Optoelectronic Devices and Applications of Optical Fibers

Dr. C. Krishnamoorthi PhD

krishnamoorthi.c@vit.ac.in

Ceter for Nanotechnology Research, Vellore Institute of Technology

8/10/2018

Outline I

- Optical Transmitters
 - For efficient light absorption and emission
 - LED
 - Laser Diode or Diode laser
- Fiber Optical Receivers
 - Classical photodetectors
 - Modern photodetectors
- Applications
 - Endoscopy
 - In communication

Textbook-1

Textbook-2

Textbook-3

Syllabus of Module 7a

Optoelectronic Devices & Applications of Optical fibers	9 hours	SLO: 2,4

Sources-LED & Laser Diode, Detectors-Photodetectors- PN & PIN - Applications of fiber optics in communication- Endoscopy.

Components of fiber optic comm. networks

Fiber optic comm. components

- We know that in fiber-optic communication, three key components are required: Optical transmitters, optical fiber cable and Optical receiver.
- We are familiar with the "rules for light (binary data) propagation" and "impediments for light (data) propagation" in OF cables.
- In fiber-optic communication information is transmitted from one point to another by sending short pulses of light through an optical fiber cable.
- The light forms an electromagnetic carrier-wave that is modulated to carry info.
- "Optical transmitters" are used to convert an electrical pulse signal into an optical pulse signal to launch into an OF cable.

Fiber optic comm. components

 "Optical receivers" are used to recover the signal as an electrical signal.

Optical Transmitters

- Optical transmitters are consists of optical source,
 electrical pulse generator and optical modulator.
- semiconductor devices such as LED and
 laser diode or diode laser are used as an optical sources.
- Semiconductor optical transmitters must be compact, efficient, and reliable while operating at optimal W/L or frequency.
- Ordinary electronic semiconductor diodes/transistors are activated by electrical potentials.
- Whereas optoelectronic devices (photodiodes and light emitting diodes) are designed to optimize light absorption and emission.

For efficient light absorption and emission

 It is known that incident photon with suitable energy generates e⁻ and h⁺ pair in semiconductor. Similarly, e⁻ and h⁺ pair recombination gives a photon emission.

- Light absorption and emission in semiconductor known to be heavily depend on detailed band structure of the semiconductor and charge carrier concentration in SC.
- Direct bandgap semiconductors : $E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$; $k = \frac{2\pi}{\lambda}$. Hence, **E-k** diagram is important for band representation.

Working principle of light emission

- Electron-hole pair recombination.
- High radiative recombination probability.
- Radiative electron-hole recombination probability is high in direct bandgap SC, degenerate SC at depletion region of p-n junction.
- FB potential give sufficient electrical energy (E = eV) to inject carriers into depletion region.

Types of bandgap in semiconductors

Figure: E-k diagram illustrating photon absorption in (a) direct bandgap (ii) indirect bandgap semiconductor assisted by phonon emission and (c) indirect bandgap semiconductor assisted by phonon emission.

Direct bandgap semiconductor(DBSC)

- In electron-photon interaction, energy (E) and momentum $(p = \hbar k)$ conservation is required.
- DBSC: the min. of CB and max. of VB are at the same k value. Whereas in indirect bandgap semiconductors (IBSC), the min. of CB is not at same k value of max. of VB.
- In SC, absorption of a photon occurs if an electron in the VB attains an energy and momentum of an empty state in CB.
- Photons have little momentum relative their energy since they travel at the speed of light. Therefore an electron makes almost a vertical transition on the E-k dia.
- Ref: Principles of Semiconductor devices by B Van Zeghbroeck ¹.

//ecee.colorado.edu/~bart/book/book/chapter4/ch4_6.htm ogo

¹https:

Indirect bandgap semiconductor (IBSC)

- If absorption of an incident photon directly provide an electron the correct energy and momentum equal to empty state in CB, it is DBSC. Ex.: GaAs, InP, and GaN. If does not provide, it is IBSC.Ex.: Si, Ge and SiC.
- Hence DBSC provide high e⁻ and h⁺ radiative recombination probability than IBSCs.
- Phonon associate with lattice vibrations and has low velocity close to the speed of sound in a material. It has small energy and large momentum compared to that of a photon.
- Conservation of energy and momentum can therefore be obtained in absorption processes if phonon is created or existing phonon participates, as shown in Fig.

Degenerate SCs

- High radiative recombination probability is achievable at high minority-carrier densities at a region in a semiconductor.
- Degenerate semiconductors provide high minority carrier densities in a p-n junction region.
- A degenerate semiconductor p-n junction provide high minority carrier densities at a metallurgical junction (p- & n-) at low current densities.

Degenerate SC

LED construction

LED construction-2

LED construction-3

Working Principle

- In FB, flow of free electrons in the opposite direction of current and flow of holes in the direction of the current.
- Hence there will be high radiative recombination of these carriers at metallurgical junction region where minority carrier densities are high in VB.
- In p-region and n-region there are no high minority carrier densities and hence no radiative recombination.
- External electrical bias provides sufficient carriers motion across the Jn. region or injection into jn. region resulting in recombination process.

