CMSC22100 HW #4

Jaime Arana-Rochel April 30, 2014

Problem 1: Evaluation Semantics

 $TaPL \ 3.5.18.$

New Evaluation Rules:

if true then
$$v_1$$
 else $v_2 \longrightarrow v_1$ $(E - IFTRUE)$
if false then v_1 else $v_2 \longrightarrow v_2$ $(E - IFFALSE)$

$$\frac{t_2 \longrightarrow t_2'}{if \ t_1 \ then \ t_2 \ else \ t_3} \ (E - IFTHEN)$$

$$\frac{t_3 \longrightarrow t_3'}{if \ t_1 \ then \ v_1 \ else \ t_3} \longrightarrow if \ t_1 \ then \ v_1 \ else \ t_3'} \ (E - IFELSE)$$

$$\frac{t_1 \longrightarrow t_1'}{if \ t_1 \ then \ v_1 \ else \ v_2 \ \longrightarrow if \ t_1' \ then \ v_1 \ else \ v_2} \ (E - IF)$$

These new rules show that E-IFTRUE and E-IFFALSE can only be used as a rule when the then and else branches have already been evaluated. E-IFTHEN states that if t_2 evaluates to t_2' , then t_2 is evaluated first in the conditional. E-IFELSE states that if t_3 evaluates to t_3' , then t_3 is evaluated in the conditional, but only if t_2 is a value (aka evaluated). E-IF states that if t_1 evaluates to t_1' , then t_1 is evaluated in the conditional, but only if t_2 and t_3 are values.

Problem 2: Proofs about Programming Languages

TaPL 8.2.3

Theorem 8.2.3. Every subterm of a well-typed term is well typed

Proof. By induction on the typing derivations. The term in the cases T-ZERO, T-TRUE, and T-FALSE are themselves well-typed terms without subterms, so the requirements of the theorem are satisfied.

Case: T-IF $\frac{t_1:Bool\ t_2:T\ t_3:T}{if\ t_1\ then\ t_2\ else\ t_3:T}$ It follows from the typing definitions and Lemma 8.2.2 that given a welltyped term $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3$: T, then the subterms are themselves well

typed $(t_1 : Bool, t_2 : T, and t_3 : T)$ $Case: T-SUCC \frac{t_1 : Nat}{succ t_1 : Nat}$ Like in case (T-IF), it follows from the typing definitions and Lemma 8.2.2 that given a well-typed term $t = \operatorname{succ} t_1$: Nat, the subterm t_1 must itself be well-typed.

Cases: T-PRED and T-ISZERO

Similar

TaPL 8.3.4

Theorem [Preservation]. If t: T and $t \longrightarrow t'$, then t': T

Proof. By induction on evaluation derivations. It goes without saying that the theorem is vacuously satisfied for terms which are values since there are no evaluation rules for them.

if true then t_2 else $t_3 \longrightarrow t_2$ Case: E-IFTRUE

We know from this rule that t has the form if true then t_2 else t_3 and that it evaluates to $t' = t_2$ $(t \longrightarrow t')$. There is only one typing derivation for this kind of term, T-IF, which means that t has type T, and it's subterms must have types t_1 : Bool, t_2 : T, and t_3 : T. Given that t evaluates to t_2 : T, we then see that t' must also have type T. The *E-IFFALSE* case proceeds similarly, so it is omitted.

 $\frac{t_1 \longrightarrow t_1'}{if \ t_1 \ then \ t_2 \ else \ t_3 \longrightarrow if \ t_1' \ then \ t_2 \ else \ t_3}$ Case: E-IF

This rule tells us that our term t has the form if t_1 then t_2 else t_3 , and that it evaluates to $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3.$ From the rule T-IF, we know that t_1 has type Bool, meaning that by induction t'_1 also has type Bool. Using the typing derivation, we know t_2 : T, and t_3 : T for t, but this applies to t' as well due to the evaluation. Know we can use the typing derivation to conclude that given t'_1 : Bool, t_2 : T, and t_3 : T, that t': T.

Case: E-SUCC
$$\frac{t_1 \longrightarrow t_1'}{succ \ t_1 \longrightarrow succ \ t_1'}$$

This rule tells us that the term t (succ t_1) evaluates to t' (succ t'_1), given the evaluation of the subterm of t. From the typing derivation T-SUCC, we know that t_1 must be of type Nat, and t: Nat. So by induction t'_1 must also be of type Nat. Therefore by the typing derivation, t': Nat (t': T). The cases for E-PRED, and E-ISZERO follow a similar argument.

Case: E-PREDZERO pred
$$0 \longrightarrow 0$$

The rule tells us that t evaluates to t' = 0 which is a nv. From the typing derivation T-ZERO we know 0: Nat, therefore by T-PRED t: Nat. From this we can conclude that t' has type Nat as well, so t': T. The cases for E-PREDSUCC, E-ISZEROZERO, and E-ISZEROSUCC follow a similar argument.

Problem 3: The Untyped Lambda Calculus

xor

The encoding for xor will be similar to the test abstraction in TaPL, except that if given two arguments (a b) then if a is fls then it should return b, otherwise it should return the logical negation (not) of b.

"The not encoding is the one used in the solution section of TaPL"

$$not = \lambda b. \ b \ fls \ tru$$

 $xor = \lambda a. \ \lambda b. \ a \ not(b) \ b$

Rational Numbers

The strategy to encode rational numbers as a pair was discovered from the wikipedia article "Church Encoding"

Rational numbers may be encoded as a Church pair of two numbers. So the constructor is the same as the pair constructor found in TaPL, with the same fst and snd functions:

$$rational = \lambda num. \lambda dem. \lambda b. b num dem$$

$$fst = \lambda p. p tru$$

$$snd = \lambda p. p fls$$

The reciprocal operator *recip* merely switches the order of the elements in a pair.

$$recip = \lambda r. \ pair \ snd(r) \ fst(r)$$

Problem 4: Type Systems

The grammar for the types in the character and string grammar is as follows:

T ::= Char | String

Typing Rules for Terms:

$$nil: String \quad (\text{T-NIL})$$

$$c: Char \quad (\text{T-C})$$

$$\frac{c: Char \quad t: String}{put(c, t): String} \quad (\text{T-PUT})$$

$$\frac{t: String}{get(t): Char} \quad (\text{T-GET})$$

$$\frac{t: String \quad t: String}{cat(t, t): String} \quad (\text{T-CAT})$$

$$\frac{c: Char \quad t: String}{del(c, t): String} \quad (\text{T-DEL})$$

$$\frac{t: String}{rev(t): String} \quad (\text{T-REV})$$