Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously Presented) A liquid absorbing sheet comprising a liquid absorbing resin layer, wherein the liquid absorbing resin layer is obtained by irradiating UV-rays onto a monomer composition to polymerize the monomer composition, the monomer composition containing:

a monofunctional monomer component containing a monofunctional monomer capable of forming a homopolymer that is soluble in a nonaqueous solvent used in a nonaqueous electrolyte secondary battery; and

a polyfunctional monomer component.

- 2. (Previously Presented) The liquid absorbing sheet according to claim 1, wherein the difference between a solubility parameter value of the monofunctional monomer and a solubility parameter value of the nonaqueous solvent is in the range of -1.0 to 8.0.
- 3. (Original) The liquid absorbing sheet according to claim 2, wherein the nonaqueous solvent has a solubility parameter value of 17 to 28.
- 4. (Previously Presented) The liquid absorbing sheet according to claim 1, wherein the nonaqueous solvent contains at least one of dimethyl carbonate, propylene carbonate, and ethylene carbonate, and the homopolymer is obtained by adding 0.1 to 5 parts by weight of a UV-polymerization initiator per 100 parts by weight of the monofunctional monomer and irradiating UV-rays onto the mixture.
- 5. (Original) The liquid absorbing sheet according to claim 4, wherein the homopolymer dissolves in the nonaqueous solvent when 1 part by weight of the homopolymer is immersed in 30 parts by weight of the mixed solvent at room temperature for 24 hours.

- 6. (Previously Presented) The liquid absorbing sheet according to claim 1, wherein the monofunctional monomer is benzyl acrylate, N-vinyl-2-pyrrolidone, imide acrylate, acryloyl morpholine, phenoxyethyl acrylate, N,N-diethylacrylamide, methoxypolyethylene glycol acrylate, tetrahydrofurfuryl acrylate, or phenoxypolyethylene glycol acrylate.
- 7. (Original) The liquid absorbing sheet according to claim 1, wherein the liquid absorbing resin layer has a crosslink density of 0.0001 to 0.17.
- 8. (Previously Presented) The liquid absorbing sheet according to claim 1, wherein the liquid absorbing resin layer is formed on a substrate.
- 9. (Original) The liquid absorbing sheet according to claim 8, wherein the substrate is capable of absorbing and retaining the nonaqueous electrolyte solution.
- 10. (Original) The liquid absorbing sheet according to claim 1, wherein the monomer composition further contains a phosphate-based liquid flame retardant.
- 11. (Original) The liquid absorbing sheet according to claim 10, wherein the phosphate-based liquid flame retardant is bisphenol A bis(diphenyl)phosphate, hydroquinol bis(diphenyl)phosphate, phenyl dixylenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylenyl phosphate, xylenyl diphenyl phosphate, resorcinol bis(diphenyl)phosphate, or 2-ethylhexyl diphenyl phosphate.
- 12. (Previously Presented) The liquid absorbing sheet according to claim 10, wherein the phosphate-based liquid flame retardant is present in the monomer composition in an amount of 70 to 200 parts by weight with respect to 100 parts by weight of the monofunctional monomer component and the polyfunctional monomer component combined.
- 13. (Previously Presented) A nonaqueous electrolyte battery pack comprising a nonaqueous electrolyte battery cell, a circuit board, an electrolyte-absorbing element for absorbing an electrolyte solution in the event of electrolyte leakage from the nonaqueous

electrolyte battery cell, and a battery case encasing the battery cell, the circuit board and the electrolyte-absorbing element, characterized in that the electrolyte-absorbing element is formed of the liquid absorbing sheet according to claim 1.

14. (New) A liquid absorbing sheet comprising a liquid absorbing resin layer, wherein the liquid absorbing resin layer is obtained by irradiating UV-rays onto a monomer composition to polymerize the monomer composition, the monomer composition containing:

a monofunctional monomer component containing a monofunctional monomer capable of forming a homopolymer that is soluble in a nonaqueous solvent used in a nonaqueous electrolyte secondary battery; and

a polyfunctional monomer component;

wherein:

the nonaqueous solvent contains at least one of dimethyl carbonate, propylene carbonate and ethylene carbonate;

the monofunctional monomer is benzyl acrylate, N-vinyl-2-pyrrolidone, imide acrylate, acryloyl morpholine, phenoxyethyl acrylate, N,N-diethylacrylamide, methoxypolyethylene glycol acrylate, tetrahydrofurfuryl acrylate, or phenoxypolyethylene glycol acrylate;

the liquid absorbing resin layer has a crosslink density of 0.0001 to 0.17;
the monofunctional monomer is contained at 20 mol % in the monofunctional monomer component; and

the polyfunctional monomer component is selected from the group consisting of hydroxyl pivalic acid neopentyl glycol diacrylate, polyethylene glycol diacrylate (ethylene oxide-added mol number (n) = 14), bisphenol A diacrylate, phenyl glycidyl ether acrylate, and hexamethylene diisocyanate urethane prepolymer.

15. (New) A liquid absorbing sheet comprising a liquid absorbing resin layer, wherein the liquid absorbing resin layer is obtained by irradiating UV-rays onto a monomer composition to polymerize the monomer composition, the monomer composition containing:

a monofunctional monomer component containing a monofunctional monomer capable of forming a homopolymer that is soluble in a nonaqueous solvent used in a nonaqueous electrolyte secondary battery; and

a polyfunctional monomer component;

wherein the phosphate-based liquid flame retardant is bisphenol A bis(diphenyl)phosphate, hydroquinol bis(diphenyl)phosphate, phenyl dixylenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylenyl phosphate, xylenyl diphenyl phosphate, resorcinol bis(diphenyl)phosphate, or 2-ethylhexyl diphenyl phosphate and the phosphate-based liquid flame retardant is present in the monomer composition in an amount of 70 to 200 parts by weight with respect to 100 parts by weight of the monofunctional monomer component and the polyfunctional monomer component combined.

16. (New) The liquid absorbing layer according to claim 14, wherein the phosphate-based liquid flame retardant is bisphenol A bis(diphenyl)phosphate, hydroquinol bis(diphenyl)phosphate, phenyl dixylenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylenyl phosphate, xylenyl diphenyl phosphate, resorcinol bis(diphenyl)phosphate, or 2-ethylhexyl diphenyl phosphate and the phosphate-based liquid flame retardant is present in the monomer composition in an amount of 70 to 200 parts by weight with respect to 100 parts by weight of the monofunctional monomer component and the polyfunctional monomer component combined.