

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 December 2001 (27.12.2001)

PCT

(10) International Publication Number
WO 01/97850 A2

- (51) International Patent Classification⁷: **A61K 45/06**
- (21) International Application Number: PCT/EP01/06976
- (22) International Filing Date: 20 June 2001 (20.06.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
00250194.8 23 June 2000 (23.06.2000) EP
00250214.4 28 June 2000 (28.06.2000) EP
- (71) Applicant: SCHERING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, 13353 Berlin (DE).
- (71) Applicants and
(72) Inventors: SIEMEISTER, Gerhard [DE/DE]; Reimerswalder Steig 26, 13503 Berlin (DE). HABEREY, Martin [DE/DE]; Steinstr. 1, 12169 Berlin (DE). THIERAUCH, Karl-Heinz [DE/DE]; Hochwildpfad 45, 14169 Berlin (DE).

- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BEST AVAILABLE COPY

WO 01/97850 A2

(54) Title: COMBINATIONS AND COMPOSITIONS WHICH INTERFERE WITH VEGF/VEGF AND ANGIOPOIETIN/TIE RECEPTOR FUNCTION AND THEIR USE (II)

(57) Abstract: The present invention describes the combination of substances interfering with the biological activity of Vascular Endothelial Growth Factor (VEGF)/VEGF receptor systems (compound I) and substances interfering with the biological function of Angiopoietin/Tie receptor systems (compound II) for inhibition of vascularization and for cancer treatment.

Combinations and compositions which interfere with VEGF/ VEGF and angiopoietin/ Tie receptor function and their use (II)

- 5 The present invention provides the combination of substances interfering with the biological activity of Vascular Endothelial Growth Factor (VEGF)/VEGF receptor systems (compound I) and substances interfering with the biological function of Angiopoietin/Tie receptor systems (compound II) for inhibition of vascularization and for cancer treatment.

10

Protein ligands and receptor tyrosine kinases that specifically regulate endothelial cell function are substantially involved in physiological as well as in disease-related angiogenesis. These ligand/receptor systems include the Vascular Endothelial Growth Factor (VEGF) and the Angiopoietin (Ang) families, and their receptors, the VEGF receptor family and the tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (Tie) family. The members of the two families of receptor tyrosine kinases are expressed primarily on endothelial cells. The VEGF receptor family includes Flt1 (VEGF-R1), Flk1/KDR (VEGF-R2), and Flt4 (VEGF-R3). These receptors are recognized by members of the VEGF-related growth factors in that the ligands of Flt1 are VEGF and placenta growth factor (PIGF), whereas Flk1/KDR binds VEGF, VEGF-C and VEGF-D, and the ligands of Flt4 are VEGF-C and VEGF-D (Nicosia, Am. J. Pathol. 153, 11-16, 1998). The second family of endothelial cell specific receptor tyrosine kinases is represented by Tie1 and Tie2 (also known as Tek). Whereas Tie1 remains an orphan receptor, three secreted glycoprotein ligands of Tie2, Ang1, Ang2, and Ang3/Ang4 have been discovered (Davis et al., Cell 87, 1161-1169, 1996; Maisonpierre et al., Science 277, 55-60, 1997; Valenzuela et al., Proc. Natl. Acad. Sci. USA 96, 1904-1909, 1999; patents: US 5,521,073; US 5,650,490; US 5,814,464).

20

The pivotal role of VEGF and of its receptors during vascular development was exemplified in studies on targeted gene inactivation. Even the heterozygous disruption of the VEGF gene resulted in fatal deficiencies in vascularization (Carmeliet et al., Nature 380, 435-439, 1996; Ferrara et al., Nature 380, 439-442,

25

30

1996). Mice carrying homozygous disruptions in either Flt1 or Flk1/KDR gene die in mid-gestation of acute vascular defects. However, the phenotypes are distinct in that Flk1/KDR knock-out mice lack both endothelial cells and a developing hematopoietic system (Shalaby et al. *Nature* 376, 62-66, 1995), whereas Flt1 deficient mice have normal hematopoietic progenitors and endothelial cells, which fail to assemble into functional vessels (Fong et al., 376, 66-70, 1995). Disruption of the Flt4 gene, whose extensive embryonic expression becomes restricted to lymphatic vessels in adults, revealed an essential role of Flt4 for the remodeling and maturation of the primary vascular networks into larger blood vessels during early development of the cardiovascular system (Dumont et al., *Science* 282, 946-949, 1998). Consistent with the lymphatic expression of Flt4 in adults overexpression of VEGF-C in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement (Jeltsch et al., *Science* 276, 1423-1425, 1997). Moreover, VEGF-C was reported to induce neovascularization in mouse cornea and chicken embryo chorioallantoic membrane models of angiogenesis (Cao et al., *Proc. Natl. Acad. Sci. USA* 95, 14389-14394, 1998).

The second class of endothelial cell specific receptor tyrosine kinases has also been found to be critically involved in the formation and integrity of vasculature. Mice deficient in Tie1 die of edema and hemorrhage resulting from poor structural integrity of endothelial cells of the microvasculature (Sato et al., *Nature* 376, 70-74, 1995; Rodewald & Sato, *Oncogene* 12, 397-404, 1996). The Tie2 knock-out phenotype is characterized by immature vessels lacking branching networks and lacking periendothelial support cells (Sato et al., *Nature* 376, 70-74, 1995; Dumont et al., *Genes Dev.* 8, 1897-1909, 1994). Targeted inactivation of the Tie2 ligand Ang1, as well as overexpression of Ang2, an inhibitory ligand, resulted in phenotypes similar to the Tie2 knock out (Maisonnier et al., *Science* 277, 55-60, 1997; Suri et al., *cell* 87, 1171-1180). Conversely, increased vascularization was observed upon transgenic overexpression of Ang1 (Suri et al., *Science* 282, 468-471, 1998; Thurstonen et al., *Science* 286, 2511-2514, 1999).

The results from angiogenic growth factor expression studies in corpus luteum development (Maisonnier et al., *Science* 277, 55-60, 1997; Goede et al. Lab.

Invest. 78, 1385-1394, 1998), studies on blood vessel maturation in the retina (Alon et al., Nature Med. 1, 1024-1028, 1995; Benjamin et al, Development 125, 1591-1598, 1998), and gene targeting and transgenic experiments on Tie2, Ang1, and Ang2, suggest a fundamental role of the Angiopoietin/Tie receptor system in mediating interactions between endothelial cells and surrounding pericytes or smooth muscle cells. Ang1, which is expressed by the periendothelial cells and seems to be expressed constitutively in the adult, is thought to stabilize existing mature vessels. Ang2, the natural antagonist of Ang1 which is expressed by endothelial cells at sites of vessel sprouting, seems to mediate loosening of endothelial-periendothelial cell contacts to allow vascular remodeling and sprouting in cooperation with angiogenesis initiators such as VEGF, or vessel regression in the absence of VEGF (Hanahan, Science 277, 48-50, 1997).

In pathological settings associated with aberrant neovascularization elevated expression of angiogenic growth factors and of their receptors has been observed. Most solid tumors express high levels of VEGF and the VEGF receptors appear predominantly in endothelial cells of vessels surrounding or penetrating the malignant tissue (Plate et al., Cancer Res. 53, 5822-5827, 1993). Interference with the VEGF/VEGF receptor system by means of VEGF-neutralizing antibodies (Kim et al., Nature 362, 841-844, 1993), retroviral expression of dominant negative VEGF receptor variants (Millauer et al., Nature 367, 576-579, 1994), recombinant VEGF-neutralizing receptor variants (Goldman et al., Proc. Natl. Acad. Sci. USA 95, 8795-8800, 1998), or small molecule inhibitors of VEGF receptor tyrosine kinase (Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60, 970-975, 2000; Wood et al. Cancer Res. 60, 2178-2189, 2000), or targeting cytotoxic agents via the VEGF/VEGF receptor system (Arora et al., Cancer Res. 59, 183-188, 1999; EP 0696456A2) resulted in reduced tumor growth and tumor vascularization. However, although many tumors were inhibited by interference with the VEGF/VEGF receptor system, others were unaffected (Millauer et al., Cancer Res. 56, 1615-1620, 1996). Human tumors as well as experimental tumor xenografts contain a large number of immature blood vessels that have not yet recruited periendothelial cells. The fraction of immature vessels is in the range of 40% in slow growing prostate cancer and 90% in fast growing glioblastoma. A selective obliteration of immature tumor vessels was observed upon withdrawal of

VEGF by means of downregulation of VEGF transgene expression in a C6 glioblastoma xenograft model. This result is in accordance with a function of VEGF as endothelial cell survival factor. Similarly, in human prostate cancer shutting off VEGF expression as a consequence of androgen-ablation therapy led

- 5 to selective apoptotic death of endothelial cells in vessels lacking periendothelial cell coverage. In contrast, the fraction of vessels which resisted VEGF withdrawal showed periendothelial cell coverage (Benjamin et al., J. Clin. Invest. 103, 159-165, 1999).
- 10 The observation of elevated expression of Tie receptors in the endothelium of metastatic melanomas (Kaipainen et al., Cancer Res. 54, 6571-6577, 1994), in breast carcinomas (Salvén et al., Br. J. Cancer 74, 69-72, 1996), and in tumor xenografts grown in the presence of dominant-negative VEGF receptors (Millauer et al., Cancer Res. 56, 1615-1620, 1996), as well as elevated expression of Flt4
- 15 receptors in the endothelium of lymphatic vessels surrounding lymphomas and breast carcinomas (Jussila et al., Cancer Res. 58, 1599-1604, 1998), and of VEGF-C in various human tumor samples (Salvén et al., Am. J. Pathol. 153, 103-108, 1998), suggested these endothelium-specific growth factors and receptors as candidate alternative pathways driving tumor neovascularization. The high
- 20 upregulation of Ang2 expression already in early tumors has been interpreted in terms of a host defense mechanism against initial cooption of existing blood vessels by the developing tumor. In the absence of VEGF, the coopted vessels undergo regression leading to necrosis within the center of the tumor. Contrarily, hypoxic upregulation of VEGF expression in cooperation with elevated Ang2
- 25 expression rescues and supports tumor vascularization and tumor growth at the tumor margin (Holash et al., Science 284, 1994-1998, 1999; Holash et al., Oncogene 18, 5356-5362, 1999).

Interference with Tie2 receptor function by means of Angiopoietin-neutralizing

- 30 Tie2 variants consisting of the extracellular ligand-binding domain has been shown to result in inhibition of growth and vascularization of experimental tumors (Lin et al., J. Clin. Invest. 103, 159-165, 1999; Lin et al. Proc. Natl. Acad. Sci. USA 95, 8829-8834, 1998; Siemeister et al., Cancer Res. 59, 3185-3191, 1999). Comparing the effects of interference with the endothelium-specific receptor

tyrosine kinase pathways by means of paracrine expression of the respective extracellular receptor domains on the same cellular background demonstrated inhibition of tumor growth upon blockade of the VEGF receptor system and of the Tie2 receptor system, respectively (Siemeister et al., Cancer Res. 59, 3185-3191,

5 1999).

It is known that the inhibition of the VEGF/VEGR receptor system by various methods resulted only in slowing down growth of most experimental tumors (Millauer et al., Nature 367, 576-579, 1994; Kim et al., Nature 362, 841-844, 1993; Millauer et al., Cancer Res. 56, 1615-1620, 1996; Goldman et al., Proc. Natl.

10 Acad. Sci. USA 95, 8795-8800, 1998; Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60, 970-975, 2000; Wood et al. Cancer Res. 60, 2178-2189, 2000; Siemeister et al., Cancer Res. 59, 3185-3191, 1999). Even by escalation of therapeutic doses a plateau level of therapeutic efficacy was achieved (Kim et al., Nature 362, 841-844, 1993; Wood et al. Cancer Res. 60, 15 2178-2189, 2000). Similar results were observed upon interference with the Angiopoietin/Tie2 receptor system (Lin et al., J. Clin. Invest. 103, 159-165, 1999; Lin et al., Proc. Natl. Acad. Sci. USA 95, 8829-8834, 1998; Siemeister et al., Cancer Res. 59, 3185-3191, 1999).

20 However, there is a high demand for methods that enhance the therapeutic efficacy of anti-angiogenous compounds.

Searching for methods that enhance the therapeutic efficacy of anti-angiogenic compounds, superior anti-tumor effects were observed unexpectedly upon 25 combination of inhibition of VEGF/VEGF receptor systems and interference with biological function of Angiopoietin/Tie receptor systems. The mode of action underlying the superior effects observed may be that interference biological function of Angiopoietin/Tie receptor systems destabilizes endothelial cell-periendothelial cell interaction of existing mature tumor vessels and thereby 30 sensitizes the endothelium to compounds directed against VEGF/VEGF receptor systems.

Based on this unexpected finding the present invention provides the combination of functional interference with VEGF/VEGF receptor systems and with

Angiopoietin/Tie receptor systems for inhibition of vascularization and of tumor growth.

The pharmaceutical composition consists of two components: compound I inhibits the biological activity of one or several of the VEGF/VEGF receptor systems or

- 5 consists of cytotoxic agents which are targeted to the endothelium via recognition of VEGF/VEGF receptor systems. Compound II interferes with the biological function of one or several of Angiopoietin/Tie receptor systems or consists of cytotoxic agents which are targeted to the endothelium via recognition of Angiopoietin/Tie receptor systems. Alternatively, compound I inhibits the biological
10 activity of one or several of the VEGF/VEGF receptor systems or of the Angiopoietin/Tie receptor systems and compound II consists of cytotoxic agents which are targeted to the endothelium via recognition of one or several of the VEGF/VEGF receptor systems or of the Angiopoietin/Tie receptor systems.
15 Targeting or modulation of the biological activities of VEGF/VEGF receptor systems and of Angiopietin/Tie receptor systems can be performed by

- (a) compounds which inhibit receptor tyrosine kinase activity,
(b) compounds which inhibit ligand binding to receptors,
(c) compounds which inhibit activation of intracellular signal pathways of the
20 receptors,
(d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
(e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents
25 or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
(f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

30

A compound comprised by compositions of the present invention can be a small molecular weight substance, an oligonucleotide, an oligopeptide, a recombinant protein, an antibody, or conjugates or fusionproteins thereof. An example of an inhibitor is a small molecular weight molecule which inactivates a receptor tyrosine

kinase by binding to and occupying the catalytic site such that the biological activity of the receptor is decreased. Kinase inhibitors are known in the art (Sugen: SU5416, SU6668; Fong et al. (1999), Cancer Res. 59, 99-106; Vajkoczy et al., Proc. Am. Assoc. Cancer Res. San Francisco (2000), Abstract ID 3612; Zeneca:

- 5 ZD4190, ZD6474; Wedge et al. (2000), Cancer Res. 60, 970-975; Parke-Davis PD0173073, PD0173074; Johnson et al., Proc. Am. Assoc. Cancer Res., San Francisco (2000), Abstract ID 3614; Dimitroff et al. (1999), Invest. New Drugs 17, 121-135). An example of an antagonist is a recombinant protein or an antibody which binds to a ligand such that activation of the receptor by the ligand is
10 prevented. Another example of an antagonist is an antibody which binds to the receptor such that activation of the receptor is prevented. An example of an expression modulator is an antisense RNA or ribozyme which controls expression of a ligand or a receptor. An example of a targeted cytotoxic agent is a fusion protein of a ligand with a bacterial or plant toxin such as *Pseudomonas exotoxin*
15 A, Diphtheria toxin, or Ricin A. An example of a targeted coagulation-inducing agent is a conjugate of a single chain antibody and tissue factor. Ligand-binding inhibitors such as neutralizing antibodies which are known in the art are described by Genentech (rhuMAbVEGF) and by Presta et al. (1997), Cancer Res. 57, 4593-4599. Ligand-binding receptor domains are described by Kendall & Thomas
20 (1993), Proc. Natl. Acad. Sci., U.S.A.90, 10705-10709; by Goldman et al. (1998) Proc. Natl. Acad. Sci., U.S.A.95, 8795-8800 and by Lin et al. (1997), J. Clin. Invest. 100, 2072-2078. Further, dominant negative receptors have been described by Millauer et al. (1994), Nature 367, 567-579.
Receptor blocking antibodies have been described by Imclone (c-p1C11, US
25 5,874,542). Further known are antagonistic ligand mutants (Siemeister et al. (1998), Proc. Natl. Acad. Sci., U.S.A.95, 4625-4629). High affinity ligand- or receptor binding oligo nucleotides have been described by NeXstar (NX-244) and Drolet et al. (1996), Nat. Biotech 14, 1021-1025. Further, small molecules and peptides have been described.
- 30 Expression regulators have been described as anti-sense oligo nucleotides and as ribozymes (RPI, Angiozyme™, see RPI Homepage).

Examples for delivery-/Targeting-Systems have been described as ligand/antibody-toxin-fusion-proteins or conjugates (Arora et al. (1999), Cancer Res. 59, 183-188 and Olson et al. (1997), Int. J. Cancer 73, 865-870), as endothel cell targeting of liposomes (Spragg et al. (1997), Prog. Natl. Acad. Sci., U.S.A94, 8795-8800, and as endothel cell targeting plus coagulation-induction (Ran et al., (1998), Cancer Res. 58, 4646-4653).

- 5 10 Small molecules which inhibit the receptor tyrosine kinase activity are for example molecules of general formula I

15

20

I.

in which

r has the meaning of 0 to 2,

n has the meaning of 0 to 2;

25

R₃ und R₄

a) each independently from each other have the meaning of lower alkyl,

b) together form a bridge of general partial formula II,

5

m wherein the binding is via the two terminal C-atoms, and has the meaning of 0 to 4; or

c) together form a bridge of partial formula III

10

15

wherein one or two of the ring members T₁, T₂, T₃, T₄ has the meaning of nitrogen, and each others have the meaning of CH, and the bining is via the atoms T₁ and T₄;

G has the meaning of C₁-C₆-alkyl, C₂-C₆-alkylene or C₂-C₆-alkenylene; or C₂-C₆-alkylene or C₃-C₆-alkenylene, which are substituted with acyloxy or hydroxy; -CH₂-O-, -CH₂-S-, -CH₂-NH-, -CH₂-O-CH₂-, -CH₂-S-CH₂-, -CH₂-NH-CH₂, oxa (-O-), thia (-S-) or imino (-NH-),

A, B, D, E and T independently from each other have the meaning of N or CH, with the proviso that not more than three of these Substituents have the meaning of N,

25

- Q has the meaning of lower alkyl, lower alkyloxy or halogene,
R₁ and R₂ independently from each other have the meaning of H or
lower alkyl,
X has the meaning of imino, oxa or thia;
5 Y has the meaning of hydrogene, unsubstituted or substituted
aryl, heteroaryl, or unsubstituted or substituted cycloalkyl; and
Z has the meaning of amino, mono- or disubstituted amino,
halogen, alkyl, substituted alkyl, hydroxy, etherificated or
esterificated hydroxy, nitro, cyano, carboxy, esterificated
carboxy, alkanoyl, carbamoyl, N-mono- or N, N- disubstituted
carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio,
phenyl-lower-alkyl-thio, alkyl-phenyl-thio, phenylsulfinyl,
phenyl-lower-alkyl-sulfinyl, alkylphenylsulfinyl, phenylsulfonyl,
phenyl-lower-alkan-sulfonyl, or alkylphenylsulfonyl, whereas, if
15 more than one rest Z is present ($m \geq 2$), the substituents Z are
equal or different from each other, and wherein the bonds
marked with an arrow are single or double bonds; or an N-
oxide of said compound, wherein one ore more N-atoms carry
an oxygene atom, or a salt thereof.
- 20 A preferred salt is the salt of an organic acid, especially a succinate.
- These compounds can preferentially be used as compound I or II in the inventive
pharmaceutical composition.
- 25 Compounds which stop a tyrosin phosphorylation, or the persistent angiogenesis,
respectively, which results in a prevention of tumor growth and tumor spread, are
for example
anthranyl acid derivatives of general formula IV
- 30

11

in which

- A has the meaning of group =NR²,
- 5 W has the meaning of oxygen, sulfur, two hydrogen atoms or the group =NR⁸,
- Z has the meaning of the group =NR¹⁰ or =N-, -N(R¹⁰)-
(CH₂)_q-, branched or unbranched C₁₋₆-Alkyl or is the group

10

15

or A, Z and R¹ together form the group

20

	m, n and o	has the meaning of 0 – 3,
	q	has the meaning of 1 – 6,
5	R _a , R _b , R _c , R _d , R _e , R _f	independently from each other have the meaning of hydrogen, C ₁₋₄ alkyl or the group =NR ¹⁰ , and/or R _a and/or R _b together with R _c and/or R _d or R _c together with R _e and/or R _f form a bound, or up to two of the groups R _a -R _f form a bridge with each up to 3 C-atoms with R ¹ or R ² ,
10	X	has the meaning of group =NR ⁹ or =N-,
	Y	has the meaning of group -(CH ₂) _p ,
	p	has the meaning of integer 1-4,
	R ¹	has the meaning of unsubstituted or optionally substituted with one or more of halogen, C ₁₋₆ -alkyl, or C ₁₋₆ -alkyl or C ₁₋₆ -alkoxy, which is optionally substituted by one or more of halogen, or is unsubstituted or substituted aryl or heteroaryl,
15	R ²	has the meaning of hydrogen or C ₁₋₆ -alkyl, or form a bridge with up to 3 ring atoms with R _a -R _f together with Z or R ₁ ,
20	R ³	has the meaning of monocyclic or bicyclic aryl or heteroaryl which is unsubstituted or optionally substituted with one or more of halogen, C ₁₋₆ -alkyl, C ₁₋₆ -alkoxy or hydroxy,
25	R ⁴ , R ⁵ , R ⁶ and R ⁷	independently from each other have the meaning of hydrogen, halogen or C ₁₋₆ -alkoxy, C ₁₋₆ -alkyl or

C_{1-6} -carboxyalkyl, which are unsubstituted or optionally substituted with one or more of halogen, or R^5 and R^6 together form the group

- 5 R^8 , R^9 and R^{10} independently from each other have the meaning of hydrogen or C_{1-6} -alkyl,
as well as their isomers and salts.

10 These compounds can also preferentially be used as compound I or II in the inventive pharmaceutical composition.

More preferentially compounds of general formula V

- 15 V,
in which
R¹ has the meaning of group

20

14

in which R^5 is chloro, bromo or the group $-OCH_3$,

in which R^7 is $-CH_3$ or chloro,

in which R⁸ is -CH₃, fluoro,
chloro or -CF₃

5

in which R⁴ is fluoro,
chloro, bromo, -CF₃,
-N=C, -CH₃, -OCF₃ or
-CH₂OH

in which R⁶ is
-CH₃ or chloro

R²

has the meaning of pyridyl or the group

10

and

R³ has the meaning of hydrogen or fluoro, as well as their isomers and salts can be used as compound I or II in the inventive pharmaceutical composition.

15

These compounds have the same properties as already mentioned above under compound IV and can be used for the treatment of angiogeneous diseases.

Compositions comprise compounds of general formulars I, IV and V, alone or in combination.

The above mentioned compounds are also claimed matter within the inventive combinations.

20

A further example for ligand binding inhibitors are peptides and DNA sequences coding for such peptides, which are used for the treatment of angiogeneous diseases. Such peptides and DNA sequences are disclosed in Seq. ID No. 1 to 59 of the sequence protocoll. It has been shown that Seq. ID Nos. 34 and 34a are of main interest.

Claimed matter of the instant invention are therefor pharmaceutical compositions

a) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems,

5

b) comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems,

10

c) comprising one or several agents as compound I which modulates the biological function of one or several of the VEGF/VEGF receptor systems or of one or several of the Angiopoietin/ Tie receptor systems and comprising one or several agents as compound II which are targeted to the endothelium,

15

d) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems,

20

e) comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems,

25

f) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems,

30

g) comprising one or several agents as compound I which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems and

h) comprising one or several agents which interfere with both the function of one or several of the VEGF/VEGF receptor systems and the function of one or several of the Angiopoietin/Tie receptor systems.

5

For a sequential therapeutical application the inventive pharmaceutical compositions can be applied simultaneously or separately .

The inventive compositions comprise as compound I or as compound II at least

10 one of

- a) compounds which inhibit receptor tyrosine kinase activity,
- b) compounds which inhibit ligand binding to receptors,
- c) compounds which inhibit activation of intracellular signal pathways of the receptors,
- 15 d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of
- 20 VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

These compositions are also claimed matter of the present invention.

25

Also claimed matter of the present invention are pharmaceutical compositions which comprise as compound I and/ or II at least one of Seq. ID Nos. 1-59. Of most value are pharmaceutical compositions, which comprise as compound I and/ or II Seq. ID Nos. 34a und pharmaceutical compositions according to claims 30 which comprise as compound I and/ or II at least one of sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate.

Further preferred matter of the present invention are pharmaceutical compositions, which comprise as compound I and/ or II at least one small molecule of general formula I, general formula IV and/ or general formula V.

- 5 The most preferred compound which can be used as compound I or II in the inventive composition is (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate.
Therefore, claimed matter of the present invention are also pharmaceutical compositions, which comprise as compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate, and as compound II (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate, with the proviso that compound I is not identically to compound II, and most preferred pharmaceutical compositions, which comprise as compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and as compound II sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate; pharmaceutical compositions, which comprise as compound I mAB 4301-42-35 and as compound II sTie2, and/ or scFv-tTF conjugate; pharmaceutical compositions, which comprise as compound I scFv-tTF conjugate and as compound II sTie2 and/ or mAB 4301-42-35; pharmaceutical compositions, which comprise as compound I L19 scFv-tTF conjugate and as compound II sTie2.
- 10
- 15
- 20

The small molecule compounds, proteins and DNA's expressing proteins, as

- 25 mentioned above can be used as medicament alone, or in form of formulations for the treatment of tumors, cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathic syndrome,
- 30 transplantation rejections and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis and damage of nerve tissues.

The treatment of the damaged nerve tissues with the inventive combination hinders the rapid formation of scars at the damaged position. Thus, there is no

scar formation before the axons communicate with each other. Therefore a reconstruction of the nerve bindings is much more easier.

Further, the inventive combinations can be used for suppression of the ascites

- 5 formation in patients. It is also possible to suppress VEGF oedemas.

For the use of the inventive combinations as medicament the compounds will be formulated as pharmaceutical composition. Said formulation comprises beside the active compound or compounds acceptable pharmaceutically, organically or inorganically inert carriers, such as water, gelatine, gum arabic, lactose, starch,

- 10 magnesium stearate, talcum, plant oils, polyalkylene glycols, etc. Said pharmaceutical preparations can be applied in solid form, such as tablets, pills, suppositories, capsules, or can be applied in fluid form, such as solutions, suspensions or emulsions.

If necessary, the compositions additionally contain additives, such as

- 15 preservatives, stabilizer, detergents or emulgators, salts for alteration of the osmotic pressure and/ or buffer.

These uses are also claimed matter of the instant invention, as well as the formulations of the active compounds

- 20 For parenteral application especially injectable solutions or suspensions are suitable, especially hydrous solutions of the active compound in polyhydroxyethoxylated castor-oil are suitable.

As carrier also additives can be used, such as salts of the gallic acid or animal or plant phospholipids, as well as mixtures thereof, and liposomes or ingredients

- 25 thereof.

For oral application especially suitable are tablets, pills or capsules with talcum and/ or hydrocarbon carriers or binders, such as lactose, maize or potato starch.

The oral application can also be in form of a liquid, such as juice, which optionally contains a sweetener.

- 30 The dosis of the active compound differs depending on the application of the compound, age and weight of the patient, as well as the form and the progress of the disease.

The daily dosage of the active compound is 0,5-1000 mg, especially 50-200 mg.

The dosis can be applied as single dose or as two or more daily dosis.

These formulations and application forms are also part of the instant invention.

- Combined functional interference with VEGF/VEGF receptor systems and with
- 5 Angiopoietin/Tie receptor systems can be performed simultaneously, or in sequential order such that the biological response to interference with one ligand/receptor system overlaps with the biological response to interference with a second ligand/receptor system. Alternatively, combined functional interference with VEGF/VEGF receptor systems or with Angiopoietin/Tie receptor systems and
- 10 targeting of cytotoxic agents via VEGF/VEGF receptor systems or via Angiopoietin/Tie receptor systems can be performed simultaneously, or in sequential order such that the biological response to functional interference with a ligand/receptor system overlaps in time with targeting of cytotoxic agents.
- 15 The invention is also directed to a substance which functional interferes with both VEGF/VEGF receptor systems and Angiopoietin/Tie receptor systems, or which are targeted via both VEGF/VEGF receptor systems and Angiopoietin/Tie receptor systems.
- 20 VEGF/VEGF receptor systems include the ligands VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF, and the receptor tyrosine kinases VEGF-R1 (Flt1), VEGF-R2 (KDR/Flk1), VEGF-R3 (Flt4), and their co-receptors (i.e. neuropilin-1). Angiopoietin/Tie receptor systems include Ang1, Ang2, Ang3/Ang4, and angiopoietin related polypeptides which bind to Tie1 or to Tie2, and the receptor
- 25 tyrosine kinases Tie1 and Tie2.

- Pharmaceutical compositions of the present invention can be used for medicinal purposes. Such diseases are, for example, cancer, cancer metastasis, angiogenesis including retinopathy and psoriasis. Pharmaceutical compositions of
- 30 the present invention can be applied orally, parenterally, or via gene therapeutic methods.

Therefor the present invention also concerns the use of pharmaceutical compositions for the production of a medicament for the treatment of tumors,

- cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathie, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplantation rejections
- 5 and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis, damage of nerve tissues, suppression of the ascites formation in patients and suppression of VEGF oedemas.

The following examples demonstrate the feasibility of the disclosed invention, without restricting the invention to the disclosed examples.

5 Example 1

Superior effect on inhibition of tumor growth via combination of inhibition of the VEGF A/VEGF receptor system together with functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention was demonstrated in an A375v human melanoma xenograft model.

10

Human melanoma cell line A375v was stably transfected to overexpress the extracellular ligand-neutralizing domain of human Tie2 receptor tyrosine kinase (sTie2; compound II) (Siemeister et al., Cancer Res. 59, 3185-3191, 1999). For control, A375v cells were stably transfected with the empty expression vector

15 (A375v/pCEP). Swiss *nu/nu* mice were s.c. injected with 1×10^6 transfected A375v/sTie2 or A375v/pCEP tumor cells, respectively. Animals receiving compound I were treated for up to 38 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Various modes of treatment are described in Table 1. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

20

Table 1

	mode of treatment	
treatment group	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	- []	+
Group 4: A375v/sTie2	+	+

- 5 Tumors derived from A375v/pCEP control cells reached a size of approx. 250 mm² (mean area) within 24 days (Figure 1) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) or separate interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) delayed growth of tumors to a size of approx. 250 mm² to 31 days, respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of interference with the VEGF/VEGF receptor system by means of the kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I + compound II, treatment group 4) delayed growth of the tumors to a size of approx. 250 mm² to 38 days.
- 10 This result clearly demonstrates the superior effect of a combination of interference with the VEGF-A/VEGF receptor system and the Angiopoietin/Tie2 receptor system over separate modes of intervention.
- 15

Example 2

Combination of functional interference with the Angiopoietin/Tie2 receptor system and neutralization of VEGF-A is superior to separate modes of intervention in

5 inhibition of tumor growth.

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated twice weekly over a period of time of 4 weeks with intraperitoneal doses of

10 200 µg of the VEGF-A-neutralizing monoclonal antibody (mAb) 4301-42-35 (Schlaeppi et al., J. Cancer Res. Clin. Oncol. 125, 336-342, 1999). Various modes of treatment are described in Table 2. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its

15 perpendicular.

Table 2

treatment group	mode of treatment	
	mAb 4301-42-35 (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

20 Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 2) without treatment (group 1). Tumors treated with the VEGF-A-neutralizing mAb 4301-42-35 (compound I, treatment group 2) grew to a volume of approx. 450 mm³ within 28 days. Interference with

- Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and neutralizing of VEGF-A by means of
- 5 the mAb 4301-42-35 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 250 mm³ within 28 days.

The superior effect of a combination of neutralization of VEGF-A and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of
10 intervention is clearly shown.

Example 3

Combination of functional interference with the Angiopoietin/Tie2 receptor system and targeting of a coagulation-inducing protein via the VEGF/VEGF receptor system is superior to separate modes of intervention in inhibition of tumor growth.

5

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. A single chain antibody (scFv) specifically recognizing the human VEGF-A/VEGF receptor I complex (WO 99/19361) was expressed in E. coli and conjugated to coagulation-inducing

- 10 recombinant human truncated tissue factor (tTF) by methods described by Ran et al. (Cancer Res. 58, 4646-4653, 1998). When tumors reached a size of approx. 200 mm³ animals receiving compound I were treated on day 0 and on day 4 with intravenous doses of 20 µg of the scFv-tTF conjugate. Various modes of treatment are described in Table 3. Animals were sacrificed for ethical reasons
- 15 when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 3

treatment group	mode of treatment	
	scFv-tTF conjugate (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

- Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 3) without treatment (group 1). Tumors treated with the coagulation-inducting tTF targeted to the VEGF-A/VEGF receptor I complex via the scFv-tTF conjugate (compound I, treatment group 2) grew to a volume of
- 5 approx. 500 mm³ within 28 days. Interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of targeting the VEGF receptor complex
- 10 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 300 mm³ within 28 days.
- The superior effect of a combination of targeting of the coagulation-inducting tTF to the VEGF-A/VEGF receptor I complex and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly
- 15 shown. Similar effects can be expected upon targeting of cytotoxic agents to VEGF/VEGF receptor systems.

Example 4

Combination of functional interference with the VEGF/VEGF receptor system and targeting of a coagulation-inducing protein via the VEGF/VEGF receptor system is

- 5 superior to separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated for up to 28 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-

- 10 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Compound II consists of a single chain antibody (scFv) specifically recognizing the human VEGF-A/VEGF receptor I complex (WO 99/19361) which was expressed in *E. coli* and conjugated to coagulation-inducing recombinant human truncated tissue factor (tTF) by methods
15 described by Ran et al. (Cancer Res. 58, 4646-4653, 1998). When tumors reached a size of approx. 200 mm³ animals receiving compound II were treated on day 0 and on day 4 with intravenous doses of 20 µg of the scFv-tTF conjugate. Various modes of treatment are described in Table 4. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor
20 growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 4

treatment group	mode of treatment	
	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I)	scFv-tTF conjugate (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/pCEP	-	+
Group 4: A375v/pCEP	+	+

- 5 Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 4) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) resulted in a reduction of the tumor volumes to approx. 550 mm³. Tumors treated with the
- 10 coagulation-inducting tTF targeted to the VEGF-A/VEGF receptor I complex via the scFv-tTF conjugate (compound II, treatment group 3) grew to a volume of approx. 500 mm³ within 28 days. Combination of inhibition of VEGF receptor tyrosine kinase by means of (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and of targeting the VEGF receptor complex
- 15 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 400 mm³ within 28 days.

The superior effect of a combination of targeting of the coagulation-inducting tTF to the VEGF-A/VEGF receptor I complex and functional interference with the

20 VEGF/VEGF receptor system over separate modes of intervention is clearly

shown. Similar effects can be expected upon targeting of cytotoxic agents to Angiopoietin/Tie receptor systems.

Example 5

Combination of functional interference with the Angiopoietin/Tie2 receptor system and endothelium-specific targeting of a coagulation-inducing protein is superior to
 5 separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. A fusion protein (L19 scFv-tTF) consisting of L19 single chain antibody specifically recognizing the oncofoetal ED-B domain of fibronectin and the extracellular domain of tissue factor was expressed in E. coli as described by Nilsson et al. (Nat. Med., in press). Further, L19 scFv-tTF data have been represented by D. Neri and F. Nilsson (Meeting "Advances in the application of monoclonal antibodies in clinical oncology", Samos, Greece, 31. May-2. June 2000). When tumors reached a size of approx.
 10 200 mm³ animals receiving compound I were treated with a single intravenous dose of 20 µg of L19 scFv-tTF in 200 µl saline. Various modes of treatment are described in Table 5. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.
 15

20

Table 5

treatment group	mode of treatment	
	L19 scFv-tTF (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 5) without treatment (group 1). Tumors treated with the coagulation-inducting L19 scFv-tTF (compound I, treatment group 2) grew to a 5 volume of approx. 450 mm³ within 28 days. Interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of targeting the endothelium with L19 scFv-tTF 10 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 250 mm³ within 28 days.

The superior effect of a combination of targeting of L19 scFv-tTF to the endothelium and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly shown.

Example 6

Combination of functional interference with the VEGF/VEGF receptor system and

endothelium-specific targeting of a coagulation-inducing protein is superior to

- 5 separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated for up to 28 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-

- 10 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Compound II consists of L19 scFv-tTF fusion protein as described in example 5. When tumors reached a size of approx. 200 mm³ animals receiving compound II were treated with a single intravenous dose of 20 µg of L19 scFv-tTF in 200 µl saline. Various modes of
15 treatment are described in Table 6. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 6

	mode of treatment	
treatment group	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I)	L19 scFv-tTF (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/pCEP	-	+
Group 4: A375v/pCEP	+	+

5

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 6) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) resulted in a reduction of the tumor volumes to approx. 550 mm³. Tumors treated with the coagulation-inducting L19 scFv-tTF targeted to the endothelium (compound II, treatment group 3) grew to a volume of approx. 450 mm³ within 28 days.

Combination of inhibition of VEGF receptor tyrosine kinase by means of (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and of targeting the VEGF receptor complex (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 200 mm³ within 28 days.

The superior effect of a combination of targeting of L19 scFv-tTF to the endothelium and functional interference with the VEGF/VEGF receptor system over separate modes of intervention is clearly shown.

5

10

Description of the figures

Fig. 1 shows the superior effect of combination of interference with VEGF/VEGF receptor system by means of an specific tyrosine kinase inhibitor and with the

- 5 Angiopoietin/Tie2 receptor system by means of a soluble receptor domain on inhibition of tumor growth (treatment modes of groups 1-4 are given in Table 1).

The abbreviations have the following meaning:

	mock, con.	=	treatment group 1
	mock+VEGF-A	=	treatment group 2
10	sTIE2-cl13	=	treatment group 3
	sTIE2-cl13+VEGF-A	=	treatment group 4

Fig. 2 shows the superior effect on tumor growth inhibition of combination of

- 15 VEGF-neutralization and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in Table 2).

- 20 Fig. 3 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing tTF to the VEGF/VEGF receptor I complex via a scFv-tTF conjugate and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in Table 3).

25

Fig. 4 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing tTF to the VEGF/VEGF receptor I complex via a scFv-tTF conjugate and functional interference with VEGF/VEGF receptor system by means of the VEGF receptor tyrosine kinase inhibitor (4-

- 30 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate over separate modes of intervention (treatment modes of groups 1-4 are given in Table 4).

Fig. 5 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing L19 scFv-tTF fusion protein to the endothelium and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in 5 Table 5).

Fig. 6 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing L19 scFv-tTF fusion protein to the endothelium and functional interference with VEGF/VEGF receptor system by means of the VEGF receptor tyrosine 10 kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate over separate modes of intervention (treatment modes of groups 1-4 are given in Table 6).

CLAIMS

1. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems.
2. Pharmaceutical compositions comprising one or several agents as compound I which are targeted to the endothelium via of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems.
3. Pharmaceutical compositions comprising one or several agents as compound I which modulates the biological function of one or several of the VEGF/VEGF receptor systems or of one or several of the Angiopoietin/ Tie receptor systems and comprising one or several agents as compound II which are targeted to the endothelium.
4. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
5. Pharmaceutical compositions comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
6. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF

receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems.

- 5 7. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.

10

8. Pharmaceutical compositions comprising one or several agents which interfere with both the function of one or several of the VEGF/VEGF receptor systems and the function of one or several of the Angiopoietin/Tie receptor systems.
- 15 9. Pharmaceutical compositions according to claims 1-8 which are intended for simultaneous or separate sequential therapeutical application.

10. Pharmaceutical compositions according to claims 1-8 which comprise as compound I at least one of
- 20 a) compounds which inhibit receptor tyrosine kinase activity,
 b) compounds which inhibit ligand binding to receptors,
 c) compounds which inhibit activation of intracellular signal pathways of the receptors,
 d) compounds which inhibit or activate expression of a ligand or of a
25 receptor of the VEGF or Tie receptor system,
 e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor
30 systems,
 f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

11. Pharmaceutical compositions according to claims 1-8 which comprise as compound II at least one of

- g) compounds which inhibit receptor tyrosine kinase activity,
- h) compounds which inhibit ligand binding to receptors,
- 5 i) compounds which inhibit activation of intracellular signal pathways of the receptors,
- j) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- k) delivery systems, such as antibodies, ligands, high-affinity binding
- 10 oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- l) delivery systems, such as antibodies, ligands, high-affinity binding
- 15 oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

12. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one of Seq. ID Nos. 1-59.

20

13. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II Seq. ID Nos. 34a

25

14. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one of sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTFconjugate.

30

15. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one small molecule of genaral formula I

41

I,

in which

5

r has the meaning of 0 to 2;

n has the meaning of 0 to 2;

10

- R₃ und R₄
- a) each independently from each other have the meaning of lower alkyl,
 - b) together form a bridge of general partial formula II,

II,

15

wherein the binding is via the two terminal C-atoms,
and

m

- has the meaning of 0 to 4; or
- c) together form a bridge of partial formula III

20

		wherein one or two of the ring members T ₁ ,T ₂ ,T ₃ ,T ₄ has the meaning of nitrogen, and each others have the meaning of CH, and the bining is via the atoms T ₁ and T ₄ ;
5	G	has the meaning of C ₁ -C ₆ - alkyl, C ₂ - C ₆ – alkylene or C ₂ - C ₆ – alkenylene; or C ₂ - C ₆ - alkylene or C ₃ -C ₆ - alkenylene, which are substituted with acyloxy or hydroxy; -CH ₂ -O-, -CH ₂ -S-, -CH ₂ -NH-, -CH ₂ -O-CH ₂ -, -CH ₂ -S-CH ₂ -, -CH ₂ -NH-CH ₂ , oxa (-O-), thia (-S-) or imino (-NH-),
10	A, B, D, E and T	independently from each other have the meaning of N or CH , with the provisio that not more than three of these Substituents have the meaning of N,
15	Q	has the meaning of lower alkyl, lower alkyloxy or halogene,
20	R ₁ and R ₂	independently from each other have the meaning of H or lower alkyl,
	X	has the meaning of imino, oxa or thia;
	Y	has the meaning of hydrogene, unsubstituted or substituted aryl, heteroaryl, or unsubstituted or substituted cycloalkyl; and
25	Z	has the meaning of amino, mono- or disubstituted amino, halogen, alkyl, substituted alkyl, hydroxy, etherificated or esterificated hydroxy, nitro, cyano, carboxy, esterificated carboxy, alkanoyl, carbamoyl, N- mono- or N, N- disubstituted carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio, phenyl-lower- alkyl-thio, alkyl-phenyl-thio, phenylsulfinyl, phenyl- lower-alkyl-sulfinyl, alkylphenylsulfinyl, phenylsulfonyl, phenyl-lower-alkan-sulfonyl, or alkylphenylsulfonyl, whereas, if more than one rest Z is present (m≥2), the substituents Z are equal or different from each other, and wherein the bonds marked with an arrow are single
30		

or double bonds; or an N-oxide of said compound,
wherein one ore more N-atoms carry an oxygene atom,
or a salt thereof,

and/or a compound of genaral formula IV

5

in which

- A has the meaning of group $=NR^2$,
 10 W has the meaning of oxygen, sulfur, two hydrogen atoms
 or the group $=NR^8$,
 Z has the meaning of the group $=NR^{10}$ or $=N-, -N(R^{10})-$
 $(CH_2)_q-$, branched or unbranched C₁₋₆-Alkyl or is the
 group

15

or A, Z and R¹ together form the group

20

	m, n and o	has the meaning of 0 – 3,
5	q	has the meaning of 1 – 6,
	R _a , R _b , R _c , R _d , R _e , R _f	independently from each other have the meaning of hydrogen, C ₁₋₄ alkyl or the group =NR ¹⁰ , and/or R _a and/or R _b together with R _c and/or R _d or R _e together with R _e and/or R _f form a bound, or up to two of the groups R _a -R _f form a bridge with each up to 3 C-atoms with R ¹ or R ² ,
10	X	has the meaning of group =NR ⁹ or =N-,
	Y	has the meaning of group -(CH ₂) _p ,
	p	has the meaning of integer 1-4,
15	R ¹	has the meaning of unsubstituted or optionally substituted with one or more of halogene, C ₁₋₆ -alkyl, or C ₁₋₆ -alkyl or C ₁₋₆ -alkoxy, which is optionally substituted by one or more of halogen, or is unsubstituted or substituted aryl or heteroaryl,
20	R ²	has the meaning of hydrogen or C ₁₋₆ -alkyl, or form a bridge with up to 3 ring atoms with R _a -R _f together with Z or R ₁ ,
	R ³	has the meaning of monocyclic or bicyclic aryl or heteroaryl which is unsubstituted or optionally
25		

45

substituted with one or more of für halogen, C₁₋₆-alkyl, C₁₋₆-alkoxy or hydroxy,

5 R⁴, R⁵, R⁶ and R⁷ independently from each other have the meaning of hydrogen, halogene or C₁₋₆-alkoxy, C₁₋₆-alkyl or C₁₋₆-carboxyalkyl, which are unsubstituted or optionally substituted with one or more of halogene, or R⁵ and R⁶ together form the group

10 R⁸, R⁹ and R¹⁰ independently from each other have the meaning of hydrogen or C₁₋₆-alkyl, as well as their isomers and salts,

and/ or a compound of general formula V

15

V,

20

in which

R¹ has the meaning of group

46

in which R⁵ is chloro, bromo or the group -OCH₃,

5

in which R⁷ is -CH₃ or chloro,

in which R⁸ is -CH₃, fluoro,
chloro or -CF₃

in which R⁴ is fluoro,
chloro, bromo, -CF₃,
-N=C, -CH₃,-OCF₃ or
-CH₂OH

in which R⁶ is
-CH₃ or chloro

5

R²

has the meaning of pyridyl or the group

10

and

R³has the meaning of hydrogen or fluoro, as well as their
isomers and salts.

16. Pharmaceutical compositions according to claim 15 which comprise as
15 compound I and/or II (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate

17. Pharmaceutical compositions according to claims 1-16 which comprise as
compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium
hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/or L19 scFv-tTF
conjugate, and as compound II (4-Chlorophenyl)[4-(4-pyridylmethyl)-
phthalazin-1-yl]ammonium hydrogen succinate, Tie2, mAB 4301-42-35, scFv-
tTF and/or L19 scFv-tTF conjugate, with the proviso that compound I is not
identically to compound II.

25

18. Pharmaceutical compositions according to claims 1-17 which comprise as
compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium

hydrogen succinate and as compound II sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate.

19. Pharmaceutical compositions according to claims 1-17 which comprise as
5 compound I mAB 4301-42-35 and as compound II sTie2, and/ or scFv-tTF conjugate.
20. Pharmaceutical compositions according to claims 1-17 which comprise as
compound I scFv-tTF conjugate and as compound II sTie2 and/ or mAB 4301-
10 42-35.
21. Pharmaceutical compositions according to claims 1-17 which comprise as
compound I L19 scFv-tTF conjugate and as compound II sTie2.
- 15 22. Use of pharmaceutical compositions according to claims 1-21, for the
production of a medicament for the treatment of tumors, cancers, psoriasis,
arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye
diseases, such as diabetic retinopathy, neovascular glaucoma, kidney
diseases, such as glomerulonephritis, diabetic nephropathie, malignant
20 nephrosclerosis, thrombic microangiopathic syndrome, transplantation
rejections and glomerulopathy, fibrotic diseases, such as cirrhotic liver,
mesangial cell proliferative diseases, arteriosclerosis, damage of nerve
tissues, suppression of the ascites formation in patients and suppression of
VEGF oedemas.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Sequence Identifier
5
<110> Schering Aktiengesellschaft
10 <120> Combinations and compositions which interfere with VEGF/ VEGF and
angiopoietin/ Tie receptor function and their use II
<130> 51867AEPM1XX00-P
15 <140>
<141>
<160> 59
20 <210> 1
<211> 1835
<212> DNA
<213> Human
25 <400> 1
tttacagtt ttcctttct tcagagttta tttgaattt tcattttgg ataaccaagg 60
agctcttaa gaagaatgca cagaagagtc attctggcac tttggatag tacataagat 120
tttcttttt ttttttaat ttttttaat agtcacattc agctcgctt ctcaaaccag 180
actcccacat tgggtgagca agatgagccc ataggattcc agagttataa cgtaaccgtt 240
tatacaaaca gccaaaaaac cataatggtg ccacagggat ggagcaggga agggcatctc 300
taacgtgtcc tctagtctat cttagtctaa cagaacccac gttacacatg ataactagag 360
agcacactgt ttgaaacga ggatgctgac cccaaatggc acttggcagc atgcagtta 420
aagaaaaga gacatcctt aataactgtt aaaaatccag gcagtccat taaagggtt 480
aagaaaacca acaacaacaa aaagcgaggg actgtctgtt gtcaactgtca aaaaggcact 540
35 tggagttaat gggaccagga ttggaggact cttagctgtt acagattca gtacgatttc 600
attaaaaggc ttggatgtt aagagggaca ctcagcggtt cctgaaggga gacgctgaga 660
tggaccgctg agaagcgaaa cagatgaaca caaaggaaatc aaatcttac aaccaaattt 720
cattaagcg acaacaaaaa aaggcaaacc caaaacgcac acctaaccac agaaaaatct 780
aagaaaatc agacaacgaa gcagcgatgc atagctttcc tttgagagaa cgcataccctt 840
40 gagacgctac gtgccaacct aagtctcaa cgacagcttc acagtaggat tattgtata 900
aaaatgactc aagcgatgca aaaagtttca tctgttccca gaatccgagg gagaactgag 960
gtgatcgta gaggatagcg acatcacgtt cgggttctta atgtccctgg tggcggatac 1020
gcccgtctt cggaggaca tctggacacc acttctagcc accttcttgc aggggcgaca 1080
tccgccaaag tcatccttta ttccgagttaa taactttat tcccttttaa catttacacg 1140
45 gcaaacagga atgcgttaaa cgtccacgtc cgtccccacgg ctgggctgcc gtccgtttc 1200
ctccacgaaac gggtacgccc ttccatgaga aaggatattt ggcaattttt tattccacag 1260
tcaggtgggt ctgcgtatgc tcatttaatg ttaaacgcac tcagggcctt ctccctccgt 1320
ttctgccagg ggctttctt gtcttcttcc tggcgagctc gtggcagat ctctcttgtt 1380
50 ggggctggc tgctggctcc gagggggcat cccgagtc ctcggctgtc tcctcctgca 1440
ggctggcag ctggccacca ttctccgac tcgacccttc caacaagcat cccggggcac 1500
tgtcctcggtt ggtacagacc gtggtcccac attcgctacc actctgttcc acgtcatcca 1560
ggtacacgag ctgcgtgtt gcccgtgtt ctggggctcg aggctttc tgctgggtct 1620
cttggacggg cgggttagtc tgctcgagag acaaagcatc tcccctccc ttccgggtct 1680
55 attttggttt attcatatct acgcacatc ccaaactggc atcattactt ccgttccctc 1740
cagcttttg gagaatcaat gtatgaatgt ctaacgttgc cgttggacat gccatccaag 1800
gagacgaacc acgcccgggg gtgcggaaagc ggcct

60 <210> 2
<211> 581
<212> DNA
<213> Human

<400> 2

5 gttcttagatt gttttatttca gtaatttagct cttaaagaccc ctggggcctg tgctacccag 60
 acactaacaa cagtcttat ccagttgctg gttctgggtg acgtgatctc cccatcatga 120
 tcaacttact tcctgtggcc cattaggaa gtggtgacct cgggagctat ttgcctgttg 180
 agtgcacaca cctggaaaca tactgtctc attttttcat ccacatcagt gagaatgag 240
 tggcccgtt gcaagatata actatgcaat catgcaacaa agctgcctaa taacatttca 300
 tttattacag gactaaaagt tcattattgt ttgtaaaggta tgaattcata acctctgcag 360
 10 agttatagtt catacacaatg tgatttccat ttataaaggc agaaagtctc tgggttctt 420
 aaatgtcaag ctttgactga aaactcccgt tttccagtc actggagtgt gtgcgtatga 480
 aagaaaatct ttagcaatta gatggagag aagggaaata gtacttgaaa tgtaggccct 540
 cacccccca tgacatcctc catgagccctc ctgatgttagt g

15 <210> 3
 <211> 516
 <212> DNA
 <213> Human

20 <400> 3

tagagatgtt gggtgatgac ccccggtatc tggaggcagat gaatgaagag tctctggaaag 60
 tcagccccaga catgtgcatt tacatcacag aggacatgct catgtcgcgg aacctgaatg 120
 25 gacactctgg gttgatttgaa agaaatttgg ggtcttccac ctcgagctct tcagaaacag 180
 ttgttaagct tcgtggccag agtactgatt ctcttccaca gactatatgt cgaaaaaccaa 240
 agacccctccac tgatcgacac agcttgagcc tcgatgacat cagactttac cagaaagact 300
 tcctgcgcatt tgccggctg tgccaggaca ctgctcagaa ttacaccctt ggatgtggcc 360
 atgaacttggaa tgaggaaggc ctctatttgcac acagttgtt ggcccgccag tgcataaca 420
 30 tccaagatgc tttccagtc aaaagaacca gcaaataactt ttctctggat ctcaactcatg 480
 atgaagtcc agagttgtt gtgtaaagtc cgtctg

<210> 4
 <211> 1099
 <212> DNA
 <213> Human

<400> 4

40 cccacaacac agggggccctg aaacacgcac gcctctccctc tgggtcagc ttggcccaatg 60
 cctgctcaact ggatcacagc ccatttgttggggcatgg tggggatcag ggcccccctggc 120
 ccacggggag gtagaagaag acctggccg tgtaagggtc tgagaagggtg ccctgggtcg 180
 ggggtgcgtc ttggccttgc cgtgccctca tccccccggct gaggcagcga cacagcaggt 240
 gcaccaactc cagcaggta agcaccaggag agatgagtcc aaccaccaac atgaagatga 300
 tgaagatggt ctctccgtg gggcgagaga caaaacacgc ggctccatgg tccagccgtt cagcaggtag gggcagggtg 360
 45 ctcgctggca cacaacacgc ggctccatgg tccagccgtt cagcggccac tgcccataga 420
 ggaagccctgc ctcttagcaca ctcttgcaga gcacactggc gacatgggtt cccatcagtg 480
 ctcccggtat ggcaggcga ccatcttgc caccaggat tttggccatc tgacgctcta 540
 cggccggccag cgcccgctcc acctgtgggt ctttggccgg cagtggccgc agctccccct 600
 ccttctggcc cagccgcttct ttcgcggag acaggtaaat gacatggcccc aggttagacca 660
 50 ggggtgggtgt gctgacgaag aggaactgca gcacccagta gggatgtgg gagatgggg 720
 aggccctggtc atagcagacg ttggtgacgc ctggctgggc cgtgttacac tcgaaatctg 780
 actgctcgtc accccacact gactgcggg ccaggccca gatgaggatg cgaagatga 840
 agagcaccgt cagccagatc ttaccacca cggtcgagtg ctccctggacc tggccagca 900
 acttctccac gaagccccag tcacccatgg ctcccgccgc tccgtcggca aggagacaga 960
 55 gcaegtcaat gtgtcagcat ggcaccccttc tgggtcgcccc agcaacaaacgc ctgcaggggag 1020
 gtctgccaat cccgttctac cgcctgcctg cccggccggcc cagggtggagg tggggacgat 1080
 ggcggaggta acggcccgccg

