Experi	men	t (LI	•	M.	IM	0	Col	nmw	1iCat	ions				Ļ
pemost															+
student	: Ho	adxia	ing	Hu	an g		CI	D:	024	703	13				_
															-
X . Set	up	ba Si	.C	Para	ame	ters									-
clear all															-
% Basic P SNR_dB =	0:1:30;	% SNR in		0/ CND :	. 14	1 .									H
SNR_linea N = 5:1:1 num_simul C_ergodic	0; % Num ations =	ber of i 10000;	nput and % Number	d output of Mont	antenna te Carlo	s at the simulat	ions		tv matni						-
						SNA					om O	dB 7	to 30	'dB	
and	numbe	r of	ant	Ennas	fk	9m 3	s to	10.	Ī	also	det	ine .	the		Γ
num	ber o	of M	onte	Car	l0 :	sim ul	ution	t	imes	ano	l C)_ er,	90dic	,	ſ
			re												_
. M	onte	2 (arlo	7 S	imu	latio	M								-
Fah	ī.M	Mo	Syst	en.	NR.	= NT		ر ک	the 1	Zayle;	igh	fadi	ng (honne	
Wat-	fix (α_n	be.	Presi	ents	as:		. •/		_					
//(~1	V 0/ C			, ,		as: Hij	= <u>Xi</u>	j+j{; 2.							ſ
										zero	mean	and	Unit	Vari and	<u>`</u> e
VV IM	$\frac{1}{2}$	heir	size	is	Nr X	ht									_
771		•													_

```
H are statistically independent over the time,
for each ergodic channels, the Shannon capacity is equal to
the statistical average
                           Cergodic = E[CH]
                 to derive close form expression of MIMO capacity
     is hard
                 two nested 100p to iterate over each SNR
          Use
         and each number of antennas (given by requirement.
      each SNR and antennas, I will run 10,000
          car lo simulation to obtain the statistical
overage Oa Pacity
 % for each defined SNR
 for SNR_index = 1:length(SNR_dB)
     SNR = SNR_linear(SNR_index);
     % for each number of antennas at the MIMO system
     for N index = 1:length(N)
        % define nR (number of receive antennas) = nT (number of transmit
        % antennas) in MIMO system
        nT = N(N index);
        nR = nT;
        sum_capacity = 0;% Predefine Sum the capacity over all Monte Carlo simulations
        % Monte Carlo simulation
        for sim_loop = 1:num_simulations
           % Generate random Rayleigh fading channel matrix
           H = sqrt(1/2)*(randn(nR, nT) + 1i * randn(nR, nT));
           % Calculate instantaneous channel capacity in this simulation
           C_H = log2(det(eye(nR) + SNR/nT * (H' * H)));
           % Sum the capacity over all simulations
           sum_capacity = sum_capacity + C_H;
        end
        % Statistical average the capacity over all simulations
        C_ergodic(N_index, SNR_index) = sum_capacity / num_simulations;
     end
 end
```


1. Parameters setting UP
Firstly, I initialize basic parameters like the number of
antennas nR=nT=2, measured SNR range, modulation order
M=4 F For QPSK], BER matrices etc.
[AND] the Simulation data size has been defined here as
well S num - bits = 126 /2number of Sended bits. S num - bits = 126 /2number of Sended bits. H- rounds = 3000 % Simulation times for each SNR.
Noted: Here, I choose bigger number of random matrices H than recommended 300 in remark2 to obtain
more precise and more smooth curve
Lastly, I generate random sended symbols sequence
based on :
$n_{\text{Symbol}} = n_{\text{bits}} * log_2^M$
Code Shown below

```
clear all;clc;close all;
% Basic Parameters
nT = 2; % Number of transmit antennas
nR = nT; % Number of receive antennas
SNR_dB_range= 0:5:35; % SNR in dB
step = 5;% SNR Iteration Step
M = 4; % QPSK modulation, so M=4
num bits = 1e6;% Number of sended bits
H rounds = 3000; % Number of random matrices H for each SNR
bit symbol = log2(M); % bit per symbol
num symbols = num bits/ bit symbol; % Number of sended symbols
AVG BER ZF = zeros(1,length(SNR dB range));%ZF detection Bit Error Rate
AVG_BER_ML = zeros(1,length(SNR_dB_range)); %ML detection Bit Error Rate
AVG_BER_MMSE = zeros(1,length(SNR_dB_range)); %MMSE detection Bit Error Rate
Tx_msg = randi([0, M-1], 1, num_symbols); % Generate random sended data
 2. Simulation
                                              Due to 4PAM= QPSk.
                                                                   tuction to obtain
                                            function Rx= QPSK(M,num_symbols,SNR_dB,Tx_msg, H)
                                               % Perform QPSK modulation using gray code
                                               Tx= qammod(Tx_msg, M, 'gray', 'UnitAveragePower', true);
                                               \% Reshape symbols into 2xN matrix for 2x2 MIMO
                                               Tx = reshape(Tx, 2, []);
                                               % Noise Matrix
                                               noise = sqrt(1/2) * (randn(2, num symbols/2) + 1i*randn(2, num symbols/2));
                                               % Receive Matrix (Y = HX + N)
                                               %Rx = H^* Tx + noise;
                                               SNR linear= power(10,SNR dB/10);
                                               Rx = sqrt(SNR_linear/ 2) *H * Tx + noise;
                        9
```

<i>∆</i> =	Detection arg min	$ y- \hat{p} $: HXI 2	=> (iom fore to find	standara nearest	d Point one
ef Def	ection;	PH) Y	3	MM 3=	SE De 9 { [-	tection:	f[) JAF Hy
			1 8		my Pr	29lam S	stru ture. I
🗄 📜 Par	rems&Ima			בו נשמ	<i> </i>	1 1004	
Exe	experimer ercise1.m	nt.pdf					Struture, I :
Exe Exe Exe ML ML MN QP QP	experimer ercise1.m	nt.pdf n.m n_Alam.m etion.m	-> M -> MM -> ZPSA	L Detection	tion ection Hion wit		
Exe Exe Exe ML ML MN MN QP QP QQ	experimer ercise1.m ercise2.m ercise3.m _Detection _Detection MSE_Detection SK_Alam.n	nt.pdf n.m n_Alam.m etion.m	-> M -> MM -> 2Ps/2		tion ection Hion wit		

