離散最適化基礎論 第 13 回 幾何アレンジメント (2): 浅胞複雑性と ε ネット

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2018年2月2日

最終更新: 2018年2月2日 01:31

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
3 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1) : <i>k</i> -センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)
$oldsymbol{6}$ 幾何ハイパーグラフ $(2):arepsilon$ ネット	(12/1)

スケジュール 後半

7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
8 幾何的被覆問題 (2):シフト法	(12/15)
9 幾何的被覆問題 (3):局所探索法 (準備)	(12/22)
🔟 幾何的被覆問題 (4):局所探索法	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
lue 幾何ハイパーグラフ (3) : $arepsilon$ ネット定理の証明	(1/19)
※ 幾何アレンジメント (1): 浅胞複雑度	(1/26)
$lacksymbol{\mathbb{E}}$ 幾何アレンジメント (2):浅胞複雑度と $arepsilon$ ネット	(2/2)
14 休み	(2/9)
15 期末試験	(2/16)

注意:予定の変更もありうる

- 1 前回の復習
- ② Sauer の補題の強化と個別代表系
- 3 Hall の結婚定理
- 4 Clarkson-Shor の技法を用いた証明
- 5 今日のまとめ

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: ハイパーグラフに対する ε ネット (ε -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=$$
 204, $arepsilon=1/8$ とすると, $arepsilon\cdot|V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: $\Lambda \Lambda$ アプラフに対する ε ネット $(\varepsilon$ -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=$$
 204, $arepsilon=1/8$ とすると, $arepsilon\cdot|V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: ハイパーグラフに対する ε ネット (ε -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=204$$
, $\varepsilon=1/8$ とすると, $\varepsilon\cdot |V|=25.5$

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: $\Lambda \Lambda$ アプラフに対する ε ネット $(\varepsilon$ -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=$$
 204, $\varepsilon=1/8$ とすると, $\varepsilon\cdot |V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: $\Lambda \Lambda$ アプラフに対する ε ネット $(\varepsilon$ -net)

H に対する ε ネットとは,次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して, $N \cap e \ne \emptyset$

$$|V|=$$
 204, $\varepsilon=1/8$ とすると, $\varepsilon\cdot |V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

問題

Hの ε ネットとして、どれくらい小さいものが作れるか?

- 小さければ小さいほどよい
- ▶ 小ささは *ε* に依存する?

問題に対する解答

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in (0, 1]$

定理:小さな ε ネットの存在性

- 第6回講義で証明済

要素数 $O\left(\frac{1}{\varepsilon}\log|E|\right)$ の ε ネットが存在する

定理: ε ネット定理

-- 第 11 回講義で証明済

要素数 $O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon}\right)$ の ε ネットが存在する

ただし、d = vc-dim(H)

darphi VC 次元が定数 $\Rightarrow arepsilon$ ネットの最小要素数は |V| や |E| に依存しない!

arepsilon ネット定理:特殊な場合

ハイパーグラフ H=(V,E), 実数 $arepsilon \in (0,1]$

定理: ε ネット定理

(Haussler, Welzl '87)

要素数 $O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon}\right)$ の ε ネットが存在する

ただし、d = vc-dim(H)

H が幾何的に得られる場合,要素数を更に小さくできることもある

▶ 半平面から得られる場合:

要素数 =
$$O\left(\frac{1}{\varepsilon}\right)$$

(Komlós, Pach, Woeginger '92)

▶ 円から得られる場合:

要素数 =
$$O\left(\frac{1}{\varepsilon}\right)$$

(Matoušek, Seidel, Welzl '90)

▶ 軸平行長方形から得られる場合:要素数 = $O\left(\frac{1}{\varepsilon}\log\log\frac{1}{\varepsilon}\right)$

(Aronov, Ezra, Sharir '10)

より小さな ε ネットはどんなときに存在するのか?

疑問

要素数が $O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon}\right)$ よりも小さい ε ネットは どのような場合に存在するのか?

この問題に対して、近年、大きな進展があった

回答の1つ

ハイパーグラフの<mark>浅胞複雑性</mark> (shallow-cell complexity) が関係している

ハイパーグラフH = (V, E), vc-dim(H) = d は定数

最適 ε ネット定理

要素数
$$O\left(\frac{1}{\varepsilon}\log\varphi_H\left(\frac{1}{\varepsilon}\right)\right)$$
 の ε ネットが存在する

ただし, $\varphi_H(n)$ は H の浅胞複雑性

最適 arepsilon ネット定理を誰が証明したのか,単一の論文を挙げるのは難しいが, 基本的な考え方は次の論文に基づく

- ▶ B. Aronov, E. Ezra, and M. Sharir: Small-size ϵ -nets for axis-parallel rectangles and boxes. SIAM Journal on Computing 39 (2010) 3248–3282.
- K. Varadarajan: Weighted geometric set cover via quasi uniform sampling. In Proc. STOC 2010, pp. 641–648.
- ► T.M. Chan, E. Grant, J. Könemann, and M. Sharpe: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In Proc. SODA 2012, pp. 1576–1585.

「最適 arepsilon ネット定理」としては,次の論文に証明がある

N.H. Mustafa, K. Dutta, and A. Ghosh: A simple proof of optimal epsilon-nets. Combinatorica, to appear.

ハイパーグラフ H = (V, E)

記法

任意の $X \subseteq V$ と任意の正整数 k に対して

$$E|_{X}^{\leq k} = \{e' \mid e' \in E|_{X}, |e'| \leq k\}$$

= \{e \cap X \cap e \in E, |e \cap X| \le k\}

浅胞複雑性 (shallow-cell complexity) とは?

H の浅胞複雑性とは、関数 $\varphi_H: \mathbb{N} \to \mathbb{N}$ で、次を満たすもの

ある定数 ℓ が存在して,

任意の $X \subseteq V$ と任意の正整数 k に対して

$$\left| E \right|_X^{\leq k} \right| \leq |X| \cdot \varphi_H(|X|) \cdot k^{\ell}$$

円板の浅胞複雑性

目標

次のハイパーグラフ H = (V, E) の浅胞複雑性が定数であることの証明

- $V \subseteq \mathbb{R}^2$
- ▶ $E = \{V \cap d \mid d \in \mathcal{D}\}$ ただし、 $\mathcal{D} = \{d_1, d_2, \dots, d_m\}$ は閉円板の集合

より具体的な目標

任意の $X \subseteq V$ と任意の正整数 k に対して、次を証明

$$\left|E|_X^{\leq k}\right| = O(k^2|X|)$$

X は固定して,

k=1 の場合, k=2 の場合, k=3 の場合, $k\geq 4$ の場合を分けて考える

円板の浅胞複雑性:前回行ったこと

目標

次のハイパーグラフ H = (V, E) の浅胞複雑性が定数であることの証明

- $V \subseteq \mathbb{R}^2$
- ▶ $E = \{V \cap d \mid d \in \mathcal{D}\}$ ただし, $\mathcal{D} = \{d_1, d_2, \dots, d_m\}$ は閉円板の集合

より具体的な目標

任意の $X \subseteq V$ と任意の正整数 k に対して、次を証明

$$\left|E|_X^{\leq k}\right| = O(k^2|X|)$$

X は固定して,

$$k=1$$
 の場合, $k=2$ の場合, $k=3$ の場合, $\left|E|_X^{\leq k}\right|=O(|X|)$

今から行うこと

設定

ハイパーグラフ H = (V, E), vc-dim $(H) = d \ge 2$ は定数

ト 任意の $X\subseteq V$ と任意の $k\in\{1,2,\ldots,d\}$ に対して, $\left|E|_X^{\leq k}\right|=O(|X|)$

H が円板から得られるとき、d=3 (演習問題 5.10.1)

