Brownian Motion

Problem sheet 5

1. Stopping time exercises

- (a) If $S \leq T$ are stopping times, check that $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- (b) If S, T are stopping times, check that the event $\{S < T\}$ is both in $\mathcal{F}(S)$ and $\mathcal{F}(T)$.
- (c) If S, T are stopping times, check that $S \wedge T$ is a stopping time and that $\mathcal{F}(S \wedge T) = \mathcal{F}_S \cap \mathcal{F}_T$.
- (d) Show that there exists a stopping time T for Brownian Motion with $\mathbb{E}[T] = \infty$ but $\mathbb{E}[B(T)^2] < \infty$.

2. Reflection principle

Suppose $(B(t): t \ge 0)$ is a Brownian Motion on \mathbb{R} . For $M(t) := \sup_{s \le t} B(s)$, use the reflection principle to see for a, b > 0 that

$$\mathbb{P}\big[M(t) \geq a, \, B(t) \leq a-b\big] = \mathbb{P}\big[M(t) \geq a, \, B(t) \geq a+b\big] = \mathbb{P}\big[B(t) \geq a+b\big] \ .$$

Use this to find the joint density $\mathbb{P}[M(t) \in dx, B(t) \in dy]$.

3. Hitting times

For X(t) = x + B(t) let $T = \inf\{t : X(t) = 0\}$, let Brownian motion absorbed at 0 be defined as the process $t \mapsto X(t \wedge T)$.

Show that this is a time-homogeneous Markov process and find the transition kernel P(t, x, dy) for $(X(t \wedge T) : t \geq 0)$.

(Hint: use the reflection principle; the answer will have an atom at the origin.)

4. Modulus of continuity at a point

Prove that a Brownian motion satisfies that for all $t \geq 0$, almost surely,

$$\limsup_{h\searrow 0} \frac{|B(t+h)-B(t)|}{\sqrt{2h\log\log(1/h)}} = 1 \ .$$

Does it also hold that, almost surely, for all $t \ge 0$

$$\limsup_{h \searrow 0} \frac{|B(t+h) - B(t)|}{\sqrt{2h \log \log(1/h)}} = 1 ?$$

Motivate your answer.

5. Hitting time for the Ornstein Uhlenbeck process

Recall the Ornstein-Uhlenbeck process on \mathbb{R} given by $t \mapsto X(t) = e^{-ct}B(e^{2ct})$ for all $t \in \mathbb{R}$ and some c > 0, where $(B(t) : t \ge 0)$ is a standard BM.

- (a) What is the distribution of X(0)?
- (b) By conditioning on $\mathcal{F}^+(1)$, find $\mathbb{P}[B(s) \neq 0 \text{ for all } s \in [1, t]].$
- (c) Let $T_0 := \inf \{t \ge 0 : X(t) = 0\}$. Find $\mathbb{P}[T_0 > t]$.
- (d) Show $\mathbb{E}[T_0^p] < \infty$ for all p > 0.