Introduction to Game Theory Nash Equilibrium

Sujit Prakash Gujar

sujit.gujar@iiit.ac.in

Recap

- Recap
- General *n* person Games
 - ► Iterated Dominance

- Recap
- General *n* person Games
 - Iterated Dominance
 - Notion of Nash Equilibrium

- Recap
- General *n* person Games
 - ► Iterated Dominance
 - Notion of Nash Equilibrium
 - ► Meaning and Implication of Nash Equilibrium

- Recap
- General *n* person Games
 - Iterated Dominance
 - Notion of Nash Equilibrium
 - ► Meaning and Implication of Nash Equilibrium
 - Nash's Theorem and Existence

Meet at the Cafe Game

Recall meet at the cafe game¹:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

Does it has any dominant strategy equilibirium?

//saraleroux.weebly.com/uploads/1/3/1/2/13125672/bos_revised_paper.pdf

Meet at the Cafe Game

Recall meet at the cafe game¹:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Does it has any dominant strategy equilibirium?
- Can we apply minimax theorem?

//saraleroux.weebly.com/uploads/1/3/1/2/13125672/bos_revised_paper.pdf

Meet at the Cafe Game

Recall meet at the cafe game¹:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- Does it has any dominant strategy equilibirium?
- Can we apply minimax theorem?
- we need another notion of equilibrium?

//saraleroux.weebly.com/uploads/1/3/1/2/13125672/bos_revised_paper.pdf

n-player Games

Recall, n player game in strategic form is represented as $\Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

N: Set of players $N = \{1, 2, \dots, n\}$

 S_1 : Strategies available to player 1

 $S_2:$ Strategies available $u_1:S o\mathbb{R}$ to player 2 $u_2:S o\mathbb{R}$:

 S_n : Strategies available to player n

 $S = S_1 \times S_2 \times ... \times S_n$ Strategy space of all the players $u_n:S\to\mathbb{R}$

Utility Functions

• Note that we denote the space of strategies include randomization, that is, it is set of **mixed strategies** by $\Delta(S_i)$ and represent a mixed

strategy for a player i as σ_i .

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

• Does Player 1 has any strongly dominant strategy?

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?
- But...

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?
- But...
- Player 2 is smart (intelligent)

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?
- But...
- Player 2 is smart (intelligent)

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?
- But...
- Player 2 is smart (intelligent) finds strongly dominated strategy for Player 1,

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?
- But...
- Player 2 is smart (intelligent) finds strongly dominated strategy for Player 1, knows that Player 1 is intelligent to know his (Player 1's) strongly dominated strategy and Player 1 will never play it
- After deducing the above, what should Player 2 play?

	L	R
Т	(2,2)	(4,0)
В	(1,0)	(3,1)

- Does Player 1 has any strongly dominant strategy?
- Does Player 2 has any strongly dominant strategy?
- Any strongly/weakly dominant strategy equilibrium?
- But...
- Player 2 is smart (intelligent) finds strongly dominated strategy for Player 1, knows that Player 1 is intelligent to know his (Player 1's) strongly dominated strategy and Player 1 will never play it
- After deducing the above, what should Player 2 play?
- (T,L) is equilibrium

• Say s_1 is strictly dominated by s_2 for Player 1.

- Say s_1 is strictly dominated by s_2 for Player 1.
- What can we say about $U_1(s_1, \sigma_{-1}) <>= ?U_1(s_2, \sigma_{-1})?$

- Say s_1 is strictly dominated by s_2 for Player 1.
- What can we say about $U_1(s_1, \sigma_{-1}) <>= ?U_1(s_2, \sigma_{-1})?$
- Does it hold true for weakly dominated?

- Say s_1 is strictly dominated by s_2 for Player 1.
- What can we say about $U_1(s_1, \sigma_{-1}) <>= ?U_1(s_2, \sigma_{-1})?$
- Does it hold true for weakly dominated?
- In general, if s_i is weakly dominated by some strategy, will not be played by rational agents

- Say s_1 is strictly dominated by s_2 for Player 1.
- What can we say about $U_1(s_1, \sigma_{-1}) <>= ?U_1(s_2, \sigma_{-1})?$
- Does it hold true for weakly dominated?
- In general, if s_i is weakly dominated by some strategy, will not be played by rational agents
- So we can restrict our attention to $S_i \setminus s_i$

- Say s_1 is strictly dominated by s_2 for Player 1.
- What can we say about $U_1(s_1, \sigma_{-1}) <>= ?U_1(s_2, \sigma_{-1})?$
- Does it hold true for weakly dominated?
- In general, if s_i is weakly dominated by some strategy, will not be played by rational agents
- So we can restrict our attention to $S_i \setminus s_i$ and it may lead to newer dominated strategies!! (Assumption of rationality and common knowledge)

Algorithm 1: Iterated Dominance

```
1 Input: \Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle
 2 Output: \Gamma' = \langle N, (Z_i)_{i \in N}, (u_i)_{i \in N} \rangle
 3 for i=1 \rightarrow n do
 4 Z_i^0 = S_i
 5 k = 1
 6 flag=true
 7 while flag do
         flag=false
 8
         for i = 1 \rightarrow n do
 9
             Z_i^k = Z_i^{k-1}
10
11
             if \exists s_i dominated by some other strategy then
                Z_i^k = Z_i^k \setminus s_i
12
               flag=true;
13
             k = k + 1
14
15 for i=1 \rightarrow n do
```


16 $Z_i = Z_i^{k-1}$

Consider the following game:

	L	R
Т	(0,0)	(4,2)
В	(2,4)	(2,2)

What are strongly/weakly dominated strategies for Player 1? Player
 2?

