M = I2: perpendizular matrix projection matrix onto 12 $M_0 = \begin{bmatrix} 0.8 & 0.4 \end{bmatrix}$ the perpendicular projection matrix onto $C(M_0) = C(X) \subset C(M) = IR^2$ e(Mo) = e(X) = { [29], a & IR] $x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ [b] Le(x) for any being Motor Claim: (M-No) is the perpendicular projection matrix onto the space of vectors w/ form [-zh] = N(XT) $(i) V = \begin{bmatrix} p \\ p \end{bmatrix} \in N(X_{\downarrow}) \Rightarrow (W-W^{0}) \Lambda = \Lambda \quad 3$ $\begin{bmatrix} 0.2 & -0.4 \end{bmatrix} \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} 0.2b + 0.8b \end{bmatrix} = \begin{bmatrix} b \\ -0.4 & 0.8 \end{bmatrix}$ (ii) $W \neq N(X^T) \Rightarrow W = \begin{bmatrix} 2a \\ a \end{bmatrix}$ $(M-M_0)\cdot W = \begin{bmatrix} 0.2 & -0.4 \end{bmatrix} \begin{bmatrix} 20 \\ -0.4 & 0.8 \end{bmatrix} \begin{bmatrix} 20 \\ 0.80 \end{bmatrix} = \begin{bmatrix} 0.40 - 0.40 \\ -0.80 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Ty = Py + (I-P)y

$$EX1: A = \begin{bmatrix} q & b \\ b & \frac{b^2}{\alpha} \end{bmatrix} \qquad r(A) = 1 \qquad A^- = \begin{bmatrix} \frac{1}{\alpha} & 0 \\ 0 & 0 \end{bmatrix}$$

hots check

$$\begin{bmatrix} a & b \\ b & \overline{a} \end{bmatrix} \begin{bmatrix} b & 0 \\ 0 & \overline{a} \end{bmatrix} = \begin{bmatrix} a & 0 \\ b & \overline{a} \end{bmatrix} = \begin{bmatrix} a & b \\ \overline{a} & 0 \end{bmatrix} \begin{bmatrix} a & \overline{b} \\ \overline{a} & \overline{a} \end{bmatrix} = \begin{bmatrix} a & \overline{b} \\ \overline{a} & \overline{a} \end{bmatrix}$$

† Def A generalized inverse of a $(m \times n)$ matrix **A** is any $(n \times m)$ matrix **G** such that **AGA** = **A**. The notation **A**⁻ is used to indicate a generalized inverse of **A**. $(= A^{3})$

 \bigstar Result: Let **A** be an $m \times n$ matrix with rank r. If **A** can be partitioned as below, with $r(\mathbf{A}) = r(\mathbf{C}) = r$,

$$\mathbf{A} = \begin{bmatrix} \mathbf{C}_{r \times r} & \mathbf{D}_{r \times (n-r)} \\ \mathbf{E}_{(m-r) \times r} & \mathbf{F}_{(m-r) \times (n-r)} \end{bmatrix},$$

so that C is nonsingular, then the matrix,

$$\mathbf{Q} = \begin{bmatrix} \mathbf{C}_{r \times r}^{-1} & \mathbf{0}_{r \times (m-r)} \\ \mathbf{0}_{(n-r) \times r} & \mathbf{0}_{(n-r) \times (m-r)} \end{bmatrix}$$

is a generalized inverse of A.

Eg2
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\gamma(A) = 2$

 \bigstar Result: For a given $m \times n$ matrix **A** with rank r, let **P** and **Q** be permutation matrices such that,

$$\mathsf{PAQ} = egin{bmatrix} \mathsf{C}_{r imes r} & \mathsf{D}_{r imes (n-r)} \ \mathsf{E}_{(m-r) imes r} & \mathsf{F}_{(m-r) imes (n-r)} \end{bmatrix},$$

where $r(\mathbf{A}) = r(\mathbf{C}) = r$ and \mathbf{C} is nonsingular. Then the matrix \mathbf{G} below is a generalized inverse of \mathbf{A} : so that \mathbf{C} is nonsingular, then the matrix,

$$\mathbf{G} = \mathbf{Q} egin{bmatrix} \mathbf{C}_{r imes r}^{-1} & \mathbf{0}_{r imes (m-r)} \ \mathbf{0}_{(n-r) imes r} & \mathbf{0}_{(n-r) imes (m-r)} \end{bmatrix} \mathbf{P}.$$

