

Chimie

Fiche méthode:

La cinétique chimique

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

• Introduction:

- La cinétique chimique : c'est l'étude de l'évolution d'un système chimique au cours du temps.
- Transformation chimique : C'est tout processus au cours duquel les quantités de matières de certains constituants sont modifiées permettant ainsi l'apparition de nouveaux constituants. Elle peut être modélisée.
- **Réaction lente :** Si elle se déroule pendant des durées permettant de la suivre avec des techniques de mesures habituelles : Chronomètre.

Exemple: Réaction d'estérification, Réaction D'hydrolyse

- Réaction rapide : Si on ne peut pas la suivre avec des techniques de mesures habituelles.
 Exemple : Réaction de précipitation.
- **Réaction totale :** une réaction est dite totale si l'un des réactifs (en défaut) disparait à la fin de la réaction. Dans ce cas, le réactif en défaut est appelé : **réactif limitant**
- **Réaction limitée** : une réaction est dite limitée si aucun des réactifs ne disparait à la fin de la réaction.
- Détermination de la quantité de matière (nombre de mole) :

• La forme générale d'une réaction chimique :

$$a A + b B \longrightarrow c C + d D$$

NWW.t

A, B: Les réactifsC, D: les produitsa, b, c, d: Les coefficients stœchiométriques

Proportions stœchiométriques et réactif limitant :

$$\left\{ \operatorname{Si} \frac{n_0(A)}{a} < \frac{n_0(B)}{b} \right\}$$

A est le <u>réactif limitant</u> stœchiométriques (2 réactifs limitants).

$$\left\{ \operatorname{Si} \ \frac{\operatorname{n}_0(A)}{\operatorname{a}} = \operatorname{Si} \ \frac{\operatorname{n}_0(B)}{\operatorname{b}} \right\}$$

Les réactifs sont en proportions

Remarque : n_0 désigne le nombre de moles initial.

Notion d'avancement d'une réaction chimique :

Soit les réactifs modélisés par l'équation :

$$\mathbf{a} \mathbf{A} + \mathbf{b} \mathbf{B} \longrightarrow \mathbf{c} \mathbf{C} + \mathbf{d} \mathbf{D}$$

Si pendant ∆t il y'a : ∕ disparition de a mol de A

disparition de b mol de B

apparition de **c** mol de **C**

apparition de d mol de D

on dit que la réaction a avancé une fois.

a. Définition: L'avancement, x, d'une réaction est le nombre de fois que la réaction a avancé depuis l'état initial (x est exprimé en mol).

Remarque: On définit l'avancement volumique y tel que $y = \frac{x}{v_t}$, y est exprimé en mol. L⁻¹

b. Tableau descriptif d'évolution du système chimique ou tableau d'avancement :

On considère le système suivant :

$$\mathbf{a} \mathbf{A} + \mathbf{b} \mathbf{B} \longrightarrow \mathbf{c} \mathbf{C} + \mathbf{d} \mathbf{D}$$

Le tableau d'avancement de ce système s'écrit :

Equation de la réaction		a A	⊦ bB —	→ c C	+ d D		
Etat du système	Avancement	Quantité de matière en mol					
Etat initial	x=0	n(A) ₀	n(B) ₀	0	0		
Etat intermédiaire	х	$n(A)_0$ - ax	$n(B)_0$ - bx	сх	d x		
Etat final	Xf	$n(A)_0$ - ax_f	$n(B)_0$ - bx_f	c x _f	d x _f		

Avec:

x: l'avancement molaire [mol]

 x_f : l'avancement final [mol]

Détermination des quantités de matière à l'aide du tableau :

On peut déduire du tableau :

✓ A un instant donné $0 < t < t_f$:

$$n(A) = n_0(A) - ax \qquad n(C) = c x$$

$$n(C) = c x$$

$$n(B) = n_0(B) - bx n(D) = dx$$

$$n(D) = dx$$

 \checkmark A l'instant t_f :

$$n_f(A) = n_0(A) - ax_f$$

$$n(C) = c x_f$$

$$n_f(B) = n_0(B) - bx_f$$

$$n(D) = d x_f$$

Généralement, on peut déterminer x_f de 3 manières :

c. Trouver l'expression de x_f :

$$x_f = \frac{n(A)_0 - n(A)_f}{a}$$

$$x_f = \frac{n(B)_0 - n(B)_f}{b}$$

$$x_f = \frac{n(C)_f}{c}$$

$$x_f = \frac{n(D)_f}{d}$$

Détermination de x_f à partir du tableau d'avancement :

Equation de la réaction		aA -	$+$ bB \rightarrow	<i>cC</i> +	dD	
Etat du système	Avancement	Quantité de matière (mol)				
Etat initial	0	$n_0(A)$	$n_0(B)$	0	0	
Etat intermédiaire	x	$n_0(A) - ax$	$n_0(B) - bx$	cx	dx	
Etat final	x_f	$n_0(A) - ax_f$	$n_0(B) - bx_f$	cx_f	dx_f	
			$x_f = \frac{n_0(B) - n_0(B)}{b}$	+	(0)	
				$x_f = \frac{n_f}{n_f}$	$\frac{c}{c}$	
					$x_f =$	