目標

任意の $X \subseteq V$ と任意の正整数 $k \ge d$ に対して、次を証明

$$\left|E|_X^{\leq k}\right| = O(k^{d-1}|X|)$$

以下, *X* は固定する

- 1 前回の復習
- 2 Sauer の補題の強化と個別代表系
- ❸ Hall の結婚定理
- 4 Clarkson-Shor の技法を用いた証明
- 5 今日のまとめ

有限集合 A,自然数 k

記法:要素数 k の部分集合全体から成る集合族

$$\binom{A}{k} = \{B \mid B \subseteq A, |B| \le k\}$$

例: $A = \{a, b, c, d\}$ のとき,

$$\begin{pmatrix} A \\ 1 \end{pmatrix} = \{\{a\}, \{b\}, \{c\}, \{d\}\} \}$$

$$\begin{pmatrix} A \\ 2 \end{pmatrix} = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\} \}$$

$$\begin{pmatrix} A \\ 3 \end{pmatrix} = \{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$$

ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題 (Sauer の補題の強化)

$$|E| \le \left| \bigcup_{e \in E} \left({e \choose 0} \cup {e \choose 1} \cup {e \choose 2} \cup \cdots \cup {e \choose d} \right) \right|$$

実際,次のように、この補題から Sauer の補題が得られる

$$|E| \leq \left| \bigcup_{e \in E} \left(\binom{e}{0} \cup \binom{e}{1} \cup \binom{e}{2} \cup \dots \cup \binom{e}{d} \right) \right|$$

$$= \left| \bigcup_{e \in E} \bigcup_{j=0}^{d} \binom{e}{j} \right| = \left| \bigcup_{j=0}^{d} \bigcup_{e \in E} \binom{e}{j} \right| \leq \left| \bigcup_{j=0}^{d} \binom{V}{j} \right| = \sum_{j=0}^{d} \binom{|V|}{j}$$

補題の証明は Sauer の補題と同じように行なえる (演習問題)

ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題 (Sauer の補題の強化)

$$|E| \le \left| \bigcup_{e \in E} \left({e \choose 0} \cup {e \choose 1} \cup {e \choose 2} \cup \cdots \cup {e \choose d} \right) \right|$$

任意の $E' \subseteq E$ に対して,H' = (V, E') とすると,

$$\operatorname{vc-dim}(H') \leq \operatorname{vc-dim}(H) = d$$

補題の系

任意の $E' \subseteq E$ に対して,

$$|E'| \leq \left| \bigcup_{e \in E'} \left(\binom{e}{0} \cup \binom{e}{1} \cup \binom{e}{2} \cup \dots \cup \binom{e}{d} \right) \right|$$

補題の系

任意の $E' \subset E$ に対して,

$$|E'| \le \left| \bigcup_{e \in E'} \left({e \choose 0} \cup {e \choose 1} \cup {e \choose 2} \cup \dots \cup {e \choose d} \right) \right|$$

$$E = \{\{1,2,3\},\{1,2,3,4\},\{2,3,4\},\{3,4\},\{4\}\}, VC$$
次元 = 2

補題の系

任意の $E' \subset E$ に対して,

$$|E'| \le \left| \bigcup_{e \in E'} \left({e \choose 0} \cup {e \choose 1} \cup {e \choose 2} \cup \dots \cup {e \choose d} \right) \right|$$

$$E = \{\{1,2,3\},\{1,2,3,4\},\{2,3,4\},\{3,4\},\{4\}\}, VC$$
次元 = 2

ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題の系の系 (個別代表系)

各 $e \in E$ に対して,

要素数 d 以下の異なる集合 $B(e) \subseteq V$ を割り当てられる

「補題の系」と「二部グラフに対する Hall の結婚定理」を組み合わせると 証明できる ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題の系の系 (個別代表系)

各 $e \in E$ に対して,

要素数 d 以下の異なる集合 $B(e) \subseteq V$ を割り当てられる

「補題の系」と「二部グラフに対する Hall の結婚定理」を組み合わせると 証明できる

グラフにおけるマッチング

無向グラフ G = (V, E)

<u>マッチングとは?</u>

G のマッチングとは辺部分集合 $M \subset E$ で, Mのどの2辺も同じ頂点に接続しないもの

 $\{\{v_1, v_2\}, \{v_4, v_7\}, \{v_6, v_8\}\}\$ $\{\{v_1, v_3\}, \{v_2, v_5\}, \{v_2, v_6\}\}\$ $\{\{v_1, v_2\}, \{v_2, v_5\}, \{v_2, v_6\}\}\$ マッチングである

マッチングではない

マッチングの辺 $e \in M$ は e の端点を飽和する

無向グラフ G = (V, E)

最大マッチングとは?

