

• Introduction to OCx

- Output Compare
 - >Special Case for OC

 - OC7
 - Forced Output Compares
 - >PWM example
 - >Periodic Signal Generation Example
- XMEGA OC/PWM

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

Menu

Timer/Counter System

- Microcontrollers are equipped with a precision timing system (much more precise than RTI/RTC systems)
- The Timer/Counter (TC) system is essentially a counter that increments or decrements based on
 - > Regular clock pulses and a timer prescaler (timer)
 - > Irregular event pulses (counter)
- Useful for
 - > Timing
 - > Periodic Interrupts or Event Generation
 - > Pulse Width Modulation
 - > Event counting
- > Signal Measurements

See doc8385, sec 16

University of Florida, EEL 3744 – File 16

68HC12 TIOS: Timer Input Capture/Output Compare Select Register & DDRT

• TIOS - Timer Input Capture/Output Compare Select Register

$$>0 = IC; 1 = OC$$
 $7 6 5 4 3 2 1 0$
 $$0080 10S7 10S6 10S5 10S4 10S3 10S2 10S1 10S0 TIOS$
RESET 0 0 0 0 0 0 0 0

• DDRT - Data Direction Register for Port T

 $>0 = \text{Input}; \ \ 1 = \text{Output}$ 7 6 5 4 3 2 1 0 \$\ \$00AF \begin{bmatrix} \text{DDRT7} \text{DDRT6} \text{DDRT5} \text{DDRT4} \text{DDRT3} \text{DDRT2} \text{DDRT1} \text{DDRT1} \text{DDRT0} \text{DDRT} \text{RESET} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

68HC12 TCNT and TSCR

	7	6	5	4	3	2	1	0	
\$0084	Bit 15	-	-	-	-	-	-	Bit 8	TCNT High
RESET	0	0	0	0	0	0	0	0	ingn
	7	6	5	4	3	2	1	0	
\$0085	Bit 7	ı	-	-	-	ı	ı	Bit 0	TCNT Low
RESET	0	0	0	0	0	0	0	0	2011
	7	6	5	4	3	2	1	0	
	,						1		1
\$0086	TEN	TSWAI	TSBCK	TFFCA	0	0	0	0	TSCR
RESET	0	0	0	0	0	0	0	0	•

• TEN (Timer Enable) in TSCR:

>0 = disable

>1 = enable

rsity of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

7

EEL 3744 68HC12 Output Compare Block Diagram (from OM,OL)

• Block Diagram of Output Compare (from OM,OL)

University of Florida, EEL 3744 – File 16 © Drs. Schwartz, Arroyo

EEL 3744 **68HC12** Input Capture / Output Compare Registers

• TCx - Timer Input Capture / Output Compare x

	7	6	5	4	3	2	1	0		
\$0090	Bit 15	-	-	-	-	-	-	Bit 8	TC0	
\$0091	Bit 7	-	-	-	-	-	-	Bit 0		
\$0092	Bit 15	-	-	-	-	-	-	Bit 8	TC1	
\$0093	Bit 7	-	-	-	-	-	-	Bit 0	0	
000										
\$009C	Bit 15	-	-	-	-	-	-	Bit 8	TC6	
\$009D	Bit 7	-	-	-	-	-	-	Bit 0		
\$009E	Bit 15	-	-	-	-	-	-	Bit 8	TC7	
\$009F	Bit 7	-	-	-	-	_	_	Bit 0		

EEL 3744 **68HC12** TCTL1 & TCTL2:

RESET = \$0000

EEL 3744 **68HC12** TCTL1 & TCTL2: Time Control Registers

• TCTL1 & TCTL2- Timer Control Registers

>Output Mode (OMx) and Output Level (OLx)

University of Florida, EEL 3744 – File **16** © Drs. Schwartz, Arroyo

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

EEL 3744

Pulse Width Modulation (PWM)

- PWM is a method of controlling analog circuits with digital outputs by delivering energy through a sequence of pulses
- A signal (square wave) is generated by controlling in time when to turn a digital signal on or off
- Used for controlling
 - >Servos
 - >Motors
 - >Speakers
 - >Etc.

