Camellia

Криптоалгоритм Camellia шифрует 128-битовые блоки открытых данных под управлением секретного ключа, длина которого может составлять 128, 192 или 256 битов. Далее рассматривается случай 128-битового ключа.

Алгоритм зашифрования построен в соответствии с 18-раундовой схемой Фейстеля, дополненной входным и выходным забеливанием, а также преобразованиями FL и FL^{-1} после 6-го и 12-го раундов. Процедура зашифрования иллюстрируется на рис.1. Раундовые подключи вычисляются на основе секретного ключа и имеют длину 64 бита. Подключи kw_t (t=1,2,3,4) используются для входного и выходного забеливания; k_u (u=1,2,...,18) — в раундовой функции, а kl_v (v=1,2,3,4) — в функциях FL и FL^{-1} . Алгоритм симметричен, т.е. может быть использован и для расшифрования, но при расшифровании раундовые подключи используются в обратном порядке.

Алгоритм зашифрования

Вход: M = L||R - 128-битовый блок открытых данных, представленный в виде конкатенации 64-битовых подблоков L и R.

```
M:=M \oplus (kw_1||kw_2);
for i \coloneqq 1 \ to 6 \ do \{
R \coloneqq R \oplus F(L,k_i);
L \leftrightarrow R \ (L \ u \ R \ oбмениваются значениями)
\};
(L,R):=(FL(L,kl_1),FL^{-1}(R,kl_2));
for i \coloneqq 7 \ to \ 12 \ do \{
R \coloneqq R \oplus F(L,k_i); \ L \leftrightarrow R
\};
(L,R):=(FL(L,kl_3),FL^{-1}(R,kl_4));
for i \coloneqq 13 \ to \ 18 \ do \ \{
R \coloneqq R \oplus F(L,k_i);
L \leftrightarrow R
\};
C:=(R \mid\mid L) \oplus (kw_3 \mid\mid kw_4).
\mathbf{B}\omega xo\partial: C - 128-битовый блок шифртекста.
```

Вычисление раундовых подключей

На рис.2 представлена схема вычисления вспомогательного 128-битовго ключа Q на основе секретного ключа K. Значения используемых при этом 64-битовых раундовых констант Σ_i приведены в табл.1. В качестве Σ_i взяты шестнадцатеричные цифры дробной части числа $\sqrt{p_i}$, где p_i – i-ое простое число (p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7), начиная со второй цифры.

Таблица 1 Pаундовые константы в Camellia при вычислении вспомогательного ключа Q

$\sum_{\mathbf{r}}$	0xa09e667f3bcc908b 0xb67ae8584caa73b2
\sum_{3}^{2}	0xc6ef372fe94f82be
\sum_{4}^{3}	0x54ff53a5f1d36f1c

Значение раундовых подключей kw_t , kw_u и kw_v приведены в таблице 2, где X.L и X.R обозначают соответственно левую и правую половины блока X.

¹ Авторы шифра: *K.Aoki, M.Kanda, M.Matsui, S.Moriari, J.Nakajima* и *T.Tokita* (Япония, Японская телеграфная и телефонная корпорация и Электрическая корпорация Мицубиси)

Рис.1. Алгоритм зашифрования в Camellia (для 128-битового секретного ключа)

Рис.2. Вычисление вспомогательного 128-битового ключа Q в Camellia (для 128-битового секретного ключа K)

