Lógica para Computação Dedução Natural

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

- Introdução
- 2 Regras do ∧
- Regras da Dupla Negação
- 4 Regras do \rightarrow
- Regras do ∨
- 6 Regras da ¬

Tópicos

- Introdução
- 2 Regras do ∧
- Regras da Dupla Negação
- ullet Regras do ullet
- Regras do ∨
- 6 Regras da ¬

Introdução

- Precisamos de um método para saber se uma fórmula é conclusão de um conjunto de fórmulas
- O método deve servir como uma explicação da conclusão
- Se todas as fórmulas do conjunto são verdadeiras então a conclusão tem que ser verdadeira
- Podemos ter regras para derivar uma conclusão a partir de um conjunto de fórmulas

Dedução Natural

- Suponha que temos um conjunto de fórmulas $\{\varphi_1,...,\varphi_n\}$ que chamamos de **premissas**
- ullet Temos uma outra fórmula ψ que chamamos de conclusão

Exemplo

Premissas:

Se o trem chega tarde e não tem táxi na estação então João está atrasado para a reunião.

João não está atrasado para a reunião.

O trem chega tarde.

$$\{(p \land \neg q) \to r, \neg r, p\}.$$

Conclusão: Tem táxi na estação.

q.

Dedução Natural

- Queremos aplicar as regras de inferência nas premissas obtendo novas fórmulas até chegar na conclusão
- Se for possível, dizemos que $\{\varphi_1,...,\varphi_n\}$ deduz ψ .
 - Também podemos dizer que $\{\varphi_1,...,\varphi_n\}$ deriva ψ .
- Denotamos por $\{\varphi_1,...,\varphi_n\} \vdash \psi$
 - Também representado como $\varphi_1,...,\varphi_n \vdash \psi$

Exemplo

$$\{(p \land \neg q) \to r, \neg r, p\} \vdash q$$

Dedução Natural

- Devemos escolher regras corretas
- Não deve ser possível fazer $\{p,q\} \vdash p \land \neg q$

Tópicos

- Introdução
- 2 Regras do ∧
- Regras da Dupla Negação
- ullet Regras do o
- Regras do ∨
- 6 Regras da ¬

• Introdução do \wedge : permite concluir $\phi \wedge \psi$, dado que já concluímos ϕ e concluímos ψ separadamente

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i.$$

- Eliminação do \wedge 1: se temos uma dedução de $\phi \wedge \psi$ então temos uma prova de ϕ
- Eliminação do \wedge 2: se temos uma dedução de $\phi \wedge \psi$ então temos uma dedução de ψ

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2.$$

• Vamos mostrar que $(p \land q) \land r, s \land t \vdash q \land s$

• Vamos mostrar que $(p \land q) \land r, s \land t \vdash q \land s$

1.
$$(p \land q) \land r$$
 premissa

2.
$$(s \wedge t)$$
 premissa

3.
$$(p \wedge q)$$
 $\wedge e_2 1$

6.
$$q \wedge s$$
 $\wedge i_2$ 4,5

Tópicos

- Introdução
- 2 Regras do ∧
- Regras da Dupla Negação
- 4 Regras do \rightarrow
- **⑤** Regras do ∨
- 6 Regras da ¬

- Como seria uma regra para eliminar dupla negação?
- Como seria uma regra para introduzir dupla negação?

- Como seria uma regra para eliminar dupla negação?
- Como seria uma regra para introduzir dupla negação?

$$\frac{\neg \neg \phi}{\phi} \neg \neg e \qquad \frac{\phi}{\neg \neg \phi} \neg \neg i.$$

• Vamos mostrar que $p, \neg\neg(q \land r) \vdash \neg\neg p \land r$

• Vamos mostrar que $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$

1	p	premise
2	$\neg\neg(q\wedge r)$	premise
3	$\neg \neg p$	$\neg \neg i \ 1$
4	$q \wedge r$	$\neg \neg e \ 2$
5	r	$\wedge e_2 \ 4$
6	$\neg \neg p \wedge r$	$\wedge i 3, 5$

Tópicos

- Introdução
- 2 Regras do ∧
- Regras da Dupla Negação
- Regras do ∨
- 6 Regras da ¬

- Se a entrada do programa é um inteiro então a saída do programa é um booleano
- A entrada do programa é um inteiro
- O que podemos concluir?

- Se a entrada do programa é um inteiro então a saída do programa é um booleano
- A entrada do programa é um inteiro
- O que podemos concluir?
- A saída do programa é um booleano
- Como podemos definir uma regra para eliminação do →?

- Se a entrada do programa é um inteiro então a saída do programa é um booleano
- A entrada do programa é um inteiro
- O que podemos concluir?
- A saída do programa é um booleano
- Como podemos definir uma regra para eliminação do →?

$$\frac{\phi \quad \phi \to \psi}{\psi} \to e.$$

Sejam as seguintes premissas:

- "José vai para Fortaleza".
- "Se José vai para Fortaleza, então ele só vai para Jericoacoara se Carlos convidá-lo".
- "Se José vai para Fortaleza, então ele vai para Jericoacoara".

Mostre que podemos concluir que "Carlos convida José para Jericoacoara".

• Vamos mostrar que $p,p o q,p o (q o r) \vdash r$

1	$p \to (q \to r)$	premise
2	$p \to q$	premise
3	p	premise
4	$q \rightarrow r$	$\rightarrow\!e~1,3$
5	q	\rightarrow e 2, 3
6	r	\rightarrow e $4, 5$

- Se o cão de guarda detectar um intruso então o cão de guarda vai latir
- O cão de guarda não latiu
- O que podemos concluir?

- Se o cão de guarda detectar um intruso então o cão de guarda vai latir
- O cão de guarda não latiu
- O que podemos concluir?
- Nenhum intruso foi detectado
- Como podemos construir uma regra para esse raciocínio?

- Se o cão de guarda detectar um intruso então o cão de guarda vai latir
- O cão de guarda não latiu
- O que podemos concluir?
- Nenhum intruso foi detectado
- Como podemos construir uma regra para esse raciocínio?

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \text{ MT.}$$

Sejam as premissas:

- "Se o crime ocorreu 01h, então se José é o ladrão, então ele estava de folga".
- "O crime ocorreu 01h".
- "José não estava de folga".

Vamos concluir que "José não é o ladrão".

• Vamos mostrar que $p o (q o r), p, \neg r \vdash \neg q$

1	$p \to (q \to r)$	premise
2	p	premise
3	$\neg r$	premise
4	$q \rightarrow r$	$\rightarrow e \ 1, 2$
5	$\neg q$	MT4,3

ullet Vamos mostrar que eg p o q,
eg q dash p

ullet Vamos mostrar que eg p o q,
eg q dash p

1	$\neg p \to q$	premise
2	$\neg q$	premise
3	$\neg \neg p$	$\mathrm{MT}\ 1,2$
4	p	$\neg \neg e 3$

Introdução da ightarrow

- ullet Formato da conclusão deve ser $\varphi o \psi$
- ullet Temos que ter uma suposição de arphi
- ullet Chegar em ψ a partir de arphi através de aplicações das regras

Introdução da ightarrow

Exemplo

Seja a premissa a seguir:

• "Se José tira férias, então Carlos trabalha".

Vamos concluir: "Se Carlos não trabalha, então José não tira férias".

Exemplo

• Vamos mostrar que $p \to q \vdash \neg q \to \neg p$

1.	p o q	premissa
2.	$\neg q$	suposição
3.	$\neg p$	MT 1,2
4.	eg q o eg p	→ i 2-3

Introdução da ightarrow

- A caixa serve para demarcar o escopo de uma suposição temporária
- Quando chegamos na conclusão desejada na dedução dentro caixa podemos usar a regra da introdução do \rightarrow
- As deduções podem aninhar caixas e abrir novas caixas depois depois de fechar as antigas
- Dentro da caixa podemos usar a própria suposição e as premissas
- Também podemos usar qualquer fórmula obtida anteriormente que ainda esteja com o escopo aberto
- A linha depois da caixa deve seguir a conclusão de uma regra que usa a caixa

Exemplo

ullet Vamos mostrar que $\neg q
ightarrow
abla p dash p
ightarrow
abla
abla q$

$$1. \qquad
eg q o
eg p$$
 premissa

4.
$$\neg \neg q$$
 MT 1,3

5.
$$p \rightarrow \neg \neg q \rightarrow i \ 2-4$$

Tópicos

- Introdução
- ② Regras do ∧
- Regras da Dupla Negação
- $lue{4}$ Regras do ightarrow
- Regras do ∨
- 6 Regras da ¬

- ullet Uma fórmula do tipo $\phi \lor \psi$ representa que ϕ ou ψ deve ser verdade
- Se sabemos que ϕ é verdade, o que podemos falar sobre $\phi \lor \psi$?

- ullet Uma fórmula do tipo $\phi \lor \psi$ representa que ϕ ou ψ deve ser verdade
- Se sabemos que ϕ é verdade, o que podemos falar sobre $\phi \lor \psi$?
- $\phi \lor \psi$ também é verdade
- ullet Qualquer que seja ψ

Introdução do ∨

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2$$

• E o que podemos deduzir de $\phi \lor \psi$?

- E o que podemos deduzir de $\phi \lor \psi$?
- Podemos dividir em casos!
- Primeiro fazemos uma suposição de que ϕ é verdade e chegamos em alguma conclusão χ
- Depois fazemos uma suposição de que ψ é verdade e chegamos na mesma conclusão χ
- O que podemos concluir das duas informações acima?

