浙江大学实验报告

专业: 姓名: 学号: 地点:

课程名称:	电路与模拟电子技术实验	指导老师:	张冶沁	成绩:	
分 1人 夕 45	中的二体性性性体的体育测量法	上学的细胞	今水平町	电吸动体 国细光生性女	

实验名称: <u>电路元件特性曲线的伏安测量法与示波器观察法</u>实验类型: <u>电路实验</u> 同组学生姓名:

一、实验目的和要求

- 1. 熟悉电路元件的特性曲线。
- 2. 学习非线性电阻元件特性曲线的伏安测量方法。
- 3. 掌握伏安测量法中测量样点的选择和绘制曲线的方法。
- 4. 学习非线性电阻元件特性曲线的示波器观察方法。

二、实验内容和原理

1 实验原理

- (1) 元件的特性曲线:在电路原理中,元件特性曲线就是指特定平面上定义的一条曲线。电阻元件的特性曲线是在 u i 平面上定义的一条曲线,当曲线变为直线时,与其相对应的元件为线性电阻器,直线的斜率为该电阻器的电阻值,电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。
- (2) 非线性电阻的伏安特性: 非线性电阻的伏安特性在 u-i 平面上是一条曲线。普通晶体二极管的特点是正向电阻和反向电阻区别很大,其正向压降很小,正向电流随正向电压的升高而急剧上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为 0。可见,二极管具有单向导电性,如果反向电压加得很高,超过管子的极限值,则会导致管子击穿损坏。稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为 0,但当其反向电压增加到某一数值时,电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。
- (3) 非线性电阻元件特性的逐点伏安测量法:元件的伏安特性可以用电压表、电流表测定,称为逐点伏安测量法。伏安法原理简单,测量方便,但由于仪表内阻会影响测量结果,因此必须注意仪表的合理接法。
- (4) 非线性电阻元件特性曲线的示波器观察法:如下图所示,用示波器的通道一观察二极管两端的电流变化,并用隔离测量放大器使信号更加稳定清晰,用示波器的通道二观察二极管两端电压变化,再置于X-Y工作方式,在示波器上显示出非线性电阻元件的特性曲线。

三、主要仪器设备(必填)

直流可调电压源、可调式电阻箱、直流电流表、直流电压表、实验板、普通二极管、稳压二极管、SDS2352X-E数字示波器、SDG 2122X 信号源。

四、操作方法和实验步骤

- 1.用逐点伏安测量法测量普通二极管的伏安特性
 - (1) 按左下或右下图所示方法接线,普通二极管正向接入电路,电阻 R 选择 100 Ω
 - (2) 电源电压从 0V 开始增加,记录多组电压和对应的电流值(电流不超过 100mA)
 - (3) 将普通二极管反向接入电路中,电源电压从0开始增大(至少大于20V),记录多组电压和对应的电流。

- 2.用逐点伏安测量法测量普通二极管的伏安特性
 - (1) 按左上或右上图所示方法接线,普通二极管正向接入电路,电阻 R 选择 100 Ω
 - (2) 电源电压从 0V 开始增加,记录多组电压和对应的电流值(电流不超过 100mA)
 - (3) 将普通二极管反向接入电路中,电源电压从 0 开始增大,记录多组电压和对应的电流(电流不超过 100mA)
- 3.用示波器观察法测量普通二极管和稳压二极管的伏安特性曲线。
 - (1) 按下图所示方法接线,通道一应与隔离通道放大器相连,使信号更清晰稳定。
 - (2)从信号发生源发出正弦信号,将示波器调至 X-Y 工作模式, CH1 通道观测二极管两端的电流变化, CH2 通道观测二极管两端的电压变化,合成后可得到二极管的伏安特性曲线。

五、实验数据记录和处理

1. 普通二极管的伏安特性测量

表 1 普通二极管的伏安特性

电流/mA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.187	0.38
电压/V	-25.0	-20.0	-15.0	-10.0	-5.00	0.172	0.284	0.389	0.432	0.453

1.18	1.98	7.59	10.3	10.6	19.4	33.3	52.1	76.8	89.7
0.496	0.522	0.552	0.583	0.601	0.640	0.680	0.720	0.760	0.780

97.3	100
0.790	0.793

2. 稳压二极管的伏安特性测量

表 2 稳压二极管的伏安特性

电流/mA	0.00	0.00	0.00	0.00	0.00	0.05	0.42	2.44	5.99	23.5
电压/V	0.112	0.234	0.327	0.415	0.504	0.560	0.620	0.680	0.720	0.741

55.2	62.5	73.5	78.6	85.0	89.8	96.8	100.5
0.783	0.791	0.800	0.805	0.810	0.815	0.820	0.824

反向电压:

电流/mA	0.00	0.00	0.00	0.00	-0.567	-5.59	-12.6	-31.9	-50.4
电压/V	-2.07	-4.38	-5.97	-6.73	-6.94	-7.03	-7.10	-7.14	-7.17

-63.4	-74.2	-91.9	-100.1
-7.20	-7.23	-7.26	-7.28

六、实验结果与分析

1. 普通二极管的伏安特性曲线

在 origin 中拟合出的普通二极管伏安特性曲线如上图所示。由图可见普通二极管正向压降很小,正向电流随正向电压的上升而急剧增加,而反向电压从零增加到十几伏甚至几十伏时,反向电流增加很小,几乎为 0,也证明了普通二极管具有单向导电性。

2. 稳压二极管的伏安特性曲线

在 origin 中拟合的普通二极管伏安特性曲线如下图所示。由图可见稳压二极管的正向伏安特性与普通二极管的伏安特性类似,但反向电压增加时,二极管的电流先是几乎为 0,当反向电压增加到某一数值后,电流将突然增加,此后二极管的端电压不随电源电压的改变而改变。

3. 示波器观察二极管的伏安特性曲线

如图所示为示波器观测的二极管伏安特性曲线,与逐点伏安法测出的二极管伏安特性曲线一致。

七、讨论、心得

通过本次实验,我了解了非线性电阻元件(普通二极管、稳压二极管)的伏安特性,掌握了非线性电阻元件特性的逐点伏安测量法,熟悉了示波器和信号发生器的使用,明白了隔离测量放大器能使信号清晰稳定,也学习了如何用 origin 作图软件拟合普通二极管和稳压二极管的伏安特性曲线,对于电路实验的基本元件、测量数据以及伏安曲线的处理方法有了更加清晰的认识。

Multisim 仿真

im - 2023年10月27日, 0:45:00