

SEQUENCE LISTING

<110> Falco, Saverio
Famodu, Layo

Rafalski, Jan A.

Ramaker, Michael

Tarczynski, Mitchell C.

Thorpe, Catherine

<120> PLANT METHIONINE SYNTHASE GENE AND METHODS FOR INCREASING THE METHIONINE CONTENT OF THE SEEDS OF PLANTS

<130> BB-1067-B

<140>

<141>

<150> 08/703,829

<151> 1996-08-27

<160> 55

<170> Microsoft Office 97

<210> 1

<211> 2639

<212> DNA

<213> Zea mays

<400> 1

caccacccac	ctcccactcc	cagttcaccc	cgtcgtcctc	gggcccacca	ctcctcggtcc	60
cccgccgcta	ctcccccgct	ccacggtcca	aggaaagatg	gcgtcccata	ttgttggata	120
ccctcgcatg	ggccccaaga	gggagctcaa	gtttgccttg	gagtcttct	ggatgggaa	180
gagcagcgcc	gaggatttg	agaaagttgc	cactgacctg	aggtagtca	tctggaagca	240
aatgtcagaa	gctggatca	agtacattcc	cagcaatacc	tgcgtact	acgaccaggt	300
tcttgatacc	acggccatgc	ttggcgctgt	cccagagcgc	tactcttgg	ctggaggcga	360
gattggcttg	agcacctact	tctctatggc	cagggaaat	gccactgtcc	ctgcccattgg	420
gatgaccaag	tggtttata	caaactacca	ctttattgtc	cctgaacttg	gtccaagcac	480
caagttcaca	tacgcttctc	acaaggctgt	ttctgagtag	aaggaggcaa	aggcgctcgg	540
cattgataca	gtcccagtgc	ttgttggacc	agtctcatac	ttgctcctct	ctaaggctgc	600
caagggtgtg	gagaaatctt	tctctttct	ttcacttctt	ggttagcattc	ttcccatcta	660
caaggaggtt	gttgctgagc	tgaaggcagc	tggtgcttca	tggattcagc	ttgatgagcc	720
tacccttgtt	aaagaccttg	atgctcacga	ttggccgca	ttctcttcag	catatgctga	780
actggagtc	tcgttctctg	gattgaatgt	gcttatcgag	acatacttcg	ctgatattcc	840
tgctgagtc	tacaagaccc	tcacatcatt	gagtgggttg	actgcttacg	gtttcgatct	900
tatccgtgga	gccaaagaccc	ttgatcttat	caggagcagc	ttccctctg	ggaagtacct	960
cttcgcttgtt	gtttagatg	gacgcaacat	ttgggctgat	gatcttgcgt	catctcttag	1020
cactcttcat	tctcttgagg	ctgttgctgg	caaggacaaa	cttgggtgt	caacctcctg	1080
ctcaactgatg	cacaccgctg	ttgaccttgt	aaatgagact	aagctggatg	atgagattaa	1140
gtcatggctt	gcatttgctg	cccaaaagg	tgttgggtt	aatgcccttg	ccaaggctt	1200
ggcaggccaa	aaggatgagg	tctactttgc	agccaatgct	gctgctcagg	cctcaaggag	1260
atcatcgccc	agggtgacaa	acgaggaggt	ccagaaggct	gcagctgctt	tgaggggatc	1320
tgaccacccg	cgttctacca	ctgtttctgc	tagattggat	gctcagcaga	aaaagctcaa	1380
ccttcctgtc	cttcccacaa	ccacaattgg	ttcattccct	cagactgtgg	aactcaggag	1440
ggttcggcgt	gaatacaagg	caaagaagat	caccgaggac	gaatacatca	gtgccatcaa	1500
ggaagaaatc	agcaaggatcg	tcaagatcca	agaggagctt	gacattgtat	tgcttgc	1560
tggagagcca	gagagaaatg	acatggatga	gtacttcgtt	gagcaattat	ctggtttgc	1620
gttcactgccc	aacggatggg	tgcaatccta	tggatcacgc	tgtgtgaagc	caccattat	1680
ctacggtgat	gtcagccggc	cgaacccat	gactgtttc	tggccaaga	tggcacagag	1740
catgaccctt	cgccccatga	aggaaatgtt	gactggccg	gtcacaatcc	tcaactggc	1800

atcgtcagg aacgaccagc ctaggttga gacatgctac caaatagctc ttgcaatcaa 1860
aaaggagggtt gaggatcttgg aggctgctgg tattcaggtg atccagatcg atgaggcagc 1920
tctaaggaggg ggtctgccac tacgcaagtc agagcatgca ttctacctgg actgggctgt 1980
ccactcttc aggatcacca actgcggagt ccaggacacc acccagatcc acacccacat 2040
gtgctactcc aacttcaacg acatcatcca ctccatcatc gacatggatg ccgatgtgat 2100
cagcatcgag aactcccggt ctgacgagaa gctactgtcc gtctccgtg agggtgtgaa 2160
gtacggagct ggcattggcc ctgggtcta cgacatccac tctccttagga ttccctccac 2220
agaggagatc gcagaccgcg tcgagaagat gctcgccgtg ttgcacacca acatcctctg 2280
ggtaaccct gactgtggtc tcaagacacg caagtacacg gaggtcaagc ccgcctgac 2340
caacatggtc tcggccacca agctcatccg caccagctt gccagcgcga aatgaggtcg 2400
tttgatagct ccatggtctg atagcgcgga atgagccagt tgtttgaat aatttgggtg 2460
ttacccctg ttccatggtg ttagtgttag gttagcctct cattggtgag atacgcccgtt 2520
tcaagatgtg ttctaagttt ggagtgtgtg ttttcctttg ggctatgttt ctgggggtat 2580
gtgtgtgctt tggttataaa cagaaatgaa atatgcagtc ttccaattga aaaaaaaaaa 2639

<210> 2

<211> 765

<212> PRT

<213> Zea mays

<400> 2

Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30

Asp Leu Glu Lys Val Ala Thr Asp Leu Arg Ser Ser Ile Trp Lys Gln
35 40 45

Met Ser Glu Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Ser Ser Tyr
50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Glu
65 70 75 80

Arg Tyr Ser Trp Thr Gly Gly Glu Ile Gly Leu Ser Thr Tyr Phe Ser
85 90 95

Met Ala Arg Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110

Phe Asp Thr Asn Tyr His Phe Ile Val Pro Glu Leu Gly Pro Ser Thr
115 120 125

Lys Phe Thr Tyr Ala Ser His Lys Ala Val Ser Glu Tyr Lys Glu Ala
130 135 140

Lys Ala Leu Gly Ile Asp Thr Val Pro Val Leu Val Gly Pro Val Ser
145 150 155 160

Tyr Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Ser
165 170 175

Leu Leu Ser Leu Leu Gly Ser Ile Leu Pro Ile Tyr Lys Glu Val Val
180 185 190

Ala Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Leu Asp Glu Pro
195 200 205

Thr Leu Val Lys Asp Leu Asp Ala His Glu Leu Ala Ala Phe Ser Ser
210 215 220

Ala Tyr Ala Glu Leu Glu Ser Ser Phe Ser Gly Leu Asn Val Leu Ile
225 230 235 240

Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Ser Tyr Lys Thr Leu Thr
245 250 255

Ser Leu Ser Gly Val Thr Ala Tyr Gly Phe Asp Leu Ile Arg Gly Ala
260 265 270

Lys Thr Leu Asp Leu Ile Arg Ser Ser Phe Pro Ser Gly Lys Tyr Leu
275 280 285

Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asp Asp Leu Ala
290 295 300

Ala Ser Leu Ser Thr Leu His Ser Leu Glu Ala Val Ala Gly Lys Asp
305 310 315 320

Lys Leu Val Val Ser Thr Ser Cys Ser Leu Met His Thr Ala Val Asp
325 330 335

Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
340 345 350

Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
355 360 365

Ala Gly Gln Lys Asp Glu Val Tyr Phe Ala Ala Asn Ala Ala Gln
370 375 380

Ala Ser Arg Arg Ser Ser Pro Arg Val Thr Asn Glu Glu Val Gln Lys
385 390 395 400

Ala Ala Ala Leu Arg Gly Ser Asp His Arg Arg Ser Thr Thr Val
405 410 415

Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
420 425 430

Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
435 440 445

Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Thr Glu Asp Glu Tyr Ile
450 455 460

Ser Ala Ile Lys Glu Glu Ile Ser Lys Val Val Lys Ile Gln Glu Glu
465 470 475 480

Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
485 490 495

Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
500 505 510

Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
515 520 525

Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Lys
530 535 540

Met Ala Gln Ser Met Thr Pro Arg Pro Met Lys Gly Met Leu Thr Gly
545 550 555 560

Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
565 570 575

Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Lys Glu Val Glu
580 585 590

Asp Leu Glu Ala Ala Gly Ile Gln Val Ile Gln Ile Asp Glu Ala Ala
595 600 605

Leu Arg Glu Gly Leu Pro Leu Arg Lys Ser Glu His Ala Phe Tyr Leu
610 615 620

Asp Trp Ala Val His Ser Phe Arg Ile Thr Asn Cys Gly Val Gln Asp
625 630 635 640

Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
645 650 655

Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
660 665 670

Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
675 680 685

Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
690 695 700

Ile Pro Ser Thr Glu Glu Ile Ala Asp Arg Val Glu Lys Met Leu Ala
705 710 715 720

Val Phe Asp Thr Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
725 730 735

Thr Arg Lys Tyr Thr Glu Val Lys Pro Ala Leu Thr Asn Met Val Ser
740 745 750

Ala Thr Lys Leu Ile Arg Thr Gln Leu Ala Ser Ala Lys
755 760 765

<210> 3
<211> 2443
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (460)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (2398)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (2442)
<223> n = A, C, G, or T

<400> 3

ccctcagaag cgaagaagaa gccacagaga accagtctcc tactctctct caccacaaag	60
aaaaatggca tctcacatcg ttggataccc ccgcattgggt cccaagagag agctaagtt	120
cgctctcgag tcttctggg atggcaagag cagcgccgag gatttgaga aggtggctgc	180
tatatctcagg tcatccatct ggaagcagat ggctgggtct gggatcaagt acatccccag	240
caacactttc tcgttctatg accagctgct cgacgccacc gccaccctcg gtgcgtccc	300
ccccaggtac ggctggaccg gcggcgagat tggattcgac acctacttct ccatggccag	360
agtaatgtc accgtgcctg ctatggagat gaccaagtgg ttcgacacca actaccactt	420
tattgtccct gaattggcc ctgatgtgaa cttcacctan gcttctcaaa aggctgttga	480
tgaataacaag gaggccaaagg cgcttgagat ggataccatt cccgtactcg ttggccctgt	540
tacatacttg ttgctctcca agcctgcca gggagtcgag aaatccttt ctctcccttc	600
tctccttccc aaggttttt ctgtctacaa ggaagttatt gctgaccta aggagctgg	660
tgcttcatgg attcaatttgc atgagcctac ccttgcattt gaccttgaat ctcacaagtt	720
gcaagcttc actgacgcat atgcagaact tgcacctgct ttgtctgatc tgaatgttct	780
tgtttagacc tactttgttg acatccctgc tgaggcgatc aagaccctca catctctgaa	840
tggcgtcact gcatatgggt ttgattggc ccgtggacc catactcttgc atttgcattt	900
gggtggattt cccagtggaa aataccctt tgctggagtg gttgatggaa ggaacatctg	960
ggccaatgac cttgctgctt ctctcaactt attgcagggtt cttgaggcata ttgtggccaa	1020
agataagctt gttgtgtcca cttcccttc ctttccatc actgctgttgc atctgtttaa	1080
cgagaccaag ttggatgacg agatcaagtc atggcttagca tttgctgcac aaaaaattgt	1140
tgaagttaac gcattggcta aggattgtc tggcaacaag gatgtggcct tcttctctgc	1200
taatgctgca gctcaggcattt caaggaagtc ctctccaaga gtgaccaacg aggctgttca	1260
gaaggctgct gctgcattga agggttcaga tcatcgccgt gcaacaaatg tcagtgcac	1320
actggatgct caacaaaaga agctcaacct tccaaatcattt ccaaccacca ctattggatc	1380
cttccctcag actgttagaac tgaggagggt acggcgatc ttcaaggcta acaagatctc	1440
cgaggaagag tatgttaagt caattaagga gaaattcgc aaagttgttgc aacttcaaga	1500
agagcttgat attgtatgttgc ttgttcatgg agaaccagag agaaatgata tggtttagta	1560
cttcggtagt caattgtcag gcttgcattt cactgtttaat ggtgggtgc aatcctatgg	1620
ttcccggtgt gtgaagccac caatcatcta tggtgatgtg agccgccccaa agccaatgac	1680
tgtcttctgg tcatactctgg ctcagagctt taccaagcgc ccaatgaagg gaatgcttac	1740
cggcctgtt accattctca actggcctt tgtagaaat gaccaaccta gatctgagac	1800
cacctaccat attgctttgg ctatcaagga cgaagttggag gacattgaaa aggctggcat	1860
cactgttatac caaattgtatc aagctgctt gagagagggt ctgcccactga gaaatcaga	1920
acaagctcac tacttgact gggctgtcca tgccttcaga atcaccaatg ttgggtgtca	1980
ggataccact cagatccaca cccacatgtg ctactccaaat ttcaacgaca tcataccactc	2040
catcatcgac atggacgctg atgttatcac cattgagaac tctcgctccg atgagaagct	2100
cctgtcagtc ttccgtgaag gtgtgaagta tggtgctggaa attggccctg gtgtctatga	2160
catccactcc ccaagaatac caccaactga agaaatcgct gacagaatca ataagatgt	2220
tgcagtgttc gagaagaaca tcttgggtt caaccctgac tgtgtctca agacccgcaa	2280
gtacactgaa gtgaagccgc cttcacaaaa catgggttgc gcagcaaaac tcataccgtt	2340
cgaacttgcc aagtgaatgg tataagaaag tagaatctac aagttcaatg ggtccgcntt	2400
taaaaatacac caaagaaaaa ttttcaaaaat gggttgttca ana	2443

<210> 4
<211> 763
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (132)
<223> Xaa = any amino acid

<400> 4

Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30

Asp Leu Gln Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
35 40 45

Met Ala Gly Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Phe
50 55 60

Tyr Asp Gln Leu Leu Asp Ala Thr Ala Thr Leu Gly Ala Val Pro Pro
65 70 75 80

Arg Tyr Gly Trp Thr Gly Gly Glu Ile Gly Phe Asp Thr Tyr Phe Ser
85 90 95

Met Ala Arg Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110

Phe Asp Thr Asn Tyr His Phe Ile Val Pro Glu Leu Gly Pro Asp Val
115 120 125

Asn Phe Thr Xaa Ala Ser Gln Lys Ala Val Asp Glu Tyr Lys Glu Ala
130 135 140

Lys Ala Leu Gly Val Asp Thr Ile Pro Val Leu Val Gly Pro Val Thr
145 150 155 160

Tyr Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Ser
165 170 175

Leu Leu Ser Leu Leu Pro Lys Val Leu Ala Val Tyr Lys Glu Val Ile
180 185 190

Ala Asp Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Phe Asp Glu Pro
195 200 205

Thr Leu Val Leu Asp Leu Glu Ser His Lys Leu Gln Ala Phe Thr Asp
210 215 220

Ala Tyr Ala Glu Leu Ala Pro Ala Leu Ser Asp Leu Asn Val Leu Val
225 230 235 240

Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Ala Tyr Lys Thr Leu Thr
245 250 255

Ser Leu Asn Gly Val Thr Ala Tyr Gly Phe Asp Leu Val Arg Gly Thr
260 265 270

His Thr Leu Asp Leu Ile Lys Gly Gly Phe Pro Ser Gly Lys Tyr Leu
275 280 285

Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asn Asp Leu Ala
290 295 300

Ala Ser Leu Thr Thr Leu Gln Gly Leu Glu Gly Ile Val Gly Lys Asp
305 310 315 320

Lys Leu Val Val Ser Thr Ser Ser Ser Leu Leu His Thr Ala Val Asp
325 330 335

Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
340 345 350

Phe Ala Ala Gln Lys Ile Val Glu Val Asn Ala Leu Ala Lys Ala Leu
355 360 365

Ser Gly Asn Lys Asp Val Ala Phe Phe Ser Ala Asn Ala Ala Gln
370 375 380

Ala Ser Arg Lys Ser Ser Pro Arg Val Thr Asn Glu Ala Val Gln Lys
385 390 395 400

Ala Ala Ala Ala Leu Lys Gly Ser Asp His Arg Arg Ala Thr Asn Val
405 410 415

Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Ile Leu
420 425 430

Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
435 440 445

Val Arg Arg Glu Phe Lys Ala Asn Lys Ile Ser Glu Glu Glu Tyr Val
450 455 460

Lys Ser Ile Lys Glu Glu Ile Arg Lys Val Val Glu Leu Gln Glu Glu
465 470 475 480

Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
485 490 495

Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Val Asn
500 505 510

Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
515 520 525

Tyr Gly Asp Val Ser Arg Pro Lys Pro Met Thr Val Phe Trp Ser Ser
530 535 540

Leu Ala Gln Ser Phe Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
545 550 555 560

Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
565 570 575

Ser Glu Thr Thr Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
580 585 590

Asp Leu Glu Lys Ala Gly Ile Thr Val Ile Gln Ile Asp Glu Ala Ala
595 600 605

Leu Arg Glu Gly Leu Pro Leu Arg Lys Ser Glu Gln Ala His Tyr Leu
610 615 620

Asp Trp Ala Val His Ala Phe Arg Ile Thr Asn Val Gly Val Gln Asp
625 630 635 640

Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
645 650 655

Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
660 665 670

Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
675 680 685

Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
690 695 700

Ile Pro Pro Thr Glu Glu Ile Ala Asp Arg Ile Asn Lys Met Leu Ala
705 710 715 720

Val Leu Glu Lys Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
725 730 735

Thr Arg Lys Tyr Thr Glu Val Lys Pro Pro Ser Gln Asn Met Val Ala
740 745 750

Ala Ala Lys Leu Ile Arg Tyr Glu Leu Ala Lys
755 760

<210> 5

<211> 2296

<212> DNA

<213> Nicotiana plumbaginifolia

<400> 5

atggcatctc acattgttgg atatccccgt atgggcccaa agagagagct gaaatttgct	60
ctcgagtctt tctggatgg gaagaggcgc tgaggacttg aagaaggtag ctgcagaccc	120
aaggctttcc atctggaaac agatggctga tgctggcatc aagtacatcc ccagcaacac	180
attctcttac tatgatcagg tgcttgacac aactgcaatg ctcgggtctg tcccggttag	240
gtacaattgg gctgggtgt agatagcatt tgacacttac ttctccatgg ccagaggaaa	300
tgcctctgtc cctgctatgg agatgaccaa gtgggttgac accaactacc acttcattgt	360
ccctgagttg ggacctgatg ttaactttc ttatgcttct cacaaggcag tagatgagta	420
caaagaggcc aaggggcttg gtgtagacac gttccagtc cttattggc cagtctcata	480
cttggttgcta tccaaacctg ctaagggtgt tgagaaatcc ttccctctt tgtcacttct	540
tgacaaagtc cttccaatct acaaggaagt tattgcagaa ttgaaggctg ctgggtcttc	600
ttggatttcg tttgatgaac ctacacttgt gttggatctc caagctcacc aattggaagc	660
cttcactaag gcctatgccg agttgaaatc atctctgtct ggtcttaatg ttctcactga	720
aacctacttc gctgacgtcc ctgctgaagc attcaaaacc ctcactgctt tgaaggaggt	780
tactgccttt ggtttgact tggctgtgg agtcagacc cttgatttga tcaaaggtagg	840
cttcccttca ggcaagtact tggttgctgg agtggtcgac ggaaggaaca tctgggcaaa	900
tgatcttgcc gcatctctta acctcctgca atctcttgag ggtattttg gaaaagacaa	960
actagttgtc tccacatctt gctcaacttct tcatactgct gttgatcttg tcaatgagac	1020
taagctagat gatgaaatca agtcatggtt ggcgttgct gccaaaaag tagtgaagt	1080
taacgctttg gccaaggcat tggctggtca caaggatgag gcattcttct ctgcaaatgc	1140
taccgctcag gcttccagga aatcctctcc aagagtgaca aatgaagctg tccaaaaggc	1200
tgctgctgca cttaagggtt ctgaccaccg ccgtgctaca aatgtcagtt ctagacttga	1260
tgcccaacaa aagaaactta acctcccagt tctcccaaca accaccattt ggtcccttccc	1320
tcagacagtg gagcttagga gagttcccg tgaatacaag gccaagaaga tctctgagga	1380
agagtatgtt aaggccatca aggccagaaat caagaaggct gttgatctcc aggaagagct	1440
cgacatcgat gtcttgggtc acggagagcc agagaggaat gatatggttt aatacttcgg	1500
agagcagctt tctgggtttg cttcaactgca taatggatgg gttcaatctt atggatctcg	1560
atgtgtgaag ccaccaatta tctatggta tgtgagccgc cccaaacccaa tgactgtatt	1620
ctggcctaaa acagctcaga gcatgaccaa gcgcccaatg aaggaaatgc ttaccgggcc	1680
agttaccatt ctcaactggt ctggcctcag aaatgaccag ccaagattt gaaacttgctt	1740
ccagattgct ttggccattt agatgaagt ggaagattt gagaaggcag gcatcactgt	1800

tatccaaatt gatgaagctg ctttgagaga ggggttgcct ctaaggaagg ctgagcacgc 1860
ttttacttg aactggctg tccactcctt cagaatcacc aacgtcggca ttcaagacac 1920
caccagatc cacacacaca tgtgctactc caacttcaat gacattatcc actctatcat 1980
tgacatggat gctgatgtga tcacaattga gaactcacgg tccgatgaga agtcctctc 2040
agtttcagg gagggaggtt agtatggtgc tggaattggc cctggtgtct atgacatcca 2100
ctcccctaga ataccatcaa cggaaagagat tgctgacaga gttaacaaga tgcttgctgt 2160
tcttgacacc aacatcttgt gggtaacccc agattgttgt ctcaagactc gcaagtacgc 2220
tgaggtaaag ccagccctcg agaacatggt ttctgctgcc aaggccatcc gcacccaact 2280
tgccagctcc aagtga 2296

<210> 6

<211> 765

<212> PRT

<213> Nicotiana plumbaginifolia

<400> 6

Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30

Asp Leu Lys Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
35 40 45

Met Ala Asp Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Ala
65 70 75 80

Arg Tyr Asn Trp Ala Gly Gly Glu Ile Ala Phe Asp Thr Tyr Phe Ser
85 90 95

Met Ala Arg Gly Asn Ala Ser Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110

Phe Asp Thr Asn Tyr His Phe Ile Val Pro Glu Leu Gly Pro Asp Val
115 120 125

Asn Phe Ser Tyr Ala Ser His Lys Ala Val Asp Glu Tyr Lys Glu Ala
130 135 140

Lys Gly Leu Gly Val Asp Thr Val Pro Val Leu Ile Gly Pro Val Ser
145 150 155 160

Tyr Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Pro
165 170 175

Leu Leu Ser Leu Leu Asp Lys Val Leu Pro Ile Tyr Lys Glu Val Ile
180 185 190

Ala Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Phe Asp Glu Pro
195 200 205

Thr Leu Val Leu Asp Leu Gln Ala His Gln Leu Glu Ala Phe Thr Lys
210 215 220

Ala Tyr Ala Glu Leu Glu Ser Ser Leu Ser Gly Leu Asn Val Leu Thr
225 230 235 240

Glu Thr Tyr Phe Ala Asp Val Pro Ala Glu Ala Phe Lys Thr Leu Thr
245 250 255

Ala Leu Lys Gly Val Thr Ala Phe Gly Phe Asp Leu Val Arg Gly Ala
260 265 270

Gln Thr Leu Asp Leu Ile Lys Gly Gly Phe Pro Ser Gly Lys Tyr Leu
275 280 285

Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asn Asp Leu Ala
290 295 300

Ala Ser Leu Asn Leu Leu Gln Ser Leu Glu Gly Ile Val Gly Lys Asp
305 310 315 320

Lys Leu Val Val Ser Thr Ser Cys Ser Leu Leu His Thr Ala Val Asp
325 330 335

Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
340 345 350

Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
355 360 365

Ala Gly His Lys Asp Glu Ala Phe Phe Ser Ala Asn Ala Thr Ala Gln
370 375 380

Ala Ser Arg Lys Ser Ser Pro Arg Val Thr Asn Glu Ala Val Gln Lys
385 390 395 400

Ala Ala Ala Ala Leu Lys Gly Ser Asp His Arg Arg Ala Thr Asn Val
405 410 415

Ser Ser Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
420 425 430

Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
435 440 445

Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Ser Glu Glu Tyr Val
450 455 460

Lys Ala Ile Lys Ala Glu Ile Lys Lys Val Val Asp Leu Gln Glu Glu
465 470 475 480

Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
485 490 495

Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
500 505 510

Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
515 520 525

Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Lys
530 535 540

Thr Ala Gln Ser Met Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
545 550 555 560

Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
565 570 575

Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
580 585 590

Asp Leu Glu Lys Ala Gly Ile Thr Val Ile Gln Ile Asp Glu Ala Ala
595 600 605

Leu Arg Glu Gly Leu Pro Leu Arg Lys Ala Glu His Ala Phe Tyr Leu
610 615 620

Asn Trp Ala Val His Ser Phe Arg Ile Thr Asn Val Gly Ile Gln Asp
625 630 635 640

Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
645 650 655

Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
660 665 670

Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
675 680 685

Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
690 695 700

Ile Pro Ser Thr Glu Glu Ile Ala Asp Arg Val Asn Lys Met Leu Ala
705 710 715 720

Val Leu Asp Thr Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
725 730 735

Thr Arg Lys Tyr Ala Glu Val Lys Pro Ala Leu Glu Asn Met Val Ser
740 745 750

Ala Ala Lys Ala Ile Arg Thr Gln Leu Ala Ser Ser Lys
755 760 765

<210> 7
<211> 475
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (344)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (367)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (433)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (452)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (473)..(474)
<223> n = A, C, G, or T

<400> 7
cgccatcctc ctcctctccc cctatgtct tcctccccat ctccggcgcc gctccgcgac 60
tcctccaagg aaagatggca tcccacattt ttggataccc tcgcattggc cccaaagaggg 120
agctcaagtt tgccttgag tctttctggg atgggaagag cagcgctgag gatttggaga 180
aggttgcgcg cgcacccagg gccagcatct ggaaggcagat gtcagaggct gggattaagt 240
acattcccaag caacaccctc tcataactatg accaggtgct tgacacaacg gccatgctt 300
gtgccgtccc ggaccgctac tcatggactg gcggagagat tggncacagc acctacttct 360
caatggncaa gggcaatgcc actgtccctg ctatggagat gaccaagtgg tttgacacca 420
actaacactt cantgtgcct gaattgagcc ancaaccaag ttctcatatg ctnna 475

<210> 8
<211> 124
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (98)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (117)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (120)
<223> Xaa = any amino acid

<400> 8
Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30

Asp Leu Glu Lys Val Ala Ala Asp Leu Arg Ala Ser Ile Trp Lys Gln
35 40 45

Met Ser Glu Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Asp
65 70 75 80

Arg Tyr Ser Trp Thr Gly Gly Glu Ile Gly His Ser Thr Tyr Phe Ser
85 90 95

Met Xaa Lys Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110

Phe Asp Thr Asn Xaa His Phe Xaa Val Pro Glu Leu
115 120

<210> 9
<211> 628
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (219)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (254)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (300)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (319)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (331)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (335)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (338)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (348)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (350)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (360)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (413)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (416)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (424)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (428)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (440)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (455)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (469)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (473)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (484)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (504)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (506)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (526)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (533)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (535)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (552)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (568)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (580)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (598)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (600)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (606)
<223> n = A, C, G, or T

<220>
<221> unsure
<222> (613)
<223> n = A, C, G, or T

<400> 9
ggtcgtcacc cagagtgaac aattaggagg ttcagaaggc tgccgctgct ttgaaggct 60
ctgaccaccc cggtgctacc cctgtctctg ctagactgga cgctcagcag aagaagctca 120
accttcctat cctcccaaca acaacaattg gttcattccc tcagacaatg gacctcagga 180
gggtccgccg tgagtacaag gcgaaagaag atctctgang aggagtatgt cagtgcatac 240
aaggaagaaa ttancaaagg ttgtcaagat tcaaagagga gcttgacatt gatgttctcn 300
tccaatggag aagcctgana aaaatgacat ngtnaanta ctccggcnn caaattatcn 360
gggtttgcaa ttactgccaa tggatgggtg caatcctatg gattacttgc gttnancacc 420
gatnatcnat gggatgtaan cgcccaaccc atganatctt ctggtaana tgntcaggac 480
atancctccc ccaatgaagg aatntnacgg cctttaaattc ccaacnggct ttntnagaac 540
acaaccaggt tnagaatgca caaattcnct gccataaaa gagtttagtt ccagctgn 600
atcagngtca atnatagggg ccaaaagg 628

<210> 10
<211> 118
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (8)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (72)..(73)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (84)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (100)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (106)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (110)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (112)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (116)
<223> Xaa = any amino acid

<400> 10
Ser Ser Pro Arg Val Asn Asn Xaa Glu Val Gln Lys Ala Ala Ala
1 5 10 15

Leu Lys Gly Ser Asp His Arg Arg Ala Thr Pro Val Ser Ala Arg Leu
20 25 30

Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Ile Leu Pro Thr Thr Thr
35 40 45

Ile Gly Ser Phe Pro Gln Thr Met Asp Leu Arg Arg Val Arg Arg Glu
50 55 60

Tyr Lys Ala Lys Glu Asp Leu Xaa Xaa Gly Val Cys Gln Cys Tyr Gln
65 70 75 80

Gly Arg Asn Xaa Gln Arg Leu Ser Arg Phe Lys Glu Glu Leu Asp Ile
85 90 95

Asp Val Leu Xaa Gln Trp Arg Ser Leu Xaa Lys Met Thr Xaa Val Xaa
100 105 110

Tyr Phe Gly Xaa Gln Ile
115

<210> 11
<211> 765
<212> PRT
<213> Catharanthus roseus

<400> 11
Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Lys Lys Ser Ser Ala Glu
20 25 30

Asp Leu Gln Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
35 40 45

Met Ala Asp Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
50 55 60

Tyr Asp Gln Val Leu Asp Thr Ala Thr Met Leu Gly Ala Val Pro Pro
65 70 75 80

Arg Tyr Asn Phe Ala Gly Gly Glu Ile Gly Phe Asp Thr Tyr Phe Ser
85 90 95

Met Ala Arg Gly Asn Ala Ser Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110

Phe Asp Thr Asn Tyr His Tyr Ile Val Pro Glu Leu Gly Pro Glu Val
115 120 125

Asn Phe Ser Tyr Ala Ser His Lys Ala Val Asn Glu Tyr Lys Glu Ala
130 135 140

Lys Glu Leu Gly Val Asp Thr Val Pro Val Leu Val Gly Pro Val Thr
145 150 155 160

Phe Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Thr Phe Pro
165 170 175

Leu Leu Ser Leu Leu Asp Lys Ile Leu Pro Val Tyr Lys Glu Val Ile
180 185 190

Gly Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Phe Asp Glu Pro
195 200 205

Thr Leu Val Leu Asp Leu Glu Ser His Gln Leu Glu Ala Phe Thr Lys
210 215 220

Ala Tyr Ser Glu Leu Glu Ser Thr Leu Ser Gly Leu Asn Val Ile Val
225 230 235 240

Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Thr Tyr Lys Ile Leu Thr
245 250 255

Ala Leu Lys Gly Val Thr Gly Phe Gly Phe Asp Leu Val Arg Gly Ala
260 265 270

Lys Thr Leu Asp Leu Ile Lys Gly Gly Phe Pro Ser Gly Lys Tyr Leu
275 280 285

Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asn Asp Leu Ala
290 295 300

Ala Ser Leu Ser Thr Leu Gln Ser Leu Glu Gly Ile Val Gly Lys Asp
305 310 315 320

Lys Leu Val Val Ser Thr Ser Cys Ser Leu Leu His Thr Ala Val Asp
325 330 335

Leu Val Asn Glu Pro Lys Leu Asp Lys Glu Ile Lys Ser Trp Leu Ala
340 345 350

Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
355 360 365

Ala Gly Glu Lys Asp Glu Ala Phe Phe Ser Glu Asn Ala Ala Gln
370 375 380

Ala Ser Arg Lys Ser Ser Pro Arg Val Thr Asn Gln Ala Val Gln Lys
385 390 395 400

Ala Ala Ala Ala Leu Arg Gly Ser Asp His Arg Arg Ala Thr Thr Val
405 410 415

Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
420 425 430

Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Leu Glu Leu Arg Arg
435 440 445

Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Ser Glu Asp Asp Tyr Val
450 455 460

Lys Ala Ile Lys Glu Glu Ile Ser Lys Val Val Lys Leu Gln Glu Glu
465 470 475 480

Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
485 490 495

Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
500 505 510

Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
515 520 525

Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Gln
530 535 540

Thr Ala Gln Ser Met Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
545 550 555 560

Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
565 570 575

Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
580 585 590

Asp Leu Glu Lys Ala Gly Ile Asn Val Ile Gln Ile Asp Glu Ala Ala
595 600 605

Leu Arg Glu Gly Leu Pro Leu Arg Lys Ala Glu His Ala Phe Tyr Leu
610 615 620

Asp Trp Ala Val His Ser Phe Arg Ile Thr Asn Leu Pro Leu Gln Asp
625 630 635 640

Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
645 650 655

Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Met Thr Ile Glu Asn
660 665 670

Ser Arg Ser Ser Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
675 680 685

Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
690 695 700

Ile Pro Ser Thr Glu Glu Ile Ala Asp Arg Ile Asn Lys Met Leu Ala
705 710 715 720

Val Leu Asp Thr Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
725 730 735

Thr Arg Lys Tyr Ala Glu Val Lys Pro Ala Leu Glu Asn Met Val Ser
740 745 750

Ala Ala Lys Leu Ile Arg Thr Gln Leu Ala Ser Ala Lys
755 760 765

<210> 12

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 12

atccaaacaat gtgagatgtc atgaattctg ac

32

<210> 13

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 13
 gtcagaattc atgacatctc acattgttgg at 32

 <210> 14
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 14
 ctcacgggcc gatgagaagc tcct 24

 <210> 15
 <211> 31
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 15
 gatcggtacc tcacttggag ctggcaagtt g 31

 <210> 16
 <211> 1638
 <212> DNA
 <213> Zea mays

 <400> 16
 gaattccggc tcgaagccgc cgcgaccgaa cgagcgaagc gtcccttccc gcggccgacgc 60
 cgaaaacctta gtcctctta cgccatggcc accgtgtcgc tcactccgca ggcggcttc 120
 tccaccgagt ccggcggcgc cctggcctct gccaccatcc tccgcttccc gccaaacttc 180
 gtccgcctcc gcggcggcgg atgtcagcgc aattcctaacc gctaagggttg cgcaagccgtc 240
 cgccgtcgtta ttggccgagc gtaacctgct cggctccgac gccagcctcg ccgtccacgc 300
 gggggagagg ctgggaagaa ggatagccac ggatgctatc accacgcccgg tagtgaacac 360
 gtcggcctac tggttcaaca actcgcaaga gctaatcgac tttaaggagg ggaggcatgc 420
 tagcttcgag tatgggaggt atgggaaccc gaccacggag gcatttagaga agaagatgag 480
 cgcaactggag aaagcagagt ccaccgtgtt tgtggcgtca gggatgtatg cagctgtggc 540
 tatgctcagc gcacttgtcc ctgctggtgg gcacattgtg accaccacgg attgctaccg 600
 caagacaagg atttacatgg aaaatgagct ccctaagagg ggaatttcga tgactgtcat 660
 taggcctgct gacatggatg ctctccaaaa tgccttggac aacaataatg tatctcttt 720
 cttcacggag actcctacaa atccatttct cagatgcatt gatattgaac atgtatcaa 780
 tatgtccat agcaagggag cgttgctttg tattgacagt actttcgct cacctatcaa 840
 tcagaaggca ttaactttag gtgctgacct agttattcat tctgcaacga agtacattgc 900
 tggacacaat gatgttattg gaggatgcgt cagtggcaga gatgagttt tagtccaaagt 960
 tcgtatttac caccatgttag ttgggtgtgt tctaaaccgg aatgctgcgt accttatcct 1020
 tcgaggtatg aagacactgc atctccgtgt gcaatgtcag aacgacactg ctcttcggat 1080
 ggcccagttt ttagaggagc atccaaagat tgctcgtgtc tactatcctg gcttgccaag 1140
 tcaccctgaa catcacattt ccaagagtca aatgactggc tttggcgggtg ttgttagtt 1200
 tgaggttgcgt ggagactttg atgctacgag gaaattcatt gattctgtta aaatacccta 1260
 tcatgcgcct tctttggag gctgtgagag cataattgtat cagcctgcca tcatgtccta 1320
 ctgggattca aaggagcagc gggacatcta cgggatcaag gacaacctga tcaggttcag 1380
 cattgggtgtg gaggattcg aggatctaa gaacgatctc gtgcaggccc tcgagaagat 1440
 ctaagcactc taatcagttt gtattgacaa aatatgaggt gatggctgtc ttgatctt 1500
 tcaagatctg tgacaatgtat atgagctgtat gactgcgaat aagttctt 1560
 tatccgtcaa attcaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1620
 aaaaaaaaaa aactcgag 1638

<210> 17
<211> 480
<212> PRT
<213> Zea mays

<400> 17
Asn Ser Gly Ser Lys Pro Pro Arg Pro Asn Glu Arg Ser Val Pro Ser
1 5 10 15

Arg Ala Asp Ala Glu Thr Leu Ala Pro Leu Thr Pro Trp Pro Pro Cys
20 25 30

Arg Ser Leu Arg Arg Ser Ser Pro Pro Ser Pro Ala Ala Pro Trp
35 40 45

Pro Leu Pro Pro Ser Ser Ala Ser Arg Gln Thr Ser Ser Ala Ser Ala
50 55 60

Ala Ala Asp Val Ser Ala Ile Pro Asn Ala Lys Val Ala Gln Pro Ser
65 70 75 80

Ala Val Val Leu Ala Glu Arg Asn Leu Leu Gly Ser Asp Ala Ser Leu
85 90 95

Ala Val His Ala Gly Glu Arg Leu Gly Arg Arg Ile Ala Thr Asp Ala
100 105 110

Ile Thr Thr Pro Val Val Asn Thr Ser Ala Tyr Trp Phe Asn Asn Ser
115 120 125

Gln Glu Leu Ile Asp Phe Lys Glu Gly Arg His Ala Ser Phe Glu Tyr
130 135 140

Gly Arg Tyr Gly Asn Pro Thr Thr Glu Ala Leu Glu Lys Lys Met Ser
145 150 155 160

Ala Leu Glu Lys Ala Glu Ser Thr Val Phe Val Ala Ser Gly Met Tyr
165 170 175

Ala Ala Val Ala Met Leu Ser Ala Leu Val Pro Ala Gly Gly His Ile
180 185 190

Val Thr Thr Asp Cys Tyr Arg Lys Thr Arg Ile Tyr Met Glu Asn
195 200 205

Glu Leu Pro Lys Arg Gly Ile Ser Met Thr Val Ile Arg Pro Ala Asp
210 215 220

Met Asp Ala Leu Gln Asn Ala Leu Asp Asn Asn Asn Val Ser Leu Phe
225 230 235 240

Phe Thr Glu Thr Pro Thr Asn Pro Phe Leu Arg Cys Ile Asp Ile Glu
245 250 255

His Val Ser Asn Met Cys His Ser Lys Gly Ala Leu Leu Cys Ile Asp
260 265 270

Ser Thr Phe Ala Ser Pro Ile Asn Gln Lys Ala Leu Thr Leu Gly Ala
275 280 285

Asp Leu Val Ile His Ser Ala Thr Lys Tyr Ile Ala Gly His Asn Asp
290 295 300

Val Ile Gly Gly Cys Val Ser Gly Arg Asp Glu Leu Val Ser Lys Val
305 310 315 320

Arg Ile Tyr His His Val Val Gly Gly Val Leu Asn Pro Asn Ala Ala
325 330 335

Tyr Leu Ile Leu Arg Gly Met Lys Thr Leu His Leu Arg Val Gln Cys
340 345 350

Gln Asn Asp Thr Ala Leu Arg Met Ala Gln Phe Leu Glu Glu His Pro
355 360 365

Lys Ile Ala Arg Val Tyr Tyr Pro Gly Leu Pro Ser His Pro Glu His
370 375 380

His Ile Ala Lys Ser Gln Met Thr Gly Phe Gly Gly Val Val Ser Phe
385 390 395 400

Glu Val Ala Gly Asp Phe Asp Ala Thr Arg Lys Phe Ile Asp Ser Val
405 410 415

Lys Ile Pro Tyr His Ala Pro Ser Phe Gly Gly Cys Glu Ser Ile Ile
420 425 430

Asp Gln Pro Ala Ile Met Ser Tyr Trp Asp Ser Lys Glu Gln Arg Asp
435 440 445

Ile Tyr Gly Ile Lys Asp Asn Leu Ile Arg Phe Ser Ile Gly Val Glu
450 455 460

Asp Phe Glu Asp Leu Lys Asn Asp Leu Val Gln Ala Leu Glu Lys Ile
465 470 475 480

<210> 18

<211> 3639

<212> DNA

<213> Zea mays

<400> 18

tctagattac ataatacacc taataatctt gtgttgtttg tttacttctc aacttattta 60
agttggatta tattccatct tttctttttt atttgtctgt ttttagttaaa aatgaactaa 120
caaacgacaa atattcgaga acgagatgt ataatctata ggataatcag acatgtcctt 180
agagggtgtt tgtttagaat tataatatgt atagaatata taatccaaca aattttgaac 240
taacaagttt aaaatttgat agattatata atctggcac attataatcc taaacaaaca 300
ccatcttagt aatttttat ttagtgctcc gtttggatgt gaagaagatg gagttgaata 360
ccaaatcatg tatgatactg aaatgagatg taattttat tctattgtt ggatgtcggt 420
gaattggagt ttgaagttt gcggctaat tttacgcaat accgagatga gactttatac 480
taggagaggg gtttctagtt atagcctaatt tctaaagaat tgagtctcta tttccaaatc 540
ttaattttat gcaactaaac aacacaattt agaaaaactg tttcaattt cttattctgt 600
gctccaaacg aggtggagta tttagaagta gataagcgcc tctgctgcac gaagcgatga 660
acgcactctg acggcttgc cactacaat aagccgcacc gcatttcgga aggccacgcg 720
accgccacct ccccgaagct gccgcgaccg atcgagcgaa gcgtcgctcc ccgcgcggcc 780
gccaaaaccc tagttctcc tactccatgg ccactgtctc gtcaccccc caggctgtct 840
tctccacgga gtccgggtgc gccctggct ctgctaccat cctccgctt ccgccaaact 900
ttgtccgcca gcttagcacc aaggcacgccc gcaactgcag caacatcgcc gtcgcgcaga 960
tcgtcgccgc cgctgtgtcc gactgccccg ccgctcgccc ccacttaggc ggccggcc 1020
gccgcgcccc cgctcccacg ccgcggctgc atcggccgc 1080

ccgcggcggc ggaggtcagc gcaattccca acgctaagg tgcgcaaccg tccgccgtcg 1140
 tcttggccga gcgtaacctg ctcggctccg acgcccacgct cgccgtccac gcgggtaccc 1200
 taccctgcta gctcgctct ttactgtaag atcttagttc tatgttttt tcccccttcg 1260
 atgattcctt tgtggcttg ctgcctttt atctgaaaca ggggagaggc tggagaagaag 1320
 gatcgccacg gatgcgatca ccacaccggt agtgaacacg tcggctact gttcaacaa 1380
 ctcgcaagag ctaatcgact ttaaggtagt gaatattcg gcttgctct gtctaattt 1440
 acggatgtga gtttgcgcg ccaaataattt agttttatct gttccttagg agggaggca 1500
 tgctagcttc gagtatgggaa ggtatggaa cccgaccacg gaggcattag agaagaagat 1560
 gaggtgatgc tcgatagtgg aaatgtcgcc accctgttgg ttgcatttgg ctggaggcta 1620
 aacagttgcg tggctcatg gtgcagcgca ctggagaaag cagagtccac agtggcg 1680
 gcatcgggaa tgtatgcagc tgccgtatg ctcagtgcac ttgtccggc tggggcac 1740
 attgtgacca ccacggattt ctacggaaa acaaggattt acatggaaac tgagctccc 1800
 aagagggaa tttcggtat accatgcgtt ctttaagct ctacttgtt tttagaacggg 1860
 acatctgcta tcactattgg ttgtcttcgtt gtcactgtgc tacagtagtg ggtctacaat 1920
 gaacttgc tattcagtt aaaattactc tgtcggttg tccttatcta gctaatagtc 1980
 tctacaaagt tcagttactt cagcatagcc aataggagta gcataactac tgcaaggat 2040
 atgaacaata tccttgcag tagctgttgg gagtacacag tacagtagtg cttcagactt 2100
 tattcttgt actgcatttgg gtgaagccac atagggttg ccgagtgac gtgcaccagg 2160
 gaaaaaacaat tttctacttt tctagtgtt aaaaactaaa tttagtaccat catgcacacc 2220
 ctaatttttta attagagaag attttcaata catgtgtata ttgaaatgtc aagtgtgcac 2280
 tcggatttcc cggcctctag cttcgccccga ctgcaatgtc aataggattt gctatctgt 2340
 aaggatttaa gtagaactgc ttgtggtaat aaattttagg atccctcaca ataagattt 2400
 ttatataatc acaccatcta ccagttgaaa tgcagtgata gcactttgt agttgtatac 2460
 caatgttct cacgcttcac ttagcatgtg atactgttta tgctcagatg actgtcatta 2520
 ggcctgctga catggatgct ctacaaaatg cggtggacaa caataatgtg agtgggtat 2580
 catttccatt gccctgatc gtggtaaaaa acatacatta atacatttgaa aatgttagcc 2640
 taaccattatg gccatgtcag gtatctttt tcttcacgg aactcccaca aatccatttc 2700
 tcagatgcat tgatattgaa catgtatcaa atatgtgcca tagcaaggaa gcgttgctt 2760
 gtatcgacag tactttgcc tcccctatca atcagaaggc actgacttta ggcgtgacc 2820
 tagttattca ttctgcaaca aagtacattt ctggacacaa cgatgtgagt tgatatactg 2880
 aaccccatct cccctcatta aagttatgtt tttgcacatt gcactaacta gtacttcaac 2940
 ttcccaggat attggaggat gcgtcagtg cagagatgag ttggttcca aagtccgtat 3000
 ttatcaccat gtggttggtg gtgttctaaa cccggtaagt ttagattgtt aaagttttgt 3060
 ttccatttat ttcatcttcc ttgcacaggt tgtatgtatt tacagattcc catagttaca 3120
 agcttctatt ttatataggta gaaaatcggt taattttctt tagtagcata tgtttaggtt 3180
 agaaaaataa ttgtctttct ctgagatcata caaaccgcata ccagttctct gttacatgaa 3240
 ctagaattct ggtctggaa aggaagaaat aggatatgtt ctgtgcactg caatatatat 3300
 ctaatcatta atccggagct ttatgtcaca gactcacagg ccaggctacc actttatgaa 3360
 atattccaaa ttatgttctt ctcaaaatgg aatgactcat gttgtactct gttccaacgt 3420
 tttcaaataa tgactaggat tctagttgcc cggacaccga cttaggtatt aatcgtaact 3480
 aggcatggac tagtcacgat tagtttgag cttagtgcac ttatcaacaa cttgttccag 3540
 gcaatataattt gcagttactat gccttattga ttgggtat aatgaattt tagcacacag 3600
 atagagcaga agtaagacaa attaacacaa agttctaga 3639

<210> 19
 <211> 509
 <212> PRT
 <213> Zea mays

<400> 19
 Met Ala Thr Val Ser Leu Thr Pro Gln Ala Val Phe Ser Thr Glu Ser
 1 5 10 15

Gly Gly Ala Leu Ala Ser Ala Thr Ile Leu Arg Phe Pro Pro Asn Phe
 20 25 30

Val Arg Gln Leu Ser Thr Lys Ala Arg Arg Asn Cys Ser Asn Ile Gly
 35 40 45

Val Ala Gln Ile Val Ala Ala Ala Trp Ser Asp Cys Pro Ala Ala Arg
50 55 60

Pro His Leu Gly Gly Gly Arg Arg Ala Arg Gly Val Ala Ser Ser
65 70 75 80

His Ala Ala Ala Ala Ser Ala Ala Ala Ala Ser Ala Ala Ala Glu
85 90 95

Val Ser Ala Ile Pro Asn Ala Lys Val Ala Gln Pro Ser Ala Val Val
100 105 110

Leu Ala Glu Arg Asn Leu Leu Gly Ser Asp Ala Ser Leu Ala Val His
115 120 125

Ala Gly Glu Arg Leu Gly Arg Arg Ile Ala Thr Asp Ala Ile Thr Thr
130 135 140

Pro Val Val Asn Thr Ser Ala Tyr Trp Phe Asn Asn Ser Gln Glu Leu
145 150 155 160

Ile Asp Phe Lys Glu Gly Arg His Ala Ser Phe Glu Tyr Gly Arg Tyr
165 170 175

Gly Asn Pro Thr Thr Glu Ala Leu Glu Lys Lys Met Ser Ala Leu Glu
180 185 190

Lys Ala Glu Ser Thr Val Phe Val Ala Ser Gly Met Tyr Ala Ala Val
195 200 205

Ala Met Leu Ser Ala Leu Val Pro Ala Gly Gly His Ile Val Thr Thr
210 215 220

Thr Asp Cys Tyr Arg Lys Thr Arg Ile Tyr Met Glu Asn Glu Leu Pro
225 230 235 240

Lys Arg Gly Ile Ser Met Thr Val Ile Arg Pro Ala Asp Met Asp Ala
245 250 255

Leu Gln Asn Ala Leu Asp Asn Asn Asn Val Ser Leu Phe Phe Thr Glu
260 265 270

Thr Pro Thr Asn Pro Phe Leu Arg Cys Ile Asp Ile Glu His Val Ser
275 280 285

Asn Met Cys His Ser Lys Gly Ala Leu Leu Cys Ile Asp Ser Thr Phe
290 295 300

Ala Ser Pro Ile Asn Gln Lys Ala Leu Thr Leu Gly Ala Asp Leu Val
305 310 315 320

Ile His Ser Ala Thr Lys Tyr Ile Ala Gly His Asn Asp Val Ile Gly
325 330 335

Gly Cys Val Ser Gly Arg Asp Glu Leu Val Ser Lys Val Arg Ile Tyr
340 345 350

His His Val Val Gly Gly Val Leu Asn Pro Asn Ala Ala Tyr Leu Ile
355 360 365

Leu Arg Gly Met Lys Thr Leu His Leu Arg Val Gln Cys Gln Asn Asp
370 375 380

Thr Ala Leu Arg Met Ala Gln Phe Leu Glu Glu His Pro Lys Ile Ala
385 390 395 400

Arg Val Tyr Tyr Pro Gly Leu Pro Ser His Pro Glu His His Ile Ala
405 410 415

Lys Ser Gln Met Thr Gly Phe Gly Gly Val Val Ser Phe Glu Val Ala
420 425 430

Gly Asp Phe Asp Ala Thr Arg Lys Phe Ile Asp Ser Val Lys Ile Pro
435 440 445

Tyr His Ala Pro Ser Phe Gly Gly Cys Glu Ser Ile Ile Asp Gln Pro
450 455 460

Ala Ile Met Ser Tyr Trp Asp Ser Lys Glu Gln Arg Asp Ile Tyr Gly
465 470 475 480

Ile Lys Asp Asn Leu Ile Arg Phe Ser Ile Gly Val Glu Asp Phe Glu
485 490 495

Asp Leu Lys Asn Asp Leu Val Gln Ala Leu Glu Lys Ile
500 505

<210> 20

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 20

aattcatgag tgca 14

<210> 21

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 21

aatttgcaact catg 14

<210> 22

<211> 1350

<212> DNA

<213> Escherichia coli

<400> 22

atggctgaaa ttgttgtctc caaatttggc ggtaccagcg tagctgattt tgacgccatg 60
aacccgcagcg ctgatattgt gctttctgat gccaacgtgc gttagttgt cctctcggt 120
tctgctggta tcactaatct gctggtcgct ttagctgaag gactggaacc tggcgagcga 180
ttcgaaaaac tcgacgctat ccgcaacatc cagttgcca ttctggaacg tctgcgttac 240

ccgaacgtta tccgtgaaga gattgaacgt ctgctggaga acattactgt tctggcagaa 300
gcggcggcgc tggcaacgtc tccggcgctg acagatgago tggtcagcca cggcgagctg 360
atgtcgaccc tgctgtttgt tgagatcctg cgcaacgcg atgttcaggc acagtggtt 420
gatgtacgta aagtgtatgcg taccaacgac cgatttggtc gtgcagagcc agatatagcc 480
gcgctggcgg aactggccgc gctgcagctg ctcccacgtc tcaatgaagg cttagtgatc 540
accaggat ttatcggtag cgaaaataaa ggtcgtaaaa cgacgcttgg ccgtggaggc 600
agcgattata cggcaggcctt gctggcgag gctttacacg catctcggt tgatatctgg 660
accgacgtcc cgggcatacta caccaccat ccacgcgtag tttccgcagc aaaacgcatt 720
gatgaaatcg cgaaaatcg agcggcagag atggcaactt ttgggtcaaa agtactgcat 780
ccggcaacgt tgctaccgc agtacgcagc gatatcccgg tctttgtcgg ctccagcaaa 840
gacccacgcg caggtggtagc gctgggtgc aataaaaactg aaaatccgc gctgttccgc 900
gctctggcgc ttcgtcgcaa tcagactctg ctcactttgc acaggctgaa tatgctgcat 960
tctcgcggtt tcctcgccga agtttcggc atcctcgcc ggcataaatat ttggtagac 1020
ttaatcacca cgtcagaagt gagcgtggca ttaacccttg ataccaccgg ttcaacacctcc 1080
actggcgata cggtgctgac gcaatctctg ctgatggagc tttccgcact gtgtcgggtg 1140
gaggtggaaag aaggtctggc gctggcgag ttgattggca atgacctgtc aaaagcctgc 1200
gccgttggca aagaggtatt cggcgtactg gaaccgttca acattcgcat gattgttat 1260
ggcgcatacca gccataacct gtgcttcctg gtgcccggcg aagatgccga gcaggtggcg 1320
caaaaactgc atagtaattt gttttagtaa 1350

<210> 23

<211> 449

<212> PRT

<213> Escherichia coli

<400> 23

Met Ala Glu Ile Val Val Ser Lys Phe Gly Gly Thr Ser Val Ala Asp
1 5 10 15

Phe Asp Ala Met Asn Arg Ser Ala Asp Ile Val Leu Ser Asp Ala Asn
20 25 30

Val Arg Leu Val Val Leu Ser Ala Ser Ala Gly Ile Thr Asn Leu Leu
35 40 45

Val Ala Leu Ala Glu Gly Leu Glu Pro Gly Glu Arg Phe Glu Lys Leu
50 55 60

Asp Ala Ile Arg Asn Ile Gln Phe Ala Ile Leu Glu Arg Leu Arg Tyr
65 70 75 80

Pro Asn Val Ile Arg Glu Glu Ile Glu Arg Leu Leu Glu Asn Ile Thr
85 90 95

Val Leu Ala Glu Ala Ala Leu Ala Thr Ser Pro Ala Leu Thr Asp
100 105 110

Glu Leu Val Ser His Gly Glu Leu Met Ser Thr Leu Leu Phe Val Glu
115 120 125

Ile Leu Arg Glu Arg Asp Val Gln Ala Gln Trp Phe Asp Val Arg Lys
130 135 140

Val Met Arg Thr Asn Asp Arg Phe Gly Arg Ala Glu Pro Asp Ile Ala
145 150 155 160

Ala Leu Ala Glu Leu Ala Ala Leu Gln Leu Leu Pro Arg Leu Asn Glu
165 170 175

Gly Leu Val Ile Thr Gln Gly Phe Ile Gly Ser Glu Asn Lys Gly Arg
180 185 190

Thr Thr Thr Leu Gly Arg Gly Ser Asp Tyr Thr Ala Ala Leu Leu
195 200 205

Ala Glu Ala Leu His Ala Ser Arg Val Asp Ile Trp Thr Asp Val Pro
210 215 220

Gly Ile Tyr Thr Asp Pro Arg Val Val Ser Ala Ala Lys Arg Ile
225 230 235 240

Asp Glu Ile Ala Phe Ala Glu Ala Ala Glu Met Ala Thr Phe Gly Ala
245 250 255

Lys Val Leu His Pro Ala Thr Leu Leu Pro Ala Val Arg Ser Asp Ile
260 265 270

Pro Val Phe Val Gly Ser Ser Lys Asp Pro Arg Ala Gly Gly Thr Leu
275 280 285

Val Cys Asn Lys Thr Glu Asn Pro Pro Leu Phe Arg Ala Leu Ala Leu
290 295 300

Arg Arg Asn Gln Thr Leu Leu Thr Leu His Ser Leu Asn Met Leu His
305 310 315 320

Ser Arg Gly Phe Leu Ala Glu Val Phe Gly Ile Leu Ala Arg His Asn
325 330 335

Ile Ser Val Asp Leu Ile Thr Thr Ser Glu Val Ser Val Ala Leu Thr
340 345 350

Leu Asp Thr Thr Gly Ser Thr Ser Thr Gly Asp Thr Leu Leu Thr Gln
355 360 365

Ser Leu Leu Met Glu Leu Ser Ala Leu Cys Arg Val Glu Val Glu Glu
370 375 380

Gly Leu Ala Leu Val Ala Leu Ile Gly Asn Asp Leu Ser Lys Ala Cys
385 390 395 400

Ala Val Gly Lys Glu Val Phe Gly Val Leu Glu Pro Phe Asn Ile Arg
405 410 415

Met Ile Cys Tyr Gly Ala Ser Ser His Asn Leu Cys Phe Leu Val Pro
420 425 430

Gly Glu Asp Ala Glu Gln Val Val Gln Lys Leu His Ser Asn Leu Phe
435 440 445

Glu

<210> 24

<211> 36

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 24
gatccatggc taaaattgtt gtctccaaat ttggcg 36

<210> 25
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 25
gtaccgccaa atttggagac aacaatttca gccatg 36

<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 26
atggcagcca agatgcttgc attgttcgct 30

<210> 27
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 27
gaatgcagca ccaacaaagg gttgctgtaa 30

<210> 28
<211> 2123
<212> DNA
<213> Zea mays

<400> 28
tcttagaggct attaccatct ctactcacgg gtcgttagagg tggtgaggtt ggctacagct 60
ggtgacaatc ctactcaccc tttgtaatcc tctacggctc tacgcgtagt taattggta 120
gatgtcaacc ccctctctaa gtggcagtag tgggcttgggtatacctgct agtgcctggg 180
gatgttctat ttttcttagta gtgcttgatc aaacattgca tagttgact tgggacaaac 240
tgtctgatat atatatatat ttttggcag agggagcagt aagaacttat ttagaaatgt 300
aatcatttgt taaaaaaggt ttaattttgc tgcttcttt cgtaatgtt gttttcacat 360
tagattttct ttgtgttata tacactggat acatacaaattc tagttgcag tagtctctta 420
atccacatca gctaggcata cttagcaaa agcaaattac acaaattctag tgtgcctgtc 480
gtcacattct caataaaactc gtcatgttt actaaaagta cctttcgaa gcatcatatt 540
aatccgaaaa cagttaggaa agtctccaaa tctgaccaaa tgccaaatgtca tcgtccagct 600
tatcagcatc caactttcag ttgcgtatgt gctagaaatt gttttcattc tacatggcca 660
ttgttgactg catgcata taaataggac ctagacgatc aatcgcaatc gcatatccac 720
tattctctag gaagcaaggg aatcacatcg ccatggcagc caagatgttt gcattgtttg 780
cgctccttagc tctttgtgca accgcccacta gtgctaccca tatcccaggg cacttgcac 840
cactactgat gccattggct accatgaacc catggatgca gtactgcac aagcaacagg 900

gggttgccaa	cttgttagcg	tggccgaccc	tgatgctgca	gcaactgttgc	gcctcaccgc	960
ttcagcagtgc	ccagatgccaa	atgatgatgc	cgggttatgtat	gccaccgatgc	acgatgatgc	1020
cgtgccgag	tatgatgccaa	tcgatgatgg	tgccgactat	gatgtcacca	atgacgatgg	1080
ctagtatgtat	gccgcccgtat	atgatgccaat	gcatgatttc	accaatgacg	atgccgagta	1140
tgtgccttc	gatgataatgc	ccgaccatga	tgtcaccaat	gattatgccc	agtatgatgc	1200
caccaatgtat	gatgccgagc	atggtgtcac	caatgatgtat	gccaaacatgc	atgacagtg	1260
cacaatgtta	ctctggttct	atctcacaca	ttatacaaca	acaacaatta	ccattcatgt	1320
tcagccccac	agccatggcg	atcccaccca	tgttcttaca	gcagcccttgc	gttggtgctg	1380
cattctagat	ctagatataa	gcattttgtgt	agtacccaat	aatgaagtcg	gcatgccatc	1440
gcatacgact	cattgttttag	gaataaaaaca	agctaataat	gactttctc	tcattataaac	1500
ttatatctct	ccatgtctgt	ttgtgtgttt	gtaatgtctg	ttaatcttag	tagatttat	1560
tgtatataata	accatgtatt	ctctccatttc	caaattatag	gtcttgcatt	tcaagataaa	1620
tagtttaaac	catacctaga	cattatgtat	atataaggcg	cttaacaaaa	gctatgtact	1680
cagtaaaaatc	aaaacgactt	acaatttaaa	atttagaaag	tacattttta	ttaatagact	1740
aggtgagttac	ttgtgcgttgc	caacgggaac	atataataac	ataataactt	atataacaaaa	1800
tgtatcttat	attgttataa	aaaatatttc	ataatccatt	tgtaatccta	gtcatacata	1860
aattttgtta	tttaattta	gttgtttcac	tactacatttgc	caaccattag	tatcatgcag	1920
acttcgatata	atgccaagat	ttgcgttgc	tcatcatttgc	agagcacatgc	tcacacctgc	1980
cggtagaaagt	tctctcgat	attgtcagtc	atcaggtacg	caccaccata	cacgcttgc	2040
taaacaacaaaa	aacaagtgtat	tgtgtttgcg	aagagaatttgc	agacaggcag	acacaaagct	2100
acccgacgtat	ggcgagtcgg	tca				2123

<210> 29

<211> 211

<212> PRT

<213> Zea mays

<400> 29

Met Ala Ala Lys Met Phe Ala Leu Phe Ala Leu Leu Ala Leu Cys Ala
1 5 10 15

Thr Ala Thr Ser Ala Thr His Ile Pro Gly His Leu Ser Pro Leu Leu
20 25 30

Met Pro Leu Ala Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln
35 40 45

Gln Gly Val Ala Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln
50 55 60

Leu Leu Ala Ser Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro
65 70 75 80

Gly Met Met Pro Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro
85 90 95

Ser Met Met Val Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met
100 105 110

Met Pro Pro Met Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro
115 120 125

Ser Met Met Pro Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile
130 135 140

Met Pro Ser Met Met Pro Pro Met Met Met Pro Ser Met Val Ser Pro
145 150 155 160

Met Met Met Pro Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser
165 170 175

Ile Ser His Ile Ile Gln Gln Gln Gln Leu Pro Phe Met Phe Ser Pro
180 185 190

Thr Ala Met Ala Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly
195 200 205

Ala Ala Phe
210

<210> 30
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 30
atgaaccctt ggatgca 17

<210> 31
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 31
cccacagcaa tggcgat 17

