IT 1206 Section 2.0

Data Representation and Arithmetic

What is Analog and Digital

- The interpretation of an analog signal would correspond to a signal whose key characteristic would be a continuous signal
- A digital signal is one whose key characteristic (e.g. voltage or current) fall into discrete ranges of values
- Most digital systems utilize two voltage levels

Advantage of Digital over Analog

What is a bit

- A bit is a binary digit, the smallest increment of data on a machine. A bit can hold only one of two values: 0 or 1
- Because bits are so small, you rarely work with information one bit at a time.

What is a bit

Bit Storage - Capacitor

What is a bit

 Byte is an abbreviation for "binary term". A single byte is composed of 8 consecutive bits capable of storing a single character

Storage Hierarchy

- 8 Bits = 1 Byte
- 1024 Bytes = 1 Kilobyte (KB)
- 1024 KB = 1 Megabyte (MB)
- 1024 MB = 1 Gigabyte (GB)
- A word is the default data size for a processor

Numbering System

- Decimal System
 - \triangleright Alphabet = { 0,1,2,3,4,5,6,7,8,9 }
- Octal System
 - \triangleright Alphabet = { 0,1,2,3,4,5,6,7 }
- Hexadecimal System
 - \triangleright Alphabet = { 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F }
- Binary System
 - \triangleright Alphabet = { 0,1 }

Converting decimal to binary

Converting decimal to binary

Converting decimal to binary

12

Your turn

Convert the number 65₁₀ to binary

4 3

 2^7 2^6 2^5 2^4 2^3 2^2 2^1

Decimal value

Example:

Convert the unsigned binary number **10011010** to decimal

1 0 0 1 1 0 1 0

$$128 + 16 + 8 + 2 = 154$$

So, 10011010 in unsigned binary is 154 in decimal

Example:

Convert the decimal number **105** to unsigned binary

Q. Does 128 fit into **105**?

A. No

Next, consider the difference: 105- 0*128 = 105

Q. Does 64 fit into **105**?

A. Yes

Next, consider the difference: 105-1*64=41

Q. Does 32 fit into **41**?

A. Yes

Next, consider the difference: 41-32=9

Your turn

Convert the number 00110010₂ to decimal

Converting binary numbers

- Decimal System
 - > 0,1,2,3,4,5,6,7,8,9,10,11,12,13.....
- Binary System
 - > 0,1,10,11,100,101,110,111,1000,1001,1010,1011,1100,1101......

Your turn

Using 5 binary digits how many numbers you can represent?

Hexadecimal Notation

•	HEX	Bit Pattern	HEX	Bit Pattern
	0	0000	8	1000
	1	0001	9	1001
	2	0010	A	1010
	3	0011	В	1011
	4	0100	C	1100
	5	0101	D	1101
	6	0110	E	1110
	7	0111	F	1111

Your turn

How many binary digits need to represent a

hexadecimal digit?

Converting hexadecimal numbers

- Decimal System
 - > 0,1,2,3,4,5,6,7,8,9,10,11,12,13.....
- Hexadecimal System
 - > 0,1,,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15, 16,17,18,19,1A,1B,1C,1D,1E,1F......

Binary to Hexadecimal Conversion

```
    10010110<sub>2</sub>
    1001 0110
    1001 0110
    9 6
```

 $10010110_2 = 96 \text{ Hexadecimal}$

Binary to Hexadecimal Conversion

```
    11011011<sub>2</sub>
    1101 1011
    1101 1011
    D B
```

11011011₂ = **DB** Hexadecimal

Your turn

Convert the following binary string to Hexadecimal ...

00101001

11110101

Binary to Hexadecimal Conversion

```
•00101001 1110101<sub>2</sub>
```

- 00101001 11110101
- 0010 1001 1111 0101
 2 9 F 5

 $00101001 \ 1110101_2 = 29F5 \ \text{Hex}$

Computer Number System

ASCII Codes

- American Standard Code for Information Interchange (ASCII)
- Use bit patterns of length seven to represent
 - Letters of English alphabet: a z and A Z
 - ➤ Digits: 0 9
 - Punctuation symbols: (,), [,], {, }, ', ", !, /, \
 - Arithmetic Operation symbols: +, -, *, <, >, =
 - Special symbols: (space), %, \$, #, &, @, ^
- 2⁷ = 128 characters can be represented by ASCII

Character Representation: ASCII Table

Symbol	ASCII	Symbol	ASCII	Symbol	ASCII	Symbol	ASCII
(space)	00100000	A	01000001	a	01100001	0	00110000
!	00100001	В	01000010	b	01100010	1	00110001
u	00100010	C	01000011	С	01100011	2	00110010
#	00100011	D	01000100	d	01100100	3	00110011
\$	00100100	E	01000101	е	01100101	4	00110100
%	00100101	F	01000110	f	01100110	5	00110101
&	00100110	G	01000111	g	01100111	6	00110110

Character Representation: ASCII Table

Dec	Нх	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Cl	<u>hr</u>
0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	a#64;	0	96	60	140	& # 96;	8
1	1	001	SOH	(start of heading)	33	21	041	@#33;	!	65	41	101	a#65;	A	97	61	141	a#97;	a
2				(start of text)	34	22	042	@#3 4 ;	rr	66	42	102	B	В	98	62	142	a#98;	b
3	3	003	ETX	(end of text)	35	23	043	@#35;	#	67	43	103	C	С	99	63	143	a#99;	C
4	4	004	EOT	(end of transmission)	36	24	044	@#36;	ş	68	44	104	D	D	100	64	144	@#100;	d
5	5	005	ENQ	(enquiry)	37	25	045	@#37;	*				E		101	65	145	e	e
6				(acknowledge)				@#38;					a#70;					a#102;	
7	7	007	BEL	(bell)				@#39;		71			G			-		g	
8	8	010	BS	(backspace)	40	28	050	&# 4 0;	(72			H					a#104;	
9	9	011	TAB	(horizontal tab)	ı)					I					i	
10		012		(NL line feed, new line)				6# 4 2;					a#74;					j	
11		013		(vertical tab)				&#43;</td><td></td><td></td><td></td><td></td><td><u>@</u>#75;</td><td></td><td></td><td></td><td></td><td>a#107;</td><td></td></tr><tr><td>12</td><td></td><td>014</td><td></td><td>(NP form feed, new page)</td><td></td><td></td><td></td><td>@#44;</td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td>l</td><td></td></tr><tr><td>13</td><td>D</td><td>015</td><td>CR</td><td>(carriage return)</td><td></td><td></td><td></td><td>&#45;</td><td></td><td></td><td></td><td></td><td>M</td><td></td><td></td><td></td><td></td><td>m</td><td></td></tr><tr><td>14</td><td></td><td>016</td><td></td><td>(shift out)</td><td></td><td></td><td></td><td>&#46;</td><td></td><td></td><td></td><td></td><td>a#78;</td><td></td><td></td><td></td><td></td><td>n</td><td></td></tr><tr><td>15</td><td>F</td><td>017</td><td>SI</td><td>(shift in)</td><td></td><td></td><td></td><td>6#47;</td><td></td><td></td><td></td><td></td><td>a#79;</td><td></td><td></td><td></td><td></td><td>o</td><td></td></tr><tr><td>16</td><td>10</td><td>020</td><td>DLE</td><td>(data link escape)</td><td>48</td><td>30</td><td>060</td><td>6#48;</td><td>0</td><td></td><td></td><td></td><td>P</td><td></td><td></td><td></td><td></td><td>p</td><td></td></tr><tr><td>17</td><td>11</td><td>021</td><td>DC1</td><td>(device control 1)</td><td>49</td><td>31</td><td>061</td><td>6#49;</td><td>1</td><td>81</td><td>51</td><td>121</td><td>Q</td><td>Q</td><td>I — — –</td><td></td><td></td><td>q</td><td>_</td></tr><tr><td>18</td><td>12</td><td>022</td><td>DC2</td><td>(device control 2)</td><td></td><td></td><td></td><td>2</td><td></td><td>82</td><td>52</td><td>122</td><td>R</td><td>R</td><td>114</td><td>72</td><td>162</td><td>r</td><td>r</td></tr><tr><td>19</td><td>13</td><td>023</td><td>DC3</td><td>(device