CVPR 2017 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

2022.07.29

논문 리뷰

배성훈

- Research Background:
 - 휴대폰이나 임베디드 시스템 같은 저용량 메모리 환경에 딥러닝 적용을 위한 모델 경량화 필수
 - <u>Depthwise Separable Convolution</u>을 사용한 <u>MobileNet</u> 제안
 - Application 환경에 따른 적절한 설계를 위한 2개의 hyperparameter(width multiplier, resolution multiplier)를 제안해 latency, accuracy 균형 조절

Method:

모델의 첫 번째 layer를 제외하고 모두 Depthwise Separable Convolution으로 변경해 적용.

Depthwise convolution + Pointwise convolution => 연산량↓+ 모델 크기↓

Depthwise Convolution $(D_K \cdot D_K \cdot M \cdot D_F \cdot D_F)$

Pointwise Convolution $(M \cdot N \cdot D_F \cdot D_F)$

Method:

모델의 첫 번째 layer를 제외하고 모두 **Depthwise Separable Convolution**으로 변경해 적용.

MobileNet Architecture

• Method: 2개의 hyperparameter (width multiplier, resolution multiplier) => latency, accuracy 균형 조절

Width Multiplier (α) : Thinner Models 네트워크를 균일하게 **얇게** 만듬

Computational cost using Width Multiplier (α) $\alpha M \cdot \alpha N \cdot D_F \cdot D_F + D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F$ $\alpha \in (0, 1), \ \alpha = (1, 0.75, 0.5, 0.25)$

Table 6. MobileNet Width Multiplier							
Width Multiplie	er ImageNet	Million	Million				
	Accuracy	Mult-Adds	Parameters				
1.0 MobileNet-2	224 70.6%	569	4.2				
0.75 MobileNet-2	224 68.4%	325	2.6				
0.5 MobileNet-2	24 63.7%	149	1.3				
0.25 MobileNet-	224 50.6%	41	0.5				

Resolution Multiplier (ho): Reduced Representation 신경망의 계산비용 감소

Computational cost using Resolution Multiplier (ρ) $\alpha M \cdot \alpha N \cdot \rho D_F \cdot \rho D_F + D_K \cdot D_K \cdot \alpha M \cdot \rho D_F \cdot \rho D_F$ $\rho \in (0, 1), \ \rho = (224, 192, 160, 128)$

Table 7. MobileNet Resolution						
Resolution	ImageNet	Million	Million			
	Accuracy	Mult-Adds	Parameters			
1.0 MobileNet-224	70.6%	569	4.2			
1.0 MobileNet-192	69.1%	418	4.2			
1.0 MobileNet-160	67.2%	290	4.2			
1.0 MobileNet-128	64.4%	186	4.2			

• Experiment:

- MobileNet(Depthwise Separable Convolution)이 Fully convolutional MobileNet보다 <u>더 적은 parameter를 나타내면서 합리적인 정확도</u>를 보임.
- 기존의 very small network (squeezeNet, AlexNet) 보다 더 좋은 성능을 보임
- 이 외에도 다양한 task에서 성공적인 모델 경량화

Table 4. Depthwise Separable vs Full Convolution MobileNet		Table 8. MobileNet Comparison to Popular Models			Table 10. MobileNet for Stanford Dogs						
Model	ImageNet	Million	Million	Model	ImageNet	Million	Million	Model	Top-1	Million	Million
Woder	Accuracy	Mult-Adds	Parameters	1.0 MobileNet-224	Accuracy	Mult-Adds	Parameters		Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3	GoogleNet	70.6% 69.8%	569 1550	4.2 6.8	Inception V3 [18]	84%	5000	23.2
MobileNet	70.6%	569	4.2	VGG 16	71.5%	15300	138	1.0 MobileNet-224	83.3%	569	3.3
Bett	er Performan	ce						0.75 MobileNet-224	81.9%	325	1.9
Table 5. Narrow vs Shallow MobileNet			Table 9. Smaller Mobil	eNet Compar	ison to Popula	r Models	1.0 MobileNet-192	81.9%	418	3.3	
Model	ImageNet		Million	Model	ImageNet	Million	Million	0.75 MobileNet-192	80.5%	239	1.9
Datta	r Performance	Mult-Adds	Parameters		Accuracy	Mult-Adds	Parameters				
0.75 MobileNet	68.4%	<u> </u>		0.50 MobileNet-160	60.2%	76	1.32				
		325	2.6	Squeezenet	57.5%	1700	1.25				
Shallow MobileNet	65.3%	307	2.9	AlexNet	57.2%	720	60				

한줄평:

MobileNet은 기존의 filter size로 parameter 수를 줄이려는 시각에서 벗어나 Depthwise Separable Convolution을 활용해 다양한 task에서 <u>연산량을 줄이고 합리적인 성능을 달성</u>했다.

하지만, 속도가 빨라진 대신 정확도가 낮아진 결과도 있어 추가적인 연구가 필요하다고 생각한다.