LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

CURS 8

UNITATEA DE ÎNVĂŢARE NR.3

LOGICA PREDICATELOR

Să considerăm următorul exmplu de propoziție în limbaj natural:

S: "Dacă George este om atunci George este muritor"

Dacă A reprezintă propoziţia:

"George este om"

iar B reprezintă:

"George este muritor"

atunci, în contextul LP, S devine:

 $S: A \rightarrow B$

- S exprimă anumite caracteristici ale unei anumite persoane particulare, respectiv George.
- Cum putem însă exprima proprietăţi similare ale altor persoane, cum ar fi Socrate sau Petre?
- O soluţie ar fi să introducem tot atâtea simboluri propoziţionale diferite câţi oameni există! Dar acest lucru este imposibil în practică.

- Limbajul "Logicii Predicatelor" oferă o soluţie acestei probleme.
- Elementul de noutate al acestui limbaj este introducerea variabilelor şi a cuantificatorilor.

S: "Dacă George este om atunci George este muritor"

Presupunem că x este o variabilă care ia valori în mulţimea numelor de persoane, de exemplu: x = George sau x = Ion sau x = ... şi dacă "Om" şi "Muritor" sunt simboluri ce reprezintă proprietăţi, atunci putem reprezenta relaţia generală între aceste proprietăţi prin:

 $P: Om(x) \rightarrow Muritor(x)$

Reprezentări, cum ar fi "Om(x)" sau "Muritor(x)", care exprimă relaţii generale sub formă de proprietăţi, se numesc *predicate*.

O *formulă*, de exemplu *P* de mai sus, este o reprezentare care conţine predicate legate prin conectori logici.

Substituţia variabilei x cu constanta "George" transformă P în formula:

S : Om(George) → Muritor(George)

În plus, dacă variabila x ia valoarea "Socrate", rezultatul va fi o nouă formulă ce reprezintă relaţia dinte Socrate şi proprietatea de a fi muritor. "Ion", "George" şi "Petre" sunt constante în noul limbaj formal.

Predicatele pot conţine mai multe variabile, exprimând astfel nu numai proprietăţi, dar şi relaţii între mai multe obiecte.

De exemplu, dacă variabilele x şi y iau valori în mulţimea numerelor întregi şi dacă introducem predicatul I, "mai_mare", putem exprima una dintre relaţiile fundamentale între întregi:

$$I(X,Y)$$
: mai_mare(x, y)

care este interpretată drept "x este mai mare decât y".

Dacă în expresia de mai sus înlocuim x cu 5 și y cu 3, avem evident o versiune particulară a lui *l*:

$$I(5, 3) : mai_mare(5, 3)$$

care este adevărată pentru respectivele numere întregi.

Să considerăm formula:

$$Q(x, y)$$
: zbor_ $X(x, y)$

care este interpretată ca:

"Există un zbor al companiei X între orașele x și y."

Validitatea formulei este numai parţială, deoarece poate să nu existe un zbor al companiei X între New York şi Bucureşti, de exemplu.

În schimb, formula:

$$P(x) : Om(x) \rightarrow Muritor(x)$$

are o validitate universală, deoarece se îndeplinește pentru orice variabilă x.

În Logica Predicatelor, pe scurt **LPr**, validitatea generală sau parţială este reprezentată prin două simboluri speciale numite "cuantificatori"

- 1. cuantificatorul universal, notaţi prin "∀"
- 2. cuantificatorul existențial, notați prin "∃" Astfel, formula inițială P devine:

$$P(x): (\forall x)(Om(x) \rightarrow Muritor(x))$$

și Q devine:

$$Q(x, y) : (\exists (x, y)) \text{ zbor}_X(x, y)$$

Un limbaj **LPr** conţine următoarele simboluri fundamentale:

- (I) Simboluri logice:
 - (i) *Variabile x, y, z, ...,* x₀, y₀, z₀, ..., x_i, ...
 - (ii) Conectori logici \forall , \land , \neg , \rightarrow , \leftrightarrow
 - (iii) Virgule, paranteze , ()
 - (iv) Cuantificatori \forall , \exists
- (II) Simboluri specifice:
- (i) Simboluri predicative P, Q,, R, ..., P_0 , Q_0 , R_0 ,
- ..., *P*₁, ...
 - (ii) Simboluri pentru constante $a, b, ..., a_0$
- $b_0, ..., a_1, ..., a_2, ...$
 - (iii) Simboluri funcţionale $f, g, f_0, g_0, f_1, ...$

Fiecare cuantificator este **dual** celuilalt: \forall este echivalent secventei de simboluri $\neg \exists \neg \varsigma i \exists$ este echivalent cu $\neg \forall \neg$.

