Barème.

- Calculs : chaque question sur 2 point, total sur 28 points, ramené sur 5 points, +40%.
- Problèmes : chaque question sur 4 points, total sur 132 points (V1) et 72 points (V2), ramené sur 15 points, +60% (V1) et +40% (V2).

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right).$$

	Calculs	Problème V1	Problème V2	Note finale
Transformation	c	p_1	p_2	$\varphi\left(1,4\frac{5c}{28}+1,6\frac{15p_1}{132}+1,4\frac{15p_2}{72}\right)$
Note maximale	22	73	46	17,6
Note minimale	0	10	26	2,4
Moyenne	$\approx 10,60$	$\approx 41,84$	$\approx 35,00$	$\approx 10,97$
Écart-type	$\approx 5,31$	$\approx 14,32$	$\approx 7,64$	$\approx 3,49$
Premier quartile	7,5	33, 5	28	9,15
Médiane	10	44, 5	34	11,3
Troisième quartile	14,5	49,75	43	12,8

Remarques générales.

Exercice vu en TD (V1).

Quelques confusions sur ce que l'on cherche à dénombrer. Notamment, si Y est disjointe de X, on a $Y \subset E \setminus X$ et non forcément $Y = E \setminus X$.

Autour du nombre e (Banque PT 2014, maths C) (V1).

Beaucoup ont du mal à écrire proprement un ensemble de solutions d'équation différentielle ou une primitive sous forme intégrale. C'est handicapant : entraı̂nez-vous un petit peu en reprenant des exercices de premier semestre. Il y avait deux questions de cours (7 et 12). Cela fait 8 points gratuits. Je m'étonne que certains n'y répondent pas. Vous devez savoir que $e \approx 2,72$ (ou du moins que $e \approx 2,5$). Vous devez donc savoir positionner $e \approx 2,72$ (ou du moins que $e \approx 2,72$).

ment sur [0,1] et justifier de même quelques inégalités. **1a)** N'oubliez pas de dire que R_n est dérivable.

L'écriture
$$\sum_{k=0}^{n} \frac{t^{k-1}}{(k-1)!}$$
 n'a pas de sens : que vaut $(-1)!$?

- 1b) L'énoncé n'était pas très rigoureux dans sa formulation (la solution générale) : cela ne vous dispensait pas de donner un résultat propre, que ce soit la forme d'une solution quelconque ou l'ensemble des solutions. À chaque fois, on manipule des fonctions, à noter comme telles $(t \mapsto \dots)$
- **1c)** Attention à la gestion de la portée des variables dans l'intégrale. J'ai lu un $t \mapsto \int_0^n \frac{t^n}{n!} e^{-t} dt$ du plus horrible effet.

L'écriture $e^x \int \frac{t^n}{n!} e^{-t} dt$ n'a pas de sens.

Le sujet menait vers la méthode de la variation de la constante. Rien ne vous interdisait cependant d'utiliser la formule de Taylor avec reste intégral.

- **2b)** Certains ont montré que u et v convergeaient vers une même limite, pour montrer que leur différence tendait vers 0 puis qu'elles étaient adjacentes. C'est très maladroit (et légèrement pénalisé).
- **2d)** Par passage à la limite, on obtient une inégalité large.

2eii) J'ai lu :
$$u_n \xrightarrow[n \to +\infty]{} e \text{ donc } \sum_{k=1}^n u_k \xrightarrow[n \to +\infty]{} ne$$
. Quelle **2** HORREUR **2**!

- 3) Attention à ne pas composer un équivalent à gauche : quelle Ahorreur !!
- 4) Il convenait au moins d'observer la tangente verticale en 0. Comme g est déjà définie en 0, il n'est pas question de l'y prolonger.
- 5) L'argument «fonction continue sur un segment» est inutile ici : vous avez étudié g entièrement à la question précédente.
- **6)** N'oubliez pas la question 0: la suite (t_n) est-elle bien définie? La croissance de -g ne donne pas $t_0 \leq -g(t_0)$.
- 10) Toute la question est d'encadrer $\frac{e^{-1} t_0}{2t_0}$. Ce n'est pas évident. Si vous ne le faites pas, la question est vide, comme l'ensemble des points que vous y gagnez.
- **11a)** Il fallait bien voir que x^{-x} n'est a priori pas défini en 0.
- 11ei) La justification de l'IPP n'entrait pas entièrement dans le cadre du programme de sup (logarithme en 0), mais personne ne l'a vu. Je ne l'ai pas pénalisé.
- 13) Une hypothèse à vérifier ici : la continuité de $t \mapsto \ln(1+t)$. Ne pas le faire vous coûte des points. Certains ont bien écrit l'hypothèse dans la question précédente mais ne l'ont pas vérifiée ici. Je ne le comprends pas.

Inégalité de Wirtinger (V2).

- 1) La cotangente n'est pas définie en 0 : elle n'y a ni limite finie, ni DL.
- 2) Il convenait de dériver la cotangente proprement. Une erreur, et c'était fini!
- 3) L'argument du 2 repose sur la dérivabilité de $f\varphi$. L'énoncé le précise bien : ce n'est vrai ni en a, ni en b. Il fallait justifier précisément le fait que vous aviez le droit de passer à la limite en u et en v. L'énoncé vous demandait de le détailler.

Dénombrement des involutions d'un ensemble fini (V2).

- **4a)** Dire que si E est de cardinal n alors E est en bijection avec [1,n] n'est pas utile. On dénombre $\mathcal{I}(E)$ et non E.
- **5)** Beaucoup l'ont vu, mais peu l'ont écrit simplement : $\forall f \in \mathcal{I}(E), f \in \mathcal{I}_{f(n)}$.
- **8b)** Si vous n'aviez pas réussi avec succès la 7, vous ne pouviez pas avoir de points ici : on vous donne la relation, qui permet d'obtenir très facilement celle de la 7.
- **8c)** L'argument de majoration permet de montrer qu'une suite tend vers $-\infty$. Il convenait d'utiliser celui d'encadrement.