- Détermination de x_f graphiquement :
 - 1^{er} cas : courbe de x = f(t) :

 $2^{\rm ème}$ cas : courbe de la quantité de matière d'un réactif A au cours du temps: n(A)=f(t):

3ème cas : courbe de la quantité de matière d'un produit C au cours du temps: n(C) = f(t):

emy.com

www.takia

 \checkmark 4 $^{
m eme}$ cas : courbe de la concentration d'un réactif A au cours du temps: n(A)=f(t) :

On a:
$$x_f = \frac{n_0(A) - n_f(A)}{a}$$
 et $n = CV$

$$\Rightarrow x_f = \frac{[A]_0 V_t - [A]_f V_t}{a}$$

• Détermination du réactif limitant :

Le réactif limitant ? par le calcul

Graphiquement

Détermination du réactif limitant par le calcul :

✓ 3^{éme} cas : Si la réaction est totale :

$$x_{max} = x_f$$

5. Détermination du taux d'avancement :

$$\tau_f = \frac{x_f}{x_{max}}$$

- Si $\tau_f = 1$: La réaction est <u>totale</u>.
- Si $\tau_f < 1$: la réaction est <u>limitée</u>.

6. Détermination du temps du demi-réaction :

• Définition :

Le temps du demi-réaction $t_{1/2}$ est l'instant qui correspond à $x_{1/2} = \frac{x_f}{2}$ ou bien $y_{1/2} = \frac{y_f}{2}$.

• Détermination graphique de $t_{1/2}$:

7. Vitesse d'une réaction chimique :

• La vitesse moyenne d'une réaction chimique :

La vitesse moyenne d'une réaction chimique pendant un intervalle de temps $[t_1, t_2]$ est le rapport de la variation Δx de l'avancement entre ceux deux dates à la durée correspondante $\Delta t = t_2 - t_1$.

$$V_{\text{moy}} = \frac{\Delta x}{\Delta t} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$
 [mol. Unité de temps -1]

• On définit la vitesse volumique moyenne comme suit :

$$V_{v, moy} = \frac{1}{v} \left(\frac{\Delta x}{\Delta t} \right) = \frac{1}{v} \left(\frac{x(t_2) - x(t_1)}{t_2 - t_1} \right) = \frac{1}{v} V_{moy}$$

[mol.L⁻¹. Unité de temps ⁻¹]

• La vitesse instantanée v(t) d'une réaction chimique :

On définit la vitesse instantanée v(t) par la dérivée de l'avancement molaire par unité de temps.

Remarque : la vitesse d'une réaction chimique est toujours positive.

• Calculer la vitesse d'une réaction chimique à l'instant t_1 :

 $1^{\acute{e}r}$ cas : On peut calculer la vitesse instantanée à partir de la courbe de x : C'est la pente de la tangente à la courbe à l'instant t_1 .

 $2^{\text{ème}}$ cas : On peut calculer la vitesse instantanée à partir de la courbe d'un réactif A en fonction de temps :

$$V = -\frac{d}{dt} \left(\frac{n(A)_0 - n(A)}{a} \right) = -\frac{1}{a} \frac{d n(A)}{dt}$$

• On définit la vitesse volumique instantanée comme suit :

$$V_{v}(t) = -\frac{1}{v} v(t)$$
 [mol.L⁻¹. Unité de temps ⁻¹]

- 8. Les facteurs cinétiques :
 - Définition :

Ce sont les facteurs qui exercent une influence sur la vitesse d'une réaction chimique. Les principaux facteurs sont : concentration des réactifs, température et catalyseur.

Généralement, une augmentation des concentrations des réactifs permet d'augmenter la vitesse de la réaction.

Remarque: au cours d'une transformation chimique, la vitesse de la réaction diminue car la concentration des réactifs diminue.

La température :

Généralement, plus la température augmente, plus la vitesse de réaction augmente. L'avancement final est alors plus rapidement atteint.

Catalyseur:

- C'est une espèce chimique qui permet accélérer la vitesse de la réaction chimique spontanément possible en son absence.
- Un catalyseur ne modifie pas le bilan final de la réaction quel que soit sa concentration (il n'est pas consommé par la réaction).
- Un catalyseur est spécifique d'une réaction ; il peut catalyser certaines réactions et pas d'autres.
- L'augmentation de la concentration d'un catalyseur augmente davantage de la vitesse de réaction.

9. Dilution et prélèvement :

• Dilution (Ajout du solvant) :

Lors d'une dilution :

Le nombre de moles *n* reste constant.

La concentration *C* diminue.

Le volume *V* <u>augmente</u>.

• Prélèvement :

Lors d'un prélèvement :

Le nombre de moles *n* augmente.

La concentration *C* reste constante.

Le volume *V* diminue.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000