Design and Modeling of Fluid Power Systems ME 597/ABE 591 - Lecture 2

Dr. Monika Ivantysynova MAHA Professor Flud Power Systems

MAHA Fluid Power Research Center Purdue University

Contents

- 1. Introduction and overview of components, circuit and system design methods
- 7. Fluid properties, modeling of transmission lines, impedance model of lines
- 3. Displacement machines design principles
- 4. Steady state characteristics, measurement methods and modeling

- 5. Gap flow models
- 6. Flow and pressure pulsation

Fluid Power System Design

- Choose max operating pressure
- Size the hydraulic motor
- Calculate flow requirement
- Select type of control, in case of valve control select type and size of control valve
- Select pump size based on flow requirement and speed of prime mover
- Calculate required line diameter
- Add additional components like pressure relief valve, logic elements, filter, reservoir, accumulators

Fluid Power System Design

Example

Aileron Actuation System:

angle
max. velocity
- " - during flight
max. hinge moment
lever arm
max. force during flight

$$\Phi_{\bullet}$$
 = $\pm 25^{\circ}$
 $\Phi_{\text{max Flight}}$ = 60° /s
 $\Phi_{\text{max Flight}}$ = 25° /s
 $\Phi_{\text{max Flight}}$ = $\pm 1800^{\circ}$ Nm
 $\Phi_{\text{max Flight}}$ = 45° mm
 $\Phi_{\text{max Flight}}$ = 45° Nm

Density

Compressibility

Viscosity

Properties of Fluids

Change of density with pressure

Change of density with temperature

Viscosity - pressure behavior

- Oxidative, hydrolytic and thermal stability
- Foaming (release air without forming emulsions)
- Lubricity (boundary lubricating property)

- Air/Gas absorption
- Pour Point
- •Flash point/ fire point

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Compressibility of a real fluid

Density is defined:
$$\rho = \frac{m}{V}$$
 and $\rho = f(p,T)$

$$O = \frac{m}{V}$$

$$\rho = f(p, T)$$

Change of fluid volume with pressure and temperature:

$$V = f(p, T)$$

$$dV = \left(\frac{\partial V}{\partial p}\right)_{T} \cdot dp + \left(\frac{\partial V}{\partial T}\right)_{p} \cdot dT$$

$$\rho_{oil} \approx 870 \text{ kg xm}^{-3}$$

Isothermal coefficient of compressibility

$$\beta_{p} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{T} \qquad dV = -V \cdot \beta_{p} \cdot dp$$

$$dV = -V \cdot \beta_p \cdot dp$$

Bulk modulus is defined as reciprocal of compressibility coefficient

$$K = \frac{1}{\beta_p}$$

Therefore we can write:

$$dV = -\frac{V}{K} \cdot dp$$

Bulk modulus

Fluid can be compressed isothermally or isentropically (adiabatic process)

Isothermal bulk modulus K

Adiabatic bulk modulus K_A

$$\tan \alpha = \frac{dV}{dp} = -\frac{V}{K} \qquad \Longrightarrow \int_{1}^{2} \frac{dV}{V} = -\int_{1}^{2} \frac{1}{K} \cdot dp$$

$$\ln V_{2} - \ln V_{1} = -\frac{1}{K} \cdot (p_{2} - p_{1})$$

$$V_{2} = V_{1} \cdot e^{-\frac{1}{K}(p_{2} - p_{1})}$$

$$\Delta V = V_1 - V_2 = V_1 \cdot \left[1 - e^{-\frac{1}{K}(p_2 - p_1)} \right]$$

In practice secant bulk modulus K_S is often used!

$$\tan \alpha_S = \frac{\Delta V}{\Delta p} = \frac{V_2 - V_1}{p_2 - p_1} = -\frac{V_1}{K_S}$$

$$K = 1.8 \cdot 10^9 \div 2.1 \cdot 10^9 \text{ Pa}$$

Influence of entrapped air

Due to entrapped air the compressibility of the fluid (fluid-air mixture) changes.

For the bulk modulus of fluid – air mixture K* can be derived:

p₀ ... atmospheric pressure

In a simplified way for the change of volume of the fluid – air mixture dV_M we can derive:

$$dV_M = dV_F + dV_{Air}$$

For isothermal process follows:

$$p \cdot V_{Air} = (p + dp) \cdot (V_{Air} - dV_{Air})$$

 $\frac{K^*}{K} = \frac{1 + \frac{V_{air}}{V_F}}{1 + \frac{p_0 \cdot V_{air}}{p \cdot V_F} \cdot \frac{K}{p}}$

simplified:

$$dp \cdot V_{Air} = dV_{Air} \cdot p$$

Change of air volume with pressure: and for the change of fluid volume:

$$dV_{Air} = \frac{V_{Air}}{p} dp$$

$$dV_{M} = dV_{F} + dV_{Air} = \frac{V_{F}}{K} \cdot dp + \frac{V_{Air}}{p} \cdot dp$$

$$dV_{F} = \frac{V_{F}}{K} dp$$

Influence of entrapped air

$$dV_{M} = dV_{F} + dV_{Air} = \frac{V_{F}}{K} \cdot dp + \frac{V_{Air}}{p} \cdot dp \quad (1) \quad \text{and} \quad dV_{M} = \frac{V}{K^{*}} dp \quad (2)$$