Consider the following game:

	L	R
Т	(0,0)	(4,2)
В	(2,4)	(2,2)

- What are strongly/weakly dominated strategies for Player 1? Player
 2?
- Can the above algorithm give any result even if we consider dominance in mixed strategy?

• Iterated dominance may not yield solution always

- Iterated dominance may not yield solution always
- Depending upon the order in which we eliminate strategies may yield different games to analyze

Sujit Prakash Gujar (IIITH) Game Theory (NE) 9 /

Sujit Prakash Gujar (IIITH)

- Iterated dominance may not yield solution always
- Depending upon the order in which we eliminate strategies may yield different games to analyze
- We need better solution concept

9 / 17

Game Theory (NE)

- Iterated dominance may not yield solution always
- Depending upon the order in which we eliminate strategies may yield different games to analyze
- We need better solution concept
- Solution Concept:a formal rule for predicting how a game will be played²

- Iterated dominance may not yield solution always
- Depending upon the order in which we eliminate strategies may yield different games to analyze
- We need better solution concept
- Solution Concept:a formal rule for predicting how a game will be played²
- Solution concept Dominant strategy equilibrium hardly exists and Iterated dominance may not always be helpful

- Iterated dominance may not yield solution always
- Depending upon the order in which we eliminate strategies may yield different games to analyze
- We need better solution concept
- Solution Concept:a formal rule for predicting how a game will be played²
- Solution concept Dominant strategy equilibrium hardly exists and Iterated dominance may not always be helpful
- Most celebrated solution concept in Game Theory: Nash Equilibrium

2https://en.wikipedia.org/wiki/Solution_concept > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3 > < 3

Nash Equilibrium

What should be desirable properties of an equilibrium?

Nash Equilibrium

What should be desirable properties of an equilibrium?

Definition (Pure Strategy Nash Equilibrium)

A strategy profile $(s_1^*, s_2^*, \ldots, s_n^*)$ is called as Pure Strategy Nash Equilibrium (PSNE), if for each player i, s_i^* is a best response strategy to s_{-i}^* .

That is, $\forall i$

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*) \ \forall \ s_i \in S_i$$

Nash Equilibrium

What should be desirable properties of an equilibrium?

Definition (Pure Strategy Nash Equilibrium)

A strategy profile $(s_1^*, s_2^*, \dots, s_n^*)$ is called as Pure Strategy Nash Equilibrium (PSNE), if for each player i, s_i^* is a best response strategy to s_{-i}^* .

That is, $\forall i$

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*) \ \forall \ s_i \in S_i$$

Definition (Mixed Strategy Nash Equilibrium)

A strategy profile $(\sigma_1^*, \sigma_2^*, \dots, \sigma_n^*)$ is called as Mixed Strategy Nash Equilibrium, if for each player i, σ_i^* is a best response strategy to σ_{-i}^* .

That is, $\forall i$

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

Notice difference between u_i and U_i

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*,\sigma_{-i}^*) \geq U_i(\sigma_i,\sigma_{-i}^*) \; \forall \; \sigma_i \; \in \; \Delta(S_i)$$

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

Unilateral deviation does not help

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium?

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium?

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium?
 Other way round?
- Interpretations

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

<□ > →□ → → □ > → □ →

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium?
 Other way round?
- Interpretations
 - Prescription

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

<□ > →□ → → □ > → □ →

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium?
 Other way round?
- Interpretations
 - Prescription
 - Prediction

Image Credits: Elke Wetzig (Elya) - Own work.

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium?
 Other way round?
- Interpretations
 - Prescription
 - Prediction
 - Self enforcing agreement

Image Credits: Elke Wetzig (Elya) - Own work.

John Nash: Nobel Memorial Prize in Economic Sciences (1994)

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

<ロト <部ト <きト <きト

- Unilateral deviation does not help
- Is NE also Dominant strategy equilibrium? Other way round?
- Interpretations
 - Prescription
 - Prediction
 - Self enforcing agreement
 - Evolution and Steady State

Image Credits: Elke Wetzig (Elya) - Own work.

Matching coins game

A B	Н	Т
Н	10,-10	-10,10
Т	-10,10	10,-10

Matching coins game

A B	Н	Т
Н	10,-10	-10,10
Т	-10,10	10,-10

► No PSNE!

Matching coins game

A B	Н	Т
Н	10,-10	-10,10
Т	-10,10	10,-10

► No PSNE!

Matching coins game

A B	Н	Т
Н	10,-10	-10,10
Т	-10,10	10,-10

- ▶ No PSNE!
- What about minimax theorem? How does the equilibrium we defined for two player zero sum games related to NE?

Theorem (Nash)

Every finite game has at least one Nash Equilibrium (NE).

• What is finite game?

Theorem (Nash)

Every finite game has at least one Nash Equilibrium (NE).

• What is finite game?

Theorem (Nash)

- What is finite game? NE: PSNE or MSNE?
- In NE player plays his/her best response to the strategy played by the remaining agents

Theorem (Nash)

- What is finite game? NE: PSNE or MSNE?
- In NE player plays his/her best response to the strategy played by the remaining agents
- Let $b_i(\sigma_{-i})$ denote a set of strategies for i that are best response to σ_{-i}

Theorem (Nash)

- What is finite game? NE: PSNE or MSNE?
- In NE player plays his/her best response to the strategy played by the remaining agents
- Let $b_i(\sigma_{-i})$ denote a set of strategies for i that are best response to σ_{-i}
- $b: \prod_{i \in N} \Delta(S_i) \to 2^{\prod \Delta(S_i)}$ as $b(\sigma) = (b_1(\sigma_{-1}), b_2(\sigma_{-2}), \dots, b_n(\sigma_{-n},))$

Theorem (Nash)

- What is finite game? NE: PSNE or MSNE?
- In NE player plays his/her best response to the strategy played by the remaining agents
- Let $b_i(\sigma_{-i})$ denote a set of strategies for i that are best response to σ_{-i}
- $b: \prod_{i \in N} \Delta(S_i) \to 2^{\prod \Delta(S_i)}$ as $b(\sigma) = (b_1(\sigma_{-1}), b_2(\sigma_{-2}), \dots, b_n(\sigma_{-n},))$
- *b* is called **best response correspondence** of a game.

• Fixed point theorems

- Fixed point theorems
 - Continuity,

- Fixed point theorems
 - Continuity,

- Fixed point theorems
 - Continuity, Closed

- Fixed point theorems
 - Continuity, Closed and Bounded (Compact)

- Fixed point theorems
 - ► Continuity, Closed and Bounded (Compact)
- Kakatuni fixed point theorem

- Fixed point theorems
 - Continuity, Closed and Bounded (Compact)
- Kakatuni fixed point theorem

Theorem

Let A be a non-empty, compact and convex subset of some Euclidean space R^n . Let $\phi: A \to 2^A$ be a set-valued function (correspondence) on A with a closed graph and the property that $\phi(x)$ is non-empty and convex for all $x \in A$. Then ϕ has a fixed point.

- Fixed point theorems
 - Continuity, Closed and Bounded (Compact)
- Kakatuni fixed point theorem

Theorem

Let A be a **non-empty, compact** and **convex** subset of some Euclidean space R^n . Let $\phi: A \to 2^A$ be a **set-valued function** (**correspondence**) on A with a closed graph and the property that $\phi(x)$ is non-empty and convex for all $x \in A$. Then ϕ has a fixed point.

• Also true, if (i) $\prod_i \Delta(S_i)$ is compact, convex, and nonempty. (ii) $b(\sigma)$ non-empty. (iii) $b(\sigma)$ is convex. (iv) $b(\sigma)$ is upper hemi-continuous (follows from continuity of $U_i's$)

- Fixed point theorems
 - Continuity, Closed and Bounded (Compact)
- Kakatuni fixed point theorem

Theorem

Let A be a **non-empty, compact** and **convex** subset of some Euclidean space R^n . Let $\phi: A \to 2^A$ be a **set-valued function** (**correspondence**) on A with a closed graph and the property that $\phi(x)$ is non-empty and convex for all $x \in A$. Then ϕ has a fixed point.

- Also true, if (i) $\prod_i \Delta(S_i)$ is compact, convex, and nonempty. (ii) $b(\sigma)$ non-empty. (iii) $b(\sigma)$ is convex. (iv) $b(\sigma)$ is upper hemi-continuous (follows from continuity of $U_i's$)
- Convince yourself that $\sigma^* \in b(\sigma^*) \Rightarrow \sigma^*$ is NE

Examples

Meet at the Cafe:

A B	L	G
L	2,1	0.5,0.5
G	0,0	1,2

- (L,L) and (G,G) are PSNE
- $\sigma_1 =$ () and $\sigma_2 =$ () is MSNE..Next Class.

Examples

Hawk-Dove Game

	Hawk	Dove
Hawk	(0,0)	(5,1)
Dove	(1,5)	(3,3)

- (Hawk, Dove) and (Dove, Hawk) are PSNE
- $\sigma_1 = ()$ and $\sigma_2 = ()$ is MSNE..Next Class.

Further Reading

- Game Theory and Mechanism Design, Y Narahari. World Scientific Publishing Company, 2014.
- Multiagent systems: Algorithmic, game-theoretic, and logical foundations, Shoham, Yoav, and Kevin Leyton-Brown. Cambridge University Press, 2008. (Free download).
- Game Theory by Roger Myerson. Harvard University press, 2013.
- Algorithmic Game Theory, edited by Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazerani. (Non-printable version available online).

```
http://gametheory.net/
```

http://lcm.csa.iisc.ernet.in/gametheory/lecture.html

