

The Relational Model

Abdu Alawini

University of Illinois at Urbana-Champaign CS411: Database Systems

Learning Objectives

After this lecture, you should be able to:

- Define a data model
- Define the relational data model
- Articulate the basic terminologies of the relational data model (from a practical perspective)
- Define Primary and Foreign keys

What is a Data Model?

A data model is a notation for **describing data or information**. The description generally consists of three parts:

1. *Structure of the data:*

 data structures used to implement data in the computer (physical data model)

2. Operations on the data:

•limited set of queries (operations that retrieve information) and modifications (operations that change the database).

3. Constraints on the data:

•ways to describe limitations on what the data can be. These constraints often come from the real-world application requirements

Data Model Examples

Relational Model

Date Activity Code Route No. 01/12/01 24 I-95 01/15/01 23 I-495 02/08/01 24 I-66

Src: Wikipedia

Document (e.g., JSON)

```
{
    "first name": "John",
    "last name": "Smith",
    "age": 25,
    "address": {
        "street address": "21 2nd Street",
        "city": "New York",
        "state": "NY",
        "postal code": "10021"
},
    "phone numbers": [
        {
            "type": "home",
            "number": "212 555-1234"
},
        {
            "type": "fax",
            "number": "646 555-4567"
```

Graph Model

Src: Wikipedia

Outline

- Relational Database Model
 - Basic Concepts and Terminology
 - Keys and Foreign Keys
 - Schema Specifications

The Relational Data Model

It all began with a breakthrough paper by E.F. Codd in 1970: "A relational model of data for large shared data banks". Communications of the ACM 13 (6): 377 Codd's insights:

- Separate physical implementation from logical.
- Describe the data and operations mathematically.

Database from a user Perspective

 We'll assume that a DB has been already been implemented and loaded with data

Our roles is to query/modify the data using SQL

 But before that, we need to learn the basics of relational model (from a practical point of view)

Introduction to Relational Databases from a Practical Point of View

Account

Numb	er Owner	Balanc	е Туре	
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Imagine that this table (or relation) has been defined to help keep track of bank accounts.

Table Structure

The *name* of the table

Account

The name of the columns (attributes)

Numb	er Owner	Balanc	e Type	
101	J. Smith	1000.00	checking	
102	W. Wei	2000.00	checking	
103	J. Smith	5000.00	savings	
104	M. Jones	1000.00	checking	
105	H. Martin	10,000.00	checking	

Table Schema

The schema for the table

Accour	nt		
Numbe	er Owner	Balance	e Type
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

The schema sets the structure of the table. You can think of the schema as the *definition* of the table. (Note, the schema specifies more information than what is shown.)

Table Rows

Account

	Number	Owner	Balance	e Type	
		J. Smith	1000.00	checking	
		W. Wei	2000.00	checking	
忄	103	J. Smith	5000.00	savings	
1	104	M. Jones	1000.00	checking	
1	105	H. Martin	10,000.00	checking	

Each entry in the table is called a *row* (*tuple*).

Sometimes an entry in the table is called a record.

Table Instance

An instance of the table...

the current contents or data in the table.

Account

Numbe	er Owner	Balance	е Туре
101	J. Smith	1000.00	checking
102	W. Wei	2000.00	checking
103	J. Smith	5000.00	savings
104	M. Jones	1000.00	checking
105	H. Martin	10,000.00	checking

Another Table Instance

Another *instance* of the table

(two rows added, one (103) deleted)

Account

Number	Owner	Balance	Type	
101	J. Smith	1,000.00	checking	
102	W. Wei	2,000.00	checking	
104	M. Jones	1,000.00	checking	
105	H. Martin	10,000.00	checking	
107	W. Yu	7,500.00	savings	
109	R. Jones	432.55	checking	

Intension vs. Extension

The *intension* of the table Account Number Type Balance Owner 1000.00 checking 101 J. Smith 2000.00 checking 02 W. Wei 03 savings J. Smith 5000.00 1000.00 checking M. Jones 04 05 10,000.00 checking H. Martin

The *extension* of the table. Also called the *extent*.

