Εξίσωση Ευθείας 6ο Φύλλο Εργασίας

Καθηγητής: Νικόλαος Δ. Κατσίπης

Σημείωσι

Συντελεστή διεύθυνσης

ή κλίση μιας ευθείας (ϵ) : $\lambda_{\epsilon} = \epsilon \phi \omega$, όπου $0^{\circ} \leq \omega < 180^{\circ}$, η γωνία που οχηματίζει η (ϵ) με τον άξονα \mathbf{x}' x.

Σημείωστ

An $\omega=90^{\rm o}$, tote den orizetal suntelesting dieúqunshs.

Σημείωση

H exisows the equations of the experimental problem of th

Σημείωση

Όταν "λέμε" εξίσωση της ευθείας ΑΒ εννοούμε την εξίσωση της ευθείας που διέρχεται από τα Α και Β.

1. Να βρείτε τον συντελεστή διεύθυνσης:

- (α) της ευθείας που διέρχεται από το σημείο O(0,0) και σχηματίζει με τον άξονα x'x γωνία $\omega=\frac{3\pi}{4}$,
- (β) της ευθείας που διέρχεται από τα σημεία A(0, -2) και B(-4, 0),
- (γ΄) της ευθείας (ϵ) που διέρχεται από το σημείο O(0,0) και είναι παράλληλη προς την ευθεία AB,
- (δ) της ευθείας (η) που διέρχεται από το σημείο O(0,0) και είναι κάθετη προς την ευθεία AB,
- 2. Dinortal ta shmeia A(0,2) kal B(4,0). Na breite thn exispos ths eubeias, η opoia:
 - (α) διέρχεται από το B και σχηματίζει γωνία $135^{\rm o}$ με τον άξονα x'x,
 - (β) διέρχεται από το A και είναι παράλληλη προς το διάνυσμα $\vec{\delta_1} = (-1,2),$
 - (γ΄) διέρχεται από το σημείο A και είναι παράλληλη προς το διάνυσμα $\vec{\delta_2}=(3,0),$
 - (δ) διέρχεται από το σημείο ${\bf B}$ και είναι κάθετη προς το διάνυσμα $\vec{\delta_2}=(3,0),$
 - (ε΄) η οποία διέρχεται από τα σημεία Α και Β.
- 3. Δίνεται η ευθεία $\varepsilon : y = x 3$.
 - (α) Να εξετάσετε αν η ευθεία ε διέρχεται από το σημείο A(1, -2).
 - (β΄) Να βρείτε την τιμή του πραγματικού αριθμού λ ώστε το σημείο $\mathrm{B}(2\lambda-1,\lambda+1)$ να ανήκει στην ευθεία $\varepsilon.$
 - (γ΄) Να βρείτε το σημείο της ευθείας ε το οποίο έχει τεταγμένη ίση με 2.
 - (δ) Να βρείτε το σημείο της ευθείας ε του οποίου η τεταγμένη είναι διπλάσια της τετμημένης.
- 4. Δίνονται τα σημεία A(3,5) και B(-1,1). Να βρείτε:
 - (α) τις συντεταγμένες του μέσου Μ του ευθύγραμμου τμήματος ΑΒ,
 - (β) τον συντελεστή διεύθυνσης της ευθείας που διέρχεται από τα σημεία Α και Β,
 - (γ) την εξίσωση της μεσοκαθέτου (ϵ) του ευθύγραμμου τμήματος AB.

Σημείωση

 $\begin{array}{lll} \text{Aν} & \eta & \text{eudeia} \\ \epsilon & \text{diérreta} \\ \text{anó ta shifte} \\ \text{A} & (x_1, y_1) \\ \text{kat} \\ \text{B} & (x_2, y_2), \text{me} \\ x_1 \neq x_2, & \text{tote} \\ \text{A} & \epsilon = \frac{y_2 - y_1}{x_2 - x_1} \\ \end{array}$

Σημείωση

 $\epsilon \| \eta \Leftrightarrow \lambda_{\epsilon} = \lambda_{\eta}$ $\epsilon \perp \eta \Leftrightarrow$ $\lambda_{\epsilon} \cdot \lambda_{\eta} = -1.$

Σημείωση

An η eubeia ϵ diércetai and to sheet $A(x_0, y_0)$ kai $\epsilon \| y'y$, tote $\epsilon : x = x_0$.

