Package 'SIHR'

June 14, 2022

3 dife 11, 2022
Type Package
Title Statistical Inference in High Dimensional Regression
Version 0.1.0
Description Inference procedures in the high-dimensional setting for (1) linear functionals in generalized linear regression ('Cai et al.' (2019) <arxiv:1904.12891>, 'Guo et al.' (2020) <arxiv:2012.07133>, 'Cai et al.' (2021)), (2) quadratic functionals in linear regression ('Guo et al.' (2019) <arxiv:1909.01503>) (3) individual treatment effects in generalized linear regression.</arxiv:1909.01503></arxiv:2012.07133></arxiv:1904.12891>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
Maintainer Zhenyu Wang <zw425@stat.rutgers.edu></zw425@stat.rutgers.edu>
<pre>URL https://github.com/prabrishar1/SIHR</pre>
BugReports https://github.com/prabrishar1/SIHR/issues
Imports CVXR, glmnet, stats
R topics documented:
ITE 2 LF 3 print.summary.ITE 5 print.summary.LF 6 print.summary.QF 6 QF 7 summary.ITE 8 summary.LF 9 summary.QF 10
Index 11

2 ITE

ITE	Inference for difference of linear combinations of the regression vec-
	tors in high dimensional generalized linear regressions

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

Usage

```
ITE(
  Х1,
  y1,
  Х2,
  y2,
  loading.mat,
  model = "linear",
  intercept = TRUE,
  intercept.loading,
  lambda = NULL,
  mu = NULL,
  init.step = NULL,
  resol = 1.5,
  maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments

	X1	Design matrix for the first sample, of dimension $n_1 \times p$
	y1	Outcome vector for the first sample, of length n_1
	X2	Design matrix for the second sample, of dimension $n_2 \ge p$
	y2	Outcome vector for the second sample, of length n_1
	loading.mat	Loading matrix, nrow=p
	model	The high dimensional regression model, either linear or logistic or logistic alternative or probit
	intercept	Should intercept(s) be fitted for the initial estimators (default = $TRUE$)
intercept.loading		
		Should intercept be included for the loading (default = TRUE)
	lambda	lambda The tuning parameter in fitting model (default = NULL)
	mu	The dual tuning parameter used in the construction of the projection direction (default = $NULL$)
	init.step	The initial step size used to compute mu ; if set to NULL it is computed to be the number of steps (maxiter) to obtain the smallest mu

LF 3

resol	The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default $= 6$)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec	The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat
est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat
se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); corresponding to different column in loading.mat
ci.mat	The matrix of two.sided confidence interval for the linear combination, of dimension $ncol(loading.mat)$ x 2; the row corresponding to different column in loading.mat

Examples

```
X1 = matrix(rnorm(100*120), nrow=100, ncol=120)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*120), nrow=90, ncol=120)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading.mat = cbind(c(1, 1, rep(0, 118), c(-0.5, -1, rep(0, 118))))
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
Est$est.plugin.vec ## plugin(biased) estimators
Est$est.debias.vec ## bias-corrected estimators
Est$se.vec ## standard errors for bias-corrected estimators
Est$ci.mat ## two-sided confidence interval for bias-corrected estimators
## Not run:
summary(Est)
## End(Not run)
```

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

LF

Inference for linear combination of the regression vector in high dimensional generalized linear regression

4 LF

Usage

```
LF(
  Χ,
  у,
  loading.mat,
  model = c("linear", "logistic", "logistic_alternative", "probit"),
  intercept = TRUE,
  intercept.loading = TRUE,
  lambda = NULL,
  mu = NULL,
  init.step = NULL,
  resol = 1.5,
  maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments Χ

Outcome vector, of length nloading.mat Loading matrix, nrow=pmode1

The high dimensional regression model, either linear or logistic or logistic_alternative

intercept Should intercept be fitted for the initial estimator (default = TRUE)

intercept.loading

Should intercept be included for the loading (default = TRUE)

lambda The tuning parameter in fitting model (default = NULL)