Due to $V_{Air} << V_F$ we can make the following simplification: $V_F = V_F$

then

$$dV_F = \frac{V}{K} dp \qquad (3)$$

Substituting Eq. (3) in Eq. (1) and (2) follows:

$$\frac{V}{K^*} \cdot dp = \frac{V}{K} \left(1 + \frac{V_{Air}}{V} \cdot \frac{K}{p} \right) \cdot dp \qquad \longrightarrow \qquad \frac{K^*}{K} = \frac{1}{1 + \frac{V_{Air}}{V} \cdot \frac{K}{p}}$$

$$\frac{K^*}{K} = \frac{1}{1 + \frac{V_{Air}}{V} \cdot \frac{K}{p}}$$

Example: Calculate how the bulk modulus of the fluid – air mixture with 0.5% undissolved air at p = 100 bar= 10^7 Pa is changed. The bulk modulus of the fluid

is K=2·10⁹Pa.
$$K^* = \frac{K}{1 + \frac{V_{Ajr}}{V} \cdot \frac{K}{p}} = \frac{2 \cdot 10^9 \text{ Pa}}{1 + 0.005 \cdot \frac{2 \cdot 10^9 \text{ Pa}}{10^7 \text{ Pa}}} = 1 \cdot 10^9 \text{ Pa} = 0.5 \text{ K}$$

Viscosity of a real fluid

PURDI

The viscosity of a fluid is the measure of its resistance to flow or of its internal friction.

According to Newton's law the shearing stress between adjacent layers of a viscous fluid is proportional to the rate of shear in the direction perpendicular to the fluid motion (flow direction).

$$\tau = \mu \cdot \frac{\partial v}{\partial y}$$

 μ ... dynamic viscosity [Pa·s=N·s/m²]

$$\mu = f(p,T) = \mu_0 \cdot e^{\alpha_p \cdot p - k_T \cdot (T - T_0)}$$

 α_p and k_T are empirical constants for a given fluid, whereas $\alpha_p = f(T)$

Typical values for mineral oil:

$$\alpha_p = 2.1 \cdot 10^{-8} \text{ Pa}^{-1}$$

$$k_T = 0.036 \,\mathrm{K}^{-1} \div 0.057 \,\mathrm{K}^{-1}$$

Viscosity of a real fluid

Kinematic viscosity

Kinematic viscosity:
$$v = \frac{\text{dynamic viscosity}}{\text{density}} = \frac{\mu}{\rho}$$
 [m²]

 $[m^2 \cdot s^{-1}]$ or [cSt]

ISO Viscosity Grades for mineral oils (ISO 3448)

ISO VG 10 mean value at 40°C 10 mm²·s⁻¹, (cSt)

1SO VG 22 22 mm²·s⁻¹

ISO VG 32 32 mm²·s⁻¹

ISO VG 46 46 mm²·s⁻¹

ISO VG 100 100 mm²·s⁻¹

Viscosity-Temperature

Types of Hydraulic Fluids

- Petroleum based fluids (mineral oils) usually with additives to
 - -prevent oxidation and corrosion HL
 - -reduce foaming
 - -improve lubricity HLP
 - -increase viscosity index HV

- oil water emulsions ($20\% H_2O$) HFA
- water in oil emulsion (about $40\% H_2O$) HFB
- Polymer solutions with H2O HFC
- water free synthetic fluids (Phosphate ester) HFD
- Biodegradable fluids
 - -Vegetable oil base HTG
 - -Polyglycol base HPG
 - -Synthetic ester HE

Water versus Mineral Oil

Viscosity 30 lower

50% reduction of pressure loss

Viscosity-temperature dependency 14 lower

Specific heat 2.3 higher

5 times higher thermal conductivity

50% higher bulk modulus

Air -release ability 30times better

Better coolingability

Higher stiffness

but

Higher vapor pressure

Vapor Pressure of Water

 $p_{V \text{ mineral oil}} = 0.053 \text{ Pa} = 0.53 \text{ } \mu \text{bar} \text{ } @ 50^{\circ}\text{C}$

Thermal properties

Specific heat c [J/kg ·K]

Thermal conductivity λ [W/m·K]

Solubility of gas

Henry's law

Cavitation