Fiche de cours 2ème info ARITHMETIQUES

maths au lycee *** ali arii

Site Web: http://maths-akir.midiblogs.com/

N désigne L'ensemble des entiers naturels : $N = \{0,1,2,...,n...$

L'arithmétique est l'étude des nombres entiers et des opérations sur ces nombres

Proposition: Pour tout $a \in N$ et $b \in N$

$$(a+b=0) \Rightarrow (a=b=0) \mid (ab=0) \Rightarrow (a=0 \quad ou \quad b=0) \mid (ab=1) \Rightarrow (a=b=1)$$

La divisibilité dans N :

Soient a et d deux entiers naturels , tels que $d \neq 0$

On dit que d divise a, s'il existe $k \in N$ tel que a = kd. L'entier k est appelé le quotient de a par d. d est appelé un diviseur de a et a est dit un multiple de d.

Division euclidienne dans N

Soient a et b deux entiers naturels où b > 0.

Il existe un couple unique d'entiers naturels (q,r) tels que : $\begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$, q est appelé le quotient, r le reste, a le

dividende et b le diviseur de la division euclidienne de a par b .

Le PGCD de deux entiers naturels

Soient a et b deux entiers naturels non nuls.

Le PGCD de a et b est le plus grand élément de l'ensemble des diviseurs communs aux deux entiers a et b . On note par PGCD(a, b) ou $a \land b$.

Exemple: Calculer PGCD(a, b) avec a = 36 et b = 24

$$a = 2^2 \times 3^2$$
 et $b = 3 \times 2^3$

On a	×	1	2	4
	1	1	2	4
	3	3	6	12
	9	9	18	36

Alors $D_{36} = \{1,2,3,4,6,9,12,18,36\}$ et on a

	/ /	5	
XI	Ry	4	8
1/1	\mathcal{I}_2	4	8
3 3	6	12	24

Alors $D_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}$

Alors $D_{24} \cap D_{36} = \{1, 2, 3, 4, 6, 12\}$ alors $PGCD(24, 36) \supseteq 2$

Détermination du PGCD(a,b) en utilisant l'algorithme d'Euclide :

Exemple: Calculer PGCD(385,140)

a	b	r_1	r_2	r_3
(885)	140	105	<u>35</u>	0
$quotient \rightarrow$	2	1	3	

alors PGCD(385,140) = 35

Le PPCM de deux entiers naturels

Soient a et b deux entiers naturels nou nuls. Le PPCM de a et b est le plus petit commun multiple de a et b . On note par : PPCM(a,b) ou a > b.

Critères de divisibilité

Convention d'écriture

Pour ne pas confondre un nombre avec son écriture dans sa décomposition en base 10, on notera

 $\overline{a_n a_{n-1} ... a_1 a_0}$ le nombre pour lequel a_0 est le chiffre des unités, a_1 celui des dizaines, etc.

On a ainsi $x \neq a_n a_{n-1} \dots a_1 a_0 = a_0.1 + a_1.10 + \dots + a_n.10^n$

(Exemple: $x = 10296 = 6 + 9 \times 10 + 2 \times 10^2 + 0 \times 10^{13} + 1 \times 10^4$)

Divisibilité par 3 :

Un entier naturel est divisible par 3 si et seulement si la somme des ses chiffres est divisible par 3.

Divisibilité par 4 ou 25

Un entier naturel est divisible par 4 (respectivement par 25) si et seulement si si le nombre formé par ses deux derniers chiffres est divisible par 4 (respectivement par 25)

Divisibilité par 5 :

Un entier naturel est divisible par 5 si et seulement si son dernier chiffre est 0 ou 5 .

Divisibilité par 8 :

Un entier naturel ≥ 100 est divisible par 8 si et seulement si nombre formé par ses trois derniers diffret est divisible par 8.

Divisibilité par 9 :

Un entier naturel est divisible par 9 si et seulement si la somme des ses chiffres est divisible par 9.

Divisibilité par 11 :

Un entier naturel . On désigne par S_1 la somme des ses chiffres de rang impairs(de droite à gauche) et S_2 la somme des ses chiffres de rang pairs.

Soit $d = S_1 - S_2$.

 $Si~d \geq 0~alors~n~est~divisible~par~11~si~et~seulement~si~d~est~divisible~par~11~est~divisible~par~11~si~et~seulement~si~la~somme~des~ses~chiffres~est~divisible~par~9~.$

Si d < 0 alors n est divisible par 11 si et seulement si d + 11p est divisible par 11

(p le plus petit entier naturel tel que $d + 11p \ge 0$)

