

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C07D 231/22, A01N 43/56, C07D 231/20, 401/04, 403/04, C07C 239/10, 271/28, 271/58		A1	(11) Internationale Veröffentlichungsnummer: WO 96/01256 (43) Internationales Veröffentlichungsdatum: 18. Januar 1996 (18.01.96)
(21) Internationales Aktenzeichen: PCT/EP95/02396		(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).	
(22) Internationales Anmeldedatum: 21. Juni 1995 (21.06.95)		(81) Bestimmungsstaaten: AU, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, MX, NO, NZ, PL, RU, SG, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: P 44 23 612.3 6. Juli 1994 (06.07.94) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).			
(72) Erfinder; und			
(75) Erfinder/Anmelder (<i>nur für US</i>): MÜLLER, Bernd [DE/DE]; Jean-Ganss-Strasse 21, D-67227 Frankenthal (DE). KÖNIG, Hartmann [DE/DE]; Blumenstrasse 16, D-69115 Heidelberg (DE). KIRSTGEN, Reinhard [DE/DE]; Erkenbrechtstrasse 23e, D-67434 Neustadt (DE). OBERDORF, Klaus [DE/DE]; Bienenstrasse 3, D-69117 Heidelberg (DE). RÖHL, Franz [DE/DE]; Sebastian-Kneipp-Strasse 17, D-67105 Schifferstadt (DE). GÖTZ, Norbert [DE/DE]; Schöfferstrasse 25, D-67547 Worms (DE). SAUTER, Hubert [DE/DE]; Neckarpromenade 20, D-68167 Mannheim (DE). LORENZ, Gisela [DE/DE]; Erlenweg 13, D-67434 Hambach (DE). AMMERMANN, Eberhard [DE/DE]; Von-Gagern-Strasse 2, D-64646 Heppenheim (DE).			
(54) Title: USE OF 2-[(DIHYDRO)PYRAZOLYL-3'-OXYMETHYLENE]-ANILIDES AS PEST-CONTROL AGENTS AND FUNGICIDES			
(54) Bezeichnung: 2-[(DIHYDRO)PYRAZOLYL-3'-OXYMETHYLEN]-ANILIDE ALS SCHÄDLINGSBEKÄMPFUNGSMITTEL UND FUNGIZIDE			
<p style="text-align: center;"> (I) </p>			
(57) Abstract			
<p>The invention concerns 2-[(dihydro)pyrazolyl-3'-oxymethylene]-anilides of formula (I) in which -- is a single or double bond and the subscripts and substituents are as follows: n 0, 1, 2, 3 or 4; m 0, 1 or 2; X a direct bond or CH_2, oxygen or NR^a, R^a being hydrogen, alkyl, alkenyl, alkinyl, cycloalkyl or cycloalkenyl; R^1 nitro, cyano, halogen or optionally substituted alkyl, alkenyl, alkinyl, alkylthio or alkoxy carbonyl; R^2 optionally substituted alkyl, alkenyl, alkinyl, cycloalkyl, heterocyclic, aryl or heteroaryl; R^4 hydrogen or optionally substituted alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, alkyl carbonyl or alkoxy carbonyl; R^5 hydrogen, alkyl, alkenyl, alkinyl, cycloalkyl or cycloalkenyl. The invention also concerns methods of preparing such compounds, intermediates used in their preparation and their use.</p>			

(57) Zusammenfassung

2-[(Dihydro)pyrazolyl-3'-oxymethylen]-anilide der Formel (I), in der -- für eine Einfach- oder Doppelbindung steht und die Indices und die Substituenten die folgende Bedeutung haben: n 0, 1, 2, 3 oder 4; m 0, 1 oder 2; X eine direkte Bindung oder CH_2 , O oder NR^a ; R^a Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl; R^1 Nitro, Cyano, Halogen, ggf. subst. Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy oder Alkinyloxy; R^2 Nitro, Cyano, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio oder Alkoxy carbonyl; R^3 ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Heterocycl, Aryl oder Heteroaryl; R^4 Wasserstoff, ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkylcarbonyl oder Alkoxy carbonyl; R^5 Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Oesterreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereiniges Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Danemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

2-((DIHYDRO)PYRAZOLYL-3'-OXYMETHYLEN)-ANILIDE ALS SCHÄDLINGSBEKÄMPFUNGSMITTEL
UND FUNGIZIDE

5 Beschreibung

Die vorliegende Erfindung betrifft 2-[(Dihydro)pyrazolyl-3'-oxy-methylen]-anilide der Formel I

10

15

in der ... für eine Einfach- oder Doppelbindung steht und die Indices und die Substituenten die folgende Bedeutung haben:

20 n 0, 1, 2, 3 oder 4, wobei die Substituenten R¹ verschieden sein können, wenn n größer als 1 ist;

m 0, 1 oder 2, wobei die Substituenten R² verschieden sein können, wenn m größer als 1 ist;

25

X eine direkte Bindung, O oder NR^a;

R^a Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl;

30

R¹ Nitro, Cyano, Halogen,

ggf. subst. Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkinyloxy oder

35

für den Fall, daß n für 2 steht zusätzlich eine an zwei benachbarte Ringatome gebundene ggf. subst. Brücke, welche drei bis vier Glieder aus der Gruppe 3 oder 4 Kohlenstoffatome, 2 bis 3 Kohlenstoffatome und 1 oder 2 Stickstoff-, Sauerstoff- und/oder Schwefelatome enthält, wobei diese Brücke gemeinsam mit dem Ring an den sie gebunden ist einen partiell ungesättigten oder aromatischen Rest bilden kann;

40

R² Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Alkoxy carbonyl;

45

R³ ggf. subst. Alkyl, Alkenyl oder Alkinyl;

2

ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, welcher neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ringglieder enthalten kann: Sauerstoff, Schwefel und Stickstoff, oder

5

ein ggf. subst. ein- oder zweikerniger aromatischer Rest, welcher neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ring-

10 glieder enthalten kann;

R⁴ Wasserstoff,

ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkylcarbonyl oder Alkoxy carbonyl;

15

R⁵ Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl, oder

für den Fall, daß X für NR^a steht, zusätzlich Wasserstoff.

20 Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung dieser Verbindungen, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von tierischen Schädlingen oder Schadpilzen.

25 Aus der WO-A 93/15,046 sind 2-[Pyrazolyl-4-oxymethylen]-anilide zur Bekämpfung von tierischen Schädlingen und Schadpilzen bekannt.

Der vorliegenden Erfindung lagen Verbindungen mit verbesserter

30 Wirkung als Aufgabe zugrunde.

Demgemäß wurden die eingangs definierten Verbindungen gefunden.

Des Weiteren wurden Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mischungen sowie Verfahren zur Bekämp-

35 fung von tierischen Schädlingen und Schadpilzen unter Verwendung der Verbindungen I gefunden.

Die Verbindungen I sind auf verschiedenen Wegen erhältlich.

40 Man erhält diejenigen Verbindungen I, in denen R⁴ Wasserstoff bedeutet, und X für eine direkte Bindung oder Sauerstoff steht, beispielsweise dadurch, daß man ein Benzylderivat der Formel II in Gegenwart einer Base mit einem 3-Hydroxy(dihydro)pyrazol der

Formel III in das entsprechende 2-[(Dihydro)pyrazolyl-3-oxy-

45 methylen]-nitrobenzol der Formel IV überführt, IV anschließend

3

zum N-Hydroxylanilin der Formel Va reduziert und Va mit einer Carbonylverbindung der Formel VI in I umwandelt.

45 L^1 in der Formel II und L^2 in der Formel VI bedeuten jeweils eine nucleophil austauschbare Gruppe, beispielsweise Halogen (z.B. Chlor, Brom und Iod), oder ein Alkyl oder Arylsulfonat (z.B. Me-

thylsulfonat, Trifluormethylsulfonat, Phenylsulfonat und 4-Methylphenylsulfonat).

Die Veretherung der Verbindungen II und III wird üblicherweise bei Temperaturen von 0°C bis 80°C, vorzugsweise 20°C bis 60°C, durchgeführt.

Geeignete Lösungsmittel sind aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie 10 Methylenechlorid, Chloroform und Chlorbenzol, Ether wie Diethyl-ether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Alkohole wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol und tert.-Butanol, Ketone wie Aceton und Methylethyleketon sowie 15 Dimethylsulfoxid, Dimethylformamid, Dimethylacetamid, 1,3-Dimethylimidazolidin-2-on und 1,2-Dimethyltetra-hydro-2(1H)-pyrimidin, vorzugsweise Methylenchlorid, Aceton, Toluol, Methyl-tert.-butylether und Dimethylformamid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

20 Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide (z.B. Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid), Alkalimetall- und Erdalkalimetallocxide (z.B. Lithiumoxid, Natriumoxid, 25 Calciumoxid und Magnesiumoxid), Alkalimetall- und Erdalkalimetallhydride (z.B. Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid), Alkalimetallamide (z.B. Lithiumamid, Natriumamid und Kaliumamid), Alkalimetall- und Erdalkalimetallcarbonate (z.B. Lithiumcarbonat und Calciumcarbonat) sowie Alkalimetallhydrogencarbonate (z.B. Natriumhydrogencarbonat), metallorganische Verbindungen, insbesondere Alkalimetallalkyle (z.B. wie Methylolithium, Butyllithium und Phenyllithium), Alkylmagnesiumhalogenide (z.B. Methylmagnesiumchlorid) sowie Alkalimetall- und Erdalkalimetallalkoholate (z.B. Natriummethanolat, 30 35 Natriummethanolat, Kaliummethanolat, Kalium-tert.-Butanolat und Dimethoxymagnesium), außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Be-40 tracht.

Besonders bevorzugt werden Natriumhydroxid, Kaliumcarbonat und Kalium-tert.-butanolat.

45 Die Basen werden im allgemeinen äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.

Es kann für die Umsetzung vorteilhaft sein, eine katalytische Menge eines Kronenethers (z.B. 18-Krone-6 oder 15-Krone-5) zuzusetzen.

5 Die Umsetzung kann auch in Zweiphasensystemen bestehend aus einer Lösung von Alkali- oder Erdalkalihydroxiden oder -carbonaten in Wasser und einer organischen Phase (z.B. aromatische und/oder halogenierte Kohlenwasserstoffe) durchgeführt werden. Als Phasentransferkatalysatoren kommen hierbei beispielsweise Ammoniumhalogenide und -tetrafluoroborate (z.B. Benzyltriethylammoniumchlorid, Benzyltributylammoniumbromid, Tetrabutylammoniumchlorid, Hexadecyltrimethylammoniumbromid oder Terabutylammoniumtetrafluoroborat) sowie Phosphoniumhalogenide (z.B. Tetrabutylphosphoniumchlorid und Tetraphenylphosphoniumbromid) in Betracht.

10 15 Es kann für die Umsetzung vorteilhaft sein, zunächst das 3-Hydroxy(dihydro)pyrazol mit der Base in das entsprechende Hydroxylat umzusetzen, welches dann mit dem Benzylderivat umgesetzt wird.

20 25 Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe II sind aus EP-A 513 580 bekannt oder können nach den dort beschriebenen Methoden hergestellt werden [Synthesis 1991, 181; Anal. Chim. Acta 185, 295 (1986); EP-A 336 567].

30 35 25 3-Hydroxypyrazole IIIa und 3-Hydroxydihydropyrazole IIIb sind ebenfalls aus der Literatur bekannt oder können nach den dort beschriebenen Methoden hergestellt werden [IIIa: J. Heterocycl. Chem. 30, 49 (1993), Chem. Ber. 107, 1318 (1974), Chem. Pharm. Bull. 19, 1389 (1971), Tetrahedron Lett. 11, 875 (1970) Chem. Heterocycl. Comp. 5, 527 (1969), Chem. Ber. 102, 3260 (1969), Chem. Ber. 109, 261 (1976), J. Org. Chem. 31, 1538 (1966), Tetrahedron 43, 607 (1987); IIIb: J. Med. Chem. 19, 715 (1976)].

35 Besonders vorteilhaft erhält man die 3-Hydroxypyrazole IIIa nach dem in der früheren Anmeldung DE Anm. Nr. 4 15 484.4 beschriebenen Verfahren.

40 Die Reduktion der Nitroverbindungen IV zu den entsprechenden N-Hydroxyanilinen Va erfolgt analog zu literaturbekannten Methoden beispielsweise mit Metallen wie Zink [vgl. Ann. Chem. 316, 278 (1901)] oder mit Wasserstoff (vgl. EP-A 085 890).

45 Die Umsetzung der N-Hydroxyaniline Va mit den Carbonylverbindungen VI erfolgt unter alkalischen Bedingungen gemäß den vorstehend für die Umsetzung der Verbindungen II mit den 3-Hydroxy(dihydro)pyrazolen III beschriebenen Bedingungen. Ins-

6

besondere wird die Umsetzung bei Temperaturen von -10°C bis 30°C durchgeführt. Die bevorzugten Lösungsmittel sind Methylenchlorid, Toluol, tert.-Butylmethylether oder Essigsäureethylester. Die bevorzugten Basen sind Natriumhydrogencarbonat, Kaliumcarbonat oder 5 wässrige Natriumhydroxid Lösung.

Außerdem erhält man die Verbindungen der Formel I, in denen X für eine direkte Bindung oder Sauerstoff steht, beispielsweise dadurch, daß man ein Benzylderivat der Formel IIa zunächst zum 10 entsprechenden Hydroxyanilin der Formel Vb reduziert, Vb mit einer Carbonylverbindung der Formel VI in das entsprechende Anilid der Formel VII überführt, VII anschließend mit einer Verbindung VIII in das Amid der Formel IX überführt, IX anschließend in das entsprechende Benzylhalogenid X überführt und X in Gegenwart einer Base mit einem 3-Hydroxy(dihydro)pyrazol III in I umwandelt.

7

10 In der Formel X bedeutet Hal ein Halogenatom , insbesondere Chlor oder Brom.

15 L³ in der Formel VIII bedeutet eine nucleophil austauschbare Gruppe, beispielsweise Halogen (z.B. Chlor, Brom und Iod), oder ein Alkyl- oder Arylsulfonat (z.B. Methylsulfonat, Trifluormethylsulfonat, Phenylsulfonat und 4-Methylphenylsulfonat) und R⁴ steht nicht für Wasserstoff.

Die Umsetzungen erfolgen analog den vorstehend ausgeführten Verfahren.

Die Halogenierung der Verbindungen IX erfolgt radikalisch, wobei als Halogenierungsmittel beispielsweise N-Chlor- oder N-Bromsuccinimid, elementare Halogene (z.B. Chlor oder Brom) oder Thionylchlorid, Sulfurylchlorid, Phosphortri- oder Phosphorpentachlorid und ähnliche Verbindungen eingesetzt werden können. Üblicherweise verwendet man zusätzlich einen Radikalstarter (z.B. Azobisisobutyronitril) oder man führt die Umsetzung unter Bestrahlung (mit UV-Licht) durch. Die Halogenierung erfolgt in an sich bekannter Weise in einem üblichen organischen Verdünnungsmittel.

Die Verbindungen I, in denen R^4 nicht Wasserstoff bedeutet, erhält man außerdem dadurch, daß man eine entsprechende Verbindung der Formel I, in der R^4 Wasserstoff bedeutet, mit einer Verbindung der Formel VIII umsetzt.

45

5

I ($R^4 \neq H$)

Die Umsetzung erfolgt in an sich bekannter Weise in einem inerten
10 organischen Lösungsmittel in Gegenwart einer Base bei Temperatu-
ren von 0°C bis 50°C.

Als Basen dienen insbesondere Natriumhydrogencarbonat, Kalium-
carbonat, Natriumhydroxid und wäßrige Natriumhydroxid Lösungen.

15

Als Lösungsmittel finden insbesondere Aceton, Dimethylformamid,
Toluol, tert.-Butylmethylether, Essigsäureethylester und Methanol
Verwendung.

20 Die Verbindungen der Formel I, in denen X für NR^a steht, erhält
man vorteilhaft dadurch, daß man ein Benzylanilid der Formel IXa
in das entsprechende Benzylhalogenid der Formel Xa überführt; Xa
in Gegenwart einer Base mit einem 3-Hydroxy(dihydro)pyrazol der
Formel III in eine Verbindung der Formel I.A überführt und I.A
25 anschließend mit einem primären oder sekundären Amin der Formel
XI zu I umsetzt.

30

35

IXa

Xa

40

45

9

10 A in der Formel VIIa steht für Alkyl (insbesondere C₁-C₆-Alkyl) oder Phenyl; Hal in der Formel VIIIa steht für Halogen (insbesondere Chlor und Brom).

Die Umsetzungen von IXa nach Xa und von Xa nach I.A erfolgen im allgemeinen und im besonderen unter den vorstehend beschriebenen 15 Bedingungen.

Die Umsetzung der Verbindungen I.A mit den primären oder sekundären Aminen der Formel XIa bzw. XIb erfolgt bei Temperaturen von 0°C bis 100°C in einem inerten Lösungsmittel oder in einem
20 Lösungsmittelgemisch.

Als Lösungsmittel eignen sich insbesondere Wasser, tert.-Butylmethylether und Toluol oder deren Gemische. Es kann vorteilhaft sein, zur Verbesserung der Löslichkeit der Edukte zusätzlich eines der folgenden Lösungsmittel (als Lösungsvermittler) zuzusetzen: Tetrahydrofuran, Methanol, Dimethylformamid und Ethylen-glycolether.

Die Amine XIa bzw. XIb werden üblicherweise in einem Überschuß bis zu 100% bezogen auf die Verbindungen X eingesetzt oder können als Lösungsmittel verwendet werden. Es kann im Hinblick auf die Ausbeute vorteilhaft sein, die Umsetzung unter Druck durchzuführen.

35 Die Herstellung der Verbindungen I erfolgt über Zwischenprodukte der Formel XII

40
XII

45 in der die Substituenten und der Index die folgende Bedeutung haben:

10

n 0, 1, 2, 3 oder 4, wobei die Substituenten R¹ verschieden sein können, wenn n größer als 1 ist;

R¹ Nitro, Cyano, Halogen,

5

ggf. subst. Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkinyloxy oder

10 für den Fall, daß n für 2 steht zusätzlich eine an zwei benachbarte Ringatome gebundene ggf. subst. Brücke, welche drei bis vier Glieder aus der Gruppe 3 oder 4 Kohlenstoffatome, 1 bis 3 Kohlenstoffatome und 1 oder 2 Stickstoff-, Sauerstoff- und/oder Schwefelatome enthält, wobei diese Brücke gemeinsam mit dem Ring an den sie gebunden ist einen partiell ungesättigten oder aromatischen Rest bilden kann;

Y NO₂, NH₂O- oder NHOR⁴

R⁴ ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkylcarbonyl oder Alkoxycarbonyl;

Z Wasserstoff, Hydroxy, Mercapto, Cyano, Nitro, Halogen, C₁-C₆-Alkylsulfonyl, ggf. subst. Arylsulfonyl oder eine Gruppe Z^a

25

30

m 0, 1 oder 2, wobei die Substituenten R² verschieden sein können, wenn m größer als 1 ist;

35 R² Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Alkoxycarbonyl;

R³ ggf. subst. Alkyl, Alkenyl oder Alkinyl;

40 ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, welcher neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ringglieder enthalten kann: Sauerstoff, Schwefel und Stickstoff, oder

45 ein ggf. subst. ein- oder zweikerniger aromatischer Rest, welcher neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauer-

11

stoff- oder Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten kann.

Insbesondere sind bei der Herstellung Zwischenprodukte der Formel XII bevorzugt, in denen Y für NHOH und Z für die Gruppe Z^a steht.

Außerdem sind bei der Herstellung Zwischenprodukte der Formel IX bevorzugt, in denen Y für NO₂ und Z für die Gruppe Z^a steht.

10

Im Hinblick auf die Herstellung der Verbindungen I, in denen X für NR^a steht werden Zwischenprodukte der allgemeinen Formel XIII

15

20

bevorzugt, wobei die Substituenten R¹ und R⁴ sowie der Index n die eingangs gegebene Bedeutung haben und die Substituenten W und A die folgende Bedeutung haben:

25

W Wasserstoff, Halogen oder Z^a, und
A Alkyl oder Phenyl.

Insbesondere sind hierbei Verbindungen XIII bevorzugt, bei denen der Substituent W für Wasserstoff, Chlor, Brom oder Z^a steht.

30

Außerdem sind solche Verbindungen XIII bevorzugt, bei denen der Substituent A für C₁-C₆-Alkyl steht.

35

Insbesondere sind auch solche Verbindungen XIII besonders bevorzugt, in denen der Substituent A für Phenyl steht.

Gleichermaßen bevorzugt sind solche Verbindungen XIII, in denen R⁴ für Wasserstoff, Methyl oder Ethyl steht.

40

Daneben werden Verbindungen XIII bevorzugt, in denen n für 0 oder 1 steht.

Besonders bevorzugt sind solche Verbindungen XIII, in denen die Substituenten und der Index die folgende Bedeutung haben:

45

n 0,
W Wasserstoff, Chlor, Brom oder Z^a,

12

R⁴ Wasserstoff, Methyl oder Ethyl und
A Phenyl.

Die Verbindungen I können saure oder basische Zentren enthalten
5 und dementsprechend Säureadditionsprodukte oder Basenadditions-
produkte oder Salze bilden.

Säuren für Säureadditionsprodukte sind u.a. Mineralsäuren (z.B.
Halogewasserstoffsäuren wie Chlorwasserstoff- und Bromwasser-
10 stoffsäure, Phosphorsäure, Schweferlsäure, Salpetersäure), orga-
nische Säuren (z.B. Ameisensäure, Essigsäure, Oxalsäure, Malon-
säure, Milchsäure, Äpfelsäure, Bernseinsäure, Weinsäure, Zitro-
nensäure, Salizylsäure, p-Toluolsulfonsäure, Dodecylbenzolsulfon-
säure) oder andere protonenacide Verbindungen (z.B. Saccharin).
15 Basen für Basenadditionsprodukte sind u.a. Oxide, Hydroxide,
Carbonate oder Hydrogencarbonate von Alkalimetallen oder Erdal-
kaimetallen (z.B. Kalium- oder Natriumhydroxyd oder -carbonat)
oder Ammoniumverbindungen (z.B. Ammoniumhydroxyd).

20 Bei den in den vorstehenden Formeln angegebenen Definitionen der
Symbole wurden z.T. Sammelbegriffe verwendet, die allgemein re-
präsentativ für die folgenden Substituenten stehen:

Halogen: Fluor, Chlor, Brom und Jod;
25

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasser-
stoffreste mit 1 bis 4 oder 10 Kohlenstoffatomen, z.B. Methyl,
Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methyl-
propyl und 1,1-Dimethylethyl;

30 Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis
4 Kohlenstoffatomen (wie vorstehend genannt), wobei diese in
Gruppen teilweise oder vollständig die Wasserstoffatome durch
Halogenatome wie vorstehend genannt ersetzt sein können, z.B.
35 C₁-C₂-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl,
Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl,
Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluo-
ethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluo-
ethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl,
40 2,2,2-Trichlorethyl und Pentafluorethyl;

Alkylcarbonyl: geradkettige oder verzweigte Alkylgruppen, ins-
besondere mit 1 bis 10 Kohlenstoffatomen (wie vorstehend ge-
nannt), welche über eine Carbonylgruppe (-CO-) an das Gerüst ge-
45 bunden sind;

13

Alkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4 oder 10 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

5 Alkoxycarbonyl: geradkettige oder verzweigte Alkoxygruppen mit 1 bis 4 Kohlenstoffatomen (wie vorstehend genannt), welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden sind;

Alkylthio: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4
10 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind;

ggf. subst. Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste, insbesondere mit 1 bis 10 Kohlenstoff-
15 atomen, z.B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl,
20 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

25 ggf. subst. Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste, insbesondere mit 2 bis 10 Kohlenstoff-
atomen und einer Doppelbindung in einer beliebigen Position, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methyl-
ethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl,

30 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl,
1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl,
1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl,
1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl,

35 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl,
1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl,
1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl,
1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl,
4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl,

40 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl,
2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl,
1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl,
4-Methyl-4-pentenyl, 1,1-Dimethyl-2-but enyl, 1,1-Di-me-
thy l-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl,

45 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl,
1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl,
2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl,

14

2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl,
 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl,
 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl,
 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl,
5 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl,
 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

 ggf. subst. Alkenyloxy: geradkettige oder verzweigte Alkenyl-
 gruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt),
10 welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen,
 insbesondere mit 2 bis 20 Kohlenstoffatomen und einer Dreifach-
 bindung in einer beliebigen Position, z.B. C₂-C₆-Alkinyl wie
15 Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl,
 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl,
 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl,
 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl,
 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl.
20 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl,
 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl,
 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl,
 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Di-me-
 thyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl,
25 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl,
 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

ggf. subst. Alkinyloxy: geradkettige oder verzweigte Alkinyl-
 gruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt),
30 welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

ggf. subst. Cycloalkyl: mono- oder bicyclische Kohlenwasserstof-
 freste mit 3 bis 10 Kohlenstoffatomen, z.B. C₃-C₁₀-(Bi)cycloalkyl
 wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclo-
35 heptyl, Bornanyl, Norbornanyl, Dicyclohexyl, Bicyclo[3,3,0]octyl,
 Bicyclo[3,2,1]octyl, Bicyclo[2,2,2]octyl oder
 Bicyclo[3,3,1]nonyl;

ggf. subst. Cycloalkenyl: mono- oder bicyclische Kohlenwasserstof-
40 freste mit 5 bis 10 Kohlenstoffatomen und einer Doppelbindung in
 einer beliebigen Ringposition, z.B. C₅-C₁₀-(Bi)cycloalkenyl wie
 Cyclopentenyl, Cyclohexenyl, Cycloheptenyl, Bornenyl, Norborne-
 nyl, Dicyclohexenyl und Bicyclo[3,3,0]octenyl;

45 eine an zwei benachbarte Ringatome gebundene ggf. subst. Brücke,
 welche drei bis vier Glieder aus der Gruppe 3 oder 4 Kohlenstoffa-
 tome, 1 bis 3 Kohlenstoffatome und 1 oder 2 Stickstoff-, Sauer-

15

stoff- und/oder Schwefelatome, wobei diese Brücke gemeinsam mit dem Ring an den sie gebunden ist einen partiell ungesättigten oder aromatischen Rest bilden kann: Brücken, die mit dem Ring, an den sie gebunden sind beispielsweise eines der folgenden Systeme 5 bilden: Chinolinyl, Benzofuranyl und Naphthyl;

ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, welcher neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ringglieder enthalten kann: Sauerstoff, Schwefel 10 und Stickstoff, beispielsweise Carbocyclen wie Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclopent-2-enyl, Cyclohex-2-enyl, 5- bis 6-gliedrige, gesättigte oder ungesättigte Heterocyclen, enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 15 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Iothiazolidinyl, 4-Iothiazolidinyl, 5-Iothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 25 2,4-Dihydrofuran-2-yl, 2,4-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-2-yl, 2,4-Dihydrothien-3-yl, 2,3-Pyrrolin-2-yl, 2,3-Pyrrolin-3-yl, 2,4-Pyrrolin-2-yl, 2,4-Pyrrolin-3-yl, 2,3-Isoxazolin-3-yl, 3,4-Isoxazolin-3-yl, 4,5-Isoxazolin-3-yl, 2,3-Isoxazolin-4-yl, 3,4-Isoxazolin-4-yl, 4,5-Isoxazolin-5-yl, 2,3-Iothiazolin-3-yl, 3,4-Iothiazolin-3-yl, 4,5-Iothiazolin-3-yl, 2,3-Iothiazolin-4-yl, 3,4-Iothiazolin-4-yl, 4,5-Iothiazolin-4-yl, 2,3-Iothiazolin-5-yl, 3,4-Iothiazolin-5-yl, 4,5-Iothiazolin-5-yl, 2,3-Dihydropyrazol-1-yl, 2,3-Dihydropyrazol-2-yl, 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 3,4-Dihydropyrazol-1-yl, 3,4-Dihydropyrazol-3-yl, 3,4-Dihydropyrazol-4-yl, 3,4-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-1-yl, 4,5-Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-4-yl, 4,5-Dihydropyrazol-5-yl, 40 4,5-Dihydrooxazol-5-yl, 2,3-Dihydrooxazol-2-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 3,4-Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 2-Piperidinyl, 3-Piperidinyl, 45 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyran-1-yl, 4-Tetrahydropyran-2-yl, 2-Tetrahydrothienyl, 3-Tetrahydropyridazinyl, 4-Tetrahydropyridazinyl, 2-Tetrahydropyrimidinyl, 4-Tetrahydropyrimi-

16

dinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl, 1,3,5-Tetrahydro-triazin-2-yl und 1,2,4-Tetrahydrotriazin-3-yl, vorzugsweise 2-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Isoxazolidinyl, 3-Iothiazolidinyl, 1,3,4-Oxazolidin-2-yl,
5 2,3-Dihydrothien-2-yl, 4,5-Isoxazolin-3-yl, 3-Piperidinyl, 1,3-Dioxan-5-yl, 4-Piperidinyl, 2-Tetrahydropyranyl, 4-Tetrahydropyranyl;

oder ein ggf. subst. ein- oder zweikerniges aromatisches Ringsystem,
10 welches neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten kann, d.h. Arylreste wie Phenyl und Naphthyl, vorzugsweise Phenyl oder 1- oder 2-Naphthyl, und Hetarylreste,
15 beispielsweise 5-Ring Heteroaromaten enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom wie 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 1-Pyrrolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Iothiazolyl, 4-Iothiazolyl, 5-Iothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl,
20 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 1-Imidazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,5-Triazol-3-yl,
25 1,2,3-Triazol-4-yl, 1,2,3-Triazol-5-yl, 1,2,3-Triazol-4-yl, 5-Tetrazolyl, 1,2,3,4-Thiatriazol-5-yl und 1,2,3,4-Oxatriazol-5-yl, insbesondere 3-Isoxazolyl, 5-Isoxazolyl, 4-Oxazolyl, 4-Thiazolyl, 1,3,4-Oxadiazol-2-yl und 1,3,4-Thiadiazol-2-yl;

sechsring Heteroaromaten enthaltend ein bis vier Stickstoffatome
30 als Heteroatome wie 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl und 1,2,4,5-Tetrazin-3-yl, insbesondere 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl und
35 4-Pyridazinyl.

Der Zusatz "ggf. subst" in Bezug auf Alkyl-, Alkenyl- und Alkinylgruppen soll zum Ausdruck bringen, daß diese Gruppen partiell oder vollständig halogeniert sein können (d.h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch gleiche oder verschiedene Halogenatome wie vorstehend genannt (vorzugsweise Fluor, Chlor und Brom, insbesondere Fluor und Chlor) ersetzt sein können und/oder einen bis drei, insbesondere einen, der folgenden Reste tragen können:

C_1-C_6 -Alkoxy, C_1-C_6 -Halogenalkoxy, C_1-C_6 -Alkylthio, C_1-C_6 -Halogenalkylthio, C_1-C_6 -Alkylamino, Di- C_1-C_6 -alkylamino, C_2-C_6 -Alkenyloxy, C_2-C_6 -Halogenalkenyloxy, C_2-C_6 -Alkinyloxy, C_2-C_6 -Halogenalkinyloxy, C_3-C_6 -Cycloalkyl, C_3-C_6 -Cycloalkyloxy, C_3-C_6 -Cyclo-
5 alkenyl, C_3-C_6 -Cycloalkenyloxy,

oder ein ggf. subst. ein- oder zweikerniges aromatisches Ring-
system, welches neben Kohlenstoffatomen ein bis vier Stickstoff-
atome oder ein oder zwei Stickstoffatome und ein Sauerstoff- oder
10 Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ring-
glieder enthalten kann (wie vorstehend genannt), welches direkt
oder über ein Sauerstoffatom (-O-), ein Schwefelatom (-S-) oder
eine Aminogruppe (-NR^a-) an den Substituenten gebunden sein kann,
d.h. Arylreste wie Phenyl und Naphthyl, vorzugsweise Phenyl oder
15 1- oder 2-Naphthyl, und Hetarylreste, beispielsweise 5-Ring
Heteroaromaten enthaltend ein bis drei Stickstoffatome und/oder
ein Sauerstoff- oder Schwefelatom wie 2-Furyl, 3-Furyl, 2-Thi-
enyl, 3-Thienyl, 1-Pyrrolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazo-
lyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Iothiazolyl, 4-Iothiazolyl,
20 5-Iothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazo-
lyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazo-
lyl, 5-Thiazolyl, 1-Imidazolyl, 2-Imidazolyl, 4-Imidazolyl,
1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiaz-
zol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,5-Triazol-3-yl, 1,2,3-Tria-
25 zol-4-yl, 1,2,3-Triazol-5-yl, 1,2,3-Triazol-4-yl, 5-Tetrazolyl,
1,2,3,4-Thatriazol-5-yl und 1,2,3,4-Oxatriazol-5-yl, insbeson-
dere 3-Isoxazolyl, 5-Isoxazolyl, 4-Oxazolyl, 4-Thiazolyl,
1,3,4-Oxadiazol-2-yl und 1,3,4-Thiadiazol-2-yl;

30 Sechsring Heteroaromaten enthaltend ein bis vier Stickstoffatome
als Heteroatome wie 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Py-
ridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimi-
danyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl und
1,2,4,5-Tetrazin-3-yl, insbesondere 2-Pyridinyl, 3-Pyridinyl,
35 4-Pyridinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl und 4-Py-
ridazinyl.

Der Zusatz "ggf. subst" in Bezug auf die cyclischen (gesättigten,
ungesättigten oder aromatischen) Gruppen soll zum Ausdruck brin-
40 gen, daß diese Gruppen partiell oder vollständig halogeniert sein
können (d.h. die Wasserstoffatome dieser Gruppen können teilweise
oder vollständig durch gleiche oder verschiedene Halogenatome wie
vorstehend genannt (vorzugsweise Fluor, Chlor und Brom, ins-
besondere Fluor und Chlor) ersetzt sein können und/oder einen bis
45 drei, der folgenden Reste tragen können:

18

Die bei den Resten genannten ein- oder zweikernigen aromatischen oder heteroaromatischen Systeme können ihrerseits partiell oder vollständig halogeniert sein, d.h. die Wasserstoffatome dieser Gruppen können partiell oder vollständig durch Halogenatome wie

5 Fluor, Chlor, Brom und Jod, vorzugsweise Fluor und Chlor ersetzt sein.

Diese ein- oder zweikernigen aromatischen oder heteroaromatischen Systeme können neben den bezeichneten Halogenatomen ein bis drei 10 der folgenden Substituenten tragen:

Nitro;

Cyano, Thiocyanato;

15

Alkyl, besonders C₁-C₆-Alkyl wie vorstehend genannt, vorzugsweise Methyl, Ethyl, 1-Methylethyl, 1,1-Dimethylethyl, Butyl, Hexyl, insbesondere Methyl und 1-Methylethyl;

20 C₁-C₄-Halogenalkyl, wie vorstehend genannt, vorzugsweise Trichlormethyl, Difluormethyl, Trifluormethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl und Pentafluorethyl;

25 C₁-C₄-Alkoxy, vorzugsweise Methoxy, Ethoxy, 1-Methylethoxy und 1,1-Dimethylethoxy, insbesondere Methoxy;

C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy, vorzugsweise Difluormethyloxy, Trifluormethyloxy und 2,2,2-Trifluorethyloxy, insbesondere Difluormethyloxy;

30

C₁-C₄-Alkylthio, vorzugsweise Methylthio und 1-Methylethylthio, insbesondere Methylthio;

35 C₁-C₄-Alkylamino wie Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino und 1,1-Dimethylethylamino, vorzugsweise Methylamino und 1,1-Dimethylethylamino, insbesondere Methylamino,

40 Di-C₁-C₄-alkylamino wie N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Di-(1-methylethyl)amino, N,N-Dibutylamino, N,N-Di-(1-methylpropyl)amino, N,N-Di-(2-methylpropyl)amino, N,N-Di-(1,1-dimethylethyl)amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino, N-Methyl-N-(1-methylpropyl)amino, N-Methyl-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino, N-Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methylpropyl)amino,

19

N-Ethyl-N-(1,1-dimethylethyl)amino, N-(1-Methylethyl)-N-propyl-amino, N-Butyl-N-propylamino, N-(1-Methylpropyl)-N-propylamino, N-(2-Methylpropyl)-N-propylamino, N-(1,1-Dimethylethyl)-N-propyl-amino, N-Butyl-N-(1-methylethyl)amino, N-(1-Methylethyl)-
5 N-(1-methylpropyl)amino, N-(1-Methylethyl)-N-(2-methylpropyl)-amino, N-(1,1-Dimethylethyl)-N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(1-methyl-
10 propyl)amino und N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino, vorzugsweise N,N-Dimethylamino und N,N-Diethylamino, insbesondere N,N-Dimethylamino;

C₁-C₆-Alkylcarbonyl wie Methylcarbonyl, Ethylcarbonyl, Propyl-
15 carbonyl, 1-Methylethyl-carbonyl, Butylcarbonyl, 1-Methylpropyl-carbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl, Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethyl-propylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropyl-
20 carbonyl, Hexylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentyl-carbonyl, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethyl-
25 butylcarbonyl, 2-Ethylbutylcarbonyl, 1,1,2-Trimethylpropyl-carbonyl, 1,2,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropyl-carbonyl und 1-Ethyl-2-methylpropylcarbonyl, vorzugsweise Methyl-carbonyl, Ethylcarbonyl und 1,1-Dimethylcarbonyl, insbesondere Ethylcarbonyl;

