Zarządzanie ruchem i jakością usług w sieciach komputerowych

Część 1 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Przegląd wykładu o MPLS

- Zapotrzebowanie na MPLS
- Podstawy MPLS
- □ Korzyści z MPLS
- Label Switched Path
- Label Distribution Protocol
- Hierarchia w MPLS
- Ruting źródła
- Wykrywanie pętli
- Inżynieria ruchu
- Ruting z ograniczeniami

Przełaczanie przy pomocy etykiet

- Dekompozycja warstwy sieci w komponent kontrolny (algorytm rutingu) i przełączający
- □ Przełączanie za pomocą etykiet używa
 - o tablicy przełączania
 - o etykiety będącej częścią pakietu
- □ Co to jest etykieta?
 - Krótki ciąg bajtów o ustalonej długości
- ang. Label Switching
 - o podejście połączeniowe w sieciach pakietowych
 - znane z sieci ATM

Podstawy MPLS

- Ścieżka Label Switched Path (LSP) jest tworzona dla każdej trasy
- Rutery brzegowe
 - analizują nagłówek IP, żeby zdecydować, jakiej ścieżki LSP użyć
 - dodają odpowiedni lokalny identyfikator ścieżki LSP (Label Switched Path Identifier), w postaci etykiety
 - o przekazują pakiet do następnego rutera na ścieżce LSP

Podstawy MPLS, c.d.

- □ Kolejne rutery na ścieżce LSP
 - o po prostu przekazują pakiet dalej na ścieżce LSP
 - o znacznie upraszczają funkcję przekazywania
 - o znacznie zwiększają wydajność i skalowalność sieci
- Nowa funkcjonalność QoS, zróżnicowanie usług może zostać zaimplementowane w ruterach brzegowych
- Szkielet sieci może skupiać się na wydajności
- □ Informacje o rutingu pochodzą z wspólnego protokołu rutingu wewnętrznego (np. OSPF)

Podstawowy model sieci MPLS

LSR = **Label Switched Router**

LER = **Label Edge Router**

MPLS a modele warstwowe

IPv6 IPv4 IPX AppleTalk					
Przełączanie etykiet (MPLS)					
Ethernet	FDDI	ATM	Frame Relay	· ·	

- □ MultiProtocol Label Switching
- □ Warstwa " $2\frac{1}{2}$ "?

Przenoszenie etykiet

- □ Niektóre technologie mogą komunikować etykiety jako część nagłówka niższej warstwy
 - o n.p ATM i Frame Relay
- Jeśli warstwa łącza nie może komunikować etykiety, etykieta zostanie zawarta w nagłówku zwanym "shim header"

Nagłówek	Nagłówek	Nagłówek	Zawartość
w. łącza	"Shim header"	w. sieci	pakietu
	z etykietą		

Tworzenie ścieżki LSP

- Ścieżki LSP są tworzone i utrzymywane w sposób rozproszony
- Każdy ruter LSR negocjuje etykietę dla każdej klasy Forwarding Equivalence Class (FEC) ze swoimi sąsiadami za pomocą metody dystrybucji etykiet
- □ Tablica Label Information Base (LIB) Wynik negocjacji

MPLS a ruting IP

- MPLS rozszerza i uzupełnia ruting IP
- □ IP/MPLS może współistnieć z siecią IP (bez MPLS)
- Informacja przekazywana przez protokoły rutingu IP nie wystarczy dla MPLS
 - o nie tworzy odwzorowań pomiędzy etykietami a FEC
 - o nie informuje innych LSR o utworzonych odwzorowaniach

Protokoły rutingu warstwy sieci (n.p. OSPF, RIP, PIM) Procedury
tworzenia
odwzorowań
pomiędzy
etykietami a FEC

Procedury dystrybucji informacji o odwzorowaniach

Utrzymywanie tablicy przekazywania

MPLS a ruting IP - 2

Protokoły rutingu warstwy sieci (n.p. OSPF, RIP, PIM)

