Sistemas de Banco de Dados Projeto, implementação e gerenciamento

Capítulo 5

Normalização das tabelas do banco de dados

Objetivos

Neste capítulo, você aprenderá:

- O que é normalização e qual o papel executa no processo de projetos de bancos de dados
- Sobre as formas normais 1NF, 2NF, 3NF, BCNF e
 4NF
- Como transformar formas normais mais baixas em formas normais mais altas
- Que a normalização e a modelagem ER devem ser utilizadas de forma simultânea na produção de um bom projeto
- Que algumas situações exigem desnormalização para gerar informações de modo eficiente

Tabelas de Bancos de Dados e Normalização

Normalização

- Processo para avaliar e corrigir estruturas e tabelas de modo a minimizar as redundâncias de dados, reduzindo, assim, a probabilidade de anomalias
- Atua por meio de uma série de estágios chamados formas normais
 - Primeira forma normal (1NF)
 - Segunda forma normal (2NF)
 - Terceira forma normal (3NF).

Tabelas de Bancos de Dados e Normalização (cont.)

- Normalização (cont.)
 - 3NF é melhor que 2NF, que, por sua vez, é melhor que 1NF
 - Para a maioria das finalidades dos projetos de bancos de dados comerciais, 3NF é o mais alto que se precisa ir no processo de normalização
 - Não se deve assumir que o nível mais alto de normalização seja sempre o mais desejável

Tabelas de Bancos de Dados e Normalização (cont.)

- Desnormalização produz uma forma normal mais baixa
 - O preço a pagar pela melhora de desempenho decorrente da desnormalização é a maior redundância de dados

Necessidade de Normalização

- Exemplo: empresa de construção que gerencie vários projetos
 - Cobra seus clientes pelas horas gastas em cada contrato
 - A taxa de cobrança horária depende da posição do funcionário
 - Periodicamente, gera-se um relatório que contém as informações exibidas na Tabela 5.1

TABELA 5.1 Exemplo de layout do relatório

NÚMERO DO PROJETO	NOME DO PROJETO	NÚMERO DO FUNCIONÁRIO	NOME DO FUNCIONÁRIO	CLASSIFICAÇÃO DE CARGO	TARIFA/HORA	HORAS Cobradas	TARIFA TOTAL
15	Evergreen	103	June E. Arbough	Engenheiro Eletricista	\$ 85,50	23,8	\$ 2.034,90
		101 105	John G. News	Projetista de Banco de Dados	\$105,00	19,4	\$ 2.037,00
		106	Alice K. Johnson *	Projetista de Banco de Dados	\$105,00	35,7	\$ 3.748,50
		102	William Smithfield	Programador	\$ 35,75	12,6	\$ 450,45
			David H. Senior	Analista de Sistemas	\$ 96,75	23,8	\$ 2.302,65
	i i			Subtotal			\$10.573,50
18	Amber Wave	114	Annelise Jones	Projetista de Aplicações	\$ 48,10	25,6	\$ 1.183,26
		118	James J. Frommer	Suporte Geral	\$ 18,36	45,3	\$ 831,71
		104	Anne K. Ramoras *	Analista de Sistemas	\$ 96,75	32,4	\$ 3.134,70
		112	Darlene M. Smithson	Analista SSD	\$ 45,95	45,0	\$ 2.067,75
				Subtotal			\$ 7.265,52
22	Rolling Tide	105 104	Alice K. Johnson	Projetista de Banco de Dados	\$105,00	65,7	\$ 6.998,50
		113	Anne K. Ramoras	Analista de Sistemas	\$ 96,75	48,4	\$ 4.682,70
		111	Delbert K. Joenbrood	Projetista de Aplicações	\$ 48,10	23,6	\$ 1.135,16
		106	Geoff B. Wabash	Suporte Escriturário	\$ 26,87	22,0	\$ 591,14
			William Smithfield	Programador	\$ 35,75	12,8	\$ 457,60
				Subtotal			\$13.765,10
25	Starflight	107	Maria D. Alonzo	Programador	\$ 35,75	25,6	\$ 915,20
		115	Travis B. Bawangi	Analista de Sistemas	\$ 96,75	45,8	\$ 4.431,15
		101 114	John G. News *	Projetista de Banco de Dados	\$105,00	56,3	\$ 5.911,50
		108	Annelise Jones	Projetista de Aplicações	\$ 48,10	33,1	\$ 1.592,11
		118	Ralph B. Washington	Analista de Sistemas	\$ 96,75	23,6	\$ 2.283,30
			James J. Frommer	Suporte Geral	\$ 18,36	30,5	\$ 559,98
		112	Darlene M. Smithson	Analista SSD	\$ 45,95	41,4	\$ 1.902,33
				Subtotal			\$17.595,57
				Total			\$49.199,69

