BMP Combination with Mask

모코코 - 김태현, 강형준, 신민성, 이도형

0. Requirement

C++, MFC, visual studio, python, pycharm

1. Purpose

BMP Image의 Header에 대해 학습한다. Image Segmentation으로 auto Mask 생성 함수를 구현한다.

2. Design

- 2-1. BMP Image, background 두 장을 loading 한다.
 - 8 비트와 24 비트 BMP Image를 흑백과 컬러로 load 할 수 있다. (DIB, V3)
 - 8 비트 BMP Header에는 팔레트가 존재한다.
- 2-2. BMP Image에서 얼굴 부분을 masking 한다.
- 2-2-0. 자동 마스크 생성
- 2-2-1. 데이터 수집

Human Parsing-Dataset을 수집.

(https://github.com/lemondan/HumanParsing-Dataset)

2-2-2. 데이터 전처리

각 이미지 데이터를 스케일에 맞게 (256,256) resize 한 후 2채널로 분리.

2-2-3. 모델 학습

학습 데이터를 정규화(1./255)한 후, 그 중 훈련 데이터를 밝기(0.7,1.3)로 증강. Image Segmentation을 하기 위해 U-net 모델을 적용.

https://github.com/leedohyeong/KSA_MAKING_MASK/blob/main/model.png

con2d : 15, Max_pool : 3, Up_sampling : 3, Concatenate : 3, Depthwise: 2 loss = 'categorical_crossentropy', optimizer = 'adam', epochs = 100, BATCH_SIZE = 16, callback 함수를 활용해 학습률을 조정. 학습 결과 0.9853의 정확도를 보임. 모델을 h5 형태로 저장.

2-2-4. 모델 Test

OpenCV로 webcam을 활용해 입력 이미지를 저장. 저장된 모델에 입력 이미지를 reshape(256,256,3)한 후 예측 이미지 도출. 예측 이미지 중 1번 채널만 사용하여 background 이미지에 합성 이미지 파일

합성된 BMP 파일을 MFC로 불러들여 결과 확인.

- 2-3. Masking한 BMP Image를 BMP background 와 combination 한다.
- 2-4. 결과 BMP Image를 save 한다.

3. Conclusion

생성.

MFC코드 (visual studio)

마스크 구현코드 (pycharm)

실행영상파일 (mp4)

이미지파일 (bmp)

<원본 이미지 파일>

<배경 이미지 파일>

<합성 이미지 파일>

4. BMP(Bitmap) File

비트맵 디지털 그림을 저장하는 그림 파일 포맷.

RLE, JPEG, PNG의 압축형식을 지원하지만 대부분 파일 압축을 하지 않아 파일 크기가 크다.

압축을 풀 필요가 없기 때문에 속도가 빠르다.

단순하고 특허에 자유로우며 ZIP과 같은 무손실 데이터 압축 알고리즘으로 상당 용량을 압축할 수 있다.

4-1. BMP File 종류

4-1-1. DIB(Device Independent Bitmap)

DIB는 장치에 독립적인 비트맵 방식으로 DDB 정보에 색상 테이블과 해상도 정보 등의 추가 정보를 갖고 있기 때문에 활용도가 넓고 호환성이 좋다.

4-1-2. DDB(Device Dependent Bitmap)

DDB는 장치에 종속적인 비트맵 방식으로 출력 장치에 의존적이기 때문에 제한된 환경에서 사용한다.

4-2. BMP Color Depth

비트 수	색상 수	구분
1 bit	2 색	흑백
2 bit	4 색	팔레트
3 bit	8 색	
4 bit	16 색	
8 bit	256 색	
16 bit	65,536 색	하이컬러 Highcolor (R:G:B = 5:5:5)
24 bit	16,777,216 색	트루컬러 Truecolor (R:G:B = 8:8:8)
32 bit	16,777,216 색 + 8 bit 알파채널	트루컬러 + 알파채널

4-3. BMP File Format

File Header	BMP 파일 식별 정보
lmage Header	이미지에 대한 정보
Color Palette	색상 정보
Pixel Data	픽셀 데이터

4-3-1. File Header (BITMAPFILEHEADER)

File Header는 BITMAPFILEHEADER라는 구조체에 정의되어 있다. 현재 파일 포맷이 BMP인지 확인할 수 있는 정보가 있다.

오프셋	크기	목적
0	2	BMP 파일 식별. B(0x42), M(0x4D) 을 확인할 수 있다.
2	4	헤더를 포함한 BMP 파일의 전체 크기. little-endian으로 표기.
6	2	준비. 그림을 만드는 데 쓰인 응용 프로그램에 따라 달라진다.
8	2	준비. 그림을 만드는 데 쓰인 응용 프로그램에 따라 달라진다.
10	4	비트맵 데이터가 시작되는 위치. 오프셋(Offset)

4-3-2. Image Header

Image Header는 BITMAPFILEHEADER 구조체 다음에 위치한다.

