IronITA Irony Detection in Italian Tweets

Alessandra Teresa Cignarella^{1,2}, Simona Frenda^{1,2}, Valerio Basile¹, Cristina Bosco¹, Viviana Patti² and Paolo Rosso²

- [1] Dipartimento di Informatica, Università degli Studi di Torino, Italy
- [2] PRHLT Research Center, Universitat Politècnica de València, Spain

CONTINUITY WITH:

- SENTIPOLC @ EVALITA 2014 (Barbieri et al., 2014)
- SENTIPOLC @ EVALITA 2016 (Basile et al., 2016)

CONTINUITY WITH:

- SENTIPOLC @ EVALITA 2014 (Barbieri et al., 2014)
- SENTIPOLC @ EVALITA 2016 (Basile et al., 2016)

FOCUS ON:

• Italian social media texts (Twitter)

irony

noun [C/U] • US (1) /'aɪ·rə·ni, 'aɪ·ər·ni/

a type of usually humorous expression in which you say the opposite of what you intend:

[U] He had a powerful sense of irony, and you could never be absolutely sure when he was serious.

irony

noun [C/U] • US (1) /'aɪ·rə·ni, 'aɪ·ər·ni/

a type of usually humorous expression in which you say the opposite of what you intend:

[U] He had a powerful sense of irony, and you could never be absolutely sure when he was serious.

sarcasm

noun [∪] • UK /'sa:.kæz.³m/ US /'sa:r.kæz.³m/

the use of remarks that clearly mean the opposite of what they say, made in order to hurt someone's feelings or to criticize something in a humorous way:

"You have been working hard," he said with **heavy** sarcasm, as he looked at the empty page.

Task Description

INSPIRED BY:

SemEval2018-Task3

Irony detection in English tweets (Van Hee et al., 2018)

Task Description

INSPIRED BY:

SemEval2018-Task3

Irony detection in English tweets (Van Hee et al., 2018)

OUR SHARED TASK:

TASK A

TASK B

o ironic

sarcastic

o not-ironic

- ironic but not categorized as sarcastic
- not-ironic

Datasets

OVERLAP WITH:

HSC: Hate Speech corpus (Sanguinetti et al., 2018)

From HSC:

Di fronte a queste forme di terrorismo siamo tutti sulla stessa barca. A parte Briatore. Briatore ha la sua.

irony, no sarcasm

Datasets

POLITICAL DOMAIN:

TWITTIRÒ corpus (Cignarella et al., 2018)

- LaBuonaScuola corpus (TW-BS) (Stranisci et al., 2016)
- Sentipolc corpus (TW-SENTIPOLC) (Barbieri et al., 2016)
- o Spinoza corpus (TW-SPINO) (Barbieri et al., 2016)

From TWITTIRÒ:

#labuonascuola Fornitura illimitata di rotoli di carta igienica e poi, piano piano, tutti gli altri aspetti meno importanti.

irony, sarcasm

Training Data

TRAINING SET

TWITA	0	0	0	0
HSC	753	683	471	282
TW-SENTIPOLC	461	625	143	318
TW-SPINO	342	0	126	216
TW-BS	467	646	173	294
	IRONIC	NOT-IRO	SARC	NOT-SARC

Test Data

TEST SET IRONIC NOT-IRO SARC NOT-SARC 111 161 51 60 TW-BS 73 32 41 TW-SPINO 0 0 0 TW-SENTIPOLC 185 119 106 79 HSC 67 156 28 39 **TWITA** 872 TOTAL

Participants

24 submissions received by

- 📕 1. ItaliaNLP 🟛
 - 5. Aspie96 **m** University of Torino ItaliaNLP group ILC-CNR
- 2. UNIBA 🟛 University of Bari
- 3. 2XCheck App2Check srl
- 4. UNITOR 🟛 University of Roma "Tor Vergata"

- ► 6. UO_IRO 🟛 CERPAMID, Santiago de Cuba and Havana University of Informatic Sciences
 - 7. venses-itgetarun 🔟 Ca' Foscari University of Venice

Preprocessing

Stylistic Features

Linguistic Features

Semantic Features

Add. training data

Interdependence

Lexica

Task A

Task B

Participating Systems

SVM

EVALITA 2018 Workshop December 12-13 2018, Turin GRU

BiLSTM

venses -

itgetarun

Rule-based

	l	0			
Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO

Architecture **BiLSTM SVM SVM**

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	✓			1		✓	
Stylistic Features		1	✓	✓	1	✓	
Linguistic Features			✓	✓		✓	✓
Semantic Features	✓	✓		1		✓	
Lexica	✓			1		✓	✓
Add. training data	✓		✓	✓		✓	
Task A	✓	✓	✓	✓	1	✓	✓
Task B	✓			✓	✓		✓
Interdependence	✓			✓			1

Add. training data

Interdependence

Task A

Task B

Participating Systems

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	1			1		✓	
Stylistic Features		✓	✓	✓	1	1	
Linguistic Features			✓	✓		✓	1
Semantic Features	✓	✓		✓		✓	
Lexica	1			1		1	✓

EVALITA 2018 Workshop December 12-13 2018, Turin

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	✓			✓		✓	
Stylistic Features		✓	1	✓	✓	✓	
Linguistic Features			✓	✓		✓	1
Semantic Features	1 (/		✓		/	
Lexica)		/) (_/	
Add. training data	1		✓	✓		✓	
Task A	1	✓	✓	✓	✓	✓	✓
Task B	1			✓	✓		1
Interdependence	1			✓			1

EVALITA 2018 Workshop December 12-13 2018, Turin

Interdependence

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	✓			✓		✓	
Stylistic Features		1		\ \ (1) ✓	
Linguistic Features			1	/ /		✓	1
Semantic Features	1	1		✓		✓	
Lexica	✓			1		1	1
Add. training data	✓		✓	✓		✓	
Task A	✓	✓	✓	✓	✓	✓	✓
Task B	1			1	✓		1

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	✓			✓		✓	
Stylistic Features		1	✓	✓	✓	✓	
Linguistic Features			✓	✓		✓	✓
Semantic Features	1	1		/ _{T\}	MTTH	nò'	
HaSpeeDe	1			√I V	VITTII	KU,	✓
Add. training data) ($\sum \sqrt{}$			
Task A	/	IK	✓	✓	✓	1	✓
Task B	√SE	NTIP	OLC	✓	✓		✓
Interdependence	1	201	6	✓			1

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	1			1		✓	
Stylistic Features		1	✓	✓	✓	✓	
Linguistic Features			✓	✓		✓	✓
Semantic Features	✓	✓		✓		✓	
Lexica	✓			1		✓	✓
Add. training data	✓		✓	✓		✓	
Task A	1	✓	✓	1	1	✓	✓
Task B)	(\		
Interdependence	1			1			1

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	1			1		1	
Stylistic Features		✓	✓	1	1	✓	
Linguistic Features			✓	✓		✓	✓
Semantic Features	✓	✓		✓		✓	
Lexica	✓			✓		✓	✓
Add. training data	✓		✓	✓		✓	
Task A	✓	✓	✓	1	1	✓	✓
Task B	✓			1	✓		1
Interdependence			(1			

Lexica

Task A

Task B

Add. training data

Interdependence

Participating Systems

Italia

	NLP	UNIBA	Check	UNITOR	Aspie96	UO_IRO	itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	✓			1		✓	
Stylistic Features		1	1	✓	1	✓	
Linguistic Features			✓	✓		✓	✓
Semantic Features	✓	✓		1		1	

X2

venses -

EVALITA 2018 Workshop December 12-13 2018, Turin

Add. training data

Interdependence

Task A

Task B

Participating Systems

Italia

	NLP	UNIBA	Check	UNITOR	Aspie96	UO_IRO	itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	1			1		1	
Stylistic Features		1	1	✓	1	✓	
Linguistic Features			1	✓		✓	1
Semantic Features	1	✓		✓		✓	
Lexica	1			1		1	✓

V2

EVALITA 2018 Workshop December 12-13 2018, Turin

Interdependence

	Italia NLP	UNIBA	X2 Check	UNITOR	Aspie96	UO_IRO	venses - itgetarun
Architecture	BiLSTM	SVM	SVM	SVM	GRU	BiLSTM	Rule-based
Preprocessing	✓			✓		✓	
Stylistic Features		1	✓	1	1	✓	
Linguistic Features			✓	✓		✓	1
Semantic Features	✓	1		1		✓	
Lexica	1			✓		✓	✓
Add. training data	✓		✓	✓		✓	
Task A	✓	1	✓	1	1	✓	✓
Task B	✓			1	1		1

