DSC5211C QUANTITATIVE RISK MANAGEMENT SESSION 3

Fernando Oliveira

bizfmdo@nus.edu.sg

Regression Analysis and Stationarity in Time Series

Objectives

- Analysis of Regression in Time Series
- The Problem of Autocorrelation
- Durbin-Watson and Autocorrelation
- The Problem of Heteroscedasticity
- Regression with Trending Series
- Testing for Stationarity: Dickey-Fuller Tests

Readings: Enders, Ch. 4 Franses, Ch. 4.2, 4.3 Hanke, Ch. 6, 7, 8.

Simple Linear Regression

• Simple regression estimates and tests a relationship between two variables in a simple linear model

$$y = a + bx + u$$

Regression model is simply an equation of a line

$$Sales = a + b \cdot Advertising + error$$

systematic component

random component

- What are the sales when advertising is zero?
- How much increase in sales from each pound spent on advertising?

Residuals: Graph

Determining the Best Line

- Sales= a+ b · Advertising + error
- How do we determine the constants a and b? •
- We choose a line so that residual scatter is minimised:
 - 1. Average error is zero (the mean of the residuals is zero)
 - 2. Average squared error is as small as possible. "Least squares" is traditionally used.
- Find the line that minimises the sum of squared residuals (equivalent to minimising residual standard deviation).

$$\min \sum_{i=1}^n e_i^2$$

Finding the Best Line

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.83
R Square	0.70
Adjusted R Square	0.67
Standard Error	0.81
Observations	15

	Coeffts	Std Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	22.94	0.59	39.13	0.000000	21.67	24.21
Advert	2.16	0.39	5.47	0.000108	1.31	3.01

$$Sales = 22.94 + 2.16 Adverti \sin g + error$$

Model Building Methodology

- Graphs and correlation analysis
 - plot to get a feel for relationship & spot problems
 - correlations measure strength of relationship
- Model estimation
- Diagnostic evaluation
 - evaluate validity:
 - 1. Testing for significance of relationship
 - 2. Checking if has anything been left out of model
 - evaluate usefulness
 - 1. How close does model fit data

Example: Hydroelectric Consumption

• Source: BP.com

• Frequency: yearly

• Units: TWh

• Date Range: 1965-2016

Example: Crude Oil Consumption

• Source: BP.com

• Frequency: yearly

• Units: Thousand Barrels Daily

• Date Range: 1965-2016

Example: Oil Price

• Source: BP.com

• Frequency: yearly

• Units: \$/bbl (2016 base)

• Date Range: 1965-2016

Multiple Regression

• Multiple regression estimates and tests a relationship between two variables

$$Y_t = a_0 + a_1 X_t + a_2 W_t + \dots + e_t$$

• Regression model is simply an equation of a line

$$Hydro_t = 173.7 + 1.09Gas_t - 0.06Nuc_t + e_t$$

• Comment on the parameters.

EViews Output

Dependent Variable: Hydro consumption

Sample: 1965 2016

Included observations: 52

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GAS	173.7243 1.094352	38.43427 0.038018	4.520036 28.78477	0.0000
NUCLEAR	-0.063017	0.030536	-2.063697	0.0444
R-squared	0.989253	Mean depend	lent var	2259.313
Adjusted R-squared	0.988815	S.D. depende	ent var	857.0553
S.E. of regression	90.64218	Akaike info cr	iterion	11.90768
Sum squared resid	402584.3	Schwarz crite	rion	12.02025
Log likelihood	-306.5996	Hannan-Quinn criter.		11.95084
F-statistic	2255.302	Durbin-Watson stat		0.390188
Prob(F-statistic)	0.000000			

Residual Assumptions

- Quality of parameter estimates & validity of sig. tests rely upon residuals $\sim N(0,\sigma)$
- Residuals must be
 - normally distributed
 - independent (no autocorrelation)
 - same variance (no heteroscedasticity)
- Histogram and plots of residuals enables inspection of assumptions
- Residuals should be simple randomness remaining after deterministic part of variation in *the dependent variable* has been modelled
- Any systematic component in the errors should be in the model

Multi-collinearity

- Multi-collinearity means high degree of correlation between two or more explanatory variables
- Result is unreliable coefficient estimates, reflected in big uncertainty on coefficients, i.e. large standard errors, and thus small t-stats
- Prediction may be OK but description will not be
- Conclusion: Check correlations between explanatory variables!

Residuals: Hydroelectric Consumption

• The plot shows that there is a pattern in the residuals: the volatility is increasing over time.

• Heteroscedasticity: the variance of the residuals is not constant

Heteroscedasticity

- The variability in some time series tends to increase with the level of the series.
- The variability increases if the variable is growing at a constant rate than at a constant amount over time.
- The variance of the error term, ε_t , is not constant.
- The standard error of the estimates underestimates the current standard deviation of the error term. These limits are too narrow for using in confidence intervals.

Heteroscedasticity: Solving the Problem

- Sometimes this problem can be solved by simply transforming the data.
- Possible transformations:
 - Transform data: convert current dollars into constant dollars.
 - Use the log linear model

 $Log(Hydro_t) = 4.56 + 1.13*Log(Gas_t) - 0.5 Log(oil_t) + 0.03 Log(Oil_price_t) + e_t$

Dependent Variable: LOG(HYDRO)

Method: Least Squares

Sample: 1965 2016

Included observations: 52

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(GAS) LOG(OIL) LOG(OIL_PRICE)	4.557423 1.134748 -0.500301 0.032628	0.669876 0.055226 0.097508 0.009695	6.803382 20.54723 -5.130857 3.365325	0.0000 0.0000 0.0000 0.0015
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.992872 0.992427 0.034971 0.058701 102.6653 2228.806 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Wats o	ent var iterion rion n criter.	7.647408 0.401853 -3.794820 -3.644725 -3.737277 0.562954

Heteroscedasticity: Log linear Model

• The volatility is more homogeneous but at the same time there seems to be large fluctuations. How to interpret this result?

Residual Autocorrelation

- Autocorrelation exists when successive observations over time are related to one another.
- Autocorrelation can occur because the effect of an independent variable on the dependent variable is distributed over time.
- In a regression model autocorrelation is handled by correcting the model:
 - Change the functional form of the model
 - Change the independent variables
 - Changing the form of the error term (Analysed later in the course)

Durbin-Watson Statistic

• *DW* statistic evaluates autocorrelation for residuals placed in same order as the observations. This is generally only interesting if this is time order.

```
• DW \approx 2(1-r) where r is autocorrelation 0 < DW < 4
DW = 2 no autocorrelation DW > 2 negative autocorrelation DW < 2 positive autocorrelation 1.5 < \text{Rule of thumb} < 2.5: no autocorrelation
```

- *DW* statistic used instead of *r* because strict tests exist to examine whether *DW* is sig. diff. from 2
- EViews gives DW, whilst Excel does not

Residual Autocorrelation: Durbin-Watson Statistic

- DW is a test for AR(1) serial correlation.
- DW is based on the residuals of the Ordinary Least Squares
- DW assumes normally distributed errors
- DW is not valid in the presence of heteroscedasticity
- DW is not valid in the presence of lagged dependent variables

Autocorrelation: Hydroelectric Consumption

• We have positive autocorrelation, as the DW is 0.56.

• We need to correct the model.

Regression with Trending Series

- Trending variables are likely to have high correlation and lead to a regression with high R^2 . This is true regardless of whether they are related.
- Autocorrelation in residuals suggests that the regression is spurious (nonsense)
- Using *differenced* variables (changes) eliminates the trends and thus avoids spurious regression
 - $\Delta Y_t = Y_t Y_{t-1}$
 - $D\log(Y_t) \sim (Y_t Y_{t-1})/Y_t$
- Convention is to difference all trending variables used in a regression

Hydroelectric Consumption – New Model

Dependent Variable: DLOG(HYDRO)

Method: Least Squares

Sample (adjusted): 1966 2016

Included observations: 51 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DLOG(GAS) DLOG(OIL_PRICE)	0.019977 0.249770 0.026221	0.004904 0.118389 0.010532	4.073214 2.109741 2.489751	0.0002 0.0401 0.0163
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.228059 0.195895 0.021164 0.021501 125.8071 7.090456 0.002005	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Wats c	ent var iterion rion n criter.	0.028931 0.023602 -4.815964 -4.702328 -4.772540 2.240440

- Is the autocorrelation problem solved?
- How good is the model?
- What is the interpretation of the results?

Nonstationary Series

Testing for Stationarity: Correlogram

•Autocorrelation plot is known as the correlogram. It is very useful for analysing time series.

Sample: 1965 2016 Included observations: 52

Testing for Stationarity: Correlogram

• Simple test for stationarity is to use autocorrelation function but this is sometimes ambiguous

• Stochastic trend can be identified by testing $a_1 = 1$ in

$$Y_t = a_0 + a_1 Y_{t-1} + \varepsilon_t$$

This is known as testing for a *unit root*

Testing for Stationarity Using Dickey-Fuller Tests

• Natural to run regression and test $a_1 = 1$ versus $a_1 < 1$

$$Y_t = a_0 + a_1 Y_{t-1} + \varepsilon_t$$

• Dickey and Fuller (1979, 1981) showed that if $a_1 = 1$, its regression estimate is biased downwards

Conventional estimates and t-stats will thus tend to incorrectly reject $a_1 = 1$

• Dickey and Fuller empirically derived critical values for testing $a_1=1$ which should be used instead of usual t-distribution values

Dickey-Fuller Tests

• Instead of testing $a_I = I$ against $a_I < 1$ in $Y_t = a_0 + a_1 Y_{t-1} + \varepsilon_t$

a more convenient test is to run the regression

$$Y_t - Y_{t-1} = a_0 + \gamma Y_{t-1} + \varepsilon_t$$

where $\gamma = (a_1 - 1)$ and test $\gamma = 0$ against $\gamma < 0$

• Note that $a_1 = 1$ and $\gamma = 0$ imply random walk type behaviour, i.e. nonstationarity

Dickey-Fuller Tests

• Basic tests are:

$$\Delta Y_t = \gamma Y_{t-1} + \varepsilon_t$$

$$\Delta Y_t = a_0 + \gamma Y_{t-1} + \varepsilon_t$$

$$\Delta Y_t = a_0 + a_2 t + \gamma Y_{t-1} + \varepsilon_t$$

• Augmented Dickey-Fuller tests control for higher-order autoregression in new dependent variable ΔY_t :

$$\Delta Y_t = a_0 + a_2 t + \gamma Y_{t-1} + \sum_{i=1}^m \beta_i \Delta Y_{t-i} + \varepsilon_t$$

Use $m < (\text{no. of observations})^{1/3}$

• Procedure is to test $\gamma = 0$ after first getting a model with good t-stats for all other parameters. Once good t-stats have been established for all other parameters, focus on: H₀: $\gamma \ge 0$ H₁: $\gamma < 0$.

Dickey-Fuller Tables

• Dickey-Fuller tables provide critical values for γ

Table A Empirical Cumulative Distribution of T

Probability of	f a Smalle	er Value						
Sample Size	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
No Constant o	No Constant or Time $(a_0 = a_2 = 0)$							
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03
250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01
300	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00
∞	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00
Constant $(a_2 =$	0)			$ au_{\mu}$				
25	-3.75	-3.33	-3.00	-2.62	-0.37	0.00	0.34	0.72
50	-3.58	-3.22	-2.93	-2.60	-0.40	-0.03	0.29	0.66
100	-3.51	-3.17	-2.89	-2.58	-0.42	0.05	0.26	0.63
250	-3.46	-3.14	-2.88	-2.57	-0.42	-0.06	0.24	0.62
500	-3.44	-3.13	-2.87	-2.57	-0.43	-0.07	-0.24	0.61
∞	-3.43	-3.12	-2.86	-2.57	-0.44	-0.07	0.23	0.60
Constant + tim	e			τ_{τ}				
25	-4.38	-3.95	-3.60	-3.24	-1.14	-0.80	-0.50	-0.15
50	-4.15	-3.80	-3.50	-3.18	-1.19	-0.87	-0.58	-0.24
100	-4.04	-3.73	-3.45	-3.15	-1.22	-0.90	-0.62	-0.28
250	-3.99	-3.69	-3.43	-3.13	-1.23	-0.92	-0.64	-0.31
500	-3.98	-3.68	-3.42	-3.13	-1.24	-0.93	-0.65	-0.32
∞	-3.96	-3.66	-3.41	-3.12	-1.25	-0.94	-0.66	-0.33

