

Ingegneria del Software 2023/2024

ORIENTIAMOCI ...

AGENDA

Diagrammi delle attività

- Dove e come sono usati?
 - •Diagrammi 'poliedrici'
- Semantica basata sul concetto di token
- Notazione
 - Nodi, Flussi, Swimlanes ...
 - Diagrammi complessi
 - Vediamo solo costrutti più usati
- Esempi d'uso

FLOWCHART

- Li avete già visti?
- Ve li ricordate?

£sprimono algoritmi in modo grafico!

DIAGRAMMI DELLE ATTIVITÀ

- Descrivono come viene svolta un'attività relativa ad una qualsiasi entità, che può essere un:
 - operazione di una classe, classe, componente, caso d'uso, persona fisica, procedura, processo di business ...
- "come viene svolta" = quale è il **flusso di azioni** che devono accadere (o che accadono)
 - quali azioni (cioè la loro semantica)
 - in che ordine

DIAGRAMMI DELLE ATTIVITÀ

- Descrivono come viene svolta un'attività relativa ad una qualsiasi entità, che può essere un:
 - operazione di una classe, classe, componente, caso d'uso, persona fisica, procedura, processo di business ...
- "come viene svolta" = quale è il **flusso di azioni** che devono accadere (o che accadono)
 - quali azioni
 - in che ordine
- Anche **più di una entità** contemporaneamente:
 - Ad esempio modellare il processo di business **gestione** ordine da parte di un'azienda
 - o Il cliente manda l'ordine
 - L'azienda lo riceve
 - o L'azienda controlla se la merce è in magazzino
 - o L'azienda prepara il pacco e la fattura

DOVE E COME SONO USATI?

• Usati in contesti diversi, fasi diverse dello sviluppo e per scopi diversi

DOVE E COME SONO USATI?

- Usati in contesti diversi, fasi diverse dello sviluppo e per scopi diversi
- Modellare processi di business e workflow (analisi)
 - Capire il business e il dominio prima di implementare il sistema
 - Es. Gestione di un ordine in un'azienda Acquisire dottorato di ricerca in un Università
- Modellare il flusso di un caso d'uso (analisi)
- Modellare un'operazione di una classe (**progettazione**)
 - Alternativa allo pseudocodice
- Modellare un algoritmo (**progettazione**)
 - Simili a un flowchart (alternativa allo pseudocodice)
- Come linguaggio di programmazione (codifica)
 - UML eseguibile

ATTIVITÀ

ordine

o Un'attività è costituita da un **flusso di azioni** che ne sono i mattoni

Spesso l'azione è descritta informalmente in linguaggio naturale

• Simili a flowchart, con la differenza che supportano l'elaborazione concorrente/parallela

Gestione ordine

ATTIVITÀ: NOTAZIONE

- o Nodi azione: specificano unità di comportamento
- Nodi oggetto: specificano oggetti usati come input e output di azioni
- Nodi di controllo: specificano il flusso delle attività

Flussi ----

'frecce che collegano i nodi'

NODI AZIONE

• Un azione può essere espressa in modo informale

Manda la fattura al cliente

 Un'azione può invocare un'altra attività

Preparare fattura cliente

- Un azione può invocare un'operazione di una classe
 - anche 'comportamento' se siamo in prospettiva concettuale

Fare Fattura (Contabile::componiFattura)

 Volendo (ma è raro) si può anche scrivere un frammento di pseudo-codice all'interno del simbolo di azione

FOR every Employee calculate salary print check ENDFOR

11

SIMBOLO RAKE

TRANSIZIONI E TOKEN

- Per capire la semantica dei diagrammi di attività, bisogna capire il concetto di **token**
 - Sono come pedine che viaggiano lungo il diagramma

- Un **nodo azione viene eseguito** quando sono presenti i token su tutti gli archi in entrata
- Al termine di un'azione, sono generati i token su tutti gli archi in uscita

PROCESSO DI BUSINESS: GESTIONE ORDINE

- Supponiamo di voler descrivere un processo di business Gestione d'ordine da parte di un'azienda mediante un activity diagram
- Il processo può essere descritto brevemente così:
 - Quando un'azienda riceve un ordine partono in parallelo due flussi:
 - Preparazione pacco e spedizione del pacco
 - Invio conto/fattura al cliente e ricezione pagamento
 - L'ordine viene chiuso solo se entrambi i due flussi precedenti terminano

ACTIVITY DIAGRAM: ALTO LIVELLO

CONSIDERAZIONI

- Manca un azione di preparazione del conto/fattura
- Soddisfa cliente è un attività vaga che andrebbe specificata meglio
- Bisogna essere consapevoli che questo Activity diagram permette di ricevere il pagamento senza spedire la merce (anche se poi l'ordine non viene chiuso)

NODI INIZIALI E FINALI (DI ATTIVITÀ)

- o Il disco nero marca l'inizio dell'attività
 - genera un token
- Quando un token raggiunge un disco nero bordato (nodo finale di attività), l'attività ha termine
 - distrugge tutti i token
- In un diagramma deve esistere un nodo iniziale e zero o più nodi finali
 - Il nodo iniziale fa partire un flusso di esecuzione, il primo nodo finale raggiunto ferma tutti i flussi

NODI DECISIONE E FUSIONE

- I **nodi decisione** hanno un input e vari output
 - copiano i token in entrata su uno degli output a seconda della **guardia**
 - se più di una guardia è vera: scelta non deterministica
 - se nessuna guardia è vera: l'attività si blocca
- I **nodi fusione** (**merge**) hanno vari input e un solo output, sul quale vengono indirizzati i token in ingresso

Nodi fork/join

- I nodi **Fork** dividono un'esecuzione in più flussi concorrenti
- o I nodi **Join** sincronizzano e riuniscono i flussi
- o I nodi Fork hanno un ingresso e varie uscite
 - i token in ingresso sono duplicati su tutte le uscite
- o I nodi Join hanno vari ingressi e una sola uscita
 - Quando sono presenti token su tutti gli ingressi, viene prodotto un token in uscita
 - L'attività è ferma ad attendere tutti i token

NODI FINALI DI FLUSSO

- La terminazione di Action3 non causa la terminazione di tutta l'attività
- La terminazione di Action1 e Action2 causa la terminazione di tutto (anche di Action3 se ancora in esecuzione)

Nodo finale di flusso

- Quando raggiunti da un token, causano la terminazione solo del flusso che li ha toccati
- Il raggiungimento di un **nodo finale di attività** causa comunque la terminazione di tutti i flussi

- Servono per modellare gli oggetti in input e output delle azioni
- Rappresentano veri e propri oggetti
 - Prospettiva concettuale: oggetti del mondo reale
 - Prospettiva software: oggetti OO

Progetto progetto = CreaProgetto() ConsegnaProgetto(progetto)

STATO DEGLI OGGETTI

- Spesso risulta conveniente aggiungere lo stato di un oggetto per mostrarne l'evoluzione durante l'attività
- Gli stati devono essere coerenti con la macchina a stati associata all'oggetto
 - Se presente nel modello ...

PARTIZIONI (SWIMLANES)

- Specificano chi esegue le azioni
 - Chi è il partecipante
- Suddividono il flusso dell'attività, ma non ne modificano il significato
 - Rendono il diagramma + informativo
- o La suddivisione può essere orizzontale o verticale

EVENTI (1)

- o Ci sono alcuni **nodi azione specializzati** che gestiscono **l'invio e la ricezione di eventi**
 - Anche eventi temporali
 - 25 ottobre 2019

 L'invio di eventi è asincrono e non blocca l'attività. La ricezione blocca l'attività finché l'evento non si verifica

36

EVENTI (2)

