TP1 - 1 séance

Introduction au langage Caml Fonctions numériques

Vous pouvez trouver à cette adresse https://doc.ubuntu-fr.org/caml_light comment utiliser gedit ou emacs pour faire des programmes Caml Light.

Algorithmes de fonctions simples :

- a) Fonctions à une variable :
 - Écrire une fonction de calcul d'un prix TTC à partir d'un prix HT avec un taux de TVA de 20 %.
 - Écrire une fonction qui détermine si une année est bissextile
 - Écrire une fonction qui teste si un caractère est une lettre minuscule
- b) Fonctions à deux variables :
 - Écrire une fonction qui calcule la moyenne de 2 réels.
 - Écrire une fonction qui détermine le quotient et le reste d'une division entière.
- c) Fonctions avec déclarations locales :
 - Définir une fonction puissance 4 pour les entiers utilisant une fonction carré locale.
 - Écrire une fonction qui convertit une lettre minuscule en majuscule.

Algorithmes de fonctions récursives

- a) Écrire une fonction qui calcule le n-ème terme de la suite de Fibonacci est définie par : $u_0=0$; $u_1=1$; $et \forall n>1$, $u_n=u_{n-1}+u_{n-2}$.
- b) Écrire une fonction calculant la somme des n premiers carrés.

Algorithmes de fonctions d'ordre supérieur

- a) Écrire une fonction **sigma** qui calcule $\sum_{x=0}^{n} f(x)$. Puis utiliser cette fonction pour redéfinir la somme des n premiers carrés.
- b) Écrire une fonction **rond** telle que $rond\ f\ g = g \circ f$ (où $g \circ f(x) = g(f(x))$). Utiliser ensuite cette fonction en l'appliquant à différents arguments.

Calcul de la racine carrée par la méthode de Newton

La suite y_n définie par $\begin{cases} y_0 = x \\ y_{n+1} = \frac{(y_n + x/y_n)}{2} \end{cases}$ converge vers \sqrt{x} .

L'idée est donc de partir de y_0 et de calculer y_{n+1} , jusqu'à ce que $(y_{n+1})^2 = x \pm \epsilon$

- a) Écrire la fonction (Newton x y eps) qui calcule les termes successifs de la suite de Newton, jusqu'à ce que $y^2 = x \pm \epsilon$. Utiliser cette fonction pour définir la fonction Racine.
- b) Redéfinir la fonction Racine, en utilisant deux fonctions locales, la première testant si la solution approchée est correcte ou non, la seconde calculant

$$y_{n+1}$$
 à partir de y_n