How to compute $x = A^{-1} b$?

In numerical linear algebra, NEVER compute A⁻¹ and then A⁻¹ b. We always consider x as the solution of the equation:

$$Ax = b$$

We compute x by solving the equation by Gaussian elimination.

Gaussian Elimination

Big picture of GE:

GE algorithm

At the end, $A^{(n-1)} x = b^{(n-1)}$, is solved by back substitution.

LU factorization

<u>Theorem</u>: A = L U where L = lower Δ , unit diag; U = upper Δ . Moreover

$$U = A^{(n-1)}, \qquad L = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ mult & & 1 \end{bmatrix}.$$

Solve A x = b

$$Ax = b \rightarrow LUx = b$$

Let y = U x. Then we have L y = b.

- (1) Solve Ly = b by forward solve
- (2) Solve Ux = y by back solve

Forward solve algorithm

for
$$i = 1, 2, ..., n$$

$$y_i = b_i$$
for $j = 1, 2, ..., i-1$

$$y_i = y_i - l_{ij} \times y_j$$
end
$$y_i = b_i - \sum_{j=1}^{i-1} l_{ij} y_j$$
end

Complexity

- 1 flop = + $/ / \times / \div$
- Consider forward solve. For each i, the j-loop performs 2(i-1) flops.

Total flops = sum (2i-2) = 2 sum i – sum 2
=
$$2 n(n+1)/2 - 2 n = n^2 - n = O(n^2)$$

- flops(back solve) = n² (exercise)
- flops(LU) = $2/3 n^3 + O(n^2)$

For large n, factorization is more expensive than forward or back solves.

Special Linear Systems

- Exploit special structures of linear systems
- More efficient LU factorization

Symmetric systems

• LDM^T factorization, variant of LU.

<u>Theorem</u>: If all the leading principal submatrices of A are nonsingular, then there exist unique unit lower Δ matrices L and M, and a unique diag. matrix D s.t.

$$A = L D M^T$$

Pf: Factor
$$A = LU$$

Define $D = diag(d_1, ..., d_n)$, $d_i = u_{ii}$ $i = 1, ..., n$

Let $M^T = D^{-1}U = unit \ upper \Delta$

(So $M = unit \ lower \Delta$)

Thus $A = LU = LD(D^{-1}U) = LDM^T$

Note: flops(LU) = flops(LDM T)

<u>Theorem</u>: If A is symmetric, then $A = L D L^{T}$.

Pf: By previous result, $A = L D M^{T}$. => $M^{-1} A M^{-T} = M^{-1} L D M^{T} M^{-T} = M^{-1} L D$ But $M^{-1} A M^{-T}$ is symmetric, so is $M^{-1} L D$ Also, $M^{-1} L = lower \Delta => M^{-1} L D = lower \Delta$ A sym. lower Δ matrix => it is diag. i.e. $M^{-1} L$ is diag. But $M^{-1} L$ is unit lower $\Delta => M^{-1} L = I$ i.e. M = L

Notes

- (1) We can save about half the work by computing L and D only.
- (2) One way is to compute the U factor only during the LU factorization

Positive definite systems

<u>Def</u>: A is positive definite if $x^T A x > 0$ for all $x \ne 0$.

• A is positive definite => A⁻¹ exists.

<u>Theorem</u>: If $A = R^{n \times n}$ is PD and $X = R^{n \times k}$ has rank k, then $B = X^T A X = R^{k \times k}$ is also PD.

Pf: Let
$$z = R^{kx1}$$
. Then $z^T B z = z^T X^T A X z = (Xz)^T A (Xz)$
If $Xz = 0$, then X is not rank k
Hence $z^T B z > 0$.

<u>Corollary</u>: If A is PD, then all its principal submatrices are PD. In particular, all diag. entries are positive.

<u>Corollary</u>: If A is PD, then $A = L D M^T$, D has positive diag. entries.

Pf: Let
$$X = L^{-T}$$
. Then $X^T A X = L^{-1} (L D M^T) L^{-T} = D M^T L^{-T}$ is PD.

By previous corollary, diag(D M^T L^{-T}) has positive entries.

Note that M^T and L^{-T} are unit upper Δ .

=> $M^T L^{-T}$ is also unit upper Δ .

$$=> diag(D M^T L^{-T}) = D.$$

Symmetric positive definite systems

<u>Theorem</u>: If A is SPD, then there exists unique lower Δ G such that

$$A = G G^T$$

Pf: $A = L D L^T$ and $D = diag(d_1, ..., d_n), d_i > 0$.

Define $D^{1/2} = diag(sqrt\{d_1\}, ..., sqrt\{d_n\})$

Let $G = L D^{1/2}$. Then G is lower Δ .

$$G G^{T} = L D^{1/2} (L D^{1/2})^{T} = L D^{1/2} D^{1/2} L^{T} = L D L^{T} = A$$

• A = G G^T is called the Cholesky factorization of A and the lower Δ G is called the Cholesky factor.

Cholesky factorization

$$A = \begin{bmatrix} \alpha & v^T \\ v & B \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha} & 0 \\ \frac{v}{\sqrt{\alpha}} & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & B - \frac{vv^T}{\alpha} \end{bmatrix} \begin{bmatrix} \sqrt{\alpha} & \frac{v^T}{\sqrt{\alpha}} \\ 0 & I \end{bmatrix}$$

Let $X = \begin{bmatrix} 1 & -\frac{v^T}{\alpha} \\ 0 & I \end{bmatrix}$. Then X has full rank.

Also
$$B - (vv^T)/\alpha = X^T A X \Rightarrow SPD$$

Hence $B - (vv^T)/\alpha = G_1 G_1^T$. Now define

$$G = \begin{bmatrix} \sqrt{\alpha} & 0 \\ \frac{v}{\sqrt{\alpha}} & G_1 \end{bmatrix}$$

Then $A = G G^T$.

Algorithm

```
for k = 1, 2, ..., n
a_{kk} = sqrt\{a_{kk}\}
for j = k+1, ..., n
a_{jk} = a_{jk} / a_{kk}
end
for j = k+1, ..., n
for i = j, ..., n
a_{ij} = a_{ij} - a_{ik} a_{jk}
end
end
end
```

• flops(Cholesky) $\sim n^3/3$