

Nombres complexes

Forme cartésienne, forme polaire

Exercice 1

Mettre sous la forme a+ib $(a,b \in \mathbb{R})$ les nombres :

$$\frac{3+6i}{3-4i}$$
; $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$; $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$.

Indication ▼

Correction ▼

Vidéo 📕

[000001]

Exercice 2

Écrire sous la forme a+ib les nombres complexes suivants :

- 1. Nombre de module 2 et d'argument $\pi/3$.
- 2. Nombre de module 3 et d'argument $-\pi/8$.

Indication ▼

Correction ▼

Vidéo

[000003]

Exercice 3

Calculer le module et l'argument de $u = \frac{\sqrt{6-i\sqrt{2}}}{2}$ et v = 1-i. En déduire le module et l'argument de $w = \frac{u}{v}$.

Indication ▼

Correction ▼

Vidéo

Exercice 4

Déterminer le module et l'argument des nombres complexes :

$$e^{e^{i\alpha}}$$
 et $e^{i\theta} + e^{2i\theta}$.

Indication ▼

Correction ▼

Vidéo

[000013]

Racines carrées, équation du second degré

Exercice 5

Calculer les racines carrées de 1, i, 3+4i, 8-6i, et 7+24i.

Indication ▼

Correction ▼

Vidéo

[000027]

Exercice 6

- 1. Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.
- 2. Calculer les valeurs de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Indication ▼

Correction ▼

Vidéo

[000029]

Exercice 7

Résoudre dans \mathbb{C} les équations suivantes :

$$z^{2}+z+1=0 \quad ; \quad z^{2}-(1+2i)z+i-1=0 \quad ; \quad z^{2}-\sqrt{3}z-i=0 \quad ;$$

$$z^{2}-(5-14i)z-2(5i+12)=0 \; ; \; z^{2}-(3+4i)z-1+5i=0 \; ; \; 4z^{2}-2z+1=0 \; ;$$

$$z^{4}+10z^{2}+169=0 \quad ; \quad z^{4}+2z^{2}+4=0.$$

Indication ▼

Correction ▼

Vidéo 📕

[000031]

3 Racine *n*-ième

Exercice 8

Calculer la somme $S_n = 1 + z + z^2 + \dots + z^n$.

Indication ▼

Correction ▼

Vidéo |

[000047]

Exercice 9

- 1. Résoudre $z^3 = 1$ et montrer que les racines s'écrivent 1, j, j^2 . Calculer $1 + j + j^2$ et en déduire les racines de $1 + z + z^2 = 0$.
- 2. Résoudre $z^n = 1$ et montrer que les racines s'écrivent $1, \varepsilon, \dots, \varepsilon^{n-1}$. En déduire les racines de $1 + z + z^2 + \dots + z^{n-1} = 0$. Calculer, pour $p \in \mathbb{N}$, $1 + \varepsilon^p + \varepsilon^{2p} + \dots + \varepsilon^{(n-1)p}$.

Correction ▼

Vidéo

[000048]

Exercice 10

Trouver les racines cubiques de 2-2i et de 11+2i.

Correction ▼

Vidéo

[000043]

Exercice 11

- 1. Soient z_1 , z_2 , z_3 trois nombres complexes distincts ayant le même cube. Exprimer z_2 et z_3 en fonction de z_1 .
- 2. Donner, sous forme polaire, les solutions dans \mathbb{C} de :

$$z^6 + (7-i)z^3 - 8 - 8i = 0.$$

(Indication : poser $Z = z^3$; calculer $(9+i)^2$)

Correction ▼

Vidéo

[000056]

4 Géométrie

Exercice 12

Déterminer l'ensemble des nombres complexes z tels que :

$$1. \left| \frac{z-3}{z-5} \right| = 1,$$

$$2. \left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}.$$

Indication ▼ Correction ▼ Vidéo ■ [000060]

Exercice 13

Montrer que pour $u, v \in \mathbb{C}$, on a $|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$. Donner une interprétation géométrique.

Indication ▼ Correction ▼ Vidéo ■

[000069]

Exercice 14

Soit $(A_0, A_1, A_2, A_3, A_4)$ un pentagone régulier. On note O son centre et on choisit un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$ avec $\overrightarrow{u} = \overrightarrow{OA_0}$, qui nous permet d'identifier le plan avec l'ensemble des nombres complexes \mathbb{C} .

- 1. Donner les affixes $\omega_0, \dots, \omega_4$ des points A_0, \dots, A_4 . Montrer que $\omega_k = \omega_1^k$ pour $k \in \{0, 1, 2, 3, 4\}$. Montrer que $1 + \omega_1 + \omega_1^2 + \omega_1^3 + \omega_1^4 = 0$.
- 2. En déduire que $\cos(\frac{2\pi}{5})$ est l'une des solutions de l'équation $4z^2 + 2z 1 = 0$. En déduire la valeur de $\cos(\frac{2\pi}{5})$.
- 3. On considère le point *B* d'affixe -1. Calculer la longueur BA_2 en fonction de $\sin \frac{\pi}{10}$ puis de $\sqrt{5}$ (on remarquera que $\sin \frac{\pi}{10} = \cos \frac{2\pi}{5}$).
- 4. On considère le point I d'affixe $\frac{i}{2}$, le cercle \mathscr{C} de centre I de rayon $\frac{1}{2}$ et enfin le point J d'intersection de \mathscr{C} avec la demi-droite [BI). Calculer la longueur BI puis la longueur BJ.
- 5. **Application :** Dessiner un pentagone régulier à la règle et au compas. Expliquer.

Correction ▼ Vidéo ■ [000077]

5 Trigonométrie

Exercice 15

Soit z un nombre complexe de module ρ , d'argument θ , et soit \overline{z} son conjugué. Calculer $(z+\overline{z})(z^2+\overline{z}^2)\dots(z^n+\overline{z}^n)$ en fonction de ρ et θ .

Indication ▼ Correction ▼ Vidéo ■ [000020]

Exercice 16

En utilisant les nombres complexes, calculer $\cos 5\theta$ et $\sin 5\theta$ en fonction de $\cos \theta$ et $\sin \theta$.

Indication ▼ Correction ▼ Vidéo ■ [000080]

6 Divers

Exercice 17

 $\overline{\text{Soit } \mathbb{Z}[i] = \{a + ib ; a, b \in \mathbb{Z}\}.}$

- 1. Montrer que si α et β sont dans $\mathbb{Z}[i]$ alors $\alpha + \beta$ et $\alpha\beta$ le sont aussi.
- 2. Trouver les élements inversibles de $\mathbb{Z}[i]$, c'est-à-dire les éléments $\alpha \in \mathbb{Z}[i]$ tels qu'il existe $\beta \in \mathbb{Z}[i]$ avec $\alpha\beta = 1$.
- 3. Vérifier que quel que soit $\omega \in \mathbb{C}$ il existe $\alpha \in \mathbb{Z}[i]$ tel que $|\omega \alpha| < 1$.
- 4. Montrer qu'il existe sur $\mathbb{Z}[i]$ une division euclidienne, c'est-à-dire que, quels que soient α et β dans $\mathbb{Z}[i]$ il existe q et r dans $\mathbb{Z}[i]$ vérifiant :

$$\alpha = \beta q + r$$
 avec $|r| < |\beta|$.

(Indication : on pourra considérer le complexe $\frac{\alpha}{\beta}$)

Correction ▼ Vidéo ■ [000096]

Indication pour l'exercice 1 ▲

Pour se "débarrasser" d'un dénominateur écrivez $\frac{z_1}{z_2} = \frac{z_1}{z_2} \cdot \frac{\overline{z}_2}{\overline{z}_2} = \frac{z_1\overline{z}_2}{|z_2|^2}$.

Indication pour l'exercice 2 ▲

Il faut bien connaître ses formules trigonométriques. En particulier si l'on connaît $\cos(2\theta)$ ou $\sin(2\theta)$ on sait calculer $\cos\theta$ et $\sin\theta$.

Indication pour l'exercice 3 ▲

Passez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

$$e^{ia}e^{ib} = e^{i(a+b)}$$
 et $e^{ia}/e^{ib} = e^{i(a-b)}$.

Indication pour l'exercice 4 A

Pour calculer un somme du type $e^{iu} + e^{iv}$ il est souvent utile de factoriser par $e^{i\frac{u+v}{2}}$.

Indication pour l'exercice 5 ▲

Pour z = a + ib on cherche $\omega = \alpha + i\beta$ tel que $(\alpha + i\beta)^2 = a + ib$. Développez et indentifiez. Utilisez aussi que $|\omega|^2 = |z|$.

5

Indication pour l'exercice 6 ▲

Il s'agit de calculer les racines carrées de $\frac{1+i}{\sqrt{2}} = e^{i\frac{\pi}{4}}$ de deux façons différentes.

Indication pour l'exercice 7 ▲

Pour les équation du type $az^4 + bz^2 + c = 0$, poser $Z = z^2$.

Indication pour l'exercice 8 ▲

Calculer $(1-z)S_n$.

Indication pour l'exercice 12 ▲

Le premier ensemble est une droite le second est un cercle.

Indication pour l'exercice 13 ▲

Pour l'interprétation géométrique cherchez le parallélogramme.

Indication pour l'exercice 15 ▲

Utiliser la formule d'Euler pour faire apparaître des cosinus.

Indication pour l'exercice 16 ▲

Appliquer deux fois la formule de Moivre en remarquant $e^{i5\theta} = (e^{i\theta})^5$.

Correction de l'exercice 1 A

Remarquons d'abord que pour $z \in \mathbb{C}$, $z\overline{z} = |z|^2$ est un nombre réel, ce qui fait qu'en multipliant le dénominateur par son conjugué nous obtenons un nombre réel.

$$\frac{3+6i}{3-4i} = \frac{(3+6i)(3+4i)}{(3-4i)(3+4i)} = \frac{9-24+12i+18i}{9+16} = \frac{-15+30i}{25} = -\frac{3}{5} + \frac{6}{5}i.$$

Calculons

$$\frac{1+i}{2-i} = \frac{(1+i)(2+i)}{5} = \frac{1+3i}{5},$$

et

$$\left(\frac{1+i}{2-i}\right)^2 = \left(\frac{1+3i}{5}\right)^2 = \frac{-8+6i}{25} = -\frac{8}{25} + \frac{6}{25}i.$$

Donc

$$\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i} = -\frac{8}{25} + \frac{6}{25}i - \frac{3}{5} + \frac{6}{5}i = -\frac{23}{25} + \frac{36}{25}i.$$

Soit $z = \frac{2+5i}{1-i}$. Calculons $z + \bar{z}$, nous savons déjà que c'est un nombre réel, plus précisément : $z = -\frac{3}{2} + \frac{7}{2}i$ et donc $z + \bar{z} = -3$.

Correction de l'exercice 2

1.
$$z_1 = 2e^{i\frac{\pi}{3}} = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}) = 2(\frac{1}{2} + i\frac{\sqrt{3}}{2}) = 1 + i\sqrt{3}.$$

2.
$$z_2 = 3e^{-i\frac{\pi}{8}} = 3\cos\frac{\pi}{8} - 3i\sin\frac{\pi}{8} = \frac{3\sqrt{2+\sqrt{2}}}{2} - \frac{3i\sqrt{2-\sqrt{2}}}{2}$$
.

Il nous reste à expliquer comment nous avons calculé $\cos\frac{\pi}{8}$ et $\sin\frac{\pi}{8}$: posons $\theta = \frac{\pi}{8}$, alors $2\theta = \frac{\pi}{4}$ et donc $\cos(2\theta) = \frac{\sqrt{2}}{2} = \sin(2\theta)$. Mais $\cos(2\theta) = 2\cos^2\theta - 1$. Donc $\cos^2\theta = \frac{\cos(2\theta) + 1}{2} = \frac{1}{4}(2 + \sqrt{2})$. Et ensuite $\sin^2\theta = 1 - \cos^2\theta = \frac{1}{4}(2 - \sqrt{2})$. Comme $0 \le \theta = \frac{\pi}{8} \le \frac{\pi}{2}$, $\cos\theta$ et $\sin\theta$ sont des nombres positifs. Donc

$$\cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$
, $\sin \frac{\pi}{8} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$.

Correction de l'exercice 3

Nous avons

$$u = \frac{\sqrt{6} - \sqrt{2}i}{2} = \sqrt{2}\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = \sqrt{2}\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right) = \sqrt{2}e^{-i\frac{\pi}{6}}.$$

puis

$$v = 1 - i = \sqrt{2}e^{-i\frac{\pi}{4}}$$
.

Il ne reste plus qu'à calculer le quotient :

$$\frac{u}{v} = \frac{\sqrt{2}e^{-i\frac{\pi}{6}}}{\sqrt{2}e^{-i\frac{\pi}{4}}} = e^{-i\frac{\pi}{6} + i\frac{\pi}{4}} = e^{i\frac{\pi}{12}}.$$

Correction de l'exercice 4 A

D'après la formule de Moivre pour $e^{i\alpha}$ nous avons :

$$e^{e^{i\alpha}} = e^{\cos\alpha + i\sin\alpha} = e^{\cos\alpha}e^{i\sin\alpha}$$

Or $e^{\cos \alpha} > 0$ donc l'écriture précédente est bien de la forme "module-argument".

De façon générale pour calculer un somme du type $e^{iu} + e^{iv}$ il est souvent utile de factoriser par $e^{i\frac{u+v}{2}}$. En effet

$$e^{iu} + e^{iv} = e^{i\frac{u+v}{2}} \left(e^{i\frac{u-v}{2}} + e^{-i\frac{u-v}{2}} \right)$$

$$= e^{i\frac{u+v}{2}} 2\cos\frac{u-v}{2}$$

$$= 2\cos\frac{u-v}{2} e^{i\frac{u+v}{2}}.$$

Ce qui est proche de l'écriture en coordonées polaires.

Pour le cas qui nous concerne :

$$z = e^{i\theta} + e^{2i\theta} = e^{\frac{3i\theta}{2}} \left[e^{-\frac{i\theta}{2}} + e^{\frac{i\theta}{2}} \right] = 2\cos\frac{\theta}{2}e^{\frac{3i\theta}{2}}.$$

Attention le module dans une décomposion en forme polaire doit être positif! Donc si $\cos\frac{\theta}{2}\geqslant 0$ alors $2\cos\frac{\theta}{2}$ est le module de z et $3\theta/2$ est son argument; par contre si $\cos\frac{\theta}{2}<0$ le module est $2|\cos\frac{\theta}{2}|$ et l'argument $3\theta/2+\pi$ (le $+\pi$ compense le changement de signe car $e^{i\pi}=-1$).

