CPE301 - SPRING 2019

Design Assignment 6

Student Name: Ron Joshua Recrio

Student #: 5003825419

Student Email: recrio@unlv.nevada.edu

Primary Github address: https://github.com/recrio/submissions

Directory: /DesignAssignments/DA6

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used:
ATmega328p Xplained Mini
MPU-6050

Block diagram with pins used in the Atmega328P

2. INITIAL CODE OF TASK 1

```
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#include <avr/io.h>
#include <util/delay.h>
#include <math.h>
#include <stdlib.h>
                                                                                     /*
Include standard library file */
#include <stdio.h>
                                                                                     /*
Include standard library file */
#include "MPU6050_def.h"
                                                                       /* Include MPU6050
register define file */
#include "i2c master.h"
                                                                       /* Include I2C
Master header file */
#include "uart.h"
                                                                /* Include USART header
file */
#define MPU6050 WRITE 0xD0
#define MPU6050 READ 0xD1
// stores raw values
float Acc_x, Acc_y, Acc_z, Gy_x, Gy_y, Gy_z;
void init uart(uint16 t baudrate){
       uint16_t UBRR_val = (F_CPU/16)/(baudrate-1);
       UBRROH = UBRR_val >> 8;
      UBRRØL = UBRR val;
      UCSRØB = (1 << TXENØ) | (1 << RXENØ) | (1 << RXCIEØ); // UART TX (Transmit - senden)
einschalten
       UCSR0C |= (1<<USBS0) | (3<<UCSZ00); //Modus Asynchron 8N1 (8 Datenbits, No Parity,
1 Stopbit)
}
void uart_putc(unsigned char c){
       while(!(UCSR0A & (1<<UDRE0))); // wait until sending is possible</pre>
       UDR0 = c; // output character saved in c
}
void uart_puts(char *s){
       while(*s){
              uart_putc(*s);
              S++;
       }
}
void init MPU6050(void){
      _delay_ms(150);
       /* Power up time >100ms */
       i2c_start(MPU6050_WRITE); // Set Gyroscope Sample Rate = 1 KHz, Accelerometer
Sample Rate = 1 KHz (default)
```

```
i2c_write(SMPLRT_DIV); // Sample Rate is generated by dividing the gyroscope
output rate by SMPLRT DIV
       i2c_write(0x07); // Gyroscope Output Rate = 8kHz, Sample Rate = Gyroscope Output
Rate / (1 + SMPLRT_DIV)
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c write(PWR MGMT 1);
       i2c write(0x01); // PLL with X axis gyroscope reference
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c write(CONFIG); //Frame Synchronization & Digital Low Pass Filter (DLPF)
setting
       i2c_write(0x00);
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c_write(GYRO_CONFIG); //gyroscopes' scale range = FS_SEL selects = 11 = ± 2000
°/s
                                    // accelerometer range = ± 2g (default)
       i2c_write(0x18);
       i2c_stop();
       i2c_start(MPU6050_WRITE);
       i2c_write(INT_ENABLE); // DATA_RDY_EN = 1
       i2c write(0x01);
       i2c_stop();
}
void getreading(void){
       i2c start(MPU6050 WRITE);
       i2c_write(ACCEL_XOUT_H); // point to this addr
       i2c_stop();
       i2c start(MPU6050 READ);
       // take in high byte and combine with low byte
       Acc_x = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
 Acc_y = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());
Acc_z = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());
       i2c_stop();
       i2c start(MPU6050 WRITE);
       i2c_write(GYRO_XOUT_H); // point to gyro addr
       i2c_stop();
       i2c start(MPU6050 READ);
       // take in high byte and combine with low byte
       Gy_x = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       Gy_y = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       Gy_z = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       i2c_stop();
}
```

```
int main(void){
       char buffer[20], float_[10];
       float Xa, Ya, Za, Xg, Yg, Zg;
       init uart(9600);
       i2c_init();
       init_MPU6050();
       while(1){
              getreading();
                                                                                     /*
             Xa = Acc_x/16384.0;
Divide raw value by sensitivity scale factor to get real values */
             Ya = Acc y/16384.0;
             Za = Acc x/16384.0;
             Xg = Gy_x/16.4;
             Yg = Gy_y/16.4;
              Zg = Gy_z/16.4;
              dtostrf( Xa, 3, 2, float_ );
                                                                             /* Take
values in buffer to send all parameters over USART */
              sprintf(buffer, "Ax: %s, ",float_);
             USART_SendString(buffer);
              dtostrf( Ya, 3, 2, float_ );
             sprintf(buffer, "Ay: %s, ",float_);
             USART_SendString(buffer);
             dtostrf( Za, 3, 2, float_ );
             sprintf(buffer, "Az: %s, \n", float_);
             USART_SendString(buffer);
              dtostrf( Xg, 3, 2, float_ );
             sprintf(buffer, "Gx: %s, ",float_);
             USART_SendString(buffer);
              dtostrf( Yg, 3, 2, float_ );
              sprintf(buffer, "Gy: %s, ", float_);
             USART_SendString(buffer);
              dtostrf( Zg, 3, 2, float_ );
             sprintf(buffer, "Gz: %s, \n\n", float_);
             USART_SendString(buffer);
             _delay_ms(1000);
       }
       return 0;
}
```

3. SCHEMATICS

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

```
Gx: -150.12, Gy: -232.13, Gz: -356.65,

Ax: -0.99, Ay: -2.00, Az: -0.99,
Gx: 915.67, Gy: 381.22, Gz: 391.46,

Ax: -2.00, Ay: 2.00, Az: -2.00,
Gx: -485.98, Gy: -266.77, Gz: -269.82,

Ax: -0.58, Ay: 0.18, Az: -0.58,
Gx: 16.59, Gy: 53.96, Gz: 159.94,

Ax: -0.96, Ay: -0.02, Az: -0.96,
Gx: -3.05, Gy: 1.65, Gz: 1.59,

Ax: -0.97, Ay: -0.04, Az: -0.97,
Gx: -3.29, Gy: 1.65, Gz: 1.46,
```

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/94g8JURskBE

7. GITHUB LINK OF THIS DA

https://github.com/recrio/submissions/tree/master/DesignAssignments/DA6

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Ron Joshua Recrio