5.4 JARDUERAREN EBAZPENA

5.1 jardueran Vogel-en metodoa erabiliz lortutako hasierako oinarrizko soluzio bideragarria ondorengoa da:

Garraio-fluxuen taula						
	1 denda	2 denda	3 denda	Eskaintza		
A biltegia		4	4	8		
B biltegia	5			5		
C biltegia			2	2		
Eskaria	5	4	6			

Garraio algoritmoa erabiltzeko soluzioa ez-endekatua izan behar da, hau da m+n-1=5 oinarrizko aldagaia izan behar ditu.

Vogel-en metodoaren bidez lortutako soluzio 4 oinarrizko aldagai dituenez, oinarrizkoa ez den aldagai bat onarrizkoa bilakatu behar da.

Aukera desberdinak daude, adibidez x31 aldagaia aukeratzen badugu:

1. iterazioa:

<u>1. pausua:</u> Simplex metodoaren optimaltasun baldintzak betetzen diren aztertu. Horretarako oinarrizko aldagai bakoitzarentzat $u_i + v_j - c_{ij} = 0$ ekuazioa planteatu:

$$\begin{array}{c} x_{12} \rightarrow u_1 + v_2 - c_{12} = 0 \Rightarrow u_1 + v_2 - 8 = 0 \\ x_{13} \rightarrow u_1 + v_3 - c_{13} = 0 \Rightarrow u_1 + v_3 - 17 = 0 \\ x_{21} \rightarrow u_2 + v_1 - c_{21} = 0 \Rightarrow u_2 + v_1 - 3 = 0 \\ x_{31} \rightarrow u_3 + v_1 - c_{31} = 0 \Rightarrow u_3 + v_1 - 0 = 0 \\ x_{33} \rightarrow u_3 + v_3 - c_{33} = 0 \Rightarrow u_3 + v_3 - 0 = 0 \end{array}$$

Sistema $v_1 = 0$ eginez ebatzi. Soluzio ondorengoa da:

$$v_1 = 0, v_2 = -9, v_3 = 0, u_1 = 17, u_2 = 3, u_3 = 0$$

$z_{ij} = u_i + v_j$	$v_1 = 0$	$v_2 = -9$	$v_3 = 0$
$u_1 = 17$	17	8	17
$u_2 = 3$	3	-7	3
$u_3 = 0$	0	-9	0

Ondorioz, kostu murriztuak:

$W_{ij} = z_{ij} - c_{ij}$	1	2	3
Α	-1	0	0
В	0	-22	-1
С	0	-9	0

 $W_{ij} \le 0 \ \forall i,j \Rightarrow$ Soluzio bideragarria optimoa da. Optimoa:

$$x_{12} = 4, x_{13} = 4, x_{21} = 5, x_{33} = 2 (x_{31} = 0)$$

Oharra:

C biltegia gezurretakoa denez eta $x_{33}=2$ denez, 3 dendak duen eskaria 6 unitatekoa izan arren 4 unitate bakarrik bidaltzen dira (A biltegitik) \Rightarrow 3. Dendara 2 unitate bidali gabe geratzen dira.