Dynamic Behavior of Typical Process Systems

OFAPILER

5.1 ■ INTRODUCTION

Examples in the previous two chapters have demonstrated that physical systems, which involve very different physical principles, can have similar dynamic behavior. The concept that a single model type can apply to a wide range of entities, process plants, biological units, economic communities, and so forth provides the basis for "systems" analysis. Thus, it is possible to acquire understanding of a large number of systems from a thorough study of a much smaller number of basic models. In this chapter we study some fundamental model structures that occur frequently in process plants, along with their effects on dynamic behavior. This experience will enable us to recognize the effects of process designs on dynamic behavior.

First, the behavior of some simple, basic systems, such as first- and secondorder and dead-time systems, is summarized using the results from previous chapters, with some extensions. Second, the behavior of these simple systems in series structures is determined. Third, the behavior of parallel structures of simple systems is introduced. Fourth, the effects of recycle structures on dynamic responses are demonstrated. The chapter concludes with an investigation of more complex physical systems of special importance in the process industries: staged systems and multiple input—multiple output systems.

In these sections, the manner in which the behavior of simple systems is altered by common process structures is derived for simple, idealized models but is demonstrated for important process examples involving levels, heat exchangers,