Modella le azioni che deve compiere uno studente per sostenere un esame (es. ASD)

- I **nodi ricezione** sono attivi quando hanno token su tutti gli archi in entrata (se ne hanno) oppure durante l'intera vita dell'attività (se non ne hanno)
 - generano token alla ricezione
- La ricezione di eventi temporali funziona nello stesso modo, i token sono generati in base ad un'espressione temporale
 - Es. il 24 settembre 2020

PARAMETRI E VALORI DI RITORNO

Do Laundry Attività: 'Fare bucato' dirtyClothes Sort Clothes Clothes Whites Colors [dirty] [dirty] o Parametri di input e valori di ritorno, se Wash Wash Whites Colors esistono, S1rappresentano Colors come Whites [clean, wet] [clean, wet] nodi oggetto sul bordo dell'attività Dry Clothes Clothes [clean, drv] cleanClothes: Fold Clothes Clothes

Limiti della regione interrompibile

REGIONI INTERROMPIBILI

L'ordine è cancellato solo se un token si trova all'interno della regione al momento della ricezione del segnale

- Si usano per specificare l'interruzione dell'attività forzata in una regione
 - Esempi: eccezioni, interrupt, situazioni di errore

MODELLARE USE CASE (1)

ATM: Use case "prelevare contante"

Breve descrizione: Il sistema permette al cliente di **prelevare un certo ammontare** in contanti dal suo c/c

Attori primari: Cliente

Sequenza degli eventi prinicpale:

- 1. Il Sistema visualizza un menu con alcune opzioni: 20\$, 40\$, 60\$, 100\$, 200\$, cancel
- 2. Il Cliente seleziona un ammontare usando la tastiera
- 3. **Se** L'ammontare <u>non</u> supera il saldo attuale del c/c del cliente <u>e non</u> supera l'ammontare disponibile nello sportello
 - 3.1 Il Sistema addebita l'ammontare sul c/c (lo sottrae al saldo attuale)
 - 3.2 Il Sistema eroga le banconote
 - 3.3 Il Sistema visualizza un messaggio per ricordare al cliente di prendere le banconote

4. Altrimenti

4.1 Il Sistema visualizza un messaggio (selezionare un ammontare inferiore o soldi non disponibili nello sportello) e torna al punto 1

MODELLARE USE CASE (2)

o ATM

• Use case "prelevare contante"

MODELLARE OPERAZIONI

Bancomat

+autenticateUser(Login : string, PWD : string) : Answer

.

ok

<<enumeration>>
Answer
invalidUser
incorretPWD

Esercizio per casa: completare!

Cerca login e PWD nel DB

MODELLARE UN ALGORITMO

DOMANDA QUIZ SBARRAMENTO

• Confrontare i seguenti activity diagram. Quale delle seguenti affermazioni è vera?

- ☐ I due diagrammi sono equivalenti, cioè esprimono la stessa attività
- ☐ Il merge node tra le azioni 'Wet Hair' e 'Apply Shampo' nel diagramma Due è superfluo. Si può eliminare e collegare il flusso a 'Apply shampo'
- ☐ I due diagrammi non sono equivalenti. Insaponare L'attività Uno si blocca sull'azione 'Apply shampo'
- ☐ Entrambi i diagrammi non sono corretti logicamente perchè le azioni 'Lather' (insaponare) e 'Rinse' (risciacquare) nella realtà sono eseguite in parallelo

Uno

Due

RIASSUMENDO

Diagrammi poliedrici!

MATERIALE E RIFERIMENTI

- Sugli Activity Diagram c'è molto molto di più
 - Vedere:
 - UML 2 Activity and action Models, Journal of Object Technology 2003, Conrad Bock
- Per realizzare la seguente presentazione sono stati utilizzati:
 - UML distilled M. Fowler
 - Le slide di Angelo di Iorio (UniBo) AA. 2010-2011

THE END ...

Domande?