Source: This table was constructed by David A. Dickey using Monte Carlo methods. Standard errors of the estimates vary, but most are less than 0.20. The table is reproduced from Wayne Fuller. *Introduction to Statistical Time Series*. (New York: John Wiley). 1976.

$\textbf{Sing Dollar/Euro} \underbrace{\textbf{Exchange Rate}}_{\text{\tiny SGD}}$

Sample: 2000M10 2018M12 Included observations: 219

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	1	1	0.978	0.978	212.28	0.000
	1 1	2	0.956	0.003	416.25	0.000
	ı b ı	3	0.938	0.072	613.56	0.000
	ι (ι	4	0.919	-0.046	803.59	0.000
	1 j 1 1	5	0.901	0.027	987.01	0.000
	1)1	6	0.884	0.022	1164.5	0.000
	ı d ı	7	0.864	-0.077	1335.0	0.000
	1 [] 1	8		-0.059	1497.6	0.000
	1 (1	9	0.819	-0.038	1652.3	0.000
	1 1	10	0.797	-0.015	1799.3	0.000
		11	0.776	0.020	1939.3	0.000
	1 1	12	0.755	0.001	2072.6	0.000
	1 j i 1	13	0.736	0.027	2200.0	0.000
	יווןי	14	0.720	0.053	2322.4	0.000
	1 j i 1	15	0.704	0.028	2440.1	0.000
	' ('	16	0.687	-0.032	2552.8	0.000
	' ('	17	0.670	-0.025	2660.3	0.000
	ι (ι	18	0.651	-0.038	2762.4	0.000
	' [] '	19	0.631	-0.054	2858.9	0.000
	' [] '	20	0.609	-0.094	2949.0	0.000
	1 1	21	0.587	-0.015	3033.1	0.000
1	ı q ı	22	0.563	-0.067	3111.0	0.000
1	ι (ι	23	0.538	-0.039	3182.4	0.000
1	1 j 1 1	24	0.515	0.025	3248.3	0.000
1	1)1	25	0.493	0.016	3308.9	0.000
1	Ι [] Ι	26	0.468	-0.052	3363.7	0.000
1	' 	27	0.447	0.101	3414.2	0.000
' 🗀	'(l'	28	0.426	-0.025	3460.2	0.000
ı —	1 1	29		-0.010	3501.9	0.000
' 🔤	· 即·	30	0.386	0.042	3540.0	0.000
' 🗀	1 1	31	0.368	-0.006	3574.8	0.000
' 🗀	' 	32	0.354	0.088	3607.3	0.000
' 🗀	1 1	33	0.341	-0.017	3637.6	0.000
'	1 1	34	0.327	-0.021	3665.6	0.000
'	ı d ı	35	0.311	-0.073	3691.0	0.000
' 	jp	36	0.298	0.064	3714.5	0.000

Sing Dollar/Euro Exchange Rate Unit Root Test

Null Hypothesis: SGD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-1.458925 -3.460313 -2.874617 -2.573817	0.5527

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(SGD)

Method: Least Squares

Sample (adjusted): 2000M11 2018M12

Included observations: 218 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SGD(-1) C	-0.017101 0.031024	0.011722 0.021167	-1.458925 1.465632	0.1460 0.1442
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.009758 0.005173 0.037812 0.308828 405.6533 2.128463 0.146038	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000369 0.037910 -3.703241 -3.672191 -3.690700 1.931425

