Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

Testes Uniformemente Mais Poderosos

Exemplo 1

Exemplo 2

Considere a função densidade de probabilidade (pdf)

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-x/\theta}, & 0 < x < \infty \\ 0, & \text{Caso Contrário} \end{cases}$$

dos Exercícios 8.1.2 e 8.1.3. Deseja-se testar a hipótese simples H_0 : $\theta=2$ contra a hipótese alternativa composta $H_1:\theta>2$. Assim, $\Omega=\{\theta:\theta\geq 2\}$. Uma amostra aleatória, X_1,X_2 , de tamanho n=2 é utilizada e a região crítica é $C=\{(x_1,x_2):9.5\leq x_1+x_2<\infty\}$. Foi mostrado nos exercícios citados que o nível de significância do teste é aproximadamente 0.05 e o poder do teste quando $\theta=4$ é aproximadamente 0.31. A função poder $\gamma(\theta)$ do teste para todos os $\theta\geq 2$ é:

$$\gamma(\theta) = 1 - \int_0^{9.5} \int_0^{9.5 - x_2} \frac{1}{\theta^2} e^{-\frac{x_1 + x_2}{\theta}} dx_1 dx_2$$
$$= \left(\frac{\theta + 9.5}{\theta}\right) e^{-9.5/\theta}, \quad 2 \le \theta.$$

Por exemplo, $\gamma(2)=0.05$, $\gamma(4)=0.31$ e $\gamma(9.5)=\frac{2}{e}\approx 0.74$. É mostrado (Exercício 8.1.3) que o conjunto $C=\{(x_1,x_2):9.5\leq x_1+x_2<\infty\}$ é uma melhor região crítica de tamanho 0.05 para testar a hipótese simples $H_0:\theta=2$ contra cada hipótese simples na hipótese composta $H_1:\theta>2$.

O exemplo anterior ilustra um teste de uma hipótese simples H_0 que é o melhor teste de H_0 contra todas as hipóteses simples na hipótese alternativa composta H_1 . Agora definimos uma região crítica, quando ela existe, que é a melhor região crítica para testar uma hipótese simples H_0 contra uma hipótese alternativa composta H_1 . Parece desejável que essa região crítica seja a melhor região crítica para testar H_0 contra cada hipótese simples em H_1 . Ou seja, a função poder do teste que corresponde a essa região crítica deve ser pelo menos tão grande quanto a função poder de qualquer outro teste com o mesmo nível de significância para cada hipótese simples em H_1 .

Definição 1

A região crítica C é uma região crítica uniformemente mais poderosa (UMP) de tamanho α para testar a hipótese simples H_0 contra uma hipótese alternativa composta H_1 se o conjunto C é a melhor região crítica de tamanho α para testar H_0 contra cada hipótese simples em H_1 . Um teste definido por essa região crítica C é chamado de teste uniformemente mais poderoso (UMP), com nível de significância α , para testar a hipótese simples H_0 contra a hipótese alternativa composta H_1 .

Como será visto posteriormente, testes uniformemente mais poderosos nem sempre existem. No entanto, quando existem, o teorema de Neyman-Pearson fornece uma técnica para encontrá-los. Alguns exemplos ilustrativos são dados aqui.

Exemplo

Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição normal $N(0,\theta)$, onde a variância θ é um número positivo desconhecido. Será demonstrado que existe um teste uniformemente mais poderoso com nível de significância α para testar a hipótese simples $H_0: \theta = \theta_0$, onde θ_0 é um número positivo fixo, em oposição à hipótese alternativa composta $H_1: \theta > \theta_0$. Assim, $\Omega = \{\theta: \theta \geq \theta_0\}$.

A função de densidade conjunta de X_1, X_2, \dots, X_n é dada por

$$L(\theta; x_1, x_2, \dots, x_n) = \frac{1}{(2\pi\theta)^{n/2}} \exp\left(-\frac{1}{2\theta} \sum_{i=1}^n x_i^2\right).$$
 (1)

Seja θ_1 representando um número maior que θ_0 , e k denote um número positivo. Seja C o conjunto de pontos onde

$$\frac{L(\theta_0; x_1, x_2, \dots, x_n)}{L(\theta_1; x_1, x_2, \dots, x_n)} \le k, \tag{2}$$

isto é, o conjunto de pontos onde

$$\frac{\exp\left(-\frac{1}{2\theta_0}\sum_{i=1}^n x_i^2\right)}{\exp\left(-\frac{1}{2\theta_1}\sum_{i=1}^n x_i^2\right)} \le k,\tag{3}$$

ou equivalentemente,

$$\sum_{i=1}^{n} x_i^2 \ge \frac{2\theta_1 \theta_0}{\theta_1 - \theta_0} \left(\frac{n}{2} \log \left(\frac{\theta_1}{\theta_0} \right) - \log k \right) = c$$

