COSC 6323 - Statistical Methods in Research

Fettah Kiran

2024-01-26

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                         dist
##
    Min.
           : 4.0
                   Min.
                           : 2.00
##
    1st Qu.:12.0
                    1st Qu.: 26.00
##
    Median:15.0
                   Median: 36.00
##
    Mean
           :15.4
                   Mean
                           : 42.98
##
    3rd Qu.:19.0
                    3rd Qu.: 56.00
##
   Max.
           :25.0
                   Max.
                           :120.00
str(cars)
```

```
## 'data.frame': 50 obs. of 2 variables:
## $ speed: num 4 4 7 7 8 9 10 10 10 11 ...
## $ dist : num 2 10 4 22 16 10 18 26 34 17 ...
```

Including Plots

You can also embed plots, for example:

```
## 'data.frame': 19 obs. of 2 variables:
## $ temperature: num  0 20 40 60 80 100 120 140 160 180 ...
## $ pressure : num  0.0002 0.0012 0.006 0.03 0.09 0.27 0.75 1.85 4.2 8.8 ...
```

Temperature vs Pressure | n = 19 and B^2

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

More about code chunks:

```
library(ggplot2)
summary(cars)
##
        speed
                         dist
           : 4.0
                           : 2.00
##
   Min.
                    Min.
   1st Qu.:12.0
                    1st Qu.: 26.00
                    Median : 36.00
    Median:15.0
##
    Mean
           :15.4
                    Mean
                           : 42.98
    3rd Qu.:19.0
                    3rd Qu.: 56.00
                           :120.00
## Max.
           :25.0
                    Max.
library(ggplot2)
p1 <- ggplot(data=cars)+geom_point(aes(x=speed,y=dist))</pre>
p2 <- ggplot(data=cars, aes(x=speed,y=dist))+geom_point() + geom_smooth() +</pre>
\#p2 \leftarrow ggplot(data=cars, aes(x=speed,y=dist))+geom\_point() + geom\_smooth() +
  labs(title = "Speed vs. Stopping Distance") +
  theme bw()
  #labs(title = "Speed vs. Stopping Distance", y = "") +
p3 <- ggplot(data=cars)+geom_line(aes(x=speed,y=dist)) +
  labs(title = "Speed vs. Stopping Distance", y = "", x= "Speed") +
```


Embed LaTeX or Math<L equations, and cross-reference them. For example, we can write $\hat{\beta} = (X'X)^{-1}X'y$ and reference it later as Equation ??.

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

Inline R code

I counted 6 blue cars on a highway.

The mean of the first column in iris.csv is 5.8433333.

Footnotes, citations, and a bibliography. $^{\rm 1}$

 $^{^1\}mathrm{Markdown}$ is great

Table 1: Summary of the iris data set

##		Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa

Table 1: Table 1: Summary of the iris data set

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Table 2: Table 1: Descriptive of the $\tt iris$ data set

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
Min. :4.300 1st Qu.:5.100	Min. :2.000 1st Qu.:2.800	Min. :1.000 1st Qu.:1.600	Min. :0.100 1st Qu.:0.300	setosa :50 versicolor:50
Median :5.800	Median :3.000	Median $:4.350$	Median $:1.300$	virginica :50
Mean :5.843 3rd Qu.:6.400	Mean :3.057 3rd Qu.:3.300	Mean :3.758 3rd Qu.:5.100	Mean :1.199 3rd Qu.:1.800	NA NA
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500	NA