Pentru formula $(\forall x)Q(x)$ avem, de exemplu, $(\forall x)Q(x) \leftrightarrow \neg(\exists x) \neg Q(x)$

Exemplul 1: $\mathcal{L}_A = (=, \leq, +, *, 0, 1)$ este un limbaj pentru aritmetică.

- a) = şi ≤ sunt simboluri predicative binare (de aritate 2):
 - =(x, y) se citeşte "x = y",
 - iar ≤(x, y) reprezintă " $x \le y$ ".
- b) + şi * sunt predicate ternare (de aritate 3):
 - +(x, y, z) se citeşte "x + y = z", iar *(x, y, z) se citeşte "x * y = z"
- c) 0 și 1 sunt simboluri constante.

Un **termen** este definit inductiv astfel:

- i. O constantă este un termen.
- ii. O variabilă este un termen.
- iii. Dacă f este o funcție n-ară și t_1 , ..., t_n sunt termeni, atunci $f(t_1, ..., t_n)$ este un termen.

O **formulă atomică** sau **atom** este orice secvență de simboluri $P(t_1,...,t_n)$, unde P este un simbol predicativ n-ar și t_i este un termen, pentru orice i=1,2, ..., n.

O formulă este definită inductiv astfel:

- i. Orice atom este o formulă.
- ii. Dacă σ_1 , σ_2 sunt formule, atunci $(\sigma_1 \vee \sigma_2)$, $(\sigma_1 \wedge \sigma_2)$, $(\sigma_1 \rightarrow \sigma_2)$, $(\neg \sigma_1)$ şi $(\sigma_1 \leftrightarrow \sigma_2)$ sunt formule.
- iii. Dacă v este o variabilă şi φ este o formulă, atunci ($(\forall v)$ φ), ($(\exists v)$ φ) sunt de asemenea formule.
- iv. Numai secvențele de simboluri formate conform regulilor (i), (ii), (iii) sunt formule.

Exemplul 2: Următoarele expresii sunt formule:

```
\varphi_1: (\forall y) (\exists x) [P(x, f(y)) \lor Q(x)]
```

 $\varphi_2: (\forall y) (\exists x) [P(x) \lor Q(x, y) \rightarrow \neg (R(x))]$

O subsecvenţa t_1 de simboluri a unui termen t, astfel încât t_1 este un termen, se numeşte un **subtermen** al lui t.

O subsecevnţă ϕ_1 de simboluri a unei formule ϕ , astfel încât ϕ_1 este o formulă, se numeşte o **subformulă** a lui ϕ .

Exemplul 3:

- i. dacă *f(x, y*) este un termen, atunci *x, y* și *f(x,* y) sunt subtermeni ai lui *f(x,y*).
- ii. P(x), $\neg R(x)$, R(x), $P(x) \lor Q(x, y)$ sunt subformule ale formulei φ_2 din exemplul 2.

- O apariţie a unei variabile v într-o formulă φ se spune că este *legată* dacă există o subformulă ψ a lui φ care conţine variabila v şi începe cu $(\forall v)$ sau cu $(\exists v)$.
- O apariţie a unei variabile *v* într-o formulă se spune că este *liberă* dacă nu este legată.
- O variabilă v ce apare într-o formulă φ se spune că este *liberă* dacă are cel puţin o apariţie liberă în φ. Se spune că v este *legată* dacă nu este liberă.

Exemplul 4:

$$(\forall y) [P(x) \lor Q(x, y) \rightarrow \neg (R(x))]$$

- y este variabilă legată
- x este variabilă liberă

O *frază* sau *formulă închisă* este o formulă fără variabile libere.

Exemplul 5: Din formula $\varphi(x,y)$: (x+y=x*y) putem forma formula închisă:

$$\sigma(x, y) : (\forall x) (\exists y) (x+y = x^* y)$$

O *mulţime substituţie*, sau mai simplu *substituţie*, este o mulţime:

$$\theta = \{x_1/t_1, x_2/t_2, ..., x_n/t_n\}$$

unde x_i şi t_i , $1 \le i \le n$, sunt variabile şi termeni corespondenţi pentru care dacă $x_i = x_j$ atunci $t_i = t_j$, $1 \le j \le n$.

Exemplul 6: Dacă aplicăm substituţia $\theta = \{x/2, y/2\}$ formulei:

$$K: \varphi(x, y)$$

în exemplul anterior, se obţine formula:

$$K: (2+2=2*2)$$

O variabilă x este liberă pentru termenul t în formula σ , formal $liber(x, t, \sigma)$, dacă nici una din variabilele libere din t nu devine legată după substituția lui x cu t pentru toate aparițiile libere ale lui x în σ .

Exemplul 7: Fie σ : $(\forall y) P(x, y)$.

Atunci x nu este liberă pentru termenul y în σ deoarece, după aplicarea substituției x / y pentru apariția liberă a lui x, variabila y a termenului y este legată.

Invers, x este liberă pentru termenul z, unde z este o variabilă diferită de y deoarece, după substituţia x / z în σ , variabilele termenului z, şi anume z, nu sunt legate. În plus, y nu este liberă pentru y în σ (σ nu conţine apariţii libere ale lui y).

Pentru formulele φ , τ , σ din **LPr**, axiomele **LPr** sunt:

- 1. $\phi \rightarrow (\tau \rightarrow \phi)$
- 2. $(\phi \rightarrow (\tau \rightarrow \sigma)) \rightarrow ((\phi \rightarrow \tau) \rightarrow (\phi \rightarrow \sigma))$
- 3. $(\neg \phi \rightarrow \neg \tau) \rightarrow (\tau \rightarrow \phi)$
- 4. Dacă *liber*(x, t, ϕ), atunci formula: $(\forall x) \phi \rightarrow \phi(x/t)$ este o axiomă.
- 5. Dacă x nu este liberă în formula φ , atunci formula: $(\forall x) (\varphi \rightarrow \tau) \rightarrow (\varphi \rightarrow (\forall x)\tau))$ este o axiomă.

La fel ca în **LP**, simbolul F reprezintă derivarea formulelor în sistemul axiomatic al **LPr**. Acest sistem axiomatic conţine două reguli:

- 1) Modus Ponens: φ , $\varphi \rightarrow \tau \vdash \tau$
- 2) Generalizare: $\phi \vdash (\forall x)\phi$

presupunem, de exemplu, că s-a derivat formula:

"
$$Om(x) \rightarrow Muritor(x)$$
"

Atunci formula:

"
$$(\forall x) (Om(x) \rightarrow Muritor(x))$$
"

este de asemenea derivată.

 Cu alte cuvinte, putem întotdeauna să obţinem validitatea unei formule generalizate (∀ x)φ pe baza validităţii formulei φ. Anumite erori în discuţiile comune sunt generate de o aplicare incorectă a regulii generalizării.

De exemplu, spunem de multe ori că:

```
"toţi politicienii sunt escroci"
```

deoarece ştim că politicienii a şi b sunt escroci.

Cu toate acestea, acest enunţ nu este logic valid: pentru a putea generaliza, adică pentru a caracteriza toţi politicienii şi nu numai a şi b, trebuie să ne asigurăm că următoarea formulă este derivabilă în sistemul nostru axiomatic:

```
"politician(x) \rightarrow escroc(x)"
```

Ceea ce (sperăm!) nu este cazul

Teoremă: Dacă φ și σ sunt formule ale LPr, atunci următoarele formule sunt derivabile în LPr:

- 1. $(\forall x)(\phi \rightarrow \sigma) \rightarrow ((\forall x)\phi \rightarrow (\forall x)\sigma)$
- 2. $((\forall x)\phi \rightarrow (\forall x)\sigma) \rightarrow (\exists x)(\phi \rightarrow \sigma)$
- 3. $((\exists x)\phi \rightarrow (\exists x)\sigma) \rightarrow (\exists x)(\phi \rightarrow \sigma)$
- 4. $(\exists x)(\phi \leftrightarrow \sigma) \rightarrow ((\forall x)\phi \rightarrow (\exists x)\phi)$
- 5. $((\forall x)\phi \lor (\forall x)\phi) \rightarrow (\forall x)(\phi \lor \sigma)$
- 6. $(\forall x)(\phi \vee \sigma) \rightarrow ((\exists x)\phi \vee (\forall x)\phi)$
- 7. $(\exists x)(\phi \vee \sigma) \leftrightarrow ((\exists x)\phi \vee (\exists x)\sigma)$
- 8. $(\exists x)(\phi \land \sigma) \rightarrow ((\exists x)\phi \land (\exists x)\sigma)$
- 9. $(\forall x)(\phi \wedge \sigma) \rightarrow ((\forall x)\phi \wedge (\exists x)\sigma)$
- 10. $(\forall x)(\phi \land \sigma) \leftrightarrow ((\forall x)\phi \land (\exists x)\sigma)$
- 11. $(\exists y)(\forall x)\phi \leftrightarrow (\forall x)(\exists y)\phi$
- 12. $(\forall x)(\forall y) \phi \leftrightarrow (\forall y)(\forall x)\phi$
- 13. $(\exists x)(\exists y) \phi \leftrightarrow (\exists y)(\exists x)\phi$
- 14. $(\forall x)\phi \leftrightarrow \phi$ dacă nu există nici o apariţie liberă a lui x în ϕ
- 15. $(\exists x)\phi \leftrightarrow \phi$ dacă nu există nici o apariţie liberă a lui x în ϕ

Exemplul 8:

 $(\forall x)[(x = 2x) \lor (x \neq 2x)]$ este adevărată

Cu toate acestea, formula:

$$[(\forall x)(x = 2x) \lor (\forall x) (x \neq 2x)]$$

NU este o formulă adevărată. Dacă ar fi adevărată, atunci cel puţin una din formulele:

 $(\forall x)(x = 2x), (\forall x)(x \neq 2x)$ ar trebui să fie adevărată. Acest lucru nu se întâmplă deoarece dacă x = 1, x = 2x nu este adevărată și dacă $x = 0, x \neq 2x$ nu este adevărată.

În concluzie, trebuie să fim foarte atenţi la utilizarea comutativităţii şi distributivităţii cuantificatorilor deoarece pot apărea frecvent greşeli de raţionament.

Un *literal* este un atom sau un atom negat.

O secvență de simboluri de forma:

$$(\forall x_1)(\forall x_2)...(\forall x_k)(C_1 \lor C_2 \lor ... \lor C_n)$$

unde C_i , i = 1,..., n sunt literali şi $x_1,...$, x_k sunt toate variabile ce apar în C_i , $1 \le i \le n$, se numeşte *clauză*. Dacă n = 0, avem clauză vidă, care se notează prin \square .

Parantezele cuantificatorilor vor fi omise ori de câte ori poziția variabilelor și a cuantificatorilor este explicită.

O clauză poate fi scrisă echivalent și în una din următoarele forme:

- (a) $\forall x_1... \forall x_k (A_1 \lor ... \lor A_m \lor \neg B_1 \lor ... \lor \neg B_l)$
- (b) $\forall x_1... \forall x_k (A_1 \lor ... \lor A_m \leftarrow B_1 \land ... \land B_l)$
- (c) $\forall x_1... \forall x_k (A_1, ..., A_m \leftarrow B_1, ..., B_l)$
- (d) $\{C_1, C_2, ..., C_n\}$, formă mulțime-teoretică, unde pentru orice $1 \le i$ $\le n$, C_i este A_i , $1 \le j \le m$, sau C_i este -B, $1 \le j \le l$
- (e) $A_1, \ldots, A_m \leftarrow B_1, \ldots, B_l$

Exemplul 9: Următoarele secvențe de simboluri sunt clauze:

- $\forall x \forall y \forall z (P(x) \vee \neg Q(x, y) \vee R(x, y, z))$
- $\forall x \forall y (\neg P(f(x, y), a) \lor Q(x, y))$

O frază ce rezultă prin eliminarea cuantificatorilor dintr-o clauză φ şi substituţia tuturor variabilelor cu constante este o *instanţă de bază* a lui φ.

De exemplu, fraza:

$$P(a) \vee Q(b) \vee \neg R(a, b)$$

este o instanță de bază a clauzei:

$$\forall x \forall y (P(x) \lor Q(y) \lor \neg R(x, y))$$

O *clauză Horn* este o clauză de forma:

$$\forall x_1... \forall x_k (A \leftarrow B_1,..., B_l)$$

unde A, $B_1,..., B_l$ sunt atomi şi $l \ge 1$. Atomii B_i , i = 1, ..., l, sunt **premisele** clauzei Horn şi A este **concluzia**.

 Un scop este o clauză Horn fără concluzie, adică o clauză de forma:

$$\forall x_1... \forall x_k (\leftarrow B_1,..., B_l)$$

Atomii B_i sunt **subscopurile** scopului.

