13 Topological Spaces / Bases

Exercise 13.1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subseteq A$. Show that A is open in X.

Proof. For each x, let U_x be an open set containing x such that $U_x \subseteq A$. (Note that the axiom of choice isn't required, as we can let U_x be the largest such open set.) Then I claim that

$$A = \bigcup_{x \in A} U_x.$$

If $x \in A$, then $x \in U_x$ by definition. The reverse inclusion holds since we have $U_x \subseteq A$ for each x. Now A is the union of open sets, and so A is open. \square

Exercise 13.2. Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of Section 12. Compare them, that is, for each pair of topologies, determine whether they are comparable, and if so, which is the finer.

Solution. Skipped, as this exercise is trivial.

Exercise 13.3. Show that \mathcal{T}_c , the *countable complement topology*, is a topology on a given set X. Is the collection

$$\mathcal{T}_{\infty} = \{ U \mid X - U \text{ is infinite or empty} \}$$

a topology?

Solution. Clearly \emptyset and X are open in \mathcal{T}_c . If (U_α) is a collection of open sets, then

$$X - \bigcup_{\alpha} U_{\alpha} = \bigcap_{\alpha} (X - U_{\alpha}),$$

which is a subset of some countable $X-U_{\alpha}$, and is therefore countable. The exception is when $X-U_{\alpha}=X$ for every α , in which case the intersection is X, which is allowed by our definition.

Let (U_i) be a finite collection of n open sets. Then

$$X - \bigcap_{j=1}^{n} U_j = \bigcup_{j=1}^{n} (X - U_j).$$

A finite union of countable sets is countable, and if $X - U_j = X$ for some j, then the union is X.

Since arbitrary unions and finite intersections of open sets are open, \mathcal{T}_c is a topology.

Consider \mathcal{T}_{∞} on the set \mathbb{N} . Then $\{2,4,6,\ldots\}$ and $\{3,5,7,\ldots\}$ are both open, but their union has complement $\{1\}$ and is not open, so \mathcal{T}_{∞} is not a topology.

Exercise 13.4. (a) If $\{\mathcal{T}_{\alpha}\}$ is a collection of topologies on X, then $\bigcap T_{\alpha}$ is a topology. Is $\bigcup T_{\alpha}$ a topology?

- (b) Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a smallest topology which contains every \mathcal{T}_{α} (their least upper bound).
- (c) If $X = \{a, b, c\}$, let

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}\$$
 and $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}.$

Find the intersection and least upper bound topologies

Solution. (a) Every \mathcal{T}_{α} has both \emptyset and X open, so the intersection has these. Now consider a family of open sets $\{U_{\beta}\}$ in $\bigcap T_{\alpha}$. Then they are in each \mathcal{T}_{α} , thus their union is also in the intersection topology. A similar argument applies to finite intersection.

Let X have at least 3 elements and let $\mathcal{T}_1 = \{\emptyset, \{a\}, X\}$ and $\mathcal{T}_2 = \{\emptyset, \{b\}, X\}$. Then $\mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology.

- (b) Note that the discrete topology contains *every* topology, so such topologies exist. Then we can let \mathcal{T}_{sup} be the intersection of all these by part (a).
 - (c) The intersection is $\{\emptyset, X, \{A\}\}\$, and the least upper bound is

$$\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$$

Exercise 13.5. Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} is the intersection of the topologies containing \mathcal{A} . Prove the same if \mathcal{A} is a subbasis

Solution. Suppose \mathcal{A} is a basis of \mathcal{T} . Let \mathcal{T}' be any topology containing all of \mathcal{A} . Then \mathcal{T}' contains every possible union of \mathcal{A} , which is just \mathcal{T} .

Now suppose \mathcal{A} is instead a subbasis generating \mathcal{T} . Again let \mathcal{T}' be a topology containing all of \mathcal{A} . Then \mathcal{T}' contains every combination of unions and finite intersections of sets in \mathcal{A} , so $\mathcal{T} \subseteq \mathcal{T}'$.

Exercise 13.6. Show that the topologies of \mathcal{R}_{ℓ} and \mathbb{R}_{K} are incomparable.

Solution. No basis element of \mathbb{R}_K lies inside [-1,1) and contains -1. No basis element of \mathbb{R}_ℓ lies inside (-1,1)-K and contains 0 by the Archimedean principle.

Exercise 13.7. Consider the following topologies on \mathbb{R} :

 \mathcal{T}_1 = the standard topology

 $\mathcal{T}_2 = \mathbb{R}_K$

 \mathcal{T}_3 = the finite complement topology

 \mathcal{T}_4 = the upper limit topology

 \mathcal{T}_5 = the topology having all sets $(-\infty, a)$ as a basis.

Now compare them all

Solution. $(\mathcal{T}_3 \subset \mathcal{T}_1 \subset \mathcal{T}_2, \mathcal{T}_4)$ We've seen that $\mathcal{T}_1 \subseteq \mathcal{T}_2, \mathcal{T}_4$ in the textbook. Let U be open in \mathcal{T}_3 . If U is empty, we're done. Otherwise, choose $x \in U$. Since there are only finitely many gaps in U, we can find the minimum distance ε from x to a gap. Then $(x - \varepsilon, x + \varepsilon)$ is an open subset of U in \mathcal{T}_1 and contains x. Since x was arbitrary, U is open in \mathcal{T}_1 .

 $(\mathcal{T}_3 \perp \mathcal{T}_5)$ We have $\mathbb{R} - \{0\}$ is open in \mathcal{T}_3 but not \mathcal{T}_5 . Also, (-infty, 0) is open in \mathcal{T}_5 , but not \mathcal{T}_3 .

 $(\mathcal{T}_5 \subset \mathcal{T}_1)$ Every basis element $(-\infty, a)$ of \mathcal{T}_5 is also open in \mathcal{T}_1 . On the other hand, (0, 1) is open in \mathcal{T}_1 , but not \mathcal{T}_5 .

 $(\mathcal{T}_2 \perp \mathcal{T}_4)$ This argument is similar to Exercise 6.

These comparisons are sufficient.

Exercise 13.8. (a) Show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b \text{ and } a, b \in \mathbb{Q}\}\$$

is a basis which generates the standard topology on \mathbb{R} .

(b) Show that the collection

$$\mathcal{B} = \{ [a, b) \mid a < b \text{ and } a, b \in \mathbb{Q} \}$$

doesn't generate the lower limit topology on \mathbb{R} .

Solution. (a) Clearly every element of \mathcal{B} is open in the standard topology. Now let (x, y) be a basis set of the standard topology, and choose z in the interval. By density of \mathbb{Q} , there are rational numbers a and b such that x < a < z < b < y, so that z is in the basis set $(a, b) \in \mathcal{B}$.

(b) If a is irrational, then $[a, \infty)$ is open in \mathbb{R}_{ℓ} , but no element of \mathcal{B} contained inside $[a, \infty)$ has a in it. In fact, \mathbb{R}_{ℓ} has no countable basis.