# (An Introduction to) Classical Composite Hypothesis Testing

First, recall that, in the composite testing case, we have  $\Theta_0$  and  $\Theta_1$  that form a *partition* of the parameter space  $\Theta$ :

$$\Theta_0 \cup \Theta_1 = \Theta, \quad \Theta_0 \cap \Theta_1 = \emptyset$$

and we wish to identify *which* of the following two hypotheses is true:

 $\mathcal{H}_0$ :  $\theta \in \Theta_0$ , null hypothesis

 $\mathcal{H}_1$ :  $\theta \in \Theta_1$ , alternative hypothesis.

Here, we adopt the classical Neyman-Pearson approach — maximize the detection probability for a specified false-alarm rate.

**Example:** Suppose that we wish to detect an unknown positive DC level A (A > 0):

$$\mathcal{H}_0: \quad x[n] = w[n], \quad n = 1, 2, \dots, N$$

$$\mathcal{H}_1: \quad x[n] = A + w[n], \quad n = 1, 2, \dots, N$$

where w[n] is zero-mean white Gaussian noise with known variance  $\sigma^2$ . Here is an alternative formulation: Consider this

family of probability density functions (pdfs):

$$p(\boldsymbol{x};\theta) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \cdot \exp\left[-\frac{1}{2\sigma^2} \sum_{n=1}^N (x[n] - \theta)^2\right]$$
 (1)

and the following (equivalent) hypotheses:

$$\mathcal{H}_0: \quad \theta = 0$$
 (signal absent),  $\Theta_0 = \{0\}$  versus

$$\mathcal{H}_1: \quad \theta = A > 0 \quad \text{(signal present)}, \ \Theta_1 = (0, \infty)$$

where A is unknown, except for its sign. Let us try the classical Neyman-Pearson approach (which required the exact knowledge of A since we considered only simple hypotheses under the classical setting, until now):

$$\Lambda(\boldsymbol{x}) = \frac{1/(2\pi\sigma^2)^{N/2} \cdot \exp[-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x[n] - A)^2]}{1/(2\pi\sigma^2)^{N/2} \cdot \exp(-\frac{1}{2\sigma^2} \sum_{n=1}^{N} x[n]^2)} > \lambda.$$

Taking log etc. leads to

$$A \sum_{n=1}^{N} x[n] > \sigma^2 \log \lambda + N A^2/2.$$

Since we know that the DC level under  $\mathcal{H}_1$  is positive (i.e. A > 0), we can divide both sides of the above expression by

NA and accept  $\mathcal{H}_1$  if

$$T(\boldsymbol{x}) = \overline{x} = \frac{1}{N} \sum_{n=1}^{N} x[n] > \lambda'.$$

How to determine the threshold  $\lambda'$ ? Under  $\mathcal{H}_0$ :  $T(\boldsymbol{X}) \mid \theta = 0 \sim \mathcal{N}(0, \sigma^2/N)$  and hence

$$P_{\rm FA} = Q\left(\frac{\lambda'}{\sqrt{\sigma^2/N}}\right)$$

or

$$\lambda' = \sqrt{\frac{\sigma^2}{N}} \cdot Q^{-1}(P_{\text{FA}}).$$

Thus, in this case, only the sign of the DC level A under  $\mathcal{H}_1$  is needed to find the Neyman-Pearson test, because the pdf of  $T(\boldsymbol{X})$  under  $\mathcal{H}_0$  does not depend on A. Furthermore, under  $\mathcal{H}_1:T(\boldsymbol{X})\,|\,\theta=A\sim\mathcal{N}(A,\sigma^2/N)\Rightarrow$  clearly,  $P_{\mathrm{D}}$  depends on A.

Since the Neyman-Pearson test is optimal in terms of maximizing the detection probability subject to a specified false-alarm probability, all other tests are poorer with respect to this criterion. Hence, Neyman-Pearson tests are said to be uniformly most powerful (UMP).