60 <210> 5
 <211> 1015
 <212> DNA
 <213> Human

65 <400> 5

gaggataggg agcctgggt caggagtgtg ggagacacag cgagactctg tctccaaaaa 60

aaaaagtgct ttttggaaat gttgagggtt gaaatgatggg aaccaacatt ctttggattt 120
 agtggggagc ataatacgaaa acacccccc ggttcgcaca tgtacaggaa tgggaccagg 180
 ttggggcaca gccatggact tccccccctt ggaatgtgtg gtgcaaagtg gggccagg 240
 5 ccagacccaa gaggaggg tggtcccgag acacccccc atgtcagcat ccccccgcct 300
 gcctctggc ggcacccccc ggggtctgtg tttagtgcagc aggcatggg tgagagcctg 360
 gtatgcgtg ggaacagggt gcaggggcca agcgttcctc cttagccctt gacttggcc 420
 atgcacccccc tctcccccac acacaaacaa goacttctcc agtatgtgc caggacagg 480
 10 gtcccttcag tcctctgtt atgacctaa gtctacttg ggcctcgag cccagccctg 540
 gttgtaacct ctgcgtccctc aagaccacac ctggaaagatt cttctccctt ttgaaggaga 600
 atcatcattt gtcgtttatc acttctaaga cattttgtac ggcacgaca agttaaacag 660
 aatgtgttc ctcctctgg gtcgtcacacg ctcccccacg aatgcacag gggccgtca 720
 15 ctggcaggc ttctctgtt aaccccgagg gcttcggccc agaccacagc gtcttgcct 780
 gagcttagag cagggagttcc cgaacttctg cattcacaga ccaccccttcc aattgttata 840
 accaaaggcc tcctgttctg ttatttcaact taatcaaca tgctattttt ttttcaacta 900
 ctctgactt tagccctcggt ctgaggccgt tatccatgca gtcatgttca cgtcttagtt 960
 acgtttttct ttttacat gaaaataaat gataaagtgt tagaagaaaa aaaaa

 <210> 6
 <211> 2313
 20 <212> DNA
 <213> Human

 <400> 6

 25 ccagagcagg cctgggtggg agcagggacg gtgcacccggc cggcgggatc gagcaatgg 60
 gtctggccat ggagcacgca gggctctacg ctcggggggg gggcagctct cggggctgt 120
 ggtattacct ggcgtacttc ttcccttctc ttccctcat ccaattccctc atcatctgg 180
 ggctctgtct cttcatggc tatggcaacg tgacgtgag cacagagtcc aacctgcagg 240
 30 ccacccggc cccggccggc ggcctataaca gtcagctccctt agggctcagc gcctccctgt 300
 ccaacttgc caaggagctc aacttcacca cccgcgcacaa ggatgcacatc atgcagatgt 360
 ggctgaatgc tcgcccgcac ctggccgcac tcaatggccag ctcccccac tgccagggtg 420
 accgggtcat ctacacgaa aatcagaggat acatggctgc catcatctt agtgagaagc 480
 aatgcagaga tcaattcaag gacatgaaca agagctgcga tgccctgtc ttcatgtga 540
 atcagaagggt gaagacgctg gaggtggaga tagccaaggaa gaagaccatt tgactaagg 600
 35 ataaggaaag cgtgtgtctg aacaaacgcg tgccggaggaa acagctgtt gaatgcgtga 660
 aaacccgggaa gtcgcagcac caagagcgc actggccaaag gagcaactgc aaaaggtgca 720
 agccctctgc ctgcccctgg acaaggacaa gtttggatg gaccttcgtt acctgtggag 780
 ggactccatt atcccacgca gcctggacaa cttgggttac aaccttctacc atcccctggg 840
 40 ctggaaattt gcctccatcc gcagagcctg cgaccacatg cccagctca tgagctccaa 900
 ggtggaggag ctggccggc gcctccggc gatatcgaa cgcgtggccc gcgagaactc 960
 agaccccttccaa cgccagaagc tggaaagccca gcagggcctg cggccgcgtc aggaggcga 1020
 acagaagggt gagaaggagg ctccggccggc ggaggccaaatg ctccaaatg aatgctcccg 1080
 gcagaccccg ctacgcgttgg aggagaaggc ggtgtcgcc aaggaaacgg aacacctggc 1140
 caaggagctg gaagagaaga agagggaggc ggagcgtc aggatggcgc tggccatcag 1200
 45 aaactcagcc ctggacaccc tgcataacgac caagtcgcag ccgtatgtc cagtgtcaag 1260
 gcccattggc cctgtcccca accccctggc catcgacccca gctagctgg aggagttcaa 1320
 gaggaagatc ctggagtccc agaggcccccc tgcaggcattt cctgttagccc catccagtgg 1380
 ctgaggaggc tccaggcctg aggaccaagg gatggccgc ctcggccgtt tgccggaggat 1440
 50 gcaggatgt gtcacacgc cccgacacaa ccccttcctcg ccccccacaa ccacccagg 1500
 ccacccatcg acaactccct gcatgaaac cccttagtacc ctctcacacc cgcacccgc 1560
 ctcacacgc ctcaccccg agcacacgc cgcggagatg acgtcacgcg aacacccggc 1620
 ctgcgtcac atatccatggc ggtgtatggc tcacgtggcc atgttagacgt cacaaggaga 1680
 tatacgatg cgcgtcgatc gatgcacgc tcgcacaca gacatggggaa acttggcatg 1740
 55 acgtcacacc gagatgcacgc aacgcacgc cggccatgtt cgacgtcaca catattaatg 1800
 tcacacagac gcggcgatgg catcacacag acgggtatgtg tgtagccac acacacagtg 1860
 acaacacaca ccatgacaaac gacacctata gatatggcactt caacatcaca tgacacgc 1920
 cccttcaca cacacttttccatcc acccaatttccatcc cacttagtgcg cactgttccctt cggccctggc 1980
 acacggggca aggttccac aggttccatcc cccctcccgcc acagccctgg gcccagcac 2040
 60 ctcccttcctt ccagcttccctt ggcctcccttccatcc coacttcccttccatcc accccctgg cctggaccgg 2100
 gaggtgagaa caggaagccatcc ttcaccccttccatcc ctccttgcgtt gtaggtttt ccaggacccc 2160
 ctcggggccccc tgagccgggg gtaggggtca cctgttgcgtt ggaggggagc cactccttct 2220
 cccccaactc ccacccctgc ctgtggcccg ttgaaatgtt ggtggcactt aataaatattt 2280
 agtaaatccctt aaaaaaaaaaaa aaaaaaaaaaaa aaa

65 <210> 7
 <211> 389

<211> 1002
 <212> DNA
 <213> Human

5 <400> 14

gacaatataaa aaagtggaaa caagcataaaa ttgcagacat aaaataatct tctggtagaa 60
 acagttgtgg agaacaggtt gaggtagagca acaaacaacaa aagcttatgc agtcaccttc 120
 10 tttggaaaatg ttaaataacaa gtcctattct ctttgtccag ctgggtttag ctagaggttag 180
 ccaattactt ctcttaagt ccatggcatt cgccaggatt ctataaaagc caagttact 240
 gaagttaaata tctggggccc atcgcccc cactaagtac tttgtcacca tggtagtct 300
 taaaagtcat ttttactgtt ttgactcaga atttgggact tcagagtcaa acttcattgc 360
 ttactccaaa cccagttaa ttcccaactt tttaagttag gcttagctt gaggtagttt 420
 tggctataac cggaaatgtaa atccacccctt aaacaacaaa gtttgacaag actgaaatgt 480
 15 tactgaaaac aatggtgcca tatgctccaa agacatttc ccaagataac tgccaaagag 540
 ttttgagga ggacaatgtt catttattat gtaggagcct tgatatctt gaaaaataga 600
 attaatacag ctc当地atgaa gtagtaacca agctttctg cccaggaagt aacaaacatc 660
 actacgaaca tgagagtaca agaggaaact ttctataatgc atttttcat tcatacatc 720
 attcaataaa cattggccaa gctaattgtcc caagccactg tgccaggat taacaatata 780
 20 acaacaataaa aagacacatg ctttccttc aagggttca gtctagtagg gaagatgatt 840
 attcattaaa atttttgtt catcagaatc atgaggagct tggtaggtc aggagtggga acccaaatac aattcttta 900
 gcctatgttc tcagatattc tggtaggtc aggagtggga acccaaatac aattcttta 960
 acaaaacacta aagggttcatc taacacagggc ggtgtgagga cc

25 <210> 15

<211> 280
 <212> DNA
 <213> Human

30 <400> 15

cgaggtgggc caccgggtgtc tggtagtggaa tttttaaatg aggattacat tattttttttt 60
 ataataattcc tatttctaaatc tattttttttt ttacaattaa atgtatcaaa taatttttttaa 120
 35 aaacattattt agaaacaaac tgccttaatac cttataagac taaaaaaaaatc accaagatga 180
 aactgttata tggactcttcaaa tattttaaaca tttttttttttt tggtagtggtt tggtagtggac 240
 caatcttaac tattttttttt gccccggccgg ccgctcgagg

<210> 16
 <211> 2041

40 <212> DNA
 <213> Human

<400> 16

45 ccccccgcag aactcccccc tggaaatagga tttttttttt ctttgcataat tagaaatcc 60
 atagaggtta gcattttttt ggtttttttt tgggtttttt tacaggatc atgcaacttc 120
 cttaaaacca attcagcaca tatgtataaa gaaccctttt taaaacattt tttttttttt 180
 atacagacac agtggatgtt aagacactaa aaaaaactgtt aaaaactgtt taccttgc 240
 50 aattttttttt tggactcttcaaa tttttttttt tagactttt ataatcttca gttttttt aaggacttgc 300
 atttaataat ggggttattt cacaagacgtt aaggattttt tttttttttt tttttttttt 360
 ttacctctttt catcaattttt tttttttttt atgctttttt aattttttttt tttttttttt 420
 aaaaactgtt aatagaccattt taaatgtttt tttttttttt aacgcagttt aattttttttt 480
 caggatcata tttttttttt aacatttttt tttttttttt tttttttttt tttttttttt 540
 55 gaattttttt aatggatgtt tttttttttt tttttttttt tttttttttt tttttttttt 600
 ataaaaacaa gcaactgtt tttttttttt tttttttttt tttttttttt tttttttttt 660
 tagatattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 720
 gcattttttt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 780
 accccccttccaa ccagggtttt cacagttttt tttttttttt tttttttttt tttttttttt 840
 60 ccggaaatggaa catggatgtt atgcaactttt tttttttttt tttttttttt tttttttttt 900
 ttcctgtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 960
 tgggtcttccaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1020
 atgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1080
 ctggactgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1140
 ttggatcttccaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200
 65 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1260
 aatggatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1320

taccagagtg aaccacaacg gaacttaata gatagggcac caattttgtg caggaagctt 1380
catcagtccc tgaaggctt aatttttag caaggttctc actaagatca gtgaagtcaa 1440
catctacaga ccaacttct gacaatgaag agaaaagaagt aattcttcta actggcaact 1500
ccaaaccag tggccagtgta tacatgtct aaaatttc ttctcacatg atacttctga 1560
5 tcatatgaaa atctcaggag agtaagaata aggtattca gttcctccgt gatttgcata 1620
gtttctcg cattttgcag agaggcacag ttttcacaat aatattgggtt atcaccagta 1680
agaatctcg gagcccaaaa aataatttag taagtcaagg tcttataaac aagaatcttg 1740
tcccggttc tgaggtacat ttgtataactg ggtgatgatg ctggatctt 1800
10 agtgtttca gaacagtaaa actcattagg aggactgcct atggttttt cattcacaag 1860
tgagtacag atgaaggcag ctgttgg attataaact actggctctt ctgaaggacc 1920
gggtacagac gcttgcatta gaccaccatc ttgtataactg ggtgatgatg ctggatctt 1980
gacagacatg tttccaaag aagaggaage acaaaaacgc agcgaaagat ctgtaaaggc 2040
t

15 <210> 17
<211> 235
<212> DNA
<213> Human

20 <400> 17

ccccccgggc aggtgtcagg ggttccaaac cagcctgggg aaacacagcg tagaccctc 60
acctctacaa ataaaaatt aaaaaattag ccaggtgtgg cagcgaacaa ctgtagtctc 120
25 agatactcg gagactgagc tggaaaggat cacttgagcc caagaagttc aaggtacag 180
tggccacga tcatgtcatt acactccagc ttgggtgaca aaatgagact gtcta

<210> 18
<211> 2732
<212> DNA
30 <213> Human

<400> 18

gtgtggagtt tcagctgcta ttgactataa gagctatgga acagaaaaag ctgtggct 60
35 tcatgttcat aactacttta tatggagctt cattggacct gttacccatc ttattctgtc 120
aaatattatc ttcttggta tcacattgtg caaaatgggt aagcattcaaa acactttgaa 180
accagattct agcaggttgg aaaacattaa gtcttgggtt cttggcgctt tcgctcttc 240
gtgtcttctt ggcctcacct ggtccttgg gttgtttttt attaatgagg agactattgt 300
gatggcatat ctcttcaacta tatttaatgc ttccaggga gtgttcattt tcatcttca 360
40 ctgtgtctc caaaagaaag tacaaaaaga atatggcaag tgcttcagac actcatactg 420
ctgtggaggc ctcccaactg agagccccca cagttcagtg aaggcatcaaa ccaccagaac 480
cagtgtcgc tatttctctg gcacacagag tctgtataaga agaatgtgga atgataactgt 540
gaaaaacaaa tcagaatctt cttttatctc aggtgacatc aatagactt caacacttaa 600
tcaaggtggc ataaatctt atatattattt acaggactga catcacatgg tctgagagcc 660
45 catcttcaag atttatataa tttagaggac attcaactgaa caatgccagg gatacaagt 720
ccatggatac tctaccgcta aatgtaatt ttaacaacag ctactcgctg cacaagggtg 780
actataatga cagcgtgcaaa gttgtggact gtggactaag tctgaatgtat actgtttt 840
agaaaaatgt catttcagaa tttagtgcaca acaacttacg gggcagcagc aagactcaca 900
50 acctcgagct cacgctacca gtcaaacctg tgattggagg tagcagcagt gaagatgtat 960
ctattgtggc agatgcttca tctttaatgc acagcgacaa cccaggctg gagctccatc 1020
acaaaagaact cgaggcacca cttattctc akgcgactca ctccctctg taccaacccc 1080
agaagaaagt gaagtcccgag ggaactgaca gctatgtctc ccaactgaca gcagaggctg 1140
aagatcacct acatgtcccc aacagagact ctcttataac aagcatgccc aatcttagag 1200
55 actctcccta tccggagagc agccctgaca tggaaagaaga cctctctcc tccaggagga 1260
gtgagaatga ggacatttac tataaaagca tgccaaatct tggagctggc catcagcttc 1320
agatgtgcta ccagatcagc agggcataa gtgtatggta tataatcccc attaacaag 1380
aagggtgtat tccagaagga gatgttagag aaggacaaat gcagctgggtt acaagtcttt 1440
aatcatacag ctaaggaatt ccaagggcca catgcgagta ttaataataa aagacaccat 1500
60 tggcctgacg cagctccctc aaactctgtc tgaagagatg actcttgacc tgggttctc 1560
tgggtaaaa aagatgactg aaccttgcag ttctgtgaat ttttataaaa cataaaaaaa 1620
cttigtat acacagaga tactaaagtg aattattgt tacaagaaaa agagatgcca 1680
gccaggatt ttaagattct gctgtgtttt agagaaaattt tgaaacaagc aaaacaaaaac 1740
tttccagcca ttttactgca gcagtcgtg aactaaattt gtaaaatatgg ctgcaccatt 1800
ttttagggc ttacttgcataatc tgacaagact tggaaaagca ggagagatat tctgcattc 1860
65 ttactgtacc ttacttgcataatc tgacaagact tggaaaagca ggagagatat tctgcattc 1920
tttgcagttc actgcaaatc ttacatcagg tggaaaacatc cttaaccact 1980

	agcaatcaag	ccacaggcct	tatttcata	gtttcctcaa	ctgtacaatg	aactattctc	2040
	atgaaaaatg	gctaaagaaa	ttatatttg	ttctattgt	agggtaaaat	aaatacat	2100
	gtgtccaact	gaaatataat	tgtcattaaa	ataattttaa	agagtgaaga	aatattgt	2160
	aaaagctctt	ggttgcacat	gttatgaaat	gttttttctt	acacttgc	atggtaagg	2220
5	ctactcattt	tcacttctt	tccactgtat	acagtgtct	gctttgacaa	agttagtctt	2280
	tattacttac	attnaaattt	cttattgcca	aaagaacgt	tttatgggg	agaaacaac	2340
	tctttgaagc	cagttatgtc	atgccttgca	caaaagtgt	gaaatctaga	aaagattgt	2400
	tgtcacccct	gtttatctt	gaacagaggg	caaagggc	actgggcact	tctcacaac	2460
	tttcttagtga	acaaaagggt	cctattctt	tttaaaaaaa	taaaataaaa	cataaatatt	2520
10	actcttccat	atcccttctg	cctatattta	gtaattaatt	tatttatga	taaagttcta	2580
	atgaaatgt	aattgttca	gcaaaattct	gctttttt	catccctt	tgtaaacctg	2640
	ttaataatgt	gcccatact	aatatccagt	gtaaagtta	acacggtt	acagtaaata	2700
	aatgtgaatt	tttcaagtt	aaaaaaaaaa	aa			
15	<210>	19					
	<211>	276					
	<212>	DNA					
	<213>	Human					
20	<400>	19					
	ctcccataat	gattttaaaa	taaattggat	aaacatatga	tataaagtgg	gtactttaga	60
	aaccgccttt	gcatattttt	tatgtacaaa	tctttgtata	caattccgat	gttccttata	120
25	tatccctat	atagcaaac	aaaaccagg	cctcccaact	gcatgcctca	agtccctgt	180
	gagcaactg	gcaactggat	ggccctactt	gctttctgac	aaaatagctg	gaaaggagga	240
	gggaccaatt	aaataacctg	ggcgacca	cgctgg			
	<210>	20					
	<211>	2361					
	<212>	DNA					
	<213>	Human					
	<400>	20					
30							
35	attgtaccag	ccttgatgaa	cgtggccct	gcttcgttt	tgagggccat	aagctcat	60
	cccaactgggt	tagaggctac	cttacattg	tctcccgta	ccggaagg	tctcccaagt	120
	cagagttac	cagcaggat	tcacagagct	ccgacaacga	gattctaaac	atctatgacc	180
	tgtgcaccaa	gttcatgac	tatgcacccg	tctttgagga	tgttagtggat	gtgcttgct	240
	agtggggctc	cctgtacgt	ctgacgggg	atgggcgggt	ccacgcact	caggagaagg	300
40	acacacagac	caaactggag	atgtgttta	agaagaacct	attttagat	gcgat	360
	ttgccaagag	ccagcatctg	gacagtgtat	ggctggccca	gattttcat	cagtatggag	420
	accatctcta	cagcaagg	aaccacgtat	gggctgtcca	gcaatata	cgaaccat	480
	gaaagttgga	gccatctac	gtgatccgca	agtttctgga	tgcccagc	attcacaacc	540
	tgactgcct	cctgcagacc	ctgcaccgac	aatccctggc	caatgc	cataccaccc	600
	tgtcctcaa	ctgctatacc	aagctcaagg	acagctcgaa	gctggagg	ttcatcaaga	660
45	aaaagagtga	gagtgaagtc	cactttgtat	tggagacagc	catcaagg	ctccggcagg	720
	ctggctacta	ctccatg	ctgtatctgg	cggagaacca	tgcacatcat	gagtgttacc	780
	tgaagatcca	gctagaagac	attaagaatt	atcaggaac	ccttcgata	atcggcaac	840
	tgcctttga	gcaggcagag	agaacatg	agcgtca	caagat	atgcaccaca	900
50	taccagac	gacaactc	ttgctgtt	gactttgtac	tgat	ccacgcctc	960
	aaggcccg	cgatagg	gccccagg	cgagggccaa	ctctgagg	ttcatcccc	1020
	tctttgccaa	taacccg	gaggtgaaag	ccttcctag	gacat	gagtgc	1080
	cagactcacc	ccagggatc	tacgacacac	tccttgc	gacat	gac	1140
	acgagaagga	tccacagg	aaagagaac	ttcac	ggcatttcc	ctgctgaaga	1200
55	gtggtcgctt	ctgcgacgtc	tttgcata	ccctggct	gtgc	cacgact	1260
	aggatggtgt	ccttac	tatgac	agaagctt	ccagc	atgcact	1320
	acatgcagca	cgagcgtac	cggcagg	tcagcgt	tgagc	ggggagcagg	1380
	accctccctt	gtgggagc	gcccctag	acttcg	caagg	gact	1440
60	agtatgtgg	agctgtt	aagcatat	agaaca	cctc	tcttct	1500
	tggtcagac	cctggcc	aactcc	ccacact	cgt	actac	1560
	tccaaaaact	acagaaac	agccagc	ttgcac	tgag	gtgcggcgt	1620
	accgagag	gaccac	cg	agatccaa	gctcaagg	actcttca	1680
	tttccaaaa	gacca	atcc	acatgc	ggat	tccact	1740
	tccgtgtgg	ccactc	cacca	gctt	tgat	cgaa	1800
65	actgccccac	ctgc	gaaaac	aggc	atcag	atgat	1860
	agaaacgaga	tctccat	gaaaac	catg	gtg	gac	1920

	taaaatctca	cttttctcct	acttttcatt	tcccaacccc	catgatacta	agtatttgat	960
	aagtaccagg	aaacagggggt	tgtaatagtt	ctaacttttt	ttgacaattt	ctttgttttt	1020
	tctaaacttg	taatagatgt	aacaaaagaa	ataataataa	taatgccccgg	ggctttatttt	1080
	tgctatatca	ctgctcagag	gttataataatc	ctcaactaact	atccatataaa	atttgcact	1140
5	ggcagtttac	tctgatgatt	caactccctt	tctatctacc	cccatataatcc	caccttactg	1200
	atacacctca	ctggttactg	gcaagatacg	ctggatccct	ccagcccttct	tgctttccct	1260
	gcaccagccc	ttcctcaactt	tgcccttgccc	tcaaagctaa	caccacttaa	accacttaac	1320
	tgcattctgc	cattgtgcaa	aagtctatga	aatgttttagg	tttctttttaaa	ggatcacagc	1380
10	tctcatgaga	taacaccctt	ccatcatggg	acagacactt	caagtttctt	tttttgtaac	1440
	ccttcccca	ggtcttagaa	catgatgacc	actccccccag	ctgcccactgg	gggcagggtat	1500
	ggtctgcaca	aggctctggt	ctggctggct	tcacttcctt	tgcacactcg	gaagcagggct	1560
	gtccattaat	gtctcgccat	tctaccaggc	ttctctgcca	acccaattca	catgacttag	1620
	aacatcgcc	ccacttcata	atgaccatgt	ctgaaaaagt	ggggatagca	ttgaaagatt	1680
15	cottcttctt	ctttagaaag	tagtgtatt	taattttagg	tcgaaaggca	ttgcccacag	1740
	taagaacctg	gatggtcaag	ggctttttga	gagggctaaa	gctgcgaatt	ctttccaaatg	1800
	cgcgagagga	gccgctgtac	ctcaagacaa	cacctttgtt	cataatgtct	tgctctaagg	1860
	tggacaaaatg	gtagtccacca	ttaagaatat	atgtgcacatc	agcagctttg	atggcaagaa	1920
	agctgccatt	gttcctggat	ccccctctggt	tccgctgttt	cacttcgatg	ttggtggtc	1980
20	cagttggaat	tgtgatgata	tcatgatatac	caggtttgc	actagtaact	gatcctgata	2040
	tttttttaca	agtagatcca	tttccccccgc	aaacaccacca	tttatcaaaac	ttttttttgg	2100
	agtctatgtat	gcgatcacaaa	ccagtttta	caca			

25 <210> 24
<211> 1626
<212> DNA
<213> Human

<400> 24

60 <210> 25
<211> 1420
<212> DNA
<213> Human

<400> 25

gttcaggcatt gtttctgatt ctggaaatctg tatactcaac tgcattttatcc ttatttt - 60

ttcattgaaa tccttgcac ttctttcctt cctcaatgaa agacacgaga gacaagagcg 120
 acacaagctt aagaaaaaacg agcaaggaag agtatcttca ttattctcat ttctctgag 180
 ttggaaacaa aaacatgaag gactccaact agaagacaga tatttacatt taaatagatt 240
 agtggaaaaa cttaagagt ttccacatat tagtttcat ttttgagtc aagagactgc 300
 5 tccttgcact gggagacact agtagtatat gtttgaatg ttactttaaa attatcttt 360
 tatttataa gcccataaa tactggtta actctgttaa aagtgggcct tctatcttgg 420
 atggttcac tgccatcagc catgtgata tattagaaat ggcatcccta tctacttact 480
 ttaatgctttaa attatatacataaaatgctt tatttagaaa acctacatga tacagtggtg 540
 10 tcagccttgc catgtatcag tttcacttga aatttggac caattaaatt tcaactgttt 600
 agggggaga aagaggact ggaaaacatg cagatggaga tatctttat gtgcaacacgt 660
 atcccttgc tggggaggaga gttactcttga aaggcaggc agcttaagtg gacaatgttt 720
 tgtatatagt tgagaattttt acgacacttt taaaattgt gtaatttgttta aatgtccagt 780
 tttgctctgt tttgcctgaa gttttagtat ttgtttctta ggtggacctc tgaaaaccaa 840
 accagtacctt gggggaggta gatgtgtgtt tcaggcttgg agtgtatgag tgggtttgt 900
 15 tgtatttcc tccagagatt ttgaacttta ataattgcgt gtgtgtttt ttttttttaa 960
 gtggcttgc tttttttctt caagtaaaat tttgttgcata tttcctttat aggggcagg 1020
 catgagttttag ggagactgaa ggtttttgtt gactgtacat gtgccttctt aatgtgtttc 1080
 tcgcacacatttttttcaatgtaacttggaaatggcaggc acatgggtt aggttactgt 1140
 20 acatcaatctt atgcataaaat ggcagcttgc ttcttgcgc cactgtctaa attttgtttt 1200
 tataaaaaatttttatactt atgggttcat agatggtcag tttgttgcac agactgaaca 1260
 atacacactt tggccaaaaaa tgagtgttgc atttttttaaa cattgtgtgtt taacacctgt 1320
 tctttgttgc tgggttgc tgcattttgc actacctggg gttacagttt tcaatctgtc 1380
 agtaaaaaaa gtgtcctttaa acttcaaaaaa aaaaaaaaaaa
 25 <210> 26
 <211> 689
 <212> DNA
 <213> Human
 30 <400> 26

 aaacaaacaa aaaaaaaaggta agtactgtat atgtaaatac tagctttca atgtgtata 60
 caaaacaattt tagcacatcc ttccctttac tctgtctcac ctcctttagg tgtagtacttc 120
 35 cttaataaag tgctaaacat acatatacgg aacttggaaag ctttggtagt cttgcctta 180
 ggtaatcagc ctgtttaca ctgttccag ggagtagttt aattactata aaccattagc 240
 cacttgc tgcaccattt atcacaccag gacagggtct ctcaacctgg ggcctactgt 300
 catttggggc caggtgattt ttcccttgc tggctgtcct gtacctggcc gggggccgc 360
 tcgaagcgtg gtcgcggccg aggtactgaa aggaccaagg agctctggct gcctcagga 420
 attccaaatg accgaaggaa caaagttca gggctctggg tgggtcttcc cactattcag 480
 40 gaggtggctc gaggttaacgc agcttcattt cgtccagtcc ttcccaatgtt taaaagggt 540
 tgtcaagatg ctgcattaaatc aggttgcgtt ctacaaaggc atcccaagca tcaaacatgt 600
 ctgtgtgaa gtaatcaatg aaacacccggaa acctccgacc acctccctgaa tagtgggaga 660
 cacacccaga gctgttgcatttgc
 45 <210> 27
 <211> 471
 <212> DNA
 <213> Human
 50 <400> 27

 tccccagcggc atgaaggttt agattggcca ggccctgtac ctgggcttca tctcccttcgt 60
 ccctctcgat cattgggtgc accctgtttt ccctgtcttc ccaggacgag gcaccctaca 120
 55 agccctaacc caggccccgc ccaggggccac caccgttccatc gcaaaacaccg caccctgcctt 180
 ccagccacca gctgccttaca aagacaatcg ggccccctca gtgacccctgg ccaccacagc 240
 gggtacaggc tgaacgacta cgtgtgagtc cccacagccct gcttctccccc tgggctgt 300
 tgggctgggtt cccggccggaa ctgtcaatgg aggccagggtt tccagcacaatgttacttc 360
 tgggcaattt ttgtatccaa gggaaataatg tgaatgtcgag gaaatgtttagagcacag 420
 60 ggacagaggg gggaaataaaga ggaggagaaa gctctctata ccaaagactg a
 <210> 28
 <211> 929
 <212> DNA
 <213> Human
 65 <400> 28

ggtgaactca gtgcattggg ccaatggttc gacacaggct ctgccagcca caaccatcct 60
 gctgcttctg acgggttggc tgctgggtggg ctttcccctc actgtcattt gaggcatctt 120
 tggaaagaac aacgcgcagcc cctttgatgc accctgtcgcc accaagaaca tcgccccggg 180
 5 gattccaccc cagccctgtt acaagtctac tgcacatccac atgactgttg gaggcttcct 240
 gccttctgtt gccatctctg tggagctgtta ctacatctt gccacagtat ggggtcggg 300
 gcagtagact ttgtacggca tccttcttctt tgccttcgtcc atcctgtga gtgtggggc 360
 ttgcacatctcc attgcacttca cctacttca gttgtctggg gaggatacc gctgggtggg 420
 gcgatctgtt ctgagttgtt gctccacccg ccttcttcatc ttctcttact cagtttcttca 480
 10 ttatgcccgg cgctccaaca tgcgtggggc agtacagaca gttaggttct tcggctactc 540
 cttaacttactt ggttatgtt tcttcttcatc gctggggcacc atctccctt tttcttcct 600
 aaagtttcatc cggtataatct atgttaaccc caagatggac tgagttctgtt atggcagaac 660
 tattgtgtt ctctccctt cttcatgcccc tggtaacttcc tcctaccaggc ttctttctt 720
 attgactgaa ttgtgtgttgc gattgttgc ctcccttctt tccctttggg cattccttcc 780
 15 ccagagaggg cctggaaatt ataaatcttctt atcacataag gattatatat ttgaactttt 840
 taagttgcct tttagtttggg tcctgatttt tcttttaca attacaaaaaaa taaaaatttt 900
 taagaaaaaaag aaaaaaaaaaaa aaaaaaaaaaaa
 20 <210> 29
 <211> 1775
 <212> DNA
 <213> Human
 25 <400> 29
 gaacgtgtatg ggaactttgg gaggatgtct gagaaaaatgt ccgaagggtt tttggccaa 60
 accagaaaaac gccaatgtcc taggaatttcc ctcccaaaaat gcttcccaaa aaattactca 120
 ttgacaatttcc aaattgtact tggctggggc cagccccggg ggccttcagt ccgtgtgggg 180
 30 cggccgcgtt gccttctctt cgttaggtactt cccaaactcg ttcaacttgc gtttatccac 240
 aggataaaggc caccgtgtt acaggttagac cagaaacacc acgtcgcccc ggaagcaggc 300
 cagccgggtga gacgtggggc tgggtgtatgaaaggc acgtcatcaa tgaaggtgtt 360
 gaaagcccttgc taggtgaagg ctttccaggc cagatgtgcc actgacttca acttgttagtt 420
 cacaaggagc tggggcagca tgaagaggaa accaaaggca tagacccegt tgacgaagct 480
 gttgattaac caggagtacc agctttata tttgtatattt aggagttaat agacagcacc 540
 35 cccgacacag agagggtaca gcaggatgttca caagttacttc atggcttgc tatcgactc 600
 ctccgttttc ctcttcaggatt cgctgttaatg gccaaacttca aattccggca tcaggccctt 660
 ccaaaaaata gtcatcttca atgccttctt cactttccac agctcaatgg cggctccaa 720
 accccggccggg accagcacca gcaggctcgat ctgctcgatc agcaggaaca gaaagatgac 780
 cacgggtctg aaggcagcgcc agagacttgc ttgggtggac atgcccattca tgctttttt 840
 40 ctcttccatc aaactgtatgtt cattttaaa ggccaggaaa tcaaagagaa gatggAACGC 900
 tgcacaaagg aaggcttccatc ccaggaaatgttcaatgggtt tctacaaaaaa ttcccttcac 960
 ctcatcagca tctttctcttccatc aaaaatccggc ctgtgtccagg ggttacacgg cgtccctgc 1020
 gtggatccatc aaggcagcc gccccatgttca gacccatgttccagg taggacacgg tgagggcag 1080
 45 ctccgtgggtt gaggcgtttt tgaccatcag gtcccttcaatc cgggttgcgttgcgttgc 1140
 gaacaggatg ggcaggtaat gcaagggtttt ccccaatgttccatc atcatcttca tgtaaccatgt 1200
 cacatcgccca ggcaggggagg acccgtaaa gacaaatgttccatc tccggccatca cgttccatgtc 1260
 cagccgcgtt cgccatgtggg acactggctc atccaggggca ctgcgtccatc tcttctccgc 1320
 50 ctcatcagca tggatgtatgttccatc actcccccgtt gaggcgttttccatc atttcttgcgttgcgttgc 1380
 catgtatgttgc tgcaggatgttccatc tgaccatgttccatc caccgttccatc tgggttgcgttgcgttgc 1440
 cccagcgatgttccatc tggaggaaatgttccatc tggatgttccatc caccgttccatc tgggttgcgttgcgttgc 1500
 tacagaaaca ttaactgttccatc ttcaatgttccatc gacccatgttccatc tcaaaatgttccatc 1560
 gaccaggatgttccatc atgttgcgttccatc caggatgttccatc tggatgttccatc acacgttccatc 1620
 ctgcgttccatc gggccggccgcg ccaggatgttccatc tggatgttccatc tggatgttccatc cggaggacac 1680
 55 gcccaccacc aaggctgggtga aggagctgtccatc gcccc
 <210> 30
 <211> 1546
 <212> DNA
 60 <213> Human
 <400> 30
 aaaataagta ggaatggggca gtgggttattt acatttacta caccctttcc atttgctaat 60
 65 aaggccctgc caggctggga gggatttgc cctgcgttgc tctggagaaa gaagatattt 120

5	gttttcctcc	taggttggaa	gaaatgtctt	tccttctatc	tgggtcctgt	taaagcgggt	840
	gtcagttgtg	tctttcacc	tcgatttgg	aattaataga	attggggggga	gaggaaatga	900
	tgatgtcaat	taagttcag	gttggcatg	atcatcattc	tcgatgatat	tctcacttgc	960
	tcgcaaatct	gcccttatcg	taagaacaag	tttcagaatt	ttccctccac	tatacgactc	1020
	cagtattatg	tttacaatcc	attggatgag	tgcagcatta	taagaccttg	gtgcccagaa	1080
	aatctgtcc	tttttgtac	caaaccctgag	gtcttttgg	agataatgt	aaaaaccact	1140
	acctattgaa	ggccttttt	ggctaattctg	tgcaaactct	gatgataacct	gcttatgtgg	1200
	attctttcc	acactgctt	catttttaag	tataaagact	tagaaaacta	gaataatgtct	1260
	tttacaaata	attaaaagta	tgtatgttc	tgggttttt	ccttctttt	agaaccctgt	1320
	atttaaacaa	gccttcttt	taagtcttgc	ttgaaaattt	agtcctcagat	cttctggata	1380
	ccaaatcaaa	aacccaacgc	gtaaaacagg	gcagttttt	tgttcttaat	tttaaaaagc	1440
	ttttagtgc	ctctataat	atagatgc	aaacaacact	tcccttgag	tagcacatca	1500
	acatacagca	ttgtacatc	caatgaaaat	gtgtactt	agggttattat	atataataat	1560
	acatatatac	tttgttaacc	tttatactgt	aaataaaaaaa	gttgctttag	tcaaaaaaaaa	1620
15	<210>	33					
	<211>	2968					
	<212>	DNA					
	<213>	Human					
20	<400>	33					
25	aaaaaaagtag	aaggaaacac	agttcatata	gaagtaaaag	aaaaccctga	agaggaggag	60
	gaggaggaag	aagaggaaga	agaagatgaa	gaaagtgaag	aggaggagga	agaggaggga	120
	gaaagtgaag	gcagtgaagg	tgtgaggaa	gatgaaaagg	tgtcagatga	gaaggattca	180
	ggaaagacat	tagataaaaa	gccaagtaaa	gaaatgagct	cagattctga	atatgactct	240
	gatgatgatc	ggactaaaga	agaaaaggct	tatgacaag	caaaacggag	gattgagaaa	300
	cgcgcacttgc	aacatagtaa	aaatgtaaac	accgaaaagc	taagagcccc	tattatctgc	360
	gtacttgggc	atgtggacac	agggaaagaca	aaaattctag	ataagctccg	tcacacacat	420
	gtacaagatg	gtgaagcagg	tgttatcaca	caacaaattt	ggggcaccaa	tggtccttgc	480
	gaagctatta	atgaacagac	taagatgatt	aaaaattttt	atagagagaa	tgtacggatt	540
	ccaggaatgc	taattattga	tactcctgg	catgaatctt	tcatgatatt	gagaaataga	600
	ggaagctctc	tttgcacat	tgccatttt	gttggata	ttatgcatgg	tttggagccc	660
	cagacaatttgc	agtctatcaa	ccttctcaaa	tctaaaaat	gtcccttcat	tgttgcactc	720
	aataagatttgc	ataggttata	tgattggaaa	aagagtcttgc	actctgtatgt	ggctgtact	780
	ttaaagaagac	agaaaaaaagaa	tacaaaagat	gaatttgagg	agcgagcaaa	ggcttattatt	840
	gtagaatttgc	cacagcagg	tttgaatgtct	gctttgtttt	atgagaataaa	agatccccgc	900
	actttgtgt	ctttggattc	tacatctgc	catactgttgc	atggcatgg	aagtctgtatc	960
	tacccattttgc	taggttaac	tcagaccat	tttgcacat	gacttgcaca	ctgtgaagag	1020
	ctggagacac	agggtatgg	gtttaaagct	ctcccccgg	tgggcaccac	tatagatgtc	1080
	atcttgcattc	atgggcgtt	gaaggaagga	gatacaatca	ttgttcttgc	agtagaaggg	1140
	cccatattgtaa	ctcagattcg	aggcctctg	ttacctcctc	ctatgaagga	attacgatgt	1200
	aagaaccagt	atgaaaagca	taaagaagata	gaagcagtc	aggggtaaa	gatttcttgc	1260
	aaagacctgg	agaaaaacatt	ggctgggtt	cccccttgc	tggcttataa	agaagatgaa	1320
	atccctgttc	ttaaagatga	attgtatcat	gagttaaagc	agacactaaa	tgctatcaaa	1380
	ttagaagaaa	aaggagtc	tgtccaggca	tctacactgg	tttcttttgc	agctctactg	1440
	gaatttcttgc	aaacatcaga	agtgccttat	gcaggaattt	acattggccc	agtgcataaa	1500
	aaagatgttgc	tgaaggcttc	agtgtatgttgc	gaacatgacc	ctcgtatgc	agtaatttttgc	1560
	gccttcgtat	tgagaatttgc	acgagatgc	caagaaatgg	ctgtatgttt	aggagtttgc	1620
	atttttgtgt	cagaattat	ttatcatttgc	tttgatgttgc	ttacaaaata	tagacaagac	1680
	tacaagaaatctc	agaaacaaaga	agaatttttgc	cacatagcag	tattttctgc	caagataaaa	1740
	atccctccctc	agtatcttttgc	taatttttgc	gatccgtat	tgtgtgggt	gacgggtggaa	1800
	gcagggtcagg	tgaaacagg	gacacccat	tgtgtccca	gcaaaaaattt	tgttgcacatc	1860
	ggaatagttaa	caagtatttgc	aataaaccat	aaacaagtgg	atgttgc	aaaaggacaaa	1920
	gaagtttgc	taaaaataga	acctatcc	ggtgacttgc	ccaaaaatgtt	tggaaagacat	1980
	tttgcatttgc	cagatatttgc	tgttagtgc	atcagccgc	agtccatttgc	tgcaactcaaa	2040
	gacttgcattc	gagatgaaat	gcagaagagt	gactggcagc	ttatttgc	gctgaagaaa	2100
	gtatattttgc	tcatcttatt	ttttcacat	gagcaggaac	tggagttaaat	gcaataactgt	2160
	gttgcattat	ccccacaaaa	atcagacaaa	aatggaaaca	gacgtatgttgc	gacactgtat	2220
	gacttgcattc	tggaaggaag	aaaaatagg	gtataaaatgc	ttttccat	gaaaccaaga	2280
	aacttacact	ggtttgcac	tggcattgttgc	catgtccca	cagttccaaat	gtgcctgttc	2340
	actcaccttc	cccttcccc	acccttctc	acttggcgtc	tgtttttaa	tttgccttgc	2400
	cccaattttgc	gatttttatt	acagatcttgc	agcttgc	attttataat	gattaaatca	2460
	gtactgcatttgc	atttgatttgc	aaaaaaaat	gcagattttgc	tgatttcttgc	gacttttttgc	2520
	acgtaaagaaa	tacttcttgc	tttatgcata	ttcttccac	agtgttttttgc	ccagcatttgc	2580
	tctgcccattat	gcctttaggg	cttttataaa	atagaaaatttgc	aggcatttgc	atatttcttgc	2640

<210> 34
<211> 6011
<212> DNA
<213> Huma

<400> 34

15

20	acggggcgcc	ggacgaccgg	cacatcttat	cctccacgccc	ccactcgcac	tcggagcggg	60
	accggccccgg	actccccctc	ggggcgggcca	ctcgaggagt	gaggagagag	gccgcccggc	120
	cggctttagc	cgagcgcagc	acccccggcg	ccccgcgcca	gaagtttggt	tgaaccgggc	180
	tggccgggaga	aactttttc	ttttttcccc	ctctcccccgg	agagtctctg	gaggaggagg	240
	ggaactcccc	cggcccaagg	ctcggtggct	cggggtcgcg	cggccgcaga	aggggcgggg	300
	tccggcccgcg	aggggaggcg	ccccggggga	cccagagagg	gggtgaggac	cgcgggctgc	360
25	tggtgcggcg	cgcccagcgt	gtgccccgct	caggggaggc	gccgccccgc	tccccggcccg	420
	gtctcgagaga	ggaggccggcg	ggggcgcagg	aggatgtact	tggtggcggg	ggacaggggg	480
	ttggccggct	ggggcacct	cctggctcgt	ctgctggggc	tggtctgtct	gccggcgcgc	540
	tccggcaccc	ggggctgggt	ctgcctgccc	tgtgacgagt	ccaagtgcga	ggagcccaagg	600
	aaccggcccg	ggagcatcg	gcaggcgctc	tgccgctgt	gtcacacgt	cgcgcagccag	660
30	ggaacgaga	gctgcggcgg	caccttcggg	atttacgaa	cctgcgaccg	ggggctcgct	720
	tgtgtcatcc	gccccccgct	caatggcgcac	tccctcacccg	agtacgaagc	gggcgtttgc	780
	gaagatgaga	actggactga	tgaccaactg	cttggttta	aaccatgcaa	tgaaaacctt	840
	attgctggct	gcaatataat	caatgggaaa	tgtgaatgt	acaccattcg	aacctgcagc	900
	aatccctttg	agtttccaag	tcaggatatg	tgcccttcag	ctttaaagag	aattgaagaa	960
35	gagaagccag	attgctccaa	ggcccgctgt	gaagtccagt	tcttccacag	ttgtctgaa	1020
	gattctgttc	tgatcgaggg	ttatgtctct	cctggggagt	gctgtccctt	acccagccgc	1080
	tgcgtgtgca	accccgccagg	ctgtctgcgc	aaagtctgcc	agccggggaa	cctgaacata	1140
	ctagtgtcaa	aagcctcagg	gaagccggga	gagtgctgt	acctctatga	gtgcaaacc	1200
	gttttcggcg	tggactgtcg	gactgtggaa	tgccctactg	ttcagcagac	cgcgtgtccc	1260
	ccggacagct	atggaaactca	agtcagacta	actcgagat	gttgcgtgtac	tttgccaaca	1320
40	agatgcgagt	gtctctctgg	ctttagtgg	ttcccccgtgt	gtgaggtggg	atccactccc	1380
	cgcatagtct	ctcgtggcga	tgggacacct	gaaaaagtgt	gtgtatgttt	taaatgttt	1440
	aatgatacaa	agccagccgt	cgatattaaac	aatgtgaaat	attatgtatgg	agacatgttt	1500
	cgaatggaca	actgtcggtt	ctgtcgatgc	caagggggcg	ttgcccattcg	cttcaccggc	1560
45	cagtgtgggt	agataaaactg	cgagaggatc	taclgtcccc	aaggagagtg	ctgcccagtg	1620
	tgtgaagatc	cagtgtatcc	ttttaaataat	cccgctggct	gctatgccaa	tggcctgatc	1680
	cttgcccacg	gagaccggtg	gccccggagac	gactgcacat	tctgcctactg	cgtcaacgg	1740
	gaacgcact	gcgttgcgac	cgctctgcgga	cagacctgca	caaaccctgt	gaaagtgcct	1800
	ggggaggttt	gccctgtgt	cgaagaaccca	accatcatca	cagttgatcc	acctgcatgt	1860
	ggggaggtat	caaactgcac	tctgacacgg	aaggactgca	ttaatgtttt	caaacgcgat	1920
50	cacaatgggt	gtcgccacct	tcagtgcata	aacaccgg	aactatgttc	agaacgtaaa	1980
	caaggctgc	ccttgaatct	tccttcgggt	ttcccttactg	atgccccaaa	ctgtgagatc	2040
	tgtgagtgc	gccccaggcc	caagaagtgc	agaccatcaa	tctgtgacaa	gtattgtcca	2100
	cttggattgc	tgaagaataa	gcacggctgt	gacatctgtc	gctgtaagaa	atgtcccgag	2160
55	ctctcatgca	gtaagatctg	cccttgggt	ttccagcagg	acagtcacgg	ctgtcttatac	2220
	tgcaagtgc	gagaggcctc	tgcttcagct	gggcccacca	tcctgtcggg	cacttgtctc	2280
	accgtggatg	gtcatcatca	taaaaatgag	gagagctggc	acgatgggtg	ccgggaatgc	2340
	tactgtctca	atggacggga	aatgtgtgcc	ctgatcacct	gcccgggtgcc	tgcctgtggc	2400
	aaccccccacca	ttcacccctgg	acagtgtctc	ccatcatgt	cagatgactt	tgtggtgca	2460
60	aagccagagc	tcagtaactcc	ctccatttgc	cacgccccctg	gaggagaata	cttigtggaa	2520
	ggagaaaaacgt	ggaacattga	ctccctgtact	cagtgcacct	gccccagccgg	acgggtgtcg	2580
	tgtgagacccat	agggtgtcccc	accgcgtctc	tgccagaaacc	cctcacgcac	ccaggattcc	2640
	tgctgccccac	agtgtacaga	tcaacctttt	cggcccttct	tgtccggcga	taacagcgta	2700
	cctaattact	gaaaaaaatga	tgaaggggat	atattcttgg	cagctgagtc	ctggaagcct	2760
	gacgtttgtat	ccagctgcat	ctgcattgtat	agcgttaatta	gctgtttctc	tgagttctgc	2820
65	ccttctgtat	cctgtgaaag	acctgtcttgc	agaaaaggcc	agtgttgtcc	taactgtcata	2880
	aaagacaccaa	ttccaaagaa	ggttgggtgtc	cacttcagtg	ggaaggcccta	tgccqacqcdag	2940

gagcgggtggg accttgacag ctgcacccac tgctactgcc tgcaggcca gaccctctgc 3000
 tcgaccgtca gctccccccc tctgcctgt gttgagccca tcaacgtgga aggaagtgc 3060
 tgcccaatgt gtccagaaaat gtatgtccca gaaccaacca atatacccat tgagaagaca 3120
 aaccatcgag gagaggttga cctggaggtt cccctgtggc ccacgcctag taaaaatgtat 3180
 5 atcgccatc tccctagaga tatgggtcac ctccaggtag attacagaga taacaggctg 3240
 cacccaaatgt aagattcttc actggactcc atggctcag ttgtggttcc cataattata 3300
 tgcctctcta ttataatagc attccatttc atcaatcaga agaaacagtg gataccactg 3360
 ctggcttgtt atcgaacacc aactaaggct tttccctta ataatcagt agtatctgt 3420
 gactgcaaga aaggaaccag agtccaggtg gacagtccc agagaatgtc aagaattgca 3480
 10 gaaccagatg caagattcag tggcttctac agcatgcaaa aacagaacca tctacaggca 3540
 gacaatttct accaaacagt gtgaagaaag gcaacttagga tgaggttca aaagacggaa 3600
 gacgactaaa tctgtctaa aaagtaaact agaatttgc cacttgctt gtggattgt 3660
 ttggatttgtt acttgatgtt cagcgctaag accttactgg gatgggtctt gtctacagca 3720
 atgtcagaa caagcatttc cactttcctt caagataact gaccaagtgt tttcttagaa 3780
 15 ccaaagtttt taaagttgtt aagatataatt tgccgttaag atagctgtt agatatttgg 3840
 ggtggggaca gtgagttttt atggggaaag ggggtggagg gtgggtttgg gaagaaaaat 3900
 tggtcagttt ggctcgggga gaaaccttggt aacataaaaag cagttcaatg gcccagaggt 3960
 tatttttttcttatttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4020
 20 gcagaaaaaca aaaaaggctt tgcggccatc tgcggccatc cacccatggg ctttttttttgc 4080
 agcacatcag aacccttttgc cagccatccc aggtctaaag ccacaatggg ctttttttttgc 4140
 cagtcacaac tgcgttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4200
 aaggcggttta ttaaggatattt atacagttt accttttttttgc gtttttttttgc ttttttttttgc 4260
 caatcaatca gccaggctt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4320
 atgtgagcactt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4380
 25 gaacaccagg cattttccagg ggcttatattt cacttttttttgc ttttttttttgc ttttttttttgc 4440
 ttgttgggtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4500
 gactgttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4560
 atttttaatttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4620
 30 aaacttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4680
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4740
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4800
 catttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4860
 tacctgcgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 4920
 35 gtgtgtgcgc gcgcacgcac ggccgttgc gtcacgttgc cacctgttat gggggggggg 4980
 attccttttat taaaatctt ctcatttggg ttttttttttgc ttttttttttgc ttttttttttgc 5040
 ctggccagag acattgtatgg cagtttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5100
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5160
 aagtttgcgtt tagtgcgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5220
 acaggcccttta gcaacttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5280
 40 tgctgtttgtt gaaagacaca gatacccaatggt gtttttttttgc ttttttttttgc ttttttttttgc 5340
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5400
 aaaaaaatttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5460
 ttgtctttaga ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5520
 45 aaaaagatttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5580
 tacattacaa aaatagatttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5640
 catttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5700
 caatcatggc catattatggc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5760
 ttatttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5820
 50 tccttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5880
 cacttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 5940
 gaattatcttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 6000
 aaaaaaaaaaaaaa a

55 <210> 34a
 <211> 1036
 <212> DNA
 <213> Human

60 <400> 34a

mylvagdrgl agcghllvsl lgllllpars gtralvclpc deskceeprn rpgsivqgvc 60
 65 gccytcasqg nescggtfi ygtcdrglrc virpplngds lteyeagvce denwtddql 120
 gfkpcnenli agcniingkc ecntirtcsn pfefpsqdmc lsalkrieee kpdcskarce 180
 vqfsprcped svliegyapp geccplpsrc vcnpagclrk vcqpgnlil vskasgkpe 240

ccdlyeckpv fgvd crtvec ptvqqtacpp dsyetqvrilt adgcctlptr ceclsglcgf 300
 pvcevgstpr ivsrgdtpg kccdvfecvn dtkpacvfnn veyydgmfr mdncrfcrcq 360
 ggvaicftaq cgeinceryy vpegeccpvc edpvypfnnp agcyanglil ahgdrwredd 420
 5 ctfccvngc rhcvatvcgq tctnpvkvpq eccpvcept iitvdppacg elsnctltrk 480
 dcincfkrdh ngcrtcqcin tqelcsrkq gctlncpfgf ltdaqnceic ecrprpkkr 540
 piicdkycpl gllknkhgcd icrckkcpel scskicplgf qqdshgclic kcreasasag 600
 ppilsgtclt vdghhhknee swhdgcrecy clngremcal itcpvpacgn ptihpgqccp 660
 scaddfvlqk pelstpsich apggeyfveg etwnidsctq ctchsgrvlc etevcppllc 720
 10 qnpsrtqdsc cpqctdqfpf pslsrnnsvp nyckndegdi flaaeswkpd vctscicids 780
 viscfsescp svscerpvlr kgqccpcyk dtipkkvvch fsgkayadee rwlddscth 840
 yclqggqtlcs tvscpplpvc epinvegscs pmcpemvpe ptnipiektn hrgevdlevp 900
 lwptpsendi vhlprdmghl qvdyrdnrlh psedssldsi asvvvpiiic lsiiiaflfi 960
 nqkkqwipll cwyrtptkps slnnqlvsvd ckkgtrvqvq ssqrmlriae pdarfsgfys 1020
 15 mqkqnhlqad nfyqtv

<210> 35
 <211> 716
 <212> DNA
 20 <213> Human

<400> 35

25 gcagtacctg gagtgtcctg cagggggaaa gcgAACCGGG ccctgaagtc cggggcagtc 60
 acccggggct cctggggccgc tctgggggc tggggctgag cagcgatcct gccttgc 120
 agaagtccag agggatcagc cccagaacac accctcctcc cggggacgcc gcagctttct 180
 ggaggctgag gaaggcatga agagtggtc ccacctgctg gcccactgag aaaagaattt 240
 ccagaactcg gtcctatttt acagatttag aactatggt tcaagaagag aggacggggc 300
 ttgagggaat ctcctgatc tccttatatg acctcaaact gaccatacta aacagtgtag 360
 aaggctttt taaggctcta aatgtcaggg tctcccatcc cctgatgcct gacttgtaca 420
 gtcaatgtgg agtagacggt ttcccccacc cagggttgac tcagggggat gatctgggtc 480
 30 ccattctgtt ctaagaccc caaacaaggg tttttcage tccaggatct ggaggcctcta 540
 tctggttagt gtcgttaact ctgtgtgcct cccgttaccc catctgtcca gtgagctcag 600
 ccccatcca cctaacaggg tggccacagg gattactgag ggttaagacc ttagaactgg 660
 gtctagcacc cgataagagc tcaataaatg ttgttcctt ccacatcaaa aaaaaa

<210> 36
 <211> 395
 40 <212> DNA
 <213> Human

<400> 36

45 ccaataacttc atttttcatt ggtggagaag atttagact tctaagcatt ttccaaataa 60
 aaaagctatg atttgatttc caactttaa acattgcatt tccttgcca ttactacat 120
 tctccaaaaa aaccttggaaa tgaagaaggc cacccttaaa atacttcaga ggctgaaaat 180
 atgattatta cattggaatc cttagccta tgtatattt cttaacttt gcactttcac 240
 50 gcccaggtaaa accaaagtca ggttaaccaa tgcattttt caaatgtta aaaccctaatt 300
 tgcagtccct tttttaaatt attttaaaga ttacttaaca acattagaca gtgcaaaaaa 360
 agaagcaagg aaagcattct taattctacc atcc

<210> 37
 <211> 134
 55 <212> DNA
 <213> Human

<400> 37

60 ccctcgagcg gccgccccggg caggtaactt taccaccgaa ttgttcactt gactttaaga 60
 aaccctaaaa gctgcctggc tttcagcaac aggcctatca acaccatggt gagtctccat 120
 aaggacacc gtgt

65 <210> 38
 <211> 644
 <212> DNA

<213> Human

<400> 38

5 aagcctgttg tcatggggga ggtggtggcg cttggtggcc actggcggcc gaggttagagg 60
 cagtggcgct tgagttggtc gggggcagcg gcagatgtga ggcttaagca acttcttccg 120
 gggaaagagtg ccagtgcagc cactgttaca attcaagatc ttgatctata tcacataggatt 180
 ggaatattgg tggggcagca atcctcagac gcctcaactt ggacaaatga ggaaacttag 240
 gcttggtggaa gttacgaaac ttgtccaaaa tcacacaact tgtaaaggc acagccaaga 300
 10 ttcaagagcca ggctgtaaaa attaaaatga acaaattacg gcaaagttt aggagaaaaga 360
 aggatgttta tggtccagag gccagtcgtc cacatcagtgc gcagacagat gaagaaggcg 420
 ttgcacccgg aaaatgttagc ttcccggtt agtaccttgg ccatgttagaa gttgatgaat 480
 caagaggaat gcacatctgt gaagatgtg taaaaaagatt gaaagctgaa aggaagttct 540
 tcaaaggctt ctggaaaaaa actgaaaaga aagcgtttaa agcagttct gtgggtctaa 600
 15 gcagatggac tcagagggtt tggatgaaaaa actaaggacc tcat

<210> 39

<211> 657

<212> DNA

20 <213> Human

<400> 39

25 ctttttgtt gggttttcca atgttagatgt ctcagtgaaa tgtgcagata tactttgttc 60
 cttatatgtt caccagtgtt aattatggac aaatacatta aaacaagggt tcctggccca 120
 gcctcccatc taatctctt gatactctt gaaatctaagt ctgaggagcg atttctgaat 180
 tagccagtgt tgcgttact ttctgtttagg aattgttatta gaataacattt tcttttttcag 240
 acctgcttag tgagacatct tggggaatga agtaggaaaa tagacatttgg tggaaaaaac 300
 agcaaaatga gaacattaaa aagactcattt caagttatgag tataaaggc atggaaattc 360
 30 tggcccttgg agcaaaatga gaagaaaaaa ttctgtcttag cagtttccat tgcgtttaaga 420
 tttttgtttttt ttacacgaa tggaaaaatg atgtgttaatg ggtatagattttaatcagct 480
 aacagtcaactt ccagagattt tgatcagcac caatttctat agtagtaatg attaaaaatg 540
 taagaaatac tactacattt aacattataa agtagatgttgcacatcaac tggaaaaattag 600
 atgtttgtttt caatagaaat ttgttcccac ttgttattttt aacaaaatattt tcggAAC

35 <210> 40
 <211> 1328
 <212> DNA
 <213> Human

40 <400> 40

acaattttaa aataacttagc aattaatcac agcatatcac gaaaaaagtac acagttagttt 60
 ctgttagtt ttgttagct cattatggtt agggctgtt agatgttat aagaacctac 120
 45 ctatcatgtctgtatca ctcattccat tttcatgttc catgcataact cgggcatcat 180
 gctaatatgtt atccctttaa gcactctcaa gggaaacaaaa gggccctttt tttttataaa 240
 ggtaaaaaaaaa attccccaaa tattttgcac tgaatgtacc aaagggtgaag ggacattaca 300
 atatgactaa cagcaactcc atcacttgcg aagtataata gaaaatagct tctaaatcaa 360
 acttccttca cagtggcgctg tctaccacta caaggactgt gcatctaagt aataattttt 420
 50 taagatttcac tatatgttat agttagatattt gcatattttt aaaaatgcatt agactctt 480
 ccatccatca aatactttac aggatggcat ttaatacaga tatttcgtat ttccccact 540
 gctttttttt tgcgttactt cattaaacac taagctcaatgtaaggagcc tcagcaacac 600
 tgaagagatc agtagtaaga attccattttt ccctcatcg tgaagacacc acaaatttgaa 660
 actcagaactt atatttctaa gcctcgatcc tcaactgtatc ataactatgtt tagtaatattt 720
 55 aagagacagt ttttctatgg catctccaaa actgcgtatc acatctatgtt ttcattctgc 780
 ttaattttat gagaaggat ttttcatattt aatttgcattt gggattactt cacaatctt 840
 tttattttttt gactaatcac attttcaata gaggatgtt aaatttgggg tcataaaaagc 900
 attggatttgcatcatgg ttttcatattt gggatttacag gcatggccca aacatctt 960
 60 tgagatctat atttataacg agccatggaa ttttcatattt gggatgttgg caatcttaca 1020
 tttttagatg gtcataatgc tagtttcat atttgcattt gggatgttgg taagaactga ttgtctctt 1080
 gtgagttaaatg ctatgttac tactgggacc ctcaagagaa ataccactt tgcgttactc 1140
 ctgcactaaa ggcacgtact gcagtgtgaa gaaatgttct gaaaagggt tatagaaatc 1200
 tggaaataag aaaggaagag ctctctgtat tctataattt gaaagaaaaaa aaagaaaaaac 1260
 65 ttttaactgg aaatgttagt ttgtacttattt tgcgttacttataa tacaagtata tatttaattt 1320
 tgaaaaaa

<210> 41
 <211> 987
 <212> DNA
 <213> Human
5
 <400> 41

aacagagact ggcacaggac ctcttcattt caggaagatg gtagtgttagg caggtaacat 60
 tgagctctt tcaaaaaagg agagctttc ttcaagataa ggaagtggta gttatgggtgg 120
10 taaccccccgg ctatcagttc ggatgggtgc caccctccct gctgttaggat ggaagcagcc 180
 atggagtgaa agggaggcgc aataagacac ccctccacag agcttggcat catggaaagc 240
 tggttctacc tcttccttggc tcctttgttt aaaggcctgg ctgggagcct tcctttggg 300
 tgttttctc ttctccaacc aacagaaaag actgctttc aaaggtggag ggtcttcatg 360
 aaacacagct gccaggagcc caggcacagg gctggggcc tggaaaaagg agggcacaca 420
15 ggaggaggaa ggagctggta gggagatgt ggctttaccc aaggtctcgaa aacaaggagg 480
 gcagaatagg cagaggcctc tccgtcccaag gcccattttt gacagatggc gggacggaaa 540
 tgcaatagac cagcctgcaa gaaagacatg tgttttgtat acaggcagtg tggccgggtg 600
 gaacaaggac aggcccttggaa atccaatggaa ctgaatcaga acccttagggcc tgccatctgt 660
20 cagccgggtg acctgggtca attttagctt ctaaaaggccct cagtcctt atctgcaaaa 720
 tgaggctgt gatacctttt ttgaagggtt gctgagaaaa taaaagataa ggttatccaa 780
 aatagtctac ggccataccat ccctgaacgt gcctaatttc gtaagctaaag cagggtcagg 840
 cctggtagt acctggatgg ggagagtatg gaaaacatac ctgcccgcag ttggagttgg 900
 actctgtctt aacagtagccg tggcacacag aaggactca gtaaataactt gtgaataaaa 960
25
 tgaagtagcg atttgggtgtg aaaaaaa

<210> 42
 <211> 956
 <212> DNA
 <213> Human
30
 <400> 42

cgacgggtgg ggcggacgcg tgggtgcagg agcagggcgg ctggcactg ccccaaccaa 60
 gaaaggagcc cctgagtccg cctgcgcctc catccatctg tccggccaga gcccgcattcc 120
35 ttgcctgtct aaaggcttaa ctaagactcc cgccccgggc tggccctgtg cagaccttac 180
 tcaggggatg ttacacttggt gctcgggaag ggaggggaag gggccggggaa gggggcacgg 240
 caggcgtgtg gcagccacac gcaggcggcc agggcggcca gggaccacaa gcaggatgac 300
 cacgcaccc caccgcactg cctcccccaatgcattttg aacccaaatgc taaactgagc 360
 tcgcagcccc cgcgcctcc ctccgcctcc catcccgctt agcgctctgg acagatggac 420
40 gcaggccctg tccagcccccc agtgcgtctg ttccggtccc cacagactgc cccagccaaac 480
 gagattgtg gaaaccaagt caggccagggt gggcggacaa aaggccagg tgccgcctgg 540
 ggggaacgga tgctccgggg actggactgt ttttttccatc catcggtgcc gcagcgggtgg 600
 gaaggaaagg cagatgtaaa tgatgtttt gtttacagggt tatattttt ataccttcaa 660
45 tgaattaattt cagatgtttt acgcaggaa ggacttaccc agtattactg ctgtgtgtct 720
 ttgtatctct gcttaccgtt caagaggcgt gtgcaggccg acagtcgttgc accccatcac 780
 tcgcaggacc aaggggggccg ggactgtctgg ctcacgcccc gctgtgtctt ccctccctc 840
 ctttccttgg gcagaatggaa ttgcgtatcgtt attctgtggc cgcacatctgc gcagggtgg 900
 ggtattctgt catttacaca cgtcgatctaa attaaaaggc gaattataact ccaaaaa

50 <210> 43
 <211> 536
 <212> DNA
 <213> Human

55 <400> 43

aaataaaacac ttccataaca ttttggtttca gaaatgttattt aatgcacatcc cacttttttc 60
 cccctagttt ctaaatgtt aagagaggaa aaaaaggctt caggatgtt ttccacccatc 120
 agtgttagct gtcttttattt ttactcttgg aatagagac tccatttaggg ttttgcattt 180
60 ttggaaaccc agttttacca ttgtgtcagt aaaacaataa gatagtttga gagcatatga 240
 tctaaaataaa gacatttggaa gggtagttt gaattctaa agtaggtat agccaaatag 300
 cattctcatc ccttaacaga caaaaacttta ttgtcaaaa gaatttagaaa agtgaaaat 360
 atttttccatc gatgaaaactt gtgcacttc caatttgcata atgaaatatac aggagacaga 420
65 ctggaaaaag tgggtatgc cacctttaaa acccttctgt gtaaataattt tggtagctaa 480
 aggtgggtt cccggcacc tggacctggc caggtaggtt tccgtggta accagt

<210> 44
<211> 1630
<212> DNA
<213> Human

5 <400> 44

ggggagggac gagtatggaa ccctgaaggt agcaagtcca ggcactggcc tgaccatccg 60
gctccctggg caccaagtcc caggcaggag cagctgttt ccatccccttc ccagacaagc 120
tctatttttca cacaatgac ctttagagag gtctcccgagg ccagctcaag gtgtcccaact 180
atcccccttg gagggaagag gcaggaaaat tctccccggg tccctgtcat gctactttct 240
ccatcccctgt tcagactgtc cagcacatct tatctgcagc cataagagaa ttataaggca 300
gtgatTTTCC ttaggcccg gacttggcc tccagctcat ctgttccttc tgggcccatt 360
catggcaggt tctgggtca aagctgaact ggggagagaa gagatacaga gctaccatgt 420
gactttacct gattggccctc atgttgggt tgcttattgg gaaagagaga gacaaagagat 480
tacttgttac gggaaatatg aaaagcatgg ccaggtatca tagaggagat tctagcagg 540
gacaggattt gctcagatga cccctgaggg ctcttcctgt cttggaaatgc attccatgt 600
attaggaagt cgggggtggg tgggtgggt gggctatgg ggttgaatt tagggggcga 660
tgagcttggg tacgtgagca ggggttaag ttagggtctg cctgtatttc tggtccctt 720
gaaaatgtcc ctttcttcag tgcagacact cagtccttgcgt gtcctatcg tgcccaaaaa 780
atagacatt atccctcccc atcccttccc cagtgcactc tgacctagct agtgccttgt 840
gcccaagtgc ctgggggagc ctggctgcag gcccactg gttccctaaa ctttgggtgc 900
tgtgatttcag gtcccccaagg gggactcagg gaggaatatg gctgagttct gttagttcca 960
gagttggctg gtagaggcctt ctagaggttc agaatattag cttcaggatc agctgggggt 1020
atggaaattgg ctgaggatca aacgtatgtt ggtgaaagga taccaggatg ttgctaaagg 1080
ttaggggacag tttgggtttt ggacttacca ggtgtatgtt agatctggaa cccccaagtg 1140
agctggggag gatgttaaggt cagatggaa gatagggtt ggacagggtg ctttggaaatg 1200
aaagagtgc cttagagggc tccttggggc tcaggaatgc tcctgtct gtgaagatga 1260
gaaggtgctc ttactcagtt aatgtatgtt gactatattt accaaagccc ctacctgtct 1320
ctgggtccct ttagtcacatc gagaactgggg ctaaggcccc cttcccaaggaa agggacacca 1380
tcaggcctct ggctgaggca gtagcataga ggtatccattt ctacctgcattt ttcccaagg 1440
actagcagga ggcagccctt agaaaccggc agttcccaag ccagcgcctg gctgttct 1500
cattgtcaact gcccctcccc caacctctcc tctaaccac tagagattgc ctgtgtct 1560
cctcttgcct ttgttagaat gcaactctgg ccctcaataaa atgcttcctg cattcatctg 1620
aaaaaaaaaa

35 <210> 45
<211> 169
<212> DNA
<213> Human

40 <400> 45

tcttttgctt ttagctttttt atttttgtat taacaggagt cttattacac ataggctctga 60
taaaaacttgtt ttatgatctt cagtcgtattt ccagtgcgtc ataactatgtt aacgtatgaa 120
ggaaaaaacga cgacgaacaa aaaagtaagt gcttggaaaga cttagttga

45 <210> 46
<211> 769
<212> DNA
<213> Human

50 <400> 46

tgcaggtcat atttactatc ggcaataaaaa ggaagcaaaag cagtattaag cagcgggtgga 60
atttgcgtt ttcactttttt ataaaatgtt acataaaaatg tcataatttcc aaattttaaaa 120
acataactcc agttcttacc atgagaacag catggtgatc acgaaggatc ttcttgaaaa 180
aaacaaaaaaac aaaaacaaaaa aacaatgtatc tcttctgggt atcacatcaa atgagataca 240
aagggtgtact aggcaatctt agagatctgg caacttattt tataatataag gcatctgtga 300
ccaaagagacg ttatgatattt aatgtacaaa tttttttttt tttttttttt tttttttttt 360
cttcataataa tgacaccaat gtcgtttttt tgctcgtttttt tgctcgtttttt tgctcgtttttt 420
ggccagctcc ttccctgtata gtcgtttttt gtcgtttttt gtcgtttttt gtcgtttttt 480
catgccatgt aatgagaaaaa caagcatggat atataataaaatgtt tttttttttt tttttttttt 540
tattttgtaa taaaatcaaa tttccctttttt tttttttttt tttttttttt tttttttttt 600
ttgatataatgt tgcataatgtt gtcgtttttt gtcgtttttt gtcgtttttt gtcgtttttt 660
cctgcctttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 720

ggacatgttg acggagagga aaggttaggaa agggttaggg atagaagcc

<210> 47
<211> 2529
<212> DNA
<213> Human

<400> 47

10	ttatgttcat agtaatgtaa aaccatttg ttaattctaa atcaaatcac tttcacaaca gtgaaaatta gtgactgggt aagggtgtcc actgtacata tcatcattt ctgactgggg 120 tcaggacctg gtcctagtcc acaagggtgg caggaggagg gtggaggcta agaacacaga 180 aaacacacaa aagaaaggaa agtgccttg gcagaaggat gaggtggtga gcttgcggag 240 ggatgggtggg aagggggctc cctgtgggg ccgagccagg agtcccaagt cagctctcc 300 gccttactta gtcctggca gagggtgagt ggggacctac gaggttcaaa atcaaattggc 360 atttggccag cctggctta ctaacaggtt cccagagtgc ctctgttgc tgagctctcc 420 tgggctcaact ccatttcatt gaagagtcca aatgattcat tttcttaccc acaactttc 480 attattcttc tggaaaccca ttctgttga gtccatctga cttaagtccct ctctccctcc 540 actagttggg gccactgcac tgaggggggtt cccaccaatt ctcttagag aagagacact 600 ccagaggccc ctgcaactt ggggatttcc agaagggtgtt aaaaagagca ctcttgagtg 660 ggtgcggcagg aatgtttaaa atctatcagg cacactataa agctgttgc ttcttcctac 720 caagtggatt cgccatataa accacact taaacttta tattttgtt gtttaaacac 780 tgaactctgg tggacagg tacaaggag aagagatggg gactgtgaag aggggggggc 840 ttccctcattc ttctcaaga tcttgttgc cataaacttgc agcgtcataa ttggaaaaaa 900 gcaatagatg gggcttctta ccatttgtt gttattgtgtt gggtagccca ggagcagtgt 960 ggatggcaaa gtaggagaga gccccagagg aaagcccatc tccctccagc tttgggttct 1020 ccagaaagag gctggatttcc tggatgaag cctagaaggc agagcaagaa 1080 aggtgaacag tcctaccctgc ttggtaccat agtccctcaat taagattcag aggaagaagc 1140 ttatgaaact gaaaatcaaa tcaaggattt gggagaata atttccctc gattccacag 1200 gagggaaagac cacacaatat catttgtctg gggctccca aggccctgc acctggctt 1260 acaaatcatc aggggttgcc tgcttggcag tcacatgtt ccctggttt agcacacata 1320 caaggagttt tcagggaaact ctatcaagcc ataccaaaat cagggtcaca tgggggttcc 1380 ccctttcttgc gctcttcatt aaaagacaac ttggcttctg aggatggtgg tcttttgcatt 1440 gcagttgggc tgacctgaca aagccccagg tttctgtgg caggttctgg gagaggatgc 1500 attcaagctt ctgcagctt ggggacaggg ctgcttgc ttgttattact gcctccggagc 1560 tccaaatccc accaaaatcc tgactccagg tctttcttgc tgcacagtag tcagtcctcag 1620 cttcggcagt attctcggtt gtatgttctc tggcagagag aggagatgtt acatagttt 1680 agggagaaaag ctgatggaa acctgtgagt taagccacat gtctcaccag gaataattt 1740 tgccaggaaa ccaggaagtc attcaagttt ttctctgagg ccaaagacac tgacacacgc 1800 ccagagccaa taaaagatct ttgagtctt ggtgaattca cgaagtgacc ccagctttag 1860 ctactgcaat tatgattttt atgggacagc aatttcttgc atctctacag aggaagaaga 1920 ggggggagtgg gaggggaagg aaagagaaca gagcggcact gggatttga aggggaacct 1980 ctctatctga ggagccccca ctggcttcg aagcaactt ccaagggtta tttaaagacaca 2040 tgaaaatttc cagaaatacc atttggtgca tccctttgtt tctgtatat taaaactcagg 2100 tgaaaattata ctctgcacagt ttctcttgc ctgccttcc cctctgcaga gtcaggacct 2160 gcagaactgg ctgaaaacaag atttcatggt gtcacccatg agagatgact caatgcacag 2220 gcctgaagt atagatgtt tacagcgggt gcgatattca ggggtcatcg ccaactggtc 2280 tgcgttcca aagctotgtt gaagaaacaa gactcttgc tgggttactg atccccactga 2340 ttccaggagt caagatttgc caggaagcca aacaccagga gttgggttgg cacgtcacca 2400 gtccagagcc ctgcccacggc tgcacggc agccacat taggcaatca ggagccagaa 2460 catgatcacc agggccacaa ataggaagag gcgtgacagg aactgctcgt ccacataacct 2520
15	
20	
25	
30	
35	
40	
45	
50	

