Category Theory

Peter Johnstone

These notes, taken by Markus Himmel, will at times differ significantly from	
what was lectured. In particular, all errors are almost certainly my own.	
what was lectured. In particular, all errors are almost certainly my own.	

Contents

Chapter 3. Adjunctions	5
Exercises	7
Chapter 1	7
Chapter 2	9
Chapter 3	17
Chapter 5	19

Adjunctions

THEOREM 3.3. If $g: FA \to B$, then consider the square

$$(FA \to FA) \longrightarrow (A \to GFA)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(FA \to B) \longrightarrow A \to GB.$$

Along the top right 1_{FA} is mapped to η_A and then to $Gg \circ \eta_A$. Along the bottom left, 1_{FA} is mapped to g and then to the morphism corresponding to g. Hence we have the morphism corresponding with g is precisely $Gg \circ \eta_A$, i.e., if $f = Gg \circ \eta_A$, then f must correspond to g.

COROLLARY 3.4. From the initial objects we obtain the components:

It remains to show naturality. Let $f: A \to A'$ be a morphism. By initiality, there is a unique morphism $\alpha: FA \to FA'$ making the square

$$A \xrightarrow{\eta_A} GFA$$

$$\downarrow^f \qquad \qquad \downarrow^{G\alpha}$$

$$A' \xrightarrow{\eta_{A'}} GFA'$$

commute. Recall that in the proof of 3.3 we saw that the morphism corresponding to $GFf \circ \eta_A \colon A \to GFA'$ is $Ff \colon FA \to FA'$. On the other hand, consider the adjunction square

$$(FA' \to FA') \longrightarrow (A' \to GFA')$$

$$\downarrow \qquad \qquad \downarrow$$

$$(FA \to FA') \longrightarrow (A \to GFA').$$

Along the top right path, $1_{FA'}$ is mapped to $\eta_{A'}$ and then to $\eta_{A'} \circ f$. Along the bottom left path $1_{FA'}$ is mapped to Ff and then to the morphism corresponding with Ff. Hence, Ff corresponds to $\eta_{A'} \circ f$. But Ff also corresponds to $GFf \circ \eta_A$, so we must have $\eta_{A'} \circ f = GFf \circ \eta_A$, which just means that η is a natural transformation, and in particular, $\alpha = Ff$.

On the other hand, we may calculate that

$$G\theta_{A'}^{-1} \circ GF'f \circ G\theta_A \circ \eta_A = G\theta_{A'}^{-1} \circ GF'f \circ \eta_A'$$
$$= G\theta_{A'}^{-1} \circ \eta_{A'}' \circ f$$
$$= \eta_{A'} \circ f,$$

where we use that η' is a natural transformation for the same reason as η and that the triangle at the start commutes. Therefore, we find that $\alpha = \theta_{A'}^{-1} \circ F' f \circ \theta_A$. Rearranging, this yields $\theta_{A'} \circ F f = F' f \circ \theta_A$, so θ is natural, which is what we wanted to show.

Theorem 3.7. Let A be an object of \mathcal{C} . The naturality in the first variable of an adjunction asserts that

$$(GFA \to GFA) \longrightarrow (FGFA \to FA)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(A \to GFA) \longrightarrow (FA \to FA)$$

is a commutative diagram, where the horizontal arrows are the adjunction and the vertical arrows are given by precomposition with η_A resp. $F\eta_A$.

Starting with 1_{GFA} , along the top right way we map to ϵ_{FA} and then to $\epsilon_{FA} \circ F\eta_A$. Along the bottom left way we map to $\eta_A \circ 1_{GFA} \circ = \eta_A$ and then to 1_{FA} , since this is how we defined η_A . Thus $\epsilon_{FA} \circ F\eta_A = 1_{FA}$, so the first triangular identity holds.

Exercises

Chapter 1

Exercise 17.

EXERCISE. A morphism $e: A \to A$ is called idempotent if ee = e. An idempotent e is said to split if it can be factored as fg where gf is an identity morphism.

- (i) Let \mathcal{E} be a collection of idempotents in a category \mathcal{C} : show that there is a category $\mathcal{C}[\check{\mathcal{E}}]$ whose objects are the members of \mathcal{E} , whose morphisms $e \to d$ are those morphisms f: dom $e \to \mathrm{dom}\,d$ in \mathcal{C} for which dfe = f, and whose composition coincides with composition in \mathcal{C} . [Hint: first show that the single equation dfe = f is equivalent to the two equations df = f = fe. Note that the identity morphism on an object e is not $1_{\mathrm{dom}\,e}$ in general.]
- (ii) If \mathcal{E} contains all identity morphisms of \mathcal{C} , show that there is a full and faithful functor $I \colon \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$, and that an arbitrary functor $T \colon \mathcal{C} \to \mathcal{D}$ can be factored as $\widehat{T}I$ for some \widehat{T} iff it sends the members of \mathcal{E} to split idempotents in \mathcal{D} .
- (iii) Deduce that if all idempotents split in \mathcal{D} , then the functor categories $[\mathcal{C}, \mathcal{D}]$ and $[\widehat{\mathcal{C}}, \mathcal{D}]$ are equivalent, where $\widehat{\mathcal{C}} = \mathcal{C}[\widecheck{\mathcal{E}}]$ for \mathcal{E} the class of all idempotents in \mathcal{C} .

SOLUTION. We will first show that if $f: C \to D$ is any morphism and $c: C \to C$ and $d: D \to D$ are idempotents, then $dfe = f \iff df = f = fe$.

Indeed, if df = f = fe, then dfe = fe = f. Conversely, if dfe = f, then f = dfe = ddfe = df and f = dfe = dfee = fe.

To show that $\mathcal{C}[\check{\mathcal{E}}]$ is a category, we need to show that the composition of two morphisms is indeed a morphism and that there are identity morphism.

Assume that $c\colon C\to C,\ d\colon D\to D,\ e\colon E\to E$ are idempotents and that $f\colon C\to D$ and $g\colon D\to E$ satisfy dfc=f and egd=g. We need to show that egfc=gf. Using the lemma, we have egf=(eg)f=gf and gfc=g(fc)=gf, so, again by the lemma, the claim follows.

