

Motivation

Motor vehicle traffic crashes are the leading cause of injury related death for New York State residents.

During the period from 2012-2014 there was an annual average of 1,098 deaths, 12,093 hospitalizations and 136,913 emergency department visits due to traffic incidents

Objectives

Can we use a classifier to help EMS services predict the severity of an accident during a specific time of day/day of week with specific weather conditions to help departments better coordinate ambulance services?

- What steps can governments take to reduce accident severity?
- What messages should they be sending to people to increase safety?

Methodology of Project

Clean and combine Data

Feature Engineering

Modeling

Tableau Dashboard

Data:

- NY DMV accident records from 2014 2016
- NY Census Information
- NY Impaired Driving Rates

Models:

- Logistic Regression
- KNN
- Decision Tree
- Random Forest
- XG Boosted Trees

Data Cleaning and Engineering

DMV Data contained records of close to 900,000 accidents

Final Features included:

- Crash severity/description
- Road/Weather conditions
- What was struck (car, tree, etc.)
- County Name
 - Added pop density, DUI rates

With Counties - 90 features
Without Counties - 27 features

Balance Between Property Damage and Injury/Fatal Accidents in Data

* An "All Property Dmg" prediction results in 60% accuracy

Modeling Interpretability vs Black Box

Interpretation Models

Logistic Reg P: 69 R: 31

Decision Tree

P: 57 R: 51 Logistic Reg with .35 threshold

P: 40 R: 90

Black Box Models KNN P: 68 R: 42 Random Forest

P: 75 R: 46 Random Forest with .35 threshold

P: 58 R: 72

Modeling Takeaways:

Recall chosen as key attribute

ROC curves were pretty similar across the board

- High diminishing returns

XG Boosting did little to help

.35 threshold applied to counter slight imbalance in data

Logistic Regression Takeaways

Pedestrian and cyclist involved accidents are more severe

- Local governments need to work more on creating bike lanes/pedestrian safe areas

Lit roads are more dangerous than unlit roads at night

- Road lighting needs to improve

Random Forest with Threshold

- Random Forest with .35 threshold applied resulted in best overall balance in scores.
- While recall was my target, I wanted to ensure that my precision was still somewhat balanced to avoid resource drain.

Tableau Dashboard

Time

Count

50

4 AM

10 AM

4 PM

10 PM

New York State Traffic Accidents (2014 - 2016)

100

Day of Week Day of Week 500 400 300 200

Sunday Mond.. Tuesd.. Wedn.. Thurs.. Friday Satur..

Accident Causes

Event Descriptor (group)		
Other Motor Vehicle, Colli	1,186	
Fixed Object Collision	976	
Deer	876	
Animal, Collision With	87	
Other Object (Not Fixed)*,	36	
Pedestrian, Collision With	25	
Overturned, Non-Collision	24	
Other*, Non-Collision	19	
Fire/Explosion, Non-Collis	12	

Weather

Road Type