O conjunto $C=\{(x_1,x_2,\ldots,x_n):\sum_{i=1}^n x_i^2\geq c\}$ é então uma melhor região crítica para testar a hipótese simples $H_0:\theta=\theta_0$ em oposição à hipótese simples $\theta=\theta_1$. Resta determinar c de forma que esta região crítica tenha o tamanho desejado α . Se H_0 for verdadeira, a variável aleatória

$$\frac{\sum_{i=1}^{n} X_i^2}{\theta_0} \tag{4}$$

tem uma distribuição qui-quadrado com n graus de liberdade. Uma vez que $\alpha = P_{\theta_0}\left(\frac{\sum_{i=1}^n X_i^2}{\theta_0} \geq \frac{c}{\theta_0}\right)$, c/θ_0 pode ser calculado, por exemplo, usando o código R

qchisq
$$(1 - \alpha, n)$$
.

Então, $C = \{(x_1, x_2, \dots, x_n) : \sum_{i=1}^n x_i^2 \ge c\}$ é uma melhor região crítica de tamanho α para testar $H_0 : \theta = \theta_0$ em oposição à hipótese $\theta = \theta_1$.

Além disso, para cada número θ_1 maior que θ_0 , o argumento anterior se mantém. Ou seja, $C = \{(x_1,\ldots,x_n): \sum_{i=1}^n x_i^2 \geq c\}$ é uma região crítica uniformemente mais poderosa de tamanho α para testar $H_0: \theta = \theta_0$ em oposição a $H_1: \theta > \theta_0$. Se x_1, x_2, \ldots, x_n denotam os valores experimentais de X_1, X_2, \ldots, X_n , então $H_0: \theta = \theta_0$ é rejeitada ao nível de significância α , e $H_1: \theta > \theta_0$ é aceita se $\sum_{i=1}^n x_i^2 \geq c$; caso contrário, $H_0: \theta = \theta_0$ é aceita.

Se, na discussão anterior, tomarmos n=15, $\alpha=0,05$ e $\theta_0=3$, então as duas hipóteses são $H_0:\theta=3$ e $H_1:\theta>3$. Usando R, c/3 é calculado por qchisq(0.95, 15)=24,996. Portanto, c=74,988.

Exemplo 2

Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição normal $N(\theta,1)$, onde θ é desconhecido. Será demonstrado que não existe um teste uniformemente mais poderoso para a hipótese simples H_0 : $\theta=\theta_0$, onde θ_0 é um número fixo, em oposição à hipótese alternativa composta $H_1:\theta\neq\theta_0$. Assim, $\Omega=\{\theta:-\infty<\theta<\infty\}$. Seja θ_1 um número diferente de θ_0 . Seja k um número positivo e considere

$$\frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(x_i-\theta)^2\right) \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(x_i-\theta_1)^2\right) \leq k.$$

A desigualdade anterior pode ser escrita como

$$\exp\left(-(\theta-\theta_1)\sum_{i=1}^n x_i + \frac{n}{2}((\theta_1)^2 - (\theta)^2)\right) \le k,$$

ou

$$(\theta - \theta_1) \sum_{i=1}^n x_i \ge \frac{n}{2} ((\theta_1)^2 - (\theta)^2) - \log k.$$

Essa última desigualdade é equivalente a

$$\sum_{i=1}^{n} x_i \geq \frac{n}{2}(\theta_1 + \theta) - \frac{\log k}{\theta - \theta_1},$$

desde que $\theta > \theta_1$, e, se $\theta_1 < \theta$, é equivalente a

$$\sum_{i=1}^n x_i \leq \frac{n}{2}(\theta_1 + \theta) - \frac{\log k}{\theta - \theta_1}.$$

A primeira dessas duas expressões define uma melhor região crítica para testar $H_0: \theta=\theta_0$ contra a hipótese $\theta=\theta_1$, desde que $\theta_1>\theta$, enquanto a segunda expressão define uma melhor região crítica para testar $H_0: \theta=\theta_0$ contra a hipótese $\theta=\theta_1$, desde que $\theta_1<\theta$. Ou seja, uma melhor região crítica para testar a hipótese simples contra uma hipótese simples alternativa, digamos $\theta=\theta_0+1$, não serve como uma melhor região crítica para testar $H_0: \theta=\theta_0$ contra a hipótese simples alternativa $\theta=\theta_0-1$. Por definição, então, não existe um teste uniformemente mais poderoso no caso em consideração.

Deve-se notar que se a hipótese alternativa composta fosse unidirecional, seja $H_1: \theta > \theta_0$ ou $H_1: \theta < \theta_0$, um teste uniformemente mais poderoso existiria em cada instância.

Para 🕋

• Exercícios da seção 8.2: 1,3,5,6,11,13.

Referências I

Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.