If $e: E \to E$ is an idempotent, define $1_e := e \xrightarrow{e} e$. By idempotency of e, this is indeed a morphism. If $f: d \to e$ is a morphism, then the morphism $f1_d$ is the morphism fd = f (here we use the lemma again) in \mathcal{C} , so $f1_d = f$ as required. Similarly, $1_e f = f$. This completes part (i).

Next, assume that $\mathcal E$ contains all identity morphisms of $\mathcal C$. Define the functor I via

$$I: \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$$

$$A \mapsto 1_A$$

$$(f: A \to B) \mapsto (f: 1_A \to 1_B)$$

This is indeed a functor and since the data of a morphism $A \to B$ in \mathcal{C} is precisely the same as the data of a morphism $1_A \to 1_B$ in $\mathcal{C}[\check{\mathcal{E}}]$, I is fully faithful.

Now let $T: \mathcal{C} \to \mathcal{D}$ be any functor.

First, assume that there is some functor $\widehat{T} : \mathcal{C}[\check{\mathcal{E}}] \to \mathcal{D}$ such that $T = \widehat{T}I$. Let $e : A \to A \in \mathcal{E}$ be an idempotent. Then we have

$$Te = \widehat{T}(1_A \xrightarrow{e} 1_A)$$

$$= \widehat{T}(1_A \xrightarrow{e} e \xrightarrow{e} 1_A)$$

$$= \widehat{T}(e \xrightarrow{e} 1_A) \circ \widehat{T}(1_A \xrightarrow{e} e),$$

and we also have

$$\begin{split} \widehat{T}(1_A \overset{e}{\longrightarrow} e) \circ \widehat{T}(e \overset{e}{\longrightarrow} 1_A) &= \widehat{T}(e \overset{e}{\longrightarrow} 1_A \overset{e}{\longrightarrow} e) \\ &= \widehat{T}(e \overset{ee}{\longrightarrow} e) \\ &= \widehat{T}(e \overset{e}{\longrightarrow} e) \\ &= \widehat{T}(1_e) \\ &= 1_{\widehat{T}e}, \end{split}$$

which shows that Te is split.

Next, assume that Te is split for any $e \in \mathcal{E}$. For any $e \in \mathcal{E}$, choose a splitting

$$TA \xleftarrow{g_e} B_e$$
,

i.e., $f_e \circ g_e = Te$, $g_e \circ f_e = 1_{B_e}$. For identity morphisms 1_A (A an object of \mathcal{C}), choose the specific splitting given by $B_{1_A} := TA$, $f_{1_A} := 1_{TA}$, $g_{1_A} := 1_{TA}$.

Now define the functor \widehat{T} via

$$\widehat{T} \colon \mathcal{C}[\check{\mathcal{E}}] \to \mathcal{D}$$

$$(e \colon A \to A) \mapsto B_e$$

$$(f \colon d \to e) \mapsto g_e \circ Tf \circ f_d.$$

If $e \in \mathcal{E}$, then we have

$$\widehat{T}(1_e) = g_e \circ Te \circ f_e$$

$$= g_e \circ f_e \circ g_e \circ f_e$$

$$= 1_{B_e} \circ 1_{B_e} = 1_{B_e}$$

Furthermore, if $f: c \to d$ and $g: d \to e$, then we have

$$\begin{split} \widehat{T}(g \circ f) &= g_e \circ T(g \circ f) = f_c \\ &= g_e \circ Tg \circ Tf = f_c \\ &= g_e \circ Tg \circ T(d \circ f) \circ f_c \\ &= g_e \circ Tg \circ Td \circ Tf \circ f_c \\ &= g_e \circ Tg \circ f_d \circ g_d \circ Tf \circ f_c \\ &= \widehat{T}g \circ \widehat{T}f. \end{split}$$

So \widehat{T} is indeed a functor. If A is an object of \mathcal{C} , then

$$\widehat{T}IA = \widehat{T}1_A = B_{1_A} = TA$$

and if $f: C \to D$ is a morphism in C, then

$$\widehat{T}If = \widehat{T}(1_C \xrightarrow{f} 1_D) = g_{1_D} \circ Tf \circ f_{1_C} = 1_{TD} \circ Tf \circ 1_{TC} = Tf,$$

so \widehat{T} is the required factorisation, completing part (ii).

Define a functor $\Phi \colon [\widehat{\mathcal{C}}, \mathcal{D}] \to [\mathcal{C}, D]$ via $F \mapsto F \circ I$, $\eta \mapsto I\eta$, where $I\eta$ is defined cia $I\eta_C := \eta_{IC} = \eta_{1_C}$. Naturality of $I\eta$ immediately follows from naturality of η . Functoriality is also clear.

We will show that this functor is full, faithful and essentially surjective.

Indeed, let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then \widehat{F} as defined in the previous part satisfies $\Phi \widehat{F} = F$, so Φ is essentially surjective.

Next, let $F, G: \widehat{\mathcal{C}} \to \mathcal{D}$ be functors and $\eta: F \circ I \to G \circ I$ a natural transformation. For an idempotent $e: A \to A$ in \mathcal{C} , define $\hat{\eta}_e$ to be the composite

$$Fe \xrightarrow{F(e \xrightarrow{e} 1_A)} F1_A = (F \circ I)A \xrightarrow{\eta_A} (G \circ I)A = G1_A \xrightarrow{G(1_A \xrightarrow{e} e)} Ge.$$

We claim that this defines a natural transformation $\hat{\eta} \colon F \to G$. Indeed, if $f \colon d \to e$ is a morphism, then

$$\begin{split} \hat{\eta}_{e} \circ Ff &= G(1_{A} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(e \stackrel{e}{\longrightarrow} 1_{E}) \circ F(d \stackrel{f}{\longrightarrow} e) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{d}{\longrightarrow} 1_{D} \stackrel{d}{\longrightarrow} d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{d}{\longrightarrow} 1_{D} \stackrel{d}{\longrightarrow} d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(1_{D} \stackrel{efd}{\longrightarrow} 1_{E}) \circ F(d \stackrel{d}{\longrightarrow} 1_{D}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(efd) \circ F(d \stackrel{d}{\longrightarrow} 1_{D}), \end{split}$$

and doing the whole thing backwards we conclude that $\hat{\eta}_e \circ Ff = Gf \circ \hat{\eta}_d$, so $\hat{\eta}$ is indeed a natural transformation.

