ArduinoSoft – Control Ambiental de Aulas Manual de Configuración y Uso V1.0

Contenido

¿Qué es ArduinoSoft?	3
Componentes del Sistema	3
Requisitos previos	3
Instalación física	3
Puesta en marcha	4
Nodo Arduino	4
Servidor Raspberry Pi	4
Uso de la Plataforma Web	4
Interpretación rápida de lecturas	8
Mantenimiento	8
Fin de vida y cumplimiento RAEE	8
Asistencia y actualizaciones	8

¿Qué es ArduinoSoft?

ArduinoSoft es un completo sistema basado en una red de sensores ambientales que registran en tiempo real **temperatura**, **humedad**, **concentración de CO₂**, **nivel de ruido y luminosidad** en las aulas, enviando las lecturas a una aplicación web donde se presentan gráficas, medias e históricos para que el profesorado actúe con datos objetivos.

Componentes del Sistema

- Servidor LAMP RaspberryPi + Alimentador
- Equipo de recogida de datos Arduino

El sistema se compone de un Servidor Web basado en Raspberry como equipo principal de gestión de dispositivos y visualización de datos junto a uno o varios sensores Arduino.

Requisitos previos

- Red Wi-Fi 2,4 GHz con DHCP o IP fija.
- Navegador moderno (Chrome, Edge, Firefox, Safari).
- Portátil o teléfono para la primera configuración.

Instalación física

- 1. Ubicación de sensores
 - Coloque el conjunto a 1,2-1,5 m de altura, lejos de ventanas, radiadores y proyectores para evitar lecturas distorsionadas.
 - o Evite corrientes de aire directas
 - Un punto central del aula suele cubrir hasta 70 m².
- 2. Alimentación: conecte primero la RaspberryPi y después los sensores.

Puesta en marcha

Nodo Arduino

- 1. Al primer arranque se crea un **hotspot Wi-Fi** (SSID "ArduinoSoft-Setup", IP 192.168.4.1).
- 2. Conéctese desde el portátil (IP 192.168.4.x/24) y abra http://192.168.4.1.
- 3. Cargue el **archivo Registro.cfg** o rellene manualmente:
 - o SSID y contraseña de la red 2,4 GHz.
 - o Ubicación del sensor
 - o Parámetros del servidor de base de datos.
 - o Horas de inicio/fin de muestreo.
 - o Ajuste fecha y hora si fuera necesario
- 4. Pulse *Guardar* → el dispositivo reinicia, se une a la Wi-Fi del centro y envía el primer registro.

Servidor Raspberry Pi

El sistema viene preconfigurado con la pila LAMP, durante el primer inicio, configure su dispositivo en red y actualice el sistema mediante el comando:

sudo apt update && sudo apt upgrade -y

Uso de la Plataforma Web

Se accede mediante su dirección web en http://<dirección-ip-servidor>. Ofrece las siguientes secciones:

• Login (página de inicio de sesión)

 Panel principal: Accesible sólo para administradores permite la gestión de usuarios, dispositivos, monitorizar cada sensor, verificar su estado de conexión etc.

 Gestión de Dispositivos: Accesible sólo para administradores permite visualizar un listado de Sensores registrados sobre los cuales se pueden ejecutar las siguientes acciones: Eliminar Dispositivo (Desvincular de la base de datos) y Monitorizar (Acceder a los datos en tiempo real y registros de las últimas horas del dispositivo.

 Gestión de Usuarios: Accesible sólo para administradores permite visualizar un listado de usuarios y editarlos. Ofrece también un formulario para registrar nuevos usuarios.

 Estado de los sensores: Accesible sólo a los administradores permite ver un listado de sensores registrados en el sistema y su estado de conexión. Si no se ha recibido lectura en las últimas horas aparece como Fuera de línea o Sin conexión.

Acceso público al panel de sensores mediante la dirección: http://<dirección-ip-servidor>/panel.php Ofrece una visión global sobre el estado ambiental de toda la instalación al recopilar datos de todos los sensores y mostrar las medias, máximos y mínimos.

Interpretación rápida de lecturas

Parámetro	Rango recomendado	Fuente
CO ₂	≤ 1000 ppm	Guía CSIC Mesura
Temperatura	17 - 27 °C	RD 486/1997
Humedad relativa	40 - 60 %	RD 486/1997
Iluminación aula	≥ 300 lx (zona de pupitres)	UNE-EN 12464-1
Ruido	≤ 35 dB(A)	OMS / ANSI S12.60

Cuando un valor excede el umbral, la tarjeta del panel cambia a rojo

Mantenimiento

- **Calibración**: verifique sensores cada curso académico comparándolos con instrumentos patrón; sustituya o reajuste si la desviación supera +-10 %.
- **Actualizaciones**: mantenga el sistema actualizado mediante sincronizaciones Git.
- Respaldos: se recomienda establecer copia de seguridad del sistema y de la base de datos mediante mysqldump
- Repuestos: mantenga al menos un DHT22 y un MQ-135 de reserva.

Fin de vida y cumplimiento RAEE

Al terminar la vida útil, **deposite la placa Arduino, la Raspberry Pi y los sensores en un punto RAEE** siguiendo el Real Decreto 110/2015. No los deseche en residuos urbanos; el proyecto promueve además la reutilización de componentes en futuras iniciativas educativas.

Asistencia y actualizaciones

- Código fuente y issues: https://github.com/jlpinilla/ArduinoSoft
- Manuales ampliados y FAQ: carpeta "docs" del repositorio.
- Contacto: pinilla82@uoc.edu