<210> 32
<211> 639
<212> DNA
<213> Zea mays

<400> 32
ccatggcagc caagatgttt gcattgttg cgctccttagc tctttgtgca accgccacta 60
gtgctaccca tatcccaggg cacttgtcac cactactgtat gccattggct accatgaacc 120
cttggatgca gtactgcatt aagcaacagg gggttgccaa cttgttagcg tggccgaccc 180
tcatgtgcgc gcaactgttg gcctcaccgc ttcatcgatgc ccagatgcca atgatgtgc 240
cggttatgat gccaccgatg acgatgtgc cgatgccgatg tatgtatgcca tcgatgtatgg 300
tgccgactat gatgtcacca atgacgatgg ctatgtatgat gccggcgatg atgatgcca 360
gcatgatttc accaatgacg atgcccggatg tgatgccttc gatgataatg ccgaccatga 420
tgtcaccaat gattatgccc agtcatgtgc caccaatgtat gatgccgacg atgggtcac 480
caatgtatgat gccaaacatg atgacagtgc cacaaatgtta ctctgggtct atctcacaca 540
ttataacaaca acaacaatata ccattcatgt tcagccccac agcaatggcg atccccacca 600
tggtttttaca gcagcccttt gttggtgctg cattctaga 639

<210> 33
<211> 211
<212> PRT
<213> Zea mays

<400> 33
Met Ala Ala Lys Met Phe Ala Leu Phe Ala Leu Leu Ala Leu Cys Ala
1 5 10 15

Thr Ala Thr Ser Ala Thr His Ile Pro Gly His Leu Ser Pro Leu Leu
20 25 30

Met Pro Leu Ala Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln
35 40 45

Gln Gly Val Ala Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln
50 55 60

Leu Leu Ala Ser Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro
65 70 75 80

Gly Met Met Pro Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro
85 90 95

Ser Met Met Val Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met
100 105 110

Met Pro Pro Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro
115 120 125

Ser Met Met Pro Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile
130 135 140

Met Pro Ser Met Met Pro Pro Met Met Met Pro Ser Met Val Ser Pro
145 150 155 160

Met Met Met Pro Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser
165 170 175

Ile Ser His Ile Ile Gln Gln Gln Leu Pro Phe Met Phe Ser Pro
180 185 190

Thr Ala Met Ala Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly
195 200 205

Ala Ala Phe
210

<210> 34

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 34

ctagccggg tac

13

<210> 35

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 35

ctaggtaccc ggg

13

<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 36
ccacttcatg acccatatcc cagggcactt 30

<210> 37
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 37
ttcttatctag aatgcagcac caacaaagg 30

<210> 38
<211> 579
<212> DNA
<213> Zea mays

<400> 38
tcatgaccca tatcccaggg cacttgtcac cactactgat gccattggct accatgaacc 60
cttggatgca gtactgcac aagcaacagg gggttgccaa cttgttagcg tggccgaccc 120
tgatgctgca gcaactgttg gcctcaccgc ttcagcagtg ccagatgcca atgatgatgc 180
cgggtatgat gccaccgatg acgatgatgc cgatgccgag tatgatgcca tcgatgatgg 240
tgccgactat gatgtcacca atgacgatgg ctagtatgat gccggcgatg atgatgccaa 300
gcatgatttc accaatgacg atgcccagta tgatgccttc gatgataatg ccgaccatga 360
tgtcaccaat gattatgccg agtatgatgc caccaatgat gatgccgagc atggtgtcac 420
caatgatgat gccaaacatg atgacagtgc cacaatgtta ctctggttct atctcacaca 480
ttatacaaca acaacaatta ccattcatgt tcagccccac agcaatggcg atcccaccca 540
tggttttaca gcagcccttt gttggtgctg cattctaga 579

<210> 39
<211> 191
<212> PRT
<213> Zea mays

<400> 39
Met Thr His Ile Pro Gly His Leu Ser Pro Leu Leu Met Pro Leu Ala
1 5 10 15

Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln Gln Gly Val Ala
20 25 30

Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln Leu Leu Ala Ser
35 40 45

Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro Gly Met Met Pro
50 55 60

Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro Ser Met Met Val
65 70 75 80

Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met Met Pro Pro Met
85 90 95

Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro Ser Met Met Pro
100 105 110

Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile Met Pro Ser Met
115 120 125

Met Pro Pro Met Met Pro Ser Met Val Ser Pro Met Met Met Pro
130 135 140

Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser Ile Ser His Ile
145 150 155 160

Ile Gln Gln Gln Gln Leu Pro Phe Met Phe Ser Pro Thr Ala Met Ala
165 170 175

Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly Ala Ala Phe
180 185 190

<210> 40

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 40

ctagaaggct cggcaacgtc agcaacggcg gaagaatccg gtg

43

<210> 41

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 41

catgcaccgg attcttccgc cgttgctgac gttgccgagg ctt

43

<210> 42

<211> 55

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 42

gatcccattgg cgcccccttaa gtccaccggcc agcctccccg tcgccccggc ctcct

55

<210> 43

<211> 55

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 43
ctagaggagc ggcggcgac gggaggctg gcgggtggact taagggcgc catgg 55

<210> 44
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 44
catggcgccc accgtgatga tggcctcgtc ggccaccgccc gtcgctccgt tccagggc 59

<210> 45
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 45
ttaagccctt ggaacggagc gacggcggtg gccgacgagg ccatcatcac ggtggcgc 59

<210> 46
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 46
catggctggc ttccccacga ggaagaccaa caatgacatt acctccatttg ctagcaacgg 60
tggaaagagta caatg 75

<210> 47
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 47
catgcattgt actcttccac cgttgctagc aatggaggta atgtcattgt tggtcttcct 60
cgtggggaaag ccagc 75

<210> 48
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 48
catggcttcc tcaatgatct cctccccagc tgttaccacc gtcaaccgtg ccggtgccgg 60
catggtgtct ccattcacccg gcctaaaaag 90

<210> 49
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 49
catgctttg aggccggta atggagcaac catgccggca ccggcacggg tgacggtggt 60
aacagctggg gaggagatca ttgaggaagc 90

<210> 50
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 50
gactatccat ggcacattgt actcttccac c 31

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 51
tactaaccat ggcttcctca 20

<210> 52
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 52
ggccatggcc gc 12

<210> 53
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 53
gaaaccatgg ccagtgtgat tgcgcaaggca 30

<210> 54
 <211> 29
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 54
 gaaaggtacc ttacaacaac tgtgccagc 29

<210> 55
 <211> 1494
 <212> DNA
 <213> Glycine max

<220>
 <221> unsure
 <222> (1461)
 <223> n = A, C, G, or T

<220>
 <221> unsure
 <222> (1464)
 <223> n = A, C, G, or T

<220>
 <221> unsure
 <222> (1465)
 <223> n = A, C, G, or T

<400> 55

atttgcagca	caaaaagttt	ttgaagtaaa	tgccttggcc	aaggcattgt	ctggacagaa	60
ggatgaggtt	ttctttctg	ctaattgtgc	tgccttggct	tcaaggaagt	cctccccaaag	120
ggtgataaat	gaggctgtcc	aaaaagccgc	tgctgctctg	aagggctctg	atcatcgag	180
ggccacaaat	gttagtgcca	ggttggatgc	tcaacagaag	aaattgaatc	tttctgttct	240
tccaacaact	acaattggat	cttccctca	aactgccat	cttagaaagr	twcgycgtga	300
attcaaggct	aacaagatct	ccgaggaaga	gtatgthaag	tcaattaagg	agggaaattcg	360
caaagttgtt	garcttcaag	aagagcttga	tattgatgtt	cttgcattat	gagaaccaga	420
gagaaatgtat	atgggtgagt	acttcggtga	rcaattgtca	ggctttgcct	tcacygttaa	480
tgggtgggtt	caatcctatg	gttcccgtt	ygtgaagcca	ccratcatct	atggtgatgt	540
gagccgcccc	aagccaatga	cygtcttctg	gtcatctctg	gctcagagct	ttaccaagcg	600
cccaatgaag	ggaatgctta	ccggctctgt	taccattctc	aactggkcct	ttgtwagaaa	660
tgaccaacct	agatctgaga	ccacctacca	gattgcttt	gctatcaagg	acgaagtgg	720
ggaccttggaa	aaggctggca	tcactgttat	ccaaattgtat	gaagctgctt	tgagagaggg	780
tctgccactg	rggaaatcag	aacaagctca	ctacttggac	tgggctgtcc	atgccttcag	840
aatcaccaat	gttggtgtgc	aggataccac	tcagatccac	acccacatgt	gctactccaa	900
cttcaacgac	atcatccact	ccatcatcga	catggacgct	gatgttatca	ccattgagaa	960
ctctcgctcc	gatgagaagc	tcctgtcagt	cttccgtgaa	ggtgtgaagt	atggtgctgg	1020
aattgscctt	ggtgtctatg	acatccactc	cccaagaata	ccaccaactg	aagaaatcgc	1080
tgacagaatc	aataagatgc	tggcagtgt	cgagaagaac	atcttgtgg	tcaaccctga	1140
ctgtggtctc	aagaccgc	agtacactga	agtgaagccc	gccctcacaa	acatggttgc	1200
cgcagcaaaa	ctcatccgt	acgaacttgc	caagtgaatg	gtataagaaa	gtagaatcta	1260
caagttcatt	ggttctgtt	ttataataca	ccaaagaaaa	attttctata	ttgggttgtt	1320
tcaataaccg	tgtgtgaaat	attttagatgt	tttagcatgc	tctgtgagca	attgattctt	1380
cctcaacccc	tctccctta	ttttcccaa	ctcctgttt	ccctaattgaa	tgttgtatct	1440
ttgctttgcc	gcaatcctta	nttnngatat	gaaatattac	cagtttgtg	caaa	1494