二、一元线性回归模型

目录

- 一元线性回归模型的基本假定
- ② 一元线性回归模型的参数估计
- ③ 一元线性回归模型的检验
- 4 一元线性回归模型的预测
- 5 代码输出结果分析

一元线性回归模型的基本假定

- ▶ 一元线性回归模型的概念
 - 变量之间的两种关系: 函数关系、相关关系
 - 模型: $y_t = b_0 + b_1 x_t + u_t$
 - x_t 是解释变量, y_t 是被解释变量, b_0,b_1 是回归参数, b_0 是常数项, b_1 是回归系数, u_t 是随机误差项
 - 线性指:

$$\frac{\partial y_t}{\partial x_t} = b_1, \frac{\partial^2 y_t}{\partial x_t^2} = 0, \frac{\partial y_t}{\partial b_0} = 1, \frac{\partial y_t}{\partial b_1} = x, \frac{\partial^2 y_t}{\partial b_0^2} = \frac{\partial^2 y_t}{\partial b_1^2} = 0$$

一元线性回归模型的基本假定

- ▶ 一元线性回归模型的基本假定
 - $E(u_t) = 0$
 - $Var(y_t) = Var(u_t) = \sigma^2$
 - $Cov(y_t, y_s) = Cov(u_t, u_s) = 0$
 - $Cov(x_t, u_t) = 0$
 - $u_t \sim N(0, \sigma^2)$
 - 总结: x_t 非随机变量, u_t 为独立的随机变量, $u_t \sim N(0, \sigma^2)$ 或 $y_t \sim N(b_0 + b_1 x_t, \sigma^2)$

- ▶ 总体与样本回归模型与方程
 - 总体回归模型: $y_t = b_0 + b_1 x_t + u_t$
 - 总体回归方程: $E(y_t) = b_0 + b_1 x_t$
 - 样本回归模型: $\hat{y}_t = \hat{b}_0 + \hat{b}_1 x_t + e_t$
 - 样本回归方程: $\hat{y}_t = \hat{b}_0 + \hat{b}_1 x_t$
 - x 5y 的真实线性关系: $y_t = b_0 + b_1x_t + u_t$

- ▶普通最小二乘法 (OLS)
 - 最小二乘准则: $\min \sum e_t^2 = \min \sum (y_t \hat{b}_0 \hat{b}_1 x_t)^2$
 - 满足: $\sum (y_t \hat{y}_t) = 0$
 - 解为:

$$\hat{b}_{1} = \frac{\sum (x_{t} - \bar{x})(y_{t} - \bar{y})}{\sum (x_{t} - \bar{x})^{2}} = \frac{n \sum x_{t} y_{t} - \sum x_{t} \sum y_{t}}{n \sum x_{t}^{2} - (\sum x_{t})^{2}}, \quad \hat{b}_{0} = \bar{y} - \hat{b}_{1}\bar{x}$$

- 估计量与最大似然估计的结果完全一致 (无论大小样本)
- $\bar{\hat{y}} = \bar{y}$, 样本方程经过 (\bar{x}, \bar{y}) , $\sum y_t = \sum \hat{y}_t$, $\sum e_t = 0$

- ▶ 最小二乘估计量的性质
 - 线性: \hat{b}_0 , \hat{b}_1 分别是 y_t , u_t 的线性函数或线性组合
 - 无偏性: $E(\hat{b}_0) = b_0, E(\hat{b}_1) = b_1$
 - 有效性 (方差最小): $\operatorname{Var}(\hat{b}_1) = \frac{\sigma^2}{\sum (x_t \bar{x})^2}, \operatorname{Var}(\hat{b}_0) = \frac{\sigma^2 \sum x_t^2}{n \sum (x_t \bar{x})^2}$
- ▶ 回归参数的区间估计
 - 回归参数的分布: $\hat{b}_0 \sim N(b_0, \operatorname{Var}(\hat{b}_0)), \hat{b}_1 \sim N(b_1, \operatorname{Var}(\hat{b}_1))$
 - 总体 (随机误差项) 的方差: $\hat{\sigma}^2 = \frac{\sum e_t^2}{n-2} = \frac{\sum (y_t \bar{y})^2 \hat{b}_1 \sum (x_t \bar{x})(y_t \bar{y})}{n-2}, \ E(\hat{\sigma}^2) = \sigma^2$ 对于 \hat{b}_0, \hat{b}_1 的方差可以用 $\hat{\sigma}^2$ 来估计 σ^2

- ▶ 回归参数的区间估计
 - 总体(随机误差项)的方差:

大样本时:
$$\hat{b}_0 \sim N(b_0, \text{Var}(\hat{b}_0)), \hat{b}_1 \sim N(b_1, \text{Var}(\hat{b}_1))$$
 小样本时: $\frac{\hat{b}_1 - b_1}{s(\hat{b}_1)} \sim t(n-2)$ (自由度为 $n-2$ 的 t 分布)

• 回归系数的区间估计:

$$\sigma^2$$
已知,区间为 $[\hat{b}_1 - 1.96\sigma(\hat{b}_1), \hat{b}_1 + 1.96\sigma(\hat{b}_1)]$ σ^2 未知,样本容量较大,区间为 $[\hat{b}_1 - 1.96s(\hat{b}_1), \hat{b}_1 + 1.96s(\hat{b}_1)]$ σ^2 未知,样本容量较小,区间为 $[\hat{b}_1 - t_{\alpha/2}(n-2)s(\hat{b}_1), \hat{b}_1 + t_{\alpha/2}(n-2)s(\hat{b}_1)]$

