Logical Aspects of Artificial Intelligence Temporal Logics for Multi-agent Systems

Stéphane Demri demri@lsv.fr https://cv.archives-ouvertes.fr/stephane-demri

October 5th, 2022 - Lecture 4

Plan of the lecture

- Concurrent game structures.
- Introduction to ATL.
- Exercises session.

Breaking news

- Exam on Wednesday November 9th, 2pm-5pm/2p-6pm
- ► Room 1E14
- Lecture notes and exercises sheets with correction authorised.

Temporal Logics for Multi-Agent Systems

Introduction to multi-agent systems

- Multi-agent systems are transition systems in which transitions are fired when simultaneous actions are performed by different agents.
- Coalitions are made of agents that can coordinate their respective actions.

Introduction to multi-agent systems

- Multi-agent systems are transition systems in which transitions are fired when simultaneous actions are performed by different agents.
- Coalitions are made of agents that can coordinate their respective actions.
- Temporal logics for multi-agent systems contain
 - temporal formulae to describe objectives and,
 - strategy modalities parameterised by coalitions.

Introduction to multi-agent systems

- Multi-agent systems are transition systems in which transitions are fired when simultaneous actions are performed by different agents.
- Coalitions are made of agents that can coordinate their respective actions.
- Temporal logics for multi-agent systems contain
 - temporal formulae to describe objectives and,
 - strategy modalities parameterised by coalitions.
- ► In this lecture, we present the basic ingredients in the logic ATL and variants.

Other (online) ressources

- Valentin Goranko's slides (ESSLLI'18)
- See also the proceedings of the international conferences:
 - International Conference on Autonomous Agents and Multi-Agent Systems. (AAMAS)
 - European Conference on Artificial Intelligence. (ECAI)
 - International Conference on Principles of Knowledge Representation and Reasoning. (KR)
- Book "Logical Methods for Specification and Verification of Multi-Agent Systems" by W. Jamroga, 2020.

https://home.ipipan.waw.pl/w.jamroga/papers/jamroga15specifmas-20200411.pdf

Book "Temporal Logics in Computer Science" by S. Demri,
 V. Goranko, M. Lange, Cambridge University Press, 2016.

Concurrent Game Structures

The two-robot example

- ▶ Two robots Robot₁ and Robot₂, and a carriage.
- ▶ Robot₁ can only push the carriage in clockwise direction, Robot₂ can only push it in anti-clockwise direction.

The two-robot example

- ▶ Two robots Robot₁ and Robot₂, and a carriage.
- ▶ Robot₁ can only push the carriage in clockwise direction, Robot₂ can only push it in anti-clockwise direction.

$$\mathfrak{M} = (Agt, S, Act, act, \delta, L)$$

- Agt is a non-empty set of k agents.
- S is a finite non-empty set of **states**.
- Act: finite set of actions.

$$\mathfrak{M} = (Agt, S, Act, act, \delta, L)$$

- ► *Agt* is a non-empty set of *k* **agents**.
- S is a finite non-empty set of states.
- Act: finite set of actions.
- ▶ $L: S \to \mathcal{P}(PROP)$ is a labelling specifying a truth assignment for each state.

$$\mathfrak{M} = (Agt, S, Act, act, \delta, L)$$

- Agt is a non-empty set of k agents.
- S is a finite non-empty set of states.
- Act: finite set of actions.
- ▶ $L: S \rightarrow \mathcal{P}(PROP)$ is a labelling specifying a truth assignment for each state.
- ▶ act : $Agt \times S \rightarrow \mathcal{P}(Act) \setminus \{\emptyset\}$ is the **action manager**. act $(a, s) \approx$ "set of actions that can be executed by the agent a from the control state s".

$$\mathfrak{M} = (Agt, S, Act, act, \delta, L)$$

- Agt is a non-empty set of k agents.
- S is a finite non-empty set of states.
- Act: finite set of actions.
- ▶ $L: S \rightarrow \mathcal{P}(PROP)$ is a labelling specifying a truth assignment for each state.
- act : Agt × S → P(Act) \ {∅} is the action manager. act(a, s) ≈ "set of actions that can be executed by the agent a from the control state s".
- ▶ Transition function $\delta: S \times (Agt \rightarrow Act) \rightarrow S$. $\delta(s, \mathfrak{f})$ undefined if there is some agent a such that $\mathfrak{f}(a) \not\in \mathtt{act}(a, s)$.

$$\mathfrak{M} = (Agt, S, Act, act, \delta, L)$$

- Agt is a non-empty set of k agents.
- S is a finite non-empty set of **states**.
- Act: finite set of actions.
- ▶ $L: S \rightarrow \mathcal{P}(PROP)$ is a labelling specifying a truth assignment for each state.
- ▶ act : $Agt \times S \rightarrow \mathcal{P}(Act) \setminus \{\emptyset\}$ is the action manager. act $(a,s) \approx$ "set of actions that can be executed by the agent a from the control state s".
- **Transition function** δ : $S \times (Agt \rightarrow Act) \rightarrow S$. $\delta(s, \mathfrak{f})$ undefined if there is some agent a such that $\mathfrak{f}(a) \not\in \mathtt{act}(a, s)$.

▶ Action manager act : $Agt \times S \rightarrow \mathcal{P}(Act) \setminus \{\emptyset\}$. act $(1, s_3) = \{c\}$; act $(2, s_3) = \{c\}$.

- ▶ Action manager act : $Agt \times S \rightarrow \mathcal{P}(Act) \setminus \{\emptyset\}$. act $(1, s_3) = \{c\}$; act $(2, s_3) = \{c\}$.
- ► Transition function $\delta: S \times (Agt \rightarrow Act) \rightarrow S$. $\delta(s_4, [1 \mapsto c, 2 \mapsto c]) = s_3$ undef. $\delta(s_4, [1 \mapsto c, 2 \mapsto a])$.

- ▶ Action manager act : $Agt \times S \rightarrow \mathcal{P}(Act) \setminus \{\emptyset\}$. act $(1, s_3) = \{c\}$; act $(2, s_3) = \{c\}$.
- ► Transition function $\delta: S \times (Agt \rightarrow Act) \rightarrow S$. $\delta(s_4, [1 \mapsto c, 2 \mapsto c]) = s_3$ undef. $\delta(s_4, [1 \mapsto c, 2 \mapsto a])$.
- ▶ Labelling $L: S \to \mathcal{P}(PROP)$.

Another concurrent game structure

- Two agents share a file in a cyberspace,
- ► Each agent can apply the action Update (U) if she is enabled to do so, or Skip (N).
- State P is reached when both agents have processed the file.
- Action Reset (R) allows to move to the initial state *E*.

Turn-based CGS

Turn-based CGS: only one agent at a time is executing an action.

▶ Turn-based CGS \mathfrak{M} : for all $s \in S$, there is at most one agent $a \in Agt$ such that $\operatorname{card}(\operatorname{act}(a, s)) > 1$.