Correction de l'exercice 5 ▲

Racines carrées. Soit z = a + ib un nombre complexe avec $a, b \in \mathbb{R}$; nous cherchons les complexes $\omega \in \mathbb{C}$ tels que $\omega^2 = z$. Écrivons $\omega = \alpha + i\beta$. Nous raisonnons par équivalence :

$$\omega^{2} = z \Leftrightarrow (\alpha + i\beta)^{2} = a + ib$$
$$\Leftrightarrow \alpha^{2} - \beta^{2} + 2i\alpha\beta = a + ib$$

Soit en identifiant les parties réelles entre elles ainsi que les parties imaginaires :

$$\Leftrightarrow \begin{cases} \alpha^2 - \beta^2 = a \\ 2\alpha\beta = b \end{cases}$$

Sans changer l'équivalence nous rajoutons la condition $|\omega|^2 = |z|$.

$$\Leftrightarrow \begin{cases} \alpha^2 + \beta^2 = \sqrt{a^2 + b^2} \\ \alpha^2 - \beta^2 = a \\ 2\alpha\beta = b \end{cases}$$

Par somme et différence des deux premières lignes :

$$\Leftrightarrow \begin{cases} \alpha^2 = \frac{a + \sqrt{a^2 + b^2}}{2} \\ \beta^2 = \frac{-a + \sqrt{a^2 + b^2}}{2} \\ 2\alpha\beta = b \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = \pm \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} \\ \beta = \pm \sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}} \\ \alpha\beta \text{ est du même signe que } b \end{cases}$$

Cela donne deux couples (α, β) de solutions et donc deux racines carrées (opposées) $\omega = \alpha + i\beta$ de z.

En pratique on répète facilement ce raisonnement, par exemple pour z = 8 - 6i,

$$\omega^{2} = z \Leftrightarrow (\alpha + i\beta)^{2} = 8 - 6i$$

$$\Leftrightarrow \alpha^{2} - \beta^{2} + 2i\alpha\beta = 8 - 6i$$

$$\Leftrightarrow \begin{cases} \alpha^{2} - \beta^{2} = 8 \\ 2\alpha\beta = -6 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha^{2} + \beta^{2} = \sqrt{8^{2} + (-6)^{2}} = 10 \text{ le module de } z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha^{2} - \beta^{2} = 8 \\ 2\alpha\beta = -6 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2\alpha^{2} = 18 \\ \beta^{2} = 1 \\ 2\alpha\beta = -6 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = \pm \sqrt{9} = \pm 3 \\ \beta = \pm 1 \\ \alpha \text{ et } \beta \text{ de signes opposés} \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = 3 \text{ et } \beta = -1 \\ \text{ou} \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = -3 \text{ et } \beta = +1 \end{cases}$$

Les racines de z = 8 - 6i sont donc $\omega_1 = 3 - i$ et $\omega_2 = -\omega_1 = -3 + i$. Pour les autres :

- Les racines carrées de 1 sont : +1 et -1. Les racines carrées de i sont : $\frac{\sqrt{2}}{2}(1+i)$ et $-\frac{\sqrt{2}}{2}(1+i)$.
- Les racines carrées de 3+4i sont : 2+i et -2-i.
- Les racines carrées de 7 + 24i sont : 4 + 3i et -4 3i.

Correction de l'exercice 6 ▲

Par la méthode usuelle nous calculons les racines carrées $\omega, -\omega$ de $z = \frac{1+i}{\sqrt{2}}$, nous obtenons

$$\omega = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}} + i\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}},$$

qui peut aussi s'écrire :

$$\omega = \frac{1}{2}\sqrt{2+\sqrt{2}} + i\frac{1}{2}\sqrt{2-\sqrt{2}}.$$

Mais nous remarquons que z s'écrit également

$$z = e^{i\frac{\pi}{4}}$$

et $e^{i\frac{\pi}{8}}$ vérifie

$$\left(e^{i\frac{\pi}{8}}\right)^2 = e^{\frac{2i\pi}{8}} = e^{i\frac{\pi}{4}}.$$

Cela signifie que $e^{i\frac{\pi}{8}}$ est une racine carrée de z, donc $e^{i\frac{\pi}{8}} = \cos\frac{\pi}{8} + i\sin\frac{\pi}{8}$ est égal à ω ou $-\omega$. Comme $\cos\frac{\pi}{8} > 0$ alors $e^{i\frac{\pi}{8}} = \omega$ et donc par identification des parties réelles et imaginaires :

$$\cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$
 et $\sin \frac{\pi}{8} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$.

Correction de l'exercice 7

Équations du second degré. La méthode génerale pour résoudre les équations du second degré $az^2 + bz + c = 0$ (avec $a, b, c \in \mathbb{C}$ et $a \neq 0$) est la suivante : soit $\Delta = b^2 - 4ac$ le discriminant complexe et δ une racine carrée de $\Delta (\delta^2 = \Delta)$ alors les solutions sont :

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

Dans le cas où les coefficients sont réels, on retrouve la méthode bien connue. Le seul travail dans le cas complexe est de calculer une racine δ de Δ .

Exemple: pour $z^2 - \sqrt{3}z - i = 0$, $\Delta = 3 + 4i$, dont une racine carrée est $\delta = 2 + i$, les solutions sont donc:

$$z_1 = \frac{\sqrt{3} + 2 + i}{2}$$
 et $z_2 = \frac{\sqrt{3} - 2 - i}{2}$.

Les solutions des autres équations sont :

- L'équation $z^2 + z + 1 = 0$ a pour solutions : $\frac{1}{2}(-1 + i\sqrt{3}), \frac{1}{2}(-1 i\sqrt{3}).$
- L'équation $z^2 (1+2i)z + i 1 = 0$ a pour solutions : 1+i, i.
- L'équation $z^2 \sqrt{3}z i = 0$ a pour solutions : $\frac{1}{2}(2 \sqrt{3} + i)$, $\frac{1}{2}(-2 \sqrt{3} i)$
- L'équation $z^2 (5 14i)z 2(5i + 12) = 0$ a pour solutions : 5 12i, -2i.
- L'équation $z^2 (3+4i)z 1 + 5i = 0$ a pour solutions : 2+3i, 1+i
- L'équation $4z^2 2z + 1 = 0$ a pour solutions : $\frac{1}{4}(1 + i\sqrt{3}), \frac{1}{4}(1 i\sqrt{3})$.
- L'équation $z^4 + 10z^2 + 169 = 0$ a pour solutions : 2 + 3i, -2 3i, 2 3i, -2 + 3i. L'équation $z^4 + 2z^2 + 4 = 0$ a pour solutions : $\frac{\sqrt{2}}{2}(1 + i\sqrt{3})$, $\frac{\sqrt{2}}{2}(1 i\sqrt{3})$, $\frac{\sqrt{2}}{2}(-1 + i\sqrt{3})$, $\frac{\sqrt{2}}{2}(-1 + i\sqrt{3})$.

Correction de l'exercice 8

$$S_n = 1 + z + z^2 + \dots + z^n = \sum_{k=0}^n z^k.$$

Nous devons retrouver le résultat sur la somme $S_n = \frac{1-z^{n+1}}{1-z}$ d'une suite géométrique dans le cas où $z \neq 1$ est un réel. Soit maintenant $z \neq 1$ un nombre complexe. Calculons $S_n(1-z)$.

$$S_n(1-z) = (1+z+z^2+\cdots+z^n)(1-z)$$
 développons
= $1+z+z^2+\cdots+z^n-z-z^2-\cdots-z^{n+1}$ les termes intermédiaires s'annulent
= $1-z^{n+1}$.

Donc

$$S_n = \frac{1 - z^{n+1}}{1 - z}$$
, pour $z \neq 1$.

Correction de l'exercice 9

Calcul de racine *n*-ième. Soit $z \in \mathbb{C}$ tel que $z^n = 1$, déjà $|z|^n = 1$ et donc |z| = 1. Écrivons $z = e^{i\theta}$. L'équation devient

$$e^{in\theta} = e^0 = 1 \Leftrightarrow n\theta = 0 + 2k\pi, \ k \in \mathbb{Z} \Leftrightarrow \theta = \frac{2k\pi}{n}, \ k \in \mathbb{Z}.$$

Les solution sont donc

$$\mathscr{S} = \left\{ e^{\frac{2ik\pi}{n}}, \ k \in \mathbb{Z} \right\}.$$

Comme le polynôme $z^n - 1$ est de degré n il a au plus n racines. Nous choisissons pour représentants :

$$\mathscr{S} = \left\{ e^{\frac{2ik\pi}{n}}, \ k = 0, \dots, n-1 \right\}.$$

De plus si $\varepsilon = e^{\frac{2i\pi}{n}}$ alors $\mathscr{S} = \{\varepsilon^k, \ k = 0, \dots, n-1\}$. Ces racines sont les sommets d'un polygone régulier à ncôtés inscrit dans le cercle unité.

Soit $P(z) = \sum_{k=0}^{n-1} z^k = \frac{1-z^n}{1-z}$ pour $z \neq 1$. Donc quelque soit $z \in \mathscr{S} \setminus \{1\}$ P(z) = 0, nous avons ainsi trouver n-1 racines pour P de degré n-1, donc l'ensemble des racines de P est exactement $\mathscr{S} \setminus \{1\}$. Pour conclure soit $Q_p(z) = \sum_{k=0}^{n-1} \varepsilon^{kp}$. Si $p = 0 + \ell n$, $\ell \in \mathbb{Z}$ alors $\varepsilon^{kp} = \varepsilon^{k\ell n} = (\varepsilon^n)^{k\ell} = 1^{k\ell} = 1$. Donc $Q_p(z) = \sum_{k=0}^{n-1} 1 = n$.

Sinon $Q_p(z)$ est la somme d'une suite géométrique de raison ε^p :

$$Q_p(z) = \frac{1 - (\varepsilon^p)^n}{1 - \varepsilon^p} = \frac{1 - (\varepsilon^n)^p}{1 - \varepsilon^p} = \frac{1 - 1}{1 - \varepsilon^p} = 0.$$

Correction de l'exercice 10

- 1. Les trois racines cubiques ont même module $\sqrt{2}$, et leurs arguments sont $-\pi/12$, $7\pi/12$ et $5\pi/4$. Des valeurs approchées sont 1,36603 - 0,36603i, -0,36603 + 1,36603i et -1 - i.
- 2. -1-2i, (-1-2i)j et $(-1-2i)j^2$ où $j=\frac{-1+i\sqrt{3}}{2}$ (racine cubique de 1).

Correction de l'exercice 11 ▲

Soient z_1, z_2, z_3 trois nombres complexes *distincts* ayant le même cube.

1. $z_1 \neq 0$ car sinon on aurait $z_1 = z_2 = z_3 = 0$. Ainsi $(\frac{z_2}{z_1})^3 = (\frac{z_3}{z_1})^3 = 1$. Comme les trois nombres $1, (\frac{z_2}{z_1})$ et $(\frac{z_3}{z_1})$ sont distincts on en déduit que ce sont les trois racines cubiques de 1. Ces racines sont $1, j = e^{\frac{2i\pi}{3}}$ et $j^2 = e^{-\frac{2i\pi}{3}}$. A une permutation près des indices 2 et 3 on a donc :

$$z_2 = jz_1$$
 et $z_3 = j^2 z_1$.

2. Soit $z \in \mathbb{C}$. On a les équivalences suivantes :

$$z^{6} + (7-i)z^{3} - 8 - 8i = 0 \Leftrightarrow z^{3}$$
 est solution de $Z^{2} + (7-i)Z - 8 - 8i = 0$

Etudions l'équation $Z^2 + (7-i)Z - 8 - 8i = 0$. $\Delta = (7-i)^2 + 4(8+8i) = 80 + 18i = (9+i)^2$. Les solutions sont donc -8 et 1+i. Nous pouvons reprendre notre suite d'équivalences :

$$\begin{split} z^6 + (7-i)z^3 - 8 - 8i &= 0 \Leftrightarrow z^3 \in \{-8, 1+i\} \\ &\Leftrightarrow z^3 = (-2)^3 \quad \text{ou} \quad z^3 = (\sqrt[6]{2}e^{i\frac{\pi}{12}})^3 \\ &\Leftrightarrow z \in \{-2, -2e^{\frac{2i\pi}{3}}, -2e^{-\frac{2i\pi}{3}}\} \text{ ou } z \in \{\sqrt[6]{2}e^{i\frac{\pi}{12}}, \sqrt[6]{2}e^{i\frac{9\pi}{12}}, \sqrt[6]{2}e^{i\frac{17\pi}{12}}\} \\ &\Leftrightarrow z \in \{-2, 2e^{\frac{i\pi}{3}}, 2e^{-\frac{i\pi}{3}}, \sqrt[6]{2}e^{i\frac{\pi}{12}}, \sqrt[6]{2}e^{i\frac{3\pi}{4}}, \sqrt[6]{2}e^{i\frac{17\pi}{12}}\}. \end{split}$$

L'ensemble des solutions est donc :

$$\{-2, 2e^{\frac{i\pi}{3}}, 2e^{-\frac{i\pi}{3}}, \sqrt[6]{2}e^{i\frac{\pi}{12}}, \sqrt[6]{2}e^{i\frac{3\pi}{4}}, \sqrt[6]{2}e^{i\frac{17\pi}{12}}\}.$$

Correction de l'exercice 12 ▲

Nous identifions \mathbb{C} au plan affine et z = x + iy à $(x, y) \in \mathbb{R} \times \mathbb{R}$.

Remarquons que pour les deux ensembles z = 5 n'est pas solution, donc

$$\left| \frac{z-3}{z-5} \right| = 1 \Leftrightarrow |z-3| = |z-5|.$$

Ce qui signifie précisement que les points d'affixe z sont situés à égale distance des points A, B d'affixes respectives 3 = (3,0) et 5 = (5,0). L'ensemble solution est la médiatrice du segment [A,B].

Ensuite pour

$$\left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2} \Leftrightarrow |z-3|^2 = \frac{1}{2}|z-5|^2$$

$$\Leftrightarrow (z-3)\overline{(z-3)} = \frac{1}{2}(z-5)\overline{(z-5)}$$

$$\Leftrightarrow z\overline{z} - (z+\overline{z}) = 7$$

$$\Leftrightarrow |z-1|^2 = 8$$

$$\Leftrightarrow |z-1| = 2\sqrt{2}$$

L'ensemble solution est donc le cercle de centre le point d'affixe 1 = (1,0) et de rayon $2\sqrt{2}$.

