אינפי 2מ' | תרגול 6 - עם ניקה

שם: איל שטיין

May 9, 2023

נושאי השיעור: אינטגרל מוכלל

נושא ראשון - חזרה על אינטגרל מוכלל

 $\int_{-\infty}^{\infty} rac{x dx}{1+x^2}$.1 תרגיל

$$= \int_{-\infty}^{0} \frac{x dx}{1 + x^2} + \int_{0}^{\infty} \frac{x dx}{1 + x^2}$$

: נבחן את הביטויים אחד אחד

$$\int\limits_{0}^{\infty} \frac{xdx}{1+x^2} = \lim_{M \to \infty} \frac{1}{2} ln \left(x^2 + 1\right)|_{0}^{M} = \infty$$

- ולכן גם האינטגרל המקורי מתבדר.

נושא שני - מבחני השוואה:

 $p < 1 \Longleftrightarrow$ מתכנס מתכנס האינטגרל a > 0 מתכנס למה 2. אם

 $p>1\iff$ מתכנס מתכנס האינטגרל a>0 מתכנס למה 3.

תרגיל 4. בדקו האם האינטגרל הבא מתכנס:

.(0,1] האינטגרד בקטע וולכן אינטגרבילי) רציף וולכן $f\left(x
ight)=rac{1}{1-\cos(x)}$. האינטגרד האינטגר . $\int_0^1 rac{dx}{1-\cos(x)}$

 $1-\cos{(x)}=rac{x^2}{2!}-rac{x^4}{4!}$ ולכן $1-rac{x^2}{2!}+rac{x^4}{4!}$ חוא $\cos{(x)}$ של x=0 פיתוח טיילור סביב -

0 בסביבת x^2 מתנהגת כמו $1-\cos{(x)}$ ש "ננחש" בסביבת –

- $rac{1}{x^2}$ מתנהג כמו הזה, גם $rac{1}{1-\cos(x)}$ מתנהג כמו *
- על מנת לבדוק אם הניחוש נכון, נחשב את גבול המנה שלהם:

$$\lim_{x \to 0} \frac{\frac{1}{1 - \cos(x)}}{\frac{1}{x^2}} = \lim_{x \to 0} \frac{x^2}{1 - \cos(x)}$$

: ולפי לופיטל מתקיים

$$= \lim_{x \to 0} \frac{2x}{\sin(x)} = 2 > 0$$

. ולכן יחד (לפי הלמה) מתבדרים $\int_0^1 \frac{dx}{x^2}$ - ו $\int_0^1 \frac{dx}{1-\cos(x)}$ ולכן יחד (

: תרגיל עבור אילו ערכי lpha,eta האינטגרלים הבאים מתכנסים או מתבדרים מתכנסים עבור אילו ערכי

$$\int_0^1 \frac{dx}{(ln^\beta(1+x))\cdot x^\alpha} \cdot \mathbf{1}$$

: נבחן את האינטגרד

$$f(x) = \frac{1}{(\ln^{\beta} (1+x)) \cdot x^{\alpha}}$$

- . הפונקציה רציפה וחיובית בקטע [0,1] ולכן אפשר להשתמש במבחן השוואה בולי.
 - x^{eta} מתנהג כמו $\ln^{eta}\left(1+x
 ight)$ ולכן ולכן $x-rac{x^{2}}{2}=\ln\left(1+x
 ight)$ מתנהג כמו
 - $\frac{1}{x^{\alpha+\beta}}$ ולכן $f\left(x
 ight)$ מתנהג כמו *
 - לפי מבחן ההשוואה הגבולי:

$$\begin{split} \lim_{x \to 0^+} \frac{\frac{1}{(\ln^{\beta}(1+x)) \cdot x^{\alpha}}}{\frac{1}{x^{\alpha+\beta}}} &= \lim_{x \to 0^+} \frac{x^{\alpha+\beta}}{(\ln^{\beta}(1+x)) \cdot x^{\alpha}} \\ &= \lim_{x \to 0^+} \frac{x^{\beta}}{\ln^{\beta}(1+x)} \\ &= \lim_{x \to 0^+} \left(\frac{x}{\ln(1+x)}\right)^{\beta} \\ &= \lim_{x \to 0^+} \frac{x}{\ln(1+x)} = 1 \end{split}$$

