1 The Chomsky Hierarchy

1.1 Type-0: Unrestricted Grammars

Unrestricted Grammars are grammars that generate exactly all languages that can be recognized by a turing machine. The language produced by these grammars is called recursively enumerable or Turing-recognizable languages.

Unrestricted grammars have no restrictions to the left and right side of the grammar's productions. This is the most general class of grammars. $G = (N, \Sigma, P, S)$. With N is a set of non-terminal symbols, Σ is a set of terminal symbols, P is a set of production rules of the form $\alpha \to \beta$, where α and β are strings of symbols, $(\alpha\beta) \in (N \cup \Sigma)$ and α is not the empty string, and $S \in N$ is a specially designated start symbol. There are no restriction to the production rules as there are in other grammars. There is a method to prove that any unrestricted grammar ce be represented by a turing machine, and the language a turing machine recognizes can be generated by an unrestricted grammar.

The decision problem of weither a given string can be generated by an unrestriced grammar is equivilent to the halting problem, and so is undecidable.

1.2 Type-1: Context-Sensitive Grammars

Context-Sensitive Grammars are grammars that generate context-sensitive languages. Languages produced by these grammars are exactly all languages that can be recognized by a linear bound automaton.

Context-Sensitve Grammars are grammars that can have context of the string in both sides of the production rule. $G = (N, \Sigma, P, S)$. With N is a set of non-terminal symbols, Σ is a set of terminal symbols, P is a set of production rules with the form $\alpha A\beta \to \alpha \gamma \beta$. Where $A \in N$, $\alpha, \beta \in (N \cup \Sigma)^*$, and $\gamma \in (N \cup \Sigma)^+$.

Left/Right Context-Sensitive Grammars are when the production rules are restricted to the form of $\alpha A \to \alpha \gamma$ or $A\beta \to \gamma \beta$ respectively. These are the same as normal context-sensitive grammars, with just either α or β representing σ . The Decision problem of weather some string is an element of a context-sensitive language is PSPACE-complete. It has been shown that almost all natural languages can be characterized by a context-sensitive grammar.