AD-A241 434

TECHNICAL REPORT CERC-91-15

US Army Corps of Engineers

Volume II APPENDICES B THROUGH I

by

Michael J. Briggs, Jane M. Smith, Debra R. Green

Coastal Engineering Research Center

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

September 1991 Final Report

Approved For Public Release: Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington. DC 20314-1000

Under Nearshore Waves and Currents Work Unit 31762
Laboratory Simulation of Nearshore Waves Work Unit 31672
Wave Estimation for Design Work Unit 31592

(a) 7 (1 + 5) A

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

APPENDIX B: TEST DURATION RESULTS

Accession for NTS CMAN VIOLENCE AND STORY OF THE PROPERTY OF T

MF DED WAVE PARAMETERS FOR 400 WAVE DURATION

(a) Periods (Sec)

Test	OGA Gage Number						
<u>Case</u>	_1	_2	_3	_4	_5	<u></u>	<u>Ave.</u>
S01	2.46	2.46	2.32	2.46	2.46	2.32	2. +1
S09	2.63	2.24	2.34	2.49	2.49	2.29	2.41
S13	2.48	2.36	2.48	2.36	2.36	2.48	2.42
S21	2.33	2.46	2.48	2.46	2.46	2.39	2.43
S25	2.49	2.49	2.34	2.49	2.50	2.49	2 7
S33	2.53	2.40	2.40	2.39	2.39	2.57	2.45
S37	1.21	1.21	1.32	1.32	1.21	1.19	1.24
S45	1.16	1.23	1.22	1.23	1.27	1.18	1.21
S49	1.19	1.20	1.24	1.24	1.24	1.24	1.23
S57	1.25	1.19	1.22	1.24	1.24	1.27	1.13
S61	1.29	1.17	1.17	1.17	1.17	1.17	1.19
S69	1.24	1.21	1.19	1.30	1.19	1.24	1.23

(b) Heights (Ft)

Test Case	OGA Gage Number						
	1	_2	_3	_4	_5	6	<u>Ave.</u>
S01	0.45	0.38	0.40	0.42	0.39	0.43	0.41
S09	0.43	0.41	0.40	0.41	0.40	0.38	<pre>() . → 1</pre>
S13	0.44	0.41	0.42	0.36	0.37	0.43	0.40
S21	0.42	0.40	0.39	0.40	0.40	0.39	Ů.→J
S25	0.39	0.39	0.35	0.38	0.39	0.38	0.38
S33	0.40	0.38	0.40	0.37	0.37	0.37	0.33
S 37	0.30	0.31	0.32	0.33	0.32	0.30	0.31
S45	0.43	0.45	0.45	0.45	0.43	0.43	0.44
S49	0.45	0.43	0.43	0.41	0.42	0.41	0.43
S 57	0.41	0.39	0.40	0.41	0.41	0.39	0.40
S61	0.35	0.36	0.34	0.38	0.38	0.39	0.36
S69	0.40	0.38	0 40	0.39	0.39	0.38	0.34

MEASURED WAVE PARAMETERS FOR 200 WAVE DURATION

(a) Periods (Sec)

Test	OGA Gage Number						
<u>Case</u>	_1	_2	_3	4	_5	_6	<u>Ave.</u>
S01	2.30	2.30	2.30	2.30	2.30	2.30	2.30
S09	2.38	2.33	2.28	2.33	2.33	2.45	2.35
S13	2.33	2.33	2.55	2.33	2.33	2.55	2.40
S21	2.46	2.32	2.33	2.50	2.42	2.42	2.41
S25	2.35	2.35	2.35	2.55	2.55	2.35	2.42
S33	2.51	2.20	2.25	2.36	2.42	2.56	2.38
S 37	1.28	1.28	1.30	1.30	1.24	1.18	1.26
S45	1.21	1.20	1.23	1.24	1.27	1.20	1.23
S49	1.19	1.19	1.24	1.29	1.24	1.24	1.23
S57	1.21	1.23	1.20	1.24	1.26	1.29	1.24
S61	1.20	1.23	1.20	1.20	1.23	1.20	1.21
S69	1.28	1.19	1.26	1.17	1.28	1.26	1.24

(b) Heights (Ft)

Test	OGA Gage Number						
<u>Case</u>	1	_2	_3	_4	_5	_6	<u>Ave.</u>
S01	0.44	0.37	0.39	0.40	0.38	0.41	0.40
S09	0.43	0.41	0.41	0.42	0.41	0.38	0.41
S13	0.42	0.38	0.40	0.35	0.34	0.40	0.38
S21	0.41	0.41	0.41	0.39	0.40	0.41	0.40
S25	0.39	0.39	0.36	0.37	0.39	0.38	0.38
S33	0.40	0.39	0.41	0.36	0.35	0.37	0.38
S 37	0.29	0.30	0.30	0.32	0.30	0.29	0.30
S45	0.42	0.46	0.47	0.44	0.42	0.42	0
S49	0.43	0.43	0.42	0.40	0.41	0.40	0.42
S57	0.39	0.40	0.39	0.41	0.40	0.38	0.40
S61	0.35	0.36	0.33	0.38	0.38	0.39	0.36
S69	0.40	0.37	0.40	0.40	0.38	0.38	0.39

APPENDIX C: MEASURED VERSUS PREDICTED DIRECTIONAL SPECTRA

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = B

B: PPEC. VS. GGA SPEEACING & FEAK FEEL MADE CODE : 8

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = A

B. FRED. VO. COA SPREADING B FEAT FRED TABLE DODE: A

A) PRED. VS. OGA FREQUENCY OPECTRA GAGE CODE : B

B) FRED. MO. DIA ZEREADIN BERRAK FOL. TATE TODE SE

At FERD, we, due evaluency transparance of $\epsilon \sim \lambda$

Fr PAPO, CO. COM TEPENOTNO REPARTORS.

 $h = 198000 \, \mathrm{MeV}$, that fill denote appending that the $h = 18000 \, \mathrm{MeV}$

A DEEL, WillingA PREQUENCY OPENTRA CASE 1998 - 1

(B) (BB) (1, VA) (CA) (CA) AC(N) (B) (B) (AX (B)).

(A) (B) (C) (B)

An EBEC. MOL MAA PRECMEMOV TREITEN AME 1997 B

HOLDER VINCENS AND READING ROBAR FRED A VINCENS OF STREET

A) PRED. VS. OGA FREQUENCY SPECTRA DAGE CODE = 0

By BRED. VS. O'A GEREACTN of DEAR ERE! TAKE OTHE

A) PRED. VS. CGA PREQUENCY SPECTRA GAGE CODE / B

B) SPEC. VO. GGA SPREADING & SEAK SPEC (A P) 1018 - P

A PREC. VS. COA PREQUENCY OPECTRA GAGE CODE = C

BY PRESULTED THAT TRAFFACTIVE FILEAR FREE.

A: PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE + B

B) PRED. VS. OGA SPREADING (FEAR FRE. 1905).

A) BRED. VS. CGA FREQUENCY SPECTRA GAGE CODE + A

B) PREC. VP. UPA OFFEADING 3 FEAK FREQ TAIRS TOE A

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE # B

B) PRED. VS. OGA SPREADING & FEAT FREI GAGE CODE - B

A) PRED. VS. CGA FREQUENCY SPECTRA GAGE CODE = B

BY PRED, Vo. DGA GPREADING & PEAK PRED MAIR 1908 - 8

A) FRED. VS. OGA FREQUENCY SPECTPA SAGE CODE = B

B) PRED. VO. JOA OPPEADING % PEAK FREQ DATE NOT B

C1 PRED. MS. CHA SERFACING BURGHORY, CAGE CHOP . H

A) FRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = B

B- SPEC. VS. AGA SPREADING 3 SPAY FRE. MARE CODE - B

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = B

BS PREC. VO. CGA SPREADING R PEAK FAR. GAME 2002 = B

A FRED. Wo. OGA FEFFOUNT & TECTAL MADE COTE 8

TO THE REPORT OF THE PART OF T

1911. V . 14 998. TV 1 - 9 124 # 1 1911. V

C21

A FRED. VII. IDA FREQUINOS IRROSAN PARA PROPER

er en la seu en Nadez Al De de la seu en la se

AT ERRO. WELLOSA FREQUENCY COROTRA MANY DOCE 18

THE REPORT OF THE PROPERTY OF THE PARTIES.

TO BEEL CONTROL OF STANSALING A COMPLEX CONTROL OF CONT

A) PRED. WS. OGA PREQUENCY SPECIFA GAGE CODE / A

PROPERTY OF THE PROPERTY OF TH

THE PRODUCT OF A PORT NOT A PROPERTY OF THE PR

A) PRED. VS. OGA FREIDENDY SPETIRA GAGE CODE = A

POLYGON A STREAMING & PEAK FREQ

CO PERCUNS. 19A 114EACING FUEAS SAIL MAIR 1115 A

A: PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = C

BY THEO. A. . WA CHPS ADING & FEAK FREQ

OF EFEC. W3. TOA HERENIOWS * 1998 (F) . GANE TIDE

A) BRED. VS. COA FREQUENCY SPECTRA CAGE COOF + B

BY 1982. IN TA SPREADING 3 PEAK FREQ. ASS. No. 3

ON EREC. VO. THA TERRATION OF LIMITED .

A: PRED. MS. OGA FREQUENCY CRECTRA CASE CODE = 0

* FROM W. WA PERSACING & PEAK FRE! AND NO SERVERSE!

on PREC. MS. OGA PERFACTIVO E PERFECTAR. DATE TIE D

A) PRED. WE. OGA FREQUENCY TRECTPA CAGE COOF + A

BOOKERS, AND THE SPEAK FREQUENCY REPEAK FREQUENCY OF THE SPEAK FREQU

IN PREUNICA LA CARRACTATA CARRAGA (C. 1874) A CARRACTA (C. 1874) A CARRA

A' PRED. WS. OGA FREQUENCY SPECTRA CASE CODE = 8

A CARPATON - FEBRUAR FEED A SECTION OF SECTI

INSERT. NOT. TO A SERVER ON TO THE PROPERTY OF TH

A) PRED. VS. OGA FREQUENCY SPECTRA CASE CODE - B

BY SAND AND THA SPREADING FREEDOM FREE

IN REEL OF COMMISSER CONTRACTORS (FOR COMMISSER)

A) FRED. VS. CGA FREQUENCY SPECIFA GAGE CODE + B

BORRER WILL TA OFFEADING FIEAR FFE!

THE PROPERTY OF A STREET OF STREET OF STREET

A) PREC. VS. COA PRAQUENTY SPECTRA MAGE COOF + A

AMOLE, 181

THE CONTRACTOR OF STREET AND THE SERVICE OF SERVICE SERVICES.

