

 $Ax = \lambda x$ = Eigenvector x is scaled by λ When premultiplied by A

A must be square (column & row space must be equal)

To solve analytically, find all λ , such that $|A - \lambda I| = 0$ Determinant search

Issue: No closed form solutions for polynomials of size > 5

One could do numerical root finding, but that is typically not stable, and one would still need the cigenvectors \times \Rightarrow Need iterative solvers for the eigenproblem

Two classes of solvers:

* 1) Finding largest (or smallest)]

2) Finding the entire spectrum (or a portion of it)

Largest Eigenvalue

Restrict to real, symmetric A

Rayleigh Quotient

Let x be an eigenvector of A, then

$$Ax = \lambda x$$

and
$$x A x = \lambda x x$$
 (scalar equation)

$$\therefore \lambda = \frac{x^T A x}{x^T x} \iff Given x + A, find \lambda$$

Power Iteration

Let vo be any vector such that

11 Voll = 1 and vo is not an eigenvector

Let 9,, 92, ..., 9n be the orthonormal set of eigenvectors,

then

Consider Av.

$$\underline{A}^{p}v_{o} = \lambda_{i}^{p}\left(q_{1}q_{1}+q_{2}\left(\frac{\lambda_{i}}{\lambda_{i}}\right)^{p}q_{2}+...+q_{n}\left(\frac{\lambda_{n}}{\lambda_{i}}\right)^{p}q_{n}\right)$$

Let
$$|\lambda_1| > |\lambda_2| > ... > |\lambda_n|$$
 (order eigenvalues)

Then

$$\lim_{p\to\infty} \left(\frac{\lambda_j}{\lambda_j}\right)^p = 0 \quad \text{for } j \neq 1$$

$$\Rightarrow \lim_{p\to\infty} \frac{A^p V_o}{\lambda_1^p} = q_1 q_1 \quad \text{with } q_1 = q_1 V_o$$

Combine this result with the Rayleigh Protient

Algorithm: Power Algorithm

Vo => Some vector with 11 vol = 1

$$\lambda_{(k)} = V_k \wedge V_k \rightarrow \text{Rayleigh quotient}$$

This converges at a rate of

$$||y^{(k)} - y^{i}| = O\left(\left|\frac{y^{i}}{y^{s}}\right|_{SK}\right)$$

$$||\overline{\lambda}^{k} - (\overline{+}\overline{\delta}^{i})|| = O\left(\left|\frac{y^{i}}{y^{s}}\right|_{K}\right)$$

This causes an issue if $\lambda_1 - \lambda_2$

In this case, try an inverse iteration wishiff

Inverse Heration with Shift

Let $M \in \mathbb{R}$, such that M is not an eigenvalue of A. Then, (A-MI) has the same eigenvectors as A with eigenvalues $\lambda_1 - M = \hat{\lambda}_1$.

Extension: Eigenvectors of (A-MI) are
the same as those for A, and the eigenvalues

for (A-MI)' are $(\lambda_j-M)'$ Let M be close to λ_i , then $|\lambda_i-M|'$ will be much larger than $|\lambda_j-M|'$ for j > 1

Algorithm: Inverse iteration with shift

Let v. be some vector with || yoll = 1,

choose M>0

for K=1, Z,...

Solve $(A-MI)w = V_{k-1}$ for w $V_k = w/\|w\|$ Normalize V_k

T(K)= VKAVK Rayleigh Quotient

Convergence order of

$$\|\underline{\vee}_{k} - (\pm \underline{q}_{1})\| = O\left(\left|\frac{M-\lambda_{1}}{M-\lambda_{2}}\right|^{k}\right)$$

$$\left| \mathcal{J}^{(k)} - \mathcal{J}' \right| = \mathcal{O}\left(\left| \frac{\mathcal{M} - \mathcal{J}'}{\mathcal{M} - \mathcal{J}'} \right|_{sk} \right)$$

\\

Now combine above ideas

Algorithm: Rayleigh quotient Iteration Vo is some vector W/ 11 Voll=1

$$\lambda_{(0)} = V_0^T A V_0$$
Do not need

to select a shift M

Solve
$$(A - \lambda_{(k-1)} \overline{\bot}) \underline{w} = \underline{V}_{k-1}$$
 for \underline{w}

$$\underline{V}_{k} = \underline{w} / |\underline{V}_{k}||$$

$$\lambda_{(k)} = \underline{V}_{k}^{T} \underline{A} \underline{V}_{k}$$

end

This method has a convergence of

$$||y^{(k+1)} - y^{2}|| = Q(||y^{(k)} - y^{2}||_{3})$$

$$||\bar{y}^{k+1} - (\bar{\tau}\bar{d}^{2})|| = Q(||\bar{\lambda}^{k} - (\bar{\tau}\bar{d}^{2})||_{3})$$

