Lista II de Exercícios de Derivadas

1) Nos Exercícios 1-10, encontre uma equação da reta tangente a curva dada no ponto indicado.

1.
$$y = 3x - 1$$
 at $(1, 2)$

2.
$$y = x/2$$
 at $(a, a/2)$

3.
$$y = 2x^2 - 5$$
 at $(2, 3)$

3.
$$y = 2x^2 - 5$$
 at (2, 3) **4.** $y = 6 - x - x^2$ at $x = -2$

5.
$$y = x^3 + 8$$
 at $x = -2$

5.
$$y = x^3 + 8$$
 at $x = -2$ **6.** $y = \frac{1}{x^2 + 1}$ at $(0, 1)$

7.
$$y = \sqrt{x+1}$$
 at $x = 3$

7.
$$y = \sqrt{x+1}$$
 at $x = 3$ **8.** $y = \frac{1}{\sqrt{x}}$ at $x = 9$

9.
$$y = \frac{2x}{x+2}$$
 at $x = 2$

10.
$$y = \sqrt{5 - x^2}$$
 at $x = 1$

2) Nos exercícios 11-24, calcular a derivada da dada função diretamente a partir da definição de derivada.

11.
$$y = x^2 - 3x$$

12.
$$f(x) = 1 + 4x - 5x^2$$

13.
$$f(x) = x^3$$

14.
$$s = \frac{1}{3+4t}$$

15.
$$g(x) = \frac{2-x}{2+x}$$

16.
$$y = \frac{1}{3}x^3 - x$$

17.
$$F(t) = \sqrt{2t+1}$$

18.
$$f(x) = \frac{3}{4}\sqrt{2-x}$$

19.
$$y = x + \frac{1}{x}$$

20.
$$z = \frac{s}{1+s}$$

21.
$$F(x) = \frac{1}{\sqrt{1+x^2}}$$

22.
$$y = \frac{1}{x^2}$$

23.
$$y = \frac{1}{\sqrt{1+x}}$$

24.
$$f(t) = \frac{t^2 - 3}{t^2 + 3}$$

- 3) Encontre os pontos na curva $y = x + \frac{1}{x}$, onde a reta tangente é horizontal.
- 4) Encontrar as derivadas das funções em exercícios 1-16.

1.
$$y = (2x + 3)^6$$

3.
$$f(x) = (4 - x^2)^{10}$$

5.
$$F(t) = \left(2 + \frac{3}{t}\right)^{-10}$$

7.
$$\frac{3}{5-4x}$$

3 9.
$$y = |1 - x^2|$$

11.
$$y = 4x + |4x - 1|$$

13.
$$y = \frac{1}{2 + \sqrt{3x + 4}}$$

15.
$$z = \left(u + \frac{1}{u - 1}\right)^{-5/3}$$
 16. $y = \frac{x^5\sqrt{3 + x^6}}{(4 + x^2)^3}$

2.
$$y = \left(1 - \frac{x}{3}\right)^{99}$$

4.
$$y = \sqrt{1 - 3x^2}$$

6.
$$(1+x^{2/3})^{3/2}$$

8.
$$(1-2t^2)^{-3/2}$$

10.
$$f(t) = |2 + t^3|$$

12.
$$y = (2 + |x|^3)^{1/3}$$

13.
$$y = \frac{1}{2 + \sqrt{3x + 4}}$$
 14. $f(x) = \left(1 + \sqrt{\frac{x - 2}{3}}\right)^4$

16.
$$y = \frac{x^5\sqrt{3+x^6}}{(4+x^2)^3}$$

5) Encontrar as derivadas das funções nos exercícios 3-36. Simplificar suas respostas sempre que possível. Também procure maneiras de simplificar a expressão dada antes de diferenciá-la.

3.
$$y = \cos 3x$$

5.
$$y = \tan \pi x$$

7.
$$y = \cot(4 - 3x)$$

9.
$$f(x) = \cos(s - rx)$$

11.
$$\sin(\pi x^2)$$

13.
$$y = \sqrt{1 + \cos x}$$

15.
$$f(x) = \cos(x + \sin x)$$

17.
$$u = \sin^3(\pi x/2)$$

19.
$$F(t) = \sin at \cos at$$

21.
$$\sin(2x) - \cos(2x)$$

23.
$$\tan x + \cot x$$

25.
$$\tan x - x$$

27.
$$t\cos t - \sin t$$

$$29. \ \frac{\sin x}{1+\cos x}$$

31.
$$x^2 \cos(3x)$$

33.
$$v = \sec(x^2)\tan(x^2)$$

35.
$$\sin(\cos(\tan t))$$

36.
$$f(s) = \cos(s + \cos(s + \cos s))$$

4.
$$y = \sin \frac{x}{5}$$

6.
$$y = \sec ax$$

8.
$$y = \sin((\pi - x)/3)$$

10.
$$y = \sin(Ax + B)$$

12.
$$\cos(\sqrt{x})$$

14.
$$\sin(2\cos x)$$

16.
$$g(\theta) = \tan(\theta \sin \theta)$$

18.
$$y = \sec(1/x)$$

20.
$$G(\theta) = \frac{\sin a\theta}{\cos b\theta}$$

22.
$$\cos^2 x - \sin^2 x$$

24.
$$\sec x - \csc x$$

26.
$$tan(3x) cot(3x)$$

28.
$$t \sin t + \cos t$$

30.
$$\frac{\cos x}{1+\sin x}$$

32.
$$g(t) = \sqrt{(\sin t)/t}$$

$$34. \ z = \frac{\sin\sqrt{x}}{1 + \cos\sqrt{x}}$$

6) Nos Exercícios 39-42, encontrar a equação da reta tangente à curva y = f(x) no ponto dado.

39.
$$y = \sin x$$
, $(\pi, 0)$

40.
$$y = \tan(2x)$$
, $(0, 0)$

41.
$$y = \sqrt{2}\cos(x/4)$$
, $(\pi, 1)$ **42.** $y = \cos^2 x$, $(\frac{\pi}{3}, \frac{1}{4})$

42.
$$y = \cos^2 x$$
, $\left(\frac{\pi}{3}, \frac{1}{4}\right)$

7) Encontrar y ', y ", e y" para as funções dos exercícios 1-12.

1.
$$y = (3 - 2x)^7$$

2.
$$y = x^2 - \frac{1}{x}$$

3.
$$y = \frac{6}{(x-1)^2}$$

$$4. \ \ y = \sqrt{ax + b}$$

5.
$$y = x^{1/3} - x^{-1/3}$$

6.
$$y = x^{10} + 2x^8$$

7.
$$y = (x^2 + 3)\sqrt{x}$$

8.
$$y = \frac{x-1}{x+1}$$

9.
$$y = \tan x$$

10.
$$y = \sec x$$

11.
$$y = \cos(x^2)$$

12.
$$y = \frac{\sin x}{x}$$

Diferenciação implícita

Nos Exercícios 1-8, encontrar dy/dx em termos de x e y.

1.
$$xy - x + 2y = 1$$

2.
$$x^3 + y^3 = 1$$

3.
$$x^2 + xy = y^3$$

4.
$$x^3y + xy^5 = 2$$

5.
$$x^2y^3 = 2x - y$$

6.
$$x^2 + 4(y-1)^2 = 4$$

7.
$$\frac{x-y}{x+y} = \frac{x^2}{y} + 1$$

$$8. \ x\sqrt{x+y} = 8 - xy$$

Nos Exercícios 9-16, encontrar a equação da tangente a curva no ponto dado.

9.
$$2x^2 + 3y^2 = 5$$
 at $(1, 1)$

10.
$$x^2y^3 - x^3y^2 = 12$$
 at $(-1, 2)$

11.
$$\frac{x}{y} + \left(\frac{y}{x}\right)^3 = 2$$
 at $(-1, -1)$

12.
$$x + 2y + 1 = \frac{y^2}{x - 1}$$
 at $(2, -1)$

13.
$$2x + y - \sqrt{2}\sin(xy) = \pi/2$$
 at $\left(\frac{\pi}{4}, 1\right)$

14.
$$\tan(xy^2) = \frac{2xy}{\pi}$$
 at $\left(-\pi, \frac{1}{2}\right)$

15.
$$x \sin(xy - y^2) = x^2 - 1$$
 at $(1, 1)$

16.
$$\cos\left(\frac{\pi y}{x}\right) = \frac{x^2}{y} - \frac{17}{2}$$
 at (3, 1)