AN PRED. NO. DGA PREQUENCY TREOTRA BASE CODE = A

Provided A Company of Charles Co

AN ERREL MO. UNA ERROUEMBY LEPTIFA A TO 1002 - A

n de la companya de l

A FRED. UT. TOA FREQUENCY OF TWA TAIT COECUS

AT PAPEL US. TOA PRECHEMIN THE TRA-DATE COOP - 1

THE REPORT OF THE PROPERTY OF THE PARTY OF T

THE COLOR OF SALEND STATE OF SALES

A) PRED. WS. OGA FREQUENCY SPECTRAL MASE CODE = A

THE REPORT OF THE PROPERTY OF

A) PREC. WS. OGA FREQUENCY SPECTRA GAGE COOF = B

THE SECURE OF TH

AN PRED. WS. OGA FREQUENCY SPECTRA CAGE CODE = 0

H (PER COLOTA DESERTIMA & SEAM FRE. TACOLOGIC

CE PREDI DE COMPRENDIMO E LERE EN . PARE DUL

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = B

es ese, . vo. sea depeading à deak freç gale done : B

on PREC. Mo. ona deprading Postar (9), page ofte - B

A) PRED. VS. CGA FPEQUENCY SPECTFA GAGE CODE = 8

BORRES OF BUILDING BEAK FREQ

COMPRESSION NOT A CARRESPOND DATA OF SECTION AND SECTION AND SECTION ASSESSMENT OF SECTION ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSME

A) PRED. VS. OGA FREQUENCY SPECTEA GAGE CODE = B

HOUSE TO THE PREADING & PEAK FREQ

IN ERL . WR. INA CERPANING HERAK EK . NA ELIMBELE

A) PRED. VS. OGA FREQUENCY OPFOTPA GAGE CODE = C

THE CASE OF THE SPECIAL THE PROPERTY OF THE SPECIAL SP

n Been un ma Heerading Korth Neb. Date de

A) PRED. WS. OGA FREQUENCY OPECTRA GAGE CODE = A

THE REPORT OF A SPREADING & PEAK PRES

TO CHECK MAN TO A COMPACION OF FRANCES AND FRANCES.

A) PRED. VS. OGA PREQUENCY SPECTRA GAGE CODE = A

Following the preading & PEAK FREQ (AA) (1911 - A

ON PRED. W. TOWN COMPACING PERSONS AND AND THE SECOND SECO

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = B

House 1000 TA SPREADING REAK FRED

ON PREC. WELLOWA CERTALITY FROM THE SAME OF SEC.

A) PRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = C

Particle of the partial and page that a peak bab?

TO REPORT OF THE DEPARTMENT OF THE CONTROL OF THE C

A) PRED. VS. JUA FREQUENCY SPECTRA CAGE CODE + A

THE LABOUR AS A SEPRENCING REPERFECT OF THE PROPERTY OF THE PR

on Bardu (A. 15 managonn Forar 195). A Bolombol A

A. BREO. WS. CGA FREQUENCY COECUSA MAGE COOR 8

THE ALL OF THE ALL OF THE PARTS AND THE

A' PREC. WEL OGA PREQUENCY SPECTRA CAGE CODE = 0

HE SECTION OF THEADING RIBAR ERFI.

A) PRED. VS. OGA FREQUENCY SPECTRA OMGE CODE = B

HE ERICL OF THE CHARTNESS FRAMERED.

THE BABOOK WITH THAT CONBERTON TO THE TRAIN OF THE TRAIN

A) PRED. VS. OGA FREQUENCY SPECTRA DAGE CODE = B

-- . * T. . . . ** SERACING R TEAK FREQ
-- ** ** ** ** #

IN PRED. WELLOOM SERRADING FORM SHOW SAVE

A) PRED. VS. CGA FREQUENCY SPECTRA GAGE CODE = B

BUILD A THEADING B PEAK FREI

TO REED OF THE STATISTICS OF THE STATIST OF THE STATIST OF THE STA

A) PRED. VS. OGA FREQUENCY OPFORPA GAGE CODE = C

PARILUDI DIA GRAFADINO ALIMA DEL TALO

A) FRED. VS. OGA FREQUENCY SPECTRA GAGE CODE = A

TO SERVICE DISCUSS TO SEAK PRES.

TO RESOLVED THAT CORRESPOND FOR AN ER ...

APPENDIX D: WAVE ELEVATION TIME SERIES

Generalized Beach Model, GBMS0105

Generalized Beach Model, GBMS0105

Generalized Beach Model, GBMS0905

Generalized Beach Model, GBMS0905

Generalized Beach Model, GBMS1305

Generalized Beach Model, GBMS1305

Generalized Beach Model, GBMS2105

Generalized Beach Model, GBMS2105

Generalized Beach Model, GBMS2505

Generalized Beach Model, GBMS2505

Generalized Beach Model, GBMS3305

Generalized Beach Model, GBMS3305

Generalized Beach Model, GBMS3705

Generalized Beach Model, GBMS3705

Generalized Beach Model, GBMS4505

Generalized Beach Model, GBMS4505

Generalized Beach Model, GBMS4905

Generalized Beach Model, GBMS4905

Generalized Beach Model, GBMS5705

Generalized Beach Model, GBMS5705

Generalized Beach Model, GBMS6105

Generalized Beach Model, GBMS6105

Generalized Beach Model, GBMS6905

Generalized Beach Model, GBMS6905

Generalized Beach Model, GBMD0104

Generalized Beach Model, GBMD0104

Generalized Beach Model, GBMD0203

Generalized Beach Model, GBMD0203

Generalized Beach Model, GBMD0303

Generalized Beach Model, GBMD0303

Generalized Beach Model, GBMD0403

Generalized Beach Model, GBMD0403

Generalized Beach Model, GBMD0502

Generalized Beach Model, GBMD0502

Generalized Beach Model, GBMD0602

Generalized Beach Model, GBMD0602

Generalized Beach Model, GBMD0703

Generalized Beach Model, GBMD0703

Generalized Beach Model, GBMD0802

Generalized Beach Model, GBMD0802

Generalized Beach Model, GBMD0902

Generalized Beach Model, GBMD0902

Generalized Beach Model, GBMD1303

Generalized Beach Model, GBMD1303

Generalized Beach Model, GBMD1603

Generalized Beach Model, GBMD1603

Generalized Beach Model, GBMD1903

Generalized Beach Model, GBMD1903

Generalized Beach Model, GBMD2303

Generalized Beach Model, GBMD2303

Generalized Beach Model, GBMD2603

Generalized Beach Model, GBMD2603

Generalized Beach Model, GBMD2903

Generalized Beach Model, GBMD2903

Generalized Beach Model, GBMD3302

Generalized Beach Model, GBMD3302

Generalized Beach Model, GBMD3602

Generalized Beach Model, GBMD3602

Generalized Beach Model, GBMD3902

Generalized Beach Model, GPMD3902

Generalized Beach Model, GBMD4302

Generalized Beach Model, GBMD4302

Generalized Beach Model, GBMD4602

Generalized Beach Model, GBMD4602

Generalized Beach Model, GBMD4902

Generalized Beach Model, GBMD4902

Generalized Beach Model, GBMD5102

Generalized Beach Model, GBMD5102

Generalized Beach Model, GBMD5202

Generalized Beach Model, GBMD5202

Generalized Beach Model, GPMD5302

Generalized Beach Model, GBMD5302

Generalized Beach Model, GBMD6103

Generalized Beach Model, GBMD6103

Generalized Beach Model, GBMD6203

Generalized Beach Model, GBMD6203

Generalized Beach Model, GBMD6303

Generalized Beach Model, GBMD6303

Generalized Beach Model, GBMD6403

Generalized Beach Model, GBMD6403

Generalized Beach Model, GBMD6503

Generalized Beach Model, GBMD6503

Generalized Beach Model, GBMD6603

Generalized Beach Model, GBMD6603

Generalized Beach Model, GBMD6703

Generalized Beach Model, GBMD6703

Generalized Beach Model, GBMD6802

Generalized Beach Model, GBMD6802

Generalized Beach Model, GBMD7101

Generalized Beach Model, GBMD7101

Generalized Beach Model, GBMD7201

Generalized Beach Model, GBMD7201

Generalized Beach Model, GBMD7301

Generalized Beach Model, GBMD7301

Generalized Beach Model, GBMD8101

Generalized Beach Model, GBMD8101

Generalized Beach Model, GBMD8201

Generalized Beach Model, GBMD8201

Generalized Beach Model, GBMD8301

Generalized Beach Model, GBMD8301

Generalized Beach Model, GBMD8401

Generalized Beach Model, GBMD8401

Generalized Beach Model, GBMD8501

Generalized Beach Model, GBMD8501

Generalized Beach Model, GBMD8601

Generalized Beach Model, GBMD8601

Generalized Beach Model, GBMD8701

Generalized Beach Model, GBMD8701

APPENDIX E: ZERO-DOWNCROSSING RESULTS

ETABAR, Cm Generalized Beach Model (GBM)

