n	2	te	
$\boldsymbol{\smile}$	\boldsymbol{a}	ıc	÷

	MATH 191 LECTURE 4 NOTES
	last timp: 0,=3
	$q_{n+1} = q_n (q_1 + 2)$
	We gressed $q_{\alpha} \geq 2^{\binom{2^n}{2^n}} - 1$, $n \geq 1$
	Base lave: 121, 01, = 2 ⁽²⁾ -1=2 ² -1=3 ×
	Suppose n=k, ak=2(2k)-1
	Two for nzkfl
	UHS= AK== AK(AK+2)= (2(2K)-1)(2(2)-1+2)
	$= (2^{(1)}-1)(2^{(2)}+1)=2^{2+1}-1=2+15$
	(M = 2 1-1) \ \ n > 1.
	Benevili's inequality: (Itx)"> 14 nx. x2-1, 4nEN
	A L. I.
	Brise lase: n=1. LHS=(Ifx) = Ifx > If1.x=RHS V. Suppose n=k, 13 fine. [Ifk) k > Ifkx
	Suppose Uzki, fittes (Ith). > ITKY
	Par $\Lambda=kfl$, $ f(x) = f(x) = f(x) = f(x) = f(x) = 0$ $ f(x) = f(x) = f(x) = f(x) = 0$
	Uts = ([tx) = ([tx) (1+x) be case (11x) = 0
	> (1+kx)(1+x)
- N	= I+KX+X+Kx = I+(k+1)x+Kx = Lx2>0
	2 If KAI) X = RHS
	Hune (14x) A> [+ AX & NEW.]
inuple -	Induction (2) nell ordering principle
	TO ALC ALCANA
	Industry principle: Cef T & IN Safisky
	2) If n ET then n+1 ET
	1mm EN
	nell ordery prinaple: Every nonempty substrat IN has a smallest element.
	Acrit Aras.

WII-ordering =) Induction.
Assume on the contrary that for induction, $T \neq N$.
Let S = IN T two S is nonempty by our ecsumption.

by well ordering principle, Shas a minimum ellnest, say m. (167)

NOTE M-1 &T (for if M-1 ET, then m &T contradiction)

Hence m-1 &S => confradiction! Since m is the smallest element in S.

-: T=N. (nollanderny => prolution)

