On Convergence and Contraction Mapping (By Mohammad Pezeshki)

Planning: The environment is known. (MDP is already given.)

Planning: The environment is known. (MDP is already given.)

→ Prediction: Given a policy, compute the value function

→ Control: Find the best policy

Planning: The environment is known. (MDP is already given.)

→ Prediction: Given a policy, compute the value function

→ Control: Find the best policy

Prediction:

Iterative Policy Evaluation

Control:

→ Policy Iteration→ Value Iteration

Planning: The environment is known. (MDP is already given.)

→ Prediction: Given a policy, compute the value function

→ Control: Find the best policy

Prediction:

Iterative Policy Evaluation → Bellman Expectation Equation

Control:

→ Policy Iteration → Bellman Expectation Equation
Greedy Policy Improvement

→ Value Iteration → Bellman Optimality Equation

Iterative Policy Evaluation → Bellman Expectation Equation

Policy Iteration → Bellman Expectation Equation Greedy Policy Improvement

Value Iteration → Bellman Optimality Equation

Bellman Expectation Equation

Bellman Optimality Equation

Iterative Policy Evaluation → Bellman Expectation Equation

Policy Iteration → Bellman Expectation Equation Greedy Policy Improvement

Value Iteration → Bellman Optimality Equation

 $egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} v_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$

Bellman Expectation Equation

Bellman Optimality Equation

Iterative Policy Evaluation → Bellman Expectation Equation

Policy Iteration → Bellman Expectation Equation Greedy Policy Improvement

Value Iteration → Bellman Optimality Equation

Bellman Expectation Equation

$$egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

Bellman Optimality Equation

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k$$

Iterative Policy Evaluation → Bellman Expectation Equation

Policy Iteration → Bellman Expectation Equation Greedy Policy Improvement

Value Iteration → Bellman Optimality Equation

Policy evaluation converges to $V\pi$ Policy iteration converges to V*Value iteration converges to V*

Contraction Mapping

Space of all value functions: V

Operator: T: $V \rightarrow V$

└→Shrinks the space

Contraction Mapping

Space of all value functions: V

Operator: T: $V \rightarrow V$

└→Shrinks the space

Contraction Mapping

Space of all value functions: V

Operator: T: $V \rightarrow V$

└-Shrinks the space

Contraction Mapping

Space of all value functions: V

Operator: T: $V \rightarrow V$

└-Shrinks the space

- a. It converges to unique V*
- b. V_* is fixed-point meaning T $V_* = V_*$

Both "Bellman Expectation Equation" and "Bellman Optimality Equation" are γ -contractions.

 \longrightarrow They make value functions closer by at least a factor of γ .

Going to MATH:

Why Bellman Equations are contraction mapping?

Why Contraction Mapping Theorem holds?

From Puter 1994: Why Bellman Equations are contraction mapping?

Proposition 6.2.4. Suppose that $0 \le \lambda < 1$; then L and \mathcal{L} are contraction mappings on V.

From Puter 1994: Why Bellman Equations are contraction mapping?

Proposition 6.2.4. Suppose that $0 \le \lambda < 1$; then L and \mathcal{L} are contraction mappings on V.

Proof. Since S is discrete, L maps V into V. Let u and v be in V, fix $s \in S$, assume that $Lv(s) \ge Lu(s)$, and let

$$a_s^* \in \underset{a \in A_s}{\operatorname{arg\,max}} \left\{ r(s, a) + \sum_{j \in S} \lambda p(j|s, a) v(j) \right\}.$$

Then

$$0 \le Lv(s) - Lu(s) \le r(s, a_s^*) + \sum_{j \in S} \lambda p(j|s, a_s^*) v(j)$$
$$- r(s, a_s^*) - \sum_{j \in S} \lambda p(j|s, a_s^*) u(j)$$
$$= \lambda \sum_{j \in S} p(j|s, a_s^*) [v(j) - u(j)] \le \lambda \sum_{j \in S} p(j|s, a_s^*) ||v - u|| = \lambda ||v - u||.$$

Shrinks the space by a factor of gamma (lambda) (discount factor) Repeating this argument in the case that $Lu(s) \ge Lv(s)$ implies that

$$|Lv(s) - Lu(s)| \leq \lambda ||v - u||$$

for all $s \in S$. Taking the supremum over s in the above expression gives the result. \square

From Puter 1994: Why Contraction Mapping Theorem holds?

Theorem 6.2.3. (Banach Fixed-Point Theorem) Suppose U is a Banach space and $T: U \to U$ is a contraction mapping. Then

- a. there exists a unique v^* in U such that $Tv^* = v^*$; and
- **b.** for arbitrary v^0 in U, the sequence $\{v^n\}$ defined by

$$v^{n+1} = Tv^n = T^{n+1}v^0 (6.2.10)$$

converges to v^* .

From Puter 1994: Why Contraction Mapping Theorem holds?

Theorem 6.2.3. (Banach Fixed-Point Theorem) Suppose U is a Banach space and $T: U \to U$ is a contraction mapping. Then

- a. there exists a unique v^* in U such that $Tv^* = v^*$; and
- **b.** for arbitrary v^0 in U, the sequence $\{v^n\}$ defined by

$$v^{n+1} = Tv^n = T^{n+1}v^0$$

(6.2.10)

converges to v^* .

$$||u-v||_{\infty} = \max_{s \in \mathcal{S}} |u(s)-v(s)|$$

Cauchy sequence is a sequence whose telements become arbitrarily close to each other as the sequence progresses

Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

From Puter 1994: Why Contraction Mapping Theorem holds?

$$||u-v||_{\infty} = \max_{s \in \mathcal{S}} |u(s)-v(s)|$$

Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

From Puter 1994: Why Contraction Mapping Theorem holds?

Proof. Let $\{v^n\}$ be defined by (6.2.10). Then, for any $m \ge 1$,

$$||v^{n+m} - v^n|| \le \sum_{k=0}^{m-1} ||v^{n+k+1} - v^{n+k}|| = \sum_{k=0}^{m-1} ||T^{n+k}v^1 - T^{n+k}v^0||$$

$$\le \sum_{k=0}^{m-1} \lambda^{n+k} ||v^1 - v^0|| = \frac{\lambda^n (1 - \lambda^m)}{(1 - \lambda)} ||v^1 - v^0||. \tag{6.2.11}$$

Since $0 \le \lambda < 1$, it follows from (6.2.11) that $\{v^n\}$ is a Cauchy sequence; that is, for n sufficiently large, $\|v^{n+m} - v^n\|$ can be made arbitrarily small. From the completeness of U, it follows that $\{v^n\}$ has a limit $v^* \in U$.

We now show that v^* is a fixed point of T. Using properties of norms and contraction mappings, it follows that

$$0 \le ||Tv^* - v^*|| \le ||Tv^* - v^n|| + ||v^n - v^*||$$

$$= ||Tv^* - Tv^{n-1}|| + ||v^n - v^*|| \le \lambda ||v^* - v^{n-1}|| + ||v^n - v^*||.$$

Since $\lim_{n\to\infty} ||v^n - v^*|| = 0$, both quantities on the right-hand side of the above inequality can be made arbitrarily small by choosing n large enough. Consequently, $||Tv^* - v^*|| = 0$, from which we conclude that $Tv^* = v^*$.

We leave the proof of uniqueness of v^* as an exercise. \Box