Aula 06 - Análise multivariada

Estatística Descritiva

Stefano Mozart 12/02/2025

Sumário

- Regressão linear
- Séries temporais

A regressão linear é uma técnica estatística que auxilia a identificação de padrões de associação entre variáveis amostrais, estabelecendo uma relação linear entre uma variável dependente e uma ou mais variáveis independentes:

□ Estimação dos parâmetros de associação:

- Quantifica e resume a relação entre duas variáveis, permitindo visualizar e descrever tendências presentes nos dados.
- Ao representar graficamente a linha de regressão sobre os dados (dispersão), facilita a interpretação visual de como os dados se distribuem e se ajustam a uma tendência linear.
- Ao reduzir a complexidade dos dados a uma equação simples, a regressão linear permite resumir informações essenciais de forma clara e objetiva.
- Predição: interpolação e/ou extrapolação dos da variável dependente;
- □ Não é capaz de inferir/estimar relações de causalidade!

- \square Regressão linear simples: $Y = \beta_0 + \beta_1 X + \varepsilon$.
 - β_0 é o intercepto
 - β_1 é o coeficiente angular e
 - □ εé o erro
- \square Regressão linear múltivariáve: $Y=eta_0+eta_1X_1+eta_2X_2+\cdots+eta_pX_p+arepsilon_1$
 - β_0 é o intercepto,
 - β_n é o coeficiente da n-ésima variável independente
 - □ εé o erro

A regressão linear, independente do método aplicado na estimação dos parâmetros, tem como pressupostos de validade:

- □ Linearidade: relação estritamente linear entre as variáveis;
- □ Homoscedasticidade: a dispersão dos resíduos deve ser constante ao longo de todos os valores da variável independente.
- Independência dos Resíduos: os resíduos devem ser independentes entre si, não apresentando padrões ou correlações.
- Ausência de Multicolinearidade: em modelos com múltiplas variáveis independentes, estas não devem ser fortemente correlacionadas entre si.
- □ Variação Amostral: deve haver variabilidade nos valores da variável independente (X).

Existem várias técnicas para estimar os coeficientes de uma regressão linear simples, entre os quais:

- Método dos Mínimos Quadrados Ordinários (OLS, na sigla em inglês);
- □ Estimação por máximo verossimilhança (MLE)
- Gradiente decrescente:
- Equação Linear Normal;
- Decomposição QR;

Métodos Robustos

Método TELBS (Trimmed Elemental Least Binary Squares):

- Eficiente quando os dados apresentam valores muito discrepantes;
- Produz estimativas próximas aos verdadeiros valores dos coeficientes mesmo na presença de outliers;

Método LAD (Least Absolute Deviation):

- Minimiza a soma dos valores absolutos dos resíduos ao invés dos quadrados;
- Também conhecido como regressão mediana;

Regressão Quantílica:

- estima os parâmetros β minimizando uma função de perda assimétrica para um quantil específico τ (e.g. τ =0.5);
- Também conhecido como regressão mediana;

Mínimos Quadrados Ordinários (OLS)

O método OLS encontra os valores de β_0 e β_1 que minimizam a soma dos quadrados dos resíduos.

$$eta_1 = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2} \ eta_0 = ar{y} - eta_1 ar{x}$$

O método OLS é o mais utilizado devido à sua simplicidade e propriedades ótimas sob os pressupostos clássicos (por exemplo, erro normalmente distribuído, homocedasticidade, independência).

Estimação por Máxima Verossimilhança (MLE)

A função de Log-verossimilhança é definida por:

$$\ell(eta_0,eta_1,\sigma^2) = -rac{n}{2} \ln(2\pi\sigma^2) - rac{1}{2\sigma^2} \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2$$

onde os erros ε_i são assumidos como independentes e identicamente distribuídos segundo uma Normal com média zero e variância σ^2 , ou seja:

$$arepsilon_i \sim N(0,\sigma^2)$$
.

