搜索 创作

提问

登录 注册

专栏首页 往期博文 数学建模学习笔记(六)多元回归分析算法(matlab)

数学建模学习笔记(六)多元回归分析算法 (matlab)

发布于2022-06-13 17:40:45 阅读 227

1、多元线性回归

形式:

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$$

回归系数的检验

(1) F检验

(I) F 检验法

当
$$H_0$$
成立时, $F = \frac{U/k}{Q_{\varepsilon}/(n-k-1)} \sim F(k,n-k-1)$

如果 $F>F_{1-\alpha}$ (k, n-k-1),则拒绝 H_0 ,认为y与 x_1 ,…, x_k 之间显著地有线性关系;否则就接受 H_0 ,认为y与 x_1 ,…, x_k 之间线性关系不显著.

其中
$$U = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$
 (回归平方和) $Q_e = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ (残差平方和)

(2) r检验

(Ⅱ) r 检验法

定义
$$R = \sqrt{\frac{U}{L_w}} = \sqrt{\frac{U}{U+Q_e}}$$
 为 y 与 $x_1, x_2, ..., x_k$ 的**多元相关系数或复相关系数**.

由于
$$F = \frac{n-k-1}{k} \frac{R^2}{1-R^2}$$
, 故用 F 和用 R 检验是等效的.

matlab语言:

1 [b,bint,r,rint,stats]=regress(Y,X,alpha)

b: 回归系数点估计

bint: 回归系数区间估计

r:残差

rint:置信区间

stats:用于检验的统计量,有三个数值,相关系数r^2, F值,与F对应的概率p

alpha:显著性水平(缺省时为0.05)

说明: 相关系数r^2越接近1, 说明回归方程越显著;

F越大,说明回归方程越显著

与F对应的概率p<a(显著性水平) ,回归模型成立

画出残差及其置信区间:

精选专题

腾讯云原生专题

云原生技术干货,业务实践落 地。

视频公开课上线啦

Vite学习指南,基于腾讯 云Webify部署项目 立即查看

腾讯云自媒体分享计划

入驻云加社区, 共享百万资源包。

立即入驻

运营活动


```
1 | rcoplot(r,rint)
看个例子:
2、一元多项式回归
形式:
确定多项式系数:
  1 | [p,S]=polyfit(x,y,m)
p:系数,即a1,a2,a3,...a(m+1)
S:矩阵,用来估计预测误差
预测:
  1 | Y=polyval(p,x)
求polyfit所得的回归多项式在x处的预测值Y
预测误差估计:
  1 | [Y,DELTA]=polyconf(p,x,S,alpha)
求polyfit所得回归多项式在x处的预测值Y及预测值的显著性为1-alpha的置信区间DELTA
alpha缺省时为0.5
3、多元二项式回归
命令:
  1 | rstool(x,y,'model',alpha)
x:n*m矩阵
y:n维列向量
alpha:缺省时0.05
model:(默认线性)
linear(线性) , purequadratic(纯二次) , interaction(交叉) , quadratic(完全二次)
使用示例:
在左下方下拉式菜单选"all",则beta,rmse和residuals都传送到MATLAB工作区中
4、非线性回归
命令确定回归系数:
  1 [beta,r,J]=nlinfit(x,y,'model',beta0)
beta:估计出的回归系数
r:残差
J:Jacobi矩阵
x:n*m矩阵
y:n维列向量
model:M文件定义的非线性函数
beta0:回归系数的初值
非线性回归命令:
```

1 | nlintool(x,y,'model',beta0,alpha)

1 [Y,DELTA]=nlpredci('model',x,beta,r,J) 求得回归函数在x处的预测值Y 预测值的显著性水平为1-alpha的置信区间(Y-DELTA,Y+DELTA) 示例: 5、逐步回归 命令: 1 stepwise(x,y,inmodel,alpha) (比较少见, 暂不作详细记录) 本文参与 腾讯云自媒体分享计划,欢迎热爱写作的你一起参与! 本文分享自作者个人站点/博客: https://zstar.blog.csdn.net/ 复制 如有侵权,请联系 cloudcommunity@tencent.com 删除。 举报 分享 点赞 2 登录后参与评论 0条评论 相关文章 数学建模学习笔记(十八)SIER模型灵敏度... 什么是灵敏度分析? 简单得来说,就是当模型中有一些参数 不确定时,需要多取一些值比较结果,来验证其灵敏性。下... zstar 数学建模暑期集训6:用SPSS对数据进行多... 在本专栏的第六篇数学建模学习笔记(六)多元回归分析算法 (matlab) 博文中,记录了如何用matlab进行多元回归分析...

预测和预测误差分析:

zstar

数学建模学习笔记(十三)神经网络——中: ...