- \clubsuit Th: If **A** is nonsingular, the unique generalized inverse of **A** is \mathbf{A}^{-1} .
- Th: For any symmetric matrix \mathbf{A} , there exists a generalized inverse of \mathbf{A} . (note: For \mathbf{A} symmetric, \mathbf{A}^- need not be symmetric)
- \spadesuit Observe $\mathbf{X}^T\mathbf{X}$ is symmetric $\rightarrow \exists (\mathbf{X}^T\mathbf{X})^-$.
- \bigstar Lem If **G** and **H** are generalized inverse of $(\mathbf{X}^T\mathbf{X})$, then
 - (i) $XGX^TX = XHX^TX = X$
- (ii) $XGX^T = XHX^T$
- \bigstar Result: $(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$ is a generalized inverse of \mathbf{X} .

Th 2.1: $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$ is the perpendicular projection operator onto $C(\mathbf{X})$.

(i)
$$V \in C(X) \Rightarrow PV = V$$

$$P_{V} = X(X^{T}X)^{T}X^{T}Xb = Xb = V$$

(ii)
$$W \perp C(x) \Rightarrow W \in N(x^{T}) \Rightarrow x^{T}W = 0$$

$$P_W = X(X^TX)^T X^T W = 0$$

52/61

★ Summary! We write

$$y = Py + (I - P)y = \hat{y} + \hat{e}$$

- $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$ is the perpendicular projection matrix onto $C(\mathbf{X})$.
- $(I \mathbf{P})$ is the unique, symmetric perpendicular projection matrix onto the orthogonal complement of $C(\mathbf{X})$ with respect to \mathbb{R}^n .
- C(X) and $\mathcal{N}(X^T)$ are orthogonal complements to \mathbb{R}^n .
- $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{y} = \mathbf{P}\mathbf{y}$: Projecting \mathbf{y} onto $C(\mathbf{X})$.
- $\hat{\mathbf{e}} = \mathbf{y} \mathbf{P}\mathbf{y} = (I \mathbf{P})\mathbf{y}$: Projecting \mathbf{y} onto the orthogonal complement of $C(\mathbf{X})$ with respect to \mathbb{R}^n .

53/61

Connection to $\hat{oldsymbol{eta}}$

Th: $\hat{\boldsymbol{\beta}}$ is a least square estimate of $\boldsymbol{\beta}$ if and only if $\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{P}\mathbf{y}$, $=\hat{\boldsymbol{\gamma}}$ where \mathbf{P} is the perpendicular projection operator onto $C(\mathbf{X})$.

 \diamondsuit Cor: $(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{y}$ is a least square estimate of β .

$$\hat{y} = x \hat{\beta} = Py = (x^T x)^T x^T y$$

$$\hat{\beta} = (x^T x)^T x^T y$$

$$\underbrace{(X^{t}X)}_{A}\beta = \underbrace{X^{T}Y}_{=c}$$

Result A.13: Let $\mathbf{A}\mathbf{x} = \mathbf{c}$ be a consistent system of equations and let \mathbf{G} be a generalized inverse of \mathbf{A} ; then $\tilde{\mathbf{x}}$ is a solution to the equations $\mathbf{A}\mathbf{x} = \mathbf{c}$ if and only of there exists a vector \mathbf{z} such that $\tilde{\mathbf{x}} = \mathbf{G}\mathbf{c} + (I - \mathbf{G}\mathbf{A})\mathbf{z}$.

Implications?

- ullet By varying **z** over \mathbb{R}^n , we can obtain all possible solutions to a system of equations.
- The collection of solutions does not depend on the choice of generalized inverse.
- The family of solutions can be decomposed to two parts;
 - ▶ Solution to the system of equations Ax = c: Go
 - ▶ Solution to $\mathbf{A}\mathbf{x} = 0$: $(I \mathbf{G}\mathbf{A})\mathbf{z} \ (\in \mathcal{N}(\mathbf{A}))$

$$\bigstar$$
 Lem 2.1 $\mathcal{N}(\mathbf{X}) = \mathcal{N}(\mathbf{X}^T \mathbf{X})$

* Recall: The NEs are

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}.$$

From the previous slide: The difference between two solutions of the NEs must be a vector in $\mathcal{N}(\mathbf{X})$

 \diamondsuit Cor 2.3: $\mathbf{X}\hat{\boldsymbol{\beta}}$ is invariant to the choice of a solution $\hat{\boldsymbol{\beta}}$ to the NEs.

$$\frac{\hat{\beta}_{1} \quad \hat{\beta}_{2}}{\hat{y}_{1}} = \frac{\hat{x}^{T} \hat{y}}{\hat{x}^{T} \hat{x} \hat{\beta}_{1}} = \frac{\hat{x}^{T} \hat{y}}{\hat{x}^{T} \hat{x} \hat{\beta}_{2}} = \frac{\hat{x}^{T} \hat{y}}{\hat{x}^{T} \hat{x} \hat{\beta}_{2}} = \frac{\hat{x}^{T} \hat{y}}{\hat{y}_{2}} = \frac{\hat{x}^{T} \hat{y}}{\hat{y}_{$$

Th: [The Gram-Schmidt Theorem]: Let \mathcal{M} be a space with basis $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$. There exists an orthonormal basis for \mathcal{M} , say $\{\mathbf{y}_1,\ldots,\mathbf{y}_r\}$, with \mathbf{y}_s in the space spanned by $\{\mathbf{x}_1,\ldots,\mathbf{x}_s\}$, $s=1,\ldots,r$.

In layman's terms,

A set of linearly independent vectors \Rightarrow a set of mutually orthogonal normalized vectors

Th Let $\mathbf{o}_1, \dots, \mathbf{o}_r$ be an orthonormal basis for $C(\mathbf{X})$, and let $\mathbf{O} = [\mathbf{o}_1, \dots, \mathbf{o}_r]$. Then $\mathbf{OO}^T = \sum_{i=1}^r \mathbf{o}_i \mathbf{o}_i^T$ is the perpendicular projection operator onto $C(\mathbf{X})$.

- For any X,
 - 1. Get an orthonoraml basis for $C(\mathbf{X})$ by the Gram-Schmidt theorem
 - 2. Obtain the perpendicular projection operator $\Rightarrow P$ $\hat{y} = Py$, $\hat{\beta} \times = Py$

For more details, see section 2.4 (M).

perpendicular proj matrix onto C(X)

Th 2.2: If $C(\mathbf{W}) \subset C(\mathbf{X})$, then $\mathbf{P}_x - \mathbf{P}_w$ is the projection onto $C((I - \mathbf{P}_w)\mathbf{X}).$

Decomposition for simple linear regression Ex 2.6

Model 1

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 1 & 3 & 2 \\ 1 & 4 & 4 \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \\ \rho_4 \end{bmatrix}$$

ear) C e(x) V

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= W$$

let's find Px & Pw

$$P_{X} = X (X^{T} X)^{-1} X^{T} = \frac{1}{10} \begin{bmatrix} 7 \\ 43 \\ 123 \\ -2147 \end{bmatrix}$$

$$P_{N} = W(W^{T}W)^{T}W^{T} = \frac{1}{4}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

= orthogonal projection matrix onto e((I-Pw)x)

>> Very useful for subset regression, decomposition of 35 and hypothesis testing

For general notation, let W= 1 & Pw = P1

$$R^{2} = \frac{\| (P_{X} - P_{A})y \|^{2}}{\| (I - P_{A})y \|^{2}} = \frac{\sum (\hat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}} = \frac{\sum (\hat{y}_{i} - y_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

to Eusinapson

determination

Total SS (corrected for moun)

★ Figures help!

60/61

Two models are equivalent (or reparameterization of each other) if the column spaces of the design matrices are the same.

†: Def 2.1 Two linear models, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ where \mathbf{X} is a $n \times p$ matrix and $\mathbf{y} = \mathbf{W}\boldsymbol{\gamma} + \mathbf{e}$ where \mathbf{W} is a $n \times t$ matrix, are equivalent (or reparameterization of each other) iff $C(\mathbf{X}) = C(\mathbf{W})$.

 \bigstar Result 2.8 and Cor 2.4: If C(X) = C(W),

$$P_X = P_W$$

$$\blacktriangleright \ \hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{W} \hat{\boldsymbol{\gamma}}$$

$$\hat{\mathbf{e}} = (I - \mathbf{P}_{\mathsf{x}})\mathbf{y} = (I - \mathbf{P}_{\mathsf{w}})\mathbf{y}$$

EX 1-way ANOVA

Madell: $\forall ij = \mu + \alpha i + e_{ij}$, i=1,2,3, j=1,...,n

Model?: Yij = Oi + eij > 1 = W8 + e

Find x and $w \Rightarrow check if <math>e(x) = e(w)$?

 $W = \begin{bmatrix} \Delta_n & O_n & O_n \\ O_n & \Delta_n & O_n \\ O_n & O_n & \Delta_n \end{bmatrix}$ $V = \begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix}$