Deep Learning for NLP

Lecture 4 – Word Embeddings 1: Word2Vec

Dr. Steffen Eger steffen.eger@uni-bielefeld.de

Previous lectures

- How do we build/train neural networks?
- Today and next two weeks: How do we represent the input?
- Representing images:

http://hosting.soonet.ca/eliris/remotesensing/LectureImages/pixel.gif

http://www.comp.leeds.ac.uk/vision/vision_matlab_tutorial/images/section2/MatlRGB.jpg

How can we represent words?

Outline

Word meaning

How can we represent words?

As a dictionary entry

```
Sellerie der; -s, -[s] u. die; -,
 -: eine Gemüse- u. Würzpflanze
Semantik die; -: Teilgebiet der
 Linguistik, das sich mit den Wort-
 bedeutungen befaßt. seman-
 tisch: a) den Inhalt eines Wortes
 od. einer Wendung betreffend;
 b) die Semantik betreffend. Se-
 maphor das (auch: der); -s, -e:
 Mast mit verstellbarem Flügelsi-
 anal zur optischen Zeichenge-
```

Taxonomy of words

Represent words by their relations to other words

Picture from: http://kylescholz.com/projects/wordnet/, based on representation from WordNet: https://wordnet.princeton.edu

Word vectors

"One-hot" vector, sparse representation

der	•	die_	1	_und	_in	••••	_für	
1		0		0	0		0	
0		1		0	0		0	
0		0		1	0		0	
0		0		0	1		0	
0		0		0	0		0	
0		0		0	0		0	
0		0		0	0		0	
0		0		0	0		0	
0		0		0	0		0	
0		0		0	0		1	
<u>.</u> _		· <u>·</u> _		<u>.</u> _				

Dimensionality of vector equals size of vocabulary

Word vectors

"One-hot" vector, sparse representation

der	_die_	_und	_in _	 _für	
1	0	0	0	0	Ì
0	1	0	0	0	Ì
0	0	1	0	0	Ì
0	0	0	1	0	Ì
0	0	0	0	0	Ì
0	0	0	0	0	Ì
0	0	0	0	0	Ì
0	0	0	0	0	Ì
0	0	0	0	0	Ì
0	0	0	0	1	Ì
<u>.</u>	<u>. </u>	<u>. </u>		•• <u>•</u>	1

Problem: relations between words are not represented

- Famous example by McDonald and Ramscar (2001):
 - 1. He filled the wampimuk, passed it around and we all drank some.

- Famous example by McDonald and Ramscar (2001):
 - 1. He filled the wampimuk, passed it around and we all drank some.

```
jar
cup
glass
goblet
```


- Famous example by McDonald and Ramscar (2001):
 - 1. He filled the wampimuk, passed it around and we all drank some.

```
jar
cup
glass
goblet
```

2. We found a little hairy wampimuk sleeping behind the tree.

- Famous example by McDonald and Ramscar (2001):
 - 1. He filled the wampimuk, passed it around and we all drank some.

```
jar
cup
glass
goblet
```

2. We found a little hairy wampimuk sleeping behind the tree.

```
cat
bear
racoon
mole
```

CITEC ON NLLG

Distributional hypothesis

■ Firth (1957): "You shall know a word by the company it keeps."

Outline

Computational semantics: Count models

How can we model the distributional hypothesis?

- By calculating co-occurrence counts
 - capture in which contexts a word appears
- Context is modeled using a window over the words
- Consider the following example (from Richard Socher's lecture):
- Corpus
 - I like deep learning .
 - I like NLP.
 - I enjoy flying .
- Window size = 1, left and right neighbor
 - In real tasks, window size is usually bigger (5-10)

How can we model the distributional hypothesis?

- By calculating co-occurrence counts
 - capture in which contexts a word appears
- Context is modeled using a window over the words
- Consider the following example by Rich
- Corpus
 - I like deep learning .
 - I like NLP.
 - I enjoy flying .
- Window size = 1, left and right neighbor
 - In real tasks, window size is usually bigger (5-10)

Such models have been called "count models" in the literature

See: Baroni et al. Don't count predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: ACL 2014

- Example by Richard Socher:
 - I like deep learning.
 - I like NLP.
 - I enjoy flying .

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

- Example by Richard Socher:
 - like deep learning .
 - Ilike NLP
 - I enjoy flying .

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

- Example by Richard Socher:
 - Nike deep learning .
 - Nike NLP.
 - I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

- Example by Richard Socher:
 - I like deep learning.
 - I like NLP.
 - I enjoy flying .

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Co-occurrence counts

 Assumption: If we collect co-occurrence counts over thousands of sentences, the vectors for "enjoy" and "like" will have similar vector representations.

Co-occurrence counts

- Assumption: If we collect co-occurrence counts over thousands of sentences, the vectors for "enjoy" and "like" will have similar vector representations.
- Problem:
 - Vectors become very large with real data
 - → We need to apply dimensionality reduction

Outline

Computational semantics: NN models

Background idea: language models

- Based on the concept of language modeling:
- Common problem in NLP, popular application is auto-completion
 - Given a sequence of words, predict the following word
 - The same procedure as every _____

Idea:

(Classical) Language modeling is too restrictive because it only considers the left context. What about the right context?

word2vec

Most popular toolkit for training word representations:

word2vec

https://code.google.com/archive/p/word2vec/

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean: Distributed Representations of Words and Phrases and their Compositionality In Proceedings of NIPS, 2013.

Two different (language modeling) auxiliary tasks: CBOW and Skip-gram

Auxiliary Tasks

- CBOW: Given a context, predict the missing word
 - same procedure _____ every year
 - as long ____ you sing
 - please stay ____ you are
- Skip-gram: given a word, predict the context words
 - as _____
 - If window size is two, we aim to predict: (w,c₋₂), (w,c₋₁), (w,c₁) and (w,c₂)

CBOW vs Skip-gram

CBOW vs Skip-gram

CBOW vs Skip-gram

- E has dimension $N \times d$
- N is number of words in the vocabulary
- d is the embedding dimension
- V has dimension $d \times N$

Skip-gram

We'll take a closer look at the Skip-Gram model

How can we predict different words when V is always the same?

Skip-gram

We'll take a closer look at the Skip-Gram model

How can we predict different words when V is always the same?

Turns out the original model is actually this:

Skip-gram

- e = e(w) = wE has dimension $1 \times d$: It's the embedding of word w
- The activation of the projection layer is linear (= identity: f(x)=x)
- eV has dimension 1 x N
- $V = [v_1 \cdots v_N]$: each v_i can be seen as an(other) embedding of a vocab. word

- $eV = [ev_1, ..., ev_N]$ has dimension $1 \times N$
- $V = [v_1, ..., v_N]$: each v_i can be seen as an(other) embedding of a vocab. word
- The output layer has softmax activation function
- softmax(eV)= $\left[\exp(ev_1), ..., \exp(ev_N)\right]/Z$, where Z is normalizer

Skip-gram

- Could just run this model with SGD
- With methods we learned
- After training, we're interested in the *E* matrix, which holds the word embeddings
- However, the practical implementation is different from this (see below)

Skip-gram

DISCUSS

Discuss two (or more) limitations of the Word2Vec model

The Skip-gram model: Illustration

- Preparation:
 - Download a lot of (unlabeled) data, e.g. all the poems of W.S.

All the world's a stage and all the men and women merely players. They totter ...

Tokenize it

All the world's a stage and all the men and women merely players. They totter ...

 For word2vec: Define either one of two auxiliary tasks: predict middle words or predict contexts

All the world 's a stage and all the men and women merely players .
They totter ...

- Training data (maybe this is our first batch):
 - x=world t=the
 - x=world t=All
 - x=world t='s
 - x=world t=a
 - Of course, the 1-hot vectors of this

All the world 's a stage and all the men and women merely players .
They totter ...

- Training data (maybe this is our first batch):
 - x=world t=the
 - x=world t=All
 - x=world t='s
 - x=world t=a

Feed in to the network; update params

Of course, the 1-hot vectors of this

All the world 's a stage and all the men and women merely players .
They totter ...

