Predicting Recommendations of Comments on New York Times Articles

Statistics 412 Final Project Lucy Baden June 7, 2018

Overview

- Data
- Feature Analysis and Creation
 - □ Sentiment Analysis
 - □ Gender
 - □ Other
- Modeling
 - □ Gradient-Boosted Machines
 - □ Random Forests
 - □ Other
- Conclusion

Comment Recommendations

Data

- Two data files, train_comments and train_articles
- Challenges:
 - Many observations (665396)
 - Feature selection and creation
 - Recommendations is highly skewed

Comment Recommendations

Feature Creation Sentiment Analysis

- Comment body sentiment and word count
- Article snippet sentiment and word count
- sentimentr package

Comment Recommendations by Sentiment

Comment Recommendations by Snippet Sentiment

Feature Creation

Commenter and Author Gender

- Took commenter first name from userDisplayName
- Took author first name from byline
- gender package
 - Probability that the name is male/female
 - Social Security data
 - Non-name usernames were categorized as 'unknown'
- Significant difference in recommendations mean between gender categories

Feature Creation

Other Features

- Ŋ
- Keywords: topKeyword, topKeywordBin
 - Created a list of all keywords
 - Found which keyword for each article appears the most frequently on the list: topKeyword
 - Top five keyword categories: topKeywordBin
- Bins for categorical variables: typeOfMaterial, newDesk, and sectionName
- Approval time
- Default pic

Modeling

- Н
- Trained models on 75% of the data
- Validation set for model tuning
- Feature selection and parameter optimization
- Random grid search
- Best models re-fitted on all data and submitted to Kaggle

Modeling

Gradient Boosted Machine

- Best GBM had an MAE of 16.01 on the validation set, 16.9 on Kaggle test set
 - 200 trees, max depth = 13, learn rate = 0.05, min_rows = 3

Modeling Random Forest

- Ŋ
 - Best random forest had an MAE of 16.5 on the validation set
 - 50 trees, max depth = 20, min_rows = 1
 - In general, random forests did not perform as well as GBMs

approveDate updateDate

0.0

Variable Importance: DRF

Modeling Other Models

- - Neural networks
 - Slower, required reduced variable set, worse MAE
 - GLMs
 - H2O, caret, MASS, and base R
 - Significantly worse performance

Conclusion

- H2O gradient boosted machines performed best followed by random forests
- Best model MAE:
 - □ 16.0 on the validation set
 - □ 16.6 on the public Kaggle leaderboard
 - □ 16.9 on the private Kaggle leaderboard
- Sentiment analysis and gender features were relatively important in the models, while binned categorical variables were among the least important
- Best models were about 0.8 better than random numbers on the Kaggle test data

Questions