E para estimar β_0 e β_1 , derivamos ℓ em relação a β_0 e β_1 , e igualamos a zero.

$$\hat{eta}_1 = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2} \quad \hat{eta}_0 = ar{y} - \hat{eta}_1 \, ar{x}, \quad \hat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n (y_i - \hat{eta}_0 - \hat{eta}_1 x_i)^2$$

M-estimador de Huber

é uma abordagem robusta para estimar os parâmetros de um modelo de regressão linear, minimizando o impacto dos outliers. Em uma regressão linear simples, o modelo é:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n,$$

os resíduos são definidos como

$$r_i = y_i - (eta_0 + eta_1 x_i)$$

 \Box Em vez de minimizar a soma dos quadrados dos resíduos (como no método dos mínimos quadrados), o M-estimador de Huber minimiza a soma de uma função de perda $\rho(r_i)$, definida por:

$$ho(r) = egin{cases} rac{1}{2}r^2, & ext{se} \; |r| \leq \delta, \ \delta \, |r| - rac{1}{2}\delta^2, & ext{se} \; |r| > \delta, \end{cases}$$

Esse problema de minimização pode ser resolvido por vários algoritmos, inclusive
 Equações de Estimação ou o algoritmo Iteratively Reweighted Least Squares (IRLS)

Least Absolute Deviation (LAD)

Também conhecido como regressão L₁, busca minimizar a soma dos valores absolutos dos resíduos.

- Essa abordagem torna o método mais robusto a outliers, pois os erros extremos não têm o mesmo peso exagerado que teriam na soma dos quadrados:
- O problema de LAD consiste em encontrar os coeficientes β_0 e β_1 que minimizam a soma das diferenças absolutas entre os valores observados e os valores previstos. Ou seja:

$$\min_{eta_0,eta_1}\sum_{i=1}|y_i-eta_0-eta_1x_i|$$

 \Box Generalizando para um modelo linear multivariado com p preditores, a formulação é:

$$\min_{eta} \sum_{i=1}^n \left| y_i - \mathbf{x}_i^ op eta
ight|$$

lacksquare Onde $\mathbf{x}_i=(1,x_{i1},x_{i2},\ldots,x_{ip})^ op$ e $eta=(eta_0,eta_1,\ldots,eta_p)^ op$.

Regressão Quantílica

Estima os parâmetros β minimizando uma função de perda assimétrica (a "check function") para um quantil específico τ (comum τ =0.5);

$$\min_{eta_0,eta_1}\sum_{i=1}^n
ho_ au(y_i-eta_0-eta_1x_i),$$

Com

$$ho_{ au}(u)=uig(au-I(u<0)ig),$$

onde I(u<0) é a função indicadora que vale 1 se u<0 e 0 caso contrário;

OLS Multivariável

No cenário multivariável, OLS também é o método mais utilizado para estimar os coeficientes da regressão linear. O método consiste em minimizar a seguinte expressão quadrática:

$$\min_{eta} \sum_{i=1}^{n} \left(y_i - eta_0 - eta_1 x_{i1} - \dots - eta_p x_{ip}
ight)^2$$

 \Box Em notação matricial, se definirmos y como o vetor de respostas e X como a matriz de regressores (onde a primeira coluna é composta de 1's para o intercepto), os estimadores OLS são dados por:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

MLE Multivariável

Quando assumimos que os erros seguem uma distribuição normal, o método de máxima verossimilhança (MLE) fornece os mesmos estimadores que o OLS para os coeficientes. Nesse caso, a log-verossimilhança dos dados é dada por:

$$\ell(eta,\sigma^2) = -rac{n}{2}\ln(2\pi\sigma^2) - rac{1}{2\sigma^2}\sum_{i=1}^n\left(y_i-eta_0-\sum_{j=1}^peta_jx_{ij}
ight)^2$$

□ Maximizando ℓ em relação a β e σ^2 obtemos, sob os pressupostos normais, a mesma solução obtida pelo OLS.

Regressão Quantílica Multivariável

Essa abordagem estima os coeficientes para um determinado quantil da distribuição condicional de Y, minimizando uma função de perda assimétrica (check function), por exemplo, para a mediana (quantil 0.5).

$$\min_{eta} \sum_{i=1}^n
ho_ au \Bigg(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij} \Bigg)$$

Onde

$$\rho_{\tau}(u) = u \left(\tau - I(u < 0)\right)$$

Essa técnica é particularmente robusta contra outliers, pois a mediana (e outros quantis centrais) não são influenciados por valores extremos.

