

【0026】得られた磁器の円板部を平面研磨し、アセトン中で超音波洗浄し、150°Cで1時間乾燥した後、円柱共振器法により測定周波数3.5~4.5GHzで比誘電率 ϵ_r 、Q値、共振周波数の温度係数 τ_f を測定した。Q値は、マイクロ波誘電体において一般に成立する $Q \text{ 値} \times \text{測定周波数 } f = \text{一定}$ の関係から1GHzでのQ値に換算した。共振周波数の温度係数 τ_f は、-40~-85°Cの範囲で測定した。これらの結果を表1に示す。

【0027】表1からも明らかなように、本発明の範囲*

試料No	La ₂ O ₃ a	Al ₂ O ₃ b	SrO c	TiO ₂ d	比誘電率 ϵ_r	Q値	τ_f
1	0.2233	0.2267	0.2731	0.2769	4.0	44000	+3
2	0.2207	0.2303	0.2744	0.2746	4.2	41000	+8
3	0.2195	0.2305	0.2751	0.2749	4.1	40000	+11
4	0.2305	0.2195	0.2555	0.2945	4.0	41500	+8
5	0.2200	0.2500	0.2550	0.2750	3.9	44400	-2
6	0.2250	0.2250	0.2750	0.2750	3.9	50300	+1
7	0.2200	0.2200	0.2905	0.2695	4.0	39000	+4
8	0.2195	0.2195	0.2805	0.2805	3.7	42100	-1
9	0.2195	0.2195	0.4610	0.1000	4.5	43300	+3
10	0.3500	0.3500	0.1500	0.1500	3.0	61000	-28
11	0.2900	0.3100	0.2000	0.2000	3.3	62000	-26
12	0.4500	0.2850	0.1200	0.1450	3.8	42200	-8
13	0.3250	0.4500	0.1050	0.1200	3.1	52500	-22
14	0.4000	0.4000	0.1000	0.1000	3.0	48800	-27
15	0.3555	0.2945	0.1500	0.2000	3.5	40000	-8
16	0.2195	0.2195	0.1000	0.4610	3.5	37700	+8
17	0.2200	0.2300	0.3500	0.2000	4.5	30100	+18
18	0.2350	0.2195	0.2750	0.2705	3.8	49000	-10
19	0.3100	0.3100	0.1900	0.1900	3.4	51800	-20
20	0.2500	0.2500	0.2500	0.2500	3.6	51000	-15
21	0.3300	0.2500	0.1500	0.2700	3.5	40100	-9
22	0.2500	0.3000	0.3500	0.1000	3.3	38500	-2
23	0.3050	0.3000	0.2450	0.1500	3.2	33300	-11
24	0.3500	0.2750	0.2750	0.1000	3.1	25000	-17
25	0.2850	0.2000	0.2570	0.2580	3.5	32300	-3
* 26	0.5606	0.2194	0.1400	0.0800	1.7	9750	-55
* 27	0.1460	0.1300	0.3600	0.3640	6.0	16000	+100
* 28	0.1100	0.1100	0.3900	0.3900	5.7	18000	+130
* 29	0.0960	0.1040	0.3500	0.4500	5.5	18500	+91
* 30	0.2194	0.1050	0.5540	0.1216	6.8	11000	+89
* 31	0.0790	0.0790	0.3900	0.4520	6.7	13500	+75
* 32	0.5000	0.1550	0.1700	0.1750	1.9	6500	-110
* 33	0.2400	0.4670	0.1450	0.1480	1.3	8100	-98
* 34	0.1000	0.1000	0.2450	0.5550	4.7	9200	+78
* 35	0.4000	0.4505	0.0595	0.0900	1.7	16500	-61

*を付けた試料番号は本発明の範囲外のものである。

【0030】次に、表1の試料No. 8、4、1において、La₂O₃のLaを他の希土類元素と代えて実験を行った。結果を表2に示す。

【0031】この表2より、希土類酸化物としてLa₂O₃に代えて他の希土類酸化物を用いても、同様に比誘

*外の誘電体では、比誘電率 ϵ_r 又はQ値が低いか、あるいは τ_f の絶対値が30を超えていた。

【0028】これらに対し、本発明により得られた誘電体は、比誘電率 ϵ_r が30以上、Q値が25000(1GHzにおいて)以上、 τ_f が±30(ppm/°C)以内の優れた誘電特性が得られることがわかった。

【0029】

【表1】

電率 ϵ_r が30以上、Q値が25000以上、 τ_f の絶対値が30以内と実用充分な特性を有していることが判った。

【0032】

【表2】

試料No	希土類元素	ϵ_r	Q値	τ_f	備考
3 6	Nd	3 5	4 8 0 0 0	- 1 6	表1の試料No. 8
3 7	0.2 Nd · 0.8 La	3 6	4 8 9 0 0	- 1 5	a = 0.2500
3 8	Ce	3 6	4 5 0 0 0	- 1 0	b = 0.2500
3 9	0.2 Ce · 0.8 La	3 5	4 4 5 0 0	- 1 2	c = 0.2500
4 0	Pr	3 2	4 3 0 0 0	- 5	d = 0.2500
4 1	0.2 Pr · 0.8 La	3 3	4 2 1 0 0	- 6	
4 2	Sm	3 4	4 4 0 0 0	- 1 1	
4 3	0.2 Sm · 0.8 La	3 4	4 3 5 0 0	- 1 2	
4 4	Eu	3 5	5 0 0 0 0	- 8	
4 5	0.2 Eu · 0.8 La	3 4	4 9 5 0 0	- 8	
4 6	Gd	3 1	4 3 5 0 0	- 7	
4 7	0.2 Gd · 0.8 La	3 2	4 4 7 0 0	- 5	
4 8	Dy	3 1	4 8 5 0 0	- 2	
4 9	0.2 Dy · 0.8 La	3 2	4 7 2 0 0	- 1	
5 0	Er	3 0	4 1 0 0 0	- 3	
5 1	0.2 Er · 0.8 La	3 2	4 0 0 0 0	- 5	
5 2	Yb	3 0	3 7 5 0 0	- 5	
5 3	0.2 Yb · 0.8 La	3 3	3 6 0 0 0	- 7	
5 4	Nd	3 9	4 1 0 0 0	+ 7	表1の試料No. 4
5 5	0.5 Nd · 0.5 La	3 9	4 3 0 0 0	+ 6	a = 0.2305
5 6	Sm	3 8	3 9 0 0 0	+ 5	b = 0.2195
5 7	0.5 Sm · 0.5 La	3 8	4 0 5 0 0	+ 4	c = 0.2555
5 8	Dy	3 6	4 0 0 0 0	+ 9	d = 0.2945
5 9	0.5 Dy · 0.5 La	3 5	3 8 0 0 0	+ 5	
6 0	0.2Nd 0.2Sm 0.6La	3 6	3 8 5 0 0	+ 1	表1の試料No. 1
6 1	0.2Nd 0.2Dy 0.6La	3 6	3 7 0 0 0	- 1	a = 0.2233
6 2	0.2Nd 0.2Pr 0.6La	3 4	3 5 5 0 0	- 3	b = 0.2267
6 3	0.2Sm 0.2Dy 0.6La	3 4	3 6 0 0 0	- 4	c = 0.2731
					d = 0.2769

【0033】実施例2次に、上記表1、表2中のさまざまな試料の組成物を主組成として、表3に示す種々の含有量となるように、MnO₂を添加した。なお、出発原料としては、MnCO₃等のように、酸化することでMnO₂になるマンガン化合物を用いれば良い。

【0034】その後、実施例1と同様にして得られた焼結体の比誘電率 ϵ_r 、Q値、共振周波数の温度係数 τ_f を測定した。

【0035】結果を表3に示すように、7.0重量部以下のMnO₂を含有させたものは、 ϵ_r や τ_f を変化させずにQ値を向上できることが判る。ただし、MnO₂の含有量が7.0重量部を越えると極端にQ値が低下することから、MnO₂の含有量は、7.0重量部以下とすれば良い。

