

Абрикосов Игорь Анатольевич

Качество данных - ключ к успешному использованию методов многомасштабного моделирования

Лаборатория моделирования и разработки новых материалов, Национальный исследовательский технологический университет "МИСиС"

ГОД НАУКИ И ТЕХНОЛОГИЙ В РОССИИ

Homo · Science

POCATOM

Многомасштабное моделирование

Жаропрочность

Жаростойкость

Радиационная стойкость

теоретические расчеты и экспериментальная верификация параметров моделей высокого уровня в реальных условиях эксплуатации

Методы достижения цели:

расчеты с использованием современных средств кампьютерного моделирования, машинного обучения и искусственного интелекта

Проблема: Электроны параметры моделей (данные (квантовая механика) ≅ 0.1-5 HM о свойствах материалов) Свойства: Стабильность фаз Энергии образования Модули упругости Межатомные взаимодействия Микроструктура Cr positions at t=0 s After 30 years at 700 K - Зерна, 1 - 10 мм $\approx 1 - 10 \text{ MM}$ Свойства: Микроструктура Предел текучести -Фазы Предел прочности (метод фазовых полей) Фазы – Атомы (статистическая физика, Пластичность \simeq 3-100 HM термохимия), 5-10 нм Твердость

Свойства:

Фазовый состав

Устойчивость к

Образование дефектов

радиационным дефектам

Высокопроизводительное квантовомеханическое моделирование эффектов многокомпонентного легирования на свойства ОЦК твердых растворов в системе Fe-Cr

Зависимости значений параметров решетки и энтальпии смешения сплавов на основе системы Fe-Cr от концентрации хрома. Расчеты энтальпии смешения показывают, что добавление алюминия в бинарные Fe-Cr сплавы обеспечивает максимальный стабилизирующий эффект, в то время как никель оказывает дестабилизирующие воздействие, усиленное добавлением Nb, W, Mo.

A. V. Ponomareva, et al. Phys. Rev. Materials 4, 094406 (2020).

Высокопроизводительное квантовомеханическое моделирование эффектов многокомпонентного легирования на свойства ОЦК твердых растворов в системе Fe-Cr

Зависимости модуля Юнга E и модуля сдвига G поликристаллов сплавов на основе системы Fe-Cr от концентрации хрома. Сплавы Fe-Cr-Ni-Al показывают одновременно существенное увеличение стабильности и пластичности без значительной деградации механических свойств, в которых модули E и G лежат в пределах значений бинарных низкохромистых сталей.

A. V. Ponomareva, et al. Phys. Rev. Materials 4, 094406 (2020).

Машинное обучение: активное обучение

1. Дескрипторы:

TEN — Total Pauling electronegativity

VEC — Valence electrons concentration

 $S_{\rm mix}$ — Mixing entropy

V − Average atomic volume

 δ — Atomic size difference

3. Схема активного обучения:

2. Машинное обучение дла предсказания $H_{ m mix}$, E and G/B

Алгоритмы: 1) Artificial neural network, 2) Support vector machines

Выбор дескрипторов:

CVE and CVA — Cross-validation error and accuracy

Машинное обучение: активное обучение

Сплавы отобранные после 4 итераций активного обучения. После каждой итерации к обучаемой выборке добавляются новые сплавы, и модели переобучаются.

Ите	Состав (wt.%)								Расчет ТФП		
рац											
ия	Fe	Cr	Ni	Мо	V	W	Nb	Αl	<i>E,</i> GPa	H _{mix} , eV/at	G/B
1	74	20	0	0	0	0	2	4	225.4	0.0178	0.493
	75	20	0	0	0	0	1	4	226.5	0.0071	0.498
	76	19	0	0	0	0	1	4	225.6	0.0035	0.499
	76	20	0	0	0	0	0	4	227.7	-0.0036	0.504
2	72	22	0	0	0	0	0	6	224.9	-0.0099	0.505
	74	21	0	0	0	0	0	5	226.5	-0.0032	0.508
	71	22	0	0	1	0	0	6	227.3	-0.0115	0.512
	69	21	1	0	2	0	0	7	224.2	-0.0205	0.512
3	65	22	4	0	0	0	2	7	219.3	0.0086	0.496
	64	23	4	0	0	2	0	7	222.4	-0.0004	0.506
	68	24	1	0	0	0	0	7	226.5	-0.0114	0.514
	68	24	1	0	0	0	0	7	226.5	-0.0114	0.514
4	66	25	0	0	0	0	1	8	227.6	-0.0073	0.517
	71	20	0	0	2	0	1	6	227.7	-0.0139	0.514
	71	22	0	0	0	0	1	6	227.8	-0.0087	0.510
	66	25	0	0	0	0	0	9	226.0	-0.0247	0.520

Сравнение предсказанных значений E, Hmix, G/B с рассчитанными значениями. после каждой итерации. Предсказаны значения E, $H_{\rm mix}$ и G/B для более чем 500000 сплавов на основе Fe-Cr.

B. O. Mukhamedov, I. A. Abrikosov, et al., in preparation

Расчеты параметров моделей высокого уровня в реальных условиях эксплуатации

A. V. Shapeev, E. V. Podryabinkin, K. Gubaev, F. Tasnádi, and I. A. Abrikosov, New J. Phys. **22** 113005 (2020).

Выводы

- Качество данных (параметров моделей) ключ к успешному использованию методов многомасштабного моделирования.
- Теоретические расчеты и экспериментальная верификация параметров моделей высокого уровня необходимо проводить для реальных условий эксплуатации.
- Для достижения данной цели эффективным инструментом являются расчеты с использованием современных средств кампьютерного моделирования, машинного обучения и искусственного интелекта.
- Высокая гомогенность обучаемой выборки позволяет строить модели машинного обучения высокой точности.