lpha+eta<1 אמ"מ אמ"מ $\int_0^1 rac{1}{x^{lpha+eta}}$ אמ"מ אמ"מ אמ"מ אולכן אמ"מ אמ"מ *

$$\int_1^2 \frac{dx}{(\ln^\beta(x))\cdot (x-1)^\alpha} .2$$

t=2 מתקיים t=0 וכאשר t=0 מתקיים , $t+1=x \Leftarrow t=x-1$ מתקיים משתנים. • נבצע החלפת

$$\int_{0}^{1} \frac{dt}{t^{\alpha} \cdot (\ln^{\beta} (1+t))}$$

 $\alpha+\beta<1$ מתכנס אמ"מ – ולכן לפי הסעיף הקודם, האינטגרל

 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\cos^{lpha}(x)}$ האינטגרל lpha עבור אילו ערכי lpha האינטגרל .6 פתרון:

: את האינטגרל את ולכן ולכן איז חסומה ליד החסומה ליד הפונקציה י $\frac{1}{\cos^{\alpha}(x)}$ את הפונקציה י

$$\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{dx}{\cos^{\alpha}\left(x\right)}=\int\limits_{-\frac{\pi}{2}}^{0}\frac{dx}{\cos^{\alpha}\left(x\right)}+\int\limits_{0}^{\frac{\pi}{2}}\frac{dx}{\cos^{\alpha}\left(x\right)}$$

- המחוברים המחוברים מעכנסים. נשים לב כי מכיון ש $\cos{(x)}=\cos{(x)}=\cos{(-x)}$ נקבל כי שני המחוברים מתכנסים. נשים לב כי מכיון ש $\cos{(x)}=\cos{(x)}=\cos{(x)}$ נקבל כי שני המחוברים הם סימטריים ולכן נבחן אחד מהם:
 - $\sin{(x)}=x-rac{x^3}{3!}$ נגם בפיתוח טיילור של $\cos{(x)}=\sin{\left(rac{\pi}{2}-x
 ight)}$ נשתמש בזהות -
 - $x=rac{\pi}{2}$ ליד $rac{\pi}{2}-x$ מתנהג כמו $\sin\left(rac{\pi}{2}-x
 ight)$ מתנהג כמו $\sin\left(rac{\pi}{2}-x
 ight)$ מתנהג כמו $\sin\left(x
 ight)$ מתנהג כמו ליוד $\sin\left(x
 ight)$
 - $rac{\pi}{2}$ בסביבת $rac{1}{\left(rac{\pi}{2}-x
 ight)^{lpha}}$ מתנהג כמו כמו לכן ננחש ש $rac{1}{\cos^{lpha}(x)}$
 - : בול המנה את גבול המנה היובית ב $\left[0, \frac{\pi}{2}\right]$ וגם היובית ב $\left[0, \frac{\pi}{2}\right]$, וגם המנה שלהם $\left[0, \frac{\pi}{2}\right]$ מכיוון ש

$$\lim_{x \to \frac{\pi}{2}^{-}} \left(\frac{\frac{\pi}{2} - x}{\cos(x)} \right)^{\alpha}$$

$$= \lim_{x \to \frac{\pi}{2}^{-}} \frac{\frac{\pi}{2} - x}{\cos(x)}$$

$$= \lim_{x \to \frac{\pi}{2}^{-}} \frac{-1}{-\sin(x)} = 1$$

- משתנים משתנים לעשות החלפת החלפת אמ"מ אמ"מ מתכנסים מתכנסים ו $\int_0^{\frac{\pi}{2}} \frac{1}{\left(\frac{\pi}{2}-x\right)^{\alpha}}$ ו ו $\int_0^{\frac{\pi}{2}} \frac{dx}{\cos^{\alpha}(x)}$ אינטגרלים אפשר אפשר אפשר אמ"מ *
- lpha < 1 אמ"מ מתכנס אמ"מ האינטגרל שהאינטגרל מתכנס אמ"מ בכלל הסימטריות של הסימטריות של האינטגרל המקורי מתכנס אמ

 $\int_0^\infty rac{arctan(x)}{x(x+1)} dx$ של התכנסות התכנסות בדקו התכנסות

יש לנו שתי נקודות סינגולריות: x=0 וגם ב ∞ . לכן נפצל לשני אינטגרלים:

$$\int_{0}^{\infty} \frac{\arctan\left(x\right)}{x\left(x+1\right)} dx = \int_{0}^{1} \frac{\arctan\left(x\right)}{x\left(x+1\right)} dx + \int_{1}^{\infty} \frac{\arctan\left(x\right)}{x\left(x+1\right)} dx$$

• נבחן את המחובר השמאלי:

$$\int_{0}^{1} \frac{\arctan(x)}{x(x+1)} dx$$

 $\cdot 0^+$ נבדוק את ההתנהגות של האינטגרנד ליד –

$$\lim_{x \to 0^{+}} \frac{\arctan\left(x\right)}{x\left(x+1\right)} = \lim_{x \to 0^{+}} \frac{\arctan\left(x\right)}{x} \cdot \frac{1}{x+1}$$

$$\stackrel{l'hopital}{=} \lim_{x \to 0^+} \frac{1}{1 + x^2} = 1$$

- . פרט (x=0) ולכן אינטגרבילית חסומה ורציפה ב[0,1] פרט לנקודה אחת האינטגרנד הימן חסומה חסומה ורציפה ב $\int_0^1 rac{arctan(x)}{x(x+1)} dx$ אינט אינטגרל לכן האינטגרל לכן האינטגרל אינטגרל אינטגרל אינטגרל הימן.
 - נבחן את המחובר הימני:

$$\int_{1}^{\infty} \frac{\arctan(x)}{x(x+1)} dx$$

- x^{2} מתנהגת כמו x מתנהגת כמו הפונקציה x + 1 מתנהגת כמו מתנהגת מתנהגת מתנהגת הפונקציה x + 1
 - $\frac{arctan(x)}{x(x+1)}>0$ נקבל כי: ומכיוון ש

$$\frac{\arctan\left(x\right)}{x\left(x+1\right)} \approx \frac{1}{x^2}$$

$$\lim_{x\rightarrow\infty}\frac{\frac{arctan(x)}{x(x+1)}}{\frac{1}{x^{2}}}=\frac{arctan\left(x\right)}{x\left(x+1\right)}\cdot x^{2}=\frac{\pi}{2}$$

. ולכן מתכנסים $\int_1^\infty {1\over x^2} dx$ ו ו- ולכן $\int_1^\infty {arctan(x)\over x(x+1)} dx$ א ולכן .

 $!\!\int_1^\infty x^m e^{-qx} dx$ מתכנס האינטגרל m,q מרני לאילו אילו פתרון:

q>0 ראשית נבחן את הגבול עבור •

$$\lim_{x \to \infty} \frac{x^m}{e^{qx}} = 0$$

:ועבור q < 0 נקבל שהגבול –

$$\lim_{x\to\infty}e^{|q|x}x^m=\infty$$

 $x>x_0$ כך שלכל מ-1 הפונקציה תהיה גדולה מ-1 א ולכן קיים $x>x_0$

$$\lim_{M \to \infty} \int\limits_{1}^{M} e^{|q|x} x^m = \underbrace{\int\limits_{1}^{x_0} e^{|q|x} x^m}_{1} + \lim_{M \to \infty} \underbrace{\int\limits_{x_0}^{M} \underbrace{e^{|q|x} x^m}_{>1}}_{}$$

ניתן להשתמש במבחן ההשוואה על המחובר הימני ולקבל:

$$\begin{split} \int\limits_{1}^{x_0} e^{|q|x} x^m + \lim\limits_{M \to \infty} \int\limits_{x_0}^{M} e^{|q|x} x^m &> C + \lim\limits_{M \to \infty} \int\limits_{x_0}^{M} 1 dx \\ &= C + \lim\limits_{M \to \infty} (M - x_0) = \infty \end{split}$$

mולכן האינטגרל מתבדר לכל ערך של \cdot

- m האינטגרל מתבדר לכל כלומר עבור q<0
 - q=0 נקבל: –

$$\int_{1}^{\infty} x^{m} e^{-qx} dx = \int_{1}^{\infty} x^{m} dx$$
$$= \int_{1}^{\infty} \frac{1}{x^{-m}} dx$$

