Théorème 14.50 (0) - de la limite monotone

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. si $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n \le \sup_{n \in \mathbb{N}} (u_n) \end{cases}$$

2. si $(u_n)_{n\in\mathbb{N}}$ est strictement croissante et majorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n < \sup_{n \in \mathbb{N}} (u_n) \end{cases}$$

3. si $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \inf_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, \ u_n \ge \inf_{n \in \mathbb{N}} (u_n) \end{cases}$$

4. si $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, alors :

$$\begin{cases} \lim_{n \to +\infty} u_n = \inf_{n \in \mathbb{N}} (u_n) \\ \forall n \in \mathbb{N}, u_n > \inf_{n \in \mathbb{N}} (u_n) \end{cases}$$

Proposition 14.50 (1) - caractérisation de la convergence d'une suite monotone

Une suite monotone est convergente si et seulement si elle est bornée.

Proposition 14.50 (2) - limites de suites croissante non majorée, décroissante non minorée

Une suite croissante et non majorée diverge vers $+\infty$.

De même, Une suite décroissante et non minorée diverge vers $-\infty$.

Théorème 14.65 - monotonie d'une suite récurrente définie par $u_{n+1} = f(u_n)$

Soit $D \subset \mathbb{R}$, $u_0 \in D$, $f: D \to D$ une fonction et $(u_n) \in D^{\mathbb{N}}$ l'unique suite définie par la relation $u_{n+1} = f(u_n)$.

1. Le signe de $x \mapsto f(x) - x$ renseigne sur la monotonie de (u_n) :

$$\begin{cases} \forall x \in D, f(x) \ge x \implies \forall n \in \mathbb{N}, u_{n+1} \ge u_n \\ \forall x \in D, f(x) \le x \implies \forall n \in \mathbb{N}, u_{n+1} \le u_n \end{cases}$$

- **2.** Si f est croissante, alors (u_n) est :
 - croissante si $u_1 \ge u_0$
 - décroissante si $u_1 \leq u_0$
- 3. si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraire :
 - si $u_2 \ge u_0$ alors (u_{2n}) est croissante et (u_{2n+1}) est décroissante
 - si $u_2 \leq u_0$ alors (u_{2n}) est décroissante et (u_{2n+1}) est croissante

Théorème 14.66 - du point fixe

Soit $D \subset \mathbb{R}$, $u_0 \in D$, $f : D \to D$ une fonction et $(u_n) \in D^{\mathbb{N}}$ l'unique suite définie par la relation $u_{n+1} = f(u_n)$. Si $\lim_{n \in \mathbb{N}} u_n = \ell \in D$ et si f est continue en ℓ , alors $f(\ell) = \ell$.