

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 2

по курсу «Теория вероятностей и математическая статистика, часть 2»

ВАРИАНТ 67

Тема:	«Первичная обработка выборки из	
	непрерывной генеральной совокупности»	

Выполнил: Студент 3-го курса Мусатов Д. Ю

Группа: КМБО-03-18

Содержание

1	Задание	3
2	Краткие теоретические сведения	4
	2.1 Нормальное распределение	4
	2.2 Показательное распределение	5
	2.3 Равномерное распределение	6
	2.4 Формулы для рассчёта выборочных значений	7
3	Результаты расчётов	8
	3.1 Задание №1	8
	3.2 Задание №2	12
	3.3 Задание №3	16
4	Анализ результатов и выводы	20
5	Список использованной литературы	22

Содержание 2

3

1 Задание

Задание 1. Получить выборку, сгенерировав N=200 псевдослучайных чисел, распределенных по нормальному закону с параметрами a и σ^2 .

$$a = (-1)^V \cdot 0,01 \cdot V;$$
 $\sigma = 0,01 \cdot V + 1$

Задание 2. Получить выборку, сгенерировав N=200 псевдослучайных чисел, распределенных по показательному закону с параметром.

$$\lambda = 2 + (-1)^V \cdot 0,01 \cdot V$$

Задание 3. Получить выборку, сгенерировав N=200 псевдослучайных чисел, распределенных равномерно на отрезке [a,b].

$$a = (-1)^V \cdot 0,05 \cdot V$$
 $b = a + 6$

V – номер варианта.

Для каждого Задания:

Построить:

- 1) группированную выборку (интервальный вариационный ряд) и ассоциированный статистический ряд;
- 2) гистограмму относительных частот;
- 3) график эмпирической функции распределения.

Найти:

- 1) выборочное среднее;
- 2) выборочную дисперсию с поправкой Шеппарда;
- 3) выборочное среднее квадратическое отклонение;
- 4) выборочную моду;
- 5) выборочную медиану;
- 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса.

Составить таблицы:

- 1) сравнения относительных частот и теоретических вероятностей попадания в интервалы;
- 2) сравнения рассчитанных характеристик с теоретическими значениями.

Вычисления проводить с точностью до 0,00001.

1 Задание

2 Краткие теоретические сведения

2.1 Нормальное распределение

Плотность распределения:
$$f_{\xi}(x) = \frac{1}{\sigma} \cdot \varphi_0 \left(\frac{x-a}{\sigma} \right)$$
, где $\varphi_0(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$

Функция распределения:
$$F_{\xi}(x) = \Phi\left(\frac{x-a}{\sigma}\right)$$
, где $\Phi(x) = \int\limits_{-\infty}^{x} \varphi_0(t) dt$

Математическое ожидание:
$$M(x) = a$$

Дисперсия:
$$D(x) = \sigma^2$$

Среднее квадратическое отклонение:
$$\sigma = \sigma$$

Мода:
$$M_0 = a$$

Медиана:
$$M_e = a$$

Коэффициент асимметрии:
$$a_s = 0$$

Коэффициент эксцесса:
$$\varepsilon_k = 0$$

2.2 Показательное распределение

Плотность распределения:
$$f_\xi(x) = \left\{ \begin{array}{cc} 0, & x < 0 \\ \lambda \cdot e^{-\lambda x}, & x \geqslant 0 \end{array} \right.$$

Функция распределения:
$$F_\xi(x) = \left\{ \begin{array}{cc} 0, & x \leqslant 0 \\ \int\limits_0^x \lambda \cdot e^{-\lambda t} dt, & x>0 \end{array} \right. = \left\{ \begin{array}{cc} 0, & x \leqslant 0 \\ 1-e^{-\lambda x}, & x>0 \end{array} \right.$$

Математическое ожидание:
$$M(x) = \frac{1}{\lambda}$$

Дисперсия:
$$D(x) = \frac{1}{\lambda^2}$$

Среднее квадратическое отклонение:
$$\sigma = \sqrt{D(x)} = \frac{1}{\lambda}$$

Мода:
$$M_0 = 0$$

Медиана:
$$M_e = \frac{ln2}{\lambda}$$

Коэффициент асимметрии:
$$a_s=2$$

Коэффициент эксцесса:
$$\varepsilon_k=6$$

2.3 Равномерное распределение

Плотность распределения:
$$f_\xi(x) = \left\{ \begin{array}{ll} 0, & x \not\in (a,b) \\ C, & x \in (a,b) \end{array} \right., \quad C = \frac{1}{b-a}$$

Функция распределения:
$$F_\xi(x) = \int\limits_{-\infty}^x f_\xi(t) dt = \left\{ \begin{array}{ll} 0, & x \leqslant a \\ \frac{x-a}{b-a}, & x \in (a,b) \\ 1, & x \geqslant b \end{array} \right.$$

Математическое ожидание:
$$M = \frac{a+b}{2}$$

Дисперсия:
$$D = \frac{(b-a)^2}{12}$$

Среднее квадратическое отклонение:
$$\sigma = \sqrt{D} = \frac{b-a}{2\sqrt{3}}$$

Мода:
$$M_0 = \frac{a+b}{2}$$

Медиана:
$$M_e = \frac{a+b}{2}$$

Коэффициент асимметрии:
$$a_s = 0$$

Коэффициент эксцесса:
$$\varepsilon_k = -\frac{6}{5}$$

2.4 Формулы для рассчёта выборочных значений

Выборочное среднее:
$$\overline{x} = \frac{1}{N} \sum_{i=1}^m x_i^* \cdot n_i = \sum_{i=1}^m x_i^* \cdot w_i$$

Выборочная дисперсия с поправкой Шеппарда:
$$s_B^2 = \sum_{i=1}^m (x_i^* - \overline{x})^2 \cdot w_i - \frac{h^2}{12}$$
,

где
$$h = \frac{(a_m - a_0)}{m}, \quad m = 1 + [log_2 N]$$

Выборочное среднее квадратическое отклонение: $\overline{\sigma} = \sqrt{s_B^2}$

Выборочная мода:
$$\overline{M_0} = a_{k-1} + h \cdot \frac{w_k - w_{k-1}}{2 \cdot w_k - w_{k-1} - w_{k+1}}$$

Выборочная медиана:
$$\overline{M_e} = a_{k-1} + \frac{h}{w_k} \left(\frac{1}{2} - \sum_{i=1}^{k-1} w_i \right)$$

Выборочный центральный момент
$$k-$$
ого порядка: $\overline{\mu}_k^0 \sum_{i=1}^m (x_i^* - \overline{x})^k \cdot w_i$

Выборочный коэффициент асимметрии:
$$\overline{\gamma}_1 = \frac{\overline{\mu}_3^0}{\overline{\sigma}^3}$$

Выборочный коэффициент эксцесса:
$$\overline{\gamma}_2 = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$

$$a_{k-1}$$
 — левая граница интервала

 w_k — относительная частота на интервале;

 w_{k-1}, w_{k+1} — относительные частоты интервалов слева и справа от интервала k

3 Результаты расчётов

В программе расчёта был использован язык программирования Python. Работа осуществлялась в среде Jupyter Notebook.