30 C₁-C₆-Alkoxy carbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyl-oxy carbonyl, 1-Methyl-ethoxycarbonyl, Butyloxycarbonyl, 1-Methyl-propyloxy carbonyl, 2-Methylpropyloxy carbonyl, 1,1-Dimethylethoxy-carbonyl, Pentyloxycarbonyl, 1-Methylbutyloxycarbonyl, 2-Methyl-
35 butyloxycarbonyl, 3-Methylbutyloxycarbonyl, 2,2-Dimethylpropyl-oxy carbonyl, 1-Ethylpropyloxy carbonyl, Hexyloxycarbonyl, 1,1-Di-methylpropoxycarbonyl, 1,2-Dimethylpropyloxy carbonyl, 1-Methyl-pentyloxy carbonyl, 2-Methylpentylloxy carbonyl, 3-Methylpentyl-oxy carbonyl, 4-Methylpentylloxy carbonyl, 1,1-Dimethylbutyloxycarbo-
40 nyl, 1,2-Dimethylbutyloxycarbonyl, 1,3-Dimethylbutyloxycarbonyl, 2,2-Dimethylbutyloxycarbonyl, 2,3-Dimethylbutyloxycarbonyl, 3,3-Dimethylbutyloxycarbonyl, 1-Ethylbutyloxycarbonyl, 2-Ethyl-butylloxycarbonyl, 1,1,2-Trimethylpropyloxy carbonyl, 1,2,2-Tri-methylpropyloxy carbonyl, 1-Ethyl-1-methylpropyloxy carbonyl und
45 1-Ethyl-2-methylpropyloxy carbonyl, vorzugsweise Methoxycarbonyl,

Ethoxycarbonyl und 1,1-Dimethylethoxycarbonyl, insbesondere
Ethoxycarbonyl;

C₁-C₆-Alkylaminocarbonyl wie Methylaminocarbonyl, Ethylamino-
5 carbonyl, Propylaminocarbonyl, 1-Methylethylaminocarbonyl, Butyl-
aminocarbonyl, 1-Methylpropylaminocarbonyl, 2-Methylpropylamino-
carbonyl, 1,1-Dimethylethylaminocarbonyl, Pentylaminocarbonyl,
1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methyl-
butylaminocarbonyl, 2,2-Dimethylpropylaminocarbonyl, 1-Ethylpro-
10 pylaminocarbonyl, Hexylaminocarbonyl, 1,1-Dimethylpropylaminocar-
bonyl, 1,2-Dimethylpropylaminocarbonyl, 1-Methylpentylaminocarbo-
nonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl,
4-Methylpentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl,
1,2-Dimethylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbonyl,
15 2,2-Dimethylbutylaminocarbonyl, 2,3-Dimethylbutylaminocarbonyl,
3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylaminocarbonyl,
2-Ethylbutylaminocarbonyl, 1,1,2-Trimethylpropylaminocarbonyl,
1,2,2-Trimethylpropylaminocarbonyl, 1-Ethyl-1-methylpropylamino-
carbonyl und 1-Ethyl-2-methylpropylaminocarbonyl, vorzugsweise
20 Methylaminocarbonyl und Ethylaminocarbonyl, insbesondere Methyl-
aminocarbonyl;

Di-C₁-C₆-alkylaminocarbonyl, besonders Di-C₁-C₄-alkylaminocarbonyl
wie N,N-Dimethylaminocarbonyl, N,N-Diethylaminocarbonyl, N,N-Di-
25 propylaminocarbonyl, N,N-Di-(1-methylethyl)aminocarbonyl, N,N-Di-
butylaminocarbonyl, N,N-Di-(1-methylpropyl)aminocarbonyl, N,N-Di-
(2-methylpropyl)aminocarbonyl, N,N-Di-(1,1-dimethylethyl)-amino-
carbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-propylamino-
carbonyl, N-Methyl-N-(1-methylethyl)aminocarbonyl, N-Butyl-N-
30 methylaminocarbonyl, N-Methyl-N-(1-methylpropyl)aminocarbonyl,
N-Methyl-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Dimethylethyl)-
N-methylaminocarbonyl, N-Ethyl-N-propylaminocarbonyl, N-Ethyl-
N-(1-methylethyl)aminocarbonyl, N-Butyl-N-ethylaminocarbonyl, N-
Ethyl-N-(1-methylpropyl)aminocarbonyl, N-Ethyl-N-(2-methyl-
35 propyl)aminocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)aminocarbonyl,
N-(1-Methylethyl)-N-propylaminocarbonyl, N-Butyl-N-propylamino-
carbonyl, N-(1-Methylpropyl)-N-propylaminocarbonyl, N-(2-Methyl-
propyl)-N-propylaminocarbonyl, N-(1,1-Dimethylethyl)-N-propyl-
aminocarbonyl, N-Butyl-N-(1-methylethyl)aminocarbonyl,
40 N-(1-Methylethyl)-N-(1-methylpropyl)aminocarbonyl, N-(1-Methyl-
ethyl)-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Di-methylethyl)-
N-(1-methylethyl)aminocarbonyl, N-Butyl-N-(1-methylpropyl)amino-
carbonyl, N-Butyl-N-(2-methylpropyl)aminocarbonyl, N-Butyl-
N-(1,1-dimethylethyl)aminocarbonyl, N-(1-Methylpropyl)-
45 N-(2-methyl-propyl)aminocarbonyl, N-(1,1-Dimethylethyl)-
N-(1-methylpropyl)aminocarbonyl und N-(1,1-Dimethylethyl)-
N-(2-methylpropyl)aminocarbonyl, vorzugsweise N,N-Dimethylamino-

carbonyl und N,N-Diethylaminocarbonyl, insbesondere N,N-Dimethylaminocarbonyl;

C₁-C₆-Alkylcarboxyl wie Methylcarboxyl, Ethylcarboxyl, Propylcarboxyl, 1-Methylethyl-carboxyl, Butylcarboxyl, 1-Methylpropylcarboxyl, 2-Methylpropylcarboxyl, 1,1-Dimethylethylcarboxyl, Pentylcarboxyl, 1-Methylbutylcarboxyl, 2-Methylbutylcarboxyl, 3-Methylbutylcarboxyl, 1,1-Dimethylpropylcarboxyl, 1,2-Dimethylpropylcarboxyl, 2,2-Dimethylpropylcarboxyl, 1-Ethylpropylcarboxyl, Hexylcarboxyl, 1-Methylpentylcarboxyl, 2-Methylpentylcarboxyl, 3-Methylpentylcarboxyl, 4-Methylpentylcarboxyl, 1,1-Dimethylbutylcarboxyl, 1,2-Dimethylbutylcarboxyl, 1,3-Dimethylbutylcarboxyl, 2,2-Dimethylbutylcarboxyl, 2,3-Dimethylbutylcarboxyl, 3,3-Dimethylbutylcarboxyl, 1-Ethylbutylcarboxyl, 2-Ethylbutylcarboxyl, 1,1,2-Trimethylpropylcarboxyl, 1,2,2-Trimethylpropylcarboxyl, 1-Ethyl-1-methylpropylcarboxyl und 1-Ethyl-2-methylpropylcarboxyl, vorzugsweise Methylcarboxyl, Ethylcarboxyl und 1,1-Dimethyl-ethylcarbonyl, insbesondere Methylcarboxyl und 1,1-Dimethylethylcarboxyl;

C₁-C₆-Alkylcarbonylamino wie Methylcarbonylamino, Ethylcarbonylamino, Propylcarbonylamino, 1-Methylethylcarbonylamino, Butylcarbonylamino, 1-Methylpropylcarbonylamino, 2-Methylpropylcarbonylamino, 1,1-Dimethylethylcarbonylamino, Pentylcarbonylamino, 1-Methylbutylcarbonylamino, 2-Methylbutylcarbonylamino, 3-Methylbutylcarbonylamino, 2,2-Dimethylpropylcarbonylamino, 1-Ethylpropylcarbonylamino, Hexylcarbonylamino, 1,1-Dimethylpropylcarbonylamino, 1,2-Dimethylpropylcarbonylamino, 1-Methylpentylcarbonylamino, 2-Methylpentylcarbonylamino, 3-Methylpentylcarbonylamino, 4-Methylpentylcarbonylamino, 1,1-Dimethylbutylcarbonylamino, 1,2-Dimethylbutylcarbonylamino, 1,3-Dimethylbutylcarbonylamino, 2,2-Dimethylbutylcarbonylamino, 2,3-Dimethylbutylcarbonylamino, 3,3-Dimethylbutylcarbonylamino, 1-Ethylbutylcarbonylamino, 2-Ethylbutylcarbonylamino, 1,1,2-Trimethylpropylcarbonylamino, 1,2,2-Trimethylpropylcarbonylamino, 1-Ethyl-1-methylpropylcarbonylamino und 1-Ethyl-2-methylpropylcarbonylamino, vorzugsweise Methylcarbonylamino und Ethylcarbonylamino, insbesondere Ethylcarbonylamino;

C₃-C₇-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl, vorzugsweise Cyclopropyl, Cyclopentyl und Cyclohexyl, insbesondere Cyclopropyl;

C₃-C₇-Cycloalkoxy wie Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy und Cycloheptyloxy, vorzugsweise Cyclopentyloxy und Cyclohexyloxy, insbesondere Cyclohexyloxy;

22

C_3-C_7 -Cycloalkylthio wie Cyclopropylthio, Cyclobutylthio, Cyclopentylthio, Cyclohexylthio und Cycloheptylthio, vorzugsweise Cyclohexylthio;

5 C_3-C_7 -Cycloalkylamino wie Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino und Cycloheptylamino, vorzugsweise Cyclopropylamino und Cyclohexylamino, insbesondere Cyclopropylamino;

10 Die ein- oder zweikernigen aromatischen oder heteroaromatischen Systeme können neben den vorstehend genannten Substituenten auch einen Rest $-CR'=NOR''$ tragen, wobei die Reste R' und R'' für die folgenden Gruppen stehen:

15 R' Wasserstoff, Cyano, Alkyl (vorzugsweise C_1-C_6 -Alkyl, insbesondere C_1-C_4 -Alkyl), Haloalkyl (vorzugsweise C_1-C_4 -Haloalkyl, insbesondere C_1-C_2 -Haloalkyl), Alkenyl (vorzugsweise C_2-C_6 -Alkenyl, insbesondere C_2-C_4 -Alkenyl), Haloalkenyl (vorzugsweise C_2-C_6 -Haloalkenyl, insbesondere C_2-C_4 -Haloalkenyl),

20 Alkinyl (vorzugsweise C_2-C_6 -Alkinyl, insbesondere C_2-C_4 -Alkinyl), Haloalkinyl (vorzugsweise C_2-C_6 -Haloalkinyl, insbesondere C_2-C_4 -Haloalkinyl) und Cycloalkyl (vorzugsweise C_3-C_8 -Cycloalkyl, insbesondere C_3-C_6 -Cycloalkyl);

25 R'' Alkyl (vorzugsweise C_1-C_6 -Alkyl, insbesondere C_1-C_4 -Alkyl), Haloalkyl (vorzugsweise C_1-C_4 -Haloalkyl, insbesondere C_1-C_2 -Haloalkyl), Alkenyl (vorzugsweise C_2-C_6 -Alkenyl, insbesondere C_2-C_4 -Alkenyl), Haloalkenyl (vorzugsweise C_2-C_6 -Haloalkenyl, insbesondere C_2-C_4 -Haloalkenyl), Alkinyl (vorzugsweise C_2-C_6 -Alkinyl, insbesondere C_2-C_4 -Alkinyl), Haloalkinyl (vorzugsweise C_2-C_6 -Haloalkinyl, insbesondere C_2-C_4 -Haloalkinyl) und Cycloalkyl (vorzugsweise C_3-C_8 -Cycloalkyl, insbesondere C_3-C_6 -Cycloalkyl).

35 Im Hinblick auf ihre biologische Wirkung sind Verbindungen I bevorzugt, in denen $--$ für eine Doppelbindung steht.

Des Weiteren sind Verbindungen I bevorzugt, in denen in der $=$ für eine Einfachbindung steht.

40 Gleichermaßen sind Verbindungen I bevorzugt, in denen n für 0 oder 1, insbesondere für 0, steht.

Außerdem werden Verbindungen I bevorzugt, in denen R¹ für Halogen, 45 C_1-C_4 -Alkyl, C_1-C_2 -Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_2 -Halogenalkoxy steht.

23

Daneben werden Verbindungen I bevorzugt, in denen m 0 oder 1 bedeutet.

Gleichermaßen werden Verbindungen I bevorzugt, in denen R² Nitro,
5 Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder
C₁-C₄-Alkoxycarbonyl steht.

Desweiteren werden Verbindungen I bevorzugt, in denen R³ für
C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl steht.

10

Außerdem werden Verbindungen I bevorzugt, in denen R³ für einen
ggf. subst. ein- oder zweikernigen aromatischen Rest steht, wel-
cher neben Kohlenstoffatomen ein bis vier Stickstoffatome oder
ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefel-
15 atom oder ein Sauerstoff- oder Schwefelatom als Ringglieder ent-
halten kann.

Insbesondere werden Verbindungen I bevorzugt, in denen R³ für
Phenyl oder Benzyl steht, wobei der Phenylrest partiell oder
20 vollständig halogeniert sein kann und/oder

- ein bis drei der folgenden Reste: Cyano, Nitro, C₁-C₆-Alkyl,
C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy,
C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkyl-
25 carbonyl, C₁-C₄-Alkoxycarbonyl, Phenyl, Phenoxy und Phe-
nyl-C₁-C₄-alkoxy, wobei die Phenylringe ihrerseits partiell
oder vollständig halogeniert sein können und/oder ein bis
drei der folgenden Reste tragen können: Cyano, Nitro,
C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogen-
30 alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylcarbonyl oder
C₁-C₄-Alkoxycarbonyl, und/oder
- eine Gruppe CR'=NOR", in der R' Wasserstoff oder C₁-C₄-Alkyl
bedeutet und R" für C₁-C₆-Alkyl steht, und/oder
- zwei benachbarte C-Atome des Phenylrings über eine
35 Oxy-C₁-C₃-alkoxy-Brücke oder eine Oxy-C₁-C₃-halogenalkoxy-
Brücke

tragen kann.

40 Außerdem werden Verbindungen I insbesondere bevorzugt, in denen R³
für Pyridyl oder Pyrimidyl steht, wobei der Pyridylring partiell
oder vollständig halogeniert sein kann und/oder ein bis drei der
folgenden Reste tragen kann: Cyano, Nitro, C₁-C₄-Alkyl,
C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, C₃-C₆-Cyclo-
45 alkyl, C₁-C₄-Alkylcarbonyl oder C₁-C₄-Alkoxycarbonyl.

24

Daneben werden Verbindungen I bevorzugt, in denen R⁴ für Wasserstoff, C₁-C₄-Alkyl oder C₁-C₂-Halogenalkyl steht.

Außerdem werden Verbindungen I bevorzugt, in denen R⁵X für Methyl,

5 Ethyl, Methoxy oder Methylamino steht.

Beispiele für insbesondere bevorzugte Verbindungen I sind in den Tabellen zusammengestellt.

10 Tabelle 1

Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Methyl steht, R⁵X Methyl bedeutet und R^x_p für eine Verbindung einer Zeile der Tabelle A entspricht

15

20

Tabelle 2

25 Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Methyl steht, R⁵X Ethyl bedeutet und R^x_p für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 3

30

Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Methyl steht, R⁵X Methyl bedeutet und R^x_p für eine Verbindung einer Zeile der Tabelle A entspricht

35

40

Tabelle 4

45 Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Methyl steht, R⁵X Ethyl bedeutet und R^x_p für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 5

Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Methyl steht, R⁵X Methoxy bedeutet und R^{x_p} für eine Verbindung einer

5 Zeile der Tabelle A entspricht

Tabelle 6

Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Methyl steht, R⁵X Methoxy bedeutet und R^{x_p} für eine Verbindung einer

10 Zeile der Tabelle A entspricht

Tabelle 7

Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Methyl steht, R⁵X Methylamino bedeutet und R^{x_p} für eine Verbindung einer **15** Zeile der Tabelle A entspricht

Tabelle 8

20 Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Methyl steht, R⁵X Methylamino bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 9

25

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methyl bedeutet, R^Y Wasserstoff bedeutet, R^Z Chlor bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

30

Tabelle 10

40 Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Ethyl bedeutet, R^Y Wasserstoff bedeutet, R^Z Chlor bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

45

Tabelle 11

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methoxy bedeutet, R^Y Wasserstoff bedeutet, R^Z Chlor bedeutet und R^{X_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 12

10 Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methylamino bedeutet, R^Y Wasserstoff bedeutet, R^Z Chlor bedeutet und R^{X_p} für eine Verbindung einer Zeile der Tabelle A entspricht

15 Tabelle 13

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methyl bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{X_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 14

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Ethyl bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{X_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 15

30 Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methoxy bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{X_p} für eine Verbindung einer Zeile der Tabelle A entspricht

35

Tabelle 16

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methylamino bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{X_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 17

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methyl bedeutet, RY Trifluormethyl bedeutet, R^z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 18

10 Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Ethyl bedeutet, RY Trifluormethyl bedeutet, R^z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

15 Tabelle 19

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methoxy bedeutet, RY Trifluormethyl bedeutet, R^z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 20

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Methyl steht, R⁵X Methylamino bedeutet, RY Trifluormethyl bedeutet, R^z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 21

30

Verbindungen der allgemeinen Formel I.4, in denen R⁵X Methyl bedeutet und die Kombination der Substituenten R¹, RY, R^z, R³ und R⁴ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

35**40**

Tabelle 22

Verbindungen der allgemeinen Formel I.4, in denen R⁵X Ethyl bedeutet und die Kombination der Substituenten R¹, RY, R^z, R³ und R⁴ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 23

Verbindungen der allgemeinen Formel I.4, in denen R⁵X Methoxy bedeutet und die Kombination der Substituenten R¹, R^Y, R^Z, R³ und R⁴ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 24

Verbindungen der allgemeinen Formel I.4, in denen R⁵X Methylamino bedeutet und die Kombination der Substituenten R¹, R^Y, R^Z, R³ und R⁴ für eine Verbindung jeweils einer Zeile der Tabelle B entspricht

Tabelle 25

Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Wasserstoff steht, R⁵X Methyl bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

20 Tabelle 26

Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Wasserstoff steht, R⁵X Ethyl bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

25

Tabelle 27

Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Wasserstoff steht, R⁵X Methyl bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 28

Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Wasserstoff steht, R⁵X Ethyl bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 29

40 Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Wasserstoff steht, R⁵X Methoxy bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 30

Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Wasserstoff steht, R⁵X Methoxy bedeutet und R^{x_p} für eine Verbindung

5 einer Zeile der Tabelle A entspricht

Tabelle 31

Verbindungen der allgemeinen Formel I.1, in denen R⁴ für Wasserstoff steht, R⁵X Methylamino bedeutet und R^{x_p} für eine Verbindung

10 einer Zeile der Tabelle A entspricht

Tabelle 32

15 Verbindungen der allgemeinen Formel I.2, in denen R⁴ für Wasserstoff steht, R⁵X Methylamino bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 33

20

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methyl bedeutet, R^y Wasserstoff bedeutet, R^z Chlor bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

25

Tabelle 34

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Ethyl bedeutet, R^y Wasserstoff bedeutet, R^z Chlor bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 35

30

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methoxy bedeutet, R^y Wasserstoff bedeutet, R^z Chlor bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

35

Tabelle 36

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methylamino bedeutet, R^y Wasserstoff bedeutet, R^z Chlor bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

40

Tabelle 37

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methyl bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 38

10 Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Ethyl bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

15 Tabelle 39

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methoxy bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 40

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methylamino bedeutet, R^Y Methyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 41

30

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methyl bedeutet, R^Y Trifluormethyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

