# Segmentação de Movimento

Bruno Fernandes Carvalho - 15/0007159 Dep. Ciência da Computação - Universidade de Brasília (UnB) Princípios de Visão Computacional - Turma A Data de realização: 25/06/2017

brunofcarvalho1996@gmail.com

## **Abstract**

One of the most used application in computer vision is object's movement extraction from a video scene. In this work two techniques are going to be compared: background subtraction and optical flow. Also, it will be observed the computational cost and the accuracy of the methods used to detect cars that are moving in traffic videos.

#### **Abstract**

Uma das aplicações mais utilizadas em visão computacional é a extração do movimento de objetos na cena de um vídeo. Nesse trabalho será feito uma comparação entre duas técnicas: subtração de fundo e fluxo óptico. Será observado o custo computacional e a acurácia dos métodos para detectar carros que se movem em vídeos de trânsito.

# 1. Objetivos

Essa atividade tem como base entender os conceitos básico de segmentação de movimento em vídeo a partir da comparação e implementação de fluxo óptico e "Background Subtraction".

# 2. Introdução

Segmentar objetos que se movem na cena é uma aplicação importante em visão computacional e pode resolver problemas de segurança, controle de acesso e de trânsito. Existem duas técnicas que são comumente empregadas para realizar isso: fluxo óptico e subtração do fundo, que serão detalhadas a seguir.

Fluxo óptico aproxima o campo de movimento da cena baseado no movimento aparente do brilho na mesma. Assim, cada pixel pode ser representado como um vetor que tem direção e módulo indicando o sentido desse movimento. Existem diversas técnicas para calcular esse fluxo, e a empregada nesse projeto é a técnica diferencial, em que

esse vetor deve ser obtido comparando dois frames do vídeo a partir de uma equação de restrição: a brilho entre uma imagem e outra durante um curto intervalo de tempo é constante. Usando essa definição e considerando que os vizinhos de um determinado pixel apresenta velocidades semelhantes, Horn-Shunck criaram um método para aproximar esse fluxo: primeiro estima-se as derivadas parciais da equação de restrição e depois aplica-se o método iterativo de Gauss-Seidel, obtendo, por exemplo, o campo de velocidade esparso da figura 1.

Figura 1. Fluxo óptico esparso



Outra técnica clássica para solução de problemas de segmentação de movimento é o Background Subtraction, que consiste basicamente em subtrair o fundo da cena em cada frame. Assim, o que tiver se movendo e não pertencer ao fundo pode ser identificado. Apesar do simples conceito, um grande problema é que na maioria das aplicações o fundo varia, principalmente devido à mudança de luminosidade, não sendo possível defini-lo previamente. Dessa forma, foram criadas métodos adaptativos que verificam ao longo dos frames os pixels que mantém valores próximos, definindo-os como fundo. Quando algum pixel tem um valor muito diferente do definido como fundo, o método detecta movimento. Nesse trabalho foi utilizado "Gaussian Mixture-based Background Segmentation", um

modelo adaptativo eficiente e que é resistente a ruídos e variações de luminosidade. Um exemplo dele é visto na figura 2, que mostra a segmentação de pessoas em movimento numa rua.

Figura 2. Background Subtraction



# 3. Materiais e Metodologia

Para comparar as duas técnicas de segmentação de movimento mencionadas na seção anterior, foram utilizados os vídeos disponibilizados no Moodle. Foi implementado um algoritmo que realiza em cada frame a segmentação das duas técnicas e mostra ao usuário os objetos em movimento na cena para comparação dos resultados. Além disso, pode ser visto no terminal o tempo de execução de cada técnica, sendo possível comparar o mais eficiente computacionalmente. Foi realizado também um pós processamento das imagens obtidas pelas técnicas, conforme será descrito a seguir.

No "Background Subtraction", após a obtenção de uma máscara contendo os objetos que ele detectou em movimento na cena, foi aplicado uma operação morfológica de abertura para eliminar os ruídos e destacar os objetos detectados. Empiricamente, foi escolhido um elemento estruturante na forma de elipse com tamanho 3x3.

Já no fluxo óptico foi necessário aplicar mais operações, visto que a função Horn-Shunck implementada no openCV não retorna uma máscara (imagem binária), mas uma imagem grayscale que quanto maior a intensidade do pixel, maior a magnitude do vetor velocidade. Antes de torná-la binária, foi aplicado um filtro adaptativo bilateral para eliminar ruídos, e depois foi computado o limiar ótimo de Otsu para segmentação dos objetos encontrados em movimento. Após isso, ainda foi empregado uma operação morfológica de abertura, com o mesmo elemento estruturante da técnica anterior.

Com o pós-processamento realizado, mostra-se finalmente ao usuário os resultados de movimento obtido. Ainda, vale deixar claro que, para o desenvolvimento dos algoritmos, foi utilizado a linguagem de programação C++, assim como técnicas de orientação a objetos. Na hora de execução do código no terminal, é necessário que seja inserido um vídeo como argumento para que seja executado corretamente.

#### 4. Resultados

A partir do algoritmo detalhado na seção anterior, foi feita a comparação das duas técnicas empregadas, tanto

computacionalmente quanto em acurácia. As figuras a seguir mostram um exemplo das duas técnicas.

Figura 3. Frame original do vídeo



Figura 4. Segmentação por subtração de fundo



Figura 5. Segmentação por fluxo óptico



Conforme pôde ser observado, a técnica de subtração de fundo teve resultados mais consistentes e foram menos sensíveis ao ruído e à luminosidade, segmentando melhor o objeto em movimento. Nota-se que, mesmo com todos os pós-processamentos feitos no fluxo óptico, ainda não foi possível obter a forma do carro esperada e foram detectados mais ruídos de luminosidade, já que esse método detecta variações nas intensidades dos pixeis ao longo do vídeo. Apesar disso, o método Horn-Shunck de fluxo óptico executa muito mais rápido do que a subtração de fundo, já que o último realiza mais cálculos para determinar o fundo de forma adaptativa.

Além desses resultados mostrados, ainda foram comparadas as técnicas em vídeos que os carros estão longes. Nesse caso, percebe-se que os ruídos aparecem nos dois métodos e os movimentos são detectados de forma pior, visto que os objetos estão longes na cena e se movem devagar. Mesmo assim, o fluxo óptico teve resultados muito piores pois é mais sensível ao ruído e depende do limiar ótimo de otsu, que pode ser prejudicado devido a esses fatores.

#### 5. Conclusão

Ficou claro os conceitos de segmentação de movimento e como esse algoritmo pode ser implementado a partir de várias técnicas. Entre elas, foi comparada subtração de fundo e fluxo óptico, e concluiu-se que a primeira apresenta maior robustez à ruído e à luminosidade, segmentando melhor objetos na cena, porém é mais caro computacionalmente. Já a segunda realiza seus cálculos rapidamente, porém na maior parte dos casos falha na segmentação do objeto, detectando o movimento de forma ruidosa.

## Referências

- [1] F. Vidal and V. Alcade, "Motion segmentation in sequential images based on the differential optical flow."
- [2] G. Bradski and A. Kaehler, *Learning OpenCV*, 1st ed. O'Reilly.
- [3] Forsyth and Ponce, Computer Vision A Modern Approach, 1st ed. Pearson.
- [4] OpenCV API Reference. (2017, 31 Março). [Online]. Available: http://docs.opencv.org/2.4/modules/refman.html

[1] [2] [3] [4]