Statistics Worksheet-6

- 1. d) All of the mentioned
- 2. a) Discrete
- **3.** a) pdf
- **4.** c) mean
- **5.** c) empirical mean
- 6. b) standard deviation
- **7.** c) 0 and 1
- 8. b) bootstrap
- 9. a) frequency

10.

SI	Boxplot	Histogram
no.		
1	It gives spread of the data.	It gives frequency
		distribution of data by
		grouping data into bins.
2	Measures like median, quantiles and IQR are	Measures like median,
	explicitly represented in boxplots.	quantiles and IQR are
		not explicitly

		represented in
		histograms.
3	It is suitable to detect possible outliers with	It is not a preferred
	boxplot.	method to detect
		outliers with
		histograms.

- **11.** Metrics should be selected based on the problem statement and prioritizing the specifics goals.
- **12.** Statistical significance can be assessed by first defining the null and alternate hypothesis, and doing hypothetical tests of a particular problem. Also, the domain knowledge is required to interpret the statistical significance of the test.
- **13.** Global life expectancy
- **14.** For skewed data usually in presence of outliers, median is better measure then mean.
- **15.** Likelihood basically means to increase the chances of a particular event to occur by varying the characteristics of the data distribution. In a probability density functions, it is the y-axis value corresponding to any random variable/data in x-axis. Mathematically, it is defined as likelihood of the distribution given data,

i.e., L(distribution | data).