Русписс	Подключ	Значение
Входное забеливание	kw ₁	K.L
заоеливание	kw_2^-	K.R
<i>F</i> (раунд 1)	k_1	Q.L
<i>F</i> (раунд 2)	k_2	Q.R
<i>F</i> (раунд 3)	k_3	$(rol_{15}K).L$
<i>F</i> (раунд 4)	k_4	$(rol_{15}K)$. R
<i>F</i> (раунд 5)	k_5	$(rol_{15}Q).L$
<i>F</i> (раунд 6)	k_6	$(rol_{15}Q)$. R
FL	kl_1	$(rol_{30}Q).L$
FL^{-1}	kl_2	$(rol_{30}Q)$. R
<i>F</i> (раунд 7)	k_7	$(rol_{45}K)$. L
<i>F</i> (раунд 8)	k_8	$(rol_{45}K)$. R
<i>F</i> (раунд 9)	k_9	$(rol_{45}Q).L$
<i>F</i> (раунд 10)	k_{10}	$(rol_{60}K)$. R
<i>F</i> (раунд 11)	k_{11}	$(rol_{60}Q).L$
<i>F</i> (раунд 12)	k_{12}	$(rol_{60}Q)$. R
FL	kl_3	$(rol_{77}K).L$
FL^{-1}	kl_4	$(rol_{77}K)$. R
<i>F</i> (раунд 13)	k_{13}	$(rol_{94}K).L$
<i>F</i> (раунд 14)	$_{ackslash}k_{14}$	$(rol_{94}K)$. R
<i>F</i> (раунд 15)	k_{15}	$(rol_{94}Q).L$
<i>F</i> (раунд 16)	k_{16}	$(rol_{94}Q)$. R
<i>F</i> (раунд 17)	k_{17}	$(rol_{111}K).L$
<i>F</i> (раунд 18)	k_{18}	$(rol_{111}K)$. R
Выходное	kw ₃	$(rol_{111}Q).L$
забеливание	kw_4	$(rol_{111}Q)$. R

Раундовая функция F. Схема вычисления значения функции F представлена на рис. 3. Пусть $a=(a_1,a_2,...,a_8)\in \mathbb{F}_2^8-8$ -битовый блок, a_1 – старший бит; $X=(x_1,$ $(x_2,...,x_8) \in (\mathbb{F}_2^8)^8 - 8$ -байтовый блок, причем $(x_1 - \text{старший байт. } \Phi$ ункция $(F: x_2,...,x_8)$ $(\mathbb{F}_2^8)^8 \times (\mathbb{F}_2^8)^8 \to (\mathbb{F}_2^8)^8$ является композицией функции S, P и \oplus , а именно:

$$F(X, k) = P(S(X \oplus k)).$$

 $F\left(X,k
ight)=P(S(X\oplus k)).$ **Функция** $S\colon (\mathbb{F}_2^8)^8 o (\mathbb{F}_2^8)^8$ определяется как

 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) \mapsto (s_1(x_1), s_2(x_2), s_3(x_3), s_4(x_4), s_2(x_5), s_3(x_6), s_4(x_7), s_1(x_8)),$ где

$$s_1: \mathbb{F}_2^8 \to \mathbb{F}_2^8, \ x \mapsto h(g(f(x \oplus 0xc5))) \oplus 0x6e,$$

$$s_2: \mathbb{F}_2^8 \to \mathbb{F}_2^8, \ x \mapsto rol_1s_1(x),$$

$$s_3: \mathbb{F}_2^8 \to \mathbb{F}_2^8, \ x \mapsto ror_1s_1(x),$$

$$s_2 \colon \mathbb{F}_2^8 \to \mathbb{F}_2^8, \ x \mapsto rol_1 s_1(x)$$

$$s_3 \colon \mathbb{F}_2^8 \to \mathbb{F}_2^8, \ x \mapsto ror_1 s_1(x)$$

$$s_4 \colon \mathbb{F}_2^8 \to \mathbb{F}_2^8, \ x \mapsto s_1(rol_1 x).$$

Функции s_1, s_2, s_3 и s_4 являются подстановками на множестве байтов. Участвующие в их определении функции $f, g, h: \mathbb{F}_2^8 \to \mathbb{F}_2^8$ заданы следующим образом:

$$f((a_1, a_2,..., a_8)) = (b_1, b_2,..., b_8),$$

где

$$\begin{array}{lll} b_1 = a_6 \oplus a_2, & b_2 = a_7 \oplus a_1, & b_3 = a_8 \oplus a_5 \oplus a_3, & b_4 = a_8 \oplus a_3, \\ b_5 = a_7 \oplus a_4, & b_6 = a_5 \oplus a_2, & b_7 = a_8 \oplus a_1, & b_8 = a_6 \oplus a_4; \\ g((a_1, a_2, \dots, a_8)) = (b_1, b_2, \dots, b_8), & \end{array}$$

где

$$b_1 = a_5 \oplus a_6 \oplus a_2,$$
 $b_2 = a_6 \oplus a_2,$ $b_3 = a_7 \oplus a_4,$ $b_4 = a_8 \oplus a_2,$ $b_5 = a_7 \oplus a_3,$ $b_6 = a_8 \oplus a_1,$ $b_7 = a_5 \oplus a_1,$ $b_8 = a_6 \oplus a_3;$ $h((a_1, a_2, ..., a_8)) = (b_1, b_2, ..., b_8),$

где $b_1, b_2, ..., b_8 \in \mathbb{F}_2$ — биты, удовлетворяющие соотношению $b_8 \oplus b_7 \beta^{238} \oplus b_6 \beta^{221} \oplus b_5 \beta^{204} \oplus b_4 \beta \oplus b_3 \beta^{239} \oplus b_2 \beta^{292} \oplus b_1 \beta^{205} \\ = (a_8 \oplus a_7 \beta^{238} \oplus a_6 \beta^{221} \oplus a_5 \beta^{204} \oplus a_4 \beta \oplus a_3 \beta^{239} \oplus a_2 \beta^{292} \oplus a_1 \beta^{205})^{-1},$ $\beta = 0$ х02 — байт, интерпретируемый как элемент конечного поля

 $\mathbb{F}_{256} \cong \mathbb{F}_2[x] / (x^8 + x^6 + x^5 + x^3 + 1)$ ерации возведения в степень и нахождения обрати

(в данном случае операции возведения в степень и нахождения обратного элемента осуществляется в указанном поле, причем $0^{-1}=0$; приведенное соотношение однозначно разрешимо относительно $(b_1,b_2,...,b_8)\in \mathbb{F}_2^8$ для любого байта $(a_1,a_2,...,a_8)\in \mathbb{F}_2^8$). Подстановки s_1,s_2,s_3 и s_4 следует задать таблицами.

Функция Р определяется как

P:
$$(\mathbb{F}_2^8)^8 \to (\mathbb{F}_2^8)^8$$
, $(x_1, x_2, ..., x_8) \mapsto (y_1, y_2, ..., y_8)$,

где

$$y_{1} = x_{1} \oplus x_{3} \oplus x_{4} \oplus x_{6} \oplus x_{7} \oplus x_{8}$$

$$y_{2} = x_{2} \oplus x_{4} \oplus x_{1} \oplus x_{7} \oplus x_{8} \oplus x_{5}$$

$$y_{3} = x_{3} \oplus x_{1} \oplus x_{2} \oplus x_{8} \oplus x_{5} \oplus x_{6}$$

$$y_{4} = x_{4} \oplus x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6} \oplus x_{7}$$

$$y_{5} = x_{1} \oplus x_{2} \oplus x_{6} \oplus x_{7} \oplus x_{8}$$

$$y_{6} = x_{2} \oplus x_{3} \oplus x_{7} \oplus x_{8} \oplus x_{5}$$

$$y_{7} = x_{3} \oplus x_{4} \oplus x_{8} \oplus x_{5} \oplus x_{6}$$

$$y_{8} = x_{4} \oplus x_{1} \oplus x_{5} \oplus x_{6} \oplus x_{7}.$$

Функция FL. Функция FL определяется как

$$FL: \mathbb{F}_2^{64} \times \mathbb{F}_2^{64} \to \mathbb{F}_2^{64},$$

$$(X.L \parallel X.R, kl.L \parallel kl.R) \mapsto Y.L \parallel Y.R$$

где

$$X.R = (rol_1(X.L \& kl.L) \bigoplus X.R,$$

 $Y.R = (Y.R \lor kl.R) \bigoplus X.R.$

Функция FL^{-1} является обратной к FL, т.е.

$$FL^{-1}(FL(X, k), k) \equiv X.$$

Схема вычисления этих функций представлены на рис. 3.

Рис.3. Функции а) FL и б) FL^{-1} в Camellia