

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV Sheet No. Page 1 of 18

REVIEWED & APPROVED BY

		COMPANY CONTRACTOR PROJECT TITLE LOCATION CONTRACT NO JOB NO	: Pembangun Terminal Bia	RSERO), Tbk an Dermaga K ak			Fuel	
		F	NOT APPI	D WITH COMM				
0	Issued for Approval	19/01/2024	PREPARED	ABP / SM / → TRN & CHECKED	SAW APPROVED	AFM REVI E	ATH E WED	AP APPROVED
REV	DESCRIPTION	DATE	PT.	PP (Persero),		PT. P	ertamina	Patra Niaga

PREPARED & SUBMITTED BY

(PP)
CONSTRUCTION & INVESTMEN

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

CONSTRUCTION & INVESTMENT				
REV	:	0		
Sheet No.				
Page 2 of 18				

REVISION CONTROL SHEET

REV. NO.	DATE	DESCRIPTION
0	19/01/2024	Issued For Approval

DISTRIBUTION ORDER

EXTERNAL ISSUE	PT. PP (Persero) Tbk - INTERNAL ISSUE		
☑ PT. PERTAMINA PATRA NIAGA	⊠ PROJECT MANAGER	☐ LEAD ADMINISTRATION	
		□ LEAD SHE	
	☐ CONSTRUCTION MANAGER		
	☐ PROCUREMENT MANAGER		
	□ PROJECT CONTROL ■ MANAGER		
	☐ SHE MANAGER		
	☐ QC MANAGER		
	□ LEAD ENGINEERING		
	□ LEAD PROJECT CONTROL		

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

Sheet No.
Page 3 of 18

TABLE OF CONTENT

1.	PENDAHULUAN	4
2.	DEFINISI	5
3.	REFERENSI	6
4.	BASIS DAN PERTIMBANGAN DESAIN	7
5.	KEBUTUHAN FIRE WATER	8
6.	PERHITUNGAN HIDROLIK FIRE WATER	9
7.	KESIMPULAN	.12
8.	LAMPIRAN – LAMPIRAN	.13

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : Sheet No.

Page 4 of 18

1. PENDAHULUAN

Untuk dapat menjawab peningkatan permintaan BBM, fasilitas terminal distribusi harus memiliki kapasitas yang memadai yang perlu dikembangkan. Fasilitas tersebut sangat penting untuk dapat mengantarkan produk "BBM" ke konsumen akhir. Oleh karena itu, agar semua proses pendistribusian dapat berjalan dengan lancar, PERTAMINA membutuhkan pembangunan dan pembangunan fasilitas untuk TBBM Biak, Papua Barat.

PT. PERTAMINA (PERSERO) bermaksud untuk melaksanakan pembangunan Dermaga baru berkapasitas 3.500 DWT – 50.000 DWT dalam rencana pembangunan Terminal BBM Biak bertujuan antara lain:

Peningkatan ketahanan stok BBM, khususnya di Papua bagian utara, seperti program peningkatan kebutuhan BBM satu harga oleh pemerintah. Mendukung program pemerintah sebagai Proyek Strategi Nasional pembangunan infrastruktur di Kawasan Timur Indonesia (KTI) Mengurangi beban operasional TBBM Wayame sehingga total keandalan pasokan BBM di wilayah Maluku – Papua semakin baik. Mengurangi risiko operasional yang berdampak pada ekonomi, politik dan keamanan wilayah Maluku – Papua serta meningkatkan ketersediaan layanan BBM/BBK kepada pemegang saham.

Gambar 1.1. Gambaran Lokasi TBBM Biak, Papua.

1.1. TUJUAN

Dokumen Fire Water Demand dan Fire Water Pump Calculation ini bertujuan untuk menentukan kebutuhan minimum fire water dari setiap fire zone yang telah ditentukan dan untuk menentukan kebutuhan fire water terbesar di fasilitas. Selain itu, perhitungan yang terkait dengan tekanan yang diperlukan di pompa dan penentuan line sizing dari pipa fire water yang mencakup pertimbangan desain hidrolik, metode, hasil perhitungan, dan analisis sizing juga dijelaskan dalam dokumen ini.

1.2. DESKRIPSI PROYEK

Lokasi pengerjaan EPC pembangunan Terminal BBM Biak terletak di Kabupaten Biak Numfor, Papua Barat, Indonesia.

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

Sheet No.
Page 5 of 18

PT PERTAMINA (Persero) berencana membangun Dermaga di Terminal BBM Biak dan fasilitas pendukung lainnya yang direncanakan sebagai fasilitas docking/tambat kapal dan juga sebagai area loading. Kapal yang akan beroperasi adalah tanker 3.500 DWT sampai dengan 50.000 DWT.

Gambar 1.2. Plot Plant Dermaga TBBM Biak.

Lingkup pekerjaan TBBM Biak untuk pembangunan dermaga dengan kapasitas 50.000 DWT meliputi pelaksanaan umum kegiatan *Engineering, Procurement, Construction* (EPC) mengacu pada dokumen teknis (RKS, BoQ, FEED).

Menyiapkan Detail Engineering Design (DED) berdasarkan dokumen FEED, pekerjaan konstruksi sipil dan struktur dermaga (*Trestle, Jetty Head, Breasting Dolphin (4 Unit), Mooring Dolphin (4 Unit), Catwalk* dan *Steel Structure, Tugboat Jetty, Fire Pump Platform* dan *Shelter* serta *Guard House*), pekerjaan perpipaan dan mekanik, keselamatan kerja dan sistem proteksi kebakaran, pekerjaan kelistrikan dan instrumentasi, pekerjaan pengujian, inspeksi dan *commissioning*.

2. DEFINISI

Definisi dan singkatan berikut akan berlaku di seluruh dokumen *Fire Water Demand* dan *Fire Water Pump Calculation*:

PROYEK:

Pembangunan Dermaga Kapasitas 50,000 DWT di Fuel Terminal Biak

PERUSAHAAN:

PT. Pertamina Patra Niaga

KONTRAKTOR:

PT. PP (Persero) Tbk

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 6 of 18

VENDOR/PABRIKAN/SUBKONTRAKTOR:

Semua organisasi/perorangan yang ditunjuk oleh KONTRAKTOR untuk melaksanakan semua pekerjaan yang ditentukan dalam lingkup kerja pada proyek yang dimaksud.

Kalimat singkatan berikut berlaku di dokumen Fire Water Demand dan Fire Water Pump Calculation:

FW Fire Water FZ FireZone

NFPA National Fire Protection Association NPSHA Net Positive Suction Head Available

ISGOTT International Safety Guide for Oil Tankers and Terminals

API American Petroleum Institute

NPS Nominal Pipe Size

FM Fire Monitor

GPM Gallon per Minute

3. REFERENSI

Daftar dokumen dibawah ini adalah sebagai acuan bagi **KONTRAKTOR** untuk memenuhi seluruh standar dan spesifikasi yang telah ditentukan untuk menyelesaikan **PROYEK**.

Tabel 1 - Referensi Standar dan Kode

NFPA 11	Standard for Low, Medium, and High Expansion Foam
NFPA 14	Installation of Standpipes and Hose Systems
NFPA 20	Installation of Centrifugal Fire Pumps
NFPA 24	Installation of Private Fire Service Main & Appurtenances
NFPA 30	Flammable and Combustible Liquids Code
API RP 14E	Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems
ISGOTT	International Safety Guide for Oil Tankers & Terminals

Tabel 2 - Referensi Dokumen Proyek

BIAK-DWG-10-001-A3	Fire Protection, Safety Equipment, and Fire &
	Gas Detection Layout
BIAK-PID-10-007-A3	P&ID Fire Water Distribution System
BIAK-DB-10-002-A4	Design Basis for Active Fire Protection and
	Fire & Gas Detection System
BIAK-SP-40-002-A4	Specification for Piping Material & Line Class

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 7 of 18

4. BASIS DAN PERTIMBANGAN DESAIN

Kebutuhan *fire water* dan perhitungan hidrolik harus ditentukan sesuai dengan *fire protection design* basis yang terkait. Beberapa pertimbangan dan basis harus disesuaikan sebagaimana diindikasikan dalam bagian-bagian berikut.

4.1 FIRE ZONE

Di fasilitas Jetty-2, *fire zone* akan dibagi menjadi 2 (dua) area utama, sebagaimana terindikasi pada Tabel 2. Untuk gambaran umum, demarkasi zona kebakaran disajikan dalam Lampiran 8.1.

Tabel 3 - Demarkasi Fire Zone

Fire Zone No.	Deskripsi	
FZ-001	Fire Zone Trestle	
FZ-002	Fire Zone Jetty Head	

4.2 KEBUTUHAN MINIMUM FIRE WATER DAN APPLICATION RATE

Berdasarkan ISGOTT Tabel 19.1 untuk kapal tangker dengan kapasitas hingga 50.000 DWT, kebutuhan minimum *fire water* adalah 350 m³/h (1541 gpm). Sedangkan, *fire water application rate* yang digunakan sebagai basis dalam perhitungan ini:

- Satu aliran hose hidran dengan *flow rate* yaitu 56,8 m³/h (250 gpm).
- satu fire/foam monitor dengan flow rate yaitu 113,6 m³/h (500 gpm).

4.3 FLUIDA YANG DIGUNAKAN

Sistem *fire water* yang dirancang dalam proyek ini menggunakan air laut sebagai sumber utama. *Fire water* akan dipasok oleh *sea water fire pump* baru yang terletak di *fire pump shelter*.

Fluida : sea water
 Densitas : 1023 kg/m³
 Viskositas : 1,00 cP
 Vapor Pressure : 0,001 kgf/cm²A

4.4 MATERIAL PIPA *FIRE WATER*

Material untuk pipa *fire water* yang digunakan mengacu pada dokumen BIAK-SP-40-002-A4 Spesifikasi untuk *Piping Material & Line Class*. Oleh karena itu, informasi teknis berikut menentukan ke dalam perhitungan hidrolik

Tabel 4 - Fire Water Line Class

Nominal Diameter (inches)	Internal Diameter (inches)	Frictional Coefficient (C-factor)
8	7.981	
10	10.02	120
14	13.25	

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 8 of 18

4.5 SUPLAI FIRE WATER

Sistem fire water untuk Jetty BIAK digunakan untuk menyuplai fire water dari pompa sea water fire pump baru ke fire equipment di trestle dan area Jetty-2 saja, sedangkan apabila ada fire case di area tangki Biak di darat baik sea water fire pump baru maupun eksisting akan di operasikan karena kebutuhan fire water yang lebih besar. Namun, pada dokumen ini hanya menjelaskan hitungan sampai ke titik tie-in point ke jalur fire water Biak darat.

Kecepatan fluida yang melalui setiap bagian pada *fire water main* harus dibatasi maximal 4,57 m/s dan minimum 0,91 m/s sesuai dengan basis desain (API RP 14E). Sementara itu, *residual pressure* di setiap titik di sistem *fire water* minimal 6,9 kg/cm²g.

Untuk operasi *fire fighting* di area *Jetty Head* akan disediakan aliran selang hidran yang mencakup area yang terhalang dari *fire monitor* untuk memastikan fleksibilitas tindakan selama operasi *fire fighting* (NFPA 11 Section 10.6).

5. KEBUTUHAN FIRE WATER

Sesuai dengan penjelasan sebelumnya, kebutuhan *fire water* akan dihitung berdasarkan pembagian *fire zone*, dan diharapkan bahwa kebutuhan *fire water* terbesar akan diperoleh berdasarkan langkah ini. Perhitungan kebutuhan *fire water* diuraikan dalam setiap bagian sebagai berikut.

5.1 FIRE ZONE FZ-001 (FIRE ZONE TRESTLE)

Dalam kasus kebakaran yang terjadi di *fire zone* ini, sistem *fire water* berikut diaktifkan secara bersamaan:

• Dua (2) aliran selang hidran

Kebutuhan fire water dihitung sebagai berikut :

Tabel 5 - Kebutuhan Fire Water di FZ-001

Deskripsi	Flow rate (m ³ /h)	Remarks
Fire hydrant (2 hose streams)	113,6	56,8 m ³ /h x 2
Total	113,6	

5.2 FIRE ZONE FZ-002 (FIRE ZONE JETTY HEAD)

Dalam kasus kebakaran yang terjadi di *fire zone* ini, sistem *fire water* berikut diaktifkan secara bersamaan:

- Dua (2) fire/foam monitor
- Empat (4) aliran selang hidran

Kebutuhan fire water dihitung sebagai berikut :

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 9 of 18

Tabel 6 - Kebutuhan Fire Water di FZ-002

Deskripsi	Flow rate (m³/h)	Remarks
Fire/foam monitor	227,2	113,6 m ³ /h x 2
Fire Hydrant	227,2	56,8 m ³ /h x 4
Total	455	

5.3 KEBUTUHAN FIRE WATER PADA TIE-IN POINT SCOPE BIAK TANK PROJECT

Sesuai informasi berdasarkan BIAK-MOM-10-001-A4 pada saat Pre-Konsinyering, di informasikan bahwa kebutuhan *fire water* terbesar di area Biak darat adalah sebesar 4000 gpm. Oleh karena itu, perhitungan hidrolik juga mempertimbangkan case tersebut.

Tabel 7 – Kebutuhan Fire Water di Tie-in Point Scope Biak Tank Project

Deskripsi	Flow rate (m³/h)	Remarks
Tie-in Point Scope Biak Tank Project	910	4000 gpm
Total	910	

5.4 HASIL PERHITUNGAN KEBUTUHAN FIRE WATER

Perhitungan kebutuhan *fire water* dilakukan untuk setiap *fire zone* dan kebutuhan *fire water* untuk disupplai ke tie-in point *scope biak tank project* seperti yang telah dijelaskan pada bagian sebelumnya. Oleh karena itu, berdasarkan tabel 4, 5, dan 6, diperoleh beberapa hasil sebagai berikut:

- Kebutuhan *fire water* untuk area *fire zone* FZ-001 yaitu 114 m³/h yang dihasilkan dari 2 aliran selang hidran.
- Kebutuhan *fire water* untuk area *fire zone* FZ-002 yaitu 455 m³/h yang dihasilkan dari 2 *foam monitor* dan 4 aliran selang hidran.
- Kebutuhan *fire water* untuk supply di tie-in point menuju *scope biak tank project* yaitu sebesar 910 m³/h, dimana untuk menyuplai kebutuhan ke *scope biak tank project* menggunakan *sea water fire pump* eksisting dan *sea water fire pump* yang baru, sehingga masing-masing *sea water fire pump* akan menyuplai 455 m³/h.

6. PERHITUNGAN HIDROLIK FIRE WATER

Sehubungan dengan penentuan kebutuhan *fire water*, perhitungan hidrolik juga diperlukan untuk desain pompa *fire water*. Metode dan hasil perhitungan ditunjukkan dalam bagian-bagian di bawah ini.

6.1 METODE PERHITUNGAN

Perhitungan hidrolik fire water ditentukan dengan merujuk pada diagram alir di bawah ini.

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 10 of 18

 Sebelum perhitungan hidrolik, beberapa data perlu dimasukkan, yaitu sifat-sifat fluida, data pipa, panjang pipa dan elevasi, serta maksimum destination pressure. Untuk maksimum destination pressure yang diinput yaitu sebesar 6,9 kg/cm²g sesuai dengan minimum operating pressure

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 11 of 18

fire water. Kemudian, untuk panjang pipa dan elevasi dengan jetty head case diinput hingga posisi fire monitor terjauh, sementara untuk tie-in point case diinput hingga lokasi tie-in point dengan sistem fire water pada lingkup projek tangki darat.

- Selanjutnya, dilakukan perhitungan kecepatan rata-rata aliran fluida dengan *fire water pump* yang baru dan eksisting untuk memastikan sesuai dengan basis desain, dan hasil perhitungan ini kemudian digunakan untuk menentukan *pressure drop* per 100 meter.
- Hasil dari kedua perhitungan, yaitu kecepatan dan pressure drop, kemudian dibandingkan dengan kriteria desain, di mana kecepatan maksimum adalah 4,57 m/s, dan pressure drop maksimum per 100 m adalah 0,46 bar. Sementara itu, kecepatan minimum yang diperlukan adalah 0,91 m/s untuk meminimalkan pengendapan pasir dan padatan lainnya (API RP 14E).
- Jika hasilnya kurang atau melebihi kriteria desain, ukuran pipa harus disesuaikan hingga sesuai dengan kriteria desain. Setelah hasil perhitungan sesuai dengan kriteria desain, nilai dari total line loss kemudian dihitung.
- Hasil perhitungan total *line loss* dapat digunakan untuk melakukan perhitungan desain pompa, termasuk *discharge pressure, suction pressure, differential pressure,* dan *head*.

6.2 HASIL PERHITUNGAN HIDROLIK

Sesuai dengan pendekatan perhitungan dan metodologi yang dijelaskan pada bagian sebelumnya, hasil perhitungan hidrolik dan desain pompa disajikan dalam tabel 7 dan tabel 8. Perbandingan dengan beberapa kasus juga diindikasikan untuk memperoleh informasi yang sesuai yang akan digunakan dalam desain pompa *fire water*.

Tabel 8 - Ringkasan Kalkulasi Hidrolik Fire Water

	Vol	Pip	e Data	Kr	riteria	Hasil Per	rhitungan
Line No	Flow, m³/h	SCH	ID (mm)	Vel (m/s)	DP/100m, bar	Vel (m/s)	DP/100m, bar
14"-FW-A1A-525	910	STD	336,55	4,5	0,46	2,8	0,17
10"-FW-A1A-549	455	S40	254,51	4,5	0,46	2,5	0,18
10"-FW-A1A-550	455	S40	254,51	4,5	0,46	2,5	0,18

- Dari tabel 7, terlihat bahwa perhitungan hidrolik untuk beberapa ukuran pipa dalam sistem fire water menghasilkan hasil perhitungan yang berbeda. Oleh karena itu, perhitungan hidrolik untuk pump discharge line dan fire water mains berukuran 10 inci menghasilkan kecepatan sekitar 2,5 m/s. Sementara itu, dengan melakukan perhitungan hidrolik untuk ukuran pipa 14 inci menghasilkan kecepatan sekitar 2,8 m/s.
- Ukuran pipa yang lebih besar sebagaimana diindikasikan di atas dipilih karena pertimbangan aliran dari sea water fire pump eksisting dan sea water fire pump baru digabungkan menjadi satu aliran.

Tabel 9 – Ringkasan Perhitungan Desain Sea Water Fire Pump Baru dengan Case Berbeda

Operation Condition	ITB Datasheet	Jetty Head Case	Tie-In Point Case	Selected Calculation
Capacity (m³/h)	455	455	455	455
Suction Pressure (kg/cm ² g)	0,08	0,17	0,17	0,17

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 12 of 18

Operation Condition	ITB Datasheet	Jetty Head Case	Tie-In Point Case	Selected Calculation
Discharge Pressure Flange (kg/cm ² g)	13,46	11,38	13,87	13,99
Differential Pressure (kg/cm ²)	13,38	11,21	13,69	13,81
Differential Head (m)	135	109,6	133,9	135
NPSHA (m)	11,17	11,81	11,81	11,81
Pumping Temperature (°C)	30	30	30	30
SG @PT	1	1,023	1,023	1,023
Vapor Pressure (kgf/cm ² A)	0,001	0,001	0,001	0,001
Viscosity at PT (cP)	1	1	1	1

Sesuai dengan perhitungan pompa dengan dua *case* perhitungan yang berbeda yang sudah dilakukan dengan tujuan *discharge* yang berbeda, yaitu *Jetty Head* dan *Tie-in Point* dengan lingkup proyek area tangki darat. Perhitungan dengan *case* yang berbeda ini dilakukan untuk memperoleh hasil optimum. Hasil ini disajikan dalam tabel 8 untuk lebih detail.

- Kedua kasus menggunakan dasar aliran sebesar 455 m³/h sesuai dengan hasil kebutuhan *fire* water terbesar.
- Dengan menggunakan Jetty Head case, discharge pressure pompa dihasilkan sebesar 11,38 kg/cm²g.
- Dengan menggunakan Tie-in Point case, discharge pressure pompa dihasilkan sebesar 13,87 kg/cm²g.
- Berdasarkan ITB datasheet, discharge pressure pompa yang digunakan sebesar 13,46 kg/cm²g.
- Diperoleh *discharge pressure* pompa yang digunakan sebesar 13,99 kg/cm²g dengan head 135 meter.

7. KESIMPULAN

Berdasarkan beberapa analisis yang telah dilakukan, maka dapat disimpulkan bahwa:

- Kebutuhan *fire water* terbesar di fasilitas ini berasal dari area *Jetty Head* FZ-002, yang memiliki *flow rate* 455 m³/h.
- Semua fire water system menerima tekanan lebih dari 6,9 kg/cm²g yang mana memenuhi kriteria.
- Kecepatan maksimum berada dalam basis desain proyek yang diizinkan sebesar 4,5 m/s, sehingga ukuran pipa 10 inci (untuk pump discharge line) dan 14 inci (untuk combination line) dianggap optimum untuk fire water network.
- *Discharge pressure* yaitu sebesar 13,99 kg/cm²g digunakan sebagai basis dalam desain *sea water fire pump* yang baru dengan head 135 meter.

BIAK-CAL-10-002-A4	WATER FUNIF CALCULATION	Page 13 of 18
DIAK CAL 40 000 A4	WATER PUMP CALCULATION	Sheet No.
Document No.	FIRE WATER DEMAND AND FIRE	REV : 0
PERTAMINA PATRA NIAGA	CALCULATION	CONSTRUCTION & INVESTMENT

8. LAMPIRAN – LAMPIRAN

8.1 LAMPIRAN DEMARKASI FIRE ZONE

(PP)

ONSTRUCTION & INVESTMENT

0

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV :

Sheet No.

Page 14 of 18

8.2 LAMPIRAN PERHITUNGAN HIDROLIK FIRE WATER

N						FLUID PR	OPERTIES			PIPE DATA RESULT CRITERIA		CRITERIA							
No	LINE No.	P&ID No.	Service	Vol Flow, kL/hr	Flow, Kg/hr	factor	RatedFlow	rho, kg/m3	visc, cP	rough, micr	SCH	ID, mm	m3/h	Vel, m/s	ΔP/100m, bar	Vel, m/s	ΔP/100m, bar	STATUS	REMARKS
1	14"-FW-A1A-525	BIAK-PID-10-007-A3	Fire water from existing sea water fire pump combined with new sea water fire pump	910	906.360	100%	906360	996,000	1,00	50	STD	336,55	910	2,842	0,169	4,5	0,460	OK	To Jetty-2 & Jetty-1
2	10"-FW-A1A-549	BIAK-PID-10-007-A3	Fire water to existing jetty 1 fire line	455	453.180	100%	453180	996,000	1,00	50	S40	254,51	455	2,484	0,182	4,5	0,460	ОК	To Jetty-1
3	10"-FW-A1A-550	BIAK-PID-10-007-A3	Fire water to jetty 2	455	453.180	100%	453180	996,000	1,00	50	S40	254,51	455	2,484	0,182	4,5	0,460	ок	To Jetty-2

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 15 of 18

8.3 HASIL PERHITUNGAN SEA WATER FIRE PUMP (JETTY HEAD CASE)

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV

Sheet No.

Page 16 of 18

Based Tuber Junes 0	EQUIVALENT LENGTH CAL	CULATION		FOMF	HYDRAULIC CA	LCULATI	ON				
Substaires Charles Substaires Substa	Suction			-		Dis	charge		4 -		
Solicy Class Cla	3			4							
Section Color Co				-							q. Length, m 25,6
pages valve 0 0.0				+							0,0
Substitution				1							2,1
Section				7				_			28.7
State Stat								2			0,0
Section Calculation Calc				1							0,0
Suction Suct		0	0,0					0	0,0	0	0,0
Society Section Sect	olug valve	0	0,0			sud	den enlargement d/D = 1/4	0	0,0	0	0,0
PRESSURE DROP PER 100 m CALCULATION Suct	pall valve	0				Inle	nozzle tank	0		0	0,0
Darcy Darc	55 (0.00)	m CALCULATION	4	_			f calculation			_	»Î
Line Class Schold Normanis Size (mm) 250.0 10 10 10 10 10 10 10		Suct							Darcy		
Normal Size (mm) 250.0 10 10 10 10 10 10 10	ine Class							ff			
SC		250,0	10)				f2			
Row (msh)											
Flow (ghm)	/iscosity (cP)										
Line Length (m) 0											
Roughness D.05 Discharge		465.465									
D (mm) 254,50 2,49 2,4		0.05							0,013076		
Velocity (m/s) 2,48											
Max velocity (m/s) 3.5 OK Re 647183 utrollent f f 0.0151 Pressure Drop/100 m (kg/cm2) Act Length +30 % margin (m) 0.000 Equiv Length +30 % margin (m) 0.000 Line Loss (kg/cm2) 0.000 Discharge Calculation											
Re 647183 ubrulent			OK								
Pressure Drop/100 m (kg/cm2)											
Act Length +30% margin (m)		0,0151									
Equiv. Length + 30% margin (m) 0,000	Pressure Drop/100 m (kg/cm2)	0,1909									
Discharge											
Darry Discharge Darry											
Discharge											
Line Class Schild Line Class State		<u>0,000</u>					f calculation				
Nominal Size (mm)											Darcy
SG 1,023 SG 1,023 SG 1,023 SG 1,023 SG 0,015045 73 0,0 SVscosity (cP) 1,000 Flow (m3hr) 455,00 Flow (m3hr) 910,00 5 0,015076 75 0,015076 75 0,00 SG 0,											0,005
\text{Viscosity (cP)} \			10			14					0,014751
Flow (m3hr)											0,014087 0,014110
Flow (kg/hr)										-	0,014110
Line Length (m) 403 Line Length (m) 130 7 0,015076 7 0,0 Roughness 0,06 Roughness 0,05 D(mm) 254,50 D(mm) 336,55 Velocity (m/s) 2,49 Velocity (m/s) 2,84 Max velocity (m/s) 4,6 OK Max velocity (m/s) 4,6 Re 647183 urbulent Re 978803 urbulent Re 10,0141 Pressure Drop/100 m (kg/cm 2) 1,1909 Pressure Drop/100 m (kg/cm 0,1767 Act Length +30 % margin (m) 554 Act Length +30 % margin 159 Equiv Length +90% margin (m) 65,380 Equiv Length +90% margin 73,304											0,014109
Roughness 0.05 Roughness 0.05 ID (mm) 234,50 ID (mm) 336,55 Velocity (m/s) 2,49 Velocity (m/s) 2,24 Max velocity (m/s) 4,6 OK Max velocity (m/s) 4,6 OK Re 647183 urbulent Re 978803 trublent trublent Fersure Drop/100 m (kg/cm2) 0,1959 Pressure Drop/100 m (kg/cm 0,1767 Act. Length +30 % margin (m) 524 Act. Length +30 % margin 169 Equiv. Length +30% margin (m) 65,380 Equiv. Length +30% margin 73,304											0,014109
D (mm) 254,50 D (mm) 336,55 Velocity (m/s) 2,84 Velocity (m/s) 2,84 O C C C C C C C C C									.,	711	
Velocity (m/s) 2,49 Velocity (m/s) 2,84 Max velocity (m/s) 4,5 OK Max velocity (m/s) 4,6 OK Re 647183 urbulent Re 978803 urbulent turbulent f 0,0151 f 0,0141 velocity (m/s) 0,1767 Act Length +30 % margin (m) 554 Act Length +30 % margin 169 equiv. Length +30% margin 73,304											
Re 647183 turbulent Re 978803 turbulent turbulent f 0,0151 f 0,0141 Pressure Drop/100 m (kg/cm2) 0,1909 Pressure Drop/100 m (kg/cm 0,1767 Act Length +30% margin (m) 524 Act Length +30% margin 169 Equiv Length + 30% margin (m) 65,380 Equiv Length + 30% margin 73,304		2,49									
f 0,0151 f 0,0141 Pressure Drop/100 m (kg/cm2) 0,1909 Pressure Drop/100 m (kg/cm 0,1767 Act Length +30 % margin (m) 554 Act Length +30 % margin 169 Equiv.Length +30% margin (m) 65,380 Equiv.Length +30% margin 73,304											
Pressure Drop/100 m (kg/cm2) 0.1909 Pressure Drop/100 m (kg/cm 0.1767 Act. Length +30 % margin (m) 524 Act. Length +30 % margin 169 Equiv. Length + 30 % margin (m) 65,380 Equiv. Length + 30 % margin 73,304			turbulent			ent					
Act. Length +30 % margin (m)											
Equiv Length + 30% margin (m) 65,380 Equiv Length + 30% margin 73,304											
Line Loss (kg/cm2) 1,125 Line Loss (kg/cm2) 0,428	ine Loss (kg/cm2)	1,125		Line Loss (kg/cm2)	0,428						
Total line loss (kg/cm2)											
Note 1. Other loss takes unknown losses into account.	Note										

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

REV : 0
Sheet No.
Page 17 of 18

8.4 HASIL PERHITUNGAN SEA WATER FIRE PUMP (TIE-IN POINT CASE)

Document No.

BIAK-CAL-10-002-A4

FIRE WATER DEMAND AND FIRE WATER PUMP CALCULATION

Sheet No.
Page 18 of 18

EQUIVALENT LENGTH CA	LCULATION		FOMF	HYDRAULIC CAL	JULATIO					
Suction			_		Discl	narge	_			ik E
	Suction		_					Discharge 1		Discharge 2
Suction's fittings	Qty	Eq. Length,	m			arge's fittings	Qty	Eq. Length, m	Qty	Eq. Length, m
90 deg ELL long rad.	0	0,0	_			ELL long rad.	0	0,0	7	25,6
nard T (flow turns)	0	0,0	<u> </u>			check valve	1	24,4	0	0,0
ate valve	0	0,0			gate v		2	4,3	. 1	2,1
utterfly valve (90 deg)	0	0,0				(flow turns)	1	14,3	2	28,7
globe valve	0	0,0	_			(flow straight)	2	7,3	0	0,0
angle valve	0	0,0	_		ball va		0	0,0	0	0,0
swing check valve	0	0,0	_			eck valve	0	0,0	0	0,0
plug valve	0	0,0	_			n enlargement d/D = 1/4	0	0,0	0	0,0
ball valve	0	0,0	_		Inlet n	ozzle tank	0	0,0 50,3	0	0,0 56,4
PRESSURE DROP PER 10 Suction	0 m CALCULATION					f calculation				
	Suct							Darcy		
Line Class	sch40						f	0,000		
Nominal Size (mm)	250,0		10				f2	0,015888		
SG	1,023						f			
Viscosity (cP)	1,00						f4			
Flow (m3/hr)	455,00						f			
Flow (kg/hr)	465.465						fe			
Line Length (m)	0						f	0,015076		
Roughness	0,05									
ID (mm)	254,50									
Velocity (m/s)	2,49									
Max velocity (m/s)		OK								
Re		turbulent								
f	0,0151									
Pressure Drop/100 m (kg/cm2)	0,1909									
Act. Length +30 % margin (m)	0,00									
Equiv.Length + 30% margin (m)	0,000									
Line Loss (kg/cm2)	0,000									
Total line loss (kg/cm2)	0,000									
<u>Discharge</u>						<u>f</u> calculation		Darcy		Darcy
Line Class	sch40		Line Class	std			f		f	
Nominal Size (mm)	250,0		10 Nominal Size (mm)	350,0	14		f		fz	
SG	1,023		SG	1,023			f		f3	
Viscosity (cP)	1,000		Viscosity (cP)	1,000			fe		f4	
Flow (m3/hr)	455.00		Flow (m3/hr)	910,00			f		f5	
Flow (kg/hr)	465,465		Flow (kg/hr)	930,930			ft		fé	
Line Length (m)	13		Line Length (m)	1500			f		fi	
Roughness	0,05		Roughness	0,05						2,211.00
ID (mm)	254,50		ID (mm)	336,55						
Velocity (m/s)	2,49		Velocity (m/s)	2,84						
Max velocity (m/s)		OK	Max velocity (m/s)	4,6 OK						
Re		turbulent	Re	978803 turbulent						
f	0,0151		f	0,0141						
Pressure Drop/100 m (kg/cm2)	0,1909		Pressure Drop/100 m (kg/cn							
Act. Length +30 % margin (m)	17		Act. Length +30 % margin	1950						
Equiv.Length + 30% margin (m)	65,380		Equiv.Length + 30% margin	73,304						
Line Loss (kg/cm2)	0,157		Line Loss (kg/cm2)	3,576						
Total line loss (kg/cm2)	0,157		Total line loss (kg/cm2)	3,576						
Note										