Lecture 23

- Sections 5.2.2, 5.3, 5.4
- Routing protocols
 - Distance vector routing protocol
- Intra-Autonomous Systems routing (OSPF)
- * Routing among the ISPs: BGP

Network Layer Control Plane 5-25

25

Distance Vector Algorithm (5)

Distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

Iterative, asynchronous:

each local iteration caused by:

- local link cost change
- DV update message from neighbor

Each node:

Network Layer Control Plane 4-26

Distance Vector Routing: Example

(X,i): X: next hop to N1 i: distance to N1

Iter. A B C D E F $0 - (-,1) (-,4) (-,\infty) (-,8) (-,1) (-,\infty)$

Network Layer Control Plane 4-27

27

Distance Vector Routing: Example

(X,i): X: next hop to N1 i: distance to N1

Iter.		_	_	_	Ε	
0	(-,1)	(-,4)	(∘,∞)	(-,8)	(-,1)	(•,∞) (D,28)
1	(-,1)	(A,3)	(B,9)	(E,6)	(-,1)	(D,28)

Network Layer Control Plane 4-28

Distance Vector Routing: Example

(X,i): X: next hop to N1 i: distance to N1

Iter.	Α	В	C	D	Е	F
0	(-,1)	(-,4)	(∙,∞)	(8,-)	(-,1) (-,1)	_(•,∞)
1	(-,1)	(A,3)	(B,9)	(E,6)	(-,1)	(D,28)

Network Layer Control Plane 4-29

29

Distance Vector Routing: Example

(X,i): X: next hop to N1 i: distance to N1

		_	_	_	Е	_ ·
0	(-,1)	(-,4)	(\cdot,∞)	(-,8)	(-,1)	(∙,∞) (D,28)
1	(-,1)	(A,3)	(B,9)	(E,6)	(-,1)	(D,28)

Network Layer Control Plane 4-30

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast" t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_I : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

t₂: y receives 2's update, updates its distance table. y's least costs do *not* change, so y does *not* send a message to z.

Network Layer Control Plane 4-36

Distance Vector: link cost changes

Link cost changes:

- bad news travels slow -"count to infinity" problem!
- Many iterations before algorithm stabilizes: how many?

Poisoned reverse:

- If Y routes through X to get to W:
 - Y tells X its (Y's) distance to W is infinite (so X won't route to W via Y)
- will this completely solve count to infinity problem?

Network Laver Control Plane 4-37

37

Comparison of LS and DV algorithms

Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- <u>DV</u>: exchange between neighbors only

Speed of Convergence

- LS: exactly n iterations
- ❖ DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate through network

Network Layer Control Plane 4-38

Chapter 5: Network Layer

- 5. 1 Introduction
- 5.2 Routing algorithms
 - 5.2.1 link-state routing algorithm
 - 5.2.2 distance vector routing
- 5.3 Intra-Autonomous System (AS) routing: OSPF

Network Layer Control Plane 4-39

39

<u>Internet approach to scalable</u> <u>routing</u>

aggregate routers into regions known as "autonomous systems" (AS) (a.k.a. "domains")

intra-AS (aka "intradomain"): routing among within same AS ("network")

- all routers in AS must run same intra-domain protocol
- routers in different AS can run different intra-domain routing protocols
- gateway router: at "edge" of its own AS, has link(s) to router(s) in other AS'es

inter-AS (aka "interdomain"): routing among AS'es

 gateways perform inter-domain routing (as well as intra-domain routing)

Interconnected ASes

41

<u>Inter-AS routing: a role in intradomain</u> forwarding

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router in AS1, but which one?

AS1 inter-domain routing must:

- 1. learn which destinations reachable through AS2, which through AS3
- 2. propagate this reachability info to all routers in AS1

OSPF (Open Shortest Path First)

- * "open": publicly available
- uses Link State algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor router
- advertisements disseminated to entire AS (via flooding)
 - carried in OSPF messages directly over IP (rather than TCP or UDP

Network Layer 4-43

43

OSPF "advanced" features (not in RIP)

- for each link, multiple cost metrics for different TOS (hop, delay, cost, throughput, and reliability) -> 5 routing trees can be constructed
- integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Hierarchical OSPF

- * two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- * <u>area border routers:</u> "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 *

 backbone routers: run OSPF routing limited to backbone.

 backbone routers: run OSPF routing limited to backbone.
- * boundary routers: connect to other AS's.

Chapter 5: Network Layer

- 5. 1 Introduction
- 5.2 Routing algorithms
 - 5.2.1 link-state routing algorithm
 - 5.2.2 distance vector routing
- 5.3 Intra-Autonomous System (AS) routing: OSPF
- 5.4 Routing among the ISPs

Network Layer Control Plane 4-47

47

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all ASinternal routers.
 - determine "good" routes to other networks based on reachability information and policy.

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

Network Layer 4-49

49

BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Network Layer 4-50

Path attributes & BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

Network Layer 4-51

51

BGP route selection

- router may learn about more than 1 route to destination AS, selects route based on:
 - 1. local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

BGP messages

- BGP messages exchanged between peers over TCP connection
- * BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Network Layer 4-53

53

Why different Intra- and Inter-AS routing?

Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed

Scale:

 hierarchical routing saves table size, reduced update traffic

Performance:

- Intra-AS: can focus on performance
- * Inter-AS: policy may dominate over performance

BGP routing policy

- * A,B,C are provider networks
- * X,W,Y are customer (of provider networks)
- * X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

Network Layer 4-55

55

BGP routing policy (2)

- * A advertises path AW to B
- ❖ B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Network Layer 4-56