La couleur du ciel

Ce sujet comporte 2 pages et doit être traité en intégralité. Comme pour tous DMs, vous pouvez vous entraider pour les questions les plus difficiles. Cependant, la rédaction doit rester personnelle.

La couleur du ciel

Thomson a proposé un modèle d'atome dans lequel chaque électron (M) est élastiquement lié à son noyau (O): il est soumis à une force de rappel \overrightarrow{F}_R passant par le centre de l'atome. Dans tout l'exercice, on admettra que l'on peut se ramener à un problème selon une unique direction $(0, \overrightarrow{e}_x)$, c'est-à-dire que $\overrightarrow{F}_R = -kx\overrightarrow{e}_x$, où x est la distance entre l'électron et l'atome. Nous supposerons que cet électron est freiné par une force de frottement de type fluide proportionnel à sa vitesse $\overrightarrow{F}_f = -h\overrightarrow{v} = -h\frac{dx}{dt}\overrightarrow{e}_x$ et que le centre O de l'atome est fixe dans le référentiel d'étude supposé galiléen. On admet qu'une onde lumineuse provenant du Soleil impose sur un électron de l'atmosphère, une force $\overrightarrow{F}_E = -eE_0\cos(\omega t)\overrightarrow{e}_x$.

Figure 1.1 – Ciel bleu avec des nuages.

Données. masse d'une électron : $m=9,1.10^{-31}\,\mathrm{kg}$, charge élémentaire : $e=1,6.10^{-19}\,\mathrm{C}$, célérité de la lumière dans le vide : $c=3,00.10^8\,\mathrm{m/s}$, $k=500\,\mathrm{SI}$, $h=10^{-20}\,\mathrm{SI}$.

- 1. Quelles sont les dimensions des grandeurs k et h ? En quelles unités du système international les exprime-t-on ?
- 2. En utilisant la loi de la quantité de mouvement, donner l'équation différentielle vérifiée par la position de l'électron x(t).
- 3. Montrer qu'on peut l'exprimer sous la forme :

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x(t) = -\frac{e}{m} E_0 \cos(\omega t).$$

On donnera les expressions de ω_0 et Q en fonction des données.

On peut chercher les solutions de cette équation différentielle sous la forme :

$$x(t) = x_h(t) + x_p(t),$$

où $x_h(t)$ est une solution de l'équation homogène et $x_p(t)$ une solution particulière.

I. La couleur du ciel

- 4. Exprimer et calculer Q. Que peut-on en déduire sur le régime transitoire ?
- 5. Montrer que le temps caractéristique du régime transitoire est $\tau=2Q/\omega_0$.
- 6. Calculer τ .

On suppose donc que l'électron est en régime permanent.

- 7. Pourquoi peut-on alors dire que $x(t) \approx X_m \cos(\omega t + \varphi)$?
- 8. Exprimer X_m en fonction de ω_0 , de Q et des données. On pourra utiliser la notation complexe.
- 9. Exprimer φ en fonction de ω_0 et de Q. On pourra également utiliser la notation complexe.

Les longueurs d'ondes λ du Soleil sont principalement incluses dans le domaine du visible, ainsi on considère que $\lambda \in [\lambda_b, \lambda_r]$, où λ_b (resp. λ_r) est la longueur d'onde du rayonnement bleu (resp. rouge).

- 10. Que valent λ_b et λ_r ?
- 11. En déduire que $\omega \in [\omega_r, \omega_b]$. On donnera les valeurs littérales de ω_r et ω_b et on effectuera les applications numériques.
- 12. Calculer ω_0 .
- 13. En déduire que :

$$X_m \approx \frac{eE_0}{m\omega_0^2}.$$

Un électron diffuse dans toutes les directions un rayonnement dont la puissance moyenne P est proportionnelle au carré de l'amplitude de son accélération.

14. Montrer que :

$$P = K \left(\frac{eE_0 \omega^2}{m\omega_0^2} \right)^2$$

où K est une constante que l'on ne cherchera pas à exprimer.

15. Expliquer alors pourquoi le ciel est bleu.