Σημείωση

An η euheia ϵ diércetai and to shier $A(x_0, y_0)$ kai $\epsilon \| x' x$, tote $\epsilon : y = y_0$.

- 5. Δίνονται τα σημεία A(1,1) και B(-3,5).
 - (α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και Β.
 - (β΄) Να βρείτε τα σημεία στα οποία η παραπάνω ευθεία τέμνει τους άξονες $\mathbf{x}'\mathbf{x}$ και $\mathbf{y}'\mathbf{y}$.
 - (γ΄) Να βρείτε το εμβαδόν του τριγώνου που σχηματίζει η παραπάνω ευθεία με τους άξονες.
- 6. Δίνονται οι ευθείες:

$$\varepsilon_1$$
: y = 3x - 1 και ε_2 : y = -x + 3.

- (α') Να βρείτε το κοινό σημείο των $\varepsilon_1, \varepsilon_2$.
- (β΄) Να βρείτε την εξίσωση της ευθείας η οποία διέρχεται από το κοινό σημείο των ε_1 , ε_2 και είναι κάθετη στην ε_2 .
- 7. Δίνεται το παραλληλόγραμμο $AB\Gamma\Delta$ με κέντρο το σημείο $K\left(\frac{13}{2},-5\right)$ και εξισώσεις των ευθειών στις οποίες βρίσκονται οι πλευρές AB και $A\Delta$ τις

$$y = 3x - 22$$
 каз $y = \frac{1}{2}x - \frac{19}{2}$,

αντίστοιχα. Να βρείτε:

- (α΄) τις συντεταγμένες του σημείου Α,
- (β΄) τις συντεταγμένες του σημείου Γ ,
- (γ') την εξίσωση της ευθείας ΒΓ.
- 8. Δίνεται η ευθεία $\varepsilon: y = x + 2$ και το σημείο A(2,3). Να βρείτε:
 - (α) την εξίσωση της ευθείας η οποία διέρχεται από το σημείο A και είναι κάθετη στην ε ,
 - (β΄) τις συντεταγμένες της προβολής B του σημείου A στην ε ,
 - (γ) τις συντεταγμένες του συμμετρικού σημείου A' του A ως προς την ε .
- 9. Δίνονται τα σημεία:

$$A(2,4), B(0,-3)$$
 kai $\Gamma(8,1).$

- (α) Να αποδείξετε ότι τα σημεία Α, Β και Γ αποτελούν κορυφές τριγώνου.
- (β΄) Να βρείτε την εξίσωση της ευθείας του ύψους $A\Delta$.
- (γ) Να βρείτε την εξίσωση της ευθείας της διαμέσου ΑΜ.
- (δ΄) Να βρείτε την εξίσωση της μεσοκαθέτου της πλευράς ${\rm B}\Gamma.$
- 10. Δίνεται τρίγωνο $AB\Gamma$ με A(2,1). Οι ευθείες στις οποίες βρίσκονται το ύψος $B\Delta$ και η διάμεσος ΓM έχουν εξισώσεις $y=\frac{1}{2}x+1$ και y=2x, αντίστοιχα. Να βρείτε τις συντεταγμένες των κορυφών B και Γ .

"Τα Μαθηματικά, περισσότερο από οποιαδήποτε άλλη τέχνη ή επιστήμη, είναι ένα παιχνίδι για νεαρή ηλικία"

Hardy, Godfrey Harold, 1877 – 1947, Άγγλος μαθηματικός.