1. Introducere

- 1. Ce este o bază de date ? Dar un sistem de gestiune a bazelor de date? Daţi exemple.
 - Baza de date este un ansamblu structurat de date coerente, fără redundanță inutilă, care pot fi accesate în mod concurent de către mai mulți utilizatori.
 - Un sistem de gestiune a bazelor de date (SGBD) este un produs software care asigură interacţiunea cu o bază de date, permiţând definirea, consultarea şi actualizarea datelor din baza de date.

2. Ce este SQL?

- **SQL** (Structured Query Language) este un **limbaj** neprocedural pentru interogarea și prelucrarea informaţiilor din baza de date.
 - ➤ Compilatorul limbajului *SQL* generează automat o procedură care accesează baza de date și execută comanda dorită.
 - > SQL permite:
 - definirea datelor (LDD)
 - prelucrarea şi interogarea datelor (LMD)
 - o controlul accesului la date (LCD).
 - ➤ Comenzile SQL pot fi integrate în programe scrise în alte limbaje, de exemplu Cobol, C, C++, Java etc.
- 3. Ce este SQL*Plus? Comenzile SQL*Plus accesează baza de date?
 - **SQL*Plus** este un **utilitar** Oracle, având comenzi proprii specifice, care recunoaşte instrucţiunile SQL şi le trimite server-ului Oracle pentru execuţie.
 - ➤ Dintre funcţionalităţile mediului *SQL*Plus*, se pot enumera:
 - editarea, executarea, salvarea şi regăsirea instrucţiunilor SQL şi a blocurilor PL/SQL;
 - o calculul, stocarea şi afişarea rezultatelor furnizate de cereri;
 - o listarea structurii tabelelor.
 - ➤ Tabelul următor evidenţiază diferenţele dintre instrucţiunile SQL şi cele SQL*Plus:

SQL	SQL*Plus		
Este un limbaj de comunicare cu			
server-ul Oracle pentru accesarea	server-ului Oracle.		
datelor.			
Se bazează pe standardul ANSI	Este o interfaţă specifică sistemului Oracle		
pentru SQL.	pentru execuţia instrucţiunilor SQL.		
Prelucrează date și definește obiecte	Nu permite prelucrarea informaţiilor din baza		
din baza de date.	de date.		
Utilizează funcţii pentru a efectua	Utilizează comenzi pentru a efectua formatări.		
formatări.			
Instrucţiunile nu pot fi abreviate.	Comenzile pot fi abreviate.		
Nu are un caracter de continuare a	Acceptă "-" drept caracter de continuare		
instructiunilor scrise pe mai multe linii.	pentru comenzile scrise pe mai multe linii.		
Caracterul de terminare a unei	Nu necesită caracter de terminare a unei		
comenzi este ";"	comenzi.		

- **4.** Comenzile SQL*Plus acceptă abrevieri? Este necesar vreun caracter de încheiere a comenzii? (vezi tabelul de mai sus)
- 5. Care sunt limbajele SQL?
 - În funcţie de tipul acţiunii pe care o realizează, instrucţiunile SQL se împart în mai multe categorii. Datorită importanţei pe care o au comenzile componente, unele dintre aceste categorii sunt evidenţiate ca limbaje în cadrul SQL, şi anume:
 - ▶ limbajul de definire a datelor (LDD) comenzile CREATE, ALTER, DROP;
 - limbajul de prelucrare a datelor (LMD) comenzile INSERT, UPDATE, DELETE, SELECT;
 - ▶ limbajul de control al datelor (LCD) comenzile COMMIT, ROLLBACK, SAVEPOINT.
 - Pe lângă instructiunile care alcătuiesc aceste limbaje, SQL cuprinde si alte tipuri de instructiuni:
 - instrucţiuni pentru controlul sesiunii;
 - > instrucțiuni pentru controlul sistemului;
 - instrucţiuni SQL încapsulate.
- 6. Analizaţi sintaxa simplificată a comenzii SELECT:

- 7. Care sunt regulile de scriere a comenzilor SQL (acceptă abrevieri, e nevoie de caracter de terminare)?
- 8. In instructiunea urmatoare sunt erori. Care sunt acestea?

```
SQL> SELECT employee_id, last_name
salary * 12 ANNUAL SALARY
FROM employees;
```

Obs: ANNUAL SALARY este un alias pentru câmpul reprezentând salariul anual.

- Dacă un alias conţine *blank*-uri, el va fi scris obligatoriu între ghilimele. Altfel, ghilimelele pot fi omise.
- Alias-ul apare în rezultat, ca şi cap de coloană pentru expresia respectivă. Doar
 cele specificate între ghilimele sunt case-sensitive, celelalte fiind scrise implicit cu
 maiuscule.

2. Exerciții

- 1. a) Consultaţi diagrama exemplu *HR* (Human Resources) pentru lucrul în cadrul laboratoarelor de baze de date.
 - b) Identificaţi cheile primare şi cele externe ale tabelelor existente în schemă, precum şi tipul relaţiilor dintre aceste tabele.
- Să se listeze structura tabelelor din schema HR (EMPLOYEES, DEPARTMENTS, JOBS, JOB_HISTORY, LOCATIONS, COUNTRIES, REGIONS), observând tipurile de date ale coloanelor.

Obs: Se va utiliza comanda DESC[RIBE] nume_tabel.

3. Să se listeze **conţinutul** tabelelor din schema considerată, afişând valorile tuturor câmpurilor.

Obs: SELECT * FROM nume tabel;

- 4. Să se afișeze codul angajatului, numele, codul job-ului, data angajării. Salvati instructiunea SQL într-un fișier numit lab1.sql.
- 5. Să se listeze, cu şi fără duplicate, codurile job-urilor din tabelul *EMPLOYEES*. *SELECT job_id FROM employees;*

SELECT DISTINCT job id FROM employees;

SELECT UNIQUE job_id FROM employees;

Obs. DISTINCT = UNIQUE

6. Să se afișeze numele concatenat cu job_id-ul, separate prin virgula și spatiu. Etichetați coloana "Angajat si titlu".

Obs: Operatorul de concatenare este "||". Şirurile de caractere se specifică între apostrofuri (NU ghilimele, caz în care ar fi interpretate ca *alias*-uri).

SELECT last_name||', '|| job_id "Angajat si titlu" FROM employees;

Creați o cerere prin care să se afișeze toate datele din tabelul *EMPLOYEES* pe o singură coloană. Separaţi fiecare coloană printr-o virgulă. Etichetati coloana "Informatii complete".

- 7. Sa se listeze numele si salariul angajaților care câștigă mai mult de 2850.
- 8. Să se creeze o cerere pentru a afişa numele angajatului şi numărul departamentului pentru angajatul având codul 104.

9. Să se modifice cererea de la problema 7 pentru a afișa numele și salariul angajaţilor al căror salariu nu se află în intervalul [1500, 2850].

Obs: Pentru testarea apartenenței la un domeniu de valori se poate utiliza operatorul **[NOT] BETWEEN valoare1 AND valoare2.**

- 9.1. Sa se afiseze numele, prenumele si salariul angajatilor al caror salariu este in intervalul [3000,7000] => utilizand **between**
- 9.2. Modificarea cererii de la punctual 9.1 fara a utiliza de aceasta data between.

