Discrete Geometry I Summer term 2020

Viet Duc Nguyen (395220)

Tutor: Ole or Holger Homework group 9

Exercise sheet 2

Exercise 1 6 Points

In this exercise we examine the assumptions of some theorem that we saw in the lectures.

- a) Let $n \in \mathbb{N}$. Prove that there exists a finite family of convex sets $A_1, \ldots, A_m \subset \mathbb{R}^n$, $m \geq n$, such that any intersection of n distinct A_i 's is non-empty while $\bigcap_{i=1}^m A_i = \emptyset$ holds.
- b) Give an example of a countably infinite familiy of convex sets $\{A_i\}$ in some \mathbb{R}^d , d > 2, such that every d+1 of the A_i share a common point while $\bigcap_{i\in\mathbb{N}}A_i=\emptyset$ holds.

our solution:

(a) Let $n \in \mathbb{N}$ be arbitrary, and let e_i denote the *i*-th unit vector in \mathbb{R}^n . Consider the hyperplanes

$$A_i = \{x \in \mathbb{R}^n : \langle x, e_i \rangle = 0\}, \quad i = 1, ..., n$$

 $A_{n+1} = \{x \in \mathbb{R}^n : \langle x, \sum_{i=1}^n e_i \rangle = 42\}$

• It holds $\bigcap_{i=1}^{n+1} A_i = \emptyset$: we see that

$$\bigcap_{i=1}^{n+1} A_i = \left(\bigcap_{i=1}^n A_i\right) \cap A_{n+1} = \{0\} \cap A_{n+1} = \emptyset.$$

- A_i is convex for all i = 1, ..., n + 1, since affine linear spaces are convex and A_i is the solution space of a linear equation, which is an affine linear space.
- $\bigcap_{j=1}^n A_{i_j} \neq \emptyset$: For any $A_{i_1}, ..., A_{i_n}$, each A_{i_j} represents a hyperplane, whose normal vector is not colinear to the other normal vectors. Therefore, $\bigcap_{j=1}^n A_{i_j}$ defines a system of n linear equations with n variables that has exactly one solution, for the normal vectors are linear independent. Thus, $\bigcap_{j=1}^n A_{i_j}$ is nonempty.
- (b) Let $d \in \mathbb{N}_{\geq 3}$. Consider the sets $A_i = \{(x_1, ..., x_d) \in \mathbb{R}^d : x_2, ..., x_d \geq 0, x_1 \geq i\}$. Then, $(A_i)_{i \in \mathbb{N}}$ is a family of convex sets, and $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$. Furthermore, any sets $A_{i_1}, ..., A_{i_{d+1}}$ share a common point since $(i, 0, ..., 0) \in \bigcap_{j=1, ..., d+1} A_{i_j}$ for $i = \max_{j=1, ..., d+1} \{i_j\}$.

grading: /6

Exercise 2 2 Points

Recall the function space $\mathcal{C}(\mathbb{R}^d)$ and show that the (ring) multiplication of the underlying \mathbb{R} -algebra structure is well-defined. Is $\mathcal{C}(\mathbb{R}^d)$ a finite dimensional real vector space?

our solution:

• Closed under multiplication: Let $f, g \in \mathcal{C}(\mathbb{R}^d)$. Then, $f = \sum_{i=1}^n \lambda_i[A_i]$ and $g = \sum_{i=1}^m \mu_i[B_i]$, where A_i and B_i are closed convex sets in \mathbb{R}^d . We would like to prove that $f \cdot g$ is a linear combination of indicator functions of closed convex sets. In that case, $f \cdot g \in \mathcal{C}(\mathbb{R}^d)$. So,

$$f \cdot g = \left(\sum_{i=1}^{n} \lambda_i[A_i]\right) \cdot \left(\sum_{i=1}^{m} \mu_i[B_i]\right) = \sum_{i=1}^{n} \left(\lambda_i[A_i] \cdot \sum_{j=1}^{m} \mu_j[B_j]\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (\lambda_i[A_i]\mu_j[B_j])$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i \mu_j[A_i \cap B_j].$$

For each i, j the set $A_i \cap B_j$ is closed and convex. Thus, $f \cdot g$ is indeed a linear combination of indicator functions of closed convex sets.

• $\mathcal{C}(\mathbb{R}^d)$ is not a finite dimensional real vector space. Assume it would be. In that case, there exists a basis $([A_1], ..., [A_n])$ of $\mathcal{C}(\mathbb{R}^d)$. Furthermore, we can assume that each A_i and A_j are pairwise disjoint for i, j = 1, ..., n. If there would be A_i and A_j such that $A_i \cap A_j \neq \emptyset$, then define the following sets:

$$B_1 = A_i \cap A_i$$
, $B_2 = A_i \setminus A_i$, $B_3 = A_i \setminus A_i$.

Note that

$$\operatorname{span}\{[A_1], ..., [A_n]\} \subset \operatorname{span}\{[A_1], ..., [A_{i-1}], B_1, B_2, B_3, [A_{i+1}], ..., [A_n]\}.$$

Therefore, we can assume that A_i and A_j are indeed disjoint. Next, we show that there exists a convex and closed set B that cannot be a linear combination of $[A_1], ..., [A_n]$. First, there is a set A_i that contains more than one point (otherwise, we would have an infinite basis $[A_1], [A_2], ...$). Let $B \subset A_i$ with $A_i \setminus B \neq \emptyset$. Now, we can easily see that $[B] \notin \text{span}\{[A_1], ..., [A_n]\}$, because [B] can only be combined from $\{[A_i]\}$ but B is a true subset of A_i . Thus, $\mathcal{C}(\mathbb{R}^d)$ is not a finite dimensional real vector space.

grading: $\boxed{ /2 }$

Abbildung 1: Example case for \mathbb{R}^2 . We can see that the set B cannot be approximated by the sets A_1, A_2 and A_3 .

Exercise 3 4 Points

Let $I_n : \{(x_1, ..., x_n) \in \mathbb{R}^n : 0 < x_1, ..., x_n < 1\}$. Determine $\chi(I_2)$ and $\chi(I_3)$.

our solution:

1. I_2 is an open square in \mathbb{R}^2 , i.e. a square without its edges.

Abbildung 2: The set I_2 , the edges of the unit square, the four vertices and $Q = [0, 1]^2$.

First,

$$Q = [0,1]^2 = I_2 \cup \bigcup_{i=1}^4 v_i \cup \bigcup_{i=1}^4 b_i,$$

where $v_i \in \{(0,0), (0,1), (1,0), (1,1)\}$ are the four vertices of the unit square, and $B_i \in \{\{0\} \times]0, 1[, \{1\} \times]0, 1[,]0, 1[\times \{0\},]0, 1[\times \{1\}\}]$ are the four edges of the unit square. Now, it holds $\chi(\{v_i\}) = 1$ since $\{v_i\}$ is closed and convex. Additionally,

$$1 = \chi(\{0\} \times [0,1]) = \chi(B_1) + \chi(\{(0,0)\}) + \chi(\{(0,1)\}) = \chi(B_1) + 1 + 1$$

and from this follows $\chi(B_1) = -1$. The same for B_2, B_3 and B_4 . So,

$$1 = \chi(Q) = \chi(I_2) + \underbrace{\sum_{i=1}^{4} \chi(\{v_i\})}_{=4} + \underbrace{\sum_{i=1}^{4} \chi(B_i)}_{=-4}$$

Therfore, $\chi(I_2) = 1$.

2. Let's compute $\chi(I_3)$, where I_3 is the open unit cube in \mathbb{R}^3 . The unit cube $Q = [0,1]^3$ has 8 vertices, and 12 edges. Each vertex has an Euler characteristic of 1 and each edge has an Euler characteristic of -1. So, $1 = \chi(Q) = \chi(I_3) + 8 - 12 \implies \chi(I_3) =$

grading:

4 Points

/4

Exercise 4 Let $A_1, \ldots, A_m \subset \mathbb{R}^d$ be closed convex sets with $\bigcap_{i=1}^m A_i \neq \emptyset$. Prove that $\chi(\bigcup_{i=1}^m A_i) = 1$.

Let $A_1, ..., A_n \subset \mathbb{R}^d$ be closed and convex such that $\bigcap_{i=1}^n A_i \neq \emptyset$. Consider n=2. Then, $\chi(A_1 \cup A_2) = \chi(A_1) + \chi(A_2) - \chi(A_1 \cap A_2) = 1 + 1 - 1 = 1$. Note that $A_1 \cap A_2$ is convex and closed as well as not empty.

 $n \rightsquigarrow n+1$. Assume $\chi(A_1 \cup ... \cup A_n) = 1$ for some $n \in \mathbb{N}$ if A_i are closed and convex such that $A_1 \cap ... \cap A_n \neq \emptyset$. Then,

$$\chi(A_1 \cup \dots \cup A_n \cup A_{n+1}) = \chi(\left(\bigcup_{i=1}^n A_i\right) \cup A_{n+1})$$

$$= \chi\left(\bigcup_{i=1}^n A_i\right) + \chi(A_{n+1}) - \chi(\bigcup_{i=1}^n A_i \cap A_{n+1})$$

$$= 1 + 1 - \chi(\bigcup_{i=1}^n A_i \cap A_{n+1})$$

Consider the set $B_i = A_i \cap A_{n+1}$. It holds $B_1 \cap ... \cap B_n \neq \emptyset$ and B_i is convex and closed. Therefore, $\chi(B_1 \cup ... \cup B_n) = 1$. Thus,

$$\chi(A_1 \cup \dots \cup A_n \cup A_{n+1}) = 1 + 1 - \chi(\bigcup_{i=1}^n A_i \cap A_{n+1}) = 1 + 1 - 1 = 1.$$

/4grading:

total grade:

/16