TDDE07 - Lab 4

Sophie Lindberg - sopli268 Arvid Edenheim - arved490 2019-05-24

1 - Time series models in Stan

1a) AR(1)-process

It is clear that ϕ has a large effect on $x_{1:T}$. The figure above depicts 3 different scenarios where ϕ is equal to -1, 0 and 1. In the first example, we have that

$$x t = \mu - (x t-1 - \mu) + \epsilon_t$$

As can be seen in the figure above the values of x_t oscillate between positive and negatiive values when $\phi = -1$. This is because ϕ changes the sign of x_t in each iteration.

When $\phi = 0$ we have that

$$x t = \mu + \epsilon_t$$

In this case the value of x_t only depends on μ and ϵ_t , meaning the values will be close to μ .

In the last example we have that

$$x t = \mu + (x t-1 - \mu) + \epsilon_t$$

In this case, x_t value depends on the previous value but won't change sign in each iteration as long as the error is fairly small.

:		Posterior mean	Lower limit	Upper limit
	mu	0.819	0.275	1.380
	sigma	1.841	1.508	2.256
	phi	0.901	0.838	0.961

	Posterior mean	Lower limit	Upper limit
mu	6.275	4.942	7.581
sigma	2.131	1.741	2.610
phi	0.379	0.251	0.510

1b)