Tutorial: Deep Reinforcement Learning

David Silver, Google DeepMind

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Reinforcement Learning: AI = RL

- ▶ RL is a general-purpose framework for artificial intelligence
- We seek a single agent which can solve any human-level task
- ▶ The essence of an intelligent agent
- Powerful RL requires powerful representations

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Deep Representations

► A deep representation is a composition of many functions

$$x \xrightarrow{w_1} h_1 \xrightarrow{w_2} \dots \xrightarrow{w_n} h_n \xrightarrow{w_{n+1}} y$$

Its gradient can be backpropagated by the chain rule

Deep Neural Network

A deep neural network is typically composed of:

► Linear transformations

$$h_{k+1} = Wh_k$$

Non-linear activation functions

Weight Sharing

Recurrent neural network shares weights between time-steps

Convolutional neural network shares weights between local regions

Loss Function

- A loss function I(y) measures goodness of output y, e.g.
 - Mean-squared error $I(y) = ||y^* y||^2$
 - ▶ Log likelihood $I(y) = \log \mathbb{P}[y^*|x]$
- ▶ The loss is appended to the forward computation

$$x \xrightarrow{w_1} h_1 \xrightarrow{w_2} \dots \xrightarrow{w_n} h_n \xrightarrow{w_{n+1}} y \longrightarrow I(y)$$

Gradient of loss is appended to the backward computation

Stochastic Gradient Descent

- ▶ Minimise expected loss $\mathcal{L}(w) = \mathbb{E}_x[I(y)]$
- ▶ Follow the gradient of $\mathcal{L}(w)$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}_{x} \left[\frac{\partial I(y)}{\partial w} \right] = \mathbb{E}_{x} \left(\frac{\frac{\partial I(y)}{\partial w^{(1)}}}{\vdots} \frac{\partial I(y)}{\partial w^{(k)}} \right)$$

► Adjust *w* in direction of -ve gradient

$$\Delta w = -\frac{\alpha}{2} \alpha \frac{\partial I(y)}{\partial w}$$

where α is a step-size parameter

Deep Supervised Learning

- ▶ Deep neural networks have achieved remarkable success
- Simple ingredients solve supervised learning problems
 - Use deep network as a function approximator
 - Define loss function
 - Optimise parameters end-to-end by SGD
- Scales well with memory/data/computation
- Solves the representation learning problem
- State-of-the-art for images, audio, language, ...

Deep Supervised Learning

- ▶ Deep neural networks have achieved remarkable success
- Simple ingredients solve supervised learning problems
 - Use deep network as a function approximator
 - Define loss function
 - Optimise parameters end-to-end by SGD
- Scales well with memory/data/computation
- Solves the representation learning problem
- State-of-the-art for images, audio, language, ...
- Can we follow the same recipe for RL?

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Policies and Value Functions

ightharpoonup Policy π is a behaviour function selecting actions given states

$$a = \pi(s)$$

▶ Value function $Q^{\pi}(s, a)$ is expected total reward from state s and action a under policy π

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

"How good is action a in state s?"

Approaches To Reinforcement Learning

Policy-based RL

- ▶ Search directly for the optimal policy π^*
- ▶ This is the policy achieving maximum future reward

Value-based RL

- ▶ Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy

Approaches To Reinforcement Learning

Policy-based RL

- ▶ Search directly for the optimal policy π^*
- ▶ This is the policy achieving maximum future reward

Value-based RL

- ▶ Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy

Model-based RL

- Build a transition model of the environment
- ▶ Plan (e.g. by lookahead) using model

Deep Reinforcement Learning

- Can we apply deep learning to RL?
- Use deep network to represent value function / policy / model
- Optimise value function / policy /model end-to-end
- Using stochastic gradient descent

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Bellman Equation

Bellman expectation equation unrolls value function Q^{π}

$$Q^{\pi}(s, a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a\right]$$
$$= \mathbb{E}_{s', a'}\left[r + \gamma Q^{\pi}(s', a') \mid s, a\right]$$

Bellman Equation

Bellman expectation equation unrolls value function Q^{π}

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a\right]$$
$$= \mathbb{E}_{s',a'}\left[r + \gamma Q^{\pi}(s',a') \mid s, a\right]$$

ightharpoonup Bellman optimality equation unrolls optimal value function Q^*

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$$

Bellman Equation

Bellman expectation equation unrolls value function Q^{π}

$$Q^{\pi}(s, a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a\right]$$
$$= \mathbb{E}_{s', a'}\left[r + \gamma Q^{\pi}(s', a') \mid s, a\right]$$

▶ Bellman optimality equation unrolls optimal value function *Q**

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$$

Policy iteration algorithms solve Bellman expectation equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}\left[r + \gamma \ Q_i(s',a') \mid s,a\right]$$

Value iteration algorithms solve Bellman optimality equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s',a'}\left[r + \gamma \max_{a'} Q_i(s',a') \mid s,a\right]$$