- Training data (maybe this is our first batch):
 - x=world t=the
 - x=world t=All
 - x=world t='s
 - x=world t=a

- Of course, the 1-hot vectors of this
- Notation: We write (x,t) or (w,c) for a training data sample

All the world 's a stage and all the men and women merely players . They totter ...

- Training data (maybe this is our second batch):
 - x='s t=world
 - x='s t=the
 - x='s t=a
 - x='s t=stage

- Of course, the 1-hot vectors of this
- Notation: We write (x,t) or (w,c) for a training data sample

All the world 's a stage and all the men and women merely players.

They totter ...

Context window size is a hyperparam.

- Training data (maybe this is our second batch):
 - x='s t=world
 - x='s t=a

- Of course, the 1-hot vectors of this
- Notation: We write (x,t) or (w,c) for a training data sample

All the world 's a stage and all the men and women merely players.

They totter ...

Context window size is a hyperparam.

- Training data (maybe this is our second batch):
 - \blacksquare x='s t=A||
 - x='s t=the
 - x='s t=world
 - x='s t=a
 - x='s, t=stage, x='s, t=and

 - Of course, the 1-hot vectors of this
- Notation: We write (x,t) or (w,c) for a training data sample

Quizz

What if the window size is arbitrarily large in Skip-Gram?

A: this can only work when embedding size is huge

B: quality of representations decreases

C: quality of representations increases

D: all words will get same embeddings

Problem:

- Computing the softmax in the output layer is very costly, particulary when the size of the vocabulary is large
- Because we have to normalize

Idea: replace softmax by sigmoid activation function in the output layer

- No normalization → cheaper
- So, at each step in the optimization:
 - input vector is a 1-hot vector of the center word w
 - Truth is a 1-hot vector of target/context word c
 - As loss, we choose cross-entropy loss: $-\sum_i t_i \log y_i$
 - $y_i = \sigma(\boldsymbol{e}(\boldsymbol{w}) \cdot \boldsymbol{v}_i)$

But now a different problem pops up:

- What if our model learns that E and V are matrices with huge entries?
- Then $y_i = 1$ for all output units and our loss becomes 0, which is the optimum
- Note that this would not happen with softmax, because $y_i = 1/N$ in this case

Solution:

- We choose random words (negative samples)
- For an input (w,c), we set the target vector as a vector with 1's at the position of c and the positions of the random words
- Choose the activations of the negative samples as $f(x) = 1 \sigma(x) = \sigma(-x)$
 - When f(x) = 1, then $\sigma(x) = 0$

Can think of it as follows:

Truth is

Loss

With cross-entropy loss, the loss becomes:

entropy loss, the loss becomes:
$$-[\log(\sigma(e(w)\cdot v_c)) + \sum_r \log(\sigma(-e(w)\cdot v_r))]$$

- *r* are the negative samples
- This is not quite a standard neural network, but close

Toolkits for training word representations

word2vec

https://code.google.com/archive/p/word2vec/

GloVe

http://nlp.stanford.edu/projects/glove/

- GloVe aims at reconciling the advantages of global co-occurrence counts and local context windows
- Applies additional trick: take the sum of the target/center vector $\mathbf{e}(\mathbf{w})$ and the context vector \mathbf{v}_c of each word as representation
- Many more, but these are two popular ones
- Terminology:
 - word representations ≈ word embeddings ≈ word vectors
 - context-counting vs context-predicting representations, sparse vs dense

Pre-Trained Embeddings

- Word2vec
 - trained on Google news (100 billion tokens)
 - vectors with Freebase naming, trained on news (100 billion tokens)
- GloVe
 - trained on Wikipedia (6 billion tokens)
 - trained on CommonCrawl (42 and 840 billion tokens)
 - trained on Twitter (27 billion tokens)
- Omer Levy: dependency-based embeddings trained on Wikipedia