/

FIGURA 5.1

Exemplo de layout do relatório

Nome da tabela: RPT_FORMA

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
15	Evergreen	103	June E. Arbough	Engº Eletricista	\$ 84,50	23,8
	3399	101	John G. News	Projetista de Bancos de Dados	\$ 105,00	19,4
		105	Alice K. Johnson *	Projetista de Bancos de Dados	\$ 105,00	35,7
		106	William Smithfield	Programador	\$ 35,75	12,6
		102	David H. Senior	Analista de Sistemas	\$ 96,75	23,8
18	Amber Wave	114	Annelise Jones	Projetista de Aplicações	\$ 48,10	25,6
		118	James J. Frommer	Suporte Geral	\$ 18,36	45,3
		104	Anne K. Ramoras *	Analista de Sistemas	\$ 96,75	32,4
		112	Darlene M. Smithson	Analista SSD	\$ 45,95	45,0
22	Rolling Tide	105	Alice K. Johnson	Projetista de Bancos de Dados	\$ 105,00	65,7
		104	Anne K. Ramoras	Analista de Sistemas	\$ 96,75	48,4
		113	Delbert K. Joenbrood	Projetista de Aplicações	\$ 48,10	23,6
		111	Geoff B. Wabash	Suporte Escriturário	\$ 26,87	22,0
		106	William Smithfield	Programador	\$ 35,75	12,8
25	Starflight	107	Maria D. Alonzo	Programador	\$ 35,75	25,6
	1322	115	Travis B. Bawangi	Analista de Sistemas	\$ 96,75	45,8
		101	John G. News *	Projetista de Bancos de Dados	\$ 105,00	56,3
		114	Annelise Jones	Projetista de Aplicações	\$ 48,10	33,1
		108	Ralph B. Washington	Analista de Sistemas	\$ 96,75	23,6
		118	James J. Frommer	Suporte Geral	\$ 96,75	30,5
		112	Darlene M. Smithson	Analista SSD	\$ 45,95	41,4

Necessidade de Normalização (cont.)

- A estrutura do conjunto de dados da Figura 5.1 não manipula os dados muito bem
- A estrutura da tabela parece funcionar e o relatório é gerado com facilidade
- Infelizmente, esse relatório pode produzir resultados diferentes, dependendo de qual anomalia de dados ocorreu
- O ambiente relacional é especialmente adequado para ajudar o projetista a superar esses problemas

Processo de Normalização

- Cada tabela representa um único assunto
- Nenhum item de dados será armazenado desnecessariamente em mais de uma tabela
- Todos os atributos não primários de uma tabela são dependentes da chave primária
- Todas as tabelas estão livres de anomalias de inserção, atualização e exclusão

TABELA 5.2 Formas normais

FORMA NORMAL	CARACTERÍSTICA	SEÇÃO
Primeira forma normal (1NF)	Formato de tabela, sem grupos repetidos e com PK identificada	Conversão para a primeira forma normal
Segunda forma normal (2NF)	1NF sem dependências parciais	Conversão para a segunda forma normal
Terceira forma normal (3NF)	2NF sem dependências transitivas	Conversão para a terceira forma normal
Forma normal de Boyce-Codd (BCNF)	Todo determinante é uma chave candidata (caso especial de 3NF)	Forma normal de Boyce- -Codd (BCNF)
Quarta forma normal (4NF)	3NF sem dependências multivaloradas independentes	Quarta forma normal (4NF)

Processo de Normalização (cont.)

