Chapter 2

Layered Tasks (1)

- Consider a person sending a letter to a friend using postal mail
- Post office provides the service to make it happen
- Sender site sender drops letter to mailbox(H), letter brought by carrier to post office(M), another carrier transports the letter to another post office(L)
- Carrier letter may go to a central office
- Receiver site letter received at local post office of recipient(L), letter delivered to the recipient mailbox(M), friend reads the letter(H)

Layered Tasks (2)

the source to the destination.

Hierarchy

- Tasks must be done in the order given in the hierarchy
- Each layer uses the services of the layer immediately below it
- Each layer provides services to the layer immediately above it

- Open Systems Interconnection, introduced in the late 1970's by ISO
- Open system a set of protocols that allows any two different systems to communicate regardless of the underlying architecture
- OSI is not a protocol; it is model for understanding and designing a network architecture that is flexible, robust, and interoperable

ICS-UPLB

OSI Layers (1)

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data link
1	Physical

OSI Layers (2): Peer-to-Peer Processes

First Ser Physical communication

rmocilla

OSI Layers (3)

- [A]Network support layers 1,2,3
 - Physical aspects of moving data
 - Implemented in hardware and software
- [B]User support layers 5, 6, 7
 - Provides interoperability among unrelated software systems
 - Implemented in software
- Layer 4 links [A] and [B]

OSI Layers (4)

JAC Hermocilla

Encapsulation

- A packet (header and data) at layer 7 is encapsulated in a packet at level 6
- A packet at layer 6 is encapsulated in a packet at level 5 and so on
- Data portion of a packet at layer N-1 caries the whole packet (data, header, trailer) from level N
- Layer N-1 has no idea which is data or header or trailer in the encapsulated packet

ICS-UPLB

LAYERS IN THE OSI MODEL

[1]Physical Layer (1)

- Coordinates the functions required to carry a bit stream over a physical medium
- Deals with mechanical and electrical specifications of the interface and transmission medium
- Defines and procedures and functions needed for transmission to occur

[1]Physical Layer (2)

ICS-UPLB

[1]Physical Layer (3)

- Physical characteristics of interfaces and medium
- Representation of bits encoding
- Data rate -number of bits sent each second
- Synchronization of bits timing
- Line configuration point-to-point, multipoint
- Physical topology bus, star, ring, mesh, hybrid
- Transmission mode simplex, half-duplex, duplex

[2]Data Link Layer(1)

- Transforms the physical layer to a reliable link
- Makes the physical layer appear error-free to the upper layer

[2]Data Link Layer (2)

[2]Data Link Layer (3)

- Framing defining frames
- Physical addressing defines sender/receiver
- Flow control prevents overwhelming the receiver
- Error control detect and retransmit damaged or lost frames, use of trailers
- Access control defines which device has control over the link when it is shared by devices

[2]Data Link (4)

[3]Network Layer (1)

- Source-to-destination delivery of packets, possibly across multiple networks
- No need for network layer if two systems are connected to the same link

[3]Network Layer (2)

[3]Network Layer (3)

- Logical addressing distinguish source and destination systems if packets pass network boundary
- Routing makes possible the delivery of packets in internetworks, connecting devices are called routers and switches

[3]Network Layer (4)

[5]Transport Layer (1)

- Responsible for process-to-process delivery
- Ensures that the whole message arrives intact and in order

ICS-UPLB

[5]Transport Layer (2)

[5]Transport Layer (3)

- Service-point addressing several programs (entities) can use the network, uses ports
- Segmentation and reassembly message divided into transmittable segments (uses sequence numbers)
- Connection control maybe connectionless or connectionoriented
- Flow control end-to-end flow control rather than a single link

ICS-UPLB

 Error control – process-to-process flow control rather than single link

[5]Transport Layer (4)

[5]Session Layer (1)

- Network dialog controller
- Establishes, maintains, and synchronizes interactions among communicating systems
- Dialog control dialog between two systems
- Synchronization add checkpoints (similar to databases)

