

IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 1. (Currently Amended) A spatial light modulator, comprising:
2 memory elements configured to store data therein and shift data therebetween; and
3 light modulation elements respectively in communication with the memory elements,
4 wherein each of the light modulation elements is alterable in response to [the] data stored in
5 the respectively ones of the corresponding memory element[s].

1 2. (Original) The spatial light modulator according to claim 1, wherein said memory
2 elements are arranged in an array having rows and columns.

1 3. (Original) The spatial light modulator according to claim 2, wherein said memory
2 elements are configured to shift the data bi-directionally between rows.

1 4. (Original) The spatial light modulator according to claim 2, wherein said memory
2 elements are configured to shift the data bi-directionally between columns.

1 5. (Original) The spatial light modulator according to claim 2, wherein said memory
2 elements are configured to shift the data bi-directionally between at least one of non-adjacent
3 rows and non-adjacent columns.

1 6. (Original) The spatial light modulator according to claim 1, wherein said memory
2 elements are arranged in a nonorthogonal pattern.

1 7. (Original) The spatial light modulator according to claim 1, wherein said memory
2 elements are static memory elements.

1 8. (Original) The spatial light modulator according to claim 7, wherein each of the
2 memory elements includes a feedback element.

1 9. (Original) The spatial light modulator according to claim 8, wherein the feedback
2 element is a weak feedback element.

1 10. (Original) The spatial light modulator according to claim 1, further comprising
2 access control elements connected to said respective memory elements.

1 11. (Original) The spatial light modulator according to claim 10, wherein said access
2 control elements include a forward access control element operable to control the state of said
3 respective memory element during a forward shift operation and a reverse access control
4 element operable to control the state of said respective memory element during a reverse shift
5 operation.

1 12. (Original) The spatial light modulator according to claim 1, wherein each of said
2 memory elements further includes an output node electrically coupled to an electrode of said
3 respective light modulation element and to an input node of an additional one of said memory
4 elements.

1 13. (Original) The spatial light modulator according to claim 12, wherein said
2 memory elements are interconnected in a shift register configuration.

1 14. (Original) The spatial light modulator according to claim 13, wherein said
2 memory elements each include a master-slave flip-flop.

1 15. (Original) The spatial light modulator according to claim 13, further comprising:
2 a timing circuit in communication with each of said memory elements to shift the data
3 between said memory elements.

1 16. (Original) The spatial light modulator according to claim 15, wherein said timing
2 circuit comprises a ripple clock.

1 17. (Original) The spatial light modulator according to claim 15, wherein said light
2 modulation elements comprise liquid crystal material.

1 18. (Original) The spatial light modulator according to claim 17, wherein said light
2 modulation elements further comprise:

3 a common electrode configured to receive a common electrode signal for said light
4 modulation elements; and

5 a respective pixel electrode configured to receive the data stored in said respective
6 memory elements.

1 19. (Original) The spatial light modulator according to claim 18, wherein said timing
2 circuit is operable to shift inverted data from a first one to a second one of the memory
3 elements and to switch the common electrode signal to alter the light modulation element
4 associated with the second one of the memory elements as a function of the inverted data.

1 20. (Original) The spatial light modulator according to claim 1, wherein said light
2 modulation elements comprise micromirrors.

1 21. (Original) The spatial light modulator according to claim 1, wherein said memory
2 elements are arranged in blocks, a first one of said blocks configured to receive data from an
3 external input and the others of said blocks configured to receive data from other ones of said
4 memory elements.

- 1 22. (Original) A method for performing photolithography, said method comprising:
 - 2 loading data representing an image into memory elements in communication with
 - 3 respective light modulation elements;
 - 4 altering ones of the light modulation elements in response to the data loaded thereunto
 - 5 to transfer the image onto a substrate;
 - 6 shifting the data between the memory elements;
 - 7 altering ones of the light modulation elements in response to the data shifted thereunto
 - 8 to transfer the image onto the substrate.
- 1 23. (Original) The method according to claim 22, wherein each said altering further
- 2 comprises:
 - 3 applying a voltage in response to the data to change optical characteristics of the
 - 4 light modulation elements.
- 1 24. (Original) The method according to claim 22, wherein said shifting further
- 2 comprises:
 - 3 utilizing a ripple clock to control the timing of said shifting.
- 1 25. (Original) The method according to claim 22, further comprising:
 - 2 moving at least one of the substrate and the light modulation elements relative to the
 - 3 other.

- 1 26. (Original) The method according to claim 25, wherein said altering in response to
- 2 the shifted data is performed after said moving.