

# Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

### Lineare Algebra II

#### Sommersemester 2021

## Musterlösung zu Übungsblatt 7

07.06.21

### **Aufgabe 1** (Selbstadjungierte Endomorphismen)

(10 Punkte)

Es sei V ein endlichdimensionaler euklidischer Vektorraum. Beweisen Sie:

- a) Die Menge der selbstadjungierten Endomorphismen von V ist ein Untervektorraum von  $\operatorname{End}(V).$
- b) Gilt für zwei selbstadjungierte Endomorphismen  $\varphi, \psi \in \text{End}(V)$  die Gleichung

$$\forall v \in V : \langle \varphi(v), v \rangle = \langle \psi(v), v \rangle,$$

dann gilt schon  $\varphi = \psi$ .

### Lösung zu Aufgabe 1

a) Die Menge der selbstadjungierten Endomorphismen von V ist ein Untervektorraum von End(V).

Es seien  $v, w \in V$ .

- Es gilt  $\langle 0, w \rangle = 0 = \langle v, 0 \rangle$ , und damit ist die Nullabbildung selbstadjungiert.
- Falls  $\varphi \in \text{End}(V)$  selbstadjungiert ist und  $\lambda \in \mathbb{R}$ , dann gilt

$$\langle \lambda \varphi(v), w \rangle = \lambda \langle \varphi(v), w \rangle = \lambda \langle v, \varphi(w) \rangle = \langle v, \lambda \varphi(w) \rangle$$

und somit ist auch  $\lambda \varphi$  selbstadjungiert.

• Falls  $\varphi, \psi \in \text{End}(V)$  gilt, dann gilt

$$\langle (\varphi + \psi)(v), w \rangle = \langle \varphi(v), w \rangle + \langle \psi(v), w \rangle = \langle v, \varphi(w) \rangle + \langle v, \psi(w) \rangle = \langle v, (\varphi + \psi)(w) \rangle$$

und somit ist auch  $\varphi + \psi$  selbstadjungiert.

Damit ist gezeigt, dass die selbstadjungierten Endomorphismen von V einen Untervektorraum von  $\mathrm{End}(V)$  bilden.

b) Aus  $\langle \varphi(v), v \rangle = \langle \psi(v), v \rangle$  folgt  $\langle \varphi(v) - \psi(v), v \rangle = 0$ . Wenn nun v ein Eigenvektor von  $\varphi - \psi$  zum Eigenwert  $\lambda$  ist, gilt

$$0 = \langle \varphi(v) - \psi(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

Der einzige Eigenwert von  $\varphi - \psi$  ist also 0.

Aus a) folgt, dass  $\varphi - \psi$  selbstadjungiert ist. Da V endlichdimensional ist, gibt es also eine Orthonormalbasis von V aus Eigenvektoren von  $\varphi - \psi$  zum Eigenwert 0. Diese Basisvektoren werden von  $\varphi - \psi$  alle auf 0 abgebildet; daraus folgt  $\varphi - \psi = 0$ , also  $\varphi = \psi$ .

/ 4 0 TD 3

Es sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt  $\langle \cdot, \cdot \rangle$  und  $\theta \colon V \to V$  eine lineare Abbildung. Wir definieren außerdem die Abbildung

$$\langle\!\langle \cdot, \cdot \rangle\!\rangle \colon V \times V \to \mathbb{R}$$
  
 $(x, y) \mapsto \langle\!\langle x, y \rangle\!\rangle := \langle \theta(x), y \rangle$ 

Beweisen Sie die folgenden Aussgagen:

- a) Die Abbildung  $\langle \langle \cdot, \cdot \rangle \rangle$  ist genau dann ein Skalarprodukt, wenn  $\theta$  selbstadjungiert bzgl.  $\langle \cdot, \cdot \rangle$  ist und nur positive reelle Eigenwerte hat.
- b) Falls  $\langle\!\langle \cdot, \cdot \rangle\!\rangle$  ein Skalarprodukt ist, ist  $\theta$  auch selbstadjungiert bzgl.  $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ .
- c) Der Endomorphismus  $\psi \colon V \to V$  ist genau dann adjungiert zum Endomorphismus  $\varphi \colon V \to V$  bzgl. des Skalarproduktes  $\langle \langle \cdot, \cdot \rangle \rangle$ , wenn  $\psi = \theta^{-1} \circ \varphi^* \circ \theta$  gilt.

*Hinweis:* Die Abbildung  $\varphi^*$  ist bzgl.  $\langle \cdot, \cdot \rangle$  zu  $\varphi$  adjungiert (nicht bzgl.  $\langle \cdot, \cdot \rangle$ !). Sie dürfen ohne Beweis verwenden, dass  $(\varphi^*)^{-1} = (\varphi^{-1})^*$  für alle invertierbaren Endomorphismen  $\varphi$  gilt.

