CPSC 465/565 Theory of Distributed Systems

James Aspnes

2023-09-11

Today's exciting topics

- Casual ordering
- ► Logical clocks
- Snapshots

Executions and schedules

For every execution

$$\Xi = C_0 \alpha_1 C_1 \alpha_2 C_2 \alpha_3 C_3 \dots$$

there is a schedule

$$S = \alpha_1 \alpha_2 \alpha_3 \dots$$

that includes only the events.

Given C_0 and S, and a deterministic protocol, we can reconstruct Ξ .

The problem with schedules

Schedules contain too much information!

Suppose α and β are events at different processes p and q.

Then $S_1 = \alpha \beta$ and $S_2 = \beta \alpha$ look the same to both p and q.

Formally:

- \triangleright S|p is subsequence of S consisting only of events involving p.
- ▶ S_1 is **indistinguishable** from S_2 by p if $S_1|p = S_2|p$.
 - \triangleright $(S_1 \sim_p S_2 \text{ for short.})$

In the example,

- ► $S_1 \sim_p S_2$ since $S_1|p = S_2|p = \alpha$.

So processes don't know order of α and β .

Causal ordering (setup)

Want to capture order of events as observed by processes.

This will require some tweaks to our model:

- ightharpoonup Events are either send(m) or recv(m) for a single message m.
- ▶ We'll assume *m* includes sender/recipient info.
- We'll also assume all messages are unique.

Causal ordering (definition) $\beta \sim \beta$

 $\mathsf{Time} \to$

Given a schedule S, α happens-before β on S ($\alpha \Rightarrow_S \beta$) if

- 1. α and β are events of the same process and $\alpha <_{\mathsf{S}} \beta$,
- 2. $\alpha = \text{send}(m)$ and $\beta = \text{recv}(m)$, or
- 3. There is a chain of events $\alpha = \alpha_0 \Rightarrow_S \alpha_1 \Rightarrow_S \alpha_2 \dots \Rightarrow_S \alpha_k = \beta$.

Cases (1) and (2) only occur if $\alpha <_S \beta$.

Case (3) is transitive closure.

So $(\Rightarrow_S) \subseteq (<_S)$ and \Rightarrow_S is a partial order.

Claim: \Rightarrow_S captures all observable ordering in S

Formal version:

Define S to be a **causal shuffle** of S' if

- \triangleright S is a permutation of S', and
- $\blacktriangleright \ (\Rightarrow_S) = (\Rightarrow_{S'}).$

Then

▶ $S \sim_p S'$ for all p iff S is a causal shuffle of S'.

Proof of claim: Indistinguishability implies causal shuffle

$$(\Rightarrow) \text{ If } S \sim_{p} S' \forall p \text{ then}$$

- 1. S is a subpermutation of S'. Proof:
 - \triangleright Every event α in S is an event of some process p, so
 - ▶ $a \in S \Rightarrow \alpha \in S|p = S'|p \subseteq S'$ (and vice versa)
- 2. $(\Rightarrow_S) \subseteq (\Rightarrow_{S'})$. Proof: Suppose $\alpha \Rightarrow_S \beta$, then one of:
 - $\triangleright \alpha$ and β are events of same process p
 - \triangleright S|p = S'|p so $\alpha <_S \beta \Rightarrow \alpha <_{S'} \beta$, giving $\alpha \Rightarrow_{S'} \beta$.
 - ho $\alpha = \text{send}(m)$, $\beta = \text{recv}(m)$; same m in S' gives $\alpha \Rightarrow_{S'} \beta$.
 - $\land \alpha \Rightarrow_{S} \dots \Rightarrow_{S} \beta$ from previous cases.
 - ▶ By induction on length of sequence get $\alpha \Rightarrow_{S'} \ldots \Rightarrow_{S'} \beta$.

Now reverse both arguments to get S is a permutation of S' with same happens-before relation.

Proof of claim: Causal shuffle implies indistinguishability

- 1. S is a permutation of S'
 - ▶ Implies S|p is a permutation of S'|p for all p.
- $2. \ (\Rightarrow_S) = (\Rightarrow_{S'})$
 - ▶ Implies $\alpha <_{\mathcal{S}} \beta$ iff $\alpha <_{\mathcal{S}'} \beta$ if events of same process p.

So S|p and S|p' have same events in same order: they are equal.

Logical clocks

 \Rightarrow_S includes all order info processes can in principle deduce from S.

How can processes compute this?:

- Can't build global clock: not provided by model.
- ► Replace with **logical clock**
 - Logical clock = protocol that assigns a time to each event.
 - ► Times are from some totally ordered set.
 - $ightharpoonup \alpha \Rightarrow_{S} \beta$ implies $t_{\alpha} < t_{\beta}$ (causality)
 - ▶ But maybe not the other direction: partial vs total order.

Lamport clocks (Lamport 1978)

- ▶ Each process p maintains local clock t_p .
- ▶ Local computation event: $t_p \leftarrow t_p + 1$.
- ▶ Send event: $t_p \leftarrow t_p + 1$; send (m, t_p) .
- ▶ recv(m, t) event: $t_p \leftarrow max(t_p + 1, t + 1)$.

Time of event α is value of t_p at end of α .