For any $A \in \mathcal{C}$ we have

$$(I\hat{\eta})_A = \hat{\eta}_{IA} = \hat{\eta}_{1_A} = G(1_A \xrightarrow{1_A} 1_A) \circ \eta_A \circ F(1_A \xrightarrow{1_A} 1_A)$$

= $G(1_{1_A}) \circ \eta_A \circ F(1_{1_A}) = \eta_A,$

which means that $\Phi(\hat{\eta}) = \eta$, so Φ is full.

Finally, let $F, G: \widehat{\mathcal{C}} \to \mathcal{D}$ be functors and $\eta, \eta': F \to G$ be natural transformations such that $\Phi(\eta) = \Phi(\eta')$. To show that Φ is faithful, we need to prove that $\eta = \eta'$. The assumption $\Phi(\eta) = \Phi(\eta')$ means that for all $A \in \mathcal{C}$ we have $\eta_{IA} = \eta'_{IA}$, so $\eta_{1A} = \eta'_{1A}$.

so $\eta_{1_A} = \eta'_{1_A}$. Let $e: A \to A$ be any idempotent in \mathcal{C} . We need to show that $\eta_e = \eta'_e$. Indeed, we have

$$\eta_e = G(1_e) \circ \eta_e
= G(e \xrightarrow{e} e) \circ \eta_e
= G(e \xrightarrow{e} e) \circ \eta_e
= G(e \xrightarrow{e} 1_A \xrightarrow{e} e) \circ \eta_e
= G(1_A \xrightarrow{e} e) \circ G(e \xrightarrow{e} 1_A) \circ \eta_e
= G(1_A \xrightarrow{e} e) \circ \eta_{1_A} \circ F(e \xrightarrow{e} 1_A)
= G(1_A \xrightarrow{e} e) \circ \eta'_{1_A} \circ F(e \xrightarrow{e} 1_A),$$

and the same argument in backwards direction shows that $\eta_e = \eta'_e$, completing the proof.

Chapter 2

Exercise 13.

EXERCISE. The inner automorphisms of \mathcal{C} form a normal subgroup of the group of all automorphisms of \mathcal{C} . [Don't worry about whether these groups are sets or proper classes!]

SOLUTION. Let $F,G:\mathcal{C}\to\mathcal{C}$ be automorphisms and let $\alpha\colon F\to 1_{\mathcal{C}}$ be a natural isomorphism.

Let $A \in \mathcal{C}$. Define $\beta \colon GFG^{-1} \to 1_A$ via $\beta_A \coloneqq G(\alpha_{G^{-1}A})$ (so $\beta_A \colon GFG^{-1}A \to GG^{-1}A = A \to GG^{-1}A = 1_{\mathcal{C}}A$.

This is indeed a natural transformation: let $f \colon A \to B \in \mathcal{C}$, then we can write the naturality square in a funny way,

$$GFG^{-1}A \xrightarrow{G(\alpha_{G^{-1}A})} G1_CG^{-1}A$$

$$\downarrow^{GFG^{-1}(f)} \qquad \qquad \downarrow^{G1_CG^{-1}f}$$

$$GFG^{-1}B \xrightarrow{G(\alpha_{G^{-1}B})} G1_CG^{-1}B$$

and we see that it is just the functor G applied to the naturality diagram for α and the morphism $G^{-1}f$.

Therefore, β is a natural transformation, and since functors map isomorphisms to isomorphisms, it is also a natural isomorphism. So GFG^{-1} is an inner automorphism as required.

LEMMA. Let $1 \in \mathcal{C}$ be a terminal object and $F: C \to C$ an automorphism. Then F1 is a terminal object.

PROOF. If $A \in \mathcal{C}$, the functor F, which is fully faithful, induces a bijection between the collection of morphisms $F^{-1}A \to 1$ and the collection of morphisms $A \to F1$. Since 1 is terminal, there is exactly one morphism $A \to F1$.

EXERCISE. If $F \colon \mathsf{Set} \to \mathsf{Set}$ is an automorphism, then there is a unique natural isomorphism $1_{\mathcal{C}} \to F$.

SOLUTION. Of course, the terminal object in the category of sets is just the one-element set $1 = \{\star\}$. Since F1 is also terminal, it is in bijection with 1. We write $F1 = \{\star_{F1}\}$.

By the Yoneda lemma, the set of natural transformations $\mathsf{Set}(1,-) \to F$ is in bijection with F1, so there is a unique natural transformation $\eta \colon \mathsf{Set}(1,-) \to F$. Examining the proof, we see that the components of this natural transformation are given by

$$\eta_A \colon \mathsf{Set}(1,A) \to FA$$

$$f \mapsto Ff(\star_{F1})$$

for any object A of C. Let A be an object of C. We will show that η_A is an isomorphism, i.e., a bijection.

First, let $x \in FA$. Then $\eta_A(F^{-1}(\star_{F1} \mapsto x)) = x$, so η_A is surjective.

Additionally, let $f, g: 1 \to A$ such that $\eta_A(f) = \eta_A(g)$. Since a map $F1 \to FA$ is completely determined by its value at \star_{F1} , we must have Ff = Fg. But then $f = F^{-1}F(f) = F^{-1}F(g) = g$.

This means that η_A is an isomorphism, so η is in fact a natural isomorphism. We define a natural transformation $\alpha \colon 1_{\mathsf{Set}} \to \mathsf{Set}(1,-)$ by setting

$$\alpha_A(a)(\star) \coloneqq a.$$

The naturality square for $f: A \to B$ is

$$A \xrightarrow{\alpha_A} \mathsf{Set}(1,A)$$

$$\downarrow f \qquad \qquad \downarrow g \mapsto f \circ g$$

$$B \xrightarrow{\alpha_B} \mathsf{Set}(1,B)$$

Both paths are just $a \mapsto (\star \mapsto f(a))$, so α is natural. It is also clear that α_A is bijective, so α is a natural isomorphism. In other words, \star is a universal element of the identity functor.

