Recall: If A is an $m \times n$ matrix then

$$A \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}$$
yester in \(\mathbb{R}^n\) vector in \(\mathbb{R}^m\)

Example:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} + (-1)\begin{bmatrix} 2 \\ 5 \end{bmatrix} + 1 \cdot \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \end{bmatrix}$$
vector in \mathbb{R}^2

Definition

If A is an $m \times n$ matrix then the function

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^m$$

given by $T_A(\mathbf{v}) = A\mathbf{v}$ is called the matrix transformation associated to A.

Geometric interpretation of matrix transformations $\mathbb{R}^2 \to \mathbb{R}^2$

$$T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $\vee \longmapsto A \vee$

Null spaces, column spaces and matrix transformations

Example.

$$A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \qquad \mathsf{T}_{\mathsf{A}} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

Example.

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \qquad \mathsf{T}_{\mathsf{A}}, \; \mathsf{R}^2 \longrightarrow \mathsf{R}^2$$

(Possible values of TA) = Col(A)

= span ([1], [-1])

Recall: If an mxn metrix A has a pivot position in every now then $Col(A) = \mathbb{R}^m$

In our case:

$$[0]$$
 - $[0]$ red. $[0]$

Upshot: Any vector in R2 is a value of TA

Mul(A): [1 -1 0] row red. [1 0 0] {x1=0 | x2=0 so; Nul (A)= {[0]} This gives: if v + u then TA (v) + TA (w).

Recall:

A function $F: \mathbb{R}^n \to \mathbb{R}^m$ is:

ullet onto if for each $\mathbf{b} \in \mathbb{R}^m$ there is $\mathbf{v} \in \mathbb{R}^m$ such that $F(\mathbf{v}) = \mathbf{b}$;

not onto

• one-to-one if for any v_1, v_2 such that $v_1 \neq v_2$ we have $F(v_2) \neq F(v_2)$.

Proposition

Let A be an $m \times n$ matrix. The following conditions are equivalent:

- 1) The matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is onto.
- 2) $Col(A) = \mathbb{R}^m$.
- 3) The matrix A has a pivot position in every row.

Proposition

Let A be an $m \times n$ matrix. The following conditions are equivalent:

- 1) The matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one.
- 2) $Nul(A) = \{0\}.$
- 3) The matrix A has a pivot position in every column.

Example. For the following 3×4 matrix A check if the matrix transformation $T_A \colon \mathbb{R}^4 \to R^3$ is onto and if it is one-to-one.

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0$$

Example. For the following 3×3 matrix A check if the matrix transformation $T_A \colon \mathbb{R}^3 \to R^3$ is onto and if it is one-to-one.

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 5 \end{array} \right]$$

pivot position in every now
$$\Rightarrow$$
 $Col(A) = \mathbb{R}^3$
 50 : T_A is onto

So: T_A is one-to-one.

Proposition

Let A be an $m \times n$ matrix. If the matrix transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ is both onto and one-to-one then we must have m = n (i.e. A must be a square matrix).