## **Survey of Active Learning**







- membership query synthesis: learner请求标注任何未标注样本,包括 learner<u>自身随机生成</u>的样本
- **stream-based**:基于某种query strategy依次检验样本究竟是否需要标注;
- pool-based: 每次根据query strategy排序整个数据集,确定一批未标注样本

# Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally \*\*CVPR 2017\*\*

Continuous fine-tuning

Start from AlexNet pre-trained on ImageNet, fine-tune with enlarged dataset.

Active candidate selection (query strategy)

Entropy and diversity.

Handling noisy label via majority selection

Data augmentation generate hard samples. Use top 1/4 confident part



## Classification uncertainty

### Inconsistency among patches

#### **Entropy**

#### **Diversity**

$$e_i^j = -\sum_{k=1}^{|Y|} p_i^{j,k} \log p_i^{j,k}$$

$$d_i(j, l) = \sum_{k=1}^{|Y|} (p_i^{j,k} - p_i^{l,k}) log \frac{p_i^{j,k}}{p_i^{l,k}}$$

| Prediction Patt | ern         | Example                                          | Entropy | Entropy <sup>1/4</sup> | Diversity | Diversity <sup>1/4</sup> | (Entropy+<br>Diversity) | (Entropy+<br>Diversity) <sup>1/4</sup> |
|-----------------|-------------|--------------------------------------------------|---------|------------------------|-----------|--------------------------|-------------------------|----------------------------------------|
| #               | A<br>1 Prob | {0.4 0.4 0.4 0.5 0.5<br>0.5 0.5 0.5 0.5 0.6 0.6} | 7.52    | 2.02                   | 4.38      | 0.00                     | 11.90                   | 2.02                                   |
| #               | B<br>1 Prob | {0.0 0.1 0.2 0.3 0.4 0.4 0.6 0.7 0.8 1.0 1.0}    | 4.57    | 0.83                   | 1237.21   | 20.79                    | 1241.77                 | 21.62                                  |
| el #            | C<br>1 Prob | {0.0 0.0 0.0 0.1 0.1<br>0.9 0.9 1.0 1.0 1.0 1.0} | 1.30    | 0.00                   | 2816.66   | 0.00                     | 2817.96                 | 0.00                                   |
| #               | D<br>1 Prob | {0.0 0.0 0.0 0.0 0.0<br>0.0 0.0 0.1 0.1 0.1 0.1} | 1.30    | 0.00                   | 189.54    | 0.00                     | 190.84                  | 0.00                                   |
| #1              | E<br>1 Prob | {0.9 0.9 0.9 0.9 1.0<br>1.0 1.0 1.0 1.0 1.0 1.0} | 1.30    | 0.00                   | 189.54    | 0.00                     | 190.84                  | 0.00                                   |
| #               | F<br>1 Prob | {0.0 0.0 0.1 0.1 0.1<br>0.1 0.2 0.2 0.3 0.9 1.0} | 3.24    | 0.33                   | 1076.87   | 13.54                    | 1080.11                 | 13.86                                  |
| #               | G<br>Prob   | {0.0 0.1 0.7 0.8 0.8<br>0.9 0.9 0.9 0.9 1.0 1.0} | 3.24    | 0.33                   | 1076.87   | 13.54                    | 1080.11                 | 13.86                                  |

noisy labe

## **Binary Classification**



#### Pulmonary Embolism(肺栓塞) Detection









Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

MICCAI 2017





## A new FCN for active learning

achieve state-of-the-art performance when all training data is used, while still able to produce reasonable results when very little training data is available.

## Query strategy 1: Uncertainty

**Bootstrapping**: train a set of models while restricting each of them to use a subset of the training data (generated by sampling with replacement) and calculate the variance (disagreement) among these models.



## Query strategy 2: Similarity

Select representative subset: deep learning models tend to be uncertainfor similar types of instances

$$sim(I_i, I_j) = cosine\_similarity(I_i^c, I_j^c)$$

$$f(S_a, I_x) = \max_{I_i \in S_a} sim(I_i, I_x)$$

find 
$$S_a$$
 that maximize  $F(\mathcal{S}_a, \mathcal{S}_u) = \sum_{I_i \in \mathcal{S}_u} f(\mathcal{S}_a, I_j)$ 

maximum set cover problem





Select representative





similar instance measured

| Method          | Mean IU | F1 score |
|-----------------|---------|----------|
| Uncertainty 50% | 0.858   | 0.849    |
| Our method 50%  | 0.875   | 0.871    |
| Our method full | 0.879   | 0.874    |

## lymph node ultrasound image segmentation



gland segmentation

# Query strategy

Uncertainty-based

Samples that are difficult for the classier to correctly classify

- mutual information Bayesian active learning for classication and preference learning.
- distance between samples and the decision boundary
- information entropy and risk expectation
- · dropout layers Deep bayesian active learning with image data.
- auxiliary loss prediction module

   Learning loss for active learning.
- combine GAN and VAE Dual Adversarial Network for Deep Active Learning

Representation-based

the most representative samples of the entire dataset