Recommendations for buying Used Vehicle Based on regression analysis

Web Scraping and Linear Regression Analysis

Wei Zhao

Introduction

Vehicles are important tools that allow great flexibility in our daily life. While our life is facilitated by vehicles, you may want to ask when you are buying a car:

- How do I choose it?
- ❖ What year, make, and model?
- With limited budget and buying a used car, what features of should I focus on?

Data Collection

	make	year	mileage	fuel_type	drive_type	transmission	engine_size	engine_type	cty_mpg	hwy_mpg	price
0	INFINITI	2017	46423	gas	awd	automatic	3.50	regular	19	26	27690
1	Chevrolet	2017	40653	gas	awd	automatic	3.60	regular	17	24	28589
2	Jeep	2020	11994	gas	awd	automatic	2.40	regular	22	30	24900
5	Mercedes-Benz	2013	76867	gas	awd	automatic	3.50	regular	20	28	14995
6	Nissan	2019	29537	gas	fwd	automatic	2.50	regular	27	37	17995
7	Ford	2014	98388	gas	awd	automatic	1.60	turbo	22	30	11995
8	Ford	2015	69024	gas	awd	automatic	3.50	regular	17	23	19995
9	Subaru	2012	98464	gas	awd	automatic	2.00	regular	27	36	8995

Clean Data 6557 cars in total Within 25 mi from Boston, MA

Exploratory analysis

Exploratory analysis

Plan your budget

Features and Labels

Label: Features:

Continuous variables: Categorical variables:

- **❖** Year
- Mileage
- ❖ Engine size (# liters)
- City MPG

- Fuel type (gas, diesel, hybrid)
- Drive type (AWD, FWD, RWD)
- Transmission (Manual and Auto.)
- Engine type (Regular and Turbo.)

Listed price

Feature Engineering

Linear Regression modeling workflow

Results

Training $R^2 = 0.74$ Testing $R^2 = 0.72$ MAE = \$3008

F-test: p-value = 0

Lin. Reg. between residuals and predicted price: $R^2 = 0$; Slope = -0.01 No specific pattern and trend

Residuals are normally distributed.

Left skewed → price likely underestimated

Features affecting price

Low price:

- Front-wheel drive
- High mileage
- High city MPG
- Gas engine
- ❖ M.T. with high MPG

High price:

- Turbo-engine
- Rear-wheel drive
- Large-sized engine
- Year (more recent)
- Hybrid engine

Summary

1. Top 3 popular makes:

2. Price range of most vehicles:

- 3. Features to look at when buying a cheap used car:
 - Front-wheel drive
 - Certain amount of mileage
 - Small-sized engine
 - High city MPG
 - Gas engine, not hybrid
 - ❖ Not too recent

Future Work

- 1. More specific price range
- 2. A specific make, e.g., Toyota, Honda, or Ford
- 3. More sophisticated and advanced deep neural network

Questions?