Devoir surveillé n°06

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

 $\boxed{1}$ On montre que $\mathcal{M}_2(\mathbb{Z})$ est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$.

- $\mathcal{M}_2(\mathbb{Z}) \subset \mathcal{M}_2(\mathbb{R})$.
- $I_2 \in \mathcal{M}_2(\mathbb{Z})$.
- $\forall (A, B) \in \mathcal{M}_2(\mathbb{Z})^2, A B \in \mathcal{M}_2(\mathbb{Z}).$
- $\forall (A, B) \in \mathcal{M}_2(\mathbb{Z})^2$, $AB \in \mathcal{M}_2(\mathbb{Z})$ car les coefficients de AB sont des sommes de produits des coefficients de A et B.

2.a C'est en fait un résultat du cours : les inversibles d'un anneau forment un groupe.

2.b Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z})$. Remarquons que $\det(A) = ad - bc \in \mathbb{Z}$.

Supposons que $A \in GL_2(\mathbb{Z})$. Il existe donc $B \in \mathcal{M}_2(\mathbb{Z})$ tel que $AB = I_2$. Ainsi $det(A) det(B) = det(AB) = det(I_2) = 1$. Mais det A et det B sont des entiers donc $det(A) = \pm 1$ i.e. |ad - bc| = 1.

Supposons que |ad - bc| = 1 i.e. det $A = \pm 1$. D'après la formule de la comatrice,

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{com}(\mathbf{A})^{\mathsf{T}} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z})$$

donc $A \in GL_2(\mathbb{Z})$.

3.a L'application $M \in GL_2(\mathbb{Z}) \mapsto det(M)$ est un morphisme du groupe $(GL_2(\mathbb{Z}), \times)$ dans le groupe $(\{-1, 1\}, \times)$. $SL_2(\mathbb{Z})$ est donc un sous-groupe de $GL_2(\mathbb{Z})$ en tant que noyau de ce morphisme.

3.b En utilisant le fait que 3 et 5 sont premiers entre eux et le théorème de Gauss :

$$\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$$

$$\iff 3d - 5c = 1 = 3 \times 2 - 5 \times 1$$

$$\iff 3(d - 2) = 5(c - 1)$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} c = 1 + 3k \\ d = 2 + 5k \end{cases}$$

L'ensemble des couples recherchés est donc $\{(1+3k, 2+5k), k \in \mathbb{Z}\}$.

3.c De la même manière,

$$\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}) \setminus \operatorname{SL}_2(\mathbb{Z}) \iff \exists k \in \mathbb{Z}, \begin{cases} c = -1 + 3k \\ d = -2 + 5k \end{cases}$$

L'ensemble des couples recherchés est donc $\{(1+3k,2+5k), k \in \mathbb{Z}\} \cup \{(-1+3k,-2+5k), k \in \mathbb{Z}\}$.

3.d Soit $(a, b) \in \mathbb{Z}^2$. Alors il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ appartenant à $\mathrm{GL}_2(\mathbb{Z})$ si et seulement si il existe $(c, d) \in \mathbb{Z}^2$ tel que $ad - bc = \pm 1$. D'après le théorème de Bézout, ceci équivaut à $a \wedge b = 1$.

1

4.a Tout d'abord, $\chi_S = X^2 + 1 = (X - i)(X + i)$ est scindé à racines simples sur \mathbb{C} donc S est diagonalisable et $\operatorname{Sp}_{\mathbb{C}}(S) = \{i, -i\}$. On calcule $\operatorname{E}_i(S) = \operatorname{vect}\left(\begin{pmatrix} 1 \\ -i \end{pmatrix}\right)$ et $\operatorname{E}_{-i}(S) = \operatorname{vect}\left(\begin{pmatrix} 1 \\ i \end{pmatrix}\right)$. On a donc $S = \operatorname{PDP}^{-1}$ avec $\operatorname{P} = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$

et D =
$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
.

Puisque $Sp(T) = \{1\}$, T n'est pas diagonalisable sinon on aurait $T = I_2$. T est déjà triangulaire donc il n'y a pas de matrice de passage à spécifier.