3.1 Задание №1

a = -0.67 $\sigma = 1.67$ N = 200

Полученная выборка

полученная выоорка									
1,68816	0,69207	-2,51545	-0,47829	-5,42243	-3,65343	-1,92482	-3,22744	0,13797	-0,34816
-1,17941	1,77815	-0,18332	-1,41109	-1,11171	-1,65243	0,08095	1,80188	-4,38515	-0,67354
-0,50975	1,42218	-2,33087	2,46099	-1,23931	-0,0242	-1,62983	-2,52144	3,64422	-0,99817
-1,46121	-0,95339	-2,22653	-1,11588	-3,47623	-1,08225	-0,6821	-2,37548	-1,55195	0,87922
0,70785	-0,81458	-3,49707	2,01116	-0,5269	-1,96667	3,75455	0,84639	-3,10826	-1,6396
1,74899	-2,0251	-0,89795	-0,39182	-1,4293	0,58158	-1,9631	0,92285	1,99788	1,13817
0,1955	-1,25485	1,66725	0,04514	-0,21607	0,47774	-0,90101	0,60861	0,72966	-2,44785
-0,62456	-5,07347	0,77834	-0,10291	0,76366	4,25706	-1,04013	-3,13953	-0,12163	-2,74869
1,783	-2,53312	0,22286	1,62201	-0,29144	0,35133	0,65559	-2,15866	-0,04121	-1,20789
0,01306	-2,97574	-1,48045	1,96936	-1,4917	-1,19325	-0,99262	0,75705	-1,91101	-1,19849
-1,18935	-2,41354	1,59787	0,64976	0,75722	-2,61799	1,21498	-0,92585	0,3861	-0,92726
0,98492	1,83366	-0,74896	-0,13868	2,38383	-1,48891	0,95151	-0,90006	0,15432	0,24988
-0,46324	-4,45304	-0,32454	0,05355	1,65001	0,23673	-2,42996	-2,32779	-0,24034	-0,32113
-2,67836	0,0907	1,17742	-3,37488	-2,53553	-2,52476	1,5883	-1,02026	-0,96268	0,63484
1,75233	2,14343	1,71463	2,3553	0,67605	-0,39467	3,52145	0,29118	-2,7384	-1,30685
-0,08288	2,47532	1,45777	-2,51103	-1,24931	-5,00819	1,52342	-0,48768	-3,17531	-3,48973
-0,53879	0,69144	-1,05351	-3,05545	2,20225	-2,11609	0,03139	0,99297	-1,06437	-0,73306
1,38796	-1,45143	0,68883	-0,52791	-5,39227	-1,14608	-0,65385	-0,82493	-0,95897	0,04163
-0,12146	-0,63389	-3,42178	-1,00181	0,72701	1,65146	-0,06283	0,54828	-1,83798	0,55846
-1,24385	-2,23097	1,42247	-1,84705	-2,61592	-2,24439	0,05825	-0,93236	-3,04376	-0,70548

Упорядоченная выборка

упорядоченная выоорка									
-5,42243	-5,39227	-5,07347	-5,00819	-4,45304	-4,38515	-3,65343	-3,49707	-3,48973	-3,47623
-3,42178	-3,37488	-3,22744	-3,17531	-3,13953	-3,10826	-3,05545	-3,04376	-2,97574	-2,74869
-2,7384	-2,67836	-2,61799	-2,61592	-2,53553	-2,53312	-2,52476	-2,52144	-2,51545	-2,51103
-2,44785	-2,42996	-2,41354	-2,37548	-2,33087	-2,32779	-2,24439	-2,23097	-2,22653	-2,15866
-2,11609	-2,0251	-1,96667	-1,9631	-1,92482	-1,91101	-1,84705	-1,83798	-1,65243	-1,6396
-1,62983	-1,55195	-1,4917	-1,48891	-1,48045	-1,46121	-1,45143	-1,4293	-1,41109	-1,30685
-1,25485	-1,24931	-1,24385	-1,23931	-1,20789	-1,19849	-1,19325	-1,18935	-1,17941	-1,14608
-1,11588	-1,11171	-1,08225	-1,06437	-1,05351	-1,04013	-1,02026	-1,00181	-0,99817	-0,99262
-0,96268	-0,95897	-0,95339	-0,93236	-0,92726	-0,92585	-0,90101	-0,90006	-0,89795	-0,82493
-0,81458	-0,74896	-0,73306	-0,70548	-0,6821	-0,67354	-0,65385	-0,63389	-0,62456	-0,53879
-0,52791	-0,5269	-0,50975	-0,48768	-0,47829	-0,46324	-0,39467	-0,39182	-0,34816	-0,32454
-0,32113	-0,29144	-0,24034	-0,21607	-0,18332	-0,13868	-0,12163	-0,12146	-0,10291	-0,08288
-0,06283	-0,04121	-0,0242	0,01306	0,03139	0,04163	0,04514	0,05355	0,05825	0,08095
0,0907	0,13797	0,15432	0,1955	0,22286	0,23673	0,24988	0,29118	0,35133	0,3861
0,47774	0,54828	0,55846	0,58158	0,60861	0,63484	0,64976	0,65559	0,67605	0,68883
0,69144	0,69207	0,70785	0,72701	0,72966	0,75705	0,75722	0,76366	0,77834	0,84639
0,87922	0,92285	0,95151	0,98492	0,99297	1,13817	1,17742	1,21498	1,38796	1,42218
1,42247	1,45777	1,52342	1,5883	1,59787	1,62201	1,65001	1,65146	1,66725	1,68816
1,71463	1,74899	1,75233	1,77815	1,783	1,80188	1,83366	1,96936	1,99788	2,01116
2,14343	2,20225	2,3553	2,38383	2,46099	2,47532	3,52145	3,64422	3,75455	4,25706

Группированная выборка (интервальный вариационный ряд)

- v -	- \ -	- ' /
Интервалы	n_ j	w_ j
[-5.42243 , -4.2125]	6	0.03
(-4.2125 , -3.00256]	12	0.06
(-3.00256 , -1.79262]	30	0.15
(-1.79262 , -0.58269]	51	0.255
(-0.58269, 0.62725]	46	0.23
(0.62725 , 1.83718]	42	0.21
(1.83718, 3.04712]	9	0.045
(3.04712 , 4.25706]	4	0.02
	200	1

Ассоциированный статистический ряд

	' I	1 / 1
x*_i	n`_j	w`_j
-4.81746	6	0.03
-3.60753	12	0.06
-2.39759	30	0.15
-1.18766	51	0.255
0.02228	46	0.23
1.23222	42	0.21
2.44215	9	0.045
3.65209	4	0.02
	200	1

Гистограмма относительных частот

Результаты расчётов требуемых характеристик:

- Выборочное среднее: -0.57664;
- Выборочная дисперсия с поправкой Шеппарда: 3.09865;
- Выборочное среднее квадратическое отклонение: 1.7603;
- Выборочная мода: -0.81537;
- Выборочная медиана: -0.55639;
- Выборочный коэффициент асимметрии: -0.16131;
- Выборочный коэффициент эксцесса: 0.00593;

3.2 Задание №2

 $\lambda = 1.33$ N = 200 Полученная выборка

	I	I				I		I	
0,02491	0,1714	0,27751	0,48437	0,39415	1,16019	0,25626	1,97856	0,08407	1,89257
0,53269	3,36295	0,89313	0,70238	0,83937	0,38153	0,52902	0,54266	0,10275	1,43742
1,61255	1,05899	1,50939	1,05011	0,67258	1,20179	1,99197	0,79823	2,00839	0,52722
0,21905	0,87149	0,02226	0,66328	0,49385	0,52196	3,62593	0,03376	0,11753	0,61679
0,08173	0,45393	1,09834	0,26439	1,0284	0,75013	0,63648	3,2017	1,01997	0,10856
1,07828	0,52238	0,48252	0,23295	0,26888	0,41519	0,41027	1,99255	0,01326	1,16152
2,20542	2,024	0,62365	0,74987	1,7568	0,87015	1,26575	0,53014	0,68218	0,74924
0,7493	0,79962	1,25879	0,22186	2,24813	2,09381	0,88433	0,59806	0,34916	1,6006
0,37514	0,25735	0,36477	0,88158	0,51657	0,24283	0,81136	0,54823	0,05998	0,45036
2,39269	0,11661	1,05747	1,15535	0,49978	1,11133	0,95951	0,84071	1,22188	0,04744
0,22611	0,38573	0,70115	0,98244	1,60858	0,81654	0,07279	0,02385	0,50645	2,61476
0,9701	1,60596	0,70741	0,26846	0,22006	3,79664	0,28622	0,0279	0,45234	0,73708
0,38262	0,15533	0,38678	0,12341	0,19473	0,00985	0,83646	0,04656	0,22416	1,04613
0,47536	0,25044	0,06814	0,66754	0,47073	0,07505	0,14197	1,17069	1,02279	0,00012
0,55476	0,22297	0,46444	1,53611	0,94401	0,45698	1,60471	0,31486	0,7945	1,16895
1,33171	0,61808	1,12193	1,97371	0,95524	1,23751	0,34829	2,21917	0,06421	0,44362
0,4341	2,39495	0,34261	0,62867	0,12646	0,40653	0,59913	1,09162	0,76738	0,68827
1,33814	1,04889	0,50298	1,4459	0,83232	0,87615	0,3547	0,58477	1,68206	1,80308
0,78406	0,65326	0,26612	0,44836	0,7612	0,00208	0,93547	0,16637	0,99968	0,71624
0,22226	0,77007	0,09831	0,26292	0,1678	0,66263	0,04692	0,34376	0,84355	0,36237

Упорядоченная выборка

	з порядоченная выоорка								
0,00012	0,00208	0,00985	0,01326	0,02226	0,02385	0,02491	0,0279	0,03376	0,04656
0,04692	0,04744	0,05998	0,06421	0,06814	0,07279	0,07505	0,08173	0,08407	0,09831
0,10275	0,10856	0,11661	0,11753	0,12341	0,12646	0,14197	0,15533	0,16637	0,1678
0,1714	0,19473	0,21905	0,22006	0,22186	0,22226	0,22297	0,22416	0,22611	0,23295
0,24283	0,25044	0,25626	0,25735	0,26292	0,26439	0,26612	0,26846	0,26888	0,27751
0,28622	0,31486	0,34261	0,34376	0,34829	0,34916	0,3547	0,36237	0,36477	0,37514
0,38153	0,38262	0,38573	0,38678	0,39415	0,40653	0,41027	0,41519	0,4341	0,44362
0,44836	0,45036	0,45234	0,45393	0,45698	0,46444	0,47073	0,47536	0,48252	0,48437
0,49385	0,49978	0,50298	0,50645	0,51657	0,52196	0,52238	0,52722	0,52902	0,53014
0,53269	0,54266	0,54823	0,55476	0,58477	0,59806	0,59913	0,61679	0,61808	0,62365
0,62867	0,63648	0,65326	0,66263	0,66328	0,66754	0,67258	0,68218	0,68827	0,70115
0,70238	0,70741	0,71624	0,73708	0,74924	0,7493	0,74987	0,75013	0,7612	0,76738
0,77007	0,78406	0,7945	0,79823	0,79962	0,81136	0,81654	0,83232	0,83646	0,83937
0,84071	0,84355	0,87015	0,87149	0,87615	0,88158	0,88433	0,89313	0,93547	0,94401
0,95524	0,95951	0,9701	0,98244	0,99968	1,01997	1,02279	1,0284	1,04613	1,04889
1,05011	1,05747	1,05899	1,07828	1,09162	1,09834	1,11133	1,12193	1,15535	1,16019
1,16152	1,16895	1,17069	1,20179	1,22188	1,23751	1,25879	1,26575	1,33171	1,33814
1,43742	1,4459	1,50939	1,53611	1,6006	1,60471	1,60596	1,60858	1,61255	1,68206
1,7568	1,80308	1,89257	1,97371	1,97856	1,99197	1,99255	2,00839	2,024	2,09381
2,20542	2,21917	2,24813	2,39269	2,39495	2,61476	3,2017	3,36295	3,62593	3,79664

Группированная выборка (интервальный вариационный ряд)

Интервалы	n_ j	w_ j
[0,0.47458]	77	0.385
(0.47458, 0.94916]	63	0.315
(0.94916 , 1.42374]	30	0.15
(1.42374 , 1.89832]	13	0.065
(1.89832, 2.3729]	10	0.05
(2.3729 , 2.84748]	3	0.015
(2.84748, 3.32206]	1	0.005
(3.32206, 3.79664]	3	0.015
	200	1

Ассоциированный статистический ряд

x*_i	n`_j	w`_j
0.23729	77	0.385
0.71187	63	0.315
1.18645	30	0.15
1.66103	13	0.065
2.13561	10	0.05
2.61019	3	0.015
3.08477	1	0.005
3.55935	3	0.015
	200	1

Гистограмма относительных частот

Результаты расчётов требуемых характеристик:

- Выборочное среднее: 0.81628;
- Выборочная дисперсия с поправкой Шеппарда: 0.45457;
- Выборочное среднее квадратическое отклонение: 0.67422;
- Выборочная мода: 0.40157;
- Выборочная медиана: 0.64784;
- Выборочный коэффициент асимметрии: 1.76555;
- Выборочный коэффициент эксцесса: 3.61917;

3.3 Задание №3

a = -3.35 q = 2.65 N = 200

Полученная выборка

полученная выоорка									
1,89152	2,15713	-0,82834	-1,12209	1,13595	-3,25676	0,85771	-0,08543	-0,02199	2,12126
1,25428	-1,99151	-0,15651	-0,15417	-1,99588	2,49826	-2,93368	1,84007	0,43262	1,9926
-0,71219	1,94179	-0,05445	-2,785	-1,05679	1,69977	0,15106	1,75528	-2,6311	1,49349
1,46536	-0,08976	0,89638	-1,065	-0,73495	-0,50802	-1,3019	0,27751	0,38669	-1,78455
-1,09045	1,01867	-0,38311	1,7912	-1,93848	1,86916	-1,40854	2,35514	-2,2798	-0,85877
2,11927	0,5975	1,32619	-0,19375	0,16656	0,73287	1,29716	0,81028	0,83105	-2,91486
-1,36938	0,89113	-2,44871	-1,98074	0,32943	1,41372	-2,92609	-0,13699	2,49127	0,88636
-1,78839	1,17413	0,29088	1,87154	-2,31283	1,93481	1,1418	-2,69223	1,6476	1,1512
-3,07708	-3,12639	-1,18972	-1,71956	-1,30758	-2,67817	0,03499	0,82039	-2,09125	-2,38511
2,09813	-2,54193	-0,01218	0,80003	-2,65041	1,3563	-2,74763	1,59642	1,65053	-0,08036
1,50969	-3,1459	1,74116	-1,78309	-0,75873	-1,75045	-0,17487	1,58779	1,99416	-0,28403
-0,19025	-1,76712	-1,3234	-1,81649	-0,45266	1,61417	0,60884	0,97134	-0,76623	-2,76586
-2,19765	-0,18768	-1,66378	2,2599	1,42717	1,69739	2,32577	-2,50846	-2,5373	-2,30608
-0,53511	-2,78798	-1,03106	-0,38332	-0,10884	0,64584	0,96004	0,51477	1,14641	-1,01092
1,02632	-3,0366	2,38775	-2,9251	-1,71487	0,98852	-1,20019	-1,4212	-1,32185	2,37744
-0,05645	-0,36365	-0,60858	-2,46386	0,30849	-1,52628	0,80294	0,99123	-3,18676	-0,70646
2,28689	0,8463	1,52896	0,23351	2,261	1,43486	0,43302	-1,7528	-0,85751	-1,3299
-0,66516	0,88737	0,73674	1,63298	-2,55162	1,99287	-3,33647	-0,30062	2,20879	1,62867
-2,16086	-2,90983	-2,47474	-2,41753	-1,00481	-0,22539	-0,3293	1,96523	2,47544	-1,79682
0,36051	-0,21533	-1,8115	0,52693	-0,10376	1,30697	-0,18985	0,66531	-1,5711	-0,45399

Упорядоченная выборка

упорядоченная выоорка									
-3,33647	-3,25676	-3,18676	-3,1459	-3,12639	-3,07708	-3,0366	-2,93368	-2,92609	-2,9251
-2,91486	-2,90983	-2,78798	-2,785	-2,76586	-2,74763	-2,69223	-2,67817	-2,65041	-2,6311
-2,55162	-2,54193	-2,5373	-2,50846	-2,47474	-2,46386	-2,44871	-2,41753	-2,38511	-2,31283
-2,30608	-2,2798	-2,19765	-2,16086	-2,09125	-1,99588	-1,99151	-1,98074	-1,93848	-1,81649
-1,8115	-1,79682	-1,78839	-1,78455	-1,78309	-1,76712	-1,7528	-1,75045	-1,71956	-1,71487
-1,66378	-1,5711	-1,52628	-1,4212	-1,40854	-1,36938	-1,3299	-1,3234	-1,32185	-1,30758
-1,3019	-1,20019	-1,18972	-1,12209	-1,09045	-1,065	-1,05679	-1,03106	-1,01092	-1,00481
-0,85877	-0,85751	-0,82834	-0,76623	-0,75873	-0,73495	-0,71219	-0,70646	-0,66516	-0,60858
-0,53511	-0,50802	-0,45399	-0,45266	-0,38332	-0,38311	-0,36365	-0,3293	-0,30062	-0,28403
-0,22539	-0,21533	-0,19375	-0,19025	-0,18985	-0,18768	-0,17487	-0,15651	-0,15417	-0,13699
-0,10884	-0,10376	-0,08976	-0,08543	-0,08036	-0,05645	-0,05445	-0,02199	-0,01218	0,03499
0,15106	0,16656	0,23351	0,27751	0,29088	0,30849	0,32943	0,36051	0,38669	0,43262
0,43302	0,51477	0,52693	0,5975	0,60884	0,64584	0,66531	0,73287	0,73674	0,80003
0,80294	0,81028	0,82039	0,83105	0,8463	0,85771	0,88636	0,88737	0,89113	0,89638
0,96004	0,97134	0,98852	0,99123	1,01867	1,02632	1,13595	1,1418	1,14641	1,1512
1,17413	1,25428	1,29716	1,30697	1,32619	1,3563	1,41372	1,42717	1,43486	1,46536
1,49349	1,50969	1,52896	1,58779	1,59642	1,61417	1,62867	1,63298	1,6476	1,65053
1,69739	1,69977	1,74116	1,75528	1,7912	1,84007	1,86916	1,87154	1,89152	1,93481
1,94179	1,96523	1,9926	1,99287	1,99416	2,09813	2,11927	2,12126	2,15713	2,20879
2,2599	2,261	2,28689	2,32577	2,35514	2,37744	2,38775	2,47544	2,49127	2,49826

Группированная выборка (интервальный вариационный ряд)

	_	
Интервалы	n_ j	w_ j
[-3.35 , -2.6]	20	0.1
(-2.6 , -1.85]	19	0.095
(-1.85 , -1.1]	25	0.125
(-1.1 , -0.35]	23	0.115
(-0.35 , 0.4]	32	0.16
(0.4 , 1.15]	30	0.15
(1.15 , 1.9]	30	0.15
(1.9 , 2.65]	21	0.105
	200	1

Ассоциированный статистический ряд

	' I	1 / '
x*_i	n`_ j	w`_j
-2.975	20	0.1
-2.225	19	0.095
-1.475	25	0.125
-0.725	23	0.115
0.025	32	0.16
0.775	30	0.15
1.525	30	0.15
2.275	21	0.105
	200	1

Гистограмма относительных частот

Результаты расчётов требуемых характеристик:

- Выборочное среднее: -0.18875;
- Выборочная дисперсия с поправкой Шеппарда: 2.58775;
- Выборочное среднее квадратическое отклонение: 1.60865;
- Выборочная мода: 0.26364;
- Выборочная медиана: -0.04531;
- Выборочный коэффициент асимметрии: -0.18923;
- Выборочный коэффициент эксцесса: -1.01328;

4 Анализ результатов и выводы

Таблица сравнения относительных частот и теоретических вероятностей

Показательное распределение

		1 1	
Интервалы	w`_j	p_ j	w`_j-p_j
[-5.42243 , -4.2125]	0.03	0.01473	0.01527
(-4.2125 , -3.00256]	0.06	0.0643	0.0043
(-3.00256 , -1.79262]	0.15	0.16947	0.01947
(-1.79262 , -0.58269]	0.255	0.27013	0.01513
(-0.58269 , 0.62725]	0.23	0.26051	0.03051
(0.62725 , 1.83718]	0.21	0.152	0.058
(1.83718, 3.04712]	0.045	0.05362	0.00862
(3.04712, 4.25706]	0.02	0.01143	0.00857
	1	1	0.058

Нормальное распределение

Интервалы	w`_j	p_ j	w`_j-p_j
[0,0.47458]	0.385	0.46804	0.08304
(0.47458, 0.94916]	0.315	0.24898	0.06602
(0.94916, 1.42374]	0.15	0.13245	0.01755
(1.42374 , 1.89832]	0.065	0.07046	0.00546
(1.89832, 2.3729]	0.05	0.03748	0.01252
(2.3729 , 2.84748]	0.015	0.01994	0.00494
(2.84748, 3.32206]	0.005	0.01061	0.00561
(3.32206, 3.79664]	0.015	0.00564	0.00936
	1	1	0.08304

Равномерное распределение

Интервалы	w`_j	p_ j	w`_j-p_j
[-3.35 , -2.6]	0.1	0.125	0.025
(-2.6 , -1.85]	0.095	0.125	0.03
(-1.85 , -1.1]	0.125	0.125	0
(-1.1 , -0.35]	0.115	0.125	0.01
(-0.35 , 0.4]	0.16	0.125	0.035
(0.4 , 1.15]	0.15	0.125	0.025
(1.15 , 1.9]	0.15	0.125	0.025
(1.9 , 2.65]	0.105	0.125	0.02
	1	1	0.035

Таблица сравнения рассчитанных характеристик с теоретическими значениями Показательное распределение

Название показателя	Экспериментальное значение	Теоретическое значение	Абсолютное отклонение	Относительное отклонение
Выборочное среднее	-0.57664	-0.67	0.09336	0.13934
Выборочная дисперсия	3.09865	2.7889	0.30975	0.11107
Выборочное среднее квадратичное отклонение	1.7603	1.67	0.0903	0.05407
Выборочная мода	-0.81537	-0.67	0.14537	0.21697
Выборочная медиана	-0.55639	-0.67	0.11361	0.16957
Выборочный коэффициент асимметрии	-0.16131	0	0.16131	-
Выборочный коэффициент эксцесса	0.00593	0	0.00593	-

Нормальное распределение

Название показателя	Экспериментальное значение	Теоретическое значение	Абсолютное отклонение	Относительное отклонение
Выборочное среднее	0.81628	0.75188	0.0644	0.08565
Выборочная дисперсия	0.45457	0.56532	0.11076	0.19592
Выборочное среднее квадратичное отклонение	0.67422	0.75188	0.07766	0.10329
Выборочная мода	0.40157	0	0.40157	-
Выборочная медиана	0.64784	0.52116	0.12668	0.24307
Выборочный коэффициент асимметрии	1.76555	2	0.23445	0.11722
Выборочный коэффициент эксцесса	3.61917	6	2.38083	0.39681

Равномерное распределение

1 abnowephoc pacificaciónic				
Название показателя	Экспериментальное значение	Теоретическое значение	Абсолютное отклонение	Относительное отклонение
Выборочное среднее	-0.18875	-0.35	0.16125	0.46071
Выборочная дисперсия	2.58775	3	0.41225	0.13742
Выборочное среднее квадратичное отклонение	1.60865	1.73205	0.1234	0.07125
Выборочная мода	0.26364	-0.35	0.61364	1.75326
Выборочная медиана	-0.04531	-0.35	0.30469	0.87054
Выборочный коэффициент асимметрии	-0.18923	0	0.18923	-
Выборочный коэффициент эксцесса	-1.01328	-1.2	0.18672	0.1556

5 Список использованной литературы

- 1. Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ / А.А. Лобузов М.: МИРЭА, 2017.
 - 2. Боровков А. А. Математическая статистика. СПб.: Лань, 2010.-704 с.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Юрайт, 2013.-479 с.
- 4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Юрайт, 2013. 404 с.
- 5. Емельянов Г.В.Скитович В.П. Задачник по теории вероятностей и математической статистике. СПб.: Лань, 2007. 336 с.
- 6. Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. М.: Изд-во ЛКИ, 2010. 599 с.
- 7. Кибзун А.И., Горяинова Е.Р., Наумов А.В. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачам. Учебное пособие М.:ФИЗМАТЛИТ, 2005. 232 с.
- 8. Кобзарь А.И. Прикладная математическая статистика: Для инженеров и научных работников М.: ФИЗМАТЛИТ, 2006. 816 с.
- 9. Монсик В.Б., Скрынников А. А. Вероятность и статистика.— М. : БИНОМ, 2015 384 с.
- 10. Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учеб. пособие для вузов / Под ред. А. А. Свешникова. СПб.: Лань, 2012.-472 с.
- 11. Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам: учеб. пособие для вузов. М.: Айрис-пресс, 2013. 288 с.
- 12. Ramachandran Kandethody M., Tsokos Chris P. Mathematical Statistics with Applications in R. N-Y.: Academic Press, 2009. 826 p.
- 13. Ивановский Р.И. Теория вероятностей и математическая статистика: Основы, прикладные аспекты с примерами и задачами в среде Mathcad:Учеб. пособие для вузов — СПб.: БХВ-Петербург, 2008. — 528 с.

```
import matplotlib.pyplot as plt
import numpy as np
import math
import plotly.graph_objects as go
import copy
import xlsxwriter
N = 200
v=67
mu = ((-1)**v)*0.01*v #A
L=2+v*(0.01)*((-1)**v) #lambda
s_d=1+(0.01*v) #standard deviation
a=((-1)**v)*0.05*v
b=a+6
#beta=1/L
#Normal=np.random.normal(mu, s_d, N)
#Indicative=np.random.exponential(beta, N)
#uniform=np.random.uniform(a,b, N)
#np.savetxt('normal.txt', Normal,'%f')
#np.savetxt('indicative.txt', Indicative,'%f')
#np.savetxt('uniform.txt', uniform,'%f')
my_file = open("normal.txt", "r")
Normal=[]
for num in my file:
  Normal.append(float(num))
my file.close()
Normal_unsort = []
Normal_unsort = copy.deepcopy(Normal)
my_file1 = open("indicative.txt", "r")
Indicative=[]
for num in my_file1:
  Indicative.append(float(num))
my_file1.close()
Indicative_unsort = []
Indicative unsort = copy.deepcopy(Indicative)
my_file2 = open("uniform.txt", "r")
uniform=[]
for num in my_file2:
  uniform.append(float(num))
my_file2.close()
uniform unsort = []
uniform unsort = copy.deepcopy(uniform)
Normal.sort()
Indicative.sort()
uniform.sort()
m=1+int(math.log(N,2))
n 0=min(Normal)
n m=max(Normal)
d_n=n_m-n_0
i 0=0
i_m=max(Indicative)
d i=i m-i 0
```

```
d_u=b-a
a_n=[n_0]
for i in range(m-1):
  a_n.append(a_n[i]+d_n/m)
a_n.append(n_m)
a_i=[i_0]
for i in range(m-1):
  a_i.append(a_i[i]+d_i/m)
a_i.append(i_m)
a u=[a]
for i in range(m-1):
  a_u.append(a_u[i]+d_u/m)
a_u.append(b)
n_n=[]
counter = 0
k=1
helper = a_n[k]
for i in range(len(Normal)):
  if Normal[i]<=helper:
     counter += 1
  else:
     n_n.append(counter)
     k += 1
     helper = a_n[k]
     if (Normal[i]<=helper):</pre>
       counter=1
     else: counter=0
n_n.append(counter)
n_i=[]
counter = 0
k=1
helper = a_i[k]
for i in range(len(Indicative)):
  if Indicative[i]<=helper:
     counter += 1
  else:
     n_i.append(counter)
     k += 1
     helper = a_i[k]
     if (Indicative[i]<=helper):</pre>
       counter=1
     else:
       counter=0
n_i.append(counter)
n_u=[]
counter = 0
k=1
helper = a_u[k]
for i in range(len(uniform)):
  if uniform[i]<=helper:</pre>
     counter += 1
```

```
else:
    n_u.append(counter)
    k += \bar{1}
    helper = a_u[k]
    if (uniform[i]<=helper):</pre>
       counter=1
    else: counter=0
n_u.append(counter)
w_n=[]
for i in range(len(n_n)):
  w_n.append(n_n[i]/N)
w i=[]
for i in range(len(n_i)):
  w_i.append(n_i[i]/N)
for i in range(len(n_u)):
  w_u.append(n_u[i]/N)
x n = []
for i in range(len(a_n)-1):
  x_n.append((a_n[i]+a_n[i+1])/2)
x i = []
for i in range(len(a_i)-1):
  x_i.append((a_i[i]+a_i[i+1])/2)
x u = \prod
for i in range(len(a_u)-1):
  x_u.append((a_u[i]+a_u[i+1])/2)
math_exp_n=0
for i in range(len(x_n)):
  math_exp_n+=(x_n[i]*w_n[i])
print(math_exp_n)
math_exp_i=0
for i in range(len(x_i)):
  math_exp_i += (x_i[i]*w_i[i])
print(math_exp_i)
math_exp_u=0
for i in range(len(x_u)):
  math_exp_u += (x_u[i]*w_u[i])
print(math_exp_u)
h_n=(n_m-n_0)/m
h_i=(i_m-i_0)/m
h_u=(b-a)/m
Disp_n=0
for i in range(len(x_n)):
  Disp_n+=w_n[i]*((x_n[i]-math_exp_n)**2)
Disp_n = (h_n **2)/12
print(Disp_n)
```

```
Disp_i=0
for i in range(len(x_i)):
  Disp_i+=w_i[i]*((x_i[i]-math_exp_i)**2)
Disp_i=(h_i**2)/12
print(Disp_i)
Disp u=0
for i in range(len(x_u)):
  Disp_u+=w_u[i]*((x_u[i]-math_exp_u)**2)
Disp_u = (h_u **2)/12
print(Disp_u)
stand dev n=math.sqrt(Disp n)
stand_dev_i=math.sqrt(Disp_i)
stand_dev_u=math.sqrt(Disp_u)
k=n_n.index(max(n_n))
Moda\_n = a\_n[k] + (h\_n*(w\_n[k]-w\_n[k-1])/(2*w\_n[k]-w\_n[k-1]-w\_n[k+1]))
s n=0
i=0
Med n=0
while s_n<0.5:
  s_n+=w_n[i]
  i+=1
if s n==0.5:
  Med_n=a_n[i]
else:
  s_n=w_n[i-1]
  Med_n=a_n[i-1]+(h_n/w_n[i-1])*(0.5-s_n)
print(Moda_n)
print(Med_n, \n')
k=n i.index(max(n i))
Moda_i=a_i[k]+(h_i*(w_i[k])/(2*w_i[k]-w_i[k+1]))
s i=0
i=0
Med i=0
while s i < 0.5:
  s\_i += w\_i[i]
  i+=1
if s i==0.5:
  Med_i=a_i[i]
else:
  s_i=w_i[i-1]
  Med_i=a_i[i-1]+(h_i/w_i[i-1])*(0.5-s_i)
print(Moda_i)
print(Med_i,'\n')
k=n_u.index(max(n_u))
Moda_u=a_u[k]+(h_u*(w_u[k]-w_u[k-1])/(2*w_u[k]-w_u[k-1]-w_u[k+1]))
s_u=0
i=0
Med u=0
while s_u<0.5:
  s_u+=w_u[i]
  i+=1
if s_u==0.5:
```

```
Med_u=a_u[i]
else:
  s_u=w_u[i-1]
  Med_u=a_u[i-1]+(h_u/w_u[i-1])*(0.5-s_u)
print(Moda u)
print(Med u, '\n')
c m 3 n=0
c_m_4_n=0
for i in range(len(x_n)):
  c_m_3_n+=w_n[i]*((x_n[i]-math_exp_n)**3)
  c_m_4_n+=w_n[i]*((x_n[i]-math_exp_n)**4)
c_as_n=c_m_3_n/(stand_dev_n^**3)
c ex n= (c m 4 n/(stand dev n^{**4})-3)
c_m_3_i=0
c_m_4_{i=0}
for i in range(len(x_i)):
  c m 3 i+=w i[i]*((x i[i]-math exp i)**3)
  c_m_4_{i+=w_i[i]*((x_i[i]-math_exp_i)**4)}
c_as_i=c_m_3_i/(stand_dev_i**3)
c_{ex_i} = ((c_{m_4_i}/(stand_{ev_i}**4))-3)
c m 3 u=0
c_m_4_u=0
for i in range(len(x_u)):
  c_m_3_u+=w_u[i]*((x_u[i]-math_exp_u)**3)
  c_m_4_u+=w_u[i]*((x_u[i]-math_exp_u)**4)
c_as_u=c_m_3_u/(stand_dev_u^{**3})
c_{ex_u} = ((c_m_4_u/(stand_dev_u^{**4}))-3)
S = [1/N]
for i in range(1,N):
  S.append(S[i-1]+(1/N))
fig = plt.figure(figsize=(20, 10))
plt.hlines(0, Normal[0]-0.05, Normal[0])
for i in range(len(S)-1):
  plt.hlines(S[i], Normal[i], Normal[i+1])
plt.hlines(S[i+1], Normal[i+1], Normal[i+1]+0.05)
plt.title('Эмпирическая функция нормального распределения', fontsize =15)
plt.ylabel('s - sum(w(x))', fontsize =15)
plt.yticks(np.arange(0.0, 1.05, step=0.05), fontsize =12)
plt.xticks(np.arange(round(Normal[0],1), round(Normal[len(Normal)-1]+0.3,1), step=0.3), fontsize = 12)
plt.xlabel('x - value', fontsize =15)
plt.savefig('normal_emp.jpg')
fig = plt.figure(figsize=(20, 10))
plt.hlines(0, -0.05, Indicative[0])
for i in range(len(S)-1):
  plt.hlines(S[i], Indicative[i], Indicative[i+1])
plt.hlines(S[i+1], Indicative[i+1], Indicative[i+1]+0.05)
plt.title('Эмпирическая функция показательного распределения',fontsize =15)
plt.ylabel('s - sum(w(x))', fontsize =15)
```

```
plt.yticks(np.arange(0.0, 1.05, step=0.05), \overline{\text{fontsize}} = 12)
plt.xticks(np.arange(round(Indicative[0],1), round(Indicative[len(Indicative)-1],1)+0.2, step=0.1),
fontsize =12)
plt.xlabel('x - value', fontsize =15)
plt.savefig('indicative_emp.jpg')
fig = plt.figure(figsize=(20, 10))
plt.hlines(0, uniform[0]-0.05, uniform[0])
for i in range(len(S)-1):
  plt.hlines(S[i], uniform[i], uniform[i+1])
plt.hlines(S[i+1], uniform[i+1], uniform[i+1]+0.05)
plt.title('Эмпирическая функция показательного распределения',fontsize =15)
plt.ylabel('s - sum(w(x))', fontsize =15)
plt.yticks(np.arange(0.0, 1.05, step=0.05), fontsize = 12)
plt.xticks(np.arange(round(uniform[0],1), round(uniform[len(uniform)-1]+0.2,1), step=0.2), fontsize
=12)
plt.xlabel('x - value', fontsize =15)
plt.savefig('uniform_emp.jpg')
y n=[]
for i in range(len(w n)):
  y_n.append(w_n[i]/h_n)
fig = plt.figure(figsize=(25, 15))
plt.hist(Normal,bins=m, density=True)
plt.title('Гистограмма нормального распределения',fontsize =15)
plt.vticks(np.arange(0.0, 0.250, step=0.025), fontsize = 12)
plt.xticks(np.arange(round(Normal[0]-0.1,1), round(Normal[len(Normal)-1]+0.1,1), step=0.2), fontsize
plt.savefig('normal_hist.jpg')
fig = plt.figure(figsize=(20, 10))
plt.hist(Indicative,bins=m, density=True)
plt.title('Гистограмма показательного распределения', fontsize =15)
plt.yticks(np.arange(0.0, 0.9, step=0.05), fontsize =12)
plt.xticks(np.arange(round(Indicative[0],1), round(Indicative[len(Indicative)-1]+0.1,1), step=0.1),
fontsize =12)
plt.savefig('indicative hist.jpg')
fig = plt.figure(figsize=(20, 10))
plt.hist(uniform,bins=m, density=True)
plt.title('\Gammaистограмма равномерного распределения', fontsize =15)
plt.yticks(np.arange(0.0, 0.275, \text{step}=0.025), fontsize = 12)
plt.xticks(np.arange(round(uniform[0],1)-0.1, round(uniform[len(uniform)-1]+0.2,1), step=0.2), fontsize
plt.savefig('uniform hist.jpg')
def normal_prob(miu, stdev, x):
  return 0.5 * (1 + \text{math.erf}((x-\text{miu})/(\text{stdev} * 2**0.5)))
P n=[]
for i in range(len(a n)-1):
  P n.append(normal prob(mu,s d,a n[i+1])-normal prob(mu,s d,a n[i]))
P i=[]
for i in range(len(a_i)-1):
  P_i.append(math.exp(-a_i[i]*L)-math.exp(-a_i[i+1]))
```

```
P u=[]
for i in range(len(a_u)-1):
  P_u.append((a_u[i+1]-a_u[i])/(b-a))
Disp_n_t=s_d**2
c as i t=2
c ex i t=6
Med_i_t=math.log(2)/L
s_d_i_t=L^{**}(-1)
Disp_i_t=L^**(-2)
math_exp_i_t=L^{**}(-1)
Moda i t=0
c_as_u_t=0
c_ex_u_t=-6/5
Moda_u_t=(a+b)/2
Med_u_t=(a+b)/2
s_d_u_t=(b-a)/(2*math.sqrt(3))
Disp u t=((b-a)**2)/12
math_exp_u_t=(a+b)/2
a_n_h = []
\mathbf{w} \mathbf{n} \mathbf{h} = []
P_n_h = []
abs_n_w_p_h = []
h="["+str(round(a_n[0],5))+", "+str(round(a_n[1],5))+"]"
a n h.append(h)
for i in range(1,len(a_n)-1):
  a_n_h.append("("+str(round(a_n[i],5))+", "+str(round(a_n[i+1],5))+"]")
a_n_h.append(' ')
for i in range(len(w_n)):
  w_n_h.append(round(w_n[i], 5))
w n h.append(sum(w n))
for i in range(len(P_n)):
  P_n_h.append(round(P_n[i], 5))
P_n_h.append(round(sum(P_n)))
for i in range(len(w_n)):
  abs_n_w_p_h.append(round((abs(w_n[i]-P_n[i])), 5))
max_n_delt = max(abs_n_w_p_h)
abs_n_w_p_h.append(max_n_delt)
x_n_h = []
n_n_h = []
for i in range(len(x_n)):
  x \ n \ h.append(round(x \ n[i],5))
x_n_h.append(' ')
for i in range(len(n n)):
  n_n_h.append(round(n_n[i], 5))
n_n_h.append(sum(n_n))
fig = go.Figure(data=[go.Table(header=dict(values=["Интервалы", 'n j', 'w j']),
cells=dict(values=[a_n_h, n_n_h, w_n_h]))
1)
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=["Интервалы", 'w' j', 'p j', '|w' j - p_j|']),
cells=dict(values=[a_n_h, w_n_h, P_n_h, abs_n_w_p_h]))
```

```
fig.show()
a_i_h =[]
w_i_h = []
P i h = \prod
abs i w p h = []
a_i_h.append("["+str(round(a_i[0],5))+", "+str(round(a_i[1],5))+"]")
for i in range(1, len(a_i)-1):
  a_i_h.append("("+str(round(a_i[i],5))+", "+str(round(a_i[i+1],5))+"]")
a_i_h.append(' ')
for i in range(len(w_i)):
  w i h.append(round(w i[i], 5))
w_i_h.append(sum(w_i))
for i in range(len(P_i)):
  P_i_h.append(round(P_i[i], 5))
P_i_h.append(round(sum(P_i)))
for i in range(len(w_i)):
  abs i w p h.append(round((abs(w i[i]-P i[i])), 5))
max_i_delt = max(abs_i_w_p_h)
abs i w p h.append(max i delt)
x i h = \prod
n_i_h = []
for i in range(len(x i)):
  x_i_h.append(round(x_i[i],5))
x _i_h.append(' ')
for i in range(len(n_i)):
  n_i_h.append(round(n_i[i], 5))
n_i_h.append(sum(n_i))
fig = go.Figure(data=[go.Table(header=dict(values=["Интервалы", 'n j', 'w j']),
cells=dict(values=[a_i_h, n_i_h, w_i_h]))
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=["Интервалы", 'w' j', 'p j', '|w' j - p_j|']),
cells=dict(values=[a i h, w i h, P i h, abs i w p h]))
fig.show()
a_u_h = []
\mathbf{w}_{\mathbf{u}} = []
P_u_h = []
abs u w p h = []
a_u_h.append("["+str(round(a_u[0],5))+", "+str(round(a_u[1],5))+"]")
for i in range(1,len(a u)-1):
  a_u_h.append("("+str(round(a_u[i],5))+", "+str(round(a_u[i+1],5))+"]")
a_u_h.append(' ')
for i in range(len(w_u)):
  w_u_h.append(round(w_u[i], 5))
w_u_h.append(sum(w_u))
for u in range(len(P u)):
  P_u_h.append(round(P_u[i], 5))
P_u_h.append(round(sum(P_u)))
for i in range(len(w_u)):
  abs_u_w_p_h.append(round((abs(w_u[i]-P_u[i])), 5))
```

```
abs_u_w_p_h.append(max(abs_u_w_p_h))
x u h = []
n u h = \prod
for i in range(len(x_u)):
  x u h.append(round(x u[i],5))
x u h.append(' ')
for i in range(len(n_u)):
  n_u_h.append(round(n_u[i], 5))
n_u_h.append(sum(n_u))
fig = go.Figure(data=[go.Table(header=dict(values=["Интервалы", 'n j', 'w j']),
cells=dict(values=[a u h, n u h, w u h]))
1)
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=["Интервалы", 'w' j', 'p j', '|w' j - p_j|']),
cells=dict(values=[a_u_h, w_u_h, P_u_h, abs_u_w_p_h]))
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=["x*_i", 'n`_ j', 'w`_ j']),
cells=dict(values=[x n h, n n h, w n h]))
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=["x*_i", 'n`_j', 'w`_j']),
cells=dict(values=[x_i_h, n_i_h, w_i_h]))
fig.show()
names = ['Выборочное среднее', 'Выборочная дисперсия', 'Выборочное среднее квадратичное
отклонение', 'Выборочная мода', 'Выборочная медиана', 'Выборочный коэффициент асимметрии',
'Выборочный коэффициент эксцесса']
experimental_n = [round(math_exp_n, 5), round(Disp_n, 5), round(stand_dev_n, 5), round(Moda_n, 5),
round(Med n, 5), round(c as n, 5), round(c ex n, 5)
theoretical n = [round(mu, 5), round(Disp n t, 5), round(s d, 5), mu, mu, 0, 0]
absolute deviation n = [round(abs(math exp n-mu), 5), round(abs(Disp n - Disp n t), 5),
round(abs(stand_dev_n-s_d), 5), round(abs(Moda_n-mu), 5), round(abs(Med_n-mu), 5),
round(abs(c_as_n-0), 5), round(abs(c_ex_n-0), 5)]
relative_deviation_n = []
for i in range(len(absolute_deviation_n)):
  if(theoretical n[i] == 0):
    relative deviation n.append(' - ')
  else:
    relative deviation n.append(round(abs(absolute deviation n[i]/theoretical n[i]), 5))
fig = go.Figure(data=[go.Table(header=dict(values=['Название показателя', 'Экспериментальное
значение', 'Теоретическое значение', 'Абсолютное отклонение', 'Относительное отклонение']),
cells=dict(values=[names, experimental n, theoretical n, absolute deviation n, relative deviation n]))
fig.show()
experimental_i = [round(math_exp_i, 5), round(Disp_i, 5), round(stand_dev_i, 5), round(Moda_i, 5),
round(Med_i, 5), round(c_as_i, 5), round(c_ex_i, 5)]
```

```
theoretical_i = [round(math_exp_i_t, 5), round(Disp_i_t, 5), round(s_d_i_t, 5), Moda_i_t,
round(Med i t, 5), c as i t, c ex i t]
absolute_deviation_i = [round(abs(math_exp_i-math_exp_i_t), 5), round(abs(Disp_i - Disp_i_t), 5),
round(abs(stand dev i-s d i t), 5), round(abs(Moda i-Moda i t), 5), round(abs(Med i-Med i t), 5),
round(abs(c_as_i-c_as_i_t), 5), round(abs(c_ex_i-c_ex_i_t), 5)]
relative deviation i = []
for i in range(len(absolute deviation i)):
  if(theoretical i[i] == 0):
    relative_deviation_i.append(' - ')
  else:
    relative_deviation_i.append(round(abs(absolute_deviation_i[i]/theoretical_i[i]), 5))
fig = go.Figure(data=[go.Table(header=dict(values=['Название показателя', 'Экспериментальное
значение', 'Теоретическое значение', 'Абсолютное отклонение', 'Относительное отклонение']),
cells=dict(values=[names, experimental_i, theoretical_i, absolute_deviation_i, relative_deviation_i]))
1)
fig.show()
experimental u = [round(math exp u, 5), round(Disp u, 5), round(stand dev u, 5), round(Moda u, 5),
round(Med u, 5), round(c as u, 5), round(c ex u, 5)]
theoretical u = [round(math exp u t, 5), round(Disp u t, 5), round(s d u t, 5), round(Moda u t, 5),
round(Med_u_t, 5), c_as_u_t, c_ex_u_t]
absolute deviation u = [round(abs(math exp u-math exp u t), 5), round(abs(Disp u - Disp u t), 5),
round(abs(stand_dev_u-s_d_u_t), 5), round(abs(Moda_u-Moda_u_t), 5), round(abs(Med_u-Med_u_t),
5), round(abs(c as u-c as u t), 5), round(abs(c ex u-c ex u t), 5)]
relative deviation u = []
for i in range(len(absolute deviation u)):
  if(theoretical u[i] == 0):
    relative deviation u.append(' - ')
  else:
    relative_deviation_u.append(round(abs(absolute_deviation_u[i]/theoretical_u[i]), 5))
fig = go.Figure(data=[go.Table(header=dict(values=['Название показателя', 'Экспериментальное
значение', 'Теоретическое значение', 'Абсолютное отклонение', 'Относительное отклонение']),
cells=dict(values=[names, experimental u, theoretical u, absolute deviation u, relative deviation u]))
fig.show()
matrix_v_n_s=[[0] * 20 \text{ for i in } range(10)]
matrix_v_n_uns=[[0] * 20 \text{ for i in } range(10)]
matrix_v_i_s=[[0] * 20 \text{ for } i \text{ in } range(10)]
matrix_v_i_uns=[[0] * 20 for i in range(10)]
matrix_v_u_s=[[0] * 20 \text{ for i in } range(10)]
matrix_v_u_uns=[[0] * 20 \text{ for i in } range(10)]
for i in range(10):
  for j in range(20):
    matrix v n s[i][j]=round(Normal[i+j*10],5)
    matrix_v_n_uns[i][j]=round(Normal_unsort[i+j*10],5)
    matrix_v_i_s[i][j]=round(Indicative[i+j*10],5)
    matrix_v_i_uns[i][j]=round(Indicative_unsort[i+j*10],5)
    matrix v u s[i][i]=round(uniform[i+i*10],5)
    matrix_v_u_uns[i][j]=round(uniform_unsort[i+j*10],5)
workbook = xlsxwriter.Workbook('Normal.xlsx')
worksheet = workbook.add worksheet()
row = 0
```

```
for col, data in enumerate(matrix_v_n_s):
  worksheet.write_column(row, col, data)
workbook.close()
workbook = xlsxwriter.Workbook('Normal unsort.xlsx')
worksheet = workbook.add_worksheet()
row = 0
for col, data in enumerate(matrix_v_n_uns):
  worksheet.write column(row, col, data)
workbook.close()
workbook = xlsxwriter.Workbook('Indicative.xlsx')
worksheet = workbook.add_worksheet()
row = 0
for col, data in enumerate(matrix_v_i_s):
  worksheet.write_column(row, col, data)
workbook.close()
workbook = xlsxwriter.Workbook('Indicative_unsort.xlsx')
worksheet = workbook.add_worksheet()
row = 0
for col, data in enumerate(matrix_v_i_uns):
  worksheet.write_column(row, col, data)
workbook.close()
workbook = xlsxwriter.Workbook('uniform.xlsx')
worksheet = workbook.add_worksheet()
row = 0
for col, data in enumerate(matrix_v_u_s):
  worksheet.write_column(row, col, data)
workbook.close()
workbook = xlsxwriter.Workbook('uniform unsort.xlsx')
worksheet = workbook.add_worksheet()
row = 0
for col, data in enumerate(matrix_v_u_uns):
  worksheet.write column(row, col, data)
workbook.close()
```