CS7800: Advanced Algorithms

Class 10: Linear Programming 11

- · LP Duality
- · Minimax Theorem

Jonathan Ullman October 10, 2025

Linear Programming

optimal solution: A=12, B=28
optimal value: 800

How do we know we found an optimal so lution?

Upper bound on optimal value

optimal solution: A=12, B=28

optimal value: 800

How do we know we found an optimal so letion?

Upper bound on optimal value

optimal solution: A=12, B=28

optimal value: 800

New Problem: Derive the smallest upper bound on optimal value by combining constraints

- Coefficient on each constraint > 0
- Combination upper bounds
 the objective

Horz Buck Show Linear Programptimal so lution?

primal (P)
optimization problem

max 13A + 23B A,B 5.1. 5A+ 15B \(\) 480 4A + 4B \(\) 160 35A + 20B \(\) 1190 A,B\(\) 0

optimal solution: A=12, B=28

optimal value: 800

dual (D)			
optimization p	roblen		

The Dual of a Linear Program

primal (P)
optimization problem

max c^Tx
xern

s.t. Ax 4 b |yern)
x>0

CER"
AER"
BER

dual (D)
optimization problem

min y^Tb y6R^m s.f. A^Ty > 0

Weak Duality

For any feasible x e R", y E R"

CTX & yTAX & yTb

The Dual of a Linear Program

Fact. The dual of the dual is the primal

Fact: Can take the dual without converting to standard form.

Primal	maximize	minimize	Dual
constraints	a;x = b; a;x = b; a;x >> b;	y; wiestrated y; >, 0 y; & 0	van:ables
variables	ス; かO X; らO X; unrestocted	a;y * c; a; y * c; a; y = c;	constraints

Strong LP Duality

Theorem: If the primal and dual are both feasible then they have the same optimal value

Special cases:

- 1) If the dual is infeasible, the primal is unbounded
- 2) If the dual is unbounded, the primal is infeasible

Strong Duality Proof Overview (Idea #1)

Separating Hyperplane Theorem: If $C \in \mathbb{R}^n$ is a closed convex set and $z \in \mathbb{R}^n$ is any point not in C, there exists $a \in \mathbb{R}^n$, $\beta \in \mathbb{R}$ s.t.

Of $a^T x > \beta$ for all $x \in C$

Strong Duality Proof Overview (Idea #2)

Farkas' Lemma: Given A&R mxn and b&R,

exactly one of the following is true:

There exists x&R s.t. x>0 and Ax=b

There exists y&R s.t. yA>0 and yb 0

Strong Duality Proof Overview (Idea #2)

Proof Sketch:

- · Let Q = \{ \omega : \frac{1}{2} \times 0 \times A \times = \omega \}
- · Assume ! O so by Q
- SHT ⇒ ∃ aTw > O for every we Q and aTb < O
- · Claim: setting y= a satisfies yTA>0 and yTb<0

Farkas' Lemma: Given A&R mxn and b&R m, exactly one of the following is true:

- 1) There exists x6 R" s.t. x>0 and Ax=b
- There exists yell s.t. yA >0 and ytb O

Strong Duality Proof Overview (Idea #3)

(P)
$$max c^Tx$$

 x
 $s.t. Ax=b$
 $x>0$

optimal value is voc

Application: The Minimar Theorem

Zero-Sum Games:

- · Two players Rovena and Colin
- · Rowera chooses an action in [m] Colm chooses in [n]
- · Payoffs A & IR

· Players can play randomly

Rowera:
$$C = (r_1, r_m)$$
 $\sum_{i=1}^{n} c_i = 1$ $c_i > 0$

Kovera's expected pay

$$\sum_{i=1}^{n} c_i = 1$$

Rovera's expected payoff is

Application: Minimax Thm

How would Rowers play it she went that?

How would Colm play if he west first?

Minimax Theorem:

Zero-Sum Games:

- · Two players Rovena and Colin
- · Rowera chooses an action in [m] Colm chooses in [n]

· Players can play randomly

Rowers:
$$r = (r_1, ..., r_m)$$
 $\sum_{i=1}^{n} r_i \approx 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i \approx 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Rowers: $c = (c_1, ..., c_m)$ $\sum_{i=1}^{n} c_i = 0$

Application: Minimax Thm Proof

Solving Linear Programs: Simplex

Basic Feasible Solutions (Geometry)

Basic Feasible Solutions:

Basic Feasible Solutions (Algebra)

Slack form LP

constraint matrix

The Simplex Algorithm (30,000' View)

Given an LP in standard form

max c^Tx x Ax=b x>0

Simplex algorithm

- Start with a BFS xo
corresponding to constraint set So - Repeat until optimality: How? - Find on adjacent BFS X; corresponding to contrast cTx; > cT x;-1

Thm: Only terminates at an optimal solution

Simplex in Practice

Theory: Might need exponentially many proofs to termmate

Practice: Can solve LPs with millions of variables/constraints (usually = 2(n+m) proofs)

Many Issues to Resolve:

- 1) What if the UP in infearible / unbounded?
- 2 How to choose a good pivot Ne?
- 3 How to avoid cycling?
- 4 HOW to maintain sparsity?
- (5) How to be numerically stable?
- 1) How to preprocess the LP to be smaller?

Solume Linear Programs: Ellipsoid