Construindo modelos ER

Capítulo 3

Construindo modelos ER - Temário

- 1. Conselhos práticos
- 2. Heurísticas
- 3. Notações alternativas
- 4. Processo de modelagem e alternativas

Propriedades de modelos ER

- Modelo ER é um modelo formal
- Poder de expressão é limitado
- · Equivalência entre modelos

©Carlos A. Heuser

3

Modelo ER é um modelo formal

- Modelo preciso, não ambíguo.
- Diferentes leitores de um mesmo modelo ER devem sempre entender exatamente o mesmo.
- DER pode ser usado como entrada a uma ferramenta CASE.
- Fundamental:
 - todos os envolvidos devem estar treinados na sua perfeita compreensão.
- Risco: sub-utilização .

©Carlos A. Heuser

Poder de expressão limitado

- Modelo ER apresenta apenas algumas propriedades de um banco de dados:
 - Foi concebido para o projeto da estrutura de um BD relacional.
- Poder de expressão limitado para expressar restrições de integridade genéricas (regras de negócio).

©Carlos A. Heuser

Poder de expressão limitado - exemplo

Poder de expressão limitado - exemplo ^ое7 e1 °e8 oe6 **EMPREGADO** qe4 9e2 supervisor supervisionado supersupersuper-supervisionado supervisor visor visionado **SUPERVISÃO** supere1,e3 visionado ©Carlos A. Heuser

Equivalência entre modelos

- Dois modelos ER diferentes podem ser equivalentes.
- Modelos equivalentes:
 - expressam o mesmo,
 - modelam a mesma realidade.
- Para fins de projeto de BD, dois modelos ER são equivalentes quando:
 - geram o mesmo esquema de BD.
- Considerar um conjunto de regras de tradução de modelos ER para modelos lógicos de BD.

Transformação de relacionamento n:n em entidade (1)

- 1. O relacionamento n:n é representado como uma entidade.
- 2. A entidade criada é relacionada às entidades que originalmente participavam do relacionamento.
- 3. A entidade criada tem como identificador:
 - as entidades que originalmente participavam do relacionamento,
 - os atributos que eram identificadores do relacionamento original (caso o relacionamento original tivesse atributos identificadores).

©Carlos A. Heuser 11

Transformação de relacionamento n:n em entidade (2)

- 4. Nos relacionamentos de que participa, a cardinalidade da entidade criada é sempre (1,1).
- 5. As cardinalidades das entidades que eram originalmente associadas pelo relacionamento são transcritas ao novo modelo conforme mostrado na figura.

Modelo ER sem relacionamento n:n

- Relacionamento n:n pode ser transformado em entidade.
- É possível construir modelos sem relacionamentos n:n.
- Há variantes da abordagem ER, que
 - excluem o uso de relacionamentos n:n, ou
 - excluem apenas o uso de relacionamentos n:n com atributos
- Exemplo:
 - várias abordagens baseadas na Engenharia de Informações (ver adiante)

©Carlos A. Heuser 13

Identificando construções

- Determinação da construção da abordagem ER (entidade, relacionamento,...) que será usada para modelar um objeto de uma realidade:
 - Não pode ser feita através da observação do objeto isoladamente.
 - É necessário conhecer o contexto (modelo dentro do qual o objeto aparece).

Identificando construções Recomendação geral

- Decisão por uma construção para a modelagem de um objeto está sujeita a alteração durante a modelagem.
- Não despender um tempo excessivo em longas discussões sobre como modelar um objeto.
- Desenvolvimento do modelo e o aprendizado sobre a realidade irão refinando e aperfeiçoando o modelo.

©Carlos A. Heuser

15

Atributo versus entidade relacionada

Como deve ser modelada a cor de um automóvel?

Atributo versus entidade relacionada critérios (1)

- Objeto está relacionado com outros objetos:
 - deve ser modelado como entidade.
- · Caso contrário:
 - pode ser modelado como atributo.

©Carlos A. Heuser

Atributo versus entidade relacionada critérios (2)

- Conjunto de valores de um determinado objeto é fixo (domínio fixo):
 - pode ser modelado como atributo.
- Existem transações no sistema que alteram o conjunto de valores do objeto (domínio variável):
 - não deve ser modelado como atributo.

