Given an array of integers, calculate the ratios of its elements that are positive, negative, and zero. Print the decimal value of each fraction on a new line with $m{6}$ places after the decimal.

Note: This challenge introduces precision problems. The test cases are scaled to six decimal places, though answers with absolute error of up to 10^{-4} are acceptable.

Example

$$arr = [1, 1, 0, -1, -1]$$

There are n=5 elements, two positive, two negative and one zero. Their ratios are $rac{2}{5}=0.400000$, $rac{2}{5}=0.400000$ and $rac{1}{5}=0.200000$. Results are printed as:

0.400000 0.400000 0.200000

Function Description

Complete the plusMinus function in the editor below.

plusMinus has the following parameter(s):

int arr[n]: an array of integers

Print

Print the ratios of positive, negative and zero values in the array. Each value should be printed on a separate line with $\bf 6$ digits after the decimal. The function should not return a value.

Input Format

The first line contains an integer, n, the size of the array.

The second line contains n space-separated integers that describe arr[n].

Constraints

$$0 < n \le 100$$
 $-100 \le arr[i] \le 100$

Output Format

Print the following 3 lines, each to 6 decimals:

- 1. proportion of positive values
- 2. proportion of negative values
- 3. proportion of zeros

Sample Input

```
STDIN Function
-----
6 arr[] size n = 6
-4 3 -9 0 4 1 arr = [-4, 3, -9, 0, 4, 1]
```

Sample Output

```
0.500000
0.333333
0.166667
```

Explanation

There are 3 positive numbers, 2 negative numbers, and 1 zero in the array.

The proportions of occurrence are positive: $\frac{3}{6}=0.500000$, negative: $\frac{2}{6}=0.333333$ and zeros: $\frac{1}{6}=0.166667$.