Vektor-vektor Ortogonal

Ingat kembali rumus sudut θ antara dua vektor tak-nol di \mathbb{R}^n , yaitu

$$\theta = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}\right)$$

Dari rumus tersebut dapat diketahui bahwa $\theta = \pi/2$ jika dan hanya jika $\vec{u} \cdot \vec{v} = 0$. Hal ini mendasari definisi berikut:

DEFINISI 3.18 Dua vektor tak-nol \vec{u} dan \vec{v} di \mathbb{R}^n dikatakan *ortogonal* (atau *tegak lurus*) jika $\vec{u} \cdot \vec{v} = 0$. Himpunan tak-kosong dari vektor-vektor di \mathbb{R}^n disebut *himpunan ortogoal* jika setiap pasang vektor yang berbeda dalam himpunan tersebut ortogonal. Himpunan ortogonal dari vektor-vektor satuan disebut *himpunan ortonormal*.

CONTOH 3.11

- (a) Tunjukkan bahwa $\vec{u}=(-2,3,1,4)$ dan $\vec{v}=(1,2,0,-1)$ adalah vektor-vektor ortogonal di \mathbb{R}^4 .
- (b) Tunjukkan bahwa himpunan $S = \{\vec{\imath}, \vec{\jmath}, \vec{k}\}$ dari vektor-vektor satuan merupakan himpunan ortonormal di \mathbb{R}^3 .

Penyelesaian.

(a) Perhatikan bahwa

$$\vec{u} \cdot \vec{v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0$$

yang berarti vektor-vektor \vec{u} dan \vec{v} ortogonal.

(b) Karena \vec{i} , \vec{j} , dan \vec{k} vektor-vektor satuan, maka tinggal ditunjukkan bahwa vektor-vektor tersebut saling ortogonal. Perhatikan bahwa

$$\vec{\imath} \cdot \vec{\jmath} = (1, 0, 0) \cdot (0, 1, 0) = 0$$
$$\vec{\imath} \cdot \vec{k} = (1, 0, 0) \cdot (0, 0, 1) = 0$$
$$\vec{\jmath} \cdot \vec{k} = (0, 1, 0) \cdot (0, 0, 1) = 0$$

yang menunjukkan bahwa tiap pasang vektor yang berbeda saling ortogonal.

Garis dan Bidang yang Ditentukan oleh Titik-titik dan Normal

Dalam geometri analitik, suatu garis di \mathbb{R}^2 ditentukan secara tunggal oleh kemiringan dan satu titiknya, dan di \mathbb{R}^3 ditentukan secara tunggal oleh "inklinasi" dan satu titik. Salah satu cara untuk menentukan kemiringan dan inclinasi adalah dengan menggunakan vektor tak-nol \vec{n} yang disebut *normal*, yaitu yang ortogonal ke garis atau bidang yang dimaksud. Sebagai contoh, Gambar 3.21, menunjukkan garis melalui titik $P_0(x_0, y_0)$ yang mempunyai normal $\vec{n} = (a, b)$ dan bidang yang melalui titik $P_0(x_0, y_0, z_0)$ yang mempunyai normal $\vec{n} = (a, b, c)$. Kedua garis dan bidang datar tersebut dinyatakan dengan persamaan vektor

$$\vec{n} \cdot \overrightarrow{P_0 P} = 0 \tag{3.33}$$

dengan P sembarang titik (x, y) pada garis atau titik (x, y, z) pada bidang. Vektor $\overrightarrow{P_0P}$ dapat disajikan dalam suku-suku komponen, yaitu

$$\overrightarrow{P_0P} = (x - x_0, y - y_0)$$
 [garis]
$$\overrightarrow{P_0P} = (x - x_0, y - y_0, z - z_0)$$
 [bidang]
$$a(x - x_0) + b(y - y_0) = 0$$
 [garis] (3.34)
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 [bidang] (3.35)

Persamaan-persamaan di atas dinamakan persamaan titik-normal dari garis dan bidang.

CONTOH 3.12 Dari Persamaan 3.34 bahwa di ℝ² persamaan

$$6(x-3) + (y+7) = 0$$

menggambarkan garis melalui titik (3,-7) dengan normal $\vec{n}=(6,1)$; dan berdasarkan Persamaan 3.35 bahwa di \mathbb{R}^3 persamaan

$$4(x-3) + 2y - 5(z-7) = 0$$

menggambarkan bidang datar melalui titik (3,0,7) dengan normal $\vec{n}=(4,2,-5)$.

TEOREMA 3.19

(a) Jika a dan b konstanta tak-nol sembarang, maka persamaan dalam bentuk

$$ax + by + c = 0 \tag{3.36}$$

menyajikan garis di \mathbb{R}^2 dengan normal $\vec{n} = (a, b)$.

(b) Jika a, b, dan c konstanta tak-nol, maka persamaan dalam bentuk

$$ax + by + cz + d = 0$$
 (3.37)

menyajikan bidang datar di \mathbb{R}^3 dengan normal $\vec{n}=(a,b,c)$.

