

IETF-117 IPMON Context-Aware Navigator

(draft-jeong-ipwave-context-aware-navigator-08)

Presenter: Junhee Kwon

Department of Computer Science and Engineering at SKKU
Email: juun9714@skku.edu

Motivation

Road injury is one of top 10 causes of death,

- More than 1.2 million people are killed.
- Up to 50 million are injured every year.
- 94% crashes are caused by human.
- Environment, vehicles and unknown reasons share 6%.
- Autonomous vehicles can eradicate human errors.

Emergency Scenario

- Abrupt vehicle stop
- Safety preserving handling mechanisms are needed.

CNP's Aims

- Collision Avoidance mechanism
- Collision mitigation

[Source] Bien Aime Mugabarigira et al., "Context-Aware Navigation Protocol for Safe Driving in Vehicular Cyber-Physical Systems", IEEE Transactions on Intelligent Transportation Systems, Vol. 24, No. 1, January 2023.

Cooperative Collision Avoidance (1/2)

• Sensing:

- Local: Onboard sensors for self track
- Remote: Share with other its kinematics

Risk Assessment

 Cluster Head (CH) analyzes sensed data to detect risks.

Maneuver:

- Lateral maneuver: when doable
- Turn right or left
- Longitudinal: Slow down, allow collision

Tracking Mechanism

- Maneuver of vehicles which are in danger
 - Exit from emergence : Safely drive through
- Motion planning for the Emergence vehicles
 - Collaborative vehicle trajectory planning via msg exchange
 - based on neighboring vehicles in Clusters

Cooperative Collision Avoidance (2/2)

Coordinated Maneuvers

- Kinematics information are shared in real time.
- Cluster Heads assess risks associated with sensed data.
- Plan Maneuver Path & tracking
- To centralize the computation: minimize computation burden

Collision probability:

$$P_{c,p} = 1 - \left(\frac{T_c - T_{cmin}}{T_{cmax} - T_{cmin}}\right)$$

- Safe Probability $q_i = 1 - P_{cn}$
- Safe Lane quality

$$SL = \prod_{i=1}^{n} q_i$$

Emergency Maneuver

Front Vehicles

Rear Vehicles

$$L_{x}^{*} = \max_{L_{x} \in \{L,E,R\}} (S_{L}, S_{E}, S_{R})$$

The decision of the lane for maneuvering emergency vehicles in adjacent lanes

$$u = [\rho \quad a]^T$$

trajectory control input

- The directly affected vehicles are the first to be maneuvered.
- The rear vehicles affected by maneuvers are also maneuvered.

Simulation Results (1/4)

Lane quality validation

- The risk of collision is high if the CNP assesses the risk only to its neighbors.
- The greater the number of vehicles in the lane that are considered by the risk assessment is, the lower the risk of collision is.
- A small number of vehicles in the CNP risk assessment will result in poor safe lane quality.

Simulation Results (2/4)

Overhead & Collision Probability of CAP, NCAS and Sensors

Overhead

- CNP reduces 15-60% of communication overhead caused by NCAS (Average Speed =80km/h)
- It also reduces up to 60% of communication overhead (Lambda = 0.6)

Collision Probability

 CNP has the minimal collision risk on average either considering road arrival rates or speeds

Simulation Results (3/4)

Number and strength of collisions for CAP, NCAS and Sensors

Number of Collisions

CNP has the smallest number of collisions either when we considering road arrival rates or speeds

Collision Strength

The collision strength is the smallest in CNP, resulting in small damage of colliding vehicles for both road arrival rates and speeds.

Simulation Results (4/4)

Impact of Acceleration

Collision Probability

• CNP has the minimal collision risk on average for all the accelerations tested.