- G の最大マッチングとは G のマッチング $M \subseteq E$ で,
- G の任意のマッチング M' に対して $|M| \ge |M'|$ を満たすもの

最大マッチングではない

最大マッチングである

二部グラフに対する Hall の結婚定理

二部グラフ G = (V, E), 部集合 A, B

Hall の結婚定理

任意の頂点集合 $S \subseteq A$ に対して, $|S| \le |N(S)| \Rightarrow A$ の頂点をすべて飽和するマッチングを G が持つ

例:

二部グラフに対する Hall の結婚定理

二部グラフ G = (V, E), 部集合 A, B

Hall の結婚定理

任意の頂点集合 $S \subseteq A$ に対して, $|S| \le |N(S)| \Rightarrow A$ の頂点をすべて飽和するマッチングを G が持つ

例:

個別代表系と Hall の結婚定理

ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題の系の系 (個別代表系)

各 $e \in E$ に対して,

要素数 d 以下の異なる集合 $B(e) \subseteq V$ を割り当てられる

補題の系

任意の $E' \subseteq E$ に対して,

$$|E'| \le \left| \bigcup_{e \in E'} \left({e \choose 0} \cup {e \choose 1} \cup {e \choose 2} \cup \dots \cup {e \choose d} \right) \right|$$

- 1 前回の復習
- ② Sauer の補題の強化と個別代表系
- 3 Hall の結婚定理
- 4 Clarkson-Shor の技法を用いた証明
- 5 今日のまとめ

二部グラフに対する Hall の結婚定理

二部グラフ G = (V, E), 部集合 A, B

Hall の結婚定理

任意の頂点集合 $S \subseteq A$ に対して、 $|S| \le |N(S)| \Rightarrow A$ の頂点をすべて飽和するマッチングを G が持つ

例:

Hall の結婚定理:証明 (1)

二部グラフ G = (V, E), 部集合 A, B

Hall の結婚定理

任意の頂点集合 $S \subseteq A$ に対して, $|S| \le |N(S)| \Rightarrow A$ の頂点をすべて飽和するマッチングを G が持つ

証明:そのようなマッチングを持たないとする

- MをGの最大マッチングとする
- ▶ 仮定より, M が飽和しない A の頂点が存在. それを $u \in A$ とする
- ▶ · · · ← 今からここを埋める
- ▶ したがって、そのような S に対して |S| > |N(S)|

Hall の結婚定理:証明 (2)

- ► S = {a ∈ A | u から始まるある交互道が a で終わる } とする
- ► T = {b ∈ B | u から始まるある交互道が b で終わる } とする

観察 $1: S - \{u\}$ の頂点には M の辺が接続

▶ S の構成法からすぐに分かる

観察 2: T の頂点には M の辺が接続

▶ そうでないとすると増加道が存在し、Mの最大性に矛盾

ここまでの結論: $|T| = |S - \{u\}| = |S| - 1 < |S|$

観察 $3: N(S) \subseteq T$

- b ∈ N(S) とする
- ▶ つまり、ある a ∈ S が存在して {a, b} ∈ E
- $ightharpoonup \{a,b\} \in M$ ならば、u から b を経由して a に至る交互道が存在
- ▶ $\{a,b\} \in E M$ ならば、u から a を経由して b に至る交互道が存在
- ▶ : いずれにしても u から b へ至る交互道が存在
- **▶** ∴ *b* ∈ *T*

