac{A}{B}\right)$$

Given n events E_1, \dots, E_n

$$P_X(E_0 \cap \dots \cap E_n) = P_X(E_0) \times P_X\left(\frac{E_1}{E_0}\right) \times P_X\left(\frac{E_2}{E_0 \cap E_1}\right) \times \dots \times P_X\left(\frac{E_{i_n}}{E_0 \cap \dots \cap E_{n-1}}\right)$$

- c. **Independence of Events:** Given n events $E_1, ..., E_n$
 - i. They are pairwise independent if

$$P_X(E_i \cap E_j) = P_X(E_i) \times P_Y(E_j) \bigvee i,j$$

ii. They are **mutually independent** if for any k sized-subset events $E_{i_0}, E_{i_1}, \dots, E_{i_{k-1}}$:

$$P_X \big(E_{i_0} \cap \ E_{i_1} \cap \dots \cap E_{i_{k-1}} \big) = P_X \big(E_{i_0} \big) \times P_X \big(E_{i_1} \big) \times \dots \times P_X \big(E_{i_{k-1}} \big)$$

6. Union Event $A \cup B$: X taking all the values which are in event A or B. Also called Union property.

$$P_X(A \cup B) = P_X(A) + P_X(B) - P_X(A \cap B)$$

a. For n Events: $E_1, E_2, ..., E_n$, probability of union of all the events

$$P_X\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n (-1)^{i-1} \times S_i$$

Where

 S_i is sum of probabilities of all the possible i intersections, i.e.,

$$S_i = \sum P(E_{j_1} \cap E_{j_2} \cap E_{j_3} \cap ... \cap E_{j_i})$$

Note S_i will repeatedly include probabilities of i+1, i+2, ..., so on intersections

b. Probability of union of atleast k intersecting events Or Probability of an element e from Ω_X to be common to **at-least** any k interesting events. (its union of k intersecting events, it does not mean that elements common to just k intersecting events – union of them can make them common to k+1, k+2 and so on elements)

$$P_X\left(\bigcup E_{i_1} \cap E_{i_2} \cap E_{i_3} \cap ... \cap E_{i_k}\right) = \sum_{i=k}^n (-1)^{i-k} \times {}_{k-1}^{i-1} \mathcal{C} \times S_i$$

Note: It does not mean that an element $e \in \bigcup E_{i_1} \cap E_{i_2} \cap E_{i_3} \cap ... \cap E_{i_k}$ from Ω_X will be common to only k intersecting events, it might as well be common to k+1, k+2 and so on intersecting events – Only guarantee is that it will not be repeated twice.

Example: 1: https://en.wikipedia.org/wiki/Inclusion-exclusion_principle#Counting_derangements

c. Probability of an element e from Ω_X to be in **exactly** any k intersecting Events:

$$\sum_{i=k}^{n} (-1)^{i-k} \times {}_{k}^{i} \mathcal{C} \times \mathcal{S}_{i}$$

Probability of X taking value less than or equal to x, it is denoted by $F_X(x)$ and is given by

$$F_X(x) = P_X(X \le x)$$

	U	
	Φ	١
٠	_	
		3
ľ	Ĺ	
	ā	J
	rona	2
	C)
	۷	_
1	1	

- 1. $P_X(a \le x \le b) = F_X(b) F_X(a)$: If we know cumulative distribution function of the Random variable, than directly using it for interval probability is easier way to find probability.
- 2. $F_X(x)$ is non-decreasing and right continuous
- 3. Minimum value of 0 at E_{min} and maximum value of 1 at E_{max}
 - $\circ \quad F_X(E_{min} \epsilon) = 0 \text{ for any } \epsilon > 0$
 - $\circ F_X(E_{max}) = 1$
- 4. If output from $F_X(x)$ are considered as another sample space Ω_y then $Y = F_X(X)$ will follow Uniform Distribution with boundaries [0, 1] Note, $Y \neq F_X(x)$ as $F_X(x)$ is not random at all, instead we substitute x = X, Y inherits the randomness of X, of course through CDF transformation which makes it uniform distribution.
 - Given $Y \sim U(0,1)$ generate a Exponential Distribution function

$$Y = F_X(X)$$
$$X = F_X^{-1}(Y)$$

For exponential distribution, $F_X(x) = 1 - e^{-\lambda x}$, hence

$$X = -\frac{1}{\lambda} \times \ln (1 - Y)$$

Moment Generating Function $M_X(t)$ of random variable X is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.

$$M_X(t) = E_X[e^{tX}]$$

Discrete	Continuous
$M_X(t) = \sum_{x \in E} e^{tx} P_X(x)$	$M_X(t) = \int_{x \in E} e^{tx} f_X(x) dx$

The moment-generating function is so named because it can be used to find the moments of the distribution, The series expansion of e^{tx} is

$$e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \frac{t^4X^4}{4!} + \dots + \frac{t^nX^n}{n!}$$

Hence

$$M_X(t) = E_X[e^{tX}] = 1 + tE[X] + \frac{t^2 E[X^2]}{2!} + \frac{t^3 E[X^3]}{3!} + \frac{t^4 E[X^4]}{4!} + \dots + \frac{t^n E[X^n]}{n!}$$

Where $E[X^n] = n^{th} moment of X$

perties

- 1. $M_{aX+b}(t) = e^{bt}M_X(at)$
- 2. If $M_X(t) = M_Y(t)$ for all t then $P_X(a) = P_Y(a)$ for all a, i.e. X and Y have same distribution.
- 3. n^{th} moment of $X = \frac{d^n M_X(t)}{dt^n} | t = 0 = M_X^n(0)$
- 4. $M_X(t) \ge e^{\mu_X t}$
- 5. $\lim_{n \to \infty} M_X \left(\frac{t}{n}\right)^n = e^{t \times E[X]}$ (Hint: Use L'Hopital's rule)

		Ints of random variable X are specific values $x_m \in E_X$ which are of statistical importance. Value of random variable X which specify its central tendency. It's also called Average value of X denoted by μ_X or Expectation of random variable, denoted by $E[X]$.						
ents	ge,	Discrete	Continuous					
Moments	Mean or Averag	$\mu_X = E[X] = \sum_{x \in E} x P_X(x)$	$\mu_X = E[X] = \int_{x \in E} x f_X(x) dx$					

- 1. Given $X \ge 0$ then $E[X] \ge 0$
- $2. \quad E_Y \big[E_X [X|Y] \big] = X$
- 3. If given $M_X(x)$ then

$$\mu_X = \frac{dM_X(t)}{dt}|_{t=0} = M_X'(0)$$

4. Expectation of a function of X, E[g(X)]

Discrete	Continuous
$E[g(X)] = \sum_{x \in E} g(x) P_X(x)$	$E[g(X)] = \int_{x \in E} g(x) f_X(x) dx$