University of Florida, EEL 3744 – File 16

PWM Signal

• Pulse Width Modulation (PWM) Signal

- Duty Cycle is the ratio of "on time" to "off time" during one period
 - >Duty Cycle = (High Time / Period) * 100%

Duty Cycle (%) =
$$\frac{\text{Hi}}{\text{T}} \times 100$$

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

13

University of Florida, EEL 3744 – File **16** © Drs. Schwartz, Arroyo

EEL 3744 **68HC12** Output Compare Example: PWM

• Example: PWM using OC2 (25% Duty cycle) > T = 32.768ms (default TOF rate)

TCNT: \$0000-\$FFFF 25% Hi = \$4000 50% Hi = \$8000

Duty Cycle (%) =
$$\frac{\text{Hi}}{\text{T}} \times 100$$

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

15

EEL 3744 Period of PWM (PCM for Servos)

- Examples
 - > For TJ servo motors we use T = 44 ms
 - >For *Talrik* servo motors we use T = 32 ms
 - >For *SubjuGator* motors we use T = 0.1 ms

- For motors:
 - >To fast \Rightarrow inefficient
 - >To slow \Rightarrow herky-jerky

- For servos:
 - >Typically, work only over a small range
 - For our small servos we use: 30-50 Hz
- Show sub web page and sub video
- >For our *Autonomous helicopter* servos we use T = 20 ms,
 - Duty cycle between 5 & 10% (1ms \leq t_{hi} \leq 2ms)

University of Florida, EEL 3744 – File 16

68HC12 Output Compare: OC7

• Block Diagram of Output Compare (OC7)

68HC12 Output Compare: OC7

• TCNT: Timer Counter

	7	6	5	4	3	2	1	0	_
\$ 0084	Bit 15	ı	-	-	-	1	-	Bit 8	TCNT
\$ 0085	Bit 7	-	-	-	-	-	-	Bit 0	
RESET	= \$0000								-

• TC1: Timer Input Capture / Output Compare Register 7

	7	6	5	4	3	2	1	0	
\$009E	Bit 15	ı	ı	-	-	-	-	Bit 8	TC7
\$ 009F	Bit 7	-	-	-	-	-	-	Bit 0	

RESET = \$0000

University of Florida, EEL 3744 – File 16

68HC12 Output Compare: OC7

• OC/M: Output Compare / Mask Register										
	7	6	5	4	3	2	1	0		
\$0082	OC7M7	OC7M6	OC7M5	OC7M4	ОС7М3	OC7M2	OC7M1	ОС7М0	OC7M	
RESET	0	0	0	0	0	0	0	0		
	0 = OC	7 is disa	abled							
1 = OC7 is enabled to control the corresponding pin of Port T										

EEL 3744 **68HC12** Using OC7 Along with Another OC Pin

- OC7 can be used along with another OCx feature
- This allows either OC7 or OCx to change the value of a pin
 - >Two edges can be programmed with these two OC features
 - >Pulses **as short as one E-cycle** can be generated using OC7 and OCx together
 - This is **not** possible when using only a single OC feature

68HC12 Using OC7 to Control Multiple OC outputs

• Programming Example:

Control PA7 and PA6 by PWM using OC7

(25% Duty cycle)

> Example OC7PWM.asm

TCNT: \$0000-\$FFFF 25% Hi = \$4000 33% Hi = \$5555 50% Hi = \$8000 67% Hi = \$AAAA 75% Hi = \$C000

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

22

EEL 3744 **68HC12** Forced Output Compares

- A convenient way to change timer output pin states w/o actually setting up and waiting for OCx match e.g., spark timing control in an automotive engine
 CAUTION using CFORC if the action OCx is to toggle
- CFORC Timer Compare Force

7 6 5 4 3 2 1 0
\$0081 FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0 CFORC
RESET 0 0 0 0 0 0 0 0 0

0 = Not affected

1 = Automatic pin action programmed for OCx happen as if a match had occurred, but no interrupt is generated (OCxF is not set)

University of Florida, EEL 3744 - File 16

When using OCx, can **not** use corresponding Port T pin as general output [Tech: section 13.4.21]. Use **CFORC**!