10.	Să se afişeze	numele, jo	b-ul şi data∃	a care au	început lucrul	l salariaţii ang	gajaţi între 20
	Februarie 1987	⁷ şi 1 Mai 1	989. Rezulta	atul va fi c	ordonat crescà	ător după data	a de început.

```
SQL> SELECT ___, ___, __
FROM __
WHERE __ BETWEEN '20-FEB-1987' ___ '1-MAY-1989'
ORDER BY ___;
```

11. Să se afișeze numele salariaților și codul departamentelor pentru toti angajații din departamentele 10 și 30 în ordine alfabetică a numelor.

```
SQL> SELECT ___, __
FROM ___
___ department_id IN (10, 30)
____;
```

Obs: Apartenența la o mulțime finită de valori se poate testa prin intermediul operatorului *IN*, urmat de lista valorilor (specificate între paranteze și separate prin virgule):

expresie IN (valoare_1, valoare_2, ..., valoare_n)

- 12. Să se modifice cererea de la problema 11 pentru a lista numele şi salariile angajatilor care câştigă mai mult de 1500 şi lucrează în departamentul 10 sau 30. Se vor eticheta coloanele drept *Angajat* si *Salariu lunar*.
- 13. Care este data curentă? Afișați diferite formate ale acesteia.

Obs:

Functia care returnează data curentă este **SYSDATE**. Pentru completarea sintaxei obligatorii a comenzii *SELECT*, se utilizează tabelul **DUAL**:

```
SQL> SELECT SYSDATE FROM dual;
```

Datele calendaristice pot fi formatate cu ajutorul funcţiei TO_CHAR(data, format), unde formatul poate fi alcătuit dintr-o combinaţie a următoarelor elemente:

Element	Semnificație			
D	Numărul zilei din săptămâna (duminica=1;			
	luni=2;sâmbătă=6)			
DD	Numărul zilei din lună.			
DDD	Numărul zilei din an.			
DY	Numele zilei din săptămână, printr-o			
	abreviere de 3 litere (MON, THU etc.)			
DAY	Numele zilei din săptămână, scris în			
	întregime.			
MM	Numărul lunii din an.			
MON	Numele lunii din an, printr-o abreviere de 3			
	litere (JAN, FEB etc.)			
MONTH	Numele lunii din an, scris în întregime.			
Υ	Ultima cifră din an			
YY, YYY, YYYY	Ultimele 2, 3, respectiv 4 cifre din an.			
YEAR	Anul, scris în litere (ex: two thousand four).			
HH12, HH24	Orele din zi, între 0-12, respectiv 0-24.			
MI	Minutele din oră.			
SS	Secundele din minut.			
SSSSS	Secundele trecute de la miezul nopţii.			

14. Să se afișeze numele și data angajării pentru fiecare salariat care a fost angajat în 1987. Se cer 2 soluții: una în care se lucrează cu formatul implicit al datei și alta prin care se formatează data.

Varianta1:	
 WHERE hire_date LIKE ('%87%');	
Varianta 2:	
 WHERE TO_CHAR(hire_date, 'YYYY')='198	87';

Sunt obligatorii ghilimelele de la şirul '1987'? Ce observaţi?

- 15. Să se afișeze numele și job-ul pentru toți angajații care nu au manager.
- 16. Să se afișeze numele, salariul și comisionul pentru toti salariații care câștigă comision. Să se sorteze datele în ordine descrescătoare a salariilor și comisioanelor.

```
SQL> SELECT ____, ____, ___

FROM _____

WHERE ____

ORDER BY salary DESC, commission_pct DESC;
```

17. Eliminaţi clauza *WHERE* din cererea anterioară. Unde sunt plasate valorile *NULL* în ordinea descrescătoare?

18. Să se listeze numele tuturor angajatilor care au a treia literă din nume 'A'.

Obs: Pentru compararea şirurilor de caractere, împreună cu operatorul *LIKE* se utilizează caracterele *wildcard*:

- > % reprezentând orice şir de caractere, inclusiv şirul vid;
- _ (underscore) reprezentând un singur caracter şi numai unul.
- 19. Să se listeze numele tuturor angajatilor care au cel putin 2 litere 'L' in nume şi lucrează în departamentul 30 sau managerul lor este 102.
- 20. Să se afiseze numele, job-ul si salariul pentru toti salariatii al caror job conţine şirul "CLERK" sau "REP" şi salariul nu este egal cu 1000, 2000 sau 3000 \$. (operatorul NOT IN).