- a) g(X) = aX then E[aX] = aE[X]: If given expectation of a random experiment then expectation of same experiment with scaled *Measurable Space* is scale times expectation of that random experiment.
- b) g(X) = X + b then If E[X + b] = E[X] + b
- c) g(X) = |X| then If E[|X|] = 0 then X = 0
- d) $g(X) = X^2$ then If $E[X^2] = Var[X] + E[X]^2$
- e) If $P_X(x)$ is symmetrical about mean μ_X i.e. an even function $P_X(\mu_X x) = P_X(\mu_X + x)$ and g(X) is odd function around μ_X i.e., $g(\mu_X X) = -g(\mu_X + X)$ then

$$E[g(X)] = 0$$

5. Expectation of Indicator Variable is Probability of corresponding event happening:

$$E[I_A] = P_X(A)$$

6. For a random variable X taking on non-negative integer values, then its expectation is given by

$$E[X] = \sum_{i=1}^{\infty} P_X(x \ge i)$$

Note: probability of greater than or equal to i

	Expec	etation of squared deviation of X from its mean, its denoted by σ_X^2			
		$Var(X) = E[(X - \mu_X)^2] = E[X^2] - E[X]^2$			
		Discrete Continuous			
Variance		$Var(X) = \sum_{x \in E} (x - \mu_X)^2 P_X(x) = \sum_{x \in E} x^2 P_X(x) - \mu_X^2$ $Var(X) = \int_{x \in E} (x - \mu_X)^2 f_X(x) dx = \int_{x \in E} x^2 f_X(x) dx - \mu_X^2$			
Va	Properties	1. $Var(X) \ge 0$ 2. If $X = c$ then $Var(X) = 0$ & vice versa 3. $Var(X + c) = Var(X)$ 4. $Var(cX) = c^2 Var(X)$ 5. If given $M_X(x)$ then $\sigma_X^2 = M_X''(0) - M_X'(0)^2$			
Asymmetric leaning of distribution to either left or right.					
Skew					
		Negative Skew Positive Skew			
		Pearson's Moment Coefficient of skewness = $E\left[\frac{(X - \mu_X)^3}{\sigma^3}\right] = \frac{E[X^3] - 3\mu_X\sigma_X^2 - \mu_X^3}{\sigma_X^3}$			

Quantiles (q) are values which divide E into q groups: $\{G_0, \overline{G_1, G_2, \dots, G_{q-1}}\}$ such that i^{th} group (G_i) has all the values $x_i \in G_i$ whose output from cumulative probability function $F_X(x_i)$ lies between $\left[\frac{i}{q}, \frac{i+1}{q}\right]$. For a q-quantiles, we would need q-1 values/boundaries: $\{Q_0, Q_1, \dots, Q_{q-2}\}$.

$$\frac{i}{q} \le F_X(x_i) \le \frac{i+1}{q} \bigvee x_i \in G_i$$

Second definition: If we map all the elements from Ω_X to corresponding E (without removing duplicates) denoting it by Ω_E then q-1 points $\{Q_0,Q_1,\ldots,Q_{q-2}\}$ are the cut points dividing Ω_E into q equal subsets.

$$P(X < Q_i) \le \frac{i+1}{q}$$

Third definition: For q-quantile, i^{th} boundary Q_i is the value from E before which there are $\frac{i+1}{q} \times 100$ % values.

Some special Quantiles:

Name	q	Boundaries	
Median	2	$\{Q_0\}$	There are 50% value before Q_0 from Ω_E
Quartiles	4	$\{Q_0, Q_1, Q_2\}$	There are 25% values before Q_0 , 50% before Q_1 & 75% before Q_2 from Ω_E
Percentiles	100	$\{Q_0, Q_1, Q_2, \dots, Q_{98}\}$	There are 1% values before Q_1 , 2% before Q_2 & so on till, 99% before Q_{98} from Ω_E

• Median $(q = 2): \{Q_0\}$

Median

Median m is the value of X which divides the E in two subsets, first half having CDF_X less than half while others greater than half, such that

$$P(X \le m) \ge \frac{1}{2} \text{ and } P(X \ge m) \ge \frac{1}{2}$$

$P(X \leq m) \geq \frac{1}{2} ana P$	$(X \ge III) \ge \frac{1}{2}$
Discrete	Continuous
 6. Map all the elements from Ω_X to corresponding E (without removing duplicates, let's call it Ω_E 7. Sort Ω_E in ascending order. 8. If number of elements in Ω_E (=n) is even then there will be two medians: m1 = Ω_E [n/2 - 1] and m2 = Ω_E [n/2] where • P(X ≤ m1) = 1/2 and P(X ≥ m1) ≥ 1/2 • P(X ≤ m2) ≥ 1/2 and P(X ≥ m2) = 1/2 9. else if n Is odd, then there will be one median, at m = Ω_E [n-1/2] where • P(X ≤ m) ≤ 1/2 and P(X ≥ m) ≥ 1/2 	1. Find the value $X = m$ such that $F_X(m) = \frac{1}{2}$ i.e. $P(X \le m) = \frac{1}{2} \text{ and } P(X \ge m) = \frac{1}{2}$

		A quartile is a type of quantile which divides the E into four parts, or <i>quarters</i> , of more-or-less equal size. The Ω_E must be ordered from smallest to largest to compute quartiles. The three main quartiles are as follows:
	Quartiles	 The first quartile (Q₀) is defined as the middle number between the E_{min} and the median of the X. It is also known as the <i>lower</i> or 25th empirical quartile, as 25% of the data is below this point. The second quartile (Q₂) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q₃) is the middle value between the median and the highest value (maximum) of the data set. It is known as the <i>upper</i> or 75th empirical quartile, as 75% of the data lies below this point.
	Percentile	k-th percentile (percentile score or centile) is a score below which a given percentage k of scores in its frequency distribution falls (exclusive definition) or a score at or below which a given percentage falls (inclusive definition).

	Definition	 A distribution D specifies Measurable Space E and Probability Function, P_X(x) (PMF for discrete E and PDF for continuous E). Thus all other quantity are automatically derived, For example, Cumulative Distribution Function F_X(x), Moment Generating Function M_X(t), Expectation, Variance and other moments When we say a random variable follow a specific distribution or X~D, then X can any value from x ∈ E with probability P_X(x). 							
			Measurable Space, E	Probability Function, $P_X(x)$ where $x \in E$	Expectation / Average/ Mean, μ	Variance, σ	Cumulative Distribution Function, $F_X(x)$	Moment Generating Function, $M_X(t)$	
Distribution		Bernoulli, Bern(p)	{0,1}	$\begin{cases} p, & x = 1 \\ q, & x = 0 \end{cases}$ where $q = 1 - p$	p	pq	$\begin{cases} q, & x = 0 \\ 1, & x = 1 \end{cases}$	$pe^t + q$	
	Discrete	Binomial, Bin(n, p)	Definition 1: This distribution disprobability of success p . Definition 2: Sum of sequence q . • This is p times Sample p p p p p and variance	of n i.i.d. random variables S Mean of n IIDs, which will sta	$x_n = X_1 + X_2 + \cdots$	$\cdot + X_n$ such t			
		Binomi	{0,1,2,,n}	$ {}^n_x C \times p^x \times q^{n-x} $ where $q = 1 - p$	пр	npq	NA	$(pe^t + q)^n$	

	Example 1: Given probability of at least one success in n trials to be A, find probability of at least one success in k trials assuming uniform probability of success across n trials.						
	$A=1-probablity\ of\ no\ success=\ 1-q^n\Longrightarrow q=1-\sqrt[n]{A}$						
	Hence, at-least one success in k to	rials = $1 - q^k = 1 - (1 - A)$	$\frac{k}{n}$				
3(r, p)	This distribution defines probability of success x times before r^{th} failure assuming each trials has uniform/constant/same probability of success p (probability of success is uniformly distributed across n trials).						
scal, NI					Tij, then Till Till Till Till Till Till Till Til		
Negative Binomial/Pa	Natural Number (N) $= \{0, 1, 2,, \infty\}$	$x+r-1 \atop x$ $C \times p^x \times q^r$	$r \times \frac{p}{1-p}$	$ \begin{array}{c} r \\ \times \frac{p}{(1-p)^2} \end{array} $	NA	$\left(\frac{1-p}{1-pe^t}\right)^r for t < -log p$	
	Geo(p) = NB(1,p)						
Geometric, Geo(p)	Natural Number (N) $= \{0, 1, 2,, \infty\}$	$p^x \times q$	$\frac{p}{1-p}$	$\frac{p}{(1-p)^2}$	NA	$\frac{1-p}{1-pe^t} for t < -log p$	
	Geo(p) Negative Binomial/Pascal, NB(r,	Hence, at-least one success in k to This distribution defines probabil success p (probability of success in k to Note, this is defining $X = r$ i.e. Expected number of to $Natural\ Number\ (N) = \{0, 1, 2,, \infty\}$	probability of success across n trials. $A = 1 - probablity \text{ of } x$ Hence, at-least one success in k trials = $1 - q^k = 1 - (1 - A)$ This distribution defines probability of success x times before success p (probability of success is uniformly distributed across • Note, this is defining $X = \text{number of successes}$, if we wide. Expected number of trials before r failures: $E[Y] = X$ $A = 1 - probablity of x$ $A = 1 - p$	probability of success across n trials. $A = 1 - probability \ of \ no \ success = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	Probability of success across n trials. $A = 1 - probablity \ of \ no \ success = 1 - q^n \Rightarrow q = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	probability of success across n trials. $A = 1 - probability \ of \ no \ success = 1 - q^n \Rightarrow q = 1 - \sqrt[n]{A}$ Hence, at-least one success in k trials = $1 - q^k = 1 - (1 - A)^{\frac{k}{n}}$ This distribution defines probability of success x times before r^{th} failure assuming each trials has uniform/constant/sa success p (probability of success is uniformly distributed across n trials). • Note, this is defining $X = \text{number of successes}$, if we want number of trials (Let's say Y), then $Y = X + r$. i.e. Expected number of trials before r failures: $E[Y] = E[X] + r = \frac{1}{1-p}$ Natural Number (N) $= \{0, 1, 2,, \infty\}$ $x^{+r-\frac{1}{x}C} \times p^x \times q^r$ $r \times \frac{p}{1-p}$ $r \times \frac{p}{(1-p)^2}$ NA Geo $(p) = NB(1, p)$	

This distribution defines **probability of success** x times out of n trials, where success is drawing item with specific features, whose initial counts are K out of N. (No replacement after selection in each trial).

Important: This distribution assumes that all the items are distinct, even if they have same feature. For example if there are K green balls and N-K red balls, after drawing any n balls, we can arrange then in n! ways, irrespective of how many of them are red vs green.

$ \begin{cases} \frac{K}{N}C \times \frac{N-K}{n-x}C \\ \frac{N}{N}C \end{cases} \qquad n \times \frac{K}{N} \qquad n \times \frac{K}{N} \\ \times \frac{N-K}{N} \\ \times \frac{N-n}{N-1} $	NA NA
--	-------

Example 1: Given selection without replacement for n trials, probability of something happening in last trial is same as probability of all other selections in first n-1 trials which is same as probably of that happening in first trial itself.

Example 2: Given two exclusive events A and B happening across n trials, probability of happening of A before B, its same as probably of A's happening at first place.

For example: 2 red and 3 green: taking out one ball at a time, probability of red coming before green: 4/10

- 1. rrggg
- 2. rgrgg
- 3. rggrg
- 4. rgggr
- 5. grrgg
- 6. grgrg
- 7. ggrrg
- 8. gggrr
- 9. grggr
- 10. ggrgr

This distribution defines **probability of success** x times until r^{th} failure, where success is drawing item with specific features, whose initial counts are K out of N. (No replacement after selection in each trial).

Important: This distribution assumes that all the items are distinct, even if they have same feature. For example if there are K green balls and N-K red balls, after drawing any n balls, we can arrange then in n! ways, irrespective of how many of them are red vs green.

	Natural Number (N)	$N-K \underset{x}{\overset{K}{\searrow}} C \times \overset{N-K-1}{r-1} C$	r	NA	NA	NA
	$= \{0, 1, 2, \dots, \infty\}$	$\frac{N}{N} \times \frac{N}{x+r-1}C$	×K			
			$\sim \frac{1}{N-K+1}$			
		Note, last place will not				
		be permutated, as that				
K,r)		for sure should be r^{th}				
Α, Κ		failure, so probability of				
NHG(N,		that last place to be				
		failure is $\frac{N-K}{N}$ and then				
STLIC		remaining place will be				
ЭШС		arranged with $(x + r -$				
gec		1)! Ways but both in				
нурегдеотетис,		numerator or				
		denominator.				
Ne						

Example 1: Expected Number of cards that needs to be turned in order to see first ace.

Note above distribution defined number of success, which is exactly is asked

$$E[X] = r \times \frac{K}{N - K + 1}$$

N = 52, K = 48, r = 1 (assuming ace is failure)

$$E[Y] = \frac{48}{5}$$

	Poisson, $Pos(\lambda)$	This distribution defines probabil (again with infinite trials) is λ , associated as λ . Poisson's distribution is satisfied as $\lambda = probablity$ of succession $\lambda = \lim_{n \to \infty} \frac{1}{n}$ Natural Number (N)	uming each trials has uniforr me as Binomial distribution	m/constant/sar n with $n ightarrow\infty$ an	me probability $np=\lambda$	_	in unit time $\rho^{\lambda(e^t-1)}$
		$=\{0,1,2,\ldots,\infty\}$	$\frac{x}{x!}$				C
		This distribution defines probabili	ty of any integer between a	and b (both in	l cluded) to be	constant.	
	unif(a,b)						
	Uniform, unif	$\{a, a+1, a+2,, b\}$ where $a \& b$ both are integers Number of elements in E , $(n) = b-a+1$	$\begin{cases} \frac{1}{n}, & a \le x \le b \\ 0, & otherwise \end{cases}$	$\frac{a+b}{2}$	$\frac{n^2-1}{12}$	$\begin{cases} 0, & x \le a \\ \frac{x-a+1}{b-a+1}, & a \le x \le b \\ 1, & b \le x \end{cases}$	
		This distribution defines probabili	ty of any Real between a an	d b (both inclu	ded) to be co	onstant.	
Continuous	Uniform, $U(a,b)$	$R \in [a, b]$	$\begin{cases} \frac{1}{(b-a)}, & a \le x \le b \\ 0, & otherwise \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & b \le x \end{cases}$	

	This distribution defines probabiling Properties: 1. if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim I$				e around mean μ and variance σ^2
Normal, $N^{(\mu,\sigma^2)}$	$R \in (-\infty, \infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$ $= \phi\left(\frac{x-\mu}{\sigma}\right)$ where $\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$ Properties: $1. \phi(-x) = 1 - \phi(x)$ $2. \phi(\mu - 3\sigma) = 0.13\%$ $3. \phi(\mu - 2\sigma) - \phi(\mu - 3\sigma) = 2.14\%$ $4. \phi(\mu - \sigma) - \phi(\mu - 2\sigma) = 13.6\%$ $5. \phi(\mu) - \phi(\mu - \sigma) = 34.13\%$

