IN THE CLAIMS

- 1. (Previously Presented) A method of conducting R chemical reactions, where R is a positive integer, in a system which includes an apparatus which provides energy for the chemical reactions, said system also including a parameter selecting unit having a user interface and storage means for carrying a database, said chemical reaction involving one or more chemical species ${}^{X}B$ and resulting in a reaction product ${}^{X}D$ which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the ${}^{X}B$'s which are transformed into δ in ${}^{X}D$, each reaction being performed under the influence of one or more corresponding chemical substances A_R , such chemical substances A_R including a chemical functionality α_R being involved in the transformation of the functionality/functionalities β to the functionality δ , said database comprising N sets of associated data, each of the N sets comprising
 - i) a set of reaction parameters for a chemical reaction involving the transformation of one or more functionalities ${}^{N}\beta$ of chemical species ${}^{N}B$ into ${}^{N}\delta$ in a product ${}^{N}D$ under the influence of one or more chemical substances ${}^{N}A$, such chemical substance(s) each including a chemical functionality ${}^{N}\alpha$ being involved in the transformation of the functionality ${}^{N}\beta$ to the functionality ${}^{N}\delta$; and
- ii) functional or structural information about the chemical species ^NB; the method comprising that
- * the user provides information to the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species ${}^{X}B$;
- * the user provides information to the user interface of the parameter selection unit about the desired transformation of β to δ ;

- * the parameter selection unit retrieves R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities $^N\beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in XB and the functionality $^N\delta$ is essentially identical to δ in the product XD , in order to obtain the R sets of reaction parameters $(^X\Sigma_R)$, said R sets of reaction parameters $(^X\Sigma_R)$ being accompanied by corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;
- * an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species $^X\!B$ and any additional constituents required is prepared according to the sets of reaction parameters;
 - * each of the R reaction mixtures are treated in the apparatus in accordance with the corresponding set of reaction parameters.
- 2. (Original) A method according to claim 1, wherein the array of R reaction mixtures is provided from ^XB stock solution(s) and a kit comprising stock solutions of the chemical substance(s) A_R and any additional constituents required.
- 3. (Original) A method according to claim 1, wherein the R sets of reaction parameters involves the use of more than one chemical substance A_R .
- 4. (Original) A method according to claim 1, wherein the R sets of reaction parameters involves the use of R chemical substances A_R .

- 5. (Original) A method according to claim 1, in which the array of R reaction mixtures is prepared by combining the chemical species ${}^{X}B$ with the content of one or more of P containers each comprising a chemical substance A_{R} including a chemical functionality α_{R} which is intended to facilitate the transformation of a functionality β to a functionality δ in a chemical reaction involving a chemical species ${}^{X}B$.
- 6. (Original) A method according to claim 1, wherein the R sets of reaction parameters are provided in the form of control parameters for the apparatus.
- 7. (Original) A method according to claim 1, wherein treatment of the R reactions is performed substantially simultaneously.
- 8. (Original) A method according to claim 1, wherein treatment of the R reactions is performed sequentially.
- 9. (Original) A method according to claim 1, wherein the treatment includes heating.
- 10. (Original) A method according to claim 1, wherein the reaction is a microwave facilitated chemical reaction.
- 11. (Original) A method according to claim 1, wherein the apparatus comprises a microwave reaction cavity.

- 12. (Withdrawn) A kit for use in the method defined in claim 1, said kit comprising P containers each comprising a chemical substance A_R including a chemical functionality α_R which is intended to facilitate the transformation of one or more functionalities β to a functionality δ in a chemical reaction involving one or more chemical species XB , said chemical reaction being intended to result in a reaction product XD which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the XB 's which are transformed into δ in XD .
- 13. (Withdrawn) A kit according to claim 12, which further comprises additional constituents required for the transformation.

14.-16. (Canceled)

17. (Withdrawn) A kit comprising P containers each comprising a chemical substance A_R including a chemical functionality α_R which is intended to facilitate the transformation of one or more functionalities β to a functionality δ in a chemical reaction involving one or more chemical species XB , said chemical reaction being intended to result in a reaction product XD which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the XB 's which are transformed into δ in XD , said kit usable to conduct R chemical reactions, where R is a positive integer, in a system which includes an apparatus which provides energy for the chemical reactions, said system also including a parameter selecting unit having a user interface and storage means for carrying a database, said chemical reaction involving one or more chemical species XB and resulting in a reaction product XD which includes a functionality

