Managing Dynamic Data

Alessandro Margara

Politecnico di Milano

Research focus

1. Analyze dynamic data

- Timely extract useful knowledge from streams of data
- E.g., to support decision making

- Update the state of the (distributed) system ...
- ... providing guarantees of correctness / consistency

Analyze dynamic data (CEP)

Notifications of changes / events (low level)

Inference rules

Derived knowledge (high level)

Analyze dynamic data (CEP)

Language/abstractions to define the inference rules

- Open problem
 - Several proposals
 - Different trade-offs between expressivity and complexity of pattern detection
 - Dagstuhl seminar on the foundations of CEP
- Contribution

[TESLA, DEBS 2010]

Language that grounds on temporal logic

Analyze dynamic data (CEP)

Efficient inference algorithm

- Contributions [T-REX: JSS 2012, JPDC 2014, TPDS 2014]
 - Event evaluation algorithm that defers complex computations as much as possible
 - Parallel evaluation
 - Within individual rules and across multiple rules
 - Can exploit hardware accelerators (GPUs)
 - Distributed evaluation
 - Adaptive techniques that trade latency for network efficiency

Propagate changes (RP)

Reactive programming

- Promotes changes to first-class concepts
 - Time-changing variables
 - Automated propagation of changes

Propagate changes (RP)

Propagation across distributed components

- Contributions [DREAM, DEBS 2014, TSE 2018]
 - 1. Define the semantics
 - Guarantees related to isolation of concurrent propagations and accesses to time changing variable
 - 2. Study the cost to ensure the above guarantees
 - In some cases, it requires costly coordination across components
 - 3. Provide configurable propagation algorithms
 - Different trade-offs between guarantees and cost

Propagate changes (SP)

- Big Data stream processing systems are becoming the tools of reference to handle dynamic data at scale
 - E.g., Apache Spark Streaming, Apache Flink

- Designed for distributed processing in cluster environment
 - Dataflow model
 - Data and task parallelism across machines
 - Fault tolerance

Propagate changes (SP)

 Often used as "intelligent communication channels" ...

- ... that transform streaming data ...
 - E.g., cleaning, enriching with background data, ...

 ... and feed their results into external datastores to make them accessible

Propagate changes (SP)

Contribution

[FlowDB, DEBS 2016]

- Extend the dataflow model with queryable state
- Unified system to process dynamic data and store/expose the results of processing
 - Similar to materialized views
 - Constantly and consistently updated when new data becomes available
- Offers transactional guarantees
 - Customizable scope / boundaries
 - Customizable isolation levels / concurrency control
 - Developers trade guarantees for performance depending on the application requirements

Questions / problems

- Abstractions to analyze / transform data as it gets produced
 - Can serve as a smart communication channel across components
- Abstractions to propagate changes
 - In a homogeneous environment (single programming model: RP / SP)
- How to adapt these ideas to open environments?
 - E.g., microservices