M-Estimador de Huber Multivariável

Em vez de minimizar a soma dos quadrados dos resíduos, minimiza-se uma função de perda $\rho(e_i)$ que é menos sensível a outliers.

$$\min_{eta} \sum_{i=1}^n
ho \Bigg(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij} \Bigg)$$

A função de Huber é, então, definida como:

$$ho(e) = egin{cases} rac{1}{2}e^2, & ext{se} \ |e| \leq \delta, \ \delta \ (|e| - rac{1}{2}\delta), & ext{se} \ |e| > \delta. \end{cases}$$

Assim como na regressão simples, utiliza-se o algoritmo Iteratively Reweighted Least Squares (IRLS) para resolver a minimização, onde a cada iteração os resíduos são ponderados de acordo com o seu tamanho.

Prática

Exercícios:

- Selecione duas variáveis contínuas no seu dataset e calcule os parâmetros de uma regressão simples utilizando o os métodos descritos nesta aula (OLS, MLE, Huber, Quantílico).
- Selecione três variáveis contínuas, de preferência mantendo a mesma variável dependente do exercício anterior, e calcule os parâmetros de regressão utilizando os métodos de regressão multivariada apresentados;

Séries temporais

Séries temporais

Uma série temporal é uma amostra com uma dimensão temporal, geralmente coletada em intervalos regulares.

- O objetivo da análise de séries temporais é compreender os padrões, identificar tendências, sazonalidades, ciclos e ruídos, além de possibilitar previsões futuras;
- Essas técnicas geralmente são aplicadas a medições de fenômenos naturais, indicadores econômicos e sinais de sensores, entre outros;
- As medidas estatísticas mais comumente utilizadas são:
 - Média;
 - Variância;
 - Média móvel;
 - Desvio padrão móvel;
 - Autocorrelação;

Séries temporais

Tendência:

- Refere-se à direção de longo prazo dos dados. Pode ser ascendente, descendente ou constante.
- Exemplo: Aumento contínuo do Produto Interno Bruto (PIB) ao longo dos anos.

Sazonalidade:

- São padrões periódicos e previsíveis que ocorrem em intervalos regulares (por exemplo, variações mensais ou sazonais).
- Exemplo: Aumento nas vendas de determinado produto durante as festas de final de ano.

Ruído/Resíduo:

- Refere-se a flutuações irregulares, que podem representar erros pontuais de coleta ou até mesmo choques externos (e.g. fatores econômicos ou políticos).
- Exemplo: Guerras, Ciclos econômicos de expansão e recessão.

Análise exploratória

Gráfico de linha: Permitem visualizar a evolução dos dados ao longo do tempo.

Boxplot por período: Úteis para identificar sazonalidade e outliers comparando distribuições em períodos (por exemplo, meses ou trimestres).

Correlogramas:

□ Função de autocorrelação (ACF): Mede a correlação entre os valores da série e suas defasagens.

$$ho(k) = rac{ ext{Cov}(X_t, X_{t-k})}{\sigma^2}$$

Função de Autocorrelação Parcial (PACF): Mede a correlação entre X_t e X_{t-k} , removendo o efeito das defasagens intermediárias.

Estacionariedade

Propriedade fundamental em séries temporais que ocorre quando as características estatísticas da série permanecem constantes ao longo do tempo.

Uma série temporal é considerada estacionária quando apresenta:

Média constante ao longo do tempo

Variância constante ao longo do tempo

 Autocovariância dependente apenas da distância amostral (e não da dimensão temporal);

Estacionariedade

Estacionariedade Fraca:

Ocorre quando a média e a variância são constantes ao longo do tempo, mas a autocovariância pode depender da distância entre as observações.

Estacionariedade Forte:

É mais rigorosa e exige que todas as propriedades estatísticas, incluindo média, variância e autocovariância, permaneçam constantes ao longo do tempo.

Estacionariedade

Teste de Dickey-Fuller Aumentado:

- Hipótese nula (H0): A série temporal não é estacionária porque há uma raiz unitária (se o valor-p > 0,05);
- □ Hipótese alternativa (H1): A série temporal é estacionária porque não há raiz unitária (se o valor- $p \le 0.05$);

Teste de Kwiatkowski-Phillips-Schmidt-Shin:

- □ Hipótese nula (H0): A série temporal é estacionária porque não há raiz unitária (se o valor-p > 0,05);
- □ Hipótese alternativa (H1): A série temporal não é estacionária porque há uma raiz unitária (se o valor-p ≤ 0,05) Quanto mais positiva for essa estatística, maior a probabilidade de rejeitarmos a hipótese nula (temos uma série temporal não estacionária).

Modelagem preditiva

Modelos ARIMA (AutoRegressive Integrated Moving Average):

Modelos que combinam componentes autorregressivos (AR), de média móvel (MA) e integração (I) para séries não estacionárias.

Exemplo de Modelo ARIMA(p, d, q): $\phi(B)(1-B)^dX_t = \theta(B)\varepsilon t$,

onde B é o operador defasador, d o número de diferenças necessárias para estacionaridade, e p e q representam as ordens dos componentes AR e MA, respectivamente.

Modelos SARIMA (Seasonal ARIMA):

Extensão do ARIMA para lidar com a sazonalidade, incorporando termos sazonais.

Suavização Exponencial (Exponential Smoothing):

Métodos que ponderam os dados passados com decaimento exponencial, como o modelo de Holt-Winters, que lida com tendência e sazonalidade.

Modelos de Cointegração

A cointegração ocorre quando duas ou mais séries temporais, individualmente não estacionárias, compartilham uma relação de equilíbrio de longo prazo – ou seja, existe uma combinação linear delas que é estacionária.

Modelo Engle-Granger:

É um método em dois passos para testar e modelar a cointegration entre duas séries, primeiro estimando uma relação de equilíbrio e, depois, ajustando um modelo de correção de erro (ECM) para capturar as dinâmicas de curto prazo.

Modelos Estruturais/VECM:

Generalizam a ideia para múltiplas séries, permitindo modelar simultaneamente os efeitos de longo prazo (por meio dos vetores de cointegração) e as respostas de curto prazo às perturbações no equilíbrio.

Modelos Engle-Granger

O método Engle–Granger é uma abordagem em dois passos para testar e estimar relações de cointegração entre duas séries:

Regressão de Equilíbrio:

Regressa-se uma série sobre a outra (por exemplo, $y_t = \beta_0 + \beta_1 x_t + u_t$). Se x_t e y_t forem I(1), mas o resíduo u_t for estacionário (I(0)), então as séries são cointegradas e u_t representa o "erro de equilíbrio" ou a "lacuna" de cointegração.

Modelo de Correção de Erro (ECM):

Em seguida, utiliza-se o resíduo defasado u_{t-1} para modelar as variações de curto prazo em y_t (ou x_t). Um ECM típico para y_t pode ser expresso como:

$$\Delta y_t = \alpha \left(y_{t-1} - \beta_0 - \beta_1 x_{t-1} \right) + \gamma \Delta x_t + \varepsilon_t$$

Onde:

- $\triangle y_t = y_t y_{t-1}$ e $\triangle x_t = x_t x_{t-1}$ representam as mudanças de curto prazo;
- $y_{t-1} \beta_0 \beta_1 x_{t-1}$ é o termo de erro (o desequilíbrio) da relação de longo prazo;
- \Box α indica a velocidade de ajuste de y_t de volta ao equilíbrio.

Modelos Estruturais VECM

Quando há mais de duas séries cointegradas, o método Engle–Granger é generalizado pelo Vector Error Correction Model (VECM):

Um VECM para k k séries pode ser escrito na forma:

$$\Delta \mathbf{y}_t = \Pi \, \mathbf{y}_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta \mathbf{y}_{t-i} + arepsilon_t,$$

Onde:

- \mathbf{y}_{+} é um vetor $k \times 1$ de séries;
- \square Π é a matriz de cointegração, que pode ser fatorada como $\Pi = \alpha \beta^{\mathsf{T}}$, com β representando os vetores de cointegração (relações de equilíbrio) e α os coeficientes de ajuste;
- Γ_i captura as dinâmicas de curto prazo;
- $\neg p$ é o número de defasagens utilizado no modelo;

Prática

Exercícios:

- 1. Selecione uma série temporal, decomponha e analise os componentes (tendência, sazonalidade e ruído).
- 2. Exiba a média móvel da sua série;

Obrigado

Stefano Mozart

linkedin.com/in/stefano-mozart/ github.com/stefanomozart

