INTEGRABILITY AS A CONSEQUENCE OF DISCRETE HOLOMORPHICITY

Imam Tashdid ul Alam

Department of Theoretical Physics Research School of Physics & Engineering The Australian National University

December 3, 2012

OUTLINE

- Discrete holomorphicity
- Self-dual Potts model
- Yang-Baxter integrability
- Holomorphic observable
- DH ⇒ YBE

DISCRETIZED ANALYTICITY

$$\psi: \Omega \to \mathbb{C}$$
analytic
$$\psi$$

$$\oint_{\gamma} \psi(z) \, \mathrm{d}z = 0$$

DISCRETIZED ANALYTICITY

$$\psi: \Omega \to \mathbb{C}$$
analytic
$$\psi$$

$$\oint_{\gamma} \psi(z) \, \mathrm{d}z = 0$$

Discretize!
$$\sum_{\gamma} \psi(z) \, \Delta z \approx 0$$

DISCRETIZED ANALYTICITY

$$\psi: \Omega \to \mathbb{C}$$
analytic
$$\psi$$

$$\phi_{\gamma} \psi(z) dz = 0$$

Discretize!
$$\sum_{\gamma} \psi(z) \, \Delta z = 0$$

discretely holomorphic

LOOP FORMULATION

two kinds of tiles

$$a^{\#(\lozenge\lozenge)}\,b^{\#(\lozenge\lozenge)}\,\widetilde{a}^{\#(\lozenge\lozenge)}\,\widetilde{b}^{\#(\lozenge\lozenge)}\,n^{\#(\lozenge)}$$

$$n = \sqrt{Q} = 2\cos\lambda \qquad (0 \le Q \le 4)$$

LOOP FORMULATION

two kinds of tiles

$$\begin{array}{ccc}
& & & & \\
\text{type } a & & \text{type } b
\end{array}$$

$$a^{\#(\lozenge\lozenge\lozenge)}\,b^{\#(\lozenge\lozenge\lozenge)}\,\widetilde{a}^{\#(\lozenge\lozenge\lozenge)}\,\widetilde{b}^{\#(\lozenge\lozenge\lozenge)}\,n^{\#(\lozenge)}$$

$$n = \sqrt{Q} = 2\cos\lambda \qquad (0 \le Q \le 4)$$

LOOP FORMULATION

two kinds of tiles

$$a^{\#(\lozenge\lozenge\lozenge)}\,b^{\#(\lozenge\lozenge\lozenge)}\,\widetilde{a}^{\#(\lozenge\lozenge\lozenge)}\,\widetilde{b}^{\#(\lozenge\lozenge\lozenge)}\,n^{\#(\lozenge)}$$

$$n = \sqrt{Q} = 2\cos\lambda \qquad (0 \le Q \le 4)$$

LOOP FORMULATION

two kinds of tiles

$$a^{\#(\lozenge\lozenge)}\,b^{\#(\lozenge\lozenge)}\,\widetilde{a}^{\#(\lozenge\lozenge)}\,\widetilde{b}^{\#(\lozenge\lozenge)}\,n^{\#(\lozenge)}$$

$$n = \sqrt{Q} = 2\cos\lambda \qquad (0 \le Q \le 4)$$

LOOP FORMULATION

two kinds of tiles

$$a^{\#(\lozenge\lozenge)}b^{\#(\lozenge\lozenge)}\widetilde{a}^{\#(\lozenge\lozenge)}\widetilde{b}^{\#(\lozenge\lozenge)}n^{\#(\lozenge)}$$

$$n = \sqrt{Q} = 2\cos\lambda \qquad (0 \le Q \le 4)$$

$$\mathbf{R} = \mathbf{R} = \mathbf{R} + \mathbf{R} +$$

$$a_{\alpha} a_{\beta} a_{\gamma}$$
 $(c) + a_{\alpha} a_{\beta} b_{\gamma}$ $(c) + a_{\alpha} b_{\beta} a_{\gamma}$ $(c) + b_{\alpha} a_{\beta} a_{\gamma}$

$$+\left(a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ a_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ a_{\gamma}\right) \left(\begin{array}{c} (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\alpha}\ b_{\beta}\ b_{\gamma} \\ (a_{\alpha}\ b_{\beta}\ b_{\gamma}+b_{\alpha}\ b_{\alpha}\ b_{\gamma}+b_{\alpha}\ b_{\alpha}\ b_{\gamma}+b_{\alpha}\ b_{\alpha}\ b_{\alpha}+b_{\alpha}\ b_{\alpha}\ b_{\alpha}+b_{\alpha}\ b_{\alpha}+b_{\alpha}\ b_{\alpha}+b_{\alpha}\ b_{\alpha}+b_{\alpha}+b_{\alpha}+b_{\alpha}+$$

$$a_{\alpha} a_{\beta} a_{\gamma}$$
 $(c) + a_{\alpha} a_{\beta} b_{\gamma}$ $(c) + a_{\alpha} b_{\beta} a_{\gamma}$ $(c) + b_{\alpha} a_{\beta} a_{\gamma}$

$$+(a_{\alpha} b_{\beta} b_{\gamma} + b_{\alpha} a_{\beta} b_{\gamma} + b_{\alpha} b_{\beta} a_{\gamma} + n b_{\alpha} b_{\beta} b_{\gamma})$$

YANG-BAXTER EQUATION

$$(-a_{\alpha} a_{\beta} a_{\gamma} + a_{\alpha} b_{\beta} b_{\gamma} + b_{\alpha} a_{\beta} b_{\gamma} + b_{\alpha} b_{\beta} a_{\gamma} + n b_{\alpha} b_{\beta} b_{\gamma}) \left(\begin{array}{c} (a_{\beta} b_{\gamma}) \\ (a_{\beta} b_{\gamma}) \end{array} \right) = 0$$

Yang-Baxter equation

$$a_{\alpha} a_{\beta} a_{\gamma} = a_{\alpha} b_{\beta} b_{\gamma} + b_{\alpha} a_{\beta} b_{\gamma} + b_{\alpha} b_{\beta} a_{\gamma} + n b_{\alpha} b_{\beta} b_{\gamma}$$

$$\psi(z) = \sum_{\gamma \in \Gamma(0,z)} e^{-i\sigma} W_{\gamma}(0 \to z) \quad w(\gamma)$$

observable on **embedded** lattice

$$\psi(z) = \sum_{\gamma \in \Gamma(0,z)} e^{-i\sigma} W_{\gamma}(0 \to z) \quad w(\gamma)$$

contour sum vanishes

$$\sum_{\text{contour}} \psi(z) \, \Delta z = 0$$

at the **isotropic** point

$$a = b = \tilde{a} = \tilde{b}$$

with

$$\sigma = 1 - \frac{2\lambda}{\pi}$$

7 / 16

Riva V & Cardy J J. Stat. Mech. P12001 (2006)

observable on **embedded** lattice

$$\psi(z) = \sum_{\gamma \in \Gamma(0,z)} e^{-i\sigma} W_{\gamma}(0 \to z) \quad w(\gamma)$$

contour sum vanishes

$$\sum_{\text{contour}} \psi(z) \, \Delta z = 0$$

at the **isotropic** point

$$a = b = \tilde{a} = \tilde{b}$$

with

$$\sigma = 1 - \frac{2\lambda}{\pi}$$

7 / 16

Riva V & Cardy J J. Stat. Mech. P12001 (2006)

observable on **embedded** lattice

$$\psi(z) = \sum_{\gamma \in \Gamma(0,z)} e^{-i\sigma W_{\gamma}(0 \to z)} w(\gamma)$$

contour sum vanishes

$$\sum_{\text{contour}} \psi(z) \, \Delta z = 0$$

at the **isotropic** point

$$a = b = \tilde{a} = \tilde{b}$$

with

$$\sigma = 1 - \frac{2\lambda}{\pi}$$

7 / 16

Riva V & Cardy J J. Stat. Mech. P12001 (2006)

observable on **embedded** lattice

$$\psi(z) = \sum_{\gamma \in \Gamma(0,z)} e^{-i\sigma W_{\gamma}(0 \to z)} w(\gamma)$$

contour sum vanishes

$$\sum_{\text{contour}} \psi(z) \, \Delta z = 0$$

at the **isotropic** point

$$a = b = \tilde{a} = \tilde{b}$$

with

$$\sigma = 1 - \frac{2\lambda}{\pi}$$

Riva V & Cardy J J. Stat. Mech. P12001 (2006)

On a rhombus¹

with
$$\phi(\alpha) = e^{i\,(1-\sigma)\,\alpha}$$
, want $\sum_{\diamondsuit} \psi(z)\,\Delta z = 0$

$$n^2 \left(1 - \phi(\alpha - \pi)\right) a_\alpha + n \left(1 - \phi(\alpha - \pi) + \phi(-\pi) - \phi(\alpha)\right) b_\alpha = 0$$

$$n\left(1-\phi(\alpha-\pi)+\phi(\pi)-\phi(\alpha)\right)a_{\alpha}+n^{2}\left(1-\phi(\alpha)\right)b_{\alpha}=0$$

$$n^2 (1 - \phi(\alpha)) b_\alpha = 0$$

lkhlef Y & Cardy J *J. Phys. A* **42** 102001 (2009)