- O objetivo da normalização é garantir que todas as tabelas estejam, pelo menos, na terceira forma normal (3NF)
- Formas normais de nível superior provavelmente não serão encontradas em um ambiente comercial
- O processo de normalização trabalha em uma relação por vez
- Progressiva separação da relação (tabela) em um conjunto de novas relações (tabelas) baseadas nas dependências identificadas

TABELA 5.3 Conceitos de dependência funcional

CONCEITO	DEFINIÇÃO		
Dependência funcional	O atributo B é dependente, de modo totalmente funcional, do atributo A se cada valor de A determina um e somente um valor de B .		
	Exemplo: PROJ_NUM → PROJ_NAME		
	(leia-se PROJ_NUM determina funcionalmente PROJ_NAME)		
	Nesse caso, PROJ_NUM é conhecido como atributo determinante e PROJ_NAME, como atributo dependente.		
Dependência funcional (definição generalizada)	O atributo A determina o atributo B (ou seja, B é funcionalmente dependente de A) se todas as linhas da tabela que correspondem em valor ao atributo A também correspondem em valor ao atributo B .		
Dependência totalmente funcional (chave composta)	Se o atributo B é funcionalmente dependente de uma chave composta A , mas não de qualquer subconjunto dessa chave composta, o atributo B apresenta dependência totalmente funcional em relação a A .		

Conversão para a Primeira Forma Normal

Grupo de repetição

- Um grupo de várias entradas do mesmo tipo pode existir para qualquer ocorrência única de atributo de chave
- Uma tabela relacional deve conter os grupos de repetição
- A normalização de sua estrutura reduzirá essas redundâncias
- A normalização é um procedimento em três etapas

Conversão para a Primeira Forma Normal (cont.)

- Etapa 1: Elimine os grupos de repetição
 - Elimine os nulos, assegurando que cada grupo de repetição contenha um valor de dados adequado
- Etapa 2: Identifique a chave primária
 - Deve identificar exclusivamente qualquer valor de atributo
 - Deve ser composta
- Etapa 3: Identifique todas as dependências
 - As dependências podem ser representadas com a ajuda de um diagrama

FIGURA 5.2

Tabela na primeira forma normal

Nome da tabela: DATA_ORG_1NF

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
15	Evergreen	103	June E. Arbough	Elect. Engineer	84.50	23.8
15	Evergreen	101	John G. News	Database Designer	105.00	19.4
15	Evergreen	105	Alice K. Johnson *	Database Designer	105.00	35.7
15	Evergreen	106	William Smithfield	Programmer	35.75	12.6
15	Evergreen	102	David H. Senior	Systems Analyst	96.75	23.8
18	Amber Wave	114	Annelise Jones	Applications Designer	48.10	24.6
18	Amber Wave	118	James J. Frommer	General Support	18.36	45.3
18	Amber Wave	104	Anne K. Ramoras *	Systems Analyst	96.75	32.4
18	Amber Wave	112	Darlene M. Smithson	DSS Analyst	45.95	44.0
22	Rolling Tide	105	Alice K. Johnson	Database Designer	105.00	64.7
22	Rolling Tide	104	Anne K. Ramoras	Systems Analyst	96.75	48.4
22	Rolling Tide	113	Delbert K. Joenbrood *	Applications Designer	48.10	23.6
22	Rolling Tide	111	Geoff B. Wabash	Clerical Support	26.87	22.0
22	Rolling Tide	106	William Smithfield	Programmer	35.75	12.8
25	Starflight	107	Maria D. Alonzo	Programmer	35.75	24.6
25	Starflight	115	Travis B. Bawangi	Systems Analyst	96.75	45.8
25	Starflight	101	John G. News *	Database Designer	105.00	56.3
25	Starflight	114	Annelise Jones	Applications Designer	48.10	33.1
25	Starflight	108	Ralph B. Washington	Systems Analyst	96.75	23.6
25	Starflight	118	James J. Frommer	General Support	18.36	30.5
25	Starflight	112	Darlene M. Smithson	DSS Analyst	45.95	41.4

Conversão para a Primeira Forma Normal (cont.)

Diagrama de dependência:

- Apresenta todas as dependências encontradas em uma determinada estrutura de tabela
- São muito úteis para obter uma visão "de cima" de todos os relacionamentos entre atributos de uma tabela
- Seu uso torna menos provável a omissão de uma dependência importante

Conversão para a Primeira Forma Normal (cont.)

- O termo primeira forma normal (1NF) descreve um formato de tabela em que:
 - Todos os atributos de chave estão definidos
 - Não há grupos de repetição na tabela
 - Todos os atributos são dependentes da chave primária
- Todas as tabelas relacionais satisfazem as exigências de 1NF
- Algumas tabelas contêm dependências parciais
 - Dependências baseadas em apenas uma parte da chave primária
 - Devem ser aplicadas com precaução

Conversão para a Segunda Forma Normal

- Etapa 1: Apresente cada componente de chave em uma linha separada
 - Apresente cada componente da chave em uma linha separada. Em seguida, escreva a chave original (composta) na última linha
 - Cada componente se tornará a chave de uma nova tabela

Conversão para a Segunda Forma Normal (cont.)

- Etapa 2: Distribua os respectivos atributos dependentes
 - Determine os atributos dependentes de outros
 - Nesse ponto, a maioria das anomalias foi eliminada

Conversão para a Segunda Forma Normal (cont.)

- A tabela está na segunda forma normal (2NF) quando:
 - Está em 1NF
 - Não inclui dependências parciais;
 - Nenhum atributo é dependente apenas de uma parte da chave primária

Conversão para a Terceira Forma Normal

- Etapa 1: Identifique todos os novos determinantes
 - Para todas as dependências transitivas, apresente seu determinante como PK de uma nova tabela
 - O determinante é qualquer atributo cujo valor determine outros valores na mesma linh
- Etapa 2: Identifique os atributos dependentes
 - Identifique os atributos dependentes de cada determinante apresentado na Etapa 1
 - Apresente a dependência
 - O nome da tabela reflete seu conteúdo e função

Conversão para a Terceira Forma Normal (cont.)

- Etapa 3: Remova os atributos dependentes das dependências transitivas
 - Elimine todos os atributos dependentes no(s) relacionamento(s) transitivo(s) de cada tabela que apresente esse relacionamento
 - Trace um novo diagrama de dependência para mostrar todas as tabelas definidas nas Etapas 1-3
 - Verifique as novas tabelas, assim como as modificadas na Etapa 3
 - Cada tabela deve ter um determinante
 - Nenhuma tabela deve conter dependências inadequadas

Conversão para a Terceira Forma Normal (cont.)

- A tabela está na terceira forma normal (3NF) quando:
 - Está em 2NF
 - Não contém dependências transitivas

Aprimoramento do Projeto

- As estruturas da tabela são "limpas" para eliminar as problemáticas dependências transitivas e parciais
- Não se pode tomar a normalização, por si mesma, como uma garantia de bom projeto
- O valor da normalização se deve à sua ajuda na eliminação de redundâncias de dados

Aprimoramento do Projeto (cont.)

- Diferentes tipos de questões que devem ser tratados para produzir um bom conjunto de tabelas normalizadas:
 - Avaliação das atribuições de PK
 - Avaliação das convenções de nomenclatura
 - Refinamento da atomicidade de atributos
 - Identificação de novos atributos
 - Identificação de novos relacionamentos
 - Refinamento de chaves primárias conforme necessário para a granularidade dos dados
 - Manutenção da precisão histórica
 - Avaliação por meio de atributos derivados

FIGURA 5.6 Banco de dados concluído (continuação)

Nome da tabela: FUNCIONÁRIO

EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIREDATE	JOB_CODE
101	News	John	G	08-Nov-00	502
102	Senior	David	Н	12-Jul-89	501
103	Arbough	June	E	01-Dec-97	503
104	Ramoras	Anne	K	15-Nov-88	501
105	Johnson	Alice	K	01-Feb-94	502
106	Smithfield	√∕illiam		22-Jun-05	500
107	Alonzo	Maria	D	10-Oct-94	500
108	Washington	Ralph	В	22-Aug-89	501
109	Smith	Larry	W	18-Jul-99	501
110	Olenko	Gerald	А	11-Dec-96	505
111	√Vabash	Geoff	В	04-Apr-89	506
112	Smithson	Darlene	M	23-Oct-95	507
113	Joenbrood	Delbert	K	15-Nov-94	508
114	Jones	Annelise		20-Aug-91	508
115	Bawangi	Travis	В	25-Jan-90	501
116	Pratt	Gerald	L	05-Mar-95	510
117	∨Villiamson	Angie	Н	19-Jun-94	509
118	Frommer	James	J	04-Jan-06	510

Considerações sobre Chaves Surrogates

- Quando a chave primária for considerada inadequada, os projetistas utilizam chaves surrogates
- As entradas da Tabela 5.4 são inadequadas, pois duplicam registros existentes
 - Não há violação de integridade referencial ou de entidade

TABELA 5.4 Entradas duplicadas da Tabela Cargo

JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR
511	Programador	\$35,75
512	Programador	\$35,75

Formas Normais de Nível Superior

- As tabelas em 3NF funcionarão, de forma adequada, em um banco de dados transacional de negócios
- Há ocasiões em que as formas normais superiores são úteis
- Dois casos especiais de 3Nf:
 - Forma normal de Boyce-Codd (BCNF)
 - Quarta forma normal (4NF)

Forma Normal de Boyce-Codd (BCNF)

- Uma tabela está na forma normal de Boyce-Codd (BCNF) quando todos os seus determinantes são chaves candidatas
 - Uma chave candidata possui as mesmas características de uma chave primária key, mas por algum motivo, não foi escolhida para tal
- Quando uma tabela contém apenas uma chave candidata, 3NF e BCNF são equivalentes
- BCNF pode ser violada somente quando a tabela contiver mais de uma chave candidata

Forma Normal de Boyce-Codd (BCNF) (cont.)

- A maioria dos projetistas considera BCNF como um caso especial de 3NF
- Uma tabela está em 3NF quando apresenta as características de 2NF, mas nenhuma dependência transitiva

TABELA 5.5 Exemplo de dados para uma conversão em BCNF

STU_ID	STAFF_ID	CLASS_CODE	ENROLL_GRADE
125	25	21334	А
125	20	32456	С
135	20	28458	В
144	25	27563	С
144	20	32456	В

Quarta Forma Normal (4NF)

- A tabela está na quarta forma normal (4NF) se estiver em 3NF e não contiver conjuntos múltiplos de dependências com vários valores
- A discussão sobre 4NF é de essência acadêmica se o projetista se assegurar de que suas tabelas estejam em conformidade com as duas regras seguintes:
 - Todos os atributos devem ser dependentes da chave primária, mas independentes de todos os outros
 - Nenhuma linha pode conter dois ou mais fatos com vários valores sobre uma entidade

Tabelas com dependências com vários valores

Nome do banco de dados: Ch05_Service

Nome da tabela: VOLUNTÁRIO_V1

EMP_NUM	ORG_CODE	ASSIGN_NUM
10123	RC	1
10123	UW	3
10123		4

Nome da tabela: VOLUNTÁRIO_V3

EMP_NUM	ORG_CODE	ASSIGN_NUM
10123	RC	1
10123	RC	3
10123	UW	4

Nome da tabela: VOLUNTÁRIO_V2

EMP_NUM	ORG_CODE	ASSIGN_NUM
10123	RC	
10123	UW	
10123		1
10123		3
10223		4

Conjunto de tabelas em 4NF

Nome da tabela: FUNCIONÁRIO

EMP_NUM	EMP_LNAME	
10121	Rogers	
10122	O'Leery	
10123	Panera	
10124	Johnson	

Nome da tabela: PROJETO

PROJ_CODE	PROJ_NAME	PROJ_BUDGET
1	BeThere	1023245.00
2	BlueMoon	20198608.00
3	GreenThumb	3234456.00
4	GoFast	5674000.00
5	GoSlow	1002500.00