EEL 3744 **68HC12** Output Compare Programming Example

• Periodic Signal Generation using Output Compare

Time Unit: 4.096ms = \$2000 (=8192) E-cycles

[Could use: 1 msec = 2000 E-cycles (but hard to see with simulator)]

 Programming Example: Periodic Signal Generation using OC5

> Example

OC5SigGn.asm

xmas lights.wmv

24

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arrovo

EEL 3744 **68HC12** Using OC for Large Times

- Can the output compare system be used to make very wide pulses accurately?
- Will using TOF help?
- How can you generate 70,000 E-clock high pulse accurately?

© Drs. Schwartz & Arroyo

XMEGA 16-bit Timer/Counter Type 0 and Type 1

- XMEGA has a set of eight 16-bit timer/counters (TC)
- Two TCs can be combined to create a 32-bit TC
- A TC consists of a base counter and a set of compare or capture (CC) channels
 - > Waveform generation available
- TC 0 has four CC channels
 - > TC 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels each
- TC 1 has two CC channels

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

26

XMEGA 16-bit Timer/Counter Type 0 and Type 1

- Input Capture available (see lecture 17)
 - >Input capture with noise cancelling
 - >Frequency capture
 - >Pulse width capture
 - >32-bit capture
- Timer Overflow and error interrupts/events
- Can be used with event system for:
 - >Quadrature decoding
 - >Count and direction control

University of Florida, EEL 3744 - File 16

See doc8331.

XMEGA Timer/Counter type 0 and type 1

EEL 3744

XMEGA Prescaler

- Timer is limited by size of counter register and rate at which counter changes
 - >8-bit maxes at count of 256 (\sim 128 μ s, if CLK=0.5 μ s)
 - >16-bit maxes at count of 65535 (~32,767 µs, CLK=0.5 µs)
- Prescaler modifies the standard timer clock frequency by a chosen value
- Allows timer to be clocked at a desired rate
- Forces a tradeoff between resolution and range >Important with smaller 8-bit and 16-bit counters

University of Florida, EEL 3744 – File 16

© Drs. Schwartz & Arrows

XMEGA Prescaler Example

- If clock is at 2 MHz \rightarrow Period (ticks) = 0.5 µs
 - >An 8-bit counter incrementing at every tick will max out at 256 ticks or 128 µs
 - >If prescaler = 64, the counter updates every 64 ticks (32 μs) Count changes 4 times during the 256 periods of 0.5 μs clocks
- 256 ticks with prescaler = $64 \rightarrow 32 \,\mu s/tick$
 - >256 ticks \rightarrow 8192 µs = 8.192 ms (=32 µs/tick * 256 ticks)

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

30

- Timer TCxn, where x indicates the port (C, D, E, or F) and n is the TC number within PORTx.
 - > Example: TCD0 is Timer/Counter 0 connected to PORTD

University of Florida, EEL 3744 - File

University of Florida, EEL 3744 – File **16** © Drs. Schwartz, Arroyo

XMEGA TC Clock Sources

• The timer/counter can be clocked from the peripheral clock (clk_{PER}) and from the event system

