

STIR

Software for Tomographic Image Reconstruction

http://stir.HammersmithImanet.com http://stir.sourceforge.net

Contents

- > What is it and how did it happen?
- Kris Thielemans
- Software overview
- Kris Thielemans
- Single Scatter Simulation in STIR
- Charalampos Tsoumpas
- > FORE: implementation and results
- Oliver Nix
- Conclusion
- Kris Thielemans

STIR: Part I

What is it and how did it happen?

STIR objectives

 Open Source software for image reconstruction and data manipulation in medical imaging

Extendable and modular

STIR current features

> Users' perspective

- PET (2D/3D)
- Support for any cylindrical PET scanner (GE-Advance, ECAT HR+, 953 etc.)
 - Analytic and iterative 3D reconstruction algorithms FBP, SSRB, OS-MAP-OSL (including MRP)
- Various utilities (e.g. precorrection. ROI, ...)
- Data formats: Interfile, ECAT Matrix and partially GE VOLPET
- Multi-platform (Unix, Linux, Windows, MacOS X)
- Test suite

> Developers' perspective

- Object-oriented (C++) and modular
- Fully documented (doxygen)

History: PARAPET

- European Union funded project (ESPRIT)
- 3 year (end March 2000)
- Aim: Implementation and Evaluation of Reconstruction algorithms for fully 3D PET with feasible run-time
- Algorithm development, parallel hardware

> Partners

- Hammersmith Hosp. MRC, London, UK, Terry SPINKS
- Brunel Univ, Dept of Math. Sciences, London, UK, Gautam
- Ospedale San Raffaele (HSR), Milan, Italy, Maria Carla GILARDI
- Technion Israel Inst of Techn, Optimization Center, Haifa, Israel, Aharon BEN-TAL, Roni LEVKOVITZ
- ELGEMS Ltd., Haifa, Israel, Michael WILK
- Geneva Univ Hosp (HUG), Div. of Nucl. Med., Geneva, Switzerland, Christian MOREL
- Parsytec GmbH, Aachen, Germany, Carsten RIETBROCK, Stefan KAISER, Volkmar FRIEDRICH

PARAPET Programmers

Zverovich, Alexey (Brunel)

Zibulevsky, Michael (MOC) Zaidi, Habib (HUG)

/alente, Patrick (Brunel)

Thielemans, Kris (MRC)

Sauge, Damien (HUG) Sadki, Mustapha (Brunel)

Pagani, Elizabetta (HSR) Mustafovic, Sanida (MRC)

-abbe, Claire (HUG)

Jacobson, Matthew (MOC)

Hague, Darren (Brunel)

Gordon, Ekaterina (MOC)

Belluzzo, Damiano (HSR)

PARAPET results

- > Publications
- > New algorithms (OS-Mirror, OS-Conjugate Barrier)
- > Software
- Design I (never released)
- Design II (June 2000)
- Open Source
- More ambitious
- Not completely backwards compatible
- Consequences:
- Design II is much more mature and flexible
- Not all software reimplemented

STIR over the years

PARAPET is Dead, Long Live STIR!

stir.irsl.org (December 2001)

Sanida Mustafovic and Kris Thielemans

Now

Registrations

~ 70 subscribers

~ 260

Users' mailing list

~ 30 subscribers Developers' mailing list

Future

More algorithms (including list mode reconstructions)

More modules

Self-contained (normalisation, randoms, scatter)

Parallelisation (already prepared for it, was in PARAPET)

SPECT

GUI

Sound effects

Some Results

Illustrative

Some results II

> Contrast: cold spots in hot background

PROMIS

OSEM 21 subsets

JZA Phantom Low Stat

- Sector 2

Sector 3

Sector 5

Some results III

Cardiac Blood Flow (¹5O-labelled water) single frame from a kinetic study

3DRP/PROMIS

3D OSEM (no pre-corrections, with interfiltering)

Quantitative iterative reconstructions? Imanet Simulations (mean and stddev on ROI mean)

