COMPARATIVE VALUATION DYNAMICS IN MODELS WITH FINANCING FRICTIONS

III. MODEL COMPARISONS

Today's Lecture:

Fabrice Tourre (Copenhagen Business School)

Based on joint work with:

Lars Peter Hansen (University of Chicago)

Paymon Khorrami (University of Chicago)

Numerical implementation:

Joseph Huang (University of Chicago)

March 21, 2019

RECAP OF PREVIOUS LECTURES

- 1. Continuous-time recursive utility
- 2. Complete markets production model with long run risk
- 3. "Shock elasticities" as model diagnostics
- 4. Heterogeneous agents, financial frictions, and long run risk
- 5. Numerical methods

TODAY'S PLAN: MODEL COMPARISONS

- 1. Nesting Model Refresher
- 2. Binding Constraints and Risk Aversion Heterogeneity
- 3. Impact of Frictions on Equilibrium Outcomes
- 4. Long Run Risk and Financial Frictions
- 5. Long Run Risk and Capital Misallocation

PART I

NESTING MODEL – QUICK REMINDER

NESTING MODEL

Agent Types: "Households" and "Experts"

Technology

- A-K production function with $a_e \geq a_h$
- agg. and idio. TFP shocks (also called "capital quality shocks")
- · agg. growth rate and agg. stochastic vol shocks (long-run risk)

Markets

- · Capital traded (with shorting constraint)
- · Complete financial markets for households
- · Experts facing minimum risk-retention constraint

Preferences

- Recursive utility
- · Households and experts potentially different
- · OLG (for stationary equilibrium)

TECHNOLOGY

$$\frac{dK_t}{K_t} = \left[\underbrace{\Phi(I_t/K_t)}_{\text{endogenous}} + \underbrace{Z_t - \alpha_k}_{\text{exogenous}}\right] dt + \underbrace{\sqrt{V_t}\sigma_k \cdot dB_t}_{\text{aggregate}} + \underbrace{\sqrt{\tilde{V}_t}\tilde{\sigma}_k d\tilde{B}_t}_{\text{idiosyncratic}}$$

$$(\text{exogenous growth}) \quad dZ_t = -\lambda_z Z_t dt + \sqrt{V_t}\sigma_z \cdot dB_t$$

$$(\text{aggregate variance}) \quad dV_t = -\lambda_v (V_t - 1) dt + \sqrt{V_t}\sigma_v \cdot dB_t$$

$$(\text{idiosyncratic variance}) \quad d\tilde{V}_t = -\lambda_{\tilde{V}}(\tilde{V}_t - 1) dt + \sqrt{\tilde{V}_t}\sigma_{\tilde{V}} \cdot dB_t$$

 $I_t dt$ invested leads to $\Phi(I_t/K_t) K_t dt$ increase in the capital stock

MARKETS

Capital is freely traded, at price Q_t

$$dQ_t = Q_t \left[\mu_{q,t} dt + \sigma_{q,t} \cdot dB_t \right]$$

Households facing dynamically complete markets, leading to SDF $S_{h,t}$

$$dS_{h,t} = -S_{h,t} \left[r_t dt + \pi_{h,t} \cdot dB_t \right]$$

Experts face skin-in-the-game constraint via minimum risk retention:

$$\chi_t \geq \underline{\chi}$$

 χ_t is fraction of equity retained by experts

Experts SDF Se,t

$$dS_{e,t} = -S_{e,t} \left[r_t dt + \pi_{e,t} \cdot dB_t \right]$$

STOCHASTIC CONTROL PROBLEM

Agent i will solve the following problem:

$$\begin{aligned} U_{i,t} &= \max_{\{K_i \geq 0, C_i, \theta_i, i_i\}} \mathbb{E}\left[\int_t^{+\infty} \varphi\left(C_{i,s}, U_{i,s}\right) ds\right] \\ \text{s.t. } \frac{dN_{i,t}}{N_{i,t}} &= \left[\mu_{n,i,t} - \frac{C_{i,t}}{N_{i,t}}\right] dt + \sigma_{n,i,t} \cdot dB_t + \tilde{\sigma}_{n,i,t} \cdot d\tilde{B}_t \\ \mu_{n,i,t} &= r_t + \frac{Q_t K_{i,t}}{N_{i,t}} \left(\mu_{R,i,t} - r_t\right) + \theta_{i,t} \cdot \pi_t \\ \sigma_{n,i,t} &= \frac{Q_t K_{i,t}}{N_{i,t}} \sigma_{R,t} + \theta_{i,t} \\ \tilde{\sigma}_{n,i,t} &= \frac{Q_t K_{i,t}}{N_{i,t}} \tilde{\sigma}_{R,t} \end{aligned}$$

Financial constraint $\theta_{i,t} \in \Theta_{i,t}$:

- $\Theta_{i,t} = \{0\}$: agent cannot issue "equity" securities
- $\Theta_{i,t} = \{(\chi_t 1) \frac{Q_t K_{i,t}}{N_{i,t}} \sigma_{R,t}, \chi_t \ge \underline{\chi}\}$: "skin-in-the-game" constraint
- $\Theta_{i,t} = \mathbb{R}^d$: unconstrained agent

BALANCE SHEETS AND FLOWS OF FUNDS

MODELS NESTED

- Complete markets with long run risk
 - Bansal & Yaron (2004)
 - · Hansen, Heaton & Li (2008)
- · Complete markets with heterogeneous preferences
 - · Longstaff & Wang (2012)
 - Garleanu & Panageas (2015)
- Complete markets for agg. risk with idiosyncratic shocks
 - Di Tella (2017)
- Incomplete market/limited participation models
 - Basak & Cuoco (1998)
 - Kogan & Makarov & Uppal (2007)
 - He & Krishnamurthy (2012)
- Incomplete market/capital misallocation models
 - Brunnermeier & Sannikov (2014, 2016)

NUMERICAL SOLUTION

User-friendly web application to solve models, downloadable at https://larspeterhansen.org/mfr-suite/

Code implemented in C++, user interface via Jupyter Notebook

What the software does

- 1. Compute Markov equilibrium of the model
 - a. "Outer loop" to solve single-agent HJBs iteratively
 - b. "Inner loop" to solve for (i) capital allocation first order (elliptic) PDE and (ii) equity issuance policy algebraic equation iteratively
- 2. Compute stationary distribution via backward operator discretization
- 3. Compute unconditional moments of interest
- 4. Compute impulse response functions and term structure of risk prices (solutions to parabolic PDEs)

Part II

BINDING CONSTRAINTS AND RISK AVERSION HETEROGENEITY

BINDING CONSTRAINTS AND RISK AVERSION HETEROGENEITY

A simple example to warm up

Economic setting of focus

- Experts are the only producers $(a_h = -\infty)$
- · Only agg. TFP shocks
- Agents with equal IES 1/ho=2
- 50% minimum equity retention
- Unique state variable $W_t := N_{e,t} / \left(N_{e,t} + N_{h,t}\right)$

Compare

- Homogeneous risk aversion ($\gamma_e = \gamma_h = 3$) vs.
- Heterogeneous risk aversion ($\gamma_e = 3 < \gamma_h = 8$)

BINDING CONSTRAINTS AND RISK AVERSION HETEROGENEITY

Assume
$$\gamma_e = \gamma_h$$

Equity retention policy $\chi = \max(\underline{\chi}, \mathbf{w})$

Diffusion coefficient
$$\sigma_{\rm W}=(\chi\kappa-{\rm W})\sigma_{\rm R}={\rm O}$$
 whenever $\chi>\chi$

Consequence: in unitary IES case, financial constraint is

- always binding if $\delta_{\it e}=\delta_{\it h}$, $\lambda_{\it d}>$ 0 and $\nu<\underline{\chi}$
- never binding if $\delta_{\it e}=\delta_{\it h}$, $\lambda_{\it d}>$ 0 and $u>\underline{\chi}$
- always binding if $\delta_{e}>\delta_{h}$ and $\lambda_{d}=0$

THEORETICAL JUSTIFICATION

To simplify, assume away idiosyncratic TFP shocks, and note that complementary slackness condition for $\chi_t \geq \chi$ can be written

$$O = \min \left(\chi - \underline{\chi}, \Delta_e\right) \qquad \Delta_e = \sigma_R \cdot \left[\pi_e - \pi_h\right] \qquad \pi_i = \gamma_i \sigma_{n_i} + (\gamma_i - 1)\sigma_{\xi,i}$$

Note $\sigma_{\hat{R}} := \sqrt{\mathsf{v}}\sigma_{\mathsf{k}} + \sigma_{\hat{\mathsf{x}}}'\partial_{\hat{\mathsf{x}}}\log q$

Use the identities

$$\sigma_{R} = \frac{\sigma_{\hat{R}}}{1 - (\beta_{e} - 1)w \partial_{w} \log q} \qquad \sigma_{w} = (\chi \kappa - w) \sigma_{R} \qquad \sigma_{\xi, i} = \sigma'_{\chi} \partial_{\chi} \xi_{i}$$

$$\sigma_{n_h} = \frac{1 - \chi \kappa}{1 - W} \sigma_R \qquad \qquad \sigma_{n_e} = \frac{\chi \kappa}{W} \sigma_R$$

THEORETICAL JUSTIFICATION

Complementary slackness $o = \min \left(\chi - \underline{\chi}, \Delta_e\right)$

$$\gamma_h=\gamma_e$$
: one can show that $\Delta_e\sim (\chi-w)$ when constraint not binding

Thus, homogeneous risk-aversion means $\chi = \max \left(\underline{\chi}, \mathbf{w} \right)$

Intuition:

- if $\chi>\chi$, experts face "locally" complete markets
- Portfolio choice σ_n solves $\max \mu_n \frac{\gamma}{2} |\sigma_n|^2 + (1 \gamma) (\sigma_x \sigma_n) \cdot \partial_x \xi$
- Complete markets $\sigma_n = \frac{\pi}{\gamma} + \frac{1-\gamma}{\gamma} \sigma_{\mathsf{X}}' \partial_{\mathsf{X}} \xi$
- $\gamma_{\it e} = \gamma_{\it h} \Rightarrow {\it identical portfolios when} \; \chi > \underline{\chi}$
- $\sigma_{W,t} = W_t(1 W_t) (\sigma_{n_e,t} \sigma_{n_h,t}) = 0$

Constraint always binding or never binding depends on sign of $\mu_{w}\left(\underline{\chi},\hat{\mathbf{x}}\right) = \underline{\chi}\left(\mathbf{1} - \underline{\chi}\right)\left(c_{h}^{*}\left(\underline{\chi},\hat{\mathbf{x}}\right) - c_{e}^{*}\left(\underline{\chi},\hat{\mathbf{x}}\right)\right) + \lambda_{d}(\nu - \underline{\chi})$

PART III

FINANCIAL FRICTIONS' IMPACT ON EQUILIBRIUM OUTCOMES

FINANCIAL FRICTIONS AND EQUILIBRIUM OUTCOMES

Model comparison: complete markets vs. financial frictions

Economic setting of focus

- Experts are the only producers $(a_h = -\infty)$
- · Only agg. TFP shocks
- Experts more risk-tolerant than households ($\gamma_e < \gamma_h$)
- Unique state variable $W_t := N_{e,t} / \left(N_{e,t} + N_{h,t} \right)$

Compare

- 50% minimum equity retention vs.
- No financial friction

Literature comparison

- Brunnermeier & Sannikov (2016) or He & Krishnamurthy (2012) with heterogeneous risk-aversion vs.
- Garleanu & Panageas (2015)

PART IV

LONG RUN RISK AND FINANCIAL FRICTIONS

LONG RUN RISK IN COMPLETE MARKET MODELS

Brief reminder of complete market result with unitary IES

Agent continuation value $\log U_t = \log K_t + \xi_t$

$$\begin{split} \xi_t &= \beta_{\rm O} + \beta_{\rm 1Z} Z_t + \beta_{\rm 1V} V_t \\ \pi_t &= \sqrt{V_t} \left[\left(\gamma - 1 \right) \left(\beta_{\rm 1Z} \sigma_{\rm Z} + \beta_{\rm 1V} \sigma_{\rm V} \right) + \gamma \sigma_k \right] \end{split}$$

Coefficients β_{1z}, β_{1v} satisfy

- $\beta_{1z} = 1/(\lambda_z + \delta)$
- β_{1v} is the negative root to a quadratic equation

LONG RUN RISK WITH FINANCIAL FRICTIONS

Model comparison: complete markets vs. financial frictions

Economic setting of focus

- Experts are the only producers $(a_h = -\infty)$
- agg. TFP shocks, growth rate and stochastic volatility shocks
- Identical preferences, $\gamma_i = 3$ and $\rho_i = 1$
- 3 state variables $X_t := (Z_t, V_t, W_t)$

Compare

- 50% minimum equity retention vs.
- · No financial friction

Literature comparison

- Brunnermeier & Sannikov (2016) or He & Krishnamurthy (2012) with long run risk vs.
- Bansal & Yaron (2004)

Model illustration with MFM toolkit

Part V

LONG RUN RISK AND CAPITAL MISALLOCATION

LONG RUN RISK WITH FINANCIAL FRICTIONS

Economic setting of focus

- Experts and households can both produce ($a_e>a_h>-\infty$)
- · No equity issuance allowed
- · agg. TFP shocks and stochastic volatility shocks
- Identical preferences, $\gamma_i =$ 3 and $\rho_i =$ 1
- 2 state variables $X_t := (V_t, W_t)$

Question: how does stochastic volatility affect capital misallocation?

- 50% minimum equity retention vs.
- · No financial friction

SUMMARY

Large class of models that can be investigated with MFM toolkit

Robust numerical solution method that can handle multiple state variables

Preliminary model investigations suggest that

- Financial frictions interact in non-trivial ways with different types of shocks – in particular stochastic volatility shocks
- Preference heterogeneity can alter significantly the dynamic properties of the competitive equilibrium – from an environment with always-binding constraints to an environment with occasionally (and sometimes never!) binding constraints
- Environments with "skin-in-the-game" constraints might lead to low persistence of crisis regime compared to corresponding complete markets' environments