

Preprint, arXiv:0909.3808

VARIOUS CONGRUENCES INVOLVING BINOMIAL COEFFICIENTS AND HIGHER-ORDER CATALAN NUMBERS

ZHI-WEI SUN

Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
<http://math.nju.edu.cn/~zwsun>

ABSTRACT. Let p be a prime and let a be a positive integer. In this paper we investigate $\sum_{k=0}^{p^a-1} \binom{(h+1)k}{k+d}/m^k$ modulo a prime p , where d and m are integers with $-h < d \leq p^a$ and $m \not\equiv 0 \pmod{p}$. We also study congruences involving higher-order Catalan numbers $C_k^{(h)} = \frac{1}{hk+1} \binom{(h+1)k}{k}$ and $\bar{C}_k^{(h)} = \frac{h}{k+1} \binom{(h+1)k}{k}$. Our tools include linear recurrences and the theory of cubic residues. Here are some typical results in the paper. (i) If $p^a \equiv 1 \pmod{6}$ then

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k}{k}}{6^k} \equiv 2^{(p^a-1)/3} \pmod{p} \quad \text{and} \quad \sum_{k=1}^{p^a-1} \frac{\bar{C}_k^{(2)}}{6^k} \equiv 0 \pmod{p}.$$

Also,

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k}{k}}{7^k} \equiv \begin{cases} -2 & \text{if } p^a \equiv \pm 2 \pmod{7}, \\ 1 & \text{otherwise.} \end{cases}$$

(ii) We have

$$\sum_{k=0}^{p^a-1} \frac{\binom{4k}{k}}{5^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p \neq 11 \text{ and } p^a \equiv 1 \pmod{5}, \\ -1/11 \pmod{p} & \text{if } p^a \equiv 2, 3 \pmod{5}, \\ -9/11 \pmod{p} & \text{if } p^a \equiv 4 \pmod{5}. \end{cases}$$

Also,

$$\sum_{k=0}^{p^a-1} \frac{C_k^{(3)}}{5^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv 1, 3 \pmod{5}, \\ -2 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ 0 \pmod{p} & \text{if } p^a \equiv 4 \pmod{5}. \end{cases}$$

2010 *Mathematics Subject Classification.* Primary 11B65; Secondary 05A10, 11A07.

Supported by the National Natural Science Foundation (grant 10871087) and the Overseas Cooperation Fund (grant 10928101) of China.

1. INTRODUCTION

Let p be a prime. Via a sophisticated combinatorial identity, H. Pan and Z. W. Sun [PS] proved that

$$\sum_{k=0}^{p-1} \binom{2k}{k+d} \equiv \left(\frac{p-d}{3} \right) \pmod{p} \quad \text{for } d = 0, \dots, p,$$

where $(-)$ is the Jacobi symbol. Let $a \in \mathbb{Z}^+ = \{1, 2, 3, \dots\}$ and $d \in \{0, \dots, p^a\}$. Recently Sun and R. Tauraso [ST1] used a new approach to determine $\sum_{k=0}^{p^a-1} \binom{2k}{k+d} \pmod{p^2}$; they [ST2] also studied $\sum_{k=1}^{p^a-1} \binom{2k}{k+d}/m^k$ modulo p via Lucas sequences, where m is an integer not divisible by p .

Quite recently, L. Zhao, Pan and Sun [ZPS] proved that if $p \neq 2, 5$ is a prime then

$$\sum_{k=1}^{p-1} 2^k \binom{3k}{k} \equiv \frac{6}{5} \left(\left(\frac{-1}{p} \right) - 1 \right) \pmod{p}$$

and

$$\sum_{k=1}^{p-1} 2^{k-1} C_k^{(2)} \equiv \left(\frac{-1}{p} \right) - 1 \pmod{p},$$

where $C_k^{(2)} = \binom{3k}{k}/(2k+1)$ ($k \in \mathbb{N} = \{0, 1, 2, \dots\}$) are Catalan numbers of order 2.

