SemenovVlAl 10122024-175219

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 4.3 ГГц.

- 1) A 2) B 3) C 4) D

Найти точку (см. рисунок 2), соответствующую коэффициенту отражения от нормированного импеданса $z=0.36\text{-}1.18\mathrm{i}$.

Рисунок2— Точки s_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной точки.

Задан двухполюсник на рисунке 3, причём R1 = 263.03 Ом.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок4— Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.7	0.366	-178.0	7.524	78.6	0.060	65.9	0.211	-80.4
1.8	0.370	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9

и частоты $f_{\rm H}=1.9$ ГГц, $f_{\rm B}=3$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 1.4 дБ 2) 2.1 дБ 3) 4.2 дБ 4) 7.1 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s	22
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.6	0.496	162.1	6.204	53.4	0.067	54.1	0.206	-114.3
4.7	0.497	161.2	6.065	52.4	0.068	53.7	0.203	-115.5
4.8	0.499	160.3	5.928	51.4	0.069	53.4	0.201	-116.7
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0
5.0	0.503	158.5	5.659	49.3	0.072	52.7	0.197	-119.3
5.1	0.502	157.7	5.546	48.5	0.074	52.4	0.196	-119.7
5.2	0.500	157.0	5.434	47.7	0.075	52.2	0.194	-120.2
5.3	0.499	156.2	5.323	46.8	0.077	51.9	0.193	-120.7
5.4	0.498	155.4	5.213	45.9	0.078	51.7	0.191	-121.1
5.5	0.497	154.6	5.105	45.0	0.080	51.5	0.190	-121.6
5.6	0.498	153.6	5.025	44.1	0.081	50.8	0.188	-123.0

и частоты $f_{\text{\tiny H}}=4.6~\Gamma\Gamma$ ц, $f_{\text{\tiny B}}=5.4~\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте $f_{\text{\tiny H}}$.

- 1) -6.1 дБ
- 2) -13.7 дБ
- 3) -23.5 дБ
- 4) 15.9 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9
1.7	0.588	141.1	3.289	55.7	0.078	55.5	0.250	-52.1
2.0	0.602	132.6	2.781	48.5	0.090	53.2	0.244	-57.9
2.3	0.622	124.8	2.418	41.6	0.101	50.6	0.236	-64.8
2.6	0.647	117.5	2.122	34.8	0.112	47.8	0.229	-72.4
2.9	0.667	110.9	1.887	28.2	0.122	44.8	0.223	-80.9
3.2	0.685	105.0	1.697	22.5	0.132	42.0	0.217	-89.9
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5

и частоты $f_{\mbox{\tiny H}}=1.4$ $\Gamma\Gamma\mbox{\scriptsize H},\,f_{\mbox{\tiny B}}=3.5$ $\Gamma\Gamma\mbox{\scriptsize H}.$

Найти усиление на $f_{\scriptscriptstyle \mathrm{H}}.$

- 1) 3.7 дБ
- 2) 24.1 дБ
- 3) 12.1 дБ
- 4) 1.8 дБ