Test: Single source shortest paths 2021

Due Dec 2, 2021 at 3:55pm **Points** 60 **Questions** 4

Available Dec 2, 2021 at 2:15pm - Dec 2, 2021 at 4pm about 2 hours

Time Limit 100 Minutes

Instructions

You have maximum 100 minutes for the test, but the deadline is 15:45.

Attention! If an answer consists of a sequence of items, the items must be separated with commas, with no blank. No sign is to be put at the ends of the sequence.

For example: 1,3,4,6 Another example: 3,b

This quiz was locked Dec 2, 2021 at 4pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	89 minutes	41.88 out of 60

(!) Correct answers are no longer available.

Score for this quiz: **41.88** out of 60 Submitted Dec 2, 2021 at 3:45pm This attempt took 89 minutes.

Partial Question 1

5.63 / 15 pts

Illustrate the Dijkstra algorithm on the graph below as you have seen it at the practice classes. Answer the questions.

Source vertex: a

Consider the result of the algorithm. Which is the greatest d value?
Which vertex has this d value?
d
How many vertices remain in Q after removing node c ?
Present the shortest path found by the algorithm from vertex a to node d .
The path (only the vertices separated with commas, including a and d):
The length of the path: 6
Present the final ${\bf d}$ and ${\bf \pi}$ values of the following vertices (for example: ${\bf 6,g}$). node ${\bf c}$:
node e : 6,a
Would the result change, if the weight of edge (b,f) were altered form 5 to 4 (yes/no)?
Answer 1:
7
Answer 2:
d
Answer 3:
3
Answer 4:
a,d
Answer 5:
6

Answer 6:	
3,b	
Answer 7:	
6,a	
Answer 8:	
yes	

Question 2 15 / 15 pts

Illustrate the *DAG shortest paths* algorithm on the graph below as you have seen it at the practice classes. Answer the questions.

Source vertex: a

The partial topological order of the vertices (which is found by the algorithm):

a,d,b,e,f

Present the shortest path found by the algorithm from vertex **a** to node **f**.

The path (only the vertices separated with commas, including **a** and **f**):

a,b,f

The length of the path:

4

How many vertices are not available from the source vertex?

1

Present the final **d** and π values of the following vertices (for example: **6**,**g**).

rest. Single source shortest patris 2021. 2021/22/111 -10/AA2O 1 - Algorithms and data structur
node d : 1,a
node e : 3,d
Would the final result change, if vertices d and b were processed in different
order [in topological sort] (yes / no)?
Answer 1:
a,d,b,e,f
Answer 2:
a,b,f
Answer 3:
4
Answer 4:
1
Answer 5:
1,a
Answer 6:
3,d
Answer 7:
no

Question 3 15 / 15 pts

Illustrate the *Queue-based Bellman-Ford* algorithm on the graph below as you have seen it at the practice classes. Answer the questions.

Source vertex: e

Present the content of the queue after the 1st, 2nd and 3rd iterations of the main loop.

At the end of the 1. iteration: c,f

At the end of the 2. iteration: f,a,d

f,a,d

At the end of the 3. iteration:

a,d,b,c

Present the shortest path found by the algorithm from vertex **e** to node **a**.

The path (only the vertices separated with commas, including **e** and **a**):

e,f,b,a

The length of the path: 5

5

How many times the algorithm expands the following vertices?

Node **f**:

Node **d**:

Present the final \mathbf{d} , \mathbf{e} and $\mathbf{\pi}$ values of the following vertices (in order \mathbf{d} , \mathbf{e} , $\mathbf{\pi}$ separated with commas).

Node **d**: 3,3,c

Node **c**: 2,2,f

If we changed the weight of edge (e,f) from 1 to 2, the $(d \text{ or } \pi)$ values of which vertices would change? Enumerate those nodes in alphabetical

a,b,c,d,f order. Answer 1: c,f Answer 2: f,a,d **Answer 3:** a,d,b,c Answer 4: e,f,b,a Answer 5: 5 Answer 6: 1 Answer 7: 2 **Answer 8:** 3,3,cAnswer 9: 2,2,f Answer 10: a,b,c,d,f

Partial Question 4

6.25 / 15 pts

Write the *Dijkstra* algorithm for *adjacency-matrix* graph representation.

At the following structogram, the nodes of the graph are indexed from **1** to **n**. Parameter **A** is the *adjacency-matrix*. The minimum priority queue is

represented with the first \mathbf{m} elements of array $\mathbf{Q}/\mathbf{1}$. It is an invariant property of the main loop, that among the first \mathbf{m} elements of array \mathbf{Q} , the \mathbf{m} th element has minimal \mathbf{d} -value, i.e. $\forall i \in [1..m) : d[Q[i]] \geqslant d[Q[m]]$. The first \mathbf{m} - $\mathbf{1}$ elements of \mathbf{Q} are unsorted.

Dijkstra(A/1 : $R_{\infty}[n,n]$; s :1 ..n; d/1 : $R_{\infty}[n]$; $\pi/1$: N[n]) Q/1 : N[n]i := 1 to n $d[i] := \infty; \quad \pi[i] := 0; \quad A$ swap(Q[s],Q[n]); m := n **D**; m := m - 1 v := 1 to nE F dv < d[v]SKIP d[v] := dvН G i := 1 to m - 1 J SKIP

Worst-case time complexity (MT): Select]
Best-case time complexity (mT): Select]
Answer 1:
d[s] := 0
Answer 2:
m > 1 és d[Q[m]] ≠ végtelen
Answer 3:
u := Q[m]
Answer 4:
A[u,v] =1
Answer 5:
dv := d[v] + A[u,v]
Answer 6:
$\pi[u] := v$
Answer 7:
SKIP
Answer 8:
d[Q[i]] > d[Q[m]]
Answer 9:
swap(Q[i],Q[n])
Answer 10:
Θ((n+m)*(log n))
Answer 11:
Θ(n)

Quiz Score: **41.88** out of 60