EEI 27/	1 /1	VMECATO
Symbol	Clock selection	— XMEGA TC
TC_CSEL_OFF_gc	TC off (no clock se	lected) Clock
TC_CSEL_DIV1_gc	f _{CLK,SYS}	_
TC_CSEL_DIV2_gc	f _{CLK,SYS} / 2 TC no	
TC_CSEL_DIV4_gc	f _{CLK,SYS} / 4 runnin	g
TC_CSEL_DIV8_gc	f _{CLK,SYS} / 8	• The available clock
TC_CSEL_DIV64_gc	f _{CLK,SYS} / 64	source selections for the
TC_CSEL_DIV256_gc	f _{CLK,SYS} / 256	XMEGA TC modules
TC_CSEL_DIV1024_gc	f _{CLK,SYS} / 1024	> A selection of prescaler
TC_CSEL_EV0_gc	Event channel 0	outputs from 1 to 1024 is
TC_CSEL_EV1_gc	Event channel 1	directly available (CLKSEL)
TC_CSEL_EV2_gc	Event channel 2	> The whole range of time
TC_CSEL_EV3_gc	Event channel 3	prescalings from 1 to 2 ¹⁵ is
TC_CSEL_EV4_gc	Event channel 4	available through the event
TC_CSEL_EV5_gc	Event channel 5	system (HCNT LCNT)
TC_CSEL_EV6_gc	Event channel 6	See doc8045, See doc8331,
TC_CSEL_EV7_gc	Event channel 7	Tab 3-1 Sec 15.4

University of Florida, EEL 3744 – File **16** © Drs. Schwartz, Arroyo

- There are two 8-bit timer/counters (TC) for TC2 for each of the 4 ports (C, D, E, F)
- They are realized when a TC 0 is set in split mode and create a system of two eight-bit timer/counters (from one 16-bit TC0), each with four compare channels
 - > One is the low-byte TC and the other the high-byte TC
 - > Only the low-byte TC can generate compare interrupts
- The two eight-bit TC have a shared clock source and separate period and compare settings
- They can be clocked and timed from the peripheral clock, with optional prescaling, or from the event system
- The counters are always counting down

See doc8331, Fig 15-1 for block diagram

for blo

EEL 3744 **XMEGA** Timer/Counter See doc8331, Sec 14.2.1 Terminology

- "Timer" is used when the timer/counter clock control is handled by an internal source
- "Counter" is used when the clock control is handled externally (e.g., counting external <u>events</u>)
- CC = Compare / Capture
 - >When used for compare operations, the **CC** channels are referred to as "**compare channels**"
 - >When used for capture operations, the **CC** channels are referred to as "**capture channels**"

© Drs. Schwartz & Arroyo

University of Florida, EEL 3744 – File 16

© Drs. Schwartz & Arrovo

EEL 3744 **XMEGA** Timer/Counter Terminology

- CCx Compare/Capture registers
 - >In Capture mode, if a capture event is triggered, the current **CNT** value is loaded into the enabled **CCx** register
 - Used to time intervals between pulses, determine high and low points of input signals, and to define time between two input signals
 - >In Compare mode, the **CNT** register is constantly compared to the **CCx** registers
 - If CNT = CCx, then a match event occurs

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

36

XMEGA CCx

- The compare or capture channels consist of a set of 16-bit registers named CCx[H:L], where x indicates the channel (A, B, C, D)
 - >Timer0, with 4 channels, has - CCA[H:L], CCB[H:L], CCC[H:L] and CCD[H:L]
 - >Timer1, with 2 channels has CCA[H:L] and CCB[H:L].
 - >Each CCx[H:L] register has an associated buffer register CCxBUF[H:L].

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo See doc8045, Sec 3-5

- CNT Count register is incremented or decremented every clock cycle (possibly modified by prescaler)
 - >Used by TC module to perform compare/capture operations
 - >May be read or written to as needed
- **PER** Period register holds the "TOP" value for the TC count

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

38

- **BOTTOM**: When the counter reaches zero
- MAX: The counter reaches MAXimum (all ones)
- **TOP**: The counter reaches TOP when it becomes equal to the highest value in the count sequence
 - > The TOP value can be equal to the period (PER) or the compare channel A (CCA) register setting
 - This is selected by the waveform generator mode
- **UPDATE**: The timer/counter signals an update when it reaches BOTTOM or TOP, depending on the waveform generator mode

© Drs. Schwartz & Arroyo

XMEGA TC Modes of Operation

- Normal mode
- Frequency Generation mode
- Single Slope PWM
- Dual Slope PWM, overflow on TOP
- Dual Slope PWM, overflow on TOP and BOTTOM
- Dual Slope PWM, overflow on BOTTOM