- m<-1 כלומר כלומר האינטגרל אמ"מ אמ"מ *
 - q > 0 נקבל: –

$$\int_{1}^{\infty} \frac{x^m}{e^{qx}}$$

 $rac{1}{x^2}$ י נחפש פונקציה גדולה יותר שאינטגרל שלה מתכנס ונשווה ביניהן, ולכן נשווה ל *

$$\lim_{x\to\infty}\frac{\frac{x^m}{e^{qx}}}{\frac{1}{x^2}}=\lim_{x\to\infty}\frac{x^{m+2}}{e^{qx}}=0$$

- $x o \infty$ כאשר בא $rac{x^m}{e^{qx}} < rac{1}{x^2}$ כלומר כלומר הפונקציה שלנו, $rac{x^m}{e^{qx}}$, קטנה יותר מהפונקציה $\int_1^\infty rac{x^m}{e^{qx}}$ כאשר הפונקציה שלנו, $\frac{x^m}{e^{qx}}$ כאשר הפונקציה מבחן השוואה מתקיים כי כי יולכן לפי מבחן השוואה מתקיים כי יולכן לפי יולכן יולכן לפי יולכן לפי יולכן לפי יולכן יולכן לפי יולכן יולכן
 - לסיכום:
 - m לכל מתבדר האינטגרל q<0 עבור –
 - m<-1 אמ"מ אמ"מ q=0 עבור
 - m אינטגרל מתכנס לכל עבור q>0

 $\int_0^\infty rac{x^p-rac{1}{\sqrt{x}}}{x-1}$ אם מתכנס מתכנס שעבורם (אם אם קיימים) אם ערכי הפרמטר ערכי הפרמטר אז את כל ערכי הפרמטר פתרון:

- $0, \frac{1}{2}, 1, 1\frac{1}{2}, \infty$: שתי נקודות שתי נקודות סינגולריות: 0,1 וגם שאיפה לאינסוף. לכאורה שתי נקודות סינגולריות: יש
- היא אפשר לחשב אינטגרל רימן רגיל): x=1 (כלומר נבדוק אם הפונקציה חסומה. אם היא חסומה אז אפשר לחשב אינטגרל רימן (

$$\lim_{x\to 1}\frac{x^p-\frac{1}{\sqrt{x}}}{x-1}\overset{l'hopital}{\overbrace{=}}\frac{p\cdot x^{p-1}+\frac{1}{2}x^{-\frac{3}{2}}}{1}=p+\frac{1}{2}$$

- $\lambda x=1$ כלומר לפונקציה יש אי רציפות סליקה בנקודה *
- $[2,\infty)$ ו (0,2] : הוא אינטגרל קטעים ($0,\infty$) את הקרן לחלק את וניתן וניתן וניתן הוא אינטגרל רימן וניתן וניתן וניתן יוער אינטגרל רימן וויער וויער אינטגרל רימן וויער וויער וויער אינטגרל רימן וויער וו
 - :בקטע (0,2) האינטגרל הוא

$$\int_{0}^{2} \frac{\frac{1}{x^{-p}} - \frac{1}{x^{\frac{1}{2}}}}{x - 1}$$

- . עבור האינטגרל שווה לאפס ולכן האינטגרל חאינטגרל $p=-\frac{1}{2}$ עבור
 - $-p<rac{1}{2}$ עבור $p>-rac{1}{2}$ כלומר –

$$\frac{1}{x^{-p}} - \frac{1}{x^{\frac{1}{2}}} = x^p - x^{-\frac{1}{2}} = x^{-\frac{1}{2}} \cdot \left(x^{p+\frac{1}{2}} - 1\right)$$

: כלומר

$$\frac{\frac{1}{x^{-p}} - \frac{1}{x^{\frac{1}{2}}}}{x - 1} = \frac{1}{\sqrt{x}} \cdot \left(\frac{x^{p + \frac{1}{2}} - 1}{x - 1}\right)$$

 $: rac{1}{\sqrt{x}}$ י מתנהגת מתנהגת נמו לכן ולכן ולכן מתנהגת מתנהגת *

$$\lim_{x \to 0^+} \frac{\frac{\frac{1}{x^{-p}} - \frac{1}{\frac{1}{x^{\frac{1}{2}}}}}{x - 1}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{x^{p + \frac{1}{2}} - 1}{x - 1} = 1$$

. ולכן מתכנסים $\int_{0}^{2} rac{1}{\sqrt{x}} dx$ -ו - ולכן ויכן יחד.

: עבור שהמונה $p<-rac{1}{2}$ עבור –

$$\frac{1}{x^{-p}} - \frac{1}{x^{\frac{1}{2}}} = x^p \left(1 - x^{-p - \frac{1}{2}} \right)$$

: נציב בפונקציה ונקבל

$$\frac{x^p\left(1-x^{-p-\frac{1}{2}}\right)}{x-1} < 0$$

- יובית (האינטגרל (-1) כלומר זו פונקציה שלילית (אבל שומרת על סימן קבוע) ולכן נכפול את הפונקציה ב(-1) כדי לקבל פונקציה חיובית (והאינטגרל יישבת ביר עם פונקציה בפרכים)
 - שלהם יהיה עם סימנים הפוכים) שלהם יהיה עם $(-1)\cdot \frac{x^p\left(1-x^{-p-\frac{1}{2}}\right)}{x-1}$ עם הפונקציה את את הפונקציה \star

$$\lim_{x \to 0^+} \frac{(-1) \cdot \frac{x^p \left(1 - x^{-p - \frac{1}{2}}\right)}{x - 1}}{\frac{1}{x^{-p}}} = \lim_{x \to 0^+} \frac{1 - x^{-p - \frac{1}{2}}}{1 - x} = 1$$

- p>-1 כלומר ,-p<1 עבור $\int_0^2 rac{dx}{x^{-p}}$ מתכנס יחד עם $\int_0^2 rac{1}{x^{-p}-rac{1}{x^{rac{1}{2}}}}dx$ יולכן האינטגרל י
- $-1 מתכנס אמ"מ מחכנס אנו עדיין תחת ההנחה ש <math>p < -rac{1}{2}$ ולכן האינטגרל ולכן אנחער אנחנו עדיין אויין אייט אמ"מ י
 - -1 < p בוניים: מתכנס מהינטגרל בקטע בקטע סיכום ביניים בקטע בקטע סיכום ביניים -
 - $\int_2^\infty rac{rac{1}{x-p}-rac{1}{x}}{x-1}dx$ בקטע בקטע [$2,\infty$) בקטע
 - $p=-rac{1}{2}$ הוא יתכנס עבור
 - : נקבל $p>-rac{1}{2}$ נקבל –

$$0 < \frac{\frac{1}{x^{-p}} - \frac{1}{x^{\frac{1}{2}}}}{x - 1} \sim \frac{x^p}{x} = \frac{1}{x^{-p+1}} > 0$$

$$g\left(x
ight)=rac{1}{x^{-p+1}}$$
ל נשווה את הפונקציה ל

$$\lim_{x \to \infty} \frac{f\left(x\right)}{g\left(x\right)} = \ldots = 1$$

$$p<0$$
 כלומר $-p+1>1$ אמ"מ $\int_2^\infty \frac{1}{x^{-p+1}} dx$ מתכנס יחד עם מתכנס הדעס הלכן $\int_2^\infty f\left(x\right) dx$ יולכן ההנחה כי $p>-\frac{1}{2}\leq p<0$ ולכן נקבל $p>-\frac{1}{2}$

$$rac{x^p-rac{1}{1}}{rac{x^2}{x-1}}\simrac{x^{-rac{1}{2}}}{x}\sim-x^{rac{3}{2}}<0$$
 נקבל $p<-rac{1}{2}$ עבור

: נקבל
$$g\left(x\right)=x^{-\frac{3}{2}}$$
 ל ל $\left(x\right)^{\frac{x^{p}-\frac{1}{1}}{x-1}}$ ונקבל *

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \dots = 1$$

$$\int_2^\infty x^{-\frac{3}{2}dx}$$
 עם יחד עם התכנס מתכנס הלכן $\int_2^\infty f\left(x
ight)$.
$$p<0$$
 מתכנס עבור הלומר $\int_0^\infty f\left(x
ight)dx$.

-1 לסיכום: האינטגרל כולו מתכנס עבור •