		00-11-00	2777474
Ave.	-0.026 -0.086 -0.087 -0.057 -0.063 -0.063 -0.080 0.080 0.090 0.090 0.090	6.120 0.079 0.071 0.127 0.017 0.021 0.089	-0.045 -0.038 -0.038 -0.022 -0.022 -0.060 -0.003 -0.003 -0.003
50	0.5264 0.5240 0.5130 0.5148 0.6148 0.2627 0.2628 0.2618 0.2673	0.5273 0.9470 0.9510 0.2676 0.1841 0.4935 0.3950 0.0265	0.5465 0.4977 0.5157 0.5180 0.5180 0.5887 0.5913 0.5913 0.5913
19	0.4014 0.3917 0.3633 0.3889 0.3889 0.2164 0.2161 0.2502 0.2304 0.2304	0.1231 0.4346 0.4535 0.1945 0.1347 0.3481 0.2505 0.2582	0.4145 0.3225 0.33246 0.3374 0.3874 0.3874 0.3874 0.3828 0.3828 0.3824 0.3377
18	0.2627 0.2359 0.1981 0.2344 0.1929 0.1929 0.1152 0.1152	0.1049 0.3423 0.3743 0.2374 0.0789 0.2134 0.2987 0.0265	0.2487 0.1375 0.1539 0.2213 0.1713 0.2676 0.2676 0.1762 0.1762 0.1039
17	0.1588 0.1298 0.1798 0.0098 0.1954 0.1478 0.1478 0.1478	0.0418 0.0302 0.0661 0.0661 0.1024 0.0268 0.1155 0.1155	0.0524 0.0055 0.0055 0.0107 0.0425 0.0378 0.0183 0.0183 0.0183
16	0.0713 0.0488 0.0753 0.0789 0.0369 0.0954 0.1027 0.1133	0.1271 · 0.2222 0.2603 0.0125 0.0738 0.0738 0.1241 0.1241 0.1216 0.0369 0.0856	0.1807 0.0954 0.0701 0.1472 0.1103 0.1225 0.1439 0.1615 0.0920 0.0920
15	0.1356 0.1030 0.1186 0.1161 0.1783 0.0978 0.1783 0.1795 0.1710	0.0049 0.0765 0.0375 0.0418 0.0418 0.0841 0.1195	0.1564 0.0847 0.0588 0.0701 0.0716 0.0314 0.0902 0.0588 0.0826 0.0384
14	0.0171 0.0351 0.0219 0.0513 0.0543 0.0543 0.1408 0.1317 0.1582 0.1582	0.0750 0.1143 0.1576 0.1929 0.0509 0.0571 0.0671	0.0037 -0.0631 -0.0531 -0.0732 -0.0972 -0.0972 -0.0155 -0.0323 -0.0884 -0.1070 -0.1070
13	0.1561 · 0.1661 · 0.1660 · 0.1579 · 0.1311 · 0.1308 · 0.1308 · 0.1283 · 0.1283 · 0.1283 · 0.1289 · 0.1140 · 0.1	0750 1966 1658 1795 0966 1707 11103	0.1945 0.1625 0.1620 0.1271 0.1271 0.1228 0.1755 0.1755 0.1755 0.1755 0.1757 0.1757 0.1757 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1737 0.1757 0.
12	11es 0.1865 0.1234 0.0920 0.0920 0.1128 0.0817 0.0671 0.0633 0.0988 0.0722	Mode Superposition Series 0.0579 -0.0189 0.0088 0 0.0579 -0.0189 0.0084 0 0.0185 0.0859 0.0149 0.0555 0 0.0057 0.0149 0.0151 0.0151 0.0158 0 0.027 0.0994 0.0924 0 0.0326 0.0326 0.0326 0.0326 0.0027 0.0994 0.0924 0 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0436 0.0326 0.0439 0	Series -0.0396 -0.0671 -0.0673 -0.0643 -0.0459 -0.0459 -0.0293 -0.0293 -0.0293 -0.0457 -0.0482
Gage Numbers 11	Unimodal Series 92 0.0457 0.1 0.0 0.0457 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0	0.0192 0.0189 0.0018 0.0078 0.0149 0.0351 0.0954 0.0436	147 0.0375 - 41 0.0015 - 441 0.0015 - 441 0.0015 - 441 0.0015 - 441 0.0009 - 441 0.0009 - 441 0.0009 - 441 0.0018 - 441 0.0018 - 441 0.0021 - 441 0.0021
6ag	Unim -0.1192 -0.1106 -0.0451 -0.1375 -0.1377 -0.0317 -0.0006 -0.0005 -0.0009	Mode Superposition 0.0579 - 0.0189 0.0185 0.0328 0.01134 0.0978 0.0074 0.00671 0.0027 0.0027 0.0027 0.0027 0.00326 0.0436 0.0494 0.0192	Dire -0.0247 -0.0341 -0.0286 -0.0297 -0.0299 -0.0064 -0.0110 -0.0256 -0.0256
٥	0.1381 - 0.0591 - 0.0893 - 0.0893 - 0.0527 - 0.0527 - 0.0527 - 0.0527 - 0.0527 - 0.0527 - 0.0527 - 0.0525 - 0.0	0.0488 · 0.0192 · 0.0193 · 0.0113 · 0.0295 · 0.0521 · 0.0485 · 0.0917 · 0.0268	-0.05210.05030.03410.08690.07530.07530.04510.08080.0613 -
80	0.0137 0.0037 0.0037 0.0357 0.0357 0.0314 0.0314 0.0155 0.0159	-0.0018 -0.0192 -0.0369 0.0475 -0.0564 -0.0137	0.0369 - 0.0988 - 0.0908 - 0.0908 - 0.0074 - 0.0074 - 0.00768 - 0.
7	0.0652 · 0.0557 · 0.0597 · 0.0597 · 0.0701 · 0.0960 · 0.0853 · 0.0863 · 0.0853 · 0.0597 · 0.0613 · 0.0631 · 0.0631	0.0430 - 0.0027 - 0.0143 - 0.0143 - 0.0515 - 0.0515 - 0.0515 - 0.0515 - 0.0439	0.0177 - 0.0177 - 0.00783 - 0.00896 - 0.00811 - 0.00811 - 0.00472 - 0.00552 - 0.00552 - 0.00566 - 0.00569
٥	0.1329 -0.0792 -0.1253 -0.1219 -0.0579 -0.1113 0.0860 0.1116 0.1116 0.0895	3.0195 -0.0094 -0.042 0.0917 0.0137 -0.0585 0.1673	0.1009 - 0.1143 - 0.01463 - 0.0381 - 0.0384 - 0.0792 - 0.0792 - 0.0786 - 0.0786 - 0.0786 - 0.0383 - 0.0382 - 0.0382 - 0.0382 - 0.0382 - 0.0382 - 0.0382 - 0.
2	0.1170 0.0625 0.0387 0.0741 0.0424 0.1028 0.1028 0.1028 0.1028	0.1707 0.1856 0.1268 0.0957 0.0957 0.0907 0.0007	0.0469 - 0.0533 - 0.0468 - 0.0533 - 0.0468 - 0.0439 - 0.0073 - 0.0073 - 0.0073 - 0.0189 - 0.0
.4	0.0076 0.0908 0.0573 0.0573 0.0673 0.06872 0.06872 0.0564 0.0759	0.1052 0.0372 0.0698 0.2146 0.1247 0.1247 0.1359 0.0719	0.2210 0.1981 0.1640 0.1865 0.1865 0.1865 0.1177 0.1187 0.1387 0.1387
3	0.0015 - 0.043 - 0.0044 - 0.0247 - 0.0247 - 0.0247 - 0.0241 - 0.0546 - 0.0053 - 0.0056 - 0.0210 - 0.02	0.0088 -0.0277 -0.0503 0.0823 0.0311 0.0302 0.0216 0.0046	0.0479 · 0.0396 · 0.0355 · 0.0357 · 0.0357 · 0.0357 · 0.0354 · 0.0506 · 0.0506 · 0.0503 · 0.0593 · 0.0942 · 0.0820 · 0.0
~	0.0847 0.1643 0.1756 0.2643 0.0347 0.0347 0.1521 0.1521	0.1189 0.0728 -0 0.0908 -0 0.1612 0.1651 0.1758 0.1728	0.0472 0.0335 0.0171 0.0171 0.0104 0.0107 0.0604 0.0524 0.0524 0.0524
-	0.0506 0.0546 0.0704 0.1097 0.1765 0.1765 0.1765 0.1652 0.1652	0.2996 0.2173 0.2377 0.1186 0.1136 0.0235 0.0325 0.0332	0.0034 0.0201 0.0201 0.0073 0.0128 0.0158 0.0219 0.0219 0.0485 0.0732 0.0351
Test Case	801 803 823 823 833 834 845 845 845 845 845 845 845 845 845 84	003 003 004 005 006 007 008	013 016 016 023 026 033 034 043

EIABAR, Cm Generalized Beach Model (GBM)

	1	6.0	3	4	7.	2	9	Ş	9	Ξ.	75	≎.	12	7.	٥	25	5	9	-	~	25	2.1
Ave.	-	0.0059	0.00	0.0344	0.06	0.00	0.03	0.05	0.01	0.07	0.056	0.1289		0.054							0.13	0.13
ć	2	0.5529	0.4691	0.4526	0.6376	0.5517	0.6111	0.5569	0.5736	0.5340	0.5547	0.8492	0.2380	0.1926	0.1856	0.6340	0.5014	0.5492	0.4971		0.4983	0.5054
ç	2	0.4362	0.3469	0.3249	0.4660	0.3618	0.4500	0.3831	0.3566	0.2972	0.3319	0.3542	0.0744	0.0640	0.0576	0.1981	0.1503	0.1612	0.1216	0.1375	0.0945	0.0899
ç	<u>o</u>	0.3740			0.4063		0.3197				0.2487	0.3078	0.0616	0.0335	0.0341	0.1829	0.1253	0.1457	0.1375	0.1177	0.0936	0.0893
,	<u>-</u>	0.2417				0.0335	٠.	0.0171	0.0802	0.0817	0.0363 (0.0296 (0.0006	0.0174	-0.0037	0.05)4	-0.0300	-0.0043	-0.0143	-0.0241	-0.0143	0.0384
ž	2	0.1615 (0.3069 (•		0.2262 (0.2164 0	0.1814 0	0.1207		0.0878	0.1713		0.1241		0.1228	0.1042	0.0850
*	2	0.1817 0			0.2063 0	0.1375 0	0.1646 0	0.1984 0	0.1430 0	0.0936 0	0.0924 0	0.0125 0	0.0893		0.0311	0.1271	-0.0201	-0.0152	0.0143	-0.0262	-0.0421	-0.0594
:	<u>.</u>	0.1628 0			0.2384 0	0.1490 0		0.1716 0		0.1378 0		0.0677 -0	0.0625		0.0378	0.1436	0.0689 -	0.0536 -	0.0701	0.0466	0.0235 -	0.0244 -
:	2	0.2201 0					_	_		0.1692 0	0.1469 0	0.1856 0	0.0399		0.0506		0.1030	0.1039		0.1015	0.1052	0.1082
:	2	7		0.2374 0	0.2441 0	.1335 0	0 9091.0	0.1643 0	0.1786 0	0.1899 0	0.1969 0	0.0738 0	32		0.0750	0.1573	0.0427	0.0488	0.0521		0.0098	0.0195
Gage Numbers	=	Directional Series 0043 0.0027 0.27		_	0.1369 0.		_	0.1143 0.		0.1192 0.	0.1018 0.	0.0012 0.	aking ser 0.1161 (0.1061 (0.1109 (0.1637 (0.0076 (0.0082	0.0335 (0.0165 (0.0030	0.0067
	2	Direction 0.0043 0.			0.1216 0.	0.0280 0.	0	0.0475 0.		0.0917 0.		0.0774 -0.	Non-Breaking series 0.1384 0.1161 0.07	0.1344 (0.1539 (0.0347	0.0747 (-0.1430	0.1448 (0.0418 -0	-0.0366 -(.0.0880
c	,	0.0381 -0.		_	0.0640 0.	0.0003 0.	0.0253 0.	0.0274 0.	-0.0058 0.	0.0287 0.	0.0424 0.	0.0271 -0.	0 2160		0.0287 0	0.2112.0	0.0826 -0	0.0704 -0	0.6860.0	0.1018 -0	$0.1161 \cdot 0$	0.0454 -0
		-0.0155 0.	•		0.1231 0.	0.0177 -0.	0.0171 -0.	0.0335 -0.	0.0366 -0.	0.1049 0.	0.0418 0.	0.0128 0.	0.1207 0		0.0762 0	0.0805 0	0.0479 0	0.0201 0	0.0555 0	0.0770 0	0.0415 0	0.0082 0
·		_					•	Ž.							0.1686 0.	0.1085 0.	0.0689 0.	0.0640 0.	0.0908	0.0838 0.	0.0308 0.	0.0204 -0.
,	`	71 0.0277			_		14 0.1387	0.1512	6 0.1088	51 0.1469	15 0.1408	8 -0.0049										
•	•	-0.27	-0.2054		0.174	0.067	0.1414	0.1106	-0.0046	0.0561	0.0335	-0.0058	0 0.0643		9 0.0454		0 0.0341				1770.0-9	9 0.0844
ú		0.0463	-0.0174	-0.0143	0.2377	0.2621	0.2463	0.2579	0.2533	0.2429	0.2164	0.1472	5 0.2060				3 0.1740			_	_	0.1929
,	,	0.0253	0.0695	0.1533	-0.0930	.0.1658	-0.1551	-0.1853	-0.1167	-0.0189	-0.0713	0.1140	0 -0.1256		-0.0354	0.1881		0.1186		0.1530	0.1420	0.0805
	,	0.0466	0.0390	0.0878	-0.0610	-0.1003	-0.0713	-0.1271	-0.0808	0.0110	-0.0326	0.0783	-0.0290	0.0034	0.0064			0.0268	0.0253		0.0899	0.0552
r	,	0.0497	0.0134	0.0948	0.1289			0.0744	0.0454	0.1859	0.0914	0.2393	0.0811		0.0732		0.1747	0.1423		0.2170	0.2320	0.1561
	-	0.1448	0.1085	0.1192	0.0168	0.0216	0.0067	0.0168	0.0027	0.0445	-0.0792	0.2006	-0,0320	0.0277	0.0155	0.3764	0.2661	0.2755	0.2783	0.2615	0.2271	0.2374
Test	a Sp.	051		053		•	063		-	98	190	890	170	072	573	081	082	083	084	085	086	087

11/3, Sec Generalized Beach Mode((GBM)

									i.g	eratized	Generalized Beach Model	odel (GBM	_								
lest Case	-	~	~	4	~	۰	2	80	э.	5	=	12	52	14	15	91	21	18	2	٦٢	Ave. 1.6
										M 1013	nodal Seri	ď.									
501	1.851	1.949	1.841	1.745	1.917	2.021	1.800	1.745	1.810	:	1.894	2.005	1.919	1.896	1.886	1.896	1.937	1.873	1.970	2.000	1.887
60S	1.935	1.893	1.949	1.901	1.935	1.907	1.885	1.902	1.861	1.878	1.860	1.892	1.876	1.865	1.937	1.947	1.973	1.928	1.885	1.924	026.1
513	1.840	1.883	1.891	1.997	1.965	2.037	1.988	1.924	1.920	1.880	1.906	1.889	1.853	1.907	1.869	1.950	2.001	2.017	5.064	2.063	.935
125	1.858	1.902	1.815	1.960	1.941	2.017	1.959	1.885	1.876	1.901	1.886	1.859	1.863	1.940	1.892	1.828	1.964	1.883	1.894	1.886	916.1
\$25	1.976	1.928	1.993	1.873	1.879	1.765	1.889	1.931	1.952	1.953	1.931	1.838	2.028	2.021	1.937	1.973	1.823	1.997	2.063	1.987	706.1
\$33	1.887	1.924	1.900	1.940	1.958	2.004	1.911	1.901	1.853	1.849	1.816	1.911	1.850	1.892	1.905	1.923	1.976	1.882	1.907	1.886	.935
537	1,152	1.133	1.100	1.120	1.125	1.119	1.104	1.140	1.125	1.126	1.141	1.161	1.165	1.190	1.142	1.146	1.133	1.133	1.150	1.209	1.125
245	1.129	1.119	1.138	1.128	1.130	1.138	1.124	1.160	1.174	1.175	1.180	1.168	1.174	1.187	1.200	1.162	1.173	1.181	1.175	1.167	. 130
675	1, 135	1.138	1.153	1.158	1.161	1.165	1. :56	1.184	1.162	1.159	1.201	1.185	1.203	1.204	1.194	1.180	1.138	1.198	1.224	1.170	1.151
557	1.127	1.158	1.118	1.131	1.136	1.130	1.143	1.161	1.170	1.156	1.175	1.148	1.164	1.167	1.185	1.183	1.149	1.195	1.1%	1.192	. 135
261	1,147	1.154	1.133	1.128	1.140	1.096	1.137	1.129	1.140	1.136	1.151	1.209	1.172	1.180	1.172	1.177	1.164	1.147	1.161	1.133	. 133
698	1.145	1.132	1.108	1.136	1.144	1.156	1.142	1.161	1.163	1.179	1.171	1.162	1.199	1.189	1.165	1.162	1.151	1.188	1.157	1.188	. 138
									•												
9	ò		,,,,			,		,	Σ	ode Super	.pos11100	Series	230	000	010	\do	1 072	1 0/2	1 82/	2/8/1	2 000
000	6.040	6.113	420.7	/	6.130	022.2	5.0.7	500.2	00.7		014.	20.0		200.	0.0.	757	014.6	204	1.054	450	1.671
200	0.070	8	28.	.03	3	8 9	1.570	900.	<u> </u>	2 .	1.037	070.1	20.	200.	, co.		707	(00)	3 2		3 4
500	1.697	4	20.0	7.00.	9.0	7.092	200.		5.6.5	970.	8 8	1,071	- 0 V	0.0.	900. 600.	2,0,0	700.	90.	20.0	220.	950.
004	2.093	2.070	2.003	. v	رن. ادن:	ć.ć03	1.950	<u>}</u>	7.Ulb	2.006	2.002	77.7	2.020	706.	6.024	6.0.5		CE	010.3	(00.7	,,,,
500	1.589	1.615	1.639	1.601	1.612	1.645	1.584	1.598	1.601	1.603	1.598	1.631	1.611	1.582	1.592	1.604	565.	1.5/3	0.0	5 6 6 6 6 6	
900	1.743	1.730	1.741	1.676	1.746	1.826	1.701	1.667	1.734	1.729	1.714	7115	.08	1.680	. /58	1.77	7.708	7.7.	1.744	000	77.0
200	2.041	2.083	5.000	1.904	5.079	2.219	1.966	2.036	1.968	5.044	2.027	059	1.944	1.885	2.016	2.020	1.990	1.992	1.987	2.055	2.054
8 00	1.614	1.600	1.640	1.625	1.607	1.679	1.588	1.596	1.586	1.605	1.594	.614	1.622	1.596	1.600	1.623	1.565	1.588	1.602	1.639	1.6.5
600	1.880	1.863	1.830	1.7%	1.865	1.889	1.787	1.781	1.820	1.847	1.822	1.870	1.792	1.752	1.889	1.900	1.850	1.843	1.887	1.951	1.854
										Direct	tional Se	Series									
013	1.706	1.697	1.742	1.717	1.698	1.734	1.563	1.678	1.685	1.670		1.666	1.652	1.652	1.687	1.661	1.722	1.667	1.702	1.721	.716
010	1.859	1.831	1.843	1.789	1.813	1.827	1.702	1.732	1.724	1.767	1.762	1.797	1.752	1.787	1.743	1.764	1.839	1.746	1.834	1.765	.827
010	1.998	2.054	2.027	1.887	1.953	1.996	1.839	1.978	1.984	1.938	1.906	1.582	2.014	2.061	1.878	1.834	1.937	1.900	1.896	1.916	.986
023	1.676	1.684	1.717	1.723	1.737	1.744	1.645	1.690	1.687	1.683	1.687	1.6.0	1.668	1.687	1.693	1.677	1.704	1.610	1.647	1.687	.714
020	1.836	1.846	1.829	1.812	1.839	1.848	1.762	1.800	1.817	1.803	1.756	1.874	1.878	1.798	1.765	1.744	1.834	1.803	1.893	1.874	.835
620	1.946	2.016	1.980	1.981	2.051	2.011	1.945	2.002	5.049	2.005	1.998	1.947	1.879	1.961	1.899	1.956	1.988	1.901	1.886	. 026.1	266.
033	1.698	1.687	1.708	1.679	1.663	1.638	1.617	1.665	1.699	1.712	1.696	1.689	1.682	1.707	1.692	1.692	1.627	1.695	1.752	. 810	679.
036	1.772	1.794	1.811	1.748	1.733	1.688	1.737	1.802	1.812	1.819	1.771	1,782	1.840	1.888	1.828	1.784	1.777	1.790	1.794	1.814	. 758
039	1.950	1.954	1.925	1.849	1.873	1.823	1.878	1.961	1.951	5.005	1.963	1.857	1.965	1.986	5.004	1.930	1.909	1.937	1.992	2.015	.896
043	1.723	1.725	1.722	1.711	1.715	1.707	1.680	1.687	1.693	1.672	1.669	1.674	1.685	1.631	1.686	1.678	1.684	1.666	999	1.621	<u> </u>
950	1.786	1.845	1.860	1.751	1.792	1.887	1.754	1.749	1.751	1.715	1.756	1,747	1.805	1.814	1.751	1.759	1.812	1.847	1.846	1.833	.820
650	1.915	2.032	1.943	1.982	2.023	2.052	1.978	1.942	1.896	1.901	1.877	1,882	1.855	1.834	1.866	1.893	1.910	1.885	1.851	. 885	\g.
																					İ

11\\3, Sec Generalized Beach Model (GBM)

1	2	۳	4	5	9	7	89	6	6ag 10	Gage Numbers 11	s 12	13	7	15	16	17	18	19	20	Ave. 1.6
									•	ional Se	ries									
-	1.828	~	1.895	1.925	1.990	1.880	1.874	1.854		1.858	1.837	1.823	1.896	1.890	1.834	1.808	1.800	1.913	2.014	1.899
1.795 1.812	1.81	~	1.822	1.787	1.929	1.731	1.804	1.766	1.780	1.767 1.76	1.767	1.755	1.796	1.747	1.753	1.852	1.688	1.796	1.766	1.845
	1.82	•	1.881	1.932	1.880	1.911	1.856	1.850		1.867	1.782	1.826	1.832	1.855	1.873	1,923	1.810	1.863	1.990	1.858
•	1.48	œ	1.448	1.564	1.743	1.439	1.488	1.533		1.524	1.711	1.554	1.635	1.558	1.518	1.615	1,573	1.686	1.759	1.537
_	1.43	m	1.367	1.375	1.616	1.393	1.429	1.438		1.473	1.523	1.469	1.545	1.531	1.483	1.525	1.587	1.660	1.741	1.451
_	1.4	8	1.458	1.436	1.410	1.442	1.498	1.630		1.771	1.639	1.922	1.997	1.934	1.902	1.669	1.943	1.974	1.935	1.478
_	٦.	32	1.454	1.442	1.557	1.446	1.428	1.445		1.463	1.614	1.505	1.550	1.591	1.596	1.607	1.624	1.754	1.809	1,484
-	1.4	Š	1.511	1.446	1.565	1.450	1.535	1.527		1.574	1.708	1.516	1.655	1.605	1.637	1.714	1.656	1.718	1.764	1.479
_	٦.	93	1.473	1.483	1.581	1.421	1.421	1.427		1.435	1.478	1.498	1.580	1.440	1.507	1.640	1,535	1.629	1.688	1.475
_	-	465	1,561	1.500	1.650	1.597	1.585	1.633		1.648	1.609	1.644	1.716	1.658	1.665	1,685	1.830	1.884	1.946	1.520
_	-	383	1.484	1.566	1.494	1.518	1.500	1.538		1.563	1.548	1.577	1.648	1.659	1.647	1.557	1.662	1.816	1.793	1.507
									Non-Bre	•	Ser les									
_	-	807	1.912	1.940	2.024	1.954	1 960	1 070	1 037		1 874	1 781	1 804	1 825	1 810	1 741	1 7/.0	1 785	1 750	1 00%
_	-	.813	1.807	1.782	1.890	1.814	1.803	1.803	770	1.762	1. 775	1.763	1.742	1.753	1 743	2 8	1 74.1	7.5	1 735	1 831
1.834 1.	-	847	1.882	1.924	1.885	1.967	1.925	1.925	1.900	1.867	1.782	1.848	1.800	1.801	1.842	1.843	1.782	1.799	1.828	1.862
_		451	1.382	1.433	1.676	1.387	1.371	1.392	1.353	1.400	1.482	1.383	1.325	1.372	1.387	1.358	1.396	1.440	1.513	1.474
_		394	1.365	1.404	1.590	1.371	1.444	1.462	1,445	1.466	1.405	1.427	1.402	1.414	1.385	1.499	1.444	1.450	1.478	1.443
_	-	430	1.466	1.407	1.408	1.427	1.395	1.481	1.570	1.583	1.444	1.529	1.551	1.606	1.638	1,504	1.673	1.770	1.721	1.437
_	÷	403	1.417	1.397	1.492	1.415	1.435	1.427	1.418	1.393	1.442	1.328	1.377	1,438	1.479	1,485	1.437	1.529	1.530	1.458
_	-	60	1.617	1.484	1.494	1.578	1.475	1.449	1.461	1.491	1,484	1.415	1.433	1.534	1.484	1.595	1.497	1.517	1.523	1.483
_	-	80	1.444	1.451	1.556	1.420	1.400	1.425	1.420	1.453	1.349	1.447	1.410	1.412	1.371	1.539	1.371	1,381	1.476	1.454
_	1.4	9	1.480	1.523	1.664	1.550	1.513	1.569	1.591	1.555	1.407	1.484	1.543	1.557	1.498	1.593	1.517	1.597	1.682	1.503

H1/3, Cm Joneral yed Reach Model (GRM)

	Ave. 1.0		13.45	13.55	13.41	13.38	3.10	13.21	3		11.53	11.49	11.44	11.33	7.24.		3.5	13.72	10.	10.20	13.09	11.86	7.26	12.09		14.27	13.90	12.96	14.01	13.58	12.89	13.41	12.6	12.0c	13.4	12.4.	19.1
	92		8.44	37.6	8.54	8.11	7.83	8.36	7.24	6.9	6.74	6.93	9.00	6.83	7 63		2 .	- ·	8.03	7.76	7.95	7.93	7.73	8.08		8.05	7.85	8.25	8.00	8.19	16.7	7.8.	9.06	8.10	7.83	8.22	00
	91		9.31	9.43	9.20	9.25	8.65	9.24	7.67	7.71	7.41	7.56	7.14	7.60	a	9, 9	8 8	÷.	8.86	8.66	9.06	8.89	7.98	9.16		8.8	9.25	9.64	9.11	9.27	9.05	9.15	9.10	9.21	9.20	77.6	15.5
	18		10.53	11.41	10.82	10.71	10.66	10.96	9.03	8.9	8.64	8.89	8.25	9.20	9	0.70	. o. c	97.01	10.57	9.85	10.66	10.45	8.68	10.48		10,68	10.88	11.24	10.74	11.08	10.93	10.81	10.84	10.73	10.93	1.18	5.17
	17		12.80	12.71	12.65	13.06	11.87	13.00	69.6	10.10	9.61	9.85	9.15	10.17	0	× .	/g/:	11.78	12.05	10.78	11.91	11.95	8.25	11.79		13.26	13.18	13.59	13.07	13.16	13.17	11.10	11.37	11.75	12.88	17.7	66
	16		12.99	13.57	13.53	13.00	13.15	13.33	9.89	10.54	10.12	10.79	9.55	10.63		04.4	15.04	12.82	12.53	11.65	13.02	12.74	5 0.6	13.02		13.41	13.67	14.09	13.15	13.78	13.77	12.79	12.79	12.96	13.77	13.17	15.38
	15		12.03	12.41	12.65	12.16	15.09	12.42	69.6	10.06	9.66	10.04	05.6	10.13	C	20.0	12.12	1.60	11.34	1 61	12.16	11.60	8.34	11.80		12.37	12.48	13.34	12.32	12.61	12.81	11.95	11.83	12.16	12.78	12.37	12.70
	71		12.36	11.69	11.66	12.46	12.07	12.28	9.76	10, 10	9.33	10.30	8.88	9.6	à	97.9	70.07	10.9%	1.1	10.11	11.13	11.42	7.82	11.19		12.47	12.21	12.53	12.35	12.00	12.58	11.80	11.71	12.05	12.14	12.39	12.11
£	13		13.14	12.32	11.66	12.63	12.76	12.44	07.6	10.17	10.03	9.95	76.6	10.21	7	9.51	12.05	11.63	11.73	10.50	=.=	12.13	7.76	10.89		12.28	1 : 5	12.00	11.96	11.9%	12.22	11.49	11.63	11.80	11.41	11.82	11.32
Model (GBM	12	ع ا	12.50	12.49	12.80	11.77	11.52	12.71	9.60	9.06	9.43	9.50	6.07	9.35	on Serie	80.0	12.24	1 .0	12.33	10.90	11.78	12.23	8.52	12.01		12 15	12 60	12.68	2 %	12.69	12 30	11.88	11.59	11.33	12.13	11.86	12.10
Beach	Mulibers 11	i et	13.50	14.18	13.89	13.74	13.52	13.36	9.65	10.92	10.36	10.68	9.81	10.80	erpositie	8.45	12.71	12.92	11.98	10.76	12.85	12.40	7.89	12.50	1	16.54	14. 24	14.15	38.	13. 78	22. 71	13.34	12.95	13.33	14.12	13.80	13.69
General 1zed	Cage 10	9	14.40	15.38	14.28	15.63	14.71	14.59	10.30	11.28	11.65	11.35	10.54	11.31	tode Sup	8.36	13.42	13.71	12.24	11.02	13.79	13.62	7.90	13.49		14 00 41	5. 5.	15.55	15. 62	16.97	15 B4	15 11	14 57	14.38	15.51	14.26	14.34
Ged	>		14.36	14.00	13.44	14.62	14.57	14.14	10.88	11.02	11.59	11.27	10.67	11.32	- ;	3	12.97	13.60	11.80	10.41	13.22	13.06	7.30	13.06		00	7 5	6 7	15.23	10.1	15. 21	14.54	14.73	13.97	14.81	13.59	13.66
	æ		14.28	14.38	12.70	14.14	14.00	13.81	11.10	11.09	11.34	11.63	10.94	11.60	;	6.7	12.60	13.11	11.43	10.12	13.06	12.50	7.05	12.33		15.80	. £	5 2	5 2	70.71	71	13.85	13.75	13.19	14.50	12.76	12.74
	~		14.30	13.88	12.58	13.77	13.41	13.25	11.84	11.45	11.14	11.83	12.17	12.03	1	7.48	13.10	13.55	10.98	10.27	13.23	12.29	7.18	12.38		15 72	17. 36	50. 17.	2.1	13.86	13.57	13.44	12.53	12.13	14.17	12.35	12.37
	٥								10.59															12.78		17. 08	2 2	12.5	16.10	13.58	11.02	13.27	12.65	11.63	12.47	12.22	12.53
	\$		14.13	14.00	11.93	13.54	13.41	12.74	11.35	11.20	11.39	3 . =	12.35	10.82		7.05	12.48	13.37	10.14	10.06	12.76	11.74	7.09	11.89		16. 76	2 2	12.72	14. 67	07 11	7.7	15.46	12.94	12.37	13.76	11.79	11.69
	,		14.22	14.19	12.25	13.51	12.89	12.88	12.67	11.95	10.01	11.08	12.28	12.00		7. 15	13.62	14.12	10.49	10.58	13.65	11.50	7.49	12.35		15 25	17. 27	5 2	17. 18	13.02	2 2	13.53	12.64	11.61	13.92	12.14	11.89
	٣		12.20	13.51	14.22	13.24	12.34	14.01	10.92	12.44	11.95	11.08	10.37	11.62		6.78	12.82	13.07	9.65	10.07	12.24	11.07	7.30	11.34		/3 21	20.0	7.7	7. 5.	12.67	7 2	15.43	12.18	11.66	13.87	13.20	11.60
	2		13.55	13.68	11.76	13.71	13.46	13.25	11.43	11.96	11.60	12.08	11.30	10.61		6.61	12.19	12.70	8.	9.14	11.9%	11.18	6.50	10.93		1,	27.21	12.02	2, 2,	. 6	12.75	2 2	12.61	12.53	12.77	11.73	11.05
	-		14.05	13, 15	15.95	12.53	14.63	12.93	11.77	10.43	11.92	10.74	10.75	11.68		7.78	14.60	14.69	11.56	10.89	14.29	12.98	7.63	13.23		07 24	27.2	2 2	1	27	12.67	7. 1	13.12	12.54	13.59	13.58	12.16
	Test Case		501	803	513	125	525	533	537	545	S	557	561	869		100	200	003	700	500	9 00	200	008	600		7	213	0 2		724	9 2		\$ 6	035	5-0	970	670

H1/3, Cm Generalized Beach Model (GBM)

	Av. 20 1-c				8.46 13.05																-		7.66 7.96	
	91		8.99	9.27	9.65	8.10	8.47	8.48	8.84	8.31	8.45	8.68	8.56		8.59	8.83	8.62	7.71	8.07	3.43	8.45	7.70	8.16	8,58
	18		10.69	10.80	11.33	9.61	10.13	10.36	10.44	10.16	8.6	10.03	10.38		% %	9.96	69.6	8.75	9.05	9.35	8.94	8.46	8.89	72.0
	17		12.45	12.76	13.22	11.31	11.44	11.33	11.81	11.82	11.79	11.83	11.24		10.25	9.80	9.93	9.72	8.49	8,68	8.37	9.17	8.41	70.6
	\$		13.61	13.76	13.65	11.70	12.48	12.82	12.48	12.16	12.10	13.07	12.57		11.16	10.48	10.27	9.41	97.6	10.08	8.98	9.13	8.99	9.77
	51		12.26	13.01	12.48	11.00	11.53	11.80	11.47	11.60	11.28	11.92	11.66		9.75	9.86	9.58	70.6	8.74	9.25	8.63	8.74	8.50	9.04
	7		11.91	12.69	12.18	10.71	11.26	11.58	11.44	10.94	11.28	11.60	11.21		9.07	9.73	77.6	9.35	8.76	9.19	8.76	8.89	8.85	9.13
(BH)	13				12.60	•		•		_	•	•	-							_	-	_	8.69	_
Model	ers 12	Series	12.42	12.79	11.83	10.96	11.34	10.90	11.59	11.36	11.13	11.05	11.36	Series	10.00	9.26	9.30	9.28	8.41	7.86	8.95	8.77	8.67	8.37
ueneralized Beach Model (GBM	Gage Numbers J 11	ن	13.55											ä									8.14	
eneralız	01	210	15.35	15.45	14.86	13.12	13.84	14.40	13.23	13.53	13.23	14.44	13.78	Non	9.20	9.13	8.79	9.41	8.57	9.41	8.43	9.50	8.17	8.65
د	٥		14.94		•	•		_		•		•-	-										7.95	
	89		14.34	14.52	13.97	13.73	13.38	14.38	13.06	14.16	13.14	13.48	12.98		7.97	8.09	7.72	9.24	7.98	9.14	8.00	8.6	7.66	7.63
	7				13.22								•		7.84	7.8	7.61	9.17	7.89	8.52	7.81	7.75	7.79	7.61
	9				12.97							•	•		8.95	7.39	7.98	8.13	7.49	9.20	8.05	9.28	7.72	7.84
	\$		14.06												7.88	7.80	7.15	8.65	8.09	8.90	7.65	7.77	7.48	7.60
	7		13.66												7.84	7.72	7.52	9.10	8.13	7.59	7.6	7.04	7.69	7.62
			13.42																				8.49	-
	~		13.52						•			•	•		7.96	7.	% .	8.1	8.03	8.70	8.16	8.34	7.72	8.15
	Test Case 1		1 15.24																				8.68	
	a a		051	DS	02	90	90	9	8	9	ô	8	ð		0	<u>0</u>	0	DB	08	08	ě	08	88	08