ON A RHOMBUS

needed angle independent condition

$$\phi(\pi) + \phi(-\pi) = n^2 - 2$$

fixes conformal spin

$$\cos((1-\sigma)\pi) = \cos(2\lambda)$$

$$\sigma = 1 - \frac{2\lambda}{\pi} \mod 2\mathbb{Z}$$

solution weights

$$\frac{a_{\alpha}}{b_{\alpha}} = \frac{\sin\left(\frac{\lambda}{\pi}\alpha\right)}{\sin\left(\frac{\lambda}{\pi}(\pi-\alpha)\right)}, \qquad \frac{a(u)}{b(u)} = \frac{\sin u}{\sin(\lambda-u)}$$

SELF-DUALITY

a dual weights given by $\alpha \mapsto \pi - \alpha$

$$\frac{\widetilde{a}_{\alpha}}{\widetilde{b}_{\alpha}} = \frac{a_{\pi-\alpha}}{b_{\pi-\alpha}} = \frac{\sin\left(\frac{\lambda}{\pi}(\pi-\alpha)\right)}{\sin\left(\frac{\lambda}{\pi}\alpha\right)}$$

satisfies self-duality

$$\frac{a_{\alpha}}{b_{\alpha}} \frac{\widetilde{a}_{\alpha}}{\widetilde{b}_{\alpha}} = 1$$

rôles of a and b are interchanged

A FAMILY OF SOLUTIONS

condition for discrete holomorphicity

$$\cos((1-\sigma)\pi) = \cos(2\lambda)$$

positive solutions for conformal spin

$$\sigma = 1 + 2\left(\ell - \frac{\lambda}{\pi}\right)$$

lacktriangle weights **indexed** by ℓ

$$\frac{a_{\alpha}}{b_{\alpha}} = (-1)^{\ell} \frac{\sin\left(\left(\frac{\lambda}{\pi} - \ell\right)\alpha\right)}{\sin\left(\left(\frac{\lambda}{\pi} - \ell\right)(\pi - \alpha)\right)}, \qquad \frac{a(u)}{b(u)} = (-1)^{\ell} \frac{\sin\left(\left(1 - \frac{\ell\pi}{\lambda}\right)u\right)}{\sin\left(\left(1 - \frac{\ell\pi}{\lambda}\right)(\lambda - u)\right)}$$

Inversion Relation $DH \Rightarrow IR$

 ${\bf DH}$ on ${\bf every}$ rhombus with ${\bf same}~\sigma$

DH on **every** rhombus with **same** σ

internal edge cancels

five different chord diagrams

DH on **every** rhombus with **same** σ

internal edge cancels

five different chord diagrams

one is enough

quadratic equation in weights

$$\beta = -\alpha \implies$$

$$n a_{\alpha} a_{-\alpha} + a_{\alpha} b_{-\alpha} + b_{\alpha} a_{-\alpha} = 0$$

- **quadratic** equation in weights
- $\beta = -\alpha \implies$

$$n a_{\alpha} a_{-\alpha} + a_{\alpha} b_{-\alpha} + b_{\alpha} a_{-\alpha} = 0$$

- the inversion relation
- $\beta = 2\pi \alpha, \alpha \mapsto \pi \alpha$ \Longrightarrow inversion relations for the **dual** weights

YANG-BAXTER EQUATIONS

 $DH \implies YBE$

- third rhombus with $\alpha + \beta + \gamma = 2\pi$
- internal edges cancel

YANG-BAXTER EQUATIONS

 $DH \implies YBE$

- third rhombus with $\alpha + \beta + \gamma = 2\pi$
- internal edges cancel
- $a_{\alpha} a_{\beta} a_{\gamma} = a_{\alpha} b_{\beta} b_{\gamma} + b_{\alpha} a_{\beta} b_{\gamma} + b_{\alpha} b_{\beta} a_{\gamma} + n b_{\alpha} b_{\beta} b_{\gamma}$
- the Yang-Baxter equation!

SUMMARY

- DH ⇒ IR+YBE
- DH fixes conformal spin
- simple **geometric** construction

THE END

Thank you!

