

Spacecraft Attitude Dynamics

prof. Franco Bernelli

Instructions for projects

Objectives

Simulate the complete attitude dynamics and control loop

 Show and quantify that the attitude control improves the pointing performances with respect to the uncontrolled case. Define at least 1 performance parameter and make statistical analysis on it.

Project specifications

- Orbit specifications NOT assigned (you can use the orbit of your Orbital Mechanics assignment)
- Class of spacecraft assigned, either cubesat (3U, 6U, 12U mass 4 to 15 kg), microsat (10 to 100 kg), minisat (100 to 500 kg), large satellite (over 500 kg)
- Pointing requirements NOT specified, you should define them (justify selection)
- You are expected to model the attitude dynamics including the 2 most relevant perturbing torques, selected according to your orbit and spacecraft shape (justify selection)
- Attitude parameters assigned, you are expected to use those to simulate attitude kinematics
- One sensor assigned, you are expected to use this and eventually add any other sensor, if needed (justify choice)
- Actuators assigned, you are expected to use those and eventually add any other actuator, if needed (justify choice)
- Control logic NOT assigned, choose one and implement it
- Specifications can be modified only if strictly necessary
- Simulate at least one full orbit

Project specifications

Mission: (i) de-tumble (ii) slew maneuver (iii) Earth/Sun/inertial pointing with 3 axis stabilization

Each group member responsible for performances in one of: (i) attitude determination (ii) de-tumble (iii) slew maneuver (iv) pointing with 3 axis stabilization

Specifications can be modified **only if strictly necessary**

Team activity

- The team as a whole is responsible for the results and report
- For practical reasons, the team can assign specific tasks to each member
 - 1 responsible for attitude determination
 - 1 responsible for detumbling
 - 1 responsible for slew manoeuvre
 - 1 responsible for target tracking

Report Structure

- Length maximum 20 pages (+cover and index), font size 12, single column
- Figure Block scheme of the ADCS architecture (e.g. sensors + actuators + controller + algorithms + kinematics)
- Model description models used and assumptions
- Control and determination algorithms justify choices
- Results Clear plots with axes labels and units, <u>compare and contrast</u> <u>algorithms</u>
- References all material used, including theoretical and data of the hardware

Define notation used, do not copy and paste Simulink diagrams or plots.

Report Delivery

- Report delivery via the delivery folder on WeBeep
- Deadline for delivery is January 7, 2025, regardless of date of oral exam (delivery folder will be closed after that date)
- Project is valid only for the present academic year, if the exam is not passed then a new project should be completed in the following academic year
- Deliver project report in pdf format and Simulink code in a separate zip file
- PLEASE use these names for the files you upload:
 - GroupNumber.pdf (example 38.pdf) for the project report
 - GroupNumber.zip (example 38.zip) for the Simulink files