21 / 46

LED I-V Characteristics

LED materials

WAVELENGTH RANGE (NM)	COLOUR	V _F @ 20MA	MATERIAL	
< 400	Ultraviolet	3.1 - 4.4	Aluminium nitride (AIN) Aluminium gallium nitride (AIGaN) Aluminium gallium indium nitride (AIGaInN)	
400 - 450	Violet	2.8 - 4.0	Indium gallium nitride (InGaN)	
450 - 500	Blue	2.5 - 3.7	Indium gallium nitride (InGaN) Silicon carbide (SiC)	
500 - 570	Green	1.9 - 4.0	Gallium phosphide (GaP) Aluminium gallium indium phosphide (AIGaInP) Aluminium gallium phosphide (AIGaP)	
570 - 590	Yellow	2.1 - 2.2	Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AIGaInP) Gallium phosphide (GaP)	
590 - 610	Orange / amber	2.0 - 2.1	Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaUInP) Gallium phosphide (GaP)	
610 - 760	Red	1.6 - 2.0	Aluminium gallium arsenide (AlGaAs)	

LED

- LED sources are cheap and reliable. They emit only incoherent light with relatively wide spectral width of 30-60 nm. In view of this the signal will be subjected to chromatic dispersion.
- LED produce light through spontaneous emission and electroluminescence phenomenon.
- LED light transmission is also inefficient with only about 1% of I/P power eventually converted into launch power.
 Chromatic dispersion limits the data transmission distance.
- However, due to their relatively simple design, LEDs are very useful for low-cost apps.

Laser Diode or Diode laser

- LEDs produce incoherent light while laser diodes produce coherent light.
- Laser active medium formed by a p-n junction similar to that formed in LED.
- p-n junction is formed by degenerate (p⁺ or n⁻) direct band gap semiconductor (Al-doped GaAs).

Construction

Diode Laser construction

(a) p-n junction without bias

(b) p-n junction after forward bias

Diode Laser construction

Diode Laser construction

29 / 46

I-V characteristics

Working principle

- On applying FB connections, e⁻ and h⁺ will inject into the opposite (minority) region through depletion (space charge) region.
- Radiative recombination occurs in the jn. region and emits suitable W/L radiation photons.
- The amount of recombination is determined by the current flowing across the junction.
- Emitted photons are oscillate to-and-pro between the mirrors, formed by smooth polishing, around the jn. region.
 Oscillating photons travel coherently in a particular, fixed direction.
- Laser O/P released through partially reflective mirror when energy is reached a threshold value.

Working principle

• Diode laser is 4-level laser. Hence efficiency is high.

32 / 46

LED vs Laser Diode

- LEDs are made from a very thin layer of fairly heavily doped SC material. Because of this thin layer a reasonable no. of photons leave the junction.
- Spontaneous emission predominates in LED. Hence it is incoherent. Whereas laser diode emits by stimulated emission and hence it is highly coherent.

•

Fiber Optic Receiver

- They are used to receive the modulated light streams carrying data over fiber optic cables. The received light signals are converted into electrical pulses (square wave).
- Within the fiber optic receiver, photodetector is the key component. Major function of a photodetector is to convert an optical info signal back into an electrical signal (photocurrent) by photoelectric effect.
- Reliable photodetector is a semiconductor photo-diode. A
 variety of photodiodes such as p-n photodiode, p-i-n
 photodiode, avalanche photodiodes, Schottky
 photodiodes, etc., are used in fiber optic receivers.

Working principles of photodiode

- Photodiode is basically a light detector semiconductor device, which converts light into electrical current or voltage.
- Separation and collection of electrical charge carriers (e⁻ and h⁺) which are generated by absorbing a suitable energy (W/L) photon in SC.
- An e⁻-h⁺ pair was generated in depletion region of p-n junction and was efficiently separated under reverse bias configuration.
- $h\nu + e^0 \rightarrow e^- + h^+$.
- Photocurrent is proportional to light intensity falling on the photodiode.

p-n photodiode

I-V characteristics

Drawback of PN photodiode

- The depletion region width in PN photodiode is limited.
 Hence the detection area is limited.
- High reverse bias voltage leads to p-n junction breakdown.
- Due to narrow depletion region, higher W/L radiation such as VIS and IR regions could not absorb completely.
- Higher W/L radiation travels deep into the device. Hence PN photodiode quantum efficiency is less.

p-intrinsic-n photodiode or PIN photodiode

- PIN photodiode is formed by a wide, intrinsic semiconductor sandwiched between p- and n-region of a diode.
- The p- and n- regions are typically heavily doped because they are used for ohmic contacts.
- when the reverse bias is applied, the space charge region must cover the intrinsic region completely.
- The wide intrinsic layer makes the PIN diode an inferior rectifier but makes it suitable for photodetector.
- The wider depletion width enables e⁻- h⁺ pair generation deep within the device. This increases the quantum efficiency of the photodiode.

PIN photodiode

PIN photodiode

PIN photodiode

Quantum Efficiency of PIN photodiode

- The electrical current produced by e^- and h^+ generated by incident photons are called as photocurrent (I_p) . I_p is proportional to light power (P) (of suitable $h\nu$).
- $I_p \propto P$; $I_p = RP$. $\Longrightarrow R = \frac{I_p}{P}$, here R-responsivity of photodiode.
- $I_p = \frac{Q}{t} = \frac{N_e e}{t}$; here $\frac{N_t}{t}$ -no. of e⁻ generated per unit time.
- Light power $P = \frac{E}{t} = \frac{N_p E_p}{t}$; here $\frac{N_p}{t}$ no. of photons incident on depletion region per unit time. E_p average energy of incident photon.

•

$$R = rac{I_p}{P} = rac{rac{N_e e}{t}}{rac{N_p E_p}{t}} = rac{N_e}{N_p} rac{e}{E_p} = rac{N_e}{N_p} \left(rac{e \lambda_p}{hc}
ight)$$

Endoscope

Self-study

In communication

Self-study

Assignment

Prepare Mind mapping of Module 7a (Optoelectronic devices and Applications of Optical fibers) content discussed in the class on a A4 size white paper.

THE END