

Part 11: B-Trees

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Search Trees

Search tree used to guide search for a record

Search Trees

B-Trees

- Provide multi-level access structure
- Tree is always balanced
- Space wasted by deletion never becomes excessive
 - Each node is at least half-full
- A B-tree can store values in non-leaf and leaf nodes
- Each node that is not a root or a leaf has between \[n/2 \] and \(n \) children; i.e., \(n \) signifies the maximum number of children, and \(n \) is called the order of the tree

B*-Tree Index Files

A B+-tree is a rooted tree satisfying the following properties:

- All paths from root to leaf are of the same length
- Non-leaf nodes are called internal nodes
- Each node that is not a root or a leaf has between $\lceil n/2 \rceil$ and n children
- Note that the number of values is one less than the number of children; i.e., between $\lceil n/2 \rceil 1$ and n-1 values, or equivalently, between $\lfloor (n-1)/2 \rfloor$ and n-1 values
- The above equivalence can be seen by noting that $\lceil n/2 \rceil 1 = \lfloor (n-1)/2 \rfloor$; this is so because
 - for n even, $\lceil n/2 \rceil 1 = (n/2) 1$, and $\lfloor (n-1)/2 \rfloor = \lfloor (n/2) 1/2 \rfloor = (n/2) 1$; thus $\lceil n/2 \rceil 1 = \lfloor (n-1)/2 \rfloor = (n/2) 1$
 - for n odd, $\lceil n/2 \rceil 1 = (n+1)/2 1 = (n-1)/2$, and $\lfloor (n-1)/2 \rfloor = (n-1)/2$; thus $\lceil n/2 \rceil 1 = \lfloor (n-1)/2 \rfloor = (n-1)/2$

B*-Tree Index Files

- In terms of the number of values or slots, a node that is not a root or a leaf can be slightly less than half-full for n even, but would be at least half-full for n odd:
 - For n even, the maximum number of values is (n-1), and the minimum number of values is $\lceil n/2 \rceil 1 = n/2 1$, which gives a minimum fullness of $(n/2-1)/(n-1) = \frac{1}{2} [(n-2)/(n-1)] < \frac{1}{2}$, which will $\rightarrow \frac{1}{2}$ as $n \rightarrow \infty$.
 - For n odd, the maximum number of values is (n-1), and the minimum number of values is $\lceil n/2 \rceil 1 = (n-1)/2$ as shown earlier, which gives a minimum fullness of $[(n-1)/2]/(n-1) = \frac{1}{2}$
- To ensure that the number of slots of a leaf node is at least half-full, instead of using the lower limit $\lceil n/2 \rceil -1$, which for even n can be less than half-full, we modify it to $\lceil n/2 \rceil$
- If the root is not a leaf, it has at least 2 children

Example of B+-Tree (n = 4)

Leaf Nodes in B⁺-Trees (n = 4)

- For i = 1, 2, ..., n-1, pointer P_i points to a record with search-key value K_i ,
- If L_i , L_j are leaf nodes and i < j, L_i s search-key values are less than or equal to L_j s search-key values
- P_n points to next leaf node in search-key order (facilitates sequential processing)

Example of B⁺-tree (n = 6)

■ B+-tree for *instructor* file (n = 6), i.e., 6 pointers and 5 slots

- Leaf nodes must have between 3 and 5 values $(\lceil n/2 \rceil)$ and $(\lceil n/2 \rceil)$ and
- Non-leaf nodes other than root must have between 3 and 6 children (\(\left(n/2 \right) \) and n children) ⇒ between 2 and 5 values
 - In terms of the values, this is less than half-full (i.e., 2/5 = 40% full)
- If, however, n = 7, then the non-leaf nodes will have between 4 and 7 children ($\lceil (n/2 \rceil)$ and n children) \Rightarrow between 3 and 6 values which is at least half-full
- Root must have at least 2 children

Performance of B+-trees

- For a B+-tree, where each node contains between $m = \lceil n/2 \rceil$ and n children (assuming the root behaves like any other node):
 - Number of nodes at Level $1 = m^0$ (root)
 - Minimum number of nodes at Level 2 = m¹
 - Minimum number of nodes at Level $3 = m^2$
 - Minimum number of nodes at Level 4 = m³
 - Minimum number of nodes at Level h = m^{h-1}
 - Each leaf node will hold roughly at least m values, so that assuming the height of the tree is h, the minimum number of values held by the leaf nodes is approximately $m \times m^{h-1} = m^h$
 - If there are K search-key values in the file, we have

$$m^h = K$$

giving
$$h = \lceil \log_{\lceil n/2 \rceil}(K) \rceil$$

- By assuming minimum storage utilization of each node, we have the maximum number of nodes for the tree and hence maximum height for the tree
- Thus, if there are K search-key values in the file, the tree height should be no more than $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$ (i.e. we are assuming all nodes are minimally full; if they are not minimally full, then the height should be less)

Performance of B+-Trees

- If there are K search-key values in the file, the height of the tree is no more than $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$.
- A node is generally the same size as a disk block, typically 4 kilobytes
 - Assuming 40 bytes per index entry, n is typically around 100
- With 1 million search key values and n = 100
 - at most $log_{50}(1,000,000) = 3.53 \approx 4$ nodes are accessed in a lookup traversal from root to leaf
- Contrast this with a balanced binary tree with 1 million search key values
 — around 20 nodes (log₂(1,000,000) = 19.93 ≈ 20) are accessed in a
 lookup
 - above difference is significant since every node access may need a disk I/O, costing around 20 milliseconds

