Advertising Data Project

In this project we will be working with a fake advertising data set, indicating whether or not a particular internet user clicked on an Advertisement. We will try to create a model that will predict whether or not they will click on an ad based off the features of that user.

This data set contains the following features:

- 'Daily Time Spent on Site': consumer time on site in minutes
- · 'Age': cutomer age in years
- · 'Area Income': Avg. Income of geographical area of consumer
- 'Daily Internet Usage': Avg. minutes a day consumer is on the internet
- 'Ad Topic Line': Headline of the advertisement
- 'City': City of consumer
- · 'Male': Whether or not consumer was male
- 'Country': Country of consumer
- 'Timestamp': Time at which consumer clicked on Ad or closed window
- · 'Clicked on Ad': 0 or 1 indicated clicking on Ad

Let's Get Started

Import necessary Libraries

```
In [1]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import numpy as np
```

Read "advertising.csv" and set it to dataframe variable

In [2]: df=pd.read_csv("advertising.csv")
df

Out[2]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21
1000	rows ×	10 cc	olumns						
4									

View the top 5 rows

In [3]: df.head()

Out[3]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicke on A
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	
4										

View info of the data

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Daily Time Spent on Site	1000 non-null	float64
1	Age	1000 non-null	int64
2	Area Income	1000 non-null	float64
3	Daily Internet Usage	1000 non-null	float64
4	Ad Topic Line	1000 non-null	object
5	City	1000 non-null	object
6	Male	1000 non-null	int64
7	Country	1000 non-null	object
8	Timestamp	1000 non-null	object
9	Clicked on Ad	1000 non-null	int64

dtypes: float64(3), int64(3), object(4)

memory usage: 78.2+ KB

View the basic statistical information about the data

In [5]: df.describe()

Out[5]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025
min	32.600000	19.000000	13996.500000	104.780000	0.000000	0.00000
25%	51.360000	29.000000	47031.802500	138.830000	0.000000	0.00000
50%	68.215000	35.000000	57012.300000	183.130000	0.000000	0.50000
75%	78.547500	42.000000	65470.635000	218.792500	1.000000	1.00000
max	91.430000	61.000000	79484.800000	269.960000	1.000000	1.00000

Check for null values

dtype: int64

In [6]: df.isna().sum() Out[6]: Daily Time Spent on Site 0 Age 0 Area Income 0 Daily Internet Usage 0 Ad Topic Line 0 City 0 Male 0 Country 0 Timestamp 0 Clicked on Ad 0

View all the countries in our data

```
In [7]: df.columns
df[['Country']]
```

Out[7]:

	Country
0	Tunisia
1	Nauru
2	San Marino
3	Italy
4	Iceland
995	Lebanon
996	Bosnia and Herzegovina
997	Mongolia
998	Guatemala
999	Brazil

1000 rows × 1 columns

View all the unique values in 'Ad Topic Line'

```
In [8]: df["Ad Topic Line"].unique()
Out[8]: array(['Cloned 5thgeneration orchestration',
                'Monitored national standardization',
                'Organic bottom-line service-desk',
                'Triple-buffered reciprocal time-frame',
                'Robust logistical utilization', 'Sharable client-driven software',
                'Enhanced dedicated support', 'Reactive local challenge',
                'Configurable coherent function',
                'Mandatory homogeneous architecture',
                'Centralized neutral neural-net',
                'Team-oriented grid-enabled Local Area Network',
                'Centralized content-based focus group',
                'Synergistic fresh-thinking array',
                'Grass-roots coherent extranet',
                'Persistent demand-driven interface',
                'Customizable multi-tasking website', 'Intuitive dynamic attitude',
                'Grass-roots solution-oriented conglomeration',
                'Advanced 24/7 productivity',
                'Object-based reciprocal knowledgebase',
                'Streamlined non-volatile analyzer',
```

View all the cities

```
In [9]: df[['City']]
Out[9]:
                         City
                  Wrightburgh
             0
                    West Jodi
             1
             2
                     Davidton
                 West Terrifurt
                 South Manuel
           995
                    Duffystad
           996
                 New Darlene
           997
                South Jessica
           998
                  West Steven
                 Ronniemouth
           999
          1000 rows × 1 columns
```

Change datatype of 'Timestamp' column to datetime format

```
In [10]: df["Timestamp"]=pd.to datetime(df["Timestamp"])
In [11]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 10 columns):
              Column
                                         Non-Null Count Dtype
                                         -----
                                                        ----
          0
              Daily Time Spent on Site
                                        1000 non-null
                                                         float64
          1
                                         1000 non-null
                                                         int64
          2
              Area Income
                                         1000 non-null
                                                         float64
          3
              Daily Internet Usage
                                         1000 non-null
                                                         float64
          4
              Ad Topic Line
                                         1000 non-null
                                                         object
          5
              City
                                         1000 non-null
                                                         object
          6
              Male
                                                         int64
                                         1000 non-null
          7
              Country
                                         1000 non-null
                                                         object
          8
              Timestamp
                                                         datetime64[ns]
                                         1000 non-null
          9
              Clicked on Ad
                                         1000 non-null
                                                         int64
         dtypes: datetime64[ns](1), float64(3), int64(3), object(3)
         memory usage: 78.2+ KB
```

Create a new column called months by fetching month data from Timestamp

In [12]: df["month"]=pd.DatetimeIndex(df["Timestamp"]).month

Out[12]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21
1000	rows ×	11 cc	olumns						

Create a new column called Year by fetching year from Timestamp

In [13]: df["year"]=pd.DatetimeIndex(df["Timestamp"]).year

Out[13]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21
1000	rows ×	12 cc	olumns						

Create an new column called Date by fetching day from Timestamp

In [14]: df["date"]=pd.DatetimeIndex(df["Timestamp"]).day
 df

Out[14]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
	0 68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
	1 80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
	2 69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
	3 74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
	4 68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18
,									
99	95 72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00
99	96 51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01
99	97 51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57
99	98 55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54
99	9 45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21
10	00 rows ×	: 13 co	olumns						
4									>

Create a new column called Hour by fetching hour from Timestamp

In [15]: df["hour"]=pd.DatetimeIndex(df["Timestamp"]).hour
 df

Out[15]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21
1000	rows ×	14 cc	olumns						
4									>

4

Visualization

Create a histplotof age

```
In [16]: sns.histplot(x=df['Age'])
```

Out[16]: <AxesSubplot:xlabel='Age', ylabel='Count'>

Create a jointplot of Area Income vs Age

```
In [17]: sns.jointplot(x=df['Age'],y=df['Area Income'])
```

Out[17]: <seaborn.axisgrid.JointGrid at 0x1b2f1371850>

Create a jointplot showing the kde distributions of Daily Time spend on site vs Age

```
In [18]: sns.jointplot(x=df['Age'],y=df['Daily Time Spent on Site'],kind='kde')
```

Out[18]: <seaborn.axisgrid.JointGrid at 0x1b2f6706d90>

Create a countplot to show Hour (See which hour the users are most active)

```
In [19]: sns.countplot(x=df["hour"])
```

Out[19]: <AxesSubplot:xlabel='hour', ylabel='count'>

Create a countplot to show which day user are the most active

In [20]: sns.countplot(x=df["date"])

Out[20]: <AxesSubplot:xlabel='date', ylabel='count'>

Create a heatmap to visualize the correlation between columns

Split the data into features and target variables (X and y)

```
In [22]: df=pd.get_dummies(df,drop_first=True)
In [23]: # Choose the columns you see fit
X=df.drop(columns=['Clicked on Ad'])
y=df["Clicked on Ad"]
In [24]: X.shape
Out[24]: (1000, 2213)
```

```
In [25]: y.shape
```

Out[25]: (1000,)

Standardize the data

```
In [26]: from sklearn.preprocessing import StandardScaler
    df=pd.get_dummies(df,drop_first=True)
    df.head()
```

Out[26]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Timestamp	Clicked on Ad	month	year	date	 Country_U
0	68.95	35	61833.90	256.09	0	2016-03-27 00:53:11	0	3	2016	27	
1	80.23	31	68441.85	193.77	1	2016-04-04 01:39:02	0	4	2016	4	
2	69.47	26	59785.94	236.50	0	2016-03-13 20:35:42	0	3	2016	13	
3	74.15	29	54806.18	245.89	1	2016-01-10 02:31:19	0	1	2016	10	
4	68.37	35	73889.99	225.58	0	2016-06-03 03:36:18	0	6	2016	3	

5 rows × 2214 columns

In [191]: c.head()

Out[191]:

Daily Ad Topic Time Daily Line_Adaptive Timestamp_2 Area Spent Age Internet Male month year date hour asynchronous 07-21 23:1 Income Usage on attitude Site

0 rows × 3211 columns

→

Split the data into training and testing set

Create a Logistic Regression model and train it

Check the accuracy of our model

```
In [150]: lr.score(X_train,y_train)
Out[150]: 1.0
```

Make prediction using the X test

```
In [151]: y pred= lr.predict(X test)
          y_pred
Out[151]: array([1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1,
                 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
                 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
                 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,
                 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
                 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1,
                 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
                 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
                 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1,
                 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0,
                 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
                 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0,
                 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1], dtype=int64)
```

Check how accurate the prediction is:

Check the confusion matrix

Plot the confusion matrix on a heatmap

Create a classification report for the model

<pre>In [157]: print(metric</pre>	cs.classificat	ion_repor	t(y_test,y	_pred))
	precision	recall	f1-score	support
(0.87	0.99	0.93	145
1	0.99	0.86	0.92	155
accuracy	y		0.92	300
macro avę	g 0.93	0.93	0.92	300
weighted avg	g 0.93	0.92	0.92	300

Great Job!