General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

A STUDY OF THE OPTIMIZATION METHOD

USED IN THE

NAVY/NASA GAS TURBINE ENGINE COMPUTER

CODE .

(NASA-CR-135180) A STUDY OF THE N77-20103
OPTIMIZATION METHOD USED IN THE NAVY/NASA
GAS TURBINE ENGINE COMPUTER CODE Final
Report (Computer Systems International, Unclas
Inc.) 63 p HC A04/MF A01 CSCL 21E G3/07 21724

prepared by

Jerry L. Horsewood

COMPUTER SYSTEMS INTERNATIONAL, INC.

and

Samuel Pines

ANALYTICAL MECHANICS ASSOCIATES, INC.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS 3-20280

1.	Report No.	2. Government Acce	ssion No.	3. Recipient's Catalog No.
	NASA CR-135180	<u> </u>		
	Title and Subtitle			5. Report Date
	A Study of the Optimization Net		•	January 1977
	NAVY/NASA Cas Turbine Engine Co	mputer Code •		6. Performing Organization Code
7	Author(s)			8. Performing Organization Report No.
	Jerry L. Horsewood and Samuel P	ines		a, reforming organization report to.
_	<u> </u>		<u></u>	10. Work Unit No.
	Performing Organization Name and Address	eg e		
	Analytical Mechanics Associates	, Inc.		11. Contract or Grant No.
	50 Jericho Turnpike Jericho, New York 11753			NAS 3-20280
	delicud, new lock lines		:	
_	ALLEN		·	13. Type of Report and Period Covered
•	Sponsoring Agency Name and Address			Contract Report, Final
	National Aeronautics and Space A Washington, D.C. 20546	Administration		14. Sponsoring Agency Code
_	Parat Maria			
	Supplementary Notes	•		
	Project Manager, Laurence H. Fi	shbach, NASA Lew	is Research Center	• •
	Cleveland, Ohio	•		
J	Abstract	Ŧ.,	100	
1	principal noise source discovere ations performed in subroutine (of noise was found to be introd	AVY/NASA Cas Tur ed resulted from CALCFX to satisf uced by an insuf	dine Engine Comput loose input toler y specified contro ficient number of	er Code were investigated. The ances used in terminating iter- 1 functions. A minor source digits in stored coefficients
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovery ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	plue Engine Comput loose input toler y specified contro ficient number of ons of thermodynam	er Code were investigated. The ances used in terminating iter- l functions. A minor source digits in stored coefficients in properties. Tabular results
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method of Optimization in the No principal noise source discovere ations performed in subroutine (of noise was found to be introdu used by subroutine THERM in pol- of several computer runs are pro-	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	pline Engine Comput loose input toler y specified contro ficient number of ons of thermodynam the effects on pro	er Code were investigated. The ances used in terminating iter- 1 functions. A minor source digits in stored coefficients ic properties. Tabular results gram performance of selective
7. 8	Method of Optimization in the Na principal noise source discovered ations performed in subroutine (of noise was found to be introdused by subroutine THERM in poly of several computer runs are pre- corrective actions taken to reduce the second several computer for the second of the	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	pline Engine Comput loose input toler y specified contro ficient number of ons of thermodynam the effects on pro	er Code were investigated. The ances used in terminating iter- I functions. A minor source digits in stored coefficients ic properties. Tabular results gram performance of selective
7. 8	Method of Optimization in the Na principal noise source discovered ations performed in subroutine (of noise was found to be introdused by subroutine THERM in poly of several computer runs are procorrective actions taken to reduce	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	pline Engine Comput loose input toler y specified contro ficient number of ons of thermodynam the effects on pro	er Code were investigated. The ances used in terminating iter- I functions. A minor source digits in stored coefficients ic properties. Tabular results gram performance of selective
7. E	Method of Optimization in the National noise source discovered atlons performed in subroutine of noise was found to be introduced by subroutine THERM in polyof several computer runs are precorrective actions taken to reduce the subroutine taken to reduce the several computer runs are precorrective actions taken to reduce the subroutine taken to reduce the several computer runs are precorrective actions taken to reduce the subroutine taken the subroutine taken to reduce the subroutine taken t	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	pline Engine Comput loose input toler y specified contro ficient number of ons of thermodynam the effects on pro	er Code were investigated. The ances used in terminating iter- I functions. A minor source digits in stored coefficients ic properties. Tabular results gram performance of selective
7. 8	Method of Optimization in the National principal noise source discovered actions performed in subroutine of noise was found to be introdused by subroutine THERM in polyof several computer runs are precorrective actions taken to reduce the corrective actions taken to reduce the correction of the correction	AVY/NASA Gas Turked resulted from CALCFX to satisficed by an insufficed by an insufficential expressions of the control of the	pline Engine Comput loose input toler y specified contro ficient number of ons of thermodynam the effects on pro	er Code were investigated. The ances used in terminating iter- I functions. A minor source digits in stored coefficients ic properties. Tabular results gram performance of selective

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161

FORWARD

The authors acknowledge with gratitude the several helpful telephone discussions held with Mr. M. J. Caddy of the Naval Air Development Center, Warminster, Pennsylvania, during the course of the study.

PRECEDING PAGE BLADE NOT FILE.

TABLE OF CONTENTS

FORWARD
SUMMARY
INTRODUCTION
DISCUSSION OF STUDY ACTIVITIES AND RESULTS 5
Source Code Acquisition and Checkout5
Source Code Cross Reference Analysis
Analysis of Convergence Problems
CONCLUSIONS
APPENDIX A - Source Code Cross Reference Reports19
APPENDIX B - Input Data Sets41
PPPPDFNCPQ 50

PRESEDING PAGE BLARBE NOT BUY

SUMMARY

This report descirbes the results of a study to investigate the optimization method used in the Navy/NASA Gas Turbine Engine Computer Code (NNEP, formerly designated NEPCOMP). The objective of the study effort was to identify and, where possible, eliminate sources of computational noise in the NNEP code. The scope of the study was limited to the following three tasks:

- 1. Generate subroutine, labelled common, and common variable cross reference tables from the program source code using utility programs that have been developed by Analytical Mechanics Associates, Inc.
- 2. Analyze the source code for the purpose of identifying corners and/or singularities in the modelling of various functions. Also, isolate inner loop iterations and assess the adequacy of the criteria used to terminate the iterations.
- 3. Prepare a final report of the results of the study.

The cross reference tables required for Task 1 were prepared immediately upon receipt of the source code and were used extensively in the performance of Task 2. The generated tables are included as an appendix to this report.

The performance of Task 2 consisted of: (1) analyzing the NNEP source code to identify all internal iterations performed and instances where discontinuities and/or corners occur in system and subsystem models, and (2) executing the program with a variety of test cases to determine the amount of noise being introduced and the resultant effect on iteration behavior.

The only modelling discontinuities/corners identified in the code occurred in subroutine THERM where tabular values of coefficients yielded discontinuities in function values and first derivatives in the sixth or seventh significant digit at tabular points. These small errors may be eliminated without increasing execution time by increasing the number of significant digits of the stored coefficients, and it is recommended that this be done.

The principal sources of noise affecting the outer loop iteration (optimization) sequence were found to be in subroutine CALFX. The tightening of tolerances used to terminate iterations in this routine does result in one or more additional passes through the corresponding inner loops to achieve the more stringent convergence criteria; however, it does not necessarily follow that this always leads to additional CPU time since the reduced noise directly affects the outer loop iteration sequence sufficiently to permit convergence in the outer loop more quickly. It is not axiomatic that the elimination of noise reduces the number of iterations to convergence in the outer loop. Due to the nature of the outer loop iterator, subroutine BOTM, the existence of noise in the function evaluation may tend to hasten or retard convergence. But, when earlier convergence is achieved with noise in the solution, it is due to circumstantial satisfaction of the convergence criterion in BOTM by slightly erroneous results, and the converged value of the performance index may be greater or less than that of converged solution with noise absent.

During the course of the study, a revised outer loop iterator, designated BOTMX, was provided which was designed to operate in the presence of noise. The application of this iterator to several test cases failed to yield favorable results. Although the revised iterator "converged" in a fraction of the iterations required by BOTM, the final value of the performance index was always less, by as much as 8 percent, than the solution achieved by BOTM. After the same number of iterations and function evaluations required for convergence with BOTMX, the value of the performance index achieved with BOTMX was, in each case investigated, better than the value obtained with BOTMX.

The conclusions reached in the study are as follows:

- 1. The principal sources of noise in the NNEP code arise from loose inner loop tolerances employed in subroutine CALCFX. In CALCFX the tolerances are input as part of the SPCNTL or SPEC arrays with default values of 1×10^{-3} . It is recommended that the tolerances be input for each control variable with a value no larger than 1×10^{-6} .
- 2. The number of significant digits retained in the tabular coefficients in the 16 DATA arrays AHAIR, BHAIR, CHAIR, DHAIR, APAIR, BPAIR, GPAIR, DPAIR, AHSTØC, BHSTØC, CHSTØC, DHSTØC, APSTØC, BPSTØC, CFSTØC and DPSTØC in subroutine THERM should be increased to the limits of the machine to eliminate discontinuities in the function values and first derivatives at tabular points.
- 3. Additional research of the algorithm employed by subroutine BOTM is warranted. It was observed that the converged value of the performance index was actually achieved in most cases in less than half of the iterations and function evaluations employed to recognize convergence. Thus, improved methods of terminating the iteration seems advisable.
- 4. The performance of the revised iterator BOTMX was inferior to BOTM on all the test cases investigated. Although additional testing and tuning of BOTMX is encouraged, it is recommended that, until more favorable results with BOTMX are realized, the subroutine BOTM be retained as the production iterator in NNEP.

NOTE: In response to the above conclusions, numbers 1 and 2 have been incorporated into NNEP and the Naval Air Development Center has been working on and has apparently solved the problems pointed out in 3 and 4. The scope of this contract does not permit a reevaluation of the revised code. Preliminary findings of NADC however indicate both faster and better or equal optimum values are now consistently being achieved by the new iterator.

INTRODUCTION

The Navy/NASA Gas Turbine Engine Computer Code (NNEP) (reference 1) is the product of a joint effort by the NASA Lewis Research Center and the Naval Air Development Center. The program is used as a tool for the optimal design of a gas turbine engine, given a prescribed engine configuration with specified engine components which are subject to a set of equality constraints that assure satisfaction of known laws of conservation. The program provides for the imposition of upper and/or lower limits on key engine parameters and permits the specification of up to ten independent variables which may be chosen to maximize or minimize a designated performance index. The method of optimization is a direct search technique know as Powells' Principal Axis Method (reference 2). This technique is represented by subroutine BOTM in the NNEP code.

The implementation of the Principal Axis Method entails the evaluation of a controlled sequence of complete engine designs to define the principal axes for the specific problem posed, followed by another controlled sequence of steps in a direction defined by the principal axes. This procedure is repeated until no further improvement in the performance index can be achieved. This procedure is termed an outer loop iteration. The application of the Principal Axis Method requires that on each function evaluation (complete engine design) all conservation laws and other control equations, in the form of equality constraints, be satisfied. This implies that several internal iterations, known as inner loop iterations, must be performed and convergence achieved on each function evaluation. Such iterations are required in the specification of several individual engine components as well as the engine configuration as a whole. The satisfaction of the limited variables (inequality constraints) need not be satisfied on a given function evaluation. Any violations contribute to a penalty function which is eliminated as part of the outer loop iteration.

Direct optimization techniques are notorious for their slow convergence properties in the vicinity of the solution, and the Principal Axis Method is no exception. In an attempt to improve convergence characteristics, a variety of other optimization techniques in NNEP (actually an earlier version known as NEPCOMP) were tried.* Candidate techniques investigated included both indirect techniques and other direct techniques. None of the alternate techniques investigated yielded any improvement over the Principal Axis Method. Indeed, several of the techniques failed to converge to any solution. It was subsequently determined that the most probable causes for failure of the several techniques to perform as anticipated were noise introduced in the function evaluation computations and/or corners or discontinuities in the modelling of the several engine components.

^{*} The results of this investigation are described in a Naval Air Development Center memo to the NASA Lewis Research Center. The memo constitutes the final progress report for NASA Defense Purchase Request PR 585286.

The net result of the investigation of alternative optimization techniques was to retain the Principal Axis Method in the production version of NNEP and to continue research with the technique to enhance its convergence characteristics. One aspect of this research was to identify the sources of noise in the code and any discontinuities or corners in the modelling of the engine components that may have contributed to the failure of the other techniques. The idea is that the elimination of causal factors that may have contributed to the poor performance of the other techniques may lead to improved performance of the Principal Axis Method. It is this aspect of the research to which the study effort described herein is directed.

DISCUSSION OF STUDY ACTIVITIES AND RESULTS

Source Code Acquisition and Checkout

Immediately upon award of the contract, a trip was made to the NASA Lewis Research Center to obtain on magnetic tape a copy of the NNEP source code with tabular and input data for a typical test case. The program was installed and compiled on the IBM 360, Model 91 under the OS operating system at the NASA Goddard Space Flight Center in Greenbelt, Maryland. The program listings were reviewed in detail to identify all input/output logical unit assignments and the expected record formats and lengths as required for the proper definition of the job control cards. The compilations indicated several warning level diagnostics which were of three types: (1) array items appearing in equivalence statements were non-subscripted; (2) Fortran mathematical library functions were called with arguments of the wrong type; and (3) real constants with eight or more digits were not specifically declared double precision through the use of a D exponent. In addition the Technical Officer advised of a dimension error in one subroutine, and a review of the I/O units employed by the program pointed out an incorrect logical output unit assignment. These errors were corrected and a complete load module of the revised program was generated.

Initial attempts to execute the test case provided were unsuccessful. Tracing through core dumps that were generated at the time of program abend led to the determination that certain input variables and arrays were not explicitly initialized by the program. Unlike the computers in use at the NASA Lewis Research Center, the OS/360 operating system does not set core to zeroes prior to loading the program. This task must be performed by the applications program. Upon accomplishing this task, the program executed successfully and yielded results that were close to those obtained on the Univac 1110 computer at Lewis. With this accomplished, it was possible to address the primary objectives of the study.

Source Code Cross Reference Analysis

The NNEP source code was passed through a set of utility programs which generate a set of five reports giving extensive cross reference information of subprogram calls, labelled common references and individual common variable references throughout the program. The five reports are as follows:

- 1. A listing by subprogram of the calling arguments passed to the routine, the subprograms referenced or called by the routine, the labelled commons used by the routine, and the secondary entry points contained in the routine.
- 2. A list of all secondary entry points in the program with the name of the subprogram in which the entry point appears.
- 3. A list by subprogram name of all other subprograms which call or reference the subprogram.
- 4. A list by labelled common name of all subprograms that contain the labelled common.

5. A list by common variable or array name within each labelled common of all subprograms which reference the common variable. The variable or array type and its position relative to the start of the common, in decimal bytes, are also given. For this report, the utility programs use both the labelled common name and total length, printed in decimal bytes, to identify the common. Therefore, if a common is of different lengths in different routines, a separate report is prepared for each length.

The cross reference reports for NNEP are reproduced in Appendix A. These reports indicated two problems with respect to operation on the GSFC computer. One problem was a call to a subroutine SYSOBF, the source code for which was not included with the program. This subroutine is included in the system library on the NASA Lewis computer, but is not required for operation on the GSFC computer. Therefore, the calls to the subroutine were removed. The second problem identified was that labelled common EMØDID was of a different length in one subroutine than in all other subroutines in which it appeared. The discrepancy was due to the failure to properly type the common variables as double precision in the one subroutine. This error was corrected prior to commencing Task 2 of the study.

Analysis of Convergence Problems

The analysis of convergence problems required the repeated execution of test cases under a variety of conditions. The test cases employed for this purpose were provided by the Technical Officer and consisted of two separate data sets. One set, which will be referred to as Data Set A, consisted of a design point case (function evaluation using input values of all independent variables with no iterations), an off-design case requiring satisfaction of all control equations but no optimization, and a case to optimize the engine design to yield maximum thrust. The relatively simple engine configuration consisted of six components - an inlet, a compressor, a duct, a turbine, a nozzle and a shaft connecting the compressor and turbine. Four control variables and associated end conditions were specified. For the optimization case, two independent variables were activated and one inequality constraint was imposed. All cases in Data Set A involved a single mode. To supplement these inputs, the data set also included five tables of gas property data required to be available for reading on logical unit 12. The second input data set, designated Data Set B, included a design point evaluation and five separate optimization cases. Distinct mode numbers were assigned to each of the six cases. Although each of the six cases represented different engine concepts, reflected by different engine parameter values, the configuration for each case consisted of the same 15 components, as follows: an inlet, 2 compressors, 2 turbines, 3 ducts, a splitter, 2 nozzles, 2 shafts, a water injector and a load. A total of eight control variables and associated end conditions were specified along with two inequality constraints. Three optimization variables were activated to yield maximum thrust for the five optimization cases. The data set also included ten tables of gas property data. The two data sets are printed in their entirety in Appendix B.

The analysis was begun with a review of the source code to identify questionable procedures or algorithms in the code that could lead to discontinuities or corners in modelling calculations. In earlier versions of the program, the algorithm used for interpolation and extrapolation in the gas property tables was suspect. However, the routines employed to perform the interpolations and extrapolations had been modified to eliminate the known deficiencies prior to

receipt of the source code. Consequently, this portion of the program was not investigated in this study. The review of the source code led to the identification of only one subroutine where discontinuities or corners in the model may occur. This subroutine was THERM which solves thermodynamic equations for specified parameters given a set of input conditions. The solution of these equations involves the evaluation of cubic polynomial expressions of the form

$$y = a_i + b_i x + c_i x^2 + d_i x^3$$

for a given value of the independent variable x. The coefficients a_i , b_i , c_i and d_i are selected from arrays A, B, C and D, respectively, with the value of the index i being dependent on the magnitude of x. The subroutine contains an associated array X with elements x_i representing tabular values of the independent variable at which a change in the coefficients used takes place. The index is chosen such that x is contained in the interval

$$x_i \le x \le x_{i+1}$$
.

If $x < x_1$, then i = 1 is used. To assure continuity and smoothness in the function, it is necessary that the stored coefficients contain a sufficient number of significant digits such that

$$\lim_{\epsilon \to 0} \left[y(x_i) - y(x_i - \epsilon) \right] = 0$$

$$\lim_{\varepsilon \to 0} \left[y'(x_i) - y'(x_i - \varepsilon) \right] = 0$$

where

$$y'(x) = b_{i} + 2c_{i}x + 3d_{i}x^{2}$$

Due to the finite number of digits maintained by the computer, it is not possible that the indicated differences can be driven to exactly zero; however, the smaller the residuals are the greater will be the continuity and smoothness of the function. A fortran program was written to evaluate

the residuals in y and y' at the tabular points ($i \ge 2$), and it was found that a minimum of six significant figures was maintained in both functions. This level of error was expected since the coefficients are entered with only seven or eight significant digits. This is probably not significant when using a direct optimization technique such as the Principal Axis Method, but could lead to problems with an indirect optimization technique. Since there is no effect on computational speed due to increasing the number of significant digits in the coefficients, however, it is recommended that this be done even if the direct optimization technique is retained.

The search for possible sources of noise in the computations was limited to investigating the effects of inner loop tolerances on the iteration characteristics.

A possible source not investigated because the level of effort available was not consistent with the magnitude of the task is the differencing of numbers of the same order of magnitude. Since double precision computations are used throughout the program, this is not expected to be a major source of noise. Also, machine roundoff and truncation and accuracy of library mathematical routines were not considered important because of the use of double precision.

Inner loop iterations are performed in several of the engine component routines, including COOLIT, DBURNR, INLET, MIXER, NOZZLE, TURBIN and WINJEK. In each of these routines, the iteration is on a single variable, and convergence to the specified tolerance is required on each call. The appropriate subroutine is called only once for a given component each time a complete engine performance evaluation is required. Subroutine THERM also performs an inner loop iteration on a single variable under certain conditions; however, it is called many times on each engine performance evaluation. Therefore, the possibility for accumulation of noise effects due to THERM is substantially greater than for the engine component routines. A multiple variable inner loop iteration is performed in subroutine CALCFX to satisfy all the control conditions specified on input. This subroutine provides the interface between the outer loop iterator BOTM and the engine performance calculations. CALCFX returns to BOTM the value of the performance index which is used in controlling the outer loop The relative tolerances specified for convergence in the engine component subroutines vary between 1×10^{-5} and 5×10^{-4} . There are two flow paths in subroutine THERM that result in inner loop iterations. The tolerances for the two paths are 2×10^{-5} and 2×10^{-6} . The tolerances used in subroutine CALCFX are defined by input through the SPCNTL or the SPEC arrays. The data sets provided for test purposes invoked default values of 1×10^{-3} for these tolerances.

The investigation of noise effects in the various routines was approached by tightening the tolerances used in the several inner loop iterations in selected combinations. For this purpose, all of the engine component routines were tested as a single unit, subroutine THERM was tested as a second unit and CALCFX was treated as a third unit. Within a unit, the tolerances for all inner loop iterations were varied holding the tolerances in the other two units fixed. The behavior of the convergence process was monitored in terms of the number of iterations and function evaluations required for convergence and the final value of the performance index, thrust. Additionally, the convergence progress was monitored in several cases where the behavior failed to conform to an expected pattern.

In the engine component routines, a tolerance level of 1 x 10⁻¹⁰ for all iterations was selected for comparison with the nominal tolerances stated previously. Several cases were executed with both tolerance levels and various combinations of tolerances in subroutines THERM and CALCFX. The results indicated that the tolerance level in the engine component routines had virtually no impact on the solution. In each case, when comparing with equal tolerances in the other routines, the number of iterations and function evaulations were identical for the two tolerance levels. Furthermore, the differences in the final value of thrust were insignificant, varying at most in the sixth significant digit. It was therefore concluded that, at least for the test cases investigated, the engine component routines are not contributing to the noise in the calculations. It was noted with interest that the more stringent convergence criteria did not appear to adversely affect the CPU time for the runs. This is most probably due to strong convergence properties of the inner

loop iterations resulting in the achievement of convergence with only minimal additional iterations.

In subroutines THERM and CALCFX, selected combinations of three tolerance levels in each routine were investigated. In THERM, the nominal values were studied in addition to values of 10^{-10} and 10^{-14} while in CALCFX the values included were 10^{-3} , 10^{-6} and 10^{-8} . Initially, a tolerance level of 10^{-10} was tried in CALCFX, but difficulties in achieving convergence at that level led to the selection of 10^{-8} as the most stringent convergence criterion. Due to computer time limitations, not all combinations of tolerances were investigated for all cases. Nevertheless, a sufficiently broad spectrum of combinations were included to adequately assess the noise effects in the cases investigated.

The results of this portion of the study are presented in Tables 1 through 4, inclusive. The tabular entries include the data set designation and mode number to identify the inputs for the case (see Appendix B), the tolerances employed in the two subroutines; the number of iterations and function evaluations required to achieve convergence in the outer loop, the converged value of thrust and, for selected cases, a comment giving noteworthy information concerning the iteration sequence. Table 1 displays results for varying tolerance levels in THERM while holding the tolerance levels in CALCFX to their default values of 10^{-3} . Table 2 gives corresponding results for tighter CALCFX tolerances of 10^{-6} . Tables 3 and 4 reverse the order of presentation of data by varying the tolerances in CALCFX while holding the tolerances fixed in THERM at the nominal and 10^{-10} values, respectively. A review of the tabular data leads to the following observations:

- 1. The tightening of tolerances in THERM while maintaining default tolerances in CALCFX provides no evidence that major reductions in noise are achieved with the tighter tolerances. Substantial (third significant digit) improvement in thrust is achieved with tighter tolerances for the Data Set A and Data Set B, MODE = 4 input cases; for all other cases the differences in thrust were one or more orders of magnitude smaller.
- of 10⁻⁶ in CALCFX also provide no evidence that the tolerances in THERM substantially affect the noise. The only case for which the number of iterations was affected by the tolerance level in THERM was the Data Set B, MODE = 4 input case. The number of function evaluations for the MODE = 4 and 5 cases of Data Set B appeared very sensitive to the tolerance level, but this is due to the nature of the outer loop iteration algorithm where slight changes in the performance index can substantially change the iteration sequence. The maximum changes in the performance index occur in the fourth significant digit.

TABLE 1

EFFECT OF TOLERANCE LEVELS IN THERM

Default Tolerances in CALCFX (10⁻³)

Data Set	Mode	THERM tolerance	No. of iterations	No. of function evaluations	Thrust (lbs)	Comments
A	1	Nominal	4	53	4194.84	
A	1	10-10	· 4	64	4238.93	
Α.	1	10-14	4	64	4238.93	·
В	2	Nominal	6	129	14901.51	
В	3	Nominal	3	74	17556.64	17668 lbs thrust achieved during iteration
В	4	Nominal	4	92 .	21984.59	22040 lbs thrust achieved during iteration
В	5	Nominal	5	86	25481.00	
В	6	Nominal	4	80	27754.32	
В	2	10 ⁻¹⁰	6	132	14905.35	
В	3	10-10	3	74	17557.05	17669 lbs thrust achieved during iteration
B	4	10-10	3	70	22641.04	22672 lbs thrust achieved during iteration
В	5	10-10	5	86	25480.97	·
В	6	10-10	6 .	133	27731.79	
			·			

TABLE 2 EFFECT OF TOLERANCE LEVELS IN THERM Tight Tolerances in CALCFX (10^{-6})

Data Set	Mode	THERM Tolerance	No. of Iterations	No. of Function Evaluations	Thrust (1bs)	Comments ,
A	1	Nominal	3.	44	4235.92	
A	1	10-10	3	43	4236.04	
A	1	. 10 ⁻¹⁴	3	43	4236,04	
В	2.	Nominal	3	63	14895.25	Final thrust achieved at iteration (2,33)
В	3	Nominal	3	79	17574.32	Final thrust achieved at iteration (1,20)
В	4	Nominal	8	160 '.	22729163	Final thrust achieved at iteration (6,135)
В	5	Nominal	9	175	25595.21	Final thrust achieved at iteration (6,117)
В	6	Nominal	2	68	27913.85	Final thrust achieved at iteration (1,43)
В	2	10-10	3	65	14896,00	Final thrust achieved at iteration (2,34)
В	3 .	10-10	3	76	17574.77	Final thrust achieved at iteration (1,21)
В	4	10-10	8	215	22745.71	Final thrust achieved at iteration (7,181)
В	5	10 ^{-1.0}	14	298	25595 05	Final thrust achieved at iteration (9,180)
В	6	10-10	2	68	27913.53	Final thrust achieved at iteration (1,43)
В	2	10 ⁻¹⁴	3	65	14896.00	Final thrust achieved at iteration (2,34)
. B	3	10-14	3	. 76	17574.77	Final thrust achieved at iteration (1,21)
В	4	10-14	8	217	22745.69	Final thrust achieved at iteration (7,183)
В	5	10 ⁻¹⁴	14	313 .	25595.07	Final thrust achieved at iteration (9,180)
B	6 .	10 ⁻¹⁴	2	68	27913.53	Final thrust achieved at iteration (1,43)

TABLE 3
EFFECT OF TOLERANCE LEVELS IN CALCFX
Nominal Tolerances in THERM

Data Set	Mode	CALCFX Tolerance	No. of Iterations	No. of Function Evaluations	Thrust (1bs)	Comments
Λ	1	10-3	4	53	4194.84	
A	1	10 ⁻⁶	3	44	4235.92	
A	1	10 ⁻⁸	3	45	4235.94	:
В	2	10 ⁻³	6	129	14901.51	·
В	3	10-3	3	74	17556.64	17668 lbs thrust achieved during iteration
В	4	10-3	4	92	21984.59	22040 lbs thrust achieved during iteration
В	. 5	10-3	5	86	25481.00	
В	6	₁₀ -3	4	80	27754.32	
В	2	10-6	3	63	14895.25	Final thrust achieved at iteration (2,33)
В	3	10-6	3	79	17574.32	Final thrust achieved at iteration (1,20)
В	4	10-6	8	160	22729.63	Final thrust achieved at iteration (6,135)
В	5	10-6	9	175	25595.21	Final thrust achieved at iteration (6,117)
В	6	10 ⁻⁶	2	68 .	27913.85	Final thrust achieved at iteration (1,43)
B	2	10-8	3	63	14895.24	Final thrust achieved at iteration (2,33)
В	3	10-8	5	108	17574.31	Final thrust achieved at iteration (1,20)
- В	4	10 ⁻⁸	8	160	22729.57	Final thrust achieved at ireration (6,135)
В	5	10-8	4	75	25586.43	Final thrust achieved at iteration (1,36)
В	6	10-8	2	68	27913.84	Final thrust achieved at iteration (1,43)

TABLE 4

EFFECT OF TOLERANCE LEVELS IN CALCFX

Tight Tolerances in THERM (10⁻⁶)

Data Set	Mode	CALCFX Tolerances	No. of Iterations	No. of Function Evaluations	Thrust (1bs)	Comments
A	1	10 ⁻³	4	64	4238.93	
A	1	10 ⁻⁶	3	43	4236.04	
A	1	10-8	3	44	4236.04	·
В	2	10 ⁻³	6	132	14905.35	
В	3	10 ⁻³	3	74	17557.05	17669 lbs thrust achieved during iteration
В	4	10-3	3	70	22641.04	22672 lbs thrust achieved during iteration
В	5	10-3	5	86	25480.97	
В	6	10 ⁻³	6	133	27731.79	·
В	2	10 ⁻⁶	3	65	14896.00	Final thrust achieved at iteration (2,3%)
В	3	10 ⁻⁶	3	. 76	17574.77	Final thrust achieved at iteration (1,21)
В	4	10 ⁻⁶	8	22.5	22745.71	Final thrust achieved at iteration (7,181)
В	5	10-6	14	298	25595.05	Final thrust achieved at iteration (9,180)
В	6	10 ⁻⁶	2	68	27913.53	Final thrust achieved at iteration (1,43)
В	2	10-8	3	65	14896.01	Final thrust achieved at iteration (2,34)
В	3	10-8	5	108	17574.76	Final thrust achieved at iteration (1,21)
В	4	10-8	9	241	22744.93	Final thrust achieved at iteration (8,210)
В	5	10-8	4	75	25586.29	Final thrust achieved at iteration (1,36)
В	6	10 ⁻⁸	2	68	27913.53	Final thrust achieved at iteration (1,43)

- 3. The tightening of tolerances used by CALCFX from 10⁻³ to 10⁻⁶ has a noticeable effect on performance index.* The largest change occurs in the second significant digit of the MODE = 4 input case of Data Set B. The further tightening of the tolerances to 10⁻⁸ had virtually no impact on the solution except for the MODE = 5 input case in which the iteration simply terminated earlier at a slightly smaller value of thrust. After the same number of iterations and function evaluations with a tolerance level of 10⁻⁶, the iterator had achieved the same thrust as that of the converged value for a tolerance level of 10⁻⁸. Again, this is a case in which slight differences in the value of the performance index can significantly alter the outer loop iteration sequence.
- The effect of tolerance levels used by CALCFX on the number of iterations 4. and function evaluations required for convergence is unpredictable. A review of the iteration histories indicated that the first occurrence of the final thrust (to five significant digits) is achieved in most cases several iterations and function evaluations prior to the determination of convergence. The point in the iteration sequence where this occurs is given under the "Comments" heading for several of the cases. The two numbers enclosed in parentheses and separated by a comma denote the number of iterations and number of function evaluations, in that order, where the final thrust is achieved. Note that, for a given mode, these numbers are identical for CALCFX tolerances of 10^{-6} and 10^{-8} except for the MODE = 5 case discussed above. Similar numbers are not shown for the tolerance level of 10⁻³ because noise in the calculations rendered any such analysis meaningless. As noted in the Comments, some intermediate iterations for a tolerance level of 10^{-3} yielded values of thrust that substantially exceeded the final converged value. This is almost certainly due to noise in the calculations.

It is concluded from the preceding observations that tightening tolerances used by subroutine CALCFX from the default values of 10^{-3} to a level of 10^{-6} will substantially reduce noise in the computations. However, doing this will not necessarily reduce the number of iterations and function evaluations required for convergence. It is recommended that attention be given to the convergence criteria of the outer loop iteration for the purpose of more rapidly determining that convergence has been achieved. The tolerance levels in subroutine THERM appear to have little impact on convergence using the Principal Axis Method. However, if this direct iteration technique were to be replaced with an indirect method, it is believed that the samll noise introduced by the loose tolerances in THERM may then impede convergence.

^{*} This effect was noted previously in the Final Progress Report of a Naval Air Development Center study for NASA Lewis Research Center on Optimization Methods for the Navy/NASA Gas Turbine Engine Code, NASA Defense Procurement Request PR 782875.

During the course of the study, a revised version of the Principal Axis Method iterator was supplied by the Technical Officer with instructions to investigate its apparent improved convergence characteristics. The primary difference in the new algorithm is the use of a least squares quadratic curve fit of four points to locate the performance index minimum along the line search of the outer loop iteration. The objective of this modification is to minimize the effects of noise in the outer loop iteration. The revised iterator was installed on the IBM 360, Model 91 computer at NASA GSFC and, after eliminating problems arising from the failure to explicitly initialize certain arrays, successful execution of the program was achieved. Testing of the revised iterator was performed using the Data Set B input cases.

The five optimization cases of Data Set B were executed with various combinations of tolerance levels in subroutines THERM and CALCFX and the results are tabulated in Table 5. As predicted, convergence with the revised iterator was repeatedly achieved in substantially fewer iterations and function evaluations than required by the original iterator. It was noted, however, that the final value of thrust achieved with the revised iterator was routinely less than that obtained with the original iterator. In one case (MODE = 4), the difference was eight percent. This suggests that the reduced computational requirements may simply be a result of an early termination of the iteration process. A direct comparison of the performance of the two iterators was made by tabulating the maximum thrust achieved with the original iterator within the number of function evaluations required for convergence with the revised iterator. values of thrust are presented in the last column of Table 5. It is seen that these values are consistently higher than the final values achieved with the revised iterator. The values shown in the last column of Table 5 are within 0.8 percent of the converged values obtained with the original iterator. The conclusion to be drawn from these results is that the performance of the original iterator is better than that of the revised iterator. Therefore, it is recommended that the original iterator be retained and that the number of iterations and function evaluations be reduced by relaxing the convergence criteria or through improved convergence detection techniques that may be identified through additional research with the algorithm.

Mode	THERM Tolerance	CALCFX Tolerance	No. of Iterations	No. of Function Evaluations	Thrust (lbs)	Thrust Acheived by Original Iterator *
2	Nominal	10 ⁻³	1	35	14309.96	14878
3	Nominal	10-3	1	33	17574.77	17626
4	Nominal	10 ⁻³	3	71	21061.60	22039
5	Nominal ·	10 ⁻³	3	92	25275.46	25481
6	Nominal	10 ⁻³	1	37	27445.12	27654
2	Nominal	10-6	I	33	14314.65	14895
3	Nominal	10 ⁻⁶	1	34	17574.14	17574
4	Nominal	10 ⁻⁶	3	71	21060.93	22679
5	Nominal	10-6	1	54	25275.18	25586
2	10-10	10-3	1	35	14310.10	14889
3	10-10	10-3	· 1.	33	17575.44	17627
4	10-10	10 ⁻³	3	71	21062.32	22672
5	10-10	10 ⁻³	3	92	25275.31	25481
6	10-10	10-3	1	37	27438.64	27657 ·
2	10-10	10-6	1	33	14315.00	14896
3	10-10	10-6	1.	34	17574.59	17575
4	10-10	10-6	3	72	21061.15	22700
5	10-10	10-6	1	54	25275.03	25586
6	10-10	10-6	I.	36	27432.57	27700

 $^{^{\}dagger}$ Maximum value achieved within the number of iterations and function evaluations required for convergence with modified iterator.

CONCLUSIONS

As a result of the analyses performed and supporting data generated in the study, the following conclusions are drawn:

- 1. The only modelling discontinuities and corners identified in the code were minor and are located in subroutine THERM. Tables of coefficients used in cubic polynomials are stored to seven or eight significant digits in internal DATA arrays. At tabular points in the independent variable, the use of successive entries in the coefficient tables can lead to discontinuities in the evaluated function and first derivative in the seventh or higher significant digit. The retention of more significant digits in the coefficient tables can virtually eliminate the discontinuities at no additional cost in computer time.
- 2. The principal source of computational noise, as it affects the performance of the Principal Axis Method iterator, is the tolerances to which the control equations are satisfied on each funtion evaluation. The default values of the tolerances, which are 1×10^{-3} , lead to inaccuracies in the performance index in the third or higher significant digit. In a ÷. sequence of function evaluations, these inaccuracies appear to act more as a bias than as pure noise. Consequently, the convergence characteristics are, on the average, not substantially different from those achieved with tighter tolerances. Rather, the effect is to converge on different values of the independent variables which yield a slightly different value of the performance index. The error in performance index due to loose tolerances in satisfying the control equations can be positive or negative and the magnitude can exceed the differences in performance index evaluated at the different values of independent variables. Therefore, it is possible that the solution with loose tolerances can appear better than that achieved with tight tolerances, but this more favorable result is erroneous and can not be achieved in fact. It is recommended that the default tolerances be overridden for each control variable through program input in either the SPCNTL or SPEC arrays contained in the namelist D input data set. It is recommended that the tolerances be input no greater than 1×10^{-6} .
- 3. The tolerances used in the inner loop iterations in the engine component subroutines and in subroutine THERM appear adequate for use with the Frincipal Axis Method iterator. No computational noise was observed in varying the tolerances of the engine component subroutines; slight noise was observed in varying the tolerances in THERM. Tightening the tolerances in THERM is recommended in any implementations of an indirect optimization technique.

APPENDIX A

Source Code Cross Reference Reports

TEFOLDING PAGE PENNY HOLLING

PROGRAM SUBROUTINE INFORMATION

MAIN REFERÊNCED SUB-PROGRAMS NEPCAL GONEP BOTM BOTMZ FINPRT NEPINP REFERÊNCED COMMONS CUL SNGL NEPOPT CANTRL

SUBRBUTINE NÉPCAL
REFERÊNCED SUB-PROGRAMS
SYSOUF INPUT FLOCAL FINÈRT DMINV
REFERÊNCED CEMMONS
GOL SNGL NEPOPT CANTRL INSTAL
ENTRY POINTS
NEPINE GONEP

SUBROUTINE BOTM

CALLING ARGUMENT

X, £, N, ÉF, ESCALE, IPRINT, ICON, MAKIT, W
REFERENCED SUB-PROGRAMS

CALCEX LSTOPT

REFERENCED COMMONS

NEPOPT

SUBROUTINE BOTM2

CALLING ARGUMENT

X.E.N.EF.ESCALE.IPRINT.ICGN.MAXIT.W

REFERENCED SUB-PROGRAMS

CALCEX ZTOPZ

REFERENCED COMMONS

NEPOPT

SUBROUTINE . CALCEX CALLING ARGUMENT NOPT.X.DEP REFERENCED SUB-PROGRAMS GONEP LSTOPT EXIT REFERENCED COMMONS DBL SNGL NEPOPT

SUBROUTINE COMPRS
REFERENCED SUB-PROGRAMS
THOOK THERM
REFERENCED COMMONS
DBL SNGL

REPRODUCIFILITY OF THE OMGINAL PAGE IS POOR

SUBROUTINE CONFIG REFERENCED SUB-PRIGRAMS INPRT REFERENCED COMMONS SUBROUTINE COOLIT
CALLING ARGUMENT
NSTAGE.FACTOR.TIN.TOUT.TCOCL.PCBLED
FÉFÉRENCED COMMONS
JBLESD

SUBFOUTINE DOWNR REFERENCED SUB-PROGRAMS TLOOK THERM REFERENCED COMMONS DOL . SNGL

SUJECUTINE FIGURE CALLING ARGUMENT JTYPE, JFLOW, JCONF

- SUBROUTINE FLOCAL
CALLING ARGUMENT
IGET, SS, EROR
REFERENCED SUB-PROGRAMS
TLOOK INLET CEURNR WINJEK COMPRS TURBIN HEATXC SPLITS
MIXER NOZZLÉ
REFERENCED COMMONS
DOL SNGL JOLEGO INSTAL

SUBROUTINE HEATXC
CALLING ARGUMENT
1
REFERENCED SUB-PROGRAMS
TLOOK THERM
REFERENCED CEMMONS
DOL SNGL

SUBROUTINE INLET REFERENCED SUB-PROGRAMS THERM TLOCK REFERENCED COMMONS DBL SNGL

SUBMOUTINE INPRT
REFERENCED SUB-PRUGRAMS
SYSOUF SUMERY
REFERENCED COMMONS
DBL SNGL CANTRL JOLEED
ENTRY POINTS
FINDRT

SUBFRUITINE INPUT
CALLING ARGUMENT
MADE

REFERENCED SUB-PROGRAMS
NAMEPR TREAD CONFIG FIGURE INPRT
REFERENCED COMMONS
DBL SNGL NEPOPT INSTAL EMODID CANTRL JBLEEF

SUBROUTINE LSTOPT REFERENCED COMMONS DBL SNGL

SUBROUTINE DATNY CALLING ARGUMENT A.N.D.L.M.

SUBROUTINE MIXER
REFERENCED SUB-PROGRAMS
THERM
REFERENCED COMMONS
DBL SNGL

SUBROUTINE NAMEPR

CALLING ARGUMENT

IN. NOUT. NEED. PINPUT

REFERENCED SUB-PROGRAMS

CONVET

SUBRCUTINE NOZZLE
REFERENCED SUB-PROGRAMS
THERM TLOOK
REFERENCED COMMONS
BBL SNGL INSTAL

SUBROUTINE SPLITS REFERENCED COMMONS DBL SNGL

FUNCTION SPLNG1 CALLING ARGUMENT NLOC+X+XINDEP

FUNCTION THERM CALLING ARGUMENT IC.ARG.FACLD

SUBRUUTINE TREAD
CALLING ARGUMENT
11.X.Y.Z.FXYZ
REFERENCED SUB-PRIGRAMS
SPLNUI
REFERENCED COMMONS
COL SNGL
ENTRY POINTS

SUBROUTINE TURBIN REFERENCED SUB-PROGRAMS THERM TLOCK COOLIT REFERENCED COMMONS DOL SNGL JULEED

SUBROUTINE WINJEK REFERENCED SUB-PROGRAMS THERM REFERENCED COMMONS Dal SNGL

SUBROUTINE ZTOPZ
CALLING ARGUMENT
NRUN, X, XE, NX, EF, TOL, VALID, NGRD, KTOP, MAXPRT
REFERENCED SUB-PROGRAMS
LSTOPT

SUSPOUTINE CONVRT REFERENCED SUB-PROGRAMS EXIT REFERENCED COMMONS EMODIO CANTRE

SUJROUTINE SUMÉRY RÉFÉRENCED COMMONS EMODIO CEL SNGL INSTAL

PROGRAM ENTRY POINTS

ENTRY PEINT SUMMARY

ENTRY SUE-PROGRAM NEPINP NEPCAL

GCNEP NEPCAL FINPRT INPRT

TLOOK TREAD

SUBROUTINE CROSS REFERENCE TABLE

```
NAME
          SURROUTINES REFERENCING MEMBER
BOTA
          MAIN
øCT42
          MAIN
CALCEX
          MTOB
                 BOTME
COMPAS
          PLOCAL
CONFIG
          INPUT
CUNVET
          NAMERR
COCLIT
          TURBIN
CBUHNE
          FLOCAL
DMINV
          NEPCAL
EXIT
          CALCEX CONVRT
FIGU₽£
          INPUT
FINPAT
          MAIN NEPCAL
FLCCAL
          NEPCAL
          CALCEK MAIN
GONEP
HEATXC
          FLOCAL
INLET
          FLOCAL
INPRT
          CONFIG INPUT
INPUT
          NEPCAL
LSTOPT
          EOTM
                 CALCEX ZIOPZ
MIXER
          FLOCAL
          INPUT
NAMERR
NEPCAL
          MA IN
NEPINE
          MAIN
NOZZLE
          FLOCAL
SPLITE
          FLUCAL
          TRÉAD
SPLNUI
SUMERY
          INPRT
SYSUBF
          INPRT
                 NEPCAL
THERY
          COMPRS DOURNR HEATKO INLET MIXER ACZZLE TURBIN
          メコンコドス
TLEUK
          COMPAS DEURNE FLOCAL HEATXC INLET
                                               NCZZLE TURBIN
TREAD
          INPUT
TURBIN
          FLOCAL
WINJEK
          FLOCAL
ZTUPZ
          SMTGB
```

COMMON CROSS REFERENCE TABLE

NAME	SUBAGUI	INES RE	FERENCI	NG MEM	ER		
GANTRE	CONVET	INPRT	INPUT	MAIN	NEPÇAL		
CBL	CALCEX	COMPRS	CENFIG	Daurna	FLOCAL	HEATXC	INLET
	INPRT	INPUT	LSTOPT	MAIN	MI KER	NEFCAL	NCZZLE
	SPLITE	SUMERY	TREAD	TURB IN	WINJEK		
EMODIO	CONVET	INPUT	SUMĒRY				
INSTAL	FLOCAL	INPUT	NEPCAL	NOZZLE	SUMERY		
JBLESD	TIJEUD '	FLOCAL	INPRT	INPUT	NICAUT		
NEPOPT	BO TM	SOTM2	CALCEX	INPUT	MAIN	NEFCAL	
SNGL	CALCEX	COMPRS	CENFIG	DBURNR	FLOCAL	HEATXC	INLET
	INPRT	INPUT	LSTOPT	MAIN	MIKER	NEFCAL	NOZ ZLE
	SPL I TR	SUMERY	TPEAD	TURBIN	MI NUÈK		

REPRODUCIBILITY OF THE OMGINAL PAGE IS POOR

TABLE A-5

COMMUN VARIABLE CROSS REFERENCE TABLE

COMMON	Đặc	LENGT	H 14584
VAR I ABLÉ	TYPE	ADDR 5	UER CUT I NE
DATINE	R*5	o o	MAIN
			INLET
			INPRT
			INPUT
		•	MIXER
			CALCEX
			CCMPRS
			CBURNR
			FLECAL
			HEATXC
			LSTOPT
			NEFCAL
			NOZZLE Splitr
			SUMERY
			TURBIN
			WINJEK
DATCUT	R *0	7230	INLET
D41001		,,	INPRT
		-	INPUT
			MIXER
			CALCEX
			CCMPRS
			CBURNR
		-	FLCCAL
			HEATXC
			LSTOPT
			NOZZLE
			SPLITE
			SUMERY
			TURBIN
			WINJEK
WTF	报业品	11520	INLET
			INPRT
			INPUT
			MIXER
			CALCEX
			CCMPRS
			DBURNR FLECAL
			HEATKC
			LSTOPT
			NOZZLE
			SPLITE
			TURSIN
			WINJEK
TUPRES	F¥3	11 340	INLET
	• • •		INPRT
			•••

COMMON	DOL (C	ONTI NUED I	
PAR JABLE	TYPE	ADDR	SUER CUTINE MIXER
			COMPRS
•			CBURNE
			FLECAL
		•	PEATIC
			LSTOPT
			NOZZLE
••			SPLITR
			SUMERY
	•		TURBIN
		i Na ang ang	WINJEK
TOTEMP	R*3	121:00	INLET
			INPRT MIXER
1		·	CCMPRS
tan in a said	-		CHURNR
			HEATXC
Section 1985			LSTOPT
			NOZZLE
•			SPLITR
			TURBIN
			NINJEK
FAR	R*O	12480	INLET
			ÎNPRT
•			MIXER
			CEMPRS
	•		CBURNR
			HEATXC
			LSTOPT
			NOZZLE
			SPLITR
			TURBIN
, and the same above the same and same	or as 13	12800	WINJER INLET
CORFLO	《伊本 马	120/10	INPRT
			MIXER
			CCMPRS
			COURNR
· · · · · · · · · · · · · · · · · · ·		• •	FLECAL
			HEATXC
			LSTUPT
			NOZZLE
	٠.		SPLITR
			NIERUT
			NINJEK
VMACH	R#3	1312)	INLET
•			INPRT
			MIXER
			LSTOPT
			NOZZLE
			WINJER

COMMON	DBE (C	I CBUN IT NU	Ì
VARIAMLE	TYPE	ALDR	SUBREUTINE
STATP	R ≠o	13440	INPRT
			MIXER
			LSTOPT
			NOZZLE
80 9 43	R≢S	13700	INPRT
			FLCCAL
-			LSTOPT
TOL	R¥a	14(60	NEFCAL
TOLTT	R **	14095	NEFCAL
DEPV	R #8	14164	INPUT
			FLCCAL
			NEFÇAL
ETOL	R#3	14254	FLCCAL
			NEPCAL
PERPF	R.#o	14424	INPRT
			INPUT
			CALCEX
			FLCCAL
			LSTOPT
			NEFCAL
			SUMERY

COMPON VARIABLE CRUSS REFERENCE TABLE

COMMUN	SNGL	LEN	GTH	5360
VARIABLE JM1	를색¥T ++ 1	ADDR 9		CUTINE NLET
· · · · · · · · · · · · · · · · · · ·	•			IXER
				MPRS
				URNR
				ECAL
			HE	ATXC
			NO	ZZLE
			SP	LITE
			TU	RBIN
			WI	NJEK
JM2	1 *4	.4	M	IXER
			CB	LRNR
				CÇ AL
				ATXC
				FBIN
J₽1	1 *4	8		NLET
				IXER
				MPRS
				NFIG
•				LRNR
		•		CC AL.
				ATXC
				ZZLE Litr
				FBIN
				NJEK
JP2	1 *4	12		PRS
5 F &	* ***	• •		URNR
				CC AL
				ATXC
				LITR
JCX	1*4	16		MAIN
				NLET
				NPRT
			М	IXER
			CA	LCFX
			CC	MPRS
			CC	NFIG
			CB	LRNR
				CCAL
				ATXC
				FCAL
				ZZLE
				LITR
				RBIN
	_	· ·		NJEK
LOCTAL	I *4	5)		NLET
			CC	MPRS

Самкон	SNGL (CO	(פשטא 1דאנ	
VARIADLE	TYPE	AUDR	SUBRCUTINE
		-	CHURNR
			FLCCAL
			HEATXC
			KEFCAL
		•	NOZZLE
la dua		61.33	TURBIN
JCGMP	1#4	, SI3)	I NPUT
			CONFIG FLCCAL
IWAY	I *4	2460	MAIN
1 44 1	1 77	2400	INPRT
			INPUT
			COURNA
			FLCCAL
			NEFCAL
			NOZZLE
			TURBIN
NIT	1 *4	2464	INPRT
			1 NPUT
			CALCEX
			LSTOPT
			NEFCAL
			TURBIN
I TAB	1 #4	2463	TREAD
			NE FC AL
JOENE	I ##	2743	I NPRT
			INPUT
			CALCEX
			CCNFIG
			FLCCAL
			HEATXC
JTYPE	1#4	37 is	NEFCAL INPRT
JITPL.	1	37 73	I NPUT
			CENFIG
	*		FLECAL
			LSTOPT
			TURBIN
J FLO#	1 +4	3945	PAIN
			INPUT
			CENFIG
			FLCCAL
			HEATXC
IDEDAP	I *4	4228	INPRT
			INPUT
	_		NEFCAL
KKINDS	1 #4	42 89	MAIN
			INPRT
			INPUT
			CALCFX
			CONFIG -

COMMON SNGL (CONTINUED)				
VARIABLE	344 1	ADUR	SUERCUTIN	
			FLECAL	
			NEFCAL	
NCGMP		e e e e e e e e e e e e e e e e e e e	SUMERY	
NCUMP	174	5533	INPRT INPUT	
			CONFIG	
			FLCCAL	
			LSTOPT	
			NEFCAL	
NOSTAT	1#4	5692	INPRT	
	18 "		TAPUT	
			CONFIG	
			LSTOPT	
NITER	1 *+	5696	NEPCAL	
NFINIS	1 *4	5700	INPRT	
			CALCEX	
			FLCCAL	
	•		LSTOPT	
	• ± × ·		NEPCAL	
NPASS	1 *4	5704	INPRT	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FLECAL	
•			LSTOPT NEFCAL	
JCC	1 #4	5708	MAIN	
5 00	4 7 7	3703	I NPUT	
	•	•	CENFIG	
			FLECAL	
NTOL	1.84	5712	TREAD	
		- -	NEPCAL	
NCTS	1 #4	5716	INPRT	
			CUNF 1G	
			FLECAL	
4. M 3			NEPCAL	
JC IND	1*4	5720	NE PC AL	
JCDEP	1 *4	5800	FLCCAL	
	<u> </u>		NEFCAL	
JCVIND	I *+	5880	KEPCAL	
JCVDEP	1 *4	5960	FLECAL	
KOTYP	Î#4	6040	NEFCAL FLCCAL	
1942 J 114	4 7 7	OC40	NEFCAL	
IDENE	1 #4	6120	MAIN	
a water			1 NPUT	
			MIXER	
			COMPRS	
			DOLANA	
			FLECAL	
			NOZZLE	
			NIGRUT	

iens Kalinggrij (Kawanga, Alim

Q. 5.

But March Commence

CLMACH VARIABLE CAUSS REFERENCE TABLE

CRAMON C	ANTRL.	FEI	NGTH 2:	3
VAR LABLE	TYPĘ	ALDR	SUBRICUTIN	=
l CNG	<u>u#4</u>	Ğ	MÁIN	
			INPRT	
			INPUT	
			CONVET	
	ĸ	•	NEFCAL	
PUNT	医单位	4	MAIN	
			INPRT	
			INPUT	
			CCNVRT	
•			NEFCAL	
NC A SE	I *4	ទ	INPRT	
			I NPUT	
			NEFCAL	
NÇQDE	1 *4	12	MAIN	
			INPRT	
		•	I NPUT	
			NEFCAL	
AMAÇ	医羊类	16	MAIN	
			i NPRŤ	
			TURAI	
			CCAVRT	
			NEPCAL	

COMMON VARIABLE CROSS REFERENCE TABLE

COMMON EMODID LENGTH &

VA-IABLE TYPE ADDR SUBREUTINE
SEPDAT R+4 Q CONVRT

CUMMEN VARIABLE CROSS REFERENCE TABLE

COMMON E	MODIL	LEF	NGTH 16
VAR TAULE	TYdi	ADDR	SUBRICUTINE
SEPDAT	⊩ #ა	J	INPUT
			多いが何は人
いちゃいいた	R#5	3	INPUT
			SUVERY

CUMMON VARIABLE CAGSS REFERENCE TABLE

COMMEN I	NSTAL	LEN	GTH	260
54LAISEV	TYPE	ADDR	SUERC	
AEKN	R#5	i i		CAL
AMINDS	R#5	.a	-	ZLE PUT
ANTINUS	R = 5	3	- ·	CAL
st MAX	R#8	15	_	PUT
		•	••	CAL
SPMAX	F#8	24	IN	PUT
			FLC	CAL
SECIPE	宗本 含	32	-	PUT
-				CAL
DECAT	R ≭8	43		CAL
DLIP	R#d n≠::	48 5=		CAL
DSPIL AFACTR	R#S E#S	50 64		CAL
DEN	.民 # 3 元 # 3	72		CAL
AZER	R+9 A*5	ao	_	CAL
FBL	R + ä	53 53		CAL
AZACAP	F+3	104		CAL
FSPIL	R#6	112		CAL
AMA KEN	n×3	120		CAL
ACAPT	R #5	128		CAL
AENT	Fr≠si	136		CAL
AMA XE T	R # &	144		CAL
AEXIT	R#8	152	FLC	CAL
			SUM	ERY
CMF	£ # 5	169	FLO	CAL
AMPK	R.≠ø	103	FLC	CAL
CMPK	行事出	176		CAL
C₩S	H #3	184	FLO	CAL
CO SPL	R¥d	192		ÇAL
COBL	in # 5	೬೦೦	•	CAL
90	£*8	215		CAL
CBLP	R#d	224		CAL
AR CD-T	8*5	232		CAL
CDST SP ILL	(₹#.6 1*#	240 .248		C AL PUT
3P 1.L.L.	E + ++	. 243		CAL,
				CAL
				ZLE
				ERY
≅DAT	L*4	2 5 2	_	PUT
				CAL
			NEF	CAL
			NOZ	ZLE
			SUN	/E RY
INLTOS	上半4	256	Ib	PUT
				CAL
			NEF	CAL

CUMMON INSTAL (JUNTINUED)

VARIABLE TYP ADDR

NOZZLE SUMERY

SUBSCUTINE

COMMON VARIABLE CRUSS REFERENCE TABLE

COVECA DI	LLLED	∟ E1	NGTH	25
VA⊝IAdu∄	TYPE	ALDR	SUPRCUT	INE
ಎಲ⊁ ಚಿ ಟ ರಿ	F. # 5	5	FLECA	L
			TURBI	N
YEAF	9*3	э	INPU	IT
			COCLI	T
ELIFE	お本語	1 5	INPU	T
			CECLI	T
CALBLD	<u>L</u> * +	2+	INPR	T
			INPU	T
			CCCLI	T
			FLCCA	L
			TURBI	N

COMMON VARIABLE CRUSS REFERENCE TÄBLE

COMMON	MEPORT	LEN	GTH 68
VAF I ABLE	TYPE	ADDR	SUBS CUT I NE
DEBUG	R≠5	Φ	MAIN
			INPUT
			CALCEX
DEPO	長季台	8	CALCEX
			NEPCAL
SELAST	F * 3	16	CALCEX
•			NEFCAL
סס	R * 5	24	ECTM
			CALCEX
ND SE T	1 *+	32	ECTM
			CALCEX
NPARTS	I #4	36	CALCEX
			NEPCAL
ESCALE	8*3	43	MAIN
	_		INPUT
NPA 5 50	I *+	48	MAIN
			BCTM2
			CALCEX
NVGPT	I *4	52	MAIN
			INPUT
			CALCEX
A. 4.0055	• •	= 6	NEFCAL
THULA	1*4	56	INPUT
a GTM	L *4	69	CALCFX INPUT
5019	LTH	0.9	CALCEX
			NEPCAL
BC TMM	L.#4	60	BCTM
DC THIS	4 ***	3,	MAIN
			actm2
TOPZ	L*4	64	EOTM
10,- 22	# · · ·	0.4	MAIN
			BCTM2
			INPUT
			CALCEX
			NEFCAL
			— -

APPENDIX B

Input Data Sets

PROSEDING PAGE BLANK NOT FILM

TABLE 8-1

CATA SET A

NAMELIST INPUTS

```
TEST ENGINE FOR CS!
SO NMCGES=1 DRAW=T SEND
SD MODE=1.DEEUG=1,
KUNFIG(1:1)='INLT':1:0:2:0:SPEC(1:1)=100:4+C:1:0:
KGNF1G(1.2)='COMP'.2.0.3.0.SPEC(1.2)=1.2.0.1.3767.1.3708.
1.3709;3*0:,:90.8.1.
KONFIG(1:3)='DUCT',3:0:4:0:SPEC(1:3)=.05:0:0.2800:1:0:18300:
KGNF1G(1,4)='TUR8',4.C.5.0.SPEC(1,4)=3.5.1.1.3801.1.3802.1.
1,0,1,,9,5600,1,
KGNFIG(1,5)=*NDZZ*15,0,6,0,SPEC(1,5)=0,1,0,0,0,985,1,0,0,1,
KONF(G(1,6)='CNTL'.SPCNTL(1,6)=1,4,'STAP',8,5,0,1,0,,0,,
KONFIG(1.7)= CNTL . SPCNTL(1.7)=1.2, STAP . 8.4.0.1.1.1.2.0.
KONFIG(1:8)= *CNTL * : SPCNTL(1:8)=[:1:*STAP * :8:2:0:1:40::0:;
KBNFIG(1.9)= *CNTL*:SPCNTL(1.9) =1.10, *DEUT*.8:10.0.1:0.0.0.0
KUNFIG(1,10)='SHFT',2,4,C.0,SPEC(1,10)=5600,,8*1..
KGNF[G(1,11)='0PTV'.0:0:5.0:$PEC(1:11)=3*0:1:4*0:1:
KONFIG(1,12}='OPTV'.0.0.3.3,SPEG(1:12)=0.0.3000,4:4+0.1;
KGNF[G(1,13)=*LIMV*,SPL1%V(1,13)=C,.7,1.1,*DCUT*,6.2,G,0.1,
SEND
.T=JBBAL.6.0=HJAM.000CE=FTJA GB
&END
HACH 0.6 AT 30000 FEET - NG GP TIM IZATION
ED NVOFT =- 4 SEND
OPTIMIZE THE PREVIOUS CASE
6D ENDIT=1 SEND
```