 Un fapt este o clauză Horn fără presupuneri, adică este o clauză de forma:

$$\forall x_1... \forall x_k (A \leftarrow)$$

Un program logic este o mulţime finită de clauze Horn

Exemplul 10: Se dau următoarele propoziții în limbaj natural:

- S_1 : Petre este hoţ
- S₂: Mariei îi place mâncarea
- S₃: Mariei îi place vinul
- S₄: Lui Petre îi plac banii
- S_5 : Petre îl place pe **x** dacă lui **x** îi place vinul
- S₆: x poate fura y dacă x este hoţ şi dacă lui x îi place y

Prin introducerea constantelor "Petre", "Maria", "vin", "mâncare" şi "banii", a variabilelor x şi y, a predicatelor "hoţ" (aritate1), "place" (aritate 2) şi "poate_fura" (aritate 2) formăm următorul program:

```
C_1: hoţ(Petre) \leftarrow
C_2: place(Maria, mâncare) \leftarrow
C_3: place(Maria, vin) \leftarrow
C_4: place(Petre, bani) \leftarrow
C_5: place(Petre, bani) \leftarrow place(x, vin)
C_6: poate\_fura(x, y) \leftarrow hoţ(x), place(x, y)
```

- Clauzele Horn C_1 , C_2 , C_3 şi C_4 sunt fapte.
- Clauzele Horn C_5 și C_6 constituie partea procedurală a programului.

Să presupunem că dorim să aflăm dacă *Petre poate fura* (dacă există ceva ce *Petre poate fura*); avem de formulat următotul scop:

 $G: \leftarrow poate_fura(Petre, y)$

- **Ex 1:** Să se determine care din următoarele expresii sunt termeni, formule sau nici una din acestea:
- a) Nicu
- b) Matematician(x)
- c) număr(6)
- d) este_planetă(x)
- e) (3+1)+10
- f) $(\forall x)[\text{număr}(x) \land x = x + x]$
- g) = [+(x,y),z]
- h) $(x+y)+j^2$
- i) cea mai bună carte
- j) urăște(x,y) ∧ iubește(x,z)

Ex 2: Să se găsească aparițiile libere de variabile în următoarele formule:

- a) $(\forall x)P(x,y) \rightarrow (\forall z)Q(z,x)$
- b) $Q(z) \rightarrow \neg (\forall x) (\forall y) P(x,y,a)$
- c) $(\forall x)P(x) \land (\forall y)Q(x,y)$

- **Ex 3:** Să se determine aparițiile libere ale variabilelor din următoarele formule:
- a) $(\forall x) (\forall y) (\forall z)[x>y \land y>z] \rightarrow (\exists w)[w>w]$
- b) (∃x)(este_rosu(x))∨ (∀y) [este_albastru(y)
 Veste_galben(x)]
- c) X+X=X+X
- d) $(\exists y)[x+x=x+x]$
- e) $(\exists x) (\exists y) [este_profesor(x,y) \land invatat(x,y,z)]$

- **Ex 4:** Folosind simbolul aritmetic "<" (mai mic decât) și limbajul LPr, să se formuleze următoarele afirmații:
- a) Există un număr *x* mai mic decât 5 și mai mare ca 3.
- b) Pentru orice număr x există un număr y mai mic ca x.
- c) Pentru orice număr x există un număr y mai mare decât x.
- d) Pentru orice două numere x și y suma x+y este egală cu suma y+x.
- e) Pentru orice număr x există un număr y, astfel încât pentru orice z pentru care, dacă diferența z-5 este mai mică decât y, atunci diferența x-7 este mai mică decât 3.

- **Ex 5:** Să se determine forma mulțime teoretică a următoarelor propoziții:
- a) Lui Ion îi place mâncarea.
- b) Merele sunt mâncare.
- c) Păsările sunt mâncare.
- d) Orice poate fi mâncat fără a omorî pe cineva este mâncare.
- e) Barbu mănâncă și este încă viu.
- f) Maria manâncă tot ceeea ce mănâncă Barbu.

- **Ex 6:** Să presupunem că dragonii există în realitate și că tocmai am capturat un dragon mare. Să se formuleze următoarele afirmații din limbajul cotidian folosind clauze Horn.
- a) Orice dragon care trăiește la grădina zoologică nu este fericit.
- b) Orice animal care întâlnește oameni politicoși este fericit.
- c) Oamenii care vizitează gradina zoologică sunt politicoși.
- d) Animalele care traiesc la gradina zoologică întâlnesc oameni care o vizitează.

- **Ex 7:** Să se exprime următorele propoziții din limbajul cotidian sub formă de clauze Horn:
- a) x este mama lui y dacă x este femeie și x este un părinte a lui y.
- b) x este tatăl lui y dacă x este bărbat și x este un părinte a lui y.
- c) x este om dacă părintele lui este om.
- d) x este om dacă tatăl lui este om.
- e) Nimeni nu este propriul lui părinte.