

2D Filtering with Xilinx Artix-7 FPGA

University of Burgundy
Real Time Imaging and Control

Sandeep Manandhar Mohamed Eissa Supervisor: Julien Dubois

Top Module

fig 0: Top Module

Filpflops and FIFOs

fig 1: flipflops and fifos'

N	 4	3	2	1
2N	 N+4	N+3	N+2	N+1
3N	 2N+4	2N+3	2N+2	2N+1

fig 2: Sliding Window

13-bit multipliers Algorithm 14-bit adders 15-bit adders PIXEL : in std_logic_vector(7 downto 0); 16-bit adder signal product : signed(12 downto 0); signal mask : signed(3 downto 0):=x"1"; 17-bit adder product <= mask*signed("0" & (PIXEL));</pre> FF $addAB \le (A(A'left) \& signed(A)) + (B(B'left) \& signed(B));$ OUTPUT <= **std_logic_vector**(absoluteSum(10 **downto** 3)); fig 3: 6 stage pipeline of 3 x 3 image filter

Scheduler

fig 4: state machine for convolution

Scheduler

fig 5: Minimised version

Timing diagram

-1 -2 -1 0 0 1 2

fig 6: timing of kernel

Cache

fig 7: State Machine for Cache

Top Module

fig 8: state machine for top module

fig 9: Delta filter (matlab vs vhdl)

fig 10: Blur filter (matlab vs vhdl)

fig 11: Sobel-X filter (matlab vs vhdl)

fig 12: Sobel-Y filter (matlab vs vhdl)

fig 13: Laplacian filter (matlab vs vhdl)

Thanks