

#### **Cryptography and Network Security**

Section 3

**Chapter 4:** Block Ciphers and the Data Encryption Standard

### **Syllabus**

| Lab | Lab Topics                         |
|-----|------------------------------------|
| 1   | Introduction                       |
| 2   | Classical Encryption techniques I  |
| 3   | Classical Encryption techniques II |
| 4   | DES                                |
| 5   | block cipher operations & 3DES     |
| 6   | AES                                |
| 8   | Public-Key Cryptography & RSA      |
| 9   | Hash functions & SHA-512           |
| 10  | User Authentication (Kerberos)     |
| 11  | IEEE 802.11 Wireless LAN protocol  |



# input 64 bit blocks

Step 1: Get Text

Step 2: Convert to Binary

Step 3: Break into 64 bit blocks

## text = "Hello World!"



# input→IP

|       |   | 0 | Τ | U | 0 | Τ | U | 0 | 0 |      | 58 | 50 | 42 | 34                                      | 26 | 18 | 10 | 2 |
|-------|---|---|---|---|---|---|---|---|---|------|----|----|----|-----------------------------------------|----|----|----|---|
|       |   | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |      | 60 | 52 | 44 | 36                                      | 28 | 20 | 12 | 4 |
|       |   | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |      | 62 | 54 | 46 | 38                                      | 30 | 22 | 14 | 6 |
|       |   |   |   |   |   |   |   | 0 |   |      |    | 56 |    | 7 To 1 To |    |    |    |   |
| input | = | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | IP = | 57 | 49 | 41 | 33                                      | 25 | 17 | 9  | 1 |
|       |   | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |      | 59 | 51 | 43 | 35                                      | 27 | 19 | 11 | 3 |
|       |   | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |      | 61 | 53 | 45 | 37                                      | 29 | 21 | 13 | 5 |
|       |   | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |      | 63 | 55 | 47 | 39                                      | 31 | 23 | 15 | 7 |

## input→IP

| input = | 0<br>0<br>0<br>0<br>0 | 1<br>1<br>1<br>0 | 1<br>1<br>1<br>1<br>1 | 0<br>0<br>0 | 0<br>1<br>1<br>0<br>0 | 1<br>1<br>1<br>0<br>1 | 0<br>0<br>1<br>0 | 1<br>0<br>0<br>1<br>0<br>1 | IP | = | 60<br>62<br>64<br>57<br>59<br>61 | 50<br>52<br>54<br>56<br>49<br>51<br>53<br>55 | 44<br>46<br>48<br>41<br>43<br>45 | 36<br>38<br>40<br>33<br>35<br>37 | 28<br>30<br>32<br>25<br>27<br>29 | 20<br>22<br>24<br>17<br>19<br>21 | 12<br>14<br>16<br>9<br>11<br>13 | 4<br>6<br>8<br>1<br>3<br>5 |
|---------|-----------------------|------------------|-----------------------|-------------|-----------------------|-----------------------|------------------|----------------------------|----|---|----------------------------------|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------|
|         | U                     | Т                | Т                     | U           | Т                     | Т                     | Т                | T                          |    |   | 63                               | 22                                           | 4/                               | 39                               | 2 T                              | 23                               | 12                              | /                          |

| 1 | 1 |  |  |  |
|---|---|--|--|--|
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |

## input→IP

| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |

## $key \rightarrow PC-1 = C \text{ and } D$



## $key \rightarrow PC-1 = C and D$



#### 1. Left Circular Shift

| R# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| R# | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2  | 2  | 2  | 2  | 2  | 2  | 1  |





#### 2. PC-2







Figure 3.8 Single Round of DES Algorithm

#### E-bit Selection Table

# 2nd half input:



# selection table:



### 48 bits

# Input

# Key





Figure 3.8 Single Round of DES Algorithm

# S-boxes



```
6
                           8
                                 10
                                    11 12 13 14
            2
               15
                  11
                       8
                           3
                              10
15
        4 14
                2
                  13
                        1
                          10
                               6
                                  12
                                     11
                6
           13
                    2
                      11
                          15
                                   9
```

The S-box: S<sub>1</sub>



First 6-bits of Input : 0 0 0 0 1 1

```
3
                  5
                      6
                         7
                             8
                                9
                                  10
                                      11 12 13
                             3
      13
                 15
                     11
                         8
                               10
           4 14
                    13
                            10
                                      11
           8 13
                  6 2
                            15
                               12
      14
                        11
15 12
                               11
                                                    13
```

```
First 6-bits of Input : 0 0 0 1
```

#### 1. Determine Row

$$0 \ 1 = 1 \ (base 10)$$

- 1. Determine Row
  - $0 \ 1 = 1 \ (base 10)$
- 2. Determine Column
  - $0 \ 0 \ 1 = 1 \ (base 10)$

Output = 15

Convert Output to Binary

 $15 = 1 \ 1 \ 1$ 

# S-boxes



Input: 0 0 0 0 1 0

Row :  $0 \ 0 = 0$ 

Column:  $0 \ 0 \ 0 \ 1 = 1$ 

Output:  $1 = 0 \ 0 \ 1$ 

# S-boxes





Figure 3.8 Single Round of DES Algorithm

## Permutation

| 1 | 1 | 1 | 1 |   | 16 | 7  | 20 | 21 | 1 | 0 | 1 | 0 |
|---|---|---|---|---|----|----|----|----|---|---|---|---|
| 0 | 0 | 0 | 1 |   | 29 | 12 | 28 | 17 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |   | 1  | 15 | 23 | 26 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 4 | 5  | 18 | 31 | 10 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |   | 2  | 8  | 24 | 14 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 |   | 32 | 27 | 3  | 9  | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |   | 19 | 13 | 30 | 6  | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 |   | 22 | 11 | 4  | 25 | 1 | 0 | 1 | 0 |



Figure 3.8 Single Round of DES Algorithm



#### 32- bit swap then inverse initial permutation



### Convert back to ASCII

Cipher text =

#\*T'0°%&



#### Sheet problem

This problem provides a numerical example of encryption using a one-round version of DES. We start with the same bit pattern for the key K and the plaintext, namely:

| Hexadecimal notation: | 0123456789ABCDEF                           |             |
|-----------------------|--------------------------------------------|-------------|
| Binary notation:      | 0000 0001 0010 0011 0100 0101<br>0110 0111 |             |
|                       | 1000 1001 1010 1011 1100 1101<br>1110 1111 | Act<br>Go t |

#### **Sheet problem(Cont.)**

- **a.** Derive  $K_1$ , the first-round subkey.
- **b.** Derive  $L_0$ ,  $R_0$ .
- **c.** Expand  $R_0$  to get  $E[R_0]$ , where  $E[\cdot]$  is the expansion function of Table C.1 .
- **d.** Calculate  $A = E[R_0] \oplus K_1$ .
- e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding S-box substitutions.
- f. Concatenate the results of (e) to get a 32-bit result, B.
- **g.** Apply the permutation to get P(B).
- **h.** Calculate  $R_1 = P(B) + L_0$ .
- i. Write down the ciphertext.

