The Entity-Relationship Model (Part I)

R &G - Chapter 2

Steps in Database Design

- 1. Requirements Analysis
 - user needs (what must database do?)
- Design a database

- 2. Conceptual Design
 - high level descr
- 3. Logical Design
 - translate ER into DBMS data model
- 4. Schema Refinement
 - consistency, normalization
- 5. Physical Design indexes, disk layout
- 6. Security Design who accesses what, and how

Design a GOOD database

Today's Class

- Requirements Analysis
 - user needs; what must database do?
- Conceptual Design
 - high level description (often done w/ER model)
- Logical Design
 - translate ER into DBMS data model
- Schema Refinement
 - consistency, normalization
- Physical Design indexes, disk layout
- Security Design who accesses what, and how

Conceptual Database Design

- ER model: (E -*entities*, R *relationships*) *Informally*
 - Entities are usually (relevant) nouns
 - "Stevens has full-time and part-time students."
 - "Stevens has around one hundred faculty members."
 (What are the entities?)
 - Relationships are statements about 2 or more objects.
 - Often, verbs.
 - e.g., "a prof teaches a course" (What is the relationship?)

Conceptual Database Design (Cont.)

- Besides entities & relations, what else?
 - What information about entities & relationships should be stored in the database?
 - What rules (called *integrity constraints*) should hold on these entities and relationships?
- In relational databases, this is generally encoded in an Entity-Relationship (ER) Diagram

ER Diagram: Entities (Formally)

- <u>Entity</u>: Real-world object, distinguishable from other objects.
 - An entity is described using a set of <u>attributes</u>.
- <u>Entity Set</u>: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes.
 - Each entity set has
 - a *key (underlined)*.
 - Each attribute has a domain.
 (e.g., float, date, int, colour)
 - Pay attention to the shape of entities and attributes 7 in ER diagram!

ssn

name

Employees

lot

Exercise: ER

- What are the attributes?
- What is the key?

Exercise: ER Design (1)

 The supermarket ShopRite! hires you to design a database for its product inventory. Each product has the information of ID, description, category, price, and expiry date.

Question:

- What are the entities?
- What are the attributes of the entities?
- Draw the ER diagram.

Exercise: ER Design (2)

- Assume you want to design an annual student directory (a prototype of Facebook II)
- The main concepts you need to describe include
 - Users (ID, age, gender, school)
 - Friend & enemy relations among users

Questions

- What are the entities?
- What are the attributes of the entities?
- Draw the ER diagram (only the Entity part for now).

Keys of Entities

- A superkey = a set of attributes which, taken collectively, identify <u>uniquely</u> an entity in an entity set
 - Question: the set of all attributes of the entity set is a superkey (True/false?)
- A key (or candidate key) = a superkey for which no proper subset is a superkey (~ minimal superkey)
 - Each entity set must have a key!
- There can be more than one key for an entity set
 - A primary key = the key chosen as the principal means to identify entities in an entity set
 - The primary key is <u>underlined</u> in ER diagram

Exercise: Keys

- Is (ssn) a superkey?
- Is (ssn) a key?
- Is (ssn, name, parking_lot) a superkey?
- Is (ssn, name, parking_lot) a key?

Relationships

- Relationship: Association among two or more entities.
 - E.g., Alan works in Pharmacy department. Alice works in HR department
- Relationship Set: Collection of similar relationships.
 - An *n*-ary relationship set *R* relates *n* entity sets $E_1 \dots E_n$; each relationship in *R* involves entities $e_1 \in E_1, \dots, e_n \in E_n$
 - Relationship sets can have their own attributes.
- Pay attention to the shape of relationships in ER diagram!

Degree of A Relationship

- Degree: the number of participating entities.
 - Degree 2: binary
 - Degree 3: ternary
 - Degree n: n-ary
- Binary relationships are very common and widely used.

More Relationship Examples

More Relationship Examples (Cont.)

Relationships of More than 2 Entity Sets

Ternary Relationship

- Assume you want to design an annual student directory (a prototype of Facebook II)
- The main concepts you need to describe include
 - Users (ID, age, gender, address, ...)
 - Friend & enemy relations among users

Questions

- What are the entities in the directory?
- What are the attributes of the entities?
- What are the relationships between the entities?
- Draw the ER diagram

Roles in Relationships

- Same entity set can participate more than once in the same relationship, with different "roles".
 - Also called as recursive relationship

- In Twitter, there are two types of relationships between users
 - Following others: you are subscribing to their Tweets as a follower
 - Being followed: You have followers

Question:

Draw the ER diagram of the relationship *Connect*

Summary: E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- Ellipses represent attributes of entity/relationship sets
- Underline indicates primary key attributes