Enfin, TS = $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ de sorte que $\chi_{TS} = X^2 - X + 1 = (X + j)(X + \bar{j})$ est scindé à racines simples sur \mathbb{C} . Ainsi TS

 $\text{est diagonalisable et } \mathrm{Sp}_{\mathbb{C}}(\mathrm{TS}) = \{-j, -\overline{j}\}. \text{ On calcule } \mathrm{E}_{-j}(\mathrm{TS}) = \mathrm{vect}\left(\left(\begin{array}{c} 1 \\ -\overline{j} \end{array}\right)\right) \text{ et } \mathrm{E}_{-\overline{j}}(\mathrm{TS}) = \mathrm{vect}\left(\left(\begin{array}{c} 1 \\ -j \end{array}\right)\right). \text{ On a donce } \mathrm{CS}(\mathrm{TS}) = \mathrm{vect}\left(\left(\begin{array}{c} 1 \\ -j \end{array}\right)\right).$

$$TS = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & 1 \\ -\overline{j} & -j \end{pmatrix} \text{ et } D = \begin{pmatrix} -j & 0 \\ 0 & -\overline{j} \end{pmatrix}.$$

4.b χ_S et χ_{TS} ne sont pas scindés sur $\mathbb R$ donc S et TS ne sont pas trigonalisables et encore moins diagonalisables. T est trigonalisable mais pas diagonalisable pour les mêmes raisons qu'à la question précédente.

5 5.a A est annulé $X^2 - 1 = (X - 1)(X + 1)$ qui est simplement scindé sur \mathbb{R} donc A est diagonalisable. De plus,

 $Sp(A) \subset \{-1,1\}$ donc les formes réduites diagonales possibles de A sont les matrices $\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$.

5.b Comme $A \in SL_2(\mathbb{Z})$, $\det A = 1$ donc A est semblable et donc égale à $\pm I_2$. Réciproquement, les matrices I_2 et $-I_2$ appartient bien à $SL_2(\mathbb{Z})$ vérifient bien l'égalité de l'énoncé. Les matrices $A \in SL_2(\mathbb{Z})$ telles que $A^2 = I_2$ sont I_2 et $-I_2$.

6. 6.a A est annulé par $X^2 + 1 = (X - i)(X + i)$ qui est simplement scindé sur \mathbb{C} . Ainsi A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ et

 $\operatorname{Sp}(A) \subset \{i, -i\}$. Comme $\operatorname{det}(A) = 1$, $\operatorname{Sp}(A) = \{i, -i\}$ et A est donc semblable à $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Comme la trace est un invariant de similitude, $\operatorname{tr}(A) = i + (-i) = 0$.

6.b Puisque tr(A) = 0, A = $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. De plus, det(A) = 1 = $-a^2 - bc$.

Réciproquement, si $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ et $a^2 + bc = -1$, on a bien $A \in SL_2(\mathbb{Z})$ et $A^2 = -I_2$.

Les matrices $A \in SL_2(\mathbb{Z})$ vérifiant $A^2 = -I_2$ sont les matrices $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ avec $a^2 + bc = -1$.

7.a C'est un classique. Soient U et V deux matrices de $\mathcal{M}_2(\mathbb{R})$ semblables dans $\mathcal{M}_2(\mathbb{C})$. Il existe donc $P \in GL_2(\mathbb{C})$ telle que $V = P^{-1}UP$ i.e. PV = UP. Il existe alors deux matrices Q et R de $\mathcal{M}_2(\mathbb{R})$ telles que P = Q + iR. On a alors QV = UQ et RV = UR en consiérant les parties réelles et imaginaires.

La fonction $f: z \in \mathbb{C} \mapsto \det(Q + zR)$ est polynomiale. Comme $f(i) \neq 0$, f n'est pas nulle et possède donc un nombre fini de racines. Comme \mathbb{R} est inifini, il existe $\lambda \in \mathbb{R}$ telle que $f(\lambda) \neq 0$. Ainsi $S = P + \lambda Q \in GL_2(\mathbb{R})$. Comme QV = UQ et RV = UR, on a encore SV = US puis $V = S^{-1}US$. U et V sont donc bien semblables dans $\mathcal{M}_2(\mathbb{R})$.

7.b Soit $A \in SL_2(\mathbb{Z})$ telle que $A^2 = -I_2$. On a vu à la question **6.a** que A était semblable dans $\mathcal{M}_2(\mathbb{C})$ à $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. On a

vu également à la question **4.a** que S était semblable dans $\mathcal{M}_2(\mathbb{C})$ à cette même matrice. Par transitivité de la similitude, A et S sont semblables dans $\mathcal{M}_2(\mathbb{C})$. Mais comme ces deux matrices sont à coefficients réels, elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$ d'après la question précédente.

8 8.a Il est clair qu'un réseau engendré par une base \mathcal{B} du \mathbb{R} -espace vectoriel \mathbb{C} est le sous-groupe de $(\mathbb{C}, +)$ engendré par \mathcal{B} . Un réseau est donc un groupe additif.

8.b Tout d'abord, si (α, β) est une base du \mathbb{R} -espace vectoriel \mathbb{C} , alors $\operatorname{Im}\left(\frac{\alpha}{be}\right) \neq 0$. En effet, si $\operatorname{Im}\left(\frac{\alpha}{be}\right) = 0$, alors il existe $\lambda \in \mathbb{R}$ tel que $\alpha = \lambda \beta$, ce qui contredit la liberté de (α, β) .

Il suffit alors de remarquer que $\mathbb{Z}\alpha + \mathbb{Z}\beta = \mathbb{Z}(-\alpha) + \mathbb{Z}\beta$. Le réseau engendré par (α, β) est égal au réseau engendré par $(-\alpha, \beta)$ et l'un des deux complexes $\frac{\alpha}{\beta}$ et $-\frac{\alpha}{\beta}$ possède une partie imaginaire strictement positive.

8.c Pour tout nombre complexe z, $\text{Im}(z) = \frac{z - \overline{z}}{2i}$. Ainsi

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{1}{2i}\left(\frac{az+b}{cz+d} - \overline{\left(\frac{az+b}{cz+d}\right)}\right)$$

$$= \frac{1}{2i}\left(\frac{az+b}{cz+d} - \overline{\frac{az+b}{cz+d}}\right)$$

$$= \frac{1}{2i}\frac{(az+b)\overline{cz+d} - \overline{az+b}(cz+d)}{(cz+d)\overline{cz+d}}$$

$$= \frac{1}{2i}\frac{(az+b)(c\overline{z}+d) - (a\overline{z}+b)(cz+d)}{|cz+d|^2}$$

$$= \frac{1}{2i}\frac{(ac|z|^2 + adz + bc\overline{z} + bd) - (ac|z|^2 + ad\overline{z} + bcz + bd)}{|cz+d|^2}$$

$$= \frac{1}{2i}\frac{(ad-bc)(z-\overline{z})}{|cz+d|^2}$$

$$= \frac{ad-bc}{|cz+d|^2}\operatorname{Im}(z)$$

9 9.a Remarquons que $\omega_1' \in \Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Il existe donc $(a, b) \in \mathbb{Z}^2$ tel que $\omega_1' = a\omega_1 + b\omega_2$. De même, il existe $(c, d) \in \mathbb{Z}^2$ tel que $\omega_2' = c\omega_1 + d\omega_2$. On a donc bien

$$\left(\begin{array}{c}\omega_1'\\\omega_2'\end{array}\right) = P\left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right)$$

avec $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z})$. De la même manière, il existe $Q \in \mathcal{M}_2(\mathbb{Z})$ telle que

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = Q \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}$$

Notons que P et Q sont les matrices de passages respectives de \mathcal{B} vers \mathcal{B}' et de \mathcal{B}' vers \mathcal{B} . Ces deux matrices sont donc inverses l'une de l'autre. Comme elles sont à coefficients entiers, elles sont en fait dans $GL_2(\mathbb{Z})$. En particulier, $ad - bc = \pm 1$. D'après la question précédente;

$$\operatorname{Im}\left(\frac{\omega_1'}{\omega_2'}\right) = \operatorname{Im}\left(\frac{a\omega_1 + b\omega_2}{c\omega_1 + d\omega_2}\right) = \operatorname{Im}\left(\frac{a\omega_1/\omega_2 + b}{c\omega_1/\omega_2 + d}\right) = \frac{ad - bc}{|c\omega_1/\omega_2 + d|^2} \operatorname{Im}\left(\frac{\omega_1}{\omega_2}\right)$$

Comme ω_1/ω_2 et ω_1'/ω_2' sont dans \mathcal{H} , leurs parties imaginaires sont strictement positives. On en déduit que ad-bc>0 et donc que ad-bc=1. Finalement, $M\in SL_2(\mathbb{Z})$.

9.b Réciproquement, supposons qu'il existe $P \in SL_2(\mathbb{Z})$ telle que

$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = P \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$

Alors $\omega_1', \omega_2' \in \Lambda_{\mathcal{B}}$ puis $\Lambda_{\mathcal{B}'} \subset \Lambda_{\mathcal{B}}$. Mais on a également

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = P^{-1} \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}$$

avec $P^{-1} \in \mathcal{M}_2(\mathbb{Z})$ donc $\Lambda_{\mathcal{B}} \subset \Lambda_{\mathcal{B}'}$. Par double inclusion, $\Lambda_{\mathcal{B}} = \Lambda_{\mathcal{B}'}$.

10 D'après les deux questions précédentes, $\Lambda_{\mathcal{B}} = \Lambda_{\mathcal{B}'}$ si et seulement si $\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z})$ (on ne requiert pas $\omega_1'/\omega_2' \in \mathcal{H}$) i.e. 3d-5c=1. D'après la question **3.c**, l'ensemble des couples (c,d) recherchés est $\{(1+3k,2+5k), k \in \mathbb{Z}\} \cup \{(-1+3k,-2+5k), k \in \mathbb{Z}\}$.

11 Soit $(\tau, \tau') \in \mathcal{H}^2$ tel que $\Lambda_{\tau} = \Lambda_{\tau'}$. D'après la question **9.a**, il existe $(a, b, c, d) \in \mathbb{Z}^4$ tel que

$$\begin{cases} \tau' = a\tau + b \\ 1 = c\tau + d \\ ad - bc = 1 \end{cases}$$

Comme $(1,\tau)$ est libre dans le \mathbb{R} -espace vectoriel \mathbb{C} , l'égalité $1=c\tau+d$ donne c=0 et d=1. Puisque ad-bc=1, a = 1. Ainsi $\tau' = \tau + b$.

Réciproquement, s'il existe $b \in \mathbb{Z}$ tel que $\tau' = \tau + b$, on montre aisément que $\Lambda_{\tau'} = \Lambda_{\tau}$.

12 12.a Soit Λ un réseau. On a vu que Λ peut être engendré par une base (α, β) où $\tau = \frac{\alpha}{\beta} \in \mathcal{H}$. Il est clair que $\Lambda = \beta \Lambda_{\tau}$ donc Λ est semblable à Λ_{τ} .

12.b Soit $(\tau, \tau') \in \mathcal{H}^2$ tel que Λ_{τ} et $\Lambda_{\tau'}$ soient semblables. Il existe alors $\lambda \in \mathbb{C}^*$ tel que $\Lambda_{\tau'} = \lambda \Lambda_{\tau}$. $\Lambda_{\tau'}$ est engendré par la base $(\tau',1)$ et $\lambda\Lambda_{\tau}$ est engendré par la base $(\lambda\tau,\lambda)$. De plus, $\frac{\tau'}{1}=\tau'\in\mathcal{H}$ et $\frac{\lambda\tau}{\lambda}=\tau\in\mathcal{H}$ donc, d'après la question **9.a**, il existe $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{SL}_2(\mathbb{Z})$ telle que $\begin{cases} \tau'=a\lambda\tau+b\lambda=(a\tau+b)\lambda \\ 1=c\lambda\tau+d\lambda=(c\tau+d)\lambda \end{cases}$. Ainsi

il existe
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
 telle que $\begin{cases} \tau' = a\lambda\tau + b\lambda = (a\tau+b)\lambda \\ 1 = c\lambda\tau + d\lambda = (c\tau+d)\lambda \end{cases}$. Ains

$$\tau' = \frac{\tau'}{1} = \frac{a\tau + b}{c\tau + d}$$

Réciproquement, supposons qu'il existe $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ telle que $\tau' = \frac{a\tau + b}{c\tau + d}$. Posons $\lambda = \frac{1}{c\tau + d}$. Alors

$$\begin{pmatrix} \tau' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda \tau \\ \lambda \end{pmatrix}$$

Les réseaux engendrés par les bases $(\tau', 1)$ et $(\lambda \tau, \lambda)$ sont donc égaux d'après la question **9.a**. Ainsi $\Lambda_{\tau'} = \lambda \Lambda_{\tau}$ de sorte que $\Lambda_{\tau'}$ et Λ_{τ} sont semblables.

