

Income Classification Using Support Vector Machines

OMAR CHOUDHRY

22ND FEBRUARY 2018

Project Overview

Day 3

Day 14

Project Predict whether a household's income is greater than or less than 50K based on some relevant attributes Two-week group project for Applied Machine Learning Support Vector Machine **Timeline** Data Manipulation Support Vector Machine Implementation Debugging Plotting and **Analysis**

Day10

Day 12

Support Vector Machine

Supervised machine learning model that is used to classify a binary variable

6 Predictive Attributes

Vectors in a 6D Space

Searching for the best hyperplane that separates them into the 2 groups based on what label they carry

Data Description

Age

Education

Hours of Work/Week

Capital Gains & Losses

Marital Status

Occupation

Race

Data based on census income

Mix of categorical and continuous variables

Dataset originally contained

- 48,842 observations
- 14 variables

Data Manipulation

Data	Clea	anina
Data	$C_{1}C_{1}$	41 HH 19

1	Drop rows with missing data
2	Drop columns with categorical data
3	Scaled to unit variance and 0 mean

Separated the data set into training, validation, and testing sets

80% Train

10% Validate 10% Test

SVM Implementation

Initial Condition

a = weight vector

Set to 6 1's

b = intercept (bias)

Set to 0

This represents our initial guess for the best hyperplane which is obviously not accurate

Passed these two parameters to a function that accepts a random row (x_k) and the corresponding label (y_k) from the training dataset

x 26,000

$$\mathbf{a}^{(n+1)} = \mathbf{a}^{(n)} - \eta \begin{cases} \lambda \mathbf{a} & \text{if } y_k \left(\mathbf{a}^T \mathbf{x}_k + b \right) \ge 1 \\ \lambda \mathbf{a} - y_k \mathbf{x} & \text{otherwise} \end{cases}$$

$$b^{(n+1)} = b^{(n)} - \eta \begin{cases} 0 & \text{if } y_k \left(\mathbf{a}^T \mathbf{x}_k + b \right) \ge 1 \\ -y_k & \text{otherwise} \end{cases}.$$

 η = learning rate

Returns best estimate for a and b

Results

We then check the output against the actual value to assess accuracy

Results

100

Best Model

After 100 epochs using the regularization constant of 0.00001

This maximizes the magnitude of the weight vector with high accuracy

Conclusion

Project Applicability

Targeting customers based on household income

>50K

<50K

Loan eligibility

,

Financial advising

Loyalty brands

Personal Development

Hard Skills

- Training a Machine Learning model
- Analysis and debugging

Soft Skills

- Working in a team
- Constrained time period

