Binary Logic

DeMorgan Theorems

Augustus DeMorgan (1806-1871)

British mathematician born in India

DeMorgan's Theorems

 Are used to simplify complex negated binary logical expressions.

Example:

•
$$Z = ABC + A + B + C + AB + AC + BC$$

DeMorgan's Theorems

$$\overline{X+y} = \overline{X} \bullet \overline{y}$$

First DeMorgan's Theorem

$$\overline{X \bullet y} = \overline{X} + \overline{y}$$

Second DeMorgan's Theorem

Proof of the DeMorgan's theorems

Proof of the DeMorgan's theorem

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

•
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

X	у	X	<u></u>	ху	ху	<u>_</u> x+ <u>y</u>	x	x + y	${x + y}$
0	0								
0	1								
1	0								
1	1								

Proof of the DeMorgan's theorems

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

•
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

X	у	<u></u>	<u></u>	ху	x y	x + y	x	x + y	$\sqrt{x+y}$
0	0	1	1	0					
0	1	1	0	0					
1	0	0	1	0					
1	1	0	0	1					

Proof of the first DeMorgan's theorem

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

•
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

X	у	X	\overline{y}	ху	ху	x + y	 x + y	${x + y}$
0	0	1	1	0	1	1		
0	1	1	0	0	1	1		
1	0	0	1	0	1	1		
1	1	0	0	1	0	0		

Proof of both DeMorgan's theorems

		•		ě
•	x+y	=	X ● y	

•
$$\overline{x \cdot y} = \overline{x + y}$$

X	у	X	<u></u>	ху	<u>x y</u>		\overline{x} \overline{y}	x + y	${x + y}$
0	0	1	1	0	1	1	1	0	1
0	1	1	0	0	1	1	O	1	0
1	0	0	1	0	1	1	O	1	0
1	1	0	0	1	0	0	0 _	1	0 _

Perfect Induction

Example: Using DeMorgan's

$$\overline{A \circ B} + C$$

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

•
$$x \cdot y = x + y$$

First application of the theorem

$$\overline{A \circ B} + C = A \circ B \circ C$$

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

•
$$\overline{x \cdot y} = \overline{x + y}$$

First application of the theorem

$$\overline{A \circ B} + C = \overline{A \circ B} \circ \overline{C}$$

•
$$x \cdot y = x + y$$

Second application of theorem

$$\overline{A \circ B} + C = A \circ \overline{B} \circ \overline{C}$$

$$= (\overline{A} + \overline{B}) \circ \overline{C}$$

•
$$\overline{x \cdot y} = \overline{x + y}$$

Distribute...

$$A \circ \overline{B} + C = A \circ \overline{B} \circ \overline{C}$$

$$= (\overline{A} + \overline{B}) \circ \overline{C}$$

$$= (\overline{A} + B) \circ \overline{C}$$

$$= \overline{A} \circ \overline{C} + B \circ \overline{C}$$

Sum-of-products (SOP) form

$$\overline{A \circ B} + C = A \circ \overline{B} \circ \overline{C}$$

$$= (\overline{A} + \overline{B}) \circ \overline{C}$$

$$= (\overline{A} + B) \circ \overline{C}$$

$$= \overline{A \circ C} + B \circ \overline{C}$$

Implement with gates

Sum-of-Products (SOP) form

Ready to see the circuit?

The SOP leads to "two-level-realization"

factor ... "multi-level-realization"

$$A' C' + B C' = C'(A'+B)$$

More gates....

More Gates

- NOR (Not OR)
- NAND (Not AND)

OR

Α	В	OR	NOR
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOR

Α	В	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

NOR

Α	В	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

•
$$\overline{x \cdot y} = \overline{x + y}$$

NOR

Α	В	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

NOR: CMOS and gate layout

AND ... Not AND

Α	В	AND	NAND
0	0	0	
0	1	0	
1	0	0	
1	1	1	

NAND

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

NAND

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

•
$$x \cdot y = x + y$$

NAND

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

NAND: CMOS and gate layout

Universality of NAND and NOR Gates

NAND and NOR gates ...

- Can implement any Boolean expression
- Can simulate all three basic gates (AND, OR, NOT)

Universality of NAND: NOT

Proof

$$(AA)' = A'$$

Proof

$$(AA)' = A'$$

Universality of NAND: AND

Proof

Proof

Universality of NAND: OR

Universality of NAND: OR

Universality of NAND: OR

Universality of NOR: NOT

Proof

$$(A+A)'=A'$$

Proof

$$(A+A)'=A'$$

Universality of NOR: OR

Proof

Proof

Universality of NOR: AND

Proof

Proof

Example

Implement the Boolean function: X = AB + CD

- 1. Using: AND, OR, NOT gates
- 2. Using: NAND gates

You have ... 5 minutes ...

GEA

1) X = AB + CD; Using AND, OR, NOT gates

X = AB + CD; Using Chips (7408-7432)

AND gates chip

OR gates chip

2 Chips are used

We use 2 different chips

NAND gates

2) X = AB + CD; Using NAND gates

X = AB + CD; Using NAND gates

Two inverts cancel each other

X = AB + CD; Using NAND gates

X = AB + CD; Using NAND Chip (74LS00)

X = AB + CD; Using NAND Chip (74LS00)

We only use 1 chip NAND technology allows us to use less chips

Why today's technology uses NAND gates?

- Reduces the integrated circuit complexity since NAND gates can be implemented with less transistors than the basic AND/OR gates
- Increases integrated circuit's speed
- Minimizes:
 - Production chip cost
 - Packing density of the chip.

X = AB + CD; Using VHDL

VHDL Code: X = AB + CD

```
nomework2_vhdl.vhd - Text Editor
  entity homework2_vhdl is
       port (a,b,c,d: in bit;
              x: out bit);
  end homework2_vhd1;
  architecture dataflow of homework2_vhdl is
  begin
       x \le (a \text{ and } b) \text{ or } (c \text{ and } d);
  end dataflow;
Line
                          INS | ∢
             Col
                   24
```

Waveform

... Two more gates

- ✓ XOR
- **✓** XNOR

OR gate

Α	В	OR gate
0	0	0
0	1	1
1	0	1
1	1	1

XOR (eXclusiveOR) gate

Α	В	OR gate	XOR gate
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

XOR (eXclusiveOR) gate

Α	В	OR gate	XOR gate
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

$$A \times B = A \oplus B$$

$$= \overline{A}B + A\overline{B}$$

It produces a high output whenever the two inputs are at opposite levels

XOR (eXclusiveOR) gate

Α	В	OR gate	XOR gate
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

$$A \times B = A \oplus B$$

$$= \overline{A}B + \overline{A}B$$

It produces a high output whenever the two inputs are at opposite levels

Another gate ... XNOR

 $A \oplus B = ?$

XNOR (eXclusiveNOR) gate

Α	В	XOR gate	XNOR gate
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

XNOR (eXclusiveNOR) gate

Α	В	XOR gate	XNOR gate
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

$$A \times B = \overline{A \oplus B}$$

$$= \overline{A} \overline{B} + A B$$

Total we have 2⁴ = 16 gates ...

AB

Total we have 2⁴ = 16 gates ...

AB																
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	o	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	o	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Total we have 2⁴ = 16 gates ...

AB	0	AND		Α		В	XOR	OR	NOR	XNOR	NOTB		NOTA		NAND	1
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Only 7 gates are useful

AND, XOR, OR, NOR, XNOR, NOT, NAND