1. Let function f be defined by the polynomial below:

$$f(x) = 2x^4 + 6x^3 - 8x^2 - 3x + 5$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
-f(-x) •	$-2x^4 + 6x^3 + 8x^2 - 3x - 5$	
-f(x) ●	$-2x^4 - 6x^3 + 8x^2 + 3x - 5$	
f(−x) •	$2x^4 - 6x^3 - 8x^2 + 3x + 5$	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x) 5	h(x)
1	8	5	7
2	9	1	8
3	5	8	1
4	2	3	5
5	6	6	2
6	7	2	3
7	3	4	9
8	4	9	4
9	1	7	6

3. Evaluate g(2).

$$g(2) = 1$$

4. Evaluate $h^{-1}(9)$.

$$h^{-1}(9) = 7$$

5. Assuming f is an **odd** function, evaluate f(-4).

If function f is odd, then

$$f(-4) = -2$$

6. Assuming h is an **even** function, evaluate h(-5).

If function h is even, then

$$h(-5) = 2$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} - (-x)$$
$$p(-x) = -x^{2} + x$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 + x)$$
$$-p(-x) = x^2 - x$$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 4(x-5)$$

a. Evaluate f(15).

step 1: subtract 5 step 2: multiply by 4

$$f(15) = 4((15) - 5)$$
$$f(15) = 40$$

b. Evaluate $f^{-1}(72)$.

step 1: divide by 4 step 2: add 5

$$f^{-1}(x) = \frac{x}{4} + 5$$

$$f^{-1}(72) = \frac{(72)}{4} + 5$$

$$f^{-1}(72) = 23$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

$$b(7) = 5$$

b. Evaluate $b^{-1}(2)$.

$$b^{-1}(2) = 4$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	6	-6	6	-6
-1	-7	7	-7	7
0	0	0	0	0
1	-7	7	-7	7
2	6	-6	6	-6

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.