 is the ideal method of exactly determining population parameter In most cases it is impossible to determine the parameter exactly, can be estimated using a sample (part of the population) Factors for a good estimate (for generalising) 1 Sampling frame must contain population of interest 2 Probability sampling (probability of being chosen 	 randomly sample a fixed number of clusters All observations from selected clusters are included + less tedious, less time consuming - high variability due to dissimilar clusters or small number of clusters NON-PROBABILITY SAMPLING Selection is done by human discretion rather than probability 	 Measures of dispersion: Standard deviation, interquartile range Standard deviation and IQR does not relate to spread pattern First quartile is the 25th percentile of data values Standard deviation = square root of variance ≠ spread pattern
is non-zero and known) 3 Must be large enough 4 High response rate • Factors 1 and 2 result in selection bias if not enforced	 Includes convenience sampling and volunteer sampling Convenience sampling 	$S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$
 estimate = parameter + bias + random error Bias is influenced by 1, 2 and 4: aim for minimal selection bias and non response Random error is influenced by 3. Larger sample -> smaller error 	 Researcher uses subjects that are most easily available to participate in the study - Prone to selection bias (some parts of demographic left out) - Vulnerable to non-response bias 	 Mean Mean is defined as the sum of all data points divided by the number of data points Adding a constant value to all data points changes that mean by that constant value
 Selection bias if 1 or 2 not enforced. All non probability sampling (e.g. convenience/ volunteer sampling) results in selection bias 	 Volunteer sampling Researcher seeks volunteers to participate in the study Non-response bias, where people who do not volunteer are left out 	 Multiplying a value c to all data points results in the mean being multiplied by that constant c Median
PROBABILITY SAMPLING Simple random sampling (use of chance) Draw units from the population at random without replacement Chance of selection at every stage changes, but chance of ending up in final sample is the same Tends to be good representation of population Subject to non response	 - Selection bias when some members are not included VARIABLES Independent vs dependent variable Independent: subject to manipulation in a study Dependent: variable hypothesised to change depending on how independent variable is manipulated 	 Median of a numerical value in a data set is the middle value of the variable after arranging all the values in ascending / descending order Does not indicate total value, frequency or distribution Adding a constant value to all data points changed the median by that constant value Multiplying a value c to all data points results in the median being multiplied by constant c
 Systematic sample Selecting units from a list by applying a selection interval (that is randomly derived) + simpler selection process, can be treated like a simple random sample if numbers are assigned randomly May not be representative if sampling list is non-random 	 Categorical variables Take category of label values, each observation can only be placed in one label and labels are mutually exclusive Ordinal: variables are categories come with natural order and numbers are used to represent it (e.g. 	 Mode The mode is that value that appears most frequently in the data set When describing distribution of points of a discrete variable, mode is the "peak" of the distribution graph
 Stratified sampling Population divided into subgroups (strata), and a random sample is taken from each strata Good to use for estimations within subgroups in addition to estimating within population parameter Estimate of parameter is done by taking weighted average of subgroup estimates Able to get representation from every strata Need information about sample frame and stratum 	 happiness) Nominal: have no intrinsic ordering (e.g. eye colour) Numerical variables Takes numerical values for which arithmetic operation makes sense Discrete: possible values of the variable form a set of numbers with gaps (e.g. MCs for modules) Continuous: can take on all possible numerical values (e.g. time) 	 IQR ≠ spread pattern Interquartile range is the difference between the third quartile and first quartile IQR is always non-negative Adding a constant to all data points does not change the IQR Multiplying a value c to all data points results in the IQR being multiplied by c

Cluster sampling
• Population is broken down into clusters, then

randomly sample a fixed number of clusters

Summary statistics

• Measures of central tendencies: mean, median, mode

A parameter is a numerical fact about a population
A census with 100% response rate and no response-bias

Experimental studiesPrimary goal is to prove a cause and effect	RATES • Marginal rate is the probability of an event occurring;		Hair type						
relationship between 2 variablesTo establish cause and effect, the independent	not conditioned on another event occurring		Straight Curly			ırly			
 To establish cause and effect, the independent variable should be the only variable that results in a change in the dependent variable Researchers can assign participants to control and 	 Joint rate is the probability of 2 events occurring together (i.e. intersection of the probabilities of 2 	Colour	Male	Female	Male	Female	Total		
	events, P(A and B); denominator is total number	Red	7	9	8	5	29		
experimental groups (random assignment is best)	 Conditional rate is the probability of event A occurring given that event B occurs, P(A B); 		-	-			\vdash		
 Random assignment: random draw without replacement 	denominator is B (given condition)	Brown	35	20	12	16	83		
 Groups can have different sizes as long as sizes are quite large 	ASSOCIATION	Blonde	51	55	38	27	171		
quite large	 A and B are associated with each other if rate (A B)≠ rate (A not B) 	Black	22	25	19	24	90		
Blinding • Blinding is done to guard against human bias.	 A and B are positively associated if rate (A B) > rate (A 	Total	115	109	77	72	373		
 In a single-blinded experiment, either participants 	not B)			•	•	•			
or evaluators do not know whether they are in (or evaluating) the treatment or control groups	 A and B are negatively associated if rate (A B) < rate (A not B) 	The marginal rate, rate(Curly), is $_{(a)}$; while the joint rate, rate(non-Black and Female) is $_{(b)}$.							
 In a double-blinded experiment, both participants 	 A and B are interchangeable due to symmetry of rates, i.e. rate (A B) > rate (A not B) iff rate (B A) > rate (B 								
and evaluators do not know whether they are in (or evaluating) the treatment or control groups	not A)	To calculate the marginal rate, rate(Curly), we take the							
 Researchers still know which group is subjected to 	 Symmetry rule: rate(A B) > rate(A NB) ↔ rate(B A) > rate(B NA) 		column totals of all Curly-haired persons (both Male and						
which treatments	• rate(A B) < rate(A NB) \leftrightarrow rate(B A) < rate(B NA)	Female) divided by the grand total of everyone in the data set, $(77 + 72)$							
Observational studies	• rate(A B) < rate(A NB) \leftrightarrow rate(B A) < rate(B NA) • rate(A B) = rate(A NB) \leftrightarrow rate(B A) = rate(B NA) $\frac{(77 + 72)}{373} \approx 39.95\%$								
 In an observational study, participants self assign to each of the respective groups (may be unethical to 	BASIC RULE OF RATES	To calculate the joint rate , rate(non-Black and Female), we take the count of "Females with non-black hair" divided by once again the grand total of everyone in the data set, i.e.							
assign)	 rate(A) is always between rate (A B) and rate (A NB) Given rate (A B) = x and rate (A C) = y, with B and C 								
 Observational studies can only establish association between variables 	disjoint, min $\{x,y\} \le \text{rate}(A \mid B \cup C) \le \max\{x,y\}$								
 Association does not imply causation 	 The closer rate (B) gets to 100%, the closer rate (A) gets to rate (A B) 	$\frac{(9+20+55+5+16+27)}{373} \approx 35.39\%$							
 A confounder is a third variable associated with both the independent and dependent variables 	 Rate (A) is exactly in between rate (A B) and rate (A 								
Confounder must be a different variable than the dependent and independent variables.	not B) if rate (B) = 50%		Fen	nale	Male	Total			
dependent and independent variablesThe more confounders that the study can control	SIMPSON'S PARADOXRelationship between rates in subgroups is reversed /	Gamer	48		96	144			
and still show association results in stronger evidence for a genuine relationship	disappears when subgroups are combined	Non-Gar	ner 72		64	136			
	 Sure sign of confounder To determine is a variable is a confounder, data must 								
Comparison • Comparison method is used to see the effect of	be collected on it	Total	120		160	280			
treatments on outcomes	 Allocate factors proportionately to remove association between variable and treatment type 	To calculate the conditional rate, rate(Female Gamer) = $\frac{48}{144}$ = 0.33,							
 Comparison of outcomes between a treatment and control group 	 Randomized assignment gives equal proportion most 								
 Control and treatment groups should be similar 	of the time, but is not always possible as people cannot be forced	rate(Female Non-Gamer) = $\frac{72}{136}$ = 0.53.							
 Subjects should be put in control and treatment groups randomly 	 To control confounder, slicing is used 	Since rate(Female Gamer) < rate(Female Non-Gamer), there is negative association between being female and being a gamer.							
 A large number of participants should be used. Law 	 Slicing: subgroup analysis is used (conclude based on subgroup numbers instead of misleading overall data) 								
of large numbers ensures all other variables are almost equally present in both groups	5								