control 3)</td><td></td><td></td><td></td><td>3</td><td></td><td>83</td><td>53</td><td>123</td><td>S</td><td>s</td><td>115</td><td>73</td><td>163</td><td>s</td><td>s</td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 4)</td><td>52</td><td>34</td><td>064</td><td>4</td><td>4</td><td>84</td><td>54</td><td>124</td><td>T;</td><td>Т</td><td>116</td><td>74</td><td>164</td><td>t</td><td>t</td></tr><tr><td></td><td></td><td></td><td></td><td>(negative acknowledge)</td><td>53</td><td>35</td><td>065</td><td>@#53;</td><td>5</td><td>85</td><td>55</td><td>125</td><td>U</td><td>U</td><td>117</td><td>75</td><td>165</td><td>u</td><td>u</td></tr><tr><td>22</td><td>16</td><td>026</td><td>SYN</td><td>(synchronous idle)</td><td>54</td><td>36</td><td>066</td><td>4;</td><td>6</td><td></td><td></td><td></td><td>V</td><td></td><td></td><td></td><td></td><td>v</td><td></td></tr><tr><td>23</td><td>17</td><td>027</td><td>ETB</td><td>(end of trans. block)</td><td></td><td>_</td><td></td><td>7;</td><td></td><td>87</td><td>57</td><td>127</td><td>%#87;</td><td>W</td><td></td><td></td><td></td><td>w</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(cancel)</td><td>56</td><td>38</td><td>070</td><td>8</td><td>8</td><td>88</td><td>58</td><td>130</td><td>X</td><td>Х</td><td>120</td><td>78</td><td>170</td><td>x</td><td>×</td></tr><tr><td>25</td><td>19</td><td>031</td><td>EM</td><td>(end of medium)</td><td></td><td></td><td></td><td>9</td><td></td><td>89</td><td>59</td><td>131</td><td>Y</td><td>Y</td><td></td><td></td><td></td><td>y</td><td></td></tr><tr><td></td><td></td><td>032</td><td></td><td>(substitute)</td><td>ı</td><td></td><td></td><td><u>@</u>#58;</td><td></td><td></td><td></td><td></td><td>%#90;</td><td></td><td></td><td></td><td></td><td>z</td><td></td></tr><tr><td>27</td><td>1В</td><td>033</td><td>ESC</td><td>(escape)</td><td>59</td><td>ЗВ</td><td>073</td><td>@#59;</td><td><i>;</i></td><td>91</td><td>5B</td><td>133</td><td>[</td><td>[</td><td></td><td></td><td></td><td>{</td><td></td></tr><tr><td>28</td><td>1C</td><td>034</td><td>FS</td><td>(file separator)</td><td>60</td><td>3С</td><td>074</td><td><</td><td><</td><td>92</td><td>5C</td><td>134</td><td>\</td><td>A.</td><td>124</td><td>7C</td><td>174</td><td>a#124;</td><td>I</td></tr><tr><td></td><td></td><td>035</td><td></td><td>(group separator)</td><td></td><td></td><td></td><td>=</td><td></td><td>ı</td><td></td><td></td><td><u>@</u>#93;</td><td>-</td><td></td><td></td><td></td><td>}</td><td></td></tr><tr><td></td><td></td><td>036</td><td></td><td>(record separator)</td><td></td><td></td><td></td><td>⊊#62;</td><td></td><td>ı</td><td></td><td></td><td>	4;</td><td></td><td></td><td></td><td></td><td>~</td><td></td></tr><tr><td>31</td><td>1F</td><td>037</td><td>US</td><td>(unit separator)</td><td>63</td><td>3F</td><td>077</td><td>?</td><td>2</td><td>95</td><td>5F</td><td>137</td><td>&#95;</td><td>_</td><td>127</td><td>7F</td><td>177</td><td></td><td>DEL</td></tr></tbody></table>											

