EE4202 Database Systems

SQL TO RELATIONAL ALGEBRA

MAPPING THEORY

- Select attribute(A1) from relation (R) in SQL maps to a project($\pi_{<A1>}(R)$) in relational algebra. Select * from R maps to just R itself.
- Conditions inside where clause maps to conditions of a select(σ) operation. For a single 'select from where' SQL clause; π and σ are commutative(interchangeable).
- Creating a view corresponds to a rename(ρ) operation.
- Aggregate functions specified for attributes in GROUP BY is mapped to aggregate function (f) in relational algebra.

<grouping attributes> f <function list> (Relation)

SQL	Relational Algebra Operation	Relational Algebra Symbol
Cross join	Cartesian product	X
Natural join	Natural join	*
Union	Union	U
Except	Set difference/Minus	-
Left outer join	Left outer join	\bowtie

MAPPING EXAMPLES

- 1. select Empl ID from sch1.EMPLOYEE where Age=15; $\pi_{<\text{Empl ID}>}(\sigma_{<\text{Age}=15>}(\text{sch1.Employee}))$ 2. select Empl ID from sch1.EMPLOYEE where Age > ALL(select Age from sch1.employee where Empl ID='EE001'); Is equivalent to: select Empl_ID from sch1.EMPLOYEE where Age >(select MAX(Age) from sch1.employee where Empl ID='EE001' Group by Age); $\pi_{\text{<Empl ID>}}(\sigma_{\text{< Age>(Age }f\text{ MAX(Age))}}(\sigma_{\text{Empl ID='EE001'}}(\text{sch1.Employee}))$ 3. select Name from sch2.EMPLOYEE natural join sch2.DEPENDENT $\pi_{\langle Name \rangle}$ (sch2.EMPLOYEE * sch2.DEPENDENT)
- 4. Select E.Age, D.Depe_name from sch2.EMPLOYEE as E inner join sch2.DEPENDENT as D on E.Em_ID=D.Empl_ID; $\pi_{\langle Age, Depe_name \rangle}(sch2.EMPLOYEE) < \lim_{l \to l} sch2.DEPENDENT)$

MAPPING EXAMPLES

```
5. create view sch2.vie1 as (select Empl_ID,Designation from sch2.EMPLOYEE natural join sch2.HEAD where Dept_Head='Sajitha');
```

Create view sch2.vie2 as (select Empl_ID,Designation from sch2.EMPLOYEE natural join sch2.PROJECT where Project='Prj_1');

(select * from sch2.vie1)INTERSECT(select * from sch2.vie2);

$$\rho_{sch2.vie1}(\pi_{<\text{Empl_ID, Designation}})(\sigma_{<\text{Dept_Head='Sajitha'}})(\text{sch2.EMPLOYEE * sch2.HEAD})))$$

$$\rho_{sch2.vie2}(\pi_{<\text{Empl_ID, Designation}})(\sigma_{<\text{Project='Prj_1'}})(\text{sch2.EMPLOYEE * sch2.PROJECT})))$$

$$\text{sch2.vie1} \bigcirc \text{sch2.vie2}$$

6. create view sch2.vie3 as (Select Age+5 as New_Age from sch2.EMPLOYEE); $\rho_{sch2.vie3(New_Age)}(\pi_{<Age+5>}(sch2.EMPLOYEE))$