Barème

Problème I	4,0 pts
Problème II	4,0 pts
Problème III	4,75 pts
Problème IV	7,25 pts

Instructions

- Cette épreuve comporte 12 pages.
- Tout résultat doit être écrit dans les cadres adéquats.
- L'usage des calculatrices électroniques de poche non programmables est autorisé.
- Aucun échange entre les candidats n'est autorisé.
- Les résultats numériques sans unité ou avec une unité fausse ne seront pas comptabilisés.
- En cas de besoin utiliser les pages vides en fin du cahier. Dans ce cas, il faut le signaler dans la case allouée à la réponse remise en fin de cahier.

Données relatives à l'ensemble du sujet

Constante d'Avogadro : $N_A = 6,023 \times 10^{23} \text{ mol}^{-1}$. Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

Masses molaires (en g.mol⁻¹) de l'or : Au = 197 et de l'oxygène : O = 16.

L'air est constitué de 20% molaire de dioxygène. Température de fusion standard de l'or : 1337 K. Température d'ébullition standard de l'or : 3129 K.

Enthalpie molaire de vaporisation standard de l'or : $\Delta_{vap}H_{Au}^{o} = 324,00 \text{ kJ.mol}^{-1}$.

Enthalpie molaire de fusion standard de l'or : $\Delta_{\text{fus}} H_{\text{Au}}^{\text{o}} = 12,55 \text{ kJ.mol}^{-1}$

Paramètre de la maille cubique de l'or : a = 4,08 Å.

mode de réseau cubique	conditions de diffraction aucune	
primitif P		
centré I	h + k + 1 = 2n (pair)	
à faces centrées F	h, k et l tous pairs ou tous impairs	

Masses volumiques de l'or (supposées indépendantes de la température et de la pression) :

- Liquide: $\rho_{Au}^{liq} = 17,31 \text{ g.cm}^{-3}$.
- Solide: $\rho_{Au}^{sd} = 19,30 \text{ g.cm}^{-3}$.

A 298 K:

	potentiel chimique standard μ°(kJ.mol ⁻¹)	entropie molaire standard S° (J.K ⁻¹ .mol ⁻¹)	enthalpie molaire standard de formation $\Delta_f H^{\circ}(kJ.mol^{-1})$
$Au_{(sd)}$	0	47,4	0
Au ₂ O _{3(sd)}	163,3	125,0	-
$O_{2(g)}$	0	205,3	0

Potentiels redox standard:

Couples	$Au^{3+}/Au_{(sd)}$	AuO _{2(sd)} /Au ³⁺	$AuO_{2(sd)}/Au(OH)_{3(sd)}$
E° (V)	1,498	2,507	2,630

Produit de solubilité de $Au(OH)_{3(sd)}$: $K_s = 10^{-44,1}$.

Produit ionique de l'eau : $K_e = 10^{-14}$.

Conversions:

$$\frac{R \times T}{F} \times Ln(x) = 0,06 \times log_{10}(x) \text{ (Volt)}$$

$$Ln(10) = 2.3$$

La pression atmosphérique : $p_{atm} = 1 atm \approx 1 bar = p^0$

Problème I : Cristallographie

Afin de déterminer la structure cristalline d'un solide, on peut utiliser la méthode de Debye-Scherrer qui consiste à sonder un échantillon cristallin poudreux en dirigeant sur celui-ci un faisceau monochromatique de rayons X.

Les microcristaux, dont la taille peut varier entre 0,01 et 0,001 mm, sont orientés de façon aléatoire à l'intérieur de l'échantillon. Chaque microcristal orienté favorablement créé un rayon diffracté formant un angle ω avec l'axe d'émission du faisceau incident (fig. cicontre).

Le rayonnement diffracté est alors analysé par un détecteur pouvant tourner autour d'une monture

circulaire centrée sur l'échantillon (chambre de Debye-Scherrer). Le signal reçu présente un ensemble de raies réparties symétriquement par rapport aux orifices d'entrée et de sortie du faisceau incident.

1)	Donner la relation entre le paramètre « a » d'une maille cubique et la distance entre deux plans réticulaires consécutifs appartenant à la même famille hkl.
2)	En déduire la relation entre l'angle ω et les indices de Miller h , k et l caractérisant les plans réticulaires responsables du signal reçu.
3)	L'or cristallise selon une maille cubique. La raie correspondant aux indices de Miller (111) est obtenue pour une réflexion de premier ordre pour l'angle $\omega = 38,14^{\circ}$ dans le cas d'un faisceau de longueur d'onde $\lambda = 1,54$ Å. Donner l'expression puis calculer le paramètre « a » de maille.
	Dominal Lampingson Para careary to parameter with the second

4)	L'expérience montre que, pour l'or, les plans indices de Miller (100) et (110) ne diffractent pas les rayons X. Quel est alors le mode de réseau correspondant ?
5)	En déduire le rayon métallique de l'or.
6)	Préciser les coordonnées réduites des plus grands sites dans la maille de l'or.
0)	Treeser ies coordonnees reduites des plus grands sites dans la manne de l'annument de
7)	On remplace tous les atomes d'or « Au » qui n'occupent pas les sommets du cube
	par des atomes d'un élément « X ». 7.1) Représenter en perspective la nouvelle maille obtenue et son contenu.
	7.1) Representer en perspective la nouvene mame obtende et son content.
	7.2) Déterminer la formule du nouveau composé.

Problème II : étude de l'or pur

La vapeur de l'or est assimilée à un gaz parfait.

Les enthalpies de changements d'état sont supposées indépendantes de la température.

Dans le tableau ci-dessous on donne les valeurs des logarithmes népériens des pressions de vapeur (en bar) de l'or liquide et solide :

	T(K)	1200	1500
liquide	$\left \operatorname{Ln}\left(\frac{\mathbf{p}}{\mathbf{p}^0}\right) \right $	-20,02	-13,53
solide	$\operatorname{Ln}\left(\frac{\mathbf{p}}{\mathbf{p}^0}\right)$	-9,08	-2,33

1) Montrer que les expressions des pressions de vapeur de l'or liquide et solide peuvent s'exprimer en fonction de la température sous la forme :

$$\operatorname{Ln}\left(\frac{p}{p^0}\right) = A - \frac{B}{T}$$

3) Déterminer alors A et B dans chaque cas.	2) Donner les expressions p standard de Au.	ouis calculer les températures d'ébu	Illition et de sublimation
	8		
	3) Déterminer alors A et B	dans chaque cas.	

4) Déterminer la tem	pérature de fusion de l'or sous la pression de 200 bars.
	agramme d'Ellingham on se place dans le cadre de l'approximation d'Ellingham en faisant
	de dioxygène dans l'écriture des équations-bilan.
1) Ecrire l'expressio	on qui permet le calcul de l'enthalpie libre G d'un système à plusieurs r de la quantité de matière « n_i » et du potentiel chimique « μ_i » de
2) Dans le cas d'u	ne réaction chimique entre ces constituants, écrire l'expression de
l'avancement de cett	

- 3) Sachant que l'opérateur « grandeur de la réaction » est : $\Delta_r = \left(\frac{\partial}{\partial \xi}\right)$. Donner l'expression de l'enthalpie libre standard de la réaction $\Delta_r G^0$ en fonction des potentiels chimiques standard des constituants.
- 4) Pour une température inférieure à 1337 K, écrire l'équation de la réaction d'oxydation de l'or solide en Au₂O_{3(sd)}.
- 5) Déterminer l'enthalpie standard de formation de Au₂O_{3(sd)} à 298K.

6) Donner l'expression numérique de l'enthalpie libre standard $\Delta_r G^{\circ}$ de la réaction étudiée, en fonction de la température, dans l'intervalle de température [298 K-1337 K].
7) Donner l'expression puis calculer la pression de corrosion de l'or à 298 K.
8) L'or est-t-il corrodé par le dioxygène de l'air à 298 K ?

chimiques suivantes : Au _(sd) , Au ³⁺ La concentration de l'espèce Au ³⁺	gramme E-pH de l'or en considérant les espèces $_{(aq)}$, $Au(OH)_{3(sd)}$ et $AuO_{2(sd)}$. en solution est prise égale à $C_{tra} = 10^{-5}$ mol. L^{-1} . er le pH de début de précipitation de l'hydroxyde
2) Etude de la précipitation de l'h	ydroxyde $Au(OH)_{3(sd)}$: e $E^0_{Au(OH)_{3(sd)}/Au_{(sd)}}$ en fonction de $E^0_{Au^{3+}_{(aq)}/Au_{(sd)}}$, du produit de
	et de la constante K_e d'autoprotolyse de l'eau.

ire les demi-équations ner leurs potentiels en	de réaction des différents couples fonction de pH.	s redox mis en jeu et
. χ		

4) Tracer le diagramme E-pH de l'or et l'indexer.

5) Caractérisation des domaines :

5.a) Indiquer sur le diagramme la nature des différents domaines : (prédominance ou existence).

Voir diagramme.

5.b) Identifier les zones d'immunité, de passivation et de corrosion de l'or.

Voir diagramme

FIN DE L'EPREUVE