©Carlos A. Heuser

19

Atributo versus generalização/especialização

- Questão:
 - modelar um determinado objeto (exemplo, a categoria funcional de cada empregado de uma empresa):
 - como atributo?
 (categoria funcional como atributo da entidade EMPREGADO)
 - ou como uma especialização?
 (cada categoria funcional corresponde a uma especialização da entidade empregado)

Atributo versus generalização/especialização

- Especialização deve ser usada quando as classes especializadas de entidades possuem propriedades particulares:
 - atributos
 - relacionamentos
 - generalizações/especializações

©Carlos A. Heuser

21

Atributo versus generalização/especialização

©Carlos A. Heuser

Entidade versus especialização

- Questão:
 - Deve-se modelar um determinado objeto como:

uma entidade relacionada a outra? ou como uma especialização?

- Observar o identificador do objeto em questão:
 - Lembrar que uma entidade especializada herda o identificador de sua entidade genérica.

Atributo opcional

- · Atributo opcional:
 - Pode indicar subconjunto de entidade, que pode ser modelado mais corretamente através de especialização.

Atributo multivalorado é indesejável

- SGBD relacional que segue o padrão SQL/2:
 - Atributo multivalorado não possui implementação direta.
- SGBD OO ou objeto/relacional:
 - Atributo multi-valorado normalmente é modelado como classe separada.
- Atributos multivalorados podem induzir a um erro de modelagem
 - Ocultar entidades e relacionamentos em atributos multivalorados

Verificação do modelo

- Modelo deve ser correto
- Modelo deve ser completo
- Modelo deve ser livre de redundâncias

©Carlos A. Heuser

Modelo deve ser correto

- Erros:
 - sintáticos
 - semânticos
- · Erros semânticos mais difíceis de verificar.
- Regras de normalização auxiliam na validação.

©Carlos A. Heuser

41

Exemplos de erros semânticos

- Estabelecer associações incorretas:
 - associar a uma entidade um atributo que na realidade pertence a outra entidade.
- Usar uma entidade como atributo de outra entidade.
- Usar o número incorreto de entidades em um relacionamento.
 - fundir em um único relacionamento ternário dois relacionamentos binários independentes

©Carlos A. Heuser

Modelo deve ser completo

- Deve fixar todas propriedades desejáveis do banco de dados.
- Somente pode ser verificado por alguém que conhece profundamente o sistema a ser implementado:
 - Envolvimento de especialista no domínio da aplicação ("usuário").

©Carlos A. Heuser

Verificação de completitude

- Forma de verificar:
 - dados que devem ser obtidos do banco de dados estão presentes?
 - todas as transações de modificação do banco de dados podem ser executadas sobre o modelo?
- Requisito é aparentemente conflitante com a falta de poder de expressão de modelos ER.

Modelo deve ser livre de redundâncias

- Modelo deve ser mínimo, isto é não deve conter conceitos redundantes.
- Tipos de redundância:
 - Relacionamentos redundantes
 - Atributos redundantes

©Carlos A. Heuser

45

O que fazer com construções redundantes?

- Alternativas
 - não devem aparecer no modelo ou
 - devem aparecer indicadas como redundantes
- Implementação pode conter redundância controlada de dados (desempenho, tolerância a falhas)

©Carlos A. Heuser

Modelo deve refletir o aspecto temporal

- Dados temporais:
 - dados que mudam ao longo do tempo e
 - para os quais o BD deve manter um histórico.
- Tipos de dados temporais:
 - Atributos cujos valores modificam ao longo do tempo;
 - Relacionamentos que modificam ao longo do tempo.

Relacionamento 1:n temporal

(a) Base de dados contém apenas a lotação atual

©Carlos A. Heuser 63

Relacionamento 1:n temporal

(a) (b)
Base de dados contém apenas a lotação atual (b)
Base de dados contém a história das lotações

apenas a lotação atual a história das lotações

Relacionamento n:n temporal

(a) Base de dados contém

apenas a inscrição atual

(b) Base de dados contém a história das inscrições

©Carlos A. Heuser

Consultas a dados referentes ao passado

- Muitas vezes, informações referentes ao passado são eliminadas da base de dados (arquivamento).
- Podem ser necessárias no futuro:
 - por motivos legais
 - para realização de auditorias
 - para tomada de decisões

Dados referentes ao passado planejar arquivamento

- Solução que poderia ser considerada:
 - reincluir as informações no banco de dados, quando elas forem necessárias.
 - Problema: restrições de integridade referencial.
- Planejar informações estatísticas:
 - Quando informações antigas são necessárias apenas para tomada de decisões.
 - Pode ser conveniente manter no banco de dados informações agregadas (ex.: soma, média) e eliminar os dados não mais necessários.

