

MASTER THESIS

Ondřej Ježil

Pseudofinite structures

Department of Algebra

Supervisor of the master thesis: prof. RNDr. Jan Krajíček Ph.D.

Study programme: Matemathics

Study branch: Mathemathics for Information

technologies

I declare that I comind out this procton thesis is described and a 1 1 1 1 1 1
I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In date
Author's signature

Dedication.

Title: Pseudofinite structures

Author: Ondřej Ježil

Department: Department of Algebra

Supervisor: prof. RNDr. Jan Krajíček Ph.D., Department of Algebra

Abstract: For a class of graph instances of a computational problem we define a limiting object, relative to some computationally restricted class of functions. The key method here is forcing with random variables where the sample set is taken as instances of some nonstandard size. We study general theory of these so called wide limits and their connection to classical problems such as finding a large clique or with the combiatorial problems associated with the clases of total **NP** search problems **PPA** and **PPAD**.

Keywords: pseudofinite structure, forcing, complexity, witnessing, TFNP, clique

Contents

$ \begin{array}{c} \textbf{Introduction} \\ \textbf{Preliminaries} \\ \textbf{The ambient model } \mathcal{M} \dots \dots$				
				1
1.1	Setup	6		
	1.2	The first order wide limit	6	
	1.3	The second order limit	8	
	1.4	The L-closed family F_{rud} and G_{rud}	9	
	1.5	Different choices of n	10	
	1.6	Theories of wide limits	10	
2	General theory			
	2.1	$\mathcal{G}_k = \mathrm{EDGE}_k$	11	
	2.2	Sparse \mathcal{G}_k	11	
	2.3	Dense \mathcal{G}_k	14	
	2.4	Isomorphism closed categorical \mathcal{G}_k	21	
3	Dense case			
	3.1	$\mathcal{G}_k = \operatorname{SK}_k^{1/2} \ldots \ldots \ldots \ldots$	23	
	3.2	$\mathcal{G}_k = \operatorname{CK}_k^{1/2} \dots \dots \dots \dots \dots \dots \dots$	25	
4	Sparse case and TFNP			
	4.1	$\mathcal{G}_k = *PATH_k$	27	
	4.2	$\mathcal{G}_k = *PATH_k^{\leq} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	32	
	4.3	$\mathcal{G}_k = *\mathrm{DPATH}$	33	
Co	onclu	ding remarks	35	
Bibliography				

Introduction

There exist several logical constructions of limits of classes of finite structures such as the ultraproduct construction or using the compactness theorem. The latter used in [Fag76] to prove the 0-1 law for structures over relational vocabularies.

In combinatorics there are also several notions of limits of finite graphs. For example the dense graph limit defined for a sequence of graph $\{G_k\}_{k>0}$ satisfying the condition that

$$t(F, G_n) = \frac{\hom(F, G)}{|G_n|^{|F|}}$$

converges for every fixed connected graph F which provided a framework (see [LS06]) to restate and find new proofs for results in extremal graph theory such as Goodman's theorem relating the number of edges to the number of triangles in a graph. There are other notions of limits of sequences of graphs we recommend to read [NDM13] to the interested reader. Another recent use of limit objects for the results of extremal combinatorics was by Razborov in [Raz07].

These different notions of limits directly or tangentially relate to the concept of pseudofinite structures. For a first order language L, we call an L-structure S pseudofinite, if it satisfies the theory T_f consisting of all sentences true in all finite L-structures.

In this thesis we use the concept of pseudofinite structures to define a limit of a family of finite graphs relative to some computationally restricted class of functions F. Instead of studying the density of substructures we study these so called wide limits both generally and by analyzing concrete examples and tying them with complexity-theoretical statements. Imagine to keep in mind is that we take a limit of a class of inputs to a specific problem and let the limit 'look' like some computationally restricted viewer may see the average input.

The key method we use is arithmetical forcing with random variables which allows us to construct models of (weak) arithmetical theories and by restricting to a language of graphs gives us boolean valued graphs. An important resource for this technique is [Kra10]. In these boolean valued graphs, witnessing of existential quantifiers corresponds to the ability of F to solve search problems over the class of graphs we are considering.

After recalling important concepts in the Preliminaries chapter we define the wide limit in Chapter 1. In Chapter 2 we consider some examples and around them build a general theory. In chapters 3 and 4 we analyze more complex examples which correspond to the complexity of finding a large clique and to semantic subclasses of **TFNP** respectively.

Preliminaries

In this chapter we recall a few important notions which we will use in the next chapter to define the central construction we study. We do not review the notions formally but always provide a reference for the reader unfamiliar with these topics. Throughout this thesis we assume a basic knowledge of mathematical logic, model theory and measure theory. Important concept for us are the nonstandard models of true arithmetic.

The ambient model \mathcal{M}

Let L_{all} be the language consisting of function symbols for all function on \mathbb{N} , all relations and all constants. We call a model of $\operatorname{Th}_{L_{all}}(\mathbb{N})$ nonstandard if it is not isomorphic to \mathbb{N} . Every model of $\operatorname{Th}(\mathbb{N})$ of course contains an initial segment isomorphic to \mathbb{N} so we can view nonstandard models as those which also contain 'infinite natural numbers', if we assume $\mathcal{M} \models \operatorname{Th}(\mathbb{N})$ contains \mathbb{N} as an initial segment then the elements $\mathcal{M} \setminus \mathbb{N}$ are called nonstandard. We recommend the introduction of [Kay91] for a review of this topic. In the appendix of [Kra10] there is an explict ultraproduct construction of a model $\mathcal{M} \models \operatorname{Th}(\mathbb{N})$ which is \aleph_1 -saturated.

This \aleph_1 -saturated model \mathcal{M} is used throughout this thesis and we call it the ambient model of arithmetic. For our applications we just need to know that the model is nonstandard and the following property holds because of the \aleph_1 -saturation. (Note that we can encode finite sequences and sets in \mathbb{N} which lets us state the property.)

Property. If $\{a_k\}_{k\geq 0}$ is a sequence with elements in \mathbb{N} then there is an element $t\in \mathcal{M}\setminus \mathbb{N}$ and a sequence $\{b_k\}_{k< t}\in \mathcal{M}$ with $a_k=b_k$ for all $k\in \mathbb{N}$.

By overspill in \mathcal{M} if some definable property P holds for any a_k with high enough index then there is also some nonstandard n < t such that b_s satisfies the property P. Moreover, if some definable property P holds for all b_k with k above some k_0 it has to also hold by induction in \mathcal{M} for all nonstandard b_n . These b_n are intuitively the limit elements of the sequence $\{a_k\}_{k\geq 0}$.

Now let us introduce some notation. For $m \in \mathcal{M}$ we denote the set of numbers below m as $\langle m \rangle := \{0, \ldots, m-1\} \in \mathcal{M}$ and |m| as the bit-length of the (possibly-nonstandard) number m. These definitions can be easily made rigorous using the \aleph_1 -saturation of \mathcal{M} and the first order definitions of these functions.

Nonstandard analysis

The reader can refer to [Gol14] for more formal treatment of topics discussed in this section including proofs. To use the method of forcing with random variables we need to consider the concept of so-called \mathcal{M} -rationals. To define them we start by simply adjoining all negative elements to the semiring \mathcal{M} to obtain the integral domain $\overline{\mathcal{M}}$. \mathcal{M} -rationals are then simply the ordered field of fractions $\operatorname{Frac}(\overline{\mathcal{M}})$ which we denote $\mathbb{Q}^{\mathcal{M}}$.

There is a canonical injection $\mathbb{Q} \hookrightarrow \mathbb{Q}^{\mathcal{M}}$ whose image consist exactly of the 'standard fractions'. We call a $q \in \mathbb{Q}^{\mathcal{M}}$ finite if there is a standard k such that $|q| < \frac{k}{1}$ otherwise we call it infinite. We call $q \in \mathbb{Q}^{\mathcal{M}}$ infinitesimal if q is infinite. One can check that $\mathbb{Q}^{\mathcal{M}}$ fulfills the axioms of hyperreal numbers which can be used as an alternative foundation to the concepts of mathematical analysis. This implies that there is a canonical injection $\mathbb{R} \hookrightarrow \mathbb{Q}^{\mathcal{M}}$ of ordered fields. The following is an important result which we use throughout the thesis.

Theorem. Let $q \in \mathbb{Q}^{\mathcal{M}}$ finite. Then there exist unique $r \in \mathbb{R}$ and an infinitesimal $m \in \mathbb{Q}^{\mathcal{M}}$ such that q = r + m.

We use the notation st(q) := r and call r it the **standard part of** q.

The following result characterizes convergence of a sequence of rational numbers in the language of nonstandard analysis.

Theorem. Let $\{c_k\}_{k\geq 0}$ be a sequence of rational numbers. Then

$$\lim_{k \to \infty} c_k = r \in \mathbb{R}$$

if and only if for any nonstandard $n \in \mathcal{M}$ we have that $\operatorname{st}(c_n) = r$.

We close this section with two inequalities heavily used in the proofs throughout the thesis.

Theorem (Bernoulli's inequality). Let $y \in \mathcal{M}$ and $x \in \mathbb{Q}^{\mathcal{M}}, x \geq -1$, then

$$(1+x)^y \ge 1 + yx.$$

Theorem (Exponential inequality). Let $y \in \mathcal{M}$ and $x \in \mathbb{Q}^{\mathcal{M}}, x \geq 0$, then

$$\left(1 - \frac{x}{y}\right)^y \le e^{-x}.$$

Total NP search problems and polynomial oracle time

Our goal is to tie the properties of the wide limit with some complexity theoretic statements. We will recall several notions used later on.

The class of total **NP** search problems **TFNP**, first defined in [MP91], consist of all relations on binary strings P(x, y) such that: a) There is a polynomial time machine M which, given x, y, can decide whether P(x, y) holds. b) For every x there exists at least one y which is at most polynomially longer than x such that P(x, y) holds.

While the definition of the class **TFNP** seems natural, the inner structure looks more arbitrary and the class is generally studied through its semantic subclasses. For example it is conjectured that there is no complete problem for **TFNP** [GP18].

The semantic subclasses are defined as all problems reducible to some problem corresponding to a combinatorial lemma, for some appropriate definition of 'reduction'. Two main subclasses are relevant for us. The class **PPA**, polynomial parity argument, corresponds to all problems reducible to LEAF, the problem formulated as follows. Given a graph G on the vertex set $\langle k \rangle$ such that $\deg_G(0) = 1$ and $\forall v : \deg_G(v) \leq 2$, find some nonzero v with $\deg_G(v) = 2$. The corresponding combinatorial principle being the handshaking lemma, which assures the problem is total. And the class **PPAD**, directed polynomial parity argument, with the complete problem SOURCE.OR.SINK formulated as follows. Given a directed graph G on the vertex set $\langle k \rangle$ such that the vertex 0 is a source and $\forall v : \deg_G^+(v), \deg_G^-(v) \leq 1$ find some nonzero vertex v which is a source or a sink. The corresponding combinatorial principle here being the directed version of the handshaking lemma.

So far, we presented what is called 'type 1' problem in [BCE⁺95]. The ones we are interested in are 'type 2' problems which replace the input graph G with a pair (α, x) an oracle α describing the neighbourhood function $N_G(-)$ (or both $N_G^+(-)$ and $N_G^-(-)$ in the directed case) on binary string of length at most |x|. While the goal to solve these problems remains the same, suddenly the situation is quite different, the graphs given by oracles are exponential in size and thus easily separated from \mathbf{FP}^2 , the type 2 version of polynomial time functions. More importantly we have that $\mathbf{PPAD} \subsetneq \mathbf{PPA}$ as type 2 complexity classes. Intuitively one can forget the orientation to get the undirected version, but cannot consistently assign orientation to an undirected edges of a large graph.

The traditional model of computation are the Turing machines and for the type 2 problems oracle Turing machines. But to prove separations in the type 2 case, we can abstract the computation of an oracle Turing machine into a decision tree which describes the queries to an oracle. This abstraction is what to keep in mind in the following chapter when we define the class of functions F_{rud} .

1. Forcing with random variables and the limit

1.1 Setup

Our goal in this chapter is to provide a definition of a limit of a set an infinite set of finite graphs in which arbitrarily large graphs occur. The following definition makes our requirements of such a class of graphs precise. From now on E denotes a binary relational symbol, so formulas in the theory of graphs are E-sentences.

Definition 1.1.1. Let $\{\mathcal{G}_k\}_{k>0}$ be a sequence of finite sets of (directed or undirected) finite graphs. We call it a **wide sequence** if the following hold.

- There is an increasing sequence of positive whole numbers $\{g_k\}_{k>0}$ such that the underlying set of each $G \in \mathcal{G}_k$ is $\langle g_k \rangle$.
- $\lim_{k\to\infty} |\mathcal{G}_k| = \infty$

The second condition guarantees that \mathcal{G}_n is an infinite set for $n > \mathbb{N}$. In fact the condition is not strictly important to proceed with this chapter, but it more closely describes what sort of sequences we are interested in. Many interesting classes of graphs form a wide sequence if we restrict the vertex-sets to $\langle g_k \rangle$, where $\{g_k\}_{k>0}$ can be taken as the increasing sequence of all cardinalities in such a class. For example graphs with exactly one edge, graphs with bounded degree and so on, we will get to explore many examples in depth after we define the wide limit.

