Improve the predictability of SmartFund

Yiwei Dong
ydong2@nd.edu
Supervisor: Meng Jiang, Qingkai Zeng
{mjiang2, qzeng}@nd.edu
June 2020

Introduction

 This project aims at improving the predictability of SmartFund, which is a model used for research outcomes prediction developed by Alvin Alaphat and Dr. Jiang. SmartFund leverages the past project data (award amount, investigators, university, and abstract) from the National Science Foundation (NSF) website, to predict the number of papers and corresponding citations a new project might produce, and thus it is expected to help NSF fund projects efficiently and cost-effectively. However, the performance of SmartFund model is not so satisfying, with coefficient of determination 0.348 for #papers prediction and 0.188 for #citations prediction. Therefore, it is important to enhance the predictability of SmartFund to make it useful in the real sense.

Motivitions

Textual features can be better extracted by SciBERT model

Textual features hidden in the abstract can be extracted more amply by SciBERT, the state-of-the-art natural language processing model.

Work of Alvin Alaphat and Dr. Jiang: LDA + regression Models

- •Extract data from NSF¹ and Open Academic Data²
- Feature extraction
 - •Bag-of-Words model
 - Latent Dirichlet Allocation (LDA)
 - •Term Frequency-Inverse Document Frequency (TF-IDF)
 - •AutoPhrase model: upgrading vocabulary from words only to words and phrases
- Feature selection
- Regression models

Results of Topic Modeling + Regression Models

Model	Features	MAE (dev)	MAE (test)	RMSE (dev)	RMSE (test)	R^2 (dev)	R^2 (test)	
	Profiling	7.714	7.758	13.542	13.760	0.106	0.097	
Linear Regression	+ best Bag-of-Words	7.625	7.676	13.343	13.566	0.132	0.123	4 topics
	+ best Bag-of-Phrases	7.624	7.662	13.285	13.493	0.140	0.132	3 topics
	(All features)	7.402	7.516	12.820	13.148	0.199	0.176	
	Profiling	7.054	7.097	12.642	12.800	0.221	0.219	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Single- Layer Perceptron	+ best BOW	6.724	6.839	11.951	12.264	0.304	0.283	10 topics
	+ best BOP	6.596	6.641	12.073	12.277	0.290	0.281	5 topics
	+ best BOW + best BOP	6.395	6.514	11.663	11.994	0.337	0.314	17.00
	+ top 10 BOW/BOP	6.402	6.946	11.042	12.057	0.406	0.307	overfitting
	(All features)	4.737	11.438	6.581	16.192	0.789	-0.250	overfitting
State of the	Profiling	6.861	6.896	12.733	12.898	0.210	0.207	
Multi-	+ best BOW + best BOP	6.348	6.462	11.554	11.948	0.350	0.319	
Layer	+ top 10 BOW/BOP	6.076	6.293	11.243	11.909	0.384	0.324	
Perceptron	(All features)	6.503	6.914	11.508	12.601	0.355	0.243	
	+ top 10 correlated topics	6.125	6.261	11.288	11.727	0.379	0.344	
	+ top 20 correlated topics	6.229	6.371	11.331	11.742	0.374	0.343	
	+ top 30 correlated topics	6.136	6.342	11.071	11.699	0.403	0.348	

Table 1: Performance on predicting the number of papers produced by an unseen project¹

Model	Features	MAE (dev)	MAE (test)	RMSE (dev)	RMSE (test)	R^2 (dev)	R^2 (test)	
Linear	Profiling	224.2	224.8	503.6	501.1	0.041	0.040	100
Regression	(All features)	222,4	225.1	491.9	492.8	0.085	0.071	
Single-	Profiling	211.2	212.3	483.9	479.9	0.115	0.119	10
Layer	+ best BOW	204.1	205.6	476.1	473.0	0.143	0.144	8 topics
Perceptron	+ best BOP	206.5	208.0	475.8	472.0	0.144	0.148	8 topics
	(All features)	192.3	299.3	342.5	522.8	0.556	-0.046	overfitting
Multi-	Profiling	197.4	198.9	485.2	482.4	0.110	0.110	
Layer	(All features)	204,6	209.9	485.3	492.7	0.109	0.071	
Perceptron	+ top 30 correlated topics	188.1	192.4	455.0	460.8	0.217	0.188	

Table 2: Performance on predicting the number of citations the produced papers can have²

SciBERT Model + Regression Models

- Using SciBERT Model to get sentence embeddings of abstracts
- Feed the sentence embeddings to regression models

Data Processing

- Delete items with none abstract
- Tokenize abstract & Cut to 490 tokens (BERT model can tackle at most 512 tokens at one time. Here, we regard each abstract as one sentence, and take the sentence embedding as its feature)
- Split train, dev, and test

Use SciBERT to Embed All The Abstracts

This is a workshop on the use of mathematical and computer models in biological resource conservation. It is designed to The distribution of Ba in the ocean is similar to the refractory components, silica and alkalinity. Therefore reconstructions of Ba in ancient The research objective of this project is to investigate how performance can be made comparable across a wide range of construction project sizes and types. Performance O 0 0 -0.6507 0.08760.8717 -0.6902 -0.39540.8150 -0.6902 -0.39540.5552						Sentence embeddings				
computer models in biological resource conservation. It is designed to The distribution of Ba in the ocean is similar to the refractory components, silica and alkalinity. Therefore reconstructions of Ba in ancient The research objective of this project is to investigate how performance can be made comparable across a wide range of construction project sizes and types. Performance -0.6507 0.0876 -0.6507 0.0876 -0.6902 -0.3954 -0.8150 0.1398 -0.3006 -0.5552	ID	Abstract	#paper #citation		on	0	1		767	
refractory components, silica and alkalinity. Therefore reconstructions of Ba in ancient The research objective of this project is to investigate how performance can be made comparable across a wide range of construction project sizes and types. Performance Performance Performance Performance Performance 1 90 -0.6902 -0.3954 -0.8150 -0.8150	8854199	computer models in biological resource conservation.	0	0		-0.6507	0.0876		-0.8717	
how performance can be made comparable across a wide range of construction project sizes and types. Output Description: Output D	9012033	refractory components, silica and alkalinity. Therefore	1	90	-	-0.6902	-0.3954		-0.8150	
	1536005	how performance can be made comparable across a wide range of construction project sizes and types.	0	0		0.1398	-0.3006		-0.5552	
						•••			•••	

Feedforward Neural Network

- Pass the obtained sentence embedding as the input to the feedforward neural network
- Train & Save the model with the least MSE on validation set

Future Work

- Optimize the SciBERT + Feedforward neural network model
- Test the reasonability of each step(e.g. If it is reasonable to cut each long abstract to 490 words? If it is better to cut those abstracts backward so that we can get a better result?)

Conclusion

In this project:

- We propose to improve the predictability of SmartFund, to make it function better
- We propose to use SciBERT to extract the information contained in abstracts

Feel free to contact me at ydong2@nd.edu should you have any questions!