Komisja Egzaminacyjna dla Aktuariuszy

XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Część I

Matematyka finansowa

Imię i nazwisko osoby egzaminowanej:			

Czas egzaminu: 100 minut

WERSJA TESTU

- 1. Zakład ubezpieczeń oferuje klientowi 35 letnią rentę pewną o równych płatnościach na koniec kolejnych lat przy stopie i = 5%. Dodatkowo przy każdej płatności renty zakład wypłaci klientowi 3/4 zysku osiągniętego ponad stopę i w ostatnim roku (liczonego od kwoty rezerwy netto na początku roku). Ile wyniesie suma wszystkich wypłat dodatkowych z tytułu podziału zysku jeżeli:
 - zakład wypracuje stopy zwrotu $i_1 = 9\%$ przez pierwszych 10 lat, $i_2 = 8\%$ przez kolejnych 10 lat, $i_3 = 7\%$ przez następne 10 lat oraz $i_4 = 6\%$ przez ostatnie 5 lat,
 - klient nabył rentę za składkę jednorazową netto w wysokości 100 000 zł.

Podaj najbliższą wartość:

- A) 52 126
- B) 53 413
- C) 54 768
- D) 56 084
- E) 57 355

2. Inwestor zaciąga 50 letni kredyt w kwocie 100 000 zł spłacany w równych ratach na koniec kolejnych lat. Ile wynosi roczna rata R jeżeli oprocentowanie kredytu wynosi:

Podaj najbliższą wartość.

- A) 9778
- B) 9826
- C) 9872
- D) 9 935
- E) 9981

3. Bieżące ceny rocznych europejskich opcji na akcje spółki X są następujące:

cena wykonania	50	60	70
cena call	15	9	5
cena put	13	20	28

Inwestor chce nabyć instrument wypłacający za rok kwotę:

120 - 2 * cena akcji za rok, o ile cena akcji < 50 220 - 4 * cena akcji za rok, o ile cena akcji będzie w przedziale [50,60) 100 - 2 * cena akcji za rok, o ile cena akcji będzie w przedziale [60,70) cena akcji za rok - 110, o ile cena akcji >= 70

Ile wynosi cena takiego instrumentu przy założeniu braku kosztów transakcyjnych oraz braku możliwości arbitrażu ? (podaj najbliższą wartość)

- A) 19
- B) 22
- C) 25
- D) 28
- E) 31

4. Bieżąca rynkowa krzywa zerokuponowa w PLN dana jest funkcją f(t) > 0 dla t > 0, gdzie f(t) – stopa zerokuponowa w skali roku, t - czas inwestycji w latach. Uniemożliwiający arbitraż kurs terminowy USD / PLN dany jest funkcją:

$$g(t) = 4 \cdot \left(\frac{1 + f(t)}{1.02 + \frac{t}{300}}\right)^{t},$$

gdzie g(t) – t-letni kurs terminowy 1 USD wyrażony w PLN.

Bieżący kurs wynosi 1 USD = 4 PLN.

Ile wynosi wartość bieżąca 5-letniej obligacji skarbowej denominowanej w USD o kuponie rocznym 150 USD i nominale 1200 USD ? Podaj najbliższą wartość.

- A) 6 493 PLN
- B) 6 597 PLN
- C) 6 672 PLN
- D) 6 741 PLN
- E) 6825 PLN

5. Rachunek oszczędnościowy założono w chwili 0 bez początkowych wpłat. Następnie na rachunek dokonywane są w sposób ciągły wpłaty z roczną intensywnością C_t w chwili t>0. Ciągła intensywność oprocentowania środków na rachunku wynosi $\delta_t = \frac{1}{1+t}$. Zakumulowana wartość funduszu w chwili t > 0 wynosi $B_t = (1+t)*t$. Wyznacz C_t .

Odpowiedź (podaj najbliższą wartość):

- A) t+1
- B) t
- C) ln t
- D) ln(t+1)
- E) 1

6. Niech $dur(\cdot)$ oznacza duration. Oblicz wartość obecną nieskończonej renty ciągłej o intensywności płatności t^3 w chwili t, jeżeli $dur((\bar{I}\overline{a})_{\overline{\omega}|}) = \alpha$, zaś intensywność oprocentowania wynosi δ .