- δ , where the chemical reaction involves one or more functionalities β in the XB 's which are transformed into δ in XD , each reaction being performed under the influence of one or more corresponding chemical substances A_R , such chemical substances A_R including a chemical functionality α_R being involved in the transformation of the functionality/functionalities β to the functionality δ , said database comprising N sets of associated data, each of the N sets comprising i) a set of reaction parameters for a chemical reaction involving the transformation of one or more functionalities ${}^N\beta$ of chemical species NB into ${}^N\delta$ in a product ND under the influence of one or more chemical substances NA , such chemical substance(s) each including a chemical functionality ${}^N\alpha$ being involved in the transformation of the functionality ${}^N\delta$; and
- ii) functional or structural information about the chemical species ^NB; the method comprising that
- * the user provides information to the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species ${}^{X}B$;
- * the user provides information to the user interface of the parameter selection unit about the desired transformation of β to δ ;
- * the parameter selection unit retrieves R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities $^N\beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in XB and the functionality $^N\delta$ is essentially identical to δ in the product XD , in order to obtain the R sets of reaction parameters ($^X\Sigma_R$), said R sets of reaction parameters ($^X\Sigma_R$) being accompanied by corresponding information about the chemical substance(s) A_R under which influence the R

reactions should be conducted and information about any additional constituents involved in the chemical reaction;

- * an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species XB and any additional constituents required is prepared according to the sets of reaction parameters;
- * each of the R reaction mixtures are treated in the apparatus in accordance with the corresponding set of reaction parameters.
- 18. (Withdrawn) A kit according to claim 17, which further comprises additional constituents required for the transformation.
- 19. (Withdrawn) A computer readable data carrier loaded with a computer program system, said computer program system
- * retrieving information via the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species ^{X}B ;
- * retrieving information via the user interface of the parameter selection unit about the desired transformation of β to δ ;
- * retrieving, via the parameter selection unit, R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities $^N\beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in XB and the functionality $^N\delta$ is essentially identical to δ in the product XD , in order to obtain the R sets of reaction parameters ($^X\Sigma_R$), said R sets of reaction parameters ($^X\Sigma_R$) being accompanied by

corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;

- * providing instructions to the liquid handler about the preparation of an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species ^XB and any additional constituents required according to the sets of reaction parameters;
- * providing instructions to the reaction cavity about treatment of each of the R reaction mixtures in the apparatus in accordance with the corresponding set of reaction parameters in order to conduct R chemical reactions, where R is a positive integer, in a system which includes an apparatus which provides energy for the chemical reactions, said system also including a parameter selecting unit having a user interface and storage means for carrying a database, said chemical reaction involving one or more chemical species ${}^{X}B$ and resulting in a reaction product ${}^{X}D$ which includes a functionality δ , where the chemical reaction involves one or more functionalities β in the ${}^{X}B$'s which are transformed into δ in ${}^{X}D$, each reaction being performed under the influence of one or more corresponding chemical substances A_R , such chemical substances A_R including a chemical functionality α_R being involved in the transformation of the functionality/functionalities β to the functionality δ , said database comprising N sets of associated data, each of the N sets comprising
 - i) a set of reaction parameters for a chemical reaction involving the transformation of one or more functionalities ${}^{N}\beta$ of chemical species ${}^{N}B$ into ${}^{N}\delta$ in a product ${}^{N}D$ under the influence of one or more chemical substances ${}^{N}A$, such chemical

substance(s) each including a chemical functionality $^N\alpha$ being involved in the transformation of the functionality $^N\beta$ to the functionality $^N\delta$; and

- ii) functional or structural information about the chemical species ^NB; the method comprising that
- * the user provides information to the user interface of the parameter selection unit about the functionality/functionalities β in the chemical species ^{X}B ;
- * the user provides information to the user interface of the parameter selection unit about the desired transformation of β to δ ;
- * the parameter selection unit retrieves R sets of associated data (Σ_R) from the database, such sets of associated data being selected so that the functionality/functionalities $^N\beta$ in each set of associated data is/are essentially identical to the functionality/functionalities β in XB and the functionality $^N\delta$ is essentially identical to δ in the product XD , in order to obtain the R sets of reaction parameters ($^X\Sigma_R$), said R sets of reaction parameters ($^X\Sigma_R$) being accompanied by corresponding information about the chemical substance(s) A_R under which influence the R reactions should be conducted and information about any additional constituents involved in the chemical reaction;
- * an array of R reaction mixtures each comprising a predetermined amount of the chemical substance(s) A_R and the chemical species XB and any additional constituents required is prepared according to the sets of reaction parameters;
 - * each of the R reaction mixtures are treated in the apparatus in accordance with the corresponding set of reaction parameters.