Backpropagation Algorithm

Neural Network

Home price prediction

area	bedrooms	price
1200	2	70
1500	3	120
2100	4	230
1100	3	105
1300	2	90
900	1	55

area	bedrooms	price
1200	2	70
1500	3	120
2100	4	230
1100	3	105
1300	2	90
900	1	55

$$error1 = y - \hat{y} = 1133$$

 $squared\ error1 = 1283689$

area	bedrooms	price
1200	2	70
1500	3	120
2100	4	230
1100	3	105
1300	2	90
900	1	55

$$error6 = y - \hat{y} = 847$$

 $squared\ error6 = 717409$

Total squared error = sq error₁ + \cdots + sq error₆

Mean squared error = $(sq\ error_1 + \cdots + sq\ error_6) / 6$

Loss = Mean Squared Error

$$w1 = w1 - something$$

$$w1 = w1 - learning \ rate * \frac{\partial}{\partial w} 1$$

$$w2 = w2 - learning rate * \frac{\partial}{\partial w^2}$$

$$b = b - learning rate * \frac{\partial}{\partial b}$$

w1 = w1 - learning rate
$$*^{\partial}/_{\partial w1}$$

W1 = 1-0.2 = 0.8
w2 = w2 - learning rate $*^{\partial}/_{\partial w2}$
W2 = 1-0.3 = 0.7
b = b - learning rate $*^{\partial}/_{\partial b}$

b = 0 - 0.2 = -0.2

$$\partial L/_{\partial w1} = ?$$
 $\partial L/_{\partial w1} = \partial L/_{\partial e} * \partial e/_{\partial \hat{y}} * \partial \hat{y}/_{\partial w1}$
 $\partial L/_{\partial w1} = -2e * area$
Chain Rule

