

Modeling a Blockchain in an MDP

Markov Decision Process (MDP)

+ double-spending value

Extension of Markov Chains

- → Actions, Rewards
- State space, action space

Reward for adversary: 2 State: (3, 1) (1, 1)

MDP model (simplified) - Wait Action

$$r_a = 0, r_h = 0$$

MDP model (simplified) - Override Action

Reward for adversary: I_h+1

Action iif Ia>Ih

MDP - State Transitions and Rewards

State × Action	Resulting State	Probability	Reward (in Block reward)
(l_a, l_h, b_e, \cdot) , adopt	$egin{array}{c} (1,0,0,i) \ (1,0,1,i) \ (0,1,0,r) \ (0,0,0,i) \end{array}$	$lpha \ \omega \ (1-lpha-\omega)\cdot (1-r_s) \ (1-lpha-\omega)\cdot r_s$	$(-c_m, l_h) \ (-c_m, l_h) \ (-c_m, l_h) \ (-c_m, l_h)$
(l_a, l_h, b_e, \cdot) , override	$\begin{pmatrix} l_a - l_h, 0, b_e - \lceil (l_h + 1) \frac{b_e}{l_a} \rceil, i \end{pmatrix}$ $\begin{pmatrix} l_a - l_h, 0, b_e - \lceil (l_h + 1) \frac{b_e}{l_a} \rceil + 1, i \end{pmatrix}$ $\begin{pmatrix} l_a - l_h - 1, 1, b_e - \lceil (l_h + 1) \frac{b_e}{l_a} \rceil, r \end{pmatrix}$ $\begin{pmatrix} l_a - l_h - 1, 0, b_e - \lceil (l_h + 1) \frac{b_e}{l_a} \rceil, i \end{pmatrix}$	$lpha$ ω $(1-lpha-\omega)\cdot(1-r_s)$ $(1-lpha-\omega)\cdot r_s$	$ \begin{pmatrix} \lfloor (l_h+1)\frac{l_a-b_e}{l_a}\rfloor - c_m, 0 \\ \lfloor (l_h+1)\frac{l_a-b_e}{l_a}\rfloor - c_m, 0 \\ \lfloor (l_h+1)\frac{l_a-b_e}{l_a}\rfloor - c_m, 0 \\ \lfloor (l_h+1)\frac{l_a-b_e}{l_a}\rfloor - c_m, 0 \end{pmatrix} $
(l_a, l_h, b_e, i) , wait (l_a, l_h, b_e, r) , wait	$(l_a+1,l_h,b_e,i) \ (l_a+1,l_h,b_e+1,i) \ (l_a,l_h+1,b_e,r) \ (l_a,l_h,b_e,i)$	$lpha \ \omega \ (1-lpha-\omega)\cdot (1-r_s) \ (1-lpha-\omega)\cdot r_s$	$(-c_m,0) \ (-c_m,0) \ (-c_m,0) \ (-c_m,0)$
(l_a, l_h, b_e, a) , wait (l_a, l_h, b_e, r) , match	$(l_a+1,l_h,b_e,a) \ (l_a+1,l_h,b_e+1,a) \ (l_a-l_h,1,b_e-\lceil (l_h)rac{b_e}{l_a} ceil,r) \ (l_a,l_h+1,b_e,r) \ (l_a,l_h,b_e,a)$	$egin{array}{c} lpha \ \omega \ & \gamma \cdot (1-lpha-\omega) \cdot (1-r_s) \ & (1-\gamma) \cdot (1-lpha-\omega) \cdot (1-r_s) \ & (1-lpha-\omega) \cdot r_s \end{array}$	$(-c_m,0) \ (-c_m,0) \ \left(\lfloor (l_h) rac{l_a-b_e}{l_a} floor -c_m,0 ight) \ (-c_m,0) \ (-c_m,0)$
(l_a, l_h, b_e, \cdot) , exit	\mathbf{exit}	1	$(l_a - b_e + v_d, 0)$