

COLLECTIVE MOTION: JAMMING AND CROWD DYNAMICS

Team Swarm
Harvard SEAS REU
TRiCAM Program

COLLECTIVE MOTION

COLLECTIVE MOTION

 Ordered movement in a system consisting of many self-propelled agents following local rules

Global behavior varies from local rules

Collective Motion of Locusts

Direction and Position Update

- Summation Term
 - Averages the neighboring particles' angles
- Noise Term
- Samples from a distribution uniform
- Strength coefficient

$$\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \mathbf{v}_i(t)\Delta t$$

$$\mathbf{v}_i(t + \Delta t) = \frac{\sum_{j \in R_i} \mathbf{v}_j}{|\sum_{j \in R_i} \mathbf{v}_j|} + \eta \zeta(t)$$

Direction and Position Update

- Summation Term
 - Averages the neighboring particles' angles
- Noise Term
 - Samples from a distribution uniform
 - Strength coefficient

Direction and Position Update

- Summation Term
 - Averages the neighboring particles' angles
- Noise Term
 - Samples from a distribution uniform
 - Strength coefficient

ORDER PARAMETER

Order: Magnitude of average of all direction vectors

ORDER PARAMETER

Noise: Random Directional deflection angle within a certain range.

Phase Diagram – Long-term order
 as a function of noise and density

Final States

Order vs. Density and Noise coefficient

BOUNDARIES

- Periodic
 - No hard edges
 - Everything wraps around
- Closed
 - Reflect the direction
 - Reduce the outgoing speed

SMART AGENTS

- Naïve Agent
- Basic system information
- Smart Agent
 - Given additional information
- •Understands the crowd's pressure
- Goal of Smart Agent
 - Trying to get the closest to the stage as possible using different paths

SMART AGENTS

- Naïve Agent
- Basic system information
- Smart Agent
- Given additional information
- •Understands the crowd's pressure
- Goal of Smart Agent
 - Trying to get the closest to the stage as possible using different paths

SMART AGENTS

- Naïve Agent
- Basic system information
- Smart Agent
- Given additional information
- •Understands the crowd's pressure
- Goal of Smart Agent
 - Trying to get the closest to the stage as possible using different paths

SYSTEM DYNAMICS

$$\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) - \mathbf{F}_i \Delta t + T\zeta_i$$

- Steepest Descent Equation
- Forces particles to go towards the area of lowest force

- Lennard-Jones Force
- Models interactions between particles
- Prevents particle overlap

DIRECT PATH

INDIRECT PATH

COMPARISON — DIRECT VS. INDIRECT

PRESSURE GRADIENT

SUDDEN UNJAMMING VIA COLLECTIVE MOTION

Goal: Get rid of jammed condition, minimize stress

New Model

$$\mathbf{v}_i(t+\Delta t) = v_a \frac{\sum_{j \in R_{a,i}} \mathbf{v}_j}{|\sum_{j \in R_{a,i}} \mathbf{v}_j|} + v_r \sum_{j \in R_{r,i}} \frac{\mathbf{x}_{ij}(t)}{|\mathbf{x}_{ij}(t)|}$$
 Alignment Repulsion

JAMMED CONDITION

PHASE DIAGRAM

STRESS

Measured in our simulation with Mean Particle Overlap with nearby neighbors

$$\left\langle \frac{\Delta' - \Delta_{init}}{\Delta_{init}} \right\rangle$$

STRESS

Measured in our simulation with Mean Particle Overlap with

nearby neighbors

$$\left\langle \frac{\Delta' - \Delta_{init}}{\Delta_{init}} \right\rangle$$

THE NEW RULE

Decide how much to follow the border

NEW RULE'S EFFECT ON JAMMED SYSTEM

Jammed Condition

Boundary Rule Implemented

EFFECT ON ORDER PARAMETER

EFFECT ON STRESS

FURTHER EXPLORATION

Stress

EXTENSIONS

- Cancer cells
 - Want to remain jammed
 - Prevention of metastasis

•Introduce smart particles to the system

ACKNOWLEDGMENTS

Harvard Paulson School of Engineering and Applied Sciences
TRiCAM Research Program

Project Sponsor: Professor L. Mahadevan

Mentors: Christoph Weber, Orit Peleg, Alex Heyde

Advisor: Sarah lams

Funding Provided by the National Science Foundation

CITATIONS

Vicsek, T., & Zafeiris, A. (2010). Collective motion, 1–85. https://doi.org/10.1016/j.physrep.2012.03.004

IMAGE CITATIONS

Lewis, Emily. "A Murmuration of Starlings." Financial Times. N.p., 26 Nov. 2013. Web. 07 July 2017.

"Honey Bee Facts." Hardy Honey Bee Farms | Sterling Heights, Michigan. Hardy Honey Bee Farms, 15 Oct. 2013. Web. 07 July 2017.

"School Of Fish Pictures, Images and Stock Photos." School Of Fish Pictures, Images and Stock Photos - IStock. IStock, n.d. Web. 07 July 2017

Wizen, Gil. "A Plague of Locusts." Gil Wizen. N.p., 23 Mar. 2015. Web. 10 July 2017.

Eccles, Louise. "Notting Hill Carnival like Soviet Russia, Says Clarkson: Top Gear Presenter Says Event Is Now Dominated by Police." Daily Mail Online. Associated Newspapers, 02 Sept. 2013. Web. 10 July 2017.

Chan, Casey. "Thousands Of People Are Stuck In This Ridiculous Human Traffic Jam At A China Train Station." *Gizmodo*. N.p., 4 Feb. 2016. Web. 11 July 2017.

Eastaugh, Ben, and Chris Sternal-Johnson. "The Torus." Ferrebeekeeper. N.p., 09 Mar. 2011. Web. 10 July 2017.

Mei, Gina. "A Visual Comparison of the Crowds at Trump's Inaugural Concert Versus Obama's." Seventeen. N.p., 06 June 2017. Web. 11 July 2017.

Cancer Cells. N.d. New South Wales. Sun Smart Millionare. Web. 10 July 2017.