第0章预备知识

Fr4nk1in-USTC 中国科学技术大学计算机学院

更新: 2022年2月26日

1 集论初等概念

• 子集与包含关系 ⊆

$$A \subseteq B \Leftrightarrow \forall x \in A, x \in B$$

• 集合相等 =

$$A = B \Leftrightarrow A \subseteq B \coprod B \subseteq A$$

幂集 P(⋅)

$$\mathcal{P}(A) = \{ a \mid a \subseteq A \}$$

- 集合运算∪∩-
 - 并集∪

$$A \cup B = \{x \mid x \in A \not \exists x \in B\}$$

• 交集 ∩

$$A \cap B = \{x \mid x \in A \perp \!\!\!\perp x \in B\}$$

作为集的运算,并和交都满足交换律,结合律和分配律.

● 差集 -

$$A - B = \{x \mid x \in A \perp x \notin B\}$$

• 积集 ×

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

$$\prod_{i=1}^{n} A_{i} = A_{1} \times \dots \times A_{n} = \{(a_{1}, \dots, a_{n}) \mid a_{1} \in A_{1}, \dots, a_{n} \in A_{n}\}$$

$$A^0 = \varnothing, A^1 = A, A^n = \prod_{i=1}^n A$$

- 关系
 - A 到 B 的关系 $R: R \subseteq A \times B$
 - A 上的 n 元关系 $R: R \subseteq A^n$
- 等价关系

- A 上的等价关系 R: 满足以下三条性质的二元关系 R(⊆ A^2)
 - 1° 自反性: $\forall x \in A, (x, x) \in R$
 - 2° 对称性: $\forall x, y \in A, (x, y) \in R \Leftrightarrow (y, x) \in R$
 - 3° 可递性: $\forall x, y \in A, (x, y), (y, z) \in R \Rightarrow (x, z) \in R$

 $若(a,b) \in R$ 则称 a 与 b等价,记作 $a \sim b$.

● 等价类

A 中与 $a(\in A)$ 等价的所有元素形成的集叫做由 a 形成的 R 等价类, 记作

$$[a] = \{x \mid x \in A, x \sim a\}$$

不同的等价类之间没有公共元素, 所以 A 上的任何等价关系 R 都确定了 A 的一个分 *.

- 商集: 设R是A上的等价关系,所有R等价类的集叫做商集,记作A/R.
- 映射: 一种特殊的关系
 - **定义** 设 f 是集 X 到集 Y 的一个关系 (即 $f \subseteq X \times Y$), 且对任意 $x \in X$ 都有且只有一个 $y \in Y$ 使得 $(x, y) \in f$, 那么我们称 f 是从 X 到 Y 的函数或映射, 记作 $f: X \to Y$.
 - **象与原象** 若 $(x_0, y_0) \in f$, 那么我们称 y_0 为 x_0 的象, x_0 是 y_0 的原象, 记作 $x_0 \mapsto y_0$ 或 $y_0 = f(x_0)$.
 - **定义域与值域** X 叫做 f 的定义域. X 中元素在 Y 中的象的全体是 Y 的一个子集, 叫做 f 的值域.

满射 映射 $f: X \to Y$ 的值域就是 Y.

单射 映射 $f: X \to Y$ 满足对任意的 $x_1, x_2 \in X$, 有

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

- **双射** 映射 $f: X \to Y$ 既是单射又是满射. 此时称 X 和 Y 之间存在一一对应, 或者称 X 和 Y 等势, 也称 X 和 Y 有相同的基数.
 - 双射 $f: X \to Y$ 的逆映射 $f^{-1}: Y \to X$ 也是双射. $(f(x) = y \Leftrightarrow f^{-1}(y) = x)$
 - 双射 $f: X \to Y$ 与双射 $g: Y \to Z$ 的复合映射 $g \circ f: X \to Z$ 也是双射. $((g \circ f)(x) = g(f(x)))$
- n 元运算: 集 A 上的 n 元函数 $f: A^n \to A$ 叫做 A 上的 n 元运算.

2 Peano 自然数公理

我们把自然数集 № 看成是满足以下五条公理的集.

公理 2.1 $0 \in \mathbb{N}$.

公理 2.2 若 $x \in \mathbb{N}$,则 x 有且只有一个后继 $x' \in \mathbb{N}$.

公理 2.3 对任意 $x \in \mathbb{N}, x' \neq 0$.

公理 2.4 对任意 $x_1, x_2 \in \mathbb{N}$, 若 $x_1 \neq x_2$, 则 $x_1' \neq x_2'$.

公理 2.5 设 $M \subseteq \mathbb{N}$. 若 $0 \in M$, 且当 $x \in M$ 时也有 $x' \in M$, 则 $M = \mathbb{N}$.

有下面的常用结论.

定理 2.1 (强归纳法) 假设与自然数 n 有关的命题 P(n) 满足以下两个条件:

1° P(0) 成立;

 2° 对于 m > 0, 若 k < m 时 P(k) 都成立, 则 P(m) 也成立,

则 P(n) 对所有的自然数 n 都成立.

证明. 只要证明集合 $S = \{n \mid P(n) \text{ 不成立}\}$ 为空集即可, 使用反证法, 略.

3 可数集

定义 3.1 有限集是指空集或与 $\{0,1,\cdots,n\},n\in\mathbb{N}$ 等势的集. 可数集是指与自然数集 \mathbb{N} 等势的集, \mathbb{N} 显然也是可数集.

命题 3.1 可数集的无限子集也是可数集.

命题 3.2 若存在无限集 B 到可数集 A 的单射,则 B 为可数集.

命题 3.3 1° 若 A 可数且 B 非空有限或可数,则 $A \times B$ 和 $B \times A$ 都可数. 2° 若 A_1, \dots, A_n 中至少有一个可数而其他为非空有限或可数,则 $\prod_{i=1}^n A_i$ 可数.

命题 3.4 1° 若 A 可数且 B 有限或可数,则 $A \cup B$ 也可数.

 2° 若 A_1, \dots, A_n 中至少有一个可数而其他为有限或可数,则 $\bigcup_{i=1}^n A_i$ 可数.

命题 3.5 若 A 可数, 则 $\bigcup_{n=1}^{\infty} A^n$ 可数.

命题 3.6 若 A 可数,则所有由 A 的元素形成的有限序列构成的集 B 也可数.

命题 3.7 若每个 A_i 有限或可数, 且 $\bigcup_{i\in\mathbb{N}} A_i$ 是无限集, 则 $\bigcup_{i\in\mathbb{N}} A_i$ 可数.

根据下面的 Cantor 定理, 存在大量的不可数的无限集.

定理 3.8 集 A 和 A 的幂集 $\mathcal{P}(A)$ 不等势.

说明可数集的幂集是不可数的.

例 3.1 实数集 \mathbb{R} , 区间 (0,1) 都是不可数的.