

Empowering Self-Driving Networks

Patrick Kalmbach

Patrick.Kalmbach@tum.de

Johannes Zerwas

Péter Babarczi

Andreas Blenk

Wolfgang Kellerer

Stefan Schmid

Self-*Driving* Networks?

N. Feamster and J. Rexford, "Why (and How) Networks Should Run Themselves," CoRR, vol. abs/1710.11583, 2017.

Why Self-Driving Networks?

Case Study: Reconfigurable Topologies

- Each node can connect to any other node
- Limited number of reconfigurable edges per node (degree limit)

M. Ghobadi et al., "ProjecToR: Agile Reconfigurable Data Center Interconnect," in Proceedings of the 2016 ACM SIGCOMM Conference, New York, NY, USA X. Jin et al., "Optimizing Bulk Transfers with Software-Defined Optical WAN," in Proceedings of the 2016 ACM SIGCOMM Conference, New York, NY, USA

Expectation to a Self-Driving Network

Configuration Space:

Request: a - b

Use headroom intelligently!

"Everything else being equal, states are preferred that increase future possible options"

How to formalize this notion of preparedness?

A. S. Klyubin, D. Polani, and C. L. Nehaniv, "Empowerment: a universal agent-centric measure of control," in 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 1, pp. 128-135 Vol.1.

A. D. Wissner-Gross and C. E. Freer, "Causal Entropic Forces," Phys. Rev. Lett., vol. 110, no. 16, p. 168702, Apr. 2013.

Empowerment

Environment

Leads to behavior that can be described as intelligent

$$\max_{p(a_t)} (\mathsf{H}(S_{t+1}) - \mathsf{H}(S_{t+1}|A_t))$$
Mutual Information

A. S. Klyubin, D. Polani, and C. L. Nehaniv, "Empowerment: a universal agent-centric measure of control," in 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 1, pp. 128-135 Vol.1.

Empowerment – Strengths and Weaknesses

- Agent Centric: Only information available to the agent is used.
- Local: No complete world model needed.
- Semantically unbiased: No external reward system is introduced.
- Universal: Can be applied to arbitrary agent environment interactions.

BUT: Model needed that tells agent how actions influence the sensor to compute empowerment

- → Learn from data.
- → Use model free approaches.

Many Research Challenges for Networking!

Actuator: Place edge, remove edge, do nothing

Sensor:

- Number of routed flows (Simple)
- Set of routed flows (Exact)

Actuator: Place edge, remove edge, do nothing

Sensor:

- Number of routed flows (Simple)
- Set of routed flows (Exact)

Agent places edges at beginning to obtain sensor readings

Actuator: Place edge, remove edge, do nothing

Sensor:

- Number of routed flows (Simple)
- Set of routed flows (Exact)

Agent rearranges edges to further increase empowerment

Empowerment maximization prepares for more future requests

Summary, Lessons Learned and Outlook

Empowerment-driven agent builds a "good" network topology

- Empowerment vs. extrinsic goals → Empowerment secondary
- High dimensional sensor states make computation difficult
- Actuator should be higher level actions

- Empowerment as universal utility function? → Impact on performance metrics
- Sensor evolution in communication networks
- Unsupervised learning of control strategies

Thank You!

N-step empowerment

Obtaining Results

