

Benny Jackson

THE HAROURT BINDERS

ADAPTED TO ALL WORK WHERE
THE LOOSE LEAF SYSTEM IS USED
ORIGINALLY DESIGNED FOR

NATIONAL PHYSICS NOTE-BOOK SHEETS,

L. E. KNOTT APPARATUS COMPANY, BOSTON

Name

School

Subject

408 E. Gravers Lane, Phila., PA 19118. Tel. (215) 248-3257

May 29, 1996

Archivist
Archives
Sweet Briar College
Lynchburg, VA

Dear Sir or Madam (probably Madam),

In looking over old papers I came across some laboratory reports that my mother, Mary P. Davis, Sweet Briar, 1916, apparently made in a biology course. I thought they might be of interest to you. If not, please dispose of them as you wish. Perhaps somebody in the biology department might like to see them.

You need not acknowledge receipt of these reports, much less tell me what you have done with them.

My mother was the second of three sisters who graduated from Sweet Briar. She majored, I believe, in English literature and biology. After graduation she worked for a while as an assistant to a Philadelphia doctor who was writing a textbook on gastroenterology. Then she married and had three children. She died over a decade ago.

All the best.

Sincerely,

James C. Davis

Digitized by the Internet Archive
in 2010 with funding from
Lyrasis Members and Sloan Foundation

Mitotic Figures

Anaphase

Telophase Viewed From One Pole.

Biological Department

SWEET

Biological Department

SWEET BRIAR

Biological Department

SWEET

Mitotic Figures

Prophase

Late Metaphase.

Metaphase

Early Anaphase

Late Telophase.

Reorganization

Biological Department

8

Biological Department

SWEET BRIAR

Biological Department

SWEET BRIAR

Endochondral Ossification

In Knee Joint of Kitten

- I Epiphysis
- II Blood Lake
- III Cartilage Bone
- IV Osteoclast
- V Osteoblast
- VI Adipose Cells
- VII Connective Tissue
- VIII Patella
- IX Muscle
- X Nucleus of Muscle (Muscle Corpuscle)
- XI Cartilage
- XII Transverse Section of Muscle Showing Gohenheim's Areas.
- XIII Adipose Tissue with Nuclei
- XIV Blood Vessel
- XV Cartilage Cells in Rows

SWELL

R

Endochondral Ossification

In Knee Joint of Kitten

Testis

Liver

Portal Canal

Lobule of Liver

Second Department

Mutual Relationships of the Chief Groups of Protozoa.

© SWEET SRIAR

Phylum - Protozoa.

Class I. Rhizopoda

Order I. Lobosa

Amoeba

2. Foraminifera

Miliola

Globigerina.

3. Heliozoa.

Actinophrys.

4. Radiolaria.

II Mycetozoa

III Sporozoa.

Monocystis agilis

Gregarinae

IV Mastigophora

Order I. Flagellata.

Euglena.

Phacus

Peranema.

Volvoz.

Gonium

Pandorina

Mastigamoeba

Dimorpha.

2. Choanoflagellata

Proterospongia

3. Dinoflagellata.

Ceratium

4. Cystoflagellata

Noctiluca.

SWEET SIGHT

V Infusoria.

Order I. Ciliata.

Stentor.

Vorticella.

Calypoda

Pleurotricha.

Paramcilia

2. Tentaculifera.

Podophrya

— Genera seen

— Genera not seen

Protozoa Infusoria Ciliata.

Colpoda

Vorticella

Biological Department
SWEET BRIAR

Rhizopoda Lobosa: Amoeba

Rhizopoda

Foraminifera

Mitola

Parker + Howell.

SWEET BRIAR

Heliogoa

Actinophrys sol.

Parker + Howell.

SWEET BRIAR

Heliogoa

Actinophrys.

nucleus

pseudopod

Mastigophora

Flagellata

Euglena.

Parker + Higwell

Mastigophora.

Flagellata

Volvox.

Phylum Porifera.

Class Porifera

Order Ascon

Leucosolenia.

Sycon

Graetia

Development of the Sycon Sponge.

1000 ft.
S.E. of
A
LET E. MAR

Porifera. Ascon.

Leucosolenia.

Colony.

Sycon

Grantia

P - paragastric cavity
— entoderm
— mesoglea
— ectoderm.

Phylum Coelenterata

Class Hydrozoa

Order Leptolinae

Rhizomedusae

Parypha

Scyphozoa

Aurelia (Scyphula) (Ephyrule)

Actinozoa

Metridium.

Ctenophora

Pleurobrachia.

Coelenterata.

Alternation of Generations.

		Asexual				Sexual		
Pennaria.	Fertilized egg	Free swimming planula.	Colony	hydranth	medusa bud.	♀ and ♂ medusae	Eggs Sperms	Fertilized egg.
Dolzia	Fertilized egg.	Free swimming planula	colony	Gonogram. Hydranth	medusa bud.	♀ and ♂ medusae.	Eggs Sperms	Fertilized egg.
Aurelia.	Fertilized egg	planula develops into scyphula.	scyphula develops into ephyridae	ephyridae	single ephyridae	♀ or ♂ medusae	Eggs Sperms	Fertilized egg
Parypha.	Fertilized egg	planula develops into hydrule	colony	hydranth	medusa bud in clusters	♀ and ♂ medusae	Eggs Sperms	Fertilized egg, fertilization takes place in colony.

Coelenterata. Hydrozoa Leptolinae Parypha.

(

Coelenterata. Scyphozoa. Rhizalia.

Inter-radial canal
Ad-radial canal
Per-radial canal

Marginal Sense Organ of Aurelia.

View of Oral Surface.

X section aurelia thru two stomach pouches

Coelenterata Scyphozoa Scyphula of Aurelia.

Cocleneterata Scyphozoa Ephydria of Aurelia.

Ctenophora Pleurobrachia (Sea Walnut),

Coelenterata Actinzoa Metridium.

Cocleneterata

Actinozoa

Metridium

Longitudinal Section

Transverse Section

S-----stomodaeum.

1870
1871
1872

Phylum Platyhelminthes.

Class Turbellaria

Order Tricladida

Planaria

Cestoda

Grossobothrium laciniatum

Scolex polymorphus.

Trematoda

Distomum hepaticum

Liver Fluke (*Distomum hepaticum*).

The phylum Platyhelminthes or Flat Worms are a group of soft bodied bilateral, usually flattened animals, with a great range of complexity. The body is built up of three embryonic layers — ectoderm, endoderm, and mesoderm. Nearly all the members of the phylum have an excretory vascular system of a peculiar kind, the water vascular or protonephridial system. There is no body cavity, the spaces between the organs being filled up with a peculiar kind of connective tissue called parenchyma.

The Trematoda, the class to which the Liver Fluke belongs, are exclusively parasitic. For adhesion to the host they are armed with hooks and suckers, structures derived from the skin.

Several results of parasitism are found in this class. Among them are the weak development of sense organs and brain, a tendency to the development of accessory ganglia near the adhesion organs, and the great development of sexual organs, which at maturity fill a great part of the body.

One of the two great orders under Trematoda is Distomae, which includes forms entirely ectoparasitic. To this order belongs the Liver Fluke or *Distomum hepaticum*.

The Liver Fluke of Sheep is usually found in the interior of the larger bile ducts of the infested animal, where it steps up the duct and causes a disease known as 'liver rot'. It is a soft bodied worm of flattened leaf like shape, or somewhat the size and shape of a pumpkin seed. The head lobe is a triangular shaped process which projects from the broader end of the body. The parts are distinctly bilaterally symmetrical, and externally, the body is equilateral but this symmetry does not extend to all of the internal organs.

Fig I.

A minute opening, the excretory pore (ex.), may be found in the middle of the posterior end of the body.

Fig II

The body wall comprises three layers, (1) the homogeneous cuticle (cut.) of which the spicules (sp.) are special developments, (2) a layer of circularly disposed muscular fibres (circ. mus.), (3) a layer of longitudinal muscle fibres (long. mus.). Numerous unicellular glands (gl.), the ducts of which open to the outer surface, are found beneath the muscles. Internally, a peculiar form of connective tissue, the parenchyma, fills the interspaces between the organs.

The mouth leads to a small rounded bulb like body, the pharynx, which is a small cavity with thick muscular walls. From this a short passage, the oesophagus, leads to the intestine. Owing

to its being filled with dark bilary matter, mixed with blood, on which the fluke feeds, this organ is a conspicuous one. It divides almost immediately into two main trunks, right and left, from which are given off internally and externally a number of blind branches. The whole intestine forms a very complex system extending throughout the body. There is no aperture of communication between the intestine and the exterior, the only exterior opening of the alimentary system being the mouth. A branching system of vessels, the water vessels, or vessels of the excretory system, ramify throughout the body.

