

Serial Communications Interfaces

Dpt. Enginyeria de Sistemes, Automàtica i Informàtica Industrial

Communication interfaces types

Parallel

(generally point to point PTP only)

 D_2

Serial communication basic concepts

Simple serial interface

Serial <u>asynchronous</u> communication chronogram (8 bits)

Data Transmission Errors

- 1. Framing error
 - May occur due to clock synchronization problem
 - Can be detected by the missing stop bit
- 2. Receiver overrun
 - May occur when the CPU did not read the received data for a while
- 3. Parity errors
 - Occur due to odd number of bits change values

Serial Comms, Fundamentals

Key element

Function to perform: PARALLEL to SERIAL converter

Key component: Shift Register

Output Port (Transmitter)
unidirectional !!!

The **information unit** is the <u>character</u>, no the byte.

18F45K22 USART Tx Block

FIGURE 16-1: EUSART TRANSMIT BLOCK DIAGRAM

Shift Register (Parallel Input/Serial Output)

FIGURE 20-4: ASYNCHRONOUS TRANSMISSION, TXCKP = 0 (TX NOT INVERTED)

18F45K22 USART Rx Block

Shift Register (Serial Input/Parallel Output)

Reception starts upon detection of a START bit

- Transmission integrity is checked testing STOP bit level
- Received data in Shift register is stored in FIFO (One single address, RCREG)
- If three characters are received in a row, FIFO overflows Overrun error
- RCIF is set HIGH until FIFO is empty

The PIC18 USART Serial Communication Interface

USART-Related Pins

- RC6/TX1/CK1 and RC7/RX1/DT1 (USART1)
- RD6/TX2/CK2 and RD7/RX2/DT2 (USART2)

USART-Related Registers

- Transmit status register (TXSTA) Transmit register (TXREG)
- Receive status register (RCSTA) Receive register (RCREG)
- Baud rate Control register (BAUDCON)
- Baud rate generator register (SPBRG)

The PIC18 USART Transmit and receive control registers

2. RCSTAx - Receive Status and Control Register

TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	55
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	55
SPBRGH	EUSART B	EUSART Baud Rate Generator Register High Byte					55		
SPBRG	EUSART B	EUSART Baud Rate Generator Register Low Byte						55	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

SPBRG register

The rate selection is made by the BRGH bit in TXSTA register:

1 = High speed

0 = Low speed

TABLE 20-1: BAUD RATE FORMULAS

Co	Configuration Bits		BRG/EUSART Mode	Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Daud Rate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-bit/Asynchronous	Foco/[16 (p + 1)]		
0	1	0	16-bit/Asynchronous	Fosc/[16 (n + 1)]		
0	1	1	16-bit/Asynchronous			
1	0	×	8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	×	16-bit/Synchronous			

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD RATE	Fosc	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_	_	_	_	_	_		_	_	_	_	_	
1.2	_	_	_	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	_	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	_	_	

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD RATE	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_	_	_	_	_	_	_	_	_	_	_	_
1.2	_	_	_	_	_	_	_	_	_	_	_	-
2.4	_	_	_	_	_	_	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	_	_

Serial Comms, Recommended Initialization

Ex. Write a subroutine to configure the USART1 transmitter to transmit data in asynchronous mode using 8-bit data format, disable interrupt, set baud rate to 9600. Assume the frequency of the crystal oscillator is 16 MHz.

Ex. Write a subroutine to output a character to USART1 using the polling method.

Solution:

- Data can be sent to the transmitter only when it is idle.

```
void putc_usart1 (char xc);
{
    while (! TXSTA1.TRMT);
    TXREG1 = xc;
}
```

Ex. Write a subroutine to output a string (in program memory) pointed to by TBLPTR and terminated by a NULL character from USART1.

Solution:

```
void puts_usart1 (unsigned rom char *cptr)
{
    while(*cptr)
        putc_usart1 (*cptr++);
}
```

Ex. Write an instruction sequence to configure the USART1 to receive data in asynchronous mode using 8-bit data format, disable interrupt, set baud rate to 9600. Assume that the frequency of the crystal oscillator is 16 MHz.

Solution:

```
RCSTA1 = 0x90;
SPBRG = 103;
TRISC |= 0xC0; /* configure RC7/RX1 & RC6/TX1 pin */
```

Ex. Write a subroutine to read a character from USART1 and return the character in WREG using the polling method. Ignore any errors.

Solution: A new character is received if the RCIF flag of the PIR1 register is set to 1.

```
unsigned char getc_usart1 (void)
{
    while (! PIR1bits.RCIF);
    return RCREG1;  // RCIF clears automatically
}
```

Flow Control of USART in Asynchronous Mode

- In some circumstances, the software cannot read the received data and needs to inform the transmitter to stop.
- In some other situation, the transmitter may need to be told to suspend transmission because the receiver is too busy to read data.
- Both situations are handled by flow control.
- There are two flow control methods: hardware and XON/XOFF.
- XON and XOFF are two standard ASCII characters.
- The ASCII code for XON and XOFF are 0x11 and 0x13, respectively.
- Whenever a microcontroller cannot handle the incoming data, it sends the XOFF to the transmitter.
- When the microcontroller can handle incoming characters, it sends out XON character.

Asynchronous serial interface RS-232

The EIA232 Standard

- Developed in 1960, **RS-232** (Recommended Standard 232) is a standard for <u>serial</u> binary <u>single-ended data</u> and <u>control</u> signals connecting between a *DTE* (<u>Data Terminal Equipment</u>) and a *DCE* (<u>Data Circuit-terminating Equipment</u>) or modem).
- The standard requires the transmitter to use +12 V and −12 V, but requires the receiver to distinguish voltages as low as +3 V and -3 V
- Common asynchronous speeds: 200, 2.400, 4.800, 9.600, 19.200, 57.600, 115.200 bauds (for a binary two-level signal transmissions, one baud is equal to one bit per second).
- A male DB-9 connector for a serial port

The UART is used to communicate directly two devices **or** a device with a modem.

Device - Modem

RS232 standard

Electrical Level: RS232 Signals

RS232 standard

Logical Level: Signals

Nombre	Dirección DTE ↔ DCE	Función	Comentario	
TD	\Rightarrow	Transmitted data	Par de Datos	
RD	←	Received Data	Par de Datos	
RTS	⇒	Request to Send	Par de Handshake	
CTS	←	Clear to Send	Par de Halldsflake	
DTR	⇒	Data Terminal Ready	Par de Handshake	
DSR	←	Data Set Ready	rai de Halldshake	
DCD	← Data Carrier Detect		Habilitan DTE	
RI	←	Ring Indicator	nabilitali DTE	

Null modem connection

Without Handshaking

Connector 1	Connector 2	Function
2	3	Rx ← Tx
3	2	Tx → Rx
5	5	Signal Ground

Null modem connection

Connector 1	Connector 2	Function			
2	3	Rx ←	_	Tx	
3	2	Тх -	→	Rx	
5	5	Signal ground			
1 + 4 + 6	-	DTR	→	CD + DSR	
-	1 + 4 + 6	DTR	→	CD + DSR	
7 + 8	-	RTS	→	CTS	
-	7 + 8	RTS	→	CTS	

Null modem connection

With full Handshaking

Connector 1	Connector 2	Func	tion	
2	3	Rx	←	Tx
3	2	Tx	→	Rx
4	6	DTR	→	DSR
5	5	Signa	ıl gro	und
6	4	DSR	←	DTR
7	8	RTS	→	CTS
8	7	CTS	←	RTS

Noise immunity

Single ended and Differential transmission

Differential transmission electrical interfaces (RS-422)

Differential transmission electrical interfaces (RS-485)

Synchronous Serial Peripheral Interface: SPI

The **Serial Peripheral Interface Bus** or **SPI** bus is a <u>synchronous</u> <u>serial data</u> link standard that operates in <u>full duplex</u> mode. Devices communicate in master/slave mode where the master device initiates the data frame. Multiple slave devices are allowed with individual slave select (chip select) lines.

The PIC18 MSSP Module

- Has two modes of operation:
 - 1. Serial peripheral interface (SPI)
 - 2. Inter-integrated circuit (I²C)
- Can be used to interface with serial EEPROM, shift registers, display drivers, A/D converters, D/A converters, digital temperature sensors, time-of-day chips, etc.
- Devices are divided into the master and slaves in a system that uses either the SPI or I²C protocol to exchange data.
- The SPI and I²C module share the same signal pins and cannot to be active at the same time.
- Three pins are used by this module:
 - 1. Serial data out (SDO)—RC5/SDO
 - 2. Serial data in (SDI)—RC4/SDI/SDA
 - 3. Serial clock (SCK)—RC3/SCK/SCL

A fourth signal pin, RA5/SS (Slave Select), may be used in slave mode

Note: Only those pin functions relevant to SPI operation are shown here.

The SPI Mode

- Eight bits of data are exchanged synchronously in one operation.
- In slave mode, all four signals are used.
- In master mode, the SS pin is not needed.
- Registers for SPI mode operation:
 - 1. MSSP control register 1 (SSPCON1)
 - 2. MSSP status register (SSPSTAT)
 - 3. Serial receive/transmit buffer (SSPBUF)
 - 4. MSSP shift register (SSPSR) -not directly accessible by the user-
- A write to SSPBUF will also write into the SSPSR register

REGISTER 19-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE(1)	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

REGISTER 19-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

0010 = SPI Master mode, clock = Fosc/84⁽³⁾ 0001 = SPI Master mode, clock = Fosc/16⁽³⁾ 0000 = SPI Master mode, clock = Fosc/4⁽³⁾

R/W-0	R/W-0	R/W-0	RW-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit (

bit 7	SMP: Sample bit
	SPI Master mode:
	1 = Input data sampled at end of data output time
	0 = Input data sampled at middle of data output time
	SPI Slave mode: SMP must be cleared when SPI is used in Slave mode.
hit o	CKE: SPI Clock Select bit ⁽¹⁾
bit 6	
	1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state
bit 5	D/A: Data/Address bit
DR 5	Used in I ² C mode only.
bit 4	P: Stop bit
	Used in I ² C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.
bit 3	S: Start bit
	Used in I ² C mode only.
bit 2	R/W: Read/Write Information bit
	Used in I ² C mode only.
bit 1	UA: Update Address bit
	Used in I ² C mode only.
bit 0	BF: Buffer Full Status bit (Receive mode only)
	1 = Receive complete, SSPBUF is full
	0 = Receive not complete, SSPBUF is empty
Note 1:	Polarity of clock state is set by the CKP bit (SSPCON1<4>).

bit 7 WCOL: Write Collision Detect bit (Transmit mode only) 1 = The SSP8UF register is written while it is still transmitting the previous word (must be cleared in software) SSPOV: Receive Overflow Indicator bit(1) bit 6 SPI Slave mode: 1 = A new byte is received white the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software). 0 = No overflow bit 5 SSPEN: Master Synchronous Serial Port Enable bit 1 = Enables serial port and configures SCK, SDO, SDI and SS as serial port pins(2) 0 = Disables serial port and configures these pins as I/O port pins⁽²⁾ bit 4 CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level bit 3-0 SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled. SS can be used as I/O pin(3) 0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled(3) 0011 = SPI Master mode, clock = TMR2 output/2(3,4)

Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

SPI Operation

- A simplified circuit connection between a SPI master and a slave is shown (conceptually is a 16 bits shift register divided in two parts)

Figure 10.3 Connection between an SPI master and an SPI slave

- The SDO pin of the master is connected to the SDI pin of the slave.
- The SDI pin of the master is connected to the SDO pin of the slave.
- To send data to the slave, the master writes data to the SSPBUF register, after which, eight clock pulses are triggered and data is shifted to the slave (SSPIF and BF bits are set).
- To read data from the slave, the master makes (possibly a dummy)
 write into the SSPBUF register to trigger eight clock pulses to shift
 in data, following a SSPBUF read.

Data Shift Rate

- In master mode, the SPI clock rate is programmable to one of the following:

- 1. $F_{OSC}/4$ (or F_{CY})
- 2. $F_{OSC}/16$ (or $F_{CY}/4$)
- 3. $F_{OSC}/64$ (or $F_{CY}/16$)
- 4. Timer2 output/2
- Data rate is configured by the lowest four bits of the SSPCON1 register.
- The highest data rate is 10 Mbps for 40 MHz crystal oscillator

Clock Edge for Shifting Data

- When the SPI module is not transmitting data, it is referred to as **idle**.
- One can set the SCK signal to be idle low or idle high.
- Setting the CKP bit of the SSPCON1 register to 1, makes the SCK signal idle high.
- The **CKE** bit of the SSPSTAT register and the **CKP** bit of the SSPCON1 register together select the edge of the SCK signal for shifting the data:

Table 10.0 SCK idle state and data shifting edge selection

			0 0
CKP	CKE	SCK idle state	SCK edge for data transmiss:
0	0	low	rising

CKP	CKE	SCK idle state	SCK edge for data transmission		
0	0	low	rising		
0	1	low	falling		
1	0	high high	falling		
1	1	high	rising		

- One can choose to use the middle or the end of a bit time to sample the incoming data.
- When the **SMP** bit of the SSPSTAT register is 1, incoming data is sampled at the end of the bit time. Otherwise, incoming data is sampled at the middle of a bit time.

Figure 10.4a SPI Mode waveform (master mode) (redraw with permission of Microchip)

Figure 10.4b SPI clock format (slave mode with CKE = 0) (redraw with permission of Microchip)

Figure 10.4c SPI clock format (slave mode with CKE = 1) (redraw with permission of Microchip)

SPI Circuit Connection

- There are many possibilities for connecting an SPI master to multiple SPI slaves.
- Two connection methods are shown in the next slides
- The method shown in the next slide requires the use of port pins to select one of the SPI slave to perform the data transfer.
- The method shown in second slide concatenate all the slaves into a single ring. This last method does not require the use of port pins to select SPI slave device.!

Note: RX is an unused I/O port
MOSI stands for master out, slave in
MISO stands for master in, slave out

Figure 10.5 Single-master and multiple-slave device connection (method 1)

Figure 10.6 Single-master and multiple-slave device connection (method 2)

Ex. The next figure shows PIC18 MCU and TC72 chip for digital temperature reading. Write a C program to read the temperature every 200 ms. Convert the temperature value into a string so that it can be displayed in an appropriate output device. A pointer to the buffer to hold the string will be passed to this function. The crystal oscillator of the PIC18 is assumed to be 16 MHz.

See TC72 datasheet at http://ww1.microchip.com/downloads/en/devicedoc/21743a.pdf

Figure 10.18 Circuit connection between the TC72 and PIC18 MCU on the SSE8720 demo board

TC72 datasheet

Block Diagram

Typical Applications

- · Personal Computers and Servers
- · Hard Disk Drives and Other PC Peripherals
- · Entertainment Systems
- · Office Equipment
- · Datacom Equipment
- · Mobile Phones

te: The ADC converter is scaled from -128°C to -127°C, but the operating range of the TC72 is specified from -55°C to +125°C.

TC72 datasheet.

(cont.)

3.1 Temperature Data Format

Temperature data is represented by a 10-bit two's complement word with a resolution of 0.25°C per bit. The temperature data is stored in the Temperature registers in a two's complement format. The ADC converter is scaled from -128°C to +127°C, but the operating range of the TC72 is specified from -55°C to +125°C.

Example:

Temperature = 41.5°C

MSB Temperature Register= 00101001b

 $= 2^5 + 2^3 + 2^0$ = 32 + 8 + 1 = 41

LSB Temperature Register = 10000000b = 2⁻¹ = 0.5

TABLE 3-1: TC72 TEMPERATURE OUTPUT DATA

Temperature	Binary MSB / LSB	Hex
+125°C	0111 1101/0000 0000	7D00
+25°C	0001 1001/0000 0000	1900
+0.5°C	0000 0000/1000 0000	0800
+0.25°C	0000 0000/0100 0000	0040
0°C	0000 0000/0000 0000	0000
-0.25°C	1111 1111/1100 0000	FFC0
-25°C	1110 0111/0000 0000	E700
-55°C	1100 1001/0000 0000	C900

TABLE 3-2: TEMPERATURE REGISTER

D7	D6	D5	D4	D3	D2	D1	D0	Address/ Register
Sign	2 ⁶	2 ⁵	24	2 ³	2 ³	21	20	02H Temp. MSB
2-1	2-2	0	0	0	0	0	0	01H Temp. LSB

TC72 datasheet (cont.)

4.0 INTERNAL REGISTER

The TC72 registers are listed below.

STRUCTURE

TABLE 4-1: REGISTERS FOR TC72

Register	▲ Read Address	Write Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR
Control	00hex	80hex	0	0	0	One-Shot	0	1	0	Shutdown	05hex
						(OS)				(SHDN)	
LSB Temperature	01hex	N/A	T1	T0	0	0	0	0	0	0	00hex
MSB Temperature	02hex	N/A	Т9	T8	T7	T6	T5	T4	Т3	T2	00hex
Manufacturer ID	03hex	N/A	0	1	0	1	0	1	0	0	54hex

DS1306 Alarm Real Time Clock

Hex ad	dress					5: 0				_		
Read	Write	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 3 Bit 2 Bit 1		Bit 0	Range		
0x00	0x80	0		10 Sec			S		00-59			
0x01	0x81	0		10 Min			Mi	00-59				
0x02	0x82	0	12	P A	10-HR	Hours			Hours			
2.22			24	10	_	_				00-23		
0x03	0x83	0	0	0	0	0		Day		01-07		
0x04	0x84	0	0	10-0	Date		Da	te		1-31		
0x05	0x85	0	0	10-M	onth		Mor	nth		01-12		
0x06	0x86		10-Y	'ear			Ye	Year 00-99				
0x07	0x87	М	10-5	Sec Alarm	0	Sec Alarm 0			Sec Alarm 0 00-			00-59
0x08	0x88	М	10-N	fin Alarm	0		Min Alarm 0 00-5		00-59			
0x09	0x89	М	12	P A	10-HR	Hour Alarm 0				01-12 + P/A		
			24	10					00-23			
0x0A	0x8A	М	0	0	0	0	Da	y Alarm 0		01-07		
0x0B	0x8B	М	10-8	10-Sec Alarm 1			Sec Alarm 1			00-59		
0x0C	0x8C	М	10-N	fin Alarm	1		Min Ala	rm 1		00-59		
0x0D	0x8D	М	12	P A	10-HR		Hour Ala	ırm 1		01-12 + P/A		
			24	10					00-23			
0x0E	0x8E	М	0	0	0	0	Da	y Alarm 1		01-07		
					-	_						
0x0F	0x8F				Control	Register				_		
0x10	0x90				Status	tus Register				_		
0x11	0x91			Т	rickle Cha	e Charger Register				_		
0x12-1F	0x92-9F		Reserve						_			
0x20-7F	0xA0-FF				96-Bytes	User RAM	И			_		

Note. Range for alarm registers does not include mask 'm' bits

Figure 10.20 ■ RTC registers and address map

Synchronous serial interface I2C

12C, I²C Inter-Integrated Circuit Bus

Serial synchronous half-duplex bus (1992)

Only two signal lines SDA and SCL plus supply voltage and ground are required to be connected.

Common I²C bus speeds are the 400kbit/s fast mode, the 100 kbit/s standard mode and the 10 kbit/s low-speed mode, but arbitrarily low clock frequencies are also allowed.

I²C Inter-Integrated Circuit Bus

Timing and bit acknowledgment.