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo See doc8045, Sec 3.8

,

40

XMEGA TC

Normal Mode

- In Normal Mode, the counter will count in direction set by the DIR bit in CTRLF for each clock until it reaches TOP (when counting up), set by PER[H:L], or BOTTOM (zero, when counting down)
- When TOP is reached when up-counting the counter will be set to zero when the next clock is given
 - > If the TC is down-counting the value will wrap around to the value in PER[H:L] after reaching BOTTOM

© Drs. Schwartz & Arroyo

University of Florida, EEL 3744 – File **16**

© Drs. Schwartz, Arroyo

EEL 3744

XMEGA TC

Normal Mode

- Changing the counter value while the counter is running is allowed
- The write access has higher priority than count, clear, or reload and will be immediate
 - > However, if the value written is outside the BOTTOM-TOP boundary the counter either has to count down until TOP is reached or count up until wraparound (passing MAX) for the timer to re-stabilize to the period time

niversity of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

EEL 3744

XMEGA TC

Normal Mode (DIR)

- The counter will count in the direction set by the direction (**DIR**) bit for each clock until it reaches **TOP** or **BOTTOM**.
 - > When up-counting & **TOP** is reached, counter set to 0 when next clock is given
 - > When down-counting, counter is reloaded with period register value when **BOTTOM** is reached
- It is possible to change counter value when the counter is running
- Direction of counter can be changed during normal operation

XMEGA Timer

Normal Operation

- During normal operation, **CNT** is continuously compared to **PER** or **0**
 - >This checks whether **CNT** has reached **TOP** or **BOTTOM**
- If up-counting, when **CNT** = **PER**, an 'update' condition occurs and CNT register is reset to 0
- If down-counting, when **CNT** = **0**, an 'update' condition occurs and CNT register is reset to

EEL 3744

XMEGA Timer Normal Operation

- Changing the counter value during operation is allowed
 - > If the counter value is set above the **TOP** value it will either count down until **TOP** is reached or count up until the value wraps around and starts again at 0
- The **TOP** value may also be changed in **PER** during operation and will result in varying periods for the timer

XMEGA TC Normal Mode (PER)

• Counter **period** is changed by writing a new **TOP** value to the period register

University of Florida, EEL 3744 – File 16

© Drs. Schwartz & Arroyo

4

XMEGA TC Dual Slope Mode (Unbuffered)

- A counter wraparound can occur in any mode of operation when up-counting without buffering, as shown below
 - > This due to the fact that the CNT and PER are continuously compared, and if a new **TOP** value that is lower than current CNT is written to PER, it will wrap before a compare match happen

EEL 3744 **XMEGA** TC Frequency Generation Mode

- There is little difference between the frequency waveform generation mode (FRQ) and the normal mode of operation
- For **FRQ**, the period (T) is controlled by the CCA[H:L] register instead of PER[H:L] (PER[H:L] is not used)
- Waveform Generation (**WG**) output is toggled on each compare match between CNT[H:L] and CCA[H:L]

 See doc8045,

XMEGA TC Frequency Generation Mode

- The waveform generated will have a maximum frequency of f_{clk}/2 when CCA[H:L] is set to zero (0x0000)
- The waveform frequency is defined by eqn: > N represents the TC clock prescaler $f_{FRQ} = \frac{f_{CLK}}{2 \cdot N(CCA + 1)}$
- The Overflow Status Flag (OVFIF) or Compare A Flag (CCAIF) can be used to generate interrupts
 - > If enabled, the interrupt handler routine can be used for updating CCA[H:L] to change the output frequency

University of Florida, EEL 3744 – File **16** © Drs. Schwartz, Arroyo

- Counter counts from BOTTOM to TOP then restarts from BOTTOM
- The waveform generator output is set on the compare match between the count and compare registers, and cleared at TOP
- The mode provides twice the PWM frequency than dual-slope PWM

EEL 3744 **XMEGA** Single-slope Pulse Width Modulation (PWM)

doc8331: Figure 14-15

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

- WG output is
 - > Set on compare match between **CNT** and **CCx** registers
 - > Cleared at TOP

