Semiconductors: A general introduction

Classification of Materials in terms of electrical resistivity:

Insulators	10^{10} –	10^{18}	Ω cm

Semiconductors
$$10^{-4} - 10^8 \Omega \text{ cm}$$

Conductors
$$10^{-6} - 10^{-4} \Omega \text{ cm}$$

The uniqueness of semiconductors is that their conductivity can be varied **by us** over a wide range, e.g. by

- adding minute quantities of impurities
- by applying electric field
- illumination

Introduction

We can use this as a switch. (Example: Digital computers)

Periodic table of the elements

Note: s-electron shell can be occupied by at most 2 electrons; p-electron shell by at most 6 electrons; d-electron shell by at most 10 electrons; f-electron shell by at most 14 electrons; Noble gases have 2 (He), 10 (Ne), 18 (Ar), 36 (Kr), 54 (Xe), and 86 (Rn) electrons

Abbreviated periodic table of the elements

4	5	6	7	8
Be	В	C	N	О
12	13	14	15	16
Mg	Al	Si	P	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Te
80	81	82	83	84
Hg	T1	Pb	Bi	Po

$$\frac{\text{Elements}}{E_{\text{Si}}} = 1.1 \text{ eV}$$
$$E_{\text{Ge}} = 0.67 \text{eV}$$

Compounds

$$\overline{E_{\text{GaAs}}} = 1.43 \text{eV}$$
 $E_{\text{GaSb}} = 0.7 \text{eV}$
 $E_{\text{GaN}} = 3.4 \text{eV}$

The most common semiconductor is **Silicon**

Semiconductor materials

 Table 1.1
 Semiconductor Materials.

General	Semiconductor		
Classification	Symbol	Name	
(1) Elemental	Si	Silicon	
	Ge	Germanium	
(2) Compounds			
(a) IV-IV	SiC	Silicon carbide	
(b) III-V	AlP	Aluminum phosphide	
	AlAs	Aluminum arsenide	
	AlSb	Aluminum antimonic	
	GaN	Gallium nitride	
	GaP	Gallium phosphide	
	GaAs	Gallium arsenide	
	GaSb	Gallium antimonide	
	InP	Indium phosphide	
	InAs	Indium arsenide	
	InSb	Indium antimonide	
(c) II-VI	ZnO	Zinc oxide	
(-,	ZnS	Zinc sulfide	
	ZnSe	Zinc selenide	
	ZnTe	Zinc telluride	
	CdS	Cadmium sulfide	
	CdSe	Cadmium selenide	
	CdTe	Cadmium telluride	
	HgS	Mercury sulfide	
(d) IV-VI	-	Lead sulfide	
(d) 1 v = v 1	PbSe	Lead selenide	
	PbTe	Lead telluride	
(3) Alloys			
(a) Binary	Si, "Ge"		
•	Al _x Ga _{1-x} As	(or $Ga_{l-x}Al_xAs$)	
(b) Termary	$Al_x In_{1-x} As$	$(\text{or } In_{1-x}Al_xAs)$	
	$Cd_{1-x}Mn_xTe$	$(OI III_{l-x}/II_x/IS)$	
	$GaAs_{1-x}P_x$	(I- C- A)	
	$Ga_x In_{1-x}As$	$(\text{or In}_{1-x}\text{Ga}_x\text{As})$	
	$Ga_x In_{1-x} P$ $Hg_{1-x} Cd_x Te$	$(\text{or In}_{1-x}\text{Ga}_x\text{P})$	
(c) Quaternary .	Al _x Ga _{1-x} As _y St	o_{1-v}	
. , -	$Ga_{x}In_{1-x}As_{1-y}$		

Crystalline solids

The fact that one can alter the properties of semiconductors over a wide range may have something to do with the atomic arrangement of atoms in these materials. So, let us look at the crystal structure.

(a) Amorphous

No recognizable long-range order

(b) Polycrystalline

Completely ordered in segments

(c) Crystalline

Entire solid is made up of atoms in an orderly array

Figure 1.1

Crystalline solids

<u>Lattice</u>: Periodic arrangement of atoms. The atomic arrangement determines the macro-properties of the crystal.

Examples:

- Amorphous Si thin film transistors used as switching devices in LCDs
- Polycrystalline Si used as gate in MOSFETs
- Actual active region of MOSFET is fabricated in crystalline Si

Unit cell concept

The *unit cell* is a small portion of any given crystal that could be used to reproduce a crystal.

Figure 1.2

Simple 3D unit cells

Figure 1.3 Simple three-dimensional unit cells. (a) Simple cubic unit cell. (b) Pedantically correct simple cubic unit cell including only the fractional portion (1/8) of each corner atom actually within the cell cube. (c) Body centered cubic unit cell. (d) Face centered cubic unit cell.

Crystal structure of Si and Ge and other common semiconductors

- 2 FCC lattices displaced by ((1/4) a, (1/4) a, (1/4) a) along body diagonal*
- 8 atoms per unit cell
- Diamond lattice (also called "zincblende" if interpenetrating FCC lattices are made of different elements like in GaAs)
- Each atom is bonded to 4 other atoms (tetrahedral bonding structure)

* The lattice constant or cubic edge is "a". Generally a is expressed in Angstroms. 1 $Å = 10^{-8}$ cm = 10^{-10} m

Diamond and zincblende lattice unit cells

Diamond lattice (detail)

Example

What is the number of Si atoms in 1 cm³ of Si?

Given is the lattice constant: a = 5.43 Å

$$\frac{8 \text{ atoms}}{a^3} = 5 \times 10^{22} \frac{\text{atoms}}{\text{cm}^3}$$

What is the density of Si?

Atomic weight of Si = 28.1 i.e. 1 mole (N_A = 6.023 x 10²³ atoms) of Si has a mass of 28.1 g

Density =
$$\frac{5 \times 10^{22} \frac{\text{atoms}}{\text{cm}^3} \times 28.1 \frac{\text{gm}}{\text{mole}}}{6.02 \times 10^{23} \frac{\text{atoms}}{\text{mole}}} = 2.33 \frac{\text{g}}{\text{cm}^3}$$