1.2 The first order wide limit

From now on we closely follow Chapter 1 of [Kra10]. Let \mathcal{M} be the \aleph_1 saturated model of true arithmetic discussed in the previous chapter and let \mathcal{G}_k be
a wide sequence of graphs and $\Omega := \mathcal{G}_n$ for $n \in \mathcal{M} \setminus \mathbb{N}$. One can check that graphs
in Ω are all pseudofinite. The model \mathcal{M} treats all its elements (including those
which represent sets) as "finite objects" which lets us define uniform probability
even on sets which are infinite from the set-theoretical perspective. We provide
the definition generally for any L-reduct of \mathcal{M} , where $L \subseteq L_{all}$, but in the rest of
the thesis we assume $L = L_{all}$ even though some finite sublanguage would suffice.

Definition 1.2.1. Let $\mathcal{A} := \{A \in \mathcal{M}; A \subseteq \Omega\}$ the set of all subsets of Ω represented by an element in \mathcal{M} .

We define the **counting measure** as the uniform probability of A when we sample Ω uniformly, so we have

$$A \in \mathcal{A} \to |A| / |\Omega|$$
,

the counting measure takes values in \mathcal{M} -rationals.

One can check that \mathcal{A} is a boolean algebra, but not a σ -algebra as it is not closed under all countable unions. Indeed all singleton sets are part of \mathcal{A} but the set of all elements with standardly many predecessors in Ω is not in \mathcal{A} .

Definition 1.2.2. We call an \mathcal{M} -rational **infinitesimal** if it is smaller than all standard fractions $\frac{1}{k}$, $k \in \mathbb{N}$.

Define an ideal in \mathcal{A} as $\mathcal{I} := \{A \in \mathcal{A}; |A| / |\Omega| \text{ is infinitesimal}\}$. Define the boolean algebra $\mathcal{B} := \mathcal{A}/\mathcal{I}$. The induced measure on \mathcal{B} is a real-valued measure and can be written as

$$\mu(A/\mathcal{I}) = \operatorname{st}(|A|/|\Omega|).$$

We can also check, that now μ is a measure in the ordinary sense and that \mathcal{B} is an σ -algebra. In fact the following key lemma holds.

Lemma 1.2.3. \mathcal{B} is a complete boolean algebra.

Now we define a \mathcal{B} -valued arithmetical model through which we define the \mathcal{B} -valued first order limit of \mathcal{G}_k relative to a family of arithmetical functions.

Definition 1.2.4. Let $L \subseteq L_{all}$ and let F be a non-empty set of functions in \mathcal{M} . We call it an L-closed family if it satisfies the following:

- The domain of any function in F is Ω and the range is \mathcal{M} .
- F is closed under all L-functions and contains all L constants, where the L-functions are interpreted by composition

$$f(\alpha_1,\ldots,\alpha_k)(\omega) := f(\alpha_1(\omega),\ldots,\alpha_k(\omega)),$$

for $k \in \mathbb{N}$, $f \in L$ k-ary and $\alpha_1, \ldots, \alpha_k \in F$.

Note that while every $\alpha \in F$ is represented by some element in \mathcal{M} this need not be the case for the whole family F. From now on Γ denotes a binary relational symbol which we understand as 'limit edge relation'. For a $\{E\}$ -formula φ we denote its translation to a $\{\Gamma\}$ -formula by rewriting every E to Γ as φ^{Γ} .

Definition 1.2.5. Let F be an L-closed family for some $L \subseteq L_{all}$. Then $K(\mathcal{G}_n, F)$ will denote a \mathcal{B} -valued $L \cup \{\Gamma\}$ -structure defined as follows. The universe of K(F) is F. The boolean evaluations of L-sentences are defined by the following inductive rules:

- $\llbracket \alpha = \beta \rrbracket := \{ \omega \in \Omega; \alpha(\omega) = \beta(\omega) \} / \mathcal{I}.$
- $[R(\alpha_1,\ldots,\alpha_k)] := \{\omega \in \Omega; R(\alpha_1,\ldots,\alpha_k)\}/\mathcal{I} \text{ for any } k\text{-ary } L\text{-relation } R.$
- $\llbracket\Gamma(\alpha,\beta)\rrbracket := \{\omega \in \Omega; E_G(\alpha(\omega),\beta(\omega)) \text{ and } \alpha(\omega),\beta(\omega) \in \langle g_n \rangle\}/\mathcal{I}.$
- $\llbracket \rrbracket$ commutes with \land, \lor, \lnot .
- $[(\exists x)A(x)] := \bigvee_{\alpha \in F} [A(\alpha)].$
- $[\![(\forall x)A(x)]\!] := \bigwedge_{\alpha \in F} [\![A(\alpha)]\!].$

We call $F(\mathcal{G}_n, F)$ the underlying arithmetic of the first order wide limit.

Definition 1.2.6. We call a function $\alpha \in F$ an F-vertex if $\alpha : \Omega \to \langle g_n \rangle$. We define a \mathcal{B} -valued graph $\lim_{k\to n}^F G_k$ as an $\{\Gamma\}$ -structure, where Γ is a binary relation symbol, with universe $\{\alpha \in F; \alpha \text{ is an } F\text{-vertex}\}$ and Γ -sentences being evaluated by the following inductive conditions:

- $\llbracket \alpha = \beta \rrbracket := \{ \omega \in \Omega; \alpha(\omega) = \beta(\omega) \} / \mathcal{I}.$
- $\llbracket \Gamma(\alpha, \beta) \rrbracket := \{ \omega \in \Omega; E_G(\alpha, \beta) \} / \mathcal{I}.$
- $\llbracket \rrbracket$ commutes with \land, \lor, \lnot .
- $\llbracket (\exists x) A(x) \rrbracket := \bigvee_{\alpha \in F} \llbracket A(\alpha) \rrbracket.$
- $\llbracket (\forall x) A(x) \rrbracket := \bigwedge_{\alpha \in F} \llbracket A(\alpha) \rrbracket$.

By abuse of notation we will usually denote the limit $\lim_F \mathcal{G}_n$.

1.3 The second order limit

While we can find a truth value of a sentence in the language of graphs in the limit $\lim_F \mathcal{G}_n$, we will encounter situations where this is not sufficient to analyze the wide sequence $\{\mathcal{G}_k\}_{k>0}$.

In Chapter 3 we will investigate how does existence of large cliques correspond to the size of cliques in the limit graph. But we cannot just measure the settheoretical cardinality of any such clique, for specific n we could very well have $\operatorname{card}(\langle \lfloor \log n \rfloor)) = \operatorname{card}(\langle \lfloor \frac{n}{2} \rfloor))$ but from the point of view of complexity theory cliques of size $\lfloor \log n \rfloor$ and $\lfloor \frac{n}{2} \rfloor$ are dramatically different. In other words, our goal is also to have means to count the number elements of subsets or relations with values in (random variables in) \mathcal{M} .

When we say second order we mean by it two-sorted first order structures where one sort represents the usual elements (the 'first order' sort) and the other represents functions on those elements (the 'second order sort'). The 'second order' here can also represent sets and relations by $\{0,1\}$ valued functions.

Definition 1.3.1. Let $L \subseteq L_{all}$, we call a set of functions $G \subseteq \mathcal{M}$ an F-closed **functional family** if every $\Theta \in G$ assigns to every $\omega \in \Omega$ a function $\Theta_{\omega} \in \mathcal{M}$ and after we define

$$\Theta(\alpha)(\omega) := \begin{cases} \Theta_{\omega}(\alpha(\omega)) & \alpha(\omega) \in \text{dom } (\Theta_{\omega}) \\ 0 & \text{otherwise,} \end{cases}$$

we have that for every $\alpha \in F$ and $\Theta \in G$ we have $\Theta(\alpha) \in F$.

We call $\Theta \in G$ a (graph) G-relation if for every $\omega \in \Omega$ we have for some k > 0 that dom $\Theta_{\omega} \supseteq (g_n)^k$ and $\Theta_{\omega} : \text{dom } \Theta_{\omega} \to \{0, 1\}$.

Definition 1.3.2. Let $L \subseteq L_{all}$, F an L-closed family and G an F-compatible functional family. We define the structure $K(\mathcal{G}_n, F, G)$ as a two sorted L-structure with sorts F and G interpreting L-sentences as $K(\mathcal{G}_n, F)$ and treating the sort G as follows. First for equality we let

$$\llbracket \Theta = \Xi \rrbracket := \{ \omega \in \Omega; \Theta_{\omega} = \Xi_{\omega} \} / \mathcal{I}$$

and for the second order quantifiers we have the following inductive clauses

- $\llbracket (\exists X)A(X) \rrbracket := \bigvee_{\Theta \in G} \llbracket A(\Theta) \rrbracket$
- $\llbracket (\forall X)A(X) \rrbracket := \bigwedge_{\Theta \in G} \llbracket A(\Theta) \rrbracket$.

If there is a $\Gamma \in G$ such that for every $\alpha, \beta \in F$ we have

$$\Gamma(\alpha,\beta)(\omega) := \chi_{E_{\omega}}(\alpha(\omega),\beta(\omega)),$$

where $\chi_{E_{\omega}}$ is the characteristic function of E_{ω} , we call K(F,G) the **underlying** arithmetic of a second order wide limit.

We define $\lim_{F,n}^G \{\mathcal{G}_k\}_{k>0}$ as the L^2 -substructure with universe consisting of all F-vertices and all G-relations. By abuse of notation we will mostly use the notation $\lim_F^G \mathcal{G}_n$.

Let us note that if we have multiple boolean valued structures $\mathcal{M}_1, \mathcal{M}_2, \ldots$ we may add the name of the structure as a prefix to the valuation function to get $\mathcal{M}_1[-]$ and $\mathcal{M}_2[-]$ to avoid ambiguity or to emphasize the structure where the valuation takes place.

1.4 The L-closed family F_{rud} and G_{rud}

Throughout this thesis we will mostly work with the L-closed family F_{rud} which ties the properties of $\lim_F \mathcal{G}_n$ with decision tree complexity.

After we choose the sequence $\{\mathcal{G}_k\}_{k>0}$ and $n>\mathbb{N}$ we again put $\Omega:=\mathcal{G}_n$ and define F_{rud} as follows.

Definition 1.4.1. We define a **decision tree** to be a binary tree $T \in \mathcal{M}$ with a labelling of vertices and edges ℓ . The non-leaf vertices are labeled by pairs of numbers (u, v), where $u, v \in \langle g_n \rangle$ and each edge is labeled either by 1 or 0. Each leaf vertex is then labeled by some element of \mathcal{M} .

Each $\omega \in \Omega$ uniquely determines a path in (T, ℓ) by interpreting the vertex labels as "is $(u, v) \in E_{\omega}$?" and the edge labels as true (1) and false (0). The path then uniquely determines an output.

We define F_{rud} to be the set of all functions computed by some (T, ℓ) of depth at most $g_n^{1/t}$.

One can verify that F_{rud} is an L-closed family for any $L \subseteq L_{all}$.

The definition of G_{rud} is a bit more involved. The functionals in it will be computed by tuples of elements from F_{rud} in the following sense.

Definition 1.4.2. Let $\hat{\beta} = (\beta_0, \dots, \beta_{m-1}) \in \mathcal{M}$ be a m-tuple of elements in F_{rud} , for any $\alpha \in F_{rud}$ and $\omega \in \Omega$ we define

$$\hat{\beta}(\omega) = \begin{cases} \beta_{\alpha(\omega)}(\omega) & \alpha(\omega) < m \\ 0 & \text{otherwise.} \end{cases}$$

Definition 1.4.3. The family G_{rud} consists of all functionals Θ such that there is $m \in \mathcal{M}$ and some $\hat{\beta} = (\beta_0, \dots, \beta_{m-1})$ that computes it.

Lemma 1.4.4. G_{rud} is (F_{rud}) -compatible.

Proof. By induction in \mathcal{M} we have that all the depth of all the trees is bounded by $g_n^{1/t}$ for some $t > \mathbb{N}$.

If we take some $\Theta \in G_{rud}$ and $\alpha \in F_{rud}$ we can compute $\Theta(\alpha)$ also by a tree in F_{rud} by concatenating the trees computing α and β_i s.

1.5 Different choices of n

Even though we generally pose no requirements on $n > \mathbb{N}$ there are examples of wide sequences for which the limit is sensitive on the choice of the non-standard number n.

Example 1.5.1. Let

$$G_k := \begin{cases} \{(\langle k \rangle, E); |E| = 2, E(0, 1)\} & k \text{ even} \\ \{(\langle k \rangle, E); |E| = 1, \neg E(0, 1)\} & k \text{ odd.} \end{cases}$$

Let $n > \mathbb{N}$ then

$$\lim_{F_{rud}} \mathcal{G}_{2n+1} \llbracket \Gamma(0,1) \rrbracket = \mathbf{0}, \tag{1.1}$$

but

$$\lim_{F_{rud}} \mathcal{G}_{2n} \llbracket \Gamma(0,1) \rrbracket = \mathbf{1}. \tag{1.2}$$

Even though the concrete wide limits we will investigate in the following chapters do not depend on the specific n, it is important to note that we cannot generally remove the parameter n from the definition of the limit.

1.6 Theories of wide limits

If $\lim_F \mathcal{G}_n$ is the first order wide limit we will be interested in which exact $\{\Gamma\}$ -sentences are valid in it.

Definition 1.6.1. We define Th($\lim_F \mathcal{G}_n$) as the set of all valid Γ-sentences in $\lim_F \mathcal{G}_n$.

In the next chapter (Theorem 2.3.4) we will see that if an universal $\{E\}$ sentence φ holds for all $G \in \mathcal{G}_k$ for k big enough then $\lim_F \mathcal{G}_n[\![\varphi^\Gamma]\!] = \mathbf{1}$. In
particular, a wide limit of undirected graphs in a boolean valued undirected graph
and a wide limit of directed graphs is a boolean valued directed graph.

Lastly, let as recall the concept of 0-1 laws which say that a certain probability is always 0 or always 1 with no intermediate value. Here instead of probability we can think about the boolean values $\mathbf{0}$ and $\mathbf{1}$ and ask when does it happen that $\lim_F \mathcal{G}_n[\![\varphi]\!] \in \{\mathbf{0},\mathbf{1}\}$ for every $\{\Gamma\}$ -sentence φ . This is exactly equivalent to the situation where the theory $\mathrm{Th}(\lim_G \mathcal{G}_n)$ is complete. Throughout the thesis we prove such 0-1 law for several wide limits.

2. General theory

$\mathbf{2.1} \quad \mathcal{G}_k = \mathbf{EDGE}_k$

We consider the classes of graphs

$$EDGE_k := \{(k, E); |E| = 1\},\$$

and we let $\mathcal{G}_k = \text{EDGE}_k$ and $F = F_{tree}$.

Intuitively one should not be able to find the edge on a significant i.e. non-infinitesimal fraction of samples with a tree that is allowed to explore only an infinitesimal fraction of edges.

Theorem 2.1.1. We will prove that

$$[\![(\exists x)(\exists y)\Gamma(x,y)]\!] = \mathbf{0}.$$

Proof. Let $T \in F_{tree}$ be a tree of depth $n^{1/t}$, for some $t > \mathbb{N}$ that outputs a pair of numbers less than n.

Start from the root of T and always choose the path that corresponds to an edge not existing. At the end we obtain some answer, that gives us a set of at most $2 \cdot n^{1/t} + 2$ vertices. Now we can find at least:

$$\binom{n-2n^{1/t}-2}{2} = \frac{(n-2n^{1/t}-2)(n-2n^{1/t}-3)}{2}$$
 (2.1)

different $\omega \in \Omega$ such that $T(\omega)$ is not an edge in ω .

The probability that any of those graphs is sampled is

$$\frac{\binom{n-2n^{1/t}-2}{2}}{|\mathcal{G}_k|} = \frac{(n-2n^{1/t}-2)(n-2n^{1/t}-3)}{n(n-1)}$$
(2.2)

$$= \left(1 - \frac{2n^{1/t} - 2}{n}\right) \cdot \left(1 - \frac{2n^{1/t} - 3}{n - 1}\right) \tag{2.3}$$

$$\geq \left(1 - \frac{2n^{1/t} - 2}{n}\right)^2 \tag{2.4}$$

$$\geq 1 - \frac{4n^{1/t} - 4}{n}.\tag{2.5}$$

And one can clearly see that $\operatorname{st}(1-\frac{4n^{1/t}-4}{n})=1$. This proves that the boolean value we are considering is **0** since we can the two witnesses for x and y into a tree that could find an edge with depth $n^{1/t}$ for some $t>\mathbb{N}$.

2.2 Sparse \mathcal{G}_k

One can see that in Theorem 2.1.1 the exact shape of graphs in \mathcal{G}_k does not play a crucial role. If \mathcal{G}_k consisted of all graphs on k vertices containing say exactly one triangle, or any other fixed subgraph of constant size, and no other edges, we would still find that the non-existence is valid in the limit graph.

A more general case would be to consider a family of graphs in which there is an infinitesimally small chance that two independent uniformly random verticies have an edge between. However, this is not sufficient.

Example 2.2.1. Let \mathcal{G}_k consist of those graphs on the vertex-set k which contain the edge E(0,1) and then has exactly one other edge.

As k increases, the number of edges get smaller than any standard positive fraction. But

$$[\![(\exists x)(\exists y)E(x,y)]\!] = \mathbf{1},$$

as witnessed by x being the constant 0 and y the constant 1 both of which are computable by a tree of depth 0.

One can see that having distinguished verticies can ruin the sparseness implying the non-existence of edges in the limit graph. We want to distinguish from this situation by considering the sequences \mathcal{G}_k satisfying the following natural definition.

Definition 2.2.2. We say that $\{\mathcal{G}_k\}_{k=0}^{\infty}$ is **isomorphism closed**, if there is k_0 such that for every $k > k_0$ if we have that $G_1 \in \mathcal{G}_k$, $V_{G_2} = g_k$ and $G_1 \cong G_2$ then $G_2 \in \mathcal{G}_k$.

Theorem 2.2.3. Let an isomorphism closed \mathcal{G}_k have the following property. There is a sequence $\{b_k\}_k$ and for big enough k, a uniformly sampled 2-element $\{u,v\}\subseteq g_k$ and every $G\in\mathcal{G}_k$ we have

$$\Pr[E_G(u,v)] \le b_k,$$

and some k_0 such that $\lim_{k\to\infty} k^{1/k_0} b_k = 0$. Then

$$[\![(\exists x)(\exists y)\Gamma(x,y)]\!] = \mathbf{0}.$$

Proof. Let us define the number $c_{u,v} := |\{G \in \mathcal{G}_k; E_G(u,v)\}|$, which is the number of graphs G in \mathcal{G}_k satisfying $E_G(u,v)$. Of course $c_{u,u} = 0$ for every u.

Claim: Let $u \neq v, u' \neq v'$ be vertices, then $c_{u,v} = c_{u',v'}$. proof of claim: Let $\rho := (u u')(v v')$ be a permutation with cycles (u u') and (v v'). We can let ρ act on \mathcal{G}_k by sending G to a graph $\rho(G)$ which renames the edges coordinate-wise.

The fact that \mathcal{G}_k is isomorphism closed implies that ρ restricts to a bijection:

$$\rho': \{G \in \mathcal{G}_k; E_G(u, v), \neg E_G(u', v')\} \to \{G \in \mathcal{G}_k; E_G(u', v'), \neg E_G(u, v)\}$$

which proves the claim.

Now we define a matrix with entries

$$a_{G,\{u,v\}} := \begin{cases} 1 & E_G(u,v) \\ 0 & \text{otherwise} \end{cases}$$

where the rows are indexed by one of $|\mathcal{G}_k|$ many graphs in \mathcal{G}_k and the columns are indexed by the $\frac{k(k-1)}{2}$ many 2-element sets of numbers in k. We take any distinct

vertices u, v and define $p := \Pr_{G \in \mathcal{G}_k}[E_G(u, v)] = \frac{c_{u,v}}{|\mathcal{G}_k|}$, by the claim the choice of u, v does not matter.

The assumption from the statement is equivalent to the equality

$$\sum_{\{u,v\}} a_{G,\{u,v\}} \le \frac{k(k-1)}{2} b_k$$

for every G. We combine this with the claim and the definition of p to get

$$\frac{k(k-1)}{2} |\mathcal{G}_k| p = \sum_{\{u,v\}} \sum_{G \in \mathcal{G}_k} a_{G,\{u,v\}}$$
 (2.6)

$$= \sum_{G \in \mathcal{G}_k} \sum_{\{u,v\}} a_{G,\{u,v\}} \tag{2.7}$$

$$\leq |\mathcal{G}_k| \, \frac{k(k-1)}{2} b_k \tag{2.8}$$

which implies

$$p \leq b_k$$

Now let k := n and let $T \in F_{tree}$ be a tree of depth $n^{1/t}$ for some $t > \mathbb{N}$, where every leaf of T is labeled by some edge. Walk down the tree T from the root by answering negatively to every edge, this gives us a set E_T of all edges T inspected or outputed and $|E_T| \leq n^{1/t} + 1$.

Now we just need to prove that the probability T find an edge is infinitesimally small. This is enough to prove the theorem, since the trees computing any two witnesses for x and y in the statement can be combined to construct T and if any tree T succeeds with only infinitesimally small probability, no random vertices can witness an edge on a set of non-zero measure.

We use the fact that $p \leq b_n$ to derive

$$\Pr_{G \in \mathcal{G}_n}[T \text{ finds an edge}] \le \sum_{\{u,v\} \in E_T} \Pr_{G \in \mathcal{G}_n}[E_G(u,v)]$$
 (2.9)

$$= \sum_{\{u,v\} \in E_T} \frac{c_{u,v}}{|\mathcal{G}_n|} \tag{2.10}$$

$$\leq \sum_{\{u,v\}\in E_T} p \tag{2.11}$$

$$= (n^{1/t} + 1)p (2.12)$$

$$\leq (n^{1/t} + 1)b_k \tag{2.13}$$

$$\leq n^{1/k_0} b_k \tag{2.14}$$

$$\approx 0,$$
 (2.15)

which proves the theorem.

The assumption $\lim_{k\to\infty} k^{1/k_0}b_k = 0$ for some k_0 may seem unintuitive at first. However, it precisely reflects what is "sparse" for the trees in T_{tree} . The following example shows that without the assumption the theorem fails.

Example 2.2.4. Let \mathcal{G}_k consist of all graphs on the vertex set $\langle k \rangle$ with precisely $\lceil \frac{k(k-1)}{2\log k} \rceil$ edges.

Then we claim that

$$[\![(\exists x)(\exists y)\Gamma(x,y)]\!] = \mathbf{1}.$$

Let α and β be vertices computed by the tree of the same shape which inspects a set of any $n^{1/t}$ distinct edges for some $t > \mathbb{N}$. If it finds an edge we define α and β in any way so they are the distinct vertices incidental with this edge. Otherwise we let $\alpha(\omega) = \beta(\omega) = 0$.

Let T be a tree of the same shape, that computes the pair $\{\alpha, \beta\}$ then we can compute the probability where such a tree fails as the fraction of all graphs which have no edges that T inspects. Let $m = \binom{n}{2}$. We get

$$\Pr_{G \in \mathbb{G}_n}[T \text{ fails}] = \frac{\binom{m - n^{1/t}}{\lceil \frac{n(n-1)}{2 \log n} \rceil}}{\binom{m}{\lceil \frac{n(n-1)}{2 \log n} \rceil}}$$
(2.16)

$$= \frac{\frac{(m-n^{1/t})!}{\frac{2\log n}{2\log n}!(m-\lceil \frac{n(n-1)}{2\log n}\rceil - n^{1/t})!}{\frac{m!}{\lceil \frac{n(n-1)}{2\log n}\rceil!(m-\lceil \frac{n(n-1)}{2\log n}\rceil)!}}$$
(2.17)

$$= \frac{(m - n^{1/t})!(m - \left\lceil \frac{n(n-1)}{2\log n} \right\rceil)!}{m!(m - \left\lceil \frac{n(n-1)}{2\log n} \right\rceil - n^{1/t})!}$$
(2.18)

$$= \prod_{i=0}^{n^{1/t}-1} \frac{m - \left\lceil \frac{n(n-1)}{2} \right\rceil - i}{m - i}$$
 (2.19)

$$= \left(1 - \frac{\left\lceil \frac{n(n-1)}{2\log n} \right\rceil}{\frac{n(n-1)}{2}}\right)^{n^{1/t}} \tag{2.20}$$

$$\leq \left(1 - \frac{\left\lceil \frac{n(n-1)}{2\log n} \right\rceil}{\frac{n(n-1)}{2}}\right)^{n^{1/t}}$$
(2.21)

$$\leq \left(1 - \frac{1}{\log n}\right)^{n^{1/t}} \tag{2.22}$$

And for any standard k we have

$$\left(1 - \frac{1}{\log n}\right)^{n^{1/t}} \le \left(1 - \frac{1}{\log n}\right)^{k \cdot \log n} \tag{2.23}$$

$$\leq (e^{-\frac{1}{\ln 2}})^k. (2.24)$$

So st $(Pr_{G \in \mathcal{G}_n}[T \text{ fails}]) = 0$ and we get

$$\mu(\llbracket(\exists x)(\exists y)\Gamma(x,y))\rrbracket \ge \mu(\llbracket\Gamma(\alpha,\beta)\rrbracket) \tag{2.25}$$

$$= \operatorname{st}(1 - \Pr_{G \in \mathbb{G}_n}[T \text{ fails}]) \tag{2.26}$$

$$=1. (2.27)$$

2.3 Dense \mathcal{G}_k

Let us now consider how the density of a specific kind of substructure in the wide sequence corresponds to that substructure existing in the wide limit. Let

 $\varphi(\overline{x})$ be an $\{E\}$ -formula determining the isomorphism type of \overline{x} , note that for a constant tuple $\overline{\alpha} \in F_{rud}$ (computed by trees of depth 0) we have

$$\mu(\llbracket \varphi(\overline{\alpha}) \rrbracket) = \operatorname{st}(\Pr_{\omega \in \Omega}[\omega \models \varphi(\overline{\alpha})]).$$

Theorem 2.3.1. Let F contain all constants, \mathcal{G}_k be a wide sequence and let $(\forall \overline{x})\varphi_0(\overline{x})$ be an open $\{E\}$ -formula such that

$$\lim_{k \to \infty} \Pr_{\substack{G \in \mathcal{G}_k \\ \overline{a} \in \langle q_k \rangle^l}} (G \models \varphi_0(\overline{a})) = p.$$

Then $\mu(\llbracket (\exists x)\varphi_0(x) \rrbracket) \ge p$.

