Certamen Recuperativo

Introducción a la Informática Teórica

15 de junio de 2004

1.	Construya un	DFA :	para l	os strings	sobre .	$\Sigma = \{$	a, b	, c} q	ue comie	enzan	con	bbc y	no	contienen
	abc													

(10 puntos)

- 2. Determine cuáles de los siguientes conjuntos sobre $\Sigma = \{a, b, c\}$ son regulares. Justifique sus respuestas.
 - a) $\{a^mb^nc^{m^2+n^2}: 1 \le m, n \le 10\}$
 - b) $\{a^{2i}b^{3j}c^k : 1 \le i, j, k\}$
 - c) $\{a^{n!}: 1 \leq n\}$

(25 puntos)

3. Construya un PDA que reconozca el lenguaje $\mathcal{L} = \{a^mb^{2m}c^n: 1 \leq m, n\}$

(20 puntos)

4. Demuestre que los lenguajes de contexto libre son cerrados respecto de intersección con conjuntos regulares.

(25 puntos)

5. Suponga expresiones formadas con a, paréntesis, y operadores ⊕ y ⊗, ambos asociativos izquierdos, y con ⊕ de menor precedencia que ⊗. Construya una gramática de contexto libre que represente esta situación.

(10 puntos)

6. Usando la técnica vista en clase, construya una tabla SLR(1) para la gramática:

$$E \rightarrow E \otimes E|E \oplus E|(E)|a$$

Resuelva los conflictos según se indica en la pregunta 5

(20 puntos)