Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

I I	1	2	3	4	Запас
					Ы
1	4	7	4	7	11
2	5	2	5	2	12
3	6	2	3	5	16
Потре	10	7	7	15	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\Sigma a = 11 + 12 + 16 = 39$$

$$\sum b = 10 + 7 + 7 + 15 = 39$$

Занесем исходные данные в распределительную таблицу.

	1	2	3	4	Запас
					Ы
1	4	7	4	7	11
2	5	2	5	2	12
3	6	2	3	5	16
Потре	10	7	7	15	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	4[10]	7	4	7[1]	11
2	5	2[7]	5	2[5]	12
3	6	2	3[7]	5[9]	16
Потре	10	7	7	15	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 4*10 + 7*1 + 2*7 + 2*5 + 3*7 + 5*9 = 137$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 4$	v ₂ =7	$v_3 = 5$	v ₄ =7
$u_1 = 0$	4[10]	7	4	7[1]

$u_2 = -5$	5	2[7]	5	2[5]
$u_3 = -2$	6	2	3[7]	5[9]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;2): 2

Для этого в перспективную клетку (3;2) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

_	gneen snakn « //, « · //, « //.							
		1	2	3	4	Запас		
						Ы		
	1	4[10]	7	4	7[1]	11		
	2	5	2[7][-]	5	2[5][+	12		
]			
	3	6	2[+]	3[7]	5[9][-]	16		
	Потре	10	7	7	15			
	бност							
	И							

Цикл приведен в таблице (3,2; 3,4; 2,4; 2,2;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(2, 2) = 7. Прибавляем 7 к объемам грузов, стоящих в плюсовых клетках и вычитаем 7 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

<i>J</i>	5			I .	
	1	2	3	4	Запас
					Ы
1	4[10]	7	4	7[1]	11
2	5	2	5	2[12]	12
3	6	2[7]	3[7]	5[2]	16
Потре	10	7	7	15	
бност					
И					

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 4$	$v_2 = 4$	v ₃ =5	v ₄ =7
$u_1 = 0$	4[10]	7	4	7[1]
$u_2 = -5$	5	2	5	2[12]
$u_3 = -2$	6	2[7]	3[7]	5[2]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (1;3): 4

Для этого в перспективную клетку (1;3) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

	1	2	3	4	Запас
					Ы
1	4[10]	7	4[+]	7[1][-]	11
2	5	2	5	2[12]	12
3	6	2[7]	3[7][-]	5[2][+	16
]	
Потре	10	7	7	15	
бност					
И					

Цикл приведен в таблице (1,3; 1,4; 3,4; 3,3;).

Из грузов x_{ii} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(1, 4) = 1.

Прибавляем 1 к объемам грузов, стоящих в плюсовых клетках и вычитаем 1 из X_{ij} , стоящих в

минусовых клетках. В результате получим новый опорный план.

	1	2	3	4	Запас
					Ы
1	4[10]	7	4[1]	7	11
2	5	2	5	2[12]	12
3	6	2[7]	3[6]	5[3]	16
Потре	10	7	7	15	
бност					
И					

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 4$	$v_2 = 3$	v ₃ =4	v ₄ =6
$u_1 = 0$	4[10]	7	4[1]	7
$u_2 = -4$	5	2	5	2[12]
u ₃ =-1	6	2[7]	3[6]	5[3]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ij}$.

Минимальные затраты составят:

$$F(x) = 4*10 + 4*1 + 2*12 + 2*7 + 3*6 + 5*3 = 115$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.