Machine Learning for Computer Vision (EE5177)

Programming Assignment 1: Fitting Probability Distribution to Data Problem 1

Akshit Kumar (EE14B127)

5th February 2017

Contents

1	Cal	culation of ML, MAP and Bayesian Estimate	1
	1.1	Goal	1
	1.2	Calculation of ML Estimate of mean	1
	1.3	Calculation of MAP Estimate of mean	1
	1.4	Calculation of Posterior Distribution using Bayesian Method	2

1 Calculation of ML, MAP and Bayesian Estimate

1.1 Goal

We are given a set X of D-dimensional data points generated using a Gaussian distribution of mean μ and covariance matrix Σ . We are also given the distribution of prior on the mean to be a Gaussian with $P(\mu) = N_{\mu}(\mu_o, \Sigma_o)$. Given the covariance, we are required to calculate the ML estimate of mean, MAP estimate of mean and posterior distribution using Bayesian Methods.

1.2 Calculation of ML Estimate of mean

The Multivariate Gaussian Distribution is defined as :

$$p(x|\mu,\Sigma) = \frac{exp\{\frac{-1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\}}{\sqrt{|2\pi\sum|}}$$

Given a set of i.i.d data $X = \{x_1, x_2, x_3, \dots, x_I\}$ drawn from $N(x; \mu, \Sigma)$, we can estimate (μ, Σ) by Maximum Likelihood Estimation. The loglikelihood function is

$$L = \ln(p(x|\mu, \Sigma)) = \frac{-I}{2} \ln|\Sigma| - \frac{1}{2} \sum_{i} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) + c$$

On taking derivative with respect to μ and setting to 0 gives :

$$\frac{dL}{d\mu} = \frac{-1}{2} \sum_{i} \frac{d(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)}{d\mu} = 0$$

$$\frac{dL}{d\mu} = \frac{-1}{2} \sum_{i} (-2\Sigma^{-1}(x_i - \mu)) = 0$$

$$\implies \mu_{ML} = \frac{1}{I} \sum_{i} x_i$$

1.3 Calculation of MAP Estimate of mean

The Multivariate Gaussian Distribution is defined as :

$$p(x|\mu,\Sigma) = \frac{exp\{\frac{-1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\}}{\sqrt{|2\pi\sum|}}$$

We define the μ_{MAP} as follows

$$\mu_{MAP} = \underset{\mu}{\operatorname{argmax}} [\prod_{i=1}^{I} p(x_i | \mu, \Sigma) p(\mu)]$$

Similar to the Maximum Likelihood Estimate, we can maximise the logarithm of the function, which implies

$$\mu_{MAP} = \underset{\mu}{\operatorname{argmax}} \left[\sum_{i=1}^{I} log(p(x_i|\mu, \Sigma) + log(p(\mu))) \right]$$

Let the cost function be $L = \sum_{i=1}^{I} log(p(x_i|\mu,\Sigma) + log(p(\mu)))$ It can be simplied as

$$L = \sum_{i=1}^{I} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) + (\mu - \mu_o)^T \Sigma_o - 1(\mu - \mu_o)$$

On differentiating L with respect to μ and setting to 0, we get :

$$\frac{dL}{d\mu} = \sum_{i=1}^{I} \Sigma^{-1}(x_i - \mu) + \Sigma_o^{-1}(\mu - \mu_o) = 0$$

On re-arranging the terms, we get:

$$\implies (I\Sigma^{-1} + \Sigma_o^{-1})\mu_{MAP} = \sum_{i=1}^I \Sigma^{-1} x_i + \Sigma_o^{-1} \mu_o$$

$$\implies \mu_{MAP} = (I\Sigma^{-1} + \Sigma_o^{-1})^{-1} (\sum_{i=1}^{I} \Sigma^{-1} x_i + \Sigma_o^{-1} \mu_o)$$

1.4 Calculation of Posterior Distribution using Bayesian Method

As given in the question, we assume that $p(x|\mu) = N(\mu, \Sigma)$ and $p(\mu) = N(\mu_o, \Sigma_o)$ where Σ , Σ_o and μ_0 are known. After observing a det D of n independent samples x_1, x_2, \ldots, x_n , we use the Bayes' Theorem to obtain

$$p(\mu|D) = \alpha \prod_{i=1}^{n} p(x_i|\mu)p(\mu)$$

$$p(\mu|D) = \beta \exp\left[\frac{-1}{2}(\mu^T(n\Sigma^{-1} + \Sigma_o^{-1})\mu - 2\mu^T(\Sigma^{-1}\sum_{i=1}^n x_i + \Sigma_o^{-1}\mu_0))\right]$$

, which has the form

$$p(\mu|D) = \gamma \exp[\frac{-1}{2}(\mu - \mu_n)^T \Sigma_n^{-1}(\mu - \mu_n)]$$

Thus we can say that $p(\mu|D) = N(\mu_n, \Sigma_n)$ where we have

$$\mu_n = \Sigma_o (\Sigma_o + \frac{1}{n} \Sigma)^{-1} \mu_n^* + \frac{1}{n} \Sigma (\Sigma_o + \frac{1}{n} \Sigma)^{-1} \mu_o$$
$$\Sigma_n = \Sigma_o (\Sigma_o + \frac{1}{n} \Sigma)^{-1} \frac{1}{n} \Sigma$$

Observe that x can be viewed as the sum of two mutually independent random variables, a random vector μ with $p(\mu|D) = N(\mu_n, \Sigma_n)$ and an independent random vector y with $p(y) = N(0, \Sigma)$. Since the sum of two independent, normally distributed random vectors is again a normally distributed vector whose mean is the sum of the means and whose covariance matrix is the sum of covariance matrices. we have

$$p(x|D) = N(\mu_n, \Sigma + \Sigma_n)$$