The Logic ATL and Variants

Basic concepts: joint action

- ▶ Coalition $A \subseteq Agt$ with opponent coalition $\bar{A} = Agt \setminus A$.
- ▶ $\mathfrak{g}: A \to Act$: **joint action** by $A \subseteq Agt$ in s. Proviso: for all $a \in A$, we have $\mathfrak{g}(a) \in act(a, s)$. \mathfrak{g} can be viewed as a tuple of actions of length card(A).

Basic concepts: joint action

- ▶ Coalition $A \subseteq Agt$ with opponent coalition $\bar{A} = Agt \setminus A$.
- ▶ $\mathfrak{g}: A \to Act$: **joint action** by $A \subseteq Agt$ in s. Proviso: for all $a \in A$, we have $\mathfrak{g}(a) \in act(a, s)$. \mathfrak{g} can be viewed as a tuple of actions of length card(A).
- ▶ $g: A \to Act \sqsubseteq g': A' \to Act \stackrel{\text{def}}{\Leftrightarrow} A \subseteq A'$ and g is the restriction of g' to A.

$$(a_1, a_2, -, -) \sqsubseteq (a_1, a_2, a_3, a_4)$$

('-' indicates undefinedness)

Basic concepts: joint action

- ▶ Coalition $A \subseteq Agt$ with opponent coalition $\bar{A} = Agt \setminus A$.
- ▶ $\mathfrak{g}: A \to Act$: **joint action** by $A \subseteq Agt$ in s. Proviso: for all $a \in A$, we have $\mathfrak{g}(a) \in act(a, s)$. \mathfrak{g} can be viewed as a tuple of actions of length card(A).
- ▶ $g: A \to Act \sqsubseteq g': A' \to Act \stackrel{\text{def}}{\Leftrightarrow} A \subseteq A'$ and g is the restriction of g' to A.

$$(a_1, a_2, -, -) \sqsubseteq (a_1, a_2, a_3, a_4)$$

('-' indicates undefinedness)

 \triangleright $D_A(s)$: set of joint actions by A in s.

Basic concepts: outcome set

- ▶ Joint action $g: A \rightarrow Act$ in s.
- $ightharpoonup \operatorname{out}(s,\mathfrak{g})$ defined as the set of states reachable from s in one step when the actions performed by the agents in A are determined by \mathfrak{g} .

Basic concepts: outcome set

- ▶ Joint action $g: A \rightarrow Act$ in s.
- $ightharpoonup \operatorname{out}(s,\mathfrak{g})$ defined as the set of states reachable from s in one step when the actions performed by the agents in A are determined by \mathfrak{g} .
- Set of outcomes:

$$\mathtt{out}(\boldsymbol{s},\mathfrak{g}) \stackrel{\text{def}}{=} \{\boldsymbol{s}' \in \boldsymbol{S} \ | \ \exists \, \mathfrak{f} \in \mathcal{D}_{Agt}(\boldsymbol{s}) \text{ s.t. } \mathfrak{g} \sqsubseteq \mathfrak{f} \text{ and } \boldsymbol{s}' = \delta(\boldsymbol{s},\mathfrak{f}) \}$$

out
$$(s_0, [1 \mapsto a]) = \{s_2, s_3, s_4\}$$

out $(s_0, [1 \mapsto b, 2 \mapsto a]) = \{s_1\}$

Basic concepts: strategies

▶ card(out(s, f)) = 1 if $f \in D_{Agt}(s)$.

Basic concepts: strategies

- ▶ $\operatorname{card}(\operatorname{out}(s,\mathfrak{f})) = 1 \text{ if } \mathfrak{f} \in D_{Agt}(s).$
- ► Computation $\lambda = s_0 \xrightarrow{\mathfrak{f}_0} s_1 \xrightarrow{\mathfrak{f}_1} s_2 \dots$ such that for all i, we have $s_{i+1} \in \delta(s_i, \mathfrak{f}_i)$. (history = finite computation)
- ► Herein, computations can be also written $s_0 s_1 s_2 ...$ (without joint actions).
- ▶ Linear model $L(s_0) \rightarrow L(s_1) \rightarrow L(s_2) \cdots$ (sequence of propositional valuations)

Basic concepts: strategies

- ▶ card(out(s, f)) = 1 if $f \in D_{Agt}(s)$.
- ► Computation $\lambda = s_0 \xrightarrow{\mathfrak{f}_0} s_1 \xrightarrow{\mathfrak{f}_1} s_2 \dots$ such that for all i, we have $s_{i+1} \in \delta(s_i, \mathfrak{f}_i)$. (history = finite computation)
- ► Herein, computations can be also written $s_0 s_1 s_2 ...$ (without joint actions).
- ▶ Linear model $L(s_0) \rightarrow L(s_1) \rightarrow L(s_2) \cdots$ (sequence of propositional valuations)
- ▶ **Strategy** σ_A for A is a map from the set of finite computations (histories) to the set of joint actions by A such that

$$\sigma_{\mathcal{A}}(s_0 \xrightarrow{\mathfrak{f}_0} s_1 \cdots \xrightarrow{\mathfrak{f}_{n-1}} s_n) \in D_{\mathcal{A}}(s_n)$$

Positional strategies

- Memory-based strategies vs. positional strategies.
- σ_A is a **positional strategy** $\stackrel{\text{def}}{\Leftrightarrow}$ for all $s_0 \stackrel{f_0}{\to} s_1 \cdots \stackrel{f_{n-1}}{\longrightarrow} s_n$ and $s_0' \stackrel{f_0'}{\to} s_1' \cdots \stackrel{f_{m-1}'}{\longrightarrow} s_m'$ with $s_n = s_m'$, we have

$$\sigma_{\mathcal{A}}(s_0 \xrightarrow{\mathfrak{f}_0} s_1 \cdots \xrightarrow{\mathfrak{f}_{n-1}} s_n) = \sigma_{\mathcal{A}}(s_0' \xrightarrow{\mathfrak{f}_0'} s_1' \cdots \xrightarrow{\mathfrak{f}_{m-1}'} s_m')$$
(only the value of the last state matters)

Positional strategies

- Memory-based strategies vs. positional strategies.
- σ_A is a **positional strategy** $\stackrel{\text{def}}{\Leftrightarrow}$ for all $s_0 \stackrel{f_0}{\to} s_1 \cdots \stackrel{f_{n-1}}{\longrightarrow} s_n$ and $s_0' \stackrel{f_0'}{\to} s_1' \cdots \stackrel{f_{m-1}'}{\longrightarrow} s_m'$ with $s_n = s_m'$, we have

$$\sigma_{\mathcal{A}}(s_0 \xrightarrow{\mathfrak{f}_0} s_1 \cdots \xrightarrow{\mathfrak{f}_{n-1}} s_n) = \sigma_{\mathcal{A}}(s'_0 \xrightarrow{\mathfrak{f}'_0} s'_1 \cdots \xrightarrow{\mathfrak{f}'_{m-1}} s'_m)$$

(only the value of the last state matters)

► Memoryless strategy ^{def} positional strategy.

$$\sigma_{\mathcal{A}}: s \in S \mapsto \mathfrak{f} \in D_{\mathcal{A}}(s)$$

Computations respecting a strategy

$$\lambda = s_0 \stackrel{\mathfrak{f}_0}{\rightarrow} s_1 \stackrel{\mathfrak{f}_1}{\rightarrow} s_2 \cdots \text{ respects } \sigma_A \stackrel{\text{def}}{\Leftrightarrow} \forall i < |\lambda|,$$

$$s_{i+1} \in \mathsf{out}(s_i, \sigma_A(s_0 \stackrel{\mathfrak{f}_0}{\rightarrow} s_1 \dots \stackrel{\mathfrak{f}_{i-1}}{\rightarrow} s_i))$$

$$D_A(s_i)$$

Computations respecting a strategy

$$s_{i+1} \in \mathsf{out}(s_i, \sigma_{A}(s_0 \overset{\mathfrak{f}_0}{\underset{\cap}{\longrightarrow}} s_1 \dots \overset{\mathfrak{f}_{i-1}}{\underset{\cap}{\longrightarrow}} s_i))$$
 $D_{A}(s_i)$

- $ightharpoonup \lambda$ respecting σ_A is **maximal** whenever λ cannot be extended further while respecting the strategy.
- ▶ $Comp(s, \sigma_A)$: set of maximal computations from s respecting the strategy σ_A .

Computation tree given a strategy

▶ Positional $\sigma_{\{1\}}$: select a on s_1 , b on s_2 , otherwise c.

Computation tree given a strategy

▶ Positional $\sigma_{\{1\}}$: select *a* on s_1 , *b* on s_2 , otherwise *c*.

 $ightharpoonup \sigma_{\{1\}}$ generates a set of computations whose linear models can be defined by a Büchi automaton (BA).

Trimming a CGS

- ▶ CGS $\mathfrak{M} = (Agt, S, Act, act, \delta, L)$.
- ▶ Coalition $A \subseteq Agt$.
- ▶ Memoryless strategy σ : $s \in S \mapsto f \in D_A(s)$.

Trimming a CGS

- ▶ CGS $\mathfrak{M} = (Agt, S, Act, act, \delta, L)$.
- ▶ Coalition $A \subseteq Agt$.
- ▶ Memoryless strategy σ : $s \in S \mapsto f \in D_A(s)$.
- ▶ Underlying transition system (S, R, L) such that for all $s, s' \in S$, we have

$$(s,s') \in R \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad s' \in \mathsf{out}(s,\sigma(s))$$

Trimming a CGS

- ▶ CGS $\mathfrak{M} = (Agt, S, Act, act, \delta, L)$.
- ▶ Coalition $A \subseteq Agt$.
- ▶ Memoryless strategy σ : $s \in S \mapsto f \in D_A(s)$.
- ▶ Underlying transition system (S, R, L) such that for all $s, s' \in S$, we have

$$(s,s')\in R\quad \stackrel{\mathsf{def}}{\Leftrightarrow}\quad s'\in \mathsf{out}(s,\sigma(s))$$

▶ R represents the set of moves allowed by the opponent coalition $(Agt \setminus A)$ when A has the positional strategy σ .

Strategies as infinite trees

► For non-positional strategies, computations organised as a tree not necessarily generated from a BA.

 $Agt = \{1,2\}$; Strategy for $\{1\}$

Examples of strategies

Positional strategy for Robot₁: σ(s₀) = push, σ(s₁) = push, σ(s₂) = wait.

Examples of strategies

- Positional strategy for Robot₁: $\sigma(s_0) = \text{push}$, $\sigma(s_1) = \text{push}$, $\sigma(s_2) = \text{wait}$.
- The set of maximal computations respecting σ from s₀ (projected on S only):

$$\{s_0^\omega\} \cup s_0^+ \big((s_1^+ s_2^+)^\omega \cup (s_1^+ s_2^+)^* s_1^\omega \cup (s_1^+ s_2^+)^* s_2^\omega \big)$$

• Which temporal properties are satisfied by such computations respecting σ ?

Specifying properties on ω -sequences

- LTL: linear-time temporal logic.
- LTL formulae:

$$\varphi, \psi ::= p \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\psi$$

- Atomic formulae are propositional variables.
- ► LTL models λ are ω -sequences of propositional valuations of the form $\lambda : \mathbb{N} \to \mathcal{P}(PROP)$.

(
$$\approx$$
 linear model

Specifying properties on ω -sequences

- LTL: linear-time temporal logic.
- LTL formulae:

$$\varphi, \psi ::= p \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U}\psi$$

- Atomic formulae are propositional variables.
- ► LTL models λ are ω -sequences of propositional valuations of the form $\lambda : \mathbb{N} \to \mathcal{P}(PROP)$.

(
$$\approx$$
 linear model

 \blacktriangleright X φ states that the next state satisfies φ :

Semantics of the linear-time temporal operators

▶ $F\varphi$ states that some future (or possibly, the current) state satisfies φ without specifying explicitly which one that is.

(G φ states that φ is always satisfied.)

Semantics of the linear-time temporal operators

▶ $F\varphi$ states that some future (or possibly, the current) state satisfies φ without specifying explicitly which one that is.

(G φ states that φ is always satisfied.)

 $ightharpoonup \varphi U\psi$ states that φ is true until ψ is true.

Satisfaction relation

- $\triangleright \lambda, i \models p \stackrel{\mathsf{def}}{\Leftrightarrow} p \in \lambda(i),$
- $\blacktriangleright \lambda, i \models \neg \varphi \stackrel{\text{def}}{\Leftrightarrow} \lambda, i \not\models \varphi,$
- lacksquare $\lambda, i \models \varphi_1 \wedge \varphi_2 \stackrel{\text{def}}{\Leftrightarrow} \lambda, i \models \varphi_1 \text{ and } \lambda, i \models \varphi_2,$
- ▶ $\lambda, i \models \varphi_1 \cup \varphi_2 \stackrel{\text{def}}{\Leftrightarrow}$ there is $j \geq i$ such that $\lambda, j \models \varphi_2$ and $\lambda, k \models \varphi_1$ for all $i \leq k < j$.

$$\mathsf{F}\varphi \stackrel{\mathsf{def}}{=} \top \mathsf{U}\varphi \qquad \mathsf{G}\varphi \stackrel{\mathsf{def}}{=} \neg \mathsf{F}\neg \varphi \qquad \varphi \Rightarrow \psi \stackrel{\mathsf{def}}{=} \neg \varphi \lor \psi \dots$$

About LTL

- ▶ Models(φ): set of models λ such that λ , $0 \models \varphi$.
- ▶ Models can be viewed as ω -words over the alphabet $\mathcal{P}(PROP)$.
- ▶ Models(φ) can be effectively represented by a Büchi automaton \mathbb{A}_{φ} . (automata-based approach)
- ▶ LTL satisfiability problem is PSPACE-complete.

The logic ATL (Alternating-time Temporal Logic)

- Arr $\langle\!\langle A \rangle\!\rangle$ Φ: the agents are divided into proponents in A and opponents in $Agt \setminus A$.
- Φ: property on computations ("objective").
- M, s | ((A)) Φ equivalent to solving a game with winning condition Φ.
 (A versus Agt \ A)

The logic ATL (Alternating-time Temporal Logic)

- Arr $\langle\!\langle A \rangle\!\rangle$ Φ: the agents are divided into proponents in A and opponents in $Agt \setminus A$.
- Φ: property on computations ("objective").
- M, s | ((A)) Φ equivalent to solving a game with winning condition Φ.
 (A versus Agt \ A)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \, \mathsf{X}\varphi \mid \langle\!\langle A \rangle\!\rangle \, \mathsf{G}\varphi \mid \langle\!\langle A \rangle\!\rangle \, \varphi \mathsf{U}\varphi$$
$$p \in \mathsf{PROP} \ \ A \subseteq \mathsf{Agt}$$

ATL modalities, informally

▶ $\langle\!\langle A \rangle\!\rangle$ X φ : "The coalition A has a collective action ensuring that any outcome (state) satisfies φ ".

ATL modalities, informally

- ▶ $\langle\!\langle A \rangle\!\rangle$ X φ : "The coalition A has a collective action ensuring that any outcome (state) satisfies φ ".
- ▶ $\langle\!\langle A \rangle\!\rangle$ G φ : "The coalition A has a collective strategy to maintain forever outcomes satisfying φ on every computation respecting that strategy".

ATL modalities, informally

- ▶ $\langle\!\langle A \rangle\!\rangle X \varphi$: "The coalition A has a collective action ensuring that any outcome (state) satisfies φ ".
- ▶ $\langle\!\langle A \rangle\!\rangle$ G φ : "The coalition A has a collective strategy to maintain forever outcomes satisfying φ on every computation respecting that strategy".
- ▶ $\langle\!\langle A \rangle\!\rangle \psi U \varphi$: "The coalition A has a collective strategy to eventually reach an outcome satisfying φ , while maintaining in the meantime the truth of ψ , on every computation respecting that strategy".

Satisfaction relation, formally

$$\mathfrak{M}, s \models p$$
 $\stackrel{\mathsf{def}}{\Leftrightarrow} p \in L(s)$

$$\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{X} \varphi \qquad \stackrel{\text{\tiny def}}{\Leftrightarrow} \quad \text{there is a strategy σ_A s.t.} \\ \text{for all $s_0 \xrightarrow{\mathfrak{f}_0} s_1 \ldots \in \texttt{Comp}(s, \sigma_A)$,} \\ \text{we have $\mathfrak{M}, s_1 \models \varphi$}$$

Satisfaction relation, formally

$$\mathfrak{M}, s \models p$$
 $\stackrel{\mathsf{def}}{\Leftrightarrow} p \in L(s)$

$$\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{X} \varphi \qquad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \text{there is a strategy σ_A s.t.}$$
 for all $s_0 \stackrel{\mathfrak{f}_0}{\to} s_1 \ldots \in \mathsf{Comp}(s, \sigma_A)$, we have $\mathfrak{M}, s_1 \models \varphi$

$$\mathfrak{M},s\models \langle\!\langle A\rangle\!\rangle \varphi_1 \mathsf{U} \varphi_2 \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \text{there is a strategy σ_A s.t. for all } \\ \lambda=s_0\stackrel{\mathfrak{f}_0}{\to}s_1\ldots\in \mathsf{Comp}(s,\sigma_A), \\ \text{there is some i s.t. } \mathfrak{M},s_i\models \varphi_2 \\ \text{and for all $j\in[0,i-1]$,} \\ \text{we have $\mathfrak{M},s_i\models\varphi_1$.}$$

Satisfaction relation, formally

$$\mathfrak{M}, s \models p$$
 $\stackrel{\text{def}}{\Leftrightarrow}$ $p \in L(s)$

$$\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{X} \varphi \qquad \stackrel{\text{def}}{\Leftrightarrow} \quad \text{there is a strategy σ_A s.t.}$$
 for all $s_0 \stackrel{\mathfrak{f}_0}{\to} s_1 \ldots \in \mathsf{Comp}(s, \sigma_A)$, we have $\mathfrak{M}, s_1 \models \varphi$

$$\mathfrak{M},s\models \langle\!\langle A\rangle\!\rangle \varphi_1 \mathsf{U} \varphi_2 \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \text{there is a strategy σ_A s.t. for all } \\ \lambda = s_0 \stackrel{\mathfrak{f}_0}{\to} s_1 \ldots \in \mathsf{Comp}(s,\sigma_A), \\ \text{there is some i s.t. } \mathfrak{M},s_i \models \varphi_2 \\ \text{and for all $j\in [0,i-1]$,} \\ \text{we have $\mathfrak{M},s_i\models \varphi_1$.}$$

$$\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{G} \varphi \qquad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \mathsf{there is a strategy} \ \sigma_{A} \ \mathsf{s.t. for all} \ \lambda = s_0 \stackrel{\mathfrak{f}_0}{\to} s_1 \ldots \in \mathsf{Comp}(s, \sigma_{A}), \ \mathsf{for all} \ i, \ \mathsf{we have} \ \mathfrak{M}, s_i \models \varphi.$$

Getting acquainted with ATL

The semantics for " $\langle\!\langle A\rangle\!\rangle$ G" involves an existential quantification followed by two universal quantifications.

(why?)

Getting acquainted with ATL

► The semantics for " $\langle\!\langle A \rangle\!\rangle$ G" involves an existential quantification followed by two universal quantifications.

(why?)

- $\langle\!\langle A \rangle\!\rangle$ F $\varphi \stackrel{\text{def}}{=} \langle\!\langle A \rangle\!\rangle$ ($\top U \varphi$). The coalition A has a joint strategy to eventually reach an outcome satisfying φ .
- $\blacktriangleright \llbracket \varphi \rrbracket^{\mathfrak{M}} \stackrel{\mathsf{def}}{=} \{ s \in S \mid \mathfrak{M}, s \models \varphi \}.$

Playing with formulae

- ▶ \mathfrak{M} , $pos_0 \not\models \langle \langle 1 \rangle \rangle X pos_1$ and \mathfrak{M} , $pos_0 \not\models \langle \langle 2 \rangle \rangle X pos_1$.
- $> \mathfrak{M}, pos_0 \models \langle \langle 1, 2 \rangle \rangle \times pos_0 \wedge \langle \langle 1, 2 \rangle \times pos_1 \wedge \langle \langle 1, 2 \rangle \times pos_2.$

$$\mathfrak{M}, pos_0 \not\models \langle 1 \rangle \mathsf{Fpos}_1 \text{ and } \mathfrak{M}, pos_1 \models \langle 1 \rangle \mathsf{F}(\mathsf{pos}_1 \vee \mathsf{pos}_2)$$

$$\mathfrak{M}, \textit{pos}_0 \models \langle\!\langle 1 \rangle\!\rangle G \neg \texttt{pos}_1 \text{ and } \mathfrak{M} \models \langle\!\langle 1, 2 \rangle\!\rangle X \langle\!\langle 1 \rangle\!\rangle (\texttt{pos}_0 \ \mathsf{U} \ \texttt{pos}_2)$$

Decision problems

Model-checking problem for ATL:

Input: φ in ATL, a finite CGS $\mathfrak M$ and a state s,

Question: $\mathfrak{M}, s \models \varphi$?

Decision problems

Model-checking problem for ATL:

Input: φ in ATL, a finite CGS \mathfrak{M} and a state s,

Question: $\mathfrak{M}, s \models \varphi$?

Satisfiability problem for ATL:

Input: φ in ATL,

Question: Is there a CGS \mathfrak{M} and s in \mathfrak{M} such that

 $\mathfrak{M}, s \models \varphi$?

Validity problem for ATL:

Input: φ in ATL,

Question: Is it true that for all CGS \mathfrak{M} and s in \mathfrak{M} , we

have $\mathfrak{M}, s \models \varphi$?

Computational complexity

Model-checking problem for ATL is PTIME-complete. Labeling algorithm presented during the next lecture. (Positional strategies are sufficient)

Computational complexity

- Model-checking problem for ATL is PTIME-complete. Labeling algorithm presented during the next lecture. (Positional strategies are sufficient)
- Satisfiability and validity problems are EXPTIME-complete.

Positional strategies are sufficient for ATL!

- ightharpoonup: variant of \models in which only positional strategies are legitimate.
- Positional strategies are sufficient for ATL:

$$\mathfrak{M}, \mathbf{s} \models \varphi \text{ iff } \mathfrak{M}, \mathbf{s} \models_{pos} \varphi$$

Positional strategies are sufficient for ATL!

- ► |= pos: variant of |= in which only positional strategies are legitimate.
- Positional strategies are sufficient for ATL:

$$\mathfrak{M}, \mathbf{s} \models \varphi \text{ iff } \mathfrak{M}, \mathbf{s} \models_{pos} \varphi$$

- Positional strategies amount to remove transitions in the CGS (and keep only the ones related to the positional strategy of A).
- ► This property does not hold for the extension ATL*. (see next lecture)

"Proof": positional strategies are sufficient for ATL

Formulae $\langle\!\langle A \rangle\!\rangle Gp$

Relationships between ATL and CTL

- Computation Tree Logic CTL: branching-time temporal logic well-known to perform model-checking.
- ➤ A CGS without transitions labelled by action tuples defines a model for CTL (or with 1 agent and 1 action).

Relationships between ATL and CTL

- Computation Tree Logic CTL: branching-time temporal logic well-known to perform model-checking.
- ► A CGS without transitions labelled by action tuples defines a model for CTL (or with 1 agent and 1 action).

- Existential path quantifier E in CTL corresponds to $\langle Agt \rangle$.
- ▶ Universal path quantifier A in CTL corresponds to $\langle\!\langle \emptyset \rangle\!\rangle$.

CTL formulae

$$\varphi ::= p \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{EX}\varphi \mid \mathsf{E}(\varphi \mathsf{U}\varphi) \mid \mathsf{A}(\varphi \mathsf{U}\varphi).$$

▶ CTL models of the form $\mathcal{T} = (S, R, L)$.

Informal semantics for $A(\varphi U \psi)$

- ▶ Path π in \mathcal{T} : sequence of states in the graph (S, R).
- ▶ A path is maximal if it is either infinite, or is finite and ends in a state with no successors.
- We assume that in CTL models no deadlock states.

- ▶ Path π in \mathcal{T} : sequence of states in the graph (S, R).
- ► A path is maximal if it is either infinite, or is finite and ends in a state with no successors.
- We assume that in CTL models no deadlock states.

$$\mathcal{T}, s \models \mathsf{EX} arphi$$
 iff there is s' such that $(s, s') \in R$ and $\mathcal{T}, s' \models \varphi$

- ▶ Path π in \mathcal{T} : sequence of states in the graph (S, R).
- ► A path is maximal if it is either infinite, or is finite and ends in a state with no successors.
- We assume that in CTL models no deadlock states.

$$\mathcal{T}, s \models \mathsf{EX} arphi$$
 iff there is s' such that $(s, s') \in R$ and $\mathcal{T}, s' \models \varphi$

$$\mathcal{T}, s \models \mathsf{E}(\varphi_1 \mathsf{U} \varphi_2) \quad \text{iff} \quad \text{there is a path π starting at s and an $i \geq 0$} \\ \quad \text{such that $\pi(0) = s$, $\mathcal{T}, \pi(i) \models \varphi_2$ and} \\ \quad \text{for every $j \in [0, i-1]$, we have $\mathcal{T}, \pi(j) \models \varphi_1$}$$

- ▶ Path π in \mathcal{T} : sequence of states in the graph (S, R).
- ► A path is maximal if it is either infinite, or is finite and ends in a state with no successors.
- ▶ We assume that in CTL models no deadlock states.

$$\mathcal{T}, s \models \mathsf{EX} arphi$$
 iff there is s' such that $(s, s') \in R$ and $\mathcal{T}, s' \models \varphi$

$$\mathcal{T}, s \models \mathsf{E}(\varphi_1 \mathsf{U} \varphi_2) \quad \text{iff} \quad \text{there is a path π starting at s and an $i \geq 0$} \\ \quad \quad \text{such that $\pi(0) = s$, $\mathcal{T}, \pi(i) \models \varphi_2$ and} \\ \quad \quad \quad \text{for every $j \in [0, i-1]$, we have $\mathcal{T}, \pi(j) \models \varphi_1$}$$

$$\mathcal{T}, s \models \mathsf{A}(\varphi_1 \mathsf{U} \varphi_2)$$
 iff for all paths π such that $\pi(0) = s$, there is $i \geq 0$ such that $\mathcal{T}, \pi(i) \models \varphi_2$ and for every $j \in [0, i-1]$, we have $\mathcal{T}, \pi(j) \models \varphi_1$

Relating CTL and ATL

- ► CTL model-checking problem is PTIME-complete.
- ► CTL satisfiability problem is EXPTIME-complete.

Relating CTL and ATL

- ► CTL model-checking problem is PTIME-complete.
- ► CTL satisfiability problem is EXPTIME-complete.
- Reduction from CTL satisfiability (resp. model-checking) to ATL satisfiability (resp. model-checking).

(E corresponds to $\langle\!\langle Agt \rangle\!\rangle$ and A corresponds to $\langle\!\langle \emptyset \rangle\!\rangle$.)

Fixpoints and Operators

Introducing a predecessor operator pre

- ▶ CGS $\mathfrak{M} = (Agt, S, Act, act, \delta, L)$, $A \subseteq Agt$, and $Z \subseteq S$.
- ▶ $pre(\mathfrak{M}, A, Z)$: set of states from which A has a collective move that guarantees that the outcome to be in Z.

