TP 8.1 - Contrôle de la glycémie

Document 1 – Mesurer la glycémie

Pour contrôler la glycémie d'une personne, on peut prélever une goutte de sang et mesurer la concentration massique en glucose. Le principe est le suivant : on utilise des bandelettes qui contiennent une enzyme, la glucose oxydase. Le glucose contenu dans le sang va réagir chimiquement en présence de glucose oxydase et former des ions hydrogène H⁺ et du dioxygène O₂. La production d'ions hydrogène va entraîner l'apparition d'un faible courant électrique. L'intensité du courant dans la bandelette va donc varier avec concentration de glucose dans le sang.

Document 2 – Étalonnage de la bandelette

Pour pouvoir mesurer une concentration en glucose avec une bandelette, il faut l'étalonner en mesurant l'intensité du courant pour plusieurs solutions étalon.

Un fabriquant a mesuré les valeurs suivantes :

$c_m(\text{glucose}) \text{ g} \cdot \text{L}^{-1}$	1,2	2,12	2,88	4,11	4,92	6,03	6,85	7,87	9,18	10,09
I du courant μA	11,85	21,39	28,66	41,1	49,28	60,3	68,41	78,6	91,8	100,73

Document 3 - Conversion d'une concentration massigue en concentration molaire

Pour passer d'une concentration massique c_m à une concentration molaire c, il faut utiliser la relation suivante

$$c = \frac{c_m}{M}$$

avec M la masse molaire de l'espèce chimique dont on mesure la concentration.

Données:

■ $M(\text{glucose}) = 180.2 \,\text{g} \cdot \text{mol}^{-1}$.

Document 4 - Taux normaux de glycémie

	à jeun	2h après le repas	femme enceinte à jeun	femme enceinte 2h après le repas
Taux normaux de glycémie	3.9 à $5.5 \mathrm{mmol} \cdot \mathrm{L}^{-1}$	$3.9~{\rm \grave{a}}$ $7.7~{\rm mmol}\cdot{\rm L}^{-1}$	3.9 à $5.0 \mathrm{mmol} \cdot \mathrm{L}^{-1}$	$3.9 \ \mathrm{\grave{a}}$ $6.6 \ \mathrm{mmol} \cdot \mathrm{L}^{-1}$

Ces valeurs augmentent de $0.6 \,\mathrm{mmol}\cdot\mathrm{L}^{-1}$ par décennie après 50 ans.

- 1 À l'aide d'un programme python ou d'un tableur, tracer la concentration molaire du glucose en fonction de l'intensité du courant. A il faut convertir la concentration massique!
- 2 Utiliser une régression linéaire pour obtenir la relation entre concentration molaire du glucose en mmol· L^{-1} et intensité du courant en μA dans la bandelette.
- 3 Des médecins ont mesuré une intensité de $15,4\,\mu\mathrm{A}$ pour une femme de 60 ans, deux heures après son déjeuner. En utilisant toutes les données fournies, indiquer si la femme a une glycémie normale.