Practica II: Visualización de datos

Equipo número 5

Grupo: 03, Lunes

1595894 GONZALEZ CAMPOS EDSON ALI 1941521 LOPEZ DOMINGUEZ FRANCISCO EVERARDO 1663288 HERRERA RIVERA JENNIFER JACQUELINE 1981779 SEGOVIA GONZÁLEZ ANAKAREN

- 1) Titulo de la base de datos BankChurners
- a) bankChuners
- b) https://www.kaggle.com/salamatoto/bankchuners

```
In [41]:
```

```
import pandas as pd
import numpy as np
import json
import seaborn as sns
import matplotlib.pyplot as plt
```

Mandamos llamar nuesta base de datos

```
In [4]:
```

```
df = pd.read_csv("BankChurners.csv", header = 0, sep = ",")
df
```

Out[4]:

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Catego
0	768805383	Existing Customer	45	М	3	High School	Married	60K- 8 (
1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40
2	713982108	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> - 12 0
3	769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40
4	709106358	Existing Customer	40	М	3	Uneducated	Married	60K- 8 (
			•••					
10122	772366833	Existing Customer	50	М	2	Graduate	Single	40K-60
10123	710638233	Attrited Customer	41	М	2	Unknown	Divorced	40K-61
10124	716506083	Attrited Customer	44	F	1	High School	Married	Less than \$40
10125	717406983	Attrited Customer	30	М	2	Graduate	Unknown	40K-60
10126	714337233	Attrited Customer	43	F	2	Graduate	Married	Less than \$40

Eliminamos las columnas inecesarias en nuestra base de datos, son columnas que no se necesitaran pues son muy complicadas de definir

```
In [5]:
```

```
df = df.drop(['Attrition_Flag','Total_Amt_Chng_Q4_Q1','Total_Trans_Amt','Total_Trans_Ct'
,'Total Ct Chng Q4 Q1','Naive Bayes Classifier Attrition Flag Card Category Contacts Coun
t 12 mon Dependent count Education Level Months Inactive 12 mon 1'], axis=1)
```

Para facilitar la manipulación cambiamos los nombres de las columnas

```
In [6]:
```

```
df = df.rename(columns = {'CLIENTNUM':'NumeroDCliente'})
df = df.rename(columns = {'Customer Age':'EdadDCliente'})
df = df.rename(columns = {'Gender':'Genero'})
df = df.rename(columns = {'Dependent count':'CuentasDependientes'})
df = df.rename(columns = {'Education Level':'NivelDEducacion'})
df = df.rename(columns = {'Marital Status':'EstadoCivil'})
df = df.rename(columns = {'Income Category':'IntervaloDIngresos'})
df = df.rename(columns = {'Card Category':'NivelDTarjeta'})
df = df.rename(columns = {'Months on book':'MesesEnLibro'})
df = df.rename(columns = {'Total Relationship Count':'CuentasRelacionadas'})
df = df.rename(columns = {'Months Inactive 12 mon':'MesesInactivoEnUnAnho'})
df = df.rename(columns = {'Contacts_Count_12_mon':'ContactoConLaCuenta'})
df = df.rename(columns = {'Credit Limit':'LimiteCrediticio'})
df = df.rename(columns = {'Total Revolving Bal':'TotalDSaldoRotatorio'})
df = df.rename(columns = {'Avg_Open_To_Buy':'SaldoDisponible'})
df = df.rename(columns = {'Avg_Utilization_Ratio':'PorcentajeUtilizado'})
df = df.rename(columns = {'Naive Bayes Classifier Attrition Flag Card Category Contacts
Count_12_mon_Dependent_count_Education_Level_Months_Inactive 12 mon 2':'ClasificacionNaiv
eBayes' })
print(df)
```

	NumeroDCliente EdadDCliente		Genero	CuentasDependiente	ès \	
0	768805383	45	M		3	
1	818770008	49	F		5	
2	713982108	51	M		3	
3	769911858	40	F		4	
4	709106358	40	M		3	
					. •	
10122	772366833	50	M		2	
10123	710638233	41	M		2	
10124	716506083	44	F		1	
10125	717406983	30	M		2	
10126	714337233	43	F		2	
	M' IDEL '	R . 1 G' '1 T		T N' 1DE		
				OIngresos NivelDTar	_	١
0	High School	Married	\$60)K - \$80K	Blue	
1	Graduate	Single	Less t	chan \$40K	Blue	
2	Graduate	Married	SROK	7 - \$120K	Blue	

