ЗАДАЧИ ПО ОБИКНОВЕНИ ЛИФЕРЕНЦИАЛНИ УРАВНЕНИЯ

УРАВНЕНИЯ С РАЗДЕЛЯЩИ СЕ ПРОМЕНЛИВИ

Това са уравненията, които могат да бъдат записани във вида y' = f(x)g(y)

211.7

M(x)N(y)+P(x)Q(y)y'=0.

имат общо решение

$$\frac{M(x)}{P(x)}dx + \frac{Q(y)}{N(y)}dy = 0.$$

Освен това допълнително трябва да проверим дали при делението не сме изпуснали решения, за които P(x)=0 или N(y)=0.

Пример:
$$x^2y^2y'+1=y$$
 $x^2y^2dy=(y-1)dx \ (:x^2(y-1)\neq 0)$, $-\frac{y^2}{y-1}\frac{dx}{x^2}$ (променливите са разделени), $y-1$ x

сега трябва да проверим дали при делението на х²(у-1) не сме $\begin{vmatrix} \frac{\chi^2}{x^2} dy = \frac{dx}{x^2}, & \frac{\chi^2}{2} + y + \ln|y - 1| = -\frac{1}{x} + c.$

уравнението $x^2y^2 = (y-1)x'$). у=1 е решение на уравнението, а х=0 не е решение (х=0 е решение на загубили решения x=0 или y-1=0. Непосредствено се проверява, че

уравненията от вида у'=f(ax+by) се свеждат до уравнения с разделящи се променливи със смяната z=ax+by (или z=ax+by+c, където с е подходящо избрано число). бъде намерено решението, което удовлетворява началното условие (ако такова е посочено). в следвашите задачи се иска да бъдат решени уравненията и да

]."	1.9. $z'=10^{X+Z}$ 1.10. y'	ຳ.	2)=0.		1.1. $xy+(x+1)y'=0$. 1.2. $\sqrt{y^2}$	
1.14. $2xy' + y^2 = 1$.	1.12. $(x+2y)\tilde{y}'=1$, $y(0)=-1$.	1.10. $y' = cos(y-x)$	1.8. y'-xy"=2xy	1.6. $xy'+y=y^2$, $y(1)=0.5$.	1.4. y' ct $gx+y=2$, $y(0)=-1$.	1.2. $\sqrt{y^2+1} = xyy'$.]

2. ХОМОГЕННИ УРАВИЕНИЯ

y'=f(X) или M(x,y)+N(x,y)y'=0, където M(x,y) и H(x,y) са хомогенни функции от една и съща стопон в (Казваме, чо функцията $M(\mathbf{x},\mathbf{y})$ е хочетенна от степен seR, ако $M(kx,ky)=k^SM(x,y)$ V keR). За да решим Това са уравненията, които могат да бъдат записани във вида

> се променливи xz'=f(z)-z. Пример. xy'=x+y,т.е. y'=1+y/x. Полагамо y=xz. $y'=x^2+z=1+z$, xz'=1, dz=dx/x, z=ln|x|+C, y=x(ln|x|+C). хомогенното уравноние правим смяната у/х=z. Тогава у=xz и слодователно у'=xz'+z=f(z), т.е.стигаме до уравнонието с разлелящи

Уравненията от вида у'= $f\left(\frac{ax+by+c}{mx+ny+p}\right)$ свеждаме до хомогенни чрез

с уравнения ax+by+c=0 и mx+ny+p=0. Ако тези прави не се пресичат, то ax+by=k (mx+ny) и уравнението има вида y'=F (mx+ny). Както вече посочихме, това уравнение се свежда до уравнение с раздолящи се променливи чрез смяната z=mx+ny. смяната $x=\xi+x_0, y=\eta+y_0,$ къдото (x_0,y_0) е пресечната точка на правите

Пример. 2x-4y+6+(x+y-3)y'=0.

От системата 2x-4y+6=0, x+y-3=0 намираме $x_0=2$, $y_0=2$.

Полагаме $x=\xi+1$, $y=\eta+2$. Тогава $y'=dy/dx=d\eta/d\xi$ и следователно $2\xi-4\eta+(\xi+\eta)d\eta/d\xi=0$, т.о. стигнахме до хомогенно уравнение. m Някои уравнения се свеждат до хомогенни чроз смяната y=z , където числото m определяме след заместване в уравнението. Ако не вызможно да намерим такова число m, то уравнението не може да

Пример. $2x^4$ уу'+у 4 = 4 х 6 След смяната у= z^m уравнението има вида $2mx^4$ z^{2m-1} $z'+z^{4m}$ = 4 х 6 . То ще бъде хомогенно, ако 4 +(2m-1)= 4 m= 6 , косто в възможно само при m = 3 / 2 . Следователно уравнението свеждаме до хомогенно със смяната 3 / 2 .

2.25.	2.21.	2.17. 2.19. 2.20.	2.13.	2.11.	2.9.	2.7.	2.5.	2.3.	2.1.
2.25. $2y' + x = 4\sqrt{y}$. 2.27. $2xy' + y = y^2\sqrt{x - x^2y^2}$.	2.21. $x^{3}(y'-x)=y^{2}$. 2.23. $2xdy+(x^{2}v^{4}+1)vdx=0$.	2.17. $(y+2) dx = (2x+y-4) dy$. 2.19. $(y'+1) \ln(y+x) / (x+3) = (y+x) / (x+3)$ 2.20. $y' = (y+2) / (x+1) + tg(y-2x) / (x+1)$.	2.13. $(2x-4y+6)dx+(x-y-3)dy=0$. 2.15. $x-y-1+(y-x+2)y'=0$.	2.11. $(y+\sqrt{xy})dx=xdy$.	2.9. $xy'-y=(x+y)\ln \frac{x+y}{x}$.	2.7. $xy'-y=xtg(y/x)$.	$2.5. y^2 + x^2 y' = xyy'.$	2.3. $(y^2-2xy)dx+x^2dy=0$.	2.1. $(x+2y)dx-xdy=0$.
2.26	2.22	(x+3) +1).	2.16	2.12	2.10.	2.8.	2.6.	2.4.	2.2.
2.26. $y'=y^2-2/x^2$. 2.28. $(2/3)xyy'=\sqrt{x^6-y^4}+y^2$.	2.22. $2x^2y'=y^3+xy$. 2.24. $ydx+x(2xy+1)dy=0$.	Y = 2[(Y+2)/(x+Y-1)]	2.14. $(2x+y+1)dx-(4x+2y-3)dy=0$ 2.16. $(x+4y)y'=2x+3y-5$.	2.12. $xy' = \sqrt{x^2 - y^2 + y}$.	2.10. $xy'=ycosln(y/x)$.	2.8. $xy' = y - xe^{(Y/X)}$.	2.6. $(x^2+y^2)y'=2xy$.	$2.4. 2x^{3}y'=y(2x^{2}-y^{2}).$	2.2. $(x-y)dx+(x+y)dy=0$.

3. ЛИНЕЙНИ УРАВНЕНИЯ. УРАВНЕНИЯ НА БЕРНУЛИ И РИКАТИ

вида $\left| y_{\mathbf{e}} \right| \mathbf{a}(\mathbf{x}) d\mathbf{x} \right| = \mathbf{b}(\mathbf{x}) \mathbf{e} \left| \mathbf{a}(\mathbf{x}) d\mathbf{x} \right|$ откъдето последователно получаваме умножим уравнението по интегрирашия множител $e^{\int a(x)dx}$, то приема Уравненията от вида у'+a(x)у=b(x) наричаме линейни. Като

$$ye\int a(x)dx = \int b(x)e\int a(x)dx dx + C,$$
$$y(x) = e^{-\int a(x)dx} \left(\int b(x)e\int a(x)dx dx + C \right).$$

Пример. $y'=2x(x^2+y)$.

$$y'-2xy=2x^3|.e^{-x^2},(ye^{-x^2})'=2x^3e^{-x^2}, ye^{-x^2}=2\int x^3e^{-x^2}dx+C,$$

$$y'e^{-x^2} = -(x^2+1)e^{-x^2} + C$$
, $y(x) = Ce^{x^2} - (x^2+1)$.

