Проект по рискменеджменту

Команда:

Данг Куинь Ньы Каган Елизавета Ширшов Максим Кожевников Николай Сагало Екатерина

Этапы работы над проектом

Сбор данных

Факторы, курсы валют

- Курсы доллара и евро
- Цена на нефть Brent
- Индекс МосБиржи
- Индекс РТС
- Металлы: платина, золото, серебро
- Кривая бескупонной доходности на разные сроки

Акции

- Сбербанк
- Лукойл, Газпром, Роснефть, Татнефть, Норникель
- Аэрофлот
- Яндекс
- MTC
- ПИК

Облигации

- ОФЗ-ПД-26207
- ОФЗ-ПД-26215
- ОФЗ-ПД-26218
- ОФЗ-ПД-26219
- ОФЗ-ПД-26222

Сбор данных: визуализация

Сбор данных: источники

- Курсы валют:
 - https://www.cbr.ru/currency_base/dynamics/?UniDbQuery.Posted=True&UniDbQuery.so=1&UniDbQuery.mode=1&UniDbQuery.date_req1=&UniDbQuery.date_req2=&UniDbQuery.VAL_NM_RQ=R01235&UniDbQuery.From=01.01.2015&UniDbQuery.To=31.12.2022
- Нефть: https://investfunds.ru/indexes/624/
- Индекс МосБиржи: https://investfunds.ru/indexes/216/
- Индекс PTC: https://investfunds.ru/indexes/218
- Металлы:
 - https://www.cbr.ru/hd_base/metall/metall_base_new/?UniDbQuery.Posted=True&UniDbQuery.From=01.01.2015&UniDbQuery.To=31.12.2022&UniDbQuery.Gold=true&UniDbQuery.Silver=true&UniDbQuery.Platinum=true&UniDbQuery.so=1
- Кривая бескупонной доходности на разные сроки:
 http://www.cbr.ru/hd_base/zcyc_params/?UniDbQuery.Posted=True&UniDbQuery.From=01.01.2015&UniDbQuery.To=31.12.
 2022
- Акции: библиотека yfinance
- Облигации: https://smart-lab.ru/q/ofz/, https://rusbonds.ru/bonds/, https://smart-lab.ru/q/ofz/, https://rusbonds.ru/bonds/, https://smart-lab.ru/q/ofz/, https://smart-lab.ru/q/ofz/, https://smart-lab.ru/q/ofz/, https://smart-lab.ru/q/ofz/, https://www.moex.com/ru/bondization/calendar

Анализ данных

- Ожидаемо, высокая корреляция КБД
- Высокая корреляция РТС-МосБиржа,
 Серебро-Золото, Платина-Серебро
- Низкая корреляция акций Аэрофлота с остальными акциями

Анализ данных

- data_stats.py
- Разложение тренд-сезон-цикл
- Тесты на стационарность
- ACF/PACF
- Графики распределений
- QQ-plot


```
def plot_hist(data, title="", pct_change=False, ax=None):...
def plot_series(data, title="", pct_change=False, ax=None):...
def plot_qq_plot(data, title="", pct_change=True, ax=None, dist='norm'):...
def decomposition(self):
    self.result_add = plot_decomposition(self.data)
    self.result_mult = plot_decomposition(self.data, 'multiplicative')
```

Diff-1

ADF test: the series is not stationary. KPSS test: the series is not stationary.

Seasonal difference (30)

ADF test: the series is stationary.

KPSS test: the series is stationary.

Seasonal difference (90)

ADF test: the series is stationary.

KPSS test: the series is stationary.

Анализ данных

Модели стохастической динамики

Реализован *модуль*, подбирающий по ряду данных одну из трех представленных стохастических моделей и позволяющий симулировать значения на будущее.

- 1. Сначала по обучающей выборке подбираются параметры.
- С учетом параметров строится заданное число N симуляций.
- 3. Считается ошибка (пользователь может задать метрику, на выбор MAPE, MAE, RMSE), усредняется по всем траекториям.
- 4. По метрике выбирается лучшая модель.
- 5. На основании отобранной модели и параметров строится N траекторий на t шагов вперед.

$$1.\ dX_t = a\ dt + b\ dW_t$$
 $2.\ dX_t = a\ X_t\ dt + b\ X_t\ dW_t$ $3.\ CIR:\ dX_t = a(b-X_t)dt + c\sqrt{X_t}dW_t$

Так как скоррелированность риск-факторов определяется скоррелированностью приращений Винеровского процесса, для построений симуляций на наборе риск-факторов используются коррелированные Винеровские процессы. При этом используется Разложение Холецкого.

Пример 1: нефть, в качестве метрики выбрана RMSE, 100 траекторий.

Пример 2: индекс РТС, в качестве метрики выбрана МАРЕ, 25 траекторий, симуляции на 15 шагов вперед.

Пример 3: курс доллара

Оценка справедливой стоимости инструментов

Для оценка стоимости инструмента реализован *модуль*, принимающий на вход набор риск-факторов и целевые значения.В качестве параметров можно задавать дату для разбиения выборки на обучающую/тестовую или кол–во шагов, на которое строится прогноз, оптимизируемую метрику, кол-во симуляций и флаг, использовать ли РСА.

При оценке использовались следующие модели:

- 1. Линейная регрессия
- 2. LightGBM
- 3. стохастические

Валюта	Акции/облигации
серебро, платина, КБД 0.25, КБД 1, КБД 5, КБД 10, КБД	Курс доллара, курс евро, цена на нефть, индекс МосБиржи, РТС, золото, серебро, платина, КБД 0.25, КБД 1, КБД 5, КБД 10, КБД 20

Пример 1: курс доллара

	mape
stoch_model	0.032396
LinReg	0.123140
LGBM	0.016790

Пример 2: акции Сбербанк

	mape
stoch_model	0.074523
LinReg	0.123194
LGBM	0.129213

На примере акций Сбербанка можно заметить, что построение траекторий стохастическими моделями может давать в среднем более точный результат, чем модели, построенные на факторах.

Оценка VaR и Expected Shortfall (симуляция)

Approach	Value at Risk 99%	Conditional Value at Risk (ES) 97.5%
Parametric, 1d	-0.0119	-0.0126
Historical, 1d	-0.0122	-0.0115
Parametric, 10d	-0.0375	-0.0397
Historical, 10d	-0.0385	-0.0364
Bootstrapping, 1d	-0.0110	-0.0115
Bootstrapping, 10d	-0.0385	-0.0364

Backtesting (симуляция)

Stocks

Currencies

Оценка VaR и Expected Shortfall (реальные данные)

Approach	Value at Risk 99%	Conditional Value at Risk (ES) 97.5%
Parametric, 1d	-0.1924	-0.2576
Historical, 1d	-0.2442	-0.2548
Parametric, 10d	-0.6084	-0.8145
Historical, 10d	-0.7721	-0.8056
Bootstrapping, 1d	-0.2458	-0.2576
Bootstrapping, 10d	-0.7721	-0.8145

Backtesting (реальные данные)

Пробоев 99%: 24

Репозиторий

https://github.com/guynhu-d/hse_risk_management_1/tree/main/notebooks