	201	3~20	14 学4	年第一	-学期	期中表	⋚试试	卷	三、解下列各题 (本题满分 28 分, 每小题 7 分
			《高等数	文学 1A	》 (共	3 页)			1. $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$
			(考试时	间: 2013	年 11 月	月8日)			
题号	_		三	四	五.	六	成绩	核分人签字	
得分									

- 2. $\lim_{x \to \infty} \left(1 \frac{k}{x} \right)^{-2x} \quad (k \neq 0) = \underline{\hspace{1cm}}$ 3. 函数 $f(x) = x^3 - 3x + 1$ 在区间 [0,2] 上的最小值 ______
- 二、单项选择题 (本题满分 9 分, 每小题 3 分)
- 1. 当 $x \to \infty$ 时, 下列函数中极限存在的是 ()
- (A) $\sin x$
- (B) $e^{-\frac{1}{x}}$ (C) $\frac{x+1}{x^2-1}$
- (D) $\ln |x|$
- 2. 函数 y = f(x) 在点 x_0 处有增量 $\Delta x = 0.3$, 对应函数增量的线性主要部分等于 0.9 , 则 $f'(x_0) = ($)
 - $(A) \ 3$
- (B) 0.3
- (C) 2.7
- (D) $\frac{1}{3}$ 4. 方程 $2^{xy} = x + y$ 确定了函数求 y = y(x), 求 y' 及 $dy\Big|_{x=0}$

3. 读 $y = \frac{1}{x^2 - 4x + 3}$,求 $y^{(n)}$

第1页 共3页

- 3. 下列函数在给定的区间上满足拉格朗日中值定理的是()
- (A) f(x) = |x 1|, [0, 2]
- (B) $f(x) = \sqrt[3]{x}$, [-1, 1]
- (C) f(x) = x + |x|, [-1, 2] (D) $f(x) = \ln(x 2), [3, 6]$

系别 专业

Ŧ

年级______ 学号_____

姓名

第2页 共3页

四、解下列各题 (本题满分 35 分,每小题 7 分)

$$1. \lim_{x \to 0} \frac{\sin x - x}{x^2 \sin x}$$

4. 讨论函数 $f(x) = 3x^2 - x^3$ 的单调性和凹凸性, 并求极值点和拐点

2. 设
$$f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}} & x > 0 \\ 0, & x = 0 \end{cases}$$
, 判断 $f(x)$ 在 $x = 0$ 处的连续性,
$$x \sin \frac{1}{x} & x < 0$$
 并求 $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$

5. 求曲线 $y = \frac{\cos 2x}{x}$ 的水平渐近线和铅直渐近线

3. 参数方程
$$\begin{cases} x = \arctan t \\ y = \ln t \end{cases}$$
 确定了函数 $y = y(x)$, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$

系别_____ 专业_

___ 班

年级_____ 学号_

姓名

第3页 共3页

五、解下列各题 (本题满分 14 分, 每小题 7 分)

1. 设有一根长为 l 的铁丝,将其分为两段,分别构成圆形和正方形,若圆形的面积为 S_1 ,正方形的面积为 S_2 ,求当正方形的边长为多少时 $S_1 + S_2$ 取得最小值.

六、证明题 (本题满分 5 分)

已知 f(x) 在 [0,1] 内二阶可导,且 f(0)=f(1)=0, F(x)=(x-1)f(x) 证明: 至少存在一个 $\xi\in(0,1)$,使得 $F''(\xi)=0$

2. 证明: 当 x > 0 时, $\ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$