Capstone Project on

Unlocking Healthcare Trends

Data Analysis on Healthcare

Presented by Mamatha Koutam

Contents:

- ▶ Abstract
- Problem Statement
- Methodology
- ▶ Result
- ► CONCLUSION

Abstract:

This project aims to analyze healthcare data to identify key factors influencing patient outcomes, predict disease progression, and optimize treatment strategies. The results will help improve healthcare services, reduce costs, and enhance patient satisfaction.

Problem Statement:

Background: Inefficient analysis of healthcare data leads to poor patient outcomes, increased costs, and decreased satisfaction.

Objective: Unlock insights from healthcare data to improve patient care.

Scope: Focus on key healthcare metrics (e.g., accuracy score, precision score, recall score) from various machine learning models.

Methodology:

Data Collection: Retrieve data from the provided dataset.

Data Preparation: Clean and prepare data, handling missing values, and standardizing formats.

Analysis Techniques: Machine learning modeling (using techniques like DTC, RFC, XgBoost, and PCA).

Tools: Python (using libraries like pandas and sklearn) for modeling.

Result:

Accurate prediction of patient outcomes using machine learning models.

Identification of key factors influencing disease progression.

Optimized treatment strategies based on data insights.

Monthly Hospital Admission Trends:

Monthly Admissions Trend

Importing Data:

"Importing data is crucial as it allows us to access and utilize existing information,

saving time and resources.

- Raw data is storing into another variable I . e df

```
Importing data

J data= pd.read_csv("/content/drive/MyDrive/Colab Notebooks/healthcare_dataset.csv")
data= pd.DataFrame(data)

J df = data.copy(deep = True)
```

In this ,we are checking raw data that to top 5 records by using .head() function from pandas Library

df.	.head()														
	Name	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Billing Amount	Room Number	Admission Type	Discharge Date	Medication	Tes Result
0	Bobby JacksOn	30	Male	B-	Cancer	2024-01- 31	Matthew Smith	Sons and Miller	Blue Cross	18856.281306	328	Urgent	2024-02- 02	Paracetamol	Norm
1	LesLie TErRy	62	Male	A+	Obesity	2019-08- 20	Samantha Davies	Kim Inc	Medicare	33643.327287	265	Emergency	2019-08- 26	Ibuprofen	Inconclusiv
2	DaNnY sMitH	76	Female	A-	Obesity	2022-09- 22	Tiffany Mitchell	Cook PLC	Aetna	27955.096079	205	Emergency	2022-10- 07	Aspirin	Norm
3	andrEw waTtS	28	Female	0+	Diabetes	2020-11- 18	Kevin Wells	Hernandez Rogers and Vang,	Medicare	37909.782410	450	Elective	2020-12- 18	Ibuprofen	Abnorm
4	adrIENNE bEll	43	Female	AB+	Cancer	2022-09- 19	Kathleen Hanna	White- White	Aetna	14238.317814	458	Urgent	2022-10- 09	Penicillin	Abnorm
4 11															

In this, we are checking shape of data means that data consist of 15 attributes and 55,500 rows.
 By help of .shape function from pandas Library

Here, we can observe data types of each attribute and is there any missing values or not.

So in this data, we don't have any missing values and we have to modify datatype of DOA, DD

These are can easily fetch by help of .info() function i.e. from pandas Library.

.describe() will helps to observe as shown below and can explain in below for numerical and categorical.

Observations:

1.Patient Age Range:

1. Patients' ages range from 13 to 89 years, with an average age of approximately 52 years.

2. Hospital Room Capacity:

1. The hospital offers a range of rooms, from 101 to 500, ensuring flexibility in patient accommodation.

3.Temporal Coverage:

1. Data spans from May 8, 2019, to May 7, 2024, providing a comprehensive five-year view of patient admissions.

4.Admission Types:

- 1. Patients enter the hospital through three main admission routes:
 - 1. Emergency
 - 2. Elective
 - 3. Transfer

5.Blood Type Distribution:

1. Patients exhibit various blood types, with A- being the most prevalent.

6.Hospital Distribution:

1. The dataset encompasses admissions from 44 hospitals, with LLC Smith being the most frequent.

7.Doctor Distribution:

1. Among the 27 doctors recorded in the dataset, Michael Smith attends to the highest number of patients.

In this, we are separating independent and dependent variables for model building

Separating independent variables and dependent variable¶

```
X = df.iloc[:, df.columns != 'Test Results']
y = df[['Test Results']]

X.shape , y.shape
((55500, 14), (55500, 1))
```

For Classification, in the target, we have to check how many classes and those classes are balanced or not if not we should make balance by help of imbalance learn library.

```
from imblearn.over_sampling import RandomOverSampler
X_re , y_re = RandomOverSampler(random_state=42).fit_resample(X,y)
X_re.shape , y_re.shape
((55881, 14), (55881, 1))
y_re.value_counts()
               count
 Test Results
               18627
   Abnormal
              18627
 Inconclusive
    Normal
               18627
dtype: int64
```

❖ Before Train the model we have convert data into numeric then computer can able to fetch the data.

```
from sklearn.preprocessing import LabelEncoder

for col in X_re.columns:
    if X_re[col].dtypes == 'object':
        X_re[col] = LabelEncoder().fit_transform(X_re[col])
```

Feature elimination: if the data contains un necessary feature that means its not impact to prediction then we can remove feature.
 * Hence , it is called "Feature elimination".

		ř	1000										
X_r	e.dr	op('Name	,axis	= 1, inplac	e=True)								
X_r	e.hea	ad()											
	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Billing Amount	Room Number	Admission Type	Discharge Dat	e M
0	30	1	5	2	1706659200000000000	26612	29933	1	18856.281306	328	2	1706832000000000000	0
1	62	1	0	5	1566259200000000000	33648	16012	3	33643.327287	265	1	1566777600000000000	0
2	76	0	1	5	1663804800000000000	37828	5473	0	27955.096079	205	1	1665100800000000000	0
3	28	0	6	3	16056576000000000000	22511	12317	3	37909.782410	450	0	1608249600000000000	0
4	43	0	2	2	16635456000000000000	21259	33598	0	14238.317814	458	2	1665273600000000000	0

After Completed EDA , we should split the data into train and test by help of sklearn library

```
from sklearn.model_selection import train_test_split

X_train , X_test , y_train ,y_test = train_test_split(X_re,y_re,test_size=0.2,random_state=42)
print(f"X_train{X_train.shape}")
print(f"X_test{X_test.shape}")
print(f"y_train{y_train.shape}")
print(f"y_test{y_test.shape}")

X_train(44704, 13)
X_test(11177, 13)
y_train(44704, 1)
y_test(11177, 1)
```

This UDfunction trains a given machine learning model on training data, evaluates its performance on testing data, and prints various metrics such as accuracy, Cohen's Kappa, classification report, and confusion matrix. It returns

the trained model, accuracy, Cohen's Kappa, and time taken to train the model, providing a comprehensive evaluation of the model's performance.

```
import time
from sklearn.metrics import accuracy_score, cohen_kappa_score, confusion_matrix, classification_report
def run model(model, X train, y train, X test, y test, verbose=True):
    t0=time.time()
    if verbose == False:
        model.fit(X train, y train, verbose=0)
    else:
        model.fit(X_train,y_train)
    y pred = model.predict(X test)
    accuracy = accuracy_score(y_test, y_pred)
    coh_kap = cohen_kappa_score(y_test, y_pred)
    cm = confusion_matrix(y_test , y_pred)
    time_taken = time.time()-t0
    print("Accuracy = {}".format(accuracy))
    print("Cohen's Kappa = {}".format(coh_kap))
    print("Time taken = {} minutes".format(time taken/60))
    print("classification report is\n ", classification report(y test,y pred, digits=5))
    print(f"confusion matrix \n {cm}")
    return model, accuracy, coh_kap, time_taken
```

The model's performance is relatively low, with an accuracy of 0.3427 and Cohen's Kappa of 0.0151, indicating a high degree of randomness in the predictions. The classification report and confusion matrix show significant misclassifications across all classes, with no clear strengths or weaknesses in the model's predictions.

