Einfürung in die Algebra Hausaufgaben Blatt Nr. 7

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 22, 2023)

- **Problem 1.** (a) Eine Gruppe *G* der Ordnung 21 operiere auf einer Menge *M* mit 11 Elementen. Zeigen Sie, dass diese Operation eine Bahn der Länge 1 besitzt.
 - (Ist $\{m\} \subseteq M$ eine solche einelementige Bahn, dann gilt g.m = m für alle $g \in G$. Jedes $g \in G$ fixiert also m. Man nennt m daher auch einen Fixpunkt der Operation.)
 - (b) Sei $G := GL(2,\mathbb{C})$ die Gruppe der invertierbaren komplexen (2×2) -Matrizen und M die Menge aller komplexen (2×2) -Matrizen, die nur reelle Eigenwerte besitzen. Dann operiert G per Konjukation auf M. (Dies brauchen Sie nicht zu zeigen.) Geben Sie ein Repräsentantensystem der Bahnen der Operation an)
- Proof. (a) Wir schreiben die Klassengleichung

$$|M|=\sum_{i=1}^r [G:G_m].$$

Jeder Term im Summe ist eine Teiler von 21, also 1,3,7 oder 21. Die Operation besitzt eine Bahn der Länge 1 genau dann, wenn 1 zumindest einmal vorkommt. Wir schreiben die mögliche Summen:

$$11 = 1 \times 11$$
 $11 = 3 + 1 \times 8$
 $11 = 3 \times 2 + 1 \times 5$
 $11 = 3 \times 3 + 1 \times 2$
 $11 = 7 + 1 \times 4$
 $11 = 7 + 3 + 1$

Weil 1 immer vorkommt, gibt es immer eine Bahn der Länge 1.

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Konjukation ist genau eine Ähnlichkeitstransformation. Trotz der Aufgabenstellung brauchen wir noch die Eigenschaften.

Lemma 1. Sind zwei Matrizen A und B ähnlich, dann haben sie dieselben Eigenwert.

Proof. Sei $A = Q^{-1}BQ$. Sei außerdem v ein Eigenvektor von A mit Eigenwert λ . Es gilt QA = BQ und

$$QAv = Q\lambda v = \lambda(Qv)$$
$$=BQv = B(Qv)$$

also Qv ist ein Eigenvektor von B mit Eigenwert λ . Wir können die Rollen von A und B vertauschen, um die andere Richtung zu zeigen.

Remark 2. Die Umkehrrichtung gilt nicht immer. Es gilt wenn die Matrizen diagonalisierbar sind.

Es folgt sofort: Wenn zwei Matrizen in der gleichen Bahn liegen, haben die die gleichen Eigenwerte. Wenn die Matrizen nicht diagonaliserbarsind, schreiben wir die in Jordan-Normalform. Daraus ergibt sich ein Repräsentantensystem der Bahnen:

$$\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a, b \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} | a \in \mathbb{R} \right\}.$$

Problem 2. Von der endlichen Gruppe G sei bekannt, dass sie nicht abelsch ist und zu jedem positiven Teiler t von |G| mindestens eine Untergruppe der Ordnung t besitzt. Zeigen Sie, dass G nicht einfach ist. (Hinweis: Sei p die kleinste Primzahl, die |G| teilt, und G0 eine Untergruppe von G0 vom Index G0. Lassen Sie G0 auf den Nebenklassen von G0 operieren und betrachten Sie den Kern des zugehörigen Homomorphismus.)

Proof. Wie im Hinweis: Sei p die kleinste Primzahl, die |G| teilt und U eine Untergruppe von G vom Index p. G operiere auf den Linksnebenklassen von U operieren. Sei xU eine beliebige Linksnebenklasse von U. Ein Element $g \in G$ liegt im Kern des Homomorphismus genau dann, wenn $gxU = xU \ \forall x \in G$. Dann wäre $x^{-1}gxU = U$ oder $x^{-1}gx \in U \ \forall x \in G$.

Problem 3. Benutzen Sie die Beweisidee aus Korollar 2.79, um folgende Aussage zu zeigen: Seien p eine Primzahl, $n \in \mathbb{N}^*$, G eine Gruppe der Ordnung p^n und $\{e\} < N \le G$ ein nicht-trivialer Normalteiler von G. Dann gilt $|Z(G) \cap N| > 1$.

Proof. Als Normalteiler (insbesondere Untergruppe) teilt der Ordnung von N den Ordnung von G, also $|N| = p^m$, $0 < m \le n$. 0 ist ausgeschlossen, weil N nicht trivial ist. Dann ist p ein Teiler von |N|. Wir schreiben noch einmal die Klassengleichung:

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(x_i)].$$

Als Normalteiler ist N per Definition eine Vereinigung von Konjugationsklassen, sonst wäre N unter Konjugation nicht abgeschlossen. Eine solche Konjukationsklasse ist $\{e\}$, weil N eine Untergruppe ist. Der Ordnung von Konjugationsklassen sind Teiler von p^n , also Potenzen von p. Dann ist der Ordnung von N eine Summe

$$|N| = \sum_{m=1}^{k} [G:G_m] = 1 + p^{m_1} + p^{m_2} + \dots + p^{m_k}.$$

Es ist nicht möglich, dass alle $m_1, \ldots, m_k > 0$ sind, weil dann p ein Teiler von alle p^{m_i} und |N| wäre, jedoch kein Teiler von 1 und daher kein Teiler von die rechte Seite. Dann muss es für eine m_i gelten, dass $m_i = 0$. Dann enthält N Konjugationsklassen der größe 1 bzw. Elememente im Zentrum, die nicht e sind, also $N \cap Z(G) \neq \{e\}$.

Problem 4. Die Gruppe G operiere auf einer Menge M. Sei $\Phi: G \to \operatorname{Sym}(M)$ der zugehörige Homomorphismus und K sein Kern. Zeigen Sie, dass durch die Abbildung

$$G/K \times M \rightarrow M$$
, $gK.m := g.m$

eine treue Operation von G/K auf M gegeben ist.

Proof. Wir zeigen zuerst, dass es wohldefiniert ist. Sei $k_1, k_2 \in K$ und $m \in M$. Es gilt

$$gk_1.m = \Phi(gk_1)(m)$$

$$= \Phi(g)(\Phi(k_1)(m))$$

$$= \Phi(g)(e(m))$$

$$= \Phi(g)(m)$$

$$= g.m$$

und ähnlich für $gk_2.m=g.m$. Sei jetzt $g_1,g_2\in G$, so dass $g_1K.m=g_2K.m$ für alle $m\in M$. Dann ist

$$g_2^{-1}g_1.m = m$$

für alle $m \in M$ oder $g_2^{-1}g_1 \in K$. Daraus folgt: g_1 und g_2 liegen in der gleichen Nebenklasse.