The excretory system consists of a longitudinal main trunk which opens at the excretory pore(^w) at the posterior end of the body. It gives off four large trunks in front. These branch repeatedly until a system of extremely fine microscopic vessels or capillaries is formed. Each of these ends, internally, in a slight enlargement, situated in the interior of a large cell, an excretory or flame cell.

The nervous system of the Liver Fluke consists of a ring of nerve matter around the oesophagus. It has two lateral thickenings of glands, the ganglia, containing nerve cells and a single ganglion in the middle line below. From these lead a number of nerves, the chief of which are a pair of lateral cords which run to the posterior end, and give off numerous branches. There are no special organs of sense.

In this form both male and female organs of reproduction are found on the same individual. The male apparatus consists of the testes (¹), two vasa deferentia (^b) and the cervix (^c). The testes are two very much branched tubes in the middle part of the body, one behind the other. A vasa deferens runs forward from each testis, and the two meet anteriorly in a long sac, the vesicula seminalis, from which the ejaculatory tube leads to the extremity of the cervix, the male aperture.

Fig III
Diagram of the liver fluke

The female organs consist of a single ovary (^d, or gerarium), an oviduct, a uterus (^e), an ootype, vitelline glands (^f) and shell glands. The ovary, a body which looks very much like one of the testes, lies on the right hand side, in front of the testes. The branches open into a common tube, the oviduct. The vitelline glands are made up of a great number of minute round follicles, which take up a considerable space on each side of the body. On each side there are two large ducts, anterior and posterior, which join to form a main lateral duct on each side. These run in and open into a single yolk sac. From this the single vitelline duct runs a short distance and meets the oviduct. Around the place where they meet are the shell glands, each of which opens into the oviduct. The union of these two ducts forms the uterus, which is a long, very much convoluted tube. The first part of this tube is called the ootype, for here the egg and yolk cells are formed into the egg, and it is enclosed in a shell. The uterus opens in front close to the base of the cervix. The canal of Laurer (^g) leads from the junction of the oviduct and median vitelline duct to open outside on the dorsal surface.

The **ovule**, as soon as it is fertilized, becomes surrounded by a mass of vitelline or yolk substance. There where it passes through the body, it becomes enclosed in glutinous matter which is secreted by the shell glands. The egg, in this condition, remains in the uterus, and finally is discharged and passes down the bile duct of the sheep to the exterior. It is not until this stage that active development begins. After three or six weeks a part of the shell drops off at one end and the embryo is freed. This embryo or miracidium is a small cone shaped body covered all over with vibratile cilia. It has two eye spots (^{op.}) near the broad anterior end, and has a triangular head lobe (^{hyp.}). It has an imperfectly developed intestine, a pair of flame cells, each with a minute opening on the surface, and the rest of the inside is filled with a mass of germ cells. This larva swims about in the water, or moves over the damp ground for a time by means of its cilia, and dies unless it is able to find a Pond Snail, on which it may become parasitic, for it is on the snail only, that it can develop into the next stage. It usually rests in the pulmonary sac, or some other organ of the snail. When it is settled in the interior it loses its ectoderm, and rapidly grows into the Sporocyst, which is an elongated sac with an internal cavity containing germ cells and lined with a layer of cells with remnants of eye spots (^{op.}) and with flame cells. The sporocyst may divide by transverse fission, but this is done only rarely. The germ cells on the internal cavity of the sporocyst breed off into cells which develop into a stage very much like a gastrula (^{gast.}) These elongate and develop into a body known as redia which finally force their way out of the sporocyst and settle usually in the liver of the snail.

Ciliated Larva
Fig IV

Fig V
Sporocyst

Fig VI
Redia

When fully developed, the redia is a long rounded body with a pair of short processes (proc.) and a ridge (^{mtd.}) running along the body at the anterior end. It has a mouth which leads to a

pharynx, and this leads to a sac-like intestine. There is no excretory system. The redia bracts possibilities, depending on the time of the year. It gives off, in the interior, cells which develop very much as the gastrulae in the sporocyst. If it is winter these develop into new rediae and increase the number, so that there is a greater chance that some may live to undergo the next stage in their history.

