Sipna College of Engineering & Technology, Amravati. Department of Computer Science & Engineering

Branch :- Computer Sci. & Engg.
Subject :-Block Chain Fundamentals Lab manual
Teacher Manual

Class :- Final Year Sem :- VII

PRACTICAL NO 1

AIM: Understand basics of Block Chain and install various software's required to perform Blockchain practical's

INTRODUCTION TO BLOCK CHAIN:

What Is a Block chain?

A block chain is a distributed database or ledger that is shared among the nodes of a computer network. As a database, a block chain stores information electronically in digital format. Block chains are best known for their crucial role in cryptocurrency systems, such as Bitcoin, for maintaining a secure and decentralized record of transactions. The innovation with a block chain is that it guarantees the fidelity and security of a record of data and generates trust without the need for a trusted third party.

One key difference between a typical database and a block chain is how the data is structured. A block chain collects information together in groups, known as blocks, that hold sets of information. Blocks have certain storage capacities and, when filled, are closed and linked to the previously filled block, forming a chain of data known as the block chain. All new information that follows that freshly added block is compiled into a newly formed block that will then also be added to the chain once filled.

A database usually structures its data into tables, whereas a block chain, as its name implies, structures its data into chunks (blocks) that are strung together. This data structure inherently makes an irreversible timeline of data when implemented in a decentralized nature. When a block is filled, it is set in stone and becomes a part of this timeline. Each block in the chain is given an exact timestamp when it is added to the chain.

Some key features of Block Chain are:

- Blockchain is a type of shared database that differs from a typical database in the way that it stores information; blockchains store data in blocks that are then linked together via cryptography.
- As new data comes in, it is entered into a fresh block. Once the block is filled with data, it is chained onto the previous block, which makes the data chained together in chronological order.
- Different types of information can be stored on a blockchain, but the most common use so far has been as a ledger for transactions.
- In Bitcoin's case, blockchain is used in a decentralized way so that no single person or group has control—rather, all users collectively retain control.
- Decentralized blockchains are immutable, which means that the data entered is irreversible. For Bitcoin, this means that transactions are permanently recorded and viewable to anyone.

S/W REQUIRED:

We will be using various software for performing the practicals

1) **Phython:** Python is a powerful, high-level scripting language used by many developers around the globe. The language is ideal for a variety of real-world applications including web development, web scraping, and penetration testing.

How to intall Python in Ubuntu

Step 1: Setting Up Python 3

Ubuntu and other versions of Debian Linux ship with Python 3 pre-installed. To make sure that our versions are up-to-date, update your local package index:

sudo apt update

Then upgrade the packages installed on your system to ensure you have the latest versions:

sudo apt -y upgrade

The -y flag will confirm that we are agreeing for all items to be installed, but depending on your version of Linux, you may need to confirm additional prompts as your system updates and upgrades.

Once the process is complete, we can check the version of Python 3 that is installed in the system by typing:

python3 -V

You'll receive output in the terminal window that will let you know the version number. While this number may vary, the output will be similar to this:

Output

Python 3.8.10

To manage software packages for Python, let's install pip, a tool that will install and manage programming packages we may want to use in our development projects. You can learn more about modules or packages that you can install with pip by reading How To Import Modules in Python 3.

sudo apt install -y python3-pip

Python packages can be installed by typing:

pip3 install package name

Here, package_name can refer to any Python package or library, such as Django for web development or NumPy for scientific computing. So if you would like to install NumPy, you can do so with the command pip3 install numpy.

There are a few more packages and development tools to install to ensure that we have a robust setup for our programming environment:

sudo apt install -y build-essential libssl-dev libffi-dev python3-dev

Once Python is set up, and pip and other tools are installed, we can set up a virtual environment for our development projects.

Step 2: Setting Up Python 3

Virtual environments enable you to have an isolated space on your server for Python projects, ensuring that each of your projects can have its own set of dependencies that won't disrupt any of your other projects.

