Latent Variable Models

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

• Motivation: Find "latent" (unobserved) structure in neural population activity

Overview of Workshop

• Day 1:

- Intro to LVMs
- Factor Analysis (FA)
- Gaussian Processes (GPs)
- Gaussian Process Factor Analysis (GPFA)
- Hidden Markov Models (HMMs)

• Day 2:

- Linear Dynamical Systems (LDSs)
- Variational Autoencoders (VAEs)
- Many variants

Day 3:

Recap (mini-presentations?) and final questions

- Two parts of a LVM
- Prior: $z \sim p(z)$

• Conditional probability of observed data: $x \mid z \sim p(x \mid z)$

• Probability of observed data, p(x), is:

- Probability of observed data, p(x), is:
 - For discrete latents:

$$p(x) = \sum_{i=1}^{m} p(x|z=z_i)p(z=z_i)$$

- Probability of observed data, p(x), is:
 - For discrete latents:

$$p(x) = \sum_{i=1}^{m} p(x|z=z_i)p(z=z_i)$$

For continuous latents:

$$p(x) = \int p(x|z)p(z)dz$$

Recognition/Inference

Recognition/Inference

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

Recognition/Inference

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

- Model Fitting
 - Model including parameters is actually:

$$p(x, z|\theta) = p(x|z, \theta)p(z|\theta)$$

Recognition/Inference

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

- Model Fitting
 - Model including parameters is actually:

$$p(x, z|\theta) = p(x|z, \theta)p(z|\theta)$$

Learning parameters by maximum likelihood:

$$\hat{\theta} = \arg \max_{\theta} p(x|\theta) = \arg \max_{\theta} \int p(x, z|\theta) dz.$$

Factor Analysis

Factor Analysis

• Can be any Gaussian (see Murphy, book 1, section 20.2)

$$(z) p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

- Can be any Gaussian (see Murphy, book 1, section 20.2)
- Linear Gaussian model
- z: $D \times T$ latent. dim x samples (timepoints)
- $x: N \times T$ obs. dim (neurons) x samples (timepoints)
- $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.
- Ψ : $N \times N$ diagonal covariance matrix

$$\left(\begin{array}{c} z \\ \end{array}\right)$$

$$z$$
 $p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$egin{pmatrix} x \ p(x) &= \int p(x|z)p(z)dz \ p(oldsymbol{x}) &= \mathcal{N}(oldsymbol{x}|oldsymbol{\mu}, \mathbf{W} \mathbf{W}^\mathsf{T} + oldsymbol{\Psi}) \end{pmatrix}$$

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \boldsymbol{\Psi})$$

- Can be any Gaussian (see Murphy, book 1, section 20.2)
- Linear Gaussian model
- $z: D \times T$ latent. dim x samples (timepoints)
- x: $N \times T$ obs. dim (neurons) x samples (timepoints)
- $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.
- Ψ : $N \times N$ diagonal covariance matrix

Shared and Unique

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

• Can be any Gaussian (see Murphy, book 1, section 20.2)

Linear Gaussian model

• z: $D \times T$ latent. dim x samples (timepoints)

• x: $N \times T$ obs. dim (neurons) x samples (timepoints)

• $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.

• $\Psi: D \times D$ diagonal covariance matrix

Factor Analysis: Shared and Unique Example

Factor Analysis: Shared and Unique Example

FA vs. Probabilistic PCA vs. PCA

FA vs. Probabilistic PCA vs. PCA

Probabilistic PCA is Factor Analysis where
 Ψ is the identity matrix (all observations have the same independent noise)

FA vs. Probabilistic PCA vs. PCA

- Probabilistic PCA is Factor Analysis where
 Ψ is the identity matrix (all observations have the same independent noise)
- PPCA when $\Psi \rightarrow 0$ becomes PCA

FA vs. PCA: An Example

$$(z) \quad p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$W = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}$$

FA vs. PCA: An Example

$$(z) \quad p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$W = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}$$

$$cov(X) = WW^T + \Psi = \begin{bmatrix} 101 & 1\\ 1 & 2 \end{bmatrix}$$

FA vs. PCA: An Example

$$W = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}$$

$$cov(X) = WW^T + \Psi = \begin{bmatrix} 101 & 1\\ 1 & 2 \end{bmatrix}$$

 PCA would give a top eigenvector primarily lying along the first dimension

Factor Analysis: Inferring the latents

$$p(z \mid x) \propto p(x \mid z)p(z)$$

$$= \mathcal{N}(x \mid Wz, \Psi) \cdot \mathcal{N}(z \mid 0, I)$$

Factor Analysis: Inferring the latents

$$\begin{aligned} p(z \mid x) &\propto p(x \mid z) p(z) \\ &= \mathcal{N}(x \mid Wz, \Psi) \cdot \mathcal{N}(z \mid 0, I) \\ &\vdots \\ &= \mathcal{N}(\Lambda W^T \Psi^{-1} x, \Lambda) \quad \text{where} \quad \Lambda = \left(W^T \Psi^{-1} W + I \right)^{-1} \end{aligned}$$

Factor Analysis: Inferring the latents

$$\begin{aligned} p(z \mid x) &\propto p(x \mid z) p(z) \\ &= \mathcal{N}(x \mid Wz, \Psi) \cdot \mathcal{N}(z \mid 0, I) \\ &\vdots \\ &= \mathcal{N}(\Lambda W^T \Psi^{-1} x, \Lambda) \quad \text{where} \quad \Lambda = \left(W^T \Psi^{-1} W + I \right)^{-1} \end{aligned}$$

• When inferring the latent, the components of x are downweighted in proportion to their amount of independent noise (value in Ψ).

