(1.2) Units

-	SI	US (FPS - foot - pound-second)		
Time	second(s)	second (sec)		
Length	meter (m)	foot (ft)	Note: F=ma	
Force	newton(N)	pound (1b)	W=ma	
Mass	Kilogram (kg)	sluq	ے	,
Energy	joule (I)	foot-pound (Ft-16)	g = 9.81 m/s2 or 32.2 ft	152
Power	watt (w)	ft-16/sec		
Temp.	°C, °K	of, or		

Oscillation Units

Frequency: f in cycles/second or Hz (1 Hz= 1 cps)
w in radian/sec (angular frequency)

Conversion: $2\pi f = \omega$ Period: $P = \frac{1}{f} = \frac{2\pi}{\omega}$ (seconds)

 $RPM: |RPM = \frac{2\pi}{60} \text{ rad/sec}$

(2.1) Differential Equations Review

System dynamics will study Ordinary Differential Equations (ODEs) in which the independent variable is time.

$$\dot{X} = \frac{dx}{dt}$$
 $\ddot{X} = \frac{d^2x}{dt^2}$ overdof notation

Standard form: $2x + 5x + 4x = 5\sin(t) + 3$

2x + 5x + 4x = 5sin(t) + 3response Input or Forcing Function (dependent variable)

Homogeneous vs. Nonhomogeneous:

Homogeneous if forcing function = ∞ ex: 5x + 2x = 0Otherwise \Rightarrow Nonhomogeneous

Order

The order of a DE is the order of the highest derivative 1^{st} order: $5x + 7x = 3\sin(t)$ 2^{nd} order: 9x + 2x = 0

Linearity

An nth order ODE is linear if it is of the form: $a_{1}(t)x^{(n)} + a_{1-1}(t)x^{(n-1)} + ... + a_{2}(t)\ddot{x} + a_{1}(t)\dot{x} + a_{0}(t)x = f(t)$ Linearity (con't)

2 conditions: 1) the dependent variable (x) + its derivatives are of the first degree 2) each coefficient depends at most on the independent variable (+)

Solution Methods for ODEs

The general solution of a linear ODE is the sum of the complementary or homogeneous solution (soln of homogeneous eq.) and the particular soln (soln of non-homogeneous eq.).

Note, the general soln is a family of soln curves because the complementary soln is any linear combination of solutions of the homogeneous eq. (superposition)

First Order Systems

Mass Damper (with velocity as dependent variable)

mv+cv=F(t)

Water Tank - Flowin

Slightly more complex model, but governing equation is of same form:

$$\frac{RA}{g}\frac{dh}{dt} + h = \frac{R}{Pg}Qin(t)$$

So, our general form is: $\dot{X} + aX = f(t)$ | 1st order, linear ODE

Case 1) What if f(t)=0? homogeneous solution

 $\dot{x} + ax = 0$ separation of variables: $\frac{dx}{dx} = -a dt$

$$\frac{dx}{x} = -adt$$

Solve for x: $e^{\ln(x)} = e^{(-at+c)}$ $X = e^{-at} \cdot e^{c}$

 $\frac{dx}{dt} = -\alpha x$ integrate both sides: $\ln(x) = -\alpha t + c$

X= Ae-at

Define initial condition: @t=0 X=Xo

define time constant: T = a

$$X_0 = Ae^0 \Rightarrow X_0 = A$$

so, X=Xoe-t/2

Response: (see sec. 8.1)

X

if $\gamma < 0 \Rightarrow$ unstable system

X

Y

E

Case 2) What if f(t) = constant (step response)

In previous example, we found homogeneous solution: $X_h = A_i e^{-t/re}$ Now, we find particular roln, X_p :

$$\dot{x}_{p}+ax_{p}=b$$
 So, $ax_{p}=b$ b/c $b=constant$, $x_{p}=constant$ \Rightarrow $\dot{x}_{p}=0$ $x_{p}=\frac{b}{a}$

Total soln: $X = X_h + X_p \Rightarrow X = Ae^{-t}h + \frac{b}{a}$

Initial conds: @t=0, X=Xo

$$X_0 = A + \frac{b}{a} \Rightarrow A = X_0 - \frac{b}{a}$$

$$X = (X_0 - \frac{b}{a})e^{-t/\gamma} + \frac{b}{a} = X_0e^{-t/\gamma} + \frac{b}{a}(1 - e^{-t/\alpha})$$
transient s.s. free forced
(dissapears w/+ine) (remains) (depends on ICs) (depends on forcing func.)

Response:

Spring Mass Damper

FBD:

$$c\dot{x} \leftarrow m \rightarrow F(t)$$

$$\mathcal{E}F = m\ddot{x}$$

$$m\ddot{x} = F(t) - c\dot{x} - kx$$

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

Electrical RLC Circuit

Model:
$$LC \frac{d^2v}{dt^2} + RC \frac{dv}{dt} + v = Vs$$

So, our general form is $a\ddot{x} + b\dot{x} + cx = f(t)$

$$a\ddot{x} + b\dot{x} + cx = f(t)$$

2nd order, linear ODE

Case 1) f(t) = 0 homogeneous soln.

A Use trial soln method where we assume exponential soln.

