GENNAPE: Towards Generalized Neural Architecture Performance Estimators

Keith G. Mills¹, Fred X. Han², Jialin Zhang³, Fabian Chudak², Ali Safari Mamaghani¹, Mohammad Salameh², Wei Lu², Shangling Jui³ and Di Niu¹

¹University of Alberta

²Huawei Technologies Canada Co., Ltd.

³Huawei Kirin Solution, Shanghai, China

Motivation

Performance Evaluation Strategy is a bottleneck of Neural Architecture Search (NAS). Performance Evaluation Cost for a Single Network

- Neural predictors are low-cost by learning to estimate performance.
- However, most neural predictors are confined to specific search spaces. They lack generalizability!

Contributions

We propose GENeralized Neural Architecture Performance Estimators; GENNAPE:

- Generalizable Architecture Representation using Computational Graphs (CG).
- Pre-train a graph encoder using self-supervised Contrastive Learning (CL).
- Cluster embeddings using Fuzzy C-Means (FCM) for a weighted ensemble.
- Introduce open-source benchmark families, HiAML, Inception and Two-Path.
- Verify the transferability of our scheme on known benchmarks.

Architecture Representation in Literature

- Micro Search
- Find some Directed
 Acyclic Graph structure
 of operations the cell.

Architecture Representation in Literature

- Micro Search
- Find some Directed
 Acyclic Graph structure
 of operations the cell.
- Repeat many times.

Cannot change one cell on its own!

Architecture Representation in Literature

- Different, fixed rules for grouping operations:
 - 'Conv-BN-ReLU' vs. 'ReLU-Conv-BN' vs. Dil. & Sep. Conv.
- Is an operation grouping an edge or a node?

If I train a predictor on one format, can I infer performance on the other?

Our Approach: Computational Graphs

New Benchmark Family - HiAML

- 4.6k architectures.
 - Comparable FLOPS to NB-201.
- 4 stages; 2 identical blocks/stage.
- Pool of 14 blocks to choose from.
- Spanning [91.11%, 93.44%] on CIFAR-10.
 - Many ties make rank correlation difficult.
- Feature extractors in Huawei
 Mobile Facial Landmark
 Detection Application.

Figure 1: The architecture backbone of HiAML, containing 4 stages. Each stage contains 2 identical blocks.

New Benchmark Families - Inception

- 580 architectures.
 - Inspired by classical Inception-v4.
- Branching paths, with channel splits.
 - Largest benchmark by FLOPs.
- Fach block can have 1-4 branches.
- Used in mobile facial recognition.

New Benchmark Families – Two-Path

- 6.9k architectures.
 - Most lightweight benchmark.
- Applied in mobile 4k LivePhoto and Super Resolution.
- Meta-structure is 2 branching paths.
 - Each block is single-path.
 - Complement of Inception.

Contrastive Learning for Graph Encoder Pre-Training

Combine aspects of the NT-Xent loss from SimCLR [Chen et al. 2020] and class-awareness of SupCon [Khosla et al. 2020]:

$$\mathcal{L}_{CL} = -\sum_{i \in I} \sum_{\ell \neq i} \alpha_{\ell}^{(i)} \log \frac{\exp(sim(z_i, z_{\ell}))}{\sum_{r \neq i} \exp(sim(z_i, z_r))},$$

- Semi-supervised, $\alpha_l^{(i)}$ is the structural similarity of CGs *i* and *l*.
 - Calculate using Laplacian Eigenvalues.
 - Like a continuous class similarity
- Use NB-101 as encoder training family.
 - Contains many architectures
 - Is topologically diverse.
- Encoder separates NB-101 CGs into groups.
- Divides other families into distinct clusters.

Figure 5: t-SNE scatterplot of the Contrastive Learning embeddings for all architecture families. Best viewed in color.

Fuzzy C-Means (FCM) Soft Clustering Ensemble

- Perform FCM on NB-101 graph embeddings.
 - Clusters overlap.
 - Continuous membership.
- Predictor ensemble: 1 head per cluster.
 - Weighted summation.
 - Cluster membership is the weight.

Figure 5: t-SNE scatterplot of the Contrastive Learning embeddings for all architecture families. Best viewed in color.

Fuzzy C-Means (FCM) Soft Clustering Ensemble

- Perform FCM on NB-101 graph embeddings.
 - Clusters overlap.
 - Continuous membership.
- Predictor ensemble: 1 head per cluster.
 - Weighted summation.
 - Cluster membership is the weight.
- Each ensemble head represents a different region of the latent space.
 - Each family lies in a distinct region.

Figure 5: t-SNE scatterplot of the Contrastive Learning embeddings for all architecture families. Best viewed in color.

Incorporating FLOPs Into Predictions

- FLOPs indicate model size.
 - Cheap to compute.
- Enjoy positive correlation with performance.
 - Correlation can be strong.
- Augment accuracy labels using FLOPs and standardization:

$$y_i = \mathcal{Z}(\frac{A_i}{\log_{10}(F_i + 1) + 1}),$$

Family	FLOPs
NB-201	0.0002
NB-301	0.5778
OFA-PN	0.6886
OFA-MBv3	0.6141
OFA-RN	0.7850
HiAML	0.2767
Inception	0.4115
Two-Path	0.3332

Correlation between accuracy performance and FLOPs.

Experimental Setup

- 1. Single search space
- 2. Transferability test
- 3. Application to NAS

1) Single Search Space Evaluation

NERSITY OF

- Compare rank correlation (SRCC).
- Consider several single search space predictors from literature.
- Simple GNNs variants that use CGs.
- Instead, using a predictor built using our contributions... achieve
 SRCC > 0.9, achieving performance of best single-space predictor.

2) Transferability Test – SRCC

-0.4

Application to NAS

Conclusion

We propose GENNAPE, or **GEN**eralized **N**eural **A**rchitecture **P**erformance **E**stimators:

Meaning?

Conclusion

We propose GENNAPE, or GENeralized Neural Architecture Performance Estimators:

Meaning?

NERSITY OF A.

 $\mathcal{L}_{CL} = -\sum_{i \in I} \sum_{\ell \neq i} \alpha_{\ell}^{(i)} \log \frac{\exp(sim(z_i, z_{\ell}))}{\sum_{r \neq i} \exp(sim(z_i, z_r))},$ (c)

Figure 5: t-SNE scatterplot of the Contrastive Learning embeddings for all architecture families. Best viewed in color.

References

- Ying et al., "NAS-Bench-101: Towards Reproducible Neural Architecture Search." In ICML 2019.
- Dong and Yang, "NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search." In ICLR 2020.
- Liu et al., "DARTS: Differentiable Architecture Search." In ICLR 2019.
- Zela et al., "Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Benchmarks." In ICLR 2022.
- Chen et al., "A Simple Framework for Contrastive Learning of Visual Representations." In ICML 2020.
- Khosla et al., "Supervised Contrastive Learning." In NeurlPS 2020.
- Mills et al., "Profiling Neural Blocks and Design Spaces for Mobile Neural Architecture Search." In CIKM'21.

