Reproducible computational workflow

CDVS

John Little

Nov. 5, 2021

Whoami

John Little Data Science Librarian Host of Rfun.library.duke.edu Center for Data & Visualization Sciences

Get expe

advice

Foundations of reproducible computational research

Data Analysis and Workflow Management

Reproducibility

Reproducibility is about being as lazy as possible

-- Hadley Wickham

So you can recreate your environment as easily as possible

Lazy in a good way

-- Thomas Mock

Outline

- Project Management
- Data Wrangling
- Literate Coding
- Analysis
 - Explanatory/Exploratory
 - Visualizing
 - Modeling
- Report products
- Archiving

Data life cycle

Data → Information → Publish

Archive

Data is given. Information is taken.

-- Daniel Kaplan. 2011.

- Data: Recorded facts
- Information: a particular form of data well suited to communicate with humans and intended to guide conclusions, beliefs, decision, and action

Finding data

Center for Data & Visualization Sciences

AskData@Duke.edu

YOUR data

- Raw data sources
- Ancillary data

Citeable, archived, transparent

Project Management and file structure

- 1. Data wrangling
- 2. Analysis
- 3. Visualization
- 4. Reporting
- 5. Archiving

Use source code as the *workflow orchestrator* to manage project elements

Example: RStudio IDE with git version control

Version control and social coding hub

Example project directory structure

ProjectName/

- README.MD
- Data/
 - Raw data/
 - Wrangled and cleaned data/
 - YYYY-MM-DDVersion(s)
 - Use version control ← Better than YYYY-MM-DD
- Code | scripts/
 - Data cleaning/
 - Analysis
 - Models/
- Output and report products/
 - Report products (R Markdown reports, slides, dashboards, MS Word, PDF, LaTex)
 - Graphs or images/
 - Tables
 - Publications
 - ebooks
 - .bib file

Data Wrangling / Analysis:

- Generate and manage data and analysis with code
- Incorporate found and produced data into the same project
- Data wrangling (normalization & cleaning) as reproducible processes
- Protect personally identifiable information (PRDN)
- Relational database systems bring complexity: great power and administrative responsibility
- ♠♠ Tidy data ♦♥

Some good reproducible data wrangling tool options:

OpenRefine • R notebooks • Jupyter notebooks

Tidy data definition

- Every column is a variable
- Every row is an observation
- Every cell is a single value

https://tidyr.tidyverse.org/articles/tidy-data.html#tidy-data • https://r4ds.had.co.nz/tidy-data.html#tidy-data-l

Example Untidy data

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k	\$75-100k	\$100-150k	>150k	Don't know/refused
Agnostic	27	34	60	81	76	137	122	109	84	96
Atheist	12	27	37	52	35	70	73	59	74	76
Buddhist	27	21	30	34	33	58	62	39	53	54
Catholic	418	617	732	670	638	1116	949	792	633	1489
Don't know/refused	15	14	15	11	10	35	21	17	18	116
Evangelical Prot	575	869	1064	982	881	1486	949	723	414	1529

Problem?

Column headers are values, not variable names

Example Tidy data

Religious income					
religion	income	value			
Agnostic	\$10-20k	34			
Atheist	\$10-20k	27			
Buddhist	\$10-20k	21			
Catholic	\$10-20k	617			
Don't know/refused	\$10-20k	14			
Evangelical Prot	\$10-20k	869			
tidyr::relig_incom Downloaded from https://www.pewforum.org/religious-la	andscape-study/ (downloaded November 2009)				

Literate coding

Combine code with prose and visualizations

- Use prose to explain analysis
 - Structure your analysis and documentation
 - Markdown | R Markdown
- Analysis AND report writing
 - Data code-books are part of the project
 - Render reports from code (report products)

An illustration of the <u>Discrete Founer Transform</u> using windowing, to reveal the frequency content of a sound signal.

$$X_k = \sum_{n=0}^{N-1} x_n e^{-rac{2\pi i}{N}kn} \qquad k=0,\ldots,N-1$$

We begin by loading a datafile using SciPy's audio file support:

```
In [1]: from scipy.io import wavfile
rate, x = wavfile.read('test_mono.wav')
```

And we can easily view its spectral structure using matplotlib's builtin specgram routine:

```
In [2]: %matplotlib inline
    from matplotlib import pyplot as plt
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
    ax1.plot(x); ax1.set_title('Raw audio signal')
    ax2.specgram(x); ax2.set_title('Spectrogram');
```


↑ Example jupyter notebook ↑

Report products

Leverage your literate coding

- Use rendered notebooks to *show your work* without requiring the reader to reproduce the exact compute environment
 - Document all versions and session information
- Render (derived) reports from literate code documents
 - Generate slides, dashboards, documents, visualizations, books, PDFs, LaTeX, etc.
 from the same source code

Static and interactive documents work well with R Markdown literate coding

Archiving

- Version Control = (Git) + Social Coding
 - Social Coding Hubs = collaboration + self-documenting your project's story within a code repository GitHub • GitLab • BitBucket
- Archival repositories
 - disciplinary v institutional
 - data repositories
 - DOIs for output: Article, Code, etc. (i.e. Publishing)
 - link to your ORCID
- Containers: computational and archival representations of your project at various publishable milestones
 - Zero-install environment: does not require a reader to set up a replica compute environment

OSF

Open Science Framework

OSF is a free and open source project management tool that supports researchers throughout their entire project lifecycle.

https://OSF.io

Related topics

DOIs

DOI 10.5281/zenodo.4908855 (Latest Version Release)

Containers

launch binder

Author ID

ORCID 0000-0002-3600-0972

Licensing

- MIT for Software
- CC-BY for documents
- CCO for data

Information about licensing

https://exygy.com/blog/which-license-should-i-use-mit-vs-apache-vs-gpl/https://arstechnica.com/gadgets/2020/02/how-to-choose-an-open-source-license/https://creativecommons.org/

Office of Copyright and Scholarly Communications

https://library.duke.edu/about/depts/scholcomm

John R Little

Data Science Librarian
Center for Data & Visualization Sciences
Duke University Libraries

https://johnlittle.info https://Rfun.library.duke.edu https://library.duke.edu/data

Creative Commons: Attribution 4.0

https://creativecommons.org/licenses/by-nc/4.0