Advanced Algebra (Honor) II

Guodu Chen

1 2024-02-29

Throughout \mathbb{F} is a number field.

Exercise 1.1 Let $P_n := \{f(x) \in \mathbb{F}[x] \mid \text{deg } f(x) < n\}$. Pick $a_1, \ldots, a_n \in \mathbb{F}$ such that $a_i \neq a_j$ for any $i \neq j$. Show that

$$f_j(x) := \prod_{i \neq j} (x - a_i) \ (1 \le j \le n)$$

form a basis of P_n .

Exercise 1.2 Let $V \subseteq \mathbb{F}^{n \times n}$ be a subspace such that for any $\mathbf{0} \neq A \in V$, A is non-singular. Show that dim $V \leq n$.

Exercise 1.3 Let $f(x), g(x) \in \mathbb{F}[x]$ such that $f(x)g(x) \neq 0$. Set

$$\langle f(x)\rangle := \{h(x) \mid f(x)|h(x)\}.$$

Prove that

- (1) $\langle f(x) \rangle$ is a linear subspace of $\mathbb{F}[x]$.
- (2) $\langle f(x) \rangle \cap \langle g(x) \rangle = \langle [f(x), g(x)] \rangle$.
- (3) $\langle f(x) \rangle + \langle g(x) \rangle = \langle (f(x), g(x)) \rangle$.

Exercise 1.4 Assume $\mathbb{F}_1 \subseteq \mathbb{F}_2 \subseteq \mathbb{F}_3$ such that $\dim_{\mathbb{F}_1} \mathbb{F}_2 = m$ and $\dim_{\mathbb{F}_2} \mathbb{F}_3 = n$ (as linear spaces). Show that $\dim \mathbb{F}_3/\mathbb{F}_1 = mn$.

Exercise 1.5 Let W, V_1, \ldots, V_m be linear subspaces of V such that

$$W \subset V_1 \cup \cdots \cup V_m$$
.

Prove that $W \subseteq V_i$ for some i.

Exercise 1.6 Assume that $\{\alpha_1, \ldots, \alpha_n\}$ and $\{\beta_1, \ldots, \beta_n\}$ are two basis of a linear space V. Prove that there exists $\{i_1, \ldots, i_n\} = \{1, \ldots, n\}$ such that

$$\{\alpha_1,\ldots,\alpha_{j-1},\beta_{i_j},\alpha_{j+1},\cdots,\alpha_n\}$$

is a basis of V for any j.

Exercise 1.7 (Quotient spaces) Let V be a linear space over \mathbb{F} and $U \subseteq V$ a subspace. For any $v \in V$, we fine the U-coset of v:

$$v + U := \{v + u \mid u \in U\}.$$

Let $S := \{v + U \mid v \in V\}$ and define

$$(v_1 + U) + (v_2 + U) = (v_1 + v_2) + U, k \cdot (v_1 + U) = kv_1 + U$$

for any $v_1, v_2 \in V$ and $k \in \mathbb{F}$. Prove"

- (1) Either $v_1 + U = v_2 + U$ or $(v_1 + U) \cap (v_2 + U) = \emptyset$.
- (2) $v_1 + U = v_2 + U$ iff $v_1 v_2 \in U$.
- (3) Both + and \cdot do not depend on the choice of v.
- (4) $(S, +, \cdot)$ is a linear space. (S is the quotient space V/U.)

Exercise 1.8 (Dual spaces) We call $f: V \to \mathbb{F}$ a linear function if

- $f(\alpha + \beta) = f(\alpha) + f(\beta)$ for any $\alpha, \beta \in V$, and
- $f(k\alpha) = kf(\alpha)$ for any $\alpha \in V$ and $k \in \mathbb{F}$.

Denote by V^* the set of all linear functions on V. Prove the followings.

(1) A map f is a linear function iff

$$f(k\alpha + l\beta) = kf(\alpha) + lf(\beta)$$

for any $k, l \in \mathbb{F}$, $\alpha, \beta \in V$.

- (2) If $f \in V^*$, then f(0) = 0 and $f(-\alpha) = -f(\alpha)$.
- (3) If $f \in V^*$, $\alpha_i \in V$ and $k_i \in \mathbb{F}$ $(1 \le i \le s)$, then

$$f(\sum_{i=1}^{s} k_i \alpha_i) = \sum_{i=1}^{s} k_i f(\alpha_i).$$

(4) Assume $f, g \in V^*$, and $\epsilon_1, \ldots, \epsilon_n$ is a basis of V, then f = g iff

$$f(\epsilon_i) = g(\epsilon_i)$$
 for any $1 \le i \le s$.

(5) Assume that $\epsilon_1, \ldots, \epsilon_n$ is a basis of V, and $a_1, \ldots, a_n \in \mathbb{F}$. Then there exists a unique $f \in V^*$ such that

$$f(\epsilon_i) = a_i$$
 for any $1 \le i \le n$.

(6) For any $f, g \in V^*$ and $c \in \mathbb{F}$, define

$$(f+g)(\alpha)=f(\alpha)+g(\alpha), \ \ and \ (cf)(\alpha)=c(f(\alpha)) \ \ for \ any \ \alpha\in V.$$

Then V^* is a linear space and dim $V = \dim V^*$.

2 2024-03-14

For a linear map $\phi: V \to U$, recall

$$Ker(\phi) := \{ v \in V \mid \phi(v) = 0 \} \text{ and } Im (\phi) := \{ \phi(v) \mid v \in V \}.$$

Exercise 2.1 Find the $Ker(\phi)$ and $Im(\phi)$.

- (1) $\phi: \mathbb{F}^2 \to \mathbb{F}^1, (x,y) \mapsto x.$
- (2) $\phi: \mathbb{F}^2 \to \mathbb{F}^1, (x,y) \mapsto x y.$
- (3) $\phi: \mathbb{F}^2 \to \mathbb{F}^3, (x,y) \mapsto (x+y, x-y, 2x+3y).$

Exercise 2.2 Let V be a linear space with a basis v_1, \ldots, v_n . Define a linear map $\phi: V \to V$ by

$$\phi(v_i) = v_{i+1} \ (1 \le i \le n-1) \ and \ \phi(v_n) = 0.$$

- (1) Find the matrix of ϕ under this basis.
- (2) Show that $\phi^n = 0$ and $\phi^{n-1} \neq 0$.

Exercise 2.3 Let V and U be linear spaces of dimensions n and m. Let $\phi: V \to U$ be a linear map of rank r. Prove the followings.

(1) There is a basis $\{v_1, \dots, v_n\}$ of V such that $Ker(\phi) = Span\{v_{r+1}, \dots, v_n\}$ and $\phi(v_1), \dots, \phi(v_r)$ form a basis of $Im(\phi)$. In particular,

$$\dim \operatorname{Ker}(\phi) + \dim \operatorname{Im}(\phi) = n.$$

- (2) If $W \subset V$ is a subspace, then $\dim V \dim W \ge \dim \operatorname{Im} (\phi) \dim \phi(W)$.
- (3) There exist linear maps $\phi_i: V \to U$ $(1 \le i \le r)$ such that $r(\phi_i) = 1$ and $\phi = \phi_1 + \cdots + \phi_r$.

Exercise 2.4 Let V and U be linear spaces of dimensions n and m. Let $\phi, \psi : V \to U$ be linear maps of rank r such that $\operatorname{Im} (\psi) \subset \operatorname{Im} (\phi)$, then $\psi = \phi \circ \xi$ for some linear map $\xi : V \to V$.

Exercise 2.5 Let $A, B \in \mathbb{F}^{m \times n}$. Define a linear map $\phi : \mathbb{F}^{n \times m} \to \mathbb{F}^{m \times n}$ by $\phi(X) := AXB$.

- (1) Prove that ϕ is not isomorphic if $m \neq n$.
- (2) Find dim $Ker(\phi)$ and give a basis of $Ker(\phi)$.

Exercise 2.6 Let V, U, W be non-empty linear spaces of finite dimension. Suppose that $\phi: V \to U$ and $\psi: U \to W$ are linear maps such that $r(\phi) = r(\psi \circ \phi)$. Show that there exists a linear map $\xi: W \to U$ such that $\xi \circ \psi \circ \phi = \phi$.

