# HW12 Solution

# HW12-1:

A particle with mass 
$$m$$
 and velocity  $v = dr/dt = \dot{r}$  moves in a one-dimensional potential  $U(r) = U_0 \left[ 32 \left( \frac{A}{r} \right)^{12} - \left( \frac{A}{r} \right)^{6} \right]$ , where  $U_0$  and  $A$  are positive constants and  $r > 0$ .

- a) There is a static equilibrium point at  $r = r_0$  for this potential. Find the equilibrium point  $r_0$  and the potential at this point in terms of A and  $U_0$ .
- b) Find the equation of motion for this system.
- c) Near the equilibrium point  $r_0$ , the system can be approximated as a simple harmonic oscillator (SHO). Let  $r = r_0 + x$ , rewrite the equation of motion in part b) as function of x by using the formula  $(r_0 + x)^{-n} \approx r_0^{-n} (1 nx / r_0 + ...)$ , if  $x << r_0$ .
- d) Find the period of this particle in terms of  $r_0$ , m, and/or  $U_0$ .

**HW12-2:** A uniform rod with length 2l, mass M hang from one end and the center of rod is attached with a horizontal massless spring with spring constant k (left figure shown below). This spring is initially at the equilibrium position ( $\theta = 0$ ). Now the rod is displaced by a small angle  $\theta$  (left figure below) from the vertical position and is then released. Assume the angle  $\theta$  is so small such that  $\sin \theta \sim \theta$ ,  $\cos \theta \sim 1$ .

- a) Draw the free body diagram of the rod. Find the equation of the motion of the rod and its period T.
- b) Now assume the rod is initially at equilibrium position  $(\theta = 0)$ . At t = 0, a bullet of mass 4M/3 strikes and becomes embedded inside the rod at position l/2 from the pivot (right figure shown below). Assume the speed of the bullet is v, Find the new period  $T_N$  of the motion of the rod, and find new  $\theta$  (t) with initial condition given above.



## **HW12-3:** Problem 19-32 in Giancoli (pp. 523)

The PV diagram in Fig. 19–31 shows two possible states of a system containing 1.55 moles of a monatomic ideal gas.  $(P_1=P_2=455 \text{ N/m}^2, V_1=2.00 \text{ m}^3, V_2=8.00 \text{ m}^3.)$ 

- (a) Draw the process which depicts an isobaric expansion from state 1 to state 2, and label this process A.
- (b) Find the work done by the gas and the change in internal energy of the gas in process A.
- (c) Draw the two-step process which depicts an isothermal expansion from state 1 to the volume  $V_2$  followed by an isovolumetric increase in temperature to state 2, and label this process B.
- (d) Find the change in internal energy of the gas for the two-step process B.



**HW12-1:** A particle with mass 
$$m$$
 and velocity  $v = dr/dt = \dot{r}$  moves in a one-dimensional potential  $U(r) = U_0 \left[ 32 \left( \frac{A}{r} \right)^{12} - \left( \frac{A}{r} \right)^6 \right]$ , where  $U_0$  and  $A$  are positive constants and  $r > 0$ .

- a) There is a static equilibrium point at  $r = r_0$  for this potential. Find the equilibrium point  $r_0$  and the potential at this point in terms of A and  $U_0$ .
- b) Find the equation of motion for this system.
- c) Near the equilibrium point  $r_0$ , the system can be approximated as a simple harmonic oscillator (SHO). Let  $r = r_0 + x$ , rewrite the equation of motion in part b) as function of x by using the formula  $(r_0 + x)^{-n} \approx r_0^{-n} (1 nx / r_0 + ...)$ , if  $x << r_0$ .
- d) Find the period of this particle in terms of  $r_0$ , m, and/or  $U_0$ .

### Sol:

$$\frac{dU}{dr} = U_0 \left[ -12 \cdot 32 \frac{A^{12}}{r^{13}} - (-6) \frac{A^6}{r^7} \right] = 0 \Rightarrow r = r_0 = 2A$$

$$U(r_0) = U_0 \left[ 2^{-7} \left( \frac{r_0}{r} \right)^{12} - 2^{-6} \left( \frac{r_0}{r} \right)^6 \right]_{r=r} = U_0 \left[ 2^{-7} - 2^{-6} \right] = -\frac{U_0}{128}$$

$$E_{tot} = KE + PE = \frac{1}{2}m\dot{r}^2 + U(r) = \frac{1}{2}m\dot{r}^2 + U_0 \left[ 2^{-7} \left( \frac{r_0}{r} \right)^{12} - 2^{-6} \left( \frac{r_0}{r} \right)^{6} \right]$$

只有保守力做功→力學能守恆

$$\frac{dE_{tot}}{dt} = 0 \Rightarrow 0 = m\dot{r}\frac{d\dot{r}}{dt} + \frac{3U_0}{32r_0} \left[ \left(\frac{r_0}{r}\right)^7 - \left(\frac{r_0}{r}\right)^{13} \right] \dot{r} = \dot{r} \left(m\dot{r} + \frac{3U_0}{32r_0} \left[ \left(\frac{r_0}{r}\right)^7 - \left(\frac{r_0}{r}\right)^{13} \right] \right)$$

Equation of motion: 
$$m\ddot{r} + \frac{3U_0}{32r_0} \left| \left( \frac{r_0}{r} \right)^7 - \left( \frac{r_0}{r} \right)^{13} \right| = 0$$

Or from 
$$F = ma \rightarrow F = m\ddot{r} = -\frac{dU}{dr} = -\frac{3U_0}{32r_0} \left[ \left( \frac{r_0}{r} \right)^7 - \left( \frac{r_0}{r} \right)^{13} \right]$$

$$\Rightarrow m\ddot{r} + \frac{3U_0}{32r_0} \left| \left( \frac{r_0}{r} \right)^7 - \left( \frac{r_0}{r} \right)^{13} \right| = 0$$

(C) Equation of motion: 
$$m\ddot{r} + \frac{3U_0}{32r_0} \left[ \left( \frac{r_0}{r} \right)^7 - \left( \frac{r_0}{r} \right)^{13} \right] = 0$$

$$x \equiv r - r_0 \rightarrow r = x + r_0$$

$$\dot{x} = \dot{r}$$

$$\left(\frac{r_0}{r}\right)^7 = \frac{1}{(1+x/r_0)^7} \simeq 1 - 7\frac{x}{r_0} \qquad \left(\frac{r_0}{r}\right)^{13} = \frac{1}{(1+x/r_0)^{13}} \simeq 1 - 13\frac{x}{r_0}$$

Equation of motion becomes:  $m\ddot{x} + \frac{3U_0}{32r_0} \left[ 1 - \frac{7x}{r_0} - 1 + \frac{13x}{r_0} \right] = m\ddot{x} + \frac{9U_0}{16r_0^2} x = 0$ 

(d) 
$$\omega^{2} = \frac{9U_{0}}{16mr_{0}^{2}} = \frac{9U_{0}}{64mA^{2}} \Rightarrow T = \frac{2\pi}{\omega} = 2\pi \left(\frac{16mr_{0}^{2}}{9U_{0}}\right)^{1/2}$$

<u>HW12-2:</u> A uniform rod with length 2l, mass M hang from one end and the center of rod is attached with a horizontal massless spring with spring constant k (left figure shown below). This spring is initially at the equilibrium position ( $\theta = 0$ ). Now the rod is displaced by a small angle  $\theta$  (left figure below) from the vertical position and is then released. Assume the angle  $\theta$  is so small such that  $\sin \theta \sim \theta$ ,  $\cos \theta \sim 1$ .

- a) Draw the free body diagram of the rod. Find the equation of the motion of the rod and its period T.
- b) Now assume the rod is initially at equilibrium position ( $\theta = 0$ ). At t = 0, a bullet of mass 4M/3 strikes and becomes embedded inside the rod at position 1/2 from the pivot (right figure shown below). Assume the speed of the bullet is v, Find the new period  $T_N$  of the motion of the rod, and find new  $\theta$  (t) with initial condition given above.

#### Sol:

 $\overline{a}$  solving by the conservation of the mechanical energy

$$KE = \frac{1}{2}I\dot{\theta}^2 = \frac{1}{2}\frac{M(2\ell)^2}{3}\dot{\theta}^2$$
 $PE = \frac{1}{2}k(\Delta\ell)^2 + Mgy_{CM}$ 

$$\Delta\ell = x_{CM} = \ell\sin\theta$$

$$y_{CM} = \ell(1-\cos\theta)$$

$$E_{tot} = \frac{1}{2} \frac{M(2\ell)^2}{3} \dot{\theta}^2 + \frac{1}{2} k (\Delta \ell)^2 + Mgy_{CM}$$

$$= \frac{2M\ell^2}{3} \dot{\theta}^2 + \frac{1}{2} k \ell^2 \sin^2 \theta + Mg\ell (1 - \cos \theta)$$

$$\frac{dE_{tot}}{dt} = 0 = \frac{4M\ell^2}{3} \dot{\theta} \dot{\theta} + k\ell^2 \sin \theta \cos \theta \dot{\theta} + (Mg\ell \sin \theta) \dot{\theta}$$

$$\Rightarrow \ddot{\theta} + \frac{(k\ell + Mg)}{4M\ell} \theta = 0 \qquad \theta <<1 \Rightarrow \cos \theta \approx 1 \quad , \quad \sin \theta \approx \theta \quad ,$$

$$\Rightarrow \omega^2 = \frac{3(k\ell + Mg)}{4M\ell} \Rightarrow T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{4M\ell}{3(Mg + k\ell)}}$$

A bullet with mass 4M/3 embedded at 1/2 the KE and PE become



$$KE = \frac{1}{2}I\dot{\theta}^2 = \frac{1}{2}\left(\frac{M(2\ell)^2}{3} + \frac{4}{3}M(\frac{\ell}{2})^2\right)\dot{\theta}^2$$

$$PE = \frac{1}{2}k(\ell\sin\theta)^2 + Mg\ell(1-\cos\theta) + \frac{4}{3}Mg\frac{\ell}{2}(1-\cos\theta)$$

$$E_{tot} = \frac{5M\ell^2}{6}\dot{\theta}^2 + \frac{1}{2}k\ell^2\sin^2\theta + \frac{5}{3}Mg\ell(1-\cos\theta)$$

$$\frac{dE_{tot}}{dt} = 0 = \frac{5M\ell^2}{3}\dot{\theta}\ddot{\theta} + k\ell^2\sin\theta\cos\theta\dot{\theta} + \left(\frac{5}{3}Mg\ell\sin\theta\right)\dot{\theta}$$

$$\Rightarrow \ddot{\theta} + \frac{(k\ell + \frac{5}{3}Mg)}{\frac{5M\ell}{3}}\theta = 0 \qquad \theta << 1 \Rightarrow \cos\theta \approx 1 , \sin\theta \approx \theta ,$$

$$\Rightarrow \omega^2 = \frac{3k\ell + 5Mg}{5M\ell} \Rightarrow T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{5M\ell}{5Mg + 3k\ell}}$$

Initial condition:  $\theta(0) = 0$ ,  $\dot{\theta}(0) = \dot{\theta}_0$ 

Set 
$$\theta(t) = A\cos\left(\omega t + \phi\right)$$
  $\Rightarrow \theta(t) = A\cos\left(\sqrt{\frac{3k\ell + 5Mg}{5M\ell}} \cdot t + \phi\right) :: \theta(0) = 0 \Rightarrow \phi = \frac{\pi}{2}$ 

相對於轉軸,合力舉為零
$$\longrightarrow$$
角動量守恆  $\overrightarrow{L_i} = \overrightarrow{L_f}$ 

$$L_i = -\frac{\ell}{2} \frac{4M}{3} v, \quad L_f = I \dot{\theta}_0 = \frac{5}{3} M \ell^2 \dot{\theta}_0, \quad \Rightarrow \dot{\theta}_0 = -\frac{2v}{5\ell}$$

$$\dot{\theta}(0) = \frac{d\theta}{dt}(t=0) = -A\omega\sin(\phi) = -A\sqrt{\frac{3k\ell + 5Mg}{5M\ell}}\sin(\phi) = \dot{\theta}_0 = -\frac{2v}{5l}$$

$$A = \frac{2v}{5l} \sqrt{\frac{5M\,\ell}{3k\ell + 5Mg}}$$

$$\Rightarrow \theta(t) = \frac{2v}{5l} \sqrt{\frac{5M\ell}{3k\ell + 5Mg}} \cos\left(\sqrt{\frac{3k\ell + 5Mg}{5M\ell}}t + \frac{\pi}{2}\right)$$

or 
$$\theta(t) = \frac{2v}{5l} \sqrt{\frac{5M\ell}{3k\ell + 5Mg}} \sin\left(\sqrt{\frac{3k\ell + 5Mg}{5M\ell}}t\right)$$

#### **HW12-3:** Problem 19-32 in Giancoli (pp. 523)

The PV diagram in Fig. 19–31 shows two possible states of a system containing 1.55 moles of a monatomic ideal gas.  $(P_1=P_2=455 \text{ N/m}^2, V_1=2.00 \text{ m}^3, V_2=8.00 \text{ m}^3.)$ 

- (a) Draw the process which depicts an isobaric expansion from state 1 to state 2, and label this process A.
- (b) Find the work done by the gas and the change in internal energy of the gas in process A.
- (c) Draw the two-step process which depicts an isothermal expansion from state 1 to the volume  $V_2$  followed by an isovolumetric increase in temperature to state 2, and label this process B.
- (d) Find the change in internal energy of the gas for the two-step process B.

#### Solution:

- (a) isobaric: no change in pressure  $(1 \rightarrow 2)$
- (c) isothermal: no change in temperature  $\Rightarrow PV = \text{constant} \quad (1 \rightarrow 3)$
- isovolumetric: no change in volume  $(3\rightarrow 2)$

(isochoric)





$$W = \int_{i}^{f} P dV = P \int_{i}^{f} dV = P(V_{f} - V_{i}) = P \Delta V$$

$$W = P(V_{2} - V_{1}) = (455 \text{ N/m}^{2})(8m^{3} - 2m^{3}) = 2730 J$$

$$\Delta E_{\text{int}} = n \frac{f}{2} R \Delta T \quad \text{for ideal monatomic gas} : f = 3$$

$$= \frac{3}{2}(nRT_2 - nRT_1) = \frac{3}{2}(P_2V_2 - P_1V_1) = \frac{3}{2}P(V_2 - V_1) = \frac{3}{2}W$$
$$= 4.10 \times 10^3 J$$

(d)

$$\Delta E_{\text{int}} = \frac{3}{2} nR \Delta T = \frac{3}{2} (nRT_2 - nRT_1) = \frac{3}{2} (P_2 V_2 - P_1 V_1)$$
$$= \frac{3}{2} P(V_2 - V_1) = \frac{3}{2} W = 4.10 \times 10^3 J$$