©Carlos A. Heuser 71

Entidade isolada

Entidade isolada

Entidade que não apresenta relacionamento com outras entidades.

Entidade isolada

- · Analisar:
 - Caso raro, mas não incorreto.
- · Caso típico:
 - Entidade que modela a organização na qual o sistema implementado pelo BD está embutido.

©Carlos A. Heuser 73

Entidade isolada exemplo

- Exemplo: BD de uma universidade.
- A entidade UNIVERSIDADE pode ser necessária, caso se deseje manter no BD alguns atributos da universidade.
- O modelo não deveria conter o relacionamento desta entidade com outras, como ALUNO ou CURSO:
 - BD modela uma única universidade;
 - Não é necessário informar no BD em que universidade o aluno está inscrito ou a qual universidade o curso pertence.

Estabelecimento de padrões

- Modelos de dados são usados para comunicação:
 - com pessoas da organização,
 - com programas (ferramentas CASE, geradores de código,...).
- É necessário estabelecer padrões de confecção de modelos.
- Na prática e na literatura:
 - Muitas variantes de modelo ER.
 - Variantes em:
 - sintaxe,
 - semântica.

©Carlos A. Heuser 75

Variantes de modelos ER

- Peter Chen (acadêmica)
- Engenharia de Informações
- UML
- Merise (notação Européia)

UML

- UML ("unified modeling language"):
 - Conjunto de modelos diagramáticos para modelagem de software.
- Diagrama de classes pode ser usado como modelo conceitual.
- Terminologia é diferente:

ER	UML
Entidade	Classe
Relacionamento	Associação
Cardinalidade	Multiplicidade
Generalização/especialização	Generalização

Uso de ferramentas de modelagem

- Diagrama ER não deve ser confeccionado manualmente:
 - muito trabalhoso,
 - revisões são frequentes,
 - diagramas feitos à mão não são atualizados, quando de alterações do esquema.
- Recomendável que seja usada uma ferramenta em computador para apoio à modelagem.
- Alternativas:
 - Uso de uma ferramenta CASE.
 - Uso de programas de propósito geral.

©Carlos A. Heuser

Estratégias de modelagem

- Estratégia de modelagem ER:
 - uma seqüência de passos (uma "receita-de-bolo") de transformação de modelos, desde o modelo inicial de modelagem, até o final.
- Diferentes estratégias:
 - Bottom-up
 - Top-down
 - Inside-out

Definição da estratégia de modelagem

- Na prática:
 - Nenhuma das estratégias propostas na literatura é universalmente aceita
- Normal é:
 - Combinação das diversas estratégias de modelagem.
- · Compreensível, pois:
 - Processo de modelagem é um processo de aprendizagem.

©Carlos A. Heuser

Definição da estratégia de modelagem

- Identificar qual a fonte de informações principal para o processo de modelagem:
 - Descrições de dados existentes:
 - estratégia bottom-up.
 - Conhecimento de pessoas sobre o sistema :
 - estratégia top-down (ou inside-out).

Estratégia "top-down"

- Partir de conceitos mais abstratos ("de cima").
- Ir gradativamente refinando estes conceitos em conceitos mais detalhados.

©Carlos A. Heuser 101

Estratégia "top-down" processo (1)

- 1. Modelagem superficial:
 - a) Enumeração das entidades.
 - b) Identificação dos relacionamentos (cardinalidade máxima) e hierarquias de generalização/especialização entre as entidades.
 - c) Determinação dos atributos de entidades e relacionamentos.
 - d) Determinação dos identificadores de entidades e relacionamentos.
 - e) O banco de dados é verificado quanto ao aspecto temporal.

Estratégia "top-down" processo (2)

- 2. Modelagem detalhada:
 - a) Domínios dos atributos
 - b) Cardinalidades mínimas.
 - c) Demais restrições de integridade.
- 3. Validação do modelo:
 - a) Construções redundantes ou deriváveis a partir de outras no modelo.
 - b) Validação com o usuário.

©Carlos A. Heuser

Estratégia "inside-out" Exemplo – passo #1

EMPREGADO

