Cartan algebras

We say that $\mathcal{H} \subseteq \mathcal{G}$ is Cartan subalgebra in \mathcal{G} if \mathcal{H} is nilpotent subalgebra and it coicides with tis normaliser.

Consider polynomial

$$P_x(z) = \det(z - \operatorname{ad} x) = a_0(x) + a_1(x)z + a_2(x)z^2 + \ldots + a_N(x)z^N$$

where $N = \dim \mathcal{G}$. It is evident that $a_0 \equiv 0$.

We say that algebra \mathcal{G} has rank l if there exist $x \in \mathcal{G}$ such that this polynomial has non-zero coefficient a_l , but all a_k identically vanish for k < l.

We say that $x \in \mathcal{G}$ is regular element in \mathcal{G} if $a_l(x) \neq 0$, where l is a rank of the algebra \mathcal{G}

Theorem Set of regual elements in algebra Lie is open, dense and simply connected.

Theorem Let x be an arbitrary regular element in Lie algebra \mathcal{G} . Then

$$\mathcal{G}_x^0 = \{ \xi : (\operatorname{ad} x)^n \xi = 0 \}$$

is subalgebra, and this subalgebra is Cartan subalgebra.

Theorem The group G of inner automorphisms of Lie algebra \mathcal{G} acts transitevely on set of Cartan algebras.

Corollary One can see that