Problemas Sortidos IV

Guilherme Zeus Dantas e Moura zeusdanmou@gmail.com

Problema 1 (Banco IMO 1998, N2)

Determine todos os pares (a, b) de números reais tal que

$$a|bn| = b|an|$$

para todo inteiro positivo n.

Problema 2 (MEMO 2019, 2)

Seja $n \geq 3$ um inteiro. Dizemos que um vértice $A_i (1 \leq i \leq n)$ de um polígono convexo $A_1 A_2 \dots A_n$ é $bo \hat{e}mio$ se sua reflexão com respeito ao ponto médio de $A_{i-1} A_{i+1}$ (com $A_0 = A_n$ e $A_1 = A_{n+1}$) cai dentro^a do polígono $A_1 A_2 \dots A_n$. Determine o menor número possível de vértices boêmios que um n-ágono convexo pode ter (em função de n).

Problema 3 (HMIC 2016, 2)

Seja ABC um triângulo aculângulo com circuncentro O, ortocentro H, e circuncírculo Ω . Seja M o ponto médio de AH e N o ponto médio de BH. Suponha que os pontos M, N, O, H são distintos e caem no círculo ω .

Prove que os círculos ω e Ω são internamente tangentes.

Problema 4 (EGMO 2012, 7)

Seja ABC um triângulo acutângulo com circuncírculo Γ e ortocentro H. Seja K um ponto de Γ no lado oposto de BC relativo a A. Seja L a reflexão de K pela reta AB, e seja M a reflexão de K pela reta BC. Seja E o segundo ponto de intersecção de Γ com o circuncírculo de BLM.

Mostre que as retas KH, EM e BC são concorrentes.

 $[^]a$ a borda do polígono é considerada dentro do polígono