1 Теория групп

2019-09-17

Опр

$$G$$
 - мн-во, $*: G*G \to G, \ (g_1,g_2) \to (g_1*g_2) \ (g_1g_2)$

1.
$$(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$$

2.
$$\exists e \in G : eg = ge = g \quad \forall g \in G$$

3.
$$\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$$

4.
$$g_1g_2 = g_2g_1 \quad \forall g_1, g_2 \in G$$

Примеры

- 1. $(\mathbb{Z},+)$ rpynna
- 2. (\mathbb{Z}, \bullet) не группа
- $3. \; (R,+)$ группа кольца
- 4. (R^*, \bullet)
- 5. Группа самосовмещения D_n , например D_4 квадрат, композиция группа, $|D_n|=2n$
- 6. $GL_n(K) = \{A \in M_n(K) : |A| \neq 0\}, \ умножение группа$
- 7. $\mathbb{Z}n\mathbb{Z}$ частный случай n.3,4

Теор (простейшие св-ва групп)

- 1. e eдинственный, e, e' нейтральные: e = ee' = e'
- $2.~\widetilde{g}$ $e \partial u н c m в e н н ы <math>\check{u}$

Пусть
$$\widetilde{g}, \hat{g}$$
 - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \hat{g}g = g\hat{g}$

$$\widehat{g}=e\widehat{g}=(\widetilde{g}g)\widehat{g}=\widetilde{g}(g\widehat{g})=\widetilde{g}e=\widetilde{g}$$

3.
$$(ab)^{-1} = b^{-1}a^{-1}$$

Это верно, если
$$(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$$
, докажем первое:

$$(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} = (a(bb^{-1}))a^{-1} = (ae)a^{-1} = aa^{-1} = e$$

4.
$$(g^{-1})^{-1} = g$$

$$\mathbf{\hat{g}} \in G \quad n \in \mathbb{Z}, \ mor \partial a \ g = \begin{bmatrix} \overbrace{g...g}^{n}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1}...g^{-1}}_{n}, & n < 0 \end{bmatrix}$$

Теор (св-ва)

$$1. \ g^{n+m} = g^n g^m$$

2.
$$(q^n)^m = q^{nm}$$

Опр

 $g \in G, n \in N$ - порядок $g \ (ordg = n), \ ecnu$:

$$1. \ g^n = e$$

2.
$$q^m = e \rightarrow m \geqslant n$$

Примеры

1.
$$D_4$$
 ord(nosopom 90°) = 4

$$D_4 \ ord(nosopom \ 180^\circ) = 2$$

2.
$$(\mathbb{Z}/6\mathbb{Z}, +)$$
 $ord(\overline{1}) = 6$

$$ord(\overline{2}) = 3$$

y_{TB}

$$g^m = e \quad ord(g) = n \rightarrow m : n \ (n > 0)$$

Док-во

$$\overline{m} = nq + r, \ 0 \leqslant r < n \ e = q^m = q^{nq+r} = (q^n)^q q^r = q^r \to r = 0$$

Опр

 $H \subset G$ называется подгруппой G (H < G) (u сама является группой), если:

1.
$$g_1, g_2 \in H \to g_1 g_2 \in H$$

$$2. e \in H$$

3.
$$q \in H \rightarrow q^{-1} \in H$$

Примеры

$$1. n\mathbb{Z} < \mathbb{Z}$$

2.
$$D_4$$

3.
$$SL_n(K) = \{A \in M_n(K) : |A| = 1\}, SL_n(K) < GL_n(K)$$

Мультипликативная запись	Аддитивная запись
g_1g_2	$g_1 + g_2$
e	0
g^{-1}	-g
g^n	ng

Опр

 $H < G, g_1, g_2 \in G, \ morda \ g_1 \sim g_2, \ ecnu:$

- 1. $q_1 = q_2 h, h \in H$ (левое)
- 2. $g_2 = hg_1, h \in H \ (npasoe)$

Док-во (эквивалентность)