на у. Например уравнението у=(2х+у³)у' можем да запишем във вида Някои уравнения са линейни, ако разглеждаме х като функция

при х=х(у). $\frac{dx}{dy}$ y=2x+y³, т.е. $\frac{dx}{dy} - \frac{2}{y}$ x = y², откъдето се вижда. че то е линейно

разделим двете му страни на у n , след което полагаме у $^{-n+1}$ =z и получаваме линейно уравнение за z=z(x). Уравнението на Бернули у'+а(x)у=b(x)уⁿ при п≠0.1 решаваме като

Уравнениото на Рикати

 $y'=a(x)y^2+b(x)y+c(x)$ в общия случай не може да бъде решено в квадратури. Ако познаваме едно негово частно решение $y_1(x)$, то след полагането $y=y_1(x)+z$ ръководим от вида на уравнението. Например за уравнението описания по-горо начин. Частно решение на уравнението на Рикати понякога ни се отдава да намерим с налучкване, при което се получаваме за z=z(x) уравнение на Бернули, което решаваме по

 $y'-y^2-x^2-2x$ търсим частно решение от вида y=ax+b, неопределените коефициенти а и b намираме след заместване в

вида ута/х, като отново константата а определяме след заместване в уравнението. уравнението. За уравнението у'+2 $y^2=6/x^2$ търсим частно решенио от

3.23. y'x ³ siny=xy'-2y.	3.21. $xy'+2y+x^5y^3e^{x}=0$.	3.19. $xydy=(y^2+x)dx$.	3.17. $y'=y^4 cosx+ytgx$.	$3.15. y' + 2y = y^2 e^x$	3.13. $y'=y/(3x-y^2)$.	3.11. $(\sin^2 y + xctgy)y' = 1$.	3.9. $(x+y^2)dy=ydx$.	3.7. $(xy'-1) \ln x=2y$.	3.5. $y=x(y'-xcosx)$.	$3.3. \times (y'-y)=e^{X}.$	3.1. $(2x+1)y'=4x+2y$.
3.24. $(2x^2y\ln y-x)y'=y$.	3.22. $2y' - \frac{x}{y} = xy/(x^2 - 1)$.	3.20. $xy' - 2x^2 \sqrt{y} = 4y$.	$3.18. xy^2y'=x^2+x^3$.	3.16. $(x+1)(y'+y')=-y$.	3.14. $(1-2xy)y'=y(y-1)$.	3.12. $(2x+y)$ dy=ydx+4 lny dy.	3.10. $(2e^{Y}-x)y'=1$.	3.8. $xy' + (x+1)y = 3x^2e^{-x}$.	$3.6. y'=2x(x^2+y).$	$3.4. x^2y' + xy + 1 = 0.$	3.2. y'+ytgx=1/sinx.

3.25. $x^2y' + xy + x^2y^2 = 4$. 3.27. $xy' - (2x+1)y + y^2 = -x^2$. 3.29. $y' + 2ye^{x} - y^{2} = e^{2x} + e^{x}$ 3.26. $3y' + y^2 + \frac{2}{x^2} = 0$. 3.28. $y'-2xy+y^2=5-x^2$

4. УРАВНЕНИЯ ПРОИЗЛИЗАШИ ОТ ПЪЛЕН ДИФЕРЕНЦИАЛ.

ИНТЕГРИРАЩ МНОЖИТЕЛ

Q(x,y). Напомняме, че записът на уравнението чрез диференциал разглеждаме като симетричен начин за записване на всяко едно от уравненията x'=-Q(x,y)/P(x,y), y'=-P(x,y)/Q(x,y). Необходимо условие за да произлиза уравнението от пълен диференциал е да бъде изпълнено равенството $P_y(x,y)=Q_x(x,y)$. пълен диференциал, ако лявата му страна е пълен диференциал, т.е. съществува такава функция U(x,y) , че $U_{\mathbf{X}}(x,y)$ = P(x,y), $U_{\mathbf{Y}}(x,y)$ = Казваме, че уравнението P(x,y)dx + Q(x,y)dy = 0 произлиза от

равнината, то в D съществува функция U(x,y), т.е. необходимото условие е и достатъчно. лко $P,Q \in C^1(D)$ и $P_y = Q_x$ в D , където D е едносвързана област в

с формулата U(x,y) = C, където C е произволна константа. $\mathtt{U}_{\mathbf{Y}}^{-\mathbf{z}}$ Q определяме функцията $\mathtt{U}(\mathtt{x},\mathtt{y})$. Тогава общото решение се дава За да решим уравнението, най-напред от равенствата $\mathbf{U}_{\mathbf{X}}^{=}$ P,

Пример 1.
$$2x + 3x^2y + (x^3 - 3y^2)y' = 0$$
, т.о. $(2x + 3x^2y)dx + (x^3 - 3y^2)dy = 0$. Тъй като $(2x + 3x^2y)_y = 3x^2 = (x^3 - 3y^2)_x$, то уравнонисто

произлиза от пълен диференциал. Функцията $U(\mathbf{x},\mathbf{y})$ търсим от равен-

$$U_x = 2x + 3x^2y$$
, $U_y = x^3 - 3y^2$.

При фиксирано у интегрираме първото уравнение по х, като интеграционната константа се получава функция на у, т.е.

$$U = \int (2x + 3x^2y) dx = x^2 + x^3y + \varphi(y).$$

Функцията φ(у) определяме като замостим получения израз за U въс второто уравнение:

$$(x^2 + x^3y + \varphi(y))_y = x^3 - 3y^2, \varphi(y)' = -3y^2, \varphi(y) = -y^3 + \text{const},$$

т.е. $U(x,y) = x^2 + x^3y - y^3$ (U се определя с точност до константа). Следователно общото решение на уравнението има вида $x^2 + x^3y - y^3 = c$.

подходящ интегрираш множител. Ако уравнението не произлиза от пълен диференциал търсим

функцията $\mu(\mathbf{x},\mathbf{y})$ # О наричаме интегрираш множител за

M(x,y)dx + N(x,y)dy = 0,

ако е такава, че уравнението $(\mu M) dx + (\mu N) dy = 0$

произлиза от пълен лиференциал. Необходимо условие за това о $(\mu M)_{y}=(\mu N)_{x}.$

Обикновено търсим интегриращ множител от вида $\mu(\phi(\mathbf{x},\mathbf{y}))$.

определяме изхождайки от вида на изразите участвуваши в уравнението. Тогава от горното равенство получаваме, че функцията на една променлива $\mu(t)$ удовлетворява условието където ф(х,у) е предварително избрана функция, вида на която

$$\frac{\mu'\left(\phi\left(x,Y\right)\right)}{\mu\left(\phi\left(x,Y\right)\right)} = \frac{v_{X}(x,Y)\mu(x,Y) - \phi_{X}(x,Y)\nu(x,Y)}{v_{X}(x,Y) - \phi_{X}(x,Y)\nu(x,Y)}.$$

и определяме веднага от равенството Ако се случи дясната страна да има вида $F(\phi(x,y))$, то функцията $(\ln |\mu(t)|)' = F(t).$

в противен случай опитваме отново с друга функция ф(х,у).

