Why Neural Translations are the Right Length

Xing Shi, Kevin Knight and Deniz Yuret; EMNLP 2016

What is the fundamental question

as a PhD student?

How to publish a lot of high-quality papers?

How to graduate in 5 years?

PhD Life

MT

How to publish a lot of high-quality papers?

How to graduate in 5 years?

PhD Life

MT

How to publish a lot of high-quality papers?

H-index || BLEU

How to graduate in 5 years?

5 years || right length

Language Pairs	BLEU	Length Ratio (MT output / reference)
English => Spanish	31.0	0.97
English => French	29.8	0.96

2-layer 1000 hidden units non-attentional LSTM seq2seq

<UNK> <UNK> <UNK> ?

does he know about phone hacking?

a-t-il connaissance du piratage téléphonique ?

English:

French reference:

French translation:

	When to stop
PBMT	$[] \rightarrow [-x] \rightarrow [x \times x \times x]$
Neural MT	Word \rightarrow Vord \rightarrow <eof></eof>

	When to stop	How to generate right length?
PBMT	$[] \rightarrow [-x] \rightarrow [x \times x \times x]$	word-penalty feature
Neural MT	Word \rightarrow Word \rightarrow <eof></eof>	no explicit penalty

	When to stop	How to generate right length?
Statistical MT	$[] \rightarrow [-x] \rightarrow [x \times x \times]$	word-penalty featureMERT
Neural MT	Word \rightarrow Word \rightarrow <eof></eof>	no explicit penaltyMLE

	When to stop	How to generate right length ?
Statistical MT	$[] \rightarrow [-x] \rightarrow [x \times x \times]$	word-penalty featureMERTHeavy beam search
Neural MT	Word \rightarrow Word \rightarrow <eof></eof>	 no explicit penalty MLE light beam search (beam = 10)

$$a \ a \ a \ b \ b < EOS> \rightarrow a \ a \ a \ b \ b < EOS>$$
 $b \ b \ a < EOS> \rightarrow b \ b \ a < EOS>$

Train: 2500 random string
Single-layer, 4 hidden states LSTM

C_t involves only **elementwise** + and x.

Encoding Cell State unit 1 decrease by 1.0

<s> b b b a b a <EOF>

English => French

1000 hidden units LSTM

2 layers

Non-attention

BLEU = 29.8

$$Y = W_1 * X_1 + W_2 * X_2 + ... + W_{1000} * X_{1000} + b$$

Sentence_i	It	is	raining	right	now
Υ	1	2	3	4	5
X	1000 cell states	1000 cell states	1000 cell states	1000 cell states	1000 cell states

In total 143,379 (Y, X)

$$Y = W_1 * X_1 + W_2 * X_2 + ... + W_{1000} * X_{1000} + b$$

	R^2
1000 units in lower-layer	0.990
1000 units in upper-layer	0.981

k	Best subset of LSTM's 1000 units	\mathbb{R}^2
1	109	0.894
2	334, 109	0.936
3	334, 442, 109	0.942
4	334, 442, 109, 53	0.947
5	334, 442, 109, 53, 46	0.951
6	334, 442, 109, 53, 46, 928	0.953
7	334, 442, 109, 53, 46, 433, 663	0.955

Table 2: Sets of k units chosen by beam search to optimally track length in the NMT encoder. These units are from the LSTM's second layer.

Encoding

Unit 109 and 334 decrease from above zero

Decoding

Increase during decoding, once they are above zero, the model is ready to generate <EOS>.

Conclusion

Toy Example

Unit₁ controls the length

Full Scale NMT

Unit₁₀₉ and Unit₃₃₄ contributes to the length

How

Who

Thanks and QA