



## **Initial Project Planning Template**

| Date          | 15 March 2024                                                |
|---------------|--------------------------------------------------------------|
| Team ID       | 738305                                                       |
| Project Name  | Machine Learning Approach For Employee Performace Prediction |
| Maximum Marks | 4 Marks                                                      |

## **Product Backlog, Sprint Schedule, and Estimation (4 Marks)**

| Sprint   | Functional  | <b>User Story</b> | User Story / Task                         | Story Priority |        | Team    | Sprint     | Sprint End |
|----------|-------------|-------------------|-------------------------------------------|----------------|--------|---------|------------|------------|
|          | Requirement | Number            |                                           | <b>Points</b>  |        | Members | Start Date | Date       |
|          | (Epic)      |                   |                                           |                |        |         |            | (Planned)  |
| Sprint-1 | Data        | USN-1             | Gathering relevant data aligned with      | 1              | Low    | 3       | 27-04-2024 | 30-04-2024 |
|          | Collection  |                   | specific objectives of the Machine        |                |        |         |            |            |
|          |             |                   | Learning Approach For Employee            |                |        |         |            |            |
|          |             |                   | Performace Prediction project.            |                |        |         |            |            |
| Sprint-3 | Visualizing | USN-2             | 1)To gain insights from the data and      | 3              | Medium | 3       | 27-04-2024 | 02-05-2024 |
|          | And         |                   | understand its characteristics.           |                |        |         |            |            |
|          | Analyzing   |                   |                                           |                |        |         |            |            |
|          | Data        |                   | 2)To identify patterns, trends, outliers, |                |        |         |            |            |
|          |             |                   | and relationships within the dataset.     |                |        |         |            |            |
| Sprint-1 | Data Pre-   | USN-3             | Data preprocessing plays a pivotal role   | 1              | High   | 3       | 27-04-2024 | 27-04-2024 |
|          | processing  |                   | in machine learning by transforming       |                |        |         |            |            |
|          |             |                   | raw data into a clean, reliable, and      |                |        |         |            |            |
|          |             |                   | structured format.                        |                |        |         |            |            |
| Sprint-2 | Model       | USN-4             | Model building in machine learning is     | 2              | High   | 3       | 27-04-2024 | 05-05-2024 |
|          | Building    |                   | a critical step where algorithms are      |                |        |         |            |            |





| Sprint   | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                             | Story<br>Points | Priority | Team<br>Members | Sprint<br>Start Date | Sprint End Date (Planned) |
|----------|-------------------------------------|----------------------|-------------------------------------------------------------------------------|-----------------|----------|-----------------|----------------------|---------------------------|
|          |                                     |                      | trained on historical data to create predictive models.                       |                 |          |                 |                      |                           |
| Sprint-3 | Application<br>Bulding              | USN-5                | Incorporating machine learning into applications can enhance user experience. | 3               | Medium   | 3               | 27-04-2024           | 02-05-2024                |





## Jira Screenshots:

|                                                           |         | APR | MAY                                 | JUN | JUL |
|-----------------------------------------------------------|---------|-----|-------------------------------------|-----|-----|
| Sprints                                                   |         | ML  | AF                                  |     |     |
| ✓ ► MLAFEPP-1 Data Collection                             | DONE    |     | ✓ Q MLAFEPP Sprint 1                |     | 1   |
| ■ MLAFEPP-2 Download The Dataset                          | DONE BA |     |                                     |     |     |
| ▼ MLAFEPP-3 Visualizing And Analyzing The data            | DONE    |     | CLOSED SPRINT Sprint goal goes here |     |     |
| ■ MLAFEPP-5 Read The Dataset                              | DONE OK |     | Sprint godi gods nero               |     |     |
| ■ MLAFEPP-4 Importing The Libraries                       | DONE OK |     | Sprint start Sprint end             |     |     |
| ■ MLAFEPP-6 Correlation Analysis                          | DONE OK |     | 2024/04/27 2024/04/30               |     |     |
| ■ MLAFEPP-7 Descriptive Analysis                          | DONE OK |     | > Q MLAFEPP Sprint 2                |     |     |
| ✓ ► MLAFEPP-8 Data Pre-Processing                         | DONE    |     | CLOSED SPRINT                       |     |     |
| ■ MLAFEPP-9 Checking For Null Vlaues                      | DONE BA |     |                                     |     |     |
| ■ MLAFEPP-10 Handling Date And Department Column          | DONE BA |     | > Q MLAFEPP Sprint 3                |     |     |
| ■ MLAFEPP-11 Handling Categorical Values                  | DONE BA |     | CLOSED SPRINT                       |     |     |
| ■ MLAFEPP-12 Splitting Data Into Train And Split          | DONE BA |     |                                     |     |     |
| ✓ ► MLAFEPP-13 Model Building                             | DONE    |     |                                     |     |     |
| ■ MLAFEPP-14 Linear Regression Model                      | DONE P  |     |                                     |     |     |
| ■ MLAFEPP-15 Random Forest Model                          | DONE P  |     |                                     |     |     |
| ■ MLAFEPP-16 Xgboost Model                                | DONE P  |     |                                     |     |     |
| ■ MLAFEPP-17 Compare The Model                            | DONE P  |     |                                     |     |     |
| MLAFEPP-18 Evaluating The Performance Of The Model And Sa | DONE P  |     |                                     |     |     |
|                                                           |         |     |                                     |     |     |
| ✓ ✓ MLAFEPP-19 Application Building                       | DONE    |     |                                     |     |     |
| ■ MLAFEPP-20 Building HTML Pages                          | DONE OR |     |                                     |     |     |
| ■ MLAFEPP-21 Build Python Code                            | DONE DK |     |                                     |     |     |
| ■ MLAFEPP-23 Output                                       | DONE OR |     |                                     |     |     |
|                                                           | DONE DK |     |                                     |     |     |