# A lower bound to the Price of 1-envy freeness (i.e., k=1)

**Theorem 7**: The *Price of 1-envy-freeness for identical machines is at least min*  $\{n,m\}$ - $\varepsilon$ , for any (small)  $\varepsilon$ >0.

### **Proof:**

- We are going to show an instance where  $\frac{C_{\max}(1-Envy-OPT)}{C_{\max}(OPT)} \ge \min\{n,m\} \varepsilon$
- Consider an instance with m machines and n=m jobs, such that  $p_1 = 1-\epsilon$  for some (small)  $0<\epsilon<1$  and  $p_2 = p_3 = .... = p_n = 1$
- Notice that since k = 1, in any 1-envy-free scheduling, all the Machine completion time of the non-empty machines (i.e. machines that receive at least one job) must be equal.

•••

INPUT: n jobs, m machines (n=m)

| $p_i$ = | $J_1$ | J <sub>2</sub> | J <sub>3</sub> | ••• | <b>J</b> <sub>n</sub> |
|---------|-------|----------------|----------------|-----|-----------------------|
|         | 1-ε   | 1              | 1              | 1   | 1                     |



We have to understand what is an optimal 1-envy-free solution!

...

- Let us consider any schedule S for our instance that assignes jobs to at least two
  machines.
- Let  $M_i$  be a machine with the maximum number of jobs assigned in  $S_i$ , that is  $|S_i| \ge |S_j|$  for each  $j \ne i$  (notice that there could be more than one machines with the maximum number of jobs assigned).
- We have two cases:
  - Case 1) J₁ is assigned to some machine M₁≠M₁ in schedule S →
  - then  $M_i$  envies  $M_j$  because the completion time of  $M_j$  is strictly smaller than the completion time of  $M_i$ . In fact, the number of jobs assigned to  $M_j$  is at most the number of jobs assigned to  $M_i$  but the completion time of  $M_j$  is strictly smaller because  $J_1$  (the only job with processing time 1- $\epsilon$ ) is assigned to  $M_j$ .
  - Case 2) J₁ is assigned to M₁ in schedule S. →
  - Then consider the machines with the maximum number of jobs excluding  $\rm M_i$  . Let us call such machine  $\rm M_z$
  - It is easy to see that M<sub>i</sub> envies M<sub>7</sub> or M<sub>7</sub> envies M<sub>i</sub>.
  - In particular  $M_i$  envies  $M_z$  if the number of jobs assigned to  $M_i$  is strictly greater than the number of jobs assigned to  $M_z$ . Otherwise we have that  $|S_z| = |S_i|$  and therefore  $M_z$  envies  $M_i$  because  $J_1$  (the only job with processing time 1- $\varepsilon$ ) is assigned to  $M_i$ .
- Therefore the only feasible 1-envy-free solutions for our instance are the schedulings assigning all the jobs to one machine.
- Such a 1-envy-free scheduling has MAKESPAN equal to  $n-\varepsilon = m-\varepsilon = min\{n,m\}-\varepsilon$

. . .

- Summarizing, we have an instance where the price of 1-envy-freeness is at least :  $min\{n,m\}$ - $\varepsilon$
- That is,

$$\frac{C_{\max}(1 - Envy - OPT)}{C_{\max}(OPT)} = \frac{\min\{n, m\} - \varepsilon}{1} = \min\{n, m\} - \varepsilon$$

## An upper bound to the Price of k-envy freeness (k≥1)

**Theorem 8**: The Price of k-envy-freeness for identical machines is at most  $min \{n,m\}$ , for any  $k \ge 1$ .

### **Proof:**

- Case min{n,m}= n
  - Any schedule S that assignes all the jobs to only one machine is k-envy-free and the MAKESPAN for such solution is at most:  $n^* \max_{i=1,\dots,n} \{p_i\}$
  - Clearly the optimal k-envy-free scheduling has MAKESPAN at most such value.
  - The MAKESPAN of the optimal solution (non necessarily k-envy-free) is at least:  $\max_{i=1,...,n} \{p_i\}$

$$\frac{C_{\max}(k-Envy-OPT)}{C_{\max}(OPT)} \le \frac{C_{\max}(S)}{C_{\max}(OPT)} \le \frac{n*\max_{i=1,\dots,n} \{p_i\}}{\max_{i=1,\dots,n} \{p_i\}} = n$$

- Case min{n,m}= m
  - Any schedule S that assignes all the jobs to only one machine is k-envy-free and the MAKESPAN for such solution is the sum of all the processing times of all the jobs.
  - The MAKESPAN of the optimal solution is at least the sum of all the processing times of all the jobs divided by number of machines m.

$$\frac{C_{\max}(k - Envy - OPT)}{C_{\max}(OPT)} \le \frac{C_{\max}(S)}{C_{\max}(OPT)} \le \frac{\sum_{i=1}^{n} p_i}{\sum_{i=1}^{n} p_i} = m$$

## Value of *k*≥2

- Now we are going to prove a smaller bound to the price of k-envy-freeness for values of  $k \ge 2$ .
- Intuitively, by considering large values of k, we are extending the set of scheduling that are k-envy-free.
- Therefore there is hope that we can prove some better (i.e. smaller) bound to the price of k-envy-freeness!

## An upper bound to the Price of k-envy freeness (k≥2)

**Theorem 9**: The Price of k-envy-freeness for identical machines is at most 1+1/k, for any  $k \ge 2$ .

**Proof:** 

• We are going to show an algorithm that takes in input an optimal schedule OPT for the problem without k-envy-free constraint and transforms OPT into a k-envy-free scheduling whose MAKESPAN is at most 1+1/k the MAKESPAN of OPT.

Let us consider the algorithm of the next slide:

# ...An upper bound to the Price of k-envy freeness (k≥2)

#### The algorithm:

**INPUT**: Optimal schedule *OPT* for the problem without k-envy-free constraint.

- 1. Rescale all the machine completion times of OPT in a way that  $C_{max}(OPT)=1$ . We can get it by dividing all the processing times  $p_i$  by the value of the MAKESPAN of the optimal solution OPT (this is just to make the proof easier).
- 2. While there exists a pair of machines (j,j') such that  $MC_{j'}(OPT) + MC_{j'}(OPT) \le 1$  then:
  - $OPT_j = OPT_j \cup OPT_{j'}$ ; (OPT<sub>j</sub> is the set of jobs assigned to machine j in OPT)
  - $OPT_{i'} = \emptyset$ ;
- 3. End while. (Let m' be the number of machines with at least one job assigned);
- 4. Renumber (rename) the machines in non-increasing order of machine completion time, such that  $MC_1(OPT) \ge MC_2(OPT) \ge \dots \ge MC_{m'}(OPT)$ .
- 5. Create a new assignment S as follow:

```
    If MC<sub>m'</sub>(OPT)< 1/k then
        <p>
            ✓ S<sub>j</sub> = OPT<sub>j</sub> for each j=1,...,m'-2;
            ✓ S<sub>m'-1</sub> = OPT<sub>m'-1</sub> U OPT<sub>m'</sub>;
            ✓ S<sub>m'</sub> = Ø;

    else

            ✓ S<sub>j</sub> = OPT<sub>j</sub> for each j=1,...,m';

    End If.
```