It is ~~per~~ ^{prefer} preferable, necessarily in a form which is dependent on another form to continue its life, that there should be a system by which many larvae may develop from one egg. There is every chance that if the proper conditions do not present themselves, that all of the rediae may perish.

Fig VII
Cercaria

If it is summer, these gastrulae develop into 'cercariae', which have long tails, anterior (^{or su}) and posterior (^{vent su}) ^{gut}, a mouth, a pharynx and an oesophagus (^{os}), leading into a bifid intestine (^{int}). The 'cercaria' escapes through a birth opening (^{or su}) in the wall of the redia near the circular ridge. The cercaria moves by means of its tail and forces its way out of the Snail. It then loses its tail and becomes encysted and attached on a blade of grass or herbage of some kind. The next stage of the Liver Fluke is dependent upon its final host, the Sheep. If the Sheep swallows the grass on which it is encysted it can reach its mature stage by losing its cyst and forcing its way up the bile duct to the liver, where it rapidly develops, and attains its adult condition.

the first time in the history of the world, the
whole of the human race has been gathered
together in one place.

It is a remarkable fact that the number
of people who have come to the exhibition
is far greater than was anticipated.

The exhibition is a great success, and
the people are greatly interested in it.
The exhibits are excellent, and the
people are greatly interested in them.

The exhibition is a great success, and
the people are greatly interested in it.
The exhibits are excellent, and the
people are greatly interested in them.

Platyhelminthes Turbellaria Planaria.

Platyhelminthes Turbellaria Planaria.

Nervous and Water Vascular Systems

Reproductive System.

((

)

Platyhelminthes Cestoda Grossobothrium laciniatum.

(

(

Platyhelminthes Cestoda *Crosobothrium laciniatum* *Scolex polymorphus*

Nemathehelminthes

Trichina spiralis

Trochelminthes Rotifera

Molluscoidea Polyzoa Bugula avicularia.

A

B

C

A--Habitat
B--Zoecium
C--Ooecium

((

((

1. *Arbacia*

2. *Strongylocentrotus*.

Annulata Chaetopoda Polychaeta Errantia Nereis

Parapodium

Head of Nereis

Annulata Geophyrea Sipunculus

Annulata Hirudinea Hirudo

Arthropoda Crustacea Entomostacea Phillopoda Euphillopoda Branchipus.

Ommatidia

Arthropoda Crustacea Entomostraca Cirripedia Lepas

Arthrobranchia

Crustacea Malacostraca Arthrostraca Caprella.

Crustacea Malacostraca Arthrostraca Orchestea

Orchestea

BRIAS

Crustacea Malacostraca Decapoda Macrura Palaemon.

Crustacea Malacostraca Decapoda Macrura Gragon.

Crustacea Entomostraca Philopoda Branchipus

Crustacea Malacostraca Arthrostraca Gammarus.

Arthropoda Crustacea Entomostreata Copepoda Cyclops

Malacostraca Macrura Hippa.

Zoological Department

ET BRIAR

Arthropoda Brachimda Limulus

Biological Department

DIRECTOR
DR. S. K. DRIAR

Diagrams Showing Probable Evolution of the Complex Gill of Lamellibranchia

a.... aperture in branchial septum
 b.v.... blood vessel
 ft.... foot
 i.f.... inner row of filaments
 i.g.... inner lamina
 i.l.... inner lamella
 i.l.j.... interlamellar junctions
 m.... mantle
 o.f.... outer row of filaments
 o.g.... outer lamina
 o.l.... outer lamella
 Sep.... branchial septum

BIOLOGICAL DEPAR:

ET BRIAR

ct.... connective tissue
 layer of mantle
 ep.... its outer epithelium
 ap.... its inner epithelium
 m.... mesonephros
 prc.... periostracum
 pms.... mantle muscle layer.

P.H. Regan

ej.... cellular junction
 f.... filaments

Mollusca Lamellibranchiata Pseudobranchia Peleton (shell)

Amphineura Chiton. (shell)

BRIAN

BRIAN

Inner Surface of Left Valve

Internal Anatomy.

Biological Department

ST BRW

Mollusca Lamellobranchiata Pseudolamellobranchia Pecten.

Internal Anatomy

Ampelisca Cnida. Internal Anatomy

Mollusca Lamellibranchiata *Glochidium*.

Biological Denaturation

?

