Артем, для тебя

Маслов Артём, Дедков Денис группа Б01-108а 04.09.2023

Аннотация

Артем, для тебя :)

Введение

Артем, для тебя :)

Описание экспериментальной установки

Артем, для тебя :)

Оборудование и приборы

Артем, для тебя:)

Методика эксперимента

Артем, для тебя :)

Экспериментальные результаты

Калибровка детектора

Зная значения энергии α -частицы при распаде Ra_{88}^{226} и его дочерних ядер, можно определить коэффициенты в зависимости энергии E_i от номера канала спектрометра N_i :

$$E_i = a \cdot N_i + b.$$

График $E_i(N_i)$ изображен на рисунке 1. Методом наименьших квадратов были получены следующие численные значения:

$$a = (2.97 \pm 0.01) \cdot 10^{-3} \frac{\text{M} \cdot \text{B}}{\text{KaH}}$$

$$b = (-0.10 \pm 0.02) \text{ M} \cdot \text{B}.$$

Рис. 1: Зависимость энергии α -частицы от номера канала $E_i(N_i)$.

Следует обратить внимание на систематический сдвиг b по энергии, которого в теории быть не должно. В данном случае проблематично понять, является ли этот сдвиг постоянным для данного прибора, или это систематика, появляющаяся при ручных изменениях в установке. Систематическая опибка, вносимая этим сдвигом $\varepsilon \sim 2\%$. В таблицах будет вычислена случайная составляющая опибок, чтобы иметь представление об их порядке. Полная погрешность оценивается по формуле:

$$\varepsilon_{\Sigma} = \sqrt{\varepsilon^2 + \varepsilon_{E_i}^2}$$

Изучение спектров α -распада

Используя калибровочный график, можно определить значения энергии для всех остальных элементов: Ra_{88}^{226} , $Am_{95}^{241}+Th_{90}^{230}$, Pu_{94}^{239} , $U_{\pi p}$.

В соответствующих таблицах приведены номер канала N_i , ширина пика ΔN_i , энергия E_i , ширина ΔE_i . А также случайная составляющая относительной ошибки пересчета номера канала в энергию.

Энергетическое разрешение вычисляется по следующей формуле:

$$R_i = \frac{\Delta E_i}{E_i}$$

Оценку влияния статистической флуктуации числа электрон-дырочных пар, создаваемых падающей частицей можно получить с помощью следующей формулы:

$$R_{f,i} = \sqrt{\frac{E_{\mathrm{cp}}}{E_i}} \approx \sqrt{\frac{3.6 \text{ sB}}{E_i}}$$

Оценку погрешности проводим с помощью оценки косвенных измерений:

$$\varepsilon_{R_{f,i}} = \frac{1}{2} \sqrt{\varepsilon_{\Sigma}^2 + \left(\frac{0.05}{3.60}\right)^2} \sim 1.5\%$$

$$\varepsilon_{R_i} = \sqrt{\varepsilon_{E_i}^2 + \varepsilon_{\Sigma}^2} \approx \varepsilon_{\Sigma} \sim 2\%$$

Значения энергетического разрешения также приведены в таблицах.

Изучение lpha-распада Ra_{88}^{226}

Рис. 2: Спектр Ra_{88}^{226} .

N_{i}	ΔN_i	E_i , МэВ	$\varepsilon_{E_i}, \%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
1640	24.33	4.78	0.6	0.0723	1.51	0.087
1815	22.58	5.30	0.6	0.0671	1.27	0.082
1881	23.97	5.49	0.6	0.0712	1.30	0.081
2055	21.05	6.01	0.5	0.0626	1.04	0.077
2617	22.50	7.68	0.5	0.0669	0.87	0.068

Таблица 1: Энергии пиков Ra_{88}^{226} .

Изучение lpha-распада ${ m Am}_{95}^{241} + { m Th}_{90}^{230}$

Рис. 3: Спектр $Am_{95}^{241} + Th_{90}^{230}$.

N_i	ΔN_i	E_i , МэВ	$\varepsilon_{E_i},\%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
1622	15.80	4.73	0.6	0.0469	0.99	0.087
1894	17.12	5.53	0.6	0.0509	0.92	0.081

Таблица 2: Энергии пиков $Am_{95}^{241} + Th_{90}^{230}$.

Изучение lpha-распада \mathbf{Pu}_{94}^{239}

Рис. 4: Спектр Pu_{94}^{239} .

N_i	ΔN_i	E_i , МэВ	$\varepsilon_{E_i},\%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
1788	16.81	5.22	0.6	0.0500	0.96	0.083
1894	20.90	5.53	0.6	0.0621	1.12	0.081

Таблица 3: Энергии пиков Pu_{94}^{239} .

Изучение α -распада $\mathbf{U}_{\mathbf{np}}$

Рис. 5: Спектр U_{пр}.

N_i	ΔN_i	E_i , МэВ	$\varepsilon_{E_i}, \%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
	$87.96 \\ 43.20$	$4.07 \\ 4.75$	$0.7 \\ 0.6$	$0.2614 \\ 0.1284$	$6.43 \\ 2.71$	$0.094 \\ 0.087$

Таблица 4: Энергии пиков U_{пр}.

Проверка закона Гейгера-Нэттола

Зная энергии α -распада Ra_{88}^{226} и его дочерних ядер, а также периоды их полураспада, можно судить о точно-

сти выполнения закона Гейгера-Неттола. С этой целью решение детектора (см. таблицы): проведем линеаризацию зависимости:

$$\log T_{1/2} = \frac{a}{\sqrt{E_i}} + b.$$

Рис. 6: График $\log T_{1/2} \left(\frac{1}{\sqrt{E_i}} \right)$.

Полученный график изображен на рисунке 6. Коэффициент корреляции слабо отличается от единицы:

$$\rho = \frac{\text{cov}_{xy}}{\sigma_x \cdot \sigma_y} = 0.9964.$$

Выводы

В работе предоставлены спектры α -излучения ядер. Мы экспериментально определили энергетическое раз-

$$R_i = \frac{\Delta E_i}{E_i}, \ \varepsilon_{R_i} \sim 2\%$$

Оценка влияния статистической флуктуации числа электрон-дырочных пар $R_{f,i}=\sqrt{\frac{E_{\mathrm{cp}}}{E_i}},\; \varepsilon_{R_{f,i}}\sim 1.5\%,\; \mathrm{co}$ здаваемых падающей частицей, получилась на порядки меньше вычисленных энергетических разрешений R_{i} . Откуда можно сделать вывод, что основной причиной разброса импульсов по амплитуде является шум электрических цепей.

Также проверен закон Гейгера-Нэттола методом линеаризации зависимости. Коэффициент корреляции слабо отличается от единицы:

$$\rho(x,y) = 0.9964.$$

Литература

- [1] Ципенюк, Ю.М. Лабораторный практикум по общей физике. Квантовая физика: Учеб. пособие для вузов./ Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М.; Под. ред. Ципенюка Ю.М. — М.: Физматкнига, 2012. - 464 с. ISBN 978-5-89155-206-7.
- [2] Сивухин, Д.В. Общий курс физики: Учеб. пособие: Для вузов. В 5 т. Т.IV. Оптика. — 4-е изд., стереот. — М.: ФИЗМАТЛИТ, 2021. — 792 с. ISBN 978-5-9221-1735-7 (T. IV).