* In that way, we will check for multiple models and compare which model is giving good performance that can say best model for this data.

- 1	Accuracy = 0.3426679788852107 Cohen's Kappa = 0.015078539640364874										
1,00											
	Time taken = 6		2399/ minu	ces							
10	classification			120							
		precision	recall	f1-score	support						
	Abnormal	0.34305	0.24807	0.28793	3749						
B	Inconclusive	0.33915	0.45482	0.38856	3674						
	Normal	0.34727	0.32738	0.33704	3754						
	accuracy			0.34267	11177						
	macro avg	0.34316	0.34342	0.33784	11177						
12	weighted avg	0.34319	0.34267	0.33750	11177						
10	confusion matr	ix									
	[[930 1644 1	175]									
	[868 1671 11	35]									
	[913 1612 12	29]]									
		12.									

❖ Here , we can see on different models with and their performances.

)	Repo	rt					
		Model	Accuracy Score	Precision Score	Recall Score	Kappa Score	f1-score
	0	LogisticReg with Penalty L1	0.342913	0.343398	0.306	0.015600	0.3080
	1	Pruned DecisionTreeClassifier	0.348913	0.353398	0.306	0.025600	0.3380
	2	RandomForestClassifier	0.404891	0.403398	0.416	0.105600	0.4080
	3	GradientBoostingClassifier	0.444891	0.443398	0.456	0.165600	0.4480
	4	XgBoostClassifier	0.445891	0.453398	0.466	0.167600	0.4580
	5	AdaBoostClassifier	0.335891	0.355398	0.406	0.004976	0.3780
	6	XgBoostClassifier with StandardScalar	0.445891	0.439800	0.446	0.167600	0.4500
	7	XgBoostClassifier with MinMaxdScalar	0.445891	0.439800	0.446	0.167600	0.4500
	8	RFC with MinMaxScalar By GridSearchCV	0.448891	0.459800	0.446	0.176000	0.4500
	9	RFC with StandardScalar By GridSearchCV	0.428891	0.459800	0.446	0.176000	0.4500
	10	XgBoostClassifier By GridSearchCV	0.428891	0.439800	0.446	0.126000	0.4440
	11	RFC with SelectKBest FeatureSelection	0.372300	0.388000	0.426	0.059600	0.3844
	12	RFC with Forward Selection	0.448891	0.459800	0.446	0.176000	0.4500

Here, is a continuation of the comparison.
* By comparing all model we can finalize best model.

9	RFC with StandardScalar By GridSearchCV	0.428891	0.459800	0.446	0.176000	0.4500
10	XgBoostClassifier By GridSearchCV	0.428891	0.439800	0.446	0.126000	0.4440
11	RFC with SelectKBest FeatureSelection	0.372300	0.388000	0.426	0.059600	0.3844
12	RFC with Forward Selection	0.448891	0.459800	0.446	0.176000	0.4500
13	RFC with Backward Selecton	0.447800	0.459800	0.446	0.176000	0.4500
14	RFC with SelectFromModel FS	0.447130	0.459800	0.446	0.176000	0.4500
15	RFC with RFE FS	0.441300	0.459800	0.446	0.176000	0.4500
16	RFC with PCA	0.448130	0.459800	0.446	0.176000	0.4500

CONCLUSION:

- Best Performing Model: RFC with MinMaxScalar By GridSearchCV (Row 8) and RFC with Forward Selection (Row 12) achieve the highest accuracy score of 0.448891, followed closely by other models.
- ▶ I have tried with Ensemble methods (RFC, XgBoost) outperform single models (Logistic Regression, Decision Tree). Feature selection/ engineering techniques (MinMaxScalar, StandardScalar, Forward Selection, Backward Selection, SelectFromModel FS) improve model performance.
- Hyperparameter tuning using GridSearchCV enhances model accuracy. Dimensionality reduction using PCA also performs well.
- ▶ The data is not extremely bad, as some models achieve relatively good performance.

Thank You

For your attention