APPENDIX F: SPECTRAL ANALYSIS RESULTS

1PC, Sec (1/FPC) Smyle Peak Directional Series Generalized Beach Model (GBM)

Ave.		2.30 2.36	2.44	2.45	2.38	2.37	1.26	1.23	1.23	1.24	1.20	1.24		2.54	1.73	1.71	5.4.5	1.70	1.71	2.46	1.74	5.54		1.70	1.75	2.50	1.73	1.77	2.46	1.75	1.77	2.50	1.72	1.77	2.5
20		2.33	2.59	5.49	2.55	5.49	1.30	1.23	1.29	1.35	1.24	1.24		2.51	1.76	1.90	2.50	1.78	2.58	5.44	1.78	2.56		1.75	2.48	2.43	1.72	5.45	5.46	1.75	5.49	2.48	1.73	2.54	2.49
19		2.33	2.59	5.49	2.30	5.20	1.28	1.23	1.26	1.35	1.24	1.28		2.53	1.76	1.91	5.44	1.73	2.51	5.44	1.78	2.56		1.75	5.48	5.43	1.72	5.45	5.46	1.75	5.49	2.48	1.73	2.54	5.49
18		2.33	2.59	5.49	2.30	2.20	1.28	1.23	1.29	1.24	1.20	1.28		2.53	1.74	1.79	5.44	1.73	2.51	5.46	1.78	2.56		1.75	5.44	2.43	1.72	1.77	5.46	1.75	5.49	2.50	1.73	2.54	5.49
17		5.33	2.33	2.35	2.34	5.59	1.30	1.29	1.19	1.30	1.29	1.17		2.54	1.74	1.79	5.44	1.73	2.53	5.46	1.71	2.56		1.72	5.49	5.49	1.72	2.39	5.45	1.75	5.49	5.46	1.7	1.69	5.58
16		2.33	2.55	2.50	2.30	2.25	1.28	1.23	1.24	1.26	1.29	1.30		2.54	1.74	1.79	2.44	1.73	1.81	2.46	1.78	2.51		1.71	2.45	2.43	1.72	1.77	5.46	1.75	5.49	5.46	1.73	1.67	3.40
15		2.30	2.55	2.50	2.30	2.20	1.28	1.23	1.29	1.24	1.20	1.28		2.54	1.74	7.7	2.44	1.73	1.81	3.46	1.78	5.56		1.72	1.79	5.43	1.69	1.77	2.46	1.75	5.49	5.50	1.73	1.83	5.49
71		2.30	2.33	5.49	2.35	2.27	1.30	1.23	1.19	1.23	1.20	1.17		2.54	1.74	1.71	5.44	1.68	2.53	2.46	1.7	2.56		1.75	1.75	2.53	1.71	5.46	2.46	1.75	5.49	2.50	1.72	2.50	2.39
13		2.40	2.33	2.36	2.35	2.67	1.28	1.24	1.19	1.24	1.20	1.25		2.58	1.74	1.71	5.44	1.73	2.53	5.46	1.71	2.56		1.66	1.76	2.50	1.71	2.48	5.46	1.73	5.49	2.50	1.71	2.50	2.40
12	es	2.33	2.55	2.38	2.55	2.63	1.28	1.21	1.19	1.19	1.20	1.28	Series	2.54	1.74	1.91	5.44	1.68	2.58	5.46	1.66	2.56	ries	1.80	2.54	2.53	1.71	2.40	2.45	1.75	5.49	5.46	7.73	2.39	2.56
Numbers 11	dal Seri	2.30	2.55	2.50	2.35	5.22	1.30	1.24	1.24	1.26	1.60	1.29	position	2.54	1.74	1.77	2.44	1.7	1.81	5.46	1.79	2.56	ional Se	1.72	1.79	2.43	1.72	1.77	5.46	1.75	5.49	2.50	۲.	1.67	5.46
iage 10	Unomo	2.30	2.33	2.50	2.35	2.25	1.28	1.24	1.19	1.26	1.23	1.29	de Super	2.54	1.74	1.73	5.44	1.73	1.81	5.46	1.79	2.53	Direct	1.72	1.79	2.43	1.72	1.7/	5.46	1.75	5.49	2.50	1.73	1.67	5.46
3 -		2.30	2.33	2.50	2.35	2.25	1.28	1.24	1.19	1.26	1.23	1.23	Ĭ	2.54	1.72	1.71	2.41	1.73	2.53	5.46	1.74	2.53		1.72	1.79	2.43	1.72	1.75	5.46	1.75	5.49	2.50	1.73	1.67	5.46
20		2.30	2.33	2.50	2.35	5.25	1.28	1.24	1.19	1.26	1.20	1.19		2.54	1.72	1.71	5.44	1.73	2.53	5.46	1.74	2.53		1.72	1.79	2.43	1.72	1.75	5.46	1.75	5.49	2.50	1.73	1.84	2.46
7		2.30	2.55	2.50	2.35	2.25	1.30	1.24	1.24	1.24	1.20	1.20		2.54	1.72	1.71	5.44	1.73	1.67	5.46	1.74	2.53		1.72	1.77	5.45	1.72	1.75	5.44	1.75	1.77	2.50	1.73	1.84	2.39
v		2.30	2.55	2.45	2.35	2.56	1.18	1.20	1.24	1.30	1.20	1.26		5.54	1.74	1.71	2.44	1.75	1.67	2.44	1.74	2.54		1.66	1.67	5.54	1.74	1.74	2.51	1.75	1.77	2.50	1.71	1.71	2.48
\$		2.30	2.33	2.50	2.55	2.36	1.20	1.25	1.24	1.26	١.٧٥	1.28		5.54	1.72	1.71	5.44	1.68	1.67	5.46	1.74	2.54		1.67	1.76	2.43	1.72	1.77	5.44	1.75	1.77	2.50	1.73	- 80 - 60	77.2
4		2.30	2.55	2.50	2.35	2.30	1.30	1.24	1.24	1.24	1.20	1.17		2.54	1.72	1.71	5.44	1.73	1.67	2.46	1.74	2.53		1.67	1.76	2.45	1.72	1.79	5.44	1.75	1.77	2.50	1.73	1.84	2.39
3		2.30	2.55	2.33	2.35	2.22	1.28	1.24	1.27	1.20	1.20	1.26		2.54	1.72	1.71	5.44	1.68	1.67	5.44	1.74	2.53		1.75	1.79	5.54	1.7	1.76	5.42	1.75	1.77	2.50	1.7	5.7	5.40
5		2.30 2.33	2.33	5.29	2.35	2.20	1.28	1.20	1.19	1.23	1.20	1.18		2.54	1.74	1.71	5.44	1.68	1.79	2.46	1.7	5.54		1.70	1.74	2.53	1.72	1.82	5.45	1.75	1.77	2.50	1.72	1.75	2.56
-		2.30 2.45	2.33	2.46	2.35	2.56	1.34	1.28	1.19	1.22	1.20	1.28		2.54	1.74	1.74	2.44	1.68	1.80	5.46	1,74	2.56		1.77	1.79	5.50	1.70	1.75	2.45	1.75	1.77	2.50	1,71	1.77	1.55
Test Case		503 509	\$13	\$21	\$25	533	237	245	675	257	261	698		001	0.05	003	500	005	900	700	008	600		013	D16	019	023	026	670	(1)	036	039	043	970	670

TEC, Sec (1/FEC) agreerallized Beach Model (ubM)

lest Case		7.1	÷	7	ψ.	٥	^~	3)	0 *	6.49e 10	e Numbers 11	12	13	71	15	91	17	18	19	70	Ave. 1.6
											ĺ								1		
										Directi	ional Ser	res									
Š	7	3.75	1.75	2.53	2.44	2.44	5.49	2.44	2.44	5.44	5.44		5.49	5.44	2.44	2,44	5.44	5.49	5.49	2.45	2.11
740	2,46	2 3	6, 7	1.05	1.69	ۍ ن	1.69	1.69	69.1	1.68	1.68		1.79	1.79	2.43	2.43	2.48	5.40	5.40	7.40	5.u8
, ,	, ,	K	1.77	2.40	2.40	2.48	2.40	2.40	2.40	2.40	5.40		2.45	2.40	5.40	2.38	2.50	2.40	5.40	2.37	5.69
190	2	1.25	1.25	2.53	2.53	2,53	5.49	2.50	2.50	2.00	2.50		2.50	2.50	2.58	2.58	5.54	2.5₽	2.58	2.58	1.87
200	4.		1.20	1.23	1.20	5.49	1.23	1.22	1.22	1.26	1.26	-	5.40	2,45	1.26	1.25	5.49	2.45	2.45	5.49	1.64
. c.	· · · · · · · · · · · · · · · · · · ·	2.5	~ -	1.24	1.24	1.24	1.24	2.45	5.45	2 51	2.51	-	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	1.65
3	. ~		7.5	1.22	1.27	2.53	1.22	1.21	1.21	5.44	5.44	-	1.25	5.46	5.44	5.44	2.53	5.44	5.44	2.44	1.46
, c	3	1 2	1 2	2.50	1.24	2.50	2.50	2.50	2.50	2.50	2.51	_	2.53	2.53	2.51	2.51	2.51	2.51	2.51	2.51	3.
8	2	2	7 7	1.22	1.22	5.49	1.22	1.21	1.21	1.21	1.21		5.45	2,45	5.45	5.45	5.49	5.45	2.45	2.45	1.4.
200	: .	1 24	1.22	2.40	2.40	2.48	2.40	5.40	5.40	5.40	5.40		5.42	2.45	5.40	2.38	2.50	2.39	2.39	2.39	1.83
800	65.7	1.27	1.20	1.2.1	1 29	1.23	5.49	2.43	2.43	2.45	2,42	2.38	5.49	5.49	2.42	2.42	2.43	2.42	2.45	2.45	1.45
										Non-Bre	aaking Se	Selles									
0/1	7	1.75	1.75	1.74	2.44	2.44	57.2	5.44	2.44	5.44	2.44	5.44	5.49	5.44	5.44	1.74	5.44	1.74	5.49	5.49	5.09
27.1	2.40	8	1.82	1.69	1.69	5.49	1.69	1.69	1.69	1.69	1.69	1.66	1.79	1.78	1.68	1.68	1.75	1.68	1.68	5.40	1.97
\$70		1.75	1.77	1.71	2.40	2.48	2.40	5.40	5.40	2.40	2.40	1.76	1.79	2.40	5.40	5.40	5.48	5.40	5.40	2.40	1.97
180	1.25	1.25	1.25	1.25	1.25	2.50	1.25	1.25	1.25	1.25	1.24	2.51	1.26	1.25	1.24	1.24	1.24	2.51	2.51	2.51	1.46
280	2.46	1.25	1.21	1.23	1.24	5.49	1.23	1.23	1.27	1.27	1.26	1.22	1.23	1.23	1.26	1.26	1.25	1.26	1.26	1.26	1.65
083	2.5	1.25	1.24	1.25	1.24	1.24	1.24	2.45	2.45	5.45	5.49	2.50	2.50	2.50	5.49	2.50	5.49	2.51	2.50	2.51	1.25
38°C	1.27	1,30	1.26	1.21	1.27	1.22	1.22	1.22	1.22	1.21	5.44	1.25	1.28	1.24	2.44	5.46	2.53	2.44	5.46	2.46	1.25
0.85	1.20	1, 20	1.27	2.50	5.49	5.49	2.50	1.24	2.45	2.45	2.48	5.45	5.49	2.53	2.51	5.48	2.53	2.51	2.51	2.51	- 89.
8	2	2	1.2.	1.21	1 . 2	1.23	1.23	1.21	1.21	1.21	1.21	1.26	1.29	1.29	2.43	2.43	1.26	5.44	5.44	2.44	1.23
187	1.23	1.23	1.22	1.24	1.25	2.48	1.25	2.40	2.40	5.40	5.40	5.48	5.45	2.40	2.39	2.38	5.54	2.39	2.39	5.39	1.44
																		-			1

HuNJ, Cm Generalized Beach Model (GBM)

lest Lase	-	^,	~	,	~	٥	2	20	>	01 01	Gage Number: 11	s 72	13	71	51	9	71	18	19	n,>	Ave. 1.6
										⊕traU	odal Ser	ies									
10%		13.0	12.58	14.30	1	14.76	14.13	15.82	15.72	13.73	12.66	11.80	12.15	11.72	11.58	12.21	11.81	10.27	9.14	67.8 67.8	14.04
713	2.50	5 2	9 2	12.55	11 92	1.57	12.16	12.02	12.97	2 -	12.56	11.72	11.00	10.98	11.92	12.54	11.66	10.40	9.26	8.66	13.37
53	12.82	13.83	13.71	28.	14.11	14.31	13.87	13.97	14.03	14.06	12.87	10.82	11.63	11.55	11.72	12.19	11.65	10.21	9.05	8.29	13.78
5.35	15.20	00.	12.72	13.38	14.10	12.97	13.69	13.89	13.86	13.71	12.49	10.74	11.78	11.32	11.30	11.74	10.53	9.84	8.56	1.97	13.73
\$33	13.31	15.73	14.37	13.22	12.87	13.76	13.23	13.18	13.29	13.41	12.39	11.39	11.59	11.54	11.66	12.10	11.61	10.26	70.6	8.45	13.54
}}:	8	11,40	10.89	12.46	11.33	10.63	12.04	11.35	11,05	10.79	10.02	9.54	9.54	4.7	96.9	10.15	9.87	9.34	8.45	7.61	11.39
ç,	.0. 10.	12.26	12.84	12.15	11.65	11.40	11.87	11.37	11.40	11.40	10.85	8.82	10.27	10.24	10.19	10.32	6.73	8.98	7.83	7.14	11.89
3.5	12.15	1.68	11.90	11.08	11.56	1.8	10.88	10.96	11.19	11.38	10.31	9.33	6.79	9.45	9.60	6.95	9.38	8.65	7.73	7.7	11.67
155	11.10	12.30	11.48	12.41	12.40	11.61	12.27	 89	11.60	11.48	5.73	9.31	9.59	10.40	10.12	10.75	25.6	8.80	7.74	7. 7	88.
195	10.76	11.63	10.31	12.45	12.28	11.61	12.28	1.1	10.81	10.55	9.78	8.87	9.77	9.0%	9 36	, 0 .	8.88	8.38	7.43	2.0	11.51
200	11.8/	11.15	11.92	12.30	11.39	11.62	12.30	11.96	11.80	11.65	10.70	9.35	8.	9.81	9.98	10.36	26.6	8.78	/9./	7.7.7	11.72
									I	ode Supe	rpositio	n Series									
001	8.01	8.	7.10	7.51	7.34	8.40	7.73	7.92	_	8.51	8.54	7.92	7.48	7.92	8.23	8.55	8.27	8.15	7.52	7.;8	7.55
200	14.59	12.36	12.87	13.80	12.59	12.60	13.14	12.35	_	12.71	12.06	11.30	11.10	10.38	11.38	12.39	10.98	10.13	8.82	8.04	13.14
Ωυ 3	3	12.71	13.19	14.20	13.49	14.31	13.70	13.20	_	13.27	12.24	11.25	11.17	10.57	11.30	12.27	11.45	10.13	8.93	8.14	13.76
£003	11.72	10.01	10.07	10.94	10.60	11.59	11 10	11.29		11.71	10.9	10.53	10.33	10.22	10.38	10.84	10.29	9.53	8.44	7.91	10.82
500	3.0	₹	10.29	10.80	10.19	10.73	10.48	10.13		10.76	10.33	10.11	9.81	9.30	10.17	10.84	4.45	9.35	8.33	1:1	10.38
bue	14.12	12, 10	12.45	15.78	13.09	13.97	13.29	12.59	_	13.03	12.15	11.27	10.39	10.54	11.36	12.11	11.26	10.29	9.14	8.43	13.25
700	13.37	11,38	11.50	12.34	11.95	12.49	12.50	12.39	12.54	12.51	11.54	11.06	11.17	10.30	10.8	11.50	10.71	9.98	8.85	8.19	12.17
₽ nd	7.90	6.65	1.47	8 9. ⁄	7.31	7.82	7.53	7.34		7.97	7.87	7.82	7.33	7.32	8.05	8.49	7.78	7.91	7.45	7.17	7.4.7
> 00	13.28	11,41	11.53	12.63	12.21	13.10	12.55	12.42	_	12.81	11.91	11.33	10.27	10. xB	11.27	11.95	11.14	10.13	9.08	8.34	12.36
										Direc	t sonat S	eries									
013	14.28	14.49	13.97	15.49	15.28	14.05	14.95	15.04	15, 15	14.34	13.33	11.42	11.36	11.66	11.97	12.58	12 06	10.34	8.98	8.22	14.59
010	13.68	13.08	13.31	7.0	14.96	13.60	14.38	14.30	14.41	14.17	12.89	11.30	10.89	11.48	11.80	12.35	11.81	10.06	8.87	8.07	13.98
25	13.59	12.8	12.46	13.69	13.06	12.89	13.47	13.52	13.75	13.79	12.86	11.17	11.08	11.60	12.03	12.63	11.84	10.40	9.21	8.25	13.19
\$20	14.63	14.22	13.57	14.71	15.32	13.93	14.48	1,59	14.63	14.48	13.05	11.70	11.48	11.79	11.81	12.30	11.90	10.15	8.99	8.15	14.30
0.76	13.87	13.35	12.86	14.21	15.76	13.42	13.71	13.43	13.67	13.79	12.75	11.42	11.13	11.26	11.88	12.56	11.76	10.29	9.0%	8.25	13.58
620	13.23	13.05	13.48	13.78	74.05	12.00	13.80	13.77	14.21	14.37	13.10	11.11	11.02	11.58	3.5	12.21	11.57	10.20	8.90	8.10	13.20
0.33	14.17	13.02	13.48	13.56	13.63	13.26	13.31	13.46	13.99	14.20	12.83	11.11	10.84	11.57	11.59	12.12	10.69	10.15	8.95	8.04	13.52
0 1 2 9	13.40	12.88	12.26	12.79	13.31	12.86	12.74	15.26	18.81	13.89	12.57	10.97	10.93	11.36	11.52	12.09	10.60	10.18	8.94	8.18	12.92
<u>≈</u>	12.81	12.92	11.81	12.15	12.05	12.22	12.25	12.54	∄ : 2	13.34	12.43	10.54	10.71	11.23	11.53	12.05	99.01	10.11	8.94	8.5	12.45
**************************************	5.7	15.22	14.09	3.86	14.05	12.67	13.98	13.96	14.18	14.26	12.98	11.29	10.72	11.37	11.96	12.45	11.70	10.17	8.85	(2.5)	13.61
စ္ ⁻ သ	15.97	12.18	13.47	12.48	11.91	12.16	12.62	12.54	5.5	13.76	12.39	10.76	10.81	1.51	39.	5. ' = :	11.10	10.14	8.95	8.15	72.67
713	12.04	3	11.97	≅ ≅	11.81	12.36	12.21	12.11	12.49	12.62	11.87	10.78	10.28	10.97	11.14	11.47	11.25	4.45	8.80	8 1.	7.7

Hind., Cm Lorent Loyed Reset Missel (CBM)

	Ave. 1-6		14.09	13.51	13.29	14.29	13.97	13.86	13.89	14.46	13.8	13.65	13.69			8.37	7.95	7.6.7	8.98	8.53	8.69	8.41	\$.8	8.44	8.25
	20		8.31	8.28	8.40	7.96	7.91	8.25	8.18	7.84	7.92	8.27	8.06			7.41	7.34	7.38	7.20	7.36	7.42	7.04	7.20	7.50	7.60
UKDETALIZEG BEGEN MODEL (UBM)	19		9.05	9.00	9.31	8.49	8.62	8.90	8.97	8.55	8.58	8.76	8.73			7.81	7.62	7.60	7.55	7.66	7.89	7.98	7.48	7.83	7.95
	18		10.30	10.20	10.63	29.6	96.6	10.20	10.30	98.6	62.6	9.6	10.08			8.54	8.23	8.26	8.25	8.20	8.66	8.47	8.05	8.34	8.55
	17		11.52	11.30	11.55	11.16	11.02	10.95	11.16	11.39	11.05	11.08	11.08			8.91	8.54	8.31	9.15	7.96	8.29	7.87	8.56	7.76	8.30
	16		12.44	12.06	12.38	11.61	12.10	12.48	12.25	11.87	11.82	12.53	12.11			9.50	8.97	8.76	8.88	8.80	97.6	8.66	8.82	8.75	9.25
	15		11.76	11.66	11.81	11 14	11.44	11.59	11.77	11.29	11.19	11.69	11.52			8.79	8.47	8.50	8.66	8.31	70°6	8.48	8.47	8.33	8.73
	34		11.27	11.93	11.37	10.68	11.17	11.35	11.34	10.92	11.17	11.45	11.39			8.20	8.51	8.25	00.6	8.26	8.97	3.64	8.72	8.55	8.61
Deficialized Beach Model (DBM)	13		11.43	12.17	11.17	11.10	11.28	11.75	11.33	11.20	11.63	11.51	11.18			8.07	8.59	8.05	8.76	8.17	8.79	8.50	8.57	8.43	8.32
and labor	12	r les	12.69 11.63	11.48	10.93	10.79	10.93	10 64	11. 19	11.17	10.72	10.75	11.10	į	Sec	8.69	8.10	8.16	8.70	8.09	7.56	8.40	8.61	8.10	8.05
1 2 2 2 2 2	je Number 11	Tonat Se		12.69	12.72	12.80	11.93	12.59	12.82	12.77	:2.31	12.18	12.97	12.65	on-Breaking Series	ak ing se	8.75	8.51	8.40	8.84	8.39	9.56	8.45	8.89	8.30
3 32 () (P) ()	6.49e 10	Direct	14.03	13.90	13.87	12.85	13.49	14.07	13.52	13.55	13.00	14.15	13.60		3 J.G UON	8.87	8.73	8.57	9.38	8.64	9.73	8.64	9.39	8.48	8.91
ล้า	Э.		14.03	14.03	13.90	13.20	13.41	14.28	13.33	13.92	12.97	14.14	13.41			8.44	8.43	8.25	05.6	8.43	9.73	8.50	9.33	8.26	8.60
	8		13.76	13.85	13.63	13.77	13.35	14.32	13.19	14.17	12.93	13.79	13.01			8.03	8.09	7.90	9.29	8.54	9.57	8.32	9.08	8.08	8.21
	,		13.68	13.76	13.28	15.08	13.84	14.54	13.25	14.27	13.20	13.65	12 90			7.96	1 97	7.87	9.37	8.45	8.77	8.28	8.10	8.18	8.09
	٥		14.70	12.33	13.10	14.32	13.06	13.98	13.79	15.35	13.50	13.16	13.62			8.00	7.52	8.14	8.60	8.03	24.6	8.46	62.6	8.24	8.19
	~		14.03	14.18	12.84	14.34	14.51	14.96	13.32	14.94	13.31	13.63	13.44			8.06	8.08	7.41	8.98	8.67	9.21	8.06	8.24	8 .00	7.96
	•		13.60	13.72	13.19	15.04	14.17	14.29	13.21	13.47	13.36	13.52	13.02		1	7.92	7.93	7.80	9.27	8.63	7.75	8.09	7.38	8.13	8.01
	~		13.52	13.44	13.60	12.89	13.94	5.5	14.58	14.01	14.94	13.74	14.47		,	8.5/	7.95	8.10	8.87	8.58	7.93	8.75	9.25	9.10	8.59
	~		13.49	13.12	13.09	13.98	13.44	14.33	14.29	14.24	13.08	13.97	13.80		,	8.07	7.83	7.83	8.43	8.37	80.0	8.53	89.08	7.92	8.51
	-		15.11	14.27	13.87	15.16	14.72	13.71	14.17	14.74	14.78	13.87	13.82		ć	94. 8	8.41	8.33	2.6	8.90	8.7	8.58	57.6	7.7	8.23
	Last		051	052	053	190	295	063	3 0	065	8	790	890		į	7	27g	073	081	082	083	3 0	085	82	/Ro

