

- Goals listed in order based on priority
 - Achieve a 60%/40% ratio of white to black students at each of the schools
 - Minimize the amount of traveling that students will have to do, ideally no more than 30,000 miles per day
 - Keep all schools close to capacity and minimize overcrowding proportionally allocating the excess among the schools
- Q: How can we formulate and solve a goal programming model to help the board with its dilemma?
- Decision variables
 - x_{ij} = Number of white students from district i assigned to district j
 - y_{ij} = Number of black students from district i assigned to district j
 - $i, j \in \{N, S, E, W\}$

- Goal 1: Achieve racial balance in all 4 schools
 - Consider perfect balance for North High School

$$\frac{Percent\ White}{Percent\ Black} = \frac{0.6}{0.4}$$

$$\frac{\frac{Total\ White}{Total\ Students}}{\frac{Total\ Black}{Total\ Students}} = \frac{0.6}{0.4}$$

$$\frac{Total\ White}{Total\ Black} = \frac{0.6}{0.4}$$

$$0.4(Total\ White) - 0.6(Total\ Black) = 0$$

$$0.4(x_{NN} + x_{SN} + x_{EN} + x_{WN}) - 0.6(y_{NN} + y_{SN} + y_{EN} + y_{WN}) = 0$$

- Goal 1: Achieve racial balance in all 4 schools
 - Adding deviational variables for North High School

$$0.4(x_{NN} + x_{SN} + x_{EN} + x_{WN}) - 0.6(y_{NN} + y_{SN} + y_{EN} + y_{WN}) + d_1^- - d_1^+ = 0$$

Consider constraints for all schools in the county

$$0.4(x_{NN} + x_{SN} + x_{EN} + x_{WN}) - 0.6(y_{NN} + y_{SN} + y_{EN} + y_{WN}) + d_1^- - d_1^+ = 0$$

$$0.4(x_{NS} + x_{SS} + x_{ES} + x_{WS}) - 0.6(y_{NS} + y_{SS} + y_{ES} + y_{WS}) + d_2^- - d_2^+ = 0$$

$$0.4(x_{NE} + x_{SE} + x_{EE} + x_{WE}) - 0.6(y_{NE} + y_{SE} + y_{EE} + y_{WE}) + d_3^- - d_3^+ = 0$$

$$0.4(x_{NW} + x_{SW} + x_{EW} + x_{WW}) - 0.6(y_{NW} + y_{SW} + y_{EW} + y_{WW}) + d_4^- - d_4^+ = 0$$

- To accomplish our goal we want all of these deviational variables to be as small as possible
- First priority objective

Minimize
$$P_1(d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+)$$

- Goal 2: Minimize total travel to not much more than 30,000 miles
 - Recall the following table

	Distance (mi.)					
District/School	North	South	East	West		
North	_	30	12	20		
South	30	_	18	26		
East	12	18	_	24		
West	20	26	24	-		

Formulation for constraint based on total miles

$$30(x_{NS} + y_{NS} + x_{SN} + x_{SN}) + 12(x_{NE} + y_{NE} + x_{EN} + y_{EN}) +20(x_{NW} + y_{NW} + x_{WN} + y_{WN}) + 18(x_{SE} + y_{SE} + x_{ES} + y_{ES}) +26(x_{SW} + y_{SW} + x_{WS} + y_{WS}) + 24(x_{EW} + y_{EW} + x_{WE} + y_{WE}) + d_5^- - d_5^+ = 0$$

Updated objective function for second priority

Minimize
$$P_1(d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+), P_2(d_5^+)$$

- Goal 3: Minimize overcrowding at each of the 4 schools, proportionally allocating the excess among the schools
 - Recall the following table

	# White students	# Black students	Capacity
North	1000	300	1200
South	450	800	1000
East	1050	400	1000
North South East West	500	500	1200

- Recall that there are 5,000 total students for capacity of 4,400
- The excess of 600 students needs to be split between the schools
- Q: How can we handle this proportionally?

- Goal 3: Minimize overcrowding at each of the 4 schools, proportionally allocating the excess among the schools
 - We want to manage the excess according to the capacities of the schools
 - Schools that are bigger should take larger portions of the overflow
 - We prefer if North and West take 1200/4400 = 3/11 of the excess
 - We prefer if South and East take 1000/4400 = 5/22 of the excess
 - Capacities are expanded to handle the overflow (rounded up)

School	North			
Ideal # students	1364	1136	1136	1364

$$1200 + \frac{3}{11}(600) = 1363.636363 \approx 1364$$

- Goal 3: Minimize overcrowding at each of the 4 schools, proportionally allocating the excess among the schools
 - Constraints with deviational variables

$$x_{NN} + y_{NN} + x_{SN} + y_{SN} + x_{EN} + y_{EN} + x_{WN} + y_{WN} + d_6^- - d_6^+ = 1364$$

$$x_{NS} + y_{NS} + x_{SS} + y_{SS} + x_{ES} + y_{ES} + x_{WS} + y_{WS} + d_7^- - d_7^+ = 1136$$

$$x_{NE} + y_{NE} + x_{SE} + y_{SE} + x_{EE} + y_{EE} + x_{WE} + y_{WE} + d_8^- - d_8^+ = 1136$$

$$x_{NW} + y_{NW} + x_{SW} + y_{SW} + x_{EW} + y_{EW} + x_{WW} + y_{WW} + d_9^- - d_9^+ = 1364$$

Updated objective function for third priority

Minimize
$$P_1(d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+)$$
, $P_2(d_5^+)$, $P_3(d_6^- + d_6^+ + d_7^- + d_7^+ + d_8^- + d_8^+ + d_9^- + d_9^+)$

- Additional constraints
 - We cannot bus more students than what is currently available at each school

District/School	# White student	ts # Black stud	dents Capacity
North	1000	300	1200
South	450	800	1000
East	1050	400	1000
West	500	500	1200

List of constraints

$$x_{NN} + x_{NS} + x_{NE} + x_{NW} = 1000$$

$$y_{NN} + y_{NS} + y_{NE} + y_{NW} = 300$$

$$x_{SN} + x_{SS} + x_{SE} + x_{SW} = 450$$

$$y_{SN} + y_{SS} + y_{SE} + y_{SW} = 800$$

$$x_{EN} + x_{ES} + x_{EE} + x_{EW} = 1050$$

$$y_{EN} + y_{ES} + y_{EE} + y_{EW} = 400$$

$$x_{WN} + x_{WS} + x_{WE} + x_{WW} = 500$$

$$y_{WN} + y_{WS} + y_{WE} + y_{WW} = 500$$

$$x_{ij} \in \{0,1,\cdots\}$$
$$y_{ij} \in \{0,1,\cdots\}$$

- Download Oakdale-1.xlsx from link Sheet 1 on course website
- Tab called Priority 1
 - Matrices of decision variables

White student	North	South	East	West	Total
North	0	0	0	0	0
South	0	0	0	0	0
East	0	0	0	0	0
West	0	0	0	0	0
Total	0	0	0	0	
Black students	North	South	East	West	Total
North	0	0	0	0	0
South	0	0	0	0	0
East	0	0	0	0	0
West	0	0	0	0	0
Total	0	0	0	0	

Deficit	Surplus
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

- Tab called Priority 1
 - Notice all the different constraints and inspect formulas

Constraints:						
	Deficit	Surplus	Computed	Constraint	Value	
0	0	0	0	=	0	Racial balance at North
0	0	0	0	=	0	Racial balance at South
0	0	0	0	=	0	Racial balance at East
0	0	0	0	=	0	Racial balance at West
0	0	0	0	=	30000	Total distance travelled
0	0	0	0	=	1364	Overcrowding at North
0	0	0	0	=	1136	Overcrowding at South
0	0	0	0	=	1136	Overcrowding at East
0	0	0	0	=	1364	Overcrowding at Wast
			0	=	1000	"Supply" of white students
			0	=	300	"Supply" of black students
			0	=	450	"Supply" of white students
			0	=	800	"Supply" of black students
			0	=	1050	"Supply" of white students
			0	=	400	"Supply" of black students
			0	=	500	"Supply" of white students
			0	=	500	"Supply" of black students

- Tab called Priority 1
 - First objective function

Minimize
$$d_1^- + d_1^+ + d_2^- + d_2^+ + d_3^- + d_3^+ + d_4^- + d_4^+$$

Observe formula for objective function

39	Objective function:						
40	d1^- + d1^+ + d2^- + d2^+ + d3^- + d3^+ + d4^- + d4^+						
41	0 =SUM(B20:C23)						

- Q: What is "B2o:C23" referring to and what is "SUM" doing?
- Use Excel solver to find the optimal solution

- Tab called Priority 1
 - Optimal solution

White students	North	South	East	West
North	461	538	0	0
South	0	140	65	245
East	0	0	1050	0
West	0	0	0	499

Black students	North	South	East	West
North	300	0	0	0
South	1	452	344	3
East	0	0	400	0
West	7	0	0	493

Deviational	1	2	3	4	5	6	7	8	9
Deficit –	0	0	0	0	0	594	6	0	124
Surplus +	0	0	0	0	152	0	0	724	0

- Tab called Priority 2
 - Notice the additional constraint and inspect formula

Second objective function

Minimize d_5^+

Observe formula for objective function

40	Objective function:					
41	d5^+					
42	0	=SUM(C24)				

Use Excel solver to find optimal solution

- Tab called Priority 2
 - Optimal solution

White students	North	South	East	West
North	306	442	1	251
South	0	223	227	0
East	0	6	1044	0
West	0	1	0	499

Black students	North	South	East	West
North	204	0	96	0
South	0	448	352	0
East	0	0	400	0
West	0	0	0	500

Deviational	1	2	3	4	5	6	7	8	9
Deficit –	0	0	0	0	0	854	16	0	114
Surplus +	0	0	0	0	0	0	0	984	0

Notice the additional constraint

0 =	0	First goal optimal
0 =	0	Second goal optimal

Second objective function

Minimize
$$d_6^- + d_6^+ + d_7^- + d_7^+ + d_8^- + d_8^+ + d_9^- + d_9^+$$

Formula for this objective similar to first objective

41	Objective function:							
42	d6^- + d6^+ + d7^- + d7^+ + d8^- + d8^+ + d9^- + d9^+							
43	0							

Use Excel solver to find optimal solution

- Tab called Priority 3
 - Optimal solution

White students		Nor	th	Sc	outh	Е	ast	N	/est
North	6	543.	77	37.82		0		318.4	
South	1	.74.62 275.37		0		0			
East		0		368.4		681.6		0	
West		0			0	0		500	
Black students		Noi	rth	South		East		West	
North		254.4		(0	0		45.6	
South		0		45	4.4	345.6		0	
East		291.2		(0	108.8		0	
West		0		(0	0		500	
Deviational 1		2	3	4	5	6	7	8	9
Deficit — 0		0	0	0	0	0	0	0	0
Surplus + 0		0	0	0	0	0	0	0	0

• Q: What is the problem with the optimal solution?

- Tab called Priority 3
 - Q: What do you mean you cannot bus half a person?

• Try to add integer constraints and see what happens

The End

