Automated Musical Tempo Estimation with Neural-Network-Based Onset Detection

Nathan Stephenson

What? Why?

- Beats per minute (BPM) of music
 - The tempo of a song
 - Synchronizing anything to music
 - Statistics, analyzing tempo and correlating it to genre, artist, etc.
- Can't you do it yourself? Google it?
 - Yes, but imagine doing trial and error for 1,000 songs
 - The closer we get to 100% accuracy, the more times we don't have to manually adjust
 BPM
- Focus on music with same BPM throughout

https://www.flickr.com/photos/48423254@N00/12294167 CC BY 2.0 Paco from Badajoz, España

Move Your Feet by Junior Senior is in the key of A Mino 118 BPM. This track was released in 2002.

www.notediscover.com > song > junior-senior-move-your...

Key & BPM/Tempo of Move Your Feet by Jur

getsongbpm.com > ... > D-D-Don't Don't Stop the Beat

BPM for Move Your Feet (Junior Senior) - Ge

Move Your Feet is played at 117 Beats Per Minute (Moderato),

songbpm.com > move-your-feet *

BPM for "Move Your Feet" by Junior Senior |
"Move Your Feet" by Junior Senior has a tempo of 119 BPM.

The technology

- Bram van de Wetering
 - ArrowVortex
 - Paper called Non-Causal Beat Tracking for Rhythm Games

Method Song		BPMs in order of highest to lowest confidence	Actual BPM		
van de Wetering (ArrowVortex)	Bruno Mars - Perm (pop music with integer BPM)	124	124		
Böck et. al (madmom)	Bruno Mars - Perm	61.86 (123.72), 125, 0.52	124		
van de Wetering (ArrowVortex)	Junior Senior - Move Your Feet (pop music with unusual BPM)	118.868, 178.33	118.868*		
Böck et. al (madmom)	Junior Senior - Move Your Feet	59.41 (118.82), 117.65	118.868*		
van de Wetering (ArrowVortex)	A-One - STAR LINER (upbeat eurobeat with lots of percussion)	162, 108, 129.60	162		
Böck et. al (madmom)	A-One - STAR LINER	162.16, 40.54, 0.62	162		
van de Wetering (ArrowVortex)	Doobie Brothers - Toulouse Street (soft folk rock)	179.80, 179.32, 180.16	90 (180)**		
Böck et. al (madmom)	Doobie Brothers - Toulouse Street (soft folk rock)	89.55 (179.1), 44.78, 0.53	90 (180)**		

Average percent error (from closest BPM detected)

van de Wetering (ArrowVortex): 0.018%

Böck et. al (madmom): 0.743%

Steps

Given an audio file (30 seconds or more, preferably)

- 1. Detect onsets
- 2. Fill coarse intervals
- 3. Refine intervals and choose the best
- 4. Calculate BPM

Onset detection

- Detect onsets
 - The start of a sound or musical note
 - Uses frequency and phase information
 - Allows us to view audio as frequency over time
- Spectral Flux determined to be the best method

Method	HFC	CD	PB	SD	KL	MKL	SF
Accurate	100/100	100/100	83/100	98/100	100/100	97/100	100/100
SSE	0.008	0.007	0.214	0.012	0.005	0.045	0.003

Table 1: Results of the onset detection functions evaluation, showing accuracy and sum of squared errors (SSE).

https://commons.wikimedia.org/wiki/File:STFT_colored_spectrogram_375ms.png_CC_BY-SA_3.0_Alessio_Damato

Coarse intervals

- Choose a range of tempo values
 - o 89-205 BPM
- Interval in samples = sample rate (44100 Hz) * 60 seconds / n beats per minute
 - Number of samples per beat
 - 60 BPM -> 1 beat per second -> 44100 Hz
- Loop over the interval in increments of 10, making it a "coarse" runthrough.

Refine intervals

Go back and find our best matches and loop over them with a delta of 1

Calculate BPM

- Interval to BPM
 - sample rate (Hz) * 60 seconds / (interval * 1 minute)

...and then we get the BPM! (hopefully!)

from Non-causal Beat Tracking for Rhythm Games

My work

- Author sent part of the ArrowVortex code
- Heavily modified it to be standalone
 - Fixed it up, but it gave me completely different values
- Reverse engineering with Ghidra and x64dbg
 - "Decompiles" the machine language into (barely) readable code!
 - x64dbg, real-time debugger which lets me find onsets in memory (RAM)
- Complex Domain used, not Spectral Flux
- The onsets my code generates were still notably different

```
(gdb) x/32xh &onsets->begin()
0x7fffffffedaa0: 0xba70
                                  0x0000
                                           0x0000
                                                            0x0844
                                                                    0x0000
                                                   0xb560
                                                                             0x0000
0x7ffffffedab0: 0xaea0
                         0x0846
                                  0x0000
                                           0x0000
                                                   0xee1c
                                                                             0xcc00
0x7fffffffedac0: 0xc160
                         0x0844
                                  0xea58
                                           0x4186
                                                   0xb3e0
                                                            0x0844
                                                                     0x0000
                                                                             0x0000
0x7fffffffedad0: 0xa5a0
                                                                    0x0000
                         0x0844
                                  0x0000
                                           0x0000
                                                   0x9a80
                                                            0x0846
                                                                             0x0000
```

```
aubio onset t* o = new aubio onset("complex", window, hop size, samplerate);
    for (int i = 0; i < hop size; i++) {
        // if (total + i >= numFrames) PrintOut("exceeding numFrames")
        in->data[i] = (total+i < numFrames) ? samples[total+i] : 0;
    aubio onset do(o, in, out);
   if (out->data[0] > 0 && aubio onset get last(o) >= 0) {
        printf("%d\n", aubio_onset_get_last(o));
        onsets->append(Onset(aubio onset get last(o)));
    total += hop size;
} while (total < numFrames);</pre>
 in = *(uint **) (unaff EBP + -0x18);
aubio onset do ((int *)onset finder, in, (int) out
 out = *(int **) (unaff EBP + 0x14);
if ((0.000000000 < *(float *) out[1]) &&
   (-1 < (int) (uint *) ((int) onset_finder[0xb] - (int) onset_finder[7]))) {
  *(uint **) (unaff EBP + -0x28) = (uint *)((int)onset finder[0xb] - (int)onset finder[7]);
  probably append(*(void **)(unaff EBP + 0x18),(undefined4 *)(unaff EBP + -0x28));
  out = *(int **) (unaff EBP + 0x14);
 puVar3 = (undefined4 *) (*(int *) (unaff EBP + -0x10) + 0x400);
piVarl = (int *) (unaff EBP + -0x14);
*piVarl = *piVarl + -1;
*(undefined4 **)(unaff EBP + -0x10) = puVar3;
```

Fixing my work

- I received more code to reference
 - Two lines of incorrect code broke everything!
 - Accidentally used a single byte instead of an integer
 - Maximum interval was 255 but I needed it to be ~17,000
- Much better!

Song	van de Wetering (<u>ArrowVortex</u>)	My current code	Böck et. al (madmom)	Actual BPM
Bruno Mars - Perm	124	124	61.86 (123.72)	124
Junior Senior - Move Your Feet	118.868	118.873	59.41 (118.82)	118.88*
A-One - STAR LINER	162	162	162.16	162
Doobie Brothers - Toulouse Street	179.80	178.11, 181.61	89.55 (179.1)	90 (180)**

^{*} This tempo is accurate enough that from beginning to end the beats do not noticeably deviate from the audio (roughly ± 10 ms).

^{**} This tempo is variable and an average integer tempo is suggested.

^{***} BPM values with parentheses are the originals multiplied by 2 to match other values, as multiplying or dividing BPM values by powers of 2 do not change the synchronization of the beats.

Comparing onset methods

- Improving the algorithm and surpassing the state-of-the-art!
- Spotify has 30-second previews of songs
- Use songs with a constant BPM
 - Top Spotify tracks from Billboard's Top Artists of the 2010s list + a few other artists
 - Fixed BPM uncommon until the mid-'70s or '80s
 - Mostly pop and rap music being tested
 - Most songs should have a fixed tempo
- Neural-network-based algorithms found in madmom Python library
 - BLSTM, CNN, LL (Real-Time Online RNN)
 - Sebastian Böck
- Other algorithms come from the aubio Python library
 - **Complex Domain**, Energy-Based Distance, High-Frequency Content, Modified Kullback-Leibler, Kullback-Leibler, Phase-Based, Spectral Difference, **Spectral Flux**
- Testing Spotify's own tempo detection algorithm as well

Junior Senior - Move Your Feet	118.879	118.879	118.879	118.879	118.879	118.879	118.879	118.879	118.879	118.879	118.879	118.879 *
A-One - STAR LINER	162	162	162	162	162	162	162	162	189.596	162	162	162
Doobie Brothers - Toulouse Street	179.402	179.378	179.817	179.841	179.378	179.817	179.366	179.817	179.390	179.817	179.329	90 (180)**
	* This tempo is accurate enough that from beginning to end the beats do not noticeably deviate from the audio (roughly ±10ms).							audio				

LL (RNN)

124

MKL

124

KL

124

ΡВ

124

SpecDiff

124

SpecFlux

124

Actual

124

HFC

124

Energy

124

BLSTM

124

Song

Perm

Bruno Mars -

CNN

124

** This tempo is variable and an average integer tempo is suggested.

Complex

124

Method (italicized = machine learning, bolded = used in van de Wetering/ArrowVortex)	Mean squared error (using mode as "ground truth")	Significant error count (>= 0.05 BPM)	Insignificant error count	Half-BPM detections
Bidirectional LSTM	13.831	69/772 (8.94%)	198	2
Complex Domain	17.367	47/772 (6.09%)	123	1
CNN	8.435	56/772 (7.25%)	196	3
Energy-Based Distance	54.111	129/772 (16.7%)	147	10
High-Frequency Content	44.098	67/772 (8.68%)	120	2
LL (Online RNN)	14.171	40/772 (5.18%)	151	0
Modified Kullback-Leibler	16.197	54/772 (6.99%)	115	2
Kullback-Leibler	27.504	75/772 (9.72%)	141	2
Phase-Based	262.092	287/772 (37.18%)	158	33
Spectral Difference	36.695	61/772 (7.90%)	134	6
Spectral Flux	33.334	47/772 (6.09%)	123	1
Spotify	116.614	388/771 (50.32%)	375	264

So, which is the best?

- Not Spotify!
 - o The BPM values you can easily Google search are likely based on Spotify's data
- Precision
 - o CNN, BLSTM, LL
- Reliability
 - LL, Complex Domain, Spectral Flux
- Performance
 - Machine learning methods are slower
 - Complex Domain and Spectral Flux seem to stand out still as the best non-ML-based algorithms

What next?

- Tempo estimation is not perfect
- Testing a variety of genres
 - Collecting accuracy by genre
- Focus on music with less defined onsets
 - Classical music, softer jazz, ambient
 - Music without drums in general

Thanks for listening!