Variable	sucesos	Modelo	Función de probabilidad o densidad	Función acumulativa o de distribución	Esperanza	Varianza	Parámetros
Disc.	Única obs.	Bernoulli	$f(x) = \langle p, \forall x = 1 \\ 1 - p, \forall x = 0 \rangle$		E(x) = p	Var(x) = p.q	p $q=1-p$
Disc.	Indep.	Binomial	$f(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$	$F(x) = \sum_{\forall x_i \le x} f(x_i)$	E(x) = n.p	Var(x) = n.p.q	n p
Disc.	Indep.	Geométrico	$P(N=n) = f(n) = (1-p)^{n-1} p$	$F(x) = 1 - \left(1 - p\right)^n$	$E(x) = \frac{1}{p}$	$Var(x) = \frac{1-p}{p^2}$	n p
Disc.	Indep.	Poisson	$P(X = x) = f(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$		$E(x) = \lambda = n.p$	$Var(x) = \lambda = n.p$	$\lambda = n.p$
Disc.	Dep.	Hipergeométrico	$P(X = x) = f(x) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}$		$E(x) = h \left(\frac{k}{n}\right)$	$Var(x) = \frac{nk(N-k)}{N^2} \left(\frac{N-n}{N-1}\right)$	k N n
Cont.	Indep.	Exponencial	$f(t) = \lambda e^{-\lambda t}$	$F(t) = 1 - e^{-\lambda t}$	$E(T) = \frac{1}{\lambda}$	$Var(T) = \frac{1}{\lambda^2}$	$\lambda = n.p$
Cont.		Gamma	$f(x) = \frac{\lambda(\lambda x)^{k-1} e^{-\lambda x}}{(k-1)!}$	$F(x) = \int_{0}^{x} f(t)dt = \frac{\Gamma(k, \lambda x)}{\Gamma(k)} = \frac{\text{función gamma incompleta}}{\text{función gamma}}$	$E(x) = \frac{k}{\lambda}$	$Var(x) = \frac{k}{\lambda^2}$	$\lambda = n.p$ k
Cont.		Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}} dt$	$E(x) = \mu$	$Var(x) = \sigma^2$	μ σ
Cont.		Normal estándar	$f(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$	$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}t^2} dt$	E(z) = 0	Var(z) = 1	$z = \frac{x - \mu}{\sigma}$ $\mu = 0$ $\sigma = 1$
Cont.		Chi-cuadrado	$f(\chi^{2}) = \begin{cases} \frac{1}{2^{\frac{\upsilon}{2}} \Gamma\left(\frac{\upsilon}{2}\right)} \chi^{2\left(\frac{\upsilon-2}{2}\right)e^{\frac{\chi^{2}}{2}}}, \ para \ \chi^{2} > 0 \\ 0, \ en \ otro \ caso \end{cases}$	$V = \sum_{i=1}^{\nu} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2 \square \ \chi_{\nu}^2$	$E(\chi^2) = \upsilon$	$Var(\chi^2) = 2\upsilon$	$\begin{array}{c} v \\ \chi^2 \end{array}$

Cont.	Тс		$f(t) = \frac{1}{\sqrt{\pi \upsilon}} \frac{\Gamma\left(\frac{\upsilon+1}{2}\right)}{\Gamma\left(\frac{\upsilon}{2}\right)} \left(1 + \frac{t^2}{\upsilon}\right)^{-\frac{1}{2}z^2}$ $\operatorname{Con} \ t_\upsilon = \frac{x}{\sqrt{\underline{V}}} \begin{cases} x \square \ N(0,1) \\ V \square \ \chi_\upsilon^2 \end{cases}$		E(t) = 0	$Var(t) = \frac{\upsilon}{\upsilon - 2}, \ \upsilon > 2$	v x V
Cont.	Fo		$f(F) = \frac{\Gamma\left(\frac{\upsilon_{1} + \upsilon_{2}}{2}\right)\upsilon_{1}^{\frac{\upsilon_{1}}{2}}\upsilon_{2}^{\frac{\upsilon_{2}}{2}}F^{\frac{\upsilon_{1}}{2}-1}}{\Gamma\left(\frac{\upsilon_{1}}{2}\right)\Gamma\left(\frac{\upsilon_{2}}{2}\right)\left(\upsilon_{2} + \upsilon_{1}F\right)^{\frac{\upsilon_{1} + \upsilon_{2}}{2}}}, \ para \ F > 0$	$F_{\nu_1,\nu_2} = \frac{\frac{\chi_1^2}{\nu_1}}{\frac{\chi_2^2}{\nu_2}}$			
Cont.	Log		$f(x) = \frac{1}{x\sigma_y \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln x - \mu_y}{\sigma_y}\right)^2}, x \ge 0$	-	$E(x) = e^{\left(\mu_y + \frac{\sigma_y^2}{2}\right)}$	$Var(x) = \mu_x^2 \left(e^{\sigma_y^2 - 1} \right)$	μ_x μ_y σ_y
Cont.	Indep. Gu	umbel	$f(x) = \alpha e^{-\alpha(x-\mu_0)-e^{-\alpha(x-\mu_0)}}$	$F(x) = e^{-e^{-a(x-\mu_0)}}, -\infty \le x \le +\infty$	$E(x) = \mu = \mu_0 + \frac{0.577}{\alpha}$	$Var(x) = \sigma^2 = \frac{1.645}{\alpha^2}$	α $\mu_0 = x$
Cont.	Indep. We	eibull	$f(z) = \frac{k}{\mu_0 - \varepsilon} \left(\frac{z - \varepsilon}{\mu_0 - \varepsilon} \right)^{k-1} e^{-\left(\frac{z - \varepsilon}{\mu_0 - \varepsilon}\right)^k}$	$F(z) = 1 - e^{-\left(\frac{z - \varepsilon}{\mu_0 - \varepsilon}\right)^k}$	$E(x) = \mu = \varepsilon + \left(\mu_0 - \varepsilon\right)\Gamma\left(1 + \frac{1}{k}\right)$	$Var(x) = \sigma^{2} = \left(\mu_{0} - \varepsilon\right)^{2} \left[\Gamma\left(1 + \frac{2}{k}\right) - \Gamma^{2}\left(1 + \frac{1}{k}\right)\right]$	