

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS

OBJETIVOS:

 Obtener las curvas de variación de la velocidad "n" en función de la tensión "U" y de la corriente de excitación "Iex" de un motor de corriente continua.

APLICACIÓN DEL MOTOR DE CC: MOTOR DE LANZAMIENTO DE UN MOTOR DE COMBUSTIÓN INTERNA (BURRO DE ARRANQUE)

https://youtu.be/bZGqqhUX3Dc

APLICACIÓN DEL MOTOR DE CC: MOTOR DE IMPULSIÓN (AUTO ELÉCTRICO)

CIRCUITO UTILIZADO

Motor de CC excitación independiente

ECUACIÓN DE LA VELOCIDAD

$$n = \frac{U - R_i I_i}{K.\Phi}$$

$$1-n=f(U)$$

$$2-n=f(Ri)$$

$$3-n=f(\Phi)$$

CURVAS CARACTERÍSTICAS DEL MOTOR Y DE LA CARGA

Variación de la velocidad en función de la tensión aplicada

CURVAS CARACTERÍSTICAS DEL MOTOR Y DE LA CARGA

CIRCUITO UTILIZADO

VALORES OBTENIDOS

U[V]	n[r.p.m.]	I[A]	I _{ex} [A]

CURVAS CARACTERÍSTICAS DEL MOTOR Y DE LA CARGA

Variación de la velocidad en función del flujo

Para este caso haremos uso del auto transformador monofásico de campo, con el cual se podrá variar la I_{ex} del motor. Cuanto menor sea el flujo mayor será la velocidad para una cierta U. El límite en este sentido estaría en el \rightarrow caso de que $R_r = \infty$ o sea, en que se abriese el circuito de excitación, lo cual daría un flujo nulo y de acuerdo a (1) una velocidad infinita. Esto debe evitarse, por un lado, debido a las condiciones mecánicas de equilibrio y rozamiento del rotor, que no soportaría tan altas velocidades, y por otra parte a que la intensidad por el inducido tomaría valores muy elevados que podrían deteriorar o destruir los devanados correspondientes. Es por eso que el arranque del motor debe hacerse con cuidado, evitando arrancar sin excitación, con la existencia sólo del magnetismo remanente de los polos.

VALORES OBTENIDOS

U[V]	n[r.p.m.]	I[A]	I _{ex} [A]

CONCLUSIONES

- Cómo proteger el motor contra las posibilidades de embalamiento?
- ¿Qué ventajas tiene este motor respecto de los de C.A. y cuáles serían sus desventajas?
- A qué motor NO eléctrico se asemeja en su control de la velocidad?