Definition: Functor

Functor

A functor is a structure-preserving mapping between Category structures.

Formal Definition

Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- 1. An **object mapping**: For each object $A \in Ob(\mathcal{C})$, an object $F(A) \in Ob(\mathcal{D})$
- 2. A **morphism mapping**: For each morphism $f: A \to B$ in \mathcal{C} , a morphism $F(f): F(A) \to F(B)$ in \mathcal{D}

satisfying:

Functor Laws

- 1. Identity preservation: $F(id_A) = id_{F(A)}$ for all objects A
- 2. Composition preservation: $F(g \circ f) = F(g) \circ F(f)$ for all composable morphisms f and g

Types of Functors

- Covariant functor: As defined above
- Contravariant functor: Reverses the direction of morphisms
- Faithful functor: Injective on morphism sets
- Full functor: Surjective on morphism sets
- Fully faithful functor: Both faithful and full
- Essentially surjective: Every object in \mathcal{D} is isomorphic to F(A) for some A

Examples

- The forgetful functor from **Grp** to **Set**
- The free group functor from **Set** to **Grp**
- The fundamental group functor from **Top** to **Grp**

Dependency Graph

Local dependency graph