

Bringing structure into data processing work-flows for MAgPIE

David M Chen, Kristine Karstens, Miodrag Stevanović, Jan Philipp Dietrich et al.

MAgPIE training workshop, MADRAT tutorial

11-12-2020

The problem

Preparing input data for the model

Our attempt to solve it

Our attempt to solve it

readSource

calcOutput

retrieveData

- 1. Download data (downloadSource)
- 2. Read data and convert to standardized data format
- 3. Bring data to desired regional resolution

readSource

calcOutput

retrieveData

- 1. Calculate required data
 - 1. Filtering of data
 - 2. Merging of data from different data sources
 - 3. Data harmonization
- 2. Provide spatial aggregation (e.g. weights)

readSource

calcOutput

retrieveData

- 1. Collecting data sets
- 2. Coordinate packaging of aggregated data

Unanticipated side effects

A lot of low hanging fruits:

- Meta-data generation
- Sanity checks
- Data processing networks
- Data caching
- Structured log file
- Users report faster development
- Broader usage than planned

- Change in focus:
 - Spatial aggregation → reproducibility and transparency

MADRaT

"May All Data be Reproducible and Transparent"

R package

License: BSD2

Git: https://github.com/pik-piam/madrat

CRAN: https://CRAN.R-project.org/package=madrat

Contact: <u>dietrich@pik-potsdam.de</u>

Magclass Objects

Basic element in MADRaT: MAgPIE objects

Array consisting of 3 dimensions:

1st dim: Spatial

2nd dim: Temporal

3rd dim: Data

Magclass Objects

Basic element in MADRaT: MAgPIE objects

Array consisting of:

3 dimensions (Subdimensions possible):

1st dim: Spatial

2nd dim: Temporal

3rd dim: Data

MADRaT Cheat Sheet

library(madrat)

MADRaT Workflow

INPUT DATA

downloadSource("SourceX")

readSource("SourceX", convert=TRUE)

convertSource("SourceX") correctSource("SourceX")

CALCULATIONS

calcOutput("calcY", aggregate=TRUE) **FALSE**

fullMAgPIE(revision=12, mainfolder="pathtowhereallfilesarestored")

Magpie Objects Array with 3 Dimensions

1: Spatial Cellular 59199 cells Country

249 ISÓ3

Region 12 Magpie

Regions

2:Temporal Years 1965-2150

Call with:

int 1965

3: Data Subdimensions concatenated with "." char "y1965" Avoid using "." in naming

Magclass Basics

Subset: mag[subset,,]

Avoid: mag[subset]

Useful magclass Functions

Further documentation in ?magclass::function()

as.magpie()	Converts dataframe to magclass
getItems()	List of all dimension names
getRegions()	Vector of object regions
getYears()	Vector of years as char or int class
getNames()	Vector of names of data

Spatial		
toolCountryFill()	Fills in/matches incomplete country dimension with NA / given value	
toolAggregate()	Weighted aggregation, mapping file needed	
toolCountry2isocode	Converts country names to ISO3 code	
Temporal		
time_interpolate()	Linearly interpolates values between years	
toolHoldConstant()	Hold values constant for given years	
toolHoldConstantBey ondEnd()	Extend magpie object to 2150, holding missing years constant	
Data Analysis		
mbind()	bind 2 magpie objects along a dim, like abind	
add_columns()	Add new column to a given dimension "dim"	
add_dimension()	Add new dimension, with name of first column in new dim	
calibrate_it()	Calibrate one dataset to another over time, using set functions	
dimOrder()	Re-order dimensions	
dimSums	Very useful! Sum over dims and sub-dimensions	
magpply()	Like apply family of functions, to replace loops	
read.magpie()	Read magpie .mz files	
write.magpie()	write a magpie object ot file, various file formats incl. ncdf4	

Build a MADRaT-linked library #run

lucode2::buildLibrary()

#Need 0 Errors, warnings, notes before commit

MADRaT Config

See config settings library(madrat) getConfig()

Turn Cache on

setConfig(forcecahe=TRUE)

NOTE: Running a function with cache on and an existing cache file means further developments will not appear in results

Get Mappings folder getConfig("mappingfolder")

Change region mapping

setConfig(regionmapping="new_mapping.csv")

Link a Package to MADRaT Save the code below as madrat.R in

R folder of package

#' @importFrom madrat vcat toolCodeLabels #' @importFrom digest diges madrat::setConfig(packages=c(madrat::getConfig(*packages*),pkgname), .cfgchecks=FALSE, .verbose=FALSE) # add labels for common ctype selections for(tin c("c","n","h")) ncells <- c(seg(10.90.10).seg(100.900.100).seg(1000.10000.1000) for(n in ncells) tmp <- paste0(t,n labels[tmp] <- digest::digest(list(ctype=tmp), "md5" toolCodel abels(add=labels) #create an own warning function which redirects calls to vcat (package interna # create a own stop function which redirects calls to stop (package internal) stop <- function(...) vcat(-1,...) # create an own cat function which redirects calls to cat (package internal cat <- function(...) vcat(1,...)

Magclass Exercise

load madrat in R via library(madrat)

population_magpie is automatically loaded by madrat

Assign it to pop by

pop <- population_magpie

Using magclass functions, answer these questions:

- 1. What is the global population in 2100 for scenario A2? B1?
- 2. How does is the population of Sub-Saharan Africa (AFR) as share of global total change over the years?
- 3. Get population values for the years 2046-2049 by linearly interpolating between 2045 and 2050 values.

Backup Slides

wrapper functions

calcOutput("ours")

user functions

readSource("yours")

Backup Slides

wrapper functions

```
retrieveData("example", rev=1.2,
modelfoler="example",
regionmapping="example.csv")
```

user functions

```
fullEXAMPLE <- function(rev=0) {
  if(rev>=1) {
    calcOutput("ours", round=2, file="ours.cs4",
    destination="testfolder")
  } else {
    stop("No calculations for rev<1 available!")
  }
}</pre>
```


MADRaT Workshop

MADRaT Workshop - Software requirements

- R
 - https://www.r-project.org/
 - https://ftp.gwdg.de/pub/misc/cran/
- Rstudio
 - https://www.rstudio.com/products/rstudio/download/
- Libraries:

```
> install.packages("madrat")
```

install.packages("magclass")

MADRaT Workshop – Setup

Load library and configure the madrat mainfolder:

```
> library(madrat)
> getConfig()

# Initialize madrat config with default settings..
# madrat mainfolder for data storage not set! Do you want to set it now? (y/n)
> y
# Please enter main folder path: "~/inputdata"
# Directory does not exist. Should it be created? (y/n)
> y
# Should this path be added to your global .Rprofile to be used permanently? (y/n)
> y
```


MADRaT components: downloadSource()

Download the source data by using the *wrapper* function:

```
> downloadSource("Tau", overwrite = TRUE)
```

```
>madrat:::downloadTau
# function ()
# {
# download.file("http://www.pik-potsdam.de/members/dietrich/tau-data.zip",
# destfile = "tau-data.zip")
# unzip("tau-data.zip")
# unlink("tau-data.zip")
# }
# <environment: namespace:madrat>
```


MADRaT components: readSource() I/III

Read the data available in the source.

```
> x <- readSource(type="Tau", subtype="paper", convert=FALSE)
```

Three steps, i.e. three *wrapper* functions:

- 1. readSource()
 - reads the data in as a magclass object
- 2. correctSource()
 - (optional) removes duplicates, replacing NAs etc.
- 3. convertSource()
 - compatibility conversion for flexible aggregation (ISO country standard).

MADRaT components: readSource() II/III

Develop the readSrouce() type function:

- Read-in the data as a magclass object.
- No other modifications are allowed.

Develop the correctSource(), in particular correctTau() function, if needed.

MADRaT components: readSource() III/III

Lastly, develop the convertSrouce() typefunction:

```
>madrat:::convertTau
# function (x)
\# tau <- x[, , "tau"]
# xref <- x[, , "xref"]
# xref[is.na(tau) | is.nan(tau)] <- 10^-10</pre>
# tau[is.na(tau) | is.nan(tau)] <- 1
# if (ncells(x) == 59199) {
# iso cell <- sysdata$iso cell</pre>
# iso cell[, 2] <- getCells(x)</pre>
# tau <- toolAggregate(tau, rel = iso cell, weight = collapseNames(xref))</pre>
# xref <- toolAggregate(xref, rel = iso cell)</pre>
# tau <- toolCountryFill(tau, fill = 1, TLS = "IDN", HKG = "CHN",
\# SGP = "CHN", BHR = "QAT")
# xref <- toolCountryFill(xref, fill = 0, verbosity = 2)</pre>
# return(mbind(tau, xref))
# <environment: namespace:madrat>
```

• Fill out the missing ISO-country data: toolCountryFill()

MADRaT components: calcOutput()

> x <- calcOutput ("TauTotal", aggregate=FALSE, supplementary=FALSE)

Extract information form a given source of data.

```
>madrat:::calcTauTotal
# function ()
# tau <- readSource("Tau", "paper")</pre>
# x <- collapseNames(tau[, , "tau.total"])</pre>
# weight <- collapseNames(tau[, , "xref.total"])</pre>
\# return(list(x = x, weight = weight, min = 0, max = 10, unit = "1",
# description = "Agricultural Land Use Intensity Tau",
# note = c("data based on Dietrich J.P., Schmitz C., Müller C., Fader M.,
# Lotze-Campen H., Popp "Measuring agricultural land-use intensity - A global
# analysis using a model-assisted approach", "Ecological Modelling, Volume 232,
# 10 May 2012, Pages 109-118, ISSN 0304-3800, 10.1016/j."preprint
\# doi = "10.1016/j.ecolmodel.2012.03.002")))
# <environment: namespace:madrat>
```


MADRaT components: retrieveData()

Prepare a dataset from a collection of data.

```
> retrieveData("example", rev=1)

>madrat:::fullEXAMPLE
# function (rev = 0)
# {
# writeLines("This is a test", paste0(getConfig("outputfolder"),
# "/test.txt"))
# file2destination("test.txt", "testfolder")
# if (rev >= 1) {
# calcOutput("TauTotal", years = 1995, round = 2, file = "fm_tau1995.cs4",
# destination = "testfolder/input")
# }
# }
# <environment: namespace:madrat>
```

- Creates a log file
- Creates a tgz packaged compressed data
- Puts the data in the "output" directory in the defined madrat mainfolder.

Use own functions with MADRaT

Source your own function in the global environment setConfig (globalenv=TRUE):

same procedure also for all other MADRaT functions: downloadXYZ, readXYZ, correctXYZ, convertXYZ and fullXYZ.

Advanced: Create MADRaT-based R-package

The following lines of code should be added as madrat.R to the R folder of the package:

.onLoad - the package is linked to madrat as soon as it is loaded.

