Numerical propagation of errors of Earth-orbiting spacecraft

Víctor Ballester

Supervisor: Josep Maria Mondelo

Departament de Matemàtiques Facultat de Ciències

July 11, 2023

Motivation

- Around 7000 satellites (active and inactive) orbiting the Earth.
- Various unintentional collisions in the past.
- Point Earth model is not enough. We need a more accurate model.

Goal:

- Develop a geopotential model of the Earth.
- Propagate the position of a satellite adding different perturbations.
- Estimate the error of the trajectory.

Equation for V

Let $\Omega \subseteq \mathbb{R}^3$ be the region that occupies the Earth.

$$\mathbf{g} = -\int\limits_{\Omega} G \frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^3} \rho(\mathbf{s}) d^3 \mathbf{s} = \mathbf{\nabla} V$$

$$V = \int\limits_{\Omega} G \frac{\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} d^3 \mathbf{s}$$

$\mathsf{Theorem}$

V satisfies the following exterior boundary problem:

$$\begin{cases} \Delta V = 0 & \text{in } \Omega^c \\ V = f & \text{on } \partial \Omega \\ \lim_{\|\mathbf{r}\| \to \infty} V = 0 \end{cases}$$

where $f: \partial \Omega \to \mathbb{R}$ is the gravitational potential on the surface of the Earth.

Separation of variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

$$\begin{cases} \frac{\left(r^2R'\right)'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases} n, m \in \mathbb{N} \cup \{0\}, m \le n$$

Imposing boundary conditions:

$$V = \frac{GM_{\oplus}}{R_{\oplus}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{R_{\oplus}}{r}\right)^{n+1} (\bar{C}_{n,m} Y_{n,m}^{c}(\theta,\phi) + \bar{S}_{n,m} Y_{n,m}^{s}(\theta,\phi))$$

where

$$Y_{n,m}^{c}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\cos(m\phi)$$
$$Y_{n,m}^{s}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\sin(m\phi)$$

are the spherical harmonics.

Deviations of the Earth's rotation axis

- Precession
- Nutation
- Rotation
- Polar motion

Inertial and non-inertial reference frames

Quasi-inertial:

- x-axis: pointing towards the $\overline{\Upsilon}$ of the J2000 date
- z-axis: perpendicular to the equator of the J2000 date

Non-inertial (Earth fixed):

- x-axis: pointing towards the zero meridian
- z-axis: perpendicular to the equator

In both systems *y*-axis is chosen in order to complete a right-handed system.

Transformation between systems

Other perturbations

 ${f r}=$ satellite position with respect to Earth's center of mass

• Third body perturbations (Moon and Sun):

$$\frac{GM}{\left\|\mathbf{s}-\mathbf{r}\right\|^2}(\mathbf{s}-\mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2}\mathbf{s}$$

Other perturbations

 ${f r}=$ satellite position with respect to Earth's center of mass

Third body perturbations (Moon and Sun):

$$\frac{GM}{\|\mathbf{s} - \mathbf{r}\|^2}(\mathbf{s} - \mathbf{r}) - \frac{GM}{\|\mathbf{s}\|^2}\mathbf{s}$$

Atmospheric drag:

$$-\frac{1}{2}C_{\rm D}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

where $\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - \boldsymbol{\omega}_{\oplus} \times \mathbf{r}$.

Other perturbations

 ${f r}=$ satellite position with respect to Earth's center of mass

Third body perturbations (Moon and Sun):

$$\frac{GM}{\left\|\mathbf{s}-\mathbf{r}\right\|^2}(\mathbf{s}-\mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2}\mathbf{s}$$

Atmospheric drag:

$$-\frac{1}{2}C_{\rm D}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

where $\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - \boldsymbol{\omega}_{\oplus} \times \mathbf{r}$.

Solar radiation pressure:

$$-P_{\odot}C_{\rm R}\frac{A_{\odot}}{m}\frac{\mathbf{s}_{\odot}-\mathbf{r}}{\|\mathbf{s}_{\odot}-\mathbf{r}\|}$$

Differential system

Using the Runge-Kutta-Fehlberg method of order 7(8) we will integrate the differential system:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{\mathrm{GP}} + \delta_{\mathrm{D}} \mathbf{a}_{\mathrm{D}} + \delta_{\mathrm{R}} \mathbf{a}_{\mathrm{R}} + \delta_{\mathrm{sun}} \mathbf{a}_{\mathrm{sun}} + \delta_{\mathrm{moon}} \mathbf{a}_{\mathrm{moon}} \end{cases}$$

Differential system

Using the Runge-Kutta-Fehlberg method of order 7(8) we will integrate the differential system:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{\mathrm{GP}} + \delta_{\mathrm{D}} \mathbf{a}_{\mathrm{D}} + \delta_{\mathrm{R}} \mathbf{a}_{\mathrm{R}} + \delta_{\mathrm{sun}} \mathbf{a}_{\mathrm{sun}} + \delta_{\mathrm{moon}} \mathbf{a}_{\mathrm{moon}} \end{cases}$$

Initial conditions from TLEs (Two Line Elements sets).

Line		Satellite number						Class		Class		Cass		Cass		SSS		Class			International designator										_	oc														1	re		i/:		,2]							[r		i/		,3]					(d	ra	E		rı	n))			Model	Mone	,	T	LE	E oei		Check
							ľ	П									ec				ar					th										П																								П	П																	- 11	-1						
1	2	3	4	5	G	7	8	9	1) 1	1 :		13	14	1	5	16	17	18	19	20			2 2	3 :	24	25	26		7 2	8 2	9	30	33	3	2 3	3	34		36		38	s 3	19	40	41	4	2	43	44	45	46	4	7 4	5 -	19		53	53	5	3 5	4 :	5 5	6		58		2 0		61	62	6:	3 6	4 6	5 60	6.	7 6	5 0	9						
	Т				Г	Г	Т	Т	Т	Т	Т	Т			Т	Т	П				П		Т	Т	Т	П			Г	Т	Т	Т		Г	Т	Т	Т	s	Т		Г	Г	Т	Т			Г	Т	П		S	Г	Т	Т	Т	П		Г	Т	Т	15	3.	Т	Т			Г	1	S	Е	П	Т	Т	Т	Т	Т	Т	Т	٦						
1		5	5	1	2	4	U		9	1 8	3)	6	7	Į	J.	R			2	3	0	8	3 1	3		1	6	7	1		8	9	9	4	l	1			0	1	5		4	0	4	() [7			1	4	I	l	0	2	-	2		I	ľ	2 (6	6	3	4	ŀ	-	2		0)		9	9	9 8)	I						
Line			Sat	mł	Эе	r					i	d	eg]								2 [de	g						E			e) [d	eg]								I	[d	eg									ı [re	v,	d	ay	v]				r	ev		tic	on	s	5						
1	2	3	4	5	6	7	8	9	1	1	1	2	13	14	1		16	17	18	19	20	21	12	2 2	3 3	24	25	26	2	7 2	5 2	9	30	33	13	2 3	3	34	15	36	37	38		19	40	41	14	2 -	43	44	45	46	4	714	8 -	19	50	51	53	5		4 3	5 5	6	57	58		o	50	61	62	6	3 6	4 6	5 60	67	7 6	8 0	5						
	T	П	П	П	Г	Т	Т	Т	T	Т	T	T			Т	T	П	П			Г	Г	Т	T	T	T	П		Г	T	T	T		Г	Т	T	T	Т	T		Г	Т	T	T			Т	T	T	П		Г	Т	T	T	T		Г	Т	Т	T	T	T	T		П	Г	T	П		Г	Т	Т	Т	Т	Т	Т	T							
2	╗	5	5	1	2	4	Т	Т	1	i	ı	П	6	2	1	3	7	П		П	5		1) ()	1	7	П	0	10) [1	0	7	1	,	7		1	8	8	١.	ı	3	8	6	ç)	╗	1	7	1	١.	1	3	9	6	3	Т	I	. (6	. ()	1	8	7	1	8	1	9	9)		. 3	7	9) :	2						

Results

Scheme of our simulation:

Zones that we will explore:

- Low Earth Orbit satellites
- Medium Earth Orbit satellites
- Geostationary Earth Orbit satellites

Results - LEO

- \bullet ISS makes \sim 16 orbits per day.
- LEO satellites interact with the atmosphere.
- The atmospheric drag is difficult to predict.

Results - MEO

- GPM is very oscillatory.
- Sun and Moon reduce the oscillations.
- Solar radiation increases the oscillations.

Results - GEO

TDRS-3

- Adding the Sun and the Moon the errors are reduced.
- Solar radiation again increases the oscillations.
- Maneuver at around the 13th day.

Conclusions

- The point mass model is not enough to predict the orbit of a satellite.
- Adding both together the Sun and the Moon the variability of the errors is reduced.
- Radiation pressure increases the oscillations.

Improvements:

- Atmospheric drag and solar radiation bad modelled.
- Study the influence of the inclination and eccentricity on the errors.