Assessment Figure Examples

Melissa Monk July 26, 2016

Ending year expected growth (with 95% intervals)

Figure 1: Length at age in the beginning of the year (or season) in the ending year of the model. Shaded area indicates 95% distribution of length at age around estimated growth curve. fig:modi_1_bio1_sizeatage

Figure 2: Length at age (top-left panel) with CV (thick line) and SD (thin line) of length at age shown in top-right and lower-left panels | fig:mod1_2_bio2_sizeatage_plus_CV_and_SD |

Figure 3: Length at age (top-left panel) with weight (thick line) and maturity (thin line) shown in top-right and lower-left panels | fig:mod1_3_bio3_sizeatage_plus_WT_and_MAT

Figure 4: Weight-length relationship $fig:mod1_4_bio4_weightatsize$

Figure 5: Maturity at length $fig:mod1_5_bio5_maturity$

Figure 6: Fecundity | fig:mod1_6_bio6_fecundity

Figure 7: Fecundity as a function of weight $\lceil \text{fig:mod1_7_bio7_fecundity_wt} \rceil$

Figure 8: Fecundity as a function of length $\lceil \text{fig:mod1_8_bio8_fecundity_len} \rceil$

Length-based selectivity by fleet in 2014

Figure 9: Selectivity at length for multiple fleets. fig:mod1_1_plots_mod1/sel01_multiple_fleet

Derived age-based from length-based selectivity by fleet in 2014

Figure 10: Selectivity at age derived from selectivity at length for multiple fleets. fig:mod1_3_plots_mod1/sel02

Female time-varying selectivity for TrawlSouth

Female ending year selectivity for TrawlSouth

Figure 12: Female ending year selectivity for TrawlSouth fig:mod1_6_plots_mod1/sel09_len_flt1se

Male time-varying selectivity for TrawlSouth

Figure 13: Surface plot of Male time-varying selectivity for TrawlSouth fig:mod1_7_plots_mod1/sel03_len_

Male time-varying selectivity for TrawlSouth

Figure 14: Countour plot of Male time-varying selectivity for TrawlSouth | fig:mod1_8_plots_mod1/sel04_len

Male ending year selectivity for TrawlSouth

Figure 15: Male ending year selectivity for TrawlSouth | fig:mod1_9_plots_mod1/sel09_len_flt1sex

Female ending year selectivity for HL

Figure 16: Female ending year selectivity for HL $^{fig:mod1_10_plots_mod1/sel09_len_flt2sex1}$.

Male ending year selectivity for HL

Figure 17: Male ending year selectivity for HL fig:mod1_11_plots_mod1/sel09_len_flt2sex2.p

Female ending year selectivity for Setnet

Figure 18: Female ending year selectivity for Setnet fig:mod1_12_plots_mod1/sel09_len_flt3sex

Male ending year selectivity for Setnet

Total biomass (mt) October 1900 1920 1940 1960 1980 2000 Year

Figure 19: Total biomass (mt) fig:mod1_1_plots_mod1/ts1_Total_biomass_(mt).png

Summary biomass (mt)

Figure 20: Summary biomass (mt) | fig:mod1_2_plots_mod1/ts4_Summary_biomass_(mt).pr

Spawning output

Figure 21: Spawning output fig:mod1_3_plots_mod1/ts7_Spawning_output.png

Spawning output with ~95% asymptotic intervals

Figure 22: Spawning output with $\sim 95\%$ asymptotic intervals fig:mod1_4_plots_mod1/ts7_Spawning_output with $\sim 95\%$ and ~ 95

Spawning depletion

Figure 23: Spawning depletion fig:mod1_5_plots_mod1/ts9_Spawning_depletion.png

Spawning depletion with ~95% asymptotic intervals

Figure 24: Spawning depletion with $\sim 95\%$ asymptotic intervals fig:mod1_6_plots_mod1/ts9_Spawning_contract figure 24: Spawning depletion with $\sim 95\%$ asymptotic intervals fig:mod1_6_plots_mod1/ts9_Spawning_contract figure 24: Spawning_contract fi

Figure 25: Age-0 recruits (1,000s) fig:mod1_7_plots_mod1/ts11_Age-0_recruits_(1000s)

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure 27: landings fig:mod1_1_plots_mod1/catch1 landings.png

Figure 28: landings stacked fig:mod1_2_plots_mod1/catch2 landings stacked.png

Figure 29: harvest rate fig:mod1_3_plots_mod1/catch9 harvest rate.png

Figure 30: Timeseries of SPR fig:mod1_1_plots_mod1/SPR1_series.png

Figure 31: Timeseries of 1-SPR fig:mod1_2_plots_mod1/SPR2_minusSPRseries.png

Figure 32: Timeseries of SPR ratio fig:mod1_3_plots_mod1/SPR3_ratiointerval.png

Figure 33: Phase plot of biomass ratio vs. SPR ratio fig:mod1_4_plots_mod1/SPR4_phase.png

Index TrawlSouth

Figure 34: Index data for TrawlSouth. Lines indicate 95% uncertainty interval around index values. Thicker fig:mod1_1_plot lines (if present) indicate input uncertainty before addition of estimated additional uncertainty parameter.

Index TrawlSouth

Figure 35: Fit to index data for TrawlSouth. Lines indicate 95% uncertainty interval around index values. Thicker lines (if present) indicate input uncertainty before addition of estimated additional uncertainty parameter. Fig:mod1_2_plots_mod1/index2_cpuefit_TrawlSouth.png

Figure 36: Observed vs. expected index values with smoother for TrawlSouth fig:mod1_3_plots_mod1/index3_

Beginning of year expected numbers at age of females in (max ~ 25.1 million)

Figure 37: Beginning of year expected numbers at age of females in (max ~ 25.1 million) fig:mod1_1_plots_mod1/negretary figure 37: Beginning of year expected numbers at age of females in (max ~ 25.1 million)

Beginning of year expected numbers at age of males in (max ~ 25.1 million)

Figure 38: Beginning of year expected numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_mod1_2_plots_mod1/numbers at age of males in $(\max \sim 25.1 \text{ million})$ fig:mod1_2_plots_m

Beginning of year mean age in the population

Figure 39: Beginning of year mean age in the population fig:mod1_3_plots_mod1/numbers2_meanage

length comp data, whole catch, TrawlSouth

Figure 40: length comp data, whole catch, TrawlSouth fig:mod1_1_plots_mod1/comp_lendat_flt1m

length comp data, whole catch, TrawlSouth (max=0.32)

 $Figure~41:~length~comp~data,~whole~catch,~TrawlSouth~(max=0.32)~\\ |^{\texttt{fig:mod1_2_plots_mod1/comp_lendat}}|$

Figure 42: Francis data weighting method TA1.8 TrawlSouth Suggested sample size adjustment (with 95% interval) for len data from TrawlSouth:0.8988 (0.6221-1.5428)

length comps, whole catch, TrawlSouth

Figure 43: length comps, whole catch, TrawlSouth fig:mod1_1_plots_mod1/comp_lenfit_flt1mkt

Pearson residuals, whole catch, TrawlSouth (max=14.96)

Figure 44: Pearson residuals, whole catch, TrawlSouth (max=14.96) Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected). fig:mod1_2_plots_mod1/comp_lenfit

N-EffN comparison, length comps, whole catch, TrawlSouth

Figure 46: Yield curve | fig:mod1_1_plots_mod1/yield1_yield_curve.png

- 11 ![Surplus production plot. For interpretation, see
- Walters, Hilborn, and Christensen, 2008, Surplus production dynamics in declining and recovering fish
- populations. Can. J. Fish. Aquat. Sci. 65: 2536m25512_plots_mod1/yield2_Hilborn_surplus_production.png
- ${}_{14}\quad](C:/Assessment_template/r4ss/plots_mod1//yield2_Hilborn_surplus_production.png)$