CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

- Intermediate code uses unlimited temporaries
  - Simplifying code generation and optimization
  - Complicates final translation to assembly

#### The problem:

Rewrite the intermediate code to use no more temporaries than there are machine registers

#### Method:

- Assign multiple temporaries to each register
- But without changing the program behavior

 Consider the program

$$a = c + d$$
  
 $e = a + b$   
 $f = e - 1$ 

- Assume a & e dead after use
  - A dead temporary can be "reused"

Can allocate a, e and f all to one register
 (r1)
 r1 = r<sub>2</sub> + r<sub>3</sub>

$$r1 = r_2 + r_3$$
  
 $r_1 = r_1 + r_4$   
 $r_1 = r_1 - 1$ 

## History

- Register allocation is as old as compilers
  - Register allocation was used in the original FORTRAN compiler in 1950's
  - Very crude algorithm
- A breakthrough came in 1980
  - Register allocation scheme based on graph coloring
  - Relatively simple, global and works well in practice

# Principles of Register Allocation

- Temporaries t<sub>1</sub> can t<sub>2</sub> can share the same register if at any point in the program at most one of t<sub>1</sub> or t<sub>2</sub> is live
  - If  $t_1$  and  $t_2$  are live at the same time, they cannot share a register
- We need liveness analysis

#### Live Variables

Compute live variables for each point



#### Register Interference Graph

- Construct an undirected graph
  - A node for each temporary
  - An edge between t<sub>1</sub> and t<sub>2</sub> if they are live
     simultaneously at some point in the program
- This is the *register interference graph* (RIG)
  - Two temporaries can be allocated to the same register if there is no edge connecting them

## Register Interference Graph

For our example



- a and c cannot be in the same register
- a and d could be in the same register

## Register Interference Graph

- Extracts exactly the information we need to characterize legal register allocation
- Gives the global view (i.e., over the entire control flow graph) picture of the register requirements
- After RIG construction the register allocation algorithm is architecture independent

# **Graph Coloring**

 A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors

• A graph is k-colorable if it has a coloring with k colors

#### Register Allocation as Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

• For our example



- There is no coloring with less than 4 colors
- There is a 4-coloring of this graph

# **Control Flow Graph**





# **Graph Coloring**

- How do we compute graph coloring?
- It is not easy :
  - The problem is NP-hard. No efficient algorithms are known
    - Solution: use heuristics
  - A coloring might not exist for a given number of registers
    - Solution: register spilling

#### Register Allocation as Graph Coloring

- Main idea for solving whether a graph G is kcolorable:
- Pick any node t with fewer than k neighbors
- Remove n adjacent edges to create a new graph G'
- If G' is k-colorable, then so is G (the original graph)
- Let c<sub>1</sub>,...,c<sub>n</sub> be the colors assigned to the neighbors of t in G'
- Since n<k we can pick some color for t that is different from its neighbors

# Register Allocation as Graph Coloring

- Heuristic for graph coloring:
  - Ordering nodes (in an stack)
  - 1. Pick a node t with fewer than k neighbors
  - 2. Put t on a stack and remove it from the register interference graph (RIG)
  - 3. Repeat until the graph is empty
  - Assigning color to nodes on the stack:
  - 1. Start with the last node added
  - 2. At each step pick a color different from those assigned to already colored neighbors

• Assume k=4

Remove a

stack={}



• Assume k=4

Remove d

stack={a}



Assume k=4

Note: All nodes now have fewer than 4

neighbors

The graph coloring is guaranteed to succeed



Remove c stack={d,a}

• Assume k=4

Remove b

stack={c,d,a}



• Assume k=4

Remove e

stack={b,c,d,a}



• Assume k=4

f 🍙

Remove f

stack={e,b,c,d,a}

Assume k=4

Empty graph – done with the first part

Now we have the order for assigning colors to nodes, start coloring the nodes (from the top of the stack)

stack={f,e,b,c,d,a}

• Assume k=4

**r**<sub>1</sub> **f** 

stack={e,b,c,d,a}

- Assume k=4
  - e must be in a different register from f



• Assume k=4



Assume k=4

The ordering insures we can find a color for all

nodes

stack={d,a}



- Assume k=4
  - d can be in the same register as b

stack={a}



• Assume k=4

stack={}



# Register Allocation as Graph Coloring

 What happens if the graph coloring heuristic fails to find a coloring?

