IAML: Hierarchical Clustering

Victor Lavrenko and Nigel Goddard School of Informatics

Semester 1

Hierarchical clustering

- Selecting K question of granularity
 - how coarse or fine-grained is the structure in your data?
 - analogy: tidal waves or ripples on the surface?
 - real data: both, and probably everything in-between
 - no clustering algorithm able to pick K (some claim to)
- Instead of picking K find a hierarchy of structure
 - top levels coarse effects, low levels fine-grained
 - topmost cluster contains every point in the dataset
 - bottom level set of n singleton clusters, one per data point
 - strategies:
 - top-down: start with all items in one cluster, split recursively
 - bottom-up: start with singletons, merge by some criterion

Hierarchical K-means

- Top-down approach:
 - run K-means algorithm on the original data x₁...x_n
 - for each of the resulting clusters c_i: i = 1 ... K
 - recursively run K-means on points in c_i
- Fast: recursive calls operate on a slice: O(Knd log_Kn)
- Greedy: can't cross boundaries imposed by top levels
 - nearby points may end up in different clusters

Agglomerative clustering

- Idea: ensure nearby points end up in the same cluster
- Start with a collection C of n singleton clusters
 - each cluster contains one data point: c_i={x_i}
- Repeat until only one cluster is left:
 - find a pair of clusters that is closest: $\min_{i,j} D(c_i, c_j)$
 - merge the clusters c_i, c_j into a new cluster c_{i+j}
 - remove c_i,c_j from the collection C, add c_{i+j}
- Produces a dendrogram: hierarchical tree of clusters
- Need to define a distance metric over clusters
- Slow: O(n²d + n³) create, traverse distance matrix

Agglomerative clustering: example

Cluster distance measures

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between closest elements in clusters
 - produces long chains a→b→c→...→z
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
 - distance between farthest elements in clusters
 - forces "spherical" clusters with consistent "diameter"
- Average link: $D(c_1,c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1,x_2)$
 - average of all pairwise distances
 - less affected by outliers
- Centroids: $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|} \sum_{x \in c_1} \vec{x}\right), \left(\frac{1}{|c_2|} \sum_{x \in c_2} \vec{x}\right)\right)$
 - distance between centroids (means) of two clusters
- Ward's method: $TD_{c_1 \cup c_2} = \sum_{x \in c_1 \cup c_2} D(x, \mu_{c_1 \cup c_2})^2$
 - consider joining two clusters, how does it change the total distance (TD) from centroids?

Lance-Williams Algorithm

- D = {D_{i,j}: distance between \mathbf{x}_i and \mathbf{x}_j for i,j=1..N}
- for N iterations:

i,j = arg min $D_{i,j}$... pair of closest clusters add cluster: i+j, delete clusters i, j for each remaining cluster k:

$D_{k,i+i} =$	$\alpha_i D_{k,i}$	$+ \alpha_i D_{k,i}$	+ β D _{i,i} -	+ γ D _{k,i}	$-D_{k,i}$
1571 .]	1 1571	נייו נ	ַ נוי	• • 1371	1873

Method	$lpha_i$	$lpha_i$	$oldsymbol{eta}$	γ
Single linkage	0.5	0.5	0	-0.5
Complete linkage	0.5	0.5	0	0.5
Group average	$\frac{n_i}{n_i + n_j}$	$rac{n_j}{n_i + n_j}$	0	0
Weighted group average	0.5	0.5	0	0
Centroid	$\frac{n_i}{n_i + n_j}$	$\frac{n_j}{n_i + n_j}$	$\frac{-n_i \cdot n_j}{(n_i + n_j)^2}$	0
Ward	$\frac{n_i + n_k}{(n_i + n_j + n_k)}$	$\frac{n_j \!+\! n_k}{(n_i \!+\! n_j \!+\! n_k)}$	$\frac{-n_k}{(n_i+n_j+n_k)}$	0

Single link:

$$D_{k,i+j} = \frac{1}{2} (D_{ki} + D_{kj} - |D_{ki} - D_{kj}|)$$

= min {D_{ki}, D_{kj}}

$$\min_{a,b} = \max_{a,b} - |a-b|$$

Summary

- Clustering: discover underlying sub-populations
- K-means
 - fast, iterative, leads to a local minimum
 - need to pick k: look for unusual reduction in variance
- Mixture models
 - probabilistic version of K-means
 - Expectation Maximization (EM) algorithm
- Hierarchical clustering
 - top-down (K-means) and bottom-up (agglomerative)
 - single / complete / average link variations