- 1. $(cumмempuчнocmь) g_1=g_2h\overset{*h^{-1}}{\rightarrow} g_2=g_1h^{-1}$
- 2. (рефлексивность) g = ge
- 3. (транзитивнось) $g_1 = g_2 h, g_2 = g_3 h \to g_1 = g_3 (h_2 h_1), \ \textit{где } h_2 h_1 \in H$

Опр

 $[a] = \{b : ab\}$ классы эквивалентности

Опр

$$[g] = gH = \{gh, h \in H\}$$
 (левый класс смежности) $gh \sim g \to gh \in [g]$ $g_1 \in [g] \to g_1 \sim g \to g_1 = gh$

 y_{TB}

$$[e] = H$$
 Установим биекцию: $[g] = gh \leftarrow H$

 $gh \leftarrow h$ Очевидно, сюръекция, почему инъекция? $gh_1 = gh_2 \stackrel{*g^{-1}}{\to} h_1 = h$

Теор (Лагранжа)

 $H < G, |G| < \infty,$ тогда |G| : |H| (уже доказали!)

2019-09-10

След (теорема Эйлера)

Напоминание

$$n, a \in \mathbb{N}, (a, n) = 1, mor \partial a \ a^{\varphi(n)} \equiv 1 (mod n)$$

Док-во

Рассмотрим $G=(\mathbb{Z}/n\mathbb{Z})*\ |G|=\varphi(n)$ $\overline{a}\in G,\ ord\overline{a}=k$ $\varphi(n):k\Rightarrow \varphi(n)=kl$ $\overline{a}=\overline{1}$ $\overline{a}^{\varphi(n)}=\overline{1}$

Опр

G - циклическая группа, если $\exists g \in G: \forall g' \in G: \exists k \in \mathbb{Z}: g' = g^k$ Такой g называется образующим

Опр

 \mathbb{Z} (образующий - единица и минус единица)

Замеч

Любая циклическая группа - коммунитативна

Док-во

$$\overline{g'g''} = g''g' = g^kg^l = g^lg^k$$

Пусть G,H - группы, рассмотрим $G \times H = \{(g,h) : g \in G, h \in H\}$

Введем операцию $(g,h)*(g',h') \stackrel{def}{=} (g*_{G}g',h*_{H}h')$

Докажем, что это группа.

Доказательство ассоциативности: $((g,h)(g',h'))(g'',h'') \stackrel{?}{=} (g,h)((g',h')(g'',h'')$

 $(gg', hh')(g'', h'') \stackrel{?}{=} (g, h)(g'g'', h'h'')$

 $((gg')g'',(hh')h'')\stackrel{?}{=}(g(g',g''),h(h'h'')$ - очевидно

Нейтральный элемент:

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{0}),(\overline{1},\overline{1})\}$

Опр

Конечная группа порядка п является циклической тогда и только тогда, когда она содержит элемент порядка п (|G|=n, G - циклическая $\equiv \exists g \in G : ordg = n)$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ - циклическая $((\overline{1},\overline{1}),(\overline{0},\overline{2}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{2}))$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ - не циклическая

Опр

 $\varphi:G\to H$ - биекция и $\varphi(g_1,g_2)=\varphi(g_1)\varphi(g_2)$ $\forall g_1,g_2\in G,$ тогда φ - изоморфизм

Примеры

 $\overline{1}$. $D_3 \to S_3$

2.
$$U_n = \{z \in \mathbb{C} : z^n = 1\} \leftarrow \mathbb{Z}/n\mathbb{Z}$$
$$(\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n} = \varphi \overline{a}\overline{a})$$
$$\overline{a} = \overline{b} \rightarrow \varphi(\overline{a}) = \varphi(\overline{b})$$
$$\varphi(\overline{a} + \overline{b}) \stackrel{?}{=} \varphi(\overline{a})\varphi(\overline{b})$$
$$\cos\frac{2\pi(a+b)}{n} + i\sin\frac{2\pi(a+b)}{n} = (\cos\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n})$$

Опр

Две группы называются изоморфными, если между ними существует изоморфизм

y_{TB}

Изоморфизм - отношение эквивалентности

Док-во

т.к. композиция изоморфизмов - изоморфизм $G \stackrel{e}{\to} H \stackrel{\psi}{\to} H$ $(\psi \circ \varphi)(g_1g_2) = \psi(\varphi(g_1g_2)) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = (\psi \circ \varphi)(g_1) \circ (\psi \circ \varphi)(g_2)$

Рефлексивность - тождественное отображение - изоморфизм

 $Транзитивность: G \underset{\varphi}{\rightarrow} H, H \underset{\varphi^{-1}}{\rightarrow} G$

Teop

G - циклическая группа

- 1) $|G| = n \Rightarrow G \cong \mathbb{Z}/n\mathbb{Z}$
- $|G| = \infty \Rightarrow G \cong \mathbb{Z}$

Док-во

1) g - обр. G, значит $G = \{e, g, g^2, ..., g^{n-1}\}$ (среди них нет одинаковых), построим изоморфизм в $\mathbb{Z}/n\mathbb{Z}$: $\varphi(g^k) = \overline{k}$

Проверим, что $\varphi(g^kg^l) = \varphi(g^k) + \varphi(g^l) = \overline{k} + \overline{l}$

Левая часть: $\varphi(g^{k+l} = \overline{(k+l) \mod n} = \overline{k} + \overline{l}$

2) $G = \{..., g^{-1}, e, g, g^2, ...\}$ (тоже нет совпадающих элементов, иначе $g^k = g^l$, при k > l, тогда $g^{k-l} = e$, но тогда конечное число элементов, потому что оно зацикливается через каждые k-l элементов), построим отображение в \mathbb{Z} .

 $arphi(g^n)=n$ -, очевидно, биекция. И нужно доказать, что $arphi(g^ng^k)=arphi(g^n)-arphi(g^k)=n+k$

2019-09-17

Утверждение

$$\begin{aligned} |G| &= p, \ npocmoe \\ \Rightarrow G &\simeq \mathbb{Z}_{/p\mathbb{Z}} \qquad g \in G, g \neq e \\ ord \ g &= p \\ \Rightarrow G &= \{e = g^0, g^1, ..., g^{p-1}\} \end{aligned}$$

Утверждение

$$H,G$$
 - группы, $g \in G$ $\varphi:G \to H$ - изоморфизм $\Rightarrow ord \ g = ord \ \varphi(g)$ $ord \ g = n$ $g^n = e$ $\varphi(g)^n = \varphi(g^n) = \varphi(e) = e$ $\varphi(e)^2 = \varphi(e^2) = \varphi(e)$ $\varphi(g)^n \stackrel{?}{\Rightarrow} e \Rightarrow m \geq n$ $m \in \mathbb{N}$ $\varphi(q^m) = \varphi(q)^m = e = \varphi(e) \Rightarrow q^m = e \Rightarrow m > n$

Опр

$$H < G$$

$$H \ - \ hop \text{мальная подгруппа, если } \forall h \in H, g \in G$$

$$g^{-1}hg \in H \ - \ conp \text{яжение элемента } h \ c \ nom \text{ощью элемента } g$$

$$pucy \text{нok } 1$$

$$H \lhd G$$

Утверждение

 $H \lhd G \Leftrightarrow$ - разбиение на л. и п. классы смежности по H совпадают orall g = Hg

Док-во

$$\Rightarrow h \in H \qquad gh \in gH$$

$$gh = \underbrace{(g^{-1})^{-1}hg^{-1}}_{\in H}g = h_1g$$

$$\Leftarrow g \in G, h \in H$$

$$g^{-1}hg = h_1$$

$$hg \in Hg = gH \Rightarrow gh_1, h_1 \in H$$

$$H \triangleleft G$$

$$g_1H * g_2H \stackrel{def}{=} g_1g_2H$$

$$\widetilde{q}_1 H = q_1 H$$

$$\widetilde{q}_2 H = q_2 H \stackrel{?}{\Rightarrow} \widetilde{q}_1 \widetilde{q}_2 H = q_1 q_2 H$$

$$g_2^{-1}h_1g_2 = h_3 \in H$$

$$\widetilde{g_1}\widetilde{g_2}h = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$$

