Digital Signal Processing

Lecture I – Introduction to DSP

상명대학교 컴퓨터과학과 강상욱 교수

What is Digital Signal Processing (DSP)?

- Consists of three words:
 - Digital, Signal and Processing
- *Signal*: any (physical or non-physical) quantity that varies with time, space, or other independent variable(s)
- *Digital*: a discrete-time and discrete-valued signal, i.e. digitization involves both *sampling* and *quantization*
- Processing: operations on the signal

Signal Types

Examples of Signals

- Signals are everywhere and may reflect countless measurements of some physical quantity such as:
 - electric voltages
 - brain signals
 - heart rates
 - temperatures
 - image luminance
 - investment prices
 - vehicle speeds
 - seismic activity
 - human speech

Signal Acquisition

- Various apparatus could be used to acquire signals, including:
 - Digital camera → Image
 - \blacksquare MRI scanner \rightarrow Activity of the brain
 - EEG/EMG/EOG electrodes → Physiological signals
 - Voice recorder → Audio signal

Signal Dimensions

■ 1D (e.g. dependent on time)

2D (e.g. images dependent on two coordinates in a plane)

■ 3D (e.g. describing an object in space)

Multi-Channel Signals

- In some applications, signals are generated by multiple sources or multiple sensors → represented by a vector
- Such a vector is called a *multi-channel* signal.

Example: brain signals

Continuous-time vs. Discrete-time

- Continuous-time signals are signals defined at each value of independent variable(s).
- They have values in a continuous interval (a,b) that could extend from $-\infty$ to ∞ .
- Discrete-time signals are defined only at specific values of independent variable(s).
- Discrete-time signals are represented mathematically by a sequence of real or complex numbers.

Continuous-time vs. Discrete-time

CT

Continuous function V of continuous variable t (time, space etc): V(t).

DT

Discrete function V_k of discrete sampling variable t_k , with k = integer: $V_k = V(t_k)$.

Periodic sampling

Continuous-valued vs. Discrete-valued

- Both continuous and discrete-time signals can take a finite (discrete) or infinite (continuous) *range*.
- For a signal to be called *digital*, it must be *discrete-time* and *discrete-range*, i.e. digitization involves both sampling and quantization.

Deterministic vs. Random Signals

- Signals could be *deterministic*, with an explicit mathematical description, a table or a well-defined rule.
- All past, present, and future signal values are precisely known with *no uncertainty:*

$$S_1(t) = at$$
 $S_2(x,y) = ax + bxy + cy^2$

■ In contrast, for *random* signals the functional relationship is unknown.

■ → statistical analysis techniques

Signal Processing System

- A **system** that performs some kind of task on a signal which depends on the application, e.g.
 - Communications: modulation/demodulation, multiplexing/de-multiplexing data compression
 - Speech Recognition: speech to text transformation
 - Security: signal encryption/decryption
 - *Filtering*: signal denoising/noise reduction
 - *Enhancement*: audio signal processing, equalization
 - Data manipulation: watermarking, reconstruction, feature extraction
 - Signal generation: music synthesis

Digital vs. Analog Processing

Digital Signal Processing

Advantages

- More flexible
- Data easily stored
- Better control over accuracy requirements
- Reproducibility
- Cheaper

Limitations

- A/D & signal processors' speed
- Finite word-length effect:

(round-off: Error caused by rounding math calculation result to nearest quantization level)

Signal Processing

Theoretical

VS.

Applied

Applicable to any field

Easier to comprehend

Algorithm development vs. implementation

ab code

Easier to adapt

e.g., ASIC, DSP chip

Much faster

Example Application: Audio Processing

- Applications include speech generation / speech recognition
- Speech recognition: DSP generally approaches the problem of voice recognition in two steps: feature extraction followed by feature matching.

Example Application: Echo Location

- A common method of obtaining information about a remote object is to bounce a *wave* off of it.
- Applications include radar and sonar.
- DSP can be used for filtering and compressing the data.

Pattern Recognition

- Pattern recognition is a research area that is closely related to digital signal processing.
- Definition: "the act of taking in raw data and taking an action based on the category of the data".
- Pattern recognition
 classifies data based on
 either *a priori knowledge*or on *statistical information*extracted from the patterns.

Application: Biometrics

- The "Biometrics" field focuses on methods for uniquely identifying humans using one or more of their intrinsic physical or behavioural traits.
- Examples include using face, voice, fingerprints, iris, handwriting or the method of walking.

