Presentation on "Innovative Speed Breaker Integration with IoT"

Presented By:

Nikhil Kushwaha Mohammad Kaif Kundan Kumar Guided by:

Dr. Anurag Sharma HOD (CSE-DS) RCET Bhilai

Outline

- > Introduction
- ➤ Idea Visualization
- > IoT Based model
- ➤ IoT Application
 - 1. Hardware(Connecting ESP 32)
 - 2. Sensor
 - 3. Communication Protocol
 - 4. Cloud Platform
 - 5. Monitoring
 - 6. Device Using
- > Calculations
 - 1. Current Consumption of Energy
 - 2. Our system Requirements and Production
- Advantages
- Conclusion

Introduction

- As the global demand for energy continues to rise, we're faced with the urgent challenge of reducing our carbon footprint and conserving resources.
- While renewable energy sources like solar and wind are making a big impact, there is still a huge untapped opportunity to harness another type of energy wasted energy.
- Our idea focuses on capturing and converting this "lost" energy into usable, clean power.
- By utilizing our technology, we can transform wasted energy into a valuable resource.

- As the global demand for energy continues to rise, we're faced with the urgent challenge of reducing our carbon footprint and conserving resources.
- While renewable energy sources like solar and wind are making a big impact, there is still a huge untapped opportunity to harness another type of energy wasted energy.
- Our idea focuses on capturing and converting this "lost" energy into usable, clean power.
- By utilizing our technology, we can transform wasted energy into a valuable resource.

IoT Based Model

- In our project, we developed a speed breaker that generates electricity using a compression of fluid. To monitor the electricity produced in real time, We integrated **IoT technology**.
- II. We used a ESP32 microcontroller, which connects to Wi-Fi and allows us to send data to the cloud.
- III. For measuring the electricity generated, We implemented a current sensor ACS712, which provides accurate readings of the current flowing through the generator.
- IV. This data is then transmitted to a web application where we can visualize the energy output in real time.
- v. Additionally, We utilized a dashboard tool "Microsoft Azure IoT HubReal-time" to display the data, making it easy to track performance over time.
- This combination of IoT devices not only enhances our project's efficiency, but also provides valuable insights into energy generation patterns.

IoT Application

Integrating IoT can enhance its efficiency and monitoring. For real-time monitoring and unit electricity production tracking, consider these IoT solutions:

Hardware Requirements:

- ESP32 microcontroller (e.g., ESP32 DevKitC, ESP32 WROVER)
- Sensors (e.g., current sensor, voltage sensor, energy metering IC)
- Power source (e.g., USB cable, battery)
- Connecting Sensors:
- Current Sensor (ACS758)
- Voltage Sensor (ACS710)
- Energy Metering IC (ADE7953)

Communication Protocols:

- 1. Wi-Fi (ESP32)
- 2. GSM/GPRS (SIM800)
- 3. LoRaWAN (for long-range communication)
- 4. Bluetooth (for local monitoring)

Cloud Platforms:

1. Microsoft Azure IoT HubReal-time

Monitoring:

- 1. Web-based dashboards (Tableau)
- 2. Mobile apps (**Blynk**)

Device Using:

1. SparkFun ESP32 Thing

Calculation

Current consumption of energy

- One incandescent traffic signal
- in 1 hr =1.8 kwh
- in 1 day =1.8*24 =43.2 kwh
- in 1 year= 1296*12 = 15552 units
- Cost of energy per year = RS124,416(this is for one traffic signal.
- For 20 street lights avg per hr=0.3kwh (1 light)
- avg per day=6kwh(20 lights)
- avg per year=26280 units
- Cost of energy per year =RS 210,240 (for 20 street light)
- So, Total cost for traffic signal & street light= 1244164+210240

=RS 334,656 (per year)

Our system Requirements and Production

- one LED traffic signal
- ♦ 1hr=0.29kwh
- 1day=5.76kwh
- 20 street lights(LED)
- 0.1kwh in 1hr
- 24kwh in day(20 street light)
- Total energy consumption=24+5.76 =29.76
- Approx. 30kwh daily

So, If we have 2 generators and it will operate for approximate 14-16 daily. So, we need 2kw generator rating 2*2*14=56kwh daily (this is how much energy will be produced daily approx. 45kwh-60kwh)

Advantages:-

- Enhanced Energy Efficiency:
- I. Utilizing waste energy improves the overall efficiency of existing systems.
- II. It captures energy that would otherwise be lost, converting it into useful power.
- III. This reduces the need to generate new energy, thereby minimizing resource usage.
- Cost Savings:
- 1. Repurposing waste energy can lower energy costs for industries, factories, and businesses.
- II. This can result in substantial savings in utility expenses, operational costs, and long-term maintenance.
- III. Furthermore, these savings can be redirected toward other sustainability initiatives.

Improved Sustainability:

- I. Integrating waste energy recovery into energy systems promotes a circular energy economy.
- II. Instead of wasting by-products, they are recycled back into the production cycle, creating a more sustainable and environmentally friendly energy ecosystem.

- Lower Dependence on Non-renewable Resources:
- I. Utilizing waste energy reduces the dependence on non-renewable energy sources like coal and oil.
- II. This shift supports the transition to renewable energy and encourages the development of technologies that promote green and sustainable growth.

Increased Energy Security:

- I. By diversifying the sources of energy through the use of waste energy, we can enhance energy security.
- II. It provides a consistent and reliable energy source that isn't subject to market volatility or supply chain disruptions.
- > Reduction of Heat and Pollution:
- I. Capturing waste energy not only generates additional energy but also mitigates the release of excess heat and pollutants into the atmosphere as less fossil fuel have to burnt.
- II. This contributes to a cleaner environment and reduces the urban heat island effect.

- > Support for Innovation and Technological Development:
- I. Implementing waste energy recovery promotes research and development in cutting-edge technologies.
- II. These innovations drive technological advancements and create new market opportunities.
- Versatile Applications:
- Waste energy can be captured and utilized across a variety of sectors, including manufacturing, transportation, residential buildings, and power generation.
- II. This versatility makes it a valuable addition to diverse energy strategies.
- > Contribution to a Circular Economy:
- I. Reusing wasted energy contributes to the circular economy model, where resources are continually repurposed rather than disposed of.
- II. This helps create a sustainable system that maximizes resource utilization and minimizes waste.

Conclusion

- In the conclusion we would just want to say that by using our technology
 we could make a great impact in our society by changing the normal
 course of action.
- These self powered technologies can not only be applied to traffic signals but also to the areas like toll plazas, railway stations, airport, malls, and other busy areas.
- It can save a loads of energy and as we mentioned before this will help in sustainable and economic growth.
- We may face some difficulties initially during the setup but in future this will be very beneficial to us.

Thank you!

Nikhil Kushwaha

nikhilkushwaha6027@gmail.com

+91 8085532198

Mohammad kaif

mdkaifmaharaja@gmail.com

+91 7004906007

Kundan Kumar

kundankumar85140@gmail.com

+91 93045 53661