

Полупроводников диод Работа по променлив ток

Капацитет

Електричният капацитет е характеристика, показваща способността да се натрупва електричен заряд. Определя се като отношение на големината на заряда към потенциала.

$$C = \frac{Q}{V}$$

C- капацитет [Farad]

Q- заряд [Coulomb]

V- напрежение [Volt]

Alessandro Volta Италиански физик и химик. Откривател на батерията.

Michael Faraday Английски физик работил в облстта на електромагнетизма и електролизата.

Charles-Augustin de Coulomb Френски физик, формулирал закона за електростатичните сили (Закон на Кулон)

Капацитети на диода

Бариерен капацитет

Преобладава при обратно включване

Дифузен капацитет

Преобладава при право включване

Бариерен капацитет

Бариерният капацитет характеризира съсредоточения в pn прехода заряд, създаден от йоните на примесите.

$$C_T = A \frac{\varepsilon_s}{W_{dep}}$$

 $arepsilon_s$ - диелектрична проницаемост на полипроводника A - площ на прехода W_{dep} - ширина на забранената зона

Дифузен капацитет

Дифузният капацитет C_D отразява преразпределението на зарядите в неутралните области на диода извън обемния заряд при промяна на напрежението.

Тъй като тези заряди се образуват при инжекция на токоносители през прехода, C_D се отчита само при право включване на диода.

$$C_D = \frac{dQ_n}{dU} + \frac{dQ_p}{dU}$$

$$Q = I.\tau_s$$

 au_{S} — средно време на живот на токоносителите I — ток през диода

Процеси при изключване

Импулсни параметри

- *I_{RM}* импулсна стойност на тока при обратно включване
- t_{rr} време за възстанояване на обратното съпротивление на диода
- $t_{\scriptscriptstyle
 m S}$ време на разнасяне на неосновните токоносители
- t_r време за нарастване на обратното съпротивление

Приложения на диод

Приложения – изправител

През положителния полупериод диодът е отпушен. Протичащият през него ток създава пад върху товарното съпротивление R_I . Полученото в изхода напрежение повтаря формата на входния сигнал.

нула.

Примери

Капацитивен филтър

За правилното функциониране на електронните схеми се изисква захранващ източник на постоянно напрежение и ток. За да се намалят пулсациите в изходното напрежение на изправителя се използва капацитивен филтър.

Принцип на филтриране

През положителният полупериод диодът се отпушва и протичащият през него ток зарежда кондензатора приблизително до върховата стойност на входното напрежение (ако се пренебрегне падът върху диода).

Принцип на филтриране

Когато входното напрежение започне да спада под върховата си стойност, кондензаторът запазва заряда си и диодът се включва в обратна посока като прекъсва веригата към входния източник.

През останалата част от цикъла кондензаторът може да се разрежда само през товарното съпротивление със скорост, определена от времеконстанта $R_L C$.

Колкото по-голяма е времеконстантата, толкова по-бавно ще се разреди кондензаторът. В резултат се осигурява относително постоянно напрежение със слаби флуктуации.

Амплитудни ограничители

Диодите често се използват да ограничат части от даден сигнал над или под определено ниво.

През положителния полупериод диодът е отпушен, напрежението върху него е 0,7 V. Тогава изходното напрежение се ограничава на ниво + 0,7 V за случаите, когато входното напрежение превиши тази стойност.

През отрицателния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното напрежение.

Примери на ограничители

Диодът в право включване през отрицателния полупериод и ограничава изходния сигнал на ниво - 0.7 волта.

През положителния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното.

Примери на ограничители

Диодът ще се отпуши, когато напрежението върху анода му надвиши сумата от стойността на напрежението на батериата и пада 0,7 V върху диода. Тогава изходното напрежение се ограничава до тази стойност (3,7 V в случая) и всички по-високи входни напрежения се отрязват.

През отрицателния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното.

Примери на ограничители

Когато входното напрежение надвиши +4,7 V диодът D_1 се отпушва и ограничава входното напрежение до +4,7 V.

Диодът D_2 се отпушва когато напрежението достигне — 4,7 V. Следователно положителни напрежения над 4,7 V и отрицателни под — 4,7 V се отрязват.