6. Return S.

## ... An upper bound to the Price of k-envy freeness (k≥2)

- We first prove that the schedule S returned by the algorithm is k-envy-free.
- At line 4 of the algorithm,  $M_{m'}$  is the machine with the smallest machine completion time.
- We have two cases:
  - 1. (at line 5 of the algorithm), if  $MC_{m'}(OPT) \ge 1/k$  (that is the "else" branch of the If at line 5) then the returned S is k-envy free because all the other machines but  $M_{m'}$  have machine completion time at most 1, and clearly  $1 \le k^* MC_{m'}(OPT)$
  - 2. (at line 5 of the algorithm), if  $MC_{m'}(OPT) < 1/k$  then the algorithms moves all the jobs of machine  $M_{m'}$  to machine  $M_{m'-1}$ , obtaining a new schedule that we are going to prove it is kenvy-free.
    - notice that machine  $M_{m'-1}$  gets a machine completion time larger than 1 in S and therefore it is the machine with largest completion time in S. It means that if machine  $M_{m'-1}$  is not envious, then all the other machines are not envious as well.
    - $MC_{m'-1}(S) = MC_{m'-1}(OPT) + MC_{m'}(OPT) \le 2*MC_{m'-1}(OPT) \le k*MC_{m'-1}(OPT) \le k*MC_{j}(S)$  for any j=1,...,m'-1, and for any  $k\ge 2$ .

Thus we conclude that S is k-envy-free.

## ... An upper bound to the Price of k-envy freeness (k≥2)

- Now we analyse the MAKESPAN of the returned schedule S.
- The MAKESPAN of the optimal solution OPT is 1 (recall in the algorithm we rescale all the processing time so that the MAKESPAN of OPT is 1).
- We have two cases:
  - 1. (at line 5 of the algorithm), if MC<sub>m'</sub>(OPT)≥ 1/k (that is the "else" branch of the If at line 5) then in the returned scheduling S all the machines have machine completion time at most 1 and therefore it is optimal.
  - 2. (at line 5 of the algorithm), if  $MC_{m'}(OPT)<1/k$  then the algorithms returns a solution S whose MAKESPAN is given by machine  $M_{m'-1}$  that gets a machine completion time larger than 1 in S.

## ... An upper bound to the Price of k-envy freeness (k≥2)

In such a case we have that:

$$MC_{m'-1}(S) = MC_{m'-1}(OPT) + MC_{m'}(OPT) \le MC_{m'-1}(OPT) + 1/k \le 1 + 1/k.$$

 By recalling that the MAKESPAN of the optimal solution OPT is 1 (recall in the algorithm we rescale all the processing time so that the MAKESPAN of OPT is 1), we get that:

$$\frac{C_{\max}(k - Envy - OPT)}{C_{\max}(OPT)} \le \frac{C_{\max}(S)}{C_{\max}(OPT)} \le \frac{1 + 1/k}{1} = 1 + 1/k$$

# A lower bound to the Price of k-envy freeness (k≥2)

**Theorem 10**: The Price of k-envy-freeness for identical machines is at least  $1 + 1/k - \varepsilon$ , for any (small)  $\varepsilon$ >0, and for any  $k \ge 2$ .

## **Proof:**

- We are going to show an instance where  $\frac{C_{\max}(k-Envy\_OPT)}{C_{\max}(OPT)} \ge 1 + \frac{1}{k} \varepsilon$  for any small  $\varepsilon > 0$ .
- Consider an instance with m machines and n=m jobs, such that  $p_1 = 1/k \epsilon$  for some  $\epsilon > 0$  and  $p_2 = p_3 = .... = p_n = 1$ .
- It is easy to see that an optimal solution OPT (without the k-envy-free constraint) assigns a single job to each machine and the MAKESPAN is 1.
- Notice that such *OPT* is not k-envy-free, since each machine with completion time 1 envies the machine of completion time  $1/k \epsilon$  (in fact  $1 > k*(1/k \epsilon)$ .
- Indeed, any k-envy-free scheduling is forced to assign to some machine the job  $j_1$  together with at least another job  $j_i$  for a MAKESPAN of at least  $1 + 1/k \varepsilon$ .
- We get

$$\frac{C_{\max}(k - Envy - OPT)}{C_{\max}(OPT)} \ge \frac{1 + \frac{1}{k} - \varepsilon}{1} = 1 + \frac{1}{k} - \varepsilon$$