Discrete Mathematics, 2016 Spring - Worksheet 5

September 21, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

- 1. Rewrite the following sentences using the quantifier notation.
 - (a) Every integer is a prime.
 - (b) There is an integer whose square is 2.
 - (c) All integers are divisible by 5.
 - (d) Some integer is divisible by 7.
 - (e) For every integer x, there is an integer y such that xy = 1.
 - (f) There are an integer x and an integer y such that x/y = 10.
 - (g) There is an integer that, when multiplied by any integer, always gives the result 0.
 - (h) No matter what integer you choose, there is always another integer that is larger.
- 2. Write the negation of each of the sentences in the previous problem, first with quantifiers and then in plain English. In the first way, move the ¬ symbol as far to the right as possible.
- 3. Label each of the following sentences about integers as either true or false. (No need to prove them)
 - (a) $\forall x, \forall y, xy = 0$
 - (b) $\forall x, \exists y, xy = 0$
 - (c) $\exists x, \forall y, xy = 0$
 - (d) $\exists x, \exists y, xy = 0$.
- 4. Let $A = \{1, 2, 3, 4, 5\}$ and let $B = \{4, 5, 6, 7\}$. Compute
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) A B
 - (d) B-A
 - (e) $A\Delta B$

- (f) $A \times B$
- (g) $B \times A$
- 5. Prove the following theorem and illustrate it with a Venn-diagram (you can look at p57 for what this means). (First DeMorgan's Law)

Theorem 1. Let A, B, and C sets. Then

$$A - (B \cup C) = (A - B) \cap (A - C)$$

- 6. Let A and B be sets with |A| = 10 and |B| = 7.
 - (a) Calculate $|A \cap B| + |A \cup B|$.
 - (b) Find an upper bound y and a lower bound x for $|A \cup B|$, that are sharp. That is

$$x \le |A \cup B| \le y$$
.

To show that your answer is sharp, find sets such that $|A \cup B| = x$ and $|A \cup B| = y$ exactly.

7. Prove the following proposition:

Proposition 1. Let n be an integer. Then

$$2^0 + 2^1 + \dots + 2^{n-1} = 2^n - 1$$

Hints:

- How many subsets does the set $N = \{1, 2, \dots, n\}$ have?
- How many subsets are there whose largest element is j? (Write this out for j = 1, 2, 3, 4 to see the pattern.)
- How do the two answers to the previous questions relate?