Wydział WFIIS	Imię i nazwisko 1. Mateusz Kulig 2. Przemysław F		Rok 2022	Grupa 3	Zespół 1
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Ładune	Nr ćwiczenia 45			
Data wykonania 01.05.2022	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

W sprawozdaniu wyznaczyliśmy stosunek ładunku elektronu do jego masy metodą cewek Helmholtza. Zebraliśmy dane napięć przyspieszających i promieni okręgów jakie zataczały wiązki elektronów. Wynik otrzymany w efekcie różni się od wartości tablicowej aż o dwa rzędy wielkości z czego wnioskujemy iż jest on błędny.

1. Wstęp teoretyczny

Cewki Helmholtza to dwie identyczne cewki, ułożone równolegle do siebie w odległości równej ich promieniowi. Ułożenie to sprawia ze w centrum układu otrzymamy pole magnetyczne które jest w przybliżeniu jednorodne. Jeśli w tym polu znajdzie się ładunek elektryczny to tor jego ruchu zostanie zakrzywiony pod wpływem siły Lorentza

$$\vec{F} = q\vec{v} \times \overrightarrow{B}. \tag{1}$$

Jeśli zakrzywienie będzie odpowiednio silne tor ruchu cząstki może stać się okręgiem, tak wiec siła zakrzywiająca równa będzie co do wartości sile odśrodkowej

$$qvB = \frac{mv^2}{r},\tag{2}$$

co po przekształceniu daje nam

$$\frac{q}{m} = \frac{v}{rB}. ag{3}$$

Jeżeli cząstka której tor ruchu jest zakrzywiany została początkowo przyspieszona przez pole elektryczne o różnicy potencjałów *U* to jej prędkość wyrazić możemy za pomocą zasady zachowania energii przez

$$v = \sqrt{\frac{2qU}{m}}. (4)$$

Podstawiając otrzymaną prędkość do wzoru (3) otrzymujemy

$$\frac{q}{m} = \frac{2U}{R^2 r^2}. ag{5}$$

Natomiast wartość indukcji pola magnetycznego, pod warunkiem ze przez obie cewki płynie taki sam prąd *I*, wyrazić możemy znając ich promień *R*, liczbę zwojów *n* oraz przenikalność magnetyczną powietrza poprzez

$$B = 0.715\mu_0 \frac{nI}{R}. ag{6}$$

Ostatecznie otrzymamy

$$\frac{q}{m} = 2,48 \cdot 10^{12} \frac{UR^2}{n^2 I^2 r^2}. (7)$$

2. Aparatura

Do przeprowadzenia doświadczenia użyliśmy następujących przyrządów:

- Cewki Helmholtza,
- Lampa katodowa,
- Zasilacz,
- Pudło umożliwiające lepsza obserwację elektronów,
- Amperomierz.

3. Metodyka doświadczenia

Przeprowadzenie doświadczenia rozpoczęliśmy od ustawienia lampy katodowej w odpowiedniej pozycji względem cewek Helmholtza. Po krótkim czasie przeznaczonym na nagrzanie lampy przystąpiliśmy do pomiarów dla napięcia siatki 40 V oraz kilku kolejnych wartości napięcia przyspieszającego. Aparaturę nakryliśmy pudłem by jasne światło pochodzące z laboratorium nie utrudniało odczytu wyników. Następnie za pomocą pokrętła zmienialiśmy natężenie prądu i zapisywaliśmy wartość dla której zakrzywiony w okrąg strumień elektronów osiągał kolejne szczeble podziałki znajdującej się wewnątrz lampy. Całość pomiarów powtórzyliśmy dla napięcia siatki równego 50 V.

4. Analiza danych

Dane zebrane w wyniku przeprowadzonego eksperymentu zestawione zostały w poniższych tabelach Tab. 1. oraz Tab. 2..

