Jiawei Wu, collaborated with Jericho Dizon and Jose Idrovo

Q1 (20 points; 2 per part) DPV Problem 0.1 (parts a through j): In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in each case $f = \theta(g)$).

Q2 (10 points) Consider the following pseudo-code which takes the integer $n \ge 0$ as input:

```
Function bar(n)
  Print '*';
  if n == 0 then
     Return;
  end
  for i = 0 to n - 1 do
     bar(i);
  end
```

Let T(n) be the number of times the above function prints a star (*) when called with input $n \ge 0$. What is T(n) exactly, in terms of only n (and not values like T(n-1) or T(n-2))? Prove your statement

Solution $= 2^n$

$$n$$
 calls $T(n)$

0 print
$$T(0) = 1$$

1 print,
$$T(0)$$
 $T(1) = 2$

2 print,
$$T(0)$$
, $T(1)$ $T(2) = 4$

3 print,
$$T(0)$$
, $T(1)$, $T(2)$ $T(3) = 8$

We deduct that $T(n) = 2^n$

We can prove the claim by induction. Our recurrence formula given by the function is T(n) = 2T(n-1) for T(0) = 1.

Base Case: n = 0

$$T(0) = 1$$

$$1 = 2^0$$

$$1 = 1$$

Induction step: prove $2^n = 2T(n-1)$ for n = k+1

$$2^{k+1} = 2T(k+1-1)$$

Work on RHS

$$2T(k) = 2 \times 2^k$$

$$2 \times 2^k = \boxed{2^{k+1}}$$

Thus proving that our recurrence formula generates the given solution 2^n .

Q3 (30 points) Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of θ -notation, prove that $max(f(n),g(n))=\theta(f(n)+g(n))$

Basic definition of the θ notation: If $\max(f(n),g(n))=\theta(f(n)+g(n))$, then it must satisfy $\max(f(n),g(n))=O(f(n)+g(n))$ and $\max(f(n),g(n))=\Omega(f(n)+g(n))$.

We must prove $\max(f(n),g(n))=O(f(n)+g(n))$ and $\max(f(n),g(n))=\Omega(f(n)+g(n)).$

Case 1: Prove $max(f(n), g(n)) = \Omega(f(n) + g(n))$

We know the following:

$$max(f(n), g(n)) \ge f(n)$$
 if $max = g(n)$
 $max(f(n), g(n)) \ge g(n)$ if $max = f(n)$

The outcome must of one of them.

Therefore, we can derive the following equation by adding both sides:

$$2 \times \max(f(n), g(n)) \ge f(n) + g(n)$$
$$\max(f(n), g(n)) \ge \frac{1}{2}(f(n) + g(n))$$

where $C = \frac{1}{2}$. Since $\max(f(n), g(n)) \ge C(f(n) + g(n))$ for some constant C, we prove that $\max(f(n), g(n)) = \Omega(f(n) + g(n))$

Case 2: Prove max(f(n), g(n)) = O(f(n) + g(n))

We know that $\max(f(n), g(n)) \leq f(n) + g(n)$. If \max is f(n), f(n) + g(n) could be the same value (in the case that g(n) = 0), or larger than the max. The same applies if \max is g(n). Since this is true, a constant C > 0 can be placed on the RHS, rendering the following equation:

$$max(f(n), g(n)) \le C(f(n) + g(n))$$

By assuming that C = 1, which is a value in C > 0, the function remains the same. Our function remains the same as our first statement, which we know to be true, therefore we prove that max(f(n), g(n)) = O(f(n) + g(n)).

With the basic definition of θ notation, we have proved that $max(f(n),g(n)) = \theta(f(n)+g(n))$

Q4 (10 points; 5 per part)

(a) is
$$2^{2n} = O(2^n)$$
?
No

(b) why?

 n^a dominates n^b if a > b. In this instance, no matter the value for n, 2n will always

dominate n (unless negative, but that doesn't apply here). In addition, 2^{2n} can be rewritten as $(2^2)^n$, therefore it is in $O(4^n)$.