6262 HOMEWORK 1

Given two random variables X and Y which are square integrable, the definition of the conditional expectation of X given Y is interpreted as the function $\phi(Y)$ such that

$$\mathbb{E}[(X - \phi(Y))^2]$$

is minimized over all possible choices of the function ϕ such that $\phi(Y)$ remains square integrable. We write $\mathbb{E}[X|Y] = \phi(Y)$ or in more statistical slang $\mathbb{E}[X|Y=y] = \phi(y)$, though this could be a bit confusing.

We saw in class that the characterization of $\phi(Y)$ is given by the following equality

(0.1)
$$\mathbb{E}[X\phi(Y)] = \mathbb{E}[\phi(Y)\psi(Y)]$$

for any other choice of the function ψ .

As properties of the conditional expectation show the following.

Problem 1. (1) If Y = 0, then $E[X|Y] = \mathbb{E}[X]$. Interpret this.

- (2) The function ϕ may not be unique, however $\phi(Y)$ is uniquely defined.
- (3) If X and Y are independent, then $\mathbb{E}[X|Y] = \mathbb{E}[X]$. Interpret this.
- (4) If Z = h(Y) for another function h, then $\mathbb{E}[ZX|Y] = h(Y)\phi(Y)$. Written alternatively, $\mathbb{E}[ZX|Y] = Z\mathbb{E}[X|Y]$.
- (5) If X = g(Y), then $\mathbb{E}[X|Y] = g(Y)$.
- (6) Argue that if $\mathbb{E}[X|Y] = \phi(Y)$ and $\mathbb{E}[Z|Y] = \psi(Y)$, then $\mathbb{E}[X+Z|Y] = \phi(Y) + \psi(Y)$.

Problem 2. If the pair (X, Y) has a joint pmf or pdf, show that

$$\mathbb{E}[X|Y=y] = \phi(y) \text{ where } \phi(y) = \begin{cases} \sum_{x} x \frac{p_{X,Y}(x,y)}{p_{Y}(y)} & (X,Y) \text{ are discrete with pmf } p_{X,Y} \\ \int x \frac{f_{X,Y}(x,y)}{f_{Y}(y)} dx & (X,Y) \text{ have joint pdf } f_{X,Y}. \end{cases}$$

Problem 3. Compute the following conditional expectations:

- (1) $\mathbb{E}[X|X^2]$ if $X \sim Exp(\lambda)$.
- (2) $\mathbb{E}[X|X^3]$ if $X \sim N(0,2)$.
- (3) $\mathbb{E}[X 2X^4|X^2]$ for $X \sim N(0, 2)$.
- (4) Give an example of two different functions ϕ_1 and ϕ_2 such that $\mathbb{E}[X|X^2] = \phi_1(X^2)$ and also $\mathbb{E}[X|X^2] = \phi_2(X^2)$. Are $\phi_1(X^2)$ and $\phi_2(X^2)$ equal?
- (5) $\mathbb{E}[\cos(X)|X^2]$ if $X \sim N(0,1)$.
- (6) $\mathbb{E}[X|Y]$ if X, Y are iid N(0, 1).
- (7) $\mathbb{E}[X + X^2 | X^4]$ for $X \sim N(0, 1)$.
- (8) $\mathbb{E}[X|X + 2Y]$ if X, Y are iid N(0, 1).

Problem 4. (1) If (X, Y) are iid uniform on (0, 1), find $\mathbb{E}[X|X + Y]$. Can you explain?

- (2) If (X, Y) are uniform on 0 < x < y < 1, find $\mathbb{E}[X|Y]$.
- (3) Assume (X,Y) take the values (0,1),(2,3),(3,4),(2,4),(4,1) with equal probability. Compute $\mathbb{E}[X|Y]$.

Problem 5. If (X, Y) have joint pdf given by $f_{X,Y}(x, y) = 12(2x + y^2)/7$ on the set 0 < x < y < 1 and 0 otherwise, find $\mathbb{E}[X|Y]$.

Problem 6. Flip a coin until the head comes up and let X be the number of flips. Compute $\mathbb{E}[X|\cos(\pi X/2)]$.

Problem 7. Let $\mathbb{E}[X|Y] = \phi(Y)$ and using (0.1) show that $\mathbb{E}[X] = \mathbb{E}[\phi(Y)]$ and

$$Var(X) = Var(\phi(Y)) + \mathbb{E}[(X - \phi(Y))^{2}].$$

In particular argue that $Var(X) > Var(\phi(Y))$ with equality if and only if $X = \phi(Y)$ or that X is a function of Y.

Problem 8. Show that if X_1, X_2, \ldots, X_n is a sample and T is a sufficient statistic, then for any one-toone map $g: \mathbb{R} \to \mathbb{R}$, $\overline{T} = g(T)$ is also a sufficient statistic.

Problem 9. Assume X_1, X_2, \dots, X_n is a sample with density

$$f(x:\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that $T = \prod_{k=1}^n X_k$ is a sufficient statistic. Also show that $T = \sum_{k=1}^n \ln(X_k)$ is also a sufficient statistic.

Show that $U = \sum_{k=1}^{n} X_i$ IS NOT a sufficient statistic.

Problem 10. Let X_1, X_2, \ldots, X_n be a sample from a uniform distribution on $[0, \theta]$. Show that $T = \{0, 1, 1, \dots, N_n \}$ $\max\{X_1, X_2, \dots, X_n\}$ is a sufficient statistic. Do this using the definition and also using the factorization theorem.

Is this a complete statistic? Why or why not?

Problem 11. Find a sufficient statistic for a sample from $Beta(\theta,2)$. Recall that the density of $Beta(\alpha,\beta)$ has density $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$ where $B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ and $\Gamma(\alpha)=\int_0^\infty x^{\alpha-1}e^{-x}dx$.

Problem 12. Find a sufficient statistics for a sample from a Bernoulli distribution with parameter θ . Is this statistic sufficient? Can you find the MVUE for the sample? Hint: write the pmf as $f_X(x;\theta) =$ $\theta^x(1-\theta)^{1-x}$.

Problem 13. If $X_1, X_2, ..., X_n$ is a sample from the $Poisson(\lambda)$, then $\sum_{k=1}^n X_k$ is a sufficient statistic. Find a MVUE? Justify your answer.

Problem 14. Assume that X_1, X_2, \dots, X_n is a sample from the density

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x > \theta \\ 0, & \text{otherwise.} \end{cases}$$

- (1) Is $f(x;\theta)$ a regular exponential family?
- (2) Find a sufficient statistic for θ .

Problem 15. If X is a single sample from $N(0, \theta)$, $\theta > 0$ then X is a sufficient but not complete statistic for θ . Can you give an example of a sufficient and complete statistic?

Problem 16. Show that the family $N(\theta, \theta)$ for $\theta > 0$ is a regular exponential family, but $N(\theta, \theta^2)$ is not. *Can you find a MVUE for \theta.*

Problem 17. Let $f(x;\theta)$ for θ positive integer be the uniform distribution on $\{1,2,3,\ldots,\theta\}$. Take a sample X_1, X_2, \ldots, X_n .

- (1) Set $T = \max\{X_1, X_2, \dots, X_n\}$. Show that T is a sufficient statistic.
- (2) Show that T is also a complete statistic.
 (3) Prove that Tⁿ⁺¹/_{Tⁿ-(T-1)ⁿ} is the unique MVUE of θ.