

# Compressione Parte 2

Prof. Filippo Milotta milotta@dmi.unict.it



### Fattori di compressione per codifiche basate su PCM

- Dipendono dalla implementazione della PCM:
  - IMA ADPCM: 4a1 (75%) ~ circa 50 kBps
    - Con specifica G.721: 16 o 32 kBps (bit-rate)
    - Con specifica G.723: 24 kBps (bit-rate)
  - ACE/MACE ADPCM: 2a1 (50%)

Queste codifiche con compressione sono di tipo *lossy* 

IMA: Interactive Multimedia Association, usato in MS Windows

ACE/MACE è la compressione APPLE

Il bit-rate è il tasso di trasferimento

Ma soprattutto dipende dall'utente, che stabilisce in base alle necessità la fedeltà vs compressione del segnale



#### James D. Johnston

(?? – ancora in vita?)

- Noto come Il padre delle codifiche di compressione di tipo percettivo
- Responsabile di numerose codifiche all'interno dei formati MP3 e MPEG-2. Lavorò per 26 anni nei Bell Labs. Dopo aver lasciato i Bell Labs si è trasferito alla Microsoft.





# Compressione percettiva (Entropia percettiva)

- J.D.Johnston ha fissato un limite teorico alla comprimibilità di un segnale se si vuole ottenere una codifica trasparente
  - Codifica trasparente: è una codifica compressa (lossy) che permette una riproduzione non distinguibile dal segnale originale non compresso
- Tale limite è di circa 2.1 bit / campione

Studio della Entropia Percettiva



### Compressione percettiva e Codifica trasparente – Esempio

#### CD Audio

- Tasso di campionamento: 44,1kHz
- PCM lineare 16 bit: 44,1kHz \* 16 = 705,6kbps
- Compressione a 64kbps

Il bit rate compresso è minore di quello non compresso (705,6kbps). Questo significa che comprimendo, ogni campione verrà codificato con meno bit di quelli iniziali...

- E' una codifica compressa trasparente?
- Ogni campione verrà campionato con
   64.000 / 44.100 = 1,45 bit / campione

...non più 16 bit / campione, ma 1,45 bit / campione

1,45 < 2,1 →→→ Codifica NON trasparente</p>



### Codifica trasparente

- La trasparenza non è una proprietà necessaria delle codifiche di compressione
- E' più che altro una conseguenza diretta del bit-rate di compressione scelto

- Cioè, tipicamente non si può scegliere il bit-rate, perché è dettato dalla strumentazione
  - Fissato il bit-rate è però possibile dire se la codifica sarà trasparente



### La tecnica Compansion

(Cap. 3.6 - Pag.130 - IV edizione)

- Compansion = Compression + Expansion (intesi proprio come operatori dinamici)
  - Compressione in fase di registrazione
  - Espansione in riproduzione
- Utilizzata negli schemi di compressione di tipo percettivo
- Ideata dalla Dolby negli anni '60-'70 per risolvere i problemi di SNR sui nastri magnetici

Dal testo: il rumore, in particolar modo il fruscio delle cassette audio, non è più di ampiezza costante e indipendente dal segnale: ora è più forte quando il segnale è più forte, ed è più debole quando il segnale è più debole



### Compressione di tipo percettivo

- Negli schemi di compressione di tipo percettivo vengono impiegate numerose tecniche, combinate in vari modi
  - Abbiamo appena (ri)visto la Compansion

a questa aggiungiamo:

Prendiamo in considerazione anche le debolezze dell'udito umano :

- La THQ (Threshold to Quiet)
- · Le Bande Critiche e il mascheramento
- □ la *quantizzazione non uniforme* (in **μ-law** e **A-law**)
- la codifica differenziale ADPCM
- □ e altre 4 tecniche principali... →



### Compressione di tipo percettivo

- Si basa su 4 tecniche principali:
  - 1. Block Coding
  - 2. Transform Coding
  - 3. Sub-band Coding
  - 4. Huffman Coding



### Block Coding Codifica per blocchi

- La quantizzazione non uniforme si può vedere come una codifica a virgola mobile
  - Esponente e mantissa
- Nelle tracce audio ci si aspetta che l'esponente vari pochissimo
  - Si può codificare l'esponente una volta sola per blocco



### Block Coding Codifica per blocchi – Pre-echi

- Problema dei pre-echi
  - Dovuto principalmente a transitori impulsivi

- Si può risolvere in 2 modi:
  - Ridurre la durata dei blocchi
  - Usare blocchi di durata variabile in base all'andamento dei transitori, per circoscrivere i rumori impulsivi

Introducono forti cambiamenti di scala (ordine di grandezza)

→ Rendono impossibile utilizzare un unico esponente per tutto il blocco

che tutte le intensità dentro un blocco siano dello stesso

ordine di grandezza



### Transform Coding Codifica nel dominio delle frequenze

 Il segnale audio nel dominio delle frequenze tende a variare meno rispetto al dominio

dello spazio

(→ Spettrogramma)



- Al posto della DFT applichiamo trasformate efficienti come la FFT o la DCT
  - La DCT è da preferire

Perché la DFT e la FFT utilizzano numeri complessi, mentre la DCT solo numeri reali, e le funzioni di base sono tutte (e solo) sinusoidi [Pag 168 – Fig.4.12] FT: Fourier Transform DFT: Discrete FT

FFT: Fast FT

**DCT: Discrete Cosine Transform** 

**MDCT: Modified DCT** 



#### Ripasso – Acustica – Parte 5

#### Altre rappresentazioni dello spettro



40



### Transform Coding Codifica nel dominio delle frequenze

- Vantaggiosa se applicata a blocchi con bassa gamma dinamica
- Per evitare i pre-echi
  - Si calcola la trasformata su intervalli sovrapposti per il 50%
    - Con questo metodo si ottiene però il doppio dei campioni necessari
- La compressione viene quindi applicata nel dominio delle frequenze,
  - Sui coefficienti delle trasformate
  - Sugli spettri (→ Sub-band Coding)







### Sub-band Coding Codifica per sottobande

- Analogamente alla codifica a blocchi ->
- Divide lo spettro di frequenze in sottobande codificate in maniera individuale
  - Le sottobande con gamma dinamica ristretta possono essere codificate con meno bit
- Il processo di band-splitting non è semplice e richiede il giusto compromesso fra complessità di splitting e tasso di compressione

Ad esempio, si potrebbe applicare una suddivisione in base alle bande critiche (come nella MDCT)



Filtraggio a specchio di quadratura



QMF: Quadrature Mirror Filtering

 Si considerano 2 segnali separati: basse e alte frequenze



- I filtri QMF possono essere usati in cascata e possono operare in polifase (cioè in parallelo)
- Le due bande devono avere la stessa grandezza

Dal testo: la complicazione dovuta all'elaborazione di bande non rettangolari comporta una mole di calcoli giustificabile solo da altissimi livelli di compressione



### Huffman Coding Compressione di Huffman

- Codifica ottimale
   (→ si avvicina al limite di Shannon)
- Codici senza prefissi
- Compressione Lossless
- Algoritmo greedy:
  - 1. Selezione di due caratteri con frequenze minime
  - Sostituzione dei due caratteri con uno fittizio la cui frequenza è la somma delle precedenti due
  - 3. Ripetere fino a ottenere il carattere con frequenza 1



### Huffman Coding Compressione di Huffman

 A questo punto si ottiene un albero, la cui forma può variare in base alle scelte prese

Si etichettano i rami binari con 0 e 1

- Si assegnano le codeword alle foglie leggendo dalla radice le etichette dei rami
  - Caratteri frequenti avranno codeword brevi
  - Caratteri rari avranno codeword lunghe



### Huffman Coding Esempio

Simboli e frequenze iniziali: A 60% B 20% C 8% D 7% E 5%



Simboli e codifiche finali:

A: 0, B: 10, C: 110, D: 1110, E: 1111



## Schema generale di compressione di tipo percettivo

- Block-Coding: Segmentazione della traccia audio in frame quasi-stazionari di 2-50 msec
  - Quasi-stazionari: con transitori poco variabili
- 2. Transform Coding: si passa all'analisi nel dominio delle frequenze
- 3. Sub-band Coding opzionale, se si vuole ulteriormente ottimizzare la codifica del range dinamico
- Rimozione delle ridondanze tramite codifiche lossy (ADPCM) o lossless (Huffman)



### Approfondimenti

- [EN] Paper: Johnston's limit to compression http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.422.1835&rep=rep1&type=pdf
- [EN] J.D.Johnston brief biography
  <a href="https://ethw.org/James D. Johnston">https://ethw.org/James D. Johnston</a>
- [EN] A tutorial on MPEG/Audio compression

  https://www.icg.isy.liu.se/courses/tsbk35/material/mpegaud.pdf