第三讲: 独木舟-HZOJ-503

胡船长

初航我带你,远航靠自己

一、贪心策略

局部:

每次安排,如果最重的人和最轻的人能坐一起,就坐一条独木舟,否则最重的人自己坐一条船。

整体:

按照如上策略执行,就能得到最少的独木舟数量

```
1. vim
          #1 X
                   bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED:
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

独木舟-HZOJ-503: 代码演示

62 if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21

假设:独木舟承重 w, 人员全集是 A, 子集分别为 X_1 与 X_2 , 且 $X_1 + X_2 = A$, F 函数返回最少的独木舟数量

证明: $F(A) \leq F(X_1) + F(X_2)$

证明: $F(A) \leq F(X_1) + F(X_2)$

证明相等关系:由于 $X_1 + X_2 = A$,按照 X_1 与 X_2 的分配方案,也是 A 的某一种合法的分配方案,所以相等关系可以成立。

证明: $F(A) \leq F(X_1) + F(X_2)$

证明小于关系

情况1: X_1 中存在某个一人拆分 A_1 ,以及 A_2 中存在另外一个一人拆分 A_2 ,其中 A_1 + $A_2 \le W$

情况2: X_1 或 X_2 中存在一个两人拆分(a_1 , a_2),并且存在另外两个一人 拆分 a_3 , a_4 ,使得, $a_1+a_3 \le w$ 且 $a_2+a_4 \le w$

情况1: X_1 中存在某个一人拆分 a_1 ,以及 X_2 中存在另外一个一人拆分 a_2 ,其中 $a_1 + a_2 \le \omega$

情况1: X_1 中存在某个一人拆分 A_1 ,以及 X_2 中存在另外一个一人拆分

a₂,其中a₁ + a₂≤w

情况2: X_1 或 X_2 中存在一个两人拆分(a_1 , a_2),并且存在另外两个一人 拆分 a_3 , a_4 , 使得, $a_1+a_3 \le w$ 且 $a_2+a_4 \le w$

情况2: X_1 或 X_2 中存在一个两人拆分(a_1 , a_2),并且存在另外两个一人 拆分 a_3 , a_4 , 使得, $a_1+a_3 \le w$ 且 $a_2+a_4 \le w$

假设:独木舟承重 w, 人员全集是 A, 子集分别为 X_1 与 X_2 , 且 $X_1 + X_2 = A$, F 函数返回最少的独木舟数量

结论1: $F(A) \leq F(X_1) + F(X_2)$

局部:

每次安排,如果最重的人和最轻的人能坐一起,就坐一条独木舟,否则最重的人自己坐一条船。

证明:

$$F(x_1 \sim x_n) = MIN[F(x_n) + F(x_1 \sim x_{n-1}), F(x_1 \sim x_n) + F(x_2 \sim x_{n-1})]$$

证明:

$$F(x_1 \sim x_n) = MIN[F(x_n) + F(x_1 \sim x_{n-1}), F(x_1 \sim x_n) + F(x_2 \sim x_{n-1})]$$

结论1: $F(A) \leq F(X_1) + F(X_2)$

根据结论1, 等价于证明:小于关系在此场景中不存在

证明:

 $F(x_1 \sim x_n)$ 与 $F(x_n) + F(x_1 \sim x_{n-1})$ 不存在小于关系

证明:

 $F(x_1 \sim x_n)$ 与 $F(x_n) + F(x_1 \sim x_{n-1})$ 不存在小于关系

证明:

 $F(x_1 \sim x_n)$ 与 $F(x_1 x_n) + F(x_2 \sim x_{n-1})$ 不存在小于关系

证明:

 $F(x_1 \sim x_n)$ 与 $F(x_1 \times x_n) + F(x_2 \sim x_{n-1})$ 不存在小于关系

局部:

每次安排,如果最重的人和最轻的人能坐一起,就坐一条独木舟,否则最重的人自己坐一条船。

结论:

$$F(x_1 \sim x_n) = MIN[F(x_n) + F(x_1 \sim x_{n-1}), F(x_1 \sim x_n) + F(x_2 \sim x_{n-1})]$$

为什么 会出一样的题目?