In particular, this tells is that composition with α and its inverse exhibits a bijection between the collection of natural transformations

$$1_{\mathsf{Set}} \to F$$

and the collection of natural transformations

$$\mathsf{Set}(1,-) \to F.$$

This means that there is a unique natural transformation $1_{\mathsf{Set}} \to F$, and it is given by $\alpha \circ \eta$, and since α and η are both natural isomorphisms, so is $\alpha \circ \eta$, completing the proof.

EXERCISE. The Sierpiński space S is, up to isomorphism, the unique topological space which has precisely three endomorphisms.

SOLUTION. Let X be a topological space. Then for any $x \in X$, the constant map $c_x \colon X \to X$ sending $y \in X$ to x is continuous. Furthermore, the identity on X is continuous. This, if X is infinite, then X has infinitely many endomorphisms, and if X is finite, then X has at least |X| + 1 endomorphisms.

Now assume that X has precisely three endomorphisms. Then X is finite and has at most two points. Clearly, if X has zero or one point, then there is only one endomorphism. So X has two points, say $X = \{a, b\}$. There are four set-functions $\{a, b\} \to \{a, b\}$, three of which (the identity and the two constant maps) are continuous regardless of the topology. The final map interchanges a and b and is not continuous.

The empty set and all of X are open. If X had the trivial or the discrete topology, then the interchange would be continuous, a contradiction. Hence, precisely one of the sets $\{a\}$ and $\{b\}$ is open. Sending the member of that set to 1 and the other element to 0 describes a homeomorphism with S.

EXERCISE. Let \mathcal{C} be a full subcategory of Top containing the singleton space 1 and the Siperpiński space S and let F be an automorphism of \mathcal{C} . Then

- (a) we have $FS \cong S$,
- (b) there is a unique natural isomorphism $\alpha \colon U \to UF$, where $U \colon \mathcal{C} \to \mathsf{Set}$ is the forgetful functor,
- (c) if $\mathcal C$ contains a space in which not every union of closed sets is closed, then α_S is continuous, and
- (d) F is uniquely naturally isomorphic to the identity functor.

SOLUTION. For (a), we just need to notice that F is fully faithful, so it induces a bijection between the sets of morphisms $S \to S$ and $FS \to FS$. Since S is determined up to isomorphism by having exactly three endomorphisms, the claim follows.

The proof of (b) is entirely analogous to the proof of 2.13(ii).

For (c), write $FS = \{\tilde{0}, \tilde{1}\}$ such that $\{\tilde{1}\}$ is open. Suppose that α_S is not continuous. Then α_S must send $0 \mapsto \tilde{1}$ and $1 \mapsto \tilde{0}$. Now let $U \subseteq X$ be an open set of some topological space in C. Consider the map $q: X \to S$ which sends $x \in X$ to 1

if and only if $x \in U$. This map is continuous. Define $f := F^{-1}g$, then by naturality we have

$$(\alpha_{F^{-1}X})^{-1}(U) = \alpha_{F^{-1}X}^{-1}((UFf)^{-1}(\{\tilde{1}\})) = (Uf)^{-1}((\alpha_S)^{-1}(\tilde{1})) = (Uf)^{-1}(\{0\}).$$

Since f is continuous, the right hand side is closed. Hence the preimage under $\alpha_{F^{-1}X}$ of an open set is closed. In analogous fashion and using the fact that F^{-1} is also an automorphism (noting that α^{-1} must be the unique natural isomorphism $U \to UF^{-1}$), we find that for any space X in \mathcal{C} we have

- the preimage under α_X of an open set is closed,
- the preimage under α_X of a closed set is open,
- the image under α_X of an open set is closed,
- the image under α_X of a closed set is open.

Now let X be a space in C and a collection U_i closed sets such that $\bigcup U_i$ is not closed. We have

$$\alpha_X^{-1}(\bigcup U_i) = \bigcup \alpha_X^{-1}(U_i),$$

where the left hand side is not open, since otherwise $\bigcup U_i$ would be closed, but the right hand side is open, since $\alpha_X^{-1}(U_i)$ is open for every i. This is a contradiction, so α_S is continuous.

For (d), we can now carry out the same calculation as above to find that α_X and α_X^{-1} are continuous for every X, so α lifts to a natural isomorphism $1_C \to F$, which must be unique since the forgetful functor $[\mathcal{C}, \mathcal{C}] \to [\mathsf{Set}, \mathsf{Set}]$ is faithful. \square

Exercise 14.

EXERCISE. Let $e: A \to A$ be an idempotent. Then the following are equivalent:

- (i) e is split,
- (ii) the pair $(e, 1_A)$ has an equaliser,
- (iii) the pair $(e, 1_A)$ has a coequaliser.

SOLUTION. We will show that (i) is equivalent to (ii). By duality, this implies that (i) is equivalent to (iii).

Assume that there are $f: B \to A$ and $g: A \to B$ such that fg = e and $gf = 1_B$. We claim that f is an equaliser of e and 1_A . We must show that any $h: C \to A$ satisfying he = h factors uniquely through f.

$$B \stackrel{h'}{\underset{g}{\longleftarrow}} A \stackrel{e}{\underset{1_{A}}{\longrightarrow}} A$$

Indeed, given such h. Then fgh = eh = h, hence gh is one such factoring factoring. If $h': C \to B$ is another factoring such that fh' = h, then h' = gfh' = gh, so the factoring is unique.

Conversely, assume that the pair $(e, 1_A)$ admits an equaliser $f: B \to A$. Since $ee = e = 1_A e$, e factors through f via some $g: A \to B$. Hence, fg = e. On the other hand, fgf = ef = f, and by a result from the lecture, f is monic, so $gf = 1_A$, so e is split.

EXERCISE. A split monomorphism is regular.

SOLUTION. If $f: A \to B$ is a split monomorphism, then there is some $g: B \to A$ such that $gf = 1_A$. Then $fgfg = f1_Ag = fg$, so fg is a split idempotent. By what we just saw, this means that f is an equaliser of $(fg, 1_A)$, hence f is a regular monomorphism.

Exercise 15.

EXERCISE. Every regular monomorphism is strong.