In general, (the first-kind) Catalan numbers of order $h \in \mathbb{Z}^+$ are given by

$$C_k^{(h)} = \frac{1}{hk+1} \binom{(h+1)k}{k} = \binom{(h+1)k}{k} - h \binom{(h+1)k}{k-1} \quad (k \in \mathbb{N}).$$

(As usual, $\binom{x}{-n} = 0$ for $n = 1, 2, \dots$) We also define the second-kind Catalan numbers of order h as follows:

$$\bar{C}_k^{(h)} = \frac{h}{k+1} \binom{(h+1)k}{k} = h \binom{(h+1)k}{k} - \binom{(h+1)k}{k+1} \quad (k \in \mathbb{N}).$$

Those $C_k = C_k^{(1)} = \bar{C}_k^{(1)}$ are ordinary Catalan numbers which have lots of combinatorial interpretations (see, e.g., Stanley [St]).

Let p be a prime and a a positive integer. In this paper we mainly investigate $\sum_{k=0}^{p^a-1} \binom{3k}{k}/m^k \pmod{p}$ for all $m \in \mathbb{Z}$ with $m \not\equiv 0 \pmod{p}$, and determine $\sum_{k=0}^{p^a-1} \binom{4k}{k}/5^k$ and $\sum_{k=0}^{p^a-1} C_k^{(3)}/5^k \pmod{p}$. Our approach involves third-order and fourth order recurrences and the theory of cubic residues.

Now we introduce some basic notations throughout this paper. For a positive integer n , we use \mathbb{Z}_n to denote the set of all rational numbers

whose denominators are relatively prime to n . Thus, if p is a prime then \mathbb{Z}_p is the ring of rational p -adic integers. For a predicate P , we let

$$[P] = \begin{cases} 1 & \text{if } P \text{ holds,} \\ 0 & \text{otherwise.} \end{cases}$$

Thus $[m = n]$ coincides with the Kronecker $\delta_{m,n}$.

Our first theorem is a further extension of the above-mentioned congruences of Zhao, Pan and Sun.

Theorem 1.1. *Let p be an odd prime and let $a \in \mathbb{Z}^+$. Let $c \in \mathbb{Z}_p$ with $c \not\equiv 0, -1, 2 \pmod{p}$, and set $c' = 3/(2(c+1)(c-2))$. Then*

$$\begin{aligned} \sum_{k=1}^{p^a-1} \frac{c^{2k}}{(c+1)^{3k}} \binom{3k}{k} &\equiv c' \left(1 - \left(\frac{4c+1}{p^a} \right) \right) \pmod{p}, \\ \sum_{k=1}^{p^a-1} \frac{c^{2k+1}}{(c+1)^{3k}} \binom{3k}{k-1} &\equiv (c'+1) \left(1 - \left(\frac{4c+1}{p^a} \right) \right) \pmod{p}, \\ \sum_{k=1}^{p^a-1} \frac{c^{2k+2}}{(c+1)^{3k}} \binom{3k}{k+1} &\equiv (c'(3c+2)+1) \left(1 - \left(\frac{4c+1}{p^a} \right) \right) \pmod{p}, \end{aligned}$$

and

$$\sum_{k=0}^{p^a-1} \frac{c^{2k}}{(c+1)^{3k}} \binom{3k}{k+p^a} \equiv cc' \left(\left(\frac{4c+1}{p^a} \right) - 1 \right) \pmod{p}.$$

Remark 1.1. Note that if $c = -1/4$ then $c^2/(c+1)^3 = 2^2/(2+1)^3$.

Clearly Theorem 1.1 in the case $c = -1/2$ yields the two congruences of Zhao, Pan and Sun [ZPS] mentioned above. Applying Theorem 1.1 with $c = 1, -2$ we obtain the following consequence.