	Original	FBP	Д	EMML with background (2000 iterations)	ckground s)
		less noise	more noise	less noise	more noise
spine	1.5	1.57 ± 1.19	1.58 ± 2.15	1.57 ± 1.58	1.57 ± 2.25
Right lung	B	3.00 ± 1.15	3.00 ± 2.57	3.00 ± 2.01	2.99 ± 3.20
Left lung	1	1.00 ± 0.78	1.00 ± 2.28	1.01 ± 0.96	1.02 ± 1.42
Zero region	0	0.00 ± 0.64	0.00 ± 1.43	0.09 ± 0.26	0.19 ± 0.56

				T 22
-▲- Shifted Poisson, Raw Randoms		→ Prompts, ML Randoms		- 01
- Shifted	+- Trues	– Promp		- œ
1	†	Ψ		(%)
			*	َ Bias (%)
l	Randoms	smo		- 4
	sson, ML	aw Rand		
× Precorr	→ Shifted Poisson, ML Randoms	-∆- Prompts, Raw Randoms	+	- 0
*	†	4		- 0
			Ху бу (%) V3 евратем А (%) бу	0
			(X	

Coefficient of Variation vs. Bias over multiple simulations for different reconstruction algorithms. Each mark corresponds to an iteration. FBP (not shown) had 0 bias, but CV of 415%.

STIR: part II

Software Overview

STIR content (highlights)

Data structures

e.g. n-dimensional arrays, images, sinograms, list mode data ...

Registries and Parsing classes

For setting/saving parameters at run-time

Reconstruction classes

Analytic: FBP, 3DRP; SSRB, FORE

Iterative: OSEM, OSL (including MRP), OS-SPS

all sharing common code-base

•either 2D/3D sinograms (list mode data soon)

 inclusion of terms for normalisation, attenuation, scatter and randoms

Utilities

pre-correction, filtering, arithmetic processing of image or sinogram data, ROI evaluation etc.

Object-oriented programming

▶ Principle

- self-contained objects with public 'interface'
- hide internal data-structure
- complex.real(), complex.imag(), complex.norm(), complex.phase()
- inheritance allows specialisation
- Car -> SportsCar -> F1-Car
- Car.drive(distance)

Object-oriented programming

Advantages

- modularity & robustness:
- each class can be developed/tested 'independently
- flexibility:
- data-representation can be adapted to situation
- generality:
- generic' programming in terms of base-classes
- extendability:
- new extensions can benefit from old code by inheritance
- ease-of-use for the 'user'

Basic ingredients

> Image data

Basic ingredients

Imanet

Projection data (dense)

(Segment, View, Axial, Tangential) ProjData

RelatedViewgrams (symmetries) SegmentByView (View, Axial, Tangential Viewgram (Axial, Tangential) Segment (Axial, View, Tangential) SegmentBySinogram (View, Tangential) Sinogram

20

ForwardProjectorByBinUsingProjMatrixByBin

Live demonstration

STIR: Conclusion

License

> PARAPET license

- No restrictions, but give credit
- > Lesser GNU Public License (LGPL) for library
- and modifications have to be included (and LGPL'ed) 'free', redistribution: source code most be available
- GNU Public License (GPL) for applications
- LGPL+ redistribution: whole application must be GPL
- ◇ CTI license for ECAT IO
- Only usable for research purposes

Free, but NO warranty

How to get it?

> Email registration process via

http://stir.HammersmithImanet.com http://stir.sourceforge.net

- > Join mailing lists
- Stir-announce
- Stir-users
- Stir-devel

How to contribute?

- > Software
- Make sure you are allowed to distribute code under (L)GPL license
- Time
- Help out on mailing lists
- > Money
- The STIR foundation:
- Surfing and a good Time in Interesting Resorts

26

STIR

Software for Tomographic Image Reconstruction

http://stir.HammersmithImanet.com http://stir.sourceforge.net