12. Sučelje s analognom okolinom

Sadržaj predavanja

- uključivanje digitalnog sustava u okolinu
 - konceptualizacija sučelja
 - parametri pretvorbe
- digitalno-analogna pretvorba
- analogno-digitalna pretvorba

- funkcija digitalnog sustava u stvarnom svijetu
 unos i obrada podataka, vraćanje rezultata:
 - podaci ~ brojevi
 - obrađuju se u diskretnim koracima, u skladu s nekim algoritmom
- stvarni svijet ~ okolina digitalnog sustava:
 - (fizikalne) veličine su mahom kontinuirane (vremenski i prostorno)
 - potrebno ih je pretvoriti u brojeve i obratno!

 pretvorba na sučelju digitalnog sustava i stvarnog svijeta koji ga okružuje:

- na *ulazu* digitalnog sustava
 - ~ (analogni) napon u broj: uzorkovanje (engl. sampling) + kvantizacija
 - → analogno-digitalna pretvorba (ADC)
- na *izlazu* digitalnog sustava
 - ~ broj u (analogni) napon
 - → digitalna-analogno pretvorba (DAC)

- sučelje digitalnog sustava s analognom okolinom:
 - pretvornici, konvertori, pretvarači
 ~ sklopovi na sučelju analognog i digitalnog, i obratno:
 - na ulazu digitalnog sustava
 ~ analogno-digitalni pretvornici
 (engl. analog-digital convertors, ADC)
 - na *izlazu* digitalnog sustava
 digitalno-analogni pretvornici
 (engl. digital-analog convertors, DAC)
 - "tehnologija" pretvorbe:
 - dinamički pretvornici
 ~ pretvorba se odvija u vremenu!
 - statički pretvornici

- ulaz digitalnog sustava
 - ~ pretvorba putem električke veličine analogne mjerenoj fizikalnoj veličini:
 - "analogna" veličina mahom napon ~ *analogni* napon *U*_a
 - raspon u_a ograničen!
 - uzorkovanje u_a u diskretnim trenucima vremena (Shannon!)
 - ~ *niz* pravokutnih naponskih impulsa
 - pretvorba impulsa u brojeve (ADC)
 - \sim "mjerenje" zadanim kvantom ΔU i izražavanje binarnim brojem

- Shannonov teorem uzorkovanja (C. E. Shannon, 1949): informacija će biti očuvana ako se uzorci uzimaju u diskretnim intervalima Δt , tako da je $\Delta t \leq 1/(2 \cdot f_g)$
 - temelji se na Fourierovom razvoju kontinuirane funkcije u red sinusoidalnih funkcija

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t))$$

 f_g: gornja granična frekvencija spektra valnog oblika ("signala") iz kojeg se uzimaju uzorci ~ svojstvo svakog elektroničkog sustava!

- sklop za uzorkovanje
 (engl. sample-and-hold, S/H circuit):
 - uzimanje uzoraka ("uzorkovanje")
 nabijanje C zatvaranjem prikladno izvedene sklopke
 - otvorena sklopka
 ~ pridržavanje uzorka U_a za vrijeme pretvorbe
 - sklopka

~ "analogna sklopka" (engl. analog switch):

propušta analogni napon

- povezivanje sklopa za uzorkovanje i ADC:
 - uzorkovanje u intervalima (između) pretvorbe
 - pridržavanje uzorka u_a za vrijeme pretvorbe
 - podešavanje opsega u_a

- *izlaz* digitalnog sustava
 ~ *obrnuti* postupak od ADC:
 - pretvorba binarnog broja u pravokutni naponski impuls (DAC)
 - filtriranje niza pravokutnih impulsa
 kontinuirani valni oblik

- karakteristika pretvorbe za ADC:
 - U_K: kvant, naponski interval, korak, kanal
 - broj koraka (kanala)
 ~rezolucija ADC

karakteristika pretvorbe za DAC
 isti oblik

- parametri pretvorbe:
 - rezolucija, razlučivanje
 - točnost
 - pogreška kvantizacije
 - vrijeme pretvorbe

- rezolucija, razlučivanje:
 - širina kanala kao
 max ulaznog napona (ADC), odnosno max izlaznog napona (DAC):

$$rezolucija = \frac{U_K}{U_M}$$

• izražavanje *brojem bitova* izlaznog (ADC), odnosno ulaznog (DAC) podataka, jer je $n_{\rm M} \sim U_{\rm M}$ (uz *k*-bitni prikaz):

$$rezolucija = \frac{U_K}{n_M \cdot U_K} = \frac{1}{n_M} = \frac{1}{2^k - 1}$$

tipične vrijednosti: k≈14 bitova

- točnost
 - ~ mjera za razliku *stvarnog* analognog izlaza i izlaza u *idealnom* slučaju

npr. realna karakteristika DAC

integralna nelinearnost
 granica pogreške:

$$\varepsilon_i = \frac{\Delta U}{U_M}$$

diferencijalna nelinearnost
 granica pogreške u kanalima

$$\varepsilon_{d} = \frac{\left(\frac{du_{a}}{dn}\right)_{\max} - \left(\frac{du_{a}}{dn}\right)_{\text{idealno}}}{\left(\frac{du_{a}}{dn}\right)_{\text{idealno}}} = \frac{\left(U_{K}\right)_{\max} - U_{K}}{U_{K}} = \frac{\Delta U_{K}}{U_{K}}$$

tipične vrijednosti za točnost: ≈10⁻²÷10⁻³

- pogreška kvantizacije:
 - rezultat diskretnog karaktera procesa konverzije
 - prava vrijednost
 ~ napon *u sredini kanala* → pogreška:

$$\varepsilon_K = \pm \frac{U_K}{2}$$

vrijeme pretvorbe:

~ od početka konverzije do pojave konačne vrijednosti na izlazu

tipične vrijednosti: ADC: ≈10 ns ÷10 s

DAC: ≈100 ns

Sadržaj predavanja

- konceptualizacija sučelja
- digitalno-analogna pretvorba
 - princip DA pretvorbe
 - otporna mreža s težinski raspoređenim otporima
 - ljestvičasta otporna mreža
 - DA pretvornik s brojilom
- analogno-digitalna pretvorba

- DA pretvorba:
 - jednostavniji sklopovi (jednostavniji od ADC)
 - (u nekim rješenjima) dijelovi AD pretvornika
 - cilj pretvorbe
 - ~ broj u binarnom prikazu konvertirati u analognu veličinu, obično napon: izlazni napon je višekratnik napona kvanta ∆U

$$N = a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + ... + a_12^1 + a_02^0$$
 $U_N = K \cdot U_{REF} \cdot N$
 $U_{REF} = K \cdot U_{REF} [V]$: faktor proporcionalnosti

princip DA pretvorbe:

$$U_N = U_{REF} \cdot (a_{n-1} 2^{n-1} + a_{n-2} 2^{n-2} + ... + a_1 2^1 + a_0 2^0)$$

- pojedine težine binarnog broja izraziti strujama
- koeficijente uz odgovarajuće težine izvesti "sklopkama"
- principijelno rješenje
 ~ otporna mreža:
 statički DA pretvornik

- otporna mreža s težinski raspoređenim otporima:
 - R_i se međusobno odnose kao težine brojnih mjesta ~ zbrojiti struje kroz R_i
 - analogna veličina je struja:

 otporna mreža s težinski raspoređenim otporima: obično se za izlaznu veličinu želi *napon* ~ struja na poznatom R

 $K = f(R_{izl}) \neq const.$

- izbjegavanje utjecaja R_{izl} u otpornoj mreži:
 - operacijsko pojačalo
 "nulti otpor" između ulaza:
 virtualna nula na ulazu pojačala
 - zbrajanje I_i na izlazu sklopa:

$$\begin{split} \boldsymbol{U}_{izl} &= -\boldsymbol{I}_{N} \cdot \boldsymbol{R}_{f} \\ &= -\frac{\boldsymbol{U}_{REF} \cdot \boldsymbol{R}_{f}}{2^{n-1} \cdot \boldsymbol{R}} \cdot \sum_{i=0}^{n-1} \boldsymbol{a}_{i} \cdot 2^{i} \\ \end{split}$$

- tehnološki problem izvedbe većih mreža:
 - preveliki odnos R_{n-1} (uz MSB) i R₀ (uz LSB)
 ~ uz zadanu pogrešku zbog tolerancija otpora R_{n-1} treba biti *vrlo precizan* (također i svi R_i, za i

• koristiti drugo rješenje, već od n = 4

- ljestvičasta otporna mreža (engl. ladder network):
 - koristi samo dvije vrijednosti za R (R i 2·R)
 - za isti n potrebno dva puta više R_i

• određivanje izlaznog napona ljestvičaste otporne mreže $U_{izl} = f(N)$:

- zaključenje 2·R "lijevo" od promatranog čvora a_i
- koristiti Théveninov teorem

$$U_{n-1} = \frac{U_{REF}}{2}$$

$$U_{n-2} = \frac{U_{REF}}{4}$$

$$U_{izl} = \sum_{i=0}^{n-1} a_i \cdot U_i = \frac{U_{REF}}{2^n} \cdot \sum_{i=0}^{n-1} a_i \cdot 2^i = \frac{U_{REF}}{2^n} \cdot N$$

- izvedba ljestvičaste otporne mreže s operacijskim pojačalom:
 - zaključenje 2.R s obje strane čvora a_i
 - određivanja doprinosa pojedinih bitova metodom superpozicije

$$U_{n-1} = \frac{1}{3} \cdot \frac{U_{REF}}{2^{n-1}} \sum_{i=0}^{n-1} a_i \cdot 2^i = \frac{1}{3} \cdot \frac{U_{REF}}{2^{n-1}} \cdot N$$

$$U_{izl} = -U_{n-1} \cdot \frac{R_f}{2R} = -U_{n-1} \cdot \frac{3R}{2R} = -\frac{1}{3} \cdot \frac{3R}{2R} \cdot \frac{U_{REF}}{2^{n-1}} \cdot N = -\frac{U_{REF}}{2^n} \cdot N$$

- svojstva izvedbi ljestvičastih otpornih mreža:
 - samo dvije vrijednosti otpora
 moguće zadovoljiti tolerancije,
 pogotovo stoga što se traži omjer vrijednosti
 - pogodno za integriranu izvedbu i za veći broj bitova ~ svi otpori i naponski izvori jednako opterećeni
 - sporije u pogledu vremenskog odziva ~ niz četveropola s C_{par}

- uklanjanje problema kašnjenja ljestvičaste otporne mreže:
 - virtualna nula:

 nema nabijanja C_{par}
 kod prebacivanja sklopki
 - nema promjena u opterećenju U_{REF} i R_i

$$U_{izl} = -\frac{U_{REF}}{2^{n-1}} \sum_{i=0}^{n-1} a_i \cdot 2^i$$

- sklopke za DA pretvornike:
 - konceptualni spoj:

osigurati R_{ekv} << R_i

- svojstva integriranih otpornih mreža
 otporne mreže integrirane u DA pretvornike:
 - ljestvičaste
 - za veći broj bitova (8÷14)
 - tipično $R = 10 \text{ k}\Omega / 20 \text{ k}\Omega$
 - tolerancije $R: \Delta R = \pm 5\%$
 - garantirana pogreška $U_{izl} \le 1/4$ doprinosa LSB u granicama -55° C $\le T \le 125$ ° C

- DA pretvornik s brojilom
 ~ ugrađeno brojilo s prethodnim postavljanjem:
 - u brojilo upisati dvojni komplement od N
 - $B = 1 \Rightarrow pretvorba$: brojilo broji, generira se pilasti napon U_{izl}
 - $B = 0 \Rightarrow U_{izl} \sim N(n-bitni prikaz)$

DA pretvornik s brojilom:

- dinamički DA pretvornik:
 - pretvorba traje izvjesno vrijeme
 - pretvorba *indirektna* ~ preko vremena
 (brojilo broji ⇒ B = 1 ⇒ porast U_{izl})!
- problemi pri pretvorbi
 osigurati f_{CP} = const. + linearnost pile

Sadržaj predavanja

- uključivanje digitalnog sustava u okolinu
- digitalno-analogna pretvorba
- analogno-digitalna pretvorba
 - Wilkinsonov pretvornik
 - AD pretvornik s postepenim približavanjem
 - AD pretvornik sa sukcesivnom aproksimacijom
 - slijedni AD pretvornik
 - paralelni AD pretvornik
 - sklop za uzorkovanje

Analogna-digitalno pretvorba

- AD pretvorba:
 - složeniji postupak!
 - tipično uključuje brojilo
 ~ dinamički postupci:
 - pretvorba *usporedbom* $U_{ul} = U_a$ i (interno) generiranog $U_d \sim N$
 - završavanje pretvorbe za $U_d = U_a$
 - karakteristična petlja povratne veze
 ~ naponski komparator
 - najzahtjevnije izvedbe (stoga i najskuplje!)
 nema brojila!

Analogna-digitalno pretvorba

- Wilkinsonov pretvornik
 ~ dinamički pretvornik:
 ugrađeno brojilo
 - dok brojilo broji generira se pilasti napon
 - komparator u *petlji povratne veze* \sim usporedba pilastog napona s $U_{ul} = U_a$

- problemi Wilkinsonovog pretvornika
 pretvorba indirektna obavlja se preko vremena!
 - generirana pila obično *nelinearna* ~ pogreške pri pretvorbi (*U*_d ≠ *U*_a)
 - potrebno osigurati $f_{CP} = const.$
 - ostvariti sinkronizaciju impulsa START i CP

 AD pretvornik s postepenim približavanjem (s DA pretvornikom), brojeći AD pretvornik (engl. counting ADC) ~ modifikacija Wilkinsonovog pretvornika koja rješava njegove probleme

- AD pretvornik s postepenim približavanjem:
 - pretvorba je direktna, bez posrednika (generatora pile)
 ~ DA pretvornik umjesto generatora pile
 - eliminirana potreba za točnom i stabilnom f_{CP}
 - moguće dozvoliti f_{CP} ≠ const.
 ~ neperiodički impulsi pobude brojila
 - točnost pretvorbe
 ~ točnost DAC:
 ovisi o pasivnim komponentama (R_i),
 može se dobro namjestiti

- brzi AD pretvornik,
 AD pretvornik sa sukcesivnom aproksimacijom (engl. successive approximation ADC):
 - jako popularni AD pretvornik
 ~ široko korišten samostalno ili
 u kombinacijama s paralelnim AD pretvornikom
 - pretvorba direktna
 DA pretvornik u petlji povratne veze
 - cilj:
 - ubrzanje pretvorbe, $T_{\text{max}} << N_{\text{max}} \cdot T_{\text{CP}}$ ~ smanjenje broja koraka
 - konstantno vrijeme pretvorbe, T≠ f(U_a)
 ~ konstantan broj koraka

- princip rada brzog AD pretvornika:
 - usporedba u_a i u_d : ~ postepeno formiranje u_d počev od MSB (a_{n-1}) : if $u_a > u_{d,i}$ then $u_k = 0$ else $u_k = 1$ {brisanje doprinosa a_i }

 obilazak binarnog stabla po dubini (engl. preorder tree traversal)

- princip rada brzog AD pretvornika:
 - broj koraka za proizvoljni *u*_a
 broj bitova zapisa *n*
 - izvedba sklopom za slijedno ispitivanje bitova:
 - prstenasto brojilo (početno 1 kod a_{n-1})
 - binarno brojilo s dekoderom
 - mreža logičkih sklopova

izvedba brzog AD pretvornika prstenastim brojilom

- slijedni AD pretvornik
 (engl. tracking converter, servo converter),
 kontinuirano brojeći AD pretvornik
 (engl. continuous-digital-ramp converter):
 - (dodatno) ubrzanja pretvorbe
 ~ modifikacija osnovnog AD pretvornika s brojilom (s postepenim približavanjem)
 - zamjena binarnog brojila (broji $0 \rightarrow N \sim U_{a,i+1}$) brojilom naprijed-natrag

- slijedni AD pretvornik
 - ~ ubrzanje pretvorbe korištenjem brojila naprijed-natrag:

 - naročito pogodno kad se u_a mijenja "relativno sporo"
 - u prosjeku $T_{\text{naprijed-natrag}} \approx 1/2 \cdot T_{\text{binarno}}$
 - $\Rightarrow f_{\text{naprijed-natrag}} \approx 2 \cdot f_{\text{binarno, max}}$

• slijedni AD pretvornik ~ smjer brojanja: $\mathbf{7}/\mathbf{Y} = f(\Delta U_a) = f(U_{a,i+1} - U_{a,i})$

- paralelni AD pretvornik, komparatorski AD pretvornik (engl. parallel-comparator ADC):
 - naročito rješenje za postizanje najbrže moguće ADC, također i najskuplje
 - usporediti u_a s nizom referentnih napona,
 ∀ naponsku razinu u intervalu 0÷U_M,
 s razmakom ∆U

- paralelni AD pretvornik, komparatorski AD pretvornik
 usporedba u_a s nizom referentnih napona:
 - najprikladnija izvedba "niza referentnih napona":
 ~ otporni djelitelj
 - *niz* naponskih komparatora $\sim l = (2^n-1)$ za n-bitnu pretvorbu
 - ∀ dodatni bit *dva puta više* komparatora
 ~ cijena! ⊗

- paralelni AD pretvornik:
 - usporedba u_a s nizom referentnih napona ~ paralelni rad: ne treba brojati!
 - izvorni kod na izlazu komparatora
 - ~ "termometarski niz": N u binarnom obliku tek nakon pretvorbe koda (ld $n = \log_2 n$: broj bitova ADC)

B _{n-}	B _{n-2}	 B_3	B_2	B_1	B_0	$m_{ld(l+1)}$	 m_2	m_1	m_0
0	0	 0	0	0	0	0	 0	0	0
0	0	 0	0	0	1	0	 0	0	1
0	0	 0	0	1	1	0	 0	1	0
0	0	 0	1	1	1	0	 0	1	1
0	0	 1	1	1	1	0	 1	0	0
1	1	 1	1	1	1	1	 1	1	1

- paralelni AD pretvornik:
 - registar
 pohranjivanje
 rezultata pretvorbe;
 nije nužan
 - bistabili i pretvornik koda ~ najbržom tehnologijom, npr. ECL

• paralelni AD pretvornik ~ ujednačavanje ε_K posebnom raspodjelom referentnih napona: $\varepsilon_K = U_{REF}/(2n-2)$

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 13: Sučelje s analognom okolinom.
- uključivanje digitalnog sustava u okolinu: str. 491-494
- digitalno-analogna pretvorba: str. 494-499
- analogno-digitalna pretvorba: str. 499-509

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 13: Sučelje s analognom okolinom.
- digitalno-analogna pretvorba: 13.1-13.8, 13.15-13.19
- analogno-digitalna pretvorba: 13.9-13.14

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 13: AD i DA konverzija.
- digitalno-analogna pretvorba:
 - riješeni zadaci: 13.1-13.4, 13.8
 - zadaci za vježbu: 1
- analogno-digitalna pretvorba:
 - riješeni zadaci: 13.5-13.7
 - zadaci za vježbu: 2