Correction de l'exercice 13

$$|u+v|^2 + |u-v|^2 = (u+v)(\bar{u}+\bar{v}) + (u-v)(\bar{u}-\bar{v}) = 2u\bar{u} + 2v\bar{v} = 2|u|^2 + 2|v|^2.$$

Géométriquement il s'agit de l'identité du parallélogramme. Les points d'affixes 0, u, v, u + v forment un parallélogramme. |u| et |v| sont les longueurs des cotés, et |u+v|, |u-v| sont les longueurs des diagonales. Il n'est pas évident de montrer ceci sans les nombres complexes!!

Correction de l'exercice 14 A

- 1. Comme (A_0,\ldots,A_4) est un pentagone régulier, on a $OA_0=OA_1=OA_2=OA_3=OA_4=1$ et $(\overrightarrow{OA_0},\overrightarrow{OA_1})=\frac{2\pi}{5}[2\pi], (\overrightarrow{OA_0},\overrightarrow{OA_2})=\frac{4\pi}{5}[2\pi], (\overrightarrow{OA_0},\overrightarrow{OA_3})=-\frac{4\pi}{5}[2\pi], (\overrightarrow{OA_0},\overrightarrow{OA_4})=-\frac{2\pi}{5}[2\pi],$ On en déduit : $\omega_0=1,\omega_1=e^{\frac{2i\pi}{5}},\omega_2=e^{\frac{4i\pi}{5}},\omega_3=e^{-\frac{4i\pi}{5}}=e^{\frac{6i\pi}{5}},\omega_4=e^{-\frac{2i\pi}{5}}=e^{\frac{8i\pi}{5}},$ On a bien $\omega_i=\omega_1^i$. Enfin, comme $\omega_1\neq 0$, $1+\omega_1+\ldots+\omega_1^4=\frac{1-\omega_1^5}{1-\omega_1}=\frac{1-1}{1-\omega_1}=0$.
- 2. $\operatorname{Re}(1+\omega_1+\ldots+\omega_1^4)=1+2\cos(\frac{2\pi}{5})+2\cos(\frac{4\pi}{5})$. Comme $\cos(\frac{4\pi}{5})=2\cos^2(\frac{2\pi}{5})-1$ on en déduit : $4\cos^2(\frac{2\pi}{5})+2\cos(\frac{2\pi}{5})-1=0$. $\cos(\frac{2\pi}{5})$ est donc bien une solution de l'équation $4z^2+2z-1=0$. Etudions cette équation : $\Delta=20=2^2.5$. Les solutions sont donc $\frac{-1-\sqrt{5}}{4}$ et $\frac{-1+\sqrt{5}}{4}$. Comme $\cos(\frac{2\pi}{5})>0$, on en déduit que $\cos(\frac{2\pi}{5})=\frac{\sqrt{5}-1}{4}$.
- 3. $BA_2^2 = |\omega_2 + 1|^2 = |\cos(\frac{4\pi}{5}) + i\sin(\frac{4\pi}{5}) + 1|^2 = 1 + 2\cos(\frac{4\pi}{5}) + \cos^2(\frac{4\pi}{5}) + \sin^2(\frac{4\pi}{5}) = 4\cos^2(\frac{2\pi}{5})$. Donc $BA_2 = \frac{\sqrt{5}-1}{2}$.
- 4. $BI = |i/2 + 1| = \frac{\sqrt{5}}{2}$. $BJ = BI 1/2 = \frac{\sqrt{5} 1}{2}$.
- 5. Pour tracer un pentagone régulier, on commence par tracer un cercle C_1 et deux diamètres orthogonaux, qui jouent le rôle du cercle passant par les sommets et des axes de coordonnées. On trace ensuite le milieu d'un des rayons : on obtient le point I de la question 4. On trace le cercle de centre I passant par le centre de C_1 : c'est le cercle $\mathscr C$. On trace le segment BI pour obtenir son point J d'intersection avec $\mathscr C$. On trace enfin le cercle de centre B passant par J : il coupe C_1 en A_2 et A_3 , deux sommets du pentagone. Il suffit pour obtenir tous les sommets de reporter la distance A_2A_3 sur C_1 , une fois depuis A_2 , une fois depuis A_3 . (en fait le cercle de centre B et passant par J', le point de $\mathscr C$ diamétralement opposé à J, coupe C_1 en A_1 et A_4 , mais nous ne l'avons pas justifié par le calcul : c'est un exercice!)

Correction de l'exercice 15

Écrivons $z = \rho e^{i\theta}$, alors $\overline{z} = \rho e^{-i\theta}$. Donc

$$P = \prod_{k=1}^{n} \left(z^{k} + \overline{z}^{k} \right)$$

$$= \prod_{k=1}^{n} \rho^{k} \left((e^{i\theta})^{k} + (e^{-i\theta})^{k} \right)$$

$$= \prod_{k=1}^{n} \rho^{k} \left(e^{ik\theta} + e^{-ik\theta} \right)$$

$$= \prod_{k=1}^{n} 2\rho^{k} \cos k\theta$$

$$= 2^{n} \cdot \rho \cdot \rho^{2} \cdot \dots \cdot \rho^{n} \prod_{k=1}^{n} \cos k\theta$$

$$= 2^{n} \rho^{\frac{n(n+1)}{2}} \prod_{k=1}^{n} \cos k\theta.$$

Correction de l'exercice 16

Nous avons par la formule de Moivre

$$\cos 5\theta + i\sin 5\theta = e^{i5\theta} = (e^{i\theta})^5 = (\cos \theta + i\sin \theta)^5.$$

On développe ce dernier produit, puis on identifie parties réelles et parties imaginaires. On obtient :

$$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$$

$$\sin 5\theta = 5\cos^4 \theta \sin \theta - 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta$$

Remarque : Grâce à la formule $\cos^2 \theta + \sin^2 \theta = 1$, on pourrait continuer les calculs et exprimer $\cos 5\theta$ en fonction de $\cos \theta$, et $\sin 5\theta$ en fonction de $\sin \theta$.

Correction de l'exercice 17 A

- 1. Soit $\alpha, \beta \in \mathbb{Z}[i]$. Notons $\alpha = a + ib$ et $\beta = c + id$ avec $a, b, c, d \in \mathbb{Z}$. Alors $\alpha + \beta = (a + c) + i(b + d)$ et $a + c \in \mathbb{Z}$, $b + d \in \mathbb{Z}$ donc $\alpha + \beta \in \mathbb{Z}[i]$. De même, $\alpha\beta = (ac bd) + i(ad + bc)$ et $ac bd \in \mathbb{Z}$, $ad + bc \in \mathbb{Z}$ donc $\alpha\beta \in \mathbb{Z}[i]$.
- 2. Soit $\alpha \in \mathbb{Z}[i]$ inversible. Il existe donc $\beta \in \mathbb{Z}[i]$ tel que $\alpha\beta = 1$. Ainsi, $\alpha \neq 0$ et $\frac{1}{\alpha} \in \mathbb{Z}[i]$. Remarquons que tout élément non nul de $\mathbb{Z}[i]$ est de module supérieur ou égal à 1: en effet $\forall z \in \mathbb{C}, |z| \geqslant \sup(|\operatorname{Re}(z)|, |\operatorname{Im}(z)|)$ et si $z \in \mathbb{Z}[i] \setminus \{0\}$, $\sup(|\operatorname{Re}(z)|, |\operatorname{Im}(z)|) \geqslant 1$. Si $|\alpha| \neq 1$ alors $|\alpha| > 1$ et $|1/\alpha| < 1$. On en déduit $1/\alpha = 0$ ce qui est impossible. Ainsi $|\alpha| = 1$, ce qui implique $\alpha \in \{1, -1, i, -i\}$. Réciproquement, $1^{-1} = 1 \in \mathbb{Z}[i], (-1)^{-1} = -1 \in \mathbb{Z}[i], i^{-1} = -i \in \mathbb{Z}[i], (-i)^{-1} = i \in \mathbb{Z}[i]$. Les éléments inversibles de $\mathbb{Z}[i]$ sont donc 1, -1, i et -i.
- 3. Soit $\omega \in \mathbb{C}$. Notons $\omega = x + iy$ avec $x, y \in \mathbb{R}$. soit E(x) la partie entière de x, i.e. le plus grand entier inférieur ou égal à $x : E(x) \le x < E(x) + 1$. Si $x \le E(x) + 1/2$, notons $n_x = E(x)$, et si x > E(x) + 1/2, notons $n_x = E(x) + 1$. n_x est le, ou l'un des s'il y en a deux, nombre entier le plus proche de $x : |x n_x| \le 1/2$. Notons n_y l'entier associé de la même manière à y. Soit alors $\alpha = n_x + i \cdot n_y$. $z \in \mathbb{Z}[i]$ et $|\omega \alpha|^2 = (x n_x)^2 + (y n_y)^2 \le 1/4 + 1/4 = 1/2$. Donc $|\omega \alpha| < 1$.
- 4. Soit $\alpha, \beta \in \mathbb{Z}[i]$, avec $\beta \neq 0$. Soit alors $q \in \mathbb{Z}[i]$ tel que $|\frac{\alpha}{\beta} q| < 1$. Soit $r = \alpha \beta q$. Comme $\alpha \in \mathbb{Z}[i]$ et $\beta q \in \mathbb{Z}[i]$, $r \in \mathbb{Z}[i]$. De plus $|\frac{r}{\beta}| = |\frac{\alpha}{\beta} q| < 1$ donc $|r| < |\beta|$.