Churn Prediction for KKBox

a music platform

Group 1:

Chew En Chin (Emma)

Nguyen Thi Ngoc Linh

Le Trung Kien

Mohammad Farhan Ahsan

Nguyen Phuong Hoa

01 Introduction

Background & Business Problem

Background: 2017

KKBOX is Asia's leading music streaming service operating on user subscription revenue. The company previously used a one-size-fits-all *retention strategy* towards all customers to maintain their subscriber userbase.

Business Problem:

As competition in the music streaming space intensifies, and as userbase grows KKBOX needs more **scalable methods to identify at-risk users** on the day when their subscriptions expire.

Business Metrics:

The business aims to reduce **Churn Rate** %, **User Retention Cost** and improve **Customer Lifetime Value** (**CLV**) with the usage of a ML model.

In-App User Journey

Definition of Churn

A user who fails to resubscribe within 30 days after their subscription has expired is considered churned.

02 Dataset

Dataset 🗎

This dataset comes from a Kaggle based on KKBOX's Churn Prediction Challenge (WSDM 2018), using multi-source historical data to predict user churn.

KKBOX is Asia's leading music streaming service.

Dataset	Description	Time Period	Key Columns
user_logs.csv	Daily user listening behavior (song completions, total seconds, unique songs).	2015-01-01 → 2017-02-28	msno, date, num_25, num_50, num_75, num_985, num_100, num_unq, total_secs
user_logs_v2.csv	Continuation of user_logs for March 2017.	2017-03-01 → 2017-03-31	Same columns as above
transactions.csv	Subscription payments, plan details, renewals, cancellations.	2015-01-01 → 2017-02-28	<pre>msno, payment_method_id, payment_plan_days, plan_list_price, actual_amount_paid, is_auto_renew, transaction_date, membership_expire_date, is_cancel</pre>
transactions_v2.csv	Transaction continuation (fewer rows).	2015-01-01 → 2017-03-31	Same columns as above
members_v3.csv	User demographics and registration metadata.		<pre>msno, city, bd, gender, registered_via, registration_init_time</pre>

03

Model Selection

Model Selection — Algorithms

1010

Task

Classification: Predict if a user will churn (1) or stay (0)

Target: is_churn (30 days post-subscription)

Models

- Logistic Regression interpretable baseline
- Decision Tree visual, easy to explain
- XGBoost high accuracy, SHAP-based interpretability
- Random Forest stable, handles skewed data

Model Selection Rationale

Explainability: Models must provide insights into key churn drivers.

Scalability: Efficient handling of millions of user logs and transaction records.

Performance: Tree-based ensembles deliver strong predictive power without sacrificing interpretability.

Dataset Size & Complexity

Over 6 million users, 1.4 million transactions, 300~ million user log data Dataset includes categorical, numerical, temporal features Imbalanced classes will be handled with class weighting or SMOTE

04

Data Pipeline Architecture

Design Principles

Batch-First Architecture

Daily batch processing (not real-time)minutes to hours acceptable for 10K-1M users

Scalable Data Processing

Handle multi-GB CSV data from multiple sources with automated cleaning and feature engineering

Full Pipeline Automation

Orchestrate end-to-end workflow from ingestion to prediction with scheduled daily execution

Experiment Tracking

Version control for code, models, and configs; systematic comparison of models and hyperparameters

Monitoring & Retraining

Detect drift and performance degradation; auto-retrain when thresholds exceeded using 30-day feedback

Cost-Efficient Reliability

Reproducible deployments with opensource tools; alerting for critical issues

Thank you!

All questions and comments are welcome **Group 1**