Nome: N°:

2° Ano do Ensino médio

Exercícios de Química

Professor(a): Fred Klier

Data de aplicação: ____/___/2021

Data da devolução: ___/__/2021

Exercícios

- 1. Qual a Concentração de íons sulfato formados em uma solução de 1 litro com 0,1 mol de BaSO₄ ($K_s = 1,0 \times 10^{-10}$)? A. $1,0 \times 10^{-2}$ B. $1,0 \times 10^{-3}$ C. $1,0 \times 10^{-4}$ D. $1,0 \times 10^{-5}$ E. $1,0 \times 10^{-6}$
- 2. Qual a Concentração de íons sulfato formados em uma solução de 1 litro com 1 mol de Ca₃(PO₄)₂ (K_s = 1,0 × 10⁻²⁵)? A. 1,0 × 10⁻⁶ B. 1,0 × 10⁻⁵ C. 1,0 × 10⁻⁴ D. 1,0 × 10⁻³ E. 1,0 × 10⁻²
- 3. Uma reação química atinge o equilíbrio químico quando:
 - a) ocorre simultaneamente nos sentidos direto e inverso.
 - b) as velocidades das reações direta e inversa são iguais.
 - c) os reagentes são totalmente consumidos.
 - d) a temperatura do sistema é igual à do ambiente.
 - e) a razão entre as concentrações de reatantes e produtos é unitária.
- 4. Escreva a expressão da constante de equilíbrio em termos de concentração (K_c) dos seguintes equilíbrios:
 - a) $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$
 - b) $PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$
 - c) $4HCl_{(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(g)} + 2Cl_{2(g)}$
 - d) $C_{(s)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + H_{2(g)}$
 - e) $Mg_{(s)} + 2H_{(aq)}^+ \longrightarrow Mg_{(aq)}^{2+} + H_{2(g)}$
 - f) $CrO_4^2_{(aq)} + 2H_{(aq)}^+ \longrightarrow Cr_2O_7^2_{(aq)} + H_2O_{(l)}$
- 5. Em determinadas condições de temperatura e pressão, existe 0,5 mol/L de N_2O_4 em equilíbrio com 2 mol/L de NO_2 , segundo a equação $N_2O_{4(g)} \Longrightarrow 2NO_{2(g)}$. Qual o valor da constante (K_c) desse equilíbrio, nas condições da experiência?

6. São colocados 8,0 mol de amônia num recipiente fechado de 5,0 litros de capacidade. Acima de 450 °C, estabelece-se, após algum tempo, o equilíbrio:

$$2NH_{3(g)} \Longrightarrow 3H_{3(g)} + N_{2(g)}$$

Sabendo que a variação do número de mol dos participantes está registrada no gráfico, podemos afirmar que,nestas condições, a constante de equilíbrio, Kc, é igual a:

7. Considere a seguinte equação de oxi-redução:

$$Ce^{4+} + Fe^{2+} \longrightarrow Ce^{3+} + Fe^{3+}$$

A constante de equilíbrio desta reação é igual a $2,0 \times 10^{11}$.

a) Escreva a expressão que representa a constante de equilíbrio.

b) calcule a concentração de íons Ce⁴⁺ que existe em equilíbrio em uma solução cuja a concentração de Ce³⁺ é 0,1 mol/L, de Fe³⁺ é 0,1 mol/L e de Fe²⁺ é 0,1 mol/L.

8. Dois mol de $\text{CO}_{(g)}$ reagem com dois mol de $\text{NO}_{2(g)}$, conforme a equação.

$$\mathrm{CO}_{(g)} + \mathrm{NO}_{2(g)} \xleftarrow{1}_{2} \mathrm{CO}_{2(g)} + \mathrm{NO}_{(g)} \; (200^{\circ}C)$$

Quando se estabelece o equilíbrio, verifica-se que $\frac{3}{4}$ de cada um dos reagentes foram transformados em $CO_{2(g)}$ e $NO_{(g)}$. A constante de equilíbrio para a reação é:

9. Num recipiente de volume constante igual a 1,00 litro, inicialmente evacuado, foi introduzido 1,00 mol de pentacloreto de fósforo gasoso e puro. O recipiente foi mantido a $250^{\circ}C$ e no equilíbrio final foi verificada a existência de 0,47 mol de gás cloro. Qual será o valor aproximado da constante de equilíbrio (K_c) estabelecido dentro do cilíndro? Considere a seguinte equação química:

$$PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$$

10. O equilíbrio gasoso $N_2O_4 \Longrightarrow 2NO_2$ apresenta, a uma dada temperatura, constante de equilíbrio $K_C = 2$. Nesta temperatura foram feitas duas misturas diferentes, A e B, cada uma acondicionada em recipiente fechado, isolado e distinto. As

condições iniciais estão mostradas abaixo:

11.

- 1. mistura A $NO_2 = 2 \times 10^{-2} \text{ mol/L } N_2O_4 = 2 \times 10^{-4} \text{ mol/L}$
- 2. mistura B NO $_2$ = 2×10^{-1} mol/L $\rm N_2O_4$ = 1×10^{-3} mol/L
- a. Efetue os cálculos necessários e conclua se a mistura A se encontra ou não em situação de equilíbrio.
- b. Efetue os cálculos necessários e conclua se a mistura B se encontra ou não em situação de equilíbrio.