観察 $3: N(S) \subseteq T$

- b ∈ N(S) とする
- ▶ つまり、ある a ∈ S が存在して {a, b} ∈ E
- lacksquare $\{a,b\}\in M$ ならば,u から b を経由して a に至る交互道が存在
- ▶ $\{a,b\} \in E M$ ならば、u から a を経由して b に至る交互道が存在
- ▶ : いずれにしても u から b へ至る交互道が存在
- **▶** ∴ *b* ∈ *T*

観察 $3: N(S) \subseteq T$

- b ∈ N(S) とする
- ▶ つまり、ある a ∈ S が存在して {a, b} ∈ E
- lacksquare $\{a,b\}\in M$ ならば,u から b を経由して a に至る交互道が存在
- ▶ $\{a,b\} \in E M$ ならば、u から a を経由して b に至る交互道が存在
- ▶ : いずれにしても u から b へ至る交互道が存在
- **▶** ∴ *b* ∈ *T*

観察 $3: N(S) \subseteq T$

- b ∈ N(S) とする
- ▶ つまり、ある a ∈ S が存在して {a, b} ∈ E
- lacksquare $\{a,b\}\in M$ ならば,u から b を経由して a に至る交互道が存在
- ▶ $\{a,b\} \in E M$ ならば、u から a を経由して b に至る交互道が存在
- ▶ ∴ いずれにしても u から b へ至る交互道が存在
- **▶** ∴ *b* ∈ *T*

観察 $3: N(S) \subseteq T$

- b ∈ N(S) とする
- ▶ つまり、ある a ∈ S が存在して {a, b} ∈ E
- $ightharpoonup \{a,b\} \in M$ ならば、u から b を経由して a に至る交互道が存在
- ▶ $\{a,b\} \in E M$ ならば、u から a を経由して b に至る交互道が存在
- ▶ ∴ いずれにしても u から b へ至る交互道が存在
- **▶** ∴ *b* ∈ *T*

観察 $3: N(S) \subseteq T$

- b ∈ N(S) とする
- ▶ つまり、ある a ∈ S が存在して {a, b} ∈ E
- lacksquare $\{a,b\}\in M$ ならば,u から b を経由して a に至る交互道が存在
- ▶ $\{a,b\} \in E M$ ならば、u から a を経由して b に至る交互道が存在
- ▶ ∴ いずれにしても u から b へ至る交互道が存在
- **▶** ∴ *b* ∈ *T*

二部グラフ G = (V, E), 部集合 A, B

Hall の結婚定理

任意の頂点集合 $S \subseteq A$ に対して, $|S| \le |N(S)| \Rightarrow A$ の頂点をすべて飽和するマッチングを G が持つ

証明:そのようなマッチングを持たないとする

- MをGの最大マッチングとする
- ▶ 仮定より、M が飽和しない A の頂点が存在. それを $u \in A$ とする
- ► S = {a ∈ A | u から始まるある交互道が a で終わる } とする
- ► T = {b ∈ B | u から始まるある交互道が b で終わる } とする
- ▶ Tの頂点と S {u} の頂点には M の辺が接続 (観察1と2)
- ▶ また、N(S) ⊆ T (観察 3)
- ▶ したがって,そのようなSに対して $|S| > |S| 1 = |T| \ge |N(S)|$

- 1 前回の復習
- ② Sauer の補題の強化と個別代表系
- 3 Hall の結婚定理
- 4 Clarkson-Shor の技法を用いた証明
- 5 今日のまとめ

今から行うこと (再掲)

設定

ハイパーグラフ H = (V, E), $\operatorname{vc-dim}(H) = d \ge 2$ は定数

ト 任意の $X\subseteq V$ と任意の $k\in\{1,2,\ldots,d\}$ に対して, $\left|E|_X^{\leq k}\right|=O(|X|)$

H が円板から得られるとき,d=3 (演習問題 5.10.1)