"Size" of a Table

Degree or arity of a table is the number of columns

Degree of this relation (or table) is 4 because there are 4 attributes

	Accoun	t 🖊		
	Numbei	Owner	Balance	e Type
	101	J. Smith	1000.00	checking
Cardinality	102	W. Wei	2000.00	checking
of this instance is 5 (because	103	J. Smith	5000.00	savings
there are 5	104	M. Jones	1000.00	checking
	105	H. Martin	10,000.00	checking

Cardinality of a table = the number of rows in the current instance

Outline

- ✓ Data Models
 - Relational Database Model
 - ✓ Basic Concepts and Terminology
 - Keys and Foreign Keys
 - Schema Specifications

Database (One or More Tables)

Account	Number		Owner	Balance	Туре	,
	101		J. Smith	1000	0.00 chec	king
	102		W. Wei	2000.00	checking	
	103		J. Smith	5000	0.00 savir	ngs
	104		M. Jones	1000	0.00 chec	king
	105		H. Martin	10,000	0.00 chec	cking
Deposit	AcctNo		Transactio	n-id Date	An	nount
	102	1	10/22/00	500.00		
	102	2	10/29/00	200.00		
	104	3	10/29/00	100	0.00	
	105	4	11/02/00	10,00	0.00	
Check	AcctNo		Check-nu	umber Date	Ar	mount
	101	924	10/23/0	0 12	5.00	
	101	925	10/24/0	0 23.98		

Table Keys

Account	Number		Owner B	Balance Type		
1	101		J. Smith	1000.00	checking	
1	102		W. Wei	2000.00 check	king	Each
1	103		J. Smith	5000.00	savings	
1	104		M. Jones	1000.00	checking	table has
1	105		H. Martin	10,000.00	checking	a key
Deposit	AcctNo		Transaction-	id Date	Amount	where the
	102	1	10/22/00	500.00		values
	102	2	10/29/00	200.00		must be
	104	3	10/29/00	1000.00		unique.
	105	4	11/02/00	10,000.00		<u> </u>
Check	AcctNo		Check-nun	nber Date	Amount	
	101	924	10/23/00	125.00		
	101	925	10/24/00	23.98		

Table Keys (cont.)

Connections between Tables

Account	Number	Owner	Bala	ance Type	
	101	J. Smith	1000.00	checking	
	102	W. Wei	2000.00	checking	
	103	J. Smith	5000.00	savings	
	104	M. Jones	1000.00	checking	
	105	H. Martin	10,000.00	checking	
Deposit	AcctNo	Transaction-i	d Date	Amount	
	102	1 10/	22/00 50	00.00	
	102	2 10/	29/00 20	00.00	
	104	3 10/	29/00 100	00.00	
	105	4 11/	02/00 10,00	00.00	
	106	5 12/	05/00 5	55.00	

Is this legal?

If not, how do we prevent it from happening?

Foreign Key

Account	Number	Owner	. Bala	ance Type	
	101	J. Smith	1000.00	checking	
	102	W. Wei	2000.00	checking	
	103	J. Smith	5000.00	savings	
	104	M. Jones	1000.00	checking	
	105	H. Martin	10,000.00	checking	
Deposit	AcctNo	Transaction-i	d Date	Amount	
	102	1 10	/22/00 5	00.00	
	102	2 10	/29/00 2	00.00	
	104	3 10	/29/00 10	00.00	
	105	4 11/	02/00 10,0	00.00	
	_106	512	2/05/00 5	55.00	

We say that Deposit.AcctNo is a *foreign key* that *references* Account.Number. If the DBMS enforces this constraint, we have *referential integrity*.

Foreign keys might or might not be part of the key for the referring table

Outline

- ✓ Data Models
 - Relational Database Model
 - ✓ Basic Concepts and Terminology
 - Keys and Foreign Keys
 - Schema Specifications

Specification of a Database Schema

•Select the tables, with a name for each table.

•Select columns for each table and give the domain for each column.

•Specify the key(s) for each table.

There can be more than one key for a table.

Specify all appropriate foreign keys.

Database Domains for Columns

Account	Number	Owner	Bala	ance Type	
	101	J. Smith	1000.00	checking	
	102	W. Wei	2000.00	checking	

For every column of every table, the schema specifies allowable values. For example,

Number must be a 3-digit number Owner must be a 30-character string Type must be "checking" or "savings"

The set of allowable values for a column is called the domain of the column.

Example Database Schema

(Keys are underlined. Each table has one key.)

In relational DBs, we use relation(attribute:domain)

```
STUDENT(sid:int, name:string)

Takes(sid:int, exp-grade:char[2], cid:string, sem:char[3])

COURSE(cid:string, subj:string, sem:char[3])

Teaches(fid:int, cid:string, sem:char[3])

PROFESSOR(fid:int, name:string)
```

Popularity of the Relational Data Model

- •Most popular database systems use the relational model.
 - Oracle
 - MS SQL Server
 - MySQL
 - PostgreSQL
 - IBM DB2
 - SQLLite
 - Microsoft Access
- •Check: https://db-engines.com/en/ranking
- •Learning about the relational model (and SQL) is a wise investment.

Outline

- ✓ Data Models
 - Relational Database Model
 - ✓ Basic Concepts and Terminology
 - Keys and Foreign Keys
 - ✓ Schema Specifications