MILLO K MILESCHE 13682-137 OUTENTO WAINERICO (WODOJIA) MUNICIPADE TE VAFO OR

å	4,	y[ti]	Queremos aproximar la temperatura
O.	7,2	5 2 7	en to= 1,23. Pora usso, fagernes vo polino.
4	7.3	3.25	mio interpolation de lagrange, de 1º grau,
<i>3</i>	1,4	335	andre to be to.
3	1.5	<u>ે</u> જે	$\mathscr{C}_0(n) = 2c - 1.3 \qquad \mathscr{L}_0(n) = 2c - 1.3$
Ė	4, 6	FLS	1,2-1,3
5	1,7	.315	untão 19, (n) = 327 6 (n) + 325 2, (n)

on sja, P. (1,23) = 327 & (1,23) + 325 & (1,23) = 326,4

E como usamos o polinômio un terpolador no forma de Newton?

As diferenças divididas pentinentes serão

$$y[t_0] = 327$$
, $y[t_1] = 325$ & $y[t_0,t_1] = \frac{y[t_0] - y[t_1]}{t_0 - t_1} = \frac{2}{0,1} = 20$

Doi vo polinômio em 1º verolem seraí $P_2(n) = 327 + (n-1,2) \times 20$

 $_{2}$, $_{2}$, $_{3}$, $_{4}$, $_{5}$, $_{5}$, $_{6}$, $_{1}$, $_{23}$, $_{12}$,

E qual será un remo cometido na fagor essa vaporoximorgão? Fagomos uma restinativa vole em x=1,23.

$$E(\pi) = \frac{n}{1} \frac{(\pi - \pi i)}{(n+1)!} y^{(n+1)}(\xi)$$

$$|E(n)| \leqslant \left| \frac{1}{1} \frac{(2c-2c_{\perp})}{(n+1)!} \right| \max_{\xi \in \Xi} |y^{(n+1)}(\xi)|$$

Doc,
$$|E(1,23)| = |y(1,23) - P_1(1,23)| \in \left| \frac{(1,23-1,2)(1,23-1,3)}{2!} \right| \max_{\xi \in \{1,2,1,23\}} |f(\xi)|$$

A Toufa para casa: qual es resultado para y (2) (4) enata (conhecida).
de hasso problema?

Claro, concernos como colocinado, mas se mão conhecessemos vo que foriomos? Foremas astimai-la fazendo

com nosso 1000, m = 2. Então agena fozemos na tabola ede aif. div.

Então existem 0,02,03,04 um que

$$y^{(z)}(\theta_{2}) = 0 \quad | \quad y^{(z)}(\theta_{2}) = 60 \times 2! = 100 \quad | \quad y^{(2)}(\theta_{2}) = -50 \times 2! = 100$$

$$y^{(2)}(\theta_{4}) = 60 \times 2! = 100$$

Ento, usarenos masc $|y|^2|z|=100$. Essa e contamente uma aproxi- $\xi(|z|,z)$

mação um tanto quanto corriscada, pois temos pencos pombos em hossa tabela. Quanto mais pomtos, melhor.

Tarefa para vousa: Geran polinômies de vogran 2 e 3 e, em 2 = 1,23, obten as aproximações e relection equal envoiro curar.