X= Dest x = sDest x = s2 Dest

· ignore trivial sola: D=0 · est + 0 for t=real

substitute:

as2+bs+c=0 => "characteristic equation"

Solve for Si

$$S = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \Rightarrow "roots"$$

Case 1: b2 > 4ac => 2 distinct real roots => S1, S2

(see sec. 8.2)

X= Ae sit + Be szt

requires 2 1Cs: Xo, Xo (Vo)

* if a,b,c <0 => stable however in systems we will model, this is not the case. if a,b,c >0 * then S1, S2 40 Stable response

if a, b, orc <0 then S, or Sz >0

unstable response

The response is typically dominated by one dominant root that leads to a dominant time constant. This is typically the term that decays slower, however, the values of A + B also have an effect. has largest x

Case 2: $b^2 = 4ac \Rightarrow$ repeated real roots $\Rightarrow 5, 5,$ X = Aest + Btest Same stability = (A+Bt)est criterion = (A+Bt)est 2 ICs: Xo, Xo

Case 3: b2 < 4ac => 2 complex conjugate roots 5,,2 = T = jw X = Ae ot cos wt + Be ot sin wt same stability xo Stable

= (A cos wt + B sin wt) e ot criterion 2 ICs: Xo, Xo

(2.58-2.5.11) Stability + Equilibrium

Routh-Hurwitz condition: a,b,c all have same sign for stability Specific for systems with characteristic eq: ms2+Cs+k=0
i.e. 2nd order linear systems

Stability: free response approaches 0

) Unstable: free response approaches ∞ as $t \Rightarrow \infty$

Neutral Stability: free response does not approach so but also not O.

Stability Test: linear system stable if all roots have negative real parts,

neutrally stable if any root has real part =0, unstable if any root has positive real part

Equilibrium: a state of no change

La Stable: system returns to original eq. pos. regardless of ICs Unstable: if perturbed, system will not return to eq. pos.

Pendulum:

Ex1
$$X + 3x = 5$$
 $x(0) = 2$

Trial solution method. assume x=Aest > x=sAest

1) Homogeneous soln:

(2) Particular soln:

$$\dot{X} + 3X = 5$$
 blc forcing func. = const. try a constant soln $X = C$
 $3C = 5$ $C = \frac{5}{3}$ \Rightarrow $Xp = \frac{5}{3}$

(3) Total soln:

$$X_t = X_h + X_p \implies X = Ae^{-3t} + \frac{5}{3}$$

(4) Apply IC:

50

$$X(t) = \frac{1}{3}e^{-3t} + \frac{5}{3}$$

Response:

Ex2
$$\dot{x} + 5\dot{x} + 6x = 0$$
 $\chi(0) = 3, \dot{\chi}(0) = -8$

1 Homogeneous soln:

Assume X= Aest

Characteristic Eq! (52+55+6)=0

Factor:
$$(5+2)(5+3)=0 \Rightarrow roots S_{z}=2$$
, $S_{z}=3$ (2 distinct real roots, $b^{2}>4ac$)

Xh = Ae-2+ Be-3+

2 Particular soln:

(3) Total soln:

$$X_t = X_{h} + X_p = Ae^{-2t} + Be^{-3t}$$

(4) Apply ICs:

$$X(0) = A + B = 3$$
 $\Rightarrow A = 1, B = 2$
 $\dot{X}(0) = -2A - 3B = -8$

So:

$$X(t) = e^{-2t} + 2e^{-3t}$$

Response:

$$E_{x}3$$
 $\ddot{x} + 6\dot{x} + 34x = 68$ $x(0) = 5$ $\dot{x}(0) = 1$

1 Homogeneous soln:

$$\ddot{X} + 6\dot{X} + 34\dot{X} = 0$$

$$(5+3)^2 = -25$$

$$X_h = Ae^{-3t-j5t} + Be^{-3t+j5t}$$

A Eulers Formula:

$$e^{j\theta} = \cos\theta + j\sin\theta$$
 $e^{-j\theta} = \cos\theta - j\sin\theta$

$$Ae^{-3t-j5t} = Ae^{-3t}e^{-j5t}$$

$$= Ae^{-3t}(\cos 5t - j\sin 5t)$$

$$X_h = e^{-3t} \left[(A+B) \cos 5t + j(B-A) \sin 5t \right]$$

We can define new constants:

$$C_1 = A + B$$
, $C_2 = j(B-A)$

2 Particular soln:

3 Total soln:

$$X_t = X_n + X_p = c_1 e^{-3t} \cos 5t + c_2 e^{-3t} \sin 5t + 2$$

(4) Apply ICs:

$$X(0) = C_1 + 2 = 5 \Rightarrow C_1 = 3$$

$$\dot{X}(t) = (-3c_1e^{-3t}\cos 5t - 5c_1e^{-3t}\sin 5t) + (-3c_2e^{-3t}\sin 5t + 5c_2e^{-3t}\cos 5t)$$

$$\dot{X}(0) = -3c_1 + 5c_2 = 1$$

So:

$$X(t) = 3e^{-3t}\cos 5t + 2e^{-3t}\sin 5t + 2$$

= $e^{-3t}(3\cos 5t + 2\sin 5t) + 2$

Note: $(3\cos 5t + 2\sin 5t) = \sqrt{3^2 + 2^2} \sin (5t + 0)$

Response:

| Phase shift | Pha