

COMPUTER ARCHITEKTUR

Sommersemester 2025

Projektzielsetzung

Version 1.0

Teammitglieder:	
Fabian Becker	
Jendrik Jürgens	
Nicolas Koch	
Franz Krempl	
Daniel Sowada	
Michael Specht	
Professor:	
Dr. Daniel Münch	
Abgabedatum: 30.04.2025 11:30 Uhr	

Inhaltsverzeichnis

A	bbild	ungsv	erz	eich	nis																2
Ta	abelle	enverz	eic	hnis																	3
1	Pro	jektzie	else	etzur	ıg																4
2	Pm	odCLI	Р																		7
	2.1	Ansat	z C	dusto	n IP																8
	2.2	Regist	terr	napp	ng .																9
		2.2.1	$\mathbf{I}/$	Os .																	9
		2.2.2	R	egiste	erbere	eich		•												•	9
3	Sens	sor																			14

Abbildungsverzeichnis

1.1	Systemblockbild	5
2.1	Startup Sequence	8

Tabellenverzeichnis

2.1	PmodCLP Überblick I/O	G
2.2	PmodCLP Controller Register Space Overview	Ĝ
2.3	General/Global Control and Status Register (GCSR)	10
2.4	Global Interrupt Enable Register (GIER)	10
2.5	IP Interrupt Enable Register (IPIER)	11
2.6	IP Interrupt Status Register (IPISR)	11
2.7	ID Register (IDR)	11
2.8	Version Register (VERR)	11
2.9	Special Control and Status Register (SCSR0)	12
2.10	Character Data Register (CDR)	12
2.11	Format and Mode Register (FMR)	13
2.12	Sensor Data Register (SDR)	13

1. Projektzielsetzung

Projekttitel:

Integriertes Demosystem für Sensor- und Displayansteuerung auf FPGA-Basis

Teammitglieder:

Fabian Becker, Jendrik Jürgens, Nicolas Koch, Franz Krempl, Daniel Sowada, Michael Specht **Projektbeschreibung:**

Ziel des Projekts ist die Entwicklung und Integration eines funktionsfähigen Demosystems, das zwei getrennte Komponenten – den Sonarsensor (PMOD MAXSONAR) und das LCD-Display (PMOD CLP) – auf einer gemeinsamen FPGA-Plattform (Digilent Arty A7-100) vereint. Die Messwerte des Sensors sollen in Echtzeit auf dem Display ausgegeben werden. Dazu werden eigene IP-Cores für beide Komponenten entworfen, implementiert, getestet und in die Hardwareplattform integriert.

Geplante Arbeitspakete und Zuständigkeiten:

- 1. Systemintegration bestehender Demosysteme
 - Integration der Software- und Hardware-Demoprojekte zu einem Gesamtsystem (HW & SW)

Zuständig: Alle Teammitglieder

- 2. Entwicklung Custom IP für Sensor (UART / MAXSONAR)
 - Konzept (Blockdiagramm, Registermapping) auf Basis der tut_int Vorlage
 - Reduzierte Funktionalität orientiert an Xilinx UART Lite IP

Zuständig: Fabian Becker, Nicolas Koch

- 3. Entwicklung Custom IP für Display (PMOD CLP, Nibble-Mode)
 - Umsetzung von Timinganforderungen in Hardware
 - Anzeige von Daten auf LCD über FSM und spezifizierte Steuerregister

Zuständig: Jendrik Jürgens, Michael Specht

- 4. Erstellung und Test der IP-Testbenches (Core und AXI)
 - Entwicklung mit Fokus auf Polling (Interrupt optional bei Zeitreserve)
 - Simulation und Validierung des Verhaltens

Zuständig: Alle Teammitglieder

- 5. Treibersoftware
 - $\bullet\,$ Schreiben von Treibern für die beiden IPs unter Verwendung der SW-Templates von ${\tt tut_int}$
 - SW-basierte Initialisierung und Datentransfer

Zuständig: Franz Krempl, Daniel Sowada

- 6. Integration in vollständiges Demosystem
 - Zusammenführung aller Komponenten zu einem lauffähigen System
 - Validierung auf der realen Hardwareplattform

Zuständig: Alle Teammitglieder

Systemblockbild:

Abbildung 1.1: Systemblockbild

\bullet Exakte Timings für das Display (PmodCLP) in VHDL:

Die Ansteuerung im Nibble-Mode erfordert die präzise Umsetzung aller Timingbedingungen (Setup, Hold, Enable) in einer FSM, da keine automatische Verzögerung durch die CPU gegeben ist.

• Entwicklung AXI4-Lite-kompatibler IP-Cores:

Für Sensor und Display werden eigenständige IPs mit klar strukturiertem Registermapping und AXI-Anbindung erstellt, basierend auf einer gemeinsamen IP-Vorlage.