CONTOH 3.13

- (a) Persamaan ax + by = 0 menyajikan garis yang melalui titik asal di \mathbb{R}^2 . Tunjukkan bahwa vektor $\vec{n}_1 = (a, b)$ ortogonal ke garis tersebut, yakni ortogonal ke semua vektor sepanjang garis tersebut.
- (b) Persamaan ax + by + cz = 0 menyajikan bidang datar yang melalui titik asal di \mathbb{R}^3 . Tunjukkan bahwa vektor $\vec{n}_2 = (a, b, c)$ ortogonal ke bidang datar tersebut, yakni ortogonal ke semua vektor pada bidang tersebut.

Penyelesaian. Dua persoalan tersebut diselesaikan bersama. Dua persamaan tersebut dapat ditulis

$$(a, b) \cdot (x, y) = 0$$
 dan $(a, b, c) \cdot (x, y, z) = 0$

atau dalam bentuk lain

$$\vec{n}_1 \cdot (x, y) = 0$$
 dan $\vec{n}_2 \cdot (x, y, z) = 0$.

Persamaan-persamaan itu menunjukkan bahwa \vec{n}_1 ortogonal ke semua vektor (x, y) pada garis ax+by=0, dan \vec{n}_2 ortogonal ke semua vektor (x, y, z) pada bidang datar ax+by+cz=0 (Gambar 3.21).

Perhatikan bahwa

$$ax + by = 0$$
 dan $ax + by + cz = 0$

adalah *persamaan-persamaan homogen*. Persamaan-persamaan tersebut dapat ditulis dalam bentuk vektor

$$\vec{n} \cdot \vec{x} = 0 \tag{3.38}$$

dengan \vec{n} merupakan vektor koefisien dan \vec{x} vektor variabelnya. Di \mathbb{R}^2 persamaan ini disebut bentuk vektor dari persamaan garis yang melalui titik asal, dan di \mathbb{R}^3 disebut bentuk vektor dari persamaan bidang datar yang melalui titik asal.

Proyeksi Ortogonal

Dalam berbagai aplikasi perlu untuk melakukan "dekomposisi" suatu vektor \vec{u} menjadi penjumlahan dua suku; satu suku merupakan perkalian skalar dengan suatu vektor tak-nol \vec{a} , dan satu suku lagi yang ortogonal ke \vec{a} . Sebagai contoh, jika \vec{u} dan \vec{a} vektor-vektor di \mathbb{R}^2 yang diposisikan dengan titik-titik pangkal berimpit di titik Q, maka dapat dilakukan dekomposisi sebagai berikut (Gambar 3.22):

- Tarik garis tegak lurus dari ujung \vec{u} ke garis yang melalui \vec{a} .
- Buatlah vektor \vec{w}_1 dari Q ke kaki garis tegak lurus yang telah dibuat.
- Buatlah vektor $\vec{w}_2 = \vec{u} \vec{w}_1$.

Karena $\vec{w}_1 + \vec{w}_2 = \vec{w}_1 + (\vec{u} - \vec{w}_1) = \vec{u}$, berarti \vec{u} didekomposisi menjadi penjumlahan dari dua vektor ortogonal, yang pertama berupa perkalian dengan skalar untuk \vec{a} dan yang ke-dua ortogonal ke \vec{a} .

TEOREMA 3.20 Teorema Proyeksi

Jika \vec{u} dan \vec{a} vektor-vektor di \mathbb{R}^n , dan \vec{a} vektor tak-nol, maka \vec{u} dapat dinyatakan secara tunggal sebagai $\vec{u} = \vec{w}_1 + \vec{w}_2$, dengan \vec{w}_1 kelipatan skalar dari \vec{a} dan \vec{w}_1 ortogonal ke \vec{a} .

Vektor-vektor \vec{w}_1 dan \vec{w}_2 dalam Teorema Proyeksi mempunyai nama khusus – vektor \vec{w}_1 disebut proyeksi ortogonal dari \vec{u} pada \vec{a} , atau kadang disebut komponen vektor dari \vec{u} sepanjang \vec{a} , dan vektor \vec{w}_2 disebut komponen vektor dari \vec{u} ortogonnal ke \vec{a} . Vektor \vec{w}_1 biasanya ditulis dengan simbol proj \vec{a} \vec{u} , sehingga dari $\vec{u} = \vec{w}_1 + \vec{w}_2$ dapat diperoleh $\vec{w}_2 = \vec{u} - \text{proj}_{\vec{a}}\vec{u}$. Selanjutnya dapat dirangkum sebagai berikut:

$$\operatorname{proj}_{\vec{a}} \vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a} \quad \text{(komponen vektor } \vec{u} \text{ sepanjang } \vec{a} \text{)} \tag{3.39}$$

$$\vec{u} - \text{proj}_{\vec{a}}\vec{u} = \vec{u} - \frac{\vec{u} \cdot \vec{a}}{\|a\|^2}$$
 (komponen vektor \vec{u} ortogonal ke \vec{a}) (3.40)

CONTOH 3.14 Proyeksi Ortogonal pada Garis

Dapatkan proyeksi ortogonal dari vektor-vektor $\vec{e}_1 = (1,0)$ dan $\vec{e}_2(0,1)$ pada garis ℓ yang membentuk sudut θ dengan sumbu-x positif di \mathbb{R}^2 .