Пример 2. $(x+y^2)dx - 2xydy = 0$. Уравнението не произлиза от пълен диференциал. зашото

$$(x+y^2)_Y = 2y * -2y = (-2xy)_X$$
.

 $\mu = \mu(x)$, т.е. $\phi(x,y) = x$. Изхождайки от горното равенство получаваме $\mu'/\mu = -2/x$ и виждаме че можем да намерим интегрираш множител зависещ само от x. Последователно получаваме $(\ln|\mu(x)|)' = -2k, \ln|\mu(x)| = -2\ln|x|, \mu(x) = 1/x^2.$ Уравнониото най-напред търсим и от възможно най-прост вид. Ще започнем с

$$\frac{x + y^2}{x^2} dx - 2 \frac{xy}{x^2} dy = 0$$

произлиза от пълен диференциал и както в пример 1 получаваме $U_{\mathbf{X}}=1/\mathbf{x}+\mathbf{y}^2/\mathbf{x}^2,\ U_{\mathbf{y}}=-2y/\mathbf{x},$

$$U = -y^2/x + \phi(x)$$
, $y^2/x^2 + \phi'(x) = 1/x + y^2/x^2$, $\phi'(x) = 1/x$, $\phi(x) = \ln|x|$, $U(x,y) = -y^2/x + \ln|x|$, следователно общото решение е

откъдето лесно следва, че общото решение можем да запишем и във $-y^2/x + \ln|x| = C,$

$$x e^{-Y^2/x} = C$$
 или $x = C e^{Y^2/x}$.

ше видим, че Пример 3. 2xy ln ydx + $(x^2 + y^2\sqrt{y^2+1})$ dy = 0. Ако опитаме да търсим интегрираш множител зависещ само от x

$$\frac{\mu'}{\mu} = \frac{N_x - M_y}{\rho_y M - \rho_x N} = -\frac{2x - 2x(\ln y + 1)}{x^2 + y^2 \sqrt{y^2 + 1}}$$

и тъй като дясната страна не зависи само от х то няма да успеем да намерим да намерим интегрираш множител $\mu = \mu(x)$. Тогава опитваме да намерим интегрираш множител от вида $\mu = \mu(y)$.

$$\frac{\mu'}{\mu} = \frac{N - My}{\varphi_y M - \varphi_x N} = -1/y$$

и следователно

$$(\ln |\mu|)' = -1/y, \mu = 1/y.$$

Уравнението

$$|\mu|$$
)' = -1/y, $\mu = 1/y$.

 $\frac{2xy}{v} \ln y dx + \frac{x^2 + y^2\sqrt{y^2 + 1}}{v} dy = 0$

произлиза от пълен диференциал и както по горе намираме общото

$$\frac{x^2}{3}$$
 ln y + 1/3(y² + 1)^{3/2} = 0

решение $\frac{x^2}{x^2} \ln y + 1/3(y^2 + 1)^{3/2} = C$. Пример 4. $(\sqrt{x^2 - y} + 2x) dx - dy = 0$. Ако опитаме да търсим интегриращ множител зависещ само от х или само от у,това няма да ни доведе до успех. Тогава, ръководейки се от вида на уравнението опитваме с $\mu = \mu(x^2-y)$.

$$\frac{\mu'}{\mu} = \frac{N_x - M_y}{\phi_y M - \phi_x N} = -\frac{1}{2(x^2 - y)}.$$

$$(\ln |\mu(t)|)' = -\frac{1}{2t}$$

и следователно

$$|\mu(t)| = e^{-\int \frac{1}{2t} dt} = t^{-1/2}$$

т.е интегриращият множител е $\frac{1}{\sqrt{x^2-y}}$. Уравнението

$$\frac{\sqrt{x^2 - y} + 2x}{\sqrt{x^2 - y}} dx - \frac{1}{\sqrt{x^2 - y}} dy = 0 (x^2 - y \neq 0)$$

произлиза от пълен диференциал и има обшо решение

$$x + 2\sqrt{x^2 - y} = c$$
.

равен на нула. Проверете, че написаните по-долу уравнения произлизат от цията у = х², за която знаменателят на интегриращия множител е Освен тези решения, решение на първоначалното уравнение е и функ-

пълен диференциал и ги решете.

4.1. $2xy dx + (x^2 - y^2) dy = 0$.

4.2.
$$(2 - 9xy^2)x dx + (4y^2 - 6x^3)y dy = 0$$

4.3. $e^{-Y}dx - (2y + xe^{-Y}) dy = 0$.

4.4.
$$y/x dx + (y^3 + lnx) dy = 0$$

4.4. $y/x dx + (y^3 + \ln x) dy = 0$. 4.5. $2x(1 + \sqrt{x^2} - y) dx = \sqrt{x^2} - y dy = 0$.

4.6.
$$(x/\sin y + 2) dx + (x^2 + 1)\cos y/(\cos 2y - 1) dy = 0$$
. Намерете интегриращия множител и решото уравненията:

4.7. $(1 - x^2y) dx + x^2(y - x) dy = 0$, $\mu = \mu(x)$.

4.8.
$$(2x^2y + 2y + 5) dx + (2x + 2x) dy = 0$$

4.8.
$$(2x^2y + 2y + 5) dx + (2x^3 + 2x) dy = 0$$
.
4.9. $(2xy^2 - 3y^3) dx + (7 - 3xy^2) dy = 0$.
4.10. $(3y^2 - x) dx + (2y^3 - 6xy) dy = 0$, $\mu = \mu(x + y^2)$.
4.11. $(x^2 + y^2 + 1) dx - 2xy dy = 0$, $\mu = \mu(y^2 - x^2)$.
4.12. $(x - xy) dx + (y + x^2) dy = 0$, $\mu = \mu(x^2 + y^2)$.
4.12. $xy + x^2 + y^2 + (x^2 + 2y^2)y' = 0$.

4.14. $(x^2 + y^2 + x) dx + y dy = 0$ 4.13. $1 - xy + tg + xy = x^2 + (tg + xy)y'$.

5. УРАВНЕНИЯ, НЕРЕШЕНИ ОТНОСНО ПРОИЗВОДНАТА

уравнения от вида у' = f(x,y), за чието решаване разполагаме вече с цял набор от методи. да се опитаме да изразим от него у'. Ще получим едно или няколко За да решим уравнение от вида F(x,y,y')=0 най-естествено е

Пример 1. $yy'^2 + (x - y)y' - x = 0$.

Това е едно квадратно уравнение относно у'. Като го решим намираме, че у' = 1 или у' = -x/y. Общото решение на първото

уравнение е y = x + C, а на второто $y^2 + x^2 = C$.

y=y(x), да търсим интегралната крива на уравнението, като считаме, че е зададена параметрично и търсим нейните параметрични уравнения. В много случаи е удобно вместо да търсим решението във вида

методът на въвеждане на параметър се прилага по следния начин. Нека съществуват двойка функции φ и ψ . Такива че $x = \varphi(t)$, $y' = dy/dx = \psi(t)$, $F(\varphi(t), \psi(t)) = 0$. За да намерим каква функция на t = y най-напред намираме За уравненията от вида F(x,y')=0, които не съдържат явно у

 $dy/dt = dy/dx.dx/dt = \psi(t)\phi'(t)$

и следователно решението записано в параметричен вид е

 $y = |\psi(t)\varphi'(t)dt + C$ $x = \varphi(t)$,

Torana $dx/dt = dx/dy \cdot dy/dt = (dy/dt)/(dy/dx) = \varphi'(t)/\psi(t)$. Нека за уравнението F(y,y')=0 съществува параметрично представяне, т.е. при $y=\varphi(t)$, $y'=\psi(t)$ имаме $F(\varphi(t),\psi(t))=0$.

 $y = \varphi(t).$ $x = |\phi'(t)/\psi(t)dt + C$

Освен тези решения, уравнението може да има и решения от вида y = b = const, където b е решение на уравнението F(b,0) = 0.

Полагаме y' = sh(t) и от уравнението получаваме y = ch(t). Пример 2. у = $\sqrt{y'^2+1}$.

Следователно dx/dt = (dy/dt)/(dy/dx) = (ch(t))'/sh(t) = sh(t)/sh(t) = 1

x = t + C,

y = ch(t).

ство от решения, уравнението има и решение у = 1 и то е обвивка Като изключим параметъра t намираме y = ch(x-c). Освен това семейна еднопараметричната фамилия от решения.

параметър въвеждаме р≃у'(х). Уравнението решено относно у има вида Ако уравнението може да бъде решено относно х или у. като y = f(x, y').

чаваме $p = f_X(x,p) + f_p(x,p)$ р'. т.е. обикновено диференциално уравнение е $p = \phi(x,C)$. то общото решение на първоначалното уравнение е $y = f(x,\phi(x,C))$. Ако намерим общото решение на уравнението уравнение за р = p(x). Ако общото решенио на това диференциално Полагаме у' = р и диференцирайки по х равенството у = f(x,p) полу-

> За да решим уравнението x = f(y,y') отново полагаме y' = p(y) глиференцираме полученото равенство по x. Ако $p = \phi(y,C)$ е решение началното уравнение в параметричен вид $x = \psi(p, C), y = f(\psi(p, C), p)$. за р във вида $\mathbf{x} = \psi(\mathbf{p}, \mathbf{C})$, то получаваме общото решение на първо-

на уравнението 1 = $f_{y}(y,p)p + f_{p}(y,p)p'p$, то общото решение на уравнението можем да запишем във вида $x = f(y, \phi(y, C))$. Ако полу-

чим $y = \psi(p,C)$, общото решение на уравнението в параметричен вид е $x = f(\psi(p,C),p)$, $y = \psi(p,C)$.

уравнението на Лагранж у = $x\phi(y')$ + $\psi(y')$ стигаме до уравнението $p = \phi(p) + x\phi'(p)p' + \psi'(p)p'$, т.е. $p-\phi(p)=(x\phi'(p)+\psi'(p))dp/dx$, което е линейно уравнение за x = x(p) и може да бъде решено. В специалния случай, когато уравнението на Лагранж е урав-Като приложим описания способ за въвеждане на параметър към

нение на Клеро.т.е. у = xy' + ψ (y'), стигаме до уравнението (x + ψ '(p))dp/dx = 0. От него следва, че или dp/dx = 0, или x + ψ '(p) = 0. В първия случай p = C = const и получаваме общото решение на уравнението y = Cx + ψ (C). Във втория случай получаваме решение в параметричен вид x = - ψ '(p), y = - $p\psi$ '(p) + ψ (p). което е обвивка на еднопараметричната фамилия от прави в общото решение.

Примор 3. $y = x + y' - \ln y'$.

Полагаме y'=p и диференцирайки по х получаваме $y=x+p-\ln p, p=1+p'-p'/p, p-1=p'/p, p-1=p'(p-1)\neq 0$ $p-1=p'(p-1)/p, |:(p-1)\neq 0$ $1=dp/dx 1/p, dx/dp=1/p, x=\ln p+C.$
Следователно решението в параметричен вид е $x=\ln p+C,y=0$ в този случай можем да изключим параметъра р и получаваме y = e^{x-C} + c. Ծ +

запис на уравнението получаваме решението у = x + 1. (Погрешно ако от равенството $\mathrm{d}y/\mathrm{d}x = p = 1$ заключим, че у = x + C.) Нека $\mathrm{F}(x,y,z)$, $\mathrm{F}_y,\mathrm{F}_z$ са непрекъснати функции. Напомняме, че Уравнението за р има и решение р = 1 и замествайки в параметричния

 $\varphi(x,y)=0$ на така наречената дискриминантна крива. Ако едно реше--ние на уравнението F(x,y,y')=0 е особено. То е част от дискримиот които са особени, наричаме особени решения. За да намерим всички особени точки (x,y) на уравнението трябва да изключим z от равенствата F(x,y,z)=0, $F_z(x,y,z)=0$ и ще получим уравнението F(x,y,y') = 0, ако уравнението $F(x_0, y_0,z) = 0$ има поне едно една точка (х_о,у_о) наричаме особена за уравнението решение $z = z_0$, за което $F_z(x_0, Y_0, z_0) = 0$. Решения, всички точки нантната крива.

да намерим дискриминантната крива за уравнението от пример

следователно у = х + 1 е особено решение на уравнението. $y = x + z - \ln z$, 0 = 1 - 1/z, OT второто уравноние намирамо z = 1 и следователно дискриминантната крива е у = х + 1. Тя е интегрална крива на уравнението и

Посочете особените решения, ако такива има. Решете следвашите уравнения, като предварително изразите у.

5.7. $y'^2 - 2xy' = 8x^2$. 5.5. $y'^2 + x = 2y$. 5.3. $xy'^2 - 2yy' + x = 0$. 5.1. $y'^2 + xy = y^2 + xy'$. 5.2. $xy'(xy' + y) = 2y^2$ 5.6. $y'^3 + (x + 2)e^y = 0$. 5.4. $xy'^2 = y(2y'-1)$. $(xy' + 3y)^2 = 7x.$

5.9. $y'^2 - 2yy' = y^2(e^x - 1)$. 5.14. $yy'(yy' - 2x) = x^2 - 2y^2$ 5.11. $x(y - xy')^2 - 2yy'$. 5.10. $y'(2y - y') = y^2 \sin^2 x$.

за да решите следващите уравнения въводете параметър. $5.16. \times (v'^2 - 1) = 2v'$

5.33. $y'^3 = 3(xy' - y)$.	5.31. $y = 2xy' - 4y'^3$.	5.29. $y = xy' - y'^2$.	5.27. $y = 2xy' + y^2y'^3$.	5.25. y' = e ^{xy'} /y.	$5.23. y'^3 + y^2 = xyy'.$	5.21. $5y + y'^2 = x(x + y')$	5.19. $y'^4 = 2yy' + y^2$.	5.17. $y = y'^2 + 2y'^3$.	5.15. x # y' + y'.
5.34. $y = xy'^2 - 2y'^3$.	5.32. $y = xy' - (2 + y')$.	5.30. $y + xy' = 4\sqrt{y'}$.	5.28. $y(y - 2xy')^3 = y'^2$.	5.26. $y = xy' - x^2y'^3$.	$5.24. 2xy' - y = y' \ln yy'$.	5.22. $x^2y'^2 = xyy' + 1$.	5.20. $y'' - 2xy' = x' - 4y$	5.18. $y = \ln(1 + y'')$.	$5.16. \times (Y' - 1) = 2Y'$

УРАВНЕНИЯ, КОИТО ДОПУСКАТ ПОНИЖАВАНЕ НА РЕДА

като интегрираме по х. $\int_{\mathbb{R}^n} P_{\theta,\Pi} p_{\theta,\Pi}$

Пример 1. уу" = у'2.

 $y = e^{Cx} + C_1$, където С и C_1 са произволни константи. y''/y' = y'/y, $(\ln y')' = (\ln y)'$, $\ln y' = \ln y + \ln C$, y' = Cy. Последното уравнение е от първи ред и като го решим получаваме 2 , Aко уравнението има вида $F(x,y^{(k)},...,y^{(n)}) = 0$, то като

положим $y^{(k)}=z$, за намирането на z=z(x) получаваме уравнение

решение z = tg(x+C). Следователно Полагаме y' = z и получаваме уравнението $z' = z^2 + 1$, което Пример 2. $y'' = y'^2 + 1$.

