Influência dos Insetos Vetores na Dinâmica Evolutiva do Dengue

Mauricio Oliveira Carneiro

Programa de Computação Científica - FIOCRUZ

8 de outubro de 2004

Aspectos Gerais do Vírus da Dengue

- 4 Flavivírus originados de 4 espécies irmãs
- Genoma RNA de Fita Simples
- Transmitido por Aedes Aegypti e Albopictus
- Só afeta humanos (embora haja vertente selvagem)

Aspectos Gerais dos Vetores

- Peridomésticos e Invasores Competitivos
- Hábitos Diurnos
- Antropófilo
- Ataca Sucessivamente
- 30 a 40 dias de vida (10 ciclos gonotróficos)
- Qualquer volume de água limpa pode ser criadouro
- larva com ciclo de 7 a 10 dias

Origem do Vírus

De 5 a 10 séculos atrás, vírus selvagens de cada espécie de DEN infectaram humanos. Desde então os vírus humanos se separaram dos vírus selvagens e passaram a evoluir separadamente.

Razões da Emergência nos Trópicos

• Emergência da epidemia nos trópicos

 Aumento da Morbidade e diminuição dos Períodos Inter-epidêmicos

Razões da Emergência nos Trópicos

- Emergência da epidemia nos trópicos
 - Degradação Ambiental
 - Intensificação do Tráfego
- Aumento da Morbidade e diminuição dos Períodos Inter-epidêmicos

Razões da Emergência nos Trópicos

- Emergência da epidemia nos trópicos
 - Degradação Ambiental
 - Intensificação do Tráfego
- Aumento da Morbidade e diminuição dos Períodos Inter-epidêmicos
 - Não pode ser estimado devido à negligência quanto à genética de populações

Morbidade e Epidemia

- Categorias de Patologia:
 - Infecções Silenciosas (90%)
 - Febre Dengosa
 - Febre Dengosa Hemorrágica (mais raro)

Morbidade e Epidemia

- Categorias de Patologia:
 - Infecções Silenciosas (90%)
 - Febre Dengosa
 - Febre Dengosa Hemorrágica (mais raro)
- Enorme subestimação do polimorfismo genético

Modelo Focado na Interação Homem-Vírus

- Genética Humana interfere na suscetibilidade a DHF
- Antibody-Dependant Enhancement (ADE)
 - Biológica Carga Viral
 - Patológica DHF
 - 3 Dinâmica Epidemiológica Impede Competição

Modelo Focado na Interação Homem-Vírus

- Genética Humana interfere na suscetibilidade a DHF
- Antibody-Dependant Enhancement (ADE)
 - Biológica Carga Viral
 - Patológica DHF
 - O Dinâmica Epidemiológica Impede Competição
- Introdução do vetor invalida o modelo

Alta diversidade genética no paciente confirmada

- Alta diversidade genética no paciente confirmada
- Alta diversidade genética no mosquito começa a ser reafirmada

- Alta diversidade genética no paciente confirmada
- Alta diversidade genética no mosquito começa a ser reafirmada
- Quanto maior a diversidade intra-host, maior a diversidade genética esperada (devido à genetic-drift) entre a diversidade original e a que será transferida para o novo hospedeiro.

- Alta diversidade genética no paciente confirmada
- Alta diversidade genética no mosquito começa a ser reafirmada
- Quanto maior a diversidade intra-host, maior a diversidade genética esperada (devido à genetic-drift) entre a diversidade original e a que será transferida para o novo hospedeiro.
- Aumento da competição \Longrightarrow Aumento da Seleção.

- Alta diversidade genética no paciente confirmada
- Alta diversidade genética no mosquito começa a ser reafirmada
- Quanto maior a diversidade intra-host, maior a diversidade genética esperada (devido à genetic-drift) entre a diversidade original e a que será transferida para o novo hospedeiro.
- Aumento da competição \Longrightarrow Aumento da Seleção.
- Identificar o número de vírus transmitidos e a distribuição de polimorfismo viral ⇒ importância da genetic-drift

 Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo

- Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo
- Vetor pode agir como agente seletivo

- Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo
- Vetor pode agir como agente seletivo
- Polimorfismo genético do vetor controla:

- Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo
- Vetor pode agir como agente seletivo
- Polimorfismo genético do vetor controla:
 - Resistência vetorial à infecção viral

- Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo
- Vetor pode agir como agente seletivo
- Polimorfismo genético do vetor controla:
 - Resistência vetorial à infecção viral
 - 2 Competência vetorial

- Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo
- Vetor pode agir como agente seletivo
- Polimorfismo genético do vetor controla:
 - Resistência vetorial à infecção viral
 - 2 Competência vetorial
 - Herança maternal transmissão vertical

- Imunização contra 1 Serotipo ⇒ Todos Genótipos deste Serotipo
- Vetor pode agir como agente seletivo
- Polimorfismo genético do vetor controla:
 - Resistência vetorial à infecção viral
 - 2 Competência vetorial
 - Herança maternal transmissão vertical
- Sistema vetor-vírus se enquadra no esquema de co-evolução Parasita-Hospedeiro

Polimorfismo Viral Entre Populações

- Rápida evolução do polimorfismo viral lin situ observada.
 Apesar de erros recorrentes:
 - Subestimação devido ao estudo de um só gem (E)
 - Amostragem não representativa da população

Polimorfismo Viral Entre Populações

- Rápida evolução do polimorfismo viral lin situ observada.
 Apesar de erros recorrentes:
 - Subestimação devido ao estudo de um só gem (E)
 - 2 Amostragem não representativa da população
- Diversidade genética constatada alta e geograficamente estruturada

Relação Vetor X Humano - Co-Adaptação

- Co-Adaptação viral esperada nunca testada diretamente.
- Co-Adaptação virus vetor
 - Probabilidade de sucesso na transmissão
 - Proporção relativa entre transmissão vertical e transmissão horizontal
 - Oinâmica da carga viral

Relação Vetor X Humano - Co-Adaptação

- Co-Adaptação viral esperada nunca testada diretamente.
- Co-Adaptação virus vetor
 - Probabilidade de sucesso na transmissão
 - Proporção relativa entre transmissão vertical e transmissão horizontal
 - O Dinâmica da carga viral
- Co-adaptação não pode ser determinada somente pelo genoma viral ou vetorial

• Imigração viral afeta patogênese do dengue em humanos

- Imigração viral afeta patogênese do dengue em humanos
- Possível Mal Adaptação do vírus residente
 - Humanos?
 - Vetores?
 - Ambos?

- Imigração viral afeta patogênese do dengue em humanos
- Possível Mal Adaptação do vírus residente
 - Humanos?
 - Vetores?
 - Ambos?
- Como a adaptação dos vetores locais afetam a patogênese em humanos?

- Imigração viral afeta patogênese do dengue em humanos
- Possível Mal Adaptação do vírus residente
 - Humanos?
 - Vetores?
 - Ambos?
- Como a adaptação dos vetores locais afetam a patogênese em humanos?
- Como uma mudança na patogênese viral determinante afeta a adaptação local dos vetores?

- Imigração viral afeta patogênese do dengue em humanos
- Possível Mal Adaptação do vírus residente
 - Humanos?
 - Vetores?
 - Ambos?
- Como a adaptação dos vetores locais afetam a patogênese em humanos?
- Como uma mudança na patogênese viral determinante afeta a adaptação local dos vetores?
- Ocorre adaptação local? Humanos, vetores ou em ambos?

- Imigração viral afeta patogênese do dengue em humanos
- Possível Mal Adaptação do vírus residente
 - Humanos?
 - Vetores?
 - Ambos?
- Como a adaptação dos vetores locais afetam a patogênese em humanos?
- Como uma mudança na patogênese viral determinante afeta a adaptação local dos vetores?
- Ocorre adaptação local? Humanos, vetores ou em ambos?
- A adaptação local interfere na base genética da virulência?

- Imigração viral afeta patogênese do dengue em humanos
- Possível Mal Adaptação do vírus residente
 - Humanos?
 - Vetores?
 - Ambos?
- Como a adaptação dos vetores locais afetam a patogênese em humanos?
- Como uma mudança na patogênese viral determinante afeta a adaptação local dos vetores?
- Ocorre adaptação local? Humanos, vetores ou em ambos?
- A adaptação local interfere na base genética da virulência?
- Como a seleção imprimida pelo vetor interfere na patologia humana?

Seleção Vetorial X Seleção Humana

- Experimentos in vitro sugerem seleção e antagonismo
- Estudos com VSV e EEEV conduziram às mesmas conclusões
 - Transmissão Inseto → Inseto
 - ② Transmissão Veterbrado → Vertebrado

Seleção Vetorial X Seleção Humana

- Experimentos in vitro sugerem seleção e antagonismo
- Estudos com VSV e EEEV conduziram às mesmas conclusões
 - Transmissão Inseto → Inseto
 - 2 Transmissão Veterbrado → Vertebrado
- Seleção por especialistas de insetos diminuiram habilidades competitivas em vertebrados e vice-versa
- Seleção dos generalistas manteve alta competitividade em ambos

Seleção Vetorial X Seleção Humana

- Experimentos in vitro sugerem seleção e antagonismo
- Estudos com VSV e EEEV conduziram às mesmas conclusões
 - Transmissão Inseto → Inseto
 - 2 Transmissão Veterbrado → Vertebrado
- Seleção por especialistas de insetos diminuiram habilidades competitivas em vertebrados e vice-versa
- Seleção dos generalistas manteve alta competitividade em ambos
- Sugere-se estudo semelhante com dengue

Inclusão da Dinâmica do Vetor no Modelo

- Genética viral analisada a partir de isolados humanos
- Polimorfismo viral raramente estudado em outros gens
- Clarificar o alvo molecular das seleções humanas e vetoriais
- Determinar prevalência viral em populações de vetores
- Custo da infecção no fitness do vetor
- Frequência da transmissão vertical