Final Exam (Non-Proctored)

Due Dec 3 at 11:55pm **Time Limit** 60 Minutes

Points 50 Ques

Questions 10

Available Nov 26 at 12am - Dec 3 at 11:55pm 8 days

Instructions

Multiple Choice: Each question is worth 5 points.

Time Limit: 60 Minutes

Attempt History

Correct!

Correct!

	Attempt	Time	Score
LATEST	Attempt 1	38 minutes	45 out of 50

Score for this quiz: **45** out of 50 Submitted Nov 30 at 1:48pm This attempt took 38 minutes.

Question 1	
Which model(s) is (are) linear models?	
○ Y = b0 + b1*X1	
$Y = b0 + b1*X1 + b2*X1^2$	
All of the models presented are possible answers	

Question 2	5 / 5 pts
When comparing linear regression models of different sizes (dimension), which metric(s) of to compare models?	an be used
○ AIC	
Овіс	
○ R-Squared	
Both R-Squared and AIC	
Both AIC and BIC	

Question 3	5 / 5
When using AIC for variable selection we select the model with the:	
Largest AIC value	
Any model with a positive AIC value	
Smallest AIC value	
Question 4	5 / 5
Multicollinearity can be detected using:	
○ R-Squared	
The Overall F-test	
The condition index of the matrix X'X, where ' denotes the transpose operator.	
A t-test on the regression coefficient.	
Question 5	5 / 5
Remedies for heteroscedasticity include:	
A transformation of a predictor variable.	
A transformation of the response variable.	
O Principal Components Analysis	
Transformations of a predictor variable or the response variable or both.	
Question 6	5 / 5

	O Principal Factor Analysis	
	Iterative Principal Factor Analysis	
Correct!	Maximum Likelihood Factor Analysis	
	Least Squares Factor Analysis	
	All: Principal Factor Analysis, Iterative Principal Factor Analysis, Maximum Likelihood Factor Analysis Least Squares Factor Analysis	s, and
	Question 7	5 / 5 pts
	Principal Component Analysis can be used:	
	As a remedy for heteroscedasticity in regression models	
	As a remedy for multicollinearity in regression models	
	For dimension reduction for clustering	
	As a remedy for both heteroscedasticity and multicollinearity in regression models	
Correct!	As a remedy for multicollinearity in regression models and for dimension reduction for clustering	
	Question 8	5 / 5 pts
	Which linear regression metrics increase monotonically as one adds predictor variables to the regression model?	e
	Average Error	
	O AIC	
	○ Mallow's Cp	
Correct!	R-Squared	
	Both Average Error and R-Squared	

Question 9 0 / 5 pts

	In linear regression variable selection can be performed using which of these metrics?
	○ R-Squared
	○ Adjusted R-Squared
You Answered	Mallow's Cp
Correct Answer	All: R-Squared, Adjusted R-Squared, and Mallow's Cp

	Question 10	5 / 5 pts
	In a multivariate data set with variables X1 – Xk, Factor Analysis can be used to explain:	
Correct!	the correlation structure between X1-Xk	
	the multivariate distribution of X1-Xk	
	the total variance of X1-Xk	
	both the correlation structure and the total variance of X1-Xk	

Quiz Score: 45 out of 50