เลขที่นั่งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2556

วิชา ENE 231 Digital Circuit and Logic Design ภาควิชาวิศวกรรมอิเล็กพรอนิกส์และโพรคมนาคม ปีที่ 2 (ปกติ) สอบ วันพฤหัสบดีที่ £% พฤศจิกายน พ.ศ. 2556

เวลา 13:00 -16:00น.

คำสัง:-

- 1. ข้อสอบวิชานี้มี 6 ข้อ 11 หน้า (รวมใบปะหน้า และทฤษฎี) คะแนนรวม 90 คะแนน
- 2. <u>ไม่อนุญาต</u>ให้นำหนังสือประกอบการเรียนเข้าห้องสอบได้
- 3. <u>ไม่อนุญาต</u>ให้นำเอกสาร A4 จำนวน 1 แผ่น เข้าห้องสอบใด้
- 4. แสดงวิธีทำลงในข้อสอบเท่านั้น
- 5. <u>ไม่อนุญาต</u>ให้นำเครื่องคำนวณเข้าห้องสอบ
- 6. <u>ไม่อนุญาต</u>ให้นำพจนานุกรมเข้าห้องสอบ
- 7. ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ
- 8. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

คำเคือน/คำแนะนำ:-

- เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมดก่อนเริ่มลงมือทำและควรอ่านคำถามให้รอบคอบก่อนเริ่มทำการคำนวณเพื่อไม่ให้เสียเวลากับการคำนวณที่ไม่มีประโยชน์

ข้อสอบข้อที่	1	2	3	4	5	6	7	8	คะแนนรวม
คะแนนเต็ม	5	20	20	10	20	15			90
คะแนนที่ได้									

J	
ชื่อ-สกุล	รหัสประจำตัว

ผศ.คร.พินิจ กำหอม (โทร: 9075, 9070) ผู้ออกซ้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากคุณะกรรมการประจำภาควิชาแล้ว

(รองศาสตราจารย์ คร.วุฒิชัย อัศวินชัยโชติ) หัวหน้าภาควิชาวิสวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

;	ชื่อ-สกุล	รหัสประจำตัว นศ	เลขที่นั่ง
1.	(5 คะแนน) [Sequer	atial Systems] เลือกคำตอบที่ให้ไว้มาเดิมในช่องว่างเท็	ขื่อให้ได้ประโยคที่ถูกต้อง.
	1.1.An output of a	sequential system depends on both current a	nd
	inputs. As a re	sult, it needs	
		es such as latches and flip-flops are built based	
		devices.	
	1.3. Three basic fu	nctions of a memory device are to	<u> </u>
		, and to	
	1.4	sequential systems need clo	ock signal while
		sequential systems do not.	
	1.5.Based on type	s of outputs, two kinds of finite state machine	(FSM) are
		and machine.	
2.	(function table), แ	es and Flip-flops] ให้เขียน (1) สัญลักษณ์ (symbol ละ (3) วงจรลอจิก (logic circuit) ของ latches และ fl active-low basic SR latch	1
	2.2. [4 คะแนน] A c	ontrolled D-latch	

2.3. [4 คะแนน] A positive-edge triggered D flip-flop with active-low asynchronous set and clear

2.4. [4 คะแนน] A negative-edge triggered JK flip-flop

3. (20 คะแนน) [Sequential System Analysis] ให้วิเคราะห์วงจร clocked synchronous finite state machine ที่ให้ไว้ด้านล่าง. แสดง excitation equations, transition table, state/output table, state diagram และ timing diagram เมื่ออินพุท en มีลำดับเป็น 111110100101

-สกุล	รหัสประจำตัว นศ	เลขที่นั่ง
•		

4. (10 points) [FSM design] ต้องการออกแบบระบบเพื่อนับจำนวนการเกิด pattern "010" ที่อินพุท X ระบบประกอบไปด้วยตัวนับ 8 บิท และตัวตรวจจับ pattern "010" ที่ทำหน้าที่สร้างสัญญาณ enable เพื่อควบคุมให้ตัวนับทำการนับขึ้นทุกครั้งที่พบ pattern "010" ให้ออกแบบระบบที่ทำหน้าที่ตรวจจับ pattern "010" นี้ โดยเขียน timing diagram แสดงตัวอย่างการทำงานก่อน แล้วเขียน state/output table และ state diagram.

Step 1: Write timing diagram of the sequence detector given a meaningful input sequence.

5. (20 points)[FSM Synthesis] ให้สังเคราะห์ finite state machine เพื่อทำงานตาม state diagram ที่ กำหนดให้ โดยใช้ positive-edge triggered DFF เป็น memory devices และให้ใช้การกำหนด state (state assignment) ตามที่กำหนดให้เท่านั้น ให้แสดงรายละเอียดขั้นตอนการสังเคราะห์

Notation

state name

Z

State Assignment

A = 000

B = 001

C = 101

D = 100

E = 110

ชื่อ-สกุล	รหัสประจำตัว นศ	เลขที่นั่ง

ชื่อ-สกุล	รหั	ัสประจำตัว นศ	เลขที่นั่ง
6. (15 points) [VHDL] เติม ตามที่กำหนดด้วย state (การอธิบายการทำงา	นของ finite state machine
<pre>library ieee; use ieee.std_logic_</pre>	1164. all ;		
entity a_fsm is			
<pre>port(c1k, reset</pre>	: in		;
<pre>end a_fsm;</pre>			
architecture	of a_fsm	is	
<pre>type state_type is</pre>	();
signal			state_type;
begin			
state register			
process ()		
begin			
if		then	
-	(=	_	
	and		then
	<=		
end if;			
end process;			
end process,			

ชื่อ-สกุล	รหัสประจำตัว นศ	เลขที่นั่ง
next state logic		
process ()
begin		
case	is	
when =	>	
if	then	
<u>_</u>		;
else		
· · · · · · · · · · · · · · · · · · ·		;
<pre>end if;</pre>		
when =	>	
if	then	
		·;
else		
end if;		
when =	>	
if		
		:
else	, ,,,	
		;
end if;		
when =	>	
if		
		;
else		
		;
end if;		

when => if else	then	;
	then	;
0100		;
0100		·
6126		
		;
<pre>end if;</pre>		
end case;		
end process;		
Output logic		
<= when	els	e;

end beh;

Latch and FF's Characteristic Equations

	通道。 因此是在1000年 少少年的大概是1000年代,但是1000年代,
Device Type	Characteristic Equation
S-R latch	$Q* = S + R' \cdot Q$
D latch	Q* = D
Edge-triggered D flip-flop	$\mathbf{Q}* = \mathbf{D}$
D flip-flop with enable	$Q* = EN \cdot D + EN' \cdot Q$
Master/slave S-R flip-flop	Q* = S + R' + Q
Master/slave J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
Edge-triggered J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
T flip-flop	Q* = Q'
T flip-flop with enable	$Q* = EN \cdot Q' + EN' \cdot Q$

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.