Claim: timestamp order $\supseteq (\Rightarrow_S)$

Proof: Suppose $\alpha \Rightarrow_{\mathcal{S}} \beta$, then one of

- 1. α, β on same process p; t_p is strictly increasing.
- 2. $\alpha = \operatorname{send}(m), \beta = \operatorname{recv}(m)$:
 - $ightharpoonup t_{\alpha}$ is time t in message.
 - \blacktriangleright $t_{\beta} \geq t+1$.
- Transitive closure: follows from previous cases.

Pro:

- ▶ Total order on events consistent with observable order.
- ► Annotation only: no interference with underlying protocol.

Con:

► Can get big! A single bad message can max out all clocks.

Neiger-Toeug-Welch clocks

567 P 9 10 1 2 8 4 5 CF

(Neiger-Toueg 1987, Welch 1987)

- ▶ Each process maintains its own local clock t_i .
- \triangleright t_i increments every now and then, and for each new event.
- \triangleright send (m, t_i) includes send event's timestamp.
- ▶ Receiver j **buffers** (m, t) until $t < t_j$.

Time of receive event is when message is finally delivered.

Claim: $\alpha \Rightarrow_S \beta$ implies $t_{\alpha} < t_{\beta}$. Proof:

- 1. Events of same process: local clock increases.
- 2. send(m) vs recv(m): buffering rule.
- 3. Transitive closure: < on timestamps is transitive.

Bad cases for Neiger-Toeug-Welch clocks

What if some process's local clock is very far off?

- I think it's 2077.
- I receive messages with no buffering!
- But nobody accepts my messages for another 54 years.
- Other processes' local clocks are not affected.

NTW clocks work best if local clocks are mostly synchronized.

Vector clocks

Lamport clocks and Neiger-Toueg-Welch clocks give a total order.

What if we want to recover partial order \Rightarrow_S exactly?

Idea:

- ▶ Instead of totally ordered timestamps from \mathbb{N} ,
- ▶ Use partially ordered timestamps from $\mathbb{N}^{[n]}$.

Ordering: $x \le y$ iff $x_i \le y_i$ for all i.

(Fidge 1991, Mattern 1993)

Vector clock: implementation

Timestamp = $\langle t_1, t_2, \dots t_n \rangle$ where t_i = local clock at i.

Assign each event smallest timestamp consistent with

- 1. $\alpha < \beta$ if $\alpha <_{\mathsf{S}} \beta$ and both events are of same process.
- 2. $\alpha < \beta$ if $\alpha = \text{send}(m)$, $\beta = \text{recv}(m)$.
- (2) requires sending t along with m as in other logical clocks.

Implementing the rule:

- ightharpoonup Track local vector $t^i = \max t^{\alpha}$ of all events I know about.
- Start at $t^i = \langle 0, 0, \dots, 0 \rangle$ (before any events).
- ▶ For a local computation or send event, update $t_i^i \leftarrow t_i^i + 1$.
- For a receive event of message with timestamp s:
 - ▶ Update $t_i^i \leftarrow t_i^i + 1$, then
 - For all j, set $t_j^i = \max(t_j^i, s_j)$.

Vector clock: correctness

Claim: $\alpha \Rightarrow_{\mathcal{S}} \beta$ iff $t^{\alpha} < t^{\beta}$.

Easy direction: $\alpha \Rightarrow_{\mathcal{S}} \beta$ implies $t^{\alpha} < t^{\beta}$. Proof: same as always.

Vector clock correctness:

Claim: $\alpha \Rightarrow_{S} \beta$ iff $t^{\alpha} < t^{\beta}$.

Harder direction: $\alpha \not\Rightarrow_S \beta$ implies $t^{\alpha} \not< t^{\beta}$.

- ▶ Lemma: For any event β of process i, and any $j \neq i$, $t_i^{\beta} = \max_{\gamma \text{ event of } j, \gamma \Rightarrow_S \beta} t_i^{\gamma}.$

 $\begin{array}{c} t_j^i \text{ can only rise on recv event.} \\ \text{Corresponding send event gives } \\ \text{If } t_j^i \text{ unchanged, apply induction hypothesis to previous event.} \\ \text{If } \alpha \not\Rightarrow_S \beta, \ \alpha \text{ event of } j, \text{ then } t_j^\alpha > \max_{\gamma \Rightarrow_S \beta} t_j^\gamma \text{ implies} \\ t^\alpha \not< t_\beta \end{array}$

Any totally-ordered logical clock allows **snapshots**:

- 1. Pick a logical time in advance.
- 2. Record the last state at each process before this time.
- 3. Collect states somewhere.
- 4. Causal shuffle implies consistency.

Problem: How to pick a time?

Chandy-Lamport snapshot

Assumption: FIFO channels.

- Initator records state and sends snap to all neighbors.
- ► Each other node does same upon receiving snap for the first time.

Claim: Pre-snap states < post-snap states is causal shuffle.

Proof: Argue $\alpha \Rightarrow_{S} \beta$ implies we won't put β before, α after.

- 1. Same process p: follows from order on S|p.
- 2. $\alpha = \text{send}(m), \beta = \text{recv}(m)$: follows from FIFO channels.
- 3. Transitive closure etc.

Next time

Synchronizers!

