Table of Contents

About This Book	. i . iii . iv
Additional References	. iii . iv
About the Exercises	. iv
Steal This Book!	
	· V
Acknowledgments	. vi
Caveat Lector!	vii
ole of Contents	ix
Introduction	1
o.1 What is an algorithm?	. 1
o.2 Multiplication	. 3
)]	te of Contents Introduction D.1 What is an algorithm?

		Lattice Multiplication • Duplation and Mediation • Compass and Straight- edge	
	0.3	Congressional Apportionment	8
	0.3	A Bad Example	10
	0.5	Describing Algorithms	11
	0.5	Specifying the Problem • Describing the Algorithm	11
	0.6	Analyzing Algorithms	14
	Exer	cises	17
1	Reci	ırsion	21
	1.1	Reductions	21
	1.2	Simplify and Delegate	22
	1.3	Tower of Hanoi	24
	1.4	Mergesort	26
	1.5	Quicksort	29
	1.6	The Pattern	31
	1.7	Recursion Trees	31
	1.8	▼Ignoring Floors and Ceilings Is Okay, Honest *Linear-Time Selection	35
		Quickselect • Good pivots • Analysis • Sanity Checking	
	1.9	Fast Multiplication	40
	1.10	Exponentiation	42
	Exer	cises	44
2	Bacl	ktracking	71
	2.1	N Queens	71
	2.2	Game Trees	74
	2.3	Subset Sum	76
	2.4	The General Pattern	79
	2.5	Text Segmentation (<i>Interpunctio Verborum</i>)	80
	2.6	Longest Increasing Subsequence	86
	2.7	Longest Increasing Subsequence, Take 2	89
	2.8	Optimal Binary Search Trees	91
	Exer	cises	93
3	Dvn	amic Programming	97

	3.1	Mātrāvṛtta	97
		Backtracking Can Be Slow • Memo(r)ization: Remember Everything • Dy-	
		namic Programming: Fill Deliberately • Don't Remember Everything After	
		All	
	3.2	*Aside: Even Faster Fibonacci Numbers	103
		Whoa! Not so fast!	
	3.3	Interpunctio Verborum Redux	105
	3.4	The Pattern: Smart Recursion	105
	3.5	Warning: Greed is Stupid	107
	3.6	Longest Increasing Subsequence	109
		First Recurrence: Is This Next? • Second Recurrence: What's Next?	
	3.7	Edit Distance	111
		Recursive Structure • Recurrence • Dynamic Programming	
	3.8	Subset Sum	116
	3.9	Optimal Binary Search Trees	117
	3.10	Dynamic Programming on Trees	120
	Exer	cises	123
4	Gree	edy Algorithms	159
	4.1	Storing Files on Tape	159
	4.2	Scheduling Classes	161
	4.3	General Pattern	164
	4.4	Huffman Codes	165
	4.5	Stable Matching	
		Some Bad Ideas • The Boston Pool and Gale-Shapley Algorithms • Running	
		Time • Correctness • Optimality!	
	Exer	cises	176
5	Basi	c Graph Algorithms	187
	5.1	Introduction and History	187
	5.2	Basic Definitions	190
	5.3	Representations and Examples	192
	5.4	Data Structures	
		Adjacency Lists • Adjacency Matrices • Comparison	
	5.5	Whatever-First Search	199
		Analysis	
	5.6	Important Variants	201
		Stack: Depth-First • Queue: Breadth-First • Priority Queue: Best-	
		First • Disconnected Graphs • Directed Graphs	
	5.7	Graph Reductions: Flood Fill	205
	Ever	cises	207

6	Dep	th-First Search	225
	6.1	Preorder and Postorder	227
		Classifying Vertices and Edges	
	6.2	Detecting Cycles	231
	6.3	Topological Sort	232
	6.4	Memoization and Dynamic Programming	234
	<i>c</i> –	Dynamic Programming in Dags	
	6.5	Strong Connectivity	
	6.6	Strong Components in Linear Time	238
	Evo	Kosaraju and Sharir's Algorithm ● Tarjan's Algorithm rcises	244
	Exei	.cises	244
7	Min	imum Spanning Trees	257
	7.1	Distinct Edge Weights	257
	7.2	The Only Minimum Spanning Tree Algorithm	259
	7.3	Borůvka's Algorithm	261
		This is the MST Algorithm You Want	
	7.4	Jarník's ("Prim's") Algorithm	263
		[♥] Improving Jarník's Algorithm	
	7.5	Kruskal's Algorithm	265
	Exe	rcises	268
8	Sho	rtest Paths	273
	8.1	Shortest Path Trees	274
	8.2	*Negative Edges	
	8.3	The Only SSSP Algorithm	276
	8.4	Unweighted Graphs: Breadth-First Search	278
	8.5	Directed Acyclic Graphs: Depth-First Search	
	8.6	Best-First: Dijkstra's Algorithm	
	0.0	No Negative Edges • *Negative Edges	204
	8.7	Relax ALL the Edges: Bellman-Ford	289
	0.7	Moore's Improvement • Dynamic Programming Formulation	209
	Exe	rcises	297
9	A11-1	Pairs Shortest Paths	309
7	9.1	Introduction	
	9.1	Lots of Single Sources	310
	9.2	Reweighting	311
	9.3	Johnson's Algorithm	312
	9.4	Dynamic Programming	
		Divide and Conquer	313

	9.7	Funny Matrix Multiplication	
	9.8	(Kleene-Roy-)Floyd-Warshall(-Ingerman)	
	Exer	cises	320
10	Maxi	imum Flows & Minimum Cuts	327
	10.1	Flows	
	10.2	Cuts	329
		The Maxflow-Mincut Theorem	
	10.4	Ford and Fulkerson's augmenting-path algorithm	334
		▼Irrational Capacities	
	10.5	Combining and Decomposing Flows	336
	10.6	Edmonds and Karp's Algorithms	340
		Fattest Augmenting Paths • Shortest Augmenting Paths	
	10.7	Further Progress	343
	Exer	cises	344
11	Appl	ications of Flows and Cuts	353
	11.1	Edge-Disjoint Paths	
	11.2	Vertex Capacities and Vertex-Disjoint Paths	
		Bipartite Matching	
	11.4	Tuple Selection	357
	11.5	Disjoint-Path Covers	360
		Minimal Faculty Hiring	
	11.6	Baseball Elimination	363
	11.7	Project Selection	366
	Exer	cises	368
12	NP-H	Iardness	379
	12.1	A Game You Can't Win	379
	12.2	P versus NP	381
	12.3	NP-hard, NP-easy, and NP-complete	382
	12.4	*Formal Definitions (HC SVNT DRACONES)	384
		Reductions and SAT	
	12.6	3SAT (from CircuitSAT)	388
	12.7	Maximum Independent Set (from 3SAT)	
	12.8	The General Pattern	
		Clique and Vertex Cover (from Independent Set) $\ \ldots \ \ldots$	
		Graph Coloring (from 3SAT)	
	12.11	Hamiltonian Cycle	398
	10 10	From Vertex Cover • From 3SAT • Variants and Extensions Subset Sum (from Vertex Cover)	402

Caveat Reductor!
12.13 Other Useful NP-hard Problems 404
12.14 Choosing the Right Problem 407
12.15 A Frivolous Real-World Example 408
12.16 On Beyond Zebra
Polynomial Space • Exponential Time • Excelsior!
Exercises
Index 442
Index of People 446
Index of Pseudocode 449
Image Credits 451
Colophon 453