Source: www.LookupTables.com

Character Representation: ASCII Table

- As computers became more reliable the need for parity bit faded.
 - Computer manufacturers extended ASCII to provide more characters, e.g., international characters
 - \triangleright Used ranges (2⁷) 128 \leftrightarrow 255 (2⁸ 1)

```
128
             144
                           161
                                        177
                                                     193
                                                            \perp
                                                                   209
                                                                                225
                                                                                              241
129
             145
                           162
                                        178
                                                      194
                                                                   210
                                                                                226
                                                                                              242
                                                      195
                                                                   211
130
             146
                    Æ
                           163
                                        179
                                                                                227
                                                                                              243
                                                                                                     ≤
                                                      196
                                                                   212
                                                                                              244
131
             147
                           164
                                        180
                                                                                228
                                                                                              245
132
             148
                                        181
                                                      197
                                                                   213
                                                                                229
                           165
133
                                        182
                                                      198
                                                                   214
                                                                                 230
             149
                           166
                                                                                              246
       å
134
             150
                                        183
                                                      199
                                                                   215
                                                                                231
                           167
                                                                                              247
                                                                   216
135
             151
                                        184
                                                      200
                                                                                232
                                                                                              248
                           168
136
             152
                                        185
                                                      201
                                                                   217
                                                                                 233
                                                                                              249
                           169
             153
                                        186
                                                      202
137
                                                                   218
                                                                                234
                                                                                              250
                           170
             154
                   Ü
                           171
                                                                                235
                                                                                              251
                                                                                                     N
138
                                        187
                                                      203
                                                                   219
             156
                           172
                                 1/4
                                        188
                                                                   220
                                                                                236
                                                                                              252
139
                                                      204
140
             157
                           173
                                        189
                                                      205
                                                                   221
                                                                                237
                                                                                              253
    ì
141
             158
                          174
                                        190
                                                      206
                                                                   222
                                                                                 238
                                                                                              254
     Ä
                                                                   223
                                                                                              255
142
             159
                           175
                                        191
                                                      207
                                                                                 239
143
             160
                           176
                                        192
                                                      208
                                                                   224
                                                                                 240
```

Source: www.LookupTables.com

Your turn

- The BINARY string ...
- 0110101 can have two meanings!
- the CHARACTER "5" in ASCII
- AND ...
- the DECIMAL NUMBER 53 in BINARY Notation

Character Representation: Unicode

- EBCDIC and ASCII are built around the Latin alphabet
 - Are restricted in their ability for representing non-Latin alphabet
 - Countries developed their own codes for native languages
- Unicode: 16-bit system that can encode the characters of most languages
- 16 bits = 2^{16} = 65,636 characters

Character Representation: Unicode

- The Java programming language and some operating systems now use Unicode as their default character code
- Unicode codespace is divided into six parts
 - ➤ The first part is for Western alphabet codes, including English, Greek, and Russian
- Downward compatible with ASCII and Latin-1 character sets

Character Representation: Unicode

Character Types	Character Set Description	Number of Characters	Hexadecimal Values		
Alphabets	Latin, Cyrillic, Greek, etc.	8192	0000 to 1FFF		
Symbols	Dingbats, Mathematical, etc.	4096	2000 to 2FFF		
CJK	Chinese, Japanese, and Korean phonetic symbols and punctuation	4096	3000 to 3FFF		
Han	Unified Chinese, Japanese, and Korean	40,960	4000 to DFFF		
	Expansion or spillover from Han	4096	E000 to EFFF		
User defined		4095	F000 to FFFE		

Character Representation: Example

- English section of Unicode Table
 - ➤ ACSII equivalent of A is 41₁₆
 - Unicode is equivalent of A:

• 00 41₁₆

	000	001	002	003	004	005	006	007
0	NUL	DLE 0010	SP 0020	0	@ ®40	P	0060	p ®70
1	SOH	DC1	0021	1 0031	A 0041	Q 0051	a ‱1	q ₀₀₇₁
2	STX 0002	DC2	0022	2	B 0042	R 0052	b ‱2	r 0072
3	ETX	DC3	#	3	C	S 0053	C	S 0073
4	EOT	DC4	\$	4	D 0044	T	d	t 0074

- Full chart list:
 - http://www.unicode.org/charts/

Performing Arithmetic

Binary Addition

$$-$$
 0 + 0 = **0**

$$0+1=1$$

$$-1+0=1$$

•
$$1 + 1 = 10$$
 (carry: 1)

- E.g.
- **1 1 1 1 1** (carry)
 - 0 1 1 0 1
 - + 1 0 1 1 1
 - > = 1 0 0 1 0 0

Binary Subtraction

$$-0-0=0$$

•
$$0 - 1 = 1$$
 (with borrow)

$$\Rightarrow$$
 = 0 1 0 1 1 0

Binary Multiplication

• E.g.

47

Binary Division

E.g.

