Zusammenfassung

Basiswissen

- Klassifikation von Merkmalen
- Wahrscheinlichkeit
- Zufallsvariable
- Diskrete Zufallsvariablen (insbes. Binomial)
- Stetige Zufallsvariablen
- Normalverteilung
- Erwartungswert, Varianz
- Gesetz der großen Zahlen, Zentraler Grenzwertsatz

Beschreibende Statistik

(Robuste) Lage- und Skalenschätzungen

```
PROC UNIVARIATE TRIMMED=Zahl
ROBUSTSCALE; RUN;
```

Boxplots

```
PROC BOXPLOT; PLOT Variable*Faktor /BOXSTYLE=SCHEMATIC; RUN;
```

Häufigkeitsdiagramme:

```
PATTERN1 ...;
PROC GCHART; VBAR Variable; RUN;
```

Scatterplots, Regressionsgerade:

```
SYMBOL1 ...;
PROC GPLOT; PLOT y*x=1 / REGEON; RUN;
```

Zusammenfassung Statistische Tests und Multivariate Verfahren

Testproblem: Nullhypothese - Alternative, z.B.

$$H_0: \mu = \mu_0 \qquad H_1: \mu \neq \mu_0$$

Entscheidung für H_0 /gegen H_0 : anhand einer

Teststatistik, z.B.

$$T = \frac{\overline{X} - \mu_0}{S} \cdot \sqrt{n}$$

Entscheidung

$$|t| > t_{krit} \Rightarrow H_0$$
 ablehnen, $P(|T| > t_{krit}) = \alpha$

 α : Fehler 1. Art, Signifikanzniveau (in der Regel vorgegeben)

Zusammenfassung Statistische Tests (2)

p-Wert (zweiseitg)

$$P(|T| > t)$$
, wobei t : Realisierung von T

p-Wert $< \alpha \Rightarrow H_0$ ablehnen

p-Wert $\geq \alpha \Rightarrow H_0$ nicht ablehnen

Gütefunktion

$$P(H_0 \text{ abgelehnt}|\mu \text{ richtig}) = \beta(\mu)$$

Fehler 2.Art: $1 - \beta(\mu)$

Wir betrachten Tests mit einer vergleichsweise hohen Gütefunktion.

Zusammenfassung Statistische Tests (3)

Einseitige Tests

Alternative geht in eine Richtung, (aus sachlichen Gründen kann es nur eine Richtung geben)

z.B.
$$\mu > \mu_0$$

Zweiseitige Tests

Alternative geht in alle Richtungen,

z.B.
$$\mu \neq \mu_0$$

Übersicht über Mittelwertvergleiche (1)

k	unverbunden	verbunden
1	Einstichproben t-Test, Vorzeichen-Wilcoxon-Test	
	PROC UNIVARIATE; o. PROC TTEST H0=Wert;	
	VAR Variable; RUN	
2	t-Test	t-Test
	PROC TTEST;	PROC TTEST;
	CLASS=Faktor;	PAIRED Var1*Var2;
	VAR Variable; RUN;	RUN;
	Wilcoxon-Test	Vorzeichen-Wilcoxon-Test
	PROC NPAR1WAY	diff=a-b;
	WILCOXON;	PROC UNIVARIATE;
	CLASS=Faktor;	
	VAR Variable;RUN;	VAR diff; RUN;

Übersicht über Mittelwertvergleiche (2)

einfache Varianzana.	einfaches Blockexperiment
= einfaktorielle VA	= zweifaktorielle VA
PROC ANOVA;	PROC GLM;
CLASS Faktor;	CLASS FaktorA FaktorB;
MODEL Y=Faktor;	MODEL Y=FaktorA FaktorB;
RUN;	RUN;
(PROC GLM)	
Kruskal-Wallis-Test	Friedman-Test
PROC NPAR1WAY	PROC FREQ;
Wilcoxon;	TABLES FaktorA*FaktorB*Y
CLASS Faktor;	/ CMH2 SCORES=RANK
	NOPRINT;
VAR var; RUN;	RUN;

Anpassungstest auf Normalverteilung:

PROC UNIVARIATE NORMAL; VAR var; RUN;

Shapiro-Wilk-Test oder Anderson-Darling-Test

Anpassungstest auf Verteilung mit begrenzter Anzahl von Ausprägungen

PROC FREQ; TABLES Var1 / CHISQ NOPRINT TESTP=(p1,p2,...pk); RUN;

 $(p_1,\ldots,p_k$ vorher ausrechnen)

Test auf Korrelation (metrisch oder ordinal skalierte Merkmale) PROC CORR PEARSON SPEARMAN KENDALL; RUN;

Test auf Unabhängigkeit (beliebig skalierte Merkmale):

PROC FREQ;

TABLES Var1*Var2 / CHISO NOPRINT; RUN;

Lineare Regression (1)

Parameterschätzung und Test

```
PROC REG;
MODEL Y=Var1 Var2 ... Varn / CLI CLM R;
TEST Var1=0 Var2=0;/*Zusaetzl.Hypothesen */
RUN;
```

Modellwahl

```
PROC REG;
MODEL Y=Varl Var2 ... Varn /
SELECTION=backward; RUN;
```

Lineare Regression (2)

Residualanalyse

```
PROC REG;

MODEL Y=Var1 Var2 ... Varn / R;

PLOT rstudent.*obs.; /*und/oder*/

PLOT residual.*y; residual.*predicted.;

RUN;
```

und evtl. Test auf Normalverteilung.

Sonstige Regressionsverfahren, nur Übersicht

Robuste Lineare Regression Nichtlineare Regression Nichtparametrische Regression Logistische Regression

Hierarchische Clusteranalyse:

```
PROC CLUSTER
  METHOD=Average
         (oder: CENTROID oder WARD)
  OUTTREE=baum; VAR Variablen; RUN;
PROC TREE DATA=baum
  NCLUSTERS = Anzahl der Cluster
              fuer GPLOT;
  OUT=Eingabedatei fuer Proc GPLOT;
RUN;
PROC GPLOT; PLOT VarA*VarB=cluster; RUN;
```

Konfidenzbereiche

für Parameter im Regressionsmodell

```
PROC REG;

MODEL Y=var1...varn/ CLI CLM;
RUN;
```

Grafische Darstellung von Konfidenzbereichen bei der Regression

```
SYMBOL1 I=RLCLI95;
PROC GPLOT; PLOT y*x=1; RUN;
```

Wichtige Sprachelemente

Normalverteilte Zufallsvariable

mit zufälligem Startwert: seed=-1; RANNOR(seed);

Gleichverteilte Zufallsvariable

mit zufälligem Startwert: seed=-1; RANUNI(seed);

Wahrscheinlichkeitsverteilungen:

Quantile

```
Standardnormal: PROBIT(u), u \in (0,1). Quantile('Verteilung',z,Parameterliste)
```

Übungen (1)

- 1. Folgen und Reihen, Potenzreihen
- 2. Differential- und Integralrechnung, Normalverteilung
- 3. Integrralrechnung, Rechnen mit Erwartungswerten
- 4. Berechnen von Erwartungswerten, Berechnen von robusten Lage- und Skalenschätzungen
- 5. Berechnen von Korrelationen
- Korrelationen, Einfluss von Ausreißern, Minima von Funktionen zweier Veränderlicher
- 7. Aufgabenblatt 7, Regressionsmodel, Berechnen von *t*-Teststatistiken
- 8. Aufgabenblatt 8, t-Test und Varianzanalyse

Übungen (2)

- Aufgabenblatt 9, Produkt von Matrizen, Eigenwerte, Eigenvektoren
- 10. Aufgabenblatt 10, Lineare Algebra, Matrizenrechnung, χ^2 -Verteilung
- 11. Aufgabenblatt 11
- 12. Aufgabenblatt 12

Übungsaufgaben

- 7,8,9 Wahrscheinlichkeitsverteilungen
- 10,11 Statist. Maßzahlen, Boxplots
 - 11 Histogramme, Dichteschätzung
- 11h-14,29,32,33,34 Korrelation, Unabhängigkeit, Lineare Regression
- 15-21,23-25 Lagetests, Anpassungstests
- 19,22 Varianzanalyse
- 26-28,30-31 Nichtparametrische Tests
- 35,36 Zufallszahlen
 - 36 Clusteranalyse