## Lösung zu Aufgabe 2

Da V endlichdimensional ist, haben alle linearen Endomorphismen von V eine adjungierte Abbildung bezüglich  $\langle \cdot, \cdot \rangle$ .

a)  $\langle\!\langle \cdot, \cdot \rangle\!\rangle$  ist linear im ersten Argument, da für jedes feste  $w \in V$  die Abbildungen  $\langle \cdot, w \rangle$  und  $\theta$  linear sind.

Es gilt

$$\langle\langle w, v \rangle\rangle = \langle \theta(w), v \rangle = \langle v, \theta(w) \rangle = \langle \theta^*(v), w \rangle.$$

Damit ist  $\langle \langle \cdot, \cdot \rangle \rangle$  genau dann symmetrisch, wenn  $\langle \theta(v), w \rangle = \langle \theta^*(v), w \rangle$  für alle  $v, w \in V$  gilt, also genau dann, wenn  $\theta^* = \theta$  gilt.

• Angenommen,  $\langle\!\langle\cdot,\cdot\rangle\!\rangle$  ist ein Skalarprodukt. Da  $\langle\!\langle\cdot,\cdot\rangle\!\rangle$  symmetrisch ist, muss  $\theta$  also selbstadjungiert sein. Ist  $v\in V$  ein Eigenvektor zum Eigenwert  $\lambda$ , dann gilt

$$0 < \langle\!\langle v, v \rangle\!\rangle = \langle \theta(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle,$$

also  $\lambda > 0$ .

• Angenommen,  $\theta$  ist selbstadjungiert mit nur positiven Eigenwerten. Damit ist  $\langle \langle \cdot, \cdot \rangle \rangle$  symmetrisch (siehe oben). Es sei  $b_1, \ldots, b_n$  eine Orthonormalbasis von V aus Eigenwektoren von  $\theta$  zu den Eigenwerten  $\lambda$ . Jeder Vektor  $v \in V$  lässt sich dann als  $\sum_{i=1}^{n} \alpha_i b_i$  schreiben und somit gilt

$$\langle \langle v, v \rangle \rangle = \left\langle \theta \left( \sum_{i=1}^{n} \alpha_{i} b_{i} \right), \sum_{j=1}^{n} \alpha_{j} b_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \left\langle \alpha_{i} \theta(b_{i}), \alpha_{j} b_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \lambda \alpha_{i} \alpha_{j} \underbrace{\left\langle b_{i}, b_{j} \right\rangle}_{=\delta_{ij}}$$

$$= \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2}$$

Da alle  $\lambda_i$  positiv sind, ist dies nicht negativ und kann nur dann 0 sein, wenn  $\alpha_i = 0$  für alle i gilt, also für v = 0. Das bedeutet  $\langle \langle \cdot, \cdot \rangle \rangle$  ist positiv definit.

b) Falls  $\langle\langle \cdot, \cdot \rangle\rangle$  ein Skalarprodukt ist, ist  $\theta$  nach a) selbstadjungiert bzgl.  $\langle \cdot, \cdot \rangle$ . Damit gilt

$$\langle\!\langle \theta(v), w \rangle\!\rangle = \langle \theta(\theta(v)), w \rangle = \langle \theta(v), \theta(w) \rangle = \langle\!\langle v, \theta(w) \rangle\!\rangle$$

für alle  $v, w \in V$ , und  $\theta$  ist daher selbstadjungiert bzgl.  $\langle \langle \cdot, \cdot \rangle \rangle$ .

c) Es gelten die Äquivalenzen

$$\forall v, w \in V : \qquad \langle \langle \varphi(v), w \rangle \rangle = \langle \langle v, \psi(w) \rangle \rangle$$

$$\iff \forall v, w \in V : \qquad \langle \theta(\varphi(v)), w \rangle = \langle \theta(v), \psi(w) \rangle$$

$$\iff \forall v, w \in V : \qquad \langle \theta(\varphi(v)), w \rangle = \langle \psi^*(\theta(v)), w \rangle$$

$$\iff \forall v \in V : \qquad \theta(\varphi(v)) = \psi^*(\theta(v))$$

$$\iff \qquad \theta \circ \varphi = \psi^* \circ \theta$$

$$\iff \qquad \theta \circ \varphi \circ \theta^{-1} = \psi^*$$

$$\iff \qquad (\theta^{-1})^* \circ \varphi^* \circ \theta^* = \psi$$

$$\iff \qquad \theta^{-1} \circ \varphi^* \circ \theta = \psi.$$