SOLUTION. Let f be the equaliser of u and v and take a commutative square as in the definition of strongness.

$$\begin{array}{ccc}
C & \xrightarrow{h} & A \\
\downarrow g & t & \downarrow f \\
\downarrow g & t & \downarrow f \\
D & \xrightarrow{k} & B & \xrightarrow{u} & E
\end{array}$$

We have ukg = ufh = vfh = vkg. Since g is epi, this means that uk = vk, and since f is the equaliser of u and v, we find $t: D \to A$ such that ft = k. Now ftg = kg = fh. Since f is mono, we conclude that tg = h, so t has the desired properties. Hence, f is a strong monomorphism.

EXERCISE. Let $\mathcal C$ be the finite category whose non-identity morphisms are represented by the diagram

The morphism f is strong monic but not regular monic.

Solution. The strongness condition for f is actually vacuous: if we have a diagram

$$\bullet \xrightarrow{u} A \\
\downarrow^{v} \qquad \qquad \downarrow^{f} \\
\bullet \xrightarrow{w} B,$$

then we must have $u=1_A$. The morphism f is not an epimorphism, as witnessed by the fact that hf=kf, but $h\neq k$, so we must have v=l. Then w is a morphism $D\to B$, but such a morphism does not exist. Hence, the square does not exist, so f is strong.

However, the only pairs of morphisms that f can be an equaliser of are $(1_B, 1_B)$, (k, k), (h, h) and (h, k). If f was the equaliser of any of these pairs, g would factor through f, but there is no morphism $C \to A$, hence that is not the case. So we conclude that f is not regular.

Exercise 16.

EXERCISE. Let $f: A \to B$, $g: B \to C$ be two morphisms.

- (a) If f and g are monic, then gf is monic,
- (b) If f and g are strong monic, then gf is strong monic,
- (c) If f and g are split monic, then gf is split monic,
- (d) If gf is monic, then f is monic,
- (e) If gf is strong monic, then f is strong monic,
- (f) If gf is split monic, then f is split monic.
- (g) If gf is regular monic and g is monic, then f is regular monic.

SOLUTION. (a) If gfu = gfv, then fu = fv since g is monic, and u = v, since f is monic.

(b) Consider the diagram

Since g is strong monic, using the square (fh, g, l, k), we find $t: E \to B$ such that gt = k and tl = fh. Since f is strong epic, using the square (h, f, l, t), we find $u: E \to A$ such that fu = t and ul = h. Then we have gfu = gt = k, so u is the required morphism.

- (c) If $u: B \to A$ satisfies $uf = 1_A$ and $v: C \to B$ satisfies $vg = 1_B$, then uv is the desired retraction, as $uvgf = u1_Bf = uf = 1_A$.
- (d) If fu = fv, then trivially, gfu = gfv, so u = v.
- (e) Consider the diagram

Since gf is strong monic, using the square (h, gf, l, gk) we find $t: E \to A$ such that tl = h (and gft = gk, but that is not important). We have ftl = fh = kl, so since l is epi, we have ft = k, so t is indeed the required diagonal morphism, so f is strong monic.

- (f) If $u: C \to A$ satisfies $ugf = 1_A$, then $(ug)f = 1_A$, so f is split monic.
- (g) Say gf is an equalizer of u and v.

$$A \xrightarrow{\ell} \stackrel{\downarrow}{b} \stackrel{h}{\longrightarrow} C \xrightarrow{u} D$$

If $h \colon T \to B$ satisfies ugh = vgh, then since gf is an equaliser of u and v, we find a unique $\ell \colon T \to A$ such that $gf\ell = gh$. Since g is monic, we have $f\ell = h$. The morphism ℓ is the unique morphism satisfying $f\ell = h$, since if $\hat{\ell}$ also satisfies $f\hat{\ell} = h$, then certainly $gf\hat{\ell} = gh$, hence $\ell = \hat{\ell}$.

EXERCISE. Let \mathcal{C} be the full subcategory of Ab whose objects are groups having no elements of order 4 (though they may have elements of order 2). Then

- (i) multiplication by 2 is a regular monomorphism $\mathbb{Z} \to \mathbb{Z}$,
- (ii) multiplication by 4 is not a regular monomorphism $\mathbb{Z} \to \mathbb{Z}$,
- (iii) there is a pair of morphisms (f,g) such that gf is regular monix but f is not.

SOLUTION. (i) We claim that multiplication by 2 is an equalizer in \mathcal{C} of the projection $\pi \colon \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ and the zero map $0 \colon \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$.

$$\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z}$$

Indeed, if $f: G \to \mathbb{Z}$ equalizes π and 0, then its image is contained in $2\mathbb{Z}$, hence it factors uniquely through multiplication by 2 via the map $g \mapsto f(g)/2$.

(ii) Assume that multiplication by 4 is an equalizer in $\mathcal C$ of f and g.

Clearly, the kernel of f-g has no elements of order 4 and the inclusion equalizes f and g, hence it factors through multiplication by 4. Consider the element $\alpha := f(1) - g(1) \in G$. We know that $\alpha + \alpha + \alpha + \alpha = f(4) - g(4) = 0$, since multiplication by 4 equalises f and g. Since G is an object of C, the order of α is 2 or 1. In either case, we have $2 \in \ker(f-g)$, which is not in the image of multiplication by 4, hence ι cannot factor through multiplication by 4, so multiplication by 4 is not an equalizer of f and g.

Exercise 17.

EXERCISE. The functor F is irreducible if and only if there is an epimorphism $\mathcal{C}(A,-)\to F$ for some object A of $\mathcal{C}.$

Solution. If F is irreducible, then applying the irreducibility property to the epimorphism constructed in 2.12 gives the desired result.

Conversely, if A is an object of C such that there is an epimorphism $\beta \colon C(A,-) \to F$, then by 2.11 we get a factoring $\gamma \colon C(A,-) \to \coprod_{i \in I} G_i$. Define $x \coloneqq f_A(1_A) \in G_j(A)$ for some $j \in I$. By Yoneda, we know that for any object B and morphism $f \colon A \to B$ we have

$$\gamma_B(f) = \left(\coprod_{i \in I} G_i\right)(f)(x) = G_j(f)(x),$$

i.e., the image of γ_B is completely contained in $G_j(B)$ for every B. Hence we have a commutative diagram

and by the dual of Exercise 2.16(ii), the natural transformation $\alpha|_{G_i}$ must be an epimorphism. \Box

EXERCISE. A functor $F: \mathcal{C} \to \mathsf{Set}$ is irreducible and projective if and only if there is a split epimorphism $e: \mathcal{C}(A, -) \to F$ for some A.