	σ^2	if $Y \sim LN(\mu, \sigma^2)$ then $Y = e^X$ w	here $X \sim N(\mu, \sigma^2)$				
	$LN^{(\mu,\sigma)}$						
	mal,	D (510)	2	-2	21 -2	door w	100
	og Nor	$Real \in [0, \infty)$	$\frac{1}{x\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}$	$e^{\mu + \frac{\delta^2}{2}}$	$e^{2\mu+\sigma^2}$ $\times (e^{\sigma^2}$	$\phi\left(\frac{lnx-\mu}{\sigma}\right)$	NA
	L				-1)		

This distribution represents waiting time t until first event happens given

- 1. probability of an event happening is uniform/constant (each trial/time is independent)
- 2. average waiting time is θ or average number of events that happen in unit time is λ , where

$$\theta = \frac{1}{\lambda}$$

If $T \sim E(\theta)$ then

- 1. $f_T(t)$ is probability of first event to happen at between t to t+dt (also known as waiting time) per unit dt, given average number of event that happen in unit time interval is λ .
- 2. $F_T(t)$ is probability of first event happening before t = probability of atleast one event happening before t. (it's fine if after first event happened at u (u < t), there are more events happening between u and t => we need not worry about them.)

Approach 1: If probability of an event happening is uniform then we know, probability of x events happening in unit time is given by Poisson's distribution, i.e.

$$P(x \text{ events happening in unit time}) = \frac{\lambda^x \times e^{-\lambda}}{x!}$$

- \Rightarrow $P(0 \text{ event happening in unit time interval}) = <math>e^{-\lambda}$
- \Rightarrow $P(0 \text{ event happening in t time interval}) = <math>e^{-\lambda} \times e^{-\lambda} \times ... t \text{ times} = e^{-\lambda t}$
- \Rightarrow P(at least one event happening in t time) = $F_T(t) = 1 e^{-\lambda t}$
- \Rightarrow Probablity of first event happening at t (between (t, t + dt)) per unit $dt = f_T(t) = \frac{dF_T(t)}{dt} = \lambda e^{-\lambda t}$

Approach 2:

 $f_X(x) = P(\text{ no event to happen till } x \text{ unit time}) \times P(1 \text{ event happening in } dt \text{ interval at t time per unit } dt)$ = $e^{-\lambda x} \times P(1 \text{ event happening in } dx \text{ interval at } x \text{ per unit } dx)$

Now we know Poisson's distribution is binomial distribution with infinite trials, hence probability of event happening is an even in smallest possible trial dx is p, hence

P(1 event happening in
$$dt$$
 interval at t per unit dt) = $\frac{p}{dx}$

We also know,

	$1 \text{ unit time} = \lim_{n \to \infty} n \times dt$ $\frac{1}{dt} = n$					
	P(1 event happening in dt interval at t per unit dt) = $\frac{p}{dt} = np = \lambda$ Hence $f_X(t) = e^{-\lambda t} \times \lambda$					
	$Real \in [0, \infty)$	$\lambda e^{-\lambda t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$1-e^{-\lambda x}$	NA
	Property:					
	1. if $\tau \sim Exp(\lambda)$ where τ wa a. $(\tau - c) \sim Exp(\lambda)$, property of exponents	ting till first event occurs, i.e. standing at c, waiting ential distribution is called i.e. standing at c, waiting	time still follow sa I memorylessness	ame distributio s property.		

(time reversal property).

Collection of Random Variables is called Sequence, i.e.

$$S_n = \{X_0, X_1, \dots, X_{n-1}\} = \{X_i | i \ge 1\}$$

There is no bound on n to be finite, it can be infinite as well.

Sequence represents mapping of multiple experiments which are not necessarily independent to each other to an n-dimensional measurable space E^n , i.e., a Sequence S maps Ω_S (Sample space of Sequence) to n-dimensional measurable space E^n .

Each of X_i can have same or different or even interdependent sample space Ω_i .

Cartesian product of Sample Space of each experiment

$$\Omega_{S_{n}} = \Omega_{X_{0}X_{1}...X_{n-1}} = \Omega_{X_{0}} \times \Omega_{\frac{X_{1}}{X_{0}}} \times \Omega_{\frac{X_{2}}{X_{0},X_{1}}} \times ...\Omega_{\frac{X_{n-1}}{X_{0},X_{1},X_{2},..,X_{n-2}}}$$

Note: sample space of X_i depends upon the values all the random variables takes from $X_0 till X_{i-1}$

Measurable Space,

Measurable Space of $S_n = \{X_0, X_1, ..., X_{n-1}\}$ would be E^n , such that:

$$E^{n} = \{(x_{0}^{0}, x_{0}^{1}, \dots, x_{0}^{n-1}), \dots, (x_{n-1}^{0}, x_{n-1}^{1}, \dots, x_{n-1}^{n-1})\}$$

= \{s_{0}, s_{1}, \dots, s_{(m-1)\times(n-1)}\}

7				
5	Discrete	Continuous		
2	$E^n = \{0, 1, 2,, m\} \times \{0, 1, 2,, m\} \times \times \{0, 1, 2,, m\}_{n \text{ times}}$	$E^n = (R \times R \times \times R)_{n \text{ times}}$		

Event

Any possible subset of measurable space, E^n is called an Event. Represented by capital letters: A, B, C etc. For Example

Event A: Random Variable X_0 taking value x_0 and X_1 taking x_1 from sample $S = \{X_1, X_2\} = \{x_0, x_1\}$

Probability of Sequence *S* taking value *s* where $s \in E^n$, also called **Joint Probability (Distribution) Function** of all X_i is denoted by $P_{s_n}(s)$ or $P_{X_0X_1...X_{n-1}}(x_0, x_1, ..., x_{n-1})$.

Discrete

Probability of $X_1 ... X_n$ taking value $x_1, ..., x_n$ is called **Joint Probability Mass Function**, $P_{X_1, X_2, ... X_n}(x_1, ..., x_n)$ and is represented as:

$$\begin{split} P_{S_n}(s_n) &= P_{X_1, X_2, \dots X_n}(x_1, \dots, x_n) \\ &= P_{X_1, X_2, \dots X_{n-1}}(x_0, \dots, x_{n-1}) \times P_{\frac{X_n}{X_1, X_2, \dots X_{n-1}}} \left(\frac{x_n}{x_0, \dots, x_{n-1}} \right) \\ &= P_{S_{n-1}}(s_{n-1}) \times P_{\frac{X_n}{X_1, X_2, \dots X_{n-1}}} \left(\frac{x_n}{x_0, \dots, x_{n-1}} \right) \end{split}$$

where $P_{\frac{X_n}{X_1, X_2, ..., X_{n-1}}} \left(\frac{x_n}{x_0, ..., x_{n-1}} \right)$ is the **Conditional Probability Mass**

Function of X_n i.e. Its probability of it taking value x_n given $X_1, X_2, ..., X_{n-1}$ have taken values $x_0, ..., x_{n-1}$.

