Introdução à Camada de Rede

OSI	TCP/II

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace
1	Física

Aplicação Transporte Rede Interface com a rede

Introdução

 A camada de rede é responsável por receber dados da camada de transporte dividir em <u>datagramas</u>.

Adiciona endereço lógico de origem e destino (endereços IP).

Auxilia na comunicação entre redes, através do uso de roteamento.

Quanto ao endereçamento

 Para entregar um pacote de dados a rede precisa saber o endereço do dispositivo de destino.

- Cada dispositivo possui dois tipos de endereço:
 - Endereço físico (MAC)
 - Endereço lógico (IP)

Endereçamento IP

 Entre redes diferentes é necessário usar o endereçamento lógico porque é mais prático para encontrar um dispositivo e no caso é usado o <u>roteamento</u>.

• O <u>endereçamento físico (MAC)</u>, é utilizado na <u>rede local</u>, para fazer a localização de um dispositivo. A localização é feita através de <u>broadcast (mensagem a todos da rede)</u>.

Endereçamento IP

• O endereçamento lógico (IP) funciona de forma padronizada, os pacotes chegam até o destino **sem congestionar** as redes por onde passam e não usam broadcast na internet.

 O envio de pacotes de uma rede para outra é feito usando um equipamento chamado de <u>roteador</u>.

Endereçamento IPv4

 No endereçamento <u>IPv4</u> o endereço IP é formado por um número de 32 bits.

4 números de 8 bits separados por um ponto, no formato

a.b.c.d

A	В	C	D
8 bits	8 bits	8 bits	8 bits

 Transformados em decimal, cada grupo de 8 bits podem variar de 0 a 255 (2^8= 2*2*2*2*2*2*2 = 256)

Endereçamento IPv4:

quantidade

 Temos endereços IPv4 variando de 0.0.0.0 a 255.255.255.255

• Em teoria o IPv4 tem mais de 4 bilhões (4.294.967.296) de endereços possíveis (256^4)

Endereçamento com Classes:

Método Obsoleto

No inicio o IPv4 usava o endereçamento com classe, que fazia a divisão de endereços IP em 5 classes.

Classe A – 16.777.214 endereços (2²⁴ – 2)

Classe B – 65.536 endereços (2^16 – 2)

Classe C – 254 endereços (2^8 - 2)

Classe D - Reservado Multicast *

Classe E – Reservado uso futuro *

* Classes D e E não são usadas.

Classes de endereços IP					
	Bits iniciais	A 8 bits	B 8 bits	C 8 bits	D 8 bits
Classe A	0	Rede (Bits iniciais + 7 bits) Identificação da m (24 bits)		áquina	
Classe B	10	Rede (Bits iniciais + 14 bits) Id. da m			
Classe C	110	Rede (Bits iniciais + 21 bits) <u>mác</u>		Id. da <u>máquina</u> (8 bits)	
Classe D	1110	Endereçamento Multicast			t
Classe E	1111	Reservado uso futuro			

	A	B	C	D
	8 bits	8 bits	8 bits	8 bits
Classe A	O XXX XXXX	XXXX XXXX	XXXX XXXX	XXXX XXXX
	REDE	HOST	HOST	HOST
Classe B	10 XX XXXX	XXXX XXXX	XXXX XXXX	XXXX XXXX
	REDE	REDE	HOST	HOST
Classe C	110 X XXXX	XXXX XXXX	XXXX XXXX	XXXX XXXX
	REDE	REDE	REDE	HOST
Classe D	1110	Endereçamento Multicast		
Classe E	1111	Reservado uso futuro		

Notação Decimal

	A 8 bits	B 8 bits	C 8 bits	D 8 bits
Classe A	0 ~ 127			
Classe B	128 ~ 191	Rede		
Classe C	192 ~ 223	Rede	Rede	
Classe D	224 ~ 239			
Classe E	240 ~ 255			

Endereçamento com Classes

Endereço em notação Binária	00001010	00001011	00001011	11101111
Endereço em notação Decimal	10	11	11	239

	Bits iniciais	A 8 bits	B 8 bits	C 8 bits	D 8 bits
Classe A	0	Id. Rede (iniciais + 7 bits)	Iden	tificação de má (24 bits)	íquina
Classe B	10	Id Rede (inicials + 14 hits)		náquina bits)	
Classe C	110	Id. Rede (iniciais + 21 bits)		ld. de máquina (8 bits)	

Classes de endereços IP:

divisão de faixas por classes

CLASSE	ENDEREÇO MAIS BAIXO	ENDEREÇO MAIS ALTO
Α	0.0.0	127.255.255.
В	128.1.0.0	191.255.255.255
С	192.0.1.0	223.255.255
D	224.0.0.0	239.255.255
E	240.0.0.0	255.255.255

Classes de endereços IP:

principais faixas reservadas

ÇOS USO	ENDEREÇOS
Não podem ser usados	0.0.0.0 a 0.255.255.255
.255.255 Loopback (localhost)	127.0.0.0 a 127.255.255.255
55.255.255	10.0.0.0 a 10.255.255.255
Endereçamento Privado (Rede local)	172.16.0.0 a 172.31.0.0
2.168.255.255	192.168.0.0 a 192.168.255.255

Endereços: IP Publico x IP Privado

Endereço IP público é um endereço IP válido na Internet. Um dispositivo para se conectar na internet precisa de um IP público.

Endereço IP privado é um endereço IP válido para <u>rede</u> <u>local</u>. Este tipo de endereço não funciona na Internet, é bloqueado pelos roteadores. <u>Utiliza as faixas de IPs de endereçamento privado</u>.

Gateway

Gateway é a porta de entrada e de saída da rede, por exemplo o roteador ou outro dispositivo que possui o link de acesso a internet, geralmente responsável por rotear o tráfego de dados.

Um gateway geralmente é utilizado quando o IP de destino não está na mesma rede que o IP de origem. Ou seja quando o dispositivo de destino não for localizado na rede, os dados são encaminhados para o gateway.

Máscaras padrão

As máscaras servem para definir qual parte do endereço IP identifica a **rede** e o restante pode ser usado para endereçar os dispositivos.

Classe	Decimal	Binária
A	255.0.0.0	1111111.00000000.00000000.00000000
В	255.255.0.0	11111111111111111100000000.00000000
С	255.255.255.0	11111111111111111111111100000000

^{*} Apesar dos bits para rede já estão determinados no endereçamento com classe, a mascara auxilia no processo de localização na rede.

Máscaras padrão:

efeito sobre o endereço

A mascara define quantos bits do endereço são usados para REDE.

		1 º	2 º	3º	4 º
		Octeto	Octeto	Octeto	octeto
Endereço IP		192	168	1	1
	Classe A	255	X	X	X
	Classe B	255	255	X	X
	Classe C	255	255	255	X

255 = Endereços para Rede (todos os bits em 1)

X = Endereços para Host 0 até 255 = 256 endereços

O esgotamento de IPs versão 4

A falta de endereços IPs públicos na internet foi uma grande preocupação.

Fatores que contribuíram para o esgotamento de IPs disponíveis:

- > Falhas no método de endereçamento com classes.
- > Crescimento da internet.

Esgotamento de IPs versão 4:

falhas no endereçamento com classe

Blocos de endereços classe A e B são muito grandes para a maioria das organizações:

Ex. Classe A – 16.777.214 endereços (2²⁴ – 2)

Classe B - 65.536 endereços (2^16 - 2)

Blocos de endereços classe C são pequenos para a maioria das organizações:

Ex. Classe C – 254 endereços (2^8 - 2)

*A maioria das empresas não utilizavam todos os ips do bloco que adquiriam.

Endereços IP:

Exemplo faixa endereço rede local

Como conectar esses computadores na internet?

Solução? IPs públicos para cada um deles?

