结论知, \bar{o}_i 和 \bar{o}_j 也满足交换律。同是,任取 $x,y \in B$,因 φ 是满射,所以存在 $a,b \in A$,使 $\varphi(a) = x, \varphi(b) = y$ 。从而有:

$$x \overline{\circ}_i(x \overline{\circ}_j y) = \varphi(a) \overline{\circ}_i(\varphi(a) \overline{\circ}_j \varphi(b))$$
 $(\varphi(a) = x, \varphi(b) = y)$ $= \varphi(a) \overline{\circ}_i \varphi(a \circ_j b)$ $(\varphi 是同态映射)$ $= \varphi(a)$ $(\varphi(a) = x, \varphi(b) = y)$ $(\varphi(a) = x, \varphi(b) = y)$

同理可证 $x \overline{\circ}_i(x \overline{\circ}_i y) = x$ 。

从而 $\overline{o}_i, \overline{o}_i$ 也是可吸收的。

(4)

证明: ① 若 e 是 V_1 中关于 \circ_i 是单位元,则: 任取 $x \in B$,因 φ 是满射,所以存在 $a \in A$,使 $\varphi(a) = x$ 。从而有:

$$x\overline{\circ}_i \varphi(e) = \varphi(a)\overline{\circ}_i \varphi(e)$$
 $(\varphi(a) = x)$ $= \varphi(a \circ_i e)$ $(\varphi \text{ 是同态映射})$ $= \varphi(a)$ $(e \text{ 是关于 } \circ_i \text{ 是单位元})$ $= x$ $(\varphi(a) = x)$

同理可证 $\varphi(e)\overline{\circ}_i x = x$ 。

从而 $\varphi(e)$ 是的 V_2 中关于 \bar{o}_i 单位元。

② 若 θ 是 V_1 中关于 \circ_i 是零元,则: 任取 $x \in B$,因 φ 是满射,所以存在 $a \in A$,使 $\varphi(a) = x$ 。从而有:

$$x\overline{\circ}_i\varphi(\theta) = \varphi(a)\overline{\circ}_i\varphi(\theta)$$
 $(\varphi(a) = x)$ $= \varphi(a \circ_i \theta)$ $(\varphi \text{ 是同态映射})$ $= \varphi(\theta)$ $(\theta \text{ 是关于 } \circ_i \text{ 是零元})$

同理可证 $\varphi(\theta)\overline{\circ}_i x = \theta$ 。

从而 $\varphi(\theta)$ 是的 V_2 中关于 \overline{o}_i 零元。

(5)

证明:设 x^{-1} 是x关于 \circ_i 的逆元,则:

$$\varphi(x)\overline{\circ}_{i}\varphi(x^{-1}) = \varphi(x \circ_{i} x^{-1})$$
 (φ 是同态映射)
= $\varphi(e)$ (x^{-1} 是 x 的逆元)

由第 (4) 小题结论知, $\varphi(e)$ 是 V_2 中关于 $\overline{\circ}_i$ 单位元。从而知 $\varphi(x^{-1})$ 是 $\varphi(x)$ 关于 $\overline{\circ}_i$ 的右逆元。同理可证 $\varphi(x^{-1})$ 也是 $\varphi(x)$ 关于 $\overline{\circ}_i$ 的左逆元。因此, $\varphi(x^{-1})$ 是 $\varphi(x)$ 关于 $\overline{\circ}_i$ 的逆元。

15.22

证明: 由教材定理 3.3 知, $\varphi_2 \circ \varphi_1 : A \to C$ 且 $\forall x \in A, \varphi_2 \circ \varphi_1(x) = \varphi_2(\varphi_1(x))$ 。

因此, $\forall x, y \in A$,

$$\varphi_2 \circ \varphi_1(x \circ y) = \varphi_2(\varphi_1(x \circ y))$$
 (教材定理 3.3)
$$= \varphi_2(\varphi_1(x) * \varphi_1(y))$$
 ($\varphi_1 \not\in V_1 \not\ni V_2 \not\in V_2 \not\ni V_3 \not\in V_3 \not\in$

从而 $\varphi_2 \circ \varphi_1$ 是 V_1 到 V_3 的同态。