3 2024-03-28

Exercise 3.1 Assume W is the solution of $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$. Find the dimension and a basis of the quotient space \mathbb{R}^3/W .

Exercise 3.2 Let V_1 and V_2 be linear spaces. Let $W_1 \subset V_1$ and $W_2 \subset V_2$ be subspaces. Prove that $(V_1 \times V_2)/(W_1 \times W_2)$ is isomorphic to $(V_1/W_1) \times (V_2/W_2)$.

Exercise 3.3 Let $\phi: V \to V$ be a linear map such that $\phi^2 = \phi$. Then $\phi|_{\operatorname{Im} \phi} = id_{\operatorname{Im} \phi}$ and

$$V = \operatorname{Im} \phi \oplus \operatorname{Ker} \phi$$
.

Exercise 3.4 Let $\phi, \psi : V \to V$ be linear maps such that $\phi\psi = \psi\phi$. Show that both $\ker \phi$ and $\operatorname{Im} \phi$ are ψ -invariant.

Exercise 3.5 Let V be a linear space of dimension n and $\varphi: V \to V$. Prove that the followings are equivalent.

- 1. $V = \operatorname{Ker} \varphi + \operatorname{Im} \varphi$;
- 2. $V = \operatorname{Ker} \varphi \oplus \operatorname{Im} \varphi$;
- 3. Ker $\varphi \cap \operatorname{Im} \varphi = 0$;
- 4. Ker $\varphi = \operatorname{Ker} \varphi^2 \iff \dim \operatorname{Ker} \varphi = \dim \operatorname{Ker} \varphi^2$;
- 5. $\operatorname{Im} \varphi = \operatorname{Im} \varphi^2 \ (\Leftrightarrow \mathbf{r}(\varphi) = \mathbf{r}(\varphi^2));$
- 6. Ker φ has a φ -invariant complement, i.e., there is a φ -invariant complement U such that $V = \text{Ker } \varphi \oplus U$;
- 7. Im φ has a φ -invariant complement, i.e., there is a φ -invariant complement W such that $V = \operatorname{Im} \varphi \oplus W$.

Exercise 3.6 Let

$$\cdots \longrightarrow V_{i-1} \xrightarrow{\varphi_{i-1}} V_i \xrightarrow{\varphi_i} V_{i+1} \longrightarrow \cdots$$

be a sequence of linear maps between linear spaces such that Im $\varphi_{i-1} \subset \ker \varphi_i$. We say the sequence is **exact** at V_i , if Im $\varphi_{i-1} = \ker \varphi_i$. We say the sequence is exact if all V_i are exact. Prove the following.

- 1. $0 \xrightarrow{\varphi_0} V_1 \xrightarrow{\varphi_1} V_2$ is exact at V_1 if and only if φ_1 is injective;
- 2. $V_1 \xrightarrow{\varphi_1} V_2 \xrightarrow{\varphi_2} 0$ is exact at V_2 if and only if φ_1 is surjective;
- 3. Assume $V_1 \to V_2$ is injective. Then $0 \to V_1 \xrightarrow{\varphi_1} V_2 \xrightarrow{\varphi_2} V_3 \to 0$ is a (short) exact sequence (i.e., exact at V_1, V_2, V_3) if and only if we have the isomorphism

$$V_2/V_1 \xrightarrow{\frac{\overline{\varphi_2}}{\cong}} V_3, \quad \overline{\varphi_2}(\bar{\alpha}) = \varphi_2(\alpha);$$

4. If $0 \to V_1 \xrightarrow{\varphi_1} V_2 \xrightarrow{\varphi_2} V_3 \to 0$ is a short exact sequence, then

$$V_2 = V_1' \oplus V_3',$$

4

and $V_1 \cong V_1'$ and $V_3' \cong V_3$ given by φ_1 and the restriction of φ_2 .

4 2024-04-11

Exercise 4.1 Assume $f(x) = x^3 + px + q \in \mathbb{Z}[x]$ is irreducible and $\alpha \in \mathbb{C}$ is a root of f.