Esgotamento de IPs versão 4:

solução rápida

A cada dia a demanda por endereços aumenta, pois cada dispositivo conectado necessita de um IP.

A solução rápida foi usar um mecanismo para acessar a internet através de um único endereço IP público.

Esse recurso é chamado de **NAT** (Network Address Translation - tradução de endereços de rede)

NAT (Network Address Translation)

O NAT é o recurso presente no gateway que quando recebe o datagrama IP com destino à Internet, substitui o endereço de origem pelo endereço IP publico do gateway. Desta forma todos os dispositivos acessam a Internet através do gateway.

^{*} Opção ideal para o acesso a internet.

IPv4 (Internet Protocol, versão 4):

estrutura

O protocolo IP opera na camada de rede (3), recebe os dados da camada de transporte (4) (TCP, UDP ou SCTP) e envia para a próxima camada (enlace)

(2).

7	Aplicação		
6	Apresentação		
5	Sessão		
4	Transporte		
3	Rede		
2	Enlace		
1	Física		

Protocolos da camada de rede encaminham PDUs encapsuladas da Camada de Transporte entre hosts

Protocolos da camada de rede encaminham PDUs encapsuladas da Camada de Transporte entre hosts

Características

O protocolo IP:

- > não é orientado a conexão
- ➤ Não verifica se o datagrama chegou ou não ao destino (quem faz é o TCP)
- Tamanho máximo de um datagrama IP é de 65.535 bytes (Cabeçalho + dados), mas geralmente possui **1.500 bytes** para caber na área de dados do **quadro** da camada de enlace (2).

PDU do datagrama IP

CABEÇALHO (20 ou 24 bytes)*

DADOS (ATÉ 65.511 OU 65.515 bytes)

^{*} Os valores variam porque depende do campo OPÇÕES+PAD (4 bytes) for usado ou não.

Protocolo IPv4:

comunicação Sem Conexão

Comunicação sem Conexão

Um pacote é enviado.

O remetente não sabe:

- · se o destinatário está presente
- se o pacote chegou
- se o destinatário pode ler o pacote

O destinatário não sabe:

quando chega

Camadas de Rede

Observe que os Pacotes, através dos Roteadores, passam pela Camada Física até a Camada de Rede, retornando para a Camada Física, sucessivamente até o destino final.

MTU (Maximum Transfer Unit)

Os pacotes IP podem viajar através de meios físicos diferentes.

O transporte de pacote IP não está limitado a nenhum meio físico particular, existe o tamanho máximo do pacote IP (PDU: cabeçalho + dados) que cada meio físico consegue transportar, no caso de redes Ethernet esse pacote deve ter no máximo 1.500 bytes e no mínimo 576 bytes.

> MTU é a unidade máxima de transmissão, tamanho máximo do pacote IP, em bytes, que as diferentes tipos de rede pode manusear.

MTU (Maximum Transfer Unit)

MTU:

Fragmentação de datagrama

Diferentes tipos de redes interligadas

MTU = 1500 bytes

MTU = 620 bytes

MTU = 1500 bytes

Como o caminho que o quadro pode percorrer possui várias arquiteturas de rede. Teoricamente o pacote de dados não pode ser transmitido, já que não cabe dentro da área de dados do quadro de determinadas redes.

Para resolver esse problema é realizado a fragmentação de datagramas.

A partir do ponto de fragmentação os dados seguem fragmentados até o destino.

