

	Consider	Two	level	H 10.	ator 2eV.	۸.	~ 1.6	×10 -18	1.	
				0.	·V	=	0 J		50000	
NOW	e -0/67 e -1.6x10-18/e let (eV)	10 1 ~0 9×10-4	100 2 ~0 9x10	1000 1 4x0	0 -5		10000 1 9×10 0.9	1 6001	1
	for ge for n ge	-0/LT		2 :				2 3		
	u= 50									
No (n=2)	\sim			1	1	1	1	0-96	0	.44
Npa (n				0	0 ~	40-51	~{)-6	-04	6.50

if have for excited level, in two level case ignoring g,
Ni e -tillet
$N = \frac{1}{1 + e^{-\epsilon_j/4\tau}}$
we see Nj/N -> 1/2 when e-Ejlut -> 1 ie. when Ej/lut -> 0
So in such a case, \pm is not achievable except as $T \to \infty$
except as T-) as
Including grue - tulus =) gu e - tulus gu e - tilus
get gue etter
as $T \rightarrow \infty$ $\frac{Nu}{N} = \frac{gu}{ge + gu}$ es. $\frac{s}{10} = \frac{s}{10}$
i.e. even distribution depending on statistical weight. (i.e. for each degenerate state)

This is because if one has equilibrium (coll. dominated) with rate coeff: Clu = ge Cla e W/ht = ge Cla Eu/hT $\frac{C\downarrow}{C\uparrow} = \frac{ge}{gu} e^{\frac{Eu}{lut}}$ =) Ct = ge Eulut i.e. for ht K Eu Let >> Eu - 9e gu
Eu = Let - 9e e
Su -) ~ 1 $=) \sim e = 2.7$ ignoring g.

So even if tu=let, then Co> Cr, as expected, leading to still Na << \frac{1}{2}

	4;
1.C. we reed	
- Ne Cr + Nu Cy =0	state for lover level.
$\frac{1}{N_c} = \frac{C_1}{C_1} = \frac{g_u}{g_1} e^{-E_u/k}$	as expeded.
But at Eu=leT Cr = 2u 1 Cr ge e	
i.e. downward transitions still much mi	re efficient
i.e. downward transitions still much mi leads to "lack of balance"	
il the ease of deexcitation compo	ared to
excitati locale lo lors levels	Nemando
le the ease of deexcitation composition description leads to how levels dominant until let >> Eu	9
and even then only leads to distribution among states.	