

CPSC 3750 –Artificial Intelligence – Spring 2024

Assignment 1 [200 points]

Due on February 2nd, 2024

Instructions

- Your written part should be uploaded to Moodle.
- Your programming part should run on the department computer platforms, that's in your course account.
- Your programming part should be uploaded to Moodle, including your source code, Makefile, and README file.

Written Part

1. **[20 points]**

For each of the following activities, give a description of the task (i.e., performance measure), the environment, the actions, and the sensors, and characterize the environment in terms of *fully observable vs. partially observable*, *single agent vs. multiagent*, *deterministic vs. stochastic*, *static vs. dynamic*, *discrete vs. continuous*.

- playing soccer
- bidding on an item at an auction

Assignment 1 8 941100 4901100

Fill 12 with 8

Fill 8 2

Fill remaining 12 with 8
8 yet 4 gallon remain

fill 3 with remains 8
8 now has 1 gamen

2. **[20 points]**

Give a complete problem formulation for each of the following:

• Using only four colors, you have to color a planar map in such a way that no two adjacents regions have the same color.

36200六

• You have three jugs measuring 12 gallons, 8 gallons and 3 gallons, and a water faucet. You can fill the jug up, empty it out from one to another or onto the ground. You need to measure out exactly one gallon.

3. **[60 points]**

Consider the problem of finding a path in the grid shown below from the position S to the position G. The agent can move on the grid horizontally and vertically, one square at a time (each step has a cost of one). No step may be made into a forbidden crossed area.

27	26	58 V				
24	25	29	30			
L 23	Ω	G 32	15			
20	21					
19		2,	U J	3 ,		
را ^ت	18		0 s	40	' 5	
LIS	014		10	.7	٥	
016	13	اک کا	4	8		

ossuminy

house,

- (a) On the grid, number the nodes in the order in which they are traversed in a depth-first search from S to G, given that the order of the operators you will test is: up, left, right, then down.
- (b) Number the nodes in order in which they are traversed in a breadth-first search from *S* to *G*, given that the order of the operators you will test is: up, left, right, then down.
- (c) Number the nodes in order in which they are traversed in an iterative deepening depth-first search from *S* to *G*, given that the order of the operators you will test is: up, left, right, then down. At what depth the solution is reached?

CPSC 3750 Assignment 1 3

Programming Part

- 1. **[100 points]** The missionaries and cannibals problem is usually stated as follows. Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Find a way to get everyone to the other side without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place.
 - Formulate the problem precisely in terms of search, that's state space, successor function or actions, start state and goal state, making only those distinctions necessary to ensure a valid solution. What is the best representation (abstraction) of a state?
 - Implement and solve the problem optimally using an appropriate search algorithm. Is it a good idea to check for repeated states?