TABLE 8-2

GAS PROPERTY TABLES

	•							
3707	•	HPC FLOW	WITH VARIABLE	STATORS		* •	And the second	Ŏ.
ANGL	3	-5.00	0.00	10.00				.
SPED	15	Ø•€00	C 4 70 C	C.750	0.800	0.810	0.620	0.830
		0.840	0.85C	C. 860	C. 87C	0.900	0.435	0.485
		1.C35				* *		
R	7	1.000	1.050	1.150	1.300	1.450	1.500	1.750
FLOW	7	0.1520	0.1580	C.1640	0.1730	C.1820	0.1840	0.1840
FLOW	7	. 0.1510	0.1960	0.2060	0.2140	C.2210	0.2250	0.2260
FLOW	7	0.2330	0.2440	C.2500	C.2550	0.2580	3.2600	0.2510
FLOW	7	0.2690	0.2840	0.2930	0000	0.3040	0.3050	0.3060
FLOW	7	0.3080	0 62 E • 0	0.3350	C+3480	0.3530	0.3550	0.3560
FLOW	7	0.3690	C.382C	0.3930	C+4080	0.4170	0.4210	0.4240
FLOW	7	0.4240	0.4380	0.4540	C-4700	0.4770	0.4800	0.4810
FLOW	.7	0.4580	0.4720	C+4860	0.5020	C.5100	0.5140	0.5160
FLOW	.7	0.4880	0.5C30	C-5160	C.5300	0.5370	0.5410	0.5440
FLOW	7	0.5240	0.5350	0.5510	C.5660	C.5750	0.5780	0.5800
FLOW	7	0.5580	0.5710	0.5850	C+6020	0.6090	0.6110	0.6150
FLOW	7	0.6430	C-655C	08866	C+6800	C.6850	0.6890	0.6910
FLOW	7	0.7120	0.7250	C.7350	C+7480	0.7510	0.7530	0.7540
FLOW	7	0.7860	0.7950	0.8010	C-8090	C.8100	0.8100	0.8100
FLOW	7	0.8600	C.8600	0.8600	C.8600	C.8600	0.8600	0.8600
SPED	15	0.600	C - 70 C	C - 750	C-800	C-810	0.420	0.830
		0.643	C.ESC	C-860	C-870	0.900	0.935	0.985
		1.035						
R	7	1.000	14050	1-150	1.300	1.450	1.600	1.750
FLOW	7	0.3520	0.3580	C.3640	C.3730	C.3820	0.3840	0.3840
FLOW	7	0.3910	0.3950	0.4060	C.4140	C.4210	0.4250	0.4260
FLOW	7	0.4230	0.4440	C.4500	0.4550	0.4580	0.4600	0.4610
FLOW	7	0.4690	0.4840	C+4930	C.500C	C.5040	0.5050	0.5060
FLOW	7	0.5(80	0.5230	.5350	C.5480	0.5530	0.5550	0.5560
FLOW	7	0.5690	0.5820	0.593 C	C.608C	0.6170	0.6210	0.6240
FLO#	7	0.6240	0.6380	0.6540	C.6700	0.6775	0.6800	0.6810
FLOW	7	0.6580	0.6720 (0.686.0	0.7020	0.7100	0.7140	0.7160
FLOW	7	0.6880	0.7030	.7100	C-7300	C.7370	0.7410	0.7440
FLOW	7	0.7240	C.7350 (7510	C. 7660	C.7750	0.7789	C.7800
FLOW	7	0.7580	0.7710	7850	0.8020	0.8090	0.8110	0.8150
FLOW	7	0.8430	0.8550 (0808.	C.880C	C.8850	0.8890	0.8910
FLUW	7	0.9120	0.9250 (0.65.0	C.9480	C. 7510	0.9530	0.9540
FLUW	7	0.9560	0.4450 1	-0040	1.0090	1.0100	1.0100	1.0100
FLGW	7	1.0600	1.060C 1	0.000	1.0600	1.0600	1.0600	1.0600
SPED	15	0.600	C + 70 C	C. 750	C.800	C. 410	0.820	0.830
		0.640	C: 650	C. 86 C	C. 87C	0.900	0.935	0.985
		1.035						•
R	7	1.030	1:050	1.150	1.300	1.450	1.000	1.750
FLO#	7	0.752)	0.7580	.7640	C.7730	0.7320	0.7840	0.7640
FLUW	7	0.7510	C.756C C	0006	C-814C	0.3210	0.3250	0.8260
FLO#	7	0.6130	0.8440	·8500	(.8550	C.#580	0.0500	0.0010
FLOw	7	0.8690	C.864C C	eres.	C-900C	C. J340	0.9050	0.9060

FLOW	7	0.9080	0.9230	C.9350	C.9480	C.9530	0.9550	0.9560
FL.UW	7	0.9555	C-9650	C • 993 0	1.0080	1-0170	1.0210	1.0240
FLOW	7	1.0240	1.0380	1.0540	1.0700	1.0770	1.0800	1.0810
FLOW	7	1.0580	1.0720	1.0860	1.1020	1.1100	1.1140	1.1150
FLOW	• 7	1 -0 880	1.1030	1.1160	1.1300	1.1370	1.1410	1.1440
FLOW	7	1:1240	141350	1-1510	1.166C	1.1750	1.1780	1.1800
FLUW	7	1 - 1 5 8 0	1.1710	1.1850	1.2020	1.2090	1.2110	1.2150
FLOW	7	1.2430	1.2550	1.2680	1.2800	1.2850	1.2890	1.2910
FLOW	7	1.3120	1.3250	1.3350	1.3480	1.3510	1.3530	1.3540
FLOW	7	1.3860	1.355C	1.4040	1.4090	1.4100	1.4100	1.4100
FLOW	7	1.4600	1.460C	1.4600	1.460C	1.4600	1.4600	1.4500
ECT				in the second				
370	8	HPC EFF WI	TH VARIABL	E STATURS		1		. Ö
ANGL	3	-5.00	0.00	10.00				in the second
SPED	15	0.600	6170C	C. 750	0.800	0.810	0.820	0.830
		0.240	C. £50	C.860	C.87C	0.900	0.935	0.985
		1.035						
R	7	1.000	11050	1.150	1.300	1.450	1.600	1.750
EFF	7	0.8775	0.8287	C.6981	C.5314	C.3315	0.1950	0.1950
EFF	7	0.9165	0.8653	C.8141	C.6435	C.4339	0.3071	0.2730
EFF	7	1056.0	0.9165	C.8609	C.7459	0.5216	0.2779	0.1755
EFF	7	9:9396	C.9301	C.8911	C. 7917	C.6289	0.3900	0.2340
EFF	7	0.9487	0.9418	0.9194	C-8434	C.7264	0.5479	0.3120
EFF	. 7	0.9613	0.9545	C.9409	C.8824	0.7975	0.6776	0.5333
EFF	7	0.9711	0.5672	C.9574	0.9145	0.8463	0.7468	0.6191
EFF	7	0.9779	0.5730	C.9652	0.9262	0.8677	0.7693	0.6493
EFF	7	0.9818	0.9789	C.9721	C.9379	C.B304	0.7868	0.6640
EFF	7	0.9857	8E39.0	C.9779	C.9467	C-8950	0.8092	0.6854
EFF	Ť	0.9866	C.9867	0.9828	C.9584	0.9077	0.8151	0.6922
EFF	7	0.9525	C.5896	0.9896	C.9701	C.9184	0.8336	C.7069
EFF	7	0.9896	C.9886	C.9657	C.9574	C.9057	0.8219	0.6825
EFF	7	0.9818	C.9760	C.9682	C.9331	0.8833	0.7956	0.6513
EFF	7	C.8550	0.8950	C.8863	C-8677	0.8317	0.7546	0.5918
SPED	15	0.600	C. 700	C.750	0.800	C. 810	0.820	0.830
		0.440	C.ESC	C-860	C.87C	0.900	0.935	0.985
		i.035						• • • • • • • • • • • • • • • • • • • •
R	7	1.000	11050	1.150	1.300	1.450	1:600	1.750
eff	7	0.9000	0.8500	0.7160	C.5450	C+3400	0.2000	0.2000
EFF	7	0.940C	0.9080	0.8350	C.66CC	0.4450	0.3150	0.2800
EFF	7	0.4540	C . 9 49 0	C.883 C	C.765C	C.5350	0.2850	0.1800
EFF	7	0.9640	C 4 9 54 C	0.9160	C.8120	C.6450	0.4000	0.2400
EFF	7	0.9730	C.5660	C.9430	C-8650	C.7450	0.5620	0.3200
EFF	7	0.9660	0.979C	C. 965 0	0.9050	C-3180	0.6950	0.5470
EFF	. 7	0.9960	C+952C	C.9820	C. 938¢	0.8630	0.7660	0.6350
EFF	7	1.0030	0.5580	0.9900	C.9500	0.4900	0.7890	0.6660
EFF	7	1.0070	1.0C4C	C-997C	C-9620	0.9040	0.8070	0.6810
EFF	7	1.0110	1.0090	1.0030	C.9716	0.9130	0-4300	0.7040
LFF	7	1:01:0	1.0120	1.0040	C.9830	0.1110	9.8360	0.7100
EFF	7	1.0180	1.015C	1.0150	0.5950	0-9420	0.8550	0.7250
eff	7	1.0150	1.014C	1.0110	C.5820	C. 7300	0.9430	0.7000
EFF	Ÿ	1.0070	1.0010	0.4930	C.9570	C.9060	0.8160	0.6680
EFF	Ż	6.9180	0.3150	0.9090	C.8930	C. 8533	0.7740	0.6070

TABLE 8-2 (CONT.)

SPEO	15	C.60C	C # 700	C.750	0.800	C. 810	0.950	0.830
		0.840	C. 650	C 86 0	C.870	0.900	0.435	0.985
	٠ ٠	1.035				•		,
R	7.	1.00	1:050	1.150	1.300	1.450	1.600	1.750
EFF	Ž	0.8550	0.8675	C.6802	C+5177	0.3230	0.1900	0.1900
EFF	7	0.8530	0.8626	0.7932	C.627C	0.4227	0.2993	0.2660
EFF	7	0.9063	0.8530	0 -8388	C.7268	0.5082	0.2707	0.1710
EFF	7	0.9158	0.9663	C.8702	C.7714	C-6127	0.3800	0.2280
EFF	7	0.9244	0.9177	0.8959	0.8217	C.7077	0.5339	0.3040
EFF	7	0.9367	0.9201	C.9168	C.8597	C.7771	0.6603	0.5196
EFF	7	0.9462	0.9424	C.9329	C.8911	0.8246	0.7277	0.6032
EFF	7	0.9526	C.9481	C-9405	C+9025	C-8455	0.7495	0.6327
EFF	7	0.9567	0.9538	C.9471	C.9139	C.8579	0.7666	0.6470
EFF	7	0.9604	C.9585	C.9528	0.9224	C.8721	0.7885	0.6688
EFF	7	0.9633	C.SE14	C+9576	C.9338	C.8845	0.7942	0.6745
EFF	7	0.9671	0.9642	C-9642	C.9452	0.8949	0.8122	0.6887
EFF	7	0.9642	C.SE33	C.9604	0.9329	0.8835	0.8009	0.6650
EFF	7	0.9567	C.\$509	C • 9434	0.9092	C+8667	0.7752	0.6346
EFF	7	0.8721	0.8721	C.8636	C.8455	C-8104	0.7353	0.5766
ECT	_		W. 10 1 1 5 1 5					_
370	•	HPC PR WITH						0
ANGL		-5.00	0.00	10.00				
SPED	13	0.600	C + 70 C	C.750	C.80C	C-810	0.820	0.830
	•	0.840	C • E5 C	C.860	C.87C	0.900	0.935	0.985
я	7	1.035 1.000	1.050	1 165	1 700	1 400		
PR	7	1.7135	1.05C 1.6730	1.150	1.300	1.450	1.600	1.750
PR	7	2.0600	1.6730	1 •4894 1 •7900	1.3059	1.1017	1.0000	1.0000
PR	ż	2.4371	2.2548	2.0806	1.5506 1.8153	1.3159 1.5300	1.1889 1.3564	1.1529
PR	7	2.7330	2.5900	2.3759	2.0700	1.7747		1.2806
PR	7	3.0489	2.8753	2.6818	2.3759	2.0600	1.5606 1.7900	1.4436
PR	7	3,4671	3.2589	3.0894	2.7430	2.4018	2.0959	1.6271 1.8665
PR	7	3.8748	2.7065	3.4871	3.1253	2.7330	2.3759	2.0853
PR	7	4.1C89	3.9455	3.7012	3.3189	2.9212	2.5288	2.2130
PR	7	4.3283	4.1701	3.9154	3.4971	3.0642	2.6565	2.3047
PR	7	4.5930	4.4148	4.1494	3.7112	3.2630	2.8347	2.4424
PR	7	4.8583	4.6595	4.3895	3.9307	3.4565	2.9724	2.5701
PR	7	5.5360	5.2713	4.9601	4.4148	3.8794	3.3341	2.8447
PR	7	6.0666	5.7754	5.4289	4.8224	4.2259	3.6400	3.0642
PF	7	6.5654	6.2701	5.6931	5.2201	4.5577	3,8947	3.2836
PR	7	6.8617	6.7542	6.2954	5.5306	4.8377	4.1295	3.4618
SPED		0.603	C 4 70 C	C.750	0.800	C. 810	CSE.O	0.830
		0.840	C+ 65 C	C - 80 O	C.870	6. 900	0.935	0.985
		1.035	*****		*****	*****	,	00000
R	7	1.000	1.050	1.150	1.300	1.450	1.600	1.750
PR	7	2.0730	2.0120	1.7360	1.4600	1.1530	1.0000	1.0000
Pk	7	2.5540	2.4410	2.1800	1.828C	1.4750	1.2840	1.2300
PR	7	3.1610	2.9470	2.6250	2.2260-	1.7970	1.5300	1.4220
PR	7	0350.E	3.3510	3.0070	2.0090	2.1.50	1.8430	1.6670
PR	7	4.0610	3.8200	2.5290	3.0690	2.5940	2.1880	1.9430
PA	7	4.7400	4.4576	4.1420	3.6210	3.1030	2.0480	2.30.40
Pi	7	5.3233	5.0700	4.7400	4.1960	2.6060	1.0590	2.6320

TABLE 8-2 (CONT.)

					and the second s		7	4.0
PR	Ź	5.6750	€.430C	5.0620	4.4870	3.8490	3.2990	2.8240
PR	7	6.0050	5.7670	5.3840	4.7550	4.1040	3.4910	2.9620
PR	7	6.4030	6.135C	5.7360	5.0770	4.4030	3.7590	3.1690
PR	7	6.8020	5.5C30	6.0970	5.407C	4.6940	3.9660	3.3610
PR	7	7.8210	7.4230	6.9550	E.1350	5.3300	4.5100	3.7740
PA	7	8.6490	8.1E1C	7.6600	6.7480	5.8510	4.9700	4-1040
PR	7	9.3690	8.925C	E.J550	7.3460	6.3500	5.3530	4.4340
PH	7	9.8140	9.6:30	0.260.8	7.8130	5.7710	5.7060	4.7020
SPED	15	0.600	C.79C	C-750	C.800	0.810	0.820	0.830
		0.840	C.E50	C.860	C.87C	0.400	0.935	0.985
		. 1.Ç35						
R	7	1.000	1 4 C5 C	1.150	1.300	1.450	1.600	1.750
PR	7	2.7919	2.6900	2.2291	1.7682	1.2555	1.0000	1.0000
PR	7	3.6620	2.4065	2.9840	2.3828	1.7932	1.4743	1.3841
PR	7	4.6089	4.2515	3.7137	3.0474	2.3310	1.8951	1.7047
PR	7	5.3520	4.9930	4.4552	2.6870	2,9455	2.4078	2.1139
PR	7	6.1453	5.7094	5.2234	4.4552	2.6620	2.9840	2.5748
PR	7	7.2458	6.7732	6.2471	5.3771	4.5204	3.7522	3.1760
PR	7	8.2194	7.7569	7.2458	6.3373	5.3520	4.4552	3.7254
PR	7	8.8C72	B • 358 1	7.7835	6.8233	5.8246	4.8393	4.0461
PR	7	9.3583	8.5609	8.3213	7.2708	6.1837	5.1600	4.2765
PR	7	10.0230	9.5754	8.9091	7.8086	6.6830	5.6075	4.6222
PR	7	10.6893	1 C - 1 50 C	9.5120	£.3597	7.1690	5.9532	4.9429
PR	. 7	12.3911	11.7264	10.9448	5.5754	8.2311	6.8617	5.6326
PR	7	13.7738	12.9523	12.1222	1 (+5992	5.1012	7.6299	6.1837
PŘ	7	14.9762	14.2347	12.2679	11.5578	5.9345	8.2695	6.7348
PK	7	15.7194	15.4505	14.2982	12.3777	10.6376	8.8590	7.1823
ECT								
380	1	HPT FLOW	WITH VARIA	ELE AREA				0
AREA	. 3	0.50	1.00	1.50				
SPED	3	4523.C	5654.0	¢685.0				
PR	14	1.000	1.300	1 • 50 0	1.600	1.800	2.000	2.200
		2.500	2 + 80 C	3.100	3.300	3.500	3.600	5.000
FL.OW	14	0.000	7 +65C	ê.550	8.887	9.313	9.575	9.730
		9.675	5.550	5.990	10.005	10.020	10.020	10.020
FLOW	14	0.000	7 488 7	e • 55 0	8.787	9.112	9.350	9.520
		9.680	5.770	\$.82C	5.835	9.450	9.850	9.850
FL.OW	14	0.000	8.112	£.563	8.75¢	9.020	9.225	9.375
		9. 125	5.595	S + 64 0	9.655	9.670	9.670	9.670
SPED	3	452J.C	5654.0	6 t 85 • 0				
PR	L 4	1.000	t . 300	1 • 50 C	1.600	1.800	2.000	2.200
		2.500	2.890	3.10C	3.300	3.500	J.600	5.000
FLUW	14	0.000	00L.31	17.100	17.775	18.625	19.150	19.460
		19.750	19.520	12.980	20.010	20.040	20.040	20.041
FLOW	14	0.000	15.775	17.100	17.575	18.225	18.700	19.040
		19.360	19.54C	19.64 C	15.670	19.700	19.700	19.701
FLO%	14	0.000	16.225	17.125	17.50¢	18.040	18.450	18.750
		19.05C	19.190	15.260	15.31C	19,340	19.340	19.341
SPED		4521.C	5654.0	6685.0				
914	14	1.000	1.200	1.500	1.600	1.400	2.000	2.200
		2.500	2.600	3.100	3.300	3.500	3.600	5.000
FLUM		0.000	22.55C	25.65C	26.662	27.738	20.725	29.190

TABLE 6-2 (CONT.)