• Zuverlässiger Datenfluss zwischen Sensor, CPU und Display:

Die Software muss synchronisiert mit den IPs arbeiten, um Sensordaten korrekt auszulesen und anzuzeigen – inklusive Fehlerbehandlung und Statusabfrage.

• Simulation und Verifikation:

Funktion und Schnittstellen werden über VHDL-Testbenches (Core + AXI) geprüft, um Designfehler frühzeitig zu erkennen.

Ziel:

Ein lauffähiges Demosystem mit eigenentwickelten, erweiterbaren IP-Cores, das Messwerte des Sonar Sensors auf einem LCD-Display ausgibt – mit strukturierter Dokumentation, Tests und einer funktionalen Ergebnisvorführung.

2. PmodCLP

Der PmodCLP besteht aus einem Samsung KS0066 LCD Controller und einem Sunlike LCD Panel, worüber Informationen dargestellt werden können lcd-desc. Es ist möglich 32 Positionen auf dem 16x2 LCD Panel zu nutzen. Pro Position werden die Zeichen dabei mit einer Auflösung von 5x8 angezeigt.

Das System besteht im Wesentlichen aus drei Komponenten. Der character-generator ROM (CGROM) hält 192 vordefinierte Zeichen, darunter 93 ASCII Charaktere. Anschaulich gesehen können die Zeichen über eine matrixartige Struktur indiziert werden, welche im Datenblatt festgelegt ist. Neben den nicht-volatilen Daten im CGROM ist es möglich bis zu 8 eigene Zeichen volatil im character-generator RAM (CGRAM) zu halten. Um nun Zeichen aus diesen beiden Repositories auf dem Panel anzeigen zu können, gibt es den data RAM (DDRAM). Hier können bis zu 80 Zeichencodes gespeichert werden. Er fungiert als Indexspeicher für Daten innerhalb des CGROM oder CGRAM. Wird ein Index aus der matrixartigen Struktur in den DDRAM geladen, erscheint das entsprechende Zeichen auf dem Display.

Das Display selbst verfügt über 2 Zeilen á 16 Positionen. Insgesamt stehen jedoch nicht 32 Speicherplätze zur Verfügung, sondern 39, um beispielsweise Scrolling zu verwenden.

Wichtige Schnittstellen des Samsung KS0066 LCD Controller sind

- DB4-DB7: Datenbits im Nibble-Mode zur Codierung von Befehlen/Zeichen
- RS (Register Select): High für Daten, Low für Instruktionen
- RW (Read/Write): High = Read, Low = Write
- E (Enable): High für Read, Falling Edge für Write

Um diese nutzen zu können wird folgendes Mapping auf dem FPGA hinterlegt:

```
set_property -dict {PACKAGE_PIN D13 IOSTANDARD LVCMOS33}[get_ports{clp_db_tri_io[4]}];
    #db04
set_property -dict {PACKAGE_PIN B18 IOSTANDARD LVCMOS33}[get_ports{clp_db_tri_io[5]}];
    #db05
set_property -dict {PACKAGE_PIN A18 IOSTANDARD LVCMOS33}[get_ports{clp_db_tri_io[6]}];
    #db06
set_property -dict {PACKAGE_PIN K16 IOSTANDARD LVCMOS33}[get_ports{clp_db_tri_io[7]}];
    #db07
set_property -dict {PACKAGE_PIN E2 IOSTANDARD LVCMOS33}[get_ports{clp_cb_tri_o[0]}];
    #lcd_rs
set_property -dict {PACKAGE_PIN D2 IOSTANDARD LVCMOS33}[get_ports{clp_cb_tri_o[1]}];
    #lcd_rw
set_property -dict {PACKAGE_PIN B2 IOSTANDARD LVCMOS33}[get_ports{clp_cb_tri_o[1]}];
    #lcd_rw
```

Listing 2.1: Pin-Zuordnung im Constraints-File

Die Zuordung in Aufzählung 2.1 greift auf zwei Header des PmodCLP-Boards zurück. Die Daten-Bits db04-db07 sind an die untere Hälfte des Headers J1 gebunden. Die Steuersignale Register Select, Read/Write und Enable hingegen an Header J2.

2.1. Ansatz Custom IP

Im ersten Schritt soll die IP funktional fertiggestellt werden. Sie soll dabei mittels Polling eingesetzt werden. Sobald die Funktionalität des Gesamtsystems vollumfänglich gegeben ist, wird anstatt Polling über Interrupts kommuniziert.

Das Projektteam hat sich auf folgenden Entwurf geeinigt:

- Submodul 1: LCD-Controller (FSM)
 Mittels einer FSM wird aus den Registern, welche von Microprozessor gesetzt werden können, der Befehl interpretiert.
- Submodul 2: Timing Controller

 Dies kann bspw. mit einem Zähler, der als Timer in Abhängigkeit vom Systemtakt fungiert,
 umgesetzt werden. Diverse Statusflags sollen den aktuellen Stand zeigen.

Abbildung 2.1: Startup Sequence

Graphik 2.1 zeigt die Initialisierung des Displays und die damit verbundenen Timing-Anforderungen.

- Submodul 3: Character Transfomer

 Die vom Sensor erhaltenen Werte müssen in entsprechende Werte, die auf dem Display dargestellt werden können, umgewandelt werden. Eine lookup-table soll hier Abhilfe schaffen.
- Submodul 4: Memory Mapping
 Dieses Submodul soll eines standardisierte und zuverlässige DDRAM-Adressierung garantieren.
 Dabei muss das Display-Layout (16x2) beachtet werden. Mögliche Erweiterungen, wie bspw.
 Scrolling, sollen bei der Implementierung bereits stets bedacht werden.
- Submodul 5: LCD-Communication Interface

 Hier werden die Daten in die entsprechenden Register geschrieben, um die Werte anschließend auf dem Display darzustellen.

• Submodul 6: AXI Slave Interface

Nachdem die Zuverlässigkeit der IP mittels Tests sichergestellt wurde, soll die IP an den internen Systembus (AXI) angebunden werden.

Das Registermapping wurde in Anlehnung an $at_doc.pdf$ aus $02b_tut_vhdl_v03$ erstellt.

2.2. Registermapping

2.2.1. I/Os

Signal Name	I/O	Initial	Description
		State	
ap_clk(s00_axi_	adlk)	NA	AXI Clock
ap_rst_n	I	NA	AXI Reset, active-Low
(s00_axi_aresetr	(s00_axi_aresetn)		
s_axi_control*	NA	NA	AXI4-Lite Slave Interface signals
(s00_axi*)			
interrupt	I	0x0	Indicates that the condition for an interrupt has occurred.
			(new sensor value available)
			0 = No interrupt has occurred
			1 = Interrupt has occurred
sensor_val_in	I	0xFF	Input value from PmodMAXSONAR
db4_7_out	О	0xFF	4 data bits, necessary in nibble mode.
register_select_o	utO	0x1	Register Select: High for Data Transfer, Low for Instruction
			Transfer
read_write_out	О	0x1	Read/Write signal: High for Read mode, Low for Write mo-
			de
read_write_enab	le <u>O</u> out	0x1	Read/Write Enable: High for Read, falling edge writes data

Tabelle 2.1: PmodCLP Überblick I/O

2.2.2. Registerbereich

Address Offset	Register Name	Description
0x00	GCSR	General/Global Control and Status Register
0x04	GIER	Global Interrupt Enable Register
0x08	IPIER	IP Interrupt Enable Register
0x0C	IPISR	IP Interrupt Status Register
0x10	IDR	ID Register
0x14	VERR	Version Register
0x18	SCSR0	Special Control and Status Register
0x1C	CDR	Character Data Register

Tabelle 2.2: PmodCLP Controller Register Space Overview

Bit	Name	Access Ty-	Reset Va-	Description					
		pe	lue						
	0x00 GC	$\overline{ m SR}$ - $\overline{ m General/G}$	- General/Global Control and Status Register						
0	ap_start	R/W	0	Asserted when the kernel can start					
				processing data. Cleared on handshake					
	_			with ap_done being asserted.					
1	ap_done	R	0	Asserted when the kernel has comple-					
				ted initialization operation. Cleared on					
				read.					
2	ap_idle	R	0	Asserted when the kernel is idle.					
3	reserved	R	0	Asserted by the kernel when it is rea-					
	(ap_ready)			dy to accept new data (used only by					
				AP_CTRL_CHAIN)					
4	reserved	R/W	0	Asserted by the XRT to allow ker-					
	$(ap_continue)$			nel keep running (used only by					
				AP_CTRL_CHAIN)					
5:6	reserved								
7	auto_restart	R/W	0	Used to enable automatic kernel rest-					
				art. This bit determines whether the					
				display reloads the last sensor value and					
				continues running or clears the display.					
8	lcd_initialized	R	0	Indicates the LCD has been properly in-					
				itialized and is ready for commands.					
9	display_busy	R	0	Indicates the display is currently pro-					
				cessing a command.					
10	error_flag	R	0	Indicates an error occurred during last					
				operation.					
31:11	reserved								

Tabelle 2.3: General/Global Control and Status Register (GCSR)

Bit	Name	Access Ty-	Reset Va-	Description
		pe	lue	
	0x04	GIER - Globa	al Interrupt E	nable Register
0	gie	R/W	0	When asserted, along with the IP Inter-
				rupt Enable bit, the interrupt is enab-
				led.
31:1	reserved			

Tabelle 2.4: Global Interrupt Enable Register (GIER)

