1.3 Diode circuits. Digital inputs protection

 Clipping diodes: protect the Mosfet inputs of CMOS digital circuits against overvoltages.

- D_1 conducts if $V_i > V_{DD} + 0.7V$
- D₂ conducts if V_i < 0.7V

•
$$-0.7V = < V_G < = V_{DD} + 0.7V$$

1.3. Diode circuits. Digital applications

AND Gate

OR Gate

Case A=B=1; VA=VB=VCC DI OFF, Do OFF (Reverse biased) I=0=> 1/5= Vcc-IR = Vcc

AND Case A=0, B=1; VA:OV; VB=VCC A=0 | c=0; on the same way: > A=16C=0 (simmetry A=B)
B=0 • Case A=1, B=

AND • Case
$$A = B = 0$$
; $VA = VB = OV$
 VCC
 SR
 $D_1 ON$
 SR
 $D_2 ON$
 SR
 SR

D1 D2	1/5	S
OFF OFF	0	0
OFF ON	Vcc	1
ON OFF	Væ	1
ON ON	Vcc	1
	OFF OFF OFF ON ON OFF	D ₁ D ₂ Vs OFF OFF O OFF ON VCC ON OFF VCC ON ON VCC

$$S = A + B$$

1.3 Other applications in digital circuits

As we will see throughout the course, diodes are present in almost all digital integrated circuits:

- Digital gates based on bipolar transistors (ex: TTL) use diodes for adjusting the voltage levels.
- Each MOS transistor inside NMOS or CMOS digital circuits have implicitely several diodes in reverse mode.

CMOS | NMOS | transistors

1.4 Special purpose diodes. Schottky diodes

- Special diodes for switching circuits
- Based on a metal (AI)- (*) semiconductor ("n" not many doped) junction
- High Is (1000 times bigger)
- Low V_{γ} (0,4V approx.)
- Very fast switching
- Application to high-speed

digital circuits

This juntion minimizes parasitic

capacitance => less ==> Hore speed

- LED: Light Emitting Diode
- 1.4 Special purpose diodes. LED

 light 27 9 Frank

 constant

 LED: Light Emitting Diode

 E1-E2=h.f ELECTRON VINNESCENCE
- When diode is forward-biased, majority carriers are injected in the P-N junction. The carriers recombinate in order to restore the equilibrium, emitting energy in the form of heat or light.
- This last case (light emitting) is produced only in the case of special semiconductor materials: GaAs, GaAsP, SiC, ...

Characteristic curve $V\gamma \approx 1.5V$

1.4 LED features

Infrared Red ... Blue, Ultraviolet

- The emitted luminace is directly proportional to the forward current
 - (for a good visibility, a forward current) from 10 to 20mA is required)
 - The modern high power LEDs (1 W or more), require more current (*)
- The radiation is almost monochrome (only one color)
- Radiation frequency of LEDs:
 - Infrared (with a lot of applications)
 - Red (the most typical)
 - Yellow
 - Green

The latest ones

1.4 Blue LED

- In 2014 the Nobel Prize in Physics was delivered to the discoverers of blue LED: Akasaki, Amano and Nakamura.
- To produce white light, blue LED was missing for many years:
 - White light with 3 LEDs: red, green and blue (RGB)

 White light with and blue LED; artical filter of Disarrhand and arready invented
 - White light with one blue LED+ optical filter of Phosphorus
- After several failed attempts, in 1994 they first obtained a "high" efficiency blue LED (for that time).
- They used a semiconductor based on InGaN / AlGaN, and obtained an efficiency of about 2.7% (incandescent bulbs have an efficiency

of a 4%). ~50%

Now we have more efficiency:

5W led ~ 50W halogen 1/10 reduction on power consuption

