

Find (aw, yn) in world coordinate frame
Proof using Basis vectors
•
In Linear algebra, Basis vectors are set of ontho normal unit vectors that spain the entire share
Shan is the set of all vectors that can be obtained by linear combinations of a given set of vectors
Shan $\{a,b\} = \{\frac{\alpha a + \beta b}{\alpha \beta \beta$
Standard Basis Vector.
For example, in $(R^2 \hat{i} = \{i\})$
For example, in (R^2) $\hat{i} = \begin{bmatrix} i \\ 0 \end{bmatrix}$, $\hat{d} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in $[R^3]$ $\hat{i} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\hat{k} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
$ R^{n} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$
Basis vectors for IR" Locallo vectors innust be perpendicular/orthogonal to each other
LE They must be writ vedors LO They must show the enture shace IR"
Busis verton for (Xw, Yw) be standard busis verton [in = [o] , fin = [o]

Let

Any point
$$(x_w) = x_w \begin{bmatrix} 0 \\ y_w \end{bmatrix} + y_w \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Any point in the object $(x_0) = x_0 \cdot \hat{x}_0 + y_0 \cdot \hat{y}_0$

would object $(x_0) = x_0 \cdot \hat{x}_0 + y_0 \cdot \hat{y}_0$

would object $(x_0) = x_0 \cdot \hat{x}_0 + y_0 \cdot \hat{y}_0$
 $(x_0) = x_0 \cdot \hat{x}_0 + y_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{x}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

Recently $(x_0) = x_0 \cdot \hat{y}_0 \cdot \hat{y}_0$

$$\begin{bmatrix}
\chi_{u} \\
y_{u}
\end{bmatrix} = \begin{bmatrix}
\nu R(0) \\
\gamma_{0}
\end{bmatrix}
\begin{bmatrix}
\chi_{0} \\
y_{0}
\end{bmatrix}$$

$$\begin{bmatrix}
\chi_{0} \\
\gamma_{0}
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma_{0}
\end{bmatrix} = \begin{bmatrix}
\chi_{0} \\
\gamma_{0}
\end{bmatrix}
\begin{bmatrix}
\chi_{0} \\
\gamma_{0}$$

$$R = T$$

$$R = T$$

$$R' = R'$$

$$R' = R'$$