

KAFO-Pulley Assist

- Mariam Michelle Morocho Bustamante (Diseño)
- Alexandra Milagros Mamani Casas (Analista de datos)
- Luis Antonio Gutierrez Nuñez (Electrónica)
- Jonatan Esteban Huiñapi Huaman (Control y comunicación)
- Ricardo Sebastian Murillo Sedano (Modelador 3D)
- Xavier Alexis Hernandez Jeronimo (Analista funcional)

Análisis del Caso

Diagnóstico

Lesión medular tipo A en T10

Actualmente usa bastones canadienses y dos soportes largos de pierna

Mantiene ZPP (zona de preservación parcial)

¿Qué dicen las estadísticas?

Local

De enero a julio del 2025 hubieron:

790 pacientes diagnosticados

36 510

Atenciones

Segun el INR [1]

Mundial

Análisis del Caso

Limitaciones

- Pérdida parcial de las funciones sensoriales y motoras por debajo del nivel de la lesión
 - → Desarrollo de ulceras
 - Perdida del control de esfínteres
 - Espasmos y dolor crónico
- Impacto psicológico puede afectar la función cognitiva [2]

Necesidades

- · Independencia en la movilidad
- Prevención de complicaciones médicas relacionadas
- Adaptación del entorno y los equipos
- Manejo del estrés y salud mental [2]

Análisis del Caso

Impacto en la vida

Autonomía limitada

Dificultades para volver a trabajar o integrarse en la sociedad

Consecuencias psicològicas

Estado del Arte

 Modelo de ortesis activa SCKAFO para asistir la marcha de lesionados medulares

El control de funciones se basa en sensores ubicados en el tren inferior (sensores de presión plantar y encoders angulares)

 "Sistema de desbloqueo automático en una Órtesis de Rodilla-Tobillo-Pie (ORTP) durante la marcha"

ortesis de bloqueo con cerraduras electromagnéticas y relevadores.

Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury

Fig. 1 (a) General view of the right robotic orthosis of the ABLE exoskeleton showing the knee actuation system and the IMU and (b) CAD design of the knee actuation system

Estado del Arte

- " Control Method for a powered knee ankle foot orthosis"
- Numero de patente: W02022231566

- "Orthosis knee joint and sensor"
- Número de patente: US7410471B1

Metodología VDI

"Dispositivo de bloqueo-desbloqueo automático-manual."

Lista de requerimientos

Requisitos	Categoría
El dispositivo permite una movilidad independiente mediante un sistema de trabe y destrabe de la rodilla.	must have
El dispositivo recibirá señales de presión y posición de muslo y tibia para determinar la fase de marcha del usuario y/o caídas.	must have
El dispositivo recibe y suministra energía eléctrica eficientemente a los componentes	must have
El dispositivo recibirá órdenes del usuario para acciones de bloqueo, cambiar de modos de uso y encender/apagar el sistema.	must have
Los componentes deben ser acoplados al soporte metálico del paciente.	must have
El dispositivo considerará e informará la carga disponible en su batería	should have

Lista de requerimientos

Requisitos	Categoría
La batería del sistema dura más de 8 horas seguidas.	should have
El dispositivo tendrá un modo de calibración para ajustar el peso del usuario.	should have
El dispositivo realizará bloqueos de emergencia ante caídas o a 30 segundos de quedarse sin energía.	should have
La implementación de nuevos elementos no debe alterar la comodidad del usuario al usar el dispositivo	should have
Los elementos agregados pesarán entre 600-800 adicionales	nice to have
El dispositivo tendrá una vida media de 5 años.	nice to have

Esquema de funciones

Matriz morfológica

	Solución 1	Solución 2	Solución 3
1. Eficiencia energética	3	4	3
2. Coste de materiales	2	3	4
3.Mantenimiento o renovación de componentes mecánicos y electrónicos	3	4	3
4. Autonomía del usuario para bloquear/liberar	3	4	2
5. Productibilidad	4	3	2

	Solución 1	Solución 2	Solución 3
6. Tiempo de vida útil	3	3	3
7. Detección de estados de marcha	3	4	2
8. Mecanismo de seguridad	4	3	2
9. Control de circuito	3	4	3
10. Mecanismo de bloqueo y liberación	3	4	2
Total	31	36	26

Boceto 1: sistema de poleas

Nombre del proyecto: Autoknee

Dibujado por: Mariam Michelle Morocho Bustamante

Descripción del funcionamiento:

Soporte largo que contiene el sistema de trabe y destrabe de rodilla. Sistema contiene par de poleas con cuerdas para realizar la función del trabe y destrabe. Conexión bluetooth botón de bastón. Conexión mediante un cable a sensores de plantilla.

Plantilla que incluye tres sensores de presión conectados a un microcontrolador con información para poder realizar el proceso de trabe y destrabe de manera automática, dependiendo de la presión que se realice al pisar.

Bastón canadiense correspondiente al lado derecho. Incluye botón conectado inalámbricamente a sistema de trabe y destrabe de rodilla. El sistema es potenciado mediante el uso de una batería.

LISTA DE DESPIECE.

Pieza	Nombre	Material
1	Botón	plástico
2	Bastón canadiense	Aluminio, plástico
3	Plantilla	TPU
4	Carcasa	PLA
5	Módulo bluetooth	
6	Cable	
7	Sensores flex (3)	
8	Cable unión poleas	
9	Sistema de trabe y destrabe	
10	Polea con cuerda	Acero inoxidable
11	Cable unión sensores plantilla	

Boceto 2: sistema de engranajes electromagnética

Nombre del proyecto: Autoknee

Dibujado por: Mariam Michelle Morocho Bustamante

Descripción del funcionamiento:

Soporte largo que contiene el sistema de trabe y destrabe de rodilla. Sistema contiene engranajes con conexiones electromagnéticas para restringir o permitir el movimiento. Conexión bluetooth a botón de bastón para activarse manualmente. Conexión mediante un cable a sensores de plantilla.

Plantilla que incluye tres sensores de presión conectados a un microcontrolador con información para poder realizar el proceso de trabe y destrabe de manera automática, dependiendo de la presión que se realice al pisar.

Bastón canadiense correspondiente al lado derecho. Incluye botón conectado inalámbricamente a sistema de trabe y destrabe de rodilla. El sistema es potenciado mediante el uso de una batería.

LISTA DE DESPIECE.

Pieza	Nombre	Material
1	Botón	plástico
2	Bastón canadiense	Aluminio, plástico
3	Plantilla	TPU
4	Carcasa	PLA
5	Módulo bluetooth	
6	Cable	
7	Sensores flex (3)	
8	Cable unión sistemas de engranajes	
9	Sistema de trabe y destrabe	
10	Sistema electromagnético de engranajes	Acero inoxidable
11	Cable unión sensores plantilla	

Conclusiones/siguientes pasos

La solución tiene como objetivo facilitarle al paciente el trabe y destrabe de rodilla, para que así ya no requiera de ayuda de otra persona para realizar este proceso, principalmente, al subir escaleras. También se quiere ayudar al paciente a mejorar su marcha al incluir una plantilla con sensores que active automáticamente el sistema según la presión que se ejerza.

Algunos de los siguientes pasos a seguir para realizar la solución sería verificar:

- Diseño: Verificar las dimensiones que deben tener los sistemas de destrabe y destrabe para que no generen incomodidad al paciente y encajen adecuadamente en los espacios que permita el soporte.
- Modelado 3D
- Electrónica: Sensores y sistemas.
- Implementación

Referencias

[1] Instituto Nacional de Rehabilitación enfatiza la importancia de proteger la médula espinal. Instituto Nacional de Rehabilitación - Perú, Dec. 13, 2023. [Online]. Available:

https://www.gob.pe/institucion/inr/noticias/1240586-instituto-nacional-de-rehabilitacion-enfatiza-la-importancia-de-proteger-la-medula-espinal.

[2] International Perspectives on Spinal Cord Injury. World Health Organization, 2013. [Online]. Available: https://www.researchgate.net/publication/259496836 International Perspectives on Spinal Cord Injury.

[3] Arroyo,G. "Modelo de ortesis activa SCKAFO para asistir la marcha de lesionados medulares.", Universidad Politécnica de Catalunya, España, 2010. [En línea]. Disponible en: https://biomec.upc.edu/wp-content/uploads/theses/Arroyo-MSc-Thesis-Modelo%20de%20ort esis%20activa%20SCKAFO%20para%20asistir%20la%20marcha%20de%20lesionados%20 medulares.pdf

[4] O. Diaz-Hernandez, A. Santos-Borráez, C. F. C. Gómez, I. Gisel, y R. Arellanes, "Sistema de desbloqueo automático en una Órtesis de Rodilla-Tobillo-Pie (ORTP) durante la marcha". (((((aCA))

[5] Font-Llagunes, Josep & Lugrís, Urbano & Clos, Daniel & Alonso, F. Cuadrado, Javier. (2020). Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury. Journal of Mechanisms and Robotics. 12. 8. http://dx.doi.org/10.1115/1.4045510

Campbell, J. H., Zalinski, N., Naft, J. M., & Newman, W. S. (2008). Orthosis knee joint and sensor (U.S. Patent No. 7,410,471 B1). U.S. Patent and Trademark Office. https://patents.google.com/patent/US7410471B1/en

R. J. Farris, S. A. Murray, y S. A. Dalley, "Control Method for a Powered Knee Ankle Foot Orthosis", el 3 de noviembre de 2022 Consultado: el 25 de septiembre de 2025. [En línea]. Disponible en: https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2022231566& cid =P21-MFYJI1-34359-1

O. Diaz-Hernandez, A. Santos-Borráez, C. F. C. Gómez, I. Gisel, y R. Arellanes, "Sistema de desbloqueo automático en una Órtesis de Rodilla-Tobillo-Pie (ORTP) durante la marcha".