Evaluation

$$precision_{class} = \frac{\#correct_class}{\#assigned_class}$$

$$recall_{class} = \frac{\#correct_class}{\#total_class}$$

$$F1_{class} = 2 \frac{precision_{class} recall_{class}}{precision_{class} + recall_{class}}$$

Task A - Irony Detection

The average of F1-scores for the ironic and not-ironic classes

Evaluation

Task B: Different types of irony

Macro F1-score computed over the three classes

- ✓ not-ironic
 irony=0, sarcasm=0
- ✓ ironic-not-sarcastic
 irony=1, sarcasm=0
- ✓ sarcastic
 irony=1, sarcasm=1

Results Task A

				not-ironic	ironic	avg.
	team name	type	run	F1	F1	F1
	1 ItaliaNLP	С	1	0.707	0.754	0.731
	2 ItaliaNLP	С	2	0.693	0.733	0.713
	3 UNIBA	С	1	0.689	0.730	0.710
	4 UNIBA	С	2	0.689	0.730	0.710
	5 X2Check	u	1	0.708	0.700	0.704
	6 UNITOR	С	1	0.662	0.739	0.700
	7 UNITOR	u	2	0.668	0.733	0.700
	8 X2Check	u	2	0.700	0.689	0.695
	9 Aspie96	С	1	0.668	0.722	0.695
	10 X2Check	С	2	0.679	0.708	0.693
	11 X2Check	С	1	0.674	0.693	0.683
	12 UOIRO	u	2	0.603	0.700	0.651
	13 UOIRO	u	1	0.626	0.665	0.646
	14 UOIRO	С	2	0.579	0.678	0.629
	15 UOIRO	С	1	0.652	0.577	0.614
	16 baseline-random	С	1	0.503	0.506	0.505
	17 venses-itgetarun	С	1	0.651	0.289	0.470
	18 venses-itgetarun	С	2	0.645	0.195	0.420
	19 baseline-mfc	С	1	0.668	0.000	0.334

Results Task A

Lorenzo De Mattei, Andrea Cimino, and Felice Dell'Orletta. 2018. Multi-task learning in Deep Neural Networks for Irony Detection.

				not-ironic	ironic	avg.
	team name	type	run	F1	F1	F1
√	1 ItaliaNLP	C	1	0.707	0.754	0.731
	2 ItaliaiNLP	С	2	0.693	0.733	0.713
u ?	3 UNIBA	С	1	0.689	0.730	0.710
r	4 UNIBA	С	2	0.689	0.730	0.710
•	5 X2Check	u	1	0.708	0.700	0.704
	6 UNITOR	С	1	0.662	0.739	0.700
	7 UNITOR	u	2	0.668	0.733	0.700
	8 X2Check	u	2	0.700	0.689	0.695
	9 Aspie96	С	1	0.668	0.722	0.695
	10 X2Check	С	2	0.679	0.708	0.693
	11 X2Check	С	1	0.674	0.693	0.683
	12 UOIRO	u	2	0.603	0.700	0.651
	13 UOIRO	u	1	0.626	0.665	0.646
	14 UOIRO	С	2	0.579	0.678	0.629
	15 UOIRO	С	1	0.652	0.577	0.614
	16 baseline-random	С	1	0.503	0.506	0.505
	17 venses-itgetarun	С	1	0.651	0.289	0.470
	18 venses-itgetarun	С	2	0.645	0.195	0.420
	19 baseline-mfc	С	1	0.668	0.000	0.334

Results Task A

	1 ItaliaNLP	С	1	0.707	0.754	0.731
	2 ItaliaNLP	С	2	0.693	0.733	0.713
	3 UNIBA	С	1	0.689	0.730	0.710
	4 LINIBA	С	2	0.689	0.730	0.710
	5 X2Check	u	1	0.708	0.700	0.704
Emanuele Di Rosa and Alberto Durante.	6 UNITOR	С	1	0.662	0.739	0.700
2018. Irony detection in tweets:	7 UNITOR	u	2	0.668	0.733	0.700
X2Check at Ironita 2018.	8 X2Check	u	2	0.700	0.689	0.695
	9 Aspie96	С	1	0.668	0.722	0.695
	10 X2Check	С	2	0.679	0.708	0.693
SENTIPOLC 2016: tweets annotated	11 X2Check	С	1	0.674	0.693	0.683
with irony	12 UOIRO	u	2	0.603	0.700	0.651
With Hony	13 UOIRO	u	1	0.626	0.665	0.646
	14 UOIRO	С	2	0.579	0.678	0.629
	15 UOIRO	С	1	0.652	0.577	0.614
	16 baseline-random	С	1	0.503	0.506	0.505
	17 venses-itgetarun	С	1	0.651	0.289	0.470
	18 venses-itgetarun	С	2	0.645	0.195	0.420

19 baseline-mfc

team name

not-ironic

F1

0.668

0.000

0.334

type

С

run

ironic

F1

avg.

F1

Results 1	ask B					
iccourts i	usic b			not ironic	ironic	•
	team name	type	run	F1	F1	
	1 UNITOR	u	2	0.668	0.447	
	2 UNITOR	С	1	0.662	0.432	
	3 ItaliaNLP	С	1	0.707	0.432	
	4 ItaliaNLP	С	2	0.693	0.423	
	5 Aspie96	С	1	0.668	0.438	

6 baseline-random

7 venses-itgetarun

9 venses-itgetarun

8 baseline-mfc

С

С

С

c 1

2

1

ironic sarcastic

F1

0.446

0.459

0.409

0.392

0.289

0.242

0.018

0.000

0.000

0.503 0.266

0.431 0.260

0.668 0.000

0.413 0.183

avg.

F1

0.520

0.518

0.516

0.503

0.465

0.337

0.236

0.223

0.199

Results Task B

					ironic	ii oilie		uvg.
Andrea Santilli, Danilo Croce, and Roberto Basili. 2018. A Kernel-based Approach for Irony and Sarcasm Detection in Italian.	team name	type	run	F1	F1	F1	F1	
	1 UNITOR	u	2	0.668	0.447	0.446	0.520	
	2 UNITOR	C	1	0.662	0.432	0.459	0.518	
	3 ItaliaNLP	С	1	0.707	0.432	0.409	0.516	
	4 ItaliaNLP	С	2	0.693	0.423	0.392	0.503	
Dataset of 6,000 tweets (searching for the hashtag #ironia — #irony).	5 Aspie96	С	1	0.668	0.438	0.289	0.465	
	6 baseline-random	С	1	0.503	0.266	0.242	0.337	
		7 venses-itgetarun	С	1	0.431	0.260	0.018	0.236

8 baseline-mfc

9 venses-itgetarun

not

0.668 0.000

0.413 0.183

2

0.000

0.000

0.223

0.199

ironic sarcastic

avg.

- The high performance of deep learning methods
- In general the participating systems work better on Hate domain than on Political domain in both tasks
- A dedicated task on irony detection led to a remarkable improvement of the scores
 (SENTIPOLC in 2014 F=0.575 and 2016 F=0.5412)
- The scores for Italian are in line with those obtained at SemEval2018-Task3 on irony detection in English tweets ($\mathbb{F}=~0.724$)

- The high performance of deep learning methods
- In general the participating systems work better on Hate domain than on Political domain in both tasks
- A dedicated task on irony detection led to a remarkable improvement of the scores
 (SENTIPOLC in 2014 F=0.575 and 2016 F=0.5412)
- The scores for Italian are in line with those obtained at SemEval2018-Task3 on irony detection in English tweets $(\mathbb{F}=\ 0.724)$

- The high performance of deep learning methods
- In general the participating systems work better on Hate domain than on Political domain in both tasks
- A dedicated task on irony detection led to a remarkable improvement of the scores (SENTIPOLC in 2014 F=0.575 and 2016 F=0.5412)
- The scores for Italian are in line with those obtained at SemEval2018-Task3 on irony detection in English tweets $(\mathbb{F}=\ 0.724)$

- The high performance of deep learning methods
- In general the participating systems work better on Hate domain than on Political domain in both tasks
- A dedicated task on irony detection led to a remarkable improvement of the scores +0.19 (SENTIPOLC in 2014 F=0.575 and 2016 F=0.5412)
- The scores for Italian are in line with those obtained at SemEval2018-Task3 on irony detection in English tweets $(\mathbb{F}=\ 0.724)$

- The high performance of deep learning methods
- In general the participating systems work better on Hate domain than on Political domain in both tasks
- A dedicated task on irony detection led to a remarkable improvement of the scores
 (SENTIPOLC in 2014 F=0.575 and 2016 F=0.5412)
- The scores for Italian are in line with those obtained at SemEval2018-Task3 on irony detection in English tweets (F=0.724)

Thank you:)

We will wait for you at the poster!