Directional Derivatives and Gradients

David Robinson

Directional Derivatives

Let z = f(x, y) be a function of two variables x and y, and assume that f_x and f_y exist and f(x, y) is differentiable everywhere. Then, the directional derivative of f in the direction of $\mathbf{u} = \cos \theta \, \mathbf{i} + \sin \theta \, \mathbf{j}$ is given by

$$D_u f(x, y) = f_x(x, y) \cos \theta + f_y(x, y) \sin \theta$$

Let f(x, y, z) be a differentiable function of three variables and let $\mathbf{u} = \cos \alpha \, \mathbf{i} + \cos \beta \, \mathbf{j} + \cos \gamma \, \mathbf{k}$ be a unit vector. Then, the directional derivative of f in the direction of \mathbf{u} is given by

$$D_u f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u} = f_x(x, y, z) \cos \alpha + f_y(x, y, z) \cos \beta + f_z(x, y, z) \cos \gamma$$

Gradients

Let z = f(x, y) be a function of x and y such that f_x and f_y exist. The vector $\nabla f(x, y)$ is called the **gradient** of f and is defined as

$$\nabla f(x,y) = f_x(x,y) \mathbf{i} + f_y(x,y) \mathbf{j}$$

Properties of the Gradient

Suppose the function z = f(x, y) is differentiable at (x_0, y_0) .

- 1. If $\nabla f(x_0, y_0) = 0$, then $D_u f(x_0, y_0) = 0$ for any unit vector u.
- 2. If $\nabla f(x_0, y_0) \neq 0$, then $D_u f(x_0, y_0)$ is maximized when u points in the same direction as $\nabla f(x_0, y_0)$. The maximum value of $D_u f(x_0, y_0)$ is $\|\nabla f(x_0, y_0)\|$.
- 3. If $\nabla f(x_0, y_0) \neq 0$, then $D_u f(x_0, y_0)$ is minimized when u points in the opposite direction from $\nabla f(x_0, y_0)$. The minimum value of $D_u f(x_0, y_0)$ is $-\|\nabla f(x_0, y_0)\|$.

Level Curves

Suppose the function z = f(x, y) has continuous first-order partial derivatives in an open disk centered at a point (x_0, y_0) . If $\nabla f(x_0, y_0) \neq 0$, then $\nabla f(x_0, y_0)$ is normal to the level curve of f at (x_0, y_0) .