(2022.08.03 重村 哲至) IE5 ____**番 氏名 模範解答**

1 語句に関する問題

次の文章の空欄に最適な言葉を語群から記号で答えなさい. (1 点×30 問= 30 点)

二次記憶装置は、OSとアプリケーションプログラムやデータの全てを格納するために十分な (1) で、電源を切断しても記憶が消えない (2) の記憶装置である。一般に二次記憶装置は主記憶装置と比較して、データの読み書きにかかる時間は、とても (3) 二次記憶装置は (4) アクセスしかできないテープ型装置と、 (5) アクセスも可能なディスク型装置に分類できる。代表的なディスク型装置であるハードディスクでは、 (6) 単位で読み書きがされる。従来は3つの番号を用いて (6) のアドレスを指定する (7) 方式が用いられていた。しかし、近年は (6) の通し番号をアドレスとして用いる (8) 方式が用いられる。

ファイルシステムは、二次記憶装置の一つの領域(ディスク全体、パーティション、または、複数のディスクを連結したもの)に格納される。この領域は (9) と呼ばれる。 (9) が複数ある場合、2つ目以降のファイルシステムを、1つ目のファイルシステムの一つのディレクトリに接続する方式を (10) 方式、 (9) を区別する文字をパスの先頭に付け加える方式を (11) 方式と呼ぶ。 (10) 方式は (12) などで用いられる。 (11) 方式は (13) などで用いられる。

ファイルの種類は、ファイルシステムによって定められる場合と、慣例によりファイル名の一部によって区別する場合がある。前者で定められるファイルは、データやプログラムを格納する (14)、ファイルの一覧を格納する (15)、他のファイルのパスを格納する (16)などがある。OS は (14) の構造を単なる (17) としか定めておらず、 (14) に格納するデータの形式はアプリケーションが定める。

(18) は仕様が公開されているので、OS の異なるコンピュータ間、様々な電子機器とコンピュータ間での (19) に使用するメモリカードなどのファイルシステムとして広く使用されている。ファイル名は半角 8 文字に加え 3 文字の (20) を合わせた 11 文字で表現される。

(21) は 1979 年にリリースされたある OS のファイルシステムと、それを改良した多くのファイルシステムである。全てのファイルは(22) と呼ばれるデータで表現される。ファイルシステムの初期化時に決めた(23) 領域の大きさにより、作成できるファイルの最大個数が決まる。ディレクトリは(24) と(22) 番号の対応表を格納したファイルである。

(25) は 2005 年に公開され、その後もオープンソースで開発が続いているファイルシステムである。 (25) は次のような特徴を持っている.

- 1. デバイス上のブロックの書換は (26) で行われ上書き されることがない.
- 2. 高い信頼性を担保するために, ブロックの(27)がブロックを指すブロックポインタに記録されている.
- 3. ある時点でファイルシステム全体をコピーし変更不可にした (28) や、 (28) と同様であるが変更可能な (29) を一瞬で作成できる.
- 4. ボリュームの代わりに (30) を用いる.

語群:

注意:(き),(く)は(12),(13)の候補

- (あ)CHS, (い)COW(Copy On Write),
- (う)FAT ファイルシステム, (え)i-node,
- (お)i-node リスト, (か)LBA, (き)MS-DOS,Windows,
- (く)UNIX,Linux,macOS, (け)UNIX ファイルシステム,
- (こ)ZFS, (さ) クローン, (し) シーケンシャル,
- (す) シンボリックリンク, (せ) ストレージプール,
- (そ) スナップショット, (た) セクタ, (ち) チェックサム,
- (つ) データ交換, (て) ディレクトリファイル,
- (と) ドライブレター, (な) バイト列, (に) ファイル名,
- (ぬ) ボリューム, (ね) マウント, (の) ランダム,
- (は) 拡張子, (ひ) 大容量, (ふ) 通常ファイル,
- (へ) 長い, (ほ) 不揮発性

(1)	(V)	(2)	(ほ)	(3)	(~)	(4)	(し)
(5)	(Ø)	(6)	(た)	(7)	(あ)	(8)	(な)
(9)	(\$\dag{\dag{\dag{\dag{\dag{\dag{\dag{	(10)	(ね)	(11)	(と)	(12)	(<)
(13)	(き)	(14)	(&)	(15)	(て)	(16)	(す)
(17)	(な)	(18)	(う)	(19)	(つ)	(20)	(は)
(21)	(け)	(22)	(え)	(23)	(お)	(24)	(に)
(25)	(2)	(26)	(٢)	(27)	(ち)	(28)	(そ)
(29)	(さ)	(30)	(せ)				

(2022.08.03 重村 哲至) IE5 ____**番 氏名 模範解答**

2 ファイルの名前付け

次の図はマウント方式のシステムで、ハードディスクと USB メモリを使用している状態を表したものです。 ディレクトリエントリはファイル名とファイル本体を 指すポインタの組から成ります。

1. ファイル①の絶対パスを書きなさい。(3点)

/bin/cat

2. カレントディレクトリが④のとき,ファイル② の相対パスを書きなさい. (3点)

ls

3. ファイル③の絶対パスを書きなさい。(3点)

/Volumes/MYUSB/hello.c

- 4. カレントディレクトリが④のとき,ファイル③ の相対パスを書きなさい. (3点)
 - ../Volumes/MYUSB/hello.c

3 ACL (Access Control List)

次のようなグループとユーザが登録されているとします.

グループ		所属するユーザ
kan	admin	sigemura
gak	admin	i18abc

(ユーザ admin は2つのグループに属している)

また,あるファイルに次のような ACL が設定されているとします. (all は,全てのユーザを意味する)

0	user:sigemura	deny	write
1	user:i18abc	allow	write
2	group:gak	deny	write
3	group:kan	allow	write
4	all	deny	write

1. このファイルに書き込みができるユーザに○, できないユーザに×を付けなさい. なお, ACLの評価は, 先頭から順に行い, 許可 (allow) か不許可 (deny) かが決まった時点で終了するものとします. (2点×3問=6点)

admin	×
sigemura	×
i18abc	0

2. ユーザ sigemura だけが書き込むことができるファイルの ACL を user:を使用しないで group: だけ用いて書きなさい。ACL の書き方は上のものを参考にすること。(3点)

0	group:gak	deny	write
1	gouup:kan	allow	write
2	all	deny	write

(2022.08.03 重村 哲至) IE5 ____**番 氏名 模範解答**

4 FAT ファイルシステム

ある FAT16 ファイルシステムの BPB に格納された 情報が次のようになっていたとします.

 項目	値	単位
セクタサイズ	512	バイト
クラスタサイズ	4	セクタ
rootDir サイズ	512	ディレクトリエントリ
FAT サイズ	16	セクタ

注:rootDir はルートディレクトリの意味

ディレクトリエントリの構造は次図の通りです. (エントリのサイズは 32 バイト)

Bytes	8	3	1	10	2	2	2	4	
	FileName	Ext	Atr	Reserved	Time	Date	Cls	Size	

1. クラスタサイズを KiB 単位で答えなさい. (4点)

$512B \times 4 + 2 \neq 9 = 2KiB$

ルートディレクのサイズをセクタ単位で答えなさい。(4点)

32B×512 エントリ ÷512B=32 セクタ

3. FAT のサイズを KiB 単位で答えなさい。(4 点)

$512B \times 16 + 29 = 8KiB$

4. FAT のエントリ数に最も近い数値の右に○印を付けなさい. (4点)

1024	
2048	
4096	0
8192	

5 ZFS

1. 次の図は教科書にあった deadlist を説明した図を改変したものです.

(a) Snapshot#2 の deadlist に入るブロック番号の一覧を答えなさい。(ない場合は「なし」と答える) (3点)

2

(b) FileSystem の deadlist に入るブロック番号 の一覧を答えなさい。(ない場合は「なし」 と答える)(3点)

1. 4

2. 次の図はストレージプールのイメージ図です.

データブロック⑥を COW を用いて更新する際 に影響を受ける Uberblock 以外のブロックの番 号を全て答えなさい. (3点)

1,3

(2022.08.03 重村 哲至)

IE5 **番 氏名**

模範解答

6 UNIX ファイルシステム

次の図は UNIX ファイルシステムの内容を模式的に描いたものです。なお、使用中の i-node は図に示すものだけとします。また、ディレクトリエントリは、図の下部に示すように「型」フィールドを省略した形式のものを使用します。

ディレクトリエントリの形式

	32bit	16bit	16bit	l_2 バイト	詰め物	
	i-node 番号	l_1	l_2	ファイル名	\0 \0	7
<			l_1 バイ	7	>	_

(lıは4の倍数)

		デー	タブロ	コック
	3 (A)	12 12	1 2	"."
100	4	12	3	"h.c"
101	2 2 5	12 12 12	1 2 3	"." "" "mnt"
101	5	12	1	" "
102	(B) 3 4	12 12 12 (C)	2 3 7	"" "src" "hello.c"
	•••	•••	•••	•••

1. ルートディレクトリ以外の二つのディレクトリ の絶対パスを答えなさい. $(3 点 \times 2 = 6 点)$

/mnt
/mnt/src

2. 図中に通常ファイルは一つしかありません。このファイルの二つの絶対パスを答えなさい。 $(3 \, \text{点} \times 2 \, \text{間=} 6 \, \text{点})$

/mnt/hello.c
/mnt/src/h.c

3. 図中の通常ファイルは2つのデータブロックを 使用してます. (直接ブロックの最初の2つのが 使用している.)ブロックサイズが2KiB(2048B) のとき,このファイルのサイズの範囲をバイト 単位で答えなさい. (3 点)

2049B **から** 4096B **の範囲**

4. データブロックの (A), (B), (C) に入る数値を 答えなさい. $(3 点 \times 3 間=9 点)$

(A) 5

(B) 2

(C) 16