Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный технический университет» Кафедра «ЭВМ и С»

Семестровая работа по дисциплине «Отказоустойчивые системы»

Выполнил:

студент группы ЭВМ-1Н

Качалов А.Л.

Проверил:

Земцов А.Н.

Оглавление

Задание	3
1 Описание алгоритмов	4
2 Исследование надежных и ненадежных сетей	7
3 Исследование различных стратегий восстановления	16
4 Исследование распространенных топологий	20
Приложение 1 – Код программы	29

Задание

Разработать приложение оценки показателей надежности сети связи из не менее 10 узлов методами имитационного моделирования и сопутствующую разработке документацию на основе следующих входных данных:

- 1. Топология сети связи, в общем виде представляющая собой связный мультиграф, и заданная любым способом, например, в виде матрицы смежности или матрицы инцидентности.
 - 2. Значения L_{ii} длин линий связи между узлами сети.
- 3. Значения λ_i интенсивностей отказов узлов сети связи. Значения λ_i рассчитываются по таблице 1.
- 4. Значения λ_{ij} интенсивностей отказов линий связи между узлами сети, которые рассчитываются как $\lambda_{ij} = L_{ij} \cdot \lambda_{ce}$, где λ_{ce} удельная интенсивность отказа линий связи.
- 5. Значение μ или значения μ_k интенсивностей восстановлений, где k количество ремонтных бригад.
 - 6. Закон распределения времен отказов элементов сети связи.
 - 7. Закон распределения времен восстановлений элементов сети связи.
- 8. Номер начального и конечного узлов для поиска возможных трактов передачи между ними.
- 9. N количество отказов в сети связи, разыгрываемых на ЭВМ в процессе моделирования. Задается значение порядка 10^4 .
 - 10. Дисциплина восстановления.

Результатами моделирования являются:

- 1. Минимальное время до отказа сети связи.
- 2. Максимальное время до отказа сети связи.
- 3. Средняя наработка до отказа сети связи.
- 4. Среднее время восстановления отказа сети связи.
- 5. Коэффициент готовности.
- 6. Список путей (цепей) между выбранными узлами.

7. Гистограмма времен отказов сети связи.

8. Диаграмма восстановления

Таблица 1 – Интенсивности отказов узлов

Элемент	$10^{-6} \frac{1}{\text{vac}}$	1	2	3	4	5	6	7	8	9	10
ИМС	0.1	57	96	115	128	87	65	78	107	93	81
БИС	0.3	12	14	22	11	14	18	27	16	31	12
СБИС	1.0	7	2	8	5	4	11	12	9	8	3
ИМС, стаб. Преобр. V	1.0	12	7	6	8	5	4	7	3	4	6
Диод мал.	0.02	28	32	41	12	54	48	37	45	27	14
Диод мощ.	0.5	14	16	22	10	27	24	19	22	23	8
Транз. Мал.	0.05	57	48	42	63	74	25	81	16	27	47
Транз. Мощ.	0.3	32	31	23	42	71	16	43	11	18	12
Конденс.	0.002	45	74	85	43	84	55	52	14	25	37
Конденс. Эл.	0.04	32	62	68	32	41	37	42	12	18	31
Резистор	0.01	112	97	82	117	93	85	74	67	84	38
Резистор мощ.	0.1	72	76	85	88	77	63	71	64	81	19
Трансф. Нес.	0.1	5	8	2	12	11	14	3	2	8	7
Трансф. Сил.	0.2	1	-	-	-	1	-	-	-	1	-
Пайка	0.0001	718	823	871	732	620	730	576	812	914	637
Разъем внеш.	3.5	2	-	-	1	2	-	1	-	1	-
Разъем внут.	2.0	-	2	2	3	-	2	1	3	-	1
Сердечник	0.00001	-	-	500	-	300	-	670	-	520	-
Выключат.	0.2	2	1	-	ı	3	-	-	2	-	-
Лампочка	0.5	2	8	4	-	5	-	8	-	3	-
Предохр.	0.1	1	-	-	1	1	ı	-	1	-	-
Выкл. Сети	0.5	1	-	-	1	-	ı	-	-	-	-
Вент-р	3.0	-	1	-	-	1	-	1	-	-	-
$\lambda_{c_{\mathrm{B}}}$	0.2										

Получаем следующие интенсивности отказов узлов (табл. 2).

Таблица 2 – Итоговые интенсивности отказов узлов

7	λ	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}
10-6	1_	67.77	66.42	71.42	72.79	86.48	60.12	84.57	57.85	65.19	37.28
10	час	18	03	21	92	30	30	83	92	66	77

1 Описание алгоритмов

Для моделирования отказов в сети была разработана программа на языке Python. Ввод данных осуществляется вручную в коде программы, в котором

указаны интенсивности отказов элементов, а также матрица смежности для сети.

Поиск путей между двумя вершинами осуществляется по алгоритму поиска в ширину.

Одна итерация моделирования отказов в сети происходит по алгоритму, представленному на рисунке 1.

Рисунок 1 — Алгоритм моделирования отказов в сети