Nome da tabela: DESIGNAÇÃO

ASSIGN_NUM	EMP_NUM	PROJ_CODE
1	10123	1
2	10121	2
3	10123	3
4	10123	4
5	10121	1
6	10124	2
7	10124	3
8	10124	5

Nome do banco de dados: Ch05_Service

Nome da tabela: ORGANIZAÇÃO

ORG_CODE	ORG_NAME	
RC Red Cross		
UVV	United Way	
WF	Wildlife Fund	

Nome da tabela: SERVIÇO_V1

EMP_NUM	ORG_CODE
10123	RC
10123	UW
10123	WF

Diagrama relacional

Normalização e Projeto do Banco de Dados

- A normalização deve fazer parte do processo do projeto
- Certifique-se de que as entidades propostas atendam à forma normal necessária antes que as estruturas de tabela sejam criadas
- Muitos dos bancos de dados reais com os quais você vai se deparar foram projetados de forma inadequada, ou carregados de anomalias
- Pode ocorrer que ao solicitarem um novo projeto ou a modificação de bancos de dados existentes

Normalização e Projeto do Banco de Dados (cont.)

- Deve-se criar um DER por meio de um processo iterativo
 - Identifique as entidades relevantes, seus atributos e relacionamentos
 - Utilize os resultados para identificar entidades e atributos adicionais
- Procedimentos de normalização
 - Foca as características de entidades específicas (representa uma visualização micro das entidades do DER)
- É difícil separar o processo de normalização do de modelagem ER

DER inicial da empresa contratante

	FUNCIONÁRIO		
PK	EMP_NUM		
	EMP_LNAME EMP_FNAME EMP_INITIAL JOB_DESCRIPTION JOB_CHG_HOUR		

DER modificado da empresa contratante

Cada FUNCIONÁRIO possui uma classificação (principal) de CARGO . Qualquer classificação de CARGO pode ser mantida por vários FUNCIONÁRIOs.

Algumas classificações de CARGO ainda não receberam nenhuma atribuição de pessoal.

Portanto, FUNCIONÁRIO é opcional para CARGO.

Representação de um relacionamento M:N incorreto

DER final da empresa contratante

Banco de dados implementado

Nome da tabela: FUNCIONÁRIO

EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIREDATE	JOB_CODE
101	News	John	G	08-Nov-00	502
102	Senior	David	Н	12-Jul-89	501
103	Arbough	June	E	01-Dec-97	503
104	Ramoras	Anne	K	15-Nov-88	501
105	Johnson	Alice	K	01-Feb-94	502
106	Smithfield	√Villiam		22-Jun-05	500
107	Alonzo	Maria	D	10-Oct-94	500
108	vVashington	Ralph	В	22-Aug-89	501
109	Smith	Larry	W	18-Jul-99	501
110	Olenko	Gerald	A	11-Dec-96	505
111	Wabash	Geoff	B	04-Apr-89	506
112	Smithson	Darlene	М	23-Oct-95	507
113	Joenbrood	Delbert	K	15-Nov-94	508
114	Jones	Annelise		20-Aug-91	508
115	Bawangi	Travis	В	25-Jan-90	501
116	Pratt	Gerald	L	05-Mar-95	510
117	Williamson	Angie	Н	19-Jun-94	509
118	Frommer	James	J	04-Jan-06	510

Nome da tabela: CARGO

JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR
500	Programmer	35.75
501	Systems Analyst	96.75
502	Database Designer	105.00
503	Electrical Engineer	84.50
504	Mechanical Engineer	67.90
505	Civil Engineer	55.78
506	Clerical Support	26.87
507	DSS Analyst	45.95
508	Applications Designer	48.10
509	Bio Technician	34.55
510	General Support	18.36

Nome da tabela: PROJETO

PROJ_NUM	PROJ_NAME	EMP_NUM
15	Evergreen	105
18	Amber Wave	104
22	Rolling Tide	113
25	Starflight	101