Penyelesaian. Sebagaimana tampak pada Gambar 3.23, $\vec{a} = (\cos \theta, \sin \theta)$ adalah vektor satuan sepanjang garis L, sehingga permasalahan pertama adalah mencari proyeksi ortogonal dari \vec{e}_1 sepanjang \vec{a} . Karena

$$\|\vec{a}\| = \sqrt{\sin^2 \theta + \cos^2 \theta} = 1$$
 dan $\vec{e}_1 \cdot \vec{a} = (1,0) \cdot (\cos \theta, \sin \theta) = \cos \theta$,

berdasarkan Rumus 3.40 proyeksi yang dimaksud adalah

$$\operatorname{proj}_{\vec{a}}\vec{e}_{1} = \frac{\vec{e}_{1} \cdot \vec{a}}{\|\vec{a}\|^{2}}\vec{a} = (\cos \theta)(\cos \theta, \sin \theta) = (\cos^{2} \theta, \sin^{2} \theta).$$

Dengan cara serupa, karena $\vec{e}_2 \cdot \vec{a} = (0,1) \cdot (\cos \theta, \sin \theta) = \sin \theta$, berdasarkan Rumus 3.40 diperoleh

$$\operatorname{proj}_{\vec{a}}\vec{e}_{2} = \frac{\vec{e}_{2} \cdot \vec{a}}{\|\vec{a}\|^{2}}\vec{a} = (\sin \theta)(\cos \theta, \sin \theta) = (\sin \theta, \cos \theta \sin^{2} \theta).$$

Conton 3.15 Komponen Vektor \vec{u} Sepanjang \vec{a}

Misalkan $\vec{u} = (2, -1, 3)$ dan $\vec{a} = (4, -1, 2)$. Dapatkan komponen vektor \vec{u} sepanjang \vec{a} dan komponen vektor \vec{u} ortogonal \vec{a} .

Penyelesaian.

$$\vec{u} \cdot \vec{a} = (2)(4) + (-1)(-1) + (3)(2) = 15$$

$$\|\vec{a}\|^2 = 4^2 + (-1)^2 + (2)^2 = 21.$$

Jadi komponen vektor dari \vec{u} sepanjang \vec{a} adalah

$$\operatorname{proj}_{\vec{a}}\vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a} = \frac{15}{21} (4, -1, 2) = \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right),$$

dan kompoen vektor dari \vec{u} ortogonal ke \vec{a} adalah

$$\vec{u} - \text{proj}_{\vec{a}}\vec{u} = (2, -1, 3) - \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right) = \left(-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right).$$

Untuk memeriksa kebenarannya, dapat ditunnjukkan bahwa vektor-vektor $\vec{u} - \text{proj}_{\vec{a}}\vec{u}$ dan \vec{a} saling tegak lurus dengan menunjukkan hasil-kali titiknya nol.

Untuk menghitung norma dari komponen vektor \vec{u} sepanjang \vec{a} , dapat dikerjakan sebagai berikut

$$\|\text{proj}_{\vec{a}}\vec{u}\| = \left\| \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \right\| = \left| \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \right| \|\vec{a}\| = \frac{|\vec{u} \cdot \vec{a}|}{\|\vec{a}\|^2} \|\vec{a}\|$$

dengan kesamaan ke-dua diperoleh menggunakan Teorema 3.8(c) dan yang ke-tiga dari kenyataan bahwa $||a||^2 > 0$. Jadi diperoleh rumus

$$\|\operatorname{proj}_{\vec{a}}\vec{u}\| = \frac{|\vec{u} \cdot \vec{a}|}{\|\vec{a}\|} \tag{3.41}$$

Jika θ menyatakan sudut antara \vec{u} dan \vec{a} , maka $\vec{u} \cdot \vec{a} = ||\vec{u}|| \, ||\vec{a}|| \cos \theta$, sehingga (3.41) dapat ditulis sebagai

$$\|\operatorname{proj}_{\vec{a}}\vec{u}\| = \|\vec{u}\|\cos\theta. \tag{3.42}$$

Interpretasi geometrik dari hasil ini diberikan dalam Gambar 3.24.

■ Teorema Pythagoras

Telah dibahas pada bagian sebelumnya bahwa banyak teorema tentang vektor-vektor di \mathbb{R}^2 dan \mathbb{R}^3 yang juga berlaku di \mathbb{R}^n . Salah satunya adalah Teorema Pythagoras yang diperumum untuk \mathbb{R}^n (Gambar 3.25).

Gambar 3.25

TEOREMA 3.21 Teorema Pythagoras di \mathbb{R}^n

Jika \vec{u} dan \vec{v} vektor-vektor ortogonal di \mathbb{R}^n dengan hasil-kali-dalam Euclid, maka

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2. \tag{3.43}$$