ALGEBRA DE BOOLE $(\{0,1\},+,\bullet)$

POSTULADOS

Postulado 1	Las operaciones son conmutativas $\forall \ a,b \in B: \ a+b=b+a \ \land a \ . \ b=b \ . \ a$
Postulado 2	Existencia de Elementos Neutros $\forall a \in B \;\exists\; 0, 1 \in B \;:\; a+0=a \;\land\; a . 1=a$
Postulado 3	Cada operación es distributiva respecto de la otra $\forall a,b,c \in B: a+(b.c)=(a+b).(a+c) \land a.(b+c)=(a.b)+(a.c)$
Postulado 4	Existencia de Complementos $\forall \ a \in B \ \exists \ \overline{a} \in B : \ a + \ \overline{a} = 1 \ \land \ a . \ \overline{a} = 0$

TEOREMAS

Teorema 1	Principio de la Dualidad: Cambiar + por . y viceversa; 0 por 1 y viceversa
Teorema 2	Ley de Idempotencia para la operación +
	$\forall a \in B: a + a = a$
Teorema 3	Ley de Idempotencia para la operación .
	$\forall \ a \in B: \ a \cdot a = a$
Teorema 4	Ley de Absorción para la operación +
	$\forall \ a \in B: \ a+1=1$
Teorema 5	Ley de Absorción para la operación *
	$\forall \ a \in B: \ a.0 = 0$
Teorema 7 Teorema 8	Una ley de redundancia para la operación +
	$\forall \ a,b \in B: \ a+(a\cdot b)=a$
	Una ley de redundancia para la operación *
	$\forall \ a,b \in B: \ a.(a+b) = a$ Ley de Unicidad del Complemento
	$\forall \ a \in B: \ \overline{a} \ es \ \text{\'u} nico$
Teorema 9	Ley de Involución
	$orall a \in B: \ \overline{\overline{a}} = a$
Teorema 10	Ley Asociativa
	$\forall a, b, c \in B: a + (b + c) = (a + b) + c \land a.(b.c) = (a.b).c$
Teorema 11	Primera Ley de De Morgan
	$\forall a, b \in B: \overline{a+b} = \overline{a}.\overline{b}$
Teorema 12	Segunda Ley de De Morgan
	$\forall a,b \in B: \overline{a \cdot b} = \overline{a} + \overline{b}$
Teorema 13	Ley de Complementación de los Elementos Neutros
	$\overline{0} = 1 \wedge \overline{1} = 0$
Teorema 14	Una ley de redundancia para la operación +
	$\forall a,b \in B: a + (\overline{a} \cdot b) = a + b$
Teorema 15	Una ley de redundancia para la operación .
	$\forall a,b \in B: a.(\overline{a}+b)=a.b$