D B M S

Created by:

Sangeeta Joshi

Agenda

DBMS

DBMS

- A database management system (or DBMS) is essentially a computerized data-keeping system.
- Users of the system are given facilities
 - to perform several kinds of operations on such a system
 - for either manipulation of the data in the database
 - or the management of the database structure itself.
- Database Management Systems (DBMSs) are categorized according to their data structures or types.

Database

Relational databases include the following structures:

- Database
 - A database is a logical grouping of data.
 - It contains a set of related table spaces and index spaces.
 - A database contains all the data that is associated with one application or with a group of related applications.
 - Ex: a payroll database or an inventory database

Tables

Table:

- A table is a logical structure made up of rows and columns.
- Rows have no fixed order,
- The order of the columns is the order specified when the table was created.
- At the intersection of every column and row is a specific data item called a value, or, more precisely, an atomic value.
- There are three types of tables:
 - A base table that is created and holds persistent data A temporary table that stores intermediate query results
 - A results table that is returned when you query tables.

Tables

DEPTNO	DEPTNAME	MGRNO	ADMRDEPT
A00	SPIFFY COMPUTER SERVICE DIV.	000010	A00
B01	PLANNING	000020	A00
C01	INFORMATION CENTER	000030	A00
D01	DEVELOPMENT CENTER		A00
E01	SUPPORT SERVICES	000050	A00
D11	MANUFACTURING SYSTEMS	000060	D01
D21	ADMINISTRATION SYSTEMS	000070	D01
E11	OPERATIONS	000090	E01
E21	SOFTWARE SUPPORT	000100	E01

In this table we use:

Columns—The ordered set of columns are DEPTNO, DEPTNAME, MGRNO, and ADMRDEPT. All the data in a given column must be of the same data type.

Rows–Each row contains data for a single department.

Values—At the intersection of a column and row is a value.

For example, PLANNING is the value of the DEPTNAME column in the row for department B01.

Indexes

- An index is an ordered set of pointers to rows of a table. Unlike the rows of a table that are not in a specific order, an index must always be maintained in order.
- An index is used for two purposes:
 - For performance, to retrieve data values more quickly
 - For uniqueness.
- By creating an index on an employee's name, you can retrieve data more quickly for that employee than by scanning the entire table.
- Also, by creating a unique index on an employee number, DB will enforce the uniqueness of each value.

Keys

 A key is one or more columns that are identified as such in the creation of a table or index, or in the definition of referential integrity.

Primary key

- A table can only have one primary key because it defines the entity. There are two requirements for a primary key:
 - It must have a value, that is, it cannot be null.
 - It must be unique.

Foreign key

 A foreign key is a key that is specified in a referential integrity constraint to make its existence dependent on a primary or in another table.

SQL

- Structured Query Language(SQL) is the database language
 - we can perform certain operations on the existing database
 - we can use this language to create a database.
- SQL commands are mainly categorized into five categories :
 - DDL Data Definition Language
 - DQL Data Query Language
 - DML Data Manipulation Language
 - DCL Data Control Language
 - TCL Transaction Control Language

SQL

- Data Definition Language:
 - consists of the SQL commands to be used to define the database schema.
 - It is used to create and modify the structure of database objects in the database.
 - DDL is a set of SQL commands used to
 - create,
 - modify
 - delete

database structures but not data.

 These commands are normally not used by a general user, who should be accessing the database via an application.

List of DDL commands:

- *CREATE*: This command is used to create the database or its objects (like table, index, function, views, store procedure, and triggers).
- DROP: This command is used to delete objects from the database.
- ALTER: This is used to alter the structure of the database.
- TRUNCATE: This is used to remove all records from a table, including all spaces allocated for the records are removed.
- COMMENT: This is used to add comments to the data dictionary.
- *RENAME*: This is used to rename an object existing in the database.

• <u>Create Table</u>

```
CREATE TABLE table_name
(
column_1 datatype,
column_2 datatype,
column_3 datatype,
....
);
```

Alter Table

 This command is used to add, delete or change columns in the existing table.

ALTER TABLE table_name ADD column_name datatype;

ALTER TABLE 'myschema1'. 'student' ADD COLUMN 'cgpa' INT NULL AFTER 'studentCourse';

Truncate Table

This command is used to remove all rows from the table, but the structure of the table still exists.

Syntax –

Syntax to remove an existing table.

TRUNCATE TABLE table_name;

DROP:

This command is used to remove an existing table along with its structure from the Database.

Syntax –

Syntax to drop an existing table.

DROP TABLE table_name;

DML

Data Manipulation Language

- SQL that deals with manipulation of data present in the database
- It is the component of the SQL statement that controls access to data and to the database.
- Basically, DCL statements are grouped with DML statements.

List of DML commands:

- *INSERT*: It is used to insert data into a table.
- UPDATE: It is used to update existing data within a table.
- DELETE: It is used to delete records from a database table.
- LOCK: Table control concurrency.
- CALL: Call a PL/SQL or JAVA subprogram.
- **EXPLAIN** PLAN: It describes the access path to data.

DML

- INSERT INTO table_name VALUES (value1, value2, value3);
- 2. If we want to insert values in the specified columns then we use the following query:

```
INSERT INTO table_name (column1, column2, column3) 
VALUES (value1, value2, value3); table_name:
```

3. Using SELECT in INSERT INTO Statement:

We can use the SELECT statement with INSERT INTO statement to copy rows from one table and insert them into another table.

Inserting all columns of a table:

```
INSERT INTO first_table SELECT * FROM second_table; Inserting specific column values:
INSERT INTO first_table(names_of_columns1)
```

SELECT names_of_columns2 FROM second_table;

DML

To insert multiple rows in a table using Single SQL Statement:

select

- Use the ORDER BY clause to sort the result set by one or more columns.
- Use the ASC option to sort the result set in ascending order
- DESC option to sort the result set in descending order.
- The ORDER BY clause is evaluated after the FROM and SELECT clauses.
- In MySQL, NULL is lower than non-NULL values
- Use the MySQL DISTINCT clause to remove duplicate rows from the result set returned by the SELECT clause.

Select distinct

When executing the SELECT statement with the DISTINCT clause, MySQL evaluates the DISTINCT clause after the FROM, WHERE, and SELECT clause and before the ORDER BY clause:

Select Limit

- The LIMIT clause is used in the SELECT statement to constrain the number of rows to return.
- The LIMIT clause accepts one or two arguments.
- The values of both arguments must be zero or positive integers.

Select Limit

Select & Limit

- By default, the SELECT statement returns rows in an unspecified order. When we add the LIMIT clause to the SELECT statement, the returned rows are unpredictable.
- Therefore, to ensure the LIMIT clause returns an expected output, we should always use it with an ORDER BY clause

Where clause

The WHERE clause allows to specify a search condition for the rows returned by a query.
the syntax of the WHERE clause:

```
SELECT
select_list
FROM
table_name
WHERE
search_condition;
```

The search_condition is a combination of one or more expressions using the logical operator *AND*, *OR* and *NOT*.

In MySQL, a predicate is a Boolean expression that evaluates to TRUE, FALSE, or UNKNOWN.

comparison operators in WHERE clause.

Operator	Description
=	Equal to. You can use it with almost any data type.
<> or !=	Not equal to
<	Less than. You typically use it with numeric and date/time data types.
>	Greater than.
<=	Less than or equal to
>=	Greater than or equal to

Where clause

- Use the WHERE clause to filter rows by a condition.
- MySQL evaluates the WHERE clause after the FROM clause and before the SELECT and ORDER BY clauses.

DML Update

The basic syntax of the UPDATE query with a WHERE clause is as follows –

```
UPDATE table_name
SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];
```

D C L (Data Control Language)

- DCL includes commands mainly deal with
 - rights,
 - permissions,
 - and other controls of the database system.
- List of DCL commands:

GRANT: This command gives users access privileges to the database.

REVOKE: This command withdraws the user's access privileges given by using the GRANT command.

JOINS

- A relational database consists of:
 multiple related tables linking together using common
 columns i. e. *foreign key* columns.
 Because of this, data in each table is incomplete from the
 business perspective.
- That's why joins come into the play.
- A join is a method of linking data between one (<u>self-join</u>) or more tables based on values of the common column between the tables.

Inner Join

- The inner join clause joins two tables based on a condition which is known as a join predicate.
- inner join clause includes only matching rows from both tables.

LEFT JOIN

- left join selects all data from the left table whether there are matching rows exist in the right table or not.
- In case there are no matching rows from the right table found, the left join uses NULLs for columns of the row from the right table in the result set.

Left Join

Right Join

- The right join clause selects all rows from the right table and matches rows in the left table.
- If a row from the right table does not have matching rows from the left table, the column of the left table will have NULL in the final result set.

Right Join

Cross Join

- Unlike the inner join, left join, and right join, the cross join clause does not have a join condition.
- The cross join makes a Cartesian product of rows from the joined tables. The cross join combines each row from the first table with every row from the right table to make the result set.
- Suppose the first table has n rows and the second table has m rows. The cross join that joins the tables will return nxm rows.