Lec 26: Piecewise Interpolation – Cubic Splines

Hermite Cubic Interpolation

Hermite Cubic Interpolation

We now seek a piecewise cubic polynomial p where $p_i(x)$ on $[x_i, x_{i+1}]$ is written in shifted power form as

$$p_i(x) = c_{i,1} + c_{i,2}(x - x_i) + c_{i,3}(x - x_i)^2 + c_{i,4}(x - x_i)^3$$
.

• If the slopes at endpoints are additionally given, i.e.,

$$p_i(x_i) = y_i$$
, $p'_i(x_i) = \sigma_i$, $p_i(x_{i+1}) = y_{i+1}$, $p'_i(x_{i+1}) = \sigma_{i+1}$,

then we can solve for the four unknown coefficients $c_{i,j}$:

$$c_{i,1} = y_i$$
, $c_{i,3} = \frac{3y[x_i, x_{i+1}] - 2\sigma_i - \sigma_{i+1}}{\Delta x_i}$,
 $c_{i,2} = \sigma_i$, $c_{i,4} = \frac{\sigma_i + \sigma_{i+1} - 2y[x_i, x_{i+1}]}{(\Delta x_i)^2}$.

This is called Hermite cubic interpolation.

Convergence: Error Analysis

Theorem 1 (Error Theorem for Hermite Cubic Interpolation)

Let $f \in C^4[a,b]$ and let p(x) be the Hermite cubic interpolant of

$$(x_i, f(x_i), f'(x_i)), \quad \text{for } i = 1, \ldots, n,$$

where

$$x_j = a + jh$$
 and $h = \frac{b-a}{n-1}$.

Then

$$||f - pp||_{\infty} \le \frac{1}{384} ||f^{(4)}||_{\infty} h^4.$$

Cubic Splines

Cubic Splines

Idea: Put together cubic polynomials to make the result as smooth as possible.

- At interior breakpoints: for $j=2,3,\cdots,n-1$
 - matching values: $p_{j-1}(x_j) = p_j(x_j)$ [(n-2) eqns]
 - matching first derivatives: $p'_{j-1}(x_j) = p'_j(x_j)$ [(n-2) eqns]
 - matching second derivative: $p''_{j-1}(x_j) = p''_j(x_j)$ [(n-2) eqns]
- So, together with the n interpolating conditions, we have total of (4n-6) equations.
- To match up with the number of unknowns (4n-4), we need to impose two more conditions on the boundary:
 - 1 slopes at each end (clamped cubic spline)
 - 2 second derivatives at the endpoints (natural cubic spline)
 - g periodic boundary condition
 - **4** not-a-knot boundary condition: $p_1(x) \equiv p_2(x)$ and $p_{n-2}(x) \equiv p_{n-1}(x)$.

Convergence: Error Analysis

Theorem 2 (Error Theorem for Clamped Cubic Splines)

Let $f \in C^4[a,b]$ and let p(x) be the cubic spline interpolant of

$$(x_i, f(x_i)), \quad \text{for } i = 1, \ldots, n,$$

with the exact boundary conditions

$$\sigma_1 = f'(x_1)$$
 and $\sigma_n = f'(x_n)$,

in which

$$x_j = a + jh$$
 and $h = \frac{b-a}{n-1}$.

Then

$$||f - pp||_{\infty} \le \frac{5}{384} ||f^{(4)}||_{\infty} h^4.$$

Remarks

- Hermite cubic interpolation is about five times as accurate as cubic spline interpolation, yet both have *fourth-order accuracy*.
- Unlike the former, the latter does not require first derivatives.

Appendix: Derivation of Cubic Spline Algorithm

Cubic Spline: Problem Set-Up

Given $\{(x_i,y_i)\,|\,i=1,2,\ldots,n\}$, find a piecewise polynomial $p\!\!\!/(x)=p_i(x)$ on $[x_i,x_{i+1}]$ with

$$p_i(x) = c_{i,1} + c_{i,2}(x - x_i) + c_{i,3}(x - x_i)^2 + c_{i,4}(x - x_i)^3,$$

satisfying¹

- **1** $p(x_i) = y_i \text{ for } i = 1, ..., n;$
- 2 $p_i(x_{i+1}) = p_{i+1}(x_{i+1})$ for i = 1, ..., n-2;
- 3 $p'_i(x_{i+1}) = p'_{i+1}(x_{i+1})$ for i = 1, ..., n-2;
- 4 $p_i''(x_{i+1}) = p_{i+1}''(x_{i+1})$ for $i = 1, \ldots, n-2$.

¹Let us not worry about the boundary conditions yet.

Connection to Hermite Cubic Interpolation

Key Observation. If $c_{i,j}$'s are set to be

$$c_{i,1} = y_i, c_{i,3} = \frac{3y[x_i, x_{i+1}] - 2\sigma_i - \sigma_{i+1}}{\Delta x_i},$$

$$c_{i,2} = \sigma_i, c_{i,4} = \frac{\sigma_i + \sigma_{i+1} - 2y[x_i, x_{i+1}]}{(\Delta x_i)^2},$$
(*)

as in the Hermite cubic interpolation for some constants $\sigma_1, \sigma_2, \dots, \sigma_n$ to be determined, then p(x) satisfies the first three requirements from the previous slide.

Reduction. Determine $\sigma_1, \sigma_2, \dots, \sigma_n$ so that the fourth requirement is satisfied.

Derivation of a Linear System for Cubic Splines (1)

Using (*), write out the fourth requirement $p''_{i-1}(x_i) = p''_i(x_i)$ in terms of $\sigma_{i-1}, \sigma_i, \sigma_{i+1}$, where $i \in \mathbb{N}[2, n-1]$.

Derivation of a Linear System for Cubic Splines (2)

Express the system of n-2 equations for $\sigma_1, \ldots, \sigma_n$ as a matrix equation $X\boldsymbol{\sigma} = \mathbf{r}$, where $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)^T$ and $X \in \mathbb{R}^{n \times n}$ and $\mathbf{r} \in \mathbb{R}^n$ are to be found².

²Since two equations are still missing, leave the first and last rows of X and \mathbf{r} empty for now.

Tridiagonal System for Cubic Splines

Notation. $\Delta x_i = x_{i+1} - x_i$ and $\nabla x_i = \Delta x_{i-1} + \Delta x_i = x_{i+1} - x_{i-1}$.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-2} \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix}, \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} * \\ 3 \left(y[x_1, x_2] \Delta x_2 + y[x_2, x_3] \Delta x_1 \right) \\ 3 \left(y[x_2, x_3] \Delta x_3 + y[x_3, x_4] \Delta x_2 \right) \\ \vdots \\ 3 \left(y[x_{n-3}, x_{n-2}] \Delta x_{n-2} + y[x_{n-2}, x_{n-1}] \Delta x_{n-3} \right) \\ 3 \left(y[x_{n-2}, x_{n-1}] \Delta x_{n-1} + y[x_{n-1}, x_n] \Delta x_{n-2} \right) \\ * \end{bmatrix}.$$

Implementation of Boundary Conditions (1)

• (clamped cubic spline) If slopes at each end are known, fill in the first and the last equation of $X\sigma = \mathbf{r}$ with

$$\sigma_1 = y_1', \quad \sigma_n = y_n'.$$

 (natural cubic spline) If the second derivatives at the endpoints are known, then use

$$2\sigma_1 + \sigma_2 = 3y[x_1, x_2] - \frac{1}{2}\Delta x_1 y_1''$$

$$\sigma_{n-1} + 2\sigma_n = 3y[x_{n-1}, x_n] + \frac{1}{2}\Delta x_{n-1} y_n''.$$

Implementation of Boundary Conditions (2)

• (periodic boundary condition) If the data points come from a periodic function with period $P = x_n - x_1$ so that $\sigma_1 = \sigma_n$, then use

$$\Delta x_1 \sigma_{n-1} + 2\nabla x_1 \sigma_1 + \Delta x_{n-1} \sigma_2 = 3 \left(y[x_{n-1}, x_n] \Delta x_1 + y[x_1, x_2] \Delta x_{n-1} \right)$$

$$\sigma_1 - \sigma_n = 0.$$

Here, take
$$\nabla x_1 = x_2 - x_0 = x_2 - (x_{n-1} - P)$$
.

Implementation of Boundary Conditions (3)

• (not-a-knot boundary condition) If nothing is known about the endpoints, require $p_1(x) \equiv p_2(x)$ and $p_{n-2}(x) = p_{n-1}(x)$:

$$(\Delta x_2)^2 \sigma_1 + ((\Delta x_2)^2 - (\Delta x_1)^2) \sigma_2 - (\Delta x_1)^2 \sigma_3$$

= $2 (y[x_1, x_2] (\Delta x_2)^2 - y[x_2, x_3] (\Delta x_1)^2),$

$$(\Delta x_{n-1})^2 \sigma_{n-2} + \left((\Delta x_{n-2})^2 - (\Delta x_{n-1})^2 \right) \sigma_{n-1} + (\Delta x_{n-2})^2 \sigma_n$$

= $2 \left(y[x_{n-1}, x_n] (\Delta x_{n-2})^2 - y[x_{n-2}, x_{n-1}] (\Delta x_{n-1})^2 \right).$

Exercise. Derive the equations shown above.