Foundations of Data Science, Fall 2020

3. Linear Regression

Prof. Dan Olteanu

Dast

Dast

University of Zurich

Data • (Systems+Theory)

Sept 22, 2020

https://lms.uzh.ch/url/RepositoryEntry/16830890400

https://uzh.zoom.us/j/96690150974?pud=cnZmMTduWUtCeMoxYW85Z3RYYnpTZz09



### Outline

### Goals

- · Review the supervised learning setting
- Describe the linear regression framework
- · Apply the linear model to make predictions
- Derive the least squares estimate

## Supervised Learning Setting

- Data consists of input and output pairs
- Inputs (also covariates, independent variables, predictors, features)
- Output (also variates, dependent variable, targets, labels)

## Why study linear regression?

- Least squares is at least 200 years old going back to Legendre and Gauss
- Francis Galton (1886): "Regression to the mean"
- Often real processes can be approximated by linear models
- More complex models require understanding linear regression
- · Closed form analytic solutions can be obtained
- Many key notions of machine learning can be introduced

## **Toy Example: Commute Times**

Want to predict commute time into city centre

What variables would be useful?

- · Distance to city centre
- Day of the week

### Data

| dist (km) | day | commute time (min) |
|-----------|-----|--------------------|
| 2.7       | fri | 25                 |
| 4.1       | mon | 33                 |
| 1.0       | sun | 15                 |
| 5.2       | tue | 45                 |
| 2.8       | sat | 22                 |





| Linear Models                                                                                                  |   |  |
|----------------------------------------------------------------------------------------------------------------|---|--|
| Suppose the input is a vector $\mathbf{x} \in \mathbb{R}^{\mathcal{D}}$ and the output is $y \in \mathbb{R}$ . |   |  |
| We have data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$                                                 |   |  |
| Notation: data dimension $D$ , size of dataset $N$ , column vectors                                            |   |  |
| Linear Model                                                                                                   |   |  |
| $y = w_0 + x_1 w_1 + \dots + x_D w_D + \epsilon$                                                               |   |  |
|                                                                                                                |   |  |
|                                                                                                                |   |  |
|                                                                                                                |   |  |
|                                                                                                                |   |  |
|                                                                                                                | 5 |  |

# 









### Computing the Model Parameters: Summary

$$\langle (x_i,y_i) \rangle_{i=1}^N$$
, where  $x_i,y_i \in \mathbb{R}$   $\widehat{y}(x)=w_0+x\cdot w_1$  (no noise

$$\mathcal{L}(\mathbf{w}) = \mathcal{L}(\mathbf{w}_0, \mathbf{w}_1) = \frac{1}{2N} \sum_{i=1}^{N} (\hat{y_i} - y_i)^2 = \frac{1}{2N} \sum_{i=1}^{N} (\mathbf{w}_0 + \mathbf{x}_i \cdot \mathbf{w}_1 - y_i)^2$$

$$\frac{\partial \mathcal{L}}{\partial w_0} = \frac{1}{N} \sum_{i=1}^{N} (w_0 + w_1 \cdot x_i - y_i)$$
$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{1}{N} \sum_{i=1}^{N} (w_0 + w_1 \cdot x_i - y_i) x_i$$

 $\bar{x} = \frac{\sum_{i} x_{i}}{N}$   $\bar{y} = \frac{\sum_{i} y_{i}}{N}$   $\widehat{\text{var}}(x) = \frac{\sum_{i} x_{i}^{2}}{N} - \bar{x}^{2}$   $\widehat{\text{cov}}(x, y) = \frac{\sum_{i} x_{i} y_{i}}{N} - \bar{x} \cdot \bar{y}$ We obtain the solution for  $(w_0, w_1)$  by setting the partial derivatives to 0 and solving the resulting system. (Normal Equations)

$$w_0 + w_1 \cdot \frac{\sum_i x_i}{N} = \frac{\sum_i y_i}{N}$$
(1) 
$$w_1 = \frac{\widehat{\text{cov}}(x, y)}{\widehat{\text{var}}(x)}$$
$$w_0 \cdot \frac{\sum_i x_i}{N} + w_1 \cdot \frac{\sum_i x_i^2}{N} = \frac{\sum_i x_i y_i}{N}$$
(2) 
$$w_0 = \bar{y} - w_1 \cdot \bar{x}$$

$$w_1 = \frac{\widehat{\text{cov}}(x, y)}{\widehat{\text{cov}}(x)}$$

### Linear Regression : General Case

Recall that the linear model is

$$\widehat{y}_i = \sum_{j=0}^D x_{ij} w_j$$

where we assume that  $x_{i0}=1$  for all  $\mathbf{x}_i$ , so that the bias term  $w_0$  does not need to be treated separately.

Expressing everything in matrix notation

$$\widehat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$

Here we have  $\widehat{\pmb{y}} \in \mathbb{R}^{N \times 1},\, \pmb{X} \in \mathbb{R}^{N \times (D+1)}$  and  $\pmb{w} \in \mathbb{R}^{(D+1) \times 1}$ 

$$\begin{split} & \frac{\widehat{y}_{N \times 1}}{\widehat{y}_{1}} & \frac{\mathbf{x}_{N \times (D+1)}}{\mathbf{x}_{1}^{\mathsf{T}}} & \frac{w_{(D+1) \times 1}}{\mathbf{x}_{0}^{\mathsf{T}}} \\ & \widehat{y}_{2}^{\mathsf{T}} & \vdots \\ & \vdots \\ & \widehat{y}_{N} & \end{bmatrix} & \frac{\mathbf{x}_{N \times (D+1)}}{\mathbf{x}_{0}^{\mathsf{T}}} & \frac{w_{(D+1) \times 1}}{\mathbf{x}_{0}} & \frac{\mathbf{x}_{N \times (D+1)}}{\mathbf{x}_{0}} & \frac{w_{(D+1) \times 1}}{\mathbf{x}_{0}} \\ & \vdots \\ & w_{D} & \end{bmatrix} \\ & = \begin{bmatrix} \mathbf{x}_{10} & \cdots & \mathbf{x}_{1D} \\ \mathbf{x}_{20} & \cdots & \mathbf{x}_{2D} \\ \vdots & \ddots & \vdots \\ \mathbf{x}_{N0} & \cdots & \mathbf{x}_{ND} \end{bmatrix} & \frac{w_{(D+1) \times 1}}{\mathbf{x}_{0}^{\mathsf{T}}} \\ & \vdots \\ & w_{D} & \end{bmatrix}$$

Back to Toy Example one dist (km) weekday? commute time (min) 2.7 1 (fri) 25 4 1 1 (mon) 33 1.0 0 (sun) 15 5.2 1 (tue) 0 (sat) 2.8 We have N = 5, D + 1 = 3 and so we get  $\mathbf{y} = \begin{bmatrix} 25 \\ 33 \\ 15 \\ 45 \end{bmatrix}, \ \ \mathbf{X} = \begin{bmatrix} 1 & 2.7 & 1 \\ 1 & 4.1 & 1 \\ 1 & 1.0 & 0 \\ 1 & 5.2 & 1 \end{bmatrix}, \ \ \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$ 25.83 34.97 For  $\mathbf{w} = [6.09, 6.53, 2.11]^T$ , our predictions would be  $\hat{\mathbf{y}} =$ 12.62 42 16 24.37

## Finding Optimal Solutions using Calculus

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i})^{2} = \frac{1}{2N} (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}}$$

$$= \frac{1}{2N} \left( \mathbf{w}^{\mathsf{T}} \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \mathbf{w} - \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y} \right)$$

$$= \frac{1}{2N} \left( \mathbf{w}^{\mathsf{T}} \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \mathbf{w} - 2 \cdot \mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y} \right)$$

Then, write out all partial derivatives to form the gradient  $\nabla_{\mathbf{w}} \mathcal{L}$ 

$$\frac{\partial \mathcal{L}}{\partial w_0} = \cdots$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \cdots$$

$$\vdots$$

culus shortcuts to differentiate

Instead, we will use matrix calusing matrix notation directly

## **Differentiating Matrix Expressions**

(i) Linear Form Expressions:  $\nabla_{\mathbf{w}} (\mathbf{c}^{\mathsf{T}} \mathbf{w}) = \mathbf{c}$ 

$$\begin{aligned} \mathbf{c}^{\mathsf{T}}\mathbf{w} &= \sum_{j=0}^{\infty} c_j w_j \\ &\frac{\partial \left(\mathbf{c}^{\mathsf{T}}\mathbf{w}\right)}{\partial w_j} = c_j, \end{aligned} \qquad \text{and so} \quad \nabla_{\mathbf{w}}\left(\mathbf{c}^{\mathsf{T}}\mathbf{w}\right) = \mathbf{c}$$

$$\frac{\partial (\mathbf{c}^{\mathsf{T}}\mathbf{w})}{\partial w_i} = c_j,$$

and so 
$$\nabla_{\mathbf{w}} \left( \mathbf{c}^{\mathsf{T}} \mathbf{w} \right) = \mathbf{c}$$