Representing Numbers

- Problems of number representation
 - Positive and negative
 - Radix point
 - Range of representation
- Different ways to represent numbers
 - Unsigned representation: non-negative integers
 - Signed representation: integers
 - Floating-point representation: fractions

Unsigned and Signed Numbers

- Unsigned binary numbers
 - Have 0 and 1 to represent numbers
 - Only positive numbers stored in binary
 - The Smallest binary number would be ...
 - 0 0 0 0 0 0 0 which equals to 0
 - > The largest binary number would be ...

1 1 1 1 1 1 1 which equals

$$128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 = 2^8 - 1$$

Therefore the range is 0 - 255 (256 numbers)

Unsigned and Signed Numbers

- Signed binary numbers
 - Have 0 and 1 to represent numbers
 - The leftmost bit is a sign bit
 - 0 for positive
 - 1 for negative

Unsigned and Signed Numbers

- Signed binary numbers
 - The Smallest positive binary number is 0 0 0 0 0 0 0 which equals to 0
 - > The largest positive binary number is

$$64 + 32 + 16 + 8 + 4 + 2 + 1 = 127 = 2^7 - 1$$

- ➤ Therefore the **range** for positive numbers is **0 127**
- (128 numbers)

Negative Numbers in Binary

- Problems with simple signed representation
 - Two representation of zero: + 0 and 0
 - 00000000 and 1000000
 - Need to consider both sign and magnitude in arithmetic

```
• E.g. 5-3
• = 5 + (-3)
• = 00000101 + 10000011
• = 10001000
```


53

-8

Negative Numbers in Binary...

- Problems with simple signed representation
 - Need to consider both sign and magnitude in arithmetic

```
• E.g. = 18 + (-18)
```

$$= 00010010 + 10010010$$

$$= 10100100$$

Negative Numbers in Binary...

- The representation of a negative integer (Two's Complement) is established by:
 - Start from the signed binary representation of its positive value
 - Copy the bit pattern from right to left until a 1 has been copied
 - Complement the remaining bits: all the 1's with 0's, and all the 0's with 1's
 - An exception: 1 0 0 0 0 0 0 0 = -128

Your turn

What is the SMALLEST and LARGEST signed binary numbers that can be stored in 1 BYTE

Two's Compliment (8 bit pattern)

Two's Compliment benefits

- One representation of zero
- Arithmetic works easily
- Negating is fairly easy

Ranges of Integer Representation

- 8-bit unsigned binary representation
 - \triangleright Largest number: 1 1 1 1 1 1 1 1₂ = 255₁₀
 - \triangleright Smallest number: 0 0 0 0 0 0 0 0₂ = 0₁₀
- 8-bit two's complement representation
 - \triangleright Largest number: 0 1 1 1 1 1 1 1₂ = 127₁₀
 - \triangleright Smallest number: 1 0 0 0 0 0 0 $0_2 = -128_{10}$
- The problem of overflow
 - \rightarrow 130₁₀ = 1 0 0 0 0 0 1 0₂
 - \triangleright 0 0 0 1 0₂ in two's complement

Geometric Depiction of Two's Complement Integers

BIT

60

Integer Data Types in C++

Type	Size in Bits	Range			
unsigned int	16	0 – 65535			
int	16	-32768 - 32767			
unsigned long int	32	0 to 4,294,967,295			
long int	32	-2,147,483,648 to 2,147,483,647			

Fractions in Decimal

• **16.357** = the SUM of ...

$$7 * 10^{-3} = \frac{7}{1000}$$

 $5 * 10^{-2} = \frac{5}{100}$
 $3 * 10^{-1} = \frac{3}{10}$
 $6 * 10^{0} = 6$
 $1 * 10^{1} = 10$

•
$$\frac{7}{1000} + \frac{5}{100} + \frac{3}{10} + 6 + 10 = 16 \frac{357}{1000}$$

Fractions in Binary

• **10.011** = the SUM of ...

$$1 * 2^{-3} = \frac{1}{8}$$

$$1 * 2^{-2} = \frac{1}{4}$$

$$0 * 2^{-1} = 0$$

$$0 * 2^{0} = 0$$

$$1 * 2^{1} = 2$$

- $\frac{1}{8} + \frac{1}{4} + 2 = 2 \frac{3}{8}$
- i.e. $10.011 = 2 \frac{3}{8}$ in Decimal (Base 10)

Your turn

What is **011.0101** in Base 10?

