

deeplearning.ai

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Andrew Ng

Neural network gradients $z^{[2]} = W^{[2]}x + b^{[2]}$ dw = de a Tos

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$z^{(i)} = (\omega^{(i)} \times + b^{(i)})$$

$$Z^{(i)} = g^{(i)}(Z^{(i)})$$

$$Z^{(i)} = \left[Z^{(i)}(Z^{(i)}) \times Z^{(i)}(Z^{(i)}) \right]$$

$$Z^{(i)} = \left[Z^{(i)}(Z^{(i)}) \times Z^{(i)}(Z^{(i)}) \right]$$

$$Z^{(i)} = \left[Z^{(i)}(Z^{(i)}) \times Z^{(i)}(Z^{(i)}) \right]$$

$$Z^{(i)} = g^{(i)}(Z^{(i)})$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[2]} = \frac{1}{m}dz^{[2]}A^{[1]^T}$$

$$dz^{[2]} = \frac{1}{m}np. sum(dz^{[2]}, axis = 1, keepdims = True)$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$dw^{[1]} = dz^{[1]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dw^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dw^{[1]} = \frac{1}{m}np. sum(dz^{[1]}, axis = 1, keepdims = True)$$

Andrew Ng