Introducing a predecessor operator pre

- ▶ CGS $\mathfrak{M} = (Agt, S, Act, act, \delta, L)$, $A \subseteq Agt$, and $Z \subseteq S$.
- ▶ $pre(\mathfrak{M}, A, Z)$: set of states from which A has a collective move that guarantees that the outcome to be in Z.
- ▶ Definition of $pre(\mathfrak{M}, A, \cdot)$: $\mathcal{P}(S) \to \mathcal{P}(S)$

$$pre(\mathfrak{M}, A, Z) \stackrel{\text{def}}{=}$$

 $\{s \in S \mid \text{there is } \mathfrak{f} \in D_A(s) \text{ such that } \mathtt{out}(s,\mathfrak{f}) \subseteq Z\}$

Example

$$pre(\mathfrak{M}, \{1\}, \{D, U_1, P\}) = ??$$

Proof of
$$[\![\langle\langle A\rangle\rangle \mathsf{X}\varphi]\!]^\mathfrak{M} = \operatorname{pre}(\mathfrak{M}, A, [\![\varphi]\!]^\mathfrak{M})$$

```
\{s \in S \mid \text{there is } \mathfrak{f} \in D_{A}(s) \text{ such that } \mathtt{out}(s,\mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}} \}
```

Proof of
$$[\![\langle\langle A\rangle\rangle \mathsf{X}\varphi]\!]^\mathfrak{M} = \operatorname{pre}(\mathfrak{M}, A, [\![\varphi]\!]^\mathfrak{M})$$

$$\{s \in S \mid \text{there is } \mathfrak{f} \in \textit{D}_{\textit{A}}(s) \text{ such that } \mathtt{out}(s,\mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}} \}$$

▶ Let $s \in \text{pre}(\mathfrak{M}, A, \llbracket \varphi \rrbracket^{\mathfrak{M}})$. There is $\mathfrak{f} \in D_A(s)$ such that $\text{out}(s, \mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}}$.

Proof of
$$[\![\langle\langle A\rangle\rangle\rangle X\varphi]\!]^{\mathfrak{M}} = \operatorname{pre}(\mathfrak{M},A,[\![\varphi]\!]^{\mathfrak{M}})$$

$$\{s \in S \mid \text{there is } \mathfrak{f} \in \mathit{D}_{\mathit{A}}(s) \text{ such that } \mathtt{out}(s,\mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}} \}$$

- ▶ Let $s \in \text{pre}(\mathfrak{M}, A, \llbracket \varphi \rrbracket^{\mathfrak{M}})$. There is $\mathfrak{f} \in D_A(s)$ such that $\text{out}(s, \mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}}$.
- Let σ be a strategy such that $\sigma(s) = \mathfrak{f}$.
- ▶ The strategy σ witnesses satisfaction of $\mathfrak{M}, s \models \langle \! \langle A \rangle \! \rangle \mathsf{X} \varphi$.

Proof of
$$[\![\langle\langle A\rangle\rangle\rangle X\varphi]\!]^{\mathfrak{M}} = \operatorname{pre}(\mathfrak{M},A,[\![\varphi]\!]^{\mathfrak{M}})$$

$$\{s \in S \mid \text{there is } \mathfrak{f} \in \textit{D}_{\textit{A}}(s) \text{ such that } \mathtt{out}(s,\mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}} \}$$

- ▶ Let $s \in \text{pre}(\mathfrak{M}, A, \llbracket \varphi \rrbracket^{\mathfrak{M}})$. There is $\mathfrak{f} \in D_A(s)$ such that $\text{out}(s, \mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}}$.
- Let σ be a strategy such that $\sigma(s) = \mathfrak{f}$.
- ▶ The strategy σ witnesses satisfaction of $\mathfrak{M}, s \models \langle \! \langle A \rangle \! \rangle \mathsf{X} \varphi$.
- ► Conversely, if $\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{X} \varphi$ witnessed by σ , then $s \in \mathtt{pre}(\mathfrak{M}, A, \llbracket \varphi \rrbracket^{\mathfrak{M}})$ as $\mathtt{out}(s, \sigma(s)) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}}$

Equivalences based on fixpoint characterisations

$$\boxed{\langle\!\langle \textbf{\textit{A}}\rangle\!\rangle \mathsf{G}\varphi} \Leftrightarrow \varphi \land \langle\!\langle \textbf{\textit{A}}\rangle\!\rangle \mathsf{X} \boxed{\langle\!\langle \textbf{\textit{A}}\rangle\!\rangle \mathsf{G}\varphi}$$

$$\boxed{ \langle\!\langle A \rangle\!\rangle (\varphi \mathsf{U} \psi)} \Leftrightarrow (\psi \vee (\varphi \wedge \langle\!\langle A \rangle\!\rangle \mathsf{X} \boxed{ \langle\!\langle A \rangle\!\rangle (\varphi \mathsf{U} \psi)}))$$

Equivalences based on fixpoint characterisations

$$\boxed{\langle\!\langle A \rangle\!\rangle \mathsf{G} \varphi} \Leftrightarrow \varphi \wedge \langle\!\langle A \rangle\!\rangle \mathsf{X} \boxed{\langle\!\langle A \rangle\!\rangle \mathsf{G} \varphi}$$

$$\boxed{ \left(\!\! \left\langle \!\! \left\langle A \right\rangle \!\! \left(\varphi \mathsf{U} \psi \right) \right. \!\! \right) \Leftrightarrow \left(\psi \vee \left(\varphi \wedge \left\langle \!\! \left\langle A \right\rangle \!\! \left\langle \!\! \left\langle A \right\rangle \!\! \left(\varphi \mathsf{U} \psi \right) \right. \!\! \right) \right)}$$

▶ $[\![\langle A \rangle \rangle G \varphi]\!]^{\mathfrak{M}}$ and $[\![\langle A \rangle \rangle (\varphi U \psi)]\!]^{\mathfrak{M}}$ are fixpoints.

(but in which sense?)

Fixpoint theory

- ▶ $\mathcal{G}: \mathcal{P}(X) \to \mathcal{P}(X)$ is **monotone** if for all $Y_1, Y_2 \subseteq X$, $Y_1 \subseteq Y_2$ implies $\mathcal{G}(Y_1) \subseteq \mathcal{G}(Y_2)$.
- ▶ Given \mathcal{G} : $\mathcal{P}(X) \to \mathcal{P}(X)$, a set $Y \subseteq X$ is
 - ▶ a fixpoint of \mathcal{G} if $\mathcal{G}(Y) = Y$,
 - ▶ a **least fixpoint** if Y is a fixpoint and $Y \subseteq Z$ for every fixpoint Z,
 - a greatest fixpoint if Y is a fixpoint and Y ⊇ Z for every fixpoint Z.

Knaster-Tarski Theorem: a restricted form

- ▶ Knaster-Tarski Theorem (a restricted form). Let $\mathcal{G}: \mathcal{P}(X) \to \mathcal{P}(X)$ be a monotone operator. Then \mathcal{G} has
 - ightharpoonup a least fixpoint $\mu \mathcal{G}$ and,
 - ightharpoonup a greatest fixpoint $\nu \mathcal{G}$.
- Moreover, $\mu\mathcal{G}$ obtained by applying the successive iterations of \mathcal{G} beginning with \emptyset until a fixpoint is reached.

$$\emptyset \subseteq \mathcal{G}(\emptyset) \subseteq \mathcal{G}^2(\emptyset) \subseteq \mathcal{G}^3(\emptyset) \cdots$$

Knaster-Tarski Theorem: a restricted form

- ▶ Knaster-Tarski Theorem (a restricted form). Let $\mathcal{G}: \mathcal{P}(X) \to \mathcal{P}(X)$ be a monotone operator. Then \mathcal{G} has
 - ightharpoonup a least fixpoint $\mu \mathcal{G}$ and,
 - ightharpoonup a greatest fixpoint $\nu \mathcal{G}$.
- Moreover, $\mu\mathcal{G}$ obtained by applying the successive iterations of \mathcal{G} beginning with \emptyset until a fixpoint is reached.

$$\emptyset \subseteq \mathcal{G}(\emptyset) \subseteq \mathcal{G}^2(\emptyset) \subseteq \mathcal{G}^3(\emptyset) \cdots$$

 $\triangleright \nu \mathcal{G}$ obtained by applying the successive iterations of \mathcal{G} , beginning with X, until a fixpoint is reached.

$$X \supseteq \mathcal{G}(X) \supseteq \mathcal{G}^2(X) \supseteq \mathcal{G}^3(X) \cdots$$

Knaster-Tarski Theorem: a restricted form

- ▶ Knaster-Tarski Theorem (a restricted form). Let $\mathcal{G}: \mathcal{P}(X) \to \mathcal{P}(X)$ be a monotone operator. Then \mathcal{G} has
 - ightharpoonup a least fixpoint $\mu \mathcal{G}$ and,
 - a greatest fixpoint νG.
- Moreover, $\mu\mathcal{G}$ obtained by applying the successive iterations of \mathcal{G} beginning with \emptyset until a fixpoint is reached.

$$\emptyset \subseteq \mathcal{G}(\emptyset) \subseteq \mathcal{G}^2(\emptyset) \subseteq \mathcal{G}^3(\emptyset) \cdots$$

 $\triangleright \nu \mathcal{G}$ obtained by applying the successive iterations of \mathcal{G} , beginning with X, until a fixpoint is reached.

$$X \supseteq \mathcal{G}(X) \supseteq \mathcal{G}^2(X) \supseteq \mathcal{G}^3(X) \cdots$$

▶ If X is finite, the fixpoints $\mu \mathcal{G}$ and $\nu \mathcal{G}$ can be obtained in a number of steps bounded by $\operatorname{card}(X)$.

$[\![\langle A \rangle \rangle G \varphi]\!]^{\mathfrak{M}}$ is a greatest fixpoint

▶ Given $A \subseteq Agt$, a formula φ , and a CGS \mathfrak{M} , we define $\mathcal{G}_{A,\varphi} \colon \mathcal{P}(S) \to \mathcal{P}(S)$:

$$\mathcal{G}_{A,\varphi}(Z) \stackrel{\text{def}}{=} \llbracket \varphi \rrbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M},A,Z).$$

• $\mathcal{G}_{A,\varphi}(S)$ contains all the states satisfying φ . (pre(\mathfrak{M}, A, S) = S)

$[\![\langle A \rangle \rangle G \varphi]\!]^{\mathfrak{M}}$ is a greatest fixpoint

▶ Given $A \subseteq Agt$, a formula φ , and a CGS \mathfrak{M} , we define $\mathcal{G}_{A,\varphi} \colon \mathcal{P}(S) \to \mathcal{P}(S)$:

$$\mathcal{G}_{A,\varphi}(Z) \stackrel{\text{def}}{=} \llbracket \varphi
rbracket^{\mathfrak{M}} \cap \, \operatorname{pre}(\mathfrak{M},A,Z).$$

- $\mathcal{G}_{A,\varphi}(S)$ contains all the states satisfying φ . (pre(\mathfrak{M},A,S) = S)
- ▶ $\mathcal{G}_{A,\varphi}(\mathcal{G}_{A,\varphi}(S))$ contains all the states satisfying φ and A has a strategy such that in one step all the states satisfy φ .
- ▶ $\mathcal{G}_{A,\varphi}^n(S)$ contains all the states satisfying φ and A has a strategy such that in the steps $0, \ldots, n-1$ all the states satisfy φ .

$[\![\langle A \rangle \rangle G \varphi]\!]^{\mathfrak{M}}$ is a greatest fixpoint

▶ Given $A \subseteq Agt$, a formula φ , and a CGS \mathfrak{M} , we define $\mathcal{G}_{A,\varphi} \colon \mathcal{P}(S) \to \mathcal{P}(S)$:

$$\mathcal{G}_{A,\varphi}(Z) \stackrel{\text{def}}{=} \llbracket \varphi
rbracket^{\mathfrak{M}} \cap \, \operatorname{pre}(\mathfrak{M},A,Z).$$

- $\mathcal{G}_{A,arphi}(S)$ contains all the states satisfying arphi. (pre(\mathfrak{M},A,S) = S)
- ▶ $\mathcal{G}_{A,\varphi}(\mathcal{G}_{A,\varphi}(S))$ contains all the states satisfying φ and A has a strategy such that in one step all the states satisfy φ .
- $\mathcal{G}^n_{A,\varphi}(S)$ contains all the states satisfying φ and A has a strategy such that in the steps $0,\ldots,n-1$ all the states satisfy φ . $(\mathcal{G}^n_{A,\varphi}(S)\subseteq\mathcal{G}^{n-1}_{A,\varphi}(S)\subseteq\cdots\subseteq\mathcal{G}^1_{A,\varphi}(S))$

$[\![\langle A \rangle \rangle]^{\mathfrak{M}}$ is a greatest fixpoint

▶ Given $A \subseteq Agt$, a formula φ , and a CGS \mathfrak{M} , we define $\mathcal{G}_{A,\varphi} \colon \mathcal{P}(S) \to \mathcal{P}(S)$:

$$\mathcal{G}_{A,\varphi}(Z) \stackrel{\text{def}}{=} \llbracket \varphi
rbracket^{\mathfrak{M}} \cap \, \operatorname{pre}(\mathfrak{M},A,Z).$$

- $\mathcal{G}_{A,arphi}(S)$ contains all the states satisfying arphi. (pre(\mathfrak{M},A,S) = S)
- ▶ $\mathcal{G}_{A,\varphi}(\mathcal{G}_{A,\varphi}(S))$ contains all the states satisfying φ and A has a strategy such that in one step all the states satisfy φ .
- $\mathcal{G}^n_{A,\varphi}(S)$ contains all the states satisfying φ and A has a strategy such that in the steps $0,\ldots,n-1$ all the states satisfy φ . $(\mathcal{G}^n_{A,\varphi}(S)\subseteq\mathcal{G}^{n-1}_{A,\varphi}(S)\subseteq\cdots\subseteq\mathcal{G}^1_{A,\varphi}(S))$
- $\blacktriangleright \ [\![\langle A \rangle \rangle G \varphi]\!]^{\mathfrak{M}} = \nu Z. ([\![\varphi]\!]^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, Z)) \text{ (greatest fixpoint)}$

About $\mathcal{G}_{A,\varphi}$

- $ightharpoonup \mathcal{G}_{A,\varphi}$ is monotone as pre is monotone.
- ▶ Computing $\nu Z.(\llbracket \varphi \rrbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, Z)).$
 - $ightharpoonup X_0 = S$.
 - $ightharpoonup X_1 = \llbracket \varphi
 rbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, X_0).$
 - $ightharpoonup X_2 = \llbracket \varphi
 rbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, X_1).$
 - **.**..
 - $X_{i+1} = \llbracket \varphi \rrbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, X_i).$
 - **.** . . .
- ▶ For all $i, X_{i+1} \subseteq X_i$. (proof left as an exercise)
- ▶ There is $N \le \operatorname{card}(S)$ such that $X_N = X_{N+1} = X_{N+2} = \cdots$.

$[\![\langle\langle A\rangle\rangle\varphi \mathsf{U}\psi]\!]^\mathfrak{M}$ is a least fixpoint

▶ Given $A \subseteq Agt$, formulae φ, ψ , and a CGS \mathfrak{M} , we define $\mathcal{O}_{A,\varphi,\psi} \colon \mathcal{P}(S) \to \mathcal{P}(S)$:

$$\mathcal{O}_{\mathbf{A},\varphi,\psi}(\mathbf{Z}) \stackrel{\mathrm{def}}{=} \llbracket \psi \rrbracket^{\mathfrak{M}} \cup \ \left(\llbracket \varphi \rrbracket^{\mathfrak{M}} \ \cap \ \mathrm{pre}(\mathfrak{M},\mathbf{A},\mathbf{Z})\right)$$

 $ightharpoonup \mathcal{O}_{A,\varphi,\psi}(\emptyset)$ contains all the states satisfying ψ .

$$(\operatorname{pre}(\mathfrak{M}, A, \emptyset) = \emptyset)$$

$[\![\langle\langle A\rangle\rangle\varphi \mathsf{U}\psi]\!]^{\mathfrak{M}}$ is a least fixpoint

▶ Given $A \subseteq Agt$, formulae φ, ψ , and a CGS \mathfrak{M} , we define $\mathcal{O}_{A,\varphi,\psi} \colon \mathcal{P}(S) \to \mathcal{P}(S)$:

$$\mathcal{O}_{\textit{A},\varphi,\psi}(\textit{\textbf{Z}}) \stackrel{\text{def}}{=} \llbracket \psi \rrbracket^{\mathfrak{M}} \cup \ \left(\llbracket \varphi \rrbracket^{\mathfrak{M}} \ \cap \ \text{pre}(\mathfrak{M},\textit{\textbf{A}},\textit{\textbf{Z}})\right)$$

 $ightharpoonup \mathcal{O}_{A,arphi,\psi}(\emptyset)$ contains all the states satisfying ψ . $(\mathtt{pre}(\mathfrak{M},A,\emptyset)=\emptyset)$

• $\mathcal{O}_{A,\varphi,\psi}(\mathcal{O}_{A,\varphi,,\psi}(\emptyset))$ contains all the states satisfying ψ or those satisfying φ and such that A has a strategy such that in one step all the states satisfy ψ .

$[\![\langle\langle A\rangle\rangle\varphi \mathsf{U}\psi]\!]^{\mathfrak{M}}$ is a least fixpoint (bis)

 $ightharpoonup \mathcal{O}_{A,\varphi,\psi}^n(\emptyset)$ contains all the states satisfying ψ or those satisfying φ and such that A has a strategy such that in at most n steps, a state satisfying ψ is reached and in between all the states satisfy φ .

$[\![\langle\langle A\rangle\rangle\varphi \mathsf{U}\psi]\!]^{\mathfrak{M}}$ is a least fixpoint (bis)

- $ightharpoonup \mathcal{O}^n_{A,\varphi,\psi}(\emptyset)$ contains all the states satisfying ψ or those satisfying φ and such that A has a strategy such that in at most n steps, a state satisfying ψ is reached and in between all the states satisfy φ .
- $\blacktriangleright \mathcal{O}^1_{A,\varphi,\psi}(\emptyset) \subseteq \mathcal{O}^2_{A,\varphi,\psi}(\emptyset) \subseteq \cdots \subseteq \mathcal{O}^n_{A,\varphi,\psi}(\emptyset).$

$[\![\langle\langle A\rangle\rangle\varphi \mathsf{U}\psi]\!]^{\mathfrak{M}}$ is a least fixpoint (bis)

- $ightharpoonup \mathcal{O}^n_{A,\varphi,\psi}(\emptyset)$ contains all the states satisfying ψ or those satisfying φ and such that A has a strategy such that in at most n steps, a state satisfying ψ is reached and in between all the states satisfy φ .
- $\blacktriangleright \ \mathcal{O}^1_{A,\varphi,\psi}(\emptyset) \subseteq \mathcal{O}^2_{A,\varphi,\psi}(\emptyset) \subseteq \cdots \subseteq \mathcal{O}^n_{A,\varphi,\psi}(\emptyset).$
- $\qquad \qquad \mathbb{[\![}\langle\!\langle A\rangle\!\rangle \varphi \mathsf{U}\psi \mathbb{]\!]}^{\mathfrak{M}} = \mu Z.(\mathbb{[\![}\psi\mathbb{]\!]}^{\mathfrak{M}} \cup (\mathbb{[\![}\varphi\mathbb{]\!]}^{\mathfrak{M}} \cap \mathsf{pre}(\mathfrak{M},A,Z))).$ (least fixpoint)
- Valid formula

$$\langle\!\langle A \rangle\!\rangle \varphi \mathsf{U} \psi \Leftrightarrow \psi \vee (\varphi \wedge \langle\!\langle A \rangle\!\rangle \mathsf{X} \langle\!\langle A \rangle\!\rangle \varphi \mathsf{U} \psi)$$

About $\mathcal{O}_{A,\varphi,\psi}$

- $ightharpoonup \mathcal{O}_{A,\varphi,\psi}$ is monotone as pre is monotone.
- ▶ Computing $\mu Z.(\llbracket \psi \rrbracket^{\mathfrak{M}} \cup (\llbracket \varphi \rrbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, Z))).$
 - $ightharpoonup X_0 = \emptyset.$
 - $ightharpoonup X_1 = (\llbracket \psi
 rbracket^{\mathfrak{M}} \cup (\llbracket \varphi
 rbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, X_0)).$

 - ...

 - **.**..
- ▶ For all $i, X_i \subseteq X_{i+1}$. (proof left as an exercise)
- ▶ There is $N \le \operatorname{card}(S)$ such that $X_N = X_{N+1} = X_{N+2} = \cdots$.

Conclusion

- Today lecture.
 - Concurrent game structures (CGS).
 - Introduction to ATL.
 - Fixpoints and operators.
- Next week lecture.
 - Correction of the exercises.
 - Model-checking problem for ATL in PTIME and other variants from ATL.
 - ATL with incomplete information
 - ATL⁺: between ATL and ATL^{*}, PSPACE-hardness.