Cryptographic Protocols

Chapter 4

Homomorphic Encryption

4.1 Grand Goal

Computation with encrypted data. No interaction between user and cloud. User holds sk (private key).

Intriguing problem, first posed in 1978

4.2 Single-Homomorphic Encryption

Encryption scheme supports an operation \oplus such that:

$$Enc(x) \oplus Enc(y) = Enc(x+y)$$

OR an operation \otimes such that:

$$\operatorname{Enc}(x) \otimes \operatorname{Enc}(y) = \operatorname{Enc}(x \cdot y)$$

where $x, y \in \mathbb{GF}(2)$ or $\mathbb{GF}(p)$

- \rightarrow such schemes exist and are efficient
- \rightarrow Additively kommutative ElGamal; Paillier scheme

4.3 Fully-Homomorphic Encryption

Encryption scheme supports an operation \oplus such that:

$$Enc(x) \oplus Enc(y) = Enc(x+y)$$

AND an operation \otimes such that:

$$\operatorname{Enc}(x) \otimes \operatorname{Enc}(y) = \operatorname{Enc}(x \cdot y)$$

where $x, y \in \mathbb{GF}(2)$ or $\mathbb{GF}(p)$

- \rightarrow exist since 2009, Gentry
- \rightarrow not very practical

4.4 Examples

4.4.1 ElGamal-based Single-Homomorphic Encryption

```
Recall textbook ElGamal in \mathbb{G} = \langle g \rangle, |\mathbb{G}| = q:

KEYGEN() ENC(m, y) DEC(x, (R, C))

x \leftarrow \mathbb{Z}_q r \leftarrow \mathbb{Z}_q \hat{m} \leftarrow c/R^x

y \leftarrow g^x R \leftarrow g^r return \hat{m}

return (y, x) C \leftarrow m \cdot y^r

return (R, C)
```

- already multiplication homomorphic
- but mapping of integers to and from elements of $\mathbb G$ can be hard
- but addition is preferred

4.4.2 Additively homomorphic ElGamal

- use textbook ElGamal

$$\begin{aligned} \text{AH-Enc}(y,a) \oplus \text{AH-Enc}(y,b) &= (R_a, C_a) \oplus (R_b, C_b) \\ &= (R_a \cdot R_b, C_a \cdot C_b) \\ &= \text{AH-Enc}(y, (a+b) \ mod \ q) \end{aligned}$$

- $\dots \ q\approx 2^{256}$
- ... $max \approx 10^6$
- ... $a, b \in [-max/2, max/2]$ using a' = q + a for a < 0

4.5 Voting protocol using Additional Homomorphic Encryption

- 1. Parties $P_1, ..., P_n$
- 2. Each party P_i votes $v_i \in \{-1, 1\}$
- 3. One authority \mathbb{A}
- 1. A generates

$$(pk, sk) \leftarrow \text{KeyGen}()$$

 $\mathbb{A} \text{ sends } pk \text{ to } P_1, ..., P_n$

2. A computes

$$\begin{split} c_0 &\leftarrow \operatorname{ENC}(pk,0) \\ \text{and sends } c_0 \text{ to } P_1 \\ \text{for } i = 1, ..., n \text{ do} \\ P_i \text{ receives } c_{i-1} \\ P_i \text{ computes} \\ c_i &\leftarrow c_{i-1} \oplus \operatorname{ENC}(y,v_i) \\ P_i \text{ sends } c_i \text{ to } P_{i+1} \ // \ P_n \text{ sends to } \mathbb{A} \end{split}$$

3. A receives c_n from P_n computes $z \leftarrow \text{Dec}(x, c_n) // z = \sum_{i=1}^n v_i$ A publishes z

Remarks:

- sending must use secure channels
- not robust (against malicious $\overset{\sim}{P_i}$)
 - a) $\stackrel{\sim}{P_i}$ encrypt +n
 - b) $\stackrel{\sim}{P_i}$ refuse to send c_i
 - c) A refuses to decrypt
- defenses exist for all these:
- a) use zero-knowledge proofs
- b) use public bulletin board for communication
- c) distributed implementation of A using a group of admins
- Helios implements most of this (heliosyoting.org)

4.6 Zero-Knowledge Proofs

- How to prove a statement is true without any more information
- How to prove knowledge of "password" without giving information about it?
- Many application in cryptographic protocols
- Goldwasser & Micali received Turing Award for it

4.6.1 Two kinds of proofs

- Proofs for statements
 - Griven a Boolean formula Ψ in n variables, there exists an assignment s.t. $\Psi \equiv \text{TRUE}$
 - Given two graphs \mathbb{G}_0 and \mathbb{G}_1 , they are isomorphic
 - Given a graph \mathbb{G} , there exists a Hamiltonian circuit in \mathbb{G}
 - Given a graph G, there is a 3-coloring of G
- Proofs of knowledge
 - Given y (a public key DH \sim) "I know" x such that $y = g^x$
 - Given $h \in \{0,1\}^k$, "I know" an x s.t. $\mathbb{H}(x) = h$ for some one-way function \mathbb{H}
 - Given N, "I know" P, Q s.t. $N = P \cdot Q$

4.7 Model (Proofs of Statement)

Requirements

- 1. Completeness: If statement S holds, prover \mathbb{P} correct and \mathbb{V} correct, then \mathbb{V} accepts.
- 2. Soundness: If S is FALSE, then (honest) \mathbb{V} will reject with at least a constant probability (no matter what the malicious \mathbb{P} does)
- 3. **Zero-Knowledge:** $\mathbb V$ learns only that S holds (and not more). ($\mathbb V$ could also have simulated the whole protocol with itself)

4.8 ZKP for Graph Isomorphism

- \mathbb{P} and \mathbb{V} are given two graphs $G_0 = (V, E_0)$ and $G_1 = (V, E_1)$.
- \mathbb{P} knows an isomorphism betwenn G_0 and G_1 , i.e. bijective function:

$$f: V \to V$$

s.t. $\forall v, w \in V : (v, w) \in E_0 \iff (f(v), f(w)) \in E_1$

Protocol