55 <210> 48
<211> 1553
<212> DNA
<213> Human

<400> 48

65	tttttttttt ttttgattt ctgggacaat taagcttat tttcatata tatatatatt 60
	tccatataata tataacata catatataaa ggaaacaatt tgcaaattt cacacctgac 120
	aaaaccatata atacacacat atgtatgcat acacacagac agacacacac acccgaagct 180
	ctagccaggc ccgttttcca tccctaagta ccattctctc atttgggcc ttcttagggtt 240
	ggggccctga gcttggttt tagaagttt gtgctaataat aaccatagct ttaatcccc 300
	tgaaggacag tgtagacctc attttgtct gctccccgt gccttcagt ttacqtqat 360

ccatcaagag ggctatggga gccaaagtcaa cacggggat tgaggcta at tcaccta 420
 tcgaaaacag cgcccagctt cctcaccgca ggcacgcgtc ttttctttt ttttcctcga 480
 gacggagatct cgctgtgtg cccaggctgg agtgcagtgg cacggctcg gctcaactgca 540
 5 agctccacat cctggattca taccattctc ctgcttcagc cttccgagta gctggacta 600
 taggtgcca ccactacgccc tagctaattt tttttgtat ttttagtaga gacagggttt 660
 caccgtgtta gccaggatgg tctcgctcg actttgtat ccggccgcct cggcctccca 720
 aagtgcgtggg attacaggcg tgagccacca cacctggccc cggcacgtat ctittaagga 780
 atgacaccag ttccctggctt ctgaccaaaag aaaaaatgtc acaggagact ttgaagaggc 840
 10 agacaggagg gtggtggcag caacactgca gctgcttctg gatgctgtg ggtgctctc 900
 cgaggcgggt gtgaacagcg cacttcaaca tgagcaggcg cctggctccg gtgtgtctc 960
 acttcagtgg tgcacctgga tggtggaaagc cagcccttgg ggcaggaaac cagctcagag 1020
 aggctaccca gctcagctgc tggcaggagc caggtattta cagccataat gtgtgtaaag 1080
 aaaaaacacg ttctgcaga aacttccta cccgtcggg agactggggc tccttgctt 1140
 15 gnatgagctt cactcaacgt ggagatgggt gtggactggtt ccctgaaaag cgggccttgc 1200
 cgaggggagc aggaggcttc tctctagtc ctttggaggc tttggctgag agaagagtga 1260
 gcagggagct gggaatggtc caggcaggga agggagctga agtgcattcg ggtaatgcc 1320
 tcagatcgat gtatttctct ccctggctc cccggccct cttgtcaccg ctgctgcct 1440
 20 gcaggaggcc catctctt gggagcttat ctgacttaac ttcaactaca agttcgctct 1500
 tacgagaccg gggtagcgt gatctctgc ttccctgagc gcctgcacgg cag

 <210> 49
 <211> 921
 <212> DNA
 25 <213> Human

 <400> 49

 ctgtggtccc agctactcag gaggtgtgagg cggggaggatt gcttgagccc aggagttgga 60
 30 tggcagtgcg agccaaagatc gcaccattgc cttccactct gggccacggc gcaataaccct 120
 gtctcagaaa acaaacaaca aaaagcagaa acgctgaagg ggtcggttta cgggaaaacc 180
 gcctgtcaga acacttggct actcttaccc cagatcgtg gacctggaa tgagggttgg 240
 tccccggagg cttttctcca agctgttgc accagacccg ccatggaaac cctggccaca 300
 gaaggctccc ggggagtgtgag ccagacgtg gaccgtgtg ctgatgtgtc tgggggtggag 360
 35 ggagggtggg gagtgtgca ggggtgtgt gtgcccgggg ggtgttcatg ggcaagcatg 420
 tgcgtgcctg tgggtgtgcg tggccctccc ctgcagccgt cgggtgtatc tccctccagc 480
 cccttcgcca ctttctgagc attgtctgtc cacgtgagac tgcccagaga cagcagagct 540
 ccacgtgggtt ttaagggggag acctttccct gacactgggg gtctcgccgt atctcatgac 600
 40 caggtctaa atgacccgac atgcatcacc tgccttcga tgaccaacct ccctgtcccc 660
 gtcccgctga cctgcccccg tggcgtctca cgggtgtgcc tgctctgtac attgggttgc 720
 actgtgcaaa actacattct ggatggaaat tttcatgtac atgtgtggca tggaaaat 780
 ttcaaataaa atggacttga tttagaaagc caaaaactgt tggtgtccct ccagcacggc 840
 tactttgacc tcttgcctac aacccttcc ttgggtccga ggctggtagc ttgttcaact 900
 tcagatgggtt gggggcggtt g

 <210> 50
 <211> 338
 <212> DNA
 45 <213> Human

 <400> 50

 atgatctatc tagatgcctt accgtaaaat caaaacacaa aaccctactg actcattccc 60
 tcccttccag atattacccc attttctctac ttcccattgt agccaaactt tccaaaaatt 120
 55 catgttctgtt cttcattttcc tcatgttcaa cccaccctgtt cttagactacc acccctcagt 180
 aacgacctag cctgggtaga aacaaatgtc agcatgatac catactcaat gatcctcggt 240
 cactgttgc attgtcatca ttccatggcc ttactttccc tctcagcgcctt atttgcata 300
 gtaagaaact ttctttcttg aatttttgtt tcttttgtt

 60 <210> 51
 <211> 1191
 <212> DNA
 <213> Human

 65 <400> 51

ctgcgttgc tttttttttt ttatccatcc tttttttttt tttttttttt tttttttttt tttttttttt 5
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 10
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 15
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 25
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 30
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 35
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 40
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 45
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 50
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 55
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 60
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 65

cgaccggcca ctactgtctt tctttgaccc ttccagttc gaagataaa aggaaaataat 660
 ttctctgaag tacttgataa aatttccaaa caaaacacat gtccacttca ctgataaaaa 720
 atttaccgca gtttgcacc taagagtatg acaacagcaa taaaaagtaa ttcaagag 780
 5 ttaagattc tttagcaaaa tagatgattc acatcttca gtccttttgc aaatcagtt 840
 ttaatattat tctttcctca ttccatctg aatgactgca gcaatagtt tttttttttt 900
 tttttttttt ttgcgagatg gaatctcgct ctgtcgcccc gcgaggatgc actggcgcaa 960
 gcccggctca ccgcaatctc tgccacccg

 10 <210> 54
 <211> 250
 <212> DNA
 <213> Human

 15 <400> 54
 cattcccca ttggtcctga tggtaagat ttagttaaag aggctgtaag tcaggttcga 60
 gcagaggcta ctacaagaag taggaatca agtccctcac atgggttatt aaaacttaggt 120
 agtggggag tagtggaaaa gaaatctgag caacttcata acgtaactgc cttagggaa 180
 20 aaaggccat cttaggaac tgcattcttgtt aaccacacc ttgatccaag agctaggaa 240
 acttcagttg

 <210> 55
 <211> 2270
 <212> DNA
 25 <213> Human

 <400> 55

 30 gcgcgcgcgc gcagcgcccc cgccctccgc gccttctccg ccgggacctc gagcgaaga 60
 gcccggcgcc ccccccagcc ctgcctcccc tgcccacccg gcacacccgc ccccccaccc 120
 gaccccgctg cgcacggcct gtcgcgtca caccagctt tgccgttctt cgtcgccgc 180
 ctcgccccgg gctactccctg cgcgcacaa tggatcccg catcgccagg gcgcgcgcct 240
 tagtcgtcac ccttctccac ttgaccaggc tggcgctctc cacctggccc gtcgcctgcc 300
 actgccccct ggaggcgcccc aagtgcgcgc cgggagtcgg gtcggccgg gacggctgcg 360
 35 gtcgtgtaa ggtctgcgcc aacgcgtca acgaggactg cagcaaaacg cagccctgcg 420
 accacaccaa ggggctggaa tgcaacttcg ggcacaaatgc caccgcctctg aaggggatct 480
 gcagagctca gtcagaggc agaccctgtg aatataactc cagaatctac caaaacgggg 540
 aaagtttcca gcccaactgt aaacatcagt gcacatgtat tgcattggcc ttggcgtca 600
 40 ttccctgtgt tcccccaagaa ctatctctcc ccaacttggg ctgtcccaac cctcggtctgg 660
 tcaaaatgttcc cgggcagtgc tgcgaggagt gggctgtga cgaggatagt atcaaggacc 720
 ccatggagga ccaggacggc ctccctggca aggagctggg attcgatgcc tccgagggtgg 780
 agttgacgag aaacaatgaa ttgattgcg tggaaaagg cagctactg aagcggctcc 840
 ctgttttgcg atggcgcc ctgcattctat acaaccctt acaaggccg aaatgttattg 900
 ttcaaacaac ttcatggtcc cagtcgtcaa agacctgtt aactggtatac tccacacgag 960
 45 ttaccaatga caaccctgag tgccgcctt tggaaaac ccggattttt gagggtgcggc 1020
 ctttgtgaca gccagtgtac agcagcctga aaaaggccaa gaaatgcagc aagaccaaga 1080
 aatcccccgaa accagtctgg tttacttacg ctggatgttt gagggtgtaa aataaccggc 1140
 ccaagtactg cggttctgc gtggacggcc gatgtcgtcac gccccagctg accaggactg 1200
 tgaagatgcg gttccgtgc gaagatgggg agacattttc caagaacgtc atgatgatcc 1260
 50 agtccctgcaa atgcaactac aactgcccgc atgccaatga agcagcgatcc ccccttctaca 1320
 ggctgttcaa tgacatttac aaatttaggg actaaatgtt acctgggtt ccaggccaca 1380
 ccttagacaaa caagggagaa gagtttgcg atcagaatca tggagaaaat gggcgggggt 1440
 ggtgtgggtg atgggactca ttgttagaaag gaaaggcttgc tcatttttgc ggagcattaa 1500
 55 ggtatttgcg aactgccaag ggtgtgggtg cggatggaca ctaatgcagc caggttgg 1560
 gaatactttg cttcatatgtt tggagcaca ttgtactgtt tcatttttgc gcttggag 1620
 ttgtatgactt tctgttttgc ttgttgcataatgtt tatttgcata gcatattttc tctaggcttt 1680
 tttcttttgc gggttctaca gtcgtaaaatg agataataag attagtttgc cagttttaa 1740
 cttttattcg tcctttgaca aaagtttataa ggagggcattt ccatttttgc ctgtttttttt 1800
 60 acactccatg agtgcgtgtt agaggcagttt atctgcactt taaaactgca acaaaaatca 1860
 ggtgtttttaa gactgtatgtt ttatttttgc aaaaatgttgc ttgttttttttgggggggg 1920
 tgaataactgtt gaaatgttgc taaaatgttgc ttgttgcataatgtt gcttggag 1980
 tatggatataa accatgttgc aaaaatgttgc ttgttgcataatgtt gcttggag 2040
 tatttttgcg ggtgttttgc aacttgcactt taaaactgca acaaaaatca 2100
 aacaggactt atgggatataa agcgtgtatgtt gcttggag 2160
 65 ttatacccttcc agtagagaaaa agtcttgcataatgttgc taaaatgttgc ttgttggag 2220
 aacacgacat tgcatttttgc acaatgttgc taaaatgttgc ttgttggag aaaaaaaaaaaa

<210> 56
 <211> 1636
 <212> DNA
 <213> Human
 <400> 56

5 cttgaatgaa gctgacacca agaaccgcgg gaagagcttg ggcccaaagc aggaaaaggga 60
 acgcgtcgag ttggaaagga accgctgctg ctggccgaaac tcaagccccgg ggcgcacccac 120
 cagtttattt ggaagtccag ctgtgaaacc tggagcgtcg ccttcctcccccc agatggctcc 180
 tggtttctt ggtctcaagg aactgcata gtcaaaactga tcccctggcc gttggaggag 240
 cagttcatcc ctaaagggtt tgaagccaaa agccgaagta gcaaaaatga gacgaaagg 300
 cggggcagcc caaaagagaa gacgctggac tgggtcaga ttgtctgggg gctggccttc 360
 agcccggtgc cttccccacc cagcaggaaag ctctggcac gccaccaccc ccaagtgc 420
 gatgtctctt gcctgggtct tgcacggga ctcaacgatg ggcagatcaa gatctgggg 480
 gtgcagacag ggctctgtct tttaatctt tccggccacc aaatgtcgt gagagatctg 540
 agcttcacac ccagtggcag ttgtatTTTgtctccgcgt cacggataa gactcttcgc 600
 atctgggacc tgaataaaaca cggtaaacag attcaagtgt tatcggcca cctgcagtgg 660
 gtttactgtt gttccatctc cccagactgc agcatgtgt gctctgcage tggagagaag 720
 tcggcttttcatggagcat gaggtcttac acgttaatcc ggaagctaga gggccatcaa 780
 agcagtgttgc tctcttgta cttctcccccc gactctgccctgcttgcac ggcttcttac 840
 gataccaaatg tgattatgtg ggacccctac accggcgaaa ggctggggc actccaccac 900
 acccaggttg acccccccattt ggtacactgtt gacgtccaca ttagctact gagatctgt 960
 tgcttctctc cagaaggctt gtaccttgc acgggtggcag atgacagact cctcaggatc 1020
 tggcccttgg aactgaaaac tccattgtca ttgtctcta tgaccaatgg gcttgcgtc 1080
 acatTTTTC ccatgtgg agtcatgtcc acagggacaa gagatggcca cgtccagttc 1140
 tggacagctc cttaggtctt gtcctcaactg aagacttat gccggaaagc cttcgaagt 1200
 ttcttaacaa cttaccaagt cctagcaactg ccaatccccca aaaaaatgaa agatcttcct 1260
 acatacagga ctttttaagc aaccaccat cttgtcttc tttagtagcag ggttaatctg 1320
 cctgtcaaaag ggagtgtctg gaataatggg ccaaacatct ggtcttgcatttgcata 1380
 ttctttggg attgtgata gaatgttagca aaaccagatt ccagtgtaca taaaagaatt 1440
 ttttgtctt taaatagata caaatgtcta tcaactttaa tcaagttgtaa acttatattg 1500
 aagacaattt gatacataat aaaaaattat gacaatgtcc tggggaaaaaaa aaaatgtaga 1560
 aagatggtga agggtggat ggatgaggag cgtgtgtacggggctgtca gcggttggg 1620
 gaccctgtgc tgcgtt

<210> 57
 <211> 460
 <212> DNA
 <213> Human
 <400> 57

40 ccatgtgtgt atgagagaga gagagattgg gagggagagg gagctcaacta ggcgcataatgt 60
 gcctccagggg ggctgcagat gtgtctgagg gtgagcctgg taaaagagaa gacaaaagaa 120
 tgaatgagc taaagcagcc gcctgggggtt ggaggccag cccatttta tgcagcagg 180
 ggcaggagcc cagcaaggaa gcctccattt ccaggactct ggagggagct gagaccatcc 240
 atggccgcag agccctccctt cacaactccat cctgtccacgc cctaattgtg caggtgggg 300
 aactggggat gggaaatcac atagcaactg actggcagag ctgggactgg aacccaacca 360
 gcctcttaga ccacgggtctt tcccatcaat ggaatgttag agactccacgc caggtgggt 420
 ccgagctcga attcgttaatc atggtcatacg ctgtttccctg

45 <210> 58
 <211> 1049
 <212> DNA
 <213> Human
 <400> 58

50 atctgatcaa gaataacctgc cctggtcact ctgcggatgt ttctgtccac ttgttcacat 60
 tgaggaccaa gatatcctt tttacagagg cacttgcgtcgtctaaacaca gacaccctcca 120
 tgacgacatg ctggctcaca ttttcgttttgcgtt ctcgcagaatg cccctccca gctggacta 180
 cagcagcaact ttccctgggg ggtcgtatgc cctgttgcacgc agagcctgaa 240
 gtcagtgtct gtgcagggtt taccgtggct ctgcatttcc caggcattaa aggtctttt 300
 ggatctacaa ttttgcgttgc tttccatttgcgttgc tcaactttt actgtttat 360

aaaatgtaaa cttcacctag ttcatcttctt ccaaatccca agatgtgacc ggaaaagtag 420
cctctacagg acccactagt gccgacacag agtggttttt ctgcactg cttgtcaca 480
ggactttgtct ggagaggttag gaaatcccata ttacgatctc caaacacgta gcttcatac 540
aatcttcgtc actggcagcc ccggatac aatccaccaa ccaaaggacc attactgaat 600
5 ggcttgaatt ctaaaagtga tggctcaattt tcataatctt tcccccttat tatctgtaga 660
attctggctg atgatctgtt ttttcattt gactctgaac acgtatcgtaaaatttgatg 720
tttatatcg tggatgtctt atccacagca catctgcctg gatcgtggag cccatgagca 780
aacacttcgg ggggctgggtt ggtgcgtttt aagtgtgggt tgctccttgg tatggataa 840
ggcacgttgc acatgtctgt gtccacatcc agccgttagca ctgagctgt gaaatcactt 900
10 aaccatcca tttcttccat atcatccagt gtaatcatcc catcaccaag aatgatgtac 960
aaaaacccgtt cagggccaaa gagcagttgc cttcccaat gctttctgtg gagttctgca 1020
acttcaagaa agactctgca tgttctcaa

<210> 59
15 <211> 747
<212> DNA
<213> Human

<400> 59
20 ttttcaaat cacatatggc ttcttgacc ccatcaaata actttattca cacaacgtc 60
ccttaatttcaaaaggctca gtcattcata cacattaggg gatccacagt gttcaaggaa 120
cttaaatata atgtatcata ccaacccaag taaacccaagt aaaaaaaaaata ttcatataaa 180
gttgcata cgttaggtctt agattaccag cttctgtgca aaaaaaggaa atgaagaaaa 240
25 atagattttat taacttagtat tggaaactaa ctttgcctt ggcttaaaac ctccctcactg 300
ctcgctgtc ccacacaaat gtttaagaag tcactgcaat gtactccccg gctctgtatg 360
aaagaagccc ctggcacaaa agattccagt gcccctgaag aggctccctt cttctgtgg 420
gctctccatg aaaaccagcg ggacggcctc cctgctgata ccgtctataa ccttaggggg 480
30 ccctcgggca ggcacggca gtggactcat ctgggtatg gctgtatg ctaacactgg 540
ccaaattcaat gcccacccata ctggttaccc tttgaggca tttctccaga cagaagcccc 600
ttgaaggcta ggttagggcag gatcagatg acaccgtgt ttgtctcgaa gggctccaca 660
gcccagtacg acatgttgc agaagtagta tctctggact tctgcctcca gtcgacccgc 720
cgcgaattta ttagtaatag cgccgc

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.