Step-1

(a)

The objective is to find the relation between the determinant of A^H and the determinant of A.

It is known that $\det A^T = \det A$

(Since A^H = Transpose of conjugate matrix)

But,
$$\det A^H = \overline{\left(\det A\right)}$$

Hence,
$$\overline{\det(A^H) = \overline{(\det A)}}$$

Step-2

(b)

The objective is to prove that the determinant of a Hermitian matrix is real.

Let A be any Hermitian matrix

Then
$$A^H = A$$

Take determinant on both sides, to get;

$$\det(A^{H}) = \det A$$
(Since $\det A^{H} = \overline{(\det A)}$)
$$= (\overline{\det A})$$

Since
$$a+ib = a-ib$$
this implies;
$$ib = -ib$$
this implies;
$$b = 0$$

= real number

Hence, the determinant of a Hermitian matrix is **real**.