Efficient Computation of Vietoris–Rips Persistence Barcodes

Ulrich Bauer

TUM

May 2, 2017

Special Hausdorff Program Applied and Computational Algebraic Topology
Hausdorff Research Institute for Mathematics, Bonn

Persistent homology

Vietoris–Rips persistence

Vietoris-Rips filtrations

Consider a finite metric space (X, d). The *Vietoris–Rips complex* is the simplicial complex

$$Rips_t(X) = \{ S \subseteq X \mid diam S \le t \}$$

- 1-skeleton: all edges with pairwise distance $\leq t$
- all possible higher simplices (flag complex)

Vietoris-Rips filtrations

Consider a finite metric space (X, d). The *Vietoris–Rips complex* is the simplicial complex

$$\operatorname{Rips}_t(X) = \{ S \subseteq X \mid \operatorname{diam} S \le t \}$$

- 1-skeleton: all edges with pairwise distance $\leq t$
- all possible higher simplices (flag complex)

Goal:

• compute persistence barcodes for $H_d(\operatorname{Rips}_t(X))$ (in dimensions $0 \le d \le k$)

Demo: Ripser

Example data set:

- 192 points on \mathbb{S}^2
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Demo: Ripser

Example data set:

- 192 points on \mathbb{S}^2
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Comparison with other software:

- javaplex: 3200 seconds, 12 GB
- Dionysus: 533 seconds, 3.4 GB
- GUDHI: 75 seconds, 2.9 GB
- DIPHA: 50 seconds, 6 GB
- Eirene: 12 seconds, 1.5 GB

Demo: Ripser

Example data set:

- 192 points on \mathbb{S}^2
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Comparison with other software:

- javaplex: 3200 seconds, 12 GB
- Dionysus: 533 seconds, 3.4 GB
- GUDHI: 75 seconds, 2.9 GB
- DIPHA: 50 seconds, 6 GB
- Eirene: 12 seconds, 1.5 GB

Ripser: 1.2 seconds, 152 MB

A software for computing Vietoris–Rips persistence barcodes

about 1000 lines of C++ code, no external dependencies

- about 1000 lines of C++ code, no external dependencies
- support for
 - coefficients in a prime field \mathbb{F}_p

- about 1000 lines of C++ code, no external dependencies
- support for
 - coefficients in a prime field \mathbb{F}_p
 - sparse distance matrices for distance threshold

- about 1000 lines of C++ code, no external dependencies
- support for
 - coefficients in a prime field \mathbb{F}_p
 - sparse distance matrices for distance threshold
- open source (http://ripser.org)
 - released in July 2016

- about 1000 lines of C++ code, no external dependencies
- support for
 - coefficients in a prime field \mathbb{F}_p
 - sparse distance matrices for distance threshold
- open source (http://ripser.org)
 - released in July 2016
- online version (http://live.ripser.org)
 - launched in August 2016

- about 1000 lines of C++ code, no external dependencies
- support for
 - coefficients in a prime field \mathbb{F}_p
 - sparse distance matrices for distance threshold
- open source (http://ripser.org)
 - released in July 2016
- online version (http://live.ripser.org)
 - launched in August 2016
- most efficient software for Vietoris–Rips persistence
 - computes H² barcode for 50 000 random points on a torus in 136 seconds / 9 GB (using distance threshold)

- about 1000 lines of C++ code, no external dependencies
- support for
 - coefficients in a prime field \mathbb{F}_p
 - sparse distance matrices for distance threshold
- open source (http://ripser.org)
 - released in July 2016
- online version (http://live.ripser.org)
 - launched in August 2016
- most efficient software for Vietoris–Rips persistence
 - computes H² barcode for 50 000 random points on a torus in 136 seconds / 9 GB (using distance threshold)
- 2016 ATMCS Best New Software Award (jointly with RIVET)

Design goals

Goals for previous projects:

- PHAT [B, Kerber, Reininghaus, Wagner 2013]: fast persistence computation (matrix reduction only)
- DIPHA [B, Kerber, Reininghaus 2014]: distributed persistence computation

Design goals

Goals for previous projects:

- PHAT [B, Kerber, Reininghaus, Wagner 2013]: fast persistence computation (matrix reduction only)
- DIPHA [B, Kerber, Reininghaus 2014]: distributed persistence computation

Goals for Ripser:

- Use as little memory as possible
- Be reasonable about computation time

The four special ingredients

The improved performance is based on 4 insights:

- Clearing inessential columns [Chen, Kerber 2011]
- Computing cohomology [de Silva et al. 2011]
- Implicit matrix reduction
- Apparent and emergent pairs

The four special ingredients

The improved performance is based on 4 insights:

- Clearing inessential columns [Chen, Kerber 2011]
- Computing cohomology [de Silva et al. 2011]
- Implicit matrix reduction
- Apparent and emergent pairs

Lessons from PHAT:

- Clearing and cohomology yield considerable speedup,
- but only when both are used in conjuction!

Matrix reduction

Matrix reduction algorithm

Setting:

- finite metric space X, n points
- persistent homology $H_d(\text{Rips}_t(X); \mathbb{F}_2)$ in dimensions $d \leq k$

Notation:

- *D*: boundary matrix of filtration
- R_i : *i*th column of R

Matrix reduction algorithm

Setting:

- finite metric space X, n points
- persistent homology $H_d(\text{Rips}_t(X); \mathbb{F}_2)$ in dimensions $d \leq k$

Notation:

- D: boundary matrix of filtration
- R_i : *i*th column of R

Algorithm:

- R = D, V = I
- while $\exists i < j$ with pivot R_i = pivot R_j
 - add R_i to R_j , add V_i to V_j

Matrix reduction algorithm

Setting:

- finite metric space X, n points
- persistent homology $H_d(\text{Rips}_t(X); \mathbb{F}_2)$ in dimensions $d \leq k$

Notation:

- D: boundary matrix of filtration
- R_i : *i*th column of R

Algorithm:

- R = D, V = I
- while $\exists i < j$ with pivot R_i = pivot R_j
 - add R_i to R_j , add V_i to V_j

Result:

- $R = D \cdot V$ is reduced (unique pivots)
- V is full rank upper triangular

Compatible basis cycles

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$

positive indices,

$$N=\left\{ j:R_{j}\neq0\right\}$$

negative indices,

$$E = P \setminus \text{pivots } R$$

essential indices.

Then

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$

positive indices,

$$N = \{j : R_j \neq 0\}$$

negative indices,

$$E = P \setminus \text{pivots } R$$

essential indices.

Then

$$\widetilde{\Sigma}_Z = \{ V_i \mid i \in P \}$$

is a basis of Z_* ,

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$

positive indices,

$$N=\left\{ j:R_{j}\neq0\right\}$$

negative indices,

$$E = P \setminus \text{pivots } R$$

essential indices.

Then

$$\widetilde{\Sigma}_Z = \big\{ V_i \mid i \in P \big\}$$

is a basis of Z_* ,

$$\Sigma_B = \left\{ R_j \mid j \in N \right\}$$

is a basis of B_* ,

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$

positive indices,

$$N=\left\{ j:R_{j}\neq0\right\}$$

negative indices,

$$E = P \setminus \text{pivots } R$$

essential indices.

Then

$$\widetilde{\Sigma}_Z = \{ V_i \mid i \in P \}$$

is a basis of Z_* ,

$$\Sigma_B = \left\{ R_j \mid j \in N \right\}$$

is a basis of B_* ,

$$\Sigma_Z = \Sigma_B \cup \{V_i \mid i \in E\}$$

is another basis of Z_* .

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$
 positive indices,

$$N = \{j : R_j \neq 0\}$$
 negative indices,

$$E = P \setminus \text{pivots } R$$
 essential indices.

Then

$$\widetilde{\Sigma}_Z = \{ V_i \mid i \in P \}$$
 is a basis of Z_* ,

$$\Sigma_B = \{R_j \mid j \in N\}$$
 is a basis of B_* ,

$$\Sigma_Z = \Sigma_B \cup \{V_i \mid i \in E\}$$
 is another basis of Z_* .

Persistent homology is generated by the basis cycles Σ_Z .

For a reduced boundary matrix $R = D \cdot V$, call

$$P = \{i : R_i = 0\}$$
 positive indices,
 $N = \{j : R_j \neq 0\}$ negative indices,

 $E = P \setminus \text{pivots } R$ essential indices.

Then

$$\begin{split} \widetilde{\Sigma}_Z &= \big\{ V_i \ | \ i \in P \big\} & \text{is a basis of } Z_*, \\ \Sigma_B &= \big\{ R_j \ | \ j \in N \big\} & \text{is a basis of } B_*, \\ \Sigma_Z &= \Sigma_B \cup \big\{ V_i \ | \ i \in E \big\} & \text{is another basis of } Z_*. \end{split}$$

Persistent homology is generated by the basis cycles Σ_Z .

- Persistence intervals: $\{[i,j) \mid i = \text{pivot } R_i\} \cup \{[i,\infty) \mid i \in E\}$
- · Columns with non-essential positive indices never used!

Clearing

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k + 1, \dots, 1$
- Whenever $i = \operatorname{pivot} R_j$ (in matrix for ∂_d)
 - Set R_i to 0 (in matrix for ∂_{d-1})

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k+1, \ldots, 1$
- Whenever $i = \operatorname{pivot} R_j$ (in matrix for ∂_d)
 - Set R_i to 0 (in matrix for ∂_{d-1})
 - Set V_i to R_j

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k + 1, \dots, 1$
- Whenever $i = \operatorname{pivot} R_j$ (in matrix for ∂_d)
 - Set R_i to 0 (in matrix for ∂_{d-1})
 - Set V_i to R_j
- Still yields $R = D \cdot V$ reduced, V full rank upper triangular

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_d : C_d \to C_{d-1}$ in decreasing dimension $d = k + 1, \dots, 1$
- Whenever $i = \operatorname{pivot} R_j$ (in matrix for ∂_d)
 - Set R_i to 0 (in matrix for ∂_{d-1})
 - Set V_i to R_j
- Still yields $R = D \cdot V$ reduced, V full rank upper triangular

Note:

- reducing positive columns typically harder than negative
- · with clearing: need only reduce essential positive columns

Cohomology

Persistent cohomology

We have seen: many columns of $R = D \cdot V$ are not needed

Skip those inessential columns in matrix reduction

Persistent cohomology

We have seen: many columns of $R = D \cdot V$ are not needed

· Skip those inessential columns in matrix reduction

For persistence barcodes in low dimensions $d \le k$:

- Number of skipped indices for reducing D^T (cohomology) is much larger than for D (homology)
 - reducing boundary matrix produces basis for $H_{k+1}(K_{k+1})$, which is not needed
- The resulting persistence barcode is the same [de Silva et al. 2011]

standard matrix reduction:

$$\sum_{d=1}^{k+1} \binom{n}{d+1} = \sum_{d=1}^{k+1} \binom{n-1}{d} + \sum_{d=1}^{k+1} \binom{n-1}{d+1} \underbrace{\dim Z_d(K)}$$

standard matrix reduction:

$$\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\dim C_d(K)} = \sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\dim B_{d-1}(K)} + \sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\dim Z_d(K)}$$

$$k = 2, n = 192$$
: $56\,050\,096 = 1\,161\,471 + 54\,888\,625$

standard matrix reduction:

$$\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\dim C_d(K)} = \sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\dim B_{d-1}(K)} + \sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\dim Z_d(K)}$$

$$k = 2, n = 192$$
: $56\,050\,096 = 1\,161\,471 + 54\,888\,625$

using clearing:

$$\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\dim B_{d-1}(K)} + \underbrace{\binom{n-1}{k+2}}_{\dim H_{k+1}(K)} = \sum_{d=1}^{k+2} \binom{n-1}{d}$$

standard matrix reduction:

$$\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\dim C_d(K)} = \sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\dim B_{d-1}(K)} + \sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\dim Z_d(K)}$$

$$k = 2, n = 192$$
: $56\,050\,096 = 1\,161\,471 + 54\,888\,625$

using clearing:

$$\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\dim B_{d-1}(K)} + \underbrace{\binom{n-1}{k+2}}_{\dim H_{k+1}(K)} = \sum_{d=1}^{k+2} \binom{n-1}{d}$$

$$k = 2, n = 192$$
: $54\,888\,816 = 1\,161\,471 + 53\,727\,345$

standard matrix reduction:

$$\sum_{d=0}^{k} \underbrace{\binom{n}{d+1}}_{\dim C^d(K)} = \sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\dim B^{d+1}(K)} + \sum_{d=0}^{k} \underbrace{\binom{n-1}{d}}_{\dim Z^d(K)}$$

standard matrix reduction:

$$\sum_{d=0}^{k} \binom{n}{d+1} = \sum_{d=0}^{k} \binom{n-1}{d+1} + \sum_{d=0}^{k} \binom{n-1}{d} \underbrace{\dim Z^{d}(K)}$$

$$k = 2, n = 192$$
: $1179808 = 18337 + 1161471$

standard matrix reduction:

$$\sum_{d=0}^k \underbrace{\binom{n}{d+1}}_{\dim C^d(K)} = \sum_{d=0}^k \underbrace{\binom{n-1}{d+1}}_{\dim B^{d+1}(K)} + \sum_{d=0}^k \underbrace{\binom{n-1}{d}}_{\dim Z^d(K)}$$

$$k = 2, n = 192$$
: 1179 808 = 18 337 + 1161 471

· using clearing:

$$\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\dim B^{d+1}(K)} + \underbrace{\binom{n-1}{0}}_{\dim H^{0}(K)} + = \sum_{d=0}^{k+1} \binom{n-1}{d}$$

standard matrix reduction:

$$\sum_{d=0}^k \underbrace{\binom{n}{d+1}}_{\dim C^d(K)} = \sum_{d=0}^k \underbrace{\binom{n-1}{d+1}}_{\dim B^{d+1}(K)} + \sum_{d=0}^k \underbrace{\binom{n-1}{d}}_{\dim Z^d(K)}$$

$$k = 2, n = 192$$
: $1179808 = 18337 + 1161471$

· using clearing:

$$\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\dim B^{d+1}(K)} + \underbrace{\binom{n-1}{0}}_{\dim H^{0}(K)} + = \sum_{d=0}^{k+1} \binom{n-1}{d}$$

$$k = 2, n = 192$$
: 1161472 = 1 + 1161471

Observations

For a typical input:

- V has very few off-diagonal entries
- most negative columns of D are already reduced

Observations

For a typical input:

- ullet V has very few off-diagonal entries
- most negative columns of D are already reduced

Previous example (k = 2, n = 192):

Only 845 out of 1161 471 columns have to be reduced

Standard approach:

- Boundary matrix D for filtration-ordered basis
 - Explicitly generated and stored in memory

Standard approach:

- Boundary matrix D for filtration-ordered basis
 - Explicitly generated and stored in memory
- Matrix reduction: store only reduced matrix R
 - transform D into R by column operations

Standard approach:

- Boundary matrix D for filtration-ordered basis
 - Explicitly generated and stored in memory
- Matrix reduction: store only reduced matrix R
 - transform D into R by column operations

Approach for Ripser:

- Boundary matrix D for lexicographically ordered basis
 - Implicitly defined and recomputed when needed

Standard approach:

- Boundary matrix D for filtration-ordered basis
 - Explicitly generated and stored in memory
- Matrix reduction: store only reduced matrix R
 - transform D into R by column operations

Approach for Ripser:

- Boundary matrix D for lexicographically ordered basis
 - Implicitly defined and recomputed when needed
- Matrix reduction in Ripser: store only coefficient matrix V
 - recompute previous columns of $R = D \cdot V$ when needed
 - Typically, V is much sparser and smaller than R

Oblivious matrix reduction

Algorithm variant:

- R = D
- for j = 1, ..., n
 - while $\exists i < j$ with pivot R_i = pivot R_j
 - add D_i to R_j

Oblivious matrix reduction

Algorithm variant:

- R = D
- for j = 1, ..., n
 - while $\exists i < j$ with pivot $R_i = \text{pivot } R_j$
 - add D_i to R_j

Computing the persistence intervals requires only:

- current column R_i
- pivots of previous columns R_i

Oblivious matrix reduction

Algorithm variant:

- R = D
- for j = 1, ..., n
 - while $\exists i < j$ with pivot $R_i = \text{pivot } R_j$
 - add D_i to R_j

Computing the persistence intervals requires only:

- current column R_j
- pivots of previous columns R_i

Corollary

The rank of an $m \times n$ matrix can be computed in O(n) memory.

Apparent and emergent pairs

Natural filtration settings

Typical assumptions on the filtration:

general filtration persisten

filtration by singletons or pairs

simplexwise filtration

persistence (in theory)

discrete Morse theory

persistence (computation)

Natural filtration settings

Typical assumptions on the filtration:

general filtration persistence (in theory)
 filtration by singletons or pairs discrete Morse theory

• simplexwise filtration persistence (computation)

Conclusion:

 Discrete Morse theory sits in the middle between persistence and persistence (!)

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

· sublevel sets are subcomplexes, and

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of cells into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ .

A function $f: K \to \mathbb{R}$ on a cell complex is a *discrete Morse function* if

- · sublevel sets are subcomplexes, and
- level sets form a discrete vector field.

Let f be a discrete Morse function on a cell complex K.

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then the sublevel set K_t collapses to K_s .

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then the sublevel set K_t collapses to K_s .

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then the sublevel set K_t collapses to K_s .

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then the sublevel set K_t collapses to K_s .

Corollary

 $K \simeq M$ for some cell complex M built from the critical cells of f.

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f, then the sublevel set K_t collapses to K_s .

Corollary

 $K \simeq M$ for some cell complex M built from the critical cells of f.

This homotopy equivalence is compatible with the filtration.

Corollary

K and M have isomorphic persistent homology (with regard to the sublevel sets of f).

Morse pairs and persistence pairs

Consider a Morse filtration (one or two simplices at a time). Morse pair (σ, τ) :

• inserting σ and τ simultaneously does not change the homotopy type

Morse pairs and persistence pairs

Consider a Morse filtration (one or two simplices at a time). Morse pair (σ, τ) :

• inserting σ and τ simultaneously does not change the homotopy type

Consider a *simplexwise filtration* (one simplex at a time). *Persistence pair* (σ, τ) :

- inserting simplex σ creates a new *homological* feature
- inserting τ destroys that feature again

Apparent pairs

Definition

In a simplexwise filtration, (σ, τ) is an *apparent* pair if

- σ is the youngest face of τ
- τ is the oldest coface of σ

Apparent pairs

Definition

In a simplexwise filtration, (σ, τ) is an *apparent* pair if

- σ is the youngest face of τ
- τ is the oldest coface of σ

Lemma

Any apparent pairs is a persistence pair.

Lemma

The apparent pairs form a discrete gradient.

 Generalizes a construction proposed by [Kahle 2011] for the study of random Rips filtrations

From Morse theory to persistence and back

Proposition (from Morse to persistence)

The pairs of a Morse filtration are apparent 0-persistence pairs for the canonical simplexwise refinement of the filtration.

From Morse theory to persistence and back

Proposition (from Morse to persistence)

The pairs of a Morse filtration are apparent 0-persistence pairs for the canonical simplexwise refinement of the filtration.

Proposition (from persistence to Morse)

Consider an arbitrary filtration with a simplexwise refinement. The apparent 0-persistence pairs yield a Morse filtration

- refining the original one, and
- refined by the simplexwise one.

Emergent persistent pairs

Consider the *lexicographically refined Rips filtration*:

- increasing diameter, refined by
- lexicographic order

This is the simplexwise filtration for computations in Ripser.

Emergent persistent pairs

Consider the *lexicographically refined Rips filtration*:

- increasing diameter, refined by
- · lexicographic order

This is the simplexwise filtration for computations in Ripser.

Lemma

Assume that

- τ is the lexicographically minimal proper coface of σ with $diam(\tau) = diam(\sigma)$,
- and there is no persistence pair (ρ, τ) with $\sigma < \rho$.

Then (σ, τ) is an emergent persistence pair.

Emergent persistent pairs

Consider the lexicographically refined Rips filtration:

- increasing diameter, refined by
- lexicographic order

This is the simplexwise filtration for computations in Ripser.

Lemma

Assume that

- τ is the lexicographically minimal proper coface of σ with $diam(\tau) = diam(\sigma)$,
- and there is no persistence pair (ρ, τ) with $\sigma < \rho$.

Then (σ, τ) is an emergent persistence pair.

- Includes all apparent pairs with persistence 0
- Can be identified *without* enumerating all cofaces of σ
 - Provides a shortcut for computation

Ripser Live: users from 156 different cities