	IVI VCIDHAACACIOII	ID CAACCI VII	Incci varobingicoob	TVI VCIDIAI JCCA (
0	High School	Married	\$60K - \$80K	Blue
1	Graduate	Single	Less than \$40K	Blue
2	Graduate	Married	\$80K - \$120K	Blue
3	High School	Unknown	Less than \$40K	Blue
4	Uneducated	Married	\$60K - \$80K	Blue
10122	Graduate	Single	\$40K - \$60K	Blue
10123	Unknown	Divorced	\$40K - \$60K	Blue
10124	High School	Married	Less than \$40K	Blue
10125	Graduate	Unknown	\$40K - \$60K	Blue
10126	Graduate	Married	Less than \$40K	Silver

	MesesEnLibro	CuentasRelacionadas	MesesInactivoEnUnAnho	\
0	39	5	1	
1	44	6	1	
2	36	4	1	
3	34	3	4	
4	21	5	1	
	• • •	• • •	• • •	
10122	4 0	3	2	

10123	25	4	2
10124	36	5	3
10125	36	4	3
10126	25	6	2
	ContactoConLaCuenta	LimiteCrediticio	TotalDSaldoRotatorio \
0	3	12691.0	777
1	2	8256.0	864
2	0	3418.0	0
3	1	3313.0	2517
4	0	4716.0	0
		• • •	• • •
10122	3	4003.0	1851
10123	3	4277.0	2186
10124	4	5409.0	0
10125	3	5281.0	0
10126	4	10388.0	1961
	SaldoDisponible Por	centajeUtilizado	ClasificacionNaiveBayes
0	11914.0	0.061	0.999910
1	7392.0	0.105	0.999940
2	3418.0	0.000	0.999980
3	796.0	0.760	0.999870
4	4716.0	0.000	0.999980
10122	2152.0	0.462	0.999810
10123	2091.0	0.511	0.004729
10124	5409.0	0.000	0.002118
10125	5281.0	0.000	0.003294
10126	8427.0	0.189	0.003377
[10127	rows x 17 columns]		

Para saber si tenemos datos nulos en nuestra base de datos

```
In [7]:
```

```
df.isnull().any()
```

Out[7]:

NumeroDCliente	False
EdadDCliente	False
Genero	False
CuentasDependientes	False
NivelDEducacion	False
EstadoCivil	False
IntervaloDIngresos	False
NivelDTarjeta	False
MesesEnLibro	False
CuentasRelacionadas	False
MesesInactivoEnUnAnho	False
ContactoConLaCuenta	False
LimiteCrediticio	False
TotalDSaldoRotatorio	False
SaldoDisponible	False
PorcentajeUtilizado	False
ClasificacionNaiveBayes	False
dtype: bool	

Ejercicios de estadística básica

Para averiguar el total de contactos que han hecho nuestros clientes en el año con su cuenta

```
In [8]:
```

```
TotCon=df['ContactoConLaCuenta'].sum()
SumAcum=df['ContactoConLaCuenta'].cumsum()
```

```
un año es:", SumAcum)
print("La cantidad total de contactos que nuestros clientes han hecho con sus cuentas en
un año es:", TotCon)
La suma acumulada de contactos que nuestros clientes han hecho con sus cuentas en un año
             5
2
             5
3
             6
4
             6
10122
         24851
10123
        24854
10124
        24858
10125
        24861
10126
        24865
Name: ContactoConLaCuenta, Length: 10127, dtype: int64
La cantidad total de contactos que nuestros clientes han hecho con sus cuentas en un año
```

print("La suma acumulada de contactos que nuestros clientes han hecho con sus cuentas en

Usamos la columna de EdadDCliente para averiguar si nuestro banco es mas utilizado por jovenes, adultos o adultos mayores

```
In [9]:
```

es: 24865

```
prom = df['EdadDCliente'].mean()
EdadMin = df['EdadDCliente'].min()
EdadMax = df['EdadDCliente'].max()
Mediana = df['EdadDCliente'].median()

print("El promedio de edad de clientes que usan el banco es:", prom)
print("La edad minima de clientes que usan el banco es:", EdadMin)
print("La edad maxima de clientes que usan el banco es:", EdadMax)
print("La mediana de edad de los clientes que usan el banco es:", Mediana)
El promedio de edad de clientes que usan el banco es: 46.32596030413745
```

```
El promedio de edad de clientes que usan el banco es: 46.32596030413745
La edad minima de clientes que usan el banco es: 26
La edad maxima de clientes que usan el banco es: 73
La mediana de edad de los clientes que usan el banco es: 46.0
```