Alternatively, it can also be presented as

$$P_{S_n}(s_n) = F_{S_n}(S_n) - F_{S_n}(S_n - 1)$$

= $F_{X_1, X_2, \dots X_n}(x_1, \dots, x_n) - F_{X_1, X_2, \dots X_n}(x_1 - 1, \dots, x_n - 1)$

Continuous

Probability of $X_1 ... X_n$ taking value between $x_1, ..., x_n$ to $x_1 + dx_1, ..., x_n + dx_n$ per unit $dx_1 ... dx_n$, is called **Joint Probability Density Function**, $f_{X_0 X_1 ... X_{n-1}}(x_0, x_1, ..., x_{n-1})$:

$$f_{S}(s) = f_{X_{1}...X_{n}}(x_{1},...,x_{n})$$

$$= f_{X_{1}...X_{n-1}}(x_{1},...,x_{n-1}) \times f_{\frac{X_{n}}{X_{1},X_{2},...X_{n-1}}} \left(\frac{x_{n}}{x_{0},...,x_{n-1}}\right)$$

$$= f_{S_{n-1}}(s_{n-1}) \times f_{\frac{X_{n}}{X_{1},X_{2},...X_{n-1}}} \left(\frac{x_{n}}{x_{0},...,x_{n-1}}\right)$$

Where $f_{\frac{X_n}{X_1, X_2, \dots X_{n-1}}} \left(\frac{x_n}{x_0, \dots, x_{n-1}} \right)$ is **Conditional Probability Density**

Function of X_n , i.e. prob of it taking value between $(x_n, x_n + dx_n)$ per unit dx_n given $X_1, X_2, ... X_{n-1}$ have taken values between $x_1, ..., x_n$ to $x_1 + dx_1, ..., x_{n-1} + dx_{n-1}$ per unit $dx_1 ... dx_{n-1}$.

Probability of S taking value between s to s + ds per unit ds, i.e.

$$f_{S}(s) = \frac{dF_{S}(s)}{ds}$$

$$= f_{X_{0}X_{1}...X_{n-1}}(x_{0}, x_{1}, ..., x_{n-1})$$

$$= \frac{\partial^{n}F_{X_{0}X_{1}...X_{n-1}}(x_{0}, x_{1}, ..., x_{n-1})}{\partial x_{0}\partial x_{1}...\partial x_{n-1}}$$

$$dF_S(s) = f_{X_0 X_1 \dots X_{n-1}}(x_0, x_1, \dots, x_{n-1}) dx_0 dx_1 \dots dx_{n-1}$$

Where $F_s(s)$ is Cumulative Probably Function

Two random variables: (X, Y)	$P_{XY}(x,y) = P_X(x) \times P_{\frac{Y}{X}}\left(\frac{x}{y}\right)$	$f_{XY}(x,y) = f_X(x) \times f_{\frac{Y}{X}}\left(\frac{x}{y}\right)$
Three Random Variables (X, Y Z)	$P_{XYZ}(x, y, z) = P_X(x) \times P_{\frac{Y}{X}}\left(\frac{x}{y}\right) \times P_{\frac{Z}{X, Y}}\left(\frac{z}{x, y}\right)$	$f_{XYZ}(x, y, z) = f_X(x) \times f_{\frac{Y}{X}}\left(\frac{x}{y}\right) \times f_{\frac{Z}{X,Y}}\left(\frac{z}{x, y}\right)$

Properties:

• Marginal probability functions can be obtained by summing/integrating the joint probability function across E_{X_i} where X_i is the random variable we want to remove:

	Discrete $P_{X_{1},X_{2},X_{n-1}}(x_{0},x_{k-1},x_{k+1},,x_{n}) = \sum_{x_{k}} P_{X_{1},X_{2},X_{n}}(x_{1},,x_{n})$		Continuous		
			$f_{X_1, X_2, \dots, X_{n-1}}(x_0, \dots x_{k-1}, x_{k+1}, \dots, x_n)$ $= \int_{x_k \in E_k} f_{X_1, X_2, \dots, X_n}(x_1, \dots, x_n) dx_k$		
	Two random variables: (X, Y)	$P_X(x) = \sum_{y} P_{XY}(x, y)$	$f_X(x) = \int_{y \in E_y} f_{XY}(x, y) dy$		
	Three Random Variables ⁽ X, Y Z)	$P_{XY}(x,y) = \sum_{z} P_{XYZ}(x,y,z)$	$f_{XY}(x,y) = \int_{z \in E_Z} f_{XYZ}(x,y,z) dz$		

• Given n random variables: $X_1, ..., X_n$, probability distribution of another random variable Y, such that

$$Y = \sum X_i$$

- a. If each $X_i \sim N(\mu, \sigma)$ then $Y \sim N(\sum \mu_i, \sum \sigma_i^2)$
- b. If each $X_i \sim U(0,1)$ then Y ~ Irwin Hall Distribution

$$f_Y(y) = \frac{1}{2(n-1)!} \sum_{i=0}^{n} (-1)^n \times {}_{i}^{n} C \times (y-i)^{n-1} sgn(y-i)$$
$$F_Y(y) = \int_{0}^{y} f_Y(y) dy$$

i. Special case: for $y \le 1$

$$F_Y(y) = \frac{y^n - n(y-1)^n}{n}$$

i.e., probability of sum of n uniform distribution to be less than 1 is $\frac{1}{(n)!}$

- $Y = Max(\forall X_i)$
 - a. If X_i are IIDs with each $X_i \sim U(0,1)$ then $F_Y(y) = y^n$ and $f_Y(y) = ny^{n-1}$ Proof:

$$F_Y(y) = P(Y \le y) = P(Max(\forall X_i) \le y)$$

If max of all X_i is less than y then that mean all the X_i are also independently less than y

=
$$P(X_1 \le y \cap X_2 \le y \cap ... \cap X_n < y)$$

= $P(X_1 \le y)P(X_2 \le y) ... P(X_n \le y)$
= $yy ... n \ times = y^n$

- Given n random variables IID, what probably of a specific random variable to be minimal of all:
 - a. Since all are IID, every possible value $x_1, x_2, ..., x_n$ is equally likely
 - b. Out of all possible scenarios probably that a specific random variable will be minimum will be $\frac{(n-1)!}{n!} = \frac{1}{n}$ (Answer)

Probability of $X_1 \le x_1$ and ... and $X_n \le x_n$ is called **Joint Cumulative Distribution Function,** $F_{X_1,X_2,...X_n}(x_1,...,x_n)$ and is represented as:

$$F_{S_n}(s) = P_{S_n}(S_n \le s)$$

$$F_{X_1,X_2,...X_n}(x_1,...,x_n) = P(X_1 \le x_1 \text{ and } ... \text{ and } X_n \le x_n)$$

	Discrete	Continuous
	$F_{X_1,X_2,X_n}(x_1,,x_n) = \sum_{x_1=E_{X_1}}^{x_1} \sum_{x_n=E_{X_n}}^{x_n} P_{X_1,X_2,X_n}(x_1,,x_n)$	$F_{X_1,X_2,\dots,X_n}(x_1,\dots,x_n) = \int_{E_{X_1min}\dots E_{X_{nmin}}}^{x_1,\dots,x_n} dF_{X_1,X_2,\dots,X_n}(x_1,\dots,x_n)$ $= \int_{E_{X_1min}}^{x_1} \dots \int_{E_{X_{nmin}}}^{x_n} f_{X_0X_1\dots X_{n-1}}(x_0,x_1,\dots,x_{n-1}) dx_0 dx_1 \dots dx_{n-1}$

Mean or Average, μ_X or Expectation, E[X]

Moment

Expected number of "experiments" (trials) until an "event" happens, assuming happening of other events does not change probability of "event":

- a. If "event" consists of only one element of an experiment then:
 - i. Find the probability of that element, let's call it p.
 - ii. Using Geometric Brownian Motion, we know expectation of first occurrence of that event is

 $\frac{1}{p}$

Q1: What is the expected number of rolls of a fair die until a 6 turns up?