35

Tabelle 42

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Ethyl bedeutet, R^Y Trifluormethyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

45

Tabelle 43

Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methoxy bedeutet, R^Y Trifluormethyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

Tabelle 44

10 Verbindungen der allgemeinen Formel I.3, in denen R⁴ für Wasserstoff steht, R⁵X Methylamino bedeutet, R^Y Trifluormethyl bedeutet, R^Z Wasserstoff bedeutet und R^{x_p} für eine Verbindung einer Zeile der Tabelle A entspricht

15 Tabelle A

Nummer	R ^{x_p}
1	H
20 2	2-F
3	3-F
4	4-F
5	2,4-F ₂
25 6	2,4,6-F ₃
7	2,3,4,5,6-F ₅
8	2,3-F ₂
9	2-Cl
30 10	3-Cl
11	4-Cl
12	2,3-Cl ₂
13	2,4-Cl ₂
14	2,5-Cl ₂
35 15	2,6-Cl ₂
16	3,4-Cl ₂
17	3,5-Cl ₂
18	2,3,4-Cl ₃
40 19	2,3,5-Cl ₃
11	2,3,6-Cl ₃
12	2,4,5-Cl ₃
13	2,4,6-Cl ₃
45 14	3,4,5-Cl ₃
15	2,3,4,6-Cl ₄
16	2,3,5,6-Cl ₄

Nummer	R ^x _p
17	2,3,4,5,6-Cl ₅
18	2-Br
19	3-Br
20	4-Br
21	2,4-Br ₂
22	2,5-Br ₂
23	2,6-Br ₂
24	2,4,6-Br ₃
25	2,3,4,5,6-Br ₅
26	2-J
27	3-J
28	4-J
29	2,4-J ₂
30	2-Cl, 3-F
31	2-Cl, 4-F
32	2-Cl, 5-F
33	2-Cl, 6-F
34	2-Cl, 3-Br
35	2-Cl, 4-Br
36	2-Cl, 5-Br
37	2-Cl, 6-Br
38	2-Br, 3-Cl
39	2-Br, 4-Cl
40	2-Br, 5-Cl
41	2-Br, 3-F
42	2-Br, 4-F
43	2-Br, 5-F
44	2-Br, 6-F
45	2-F, 3-Cl
46	2-F, 4-Cl
47	2-F, 5-Cl
48	3-Cl, 4-F
49	3-Cl, 5-F
50	3-Cl, 4-Br
51	3-Cl, 5-Br
52	3-F, 4-Cl
53	3-F, 4-Br
54	3-Br, 4-Cl
55	3-Br, 4-F

Nummer	R ^x _p
56	2,6-Cl ₂ , 4-Br
57	2-CH ₃
58	3-CH ₃
59	4-CH ₃
60	2,3-(CH ₃) ₂
61	2,4-(CH ₃) ₂
62	2,5-(CH ₃) ₂
63	2,6-(CH ₃) ₂
64	3,4-(CH ₃) ₂
65	3,5-(CH ₃) ₂
66	2,3,5-(CH ₃) ₃
67	2,3,4-(CH ₃) ₃
68	2,3,6-(CH ₃) ₃
69	2,4,5-(CH ₃) ₃
70	2,4,6-(CH ₃) ₃
71	3,4,5-(CH ₃) ₃
72	2,3,4,6-(CH ₃) ₄
73	2,3,5,6-(CH ₃) ₄
74	2,3,4,5,6-(CH ₃) ₅
75	2-C ₂ H ₅
76	3-C ₂ H ₅
77	4-C ₂ H ₅
78	2,4-(C ₂ H ₅) ₅
79	2,6-(C ₂ H ₅) ₂
80	3,5-(C ₂ H ₅) ₂
81	2,4,6-(C ₂ H ₅) ₃
82	2-n-C ₃ H ₇
83	3-n-C ₃ H ₇
84	4-n-C ₃ H ₇
85	2-i-C ₃ H ₇
86	3-i-C ₃ H ₇
87	4-i-C ₃ H ₇
88	2,4-(i-C ₃ H ₇) ₂
89	2,6-(i-C ₃ H ₇) ₂
90	3,5-(i-C ₃ H ₇) ₂
91	2-s-C ₄ H ₉
92	3-s-C ₄ H ₉
93	4-s-C ₄ H ₉
94	2-t-C ₄ H ₉

Nummer	R ^x _p
95	3-t-C ₄ H ₉
96	4-t-C ₄ H ₉
5 97	4-n-C ₉ H ₁₉
98	2-CH ₃ , 4-t-C ₄ H ₉
99	2-CH ₃ , 6-t-C ₄ H ₉
100	2-CH ₃ , 4-i-C ₃ H ₇
10 101	2-CH ₃ , 5-i-C ₃ H ₇
102	3-CH ₃ , 4-i-C ₃ H ₇
103	2-cyclo-C ₆ H ₁₁
104	3-cyclo-C ₆ H ₁₁
105	4-cyclo-C ₆ H ₁₁
15 106	2-Cl, 4-C ₆ H ₅
107	2-Br, 4-C ₆ H ₅
108	2-OCH ₃
109	3-OCH ₃
20 110	4-OCH ₃
111	2-OC ₂ H ₅
112	3-O-C ₂ H ₅
113	4-O-C ₂ H ₅
25 114	2-O-n-C ₃ H ₇
115	3-O-n-C ₃ H ₇
116	4-O-n-C ₃ H ₇
117	2-O-i-C ₃ H ₇
30 118	3-O-i-C ₃ H ₇
119	4-O-i-C ₃ H ₇
120	2-O-n-C ₆ H ₁₃
121	3-O-n-C ₆ H ₁₃
122	4-O-n-C ₆ H ₁₃
35 123	2-O-CH ₂ C ₆ H ₅
124	3-O-CH ₂ C ₆ H ₅
125	4-O-CH ₂ C ₆ H ₅
126	2-O-(CH ₂) ₃ C ₆ H ₅
40 127	4-O-(CH ₂) ₃ C ₆ H ₅
128	2,3-(OCH ₃) ₂
129	2,4-(OCH ₃) ₂
130	2,5-(OCH ₃) ₂
45 131	2,6-(OCH ₃) ₂
132	3,4-(OCH ₃) ₂
133	3,5-(OCH ₃) ₂

Nummer	R ^x _p
134	2-O-t-C ₄ H ₉
135	3-O-t-C ₄ H ₉
5 136	4-O-t-C ₄ H ₉
137	3-(3'-Cl-C ₆ H ₄)
138	4-(4'-CH ₃ -C ₆ H ₄)
139	2-O-C ₆ H ₅
10 140	3-O-C ₆ H ₅
141	4-O-C ₆ H ₅
142	2-O-(2'-F-C ₆ H ₄)
143	3-O-(3'-Cl-C ₆ H ₄)
144	4-O-(4'-CH ₃ -C ₆ H ₄)
15 145	2,3,6-(CH ₃) ₃ , 4-F
146	2,3,6-(CH ₃) ₃ , 4-Cl
147	2,3,6-(CH ₃) ₃ , 4-Br
148	2,4-(CH ₃) ₂ , 6-F
20 149	2,4-(CH ₃) ₂ , 6-Cl
150	2,4-(CH ₃) ₂ , 6-Br
151	2-i-C ₃ H ₇ , 4-Cl, 5-CH ₃
152	2-Cl, 4-NO ₂
25 153	2-NO ₂ , 4-Cl
154	2-OCH ₃ , 5-NO ₂
155	2,4-Cl ₂ , 5-NO ₂
156	2,4-Cl ₂ , 6-NO ₂
157	2,6-Cl ₂ , 4-NO ₂
30 158	2,6-Br ₂ , 4-NO ₂
159	2,6-J ₂ , 4-NO ₂
160	2-CH ₃ , 5-i-C ₃ H ₇ , 4-Cl
161	2-CO ₂ CH ₃
35 162	3-CO ₂ CH ₃
163	4-CO ₂ CH ₃
164	2-CH ₂ -OCH ₃
165	3-CH ₂ -OCH ₃
40 166	4-CH ₂ -OCH ₃
167	2-Me-4-CH ₃ -CH(CH ₃)-CO
168	2-CH ₃ -4-(CH ₃ -C=NOCH ₃)
169	2-CH ₃ -4-(CH ₃ -C=NOOC ₂ H ₅)
45 170	2-CH ₃ -4-(CH ₃ -C=NO-n-C ₃ H ₇)
171	2-CH ₃ -4-(CH ₃ -C=NO-i-C ₃ H ₇)
172	2,5-(CH ₃) ₂ -4-(CH ₃ -C=NOCH ₃)

Nummer	R ^{X_p}
173	2,5-(CH ₃) ₂ -4-(CH ₃ -C=NOC ₂ H ₅)
174	2,5-(CH ₃ -4-(CH ₃ -C=NO-n-C ₃ H ₇)
175	2,5-(CH ₃) ₂ -4-(CH ₃ -C=NO-i-C ₃ H ₇)
176	2-C ₆ H ₅
177	3-C ₆ H ₅
178	4-C ₆ H ₅
179	2-(2'-F-C ₆ H ₄)
180	2-CH ₃ , 5-Br
181	2-CH ₃ , 6-Br
182	2-Cl, 3-CH ₃
183	2-Cl, 4-CH ₃
184	2-Cl, 5-CH ₃
185	2-F, 3-CH ₃
186	2-F, 4-CH ₃
187	2-F, 5-CH ₃
188	2-Br, 3-CH ₃
189	2-Br, 4-CH ₃
190	2-Br, 5-CH ₃
191	3-CH ₃ , 4-Cl
192	3-CH ₃ , 5-Cl
193	3-CH ₃ , 4-F
194	3-CH ₃ , 5-F
195	3-CH ₃ , 4-Br
196	3-CH ₃ , 5-Br
197	3-F, 4-CH ₃
198	3-Cl, 4-CH ₃
199	3-Br, 4-CH ₃
200	2-Cl, 4,5-(CH ₃) ₂
201	2-Br, 4,5-(CH ₃) ₂
292	2-Cl, 3,5-(CH ₃) ₂
203	2-Br, 3,5-(CH ₃) ₂
204	2,6-Cl ₂ , 4-CH ₃
205	2,6-F ₂ , 4-CH ₃
206	2,6-Br ₂ , 4-CH ₃
207	2,4-Br ₂ , 6-CH ₃
208	2,4-F ₂ , 6-CH ₃
209	2,4-Br ₂ , 6-CH ₃
210	2,6-(CH ₃) ₂ , 4-F
211	2,6-(CH ₃) ₂ , 4-Cl

Nummer	R ^X _P
212	2,6-(CH ₃) ₂ , 4-Br
213	3,5-(CH ₃) ₂ , 4-F
5 214	3,5-(CH ₃) ₂ , 4-Cl
215	3,5-(CH ₃) ₂ , 4-Br
216	2-CF ₃
217	3-CF ₃
10 218	4-CF ₃
219	2-OCF ₃
220	3-OCF ₃
221	4-OCF ₃
15 222	3-OCH ₂ CHF ₂
223	2-NO ₂
224	3-NO ₂
225	4-NO ₂
226	2-CN
20 227	3-CN
228	4-CN
229	2-CH ₃ , 3-Cl
230	2-CH ₃ , 4-Cl
25 231	2-CH ₃ , 5-Cl
232	2-CH ₃ , 6-Cl
233	2-CH ₃ , 3-F
234	2-CH ₃ , 4-F
30 235	2-CH ₃ , 5-F
236	2-CH ₃ , 6-F
237	2-CH ₃ , 3-Br
238	2-CH ₃ , 4-Br
239	2-Pyridyl-2'
35 240	3-Pyridyl-3'
241	4-Pyridyl-4'

Tabelle B

	Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
5	334	H	H	H	Cyclohexyl	CH ₃
	335	H	H	H	Benzyl	CH ₃
	336	H	H	H	2-Pyridyl	CH ₃
	337	H	H	H	5-Cl-pyridyl-2	CH ₃
10	338	H	H	H	5-CF ₃ -pyridyl-2	CH ₃
	339	H	H	H	2-Pyrazinyl	CH ₃
	340	H	H	Cl	Cyclohexyl	CH ₃
	341	H	H	Cl	Benzyl	CH ₃
15	342	H	H	Cl	2-Pyridyl	CH ₃
	343	H	H	Cl	5-Cl-pyridyl-2	CH ₃
	344	H	H	Cl	5-CF ₃ -pyridyl-2	CH ₃
	345	H	H	Cl	2-Pyrazinyl	CH ₃
20	346	H	CH ₃	H	Cyclohexyl	CH ₃
	347	H	CH ₃	H	Benzyl	CH ₃
	348	H	CH ₃	H	2-Pyridyl	CH ₃
	349	H	CH ₃	H	5-Cl-pyridyl-2	CH ₃
25	350	H	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₃
	351	H	CH ₃	H	2-Pyrazinyl	CH ₃
	352	H	H	H	Cyclohexyl	C ₂ H ₅
	353	H	H	H	Benzyl	C ₂ H ₅
30	354	H	H	H	Phenyl	C ₂ H ₅
	355	H	H	H	2-Pyridyl	C ₂ H ₅
	356	H	H	H	5-Cl-pyridyl-2	C ₂ H ₅
	357	H	H	H	5-CF ₃ -pyridyl-2	C ₂ H ₅
35	358	H	H	H	2-Pyrazinyl	C ₂ H ₅
	359	H	H	Cl	Cyclohexyl	C ₂ H ₅
	360	H	H	Cl	Benzyl	C ₂ H ₅
	361	H	H	Cl	Phenyl	C ₂ H ₅
40	362	H	H	Cl	2-Pyridyl	C ₂ H ₅
	363	H	H	Cl	5-Cl-pyridyl-2	C ₂ H ₅

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
364	H	H	Cl	5-CF ₃ -pyridyl -2	C ₂ H ₅
5 365	H	H	Cl	2-Pyrazinyl	C ₂ H ₅
366	H	CH ₃	H	Cyclohexyl	C ₂ H ₅
10 367	H	CH ₃	H	Benzyl	C ₂ H ₅
368	H	CH ₃	H	Phenyl	C ₂ H ₅
369	H	CH ₃	H	2-Pyridyl	C ₂ H ₅
15 370	H	CH ₃	H	5-Cl-pyridyl-2	C ₂ H ₅
371	H	CH ₃	H	5-CF ₃ -pyridyl -2	C ₂ H ₅
372	H	CH ₃	H	2-Pyrazinyl	C ₂ H ₅
15 373	H	H	H	Cyclohexyl	CH ₂ OCH ₃
374	H	H	H	Benzyl	CH ₂ OCH ₃
375	H	H	H	Phenyl	CH ₂ OCH ₃
20 376	H	H	H	2-Pyridyl	CH ₂ OCH ₃
377	H	H	H	5-Cl-pyridyl-2	CH ₂ OCH ₃
25 378	H	H	H	5-CF ₃ -pyridyl -2	CH ₂ OCH ₃
379	H	H	H	2-Pyrazinyl	CH ₂ OCH ₃
25 380	H	H	Cl	Cyclohexyl	CH ₂ OCH ₃
381	H	H	Cl	Benzyl	CH ₂ OCH ₃
382	H	H	Cl	Phenyl	CH ₂ OCH ₃
383	H	H	Cl	2-Pyridyl	CH ₂ OCH ₃
30 384	H	H	Cl	5-Cl-pyridyl-2	CH ₂ OCH ₃
385	H	H	Cl	5-CF ₃ -pyridyl -2	CH ₂ OCH ₃
35 386	H	H	Cl	2-Pyrazinyl	CH ₂ OCH ₃
387	H	CH ₃	H	Cyclohexyl	CH ₂ OCH ₃
388	H	CH ₃	H	Benzyl	CH ₂ OCH ₃
389	H	CH ₃	H	Phenyl	CH ₂ OCH ₃
40 390	H	CH ₃	H	2-Pyridyl	CH ₂ OCH ₃
391	H	CH ₃	H	5-Cl-pyridyl-2	CH ₂ OCH ₃
40 392	H	CH ₃	H	5-CF ₃ -pyridyl -2	CH ₂ OCH ₃
393	H	CH ₃	H	2-Pyrazinyl	CH ₂ OCH ₃
45 394	H	H	H	Cyclohexyl	CH ₂ C≡CH
395	H	H	H	Benzyl	CH ₂ C≡CH
396	H	H	H	Phenyl	CH ₂ C≡CH

40

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
397	H	H	H	2-Pyridyl	CH ₂ C≡CH
398	H	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
399	H	H	H	5-CF ₃ -pyridyl-2	CH ₂ C≡CH
400	H	H	H	2-Pyrazinyl	CH ₂ C≡CH
401	H	H	Cl	Cyclohexyl	CH ₂ C≡CH
402	H	H	Cl	Benzyl	CH ₂ C≡CH
403	H	H	Cl	Phenyl	CH ₂ C≡CH
404	H	H	Cl	2-Pyridyl	CH ₂ C≡CH
405	H	H	Cl	5-Cl-pyridyl-2	CH ₂ C≡CH
406	H	H	Cl	5-CF ₃ -pyridyl-2	CH ₂ C≡CH
407	H	H	Cl	2-Pyrazinyl	CH ₂ C≡CH
408	H	CH ₃	H	Cyclohexyl	CH ₂ C≡CH
409	H	CH ₃	H	Benzyl	CH ₂ C≡CH
410	H	CH ₃	H	Phenyl	CH ₂ C≡CH
411	H	CH ₃	H	2-Pyridyl	CH ₂ C≡CH
412	H	CH ₃	H	5-Cl-pyridyl-2	CH ₂ C≡CH
413	H	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₂ C≡CH
414	H	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
415	3-F	H	H	Cyclohexyl	CH ₃
416	3-F	H	H	Benzyl	CH ₃
417	3-F	H	H	Phenyl	CH ₃
418	3-F	H	H	2-Pyridyl	CH ₃
419	3-F	H	H	5-Cl-pyridyl-2	CH ₃
420	3-F	H	H	5-CF ₃ -pyridyl-2	CH ₃
421	3-F	H	H	2-Pyrazinyl	CH ₃
422	3-F	H	Cl	Cyclohexyl	CH ₃
423	3-F	H	Cl	Benzyl	CH ₃
424	3-F	H	Cl	Phenyl	CH ₃
425	3-F	H	Cl	2-Pyridyl	CH ₃
426	3-F	H	Cl	5-Cl-pyridyl-2	CH ₃
427	3-F	H	Cl	5-CF ₃ -pyridyl-2	CH ₃
428	3-F	H	Cl	2-Pyrazinyl	CH ₃

41

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
429	3-F	CH ₃	H	Cyclohexyl	CH ₃
430	3-F	CH ₃	H	Benzyl	CH ₃
431	3-F	CH ₃	H	Phenyl	CH ₃
432	3-F	CH ₃	H	2-Pyridyl	CH ₃
433	3-F	CH ₃	H	5-Cl-pyridyl-2	CH ₃
434	3-F	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₃
435	3-F	CH ₃	H	2-Pyrazinyl	CH ₃
436	3-F	H	H	Cyclohexyl	C ₂ H ₅
437	3-F	H	H	Benzyl	C ₂ H ₅
438	3-F	H	H	Phenyl	C ₂ H ₅
439	3-F	H	H	2-Pyridyl	C ₂ H ₅
440	3-F	H	H	5-Cl-pyridyl-2	C ₂ H ₅
441	3-F	H	H	5-CF ₃ -pyridyl-2	C ₂ H ₅
442	3-F	H	H	2-Pyrazinyl	C ₂ H ₅
443	3-F	H	Cl	Cyclohexyl	C ₂ H ₅
444	3-F	H	Cl	Benzyl	C ₂ H ₅
445	3-F	H	Cl	Phenyl	C ₂ H ₅
446	3-F	H	Cl	2-Pyridyl	C ₂ H ₅
447	3-F	H	Cl	5-Cl-pyridyl-2	C ₂ H ₅
448	3-F	H	Cl	5-CF ₃ -pyridyl-2	C ₂ H ₅
449	3-F	H	Cl	2-Pyrazinyl	C ₂ H ₅
450	3-F	H	H	Cyclohexyl	CH ₂ OCH ₃
451	3-F	H	H	Benzyl	CH ₂ OCH ₃
452	3-F	H	H	Phenyl	CH ₂ OCH ₃
453	3-F	H	H	2-Pyridyl	CH ₂ OCH ₃
454	3-F	H	H	5-Cl-pyridyl-2	CH ₂ OCH ₃
455	3-F	H	H	5-CF ₃ -pyridyl-2	CH ₂ OCH ₃
456	3-F	H	H	2-Pyrazinyl	CH ₂ OCH ₃
457	3-F	H	Cl	Cyclohexyl	CH ₂ OCH ₃
458	3-F	H	Cl	Benzyl	CH ₂ OCH ₃
459	3-F	H	Cl	Phenyl	CH ₂ OCH ₃
460	3-F	H	Cl	2-Pyridyl	CH ₂ OCH ₃
461	3-F	H	Cl	5-Cl-pyridyl-2	CH ₂ OCH ₃

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
462	3-F	H	Cl	5-CF ₃ -pyridyl-2	CH ₂ OCH ₃
5 463	3-F	H	Cl	2-Pyrazinyl	CH ₂ OCH ₃
464	3-F	CH ₃	H	Cyclohexyl	CH ₂ OCH ₃
465	3-F	CH ₃	H	Benzyl	CH ₂ OCH ₃
466	3-F	CH ₃	H	Phenyl	CH ₂ OCH ₃
10 467	3-F	CH ₃	H	2-Pyridyl	CH ₂ OCH ₃
468	3-F	CH ₃	H	5-Cl-pyridyl-2	CH ₂ OCH ₃
469	3-F	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₂ OCH ₃
15 470	3-F	CH ₃	H	2-Pyrazinyl	CH ₂ OCH ₃
471	3-F	H	H	Cyclohexyl	CH ₂ C≡CH
472	3-F	H	H	Benzyl	CH ₂ C≡CH
473	3-F	H	H	Phenyl	CH ₂ C≡CH
474	3-F	H	H	2-Pyridyl	CH ₂ C≡CH
20 475	3-F	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
476	3-F	H	H	5-CF ₃ -pyridyl-2	CH ₂ C≡CH
477	3-F	H	H	2-Pyrazinyl	CH ₂ C≡CH
25 478	3-F	H	Cl	Cyclohexyl	CH ₂ C≡CH
479	3-F	H	Cl	Benzyl	CH ₂ C≡CH
480	3-F	H	Cl	Phenyl	CH ₂ C≡CH
481	3-F	H	Cl	2-Pyridyl	CH ₂ C≡CH
30 482	3-F	H	Cl	5-Cl-pyridyl-2	CH ₂ C≡CH
483	3-F	H	Cl	5-CF ₃ -pyridyl-2	CH ₂ C≡CH
484	3-F	H	Cl	2-Pyrazinyl	CH ₂ C≡CH
35 485	3-F	CH ₃	H	Cyclohexyl	CH ₂ C≡CH
486	3-F	CH ₃	H	Benzyl	CH ₂ C≡CH
487	3-F	CH ₃	H	Phenyl	CH ₂ C≡CH
488	3-F	CH ₃	H	2-Pyridyl	CH ₂ C≡CH
40 489	3-F	CH ₃	H	5-Cl-pyridyl-2	CH ₂ C≡CH
490	3-F	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₂ C≡CH
491	3-F	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
45 492	6-Cl	H	H	Cyclohexyl	CH ₃
493	6-Cl	H	H	Benzyl	CH ₃
494	6-Cl	H	H	Phenyl	CH ₃

43

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
495	6-Cl	H	H	2-Pyridyl	CH ₃
496	6-Cl	H	H	5-Cl-pyridyl-2	CH ₃
5	497	6-Cl	H	5-CF ₃ -pyridyl-2	CH ₃
10	498	6-Cl	H	2-Pyrazinyl	CH ₃
15	499	6-Cl	H	Cyclohexyl	CH ₃
20	500	6-Cl	H	Benzyl	CH ₃
25	501	6-Cl	H	Phenyl	CH ₃
30	502	6-Cl	H	2-Pyridyl	CH ₃
35	503	6-Cl	H	5-Cl-pyridyl-2	CH ₃
40	504	6-Cl	H	5-CF ₃ -pyridyl-2	CH ₃
45	505	6-Cl	H	2-Pyrazinyl	CH ₃
506	6-Cl	CH ₃	H	Cyclohexyl	CH ₃
507	6-Cl	CH ₃	H	Benzyl	CH ₃
508	6-Cl	CH ₃	H	Phenyl	CH ₃
509	6-Cl	CH ₃	H	2-Pyridyl	CH ₃
510	6-Cl	CH ₃	H	5-Cl-pyridyl-2	CH ₃
511	6-Cl	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₃
512	6-Cl	CH ₃	H	2-Pyrazinyl	CH ₃
513	6-Cl	H	H	Cyclohexyl	C ₂ H ₅
514	6-Cl	H	H	Benzyl	C ₂ H ₅
515	6-Cl	H	H	Phenyl	C ₂ H ₅
516	6-Cl	H	H	2-Pyridyl	C ₂ H ₅
517	6-Cl	H	H	5-Cl-pyridyl-2	C ₂ H ₅
518	6-Cl	H	H	5-CF ₃ -pyridyl-2	C ₂ H ₅
519	6-Cl	H	H	2-Pyrazinyl	C ₂ H ₅
520	6-Cl	H	Cl	Cyclohexyl	C ₂ H ₅
521	6-Cl	H	Cl	Benzyl	C ₂ H ₅
522	6-Cl	H	Cl	Phenyl	C ₂ H ₅
523	6-Cl	H	Cl	2-Pyridyl	C ₂ H ₅
524	6-Cl	H	Cl	5-Cl-pyridyl-2	C ₂ H ₅
525	6-Cl	H	Cl	5-CF ₃ -pyridyl-2	C ₂ H ₅
526	6-Cl	H	Cl	2-Pyrazinyl	C ₂ H ₅

Nummer	R ¹	R ^y	R ^z	R ³	R ⁴
5	527	6-Cl	CH ₃	H	Cyclohexyl
	528	6-Cl	CH ₃	H	Benzyl
	529	6-Cl	CH ₃	H	Phenyl
	530	6-Cl	CH ₃	H	2-Pyridyl
	531	6-Cl	CH ₃	H	5-Cl-pyridyl-2
10	532	6-Cl	CH ₃	H	5-CF ₃ -pyridyl-2
	533	6-Cl	CH ₃	H	2-Pyrazinyl
	534	6-Cl	H	H	Cyclohexyl
	535	6-Cl	H	H	Benzyl
	536	6-Cl	H	H	Phenyl
15	537	6-Cl	H	H	2-Pyridyl
	538	6-Cl	H	H	5-Cl-pyridyl-2
	539	6-Cl	H	H	5-CF ₃ -pyridyl-2
	540	6-Cl	H	H	2-Pyrazinyl
	541	6-Cl	H	Cl	Cyclohexyl
20	542	6-Cl	H	Cl	Benzyl
	543	6-Cl	H	Cl	Phenyl
	544	6-Cl	H	Cl	2-Pyridyl
	545	6-Cl	H	Cl	5-Cl-pyridyl-2
	546	6-Cl	H	Cl	5-CF ₃ -pyridyl-2
25	547	6-Cl	H	Cl	2-Pyrazinyl
	548	6-Cl	CH ₃	H	Cyclohexyl
	549	6-Cl	CH ₃	H	Benzyl
	550	6-Cl	CH ₃	H	Phenyl
	551	6-Cl	CH ₃	H	2-Pyridyl
30	552	6-Cl	CH ₃	H	5-Cl-pyridyl-2
	553	6-Cl	CH ₃	H	5-CF ₃ -pyridyl-2
	554	6-Cl	CH ₃	H	2-Pyrazinyl
	555	6-Cl	H	H	Cyclohexyl
	556	6-Cl	H	H	Benzyl
35	557	6-Cl	H	H	Phenyl
	558	6-Cl	H	H	2-Pyridyl
	559	6-Cl	H	H	5-Cl-pyridyl-2
					CH ₂ C≡CH
					CH ₂ C≡CH
40					CH ₂ C≡CH
					CH ₂ C≡CH
					CH ₂ C≡CH
					CH ₂ C≡CH
					CH ₂ C≡CH
45					CH ₂ C≡CH
					CH ₂ C≡CH
					CH ₂ C≡CH
					CH ₂ C≡CH
					CH ₂ C≡CH

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
560	6-Cl	H	H	5-CF ₃ -pyridyl -2	CH ₂ C≡CH
561	6-Cl	H	H	2-Pyrazinyl	CH ₂ C≡CH
562	6-Cl	H	Cl	Cyclohexyl	CH ₂ C≡CH
563	6-Cl	H	Cl	Benzyl	CH ₂ C≡CH
564	6-Cl	H	Cl	Phenyl	CH ₂ C≡CH
565	6-Cl	H	Cl	2-Pyridyl	CH ₂ C≡CH
566	6-Cl	H	Cl	5-Cl-pyri- dyl-2	CH ₂ C≡CH
567	6-Cl	H	Cl	5-CF ₃ -pyridyl -2	CH ₂ C≡CH
568	6-Cl	H	Cl	2-Pyrazinyl	CH ₂ C≡CH
569	6-Cl	CH ₃	H	Cyclohexyl	CH ₂ C≡CH
570	6-Cl	CH ₃	H	Benzyl	CH ₂ C≡CH
571	6-Cl	CH ₃	H	Phenyl	CH ₂ C≡CH
572	6-Cl	CH ₃	H	2-Pyridyl	CH ₂ C≡CH
573	6-Cl	CH ₃	H	5-Cl-pyri- dyl-2	CH ₂ C≡CH
574	6-Cl	CH ₃	H	5-CF ₃ -pyridyl -2	CH ₂ C≡CH
575	6-Cl	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
576	6-CH ₃	H	H	Cyclohexyl	CH ₃
577	6-CH ₃	H	H	Benzyl	CH ₃
578	6-CH ₃	H	H	Phenyl	CH ₃
579	6-CH ₃	H	H	2-Pyridyl	CH ₃
580	6-CH ₃	H	H	5-Cl-pyri- dyl-2	CH ₃
581	6-CH ₃	H	H	5-CF ₃ -pyridyl -2	CH ₃
582	6-CH ₃	H	H	2-Pyrazinyl	CH ₃
583	6-CH ₃	H	Cl	Cyclohexyl	CH ₃
584	6-CH ₃	H	Cl	Benzyl	CH ₃
585	6-CH ₃	H	Cl	Phenyl	CH ₃
586	6-CH ₃	H	Cl	2-Pyridyl	CH ₃
587	6-CH ₃	H	Cl	5-Cl-pyri- dyl-2	CH ₃
588	6-CH ₃	H	Cl	5-CF ₃ -pyridyl -2	CH ₃
589	6-CH ₃	H	Cl	2-Pyrazinyl	CH ₃
590	6-CH ₃	CH ₃	H	Cyclohexyl	CH ₃
591	6-CH ₃	CH ₃	H	Benzyl	CH ₃
592	6-CH ₃	CH ₃	H	Phenyl	CH ₃

46

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
593	6-CH ₃	CH ₃	H	2-Pyridyl	CH ₃
594	6-CH ₃	CH ₃	H	5-Cl-pyridyl-2	CH ₃
595	6-CH ₃	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₃
596	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₃
597	6-CH ₃	H	H	Cyclohexyl	C ₂ H ₅
598	6-CH ₃	H	H	Benzyl	C ₂ H ₅
599	6-CH ₃	H	H	Phenyl	C ₂ H ₅
600	6-CH ₃	H	H	2-Pyridyl	C ₂ H ₅
601	6-CH ₃	H	H	5-Cl-pyridyl-2	C ₂ H ₅
602	6-CH ₃	H	H	5-CF ₃ -pyridyl-2	C ₂ H ₅
603	6-CH ₃	H	H	2-Pyrazinyl	C ₂ H ₅
604	6-CH ₃	H	Cl	Cyclohexyl	C ₂ H ₅
605	6-CH ₃	H	Cl	Benzyl	C ₂ H ₅
606	6-CH ₃	H	Cl	Phenyl	C ₂ H ₅
607	6-CH ₃	H	Cl	2-Pyridyl	C ₂ H ₅
608	6-CH ₃	H	Cl	5-Cl-pyridyl-2	C ₂ H ₅
609	6-CH ₃	H	Cl	5-CF ₃ -pyridyl-2	C ₂ H ₅
610	6-CH ₃	H	Cl	2-Pyrazinyl	C ₂ H ₅
611	6-CH ₃	CH ₃	H	Cyclohexyl	C ₂ H ₅
612	6-CH ₃	CH ₃	H	Benzyl	C ₂ H ₅
613	6-CH ₃	CH ₃	H	Phenyl	C ₂ H ₅
614	6-CH ₃	CH ₃	H	2-Pyridyl	C ₂ H ₅
615	6-CH ₃	CH ₃	H	5-Cl-pyridyl-2	C ₂ H ₅
616	6-CH ₃	CH ₃	H	5-CF ₃ -pyridyl-2	C ₂ H ₅
617	6-CH ₃	CH ₃	H	2-Pyrazinyl	C ₂ H ₅
618	6-CH ₃	H	H	Cyclohexyl	CH ₂ OCH ₃
619	6-CH ₃	H	H	Benzyl	CH ₂ OCH ₃
620	6-CH ₃	H	H	Phenyl	CH ₂ OCH ₃
621	6-CH ₃	H	H	2-Pyridyl	CH ₂ OCH ₃
622	6-CH ₃	H	H	5-Cl-pyridyl-2	CH ₂ OCH ₃
623	6-CH ₃	H	H	5-CF ₃ -pyridyl-2	CH ₂ OCH ₃
624	6-CH ₃	H	H	2-Pyrazinyl	CH ₂ OCH ₃

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
5	6-CH ₃	H	Cl	Cyclohexyl	CH ₂ OCH ₃
	6-CH ₃	H	Cl	Benzyl	CH ₂ OCH ₃
	6-CH ₃	H	Cl	Phenyl	CH ₂ OCH ₃
	6-CH ₃	H	Cl	2-Pyridyl	CH ₂ OCH ₃
	6-CH ₃	H	Cl	5-Cl-pyridyl-2	CH ₂ OCH ₃
	6-CH ₃	H	Cl	5-CF ₃ -pyridyl-2	CH ₂ OCH ₃
10	6-CH ₃	H	Cl	2-Pyrazinyl	CH ₂ OCH ₃
	6-CH ₃	CH ₃	H	Cyclohexyl	CH ₂ OCH ₃
	6-CH ₃	CH ₃	H	Benzyl	CH ₂ OCH ₃
	6-CH ₃	CH ₃	H	Phenyl	CH ₂ OCH ₃
	6-CH ₃	CH ₃	H	2-Pyridyl	CH ₂ OCH ₃
	6-CH ₃	CH ₃	H	5-Cl-pyridyl-2	CH ₂ OCH ₃
15	6-CH ₃	CH ₃	H	5-CF ₃ -pyridyl-2	CH ₂ OCH ₃
	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₂ OCH ₃
	6-CH ₃	H	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	H	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
20	6-CH ₃	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
	6-CH ₃	H	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	H	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
25	6-CH ₃	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
	6-CH ₃	H	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	H	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
30	6-CH ₃	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyrazinyl	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	H	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
35	6-CH ₃	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
	6-CH ₃	H	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	H	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
40	6-CH ₃	H	H	5-Cl-pyridyl-2	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
	6-CH ₃	H	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
45	6-CH ₃	CH ₃	H	5-Cl-pyridyl-2	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyrazinyl	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	Cyclohexyl	CH ₂ C≡CH
	6-CH ₃	H	H	Benzyl	CH ₂ C≡CH
	6-CH ₃	H	H	Phenyl	CH ₂ C≡CH
	6-CH ₃	H	H	2-Pyridyl	CH ₂ C≡CH
	6-CH ₃	CH ₃	H	5-Cl-pyridyl-2	CH ₂ C≡CH

Nummer	R ¹	R ^Y	R ^Z	R ³	R ⁴
658	6-CH ₃	CH ₃	H	5-CF ₃ -pyridyl -2	CH ₂ C≡CH
5 659	6-CH ₃	CH ₃	H	2-Pyrazinyl	CH ₂ C≡CH
660	3-F	CH ₃	H	Cyclohexyl	C ₂ H ₅
661	3-F	CH ₃	H	Benzyl	C ₂ H ₅
662	3-F	CH ₃	H	Phenyl	C ₂ H ₅
10 663	3-F	CH ₃	H	2-Pyridyl	C ₂ H ₅
664	3-F	CH ₃	H	5-Cl-pyri- dyl-2	C ₂ H ₅
15 665	3-F	CH ₃	H	5-CF ₃ -pyridyl -2	C ₂ H ₅
666	3-F	CH ₃	H	2-Pyrazinyl	C ₂ H ₅

Die erfindungsgemäßen Verbindungen der Formel I eignen sich zur Bekämpfung von Schadpilzen und von tierischen Schädlingen aus der Klasse der Insekten, Spinnentiere und Nematoden. Sie können im Pflanzenschutz sowie auf dem Hygiene-, Vorratsschutz- und Veterinärsektor als Fungizide und Schädlingsbekämpfungsmittel eingesetzt werden.

Zu den schädlichen Insekten gehören:

25 aus der Ordnung der Schmetterlinge (Lepidoptera) beispielsweise Adoxophyes orana, Agrotis ypsilon, Agrotis segetum, Alabama ar-
gillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autogra-
pha gamma, Cacoecia murinana, Capua reticulana, Choristoneura fu-
miferana, Chilo partellus, Choristoneura occidentalis, Cirphis
30 unipuncta, Cnaphalocrocis medinalis, Crocidolomia binotalis, Cy-
dia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea
grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoeci-
lia ambigua, Feltia subterranea, Grapholita funebrana, Gra-
pholita molesta, Heliothis armigera, Heliothis virescens, Helio-
35 this zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea,
Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscel-
laria, Laphygma exigua, Leucoptera scitella, Lithocolletis blan-
cardella, Lobesia botrana, Loxostege sticticalis, Lymantria dis-
par, Lymantria monacha, Lyonetia clerkella, Manduca sexta, Mala-
40 cosoma neustria, Mamestra brassicae, Mocis repanda, Operophtera
brumata, Orygia pseudotsugata, Ostrinia nubilalis, Pandemis hepa-
rana, Panolis flammea, Pectinophora gossypiella, Phthorimaea
operuclella, Phyllocnistis citrella, Pieris brassicae, Plathypena
scabra, Platynota stultana, Plutella xylostella, Prays citri,
45 Prays oleae, Prodenia sunia, Prodenia ornithogalli, Pseudoplusia
includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sesamia
inferens, Sparganothis pilleriana, Spodoptera frugiperda, Spodop-

tera littoralis, Spodoptera litura, Syllepta derogata, Synanthes-
don myopaeformis, Thaumatopoea pityocampa, Tortrix viridana, Tri-
choplusia ni, Tryporyza incertulas, Zeiraphera canadensis, ferner
Galleria mellonella und Sitotroga cerealella, Ephestia cautella,

5 Tineola bisselliella;

aus der Ordnung der Käfer (Coleoptera) beispielsweise Agriotes
lineatus, Agriotes obscurus, Anthonomus grandis, Anthonomus pomo-
rum, Apion vorax, Atomaria linearis, Blastophagus piniperda, Cas-
10 sida nebulosa, Cerotoma trifurcata, Ceuthorhynchus assimilis,
Ceuthorhynchus napi, Chaetocnema tibialis, Conoderus vespertinus,
Crioceris asparagi, Dendroctonus refipennis, Diabrotica longicor-
nis, Diabrotica 12-punctata, Diabrotica virgifera, Epilachna va-
rivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylo-
15 bius abietis, Hypera brunneipennis, Hypera postica, Ips typogra-
phus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata,
Limnius californicus, Lissorhoptrus oryzophilus, Melanotus
communis, Meligethes aeneus, Melolontha hippocastani, Melolontha
melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Otiorrhynchus
20 ovatus, Phaedon cochleariae, Phyllopertha horticola, Phyllophaga
sp., Phyllotreta chrysocephala, Phyllotreta nemorum, Phyllotreta
striolata, Popillia japonica, Psylliodes napi, Scolytus intricatus,
Sitona lineatus, ferner Bruchus rufimanus, Bruchus pisorum,
Bruchus lentis, Sitophilus granaria, Lasioderma serricorne, Ory-
25 zaophilus surinamensis, Rhyzopertha dominica, Sitophilus oryzae,
Tribolium castaneum, Trogoderma granarium, Zabrotes subfasciatus;

aus der Ordnung der Zweiflügler (Diptera) beispielsweise Anastre-
pha ludens, Ceratitis capitata, Contarinia sorghicola, Dacus cu-
30 curbitae, Dacus oleae, Dasineura brassicae, Delia coarctata, De-
lia radicum, Hydrellia griseola, Hylemyia platura, Liriomyza sa-
tivae, Liriomyza trifolii, Mayetiola destructor, Orseolia oryzae,
Oscinella frit, Pegomya hyoscyami, Phorbia antiqua, Phorbia bras-
sicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomo-
35 nelia, Tipula oleracea, Tipula paludosa, ferner Aedes aegypti,
Aedes vexans, Anopheles maculipennis, Chrysomya bezziana, Chryso-
mya hominivorax, Chrysomya macellaria, Cordylobia anthropophaga,
Culex pipiens, Fannia canicularis, Gasterophilus intestinalis,
Glossina morsitans, Haematobia irritans, Haplodiplosis equestris,
40 Hypoderma lineata, Lucilia caprina, Lucilia cuprina, Lucilia se-
ricata, Musca domestica, Muscina stabulans, Oestrus ovis, Tabanus
bovinus, Simulium damnosum;

50

aus der Ordnung der Thripse (Thysanoptera) beispielsweise Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Haplothrips tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi, Thrips tabaci;

5

aus der Ordnung der Hautflügler (Hymenoptera) beispielsweise Athalia rosae, Atta cephalotes, Atta sexdens, Atta texana, Hoplocampa minuta, Hoplocampa testudinea, Iridomyrmes humilis, Iridomyrmex purpureus, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri;

aus der Ordnung der Wanzen (Heteroptera) beispielsweise Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Eu-
schistus impictiventris, Leptoglossus phyllopus, Lygus hesperus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis, Thyanta perditor;

aus der Ordnung der Pflanzensauger (Homoptera) beispielsweise
20 Acyrtosiphon onobrychis, Acyrthosiphon pisum, Adelges laricis, Aonidiella aurantii, Aphidula nasturtii, Aphis fabae, Aphis gossypii, Aphis pomi, Aulacorthum solani, Bemisia tabaci, Brachycaudus cardui, Brevicoryne brassicae, Dalbulus maidis, Dreyfusia nordmanniana, Dreyfusia piceae, Dysaphis radicola, Empoasca favae, Eriosoma lanigerum, Laodelphax striatella, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Metopolophium dirhodum, Myzus persicae, Myzus cerasi, Nephrotettix cincticeps, Nilaparvata lugens, Perkinsiella saccharicida, Phodon humuli, Planococcus citri, Psylla mali, Psylla piri, Psylla pyricol, Quadraspidiotus perniciosus, Rhopalosiphum maidis, Saissetia oleae, Schizaphis graminum, Selenaspis articulatus, Sito-bion avenae, Sogatella furcifera, Toxoptera citricida, Trialeurodes abutilonea, Trialeurodes vaporariorum, Viteus vitifolii;

35 aus der Ordnung der Termiten (Isoptera) beispielsweise Calotermes flavigollis, Leucotermes flavipes, Macrotermes subhyalinus, Odontotermes formosanus, Reticulitermes lucifugus, Termes natalensis;

aus der Ordnung der Gerafflügler (Orthoptera) beispielsweise
40 Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus, Schistocerca gregaria, ferner Acheta domestica, Blatta orientalis, Blattella germanica, Periplaneta americana;

51

aus der Ordnung der Arachnoidea beispielsweise phytophage Milben wie Aculops lycopersicae, Aculops pelekassi, Aculus schlechten-dali, Brevipalpus phoenicis, Bryobia praetiosa, Eotetranychus carpini, Eutetranychus banksii, Eriophyes sheldoni, Oligonychus pratensis, Panonychus ulmi, Panonychus citri, Phyllocoptrus oleivora, Polyphagotarsonemus latus, Tarsonemus pallidus, Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus urticae, Zecken wie Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus deco-
loratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodoros mou-bata, Otobius megnini, Rhipicephalus appendiculatus und Rhipicephalus evertsi sowie tierparasitische Milben wie Dermanyssus gal-linae, Psoroptes ovis und Sarcoptes scabiei;

15

aus der Klasse der Nematoden beispielsweise Wurzelgallennemato-den, z.B. Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica,zystenbildende Nematoden, z.B. Globodera pallida, Glo-bodera rostochiensis, Heterodera avenae, Heterodera glycines, He-
terodera schachtii, migratorische Endoparasiten und semi-endopa-rasitische Nematoden, z.B. Heliocotylenchus multicinctus, Hir-schmanniella oryzae, Hoplolaimus spp, Pratylenchus brachyurus, Pratylenchus fallax, Pratylenchus penetrans, Pratylenchus vulnus, Radopholus similis, Rotylenchus reniformis, Scutellonema bradys,
Tylenchulus semipenetrans, Stock- und Blattnematoden z.B. Anguina tritici, Aphelenchoides besseyi, Ditylenchus angustus, Ditylen-chus dipsaci, Virusvektoren, z.B. Longidorus spp, Trichodorus christei, Trichodorus viruliferus, Xiphinema index, Xiphinema me-diterraneum.

20

Die Verbindungen I können als solche, in Form ihrer Formulierun-gen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Disper-sionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streu-mitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Ver-streuen oder Gießen angewendet werden. Die Anwendungsformen rich-ten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßigen Wirk-stoffe gewährleisten.

25

Als Fungizide sind die Verbindungen der Formel I z.T. systemisch wirksam. Sie können als Blatt- und Bodenfungizide gegen ein brei-tes Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und
45 Basidiomyceten eingesetzt werden.

52

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Rasen, Baumwolle, Soja, Kaffee, Zuckerröhr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sich die Verbindungen I zur Bekämpfung folgender Pflanzenkrankheiten:

10

- * Erysiphe graminis (echter Mehltau) in Getreide,
- * Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
- * Podosphaera leucotricha an Äpfeln,

15

- * Uncinula necator an Reben,
- * Puccinia-Arten an Getreide,
- * Rhizoctonia-Arten an Baumwolle und Rasen,
- * Ustilago-Arten an Getreide und Zuckerrohr,
- * Venturia inaequalis (Schorf) an Äpfeln,

20

- * Helminthosporium-Arten an Getreide,
- * Septoria nodorum an Weizen,
- * Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,
- * Cercospora arachidicola an Erdnüssen,
- * Pseudocercosporella herpotrichoides an Weizen, Gerste,

25 * Pyricularia oryzae an Reis,

- * Phytophthora infestans an Kartoffeln und Tomaten,
- * Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
- * Plasmopara viticola an Reben,
- * Alternaria-Arten an Gemüse und Obst.

30

Die neuen Verbindungen können auch im Materialschutz z.B. zum Schutz von Holz, Papier und Textilien eingesetzt werden, z.B. gegen *Paecilomyces variotii*.

35

Sie können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten oder Granulate. Die Anwendungformen richten sich dabei nach dem jeweiligen Verwendungszweck; sie sollten in jedem Fall möglichst die feinste Verteilung der Wirkstoffe gewährleisten.

40

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

Als Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser;
- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerde, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate);
- Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und
- Dispergiermittel wie Ligninsulfit-Ablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutynaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden.

5 Feste Trägerstoffe sind Mineralerde wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und
10 pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe. Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden.

15 Ganz allgemein enthalten die Mittel zwischen 0,0001 und 95 Gew.-% Wirkstoff.

Formulierungen mit mehr als 95 Gew.-% Wirkstoff können mit gutem Erfolg im Ultra-Low-VolumeVerfahren (ULV) ausgebracht werden, wo
20 bei sogar der Wirkstoff ohne Zusätze verwendet werden kann.

Für die Anwendung als Fungizide empfehlen sich Konzentrationen zwischen 0,01 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Für die Anwendung als Insektizide kommen Formulierungen mit 0,0001 bis 10 Gew.%, vorzugsweise 0,01 bis 1 Gew.% Wirkstoff, in Betracht.

Die Wirkstoffe werden normalerweise in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Beispiele für solche Zubereitungen sind:

I. eine Lösung aus 90 Gew.-Teilen einer erfindungsgemäßen Verbindung I und 10 Gew.-Teilen N-Methyl- α -pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;
35 II. eine Lösung von 20 Gew.-Teilen einer erfindungsgemäßen Verbindung I in einer Mischung aus 80 Gew.-Teilen alkyliertem Benzol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylen oxid an 1 Mol Ricinusöl; durch feines Verteilen der Formulierung in Wasser erhält man eine Dispersion.
45

55

III. eine Lösung von 20 Gew.-Teilen einer erfindungsgemäßen Verbindung I in einer Mischung aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Formulierung in Wasser erhält man eine Dispersion.

10 IV. eine wässrige Dispersion aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung I, in einer Mischung aus 25 Gew.-Teilen Cyclohexanon, 65 Gew.-Teilen einer Mineralölfaktion vom Siedepunkt 210 bis 280 °C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl; durch feines Verteilen der Formulierung in Wasser erhält man eine Dispersion.

15 V. eine in einer Hammermühle vermahlene Mischung aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung I, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin- α -sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablaage und 60 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;

20 VI. eine innige Mischung aus 3 Gew.-Teilen einer erfindungsgemäßen Verbindung I und 97 Gew.-Teilen feinteiligem Kao lin; dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;

25 VII. eine innige Mischung aus 30 Gew.-Teilen einer erfindungsgemäßen Verbindung I, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprührt wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;

30 VIII. eine stabile wässrige Dispersion aus 40 Gew.-Teilen einer erfindungsgemäßen Verbindung I, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;

35 IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen einer erfindungsgemäßen Verbindung I, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykol-ether, 2 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kon-

40

45

56

densates und 68 Gew.-Teilen eines paraffinischen Mineralöls;

X. eine in einer Hammermühle vermahlene Mischung aus 10
5 Gew.-Teilen einer erfindungsgemäßen Verbindung I, 4 Gew.-
Teilen des Natriumsalzes der Diisobutyl-naphthalin- α -sulfonsäure, 20 Gew.-Teilen des Natrium-
salzes einer Ligninsulfonsäure aus einer Sulfitablauge,
10 38 Gew.-Teilen Kieselsäuregel und 38 Gew.-Teilen Kaolin.
Durch feines Verteilen der Mischung in 10 000 Gew.-Teilen
Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des
Wirkstoffs enthält.

Die Verbindungen I werden angewendet, indem man die Pilze oder
15 die vor Pilzbefall zu schützenden Saatgüter, Pflanzen, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt.

Die Anwendung erfolgt vor oder nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze.
20

Die Aufwandmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha, vorzugsweise bei 0,1 bis 1 kg/ha.

25 Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g, vorzugsweise 0,01 bis 10 g je Kilogramm Saatgut benötigt.

30 Die Aufwandmenge an Wirkstoff für die Bekämpfung von Schädlingen beträgt unter Freilandbedingungen 0,02 bis 10, vorzugsweise 0,1 bis 2,0 kg/ha Wirkstoff.

Die Verbindungen I, allein oder in Kombination mit Herbiziden
35 oder Fungiziden, können auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam ausgebracht werden, beispielsweise mit Wachstumsregulatoren oder mit Mitteln zur Bekämpfung von Schädlingen oder Bakterien. Von Interesse ist ferner die Mischbarkeit mit Düngemitteln oder mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden.
40

Die Pflanzenschutz- und Düngemittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugesetzt werden, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix). Beim Vermischen mit Fungiziden oder Insektiziden er-

hält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungs-
5 gemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

Schwefel, Dithiocarbamate und deren Derivate, wie Ferridimethyl-dithiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisdithio-
10 carbamat, Manganethylenbisdithiocarbamat, Mangan-Zink-ethylendiamin-bis-dithiocarbamat, Tetramethylthiuramdisulfide, Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat), Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat), Zink-(N,N'-propylen-bis-dithiocarbamat), N,N'-Polypropylen-bis-(thio-
15 carbamoyl)-disulfid; Nitroderivate, wie Dinitro-(1-methyl-heptyl)-phenylcrotonat, 2-sec-Butyl-4,6-dinitro-phenyl-3,3-dimethylacrylat, 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat, 5-Nitro-isophthalsure-di-isopropylester;

20 heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2,4-Dichlor-6-(o-chloranilino)-s-triazin, O,O-Diethyl-phthalimidophosphonothioat, 5-Amino-1-β-[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4-triazol, 2,3-Dicyano-1,4-dithioanthrachinon, 2-Thio-1,3-dithiolo-β-[4,5-b]chinoxalin, 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benzoimidazol, 2-(Furyl-(2))-benzimidazol, 2-(Thiazolyl-(4))-benzimidazol, N-(1,1,2,2-Tetrachlorethylthio)-tetrahydropthalimid, N-Trichlormethylthio-tetrahydropthalimid, N-Trichlormethylthiophthalimid, N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schweftsäurediamid, 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol, 2-Rhodanmethylthiobenzthiazol, 1,4-Dichlor-2,5-dimethoxybenzol, 4-(2-Chlorphenylhydrazone)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid, 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäureanilid, 2,4,5-Trimethyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid, 2-Methyl-benzoësäure-anilid, 2-Iodbenzoësäure-anilid, N-Formyl-N-morpholin-2,2,2-trichlorethylacetat, Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid, 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan, 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze, 2,6-Dimethyl-N-cyclohexyl-morpholin bzw. dessen Salze, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin, 1-[2-(2,4-Dichlor-

58

phenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-
 ethyl]-1H-1,2,4-triazol, N-(n-Propyl)-N-(2,4,6-trichlorphenoxye-
 thyl)-N'-imidazol-yl-harnstoff, 1-(4-Chlorphen-
 5 oxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-tri-
 azol-1-yl)-2-butanol, α -(2-Chlorphenyl)- α -(4-chlor-
 phenyl)-5-pyrimidin-methanol, 5-Butyl-2-dimethyl-
 amino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorphenyl)-3-pyri-
 10 dinmethanol, 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
 1,2-Bis-(3-methoxycarbonyl-2-thioureido)-benzol,

sowie verschiedene Fungizide, wie Dodecylguanidinacetat,
 3-[3-(3,5-Dimethyl-2-oxyhexyl)-2-hydroxyethyl]-glutarimid,
 15 Hexachlorbenzol, DL-Methyl-N-(2,6-dimethyl-phenyl)-N-fu-
 royl(2)-alaninat, DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyace-
 tyl)-alanin-methylester, N-(2,6-Dimethylphenyl)-N-chloracetyl-
 D,L-2-aminobutyrolacton, DL-N-(2,6-Dimethylphenyl)-N-(phenylace-
 tyl)-alaninmethylester, 5-Methyl-5-vinyl-3-(3,5-dichlor-
 20 phenyl)-2,4-dioxo-1,3-oxazolidin, 3-[3,5-Dichlor-
 phenyl(-5-methyl-5-methoxymethyl)-1,3-oxazolidin-2,4-dion,
 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhydantoin,
 N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäure-
 imid, 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid,
 25 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol, 2,4-Di-
 fluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol,
 N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluor-
 methyl-3-chlor-2-aminopyridin, 1-((bis-(4-Fluorphenyl)-methylsi-
 lyl)-methyl)-1H-1,2,4-triazol.

30

Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vor-
 schriften wurden unter entsprechender Abwandlung der Ausgangs-
 35 verbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die
 so erhaltenen Verbindungen sind in der anschließenden Tabelle mit
 physikalischen Daten aufgeführt.

1. N-(2-(N'-(p-Methylphenyl)-4'-chlor-pyrazolyl-3'-oxy-
 40 methyl)-phenyl)-N-methoxy-carbaminsäuremethylester (Tabelle,
 Nr. 19)

Eine Mischung von 1,7 g (Reinheit ca. 75 %ig, \approx 4,6 mmol)
 N-(2-Brommethylphenyl)-N-methoxy-carbaminsäuremethylester
 (WO 93/15046), 1 g (4,8 mmol) N-(p-Methylphe-
 nylyl)-4-chlor-3-hydroxypyrazol und 1 g (7,2 mmol) K₂CO₃ in
 45 15 ml Dimethylformamid wird über Nacht bei Raumtemperatur ge-

59

röhrt. Anschließend verdünnt man die Reaktionsmischung mit Wasser und extrahiert die wäßrige Phase dreimal mit Methyl-t-butylether. Die vereinigten organischen Phasen werden mit Wasser extrahiert, über MgSO₄ getrocknet und eingeengt. Dann wird der Rückstand mit Methylenchlorid über Al₂O₃ und anschließend mit Cyclohexan/Essigester-Gemischen über Kieselgel chromatographiert. Man erhält 1,4 g (68 %) der Titelverbindung als hellgelbes Öl.

