Algebruh 2

Содержание

1	Лекция 1			
	1.1	Формальные степенные ряды	3	
2	Лекция 2		6	
	2.1	Интерполяция	7	
	2.2	Цикличность $(\mathbb{Z}/p\mathbb{Z})^*$	7	
	2.3	Делимость в кольцах	3	
3	Лекция 3			
	3.1	Евклидовы кольца	9	
	3.2	Производная	2	
4	Лекция 4		3	
	4.1	Формула Тейлора	4	
	4.2	Многочлены и кольца вычетов	4	
	4.3	Простейшие свойства комплексных чисел	5	
	4.4	Геометрический смысл и тригонометрическая форма	6	
5	Лен	кция 5	6	
	5.1	Комплексные числа и геометрические преобразования	7	
	5.2	Формула Муавра	3	
	5.3	Корни из 1	9	
6	6 Лекция 6		0	
	6.1	Дискретное преобразование Фурье	Э	
	6.2	Алгебраическое замыкание и круговые многочлены	0	
	6.3	Гауссовы числа и Рождественская теорема	2	

1 Лекция 1

1.1 Формальные степенные ряды

Definition 1.1. Кольцо формальных степенных рядов

Пусть R - коммутативное кольцо, тогда кольцом формальных степенных рядов R[[x]] называется множество отображений $f: \mathbb{Z}_{\geq 0} \to R$ (f по факту является последовательностью (a_0, a_1, \dots)) со следующими операциями:

- сложение: $(a_i)_{i=0}^{\infty} + (b_i)_{i=0}^{\infty} = (a_i + b_i)_{i=0}^{\infty}$
- умножение(свертка):

$$(a_i)_{i=0}^{\infty} * (b_i)_{i=0}^{\infty} = (c_i)_{i=0}^{\infty},$$
где $c_i = \sum_{j=0}^{i} a_j * b_{i-j}$

Правила неформально представляют собой обычное умножение и сложение многочленов, привычных нам.

Theorem 1.1.

Это действительно кольцо(коммутативное, ассоциативное, с 1 если таковым было R)

Доказательство. Для сложения все наследуется из R, так как оно действует покоординатно. Нулем будет $(0)_{i=0}^{\infty}$, обратный к $(a_i)_{i=0}^{\infty}$ это $(-a_i)_{i=0}^{\infty}$.

Пусть R содержит единицу, тогда единицей в R[[x]] будет $(1,0,0,\ldots)$.

Дистрибутивность — упр...

Коммутативность умножения

$$c_i = \sum_{j=0}^{i} a_j * b_{i-j} = \sum_{j+k=i}^{i} a_j * b_k = \sum_{j=0}^{i} b_j * a_{i-j}$$

Получили в конце формулу свертки для $(b)_{i=0}^{\infty}(a)_{i=0}^{\infty}$

Ассоциативность: $\forall f, g, h \in R[[x]](f \cdot g) \cdot h = f \cdot (g \cdot h)$. Введем много обозначений: $f = (a_n), g = (b_n), h = (c_n), f \cdot g = (d_n), g \cdot h = (e_n), (f \cdot g) \cdot h = (k_n), f \cdot (g \cdot h) = (l_n)$

Хотим доказать, что $k_n = l_n \ \forall n \in \mathbb{Z}_{>0}$. Тогда

$$k_n = \sum_{i=0}^n d_i c_{n-i} = \sum_{i=0}^n (\sum_{j=0}^i a_j b_{i-j}) c_{n-i}.$$

Воспользуемся дистрибутивностью:

$$k_n = \dots = \sum_{\substack{0 \le i \le n \\ 0 \le j \le i}} a_j b_{i-j} c_{n-i}.$$

Определим s := i - j, t := n - i, тогда

$$k_n = \dots = \sum_{\substack{j,s,t \ge 0\\j+s+t=n}} a_j b_s c_t \dots$$

Аналогично для l_n :

$$l_n = \dots = \sum_{\substack{j,s,t \ge 0\\j+s+t=n}} a_j b_s c_k \dots$$

Lemma 1.1.

Отображение $i:R \to R[[x]]$ т.ч. $x \mapsto (x,0,0,\dots)$ это инъективный гомоморфизм колец.

Доказательство. Инъективность очевидна. Единица переностися очевидно.

$$(x+y,0,0,\dots) = i(x+y) = i(x) + i(y) = (x,0,0,\dots) + (y,0,0,\dots)$$
$$i(xy) = (xy,0,0,\dots) = (x,0,0,\dots) * (y,0,0,\dots)$$

Далее будем отождествлять R с i(R).

Положим по определению x = (0, 1, 0, 0, ...).

Lemma 1.2.

 $x^n = (0, 0, \dots, 1, 0, \dots)$, где 1 стоит на n-м месте.

Доказательство. Индукция по n. База n = 1.

По правилу свертки $x^k * x = (c_i)_{i=0}^{\infty}$. $c_i = 1$ при i = k+1, иначе 0.

Corollary. $\Pi y cmb \ k \in \mathbb{N} \ u \ a_0, a_1, \dots, a_k \in R$.

Тогда $a_0 + a_1 x + a_2 x^2 + \dots, a_k x^k = (a_0, a_1, a_2, \dots, a_k, 0, 0)$

Произвольную последовательность $(a_i)_{i=0}^{\infty}$ будем также обозначать $\sum_{i=0}^{\infty} a_i x^i$.

Theorem 1.2.

Пусть K-поле и $f \in K[[x]]$. Тогда f-обратим $\iff a_0 \neq 0$.

Example. $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots$

Доказательство. Пусть $f\in K[[x]]$. Ищем $\frac{1}{f}=b_0+b_1x+b_2x^2+\dots$. Отсюда получим:

$$1 = a_0 * b_0$$
 , b_0 существует, так как $a_0 \neq 0$
$$0 = a_0 * b_1 + a_1 * b_0$$
 выражаем b_1

:

$$0 = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 \Rightarrow b_n = -\frac{1}{a_0} \sum_{i=1}^n a_i b_{n-i}$$

Так найдем все коэффициенты.

Corollary. Любой $f \in K[[x]]$ представим в виде $x^n(a_0 + a_1x...)$.

Отсюда x – единственное простое

Definition 1.2. Кольцо многочленов

Кольцо многочленов R[x] является подкольцом R[[x]] которое равно

$$\{(a_i) \ R[[x]] \mid \exists N : \forall n \ge N : a_n = 0\}$$

Доказательство. Докажем, что это подкольцо.

0,1 очевидно лежат в нем.

Замкнутость по сложению: $a_n=0, n\geq N_1, b_n=0, n\geq N_2,$ значит $a_n+b_n=0, n\geq \max(N_1,N_2).$ Замкнутость по умножению: $c_n=0, n\geq N_1+N_2.$

Другими словами, R[x] – множество конечных сумм вида $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$.

Definition 1.3. Степень многочлена

 $\deg(f) = \operatorname{argmax}_k \{a_k \neq 0\}$ и $\deg(0) = -\infty$.

Lemma 1.3.

