StuDocu.com

Parcial 1 (12 Abril 2018), preguntas y respuestas

Informació i Seguretat (Universitat Autònoma de Barcelona)

INFORMACIÓ I SEGURETAT 12 d'abril de 2018

Nom i cognoms (en MAJÚSCULES):	NIU:	Grup:
,		

***** Cal que justifiqueu convenientment totes les respostes.

- ***** $\log 3 = 1.58$, $\log 5 = 2.32$, $\log 7 = 2.80$, $\log 23 = 4.52$.
 - 1. (2.5 punts, 1+0.75+0.75) Una font emet a l'atzar, i de manera equiprobable, símbols quaternaris. Volem enviar els símbols per un canal binari i fem servir el següent codi $S = \{00, 01, 10, 11\}$. Cada cop que enviem un 0 a l'entrada del canal obtenim un 0, però la meitat de vegades que enviem un 1 a l'entrada, obtenim un 1 a la sortida, i la meitat de vegades, un 0. Per exemple, si enviem l'entrada 10, a la sortida del canal podem obtenir 10 o 00.
 - (a) Quina informació mitjana ens donen els elements de la sortida del canal, $R = \{00, 01, 10, 11\}$?
 - (b) Quina és la informació de l'element enviat si sabem que hem rebut 11 a la sortida del canal?
 - (c) Quina informació tenim dels valors enviats segons els obtinguts a la sortida del canal?

Solució:

					$p(R_j, S_i)$	00	01	10	11	(a p)	1 00	0.1	10	4.4
$p(R_j S_i)$	00	01	10	11	00	$\frac{1}{4}$	0	0	<u> </u>	$p(S_i R_j)$	00	01	10	
00	1	0	0	0		1 *				00	$\frac{4}{9}$	0	0	0
01					01					01				
					10	$\frac{1}{8}$	0	$\frac{1}{8}$	0				$\frac{2}{3}$	
10	$\frac{1}{2}$	0	$\frac{1}{2}$	U	11	1	$\frac{1}{16}$	$\frac{1}{10}$	$\frac{1}{10}$		-			
11	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$						11	$\frac{1}{9}$	$\frac{1}{3}$	$\frac{1}{3}$	1
	1 4	4	4	4	$p(R_i)$	$\frac{9}{16}$	$\frac{3}{16}$	$\frac{3}{16}$	$\frac{1}{16}$		1	3	3	

- (a) La distribució final de probabilitats és $\{\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\}$. Per tant, la informació mitjana que ens donen els elements de la sortida del canal és $H(R) = H(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}) = \log(16) \frac{24}{16}\log(3) = 4 \frac{3}{2}1.58 = 4 2.37 = 1.63$.
- (b) Si a la sortida del canal obtenim 11, aleshores l'element a l'entrada només pot ser 11. Així, si a la sortida del canal obtenim 11, la incertesa de l'element de l'entrada és zero i per tant la informació de l'element de l'entrada és zero. Si ho mirem a les taules, tenim que H(S|11) = H(0,0,0,1) = 0.
- (c) Apliquem la fórmula I(S,R)=H(R)-H(R|S). Tenim que H(R)=1.63 i $H(R|S)=\frac{1}{4}H(1,0,0,0)+\frac{1}{4}H(\frac{1}{2},\frac{1}{2},0,0)+\frac{1}{4}H(\frac{1}{2},0,\frac{1}{2},0)+\frac{1}{4}H(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})=1$. Per tant, I(S,R)=1.63-1=0.63. També es pot obtenir el resultat aplicant la fórmula I(S,R)=H(S)-H(S|R). En aquest cas, $H(S)=\log(4)$ i $H(S|R)=\frac{9}{16}H(\frac{4}{9},\frac{2}{9},\frac{2}{9},\frac{1}{9})+\frac{3}{16}H(0,\frac{2}{3},0,\frac{1}{3})+\frac{3}{16}H(0,0,\frac{2}{3},\frac{1}{3})+\frac{1}{16}H(0,0,0,1)=\frac{9}{16}1.83+2\cdot\frac{3}{16}0.92+0=1.36$. Per tant, I(S,R)=2-1.365=0.635.
- 2. (2.5 punts, 0.25+0.5+0.75+0.5+0.5) Volem comprimir el missatge m="SENEN TÉ SIS NENS I SET NENES", prescindint dels accents ortogràfics i dels espais en blanc:
 - (a) A partir del missatge m, calculeu la frequència i la probabilitat corresponent a cada caràcter, seguint l'ordre de la taula següent:

Símbol	Freqüència	Probabilitat
S		
${f E}$		
N		
${ m T}$		
I		

- (b) Suposant que una font S emet símbols amb aquestes probabilitats, quina és l'entropia de la font?
- (c) Trobeu un codi binari òptim per a aquesta font.
- (d) Quina és la longitud mitjana del codi que heu trobat?
- (e) Quina és l'eficiència del codi que heu trobat?

Solució:

(a) Els símbols que apareixen en el missatge són:

Símbol	Freqüència	Probabilitat
S	6	6/23
\mathbf{E}	7	$\frac{6/23}{7/23}$
N	6	6/23
${ m T}$	2	2/23
I	2	6/23 $2/23$ $2/23$

(b) Per a calcular l'entropia de la font $S, H(S) = H(\frac{6}{23}, \frac{7}{23}, \frac{6}{23}, \frac{2}{23}, \frac{2}{23})$

$$\begin{split} H(S) &= \log 23 - \left\{ \frac{7}{23} \log 7 + \frac{6}{23} \log 6 + \frac{6}{23} \log 6 + \frac{2}{23} \log 2 + \frac{2}{23} \log 2 \right\} \\ &= \log 23 - \left\{ \frac{7}{23} \log 7 + \frac{12}{23} \log 6 + \frac{4}{23} \log 2 \right\} = \log 23 - \left\{ \frac{7}{23} \log 7 + \frac{12}{23} \log 3 + \frac{12}{23} \log 2 + \frac{4}{23} \log 2 \right\} \\ &= \log 23 - \left\{ \frac{7}{23} \log 7 + \frac{12}{23} \log 3 + \frac{16}{23} \log 2 \right\} = \log 23 - \left\{ \frac{7}{23} \log 7 + \frac{12}{23} \log 3 + \frac{16}{23} \log 2 \right\} \\ &= 4.52 - \left\{ \frac{7}{23} \cdot 2.80 + \frac{12}{23} \cdot 1.58 + \frac{16}{23} \cdot 1 \right\} = 4.52 - \frac{1}{23} \left\{ 19.6 + 18.96 + 16 \right\} = 4.52 - \left\{ \frac{54.56}{23} \right\} \\ &= 4.52 - \left\{ 2.36 \right\} = 2.16. \end{split}$$

(c) Utilitzem el mètode de Huffman per trobar un codi instantani òptim.

Símbol	Freqüència	Probabilitat	Paraula-codi	Longitud
S	6	6/23	10	2
\mathbf{E}	7	7/23	11	2
N	6	6/23	01	2
${ m T}$	2	2/23	001	3
I	2	2/23	000	3

(d) La longitud mitjana és

$$\overline{L} = 2 \cdot \frac{7}{23} + 2 \cdot \frac{6}{23} + 2 \cdot \frac{6}{23} + 3 \cdot \frac{2}{23} + 3 \cdot \frac{2}{23} = \frac{1}{23}(14 + 12 + 12 + 6 + 6) = \frac{1}{23}(50) = 2.17.$$

(e) L'eficiència és $\eta = \frac{H(S)}{\overline{L}} = \frac{2.16}{2.17} = 0.995$.

- 3. (2.5 punts, 1+1+0.5) Volem comprimir el missatge m="SENEN TÉ SIS NENS I SET NENES", **prescindint dels accents ortogràfics i dels espais en blanc**. Comprimiu la cadena fent servir LZ77 amb la mida de diccionari D i la mida de buffer B següents:
 - (a) D = 18 i B = 3.
 - (b) D = 3 i B = 3.
 - (c) Considereu que cada caràcter ocupa 8 bits i la mida del diccionari i del buffer determinen el nombre de bits de cada índex. Sabent que LZ77 necessita, respectivament, 11 i 15 tuples per a cadascun dels exemples anteriors, doneu (en forma de fracció) la taxa de compressió obtinguda en cada cas.

Solució:

(a+b) La codificació de la cadena amb les diferents mides del diccionari i del buffer són:

D=18,	B=3	D=3,	B=3
(0,0,S)	\overline{S}	(0,0,S)	\overline{S}
(0,0,E)	\mathbf{E}	(0,0,E)	\mathbf{E}
(0,0,N)	N	(0,0,N)	N
(2,2,T)	ENT	(2,2,T)	ENT
(3,1,S)	ES	(3,1,S)	ES
(0,0,I)	I	(0,0,I)	I
(2,1,N)	SN	(2,1,N)	SN
(8,2,S)	ENS	(0,0,E)	\mathbf{E}
(6,2,E)	ISE	(2,1,S)	NS
(12,1,N)	TN	(0,0,I)	I
(18,3,S)	ENES	(2,1,E)	SE
		(0,0,T)	${ m T}$
		(0,0,N)	N
		(3,1,N)	EN
		(2,1,S)	ES

- (c) La cadena inicial ocupa $8 \cdot 23 = 184$ bits.
 - En el primer cas, necessitem 5 bits per codificar la posició en el diccionari i 2 bits per al buffer. Per tant, cada 3-tupla ocupa 5+2+8=15 bits. En total, la cadena comprimida ocupa $11\cdot 15=165$ bits i la taxa de compressió és $R=\frac{165}{184}=0.896$ bpb.
 - En el segon cas, necessitem 2 bits per codificar la posició en el diccionari i 2 bits per al buffer. Per tant, cada 3-tupla ocupa 2+2+8=12 bits. En total, la cadena comprimida ocupa $15\cdot 12=180$ bits i la taxa de compressió és $R=\frac{180}{184}=0.978$ bpb.
- 4. (2.5 punts, 0.75+0.75+1) Sigui $\{A_1, A_2, A_3, A_4\}$ el conjunt d'entrades i $\{B_1, B_2, B_3\}$ el conjunt de sortides d'un canal, amb matriu de probabilitats condicionades:

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

- (a) Quina distribució inicial fa que H(B) sigui màxima?
 - I quina distribució inicial fa que H(B) tingui el màxim valor que podem obtenir si sabem que $p(A_3)$ és $\frac{1}{2}$?

- (b) Per a quina distribució inicial tenim $I(A, B) = \log(3)$?
 - I per a quina distribució inicial tenim $I(A, B) = \log(4)$?
- (c) Amb distribució inicial $\{\frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}\}$, quina és la regla a mínima probabilitat d'error (MPE)?
 - I la probabilitat mitjana d'error fent servir aquest regla?

Solució:

(a) Si la distribució de probabilitats inicial és $\{p_1, p_2, p_3, p_4\}$, aleshores la matriu de probabilitats conjuntes és la següent:

$$\begin{pmatrix} 0 & p_1 & 0 \\ p_2 & 0 & 0 \\ 0 & 0 & p_3 \\ 0 & p_4 & 0 \end{pmatrix}.$$

Aleshores, la distribució de probabilitat final és $\{p_2, p_1 + p_4, p_3\}$. Tenim que H(B) és màxima, $\log(3)$ si la distribució final és equiprobable; és a dir si $p_2 = p_3 = \frac{1}{3}$ i $p_1 + p_4 = \frac{1}{3}$. Per tant, una distribució inicial que fa que $H(B) = \log(3)$ seria $\{\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\}$.

Si la distribució de probabilitat inicial és $\{p_1, p_2, \frac{1}{2}, p_4\}$, aleshores la distribució final és, $\{p_2, p_1 + p_4, \frac{1}{2}\}$. Aleshores, l'entropia de B és $H(B) = H(p_2, p_1 + p_4, \frac{1}{2})$. El valor màxim d'entropia de B que podem aconseguir és quan $p_2 = (p_1 + p_4) = \frac{1}{4}$. Per tant, per exemple, per a distribució inicial $\{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$.

(b) Es tracta d'un canal determinista i tenim que H(B|A)=0, per tant, I(A,B)=H(B)-H(B|A)=H(B). La capacitat del canal és $C=\max_{\{p(B_j)\}}H(B)=\log(3)=1.58$. Aquesta capacitat s'assoleix quan la distribució final és equiprobable. Per tant, una distribució inicial que fa que $I(A,B)=\log(3)$ seria $\left\{\frac{1}{6},\frac{1}{3},\frac{1}{3},\frac{1}{6}\right\}$.

Com que la capacitat del canal és $C = \log(3) = 1.58$, aleshores no és possible que $I(A, B) = \log(4) = 2$ per a cap distribució de probabilitats inicial.

(c) Si la distribució de probabilitat inicial és $\{\frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}\}$ aleshores la matriu de probabilitats conjuntes és la següent:

$$\begin{pmatrix}
0 & \frac{1}{8} & 0 \\
\frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{3}{8} \\
0 & \frac{1}{4} & 0
\end{pmatrix}.$$

Fixant-nos en els valors màxims a cada columna obtenim la següent funció de descodificació a mínima probabilitat d'error:

$$\begin{array}{ccc} B_1 & \longrightarrow & A_2 \\ B_2 & \longrightarrow & A_4 \\ B_3 & \longrightarrow & A_3 \end{array}$$

Aleshores, la probabilitat mitjana d'error en la descodificació és

$$\overline{p}_e = 1 - \frac{1}{4} - \frac{1}{4} - \frac{3}{8} = 1 - \frac{7}{8} = \frac{1}{8} = 0.125.$$