112-1 Discrete Mathematics Charpter 1-4

姓名:許嘉隆 學號:412770116

4.

- a) P(x) is False, and x = 0 (x has no change)
- b) P(x) is False, and x = 1 (x has no change)
- c) P(x) is True, and x = 1 (x changes)

6.

- b) "Every students in school have visited North Dakota."
- d) "Some students in school have not visited North Dakota."
- f) "Every students in school have not visited North Dakota."

10.

- a) $\exists x (C(x) \land D(x) \land F(x))$
- c) $\exists x (C(x) \land F(x) \land \neg D(x))$
- e) $\exists x \ C(x) \land \exists x \ D(x) \land \exists x \ F(x)$

14.

- a) T
- b) T
- c) T
- d) F, because if x < 0, then 2x < x

30.

- a) $P(1,3) \vee P(2,3) \vee P(3,3)$
- b) $P(1,1) \wedge P(1,2) \wedge P(1,3)$
- c) $\neg (P(2,1) \land P(2,2) \land P(2,3))$
- d) $\neg (P(1,2) \lor P(2,2) \lor P(3,2))$

36.

- a) $\exists x ((x \leq -2) \lor (x \geq 3))$
- b) $\exists x ((x < 0) \lor (x \ge 5))$
- c) $\forall x ((x < -4) \lor (x > 1))$
- d) $\forall x ((x \leq -5) \lor (x \geq -1))$

- a) $\forall x (P(x) \rightarrow Q(x))$
- b) $\exists x (R(x) \land \neg Q(x))$
- c) $\exists x (R(x) \land \neg P(x))$
- d) Yes, (c) follow from (a) and (b), and the following steps can be used to establish the conclusion.

	Reason
$\exists x \ (R(x) \land \neg Q(x))$	Premise
$R(a) \wedge \neg Q(a)$	Existential instantiation from (1)
R(a)	Simplification from (2)
$\neg Q(a)$	Simplification from (2)
$\forall x \ \big(P(x) \to Q(x) \big)$	Premise
$P(a) \rightarrow Q(a)$	<i>Universal instantiation from (5)</i>
$\neg P(a)$	Modus tollens from (4) and (6)
$R(a) \wedge \neg P(a)$	Conjunction from (3) and (7)
$\exists x \ (R(x) \land \neg P(x))$	Existential generalization from (8)
	$R(a) \land \neg Q(a)$ $R(a)$ $\neg Q(a)$ $\forall x (P(x) \to Q(x))$ $P(a) \to Q(a)$ $\neg P(a)$ $R(a) \land \neg P(a)$