【0036】

30 【表3】

試料 No.	主成分の 組成	MnO ₂ の含有量 (wt%)	s r	Q 値	τ f
64	No. 8	0. 22	3.9	4.63000	- 2
65		1. 00	3.9	4.67000	- 2
66		7. 00	4.0	4.55000	0
67		5. 00	3.9	4.61000	- 1
68		0. 01	3.9	4.49000	- 2
69		3. 50	3.9	4.71000	- 2
70		0. 005	3.9	4.44400	- 2
*71		7. 50	4.1	3.55500	- 2
*72		8. 00	4.1	1.90000	5
73	No. 36	0. 01	3.6	4.85000	- 1.5
74		1. 00	3.7	5.15000	1.5
75		5. 00	3.7	5.40000	- 1.4
76		7. 00	3.7	4.90000	- 1.4
*77		8. 00	3.8	2.45000	- 1.3
78	No. 37	0. 01	3.6	4.99000	- 1.4
79		1. 00	3.6	5.10000	- 1.3
80		5. 00	3.7	5.40000	- 1.3
81		7. 00	3.7	4.92000	- 1.2
*82		8. 00	3.7	2.31000	- 1.2
83	No. 42	0. 01	3.5	4.50000	- 1.0
84		1. 00	3.5	4.70000	- 1.0
85		5. 00	3.6	4.90000	- 0.9
86		7. 00	3.6	4.45000	- 0.9
*87		8. 00	3.6	2.30000	- 0.8
88	No. 43	0. 01	3.4	4.45000	- 1.1
89		1. 00	3.4	4.70000	- 1.1
90		5. 00	3.4	4.75000	- 1.0
91		7. 00	3.5	4.51000	- 1.0
*92		8. 00	3.5	2.20000	- 0.9
93	No. 48	0. 01	3.1	4.98000	- 2
94		1. 00	3.2	5.12000	- 1
95		5. 00	3.2	5.22000	+ 1
96		7. 00	3.2	4.92000	+ 3
*97		8. 00	3.3	2.16000	+ 3
98	No. 49	0. 01	3.3	4.81000	- 1
99		1. 00	3.3	4.98000	+ 0
100		5. 00	3.4	5.12500	+ 1
101		7. 00	3.3	5.28000	+ 2
*102		8. 00	3.3	2.09000	+ 2

*を付けた試料番号は本発明の範囲外のものである。

【0037】

* * 【表4】

試料 No.	主成分の 組成	MnO ₂ の含有量 (wt%)	s r	Q 値	τ f
103	No. 60	0. 01	3.6	3.90000	+ 1
104		1. 00	3.6	4.15000	+ 1
105		5. 00	3.6	4.30500	+ 2
106		7. 00	3.7	4.05000	+ 2
*107		8. 00	3.7	2.45000	+ 2
108	No. 61	0. 01	3.7	3.80000	- 1
109		1. 00	3.7	3.98000	- 1
110		5. 00	3.8	4.12000	0
111		7. 00	3.9	3.93000	+ 1
*112		8. 00	3.9	2.24000	+ 1

*を付けた試料番号は本発明の範囲外のものである。

【0038】

【発明の効果】以上詳述した通り、本発明によれば、金

属元素として少なくとも希土類元素 (Ln), Al, S

r, Tiを含有し、これらの金属元素のモル比による組

成式を $a \text{Ln}_2\text{O}_x + b \text{Al}_2\text{O}_3 + c \text{SrO} + d \text{Ti}$ O_2 と表した時、前記 a, b, c, d 及び x が、 $0.2194 < a \leq 0.4500$ $0.2194 < b \leq 0.4500$ $0.1000 \leq c \leq 0.4610$ $0.1000 \leq d \leq 0.4610$

$3 \leq x \leq 4$

(ただし $a + b + c + d = 1$)

と表される組成範囲内に調整して誘電体磁器組成物を得ることによって、高周波領域において高い誘電率及び高いQ値を有するとともに、共振周波数の温度係数 τ_f を安定に小さく制御することができた。

【0039】また、本発明によれば、上記主成分100重量部に対し、 MnO_2 换算で7.0重量部以下のMnを含有することによって、さらにQ値を向上させることができる。

【0040】それにより、本発明の誘電体磁器組成物は、例えば、自動車電話、コードレス電話、バーン

ナル無線機、衛星放送受信機等の装置において、マイクロ波やミリ波領域において使用される共振器用材料やMIC用誘電体基板材料、誘電体導波線路、誘電体アンテナ、その他の各種電子部品等に好適に適用することができる。

【図面の簡単な説明】

【図1】本発明の誘電体共振器を示す概略図である。

【符号の説明】

1 : 金属ケース

10 2 : 入力端子

3 : 出力端子

4 : 共振媒体

【図1】