Odpowiedź:

- A) $3\alpha \, \overline{a}_{\overline{\infty}|}$,
- B) $\frac{3\alpha \, \overline{a}_{\overline{\omega}|}}{\delta^2}$,
- C) $\frac{3\alpha \delta \overline{a}_{\overline{\omega}|}}{1+\delta}$, D) $4\alpha \overline{a}_{\overline{\omega}|}$,
- E) $\frac{4\alpha}{\delta^2}$

- 7. Bank udzielił 30-letniego kredytu mieszkaniowego w kwocie 500 000 zł. Kredytobiorca spłaca równe miesięczne raty z dołu, przy nominalnej rocznej stopie oprocentowania 6 %. Niektóre raty są spłacane z opóźnieniem, za co kredytobiorca płaci karę w wysokości 1/30 kwoty odsetek zawartych w danej racie. Prawdopodobieństwo, że kredytobiorca spóźni się w danym miesiącu z płatnością raty wynosi 0,05 (jest identyczne dla każdej z rat). Wartość oczekiwana łącznej kwoty kar zapłaconych przez kredytobiorcę z tytułu opóźnień wynosi (podaj najbliższą wartość):
 - A) 765
 - B) 815
 - C) 865
 - D) 915
 - E) 965

8. Znaleźć wartość obecną renty wieczystej, która wypłaca kwotę 1/k na koniec roku k (k=1,2,3,...).

Stopa dyskontowa i = 5%. Odpowiedź (podaj najbliższą wartość):

- A) 3.025
- B) 3.045
- C) 3.065
- D) 3.085
- E) 3.105

- **9.** Zakład ubezpieczeń majątkowych emituje 10-letnią obligację katastroficzną z rocznym kuponem X i nominałem 1200 zł. W momencie wystąpienia pierwszej katastrofy wszystkie przyszłe płatności z tytułu obligacji zostają umorzone. Ile wynosi kupon tej obligacji jeżeli:
 - a) prawdopodobieństwo co najmniej jednej katastrofy w każdym roku p = 5% i są one niezależne,
 - b) druga i kolejne katastrofy w dowolnym czasie nie mają wpływu na płatności z obligacji,
 - c) inwestorzy dyskontują wszystkie płatności z obligacji stopą i = 8% w skali roku,
 - d) rynkowa cena obligacji wynosi 850.

Podaj najbliższą wartość:

- A) 86
- B) 90
- C) 94
- D) 98
- E) 102

- 10. Współczynnik delta rocznej europejskiej opcji kupna (pochodna ceny opcji względem ceny instrumentu podstawowego) wynosi $\Delta_C = 0.9332$. Wiadomo, że:
 - a) Odchylenie standardowe zmienności cen akcji wynosi $\sigma = 0.3$,
 - b) Roczna ciągła stopa procentowa wolna od ryzyka $\delta = 10\%$,
 - c) Bieżąca cena akcji wynosi 100.

Wyznacz obecną cenę rocznej europejskiej opcji sprzedaży. Do oszacowania wartości opcji należy użyć modelu Blacka-Scholesa. Przybliżone wartości dystrybuanty standardowego rozkładu normalnego N(0,1) podaje tabela:

t	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35
N(t)	0.5000	0.5199	0.5398	0.5596	0.5793	0.5987	0.6179	0.6368
t	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75
N(t)	0.6554	0.6736	0.6915	0.7088	0.7257	0.7422	0.7580	0.7734
t	0.8	0.85	0.9	0.95	1	1.05	1.1	1.15
N(t)	0.7881	0.8023	0.8159	0.8289	0.8413	0.8531	0.8643	0.8749
t	1.2	1.25	1.3	1.35	1.4	1.45	1.5	1.55
N(t)	0.8849	0.8944	0.9032	0.9115	0.9192	0.9265	0.9332	0.9394
t	1.6	1.65	1.7	1.75	1.8	1.85	1.9	1.95
N(t)	0.9452	0.9505	0.9554	0.9599	0.9641	0.9678	0.9713	0.9744
t	2	2.05	2.1	2.15	2.2	2.25	2.3	2.35
N(t)	0.9772	0.9798	0.9821	0.9842	0.9861	0.9878	0.9893	0.9906
t	2.4	2.45	2.5	2.55	2.6	2.65	2.7	2.75
N(t)	0.9918	0.9929	0.9938	0.9946	0.9953	0.9960	0.9965	0.9970
t	2.8	2.85	2.9	2.95	3	3.05	3.1	3.15
N(t)	0.9974	0.9978	0.9981	0.9984	0.9987	0.9989	0.9990	0.9992

Odpowiedź (podaj najbliższą wartość):

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko:
Pesel:
OZNACZENIE WERSII TESTII

Zadanie nr	Odpowiedź	Punktacja*
1	В	
2	D	
3	С	
4	D	
5	A	
6	В	
7	Е	
8	В	
9	D	
10	A	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.