- E o que podemos deduzir de $\phi \lor \psi$?
- Podemos dividir em casos!
- Primeiro fazemos uma suposição de que ϕ é verdade e chegamos em alguma conclusão χ
- Depois fazemos uma suposição de que ψ é verdade e chegamos na mesma conclusão χ
- O que podemos concluir das duas informações acima?
- χ é verdade independente de qual dos dois entre ϕ e ψ seja verdade

Eliminação do ∨

• Vamos mostrar que $p \lor q \vdash q \lor p$

1.
$$p \lor q$$
 premissa

3.
$$q \lor p \lor i 2$$

5.
$$q \lor p \lor i 4$$

6.
$$q \lor p \lor e 1,2-3,4-5$$

Eliminação do ∨

- Como as caixas são separadas não é possível usar as fórmulas de uma caixa na outra.
- Cada caixa é independente
- É necessário indicar a linha da disjunção, e as linhas de cada caixa.

Seja a premissa a seguir:

• "Se a porta está trancada então o ladrão entra pela janela."

Mostre que podemos concluir: "Se o alarme está ligado ou a porta está fechada então o alarme está ligado ou o ladrão entra pela janela".

• Vamos mostrar que $q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$

1.	q o r	premissa
2.	$p \lor q$	suposição
3.	р	suposição
4.	p∨r	√i 3
5.	q	suposição
6.	r	ightarrow e 1,5
7.	p∨r	√i 6
8.	$p \lor r$	∨e 2,3-4,5-7
9.	$(p \lor q) \to (p \lor r)$	\rightarrow i 2-8

Tópicos

- Introdução
- 2 Regras do ∧
- Regras da Dupla Negação
- $lue{4}$ Regras do ightarrow
- Regras do ∨
- 6 Regras da ¬

Introdução

As regras da ¬ envolvem a noção de contradição

Definição

Contradições são fórmulas da forma $\phi \land \neg \phi$ ou $\neg \phi \land \phi$ em que ϕ é qualquer fórmula

Introdução

As regras da ¬ envolvem a noção de contradição

Definição

Contradições são fórmulas da forma $\phi \wedge \neg \phi$ ou $\neg \phi \wedge \phi$ em que ϕ é qualquer fórmula

- \bullet $r \land \neg r$
- $\bullet \ (p \to q) \land \neg (p \to q)$
- $\bullet \neg (r \lor s \to q) \land (r \lor s \to q)$

Contradições

- Será que $r \land \neg r \vdash p$?
- Se a fórmula que aparece na esquerda do ⊢ é verdade então a fórmula na direita tem que ser verdade
- Uma contradição não pode ser verdadeira
- O que podemos concluir?

Contradições

- Será que $r \land \neg r \vdash p$?
- Se a fórmula que aparece na esquerda do ⊢ é verdade então a fórmula na direita tem que ser verdade
- Uma contradição não pode ser verdadeira
- O que podemos concluir?
- $r \wedge \neg r \vdash p$
- $(p \rightarrow q) \land \neg (p \rightarrow q) \vdash p \lor q$
- Qualquer fórmula pode ser deduzida a partir de uma contradição
- ullet Representamos uma contradição por $oldsymbol{\perp}$
- Para qualquer fórmula ϕ temos que $\bot \vdash \phi$

Introdução do \perp e Eliminação da \neg

$$\frac{\phi - \phi}{\perp} - e$$

$$\frac{\perp}{\phi}$$
 \perp e.

ullet Vamos mostrar que $eg p \lor q \vdash p
ightarrow q$

1	$\neg p \lor q$	q		
2	$\neg p$	premise	q	premise
3	p	assumption	p	assumption
4		$\neg e 3, 2$	q	copy 2
5	q	⊥e 4	$p \rightarrow q$	\rightarrow i $3-4$
6	$p \rightarrow q$	→i 3-5		
7	$p \rightarrow q$!		\vee e 1, 2-6

Introdução da ¬

- Podemos fazer uma suposição e tentar chegar em uma contradição
- Se for possível chegar em uma contradição então a suposição não pode ser verdadeira
- Devemos colocar uma negação na frente da suposição
- Funciona como uma prova por absurdo

Introdução da ¬

• Vamos mostrar que $(p \land \neg q) \to r, \neg r, p \vdash q$

1	$p \land \neg q \to r$	premise
2	eg r	premise
3	p	premise
4	$\neg q$	assumption
5	$p \land \neg q$	$\wedge i \ 3, 4$
6	r	\rightarrow e 1, 5
7	Т	$\neg e 6, 2$
8	$ eg \neg q$	$\neg i 4-7$
9	q	¬¬е 8

Sejam as premissas:

- "Se a porta não está quebrada, então se o meu cliente é o ladrão, então ele entrou pela janela no segundo andar ou tem um cúmplice".
- "Meu cliente não tem um cúmplice".
- "Meu cliente tem artrose e não subiu pela janela no segundo andar".
- "A porta não está quebrada".

Conclua que "Meu cliente não é o ladrão".