A1: 6

- b. If "event" consists of more than one elements (let's say n elements) then:
 - i. Let's say Y_n is number of "experiments" until we will see encounter of all the n elements from "event"
 - ii. Then we define X_i which represents number of "experiments" we will need to perform before we see **any** i^{th} element from "event" given i-1 elements of "event" already occurred.

$$X_i = Y_i - Y_{i-1}$$

iii. Now we compute $P(X_i)$ which is probability of occurrence of i^{th} element from "event" given i-1 elements of "event" already occurred, since this only consists of single outcome, we can use (a) and say, Expected number of trials before we see any of i^{th} element from "event" given i-1 elements of "event" already occurred, is:

$$E[X_i] = \frac{1}{P(X_i)}$$

iv. We know:

$$Y_n = X_1 + \cdots + X_n$$

Hence,

$$E[Y_n] = \sum E[X_i] = \sum \frac{1}{P(X_i)}$$

Q1: What is the expected number of rolls of a fair die until all 6 numbers turn up?

A1: 14.7

2. Expected number of "experiments" (trials) until an "event" happens, assuming happening of other events does not change probability of "event")

$$r\frac{K}{(N-K+1)}$$

- 3. Given an Experiment conducted N times, Expected number of experiment when an event will occur:
 - a. Approach 1:

Let's say k times that event occurs, then probability of that event occurring exactly k times:

$$P(E_{k \text{ times}}) = \sum_{i=k}^{n} (-1)^{i-k} \times {}_{k}^{i} \mathcal{C} \times S_{i}$$

Where S_i is sum of probabilities of that event happening any i times from n trials. (will include repeated the count for i+1, i+2, and so on times)

$$S_i = \sum_{i} P(E_{j_1} \cap E_{j_2} \cap E_{j_3} \cap ... \cap E_{j_i})$$

Then use definition of Expectation:

$$E[Number\ of\ experiment\ with\ that\ event] = \sum_{k=1}^{N} k \times P(E_{k\ times})$$

b. Approach 2:

Let's defined n indicator variables, $I_1, I_2, \dots I_N$, where

$$I_i = \begin{cases} 1, & if \text{ "event" occus in } i^{th} \text{ experiment} \\ 0, & otherwise \end{cases}$$

Hence if a random variable Y represent number of times event occurs in the experiment then

$$Y = \sum_{i=1}^{N} I_i$$

Applying Expectation both side & using

$$E\left[\sum X_i\right] = \sum E[X_i]$$

We get,

$$E[Y] = \sum_{i=1}^{N} E[I_i] = \sum_{i=1}^{N} P(i^{th} \text{ experiment resulting in occurrenc of event})$$

Note: No need for any i^{th} and j^{th} experiments to be independent.

Special case, if all experiments have same probability, p: (similar to Binomial Distribution)

$$E[Y] = Np$$

4. Expected number of Experiments, to reach:

	• If $\{X_1,\dots,X_n\}$ are mutually independent then $E[X_1\times\dots\times X_n]=E[X_1]\times\dots\times E[X_n]$
	$\bullet $ If $\{X_1,\dots,X_n\}$ are IID with X: $E[X_1\times\dots\times X_n]=E[X]^n$
Variance	• Variance of each X_i in $S_n = \{X_1, \dots, X_n\}$ can be computed similar to single random number case. • Variance of sum of Random Variables $Var\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j) = \sum_{i=1}^n Var(X_i) + 2 \times \sum_{i=1}^n \sum_{j=i+1}^n Cov(X_i, X_j)$ Special case: If X_1, \dots, X_n are mutually independent then $Var\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n Var(X_i)$

Given $S_n = \{X_1, ..., X_n\}$, i.e. n random variables, we can define a covariance as measure of association or dependence between any two random variables. Unlike Variance, covariance can be either positive or negative.

$$Cov(X_i, X_j) = E[(X_i - \mu_{X_i})(X_j - \mu_{X_j})] = E[X_i X_j] - E[X_i][X_j]$$

where if i == j then

$$Cov(X_i, X_i) = Var(X_i)$$

For S_n , we can define a covariance matrix, such that i^{th} row and j^{th} column represents their correlation:

Properties:

- 1. Covariance matrices are symmetric & positive semi definite.
- 2. If X_i and X_j are pairwise independent then

$$Cov(X_i, X_j) = 0$$

as
$$E[X_iX_j] = E[X_i][X_j]$$

- 3. Cov(X,X) = Var(X)
- 4. Cov(X,Y) = Cov(Y,X)
- 5. Cov(aX + b, pY + q) = apCov(X, Y)
- 6. Cov(aX + bY, cW + dV) = acCov(X, W) + adCov(X, V) + bcCov(Y, W) + bdCov(Y, V)
- 7. Cov(X, constant) = 0

	Given $S_n = \{X_1,, X_n\}$, i.e. n random variables, Correlation between two random variables is the measure of linear association between X and Y. iT is given by the covariance, scaled by overall variability in two random variables. Its represented as $\rho_{X_iX_j}$
tion	$\rho_{X_iX_j} = \frac{Cov(X_i, X_i)}{}$
orrelat	$\sqrt{Var(X_i)Var(X_j)}$ Properties:
Ö	1. If two random variables are pair-wise independent then their correlation is zero (converse is not true).

	Independent		$S_n = \{X_0, X_1,, X_{n-1}\}$ is pairwise independent if either 1. Joint probability function is multiplication of residual probability functions:				
Classification Of Sequence		Pairwise Independent	Discrete				
Class		Mutually Independent	$S_{n} = \{X_{1},, X_{n}\} \text{ is } \textbf{mutually independent } \textbf{if either}$ $1.$ $\frac{\textbf{Discrete}}{P_{\{X_{1},, X_{n}\}}(x_{1},, x_{n}) = P_{X_{1}}(x_{1}) \times \times P_{X_{n}}(x_{n})} \bigvee x_{1},, x_{n} \qquad f_{\{X_{1},, X_{n}\}}(x_{1},, x_{n}) = f_{X_{1}}(x_{1}) \times \times f_{X_{n}}(x_{n}) \bigvee x_{1},, x_{n}}$ $2. F_{\{X_{1},, X_{n}\}}(x_{1},, x_{n}) = F_{X_{1}}(x_{1}) \times \times F_{X_{n}}(x_{n})$ Properties: $1. \text{If } \{X_{1},, X_{n}\} \text{ is } \textbf{mutually independent } \text{ then}$ $E[X_{1} \times \times X_{n}] = E[X_{1}] \times \times E[X_{n}]$ $2. \text{Even if the set of random variables is pairwise independent, it is not necessarily mutually independent.}$				