● 缩小置信区间的方法:增大样本容量 n,提高模型的拟合优度 R²

一元线性回归模型的检验

- ▶ 一元线性回归模型的检验
 - 经济意义检验: 检验回归参数的正负是否符合经济意义
 - 回归参数的显著性检验: $H_0: b_1 = 0$ (不显著), $H_1: b_1 \neq 0$ (显著) t 检验:

大样本: 计算
$$Z = \frac{\hat{b}_1}{\sigma(\hat{b}_1)}$$
 与 $Z_{\alpha/2}$; $|Z| \leq Z_{\alpha/2}$,接受 H_0 ; $|Z| > Z_{\alpha/2}$,拒绝 H_0 小样本:计算 $t = \frac{\hat{b}_1}{s(\hat{b}_1)}$ 与 $t_{\alpha/2}(n-2)$; $|t| \leq t_{\alpha/2}(n-2)$,接受 H_0 ; $|t| > t_{\alpha/2}(n-2)$,拒绝 H_0 ; $p \in \mathcal{A}$,接受 H_0 ; $p \in \mathcal{A}$,接受 H_0

一元线性回归模型的检验

▶ 一元线性回归模型的检验

● 拟合优度检验: TSS = ESS+RSS;

总离差平方和 TSS =
$$\sum (y_t - \bar{y})^2$$
;

回归平方和 $ESS = \sum (\hat{y}_t - \bar{y})^2$,反映模型中解释变量所解释的那部

剩余 (残差) 平方和 RSS =
$$\sum e_t^2 = \sum (y_t - \hat{y}_t)^2$$
, 反映模型中解释变量 未解释的那部分离差:

决定系数:
$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$
;

 $R^2 \in [0,1]$, R^2 约接近 1, 拟合优度越好

• 相关系数检验:
$$\rho_{xy} = \frac{\text{Cov}(x,y)}{\sqrt{\text{Var}(x)\text{Var}(y)}} = \frac{\sum (x_t - \bar{x})(y_t - \bar{y})}{\sqrt{\sum (x_t - \bar{x})^2 \sum (y_t - \bar{y})^2}};$$
 $R^2 = r_{xy}^2, r_{xy} \in [-1,1]$

一元线性回归模型的检验

- ▶ 一元线性回归模型的检验
 - 相关系数检验: $H_0: \rho = 0, H_1: \rho \neq 0$ 相关系数检验: $|r| \leq r_{\alpha}(n-2)$, 接受 H_0 , 不存在显著的线性相关关系; $|r| > r_{\alpha}(n-2)$, 拒绝 H_0 , 存在显著的线性相关关系; t 检验: $t = \frac{r-\rho}{s(r)} = \frac{r\sqrt{n-2}}{1-r^2} \sim t(n-2)$; $|t| \leq t_{\alpha/2}(n-2)$, 接受 H_0 ; $|t| > t_{\alpha/2}(n-2)$, 拒绝 H_0
 - 正态性检验:偏度系数 $S = \frac{\sum (x_t \bar{x})^3}{n\sigma_x^3}$; 峰度系数 $K = \frac{\sum (x_t \bar{x})^4}{n\sigma_x^4}$; JB (雅克-贝拉)统计量: JB = $\frac{n}{6} \left[S^2 + \frac{(K-3)^2}{4} \right] \sim \chi^2(2)$; JB $\leq \chi_{\alpha}^2$,接受 H_0 ; JB $> \chi_{\alpha}^2$, 拒绝 H_0

一元线性回归模型的预测

▶ 一元线性回归模型的预测

- 点预测: 给定 x_f , 代入样本回归方程, 求得 y_f
- 区间预测:

总体均值:
$$E(y_f) = \hat{y}_f \pm t_{\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_f - \bar{x})^2}{\sum (x_t - \bar{x})^2}};$$

样本预测值: $y_f = \hat{y}_f \pm t_{\alpha/2} \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_f - \bar{x})^2}{\sum (x_t - \bar{x})^2}}$

• 影响预测区间的大小的因素:

 $\hat{\sigma}^2$ 越小,预测精度越高;

n 越大,预测精度越高;

 $\sum (x_t - \bar{x})^2$ 越大,预测精度越高;

 $(x_f - \bar{x})^2$ 越小, 预测精度越高

代码输出结果分析

▶ 代码输出结果分析

常数和解释变量	参数估计值	参数标准误差	t统计量	双侧概率
$C(b_0)$	331.5264	57.16954	5.799003	0.0000
$PI(b_1)$	0.692812	0.006279	110.3337	0.0000
决定系数	0.997297	被解释变量均值		4662.514
调整的决定系数	0.997215	被解释变量标准差		4659.100
回归标准误差	245.8925	赤池信息准则		13.90311
残差平方和	1995283.	施瓦兹信息准则		13.99199
对数似然函数	-241.3044	汉南准则		13.93379
F统计量	12173.53	DW统计量		0.180221
F统计量的概率	0.000000			_