EM for Factor Analysis

- E step: Estimate the posterior, p(z|x), given set parameters
- M step: Estimate the parameters, $[W, \Psi]$, given the expectations of the latents

Why probabilistic models, versus PCA?

- Allows having more sophisticated, and more accurate models
 - Different noise models (FA vs PPCA), mixture of factor analyzers, etc...
- Principled
- Better for missing data, or streaming data
- FA won't be as dependent on scaling

- However, PCA has simpler understanding in terms of variance and orthogonality, and is faster to run!
- Important to check that scientific results are robust across methods

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]$ be the set of unknown function values at these points.

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a **Gaussian process**.

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a Gaussian process. Such a process is defined by its **mean function** $m(\mathbf{x}) \in \mathbb{R}$ and a **covariance function**, $\mathcal{K}(\mathbf{x}, \mathbf{x}') \geq 0$, which is any positive definite **Mercer kernel**

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $f_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If f_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a Gaussian process. Such a process is defined by its mean function $m(x) \in \mathbb{R}$ and a covariance function, $\mathcal{K}(x, x') \geq 0$, which is any positive definite Mercer kernel

• Example Kernel ("Radial Basis Function"): $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}'; \ell) = \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{x}'||^2}{2\ell^2}\right)$

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a **Gaussian process**. Such a process is defined by its **mean function** $m(\mathbf{x}) \in \mathbb{R}$ and a **covariance function**, $\mathcal{K}(\mathbf{x}, \mathbf{x}') \geq 0$, which is any positive definite **Mercer kernel**

• Example Kernel ("Radial Basis Function"): $\mathcal{K}(x,x';\ell) = \exp\left(-\frac{||x-x'||^2}{2\ell^2}\right)$

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a **Gaussian process**. Such a process is defined by its **mean function** $m(\mathbf{x}) \in \mathbb{R}$ and a **covariance function**, $\mathcal{K}(\mathbf{x}, \mathbf{x}') \geq 0$, which is any positive definite **Mercer kernel**

• Example Kernel ("Radial Basis Function"): $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}'; \ell) = \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{x}'||^2}{2\ell^2}\right)$

Gaussian Processes - sampling from the prior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by gpr_demo_noise_free.ipynb.

Gaussian Processes - Example kernels

Figure 18.3: GP kernels evaluated at k(x,0) as a function of x. Generated by gpKernelPlot.ipynb.

Gaussian Processes - estimating a posterior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by gpr_demo_noise_free.ipynb.

Gaussian Processes - estimating a posterior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by gpr_demo_noise_free.ipynb.

Gaussian Processes - estimating a posterior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by $gpr_demo_noise_free.ipynb$.

Automatically find smooth latent trajectory when inputting noisy spiking data

$$\mathbf{y}_{:,t} \mid \mathbf{x}_{:,t} \sim \mathcal{N}\left(C\mathbf{x}_{:,t} + \mathbf{d}, R\right),$$

$$\mathbf{y}_{:,t} \mid \mathbf{x}_{:,t} \sim \mathcal{N}\left(C\mathbf{x}_{:,t} + \mathbf{d}, R\right),$$

$$\mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \ K_i
ight), \qquad \qquad K_i(t_1, t_2) = \sigma_{f,i}^2 \cdot \exp\left(-rac{\left(t_1 - t_2
ight)^2}{2 \cdot au_i^2}
ight) + \sigma_{n,i}^2 \cdot \delta_{t_1, t_2},$$

HMMS

The current state only depends on the past state

$$P(z_{t+1} | z_1, z_2, \dots, z_t) = P(z_{t+1} | z_t)$$

The current state only depends on the past state

$$P(z_{t+1} | z_1, z_2, \dots, z_t) = P(z_{t+1} | z_t)$$

We can use the rules of independence to calculate the total probability:

$$P(z_1, z_2, \dots, z_{t+1}) = P(z_1)P(z_2 | z_1) \dots P(z_t | z_{t-1})P(z_{t+1} | z_t)$$

The current state only depends on the past state

$$P(z_{t+1} | z_1, z_2, \dots, z_t) = P(z_{t+1} | z_t)$$

We can use the rules of independence to calculate the total probability:

$$P(z_1, z_2, \dots, z_{t+1}) = P(z_1)P(z_2 | z_1) \dots P(z_t | z_{t-1})P(z_{t+1} | z_t)$$

$$P(z_{1:T}) = P(z_1) \prod_{t=2}^{T} p(z_t | z_{t-1})$$

$$P(z_1, z_2, \dots, z_{t+1}) = P(z_1)P(z_2 | z_1) \dots P(z_t | z_{t-1})P(z_{t+1} | z_t)$$

$$P(z_1, z_2, \dots, z_{t+1}) = P(z_1)P(z_2 | z_1) \dots P(z_t | z_{t-1})P(z_{t+1} | z_t)$$

Initial Conditions

$$P(z_1 = R) = 0.6, \quad P(z_1 = S) = 0.4$$

$$P(z_1, z_2, \dots, z_{t+1}) = P(z_1)P(z_2 | z_1) \dots P(z_t | z_{t-1})P(z_{t+1} | z_t)$$

Initial Conditions

$$P(z_1 = R) = 0.6, \quad P(z_1 = S) = 0.4$$

Transitions Matrix

$$P(z_{t+1} = R | z_t = R) = 0.7 \qquad P(z_{t+1} = S | z_t = R) = 0.3$$

$$P(z_{t+1} = R | z_t = S) = 0.4 \qquad P(z_{t+1} = S | z_t = S) = 0.6$$

$$(z_1) \rightarrow (z_2) \rightarrow (z_3) \rightarrow (z_4) \cdots \cdots \rightarrow (z_{t+1})$$

$$P(z_{1:T}) = P(z_1) \prod_{t=2}^{T} p(z_t | z_{t-1})$$

$$P(z_{1:T}) = P(z_1) \prod_{t=2}^{T} p(z_t | z_{t-1})$$

$$P(z_{1:T}, x_{1:T}) = P(z_1) \prod_{t=2}^{T} p(z_t | z_{t-1}) \prod_{t=1}^{T} p(x_t | z_t)$$

Initial Probabilities Transition Probabilities

Emissions (Observation) Probabilities

$$P(z_{1:T}, x_{1:T}) = P(z_1) \prod_{t=2}^{T} p(z_t | z_{t-1}) \prod_{t=1}^{T} p(x_t | z_t)$$

Hidden Markov Models: Emissions Models

- P(x|z) can take many different forms
 - Gaussian: $P(x_t | z_t) = \mathcal{N}(\mu_{z_t}, \sigma_{z_t})$

Hidden Markov Models: Emissions Models

- P(x|z) can take many different forms
 - Gaussian: $P(x_t | z_t) = \mathcal{N}(\mu_{z_t}, \sigma_{z_t})$
 - Bernoulli, Poisson, etc.

Hidden Markov Models: Emissions Models

- P(x | z) can take many different forms
 - Gaussian: $P(x_t|z_t) = \mathcal{N}(\mu_{z_t}, \sigma_{z_t})$
 - Bernoulli, Poisson, etc.
 - Autoregressive HMM (ARHMM):
 - Different dynamics in each discrete state: $P(x_t | z_t) = \mathcal{N}(y_{t-1} A_{z_t} y_t, \sigma_{z_t})$

Hidden Markov Models: Emissions Models

- P(x|z) can take many different forms
 - Gaussian: $P(x_t | z_t) = \mathcal{N}(\mu_{z_t}, \sigma_{z_t})$
 - Bernoulli, Poisson, etc.
 - Autoregressive HMM (ARHMM):
 - Different dynamics in each discrete state: $P(x_t | z_t) = \mathcal{N}(y_{t-1} A_{z_t} y_t, \sigma_{z_t})$
 - GLM-HMM:
 - Different GLM weights in each discrete state

• Sample from $P(z_1)$

- Sample from $P(z_1)$
- Sample from $P(x_1 | z_1)$

- Sample from $P(z_1)$
- Sample from $P(x_1 | z_1)$
- For all future time steps:
 - Sample $P(z_{t+1}|z_t)$
 - Sample $P(x_{t+1}|z_{t+1})$

HMM: Goals

- Given some data:
 - Fit the model!
 - Infer discrete latent states with Forward/Backward Algorithm
 - Infer model parameters (transition probabilities, emissions model)
 - Determine the likelihood of the data given the model parameters

Hidden Markov Models: Emissions Models

- P(x|z) can take many different forms
 - Gaussian: $P(x_t | z_t) = \mathcal{N}(\mu_{z_t}, \sigma_{z_t})$
 - Bernoulli, Poisson, etc.
 - Autoregressive HMM (ARHMM):
 - Different dynamics in each discrete state: $P(x_t | z_t) = \mathcal{N}(y_{t-1} A_{z_t} y_t, \sigma_{z_t})$
 - GLM-HMM:
 - different GLM weights in each discrete state

HMM - Gaussian Emissions

Modelling state-transition dynamics in resting-state brain signals by the hidden Markov and Gaussian mixture models

HMM - Autoregressive Emissions

Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders

HMM - GLM Emissions

Unsupervised identification of the internal states that shape natural behavior

HMM - GLM Emissions

Mice alternate between discrete strategies during perceptual decision-making

Resources

- Probabilistic Machine Learning Book 1
 - https://probml.github.io/pml-book/book1.html
- Intro to LVM Notes from Princeton Course
 - https://pillowlab.princeton.edu/teaching/statneuro2020/notes/ notes18 LatentVariableModels.pdf
- Interactive HMM Website
 - https://nipunbatra.github.io/hmm/