Faculty of Information Engineering, Computer Science and Statistics Bachelor of Science in Computer Science (L-31)

Academic Year 2021-2022

Internship report

Student: William De Vena

email: william 98 wdv @gmail.com

Responsible: Prof. Danilo Avola e-mail:

avola@di.uniroma1.it

Co-responsible: Prof. Luigi Cinque e-mail:

cinque@di.uniroma1.it

Dr. Alessio Fagioli e-

mail: beans@di.uniroma1.it

Deep Learning based approach for Semantic Segmentation of Aerial Images

Application domain

Domain of application: motivation

- Natural disasters more and more frequent and more serious
- Floods make up about 43% of the total of events
- 157 thousand victims and 2.3 billion people affected (1995-2015)
- \$ 1 billion in damages (US in 2020)
- The provision of accurate, timely and understandable information is fundamental in the management of these events

Domain of application: use of UAVs

- UAVs (Unmanned Aerial Vehicles)
 they can quickly access the affected areas
- They can reach areas otherwise unreachable
 by humans
- Quickly deliver low-altitude, high-resolution images

Semantic segmentation

Semantic segmentation: overview

- We can define it as the classification of each pixel of the image in a given class
- There are both traditional methods and methods based on

Deep Learning

Person Bicycle Background

FloodNet dataset

FloodNet: overview

- Published following the FloodNet Challenge of the EARTHVISION 2021 workshop
 Captured between 30 August and 4 September 2017 in Texas (USA) immediately after the disaster caused by Hurricane Harvey with a DJI Mavic Pro
- 2343 images captured at an altitude of 200 feet and with a resolution of 1.5 cm per pixel
- 9 Classes: Flooded Building, Non-Flooded Building, Flooded Road, Non-flooded Road, Water, Tree, Vehicle, Pool, Lawn

FloodNet: main difficulties and solutions

Presence of errors in the masks

Data cleaning

Data cleaning

Data augmentation offline

Objects of different scale

Context-based architecture

Intrinsic difficulty of some classes

Context-based architecture

Proposed approach

Proposed approach

- Based on three main parts:
 - Data cleaning
 - Offline data augmentation
 - Context-based architecture

Proposed approach: Data cleaning

- Cleaning and correction phase of the
- dataset Manual scanning of all images and their corresponding ones masks
- 182 masks found with errors
- Three main types of errors found:
 - incorrect classification of pixels non-occurrence of objects in the masks presence
 of inconsistency and confusion

Proposed approach: Offline data augmentation

- Purpose: to specifically increase the number of images to cope with the imbalance of the classes
- 4 types of transformation: Rotation, Horizontal Flip, Vertical Flip and variation of brightness and contrast
- From each of the **140 selected images**, three other images were produced with the corresponding mask **(+420 images)**

Proposed approach: Architecture

- Inspired by **DeepLabV3**, architecture proposed in 2017
- Consisting of 3 parts:
 - Backbone
 - DeepLabHead (ASPP)
 - Bilinear interpolation

Backbone

- Responsible for **feature extraction**
- Convolutional network consisting of approximately 101 layers (inspired to ResNet101)
- Uses dilated convolutions

DeepLabHead and ASPP

- Mainly composed of ASPP (Atrous Spatial Pyramid Pooling)
- Inspired by SPP (Spatial Pyramid Pooling)
- The main idea is to capture **contexts at different scales** using different convolutions **in parallel**

Hardware resources

Hardware limitations

- Hardware resources have been a major **obstacle** to work
- The Google Colab platform was used
- Very limited availability: 3/5 hours a day

Experiments and Results

Experiments

- Hyperparameters in common between all experiments:
 - Adam
 - Batch size = 2
 - Learning Rate = 0.01 (except for the last experiment)
 - Split dataset: 60% for training, 20% for validation and 20% for testing
- 1 ^ exp: baseline (600 * 800)

Classe	mIoU								
H		3				7	•	9	
0.0018	0.087	0.0002	0.28	0.14	0.339	0.006	0.0	0.309	0.129

• 2 ^ exp: + Data augmentation online (600 * 800)

Classe	Classe	Classe	Classe	Classe	Classe	Classe	Classe	Classe	mIoU
Classe 1	2	3	4	5	6	7	8	9	
0.0003	0.12	0.001	0.27		0.38		0.03		0.175

Experiments

• 3 ^ exp: + Data cleaning (750 * 1000)

Classe	mIoU								
1	2	3	4	5	6	7	8	9	
0.14	0.47	0.06	0.48	0.46	0.55	0.34	0.26	0.81	0.402

• 4 ^ exp: + Data augmentation offline (750 * 1000)

Clas	sse Class	se Classe	e Classe	Classe	Classe	Classe	Classe	Classe	mIoU
1	2	3	4	5	6	7	8	9	
0.32	0.51	0.24	0.55	0.55	0.6	0.4	0.44	0.84	0.5

• 5th exp: + Dynamic learning rate

Classe	mIoU								
1	2	3	4	5	6	7	8	9	
0.41	0.60	0.32	0.6	0.57	0.65	0.49	0.52	0.86	0.564

Results and comparison with other works of the State of the Art

Comparison:

- their version of the dataset has 857 more images (+ 36%)
- Continuous availability of computational resources

Modello	Classe	mIoU								
	1	2	3	4	5	6	7	8	9	
ENet	0.069	0.473	0.124	0.484	0.489	0.683	0.322	0.424	0.762	0.426
DeepLabV3+	0.327	0.728	0.52	0.7	0.75	0.77	0.42	0.47	0.84	0.61
Approccio proposto	0.41	0.60	0.32	0.6	0.57	0.65	0.49	0.52	0.86	0.564

Faculty of Information Engineering, Computer Science and Statistics Bachelor of Science in Computer Science (L-31)

Academic Year 2021-2022

Thanks for your attention!

Internship report

Student: William De Vena email: william98wdv@gmail.com

Responsible: Prof. Danilo Avola e-mail: avola@di.uniroma1.it

Co-responsible: Prof. Luigi Cinque e-mail: cinque@di.uniroma1.it

Dr. Alessio Fagioli e-mail: beans@di.uniroma1.it