Week 5: Reinforcement Learning (Week 5 Lecture)

Tutorial 10: Reinforcement Learning

10.1 (Activity 9.2: Q-Learning - Open learning)

Consider a world with two states $S = \{S_1, S_2\}$ and two actions $A = \{a_1, a_2\}$, where the transitions δ and reward r for each state and action are as follows:

$$\delta(S_1, a_1) = S_1$$
 $r(S_1, a_1) = 0$
 $\delta(S_1, a_2) = S_2$ $r(S_1, a_2) = -1$
 $\delta(S_2, a_1) = S_2$ $r(S_2, a_1) = +1$
 $\delta(S_2, a_2) = S_1$ $r(S_2, a_2) = +5$

- (i) Draw a picture of this world, using circles for the states and arrows for the transitions.
- (ii) Assuming a discount factor of $\gamma = 0.9$, determine:
 - (a) the optimal policy $\pi^*: S \to A$
 - (b) the value function $V^*: S \to R$
 - (c) the Q function $Q: S \times A \to R$
- (iii)Write the Q values in a table.

Q	a ₁	a ₂
S ₁		
S ₂		

(iv) Trace through the first few steps of the Q-learning algorithm, with all Q values initially set to zero. Explain why it is necessary to force exploration through probabilistic choice of actions in order to ensure convergence to the true Q values.