Détection d'anomalies de classification dans l'IoT via Machine Learning

Antoine Urban, Yohan Chalier

Projet de filière SR2I Télécom ParisTech

22 juin 2018

Introduction

La détection d'obstacles : un enjeu de sécurité!

FIGURE – Ensemble des capteurs présents dans le véhicule

Attaques potentielles

Attaque par aveuglement des capteurs

Attaque par modification

Objectifs

Proposition d'un modèle de classification multi-classes en réalisant un classeur à partir d'un algorithme d'apprentissage supervisé

Méthodes d'évaluation Matrice de confusion

2*Classe prédite

	Positif	Négatif
Positif	TP	FP
Négatif	FN	TN
	TPR	FPR
	FNR	TNR

Classe réelle

PPV FDR FOR NPV

Méthodes d'évaluation Score F1

Objectif : Maximisation du score F1 comme critère de performance

$$\mathsf{f1\text{-}score} = \frac{2 \times (\mathsf{Recall} \times \mathsf{Precision})}{(\mathsf{Recall} + \mathsf{Precision})} = 2 \times \frac{PPV \times TPR}{PPV + TPR} \qquad (1)$$

$$Precision = \frac{TP}{TP + FP}$$
 (2)

$$Recall = \frac{TP}{TP + FN} \tag{3}$$