

Proposta de teste de avaliação													
Matemática A													
11.º ANO DE ESCOLARIDADE													
Duração: 90 minutos Data:													

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- 1. Na figura, estão representados, em referencial o. n. xOy:
 - a circunferência, de centro C, definida pela equação $x^2 + y^2 + 8x 12y + 32 = 0$;
 - a reta r, que passa nos pontos de coordenadas
 (-6, 0) e (0, 3);
 - os pontos A e B, que pertencem à circunferência,
 sendo d(A, B)=8.

- **1.1.** Mostre que o ponto C tem coordenadas (-4, 6) e que $d(C, A) = 2\sqrt{5}$.
- **1.2.** Qual é o valor do produto escalar $\overrightarrow{BC} \cdot \overrightarrow{BA}$?
 - **(A)** $16\sqrt{5}$
- **(B)** $8\sqrt{5}$
- **(C)** 32
- **(D)** 64
- 1.3. Determine a equação reduzida da reta r.
- **1.4.** Mostre que a reta r é tangente à circunferência e determine as coordenadas do ponto de tangência.
- 1.5. Seja α a inclinação da reta r. Determine o valor de:

$$\cos^2\left(\frac{3\pi}{2} - \alpha\right) - 2\sin\left(\pi + \alpha\right)\cos\alpha$$

2. Considere, num referencial ortonormado Oxyz a superfície esférica definida pela equação $(x+1)^2 + (y-2)^2 + z^2 = 10$.

Os planos paralelos ao plano xOz que intersetam a superfície esférica segundo uma circunferência de raio 3 são definidos por:

(A) y = 3 e y = 1

(B) y = -1 e y = 5

(C) y = 3 e y = 5

(D) y = -1 e y = 1

3. Na figura seguinte, está representada, num referencial o. n. *xOy*, uma circunferência de raio 1 centrada na origem do referencial.

Sabe-se que:

• os pontos A e B têm coordenadas (1,0) e (0,1), respetivamente;

- o ponto P pertence ao arco AB;
- [PQ] é um diâmetro da circunferência;
- o ponto R pertence ao eixo Oy e é tal que a reta
 QR é paralela ao eixo Ox;
- α é a amplitude, em radianos, do ângulo $AOP\left(\alpha \in \left]0, \frac{\pi}{2}\right[\right)$.

Qual das seguintes expressões dá a medida do comprimento do segmento de reta [PR], em função de α ?

$$(\mathbf{A}) \quad \sqrt{1+3\cos^2\alpha}$$

(B)
$$\sqrt{2-\cos^2\alpha}$$

(C)
$$\sqrt{1+3\sin^2\alpha}$$

(D)
$$\sqrt{2-\sin^2\alpha}$$

- **4.** Considere, num referencial ortonormado *Oxyz*:
 - o plano π definido pela equação x y + z 2 = 0;
 - a reta r definida pela equação vetorial $(x, y, z) = (0, -1, -2) + k(2, 1, -1), k \in \mathbb{R};$

- o ponto A de coordenadas (3, -1, -2).
- **4.1.** Mostre que a reta $\,r\,$ é paralela ao plano $\,\pi\,$.
- **4.2.** Mostre que o ponto A pertence ao plano π .
- **4.3.** Determine uma equação vetorial da reta s que passa no ponto A é perpendicular ao plano π .
- **4.4.** Mostre que as retas $r \in s$ são concorrentes.
- **4.5.** Determine a distância da reta r ao plano π .
- **4.6.** Determine uma equação do plano $\,\theta\,$ perpendicular ao plano $\,\pi\,$ e que contém a reta $\,r\,$.