Fractions in Binary

• **011.0101** = the SUM of ...

$$1 * 2^{-4} = \frac{1}{16}$$

$$0 * 2^{-3} = 0$$

$$1 * 2^{-2} = \frac{1}{4}$$

$$0 * 2^{-1} = 0$$

$$1 * 2^{0} = 1$$

$$1 * 2^{1} = 2$$

$$0 * 2^{2} = 0$$

$$\frac{1}{16} + \frac{1}{4} + 1 + 2 = 3 \frac{5}{16}$$

Decimal Scientific Notation

- Consider the following representation in decimal number ...
 - \rightarrow 135.26 = .13526 x 10³
 - > 13526000 = .13526 x 10⁸
 - \triangleright 0.0000002452 = .2452 x 10⁻⁶
- .13526 x 10³ has the following components:
 - > a Mantissa = .13526
 - > an Exponent = 3
 - > a Base = **10**

Floating Point Representation of Fractions

- Scientific notation for binary. Examples ...
 - > 11011.101 = 1.1011101 x 2⁴
 - \rightarrow -10110110000 = -1.011011 x 2¹⁰
 - \triangleright 0.00000010110111 = 1.0110111 x 2⁻⁷

SIGN = **0** (+ve) | **1** (-ve) EXPONENT in **EXCESS FOUR** Notation

•To STORE the number ...

$$+1^{1}/_{8} = 1.001$$

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

•To STORE the number ...

$$+1^{1}/_{8} = 1.001$$

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

•To STORE the number ...

$$+1^{1}/_{8} = 1.001$$

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

•To STORE the number ...

$$+1^{1}/_{8} = 1.001$$

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

•To STORE the number ...

$$+1^{1}/_{8} = 1.001$$

in FLOATING POINT NOTATION ...

3. STORE the **EXPONENT BITS**

Excess-k Representation

Bit	Pattern	Value Representation
•	111	4
•	110	3
•	101	2
•	100	1
•	011	0
•	010	-1
•	001	-2
	000	-3

EXCESS THREE NOTATION

An excess notation system using bit pattern of length three

Excess-k Representation

- For N bit numbers, *k* is 2^{N-1}-1
 - E.g., for 4-bit integers, k is 7
- The actual value of each bit string is its
- unsigned value minus k
- To represent a number in excess-k, add k

Excess-k Representation

•To STORE the number ...

$$+1^{1}/_{8} = 1.001$$

in FLOATING POINT NOTATION ...

3. STORE the **EXPONENT BITS**

•To STORE the number ...

$$-3^{1}/_{4} = -11.01$$

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

•To STORE the number ...

$$-3^{1}/_{4} = -11.01$$

in FLOATING POINT NOTATION ...

1. STORE the **SIGN BIT**

•To STORE the number ...

$$-3^{1}/_{4} = -11.01$$

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

•To STORE the number ...

$$-3^{1}/_{4} = -11.01$$

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

•To STORE the number ...

$$-3^{1}/_{4} = -11.01$$

in FLOATING POINT NOTATION ...

3. STORE the **EXPONENT BITS**

•To STORE the number ...

$$-3^{1}/_{4} = -11.01$$

in **FLOATING POINT NOTATION** ...

3. STORE the **EXPONENT BITS**

Your turn

Write down the **FLOATING POINT** form for the number +11/64?

1. STORE the SIGN BIT

1. STORE the SIGN BIT

2. STORE the MANTISSA BITS

2. STORE the MANTISSA BITS

3. STORE the **EXPONENT BITS**

Converting FP Binary to Decimal

- •Example ...
- •CONVERT 10111010 to decimal steps ...
 - 1. Convert **EXPONENT** (EXCESS 4)
 - 2. Apply **EXPONENT** to **MANTISSA**
 - 3. Convert BINARY Fraction
 - 4. Apply **SIGN**

1. CONVERT THE **EXPONENT**

91

2. APPLY the **EXPONENT** to the **MANTISSA**

3. CONVERT from **BINARY FRACTION**

93

4. APPLY the SIGN

ROUND-OFF ERRORS

•CONSIDER the FLOATING POINT Form of the number...