Bit	Name	Access Ty-	Reset Va-	Description
		pe	lue	
	0x0	8 IPIER - IP	Interrupt Ena	able Register
0	ipie	R/W	0	When asserted, along with Global In-
				terrupt Enable bit, the interrupt is
				enabled. (default: uses the internal
				ap_done signal to trigger an interrupt)
31:1	reserved			

Tabelle 2.5: IP Interrupt Enable Register (IPIER)

Bit	Name	Access Ty-	Reset Va-	Description				
		pe	lue					
0x0C IPISR - IP Interrupt Status Register								
0	ipis	R/W	0	Toggle on write. (write 1 to cle-				
				ar(W1C))				
31:1	reserved							

Tabelle 2.6: IP Interrupt Status Register (IPISR)

Bit	Name	Access Ty-	Reset Va-	Description
		pe	lue	
		0x 10 II	R - ID Regist	ter
31:0	ID	R	0x80010744	Distinct ID for PmodCLP Controller

Tabelle 2.7: ID Register (IDR)

Bit	Name	Access Ty-	Reset Va-	Description								
		pe	lue									
	0x14 VERR - Version Register											
31:0	VER	R	0x80001000	Version								

Tabelle 2.8: Version Register (VERR)

Bit	Name	Access Ty-	Reset Va-	Description		
		pe	lue			
	0x18 SCSR0 - Special Control and Status Register					
0	lcd_enable	R/W	0	Master enable for LCD display $(0 = di$		
				sabled, $1 = \text{enabled}$)		
1	clear_display	R/W	0	Write 1 to clear the display, auto-clears		
				when operation completes		
	Continued on next page					

Bit	Name	Access Ty-	Reset Va-	Description
		pe	lue	
2	return_home	R/W	0	Write 1 to return cursor to home positi-
				on, auto-clears when operation comple-
				tes
3	cursor_on	R/W	0	Enable cursor visibility (0 = off, 1 =
				on)
4	cursor_blink	R/W	0	Enable cursor blinking $(0 = \text{no blink}, 1)$
				= blink)
5	display_shift	R/W	0	Enable display shift $(0 = \text{no shift}, 1 =$
				shift)
6	shift_direction	R/W	0	Shift direction $(0 = \text{left}, 1 = \text{right})$
7	auto_scroll	R/W	0	Enable automatic scrolling for long text
8	reset_lcd	R/W	0	Write 1 to reset LCD controller, auto-
				clears when operation completes
9	busy_flag	R	0	Indicates LCD controller is busy
10:15	reserved			
23:16	fsm_state	R	0	Current state of LCD controller FSM
				(for debugging)
31:24	error_code	R	0	Error code if error_flag is set in GCSR

Tabelle 2.9: Special Control and Status Register (SCSR0) $\,$

Bit	Name	Access Ty-	Reset Va-	Description		
		pe	lue			
	0x1C CDR - Character Data Register					
7:0	char_data	R/W	0	Character data to write to LCD		
15:8	char_addr	R/W	0	DDRAM address for character (00H-		
				27H for line 1, 40H-67H for line 2)		
16	write_char	R/W	0	Write 1 to initiate character write to		
				specified address		
17	read_char	R/W	0	Write 1 to read character from specified		
				address		
31:18	reserved					

Tabelle 2.10: Character Data Register (CDR)

TODO: Mit anderer Gruppe sprechen - wie Austausch von Daten funktioniert, über Input/Register/? -> SDR?? - Formatting-Switch Inch/cm siehe FMR??

Bit	Name	Access Ty-	Reset	Va-	Description	
		pe	lue			
	0x2C FMR - Format and Mode Register					
	Continued on next page					

Bit	Name	Access Ty-	Reset Va-	Description
		pe	lue	
0	auto_format	R/W	0	Enable automatic formatting of sensor
				data
1	show_units	R/W	0	Show measurement units alongside va-
				lues
2	leading_zeros	R/W	0	Show leading zeros $(0 = \text{hide}, 1 = \text{show})$
3	fixed_point	R/W	0	Enable fixed-point display format
7:4	decimal_places	R/W	0	Number of decimal places to display (0-
				8)
15:8	display_mode	R/W	0	Display mode selection $(0 = \text{raw}, 1 =$
				formatted, etc.)
31:16	reserved			

Tabelle 2.11: Format and Mode Register (FMR)

Bit	Name	Access Ty-	Reset Va-	Description		
		pe	lue			
	0x30 SDR - Sensor Data Register					
15:0	sensor_value	R/W	0	Raw sensor value from PmodMAXSO-		
				NAR		
23:16	sensor_status	R	0	Status code of sensor		
31:24	scaling_factor	R/W	0	Scaling factor for sensor value display		

Tabelle 2.12: Sensor Data Register (SDR)

3. Sensor