Instrumental Variables

UNDERSTANDING IV

Roadmap

Where do (Good) Instruments Come From?

True Lotteries

Natural Experiments

Panel Data

2SLS Mechanics

Overidentification

Weak and Many Instruments

Weak IV

Many IVs

 To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:
 - ightarrow As-good-as-random assignment: individuals with higher/lower potential earnings face the same distribution of Z_i
 - \rightarrow Exclusion: the "assignment" of Z_i only affects Y_i through D_i

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:
 - ightarrow As-good-as-random assignment: individuals with higher/lower potential earnings face the same distribution of Z_i
 - ightarrow Exclusion: the "assignment" of Z_i only affects Y_i through D_i
- Confusingly, old-school econometrics texts sometimes refer to $Cov(Z_i, \varepsilon_i) = 0$ as the "exclusion restriction"

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:
 - ightarrow As-good-as-random assignment: individuals with higher/lower potential earnings face the same distribution of Z_i
 - ightarrow Exclusion: the "assignment" of Z_i only affects Y_i through D_i
- Confusingly, old-school econometrics texts sometimes refer to $Cov(Z_i, \varepsilon_i) = 0$ as the "exclusion restriction"
 - → More modern IV texts take care to distinguish between these two conceptually distinct requirements...

A Valid Instrument

A Violation of As-Good-As-Random Assignment

A Violation of Exclusion

• One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is...

• One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is... to randomly assign it!

- One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is... to randomly assign it!
 - ightarrow Some of the best IVs come from lotteries, either run by the researcher (e.g. an RCT) or so-called "natural experiments"
 - → We still need to worry about violations of the exclusion restriction
 - \rightarrow Relevance holds when Z_i has some effect on X_i

- One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is... to randomly assign it!
 - ightarrow Some of the best IVs come from lotteries, either run by the researcher (e.g. an RCT) or so-called "natural experiments"
 - → We still need to worry about violations of the exclusion restriction
 - \rightarrow Relevance holds when Z_i has some effect on X_i
- "Gold standard" IV: a randomized offer to participate in a program, with X_i recording program participation
 - \rightarrow Exclusion restriction likely to hold for any Y_i , by construction
 - → Relevance almost guaranteed (provided people want the program!)

Example: Charter School Lotteries

- Abdulkadiroglu et al. (2016) are interested in whether going to a "charter" middle school increases standardized test scores
 - ightarrow Charter students tend to score better, but we worry about selection
 - → History of doubting educational inputs, since Coleman (1966)

Example: Charter School Lotteries

- Abdulkadiroglu et al. (2016) are interested in whether going to a "charter" middle school increases standardized test scores
 - → Charter students tend to score better, but we worry about selection
 - → History of doubting educational inputs, since Coleman (1966)
- We leverage an institutional feature of charters: admission lotteries
 - \to When more kids want to enroll than there are seats, admission offers $Z_i \in \{0,1\}$ are effectively drawn from a hat
 - ightarrow Offers plausibly only affect later test scores Y_i by changing charter enrollment $D_i \in \{0,1\}$, so are plausibly valid instruments
 - ightarrow We need to control for lottery fixed effects ("risk sets") to make Z_i as-good-as-randomly assigned more on this soon

Example: Charter School Lotteries

- Abdulkadiroglu et al. (2016) are interested in whether going to a "charter" middle school increases standardized test scores
 - → Charter students tend to score better, but we worry about selection
 - → History of doubting educational inputs, since Coleman (1966)
- We leverage an institutional feature of charters: admission lotteries
 - ightarrow When more kids want to enroll than there are seats, admission offers $Z_i \in \{0,1\}$ are effectively drawn from a hat
 - ightarrow Offers plausibly only affect later test scores Y_i by changing charter enrollment $D_i \in \{0,1\}$, so are plausibly valid instruments
 - ightarrow We need to control for lottery fixed effects ("risk sets") to make Z_i as-good-as-randomly assigned more on this soon
- We study a particular charter (UP Academy), which is "takeover"
 - → Two offer IVs: "immediate" (on lottery night) and from a waitlist

Lottery IV Estimates of UP Test Score Effects

TABLE 8—LOTTERY IV ESTIMATES OF UP EFFECTS

				2SLS			
				First stage			
		Comparison group mean (1)	OLS (2)	Immediate offer (3)	Waitlist offer (4)	Enrollment effect (5)	
Panel A. All grades (Sixth through eighth)	Math (N = 2,202)	0.059	0.301 (0.022)	0.760 (0.063)	0.562 (0.067)	0.270 (0.056)	
	ELA $(N = 2,205)$	0.103	0.148 (0.020)	0.759 (0.063)	0.562 (0.067)	0.118 (0.051)	

Where do IVs Come From? 2) Natural Experiments

- Without appealing to literal randomization, we may credibly argue Z_i is as-good-as-randomly assigned conditional on some \mathbf{W}_i
 - \rightarrow Such "natural experiments" rely on a selection-on-observables argument (for Z_i , instead D_i)
 - \rightarrow Still worry about exclusion: Z_i cannot affect Y_i except through D_i

Where do IVs Come From? 2) Natural Experiments

- Without appealing to literal randomization, we may credibly argue Z_i is as-good-as-randomly assigned conditional on some \mathbf{W}_i
 - \rightarrow Such "natural experiments" rely on a selection-on-observables argument (for Z_i , instead D_i)
 - \rightarrow Still worry about exclusion: Z_i cannot affect Y_i except through D_i
- Angrist and Krueger (1991) famously estimate labor market returns to schooling with a creative IV: student quarter-of-birth
 - → Compulsory schooling requirements prevent students from dropping before the day they turn 16 (used to be more binding)
 - → Fixed school start dates mean students who drop out at 16 get more or less schooling depending on their birth date

Where do IVs Come From? 2) Natural Experiments

- Without appealing to literal randomization, we may credibly argue Z_i is as-good-as-randomly assigned conditional on some \mathbf{W}_i
 - \rightarrow Such "natural experiments" rely on a selection-on-observables argument (for Z_i , instead D_i)
 - ightarrow Still worry about exclusion: Z_i cannot affect Y_i except through D_i
- Angrist and Krueger (1991) famously estimate labor market returns to schooling with a creative IV: student quarter-of-birth
 - → Compulsory schooling requirements prevent students from dropping before the day they turn 16 (used to be more binding)
 - ightarrow Fixed school start dates mean students who drop out at 16 get more or less schooling depending on their birth date
 - \rightarrow Quarter-of-birth seems quasi-randomly assigned is it excludable? See Buckles and Hungerman (2013)...

The Quarter-of-Birth Natural Experiment: Visualized

A. Average Education by Quarter of Birth (first stage)

B. Average Weekly Wage by Quarter of Birth (reduced form)

Quarter-of-Birth IV Estimates of Returns to Schooling

Table 4.1.1: 2SLS estimates of the economic returns to schooling

	OLS				2SLS		
	(1)	(2)	(3)	(4)	(5)	(6)	
Years of education	0.075 (0.0004)	0.072 (0.0004)	0.103 (0.024)	0.112 (0.021)	0.106 (0.026)	0.108 (0.019)	
Covariates:							
9 year of birth dummies 50 state of birth dummies		√			√	√	
Instruments:			dummy for QOB=1	dummy for QOB=1 or QOB=2	dummy for QOB=1	full set of QOB dummies	

Where do IVs Come From? 3) Panel Data

- We might also combine IV + difference-in-difference identification
 - \rightarrow E.g. instrument with $Z_i \times Post_t$, controlling for Z_i and $Post_t$ FEs
 - ightarrow This requires two parallel trends assumptions, for the RF and FS
 - → Still need to worry about the exclusion restriction, as always

Where do IVs Come From? 3) Panel Data

- We might also combine IV + difference-in-difference identification
 - \rightarrow E.g. instrument with $Z_i \times Post_t$, controlling for Z_i and $Post_t$ FEs
 - ightarrow This requires two parallel trends assumptions, for the RF and FS
 - ightarrow Still need to worry about the exclusion restriction, as always
- Abdulkadiroglu et al. (2016) complement their lottery analysis of takeover charters with an instrumented diff-in-diff analysis
 - → Students enrolled in the "legacy" public school were eligible for being "grandfathered" into UP, without having to apply to the charter
 - → We compare their trends in test scores & enrollment to a matched comparison group of observably-similar students at other schools

Grandfathering IV: Visualized

Grandfathering IV Estimates of UP Test Score Effects

TABLE 7—GRANDFATHERING IV ESTIMATES OF UP EFFECTS

				2SLS		
		Comparison group mean (1)	OLS (2)	First stage (3)	Enrollment effect (4)	
Panel A. All grades						
(Seventh through eighth)	Math $(N = 1,543)$	-0.233	0.400 (0.032)	1.051 (0.040)	0.321 (0.039)	
	ELA $(N = 1,539)$	-0.214	0.296 (0.035)	1.040 (0.041)	0.394 (0.044)	

Roadmap

Where do (Good) Instruments Come From?
True Lotteries
Natural Experiments
Panel Data

2SLS Mechanics
Just-Identified IV
Overidentification

Weak and Many Instruments Weak IV Many IVs Just-Identified IV

Stuff about just-identified IV

Stuff about overidentification

Roadmap

Where do (Good) Instruments Come From?
True Lotteries
Natural Experiments
Panel Data

2SLS Mechanics Just-Identified IV Overidentification

Weak and Many Instruments Weak IV Many IVs

Stuff about weak IV

Many IVs

Stuff about many IVs