4. Convex optimization problems

- standard form (convex) optimization problem
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- semidefinite programming
- vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ for $i=1,\ldots,p$ are the equality constraint functions

Optimal value

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$$

- $p^* = \infty$ if the problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if the problem is unbounded below

Optimal and locally optimal points

- x is **feasible** if $x \in \text{dom } f_0$ and it satisfies the constraints
- a feasible x is **optimal** if $f_0(x) = p^*$
- x is **locally optimal** if there is an R > 0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to $f_i(z) \leq 0, \quad i=1,\ldots,m$ $h_i(z)=0, \quad i=1,\ldots,p$ $\|z-x\|_2 \leq R$

Examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$ with dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$ with dom $f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$ with dom $f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$: $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- we call \mathcal{D} the **domain** of the problem
- the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)
- the distinction will be important when we diccuss duality

Example

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

this is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

this formulation is not meant as a practical method for solving feasibility problems

Convex optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- f_0, f_1, \ldots, f_m are convex functions
- equality constraints are linear
- often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

• important property: feasible set of a convex optimization problem is convex

Example

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- f_0 is convex
- feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (according to our definition): f_1 not convex, h_1 not affine
- the problem is equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

• suppose x is locally optimal: there is an R > 0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

- suppose if x is not globally optimal: there exists a feasible y with $f_0(y) < f_0(x)$
- convex combinations of x and y are feasible
- cost function at convex combination of x and y with $0 < \theta \le 1$ satisfies

$$f_0((1-\theta)x + \theta y) \leq (1-\theta)f_0(x) + \theta f_0(y)$$

$$< (1-\theta)f_0(x) + \theta f_0(x)$$

$$= f_0(x)$$

• for $0 < \theta \le R/\|y - x\|_2$ this contradicts the assumption of local optimality of x

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T (y - x) \ge 0$$
 for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Proof (necessity)

- consider feasible $y \neq x$ and define line segment $I = \{x + t(y x) \mid 0 \le t \le 1\}$
- by convexity of *X*, points in *I* are feasible
- let $g(t) = f_0(x + t(y x))$ be the restriction of f_0 to I
- derivative at t is $g'(t) = \nabla f_0(x + t(y x))^T(y x)$, so

$$g'(0) = \nabla f_0(x)^T (y - x)$$

• if $g'(0) = \nabla f_0(x)^T (x - y) < 0$, the point x is not even locally optimal

Proof (sufficiency)

if y is feasible and $\nabla f_0(x)^T(y-x) \ge 0$, then, by convexity of f_0 ,

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x)$$

$$\ge f_0(x)$$

Examples

Unconstrained problem: *x* is optimal if and only if

$$x \in \text{dom } f_0, \qquad \nabla f_0(x) = 0$$

(recall our assumption that dom f_0 is an open set if f_0 is differentiable)

Minimization over nonnegative orthant

minimize
$$f_0(x)$$

subject to $x \ge 0$

x is optimal if and only if

$$x \in \text{dom } f_0,$$
 $x \ge 0,$
$$\begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Equality constrained problem

minimize
$$f_0(x)$$

subject to $Ax = b$

x is optimal if and only if there exists a v such that

$$x \in \text{dom } f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T v = 0$$

- first two conditions are feasibility of x
- gradient $\nabla f_0(x)$ can always be decomposed as $\nabla f_0(x) + A^T v = w$ with Aw = 0
- if w = 0, the optimality condition on page 4.9 holds:

$$\nabla f_0(x)^T (y - x) = -\nu^T A(y - x) = 0 \quad \text{for all } y \text{ with } Ay = b$$

• if $w \neq 0$, condition on p. 4.9 does not hold: y = x - tw is feasible for small t > 0,

$$\nabla f_0(x)^T (y - x) = -t(w - A^T v)^T w = -t||w||_2^2 < 0$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

Eliminating equality constraints

minimize
$$f_0(x)$$
 minimize $f_0(Fz + x_0)$ subject to $f_i(x) \le 0$, $i = 1, ..., m$ subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

- x_0 is any solution of $Ax_0 = b$ and the columns of F span the nullspace of A
- variables in second problem are z

Introducing equality constraints

minimize
$$f_0(A_0x+b_0)$$
 minimize $f_0(y_0)$ subject to $f_i(A_ix+b_i) \leq 0$, subject to $f_i(y_i) \leq 0$, $i=1,\ldots,m$ $i=1,\ldots,m$ $y_i=A_ix+b_i, \ i=1,\ldots,m$

variables in second problem are x, y_0, y_1, \ldots, y_m

Equivalent convex problems

Epigraph form

minimize
$$f_0(x)$$
 minimize t subject to $f_i(x) \le 0, \quad i = 1, \dots, m$ subject to $f_0(x) - t \le 0$ $f_i(x) \le 0, \quad i = 1, \dots, m$ $Ax = b$

variables in second problem are x, t

Minimizing over some variables

minimize
$$f_0(x_1,x_2)$$
 minimize $\tilde{f_0}(x_1)$ subject to $f_i(x_1) \leq 0, \ i=1,\ldots,m$ subject to $f_i(x_1) \leq 0, \ i=1,\ldots,m$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- f_0 is quasiconvex
- f_1, \ldots, f_m are convex

can have locally optimal points that are not (globally) optimal

Convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

Example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on dom f_0

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^*$; if infeasible, $t \leq p^*$

Bisection method

```
given: l \leq p^*, u \geq p^*, tolerance \epsilon > 0
repeat
1. t := (l + u)/2
2. solve the convex feasibility problem (1)
3. if (1) is feasible, u := t
else l := t
until u - l \leq \epsilon
```

requires exactly
$$\left\lceil \log_2 \left(\frac{u-l}{\epsilon} \right) \right\rceil$$
 iterations

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

Diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize
$$c^T x$$

subject to $Ax \ge b$, $x \ge 0$

Piecewise-linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$

subject to $a_i^T x + b_i \le t, \quad i = 1, ..., m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{x \mid a_i^T x \le b_i, \ i = 1, \dots, m\}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_{\mathbf{c}} + u \mid ||u||_2 \le r\}$$

• $a_i^T x \le b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

• hence, x_c , r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, \dots, m$

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \le h$
 $Ax = b$

Linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 dom $f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

minimize
$$c^Ty + dz$$

subject to $Gy \le hz$
 $Ay = bz$
 $e^Ty + fz = 1$
 $z \ge 0$

Generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i},$$
 dom $f_0(x) = \{x \mid e_i^T x + f_i > 0, i = 1,\dots,r\}$

a quasiconvex optimization problem; can be solved by bisection

Example: Von Neumann model of a growing economy

maximize (over
$$x, x^+$$
) $\min_{i=1,...,n} x_i^+/x_i$
subject to $x^+ \ge 0, \quad Bx^+ \le Ax$

- $x, x^+ \in \mathbb{R}^n$: activity levels of n sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$: produced, respectively, consumed, amounts of good i
- x_i^+/x_i : growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \le h$
 $Ax = b$

- $P \in \mathbb{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

Least squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \le x \le u$

Linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \mathbf{var}(c^T x)$$

subject to $Gx \leq h$
 $Ax = b$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter
- \bullet γ controls trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x + q_0^Tx + r_0$$
 subject to
$$(1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- $P_i \in \mathbb{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbb{S}^n_{++}$, feasible set is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $F x = g$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

• inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$,

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, ..., m$,

• stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

Deterministic approach via SOCP

choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \le 1\} \qquad (\bar{a}_i \in \mathbf{R}^n, \ P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

SOCP formulation

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

this is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$
)

Stochastic approach via SOCP

- assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$: Gaussian with mean \bar{a}_i , covariance Σ_i
- $a_i^T x$ is Gaussian random variable with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$
- if we denote the CDF of $\mathcal{N}(0,1)$ by $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$,

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

SOCP formulation of robust LP

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

for $\eta \geq 1/2$, this is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i = 1, \dots, m$

Example

$$\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, 5$$

feasible set for three values of η

$$\eta = 10\%$$

$$\Phi^{-1}(\eta) < 0$$

$$\eta = 50\%$$

$$\Phi^{-1}(\eta) = 0$$

$$\eta = 90\%$$

$$\Phi^{-1}(\eta) > 0$$

Geometric programming

Monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

Posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

Geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1, \quad i = 1, \dots, m$
 $h_i(x) = 1, \quad i = 1, \dots, p$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log(\sum_{k=1}^K e^{a_k^T y + b_k})$$
 (with $b_k = \log c_k$)

geometric program transforms to convex problem

minimize
$$\log(\sum_{k=1}^K \exp(a_{0k}^T y + b_{0k}))$$
 subject to
$$\log(\sum_{k=1}^K \exp(a_{ik}^T y + b_{ik})) \le 0, \quad i = 1, \dots, m$$

$$Gy + d = 0$$

Design of cantilever beam

- N segments with unit lengths, rectangular cross-sections of size $w_i \times h_i$
- given vertical force F applied at the right end

Design problem

minimize total weight

subject to upper & lower bounds on w_i , h_i

upper bound & lower bounds on aspect ratios h_i/w_i

upper bound on stress in each segment

upper bound on vertical deflection at the end of the beam

variables: w_i , h_i for i = 1, ..., N

Objective and constraint functions

- total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- maximum stress in segment i is given by $6iF/(w_ih_i^2)$, a monomial
- vertical deflection y_i and slope v_i of central axis at the right end of segment i:

$$v_{i} = 12(i - 1/2)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3)\frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for i = N, N - 1, ..., 1, with $v_{N+1} = y_{N+1} = 0$ (E is Young's modulus) v_i and y_i are posynomial functions of w, h