https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/

There are many embeddings nowadays, in all possible languages

https://fasttext.cc/docs/en/crawl-vectors.html

Outline

Evalution of word embeddings

The look and feel of word representations

...

```
wiegen 0.0427915 -0.401344 -0.0667862 0.21649 0.00169907 -0.0687786 -0.195405 - 0.0534437 -0.676733 -0.23975 -0.159674 -0.0402676 -0.0617923 0.284718 0.358523 - 0.285709 -0.00736682 -0.254635 -0.22907 -0.186109 ...
```

```
einlegen 0.365857 -0.0339146 0.198442 -0.0961315 0.156193 0.253468 0.169963 - 0.232588 -0.422901 -0.0750184 0.0236783 0.249385 -0.0122247 -0.584567 -0.0711365 0.254896 0.382103 0.352294 0.825432 0.277691 0.773015 ...
```

sprengstoff 0.06961 0.118456 0.00497905 0.581913 -0.326157 -0.0674812 -0.0926074 - 0.254514 -0.458406 -0.225093 0.0424881 -0.142328 -0.138707 0.481305 0.183707 - 0.626077 0.396159 0.156636 0.157851 -0.441935...

vulkan 0.0322022 -0.429981 0.352328 -0.0530384 -0.366048 0.44187 -0.265227 -0.223954 -0.369078 -0.203064 0.158458 0.169517 0.448234 0.497058 -0.20855 0.046978 0.180444 0.290595 0.00907329 0.130582 0.0378717 -0.339296 0.399039...

...

Evaluating word representations

Extrinsic

by the performance of a model that uses the word representations for solving a task

- Named entity recognition (accuracy), machine translation (BLEU score), summarization (ROUGE score), information retrieval (coverage)...
- Compare performance of two models that only differ in the word representations they use
- Intrinsic

by using the representations directly

- Word Similarity Task
- Word Analogy Task
- Word Intrusion Task

- Say, our task is POS tagging
- Our labeled training data

Word	Label
The	DET
cat	NN
on	PREP
the	DET
mat	NN
	PUNC

- Say, our task is POS tagging
- Our labeled training data; replace words with their embeddings

\boldsymbol{x}	t
E(The)	1-hot(DET)
E(cat)	1-hot(NN)
E(on)	1-hot(PREP)
E(the)	1-hot(DET)
E(mat)	1-hot(NN)
E(.)	1-hot(PUNC)

Say, our task is POS tagging

 Our labeled training data; replace words with their embeddings; usually add some context

\boldsymbol{x}	t
E(SOS);E(The);E(cat)	1-hot(DET)
E(The);E(cat);E(on)	1-hot(NN)
E(cat); E(on); E(on)	1-hot(PREP)
E(on); E(the); E(mat)	1-hot(DET)
E(the); E(mat); E(.)	1-hot(NN)
E(mat); E(.); E(EOS)	1-hot(PUNC)

DISCUSS

Assume you would use an MLP as a model in the previous setting. How would inputs, outputs, etc. look like?

- Say, our task is POS tagging
- Our labeled training data; replace words with their embeddings; usually add some context [not necessary with other architectures such as RNN; see later lectures]

\boldsymbol{x}	t
E(SOS);E(The);E(cat)	1-hot(DET)
E(The);E(cat);E(on)	1-hot(NN)
E(cat); E(on); E(on)	1-hot(PREP)
E(on); E(the); E(mat)	1-hot(DET)
E(the); E(mat); E(.)	1-hot(NN)
E(mat); E(.); E(EOS)	1-hot(PUNC)

Now train with different embeddings and look which one performs best

Word Similarity Task

- Similar words should have similar representations
 - Similarity Dataset: http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
 Scores from 0 to 10 by human raters
 - Intrinsic evaluation of embeddings:
 - → quantify similarity by similarity of word vectors
 - → evaluate correlation with juman judgements

Word 1	Word 2	Human (mean)	Learned vectors
tiger	cat	7.35	cossim(tiger, cat)
book	paper	7.46	cossim(book, paper)
plane	car	5.77	cossim(plane, cat)
smart	student	4.62	cossim(smart, student)
stock	phone	1.62	cossim(stock, phone)

. . . .

Relations between word vectors

Mikolov et al. (2013)

How to find analogies?

- A is to B as C to ?
 - Germany is to Berlin as France to x
- Find x such that:
 - vec(x) = vec("Berlin") vec("Germany") + vec("France")

Most famous example:

$$KING - MAN + WOMAN = QUEEN$$

KING-MAN+WOMAN=QUEEN

Semantic analogies

All examples from:

//code.google.com/p/word2vec/source/browse/trunk/questions-words.txt

capital-common-countries

Athens Greece Baghdad Iraq

Athens Greece Berlin
 Germany

currency

Denmark krone Croatia kuna

■ Europe euro Hungary **forint**

family

boy girl brother sister

brother sister dad **mom**

Syntactic analogies

- adjective-to-adverb
 - amazing amazingly apparentapparently
- comparative
 - bad worse bigbigger
- present-participle
 - code coding dancedancing
- past-tense
 - dancing danced decreasingdecreased
- plural
 - banana bananas bird
 birds
- 3rd person verbs
 - decrease decreases eat

Try it out!

word2vec code: ./demo-analogy.sh

```
Enter three words (EXIT to break): loud louder slow
Word: loud Position in vocabulary: 9481
Word: louder Position in vocabulary: 18502
Word: slow Position in vocabulary: 2188
                                               Word
                                                                 Distance
                                             faster
                                                                 0.546676
                                             slower
                                                                 0.545372
                                         efficient
                                                                 0.445998
                                           downside
                                                                 0.426637
                                            cheaper
                                                                 0.419650
                                            slowly
                                                                 0.418785
                                            slowing
                                                                 0.418599
                                            gradual
                                                                 0.417532
                                            quicker
                                                                 0.404312
```

Practical Guidelines

- Word2Vec and Glove are pretty good tools
- Fast, give good word embeddings
- However, many other embeddings out there (see next lectures)
- Always try out different embeddings --- consider them as another hyperparameter
 - Results may vary drastically with different embeddings

DISCUSS

When and why are embeddings helpful?

Summary

- Vectors are useful for representing words
 - Dense vs sparse representations
 - Projecting co-occurrence counts to low-dimensional vectors vs directly learning low-dimensional vectors
- Learning low-dimensional vectors
 - Inspired by neural language modeling
 - CBOW and Skip-gram model
 - Negative sampling
- Evaluating word representations
 - Extrinsic vs intrinsic evaluation
- Terminology:

word representations ≈ word embeddings ≈ word vectors

References

- Levy & Goldberg: word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method, preprint on arxiv: *arXiv:1402.3722*, 2014.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J.: Distributed representations of words and phrases and their compositionality, in *Advances in neural information processing systems*: 3111-3119, 2013.
- McDonald, S., & Ramscar, M.: Testing the distributional hypothesis: The influence of context on judgements of semantic similarity, in *Proceedings of the 23rd annual conference of the Cognitive* Science Society, 2001.
- Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., & Gauvain, J. L.: Neural probabilistic language models, in *Innovations in Machine Learning*: 137-186, 2006.
- Collobert, R., & Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning, in *Proceedings of the 25th international conference on Machine learning*: 160-167, 2008.
- Derweester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., & Harshman, R.: Indexing by latent semantic analysis, in *Journal of the American Society for Information Science 41*: 391-407, 1990.
- Harris, Z. S.: Distributional structure. *Word 10(2-3)*: 146-162, 1954.
- John R. Firth: A synopsis of linguistic theory 1930–55, in *Studies in Linguistic Analysis* (special volume of the Philological Society), 1–32, 1957.

References

- Baroni and, M., Dinu, B. & Kruszewski, G.: Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors, in *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics*, 2014
- Levy, O. & Goldberg, Y.: Neural Word Embedding as Implicit Matrix Factorization, in Advances in Neural Information Processing Systems 27, 2014
- Arora, S., Li, Y., Liang, Y., Ma, T. & Risteski, A.: A Latent Variable Model Approach to PMI-based Word Embeddings, in *Transactions of the Association for Computational Linguistics*, 2016
- Stratos, K., Collins, M. & Hsu, D.: Model-based Word Embeddings from Decompositions of Count Matrices, in *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics*, 2015
- Faruqui, M., Tsvetkov, Y., Rastogi, P., Dyer, C.: Problems With Evaluation of Word Embeddings Using Word Similarity Tasks. Corrabs/1605.02276, 2016
- Ma, X. & Hovy, E.: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF, arXiv:1603.01354, 2016