10 ¹H-NMR(CDCl₃; δ in ppm): 7,75 (s, 1H, Pyrazolyl); 7,70 (m, 1H, Phenyl); 7,5 (m, 5H, Phenyl); 7,2 (d, 2H, Phenyl); 5,4 (s, 2H, OCH₂); 3,75, 3,8 (2s, je 3H, 2 x OCH₃); 2,35 (s, 3H, CH₃)

15 2. N-Methyl-N'-methoxy-N'-(2-((N"-pyrazinyl)-pyrazolyl-3"-oxy-methyl)-phenyl)-harnstoff (Tabelle, Nr. 32)

a) N-Hydroxy-N-(2-methylphenyl)-carbaminsäurephenylester

20 Eine Mischung von 350 g (Reinheit ca. 80%ig; 2,3 mol; hergestellt analog Bamberger et al., Anm. Chem. 316 (1901), 278) N-(2-Methylphenyl)-hydroxylamin und 286,8 g (3,4 mol) NaHCO₃ in 700 ml CH₂Cl₂ wird bei ca. -10°C unter kräftigem Rühren mit 447 g (2,85 mol) Phenylchlorformiat versetzt. Man röhrt ca. eine Stunde bei -10°C und tropft anschließend 600 ml Wasser hinzu, wobei sich die Temperatur der Reaktionsmischung auf 5-10°C erhöht und eine starke Gasentwicklung eintritt. Dann wird die wäßrige Phase abgetrennt und noch einmal mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen werden mit Wasser extrahiert, über MgSO₄ getrocknet und eingeengt. Der Rückstand kristallisiert und wird mit Cyclohexan ausgeröhrt. Man erhält 407 g (72 %) der Titelverbindung als farblosen Festkörper.

35 ¹H-NMR(CDCl₃; δ in ppm): 8,6 (s, breit, 1H, OH); 7,0-7,4 (m, 9H, Phenyl), 2,4 (s, 3H, CH₃)

b) N-Methoxy-N-(2-methylphenyl)-carbaminsäurephenylester

40 Eine Mischung von 407 g (1,6 mol) N-Hydroxy-N-(2-methylphenyl)-carbaminsäurephenylester (Beispiel 2a) und 277 g (2,0 mol) K₂CO₃ in 700 ml CH₂Cl₂ wird tropfenweise mit 211 g (1,67 mol) Dimethylsulfat versetzt. Dabei erwärmt sich die Reaktionsmischung auf ca. 40°C. Man röhrt über Nacht bei Raumtemperatur und filtriert anschließend die Reaktionsmischung über Kieselgur. Das Filtrat wird mit NH₃-Lsg. und Wasser gewaschen, über MgSO₄ getrocknet und

60

eingeengt. Der Rückstand kristallisiert und wird mit Hexan ausgeröhrt. Man erhält 324 g (75 %) der Titelverbindung als farblosen Festkörper.

5 ¹H-NMR (CDCl₃; δ in ppm): 7,1 - 7,6 (m, 9H, Phenyl); 3,8
(s, 3H, OCH₃); 2,4 (s, 3H, CH₃)

c) N-Methoxy-N-(2-brommethylphenyl)-carbaminsäurephenylester

10 Eine Mischung von 324 g (1,3 mol) N-Methoxy-N-(2-methylphenyl)-carbaminsäurephenylester (Beispiel 2b), 258 g (1,45 mol) N-Bromsuccinimid und 1 g Azoisobutyronitrit in 1 l CCl₄ wird ca. 6 Stunden mit einer 300 W UV-Lampe bestrahlt, wodurch die Reaktionsmischung zum Sieden erhitzt wird. Anschließend gibt man 13 g N-Bromsuccinimid hinzu und bestrahlt weitere 8 Stunden. Dann kühlt man auf Raumtemperatur und filtriert das ausgefallene Succinimid ab. Anschließend wird die organische Phase mit Wasser extrahiert, über MgSO₄ getrocknet und eingeengt. Der Rückstand kristallisiert und wird mit Cyclohexan ausgeröhrt. Man erhält 300 g (68 %) der Titelverbindung als beigen Festkörper.

25 ¹H-NMR (CDCl₃; δ in ppm): 7,0 - 7,6 (m, 9H, Phenyl); 4,65
(s, 2H, CH₂-Br); 3,9 (s, 3H, OCH₃)

d) N-Methoxy-N-(2-((N'-pyrazinyl)-pyrazolyl-3'-oxy-methyl)-phenyl)-carbaminsäurephenylester

30 Eine Mischung von 3,1 g (9,2 mmol) N-Methoxy-N-(2-brommethylphenyl)-carbaminsäurephenylester (Beispiel 2c), 1,5 g (9,2 mmol) N-Pyrazinyl-3-hydroxypyrazol und 2 g (14,5 mmol) K₂CO₃ in 10 ml DMF wird über Nacht bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung mit Wasser verdünnt und dreimal mit Methyl-t-butylether extrahiert. Die vereinigten organischen Phasen werden mit Wasser extrahiert, über MgSO₄ getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch mit Cyclohexan/Essigester-Gemischen gereinigt. Man erhält 2,4 g (63 %) der Titelverbindung als gelbes Öl.

40 ¹H-NMR (CDCl₃; δ in ppm): 9,15 (d, 1H, Pyrazolyl); 8,3 (m, 3H, Pyrazinyl); 7,7 (m, 1H, Phenyl); 7,1-7,6 (m, 8H, Phenyl); 6,0 (d, 1H, Pyrazolyl); 5,5 (s, 2H, OCH₂); 3,85
(s, 3H, OCH₃)

61

e) N-Methyl-N'-methoxy-N'-(2-((N''-pyrazinyl)-pyra-zo-
lyl-3"-oxymethyl)-phenyl)-harnstoff

5 Eine Mischung von 1,9 g (4,6 mmol) N-Methoxy-N-(2-((N'-
pyrazinyl)-pyrazolyl-3'-oxymethyl)-phenyl)-carbaminsäure-
phenylester (Beispiel 2d) und 15 ml wäßriger Methylamin-
Lösung (40 %ig) wird über Nacht bei Raumtemperatur ge-
röhrt. Anschließend gibt man Wasser hinzu und extrahiert
10 die wäßrige Phase zweimal mit Methylenchlorid. Die ver-
einigten organischen Phasen werden mit Wasser gewaschen,
über MgSO₄ getrocknet und eingeengt. Der Rückstand kri-
stallisiert und wird mit Cyclohexan ausgerührt. Man er-
hält 0,9 g (55 %) der Titelverbindung als beigen Festkör-
per.

15

1H-NMR(CDCl₃; δ in ppm): 9,15 (d, 1H, Pyrazolyl); 8,3 (m,
3H, Pyrazinyl); 7,6 (m, 1H, Phenyl); 7,35 (m, 3H,
Phenyl); 6,0 (m, 2H, NH, Pyrazinyl); 5,45 (s, 2H, OCH₂);
3,7 (s, 3H, OCH₃); 2,9 (d, 3H, NCH₃)

20

25

30

35

40

45

Tabelle:

Nr.	Struktur	R¹ _n	R^Y	R²	R³	R⁴	X	Fp [°C]	IR [cm⁻¹]
1	I.A	H	H	H	C₆H₅	CH₃	O	1737, 1358,	1600, 1332, 755 1493, 1094, 1030, 936 1480, 1094, 1030, 936 1456, 1030, 931 1457, 1030, 936
2	I.A	H	H	H	4-Cl-C₆H₄	CH₃	O	1737, 1441,	1547, 1350, 1094, 1030, 936
3	I.A	H	H	H	2,4-Cl₂-C₆H₃	CH₃	O	1739, 1440,	1547, 1356, 1107, 1058, 1027
4	I.A	H	H	H	2-CH₃-C₆H₄	CH₃	O	1739, 1440,	1710, 1358, 1052, 1030, 763
5	I.A	H	H	H	3-CH₃-C₆H₄	CH₃	O	1738, 1457,	1593, 1441, 1357, 1056, 1032 1545, 1441, 1357, 1056, 1032 1494, 1483, 1032
6	I.A	H	H	H	4-CH₃-C₆H₄	CH₃	O	1738, 1440,	1544, 1393, 1140, 1243, 1031

Nr.	Struk-tur	R ¹ _n	R ^y	R ^z	R ¹	R ⁴	X	Fp [°C], IR [cm ⁻¹]
7	I.A	H	H	H	2-Cl-C ₆ H ₄	CH ₃	0	1739, 1710, 1546, 1495, 1476, 1453, 1441, 1358, 1027, 757
8	I.A	H	H	H	3-Cl-C ₆ H ₄	CH ₃	0	1736, 1597, 1548, 1495, 1476, 1456, 1440, 1357, 1101, 771
9	I.A	H	H	H	2, 6-Cl ₂ -C ₆ H ₃	CH ₃	0	1727, 1543, 1464, 1445, 1364, 1348, 791, 785, 749,
10	I.A	H	H	H	3, 5-Cl ₂ -C ₆ H ₄	CH ₃	0	120
11	I.A	H	H	H	2, 5-Cl ₂ -C ₆ H ₃	CH ₃	0	1737, 1710, 1547, 1489, 1471, 1456, 1437, 1346, 1096, 1027
12	I.A	H	H	H	3, 4-Cl ₂ -C ₆ H ₃	CH ₃	0	85
13	I.A	H	H	H	2-CH ₃ , 4-Cl-C ₆ H ₃	CH ₃	0	1738, 1710, 1543, 1494, 1480, 1457, 1441, 1358, 1100, 940
14	I.A	H	H	H	3-CF ₃ -C ₆ H ₄	CH ₃	0	1721, 1558, 1459, 1441, 1368, 1333, 1121, 1067, 793, 764
15	I.A	H	H	H	4-OCH ₃ -C ₆ H ₄	CH ₃	0	1737, 1541, 1517, 1483, 1457, 1442, 1359, 1250, 1056, 1032
16	I.A	H	CH ₃	H	C ₆ H ₅	CH ₃	0	1739, 1710, 1560, 1504, 1484, 1456, 1440, 1380, 1359, 760
17	I.A	H	H	CH ₃ O-CO	C ₆ H ₅	CH ₃	0	1720, 1702, 1570, 1540, 1446, 1372, 1357, 1285, 1119, 751
18	I.A	H	H	H	4-F-C ₆ H ₄	CH ₃	0	1737, 1546, 1516, 1482, 1457, 1440, 1359, 1233, 1031, 835

64

Nr.	Struktur	R ¹ _n	R ^Y	R ^Z	R ³	R ⁴	X	Fp [°C], IR [cm ⁻¹]
19	I.A	H	H	C1	4-CH ₃ -C ₆ H ₄	CH ₃	0	1738, 1554, 1509, 1456, 1440, 1358, 1253, 1118, 940, 760
20	I.A	H	3-F	H	2, 4-Cl ₂ -C ₆ H ₃	CH ₃	0	90
21	I.A	H	3-F	H	2, 4-Cl ₂ -C ₆ H ₃	CH ₃	0	109
22	I.A	H	H	H	3-OCH ₃ -C ₆ H ₄	CH ₃	0	1737, 1607, 1597, 1545, 1499, 1482, 1472, 1440, 1358
23	I.A	H	H	C1	2, 4-Cl ₂ -C ₆ H ₃	CH ₃	0	110
24	I.A	H	CF ₃	H	2, 4-Cl ₂ -C ₆ H ₄	CH ₃	0	1739, 1507, 1486, 1457, 1359, 1250, 1190, 1139, 1109, 1092
25	I.A	H	CH ₃	H	2, 4-Cl ₂ -C ₆ H ₃	CH ₃	0	1738, 1710, 1567, 1561, 1500, 1484, 1456, 1440, 1359, 1104
26	I.A	H	H	C1	4-Cl-C ₆ H ₄	CH ₃	0	1729, 1553, 1511, 1497, 1438, 1356, 1332, 1265, 1122, 1112
27	I.A	H	H	H	3, 4-(OCF ₂ O)-C ₆ H ₃	CH ₃	0	97
28	I.A	H	H	H	2-pyridyl	CH ₃	0	85
29	I.A	H	H	H	5-CF ₃ -pyridyl-2	CH ₃	0	81
30	I.A	H	H	H	2-pyrazinyl	CH ₃	0	87
31	I.B	H	H	H	C ₆ H ₅	CH ₃	0	1739, 1639, 1599, 1501, 1456, 1439, 1411, 1354, 1252, 752
32	I.A	H	H	H	2-pyrazinyl	CH ₃	NH	145
33	I.A	H	H	NO ₂	5-CF ₃ -pyri-dyl-2	CH ₃	0	126

Nr.	Struk-tur	R' _n	R'	R''	R'	R'	X	Fp [°C], IR [cm^{-1}]
34	I.A	H	CH ₃	H	4-Cl-C ₆ H ₄	CH ₃	O	1738, 1561, 1500, 1456, 1440, 1359, 1094, 1010, 764
35	I.A	H	H	H	6-Cl-Pyridazin-3-yl	CH ₃	O	135
36	I.A	H	H	H	5-Cl-Pyridin-2-yl	CH ₃	O	77
37	I.A	H	H	CF ₃	Cyclohexyl	CH ₃	O	1743, 1496, 1456, 1441, 1359, 1272, 1262, 1176, 1124, 1029
38	I.A	H	H	C1	5-Cl-Pyridin-2-yl	CH ₃	O	92
39	I.A	H	H	H	CH ₂ C ₆ H ₅	CH ₃	O	71
40	I.A	H	H	H	C ₆ H ₅	H	O	1718, 1600, 1545, 1507, 1481, 1458, 1399, 1359, 1032, 757
41	I.A	H	H	H	C ₆ H ₅	CH ₃	NH	1675, 1600, 1545, 1508, 1479, 65 1462, 1399, 1355, 1054, 756
42	I.A	H	H	H	C ₆ H ₅	CH ₃	-	1680, 1600, 1545, 1507, 1480, 1456, 1359, 1056, 1032, 758
43	I.A	H	H	H	C ₆ H ₅	H	NH	1653, 1601, 1545, 1707, 1479,
44	I.A	H	H	H	C ₆ H ₅	CH ₃	1454, 1414, 1398, 1355, 755	1678, 1600, 1545, 1480, 1456, 1394, 1378, 1358, 1055, 756
45	I.A	H	H	H	C ₆ H ₅	H	-	1643, 1622, 1601, 1544, 1493, 1480, 1368, 1027, 759, 745
46	I.A	H	H	H	C ₆ H ₅	H	CH ₂	1619, 1600, 1550, 1495, 1482, 1462, 1454, 1358, 765, 753
47	I.A	H	H	H	2, 4-Cl ₂ -Phenyl	CH ₃	NH	130

Nr.	Struk-tur	R ¹ _n	R ^y	R ^z	R ¹	R ⁴	X	Fp [°C], IR [cm ⁻¹]
48	I.A	H	H	H	4-Cl-C ₆ H ₄	H	0	105
49	I.A	H	H	H	4-Cl-C ₆ H ₄	H	NH	1653, 1546, 1503, 1480, 1455, 1426, 1390, 1357, 1094, 1071
50	I.A	H	H	H	4-Cl-C ₆ H ₄	CH ₃	NH	1675, 1546, 1503, 1479, 1457, 1425, 1389, 1355, 936, 829
51	I.A	H	H	H	CH ₂ C ₆ H ₅	CH ₃	0	1737, 1709, 1537, 1488, 1456, 1439, 1359, 1325, 1032, 733
52	I.A	H	H	H	CH ₂ -[4-Cl-C ₆ H ₄]	CH ₃	0	1735, 1709, 1538, 1492, 1456, 1439, 1358, 1323, 1096, 761
53	I.A	H	H	H	2,4-(CH ₃) ₂ -C ₆ H ₃	CH ₃	0	92
54	I.A	H	H	Cl	2-Pyrazinyl	CH ₃	0	114
55	I.B	H	H	H	4-Cl-C ₆ H ₄	CH ₃	0	1740, 1639, 1599, 1495, 1456, 1439, 1415, 1355, 1251, 1092
56	I.A	H	H	H	2-Cl, 4-F-C ₆ H ₃	CH ₃	0	1737, 1547, 1505, 1494, 1480, 1457, 1441, 1358, 1258, 1028

Beispiele zur Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der Formel I ließ sich
5 durch folgende Versuche zeigen:

Die Wirkstoffe wurden als 20 %-ige Emulsion in einem Gemisch aus
70 Gew.-% Cyclohexanon, 20 Gew.-% Nekanil® LN (Lutensol® AP6,
Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis
10 ethoxylierter Alkylphenole) und 10 Gew.-% Emulphor® EL (Emulan®
EL, Emulgator auf der Basis ethoxylierter Fettalkohole) aufberei-
tet und entsprechend der gewünschten Konzentration mit Wasser
verdünnt.

15 Wirksamkeit gegen Puccinia recondita

Blätter von Weizensämlingen (Sorte "Kanzler") wurden mit Sporen
des Braunrosts (Puccinia recondita) bestäubt. Die so behandelten
Pflanzen wurden 24 h bei 20-22°C und einer relativen Luftfeuchtig-
20 keit von 90-95% inkubiert und anschließend mit der wäßrigen Wirk-
stoffaufbereitung (63 ppm Wirkstoff) behandelt. Nach weiteren 8
Tagen bei 20-22°C und 65-70% relativer Luftfeuchtigkeit wurde das
Ausmaß der Pilzentwicklung ermittelt. Die Auswertung erfolgte
visuell.

25

In diesem Test zeigten die mit den erfindungsgemäßen Verbindungen
2-6, 8, 11-15, 18-20, 22, 23 und 26-29 behandelten Pflanzen einen
Befall von 5% und weniger, während die mit einer aus WO-A
93/15,046 bekannten Verbindung (Tabelle 7, Beispiel Nr. 8) behan-
30 delten Pflanzen zu 25% befallen waren. Die unbehandelten Pflanzen
waren zu 70% befallen.

In einem entsprechenden Versuch zeigten die mit 250 ppm der
erfindungsgemäßen Verbindung Nr. 1 behandelten Pflanzen einen Be-
35 fall von 3% während Pflanzen, die mit 250 ppm einer aus WO-A
93/15,046 bekannten Verbindung (Tabelle 7, Nr. 21) behandelt wa-
ren ebenso wie die unbehandelten Pflanzen zu 70% befallen waren.

In einem entsprechenden Versuch zeigten die mit 250 ppm der
40 erfindungsgemäßen Verbindungen Nr. 1-8, 10-16, 18-20, 22, 23,
27-30, 34, 36-38, 41, 47 und 51-56 behandelten Pflanzen einen Be-
fall von 15% und weniger während Pflanzen, die mit 250 ppm einer
aus WO-A 93/15,046 bekannten Verbindung (Tabelle 7, Nr. 21) be-
handelt waren ebenso wie die unbehandelten Pflanzen zu 70% befal-
45 len waren.

Wirksamkeit gegen *Plasmopara viticola*

Topfreben (Sorte: "Müller Thurgau") wurden mit der Wirkstoffaufbereitung tropfnäß gespritzt. Nach 8 Tagen wurden die Pflanzen 5 mit einer Zoosporenaufschwemmung des Pilzes *Plasmopara viticola* besprüht und 5 Tage bei 20-30 °C bei hoher Luftfeuchtigkeit bewahrt. Vor der Beurteilung wurden die Pflanzen danach für 16h bei hoher Luftfeuchtigkeit bewahrt.

Die Auswertung erfolgte visuell.

10

In diesem Test zeigten die mit den erfindungsgemäßen Verbindungen 1-3, 5, 6, 13, 15 und 29 behandelten Pflanzen einen Befall von 10% und weniger, während die mit einer aus WO-A 39/15,046 bekannten Verbindung (Tabelle 7, Beispiel Nr. 8) behandelten Pflanzen 15 zu 25% befallen waren. Die unbehandelten Pflanzen waren zu 70% befallen.

Wirksamkeit gegen *Botrytis cinerea* (Grauschimmel)

20 Paprikasämlinge (Sorte: "Neusiedler Ideal Elite") mit 4-5 Blättern wurden mit der Wirkstoffaufbereitung (Aufwandmenge: 500 ppm) tropfnäß gespritzt. Nach dem Abtrocknen wurden die Pflanzen mit einer Konidienaufschwemmung des Pilzes *Botrytis cinerea* besprüht und 5 Tage bei 22-24 °C bei hoher Luftfeuchtigkeit bewahrt. Die 25 Auswertung erfolgte visuell.

In diesem Test zeigten die mit der erfindungsgemäßen Verbindung 1 behandelten Pflanzen keinen Befall, während die mit einer aus WO-A 93/15,046 bekannten Verbindung (Tabelle 7, Beispiel Nr. 21) 30 behandelten Pflanzen zu 70% befallen waren. Die unbehandelten Pflanzen waren zu 80% befallen.

Wirksamkeit gegen *Erysiphe graminis* var. *tritici*

35 Blätter von Weizenkeimlingen (Sorte "Frühgold") wurden zunächst mit der wäßrigen Aufbereitung (Aufwandmenge 250 ppm) der Wirkstoffe behandelt. Nach ca. 24 h wurden die Pflanzen mit Sporen des Weizenmehltaus (*Erysiphe graminis* var. *tritici*) bestäubt. Die so behandelten Pflanzen wurden anschließend für 7 Tage bei 20-22°C 40 und einer relativen Luftfeuchtigkeit von 75-80% inkubiert. Anschließend wurde das Ausmaß der Pilzentwicklung ermittelt.

In diesem Test zeigten die mit der erfindungsgemäßen Verbindung Nr. 1 behandelten Pflanzen keinen Befall, während die mit einer 45 aus WO-A 93/15,046 bekannten Verbindung (Tabelle 7, Nr. 21) be-

handelten Pflanzen zu 25% befallen waren. Die unbehandelten Pflanzen waren zu 70% befallen.

In einem entsprechenden Versuch die mit 250 ppm der erfindungs-
5 gemäßen Verbindungen Nr. 1-7, 10, 13, 14, 18-20, 27-29, 34, 36,
41, 50 und 56 behandelten Pflanzen einen Befall von 15% und weniger während Pflanzen, die mit 250 ppm einer aus WO-A 93/15,046 bekannten Verbindung (Tabelle 7, Nr. 21) behandelt waren zu 25% befallen waren. Die unbehandelten Pflanzen waren zu 70% befallen.

10

In einem entsprechenden Versuch zeigten die mit 63 ppm der erfindungsgemäßen Verbindungen Nr. 1-7, 10, 13, 14, 18-20, 27-29, 34, 36, 41, 50 und 56 behandelten Pflanzen einen Befall von 15% und weniger während Pflanzen, die mit 250 ppm einer aus WO-A
15 93/15,046 bekannten Verbindung (Tabelle 7, Nr. 21) behandelt waren zu 40% befallen waren. Die unbehandelten Pflanzen waren zu 70% befallen.

In einem entsprechenden Versuch zeigten die mit 16 ppm der
20 erfindungsgemäßen Verbindungen Nr. 1-7, 10, 13, 14, 18-20, 27-29, 34, 36, 41, 50 und 56 behandelten Pflanzen einen Befall von 25% und weniger während Pflanzen, die mit 250 ppm einer aus WO-A
93/15,046 bekannten Verbindung (Tabelle 7, Nr. 21) behandelt waren zu 65% befallen waren. Die unbehandelten Pflanzen waren zu
25 70% befallen.

Beispiele zur Wirkung gegen tierische Schädlinge

Die Wirkung der Verbindungen der allgemeinen Formel I gegen tie-
30 rische Schädlinge ließ sich durch folgende Versuche zeigen:

Die Wirkstoffe wurden

- a) als 0,1 %-ige Lösung in Aceton oder
- b) als 10 %-ige Emulsion in einem Gemisch aus 70 Gew.-% Cyclo-

35 hexanon, 20 Gew.-% Nekanil® LN (Lutensol® AP6, Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxy-
lierter Alkylphenole) und 10 Gew.-% Emulphor® EL (Emulan® EL, Emulgator auf der Basis ethoxylierter Fettalkohole)
aufbereitet und entsprechend der gewünschten Konzentration mit Aceton im Fall von a) bzw. mit Wasser im Fall von b) verdünnt.

40

Nach Abschluß der Versuche wurde die jeweils niedrigste Konzen-
tration ermittelt, bei der die Verbindungen im Vergleich zu unbe-
handelten Kontrollversuchen noch eine 80 - 100 %-ige Hemmung bzw.
Mortalität hervorriefen (Wirkchwelle bzw. Minimalkonzentration).

45

Patentansprüche:

1. 2-[(Dihydro)pyrazolyl-3'-oxymethylen]-anilide der Formel I

5

10

in der = für eine Einfach- oder Doppelbindung steht und die Indices und die Substituenten die folgende Bedeutung haben:

15 n 0, 1, 2, 3 oder 4, wobei die Substituenten R¹ verschieden sein können, wenn n größer als 1 ist;

m 0, 1 oder 2, wobei die Substituenten R² verschieden sein können, wenn m größer als 1 ist;

20

X eine direkte Bindung, O oder NR^a;

R^a Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl;

25

R¹ Nitro, Cyano, Halogen,
ggf. subst. Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy,
Alkinyloxy oder

30

für den Fall, daß n für 2 steht zusätzlich eine an zwei benachbarte Ringatome gebundene ggf. subst. Brücke, welche drei bis vier Glieder aus der Gruppe 3 oder 4 Kohlenstoffatome, 1 bis 3 Kohlenstoffatome und 1 oder 2 Stickstoff-, Sauerstoff- und/oder Schwefelatome enthält, wobei diese Brücke gemeinsam mit dem Ring an den sie gebunden ist einen partiell ungesättigten oder aromatischen Rest bilden kann;

35

R² Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Alkoxy carbonyl;

40

45

71

R³ ggf. subst. Alkyl, Alkenyl oder Alkinyl;
 ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, welcher neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ringglieder enthalten kann: Sauerstoff, Schwefel und Stickstoff, oder ein ggf. subst. ein- oder zweikerniger aromatischer Rest, welcher neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten kann;

R⁴ Wasserstoff,
 ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkylcarbonyl oder Alkoxy carbonyl;

R⁵ Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl,
 oder
 für den Fall, daß X für NR⁹ steht, zusätzlich Wasserstoff.

2. Verfahren zur Herstellung der Verbindungen der Formel I gemäß Anspruch 1, in denen R⁴ Wasserstoff bedeutet, dadurch gekennzeichnet, daß man ein Benzylderivat der Formel II,

25

30

in der L¹ eine nucleophil austauschbare Gruppe bedeutet und X für eine direkte Bindung oder Sauerstoff steht, in Gegenwart einer Base mit einem 3-Hydroxy(dihydro)pyrazol der Formel III

35

40

in das entsprechende 2-[(Dihydro)pyrazolyl-3'-oxy-methylen]-nitrobenzol der Formel IV

45

72

überführt, IV anschließend zum N-Hydroxyanilin der Formel Va

15 reduziert und Va mit einer Carbonylverbindung der Formel VI
 $L^2-CO-X-R^5$ VI
 in der L^2 Halogen bedeutet, in I umwandelt.

20 3. Verfahren zur Herstellung der Verbindungen der Formel I, in denen R^4 nicht Wasserstoff bedeutet und X für eine direkte Bindung oder Sauerstoff steht, dadurch gekennzeichnet, daß man ein Benzyllderivat der Formel IIa

30 zunächst zum entsprechenden Hydroxyanilin der Formel Vb

40 reduziert, Vb mit einer Carbonylverbindung der Formel VI gemäß Anspruch 2 in das entsprechende Anilid der Formel VII

45

73

5

VII

überführt, VII anschließend mit einer Verbindung VIII

 L^3-R^4

VIII

10

in der L^3 eine nucleophil austauschbare Gruppe bedeutet und R^4 nicht für Wasserstoff steht, in das Amid der Formel IX

15

IX

20

überführt, IX anschließend in das entsprechende Benzylhalogenid der Formel X

25

X

30

in der Hal für ein Halogenatom steht, überführt und X in Gegenwart einer Base mit einem 3-Hydroxy(dihydro)pyrazol der Formel III gemäß Anspruch 2 in I umwandelt.

35 4.

Verfahren zur Herstellung der Verbindungen I gemäß Anspruch 1, in denen R^4 nicht Wasserstoff bedeutet und X für eine direkte Bindung oder Sauerstoff steht, dadurch gekennzeichnet, daß man eine entsprechende Verbindung der Formel I, in der R^4 Wasserstoff bedeutet, mit einer Verbindung der Formel VIII gemäß Anspruch 3 umsetzt.

40

45

74

5. Verfahren zur Herstellung der Verbindungen der Formel I, in denen X für NR^a steht, dadurch gekennzeichnet, daß man ein Benzylanilid der Formel IXa

5

10 in der A für Alkyl oder Phenyl steht, in das entsprechende Benzylhalogenid der Formel Xa

15

20 in der Hal für ein Halogenatom steht, überführt, Xa in Gegenwart einer Base mit einem 3-Hydroxy(dihydro)pyrazol der Formel III gemäß Anspruch 2 in eine Verbindung der Formel I.A

25

30

überführt und I.A anschließend mit einem Amin der Formel XI

35

zu I umsetzt.

6. Zwischenprodukte der Formel XII

40

45

75

in der die Substituenten und der Index die folgende Bedeutung haben:

5 n 0, 1, 2, 3 oder 4, wobei die Substituenten R¹ verschieden sein können, wenn n größer als 1 ist;

R¹ Nitro, Cyano, Halogen,
10 ggf. subst. Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkinyloxy oder

15 für den Fall, daß n für 2 steht zusätzlich eine an zwei benachbarte Ringatome gebundene ggf. subst. Brücke, welche drei bis vier Glieder aus der Gruppe 3 oder 4 Kohlenstoffatome, 1 bis 3 Kohlenstoffatome und 1 oder 2 Stickstoff-, Sauerstoff- und/oder Schwefelatome enthält, wobei diese Brücke gemeinsam mit dem Ring an den sie gebunden ist einen partiell ungesättigten oder aromatischen Rest bilden kann;

20 Y NO₂, NH₂OH oder NHOR⁴

R⁴ ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkylcarbonyl oder Alkoxycarbonyl;
25 Z Wasserstoff, Hydroxy, Mercapto, Cyano, Nitro, Halogen, C₁-C₆-Alkylsulfonyl, ggf. subst. Arylsulfonyl oder eine Gruppe Z^a

35 m 0, 1 oder 2, wobei die Substituenten R² verschieden sein können, wenn m größer als 1 ist;

40 R² Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Alkoxycarbonyl;

45 R³ ggf. subst. Alkyl, Alkenyl oder Alkinyl;

ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, welcher neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ring-

76

glieder enthalten kann: Sauerstoff, Schwefel und Stickstoff, oder

ein ggf. subst. ein- oder zweikerniger aromatischer Rest, welcher neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten kann.

10

7. Zur Bekämpfung von tierischen Schädlingen oder Schadpilzen geeignetes Mittel, enthaltend einen festen oder flüssigen Trägerstoff und eine Verbindung der allgemeinen Formel I gemäß Anspruch 1.

15

8. Zwischenprodukte der allgemeinen Formel XIII

20

25

wobei die Substituenten R^1 und R^4 sowie der Index n die in Anspruch 1 gegebene Bedeutung haben und die Substituenten W und A die folgende Bedeutung haben:

30

W Wasserstoff oder Halogen, und

A Alkyl oder Phenyl.

35

9. Verwendung der Verbindungen I gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von tierischen Schädlingen oder Schadpilzen geeigneten Mittels.

40

10. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man die Pilze oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 behandelt.

45

11. Verfahren zur Bekämpfung von tierischen Schädlingen, dadurch gekennzeichnet, daß man die Schädlinge oder die von ihnen zu schützenden Materialien, Pflanzen, Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 behandelt.

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 95/02396

A. CLASSIFICATION OF SUBJECT MATTER		C07D231/22	A01N43/56	C07D231/20	C07D401/04	C07D403/04
IPC 6		C07C239/10	C07C271/28	C07C271/58		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO,A,93 15046 (BASF AKTIENGESELLSCHAFT) 5 August 1993 cited in the application see page 723 - page 724; claim 1 see page 1, line 6 - line 8 siehe Seite 262, Verbindung Nr. 21 in Table 14 see page 726; claim 7 see page 735; claim 30 see page 25-27; examples 2a,3a see page 163; example 4a see page 375; example 10a see page 605; example 16a X see page 729; claims 13,14 see page 163-164; examples 4b,5 see page 271-272; examples 9a,9b,18a see page 375; example 10b ---	1-5,7, 9-11
X	see page 726; claim 7 see page 735; claim 30 see page 25-27; examples 2a,3a see page 163; example 4a see page 375; example 10a see page 605; example 16a X see page 729; claims 13,14 see page 163-164; examples 4b,5 see page 271-272; examples 9a,9b,18a see page 375; example 10b ---	6
X	see page 726; claim 7 see page 735; claim 30 see page 25-27; examples 2a,3a see page 163; example 4a see page 375; example 10a see page 605; example 16a X see page 729; claims 13,14 see page 163-164; examples 4b,5 see page 271-272; examples 9a,9b,18a see page 375; example 10b ---	8
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *I* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

16 October 1995

Date of mailing of the international search report

25.10.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Fink, D

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 95/02396

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 2, no.12, 1981, LETCHWORTH GB pages 1596 - 1598 T. SONE ET AL. 'Kinetics and Mechanisms of the Bamberg Rearrangement. Part 4. Rearrangements of Sterically Hindered Phenylhydroxylamines to 4-Aminophenols in Aqueous Sulphuric Acid Solution' see page 1598, column 1, last paragraph - column 2, paragraph 1 -----	6
1		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ EP 95/ 02396

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

Incompletely searched claim : 6
See annex

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 95/02396

Further information

The search in regard to novelty in the intermediate products of general formula XII (see claim 6 of the present application) yielded a large number of compounds which are prejudicial to novelty in the subject of the present claim 6.

Hence, for reasons of economy (cf. WIPO, "PCT Search Guidelines", November 18, 1992, Part B, Chapter III, point 2) the search and the search report with regard to the compounds of formula XII are limited to compounds of formula XII in which Z represents the group Z^a.
(Furthermore, the document J. Chem.Soc., Perkin Trans. 2, (1981), 1596-1598 is cited only by way of example.)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 95/02396

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9315046	05-08-93	DE-A-	4234012	14-04-94
		DE-A-	4234028	14-04-94
		DE-A-	4234067	14-04-94
		DE-A-	4234081	14-04-94
		AU-B-	3351493	01-09-93
		CA-A-	2127110	05-08-93
		CZ-A-	9401785	15-02-95
		EP-A-	0624155	17-11-94
		FI-A-	943523	27-07-94
		HU-A-	69026	28-08-95
		JP-T-	7502747	23-03-95
		NO-A-	942814	28-07-94

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 95/02396

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6	C07D231/22	A01N43/56	C07D231/20	C07D401/04	C07D403/04
	C07C239/10	C07C271/28	C07C271/58		

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE:

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 C07D C07C

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESIEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO,A,93 15046 (BASF AKTIENGESELLSCHAFT) 5. August 1993 in der Anmeldung erwähnt siehe Seite 723 - Seite 724; Anspruch 1 siehe Seite 1, Zeile 6 - Zeile 8 siehe Seite 262, Verbindung Nr. 21 in Tabelle 14 siehe Seite 726; Anspruch 7 siehe Seite 735; Anspruch 30 siehe Seite 25-27; Beispiele 2a,3a siehe Seite 163; Beispiel 4a siehe Seite 375; Beispiel 10a siehe Seite 605; Beispiel 16a siehe Seite 729; Ansprüche 13,14 siehe Seite 163-164; Beispiele 4b,5 siehe Seite 271-272; Beispiele 9a,9b,18a siehe Seite 375; Beispiel 10b ---	1-5,7, 9-11
X		6
X		8
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *' A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *' B' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *' C' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *' D' Veröffentlichung, die sich auf eine mündliche Offenharung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *' E' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *' T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *' X' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *' Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *' &' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

16. Oktober 1995

Absendedatum des internationalen Rechercheberichts

25. 10. 95

Name und Postanschrift der internationale Recherchenbehörde
Europäisches Patentamt, P.O. 5818 Patentlaan 2
NL - 2280 IJV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 cpo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Fink, D

INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen

PCT/EP 95/02396

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 2, Nr.12, 1981, LETCHWORTH GB Seiten 1596 - 1598 T. SONE ET AL. 'Kinetics and Mechanisms of the Bamberger Rearrangement. Part 4. Rearrangements of Sterically Hindered Phenylhydroxylamines to 4-Aminophenols in Aqueous Sulphuric Acid Solution' siehe Seite 1598, Spalte 1, letzter Absatz - Spalte 2, Absatz 1 -----	6
1		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 95/02396

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.
weil Sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

2. Ansprüche Nr.
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
Unvollständig recherchierter Patentanspruch: 6
Siehe Anlage ./.

3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN	PCT/ISA/
<p>Die Neuheitsrecherche bezüglich der Zwischenprodukte der allgemeinen Formel XII (siehe Anspruch 6 der vorliegenden Anmeldung) ergab eine große Anzahl von Verbindungen, welche dem Gegenstand des vorliegenden Anspruches 6 neuheitsschädlich gegenüberstehen.</p> <p>Daher wurden die Suche und der Recherchenbericht - im Hinblick auf die Neuheit der Intermediate des Anspruchs 6 - aus Gründen der Wirtschaftlichkeit (vgl.: WIPO: "PCT Search Guidelines", 18. November, 1992, Teil B, Kapitel III, Punkt 2) auf die Verbindungen der Formel XII, in denen die Z die Gruppe Z' darstellt beschränkt werden. (Darüberhinaus wird das Dokument J. Chem. Soc. Perkin Trans. 2, (1981) 1596-1598 lediglich beispielhaft zitiert)</p>	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 95/02396

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO-A-9315046	05-08-93	DE-A- 4234012	14-04-94
		DE-A- 4234028	14-04-94
		DE-A- 4234067	14-04-94
		DE-A- 4234081	14-04-94
		AU-B- 3351493	01-09-93
		CA-A- 2127110	05-08-93
		CZ-A- 9401785	15-02-95
		EP-A- 0624155	17-11-94
		FI-A- 943523	27-07-94
		HU-A- 69026	28-08-95
		JP-T- 7502747	23-03-95
		NO-A- 942814	28-07-94