Chapter 8 Arithmétique des entiers

8.1 Divisibilité

Exercice 8.1

Démontrer que pour tout $n \in \mathbb{N}$, 7 divise $3^{6n} - 6^{2n}$.

Exercice 8.2

Les nombres a, b, c, d étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- 1. Si a divise b et c, alors $c^2 2b$ est multiple de a.
- **2.** Si a divise b + c et b c, alors a divise b et a divise c.
- 3. Si a est multiple de b et si c est multiple de d, alors a + c est multiple de b + d.
- **4.** Si 4 ne divise pas bc, alors b ou c est impair.
- 5. Si a divise b et b ne divise pas c, alors a ne divise pas c.

Exercice 8.3

Déterminer les entiers $n \in \mathbb{N}$ tels que :

- 1. n|n + 8.
- **2.** n-1|n+11.
- 3. $n-3|n^3-3$.

Exercice 8.4

Déterminer l'ensemble E des $n \in \mathbb{Z}$ tels que $n^2 + 7 \mid n^3 + 5$.

Exercice 8.5

Soit $n \in \mathbb{N}^*$.

- **1.** Montrer que tout élément de [1, n] a au moins un multiple dans [n + 1, 2n].
- 2. En déduire que l'ensemble E des multiples communs à 1, 2, ..., 2n est égal à l'ensemble E' des multiples communs à n + 1, n + 2, ..., 2n.

8.2 Les nombres premiers

Exercice 8.6

Montrer que pour tout $n \in \mathbb{N}$, l'intervalle [n! + 2, n! + n] ne contient aucun nombre premier.

Exercice 8.7 (***) Infinité des nombres premiers congrus à 3 modulo 4, (X MP)

Montrer que l'ensemble \mathcal{P} des nombres premiers est infini. Montrer qu'il en est de même de l'ensemble des nombres premiers congrus à 3 modulo 4.

8.3 Division euclidienne

Exercice 8.8

Sachant que l'on a $96842 = 256 \times 375 + 842$, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.

8.4 Plus grand commun diviseur, algorithme d'Euclide

Exercice 8.9

Les nombres a, b, c, d étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si a divise b et b divise c, alors a divise c.
- **2.** Si a divise b et a divise c, alors a divise 2b + 3c.
- 3. S'il existe u et v entiers tels que au + bv = 4 alors pgcd(a, b) = 4.
- **4.** Si 7a 9b = 1 alors a et b sont premiers entre eux.
- **5.** Si a divise b et b divise c et c divise a, alors |a| = |b|.
- **6.** Si a divise c et b divise d, alors ab divise cd.
- 7. Si 9 divise ab et si 9 ne divise pas a, alors 9 divise b.
- **8.** Si a divise b ou a divise c, alors a divise bc.
- **9.** Si *a* divise *b*, alors *a* n'est pas premier avec *b*.
- **10.** Si a n'est pas premier avec b, alors a divise b ou b divise a.

Exercice 8.10

Calculer pgcd(424, 68) par l'algorithme d'Euclide.

Exercice 8.11

Calculer par l'algorithme d'Euclide pgcd (18480, 9828).

Exercice 8.12

Soit $n \in \mathbb{N}$. Déterminer, en discutant éventuellement suivant les valeurs de n, le pgcd des entiers suivants.

$$A = 9n^2 + 10n + 1$$
 et $B = 9n^2 + 8n - 1$.

Exercice 8.13

Soit $u = (u_n)_{n \in \mathbb{N}}$ la suite numérique définie par

$$u_0 = 0,$$
 et $\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n.$

- 1. Calculer les termes u_2 , u_3 , u_4 , u_5 , u_6 de la suite u.
- 2. Montrer que la suite *u* vérifie

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1.$$

En déduire le plus grand diviseur commun de deux termes consécutifs de cette suite u.

3. Montrer que la suite *u* vérifie

$$\forall n \in \mathbb{N}, u_n = 2^n - 1.$$

Les nombres $2^n - 1$ et $2^{n+1} - 1$ sont-ils premiers entre eux pour tout entier naturel n?

