Struhtur der symmetrischen Gruppe Sn

Definition 8

- (1) $\sigma \in Sn$ beijst Transposition, falls i.j $\in \{1, -1, n\}$ existing, so dass $\sigma(i) = j$, $\sigma(j) = i$, $\sigma(k) = k$ for all $k \neq ij$. Wir schriben $\sigma = (ij)$.
- (2) $\sigma \in S_N$ heißt Eylul der Länge Γ , falls in,..., ir $\in \{1,...,n\}$ existien, so dass $\sigma(ij) = i_{(j+n \bmod r)}$ und $\sigma(k) = k$ für alle $k \notin \{ii,...,ir\}$. Wir schniban $\sigma = (in....ir)$.

Satz 9

Sei oe Sn.

- (1) o lasst sich schniben als Produkt von Transpositionen.
- (z) o lässt sich schreiben als Produkt von disjunden Zyhlen. Dieses Produkt ist bis auf die Reihenfolge eindurtig.
- (3) $|S_n| = n!$

Beweis

[1] Si $\sigma \in S_n$ und $\Gamma := \Gamma(\sigma) = \max$ $\emptyset \in \Gamma \in n \mid \forall \Lambda \leq i \leq \Gamma : \sigma(i) = i \mathcal{J}.$ Falls $\Gamma = n_1$ dann ist $\sigma = id = \mathcal{I}^2$ für <u>alle</u> Transpositionen $\mathcal{I} \in S_n$. Falls $\Gamma < n_1$ dann ist $S := \sigma(\Gamma + 1) > \Gamma + 1$. Sei $\mathcal{I}_1 := (\Gamma + 1 S).$ Dann gilt: $\Gamma(\mathcal{I}_1 \circ \sigma) > \Gamma(\sigma)$. Indultiv finden wir Transpositionen $\mathcal{I}_{\mathcal{I}_1 - 1} \mathcal{I}_{\mathcal{K}_1}$, sodass $\Gamma(\mathcal{I}_{\mathcal{K}} \circ \mathcal{I}_{\mathcal{K}_1 - 1} \mathcal{I}_{\mathcal{K}_1} \circ \sigma) = \mathcal{I}_{\mathcal{K}_1}$.

=> Tro.... = 2100 = id => 0 = Tro... o Tr.

(2) Sei $\sigma \in S_n \setminus fidJ$. Wir haben die <u>disjunkt</u> Zerlegung $S_{K_i-1}nJ = \bigcup_{j=1}^{\infty} K_j \quad (d.h. K_j \cap K_i = p falls i \neq j)$. Wobei die K_j wie folgt definiert sind: $K_{K_i-1}K_K$ sind definiert als die Aquivalenzhlasen der Relation:

Kni-1Kx sind definient als die Aquivalenzhlasen der Relation:
inviz <=> FleN: olin)=iz.

Wir definieren $T_{1,-}, T_{K}$ mit $T_{i}|_{K_{j}} = \int \int |K_{j}|_{i} f_{a} ds = j$ $id|_{K_{j}}, f_{a} ds = j$

Beachte: $T_i = (i \ \sigma^{(i)}) \ \sigma^{(i)} \dots \ \sigma^{(i)}) \ far \ r = \text{ord } L_{i}! - 1.$ Wegen Lemma 7 ist $r < \infty$. Die $T_i \ \text{Sind} \ \text{dijumbh} \ \text{Eylul}.$ Und es gilt $\sigma = T_n \circ \dots \circ T_n$.

(Die letzte Gleiching lesst sich beweisen durch das Stud'um von rechter unter Linker Seite und ihrer Werlung auf ie S_{1i-1}, N_i . Sci $z_i \cdot S_i$ ie S_i' . Down gilt: $T_1 \circ \dots \circ T_n \cdot U_i = T_i \cdot U_i = 0 \cdot C_i$.

(3) <u>abung</u>

Definition 10

Sei oe Sn. Das Signum von o ist definiert als

$$Sgn(\sigma) := \prod_{\substack{i-j \\ i \neq j \leq N}} \frac{\sigma(i) - \sigma(j)}{i-j}$$

Bemerhing (1) sgn(0) & \quad \quad -1,1]

- (Z) Falls squio = 1. nennen wir o eine gerade Perantation, sonst ungerade.
- (3) Far den Moment ist die Definitions nicht wichtig. Sie wird späker von zentraler Bedutung sun.