编译原理H HW3-1

肖桐 PB18000037

3.2.

(a). 句子abab的两个最左推导:

$$S
ightarrow aSbS
ightarrow abS
ightarrow abaSbS
ightarrow ababS
ightarrow abab$$

$$S \rightarrow aSbS \rightarrow abSaSbS \rightarrow abaSbS \rightarrow ababS \rightarrow abab$$

因此该文法是二义的。

(b). 句子abab的最右推导:

$$S \rightarrow aSbS \rightarrow aSbaSbS \rightarrow aSbaSb \rightarrow aSbab \rightarrow abab$$

(c). 语法分析树:

最右推导分析树:

(d). 该文法产生的语言是a、b个数相同的串的集合。证明如下:

先证该文法表达的所有串都是a、b个数相同的:由S的生成式显然知串长l为偶数。

对串的长度作归纳。当l=0时有 $S\to\varepsilon$,此时显然a、b个数相同,都为0.

记 S_l 为长度为l的串。假设当 $l\leq 2n\ (n\geq 0)$ 时 S_l 为a、b个数相同的串,则当l=2n+2时, $S_{2n+2}\to aS_ibS_j|bS_mbS_n$.

对于 $S_{2n+2} o aS_ibS_j$:由于 $i,j\leq 2n$,故 S_i,S_j 都是a、b个数相等的串,故 S_{2n+2} 中,a的个数为 $\frac{i}{2}+\frac{j}{2}+1=n+1$,b的个数也为 $\frac{i}{2}+\frac{j}{2}+1=n+1$.即 S_{2n+2} 也是a、b个数相等的串。

对于 $S_{2n+2} = bS_m aS_n$ 同理。

故该文法表达的所有串都是a、b个数相同的。

再证所有a、b个数相等的串都能被该文法表达。假设有长度为l的、a,b个数相同的任意串 T_l .

同样也对串的长度作归纳。当l=0时 $T_0=\varepsilon$,能够由 $S\to\varepsilon$ 产生,即此时有 $S\to T_0$ 。

假设当l < 2n时有 $S \rightarrow T_l$,则当l = 2n + 2时, T_{2n+2} 可分为两种情况:

- 1. 以字符a开头
- 2. 以字符b开头

对于第一种情况: 令 $a\beta b$ 为 T_{2n+2} 的最短的、a, b个数相等的非空前缀。那么 T_{2n+2} 可表示为: $T_{2n+2}=a\beta b\gamma$. 由于 β , γ 的长度均不大于2n,故 $S\to\beta$, $S\to\gamma$,继而由产生式 $S\to aSbS$ 知 $S\to T_{2n+2}$.

当 T_{2n+2} 以字符b开头由S o bSaS同理可以导出 $S o T_{2n+2}$.

因此综上,该文法产生的语言是a、b个数相同的串的集合。

3.6.

- (a). 正则表达式: b*(ab+)*
- 上下文无关文法:
- $S \to LR$
- R o abLR|arepsilon
- L o bL|arepsilon
- (b). 上下文无关文法:
- $S \to aT|bT$
- T
 ightarrow a T b T |b T a T| arepsilon

3.8.

记'('为m, ')'为n, ','为c。则该文法为:

S o mLn|a

 $L \to LcS|S$

将S带入到L中有: $L \rightarrow LcmLn|Lca|mLn|a$

再记 $\beta_1 = cmLn, \beta_2 = ca, \gamma_1 = mLn, \gamma_2 = a, 则L$ 变为:

 $L
ightarrow L eta_1 |L eta_2| \gamma_1 |\gamma_2|$

可将L改写为:

 $L = \gamma_1 L' | \gamma_2 L'$

 $L' = \beta_1 L' | \beta_2 L'$

故最终消除左递归后的文法为:

S o (L)|a

L o a L' | (L) L'

 $L'\to,(L)L'|,a(L)L'|\varepsilon$

3.11.

 $FIRST(A) = \{a,b\}, FIRST(B) = \{a,b\}, FIRST(S) = \{\varepsilon,a,b\}.$

 $FOLLOW(S) = \{\$\}$

由产生式易知 $FIRST(aBB) = \{a\}, FIRST(bAA) = \{b\}.$

则由算法容易得到以下分析表:

非终结符		终结符	
	а	b	\$
S	S o aBS	S o bAS	S oarepsilon
А	A o a	A o bAA	
В	B o aBB	B o b	

3.12.

该文法不是LL(1)文法。

对于产生式: $S \to AB|PQx$

由A o xy知: $x \in FIRST(AB)$,同时又由P o dP|arepsilon和Q o aQ|arepsilon知 $x \in FIRST(PQx)$ 。

即 $x \in FIRST(AB) \cap FIRST(PQx) \neq \emptyset$

因此该文法不是LL(1)文法.