Présentation Laboratoire Interférences et diffraction

Groupe 12.64

Ecole polytechnique de Louvain

23 octobre 2015

Interférences optiques

Période de répétition des fentes du réseau

	λ [nm]	θ [deg]	d [μm]
Violet 1	408.6	11.2	2.104
Violet 2	411.4	11.4	2.081
Bleu	439.7	17.2	1.487
Turquoise	495.9	19.85	1.460
Vert	546.0	21.9	1.464
Jaune 1	581.8	23	1.489
Jaune 2	584.6	23.2	1.484
Orange	601.0	23.8	1.489

TABLE - Mesures réalisées pour la première expérience

Par la relation $d = \frac{\lambda}{\sin\theta}$ on trouve $d = 1.6323 \mu m$

Interférences optiques

Calcul de la longueur d'onde du laser

Nous reprenons la relation $\lambda = dsin\theta$ et nous déterminons l'angle $\theta = arctan(\frac{1}{D})$. La valeur de d'étant connue, nous trouvons $\lambda = 889.6nm$.

FIGURE - Diffraction

Nous déterminons ensuite la largeur de trois fentes différentes à l'aide de la même formule utilisée ci-dessus.

- ► Fente 1=0.0926mm
- ► Fente 2=0.1728mm
- ► Fente 3=0.3703mm

Interférences optiques

Observation de figures de diffractions à travers un réseau hexagonal

FIGURE - Hex.

FIGURE - Polychrist Hex.

Diffraction à travers un cheveu

En considérant que le cheveu agissait comme une fente et en utilisant la même relation, nous avons pu mesuré le diamètre moyen d'un cheveu d=0.0622mm

Interférences d'ondes centimétriques

Interféromètre de Michelson

 $\Delta x = 1,2cm \rightarrow \text{Ecart entre un minimum et un maximum}$

$$\lambda = 2,4cm$$

Interférences d'ondes centimétriques

Interféromètre de Fabry-Pérot

 $\Delta x = 1,2$ cm ightarrow Ecart entre un minimum et un maximum

$$\lambda = 2,4cm$$

Interférences d'ondes centimétriques

Expérience avec les fentes

1 fente=diffraction; 2 fentes=diffraction+interférence