Para darnos una idea mas amplia de la columna SaldoDisponible usaremos la función describe

```
In [10]:
```

```
df["SaldoDisponible"].describe()
Out[10]:
```

```
count 10127.000000 mean 7469.139637 std 9090.685324 min 3.000000
```

min 3.000000 25% 1324.500000 50% 3474.000000 75% 9859.000000 max 34516.000000

Name: SaldoDisponible, dtype: float64

Esto nos dice que la media de sido disponible es de 7469.13 con un minimo de 3 y un maximo de 34516, siendo valores muy alejados uno del otro

Ahora buscaremos explicarla columna LimiteCrediticio

```
In [11]:
```

```
Mediana2 = df['LimiteCrediticio'].median()
Var = df['LimiteCrediticio'].var()
```

```
DesvEst = df['LimiteCrediticio'].std()
Asi = df['LimiteCrediticio'].skew()
Curt = df['LimiteCrediticio'].kurt()

print("La mediana es:", Mediana2)
print("La varianza es:", Var)
print("La desviación estándar es:", DesvEst)
print("El valor de asimetría de la columna es:", Asi)
print("El valor de curtosis es:", Curt)
```

```
La mediana es: 4549.0

La varianza es: 82605860.99764086

La desviación estándar es: 9088.776650223113

El valor de asimetría de la columna es: 1.666725807993647

El valor de curtosis es: 1.8089893357093434
```

EL valor de la curtosis nos dice que en la curva de la normal nuestros datos se encuentran muy dispersos, mientras que nuestra asimetria es positiva lo que nos indica que hay mas valores arriba de la media que abajo de esta.

Tabla de correlación de los datos

```
In [12]:

df.corr()
Out[12]:
```

	NumeroDCliente	EdadDCliente	CuentasDependientes	MesesEnLibro	CuentasRelacionadas	Mesesin
NumeroDCliente	1.000000	0.007613	0.006772	0.134588	0.006907	
EdadDCliente	0.007613	1.000000	-0.122254	0.788912	-0.010931	
CuentasDependientes	0.006772	-0.122254	1.000000	-0.103062	-0.039076	
MesesEnLibro	0.134588	0.788912	-0.103062	1.000000	-0.009203	
CuentasRelacionadas	0.006907	-0.010931	-0.039076	-0.009203	1.000000	
MesesInactivoEnUnAnho	0.005729	0.054361	-0.010768	0.074164	-0.003675	
ContactoConLaCuenta	0.005694	-0.018452	-0.040505	-0.010774	0.055203	
LimiteCrediticio	0.005708	0.002476	0.068065	0.007507	-0.071386	
TotalDSaldoRotatorio	0.000825	0.014780	-0.002688	0.008623	0.013726	
SaldoDisponible	0.005633	0.001151	0.068291	0.006732	-0.072601	
PorcentajeUtilizado	0.000266	0.007114	-0.037135	-0.007541	0.067663	
ClasificacionNaiveBayes	0.046410	-0.018189	-0.019189	-0.013694	0.149981	
4						:::::::::::::::::::: ▶

```
In [13]:
df.cov()
Out[13]:
```

	NumeroDCliente	EdadDCliente	CuentasDependientes	MesesEnLibro	CuentasRelacionadas	Mesesin
NumeroDCliente	1.361889e+15	2.252209e+06	324600.732489	3.966693e+07	396204.467439	
EdadDCliente	2.252209e+06	6.426931e+01	-1.273041	5.051060e+01	-0.136216	
CuentasDependientes	3.246007e+05	- 1.273041e+00	1.687163	-1.069129e+00	-0.078897	
MesesEnLibro	3.966693e+07	5.051060e+01	-1.069129	6.378285e+01	-0.114248	
CuentasRelacionadas	3.962045e+05	-1.362164e- 01	-0.078897	-1.142484e-01	2.416184	

MesesInactivoEnUnAnho	2.136500e+05 NumeroDCliente	4.404313e-01 EdadDCliente	-0.014135 CuentasDependientes	5.985924e-01 MesesEnLibro	-0.005774 CuentasRelacionadas	Mesesin
ContactoConLaCuenta	2.324687e+05	-1.636385e- 01	-0.058201	-9.519009e-02	0.094923	
LimiteCrediticio	1.914395e+09	1.804254e+02	803.535812	5.449094e+02	-1008.514979	
TotalDSaldoRotatorio	2.479788e+07	9.656595e+01	-2.845655	5.612435e+01	17.388217	
SaldoDisponible	1.889597e+09	8.385949e+01	806.381467	4.887851e+02	-1025.903197	
PorcentajeUtilizado	2.705892e+03	1.572362e-02	-0.013298	-1.660332e-02	0.028996	
ClasificacionNaiveBayes	6.256592e+05	-5.326626e- 02	-0.009105	-3.995006e-02	0.085163	
4						<u> </u>

In []:

Graficar datos

Grafica de barras

Para los ejercicios de grafica de datos usare la base de datos previamente limpiada en la actividad pasada para que sea mas simple su uso

```
In [14]:

df1 = pd.read_csv("BankChurnersMod.csv", header = 0, sep = ",")

df1
```

Out[14]:

	Unnamed: 0	NumeroDCliente	EdadDCliente	Genero	CuentasDependientes	NivelDEducacion	EstadoCivil	IntervaloDing
0	0	768805383	45	М	3	High School	Married	60K-
1	1	818770008	49	F	5	Graduate	Single	Less than
2	2	713982108	51	М	3	Graduate	Married	80K-
3	3	769911858	40	F	4	High School	Unknown	Less than
4	4	709106358	40	М	3	Uneducated	Married	60K-
10122	10122	772366833	50	М	2	Graduate	Single	40K-
10123	10123	710638233	41	М	2	Unknown	Divorced	40K-
10124	10124	716506083	44	F	1	High School	Married	Less than
10125	10125	717406983	30	М	2	Graduate	Unknown	40K-
10126	10126	714337233	43	F	2	Graduate	Married	Less than

10127 rows × 18 columns

```
In [15]:
```

```
df1['NivelDEducacion'].value counts().plot.bar()
```

Out[15]:

<AxesSubplot:>

3000 -

Apreciamos con claridad que la mayoria son graduados de la universidad superando por el doble de los que no recibieron educación o no se sabe la educación que tuvieron

```
In [16]:
```

```
(df1['NivelDEducacion'].value_counts() / len(df1)).plot.bar()
```

Out[16]:

<AxesSubplot:>

Aqui vemos claramente que los graduados son el 30% de nuestros clientes seguidos por los de high school con el 20%

In [17]:

```
df1['NivelDEducacion'].value_counts().sort_index().plot.bar()
```

Out[17]:

<AxesSubplot:>

Grafica de lineas

```
In [18]:
df1['MesesEnLibro'].value_counts().sort_index().plot.line()
Out[18]:
<AxesSubplot:>

2500
2000
1500
500
```

Aqui observamos que hay una clara mayoria de personas que han estado 35 meses en nuestro banco

Histogramas

0

500 -

30

40

50

60

```
In [19]:
df1['EdadDCliente'].plot.hist()
Out[19]:
<AxesSubplot:ylabel='Frequency'>

2500
2000
500
```

```
In [20]:
sns.histplot(df1["EdadDCliente"])
Out[20]:
<AxesSubplot:xlabel='EdadDCliente', ylabel='Count'>
```


En nuestros histogramas podemos notar que la edad media de nuestros clientes es de 45 años, como lo hav¿biamos averiguado anteriormente por los medios estadisticos

Graficar datos bi-variantes

Scatter plot

```
In [21]:
```

```
df1[df1['EdadDCliente'] < 100].sample(100).plot.scatter(x='EdadDCliente', y='LimiteCredit
icio')</pre>
```

Out[21]:

<AxesSubplot:xlabel='EdadDCliente', ylabel='LimiteCrediticio'>

Esta grafica nos dice que cuando las personas estan en la mediana edad tienen un mayor limite crediticio, esto puede ser porque son trabajadores que pueden solventar los gastos.

```
In [22]:
```

```
df1[df1['EdadDCliente'] < 100].plot.hexbin(x='EdadDCliente', y='LimiteCrediticio', gridsi
ze=5)</pre>
```

Out[22]:

<AxesSubplot:xlabel='EdadDCliente', ylabel='LimiteCrediticio'>

Stacked plots

In [25]:

```
sns.kdeplot(df1.query('EdadDCliente').EdadDCliente)
```

Out[25]:

<AxesSubplot:xlabel='EdadDCliente', ylabel='Density'>

Como podemos notan hay una mayoria de densidad de datos entre los 45 y los 50 pues es la edad predominante en unestra base de datos

In [26]:

```
sns.distplot(df1['EdadDCliente'], bins=10, kde=False)
```

C:\Users\jenny\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning:
 `distplot` is a deprecated function and will be removed in a future version. Please adapt
your code to use either `displot` (a figure-level function with similar flexibility) or `
histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[26]:

<AxesSubplot:xlabel='EdadDCliente'>

Esta grafica nos dice exactamente lo mismo que nuestro histograma

BoxPlots

```
In [48]:
```

```
sns.boxplot(
    x='EstadoCivil',
    y='EdadDCliente',
    data=df1
)
```

Out[48]:

<AxesSubplot:xlabel='EstadoCivil', ylabel='EdadDCliente'>

Como podemos ver hay una gran similitud entre personas casadas y solteras en referencia a su edad

In [31]:

```
sns.pairplot(df1[['LimiteCrediticio', 'TotalDSaldoRotatorio', 'SaldoDisponible']])
```

Out[31]:

<seaborn.axisgrid.PairGrid at 0x1e607148580>


```
In [ ]:
```

Graficas multi variantes

In [39]:

Out[39]:

<seaborn.axisgrid.FacetGrid at 0x1e607713880>

In []:

In [43]:

```
m = plt.hist(df1[df1["Genero"] == "M"].LimiteCrediticio,bins=30,fc = (1,0,0,0.5),label =
"Masculino")
f = plt.hist(df1[df1["Genero"] == "F"].LimiteCrediticio,bins=30,fc = (0,1,0,0.5),label =
"Femenino")
plt.legend()
plt.xlabel("Limite de Credito")
plt.ylabel("Número de personas")
plt.title("Histograma")
plt.show()
```


En esta grafica notamos que una mayoria femenina tiene un limite de credito relativamente bajo a comparación de su contraparte masculina que aunque muchos tienen un limite de credito bajo tambien vemos que ellos tienen una gran mayoria en el limite de credito mas alto a diferencia de las mujeres

In [44]:

```
mdata = pd.melt(df,id_vars = "Genero",value_vars = ['SaldoDisponible', 'LimiteCrediticio
'])
plt.figure(figsize = (15,10))
sns.boxplot(x = "variable", y = "value", hue="Genero",data= mdata)
plt.show()
```


En esta grafica vemos claramente que mientras los hombres tienen un mayor saldo disponible tambien tienen un mayor limite de credito

In [45]:

```
f,ax=plt.subplots(figsize = (18,18))
sns.heatmap(df1.corr(),annot= True,linewidths=0.5,fmt = ".1f",ax=ax)
plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.title('Mapa de correlación')
plt.savefig('graph.png')
plt.show()
```


CuentasDependientes -	0.1	0.0	-0.1	1.0	-0.1	-0.0	-0.0	-0.0	0.1	-0.0	0.1	-0.0	-0.0		- 0.6
MesesEnLibro -	-0.0	0.1	0.8	-0.1	1.0	-0.0	0.1	-0.0	0.0	0.0	0.0	-0.0	-0.0		
CuentasRelacionadas -	-0.4	0.0	-0.0	-0.0	-0.0	1.0	-0.0	0.1	-0.1	0.0	-0.1	0.1	0.1		- 0.4
MesesInactivoEnUnAnho -	0.0	0.0	0.1	-0.0	0.1	-0.0	1.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.2		- 0.2
ContactoConLaCuenta -	-0.1	0.0	-0.0	-0.0	-0.0	0.1	0.0	1.0	0.0	-0.1	0.0	-0.1	-0.2		
LimiteCrediticio -	0.0	0.0	0.0	0.1	0.0	-0.1	-0.0	0.0	1.0	0.0	1.0	-0.5	0.0		- 0.0
TotalDSaldoRotatorio -	-0.1	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.1	0.0	1.0	-0.0	0.6	0.3		
SaldoDisponible -	0.0	0.0	0.0	0.1	0.0	-0.1	-0.0	0.0	1.0	-0.0	1.0	-0.5	0.0		0.2
PorcentajeUtilizado -	-0.0	0.0	0.0	-0.0	-0.0	0.1	-0.0	-0.1	-0.5	0.6	-0.5	1.0	0.2		0.4
ClasificacionNaiveBayes -	-0.1	0.0	-0.0	-0.0	-0.0	0.1	-0.2	-0.2	0.0	0.3	0.0	0.2	1.0		
	Unnamed: 0 -	NumeroDCliente -	EdadDCliente -	CuentasDependientes -	MesesEnLibro –	CuentasRelacionadas –	lesesInactivoEnUnAnho -	ContactoConLaCuenta -	LimiteCrediticio -	Total D Saldo Rotatorio –	SaldoDisponible -	PorcentajeUtilizado –	ClasificacionNaiveBayes -		•

In []: