Data Structure: Tree Basics

Def (樹等價定義們)

下列敘述等價:

1. G 是 Tree \equiv G 是個連通、無環、無向的圖。

$$G ext{ is a tree} \equiv \left\{ egin{aligned} G ext{ is undirected}, and \ G ext{ is connected}, and \ G ext{ is acyclic} \end{aligned}
ight.$$

2. 任兩點存在唯一 simple path 的圖:

$$\forall u, u' \in V, u \neq u'$$
. $\exists ! p. p$ is a simple path

- 3. 隨便砍一條邊就會不連通的連通圖:
 - 1. G is connected, and
 - 2. $\forall e \in E. G' = (V, E \setminus e)$ is not connected
- 4. 連通, 而且邊數 = 點數 1 的圖:
 - 1. G is connected, and
 - 2. |E| = |V| 1
- 5. 無環,而且邊數 = 點數 1的圖
 - 1. G is acyclic, and
 - 2. |E| = |V| 1
- 6. 無環, 但任意加一條邊之後就有環。
 - 1. G is acyclic
 - 2. $\forall e \in \{(u_i, u_j) | u_i, u_j \in V, (u_i, u_j) \notin E\}. \forall G' \in \{(V, E \cup e)\}.$ G' is cyclic

(1. ⇒ 2.): 反證

- 1. 如果不存在 path, 顯然與連通的前提矛盾。
- 2. 若存在超過兩個相異 simple path,任選兩條 $p_1=(a_0\ldots a_{k_a})$, $p_2=(b_0\ldots b_{k_b})$,其中 $a_0=b_0$, $a_{k_A}=b_{k_b}$ 。
 - 1. 在 p_1,p_2 中,選擇最小的 k_1 與最小的 k_2 ,使得 $a_{k_1}=b_{k_2}$ 。以及次小的 k_1',k_2' ,使得 $a_{k_1'}=b_{k_2'}$ 。
 - 2. 這樣的 k_1, k_2 與 k_1', k_2' 必定存在,因為最差狀況下 $k_1 = 0, k_2 = 0$,以及 $k_1' = a_{k_a}, k_2' = b_{k_b}$ 。
 - 3. $p = (a_{k_1} \dots a_{k'_1}, b_{k'_2-1} \dots b_{b_{k_1}})$ 為一個 cycle。與前提矛盾。

Remark: 敘述的意思並不是「任兩點存在的 path 都是 simple path」,而是「如果兩點間有 simple path,則該 simple path 唯一」。

$(2. \Rightarrow 3.)$:

- 1. 因為任兩點都存在 simple path,故 connected.
- 2. 假定 $\exists e = (u, v)$. $G' = (V, E \setminus (u, v))$ is connected,則可知 u, v 仍然 rechable,令這條 path 為 p',則可知 G 當中,至少有兩個方法 構造 u 往 v 的相異 simple path:
 - 1. p': 因為「u,v有 path $\Rightarrow u,v$ 有 simple path」
 - 2. (u, v)

發現 u,v 沒有唯一的 simple path,矛盾。

$(3.\Rightarrow4.)$:

前面 Thm 已經證完 $|E| \ge |V| - 1$,僅證 $|E| \le |V| - 1$ 即可。