MAST30001 2013, Recommended Problems, Chapter 5 Lecturer: Nathan Ross

Instructions: Answer the following questions. Justify all work and give clear, concise explanations, using prose when appropriate. Clarity, neatness and style count.

- 1. (Discrete version of Poisson Process) Let the discrete time Markov chain $(X_n)_{n\geq 0}$ on $\{0,1,\ldots\}$ have transition probabilities $p_{ii+1}=1-p_{ii}=p$ and assume $X_0=0$.
 - (a) Draw a picture of a typical trajectory of this process.
 - (b) Show that $(X_n)_{n\geq 0}$ has the independent increments property: for $0 \leq i < j \leq k < l$, the variables

$$(X_l - X_k, X_j - X_i)$$

are independent.

- (c) Show that X_n has the binomial distribution with parameters n and p.
- (d) Show that for m < n, $X_n X_m$ has the binomial distribution with parameters n m and p.
- (e) Show that the number of steps between "jumps" (times when the chain changes states) has the geometric distribution with parameter p (and started from 1).
- (f) Show that given $X_n = 1$, the step number of the first jump is uniform on $\{1, \ldots, n\}$.
- 2. Let $(N_t)_{t\geq 0}$ be a Poisson process with rate λ and for each $t\geq 0$, let $X_t=N_{t/\lambda}$. Show that $(X_t)_{t\geq 0}$ is a Poisson process with rate 1.
- 3. In a Poisson process with rate 1, what is the joint density of the times of the first and second jumps? What is the joint density of the times of the *i*th and *j*th jump for i < j? Can you interpret these formulas similar to our discussion in lecture deriving the joint densities of order statistics?
- 4. Let $U_{(1)}, \ldots, U_{(n)}$ be order statistics of independent variables, uniform on the interval (0,1). For 0 < x < y < 1 what is
 - (a) $\mathbb{P}(U_{(1)} > x, U_{(n)} < y),$
 - (b) $\mathbb{P}(U_{(1)} < x, U_{(n)} < y),$
 - (c) $\mathbb{P}(U_{(k)} < x, U_{(k+1)} > y),$
 - (d) $\mathbb{P}(U_{(k)} < x, U_{(k+2)} > y)$?

- 5. Let $(N_t)_{t\geq 0}$ be a Poisson process with rate λ .
 - (a) What is $\mathbb{P}(N_1 = 2|N_2 = 10)$?
- 6. From Assignment 1: If N is geometric with parameter p ($\mathbb{P}(N=j)=(1-p)^{j-1}$, $j=1,2,\ldots$) and given N=n,T has density

$$f_{T|N}(t|n) = \frac{t^{n-1}e^{-t}}{(n-1)!},$$

what is the density of T? Another question: If S is exponential with rate λ and given S = s, M is Poisson with mean s, then what is the distribution of M? A third question: If K is Poisson with mean μ and given K = k, J is binomial with parameters k and p, then what is the distribution of J? Can you explain (or even derive) the answers to these three questions through superposition and thinning of Poisson processes?

- 7. In a certain electrical system, spikes of current arrive according to a Poisson process with rate λ and the size of each spike has an exponential distribution with rate μ amperes, independent of the time of arrival of the spike and the size of the other spikes. A fuse in the system can tolerate up to a total of a amperes cumulatively over time before failure. What is the expected amount of time a new fuse will last before failure? Hint: you may want to use the formula for a non-negative random variable T, $\mathbb{E}T = \int_0^\infty \mathbb{P}(T > t) dt$.
- 8. Let S be a rate one exponential variable and given S = s, let X_t be a Poisson process with rate s. Find $\mathbb{P}(X_t = j)$ for t > 0 and j = 0, 1, ...