Monte Carlo: symulacja procesów rzadkich przy pomocy równania typu Master, algortym Gillespie

Filip Brodacz

23 kwietnia 2025

1 Wstęp teoretyczny

W niniejszym raporcie przedstawiono analizę stochastycznej symulacji reakcji chemicznych, w której uczestniczą trzy składniki: x_1 , x_2 oraz x_3 . Reakcje zachodzące w układzie opisane są równaniami:

$$\emptyset \xrightarrow{k_1} x_1, \quad \emptyset \xrightarrow{k_2} x_2, \quad x_1 + x_2 \xrightarrow{k_3} x_3, \quad x_3 \xrightarrow{k_4} \emptyset, \quad x_1 \xrightarrow{\Gamma_3} \emptyset, \quad x_2 \xrightarrow{\Gamma_3} \emptyset$$

Reakcje te można również zapisać w postaci równań różniczkowych:

$$\frac{dx_1}{dt} = -k_3 x_1 x_2 + k_1 = -\Gamma_3(t) + \Gamma_1(t) \tag{1}$$

$$\frac{dx_2}{dt} = -k_3 x_1 x_2 + k_2 = -\Gamma_3(t) + \Gamma_2(t) \tag{2}$$

$$\frac{dx_3}{dt} = k_3 x_1 x_2 - k_4 x_3 = \Gamma_3(t) - \Gamma_4(t) \tag{3}$$

Częstości poszczególnych reakcji określone są jako:

$$\Gamma_1(t) = k_1, \quad \Gamma_2(t) = k_2, \quad \Gamma_3(t) = k_3 x_1 x_2, \quad \Gamma_4(t) = k_4 x_3$$

Z uwagi na małe liczby cząsteczek, zmiany ilości substratów są dyskretne i losowe. Do ich modelowania wykorzystujemy algorytm Gillespiego.

2 Algorytm Gillespiego

Algorytm Gillespiego symuluje zmiany stanu układu jako proces stochastyczny. W każdej iteracji:

- 1. Obliczamy sumę częstości wszystkich reakcji: $\Gamma_{\text{max}} = \sum_{i} \Gamma_{i}$.
- 2. Losujemy czas do następnej reakcji: $\Delta t = -\frac{1}{\Gamma_{\max}} \ln(U_1)$, gdzie $U_1 \sim \mathcal{U}(0,1)$.
- 3. Losujemy numer reakcji: wybieramy reakcję m, dla której $\sum_{i=1}^{m} \Gamma_i/\Gamma_{\max} > U_2$, gdzie $U_2 \sim \mathcal{U}(0,1)$.
- 4. Aktualizujemy stany x_1, x_2, x_3 w zależności od rodzaju reakcji.
- 5. Dodajemy Δt do aktualnego czasu symulacji.

3 Wyniki

3.1 Symulacja testowa dla $P_{\text{max}} = 1$

W tej symulacji wygenerowano jeden ciąg czasowy. Na wykresie przedstawiono ewolucję składników $x_1(t)$, $x_2(t)$ i $x_3(t)$. Zaobserwowano wyraźne fluktuacje związane z losową naturą zdarzeń, szczególnie w dynamice x_3 , który powstaje i zanika w zależności od chwilowej dostępności substratów.

3.2 Symulacja dla $P_{\text{max}} = 5$

Przebieg symulacji dla pięciu niezależnych realizacji pokazuje zróżnicowane trajektorie czasowe. Widoczna jest duża zmienność pomiędzy ścieżkami, szczególnie dla $x_3(t)$. Potwierdza to znaczący wpływ losowości i fluktuacji przy małych liczbach cząsteczek.

3.3 Symulacje dla $P_{\text{max}} = 5$, 10 oraz 100

Dla trzech wartości $P_{\rm max}$ wykonano serie niezależnych symulacji. W przypadku $P_{\rm max}=5$ i $P_{\rm max}=10$ zaobserwowano znaczną zmienność między trajektoriami składnika $x_3(t)$, co wynika z silnych fluktuacji obecnych przy niskich liczbach cząsteczek. W przypadku $P_{\rm max}=100$ obliczono średnie wartości $\langle x_3(t)\rangle$ oraz odchylenia standardowe $\sigma_{x_3}(t)$, które przedstawiono na wykresie. Uzyskany profil czasowy średniego stężenia składnika x_3 ukazuje wyraźne wygładzenie względem pojedynczych trajektorii. Obecność błędów (słupków) na wykresie ilustruje poziom niepewności wynikający z fluktuacji losowych.

4 Wpływ fluktuacji na dynamikę układu

Symulacje wykazały istotny wpływ fluktuacji na przebieg reakcji. W przypadku pojedynczych trajektorii dominują chaotyczne zmiany liczby cząsteczek, co może prowadzić do chwilowego wygaszenia procesu produkcji składnika x_3 lub jego gwałtownego wzrostu. Uśrednienie wielu trajektorii pozwala uchwycić ogólne trendy dynamiki układu, jednak nie eliminuje lokalnych odchyleń. W układach, gdzie liczby cząsteczek są małe, fluktuacje nie tylko mają charakter zakłóceń, ale są integralną częścią dynamiki i mogą znacząco wpływać na przebieg reakcji.

5 Podsumowanie

Algorytm Gillespiego stanowi skuteczne narzędzie do modelowania stochastycznych procesów chemicznych. Wyniki symulacji potwierdzają, że w układach z małą liczbą cząsteczek fluktuacje odgrywają kluczową rolę i nie mogą być pomijane. Uśrednianie wielu ścieżek pozwala lepiej zrozumieć średnie właściwości układu, jednak nie oddaje pełnej dynamiki obecnej w pojedynczych realizacjach.