Planarni grafovi

Bogdan Ljubinković, Miljan Jokić, Dalibor Nikolić, Lazar Jović, Anastazija Petrov, Marko Djordjević, Aleksa Nenadović i Meris Bilalović

Januar 2024, FTN

Teme kojima ćemo se baviti

- Definicija planarnog grafa
- Ojlerova teorema
- Stepen oblasti
- Granica za broj ivica u planarnom grafu
- Granica za broj ivica u grafu bez kontura dužine tri
- Homeomorfni grafovi

Definicija planarnog grafa

Definicija 1. Graf G = (V, E), gde je V skup čvorova, a E skup ivica, je **planaran** ako postoji način da se G prikaže na ravni tako da:

- 1. Svaka ivica $e \in E$ predstavlja prostu liniju (ili glatku krivu) izmedju dva čvora.
- Nijedne dve ivice se ne seku osim u tački koja je zajednički čvor.

Planarni graf

Primer planarnog grafa:

Planarni graf

Isti graf nacrtan drugačije

Planarni i neplanarni graf

Primer planarnog i neplanarnog grafa:

Planarni graf

Neplanarni graf

Ojlerova teorema

Teorema 1.(Ojlerova formula) Neka je $G = (V, E), |V| \ge 2$, povezan planaran prost graf i neka je f broj oblasti na koje on deli ravan. Tada je

$$f = |E| - |V| + 2.$$

Dokaz Ojlerove teoreme

Dokaz. Neka je |E|=m. Posmatrajmo planarnu reprezentaciju grafa. Neka je G_1 graf koji sadrži proizvoljnu granu grafa G i njoj incidentne čvorove. Ako je $m \geq 2$, kontruišemo dalje sukcesivno podgrafove G_2, \ldots, G_m tako što ćemo svakom sledećem grafu dodati granu koja je incidentna sa jednim čvorom prethodnog podgrafa, kao i eventualno novi čvor incidentan sa tom granom. Takva grana sigurno postoji, zato što je graf povezan.

Dokazaćemo da za svako
$$k \in \{1, \dots, l\}$$
 važi

$$fk = |E_k| - |V_k| + 2,$$

primenom matematičke indukcije.

Dokaz Ojlerove teoreme

Baza k=1: $f_1=|E_1|-|V_1|+2akko1=1-2+2$ Induktivni korak T_k sledi T_k+1 : Pretpostavimo da tvrdjenje vazi za sve vrednosti manje od k. Neka je $G_k+1=G_k+\{u,v\}$.

(i) Ako je $u, v \in V(G_k)$, onda je

$$f_{k+1} = f_k + 1$$

 $|V(G_{k+1})| = |V(G_k)|$
 $|E(G_{k+1})| = |E(G_k)| + 1.$

Koristeći induktivnu pretpostavku, dobijamo

$$f_{k+1} = |E_{k+1}| - |V_{k+1}| + 2 \iff f_k + 1 = |E(G_k)| + 1 - |V(G_k)| + 2$$

Dokaz Ojlerove teoreme

(ii) Ako je $u \in V(G_k)$ i $v \notin V(G_k)$, onda je

$$f_{k+1} = f_k$$

 $|V(G_{k+1})| = |V(G_k)| + 1$
 $|E(G_{k+1})| = |E(G_k)| + 1$.

Koristeći induktivnu pretpostavku, dobijamo

$$f_{k+1} = |E_{k+1}| - |V_{k+1}| + 2 \iff f_k = |E(G_k)| + 1 - |V(G_k)| - 1 + 2$$

Definicija 2. Ako je R oblast u planarnom grafu, njen **stepen** (oznaka deg(R)) je jednak broju ivica koje čine granicu oblasti R.

- Ivica koja je zajednička za dve oblasti računa se u stepen svake od njih.
- Ako se grana pojavljuje dva puta na rubu, ona se računa dva puta.
- Spoljašnja oblast (oblast koja sadrži beskonačnost) se takodje računa kao region, i njen stepen je jednak broju ivica koje okružuju graf spolja.

Ako graf ima samo dva čvora i jednu granu, onda taj graf odredjuje samo jednu oblast koja ima stepen dva. U slučaju da postoje bar tri čvora u povezanom grafu, stepen svake oblasti je bar tri.

Pretpostavimo da planarna reprezentacija grafa G=(V,E) deli ravan na oblasti D_1,\ldots,D_l . Kako se svaka grana računa dva puta u sumi rubova oblasti, sledi

$$\sum_{1\leq i\leq 1}\operatorname{st}(D_i)=2|E(G)|.$$

Broj ivica u planarnom grafu

Posledica 1 Neka je G = (V, E), $|V| \ge 3$, povezan planaran prost graf i neka je f broj oblasti na koje on deli ravan. Tada važi:

$$|E| \le 3|V| - 6.$$

Dokaz: Koristeći činjenicu da je za svaki roblast $st(D) \ge 3$, dobijamo:

$$2|E| = \sum_{1 \le i \le t} \operatorname{st}(D_i) \ge 3 \cdot f \implies f \le \frac{2}{3}|E|.$$

Iz Ojlerove formule dobijamo:

$$|E| - |V| + 2 \le \frac{2}{3}|E| \implies |E| \le 3|V| - 6.$$

Broj ivica u planarnom grafu

Posledica 2 Neka je G = (V, E), $|V| \ge 3$, povezan planaran prost graf bez kontura dužine 3. Tada važi:

$$|E| \le 2|V| - 4.$$

Dokaz: Ako u grafu ne postoje konture dužine tri, onda je stepen svake oblasti bar četiri. Odatle je:

$$2|E| = \sum_{1 \le i \le t} \operatorname{st}(D_i) \ge 4 \cdot f \implies f \le \frac{1}{2}|E|.$$

Iz Ojlerove formule dobijamo:

$$|E| - |V| + 2 \le \frac{1}{2}|E| \implies |E| \le 2|V| - 4.$$

Zadaci

Zadatak 1: dokazati da naredna dva grafa K_5 i $K_{3,3}$ nisu planarni.

Rešenje 1

Pretpostavimo da je K_5 planaran. Kako je $|V(K_5)|=5$ i $|E(K_5)|=\binom{5}{2}=10$, na osnovu Posledice 1, važi:

$$10 \leq 3 \cdot 5 - 6 \implies 10 \leq 9$$

što dovodi do kontradikcije.

Rešenje 2

Pretpostavimo da je $K_{3,3}$ planaran. Kako je $|V(K_{3,3})|=6$ i $|E(K_{3,3})|=3\cdot 3=9$, na osnovu Posledice 2, važi:

$$9 \leq 2 \cdot 6 - 4 \implies 9 \leq 8$$

što dovodi do kontradikcije.

Homeomorfni grafovi

Definicija 3. Grafovi $G_1 = (V_1, E_1)iG_2 = (V_2, E_2)$ su homeomorfni ako se mogu dobiti od istog grafa primenom konačno mnogo elementarnih deoba grana.

Homeomorfni grafovi

Homeomorfni grafovi

Grafovi G_1 i G_2 su homeomorfni zato što je G_1 dobijen od K_5 deobom grana $\{a,e\}$ i $\{e,d\}$, dok je G_2 dobijen od K_5 deobom grana $\{a,b\}$ i $\{c,d\}$.

Teorema Kuratovskog

Teorema (Kuratovski): Graf G = (V, E) nije planaran ako sadrži podgraf koji je homeomorfan sa $K_{3,3}$ ili K_5 .

Primer: Teorema Kuratovskog

Primer: Graf naveden na slici se dobija od grafa K5 deobom odredjenih grana grafa K5. Ako čvorove drugačije rasporedimo, G1 možemo predstaviti kao G2. Sada se vidi da je G homeomorfan sa K3,3 i sledi da nije planaran.