	Discrete	Continuous
:	$P_{X_{i_0}}(x_{i_0}) = P_{X_{i_1}}(x_{i_1}) = \cdots$	$f_{X_{i_0}}(x_{i_0}) = f_{X_{i_1}}(x_{i_1}) = \cdots$
	$P_{X_{i_0}}(x_{i_0}) = P_{X_{i_1}}(x_{i_1}) = \cdots$ $= P_{X_{i_{n-1}}}(x_{i_{n-1}}) \bigvee x_{i_0}, \dots, x_{i_{n-1}}$	$f_{X_{i_0}}(x_{i_0}) = f_{X_{i_1}}(x_{i_1}) = \cdots$ $= f_{X_{i_{k-1}}}(x_{i_{n-1}}) \bigvee x_{i_0}, \dots, x_{i_{n-1}}$
Then Sequen		
	ce is called Independent and Identically distributed. This p	property is usually abbreviated as i.i.d. or iid or IID.
5 men sequen		
Properties: Example: 1. Flipp		

When all the random variables in $S_n = \{X_0, X_1, ..., X_{n-1}\}$ are both

2. Choosing a card from a deck of 52 n times and recording number of times king appears.

3. Binomial Distribution.

	When all the random variables in $S_n=\{X_1,\dots,X_n\}$ are IID to X $E[X]=\mu_X$ and $Var[X]=\sigma_X^2$ then we can defined Estimators for them
	Sample Mean \overline{X}
	$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
Estimators	Properties: 1. $E[\overline{X}] = \mu_X$ 2. $Var[\overline{X}] = \frac{\sigma_X^2}{n}$ 3. For large value of n , \overline{X} (itself a random variable) tends to Normal distribution with μ_X mean and $\frac{\sigma_X^2}{n}$ variance, i.e. $\overline{X} = \lim_{n \to \infty} \frac{\sum_{i=1}^n X_i}{n} = N\left(\mu_X, \frac{\sigma_X^2}{n}\right)$ a. It will follow all properties of Normal distribution, i.e. $P\left(-\infty < \overline{X} < \mu_X - \frac{3\sigma_X}{\sqrt{n}}\right) = 0.13\%$ $P\left(\mu_X - \frac{3\sigma_X}{\sqrt{n}} < \overline{X} < \mu_X - \frac{2\sigma_X}{\sqrt{n}}\right) = 2.14\%$ $P\left(\mu_X - \frac{2\sigma_X}{\sqrt{n}} < \overline{X} < \mu_X - \frac{\sigma_X}{\sqrt{n}}\right) = 13.6\%$ $P\left(\mu_X - \frac{\sigma_X}{\sqrt{n}} < \overline{X} < \mu_X\right) = 34.13\%$

- b. Given a distribution which can be broken into n independent variables, use it to approximate to Normal and then solve. If its discrete distribution use constant correction. (I-0.5, I+0.5)
- 4. For large numbers \overline{X} tends to μ_x (weak law of large number & strong law of large number).

Sample Variance \overline{S}^2

a. Biased:

b. Unbiased: $\overline{S}^2 = \frac{1}{n} \times \sum_{i=1}^n (X_i - \overline{X})^2$ $\overline{S}^2 = \frac{1}{n-1} \times \sum_{i=1}^n (X_i - \overline{X})^2$
Sample Std Deviation \overline{S}
$\overline{S} = \sqrt{\frac{1}{n} \times \sum_{i=1}^{n} (X_i - \overline{X})^2}$
Sample Covariance \overline{q} :
Given two IIDs: $\{X_1,\ldots,X_n\}$ and $\{Y_1,\ldots,Y_n\}$
$\overline{q} = \frac{1}{n} \times \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$
Sample Covariance Matrix:
Given k IIDs: $\{X_1^1, \dots, X_n^1\} \dots \{X_1^k, \dots, X_n^k\}$, let's denote them by sample vectors $\{\overrightarrow{X^1}, \dots, \overrightarrow{X^k}\}$, each vector with sample mean vector $\overrightarrow{X} = \{\overrightarrow{X_1}, \dots, \overrightarrow{X_k}\}$
\overline{Q} is $(k \times k)$ matrix with element $\overline{q_{ij}}$:
Creating M $(n \times k)$ matrix each column representing $\left[\overrightarrow{X^1}, \dots, \overrightarrow{X^k}\right]$ then

$Q = \frac{1}{n} \times \left(M - 1_{N \times 1} \overline{\vec{X}} \right)^{T} \times \left(M - 1_{N \times 1} \overline{\vec{X}} \right)$
Property: Q is positive semidefinte, i.e. for any $(k \times 1)$, $\vec{v} = [v_1 \dots v_k]$ vector:
$\vec{v}^T Q \vec{v} \geq 0 \ for \ all \ \vec{v}$
$= \vec{v}^T \times \frac{1}{n} \times \left(M - 1_{N \times 1} \overline{\vec{X}} \right)^T \times \left(M - 1_{N \times 1} \overline{\vec{X}} \right) \times \vec{v}$
$= \vec{v}^T \times \frac{1}{n} \times \left(M - 1_{N \times 1} \vec{X} \right)^T \times \left(M - 1_{N \times 1} \vec{X} \right) \times \vec{v}$ $= \frac{1}{n} \times \left(\vec{v}^T \times \left(M - 1_{N \times 1} \vec{X} \right)^T \times \left(M - 1_{N \times 1} \vec{X} \right) \times \vec{v} \right)$
$= \frac{1}{n} \times \left(\left(\left(M - 1_{N \times 1} \overrightarrow{\vec{X}} \right) \times \vec{v} \right)^T \times \left(M - 1_{N \times 1} \overrightarrow{\vec{X}} \right) \times \vec{v} \right)$
= $Sum\ of\ square\ of\ elements\ which\ is\ always \ge 0$

- (Xn)n≥1 is adapted to (Fn)n≥1, i.e. Xn is Fn-measurable for each n,
- X_nX_n is integrable, i.e. $E[|X_n|] < \infty$ for each n_n ,
- and X_nX_n satisfies the martingale condition, i.e. $E[X_n+1|F_n]=X_n$ for each n.

So in order for you to answer the question of when (Sn)n≥1 is a martingale you need to address the first two bullets first. Let us therefore assume that all variables are integrable, and that the filtration we are working with is indeed the natural filtration, i.e.

Then you're correct that you just have to show when E[Sn+1|Fn]=Sn for all n. You correctly calculated that E[Sn+1|Fn]=E[Sn|Fn]+E[Zn+1|Fn]=Sn+E[Zn+1|Fn]

and hence [Sn+1|Fn]=Sn if and only if [Zn+1|Fn]=0. All that is left is to recognize E[Zn+1|Fn] as E[Zn+1] due to the independence between Zn+1 and Fn.

Symmetric random walk is martingale

$$S_n = X_1 + X_2 + \dots + X_n$$

Where each $X_i \sim 2 \times Bern\left(\frac{1}{2}\right) - 1$, i.e. takes ± 1 each with half probability.

Properties:

Martingale

- 1. $E[S_{n+1}|F_n] = S_n$, i.e. S_n is martingale.
- 2. $E[S_{n+1}^2 (n+1)] = S_n^2 n$
- 3. If τ is stopping time for random walk, i.e. $S_{\tau} = X_0 + \cdots + X_{\tau}$ then still S_{τ} is martingale, i.e.
 - a. If we are given that random walk with stop at either $S_{\tau}=a$ or $S_{\tau}=b$ (starting from 0, if its not zero then subtract initial state from both a and b) then we can assume that p is probability that either of one states will be reached (let's say a) then

$$E[S_{\tau}] = p \times a + (1-p) \times b = 0$$

b. Expected Number of step taken to reach there (i.e. $E[\tau]$)

		$E[S_{\tau}^{2} - \tau] = 0$ $E[\tau] = E[S_{\tau}^{2}]$

	Discrete	Continuous
	$P_{\{X_{i_0},X_{i_1},\dots,X_{i_{k-1}}\}}(x_{i_0},\dots,x_{i_{k-1}})$	$f_{\{X_{i_0},X_{i_1},\dots,X_{i_{k-1}}\}}(x_{i_0},\dots,x_{i_{k-1}})$
	$= P_{\{X_{i_0}, X_{i_1}, \dots, X_{i_{k-2}}\}}(x_{i_0}, \dots, x_{i_{k-2}})$	$= f_{\{X_{i_0}, X_{i_1}, \dots, X_{i_{k-2}}\}}(x_{i_0}, \dots, x_{i_{k-2}})$
dent	$\times P_{\frac{X_{i_{k-1}}}{X_{i_0}, X_{i_1}, \dots, X_{i_{k-2}}}} \left(\frac{x_{i_{k-1}}}{x_{i_0}, \dots, x_{i_{k-2}}} \right)$	$\times f \frac{x_{i_{k-1}}}{x_{i_0, x_{i_1}, \dots, x_{i_{k-2}}}} \left(\frac{x_{i_{k-1}}}{x_{i_0}, \dots, x_{i_{k-2}}} \right)$
Dependent	$\bigvee x_{i_0}, \dots, x_{i_{k-1}} \bigvee k$	$\bigvee x_{i_0}, \dots, x_{i_{k-1}} \bigvee k$
	For 2 random X , X ariables: X , X Y	$f_{XY}(x,y) = f_X(x) \times f_{\frac{Y}{X}}\left(\frac{x}{y}\right)$

The sequence of dependent random variables satisfying the Markov property is called the **Markov chain**.

A Markov Chain is a random process that moves from one state to another such that the next state of the process depends only on where the process is at present. Each transition is called a step. In a Markov chain, the next step of the process depends only on the present state and it does not matter how the process reaches the current state. In other words, it is "memoryless." An absorbing state is a state that is impossible to leave once reached. A state that is not absorbing is called a transient state. If every state of a Markov chain can reach an absorbing state, this Markov chain is called an absorbing Markov chain.

Markov Property: to make predictions of the behaviour of a system in the future, it suffices to consider only the present state of the system and not the past history, i.e.

Discrete	Continuous
$P_{S_n}(s_n) = P_{X_1, X_2, \dots X_n}(x_1, \dots, x_n)$	$f_{\mathcal{S}}(s) = f_{X_1 \dots X_n}(x_1, \dots, x_n)$
$= P_{X_1, X_2, \dots X_{n-1}}(x_0, \dots, x_{n-1}) \times P_{\frac{X_n}{X_{n-1}}}\left(\frac{x_n}{x_{n-1}}\right)$	$= f_{X_1X_{n-1}}(x_1,,x_{n-1}) \times f_{\frac{X_n}{X_{n-1}}}\left(\frac{x_n}{x_{n-1}}\right)$
$= P_{S_{n-1}}(s_{n-1}) \times P_{\frac{X_n}{X_{n-1}}} \left(\frac{x_n}{x_{n-1}} \right)$	$= f_{S_{n-1}}(s_{n-1}) \times f_{\frac{X_n}{X_{n-1}}}\left(\frac{x_n}{x_{n-1}}\right)$

Solving Probability, Expectation, Variance, Covariance Problems:

- 1. Distributions
- 2. Sequences: $X_1 + X_2 + \cdots + X_n$ or $X_1 \times X_2 \times \cdots \times X_n$
 - a. If sequence can be a symmetric random walk then use martingale + reflection.

Example: At a theater ticket office, 2n people are waiting to buy tickets. n of them have only \$5 bills and the other n people have only \$10 bills. The ticket seller has no change to start with. Ifeach person buys one \$5 ticket, what is the probability that all people will be able to buy their tickets without having to change positions?

b. Let's say we are asked, Y = number of trials to contain K distinct items then

$$Y = X_1 + X_2 + \dots + X_k$$

Where X_i is number of trials to contain i^{th} item given i-1 items already found.

Example 1: Coupon collection problem: There are N distinct types of coupons in cereal boxes and each type, independent of prior selections, is equally likely to be in a box. If a child wants to collect a complete set of coupons with at least one of each type, how many coupons (boxes) on average are needed to make such a complete set?

c. Y = number of distinct items found in n trials out of K distinct items

$$Y = I_1 + \cdots + I_K$$

Where I_i is indicator variable that indicates that i^{th} item found in n trials..

$$E[Y] = \sum P(ith \ item \ found \ in \ n \ trials)$$

 $P(ith \ item \ found \ in \ n \ trials) = out \ of \ n \ trials, ith \ item \ was \ there \ in \ at \ least \ one \ trial = 1 - P(no \ trial \ had \ ith \ item)$

Example 1: If the child has collected n coupons, what is the expected number of distinct coupon types?

Example 2: Number of times 2 appears in n trials is X and number of times 3 appears is Y then find cov between X and Y, now we know individually they follow binomial distribution but it will be computationally heavy to get their joint distribution, so best to break down binomial to sum of n Bernoulli distribution (indicator variables).

Example: N people sit around a round table, where N > 5. Each person tosses a coin. Anyone whose outcome is different from his/her two neighbours will receive a present. Let X be the number of people who receive presents. Find E[X] and Var(X). https://www.probabilitycourse.com/chapter6/6 1 2 sums random variables.php

d. Y = Starting with \$1, if we get heads we double the money and tails then halve, expectation of payoff after n trials.

Notice even though payoff is dependent upon prev accumulated payoff, tosses are still independent, so we can design random variables as

$$Y = S_0 \times X_1 \times X_2 \times ... \times X_n$$

Such that X_i presents either 2 or 1/2 and $S_0=1$, now since each coin tosses are independent we can use

$$E[Y] = E[X_0] \times E[X_1] \times ... \times E[X_n]$$

- 3. Markov (both probability + expectation).
- 4. Martingale
- 5. Bayer's Theorem + Inclusion exclusion principle.
 - a. If two random variables are independent then

i.
$$P\left(\frac{X}{Y}\right) = P(X)$$

ii.
$$E[XY] = E[X]E[Y]$$

iii.
$$Var(X + Y) = Var(X) + Var(Y)$$

Process or Stochastic Process

Collection of continuous Random Variables is called Process:

$$P_t = \{ X_t | t \in R \text{ and } t \ge 0 \}$$

Random Process P maps Ω_P (Sample Space of Process) to t-dimensional measurable space E^t

Sample Space, Ω

Cartesian product of Sample Space of each Experiment

$$\Omega_P = \left\{ \prod \Omega_{\mathsf{t}} \mid t \ge 0 \right\}$$

Measurable Space, E

$$\omega_t = \{ E^t | t \in R \text{ and } t \ge 0 \}$$