## Ładowanie baterii w samochodzie elektrycznym

Samochody elektryczne mają funkcję hamowania regeneracyjnego. Technologia ta ma na celu ładowanie baterii energią, która w przeciwnym wypadku zostałaby utracona.

Załóżmy więc, że dana funkcja P(t) przedstawia ilość mocy wytwarzanej podczas hamowania samochodu elektrycznego:

$$P(t) = \eta(v) \cdot F_{h}(t) \cdot v(t) \tag{1}$$

gdzie:

- $\bullet$   $\eta(v)$  sprawność układu zależna od prędkości
- $\bullet$   $F_h(t)$  siła hamowania zależna od czasu
- $\bullet \ v(t)$  prędkość zależna od czasu

Obliczając jej całkę otrzymujemy całkowitą energię odzyskaną na przestrzeni całego hamowania:

$$E_o = \int_0^{t_{\text{max}}} \eta(v) \cdot F_{\mathbf{h}}(t) \cdot v(t) dt$$
 (2)

Pole pod wykresem tej funkcji przedstawia ile energii w dżulach zostało odzyskane przez system na przestrzeni całego procesu hamowania. Całka (2) w granicach 0 (rozpoczęcie procesu hamowania) oraz  $t_{\rm max}$  (zakończenie procesu hamowania) pozwoli oszacować wydajność takiego systemu.

Dla samochodu o masie  $1,5\,\mathrm{t}$ , prędkości początkowej  $50\,\mathrm{km/h}$  i sile hamowania  $5\,\mathrm{kN}$  model obliczył zależność prędkości, mocy i wydajności jak widać na rysunku 1:



Bardziej szczegółowe przedstawienie modelu znajduje się na platformie GitHub pod niniejszym kodem QR:

