

NATURAL EXPONENTS

Why

We want to repeatedly multiply.

Defining Result

Proposition 1. For each natural number m, there exists a function $e_m : \omega \to \omega$ which satisfies

$$e_m(0) = 1$$
 and $e_m(n^+) = (e_m(n))^+ \cdot m$

for every natural number n.

Proof. The proof uses the recursion theorem (see Recursion Theorem).¹ \Box

Let m and n be natural numbers. The value $p_m(n)$ is the power of m with n. Or the nth power of m

Notation

We denote the *n*th power of m by m^n .

Properties

Here are some basic properties of powers.

Proposition 2. Let k, m, and n be natural numbers. Then

$$m^n m^k = m^{k+k}$$
.

 $^{^{1}}$ Future editions will give the entire account.

Proposition 3. Let k, m, and n be natural numbers. Then

$$(m^n)^k = m^{nk}.$$

