Graph Algorithms

Graphs

- A graph G = (V, E)
 - V = set of vertices
 - \blacksquare E = set of edges = subset of V × V
 - Thus $|E| = O(|V|^2)$

Graph Variations

- Variations:
 - A connected graph has a path from every vertex to every other
 - In an undirected graph:
 - \circ Edge (u,v) = edge (v,u)
 - No self-loops
 - In a *directed* graph:
 - \circ Edge (u,v) goes from vertex u to vertex v, notated u \rightarrow v

Graph Variations

- More variations:
 - A weighted graph associates weights with either the edges or the vertices
 - E.g., a road map: edges might be weighted w/ distance
 - A multigraph allows multiple edges between the same vertices
 - E.g., the call graph in a program (a function can get called from multiple points in another function)

Graphs

- We will typically express running times in terms of |E| and |V| (often dropping the |'s)
 - If $|E| \approx |V|^2$ the graph is *dense*
 - If $|E| \approx |V|$ the graph is *sparse*
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Representing Graphs

- Assume $V = \{1, 2, ..., n\}$
- An adjacency matrix represents the graph as a n x n matrix A:
 - A[i, j] = 1 if edge (i, j) \in E (or weight of edge) = 0 if edge (i, j) \notin E

• Example:

A	1	2	3	4
1				
2				
3			??	
4				

• Example:

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

- How much storage does the adjacency matrix require?
- A: $O(V^2)$
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits
 - Undirected graph \rightarrow matrix is symmetric
 - No self-loops \rightarrow don't need diagonal

- The adjacency matrix is a dense representation
 - Usually too much storage for large graphs
 - But can be very efficient for small graphs
- Most large interesting graphs are sparse
 - E.g., planar graphs, in which no edges cross, have |E| = O(|V|) by Euler's formula
 - For this reason the *adjacency list* is often a more appropriate respresentation

Graphs: Adjacency List

- Adjacency list: for each vertex v ∈ V, store a list of vertices adjacent to v
- Example:
 - \blacksquare Adj[1] = {2,3}
 - Adj[2] = {3}
 - \blacksquare Adj[3] = {}
 - Adj[4] = {3}
- Variation: can also keep
 a list of edges coming *into* vertex

Graphs: Adjacency List

- How much storage is required?
 - The *degree* of a vertex v = # incident edges
 - Directed graphs have in-degree, out-degree
 - For directed graphs, # of items in adjacency lists is Σ out-degree(v) = |E| takes $\Theta(V + E)$ storage (Why?)
 - For undirected graphs, # items in adj lists is Σ degree(v) = 2 |E| also $\Theta(V + E)$ storage
- So: Adjacency lists take O(V+E) storage

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a *forest* if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- Again will associate vertex "colors" to guide the algorithm
 - White vertices have not been discovered
 - All vertices start out white
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = \{s\}; // Q is a queue (duh); initialize to s
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v \in u->adj {
             if (v->color == WHITE)
                 v->color = GREY;
                 v - > d = u - > d + 1;
                                      What does v->d represent?
                 v - p = u;
                                      What does v->p represent?
                 Enqueue(Q, v);
        u->color = BLACK;
```


Q: s

Q: | w | r |

 $Q: \begin{array}{|c|c|c|c|c|} \hline r & t & x \\ \hline \end{array}$

Q: u y

Q: Ø

BFS: The Code Again

```
BFS(G, s) {
      initialize vertices; \longleftarrow Touch every vertex: O(V)
      Q = \{s\};
      while (Q not empty) {
           u = RemoveTop(Q); \leftarrow u = every vertex, but only once
           for each v \in u->adj {
                                                         (Why?)
               if (v->color == WHITE)
So v = every vertex v -> color = GREY;
               v->d = u->d + 1;
that appears in
some other vert's v->p = u;
                   Enqueue(Q, v);
adjacency list
           u->color = BLACK;
                                  What will be the running time?
                                  Total running time: O(V+E)
```

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
 - Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s
 - Proof given in the book (p. 472-5)
- BFS builds *breadth-first tree*, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Review: Depth-First Search

- Depth-first search is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex v that still has unexplored edges
 - When all of v's edges have been explored, backtrack to the vertex from which v was discovered

Review: DFS Code

```
DFS(G)
   for each vertex u ∈ G->V
      u->color = WHITE;
   time = 0;
   for each vertex u \in G->V
      if (u->color == WHITE)
         DFS_Visit(u);
```

```
DFS_Visit(u)
   u->color = YELLOW;
   time = time+1;
   u - d = time;
   for each v \in u-Adj[]
      if (v->color == WHITE)
         DFS_Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```


What is the structure of the yellow vertices? What do they represent?