Odwzorowanie FEC na następny LSR

Procedury
tworzenia
odwzorowań
pomiędzy
etykietami a FEC

Procedury dystrybucji informacji o odwzorowaniach

Odwzorowanie FEC na etykiety

Tablica przekazywania

(odwzorowanie etykiet wejściowych na następny LSR i etykietę wyjściową)

Tablica przekazywania etykiet

- Indeksowana etykietami wejściowymi
- Utrzymywana globalnie lub dla każdego interfejsu osobno

Adres następnego (ruting rutera LSR multicast)
--

Forwarding Equivalence Class (FEC)

- W standardach MPLS, oznacza klasę (zbiór) pakietów przekazywanych w ten sam sposób przez sieć
- Składa się z pakietów:
 - o do określonego odbiorcy
 - do określonego odbiorcy, i z określonymi wymaganiami jakości usług (np. takich, dla których została zrobiona rezerwacja RSVP)
- □ Dlaczego FEC?
 - Žeby precyzyjnie określić, które pakiety IP są odwzorowywane na którą ścieżkę LSP
 - Osiąga się to przez dodanie specyfikacji FEC dla każdej ścieżki LSP

Odwzorowanie LSP - FEC

- □ FEC jest zbiorem dwóch elementów (obecnie)
 - 1. Prefiks adresu IP każdej długości od 0 do 32
 - 2. Adres hosta 32-bitowy adres IP
 - o prefiks adresu IP w FEC jest prefiksem adresu hosta w FEC
- Pakiet IP pasuje do ścieżki LSP wtedy i tylko wtedy, gdy element Prefiks adresu IP FEC jest prefiksem adresu odbiorcy pakietu IP

- □ Label Distribution Protocol (LDP)
 - zbiór procedur, według których rutery LSR tworzą ścieżki LSP
 - odwzorowanie pomiędzy informacją o rutingu z warstwy sieci bezpośrednio na przełączane ścieżki w. łącza

□ Partnerzy LDP:

- dwa rutery LSR które używają LDP w celu wymiany odwzorowań etykieta/przepływ
- wymiana informacji określana jest "sesją LDP"

Wymiana komunikatów LDP

- □ Komunikaty oznajmiające (DISCOVERY) używane do oznajmienia obecności rutera LSR
 - Używają UDP
 - Wszystkie pozostałe używają TCP
- Komunikaty sesji (ADJACENCY)- używane do tworzenia, utrzymywania i kończenia sesji pomiędzy partnerami LDP
- □ Komunikaty ogłaszające (ADVERTISEMENT) używane do tworzenia, zmiany i usuwanie odwzorowań etykiet
- □ Komunikaty informujące (NOTIFICATION) używane do sygnalizacji informacji uzupełniających i o błędach

Format komunikatu LDP

U	U Typ komunikatu Długość komunikatu							
Identyfikator komunikatu								
	Parametry obowiązkowe							
Parametry opcjonalne								

Datagramy LDP

- □ Komunikaty LDP są przesyłane w datagramach LDP
- Każdy datagram LDP ma nagłówek, po którym następuje komunikat
- Nagłówek LDP ma postać:

Wersja	Długość datagramu
Identyfil	kator LDP

Dystrybucja i zarządzanie etykietami

- Dwie metody dystrybucji etykiet
 - Dystrybucja na żądanie:
 Ruter LSR może wysyłać odwzorowanie FEC-etykieta w odpowiedzi na żądanie
 - Dystrybucja bez żądania:
 Ruter LSR może wysyłać odwzorowanie FEC-etykieta do ruterów LSR, które nie żądały tej informacji
- Obie metody mogą być użyte w tym samym czasie w jednej sieci; jednakże każdy ruter LSR musi znać metodę dystrybucji etykiet swoich sąsiadów

Sterowanie dystrybucją etykiet

- Niezależne sterowanie dystrybucją etykiet
 - Każdy ruter LSR może ogłaszać odwzorowania etykiet do swoich sąsiadów w dowolnym czasie
- Uporządkowane sterowanie dystrybucją etykiet
 - Ruter LSR rozpoczyna transmisję etykiet dla FEC tylko, jeśli jest ruterem kończącym przekazywanie pakietów FEC w domenie MPLS (może być ruterem brzegowym)
 - Jeśli nie, ruter LSR będzie czekał, aż otrzyma odwzorowanie etykiet dla FEC od następnego rutera na ścieżce LSP

Tryb przechowywania etykiet

- Konserwatywny tryb przechowywania etykiet
 - Ogłoszone odwzorowania etykiet są przechowywane tylko, jeśli są używane do przekazywania pakietów
 - Dystrybucja na żądanie zwykle jest używana wraz z konserwatywnym trybem przechowywania etykiet
 - Zaleta: tylko potrzebne etykiety są utrzymywane
 - Wada: zmiana rutingu powoduje opóźnienie
- Liberalny tryb przechowywania etykiet
 - Wszystkie odwzorowanie są utrzymywane, niezależnie czy ruter LSR jest następnym etapem, czy nie
 - o zmiany rutingu będą szybkie

Hierarchiczny ruting w MPLS

Przykład:

- ·Rutery zewnętrzne A,B,C,D,E,F protokół BGP
- ·Rutery wewnętrzne 1,2,3,4,5,6 protokół OSPF

Hierarchiczny ruting w MPLS - c.d.

- □ Kiedy pakiet IP przechodzi przez domenę #2, będzie zawierał dwie etykiety, tzw. "stos etykiet"
- Etykiety wyższego poziomu są używane przez rutery C i D, są enkapsułowane w etykiecie niższego poziomu używanej w domenie #2
- Działanie rutera C
 - C musi zmienić etykietę BGP na taką, której oczekuje D
 - C musi dodać etykietę OSPF której oczekuje 1
 - C wpycha etykietę BGP w dół stosu i dodaje etykietę niższego poziomu

Stos etykiet

- Wiele etykiet jest przenoszonych w pakietach
- Pojęcie stosu
 - udostępnia mechanizm do rozdzielania strumieni na ścieżce LSP
 - jednym z zastosowań tej techniki są sieci VPN (Virtual Private Networks)
- □ Zaletą hierarchicznego MPLS jest to, że rutery wewnętrzne nie muszą znać rutingu zewnętrznego (BGP)

Ruting źródła w MPLS

- Dwa rodzaje rutingu:
 - Ruting hop-by-hop
 - Ruting źródła
- Ruting źródła (ang. Explicit Routing, Source Routing) jest bardzo użyteczną techniką
 - W czystym rutingu datagramowym, koszt przesyłania całej ścieżki w każdym pakiecie jest zbyt duży
 - MPLS pozwala na wykorzystanie rutingu źródła tylko do tworzenia ścieżki LSP, a nie dla każdego pakietu
 - MPLS sprawia, że ruting źródła jest praktyczny

Ruting źródła w MPLS - c.d.

- W ścieżce LSP powstałej przez ruting źródła
 - następny etap dla każdego LSR nie jest wybierany lokalnie
 - jest wybierany przez pojedynczy węzeł, zwykle ruter brzegowy
- □ Ciąg ruterów LSR może być wybrany przez
 - konfigurację (n.p., przez operatora lub scentralizowany serwer)
 - algorytm (n.p., ruter brzegowy może wykorzystać informację o topologii z protokołu rutingu stanu łącza)

Petle i ich obsługa

- Protokoły rutingu w połączeniu z MPLS są oparte o rozproszone obliczenia, i mogą tworzyć pętle
- Obsługa pętli 3 rodzaje
 - Przetrwanie pętli
 - Wykrywanie pętli
 - Zapobieganie pętlom

Przetrwanie pętli

- Minimalizuje ilość zasobów zużytych przez pętlę
- Metoda
 - w oparciu o TTL, zmiejszany przez każdy ruter
 - Użycie dynamicznego protokołu rutingu, który szybko tworzy ścieżki bez pętli
 - O Użycie sprawiedliwych strategii szeregowania w kolejkach

Wykrywanie pętli

- □ Pętle mogą być tworzone, ale będą wykrywane
- Wykrywana pętla jest przerywana przez usunięcie odwzorowań etykiet
- □ To powoduje konieczność przekazywania pakietów przez ruting warstwy 3
- □ Po każdej zmianie trasy, transmitowany jest pakiet LDCP (Loop Detection Control Packet)
- LDCP jest przekazywany do celu, dopóki
 - o nie dojdzie do ostatniego węzła MPLS na ścieżce
 - o nie wygaśnie TTL pakietu LDCP
 - LDCP nie wróci do węzła, który go wysłał

Zapobieganie pętlom

- □ Zapewnia, że pętle nigdy nie są tworzone
- Etykiety nie są używane, dopóki nie ma pewności, że ścieżka LSP nie ma pętli
- Metody
 - Komunikacja etykiet rozpoczyna się od rutera brzegowego
 - Ruter brzegowy używa rutingu źródła, żeby utworzyć ścieżki do każdego innego rutera brzegowego

Inżynieria ruchu i cele wydajnościowe

- Inżynieria ruchu (Traffic Engineering) jest poświęcona optymalizacji wydajności działających sieci
- ☐ Kluczowe cele wydajnościowe
 - dotyczące jakości zwiększanie jakości przepływów, n.p. minimalizacja strat pakietów
 - dotyczące zasobów zwiększanie wykorzystania zasobów sieci, n.p. wydajne zarządzanie przepustowością sieci

Cele wydajnościowe - c.d.

- Zmniejszanie przeciążenia jest celem dotyczącym jakości i zasobów
- Przeciążenie jest powodowane przez:
 - o ruch przewyższający zasoby sieci
 - może być rozwiązane przez zwiększenie zasobów sieci lub przez klasyczne metody kontroli przeciążenia (zmniejszenie ruchu), lub metody kontroli dopuszczania połączeń (QoS)
 - o przepływy wykorzystują zasoby w sposób nie wydajny
 - · istnieją wąskie gardła, które można ominąć
 - · można stosować techniki równoważenia obciążenia

Sterowanie ruchem i zasobami

- □ Inżynier ruchu steruje adaptacyjnym systemem ze sprzężeniem zwrotnym, który zawiera
 - o zbiór połączonych urządzeń w sieci
 - o system zarządzania wydajnością sieci, oraz
 - o narzędzia zarządzania konfiguracją sieci
- Inżynier ruchu formułuje reguły sterujące, obserwuje stan sieci, charakteryzuje ruch i wykonuje czynności sterujące zgodne z regułami sterującymi

MPLS i inżynieria ruchu

Główny składnik

- Wiązka ruchowa (ang. traffic trunk) połączenie przepływów należących do tej samej klasy, które będą obsługiwane przez jedną ścieżkę LSP
- Tworzony graf MPLS
 - jest analogiczny do wirtualnej topologii w sieci nakładkowej
 - jest logicznie odwzorowywany na sieć fizyczną przez odpowiedni dobór ścieżek LSP dla wiązek ruchu
 - składa się ze zbioru ruterów LSR, które są węzłami w grafie, i zbioru ścieżek LSP, które tworzą logiczne połączenia punkt-punkt pomiędzy LSR i dlatego są krawędziami w grafie

Uzupełnione możliwości MPLS

- Zbiór atrybutów, związanych z wiązkami ruchowymi, które razem określają zachowanie się ruchu w wiązce
 - o np. maksymalna przepustowość
- Zbiór atrybutów, związanych z zasobami, które ograniczają możliwość wykorzystania zasobów przez wiązki ruchu
 - o np. dostępna przepustowość
- Protokoły "rutingu z ograniczeniami" które wybierają ścieżki dla wiązek tak, żeby spełnione były wszystkie ograniczenia

Ruting z ograniczeniami

- ang. Constraint-based routing, CBR
- Cel: ruting uwzględniający rezerwacje zasobów, ograniczenia administracyjne, inne
- Używa następujących danych:
 - o atrybuty wiązek ruchowych
 - atrybuty zasobów
 - o inne informacje o stanie topologii
- ☐ Główne cechy:
 - Usuwa zasoby, które nie spełniają ograniczeń wyznaczonych przez atrybuty wiązki ruchowej
 - o na pozostałym grafie, uruchamia algorytm najkrótszych ścieżek

Przykład rutingu z ograniczeniami

- Szukamy najlepszej ścieżki z R1 do R6, która ma przepustowość 30 Mb/s
- Najkrótsza ścieżka nie spełnia tego warunku

Przykład rutingu z ograniczeniami

- Dwa rozwiązania: najtańsza ścieżka o żądanej przepustowości: R1 -> R2 -> R3 -> R6
 - Koszt 40
- Scieżka statyczna: R1 -> R4 -> R3 -> R6
 - Koszt 45

Ruting z ograniczeniami - c.d.

- Ścieżka LSP z ograniczeniami (Constraint Routing LSP, CRLPS) jest obliczana na brzegu sieci
- Ruting umożliwia przydzielenie ścieżce określonej przepustowości
- Odwzorowania w ruterach na ścieżce LSP są tworzone przez ruting źródla

Ruting z ograniczeniami - c.d.

Kolejne kroki przy tworzeniu ścieżki dla wiązki ruchowej

Kontrola dostępu przy tworzeniu ścieżek LSP

Zaawansowana inżynieria ruchu w sieci DiffServ/MPLS

- Rozwinięcie koncepcji "bandwidth broker" z sieci DiffServ
- □ Projekt TEAM: NASA, NSF, 2004-?
- Inne projekty: Tequila, EuQoS

Sieci z jakością usług: podsumowanie

- Aplikacje multimedialne i ich wymagania
- Jak najlepsze wykorzystanie dzisiejszej usługi best effort
- Mechanizmy szeregowania i kontroli
- ☐ Sieci ATM
- □ Internet następnej generacji: IntServ, RSVP, DiffServ
- □ Inżynieria ruchu i MPLS

Porównanie metod zapewniania jakości

Zagadnienie	ATM	IntServ	DiffServ	MPLS	IEEE 802.3D
Przepustowość nieograniczona albo zarządzana	zarzą- dzana	zarzą- dzana	nieograni- czona	zarzą- dzana	nieograni- czona
Indywidualne lub zagregowane przepływy	Jedno i drugie	indywidu- alne	zagrego- wane	Jedno i drugie	zagrego- wane
Sterowanie przez nadawcę lub przez odbiorcę	Unicast nadawca, multicast obaj	odbiorca	dostęp	obaj	nadawca
Miękki stan albo twardy stan	twardy	miękki	brak stanu	twardy	twardy
Zarządzanie na ścieżkach albo przy dostępie	ścieżki	ścieżki	dostęp	ścieżki	dostęp

Porównanie metod zapewniania jakości

1 01 011	<u>nume mer</u>	U A A A B C	Minama	GI 100	
Zagadnienie	ATM	IntServ	DiffServ	MPLS	IEEE 802.3D
Ilościowe lub jakościowe	Ilościowe	Oba	Głównie jakoś- ciowe	Oba	Jakoś- ciowe
Względne lub bezwzględne	Bezwzględ- ne	Bezwzglę d-ne	Głównie względne	Oba	Względne
Sterowanie koniec-koniec albo etapami	koniec- koniec	koniec- koniec	etapami	koniec- koniec	etapami
Statyczna lub ze sprzężeniem zwrotnym	oba	statycz- na	statycz- na	statycz -na	statycz- na
Jednorodna albo niejednorodna kom. rozsiewcza	jednorodna	niejed- norodna	brak	jedno- rodna	brak
Kom. rozsiewcza wielu do jednego lub jeden do wielu	jeden do wielu	jeden do wielu	brak	oba	oba