SOLUTION. If F is irreducible and projective, then by part (i) we find an epimorphism $e \colon \mathcal{C}(A,-) \to F$ for some A. Applying the projectivity of F to the diagram

$$F$$
 $\downarrow 1_F$
 $C(A,-) \stackrel{e}{\longrightarrow} F$

yields $s: F \to \mathcal{C}(A, -)$ such that es = 1, so e is split.

Conversely, if $e: \mathcal{C}(A, -) \to F$ admits a section $s: F \to \mathcal{C}(A, -)$ such that es = 1, then F is irreducible by part (i). Suppose we have a morphism $f: F \to R$ and an epimorphism $g: Q \to R$.

$$\begin{array}{ccc} \mathcal{C}(A,-) & \xrightarrow{e} & F \\ & & \downarrow^h & \downarrow^f \\ Q & \xrightarrow{g} & R \end{array}$$

Since $\mathcal{C}(A,-)$ is projective by 2.11, we find some $h\colon \mathcal{C}(A,-)\to Q$ such that fe=gh. But then ghs=fes=f, hence $hs\colon F\to Q$ solves the lifting problem, and F is projective. \square

EXERCISE. If all idempotents in \mathcal{C} split, then the irreducible projectives in $[\mathcal{C},\mathsf{Set}]$ are exactly the representable functors.

SOLUTION. If F is representable, then we have a natural isomorphism $\mathcal{C}(A,-) \to F$, which in particular is a split epimorphism, hence F is irreducible and projective by part (ii).

Conversely, if F is irreducible and projective, by (ii) we find an epimorphism $e: \mathcal{C}(A,-) \to F$ and a section $s: F \to \mathcal{C}(A,-)$ such that es = 1. se is a natural transformation $\mathcal{C}(A,-) \to \mathcal{C}(A,-)$. Define $f := (se)_A(1_A)$. By Yoneda, for any $u: A \to B$, we have

$$(se)_B(u) = \mathcal{C}(A, u)(f) = uf.$$

Since se is idempotent, in particular we get

$$f = (se)_A(1_A) = (sese)_A(1_A) = (se)_A((se)_A(1_A)) = (se)_A(f) = ff,$$

so f is idempotent. By assumption, f is split, so we find some object $B, g: B \to A$ and $h: A \to B$ such that f = gh, $hg = 1_B$. Defining

$$x \colon \mathcal{C}(A, -) \to \mathcal{C}(B, -)$$
 $y \colon \mathcal{C}(B, -) \to \mathcal{C}(A, -)$ $x_C \colon u \mapsto uq$ $y_C \colon u \mapsto uh$,

(these are natural, which we can see either using Yoneda or by noticing that the naturality squares are just associativity of composition), we find that yx = se and xy = 1. But then we have xsey = xyxy = 1, eyxs = eses = 1, so $xs \colon F \to \mathcal{C}(B,-)$ and $ey \colon \mathcal{C}(B,-) \to F$ are two-sided inverses of each other, hence F is representable.

Exercise 18.

EXERCISE. Let \mathcal{D} be the full subcategory of the category \mathcal{C} in Exercise 2.15 with objects A, B and D, and let 2 be the category with objects 0 and 1 and one non-identity morphism $0 \to 1$. Find an example of a morphism in the functor category [2, D] which is epic but not pointwise epic.

CHAPTER 3 17

SOLUTION. Let $G: 2 \to D$ be the functor that sends the morphism $0 \to 1$ to h. Consider any functor $H: 2 \to D$ and a natural transformation $\eta: G \to H$.

$$B \xrightarrow{\eta_0} H0$$

$$\downarrow h \qquad \qquad \downarrow H(0 \to 1)$$

$$D \xrightarrow{\eta_1} H1.$$

Clearly, $H_1 = D$, $\eta_1 = 1_D$. H_0 is either B or D. If $H_0 = B$, then $\eta_0 = 1_B$ and $H(0 \to 1) = h$. If $H_0 = D$, then $\eta_0 = h$ and $H(0 \to 1) = 1_D$. In both cases, there is only one natural transformation $G \to H$. Hence, any natural transformation $\alpha \colon F \to G$ is automatically epic. Choose F to be the functor that sends $0 \to 1$ to f and set $\alpha_0 \coloneqq f$, $\alpha_1 \coloneqq h$. Then α is a natural transformation. By what we have just seen, it is epic, but $\alpha_0 = f$ is not an epimorphism, hence α is not pointwise epic.

Chapter 3

Exercise 13.

EXERCISE. If $\mathcal C$ is a small category, then the functor category $[\mathcal C,\mathsf{Set}]$ is cartesian closed.

SOLUTION. Let $F, G: \mathcal{C} \to \mathsf{Set}$ be functors and let A be an object of \mathcal{C} . Define

$$F^G(A) := \operatorname{Hom}_{[\mathcal{C},\mathsf{Set}]}(\mathcal{C}(A,-) \times G, F).$$

(TODO: Why is the thing on the right a set?)

If $f: A \to A'$ is a morphism in \mathcal{C} , $\eta: \mathcal{C}(A, -) \times G \to F$ a natural transformation, B an object of \mathcal{C} , $g: A' \to B$ and $x \in G(B)$, define

$$F^G(f)(\eta)_B(g,x) \coloneqq \eta_B(g \circ f, x).$$

It is immediate this this makes F^G into a functor $F^G \colon \mathcal{C} \to \mathsf{Set}$.