4. Vérifier que, pour tout couple d'entiers naturels $(n, p) \in \mathbb{N} \times \mathbb{N}$,

$$u_{n+p} = u_n \left(u_p + 1 \right) + u_p.$$

En déduire que, pour tout couple d'entiers naturels $(n, p) \in \mathbb{N} \times \mathbb{N}$,

$$\operatorname{pgcd}\left(u_{n}, u_{n+n}\right) = \operatorname{pgcd}\left(u_{n}, u_{n}\right). \tag{8.1}$$

5. Soient *a* et *b* deux entiers naturels non nuls, *r* est le reste de la division euclidienne de *a* par *b*. Déduire de la propriété (8.1)

$$\operatorname{pgcd}\left(u_{b}, u_{r}\right) = \operatorname{pgcd}\left(u_{a}, u_{b}\right)$$

et que

$$\operatorname{pgcd}\left(u_a, u_b\right) = u_{\operatorname{pgcd}(a,b)}.$$

6. Calculer alors pgcd (u_{1982}, u_{312}) .

Exercice 8.14 Une équation avec un PGCD et un PPCM

Résoudre l'équation suivante, d'inconnues $(a, b) \in \mathbb{N}^2$:

$$pgcd(a, b) + ppcm(a, b) = a + b.$$

Exercice 8.15

Les nombres a, b étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si 19 divise *ab*, alors 19 divise *a* ou 19 divise *b*.
- **2.** Si 91 divise *ab*, alors 91 divise *a* ou 91 divise *b*.
- 3. Si 5 divise b^2 , alors 25 divise b^2 .
- **4.** Si 12 divise b^2 , alors 4 divise b.
- 5. Si 12 divise b^2 , alors 36 divise b^2 .

Exercice 8.16 Développement de $(1 + \sqrt{2})^n$

1. Monter

$$\forall n \in \mathbb{N}, \exists ! (a_n, b_n) \in \mathbb{Z}^2, (1 + \sqrt{2})^n = a_n + b_n \sqrt{2}.$$

2. Calculer $\operatorname{pgcd}(a_n, b_n)$ pour tout $n \in \mathbb{N}$.

Exercice 8.17

On considère l'équation (E): 26x + 15y = 1 dans laquelle les inconnues x et y sont des entiers relatifs.

- 1. Écrire l'algorithme d'Euclide pour les nombres 26 et 15.
- **2.** En déduire une solution particulière de (E) puis l'ensemble des solutions de (E).
- 3. Utiliser ce qui précède pour résoudre l'équation 26x + 15y = 4.

Exercice 8.18

Résoudre dans \mathbb{Z}^2 les équations

- 1. 1260x + 294y = 3814.
- **2.** 1260x + 294y = 2814.

Exercice 8.19

Soient a et b des entiers > 0 et premiers entre eux. Montrer qu'il existe un et un seul couple d'entiers (c, d) tel que

$$ac + bd = 1 \qquad 0 \le c < b, \tag{8.2}$$

et que les autres solutions (u, v) de l'égalité de Bézout ua + vb = 1 sont u = c + kb et v = d - ka, k parcourant \mathbb{Z}

Exercice 8.20 (***) Suite de Farev

Soit $n \in \mathbb{N}^*$. Considérons tous les nombres rationnels *mis sous forme irréductible* appartenant à [0, 1], et dont le dénominateur est au plus égal à n. En les rangeant par ordre croissant, on obtient une suite \mathcal{F}_n , appelée *suite de Farey d'ordre n*. Voici par exemple \mathcal{F}_7 :

$$\frac{0}{1}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{1}{1}.$$

- 1. Montrer que, si $x = \frac{a}{b}$ et $y = \frac{c}{d}$ sont deux termes consécutifs de \mathcal{F}_n (x < y), on a bc ad = 1.
- **2.** Déduire de ce qui précède que, si $x = \frac{a}{b}$, $y = \frac{c}{d}$, $z = \frac{e}{f}$ sont trois termes consécutifs de \mathcal{F}_n , on a $y = \frac{a+e}{b+f}$.

Exercice 8.21

Montrer que si p > 3 est premier, alors $24|p^2 - 1$.

8.5 Décomposition en facteurs premiers

Exercice 8.22

Résoudre l'équation xy + 6x - 3y = 40 d'inconnue $(x, y) \in \mathbb{Z}^2$.

Exercice 8.23

Combien 15! admet-il de diviseurs positifs?

Exercice 8.24

Combien 15! admet-il de diviseurs?

Exercice 8.25

Soient $a \in \mathbb{N}^*$ et N le nombre de diviseurs positifs de a. Déterminer une condition nécessaire et suffisante portant uniquement sur N pour que a soit un carré parfait.

8.6 La relation de congruence

Exercice 8.26

Quel est le reste de la division euclidienne de 3^{2023} par 11.

Exercice 8.27

Calculer 2000^{2000} modulo 7 et 2^{500} modulo 3.

Exercice 8.28 Reste de la division euclidiene du carré d'un entier par 8

- 1. Soit $a \in \mathbb{Z}$. Montrer que le reste de la division euclidienne de a^2 par 8 est égal à 0, 1 ou 4.
- 2. Soit $n \in \mathbb{N}$. Montrer que, si 8 divise n-7, alors n ne peut pas être la somme de trois carrés d'entiers.

Exercice 8.29

Déterminer les nombres entiers x tels que $x^2 - 2x + 2$ soit divisible par 17.

Exercice 8 30

Déterminer les solutions entière de $x^2 + y^2 = 11z^2$.

Exercice 8.31

Résoudre les équations suivantes.

- **1.** $5x \equiv 3$ [17].
- **2.** $10x \equiv 6$ [34].
- 3. $10x \equiv 5$ [34].

Exercice 8.32 Banque CCINP 2023 Exercice 94 algèbre

- 1. Énoncer le théorème de Bézout dans \mathbb{Z} .
- **2.** Soit a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$.

Prouver que: $(a|c \text{ et } b|c) \iff ab|c$.

- 3. On considère le système (S): $\begin{cases} x \equiv 6 & [17] \\ x \equiv 4 & [15] \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

Exercice 8.33

15 pirates chinois se partagent un butin constitué de pièces d'or. Mais une fois le partage (équitable) effectué, il reste 3 pièces. Que va-t-on en faire ? La discussion s'anime. Bilan : 8 morts. Les 7 survivants recommencent le partage, et il reste cette fois ci 2 pièce ! Nouvelle bagarre à l'issue de laquelle il ne reste que 4 pirates. Heureusement, ils peuvent cette fois ci se partager les pièces sans qu'il n'en reste aucune.

Sachant que 32 Tsing-Tao (bière chinoise) coûtent une pièce d'or, combien (au minimum) de Tsing-Tao pourra boire chaque survivant ?

Exercice 8.34 (***) Étude de l'irréductibilité d'une fraction

- **1.** Montrer que pour tout $n \in \mathbb{N}$, la fraction $\frac{5^{n+1} + 6^{n+1}}{5^n + 6^n}$ est irréductible.
- **2.** Trouver une condition nécessaire et suffisante sur $(\lambda, \mu, \alpha, \beta) \in \mathbb{N}^4$ pour que la fraction $\frac{\lambda \alpha^{n+1} + \mu \beta^{n+1}}{\lambda \alpha^n + \mu \beta^n}$ soit irréductible pour tout $n \in \mathbb{N}$.

Exercice 8.35 Banque CCINP 2023 Exercice 86 algèbre

- **1.** Soit $(a, b, p) \in \mathbb{Z}^3$. Prouver que : si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (ab) = 1$.
- **2.** Soit *p* un nombre premier.
 - (a) Prouver que $\forall k \in [1, p-1]$, p divise $\binom{p}{k}k!$ puis en déduire que p divise $\binom{p}{k}$.
 - (b) Prouver que: $\forall n \in \mathbb{N}, \ n^p \equiv n \mod p$. **Indication**: procéder par récurrence.
 - (c) En déduire, pour tout entier naturel n, que : p ne divise pas $n \Longrightarrow n^{p-1} \equiv 1 \mod p$.

5