Nome da tabela: DESIGNAÇÃO

ASSIGN_CHARGE	ASSIGN_CHG_HOUR	ASSIGN_HOURS	EMP_NUM	PROJ_NUM	ASSIGN_DATE	ASSIGN_NUM
219.70	84.50	2.6	103	15	04-Mar-08	1001
25.70	18.36	1.4	118	18	04-Mar-08	1002
378.00	105.00	3.6	101	15	05-Mar-08	1003
120.25	48.10	2.5	113	22	05-Mar-08	1004
160.55	84.50	1.9	103	15	05-Mar-08	1005
406.35	96.75	4.2	115	25	05-Mar-08	1006
546.00	105.00	5.2	105	22	05-Mar-08	1007
178.50	105.00	1.7	101	25	05-Mar-08	1008
210.00	105.00	2.0	105	15	05-Mar-08	1009
367.65	96.75	3.8	102	15	06-Mar-08	1010
251,55	96.75	2.6	104	22	06-Mar-08	1011
241.50	105.00	2.3	101	15	06-Mar-08	1012
86.58	48.10	1.8	114	25	06-Mar-08	1013
107.48	26.87	4.0	111	22	06-Mar-08	1014
163.54	48.10	3.4	114	25	06-Mar-08	1015
55.14	45.95	1.2	112	18	06-Mar-08	1016
36.72	18.36	2.0	118	18	06-Mar-08	1017
251.55	96.75	2.6	104	18	06-Mar-08	1018
253.50	84.50	3.0	103	15	06-Mar-08	1019
283.50	105.00	2.7	105	22	07-Mar-08	1020
406,35	96.75	4.2	108	25	08-Mar-08	1021
278.98	48.10	5.8	114	25	07-Mar-08	1022
85.80	35.75	2.4	106	22	07-Mar-08	1023

Desnormalização

- Embora a criação dessas relações seja um objetivo importante do projeto de banco de dados, trata-se de apenas um entre vários objetivos importantes.
- O bom projeto de bancos de dados também leva em consideração as necessidades e a velocidade de processamento (e de relatório)
- O problema da normalização é que, conforme as tabelas sejam decompostas para atender a suas exigências:
 - O número de tabelas no banco de dados se amplia

Desnormalização (cont.)

- A junção de grande número de tabelas reduz a velocidade do sistema.
- Os conflitos entre eficiência de projeto, necessidades de informações e desempenho costumam ser resolvidos por meio de comprometimentos que incluam desnormalização

Desnormalização (cont.)

- As tabelas não normalizadas tendem a apresentar as seguintes deficiências:
 - As atualizações de dados são menos eficientes, por ter de lidar com tabelas maiores
 - A indexação é mais trabalhosa
 - Tabelas não normalizadas não resultam em estratégias simples para a criação de tabelas virtuais conhecidas como visualizações

Resumo

- A normalização é uma técnica utilizada para projetar tabelas em que as redundâncias de dados sejam minimizadas
- As três primeiras formas normais (1NF, 2NF e 3NF) são encontradas com mais frequência
- Uma tabela está em 1NF quando:
 - Todos os seus atributos de chave são definidos
 - Todos os atributos restantes são dependentes da chave primária

Resumo (cont.)

- Uma tabela está em 2NF quando está em 1NF e não contém dependências parciais
- Uma tabela está em 3NF quando está em 2NF e não contém dependências transitivas
- Uma tabela que não esteja em 3NF pode ser separada em novas tabelas até que todas atendam às exigências dessa forma normal
- A normalização é uma parte importante mas apenas uma parte – do processo de projeto

Resumo (cont.)

- Uma tabela em 3NF pode conter dependências com vários valores que produzam muitos valores nulos ou dados redundantes
 - Pode ser necessário converter uma tabela 3NF para a quarta forma normal (4NF), separando a tabela para remover tais dependências
- Às vezes as tabelas são desnormalizadas, produzindo menos E/S e aumentando a velocidade de processamento