ME5204 - Finite Element Analysis

Assignment 3 - L^2 Projection

Name - Jay Prajapati Roll number - ME21B143

Table of Contents

1	Question 1	3
	1.1 Interpolated function	4
	1.2 Number of points for convergence	6
	1.3 Plot for error vs mesh size	8
	1.4 Overlay of Actual and Interpolated function	10
2	Question 2	2
	2.1 L2 Projection	12
	2.2 Plot for error vs mesh size	16
	2.3 Contour Plot	18
	2.4 Error Plot	19

1 Question 1

• The main aim of this question is to first get the Interpolated function i.e. L^2 Projection of the following function given below.

$$f(x) = e^{\sin\left(\frac{\pi x^2}{4}\right)} \tag{1}$$

```
def func(x):
    return np.exp(np.sin(0.25 * np.pi * x * x))
```

• The other important thing is to get the interpolated function in a way that error is reduced since interpolating function does not pass through points which is given below.

$$min ||e||^2 = (f(x) - I_h f(x))^2$$
(2)

• Now, we know that error is orthogonal to space of polynomials g(x). This is called Galerkin orthogonality.

$$\int_{\Omega} R(x)g(x)dx = 0 \tag{3}$$

where R(x) is given as

$$R(x) = f(x) - I_h(x)$$

• The interpolating function is taken as piecewise polynomials which will lead to a sparse matrix A and possibly lead to a unique solution.

$$I_h(x) = \sum_{i=1}^n C_i \phi_i(x) \tag{4}$$

• The $\phi(x)$ function for x_i and its neighbourhood looks like below.

$$\phi_1(x) = \begin{cases} \frac{x_i - x}{x_i - x_{i-1}} & \text{if } x \in (x_{i-1}, x_i) \\ 0 & \text{else} \end{cases}$$

$$\phi_2(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}} & \text{if } x \in (x_{i-1}, x_i) \\ \frac{x_i - x}{x_{i+1} - x_i} & \text{if } x \in (x_i, x_{i+1}) \end{cases}$$

$$\phi_3(x) = \begin{cases} 0 & \text{if } x \in (x_{i-1}, x_i) \\ \frac{x - x_i}{x_{i+1} - x_i} & \text{if } x \in (x_i, x_{i+1}) \end{cases}$$

• Substituting (4) in (3) and solving, we get

$$\left(\int_{\Omega} \phi_I \phi_J dx\right) C_I = \int_{\Omega} f(x) \phi_I dx \tag{5}$$

$$AC = F \tag{6}$$

• We will be using Element-based thinking approach to get A and F matrix i.e. compute local a and local f for every element and do assembly it bigger matrix. Below code explains the assembly.

```
def Assembly(a, f, A, F, n):
    for i in range(2):
        for j in range(2):
        A[n[i]][n[j]] += a[i][j]

for i in range(2):
        F[n[i]] += f[i]
```

• For evaluating the integrals, I have used 3-point numerical integration method for which gauss points and weights are given by

$$\int \int f(x,y)dA = \int \int f(\varepsilon,\eta) |J| d\varepsilon d\eta = \sum_{I} f(\varepsilon,\eta) * |J| * w_{I}$$

$$Gauss \ points = (-\sqrt{0.6}, 0, \sqrt{0.6})$$

$$Weights = (5/9, 8/9, 5/9)$$

1.1 Interpolated function

• The following procedure shows how to evaluate the interpolated function given number of nodes:-

- 1. Step 1:- Initialize the A and F matrix as shown below. Also, divide the interval I = [0,3] into num_nodes using linspace functionality of python. And similarly assign nodes to each element.
- 2. <u>Step 2</u>:- Start the loop over all elements. Access indices of nodes in the elements and extract its coord.
- 3. <u>Step 3</u>:- Start loop over gauss integration points for each element. Initialize the Shape function denoted by N and its derivative by dN. Evaluate the Jacobian with following equation.

$$Jac = dN^{T}coord$$

4. Step 4:- Evaluate the points value and then calculate the local matrix a and f using below given formula.

$$a = N^{T}N \times Jac \times wt[j]$$
$$f = N \times func(X) \times Jac \times wt[j]$$

- 5. Step 5:- Assembly the evaluated local a and local f matrix using the Assembly function show above.
- 6. **Step 6**:- Final step is to get the C matrix after completing both the loops.

$$C = A^{-1} F (7)$$

• These values of C substituted in (4) gives you the Interpolated function. Below code shows all the steps.

```
for j in range(3):
    pt = gp[j]
    N = np.array([(1 - pt)/2, (1 + pt)/2])
    dN = np.array([-0.5, 0.5])
    Jac = dN.T @ coord
    X = N @ coord
    a = np.outer(N, N) * Jac * wt[j]
    f = func(X) * wt[j] * Jac * N
    Assembly(a, f, A, F, n)

A_inv = np.linalg.inv(A)
    C = A_inv @ F
    return C

C = Compute_Interpolated_Function(num_nodes)
```

1.2 Number of points for convergence

- The following shows the procedure to compute error in L^2 Projection.
- A slight modification in code for computing gives us the error. We will evaluate the Actual functions' value using X and interpolated functions' value using given formula.

$$I_h(x) = N \times local_c^T$$

• The error can be computed using given formula and then at the end will take square root of the error.

$$error^{2} = \sum_{i=1}^{n} \sum_{j=1}^{3} (f(x_{i}) - I_{h}(x_{i}))^{2} \times Jac \times wt[j]$$

```
for j in range(3):
    pt = gp[j]
    N = np.array([(1 - pt)/2, (1 + pt)/2])
    dN = np.array([-0.5, 0.5])
    Jac = dN.T @ coord
    X = N @ coord
    f_x = func(X)
    I_h_x = N @ local_c.T
    error += (f_x - I_h_x)**2 * Jac * wt[j]

error = np.sqrt(error)
    return error

error = Compute_Error(C, num_nodes)
```

• The following function was run for given num_nodes and computed the error until it reached less than 1×10^{-5} .

• The solution converged at 700 number of nodes as error is $9.98350303369096 \times 10^{-6}$ and for 699, error is $1.0012132352988598 \times 10^{-5}$.

Nodes	Mesh size	Error
10	0.33333333	7.62830609e-02
25	0.125	8.72076571e-03
50	0.06122449	2.05932399e-03
100	0.03030303	4.99749830e-04
200	0.01507538	1.23306490e-04
300	0.01003344	5.45857195e-05
400	0.0075188	3.06462914e-05
500	0.00601202	1.95919062e-05
600	0.00500835	1.35956178e-05
699	0.00429799	1.00121324e-05
700	0.00429185	9.98350303e-06

• Hence, the number of points required such that error in L^2 norm is less than 1×10^{-5} is **700**.

1.3 Plot for error vs mesh size

• The graph for error vs mesh size is plotted using matplotlib as shown below. The linear regression method is used to evaluate the slope i.e. rate of convergence of the L^2 Projection.

```
error.append(Compute_Error(C, num_node))
    error = np.array([error])
    log_mesh = np.log(mesh.T).flatten()
log_error = np.log(error.T).flatten()
    slope, intercept, r_value, p_value, std_err
                           = stats.linregress(log_mesh, log_error)
    plt.figure(figsize=(8, 6))
    plt.plot(log_mesh, log_error, marker='o'
                                , linestyle='-', label='Data')
    plt.plot(log_mesh, slope * log_mesh + intercept
        , linestyle='--', color='red', label=f'Fit: slope={slope:.15f}')
    plt.xlabel('log(mesh size)')
    plt.ylabel('log(error)')
    plt.title('Log-Log Plot of Error vs. Mesh size')
    plt.grid(True)
    plt.legend()
    plt.show()
    print(f"Rate of Convergence is : {slope}")
Plot_Error_Mesh()
```

• Below given is the log-log plot of error as function of mesh size. For which rate of convergence comes out to be **2.036702130217686**.

 $Rate\ of\ Convergence = 2.036702130217686$

Figure 1: Error vs Mesh size

1.4 Overlay of Actual and Interpolated function

• The Actual function is evaluated at 10,000 points and interpolated function at 1000 points. And both are shown on the same plot to be represented as an overlay.

```
def Plot_Comparison():
    num_nodes = 1000
    nodes = np.linspace(0, 3, num_nodes)
    C = Compute_Interpolated_Function(num_nodes)
    fine_points = np.linspace(0, 3, 10000)
    actual_func_values = func(fine_points)

# Plot the actual function and the interpolated function
    plt.figure(figsize=(10, 6))

# Plot actual function with a solid black line and no markers
```


Figure 2: Actual vs Interpolated Function

• From the above plot, we can infer that our Interpolated function is good approximation of the given function (1).

2 Question 2

• The main objective of this question is to first get L^2 Projection for IITM_Map. The Assumption is that the heat source follows a Multivariate Gaussian distribution with centre of Gajendra circle as its mean. Equation of which is represented below.

$$f(x) = \frac{exp(\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))}{2\pi \left(det(\Sigma)\right)^{-1/2}}$$
(8)

where μ is [286.9, 260.6] extracted from geo file (centre of black circle). Also, base radius is equal to diameter of inner circle which is equal to 3 units.

• Another Assumption is that we assume that 99.73% is distributed or covered by this Gaussian distribution hence sigma will be r/3, Also, due to symmetry covariance of x and y is assumed to be zero. So, covariance matrix looks like this

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{9}$$

• Below code represents how the function is calculated.

```
cov = np.array([[sig, 0], [0, sig]])
cov_det = np.linalg.det(cov)
cov_inv = np.linalg.inv(cov)

def func(x):
    numerator = np.exp(-0.5 * (x - mean).T @ cov_inv @ (x - mean))
    denominator = 2 * np.pi * np.sqrt(cov_det)
    return numerator / denominator
```

2.1 L2 Projection

ullet The L^2 Projection of the given function is taken as a piecewise polynomials which is given below.

$$I_h(x) = \sum_{i=1}^n C_i \phi_i(x)$$
 (10)

• Now, we know that error is orthogonal to space of polynomials g(x). This is called Galerkin orthogonality.

$$\int_{\Omega} R(x)g(x)dx = 0 \tag{11}$$

where R(x) is given as

$$R(x) = f(x) - I_h(x)$$

• Substituting (10) in (11), we get

$$\left(\int_{\Omega} \phi_I \phi_J dx\right) C_I = \int_{\Omega} f(x) \phi_I dx \tag{12}$$

$$AC = F \tag{13}$$

• For evaluating the integrals, I have used 3-point numerical integration method by Gauss-Legrendre Quadrature. The Gauss points and weights are also given below.

$$\int \int f(x,y)dA = \int \int f(\varepsilon,\eta) |J| d\varepsilon d\eta = \sum_{I} f(\varepsilon,\eta) * |J| * w_{I}$$

$$Gauss \ points = (2/3, 1/6), (1/6, 2/3), (1/6, 1/6)$$

$$Weights = (1/6, 1/6, 1/6)$$

- The following procedure explains on how is C calculated and then error is calculated for a particular mesh size.
 - 1. <u>Step 1</u>:- Initialize the A and F matrix as shown below. For reading the mesh file, I have used meshio library, the code for which is shown below.

```
def Read_Data():
    file = meshio.read(file_path)
    nodes = file.points
    elements = file.cells_dict['triangle']
    nodes = nodes[:, : 2]
    return nodes, elements

nodes, elements = Read_Data()
num_nodes, d = nodes.shape
```

- 2. Step 2:- Start the loop over all elements. Access indices of nodes in the elements and extract its coord.
- 3. <u>Step 3</u>:- Start loop over gauss integration points for each element. Initialize the Shape function denoted by N and its derivative by dN. Evaluate the Jacobian with following equation.

$$Jac = dN^{T}coord$$

4. Step 4:- Evaluate the points value and then calculate the local matrix a and f using below given formula.

$$a = N^T N \times det(Jac) \times wt[j]$$

$$f = N \times func(X) \times det(Jac) \times wt[j]$$

5. **Step 5**:- Assembly the evaluated local a and local f matrix using the Assembly function show below.

```
def Assembly(a, f, A, F, n):
    for i in range(3):
        for j in range(3):
        A[n[i]][n[j]] += a[i][j]

for i in range(3):
        F[n[i]] += f[i]
```

6. Step 6:- The next step is to get the C matrix after completing both the loops. Here, I have made an Engineering Approximation which is that A matrix has 2-3 rows, columns as a zero which leads to a Singular matrix and not getting a solution which is to due to some irregularity in mesh itself. So I have added a tolerance value to A matrix which is very small so that inverse is also evaluated and does not affect the solution much.

$$C = A^{-1} F (14)$$

```
def Compute_Interpolated_Function(num_nodes):
    A = np.zeros((num_nodes, num_nodes))
    F = np.zeros((num_nodes, 1))
```

7. Step 7:- For computing error it is similar to question 1, just shape function N and its derivative dN changes.

```
def Compute_Error(C):
     error = 0.0
     for e in elements:
         n = np.array(e[:3], dtype=int)
         local_c = C[n, 0]
         coord = np.array([nodes[n[0]], nodes[n[1]],
                                                   nodes[n[2]]])
         for j in range(3):
              pt = gp[j]
              N = np.array([1 - pt[0] - pt[1], pt[0], pt[1]])
dN = np.array([[-1, -1], [1, 0], [0, 1]])
Jac = dN.T @ coord
              \overline{X} = \overline{N} @ coord
              f_x = func(X)
               I_h_x = N @ local_c.T
              error += (f_x - I_h_x)**2 * np.linalg.det(Jac)
                                                                 * wt[j]
     error = np.sqrt(error)
     return error
```

• These values of C substituted in (10) gives you the Interpolated function or the L^2 projection of the given FE mesh.

2.2 Plot for error vs mesh size

• The below given table summarises all nodes and elements and its corresponding error evaluated according to previous section.

Nodes	Elements	Error
6450	12534	0.132410239599194
4475	8629	0.169716994230606
4347	8383	0.202336699820492
4189	8074	0.149912547070967
3926	7555	0.178616928667426
2751	5254	0.358493104489654
2148	4088	0.418517213027262
1965	3734	0.378775974974415
1926	3659	0.386533158534293

• The mesh size is evaluated by assuming average area of the mesh's square root which is given as below.

$$h = \sqrt{\frac{Area\ of\ IITM}{Elements}}$$

where Area of IITM as calculated in previous assignment is 130155.73500000025 sq units

• The below given code is used to generate the following log-log plot of error vs mesh size.

```
def Plot_Error_Mesh_Size():
    error = np.array([0.132410239599194,.., 0.386533158534293])
    Elements = np.array([12534,..., 3659])
    h = np.sqrt(130155.73500000025 / Elements)
```

```
log_mesh = np.log(h.T).flatten()
log_error = np.log(error.T).flatten()
slope, intercept, r_value, p_value, std_err
               = stats.linregress(log_mesh, log_error)
plt.figure(figsize=(8, 6))
plt.scatter(log_mesh, log_error, marker='o',
                          linestyle='-', label='Data')
plt.plot(log_mesh, slope * log_mesh + intercept,
linestyle='--', color='red', label=f'Fit: slope={slope:.15f}')
plt.xlabel('log(mesh size)')
plt.ylabel('log(error)')
plt.title('Log-Log Plot of Error vs. Mesh size')
plt.grid(True)
plt.legend()
plt.show()
print(f"Rate of Convergence is : {slope}")
```


Figure 3: log-log plot of Error vs Mesh size

• The rate of convergence is **2.014731670753645**. Henc it is close to 2, so our assumption and approximation are reasonably good.

2.3 Contour Plot

• The 3D plot are drawn for both Actual function and interpolated function for comparison. Below given is code for it. IITM_Map.msh file is used for plotting which has 3926 nodes and 7555 elements.

```
def plot_3d_comparison():
    f = np.array([func([x, y]) for x, y in nodes])
    fig = plt.figure(figsize=(14, 10))
    ax1 = fig.add_subplot(121, projection='3d')
tri = Triangulation(nodes[:, 0], nodes[:, 1], elements)
    ax1.plot_trisurf(tri, C.flatten(), cmap='viridis', edgecolor='none')
    ax1.set_title('Interpolated Function')
    ax1.set_xlabel('X Coordinate')
    ax1.set_ylabel('Y Coordinate')
    ax1.set_zlabel('Interpolated Value')
    ax2 = fig.add_subplot(122, projection='3d')
    tri = Triangulation(nodes[:, 0], nodes[:, 1], elements)
    ax2.plot_trisurf(tri, f, cmap='viridis', edgecolor='none')
    ax2.set_title('Actual Gaussian Function')
    ax2.set_xlabel('X Coordinate')
    ax2.set_ylabel('Y Coordinate')
    ax2.set_zlabel('Gaussian Value')
    plt.show()
```


Figure 4: 3D plot for comparison

2.4 Error Plot

• An extension to above part is to plot error for difference between actual and interpolated function (f - C). Below given is code for that and plot also.

• Note that both previous section and this section are plotted for IITM_Map.msh file, which has 3926 nodes and 7555 elements.

 $_{\rm Figure~5:~3D}$ plot for difference between errors