THE UNIVERSITY OF SYDNEY

FACULTIES OF ARTS, ECONOMICS, EDUCATION, ENGINEERING AND SCIENCE

MATH1901/1906

DIFFERENTIAL CALCULUS (ADVANCED)

June 2005

TIME ALLOWED: One and a half hours

LECTURER: Jenny Henderson

This Examination has 3 Printed Components.

- (1) An Extended Answer Question Paper (this booklet, Green 8015A): 3 pages numbered 1 to 3; 6 questions numbered 1 to 6.
- (2) A MULTIPLE CHOICE QUESTION PAPER (YELLOW 8015B): 4 PAGES NUMBERED 1 TO 4; 15 QUESTIONS NUMBERED 1 TO 15.
- (3) A MULTIPLE CHOICE ANSWER SHEET (WHITE 8015C): 1 PAGE.

Components 2 and 3 MUST NOT be removed from the examination room.

This Examination has 2 Sections: **Extended Answer** and **Multiple Choice**.

The **Extended Answer Section** is worth 75% of the total marks for the paper: all questions may be attempted; questions are not of equal value; all necessary working must be shown.

The Multiple Choice Section is worth 25% of the total marks for the paper: all questions may be attempted; questions are of equal value; answers must be coded onto the Multiple Choice Answer Sheet.

1. [12 marks]

- (a) Find all complex numbers z satisfying the equation $z^2 + \overline{z} = 2$. (3 marks)
- (b) Find all complex numbers z satisfying the equation $e^{2z} 2e^z + 2 = 0$. (3 marks)
- (c) Let $A=\{z\in\mathbb{C}\ :\ |z|=1\}.$ Find and sketch the image of A under the function $z\mapsto z-\frac{1}{z}.$ (3 marks)
- (d) Show that the function $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^z$, is neither injective nor surjective. (3 marks)

2. [11 marks]

Let f be the function given by $f(x,y) = e^{-(x^2+y^2)}$.

- (a) Find the domain and the range of f. (2 marks)
- (b) Sketch the level curves at heights 1, 1/e and $1/e^2$, of the surface given by z = f(x, y). (3 marks)
- (c) The plane x + 2y = 2 intersects the surface z = f(x, y) in a curve in \mathbb{R}^3 .
 - (i) Find parametric equations for this curve. (3 marks)
 - (ii) Find the maximum height of the curve above the xy-plane. (3 marks)

3. [14 marks]

- (a) Consider the surface $h(x,y) = 1 + 2x\sqrt{y}$.
 - (i) Find $\nabla h(x, y)$ at the point (3, 4). (3 marks)
 - (ii) Find the maximum rate of change of h at (3,4). (2 marks)
 - (iii) Find the (two) directions one could begin to move to stay level if one is standing on the surface at (3, 4, 13). (2 marks)
- (b) You may assume that the Taylor polynomial of order 4 for $\cos x$, about x = 0, is

$$T_4(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!},$$

with remainder term $R_4(x) = \frac{(-\sin c) x^5}{5!}$, for some c between 0 and x.

- (i) Using the information given above, write down the Taylor polynomial of order 8 for $\cos(x^2)$, about x = 0. (1 mark)
- (ii) Show that $0.903 < \int_0^1 \cos(x^2) dx < 0.906$. (6 marks)

4. [13 marks]

(a) (i) Complete the following sentence:

(2 marks)

(2 marks)

(ii) Given
$$\epsilon > 0$$
, find a suitable value of δ which establishes the result $\lim_{x \to 1} (2x + 3) = 5$.

(b) Find the following limits. (Do not use ϵ , δ methods.)

(i)
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$
 (ii)
$$\lim_{x \to 0^+} x \ln\left(\frac{1}{x}\right)$$
 (iii)
$$\lim_{x \to \infty} (x - \ln(\cosh x))$$
 (9 marks)

5. [15 marks]

(a) State the Intermediate Value Theorem.

(2 marks)

(b) Let $f(x) = 2x^2 - 3x - \ln x$. Show that there are exactly two solutions of the equation f(x) = 0. (5 marks)

(c) Let
$$h(x) = \begin{cases} x^3 & \text{if } x \ge 1, \\ e^{x^2 + ax + b} & \text{if } x < 1. \end{cases}$$

- (i) For which a, b is the function h continuous at 1? (2 marks)
- (ii) For which a, b is the function h differentiable at 1? (2 marks)
- (d) Prove that if a function g is continuous at the point a, then there exists a number $\delta > 0$ such that g(x) is bounded above and below on the interval $(a \delta, a + \delta)$. (4 marks)

6. [13 marks]

Let
$$F(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Show that F is continuous at (0,0). (Hint: use polar coordinates.) (4 marks)
- (b) Show that $\frac{\partial F}{\partial x}(0,0)$ and $\frac{\partial F}{\partial y}(0,0)$ both exist. (4 marks)
- (c) Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ be a unit vector with $u_1 \neq 0$ and $u_2 \neq 0$. Show that $D_{\mathbf{u}} F(0,0)$ does not exist. (5 marks)