

Mads Paulsen, DTU Management

# Spatial Interpolation



### Skills acquired from today's activities

- After today you should be able to:
  - Calculate predictions at specific locations using Inverse Distance Weighting (IDW) and Voronoi Diagrams
  - Create an IDW surface that predicts the value at all locations in Python
  - Anticipate the behaviour of IDW when changing the exponent
  - Draw a Voronoi Diagram that predicts the value at all locations



### Mads' Part of 42588 Data & Data Science



- Week 6 Data Visualisation & Communication
- Week 7 Spatial Data
- Week 8 Project 2 Presentations + Data Weighting and Imputation
- Feedback from last time:
  - Those who answered seemed to enjoy the active parts
    The Figure Fight was really popular
  - Hard to see what happened during the live-coding
  - No obvious gaps identified



# Agenda



External speaker from Niras



Exercises on spatial interpolation



Work on Project 2





### Special but important case: Spatial data

- Data with relevant variables available at selected geographical locations
- Relevant examples
  - Weather stations
  - Vehicle trajectory data (gps data)
  - Polution data
  - Geological data
  - **—** ...
- Data is geographically incomplete
  - Spatial interpolation needed...



### DTU







Fictive example...



### **Voronoi Diagrams**

- Value point *P* is assumed equal to the value at the closest observed point
  - Special instance of geometrical K nearest neighbor with K = 1
- Boundaries of cells can be constructed geometrically
  - You get to try this in Exercise 3...
- Predictions discontinuous at cell boundaries





### **Inverse Distance Weighting (IDW)**

- General idea:
  - Value at some point P depends on the value at multiple nearby locations Q
  - The closer to *P*, the higher the weight
- An estimate of a value Z<sub>P</sub> at point P, can be found as,

$$Z_P = \frac{\sum_{Q \in \mathbf{Q}} w_Q Z_Q}{\sum_{Q \in \mathbf{Q}} w_Q}$$

with

$$w_Q = \left(\frac{1}{d(P,Q)}\right)^{\alpha}.$$

- d(P,Q) is the Euclidean distance between P and Q, and  $Z_Q$  is the value at point Q
- $\alpha$  is a parameter controlling how fast the weights decay as a function of distance.

13 March 2024 DTU Management 42588 – Week 7: Spatial Interpolation



# Time for Exercises... (...Tid til at regne...)



11

- There are three exercises to be found on DTU Learn:
  - Week 7 → Spatial Interpolation
- Exercise 1 using "Simulated hand calculations"
- Exercise 2 using Python implementations
- Exercise 3 using a ruler and a pen



At 14:50(-ish?) I will give some additional perspectives + information regarding Project 2



# Help for Voronoi Diagrams (Exercise 3)



13 March 2024 DTU Management 42588 – Week 7: Spatial Interpolation



### When to use which approach (IDW vs Voronoi)

- Voronoi diagrams:
  - Categorical data
    - » IDW undefined in these cases



- <u>IDW</u>
  - Large variation at each location
    - » IDW will average the values
  - Geographically dense data
    - » The cells of the Voronoi diagram will be very small



13



### **IDW - Example**

- For bicycle gps data, we have many observations of speed
- Despite large variations, overall trends can be identified through an IDW surface





14



### **Dynamic Spatial Interpolation**

- Code uploaded on DTU Learn
- Not guarantee that it works with your preferred GUI though.





15



# Work on Project 2

13 March 2024 DTU Management 42588 – Week 7: Spatial Interpolation



### Time for Project Work... Again!

- Check the project description on DTU Learn and align your work accordingly
  - Consult the chapters of Wilke (2019) that are relevant for your figures
- You decide your target group
  - Could be as simple as fellow students in 42588...
- Very important to let me know if you cannot present or give feedback next time
  - Schedule uploaded under Week 8
- Last session before the presentations
  - Last chance to ask me for advise

13 March 2024 DTU Management 42588 – Week 7: Spatial Interpolation



### **Midterm Course Evaluation**

- Available from 3pm today
- You should all receive a notification about this
  - Might be accessible at evaluering.dtu.dk (but I am actually not sure)
- Answers are used to improve the education

13 March 2024 DTU Management 42588 – Week 7: Spatial Interpolation