Recurrent neural networks in C

Moritz Wolter

wolter@cs.uni-bonn.de

June 6, 2019

Motivation

- Quantum computers require complex unitary weights.
- Fourier transforms produce complex representations.
- Encoding data in magnitude and phase may enable us create a richer representation.
- Complex analysis is a well studied (and very interesting!) subject, lets merge it with machine learning and see what happens.

Figure: Illustrations of the memory problem on the left and the adding problem on the right.

Wirtinger-Calculus [Wir27][MG09][KD09]

For a complex function f(z) = u(x, y) - iv(x, y) we have:

$$\mathbb{R}\text{-derivative} \triangleq \frac{\partial f}{\partial z}|_{\bar{z}=\text{const}} = \frac{1}{2}(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}), \tag{1}$$

$$\overline{\mathbb{R}}\text{-derivative} \triangleq \frac{\partial f}{\partial \overline{z}}|_{z=\text{const}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right). \tag{2}$$

Based on these derivatives, one can define the chain rule for a function g(f(z)) as follows:

$$\frac{\partial g(f(z))}{\partial z} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \bar{f}} \frac{\partial f}{\partial z} \text{ where } \bar{f} = u(x, y) - iv(x, y). \quad (3)$$

Theoretical tool to convince ourselves, that it's ok to work with equivalent real networks.

Unitary Evolution matrix RNN-Motivation [ASB16][Pas13]

$$\mathbf{x}_t = \mathbf{W}_{\mathsf{rec}} f(\mathbf{x}_{t-1}) + \mathbf{W}_{\mathsf{in}} \mathbf{u}_t + \mathbf{b}.$$
 (4)

$$\frac{\partial \mathcal{E}}{\partial \theta} = \sum_{1 \le t \le T} \frac{\mathcal{E}_t}{\partial \theta},\tag{5}$$

$$\frac{\partial \mathcal{E}_t}{\partial \theta} = \sum_{1 \le k \le t} \left(\frac{\mathcal{E}_t}{\partial \mathbf{x}_t} \frac{\partial \mathbf{x}_t}{\mathbf{x}_k} \frac{\partial^+ \mathbf{x}_k}{\partial \theta} \right), \tag{6}$$

$$\frac{\partial \mathbf{x}_{t}}{\partial \mathbf{x}_{k}} = \prod_{t \geq i \geq k} \frac{\partial \mathbf{x}_{i}}{\partial \mathbf{x}_{i-1}} = \prod_{t \geq i \geq k} W_{\text{rec}}^{T} \text{diag}(f'(\mathbf{x}_{i-1})). \tag{7}$$

Stiefel Manifold Weight Updates [WPH+16]

$$\mathbf{W}_{k+1} = (\mathbf{I} + \frac{\lambda}{2} \mathbf{A}_k)^{-1} (\mathbf{I} - \frac{\lambda}{2} \mathbf{A}_k) \mathbf{W}_k, \tag{8}$$

where
$$\mathbf{A} = \mathbf{W} \overline{\nabla_{\mathbf{w}} F}^T - \overline{\mathbf{W}}^T \nabla_{\mathbf{w}} F.$$
 (9)

Figure: Fix the optimized matrix eigenvalues onto the unit circle. The key idea behind stiefel-manifold optimization.

The linear unitary case

Figure: Performance of linear and mod-Relu activated unitary RNNs on the memory (left) and adding (right) problems for T=50. All networks have approx. 40k weights.

Complex equivalents of tanh and Relu

$$f_{\mathsf{Hirose}}(z) = \tanh\left(\frac{|z|}{m^2}\right) e^{-i\cdot\theta_z} = \tanh\left(\frac{|z|}{m^2}\right) \frac{z}{|z|},$$
 (11)

$$f_{\text{modReLU}}(z) = \text{ReLU}(|z| + b)e^{-i\cdot\theta_z} = \text{ReLU}(|z| + b)\frac{z}{|z|}.$$
 (12)

We will compare their performance as state-to-state non-linearities.

Moritz Wolter

Unitary evolution network performance

$$\mathbf{x}_t = \mathbf{U}_{\mathsf{rec}} f(\mathbf{x}_{t-1}) + \mathbf{W}_{\mathsf{in}} \mathbf{u}_t + \mathbf{b}. \tag{13}$$

Figure: Current state of the art performance on memory and adding problem for T=250. Models have approximately 40k weights.

The gated recurrent unit

Complex gated Recurrent Recurrent Nets [WY18a]

Gate equation:

$$\mathbf{g}_r = f_g(\mathbf{z}_r), \quad \text{where} \quad \mathbf{z}_r = \mathbf{W}_r \mathbf{h} + \mathbf{V}_r \mathbf{x}_t + \mathbf{b}_r, \quad (14)$$

$$\mathbf{g}_z = f_g(\mathbf{z}_z), \quad \text{where} \quad \mathbf{z}_z = \mathbf{W}_z \mathbf{h} + \mathbf{V}_z \mathbf{x}_t + \mathbf{b}_z, \quad (15)$$

Update equations:

$$\widetilde{\mathbf{z}}_t = \mathbf{W}(\mathbf{g}_r \odot \mathbf{h}_{t-1}) + \mathbf{V}\mathbf{x}_t + \mathbf{b},$$
 (16)

$$\mathbf{h}_t = \mathbf{g}_z \odot f_a(\widetilde{\mathbf{z}}_t) + (1 - \mathbf{g}_z) \odot \mathbf{h}_{t-1}, \tag{17}$$

 $\mathbb{C} \to \mathbb{R}$, mapping:

$$\mathbf{o}_r = \mathbf{W}_o[\Re(\mathbf{h}) \Im(\mathbf{h})] + \mathbf{b}_o. \tag{18}$$

Moritz Wolter

Complex gate activations

$$f_{\text{mod sigmoid}}(\mathbf{z}) = \sigma(\alpha \Re(\mathbf{z}) + \beta \Im(\mathbf{z})).$$
 (19)

With $\alpha \in [0,1]$ and $\beta = (1-\alpha)$.

Comparison to state of the art

Figure: Comparison of our complex gated RNN (cgRNN, blue, n_h =80) with the unitary RNN [ASB16](uRNN, orange, n_h =140) and standard GRU [CvMG⁺14](orange, n_h =112) on the memory (left) and adding (right) problem for T=250.

Stiefel optimization and activations

Figure: Comparison of non-linearities and norm preserving state transition matrices on the complex gated RNNs for the memory (a) and adding (b) problems for T=250. We use $n_h=80$ for all experiments.

Weight reducitons on mocap data

Table 2: Comparison of our cgRNN with the GRU [28] on human motion prediction.

Action	cgRNN				GRU[28]			
	80ms	160 ms	320ms	400ms	80ms	160ms	320ms	400ms
walking	0.29	0.48	0.74	0.84	0.27	0.47	0.67	0.73
eating	0.23	0.38	0.66	0.82	0.23	0.39	0.62	0.77
smoking	0.31	0.58	1.01	1.1	0.32	0.6	1.02	1.13
discussion	0.33	0.72	1.02	1.08	0.31	0.7	1.05	1.12
directions	0.41	0.65	0.83	0.93	0.41	0.65	0.83	0.96
greeting	0.53	0.87	1.26	1.43	0.52	0.86	1.30	1.47
phoning	0.58	1.09	1.57	1.72	0.59	1.07	1.50	1.67
posing	0.37	0.72	1.38	1.65	0.64	1.16	1.82	2.1
purchases	0.61	0.86	1.21	1.31	0.6	0.82	1.13	1.21
sitting	0.46	0.75	1.22	1.44	0.44	0.73	1.21	1.45
sitting down	0.55	1.02	1.54	1.73	0.48	0.89	1.36	1.57
taking photo	0.29	0.59	0.92	1.07	0.29	0.59	0.95	1.1
waiting	0.35	0.68	1.16	1.36	0.33	0.65	1.14	1.37
walking dog	0.57	1.09	1.45	1.55	0.54	0.94	1.32	1.49
walking together	0.27	0.53	0.77	0.86	0.28	0.56	0.8	0.88
average	0.41	0.73	1.12	1.26	0.42	0.74	1.12	1.27

Our cgRNN ($n_h = 512$, 1.8M params) predicts human motions which are either comparable or slightly better than the real-valued GRU [28] ($n_h = 1024$, 3.4M params) despite having only approximately half the parameters.

The Short time Fourier transform

$$\mathbf{X}[\omega, Sm] = \mathcal{F}_{s}(\mathbf{x}) = \mathcal{F}(\mathbf{w}[Sm - l]\mathbf{x}[l]) = \sum_{l=-\infty}^{\infty} \mathbf{w}[Sm - l]\mathbf{x}[l]e^{-j\omega l},$$
(20)

Learning trough the STFT [WY18b]

Learning trough the STFT [WY18b]

Network	mse [MW]	weights	run [min]
time-RNN	$1.3 \cdot 10^{7}$	13k	772
time-RNN-windowed	$8.8 \cdot 10^{5}$	28k	12
fRNN	$8.3 \cdot 10^{5}$	44k	13
fRNN-lowpass-1/4	$7.6 \cdot 10^{5}$	20k	13
fRNN-lowpass-1/8	$1.3\cdot 10^6$	16k	13

Upcoming: Temporal Convolutions in the frequency domain

- The STFT turns sequences of numbers into images.
- What happens if we convolve these in time and frequency?
- What is the best way to convolve in frequency and time?
- How can recurrent connections and convolutions best be used together?

References I

- Martin Arjovsky, Amar Shah, and Yoshua Bengio, *Unitary* evolution recurrent neural networks, ICML, 2016.
- Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, *Learning phrase representations using RNN encoder–decoder for statistical machine translation*, EMNLP, October 2014.
- Ken Kreutz-Delgado, *The complex gradient operator and the cr-calculus*, arXiv preprint arXiv:0906.4835 (2009).

References II

- Danilo P Mandic and Vanessa Su Lee Goh, Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models, vol. 59, John Wiley & Sons, 2009.
- Pascanu, On the difficulty of training recurrent neural networks, Journal of Machine Learning Research (2013).
- W. Wirtinger, Zur formalen theorie der funktionen von mehr komplexen veränderlichen, 1927.
- Scott Wisdom, Thomas Powers, John R. Hershey, Jonathan Le Roux, , and Les Atlas, *Full-capacity unitary recurrent neural networks*, Advances in Neural Information Processing Systems, 2016.

References III

Moritz Wolter and Angela Yao, *Complex gated recurrent neural networks*, 32nd Conference on Neural Information Processing Systems, 2018.

_____, Fourier rnns for sequence prediction, arXiv preprint arXiv:1812.05645, 2018.

Discussion

Thanks for your attention and feedback.

Feel free to contact me at: wolter@cs.uni-bonn.de