Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

International Institute of Information Technology, Hyderabad (IIIT Hyderabad) Center for Security, Theory and Algorithmic Research

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas https://sites.google.com/view/iitkgpakdas/ 1/30

Discrete Structures

Group Theory

Group

Definition

Let (S, \circ) be a structure. An element $x \in S$ is said to be an *idempotent*

if
$$x \circ x = x$$
.

Theorem

A finite monoid (M, o, e) is a group if and only if the identity element e ∈ M is its only idempotent.

Proof.

 (\Rightarrow) : Given M is a finite monoid and it is a group.

R.T.P. If $x \circ x = x$, then x = e is the identity in M, for $x \in M$.

Since M is a group, so x^{-1} exists for each $x \in M$.

Now, $x \circ x = x$. Then, $x^{-1} \circ (x \circ x) = x^{-1} \circ x$

$$\Rightarrow (x^{-1} \circ x) \circ x = x^{-1} \circ x$$

$$\Rightarrow e \circ x = e$$
, since $x^{-1} \circ x = x \circ x^{-1} = e$, the identity in M

Definition

A subgroup of a group G is a subset of the elements of the set G that forms a group under the composition of the group G.

Theorem

Let H be a subgroup of a group G. Then, the identity of H is the same as the identity of G.

Theorem

Let H be a subset of a group G. Then, H forms a subgroup of the group G if and only if $(h_1.h_2^{-1}) \in H$, for every $h_1,h_2 \in H$.

Discrete Structures

Theorem

Let H ⊆ ⟨G, ⋅⟩ be a finite subset of a group G which is closed under the binary composition '.' Then, H is a subgroup of G.

Proof. Given $H \subseteq \langle G, \cdot \rangle$ is a finite subset of a group G, and $\forall h_1, h_2 \in H, (h_1 \cdot h_2) \in H.$

RTP: H is a subgroup of G, that is,

$$\forall h_1, h_2 \in H, (h_1 \cdot h_2^{-1}) \in H.$$

In other words, it is sufficient to prove that

$$\forall h_2 \in H, h_2^{-1} \in H.$$

 $h^1, h^2, h^3, \dots, h^{m+n} = h^m$, for some n > 0 as H is a finite subset. Let $h \in H$. Then start generating its positive powers. We have:

Now,

$$h^{m+n} = h^{m}$$

$$\Rightarrow h^{m} \cdot h^{n} = h^{m}$$

$$\Rightarrow h^{n} = e, \text{ identity element in } G$$

$$\Rightarrow h^{n-1} \cdot h = h \cdot h^{n-1} = e, \text{ for } n-1 \ge 0.$$

Therefore, $\forall h_1,h_2\in H,(h_1\cdot h_2^{-1})\in H$, since H is closed under \cdot . As a Note that $h^0 = e$ is the identity in H, since $h^0 \cdot h = h \cdot h^0 = h$. Hence, h^{n-1} is the left as well as right inverse of $h \in H$. Thus, $h^{-1} = h^{n-1}$. Since $\forall h \in H, h^{-1} \in H$, take $h_2 = h$. result, H is a subgroup of G.

Problem:

- Prove that the intersection of two subgroups of a group G is also a subgroup.
- "The union of two subgroups of a group is also a subgroup." Discover whether the following statement is true or false: