Dynamic Barycenter Averaging Kernel in RBF Networks for Time Series Classification

作者: KEJIAN SHI, HONGYANG QIN, CHIJUN SIMA, SEN LI, LIFENG SHEN, QIANLI MA

期刊: IEEE ACCESS

Impact factor: 3.745

報告人: 藍語庭

Introduction

Dynamic Barycenter Averaging Kernel Radial basis function

- First, we combine k-means clustering with a dynamic time warping (DTW) based averaging algorithm called DTW barycenter averaging (DBA) to determine the center of DBAK.
- Then, in order to facilitate the stable gradient-training process in the whole network, a normalization term is added into the kernel formulation.
- By integrating the information of the whole time warping path, our DBAK based RBF network (DBAK-RBF) performs efficiently for TSC tasks.

Method

The general structure of RBF Network with DBAK

Algorithm

```
Algorithm 1 DBA
Require: c the initial average sequence
Require: S = \{T_1, \dots, T_N\} a set of N sequence
Require: Maxiter
 1: for iter = 1 to Maxiter do
      \hat{c} is a set to store alignment for each dimension for all
       signal in S
      for each T in S do
         Compute DTW warping path i and j for T and c.
 4:
            //So T(i_k) and c(j_k) are aligned points.
 5:
         Add all aligned T(i_k) to its associated subset \hat{c}(j_k)
 6:
            //\hat{c}(j_k) is a subset of aligned points
 7:
            //\hat{c} is a set of subsets.
 8:
      end for
      //Compute new average
10:
       for each subset \hat{c}(j) in \hat{c} do
11:
         c(i) = barycenter(\hat{c}(i))
12:
       end for
13:
14: end for
15: return c
```

Algorithm 2 DBAK-RBF

Require: $\mathcal{D} = \{T_1, \dots, T_{N_D}\}$: a set of time series; $\mathcal{Y} = \{y_1, \dots, y_{N_D}\}$ corresponding labels of \mathcal{D} ; C: the number of kernel's centers.

- 1. Clustering the given data \mathcal{D} by k-means;
- 2. Using DBA algorithm to obtain the medoid of time series in each cluster;
- 3. Initialize parameters $\{\sigma_p\}$, $\{w_{p,c}\}$, and $\{b_c\}$;
- 4. Forward-propagation
- 5. Back-propagation by using gradients formulated

return the centers $\{C_p\}$; the optimized width $\{\sigma_p\}$, the weights $\{w_{p,c}\}$ and the biases $\{b_c\}$.

Result

Accuracy of 13 mainstream TSC classifiers and our DBAK-RBF

DATASETS	DTW _{INN}	$\mathrm{DD}_{\mathrm{DTW}}$	ST	LS	BOSS	TSF	TSBF	EE	Flat -COTE	HIVE -COTE	MLP	FCN	ResNet	DBAK-RBF
ArrowHead	0.703	0.789	0.737	0.846	0.834	0.726	0.754	0.811	0.811	0.863	0.778	0.843	0.845	0.750
Beef	0.633	0.667	0.900	0.867	0.800	0.767	0.567	0.633	0.867	0.933	0.720	0.697	0.753	0.767
BeetleFly	0.700	0.650	0.900	0.800	0.900	0.750	0.800	0.750	0.800	0.950	0.870	0.860	0.850	0.850
BirdChicken	0.750	0.850	0.800	0.800	0.950	0.800	0.900	0.800	0.900	0.850	0.775	0.955	0.885	0.900
Car	0.733	0.800	0.917	0.767	0.833	0.767	0.783	0.833	0.900	0.867	0.767	0.905	0.925	0.667
CBF	0.997	0.997	0.974	0.991	0.998	0.994	0.988	0.998	0.996	0.999	0.872	0.994	0.995	0.996
CinCECGtorso	0.651	0.725	0.954	0.870	0.887	0.983	0.712	0.942	0.995	0.996	0.840	0.824	0.826	0.675
Coffee	1.000	1.000	0.964	1.000	1.000	0.964	1.000	1.000	1.000	1.000	0.996	1.000	1.000	1.000
DiatomSizeReduction	0.967	0.967	0.925	0.980	0.931	0.931	0.899	0.944	0.928	0.941	0.910	0.313	0.301	0.996
DistalPhalanxOutlineCorrect	0.717	0.732	0.775	0.779	0.728	0.772	0.783	0.728	0.761	0.772	0.726	0.760	0.771	0.860
DistalPhalanxTW	0.590	0.612	0.662	0.626	0.676	0.669	0.676	0.647	0.698	0.683	0.617	0.690	0.665	0.800
Earthquakes	0.719	0.705	0.741	0.741	0.748	0.748	0.748	0.741	0.748	0.748	0.717	0.727	0.712	0.835
ECG200	0.770	0.830	0.830	0.880	0.870	0.870	0.840	0.880	0.880	0.850	0.916	0.889	0.874	0.880
ECGFiveDays	0.768	0.769	0.984	1.000	1.000	0.956	0.877	0.820	0.999	1.000	0.970	0.987	0.975	0.826
FaceFour	0.830	0.830	0.852	0.966	1.000	0.932	1.000	0.909	0.898	0.955	0.840	0.928	0.955	0.966
FacesUCR	0.905	0.904	0.906	0.939	0.957	0.883	0.867	0.945	0.942	0.963	0.833	0.946	0.955	0.824
Fish	0.823	0.943	0.989	0.960	0.989	0.794	0.834	0.966	0.983	0.989	0.848	0.958	0.979	0.829
GunPoint	0.907	0.980	1.000	1.000	1.000	0.973	0.987	0.993	1.000	1.000	0.927	1.000	0.991	0.927
Ham	0.467	0.476	0.686	0.667	0.667	0.743	0.762	0.571	0.648	0.667	0.691	0.718	0.757	0.714
Haptics	0.377	0.399	0.523	0.468	0.461	0.445	0.490	0.393	0.523	0.519	0.433	0.480	0.519	0.477
Herring	0.531	0.547	0.672	0.625	0.547	0.609	0.641	0.578	0.625	0.688	0.528	0.608	0.619	0.641
InlineSkate	0.384	0.562	0.373	0.438	0.516	0.376	0.385	0.460	0.495	0.500	0.337	0.339	0.373	0.307
ItalyPowerDemand	0.950	0.950	0.948	0.960	0.909	0.960	0.883	0.962	0.961	0.963	0.954	0.961	0.963	0.955
Lightning2	0.869	0.869	0.738	0.820	0.836	0.803	0.738	0.885	0.869	0.820	0.670	0.739	0.770	0.883
	I													l

Accuracy of 13 mainstream TSC classifiers and our DBAK-RBF

Lightning7	0.726	0.671	0.726	0.795	0.685	0.753	0.726	0.767	0.808	0.740	0.630	0.827	0.845	0.863
Mallat	0.934	0.949	0.964	0.950	0.938	0.919	0.960	0.940	0.954	0.962	0.918	0.967	0.972	0.982
Meat	0.933	0.933	0.850	0.733	0.900	0.933	0.933	0.933	0.917	0.933	0.897	0.853	0.968	0.933
MiddlePhalanxOutlineCorrect	0.698	0.732	0.794	0.780	0.780	0.828	0.814	0.784	0.804	0.832	0.770	0.801	0.809	0.683
MiddlePhalanxTW	0.506	0.487	0.519	0.506	0.545	0.565	0.597	0.513	0.571	0.571	0.534	0.512	0.484	0.647
MoteStrain	0.835	0.833	0.897	0.883	0.879	0.869	0.903	0.883	0.937	0.933	0.858	0.937	0.928	0.890
OliveOil	0.833	0.833	0.900	0.167	0.867	0.867	0.833	0.867	0.900	0.900	0.667	0.723	0.830	0.933
OSULeaf	0.591	0.880	0.967	0.777	0.955	0.583	0.760	0.806	0.967	0.979	0.557	0.977	0.979	0.607
Plane	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.978	1.000	1.000	1.000
ShapeletSim	0.650	0.611	0.956	0.950	1.000	0.478	0.961	0.817	0.961	1.000	0.503	0.724	0.779	0.672
SonyAIBORobotSurface1	0.725	0.742	0.844	0.810	0.632	0.787	0.795	0.704	0.845	0.765	0.672	0.960	0.958	0.933
SonyAIBORobotSurface2	0.831	0.892	0.934	0.875	0.859	0.810	0.778	0.878	0.952	0.928	0.834	0.979	0.978	0.845
Symbols	0.950	0.953	0.882	0.932	0.967	0.915	0.946	0.960	0.964	0.974	0.832	0.955	0.906	0.975
ToeSegmentation1	0.772	0.807	0.965	0.934	0.939	0.741	0.781	0.829	0.974	0.982	0.583	0.961	0.963	0.943
ToeSegmentation2	0.838	0.746	0.908	0.915	0.962	0.815	0.800	0.892	0.915	0.954	0.745	0.880	0.906	0.907
Trace	1.000	1.000	1.000	1.000	1.000	0.990	0.980	0.990	1.000	1.000	0.807	1.000	1.000	1.000
TwoPatterns	1.000	1.000	0.955	0.993	0.993	0.991	0.976	1.000	1.000	1.000	0.946	0.871	1.000	0.997
Wine	0.574	0.574	0.796	0.500	0.741	0.630	0.611	0.574	0.648	0.778	0.565	0.587	0.744	0.907
Worms	0.584	0.584	0.740	0.610	0.558	0.610	0.688	0.662	0.623	0.558	0.457	0.765	0.791	0.624
WormsTwoClass	0.623	0.649	0.831	0.727	0.831	0.623	0.753	0.688	0.805	0.779	0.601	0.726	0.747	0.735
Avg.Rank	10.784	9.534	6.841	7.398	6.375	9.045	8.000	7.739	4.909	4.045	11.523	6.568	5.943	6.295
p-value	0.000	0.006	0.754	0.628	0.655	0.003	0.142	0.273	0.230	0.138	0.000	0.791	0.253	-
cor-p-value	0.000	0.060	1.965	2.512	2.512	0.033	1.242	1.518	1.610	1.242	0.000	1.508	1.610	-

Conclusion

The performance of DBAK-RBF and RBF with different number of centers