目標

任意の $X \subseteq V$ と任意の正整数 $k \ge d$ に対して、次を証明

$$\left|E|_X^{\leq k}\right| = O(k^{d-1}|X|)$$

以下, $X \ge k \ge d$ は固定する

個別代表系 (再掲)

ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題の系の系 (個別代表系)

各 $e \in E$ に対して,

要素数 d 以下の異なる集合 $B(e) \subseteq V$ を割り当てられる

「補題の系」と「二部グラフに対する Hall の結婚定理」を組み合わせると 証明できる

個別代表系 (再掲)

ハイパーグラフ H = (V, E), vc-dim $(H) \le d$

補題の系の系 (個別代表系)

各 $e \in E$ に対して,

要素数 d 以下の異なる集合 $B(e) \subseteq V$ を割り当てられる

「補題の系」と「二部グラフに対する Hall の結婚定理」を組み合わせると 証明できる

証明の完結 (1)

核となるアイディア

Xの各要素を確率 1/k で独立に選ぶ

- ightharpoonup 選ばれた要素の集合を \tilde{X} とする
- ▶ 各 $e \in E|_X^{\leq k}$ に対して,次の条件を満たす e をよい辺と呼ぶ
 - ▶ B(e) の要素がすべて選ばれる
 - ▶ それ以外の要素がどれも選ばれない

考えるもの

▶ E[よい辺の総数]

証明の完結 (2)

ightharpoonup 任意の辺 $e\in E|_X^{\leq k}$ に対して

$$\Pr(e \, \,$$
がよい辺 $) = \left(\frac{1}{k}\right)^{|B(e)|} \left(1 - \frac{1}{k}\right)^{|e-B(e)|}$ $\geq \left(\frac{1}{k}\right)^{|B(e)|} \left(1 - \frac{1}{k}\right)^{k-|B(e)|}$ $\geq \left(\frac{1}{k}\right)^{d} \left(1 - \frac{1}{k}\right)^{k-d}$

▶ したがって、B(e) は e によって異なるので、

$$\mathsf{E}[$$
よい辺の総数 $] = \sum_{e \in E|_{V}^{\leq k}} \mathsf{Pr}(e \;$ がよい辺 $) \geq \left| E_{X}^{\leq k} \right| \left(\frac{1}{k} \right)^{d} \left(1 - \frac{1}{k} \right)^{k-d}$

証明の完結 (3)

選ばれた要素の集合 $\tilde{X} \subseteq X$ に対して

- ullet e がよい辺 \Leftrightarrow $|e\cap ilde{X}|=|B(e)|\leq d$
- ight
 ight. : . よい辺の総数 $\leq \left| E|_{ ilde{X}}^{\leq d}
 ight| = O(| ilde{X}|)$

したがって

ト $\mathsf{E}[\mathsf{L}$ い辺の総数] = $\mathsf{E}[O(|\tilde{X}|)] = \frac{1}{k}O(|X|)$

証明の完結 (3)

総合すると,

$$\begin{aligned}
\left| E_X^{\leq k} \right| \left(\frac{1}{k} \right)^d \left(1 - \frac{1}{k} \right)^{k-d} & \leq \frac{1}{k} O(|X|) \\
& \therefore \quad \left| E_X^{\leq k} \right| & \leq k^{d-1} \left(\frac{k}{k-1} \right)^{k-d} O(|X|) \\
& = k^{d-1} (1 + \frac{1}{k-1})^{k-d} O(|X|) \\
& \leq k^{d-1} e^{(k-d)/(k-1)} O(|X|) \\
& = O(k^{d-1}|X|)
\end{aligned}$$

これで証明終了

- 1 前回の復習
- ② Sauer の補題の強化と個別代表系
- ❸ Hall の結婚定理
- 4 Clarkson-Shor の技法を用いた証明
- 5 今日のまとめ

残った時間の使い方

- ▶ 授業評価アンケート
- ▶ 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

- 1 前回の復習
- ② Sauer の補題の強化と個別代表系
- 3 Hall の結婚定理
- 4 Clarkson-Shor の技法を用いた証明
- 5 今日のまとめ