

Árvores

Árvore

Grafo conexo e acíclico

Teorema de Caracterização de Árvores

- 1. G é uma árvore
- 2. Existe exatamente um caminho entre cada par de vértices de G
- 3. G é conexo e m=n-1 (m=número de arestas, n=número de vértices)
- 4. G é acíclico e m=n-1
- 5. G é acíclico e se quaisquer dois vértices não adjacentes de G forem conectados por uma aresta, então o grafo resultante conterá exatamente um ciclo.

Árvore Geradora

Uma Árvore Geradora de um grafo G = (V,E) é um subgrafo gerador $T=(V,E_{\tau})$ conexo e acíclico.

Árvores Geradoras

Considere G' um subgrafo gerador de G. Então as seguintes proposições são equivalentes:

- 1. G'é uma árvore geradora de G
- 2. Existe exatamente um caminho entre cada par de vértices de G'
- 3. G' é conexo e m=n-1
- 4. G' é acíclico e m=n-1
- 5. G' é acíclico e se quaisquer dois vértices não adjacentes de G forem conectados por uma aresta, então o grafo resultante conterá exatamente um ciclo.

Árvores Geradoras

Teorema: Um grafo G é conexo se e somente se possui árvore geradora

Co-Árvore Geradora

Dado G=(V,E) e $T=(V,E_T)$, uma árvore geradora de G, o grafo complementar de T em relação a G é denominado Co-Árvore G-Arvore G

Co-Árvore Geradora

As arestas de uma co-árvore geradora de G são chamadas elos.

Co-Árvore Geradora

As arestas de uma co-árvore geradora de G são chamadas elos.

número ciclomático de um grafo = número de elos

número ciclomático(G) = número de arestas de G – número de arestas

da árvore geradora

número ciclomático(G) = m - (n - 1)

número ciclomático(G) = m - n + 1

Ciclos Fundamentais

A adição de um *elo* a uma *árvore* produz um *único ciclo* no grafo resultante.

Tais ciclos são denominados ciclos fundamentais.

k-árvore

Uma *k-árvore* é um grafo acíclico que contém *k* componentes.

k-árvore

Uma *k-árvore* é um grafo acíclico que contém *k* componentes conexos.

Uma *1-árvore* é uma árvore.

Se uma *k*-árvore é um subgrafo gerador de um grafo G, então ela é dita *k-árvore geradora*.

Rank e Nulidade

G=(V,E), onde |V|=n e |E|=m. G possui k componentes conexos.

$$rank(G) = n - k$$

$$nulidade(G) = m - n + k$$

Obs. rank(G) + nulidade(G) = m

Problema do Conector

Problema. Uma rede ferroviária conectando n cidades será construída. Dado o custo c_{ij} de construir um trecho de ferrovia que liga as cidades i e j, encontre uma configuração para esta rede tal que o custo total de construção seja minimizado.

custo c_{ii}

Problema do Conector

Problema. Uma rede ferroviária conectando n cidades será construída. Dado o custo c_{ij} de construir um trecho de ferrovia que liga as cidades i e j, encontre uma configuração para esta rede tal que o custo total de construção seja minimizado.

Modele este problema em grafos.

- 1. Considere a situação em que c_{ii} = 1 para todos os pares (i,j)
- 2. Considere a situação em que $c_{ij} \ge 1$ para todos os pares (i,j)

Apresente um algoritmo para solucioná-lo.

Árvore geradora de menor custo, dentre todas as possíveis em um grafo **G** ponderado em arestas.

Um algoritmo para árvore geradora mínima

Como você faria? Qual seria a complexidade?

Como Kruskal (1956) pensou?

Ordena as *m* arestas do grafo (*ordem crescente*).

Pega de uma em uma para incluir na árvore, desde de que não forme ciclo.

Pare quando tiver incluído *n*-1 arestas.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical society*, 7(1), 48-50.

Trecho	C _{IJ}
A,B	15
A,D	22
B,C	0
A,E	86
A,C	85
B,D	20
B,E	86
C,D	17
C,E	90
D,E	23

Método de Kruskal

Trecho	C _{IJ}
A,B	15
A,D	22
B,C	0
A,E	86
A,C	85
B,D	20
B,E	86
C,D	17
C,E	90
D,E	23

Ordena as arestas

Trecho	C_{IJ}
B,C	0
A,B	15
C,D	17
B,D	20
A,D	22
D,E	23
A,C	85
B,E	86
A,C	85
C,E	90

Trecho	CIA
B,C	Û
A,B	15
C,D	17
B,D	20
A,D	22
D,E	23
A,C	85
B,E	86
A,C	85
C,E	90

Trecho	C _{IJ}
B,C	Û
AR	15
C,D	17
B,D	20
A,D	22
D,E	23
A,C	85
B,E	86
A,C	85
C,E	90

Trecho	C _{IJ}	
B,C	Û	
A,B	15	
C,D	17	
B,D	20	
A,D	22	
D,E	23	
A,C	85	
B,E	86	
A,C	85	
C,E	90	

Trecho	C _{IJ}	
B,C	Û	
A _, B	15	
C,D	17	
B _, D	20	
A,D	22	
D,E	23	
A,C	85	
B,E	86	
A,C	85	
C,E	90	

Trecho	C^{IJ}	
B.C.	Ō	
A.B	15	
C,D	17	
B,D	20	
	22	
D,E	23	
A,C	85	
B,E	86	
A,C	85	
C,E	90	

Trecho	C _{IJ}	
B,C	Ō	
A B	15	
C,D	17	
B,D	20	
^ D	22	
D,E	2 <u>3</u>	
٥, ـ		
A,C	85	
B,E	86	
A,C	85	
C,E	90	

Algoritmo de Kruskal

O método de Kruskal sempre gera a árvore geradora mínima? (Prova que o algoritmo é correto)

Qual a complexidade deste método?

Antes de responder estas perguntas, vejamos alguns resultados teóricos sobre as árvores geradoras mínimas.

Veremos o algoritmo de Kruskal e outros adiante.

Dado um grafo G conexo e uma árvore geradora T de G, considere $C_T(e)$ o ciclo fundamental obtido pela adição do elo e à T e w(e) o peso da aresta e.

Dado um grafo G conexo e uma árvore geradora T de G, considere $C_T(e)$ o ciclo fundamental obtido pela adição do elo e à T e w(e) o peso da aresta e.

Considere G = (V,E).

Um corte é uma partição $S = X \cup X'$ de V em 2 subconjuntos não vazios disjuntos.

Exemplo de corte:

$$X = \{a, b, c, e, i, j\}$$

 $X' = \{d, g, h, k\}$

Considere E(S) o conjunto de arestas que ligam um vértice de X a um vértice em X. Um conjunto de tais arestas será chamado de co-ciclo.

$$X = \{a, b, c, e, i, j\}$$

 $X' = \{d, g, h, k\}$

$$Co\text{-}ciclo$$

 $E(S) = \{(b,g), (c,d), (c,g), (e,g), (i,g), (g,j), (j,k)\}$

Lema. Seja G um grafo conexo e T uma árvore geradora de G. Para cada aresta e de T, existe exatamente um corte $S_T(e)$ de G tal que e é a única aresta que T tem em comum com o co-ciclo correspondente $E(S_T(e))$.

$$e = (c,d)$$

Co-ciclo

$$E(S_{\tau}(e)) = \{(b,e), (b,g), (c,d), (c,g), \}$$

Prova: Exercício

Teorema. Considere G um grafo conexo. Uma árvore geradora T de G é mínima se e somente se para cada aresta e de T, temos $w(e) \le w(f)$ para cada aresta f em $E(S_{\tau}(e))$.

$$e = (d,h)$$

Co-ciclo $E(S_{\tau}(e)) = \{(b,e), (b,g), (c,g), (d,h)\}$

Prova: Exercício

Existe algoritmo polinomial para o problema da determinação da árvore geradora mínima de um grafo G.

Algoritmos clássicos:

- Kruskal
- Prim
- Borüvka

Dados G = (N,M), $D = [d_{ij}]$ a matriz de pesos das arestas de G.

Ordene as arestas de G em ordem não decrescente dos pesos d_{ij} no vetor $H = (h_i)$, i = 1, 2, ..., m

$$T \leftarrow \{h_1\}$$

 $i \leftarrow 2$

Enquanto |T| < n-1 faça

Se T \cup h_i é um grafo acíclico **então**

$$T \leftarrow T \cup \{h_i\}$$

 $i \leftarrow i + 1$

Caso Contrário

$$i \leftarrow i + 1$$

Escrever T {arestas da árvore geradora mínima}

(c,f), (e,h), (f,i), (b,c), (e,f), (g,j), (f,h), (f,g), (i,j), (c,d), (d,g), (h,i), (a,c), (b,f), (b,e)

a

(b) (c) (d)

e f g

(h) (j) (j

Este algoritmo constrói uma árvore? Se sim, a árvore é mínima?

Dados $G = (N,M), D = [d_{ij}]$ a matriz distância de G. **Ordene** as arestas de G em ordem não decrescente das distâncias d_{ij} no vetor $H = (h_i), i = 1,2,...,m$ $T \leftarrow \{h_i\}$ $i \leftarrow 2$ **Enquanto** |T| < n-1 faça Se $T \cup h_i$ é um grafo acíclico então $T \leftarrow T \cup \{h_i\}$ $i \leftarrow i + 1$

$$i \leftarrow i + 1$$

Escrever T {arestas da árvore geradora mínima}

Prova da correção do algoritmo

Este algoritmo constrói uma árvore, pois adiciona *n*-1 arestas sem formar ciclo.

G é uma árvore se e somente se G é acíclico e possui n-1 arestas

```
Dados G = (N,M), D = [d_{ij}] a matriz distância de G.

Ordene as arestas de G em ordem não decrescente das distâncias d_{ij} no vetor H = (h_i), i = 1,2,...,m

T \leftarrow \{h_1\}

i \leftarrow 2

Enquanto |T| < n-1 faça

Se T \cup h_i é um grafo acíclico então

T \leftarrow T \cup \{h_i\}

i \leftarrow i+1

Caso Contrário

i \leftarrow i+1

Escrever T {arestas da árvore geradora mínima}
```

Prova da correção do algoritmo

Suponha que a árvore não é mínima.

Então, a adição de alguma aresta (i,j) fez com que a árvore mínima, T_{min} , não fosse obtida.

Uma vez que o algoritmo não cria ciclos, *i* e *j* estavam em componentes diferentes quando a aresta foi inserida.

Então, alguma aresta no caminho entre i e j não foi incluída pelo algoritmo, a qual produziria a árvore T_{min} .

Essa aresta teria um custo menor que (i,j). Então, o algoritmo teria desconsiderado esta aresta de peso menor.

ABSURDO.

Qual é a complexidade?

Dados G = (N,M), $D = [d_{ij}]$ a matriz distância de G. **Ordene** as arestas de G em ordem não decrescente das distâncias d_{ij} no vetor $H = (h_i)$, i = 1,2,...,m

$$T \leftarrow \{h_1\}$$
 $i \leftarrow 2$

Enquanto |T| < n-1 faça

Se T \cup h_i é um grafo acíclico **então**

$$T \leftarrow T \cup \{h_i\}$$

 $i \leftarrow i + 1$

Caso Contrário

$$i \leftarrow i + 1$$

Escrever T {arestas da árvore geradora mínima}

Complexidade (sem estruturas de dados especiais)

Ordenação das arestas: $O(m \log m) = O(m \log n)$

O "enquanto" faz O(m) iterações.

Verificação de ciclo: O(?)

```
Dados G = (N,M), D = [d_{ii}] a matriz distância de G.
Ordene as arestas de G em ordem não decrescente
das distâncias d_{ij} no vetor H = (h_i), i = 1, 2, ..., m
T \leftarrow \{h_1\}
i \leftarrow 2
Enquanto |T| < n-1 faça
     Se T \cup h_i é um grafo acíclico então
          T \leftarrow T \cup \{h_i\}
          i \leftarrow i + 1
       Caso Contrário
           i \leftarrow i + 1
```

Escrever T {arestas da árvore geradora mínima}

Complexidade (sem estruturas de dados especiais)

Verificação de ciclo: utilizando um vetor para controlar as diferentes componentes.

O(1) para ver se os vértices pertencem a mesma componente

O(n) para atualizar a estrutura (é atualizada n vezes)

 $O(n^2)$

Complexidade (sem estruturas de dados especiais)

$$O(m \log n) + O(m - n + n^2)$$

Final: $O(n^2)$

Obs: A verificação de ciclo pode ser implementada em $O(n \log n)$ utilizando dois vetores

Complexidade

Pesquisa: Qual a complexidade do algoritmo usando estruturas de dados mais sofisticadas?

Dica: Verificar o uso de "conjuntos disjuntos" (union-find).

Exercício Kruskal