Policy Iteration with Non-Linear Sarsa

► Represent value function by Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

Policy Iteration with Non-Linear Sarsa

Represent value function by Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

▶ Define objective function by mean-squared error in Q-values

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma Q(s', a', w)}_{\mathsf{target}} - Q(s, a, w)\right)^{2}\right]$$

Policy Iteration with Non-Linear Sarsa

Represent value function by Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

Define objective function by mean-squared error in Q-values

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma Q(s', a', w)}_{\mathsf{target}} - Q(s, a, w)\right)^{2}\right]$$

Leading to the following Sarsa gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

▶ Optimise objective end-to-end by SGD, using $\frac{\partial L(w)}{\partial w}$

Value Iteration with Non-Linear Q-Learning

► Represent value function by deep Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

▶ Define objective function by mean-squared error in Q-values

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma \max_{a'} Q(s', a', w)}_{\text{target}} - Q(s, a, w)\right)^{2}\right]$$

► Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

▶ Optimise objective end-to-end by SGD, using $\frac{\partial L(w)}{\partial w}$

Example: TD Gammon

Self-Play Non-Linear Sarsa

- Initialised with random weights
- ► Trained by games of self-play
- Using non-linear Sarsa with afterstate value function

$$Q(s,a,w) = \mathbb{E}\left[V(s',w)\right]$$

- Greedy policy improvement (no exploration)
- Algorithm converged in practice (not true for other games)

Self-Play Non-Linear Sarsa

- Initialised with random weights
- ► Trained by games of self-play
- Using non-linear Sarsa with afterstate value function

$$Q(s,a,w) = \mathbb{E}\left[V(s',w)\right]$$

- Greedy policy improvement (no exploration)
- Algorithm converged in practice (not true for other games)
- ► TD Gammon defeated world champion Luigi Villa 7-1 (Tesauro, 1992)

New TD-Gammon Results

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

- 1. Data is sequential
 - Successive samples are correlated, non-iid
- 2. Policy changes rapidly with slight changes to Q-values
 - Policy may oscillate
 - Distribution of data can swing from one extreme to another
- 3. Scale of rewards and Q-values is unknown
 - Naive Q-learning gradients can be large unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

- 1. Use experience replay
 - Break correlations in data, bring us back to iid setting
 - Learn from all past policies
 - Using off-policy Q-learning
- 2. Freeze target Q-network
 - Avoid oscillations
 - Break correlations between Q-network and target
- Clip rewards or normalize network adaptively to sensible range
 - Robust gradients

Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent's own experience

- ▶ Take action a_t according to ϵ -greedy policy
- ▶ Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- ▶ Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Optimise MSE between Q-network and Q-learning targets, e.g.

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right)^{2} \right]$$

Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

ightharpoonup Compute Q-learning targets w.r.t. old, fixed parameters w^-

$$r + \gamma \max_{a'} Q(s', a', w^-)$$

Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w}) \right)^{2} \right]$$

▶ Periodically update fixed parameters $w^- \leftarrow w$

Reinforcement Learning in Atari

DQN in Atari

- ▶ End-to-end learning of values Q(s, a) from pixels s
- ▶ Input state *s* is stack of raw pixels from last 4 frames
- ▶ Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games [Mnih et al.]

DQN Results in Atari

DQN Demo

How much does DQN help?

DQN

	Q-learning	Q-learning	Q-learning	Q-learning
			+ Replay	+ Replay
		+ Target Q		+ Target Q
Breakout	3	10	241	317
Enduro	29	142	831	1006
River Raid	1453	2868	4103	7447
Seaquest	276	1003	823	2894
Space Invaders	302	373	826	1089

Stable Deep RL (3): Reward/Value Range

- ▶ DQN clips the rewards to [-1, +1]
- ► This prevents Q-values from becoming too large
- Ensures gradients are well-conditioned

Stable Deep RL (3): Reward/Value Range

- ▶ DQN clips the rewards to [-1, +1]
- This prevents Q-values from becoming too large
- Ensures gradients are well-conditioned
- Can't tell difference between small and large rewards
- ▶ Better approach: normalise network output
- e.g. via batch normalisation

Demo: Normalized DQN in PacMan

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Policy Gradient for Continuous Actions

- ▶ Represent policy by deep network $a = \pi(s, u)$ with weights u
- Define objective function as total discounted reward

$$J(u) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots\right]$$

- Optimise objective end-to-end by SGD
- ▶ i.e. Adjust policy parameters *u* to achieve more reward

Deterministic Policy Gradient

The gradient of the policy is given by

$$\frac{\partial J(u)}{\partial u} = \mathbb{E}_{s} \left[\frac{\partial Q^{\pi}(s, a)}{\partial u} \right]$$
$$= \mathbb{E}_{s} \left[\frac{\partial Q^{\pi}(s, a)}{\partial a} \frac{\partial \pi(s, u)}{\partial u} \right]$$

