Algorithmique Avancée 2019

École Centrale-Supélec

PC4: Flots et coupes 1

Christoph Dürr, Nguyễn Kim Thắng

1 Couplage bi-parti de cardinalité maximum

Vous êtes le père/la mère d'une très grande famille et vous voulez faire des cadeaux à vos enfants, qui sont au nombre de n. Vous disposez de m cadeaux. Vous savez que certains cadeau ne conviennent pas à certains enfants. Concrètement vous disposez d'un graphe biparti G(U,V,E) avec |U|=n, |V|=m, et $(u,v)\in E$ si le cadeau v convient à l'enfant u. Vous voulez trouvez un plus grand couplage dans ce graphe, ce qui est défini par le plus grand ensemble $M\subseteq E$ tel que chaque sommet du graphe fasse parti d'au plus une arête de M.

Réduisez ce problème vers un problème de flot maximum.

2 Élimination dans le baseball

On est au milieu d'une compétition de baseball. Je ne connais pas grand chose sur ce jeu, sauf que :

- Les matchs sont programmés en avance.
- Lors d'un match exactement une des deux équipes gagne.
- À la fin du tournoi chaque équipe a gagné un certain nombre de matchs. Ceux pour lesquelles ce nombre n'est pas maximum sont éliminées.

Dans l'exemple ci-dessous, Montréal sera éliminé, car même si elle gagne chacun des 3 matchs restants, elle n'arriverait qu'à atteindre 80 matchs gagnés, et Atlanta a déjà gagné plus que cela. Philly pourrait arriver à un score de 83, mais si Atlanta perd tous ses matchs d'autres en gagneront, et finalement dépasseront Philly.

team	wins	losses	to play	$against = r_{ij}$			
i	w_i	l_i	r_i	Atl	Phi	NY	Mon
Atlanta	83	71	8	_	1	6	1
Philly	80	79	3	1	_	0	2
New York	78	78	6	6	0	_	0
Montreal	77	82	3	1	2	0	_

Alors étant donnée n équipes, le nombre w_i de matchs déjà gagnés pour chaque équipe i, et la liste des matchs (i, j) encore à jouer on cherche à déterminer si une équipe particulière k a encore une chance de gagner. Trouvez une réduction de ce problème à un problème de flot maximum. Indice: le graphe que vous allez construire ressemblera à celui de l'exercice précédent, mais avec d'autres capacités.

3 Entrepreneur cupide

Vous êtes un entrepreneur cupide, qui a reçu la commande de construire un bâtiment. Ce travail se décompose en n tâches, numérotés de 1 à n. Ces tâches sont reliées par un ordre de précédence \prec , où $i \prec j$ dit que j ne peut être effectuée seulement une fois i est terminée. Vous serez payé au fur et à mesure pour chaque tâche accomplie. La tâche i vous rapporte w_i Euros, mais représente pour vous un coût de p_i Euros. Vous n'avez pas du tout l'intention d'effectuer toutes les tâches, seulement un ensemble $S \subseteq \{1, \ldots, n\}$ avec la propriété que si $i \prec j$ et $j \in S$ alors $i \in S$ également. On dit que l'ensemble est initial pour l'ordre \prec . Votre but est de trouver un ensemble initial S qui maximise le ratio $(\sum_{i \in S} w_i)/(\sum_{i \in S} p_i)$.

Trouvez une réduction de ce problème à un problème de flot maximum. Indice: cherchez s'il existe une solution de ratio au moins R. Après vous pourriez faire une recherche dichotomique sur R.

 $[https://www.cs.princeton.edu/~wayne/papers/baseball_talk.pdf]$