(ii) Quadratic Form Expressions:

$$\nabla_{\mathbf{w}}\left(\mathbf{w}^{T}\mathbf{A}\mathbf{w}\right)=\mathbf{A}\mathbf{w}+\mathbf{A}^{T}\mathbf{w}\ \ (=2\mathbf{A}\mathbf{w}\text{ for symmetric }\mathbf{A})$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{w} = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{i}w_{j}A_{ij}$$

$$\frac{\partial \left(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{w}\right)}{\partial w_{k}} = \sum_{i=0}^{D} w_{i}A_{ik} + \sum_{j=0}^{D} A_{kj}w_{j} = \mathbf{A}_{[:,k]}^{\mathsf{T}}\mathbf{w} + \mathbf{A}_{[k,:]}\mathbf{w}$$

$$\nabla_{\mathbf{w}} \left( \mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{w} \right) = \mathbf{A}^{\mathsf{T}} \mathbf{w} + \mathbf{A} \mathbf{w}$$

(3)



$$\chi(w) = \frac{1}{2N} \left( xw - y \right)^{T} \left( xw - y \right) \qquad \left[ \frac{wT}{xT} \right]^{T} y = \prod_{x \in \{bH\}} \frac{1}{N} \frac{1}{N} y = \prod_{x \in \{bH\}} \frac{1}{N} y =$$

### **Deriving the Least Squares Estimate: Summary**

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i})^{2} = \frac{1}{2N} \left( \mathbf{w}^{\mathsf{T}} \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \mathbf{w} - 2 \cdot \mathbf{y}^{\mathsf{T}} \mathbf{X} \mathbf{w} + \mathbf{y}^{\mathsf{T}} \mathbf{y} \right)$$

We compute the gradient  $\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{0}$  using the matrix differentiation rules,

$$\nabla_{\mathbf{w}} \mathcal{L} = \frac{1}{N} \left( \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \mathbf{w} - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$$

By setting  $\nabla_{\boldsymbol{w}}\mathcal{L}=\boldsymbol{0}$  and solving we get,

$$\left( \boldsymbol{X}^{T}\boldsymbol{X}\right) \boldsymbol{w} = \boldsymbol{X}^{T}\boldsymbol{y}$$

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
 (Assuming inverse exists)

The predictions made by the model on the data **X** are given by

$$\widehat{\mathbf{y}} = \mathbf{X}\mathbf{w} = \mathbf{X} \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

 $\mathbf{X} \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}}$  is called the "hat" matrix

Complexity of Parameter Estimation

$$\mathbf{W} = \underbrace{\begin{pmatrix} \mathbf{X}^{\mathsf{T}} & \mathbf{X} \\ (D+1) \times N & N \times (D+1) \\ (D+1) \times (D+1) \end{pmatrix}}_{(D+1) \times (D+1)} - 1 \underbrace{\mathbf{X}^{\mathsf{T}} & \mathbf{Y} \\ (D+1) \times N & N \times 1}_{N \times 1}$$

•  $\mathbf{Z} = \mathbf{X}^T \mathbf{X}$  in  $O(D^2 N)$ 

• If D = O(N), then the best known method (Le Gall) needs  $O(N^{2.37})$ 

•  $\mathbf{Z}^{-1}$  in  $O(D^3)$ 

•  $\mathbf{A} = \mathbf{X}^T \mathbf{y}$  in O(DN)

•  $\mathbf{w} = \mathbf{Z}^{-1}\mathbf{A}$  in  $O(D^2)$ 

Overall complexity for computing **w**:  $O(D^2N + D^3)$ 

**Complexity of Parameter Estimation** 

What if **X** is defined by a join of several relations?

• The number of rows N may be exponential in the number of relations:

$$N = O(M^{\text{number relations}})$$

- X is sparse, it can be represented in O(M) space losslessly for acyclic joins Acyclic joins are common in practice
- w can be computed in  $O(D^2M + D^3)$
- Find out more: https://fdbresearch.github.io/

When Do We Expect  $X^TX$  to be Invertible?

Matrix  $(\mathbf{X}^\mathsf{T}\mathbf{X}) \in \mathbb{R}^{(D+1) \times (D+1)}$ 

•  $\operatorname{rank}(\boldsymbol{X}^T\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}) \leq \min\{D+1,N\}$ 

• It is invertible if rank(X) = D + 1

What if we use one-hot encoding for a feature like day?

- $x_{\rm mon}, \ldots, x_{\rm sun}$  stand for 0-1 valued variables in the one-hot encoding
- We always have  $\emph{x}_{\mathrm{mon}} + \cdots + \emph{x}_{\mathrm{sun}} = 1$
- This introduces a linear dependence in the columns of  $\boldsymbol{X}$  reducing the rank
- In this case, we can drop some features to adjust rank

We'll see alternative approaches later in the course

2:







