Edge connectivity (Global minimum cut)

turn the graph into directed graph, set all edge capacities to $\boldsymbol{1}$

pick any node v

for all $u \in V \setminus \{v\}$

 $\label{eq:continuous_solution} \mbox{run max-flow algorithm with source } v \mbox{ and sink } u \mbox{ output the minimum flow obtained}$

Complexity: $O(n \cdot n^3) = O(n^4)$

Edge connectivity (Global minimum cut)

turn the graph into directed graph, set all edge capacities to 1

pick any node \boldsymbol{v}

for all $u \in V \setminus \{v\}$

run max-flow algorithm with source \boldsymbol{v} and sink \boldsymbol{u} output the minimum flow obtained

Complexity:
$$O(n \cdot n^3) = O(n^4)$$
Improvements:
$$O(m \cdot polylog(n)) \text{ [Karger 1991] } \text{ probabilistic algorithm}$$

$$O\left(m + K^2 n \log \frac{n}{K}\right) \text{ where } K \text{ is edge connectivity [Gabow 1995]}$$

$$O(nm + n^2 \log n) \text{ [Stoer, Wagner 1997] } \text{ (simple! weighted case)}$$

$$O(m \cdot polylog(n)) \text{ [Kawarabayashi, Thorup 2018]}$$

Considerations

- ▶ Enumerating all $u \in V \setminus \{v\}$ in the previous algorithm seems inefficient and may be improved
- Computing edge connectivity may be simpler than computing maximal flow, as we don't have fixed s and t.
 (We only need to find some s and t in opposite sides of the cut)

[Stoer, Wagner 97]: first idea

- Consider some nodes s and t and assume we know mincut(s,t) (minimum cut which separates s and t)
- ▶ Case I: mincut(s, t) is the global minimum cut
- Case 2: otherwise, s and t are on the same side of the global min cut ⇒ global min cut is not changed if s and t are merged (parallel edges allowed)

[Stoer, Wagner 97]: first idea

- Consider some nodes s and t and assume we know mincut(s,t) (minimum cut which separates s and t)
- ightharpoonup Case I: mincut(s,t) is the global minimum cut
- Case 2: otherwise, s and t are on the same side of the global min cut ⇒ global min cut is not changed if s and t are merged (parallel edges allowed)

[Stoer, Wagner 97]: second idea

- ▶ stMinCut(G) returns some nodes $s, t \in V$ with $C_1 = mincut(s, t)$
- can be done more efficiently than computing max flow!

[Stoer, Wagner 97]: second idea

- ▶ stMinCut(G) returns some nodes $s, t \in V$ with $C_1 = mincut(s, t)$
- > can be done more efficiently than computing max flow!

```
\begin{aligned} & \textbf{function } stMinCut(G) & \text{arbitrary node} \\ & A = \{v\} & \\ & \textbf{while } A \neq V \\ & \text{pick } u \in V \setminus A \text{ s.t. nb of edges bewteen } A \text{ and } u \text{ is maximized} \\ & A = A \cup \{u\} \\ & \text{let } s, t \text{ be the last two nodes added to } A \text{ and } C \text{ the number} \\ & \text{of edges between } t \text{ and } V \setminus \{t\}, \end{aligned}
```

[Stoer, Wagner 97]: second idea

- ▶ stMinCut(G) returns some nodes $s, t \in V$ with $C_1 = mincut(s, t)$
- > can be done more efficiently than computing max flow!

```
\begin{aligned} & \textbf{function} \ stMinCut(G) & \text{arbitrary node} \\ & A = \{v\} & \\ & \textbf{while} \ A \neq V \\ & \text{pick} \ u \in V \setminus A \ \text{s.t. nb of edges bewteen} \ A \ \text{and} \ u \ \text{is maximized} \\ & A = A \cup \{u\} \\ & \text{let} \ s, t \ \text{be the last two nodes added to} \ A \ \text{and} \ C \ \text{the number} \\ & \text{of edges between} \ t \ \text{and} \ V \setminus \{t\}, \\ & \textbf{return} \ (C, s, t) \end{aligned}
```

Theorem: stMinCut is correct Proof: cf [Stoer, Wagner 97] or

http://www.cs.tau.ac.il/~zwick/grad-algo-08/gmc.pdf

Example

Example

Example

[Stoer, Wagner 97]: resulting complexity

▶ how stMinCut(G) is implemented?

[Stoer, Wagner 97]: resulting complexity

- ▶ how stMinCut(G) is implemented?
- max-priority queue!
- ightharpoonup maintain all nodes outside A in a max-priority queue
- \blacktriangleright when adding a node u to A, increment keys of all nodes $x\in V\backslash \mathbf{A}$ by the number of edges $\{u,x\}$
- implementation with binary heaps:
- ightharpoonup construction: $O(n \log n)$ (all keys set to 0)
- ▶ n-1 extract-max: $O(n \log n)$
- $\rightarrow m$ updates (increments): $O(m \log n)$
- ▶ altogether, stMinCut(G) takes time $O((m + n) \log n)$
- resulting complexity of GlobalMinCut(G): $O(n(n+m)\log n)$
- with Fibonacci heaps: $O(nm + n^2 \log n)$