Furthermore, if $H\colon\mathcal{C}\to\mathsf{Set}$ is a functor and $\varphi\colon F\to H$ is natural, we declare $\varphi^G\colon F^G\to H^G$ via

$$(\varphi^G)_A \colon F^G(A) \to H^G(A), \quad \alpha \mapsto \varphi \circ \alpha.$$

This is clearly a natural transformation, and it behaves well under identities and composition, hence we have a functor

$$-^G \colon [\mathcal{C},\mathsf{Set}] \to [\mathcal{C},\mathsf{Set}].$$

It remains to verify that $-\times G\dashv -^G$. We apply Theorem 3.7. Let

Our first goal will be to define a natural transformation

$$\eta \colon 1_{[\mathcal{C},\mathsf{Set}]} \to (-\times G)^G.$$

Let $F: \mathcal{C} \to \mathsf{Set}$, A an object of \mathcal{C} , $x \in F(A)$, B an object of \mathcal{C} , $g: A \to B$ and $y \in G(B)$. Define

$$\eta_{F,A}(x)_B(f,y) \coloneqq (F(f)(x),y).$$

By the Yoneda lemma, this defines a natural transformation

$$\eta_{F,A}(x) \colon \mathcal{C}(A,-) \times G \to F \times G$$

and hence we have a morphism of sets

$$\eta_{F,A} \colon F(A) \to \operatorname{Hom}_{[\mathcal{C},\mathsf{Set}]}(\mathcal{C}(A,-) \times G, F \times G).$$

Let A' be an object of C, $f: A \to A'$, $x \in F(A)$, B an object of C, $g: A' \to B$, and $y \in G(B)$. We can calculate

$$(F \times G)^{G}(f)(\eta_{F,A}(x))_{B}(g,y) = \eta_{F,A}(x)_{B}(g \circ f, y)$$

$$= (F(g \circ f)(x), y)$$

= $(F(g)(F(f)(x)), y)$
= $\eta_{F,A'}(F(f)(x))_B(g, y)$.

In other words,

$$\eta_F \colon F \to (F \times G)^G$$

is a natural transformation. Next, let $H \colon \mathcal{C} \to \mathsf{Set}$ be a functor and $\varphi \colon F \to H$ be a natural transformation. Also, let A an object of \mathcal{C} , $x \in F(A)$, B an object of \mathcal{C} , $f \colon A \to B$, $y \in G(B)$. We have

$$((\varphi \times G)^G \circ \eta_F)_A(x)_B(f,y) = (((\varphi \times G)^G)_A \times \eta_{F,A})(x)_B(f,y)$$

$$= ((\varphi \times G)_A^G(\eta_{F,A}(x)))_B(f,y)$$

$$= ((\varphi \times G) \circ \eta_{F,A}(x))_B(f,y)$$

$$= (\varphi \times G)_B \circ \eta_{F,A}(x)_B(f,y)$$

$$= (\varphi \times G)_B(F(f)(x),y)$$

$$= (\varphi_B(F(f)(x)),y)$$

$$= (H(f)(\varphi_A(x)),y)$$

$$= \eta_{H,A}(\varphi_A(x))_B(f,y),$$

so η is indeed a natural transformation as promised.

Next, we need to define a natural transformation

$$\epsilon \colon -^G \times G \to 1_{[\mathcal{C},\mathsf{Set}]}.$$

Indeed, let $F \colon \mathcal{C} \to \mathsf{Set}$ be a functor, A an object of \mathcal{C} and $\alpha \colon \mathcal{C}(A,-) \times G \to F$ be a natural transformation and $x \in G(A)$. Define

$$\epsilon_{F,A}(\alpha,x) := \alpha_A(1_A,x).$$

Let A' be an object of C, $f: A \to A'$ and $x \in G(A)$. We have

$$\epsilon_{F,A'} \circ (F^G \times G)(f)(\alpha, x) = \epsilon_{F,A'}(F^G(f)(a), G(f)(x))$$

$$= F^G(f)(\alpha)_{A'}(1_{A'}, G(f(x)))$$

$$= \alpha_{A'}(\mathcal{C}(A, f)(1_A), G(f)(x))$$

$$= \alpha_{A'}((\mathcal{C}(A, -) \times G)(f)(1_A, x))$$

$$= F(f)(\alpha_A(1_A, x))$$

$$= F(f)(\epsilon_{F,A}(\alpha, x)),$$

so $\epsilon_F \colon F^G \times G \to F$ is a natural transformation. Next, if $H \colon \mathcal{C} \to \mathsf{Set}$ is a functor and $\varphi \colon F \to H$ is a natural transformation, A is an object of \mathcal{C} , $\alpha \colon \mathcal{C}(A,-) \times G \to F$ is natural and $x \in G(A)$, then we have

$$(\epsilon_H \circ (\varphi^G \times G))_A(\alpha, x) = \epsilon_{H,A}((\varphi^G \times G)_A(\alpha, x))$$

$$= \epsilon_{H,A}((\varphi^G)_A(\alpha), x)$$

$$= \epsilon_{H,A}(\varphi \circ \alpha, x)$$

$$= (\varphi \circ \alpha)_A(1_A, x)$$

$$= (\varphi_A \circ \alpha_A(1_A, x))$$

$$= \varphi_A(\epsilon_{F,A}(1_A, x))$$

$$= (\varphi \circ \epsilon_F)_A(\alpha, x).$$

Hence, $\epsilon \colon -^G \times G \to 1_{[\mathcal{C},\mathsf{Set}]}$ is a natural transformation.

CHAPTER 5 19

It remains to verify the triangle identities. For the first triangle identity, let $F: \mathcal{C} \to \mathsf{Set}$ be a functor, A an object of $\mathcal{C}, x \in F(A)$ and $y \in G(A)$. Then

$$\epsilon_{F \times G,A}((\eta_F \times G)_A(x,y)) = \epsilon_{F \times G,A}(\eta_{F,A}(x),y) = \eta_{F,A}(x)_A(1_A,y)$$

= $(F(1_A)(x),y) = (x,y),$

so the first triangle identity holds.

Finally, let $F: \mathcal{C} \to \mathsf{Set}$ be a functor, $\alpha \colon \mathcal{C}(A,-) \times G \to F$ a natural transformation, B an object of $\mathcal{C}, f \colon A \to B$ and $x \in G(B)$. Then

$$((\epsilon_F)^G \circ \eta_{F^G})_A(\alpha)_B(f, x) = (\epsilon_F \circ \eta_{F^G, A}(\alpha))_B(f, x)$$

$$= \epsilon_{F, B}(\eta_{F^G, A}(\alpha)_B(f, x))$$

$$= \epsilon_{F, B}(F^G(f)(\alpha), x)$$

$$= F^G(f)(\alpha)_B(1_B, x)$$

$$= \alpha_B(1_B \circ f, x)$$

$$= \alpha_B(f, x).$$

This completes the proof of second triangle identity, and we are done. \Box

Chapter 5

Exercise 15.

