Given the matrix
$$A = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 8 & 17 \\ 2 & 9 & 27 \end{pmatrix}$$
 find it's LU factorization. Using LU factorization find solution for $Ax = b$, $b = \begin{pmatrix} 0 \\ 5 \\ 16 \end{pmatrix}$.

$$\begin{pmatrix} 2 & 3 & 5 \\ 4 & 8 & 17 \\ 2 & 9 & 27 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{pmatrix} 2 & 3 & 5 \\ 0 & 2 & 7 \\ 0 & 6 & 22 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 3R_2} \begin{pmatrix} 2 & 3 & 5 \\ 0 & 2 & 7 \\ 0 & 6 & 22 \end{pmatrix}$$

$$L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$L_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

$$L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Example:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-b & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
-b & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
-b & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
2 & 3 & 5 \\
4 & 3 & 13
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0$$

Criven the matrix A= (2 3 5) find it's LU factorization. Using LU factorization find solution for Ax=b, b= (5). $A = \begin{bmatrix} 2 & 3 & 5 \\ 4 & 8 & 17 \\ 2 & 9 & 27 \end{bmatrix} \begin{bmatrix} 2 & 3 & 5 \\ R_2 = R_2 + R_1(-2) \\ 1 & 0 & 6 & 22 \end{bmatrix} \begin{bmatrix} 2 & 3 & 5 \\ 6 & 2 & 7 \\ 0 & 6 & 22 \end{bmatrix} = 0$ $R_3 = R_3 + R_1(-1)$ $R_4 = R_3 + R_1(-1)$ L23 R3-R,+R2(-3) $\begin{bmatrix}
1 & 0 & 0 & | & 0$ $\begin{bmatrix} 2 & 3 & 5 & 0 & 7 & (100 & -17) \\ 0 & 2 & 7 & 5 & -10 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$ X=-1, y=-1, ==1

Given the matrix A

a)
$$A = \begin{pmatrix} 3 & 5 \\ 6 & 16 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 4 & 1 & 2 \\ -4 & 0 & 3 \end{pmatrix}$ c) $A = \begin{pmatrix} 3 & 1 & 6 \\ -3 & 0 & -2 \\ 3 & 3 & 17 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix}$$
 find it's LLI factorization.

Using LU factorization find solution for Ax = b

a)
$$b = \begin{pmatrix} 8 \\ 22 \end{pmatrix}$$
 b) $b = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$ c) $b = \begin{pmatrix} 9 \\ -5 \\ 20 \end{pmatrix}$ d) $b = \begin{pmatrix} 5 \\ 4 \\ 4 \end{pmatrix}$

Answers:

Ly factorization:

a)
$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 0 & 6 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 4 & 1 & 2 \\ 0 & 1 & 5 \end{pmatrix}$

$$\begin{array}{c} c) \left(\begin{array}{c} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 1 \end{array} \right) \left(\begin{array}{c} 3 & 1 & 6 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{array} \right) \end{array}$$

$$\begin{pmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 3 & 2 & 1
 \end{pmatrix}
 \begin{pmatrix}
 1 & 4 & 7 \\
 0 & -3 & -6 \\
 0 & 0 & 1
 \end{pmatrix}$$

Ax = b solution:

$$a$$
) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$G$$
 $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$d)\begin{pmatrix} -2\\0\\1\end{pmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & k_{12} & k_{14} & k_{14} \\ 6 & 16 & k_{12} & k_{14} & k_{14} \\ 2 & 1 & 0 & 6 \\ 2 & 1 & 1 & 1 \\$$