+ 2⁵/₁₆

ROUND-OFF ERRORS +25/8

1. **CONVERT to BINARY FRACTION ...**

$$2^{5}/_{8} = 10.0101$$

i.e.
$$2 + \frac{1}{4} + \frac{1}{16}$$

2. STORE THE SIGN BIT ...

2. STORE THE SIGN BIT ...

3. STORE THE **MANTISSA** ...

3. STORE THE **MANTISSA** ...

3. STORE THE **MANTISSA** ...

ROUND-OFF EFFICIES $+2^{5}/_{8} = 10.101$

ROUND-OFF EFFICIES $+2^{5}/_{8} = 10.101$

4. STORE THE **EXPONENT** ...

ROUND-OFF EFFICIES $+2^{5}/_{8} = 10.101$

4. STORE THE **EXPONENT** ...

 $2^{1}/_{4}$ i.e. a ROUND OFF ERROR of $\frac{1}{16}$

What is the BIGGEST and SMALLEST can be represented by one-byte floating point notation

The biggest number can be represented by one-byte floating point notation is:

The Smallest positive number can be represented by one-byte floating point notation is:

The largest negative number can be represented by one-byte floating point notation is:

Range of FP Representation

The smallest number can be represented by one-byte floating point notation is:

Range of FP Representation

What is the SOLUTION for this???

Floating-Point Data types in C++

Type	Size in Bits	Range
float	32	3.4E-38 to 3.4E+38 Six digits of precision
double	64	1.7E-308 to 1.7E+308 Ten digits of precision
long double	80	3.4E-4932 to 3.4E+4932 Ten digits of precision

- +/- . Mantissa x 2 exponent
- Point is actually fixed between sign bit and body of Mantissa
- Exponent indicates place value (point position)

- Mantissa is stored in 2's compliment
- Exponent is in excess notation
 - 8 bit exponent field
 - ➤ Pure range is 0 255
 - Subtract 127 to get correct value
 - Range -127 to +128

- Floating Point numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- Where numbers are normalized to give a single digit before the decimal point
 - \triangleright E.g. 3.123 x 10³

Floating Point Representation: Expressible Numbers

Representing the Mantissa

- The mantissa has to be in the range
 1 ≤ mantissa < base
- Therefore
 - If we use base 2, the digit before the point must be a 1
 - > So we don't have to worry about storing it
 - We get 24 bits of precision using 23 bits
 - > 24 bits of precision are equivalent to a little over 7 decimal digits:

$$\frac{24}{\log_2 10} \approx 7.2$$

Representing the Mantissa

- Suppose we want to represent π:
 3.1415926535897932384626433832795.....
- That means that we can only represent it as:

```
3.141592 (if we truncate)
```

3.141593 (if we round)

Representing the Mantissa

The IEEE standard restricts exponents to the range:

- The exponents –127 and +128 have special meanings:
 - If exponent = -127, the stored value is 0
 - If exponent = 128, the stored value is ∞

Floating Point Overflow

 Floating point representations can overflow, e.g.,

$$1.1111111 \times 2^{127} + 1.1111111 \times 2^{127}$$

$$11.111110 \times 2^{127}$$

$$1.11111110 \times 2^{128} \equiv \infty$$

Floating Point Underflow

 Floating point numbers can also get too small, e.g.,

$$10.010000 \times 2^{-126}$$

$$\div$$
 11.000000 \times 20

$$0.110000 \times 2^{-126}$$

$$1.1000000 \times 2^{-127} = ()$$

Floating Point Representation: Double Precision

IEEE-754 Double Precision Standard

- 64 bits:
 - 1 bit sign
 - 52 bit mantissa
 - 11 bit exponent
 - > Exponent range is -1022 to +1023
 - $> k = 2^{11-1}-1=1023$

Limitations

- Floating-point representations only approximate real numbers
- Using a greater number of bits in a representation can reduce errors but can never eliminate them
- Floating point errors
 - Overflow/underflow can cause programs to crash
 - > Can lead to erroneous results / hard to detect

Floating Point Addition

Five steps to add two floating point numbers:

- 1. Express the numbers with the same exponent (denormalize)
- 2. Add the mantissas
- 3. Adjust the mantissa to one digit/bit before the point (renormalize)
- 4. Round or truncate to required precision
- 5. Check for overflow/underflow

Thank You