52

XMEGA Single Slope PWM Mode

- The PWM base frequency depends on the period setting (PER[H:L]), system clock frequency, and clock prescale.
- The PWM base frequency equation is below, where *N* represents the TC clock prescaler

 $f_{PWM_SS} = \frac{f_{CLK}}{N(PER+1)}$

- Use Overflow Status Flag (OVFIF) or Compare Flag (CCxIF) to generate interrupts
- If enabled, the ISR can be used for updating the period and compare buffer values

EEL 3744 **XMEGA** Single-slope Pulse Width Modulation (PWM)

- Both the Overflow Status Flag (OVFIF) and Compare Flag (CCxIF) may be used to generate interrupts
- When enabled, these interrupts may be used to update the period and compare buffer values

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

54

EEL 3744 **XMEGA** Single-slope Pulse Width Modulation (PWM)

- For single-slope PWM generation
 - > The period (T) is controlled by PER
 - > The Duty Cycle of the WG output is controlled by the CCx Registers
- The PER register defines the PWM resolution with a minimum resolution of 2 bits (PER=0x0003), and a maximum resolution of 16 bits (PER=MAX).
- The following equation calculate the exact resolution for single-slope PWM (RPWM_SS):

$$R_{\mathsf{PWM_SS}} = \frac{\log(\mathsf{PER} + 1)}{\log(2)}$$

• The single-slope PWM frequency (fPWM_SS) depends on the period setting (PER) and the peripheral clock frequency (fclkPER), and can be calculated by the following equation, where N represents the prescalar divider used:

$$f_{\text{PWM_SS}} = \frac{fclk_{PER}}{N(\text{PER} + 1)}$$

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

- For dual-slope PWM generation
 - > The period (T) is controlled by PER
 - > The Duty Cycle of the WG output is controlled by the CCx Registers
- The PER register defines the PWM resolution with a minimum resolution of 2 bits (PER=0x0003), and a maximum resolution of 16 bits (PER=MAX).
- The following equation calculate the exact resolution for dual-slope PWM (RPWM_DS):

$$R_{\text{PWM}_DS} = \frac{\log(\text{PER} + 1)}{\log(2)}$$

• The dual-slope PWM frequency (fPWM_DS) depends on the period setting (PER) and the peripheral clock frequency (fclkPER), and can be calculated by the following equation, where N represents the prescalar divider used:

$$f_{\text{PWM_DS}} = \frac{fclk_{PER}}{2N\text{PER}}$$

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

56

EEL 3744 **XMEGA** Dual-slope Pulse Width Modulation (PWM)

doc8331: Figure 14-16

University of Florida, EEL 3744 – File 16
© Drs. Schwartz & Arroyo

- WG output is
 - > Set on **BOTTOM**
 - > Set on compare match when **down-counting**
 - > Cleared on compare match when **up-counting**

XMEGA CTRLA & CTRLB Register

• CTRLA – Controls the clock source for timers

	7	6	5	4	3	2	1	0	
+0x00	-	-	-	-	CLKSEL3	CLKSEL2	CLKSEL1	CLKSEL0	CTRLA
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• CTRLB – Compare or Capture Enables and Waveform Generation Mode

	7	6	5	4	3	2	1	0	
+0x01	CCDEN	CCDEN	CCBEN	CCAEN	-	WGMode2	WGMode1	WGMode0	CTRLB
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

University of Florida, EEL 3744 – File 16

© Drs. Schwartz & Arroyo 58

XMEGA CTRLA & CTRLB Register

• CTRLB WGMode Settings

WGMode [20]	Group Config	Mode of Operation	Тор	Update	OVIF/EVENT
000	Normal	Normal	PER	TOP	TOP
001	FRQ	Frequency	CCA	TOP	TOP
010		Reserved	-	-	-
011	SingleSlope	Single-Slope PWM	PER	BOTTOM	BOTTOM
100		Reserved	-	-	-
101	DSTOP	Dual-Slope PWM	PER	BOTTOM	TOP
110	DSBOTH	Dual-Slope PWM	PER	BOTTOM	TOP and BOTTOM
111	DSBOTTOM	Dual-Slope PWM	PER	BOTTOM	BOTTOM