Considere a sucessão (u_n) definida por: 5.

$$\begin{cases} u_1 = 1 \\ u_{n+1} = u_n + 2 \end{cases}, \text{ para todo o } n \in \mathbb{N}$$

- **5.1.** Sabe-se que a soma de 100 termos consecutivos de (u_n) é igual 12 000. Determine a ordem e o valor do primeiro desses 100 termos.
- **5.2.** O valor de $\lim \frac{\sqrt{u_n}}{1+\sqrt{n}}$ é:
- **(A)** 0 **(B)** 1 **(C)** $\sqrt{2}$ **(D)** $+\infty$
- De uma sucessão (u_n) , de termos negativos, sabe-se que, para todo o número natural n, $\frac{1+u_n}{u_n} \le 0$. 6.

Pode afirmar-se que:

- (u_n) é crescente;
- **(B)** (u_n) é decrescente;
- Para todo o $n \in \mathbb{N}$, $u_n \times u_{n+1} \le 0$; **(C)**
- **(D)** (u_n) é limitada.

FIM

Cotações:

- 3	V-5.																
	Item																
Ī	Cotação (em pontos)																
	1.1	1.2.	1.3	1.4.	1.5.	2.	3.	4.1.	4.2.	4.3.	4.4.	4.5.	4.6.	5.1.	5.2.	6.	Total
	15	10	10	20	15	10	10	10	10	10	15	10	15	20	10	10	200

Proposta de resolução

1.

1.1.
$$x^2 + y^2 + 8x - 12y + 32 = 0 \Leftrightarrow$$

 $\Leftrightarrow (x^2 + 8x + 16) - 16 + (y^2 - 12y + 36) - 36 + 32 = 0 \Leftrightarrow$
 $\Leftrightarrow (x + 4)^2 + (y - 6)^2 = 20$

O centro da circunferência é o ponto de coordenadas (-4, 6) e o raio é

$$r = \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} .$$

Portanto, C(-4, 6) e $d(C, A) = r = 2\sqrt{5}$.

1.2. Seja M o ponto médio de $\begin{bmatrix} AB \end{bmatrix}$. Como $\overline{CA} = \overline{CB} = r$, o triângulo $\begin{bmatrix} ABC \end{bmatrix}$ é isósceles. Logo $CM \perp AB$, sendo M a projeção ortogonal de C na reta BA. Assim, como d(B, A) = 8 e d(B, M) = 4, temos:

 $\overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BA} \times \overrightarrow{BM} = 8 \times 4 = 32$

Resposta: (C)

1.3. A reta r passa nos pontos de coordenadas (-6, 0) e (0, 3).

$$r: y = mx + b$$

$$m = \frac{3-0}{0+6} = \frac{1}{2}$$
 e $b=3$

$$r: y = \frac{1}{2}x + 3$$

- **1.4.** A reta r é tangente à circunferência num ponto D se:
 - $\overrightarrow{CD} \perp \overrightarrow{r}$, sendo \overrightarrow{r} um vetor diretor da reta r;
 - $\|\overrightarrow{CD}\| = \text{raio} = 2\sqrt{5}$;
 - D pertence à reta r.

Como $m_r = \frac{1}{2}$, $\vec{r}(2,1)$ é um vetor diretor da reta r. Logo, $\vec{n}(1,-2)$ é um vetor

perpendicular a r.

Como $\overrightarrow{CD} \perp \overrightarrow{r}$, sabemos que \overrightarrow{CD} e \overrightarrow{n} são colineares.

$$\overrightarrow{CD} = k \, \overrightarrow{n} \, \land \left\| \overrightarrow{CD} \right\| = 2\sqrt{5}$$

$$||k \vec{n}|| = 2\sqrt{5} \Leftrightarrow |k|||\vec{n}|| = 2\sqrt{5}$$

Como
$$\|\vec{n}\| = \|(1, -2)\| = \sqrt{1+4} = \sqrt{5}$$
, temos:

$$|k| \parallel \vec{n} \parallel = 2\sqrt{5} \Leftrightarrow |k|\sqrt{5} = 2\sqrt{5} \Leftrightarrow |k| = 2 \Leftrightarrow k = -2 \lor k = 2$$

Se
$$k = -2$$
:

$$\overrightarrow{CD} = -2 \overrightarrow{n} = -2(1, -2) = (-2, 4)$$

$$D = C + \overrightarrow{CD} = (-4, 6) + (-2, 4) = (-6, 10)$$

Como $10 = \frac{1}{2} \times (-6) + 3 \Leftrightarrow 10 = -3 + 3$ é uma proposição falsa, o ponto de coordenadas

(-6, 10) não pertence à reta r, pelo que não é o ponto de tangência.

Se k = 2:

$$\overrightarrow{CD} = 2 \overrightarrow{n} = 2(1, -2) = (2, -4)$$

$$D = C + \overrightarrow{CD} = (-4, 6) + (2, -4) = (-2, 2)$$

Como $2 = \frac{1}{2} \times (-2) + 3 \Leftrightarrow 2 = -1 + 3 \Leftrightarrow 2 = 2$ é uma proposição verdadeira, o ponto de

coordenadas (-2, 2) pertence à reta r.

Portanto, a reta r é tangente à circunferência no ponto D(-2, 2)

1.5. O declive da reta $r \notin m = \frac{1}{2}$.

Sendo α a inclinação da reta r, vem: $\tan \alpha = \frac{1}{2} \land 0 < \alpha < \frac{\pi}{2}$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \left(\frac{1}{2}\right)^2 = \frac{1}{\cos^2 \alpha} \Leftrightarrow 1 + \frac{1}{4} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \frac{5}{4} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{4}{5}$$

Como
$$0 < \alpha < \frac{\pi}{2}$$
, vem: $\cos \alpha = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}$

$$\cos^2\alpha + \sin^2\alpha = 1$$

$$\frac{4}{5} + \sin^2 \alpha = 1 \Leftrightarrow \sin^2 \alpha = 1 - \frac{4}{5} \Leftrightarrow \sin^2 \alpha = \frac{1}{5}$$

Como
$$0 < \alpha < \frac{\pi}{2}$$
, vem: $\sin \alpha = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}$

$$\cos^2\left(\frac{3\pi}{2} - \alpha\right) - 2\sin(\pi + \alpha)\cos\alpha =$$

$$=\sin^2\alpha-2(-\sin\alpha)\cos\alpha=$$

$$=\sin^2\alpha + 2\sin\alpha\cos\alpha =$$

$$=\frac{1}{5}+2\times\frac{1}{\sqrt{5}}\times\frac{2}{\sqrt{5}}=\frac{1}{5}+\frac{4}{5}=\frac{5}{5}=1$$

2. Seja y = k a equação de um plano paralelo ao plano xOz.

$$\begin{cases} (x+1)^{2} + (y-2)^{2} + z^{2} = 10 \\ y = k \end{cases} \Leftrightarrow \begin{cases} (x+1)^{2} + (k-2)^{2} + z^{2} = 10 \\ y = k \end{cases} \Leftrightarrow \begin{cases} (x+1)^{2} + z^{2} = 10 - (k-2)^{2} \\ y = k \end{cases}$$

Para que a interseção do plano de equação y = k com a superfície esférica seja uma circunferência de raio 3, é necessário e suficiente que $10 - (k-2)^2 = 3^2$.

$$10 - (k-2)^2 = 3^2 \Leftrightarrow (k-2)^2 = 10 - 9 \Leftrightarrow (k-2)^2 = 1 \Leftrightarrow$$
$$\Leftrightarrow k-2 = -1 \lor k-2 = 1 \Leftrightarrow k = 1 \lor k = 3$$

Portanto, os planos pretendidos são definidos por y = 1 e y = 3.

Resposta: (A)

3. $P(\cos\alpha, \sin\alpha)$

$$\overline{OR} = \left| \sin(\pi + \alpha) \right| = \left| -\sin \alpha \right| = \sin \alpha$$

$$R(0, -\sin \alpha)$$

$$\overline{PR} = \sqrt{(\cos \alpha - 0)^2 + (\sin \alpha + \sin \alpha)^2} =$$

$$= \sqrt{\cos^2 \alpha + 4\sin^2 \alpha} =$$

$$= \sqrt{\cos^2 \alpha + \sin^2 \alpha + 3\sin^2 \alpha} =$$

$$= \sqrt{1 + 3\sin^2 \alpha}$$

Resposta: (C)

4.
$$r:(x, y, z) = (0, -1, -2) + k(2, 1, -1), k \in \mathbb{R}$$

 $\pi: x - y + z - 2 = 0;$ $A(3, -1, -2)$

4.1. $\vec{r}(2,1,-1)$ é um vetor diretor da reta $r \in \vec{u}(1,-1,1)$ é um vetor normal ao plano π .

$$\vec{r} \cdot \vec{u} = (2, 1, -1) \cdot (1, -1, 1) = 2 - 1 - 1 = 0$$

Como $\vec{r} \cdot \vec{u} = 0$, os vetores \vec{r} e \vec{u} são perpendiculares. Logo, a reta r é paralela ao plano π .

4.2. Substituindo as coordenadas do ponto A na equação do plano π , obtemos:

$$3 - (-1) + (-2) - 2 = 0 \Leftrightarrow 4 - 4 = 0 \Leftrightarrow 0 = 0$$

Dado que a proposição obtida é verdadeira, podemos concluir que $A \in \pi$.

4.3. A(3,-1,-2)

O vetor $\vec{u}(1, -1, 1)$, normal ao plano π , é um vetor diretor da reta s.

$$s:(x, y, z) = (3, -1, -2) + \lambda(1, -1, 1), \lambda \in \mathbb{R}$$

4.4.
$$(x, y, z) = (0, -1, -2) + k(2, 1, -1) \Leftrightarrow$$

 $\Leftrightarrow x = 2k \land y = -1 + k \land z = -2 - k$

Portanto, qualquer ponto da reta r tem coordenadas da forma (2k, -1+k, -2-k), $k \in \mathbb{R}$.

$$(x, y, z) = (3, -1, -2) + \lambda(1, -1, 1) \Leftrightarrow$$
$$\Leftrightarrow x = 3 + \lambda \land y = -1 - \lambda \land z = -2 + \lambda$$

Qualquer ponto da reta s tem coordenadas da forma

$$(3+\lambda, -1-\lambda, -2+\lambda)$$
, $\lambda \in \mathbb{R}$.

As retas r e s são concorrentes num ponto I se existirem $k, \lambda \in \mathbb{R}$ tais que:

$$(2k, -1+k, -2-k) = (3+\lambda, -1-\lambda, -2+\lambda) \Leftrightarrow$$

$$\begin{cases} 2k = 3 + \lambda \\ -1 + k = -1 - \lambda \Leftrightarrow \begin{cases} 2 \times (-\lambda) = 3 + \lambda \\ k = -\lambda \end{cases} \Leftrightarrow \begin{cases} -2\lambda = 3 + \lambda \\ k = -\lambda \end{cases} \Leftrightarrow \begin{cases} -3\lambda = 3 \\ k = -\lambda \end{cases} \Leftrightarrow \begin{cases} \lambda = -1 \\ k = 1 \end{cases}$$

As coordenadas do ponto I de interseção das retas r e s podem ser obtidas substituindo kpor 1 em (2k, -1+k, -2-k): $(2\times 1, -1+1, -2-1) = (2, 0, -3)$

As retas r e s intersetam-se no ponto I(2, 0, -3)

- 4.5. A distância da reta r ao plano π é a distância de qualquer ponto de r ao plano π . Em particular, $d(r, \pi) = d(I, A) = \sqrt{(3-2)^2 + (-1-0)^2 + (-2+3)^2} = \sqrt{1+1+1} = \sqrt{3}$.
- O plano perpendicular ao plano π e que contém a reta r tem a direção dos vetores \vec{r} e \vec{u} , sendo $\vec{r}(2,1,-1)$ e $\vec{u}(1,-1,1)$. B(0,-1,-2) pertence à reta r. Logo, B pertence ao plano θ . Seja $\vec{n}(a,b,c)$ um vetor normal ao plano θ . Então $\vec{n} \perp \vec{r}$ e $\vec{n} \perp \vec{u}$ pelo que:

$$\begin{cases}
\vec{n} \cdot \vec{r} = 0 \\
\vec{n} \cdot \vec{u} = 0
\end{cases} \Leftrightarrow \begin{cases}
(a, b, c) \cdot (2, 1, -1) = 0 \\
(a, b, c) \cdot (1, -1, 1) = 0
\end{cases} \Leftrightarrow \begin{cases}
2a + b - c = 0 \\
a - b + c = 0
\end{cases} \Leftrightarrow \begin{cases}
c = 2a + b \\
\Leftrightarrow \end{cases} \begin{cases}
c = b \\
\vdots \\
\vec{n}(0, b, b)
\end{cases}$$

Assim, o plano θ é definido por uma equação da forma y + z + d = 0.

Como B(0, -1, -2) pertence ao plano θ , temos $-1 - 2 + d = 0 \Leftrightarrow d = 3$ Uma equação do plano $\theta \in y+z+3=0$.

 θ

- 5. $\begin{cases} u_1 = 1 \\ u_{n+1} = u_n + 2 \end{cases}$, para todo o $n \in \mathbb{N}$
 - **5.1.** Como, para todo $n \in \mathbb{N}$, $u_{n+1} u_n = 2$, a sucessão (u_n) é uma progressão aritmética de razão 2.

Então:

$$u_n = u_1 + (n-1)r \Leftrightarrow u_n = 1 + (n-1) \times 2 \Leftrightarrow u_n = 1 + 2n - 2 \Leftrightarrow u_n = 2n - 1$$

Seja u_p o primeiro dos 100 termos consecutivos. Então o centésimo desses termos é u_{p+99} .

$$S = 12\ 000 \Leftrightarrow \frac{u_p + u_{p+99}}{2} \times 100 = 12\ 000 \Leftrightarrow$$

$$\Leftrightarrow (u_p + u_{p+99}) \times 50 = 12\ 000 \Leftrightarrow u_p + u_{p+99} = 240$$

$$u_p = 2p - 1 \qquad | u_n = 2n - 1$$

$$u_{p+99} = 2(p+99) - 1 = 2p + 198 - 1 = 2p + 197$$

$$S = 12\ 000 \Leftrightarrow u_p + u_{p+99} = 240 \Leftrightarrow (2p-1) + (2p+197) = 240 \Leftrightarrow$$

$$\Leftrightarrow 4p + 196 = 240 \Leftrightarrow 4p = 44 \Leftrightarrow p = 11$$

$$u_{11} = 2 \times 11 - 1 = 21$$

O primeiro desses 100 termos é $u_{11} = 21$.

5.2.
$$\lim \frac{\sqrt{u_n}}{1+\sqrt{n}} = \lim \frac{\sqrt{2n-1}}{1+\sqrt{n}} = \lim \frac{\sqrt{2n-1}}{\frac{1}{\sqrt{n}}} = \lim \frac{\sqrt{2n-1}}{\frac{1+\sqrt{n}}{\sqrt{n}}} = \lim \frac{\sqrt{2n-1}}{\frac{1}{\sqrt{n}}} = \lim \frac{\sqrt{2n-1}}{\frac{1}{$$

Resposta: (C)

6. $u_n < 0$, para todo o $n \in \mathbb{N}$

$$\frac{1+u_n}{u_n} \le 0 \land u_n < 0 \Leftrightarrow 1+u_n \ge 0 \land u_n < 0 \Leftrightarrow u_n \ge -1 \land u_n < 0 \Leftrightarrow -1 \le u_n < 0$$

Como $-1 \le u_n < 0$, para todo o $n \in \mathbb{N}$, podemos afirmar que a sucessão (u_n) é limitada.

Resposta: (D)