Exercise. If \mathcal{C} is a category, then $\operatorname{End}_{[\mathcal{C},\mathcal{C}]}(1_{\mathcal{C}})$ is a commutative monoid.

SOLUTION. If $\alpha, \beta \colon 1_{\mathcal{C}} \to 1_{\mathcal{C}}$ are natural transformations, then by naturality of α the square

$$\begin{array}{ccc}
A & \xrightarrow{\alpha_A} & A \\
\downarrow^{\beta_A} & & \downarrow^{\beta_A} \\
A & \xrightarrow{\alpha_A} & B
\end{array}$$

is commutative for all objects A of C. Hence, $\alpha \circ \beta = \beta \circ \alpha$.

EXERCISE. If $(1_{\mathcal{C}}, \eta, \mu)$ is a monad, then η is an isomorphism.

SOLUTION. Indeed, the first monad law gives $\mu\eta=1_{1c}$. By (i) this implies $\eta\mu=1_{1c}$, so η has the two-sided inverse μ .

EXERCISE. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor having a right adjoint G such that there is a natural isomorphism $\alpha\colon 1_{\mathcal{C}} \to GF$. Then the unit is also an isomorphism. In particular, F is full and faithful.

SOLUTION. We will show that $(1_{\mathcal{C}}, \alpha^{-1}\eta, \mu)$ is a monad, where μ is the composite

$$1_{\mathcal{C}} \xrightarrow{\quad \alpha \quad} GF \xrightarrow{\quad \alpha_{GF} \quad} GFGF \xrightarrow{\quad G\epsilon_F \quad} GF \xrightarrow{\quad \alpha^{-1} \quad} 1_{\mathcal{C}}.$$

Indeed, observe that for $1_{\mathcal{C}}$ the first and second monad laws are identical and the associativity law is vacuous. Hence, it suffices to check the first monad law. Let A be an object of \mathcal{C} . Then we need to show that

$$\alpha_A^{-1} \circ G \epsilon_{FA} \circ \alpha_{GFA} \circ \alpha_A \circ \alpha_A^{-1} \circ \eta_A = \alpha_A^{-1} \circ G \epsilon_{FA} \circ \alpha_{GFA} \circ \eta_A$$

is the identity on A. Indeed, this follows from the commutative diagram

$$A \xrightarrow{\alpha_A} GFA$$

$$\eta_A \downarrow GF\eta_A \downarrow I_{GFA}$$

$$GFA \xrightarrow{\alpha_{GFA}} GFGFA \xrightarrow{G\epsilon_{FA}} GFA \xrightarrow{\alpha_A^{-1}} A,$$

where the square commutes by naturality of α and the triangle is just G applied to the first triangle identity.

By (ii), $\alpha^{-1}\eta$ is an isomorphism, so $\eta = \alpha\alpha^{-1}\eta$ is an isomorphism. The fact that F is fully faithful follows from the dual of Lemma 3.9.

Exercise 16.

EXERCISE. If $\mathbb{T} = (T, \eta, \mu)$ is idempotent and (A, α) is a \mathbb{T} -algebra, then α is a two-sided inverse for η_A .

SOLUTION. The identity $\alpha \eta_A = 1_A$ is part of the definition of an algebra. For the other direction, consider the diagram

$$TA \xrightarrow[\eta_{TA}]{T\eta_{A}} TTA \xrightarrow{\mu_{A}} TA$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{T\alpha}$$

$$A \xrightarrow{\eta_{A}} TA.$$

The square commutes by naturality of η , and the top composites are both the identity by definition of a monad. But μ_A is an isomorphism, so $\eta_{TA} = T\eta_A$. Hence, $\eta_A \alpha = T(\alpha \eta_A) = 1_{TA}$, since (A, α) is an algebra.

EXERCISE. If $\mathbb{T}=(T,\eta,\mu)$ is idempotent, then the categories $\mathcal{C}^{\mathbb{T}}$ and $\mathrm{Fix}(T)$ are isomorphic.

Furthermore, the categories $\mathcal{C}_{\mathbb{T}}$ and $\operatorname{Fix}(T)$ are equivalent.

SOLUTION. Indeed, we have a functor $\mathcal{C}^{\mathbb{T}} \to \operatorname{Fix}(T)$ that sends (A, α) to A (this is valid by the previous part) and f to f. Conversely, we have a functor $\operatorname{Fix}(T) \to \mathcal{C}^{\mathbb{T}}$ that sends $A \mapsto (A, \eta_A^{-1})$ and $f \mapsto f$. Indeed, (A, η_A^{-1}) is an algebra: the first axiom is trivially true, and the second is equivalent to $T\eta_A^{-1} = \mu_A$, which follows from the first monad law. Furthermore, f is a morphism of algebras by naturality of η . It is clear that these functors are two-sided inverses of each other.

For the second claim, note that by the second monad law and the fact that μ_A is an isomorphism for every A we must have $\eta_{TA} = \mu_A^{-1}$, so η_{TA} is an isomorphism for every A. Thus, the adjunction from Proposition 5.6 is restricts to an adjunction $F_{\mathbb{T}} \colon \operatorname{Fix}(T) \to \mathcal{C}_{\mathbb{T}} \dashv G_{\mathbb{T}} \colon \mathcal{C}_{\mathbb{T}} \to \operatorname{Fix}(T)$. But the unit of this adjunction is just η restricted to $\operatorname{Fix}(T)$, which is a natural isomorphism. If A is an object of \mathcal{C} , then ϵ_A is the morphism $TA \leadsto A$ represented by the identity 1_{TA} in \mathcal{C} . But it is readily checked (using the monad laws and the fact that $T\eta_A = \eta_{TA}$) that the morphism $A \leadsto TA$ given by the composite $\eta_{TA}\eta_A \colon A \to TA \to TTA$ is a two-sided inverse of this morphism. Hence, the counit is also a natural isomorphism, completing the proof that $\operatorname{Fix}(T)$ and $\mathcal{C}_{\mathbb{T}}$ are equivalent.