- In this case we cannot hold all values in the registers
  - Some values should be spilled to memory

# K-coloring fails

- What if all nodes have k or more neighbors?
- Try to find a 3 coloring of this graph

Remove a



# Example of 3-coloring

 There is no node such that if we remove it then 3-coloring for

the graph is available



# **Optimistic Coloring**

If every node in G has more than k neighbors,
 k-coloring of G might not be possible

 Pick a node as candidate for spilling, remove it from the graph and continue k-coloring

# **Optimistic Coloring**

- Remove f and continue:
  - The ordering: {c,e,d,b,f,a}



#### **Optimistic Coloring**

- Color the nodes {c,e,d,b,f,a}
- Try to assign a color to f
- We hope that among 4 neighbors of f we use less than 3 colors (optimistic coloring)



#### Spilling

- If optimistic coloring fails, we spill f
  - Allocate a memory location for f
    - Typically in the current stack frame
    - Call this address fa
- Before each operation that reads f, insert
   f = load fa
- After each operation that writes f, insert store f, fa
  - Spilling is slow but sometimes necessary.

# Original Code



#### Code after Spilling f



#### Recompute the Liveness



#### Recompute the Liveness



#### Rebuild the Interference Graph

- New liveness information is almost as before
  - Note f has been split into three temporaries
- fi is live only
  - Between a fi = load fa and the next instruction
  - Between a store fi, fa and the preceding instr.
- Spilling reduces the live range of f
  - And thus reduces its interferences
  - Which results in fewer RIG neighbors

#### Rebuild the Interference Graph

- Some edges of the spilled nodes are removed
- In our case f still interferes only with c and d
- And the new RIG is 3-colorable



## Spilling

 Additional spilling might be required before a coloring is found

K=3

remove a

Stack: {}



K=3

remove c

Stack: {a}



K=3

remove b

Stack: {c,a}



K=3

remove e

Stack: {b,c,a}



K=3

remove f

Stack: {e,b,c,a}

f



K=3

remove d

Stack: {f,e,b,c,a}



K=3

Stack: {d,f,e,b,c,a}

K=3

Stack: {f,e,b,c,a}

D d r1

K=3

Stack: {e,b,c,a}

r2 f

D d r1

Stack: {b,c,a}



Stack: {c,a}



K=3

Stack: {a}



K=3

Stack: {}



K=3

Stack: {d,f,e,b,c,a}

K=3

Stack: {f,e,b,c,a}

**)** d r1

K=3

Stack: {e,b,c,a}

r1 f

● d r1

Stack: {b,c,a}



Stack: {c,a}



K=3

Stack: {a}



K=3

Stack: {}



#### Spilling

- Many different heuristics for picking a node to spill
  - Spill temporaries with most conflicts
  - Spill temporaries with few definitions and uses
  - Avoid spilling in inner loops (heavily visited regions of the code)
- C allows a register keyword to direct the compiler whether a variable contains a value that is heavily used.

#### Live Ranges and Live Intervals

- The live range for a variable is the set of program points at which that variable is live.
- The live interval for a variable is the smallest subrange of the IR code containing all a variable's live ranges.
  - A property of the IR code, not CFG.
  - Less precise than live ranges, but simpler to work with

```
e = d + a
f = b + c
f = f + b
if e==0 goto _L0
d = e + f
goto _L1
```



|                  | <u>a</u> |
|------------------|----------|
|                  |          |
| e = d + a        |          |
| f = b + c        |          |
| f = f + b        |          |
| if e==0 goto _L0 |          |
| d = e + f        |          |
| goto _L1         |          |
| _L0: d = e - f   |          |
| _L1: g = d       |          |
|                  |          |































- Given the live intervals for all the variables in the program, we can allocate registers using a simple greedy algorithm.
- Idea: Track which registers are free at each point.
- When a live interval begins, give that variable a free register.
- When a live interval ends, the register is once again free.



























r1 r2 r3 r4



r3

r4



r1 r2 r3 r4



















#### Linear Scan Register Allocation

- If a register cannot be found for a variable v, we may need to spill a variable.
- This algorithm is called linear scan register allocation and is a comparatively new algorithm.

#### Pros:

- Very efficient
- Works well in many cases
- Allocation needs one pass, the code can be generated simultaneously
- Used in JIT compilers like Java HotSpot

#### Cons:

Not as good as graph coloring approach

#### Summary

- Register allocation is a "must have" in compilers, because:
  - Intermediate code uses too many temporaries
  - It makes a big difference in performance
- The liveness at each location can be used for register allocation
- Register allocation as heuristic graph coloring uses live ranges
  - The basis for the technique used in GCC
- Linear scan register allocation uses live intervals
  - Often used in JIT compilers due to efficiency