получаваме уравнение от ред n-1. променлива у, за функцията p = p(y), където p(y) = y'(x). $F(y,y',y'',...,y^{(n)})$ = 0. след като изберем за нова независима Ако х не участвува явно в уравнението, т.е. то има вида $y' = tg(x+c), y = -ln|cos(x+c)| + C_1, e^{-y} = C_2cos(x+c).$

Пример 3. $2yy'' = y'^2 + 1$.

функцията р = р(у) удовлетворява уравнението от първи ред Полагаме y' = p(y). Тогава y'' = d(y')/dx = dp(y)/dx = dp/dy dy/dx = p'p. Като заместим с y' = p и y'' = pp' в уравнението получаваме, че вателно у' = $\pm \sqrt{\text{Cy-1}}$. Сткълото получаваме $4(\text{Cy-1}) = \text{C}^2(\text{x+C}_1)^2$. $2ypp' = p^2 + 1$. Решението на това уравнение е $p = \pm \sqrt{Cy-1}$. Следо-

', Ако уравнението е хомогенно относно у и производните й, то за функцията z = z(x), която въвеждаме чрез полагането у' = уz, получаваме уравнение от ред с единица по-малък от реда на уравне

> Пример 4. хуу" — ху' 2 = уу'. Пример 4. хуу" — ху' 2 = уу'. Полагаме у' = уz. Тогава у" = у'z + уz' = у(z 2 + z') и като заместим в уравнението получаваме $xy^2(z^2+z') - xy^2z^2 = y^2z, xy^2z' = y^2z|:y^2*0, xz' = z, z = Cx,$ y'/y = cx, $(\ln|y|)' = cx$, $\ln|y| = cx^2/2 + c_1$, $y = c_2e^2x^2$

за понижение на реда. Решете следвашите задачи, като използувате описаните способи

6.17. $xyy'' + xy'^2 = 2yy'$. 6.19. $x^2yy'' + y'^2 = 0$. 6.5. $x^2y'' = y'^2$ 6.3. $yy'' + y'^2 = 1$. 6.1. yy''' + 3y'y'' = 0. 6.9. $y''(e^{X} + 1) + y' = 0$. 6.7. $y'^2 + 2yy'' = 0$. 6.15. $yy'' = y'^2 + 15y^2\sqrt{x}$. 6.13. $y'' = e^{Y}$. 6.11. xy''' = y'' - xy''. 6.18. $\dot{y}(xy'' + y') = xy'^{2}(1 - x)$. 6.20. $x^{2}(y'^{2} - 2yy'') = y^{2}$. 6.10. $y''' = y''^2$. 6.8. y'' = 2yy'. 6.6. $2xy'y'' = y'^2 - 1$. 6.4. xy" = 2yy' - y'. 6.2. yy'' = y'(y' + 1). 6.16. $(x^2 + 1)(y'^2 - yy'') = xyy'$. 6.14. $2y'(y'' + 2) = xy''^2$ 6.12. $y''^2 = y'^2 + 1$.

7. ЛИНЕЙНИ ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ С ПОСТОЯННИ КОЕФИЦИЕНТИ

където коефициентите и дясната страна са непрекъснати комплекснозначни функции в интервала (α,β) и а $_{O}(x)$ * 0. Ly $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = f(x)$, Да разгледаме линейното диференциално уравнение от ред п

хомогенното линейно уравнение Ако познаваме п линейно независими решения $\mathbf{y_1}(\mathbf{x}), \dots, \mathbf{y_n}(\mathbf{x})$ на

решение на линейното хомогенно уравнение е $y_0(x) = c_1 y_1(x) + \dots + c_n y_n(x)$, т.е.ако познаваме една негова фундаментална система, то обшото Ly = 0,

където $\mathsf{C}_1,\dots,\mathsf{C}_\mathsf{n}$ са произволни комплексни константи.

Да разгледаме линейното нехомогенно уравнение Ly = f(x).

могенното уравнение, общото решение на нехомогенното уравнение е $y(x) = y_0(x) + z(x).$ решение на хомогенното уравнение, то ако познавамо общото решение ${f y}_{_{f O}}({f x})$ на хомогенното уравнение и едно частно решение ${f z}({f x})$ на нехо-Тъй като разликата на две решения на нехомогенното уравнения е

 $\mathbf{f}_1 + \ldots + \mathbf{f}_p$ е сума от частните решения на уравненията със същата лява страна и десни страни съответно f₁,..., f_p. частното решение на линейното уравнение с дясна страна

7.1. За линейното хомогенно уравнение с постоянни коефициенти Ly = $a_0 Y^{(n)} + a_1 Y^{(n-1)} + \dots + a_{n-1} Y' + a_n Y = 0$,

където a_0, \dots, a_n са комплексни константи и $a_0 \neq 0$, винаги можем

да посочим фундаментална система от решения. Най-напред решаваме характеристичното уравнение

и намираме корените му $\lambda_1,\dots,\lambda_n$. На всеки прост корен $a_0\lambda^{n} + a_1\lambda^{n-1} + \dots + a_{n-1}\lambda' + a_n =$

сьответствува функция $e^{\lambda X}$ от фундаменталната система. На всеки многократен корен с кратност k съответствуват k функции

ехх, хехх, хехх, к-1ехх от фундаменталната система. Така получаваме обшо п на брой линейно независими решения на хомогенното уравнение с постоянни коефи-

фундаментална система от реални функции. Ако λ е реален корен, функциите , които му съпоставяме имат описания по-горе вид. На всяка двойка комплексно спрегнати прости корени λ = α ± $i\beta$ съпоста-Ако коефициентите a_o,...,a_n са реални, можем да посочим

вяме двойхата реални функции $e^{\alpha X}\cos\beta x$, $e^{\alpha X}\sin\beta x$. На всяка двойка комплексно спрегнати корени $\lambda=\alpha\pm i\beta$ с кратност k съпоставяме 2k

роални функции

 $e^{\alpha X}$ sinetaх, х $e^{\alpha X}$ sinetaх, х $^2e^{\alpha X}$ sinetaх, х 2 е $^{\alpha X}$ sinetaх. По такъв начин отново получаваме п на брой линейно независими $e^{\alpha x}\cos\beta x$, $xe^{\alpha x}\cos\beta x$, $x^{2}e^{\alpha x}\cos\beta x$,..., $x^{k-1}e^{\alpha x}\cos\beta x$,

решения, т.е. фундаментална система от реални функции. Като имаме пред вид тези правила, обикновено след като намерим корените на характеристичния полином, веднага пишем формулата за обшото решение.

Пример 1. $y^V \pm 2y^{1V} - 16y' + 32y = 0$, Характеристичното уравнение има вида

Корените му намираме, като разложим лявата страна на множители. $\lambda^5 + 2\lambda^4 - 16\lambda + 32 = 0.$

 $(\lambda - 2)(\lambda^4 - 16) = 0$, $(\lambda - 2)^2(\lambda + 2)(\lambda^2 + 4) = 0$, $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = -2$, $\lambda_4 = 21$, $\lambda_5 = -21$.

Обшото решение има вида

 $y = (c_1 + c_2 x)e^{2x} + c_3 e^{-2x} + c_4 e^{2ix} + c_5 e^{-2ix}, c_1 \in C, i = 1,...,5$ на корена $\lambda = 2$).Тази формула ни дава всички комплекснозначни (степента на многочлена ${\sf C_1}^+$ ${\sf C_2}^{\sf x}$ е с единица по-малка от кратността

нение са реални и можем да намерим и фундаментална система, която състои само от реални функции. Формулата В разглеждания случай коефициентите на диференциалното урав-

 $y=(c_1+c_2x)e^{2x}+c_3e^{-2x}+c_4\cos 2x+c_5\sin 2x$ ни дава при $c_1\in {\bf c}$, $1=1,\dots,5$ всички комплекснозначни решения. коефициентите на диференциалното уравнение са реални, обикновено а при С₁ ∈ R, 1 = 1,...,5 - всички реалнозначни решения. Ако

произволните константи $\mathbf{C_1}$ са реални или комплексни. пишем само горната фурмула без специално указание за това, дали

Пример 2. y''' + 4y'' + 13y' = 0. Характеристичното уравнение $\lambda^3 + 4\lambda^2 + 13\lambda = 0$

> има корени λ_1 = 0, λ_2 = -2 + 3i, λ_3 = -2 - 3i и общото решение е $y = c_1 + c_2 e^{-2x} cos3x + c_2 e^{-2x} sin3x$.

Пример 3. $y^V - 2y^{\dot{1}V} + 2y''' - 4y'' + y' - 2y = 0$. Характеристичното уравнение

 $\lambda^5 - 2\lambda^4 + 2\lambda^3 - 4\lambda^2 + \lambda - 2 = 0$ или $(\lambda - 2)(\lambda^2 + 1)^2 = 0$ има корени $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = 1$, $\lambda_4 = \lambda_5 = -1$, а общото решение ө

 $y = c_1 e^{2x} + (c_2 + c_3 x) \cos x + (c_4 + c_5 x) \sin x$

Характеристичното уравнение Пример 4. $y^{1V} + 4y''' + 8y' + 4y = 0$

 $\lambda^4+4\lambda^3+8\lambda^2+8\lambda+4=0$ или $(\lambda^2+2\lambda+2)^2=0$ има двукратните комплексни корени $\lambda_1=\lambda_2=-1-1$, $\lambda_3=\lambda_4=-1+1$ и обшото решение е

 $y = e^{-x}(c_1 + c_2x)\cos x + e^{-x}(c_3 + c_4x)\sin x$

7.2. В специалния случай, когато дясната страна на едно нехо-могенно линейно диференциално уравнение с постоянни коефициенти е квазиполином, т.е. произведение на полином с експонента, sin или сов, или сума от такива произведения, може да бъде намерено частно решение, което също е квазиполином. За целта използуваме метода на неопределените коефициенти.

 $P_{m}(x) = b_{0} + b_{1}x + \dots + b_{m}x^{m}$, то частното решение търсим от вида Ако дясната страна на уравнението има вида $P_m(x)e^{\gamma x}$, където

 $z = x^{8}Q_{m}(x)e^{\gamma x}$

числото в = 0, ако γ не е корен на характеристичния пслином. Ако γ където $Q_{m}(x) = c_{0} + c_{1}x + ... + c_{m}x^{m}$ е полином от същата степен m. му. Неопределените коефициенти $c_{\mathtt{O}}, c_{\mathtt{1}}, \ldots, c_{\mathtt{m}}$ намираме, като е корен на характеристичния полином, то в е равно на кратността

заместим с формулата за z в диференциалното уравнение и приравним коефициентите пред подобните членове в лявата и дясната страна на уравнението.

Aко в дясната страна на уравнението участвуват sin или сов. като ги изразим чрез експоненти по формулите на Ойлер

 $\cos \beta x = (e^{i\beta x} + e^{-i\beta x})/2$, $\sin \beta x = (e^{i\beta x} - e^{-i\beta x})/2i$,

свеждаме задачата за намиране на частно решение до вече разгледания случай.

Ако коефициентите на уравнението са реални, а дясната страна

 $e^{\alpha X}(P(x)\cos\beta x + Q(x)\sin\beta x)$,

с метода на неопределените коефициенти можем да намерим частно решение от вида $z = x^{s} e^{\alpha x} (R_{m}(x) \cos \beta x + T_{m}(x) \sin \beta x),$

където в е равно на 0, ако $\alpha+i\beta$ не е корен на характеристичния полином, а в противния случай в е равно на кратността на корена $\alpha+i\beta$. $R_m(x)$ и $T_m(x)$ са полиноми с неопределени коефициенти от степен (по-малка или равна на) m, където m е по-голямата от степените на многочлените Р(х) и Q(х).

когато коефициентите на уравнението са реални, а в дясната страна има sin или сов, често е по-удобно най-напред да решим уравнението с дясна страна $P(x)e^{(\alpha+\beta 1)x}$. Реалиата част на получе-

с дясна страна $e^{\alpha X}P(x)$ sin βx . ното решение ше бъде решение на уравнението с дясна страна $e^{lpha X} P(x) \cos eta x$, а имагинерната част ще бъде решение на уравнението

Пример 5.
$$y''' - 6y'' + 9y' = xe^{3x} + e^{3x} cos2x$$
.

Характеристичното уравнение $\lambda^3 - 6\lambda^2 + 9\lambda = 0$ има двукратон корен $\lambda = 3$ и еднократен корен $\lambda = 0$. Общото решение на хомогенното уравнение е

$$y_0 = (c_1 + c_2 x)e^{3x} + c_3$$
.

Най-напред търсим частно решение на нехомогенното уравнение

$$y''' - 6y'' + 9y' = xe^{3x}$$
.

 $\gamma=3$ е двукратен корен на характеристичното уравнение и следователно частното решение ще търсим във вида

$$z_1 = x^2(ax + b)e^{3x}$$

Като заместим с този израз в уравнопиото и приравним коофиционтите пред подобните членове в двете страни намираме а = 1/18, b = -1/18. След това търсим частно решение $\mathbf{z_2}$ на нехомогенното уравнение

$$y''' = 6y'' + 9y' = e^{3x}\cos 2x$$
.

Тъй като α + $i\beta$ =3 + 21 не е корон на характеристичното уравнению. то z₂ можем да търсим от вида

$$z_2 = e^{3x} (a \cos 2x + b \sin 2x)$$
.

След като заместим в уравнението намираме а = -3/52, b = -1/26. Общото решение на уравнението е у = у $_{\rm O}$ + z $_{\rm I}$ + z $_{\rm Z}$, където у $_{\rm O}$, $\mathbf{z_{1'}z_{2}}$ са намерените по-горе.

Пример 6. у" + у ≃ хсовх.

пример 6. у т у такова. Корените на характеристичното уравнение $\lambda^2 + 1 = 0$ са $\lambda_1 = 1$,

 λ_2 = -1 и общото решение на хомогенното уравнение е

$$y_0 = C_1 \cos x + C_2 \sin x$$
.

