Планарные графы

Пусть каждой вершине v_i неориентированного графа G сопоставлена некоторая точка a_i (различным вершинам – различные точки), а каждому ребру (v_i, v_j) сопоставлена некоторая кривая l_{ij} , соединяющая точки a_i и a_j и не проходящая через другие точки a_k . Если все кривые, сопоставленные ребрам, не имеют общих точек, кроме концевых, то говорят, что задана геометрическая реализация графа G.

Граф называется *планарным*, если существует его геометрическая реализация на плоскости. Области, на которые рёбра планарного графа разбивает плоскость, называются его *гранями*.

Далее под графом всегда понимается связный неориентированный граф, а переменными v, e, u f обозначены количества его вершин, рёбер и граней.

- 1. Докажите, что для любого графа существует его геометрическая реализация в трёхмерном пространстве.
- 2. Докажите, что граф является планарным, если и только если существует его геометрическая реализация на сфере.
- 3. **Формула Эйлера.** Докажите равенство v e + f = 2.
- 4. Докажите, что при $v\geqslant 3$ верно неравенство $\frac{3}{2}f\leqslant e\leqslant 3v-6.$
- 5. Докажите, что граф K_5 (полный граф с пятью вершинами) непланарный.
- 6. Докажите, что если $v\geqslant 3$ и в графе отсутствуют циклы длины 3, то справедливо неравенство $e\leqslant 2v-4$.
- 7. Докажите, что граф $K_{3,3}$ (полный двудольный граф, с тремя вершинами в каждой доле) не является планарным.

Оказывается, что графы $K_{3,3}$ и K_5 являются типичными представителями непланарных графов. Два графа $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называются изоморфными, если существует биекция $\varphi \colon V_1 \to V_2$ такая, что $(u,v) \in E_1 \iff (\varphi(u),\varphi(v)) \in E_2$. Подразделением ребра (a,b) называется операция, состоящая в следующих действиях: 1) удаление (a,b), 2) добавление новой вершины c, 3) добавление ребер (a,c) и (c,b). Граф H называется подразделением графа G, если H можно получить из G путем конечного числа подразделений рёбер. Два графа называются гомеоморфными, если существуют их подразделения, которые изоморфны. Справедлива следующая теорема, которую мы приведем без доказательства.

Теорема Понтрягина—**Куратовского.** Γ раф планарный, если и только если он не содержит ни одного подграфа, гомеоморфного K_5 или $K_{3,3}$.

Напомним, что выпуклый многогранник называется *правильным*, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одинаковое число рёбер.

8. Рассмотрим произвольный правильный многогранник A. Пусть n – число вершин в нем, m – число рёбер, f – число граней, k – число сторон грани,

Планарные графы

 ℓ – число граней около вершины многогранника. Докажите равенства:

$$\ell n=2m, \quad kf=2m \quad \mathbf{H} \quad \frac{1}{\ell}+\frac{1}{k}=\frac{1}{m}+\frac{1}{2}.$$

9. Докажите, что существует ровно 5 видов правильных многогранников:

	$\mid n \mid$	m	f	k	ℓ
тетраэдр	4	6	4	3	3
октаэдр	6	12	8	3	4
куб	8	12	6	4	3
икосаэдр	12	30	20	3	5
додекаэдр	20	30	12	5	3

- 10. Докажите, что в плоском графе есть вершина, со степенью не больше 5.
- 11. Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?
- 12. Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий. Докажите, что либо «красный», либо «синий» граф не является плоским.
- 13. Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.
- 14. Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний A_iB_j . Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?
- 15. Можно ли нарисовать $K_{3,3}$ без самопересечений на обыкновенной чашке с ручкой?