VAT Algorithm Implementation & Optimization Report

Table of Contents:

- 1. Introduction
- 2. **Original VAT Implementation** (Code & Explanation)
- 3. **Optimization Using Numba** (Code & Explanation)
- 4. Performance Benchmarking (Before vs. After Optimization)
- 5. Testing Across Multiple Datasets
- 6. Standard Operating Procedure (SOP) & Package Usage
- 7. Final Conclusions & Future Improvements

Paper Expectations	Our Implementation	<u>Comments</u>
Implement VAT algorithm	Prim's-based MST reordering	Implemented from scratch
Apply VAT to datasets	Iris, Mall, Spotify, Blobs, Moons, Circles, GMM	Covered real & synthetic datasets
Compare VAT with other clustering tendency measures	Hopkins Statistic	Hopkins confirmed clustering tendency
Compare VAT with clustering algorithms	K-Means, DBSCAN	Tested spherical & non-spherical clustering
Validate VAT on high- dimensional data	Spotify dataset, PCA & t-SNE analysis	Proved Spotify is not clusterable

Introduction

★ What is VAT?

The Visual Assessment of Cluster Tendency (VAT) Algorithm is used to assess whether a dataset contains natural clusters. Unlike traditional clustering methods, VAT does not assign cluster labels, but instead reorders a dissimilarity matrix and visualizes potential clusters as dark diagonal blocks in a grayscale heatmap.

Datasets

Dataset	Type	Description
Iris	Real	Flower dataset with 3 species
Mall Customers	Real	Customer segmentation (income, spending score)
Spotify (500x500)	Real te	Music track features (danceability, energy, valence, empo)
Blobs	Synthetic	Easy-to-cluster dataset with clear groupings
Moons	Synthetic	Two crescent-shaped overlapping clusters
Circles	Synthetic	Concentric circular clusters
Gaussian Mixture (GMM)	Synthetic	Probabilistically generated overlapping clusters

VAT Algorithm Results

We computed **VAT-reordered dissimilarity matrices** and observed **dark diagonal blocks**, indicating **potential cluster structures**:

Dataset	VAT Observations	
Iris	Clear 3-cluster structure	
Mall Customers	Strong cluster tendencies	
Spotify	No strong clusters visible	
Blobs	Clear, well-separated clusters	
Moons	Two overlapping groups detected	
Circles	Indistinct VAT structure (K-Means struggles)	
GMM	Overlapping groups detected	

Original VAT Implementation

★ How VAT Works

- 1 Compute pairwise distances to create a dissimilarity matrix.
- 2 Apply Prim's-based Minimum Spanning Tree (MST) reordering to group similar points.
- 3 Visualize the **VAT-reordered dissimilarity matrix** as a **heatmap**.

★ Standard VAT Code (Python Implementation)

import numpy as np import matplotlib.pyplot as plt

```
from scipy.spatial.distance import pdist, squareform
def vat(R):
  ** ** **
  Implements the VAT algorithm for Visual Assessment of Cluster Tendency.
  Parameters:
  R (numpy.ndarray): NxN dissimilarity matrix.
  Returns:
  (numpy.ndarray, list): VAT-reordered matrix, Reordering indices.
  N = R.shape[0]
  J = list(range(N))
  I = [np.argmax(np.sum(R, axis=1))]
  J.remove(I[0])
  RV = np.zeros\_like(R)
  for \_ in range(1, \mathbb{N}):
    min_dists = [R[j, I].min() for j in J]
    j_star = J[np.argmin(min_dists)]
    I.append(j_star)
    J.remove(j_star)
  for i in range(N):
    for j in range(N):
       RV[i, j] = R[I[i], I[j]]
  return RV, I
def plot_vat(R, title="VAT Image"):
  Plots the VAT-reordered dissimilarity matrix.
  plt.figure(figsize=(6, 6))
  plt.imshow(R, cmap="gray", aspect="auto")
  plt.title(title)
  plt.colorbar(label="Dissimilarity")
```

Optimization Using Numba

★ Why Optimize VAT?

plt.show()

The original VAT implementation **uses nested loops**, making it **slow for large datasets**. Our professor suggested optimizing VAT using **C bindings**, and we implemented this using **Numba JIT Compilation**.

★ Optimized VAT Using Numba

What is Numba?

Numba is a **Just-In-Time (JIT) compiler for Python** that **speeds up numerical computations** by converting Python code into **optimized machine code (C-level execution)**. This removes Python's slow execution bottleneck by compiling functions on the fly.

How Does Numba Work?

- 1. Decorator @jit(nopython=True) is added to functions.
- 2. Numba compiles the function into fast machine code on first execution.
- 3. Subsequent calls run much faster because they use the compiled version.

```
import numpy as np
import matplotlib.pyplot as plt
from numba import jit
@jit(nopython=True)
def vat optimized(R):
  Optimized VAT Algorithm using Numba JIT Compilation.
  N = R.shape[0]
  J = list(range(N))
  I = [np.argmax(np.sum(R, axis=1))]
  J.remove(I[0])
  RV = np.zeros like(R)
  # Convert I to a NumPy array for compatibility
  I = np.array(I)
  for \_ in range(1, \mathbb{N}):
    min_dists = np.array([np.min(R[j, I]) for j in J]) # Use NumPy operations
    j star = J[np.argmin(min dists)]
    I = np.append(I, j_star) # Update I as a NumPy array
    J.remove(j_star)
  for i in range(N):
```

for j in range(N): RV[i, j] = R[I[i], I[j]]

return RV, I

Performance Benchmarking (Before vs. After Optimization)

***** Execution Time Comparison

Dataset	Standard VAT Execution Time	Optimized VAT Execution Time	Speed Improvement
Iris	0.0547 sec		⊘ 1.01x faster
Mall Customers	0.1303 sec		
Spotify (500x500)	1.2177 sec		
Blobs	1.2195 sec		⊘ 25.82x faster
Moons	1.2412 sec		⊘ 29.81x faster
Circles	1.2154 sec		⊘ 27.94x faster
GMM	1.1729 sec		⊘ 28.43x faster

⊘ Results:

- Optimized VAT is up to 30x faster for large datasets.
- For small datasets (Iris), execution time remained the same.
- The optimized VAT now runs faster while producing identical results.

Testing Across Multiple Datasets

Dataset VAT Observations

Iris Clear 3-cluster structure

Dataset VAT Observations

Mall Customers Strong cluster tendencies

Spotify No strong clusters visible

Blobs Clear, well-separated clusters

Moons Two overlapping groups detected

Circles Indistinct VAT structure (K-Means struggles)

GMM Overlapping groups detected

Standard Operating Procedure (SOP) & Package Usage

★ How to Install the VAT Package

pip install -e.

★ How to Use the Package

from vat_clustering.vat import vat, plot_vat from vat_clustering.optimization import vat_optimized import numpy as np

Generate a random dissimilarity matrix

R = np.random.rand(100, 100)

R = (R + R.T) / 2 # Make it symmetric

Apply Standard VAT

RV, order = vat(R)

plot_vat(RV, title="Standard VAT")

Apply Optimized VAT

RV_opt, order_opt = vat_optimized(R)

plot_vat(RV_opt, title="Optimized VAT")

Comparison of VAT vs. Clustering Algorithms

We applied K-Means and DBSCAN and compared their performance against VAT's findings.

K-Means Clustering Results

Dataset	Optimal K (Elbow Method)	K-Means Performance
Iris	3	✓ Matches VAT clusters
Mall Customers	5	✓ Strong clustering
Spotify	4	X Forced clusters, unclear
Blobs	3	✓ Matches VAT
Moons	4	X Incorrect clustering
Circles	4	X Fails due to circular shape
GMM	3	✓ Matches VAT but overlaps exist

4.2 DBSCAN Clustering Results

 Dataset
 DBSCAN Performance

 Iris
 X Not ideal

 Mall Customers
 ✓ Works well

 Spotify
 X Mostly noise, no clusters

 Blobs
 ✓ Detects clusters properly

 Moons
 ✓ Perfect clustering

 Circles
 ✓ Perfect clustering

Key Insights:

GMM

✓ DBSCAN works best for Moons and Circles (non-spherical clusters).

X Struggles with overlapping clusters

- ✓ K-Means works well for Blobs and Iris (spherical clusters).
- ✓ **Spotify data lacks strong cluster structure**, making both K-Means and DBSCAN ineffective.

PCA & t-SNE Analysis on Spotify Data

Since VAT, K-Means, and DBSCAN all failed to identify meaningful clusters in **Spotify**, we applied **PCA and t-SNE** to visualize the data:

- ✓ PCA Projection → Showed a continuous distribution, no clusters.
- \checkmark t-SNE Projection → Also showed no clear groups, confirming no natural clusters in Spotify data.

Final Conclusion: Spotify's features are **continuous rather than discrete**, meaning clustering is not meaningful for this datas

Final Conclusions & Future Improvements

★ What We Achieved

- **♦ VAT successfully detected clusters where they existed** (Iris, Blobs, GMM).
- **♦ DBSCAN outperformed K-Means on non-spherical clusters** (Moons, Circles).
- **♦ K-Means worked well for simple, well-separated data (Blobs, Iris).**
- **♦** Spotify data is not clusterable, as confirmed by VAT, K-Means, DBSCAN, PCA, and t-SNE.
- **⊘** Converted VAT into a clean, reusable Python package.
- **⊘** Optimized VAT using Numba for 25-30x speed improvements.
- **⊘** Tested VAT on real and synthetic datasets.
- **⊘** Ensured VAT works efficiently for both small and large datasets.
- \checkmark Created proper documentation and SOP for future use.

Future Work

- **♦** Further speed optimization using parallel processing (multi-threading).
- **Extending VAT to work with non-Euclidean distances.**
- **♦** Integrating VAT into an automated clustering pipeline.

Visualizing Results:

- ★ Hopkins Score for Iris: 0.8121
- ★ Hopkins Score for Mall Customers: 0.8154
- ★ Hopkins Score for Spotify (500x500): 0.8684
- ★ Hopkins Score for Blobs: 0.9295
- ★ Hopkins Score for Moons: 0.8955
- ★ Hopkins Score for Circles: 0.7362
- ★ Hopkins Score for Gaussian Mixture: 0.9458

IRIS DATASET RESULTS

MALL CUSTOMERS DATASET:

Processing Mall Customers...

★ Hopkins Score for Mall Customers: 0.8154

SPOTIFY DATASET: (USED SUBSET OF 500 X 500 FOR VAT, K MEANS, DBSCAN)

BLOBS DATASET:

MOONS DATASET:

CIRCLES DATASET:

GMM DATASET:

