Branch: CSE & IT

Database Management system FD's & Normalization

DPP 07

[MCQ]

1. Consider the following two relational schemas

Schema 1: R (P, Q, R, S)

Schema 2: $R_1(P, Q, R) R_2(Q, S)$ and the following statements.

- S_1 : If the only functional dependencies that hold on the relation in the schema 1 are $P \rightarrow Q$, $R \rightarrow S$, then relation R is in BCNF.
- S_2 : If the only FD that hold on the relation in the schema 2 are $P \rightarrow Q$, $P \rightarrow R$, $Q \rightarrow P$, $P \rightarrow S$ then the relation R₁ and R₂ are in BCNF.

Which of the following statements are true?

- (a) Only S_1 is true
- (b) Only S_2 is true.
- (c) Both $S_1 & S_2$ are true
- (d) Neither S_1 nor S_2 are true

[MCQ]

- Assume that a relation is in 3NF under which of the following conditions R can violate BCNF?
 - (a) The table consists two candidate keys that share a common attribute.
 - (b) The table consists of two non-overlapping candidate keys.
 - (c) The table has a unique candidate key consisting of one attribute.
 - (d) The table consists of two candidate keys each consisting of one attribute.

[MCQ]

Consider a relation R(P, Q, R, S, T, U, V, W) with the following functional dependencies:

 $\{RW \rightarrow V, P \rightarrow QR, Q \rightarrow RUW, T \rightarrow P, U \rightarrow TV\}$, then the relation R is in _____

- (a) 1NF
- (b) 2NF
- (c) 3NF
- (d) BCNF

[MCQ]

- 4. Consider the following statements
 - S_1 : If the proper subset of candidate key determines non-prime attribute, then it is violation case of 2NF.
 - S₂: If $P \rightarrow Q$ and $Q \rightarrow R$ are two FD's then $P \rightarrow Q$ is known as transitive dependency

Which of the statements are/is true?

- (a) Only S₁
- (b) Only S_2
- (c) Both S_1 and S_2 (c) Neither S_1 nor S_2

Batch: Hinglish

[MCQ]

- 5. Consider the following statements about Boyce Codd Normal Form (BCNF)
 - S_1 : The determinant for each functional dependency must be a super key.
 - S₂: Transitive dependencies does not result in abnormalities in a relation in BCNF.
 - (a) Only S₁ is true
 - (b) Only S₂ is true
 - (c) Both S_1 and S_2 are true
 - (d) Neither S_1 nor S_2 is true

[MCQ]

- Consider a table/Relation R has one candidate key, then which of the following is always true?
 - (a) If R is in 2NF, then it is also in 3NF
 - (b) If R is in 3NF, then it is also in BCNF
 - (c) If R is in 2NF, but it is not in 3NF
 - (d) None of the above.

[MSQ]

- 7. Let's suppose, dependencies have to be preserved and BCNF decomposition is not possible. Which of the following normal forms can be still achievable (while preserving dependencies)?
 - (a) 1NF
- (b) 2NF
- (c) 3NF
- (d) 4NF

[MCQ]

- **8.** Consider a relation R(P, Q, R, S, T) with the set of FD's $\{PQR \rightarrow ST \text{ and } T \rightarrow QRS\}$ which of the following statements is true?
 - (a) R is not in 2NF
 - (b) R is in 2NF but not in 3NF
 - (c) R is in 3NF but not in BCNF
 - (d) R is in BCNF

Answer Key

- **(b)** 1.
- 2. (a)
- 3. (a)
- (a)

- 5.
- (c) (b)
- (a, b, c) 7.
- 8. (a)

Hints & Solutions

1. (b)

$S_1(False)$:

The candidate key of schema 1 is PR, therefore both FD violates the BCNF property, so schema 1 is not in BCNF.

S₂(True):

The candidate key of R_1 is P, Q and R_2 is Q in schema2, therefore, relation R_1 & R_2 are in BCNF

2. (a)

Let us take an relation R(P, Q, R, S) with FD Set = $P\{P\rightarrow QR, QR\rightarrow PS, S\rightarrow Q\}$. The table has two candidate keys that share a common attributes QR and RS. Therefore, relation is in 3NF, but not in BCNF, as FD S \rightarrow Q violates BCNF. Hence it is in 3NF but not in BCNF.

3. (a)

 $RW \rightarrow V$

 $P \rightarrow Q$

 $P \rightarrow R$

 $Q \rightarrow R$

 $Q \rightarrow U$

 $Q \rightarrow W$

T→P

 $U\rightarrow T$

 $U\rightarrow V$

As we can see in the 3^{rd} FD P \rightarrow R, P is prime attribute and Q is non-prime attribute, therefore this relation does not satisfy 2NF and higher normal form. So, the highest normal form satisfied by the above relation is 1NF.

4. (a)

 $P \rightarrow Q$ and $Q \rightarrow R$ are two FD's then $P \rightarrow R$ is known as transitive dependency, hence S_2 is false.

$S_1(True)$:

A determinant must be either a candidate key or a super key for each functional dependency.

$S_2(True)$:

In 3NF we remove transitive dependency, and every BCNF is in 3NF.

6. (b)

If there is only one candidate key and relation is 3NF, that means all functional dependency determinants is Candidate key thus relation is in BCNF, Hence, option (b) is true.

7. (a, b, c)

1NF, 2NF and 3NF are always achievable even while there is a need of preserving dependencies. Since 4NF implies BCNF, 4NF is not achievable in this case.

8. (a)

PQR→ST

 $T\rightarrow QRS$

 $(PQR)^{+} = \{P, Q, R, S, T\}$

 $(PT)^+ = \{P, Q, R, S, T\}$

Candidate key = $\{PQR, PT\}$

PQR→ST

PQR is candidate key therefore PQR→ST

Satisfy BCNF

T→QRS

 $T \rightarrow Q$

 $T \rightarrow R$

 $T \rightarrow S$

Violate 2NF.

So not in 2NF

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