Formulation as a GP

minimize
$$w_1h_1 + \cdots + w_Nh_N$$
 subject to $w_{\max}^{-1}w_i \leq 1$, $w_{\min}w_i^{-1} \leq 1$, $i=1,\ldots,N$
$$h_{\max}^{-1}h_i \leq 1, \quad h_{\min}h_i^{-1} \leq 1, \quad i=1,\ldots,N$$

$$S_{\max}^{-1}w_i^{-1}h_i \leq 1, \quad S_{\min}w_ih_i^{-1} \leq 1, \quad i=1,\ldots,N$$

$$6iF\sigma_{\max}^{-1}w_i^{-1}h_i^{-2} \leq 1, \quad i=1,\ldots,N$$

$$y_{\max}^{-1}y_1 \leq 1$$

note

• we write $w_{\min} \le w_i \le w_{\max}$ and $h_{\min} \le h_i \le h_{\max}$

$$w_{\min}/w_i \le 1$$
, $w_i/w_{\max} \le 1$, $h_{\min}/h_i \le 1$, $h_i/h_{\max} \le 1$

• we write $S_{\min} \leq h_i/w_i \leq S_{\max}$ as

$$S_{\min} w_i / h_i \le 1, \qquad h_i / (w_i S_{\max}) \le 1$$

Minimizing spectral radius of nonnegative matrix

Perron–Frobenius eigenvalue $\lambda_{pf}(A)$

- exists for (elementwise) positive $A \in \mathbf{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- determines asymptotic growth (decay) rate of A^k : $A^k \sim \lambda_{\rm pf}^k$ as $k \to \infty$
- alternative characterization: $\lambda_{pf}(A) = \inf\{\lambda \mid Av \leq \lambda v \text{ for some } v > 0\}$

Minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$\lambda$$
 subject to $\sum\limits_{j=1}^{n}A(x)_{ij}v_{j}/(\lambda v_{i})\leq 1, \quad i=1,\ldots,n$

variables λ , v, x

Generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $Ax = b$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ is convex
- $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ is K_i -convex with respect to proper cone K_i :

$$f_i(\theta x + (1 - \theta)y) \le K_i \theta f_i(x) + (1 - \theta)f_i(y)$$
 for $0 \le \theta \le 1$ and $x, y \in \text{dom } f_i(x)$

• same properties as standard convex problem (local optimum is global, etc.)

Conic linear program: special case with linear objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbf{R}_{+}^{m})$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \cdots + x_n F_n + G \le 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called *linear matrix inequality* (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \le 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \le 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \le 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ subject to $Ax \le b$

SDP: minimize $c^T x$

subject to $\operatorname{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize $f^T x$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, ..., m$

SDP: minimize $f^T x$

subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \ge 0, \quad i = 1, \dots, m$

Eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 (with given $A_i \in \mathbf{S}^k$)

Equivalent SDP

minimize
$$t$$

subject to $A(x) \le tI$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- equivalence follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{R}^{p \times q}$)

Equivalent SDP

minimize
$$t$$
 subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \geq 0$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \ge 0$$

Vector optimization

General vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

vector objective $f_0: \mathbf{R}^n \to \mathbf{R}^q$, minimized with respect to proper cone $K \in \mathbf{R}^q$

Convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

with f_0 K-convex, f_1, \ldots, f_m convex

Optimal and Pareto optimal points

set of achievable objective values

$$O = \{f_0(x) \mid x \text{ feasible}\}$$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of O
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of O

Multicriterion optimization

vector optimization problem with $K = \mathbf{R}_+^q$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^* is optimal if

y feasible
$$\Longrightarrow$$
 $f_0(x^*) \leq f_0(y)$

if there exists an optimal point, the objectives are noncompeting

feasible x^{po} is Pareto optimal if

y feasible,
$$f_0(y) \leq f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y)$$

if Pareto optimal values are not unique, there is a trade-off between objectives

• f_0 is K-convex if F_1, \ldots, F_q are convex (in the usual sense)

Regularized least-squares

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) $(\|Ax - b\|_{2}^{2}, \|x\|_{2}^{2})$

example for $A \in \mathbb{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) $(-\bar{p}^{T}x, x^{T}\Sigma x)$ subject to $\mathbf{1}^{T}x = 1, \quad x \geq 0$

- $x \in \mathbb{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- return is $r = p^T x$ where $p \in \mathbf{R}^n$ is vector of relative asset price changes
- p is modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E} r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance (risk)

Example

Scalarization

to find Pareto optimal points: choose $\lambda >_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

solutions x of scalar problem are Pareto-optimal for vector optimization problem

$$x \text{ not Pareto-optimal} \\ \downarrow \\ \exists \text{ feasible } y: f_0(y) \leq_K f_0(x), \ f_0(y) \neq f_0(x) \\ \downarrow \\ \lambda^T f_0(y) < \lambda^T f_0(x) \text{ for } \lambda \succ_{K_*} 0$$

• partial converse for convex vector optimization problems (see later): can find (almost) all Pareto optimal points by varying $\lambda >_{K^*} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

regularized least squares problem of page 4.45

take
$$\lambda = (1, \gamma)$$
 with $\gamma > 0$

minimize
$$||Ax - b||_2^2 + \gamma ||x||_2^2$$

for fixed γ , a LS problem

• risk-return trade-off of page 4.46: with $\gamma > 0$,

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$

subject to $\mathbf{1}^T x = 1, \quad x \ge 0$