Proof. We define a matrix with components

$$C_{G,\overline{a}} = \begin{cases} 1 & G \models \varphi_0(\overline{a}) \\ 0 & \text{otherwise.} \end{cases}$$

By \aleph_1 -saturation we have that

st
$$\left(\frac{1}{|\mathcal{G}_n|} \sum_{g_k} \sum_{G \in \mathcal{G}_n} \sum_{\overline{a} \in \langle g_k \rangle^l} C_{G,\overline{\alpha}} \right) = 1.$$

We claim that there is one \overline{a} such that $\operatorname{st}(\operatorname{Pr}_{G \in \mathcal{G}_k}(G \models \varphi_0(\overline{a}))) = 1$. Assume for contradiction, that for all \overline{a} we have $\frac{1}{|\mathcal{G}_n|} \sum_{G \in \mathcal{G}_n} \leq p$ for some q < p. Then

$$\frac{1}{|\mathcal{G}_n|} \sum_{g_k} \sum_{\overline{a} \in \langle g_n \rangle^l} C_{G,\overline{\alpha}} = \frac{1}{g_k^l} \sum_{\overline{a} \in \langle g_n \rangle^l} \frac{1}{|\mathcal{G}_n|} \sum_{G \in \mathcal{G}_n} C_{G,\overline{\alpha}}$$
(2.28)

$$\leq q,\tag{2.29}$$

which is a contradiction after taking the standard part of each value.

Therefore there is a tuple \overline{a} such that $\mu(\llbracket \varphi_0(\overline{\alpha}) \rrbracket) \geq p$, let $\gamma_{\overline{a}}$ be the constant function $\omega \mapsto \overline{\alpha}$ in F and

$$\llbracket \varphi \rrbracket = \bigvee_{\overline{\alpha}} \llbracket \varphi_0(\overline{\alpha}) \rrbracket \tag{2.30}$$

$$\geq \llbracket \varphi_0(\overline{\gamma}_{\overline{a}}) \rrbracket. \tag{2.31}$$

By taking μ of both sides we prove the theorem.

Example 2.3.2. Recall Example 2.2.4 it is not hard to notice that for a \mathcal{G}_k which consists of graphs with exactly $\left\lfloor \frac{k(k-1)}{2\log k} \right\rfloor$ edges we have

$$\lim_{k \to \infty} \Pr_{G \in \mathcal{G}_k(u,v) \in \langle k \rangle^2} [\neg E(u,v)] = 1,$$

by the theorem it follows that we have

$$\lim_{E} \mathcal{G}_n[\![(\exists x)(\exists y)\neg E(x,y)]\!] = \mathbf{1}.$$

We follow with a less straightforward use of the theorem.

Example 2.3.3. Consider

$$\operatorname{SK}_{k}^{1/2} := \{(\langle k \rangle, E); E \text{ has a clique of size } \lfloor k/2 \rfloor, |E| = |E_{K_{\lfloor k/2 \rfloor}}|\},$$

a wide sequence of all graphs with exactly one $\lfloor k/2 \rfloor$ clique and no other edges. One can check that for any $\{E\}$ -formula $\varphi_l(\overline{x})$ stating that \overline{x} form a clique of size l we claim that

$$\lim_{k\to\infty} \Pr_{\substack{G\in \operatorname{SK}_k^{1/2}\\\overline{a}\in\langle k\rangle^l}} [G\models\varphi(\overline{a})] \geq (1/2)^l,$$

first notice that we can compute the probability for fixed \overline{a} because $\operatorname{SK}_k^{1/2}$ is isomorphism closed. So we have

$$\Pr_{G \in SK_k^{1/2}}[G \models \varphi_l(\overline{a})] = \frac{\binom{k-l}{\lfloor k/2 \rfloor - l}}{\binom{k}{\lfloor k/2 \rfloor}}$$
(2.32)

$$= \prod_{i=0}^{l} \frac{k - \lfloor k/2 \rfloor - i}{k - i} \tag{2.33}$$

$$= \prod_{i=0}^{l} \left(1 - \frac{\lfloor k/2 \rfloor}{k-i} \right) \tag{2.34}$$

$$\geq \prod_{i=0}^{l} \left(1 - \frac{k/2}{k-i} + \frac{1}{k-i} \right) \tag{2.35}$$

$$\geq \left(1 - \frac{k/2}{k - l}\right)^l \tag{2.36}$$

$$\ge \left(1 - \frac{1}{2(1 - l/k)}\right)^l,\tag{2.37}$$

and

$$\lim_{k \to \infty} 1 - l/k = 1. \tag{2.38}$$

This proves that for any F that contains all constants we have

$$\lim_{F} \operatorname{SK}_{n}^{1/2} \llbracket (\exists \overline{x}) \varphi_{l}(\overline{x}) \rrbracket > \mathbf{0}.$$

Theorem 2.3.4. Let F contain all constants, let \mathcal{G}_k a wide sequence and let $\varphi_0(\overline{x})$ be an open $\{E\}$ -sentence, such that

$$\lim_{k\to\infty} \Pr_{G\in\mathcal{G}_k}(G \models \varphi) = 1.$$

Then $\lim_F \mathcal{G}_n \llbracket (\forall \overline{x}) \varphi_0(\overline{x}) \rrbracket = \mathbf{1}$.

Proof. We have that $\operatorname{st}(\operatorname{Pr}_{G\in\mathcal{G}_n}(G\models\varphi))=1$ and therefore $\llbracket\varphi_0(\overline{\alpha})\rrbracket=\mathbf{1}$ for each tuple $\overline{\alpha}$ in F. Therefore

$$[\![\varphi]\!] = \bigwedge_{\overline{\alpha}} [\![\varphi_0(\overline{\alpha})]\!]$$

$$= \bigwedge_{\overline{\alpha}} \mathbf{1}$$
(2.39)

$$= \bigwedge_{\overline{\alpha}} \mathbf{1} \tag{2.40}$$

$$= 1. (2.41)$$

Example 2.3.5. Let us define

$$\mathcal{G}_k^A := \{ (\langle k \rangle, E); |E| = 2 \},$$
 (2.42)

$$\mathcal{G}_k^B := \{ (\langle k \rangle, E); |E| = (k \cdot (k-1)/2) - 3 \}, \tag{2.43}$$

$$\mathcal{G}_k := \mathcal{G}_k^A \cup \mathcal{G}_k^B, \tag{2.44}$$

and let

$$\varphi_0(a,b,c,d) := \left(\bigwedge_{\substack{x,y \in \{a,b,c,d\} \\ x,y \text{ distinct}}} (x \neq y) \right) \to \left(\bigvee_{\substack{x,y \in \{a,b,c,d\} \\ x,y \text{ distinct}}} E(x,y) \right),$$

Which says that if a, b, c, d are distinct then there is an edge between one of them. The universal closure is valid on all graphs in \mathcal{G}_k^B and none of the graphs in \mathcal{G}_k^A . Since $\binom{\binom{n}{2}}{2}/\binom{\binom{n}{2}}{n-3}$ is infinitesimal we have that $\lim_{k\to\infty} \binom{\binom{k}{2}}{2}/\binom{\binom{k}{2}}{k-3}=0$ we have by Theorem 2.3.4 that $\lim_F \mathcal{G}_n[\![(\forall a,b,c,d)\varphi_0^\Gamma(a,b,c,d)]\!]=\mathbf{1}$ for any F containing all constants.

It is natural to ask whether we can weaken the assumption of Theorem 2.3.4 to an assumption analogous to Theorem 2.3.1. In other words, is

$$\lim_{k \to \infty} \Pr_{\substack{G \in \mathcal{G}_k \\ \overline{a} \in (q_k)^l}} [G \models \varphi_0(\overline{a})] = 1$$

enough to imply $\lim_F \mathcal{G}_n[\![(\forall x)\varphi_0^{\Gamma}(\overline{x})]\!] = \mathbf{1}$? Unfortunately no, as we can see in the following example.

Example 2.3.6. Recall Example 2.2.4 where \mathcal{G}_k consists of all graphs on $\langle k \rangle$ with exactly $\left| \frac{k(k-2)}{2\log k} \right|$ edges. One can easily check that

$$\lim_{k \to \infty} \Pr_{\substack{G \in \mathcal{G}_k \\ u, v \in \langle k \rangle}} \left[G \models \neg E(u, v) \right] = 1,$$

but we proved that $\lim_{F_{rud}} \mathcal{G}_n[\![(\exists x,y)E(x,y)]\!] = \mathbf{1}$ in other words we have

$$\lim_{F_{rud}} \llbracket (\forall x, y) \neg E(x, y) \rrbracket = \mathbf{0}.$$

Now we return to $F = F_{rud}$ and prove a theorem with a more limited use which however forces the truth value of the existential sentence in the wide limit to be 1.

Theorem 2.3.7. Let $F = F_{rud}$ and let $\varphi_0(x_0, \ldots, x_{l-1})$ be an open $\{E\}$ -formula. Furthermore for $0 , consider subsets <math>A \subseteq \langle g_k \rangle^l$ with the property that for all $\overline{a} \in A$ we have

$$\Pr_{G \in \mathcal{G}_k}(G \models \varphi_0(\overline{a})) \ge p$$

and

$$\{\{G \models \varphi_0(\overline{a})\} \subseteq \mathcal{G}_k; \overline{a} \in A\}$$
 are mutually independent,

moreover let A_k be the set with the largest cardinality that has this property. If $\lim_{k\to\infty} |A_k| = \infty$, then $[(\exists \overline{x})\varphi_0(\overline{x})] = 1$. *Proof.* Let $\overline{x} = (x_0, \dots, x_{l-1})$. Let $T_{\overline{a}}$ be a tree of some standard depth d, that tests whether $G \models \varphi_0(\overline{a})$.

From \aleph_1 -saturation of \mathcal{M} we have $n' > \mathbb{N}$ many tuples $\overline{a}_0, \ldots, \overline{a}_{n'-1} \in A_n$, such that $\Pr_{G \in \mathcal{G}_k}(G \models \varphi_0(\overline{a}_i)) \geq p$, we can assume $n' < n^{1/t_0}$ for some $t_0 > \mathbb{N}$.

For $j \in [l]$ construct a tree T_j inductively as follows: Start with $T_{\overline{a}_0}$. Replace the label of every accepting leaf by $(\overline{a}_0)_j$ and remove the label of every rejecting leaf. Call this tree T_j^0 . Assume we have already constructed T_j^m . Construct T_j^{i+1} by appending $T_{\overline{a}_{m+1}}$ to every undefined leaf, relabeling every satisfied leaf to $(\overline{a}_{i+1})_j$ and removing labels from every rejecting leaf. We will define T_j as $T_j^{n'}$ with undefined leafs labeled by 0. (This can be done, because all instances of induction are in $Th(\mathbb{N})$.) Note that $dp(T_j) = d \cdot n' < n^{1/t}$ for some $t > \mathbb{N}$.

Call $\overline{\alpha}$ the tuple computed by T_0, \ldots, T_{l-1} . We will prove that probability of $\overline{\alpha}$ being a witness to $\varphi_0(\overline{x})$ is 1. For each \overline{a}_i we have, that the probability of $G \models \varphi_0(\overline{a}_i)$ is at least p. The mutual independence of $\{G \models \varphi_0(\overline{a}_i); i \in [n']\}$ and the construction of T_j implies that T_j has a probability of $(1-p)^{n'}$ of failing, which is obviously almost 0.

Example 2.3.8. Let

 $\mathcal{G}_k = \{([k], E); E \text{ at least one edge, and may have exactly } k/2 \text{ more from start}\}$ and let $F = F_{tree}$. Then $\mu([\![(\exists x)(\exists y)\Gamma(x,y)]\!]) = \frac{1}{2}$.

We now use this theorem to characterize the theory of another wide limit. We denote

$$ALL_k = \{G \text{ undirected graph}, V_G = \langle k \rangle \}.$$

Note that if we consider an open $\{E\}$ -formula $\varphi(\overline{x})$ and convert it to DNF we get a disjunction of conjuctions. Each such conjuction says which first order literals should be satisfied on the variables \overline{x} , the following theorem is proved for conjunctons of literals. By the fact that $[\![\ldots]\!]$ commutes with disjunctions, we can find out a value of any existential sentence.

Theorem 2.3.9 (Everything exists). Let $\varphi(\overline{x}, \overline{y}) = \bigwedge_{i=0}^{m-1} \psi_i(\overline{x}, \overline{y}) \wedge \bigwedge_{i=0}^{l-1} \vartheta_i(\overline{y})$, where ψ_i, ϑ_i are literals and ψ_i are not of the form $(y_i = y_j)^b$, $E(y_i, y_j)^b$, $x_i \neq x_i$, $E(x_i, x_i)$, $b \in \{0, 1\}$ such that

- each ψ_i are not of the form $(y_i = y_j)^b$, $E(y_i, y_j)^b$, $x_i \neq x_i$, $E(x_i, x_i)$ for $b \in \{0, 1\}$
- if ψ_i is of the form $(x_i = z)^b$ for z in \overline{x} or \overline{y} then no other ψ_j is of the form $(x_i = z)^{1-b}$ or $(z = x_i)^{1-b}$
- if ψ_i is of the form $E(x_i, z)^b$ for z in \overline{x} or \overline{y} then no other ψ_j is of the form $E(x_i, z)^{1-b}$ or $E(z, x_i)^{1-b}$.

If $\overline{\beta}$ is a tuple of vertices computed by F_{tree} of the same length as \overline{y} then

$$\lim_{F_{rud}} \mathcal{G}_n \llbracket (\exists \overline{x}) \varphi^{\Gamma}(\overline{x}, \overline{\beta}) \rrbracket = \lim_{F_{rud}} \mathcal{G}_n \llbracket \bigwedge_{i=0}^{l-1} \vartheta_i(\overline{\beta}) \rrbracket,$$

specifically if l=0 then

$$\lim_{F_{rud}} \mathcal{G}_n[\![(\exists \overline{x})\phi_0(\overline{x}, \overline{\beta})]\!] = \mathbf{1}.$$

Proof. We will construct one tree T computing the whole tuple of witnesses $\bar{\alpha}$, such a construction can be straightforwardly split into a tuple of tree each computing the specific element.

First we concatenate all the trees used to compute $\overline{\beta}$. At each leave we can now proceed knowing the value of $\overline{\beta}$ at the specific $\omega \in \Omega$. Now we just construct a tree as in Theorem 2.3.7 but searching only over edges not checked previously and only to fulfill each ψ_i . Luckily we have so far searched only an infinitesimal part of the edges and since we assume $\mathcal{G}_k = \mathrm{ALL}_k$ both of the conditions of the theorem are satisfied, so by analogous argument, we have a tree that finds a witness all of the $\psi_i(\overline{x},\beta)$ with probability infinitesimally close to 1.

Therefore

$$= \left[\bigwedge_{i=0}^{l-1} \vartheta_i(\overline{\beta}) \right]. \tag{2.46}$$

The statement of the theorem was rather technical, but we can now use it to prove a few corollaries.

Corollary 2.3.10. For each $\varphi(\overline{x})$ that is not a contradiction in the theory of graphs we have that $[(\exists \overline{x})\varphi^{\Gamma}(\overline{x})] = 1$.

Proof. The conditions on ψ_i are exactly saying that the conjunction is not a contradiction. Every other formula can be rewritten as a disjunction of such conjunctions and by the theorem we can satisfy at least one (in fact all of those which are not contradictions).

Corollary 2.3.11. For each $\varphi(\overline{x},\overline{y})$ that is not falsifiable by \overline{y} in the theory of graphs we have that $\llbracket (\forall \overline{y})(\exists \overline{x})\varphi^{\Gamma}(\overline{x}) \rrbracket = 1$.

Proof. No $\overline{\beta}$ can falsify $(\exists \overline{x})\varphi(\overline{x},\overline{\beta})$, this means we can invoke the theorem on one of the non-falsifiable conjuncts.

Theorem 2.3.12. The theory

$$\operatorname{Th}(\lim_{F_{rud}} \operatorname{ALL}_n)$$

is the theory of the Rado graph and therefore complete.

Proof. In [Gai64] it is proved that the theory of the Rado graph is axiomatized by the theory of undirected graphs and the sentences $E_{i,j}$ which say that if we have a set A of i distinct vertices and a set B of j distinct vertices such that $A \cap B = \emptyset$, then there is a vertex v which has an edge with all vertices from A and no vertices from B.

Each $E_{i,j}$ satisfies the statement of Corollary 2.3.11 and because it is also an complete theory we have proved the theorem.

Corollary 2.3.13. (0-1 law for ALL_k) For every $\{E\}$ -sentence φ we have that

$$\lim_{F_{rud}} \mathrm{ALL}_n \llbracket \varphi^{\Gamma} \rrbracket \in \{\mathbf{0}, \mathbf{1}\}.$$

The wide sequence ALL_k is maximal in the sense that for every \mathcal{G}_k with $g_k = k$ we have that $\mathcal{G}_k \subseteq ALL_k$. Since we proved 0-1 law for ALL_k we can ask whether this tells us anything about the subobjects of ALL_k since they consist in some sense of all other wide sequences.

Definition 2.3.14. Let \mathcal{G}_k be a wide sequence, we say that \mathcal{G}'_k is a **portion** of \mathcal{G}_k if we have $\mathcal{G}'_k \subseteq \mathcal{G}_k$ for all k big enough which we denote $\mathcal{G}'_k \subseteq \mathcal{G}_k$. We say it is a **large portion** if we have

$$p := \lim_{k \to \infty} \frac{|\mathcal{G}'_k|}{|\mathcal{G}_k|} > 0,$$

which we denote $\mathcal{G}'_k \subseteq \mathcal{G}_k$.

Lemma 2.3.15. Let $\mathcal{G}'_k \leq \mathcal{G}_k$ be wide sequence and let φ be an $\{E\}$ -sentence such that

$$\lim_F \mathcal{G}_n\llbracket arphi
rbracket = \{\mathbf{0},\mathbf{1}\}$$

then

$$\lim_{\Gamma} \mathcal{G}'_n \llbracket \varphi \rrbracket = \lim_{\Gamma} \mathcal{G}_n \llbracket \varphi \rrbracket.$$

Proof. Assume φ is of the form $(\forall \overline{x}_1)(\exists \overline{x}_2) \dots (\exists \overline{x}_l) \varphi(\overline{x}_1, \dots, \overline{x}_l)$ so we have

$$\lim_{F} \mathcal{G}_{n} \llbracket \varphi \rrbracket = \bigwedge_{\overline{\alpha}_{1}} \bigvee_{\overline{\alpha}_{2}} \dots \bigvee_{\overline{\alpha}_{l}} \lim_{F} \mathcal{G}_{n} \llbracket \varphi(\overline{\alpha}_{1}, \dots, \overline{\alpha}_{l}) \rrbracket$$
$$\lim_{F} \mathcal{G}'_{n} \llbracket \varphi \rrbracket = \bigwedge_{\overline{\alpha}_{1}} \bigvee_{\overline{\alpha}_{2}} \dots \bigvee_{\overline{\alpha}_{l}} \lim_{F} \mathcal{G}'_{n} \llbracket \varphi(\overline{\alpha}_{1}, \dots, \overline{\alpha}_{l}) \rrbracket,$$

so we just need to establish equality of the substituted open kernel.

Since \mathcal{G}'_n is a large portion we have $p := \lim_{k \to \infty} |\mathcal{G}'_n| / |\mathcal{G}_n|$. Denote an event

$$A_G := [G \models \varphi^{\Gamma}(\overline{\alpha}_1(G), \dots \overline{\alpha}_l(G))],$$

we have that

$$\Pr_{G \in \mathcal{G}_n}[A_G] = \Pr_{G \in \mathcal{G}_n}[A_G|G \in \mathcal{G}'_n] \Pr_{G \in \mathcal{G}_n}[G \in \mathcal{G}'_n]$$
(2.47)

$$+ \Pr_{G \in \mathcal{G}_n} [A_G | G \in \mathcal{G}_n \setminus \mathcal{G}'_n] \Pr_{G \in \mathcal{G}'_n} [G \in \mathcal{G}_n \setminus \mathcal{G}'_n]. \tag{2.48}$$

If $\Pr_{G \in \mathcal{G}_n}[A_G] = 1$ and $q := \Pr_{G \in \mathcal{G}'_n}[A_G] < 1$ we have by taking standard parts

$$1 = p \cdot q + (1 - p) \cdot q' \tag{2.49}$$

$$\langle p + (1-p) \cdot q' \tag{2.50}$$

$$\leq 1,\tag{2.51}$$

a contradiction. The second case where $\lim_F \mathcal{G}_n[\![\varphi]\!] = \mathbf{0}$ then follows from $\lim_F \mathcal{G}_n[\![\neg \varphi]\!] = \mathbf{1}$.

In other words if \mathcal{G}_n admits a 0-1 law, then all its large portions do and their theories are the same.

Corollary 2.3.16. Let \mathcal{G}_k be a wide sequence such that

$$\lim_{k \to \infty} \frac{|\mathcal{G}_k|}{2^{\binom{g_k}{2}}} > 0$$

then $\operatorname{Th}(\lim_{F_{rud}} \mathcal{G}_n)$ is the theory of Rado graph.

Proof. The condition on the limit assures that $\mathcal{G}_k \subseteq \mathrm{ALL}_{g_k}$.

2.4 Isomorphism closed categorical \mathcal{G}_k

Take a isomorphism closed wide sequence \mathcal{G}_k , what are its isomorphism closed portions? It turns out its easy to classify them, any such portion can be constructed as a union of those wide sequences which always one isomorphism type of each \mathcal{G}_k and those precisely match the isomorphism closed sequences which satisfy the following property.

Definition 2.4.1. We say that $\{\mathcal{G}_k\}_{k=0}^{\infty}$ is **categorical** if there is k_0 such that for every $k > k_0$ if we have $G_1, G_2 \in \mathcal{G}_k$ then $G_1 \cong G_2$. For a categorical wide sequence $\{G_k\}_{k=0}^{\infty}$ we denote G_k the lexicographically minimal element of \mathcal{G}_k .

One can see isomorphism closed \mathcal{G}_k as the natural wide sequences and categorical isomorphism closed wide sequences as their building blocks. The concept of isomorphism closed categorical wide sequences can be already limiting the form of the sequence. We have the following lemma which limits sizes of \mathcal{G}_k to specific values.

Lemma 2.4.2. Let $\{\mathcal{G}_k\}_{k=0}^{\infty}$ be categorical and isomorphism closed, then for large enough k

$$|\mathcal{G}_k| = \frac{g_k!}{|\operatorname{Aut}(G_k)|}.$$

Proof. Every $\rho \in S_{g_k}$ defines an isomorphism $\rho : G_k \to \rho(G_k)$, where $\rho(G_k)$ is a graph obtained from G_k by renaming every vertex v to $\rho(v)$.

Claim: For any $\rho, \pi \in S_{q_k}$:

$$\rho(G_k) = \pi(G_k) \iff \exists \tau \in \operatorname{Aut}(G_k) : \rho \circ \tau = \pi.$$

Proof of claim. " \Rightarrow " Let $\rho(G_k) = \pi(G_k)$, therefore $\tau := \rho^{-1} \circ \pi \in \operatorname{Aut}(G_k)$ and $\rho \circ \tau = \rho \circ \rho^{-1} \circ \pi = \pi$.

"\(\Lefta \)" Let
$$\rho \circ \tau = \pi$$
. Then $\pi(G_k) = \rho(\tau(G_k)) = \rho(G_k)$.

Notice that the τ in the statement of the claim is uniquely determinted by $\rho^{-1} \circ \pi$. Therefore if we defined a quotient set S_{g_k}/\sim with $\rho \sim \pi \iff \rho(G_k) = \pi(G_k)$ then $|S_{g_k}/\sim| = \frac{g_k!}{|\operatorname{Aut}(G_k)|}$.

The Lemma follows from noticing that if we start with $\{G_k\}$ and then we build \mathcal{G}_k by finding isomorphic graphs on the vertex set $[g_k]$ we can only do so by trying different permutation from S_{g_k} and these permutations find the same graph if and only if they are in the same \sim -class. Therefore there is a bijection between S_{g_k}/\sim and \mathcal{G}_k .

So far we did not encounter an isomorphism closed wide sequence \mathcal{G}_k and a $\{E\}$ -sentence φ such that $\mathbf{0} < \lim_{F_{rud}} \mathcal{G}_n[\![\varphi^{\Gamma}]\!] < \mathbf{1}$. One can use isomorphism closed categorical wide sequences to construct such a wide sequence.

Example 2.4.3. Let

nonEDGE_k := {(
$$\langle k \rangle, E$$
); $|E| = (k(k-1)/2) - 1$ } (2.52)

$$\mathcal{G}_k := \mathrm{EDGE}_k \cup \mathrm{nonEDGE}_k, \tag{2.53}$$

Then one can see that $\mu(\lim_{F_{rud}} \mathcal{G}_n[\![(\exists x)(\exists y)\Gamma(x,y)]\!]) = \frac{1}{2}$.

However each EDGE_k and $\mathrm{nonEDGE}_k$ have complete theories. So natural follow up to this question whether 0-1 law holds for all isomorphism closed categorical wide sequences.

Theorem 2.2.3, Corollary 2.3.16 and Lemma 2.4.1 already give some conditions on what any counterexample would have to satisfy. However we did not find any nor did we rule out its existance.

Question 2.4.4. Is there a isomorphism closed categorical wide sequence \mathcal{G}_k and an $\{E\}$ -sentence φ such that

$$\mathbf{0} < \lim_{F_{rud}} \mathcal{G}_n \llbracket arphi^\Gamma
rbracket < \mathbf{1}?$$

3. Dense case

3.1
$$\mathcal{G}_k = \mathbf{SK}_k^{1/2}$$

Now we turn to analyze dense wide sequences in the second order case. In this chapter we assume $F = F_{rud}$ and $G = G_{rud}$. Specifically we will consider the problem of finding a large clique in a graph.

Generally it is considered a computatinally hard problem to find a large clique in a graph. From complexity theoretical perspective it is an **NP**-complete problem and thus it is conjectured that is cannot be solved in polynomial time. We first turn to the following wide sequence.

Definition 3.1.1. Let

$$SK_k^{1/2} = \{(\langle k \rangle, E); E \text{ consists of exactly one } k/2\text{-clique}\}.$$

Limiting inputs to $SK_k^{1/2}$ makes the problem less complex, because for a vertex v to a part of the biggest clique it is enough that is had nonzero degree. Naturally we want to see whether there is a large clique in $\lim_F^G SK_n^{1/2}$, every sample has a clique of size n/2, but is there a tuple of F-verticles witnessing that?

Here to measure the size of such a clique the second order wide limit by itself is not a sufficient object. Instead we need to turn to the underlying arithmetic K(F,G) to find an injective function from some large initial segment into a clique in the graph Γ . It is not hard to prove the following result.

Theorem 3.1.2. For every $t > \mathbb{N}$ we have

$$K(\operatorname{SK}_k^{1/2}, F, G)[\Gamma \text{ has a clique of size } n^{1/t}] = \mathbf{1}.$$

Proof. (Sketch) We need to analyze the value

$$[(\exists \Lambda)(\forall u)(\forall v)(((u, v \le n^{1/t}) \to \Gamma(\Lambda(u), \Lambda(v))) \land (\Lambda : [n^{1/t}] \hookrightarrow \mathcal{M}))]$$
(3.1)

which is equal to

$$\bigvee_{\Lambda} \bigwedge_{u} \bigwedge_{v} \llbracket (u \neq v < n^{1/t}) \to (\Gamma(\Lambda(u), \Lambda(v)) \land \Lambda(u) \neq \Lambda(v)) \rrbracket. \tag{3.2}$$

So we want to find some $n^{1/t}$ -tuple of trees computing some Λ which is injective on $\langle n^{1/t} \rangle$ and its $\langle n^{1/t} \rangle$ range is a clique in Γ .

We define $(\Lambda_0, \ldots, \Lambda_{n^{1/t}-1})$ as follows. The tree T_0 computing Λ_0 inspects all the edges $(u,v) \in \langle n^{1/t} \rangle \times \langle n^{1/t} \rangle$ in some specified order and outputs the first vertex it finds with an edge. The tree T_i computing Λ_i extends the previous order to $\langle in^{1/t} \rangle \times \langle in^{1/t} \rangle$ searches it and outputs the *i*-th vertex with an edge. Also every such tree has depth at most $n^{1/t} \cdot n^{1/t} = n^{2/t} = n^{1/(t/2)}$.

One can check that the probability the tree Λ_i does not find i vertices with an edge is infinitesimal and therefore it always outputs a vertex in the clique of ω . Moreover, every Λ_i outputs the i-th element element of the ordering and thus it is injective.

At first glance the lower bound $n^{1/t}$ for every nonstandard t may seem optimal given the proof method we used, but there is a way to radically improve it. The idea is to partition the set of vertices into many smaller ones and let Λ_i search only in the i-th set. First we need the following lemmas.

Lemma 3.1.3. Let $S \subseteq \langle n \rangle$ such that $|S| = m > \mathbb{N}$, then

st
$$\left(\Pr_{G \in \mathcal{G}_n} [S \text{ contains no vertices in the clique of } G]\right) = 0.$$

Proof. There are $\binom{n-m}{\left\lfloor \frac{n}{2} \right\rfloor}$ different graphs in $SK_n^{1/2}$ in which the clique does not intersect S. We then bound the probability as

$$\frac{\binom{n-m}{\left\lfloor \frac{n}{2} \right\rfloor}}{\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}} = \frac{(n-m)!(n-\left\lfloor \frac{n}{2} \right\rfloor)!}{(n)!(n-\left\lfloor \frac{n}{2} \right\rfloor-c)!}$$
(3.3)

$$= \prod_{i=0}^{m-1} \frac{\left(n - i - \left\lfloor \frac{n}{2} \right\rfloor\right)}{(n-i)} \tag{3.4}$$

$$= \prod_{i=0}^{m-1} \left(1 - \frac{\left\lfloor \frac{n}{2} \right\rfloor}{n-i} \right) \tag{3.5}$$

$$\leq \left(1 - \frac{\left\lfloor \frac{n}{2} \right\rfloor}{n}\right)^m \tag{3.6}$$

$$\leq \left(1 - \frac{\left\lfloor \frac{n}{2} \right\rfloor}{n}\right)^{n \cdot \frac{m}{n}} \tag{3.7}$$

$$\leq e^{-\left\lfloor \frac{n}{2}\right\rfloor \frac{m}{n}}.$$
(3.8)

But $\left|\frac{n}{2}\right|\frac{m}{n}$ is infinite therefore the bound is infinitesimal.

Lemma 3.1.4. Let $a \in \mathcal{M}$ with some property, let $v_0, \ldots, v_{a-1} \in \langle n \rangle$ distinct vertices, then there exist trees T_{v_i} such that

st
$$\left(\Pr_{\omega \in \Omega} [\forall i : (v_i, T_{v_i}(\omega)) \in E_{\omega} | \forall i : v_i \text{ is in the clique}] \right) = 1.$$

Proof. The tree T_{v_i} inspects all the edges (v_i, j) where j ranges over $(n^{1/t})$ for some $t > \mathbb{N}$ and outputs j if $(v_i, j) \in E_{\omega}$. By Lemma 3.1.3 we have that only infinitesimal number of graphs have their clique not intersect $(n^{1/t})$ so each T_{v_i} succeeds on all but infinitesimally small portion of Ω . But if one T_{v_i} finds a neighbour of v_i then all do since nonzero degree vertices in every ω form a clique and the same $w \in (n^{1/t})$ is a neighbour of all v_i s.

Lemma 3.1.5. Let $S_0, \ldots, S_{a-1} \subseteq \langle n \rangle$ sets of size $a \in \mathcal{M}$ for $i \in \mathcal{M}$ then

$$\Pr_{\omega \in \Omega} \left[\bigcup_{i=0}^{a-1} [S_i \text{ contains no vertices in the clique of } \omega] \right] \leq a \cdot e^{-\left\lfloor \frac{n}{2} \right\rfloor \frac{m}{n}}.$$

Proof. Follows from the proof of Lemma 3.1.3 and union bound.

Now we are ready to improve on Theorem 3.1.2.

Theorem 3.1.6. Let $m \geq 2 \ln n$ infinitesimal, then

$$K(\operatorname{SK}_k^{1/2}, F, G)[\Gamma \text{ has a clique of size } \lfloor n/m \rfloor] = 1.$$

Proof. Partition a subset of $\langle n \rangle$ to sets $S_0, \ldots, S_{\lfloor n/m \rfloor - 1}$ each of size at least m. Specifically if m divides n then we partition the whole $\langle n \rangle$.

By Lemma 3.1.5 we have that with probability that we do not sample ω which have the clique intersect all S_i s

$$\left\lfloor \frac{n}{m} \right\rfloor \cdot e^{-\left\lfloor \frac{n}{2} \right\rfloor \frac{m}{n}} = e^{\ln\left\lfloor \frac{n}{m} \right\rfloor - \left\lfloor \frac{n}{2} \right\rfloor \frac{m}{n}},\tag{3.9}$$

we can bound the exponent as

$$\ln\left\lfloor\frac{n}{m}\right\rfloor - \left\lfloor\frac{n}{2}\right\rfloor\frac{m}{n} \le \ln\frac{n}{m} - \frac{n}{2}\cdot\frac{m}{n} + \frac{m}{n} \tag{3.10}$$

$$\leq \ln n - \ln m - \frac{m}{2} + \frac{m}{n} \tag{3.11}$$

$$\leq \ln n - \ln \ln n - \ln n + \frac{2\ln n}{n} \tag{3.12}$$

$$\leq \ln n - \ln \ln n - \ln n + \frac{2 \ln n}{n}$$

$$\leq -\ln \ln n + \frac{2 \ln n}{n}$$

$$(3.12)$$

П

which is negative and infinite, because $\frac{\ln x}{x} \stackrel{x \to \infty}{\to} 0$ as and therefore (3.9) is infinitesimal.

So with probability infinitesimally close to 1 we have in each S_i a vertex v_i which is also a part of the clique. By Lemma 3.1.4 we have that there exists a tree verifying whether a given vertex is in the clique and since $m \leq n^{1/t}$ for some t we can concatenate the trees to get a tree T_{S_i} which finds in S_i an element of the clique with probability infinitesimally close to 1.

Finally we can have a function $\Lambda \in G$ computed by $(\Lambda_0, \ldots, \Lambda_{\lfloor n/m \rfloor - 1})$ by letting Λ_i be computed by T_{S_i} we have already verified $[\Lambda]$ is a clique = 1.

Because $T_{S_i}(\omega) \in S_i$ when S_i succeeds, and S_i are disjoint we have

$$\llbracket \Lambda : \langle |n/m| \rangle \hookrightarrow \mathcal{M} \rrbracket = \mathbf{1}.$$

Which proves the theorem.

Even though the size of the clique has radically increased we still did not find a clique in Γ of size n/2. One can verify that with the method provided one cannot obtain such a clique because the probability that any of $\lfloor n/2 \rfloor$ two-element sets does not intersect the clique is too large. Once can also check that for $SK_k^{1/l}$, the graphs whose edges are exactly one |k/l| clique, the wide limit has a clique of size |n/m| for any $m \ge l \cdot \ln(m)$ by the same technique.

3.2
$$\mathcal{G}_k = \mathbf{C}\mathbf{K}_k^{1/2}$$

Now let us mention the more complex case of the wide sequence $CK_k^{1/2}$

$$\operatorname{CK}_k^{1/2} = \{(\langle k \rangle, E); E \text{ contains a } \lfloor k/2 \rfloor \text{ clique.} \}$$

We are still guaranteed that every ω contains a large clique but there is no easy way to check whether a given vertex v is contained in the large clique. To prove the following theorem we can use that $\operatorname{CK}_k^{1/2}$ is isomorphism closed to translate the case for $\operatorname{SK}_k^{1/2}$ at least for the case of cliques of standard size.

Theorem 3.2.1. Let $c \in \mathbb{N}$ then

$$K(\operatorname{CK}_k^{1/2}, F, G)[\![\Gamma \text{ has a clique of size } c]\!] > \mathbf{0}.$$

Proof. Consider the set

$$\mathcal{G}_n^+ = \{(G, U); G \in \mathcal{G}_n \text{ and } U \subseteq \langle n \rangle \text{ is a } |n/2| \text{ clique in } G \}$$

and projections

$$\pi_1: \mathcal{G}_n^+ \to \mathcal{G}_n, (G, U) \mapsto G.$$

 $\pi_2: \mathcal{G}_n^+ \to \mathcal{P}(\langle n \rangle), (G, U) \mapsto U$

From the fact that $\operatorname{CK}_k^{1/2}$ is isomorphism closed, we have that $\left|\pi_2^{-1}[U_1]\right| = \left|\pi_2^{-1}[U_2]\right|$. We will set $\nu := \left|\pi_2^{-1}[U]\right|$ for some clique U of size $\lfloor n/2 \rfloor$ so we have $\nu |\mathcal{G}_n| = \mathcal{G}_n^+$. Let $\varphi_c(\overline{x})$ be a $\{E\}$ -sentence is satisfied iff \overline{x} is a c sized clique. Denote an event in the sample space \mathcal{G}_n

$$A_{\overline{a}} := \{ G \in \mathcal{G}_n; G \models \varphi_c(\overline{a}) \}.$$

and in the sample space \mathcal{G}_n^+

$$A_{\overline{a}}^+ := \{ (G, U) \in \mathcal{G}_n^+; \overline{a} \text{ is a subclique of } U \}$$

notice that if $(G, U) \in A_{\overline{a}}^+$ then $G \in A_{\overline{a}}$ which implies

$$\nu \cdot |A_{\overline{a}}| \ge \left| A_{\overline{a}}^+ \right|$$

so in conjunction with Example 2.3.3 we have

$$\Pr_{G \in \mathcal{G}_n} [A_{\overline{a}}] \ge \frac{\left| A_{\overline{a}}^+ \right|}{|\mathcal{G}_n^+|}$$

$$= \Pr_{G \in SK_k^{1/2}} [\overline{a} \text{ is in the clique}]$$

$$> (1/2)^c$$

and since c is constant we have $\Pr_{G \in \mathcal{G}_n}[A_{\overline{a}}] > 0$.

Of course it remains to show that using trees can actually increase the value all the way to 1, we did not get to prove that.

Finally one can return to cliques of nonstandard size and intuitively one excepts this to be hard. For a clique of size greater than $n^{1/t}$ for any $t > \mathbb{N}$ one has to check more than $n^{1/t}$ edges to even know given set is a clique and the counting argument used in the previous theorem implies that just guessing the clique of nonstandard size is not enough. We therefore present the following conjecture.

Conjecture 3.2.2. Let $m \leq c \ln n$ for any $c \in \mathbb{N}$, then

$$K(\operatorname{CK}_k^{1/2}, F, G)[\![\Gamma \text{ has a clique of size } \lfloor n/m \rfloor]\!] = \mathbf{0}.$$

4. Sparse case and TFNP

4.1 $\mathcal{G}_k = *\mathbf{PATH}_k$

Now we turn our attention to a wide sequence which is made up of 'hardest instances in LEAF'. That is, if we are given a degree 1 vertex labeled 0 and search for another degree 1 vertex it is the hardest if there are only two degree 1 vertices and the path from 0 to the solution is as long as possible.

Definition 4.1.1. We define *PATH_k (the pointed paths on k vertices) as the set of all (undirected) graphs G on the vertex set $\langle k \rangle$, where G is isomorphic to the path on n vertices and $\deg_G(0) = 1$.

One can also see that it is not fruitful to analyze the F_{rud} limit, because there are only k-1 edges in each $G \in *PATH_k$ and so by Theorem 2.2.3 we have that $\lim_{F_{rud}} *PATH_k[(\exists x)(\exists y)\Gamma(x,y)] = \mathbf{0}$. Moreover in the type 2 version of the problem the graph is presented by an oracle which gives us the neighbour set for each vertex, so we define a new family F as follows.

Definition 4.1.2. After we fix n, we define F_{nbtree} as the set of all functions computed by some some labeled tree with the following shape:

- Each non-leaf node is labeled by some $v \in \langle n \rangle$.
- For each $\{u,v\}\subseteq \langle n\rangle$ and a node N there is an outgoing edge from N labeled A.
- Each leaf is labeled by some $m \in \mathcal{M}$.
- The depth of the tree is at most $g_n^{1/t}$ for some $t > \mathbb{N}$.

Computation of such a tree on a undirected graph G goes as follows. We interpret the non-leaf nodes as questions "what is the neighbour set of v?" and the edges as answers from our graph G, and thus we follow a path determined by G until we find a leaf, in which case the computation returns the label of the leaf.

We now shift out focus to analysing the ability of trees from F_{nbtree} to find the non-zero degree 1 vertex in $G \in *PATH_n$. We say a tree $T \in F_{nbtree}$ fails at a graph G if T(G) is not a non-zero vertex of degree one in G.

Definition 4.1.3. Let $m \leq n$ and $v \in \langle w \rangle$ and $U \subseteq \langle w \rangle$ with $|U| \leq 2$, then we define

$$\mathcal{G}_m^{v?=U} := \{ G \in \mathcal{G}_m; N_G(v) = U \},$$

where N_G is the neighbour-set function of G.

Lemma 4.1.4. There are bijections for all nonstandard $m \leq n$ and distinct $u, v, w \in \langle m \rangle \setminus \{0\}$:

$$\mathcal{G}_m^{v?=\{u,w\}} \cong \mathcal{G}_{m-2} \times [2] \tag{4.1}$$

$$\mathcal{G}_m^{v?=\{u,0\}} \cong \mathcal{G}_{m-2} \tag{4.2}$$

$$\mathcal{G}_m^{0?=\{u\}} \cong \mathcal{G}_{m-1}. \tag{4.3}$$

Proof. (sketch) For (4.1) we can just contract all of u,v,w into one vertex and relabel the rest of the graph, leaving the orientation as a one remaining bit of information. This is obviously reversible and a bijection.

For (4.2) we can do the same, but the orientation is given by 0.

Lemma 4.1.5. Let $T \in F_{nbtree}$, with root labeled $v \in [m] \setminus 0$, we have for each $T_{v?=\{u,w\}}$ a tree $\tilde{T}_{v?=\{u,w\}}$ of the same depth, such that

$$\Pr_{G \in \mathcal{G}_m}(T_{v?=\{u,w\}} \text{ fails}|v? = \{u,w\}) = \Pr_{G \in \mathcal{G}_{m-2}}(\tilde{T}_{v?=\{u,w\}}). \tag{4.4}$$

For a tree T with the root labeled 0, we have a tree $\tilde{T}_{v?=\{u,w\}}$ of the same depth, such that

$$\Pr_{\mathcal{G} \in \mathcal{G}_m}(T_{v?=\{u\}} \text{ fails} | v? = \{u\}) = \Pr_{\mathcal{G}_{m-1}}(\tilde{T}_{v?=\{u\}}).$$
(4.5)

Proof. (sketch) To construct the tree, we just replace all vertices in labels of $T_{v?=\{u,w\}}$ by there renumbering from the bijection in (4.1).

One can then check that the trees $T_{v?=\{u,w\}}$ and $\tilde{T}_{v?=\{u,w\}}$ are isomorphic in a sense that their computation of a graph G and \tilde{G} respectively, \tilde{G} being the corresponding (m-2)-vertex graph, agree with the structure of the path and that correctness of leaves is preserved under the renumbering. Essentially they emulate the same computation but on a smaller graph.

Lemma 4.1.6. For all nonstandard $t > \mathbb{N}, m \ge n - 2n^{1/t}$ and $k \in [n^{1/t} + 1]$ for all trees $T \in F_{nbtree}$ of depth k we have

$$\Pr_{G \in \mathcal{G}_m}(T \text{ fails}) \ge \prod_{i=0}^k \left(1 - \frac{2}{m - 2i - 2}\right).$$

Proof. We proceed by induction on k.

k=0 : We have that the probability of success of a straight guess is at most $\frac{1}{m-1}.$ Therefore

$$\Pr_{G \in \mathcal{G}_m}(T \text{ fails}) \ge \left(1 - \frac{1}{m-1}\right) \ge \left(1 - \frac{2}{m-2}\right). \tag{4.6}$$

 $(k-1) \Rightarrow k$: First we assume that the root is labeled 0. Then we have

$$\Pr_{G \in \mathcal{G}_m}[T \text{ fails}] = \sum_{u \in V \setminus \{0\}} \Pr_{G \in \mathcal{G}_{m-1}}[E(0, u)] \Pr_{G \in \mathcal{G}_{m-1}}[T_{0? = \{u\}} \text{ fails}|E(0, u)]$$
(4.7)

$$\geq \Pr_{G \in \mathcal{G}_{m-1}} \left[T_{0?=\{u\}} \text{ fails} \middle| 0Eu \right] \tag{4.8}$$

$$= \Pr_{G \in \mathcal{G}_{m-1}} [\tilde{T}_{0?=\{u\}} \text{ fails}] \tag{4.9}$$

$$\geq \prod_{i=0}^{k-1} \left(1 - \frac{2}{m-2i-2} \right) \tag{4.10}$$

$$\geq \prod_{i=0}^{k} \left(1 - \frac{2}{m - 2i - 2} \right). \tag{4.11}$$

Now we assume that the root is labeled $v \neq 0$. First we notice that

$$\Pr_{G \in \mathcal{G}_m}[vE0] = \frac{1}{m-1} \tag{4.12}$$

$$\Pr_{G \in \mathcal{G}_m}[N(V) = 1] = \frac{1}{m-1} \tag{4.13}$$

$$\Pr_{G \in \mathcal{G}_m}[|N(V) \setminus \{0\}| = 2] = 1 - \frac{2}{m-1},\tag{4.14}$$

the first two probabilities are obviously $\frac{1}{m-1}$ because they correspond to v being positioned on one of the ends of the non-zero segment which has length m-1. The event in (4.14) is the complement of the union of the first two events, which have empty intersection, giving us that stated probability.

Then we have for $p := \Pr_{G \in \mathcal{G}_m}[T \text{ fails}]$

$$p = \Pr_{G \in \mathcal{G}_m} [E(v, 0)] \Pr_{G \in \mathcal{G}_m} [T \text{ fails} | E(v, 0)]$$

$$\tag{4.15}$$

$$+ \Pr_{G \in \mathcal{G}_m}[|N(v) \setminus \{0\}| = 2] \Pr_{G \in \mathcal{G}_m}[T \text{ fails} | |N(v) \setminus \{0\}| = 2]$$

$$\tag{4.16}$$

+
$$(\Pr_{G \in \mathcal{G}_m}[|N(v)| = 1] \Pr_{G \in \mathcal{G}_m}[E(v, 0)] \Pr_{G \in \mathcal{G}_m}[T \text{ fails} ||N(v)| = 1])$$
 (4.17)

$$\geq \Pr_{G \in \mathcal{G}_m}[|N(v) \setminus \{0\}| = 2] \Pr_{G \in \mathcal{G}_m}[T \text{ fails} | |N(v) \setminus \{0\}| = 2]$$
(4.18)

$$\ge (1 - \frac{2}{m-1})\tag{4.19}$$

$$\sum_{\substack{u,w \in V \setminus \{0\}\\u \neq w}} \Pr_{G \in \mathcal{G}_m} [v? = \{u, w\}] \Pr_{G \in \mathcal{G}_m} [T_{v? = \{u, w\}} \text{ fails} | v? = \{u, w\}]$$
(4.20)

$$\geq (1 - \frac{2}{m-1}) \Pr_{G \in \mathcal{G}_m} [T_{v?=\{u_0, w_0\}} \text{ fails} | v? = \{u_0, w_0\}]$$
(4.21)

$$\geq (1 - \frac{2}{m-1}) \Pr_{G \in \mathcal{G}_{m-2}} [\tilde{T}_{v?=\{u_0, w_0\}} \text{ fails}]$$
(4.22)

$$\geq \left(1 - \frac{2}{m-1}\right) \prod_{i=0}^{k-1} \left(1 - \frac{2}{m-2i-4}\right) \tag{4.23}$$

$$\geq \left(1 - \frac{2}{m-2}\right) \prod_{i=1}^{k} \left(1 - \frac{2}{m-2i-2}\right) \tag{4.24}$$

$$\geq \prod_{i=0}^{k} \left(1 - \frac{2}{m - 2i - 2}\right). \tag{4.25}$$

where in (4.21) we choose u_0, w_0 with the lowest value of

$$P_m(T_{v?=\{u_0,w_0\}}|v?=\{u_0,w_0\}),$$

the bound follows the fact that all $P_m(v? = \{u, w\})$ are the same for distinct non-zero u, w. In (4.22) we use the lemma 4.1.5 and in (4.23) we use the induction hypothesis.

Corollary 4.1.7. For a tree $T \in F_{nbtree}$ and $c \in \mathbb{N}$ we have that

$$\operatorname{st}\left(\Pr_{G\in\mathcal{G}_{n-c}}[T \text{ fails}]\right) \approx 1.$$

Proof. Since T has depth at most $n^{1/t}$ for some $t > \mathbb{N}$ we by the previous lemma that

$$\Pr_{G \in \mathcal{G}_n}(T \text{ fails}) \ge \prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n - 2i - c - 2}\right)$$
(4.26)

$$\geq \left(1 - \frac{2n^{1/t}}{n - 2n^{1/t} - c - 2}\right) \tag{4.27}$$

and the standard part of the lower bound is 1.

Finally we can prove the following theorem.

Theorem 4.1.8.

$$\llbracket (\exists v)(\exists u)(\forall w)((v \neq 0) \land (\Gamma(v,u)) \land (\Gamma(v,w) \rightarrow u = w)) \rrbracket = \mathbf{0}$$

Proof. Expanding the value of the formula in the statement we get

$$\bigvee_{\alpha} \bigvee_{\beta} \bigwedge_{\gamma} \llbracket (\alpha \neq 0) \wedge (\Gamma(\alpha, \beta)) \wedge (\Gamma(\alpha, \gamma) \to \beta = \gamma) \rrbracket,$$

to prove it evalues to **0** we need to find for every α, β some γ such that

$$\llbracket (\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \rightarrow \beta = \gamma) \rrbracket = \mathbf{0}.$$

For any α, β we define

$$\gamma(\omega) := \begin{cases} v & N(\alpha(\omega)) = \{v\} \\ w & w \in N(\alpha(\omega)) \setminus \{\beta(\omega)\}, \end{cases}$$

such a function can be computed by a tree in F_{nbtree} which we can construct by concatenation of trees computing α and β .

Let T be the tree computing α . Now we proceed by contradiction, let

$$\epsilon := \mu(\llbracket (\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \rightarrow \beta = \gamma) \rrbracket) > 0,$$

by definition this means that

$$\epsilon = \operatorname{st}(P_n[(\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \rightarrow \beta = \gamma)]) > 0.$$

Expanding the value of the formula in the statement we get

$$\bigvee_{\alpha}\bigvee_{\beta}\bigwedge_{\gamma} \llbracket (\alpha\neq 0)\wedge (\Gamma(\alpha,\beta))\wedge (\Gamma(\alpha,\gamma)\rightarrow \beta=\gamma) \rrbracket,$$

to prove it evalues to **0** we need to find for every α, β some γ such that

$$\llbracket (\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \rightarrow \beta = \gamma) \rrbracket = \mathbf{0}.$$

For any α, β we define

$$\gamma(\omega) := \begin{cases} v & N(\alpha(\omega)) = \{v\} \\ w & w \in N(\alpha(\omega)) \setminus \{\beta(\omega)\}, \end{cases}$$

such a function can be computed by a tree in F_{nbtree} which we can construct by concatenation of trees computing α and β .

Let T be the tree computing α . Now we proceed by contradiction, let

$$\epsilon := \mu(\llbracket (\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \rightarrow \beta = \gamma) \rrbracket) > 0,$$

by definition this means that

$$\epsilon = \operatorname{st}(P_n[(\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \rightarrow \beta = \gamma)]) > 0.$$

But by definition of γ and Corollary 4.1.7 we have

$$0 < \epsilon$$

$$= \operatorname{st}(P_n[(\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land (\Gamma(\alpha, \gamma) \to \beta = \gamma)])$$

$$\leq \operatorname{st}(P_n[(\alpha \neq 0) \land (\Gamma(\alpha, \beta)) \land |N(\alpha)| = 1])$$

$$\leq \operatorname{st}(P_n[(\alpha \neq 0) \land |N(\alpha)| = 1])$$

$$= \operatorname{st}(P_n[T \text{ does not fail}])$$

$$= 0.$$

A contradiction.

Corollary 4.1.9. Th($\lim_{F_{nbtree}} *PATH_n$) is complete.

Proof. By applying Theorem 2.3.4 we have that the sentences $\neg C_k$ stating that there are not cycles of length $k \in \mathbb{N}$ are valid all in $\lim_{F_{nbtree}} *PATH_n$, the sentence $D_{1,rest}^{1,2}$ stating that there is exactly one vertex of degree 1 and all other vertices have degree 2 is valid by Theorem 4.1.8.

Let $T = \{\neg C_k, k \in \mathbb{N}\} \cup \{D_{1,rest}^{1,2}\}$, and let $\mathcal{M}_1, \mathcal{M}_2 \models T$, then we can see by the handshaking lemma that \mathcal{M}_1 and \mathcal{M}_2 are both infinite. And we can see that they can be decomposed into one path starting at 0 with no end, and then more infinite paths which have the order type of \mathbb{Z} . One can see that the duplicator of Ehrenfeucht-Fraïssé game has a winning strategy by responding to any element on the order type \mathbb{Z} with a far enough element on the path of the order \mathbb{N} . \square

4.2 $\mathcal{G}_k = *\mathbf{PATH}_k^{\leq}$

So far we have proved that the hardest instances of LEAF do not have a solution in the F_{nbtree} limit and that they satisfy the 0-1 law. We can generalize this result to a larger class of instances.

Definition 4.2.1. We define *PATH $_k^{\leq}$ (the pointed paths on k vertices of length at most k) as the set of all (undirected) graphs G on the vertex set $\langle k \rangle$, where G has a subgraph isomorphic to the path on $l \leq k$ vertices, $\deg_G(0) = 1$ and no other edges.

Imediately we have that $*PATH_k$ is a portion of $*PATH_k^{\leq}$, we can prove even more

Definition 4.2.2. We define *PATH $_k^{\leq l}$ as the portion of *PATH $_k^{\leq l}$ where the path subgraph is of length at most l. And we define *PATH $_k^l = *PATH_k^{\leq l} \setminus *PATH_k^{\leq l-1}$.

Lemma 4.2.3. Let $c \in \mathbb{N}$, then

$$\lim_{k \to \infty} \frac{\left| * PATH_k^{k-c} \right|}{\left| * PATH_k^{\leq} \right|} = \frac{1}{ec!}$$

So *PATH_k^{-c} is a large protion of *PATH_k^{\leq} and specially *PATH_k \leq *PATH_k^{\leq}.

Proof. By direct computation we have that the fraction $|*PATH_k| / |*PATH_k|$ is

$$\frac{(k-1)!/(c!)}{\sum_{i=1}^{k-1} \prod_{j=0}^{i-1} (k-j-1)} = \frac{(k-1!)}{c! \sum_{i=1}^{k-1} \frac{(k-1)!}{(k-i-1)!}}$$
(4.28)

$$= \frac{(k-1!)}{c! \sum_{i=1}^{k-c-1} \frac{(k-1)!}{(k-i-1)!}}$$
(4.29)

$$= \frac{1}{c! \sum_{i=1}^{k-1} \frac{1}{(k-i-1)!}}$$
 (4.30)

$$= \frac{1}{c! \sum_{i=0}^{k-2} \frac{1}{i!}},\tag{4.31}$$

and the denominator tends to ec! as $k \to \infty$.

Lemma 4.2.4. Let $T \in F_{nbtree}$ be a tree, then

$$\operatorname{st}\left(\Pr_{G\in *\operatorname{PATH}_{n-c}}[T \text{ fails}]\right) = \operatorname{st}\left(\Pr_{G\in *\operatorname{PATH}_{n}^{n-c}}[T \text{ fails}]\right).$$

Proof. (Sketch) If T computing on a $G \in *PATH_n^{n-c}$ does not inspect a degree 0 vertex, then it can be relabeled to compute on a graph $G \in *PATH_{n-c}$ and probability of inspecting a degree 0 vertex is infinitesimal for all $c \in \mathbb{N}$.

Lemma 4.2.5. Let $\mathcal{G}_k := \bigcup_{c \in \mathbb{N}} *PATH_k^{k-c}$, then

$$\lim_{k \to \infty} \frac{|\mathcal{G}_k|}{\left| * PATH_k^{\leq} \right|} = 1.$$

And we say that \mathcal{G}_k is a major portion of $*PATH_k^{\leq}$.

Proof. There is a (elementwise least) increasing sequence $\{c_k\}_{k>0}$ such that for each $k_0>0$ and $k\geq k_0$ we have $*{\rm PATH}_k^{k-c_{k_0}}\neq\varnothing$, moreover $\lim_{k\to\infty}c_k=\infty$. $*{\rm PATH}_k^{k-c}$ are disjoint for different choices of c, so by direct computation we

PATH_k^{k-c} are disjoint for different choices of c, so by direct computation we have that the fraction $|\mathcal{G}_k| / |\text{PATH}_k^{\leq}|$ is

$$\sum_{c=0}^{c_k} \frac{\left| * PATH_k^{k-c} \right|}{\left| * PATH_k \right|} = \frac{1}{e} \sum_{c=0}^{c_k} \frac{1}{c!}$$
 (4.32)

which tends to 1 as $k \to \infty$.

Theorem 4.2.6.

$$\lim_{F_{nbtree}} * \mathrm{PATH}_n^{\leq} \llbracket (\exists v) (\exists u) (\forall w) ((v \neq 0) \land (\Gamma(v, u)) \land (\Gamma(v, w) \rightarrow u = w)) \rrbracket = \mathbf{0}$$

Proof. (sketch) By Lemma 4.2.5 we have that \mathcal{G}_k is a major portion with decomposition *PATH_k^{-c}. Each of them with a wide limit that has no nonzero vertices of degree 1 by Lemma 4.2.4 and 4.1.7. We can lower bound the probability of a substituted open kernel (which is enough as in the proof of Lemma 2.3.15) of any Γ -sentence φ with a nonstandardly large sum of conditional probabilities each conditioned by $[G \in *PATH_k^{k-c}]$ and all of which agree on the value.

So we have for a larger set of instances that their wide limit has no solution relative to F_{nbtre} .

We did not get to describe $\operatorname{Th}(\lim_{F_{nbtree}} *\operatorname{PATH}_n^{\leq})$. However, we suspect that if T fails to find the end of the path in $*\operatorname{PATH}_n^{\leq}$ with probability infinitesimally close to 1 then it should also fail to find any degree 0 vertex. Which leads us to the following.

Conjecture 4.2.7.

$$\operatorname{Th}\left(\lim_{F_{nbtree}} *\operatorname{PATH}_{n}^{\leq}\right) = \operatorname{Th}\left(\lim_{F_{nbtree}} *\operatorname{PATH}_{n}\right)$$

4.3 $\mathcal{G}_k = *\mathbf{DPATH}$

As *PATH_k was the wide sequence consisting of the hardest instances of LEAF the complete problem for **PPA**, we define *DPATH_k analogously but in the directed case so it consists of the hardest instances of SOURCE.OR.SINK the complete problem for **PPAD**.

Definition 4.3.1. We define *DPATH_k (the pointed directed paths on k vertices) as the set of all directed graphs G on the vertex set $\langle k \rangle$, where G is isomorphic to the path on k vertices such that $\deg_G^+(0) = 0$ and $\deg_G^-(1) = 1$.

But now since we are working with directed graphs which have two types of neighbour sets $N_G^+(v) = \{w \in V_G; E_G(w, v)\}$ and $N_G^-(v) = \{w \in V_G; E_G(v, w)\}$ we would like to define a family F_{dtree} of those tree which can inspect either of the neighbour sets.

Definition 4.3.2. After we fix n, we define F_{dtree} as the set of all functions computed by some some labeled tree with the following shape:

- Each non-leaf node is labeled by some $v \in \langle n \rangle$ and a symbol $\diamond \in \{+, -\}$.
- For each $v \in \langle n \rangle$ and a node N there is an outgoing edge from N labeled $\{v\}$ and also an outgoing edge labeled \varnothing .
- Each leaf is labeled by some $m \in \mathcal{M}$.
- The depth of the tree is at most $g_n^{1/t}$ for some $t > \mathbb{N}$.

Computation of such a tree on a undirected graph G goes as follows. We interpret the non-leaf nodes as questions "what is $N_G^{\diamond}(v)$?" and the edges as answers from our graph G, and thus we follow a path determined by G until we find a leaf, in which case the computation returns the label of the leaf.

We will not cover details, but analysis of these trees in F_{dtree} finding the nonzero sink is more or less the same as the F_{nbtree} case for *PATH_k, so we have the following.

Theorem 4.3.3.

$$\lim_{F_{nbtree}} * \mathrm{DPATH}_n \llbracket (\exists v) (\exists u) (\forall w) ((v \neq 0) \land (\Gamma(v, u)) \land (\Gamma(v, w) \rightarrow u = w)) \rrbracket = \mathbf{0}$$

Corollary 4.3.4. Th $(\lim_{F_{nbtree}} * PATH_n)$ is complete.

In the type 2 complexity theory of \mathbf{TFNP}^2 of the problems LEAF and SOURCE.OR.SINK we know that there is no (oracle polynomial time) reduction from LEAF to SOURCE.OR.SINK. An important question arises – does this reflect in the arithmetic $K(*PATH_n, F_{nbtree})$? More specifically we ask the following.

Question 4.3.5. Is it true that

 $K(*PATH_n, F_{nbtree})$ [Every SOURCE.OR.SINK instance has a solution.]] = **0**?

Concluding remarks

In this thesis we built basic theory around wide limits of graphs, proved several general theorems and proved that the wide limits $\lim_F \mathrm{EDGE}_n$, $\lim_{F_{rud}} \mathrm{ALL}_n$ and $\lim_{F_{nbtree}} *\mathrm{PATH}_n$ have complete theories. Moreover we showed that any large portion of a wide sequence with a complete theory has to agree on valid sentences and therefore has also complete theory. We also let a few open problems and conjectures for further research along this way.

During development we planned analyzing wide limits the family F_{poly} of polynomial functions. In [Kra10] it was proven that forcing with F_{poly} results is quantifier elimination which implies that if an $\{E\}$ -sentence holds in large enough \mathcal{G}_k it has to hold in the limit. However the second order limit can still provide some information about the ability of polynomial time functions to search interesting subsets of $G \in \mathcal{G}_k$. In the end we did not get any new results about it. We want to mention that even though it would seem that F_{poly} limits could depend on the \mathbf{P} vs. \mathbf{NP} question it seems that something a bit different happens. The way the limit objects are defined, it is not enough that some polynomial time algorithm does not exists to see that we cannot witness some property in the limit but it is important that no polynomial algorithm does not work on non-zero fraction of all inputs. This is more close to the generic case polynomial time [GMMU07].

Now another question emerges, is there a class F such that the properties of the wide limits relative to it correspond to the \mathbf{P} vs. \mathbf{NP} question? It would have to be some kind of weaker class than F_{poly} whose generic time complexity at least partially corresponds to polynomial time. We did not get to treat this question in any formal way but it indeed seems like an interesting one.

Another natural question would be to consider structures over general languages than just the language of graphs. Other combinatorial structures like hypergraphs and tournaments could be considered. Moreover wide limits of finite universal algebras could be considered which could require a whole new theory. This all leads to the fact that generalized spectra, elementary classes of Σ_1^1 logic [Fag74], with restricted vertex sets make up a wide sequence, there could be a connection to the theory of spectra of sentences.

Bibliography

- [BCE⁺95] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative complexity of np search problems. In *Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing*, STOC '95, page 303–314, New York, NY, USA, 1995. Association for Computing Machinery.
 - [Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In Richard Karp, editor, *Complexity of computation*, volume 7, page 2741. SIAM-ASM Proceedings, 1974.
 - [Fag76] Ronald Fagin. Probabilities on finite models. The Journal of Symbolic Logic, 41(1):50–58, 1976.
 - [Gai64] Haim Gaifman. Concerning measures in first order calculi. *Israel journal of mathematics*, 2(1):1–18, 1964.
- [GMMU07] Robert Gilman, Alexei G Miasnikov, Alexey D Myasnikov, and Alexander Ushakov. Report on generic case complexity. arXiv preprint arXiv:0707.1364, 2007.
 - [Gol14] I Goldbring. Lecture notes on nonstandard analysis. *Ucla summer school in logic*, 2014.
 - [GP18] Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity theory of total functions. J. Comput. System Sci., 94:167– 192, 2018.
 - [Kay91] Richard Kaye. Models of Peano arithmetic, volume 15 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications.
 - [Kra10] Jan Krajíček. Forcing with random variables and proof complexity, volume 382. Cambridge University Press, 2010.
 - [LS06] László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial Theory, Series B, 96(6):933–957, 2006.
 - [MP91] Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence theorems and computational complexity. *Theoretical Computer Science*, 81(2):317–324, 1991.
 - [NDM13] Jaroslav Nesetril and Patrice Ossona De Mendez. A model theory approach to structural limits. arXiv preprint arXiv:1303.2865, 2013.
 - [Raz07] Alexander A Razborov. Flag algebras. The Journal of Symbolic Logic, 72(4):1239–1282, 2007.