MedvedskyPV 29112024-141936

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 2 ГГц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

- 1) A
- 2) B
- 3) C

4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1
3.8	0.709	95.1	1.497	12.2	0.150	35.3	0.212	-108.4
3.9	0.716	93.5	1.452	10.3	0.153	34.4	0.213	-111.7
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.2	0.732	89.0	1.330	4.9	0.161	31.6	0.217	-121.7
4.3	0.737	87.5	1.292	3.1	0.164	30.7	0.219	-125.0
4.4	0.743	86.0	1.256	1.2	0.166	29.8	0.221	-128.3
4.5	0.749	84.6	1.221	-0.8	0.169	28.9	0.225	-131.4
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2
4.7	0.755	82.3	1.161	-3.4	0.174	27.6	0.230	-136.9

и частоты $f_{\rm H}=4.1~\Gamma\Gamma$ ц, $f_{\rm B}=4.7~\Gamma\Gamma$ ц. **Найти** модуль s_{21} в дБ на частоте $f_{\rm B}$.

Варианты ОТВЕТА:

- 1) 1.3 дБ
- 2) -2.4 дБ
- 3) -15.2 дБ
- 4) -12.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s	22
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
5.0	0.410	141.9	2.491	42.4	0.160	48.3	0.131	-139.8
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
6.0	0.422	132.4	2.091	32.7	0.188	41.5	0.106	-159.6
6.5	0.435	127.0	1.934	28.0	0.201	38.0	0.098	-175.7
7.0	0.450	121.5	1.795	23.0	0.214	34.4	0.093	166.3

и частоты $f_{\scriptscriptstyle \rm H}=4$ ГГц, $f_{\scriptscriptstyle \rm B}=6.5$ ГГц. **Найти** неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B},$ используя рисунок 2.

Рисунок 2 — Частотная характеристика усиления

Варианты ОТВЕТА:

1) 8.6 дБ

- 2) 2 дБ 3) 4.1 дБ 4) 3.8 дБ

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.25+0.65\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 4, причём R1 = 46.49 Ом.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.349	-165.3	10.751	87.4	0.045	67.0	0.283	-68.4
1.4	0.358	-170.8	9.244	83.6	0.051	66.7	0.250	-73.2
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.8	0.370	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6

и частоты $f_{\mbox{\tiny H}}=1.4$ $\Gamma\Gamma\mbox{\scriptsize H},\,f_{\mbox{\tiny B}}=3.5$ $\Gamma\Gamma\mbox{\scriptsize H}.$

Найти обратные потери по входу на $f_{\scriptscriptstyle \mathrm{H}}.$

Варианты ОТВЕТА:

- 1) 17.8 дБ
- 2) 4.1 дБ
- 3) 8.1 дБ
- 4) 8.9 дБ