FSO 35

Sing Dollar/Euro Exchange Rate Unit Root Test

Null Hypothesis: D(SGD) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-14.36463	0.0000
Test critical values:	1% level	-3.460453	
	5% level	-2.874679	
	10% level	-2.573850	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(SGD,2)

Method: Least Squares

Date: 01/21/19 Time: 12:35

Sample (adjusted): 2000M12 2018M12

Included observations: 217 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SGD(-1)) C	-0.976132 0.000151	0.067954 -14.36463 0.002576 0.058680		0.0000 0.9533
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.489726 0.487353 0.037949 0.309629 403.0126 206.3425 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	-0.000206 0.053002 -3.695968 -3.664817 -3.683385 1.999945

FSO 36

Correlogram D(Sgd/Euro)

Sample: 2000M10 2018M12 Included observations: 218

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1)1	1 1	1	0.024	0.024	0.1259	0.723
1(1		2	-0.025	-0.025	0.2599	0.878
ı j ı	ווין ו	3	0.074	0.075	1.4842	0.686
1 (1	'['	4	-0.043	-0.048	1.9064	0.753
ι [] ι	'[['	5	-0.073	-0.067	3.0959	0.685
' 	' 	6	0.128	0.125	6.7784	0.342
1 (1	'['	7	-0.027	-0.033	6.9463	0.434
יום י	יום י	8	0.055	0.072	7.6295	0.470
יון י	' '	9	0.046	0.017	8.1202	0.522
' ['[['	1			8.4272	0.587
1 1	' '	11	0.001	0.013	8.4276	0.675
1 [1	'['	1	-0.029		8.6278	0.734
q '	'4'	1	-0.104		11.147	0.598
1 [] 1	'['	1			11.594	0.639
1 1 1	' '	15	0.019	0.014	11.676	0.703
۱) ا	יולן י	16	0.027	0.042	11.847	0.754
١ 🌓 ١	' '	17	0.034	0.021	12.126	0.792
יו ן י	יון י	18	0.065	0.064	13.154	0.782
' [7	' 	19	0.121	0.138	16.712	0.609
١ 🏚 ١	יולן י	20	0.033	0.045	16.981	0.654
1 1	' '	21	0.002	0.015	16.982	0.712
יון	ינוי	22	0.030	0.025	17.207	0.752
1 1	' '	23	-0.002		17.208	0.799
' ['['	24	-0.035	-0.042	17.506	0.826
' P '	יולן י	25	0.099	0.062	19.956	0.749
' [] '		26	-0.082	-0.120	21.620	0.709
יום י	יום י	27	0.077	0.075	23.111	0.679
١ 🌓 ١	1 1	28	0.026	-0.012	23.278	0.719
ι [] ι	'[['	29	-0.079	-0.052	24.879	0.685
1 1	ווןי	30	0.024	0.053	25.032	0.723
1 (1)	'['	31	-0.033	-0.057	25.312	0.754
ι (ι		32	-0.060	0.038	26.225	0.754
1 1		33	0.002	-0.024	26.226	0.793
1 1		34	0.012	0.014	26.264	0.826
1 1		35	-0.008	0.014	26.280	0.856
ı j ı		36	0.031	-0.016	26.539	0.875

FSO 38

Summary

- We have analysed the use of multiple regression for time series analysis.
- DW statistic evaluates autocorrelation for residuals
- Correlogram displays autocorrelation function for different lags. This is very important for analysing times series.
- Using *differenced* variables (changes) eliminates the trends and thus avoids spurious regression.
- For some series, the trend is *stochastic*. Classic example is the random walk $Y_t = Y_{t-1} + \varepsilon_t$
- We have analysed the Dickey-Fuller Tests.

EXTRA Readings

Nerlove, M. and F. Diebold, 'Unit Roots in Economic Time Series: A Selective Survey', in T. Bewley (ed.), *Advances in Econometrics*, vol. 8, New York: JAI Press, 1990.