CITY UNIVERSITY OF LONDON EST 1894

Module IN3031 / INM378 Digital Signal Processing and Audio Programming

Tillman Weyde t.e.weyde@city.ac.uk

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 4

Learning Outcomes

Knowledge and understanding:

- Appraise the principles and theories of signal processing.
- Critically evaluate how these principles and theories are used in computer software.
- Apply relevant knowledge in the creation of games and multimedia applications.

Skills

- Design the integration of music and audio in an interactive software.
- Create the music or audio elements of an interactive software.
- Implement DSP functionality in Matlab
- Implement signal analysis in Matlab

INM378/IN3031
DSP and Audio Programming

Office Hours/Contact

For general discussions you can use the super-module on Moodle: http://moodle.city.ac.uk/course/view.php?id=25442

You can reach me via e-mail for questions and to arrange meetings.

My office hours are normally Tue 14-15 and Wed 13-14, please check for short term changes here: https://webapps.city.ac.uk/sst/surgery/list.html?username=sa746

What This Module Is About

· Basics:

signals, sampling, frequency, spectrum

Theory:

correlation and convolution, Fourier transform

 DSP system architectures: streams, channels, filters

 Data analysis: audio and images, financial data

 Game programming: audio and music for games

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 5

Course texts

Main text:

Smith, Steven: Digital Signal Processing: a practical guide for engineers and scientists. Newnes, 2003.

Available in PDFs on http://dspguide.com

Other interesting texts

Lyons, Richard G. Understanding Digital Signal Processing, 3/E. Pearson Education India, 2011. (similar to Smith)
Rocchesso, Davide: Introduction to Sound Processing.
Florence, 2003, http://profs.sci.univr.it/~rocchess/SP/
Stevens, R. & Raybould, D.: Game Audio Implementation: A Practical Guide Using the Unreal Engine. 2011. (quite specific)
Marks, A. & Novak, J.: Game Development Essentials: Game Audio Development. 2008. (non-technical)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 8

Week 1: Signal Basics

- · What is a Signal?
 - From latin signum (sign): information sent through a medium, from humans or technical, natural or social processes
 - Typically represented as a uniform array or sequence of numbers, possibly higherdimensional

DSP Functions

Typical functions needed:

- Recording:
 - capturing sound, image, video, sensors
- · Digital sound, image, video effects
- · Noise reduction, data compression
- Signal analysis and retrieval: sound, music, image, sensor, financial (...)
- Spatial audio: games, VR
- · Video and 3D graphics (not part of this module)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 6

Labs

Tuesday 20:00-20:50, room EG06

Tools:

Mainly:

MATLAB (signal processing and analysis)

FMOD (games engine w/ sound modules)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 9

Signal Processing

- What is Signal Processing?
 - Combines mathematics, physics and technology
 - Transfer, manipulation, analysis, and synthesis of information contained in signals
 - Signals are variable in time and space
 - Sound
- Sensors
- Images
- Financial data
- Radio
- Text and symbols

Signal Transfer (Radio)

 Analog (e.g. radio, TV, 1G mobiles)

 Digital (DAB, digital TV, 2G+ mobiles. computers, ...)

INM378/IN3031 DSP and Audio Programmin

Signals

- In techology, our signals are numeric values recorded over time or space, e.g.
 - air pressure/movement (sound)
 - brightness (image, video)
 - acceleration, rotation (motion)
 - social or financial data
- Signals are often recorded oscillations (waves)

INM378/IN3031 DSP and Audio Programming

Basic Wave Properties

- Frequency speed of oscillations: faster oscillations mean
 - smaller structure in images
 - faster movement or change
 - higher pitch in sound
- · Amplitude strength of oscillations: stronger oscillations mean
 - wider movement, greater change
 - louder sound, brighter light

Digital Signal Processing

- Digital representations of signals (in bits)
- (Specialised) digital computers for processing
- · Used everywhere in tech, e.g.
 - telephony
 - television & radio
 - games
 - GPS, sensors, ...
- It's all in your pocket:

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 14

Physical Waves

- Movement travels through a medium (e.g. air) and the medium returns to previous state (oscillation).
- Movement direction depends on physical situation (compressibility, environment).

- longitudinal: movement on axis of travel (air)

- transversal: orthogonal movement (e.g. water)

INM378/IN3031 DSP and Audio Programming

Period and Frequency

period p: duration of a periodic signal's cycle

frequency f: number of cycles per time f = 1/p

Signals and Waves

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 15

Wave Animation

Animated figure of a longitudinal wave (e.g. sound). The wave travels, but the particles oscillate.

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 18

1.0 Hz

Frequency

Number of cycles per time. Measured in Hertz (Hz, 1/sec).

UNIVES

INM378/IN3031
DSP and Audio Programming
Lecture 1 / Slide 20

Amplitude

Amplitude: **scale** of values, often measures at crest and trough peaks, (e.g., for sound **maximal deviations** from normal air pressure)

INM378/IN3031
DSP and Audio Programming
Lecture 1 / Slide 22

Decibels

- Signals typically have a **wide range** of values, from very large to very small
- dB is a logarithmic expression of ratios, especially useful for very large and small numbers and ratios
- Definition:

 $a/b = x dB \text{ means } x = 10 \log_{10} (a/b)$

• In other words:

adding 10 dB corresponds to multiplying by factor 10

- Examples:
 - +3dB ~ *2 (approximately)
 - +20dB = *100 (exactly)

more examples ...

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 25

Sine & Cosine Functions in Signal Processing and Data Analysis

Sine/cosine functions sin(t)/cos(t)

- appear in basic physical processes
- in **audio** they are perceived as 'pure tones' or 'simple tones' (no 'overtones')
- can be used to analyse and generate signals

Sine and cosine are the building blocks of harmonic signal theory.

Signals: Mathematical Model

Signals are a **relevant quantity** y (air pressure, pixel value), as a **function** (typically) of time: y = f(t) (1-dimensional for audio) or **space**: y = f(x,y) (2-dimensional for images)

Graphs are useful, particularly for 1D signals:

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 23

Digital Signals: Sampling and Quantisation

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 26

Sine functions and simple harmonic motion

Simple oscillating system (mass *m* and a force growing by factor *k* with displacement **x** from *equilibrium point*), e.g. mass & spring, string under tension, electric LC circuit.

• Equation: $x = c \sin(\sqrt{k/m}t + \phi)$ ϕ depends on the **start time**

• System frequency **f** depends on **k** and **m**

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 21

Signal Energy and Power

Two definitions:

- Energy of a time variant signal: defined as the sum of the squares of the signal values over all time points energy(f) = sum,(f(t)²)
- Power: energy per time power(f) = energy(f)/time = sum,(f(t)²)/time = mean(f(t)²)

This matches physics for audio and electrical signals, not for images, values are already energies (of light).

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 24

Sampling

 Digital signals are sequences of samples (values) at discrete points in time or space.

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 27

Resonance

- Systems oscillate easily at natural frequency (simple harmonic motion)
- · Used in musical instruments
- · Can be modified by
 - changing m, e.g.
 - air volume (wind instruments, e.g. trombone)
 different string length and wid
 - different string length and width (piano, guitar, violin)
 - changing k
 - electrical capacitor (synthesizer)
 - string tension (quitar, ...)

INM378/IN3031 DSP and Audio Programming Lecture 17 Side 29

Complex Signals

- · real systems oscillate at more than one frequency
- several frequencies are added with different intensities these are called partials (or overtones or harmonics)
- $s(t) = a_0 f_0(t) + a_1 f_1(t) + + a_n f_n(t)$

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 31

Sine Waves in 2D

• In 2D there are different frequencies in both dimensions

INM378/IN3031
DSP and Audio Programming

Frequencies in Audio And Music

Harmonic and Inharmonic Signals

- Harmonic signals have integer ratios between fundamental f, and the other partials
- · Most musical sounds are (approximately) harmonic
- Bells have typically inharmonic sounds

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 32

Noise in 2D

• In 2D there is also noise

noise image image with noise

· Photos taken in low light often contain noise

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 35

Audio Frequencies Perceived by Humans

- Range approximately 20Hz 20,000 Hz
- Frequencies perceived logarithmically (Weber's law)
 1 octave up corresponds to 2 x frequency
- Sequential discrimination accuracy up to 3Hz

 (i.e. tones with that frequency difference are perceived as being different when heard one after the other)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 30

Noise

- · Tones contain energy at discrete frequency points
- Noise contains energy at all frequencies (e.g. analog radio not tuned to a station)

tone noise

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 33

Sine Waves in 2-D

 We can relate whole images to mixtures of sine waves, but it's not as straightforward (more in later weeks)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 36

Frequencies in Music

- In music frequencies are organised as pitches, which correspond to one fundamental frequency each.
- In all cultures a frequency ratio of 2:1 (an octave) has a special role, these tones are perceived to be highly related
- · Western music:
 - octave divided into 12 semitones
 - a semitone has a ratio of 12th root of 2
 (in equal temperament, there are other variants)
 - reference note is the 'middle A' at 440Hz

Frequencies in MIDI

- In MIDI (Musical Instrument Digital Interface) all notes have a number.
- 'middle A' has number 69,
- Freq of MIDI number X calculated as 440 * 2^([x-69]/12)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 40

The Cochlea

Unrolled length ~3cm

Vibrations **enter oval window** transmitted by the stapes Wave **transmission** on basilar membrane **varies by freq**

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 43

Frequency analysis in the

ear

Active sharpening of frequency perception by top-down mechanisms (**cochlear amplifier**).

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 38

The Human Ear

outer ear (ear flap and canal)

middle ear: eardrum (Tympanic membrane), hammer (Malleus), anvil (Incus), and stirrup (Stapes) transmit vibrations to the inner ear

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 41

Basilar Membrane

Hair cells on basilar membrane transform (mechanical) vibrations into (electro-chemical) nerve signals.

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 44

Masking

Sounds close in frequency and time mask weaker sounds. Used in lossy compression (MP3, WMA, OggVorbis)
A: normal audible threshold; B: threshold changed by tone C D: Masked tone

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 39

The Inner Ear

- •the vestibule (middle)
- •the semicircular canals (back, sense of balance)
- •the **cochlea** (front, connected to the auditory nerve)

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 42

Frequency Analysis in the Cochlea

Basilar membrane widens from basal (input) to apical end Resonance for higher frequencies at lower (basal) positions Different hair cells 'tuned' to different frequencies

INM378/IN3031 DSP and Audio Programming Lecture 1 / Slide 45

READING

Physics of waves:

http://www.physicsclassroom.com/Class/sound/soundtoc.html Lesson 1 to 5 with tests.

Next week:
Sampling
and Reconstruction
Signal Correlation