$$\widetilde{g_1}H = g_1H \Rightarrow \widetilde{g_1} = g_1h_1$$

$$\widetilde{q}_2 H = q_2 H \Rightarrow \widetilde{q}_2 = q_2 h_2$$

$$eH = H$$

$$1) \quad eH * gH = (eg)H = gH$$

2)
$$(g_1H * g_2H) * g_3H \stackrel{?}{=} g_1H * (g_2H * g_3H)$$

$$(g_1g_2)H * g_3H = (g_1g_2)g_3H$$

3)
$$gH * g^{-1}H = (gg^{-1})H = eH$$

$$G_{/H}$$

$$a \sim b \Leftrightarrow a - b \stackrel{.}{:} h$$

$$G = \mathbb{Z}$$

$$H = h\mathbb{Z} \quad g_1 - g_2 \in n\mathbb{Z}$$

$$[a] + [b] = [a+b]$$

Пример

$$[g,h]=ghg^{-1}h^{-1}$$
 - коммутатор $g,h\in G$ $K(G)=\{[g_1,h_1],...,[g_n,h_n],g_i,h_i\in G\}$ - коммутант

Док-во

Коммутант - подгруппа

$$\begin{split} K(G) &< G \\ [e,e] &= e \\ [g_1,h_1]...[g_n,h_n] \\ [g,h]^{-1} &= (ghg^{-1}h^{-1})^{-1} = hgh^{-1}g^{-1} = [h,g] \\ ([g_1,h_1]...[g_n,h_n])^{-1} &= [h_1,g_1]...[g_n,h_n] \\ g^{-1}[g_1,h_1]...[g_n,h_n]g &= \\ &= (g^{-1}[g_1,h_1]g)(g^{-1}[g_2,h_2]g)...(g^{-1}[g_n,h_n]g) \\ g^{-1}g_1h_1g_1^{-1}h_1^{-1}g &= \\ &= (g^{-1}g_1h_1g_1^{-1}(gh_1^{-1})h_1g^{-1})h_1^{-1}g \\ [g^{-1}g_1,h_1] & [h_1,g^{-1}] \end{split}$$

Утверждение

$$G_{/K(G)}$$
 - комм

Док-во

$$g_1, g_2 \in G$$
 $g_1K(G)g_2K(G) \stackrel{?}{=} g_2K(G)g_1K(G)$
 $g_1g_2K(G) = g_1g_2K(G)$ $g_2K(G)g_1K(G) = g_2g_1K(G)$
 $[g_1, g_2] = g_1g_2(g_2g_1)^{-1} \in K(G)$

Утверждение

$$\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{mn}, \ ecnu \ (m, n) = 1$$

$$[a]_{nm} \to ([a]_n, [a]_m)$$

$$[a]_{nm} = [a']_{mn} \Rightarrow [a]_n = [a']_n, [a']_m = [a']_m$$

$$\forall b, c \in \mathbb{Z} \ \exists x \in \mathbb{Z} : \begin{cases} [x]_n = [b]_n \\ [x]_m = [c]_m \end{cases}$$

$$[a]_n = [b]_n$$

$$[a]_m = [b]_m \Rightarrow [a]_{mn} = [b]_{mn}$$

$$a \equiv b(n)$$

$$a \equiv b(m) \Rightarrow a \equiv b(mn)$$

Опр

$$arphi:G o H$$
 - гомоморфизм $arphi(g_1g_2)=arphi(g_1)arphi(g_2)$ изоморфизм = гомоморфизм + биективность $arphi\in Hom(G,H)$ - множество гомоморфизмов

Примеры

1)
$$\mathbb{C}^* \to \mathbb{R}^*$$

$$z \to |z|$$
2) $GL_n(K) \to K^*$

$$A \to \det A$$
3) $S_n \to \{\pm 1\}$

$$\sigma \to \begin{cases} +1, & ecnu \ \sigma - vemh. \\ -1, & ecnu \ \sigma - hev. \end{cases}$$
4) $a \in G \quad G \to G$

$$g \to a^{-1}ga$$

$$(a^{-1}ga)(a^{-1}g_1a) = a^{-1}g_g1a$$