Measuring Students' Performance on Programming Tasks

Tomáš Effenberger

Radek Pelánek

Masaryk University Brno, Czech Republic

Motivation

Binary success provides too little information for student and tutor modeling.

Using detailed observations hinders reuse, and complicates the development of learning systems.

Proposal: Use discrete performance measures with just a few distinct values.

Performance levels and interpretation:

- weak performance . . . too difficult task
- good performacne . . . appropriate task
- excellent performance . . . too easy task

(B) Discrete performance

observations

(C) Detailed observations

Case study: Design of a performance measure

- adaptive learning system for introductory programming
- 85 tasks, 9 levels x 3 sublevels
- performance measures based on (A) executions count
- (B) solving time, thresholds per sublevel
- (C) solving time, thresholds per problem

Result: The choice of performance measure matters. Different reasonable choices lead to very different measurements.

outlying task (too difficult / too early) Interaction with domain modeling outlying problem set **Issue**: Flaws in the domain model impact the accuracy of a tasks (time medians) 6m removed tasks performance measure. poor performance good performance 3m **Consequence**: Unconstrained excellent performance optimization leads to a wild ti 80s performance measure. 40s **Solution**: Impose a constraint on the threshold progression 20s (e.g., a constant increase 10s between sublevels). 1.2 3.2 4.2 4.3 5.2 5.3 2.3 4.1 5.1 problem set **Side effect**: The flaws in the threshold for good performance domain model are detected. threshold for excellent performance

Summary

Instead of using binary success, the currently prevalent choice of performance measure, we propose to use a few discrete performance levels with universal interpretation, such as failed, weak, good, and excellent.

Design of a performance should take into account possible interaction with domain modeling.

Research group, Masaryk university Brno

www.fi.muni.cz/adaptivelearning/