Тъй като α + iβ ≈ i е еднократен корен на характеристичното уравнение, то можем да търсим частно решение на нехомогенното уравне-

втория способ, който посочихме по-горе. $z = x[(ax + b)\cos x + (cx + d)\sin x],$ в такъв случай пресмятанията са доста. Затова използуваме

Тъй като $x\cos x = \text{Re}(xe^{ix})$, най-напред разглеждаме уравнението

Според правилото то има частно решение от вида $y'' + y = xe^{ix}$

 $w = x(ax + b)e^{ix}$

Заместваме в уравнението и намираме а = -1/4, b = 1/4, т.е. w = $(-(1/4)x^2 + (1/4)x)e^{1x} = (-(1/4)x^2 + (1/4)x)(\cos x + i\sin x) =$

Следователно търсеното частно решение на първоначалното уравнение $= (x\cos x + x^2\sin x)/4 + i(x\sin x - x^2\cos x)/4.$

> а общото решение е $z = Re(w) = (xcosx + x^2 sinx)/4$

 $y = y_0 + z = C_1 \cos x + C_2 \sin x + (x \cos x + x^2 \sin x)/4$

7.3. Линейното нехомогенно уравнение

 $Ly = a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = f(x),$

f(x) решаваме с метода на Лагранж за вариране на произволните константи. Ако обшото решение на линейното хомогенно уравнение Ly=0 е y_0 =C_1 y_1 +...+C_n y_n , то частно решение на нехомогенното с постоянни или променливи коефициенти и произволна дясна част

уравнение Ly=f(x) търсим във вида

$$z=c_1(x)y_1+...+c_n(x)y_n$$

Функциите $C_{\underline{1}}(x)$ опредоляме от системата

$$c'_{1}(x)y'_{1} + \dots + c'_{n}(x)y'_{n} = 0$$

$$c'_{1}(x)y'_{1} + \dots + c'_{n}(x)y'_{n} = 0$$

$$c'_{1}(x)y'_{1}^{(n-2)} + \dots + c'_{n}(x)y'_{n}^{(n-2)} = 0$$

$$c'_{1}(x)y'_{1}^{(n-1)} + \dots + c'_{n}(x)y'_{n}^{(n-1)} = f(x)/a_{n}(x)$$

 $C_1'(x)y_1^{(n-1)}+...+C_n'(x)y_n^{(n-1)}=f(x)/a_0(x)$

частно решение на нехомогенното уравнение търсим във вида $z(x) = C_1(x) \cos x + C_2(x) \sin x$. Пример 7.у" + у = $1/\cos x$ Общото решение на хомогенното уравнение в Y_0 = $C_1\cos x+C_2\sin x$.

За целта решаваме системата

 $\frac{1}{1}(x)\cos x + C_2'(x)\sin x = 0$,

 $-C'_1(x) \sin x + C'_2(x) \cos x = 1/\cos x$.

получаваме общото решение на нехомогенното уравнение $y = y_0 + z = C_1 \cos x + C_2 \sin x + \cos x \ln|\cos x| + x \sin x$ $C_1(x)=\ln|\cos x|+C_1$, $C_2'(x)=x+C_2$. След заместване в израза за z(x)Последователно намираме $C_1'(x) = -tg(x)$, $C_2'(x) = 1$, откъдето следва

7.4. Уравнението на Ойлер

$$a_0 x^{n_1} (n) + a_1 x^{(n-1)} y^{(n-1)} + \dots + a_{n-1} x y' + a_n y = f(x)$$

смяната $x=e^t$ ($x=-e^t$ при x<0). свеждаме до линейно уравнение с постоянни коефициенти при х>0 чрез

Примор 8. $x^2y'' + 2xy' - 6y=0$.

При x>0 полагаме $x=e^{t}$. Последователно изразяваме производните по x чрез производните по t. $y'=dy/dx= (dy/dt)/(dx/dt)=(dy/dt)e^{-t}$

 $y''=dy'/dx=(dy'/dt)/(dx/dt)=(d^2y/dt^2-dy/dt)e^{-t}/e^{t}$ $=(d^2y/dt^2-dy/dt)e^{-2t}$

След заместване в уравнението получаваме уравнението с постоянни

което има общо решение $y=c_1e^{-3t}+c_2e^{2t}$. Тъй като х $=e^t$, то окончателно намирамо $y=c_1x^{-3}+c_2x^2$. Тази формула важи очевидно и $d^2y/dt^2 + dy/dt - 6y = 0,$

13

при x<0.

При х>0 полагаме х≔е . Последователно получаваме Пример 9. $x^3y''' - x^2y'' + 2xy' - 2y = x^3$

 $y' = dy/dx = (dy/dt)/(dx/dt) = (dy/dt)e^{-t}$ $y'' = dy'/dx = (d^2y/dt^2 - dy/dt)e^{-2t}$ $y'''=dy''/dx=(d^3y/dt^3-3d^2y/dt^2+2dy/dt)e^{-3t}$

като заместим в ойлеровото уравнение стигаме до уравнението постоянни коефициенти

 $d^{3}y/dt^{3}-4d^{2}y/dt^{2}+5dy/dt-2y=e^{3t}$

То има обшо решение

$$y=(C_1+C_2t)e^t+C_3e^{2t}+(1/4)e^{3t}$$
.

Следователно при x>0 ойлеровото уравнение има общо решение

 $y=(c_1+c_2\ln x)x+c_3x^2+(1/4)x^3$.

общо решение на хомогенното ойлерово уравнение и при х<0, а общото решение на нехомогенното уравнение е у = y_0 + z. Ясно е, че z=(1/4)х³ е частно решение на нехомогенното ойлерово уравнение и при х<0. Тъй като хомогенното ойлерово уравнение не променя вида си, ако заменим х с -x, то $y_0 = (C_1 + C_2 \ln|x|)x + C_3 x^2$ е

променливи коефициенти може да бъде понижен, ако познаваме едно негово частно решение $\mathbf{y_1}$. Като положим $\mathbf{y} = \mathbf{y_1}\mathbf{z}$ стигаме до линейно полагането z'=u. уравнение, 7.5. Редът на линейното хомогенно уравнение от ред n с в което не участвува z и реда му понижаваме чрез

Линейното хомогенно уравнение от втори ред $a_{o}(x)y''+a_{1}(x)y'+a_{2}(x)y=0$

можем да решим, ако ни е известно едно негово частно решение \mathbf{y}_1 . За целта е по удобно да използуваме формулата на Лиувил-Остроград-

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = ce^{-\int a_1(x)/a_0(x)dx},$$

Пример 10. $(x^2+1)y''-2xy'+2y=0$.

произволно друго решение на уравнението от Непосредствено се проверява, че \mathbf{y}_1 =х е частно решение. Ако \mathbf{y}_2 формулата на

Лиувил-Остроградски получаваме
$$\begin{vmatrix} Y_1 & Y_2 \\ Y_1' & Y_2 \\ Y_1' & Y_2' \end{vmatrix} = Ce^{-\int (-2x)/(x^2+1) dx}, \ y_1 y_2' - y_1' y_2 = C(x^2+1).$$
 Следователно
$$(Y_2/Y_1)' = (Y_1 Y_2' - Y_1' Y_2)/Y_1^2 = C(x^2+1)/Y_1^2$$

и след интегриране намираме

$$y_2/y_1 = \int c(x^2+1)/x^2 dx + c_1 = c(x-1/x) + c_1,$$

 $y_2 = c(x^2-1) + c_1x,$

като последната формула ни дава обшото решение на уравнението.

налучквано, като го търсим от определен вид, например полином или линейна комбинация с неопределени коефициенти от положителни и от втори ред. Понякога такова решение ни се отдава да намерим с Няма общ метод за намиране на частно решение на уравнението

> отрицатолни стопони на х . 7.1. y'' + y' - 2y = 0. в следващите задачи намерете общото решение.

7.15. $y''-2y'+y=e^{X}/x$. 7.17. $y''+y=1/\sin x$. 7.13. $y''-4y'+8y=e^{2x}+sin2x$. 7.11. $y''+3y'-4yme^{-4x}+xe^{-x}$ 7.23. $x^3y''-2xy=61nx$ 7.21. $x^3y''' + xy' - y = 0$. Лагранж 7.19. $x^2y''-4xy'+6y=0$. 7.9. y''' - 3y'' + 3y' - y = 0. Решете уравненията на Ойлер: да решите слодвашите задачи, използувайте метода на 7.6. y""+2y"+y=0. 7.8. y""'+8y"'+16y'=0. 7.10. y"+y=4xex. 7.16. y"+3y'+2y=1/(e^X+1). 7.18. y"+4y=2tgx. 7.14. $y''' + y = e^{x/2} \cos^2 \sqrt{3} \times /4$. 7.12. $y''+y'-2y=3xe^{X}$ 7.20. $x^2y''-xy'-3y=0$. 7.24. $x^2y''-3xy'+5y=3x^2$ 7.22. $x^2y'''=2y'$. 7.4. y"'-8y=0. 7.2. y"+2y'+10y=0.