• Example: TCC0_CTRLB = 0xF0;

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

XMEGA CTRLC & CTRLD Register

• CTRLC – Allows direct access to the waveform generators output compare values

	7	6	5	4	3	2	1	0	
+0x02	-	-	-	-	CMPD	CMPC	СМРВ	CMPA	CTRLC
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

• CTRLD – Handles Event Control

	7	6	5	4	3	2	1	0	
+0x03	EVACT2	EVACT1	EVACT0	EVDLY	EVSEL3	EVSEL2	EVSEL1	EVSEL0	CTRLD
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

University of Florida, EEL 3744 – File 16

© Drs. Schwartz & Arroyo

60

XMEGA CTRLE Register

• CTRLE – Control Register E

> Controls byte mode of Timer/Counter Type 0 (allows switch to Type 2)

1)	7	6	5	4	3	2	1	0	
+0x04	-	-	-	-	-	_	BYTEM1	вутем0	CTRLE
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

© Drs. Schwartz & Arroyo

XMEGA CTRLF Register

• CTRLF – Control Register F

- > CMD: TC Command
 - Used for software control of timer/counter update, restart, and reset (see table)
 - Must be used together with CMDEN
- > CMDEN: Command Enable
 - Indicate for which TC the command (CMD) is valid

CMD	Group Config	Mode of Operation
00	None	None
01	-	Reserved
10	Restart	Force restart
11	Reset	For hard reset

	7	6	5	4	3	2	1	0	
+0x08	-	-	-	-	CMD1	CMD0	CMDEN1	CMDEN0	CTRLF
Read/Write	R	R	R	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	
University of Florida									62

XMEGA TC

CTRLFCLR/CTRLFSET – Control register F Clear/Set

- CTRLFCLR/CTRLFSET Control Register F
- This register is mapped into two I/O memory locations,
 - > For clearing the register bits (CTRLxCLR)
 - The individual status is cleared by writing a one to its bit location in CTRLxCLR
 - > For setting the register bits (CTRLxSET)
 - The individual status is set by writing a one to its bit location in CTRLxSET
- This allows each bit to be set or cleared without use of a readmodify-write operation on a single register

	7	6	5	4	3	2	1	0	_
+0x04	-	-	-	-	CMD1	CMD0	LUPD	DIR	CTRLF
Read/Write	R	R	R	R	R	R	R/W	R/W	CLR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	SET
Initial Value	0	0	0	0	0	0	0	0	
Universit TC	py_CTR	LFSET	$\overline{p=C}, D, I$	E, or F; y	$\sqrt{=0,1}$, or 2	2; exampl	le TCF0_	CTRLF	SET ₆₃

University of Florida, EEL 3744 – File **16** © Drs. Schwartz, Arroyo

XMEGA TC

CTRLFCLR/CTRLFSET – Control register F Clear/Set

- CTRLFCLR/CTRLFSET Control Register F
 - >Allows clearing and setting CTRLF register bits
 - >CMD1:0 can be used for software control of update, restart, and reset of the timer/counter

 Group Mode of CMD Config Operation

 ON None None
 - The command bits are always read as zero

TO T	D	\sim		. •	. •
~ 1.01	v.	Coun	tor l	lirac	t1An
<i>~</i> 171	IN .			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111

CMD	Config	Operation
00	None	None
01	Update	Force update
10	Restart	Force restart
11	Reset	For hard reset

-0 → incrementing; 1 → decrementing											
	7	6	5	4	3	2	1	0			
+0x04	-	-	-	-	CMD1	CMD0	LUPD	DIR	CTRLF		
Read/Write	R	R	R	R	R	R	R/W	R/W	CLR		
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	SET		
Initial Value	0	0	0	0	0	0	0	0			
Universit TC	СТР	T ECET/	$ \alpha$ \sim 1	е	0.1	. 1	L TOPO	OTDI D	CET		