Average Storage Utilization of B-Tree

Let K be the total number of items in the tree,

n be the maximum capacity of a node (i.e., a node can hold between n/2 and n items)

N be the random number of nodes in the tree

 ρ be the <u>random</u> storage utilization of the tree

f be the minimum fullness factor

- $f = \frac{1}{2}$ for the standard B-Tree,
- $f = \frac{2}{3}$ for the B*-Tree
- The total storage capacity of the (random) tree is Nn
- The storage utilization is the total number of items divided by the total storage capacity of all the nodes, i.e.,

$$\rho = K/(Nn)$$

- Now a minimum number of nodes would result if all nodes are full, which is K/n
- Likewise, a maximum number of nodes would result if all nodes are half-full, which is $K/(\frac{1}{2}n) = 2K/n$

Average Storage Utilization of B-Tree

- For random insertion in which every configuration in the above node range is equally likely, the distribution of **N** may be approximated by the continuous uniform distribution over the interval [K/n, 2K/n] of length K/n, with height n/K.
- That is we have

$$N \sim U(K/n, 2K/n)$$

where ${\cal U}$ signifies the uniform distribution

Thus, we have, approximately,

$$\mathsf{E}(\boldsymbol{\rho}) = \mathsf{E}(\mathcal{K}[\boldsymbol{N}n]) = (\mathcal{K}/n) \; \mathsf{E}(1/\boldsymbol{N})$$

$$= \left(\frac{K}{n}\right) \times \left(\frac{n}{K}\right) \int_{\frac{K}{n}}^{\frac{2K}{n}} \left(\frac{1}{t}\right) dt = \ln\left(\frac{2K}{n}\right) - \ln\left(\frac{K}{n}\right) = \ln 2 = 69.3\%$$

Average Storage Utilization for the General Case

- For the general case with arbitrary minimum fullness f, the distribution of N may be approximated by the uniform distribution over the interval [K/n, K/(nf)] of length Kf'/(nf), with height nf/(Kf'), where f' = 1 f.
- That is we have

$$N \sim U(K/n, K/nf)$$

Thus, we get, approximately,

$$\mathsf{E}(\boldsymbol{\rho}) = \mathsf{E}(\mathcal{K}[\boldsymbol{N}n]) = (\mathcal{K}/n) \; \mathsf{E}(1/\boldsymbol{N})$$

$$= \left(\frac{K}{n}\right) \times \left(\frac{nf}{Kf'}\right) \int_{\frac{K}{n}}^{\frac{K}{nf}} \left(\frac{1}{t}\right) dt = \frac{f}{f'} \ln \frac{1}{f}$$

• For the B*-Tree, $f = \frac{2}{3}$, and substituting this value into the above, we get

$$E(\rho) = 2 \times \ln (3/2) \approx 81\%$$

Variance of the Storage Utilization

The variance can be shown to be:

$$\sigma_f^2 = f - \left(\frac{f}{f}\right)^2 \left[\ln\left(\frac{1}{f}\right)\right]^2$$

The standard deviation of storage utilization of the B-Tree is approximately 14%, and that of the B*-Tree is 9.4%.

Updates on B*-Trees: Insertion

Let

- 1. Pr be pointer to the record, and let
- 2. V be the search key value of the record

Find the leaf node in which the search-key value would appear

- 1. If there is room in the leaf node, insert (V, Pr) pair in the leaf node
- 2. Otherwise, split the node

Updates on B*-Trees: Insertion

- Splitting a leaf node:
 - take the n (search-key value, pointer) pairs (including the one being inserted) in sorted order. Place the first $\lceil n/2 \rceil$ in the original node, and the rest in a new node
 - let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent of the node being split
 - If the parent is full, split it and propagate the split further up
- Splitting of nodes proceeds upwards till a node that is not full is found
 - In the worst case the root node may be split increasing the height of the tree by 1

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams Next step: insert entry with (Califieri, pointer-to-new-node) into parent

B⁺-Tree Insertion (n = 4)

B+-Tree before and after insertion of "Adams"

B⁺-Tree Insertion (n = 4)

B+-Tree before and after insertion of "Lamport"

Examples of B⁺-Tree Deletion (n = 4)

Before and after deleting "Srinivasan"

Deleting "Srinivasan" causes merging of under-full leaves

Examples of B⁺-Tree Deletion (n = 4)

Before and after deleting "Singh" and "Wu"

- Leaf containing Singh and Wu became under-full, and borrowed a value
 Kim from its left sibling
- Search-key value in the parent changes as a result

Updates on B*-Trees: Deletion

Assume record already deleted from file. Let *V* be the search key value of the record, and *Pr* be the pointer to the record

- Remove (Pr, V) from the leaf node
- If the node has too few entries due to the removal, and the entries in the node and a sibling fit into a single node, then merge siblings:
 - Insert all the search-key values in the two nodes into a single node (the one on the left), and delete the other node
- If the node has too few entries due to the removal, but the entries in the node and a sibling do not fit into a single node, then redistribute pointers:
 - Redistribute the pointers between the node and a sibling such that both have more than the minimum number of entries
- Update the parent node
- The node deletions may cascade upwards

Variations

- B+-Tree File Organization
 - Stores actual records in leaf node, not just pointers
- B-Tree Index Files
 - Points to actual records in non-leaf nodes
- B*-Tree
 - Can vary minimum fullness factor f to be different from $f = \frac{1}{2}$,
 - for $f = \frac{2}{3}$, the corresponding tree is called a B*-Tree