ML for Mental Health Awareness

Ankita Devasia & Lydia Yu

Significance & Objective

- Mental health disorders account for many of the most prevalent causes for disability in developed nations
- There is still widespread negative social stigma surrounding mental health
- 50% of individuals with severe mental health disorders go undiagnosed
- Many of these issues go unnoticed until they are very severe
- Providing people with a customized tool to predict their need for mental health treatment can bring greater awareness to and destignatize these issues

Data

- Kaggle dataset from a 2016 survey conducted by the OSMH (Open Sourcing Mental Health)
- 1400+ responses from employees in tech on 63 questions related to their mental health and workplace environment
- Variables include:
 - Incidence of mental health disorder
 - Family history of mental health disorders
 - Work position
 - Ability to seek mental health resources at work

Data Preprocessing

- 1. Renaming columns from survey questions to shortened forms
- 2. Removing age outliers
- 3. Removing unimportant features
- 4. Imputing other NA values with the most frequent value
- 5. Encoding categorical variables
- 6. Encoding the dependent variable "mh_disorder_current"
 - a. Yes/Maybe = 1, No = 0
- 7. Filling in missing values for "tech_flag" variable
- 8. Randomly split the resulting dataset into 70% train and 30% test

EDA: Demographic Information

EDA: Seeking Professional Treatment

Random Forest

- In-sample R²: 0.969
- Out-sample R²: 0.884

Random Forest Variable Importance

XGBoost

- In-sample R²: 0.879
- Out-sample R²: 0.872

Optimal Classification Tree

• Test AUC: 0.832

Comparing the Models

- RF had higher R² and lower false negatives than XGBoost
 - Variable importances show that the models used very obvious predictors
- OCT was very interpretable, not much less accurate, but too simple

Limitations and Further Work

- Output variable is whether or not they currently have a mental health disorder, not whether or not they should seek treatment.
 - Possible to need treatment even without having a disorder
- Survey data can be biased and have non-standardized scaling of responses
- No data on physical health
- Limited to tech company employees

Optimal Policy Trees

- Assign best treatment (seek professional treatment or not?) based on individual's personal features
- Conduct follow-up survey on how much assigned treatment improved condition (outcome)
- Train OPT on these treatments and outcomes
- Can extend this concept to multiple different types of treatments to generate personalized prescriptions for different individuals
- Would require much more accurate data

Conclusion

- Survey data is not sufficient in predicting mental health disorders
- Results in models that give "obvious" results
- More objective and accurate data is needed, but difficult to obtain

References

- https://www.hopkinsmedicine.org/health/wellness-and-prevention/mental-health-disorder-statis-tics
- https://mentalillnesspolicy.org/consequences/percentage-mentally-ill-untreated.html
- https://osmhhelp.org/research