# **Nutrient Pulsing Study**

Elizabeth River Steering Committee
August 2, 2013





# **Topics**

- Relationship to James River Study
- Methods
- Preliminary results
- \*\* Conclusions are pending completion of study and associated data analysis \*\*

## James River Study

#### Big picture objectives:

- Re-evaluate the existing chlorophyll a criteria and standards
- Improve related modeling (WSM and CHLA)
- 2017: Provide basis for revised James River
   2023 nutrient allocations in the Bay TMDL



3

#### James River Study (Lower Estuary Portion)

- Monitoring
  - Dataflow, continuous monitors, fixed sites
- Phytoplankton
  - Identification and enumeration
  - HPLC pigments
- Environmental factors favoring algal blooms
  - Nutrient pulse (subject for today)
  - Nutrient uptake
  - Nutrient exchange from bottom sediments
- Effects studies
  - Lab toxicity testing
  - Field studies (oyster cages)
- Modeling improvements
  - Watershed model
  - CHLA / HAB model



All of the above are related and connected to larger objective

## Factors promoting algal blooms

Our previous research has shown....

- Cochlodinium polykrikoides is dominant summer bloom former (other species also co-exist and bloom at times)
- Summer blooms tend to follow storm events

spread to mainstem ER and lower James

- Optimal water temperatures
- Quiescent stagnant conditions
- Stratified water column



# Objectives of present study

- Measure stormwater inputs
- Measure effects of storms on the river
  - Continuous monitoring (CMON)
  - Temporally intensive sampling on piers
  - Spatially extensive monitoring by boat
- Relate inputs and storms effects to blooms
- Focus on Lafayette River since headwaters are often the initiation grounds for blooms
- Results should be transferable to similar systems

### Stormwater



7

## Stormwater - Colonial Place



## Stormwater – WHRO



# Stormwater – WHRO





11

#### ISCO stormwater details

- Equipment is set up when forecasts are favorable (i.e. >=50% chance and >0.1" forecast)
- Samples collected sequentially by time and manually composited by flow (flow weighted)
- Samples collected for TSS, nutrients (TN, TP, NH3, NO3+NO3, OPO4), and salinity



# River Sampling: Private pier sites



13

### Norfolk Yacht Club



#### **Ashland Circle**



15

# Pier sampling details

- ISCO samplers set up when forecasts are favorable (coincides with SW deployment)
- "Prior" samples collected at equipment set up
- Sampler triggers by rain gauge (@0.1"/hr)
- Samples collected sequentially by time intervals @ (0, 30 min, hourly, every 2 hrs, every 4 hrs, every 6 hrs) out to 48 hours sometimes extended
  - Idea is to collect samples frequently since nutrients can be rapidly assimilated by phytoplankton
- Parameters: NH4, NO2+NO3, PO4, TDN with analysis by ODU
- Concurrent daily sampling by ODU (nutrients and phytoplankton)

#### **Continuous Monitors**

- YSI 6600 V2 EDS
- Weekly sonde exchanges



- Swap out instruments (requires 2 sondes for each site)
- Collect QC information
- Clean and re-calibrate instruments
- Data review and troubleshooting if needed
- Sonde data is recorded at 15 min intervals for depth, temp, salinity, do, pH, CHLA, and Turb
- Data is validated and reported to VECOS