4-3-2-1. BMP Image Header 종류

크기	헤더	식별자	GDI 지원
40	윈도 V3	BITMAPINFOHEADER	윈도우 3.0 이후의 모든 윈도 버전
12	OS/2 V1	BITMAPCOREHEADER	OS/2 및 윈도우 3.0 이후의 모든 윈도 버전
64	OS/2 V2		
108	윈도 V4	BITMAPV4HEADER	윈도 95/NT4 이후의 모든 윈도 버전
124	윈도 V5	BITMAPV5HEADER	윈도 98/2000 이상

호환성을 이유로 대부분 DIB 헤더를 사용한다. OS/2가 물러나고 일반적으로 V3 헤더를 사용한다.

4-3-2-2. BMP Image Header (DIB, V3) (BITMAPINFOHEADER)

오프셋 크기 목적

14	4	이 헤더의 크기 (40 바이트)
18	4	비트맵 가로 (단위는 화소, signed integer)
22	4	비트맵 세로 (단위는 화소, signed integer)
26	2	사용하는 색 판(color plane)의 수. 1로 설정해야 한다.
28	2	한 화소에 들어가는 비트 수, 그림의 색 깊이. 보통 값은 1, 4, 8, 16, 24, 32
30	4	압축 방식. 가능한 값에 대한 목록은 다음 표를 참조.
34	4	그림 크기. 압축되지 않은 비트맵 데이터의 크기(아래 참조)이며, 파일 크기와 혼동하지 말 것.
38	4	그림의 가로 해상도. (미터 당 화소, signed integer)
42	4	그림의 세로 해상도. (미터 당 화소, signed integer)
46	4	색 팔레트의 색 수, 또는 0에서 기본값 2^n.
50	4	중요한 색의 수. 모든 색이 중요할 경우 0. 일반적으로 무시.

4-3-2-3. 압축 방식 종류

압축 방식(바이트 #30-33)은 다음의 값을 가진다. BI_RGB 비트맵의 경우 그림 크기 필드는 0이 될 수 있다.

값	식별자	압축 방식	비고
0	BI_RGB	하	가장 일반적이다.
1	BI_RLE8	RLE 8비트/화소	8비트/화소 비트맵에만 사용할 수 있다.
2	BI_RLE4	RLE 4비트/화소	4비트/화소 비트맵에만 사용할 수 있다.
3	BI_BITFIELDS	비트 필드	16, 32비트/화소 비트맵에만 사용할 수 있다.
4	BI_JPEG	JPEG	비트맵은 JPEG 이미지를 포함한다.
5	BI_PNG	PNG	비트맵은 PNG 이미지를 포함한다.

4-3-3. Color Palette

BMP 파일의 비트수에 따라 세 가지(RGBQUAD, RGBTRIPLE, Mask) 포맷이 있다.

8 비트 이하에서는 RGB 값을 나타내기 위해 컬러맵(Color Palette)을 사용한다. 윈도우 BMP 파일은 RGBQUAD 구조체를 사용한다. OS/2에서는 RGBTRIPLE 구조체를 사용한다.

4-3-3-1. RGBQUAD 구조체

Field	Size	Description
rgbBlue	1	파란색 값
rgbGreen	1	빨간색 값
rgbRed	1	녹색 값
rgbReserved	1	항상 0 값

4-3-3-2. RGBTRIPLE 구조체

Field	Size	Description
rgbBlue	1	파란색 값
rgbGreen	1	빨간색 값
rgbRed	1	녹색 값

4-3-3-3. Mask

컬러맵을 사용하지 않고 비트 마스크를 사용한다. 16, 24, 32 비트 이미지의 경우 팔레트 자체 용량이 커지기 때문이다.

RED	00 0000000000 0000000000 1111111111
GREEN	00 0000000000 1111111111 0000000000
BLUE	00 1111111111 000000000 0000000000

4-3-4. Pixel Data

컬러 팔레트나 비트 마스크 다음에 위치한다.

1, 4 비트 이미지: 2개, 8개의 필드로 나뉘고, 각각 컬러 팔레트 값을 나타낸다.

8 비트 이미지 : 줄단위 각 픽셀은 1 바이트이고, 각각 컬러 팔레트 값을 나타낸다.

16 비트 이미지 : 각 픽셀은 2 바이트 정수형으로 나타낸다.

BI_RGB - 각 컬러값은 5 비트씩 사용하고, 최상위 비트는 사용하지

않는다.

BI BITMAP - 3개의 4 바이트 비트 마스크가 각 컬러 요소에

사용된다.

컬러 순서는 red, blue, green.

24 비트 이미지 : 각 픽셀은 blue, green, red의 연속된 바이트열로 나타낸다. 픽셀의 순서가 반대.

32 비트 이미지: 각 픽셀은 4 바이트의 정수형으로 나타낸다.

BI_RGB - blue, green, red 순서로 각 8 비트 값을 나타낸다.

24 비트와 유사하며 8 비트는 알파채널이다.

BI BITFIELD - 3개의 4 바이트 비트 마스크를 사용한다.

비트 마스크 순서는 red, blue, green.