•		29.625	29.250	25.970	30.015	30.060	040.0E	30.061
FLOW	14	0.000	231662	25.650	26.362	27.337	28.050	28.560
	•	29.040	25 121 C	25.460	29.505	29.550	29.550	29.551
FLOW	1.4	0.000	24.237	25.688	26,250	27.060	27.675	28.125
		28.575	26 : 785	28.920	28.965	29.010	29.010	29.011
EQT			, i= \$433 I.):					
380	2	HPT EFF WI	TH VARIABL	E AREA		And the state of the state of the		0
AREA	3	0.50	1.00	1.50				
SPED	4	400C+C	SCGC.C	5680.0	0.0038			
PR	1.4	1.000	1.250	1.750	2.000	2.150	2.380	2.500
		2.750	2.250	3.500	4.000	4.500	4.750	5.000
EFF	1.4	0.7533	C.7577	C.7661	C.7702	0.7723	0.7753	0.7771
		0.7605	0.7661	0.7884	C.7907	0.7911	0.7904	0.7893
EFF	14	0.7560	0.7645	0.7791	C.7852	C.7888	0.7925	0.7930
		0.7533	0.7937	6.7938	C.7922	C. 7886	0.7860	0.7830
EFF	A 4 6 8	C. 7560	0.7643	0.7783	C.7834	0.7861	0.7895	0.7913
		0.7540	0.7581	0.7993	C.8002	C.7989	0.7976	0.7956
EFF	14	0.7560	C.7640	0.7772	0.7819	C.7840	0.7853	0.7859
		0.7862	0.7855	C.7848	0.7834	¢.7819	0.7810	0.7801
SPED	4	400C.C	≘coc. c	5680.0	€C00.C			
PR	14	1.000	1.250	1.750	2.000	2.150	2.380	2.500
		2.75C	2.25 C	3.500	4.000	4.500	4.750	5.000
EFF	14	0.8370	0.8419	C.8512	C.8557	C-8581	0.8615	0.8635
		0.8672	0.2734	C.8760	C.8786	0.8790	0.8782	0.8770
EFF	14	0.8400	0.8496	C.8657	C.8725	C.3765	0.8806	C.8811
		0.8815	C.8819	0.8820	C.8802	C.8752	0.8733	0.8700
EFF	14	0.8400	C.8492	C .8648	C-8705	C.8735	0.8772	0.8792
		C.8E22	C.EEG7	0.8581	(.8891	C.8877	0.8862	0.8840
EFF	14	0.8400	C.E489	C.8636	C.8687	0.6711	0.8726	0.8732
		0.8736	0.8727	0.8720	0.8705	0.8688	0.8678	0.8668
SPED	4	4000.0	SCOC.C	5680.0	8000°C		• •	
PR	14	1.00C	1.250	1.750	2.00¢	2.150	2.380	2.500
		2.750	3.25¢	3.500	4.00C	4.500	4.750	5.000
EFF	14	0.7533	C.7577	C.7661	C.7702	C.7723	0.7753	0.7771
		0.7805	C.7661	0.7884	C.7907	0.7911	0.7904	0.7893
EFF	14	0.7560	0.7645	C.7791	C.7852	0.7888	0.7925	0.7930
		0.7533	C.7537	C.7938	C.7922	C.7486	0.7860	0.7830
eff	1.4	0.7560	C.7643	0.7783	C.7834	0.7801	0.7895	0.7913
		0.7540	C:7581	C.7993	C.8002	0.7989	0.7976	0.7956
EFF	14	0.7560	C.7640	C.7772	0.7819	C.7840	0.7853	0.7859
		0.7662	G.7855	0.7848	C.7834	0.7819	0.7810	0.7801
ECT				•		•	•	

TABLE 6-3

CATA SET B

NAMELIST INPUTS

```
HAM STO FAN CN AEV T701
SO NMCCES=6:SEPDAT=1,LONG=f.MOCESN=1.ORAN=F;AMAC=F.ITPRT=0 &END
ED MODE=1.DEEUG=1.
KONF [6(1,1)=4HINLT:1:0:2:0:SPEC(1:1)=65:580:4*0::592:SPEC(12:1)=31:
KONFIG(1.2)=4HCOMP.2.0.3.0.SPEC(1.2)=1.200.0.1.3951.1.3952.1.3953.0.-0.0..885.
KONF1G(1,3)=4HSPLT,2,0,12,15,SFEC(1,3)=.08194483',
KONFIG(1:15)=4HWINJ:15:0:4:0:SFEC(1:15)=0::8:0:1:
KGNF[G(1,4)=4HCQMP,4.0.5.6.SPEC(1.4)=1.310..C876.1.3954.1.3955.1.3956.0.0.0.
.8280.11.88..9536.
KONF!G(1.5)=4HDUCT.5.0.7.0.SPEC(1.5)=.050.0.C.2880..9950.18400.0.0.0.0.050.
KONF1G(1,6)=4HTURB,7,6,8,0,SPEC(1,6)=3.6306,1,1,9011,1,9012,1,1,.0574,1,.879,
10200.1.
KCNFIG(1,7)=4HTURE,8,0,9,0,SPE((1,7)=2,200,C,1,9Cl3,1,9014,1,1,1,1,1,887,13333,
KCNFIG(1.8}=4+DUCT.5.0.10.0.5PEC(1.8}=.0080.
KONFIG(1,9)=4HNDZZ,10,0,11,0.SPEC(1,9)=0..84944.0.0..98231.0.0.0.1.
KCNF1G(1,10)=4HDLCT,12,0,13,0,5PEC(1,10)=.008,
KGNF [G(1,11)=4HNBZZ,13,0,14,0,5FEC(1,11)=0,.54302,C.0,.98362,0.0,0,1,
KCNF[G(1,12)=4HSHFT.6,4,14.0.SFEC(1,12)=1365C.8*1.
KONFIG(1,13)=4H5HFT,2,7,0,0,SPEC(1,13)=13267..3,3*1,.96,3*1,
KONFIG(1,14)=4HLGAG,SPEC(1,14)=-10C.
KCNF1G(1,20)=4HCNTL.SPCNTL(1,20)=1,7,4HSTAP,8,10,0,1,
KGNF1G(1,21)=4HCNTL,SPCNTL(1,21)=1,6,4HSTAP,8,8,0,1,
KUNFIG(1,22)=4HCNTL+5PCNIL(1,22)=1,4+4FSTAP,E,7,0,1,1.05,1.6,
KONFIG(1,23)=4HCNTL.SPCNTL(1,23)=1,3,4HSTAP.8,13.0.1.
KONFIG(1,24)=4hCNTL,SPCNTL(1,24)=1,2,4HSTAP,8,4,0,1,1,05,1,6,
KONF[G(1,25)=4HCNTL,SPCNTL(1,25)=1,1,4HSTAP,8,2,0,1,
KGNFIG(1,26)=4HGNTL.SPCNTL(1,26)=1.12.4HDUU1.8.12.C.1.
KCNFIG(1,27)=4HCNTL.SPCNTL(1,27)=1,13,4HD8UT,8,13.C,1,
KONFIG(1,28)=4HLINV,SPLIMV(1,28)=0.0.7,1.10.4HDCLT.6.2.0,0,1,
KCNFIG(1,29)=4HLIMV,SPLIMV(1,25)=C,0.6:1.1.4+DCUT.6.4.0.0:1.
KONFIG(1,30)=4HOPTV.C.0.2.C.SPEC(1.30)=0,-6.5.10.4+0..01.
KONFIG(1,31)=4HOPTV,0.0.5.C.SPEC(1,31)=0.0.2880,4.4+0.1,
KCNF LG (1,32)=4HDPTV.0.0,11.0,SFEC (1.32)=C.0.0.1.4+C.1.
KCNF (G(1.33) = 4HCNTL, SPCNTL(1,33) = 4.5.4HDBUT.6.2.1.15.0..
&END
ED MODE=2.
KUNF [G[1,1]=4H[NLT,1,0,2,C,
KCNF1G(1,2)=4HCOMP,2,0,3,0,
KCNFIG(1,3)=4HSPLT.3.0.12.15
KONF [G(1,15)=4HW[NJ,15,0,4,0.
KENFIG(1.4)=4HCUMP.4.0.5.6.
KCNF1G(1.6)=4PTUHE.7.6.8.0.
KENFIG(1,7)=4HTUHB:8,6,9,0,
KCNF (G(1,8)=4HDUCT,5,0,1C,C,
KCNF1G(1,9)=4HN0ZZ,10;C,11,0,
```

```
KENFIG(1.10)=4HDLCT.12.0.13.0.
KCNFIG(1,11)=4HN82Z,13,0,14,C,
KONFIG(1.12)=4HSFFT.6.4.14.0.
KONFIG(1.13)=4HSHFT.2.7.C.C.
KGNF1G(1.14)=4HLCAD.
KENFIG(1.20)=4HCNTL.SPCNTL(1.20)=1.7.4HSTAP.8.10.0.1.
KGNFIG(1,21)=AHCNTL,SPCNTL(1,21)=1,6,4HSTAP,8,8,0,1,
KCNF1G(1,22)=9HCNTL .SPCNTL(1,22)=1,4,4H5TAP,8,7,C,1,1,05,1,6,
KONFIG(1.23)=4HCNTL.SPCNTE(1.23)=1.3.4HSTAP.8.13.0.1.
KGNF IG(1.24) = 4HCNTL.SPCNTL(1.24) = 1.2.4HSTAP.8.4.C.1.1.05.1.6.
KGNF1G(1.25) = 4HCNTL.SPCNTL(1.25) = 1.1.4HSTAP.8.2.C.1.
KGNFIG(1.26)=4HCNTL.SPCNTL(1.26)=1.12.4HDOUT.8.12.C.1.
KONFIG(1,27) = 4hCNTL, SPCNTL(1,27) = 1,13,4HDOU 1,8,13,C,1,
KENFIG(1.28) = 4HLIVV.SPLIVV(1.28)=0.0.7.1.10.4HDGUT.6.2.0.0.1.
KONFIG(1.29)=4HLIMV.SPLIMV(1.25)=0.0.6.1.1.4HDGUT.6.4.0.0.1.
KUNFIG(1,30)=4HOFTV.0.0.2.C.SPEC(1,30)=0.-6.5.10.4*0..01.
KCNFIG(1.31)=4H0PTV.0.0.5.C.SPEC(1.31)=0.0.2880.4.4*0.1.
KCNFIG(1.32)=4H0PTV.0.0.11.0.SPEC(1.32)=C.0.C.1.4*C.1.
KCNFIG(1.33)=4HCNTL.SPCN3L(1.33)=4.5.4HDGUT.6.2.1.15.C..
CEND
&C MODE=3.
KONFIG(1.1)=4H[NLT.1.0.2.C.
KCNF1G(1.2)=4HCCMP.2.C.3.0.
KCNFIG(1.3)=4HSPLT.3.0.12.15
KONF [G(1,15)=4H# INJ,15,C,4,0,
KCNF1G(1.4)=4HCGMP.4.0.5.6.
KCNFIG(1.5)=4HBUCT.5.C.7.0.
KCNF1G(1.6)=4HTURE.7.6.8.0.
KCNF(G(1.7)=4HTUR8.8.0.9.0.
KCNF1G(1.8)=4HBUCT.9.0.10.0.
KCNFIG(1,9)=4HN0ZZ,10.0.11.0.
KCNFIG(1.10)=4HBUCT.12.C.13.C.
KONFIG(1.11)=4MNGZZ.13.6.14.0.
KENFIG(1,12)=4mShFT+6,4,14.0.
KCNFIG(1.13)=4HSHFT.2.7.C.C.
KONFIG(1,14)=4HLCAE.
KCNFIG(1,20)=4HCNTL,SPENTL(1,20)=1,7,4HSTAP,8,10.0.1.
KCNF1G(1,21)=4HCNTL, SPCNTL(1,21)=1,6,4HSTAP,8,8,C,1,
KCNFIG(1,22)=4mCNTL,SPCNTL(1,22)=1.4.4MSTAP.6.7.C.1.1.05.1.6.
KGNF1G(1.23)=4HCNTL.5PCNTL(1.22)=1.3.4HSTAP.8.13.0.1.
KONFIG(1,24)=4HCNTL,SPCNTL(1,24)=1,2,4HSTAP,8,4,0,1,1,05,1,6,
KCNF1G(1.25)=4+CNTL.SPCNTL(1.25)=1.1.4HSTAP.8.2.C.1.
KCNFIG(1,26)=4HCNTL.SPCNTL(1,26)=1,12,4HD0U1,8,12,C,1,
KONFIG(1,27)=4HCNTL.SPCNTL(1,27)=1,13,4H00UT.8,13.C,1,
KUNF (G(1,28) = 4HL IMV.SPL (MV (1,28) = 0.0.7.1.10,4HDCLT.6.2.0.0.1.
KCNFIG(1.29)=4HLINV.SPLINV(1.25)=C.O.6.1.1.4HDOUT.6.4.0.0,1,
KCNFIG(1,30)=4HOPTV+0+0+2+C+SPEC(1+30)=0+-6+5+10+40++0+
KCNFIG(1.31)=4H0PTV:0:0:5.G.SPEC(1.31)=0:0:26E0:4:4*0:1.
KCNFIG(1.32)=4H3PfV.0.0.11.0.SFEC(1.32)=0.0.C.1.4+C.1.
ELND
&D MCDE=4.
KCNF1G(1.1)=4H[NLT.1.0.2.C.
```

```
KENFIG(1.2)=4HCUMP.2.6.3.6.
KUNFIG(1,3)=4HSPLT,3,0,12,15
KCNF (G(1.15)=4HW INJ.15.0.4.0.
KONFIG(1,4)=4HCOMP.4.0.5.6.
KCNF (G(1,5)=4+DUCT.5.0.7.0.
KCNFIG(1.6)=4HTURB.7.6.8.0.
KENFIG(1,7)=4HTURB, E.C.S.C.
KONF [G { 1 . B } = 4HDUC [ , S , O , 1 G , C ,
KUNFIG(1,9)=4HNUZZ,10,0,11,0,
Kenfig(1,10)=4HDuCT.12.0.12.0.
KCNF 1G (1 - 11) = 4HNGZZ - 13 - 0 - 14 - C -
KCNFIG(1,12)=4HSFF1,6,4,14.0.
KCNFIG(1.13)=4HSHFT,2.7.C.C.
KONFIG(1.14)=4FLCAG.
KCNF [G(1,20)=4HCNTL.SPCNTL(1.20)=1.7.4HSTAP.8.10.0.1.
KENFIG(1,21)=4HCNTL, SPCNTL(1,21)=1.6.4HSTAP.8.8.0.1.
KONFIG(1.22)=4HCNTL.SPCNTL(1.22)=1.4.4HSTAP.E.7.0.1.1.05.1.6.
KONFIG(1.23)=4HCATL.SPCATL(1.23)=1.3,4HSTAP.8,13.0.1.
KCNFIG(1,24)=4HCNTL,SPCNTL(1,24)=1,2,4HSTAP,8,4,0,1,1,05,1.6,
KCNFIG(1,25)=4HCNTL,SPCNTL(1,25)=1,1,4HSTAP,6,2,0,1,
KUNFIG(1,26)=4HCATL,SPCNTL(1,26)=1,12,4HDDUT,8,12,C.1,
KONFIG(1,27)=4HCNTL,SPCNTL(1,27)=1,13,4HD0UT+8,13+C+1,
KGNF1G(1,28)=4HLINV,SFLINV(1,28)=0,0.7,1,10,4HDGLT+6,2,0,0,1,
KCNFIG(1,29)=4HLINV,SPLINV(1,29)=C.0.6.1.1.4HDCUT.E.4.0.0.1.
KUNFIG(1,30)=4HBPTV.0.0.2.C.SPEC(1.30)=0,-6.5.10.4*0..01.
KCNFIG(1.31)=4H0PTV.0.0.5.C.SPEC(1.31)=C.0.28EC,4.4*0.1.
KGNFIG(1.32)=4H0PTV.0.0.11.0.SFEC(1.32)=0.0.C.1.4*C.1.
EEND
ED MODE=5.
KONFIG(1,1)=4HINLT,1,0,2,0,
KONFIG(1,2)=4HCBMP,2,0,3,0.
KCNFIG(1.3)=4HSPLT.3.0.12.15
KONFIG(1,15)=4HWINJ,15,6,4,0,
KCNFIG(1.4)=4HCDMP.4.C.5.6.
KCNFIG(1,5)=4HOUCT,5,0,7,0,
KCNFIG(1.6)=4HTURE,7.6.8.0.
KUNFIG(1.7)=4HTURE.8.0.9.0.
KGNF[G(1,8)=4+DUCT,9.0,1C.C.
KCNFIG(1,9)=4+N0ZZ,10+0+11+0+
KENFIG(1,10)=AMBLET,12,8,13,6,
KUNFIG(1.11)=4HN0ZZ.13.C.14.C.
KGNFIG(1,12)=4HSHFT,6,4,14,0.
KCNFIG{1,13}=4H5FFT,2,7,6,6,
KONFIG(L.14) #AHLCAC.
KCNF1G(1,20)=4HCNTL.SPCNTL(1,20)=1,7,4HSTAP.E,10,0,1,
KCNFIG(1,21)=4HCNTL, SPCNTL(1,21)=1,6,4HSTAP,8,9,C,1+
KCNFIG(1.22)=4HCNTL.SPCNTL(1.22)=1.4.4FSTAP.6.7.C.1.1.05.1.6.
KCNF (G(1,23) = 4HCNTL, SPCNTL(1,23) = 1,3,4H5TAP+6,13+0+1+
KCNFIG(1,24)=4FCATE.SPCATE(1,24)=1,2,4HSTAP.8,4,C.1,1.05,1.6,
KCNF1G(1,25)=4HCNTL,5PCNTL(1,25)=1,1,4HSTAP,8,2,C,1,
KCNFIG(1,26)=4HCNTL,SPCNTL(1,26)=1,12,4H00UT,8,12,C,1,
KUNFIG(1.27)=4HCNTL.SPCNTL(1.27)=1.13.4HDUUT.8.13.C.1.
```

```
KUNFIG(1,28)=4HLIMV.SPLI#V(1,26)=C.O.7.1.10.4HDOUT.6.2.0.0.1.
KCNFIG(1,29)=4HLINV,SPLINV(1,25)=0,C.6,1.1,4HDCUT+6.4,0,0,1,
 KCNF(G(1,30)=4H0PTV.0,0,2.0.SPEC(1.30)=0.-6.5,10.440..01.
 KCNFIG(1,31]=4H0PTV:0:0:5:0:5PEC(1:31)=0:0:2680:4:4*0:1:
 KONFIG(1:32)=4HOPTV:0:0:11:0:SFEC(1:32)=0:0:0:1:4*C:1:
 CEND
 ED MODE=6.
KONFIG(1.1)=4HINLT.1.0.2.C.
 KONF [G(1.2)=4HCGMP.2, C.3.C.
 KCNF1G(1,3)=4HSPLT,3,0,12,15
KONF [G(1, 15)=4H# [NJ, 15, 0, 4, 0.
 KENFIG(1,4)=4HCBMP,4,0,5,6,
 KONFIG(1.5)=4hDUCT.5.0.7.0.
 KENFIG(1.6)=4HTUF8.7.6.8.0.
KENFIG(1,7)=4HTURB.8.0.9.0.
 KONFIG(1.8)=4HDUCT.5.0.1C.C.
 KCNFIG(1,9)=4HN0ZZ,10,0,11,0,
KCNF1G(1,10)=4HDUCT,12,0,13,0,
KCNFIG(1,11)=4HNGZZ.13.C.14.C.
KGNF1@(1.12)=4HSHFT.6.4.14.0.
KCNFIG(1.13)=4HSFFT,2,7,0,C,
KONFIG(1,14)=4HLGAC,
KCNFIG(1,20)=4HCNTL.SPCNTL(1,20)=1,7,4HSTAP.E.10,0,1,
KENFIG(1,21)=4HCNTL, SPCNTL(1,21)=1,6,4HSTAP; 8,8,0,1,
KCNFIG(1,22)=4HCNTL,SPCNTL(1,22)=1,4,4HSTAP,6,7,C,1,1,05,1,6,
KONFIG(1,23)=4HCNTL+SPCNTL(1,22)=1.3+4HSTAP+8.13+0+1+
KCNFIG(1,24)=4HCNTL,SPCNTL(1,24)=1,2,4HSTAP,8,4,0,1,1,05,1,6,
KCNFIG(1.25)=4HCNTL,SPCNTL(1.25)=1.1.4HSTAP.8.2.C.1.
KCNFIG(1,26)=4HCNTL.SPCNTL(1,26)=1,12,4HDUUT.8,12,Cil.
KCNFIG(1.27)=4HCNTL.SPCNTL(1.27)=1.13.4HDUU7.8.13.C.1.
KCNFIG(1,28)=4HLIMV.SPLIMV(1,25)=0.0.7.1.10.4HDOLT.6.2.0.0.1.
KGNF1G(1.29)=4HLIMV.SPLINV(1.25)=0.0.6.1.1.4+DQUT.6.4.0.0.1.
KCNFIG(|.30)=4HDPTV.0.0.2.C.SPEC(|.30)=0.-6.5.10.4*C..01.
KCNFIG(1.31)=4HUPTV.0.0.5.0.SPEC(1.31)=0.0.2680.4.4*0.1.
KGNFIG(1.32)=4H0PTV.0.0.11.0.SPEC(1.32)=0.0.C.1.4*C.1.
CEND
6D NVCFT=-4,SPEC(1,1)=684,SPEC(1,2)=1.05.SPEC(10,2)=4.9.SPEC(1,3)=.0937.
SPEC(1.41=1.32.
SPEC(2.9)=.84832.SPEC(5.5)=.98246.SPEC(2.11)=.94374.SFEC(5.11)=.94371.
SPEC(4.5)=2700.SPEC(1.6)=3.64.SPEC(1.7)=2.39.SPEC(1.11)=1925.SPEC(1.15)=.01.
MODE=2.LAEEL=T CENO
1 CN I --- WET
6D SPEC(1,11)=3462.0.SPEC(1,1)=583.407.SPEC(10.2)=4.57.SPEC(1.7)=4.0.
SPEC(1.6)=3.60.MCDE=3.SPEC(1.15)=C.
SPEC(2.9)=.87512,SPEC(5,5)=.98230,SPEC(2.11)=.93944.SPEC(5.11)=.98324,
SPEC(1.12)=14050.SPEC(1.13)=12600.NCODE=1.SPEC(5.2)=25.773.SPEC(1.2)=1.504.
SPEC(1.4)=1.29.
SPEC(4.5)=3000.5PEC(3.31)=20CC.LAUEL=T.SPEC(1.3)=.C5622638 GEND
I AND 1/2 FANS ON I ENGINE---- CRY
&D $PEC(1,15)=.GI.#CDE=4.5FEC(4.5)=2938,$PEC(1.11)=2744.5PEC(10.2)=2.44.
SPEC(2,4)=.66228,SPEC(5,4)=.6628/.SPEC(2,11)=.94313.SPEC(5,11)=.96364.
CEND
```

REPRODUCIBILITY OF THE GESCINAL PAGE IS POOR

TABLE 8-4

DATA SET B

CAS PROPERTY TABLES

3951	ļ.	MAM	SID. VARI	ABLE PITCH	FAN MAP ##	FLOW## R=1	. 2 . SPED=1 .:	PICH=0	
PICH	2		. −€.CO	C+0	5.0	•			
SPED	4	•	-900	•550	1.00	1.05			
R	E	ò	1.0	11.1	1.2	1.3	1.4	1.6	
FLOW	É	•	27.35	29.78	31.20	32.60	34.30	35.40	
FLCW	6	j.	29.20	20.73	32.28	33.72	35.30	36.42	
FLOW	€	•	30.48	80.15	33.45	34.80	36.26	37.37	
FLOW	é	ì	31.5C	30.08	34.60	35.81	37.07	37.68	
SPED	5	i	. ECG	•500	1.00	1.10	1.13		
R	7	•	1.0	1.1	1.2	1.3	1.4	1.5	1.6
FLOW	7	•	28.85	30.75	31.90	32.90	33.85	J5.18	36.00
FLUW	7	•	30.7¢	32.82	34.30	35.25	36.27	37.68	38.70
FLOW	7	,	33.60	35.90	37.15	38.05	38.80	39.80	40.60
FLOW	7	,	36.20	38.25	39.31	40.10	40.79	41.39	41.82
FLUW	7	•	37.20	35.1 C	40.20	40.80	41.50	42.30	42.80
SPED	4		•900	• 55 C	1.00	1.05			
R	6		1.0	1.1	1.2	1.3	1.4	1.6	
FLOW	6		34.9C	36.5C	37.52	28.34	39.58	40.60	
FLOW	6		36.3¢	37.93	38,95	39.7C	40.69	41.60	
FLOW	,6		37.70	39.22	40.09	40.82	41.69	42.50	•
FLOW	£		39.38	40.51	41.28	41.89	42.65	43.30	
ECT									
3952		MAH	STD. VARIA	ABLE PITCH	FAN MAP **E	FF** R=1.2	. SPED=1.P1	CH=0	
PICH	3		-6 . C C	G. C	5.0			•	
SPED	4		.50C	• 950	1.00	1.05			
R	6		1.0	1.1	1.2	1.3	1.4	1.6	
EFF	6		.£5Q	• 277	•882	.868	.840	• 400	
EFF	6		. 650	.878	.886	.877	.647	.800	
eff	6		.E50	•577	-858	.88C	· 850	800	
EFF	6		. 85 C	. 872	• 886	.882	•85ō	.800	
SPED	5		.eoc	.50¢	1.00	1.10	1.13		
R	7		1.0	1.1	1.2	1.3	1.4	1.5	1.6
eff	7		. E5C	. £8¢	.885	-88¢	• d67	•835	-800
EFF	7		. 650	E83.	. 8d7	-885	.876	-850	.808
EFF	7		· E50	. €84	+887	.885	•880	•850	.810
EFF	7	•	. E5C	.679	• 886	-880	.862	.840	-800
EFF	7		.800	. £5¢	• 8 85	•850	.848	.830	•780
SPED	4		+900	455C	1.00	1.05			V
R	6		1 .C	1.1	1.2	1.3	1.4	1.6	
EFF	6		. £5C	.esc	.882	. 675	.850	•800	•
EFF	6		• £50	1694	.886	• 88C	• 858	•815	
EFF	6		. £50	.886	• 8a5	•880	• 850	•800	
EFF	6		. £5C	•+8¢	• 882	•880	.850	•800	_
ECT									
3953		HAM :	STD. VARIA	BLE PITCH	FAN MAP ##P	R+# R=1.2.	SFED=1.PIC	H=0	
PICH	3		-6.00	c. a	5.0		· · · · ·	•	
SFEC	4		.500	• 55 C	1.00	1.05			
R	6		1 -C	1.1	1.2	1.3	1.4	1.6	

PR	6	1.162	1.155	1.144	1.129	1 107	1 470	
PR	6	1.195	1.181	1.165	1.148	1.107 1.123	1.078	
PR	6	1.219	1.204	1.187	1.167	1.136	1.085 1.093	
PR	6	1.238	1.225	1.208	1.184	1.146	1.095	
SPED	5	• £0C	.500	1.00	1.10	1.13	1.040	
R	7	. 1.0	1.1	1.2	1.3	1.13	1.5	
PR	7	1.166	1.146	1.133	1.122	1.110	1.090	1.6 1.071
PR	7	1.198	1.181	1.170	1.161	1.150		
PR	7	1.247	1.233	1.220	1.208	1.194	1.131	1.103
PR	7	1.294	1.272	1.257	1.243		1.165	1.127
PR	7	1.310	1:286	1.269	1.255	1.226 1.237	1.192	1.142
SPED	4	•90C	155C	1.00	1.05	10231	1.206	1.152
R	6	1.0	1.1	1.2	1.3	1.4		
PR	6	1.209	1.198	1.192	1.186	1.174	1.6	
PR	6	1.236	1.228	1.220	1.212		1.145	
PR	6	1.262	1.252	1.242	1.232	1.194 1.213	1.158	•
PR	6	1.292	11277	1.265	1.251		1+171	
EOT	•	10676		11203	11531	1.229	1.182	
3954		ALLISEN	MB FENCOS	SSCR **FLOW	v= 4 0 - 1 7 .4			
ANGL	1	0.C	THE GENERAL.	3356 ***	4++ K-1994	3PEU-1		
SPED	ē	•7¢	•BC	•85		oe .		
SPEU	•	1.10	•00	•05	•90	• 95	1.00	1.05
R	4	1.0	1.1	1.2	1.3			
FLOW	4	24.5C	25.20	26:30	26.90			•
R	6	1.0	1.1	1.2	1.3	1.4	1.5	
FLOW	6	38.30	39.70	40.40	41.00	41.20	41.50	
R	7	1.0	1.1	1.2	1.3	1.4	1.5	1.6
FLOW	7	47.00	48.30	49.10	49.90	50.30	50.70	50.80
R	7	1.0	1.1	1.2	1.3	1.4	1.5	1.7
FLOW	7	59 · 1 C	59.9C	61.40	62.20	62.60	63.40	63.60
FLOW	7	77.50	79.10	£1.10	82.6C	83.90	85.00	85.60
FLOW	7	96.80	98.40	59.00	100.0	100.3	100.5	100.5
FLOW	7	105.0	105.5	106.2	106.5	106.8	107.0	107.0
FLOW	7	105.0	110.C	110.0	110.0	110.0	110.0	
EOT	•	.0.700		× 1 0 1 0	*****			110.0
3955		ALL ISCN	HP CCMPRES	SCR **EFF*	# 8=1.3.90)FC=1		
ANGL	1	C.0				CD=1		
SPED	ä	•7C	•8C	.85	.90	.95	1.00	1.05
	_	1.10		***	***	7,70		1103
R	4	1.C	1.1	1.2	- 1.3			
EFF	4	• č 70	•690	.650	.50C			
R	6	1.0	1.1	1.2	1.3	1.4	1.5	
EFF	6	.775	.792	.780	.746	650	•500	
R	7	1.0	1.1	1.2	1.3	1.4	1.5	1.6
EFF	7	.798	.630	.830	.820	.780	.700	•600
R	7	1.0	1.1	1.2	1.3	1.4	1.5	1.7
EFF	7	.620	.E3G	. 234	.833	.830	•800	-650
EFF	7	.825	. E 3 C	•876	. 8 3 7	• 470	•800	•650
EFF	7	.620	•E30	• 64 3	.845	• 830	•900	•650
EFF	7	. 790	• 65 !	•827	.829	• 624	•790	•650
EFF	7	.760	. €0C	.810	•650	.310	./80	•650
FC1	-	****			* + ** **	4444	1.00	.030

TABLE 8-4 (CONT.

3956	,	ALLISCA	HP CCMPRI	ESSCR **PR	** R=1.3.\$	FED≭L		
ANGL	1	0.0					•	
SPED	8	70	-80	.85	•90	•95	1.00	1.05
•		1.10						
R	4	1.0	1.1	1.2	1.3			
PR	4	. 3.48C	3.26C	2.850	2.29¢	-		
R	6	1.0	1.1	1.2	1.3	1.4	1.5	
PR	6	5.790	5.38C	4.900	4.300	3.650	3.000	
R	7	1.0	1.1	1.2	1.3	1.4	1.5	1.6
PR	7	7.35C	6,580	6.650	€.250	5.540	4.630	4.000
R	7	1.0	1.1	1.2	1.3	1.4	1.5	1.7
PR	7	9.550	9.350	e.780	8.300	7.790	7.000	5.250
PR	7	13.000	12.670	12.200	11.650	11.000	9.900	7.820
PR	7	17.000	16 #400	16.00C	15,000	13,600	12.340	10.300
PŘ	7	18.790	17.500	17.040	16.180	14.800	13.500	11.600
PR	7	19.500	16*10C	17.600	16.750	15.400	13.900	12.100
ECT								
9011			HP TURBINE	MAP SPEC	=10000.PR	=4.74 ++FL0	日本本	
AREA	ı	1.0000						
SPED	5	8000.0	9000.0	10000.0	11000.C	12000.0		
PR	14	1.3242	1.3732	1.4918	1.6531	1.9137	2.1366	2.6013
		3.5167	3.7205	3.9202	4.1110	4.2784	4.4459	4.6134
FLOW	14	.76554	• 79 20 3	• E4 50 4	.898¢4	.95104	• 97754	1.0040
	•	1.0148	1.0148	1.0148	1.0148	1.0148	1.0148	1.0148
PR	14	1.3038	1.4210	1.5778	t.8C84	1.9368	2.2696	2.5127
		2.6996	3.0236	3.6188	3.8431	4.0652	4,2777	4.4645
FLOW	14	.76554	.81E54	.87154	•92454	•95104	• 47754	.99079
		•99741	1.6646	1.0083	1.0083	1.0083	1.0083	1.0083
PR	14	1.2680	1.3567	1.5729	1.8407	2.0540	2.4066	3.6814
		3.9324	4+1649	4.4254	4.6384	4.7804	4.9225	5.0645
FLOW	14	.76554	. 61654	.67154	•92454	•95104	•97754	1.0022
		1.0022	1.0022	1.0022	1.0022	1.0022	1.0022	1.0022
PR	14	1.2156	1.3556	1.5492	1.8564	2.1053	2.5587	3.7495
		4.0325	4.3179	4.5902	4.8316	4.9926	5.1535	5.3145
FLOW	14	.76554	·81854	.87154	.52454	.95104	•97754	.99588
		.99588	.99588	.9588	.99588	.99588	•99588	•99588
PR	14	1.217C	1.3506	1.6510	2.1447	2.3701	2.7279	3.8026.
## ## ## ## ## ## ## ## ## ## ## ## ##		4.1196	4.4414	4.7489	5.0202	5.2011	5.3819	5.5628
FLOW	14	.79203	.64504	· 69804	•55104	•56429	•97754	•99020
HOT		.49020	.9902C	.5902 0	.\$902C	-99020	•99020	•99020
EOT 9012		ALL TOTAL	UG 71155 PALS				40 4. 4.	
AREA	1	1.0000	HP TURBINE	MAP SPED	=1CC00.PR=	4.74 ##EF	FFF	
SPED	5	8000.0	0000	10000		10000		
_	14		9000.0	10000.0	11000.0	12000.0		
~~	• ~	1.3243 2.4363	1.4223 2.656C	1.5515	1.6259	1.8386	2.0127	2.2105
EFF	14			2.9956	2.3413	3.7432	3.9853	4.2784
err :	• •	+81 557 +84576	.83426 .6444	• £4 02 B	.e5243 .e3e70	.85441	.85365	.85223
Pk :	14	1.3GJe	. E4 (4 5 1 . 4 1 8 1	.E4262 1.54cJ		.8344B	83009	.62533
· ••		2.4641			1.6869	1.3496	2.0333	2.2429
EFF :	14	•	2.7607	2.0819	3.4528	3.8396	4.1521	4-4045
*** F	• **	•78271 •86214	.61546 64.193	P8LE3.	•84667	.85499	.85939	.86171
		+90514	.66 189	•£6948	.65851	• ₫ 50 2 4	• 65208	.84629

TABLE 8-4 (CONT.)

PR	14	1.2630 1.38	76 1.5213	1.6720	1.8413	2.0336	2.2525
		. 2.5027 2.79	19 3.1306	3.5295	4.0072	4.2971	4.6384
EFF	14	•73317 •764	79 .81350	.83231	• 84585	.85527	.86217
		.86721 .870	38 .87152	.87113	.96882	-86522	.85921
PR	14	1.2156 1.33	88 . 1.4776	1.6337	1.8121	2.0126	2.2409
		· 2.5033 2.8¢	41 3.1587	3.5874	4.1176	4.4426	4.8316
EFF	14	.64933 .736	83 .78211	- 21 057	-82389	.84356	.85493
		.86351 .870	65 .87492	•27565	+87264	•86857	.86164
PR	14	1.2170 1.34	35 1.4869	1.6483	1.8324	2.0415	2.2770
		2.5474 2.65	76 3.2180	3.6628	4.2323	4.5859	5.0202
EFF	14	.60045 .704	BC .75764	+79101	.81322	.82981	.84400
		.85E10 .E64	54 .67166	·87348	.86920	.86426	.85562
ECT							
901	3	ALLISCH LP (PC	FR.) TURBINE	MAP SPED=1	000C+PR=3.	69 **FLOW	**
AREA	1	1.0000					
SPED	10	5655.5 6666	.6 7777.7	6688.8	10000.0	11411.1	12222.2
		13333.3 14444	.4 1555.5				
PR	14	1.1121 1.14	50 1.1808	1.2219	1.2699	1.3274	1.3983
		1.4906 1.62		2.6344	2.8159	4.0000	6.0000
FLG#	14	.55649 .608	64 .65878	.70892	.75907	.80921	.85935
		.90550 .959	1.0098	1.0377	1.0377	1.0377	1.0377
PR	14	1.6971 1.13	32 1.1737	1.2200	1.2739	1.3383	1.4182
		1.5234 1.67	2.0161	2.8740	3.1727	4.0000	6.0000
FLGW	14	.55649 .666		.70892	•75907	.80921	.85935
		.90950 .959	54 1.0098	1.0316	1.0316	1.0316	1.0316
PR	14	1.0699 1.10	38 1.1547	1.2060	1.2058	1.3373	1.4254
		1.5439 1.72	18 2.1417	2.9961	3.3036	4.0000	6.0000
FLCW	14	•55E49 •ECE	4 .65878	.70892	÷75907	15608.	.85935
		.90550 .9550	1.0098	1.0265	1.0205	1.0265	1.0265
PR	14	1.1235 1.179	1.2441	1.3220	1.4186	1.5495	1.7468
		1.9175 2.25	3.0274	3.3307	3.6740	4.0000	6.0000
FLOW	14	.65878 .708	2 .75907	.80921	.85935	•90950	.95964
		.98471 1.GC	8 220.1	1.0228	1.0228	1.0228	1.0228
PR	14	1.1394 1.20	34 1.2916	1.3950	1.5306	1.7537	1.9435
		2-3426 3.05	3.4012	3.7460	4.1225	5.0000	6.0000
FLOW	14	.70892 .7550	.60921	.65935	. 90950	.95464	.98471
		1.0098 1.020	£020.1	1.0203	1.0203	1.0203	1.0203
PR	14	1.1593 1.240	1.3543	1.5031	1.7348	1.9428	2.4000
		3.1552 3.510	27 3.8633	4.2450	4.5404	5.0000	6.0000
FLCW	14	.75907 .8093	1 .85935	.90950	∙9 5964	-98471	1.0098
		1.0167 1.016	1.0167	1.0187	1.0167	1.0187	1.0187
PR	14	1.1866 1.29	77 1.4468	1.6890	1.9077	2.3971	3.1738
		3.4640 3.83	9 4.2100	4.6041	4.9906	5.0000	6.0000
FLQ#	14	.223. 13208.		.95964	•93471	1.0098	1.0181
		1.0161 1.010		1.0181	1.0181	1.0181	1.0181
PH	14	1.2263 1.376		1.8346	PLSE.3	3.2032	3.5168
		3.8674 4.24		5.0248	5.1344	5.5000	6.0000
FLG#	14	.85535 .9099		.58471	1.0098	1.0168	1.0188
		1.0166 1.01		1.0188	1.3148	1.0158	1.0188
PH	14	1.2893 1.519		2.1811	2.2003	3.5137	3.8040
		4.2432 4.630		5.1144	5.2100	5.5000	6.0000
FLU	14	.9055Ç .5550		1.005e	1.0208	1.0208	1.0208

TABLE B-4 (CONT.)

		1.0208	1.0208	1.0208	1.0208	1.0208	1.0208	1.0208
PR	14	1.4034	1.5963	1.9956	3.1628	3.4721	J.8187	4.1952
		4.5871	4.5706	E.0558	5.1411	5.2263	5.5000	6.0000
FLOW	14	•95964	.98471	1.0098	1.0236	1.0236	1.0236	1.0236
		1.0236	1.0236	1.0236	1.0236	1.0236	1.0236	1.0236
EGT								
901		ALL ISON	LP (PCWER)	TURBINE	MAP SPED=1	000C.PR=3.6	59 **EFF**	•
AREA	1	1.0060					•	
SPED	0.1	5555.5	6666.6	7777.7	8.8838	1 0000.0	11111.1	12222.2
		13333.3	14444.4	1555.5				
PR	14	1.1131	1.1854	1.2699	1.3699	1.4883	1.6304	1.8028
		2.0053	2.2685	2.6475	3.2892	3.7487	4.3128	4.4983
EFF	14	.81330	. 6717C	. E8087	.E7¢65	. 85259	.83010	.80524
		.78396	.75609	.71646	•65727	.62599	•59674	.55948
PR	1.4	1.0571	1.1754	1.2654	1.3700	1.4932	1 -6405	1.6243
		2.0380	2.2525	2.6863	3.3326	3.7878	4.3536	5.0543
EFF	1.4	. 67735	. 62691	. E745 l	.88817	.88572	.87400	.85275
		-83597	. 62018	.78088	•72316	•69280	.66347	•63533
PR	14	1.0699	1.1531	1.2478	1.3565	1.4828	1.6328	1.8160
		2.0323	2.3009	2.6676	3.2532	2000.5	4.1823	4.8276
EFF	14	.34733	.7238¢	.83285	.87684	.89434	.89650	.88755
		.87422	.86254	. €3589	.78809	.76033	.73230	.70455
PR	14	1.1235	1.2171	1.3234	1.448C	1.5866	1.7531	1.9528
	-	2.1952	2.4884	2.9038	3.5435	3.9826	4.5251	5.1978
EFF	14	.52600	.74513	• 63293	.87603	.84543	.90365	.90243
		.89529	· 66580	. 66028	.81a13	•74406	•76946	•74460
PR	14	1.1394	1.2377	1.3485	1.4748	1.6216	1.7918	1.9927
		2.2345	2.5234	2.9091	3.4795	3.8639	4.3324	4.9082
EFF	14	.45621	.65715	.60181	.85686	. 83640	.90300	.91043
		.91043	.SC771	. 69289	·£6178	.84220	.82147	• 79975
Pk	14	1.1593	1.2642	1.3819	1.5170	1.6730	1.8535	2.0663
		2.3189	2.6202	3.0219	3.6015	2.9869	4.4535	5.0242
EFF	14	.40092	.65483	.77254	.83645	.87411	.89762	.91091
		.91755	.92000	•\$0985	.88499	•86855	.85070	.83151
PR	14	1.1866	1.2961	1.4189	1.5602	1.7225	1.9099	2.1294
		2.3662	2.6893	3.0900	3.6504	4.0176	4.4572	4.9906
EFF	14	.36935	· €1 €57	.74297	•e1356	• 85793	-88712	•90593
		.91893	• 52 £6 E	.92195	.50426	·89128	.87673	-86051
PK	14	1.2263	1.3406	1.4683	1.6169	1.7857	1.9310	2.2064
		2.4640	2.7758	3.1828	3.7355	4.0925	4.5156	5.0248
eff	14	.37093	.55745	.72072	.79327	.84200	.87506	.89889
		.91791	.52673	•\$277 l	.51575	.90576	+69414	.88069
PR	14	1.2893	1.4121	1.5430	1.6565	1.8731	2.0725	2.2950
		2.5531	2.6716	3.2758	3.6100	4.1491	4.5464	5.0188
EFF	14	.41E5C	. 19697	•70975	. 78006	.82773	.86378	•89355
		.91579	.92775	.53035	S3ES9.	.91650	.90777	.89718
PR	14	1.4034	1.5305	1.6695	1.8284	2.0048	2.1984	2.4197
		2.6620	2.5584	2.3839	3.8853	4.1950	4.5531	4.9706
EFF	14	.51€17	.63720	.72100	•77999	8.1±1.8 a	• 86576	.89173
		.91182	.52421	.5.1048	•9278¢	.92.350	•91753	•90995
EC T								

REFERENCES

- 1. Fishback, Laurence H. and Caddy, Michael J.: "NNEP The Navy NASA Engine Program," NASA TMX-71857, Dec. 1975
- 2. Powell, M. J. D.: "An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating Derivatives," <u>Computer Journal</u>, Vol. 7, July 1964, pp. 155 162.

PESEDING PAGE BUILDIE NOT ...