Forecasting Hydro-Power in Brazil

Mentors: Ivan Marin, Tanmay Raj

Bootcamp Coordinators: Daniel Spirn, Thomas Höft

Ana Chavez Caliz (PSU), Jürgen Kritschgau (ISU), Francisco Martinez (OSU), Avishek Mukherjee (UDel), Smita Praharaj (UMC), Cameron Thieme (UMN), Jennifer Zhu (TA&M)

Cargill in Brazil

Cargill's soy facilities and sourcing areas in Brazil

- 122.6 million tons of soy production*
- 15,000 suppliers selling soy to Cargill*
- Soy processing plants can be powered by Cargill or 3rd party.

Problem: Should Cargill buy electricity or produce it?

Our Role

- Ideal Goal: Predict energy price.
- Obstacle:
 - Price depends on production, demand and complex government regulations.
- Alternative: Predict energy generated.
- Advantages:
 - This prediction can be used to predict energy price in the future.
 - Depend on less variables.
 - More accessible data.

Hydroelectricity in Brazil

Hydropower accounts for 70% of Brazil's power (~16% of the world's power is hydro!).

Goal: Predict hydroelectricity generation (~12 months in advance)

Timeline

Data Collection

Distinguish significant variables

Determine time frame and scale

Prediction model

Compiles:

- Hydroelectric system information.
- Weather information.

At different geographic levels:

- Local.
- Regional.

Translated to English.

- Energy demand.
- Rainfall.
- Influent flow.

- Monthly analysis.
- Regional analysis.

Creation of a model that forecast energy generated:

- Univariate time series models.
- Incorporating exogenous regressors.
- Recurrent Neural Nets.

Data Collection Process

- Dam and power grid data obtained from the ONS
 - Daily, weekly, monthly scale depending on variable.
 - Generally complete, with few missing entries.
- Weather data from mixed sources
 - Aggregated to basin, state, or region.
 - o Daily, weekly, monthly scale.
 - Very patchy data.
 - Averaged by dropping "NA"s.

Weather Stations (SE/CW region)

Understanding Energy Generation at a Single Dam

Barra Bonita Hydroelectric Power Plant

Location:

State: São Paulo.

River: Tietê.

Simple Dam

- High water level.
- Independent: no dams upstream.
- Generation capacity: 140 MW.
- Big reservoir: stretches upto 150 kms.

Significant Variables at Dam Level

Forecast: Energy generated

- **Energy demand:** for the subsystem (MWh/h)
- Rainfall: by basin (mm)
- Influent flow: Water that the reservoir receives from rainfall and other natural resources (m³/s)
- Water level: Height of the water in the reservoir measured above the sea level (m)
- Lag of variables: Incorporating information from the past.

Correlation of significant variables

- Only strong correlations are trivial (eg: turbine flow vs energy generated).
- Models at the dam level were not accurate.

	energy_charge	usable_volume	water_level	energy_stored	maximum_demand
energy_charge	1.000000	0.008105	0.010377	-0.081993	0.958172
usable_volume	0.008105	1.000000	0.999120	0.556795	0.123996
water_level	0.010377	0.999120	1.000000	0.557616	0.125787
energy_stored	-0.081993	0.556795	0.557616	1.000000	0.006074
maximum_demand	0.958172	0.123996	0.125787	0.006074	1.000000

Correlation matrix of all variables at B. Bonita lagged 0, 7, 14, 30 days

Finding Significant Variables

- Trained a random forest with 500 trees.
- Trees have depth 7.
- Importance of a variable is a weighted sum of error reduction.
- Most Important:
 - Effluent flow
 - Energy generated (lag 3)
 - Effluent flow (lag 3)
 - Energy generated (lag 7)

Energy generated at Barra Bonita

- Energy generated doesn't exhibit a clear seasonal behavior.
- Other variables (energy demand, rainfall, influent flow, water level) are seasonal.

Influent flow at Barra Bonita

- Trained on 2007 2019 data
- Quantifies Relationship: Not a Prediction
- Clear relation between rain and influent flow.
- Most important lags are from 2 and 3 days ago.
- MAE about 23% of the mean influent flow.

log(influent_flow) ~ (2 weeks of lagged rain) + water_level + month

Conclusions for Energy Generated at Barra Bonita

- Correlations between variables at the dam level are weak at best.
- Best models we made are very inaccurate:
 - MAPE around 50% for all models.
- No exploitable seasonalities at the Barra Bonita level.
- Some success in quantifying the relationship between rainfall and influent flow

Rescaling the Problem (Look at a bigger region)

Southeast/Central West Subsystem

Hydroelectric Capacity by Region*

- 8 main basins.
- 20 main reservoirs.
- 101 Power plants.
 - Including Itaipu, the second largest Hydroelectric power station in the world.

Energy Generated at Subsystem Level

- Total energy generation in Southeast Central West Brazil.
- Monthly data.
- Forecasted using standard time series methods:
 - Naive, Seasonal Naive, SES, Holt Linear, Holt Exponential, Holt-Winters, Damped versions of the exponential smoothing models.
- SARIMA chosen for final predictions
 - Slightly improved accuracy.
 - Ability to incorporate exogenous regressors.

Without Exogenous Variables

- CV MAPE between 3.3% and 4.1% for predictions one to twelve months in advance.
- Errors do not depend on the month.
- Training data larger than shown.

With Exogenous Variable

- Mean of influent flow at 15 largest available dams as exogenous variable.
- Two layers of SARIMA: predict influent flow, use that in energy generation prediction.
- CV MAPE between **3.1%** and **4%** for predictions one to twelve months in advance.
- Errors do not depend on the month.
- Other exogenous regressors had similar results.

Neural Net Weekly

- 1026 weeks of data, separated into train, validation and test sets.
- 11 input variables.

- Mean absolute error of 6.1%
- Naive prediction of last known week, MAPE of 8.9%
- Architecture:
 - Two LSTM dense layers, of 15 nodes each.
 - Dense layer of 4 nodes.

- Less accurate than SARIMA.
- Needs accurate rain.

Neural Net Daily

- 7178 days of data, separated into train, validation and test sets.
- 11 input variables.
- Mean absolute error of 5.4%
- Naive prediction of last known week, MAPE of 6.1%
- Architecture:
 - LSTM dense layer of 10 nodes.
 - Dense layer of 7 nodes.

- Less accurate than SARIMA.
- Needs accurate rain.

Future Directions: Determine Optimal Scale

- Examine different time and space scales
 - Predicting daily output at a small dam is hard
 - Predicting monthly output in the region is doable
 - What can be said about levels between this?
 - Weekly data
 - Basin level, dam level
- Inter-dam relationships
 - Dams located along the same river may influence each other's power generation.

Thank you for your attention!

References

ONS - National Electricity System Operator - http://www.ons.org.br/

 INMET - National Institute of Meteorology https://portal.inmet.gov.br/dadoshistoricos

 CPTEC - Weather Prevision Center and Climate Studies -<u>https://bacias.cptec.inpe.br/#!</u>