Examen Session 2 Mardi 3 juillet 2012 - 2h

Documents manuscrits et polycopié de cours autorisés. Tout autre document et calculatrices interdits.

N.B.: La rédaction sera prise en compte dans la notation. Toute affirmation devra être justifiée.

Exercice 1

Soient $\alpha, \beta \in]0,1[$. Pour $t \in]0,1[$ et $n \in \mathbb{N}$ on pose

$$u_n(t) = t^{-\alpha} (1 - t)^{-\beta} (\sin \frac{1}{t})^n$$
.

- 1. Montrer que $u_n \in L^1(]0,1[)$ pout tout $n \in \mathbb{N}$.
- 2. Etudier la limite de la suite

$$I_n = \int_0^1 u_n(t) dt.$$

Exercice 2

On pose

$$F(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$$

- 1. Montrer que la fonction F est définie, continue sur \mathbb{R}_+ , et dérivable sur \mathbb{R}_+^* .
- 2. Calculer $\lim_{x\to+\infty} F(x)$.
- 3. Montrer que F est solution de l'équation différentielle linéaire du premier ordre :

$$y'(x) - y(x) = -\frac{A}{\sqrt{x}}$$

avec
$$A = \int_0^{+\infty} e^{-t^2} dt$$
.

4. Intégrer cette équation différentielle et en déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 3

Pour $u \in C([0,1])$, on pose

$$||u|| = \int_0^1 |u(t)| dt$$

Vérifier que $\|.\|$ est bien une norme sur C([0,1]) et montrer que C([0,1]) n'est pas complet pour cette norme.

Exercice 4

On rappelle que la transformée de Fourier de la fonction $G(x) = e^{-\pi x^2}$ est égale à $\hat{G}(\nu) = e^{-\pi \nu^2}$.

1. Pour a > 0, on pose :

$$G_a = \frac{1}{\sqrt{a}} e^{-\frac{x^2}{2a}}$$

Calculer la transformée de Fourier \hat{G}_a de G_a .

- 2. Soit a, b > 0 deux réels.
 - (a) Calculer la transformée de Fourier du produit de convolution $G_a * G_b$.
 - (b) En déduire que $G_a * G_b = \alpha G_c$, où α et c sont des constantes à préciser.

Exercice 5

Soit (X; d) un espace métrique et a un point de X. Pour tout $x, y \in X$ on pose d'(x, y) = 0 si x = y et $d(x, y) = \max(d(a, x), d(a, y))$ si $x \neq y$.

- 1. Montrer que d' est une distance sur X.
- 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de X.
 - (a) Montrer que (x_n) converge vers a relativement à d si et seulement si (x_n) converge vers a relativement à d'.
 - (b) On suppose que (x_n) converge au sens de d' vers un point $\ell \in X$ différent de a. Montrer qu'on a $x_n = \ell$ à partir d'un certain rang.
- 3. Soit $f: X \to \mathbb{R}$ une application quelconque. Montrer que f est continue relativement à d' en tout point $x \in X$ différent de a.
- 4. On suppose $X = \mathbb{R}$, muni de la distance usuelle d. La distance d' est-elle équivalente à d ?