Machine Learning Regression Using R2 Value Method

- 1. Multiple Linear Regression -> R2 Value is 0.7894
- 2. Support Vector Machine:

S.No	kernel	С	Hyper Tuned Parameters	r_Score
1	linear	10	regressor = Support Vector Regression (kernel = 'linear', C = 10)	0.4625
2	linear	100	regressor = Support Vector Regression (kernel = 'linear', C = 100)	0.4625
3	linear	500	regressor = Support Vector Regression (kernel = 'linear', C = 500)	0.7631
4	linear	1000	regressor = Support Vector Regression (kernel = 'linear', C = 1000)	0.7649
5	linear	2000	regressor = Support Vector Regression (kernel = 'linear', C = 2000)	0.7440
6	linear	5000	regressor = Support Vector Regression (kernel = 'linear', C = 5000)	0.7414
7	linear	10000	regressor = Support Vector Regression (kernel = 'linear', C = 10000)	0.7414
8	rbf	10	regressor = Support Vector Regression (kernel = 'rbf', C = 10)	-0.0323
9	rbf	100	regressor = Support Vector Regression (kernel = 'rbf', C = 100)	0.3200
10	rbf	500	regressor = Support Vector Regression (kernel = 'rbf', C = 500)	0.6643
11	rbf	1000	regressor = Support Vector Regression (kernel = 'rbf', C = 1000)	0.8102
12	rbf	2000	regressor = Support Vector Regression (kernel = 'rbf', C = 2000)	0.8548
13	rbf	5000	regressor = Support Vector Regression (kernel = 'rbf', C = 5000)	0.8748
14	rbf	10000	regressor = Support Vector Regression (kernel = 'rbf', C = 10000)	0.8780
15	sigmoid	10	regressor = Support Vector Regression (kernel = 'sigmoid', C = 10)	0.0393
16	sigmoid	100	regressor = Support Vector Regression (kernel = 'sigmoid', C = 100)	0.5276
17	sigmoid	500	regressor = Support Vector Regression (kernel = 'sigmoid', C = 500)	0.4446
18	sigmoid	1000	regressor = Support Vector Regression (kernel = 'sigmoid', C = 1000)	0.2875
19	sigmoid	2000	regressor = Support Vector Regression (kernel = 'sigmoid', C = 2000)	-0.5940
20	sigmoid	5000	regressor = Support Vector Regression (kernel = 'sigmoid', C = 5000)	-7.5300
21	sigmoid	10000	regressor = Support Vector Regression (kernel = 'sigmoid', C = 10000)	-34.1515
22	poly	10	regressor = Support Vector Regression (kernel = 'poly', C = 10)	0.0387
23	poly	100	regressor = Support Vector Regression (kernel = 'poly', C = 100)	0.6180
24	poly	500	regressor = Support Vector Regression (kernel = 'poly', C = 500)	0.8264

25	poly	1000	regressor = Support Vector Regression (kernel = 'poly', C = 1000)	0.8566
26 poly 2000		2000	regressor = Support Vector Regression (kernel = 'poly', C = 2000)	0.8606
27	poly	5000	regressor = Support Vector Regression (kernel = 'poly', C = 5000)	0.8596
28	poly	10000	regressor = Support Vector Regression (kernel = 'poly', C = 10000)	0.8592

(The Highest R2 Value is Highlighted in Color – Green and The Lowest R2 Value is Highlighted in Color – Red)

3. Decision Tree:

S.No	criterion	splitter	max_features	Hyper Tuned Parameters	r_Score
1	squared_error	best	NA	regressor = DecisionTreeRegressor (criterion = 'squared_error', splitter = 'best')	0.6818
2	squared_error	random	NA	regressor = DecisionTreeRegressor (criterion = 'squared_error', splitter = 'random')	0.6996
3	friedman_mse	best	NA	regressor = DecisionTreeRegressor (criterion = 'friedman_mse', splitter = 'best')	0.6962
4	friedman_mse	random	NA	regressor = DecisionTreeRegressor (criterion = 'friedman_mse', splitter = 'random')	0.6942
5	absolute_error	best	NA	regressor = DecisionTreeRegressor (criterion = 'absolute_error', splitter = 'best')	0.6825
6	absolute_error	random	NA	regressor = DecisionTreeRegressor (criterion = 'absolute_error', splitter = 'random')	0.7354
7	poisson	best	NA	regressor = DecisionTreeRegressor (criterion = 'poisson', splitter = 'best')	0.7181
8	poisson	random	NA	regressor = DecisionTreeRegressor (criterion = 'poisson', splitter = 'random')	0.7010
9	squared_error	best	sqrt	<pre>regressor = DecisionTreeRegressor (criterion = 'squared_error', splitter = 'best', max_features =</pre>	0.6849
10	squared_error	random	sqrt	regressor = DecisionTreeRegressor (criterion = 'squared_error', splitter = 'random', max_features = 'sqrt')	0.6777
11	friedman_mse	best	sqrt	regressor = DecisionTreeRegressor (criterion = 'friedman_mse', splitter = 'best', max_features = 'sqrt')	0.6693
12	friedman_mse	random	sqrt	regressor = DecisionTreeRegressor (criterion = 'friedman_mse', splitter = 'random', max_features = 'sqrt')	0.7138

13	absolute_error	best	sqrt	regressor = DecisionTreeRegressor (criterion = 'absolute_error', splitter = 'best', max_features = 'sqrt')	0.7343
14	absolute_error	random	sqrt	regressor = DecisionTreeRegressor (criterion = 'absolute_error', splitter = 'random', max_features = 'sqrt')	0.7208
15	poisson	best	sqrt	regressor = DecisionTreeRegressor (criterion = 'poisson', splitter = 'best', max_features = 'sqrt')	0.7323
16	poisson	random	sqrt	regressor = DecisionTreeRegressor (criterion = 'poisson', splitter = 'random', max_features = 'sqrt')	0.7224
17	squared_error	best	log2	regressor = DecisionTreeRegressor (criterion = 'squared_error', splitter = 'best', max_features = 'log2')	0.7047
18	squared_error	random	log2	regressor = DecisionTreeRegressor (criterion = 'squared_error', splitter = 'random', max_features = 'log2')	0.6951
19	friedman_mse	best	log2	regressor = DecisionTreeRegressor (criterion = 'friedman_mse', splitter = 'best', max_features = 'log2')	0.6516
20	friedman_mse	random	log2	regressor = DecisionTreeRegressor (criterion = 'friedman_mse', splitter = 'random', max_features = 'log2')	0.6375
21	absolute_error	best	log2	regressor = DecisionTreeRegressor (criterion = 'absolute_error', splitter = 'best', max_features = 'log2')	0.7470
22	absolute_error	random	log2	regressor = DecisionTreeRegressor (criterion = 'absolute_error', splitter = 'random', max_features = 'log2')	0.6686
23	poisson	best	log2	regressor = DecisionTreeRegressor (criterion = 'poisson', splitter = 'best', max_features = 'log2')	0.6951
24	poisson	random	log2	regressor = DecisionTreeRegressor (criterion = 'poisson', splitter = 'random', max_features = 'log2')	0.7379

(The Highest R2 Value is Highlighted in Color – Green and The Lowest R2 Value is Highlighted in Color – Red)

4. Random Forest:

S.No	n_estimators	random_state	criterion	max_features	Hyper Tuned Parameters	r_Score
1	50	0	squared_error	None	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'squared_error', max_features = None)	0.8496
2	100	0	squared_error	None	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'squared_error', max_features = None)	0.8536
3	50	0	friedman_mse	None	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'friedman_mse', max_features = None)	0.8497
4	100	0	friedman_mse	None	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'friedman_mse', max_features = None)	0.8538
5	50	0	absolute_error	None	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'absolute_error', max_features = None)	0.8536
6	100	0	absolute_error	None	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'absolute_error', max_features = None)	0.8527
7	50	0	poisson	None	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'poisson', max_features = None)	0.8493
8	100	0	poisson	None	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'poisson', max_features = None)	0.8528
9	50	0	squared_error	sqrt	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'squared_error', max_features = 'sqrt')	0.8695
10	100	0	squared_error	sqrt	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion =	0.8710

					'squared_error', max_features = 'sqrt')	
11	50	0	friedman_mse	sqrt	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'friedman_mse', max_features = 'sqrt')	0.8705
12	100	0	friedman_mse	sqrt	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'friedman_mse', max_features = 'sqrt')	0.8712
13	50	0	absolute_error	sqrt	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'absolute_error', max_features = 'sqrt')	0.8715
14	100	0	absolute_error	sqrt	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'absolute_error', max_features = 'sqrt')	0.8713
15	50	0	poisson	sqrt	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'poisson', max_features = 'sqrt')	0.8632
16	100	0	poisson	sqrt	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'poisson', max_features = 'sqrt')	0.8680
17	50	0	squared_error	log2	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'squared_error', max_features = 'log2')	0.8695
18	100	0	squared_error	log2	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'squared_error', max_features = 'log2')	0.8710
19	50	0	friedman_mse	log2	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'friedman_mse', max_features = 'log2')	0.8705

20	100	0	friedman_mse	log2	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'friedman_mse', max_features = 'log2')	0.8712
21	50	0	absolute_error	log2	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'absolute_error', max_features = 'log2')	0.8715
22	100	0	absolute_error	log2	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'absolute_error', max_features = 'log2')	0.8713
23	50	0	poisson	log2	regressor = RandomForestRegressor (n_estimators = 50, random_state = 0, criterion = 'poisson', max_features = 'log2')	0.8632
24	100	0	poisson	log2	regressor = RandomForestRegressor (n_estimators = 100, random_state = 0, criterion = 'poisson', max_features = 'log2')	0.8680

(The Highest R2 Value is Highlighted in Color – Green and The Lowest R2 Value is Highlighted in Color – Red)

Overall Validation of Regression

S.No	Type of Regression	r_Score (Highest)	r_Score (Lowest)
1	Multiple Linear Regression	0.7895	NA
2	Support Vector Regression	0.8780	-34.1515
3	Decision Tree Regressor	0.7470	0.6375
4	Random Forest Regressor	0.8715	0.8493

Result

The **Highest R2 Value - 0.8780** gotten for **Support Vector Regression** from across all the Regressions done.