Some Class Daniel Yu

Contents

1	Poisson Distribution	3
2	Exponential Distribution	4
	Indepence and Identically Distributed	5

CONTENTS 2

1 Poisson Distribution

Note. Balls to Bins

Given this setup: there are two bins with n number of balls and the balls are distributed uniformly at random across the 2 bins. Let's say that

$$P[N=2] = \frac{1}{2}, P[N=3] = \frac{1}{2}.$$

Let the random variables X= number of balls in first bin and Y= number of balls in the second bin. What is the distribution of X:

Proof. Consider the conditional probability

- 1. Distribution of X given N=2: $X \sim Bin(2,.5)$
- 2. Distribution of X give N = 3: $X \sim Bin(3, .5)$

Use the law of total probability to construct the probability of X from the conditional probabilities of X:

$$P[X = 0] = P[N = 2] \cdot P[X = 0 | N = 2] + P[N = 2] \cdot P[X = 0 | N = 2] = \frac{1}{2} \cdot \frac{1}{2}^{2} + \frac{1}{2} \frac{1}{2}^{3} = \frac{3}{16}.$$

$$P[X = 1] = \frac{1}{2} \cdot \binom{2}{1} \frac{1}{2}^{2} + \frac{1}{2} \cdot \binom{3}{1} \cdot \frac{1}{2}^{3} = \frac{1}{4} + \frac{3}{16} = \frac{7}{16}.$$

$$P[X = 2] = \frac{5}{16}.$$

$$P[X = 3] = \frac{1}{16}.$$

Note that while the conditional probabilities are binomial, the combined probabilities is not binomial

What about the distirbution of Y?

Proof.
$$Y \sim X$$

Are X, Y independent?

Proof. Consider
$$P[X = 0, Y = 0] = 0$$
 and $P[X = 0] > 0$, $P[Y = 0] > 0$

Remark. However there is a special case where the above situation would have X, Y independent.

Definition 1. $N \sim Poisson(\lambda), \lambda \geq 0.$

$$P[N=k] = \frac{e^{-\lambda}\lambda^k}{k!}.$$

Remark. Intuition

Let's repeat the experiment with this distribution for N.

$$\begin{split} P[X=r] &= \sum_{n=0}^{\infty} P[N=n] \cdot P[X=r|N=n] \\ &= \sum_{n=0}^{\infty} P[N=n] \cdot P[Bin(n,\frac{1}{2})=r] \\ &\text{if n} > r \text{, this is impossible} \\ &= \sum_{n=r}^{\infty} P[N=n] \cdot P[Bin(n,\frac{1}{2})=r] \\ &= \sum_{n=r}^{\infty} (\frac{e^{-\lambda}\lambda^n}{n!}) [\binom{n}{r} \frac{1}{2}^n] \\ &= \frac{e^{-\lambda}}{r!} \sum_{n=r}^{\infty} -\frac{\frac{\lambda^n}{2}}{(n-r)!} \\ &\text{set m} = \text{n-r} \\ &= \frac{e^{-\lambda}}{r!} \sum_{m=0}^{\infty} \frac{\frac{\lambda^n}{2}}{m!} \\ &= \frac{e^{-\lambda}}{r!} \frac{\lambda^r}{2} \sum_{m=0}^{\infty} \frac{\frac{\lambda^m}{2}}{m!} \\ &= \frac{e^{-\lambda}}{2} \cdot \left(\frac{\lambda^n}{2}\right) \\ &= \text{Poisson}(\frac{\lambda}{2}). \end{split}$$

Similarly, $Y \sim Pos(\frac{\lambda}{2})$. Now, the claim is that for any $s, r, P[X = s, Y = r] = P[X = s] \cdot P[Y = r]$ that is X, Y independent.

$$\begin{split} P[X=s,Y=r] &= \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{r!} \cdot \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{s!} \\ &= \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{s!r!} \\ P[X=s,Y=r] &= P[N=r+s] \cdot P[X=s,Y=r|N=r+s] \\ &= \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{(r+s)!} \cdot P[X=s,Y=r|N=r+s] \\ &= \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{(r+s)!} \cdot P[X=s|N=r+s] \\ &= \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{(r+s)!} \cdot P[bin(r+s,\frac{1}{2})=s] \\ &= \frac{e^{-\frac{\lambda}{2}} \cdot \left(\frac{\lambda}{2}^n\right)}{(r+s)!} \cdot \left[\binom{r+s}{s} \cdot \left(\frac{1}{2}\right)^{r+s}\right] \\ &= \frac{e^{-\lambda} \left(\frac{\lambda}{2}^{r+s}\right)}{r!s!} \cdot \left[\frac{r+s}{s} \cdot \left(\frac{1}{2}\right)^{r+s}\right] \end{split}$$

2 Exponential Distribution

Definition 2. $X \sim \exp(\lambda)$ if the pdf of X,

$$f_x(t) = \begin{cases} \lambda e^{-\lambda t}, t \ge 0 \\ 0, t < 0 \end{cases}.$$

Let $W \sim \exp(\lambda)$ the waiting between trains.

Note. Example

I arrived at the platform. Let W' be the amount of time I waiting between trains. I arrive to the platform. Let's suppose that the wat has 2 values : Long/short. S = 5, L = 15. Suppose you are told that 5 seconds have elapsed since the arrival of the previous train. Then $w' \sim w - s$ conditioned upon w > s. Let's understand,

$$\begin{split} P[w'>t] &= P[W>t+s\mid W>s]\\ &= \frac{P[W>t+s\cap W>s]}{P[W>s]}\\ &= \frac{P[W>t+s]}{P[W>s]}\\ &= \frac{e^{-\lambda(t-s)}}{e^{-\lambda s}}\\ &= e^{\lambda t}. \end{split}$$

So $w' \sim \exp(\lambda)$

3 Independent and Identically Distributed

i.e. (iid) Random Variables

Note. IID Important Example

Suppose $\{X_i\}_{i=1}^n$ is a sequence of i.i.d random variables s.t. $P[X_i=1]=P[X_i=2]=P[X_i=3]=$ $P[X_i = 4]$. Let $k_i(n) = |\{j : x_j = i\}| = \text{number of times } i \text{ comes out. What do you expect } k_i(n) \text{ to be}$ if n is large?

$$k_i(n) \sim \frac{1}{4}n.$$

Hence, $P[k_1(n) = n] = \frac{1}{2}^n > 0$ (all 1s for each n rolls). As we will show later,

$$P[k_1(n) = \frac{n}{4}] \approx \frac{1}{\sqrt{\pi}n}.$$

Definition 3. Let $\{X_n\}$ be a sequence of random variables. We say that X_n converges in **probability** to constant c if $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} P[\mid X_n - c \mid > \varepsilon] = 0.$$

Note. Example $G_n = Geo(\frac{n-1}{n}), \ P[G_n = k] = (\frac{n-1}{n}) \cdot (\frac{1}{n})^{k-1}$ to show that $G_n \to 1$ in probability.

Proof.

$$\forall \varepsilon > 0, P[|G_n - 1| > \varepsilon].$$

is small. as events $\{|G_n-1|>\varepsilon\}\subseteq \{G_n\geq 2\}$ (by set theory). So

$$P[\mid G_n - 1 \mid > \varepsilon] \subseteq P[G_n \ge 2] = \sum_{k=2}^{\infty} \left(\frac{n-1}{n}\right) \left(\frac{1}{n}^{k-1}\right) = \frac{1}{n}.$$

$$\lim_{n\to\infty} P[\mid G_n - 1 \mid \geq \varepsilon] \subseteq \lim_{n\to\infty} \frac{1}{n} = 0.$$

Note. Example

 U_n is a uniform RV on $\left[-\frac{1}{n}, \frac{1}{n}\right]$. Claim $U_n \to 0$ in probability.

Proof.

$$P[|U_n| > \varepsilon] \to 0 \Leftrightarrow P[|U_n| \le \varepsilon] = \int_{-\varepsilon}^{\varepsilon} f_{U_n}(t)dt$$
$$= \int_{-\varepsilon}^{\varepsilon} (\frac{n}{2}) 1|_{t \in [-\frac{1}{n}, \frac{1}{n}]} dt$$
$$= 1.$$

Why? if $n > \frac{1}{\varepsilon}$ then $\left[-\frac{1}{n}, \frac{1}{n}\right] \subseteq (-\varepsilon, \varepsilon)$.

3.1 Fat Tail

incredibly rare event that affects the average outcome

Note. Example Let $P[R_n = 0] = 1 - \frac{1}{n}$, $P[R_n = n^2] = \frac{1}{n}$.

Proof.

$$P[|R_n| > \varepsilon] = P[R_n = n^2] = \frac{1}{n} \to 0.$$

but,

$$E[R_n] = 0 \cdot (1 - \frac{1}{n}) + n^2 \cdot \frac{1}{n} = n \to \infty.$$

Saint Petersburg Problem: https://www.wikiwand.com/en/articles/St.petersburgparadox