APPENDIX G: LINEAR CROSS-SHORE ARRAY SPECTRA

APPENDIX H: SEMILOG CROSS-SHORE ARRAY SPECTRA

APPENDIX I: MEASURED OFFSHORE AND NEARSHORE ARRAY DIRECTIONAL SPECTRA

A) OGA VS. NGA FREQUENCY SPECTRA GAGE OCCE = B

HE A JULY NEW STREAM INTO ELEMENT THE .

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

PHOSA IN NA SPREADING ROTTAK SYE, TASE THE A

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = 3

BU CON MEDINON TERRADONO FIREDRICAN. MARKUTTE : 8

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CCDE = A

P) MA VS. NGA SPREACING R PEAK FREL GASE CODE. A

A) OGA VS. NGA FREQUENCY SPECTRA CAGE CODE = B

B) OGA VS. NGA SPREADING R PHAY FRE. GAGE CODE = B

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = C

BOUNGA MG. NGA SPREADING ROPEAN FRA. DAWR CODE

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

B) OGA MS. MGA SPREADING & FEAK ERF. GAGE COURT OF B

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = C

BY SGA VOLEMPA CREEACTIVE REPORTED.

JACK COURS OF

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

BOOLGA WOLLINGA OPPEADING & PEAK ENGLING AS PEAK ENGLING

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = C

BY UNA VOL NOA GEFRACING F FRAM FEF.

A) OGA WS. NGA FREQUENCY SPECTPA DAGE OCCE + B

BOOMA NOON A GEBEALING E REAK PRAL BATOON OO B

Ar DGA VO. NGA FREQUENTY SPECTRA GARE CODE A

Borna Maria Maria de Saro de Saro de La composición de Carda de Ca

A) OGA V3. NGA FREQUENCY SPECTRA DAME OCCE - B

 $(a,b) = (a,b) \in \mathbb{N}$, which constraints the constraints of the con

AS DOA WELLINGA PREQUENCY SERVINA DAGE DOES HE

HAR MAIN AND STREET IN COMPANY SAN

A) CGA VS. NGA FREQUENCY SPECTRA MADE CLOSE & B

THE THE STATE OF A SMALL REPORT FROM

A) CGA VO. NGA FREQUENCY SPECTRA GASE CODE & B

BY A VOLUMBA SPREADING FREE FEE. 1998 FREE RESERVEN

A) CGA VS. NGA FREQUENCY SPECTFA CAGE CCDE = B

B) DDA VE. NGA OPPEAUING & BFAK FREQ GASE DOLE - B

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE : 8

Harman () North POSACON FOR BEAK PRES

TO THAT WILLIAM CONTACTNOST CENTRALS.
WAS COLOR

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CCCE = B

B) CGA VS. NGA SPREADING % PFAK FRED GAGE CODE + B

A) OGA VG. NGA FREQUENCY SPECTRA SAGE CODE = B

B. TA VOL NOW OFFERDING R PEAK FRED WAR DODE B

A) OGA VS. NGA FREQUENCY SPECTFA CASE SIZE = 8

NOUNTA OFFEATING FEERS FEEL And the E

A CONTRACTOR OF STATE

A COTA OF NAME WAS AND SET TRANSPORTED AS

THE REPORT OF THE PROPERTY OF

A STANDUNDA EREÇTENTY JOST TEVA VIEW JASONA

A COMA MOLINIA ESSILENCE ES ESA A ESCOCIO

A) DGA VS. NGA FREQUENCY SPECTRA CASE TODE - 8

 $= \sum_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N}}} \sum_{\substack{k \in \mathbb{N}}} \sum_{\substack{k$

A) OGA VS. NGA FREQUENCY SPECTPA GAGE CODE = D

F A TO NA OPPEAULNA & LEAR SEEL A F D F F

a jajn va sekone titele. Attori

A) OGA VS. NOA FREQUENCY CRECTRA-GAGE CODE A

A 200 N A SERVALONA BERAK FREQ Astronomical N

A) OGA VS. NGA FREQUENCY SPECTRA SAGE CODE - B

A COLONIA DESERVINO E SEAM ESEQUINDO DE CAMPLESE.

10 TOWNS AND A CHEMINA FOR FORE THE CASE.

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

BOOK A WILL WAS TRABBACCURE REPAR ERBO

SHOUND THE WAS CHARMING BOUND OF SHEET AND SHEET SHOWS A SHEET SHE

A: OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

B TATUR. NOA LEBEACINE % PRAK FREQ TARE TERM

O COA MUL NAME REPEACING FOR EACH SELECTION OF THE PROPERTY OF

A) OGA VS. NGA FREQUENCY SPECTRA DAGE OCCE = A

BH DIA V., NGA SPREADING & FEAK FREQ GAVE TUDE - A

JOSPA VOL MGA OPPEACOMO ROPEAR PREJ NATO JOE O A

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

BUTTA TO MUSA OPPEADING @ PEAK FREQUENCING CODE A

DE COA VS. MOA SERFACING POFFAR ERV. DAME COOF O A

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

B ...A ... N A CEPEACING & PEAK EPEQ

DO DA VILLNA DEFAMINA 4 REAS SHE. MARE INTERNA

A) CGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

BY IDA US. NYA PERBADING 3 PEAK FREQ PAYFORDS - B

DO DEA MOUNTA OPPEAUDNO POPAS PAUL DAME COOM P

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = C

P TOA NO. WIA IPPEADING 3 PEAK PREQUANCE VIOLE

TO SAME WAS STANDARDED FOR AN ALL MARKS OF A

A CHAING, NOA ERROTENOM THE DWA CAUSE COSE A

PART OF A ARCHARAGEN SIX SEAR FREQUENCY SIX SEAR FREQUENCY SIX

A COLONIA FREEDING FERRINA TATE OF B

A DEALWOOD NOT PRECIPEUTE OF THAT WAS TO DO TO

The state of the state of the set

orania de la composición del composición de la c

A) CGA VS. NGA FREQUENCY SPECTRA TAGE CODE B

BY TANKS, NOW CEREATING WIFEAK FREST TWO-TILE OF B

THE CHANGE WAS DESIGNED TO THE PROPERTY OF A STREET OF THE PROPERTY OF THE PRO

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE - B

B) MA W. WWA SPREADING 8 PEAK FREI MADE TOUR - 8

Unita v.. Nea operating a FEAR FEEL case of the B

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

B A VOL NEAR IMPEADING REPEAR HRES

TO MAIND, NIW TERRATING FIREFREE. WAS COLUMN

A) OGA VS. NGA FREQUENCY SPECTFA GAGE CODE = C

BY CHARGO NIA GERRADING & FRAX FREQ WAS FINDED IN

TO DBA GO. NOW DEPENDING A grow Ago. MADD CODE

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

B. CHAIVI. NGA CEREACINO & FEAK FRED CARE CORE: A

CO TOA MS. NOW CEREACOND FIREWHER... MATE TOOK A

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

B - GA VG. NGA GPREADING & FEAK FREQ Mare Gode - A

CROOM VS. NOW SPREADING 4 PEAS FAR. DATE OCCUP. A

٠.

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

B: NA VO. MGA SPREADING 3 PEAK FREQ PAIR COOF B

Chinga wal waa coefactwa a reak effi naga coof hig

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = C

B) 1 TA VII. NGA SPREADING @ PEAK FREQ SE TODE = F

C) OGA VO. NOA SEEBACING 3 FEAK FEE. GALE CODE - C

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

B) . A WOL MOA OPREADING & PEAK FREQ DATE COORS A

THE COA MO. MGA SPREADING : PEAR LYE. GAGE CIDE - A

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = B

BY DUAL WELLING SPREADING & PEAK FREQ MADE DODG + 8

CV CGA VS. NGA SPREADING & PEAK FRE. DAGE CODE (P

A) OGA VS. NGA FFEQUENCY SPECTRA GAGE CODE = C

B) USA VE. NGA SPREADING 3 PEAK FREQ SARE CODE (C)

CHOOMA MG. MMA OFFEADING FORFAK (444). WHE COURTS

A) OGA VS. NGA FREQUENCY OFFCTRA CMAGE CODE = 8

B COA VO. NOA OPREADONNO B PEAK PREQUENTS OF THE ORIGINAL BOOK OF THE BOOK OF THE ORIGINAL BO

NOTA WAS MAJERFADINE A CHARGE PAGE WAS COMES B

A TOA VOL NOW ERPLIENCY TEETHER DATE TOLDS (#

BOOK A COLON A PERFACTO A FEAR FREQUENCY AND A COLON AND A SERVICE AND A

TANGLANGUASAN STEMBERS. WARREST STEELS

N THA MAL NIA FREQUENCE OFFICERA ACCOUNTS B

POST NO CONTRACTOR AND RESEARCHESTS AND RESEARCHESTS.

A) OGA V3. NGA FREQUENCY SPECTRA DAGE CODE = C

BUT THE TOTAL NEW TRANSPERSIONS OF FEAR FRED THE LOCAL STREET

HOUSEAN VERNING A SEPREMENTAL PROMASSING . SAND COMPANY OF THE PROMESTIC O

A) OGA VS. NGA FREQUENCY SPECTRA GAGE CODE = A

B) DOA VO. MGA SPREADING @ PEAK FREQ CASE DODE : A

C) CGA V8. NGA SPREADING RIPEAR 44%, GAGE CODE - A