```
In [1]: # Import the packages
         # Read the data
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V
         visa df=pd.read csv(path)
         visa_df.head(3)
Out[1]:
             case_id continent education_of_employee has_job_experience requires_job_training no_i
          0 EZYV01
                         Asia
                                       High School
          1 EZYV02
                         Asia
                                          Master's
                                                                Υ
                                                                                  Ν
          2 EZYV03
                                        Bachelor's
                                                                                   Υ
                         Asia
                                                                Ν
         Categorical vs Categorical
In [ ]: # continent
         # case status
         # as we know that there are 25480 observations are there
         # in that 16k are from asia applicants
         # out of 16k applicants how many visa certified
         # out of 16k applicants how many visa denied
In [11]: | c1=visa_df['continent']=='Asia'
         c2=visa_df['case_status']=='Certified'
         c3=visa_df['case_status']=='Denied'
         cert con=c1&c2
         den con=c1&c3
         certified_count=len(visa_df[cert_con])
         denied_count=len(visa_df[den_con])
         print(f"there are {certified_count} got certified visa from Asia")
         print(f"there are {denied count} got denied visa from Asia")
         there are 11012 got certified visa from Asia
         there are 5849 got denied visa from Asia
                          Certified
 In [ ]:
                 Denied
         Asia
                 ٧1
                           v2
```

v2

Europe v1

```
In [21]: # step-1: make unique lables
         labels=visa_df['continent'].unique()
         # step-2: create empty two lists
         certified_count=[]
         denied_count=[]
         # step-3: iterate through loop
         for i in labels:
             c1=visa_df['continent']==i
             c2=visa_df['case_status']=='Certified'
             c3=visa df['case status']=='Denied'
             cert_con=c1&c2
             den_con=c1&c3
             certified_count.append(len(visa_df[cert_con]))
             denied_count.append(len(visa_df[den_con]))
         cols=['Continent','Certified','Denied']
         d1=pd.DataFrame(zip(labels,
                          certified_count,
                          denied_count), columns=cols)
         d1.set_index('Continent')
```

Out[21]:

Certified Denied

Certified Denied

Continent		
Asia	11012	5849
Africa	397	154
North America	2037	1255
Europe	2957	775
South America	493	359
Oceania	122	70

In [20]: d1.set_index('Continent')

Out[20]:

Continent		
Asia	11012	5849
Africa	397	154
North America	2037	1255
Europe	2957	775
South America	493	359
Oceania	122	70

pd,crosstab

- will take two arguments
- index
- column

```
In [25]: col1=[visa_df['continent']]
    col2=visa_df['case_status']
    result1=pd.crosstab(col1,col2)
    result1
```

Out[25]:

case_status	Certified	Denied
continent		
Africa	397	154
Asia	11012	5849
Europe	2957	775
North America	2037	1255
Oceania	122	70
South America	493	359

Out[26]:

	case_status	Certified	Denied
continent	education_of_employee		
	Bachelor's	81	62
Africa	Doctorate	43	11
Airica	High School	23	43
	Master's	250	38
	Bachelor's	4407	2761
Asia	Doctorate	780	143
Asia	High School	676	1614
	Master's	5149	1331
	Bachelor's	1040	259
Europe	Doctorate	788	58
Luiope	High School	162	328
	Master's	967	130
	Bachelor's	641	584
North America	Doctorate	207	51
North America	High School	210	191
	Master's	979	429
	Bachelor's	38	28
Oceania	Doctorate	19	3
Godama	High School	19	17
	Master's	46	22
	Bachelor's	160	173
South America	Doctorate	75	14
	High School	74	63
	Master's	184	109

```
In [27]: result1.plot(kind='bar')
```

Out[27]: <Axes: xlabel='continent'>


```
In [28]: result2.plot(kind='bar')
```

Out[28]: <Axes: xlabel='continent,education_of_employee'>

Out[30]: <Axes: xlabel='case_status'>


```
In [32]: col1=visa_df['continent']
    col2=visa_df['case_status']
    col3=visa_df['education_of_employee']
    r1=pd.crosstab(col1, [col2, col3])
    r1.plot(kind='bar')
```

Out[32]: <Axes: xlabel='continent'>

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V: visa_df=pd.read_csv(path) visa_df.head(3)

Out[1]:		case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_
	0	EZYV01	Asia	High School	N	N	
	1	EZYV02	Asia	Master's	Υ	N	
	2	EZYV03	Asia	Bachelor's	N	Y	
	4		_				

```
In [2]: x=[1,2,3,4,5]
y=[1,2,3,4,5]
# (1,1) (2,2) (3,3) (4,4) (5,5)
```

plt.scatter

```
In [5]: plt.scatter(x,y)
plt.plot(x,y)
plt.show()
```



```
In [10]: x=[i for i in range(-4,5)]
y=[i*i for i in x]
plt.scatter(x,y)
plt.plot(x,y)
plt.show()
```



```
In [12]: # extract only numerical columns
num_cols=visa_df.select_dtypes(exclude='object')
num_cols.columns
```


Pearson Correlation Coefficient

- r varies from -1 to 1
- -1 to 0 : Negative relation
- 0 to 1: Postive relation
- 0: No relation

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

- · when you do this python
- It gives the matrix
- in Visa data we have 3 numerical columns are there
- python will give a matrix w.r.t 3 numerical columns
- The values in each field tells about the relation between the variables

```
In [16]: visa_df.corr(numeric_only=True)
```

Out[16]:

	no_of_employees	yr_of_estab	prevailing_wage
no_of_employees	1.000000	-0.017770	-0.009523
yr_of_estab	-0.017770	1.000000	0.012342
prevailing_wage	-0.009523	0.012342	1.000000

```
In [18]: # check the scatter plot between yr_of_estab
# with prevailing_Wage
# we are seeing the relation is 0.012342
col1=visa_df['yr_of_estab']
col2=visa_df['prevailing_wage']
plt.scatter(col1,col2)
plt.show()
```


In [21]: wine=pd.read_csv("C:\\Users\\omkar\\OneDrive\\Documents\\Data science\\Nare:
 wine.head()

Out[21]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
									_		

In [22]: wine.corr()

Out[22]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	densi
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.66804
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.02202
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.36494
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.35528
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.20063
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.02194
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.07126
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.00000
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.3416§
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.1485(
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.49618
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.1749´

```
In [23]: wine.columns
```

```
In [24]: # 'fixed acidity' and 'citric acid' : 0.67 +ve
    col1=wine['fixed acidity']
    col2=wine['citric acid']
    plt.scatter(col1,col2)
```

Out[24]: <matplotlib.collections.PathCollection at 0x1993b9d7250>


```
In [25]: # 'fixed acidity' and 'pH' : 0.68 -ve
    col1=wine['fixed acidity']
    col2=wine['pH']
    plt.scatter(col1,col2)
```

Out[25]: <matplotlib.collections.PathCollection at 0x1993ba22a90>

heat-map

- · heat map is useful to visulization of matrix
- it is under seaborn pacakges
- heat map will varies the values and gives the color about the values

```
In [28]: corr_visa=visa_df.corr(numeric_only=True)
    corr_visa
# this is a matrix we want apply a heat map
```

Out[28]:

	no_of_employees	yr_of_estab	prevailing_wage
no_of_employees	1.000000	-0.017770	-0.009523
yr_of_estab	-0.017770	1.000000	0.012342
prevailing_wage	-0.009523	0.012342	1.000000

In [33]: corr_wine=wine.corr(numeric_only=True)
 plt.figure(figsize=(10,8))
 sns.heatmap(corr_wine,annot=True)
 plt.show()

In []: