

Atec 系列感应加热电源

串行口通讯协议

(V330)

前言

1. 通讯协议

上海巴玛克电气技术有限公司的 Atec 系列感应加热电源支持远程 RS232 通讯控制、RS485 通讯控制。其中,RS232 通讯方式仅支持巴玛克专用协议(详见第一章 巴玛克专用协议),RS485 通讯支持巴玛克专用协议和 modbus 标准协议,RTU 模式(详见第二章 modbus 标准协议)。

2. 485 模块协议选择

图 0-1485 模块协议选择插针位

如图 0-1 所示,红色所圈中插针位为协议选择插针位。默认情况下该插针位处于断开状态,此时协议为巴玛克专用协议。将该插针位短路后,协议为 modbus 标准协议。支持在线更改,即无论模块上电与否,断开或短路该插针位都将导致协议更改。

3. 485 模块地址设定

图 0-2 485 模块地址设置插针位

从机地址="插针值"+默认值;

插针值:如图 0-2 所示,红色所圈中的 5 排插针位为地址设置插针位,对应一个 5 位二进制整数,最右侧为 LSB,最左侧为 MSB,所有插针均断开为 0 (00000B),所有插针均短路为 31 (111111B)。

默认值: MODBUS 协议下,默认值为 1,0 地址被用来广播。BAMAC 协议下,为了与以前没有 MODBUS 协议的模块相兼容,默认值依然为 0, BAMAC 协议下无广播功能;

图 0-3 485 模块 modbus 协议, 2 号从机图 0-3 演示了 485 模块被设置为: 协议为 modbus 协议, 从机地址为 2 。

4. 波特率设定

图 0-4 485 模块波特率设置电阻位置

485 波特率可以设置为 9600、19200、38400 和 57600,出厂时默认为 9600。如图 0-4 所圈的两个空电阻位置组成了一个有 2 个位的 2 进制数(假设为 set)。焊上 0 欧姆电阻(短路)时,该位被置 1。set 共有 3 种可能,其中:

set=0: bit0 未短路, bit1 未短路 波特率为 9600 (默认出厂为此状态)

set=1: bit0 短路 , bit1 未短路 波特率为 19200

set=2: bit0 未短路, bit1 短路 波特率为 38400

5.引脚定义

母连接器(前视)

引脚	RS485	RS232
2	В	RXD
3	А	TXD
5	GND	GND

图 0-4 通讯接口定义

注: 如果采用航空插座连接 (WS16-3) 的,则第 1 脚为 RXD/B, 第 2 脚为 TXD/A, 第 3 脚为 GND。

6. 串行口远控通讯功能

- ◆ 取得电源当前状态。
- ◆ 取得电源的工作电量数据, 电源状态。
- ◆ 启动/取消串行口远控功能,返回电源状态。
- ◆ 设置运行控制量(包括启动、停止、暂停、取消暂停、运行方式(恒电流、恒功率、恒温度)),返回电源状态。
 - ◆ 设置运行目标值 (电流值或功率值或温度值),返回电源状态。
 - ◆ 取得变压器端状态,返回电源状态。
 - ◆ 复位读取事件代码地址,使指针指向最近的发生的事件。
 - ◆ 读取一条事件代码, 然后指针指向下一条。
 - ◆ 读取电源的运行功率与电流值。
 - ◆ 读取电源当前运行目标值。

7.说明

(一) 关于控制的说明:

1. 每次上电时,电源的串行口远控功能总是关闭的。如果需要,须向电源 发送启动串行口控制指令进行串行口控制(modbus 协议下,需向寄存器 17 写入 00AAH)。串行口控制一旦启动,就通过串行口获得电源的工作电量和状

- 态,并对电源进行控制;同时,也可以通过串行口取消该功能(回到电源内部设置状态)。
- 2. 串行口远控模式只能通过串行口发送指令进入,如果当前的控制模式是串行口远控,也可以通过面板设置取消,即:通过面板设置装置为"就地运行",则串行口远控功能被取消。
 - 3. 无论电源运行在何种模式,均可以进行通讯,以监测电源运行情况。
- **4**. 不可以在串行口控制的同时进行分段运行。如果需要这样做,可以在控制感应加热电源的计算机上编程进行分段,进而控制感应加热电源的运行。
- 5. 装置的串行口信号是电气隔离的,其地线应连接在主机的串行口地线上。
- 6. 对于高精度机型和普通机型,"取得电源工作电量数据"、"设置运行目标值"、"读取电源功率与电流值"的数据单位步长值不同,具体见指令格式说明。
- 7. 每一条通讯指令的发送与接收均具有出错校验功能,为了控制和数据的可靠性,建议上位机程序对每一条通讯均进行检验。如上位机接收到数据发生校验错误,建议丢弃该组数据。
- 8. 上位机通讯口设置为:波特率 9600,8 个数据位,1 个停止位,不采用 奇偶校验。

(二)关于数据值及单位的说明:

- 1. 协议中采用 16 进制格式定义数据值,所有数值为无符号型,有字节型(1个字节)和无符号整形(2个字节): 对于字节型,数值范围为 0-255; 对于无符号整形,数值范围为 0-65535。无符号整形的存储顺序为低字节在先,高字节在后。
- 2. 所有数值均为定点型,如单位定义为 0.01,对于数值 3567 来说,实际数值为 35.67。

例如: 功率值占用了 D1 和 D0 两个字节: D1 为高字节,D0 为低字节。而单位为 0.1KW,上位机通过通讯从电源获取的 D1 的值为 01H(C语言表示为 0x01), D0 的值为 50H(C语言表示为 0x50),因此该无符号整形的值为 150H,其十进制值为 336,由于其单位为 0.1KW,所以实际值为 33.6KW。

(三)关于不同机型、不同设置情况下数据格式的说明:

影响通讯协议的电源机型有三种: 高精度机型、常规 D1 机型、常规 D2 机型; 而电源内部关于通讯的一个参数的设置 - "串口协议扩展"功能(只对高精度机型有效,常规 D1 和 D2 机型无此功能),也影响通讯协议的数据格式。

"串口协议扩展"功能将影响通讯协议数据的字节数(数据长度),而不同的机型只影响数据的倍率(例如输出功率,高精度机型的单位为 0.001kW,常规 D1 机型的单位为 0.01kW)。

此外,电源在不同的运行模式下,给定值的单位也不一样。

不同机型和参数设置影响的数据如下表,这些数据对所有协议指令均有效:

数据	高精度	机型	常规 D 1 机型	常规 D2 机型	
	"串口协议扩展"开启	"串口协议扩展"关闭	717700 21 7/11 至	111 /9L DE 7/LE	
给定值	字节数: 3 单位:0.001KW(恒功率) 或者 0.01A(恒电流) 或者 0.1℃(恒温度)	字节数: 2 单位:0.001KW(恒功 率) 或者 0.01A(恒电流) 或者 0.1℃(恒温度)	字 <mark>节数: 2</mark> 单位: 0.1KW(恒功率) 或者 0.1A(恒电流) 或者 0.1℃(恒温度)	字节数: 2 单位: 0.01KW(恒功率) 或者 0.01A(恒电流) 或者 0.1℃(恒温度)	
输出功率	字节数: 3 单位: 0.001KW	字节数: 2 单位: 0.001KW	字节数: 2 单位: 0.1KW	字节数: 2 单位: 0.01KW	
输出电流	字节数单位:		字节数: 2 单位: 0.1A	字节数: 2 单位: 0.01A	
直流电流	字节数单位:		字节数: 2 单位: 0.1A	字节数: 2 单位: 0.01A	
直流逆变电压	字节数: 2 单位: 0.01V		字节数: 2 单位: 0.1V	字节数: 2 单位: 0.1V	
模拟量 1 输 入 4-20 mA	字节数: 2 单位: 0.01mA		字节数: 2 单位: 0.01mA	字节数: 2 单位: 0.01mA	
模拟量 2 输 入 4-20mA	字节数 单位:	数: 2 0.01mA	字节数: 2 单位: 0.01mA	字节数: 2 单位: 0.01mA	

- 注: 1. 对于未在表格中列出的数据,不同机型以及不同设置情况下的格式均相同。
- 2. 后文中,如果表述为"常规机型",而未分开来描述,则是包含了"常规D1 机型"和"常规 D2 机型",说明两种机型的数据一致。
- 3. 后文中,如果表述为"一般格式",则包括了常规 D1 机型、常规 D2 机型、高精度机型关闭串口协议扩展的情况,表明这些机型的数据一致。而相对于"一般格式"的,还有"高精度机型开启串口协议扩展格式"。

第一章 巴玛克专用协议

一.RS485 与RS232

巴玛克专用协议可供 RS232 和 RS485 两种通讯方式。两种方式的通讯协议仅有细微区别。本章的后续内容,都将仅介绍 RS232 方式下的协议格式。

当使用 RS485 通讯方式时,主机向从机发送报文,仅需在 RS232 协议的基础上,在报文首部增加"0A3H 从机地址 从机地址",并且,该 3 个字节不参与校验码的计算。从机返回的报文格式及内容定义与 RS232 方式下返回的报文完全相同。

例如,

在 RS232 方式下:

01H、电源状态码(STATUS):

读取指令 0xA8,0x01,0x00,0x00,0x57

返回指令 0xA6,0x02,0x00,SL,SH,CRC

在 RS485 方式下:

读取指令 0xA3,从机地址,从机地址,0xA8,0x01,0x00,0x00,0x57

返回指令 0xA6,0x02,0x00,SL,SH,CRC

二、高精度电源BAMAC 协议下的协议扩展功能

1: 什么是协议扩展功能?

由于旧式的感应加热电源在通讯时,使用 2 个字节表示功率值,所能表示的最大值仅为 65535。而高精度电源的精度为 1w,即仅能表示 65.535kw。当功率大于 60kw 时,不得不降低精度来传递大约正确的数据。

串口协议扩展功能,将输出功率值用 3 个字节表示,无需降低精度。通讯获得的数据值

2: 何时需要协议扩展?

当高精度感应加热电源的额定功率大于 65.535kw 时,需要协议扩展。这是因为高精度感应加热电源的稳定性以及精度较高,其精度为 1w。

3: 如何开启协议扩展?

在感应加热电源上,长按功能键,待提示输入密码;输入 9988;按功能键确认;按功能键翻页至显示"串口协议扩展"时,按"上"或"下"键将值设为"1"。长按功能键保存。注意,在此步操作时,请勿修改其他参数。更多信息详见《感应加热电源使用说明书》。

4. "串口协议扩展"功能对常规机型(包括 D1 和 D2)无效。

三. 通讯协议

(一)协议一般格式:

主机发送(电源接收):

主标识符 指令码	数据长	数据	校验码
----------	-----	----	-----

主机接收(电源发送):

从机标识符	数据长度	数据	校验码
-------	------	----	-----

格式说明:

主标识符: 10101000, 即 0A8H。

从标识符: 10100110, 即 0A6H。

指令码: 1-127 的值。

格式说明:

	数据	说明
主标识符	0A8H	上位机指令标识,电源不识别不带此标识符的指令
指令码	001-07FH	上位机发送的指令码
数据长度	0000H- FFFFH 两个字节	数据长度为两个字节,低字节在先,高字节在后,例如 17 个字节的数据长度在指令中用 011H、000H表示。数据长度为"数据"字节数 的总和(虚线框中的数据字节数)。上位机发 送指令及上位机接收指令的数据长度定义一 致
校验码	000H— 0FFH	上位机发送指令的校验码计算方法:为从指令标识开始到数据结束(包括指令标识和所有数据)的所有字节的累加和,再用 0100H 减去该累加和的低字节得到校验码。而电源校验该校验码的方法为:从指令标识到校验码的所有字节累加和低字节等于 0。 上位机接收指令的校验码计算方法:为从从标

		识符开始到数据结束(包括从标识符和所有数据)的所有字节的累加和,再用 0100H 减去该累加和的低字节得到校验码。上位机校验该校验码的方法为:从从标识符到校验码的所有字节累加和低 8 位等于 0
从标识符	0A6H	电源返回指令的标识符,上位机可以据此判断 电源返回指令的开始

(三)指令具体格式一栏表

	主机			单 元 (<mark>下</mark> 位机)			
指令描述	指令码	长度	数据内容及说明	长度	数据内容及说明	备	注
→取得电源状 态	01H	0	无	2	电源状态码(两个字 节)		
→取得电源工 作电量数据	02H	0	无	26	输出电流、输出功率、谐 振频率等电量,以及电 源状态码		
→启动/取消 串行口远控功 能	03H	1	0xAA 为启动, 0x55 为停止	2	电源状态码		
→设置运行控制量	04H	1	按位执行功能	2	电源状态码		
→设置运行目 标值	05H	2	目标值	2	电源状态码		
→取得变压器 工作电量	06H	0	无	16	变压器和谐振电容工 作电量,电源状态码		
→复位事件代 码指针	07H	0	无	2	电源状态码		
→读取一条事 件代码	08H	0	无	11	剩余未读故障数,4 字节事件代码,4字节 时间代码,电源状态 码		
→读取功率与	09H	0	无	6	功率, 电流, 状态吗	_	

电流						
→读取当前运	0AH	0	无	4	当前运行目标值,状态码	
行目标值						

(四)指令格式说明:

01H、电源状态码(STATUS):

读取指令 0xA8,0x01,0x00,0x00,0x57

返回指令 0xA6,0x02,0x00,SL,SH,CRC

该状态码为两个字节, SL 低字节在前, SH 高字节在后。

D7	D6	D5	D4	D3	D2	D1	D0
未使用 恒定为 1	0:电源未处 于暂停状态 1:电源处于	0:电源当 前无报警 1:电源当	0:电源当 前无故障 1:电源当	0:串行撤销 暂停指令 1:串 <mark>行</mark> 发送	0:串行停止 运行指令 1:串行启动	0:串行控 制禁止 1:串行控	0:远程控 制关闭 1:远程控
	暂停状态	前有报警	前有故障	暂停指令	运行指令	制允许	制开启

D15	D14	D13	D12	D11	D10	D9	D8
0: 电源当 前未运行 1: 电源当 前运行中	0: 触摸屏未 连接 1: 触摸屏已 连接	触摸屏串 行控制时 给定方式: 0:电位器 1:触摸屏	0:无事件 1:电源当 前有新的 事件发生	电源当前 00: 恒海 01: 恒海 10: 恒平 11: 工艺	 	0:无错误 1:数据包 内字节超 时	0:无错误 1:通讯 CRC 校验 出错

注: 1.当电源每次向上位机主机发送该状态码后,自动清除 D12、D9 和 D8 位,因此,如果这些位反复出现,则该故障/错误持续存在。即使某个事件(例如报警)持续存在,如果没有其它变化因素, D12 位只会置位一次。

2.D0 位远程控制开启或关闭状态取决于电源内部参数的设置情况,只有开启了远程控制,串行控制才有可能被允许。当电源内部参数远程控制开启后, D1 位串行控制允许或禁止状态可以用通讯指令(启动/取消串行口远控指令, 指令码 03H)来改变。

3.D14, D13 为连接触摸屏时的状态, 当电源未配备触摸屏时, 该两个状态字无效。

4.D15 为电源当前的运行输出状态,该状态与 D2 指令状态不是一个概念,D2 为 1 代表已经串行口已经发送了启动指令(设置运行控制量的 D7 位,指令码 04H),但电源是否已经确实处于运行状态,需要看 D15 的状态(电源可能因为不就绪、有故障等各种原因不能正常启动运行)。

- 5.D6 表示电源当前是否为暂停状态,为 1 表示为暂停状态,否则为非暂停状态。D3 为 1 代表已经串行口已经发送了暂停指令(设置运行控制量的 D6 位,指令码 04H),但电源是否已经确实处于暂停状态,需要看 D6 的状态(电源无论是否运行输出,只要暂停信号有效,就均具有暂停状态)。
- 6.D5 表示电源是否处于报警状态, D4 表示电源是否处于故障状态,只有当电源的报警/故障消失后,报警和故障状态位才会清除。
- 7.D11 和 D10 表示了电源当前的运行模式,注意该运行模式与电源参数定义的运行模式并不一定相同,如果在运行过程中采用按键操作改变运行模式,则 D11 和 D10 位的值也会随之改变。
- 8.无论远程控制是否开启,也无论串行控制是否允许,只要订制了通讯接口,都是可以用通讯的方法获得数据的,但只有在串行控制允许的情况下,才可以用串行通讯控制的方法启停电源、改变运行值。

02H、读取电源工作电量数据:

读取指令:0xA8,0x02,0x00,0x00,0x56

返回指令具有两种格式(一般格式、高精度机型开启串口协议扩展格式): 返回指令(一般格式):

0xA6,0x1A,0x00,D_{PL},D_{PM},D2,D3 ... D22,D23,SL,SH,CRC 返回指令(高精度机型开启串口协议扩展格式):

0xA6,0x1B,0x00, D_{PL},D_{PM}, D_{PH},D2,D3,D4 ...

D22,D23,SL,SH,CRC

注: "一般格式"包括了常规 D1 机型、常规 D2 机型、高精度机型关闭串口协议扩展的情况,下文的描述相同。

D_{PL}低字节, D_{PM}中字节, D_{PH}高字节(非扩展协议时, 无此字节) 电源输出功率 常规型电源的单位为 0.1KW(千瓦), 高精度机型电源的单位为 0.001KW(千瓦)

D_{PH} 高字节需在感应加热电源上开启"串口协议扩展"方有效。否则无此字节。若"串口协议扩展"有效:

电源输出功率 = $D_{Pl} + D_{PM} \times 256 + D_{PH} \times 65536$;

否则, 电源输出功率= $D_{Pl}+D_{PM}\times 256$;

D3 高字节,D2 低字节 电源输出电流 常规 D1 型电源的单位为 0.1A, 常规 D2 型以及高精度机型电源的单位为 0.01A;

D5 高字节,**D4** 低字节 电源工作频率 单位 **0.01kHz** (千赫兹)

D7 高字节,D6 低字节 被加热工件的温度 单位 0.1℃ (摄氏度)

D9 高字节,D8 低字节 交流 AB 相输入电压 单位 V (伏特)

D11 高字节,D10 低字节 交流 BC 相输入电压 单位 V (伏特)

D13 高字节,D12 低字节 直流电流 常规 D1 机型的单位

为 0.1A(安培),常规 D2型以及高精度机型电源的单位为 0.01A;

D15 高字节,D14 低字节 直流逆变电压 常规机型的单位为 0.1V(伏特),高精度机型的单位为 0.01V(伏特);

D17 高字节, D16 低字节 IGBT 温度 1

单位 0.1℃(摄氏度)

D19高字节,D18低字节 IGBT温度2

单位 0.1℃(摄氏度)

D21 高字节,D20 低字节 模拟量 1 输入 4-20mA 常规机型单位为

0.01mA(毫安), 高精度机型单位为 0.001mA(毫安)

D23 高字节,D22 低字节 模拟量 2 输入 4-20mA 常规机型单位为

0.01mA(毫安),高精度机型单位为 0.001mA(毫安)

注: 1.数据的大小计算: 低字节+高字节×256;

2.数据的单位:包括了数据倍率和单位,例如数据的大小计算结果是 7556,单位 0.1℃,则实际为 755.6℃;又例如数据的大小计算结果是 1825,单位 0.01mA,则实际为 18.25mA;又例如数据的大小计算结果是 411,单位 V,则实际为 411V;

本协议中后续数据的计算和单位与此类同。

注: "常规机型"包括了常规 D1 机型和常规 D2 机型,下文的描述相同。

03H、启动/取消串行口远控功能:

读取指令 0xA8,0x03,0x01,0x00,D0,CRC

返回指令 0xA6,0x02,0x00,SL,SH,CRC

D0=0xAA 启动串口远程控制

D0=0x55 关闭串口远程控制

D0=else 无效

04H、设置运行控制量:

读取指令 0xA8,0x04,0x01,0x00,D0,CRC

返回指令 0xA6,0x02,0x00,SL,SH,CRC

D0.7=1 启动电源 =0 停止电源

D0.6=1 暂停电源 **=0** 取消暂停

暂停功能是让电源小功率工作而不停振 控制量 **D0** 的位说明:

D7	D6	D5	D4	D3	D2	D1	D0
0: 停止电源 运行 1: 启动电源 运行	0: 撤销电源 暂停 1: 电源暂停	未使用	未使用	0: 不允许在 输出运行过 程中改变运 行模式 1: 允许在输 出运行过程 中改变运行 模式	0: 允许改变 运行模式 1: 不能改变 运行模式 (保护锁)	设置运行 00: 恒电 01: 恒温 02: 工艺 03: 恒功	流 度 程序

注: 1.高精度机型无暂停功能:

- 2.如果电源未开通工艺程序运行功能,而通过通讯指令工艺程序运行模式时,电源将进入恒流运行模式;
- 3.启停电源指令、改变运行模式指令、设置允许/禁止改变运行模式指令可以在一条指令中完成,也可以分开完成。
- 4.为了兼容以前的电源,该指令中的运行模式 D1D0=02 为工艺程序,模式 D1D0=03 为恒功率,与状态字中的顺序是不同的。

建议:尽量不要在输出运行状态下改变运行模式,如果确实需要,在改变运行模式前,要先设置运行目标值。

05H、设置运行目标值:

A:一般格式(常规机型和高精度机型关闭串口协议扩展):

读取指令 0xA8,0x05,0x02,0x00,DL,DH,CRC

返回指令 0xA6,0x02,0x00,SL,SH,CRC

恒电流模式 DL,DH 代表工作电流值 常规机型电源的单位为 0.1A,高精度机型电源的单位为 0.01A。

恒温度模式 DL,DH 代表工作温度值 单位 0.1℃。

恒功率模式 DL,DH 代表工作功率值 常规机型电源的单位为 0.1KW,高 精度型电源的单位为 0.001KW

B: 高精度机型开启串口协议扩展格式:

读取指令 0xA8,0x05,0x03,0x00,DL,DH,DH2,CRC

返回指令 0xA6,0x02,0x00,SL,SH,CRC

"运行目标值"=DH2*65536+DH*256+DL;

恒电流模式 "运行目标值"代表工作电流值,单位为 0.01A。

恒温度模式"运行目标值"代表工作温度值,单位 0.1℃。

恒功率模式"运行目标值"代表工作功率值,单位为 0.001KW

06H、取得变压器状态:

读取指令 0xA8,0x06,0x00,0x00,0x52

返回指令 0xA6,0x10,0x00,D0,D1,,,,,D12,D13,SL,SH,CRC

D1 高字节,D0 低字节 变压器温度 单位 0.1℃

D3 高字节,D2 低字节 谐振电容器温度 单位 0.1℃

D5 高字节, D4 低字节 变压器风机电流 单位 0.01A

D7 高字节,D6 低字节 T5 温度百分比 单位 0.1% (0-1500 代

表 0-150%的变送器额定温度)

D9 高字节, D8 低字节 绝缘电阻值 单位 0.01MΩ(兆欧)

D11 高字节,D10 低字节 水流量 单位 0.01L/m(0.01 升/

分钟)

D13 高字节,D12 低字节 谐振 Q 值 单位 0.1

07H、复位事件代码指针:

读取指令 0xA8,0x07,0x00,0x00,0x51

返回指令 0xA6,0x02,0x00,SL,SH,CRC

使读取事件指令指向最近一次事件代码。

08H、读取一条事件代码:

读取指令 0xA8,0x08,0x00,0x00,0x50

返回指令 0xA6,0x0B,0x00,D0,D1,...,D7,D8,D9,D10,SL,SH,CRC

D0 表示剩余未读的事件个数。

D1, D2 整型事件代码 2, D2 为高字节

D7,D8,D9,D10 长整型事件代码时间,相对开机时间,D10 为高字节。时间单位 0.625ms.

事件代码的定义参见后文"(五)事件代码说明"的内容。

09H、读取功率与电流:

A. 一般格式:

读取指令 0xA8,0x09,0x00,0x00,0x4F

返回指令 0xA6,0x06,0x00,D0,D1,D2,D3,SL,SH,CRC

D1 高字节,D0 低字节 输出功率

B. 高精度机型开启串口协议扩展格式:

读取指令 0xA8,0x09,0x00,0x00,0x4F

返回指令 0xA6,0x07,0x00,Dpl,DpM,DpH,D2,D3,SL,SH,CRC

DpH 高字节, DpM 中字节, DpL 低字节 输出功率

当电源为高精度机型并开启协议扩展后,返回指令中的数据字节数为

7, : 否则返回指令的数据字节数为 6:

常规型电源的单位为 0.1KW, 高精度型电源的单位为 0.001KW.

D3 高字节,D2 低字节 输出电流 常规电源的单位为

0.1A, 高精度型电源的单位为 0.01A。

0Ah、读取当前运行目标值:

A. 一般格式:

读取指令 0xA8,0x0A,0x00,0x00,0x4E

返回指令 0xA6,0x04,0x00,D0,D1,SL,SH,CRC

B. 高精度机型开启串口协议扩展格式:

读取指令 0xA8,0x0A,0x00,0x00,0x4E

返回指令 0xA6,0x05,0x00,D0,D1,D2,SL,SH,CRC

当开启协议扩展后,返回指令中的数据字节数为 5,有 D2 字节;否则 返回指令的数据字节数为 4, 无 D2 字节。D2 字节为高字节。

(D2)D1 高字节.D0 低字节 运行目标值 定义同指令 05H

SL,SH 电源状态码

(五)事件代码说明:

1. D1, D2 整型事件代码 2, D2 为高字节:

代码	中文版	英文版
0x0001	变压器过温保护	Transformer OTP
0x0002	谐振电容过温保护	Capacitor OTP
0x0004	单元平衡硬件保护	Bridge Unbalance
0x0008	主机温控线断	Temp Line Break
0x0010	记录仪温控线全断	Recorder TSLBP
0x0020	谐振电抗异常保护	Over Reactance Reactance Abn
0x0040	备用	Reserved
0x0080	运行输出过偏离保护	Output Abn Prot
0x0100	变压器过温报警	Transformer OTA
0x0200	谐振电容过温报警	Capacitor OTA
0x0400	变压器风机报警	Tran Fan Alarm
0x0800	多点控温超温差	Over Temp Diff
0x1000	记录仪通信失败	Recorder Com Err
0x2000	部分温控线断报警	Part TSLBA
0x4000	启动时未就绪	Start Not Ready

0x8000	RPFC 模块报警	RPFC Unit Alarm
--------	-----------	-----------------

2. D3,D4,D5,D6 长整型事件代码 1, D6 为高字节。 0x00000001 並亦妖 1 硬件保护 Bridge

0x00000001	逆变桥 1 硬件保护 Bridge-1 Protect		
0x00000002	逆变桥 2 硬件保护	Bridge-2 Protect	
0x0000004	直流过压硬件保护	DC Volt HW OVP	
0x00000008	谐振过压硬件保护	Resonance OVP	
0x0000010	谐振过流硬件保护	Resonance OCP	
0x00000020	直流过流硬件保护	DC Current OCP	
0x00000040	断水或外部保护	Water Break / EP	
0x00000080	绝缘电阻过低保护	Insulation URP	
0x00000100	输出过流保护	Out Current OCP	
0x00000200	能量/温升保护	Energy/Temp Prot	
0x00000400	硬件保护锁存	HW Protect Latch	
0x00000800	直流过压软件保护	DC Volt SW OVP	
0x00001000	输入电压缺相保护	Volt Phase Lost	
0x00002000	T1 或 T2 超过保护值 Temp1/Temp2 OT		
0x00004000	温度 T6 超过保护值	Temp6 OTP	
0x00008000	频率超过保护值	Over Frequency	
0x00010000	直流母线欠压保护	DC Volt UVP	
0x00020000	水流量过低保护	Water Flow Prot	
0x00040000	高稳定模块故障	HP Module Error	
0x00080000	设备紧急停机保护	Emergency Stop	
0x00 <mark>100</mark> 000	水流量低报警	Water Flow Alarm	
0x00200 <mark>000</mark>	辅处理器通信失败	SCPU Data Error	
0x00400000	电源自动重启	Auto restart	
0x00800000	工艺程序存取出错	Program RW Error	
0x01000000	T1 或 T2 过温报警	Temp1/Temp2 OTA	
0x02000000	温度 T6 过温报警	Temp6 OTA	
0x04000000	T1 或 T2 测温断线 T1/T2 Sensor Err		
0x0800000	T3/T4/T6 测温断线	T3/T4/T6 Sen Err	
0x10000000	参数表校验出错	Parameter Error	
0x20000000	EEP 操作出错	EEP Run Error	
0x4000000	散热器风机报警	Heatsink Fan Ala	
0x80000000	电流超过报警值	Out Current OCA	

3. 由于程序升级以及通讯协议字节数限值, V500 以上版本程序不能用 Bamac 通讯协议看到的事件代码有: (这些事件属于 D7, D8 整型事件代码)

0x0001	RunTime Alarm!	RunTime Alarm!		
0x0002	能量限制报警 Energy Lim Alarm			
0x0004	运行输出偏离报警 Output Abn Ala			
0x0008	保留 Reserved			
0x0100	远程或自动停机 Remote/Auto Stop			
0x0200	输出功率限制	Out Power Limit		
0x0400	谐振电压限制	Reson Volt Limit		
0x0800	输出电流限制 Out Curr Limit			
0x1000	T5 温度高限制 T5 Temp Limit			
0x2000	磁通量限制 Mag Flux Limit			
0x4000	负载阻抗过高 Over Impedance			
0x8000	保留	Reserved		

(六) 其它说明:

5.1. 关于 RS485 通讯接口

某些机型配置 RS485 通讯接口,注意 RS485 的 A 和 B 信号不能接反(但接反不会引起电源损坏),必要时可反接 A 和 B 信号进行测试。

- 5.2. 上位机最好采用定时进行通讯控制,推荐的控制周期为 300mS-1500mS,不建议以最快速度进行通讯(即接收到电源返回数据后立即启动新的通讯指令),这样会增加电源处理器的负担,并可能造成通讯冲突。
- 5.3. 上位机发送指令数据时,字节与字节之间无需(不应该,否则将引发内部接收字间超时而丢弃整个报文)设置等待时间。

上位机等待接收电源返回指令时,推荐设置的最大等待时间为 200mS-500mS (实际上,电源在收到上位机有效指令后,将立即启动返回指令的发送)。

上位机在接收电源返回指令过程中,推荐设置的最大字节间时间为 100-200mS。设置字间时间超时可以避免因干扰而导致的字节丢失影响后续报文。

5.4. **强烈推荐上位机对所有接收到的指令进行 CRC 校验**,并丢弃 CRC 校验出错的指令,否则在干扰的情况下,上位机可能会收到一组错误的数据(例如,某些字节所有数据均后移一位)。

如果上位机发送到电源的指令 CRC 出错,电源将不执行该指令。

- **5.5**. 如通讯经常出错(能通讯成功),可以从以下方面去检查以及加强抗干扰能力:
 - 5.5.1. 检查线路是否有接触不良。
 - 5.5.2. 采用双绞线(必要时加屏蔽,屏蔽层单端接地)
 - 5.5.3. 通讯线路不要与干扰很强的线路并行布线。
 - 5.5.4. RS485 线路的 A、B 之间接入一个 120 欧姆电阻。
 - 5.5.5. 在上位机侧采用隔离措施。
 - 5.5.6. 检查电源通讯接口。
 - 5.5.7. 检查上位机程序是否可能导致通讯出错。

三、通讯的异常处理

在通讯出错等异常情况下,上位机和电源均需采取适当措施,尽快恢复通 讯能力,并采取数据重发措施。

需要处理的异常工况包括:

- 主机接收超时:可能的原因有偶尔错误、电源故障、电源异常、线路故障等,应终止本次通讯指令,清除所有缓冲和计数器,再重发指令如恢复正常,则认为恢复正常通讯,一般应重发3次;如仍出错,则记录通讯故障,但不中止通讯,必要时暂停该电源的通讯服务。
 - 主机接收数据错误:包括数据格式错误、框架错误等,处理方法同上。
- 电源接收超时:则终止本次通讯指令,不回应主机数据,置位状态代码相关故障错误位,等待新的通讯指令。
 - 电源接收数据错误: 处理方法同上。
- 电源状态代码的故障错误位在每次被读取后自动清除,如果某故障错误位反复出现,说明该故障错误持续存在。

第二章 MODBUS 标准协议(RTU 传输模式)

一、支持的功能码及其他说明

1: 支持的功能码

功能码	子功能码	名称	
0x03		读保持寄存器 仅单播时可用	
			(最多一次读 29 个)
0x06		写单个寄存器	可广播
0x08	0x00	返回询问数据(2字节)	仅单播时可用
	0x0A	清除计数器和诊断寄存器	
	0X0B	返回总线报文计数	
	0X0C	返回总线通信差错计数	
	0X0D	返回总线异常差错计数	
	0X0E	返回从站报文计数	1
	0X0F	返回无响应计数	
	0X10	返回从站 NAK 计数	
	0X11	返回从站忙计数	
	0X12	字符超限计数	
0x10		写多个寄存器	可广播
0x17		读/写多个寄存器	仅单播时可用

注:

- (1) 缓冲区长度为 64 个字节,所以每个请求或响应报文长度不可超过 64 个字节,建议一次性最大读或写 25 个寄存器(50 个字节)。报文长度超过 64 个字节将导致字节丢失错误。
- (2) 本模块严格遵守 MODBUS 的 1.5 倍字间时间和 3.5 倍字间时间规定。
- (3) 本模块为 RTU 传输模式,不支持 ASCII 传输模式。
- 2: 关于寄存器编号与 PDU (协议数据单元) 寻址的说明

MODBUS 协议的寄存器编号为从 1 开始,在 MODBUS 的 PDU 中的,从 0 开始寻址寄存器,因此编号 1~16 的寄存器被寻址为 0~15。在具有集成 MODUBUS 功能的 PLC 如西门子、莫迪康等(或者具有集成 MODBUS 通讯模块的 PC 机组态软件如"组态王")中,工程师只需按照寄存器编号做相应的数据对应即可,由"编号"到 PDU 中"地址"的转换操作已由集成的软件模块自动

完成。但是对于其他的按照 PDU 地址 (而不是寄存器编号) 做数据对应的 PLC (或者用户自己编程 MODBUS 通讯处理函数)来说,编程工程师需自己完成相应的转换工作,即:"寄存器地址=寄存器编号-1"。

3: 寄存器中的数据格式说明

所有寄存器中的数据为 **16** 位的无符号整型,通讯过程中,高字节在先,低字节在后。

二、高精度电源 modnus 协议下的数据扩展功能

1: 什么是数据扩展功能?

数据扩展是用多个寄存器来表示一个电源参数。由于 modbus 每个寄存器长度为 1 个字,其所能表示的最大数值仅为 65535,当某个参数数值大于 65535 时,需要 2 个寄存器来表示。

2: 何时需要数据扩展?

当高精度感应加热电源的额定功率大于 65.535kw 时,需要数据扩展。这是因为高精度感应加热电源的稳定性以及精度较高,其精度为 1w,如不开启数据扩展功能,将导致通讯获得的功率与实际功率不符。

3: 如何在数据扩展与非数据扩展间切换?

A: 在感应加热电源上,长按功能键,待提示输入密码;输入 9988;按功能键确认;按功能键翻页至显示"串口协议扩展"时,按"上"或"下"键将值设为"1"。长按功能键保存。

三、寄存器说明

名称	寄存器编号	读写	备注: 所有数据为 unsigned int 型
启用温度反馈	1	读/写	0x1234 为有效,即寄存器 2~5 的数据有效。其他
			无效。内部取用温度反馈参数后,该寄存器将被置
			零。需不断向该寄存器写入 0x1234。
温度反馈参数	2~5	读/写	可供数据记录仪与本模块通讯
			或者上位机与记录仪通讯后写入
			或者上位机通过其他方式获取被加热物体温度后
			写入
实际温度值	2	读/写	AChnTemNowD
最小温度值	3	读/写	iNinBak
最大温度值	4	读/写	iMaxBak
数据记录仪状态码	5	读/写	StaBak
保留	6~15	读/写	保留
高精度电源运行目	16	读/写	1:在 MODBUS 协议下,当选择协议扩展时,此

上体长豆立之士			호수미사선으로(Markers)
标值扩展高字节			寄存器的低字节作为"运行目标值"的高字节使用。
			此寄存器高字节无效。
			2: 协议扩展必须"感应加热电源"上做设置,方能
			生效。否则,此寄存器数值无效。
			3: 协议扩展时,设定值=("高精度电源运行目标值
			扩展字节"* 65536)+"运行目标值"(寄存器 19)。
串口开关设定值	17	读/写	0X00AA 为 ON、0X0055 为 OFF,其他无效
			仅在串口开启时,上位机通讯控制方有效。否则通
			讯控制无效,上位机仅能监视电源的各个工作量
运行状态设定值	18	读/写	Bit8~bit15 保留
			Bit7=1 启动电源输出、0 停止电源输出
			Bit6=1 暂停、0 为取消 <mark>暂</mark> 停
			Bit3=0:不允许在输出运 <mark>行过</mark> 程中改变运行模式
			Bit3=1: 允许在输出运行过程中改变运行模式
			Bit2=0:允许改变运 <mark>行模式</mark>
			Bit2=1: 不能改变运行模式(保护锁)
			Bit0、1=0 为恒电流模式
			Bit0、1=1 为恒温度模式
			Bit0、1=2 为工艺程序
			Bit0、1=3 为恒功率模式
运行目标值	19	读/写	恒电流模式,常规 D1 机型电源的单位为 0.1A.常规
			D2 机型以及高精度机型电源为 0.01A
			恒温度模式,单位为 0.1℃
			 恒功率模式,常规 D1 机型电源的单位 0.1kW,常
			 规 D2 机型以及高精度机型电源为 0.001kW
变压器状态	20~26	只读	
	20		变压器温度,单位 0.1 度
	21		电容器温度,单位 0.1 度
	22		风机电流,单位 0.01A
	23		T5 温度百分比 单位 0.1%(0-1500 代表 0-150%
			的变送器额定温度)
	24		绝缘电阻值,单位 0.01MΩ(兆欧)
	25		水流量,单位 0.01L/Min
	26		谐振 Q 值, 单位 0.1
〜 输出功率扩展高字	27		1: 同寄存器 16 备注 1
节			2: 同寄存器 16 备注 2
14			2:

			源输出功率"(电源输出功率是寄存器 30 的值)
电源当前 Q 值	28	只读	电源当前 Q 值,单位 0.1
电源状态码	29	只读	D0: =0:远程控制关闭; =1:远程控制开启
			 D1: =0:串行控制禁止; =1:串行控制允许
			D2: =0:串行停止运行指令; =1:串行启动运行指令
			D3: =0:串行撤销暂停指令; =1:串行发送暂停指令
			D4: =0:电源当前无故障; =1:电源当前有故障
			D5: =0:电源当前无报警; =1:电源当前有报警
			D6: =0:电源未处于暂停状态; =1:电源处于暂停状
			态
			D7: 未使用,恒定为 1
			D8: =0:无错误; =1:通讯 CRC 校验出错
			D9: =0:无错误; =1:数据包内字节超时
			D11,D10: 电源当前运行状态: =00: 恒流; =01:
			恒温; =10: 恒功 <mark>率; =11</mark> : 工艺程序
			D12: =0:无事件; =1:电源当前有新的事件发生
			D13: 触摸屏串行控制时给定方式:=0:电位器; =1:
			触摸屏
			D14: =0: 触摸屏未连接; =1: 触摸屏已连接
			D15: =0: 电源当前未运行; =1: 电源当前运行中
工作电量值	30~41	只读	
电源输出功率	30		电源输出功率: 常规 D1 型电源的单位 0.1kW,常
			规 D2 型电源的单位 0.01kW,高精度机型电源的单
			位 0.001kW
	31		主机输出电流: 常规 D1 型电源的单位 0.1A,常规
			D2 型和高精度机型电源的单位 0.01A
	32		电源工作频率。单位 0.01kHz
	33		被加热工件的温度,单位 0.1℃
	34		交流 AB 相电压,单位 V
	35		交流 BC 相电压,单位 V
	36		直流电流,常规 D1 型电源的单位 0.1A,常规 D2
			型电源以及高精度机型电源的单位 0.01A
	37		直流逆变电压,常规型电源的单位 0.1V(包括 D1
			和 D2), 高精度机型电源的单位 0.01V
	38		IGBT1 温度,单位 0 .1℃
	39		IGBT2 温度,单位 0.1℃
	40		4-20mA 模拟量输入 1, 常规型电源的单位 0.01mA

			(包括 D1 和 D2),高精度机型电源的单位
			0.001mA
	41		4-20mA 模拟量输入 2, 常规型电源的单位 0.01mA
			(包括 D1 和 D2), 高精度机型电源的单位
			0.001mA
事件计数	42	只读	发生事件的个数
事件代码	43~170	只读	共可存储 128 个事件,按照事件发生的先后顺序排
			列。若事件累计超过 128。最新事件将占据最早事
			件所在寄存器,所占据的寄存器为: (事件计数-1) &
			0x7F + 43
			事件代码定义:参见上文"(五)事件代码说明"
	43		事件 1
	170		事件 128
保留	171~200	只读	保留

版本更新说明:

V32: 在 V31 的基础上,增加了 MODBUS 协议;

V321: 在V32 的基础上,对 BAMAC 协议做了"串口协议扩展"。对 MODBUS 协议做了"数据扩展",增加了寄存器 16 和寄存器 27 的定义。

V322: 在 V321 的基础上,对部分笔误做了更正。对 MODBUS 协议增加了部分说明。取消了高精度协议扩展插针。在 MODBUS 协议下,高精度协议扩展将由 485 通讯模块自动识别。用户仅需在电源上做设置即可而不需再在485 模块上设置。

V323: 修正了电源运行模式的设定值

V324: 为了与以前电源兼容,对运行模式的设定值重新定义。未开启串口扩展时,与早期(V321之前)版本定义相同。开启串口扩展时,定义与早期版本不同。

V325: 由于 DSP 主板改版, DSP 软件升级至 V500 以上, 事件代码定义 有所更新。本协议根据 DSP 软件 V500 的定义同步更新了事件定义。

修正了 BAMAC 协议中功能码 09H 的返回数据错误。

V326: 升级了波特率的设定。

V327: Modbus 寄存器 28 号寄存器由"保留"变为"Q 值"。

V333: 修正不确切的描述,增加常规机型 D2 程序的通讯协议。 V330