Design matrix, of dimension $n \times p$

mu The dual tuning parameter used in the construction of the projection direction

(default = NULL)

init.step The initial step size used to compute mu; if set to NULL it is computed to be the

number of steps (maxiter) to obtain the smallest mu

The factor by which mu is increased/decreased to obtain the smallest mu such resol

that the dual optimization problem for constructing the projection direction con-

verges (default = 1.5)

maxiter Maximum number of steps along which mu is increased/decreased to obtain the

smallest mu such that the dual optimization problem for constructing the projec-

tion direction converges (default = 6)

alpha Level of significance to construct two-sided confidence interval (default = 0.05)

verbose Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec The vector of plugin(biased) estimators for the linear combination of regression

coefficients, length of ncol(loading.mat); corresponding to different column

in loading.mat

est.debias.vec The vector of bias-corrected estimators for the linear combination of regression

coefficients, length of ncol(loading.mat); corresponding to different column

in loading.mat

print.summary.ITE 5

The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); corresponding to different column in loading.mat

The matrix of two.sided confidence interval for the linear combination, of dimension ncol(loading.mat) x 2; the row corresponding to different column in loading.mat

Examples

```
X = matrix(rnorm(100*120), nrow=100, ncol=120)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading.mat = cbind(c(1, 1, rep(0, 118), c(-0.5, -1, rep(0, 118))))
Est = LF(X, y, loading.mat, model="linear")
Est$est.plugin.vec ## plugin(biased) estimators
Est$est.debias.vec ## bias-corrected estimators
Est$se.vec ## standard errors for bias-corrected estimators
Est$ci.mat ## two-sided confidence interval for bias-corrected estimators
## Not run:
summary(Est)
## End(Not run)
```

print.summary.ITE

Summarizing ITE

Description

'summary' method for class 'ITE'

Usage

```
## S3 method for class 'summary.ITE'
print(obj, digits = 5)
```

Arguments

obj An object of class 'summary.ITE', a result of a call to 'summary.ITE' digits The number of digits to use when printing

Examples

```
## Not run:
#' ##-- Continuing the ITE(.) example:
summary(Est)
## End(Not run)
```

6 print.summary.QF

```
print.summary.LF
```

Summarizing LF

Description

```
'summary' method for class 'LF'
```

Usage

```
## S3 method for class 'summary.LF'
print(obj, digits = 5)
```

Arguments

obj An object of class 'summary.LF', a result of a call to 'summary.LF' digits The number of digits to use when printing

Examples

```
## Not run:
#' ##-- Continuing the LF(.) example:
summary(Est)
## End(Not run)
```

```
print.summary.QF
```

Summarizing QF

Description

```
'summary' method for class 'QF'
```

Usage

```
## S3 method for class 'summary.QF'
print(obj, digits = 5)
```

Arguments

obj An object of class 'summary.QF', a result of a call to 'summary.QF' digits The number of digits to use when printing

Examples

```
## Not run:
#' ##-- Continuing the QF(.) example:
summary(Est)
## End(Not run)
```

QF 7

QF

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Description

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Usage

```
QF(
  Χ,
  у,
  G,
  A = NULL
  model = c("linear", "logistic", "logistic_alternative"),
  intercept = TRUE,
  tau.vec = c(0.5, 1),
  lambda = NULL,
  mu = NULL,
  init.step = NULL,
  resol = 1.5,
  maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

NULL)

Arguments

Χ	Design matrix, of dimension $n \times p$
У	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	$The \ high \ dimensional \ regression \ model, either \ linear \ or \ logistic \ or \ logistic_alternative$
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
tau.vec	The vector of enlargement factors for asymptotic variance of the bias-corrected estimator to handle super-efficiency (default = $c(0.5,1)$)
lambda	The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default =

8 summary.ITE

resol	Resolution or the factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	aximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se.vec	The vector of standard errors of the bias-corrected estimator, length of tau.vec; corrsponding to different values of tau.vec
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau.vec

Examples