UMP tests seldom exist. For example, if A can be negative as well (in the DC-level detection setting), the "Neyman-Pearson test" becomes

$$\overline{x} > \sqrt{\frac{\sigma^2}{N}} \cdot Q^{-1}(P_{\text{FA}}) \quad (A > 0)$$

$$< -\sqrt{\frac{\sigma^2}{N}} \cdot Q^{-1}(P_{\text{FA}}) \quad (A < 0).$$

If A is *completely unknown* (i.e. we do not know its sign), no single test is optimal and, therefore, no UMP test exists. However, for

$$\mathcal{H}_0$$
:  $\theta = 0$  versus  $\mathcal{H}_1$ :  $\theta = A > 0$ 

a (one-sided) UMP test does exist (as shown in our previous

discussion). Clearly, for

$$\mathcal{H}_0$$
:  $\theta = 0$  versus  $\mathcal{H}_1$ :  $\theta = A < 0$ 

a UMP test exists as well (by symmetry). For the two-sided case,

$$\mathcal{H}_0$$
:  $\theta = 0$   $(\Theta_0 = \{0\})$  versus 
$$\mathcal{H}_1$$
:  $\theta = \underbrace{A}_{\text{unknown}} \neq 0$   $(\Theta_1 = (-\infty, \infty) \setminus \{0\})$ 

no UMP test exists. Here, we may choose

$$|\overline{x}| > \lambda''$$

but no optimality properties can be claimed.

# Generalized Likelihood Ratio (GLR) Test

In the "classical" spirit, let us replace the unknown parameters by their maximum likelihood (ML) estimates under the two hypotheses. Hence, we accept  $\mathcal{H}_1$  if

$$\Lambda_{\text{GLR}}(\boldsymbol{x}) = \frac{\max_{\theta \in \Theta_1} p(\boldsymbol{x}; \theta)}{\max_{\theta \in \Theta_0} p(\boldsymbol{x}; \theta)} > \gamma.$$

This test has no UMP optimality properties, but often works well in practice.

(Back to) Example. DC level in additive white Gaussian noise (AWGN) with completely unknown A ( $-\infty < A < \infty$ , i.e. unknown sign as well) and known  $\sigma^2$ :

$$\mathcal{H}_0$$
:  $a = 0$  versus  $\mathcal{H}_1$ :  $a = \underbrace{A}_{\text{unknown}} \neq 0$ .

Then, our GLR test is

effectively the same as 
$$\max_{a \neq 0} p(\boldsymbol{x}\,;a)$$
 
$$\Lambda_{\mathrm{GLR}}(\boldsymbol{x}) = \frac{\displaystyle \max_{a} p(\boldsymbol{x}\,;a)}{\displaystyle p(\boldsymbol{x}\,;a=0)} > \gamma$$

see also (1). Therefore,

$$\log \Lambda_{\rm GLR}(\boldsymbol{x}) = -\frac{1}{2\,\sigma^2} \Big\{ \sum_{n=1}^{N} (x[n] - \overline{x})^2 - \sum_{n=1}^{N} x^2[n] \Big\} = \frac{N\,\overline{x}^2}{2\,\sigma^2}$$

or we accept  $\mathcal{H}_1$  if

$$(\overline{x})^2 > \gamma'$$

or  $|\overline{x}| > \lambda''$ . This is the detector that we had guessed earlier. Let us compare this detector with the (unrealizable, also called *clairvoyant*) Neyman-Pearson detector that assumes the knowledge of the sign of A, the DC-level signal to be detected. Assuming that the sign of A is *known*, we can construct the UMP/Neyman-Pearson/clairvoyant detector, whose performance is described by

$$P_{\rm D} = Q \Big( Q^{-1}(P_{\rm FA}) - \sqrt{d^2} \Big)$$

where  $d^2 = NA^2/\sigma^2$ , see handout # 5. All other detectors have  $P_{\rm D}$  below this upper bound.

**GLR test:** Decide  $\mathcal{H}_1$  if  $|\overline{x}| > \gamma''$ . To make sure that the GLR test is implementable, we must be able to specify a threshold  $\gamma''$  independent of A. This is possible here, since  $p(x; \theta = 0)$ 

is **not** a function of A, the DC level under  $\mathcal{H}_1$ .

$$\begin{split} P_{\mathrm{FA}} &= P[|\overline{X}| > \gamma''; \, \theta = 0] \qquad [\overline{X} \, | \, \theta = 0 \sim \mathcal{N}(0, \sigma^2/N)] \\ & \underset{=}{\mathsf{symmetry}} \qquad 2 \, P[\overline{X} > \gamma''; \, \theta = 0] = 2 \, Q(\gamma'' / \sqrt{\sigma^2/N}) \\ P_{\mathrm{D}} &= P[|\overline{X}| > \gamma''; \, \theta = A] \qquad [\overline{X} \, | \, \theta = A \sim \mathcal{N}(A, \sigma^2/N)] \\ &= \qquad P[\overline{X} > \gamma''; \, \theta = A] + P[\overline{X} < -\gamma''; \, \theta = A] \\ &= \qquad Q\Big(\frac{\gamma'' - A}{\sqrt{\sigma^2/N}}\Big) + Q\Big(\frac{\gamma'' + A}{\sqrt{\sigma^2/N}}\Big) \\ &= \qquad Q\Big(Q^{-1}(P_{\mathrm{FA}}/2) - \frac{A}{\sqrt{\sigma^2/N}}\Big) \\ &+ Q\Big(Q^{-1}(P_{\mathrm{FA}}/2) + \frac{A}{\sqrt{\sigma^2/N}}\Big). \end{split}$$

In this case, the GLR test is only slightly worse than the clairvoyant detector, see Figure 6.4 in Kay-II:



**Example:** DC level in WGN with A and  $\sigma^2$  both unknown. Recall that  $\sigma^2$  is called a *nuisance parameter*. Here, the GLR test accepts  $\mathcal{H}_1$  if

$$\Lambda_{\rm GLR}(\boldsymbol{x}) = \frac{\max_{\theta, \sigma^2} p(\boldsymbol{x} \, ; \, \theta, \sigma^2)}{\max_{\sigma^2} p(\boldsymbol{x} \, ; \, \theta = 0, \sigma^2)} > \gamma$$

where

$$p(\boldsymbol{x}; a, \sigma^2) = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \cdot \exp\left[-\frac{1}{2\sigma^2} \sum_{n=1}^N (x[n] - a)^2\right].$$
 (2)

Here,

$$\max_{\theta,\sigma^2} p(\boldsymbol{x}; \theta, \sigma^2) = \frac{1}{(2\pi\widehat{\sigma}_1^2)^{N/2}} \cdot e^{-N/2}$$
$$\max_{\sigma^2} p(\boldsymbol{x}; \theta = 0, \sigma^2) = \frac{1}{(2\pi\widehat{\sigma}_0^2)^{N/2}} \cdot e^{-N/2}$$

where

$$\widehat{\sigma}_0^2 = \frac{1}{N} \sum_{n=1}^N x^2[n]$$

$$\widehat{\sigma}_1^2 = \frac{1}{N} \sum_{n=1}^N (x[n] - \overline{x})^2.$$

Hence,

$$\Lambda_{\mathrm{GLR}}(oldsymbol{x}) = \left(rac{\widehat{\sigma}_0^2}{\widehat{\sigma}_1^2}
ight)^{N/2}$$

i.e. the GLR test fits data with "best" DC-level signal  $\widehat{a}_{\rm ML}=\overline{x}$ , finds the residual variance estimate  $\widehat{\sigma}_1^2$ , and compares this estimate with the variance estimate  $\widehat{\sigma}_0^2$  under the null case (i.e. for  $\theta=0$ ). When signal is present,  $\widehat{\sigma}_1^2\ll\widehat{\sigma}_0^2\Rightarrow \Lambda_{\rm GLR}(\boldsymbol{x})\gg 1$ .

Note that

$$\widehat{\sigma}_{1}^{2} = \frac{1}{N} \sum_{n=1}^{N} (\overline{x} - x[n])^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (x^{2}[n] - 2\overline{x}x[n] + \overline{x}^{2})$$

$$= \left(\frac{1}{N} \sum_{n=1}^{N} x^{2}[n]\right) - 2\overline{x}^{2} + \overline{x}^{2}$$

$$= \widehat{\sigma}_{0}^{2} - \overline{x}^{2}.$$

Hence,

$$2\log \Lambda_{\rm GLR}(\boldsymbol{x}) = N\log \left(\frac{\widehat{\sigma}_0^2}{\widehat{\sigma}_0^2 - \overline{x}^2}\right) = N\log \left(\frac{1}{1 - \overline{x}^2/\widehat{\sigma}_0^2}\right).$$

Note that

$$0 \le \frac{\overline{x}^2}{\widehat{\sigma}_0^2} \le 1$$

and 1/(1-x) is monotonically increasing on  $x \in (0,1)$ . Therefore, an equivalent test can be constructed as follows:

$$T(\boldsymbol{x}) = \frac{\overline{x}^2}{\widehat{\sigma}_0^2} > \lambda'.$$

Under  $\mathcal{H}_0$ , the pdf of T(x) does not depend on  $\sigma^2 \Rightarrow \mathsf{GLR}$  test can be implemented, i.e. it is CFAR.

**Definition.** A test is constant false alarm rate (CFAR) if we can find a threshold that yields a detector with constant (specified) false-alarm rate  $P_{\rm FA}$ .

In other words, we should be able to set the threshold independently of the unknown parameters  $\Leftrightarrow$  the distribution of the test statistic under  $\mathcal{H}_0$  does not depend on the unknown parameters.

# Large-data Record Performance of GLR Tests, Section 6.5 in Kay-II

The asymptotic results presented here are valid if

- (i) N is large and
- (ii) the ML estimate of the parameter vector  $\boldsymbol{\vartheta}$  attains the asymptotic pdf  $\widehat{\boldsymbol{\vartheta}} \sim \mathcal{N}(\boldsymbol{\vartheta}, \mathcal{I}(\boldsymbol{\vartheta})^{-1})$ , see handout # 3.

**General result:** Consider the parametric model  $p(x; \vartheta)$  with

$$\boldsymbol{\vartheta} = \left[ \begin{array}{c} \boldsymbol{\theta} \\ \boldsymbol{\varphi} \end{array} \right] = \left[ \begin{array}{c} r \times 1 \\ s \times 1 \end{array} \right].$$

Here,  $\theta$  is to be tested and  $\varphi$  is a nuisance parameter vector. We also assume that we wish to test  $\theta = \theta_0$  (reduced model) versus  $\theta \neq \theta_0$  (full model), where the nuisance parameters  $\varphi$  are unknown, but *are the same* under both hypotheses:

$$\mathcal{H}_0$$
 :  $\boldsymbol{\theta} = \boldsymbol{\theta}_0$ ,  $\boldsymbol{\varphi}$ 

$$\mathcal{H}_1 : \boldsymbol{\theta} \neq \boldsymbol{\theta}_0, \quad \boldsymbol{\varphi}.$$

Then, the GLR test is: Decide  $\mathcal{H}_1$  if

$$\Lambda_{\rm GLR}(\boldsymbol{x}) = \frac{\max_{\boldsymbol{\theta}, \boldsymbol{\varphi}} p(\boldsymbol{x} \, ; \, \boldsymbol{\theta}, \boldsymbol{\varphi})}{\max_{\boldsymbol{\varphi}} p(\boldsymbol{x} \, ; \, \boldsymbol{\theta} = \boldsymbol{\theta}_0, \boldsymbol{\varphi})} > \lambda.$$

Then, as  $N \to \infty$ ,

$$2\underbrace{\log \Lambda_{\mathrm{GLR}}}_{\equiv \ln} \sim \chi_r^2 \quad \mathsf{under} \, \mathcal{H}_0$$
 $\sim \qquad \underbrace{\chi_r^2(\lambda)}_{\mathsf{noncentral}} \, \chi^2 \, \mathsf{pdf}$ 

where the expression for  $\lambda$  is given in eq. (6.24), Ch. 6.5 in Kay-II. Since, under  $\mathcal{H}_0$ , the asymptotic pdf of the test statistic  $\Lambda_{\rm GLR}(\boldsymbol{x})$  does not depend on any unknown parameters, the threshold required to (approximately) maintain a constant  $P_{\rm FA}$  can be found, which is the CFAR property. The approximate CFAR property of GLR tests holds only for large data records (i.e. large N).

**No nuisance parameters:**  $\theta$  is an  $r \times 1$  vector and we test

$$\mathcal{H}_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$$
 $\mathcal{H}_1: \boldsymbol{\theta} \neq \boldsymbol{\theta}_0.$ 

Then, the asymptotic pdfs of  $\log \Lambda_{\rm GLR}({m x})$  are the same as given above, with

$$\lambda = (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)^T \mathcal{I}(\boldsymbol{\theta}_0) (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0),$$

where  $\theta_1$  is the true value of  $\theta$  under  $\mathcal{H}_1$ .

#### Wald and Rao Tests

Consider testing

$$\mathcal{H}_0\colon \, m{h}(m{ heta}) = m{0} \quad ext{versus} \quad \mathcal{H}_1\colon \, m{h}(m{ heta}) 
eq m{0}$$

where  ${\pmb h}$  is an  $r \times 1$   $[r \le \dim({\pmb \theta})]$  once continuously-differentiable function. The **Wald test** for the above problem is

$$T_{\mathrm{W}}(\boldsymbol{x}) = \boldsymbol{h}(\widehat{\boldsymbol{\theta}})^{T} \Big[ H(\widehat{\boldsymbol{\theta}}) \cdot \mathrm{CRB}(\widehat{\boldsymbol{\theta}}) \cdot H(\widehat{\boldsymbol{\theta}})^{T} \Big]^{-1} \boldsymbol{h}(\widehat{\boldsymbol{\theta}}) > \lambda,$$

where  $H(\theta) = \partial h(\theta)/\partial \theta^T$  (having full rank r),  $CRB(\theta) = \mathcal{I}(\theta)^{-1}$ , and  $\widehat{\theta}$  is an unrestricted ML estimator of  $\theta$  (under  $\mathcal{H}_1$ ). Then

$$T_{
m W}(m{x}) \sim \chi_r^2$$
 under  $\mathcal{H}_0$ .

Rao test for the above problem:

$$T_{\mathrm{R}}(\boldsymbol{x}) = \boldsymbol{s}(\widetilde{\boldsymbol{\theta}})^{T} \mathrm{CRB}(\widetilde{\boldsymbol{\theta}}) \boldsymbol{s}(\widetilde{\boldsymbol{\theta}})$$

where

$$s(\theta) = \frac{\partial \log p(x; \theta)}{\partial \theta}.$$

and  $\widetilde{\boldsymbol{\theta}}$  is the restricted estimate of  $\boldsymbol{\theta}$  (under  $\mathcal{H}_0$ ).

$$T_{\rm R}({m x}) \sim \chi_r^2$$
 under  ${\cal H}_0$ .

For more on Rao test, see recent article by Bera and Bilias in Journal of Statistical Planning and Inference, vol. 97, Issue 1, 1 August 2001, pp. 9–44.