 $\deg(fg) \leq \deg(f) + \deg(g)$. = только в области целостности $\deg(f+g) = \max(\deg(f), \deg(g))$, если $\deg(f) \neq \deg(g)$. $\deg(f+g) \leq \max(\deg(f), \deg(g))$ всегда

Remark. $\max(a, -\infty) = a$ $a + -\infty = -\infty$

Theorem 1.3. Универсальное свойство кольца многочленов

Пусть R коммутативное, ассоциативное кольцо, $a\in R$. Тогда $\exists !$ гомоморфизм(эвалюация) колец $ev_a:R[x]\to R$ такой, что $ev_a(r)=r\ \forall r\in R$ и 0, если $deg(f)=-\infty$

Доказательство. $ev(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1 * a + \dots + a_n * a^n$.

Definition 1.4.

Зафиксируем $f \in R[x]$. $F_f : R \to R$ т.ч. $a \mapsto ev_a(f)$. F — полиномиальная функция.

Далее будем обозначать $F_f(a) = f(a)$.

Definition 1.5.

Пусть $f \in R[x]$, $a \in R$. a-корень f, если f(a) = 0

Theorem 1.4.

Пусть $f,g\in K[x],\,g\neq 0,\,K$ -поле, тогда $\exists !r,q\in K[x]$ т.ч. f=q*g+r и $\deg(r)<\deg(g).$

Доказательство. Единственность: Пусть $f = q_1 g + r_1 = q_2 g + r_2$. Тогда $g(q_1 - q_2) = r_2 - r_1$.

Пусть $q_1 \neq q_2 \Rightarrow deg(g * (q_1 - q_2)) \geq deg(g)$, a $deg(r_1 - r_2) \leq max(deg(r_1), deg(r_2)) < deg(g)$. Противоречие..

Существование: Фиксируем g. Индукция по $\deg(f) = n$.

База: $n = 1 \dots \deg(g) - 1$. В этом случае f = 0 * g + f.

Переход: $n \to n+1$.

Пусть $\deg(f) = n+1 \ge m = \deg(g)$. Перепишем $f = ax^{n+1} + \widehat{f}$ и $g = b*x^m + \widehat{g}$, где $\deg(\widehat{f}) \le n, \deg(\widehat{g}) < m$.

Рассмотрим $f_0 = f - \frac{a}{b} x^{n+1-m} * g = \widehat{f} - \frac{a}{b} x^{n+1-m} \widehat{g}$. При этом $\deg(f_0) \le \max(\deg(\widehat{f}), \deg(\frac{a}{b} x^{n+1-m} \widehat{g})) \le \max(n, n+1-m+m-1) = n$.

Значит по индукционному предположению $f_0=q*g+r$ и $\deg(r)<\deg(g)$. Тогда $f=g(q+\frac{a}{b}x^{n+1-m})+r$.

Corollary. Частный случай: теорема Безу.

Ocmamok деления f на <math>x-a это f(a).

Доказательство. f = q(x - a) + r, deg(r) < 1. То есть r-константа.

Применив гомоморфизм эвалюации в точке а получим f(a) = r

Corollary. Если deg(f) = n и $f \neq 0$, то у него не более n корней в поле.

Доказательство. Индукция по n.

База: n=0, тогда $f=r\in K$ имеет 0 корней.

Переход: Рассмотрим $\deg(f) = n + 1$. Если нет корней, то все выполнено.

Пусть есть корень a. Тогда $f = (x - a) * \widehat{f} \Rightarrow \deg(f) = \deg(\widehat{f}) + 1$. По индукции \widehat{f} имеет не более чем n корней.

f(b)=0 \iff Потому что мы в поле $(b-a)*\widehat{f(b)}=0.$ Значит либо b=a либо b корень $\widehat{f}.$ Итого у f не более n+1 корня

2 Лекция 2

Example 2.1.

Для не поля неверно

Пусть $K = \mathbb{Z}/8\mathbb{Z}$. $f = x^2 - 1 = (x - 1)(x + 1)$. При этом у f есть корни $\pm 1,3,5,7$.

Remark. Если $f \in K[x]$ и a_1, \ldots, a_n его различные корни, то $f = (x - a_1) \ldots (x - a_n)g$.

Theorem 2.1. О формальном и функциональном равенстве

- 1. Пусть f,g многочлены над полем, степени $\leq n$. Тогда, если для различных $x_1,x_2,\ldots,x_{n+1}\in K$ и $f(x_i)=g(x_i),$ то f=g.
- 2. Если K бесконечное поле, f, g такие, что $f(a) = g(a) \, \forall a \in K$, то f = g.

Доказательство. 1) Пусть h = f - g. Тогда $\deg(h) \leq \max(\deg(f), \deg(g)) \leq n$. При этом у него n+1 различный корень. Тогда h=0=f-g.

2) Пусть $f-g \neq 0$, тогда есть $k = \deg(f-g)$. Выберем k+1 элемент поля k и получим искомое.

Example 2.2.

Пусть $K = \mathbb{Z}/p\mathbb{Z}$. $f = x^p, g = x$. Тогда $\forall a : f(a) = g(a)$.

Как функции равны, но формально нет.

2.1Интерполяция

Интерполяционная задача: K - поле. Заданы $x_1, \ldots, x_n \in K$ -различные узлы интерполяции. И заданы $y_1, \ldots, y_n \in K$.

Задача: найти многочлен над K такой что $f(x_i)=y_i$.

Theorem 2.2.

- 1. Для любой задачи $\exists ! \ f_0 \in K[x]$ решение и $\deg(f_0) < n$.
- 2. Множество всех решений имеет вид $A = \{f_0 + (x x_1) \dots (x x_n) * g\}.$

Доказательство. 1. Если f_0 решение $f \in A$, то $f_0(x_i) = f(x_i)$, тогда f тоже решение. С другой стороны, если f - решешение. Тогда $f(x_i) = y_i = f_0(x_i)$, тогда $f - f_0 =$

 $(x-x_1)(x-x_2)\dots(x-x_n)\hat{f}$.

2. Единственность: Пусть f_0, f_1 решение и $\deg(f_0, f_1) < n$. Тогда $f_0 - f_1$ имеет n корней, значит они равны.

Существование: Рассмотрим вспомогательную задачу L_i : $x_j = 0$, $x_i = 1$. Решение вспомогательной задачи: $\frac{(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_1)...(x_i-x_{i+1})...(x_i-x_n)} = \prod_{j \neq i} \frac{x-x_j}{x_i-x_j}$. Построим $f_0 = y_1L_1 + \dots + y_nL_n$. Тогда $L_i(x_j) = \delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$. $f(x_i) = y_i$, $L_i(x_i) = y_i$.

При этом $\deg(f_0) \leq \max(\deg(L_i)) \leq n-1$.

 $f_0 = \sum_i y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$ – интерполяционная формула Лагранжа.

Remark. Mu pewwww sadawy $f(x_i) = y_i \iff f \equiv 0 \mod (x - x_i)$

Цикличность $(\mathbb{Z}/p\mathbb{Z})^*$ 2.2

Theorem 2.3. Первообразный корень

 $(\mathbb{Z}/p\mathbb{Z})^*$ - циклическая

Доказательство. Надо доказать, что существует $a \in (\mathbb{Z}/p\mathbb{Z})^*$, порядок которого равен p-1.

Lemma 2.1.

 $\forall n$ выполнено $\sum_{d|n} \varphi(d) = n$

Доказательство. Пронумеруем делители n.

Пусть $A = \{1, 2, ..., n\}$. Пусть $A_i = \{a \in A \mid (a, n) = d_i\}$. Тогда $n = |A| = |\cup A_i| = \sum |A_i|$.

$$|A_i| = |\{d_i b \in A \mid (d_i b, d_i \frac{n}{d_i}) = d_i\}|$$

 $d_i b \in A \iff b = 1, \dots, \frac{n}{d_i}$. То есть $|A_i| = |\{b = 1, \dots, \frac{n}{d_i} \mid (b, \frac{n}{d_i} = 1)\}| = \varphi(\frac{n}{d_i})$. То есть $n = \sum_{d|n} \varphi(\frac{n}{d}) = \sum_{d|n} \varphi(d)$

Lemma 2.2.

Пусть $d \mid p-1$. Тогда в $(\mathbb{Z}/p\mathbb{Z})^*$ есть либо 0, либо $\varphi(d)$ элементов порядка d.

Доказательство. Пусть есть а: ord(a) = d. Значит есть $|\langle a \rangle| = d$ различных решений уравнения $x^d = 1$. И других у него нет(т.к. степень d). То есть все решения это a^i , где $i = 0 \dots, d-1$. $\{x : ord(x) = d\} = \{a^i | i = 0 \dots d-1, ord(a^i) = d\} = \{a^i | a^{ik} \neq 1, \ \forall k < d\} = \{i : \forall k \ d \nmid ik\} = \varphi(d)$.

Вернемся к доказательству теоремы:

 $\{1,\ldots,p-1\} = \bigcup_{d|p-1} B_d$, где B_d это элементы порядка d.

Знаем, что $\sum_{d|p-1} \varphi(d) = p-1 = \sum_{d|p-1} |B_d| = \sum_{d|p-1} \varepsilon(d)$, где $\varepsilon(d) = 0$ или $\varphi(d)$. То есть нулей нет, значит есть $\varphi(d)$ элементов порядка d. То есть и порядка p-1.

2.3 Делимость в кольцах

Пусть R кольцо. $b|a(a \dot{:} b) \iff \exists c : a = bc$.

Definition 2.1. Область целостность

R — область целостности если есть коммутативность (для делимости с обеих сторон) и отсутствуют делители нуля (для единственности).

Definition 2.2. Евклидово кольцо

R — область целостности называется Евклидовым кольцом, если $\exists \ \varphi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ т.ч. $\forall a,b \in R, b \neq 0 : \exists q,r : a = bq + r \ \varphi(r) < \varphi(b) \lor r = 0$.

Example 2.3.

- 1. $R = \mathbb{Z}$, тогда $\varphi(a) = |a|$
- 2. R = K[x], тогда $\varphi(f) = \deg(f)$
- 3. R поле, тогда все делится на все и φ любая

Remark. Мы не требуем единственности разложения!

Definition 2.3.

Идеал $I \in R$ если

- 1. $I \neq 0$
- $2. \ a,b \in I \Rightarrow a+b \in I$
- 3. $a, b \in I \Rightarrow a b \in I$

Definition 2.4.

I – главный, если $I = \langle a \rangle = \{ax | x \in R\}$

Definition 2.5.

Кольцо главных идеалов, если любой идеал главный

Theorem 2.4.

Евклидово кольцо – кольцо главных идеалов

Example 2.4. Не кольца главных идеалов

Z[x], K[x,y]

K[x,y] рассмотрим идеал $\{f|f(0,0)=0\}=\langle x,y\rangle$ не главный. Если главный, то $x,y|d\Rightarrow d=1,$ но $1\notin$

3 Лекция 3

3.1 Евклидовы кольца

Theorem 3.1.

Евклидово кольцо является областью главных идеалов

Доказательство. Пусть I - идеал в R. Либо $I = \{0\} = \langle 0 \rangle$ - главный. Либо $I \neq \{0\}$. Тогда рассмотрим $\varphi(I) = \{\varphi(x) \mid x \in I\} \subset \mathbb{Z}_{\geq 0}$. Значит в $\varphi(I)$ существует минимальный элемент $\varphi(x)$.

Докажем, что $I=\langle x\rangle.$ Раз $x\in I$, то и $\langle x\rangle\subset I$ по определению.

Возьмем $y \in I$. y = qx + r. При этом $\varphi(r) < \varphi(x)$, но $r = y - qx \in I$ и $\varphi(x)$ - минимальный, значит r = 0. Значит $y \in \langle x \rangle \Rightarrow I \subset \langle x \rangle$

Definition 3.1.

Пусть R - область целостности, $a,b \in \mathbb{R}$. a ассоциирован с b $(a \sim b)$, если выполнено одно из равносильных утверждений

- 1. $\langle a \rangle = \langle b \rangle$
- 2. $\{делители a\} = \{делители b\}$
- 3. $a \vdots b \wedge b \vdots a$
- $4. \ a=\varepsilon b, \ \varepsilon \in R^*$

Доказательство равносильности утверждений:

 $1 \Rightarrow 3$: $a \in \langle b \rangle \Rightarrow b$: a. Аналогично a : b.

 $3 \Rightarrow 2$: $b \vdots c$, $a \vdots b \Rightarrow a \vdots c$. Аналогично наоборот.

 $3 \Rightarrow 1$ и $2 \Rightarrow 3$ аналогично

 $4 \Rightarrow 3$:

 $a = \varepsilon b, \ \varepsilon \in \mathbb{R}^*$, тогда $\exists \varepsilon^* : \varepsilon \varepsilon^* = 1$. Значит $b = \varepsilon^* a$ т.е. b : a.

 $3 \Rightarrow 4$: $a = bc \land b = ac^* \Rightarrow a = ac^*c \Rightarrow 1 = cc^*$ T.e. $c \in R^*$.

Lemma 3.1.

~ отношение эквивалентности

Example 3.1.

 $R = \mathbb{Z}. \ a \sim b \iff a = \pm b.$

Definition 3.2.

R - область целостности, $a \in \mathbb{R}$. a называется неприводимым(неразложимым), если $a \notin R^* \wedge a \neq 0$ и если $a = bc \Rightarrow b \in R^* \vee c \in R^*$

Definition 3.3. HOД

R - область целостности, $a,b\in R,\ d=(a,b)\iff \begin{cases} a\ \vdots\ d,b\ \vdots\ d\\ a\ \vdots\ d',b\ \vdots\ d'\Rightarrow d\ \vdots\ d' \end{cases}$

Remark. Пусть $d_1, d_2 = (a, b)$, тогда $d_1 : d_2 \wedge d_2 : d_1 \Rightarrow d_1 \sim d_2$. То есть НОД определен с точностью до ассоциированности

Theorem 3.2.

Если R - ОГИ, то $\forall a,b \ \exists (a,b) \land \ \exists x,y \ : d=ax+by$

Corollary. $ab : c \land (a,c) = 1 \Rightarrow b : c$

Definition 3.4.

R - область целостности, $a\in R$, тогда a называется простым, если $a\neq 0, a\notin R^*$ и $\forall b,c\in R\ bc\ \vdots\ a\Rightarrow b\ \vdots\ a\vee c\ \vdots\ a$

Theorem 3.3.

R - область целостности, тогда p - простой \Rightarrow неприводим

R - ОГИ, тогда p - неприводим \Rightarrow простой

Доказательство. 1. р - простой $\Rightarrow p \notin R^*$. Пусть $p = ab \Rightarrow ab : p \Rightarrow a : p \lor b : p$ Не умаляя общности a : p, но из равенства $p : a \Rightarrow p \sim a \Rightarrow b \in R^*$.

2. Пусть p неприводим и bc : p. Рассмотрим (b, p) = d. $p : d \Rightarrow d \sim p \lor d \sim 1$. Если $d \sim 1$, то $(p, b) = 1 \Rightarrow c : p$. А если $d \sim p$, то $b : d \Rightarrow b : p$.

Theorem 3.4. Основная теорема арифметики

Пусть R - ОГИ, тогда $\forall a \in R \setminus \{0\}$ единственным с точностью до ассоциированности и порядка образом представляется в виде $p_1 \dots p_n$, где p_i неприводимы.

Доказательство. Единственность: пусть $p_1 \dots p_n = q_1 \dots q_m$. Все неприводимы.

Тогда $p_1 \dots p_n \vdots q_1 \Rightarrow p_1 \vdots q_1 \lor p_2 \dots p_n \vdots q_1 \Rightarrow p_1 \vdots q_1 \lor p_2 \vdots q_1 \lor \dots \lor p_n \vdots q_n$. Значит $\exists i : p_i \vdots q_1$. Т.к. p_i неприводим, то $q_1 \sim 1 \lor q_1 \sim p_1$, но первый вариант невозможен т.к. q_1 тоже неприводим. Значит $q_1 = p_i \varepsilon$, где $\varepsilon \in R^*$.

Получили $p_1 \dots p_n = \varepsilon p_i q_2 \dots q_m$. Сократим на p_i и применим индукцию! Получим искомое. Существование:

Lemma 3.2.

Если R - ОГИ, $a_1, a_2, \dots \in R$ и $a_i : a_{i+1}$. Тогда существует $N : \forall n > N$ $a_n \sim a_{n+1}$.

Доказательство. $a : b \iff \langle a \rangle \subseteq \langle b \rangle$. Значит имеем $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \dots$

Пусть $I = \bigcup \langle a_i \rangle$. I - идеал.

 $a, b \in I \Rightarrow \exists m, n \ a \in \langle a_m \rangle, \ b \in \langle a_n \rangle \Rightarrow a, b \in \langle a_{\max(n,m)} \rangle \Rightarrow a + b \in I$

Умножение аналогично.

Раз идеал и мы в ОГИ, тогда $I = \langle x \rangle$. Значит $x \in \bigcup \langle a_i \rangle \Rightarrow x \in \langle a_j \rangle$.

 $x : a_j \Rightarrow x : a_{j+1}$ и так далее. Но $a_j, a_{j+1} \in \langle x \rangle \Rightarrow a_j : x \land a_{j+1} : x$.

Получили, что $\forall m, n > j \ a_n \sim x \sim a_m \Rightarrow a_n \sim a_m$.

Lemma 3.3.

 $a \in R, \ a \notin R^* \Rightarrow \exists p$ - неприводимый, такой что $a \ \vdots \ p.$

Доказательство. Если a неприводим, то p = a.

Пусть a разложим, $a=x_1x_2, x_i\notin R^*$. Либо x_i неразложим, либо $x_i=x_1'x_2'$. Получаем цепочку $a \vdots x_1 \vdots x_1' \vdots \dots$ По лемме цепочка оборвется, значит $\exists i \ x_i$ неразложим!

Вернемся к существованию.

 $a \in R$. По 2 лемме $a = p_1 p_2$, причем p_1 неприводим. Если p_2 не неприводим, то продолжаем процесс выделения неприводимых. Он не может продолжаться бесконечно, иначе опять появится бесконечная цепочка. Значит в какой-то момент получим $a = p_1 p_2 \dots p_k \varepsilon$.

Example 3.2.

Пусть R = K[x]. K[x] - евклидово \Rightarrow ОГИ. Что такое $(K[x])^*$?

Lemma 3.4.

$$(K[x])^*=K^*$$

Доказательство. $a \in K^* \Rightarrow a \in (K[x])^*$ очевидно. $f \in (K[x])^* \Rightarrow f\tilde{f} = 1 \Rightarrow \deg(f\tilde{f}) = 0$. При этом $\deg(f) + \deg(\tilde{f}) = 0 \Rightarrow \deg(f) = 0 \Rightarrow f \in K^*$

Definition 3.5.

Область целостности, в котором выполняется ОТА называется факториальным кольцом

Remark. Можно доказать, что если R - факториально, то R[x] факториально. То есть (K[x])[y] = K[x,y] факториально, хоть и не удовлетворяет ОГИ Заметим, что $\forall f \in K[x] \setminus \{0\}$ и $\exists ! f_0, \ f \sim f_0$ при этом f_0 уникальный. $f_0 = x^n + \tilde{f}_0$, где $deg(\tilde{f}_n < n)$.

Theorem 3.5. OTA для K[x]

 $\forall f \in K[x] \setminus \{0\}$ представим в виде $f = \varepsilon f_1 \dots f_n$, где $\varepsilon \in K^*$, f_i неприводимы. И такое представление единственно с точностью до перестановки

3.2 Производная

Definition 3.6.

Производная $f \in K[x]$ называется многочлен $f'(x) = \frac{f(x) - f(y)}{x - y}|_{y = x}$

Lemma 3.5. Свойства производной

- 1. $(x^n)' = nx^{n-1}$
- 2. (f+g)' = f(x)' + g(x)'
- 3. (fg)' = f'g + fg'
- $4. \ k \in K, \ (kf)' = kf'$

Доказательство. 1. $\frac{x^n - y^n}{x - y} = x^{n-1} + x^{n-2}y + \dots + y^{n-1}|_{y=x} = nx^{n-1}$

$$(f+g)' = \frac{f(x) - f(y) + g(x) - g(y)}{x - y}|_{y=x} = \frac{f(x) - f(y)}{x - y} + \frac{g(x) - g(y)}{x - y} = f' + g'$$

3.

$$(fg)' = \frac{f(x)g(x) - f(y)g(y)}{x - y} = \frac{f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y)}{x - y} = f'g + fg'$$

Corollary. $f = a_0 + a_1 x + \dots + a_n x^n \Rightarrow f' = a_1 + 2a_2 x + \dots + a_n x^{n-1}$

Definition 3.7. Кратный корень

 $f \in K[x], f \neq 0.$ $a \in K, f(a) = 0.$ a - корень кратности m, если $f : (x-a)^m$ и $f \not ((x-a)^{m+1})$ $m = v_{(x-a)}(f)$.

Definition 3.8. Характеристика

K - поле. K называется полем характеристики 0, если $1+1+\dots+1\neq 0$ в K. Если $\exists\ p:\underbrace{1+1+\dots+1}_p=0$ и p минимальное такое, то p=char K - характеристика.

Lemma 3.6.

charK = 0 или простое

Доказательство. Пусть charK = mn. Значит

$$\underbrace{1+1+\dots+1}_{mn} = \underbrace{(1+1+\dots+1)}_{m} \underbrace{(1+1+\dots+1)}_{n} = 0$$

Так как в поле нет делителей нуля, значит одна из скобочек 0, значит mn не минимальное. \square

Theorem 3.6.

 $f \in K[x]$. a - корень кратности $m \ge 1$. Тогда

- 1. а корень f' кратности $\geq m-1$
- 2. Если charK = 0, то a корень f' кратности m-1
- 3. a корень f кратности 1, тогда a не корень f'

Доказательство.

$$f = (x-a)^m g, \ g \not \mid (x-a)$$

$$f' = m(x-a)^{m-1} g + (x-a)^m g' = (x-a)^{m-1} (mg + (x-a)g')$$
 При этом $(mg + (x-a)g') \not \mid (x-a)$

4 Лекция 4

Если char K=0, то $\exists q^{-1} \forall q \in Z$, значит и инъективный гомоморфизм полей $\mathbb{Q} \to K, \frac{p}{q} \mapsto \underbrace{(1+\dots+1)}_{p} * \underbrace{(1+\dots+1)}_{q}^{-1}.$

Если char K = p, то K содержит $\mathbb{Z}/p\mathbb{Z}$.

4.1 Формула Тейлора

Theorem 4.1. Формула Тейлора

Пусть $f \in K[x], a \in K, deg(f) = n$ и $n < char K \lor char K = 0$, тогда

$$f = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}$$

Считаем $(x-a)^0 = 1, f^{(0)} = f, f^{(k+1)} = (f^{(k)})'$

Remark. n < char K, значит $\frac{1}{k!}$ корректно определена для $k \leq n$.

Доказательство. Индукция по n. База n=0, тогда $f=k\in K=\frac{f^{(0)}(a)}{0!}(x-a)^0=k$ Переход:

 $deg(f) = n \Rightarrow deg(f') = n - 1$ т.к. $charK \nmid n$. По индукции $f' = \sum_{k=0}^{n-1} \frac{f'^{(k)}(a)}{k!} (x-a)^k$. $\widehat{f} = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$.

$$(\widehat{f})' = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} k(x-a)^{k-1} = \sum_{k=1}^{n} \frac{f'^{(k-1)}(a)}{(k-1)!} (x-a)^{k-1} =$$
$$= \sum_{k=0}^{n-1} \frac{f'^{(k)}(a)}{k!} (x-a)^k = f'$$

Итак, $\widehat{f'} = f' \Rightarrow (\widehat{f} - f)' = 0 \Rightarrow_{charK \text{хорошая}} \widehat{f} = f + c$

Применим гомоморфизм эвалюации в точке $a: \widehat{f}(a) = f(a) = f(a) + c \Rightarrow c = 0.$

Remark. Легко видеть, что для любого поля K и любого f $\exists a_k \in K : f = \sum a_k (x-a)^k$ $(a_0$ - остаток от деления на x-a и m.д. или делаем замену y-a=x и подставляем в многочлен).

4.2 Многочлены и кольца вычетов

Definition 4.1.

Пусть K - поле, $f \in K[x]$

$$f \equiv_h g \iff f - g : h$$

Definition 4.2.

I - идеал в колцье R

$$f \equiv_I g \iff f - g \in I$$

Lemma 4.1.

- 1. \equiv_h отношение эквивалентности
- 2. $\widehat{f}+/*\widehat{g}=\widehat{f+/*g}$ корректно задают структуру коммутативного кольца на $K[x]/\equiv_h$
- 3. h неразложим $\iff K[x]/(h)$ поле

Доказательство. Первые два пункта аналогично как в целых числах.

$$\widehat{g}=0\iff g$$
: h . Если h неразложим, значит $\forall f:\ f$: $h\lor(f,h)=1\iff \widehat{f}=0\lor\exists v:fv\equiv 1$ h – разложим, тогда есть делители нуля, значит точно не поле

Пусть $h = \sum a_k x^k, a_k \in K$. Предположим, что h неразложим и deg(h) > 1 (у h нет корней в K).

Замечание: есть инъективный гомоморфизм $K \to K[x]/h$, позволяющий говорить про элементы K как элементы K[x]. Поэтому

$$h(\widehat{x}) = a_0 + a_1 \widehat{x} + \dots + a_n(\widehat{x})^n = \widehat{h(x)} = 0$$

To есть в K[x]/(h) у h есть корень \widehat{x} .

Example. h = x - a, $mor \partial a \ f = f(a) + h(x - a) \Rightarrow \widehat{f} = f(a)$. To $ecm \ K[x]/(x - a) \cong K$.

Example. $h = x^2 - 1$. $Paccmompum \mathbb{Q}[x]/(x^2 - 1) = \mathbb{Q}[x]/(x - 1)(x + 1) \cong \mathbb{Q}[x]/(x - 1) \times Q[x]/(x + 1) \cong Q \times Q$ - He none

Example. $h = x^2 + 1, K = \mathbb{R}$. Получаем $\mathbb{R}[x]/(x^2 + 1) := \mathbb{C}$ - поле комплексных чисел.

4.3 Простейшие свойства комплексных чисел

Пусть $\widehat{f} \in \mathbb{C} = \mathbb{R}[x]/(x^2+1)$, тогда $f = (x^2+1)q + h$, где $deg(h) < 2 \iff h = a+b*x$.

 $\widehat{f} = \widehat{a + b * \widehat{x}} = a + b\widehat{x}$ и все они попарно различны.

Итого $\mathbb{C}=\{a+b\widehat{x}\mid a,b\in\mathbb{R}\}=\{a+bi|a,b\in\mathbb{R}\}$ - поле.

Обозначим $\widehat{x} = i$, тогда $i^2 = \widehat{x}^2 = -1$.

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $(a+bi) * (c+di) = (ac-bd) + (bc+ad)i$

z=a+bi – алгебраическая форма записи комплексного числа, a=Re(z), b=Im(z). Обратный элемент:

$$\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

Definition 4.3.

Пусть $z=a+bi\in\mathbb{C}$ сопряженный к z это элемент $\overline{z}=a-bi$

Lemma 4.2.

- 1. $\overline{\overline{z}} = z$ (сопряжение инволюция)
- 2. $\{z = \overline{z}\} = \mathbb{R}$
- $3. \ z \mapsto \overline{z}$ автоморфизм
- 4. $z + \overline{z}, z * \overline{z} \in \mathbb{R}$ то есть это корни $x^2 2ax + (a^2 + b^2)$ (любое уравнение с отрицательным дискриминантом имеет такой вид)

Remark. Инволюция – биективна

Definition 4.4.

$$z*\overline{z}=a^2+b^2=|z|^2$$
 - модуль

Lemma 4.3.

- 1. $a \in \mathbb{R} |a|_{\mathbb{R}} = |a|_{\mathbb{C}}$
- $2. |z| \in \mathbb{R}_{\geq 0}, |z| = 0 \iff z = 0$
- 3. $|z_1 * z_2| = |z_1||z_2|$

4.4 Геометрический смысл и тригонометрическая форма

 $z=a+bi\mapsto (a,b)\in \mathbb{R}\times \mathbb{R}\mapsto$ точка на декартовой плоскости. В этом случае |z| - длина соответствующего вектора.

При сложении векторов происходит то же, что и при сложении комплексных чисел.

В частности $f_a(z) = z + a$ – параллельный перенос на вектор a.

Рассмотрим единичную окружность |z|=1, тогда $z_{\alpha}=\cos(\alpha)+i\sin(\alpha)$.

$$z_{\alpha} \cdot z_{\beta} = (\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta) =$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \cos \beta \sin \alpha) =$$

$$= \cos(\alpha + \beta) + i \sin(\alpha + \beta) = z_{\alpha + \beta}$$

Возьмем $z \in \mathbb{C}^*$, тогда $z = \frac{z}{|z|} \cdot |z|$, при этом $|\frac{z}{|z|}| = 1$, значит $\frac{z}{|z|} = (\cos(\alpha) + i\sin(\alpha))$. Поэтому можем записать любое комплексное в виде $z = r(\cos(\varphi) + i\sin(\varphi))$, $r \in \mathbb{R}_{>0}$ - модуль числа, $\varphi = argz$ - аргумент.

При этом $z_1z_2 = r_1r_2(\cos(\alpha+\beta) + i\sin(\alpha+\beta))$

В частности $f_{\alpha}(z)=z_{\alpha}z$ - поворот на $\alpha.$

Что такое аргумент? Рассмотрим $(\mathbb{R},+)$, $a \equiv b(mod 2\pi)$ – это отношение эквивалентности с корректной операцией сложения.

 $argz \in \mathbb{R}/2\pi\mathbb{Z}$ – группа углов \mathbb{T} .

5 Лекция 5

 $\mathbb{T}_1 = \{z : |z| = 1\}. \ \overline{\varphi} \mapsto cos(\varphi) + i\sin(\varphi)$ — изомофризм \mathbb{T}_1 и \mathbb{T} .

Рассмотрим ($\mathbb{R}_{>0}, \circ$) - группа по умножению, \mathbb{T} - группа углов.

 $\mathbb{R}_{>0} \times \mathbb{T} \to \mathbb{C}^* (r, \varphi) \mapsto r e^{i\varphi}$ – изоморфизм групп.

При этом $(\mathbb{C}, +) \cong \mathbb{R} \times \mathbb{R}$.

Экспоненциальная форма запици комплексного числа: $\cos(\varphi) + i\sin(\varphi) \stackrel{\text{def}}{=} e^{i\varphi}$. (можно достичь "равенства" рассмотрев ряды Тейлора)

5.1 Комплексные числа и геометрические преобразования

Definition 5.1.

- 1. \mathbb{R}^2 плоскость. $f:\mathbb{R}^2\to\mathbb{R}^2$ биекция называется движением, если сохраняет расстояния.
- 2. Называется подобием, если $\forall x \neq y \neq z \neq t$

$$\frac{|f(x)f(y)|}{|f(z)f(t)|} = \frac{|xy|}{|zt|} \iff \frac{|f(x)f(y)|}{|xy|} = k$$
 — коэффициент подобия

р.s. Это не произведение, а так записаны отрезки с концами x, y.

Example. Гомотетия с центром O и коэффициентом $k \in \mathbb{R}_{>0}$ – преобразование подобия

Exercise 5.1.

Любое преобразование подобия это композиция движения и гомотетии

Доказательства не было на лекции но пусть будет

Доказательство. Возьмем $x \neq y, f$ — преобразование подобия. $\Rightarrow \forall x,y \colon x \neq y \Rightarrow |f(x)f(y)| = k|xy|$.

Поэтому $h \circ f$, где h — гомотетия с коэффициентом $\frac{1}{k}$ — движение $(x, y \in \mathbb{R}^2)$:

$$|(h \circ f)(x)(h \circ f)(y)| = \frac{1}{k}|f(x)f(y)| = \frac{1}{k} \cdot k|xy| = |xy|.$$

А значит, $h\circ f=g,\,h^{-1}$ — гомотетия с коэффициентом k, а значит $f=h^{-1}\circ g.$

Theorem 5.1. Шаля

Любое движение плоскости это либо параллельный перенос, поворот вокруг точки или осевая симметрия(скользящая)

В комплексных числах

- 1. $a \in \mathbb{C}$ f(z) = z + a параллельный перенос на вектор a
- 2. $k \in \mathbb{R}_{>0}, f(z) = kz$ гомотетия в нулеб k = -1 центральная симметрия в нуля.
- 3. $k=e^{i\varphi}\ f(z)=kz$ поворот на φ против часовой
- 4. В общем случае $k \in \mathbb{C}$ поворотная гомотетия

Remark. Движения делятся на 2 класса - сохраняющие ориентацию и меняющие ориентацию

Example 5.1.

Поворотная гомотетия вокруг точки a: f(z) = (z - a)k + a - линейная функция. В частности, любое движение сохраняющее ориентацию – линейная функция.

Lemma 5.1.

Любая линейная функция это поворотная гомотетия или перенос.

Доказательство. f(z) = pz + q. Если p = 1, то это перенос на q.

Иначе: достаточно подобрать
$$k,a:pz+q=kz+a(1-k).$$
 То есть $p=k,q=a(1-k)\Rightarrow k=p, a=\frac{q}{1-p}.$

Corollary. Композиция поворотных гомотетий это параллельный перенос или поворотная гомотетия

Итого: преобразование подобия, сохраняющее ориентацию = линейная функция.

Это группа относительно композиции $\cong \mathbb{R}^* \lambda(\mathbb{R}, +)$ - полупрямое произведение(фан факт).

Преобразования, меняющие ориентацию:

Осевая симметрия относительно OX - $f(z) = \overline{z}$.

Относительно произвольной прямой: перенесем ее в начало, переверном, сопряжем и обратно.... $f(z) = \overline{(z+a)e^{-i\varphi}}e^{+i\varphi} - a = k\overline{z} + l$

Lemma 5.2.

Любое преобразование, меняющее ориентацию задается $k\overline{z} + l$.

5.2 Формула Муавра

$$z = re^{i\varphi} \Rightarrow z^n = r^n e^{in\varphi}$$
$$r^n(\cos(n\varphi) + i\sin(n\varphi)) = (r(\cos(\varphi) + i\sin(\varphi)))^n$$

Remark. Для $n \in \mathbb{Z}$ тоже верно.

Применение:

$$(\cos(\varphi) + i\sin(\varphi))^n = \cos(n\varphi) + i\sin(n\varphi)$$

$$\cos(\varphi)^n + i\cos(\varphi)^{n-1}\sin(\varphi)\binom{n}{1} + \dots = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k\cos(\varphi)^{n-2k}\sin(\varphi)^{2k}\binom{n}{2k} + \sum_{k=0}^{\left[\frac{n}{2}\right]} (\dots) * i$$

Получили формулы кратных углов...

$$\cos n\varphi = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} \cos(\varphi)^{n-2k} (1 - \cos(\varphi)^2)^{2k} = T_n(\cos(\varphi))$$

 $T_n(x) \in \mathbb{R}[x]$ – многочлены Чебышева.

$$1 + \cos(x) + \dots + \cos(nx) = Re(1 + e^{ix} + \dots + e^{nix}) = Re\left(\frac{e^{i(n+1)x} - 1}{e^{ix} - 1}\right) = Re\left(\frac{e^{\frac{inx}{2}}(e^{\frac{i(n+1)x}{2}} - e^{-\frac{i(n+1)x}{2}})}{e^{\frac{ix}{2}} - e^{-\frac{ix}{2}}}\right) = Re\left(\frac{e^{\frac{inx}{2}}\sin x \frac{n+1}{2}}{\sin(\frac{x}{2})}\right) = \frac{\sin(x\frac{n+1}{2})\cos(\frac{nx}{2})}{\sin(\frac{x}{2})}$$

5.3 Корни из 1

Пусть $z_0 \in \mathbb{C}$. Хотим $\sqrt[n]{z_0}$ – это множество решений уравнения $z^n = z_0$.

1.
$$z_0 = 0 \Rightarrow z = 0$$

$$2. \ z_0 = re^{i\varphi}, \ z = qe^{i\psi}$$

$$\begin{cases} q^n = r \\ n\overline{\psi} = \overline{\varphi} \end{cases} \Rightarrow \begin{cases} q = \sqrt[n]{r} \\ \psi = \frac{\varphi}{n} + \frac{2\pi k}{n} \end{cases}$$

Итак,
$$\sqrt[n]{z} = \left\{ \sqrt[n]{r} \left(\cos(\frac{\psi}{n} + \frac{2\pi k}{n}) + i \sin(\frac{\psi}{n} + \frac{2\pi k}{n}) \right) | k \in \mathbb{Z}/n\mathbb{Z} \right\}$$

Когда
$$\psi_1=\psi_2\iff \frac{\psi}{n}+\frac{2\pi k}{n}=\frac{\psi}{n}+\frac{2\pi l}{n}\iff k\equiv_n l$$

Геометрически – вершины правильного *п*-угольника с центром в нуле.

Корни из
$$1 = \{\cos(\frac{2\pi k}{n}) + i\sin(\frac{2\pi k}{n}) | k = 0, \dots, n-1 \}$$

Случай
$$n=3$$
. Имеем $\{1,-\frac{1}{2}\pm\frac{\sqrt{3}i}{2}\}$

Пусть K - поле, $\mu_n(K) = \{a \in K | a^n = 1\}.$

Lemma 5.3.

 $\mu_n(K)$ – группа по умножению

Lemma 5.4.

Если K - поле, то $\mu_n(K)$ - циклическая группа

Доказательство аналогично очев трив((c)), но все же

Доказательство.
$$\mu_n = \{e^{\frac{2\pi i k}{n}}\} = \{(e^{\frac{2\pi i}{n}})^k, : k = 0, \dots, n-1\} = \{\varepsilon^k : k = 0, \dots, n-1\} \cong \mathbb{Z}/n\mathbb{Z}$$

Произведение корней из 1 тоже корень из 1, обратный тоже.. 1 тоже корень.. Значит группа! $\hfill\Box$

Remark. $\mathbb{Z}/p\mathbb{Z}$ – циклическая $\iff \mu_{p-1}(\mathbb{Z}/p\mathbb{Z})$ – цикл.

Доказательство. В \mathbb{C} все очев. $\varepsilon_1 = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$, тогда ε_1^n – все корни.

Definition 5.2.

Пусть $\varepsilon \in \mu_n(\mathbb{C})$ называется первообразный корень из единицы, если $\langle \varepsilon \rangle = \mu_n(\mathbb{C})$. Эквивалентно: $\operatorname{ord}(\varepsilon) = n$, то есть не существует $k < n : \varepsilon^k = 1$. $\varepsilon = e^{i\frac{2\pi k}{n}}$ – первообразный $\iff (k,n) = 1$.

6 Лекция 6

Lemma 6.1.

Пусть
$$\mu_n(\mathbb{C})$$
. $\sum_{\varepsilon \in \mu_n} \varepsilon^k = \begin{cases} 0, & n \nmid k \\ n, & n \mid k \end{cases}$

Доказательство. $k:n \sum \varepsilon^k = \sum (\varepsilon^n)^{k/n} = 1 + 1 + \dots + 1 = n$

Иначе возьмем первообразный корень. $\sum \varepsilon^k = 1^k + \varepsilon^k + (\varepsilon^2)^k \cdots = \frac{(\varepsilon^k)^n - 1}{\varepsilon^k - 1} = \frac{0}{\ldots \neq 0} = 0.$

6.1 Дискретное преобразование Фурье

Пусть есть $\{f \in \mathbb{C}[x] : deg(f) < n\}$ Каждой f можем сопоставить его коэффициенты $(a_0, \ldots, a_{n-1}) \in \mathbb{C}^n$. Пусть $\mu_n = \langle \varepsilon \rangle$. Рассмотрим $b_i = f(\varepsilon^i)$, тогда многочлену соответствует $(b_0, \ldots, b_{n-1}) \in \mathbb{C}^n$. Возникает преобразование $(a_i) \underset{F}{\to} (b_i)$, где $b_i = \sum_{j=0}^{n-1} a_j \varepsilon^{ij}$. F называвется дискретным преобразованием Фурье.

Хотим F^{-1} .

Theorem 6.1.

$$a_i = \frac{1}{n} \sum_{i=0}^{n-1} b_j \varepsilon^{-ij}$$

Доказательство. $b_i = \sum_{j=0}^{n-1} a_j \varepsilon^{ij}$. Зафиксируем j_0 и поделим равенство на ε^{ij_0} . Получим $\frac{b_i}{\varepsilon^{ij_0}} = \sum_{j=0}^{n-1} a_j \varepsilon^{i(j-j_0)}$. Сложим все такие равенства.

$$\sum_{i} b_i \varepsilon^{-ij_0} = \sum_{i} \sum_{j} a_j \varepsilon^{i(j-j_0)} = \sum_{j} a_j \sum_{i} \varepsilon^{i(j-j_0)} = \sum_{j} a_j \sum_{\alpha \in \mu_n} \alpha^{j-j_0} = na_{j_0}$$

т.к. $j, j_0 < n$, значит $j - j_0$: $n \iff j = j_0$ и используем предыдущую лемму. ЧТД.

Example. Быстрое умножение многочленов.

Oбычное умножение требует вычисления свертки, значит n^2 умножений. Можно быстрее.

 $f \to (b_0, \dots, b_{n-1}) \ u \ g \to (b'_0, \dots, b'_{n-1})$. Покомпонентно умножим ux. А теперь обратным Фурье.

6.2 Алгебраическое замыкание и круговые многочлены

Definition 6.1.

Поле K называется алгебраические замкнутым, если любой многочлен $(\deg(f)>0)$ имеет корень в K.

Theorem 6.2.

- 1. Для любого поля существует алгебраическое замыкание.
- 2. Если K алгебраически замкнутно, то любой многочлен раскладывается на линейные множители.

Доказательство. 1. (набросок) Присоединяем корни как в построении комплексных чисел пока можем...

2. Индукция по степени: берем корень, по теореме Безу раскладывем в (x-a)g, g уже раскладывается.

Corollary. B алгебраически замкнутом поле многочлен степени n имеет n корней c учетом кратности

Theorem 6.3. Основная теорема алгебры

 $\mathbb C$ алгебраически замкнуто.

Док-ва не будет, Антипов принял #####.

Theorem 6.4.

Неразложимые многочлены над \mathbb{R} это (x-a), $a \in \mathbb{R}$ и (x^2+px+q) , где $p^2-4q<0$ и только такие.

Другими словами $\forall f \in \mathbb{R}[x] \ f = a_0 \prod_i (x - a_i) \prod_i (x^2 + p_i x + q_i)$

Lemma 6.2.

Пусть $f \in \mathbb{R}[x], z \in \mathbb{C}$ - корень, тогда $f(\overline{z}) = 0$.

$$\overline{0} = 0 = f(z) = \overline{\sum a_i z^i} = \sum a_i \overline{z}^i = f(\overline{z})$$

Доказательство. Вернемся к теореме

Пусть $f \in \mathbb{R}[x]$ и он неразложим. По ОТА $\exists z \in \mathbb{C}$ - корень f. Если $z \in \mathbb{R}$, тогда по теореме Безу $f = (x-z)\widehat{f}$, но из неразложимости $\widehat{f} = const$, значит $f \sim (x-a)$.

Пусть $z \notin \mathbb{R}$. Тогда z, \overline{z} различные корни f. В $\mathbb{C}[x]$ f делится на $(x-z)(x-\overline{z})$. Но $(x-z)(x-\overline{z}) \in \mathbb{R}[x]$, т.к. это $(x^2-(z+\overline{z})x+z\overline{z})$ и каждый коэффициент $\in \mathbb{R}$. Значит $f=(x^2-(z+\overline{z})x+z\overline{z}))\widehat{f}$, но f неразложим, значит получили искомое аналогично предыдущему.

Example 6.1.

- Разложить на множители x^n-1 . 1. Над $\mathbb{C}\ x^n-1=\prod(x-e^{\frac{2\pi ik}{n}})$
 - 2. Над \mathbb{R} Если n нечетно, то

$$x^{n} - 1 = (x - 1) \prod (x - e^{\frac{2\pi ik}{n}}) = (x - 1) \prod_{k=1}^{\frac{n-1}{2}} (x^{2} - 2\cos\frac{2\pi k}{n}x + 1)$$

3. Над \mathbb{Q} чуть сложнее..

$$x^n - 1 = \prod_{d|n} \Phi_d$$

Definition 6.2. Круговой многочлен

$$\Phi_n(x) = \prod_{arepsilon ext{-}} {}_{ ext{первообразный}}(x-arepsilon)$$
 - круговой многочлен

Lemma 6.3.

- 1. $\Phi_d(x) \in \mathbb{Z}[x]$
- 2. $\Phi_d(x)$ неразложим в $\mathbb{Q}[x]$

Доказательство. Все следует из рекурсивной формулы $\Phi_n(x) = \frac{x^n - 1}{\prod_{d|n} \frac{1}{d \neq n} \Phi_d(x)}$.

1. Индукция $\Phi_1 = x - 1$. Переход: При делении не возникает дробей, потому что оба многочлена с 1 старшим коэффициентом (деление с остатоком хорошее).

2. Неразложимость без доказательства

Theorem 6.5.

Пусть $f \in \mathbb{R}[x], \ f(a) \geq 0 \ \forall a \in \mathbb{R}.$ Тогда $\exists g, h \ f = g^2 + h^2.$

Доказательство. Если $f \ge 0$, значит

$$f = (x-a)^2(x-b)^2 \dots (x^2 + p_1x + q_1) \dots = g^2((x+\frac{p_1}{2})^2 + c_1^2) \dots$$

Дальше волшебная формула $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$.

Итого можем превратить в сумму двух квадратов весь f.

6.3 Гауссовы числа и Рождественская теорема

Вопрос: какие целые предстваляются как $a^2 + b^2$.

Definition 6.3. Кольцо Гауссовых чисел

Кольцо гауссовых чисел называется $Z[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$

Это очевидно кольцо, так как сумма и умножение целых - целое.

Не все простые числа остаются простыми. 2 = (1 + i)(1 - i).

Theorem 6.6.

Z[i] – евклидово

Доказать, что $\forall x,y \in \mathbb{Z}[i] \; \exists q,r : x = qy + r \wedge |r| < |y|.$

Переформулируем. $\frac{x}{y} = q + \frac{r}{y} \wedge \left| \frac{r}{y} \right| < 1 \iff \left| \frac{x}{y} - q \right| < 1.$

Если докажем, что $\forall z \in \mathbb{C} \ \exists q \in \mathbb{Z}[i] \ |z-q| < 1$, то победим.

Посмотрим на квадратик целочисленной решетки на \mathbb{C} , в котором лежит z. Пусть левый нижний угол это a+bi, а правый верхний a+1+(b+1)i. Разобъем его на 4 маленьких квадратика. Тогда существует $q \in \mathbb{Z}[i]$ (уголок), который лежит в одном с z маленьком квадратике, со сторонами $\frac{1}{2}$, а расстояние между любыми точками там $|z-q|<\frac{1}{\sqrt{2}}<1$. ЧТД! (остаток при этом может быть не единственным)

Corollary. BZ[i] верна OTA и все прочее.

Theorem 6.7. Рождественская теорема Ферма

Пусть p - простое и p=4k+1. Тогда $\exists x,y\in\mathbb{Z}:p=x^2+y^2$. (p=4k+3) никогда не представимы, можем посмотреть на остатки по модулю 4) Упражнение - единственность такого представления(надо посмотреть на модуль числа).

Доказательство. $\exists x : x^2 + 1 : p$.

Если ε первообразный корень modp. Тогда $(\varepsilon^{\frac{p-1}{2}})^2=1\Rightarrow \varepsilon^{\frac{p-1}{2}}=-1$. Значит $x=\varepsilon^{\frac{p-1}{4}}$. $x^2+1=py,y\in\mathbb{Z}$. Перейдем к гауссовым. Разложим (x-i)(x+i)=py.

$$(x-i)(x+i)$$
 : p в гауссовых, но каждое не делится, значит p составное в $\mathbb{Z}[i]$. То есть $p=(a+bi)(a-bi)=a^2+b^2$

Дальше можно не читать

Remark. Если подушнить (цитата) то мы доказали только p = (a + bi)(c + di).

Можно закончить например так: $p^2 = (a^2 + b^2)(c^2 + d^2)$ При этом $a^2 + b^2 \neq 1 \land c^2 + d^2 \neq 1$. Так как иначе p не cocтавное(числе c модулем 1 - $4 \pm 1, \pm i$).

Тогда возможен только вариант, что $p = a^2 + b^2 \wedge p = c^2 + d^2$. В любом случае получили искомое.

Так,

Все извините