

问题描述

• 模拟含噪量子真机的采样工作方式,运行VQE算法求解H4分子基态能量

不同键长的H4分子基态能量真值

解决方案

- H4分子的几何构型 ⇒ Pauli-哈密顿量矩阵
 - 玻恩-奧本海默近似、二次量子化、Hartree-Fock 方法、Jordan-Wigner 变换
- Rayleigh-Ritz 不等式

$$E_{0} \leq \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \langle U(\theta) | \hat{H} | U(\theta) \rangle$$

- VQE: 选定含参线路 $U(\theta)$, 最小化其线路拟设态在目标哈密顿量 H 上的期望, 此时
 - 期望值即基态能量
 - 拟设态即基态表示

哈密顿量近似简化

- X-Y合并近似
 - 哈密顿量中存在大量相似Pauli串
 - 系数相同、期望相同,仅字母X-Y对偶
- X-Y替换近似(更激进)
 - 所有Y全部替换为X
- 舍去系数小项 1e-2

```
coeff= 0.026958030271018913 term=[Y0 X1 X4 Y5]
                                                     exp=-0.11383608391097913
coeff= 0.026958030271018913 term=[X0 Y1 Y4 X5]
                                                     exp=-0.11383608391097913
coeff=-0.026958030271018913 term=[Y0 Y1 X4 X5]
                                                     exp= 0.10745618864662454
coeff=-0.026958030271018913 term=[X0 X1 Y4 Y5]
                                                     exp= 0.10745618864662454
coeff= 0.011388105812468949 term=[X0 Z1 Y2 Y4 Z5 X6]
                                                     exp=-0.0271190340289691
coeff= 0.011388105812468949 term=[Y0 Z1 X2 X4 Z5 Y6]
                                                     exp=-0.02711903402896931
coeff= 0.02441822802586467
                            term=[X0 Z1 X2 X4 Z5 X6]
                                                     exp=-0.04584945651403473
coeff= 0.02441822802586467
                            term=[Y0 Z1 Y2 Y4 Z5 Y6]
                                                     exp=-0.04584945651403455
                                                     exp= 0.028729146940606864
coeff= 0.01303012221339572 term=[X0 Z1 X2 Y4 Z5 Y6]
coeff= 0.01303012221339572 term=[Y0 Z1 Y2 X4 Z5 X6]
                                                     exp= 0.028729146940606683
```

• Pauli 串数量: 184→102/66 (44.57/64.13%↓)

拟设选择

- 基本结构: HAE(RY, depth=3)
- 迭代优化-剪枝,减少门的数量
 - E = -2.13818 (err: 1.30%)

00001111>: 0.9677106263678632 -0.18768784145590353 0.07892321707925219 01101001>: 10010110>: 0.07892321707925219 00111100>: -0.06500319468952202 11001100>: -0.052037940497991805 01100110>: -0.048611561597010695 10011001>: -0.04861156159701068 11000011>: -0.0416976983518129 01011010>: -0.03031165548224152 10100101>: -0.030311655482241504 111100000>: 0.021663372022213884 0.005759131529488659 00101101>: -0.005759131529488631 0.004410107871199615 01001011>: 10000111>: -0.004410107871199616 0.0037101578490584645 11100001>: -0.003710157849058464 0.0026251185155691174 01111000>: 10110100>: -0.0026251185155691152

HF杰 🛑

基于预训练-微调的参数优化

- 分子几何构型相似 ⇔ 振幅项相同、幅值相近
- 预训练: Basin Hopping 算法
 - 随机扰动 + 局部优化
 - 最初用于寻找最低能量分子结构
- 微调: Adam 优化器, lr=1e-4

Basin_Hop_Lj13.gif

误差缓解后处理

- 读出误差缓解(REM)
 - RY门噪声测定
 - 线性放缩
- 零噪声外插值(ZNE)
 - 噪声随硬件数量线性放大
- · 参考态误差缓解(RSEM)
 - 噪声独立于参数取值
 - $E(U(\widehat{\theta})) E(U(0)) = E E_0$
 - 零参考态真值 💪 已知
 - HF线路 + Z-Only哈密顿量 + 上下舍入到1

y = -0.001295813123288742 * x + 0.8997612902876868

实验结果

- HAE(RY,3) 上存在一个极优解
- REM有效; RSEM比ZNE有效

表1 实验结果

本地分数↑	提交分数↑	说明
1.035	0.5226	baseline, trim coeff=1e-3, shot=30
1.334	0.574	HEA(RY), trim coeff=1e-3, shots=100
2.360	1.0077	HF, trim coeff=1e-3, shots=100
3.908	3.826	HEA(RY), trim coeff=1e-3, shots=100, n_meas=10
4.519	4.2442	HEA(RY)_no_HF, trim coeff=1e-3, shots=100, n_meas=10
6 ∼ 63	27.9413	HF, Z_only, shots=10, n_meas=10
14.740	15.4219	HF, Z_only (+exp_fix), shots=100 (exactly E_{HF})
15.317	17.0523	HEA(RY), depth=3, shots=100
8.426	13.4319	HEA(RY), depth=3, shots=500
17.266	19.3466	HEA(RY), depth=3, shots=1000
16.958	18.6189	HEA(RY), depth=3, shots=3000
$7.924 \sim 87.44$	$9.6134 \sim 25.224$	HEA(RY, 3), init=randn, optim=Adam, shots=1000
9 ~ 33	$15.9935 \sim 47.1661$	HEA(RY, 3), init=randn, optim=Adam, shots=10000, combine_XY, rescaler
$8.038 \sim 26.389$	$32.0759 \sim 127.9223$	HEA(RY, 2), init=randn, optim=Adam, shots=1000, combine_XY, rescaler
203.663	$12.5186 \sim 3472.2812$	HEA(RY, 3), init=pretrained, optim=Adam(lr=1e-4), shots=1000, combine_XY, rescaler

总结: 我们的工作

- 哈密顿量近似简化
- 拟设选择
- 基于预训练-微调的参数优化
- 误差缓解后处理

• ★结果: 平均约 244.76 分 / 最高 3472.2812 分

谢谢观看

模拟含噪环境下的变分量子算法求解H4分子基态能量

队名: Quiscus