Policy gradient is the direction that most improves Q

Deterministic Actor-Critic

Use two networks

• Actor is a policy $\pi(s, u)$ with parameters u

$$s \xrightarrow{u_1} \dots \xrightarrow{u_n} a$$

▶ Critic is value function Q(s, a, w) with parameters w

$$s, a \xrightarrow{w_1} \dots \xrightarrow{w_n} Q$$

Critic provides loss function for actor

$$s \xrightarrow{u_1} \dots \xrightarrow{u_n} a \xrightarrow{w_1} \dots \xrightarrow{w_n} Q$$

Gradient backpropagates from critic into actor

$$\frac{\partial a}{\partial u} \leftarrow \dots \leftarrow \frac{\partial Q}{\partial a} \leftarrow \dots \leftarrow$$

Deterministic Actor-Critic: Learning Rule

Critic estimates value of current policy by Q-learning

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma Q(s', \pi(s'), w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

Actor updates policy in direction that improves Q

$$\frac{\partial \textit{J}(\textit{u})}{\partial \textit{u}} = \mathbb{E}_{\textit{s}}\left[\frac{\partial \textit{Q}(\textit{s},\textit{a},\textit{w})}{\partial \textit{a}}\frac{\partial \pi(\textit{s},\textit{u})}{\partial \textit{u}}\right]$$

Deterministic Deep Policy Gradient (DDPG)

- ► Naive actor-critic oscillates or diverges with neural nets
- DDPG provides a stable solution

Deterministic Deep Policy Gradient (DDPG)

- ► Naive actor-critic oscillates or diverges with neural nets
- ▶ DDPG provides a stable solution
- 1. Use experience replay for both actor and critic
- 2. Freeze target network to avoid oscillations

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma Q(s', \pi(s', \mathbf{u}^{-}), \mathbf{w}^{-}) - Q(s, a, w) \right) \frac{\partial Q(s, a, w)}{\partial w} \right]
\frac{\partial J(u)}{\partial u} = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\frac{\partial Q(s, a, w)}{\partial a} \frac{\partial \pi(s, u)}{\partial u} \right]$$

DDPG for Continuous Control

- ► End-to-end learning of control policy from raw pixels s
- ▶ Input state *s* is stack of raw pixels from last 4 frames
- lacktriangle Two separate convnets are used for Q and π
- Physics are simulated in MuJoCo

DDPG Demo

Outline

Deep Learning

Reinforcement Learning

Deep Value Functions

Deep Policies

Deep Models

Model-Based RL

Learn a transition model of the environment

$$p(r, s' \mid s, a)$$

Plan using the transition model

▶ e.g. Lookahead using transition model to find optimal actions

Deep Models

- ▶ Represent transition model p(r, s' | s, a) by deep network
- ▶ Define objective function measuring goodness of model
- e.g. number of bits to reconstruct next state (Gregor et al.)
- Optimise objective by SGD

DARN Demo

Challenges of Model-Based RL

Compounding errors

- Errors in the transition model compound over the trajectory
- ▶ By the end of a long trajectory, rewards can be totally wrong
- Model-based RL has failed (so far) in Atari

Challenges of Model-Based RL

Compounding errors

- ► Errors in the transition model compound over the trajectory
- ▶ By the end of a long trajectory, rewards can be totally wrong
- Model-based RL has failed (so far) in Atari

Deep networks of value/policy can "plan" implicitly

- Each layer of network performs arbitrary computational step
- ▶ n-layer network can "lookahead" n steps
- Are transition models required at all?

Deep Learning in Go

Monte-Carlo search

- ► Monte-Carlo search (MCTS) simulates future trajectories
- ▶ Builds large lookahead search tree with millions of positions
- ▶ State-of-the-art 19 × 19 Go programs use MCTS
- ▶ e.g. First strong Go program *MoGo*

(Gelly et al.)

Deep Learning in Go

Monte-Carlo search

- Monte-Carlo search (MCTS) simulates future trajectories
- Builds large lookahead search tree with millions of positions
- ▶ State-of-the-art 19 × 19 Go programs use MCTS
- ▶ e.g. First strong Go program *MoGo*

(Gelly et al.)

Convolutional Networks

- ▶ 12-layer convnet trained to predict expert moves
- Raw convnet (looking at 1 position, no search at all)
- ► Equals performance of MoGo with 10⁵ position search tree

(Maddison et al.)

Program	Accuracy
Human 6-dan	$\sim 52\%$
12-Layer ConvNet	55%
8-Layer ConvNet*	44%
Prior state-of-the-art	31-39%

Program	Winning rate
GnuGo	97%
MoGo (100k)	46%
Pachi (10k)	47%
Pachi (100k)	11%

Conclusion

- RL provides a general-purpose framework for AI
- ▶ RL problems can be solved by end-to-end deep learning
- ► A single agent can now solve many challenging tasks
- ► Reinforcement learning + deep learning = AI

Questions?

"The only stupid question is the one you never asked" -Rich Sutton