Tab. 1. Tabela zależności prądów i napięć dla poszczególnych promieni okręgów powstałych w wyniku zakrzywienia toru ruchu elektrów oraz wyliczonego na podstawie tych danych stosunku ładunku elektronu do jego masy dla napięcia siatki $U=40~[{\rm V}].$

U	r = 0,02 [m]		r = 0,03 [m]		r = 0,04 [m]		r = 0,05 [m]	
$\frac{\partial}{V}$ [V]	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$
150	0,34	1,36	0,219	1,45	0,159	1,55	0,126	1,58
175	0,362	1,4	0,235	1,47	0,171	1,56	0,136	1,58
200	0,384	1,42	0,249	1,5	0,183	1,56	0,145	1,59
225	0,404	1,44	0,265	1,49	0,192	1,6	0,154	1,59

Tab. 2. Tabela zależności prądów i napięć dla poszczególnych promieni okręgów powstałych w wyniku zakrzywienia toru ruchu elektrów oraz wyliczonego na podstawie tych danych stosunku ładunku elektronu do jego masy dla napięcia siatki U = 50 [V].

<i>r</i> = 0,02 [m]	<i>r</i> = 0,03 [m]	<i>r</i> = 0,04 [m]	<i>r</i> = 0,05 [m]

$\frac{U}{V}$ [V]	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$	/ [A]	$\frac{e}{m} \cdot 10^{13} \left[\frac{V}{A^2} \right]$
150	0,347	1,30	0,223	1,40	0,163	1,48	0,13	1,49
175	0,372	1,32	0,24	1,41	0,176	1,48	0,14	1,49
200	0,392	1,36	0,256	1,42	0,186	1,51	0,149	1,51
225	0,412	1,39	0,27	1,43	0,197	1,52	0,157	1,53

Stosunek $\frac{e}{m}$ wyznaczony na podstawie średniej z powyższych wyników wynosi $\frac{e}{m}=1,47\cdot 10^{13}~\left[\frac{\rm V}{\rm A^2}\right]$.

Niepewność powyższego stosunku liczymy za pomocą prawa przenoszenia niepewności zastosowanym do wzoru (7) w wyniku czego otrzymamy wzór:

$$u\left(\frac{e}{m}\right) = \sqrt{\left(2,48 \cdot 10^{12} \cdot \frac{2UR}{(nIr)^2} \cdot u(R)\right)^2 + \left(2,48 \cdot 10^{12} \cdot \frac{(-2) \cdot UR^2}{I^3(nr)^2} \cdot u(I)\right)^2}.$$

Za niepewność R przyjmujemy za daną i równą $u(R)=0.01~\mathrm{[m]}$, natomiast niepewność I wyznaczamy za pomocą niepewności typu A za pomocą excelowej funkcji "ODCH.STANDARD.PRÓBKI()" i dzielimy przez pierwiastek z liczby pomiarów, po czym wyciągamy średnią z wyniku otrzymanego dla każdej serii. W wyniku czego owa niepewność wynosi $u(I)=0.006~\mathrm{[A]}$.

Podstawiając dane do wzoru na niepewność stosunku ładunku elektronu do jego masy otrzymujemy jej wartość równą:

$$u\left(\frac{e}{m}\right) = 1.4 \cdot 10^{12} \left[\frac{V}{A^2}\right].$$

Ostatecznie stosując zapis wyniku z wykorzystaniem niepewności rozszerzonej o czynniku k = 2 otrzymujemy:

$$\frac{e}{m} = (1,47 \cdot 10^{13} \pm 0,28) \left[\frac{V}{A^2} \right]$$

Gdzie tablicowa wartość stosunku ładunku elementarnego do masy elektronu wynosi:

$$\frac{e}{m_{tablicowe}} = 1,76 \cdot 10^{11} \left[\frac{\text{V}}{\text{A}^2} \right]$$

5. Podsumowanie

W wyniku przeprowadzonego doświadczenia otrzymaliśmy stosunek ładunku elektronu do jego masy wraz z niepewnością równy $\frac{e}{m}=(1,47\cdot 10^{13}\pm 0,28)\left[\frac{V}{A^2}\right]$. Jest to wynik znacznie odbiegający od danych tablicowych o aż dwa rzędy wielkości, z czego uznajemy go za błędny.

6. Literatura

[1.] https://pl.wikipedia.org/wiki/Stałe fizyczne - 01.05.2022