7.25. $(x-2)^2y''-3(x-2)y'+4y=x$.

7.26. $(2x+3)^3y'''+3(2x+3)y''-6y=0$.

едно частно решение, ако такова не е посочено Решете уравненията с променливи коефициенти, като намерите

7.28. $x^2(x+1)y''-2y=0$, $y_1=1+1/x$. 7.27. (2x+1)y''+4xy'-4y=0.

7.29. xy''-(2x+1)y'+(x+1)y=0.

7.31. $y''-2(1+tg^2x)y=0$, $y_1=tgx$. 7.30. xy''+2y'-xy=0, $y_1=e^{x}/x$.

7.32. x(x-1)y''-xy'+y=0.

7.33. $(e^{X}+1)y''-2y'-e^{X}y=0, y_1=e^{X}-1.$

нехомогенното уравнение намерете общото решение. Използувайте, че разликата на тези частни решения е решение на хомогенното уравнение. В следващите две задачи по известни две частни решения на

7.34. $(x^2-1)y''+4xy'+2y=6x$, $y_1=x$, $y_2=(x^2+x+1)/(x+1)$

7.35. $(3x^3+x)y''+2y'-6xy=4-12x^2$, $y_1=2x$, $y_2=(x+1)^2$

ТЕОРЕМА ЗА СЪЩЕСТВУВАНЕ И ЕДИНСТВЕНОСТ

В равнината разглеждаме ограничения затворен правозгълник

$$II = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\}$$

Казваме, че f(x,y) е липшинова функция в правоъгълника II (по y, равножерно относно x), ако

$$|f(x_1, y) - f(x_2, y)| \underset{\sim}{\underbrace{\mathbb{Z}}} L|x_1 - x_2| \, \forall \, (x_i, y) \in \Pi, \, i = 1, 2.$$

Теорема (Локална теорема за същ. и единств.). Иска $f \in C(\Pi)$ е липшицова функция в Π (по y, равномерно относно x). Задачата на Коши $y'=f(x,y),\ y(x_0)=y_0$ притежава единствено решение, дефинирано поне при $|x-x_0|\leq h$, където $h=\min(a,b/M)$, а $M=\max_{\Pi}|f(x,y)|$.

Нека G е област в равнината и $(x_0,y_0)\in G$. Казваме, че решението на задачата на Коши $y'=f(x,y),\ y(x_0)=y_0$ е единствено, ако кои да е две решения на задачата на Коши съвпадат в сечението на дефиниционните си интервали.

функцията f(x,y) ще наричаме локално-линшицова в G, ако за всяка точка от G съществува правоъгълник с център в нея, който се съдържа в G и в който функцията е липшицова (по y, равномерно относно x).

Теорема (Глобална теорема за единственост). Пека $f \in C(G)$ е локално-липшинова функция в G и $(x_0,y_0) \in G$. Решението на задачата на Коши $y'=f(x,y),\ y(x_0)=y_0$ е единствено.

Казваме, че решението $\varphi(x)$ с дефиниционен интервал Δ_{φ} на уравнението y'=f(x,y) с продължение на решението $\psi(x)$ с дефиниционен интервал Δ_{ψ} на същото уравнение, ако $\Delta_{\psi}\subset\Delta_{\varphi}$ п $\varphi(x)=\psi(x)$ в Δ_{ψ} .

Едно решение на уравнението наричаме испродължимо решение, ако съвпада с всяко свое продължение.

Теорема (Глобална теорема за същ. и единств.). Нека $f \in C(G)$ и е локално-инпшицова функция в G. За всяка точка $(x_0,y_0) \in G$ задачата на Коши $y'=f(x,y),\ y(x_0)=y_0$ притежава единствено испродължимо решение.

Теорема (Теорема за папускане на компактите). Нека $f \in C(G)$ е локално-липшицова функция в G и $\varphi(x)$ с дефиниционен интервал (α, β) е непродължимо решение на уравнението y' = f(x,y). Тогава за всяко компактно подмножество K на G съществува такова число $\varepsilon > 0$, че $(x, \varphi(x)) \notin K$ за $x \in (\alpha, \alpha + \varepsilon) \cup (\beta - \varepsilon, \beta)$.

Теорема (Принцип за сравияване) Иска $f,g\in C(G)$ са локално-липшищови функцай и f(x,y)>g(x,y) в областта G. Ако $\varphi(x)$ с дефиниционей интервал Δ_{φ} е решение на задачата на Коппі $y'=f(x,y),\,y(x_0)=y_0,\,$ а $\psi(x)$ с дефиниционей интервал де е решение на задачата на Коппі $y'=g(x,y),\,y(x_0)=y_0,\,$ то е в сила перавенството $\varphi(x)>\psi(x)$ в $\Delta_{\varphi}\cap\Delta_{\psi}\cap\{x>x_0\}$ (Разбира сегото $\varphi(x)>\varphi(x)$) в $\Delta_{\varphi}\cap\Delta_{\psi}\cap\{x>x_0\}$ (Разбира сегото $\varphi(x)>\varphi(x)$) в $\Delta_{\varphi}\cap\Delta_{\psi}$ от $\{x>x_0\}$ (Разбира сегото $\varphi(x)>\varphi(x)$) в Δ_{ψ} от $\{x>x_0\}$ (Разбира сегото $\{x>x_0\}$) в Δ_{ψ} от $\{x>x_0\}$ (Разбира сегото $\{x>x_0\}$) в Δ_{ψ} от $\{x>x_0\}$ (Разбира сегото $\{x>x_0\}$) в $\{x>x_0\}$ от $\{x>x_0\}$ (Разбира сегото $\{x>x_0\}$) в $\{x>x_0\}$ (Разбира сег

- Памерете първите две (три) последователни приближения за решението на задачата на Коши:
- a) $y' = x y^2$, y(0) = 0, b) $y' = y^2 + 3x^2 - 1$, y(1) = 1, c) $y' = y + e^{y-1}$, y(0) = 1,
- d) $y' = 1 + x \sin y$, $y(\pi) = 2\pi$.
- 2. Посочете интервал (възможно най-голям), в който съществува реше-

ппе на задачата на Кошп:

- a) $y' = x + y^3$, y(0) = 0, b) $y' = 2y^2 - x$, y(1) = 1, c) $y' = x^2 + y^2$, Y(1) = 0.
- 3. За всяко от написаните по-долу уравнения докажете, че решението на задачата на Коши с произволно начално условие $y(x_0)=y_0$, (например y(0)=0 или y(1)=0) съществува за всяко $x\geq x_0$:

a)
$$y' = x^2 - y^2$$
, .
b) $y' = x^3 - y^3$,
c) $y' = x^3 - xy^2$.

4. Докажете, че решението на задачата на Коши с произволно начално условие $y(x_0)=y_0$ не съществува за всички $x\geq x_0$ и има вертикална асимптота, ако уравнението има вида

a)
$$y' = x^2 + y^2$$
,
b) $y' = x^3 + y^3$,
c) $y' = x^3 + xy^2$.

- 5. За всяко едно от уравненнята в задачи 3 и 4 направете пълно изследване на поведението на интегралните криви.
- 6. Докажете, че решението на задачата на Коши $y'=x^2+y^2$, y(0)=0 е нечетна функция, а решението на задачата на Коши $y'=x^3-xy^2$, y(0)=0 с четна функция.