Types de Protocoles de Routage

Routage statique

Qu'est-ce que c'est?

Une méthode où les routes sont configurées manuellement par l'administrateur réseau.

Comment ça fonctionne?

L'administrateur définit une route précise pour un réseau particulier et spécifie la passerelle (next hop) pour y accéder.

• Avantages:

- o Simple à mettre en œuvre.
- o Consomme peu de ressources.

• Inconvénients:

- Non adapté aux grandes infrastructures.
- Nécessite une mise à jour manuelle en cas de changement dans la topologie.

• Commandes de configuration :

conf t

ip route <réseau destination> <masque de sous-réseau> <adresse IP de la passerelle>

• Exemple:

ip route 192.168.2.0 255.255.255.0 192.168.1.1

• Cela configure une route vers le réseau 192.168.2.0/24 en passant par le routeur ayant l'adresse IP 192.168.1.1.

RIP v2 (Routing Information Protocol v2)

Qu'est-ce que c'est?

RIP est un protocole de routage dynamique qui utilise un algorithme de distance vectorielle pour déterminer les meilleurs chemins en fonction du nombre de sauts (hops).

Comment ça fonctionne?

- o Les routeurs échangent périodiquement leur table de routage avec leurs voisins.
- La métrique utilisée est le nombre de sauts (limité à 15).

Avantages:

- o Simple à configurer.
- o Adapté aux petits réseaux.

• Inconvénients:

- Limitation à 15 sauts.
- Pas optimal pour les grandes infrastructures.

• Commandes de configuration :

```
Activer le protocole RIP:
```

```
conf t
```

router rip

version 2

Déclarer les réseaux directement connectés :

network < réseau directement connecté >

• Exemple:

conf t

router rip

version 2

network 192.168.1.0

network 192.168.2.0

• Cela configure RIP v2 pour annoncer les réseaux 192.168.1.0/24 et 192.168.2.0/24.

• Commandes utiles pour vérifier :

o Afficher les routes connues par RIP :

show ip route rip

Vérifier les voisins RIP :

show ip protocols

OSPF (Open Shortest Path First)

Qu'est-ce que c'est?

OSPF est un protocole de routage dynamique de type état de lien (link-state) qui utilise l'algorithme Dijkstra pour calculer le chemin le plus court.

Comment ça fonctionne?

- Les routeurs OSPF forment des relations avec leurs voisins dans la même zone.
- Chaque routeur partage des informations sur l'état de ses liens via des messages LSA (Link-State Advertisements).
- L'algorithme calcule le chemin optimal basé sur la métrique du coût (basée généralement sur la bande passante).

Avantages :

- Converge rapidement.
- Supporte les grandes infrastructures.

Inconvénients :

- o Plus complexe à configurer que RIP.
- Consomme plus de ressources.

• Commandes de configuration :

1. Activer OSPF et assigner un numéro de processus :

conf t

router ospf <ID de processus>

2. Déclarer les réseaux à annoncer et associer une zone OSPF :

network <réseau à annoncer> <wildcard mask> area <ID de zone>

• Exemple:

conf t

router ospf 1

network 192.168.1.0 0.0.0.255 area 0

network 192.168.2.0 0.0.0.255 area 0

• Cela configure OSPF pour annoncer les réseaux 192.168.1.0/24 et 192.168.2.0/24 dans la zone 0 (backbone).

• Commandes utiles pour vérifier :

Afficher les routes OSPF :

show ip route ospf

Vérifier les voisins OSPF :

show ip ospf neighbor

o Vérifier les informations sur l'interface OSPF :

show ip ospf interface

Comparaison des Protocoles de Routage

Critères	Routage Statique	e RIP v2	OSPF
Туре	Manuel	Distance vectorielle	e État de lien
Convergence	Instantanée	Lente	Rapide
Métrique	N/A	Nombre de sauts	Coût basé sur la bande passante
Taille du réseau	ı Petit	Petit	Grand
Configuration	Facile	Moyenne	Complexe

Exemple d'Infrastructure utilisant plusieurs Protocoles

Scénario:

- Réseau central utilisant OSPF pour une convergence rapide.
- Réseaux distants utilisant RIP v2 pour simplifier la gestion.
- Routage statique pour connecter un réseau isolé.