1. 体系结构基础: 判断下列描述更符合 CISC 还是(早期) RISC

	CISC	RISC
指令机器码长度固定		V
指令类型多、功能丰富	~	
不采用条件码		V
实现同一功能, 需要的汇编代码较多		V
译码电路复杂	~	
访存模式多样	~	
参数、返回地址都使用寄存器进行保存		V
x86-64	~	
MIPS		V
广泛用于嵌入式系统		V
已知某个体系结构使用add R1,R2,R3 来完成加法运算。当要将数		V
据从寄存器S 移动至寄存器D 时,使用add S,#ZR,D 进行操作		
(#ZR 是一个恒为0 的寄存器),而没有类似于mov的指令。		
己知某个体系结构提供了 xlat 指令,它以一个固定的寄存器A 为基	~	
地址,以另一个固定的寄存器B 为偏移量,在A 对应的数组中取出下		
标为B 的项的内容,放回寄存器A 中。		

2. 写出下面电路的表达式

(!A&&B) || (!B&&A)

3. 下列寄存器在时钟上升沿锁存数据, 画出输出的电平(忽略建立/保持时间)

4. SEQ 模型:根据 Y-86 模型完成下表

	E. 1836 1 00 15	CALL Dest	JXX Dest
Fetch	icode:ifun		icode:ifun <- M ₁ [PC]
	rA,rB		
	valC	valC <- M ₈ [PC+1]	valC <- M ₈ [PC+1]
	valP	valP <- PC+9	valP <- PC+9
Decode	valA,srcA		
	valB,srcB	valB <- R[%rsp]	
Execute	valE	valE <- valB + (-8)	
	Cond Code		<pre>Cnd <- Cond(CC, ifun)</pre>
Memory	valM	M ₈ [%rsp] <- valP	
Write Back	dstE	R[%rsp] <- valE	
	dstM		
PC Update	PC	PC <- valC	PC <- Cnd? valC: valP

5. 已知 valA,valB 为从寄存器 rA,rB 中读出的值, valC 为指令中的常数值, valM 为访存得到的数据,valP 为 PC 自增得到的值,完成SEQ处理器中下面的HCL 逻辑:

```
Stage: Execute
word aluA = [
    icode in { IRRMOVQ, IOPQ } : valA;
    icode in { IIRMOVQ, IRMMOVQ, IMRMOVQ } : valC;
    icode in { ICALL, IPUSHQ } : -8;
    icode in { IRET, IPOPQ } : 8;
];
Stage: PC Update
int new_pc = [
    icode == ICALL : valC;
    icode == IJXX && Cnd: valC;
    icode == IRET: valM;
    1: valP;
];
```

得分

第四题(15分)

这是一款 Y86-32 流水线处理器的结构图 (局部),请以此为基础,依次回答下列问题。

1、该处理器设计采用了前递(forwarding)技术,一定程度上解决了数据相关的问题,在上图中体现在 Sel+FwdA 和 FwdB 部件上。前者输出的信号会存到流水线寄存器 E 的 valA 域(即 E_valA 信号),请补全该信号的 HCL 语言描述。

int E_valA = [

D_icode in { ICALL, IJXX } :_____ ; # ① 答案: D_valP

d_srcA == e_dstE :______ ;# ② 答案: e_valE d_srcA == M_dstM :_____ ;# ③ 答案: m_valM

```
d_srcA == M_dstE : M_valE ;
d_srcA == W_dstM : W_valM ;
...
```

2、如果在该处理器上运行下面的程序,每条指令在不同时钟周期所处的流水线阶段如下表所示。在这种情况下,哪条指令的执行结果会有错误?写出该指令的地址:

<u>0x01e</u>。(1分)

];

demo1.y	VS.
0x000:	irmovl \$128, %edx
0x006:	irmov1 \$3, %ecx
0x00c:	$rmmov1 \ \%ecx, \ 0(\%edx)$
0x012:	irmovl \$10, %ebx
0x018:	$mrmov1 \ 0 (\%edx), \%eax$
0x01e:	addl %ebx, %eax
0x020:	halt

1	2	3	4	5	6	7	8	9	10	11	12
F	D	Е	M	W							
	F	D	Е	M	W						
		F	D	Е	M	W					
			F	D	Е	M	W				
				F	D	Е	M	W			-
					F	D	Е	M	W		-
						F	D	Е	M	W	
	-										

3、如需检测出这个情况,需要增加逻辑电路,用 HCL 语言表达如下:
E_icode in {IMRMOVL, IPOPL} && _____ in { _____ }
答案: E_icode in {IMRMOVL, IPOPL} && E_dstM in { d_srcA, d_srcB }, 2分,
全对才得分

4、当新增的电路检测出这个情况后,应对各流水线寄存器进行不同的设置,以便在尽可能少影响性能的前提下解决该问题。请填写下表,可选的设置包括 normal/bubble/stall 三种。

F	D	Е	M	W

答案: stall, stall, bubble, normal, normal。3分,全对才得分

5、如果遇到下面程序代码所展示的情况,该处理器运行时仍然存在问题。因此,还需要新增检测电路。当新增的电路检测出这个情况后,应对各流水线寄存器进行不同的设置,以便在尽可能少影响性能的前提下解决该问题。请填写下表,可选的设置包括 normal/bubble/stall 三种。

demo2.ys

•••

0x018: rmmovl %ecx, 0(%edx)
0x01e: irmovl \$10, %ebx

0x024: pop1 %esp

0x026: ret

F	D	Е	M	W

答案: stall, stall, bubble, normal, normal。3分,全对才得分