Natural Deduction in QL=

LOGIC I Benjamin Brast-McKie November 21, 2023

Motivation

Entailment: We have defined entailment in QL⁼.

Completeness: We want a complete natural deduction system for QL⁼.

Question 1: What rules do we need to derive the following?

- All humans are mortal. - $\forall x (Hx \supset Mx)$

- Socrates is human. - Hs- Socrates is mortal. - Ms.: Someone is mortal. : $\exists x Mx$

Substitution

Free For: β is free for α in φ just in case there is no free occurrence of α in φ in

the scope of a quantifier that binds β .

Constants: If β is a constant, then β is free for any α and φ .

Substitution: If β is free for α in φ , then the SUBSTITUTION $\varphi[\beta/\alpha]$ is the result of

replacing all free occurrences of α in φ with β .

Instance: $\varphi[\beta/\alpha]$ is a substitution instance of $\forall \alpha \varphi$ and $\exists \alpha \varphi$ if β is a constant.

Universal Elimination and Existential Introduction

(∀E) \forall *α* φ \vdash φ [β / α] where β is a constant and α is a variable.

 $(\exists I) \varphi[\beta/\alpha] \vdash \exists \alpha \varphi$ where β is a constant and α is a variable.

Task 1: Derive the argument above.

Universal: Everyone is either great or unfortunate $\forall x (Gx \lor Ux)$.

Existential: Tom is either great or unfortunate ($Gt \lor Ut$).

```
\therefore \exists x (Gx \lor Ux). \therefore \exists y \exists x (Gy \lor Uy).
```

$$\therefore \exists x (Gx \vee Ut). \qquad \qquad \therefore \exists y \exists x (Gx \vee Uy).$$

$$\therefore \exists x (Gt \lor Ut).$$
 # $\exists x \exists x (Gx \lor Ux).$

Universal Introduction

Generalising: It would seem that we cannot universally generalise from instances.

Invalid: The following argument is invalid and should not be derivable.

- Socrates is mortal. (*Ms*)
- # Everything is mortal. $(\forall x Mx)$

Valid: Compare the following valid argument which should be derivable:

- $\forall x \forall y \forall z ((Rxy \land Ryz) \supset Rxz)$.
- $\forall x \neg Rxx$.
- $\therefore \forall x \forall y (Rxy \supset \neg Ryx).$

Task 2: Use the rules we have to derive as much as we can.

- 1. $\forall x \forall y \forall z ((Rxy \land Ryz) \supset Rxz)$
- 2. $\forall x \neg Rxx$
- 3. $\forall y \forall z ((Ray \land Ryz) \supset Raz)$: $\forall E$
- 4. $\forall z ((Rab \land Rbz) \supset Raz)$: $\forall E$
- 5. $(Rab \wedge Rba) \supset Raa$: $\forall E$
- 6. ¬*Raa* :∀E
- 7. $\mid Rab$:AS for \supset I
- 8. $\mid \mid Rba$:AS for $\neg I$
- 9. $| Rab \wedge Rba$: $\land I$
- 11. $| \neg Rba : \neg I$
- 12. $Rab \supset \neg Rba$: $\supset I$
- 13. $\forall y (Ray \supset \neg Rya)$: $\forall I$
- 14. $\forall x \forall y (Rxy \supset \neg Ryx)$: $\forall I$

Question 2: How are we going to introduce universal quantifiers without making the invalid argument above derivable?

- (\forall I) $\varphi[\beta/\alpha] \vdash \forall \alpha \varphi$ where β is a constant, α is a variable, and β does not occur in $\forall \alpha \varphi$ or in any undischarged assumption.
- *Arbitrary:* The constraints on $(\forall E)$ require β to be arbitrary.
 - Review: Bad inference above is blocked.
- In Premise: Anu loves every dog.
 - $\forall x(Dx \supset Lax) \vdash Da \supset Laa \nvdash \forall x(Dx \supset Lxx).$
- *In Conclusion:* All dogs love themselves.
 - $\forall x(Dx \supset Lxx) \vdash Da \supset Laa \nvdash \forall x(Dx \supset Lax).$

Existential Elimination

Task 3: Compare the following invalid inference.

- Someone is mortal.
- # Zeus is mortal.

Question 3: How are we going to eliminate existential quantifiers without making the argument above derivable?

Example: Consider the following argument:

- Everyone who applied found a position $\forall x (Ax \supset \exists y Fxy)$.
- Someone applied $\exists x A x$.
- \therefore Someone found a position $\exists x \exists y Fxy$.
- (\exists E) If $\exists \alpha \varphi$, $\varphi[\beta/\alpha] \vdash \psi$ where β is a constant that does not occur in $\exists \alpha \varphi$, ψ , or in any undischarged assumption, then $\exists \alpha \varphi \vdash \psi$.

Derivation: We can derive the example without deriving the invalid inference.

Quantifier Exchange Rules

- $(\neg \exists) \ \neg \exists \alpha \varphi \vdash \forall \alpha \neg \varphi.$
- $(\forall \neg) \ \forall \alpha \neg \varphi \vdash \neg \exists \alpha \varphi.$
- $(\neg \forall) \ \neg \forall \alpha \varphi \vdash \exists \alpha \neg \varphi.$
- $(\exists \neg) \exists \alpha \neg \varphi \vdash \neg \forall \alpha \varphi.$

Task 4: $\forall \alpha \neg \varphi \vdash \neg \exists \alpha \varphi$.

Task 5: $\exists \alpha \neg \varphi \vdash \neg \forall \alpha \varphi$.

- 1. $\forall \alpha \neg \varphi$
- 2. $\exists \alpha \varphi$
- 3. $| | \varphi[\beta/\alpha]$
- 4. $| \ | \ | \ \underline{\exists \alpha \varphi}$
- 5. $| \cdot | \cdot | \varphi[\beta/\alpha]$
- 6. $| \cdot | \cdot | \neg \varphi[\beta/\alpha]$
- 8. $| \neg \exists \alpha \varphi$
- 9. ¬∃*αφ*

- 10. $\exists \alpha \neg \varphi$
- 11. $\mid \forall \alpha \varphi$
- 12. $| | \neg \varphi[\beta/\alpha]$
- 13. $| \cdot | \cdot | \forall \alpha \varphi$
- 14. $| \cdot | \cdot | \neg \varphi[\beta/\alpha]$
- 15. | | | $\varphi[\beta/\alpha]$
- 17. $\mid \neg \forall \alpha \varphi$
- 18. $\neg \forall \alpha \varphi$

Task 6: Prove the rules below:

- (MCP) If $\varphi \vdash \psi$, then $\neg \psi \vdash \neg \varphi$.
- $(\forall DN) \ \forall \alpha \neg \neg \varphi \vdash \forall \alpha \varphi.$
- $(\exists DN) \exists \alpha \neg \neg \varphi \vdash \exists \alpha \varphi.$

Task 7: Use the rules above to derive $(\neg \exists)$ and $(\neg \forall)$.