

## DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Course Title : Artificial Intelligence

**Course Code** : CSE 404

**Experiment Name**: Implementation of multivariable Linear regression Using a public

data set.

Submitted To Submitted By

Dr. Nasima Begum Asikur Rahman Sumon

Associate Professor ID: 19201055

Department of CSE Section: A2

Date of Submission: 11-04-23

## Implementation of multivariable Linear regression Using a public dataset.

**Problem description:** Implementation of a Linear regression model with a dataset and the dataset must be multivariant. At the basis of other parameter we have to predict another parameter.

**Objective:** There are several approach in Machine Learning to predict a data at the basis of other data. In this project we are going to implement "Linear Regression"- model to predict data.

For this approach, I'm going to use a Car prize dataset which is about (205, 24) in size.





Here is my care type data:

| car_ID           | int64   |
|------------------|---------|
| symboling        | int64   |
| CarName          | object  |
| fueltype         | object  |
| aspiration       | object  |
| doornumber       | object  |
| carbody          | object  |
| drivewheel       | object  |
| enginelocation   | object  |
| wheelbase        | float64 |
| carlength        | float64 |
| carwidth         | float64 |
| carheight        | float64 |
| curbweight       | int64   |
| enginetype       | object  |
| cylindernumber   | object  |
| enginesize       | int64   |
| fuelsystem       | object  |
| boreratio        | float64 |
| stroke           | float64 |
| compressionratio | float64 |
| horsepower       | int64   |
| peakrpm          | int64   |
| citympg          | int64   |
| highwaympg       | int64   |
| price            | float64 |
| 44               |         |

## Car describe:

p

|                  | count | mean        | std        | min     | 25%     | 50%     | 75%     | max     |
|------------------|-------|-------------|------------|---------|---------|---------|---------|---------|
| car_ID           | 205.0 | 103.000000  | 59.322565  | 1.00    | 52.00   | 103.00  | 154.00  | 205.00  |
| symboling        | 205.0 | 0.834146    | 1.245307   | -2.00   | 0.00    | 1.00    | 2.00    | 3.00    |
| wheelbase        | 205.0 | 98.756585   | 6.021776   | 86.60   | 94.50   | 97.00   | 102.40  | 120.90  |
| carlength        | 205.0 | 174.049268  | 12.337289  | 141.10  | 166.30  | 173.20  | 183.10  | 208.10  |
| carwidth         | 205.0 | 65.907805   | 2.145204   | 60.30   | 64.10   | 65.50   | 66.90   | 72.30   |
| carheight        | 205.0 | 53.724878   | 2.443522   | 47.80   | 52.00   | 54.10   | 55.50   | 59.80   |
| curbweight       | 205.0 | 2555.565854 | 520.680204 | 1488.00 | 2145.00 | 2414.00 | 2935.00 | 4066.00 |
| enginesize       | 205.0 | 126.907317  | 41.642693  | 61.00   | 97.00   | 120.00  | 141.00  | 326.00  |
| boreratio        | 205.0 | 3.329756    | 0.270844   | 2.54    | 3.15    | 3.31    | 3.58    | 3.94    |
| stroke           | 205.0 | 3.255415    | 0.313597   | 2.07    | 3.11    | 3.29    | 3.41    | 4.17    |
| compressionratio | 205.0 | 10.142537   | 3.972040   | 7.00    | 8.60    | 9.00    | 9.40    | 23.00   |
| horsepower       | 205.0 | 104.117073  | 39.544167  | 48.00   | 70.00   | 95.00   | 116.00  | 288.00  |
| peakrpm          | 205.0 | 5125.121951 | 476.985643 | 4150.00 | 4800.00 | 5200.00 | 5500.00 | 6600.00 |

✓ Ωe completed at 12·3/IΔM

horse power and "Y" axis contain count.

Now,I am ploting car curb weight plot: Here "X" axis contain car curb weight and "Y" axis contain count.



Now,I am ploting enginsizeplot: Here "X" axis contain enginsize and "Y"

axis contain count.



Now, I am showing scatterplot of enginesize.



Now, I am showing scatterplot of horsepower.



Now, I am showing scatterplot of Curbweight.



Now, I am ploting scatterplot of horse power and prize. Wher prize contain "Y" axis. And horse power contain "X" axis.







My testing predictions:
sns.aistplot((y\_test-predictions), pins=50);



## **Conclusion:**

In conclusion, we have successfully implemented a Multivariable Linear Regression model to evaluate the performance of Higher Education students. We normalized the data, trained the model using the hypothesis function, cost function, and gradient descent algorithm, evaluated the performance of the model using the cost function, and finally, made a prediction using the model. Further improvements can be made by tuning the hyper parameters and adding more features to the model