Symulacja komputerowa

Wykład 2: Wstępne kroki badań symulacyjnych: identyfikacja systemu, celu i zakresu badań

Dariusz Gąsior

Katedra Informatyki i Inżynierii Systemów

Definicja problemu badawczego

- Pierwszy i najważniejszy etap badań symulacyjnych
- Określa:
 - co badamy,
 - po co badamy,
 - dla kogo badania są prowadzone,
 - jakie są oczekiwane wyniki.
- Dobrze zdefiniowany problem to właściwy model. Właściwy model to użyteczne wnioski

Cele etapu definiowania problemu

- Identyfikacja badanego systemu.
- Ustalenie celów i priorytetów badań.
- Formułowanie pytań badawczych.
- Zdefiniowanie oczekiwanych wyników.

Definiowanie systemu i zakresu badań

- Co dokładnie modelujemy? (system, proces, zjawisko)
- Jakie są granice systemu i jego cel operacyjny?
- Jakie założenia przyjmujemy dla modelu?

Przykład

System kolejkowy w sklepie samoobsługowym

- Obecny układ: osobne kolejki do każdej kasy
- Propozycja: jedna wspólna kolejka dla wszystkich kas

Charakterystyka i zachowanie systemu

- Struktura systemu (liczba kas, logika kolejkowania).
- Właściwości dynamiczne (zmienność napływu klientów).
- Wzorce zachowań (np. zmiana kolejki przez klienta).

Cel: realistyczny opis systemu, który będzie fundamentem dla stworzenia modelu.

Określenie celów badawczych

- Co chcemy osiągnąć dzięki symulacji?
- Jakie wskaźniki będą analizowane?

Przykład

Porównanie dwóch systemów kolejkowych pod względem:

- Średniego czasu oczekiwania.
- Długości kolejki.
- Satysfakcji klientów.

Identyfikacja odbiorców badań

- Dla kogo powstaje model i wyniki?
 - Zarządzający (decyzje operacyjne).
 - Naukowcy (weryfikacja teorii).
 - Praktycy (wdrożenia).
 - Studenci, uczniowie (edukcja).
- Zrozumienie odbiorcy to lepsze dopasowanie celów i szczegółowości modelu

Przykład

Kierownictwo sklepu – decyzja o zmianie systemu kolejek

Priorytetyzacja celów

- Które cele są najważniejsze i osiągalne?
- Kryteria:
 - Znaczenie biznesowe.
 - Potrzeby interesariuszy.
 - Wykonalność (czas, zasoby).
 - Potencjał praktycznych wniosków.

Przykład

Priorytet: skrócenie czasu oczekiwania klientów w godzinach szczytu.

Formułowanie pytań badawczych

Pytania muszą być: konkretne, mierzalne, realistyczne, terminowe.

Przykłady

- "Jak zmienia się średni czas oczekiwania przy wspólnej kolejce w porównaniu z indywidualnymi?"
- "O ile procent skraca się czas obsługi przy różnych natężeniach ruchu klientów?"

Uzgodnienie pytań z interesariuszami

- ► Konsultacje z menedżerami, pracownikami, klientami.
- Iteracyjne doprecyzowanie pytań i założeń.
- Uzgodnienie oczekiwań wobec wyników symulacji.

Przykład

Dodanie pytania o wpływ zmian na zadowolenie pracowników.

Definiowanie oczekiwanych wyników

- ▶ Ilościowe np. spadek średniego czasu oczekiwania o ≥ 20%
- ▶ Jakościowe np. lepsze postrzeganie obsługi przez klientów.
- ► Porównawcze analiza względem stanu wyjściowego.
- Aplikacyjne rekomendacje wdrożeniowe.

Przykład

Wdrożenie wspólnej kolejki jeśli spadek czasu oczekiwania jest $\geq 20\%$

Znaczenie wyników i sprzężenie zwrotne

- Jak wyniki wpłyną na decyzje i strategię?
- Jak zostaną wykorzystane przez interesariuszy?
- Jak włączyć informację zwrotną w kolejne etapy badań?

Przykład

Spotkania z kadrą sklepu i personelem, omówienie wdrożenia i ewentualnych korekt

Podsumowanie etapu

- Fundament całego procesu symulacyjnego
- Główne efekty:
 - Opis systemu.
 - Cele i priorytety.
 - Pytania badawcze.
 - Planowane wyniki.
- Dobrze zdefiniowany problem to połowa sukcesu w badaniach symulacyjnych