Exercise 1:

In supervised learning, we typically assume that the data set $\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$ originates from a data generating process \mathbb{P}_{xy} in an i.i.d manner, i.e., $\mathcal{D} \sim (\mathbb{P}_{xy})^n$. One could split data set \mathcal{D} with n observations into subsets $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$ of sizes n_{train} and n_{test} with $n_{\text{train}} + n_{\text{test}} = n$. Both subsets can be represented with index vectors $J_{\text{train}} \in \{1, \dots, n\}^{n_{\text{train}}}$ and $J_{\text{test}} \in \{1, \dots, n\}^{n_{\text{test}}}$, respectively. For such an index vector J of length m, one can define a corresponding vector of labels $\mathbf{y}_J = \left(y^{(J^{(1)})}, \dots, y^{(J^{(m)})}\right) \in \mathcal{Y}^m$ and a corresponding matrix of prediction scores $\mathbf{F}_{J,f} = \left(f(\mathbf{x}^{(J^{(1)})}), \dots, f(\mathbf{x}^{(J^{(m)})})\right) \in \mathbb{R}^{m \times g}$ for a model f. For regression tasks, g = 1 and $\mathbf{F}_{J,f}$ is a vector.

For a learner \mathcal{I} , n_{train} training observations and a performance measure ρ , the **generalization error** can be formally expressed as:

$$GE(\mathcal{I}, n_{\text{train}}, \rho) = \lim_{n_{\text{test}} \to \infty} \mathbb{E}_{\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{test}} \sim \mathbb{P}_{xy}} \left[\rho \left(\mathbf{y}_{J_{\text{test}}}, \mathbf{F}_{J_{\text{test}}, \mathcal{I}(\mathcal{D}_{\text{train}})} \right) \right], \tag{1}$$

where $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$ are independently sampled from \mathbb{P}_{xy} .

1) What is the generalization error? Describe the formula above in your own words.

In practice, the data generating process \mathbb{P}_{xy} is usually unknown. However, assume we can sample as many times as we like from \mathbb{P}_{xy} .

2) Explain how you could empirically estimate the generalization error $GE(\mathcal{I}, n_{\text{train}} = 100, \rho)$ of a learner \mathcal{I} trained on $n_{\text{train}} = 100$ observations and evaluated on performance measure ρ , given that you can sample from \mathbb{P}_{xy} as often as you like.

In addition to an unknown data-generating process \mathbb{P}_{xy} , supervised learning is often restricted to a data set \mathcal{D} of fixed size n. Therefore, the true generalization error $GE(\mathcal{I}, n, \rho)$ remains unknown. In this case, hold-out splitting is a simple procedure that can be used to estimate the generalization error:

$$\widehat{\text{GE}}_{J_{\text{train}},J_{\text{test}}}(\mathcal{I},|J_{\text{train}}|,\rho) = \rho\left(\mathbf{y}_{J_{\text{test}}},\mathbf{F}_{J_{\text{test}},\mathcal{I}(\mathcal{D}_{\text{train}})}\right),\tag{2}$$

where $J_{\text{train}} \in \{1, \dots, n\}^{n_{\text{train}}}$ specifies the subset of \mathcal{D} the learner \mathcal{I} is trained on, with $|J_{\text{train}}| = n_{\text{train}} < n$.

- 3) Explain how the choice of $|J_{\text{train}}|$ may influence the bias of $\widehat{\text{GE}}_{J_{\text{train}},J_{\text{test}}}(\mathcal{I},|J_{\text{train}}|,\rho)$ wrt $\text{GE}(\mathcal{I},n,\rho)$.
- 4) Explain how the choice of $|J_{\text{train}}|$ may influence the variance of $\widehat{\text{GE}}_{J_{\text{train}},J_{\text{test}}}(\mathcal{I},|J_{\text{train}}|,\rho)$.