```
X = matrix(rnorm(100*120), nrow=100, ncol=120)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")
Est$est.plugin ## plugin(biased) estimator
Est$est.debias ## bias-corrected estimator
Est$se.vec ## standard errors for bias-corrected estimators for each tau
Est$ci.mat ## two-sided confidence interval for bias-corrected estimator for each tau
## Not run:
summary(Est)
## End(Not run)
```

 ${\tt summary.ITE}$

Summarizing ITE

Description

'summary' method for class 'ITE'

Usage

```
## S3 method for class 'ITE'
summary(obj, alpha = 0.05, alternative = c("two.sided", "less", "greater"))
```

summary.LF 9

Arguments

obj An object of class 'ITE', a result of a call to 'ITE' alpha Level of significance to construct confidence interval

alternative indicates the alternative hypothesis to construct confidence interval and must be

one of "two.sided" (default), "less", or "greater".

Value

The function 'summary.ITE' computes and returns a list of summary statistics of LF given 'obj'

output.est a ncol(loading.mat) x 5 matrix with columns for the plugin(biased) estimators,

bias-corrected estimators, its standard error, z-statistic and corresponding (two-

sided) p-value; Each row corresponds to each loading.

output.ci a ncol(loading.mat) x 2 matrix with columns for lower and upper of (two-

sided) confidence intervals; Each row corresponds to each loading.

Examples

```
## Not run:
##-- Continuing the ITE(.) example:
sEst = summary(Est)
sEst
## End(Not run)
```

summary.LF

Summarizing LF

Description

'summary' method for class 'LF'

Usage

```
## S3 method for class 'LF'
summary(obj, alpha = 0.05, alternative = c("two.sided", "less", "greater"))
```

Arguments

obj An object of class 'LF', a result of a call to 'LF' alpha Level of significance to construct confidence interval

alternative indicates the alternative hypothesis to construct confidence interval and must be

one of "two.sided" (default), "less", or "greater".

Value

The function 'summary.LF' computes and returns a list of summary statistics of LF given 'obj'

output.est a ncol(loading.mat) x 5 matrix with columns for the plugin(biased) estimators,

bias-corrected estimators, its standard error, z-statistic and corresponding (two-

sided) p-value; Each row corresponds to each loading.

output.ci a ncol(loading.mat) x 2 matrix with columns for lower and upper of (two-

sided) confidence intervals; Each row corresponds to each loading.

10 summary.QF

Examples

```
## Not run:
##-- Continuing the LF(.) example:
sEst = summary(Est)
sEst
## End(Not run)
```

summary.QF

Summarizing QF

Description

'summary' method for class 'QF'

Usage

```
## S3 method for class 'QF'
summary(obj, alpha = 0.05, alternative = c("two.sided", "less", "greater"))
```

Arguments

obj An object of class 'QF', a result of a call to 'QF' alpha Level of significance to construct confidence interval

alternative indicates the alternative hypothesis to construct confidence interval and must be

one of "two.sided" (default), "less", or "greater".

Value

The function 'summary.QF' computes and returns a list of summary statistics of LF given 'obj'

output.est a length(tau.vec) x 5 matrix with columns for the plugin(biased) estimators,

bias-corrected estimators, its standard error, z-statistic and corresponding (two-

sided) p-value; Each row corresponds to each tau.

output.ci a length(tau.vc) x 2 matrix with columns for lower and upper of (two-sided)

confidence intervals; Each row corresponds to each tau.

Examples

```
## Not run:
##-- Continuing the QF(.) example:
sEst = summary(Est)
sEst
## End(Not run)
```

Index

```
ITE, 2

LF, 3

print.summary.ITE, 5

print.summary.LF, 6

print.summary.QF, 6

QF, 7

summary.ITE, 8

summary.LF, 9

summary.QF, 10
```