13 | 13.a Une similitude directe de centre O est une application de la forme $Z \in \mathbb{C} \mapsto zZ$ où $z \in \mathbb{C}$. On en déduit que $\overline{\Gamma}$ application qui à $z \in S(\lambda)$ associe la similitude $Z \mapsto zS$ établit une bijection de $S(\lambda)$ sur l'ensemble des similitudes laissant stable le réseau Λ .

13.b On note (α, β) une base engendrant Λ .

Soit une homothétie de rapport $\lambda \in \mathbb{R}$ laissant stable Λ . Notamment, $\lambda \alpha \in \Lambda$ donc il existe $(u, v) \in \mathbb{Z}^2$ tel que $\lambda \alpha = u\alpha + v\beta$. Comme λ , u et v sont des réels, on a donc $\lambda = u \in \mathbb{Z}$.

Réciproquement, si $\lambda \in \mathbb{Z}$, il est clair que $\lambda \Lambda \subset \Lambda$.

Ainsi $S(\Lambda) \cap \mathbb{R} = \mathbb{Z}$.

13.c On vérifie que $S(\Lambda)$ est un sous-anneau de \mathbb{C} .

13.d Soit $z \in \mathbb{C}$. Alors

$$z \in S(\Lambda_{\mathcal{B}}) \iff z\Lambda_{\mathcal{B}} \subset \Lambda_{\mathcal{B}} \iff \frac{z}{\omega_2}\Lambda_{\mathcal{B}} \subset \frac{1}{\omega_2}\Lambda_{\mathcal{B}} \iff z\Lambda_{\tau} \subset \Lambda_{\tau} \iff z \in S(\Lambda_{\tau})$$

Ainsi $S(\Lambda_{\mathcal{B}}) = S(\Lambda_{\tau})$.

13.e Soit $z \in S(\Lambda_{\tau})$. Comme $1 \in \Lambda_{\tau}$, $z = z \times 1 \in \Lambda_{\tau}$. Ainsi $S(\Lambda_{\tau}) \subset \Lambda_{\tau}$.

14 14.a Soit $z \in S(\Lambda_{\tau}) \setminus \mathbb{Z}$. Puisque $z\Lambda_{\tau} \subset \Lambda_{\tau}$, il existe $(a, b, c, d) \in \mathbb{Z}^4$ tel que $\begin{cases} z\tau = a\tau + b \\ z = c\tau + d \end{cases}$. Ainsi $c\tau^2 + (d-a)\tau + b = c\tau + d$.

0. Mais comme $z \notin \mathbb{Z}$, $c \neq 0$. Ainsi τ est bien racine d'un polynôme du second degré à coefficients dans \mathbb{Z} .

14.b 14.b.i On a $u\tau^2 + v\tau + w = 0$. Posons $z = u\tau$. Alors $z \notin \mathbb{R}$ puisque $\tau \notin \mathbb{R}$ et $u \neq 0$. De plus, $z\tau = u\tau^2 = -v\tau - w \in \Lambda_{\tau}$ et $z \times 1 = z = u\tau \in \Lambda_{\tau}$. Comme $(1,\tau)$ engendre Λ en tant que groupe, $z\Lambda_{\tau} \subset \Lambda_{\tau}$ i.e. $z \in S(\Lambda_{\tau})$.

14.b.ii Supposons que u=1. Avec les notations de la question précédente, $z=u\tau=\tau\in S(\Lambda_{\tau})$. De plus, il est clair que $1 \in S(\Lambda_{\tau})$. Comme $S(\Lambda_{\tau})$ est un groupe additif, le sous-groupe engendré par $(1, \tau)$, à savoir Λ_{τ} est inclus dans $S(\Lambda_{\tau})$. On a l'inclusion réciproque d'après la question **13.e**. Ainsi $S(\Lambda_{\tau}) = \Lambda_{\tau}$.

15 | 15.a Soit $\tau \in \mathcal{H}$. D'après la question 8.c,

$$Im(g(\tau)) = \frac{Im(\tau)}{|c\tau + d|^2} > 0$$

donc $g(\tau) \in \mathcal{H}$.

15.b Notons
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $A = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. Pour tout $\tau \in \mathcal{H}$,

$$\Phi(A) \circ \Phi(A')(\tau) = \frac{a\frac{a'\tau + b'}{c'\tau + d'} + b}{c\frac{a'\tau + b'}{c'\tau + d'} + d}$$

$$= \frac{a(a'\tau + b') + b(c'\tau + d')}{c(a'\tau + b') + d(c'\tau + d')}$$

$$= \frac{(aa' + bc')\tau + ab' + bd'}{(ca' + dc')\tau + cb' + dd'}$$

Or AA' =
$$\begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$$
 donc on a bien

$$\forall \tau \in \mathcal{H}, \ \Phi(A) \circ \Phi(A')(\tau) = \Phi(AA')(\tau)$$

i.e. $\Phi(A) \circ \Phi(A') = \Phi(AA')$.

Par surjectivité de Φ , \circ est bien une loi interne sur Γ .

15.c D'après la question précédente,

$$\Phi(A) \circ \Phi(A^{-1}) = \Phi(A^{-1}) \circ \Phi(A) = \Phi(I_2) = \mathrm{Id}_{\mathcal{H}}$$

Ainsi $\Phi(A)$ est bijective i.e. inversible pour la loi \circ et $\Phi(A)^{-1} = \Phi(A^{-1}) \in \Gamma$.

On vérifie alors que Γ est un sous-groupe du groupe symétrique $S_{\mathcal{H}}$ (groupe des permutations de \mathcal{H}). En effet, les questions précédentes montrent que $\Gamma \subset S_{\mathcal{H}}$, Γ est stable par inversion et par composition. De plus, Γ n'est évidemment pas vide.

15.d Soit A =
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
. Alors

$$\begin{split} & \Phi(\mathbf{A}) = \operatorname{Id}_{\mathcal{H}} \\ & \iff \forall \tau \in \mathcal{H}, \ \frac{a\tau + b}{c\tau + d} = \tau \\ & \iff \forall \tau \in \mathcal{H}, \ c\tau^2 + (d - a)\tau - b = 0 \\ & \iff c = (d - a) = b = 0 \qquad \operatorname{car} \mathcal{H} \text{ est infini} \\ & \iff a = d = \pm 1 \text{ ET } b = c = 0 \qquad \operatorname{car} ad - bc = 1 \\ & \iff \mathbf{A} = \pm \mathbf{I}_2 \end{split}$$

Remarque. On a donc montré que le noyau du morphisme de groupes Φ est $\{I_2, -I_2\}$.

15.e 15.e.i Soit $(A, A') \in SL_2(\mathbb{Z})^2$. Alors

$$\Phi(A) = \Phi(A') \iff \Phi(A'A^{-1}) = \mathrm{Id}_{\mathcal{H}} \iff A'A^{-1} = \pm I_2 \iff A' = \pm A$$

15.e.ii On calcule ST = $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ et TS = $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$. Ainsi ST $\neq \pm$ TS donc, d'après la question précédente, Φ (ST) $\neq \Phi$ (TS) i.e. Φ (S) Φ (T) $\neq \Phi$ (T) Φ (S). Γ n'est donc pas un groupe commutatif.

16 16.a

$$z \in \mathcal{C}(\omega, R)$$

$$\iff |z - \omega|^2 = R^2$$

$$\iff (z - \omega)\overline{(z - \omega)} = R^2$$

$$\iff z\overline{z} - \omega\overline{z} - \overline{\omega}z + \omega\overline{\omega} = R^2$$

$$\iff |z|^2 - (\omega\overline{z} + \overline{\omega}z) + |\omega|^2 = R^2$$

Le cercle $\mathcal{C}(\omega, R)$ est inlcus dans \mathcal{H} si et seulement si $\text{Im}(\omega) > R$.

16.b Remarquons que pour tout $z \in \mathcal{H}$, $s(z) = -\frac{1}{z} = -\frac{\overline{z}}{|z|^2}$. De plus, s est une involution. Ainsi

$$z \in s(\mathcal{C}(\omega, R))$$

$$\iff s(z) \in \mathcal{C}(\omega, R)$$

$$\iff \frac{1}{|z|^2} + (\omega \frac{z}{|z|^2} + \overline{\omega} \frac{\overline{z}}{|z|^2}) + |\omega|^2 = R^2$$

$$\iff 1 + (\omega z + \overline{\omega z}) + |\omega|^2 |z|^2 = R^2 |z|^2$$

$$\iff (|\omega|^2 - R^2)|z|^2 + (\omega z + \overline{\omega z}) + 1 = 0$$

$$\iff (|\omega|^2 - R^2)|z|^2 + (\omega z + \overline{\omega z}) + 1 = 0$$

$$\iff |z|^2 - (\alpha \overline{z} + \overline{\alpha} z) + \frac{1}{|\omega|^2 - R^2} = 0 \quad \text{en posant } \alpha = -\frac{\overline{\omega}}{|\omega|^2 - R^2}$$

$$\iff |z|^2 - (\alpha \overline{z} + \overline{\alpha} z) + |\alpha|^2 = |\alpha|^2 - \frac{1}{|\omega|^2 - R^2}$$

$$\iff |z|^2 - (\alpha \overline{z} + \overline{\alpha} z) + |\alpha|^2 = M^2 \quad \text{en posant } M = \frac{R}{|\omega|^2 - R^2}$$

$$\text{Ainsi } s(\mathcal{C}(\omega, R)) = \mathcal{C}(\alpha, M) = \mathcal{C}\left(-\frac{\overline{\omega}}{|\omega|^2 - R^2}, \frac{R}{|\omega|^2 - R^2}\right).$$

Remarque. On a bien $|\omega|^2 - R^2 > 0$ puisque $|\omega| \ge \text{Im}(\omega) > R$.

17. 17.a A nouveau, on utilise le fait que s est une involution et que $s(z) = -\frac{1}{z} = -\frac{\overline{z}}{|z|^2}$ pour tout $z \in \mathcal{H}$. Soit $z \in \mathcal{H}$. Alors

$$z \in s(\mathcal{D})$$

$$\iff s(z) \in \mathcal{D}$$

$$\iff \operatorname{Im}(s(z)) = \beta$$

$$\iff -\operatorname{Im}\left(\frac{\overline{z}}{|z|^2}\right) = \beta$$

$$\iff \operatorname{Im}(z) = \beta|z|^2$$

$$\iff \frac{z - \overline{z}}{2i} = \beta|z|^2$$

$$\iff |z|^2 - (\omega \overline{z} + \overline{\omega}z) = 0 \quad \text{en posant } \omega = \frac{i}{2\beta}$$

$$\iff |z|^2 - (\omega \overline{z} + \overline{\omega}z) + |\omega|^2 = \frac{1}{4\beta^2}$$

Ainsi
$$s(\mathcal{D}) = \mathcal{C}\left(\frac{i}{2\beta}, \frac{1}{2\beta}\right) \setminus \{0\}.$$

17.b

$$z \in s(\mathcal{D}_{+})$$

$$\iff s(z) \in \mathcal{D}_{+}$$

$$\iff \operatorname{Re}(s(z)) = \alpha$$

$$\iff -\operatorname{Re}\left(\frac{\overline{z}}{|z|^{2}}\right) = \alpha$$

$$\iff -\operatorname{Re}(z) = \alpha|z|^{2}$$

$$\iff -\frac{z + \overline{z}}{2} = \alpha|z|^{2}$$

$$\iff |z|^{2} - (\omega\overline{z} + \overline{\omega}z) = 0 \quad \text{en posant } \omega = \frac{1}{2\alpha}$$

$$\iff |z|^{2} - (\omega\overline{z} + \overline{\omega}z) + |\omega|^{2} = \frac{1}{4\alpha^{2}}$$

Ainsi $s(\mathcal{D})$ est le demi-cercle $\mathcal{C}\left(\frac{1}{2\alpha}, \frac{1}{2\alpha}\right) \cap \mathcal{H}$.

Clairement, \mathcal{F} est une demi-bande verticale privée d'un disque ouvert. On remarque que t(z) = z+1 pour tout $z \in \mathcal{H}$ donc $t(\mathcal{F})$ et $t^{-1}(\mathcal{F})$ sont respectivement les images de \mathcal{F} par les translations de vecteurs d'affixes 1 et -1.

19 19.a Montrons que l'ensemble

$$K = \{(c, d) \in \mathbb{Z}^2, |c\tau + d| \le 1\}$$

est fini. Posons $\tau = \alpha + i\beta$ avec $\beta > 0$. Soit $(c, d) \in K$. Alors

$$|c\tau+d|^2=(c\alpha+d)^2+c^2\beta^2\leq 1$$

Notamment, $|c| \le \frac{1}{\beta}$ puis $|d| \le |c\alpha + d| + |c\alpha| \le 1 + \frac{|\alpha|}{\beta}$. L'ensemble K est donc bien fini. Considérons maintenant l'ensemble

$$L = \left\{ (c, d) \in \mathbb{Z}^2, \ \exists (a, b) \in \mathbb{Z}^2, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}), \ \Phi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \in \operatorname{G} \right\}$$

L'ensemble $K \cap L$ est encore fini. De plus, $K \cap L$ n'est pas vide puisqu'il contient (0, 1). En effet, on a clairement $(0, 1) \in K$ et $Id_{\mathcal{H}} = \Phi(I_2) \in G$ de sorte que $(0, 1) \in L$. On condidère alors $(c_0, d_0) \in K \cap L$ tel que

$$|c_0\tau + d_0| = \min_{(c,d) \in K \cap L} |c\tau + d|$$

Il existe donc $(a_0,b_0)\in\mathbb{Z}^2$ tel que $\mathbf{A}_0\left(\begin{array}{cc}a_0&b_0\\c_0&d_0\end{array}\right)\in\mathrm{SL}_2(\mathbb{Z})$ et $g_0=\varphi(\mathbf{A}_0)\in\mathrm{G}.$ Soit alors $g\in\mathrm{G}.$ Comme $\mathbf{G}\subset\Gamma,$ il existe

 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \text{ et } g = \Phi(A). \text{ Ainsi } (c,d) \in \operatorname{L. Si} |c\tau + d| \leq 1 \text{ alors } (c,d) \in \operatorname{K} \cap \operatorname{L donc} |c\tau + d| \geq |c_0\tau + d_0|. \text{ Si } |c\tau + d| > 1, \text{ alors } |c\tau + d| > 1 \geq |c_0\tau + d_0| \text{ à nouveau. Ainsi, d'après la question } \textbf{8.c},$

$$\operatorname{Im}(g(\tau)) = \frac{1}{|c\tau + d|^2} |\operatorname{Im}(z) \le \frac{1}{|c_0\tau + d_0|^2} |\operatorname{Im}(z) = \operatorname{Im}(g_0(\tau))$$

19.b Puisque t(z) = z + 1 pour tout $z \in \mathcal{H}$, $t^m(\tau') = \tau' + m$ puis $\text{Re}(t^m(\tau')) = \text{Re}(\tau') + m$ pour tout $m \in \mathbb{Z}$. Il suffit alors de choisir $m = \lfloor 1/2 - \text{Re}(\tau') \rfloor$ pour avoir $|\text{Re}(t^m(\tau'))| \leq \frac{1}{2}$.

19.c Posons $\tau'' = t^m(\tau')$. Comme $g = s \circ \tau^m \in G$,

$$\operatorname{Im}(s(\tau'')) \le \operatorname{Im}(g_0(\tau)) = \operatorname{Im}(\tau') = \operatorname{Im}(\tau' + m) = \operatorname{Im}(\tau'')$$

Or $s(\tau'') = -\frac{\overline{\tau''}}{|\tau''|^2}$ donc $\text{Im}(s(\tau'')) = \frac{\text{Im}(\tau'')}{|\tau''|^2}$. Finalement,

$$\frac{\operatorname{Im}(\tau'')}{|\tau''|^2} \le \operatorname{Im}(\tau'')$$

puis $|\tau''| \ge 1$ puisque $\text{Im}(\tau'') > 0$. Ainsi $\tau'' \in \mathcal{F}$.

20 Soit $g ∈ \Gamma$. On considère $ρ ∈ \mathring{\mathcal{F}}$. Posons τ = g(ρ) et adoptons les notations des questions précédentes. On a donc $τ'' = t^m \circ g_0 \circ g(ρ) ∈ \mathcal{F}$. En contraposant le résultat admis, on a alors $t^m \circ g_0 \circ g = \mathrm{Id}_{\mathcal{H}}$. Ainsi $g = g_0^{-1} \circ t^{-m} ∈ G$. Ainsi Γ ∈ G. L'inclusion réciproque étant évidente, Γ = G.