- 1. Prove that $\mathbb{Q}[\alpha] := \{g(\alpha) \mid g(x) \in \mathbb{Q}[x]\}$ is a linear space over \mathbb{Q} and $1, \alpha, \alpha^2$ form a basis.
- 2. Prove that $\varphi: \beta \mapsto f'(\alpha)\beta$ gives a linear map on $\mathbb{Q}[\alpha]$ and find its matrix under $1, \alpha, \alpha^2$.

Exercise 4.2 Assume that $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$. Assume that p is a prime integer such that $p \nmid a_0, p \mid a_i (1 \leq i \leq n)$, and $p^2 \nmid a_n$. Show that f(x) is irreducible.

Exercise 4.3 We say $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ is **primitive** if $gcd(a_0, ..., a_n) = 1$. Prove that if $f, g \in \mathbb{Z}[x]$ are primitive, then so is fg. As a corollary, if $f \in \mathbb{Z}[x]$ is reducible in $\mathbb{Q}[x]$, then it is reducible in $\mathbb{Z}[x]$.

Exercise 4.4 Assume n is odd. Pick $a_1, \ldots, a_n \in \mathbb{Z}$ such that $a_i \neq a_j$ for any $i \neq j$. Show that $f(x) = (x - a_1) \cdots (x - a_n) + 1$ are irreducible in $\mathbb{Q}[x]$.

Exercise 4.5 Let V be a finite-dimensional linear space over \mathbb{F} and $S \subset V$ a non-empty subset. We call

$$\mathrm{Ann}(S) := \{ f \in V^* \mid f(x) = 0, \forall x \in S \}$$

the annihilator of S. Show the following:

- 1. Ann(S) is a subspace of V^* .
- 2. Ann(S) = Ann(Span(S)).
- 3. $\dim \text{Ann}(S) = \dim V \dim(\text{Span}(S))$.
- 4. For any subspaces V_1, V_2 of V, we have

$$\operatorname{Ann}\left(V_{1}\cap V_{2}\right)=\operatorname{Ann}\left(V_{1}\right)+\operatorname{Ann}\left(V_{2}\right)\ \ and\ \ \operatorname{Ann}\left(V_{1}+V_{2}\right)=\operatorname{Ann}\left(V_{1}\right)\cap\operatorname{Ann}\left(V_{2}\right).$$

5. If $V = V_1 \bigoplus V_2$, then $V^* = \operatorname{Ann}(V_1) \bigoplus \operatorname{Ann}(V_2)$.

Exercise 4.6 Let V be a linear space over \mathbb{F} and $0 \neq f \in V^*$. Prove that

- 1. Ker f is a maximal subspace of V (i.e., if Ker $f \subset U$, then U = Ker f or U = V).
- 2. Fix arbitrary $\beta \notin \operatorname{Ker} f$, then for any $\alpha \in V$, there are unique $\eta \in \operatorname{Ker} f$ and $k \in \mathbb{F}$ such that

$$\alpha = \eta + k\beta$$
.

5 2024-05-09

Exercise 5.1 Prove the following vector spaces become inner product spaces under the given binary operations:

(1) Let $V = \mathbb{R}[x]$, which is the real vector space of all polynomials with real coefficients. For any polynomials

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$
 and $g(x) = b_0 + b_1 x + \dots + b_m x^m$

in V, define

$$(f(x), g(x)) := a_0b_0 + a_1b_1 + \dots + a_kb_k,$$

where $k := \min\{n, m\}$;

(2) Let $V = M_n(\mathbb{R})$, which is the real vector space consisting of all $n \times n$ real matrices. For any matrices $A = (a_{ij})$ and $B = (b_{ij})$ in V, define

$$(A,B) := \operatorname{tr}(AB') = \sum_{i,j=1}^{n} a_{ij}b_{ij};$$

(3) Let $V = M_n(\mathbb{C})$, which is the complex vector space consisting of all $n \times n$ complex matrices. For any matrices $A = (a_{ij})$ and $B = (b_{ij})$ in V, define

$$(A,B) := \operatorname{tr}\left(A\overline{B}'\right) = \sum_{i,j=1}^{n} a_{ij}\overline{b_{ij}}.$$

Remark: operations in (2) and (3) are called **Frobenius inner product**.

Exercise 5.2 Let V be an inner product space. Prove the following:

- (1) If $(\alpha, \beta) = 0$ for all $\beta \in V$, then $\alpha = 0$; if $(\alpha, \beta) = 0$ for all $\alpha \in V$, then $\beta = 0$.
- (2) Let $\{e_1, e_2, \dots, e_n\}$ be a basis for V. If $(\alpha, e_i) = (\beta, e_i)$ for all i, then $\alpha = \beta$.

Exercise 5.3 (Gram matrix) Let $\{e_1, e_2, \dots, e_n\}$ be a basis for the inner product space V. Define $g_{ij} = (e_i, e_j)$. We call $G = (g_{ij})_{n \times n}$ the **Gram matrix** or **metric matrix** of the inner product space V with respect to the basis $\{e_1, e_2, \dots, e_n\}$.

- (1) Prove that G is invertible.
- (2) Suppose $\alpha, \beta \in V$ have coordinate vectors x, y w.r.t this basis. Show that

$$(\alpha,\beta) = \left\{ \begin{array}{ll} x^TGy & (\textit{if V is a Euclidean space}) \\ x^TG\overline{y} & (\textit{if V is a complex space}) \end{array} \right..$$

(3) Suppose that $\{f_1, f_2, \dots, f_n\}$ is another basis with Gram matrix H. Suppose that the transition matrix from the basis $\{e_1, e_2, \dots, e_n\}$ to the basis $\{f_1, f_2, \dots, f_n\}$ is C. Prove that

$$H = \left\{ \begin{array}{ll} C'GC & (\textit{if V is a Euclidean space}) \\ C'G\bar{C} & (\textit{if V is a complex space}) \end{array} \right..$$

(4) Assume that H a positive definite $n \times n$ real symmetric matrix (or positive definite Hermitian matrix). Prove that there exists a basis $\{f_1, \ldots, f_n\}$ for V such that its Gram matrix is H.

6

Exercise 5.4 Let A be an $n \times n$ positive semi-definite real symmetric matrix. Prove that for any n dimensional real column vectors x and y, the following inequality holds:

$$(x'Ay)^2 \leq (x'Ax)(y'Ay).$$

Exercise 5.5 Let φ be a linear transformation on a finite-dimensional inner product space V. We want to prove that if φ has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then the adjoint φ^* of φ has eigenvalues $\overline{\lambda_1}, \overline{\lambda_2}, \dots, \overline{\lambda_n}$.

Exercise 5.6 (Non-existence of adjoint) Let $U = \mathbb{R}[x]$ with the inner product defined in Exercise 5.1(1). For any $f(x), g(x) \in U$, we can represent them in a unified form with certain coefficients possibly being zero:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$
 and $g(x) = b_0 + b_1 x + \dots + b_n x^n$.

(1) Define the linear transformation φ as

$$\varphi(f(x)) = a_1 + a_2 x + \dots + a_n x^{n-1}.$$

Find the adjoint φ^* .

(2) Define the linear transformation φ as

$$\varphi(f(x)) = a_0 + a_1(1+x) + a_2(1+x+x^2) + \dots + a_n\left(\sum_{i=0}^n x^i\right).$$

Prove that the adjoint φ^* does not exist.

Exercise 5.7 (Reflection transformation) Let v be a unit vector in an n-dimensional Euclidean space V. Define a linear transformation $\varphi: V \to V$ such that for any vector $u \in V$, we have

$$\varphi(u) = u - 2(u, v)v.$$

Show that φ is an orthogonal transformation and det $\varphi = -1$.

Remark: The linear transformation above is called a reflection transformation.

Exercise 5.8 Considers an $n \times n$ matrix $M = I_n - 2\alpha\alpha'$, where α is an n-dimensional real column vector and $\alpha'\alpha = 1$. Such an M is called a **mirror matrix**.

Let φ be a linear transformation on an n-dimensional Euclidean space V. Prove that φ is a reflection transformation if and only if the representation matrix of φ in any (or some) orthonormal basis of V is a mirror matrix.

Exercise 5.9 (\star) In an n-dimensional Euclidean space, any orthogonal transformation can be expressed as a product of at most n reflection transformations.