PLOTING WITH PANDAS

```
In [1]: import pandas as pd
   import numpy as np
   import warnings
   warnings.filterwarnings('ignore')
```

In [2]: data = pd.read_csv('Car_sales.csv')
data.sample(10)

Out[2]:

	Manufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_in_thousands	Engine_size	Horsepower	Wheelbase	Width	Length
78	Lincoln	Navigator	22.925	NaN	Car	42.660	5.4	300.0	119.0	79.9	204.8
63	Hyundai	Elantra	66.692	7.825	Passenger	11.799	2.0	140.0	100.4	66.9	174.0
25	Chevrolet	Prizm	32.299	9.125	Passenger	13.960	1.8	120.0	97.1	66.7	174.3
12	Buick	Park Avenue	27.851	20.190	Passenger	31.965	3.8	205.0	113.8	74.7	206.8
1	Acura	TL	39.384	19.875	Passenger	28.400	3.2	225.0	108.1	70.3	192.9
15	Cadillac	Seville	15.943	27.100	Passenger	44.475	4.6	275.0	112.2	75.0	201.0
132	Saturn	LW	8.472	NaN	Passenger	18.835	2.2	137.0	106.5	69.0	190.4
24	Chevrolet	Corvette	17.947	36.225	Passenger	45.705	5.7	345.0	104.5	73.6	179.7
111	Oldsmobile	Aurora	14.690	19.890	Passenger	36.229	4.0	250.0	113.8	74.4	205.4
30	Chrysler	Concorde	31.148	13.725	Passenger	22.245	2.7	200.0	113.0	74.4	209.1
4											-

Droping na values

```
In [3]: data.dropna(inplace=True)
```

In [4]: data.info()

```
Int64Index: 117 entries, 0 to 149
Data columns (total 16 columns):
                         Non-Null Count Dtype
    Column
    Manufacturer
                         117 non-null
                                         object
    Model
                         117 non-null
                                         object
 1
    Sales_in_thousands 117 non-null
                                         float64
 2
 3
    __year_resale_value 117 non-null
                                         float64
 4
    Vehicle_type
                         117 non-null
                                         object
    Price_in_thousands 117 non-null
                                         float64
 6
    Engine_size
                         117 non-null
                                         float64
                         117 non-null
                                         float64
    Horsepower
 8
    Wheelbase
                        117 non-null
                                         float64
    Width
                         117 non-null
                                         float64
 10 Length
                        117 non-null
                                         float64
                                         float64
 11 Curb_weight
                         117 non-null
 12 Fuel_capacity
                         117 non-null
                                         float64
 13 Fuel_efficiency
                         117 non-null
                                         float64
 14 Latest_Launch
                         117 non-null
                                         object
 15 Power_perf_factor
                         117 non-null
                                         float64
dtypes: float64(12), object(4)
memory usage: 15.5+ KB
```

<class 'pandas.core.frame.DataFrame'>

Plots on numerical value columns

Histogram

In [5]: data.Horsepower.plot.hist(figsize=(6,3), cmap='brg');

Box plot

In [6]: data.Sales_in_thousands.plot.box(figsize=(4,3), cmap = 'gist_earth');

In [7]: data.Horsepower.plot.box(figsize=(4,3), cmap = 'Blues_r');

Subplots

In [9]: data.plot.hist(figsize=(6,18),subplots = True);

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend () is called with no argument.

Line charts

Bar plot

To create the below shown bar chart we have to create the frequency table. Frequency table can be made using the value_counts() method.

Area chart

In [13]: data.plot.area('Manufacturer', 'Price_in_thousands', figsize=(6,3), cmap='Pastel2');

Horizontal bar chart

In [14]: data.sort_values(by='Price_in_thousands')[:5].plot.barh('Model', 'Power_perf_factor', figsize=(6,4));

Scatter plot

In [15]: data.sort_values(by='Price_in_thousands')[:5].plot.scatter('Latest_Launch', 'Price_in_thousands', figsize =(10,3));

In [16]: data.plot.box(figsize=(22,5));

In [17]: data.sort_values(by='Engine_size', ascending=False)[:10].Engine_size.plot.pie();

KDE Plot

Subplots

In [19]: data.plot.kde(figsize=(12,10), subplots = True);

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend () is called with no argument.

Hexbin plot