I²C Inter-Integrated Circuit Bus

Data transfer is initiated with the START condition (**S**) when SDA is pulled low while SCL stays high. Then, SDA sets the transferred bit while SCL is low and the data is sampled (received) when SCL rises. When the transfer is complete, a STOP bit (**P**) is sent by releasing the data line to allow it to be pulled up while SCL is constantly high.

Start and Stop signaling

I²C Inter-Integrated Circuit Bus

I2C possible applications: car navigation control

I²C (MSSP) Module in the PIC18F

FIGURE 19-7: MSSP BLOCK DIAGRAM (I²C™ MODE)

Registers in the MSSP in I²C mode:

- SSPCON1
- SSPCON2
- SSPSTAT
- SSPBUF
- SSPADD (slave add. or Master Clk rate)

I²C Example

Using a microchip TC74 temperature sensor

See TC74 datasheet at https://ww1.microchip.com/downloads/aemDocuments/documents/API D/ProductDocuments/DataSheets/21462D.pdf

TC74 datasheet

3.1.2 SMBUS/I²C SLAVE ADDRESS

The TC74 is internally programmed to have a default SMBus/I²C address value of 1001 101b. Seven other addresses are available by custom order (contact Microchip Technology Inc.

TC74 datasheet

I²C Example

Write Byte Format

S	Address	WR	ACK	Command	ACK	Data	ACK	Р
	7 Bits			8 Bits		8 Bits		

Slave Address

Command Byte: selects which register you are writing to.

Data Byte: data goes into the register set by the command byte.

Read Byte Format

S	Address	WR	ACK	Command	ACK	Ø	Address	RD	ACK	Data	NACK	Р
	7 Bits			8 Bits			7 Bits			8 Bits		

Slave Address

Command Byte: selects which register you are reading from.

Slave Address: repeated due to change in dataflow direction. Data Byte: reads from the register set by the command byte.

Receive Byte Format

S	Address	RD	ACK	Data	NACK	Р
	7 Bits			8 Bits		

S = START Condition
P = STOP Condition

Shaded = Slave Transmission

Data Byte: reads data from the register commanded by the last Read Byte or Write

Byte transmission.

TC74 datasheet

I²C Example

TABLE 4-1: COMMAND BYTE DESCRIPTION

(SMBUS/I²C READ_BYTE AND

WRITE_BYTE)

Command	Code	Function
RTR	00h	Read Temperature (TEMP)
RWCR	01h	Read/Write Configuration (CONFIG)

TABLE 4-2: CONFIGURATION REGISTER (CONFIG); 8 BITS, READ/WRITE)

Bit	POR	Function	Туре	Operation		
D[7]	0	STANDBY Switch	Read/ Write	1 = standby, 0 = normal		
D[6]	0	Data Ready *	Read Only	1 = ready 0 = not ready		
D[5]- D[0]	0	Reserved - Always returns zero when read	N/A	N/A		

Note 1: *DATA_RDY bit RESET at power-up and SHDN enable.

I2C Read more at

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

Asynchronous serial interfaces (1Wire)

1 Wire: Bidirectional, half-duplex, serial communication that powers over a single connection and ground return. Two serial communication speeds 15Kbps or 125kbps. Unique Unalterable ID in every device !!!

1Wire possible application: door key

1Wire Device Presence Pulse

The master starts a transmission with a "reset" pulse, which pulls the wire to 0 volts for 480 µs. This resets every slave device on the bus, probably by depriving them all of power. After that, any slave device, if present, shows that it exists with a "presence" pulse: it holds the wire to ground for at least 60 µs after the master releases the bus.

No device

1Wire. Sending bits...

To send a "1", the master sends a very brief (1 - $15 \mu s$) low pulse. To send a "0", the master sends a $60 \mu s$ low pulse.

1Wire. Receiving bits...

When receiving data, the master sends a 1-15 μ s 0 volt pulse to start each bit. If the transmitting slave unit wants to send a "1", it does nothing, and the wire goes immediately up to the pulled-up voltage. If the transmitting slave wants to send a "0", it pulls the data line to ground for at least 15 μ s.

See 1Wire overview video at https://www.maximintegrated.com/en/products/1-wire/flash/overview/