TCpy_CTRLFSET\, p=C, D, E, or F; y=0,1, or 2; example TCF0_CTRLFSET

EEL 3744 **XMEGA** Interrupt Control Registers INTCTRLA & INCCTRLB

• INTCTRLA – Enables Timer Error and Timer Overflow/Underflow interrupts as well as level

	1	6	5	4	3	2	1	0	
+0x06	-	-	-	-	ERRINTLVL1	ERRINTLVL0	OVFINTLVL1	OVFINTLVL0	INTCTRLA
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• INTCTRLB – Enables Interrupts per CC channel as well level

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

• INTFLAGS – Register to hold CC, Error, and Overflow/Underflow flags

	7	6	5	4	3	2	1	0	
+0x0C	CCDIF	CCCIF	CCBIF	CCAIF	-	-	ERRIF	OVFIF	INTFLAGS
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

66

XMEGA CNT Register

• CNTL – LSB of Register Pair for CNT

	7	6	5	4	3	2	1	0	
+0x20	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0	CNTL
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

• CNTH – MSB of Register Pair for CNT

	7	6	5	4	3	2	1	0	
+0x21	CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8	CNTH
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

© Drs. Schwartz & Arroyo

XMEGA PER Register

• PERL – LSB of Register Pair for PER

	7	6	5	4	3	2	1	0	
+0x26	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0	PERL
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

• PERH – MSB of Register Pair for PER

	7	6	5	4	3	2	1	0	
+0x27	PER15	PER14	PER13	PER12	PER11	PER10	PER9	PER8	PERH
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

University of Florida, EEL 3744 – File 16

© Drs. Schwartz & Arroyo

XMEGA CCx Register

• CCxL – LSB of Register Pair for CCx

	7	6	5	4	3	2	1	0	
	CCx7	CCx6	CCx5	CCx4	CCx3	CCx2	CCx1	CCx0	CCxL
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

• CCxH – MSB of Register Pair for CCx

	7	6	5	4	3	2	1	0	
	CCx15	CCx14	CCx13	CCx12	CCx11	CCx10	CCx9	CCx8	CCxH
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

© Drs. Schwartz & Arroyo

69

- For PWM (use Frequency Generation Mode to toggle output pin)
 - > Set pin as output
 - > No interrupt needed if 50% duty cycle
 - $> TC freq (Hz) = f_{clk} / 2^x (for x=0,1,..3,6,8,10)$
 - Use **TCF0_CTRLA** to set 2^x above; $f_{clk} = 2MHz$ (for our board config)
 - > TCF1_CCA_VAL (cycles) = Toggle period (s) * TC Freq (Hz)
 - >TCF1_CTRLB
 - Enable CCA (or CCB, CCC, or CCD)
 - Set WGMode to frequency
 - > Set **TCF1_CCA** to *TCF1_CCA_VAL*
 - Remember that you must store the least significant byte of 2 bytes first
- > No interrupt necessary

University of Florida, EEL 3744 – File 16

XMEGA Timer0/1 Summary for Lab 6

- For general timer (more accurate version of RTC)
 - > If necessary, set pin as output
 - > Overflow interrupt vector: TCF0_OVF_VECT
 - $> TC freq (Hz) = f_{clk} / 2^x (for x=0,1,..3,6,8,10)$
 - Use **TCF0_CTRLA** to set 2^x above
 - $f_{clk} = 2MHz$ (for our board in default configuration)
 - $> TCF0_PERIOD$ (cycles) = Period (s) * TC freq (Hz)
 - >TCF0 INTCTRLA, PMIC CTRL
 - Interrupt to do something every time the timer runs out, e.g.,
 - Toggle pin
 - ☞ Run ADC
 - [©] Check UART or LCD

Step through
Timer OC.asn

- > Set **TCF0_PER** to *TCF0_PERIOD*
 - Remember that you must store the least significant byte of 2 bytes first

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo

72

The End!

University of Florida, EEL 3744 – File 16 © Drs. Schwartz & Arroyo