

Description

The VSM5N18 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =185V, I_{D} =5A $R_{DS(ON)} < 60 m\Omega @ V_{GS}$ =10V (Typ: 50m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM5N18-S8	VSM5N18	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	185	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	5	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	3.5	А	
Pulsed Drain Current ^(Note 1)	I _{DM}	20	А	
Maximum Power Dissipation	P _D	3	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	41.7	°C/W
--	------------------	------	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	185	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =185V,V _{GS} =0V		-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =5A	-	50	60	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =5A	7	-	-	S
Dynamic Characteristics (Note4)			•		•	
Input Capacitance	C _{lss})/ 05\/\/ 0\/		4118		PF
Output Capacitance	C _{oss}	V_{DS} =25V, V_{GS} =0V, F=1.0MHz		120		PF
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz		91		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =100V, I_{D} =5A V_{GS} =10V, R_{GEN} =6.5 Ω	-	19	-	nS
Turn-Off Delay Time	t _{d(off)}		-	23	-	nS
Turn-Off Fall Time	t _f		-	6	-	nS
Total Gate Charge	Qg	V _{DS} =100V,I _D =5A,	-	90.7	-	nC
Gate-Source Charge	Q _{gs}		-	17.4	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	30.4	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =5A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	5	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Current De-rating

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance