Estadística II - Taller 04 Semestre: 2021-02

Profesores: Carlos M. Lopera-Gómez y Raúl Alberto Pérez

Monitor: Simon Pedro Galeano

Dado el contenido que se ha visto hasta el momento, el taller será mayormente teórico y operativo.

- 1. Considere las siguientes afirmaciones y determine su valor de verdad.
- a) Toda matriz de varianzas-covarianzas es anti simétrica.
- b) Sea $A \in \mathbb{R}^{mxn}$, $\underline{y} = [X_1, \dots, X_n]^T$ un vector aleatorio de tal que $var[\underline{y}] = \Sigma_y$, la entrada i, j de la matriz $A\Sigma_y A^T$ es igual a $Cov[X_i, X_j]$.
- c) Todas las entradas de la matriz de correlaciones son menores a uno.
- d) El modelo $y_i = \sum_{j=0}^k \beta_j x_i^j + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ es lineal. e) Sea $A \in \mathbb{R}^{nxn}$ tal que $A = A^T$ y A es idempotente, entonces $(I_n A)^n = (I_n A)$
- 2. Un ingeniero realizó un experimento para determinar el rendimiento total del aceite por lote de cacahuate, para ello tuvo en cuenta variables como la presión, temperatura del CO2 aplicado, la humedad y el tamaño de partícula de los cacahuates. Los 16 datos recolectados aparecen a continuación

Cuadro 1: Datos de estudio sobre el rendimiento total de aceite por lote de cacahuate.

Rendimiento $[y]$	Presión $[X_1]$	Temperatura $[X_2]$	Humedad $[X_3]$	Tamaño de partícula $[X_5]$
63	415	25	5	1.28
21	550	25	5	4.05
36	415	95	5	4.05
99	550	95	5	1.28
24	415	25	15	4.05
66	550	25	15	1.28
71	415	95	15	1.28
54	550	95	15	4.05
23	415	25	5	4.05
74	550	25	5	1.28
80	415	95	5	1.28
33	550	95	5	4.05
63	415	25	15	1.28
21	550	25	15	4.05
44	415	95	15	4.05
96	550	95	15	1.28

- a) Calcule la matriz de varianzas-covarianzas.
- b) Calcule la matriz de correlaciones.
- c) Escriba un modelo con las covariables en forma escalar.

- d) Añada una columna de unos al principio de los datos (excluyendo la covariable), de ahora en adelante dicha matriz será nombrada ${\bf X}$.
- e) Calcule las matrices $\mathbf{X}^T\mathbf{X}$, $(\mathbf{X}^T\mathbf{X})^{-1}$, $(\mathbf{X}^T\mathbf{X})^{-1}(\mathbf{X}^T\underline{y})$, $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}(\mathbf{X}^T\underline{y})$ y $\underline{y} \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}(\mathbf{X}^T\underline{y})$.

Nota: la base de datos se encuentra como table.b7 en el paquete MPV