Graphs Introduction – Exercises

1 Modeling

1.1 Exercise 1

Given the following set of relations:

- A, B, C and D composed a full-connected graph.
- E and F are both linked to B
- F is also linked to G and H
- H, I and J are linked with each other

If we represent this set by a graph, what is its order? Draw the graph.

- 1. Is the graph connected?
- 2. What are the neighbors of vertex B?
- 3. What is the average degree of the graph (sum of the degrees divided by the number of vertices)?
- 4. How many edges should be removed for obtaining a tree? Which are these edges?
- 5. What happen if vertex F was removed?

1.2 Exercise 2

- According to you, the relation "can divide" results in a directed or non directed graph?
- Build this graph for the vertices 1, 2, 3 and 4.

1.3 Exercise 3

- A non increasing series of integer is graphic is there exist a non directed graph in which the degrees of its vertices correspond to this series. For instance, the triangle (3 vertices linked with each other) correspond to the series (2,2,2).
- Can you show that series (3, 3, 2, 1, 1), (3, 3, 2, 2) and (4, 2, 1, 1, 1, 1) are graphics?
- Is the series (5, 4, 3, 1, 1, 1, 1) graphic?

1.4 Exercise 4

We are interested in non directed graph in which all vertices have a degree equal to 3.

- Do graphs of orders 4, 5, 6 or 7 exist?
- What can you deduce from that?

1.5 Exercise 5

In a graph, the sum of degrees is equal to twice the number of edges. More formally, given G = (V, E) a graph, if d(v) represents the degree of vertex v, then:

$$\sum_{v \in V} d(v) = 2Card(E)$$

where Card(E) is the number of edges.

• What can you deduce about the number of vertices with an odd degree?

2 Enumeration

2.1 Exercise 6

Given a full-connected graph of order n, how many edges has this graph?

2.2 Exercise 7

- Draw all non directed graphs connected or not connected of order 1, 2, 3 and 4.
- For each of them try to name its topology.
 - \rightarrow Beware, some of them may have several topologies...

3 Algorithms

For the algorithms you can use these methods:

- createGraph () that returns *g* an empty instance of a graph.
- g.addNode (v) where v is the identifier of a vertex.
- g.addEdge (v_i, v_i) that adds a new edge between vertices v_i and v_i
- $\bullet\ v\leftarrow \texttt{g.getRandomVertex}$ () v is randomly chosen within the set of vertices of graph g

3.1 Exercise 8: Ring Generation

Propose an algorithm that generates a ring of order n

3.2 Exercise 9: Tree Generation

Propose an algorithm that generates a tree of order equal to n

4 Additional Exercises

4.1 Exercise 10

- are the following graphs regular?
 - a ring
 - a grid
 - a star
 - a full connected graph
 - a bipartite graph
- How can we modify a grid graph with a von Neumann neighborhood such that it becomes regular? Can you try with a 3×3 von-Neumann grid?

4.2 Exercise 11

Propose a definition of a star graph without using the word "degree".

4.3 Exercise 12

- 1. Given a von-Neumann grid of size $n \times n$, how many edges has this graph?
- 2. Given a Moore grid of size $n \times n$, how many edges has this graph?