Digital Logic

From Boolean algebra to implementing logic circuits

Outline

- Boolean algebra
- Logic gates
- Truth table
- Logic expressions
- Implementing digital logic using gates
- Karnaugh map logic minimization
- Using NAND, NOR gates only.
- Binary numbers
- ADC Analog to digital conversion

Logic circuits

- Boolean variables
 - Can have values of either TRUE (1), FALSE(0)
 - Can represent
 - either truth or falsehood of a statement
 - ON or OFF states of a switch
 - High(5V) or low(0V) of a voltage level

Logic operation

AND (x.y)			(OR(x+y)				NOT(x)		
x 0	у О	x.y 0		x 0	у О	x+y 0		x 0	x 1	
0	1	0		0	1	1		1	0	
1	0	0		1	0	1	1			
1	1	1		1	1	1				

Basic laws of Boolean Algebra

$$0+A=A$$

$$1 + A = 1$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$0.A = 0$$

$$1.A = A$$

Basic laws of Boolean Algebra

$$A.A = A$$

$$A.\overline{A} = 0$$

$$A = \overline{\overline{A}}$$

$$A + B = B + A$$

$$A.B = B.A$$

Basic laws of Boolean Algebra

$$A + (B + C) = (A + B) + C$$

$$(A.B).C = A.(B.C)$$

$$A.(B+C) = A.B + A.C$$

$$A + A.B = A$$

$$A.(A+B)=A$$

$$(A+B).(A+C) = A+B.C$$

$$A + \overline{A} \cdot B = A + B$$

Logic Gates

 Electronic circuits used to perform boolean logic operations are known as logic gates.

DeMorgan's Theorem

 $\overline{A+B} = \overline{A}.\overline{B}$ \rightarrow Inverting a sum results in $\overline{A.B} = \overline{A} + \overline{B}$ product of inverted signals.

$$\begin{array}{c} A \longrightarrow C \Rightarrow A \longrightarrow C \\ B \longrightarrow C \Rightarrow B \longrightarrow C \end{array}$$
 (Alternate NOR)

Universality of NAND gates

 AND, OR, NOT gates can be obtained from NAND gate

$$A - \overline{DO} - \overline{A}$$
 as $\overline{A.A} = \overline{A}$

$$A + B = \overline{A + B} = \overline{A \cdot B}$$

$$B = \overline{A \cdot B}$$

Universality of OR gates

 AND, OR, NOT gates can be obtained from NOR gate

A+B =
$$\overline{A+B}$$
; A-Do-A+B

Truth table and logic expression

- Consider a logic circuit having two inputs A, B and one output C.
- The output becomes 1 when only one input is TRUE (1), but is FALSE(0) other wise.

- For each row in the Truth table, with '1' at the output column, we can create a PRODUCT term of all inputs.
 - Take the input, if the entry for it is 1
 - Take the input with a bar, if the entry for it is 0
- The logic expression will be SUM of these PRODUCTs (SOP)

- For each row in the Truth table, with '0' at the output column, we can create a SUM term of all inputs.
 - Take the input, if the entry for it is 0
 - Take the input with a bar, if the entry for it is 1
- The logic expression will be PRODUCT of SUMs (POS).

Exclusive OR

A	В	$C = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

$$= (A+B) \cdot (\overline{A}+\overline{B})$$

Truth table – Logic expressions

Sum of Products (SOP)

$$W = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + A.\overline{B}.C$$

Product of Sums (POS)

$$W = (A + B + C).(A + \overline{B} + \overline{C}).(\overline{A} + \overline{B} + C).(\overline{A} + \overline{B} + \overline{C})$$

1

1

0

Example – sop, pos

4			
(1)	A	B	V
	S	0	
	0	1	D
	1	0	1
	1	(1

/	×	Y	Z	P	
	0	0	0	0	
	0	0	_	0	
	0	-	0	1	
	0	1	1	-	
	(0	0		
	-	0	1	0	
	1	1	O		
	1	1	1	D	

×	7 8
Y->)
Z	

SOP for P? POS

Design logic circuits: Implementing logic expressions

- Logic expressions are in either Sum of Product (SOP) or Product of Sums (POS) form
- Implement the sum term using OR gates and product term using AND gates
- Hence, using AND, OR and NOT gates we can implement any logic expressions

Implementing sop and pos

$$0 W = A \cdot B + \overline{A} \cdot \overline{B}$$

$$A \longrightarrow A$$

$$B \longrightarrow B$$

$$W$$

Design logic circuits: Implementing logic expressions

- As designer, our aim will be to use minimum number of gates.
- We need to minimize the SOP and POS expressions.
- There are two ways for this:
 - Boolean algebra laws
 - Graphical method Karnaugh map

Karnaugh Maps

- It is a graphical representation of the truth table – each row in truth table corresponds to one cell in the K-map.
- The adjacent (horizontal or vertical) cells have only one variable changing from 0 to 1 or vice versa.

,	A	B	C	A D I
1.1.	001	0 1 0 1	1 1 00	K-M-0 10

Truth table to K-map more examples

A	ß	C	足	
0	0	0	0	
0	0	(6	
0	-	0	0	
0	-	1	-	
(0	0	1	
)	0	1	1	
1	1	0	0	
1)	0	

- Group adjacent cells containing same values
- Group in powers of 2 (2ⁿ) i.e. in 2, 4,8 etc.
- The bigger the group smaller the term a group with 2ⁿ terms has n terms less

Adjacent cells

Leftmost column AB=00 Rightmost column AB=10

As only A changes from 0 to 1, the left most column and right most column are adjacent

* Topmost row and bottom most row are also adjacent.

* The four corners can be grouped together $MSOP = B.D + \overline{B}.\overline{D}$, $MPOS = (\overline{B}+D).(B+D)$

Α	В	С	W
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

AB 00 01 11 10

(A+B)

(A+B+C)

MSOP = AB + BC + ABC

MPOS =
$$(A+B)$$
. $(B+C)$. $(A+B+C)$

* Try to form as big a group as possible * One cell can be part of more than one group if necessary.

Logic design using only NAND or only NOR gates

- NAND, NOR gates are universal gates
- The AND, OR, NOT can be converted into NAND/NOR gates

NAND/NOR gates

NOT can be made of NAND gate
$$A = A \cdot B$$

A. $B = \overline{A \cdot B}$

Can be replaced by

$$A + B = \overline{A + B} = \overline{A \cdot B}$$

Can be replaced by

Alternate NAND NOR symbols

$$A \longrightarrow C = A \longrightarrow C = A \longrightarrow C$$

$$B \longrightarrow C$$

[Alternate NAND]

From AND, OR, NOT to NAND

only

Z = AB + A

- For AND gate, put an inverter (bubble) at its output.
- For OR gate, put bubbles at the inputs.
- At any point, we can put two bubbles without changing anything.

From AND, OR, NOT to NOR

only

Z = AB + A

- For OR gate, put an inverter (bubble) at its output.
- For AND gate, put bubbles at the inputs.
- At any point, we can put two bubbles without changing anything.

- Symbols 0,1
- Positional value

Position	MSB							LSB
Power of 2	7	6	5	4	3	2	1	0
Pos. value	128	64	32	16	8	4	2	1
e.g. Binary	1	0	0	0	1	1	1	1
Decimal value	128+0)+0+()+8+	-4+2	±+1=1	43	,	

Convert decimal to binary

 Keep dividing the decimal number by 2 until you get 1. Arrange the remainders from right to left. Fill the remaining bits with 0.

Examples – binary number find the decimal value and vice versa

- 00001111
- 10000000
- 11111111
- 00001000

Analog to Digital converter

 An analog-to-digital converter (abbreviated ADC, A/D or A to D) is a device which converts continuous signals to discrete digital numbers. The reverse operation is performed by a digital-to-analog converter (DAC).

Example

- If 0V-5V are converted to an 8-bit digital
 - 0V = bin 0000000 (decimal 0);
 - 5V = bin 1111111 (decimal 255);
 - The range 0-5 is divided into 256 values, i.e each division is equal to 5/255 V.
 - An input value of say 2.5V would be decimal 102
 i.e bin 01100110
 - Analog 4.5V would be decimal 4.5/(5/255)=229
 i.e. bin 11100101

Relating to the microcontroller experiment (Sample program)

- Connected an analog voltage (0-5V) to the ANO (chanel 0) of the PIC's ADC port.
- Connect 8 LEDs (each with a 220ohm resistor in series) from pins RD0, RD1... to RD7 to GND.
- Vary the analog input voltage.
- Observe different LEDs light up as the input voltage is varied.