数学建模学习	笔记 (二十三) 灰色关联分析
zstar	
数学建模学习	笔记(四)层次分析法(AHP)
	於结构模型; 2、构造判断(成对比较)矩 序及其一致性检验; 4、层次总排序及其
zstar	
数学建模学习	笔记 (二十) TSP问题遗传算法
什么是TSP问题?	TSP问题(Travelling Salesman
Problem) 又译为	旅行推销员问题、货郎担问题,即假设有
zstar	
数学建模学习	笔记(五)K-means聚类算法
	法思路非常易懂 算法描述: 1、假定我们要对N个样本观测做聚类,要
シャペノンハス ロノし	选择K个点作为初始中心点; 2、接下来,按照距离初始
zstar 数学建模学习	笔记(十九)K-means聚类的m
世界 表示	
zstar 数学建模学习 在本专栏前面几篇 次使用时发现并不	笔记(十九)K-means聚类的m 中曾记录了一下K-means的matlab代码,这
文star 数学建模学习 在本专栏前面几篇 次使用时发现并不	笔记(十九)K-means聚类的m 使中曾记录了一下K-means的matlab代码,这 好用,因此又整理了其他的K-means代码
文star 数学建模学习 在本专栏前面几篇 次使用时发现并不	笔记(十九)K-means聚类的m 中曾记录了一下K-means的matlab代码,这 好用,因此又整理了其他的K-means代码 笔记(二十六) matlab Classific 是量比较小的情况;参数选择比python少得
文star 数学建模学习 在本专栏前面几篇 次使用时发现并不 文star 数学建模学习 缺点:只适合数据 多;优点:有多种	笔记(十九)K-means聚类的m 中曾记录了一下K-means的matlab代码,这 好用,因此又整理了其他的K-means代码 笔记(二十六) matlab Classific 是量比较小的情况;参数选择比python少得
zstar 数学建模学习 在本专栏前面几篇 次使用时发现并不 zstar 数学建模学习 缺点: 只适合数据 タ; 优点: 有多種 zstar 数学建模学习 TF-IDF算法数学表	笔记(十九)K-means聚类的m 如中曾记录了一下K-means的matlab代码,这 下好用,因此又整理了其他的K-means代码 笔记(二十六)matlab Classific 是量比较小的情况;参数选择比python少得中模型可以选择,批量训练,可以选择精 笔记(七)TF-IDF算法提取关键词 题达:术语频率(TF)是指给定单词在文档中出现的次数,经过归一化
zstar 数学建模学习 在本专栏前面几篇 次使用时发现并不 zstar 数学建模学习 缺点: 只适合数据 タ; 优点: 有多種 zstar 数学建模学习 TF-IDF算法数学表	笔记(十九)K-means聚类的m 如中曾记录了一下K-means的matlab代码,这 下好用,因此又整理了其他的K-means代码 笔记(二十六)matlab Classific 是量比较小的情况;参数选择比python少得中模型可以选择,批量训练,可以选择精 笔记(七)TF-IDF算法提取关键词 题达:术语频率(TF)是指给定单词在文档中出现的次数,经过归一化
zstar 数学建模学习 在本专栏前面几篇 次使用时发现并不 zstar 数学建模学习 缺点: 只适合数据 多; 优点: 有多种 zstar 数学建模学习 TF-IDF算法数学表 后, 我们可以用以	笔记(十九)K-means聚类的m 如中曾记录了一下K-means的matlab代码,这 下好用,因此又整理了其他的K-means代码 笔记(二十六)matlab Classific 是量比较小的情况;参数选择比python少得中模型可以选择,批量训练,可以选择精 笔记(七)TF-IDF算法提取关键词 题达:术语频率(TF)是指给定单词在文档中出现的次数,经过归一化
zstar 数学建模学习 在本专栏前面几篇 次使用时发现并不 zstar 数 違模 学 登 表 表 表 表 表 表 表 表 表	笔记(十九)K-means聚类的m 如

本部分为自己学习部分机器学习算法中的一部分笔记及感想,
啤酒单恋小龙虾
一份简短又全面的数学建模技能图谱:常用模
本文总结了常用的数学模型方法和它们的主要用途,主要包括 数学和统计上的建模方法,关于在数学建模中也挺常用的机
全栈程序员站长
数学建模暑期集训12:神经网络预测——Neu
在本专栏的第十三篇博文数学建模学习笔记(十三)神经网络 ——中:matlab程序实现记录过如何在matlab用代码进行神
zstar
数学建模竞赛(国赛和美赛)经验分享
第一次参赛是在大一的暑假参加的国赛,当时和两个同学刚刚
组队,我们也没有什么基础,结果可想而知:无奖。 在经
code随笔
机器学习中必要的数学基础!
作为一门基础性学科,数学在数据科学和机器学习领域都发挥着不可或缺的作用。数学基础是理解各种算法的先决条件,也将帮助我们更深入透彻地了解算法的内在原理。
小白学视觉
史上最全! 国外程序员整理的机器学习资源
本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。 C++ 计算机视
觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 Ope
CDA数据分析师
【开源工具】国外程序员整理的机器学习资源大全
本列表选编了一些机器学习领域牛B的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库
陆勤_数据人网
入数据科学大坑,我需要什么样的数学水平?
本文的作者是物理学家、数据科学教育者和作家 Benjamin
Obi Tayo 博士,他的研究兴趣在于数据科学、机器学习、
机器之心

更多文章

社区	活动	资源	关于	腾讯云开发者
专栏文章 阅读清单	自媒体分享计划 邀请作者入驻	技术周刊社区标签	视频介绍 社区规范	
互动问答 技术沙龙	自荐上首页 技术竞赛	开发者手册	免责声明联系我们	
技术视频	1X小元泰	开及日头巡车	友情链接	扫码关注腾讯云开发者 领取腾讯云代金券
主页 胸州云TI平台				