WORK LOG OF JUNE 28

DANIEL R. BARRERO R.

1

The free operads of Baez are obtained via C-trees, where C is a collection.

Definition 1. A C - n-tree is a planar n-tree such that each vertex with k children is labeled by an element of C_k .

2

The identification of phylogentetic trees with the operations of $Com + \mathbb{R}^{\geq 0}$ is thanks to the following theorem in [1]:

Theorem 1. If O and O' are operads such that O' has only unary operations, then there is a bijection between $(O + O')_n$ and equivalence classes of $(O, O'_1) - n$ —trees such that no unary vertex is labeled with 1_O and no internal edge is labeled with $1_{O'}$.

2.1. The equivalence relation considered in theorem 1 is the one given by the *natural* way to permute labeled rooted trees, namely respecting "genealogy" or, more formally, its *partial order structure*.

3. Comments

- **3.1.** The definition of operad in [1] coincides with that of May in Geometry of iterated loop spaces. Namely, it is a symmetric operad in the symmetric monoidal category of topological spaces. With the exception that more than one 0-ary operations are allowed.
- **3.2.** The forgetful functor

$$U: \mathrm{Op} \to \mathrm{Top}^{\mathbf{N}}$$

is natural because operad maps are degree-preserving.

3.3. Operad maps are defined by preserving the commutative diagrams of operads, and being continuous 1 .

References

[1] Baez, J. C., and Otter, N. Operads and phylogenetic trees, 2017.

Date: June 30, 2025.

¹Read May in case there are topological or otherwise considerations I'm ignoring.