While there are a few ways to achieve a programming environment in Python, we'll be using the **venv** module here, which is part of the standard Python 3 library. Let's install venv by typing:

sudo apt install -y python3-venv

With this installed, we are ready to create environments. Let's either choose which directory we would like to put our Python programming environments in, or create a new directory with mkdir, as in:

mkdir environments

then navigate to the directory where you'll store your programming environments:

cd environments

Once you are in the directory where you would like the environments to live, you can create an environment by running the following command:

python3 -m venv my env

Essentially, pyvenv sets up a new directory that contains a few items which we can view with the ls command:

ls my env

Output

bin include lib lib64 pyvenv.cfg share

To use this environment, you need to activate it, which you can achieve by typing the following command that calls the activate script:

source my env/bin/activate

Our command prompt will now be prefixed with the name of your environment, in this case it is called my_env. Depending on what version of Debian Linux you are running, your prefix may appear somewhat differently, but the name of your environment in parentheses should be the first thing you see on your line:

(my env) Sammy@ubuntu:~enviornment\$

open up a command line text editor such as nano and create a new file:

nano hello.py

2) Etherum:

• Ethereum is a decentralized open-source platform based on blockchain domain, used to run smart contracts i.e. applications that execute the program exactly as it was programmed without the possibility of any fraud, interference from a third party, censorship, or downtime. It serves a platform for nearly 2,60,000 different cryptocurrencies. Ether is a cryptocurrency generated by ethereum miners, used to reward for the computations performed to secure the blockchain.

• Ethereum Virtual Machine(EVM)

Ethereum Virtual Machine abbreviated as EVM is a runtime environment for executing smart contracts in ethereum. It focuses widely on providing security and execution of untrusted code using an international network of public nodes. EVM is specialized to prevent Denial-of-service attack and confirms that the program does not have any access to each other's state, also ensures that the communication is established without any potential interference.

Solidity

Solidity is a brand-new programming language created by the Ethereum which is the second-largest market of cryptocurrency by capitalization, released in the year 2015 led by Christian Reitwiessner.

Some, key features of solidity are listed below:

- o Solidity is a high-level programming language designed for implementing smart contracts.
- o It is statically-typed object-oriented(contract-oriented) language.
- o Solidity is highly influenced by Python, c++, and JavaScript which runs on the Ethereum Virtual Machine(EVM).
- o Solidity supports complex user-defined programming, libraries and inheritance.
- Solidity is primary language for blockchains running platforms.
- o Solidity can be used to creating contracts like voting, blind auctions, crowdfunding, multi-signature wallets, etc.

• Smart Contract

Smart contracts are high-level program codes that are compiled to EVM byte code and deployed to the ethereum blockchain for further execution. It allows us to perform credible transactions without any interference of the third party, these transactions are trackable and irreversible. Languages used to write smart contracts are Solidity (a language library with similarities to C and JavaScript), Serpent (similar to Python, but deprecated), LLL (a low-level Lisp-like language), and Mutan (Go-based, but deprecated).

REMIX IDE

Remix IDE allows developing, deploying and administering smart contracts for Ethereum like blockchains. It can also be used as a learning platform.

The Remix is an Integrated Development Environment(IDE) for developing smart contracts in Solidity programming language. The IDE can be used to write, compile, and debug the Solidity code. It was written in JavaScript and supports testing, debugging and deploying smart contracts, and much more.

Remix-IDE can be accessed in many different ways:

O You can use it online in any browser of your choice, by entering the URL: https://remix.ethereum.org/ in the browser.

o Or you can install it in your own system

Steps to install Remix IDE

Step 1:

INSTALLATION:

Remix-ide has been published as an npm module Install npm and node.js, then do:

npm install -g @remix-project/remixd

Step 2:

Docker

o Run this command to download the current stable release of Docker Compose:

```
sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
```

o Apply executable permissions to the binary:

sudo chmod +x /usr/local/bin/docker-compose

Run with docker

docker pull remixproject/remix-ide:remix live

docker run -p 8080:80 remixproject/remix-ide:remix live

Step 3:

Then go to http://localhost:8080 and you can use your Remix instance.

CONCLUSION: Thus we have studied basics of Block Chain and installed various software's required to perform Blockchain practical's