BRIAR

Mollusca Cephalopoda Dibranchiata D. *Loligo pealei*

External Anatomy

Pigmentary Nerve

SP BRIAR

Circulatory System.

Reproductive System of ♂

Zoological Department

D. R. M.

Nervous System (Right side)

Biological Department
SWEET BRIAR

Physical Education
May 26, 1914
BRIAR CLOUD

Internal Anatomy of ♀

C. ST. BRIAR

Zoological Department

ET BRIAR

Diagram Showing Mantle Cavity

Medical Department

EST. BRIAR

Digestive System

X section of Odontophore

© Arnold Bennett

1918

Circulatory System

Original drawing

SBAR

(A)

1000

(C)

Paper Model of the Complex Bill of the Clam

Original Design

RIAR

Skin

Epithelium

Pavement Epithelium (Saliva)

Stratified Epithelium (Skin)

Simple Glandular Epithelium (Intestine)

Pigmented Epithelium (Skin of Salamander)

Ciliated Epithelium (Trachea of Cat)

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

20100

20101

20102

20103

20104

20105

20106

20107

20108

20109

20110

20111

20112

20113

20114

20115

20116

20117

20118

20119

20120

20121

20122

20123

20124

20125

20126

20127

20128

20129

20130

20131

20132

20133

20134

20135

20136

20137

20138

20139

20140

20141

20142

20143

20144

20145

20146

20147

20148

20149

20150

20151

20152

20153

20154

20155

20156

20157

20158

20159

20160

20161

20162

20163

20164

20165

20166

20167

20168

20169

20170

20171

20172

20173

20174

20175

20176

20177

20178

20179

20180

20181

20182

20183

20184

20185

20186

20187

20188

20189

20190

20191

20192

20193

20194

20195

20196

20197

20198

20199

20200

20201

20202

20203

20204

20205

20206

20207

20208

20209

20210

20211

20212

20213

20214

20215

20216

20217

20218

20219

20220

20221

20222

20223

20224

20225

20226

20227

20228

20229

20230

20231

20232

20233

20234

20235

20236

20237

20238

20239

20240

20241

20242

20243

20244

20245

20246

20247

20248

20249

20250

20251

20252

20253

20254

20255

20256

20257

20258

20259

20260

20261

20262

20263

20264

20265

20266

20267

20268

20269

20270

20271

20272

20273

20274

20275

20276

20277

20278

20279

20280

20281

20282

20283

20284

20285

20286

20287

20288

20289

20290

20291

20292

20293

20294

2029

Kidney

Malpighian Corpuscle from the Kidney

Muscle

Capillary Vessels in Muscle

Cardiac Muscle Fibres

Connective Tissue
Bone

Transverse Section of Compact Bone

Section of A Decalcified Bone

Connective Tissues

Arcular Tissue

Ligamentum nuchae - Elastic Tissue

Umbilical Cord - Embryonic Tissue (Connective)

Tendon of Tail - White Fibres

Connective Tissues

Cartilage

Bur of Cartilage

Elastic Fibro-Cartilage

Cell Inclusions

Potato

Testis

1000 Department S

1000 Department S

Nerves

Cross Section of Two Funiculi

Longitudinal Optical Section of Medullated Nerve Fibre.

Non-Medullated Nerve Fibre.

Nerve Cells

Multipolar Nerve

Canal of Spinal Cord of Child

Cell of Purkinje

Pyramidal Cells from Cerebral Cortex

Special Nerve Endings

Cross Section of Pacinian Corpuscle

Human Motor Nerve Endings in Intercostal Muscle (Gold Chloride)

Tongue

Section Through Papilla Folata

Stomach

Cross Section of Stomach

A. W. MERRILL

(C)

1000

(C)

Ovary

Ovum

Lymphoid Structures

Tonsil

Section of Spleen

Human Blood

Red and White Corpuscles

Red Corpuscle

White Corpuscles

Amphibian Blood.

Red and White Corpuscles

White Corpuscles

Practical Department

SWEET BRIAR

Practical Department

SWEET BRIAR

Practical Department

SWEET BRIAR

THE HARCOURT BINDERS

ADAPTED TO ALL WORK WHERE
THE LOOSE LEAF SYSTEM IS USED
ORIGINALLY DESIGNED FOR

NATIONAL PHYSICS NOTE-BOOK SHEETS,

L. E. KNOTT APPARATUS COMPANY, BOSTON

Name

School

Subject