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - The tree edges form a spanning forest
 - Can tree edges form cycles? Why or why not?

Tree edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Encounter a yellow vertex (yellow to yellow)

Tree edges Back edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - *Forward edge*: from ancestor to descendent
 - Not a tree edge, though
 - From yellow node to black node

Tree edges Back edges Forward edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - *Forward edge*: from ancestor to descendent
 - Cross edge: between a tree or subtrees
 - From a yellow node to a black node

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - *Forward edge*: from ancestor to descendent
 - Cross edge: between a tree or subtrees
- Note: tree & back edges are important; most algorithms don't distinguish forward & cross

DFS And Cycles

• How would you modify the code to detect cycles?

```
DFS(G)
   for each vertex u ∈ G->V
      u->color = WHITE;
   time = 0;
   for each vertex u ∈ G->V
      if (u->color == WHITE)
         DFS_Visit(u);
```

```
DFS_Visit(u)
   u->color = GREY;
   time = time+1;
   u - d = time;
   for each v \in u-Adj[]
      if (v->color == WHITE)
         DFS_Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

DFS And Cycles

• What will be the running time?

```
DFS(G)
   for each vertex u ∈ G->V
      u->color = WHITE;
   time = 0;
   for each vertex u ∈ G->V
      if (u->color == WHITE)
         DFS_Visit(u);
```

```
DFS_Visit(u)
   u->color = GREY;
   time = time+1;
   u - d = time;
   for each v \in u-Adj[]
      if (v->color == WHITE)
         DFS_Visit(v);
   u->color = BLACK;
   time = time+1;
   u->f = time;
```

DFS And Cycles

- What will be the running time?
- A: O(V+E)
- We can actually determine if cycles exist in O(V) time:
 - In an undirected acyclic forest, $|E| \le |V| 1$
 - So count the edges: if ever see |V| distinct edges, must have seen a back edge along the way

Directed Acyclic Graph

A directed acyclic graph or DAG is a directed graph with no directed cycles:

DFS and DAG

- Theorem: a directed graph G is acyclic if and only if a DFS of G yields no back edges:
 - => if G is acyclic, will be no back edges
 - Trivial: a back edge implies a cycle
 - <= if no back edges, G is acyclic
 - Proof by contradiction: G has a cycle $\Rightarrow \exists$ a back edge
 - ◆ Let *v* be the vertex on the cycle first discovered, and *u* be the predecessor of *v* on the cycle
 - ◆ When *v* discovered, whole cycle is white
 - Must visit everything reachable from v before returning from DFS-Visit()
 - ♦ So path from u (gray) \rightarrow v (gray), thus (u, v) is a back edge

Topological Sort

- Topological sort of a DAG:
 - Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \in G$
- Real-world application:
 - ✓ Scheduling a dependent graph,
 - ✓ Find a feasible course plan for university studies

Example

Example (Cont.)

Algorithm

Algorithm

```
Topological-Sort()
  1. Call DFS to compute finish time
   f[v] for each vertex
  2.As each vertex is finished, insert
   it onto the front of a linked list
  3. Return the linked list of vertices
• Time: O(V+E)
```

Strongly Connected Components

- Every pair of vertices are reachable from each other
- Graph *G* is *strongly connected* if, for every *u* and *v* in *V*, there is some path from *u* to *v* and some path from *v* to *u*.

Strongly Connected

Not Strongly Connected

Example

Finding Strongly Connected Components

- Input: A directed graph G = (V,E)
- Output: a partition of V into disjoint sets so that each set defines a strongly connected component of G

Algorithm

Strongly-Connected-Components(G)

1. call DFS(G) to compute finishing times f[u] for each vertex u.

Cost: O(E+V)

2. compute G^T

- Cost: O(E+V)
- 3. call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing f[u] Cost: O(E+V)
- 4. output the vertices of each tree in the depth-first forest of step 3 as a separate strongly connected component.

The graph G^T is the transpose of G, which is visualized by reversing the arrows on the digraph.

• Cost: O(E+V)

Example

