Importing Libraries and Datasets

In this section we import the libraries of interest as well as the datasets.

```
# Import libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import missingno as msno
from scipy.stats import zscore as zscore
```

thBalasubramanian/Boston_Consulting_Group-Data-Science-Advanced-Analytics/main/task2/ml_cl
htbBalasubramanian/Boston_Consulting_Group-Data-Science-Advanced-Analytics/main/task2/ml_p
htbBalasubramanian/Boston_Consulting_Group-Data-Science-Advanced-Analytics/main/task2/ml_c

```
tiv','date_modif_prod','date_renewal']
, index_col= 'date_activ')
_date']) # Yearly history of consumption per user
```

Data Exploration

▼ The Client Output Dataset

From the output dataset we can derive a quick insight on customer retention.

```
# Replace the churn column with appropiate labels
pco_output['churn'] = pco_output['churn'].replace({0:'Stayed',1:'Churned'})
# Glimpse
pco_output.head()
```

id churn


```
# What number of customers have churned in the last 3 months?
attrition_count = pco_output['churn'].value_counts()
print('Total Number of Churned Customers:\n', attrition_count)

Total Number of Churned Customers:
    Stayed    13187
    Churned    1419
    Name: churn, dtype: int64

# What is the proportion of customer attrition in the last 3 months?
attrition_rate = pco_output['churn'].value_counts() / pco_output.shape[0] * 100
print('Attrition rate: \n', attrition_rate)

Attrition rate:
    Stayed    90.284814
    Churned    9.715186
    Name: churn, dtype: float64
```

Facts

- In the last 3 months 1,419 customers have churned
- There are currently 13,187 active clients
- Customer retention is 90% in the last 3 months
- Customer attrition is 10% in the last 3 months

Observations

· Dataset has complete cases

▼ The Price History Dataset

This dataset contains 1-year historical data for each client. It provides insights of the yearly activity of each client.

```
# Display the yearly consumption of energy and power of customers
pco_hist.head()
```

	id	price_date	<pre>price_off_peak_var</pre>	<pre>price_peak_var</pre>
0	038af19179925da21a25619c5a24b745	2015-01-01	0.151367	0.0
1	038af19179925da21a25619c5a24b745	2015-01-02	0.151367	0.0
2	038af19179925da21a25619c5a24b745	2015-01-03	0.151367	0.0

Examing the structure of the dataframe
pco_hist.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193002 entries, 0 to 193001
Data columns (total 8 columns):

	`	,	
#	Column	Non-Null Count	Dtype
0	id	193002 non-null	object
1	price_date	193002 non-null	<pre>datetime64[ns]</pre>
2	<pre>price_off_peak_var</pre>	191643 non-null	float64
3	price_peak_var	191643 non-null	float64
4	<pre>price_mid_peak_var</pre>	191643 non-null	float64
5	<pre>price_off_peak_fix</pre>	191643 non-null	float64
6	price_peak_fix	191643 non-null	float64
7	<pre>price_mid_peak_fix</pre>	191643 non-null	float64
dtype	es: datetime64[ns](1)), float64(6), obj	ject(1)
memor	ry usage: 11.8+ MB		

Examine the descriptive statistics of the dataframe
pco_hist.describe()

	<pre>price_off_peak_var</pre>	<pre>price_peak_var</pre>	<pre>price_mid_peak_var</pre>	<pre>price_off_peak_fix</pre>	ţ
count	191643.000000	191643.000000	191643.000000	191643.000000	
mean	0.140991	0.054412	0.030712	43.325546	
std	0.025117	0.050033	0.036335	5.437952	
min	0.000000	0.000000	0.000000	-0.177779	
25%	0.125976	0.000000	0.000000	40.728885	
50%	0.146033	0.085483	0.000000	44.266930	
75%	0.151635	0.101780	0.072558	44.444710	
max	0.280700	0.229788	0.114102	59.444710	
7					
1					•

Identify the nullity of the dataframe
missing_values_hist = pco_hist.isna().sum()
print('Total Missing Values:\n', missing_values_hist)

Total Missing Values:
id 0
price_date 0

```
price_off_peak_var 1359
price_peak_var 1359
price_mid_peak_var 1359
price_off_peak_fix 1359
price_peak_fix 1359
price_mid_peak_fix 1359
dtype: int64
```

Identify the percentage of nullity in the dataframe for each collumn
missing_values_hist_perc = pco_hist.isnull().mean() * 100
print('Percentage of Missing Values:\n', missing_values_hist_perc)

```
Percentage of Missing Values:
 id
                      0.000000
price_date
                     0.000000
price_off_peak_var
                    0.704138
price_peak_var
                    0.704138
price_mid_peak_var 0.704138
price_off_peak_fix    0.704138
price_peak_fix
                     0.704138
price_mid_peak_fix
                     0.704138
dtype: float64
```

Facts

- The average price of energy for the 1st period was: \$0.14
- The average price of energy for the 2nd period was: \$0.05
- The average price of energy for the 3rd period was: \$0.03

The average price of energy was declining in the last year.

- The average power of power for the 1st period was: \$43.32
- The average power of power for the 2nd period was: \$10.69
- The average power of power for the 3rd period was: \$6.45

The average price of power was declining in the last year.

Observations

- The columns price_off_peak_fix, price_peak_fix, and price_mid_peak_fix contain negative values. These negative prices of power do not make sense.
- The dataset pco_hist contains 1359 rows displaying NaN values on 6 variables except for id and price_date.
- The price_..._var and price_..._fix columns are missing **0.704**% of the data in each of them.

Note: Pandas recognizes these NaN values and removes them when displaying descriptives statistics.

Notice how the price of energy has a minimum value of zero. Perhaps some customers churned thereby making the consumption of energy zero.

▼ The Main Dataset (Client)

This dataset contain more characteristics about each client's account and activity.

```
# Print header
pco_main.head()
```

	id	activity_new	campaign_disc_el
0	24011ae4ebbe3035111d65fa7c15bc57	esoiiifxdlbkcsluxmfuacbdckommixw	Nat
1	d29c2c54acc38ff3c0614d0a653813dd	NaN	Nat
2	764c75f661154dac3a6c254cd082ea7d	NaN	Naf
3	bba03439a292a1e166f80264c16191cb	NaN	Nat
4	149d57cf92fc41cf94415803a877cb4b	NaN	Nat
7			

```
# printo info
pco_main.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16093 entries, 0 to 16092
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	id	14606 non-null	object
1	activity_new	6551 non-null	object
2	campaign_disc_ele	0 non-null	float64
3	channel_sales	10881 non-null	object
4	cons_12m	14606 non-null	float64
5	cons_gas_12m	14606 non-null	float64
6	cons_last_month	14606 non-null	float64
7	date_activ	14606 non-null	<pre>datetime64[ns]</pre>
8	date_end	14606 non-null	<pre>datetime64[ns]</pre>
9	date_first_activ	3508 non-null	<pre>datetime64[ns]</pre>
10	date_modif_prod	14606 non-null	<pre>datetime64[ns]</pre>
11	date_renewal	14606 non-null	datetime64[ns]
12	forecast_base_bill_ele	3508 non-null	float64
13	forecast base bill year	3508 non-null	float64

```
3508 non-null float64
 14 forecast bill 12m
                                     3508 non-null float64
15 forecast_cons
                                     14606 non-null float64
 16 forecast_cons_12m
                                14606 non-null float64
14606 non-null float64
14606 non-null float64
17 forecast cons year
18 forecast_discount_energy
 19 forecast_meter_rent_12m
 20 forecast_price_energy_off_peak 14606 non-null float64
21 forecast_price_energy_peak 14606 non-null float64
22 forecast_price_pow_off_peak 14606 non-null float64
23 has_gas
                                     14606 non-null object
                                     14606 non-null float64
 24 imp_cons
                                     14606 non-null float64
 25 margin_gross_pow_ele
 26 margin_net_pow_ele
                                     14606 non-null float64
 27 nb prod act
                                    14606 non-null float64
 28 net_margin
                                     14606 non-null float64
                                     14606 non-null float64
29 num_years_antig
30 origin_up
                                     14606 non-null object
31 pow_max
                                      14606 non-null float64
dtypes: datetime64[ns](5), float64(22), object(5)
```

memory usage: 3.9+ MB

Identify the percentage of nullity in the dataframe for each collumn missing_values_main_perc = pco_main.isnull().mean() * 100 print('Percentage of Missing Values:\n', missing_values_main_perc)

Percentage of Missing Values:

id	9.240042
activity_new	59.292860
campaign_disc_ele	100.000000
channel_sales	32.386752
cons_12m	9.240042
cons_gas_12m	9.240042
cons_last_month	9.240042
date_activ	9.240042
date_end	9.240042
date_first_activ	78.201703
date_modif_prod	9.240042
date_renewal	9.240042
forecast_base_bill_ele	78.201703
forecast_base_bill_year	78.201703
forecast_bill_12m	78.201703
forecast_cons	78.201703
forecast_cons_12m	9.240042
forecast_cons_year	9.240042
forecast_discount_energy	9.240042
forecast_meter_rent_12m	9.240042
forecast_price_energy_off_peak	9.240042
forecast_price_energy_peak	9.240042
forecast_price_pow_off_peak	9.240042
has_gas	9.240042
imp_cons	9.240042
margin_gross_pow_ele	9.240042
margin_net_pow_ele	9.240042
nb_prod_act	9.240042
net_margin	9.240042
num_years_antig	9.240042
origin_up	9.240042
pow_max	9.240042
dtype: float64	

Examine the descriptive statistics of the main dataset
pco_main.describe()

	<pre>campaign_disc_ele</pre>	cons_12m	cons_gas_12m	cons_last_month	forecast_base
count	0.0	1.460600e+04	1.460600e+04	14606.000000	38
mean	NaN	1.592203e+05	2.809238e+04	16090.269752	:
std	NaN	5.734653e+05	1.629731e+05	64364.196422	ť
min	NaN	0.000000e+00	0.000000e+00	0.000000	-3
25%	NaN	5.674750e+03	0.000000e+00	0.000000	
50%	NaN	1.411550e+04	0.000000e+00	792.500000	
75%	NaN	4.076375e+04	0.000000e+00	3383.000000	:
max	NaN	6.207104e+06	4.154590e+06	771203.000000	128
77.					
4					>

Facts

- The average tenure of a client is 5 years
- The average net marging is \$189

Observations

- The 14 columns contain negative minimum values
- The activity new column is missing 59.3% of its data
- The campaign_disc_ele column is missing completely
- The channel_sales column is missing 32.3% of its data
- The date_end column is missing 9.2% of its data
- The date_first_activ_ column is missing 78.2% of its data
- The date_modif_prod column is missing 9.2% of its data
- The date_renewal column is missing 9.2% of it data
- The marging_gross_pow_ele and margin_net_pow_ele columns are both missing 9.2% of its data
- The net margin column is missing 9.2% of its data
- The origin_up column is missing 9.2% of its data

- The pow max column is missing 9.2% of its data
- The forecast_base_bill_ele, forecast_base_bill_year, forecast_bill_12m, and forecast cons columns are each missing 78.2% of its data

Data Cleaning and Imputation

Dealing with missing data

Workflow for treating missing values

- 1. Convert all missing values to null values
- 2. Analyze the amount and type of missingness in the data
- 3. Appropriately delete or impute missing values
- 4. Evaluate & compare the performance of the treated/imputed dataset

The missingno (imported as msno) package is great for visualizing missing data - we will be using:

- msno.matrix() visualizes a missingness matrix
- msno.bar() visualizes a missingness barplot
- plt.show() to show the plot

Is the data missing at random?

Types of missingness

- 1. Missing Completely at Random (MCAR)
 - Missingness has no relationship between any values, observed or missing
- 2. Missing at Random (MAR)
 - There is a systematic relationship between missingness and other observed data, but not the missing data
- 3. Missing Not at Random (MNAR)
 - There is a relationship between missingness and its values, missing or nonmissing

When and how to delete missing data?

Types of deletions

1. Pairwise deletion

Pandas skips NaN whic is equivalent to pairwise deletion. Pairwise deletions minimize the amount of data loss and are hence preferred. However, it is also true that at several instances they might negatively affect our analysis.

2. Listwise deletion

In listwise deletion the incomplete row is deleted, also called complete case analysis. The major disadvantage of listwise deletions is amount of data lost. Example: df.dropna(subset=['column'], how='any',inplace=True)

Note: Both of these deletions are used only when the values are missing completely at random that is MCAR

▼ The Price History Dataset

```
# Identify negative columns
negative_cols = ['price_off_peak_fix','price_peak_fix','price_mid_peak_fix']
# Convert to positive the negative columns in pco_hist
pco_hist[negative_cols] = pco_hist[negative_cols].apply(abs)
pco_hist.describe()
```

	price_off_peak_var	price_peak_var	price_mid_peak_var	price_off_peak_fix	ŗ
count	191643.000000	191643.000000	191643.000000	191643.000000	
mean	0.140991	0.054412	0.030712	43.325563	
std	0.025117	0.050033	0.036335	5.437816	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.125976	0.000000	0.000000	40.728885	
50%	0.146033	0.085483	0.000000	44.266930	
75%	0.151635	0.101780	0.072558	44.444710	
max	0.280700	0.229788	0.114102	59.444710	

▼ Visualizing the amount of missingness

Visualize the completeness of the dataframe
msno.bar(pco_hist)

To the untrained eye, it might seem that there's no data missing. However, we estimated that 0.7% of the data in the price columns are missing. We can notice that the value counts at the top of each columns display a different amount.

```
# Visualize the locations of the missing values of the dataset
sorted = pco_hist.sort_values(by = ['id','price_date'])
msno.matrix(sorted)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f86745d1d50>

The nullity matrix describes the nullity of the dataset and appears blank wherever there are missing values.

The column on the very right summarizes the general shape of the data completeness and points out the row. Total count of columns at the bottom right.

Visualize the correlation between the numeric variables of the dataframe
msno.heatmap(pco_hist)

<matplotlib.axes._subplots.AxesSubplot at 0x7f86745b0cd0>

```
price_off_peak_var

price_peak_var
```

```
- 0.75
- 0.50
```

Identify the index of the IDs containing missing values.
hist_NAN_index = pco_hist[pco_hist.isnull().any(axis=1)].index.values.tolist()

Obtain a dataframe with the missing values
pco_hist_missing = pco_hist.iloc[hist_NAN_index,:]

Glimpse at the NaN cases of the pco_hist dataset
pco_hist_missing.head(10)

price_peak_va	<pre>price_off_peak_var</pre>	price_date	id	
Na	NaN	2015-01-04	ef716222bbd97a8bdfcbb831e3575560	75
Na	NaN	2015-01-06	0f5231100b2febab862f8dd8eaab3f43	221
Na	NaN	2015-01-06	2f93639de582fadfbe3e86ce1c8d8f35	377
Na	NaN	2015-01-06	f83c1ab1ca1d1802bb1df4d72820243c	413
Na	NaN	2015-01-06	3076c6d4a060e12a049d1700d9b09cf3	461
Na	NaN	2015-01-04	33bb3af90650ac2e9ecac6ff2c975a6b	471
Na	NaN	2015-01-05	33bb3af90650ac2e9ecac6ff2c975a6b	472
Na	NaN	2015-01-08	33bb3af90650ac2e9ecac6ff2c975a6b	475
Na	NaN	2015-01-09	33bb3af90650ac2e9ecac6ff2c975a6b	476
Na	NaN	2015-01-12	0e90101b08183cc9548e827e4b256f47	874

```
1
```

```
# extract the unique dates of missing data
date_lst = pco_hist_missing['price_date'].unique()
id_lst = pco_hist_missing['id'].unique()

# Create a time dataframe with the unique dates
time_df = pd.DataFrame(data=date_lst, columns=['price_date'] )

# Glimpse the time dataframe
time_df.sort_values(by=['price_date'])
```

	price_date	1
9	2015-01-01	
11	2015-01-02	
8	2015-01-03	
0	2015-01-04	
2	2015-01-05	
1	2015-01-06	
10	2015-01-07	
3	2015-01-08	
4	2015-01-09	

Facts

- There is high correlation between the missingness in the numeric columns and is values, missing or non-missing
- There are 1359 clients who are missing price data at least in 1 month

Observations

- After sorting the pco_hist dataset by id and price_date, we found that some columns are likely to be MNAR.
- The columns containing prices display strong positive correlation in the missingness suggests a case of MNAR.
- This event suggest that multicolinearity might be present in the dataset.

Imputations

Imputing time-series data requires a specialized treatment. Time-series data usually comes with special characteristics such trend, seasonality and cyclicality of which we can exploit when imputing missing values in the data.

In this particular dataset, there's not such thing as seasonality because it only has monthly data for one year.

Filling Time Series Data

```
# Make a copy of pco_hist dataset
pco_hist_ff = pco_hist.copy(deep=True)
```

```
print(pco_hist_ff.iloc[hist_NAN_index,3:9].head())

# Fill NaNs using forward fill
pco_hist_ff.fillna(method = 'ffill', inplace=True)

print(pco_hist_ff.iloc[hist_NAN_index,3:9].head())
```

75 221 377 413 461	price_peak_var NaN NaN NaN NaN NaN	price_mid_peak_var NaN NaN NaN NaN NaN	price_off_peak_fix NaN NaN NaN NaN NaN	price_peak_fix NaN NaN NaN NaN NaN	\
	price_mid_peak_	fix			
75		NaN			
221		NaN			
377		NaN			
413		NaN			
461		NaN			
	<pre>price_peak_var</pre>	<pre>price_mid_peak_var</pre>	<pre>price_off_peak_fix</pre>	<pre>price_peak_fix</pre>	\
75	0.000000	0.000000	44.266931	0.000000	
75 221			44.266931 44.266931		
	0.000000	0.000000		0.000000	
221	0.000000	0.000000 0.000000	44.266931	0.000000 0.000000	
221 377	0.000000 0.000000 0.087970	0.000000 0.000000 0.000000	44.266931 44.266931	0.000000 0.000000 0.000000	
221 377 413	0.000000 0.000000 0.087970 0.102239	0.000000 0.000000 0.000000 0.070381 0.000000	44.266931 44.266931 40.565969	0.000000 0.000000 0.000000 24.339581	
221 377 413	0.000000 0.000000 0.087970 0.102239 0.000000	0.000000 0.000000 0.000000 0.070381 0.000000	44.266931 44.266931 40.565969	0.000000 0.000000 0.000000 24.339581	
221 377 413 461	0.000000 0.000000 0.087970 0.102239 0.000000 price_mid_peak_	0.000000 0.000000 0.000000 0.070381 0.000000	44.266931 44.266931 40.565969	0.000000 0.000000 0.000000 24.339581	
221 377 413 461	0.000000 0.000000 0.087970 0.102239 0.0000000 price_mid_peak_ 0.000	0.000000 0.000000 0.000000 0.070381 0.000000 fix	44.266931 44.266931 40.565969	0.000000 0.000000 0.000000 24.339581	
221 377 413 461 75 221	0.000000 0.000000 0.087970 0.102239 0.0000000 price_mid_peak_ 0.000	0.000000 0.000000 0.000000 0.070381 0.000000 fix 000 000	44.266931 44.266931 40.565969	0.000000 0.000000 0.000000 24.339581	

pco_hist_ff.describe()

	<pre>price_off_peak_var</pre>	price_peak_var	<pre>price_mid_peak_var</pre>	price_off_peak_fix	ŗ
count	193002.000000	193002.000000	193002.000000	193002.000000	
mean	0.141006	0.054376	0.030689	43.326213	
std	0.025091	0.050040	0.036333	5.431161	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.125976	0.000000	0.000000	40.728885	
50%	0.146033	0.085450	0.000000	44.266930	
75%	0.151635	0.101780	0.072558	44.444710	
max	0.280700	0.229788	0.114102	59.444710	
%					

```
pco_hist_ff_merged = pco_hist_ff.merge(right=pco_output,on=['id'])
pco_hist_ff_merged.head()
```

	id	price_date	<pre>price_off_peak_var</pre>	<pre>price_peak_var</pre>
0	038af19179925da21a25619c5a24b745	2015-01-01	0.151367	0.0
1	038af19179925da21a25619c5a24b745	2015-01-02	0.151367	0.0
2	038af19179925da21a25619c5a24b745	2015-01-03	0.151367	0.0
3	038af19179925da21a25619c5a24b745	2015-01-04	0.149626	0.0
4	038af19179925da21a25619c5a24b745	2015-01-05	0.149626	0.0
7				

▼ The Main Dataset (Client)

▼ Visualizing the amount of missingness

Visualize the completeness of the dataframe
msno.bar(pco_main)

Visualize the locations of the missing values of the dataset
msno.matrix(pco_main)

sorted_main = pco_main.sort_values('date_first_activ')
msno.matrix(sorted_main)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8673be2810>

msno.heatmap(pco_main)

Filter the columns of interest
pco_activity = pco_main[activity]

Obtain only the complete cases

[#] Demonstrate why the date_activ column cannot replace completely date_first_activ
activity = ['date_activ','date_first_activ']

pco_activity_cc = pco_activity.dropna(subset=['date_first_activ'],how='any',inplace=False)

Test whether two objects contain the same elements.
pco_activity_cc.date_activ.equals(pco_activity_cc.date_first_activ)

Describe it
pco_activity_cc.describe(datetime_is_numeric=True) # Comparing dates in .describe() is der

	date_activ	date_first_activ
count	3173	3508
mean	2011-01-19 11:27:33.072801792	2011-06-17 13:14:17.924743424
min	2003-01-08 00:00:00	2001-04-18 00:00:00
25%	2010-01-12 00:00:00	2010-08-01 00:00:00
50%	2011-02-12 00:00:00	2011-10-25 00:00:00
75%	2012-04-14 00:00:00	2012-06-28 00:00:00
max	2014-01-09 00:00:00	2014-01-09 00:00:00

```
# Drop the column activity_new and campaign_disc_elec
pco_main_drop = pco_main.drop(labels= ['activity_new','campaign_disc_ele'] , axis=1)
```

msno.matrix(pco_main_drop)

<matplotlib.axes. subplots.AxesSubplot at 0x7f8671c7a590>

Observations

- The variable activity_new is **MCAR** and has very low correlation with any of the variables. We can safely *drop* this column.
- The variable campaign_disc_elec is completely missing at random on all rows. We can get rid of this column. This suggests that subscribers are not subscribing through campaings offers.
- The variable date_first_activ cannot be replace by the values of the date_activ variable. MAR
- net_margin is showing strong correlation between margin_gross_pow_elec and margin net pow ele. Multicolinearity is likely here.
- The variables origin_up and pow_max display no correlation with any variable and contain 0.54% and 0.01% of missingness respectively. These are MCAR and can be dropped listwise.
- Forecast_base_bill_ele, forecast_base_bill_year, forecast_bill_12m and forecast_cons variables are highly correlated with the date_first_activ variable's missingness. Accounting for 78% of missing values in the formerly mention columns and therfore are MNAR.
- Cannot replace the date_first_activ column with the date_activ column since in some of the cases the dates are not identical.

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:3641: SettingWithCopyWar A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: $\frac{https://pandas.pydata.org/pandas-docs/stable/u}{self[k1] = value[k2]}$

	cons_12m	cons_gas_12m	cons_last_month	forecast_cons_12m	forecast_cons
count	1.460600e+04	1.460600e+04	14606.000000	14606.000000	14606.0
mean	1.592203e+05	2.809238e+04	16090.269752	1868.614880	1399.7
std	5.734653e+05	1.629731e+05	64364.196422	2387.571531	3247.7
min	0.000000e+00	0.000000e+00	0.000000	0.000000	0.0
25%	5.674750e+03	0.000000e+00	0.000000	494.995000	0.0
50%	1.411550e+04	0.000000e+00	792.500000	1112.875000	314.0
75%	4.076375e+04	0.000000e+00	3383.000000	2401.790000	1745.7
max	6.207104e+06	4.154590e+06	771203.000000	82902.830000	175375.0

Convert the has_gas column to Yes/No
pco_main_cc['has_gas'] = pco_main_cc['has_gas'].replace({'t':'Yes','f':'No'})

Merge the main dataset with the output dataset
pco_main_cc_merged = pco_main_cc.merge(right=pco_output,on=['id'])

Convert the churn column to Churned/Stayed
pco_main_cc_merged['churn'] = pco_main_cc_merged['churn'].replace({1:'Churned',0:'Stayed'})

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

pco main cc merged.head()

https://colab.research.google.com/drive/1f-IffOdL1X1kDf1w3ow-2559nnFSIT_M#scrollTo=dv8p0_kw_qT9&printMode=true

		id	cons_12m	cons_gas_12m	cons_last_month	date_a
	0	24011ae4ebbe3035111d65fa7c15bc57	0.0	54946.0	0.0	2013-(
	1	d29c2c54acc38ff3c0614d0a653813dd	4660.0	0.0	0.0	2009-(
	2	764c75f661154dac3a6c254cd082ea7d	544.0	0.0	0.0	2010-(
<pre># Obtain all the variables except for id variables = [column_name for column_name in pco_main_cc_merged.columns if column_name != '</pre>						
<pre># Obtain all the categorical variables except for id categorical = [column_name for column_name in variables if pco_main_cc_merged[column_name]</pre>						
# Obtain all the Date Variables dates = [column_name for column_name in variables if pco_main_cc_merged[column_name].dtype						
<pre># Obtain all the numeric columns numeric = [column_name for column_name in variables if column_name not in categorical and column_name != 'id' and column_name != 'churn' and column_name not in dates]</pre>						

- Data Visualization

Let's visualize what we've found.

▼ The Client Output Dataset

```
# Calculate the zcores of tenure
tenure_zcores = zscore(a=pco_main_cc_merged['num_years_antig'])
# Convert to absolute values
abs tenure zscores = np.abs(tenure zcores)
# Extract Columns of interest
churn_tenure = pco_main_cc_merged[['churn','num_years_antig']]
# Add z-score column
churn_tenure['z_score'] = list(abs_tenure_zscores)
# Remove outliers
churned_tenure_filtered = churn_tenure[churn_tenure['z_score'] < 3]</pre>
# Visualize tenure by retained customer and churner
vio = sns.violinplot( y=churned_tenure_filtered["churn"], x=churned_tenure_filtered["num_y
# Settings
vio.set(xlabel='Years', ylabel='')
vio.set_title("Customer Attrition by Tenure")
plt.show()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:8: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

Facts

- The median age of churners is 4 years
- Customers are more likely to churn during the 4th year than the 7th year
- The median age of retained customers is 5 years

▼ The Main Dataset

```
# Most popular electricty campaign
ele nm = pco main cc merged.loc[(pco main cc merged['churn']>='Stayed') & (pco main cc mer
ele_nm.value_counts(subset=['origin_up'])
     origin up
     lxidpiddsbxsbosboudacockeimpuepw
                                          6155
     kamkkxfxxuwbdslkwifmmcsiusiuosws
                                          4002
     ldkssxwpmemidmecebumciepifcamkci
                                          2801
     MISSING
                                           58
                                             2
     usapbepcfoloekilkwsdiboslwaxobdp
     ewxeelcelemmiwuafmddpobolfuxioce
                                             1
     dtype: int64
# Highest netting electricity subscription campaign
print(ele_nm.groupby('origin_up')['net_margin'].agg('sum').sort_values(ascending=False))
     origin_up
     lxidpiddsbxsbosboudacockeimpuepw
                                          1230753.01
```

627964.96

kamkkxfxxuwbdslkwifmmcsiusiuosws

ldkssxwpmemidmecebumciepifcamkci 564951.43
MISSING 16386.00
usapbepcfoloekilkwsdiboslwaxobdp 250.40
ewxeelcelemmiwuafmddpobolfuxioce 46.22
Name: net_margin, dtype: float64

Facts

- The most popular electricity campaign is 1xidpiddsbxsbosboudacockeimpuepw which has brought 6,155 current customers.
- The electricity campaign attributable to the highest total net margin is lxidpiddsbxsbosboudacockeimpuepw. Netting \$1,230,753.01 in 2015.

Caveats

```
# Select current customers with positive net margins
top_customers = pco_main_cc_merged.loc[(pco_main_cc_merged['churn']>='Stayed') & (pco_mair
# Top 10 customers by net margin
top_customers.sort_values(by=['net_margin'],ascending=False).head(10)
```

	id	num_years_antig	net_margin	1
10718	d00e8a9951b5551d8f02e45f9ed2b0dd	3.0	10203.50	
12348	818b8bca0a9d7668252d46b978169325	4.0	4346.37	
7794	a3a739686fbd5ba8b4a21ec835507b6d	4.0	4305.79	
12624	ee98a86efa759681cc59c7d4e0d0312f	4.0	3407.65	
4876	9590c7a6100ae76ec078aa177ffb8d0d	3.0	3215.03	
3478	e7bdc7743d73a9bf94cc3c6a293fca93	4.0	2711.19	
4958	9a0411074f84ea385f555943f27a2d81	3.0	2653.59	
7236	41b7c011f9d87044bb2e297264e95080	6.0	2625.38	
10685	e5636f7ada7a80747af18b285632767e	10.0	2467.98	
9345	078b4e5f8ea9a2f5f4c667f2d2236791	4.0	2340.78	

These are the most profitable customers for PowerCo in terms of net margin. Beware most of them are within the likely tenure of attrition. Time for a marketing campaign!

Colab paid products - Cancel contracts here

✓ 0s completed at 10:56 PM

×