IPv4: MTU exemplo fragmentação

^{*} Seguem fragmentados até o destino, a configuração do valor do MTU é feita no sistema de cada dispositivo (Roteador ou SO)

Cabeçalho IPv4

0					7	7								15								23							31
	VEI	TAMANHO CABEÇALHO TIPO DE SERVIÇO									TAMANHO TOTAL																		
IDENTIFICAÇÃO											F	LAG	S	OFFSET DO FRAGMENTO															
	TEMPO DE VIDA PROTOCOLO											CHECKSUM DO CABEÇALHO																	
	ENDEREÇO IP DE ORIGEM																												
	ENDEREÇO IP DO DESTINO																												
	OPÇÕES															PAD													
														DA	DOS	5													
														DA	DOS	6													
														DA	DOS	5													

0				7							15							23							31
VERSÃ	0	TAM	TIPC) DE	SER	VIÇC)		TAMANHO TOTAL																
\	IDENTIFICAÇÃO												FLAGS OFFSET DO FRAGMENTO												
ТЕ	TEMPO DE VIDA PROTOCOLO											CHECKSUM DO CABEÇALHO													
		ENDEREÇO IP DE ORIGEM																							
								ENI	DER	EÇO	IP C	O DE	STIN	0											
	1	OPÇÕES												PAD											
	1									D	DADO	OS				_									
	1									D	DADO	OS													
	1									D	DADO	OS													

Versão do protocolo IP

Tamanho do cabeçalho (IHL, Internet Header Length)

Valor do tamanho do cabeçalho em bytes

QoS (Qualidade do serviço)

Permite ao protocolo oferecer prioridade de voz e rede através de dados regulares.

Tamanho total em bytes que compõe o pacote.

Cabeçalho + dados (PDU)

Identificação do Pacote

É usado para identificar o pacote quando fragmentado

Utilizado para controlar a fragmentação

0						7							15							23							31
Į,	VERS	ÃO	- 1	AMA ABEÇ		_	TIPO DE SERVIÇO								TAMANHO TOTAL												•
IDENTIFICAÇÃO										FLA	GS	OFFSET DO FRAGMENTO															
	TEMPO DE VIDA PROTOCOLO										CHECKSUM DO CABEÇALHO																
			ENDEREÇO IP DE ORIGEM																								
										E	NDE	REÇ	O IP I	OO DI	STIN	10											
				OPÇÕES											PAD												
													DAD	os				-									
													DAD	os													
													DAD	os													

TTL (Time To Live)

➤ Tempo máximo de vida do pacote, cada vez que o pacote passa por um gateway (salto) o valor é decrementado em 1.

Valor = 255

^{*}Protocolos que operam na própria camada de Rede

Soma de verificação:

Verifica se o cabeçalho está corrompido.

IP de origem do pacote

IP de destino do pacote

Campos que oferecem serviços específicos (raramente usados)

DADOS (PDU camada transporte)

- Tamanho máximo = 65.535 bytes (tamanho grande dificulta a transmissão e congestiona a rede)
- Tamanho normalmente usado = 556 bytes

ICMPv4 (Internet Control Message Protocol, versão 4)

O protocolo ICMP é utilizado para informar a roteador/máquina transmissora da ocorrência de um erro com um pacote enviado. Essas mensagens são enviadas pelos roteadores e outros dispositivos da

rede. **CABEÇALHO Encapsulamento DADOS ICMP** Camada de Rede **CABEÇALHO IP DADOS** Pacote IP Camada de **CABEÇALHO DO DADOS (ATÉ 1500 BYTES)** CRC **QUADRO** Enlace **Quadro Ethernet**

ICMPv4 (Internet Control Message Protocol, versão 4)

Mensagens ICMP geralmente são enviadas ao transmissor quando há alguma mensagem de erro ou serviços específicos.

- Rede Inalcançável
- > Tempo de vida excedido (TTL)
- Solicitação de horário
- ➤ Medir tempo de resposta da rede (RTT tempo de ida e volta)

ICMPv4:

Exemplo de ferramenta

A ferramenta ping presente tanto em Windows quanto em Unix utiliza o protocolo ICMP.

```
C:\WINDOWS\system32\cmd.exe
                                                                         X
Microsoft Windows [versão 10.0.16299.125]
(c) 2017 Microsoft Corporation. Todos os direitos reservados.
C:\Users\Loamí>ping www.uol.com.br
Disparando homeuol-ib.uol.com.br [200.147.67.142] com 32 bytes de dados:
Resposta de 200.147.67.142: bytes=32 tempo=7ms TTL=245
Resposta de 200.147.67.142: bytes=32 tempo=8ms TTL=245
Resposta de 200.147.67.142: bytes=32 tempo=9ms TTL=245
Resposta de 200.147.67.142: bytes=32 tempo=8ms TTL=245
Estatísticas do Ping para 200.147.67.142:
    Pacotes: Enviados = 4, Recebidos = 4, Perdidos = 0 (0% de
             perda),
Aproximar um número redondo de vezes em milissegundos:
    Mínimo = 7ms, Máximo = 9ms, Média = 8ms
```

O projeto de uso do IPv6 não é novo, sendo que o padrão vem sendo desenvolvido desde 1995.

Mesmo com as soluções para evitar o esgotamento de endereços IPv4, eles chegaram ao fim em 2020, mas há politicas de recuperação de blocos de endereço promovidas pela LACNIC *.

- https://www.lacnic.net/1077/3/lacnic/fases-de-esgotamento-do-ipv4
- https://ipv6.br/post/fim-do-ipv4

O fim dos endereços não significa o fim imediato do IPv4 porque existem muitas faixas que possuem dono mas não são usadas e podem ser repassadas em troca de algum ganho monetário.

O IPv6 ou Ipng (IP Next Generation) foi criado para solucionar esta falta de endereços e também implementar outras funções.

Endereçamento

O IPv6 possui endereços de 128 bits (4x maior), com isso é possível endereçar:

340.282.366.920.938.463.463.374.607.431.768.211.456 dispositivos diferentes.

Com isso podemos ter **1.564** endereços por metro quadrado na superfície da terra.

estrutura

Endereços IPv6 são formados por 8 grupos separados por dois-pontos.

Cada grupo de 16 bits é formado por 4 algarismos e/ou letras em hexadecimal.

Ex. endereço IPv6:

2031:0000:140F:0000:0000:0AC0:975B:010C

estrutura

Podemos abreviar os endereços utilizando algumas regras:

- Omitir os zeros da esquerda
- ➤ Representar dois ou mais grupos de zeros contínuos por "::" (somente uma vez)

2031:0000:140F:0000:0000:0AC0:975B:010C 2031:0:140F::0AC0:975B:10C

estrutura

Em redes operando o IPv4 e IPv6 ao mesmo tempo, endereços IPv4 podem ser convertidos:

Usando a notação:

x:x:x:x:x:a.b.c.d

Ex. um endereço 192.168.1.2 pode ser representado:

0:0:0:0:0:0:192.168.1.2 ou ::192.168.1.2

estrutura

O endereço:

::192.168.1.2 é equivalente a ::COA8:0102

192=C0, 168=A8, 1=01, 2=02

vantagens em relação ao IPv4

As principais vantagens do IPv6 são:

- > Alta quantidade de endereços;
- Cabeçalho mais adequado (novo formato simplifica e acelera o roteamento);
- > Suporte integrado a segurança (IPSec);
- > Tratamento especial de trafego (Suporte a vídeo e áudio em tempo real).

IPv6:

IPSec nativo

Dados trafegados em redes TCP/IP normalmente seguem sem qualquer criptografia, ficando vulnerável a pessoas malintencionadas.

O IPsec opera na camada de rede, diferente dos protocolos que operam entre a camada de aplicação e transporte:

TLS (Transport Layer Security) e o SSL (Secure Socket Layer), protegem parte da pilha.

IPSec nativo

O IPsec opera nativamente no IPv6, sendo assim podemos escolher entre o protocolo IP e o IPSec, sem precisar alterar o hardware de rede.

No caso do IPv4 esse recurso é implementado inserindo uma camada entre a camada de rede e enlace, usando dois dispositivos **compatíveis**, desta forma criando um tunel **VPN** (Virtual Private Network, Rede Privada Virtual).