**Important special case:**  $h(\theta) = \theta - \theta_0$ . Then the Wald test becomes: decide  $\mathcal{H}_1$  if

$$T_{\mathrm{W}}(\boldsymbol{x}) = (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)^T \, \mathcal{I}(\widehat{\boldsymbol{\theta}}) \, (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) > \lambda.$$

# Important Theorems Used to Derive the Above Results

### Mann-Wald Theorem (a part of it):

Assume that we have a sequence of  $p \times 1$  vectors  $\boldsymbol{y}(1), \boldsymbol{y}(2), \dots, \boldsymbol{y}(N)$  such that

$$\{ \boldsymbol{y}(N) \} \stackrel{\mathrm{d}}{\rightarrow} \boldsymbol{y}, \quad \boldsymbol{y} \sim F.$$

Then, for a  $p \times p$  matrix  $\boldsymbol{B}$ , the following holds:

$$\{\boldsymbol{y}(N)^T \boldsymbol{B} \boldsymbol{y}(N)\} \stackrel{\mathrm{d}}{\to} \boldsymbol{y}^T \boldsymbol{B} \boldsymbol{y}.$$

Apply Mann-Wald to

$$\widehat{\boldsymbol{\theta}}_N - \boldsymbol{\theta} \stackrel{\mathrm{d}}{\to} \boldsymbol{y}, \quad \boldsymbol{y} \sim \mathcal{N}(0, \mathcal{I}(\boldsymbol{\theta})^{-1}).$$

using  $\boldsymbol{B} = \mathcal{I}(\boldsymbol{\theta})$ :

$$(\widehat{\boldsymbol{\theta}}_N - \boldsymbol{\theta})^T \mathcal{I}(\boldsymbol{\theta}) (\widehat{\boldsymbol{\theta}}_N - \boldsymbol{\theta}) \stackrel{\mathrm{d}}{\to} \boldsymbol{y}^T \mathcal{I}(\boldsymbol{\theta}) \boldsymbol{y}.$$
 (3)

#### **Quadratic Forms:**

Define a  $p \times p$  matrix  $m{B}$ . If  $m{y} \sim \mathcal{N}(m{\mu}, m{\Sigma})$  and for  $m{\eta} = [\eta_1, \eta_2, \dots, \eta_p]^T$ ,

$$\boldsymbol{\eta}^T \boldsymbol{\Sigma} = 0 \Rightarrow \boldsymbol{\eta}^T \boldsymbol{\mu} = 0,$$

then  ${m y}^T{m B}{m y}\sim \chi^2$  with degrees of freedom equal to  ${\rm tr}({m B}{m \Sigma})$  and non-centrality parameters  ${m \mu}^T{m B}{m \mu}$  iff

$$\Sigma B \Sigma B \Sigma = \Sigma B \Sigma.$$

Applying the above theorem to  ${m y}$  in (3) with  ${m B}={\mathcal I}({m heta})$  and  ${m \Sigma}={\mathcal I}({m heta})^{-1}$ , we get

$$(\widehat{\boldsymbol{\theta}}_N - \boldsymbol{\theta})^T \mathcal{I}(\boldsymbol{\theta}) (\widehat{\boldsymbol{\theta}}_N - \boldsymbol{\theta}) \stackrel{\mathrm{d}}{\to} \chi_p^2.$$

This result continues to hold if  $\mathcal{I}(\theta)$  is replaced with a consistent estimator (Cramér-Wold device and Slutsky's theorem). Possible choices of consistent estimators of  $\mathcal{I}(\theta)$ :

- 1.  $\mathcal{I}(\widehat{m{ heta}}_N)$ ,
- 2.  $\mathcal{I}^{\mathrm{obs}}(\widehat{\boldsymbol{\theta}}_N)$ , whose (i,k)th element is

$$-\left[\sum_{n=1}^{N} \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{k}} \log p(\boldsymbol{x}(n); \boldsymbol{\theta})\right] \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{N}}.$$

## Rao Test Example

DC level in non-Gaussian noise.

$$\mathcal{H}_0: \qquad x[n] = w[n], \quad n = 1, 2, \dots, N$$
  $\mathcal{H}_1: \qquad x[n] = \underbrace{\mathcal{A}}_{\text{unknown}} + w[n], \quad n = 1, 2, \dots, N.$ 

 $w[1], w[2], \ldots, w[N]$  are i.i.d. with pdf

$$p(w) = c_1 \cdot \exp[-\frac{1}{2} c_2 w^4], \quad -\infty < w < \infty,$$

where  $c_1$  and  $c_2$  are constants. To implement the GLR test

$$\Lambda_G(\boldsymbol{x}) = \frac{p(\boldsymbol{x}; \widehat{A}, \mathcal{H}_1)}{p(\boldsymbol{x}; \mathcal{H}_0)} > \lambda,$$

we need ML estimate  $\widehat{A}$  of A. But

$$p(\mathbf{x}; A, \mathcal{H}_1) = c_1^N \exp[-\frac{1}{2}c_2 \sum_{n=1}^N (x[n] - A)^4],$$

so we need to minimize  $\sum_{n=1}^{N} (x[n] - A)^4$  with respect to A. Hence,  $\widehat{A}$  cannot be found in closed form.

Consider now the Rao test, which **can** be computed in closed form:

$$T_{\mathrm{R}}(\boldsymbol{x}) = [s(0)]^2 \cdot \mathrm{CRB}(0)$$

where

$$s(0) = \frac{\partial \log p(\mathbf{x}; A)}{\partial A} \Big|_{A=0}$$

$$= 2c_2 \sum_{n=1}^{N} (x[n] - A)^3 \Big|_{A=0} = 2c_2 \sum_{n=1}^{N} x^3[n].$$

Hence

$$T_{\rm R}(\boldsymbol{x}) = 4c_2^2 \cdot \text{CRB}(0) \cdot \left(\sum_{n=1}^N x^3[n]\right)^2$$
  
=  $4N^2c_2^2 \cdot \text{CRB}(0) \cdot \left(\frac{1}{N}\sum_{n=1}^N x^3[n]\right)^2$ ,

see Example 6.9 in Kay-II for the exact expression. Note that, under  $\mathcal{H}_0$ ,  $\mathrm{E}\left(x^3[n]\right)=0$ , due to symmetry. Hence,

$$\sum_{n=1}^{N} x^3[n] \approx 0.$$

Under  $\mathcal{H}_1$ , there will be a signal contribution of  $A^6$ .

### **Classical Linear Model**

Recall the classical linear model

$$x = H\theta + w$$

where  $\boldsymbol{x}$  is a measured  $N \times 1$  vector and  $\boldsymbol{H}$  is a known deterministic  $N \times p$  matrix, where  $N \geq p$ . Assume  $\boldsymbol{w} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I})$  and  $\sigma^2$  known.  $\boldsymbol{\theta}$  is deterministic unknown parameter vector, to be tested.

In general, we consider

$$\mathcal{H}_0: \quad oldsymbol{A}oldsymbol{ heta} = oldsymbol{b} \quad ext{versus}$$

$$\mathcal{H}_1: \quad \boldsymbol{A} oldsymbol{ heta} 
eq oldsymbol{b}.$$

 $\boldsymbol{A}$  is  $r \times p$   $(r \leq q)$  of rank r. Here, GLR test decides  $\mathcal{H}_1$  if

$$T(\boldsymbol{x}) = \frac{(\boldsymbol{A}\widehat{\boldsymbol{\theta}}_1 - \boldsymbol{b})^T [\boldsymbol{A}(\boldsymbol{H}^T\boldsymbol{H})^{-1}\boldsymbol{A}^T]^{-1} (\boldsymbol{A}\widehat{\boldsymbol{\theta}}_1 - \boldsymbol{b})}{\sigma^2} > \tau$$

where  $\widehat{\boldsymbol{\theta}}_1 = (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{x}$  is the ML estimator of  $\boldsymbol{\theta}$  under  $\mathcal{H}_1$  (no restrictions).

(Exact) detection performance is

$$P_{\mathrm{FA}} = Q_{\chi_r^2}(\tau)$$
  
 $P_{\mathrm{D}} = Q_{\chi_r^2(\lambda)}(\tau)$ 

where

$$\lambda = \frac{(\boldsymbol{A}\boldsymbol{\theta}_1 - \boldsymbol{b})^T [\boldsymbol{A}(\boldsymbol{H}^T\boldsymbol{H})^{-1}\boldsymbol{A}^T]^{-1} (\boldsymbol{A}\boldsymbol{\theta}_1 - \boldsymbol{b})}{\sigma^2}.$$

See Appendix 7B in Kay-II for proof.

#### **Important special case:** Test

$$\mathcal{H}_0: \quad \boldsymbol{\theta} = \mathbf{0},$$

$$\mathcal{H}_1: \quad oldsymbol{ heta} 
eq oldsymbol{0}.$$

Apply the above result with A = I, b = 0, r = p:

$$T(\boldsymbol{x}) = \frac{\widehat{\boldsymbol{\theta}}_1^T \boldsymbol{H}^T \boldsymbol{H} \widehat{\boldsymbol{\theta}}_1}{\sigma^2} = \frac{\boldsymbol{x}^T \boldsymbol{H} (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{x}}{\sigma^2} > \tau.$$

Consider GLR test for linear model where  $\sigma^2$  is unknown, see Theorem 9.1 in Kay-II. GLR test decides  $\mathcal{H}_1$  if

$$T(\boldsymbol{x}) = \frac{N - p}{r} \cdot \frac{(\boldsymbol{A}\widehat{\boldsymbol{\theta}}_1 - \boldsymbol{b})^T [\boldsymbol{A}(\boldsymbol{H}^T\boldsymbol{H})^{-1}\boldsymbol{A}^T]^{-1} (\boldsymbol{A}\widehat{\boldsymbol{\theta}}_1 - \boldsymbol{b})}{\boldsymbol{x}^T (\boldsymbol{I} - \boldsymbol{H}(\boldsymbol{H}^T\boldsymbol{H})^{-1}\boldsymbol{H}^T) \boldsymbol{x}}$$

where  $\hat{\boldsymbol{\theta}}_1 = (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{x}$  is the ML estimator of  $\boldsymbol{\theta}$  under  $\mathcal{H}_1$  (no restrictions).

(Exact) detection performance is

$$P_{\mathrm{FA}} = Q_{F_{r,N-p}}(\tau)$$
  
 $P_{\mathrm{D}} = Q_{F_{r,N-p}(\lambda)}(\tau),$ 

where

$$\lambda = \frac{(\boldsymbol{A}\boldsymbol{\theta}_1 - \boldsymbol{b})^T [\boldsymbol{A}(\boldsymbol{H}^T\boldsymbol{H})^{-1}\boldsymbol{A}^T]^{-1} (\boldsymbol{A}\boldsymbol{\theta}_1 - \boldsymbol{b})}{\sigma^2}.$$

## Important special case: Test

$$\mathcal{H}_0: \quad \boldsymbol{\theta} = \mathbf{0},$$

$$\mathcal{H}_1: \quad \boldsymbol{\theta} \neq \mathbf{0}.$$

Apply the above result with A = I, b = 0, r = p:

$$T(\boldsymbol{x}) = \frac{N - p}{p} \cdot \frac{\boldsymbol{x}^T \boldsymbol{H} (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{x}}{\boldsymbol{x}^T (\boldsymbol{I} - \boldsymbol{H} (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T) \boldsymbol{x}}.$$