

Modulo 4 Ingeniería de Características

Raw data: pixel grid		
Better features: clock hands' coordinates	{x1: 0.7, y1: 0.7} {x2: 0.5, y2: 0.0}	{x1: 0.0, y2: 1.0} {x2: -0.38, 2: 0.32}
Even better features: angles of clock hands	theta1: 45 theta2: 0	theta1: 90 theta2: 140

¿Por qué son importantes?

- Los mejores modelos son modelos simples que encajan bien con los datos
- Necesitamos balancear entre precisión y simplicidad
- Los modelos simples
 - tienden a predecir mejor
 - Se interpretan mejor por parte de los humanos
 - Más sencillo hacer predicciones a partir de ellos

Seleccionar Características

Técnicas

- Selección hacia atrás
 - Empieza con todas las características
 - Encuentra la característica que menos disminuye el poder de predicción y elimínala
 - Continua el proceso hasta que empiece a dañar tu precisión
- Selección hacia adelante
 - Empieza sin características
 - Busca la características que por si sola es el mejor modelo
 - Mantenla y añade otra.
 - Así hasta que no mejores tus predicciones

Escalado de Características

Escalado de Características

- Mal escalado puede llevar al algoritmo a dar más peso a unas características que a otras sin que tengan relevancia
- Complica la interpretación de coeficientes
- Ensucia la regularización
- En algoritmos que trabajan con distancias, las distorsiona

Escalado con scikit-learn

StandardScaler

 Asume que los datos siguen una distribución normal dentro de cada característica por lo que centra la distribución en 0 con una desviación estandar de 1

MinMaxScaler

Reduce el rango de valores en 0 y 1 (o -1 y 1 si tiene negativos)

RobustScaler

Como MinMax pero utilizando un rango de quartiles

Normalizer

 Escala cada valor dividiéndolo por su magnitud en un espacio de n dimensiones siendo n el número de características

Demo 04 Importancia Escalado

Importancia del Escalado de Características Extracción de características en scikit-learn

Interpretando las Características

Correlación

- Existe la creencia muy extendida de que cuantas más características mejor
- Se crean características "artificiales" que son inútiles para el modelo
 - Y además hacen complicado interpretar los coeficientes
- La mejora en la precisión suele ser muy alta cuando se eliminan o se combinan

C SolidQ