Sequential logic

Here the timing or sequencing of the input signals is important e.g. Flip flops, counters, latelles, micro processors.

Sequential logic responds to injuts only when a separate trigger signal fransitians from one level to another this trigger is the CLOCK (CK) signal

Clock pwse edges

positive edge friggered

positive adge

1 regative
erge

Two types of edge triggered devices

1) Positive edge triggered CK=1 2) Negative edge triggered CK=0

Tinput to Sequential logic gates

Flip-Flops

Is a sequential logic derice that an store data and switch between States (0/1).

1) RS Flip-Flop

Positive edge-triggered

Negative edgetriggered.

DCK: Clock / positive edge-trigger

D CK: Clock/ Negative edge-trigger

There are 2 aspects to Flip-Flop

D Truth Table

	ی	R	Q	Q	Com ments			
-	0	٥	Q.	Q,	output Q	کز	unchanged of allowed.	
-	J	٥	1	0	Set			
	0	1	0)	Reset			
	X	×	Not	available	R= S=1	h	of allowed.	

De The output Q,Q will change when S, R are changed ONLY when Ck or CLOCK has the correct trigger

Illustration

Case 1 Positive edge triggered RS Flip-Flop. It is in the State

Row Set by S=1, R=0Row Krigger

Illustration

Negative edge triggered RS Flip-Flop. It is in the Q=0 /Q=1 + tive edg CK No change le couse hus is + ire etye triggered Flip-flop.

Later

Is a level triggered flip-flop.

Lo or 1

D CK Q Q

Example: Positive level trigger

CK

Airgan

Arisqued by

CK=1

The Flip-Flop

The similar to Rs Flip-Flop

Jk in place of Rs

The similar of Rs

The

~ R &s cannot be high simultaneously

J&K can be high 11

- Preset & Clear pin to initialize the state

5 imputs J, K, Ck, Proot, Clear. 2 outruts 9,9

Preset	Clear	CK	J	K	Q	ବ୍	
0)	×	X	×	1	ی	? Initialize
l	٥	×	×	×	0	1	3
0	0		· N	ot ava	ilable	_	Not Permitted
1	1	•	6	0	1 %	२ 。	7 Useford
1	1	J)	0	1	٥	Inputs
į	1	1	0)	0	1	
l	1	1	J	1	ā.	ပု	J
1	•	1,0,1	×	X	ಳ್ಳಿ	ବି.	Un changed
		Incom	ed over	91			

All Flip-Flops can be constructed using JK Flip-Flops.