[5]Session Layer (2)

[6]Presentation (1)

- Concerned with the syntax and semantics of the information exchanged between two systems
- Translation apply encoding schemes
- Encryption provides privacy
- Compression reduce the number of bits contained in the information

ICS-UPLB

[6]Presentation (2)

[7]Application Layer (1)

- Enables the user (human or software) to access the network
- Provides user interfaces and support services: email, remote file access and transfer, shared DBM, distributed information services

[7]Application Layer (2)

[7]Application Layer (3)

- Network virtual terminal software version of a software terminal
- File transfer, access, and management access files remotely
- Mail services email forwarding and storage
- Directory services distributed database sources

TCP/IP PROTOCOL SUITE (1)

- Developed prior to the OSI model
- Originally defined as having four layers: hostto-host, internet, transport, application
- DCN views it as having five layers: physical, data link, network, transport, application
- Hierarchical protocol made up of interactive modules – upper-level protocol is supported by one or more lower-level protocols

ICS-UPLB

TCP/IP PROTOCOL SUITE (2)

TCP/IP: Physical and Data Link

- Does not define any specific protocol
- Supports all standard and proprietary protocols
- May be LAN or WAN

TCP/IP: Network Layer (1)

- Internet Protocol (IP)
 - unreliable and connectionless, best-effort delivery
 - Packets are called datagrams
 - Can follow different paths and arrive out of sequence or be duplicated
 - Limited functionality is not a weakness: provides bare-bones transmission functions (efficiency)

TCP/IP: Network Layer (2)

- Address Resolution Protocol (ARP)
 - Associates a logical address with a physical address
 - Used to find the physical address of the node when its Internet address is known
- Reverse Address Resolution Protocol (RARP)
 - Used to find the Internet address given the physical address
 - Used when a computer is connected to a network for the first time or when a diskless computer is booted

TCP/IP: Network Layer (3)

- Internet Control Message Protocol (ICMP)
 - Used by hosts and gateways to send notification of datagram problems back to sender
 - Sends query and reporting messages (the "ping" command uses ICMP)

ICS-UPLB

- Internet Group Message Protocol (IGMP)
 - Facilitates simultaneous transmission of a message to a group of recipients

TCP/IP: Transport Layer (4)

- IP is host-to-host, UDP andTCP are process-to-process
- User Datagram Protocol (UDP)
 - Adds only port addresses, checksum error control, and length information
 - Connectionless, unreliable
- Transmission Control Protocol (TCP)
 - Provides full transport-layer services
 - Connection-oriented, reliable stream transport
 - Streams are divided into segments with sequence numbers
- Stream Control Transmission Protocol (SCTP) best of TCP and UDP, VoIP

ICS-UPLB

TCP/IP: Application Layer

 Combined Session, Presentation, and Application layers in the OSI model

TCP/IP ADDRESSES

- Physical (link) addresses
- Logical (IP) addresses
- Port addresses
- Specific addresses

TCP/IP ADDRESSES

Physical Addresses (1)

- Lowest-level address defined by a node's LAN or WAN
- Size and format varies depending on network
 - Example: Ethernet uses 6-byte physical addresses written as 12 hexadecimal digits separated by a colon

ICS-UPLB

68:a3:c4:ce:8c:e2

Physical Addresses (2)

Example

Logical Addresses

- Necessary for universal communications internetworks
- Internet (IP) address is 32 bits
- No two publicly addressed and visible host on the Internet can have the same IP address

Logical Addresses (2)

First Semester 2012-2013 CMSC 137
Data Communications and Networking

JAC Hermocilla

Port Addresses (1)

- Ultimate objective of Internet communication is a process communicating with another (peer) process running on a remote computer
- TCP/IP Port address assigned to a process,
 16 bits
 - Examples: 80, 23, 22, 21, 8080

Port Addresses (2)

Specific Addresses

- User-friendly addresses
 - Example: email addresses, URL
- Changed to corresponding port and logical addresses

ICS-UPLB

Enjoy!:)