Where to Build Food Banks and Pantries: A Two-Level Machine Learning Approach

Gavin Ruan, West Lafayette Jr./Sr. High School

1. Introduction

Motivation and Background:

- In the United States, over **44 million** people suffer from food insecurity, **13 million** of whom are children.
- Food banks are critical for these people's nutrition and health (49 million turned to food programs in 2022).
- Last year, I created an application using the K-Means clustering algorithm. While this improved food bank locations, it didn't factor in important considerations such as roads or resources such as food pantries.

Project Goal:

- Improve the initial machine learning approach for finding optimal locations by considering roads and creating a two-level system that has food banks and pantries.

2. Methodology

Optimization:

- Find the **food bank and pantry** locations with the shortest total road distance to all served households

Datasets:

Datasets consisted of Indiana houses from 2020 GIS data

OSRM:

- Open source geospatial data
- Requires data to be scaled down in size

K-Medoids Method:

- Unsupervised clustering algorithm
- Heuristic approach to solve facility location problems quickly using a distance matrix

Comparisons:

Generated 11 food banks and 176 total pantries to compare to an equal number of real ones

Performance:

- Jupyter notebook's time function for computational
- to miles for distance measurements

Distance/Dissimilarity Matrix

Example flow chart for 12 houses and 2 food pantries

For each household, update its

closest pantry.

cost OSRM road distance converted

Form new clusters

Pantry-Household Level

Real Food Pantries

* Al Generated Pantries

Lafayette

Houses: 456 Number of pantries: 15 Original distance: 9.34 mi. Al distance: 6.37 mi. Distance saving: 2.97 mi.

Indianapolis

Houses: 1718 Number of pantries: 57 Original distance: 4.41 mi. Al distance: 2.25 mi. Distance saving: 2.16 mi.

Large Distance Savings between Pantries and Households:

- 6293 Houses
- Clusters ranged from 270 to 1700 houses
- 3.52 average miles saved per household
- **22,181.423 total miles saved**
- Average saved miles ranged from 2.17 to 8 miles in different cities

3. Results

Food Bank-Pantry Level

Converged Results

Small Distance Penalty between Food Banks and Pantries:

- 176 pantries
- 1.56 average miles penalty per pantry
- 273.75 total miles penalty

1.00E+6 1.00E+3 15.3 hours 1.00E+3

Number of Houses

Initialization

18.4 years! ___

6293 houses	1.8 weeks	98 seconds
~3.3 million houses	18.4 years	15.3 hours

Bruteforce

4. Conclusions

- Results show that my two-level machine learning approach is able to consider real roads and generate a set of food banks and pantries both extremely quickly, and with more optimized locations than current existing ones.
- Current layouts prioritize food pantry proximities with food banks Contrary to the status quo, AI has showed that the planning strategy needs to be changed to prioritize households

5. Future Work

- Consider capacity of food banks Try a bottom-up approach with the food bank placements
- Expand dataset size and include different weights for houses (income range, socio-economic data, etc.)

6. References

Celik Turkoglu, D., Erol Genevois, M. A comparative survey of service facility location problems. Ann Oper Res 292, 399-468 (2020) https://doi.org/10.1007/s10479-019-03385-x

Héctor J. Carlo, Francisco Aldarondo, Priscilla M. Saavedra & Silmarie N. Torres (2012) Capacitated Continuous Facility Location Problem With Unknown number of Facilities, Engineering Management Journal, 24:3

Shih, H. (2015) Facility Location Decisions Based on Driving Distances on Spherical Surface. American Journal of Operations Research, 5, 450-492. doi: 10.4236/ajor.2015.55037.

24-31, DOI: 10.1080/10429247.2012.11431944

Varghese, S.; Gladston Raj, S. Clustering Based Model For Facility Location In Logistic Network Using K-Means. Int. J. Sci. Invent. Innov. 2016, 1, 26–32.