SPRAWOZDANIE

Zajęcia: Analiza Procesów Uczenia Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium 5 Data 28.04.2023

Temat: "Modelowanie procesów uczenia maszynowego w pakiecie mlr.

Trenowanie, ocena i porównywanie modeli w pakiecie mlr."

Wariant: 2

Szymon Białek Informatyka II stopień stacjonarne 1 semestr, Gr.1

Wszystkie pliki i komendy można obejrzeć pod linkiem:

https://github.com/NynyNoo/Analiza-procesow-uczenia/tree/main/lab5

Zadanie1

Polecenie

Zadanie 1. Zadanie dotyczy konstruowania drzew decyzyjnych oraz reguł klasyfikacyjnych na podstawie zbioru danych (z wykorzystaniem biblioteki MASS lub datasets). Biopsy

Wykorzystane komendy oraz wyniki działania programu

Wczytanie pakietu rpart

library(rpart)

Wczytanie danych

data(infert)

Podsumowanie kolumn

summary(infert)

Podział danych na zestaw treningowy i testowy

```
set.seed(123)
```

train_indices <- sample(1:nrow(infert), nrow(infert) * 0.7)</pre>

train <- infert[train_indices,]</pre>

test <- infert[-train_indices,]</pre>

Tworzenie modelu drzewa decyzyjnego

model <- rpart(case~., data=train, method="class")

Wizualizacja drzewa decyzyjnego

plot(model)

text(model)

Predykcja na zestawie testowym

predictions <- predict(model, newdata=test, type="class")</pre>

Wyniki predykcji

table(predictions, test\$case)

Wizualizacja Danych

Zadanie 2

Polecenie

Zadanie dotyczy prognozowania oceny klientów (w skali 5-punktowej, Error < 5%) urządzeń RTV AGD, określonych na Zajęciu 1. Rozwiązanie polega na użyciu pakietu mlr. Należy wybrać najlepszą metodę wśród 5 możliwych z punktu widzenia precyzyjności. Wyniki porównywania precyzyjności metod należy przedstawić w postaci graficznej.

Wykorzystane komendy oraz wyniki działania programu

```
library("rFerns")
library("randomForestSRC")
library("mlr")
```

Wczytaj dane

```
data <- read.csv("macbooki.csv")
data <- data[3:8]
data[, 6] <- factor(data[, 6])
```

Ustaw zadanie

```
task = makeClassifTask(
    id = deparse(substitute(data)),
    data,
    target = "ocena_klientow",
    weights = NULL,
    blocking = NULL,
    coordinates = NULL,
    positive = NA_character_,
    fixup.data = "warn",
    check.data = TRUE
)
```

Utwórz listę algorytmów do sprawdzenia

```
Irns <- makeLearners(
    c(
        "Ida",
        "rpart",
        "C50",
        "rFerns",
        "h2o.randomForest"
    ),
    type = "classif"
)</pre>
```

```
Wykonaj benchmark
```

Wypisz wynik

[Resample] iter 5: 0.3333333

bench

Prezentacja graficzna danych

```
> library(ggplot2)
> library(dplyr)
>
> # Przekształć obiekt BenchmarkResult na data.frame
> df <- as.data.frame(bench)
>
> # Stwórz wykres
> plot <- ggplot(df, aes(x = learner.id, y = mmce)) +
+ geom_bar(stat = "identity", fill = "steelblue") +
+ labs(title = "Średni błąd klasyfikacji",</pre>
```

```
+ x = "Algorytm",
+ y = "Błąd klasyfikacji") +
+ theme_minimal() +
+ theme(axis.text.x = element_text(angle = 45, hjust = 1))
>
> # Wyświetl wykres
> print(plot)
```

