Data Structure and Algorithm Analysis(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Work Sheet 3

Mengxuan Wu

Question 3.1

Question 3.2

Proof.

Since $n = 2^k$, we can rewrite the equation as:

$$T(2^{k}) = \begin{cases} d & \text{if } k = 0\\ 2T(2^{k-1}) + c2^{k} & \text{if } k \ge 1 \end{cases}$$

And the term we want to proof now becomes

$$T(2^k) = d2^k + c2^k \log 2^k = d2^k + ck2^k = (d+ck)2^k$$

Base case:

$$k=0,\,T(2^0)=d=(d+c\cdot 0)2^0$$

Inductive step:

Assume when $k = k_0$, $T(2^{k_0}) = (d + ck_0)2^{k_0}$ holds. For $k = k_0 + 1$, we have

$$LHS = T(2^{k_0+1})$$

$$= 2T(2^{k_0}) + c2^{k_0+1}$$

$$= 2(d + ck_0)2^{k_0} + c2^{k_0+1}$$

$$= (d + ck_0)2^{k_0+1} + c2^{k_0+1}$$

$$= (d + c(k_0 + 1))2^{k_0+1}$$

$$= RHS$$

Thus, $T(2^k) = (d + ck)2^k$ holds for all $k \ge 0$.

Question 3.3

The watershed function for all questions is $n^{\log_4 2} = n^{\frac{1}{2}}$.

1.

Since f(n) = 1, we have $f(n) = O(n^{\log_b a - \epsilon}) = O(n^{\frac{1}{2} - \epsilon})$ for all ϵ that satisfies $0 < \epsilon \le \frac{1}{2}$. Hence, $T(n) = \Theta(n^{\frac{1}{2}})$

2.

Since $f(n) = \sqrt{n} = n^{\frac{1}{2}}$, we have $f(n) = \Theta(n^{\log_b a} \log^k n) = \Theta(n^{\frac{1}{2}} \log^0 n) = \Theta(n^{\frac{1}{2}})$ when k = 0. Hence, $T(n) = \Theta(n^{\frac{1}{2}} \log n)$

3.

Since $f(n) = \sqrt{n} \log^2 n = n^{\frac{1}{2}} \log^2 n$, we have $f(n) = \Theta(n^{\log_b a} \log^k n) = \Theta(n^{\frac{1}{2}} \log^2 n)$ when k = 2. Hence, $T(n) = \Theta(n^{\frac{1}{2}} \log^3 n)$

4.

Since f(n) = n, we have $f(n) = \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{\frac{1}{2} + \epsilon})$ for all ϵ that satisfies $0 < \epsilon \le \frac{1}{2}$. Also, $af(n/b) = 2f(\frac{n}{4}) = \frac{n}{2} \le cf(n) = cn$ holds for all c that satisfies $\frac{1}{2} \le c < 1$. Hence, $T(n) = \Theta(f(n)) = \Theta(n)$

Question 3.4

BINARYSEARCH $(A, x, low, high)$	runtime(for each iteration)
1. if $low > high then$	$\Theta(1)$
2. return false	$\Theta(1)$
3. $\operatorname{mid} = \lfloor (\operatorname{low} + \operatorname{high})/2 \rfloor$	$\Theta(1)$
4. if $A[mid] = x$ then	$\Theta(1)$
5. return true	$\Theta(1)$
6. else if $A[\text{mid}] > x$ then	$\Theta(1)$
7. return BINARYSEARCH $(A, x, \text{low}, \text{mid} - 1)$	T(n/2)
8. else	$\Theta(1)$
9. return BINARYSEARCH $(A, x, \text{mid} + 1, \text{high})$	T(n/2)

The recurrence equation is $T(n) = T(n/2) + \Theta(1)$. Using Master Theorem, we have a = 1, b = 2, $f(n) = \Theta(1)$ and $n^{\log_b a} = n^{\log_2 1} = n^0 = 1$. Since that $f(n) = \Theta(n^{\log_b a} \log^k n) = \Theta(1 \cdot \log^0 n) = \Theta(1)$ when k = 0, we have $T(n) = \Theta(n^{\log_b a} \log^{k+1} n) = \Theta(\log n)$.