

Faculty of Science, Engineering and Technology

24th March 2014

Swinburne University of Technology, Australia

Presented by Feifei Chen

Automated Analysis of Performance and Energy Consumption for Cloud Applications

ICPE 2014

Agenda

Introduction				
Appro	pach			
Experime	nt Setup			
Experiment	tal Results			
Conclu	usion			

Clouds offer Subscription-Oriented IT Services: {computation, application, data,..} as a Service (..aaS)

Several Benefits.....

Dark side

High CO2 emissions contribution

- New York Times 2012: Data centres use about 30 billion watts of electricity per hour worldwide, equivalent to the output of about 30 nuclear power plants
- High Operational Cost

SLA Requirement

A key objective of cloud service providers:

develop resource provisioning and management solutions at minimum energy consumption while still guaranteeing Service Level Agreements (SLAs).

Understand both system performance and energy consumption pattern

Agenda

Approach

Experiment Setup

Experimental Results

Conclusion

Understand both system performance and energy consumption pattern:

- running extensive experiments with heterogeneous parameters/metrics and workloads;
- collecting appropriate cloud and application energy/ performance measurements;
- performing energy/performance trade-off analysis.

Performance and energy analysis tool - StressCloud


```
    gerault.cloudgeneraluserwork
    g detault.cloudgeneraluserwork

                                                       @ detault.cloudgeneraluserwork @ testnew.c
                                                                         GetProductDetail
             (a)
                                                                         Comm GET
                                                         Checkout
              Comm GET
                                                                                                 <ParentTask TaskID="0" TaskName
                                                                                                                                  Comm GET">
                                                          Comm POST
                                                                                                     <ResourceLocation>http://136180.6.235:8080</ResourceLocation>
              Data SELECT
                                                                                                 </ParentTask>
                                                                            0.1
                                   GetCart
                                                          Comp CPU
                                                                                                 <Path PathID="0">
                                   Comm POST
                                                                                                     <CommunicationServiceClient ServiceClientID="0" ServiceClientName="Client">
                                                                                      0.1
                                                         Data INSERT
                                                                                   0.7
                                                                                                         <isMultiThread>false</isMultiThread>
                                                                                                         <ServiceClientNumber>10</ServiceClientNumber>
                                                                                                                                                              (c)
 GetIndex
                                  CreateNewAccout
                                                                                                         <ClientState false </ClientState>
 Comm GET
                                                                                                     </CommunicationServiceClient>
                                  Comm POST
                                                                                                     <CommunicationTaskPage PageID="0" PageName="StartPage">
                                                   0.1
                                                                                                         <ServiceResult>start
                                  Data INSERT
                                                                                                         <DelayMax>0.0</DelayMax>
    0.1
                                                               0.4
                                                                                                         <DelayMin>0.0</DelayMin>
                                              0.9
                                                                                   GetProduct
                                                                                                          PageData>Start</PageData>
                GetHelp
                                               GetCategory
                                                                                                         <PageDataType>Start</PageDataType>
                                                                                   Comm GET
                                                                                                         <PageState>false</PageState>
                 Comm GET
                                                Comm GET
                                                                                                     </CommunicationTaskPage>
                                                                                                     <CommunicationTaskAction ActionID="0" ActionName="GET">
       <GeneralUserClient UserClientID="0" UserClientName="Client">
                                                                                                         <RepeatTime>1</RepeatTime>
           <ClientState>false</ClientState>
                                                                                                         <ActionType>GET</ActionType>
       </GeneralUserClient>
                                                                                                         <DataAmount>40.0</DataAmount>
       <StartPoint StartPointID="0" StartPoint="Start">
           <IsStartState>false</IsStartState>
                                                                                                         <PacketSize>40.0</PacketSize>
           <IsTerminateState>false</IsTerminateState>
                                                                                                         <DataType>TEXT</DataType>
           <State>false</State>
                                                                                                         <ActionState>false</ActionState>
       </StartPoint>
                                                                                                         <TransitProbabilityFromPriorPage>1.0</TransitProbabilityFromPriorPage>
       <CompositionalTask TaskID="0" TaskName="GetIndex">
                                                                                                     </CommunicationTaskAction>
           <TransitProbabilityFromPriorPage>1.0</TransitProbabilityFromPriorPage>2.0
                                                                                                     <CommunicationTaskPage PageID="0" PageName="GETResult">
           <IsStartState>false</IsStartState>
                                                                                                         <ServiceResult>GETResult/ServiceResult>
           <IsTerminateState>false</IsTerminateState>
           <State>false</State>
                                                                                                         <DelavMax>10.0</DelavMax>
           <Sub CommunciationIntensiveTask TaskID="0" TaskName="Comm GET">
                                                                                                         <DelayMin>0.0</DelayMin>
               <WorkloadModelFile>C:\test\decisionmodel\JPetStore\SET.cmi
                                                                                                         <PageData>TEXT</PageData>
               <RepeatTime>1.0</RepeatTime>
                                                                                                         <PageDataType>TEXT</PageDataType>
               <ResourceLocation>http://136.186.6.235:8080</ResourceLocation>
                                                                                                         <PageState>false</PageState>
               <NumberOfVM>1</NumberOfVM>
               <VMTypeRequired>Large</VMTypeRequired>
                                                                                                     </CommunicationTaskPage>
               <IsStartState>false</IsStartState>
                                                                                                     <CommunicationTaskAction ActionID="0" ActionName="EndService">
               <IsTerminateState>false</IsTerminateState>
                                                                                                         <RepeatTime>1</RepeatTime>
       (b)
               <State>false</State>
                                                                                                         <ActionType>END</ActionType>
           </Sub CommunciationIntensiveTask>
                                                                                                         <DataAmount>40.0</DataAmount>
       </CompositionalTask>
       <EndPoint EndPointID="0" EndPoint="End">
                                                                                                         <PacketSize>40.0</PacketSize>
           <IsStartState>false</IsStartState>
                                                                                                         <DataType>TEXT</DataType>
           <IsTerminateState>false</IsTerminateState>
                                                                                                         <ActionState>false</ActionState>
           <State>false</State>
                                                                                                         <TransitProbabilityFromPriorPage>1.0</TransitProbabilityFromPriorPage>
       </EndPoint>
                                                                                                     </CommunicationTaskAction>
```


Performance and energy analysis tool - StressCloud

Workload Model:

A set of Tasks modelling the target cloud application behaviour

- ✓ Computation-Intensive
 - ✓ CPU-Intensive
 - ✓ Memory-Intensive
- ✓ Data-Intensive
- ✓ Communication-Intensive

Task:

A stochastic form chart specifying the detailed user requests and required responses from the cloud system

Task Type	Service Type in StressCloud
CPU-intensive	Fibonacci sequence calculating
Memory-intensive	File processing
Data-intensive	Rational database operating
Communication-intensive	HTTP request/response

Performance and energy analysis tool - StressCloud

Cloud Architecture Model:

All available resources in the target cloud system and their detailed configurations

Agenda

Approach

Experiment Setup

Experimental Results

Conclusion

Experiment Setup

> Energy and performance profiling framework

> VM configuration

Virtual Machine	Number of Cores	RAM	Hard Disk
Small	1	2GB	80GB
Medium	2	4GB	80GB
Large	3	6GB	80GB
XLarge	4	8GB	80GB

Test cases

Workload Type	Test set Number	Test Point
CPU-intensive	1	Resource & Workload
CPU-intensive	2	Resource Allocation Strategy
Memory-intensive	1	Resource & Workload
Data-intensive	1	Workload
Data-intensive	2	Workload
Communication- intensive	1	Workload
Communication- intensive	2	Resource Allocation Strategy
Mix Computation- and Data-intensive	1	Workload
Mix Computation- and Data-intensive	2	Resource Allocation Strategy
Mix Computation-, Data- and Communication- intensive	1	Workload
Mix Computation-, Data- and Communication- intensive	2	Resource Allocation Strategy

INFORMATION TECHNOLOGY RESEARCH

Agenda

Approach

Experiment Setup

Experimental Results

Conclusion

CPU-Intensive Workload

❖ Test set #1: Keeping the number of tasks constant, while gradually increasing the CPU cores allocated to the task, and the workload of the task.

CPU-Intensive Workload

❖ Test set #2: Keeping the number of tasks and resource allocated to the tasks constant, while changing the resource allocation strategy.

Memory-Intensive Workload

TECHNOLOGY RESEARCH

* Test set #1: Keeping the number of tasks constant, while gradually increasing the size of RAM allocated to the task, and the workload of the

Data-Intensive Workload

❖ Test set #1: Keeping the number of tasks constant, while gradually increasing the workload of each task

Data-Intensive Workload

❖ Test set #2: Keeping the ratio of each type of operation and total number of tasks constant while changing record size of database requests and user request number per second

Communication-Intensive Workload

❖ Test set #1: Keep the resource allocation strategy constant while increasing the number of user requests and the packet size of each request

Communication-Intensive Workload

❖ Test set #2: Keep the packet size of each request constant while changing the number of user request per second and resource allocation strategy

Mix Computation- and Data-Intensive Workload

❖ Test set #1: Keep the resource allocation strategy and total amount of data processed constant, while changing the size of each data set.

Mix Computation- and Data-Intensive Workload

❖ Test set #2: Keep the total amount of data processed and size of each data set constant, while changing the resource allocation strategy

Mix Computation-, Data- and Communication-Intensive Workload

Test set #1: : Keep the resource allocation strategy constant while changing workload

Mix Computation-, Data- and Communication-Intensive Workload

❖ Test set #2: Keep the workload constant while changing the resource allocation strategy

Agenda

Conclusion

Approach
Experiment Setup
Experimental Results

Conclusion

- StressCloud
- Experiment results show energy consumption and system performance are related to:
 - > Organisation of Cloud application workload.
 - > Type of Cloud application workload.
 - > Resource allocation strategy.

Thank You!

References

- Chen, F., Grundy, J.C., Schneider, J-G, Yang, Y. and He, Q. Automated Analysis of Performance and Energy Consumption for Cloud Applications, 2014 ACM/SPEC International Confernce on Performance Engineering, Dublin, Ireland, Mar 23-26 2014, ACM Press.
- Chen, F., Grundy, J.C., Yang, Y., Schneider, J-G., He, Q. Experimental Analysis of Task-based Energy Consumption in Cloud Computing Systems, 4th ACM/SPEC International Conference on Performance Engineering (ICPE2013), April 21-24 2013, Praque, Czech Republic, ACM Press
- Chen, F., Schneider, J-G., Yang, Y., Grundy, J.C. and He, Q. An Energy Consumption Model and Analysis Tool for Cloud Computing Environments, 1st ICSE Workshop on Green and Sustainable Software Engineering, Zurich, Switzerland, 3rd June 2012.
- Cai, Y., Grundy, J.C. and Hosking, J.G. Synthesizing Client Load Models for Performance Engineering via Web Crawling, In Proceedings of the 2007 IEEE/ACM International Conference on Automated Software Engineering, Atlanta, Nov 5-9 2007, IEEE CS Press.
- Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C. and Weber, G. Realistic Load Testing of Web Applications, In Proceedings of the 10th European Conference on Software Maintenance and Re-engineering, Berlin, 22-24 March 2006.
- Grundy, J.C., Hosking, J.G., Li, L. And Liu, N. Performance engineering of service compositions, ICSE 2006 Workshop on Service-oriented Software Engineering, Shanghai, May 2006.
- Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE: Generating Distributed System Test-beds from High-level Software Architecture Descriptions, Automated Software Engineering, Kluwer Academic Publishers, vol. 12, no. 1, January 2005, pp. 5-39.