Cubic order convergence of the eigenvector 95 closest to Vo

See Lecture 27 of Trefethan + Ban

 $Ax = \lambda x$ = Eigenvector x is scaled by λ When premultiplied by A

Two classes of solvers:

- 1) Finding largest (or smallest) 7
- * 2) Finding the entire spectrum (or a portion of it)

Spectrum Calculations

Try to find all or a subset of the eigenvalue spectrum

Recall that any square matrix has the Schur Decomposition

> A = Q I QT, where I is upper triangular

Eigenvalue computations can try the find this decomposition, in which A + T are similar this decomposition, in which A + T are similar Recall, eigenvalues of A appear on the diagonal of T

Note: If A is symmetric and real, then

The above looks similar to QR decomposition, where A = QR upper triangular

Recall Householder reflections

$$\begin{bmatrix}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{bmatrix}
\xrightarrow{Q_{1}^{T}}
\begin{bmatrix}
\times & \times & \times \\
& \times & \times
\end{bmatrix}$$

$$A$$

$$Q_{1}^{T}A$$

For the eigenproblem, we need 9,A9, Then

$$\frac{Q_{n}Q_{n-1}\cdots Q_{n}^{T}A}{Q^{T}} = T$$

and then A = Q T QT

Consider Q'AP.

$$\begin{bmatrix}
x & x & x \\
0 & x & x
\end{bmatrix}$$

$$\begin{bmatrix}
x & x & x \\
x & x & x
\end{bmatrix}$$
Fill-in of the zeros
$$\begin{bmatrix}
x & x & x \\
x & x & x
\end{bmatrix}$$
the zeros

- .. The original Householder approach Lill not work
- >> Not possible to get a Schur Decomposition directly

Instead, two steps are needed:

- 1) Reduce to upper Hessenberg form, which is nearly upper triangular
- 2) Iterate until upper triangular is obtained

Details of these two steps:

1) Upper Hessenberg Matrix: A matrix with zeros below the first sub-diagonal

Let QT be a unitary matrix (QTQ1=I)

that zeros out values below the first subdiagonal
of the first column, but does not touch the
first row values

untouched

xxxx

$$\begin{pmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\wedge & \times & \times & \times \\
0 & \times & \times & \times
\end{pmatrix}$$

Use a Householder reflector to assure orthonormality

Algorithm: Householder Reduction to Upper Hessenberg Form

$$-z_{k}(\underline{v}_{k}\underline{A}(k+1:m,k:m))$$

end

$$\sim \bar{b}_{\perp} \bar{V} \bar{\delta}$$

=> A then converts to upper Hessenberg

Note: Q is never formed

Cost:
$$O\left(\frac{10}{3} \text{ m}^3\right)$$

If A is symmetric, then the cost reduces to $O\left(\frac{4}{3}m^3\right)$

and the result is tri-diagonal

Why?

2) Iterate to Upper Triangular Form

Focus on real symmetric matrices

Turn to
$$A = QTQ^T$$
 (Schur decomposition)

A could be any matrix or the result of part (i.e., upper Hessenberg)

$$\underline{T} = \underline{Q}^T \underline{A} \underline{Q}$$

Make this an iteration

Now, let $A_k = Q_k R_k$ be the QR decomposition of A_k

Then,

$$\underline{A}_{k+1} = \underline{Q}_{k}^{T} \underline{A}_{k} \underline{Q}_{k} = \underline{Q}_{k}^{T} (\underline{Q}_{k} \underline{R}_{k}) \underline{Q}_{k}$$

$$= \underline{\underline{I}} \underline{R}_{k} \underline{Q}_{k} = \underline{R}_{k} \underline{Q}_{k}$$

Given Ak, find PKRK, then Akti = RKPK

=> This is the QR Algorithm for eigenproblems

$$A_{k} = K_{k} \Phi_{k}$$

Recombination in reverse

end

Converge to some tolerance,

result will be upper triangular matrix I

$$A \times = A \times$$
 for square A

7: eigenvalue

X: eigenvector

$$(A - \lambda I) \times = 0$$

For nontrivial solutions del (A-ZI)=0

Solution approaches:

- · Characteristic equation > find roots 2
- · Iteration methods

Power iteration method (largest 121)

Inverse power iteration method (smallest 121)

Inverse iteration with shifts

Rayleigh quotient iteration

· Spectrum calculations

Schur decomposition

Au I are similar d'consequently have same eigenvalues

Diagonals of I are its eigenvalues

Multi-step process to obtain eigenvalues:

O Compute upper Hessenberg form (upper triangle plus subdiagonal) by using Householder reflections >> H = PTA Q1

@ Iterate from upper Hessenberg form to

upper triangular I = 92 H 92

3 Eigenvalues of A are on diagonal of I

Other approaches (beyond current scope)

- · Givens rotations replacing Householder reflections (both have unitary Q)
- · Subspace iteration

Lanczos
} Krylov subspaces
Arnoldi