EJEMPLO 3: DADO EL SIGUIENTE DIAGRAMA DE ESTADOS IMPLEMENTAR USANDO FF'S RS

PRIMER PASO (TABLA DE ESTADOS)

X	ESTADO SIGUIENTE		
ESTADO PRESENTE	0	1	
а	a/0	b/0	
b	c/0	d/0	
С	a/0	d/0	
d	e/0	d/1	
е	a/0	d/1	

SEGUNDO PASO (TABLA DE TRANSICION)

X	(y2,y1, y0)t+1		SALIDA Z	
(y2,y1, y0)t	0	1	0	1
000	000	001	0	0
001	0 1 1	0 10	0	0
0 11	000	0 10	0	0
0 10	1 10	0 10	0	1
1 10	000	0 1 0	0	1

TERCER PASO (OBTENCION DE LAS ECUACIONES BOOLEANAS)

¿QUE NECESITO?

Qt QT+1		S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

X	(y2,y1, y0)t+1		SALIDA Z	
(y2,y1, y0)t	0	1	0	1
000	000	001	0	0
001	0 1 1	0 10	0	0
0 1 1	000	0 1 0	0	0
0 1 0	1 10	0 1 0	0	1
1 10	000	0 1 0	0	1

EJEMPLO 4: DADO EL SIGUIENTE DIAGRAMA LOGICO DETERMINAR LA FUNCION QUE REALIZA

ESTE EJEMPLO CONSISTE EN ANALIZAR EL CIRCUITO SECUENCIAL DADO EL DIAGRAMA LOGICO, PARA ELLO:

SEGUNDO PASO (TABLA DE TRANSICION)

¿QUE NECESITO?

$$Q_{T+1} = S + Q_T R'$$

PARA FF

$$Y_{0}(t+1)=S_{0}+y_{0}(t)R_{0}'$$

$$Y_{0}(t+1)=Xy_{1}'y_{0}'+y_{0}(y_{1}+Xy_{0})'$$

$$Y_{0}(t+1)=Xy_{1}'y_{0}'+y_{0}(y_{1}'(Xy_{0})')$$

$$Y_{0}(t+1)=Xy_{1}'y_{0}'+y_{0}y_{1}'(X'+y_{0}')$$

$$Y_{0}(t+1)=Xy_{1}'y_{0}'+y_{0}y_{1}'X'+y_{0}y_{1}'y_{0}'$$

$$Y_{0}(t+1)=Xy_{1}'y_{0}'+X'y_{1}'y_{0}$$

PARA FF₁

$$\begin{split} Y_1(t+1) &= S_1 + y_1(t) R_1 \\ Y_1(t+1) &= y_1 ' y_0 + y_1(X' y_2 + X' y_1 y_0) ' \\ Y_1(t+1) &= y_1 ' y_0 + y_1((X' y_2)' (X' y_1 y_0)') \\ Y_1(t+1) &= y_1 ' y_0 + y_1(X + y_2') (X + y_1' + y_0') \\ Y_1(t+1) &= y_1 ' y_0 + (y_1 X + y_1 y_2') (X + y_1' + y_0') \\ Y_1(t+1) &= y_1 ' y_0 + y_1 X + y_1 X y_1' + y_1 X y_0' + y_1 y_2' X + y_1 y_2' y_1' + y_1 y_2' y_0' \\ Y_1(t+1) &= y_1 ' y_0 + X y_1 + X y_1 y_0' + X y_2' y_1 + y_2' y_1' y_0' \end{split}$$

PARA FF₂

$$Y_{2}(t+1)=S_{2}+y_{2}(t)R_{2}'$$

$$Y_{2}(t+1)=X'y_{2}'y_{1}y_{0}'+y_{2}(y_{2})'$$

$$Y_{2}(t+1)=X'y_{2}'y_{1}y_{0}'+y_{2}y_{2}'$$

$$Y_{2}(t+1)=X'y_{2}'y_{1}y_{0}'$$

Y LA SALIDA

VARIABLES DE ESTADO

$$Y_0(t+1)=Xy_1'y_0'+X'y_1'y_0$$

 $Y_1(t+1)=y_1'y_0+Xy_1+Xy_1y_0'+Xy_2'y_1+y_2'y_1y_0'$
 $Y_2(t+1)=X'y_2'y_1y_0'$

Z=Xy₁y₀′

OJO: ESTAS ECUACIONES DESCRIBEN EL SISTEMA

SEGUNDO PASO (TABLA DE TRANSICION) continuación

X	(y2,y1, y0)t+1		X (y2,y1, y0)t+1 SALIDA Z		DA Z
(y2,y1, y0)t	0	1	0	1	
000	000	001	0	0	
001	011	010	0	0	
010	110	010	0	1	
011	000	010	0	0	
100	000	001	0	0	
101	011	010	0	0	
110	000	010	0	1	
111	000	010	0	0	

CUARTO PASO (¿QUE FUNCION REALIZA?)

TERCER PASO (DIAGRAMA DE ESTADOS)

OJO: ¿QUE PODEMOS OBSERVAR?

OJO: ¿QUE PODEMOS OBSERVAR?

PODEMOS OBSERVAR QUE EXISTEN 3
ESTADOS INESTABLES DEL SISTEMA, EL 100, EL
101 Y EL 111, PUESTO QUE SI AL ENCENDER EL
CIRCUITO ("AMANECE") ENCIENDE EN
ALGUNO DE ESTOS ESTADOS, UN TIEMPO
DESPUES EL CIRCUITO SE ESTABILIZA Y
NUNCA MAS SE VUELVEN A PRESENTAR
ESTOS ESTADOS (NADIE LLEGA A ELLOS, SON
ESTADOS INESTABLES DEL CIRCUITO)

IMPORTANTE: CON 3 FF's TENGO 8 ESTADOS POSIBLES, PERO NO NECESARIAMENTE TODOS VALIDOS

TAREA!!!!!!

- 1.- ¿QUE SON Y COMO FUNCIONAN LOS MULTIVIBRADORES?
- 2.- ¿QUE ES FRENTE DE ONDA Y DISPARO DE UN FF?
- 3.- ¿QUE ES UN FF MASTER-SLAVE Y PARA QUE SIRVE?

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.