17

# **Boat: Dataflow System**









Adapted from VIMS – YSI 6600, GPS, fathometer, and LabView platform

### **Dataflow Cruise Track**



19

# **Laptop Data Logging Example**

| Date                   | Sonde Time         | Temperature  | Conductivity  | Salinity PPT | DO Percent [   | OO (mg/L) PH   |            | Turbidity NTU | CHLA (ug/L) | Battery (V) | GPS Time | Lat I                    | at Dir L | .ong                | Long Dir | Speed        | Heading | GPS Date I | Depth        |
|------------------------|--------------------|--------------|---------------|--------------|----------------|----------------|------------|---------------|-------------|-------------|----------|--------------------------|----------|---------------------|----------|--------------|---------|------------|--------------|
| 3/24/2006              | 7:32:15            | 9.54         | 30.09         | 18.59        | 104            | 10.53          | 8.2        | 7.1           | 6.7         | 11.8        | 123318   | 3700.936                 | ų.       | 7627.557            | 7 W      | 4.1          | 1 287.1 | 240306     | 6.4          |
| 3/24/2006              | 7:32:19            | 9.54         | 30.16         | 18.64        | 104            | 10.53          | 8.2        | 7.1           | 7.1         | 11.8        | 123322   | 2 3700.937 1             | 1        | 7627.562            | 2 W      | 4.2          | 2 269.8 | 240306     | 6.4          |
| 3/24/2006              | 7:32:23            | 9.53         | 30.15         | 18.63        | 104            | 10.53          | 8.2        | 7.1           | 7.7         | 11.8        | 123326   | 3700.9361                | 1        | 7627.568            | 3 W      | 4.1          | 1 250.2 | 240306     | 6.7          |
| 3/24/2006              | 7:32:27            | 9.53         | 29.81         | 18.4         | 104.1          | 10.56          | 8.2        | 7.2           | 7.1         | 11.7        | 123330   | 3700.9331                | N .      | 7627.573            | 3 W      | 4.3          | 3 228.3 | 240306     | 7.3          |
| 3/24/2006              | 7:32:31            | 9.53         | 29.75         | 18.36        | 104.1          | 10.56          | 8.2        | 7.2           | 6.8         | 11.8        | 123334   | 4 3700.929 1             | 1        | 7627.577            | 7 W      | 5.4          | 4 216.9 | 240306     | 7.7          |
| 3/24/2006              | 7:32:35            | 9.52         | 29.79         | 18.39        | 104.3          | 10.58          | 8.2        | 7.3           | 6.7         | 11.9        | 123338   | 3700.9211                | N .      | 7627.584            | 4 W      | 11           | 1 213.6 | 240306     | 7.6          |
| 3/24/2006              | 7:32:39            | 9.51         | 29.68         |              | 104.4          | 10.6           | 8.2        | 7.3           | 6.4         |             |          | 2 3700.908 1             |          | 7627.594            |          | 14.4         |         |            | 8.1          |
| 3/24/2006              | 7:32:45            | 9.5          |               | 18.1         | 104.5          | 10.63          | 8.2        | 7.4           | 6.1         |             |          | 3700.8821                |          | 7627.612            |          | 20.2         |         |            | 9.5          |
| 3/24/2006              | 7:32:47            | 9.49         |               |              | 104.8          | 10.66          | 8.2        | 7.4           | 6           |             |          | 3700.871                 |          | 7627.619            |          | 22.5         |         |            | 9.6          |
| 3/24/2006              | 7:32:51            | 9.49         |               |              | 105            | 10.69          | 8.2        | 7.5           | 5.2         |             |          | 4 3700.847 [             |          | 7627.635            |          | 25           |         |            | 10.3         |
| 3/24/2006              | 7:32:55            | 9.48         |               |              | 105.4          | 10.74          | 8.2        | 7.5           | 5           |             |          | 3700.8221                |          | 7627.652            |          | 26.1         |         |            | 11.4         |
| 3/24/2006              | 7:32:59            | 9.46         |               |              | 105.8          | 10.78          | 8.2        | 7.5           | 4.6         |             |          | 2 3700.797 1             |          | 7627.67             |          | 27.1         |         |            | 11.4         |
| 3/24/2006              | 7:33:03            | 9.43         |               |              | 106.1          | 10.81          | 8.2        | 7.4           | 4.7         |             |          | 3700.771                 |          | 7627.69             |          | 27.4         |         |            | 12           |
| 3/24/2006              | 7:33:07            | 9.41         | 29.31         | 18.06        | 106.4          | 10.84          | 8.2        | 7.4           | 5.2         |             |          | 3700.744                 |          | 7627.71             |          | 27.5         |         |            | 11.8         |
| 3/24/2006              | 7:33:11            | 9.38         |               |              | 106.6          | 10.87          | 8.2        | 7.3           | 4.9         |             |          | 4 3700.718 [             |          | 7627.728            |          | 26.3         |         |            | 10.5         |
| 3/24/2006              | 7:33:15            | 9.36         |               |              |                | 10.88          | 8.2        | 7.2           |             |             |          | 3700.6931                |          | 7627.746            |          | 26           |         |            | 10.2         |
| 3/24/2006              | 7:33:19            | 9.34         |               | 18.19        |                | 10.89          | 8.2        | 7.1           | 4.7         |             |          | 2 3700.667 1             |          | 7627.763            |          | 26.2         |         |            | 10.1         |
| 3/24/2006<br>3/24/2006 | 7:33:23<br>7:33:27 | 9.31<br>9.29 | 29.6<br>29.62 |              | 106.7<br>106.6 | 10.89<br>10.89 | 8.2<br>8.2 | 6.9           | 4.5<br>4.5  |             |          | 3700.642 I<br>3700.615 I |          | 7627.78<br>7627.796 |          | 26.4<br>26.6 |         |            | 11.6<br>11.8 |
| 3/24/2006              | 7:33:27            | 9.28         |               |              | 106.6          | 10.88          | 8.2        | 6.8           | 4.6         |             |          |                          |          | 7627.790            |          | 26.4         |         |            | 11.0         |
| 3/24/2006              | 7:33:35            | 9.25         |               |              |                | 10.87          | 8.2        | 6.8           | 4.6         |             |          | 3700.5631                |          | 7627.831            |          | 26.2         |         |            | 12.3         |
| 3/24/2006              | 7:33:39            | 9.23         |               |              | 106.5          | 10.86          | 8.2        | 6.8           | 4.7         |             |          | 2 3700.5381              |          | 7627.848            |          | 26.2         |         |            | 12.5         |
| 3/24/2006              | 7:33:43            | 9.23         | 30.09         |              |                | 10.85          | 8.2        | 6.8           | 4.7         |             |          | 3700.5361                |          | 7627.862            |          | 26.3         |         |            | 13.1         |
| 3/24/2006              | 7:33:47            | 9.19         |               |              | 106.1          | 10.83          | 8.2        | 6.8           | 4.7         |             |          | 3700.5111                |          | 7627.87             |          | 26.2         |         |            | 14.5         |
| 3/24/2006              | 7:33:51            | 9.17         | 30.55         |              | 106            | 10.8           | 8.2        | 6.8           | 4.7         |             |          |                          |          | 7627.87             |          | 25.1         |         |            | 15.1         |
| 3/24/2006              | 7:33:55            | 9.16         |               |              | 105.8          | 10.78          | 8.1        | 6.8           | 4.7         |             | 123458   |                          |          | 7627.861            |          | 20.2         |         |            | 17           |

csv file format

Typically  $^{\sim}$  2,500-4,500 records long – depends on travel time

Coordinate system allows for GIS analysis and WQ mapping

# **Nutrient Sampling - Boat**



21

# Boat sampling details

- Boat was deployed "prior", 1 day after, and 2 days after storms
- Dataflow results were logged
- Fixed site nutrient grabs collected + QC
- Vertical profiling conducted

Nutrient parameters: NH3, NO2, NO3, PO4, and TDN – Analysis by ODU at low level

# **Preliminary Findings**

23

#### SW averages (2013 thru 7-12)

|             | Colonial<br>Place | WHRO    |
|-------------|-------------------|---------|
| TN (mg/l)   | 1.5               | 1.2     |
| TDN (mg/l)  | 0.58              | 0.50    |
| TP (mg/l)   | 0.21              | 0.19    |
| OPO4 (mg/l) | 0.122             | 0.068   |
| TSS (mg/l)  | 47                | 78.0    |
| Flow (gal)  | 13,771            | 995,874 |
| n           | 3                 | 4       |

- TDN calculated as sum of NH3 and NO3+NO3
- 2012 data is available but done by different lab methods
- WHRO samples may be biased low due to tidal intrusion





25

# River sites – piers Ashland Circle + NYCC





From Mulholland and Filippino (draft)

27

# Salinity vs Precip - NYCC (2012)



From Mulholland and Filippino (draft)

# Chlorophyll vs Precip – AC (2012)



From Mulholland and Filippino (draft)

20

# Chlorophyll vs Precip – NYCC (2012)



From Mulholland and Filippino (draft)





From Mulholland and Filippino (draft)

31

# River PO4 around precip events - AC



July 9th-July 13, 2012

From Mulholland and Filippino (draft)

# River sites – boat (spatially intensive)

33

# River sampling: TDN



July 12th-Sept 13, 2012

From Mulholland and Filippino (draft)





July 12th-Sept 13, 2012

From Mulholland and Filippino (draft)







From Mulholland and Filippino (draft)

37

# River sampling: PO4+CHLA



From Mulholland and Filippino (draft)

# Dataflow 2012 (Water Quality Mapping)









# Acknowledgements

- KC Filippino and Margie Mulholland (ODU)
- Ryan Morse (Univ RI)
- Todd Egerton (ODU)
- Bruce Weckworth and field crews at HRSD
- Justin Shafer (Norfolk)
- Joe Rieger (ERP)
- Arthur Butt (DEQ)
- VIMS for VECOS support
- HRSD for in kind support

41

## **Questions?**

Will Hunley – HRSD whunley@hrsd.com 757-460-4252