Corollary 3.9. Assume in addition that E' contains a strictly positive functional. Then the semigroup is positive if and only if there exists a core D_{0} of A and a strictly positive subeigenvector ϕ of A' such that

(K)
$$\langle (\text{sign f}) \text{ Af}, \phi \rangle \leq \langle |f|, A' \phi \rangle$$
 for all $f \in D_0$.

From the proof of Theorem 3.8 we isolate the following

<u>Proposition</u> 3.10. Let B be a densely defined operator on E and D_O be a core of B. Suppose that $\phi \in D(B')_+$ is such that $B'\phi \le 0$. Denote by p the sublinear functional given by $p(f) = \langle f^+, \phi \rangle$. If

(K)
$$\langle (\text{sign f}) \text{ Bf}, \phi \rangle \leq \langle |f|, B' \phi \rangle$$
 (f $\in D_0$),

then B is p-dissipative.

<u>Proof.</u> Let $f \in D_o$. Set $P_+ := P_f^+$, $P_- := P_f^-$ and let $P := Id - P_+ - P_-$, $Q = P_+ + 1/2$ P and $\psi = Q'\phi$. We show that

$$(3.2) \quad \psi \in dp(f) .$$

Let $g \in E$. Since $0 \le Q \le Id$ we have $\langle g, \psi \rangle = \langle Qg, \phi \rangle \le \langle Qg^+, \phi \rangle \le \langle g^+, \phi \rangle = p(g)$. Moreover, $\langle f, \psi \rangle = \langle Qf, \phi \rangle = \langle P_+f + 1/2 Pf, \phi \rangle = \langle f^+, \phi \rangle = p(f^+)$. So (3.2) follows by the definition of dp(f). We show that

(3.3)
$$\langle Bf, \psi \rangle \leq 0$$
.

One has trivially

(3.4)
$$\langle (P_+ + P_- + P) Bf, \phi \rangle = \langle f, B' \phi \rangle$$
.

Addition of (3.4) and (K) gives

 $\langle (2P_+ + P)Bf, \phi \rangle \leq \langle 2f^+, B^+ \phi \rangle \leq 0$. Hence $\langle Bf, \psi \rangle = \langle QBf, \phi \rangle \leq 0$.

Thus we have proved that $B \mid D_0$ is p-dissipative. Hence B is p-dissipative as well (by A-II,Cor.2.5).

<u>Proof of Theorem 3.8</u>. Proposition 3.5 and Theorem 2.4 yield one implication. In order to show the other assume that the condition in Theorem 3.8 is satisfied. We have to show that $T(t) \ge 0$ for all $t \ge 0$.

Let $\phi \in M'$. Consider the half-norm $p(f) = \langle f^+, \phi \rangle$ and the operator $B = A - \lambda$, where $\lambda \in \mathbb{R}$ is such that $A' \phi \leq \lambda \phi$. Then B satisfies $B' \phi \leq 0$ and (K) as well. So it follows from Proposition 3.10 that B is p-dissipative.

Since B generates the semigroup $(e^{-\lambda t}T(t))_{t\geq 0}$ we obtain from