Corollary 1.1. *Let p be an odd prime and let $a \in \mathbb{Z}^+$. Then*

$$\begin{aligned} \sum_{k=1}^{p^a-1} \frac{\binom{3k}{k}}{8^k} &\equiv \frac{3}{4} \left(\left(\frac{p^a}{5} \right) - 1 \right) \pmod{p}, \\ \sum_{k=1}^{p^a-1} \frac{C_k^{(2)}}{8^k} &\equiv \frac{5}{4} \left(\left(\frac{p^a}{5} \right) - 1 \right) \pmod{p}, \\ \sum_{k=1}^{p^a-1} (-4)^k \binom{3k}{k} &\equiv \frac{3}{8} \left(1 - \left(\frac{p^a}{7} \right) \right) \pmod{p}, \\ \sum_{k=1}^{p^a-1} (-4)^k C_k^{(2)} &\equiv \frac{7}{4} \left(1 - \left(\frac{p^a}{7} \right) \right) \pmod{p}. \end{aligned}$$

For a polynomial

$$f(x) = x^n + a_1x^{n-1} + \cdots + a_n = \prod_{i=1}^n (x - \alpha_i) \in \mathbb{C}[x],$$

its discriminant is defined by

$$D(f) = \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)^2.$$

By Vitae's theorem and the fundamental theorem of symmetric polynomials, we can express $D(f)$ as a rational expression involving the coefficients a_1, \dots, a_n . For example, it is known that

$$D(x^3 + a_1x^2 + a_2x + a_3) = a_1^2a_2^2 - 4a_2^3 - 4a_1^3a_3 - 27a_3^2 + 18a_1a_2a_3.$$

If $f(x) = x^n + a_1x^{n-1} + \cdots + a_n \in \mathbb{Z}[x]$ and p is an odd prime not dividing $D(f)$, then

$$\left(\frac{D(f)}{p} \right) = (-1)^{n-r}$$

by Stickelberger's theorem (cf. [C]), where r is the total number of monic irreducible factors of $f(x)$ modulo p .

Let p be an odd prime and m an integer with $m \not\equiv 0, 27/4 \pmod{p}$. Then $D = D((x+1)^3 - 3x^2) = (4m-27)m^2 \not\equiv 0 \pmod{p}$. Suppose that there is no $c \in \mathbb{Z}_p$ such that $mc^2 \equiv (c+1)^3 \pmod{p}$. Then the polynomial $(1+x)^3 - mx^2$ is irreducible modulo p , hence by the Stickelberger theorem we have $\left(\frac{D}{p}\right) = (-1)^{3-1} = 1$. Thus $\left(\frac{4m-27}{p}\right) = 1$, and hence $4m-27 \equiv (2t+1)^2 \pmod{p}$ for some $t \in \mathbb{Z}$. Note that $m \equiv t^2 + t + 7 \pmod{p}$.

The following theorem deals with the case $m = 6$ and $\left(\frac{4m-27}{p}\right) = 1$.

Theorem 1.2. *Let $p > 3$ be a prime and let $a \in \mathbb{Z}^+$. Suppose that $p^a \equiv 1 \pmod{6}$. Then*

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k}}{6^k(k+1)} \equiv \sum_{k=1}^{p^a-1} \frac{\binom{3k}{k-1}}{6^k} \equiv 0 \pmod{p}$$

and

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k}}{6^k} \equiv 2^{(p^a-1)/3} - 1 \equiv \frac{1}{2} \sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+1}}{6^k} \pmod{p}.$$

Now we need to introduce another notation. For a positive integer $n \not\equiv 0 \pmod{3}$ and $i \in \{0, 1, 2\}$, Z.-H. Sun [S98] investigated

$$C_i(n) = \left\{ k \in \mathbb{Z}_n : \left(\frac{k+1+2\omega}{n} \right)_3 = \omega^i \right\},$$

where ω is the primitive cubic root $(-1 + \sqrt{-3})/2$ of unity, and $(\frac{\cdot}{n})_3$ is the cubic Jacobi symbol. (The reader is referred to Chapter 9 of [IR, pp. 108-137] for the basic theory of cubic residues.) By [S98], $k \in C_2(n)$ if and only if $-k \in C_1(n)$; also

$$C_0(n) \cup C_1(n) \cup C_2(n) = \{k \in \mathbb{Z}_n : k^2 + 3 \text{ is relatively prime to } n\}.$$

Theorem 1.3. *Let $p > 3$ be a prime and let $a \in \mathbb{Z}^+$. Let $m, t \in \mathbb{Z}_p$ with $t \not\equiv -1/2 \pmod{p}$ and $m \equiv t^2 + t + 7 \not\equiv 0, 6 \pmod{p}$. Then*

$$c = \frac{2m^2 - 18m + 27}{6t + 3} \in C_0(p^a) \cup C_1(p^a) \cup C_2(p^a).$$

If $c \in C_0(p^a)$, then

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \equiv 0 \pmod{p} \quad \text{for } d \in \{0, \pm 1\},$$

and hence

$$\sum_{k=1}^{p^a-1} \frac{C_k^{(2)}}{m^k} \equiv \sum_{k=1}^{p^a-1} \frac{\bar{C}_k^{(2)}}{m^k} \equiv 0 \pmod{p}.$$

When $\pm c \in C_1(p^a)$, we have

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \equiv \begin{cases} (\pm 3/(2t+1) - 3)/2 \pmod{p} & \text{if } d = 0, \\ \pm(m-6)/(2t+1) \pmod{p} & \text{if } d = -1, \\ \pm 3/(2t+1) + 3 - m \pmod{p} & \text{if } d = 1, \end{cases}$$

and hence

$$\sum_{k=1}^{p^a-1} \frac{\bar{C}_k^{(2)}}{m^k} \equiv m - 6 \pmod{p}.$$

Remark 1.2. Let $p > 3$ be a prime. By [S98, Corollary 6.1], if $c \in \mathbb{Z}_p$ and $c(c^2 + 3) \not\equiv 0 \pmod{p}$, then $c \in C_0(p) \iff u_{(p-(\frac{p}{3}))/3} \equiv 0 \pmod{p}$, where $u_0 = 0$, $u_1 = 1$, and $u_{n+1} = 6u_n - (3c^2 + 9)u_{n-1}$ for $n \in \mathbb{Z}^+$.

Combining Theorems 1.1-1.3 we obtain the following somewhat surprising result.

Theorem 1.4. *Let $p > 3$ be a prime. Let a be a positive integer divisible by 6 and let $d \in \{0, \pm 1\}$. Then*

$$\sum_{\substack{0 < k < p^a \\ k \equiv r \pmod{p-1}}} \binom{3k}{k+d} \equiv 2^{d+3-2r} 3^{3r-2} \pmod{p}$$

for all $r \in \mathbb{Z}$, and hence

$$\sum_{k=1}^{p^a-1} \binom{3k}{k+d} \equiv -[p=23]3 \times 2^{d+1} \pmod{p}.$$

We may apply Theorem 1.3 to some particular integers $m = t^2 + t + 7$ to obtain concrete results.

Theorem 1.5. Let $p \neq 3$ be a prime and let $a \in \mathbb{Z}^+$. Then

$$\begin{aligned} \sum_{k=0}^{p^a-1} \frac{\binom{3k}{k}}{9^k} &\equiv \begin{cases} 1 & \text{if } p^a \equiv \pm 1 \pmod{9}, \\ 0 & \text{if } p^a \equiv \pm 2 \pmod{9}, \\ -1 & \text{if } p^a \equiv \pm 4 \pmod{9}; \end{cases} \\ \sum_{k=0}^{p^a-1} \frac{\binom{3k}{k-1}}{9^k} &\equiv \begin{cases} 0 & \text{if } p^a \equiv \pm 1 \pmod{9}, \\ 1 & \text{if } p^a \equiv \pm 2 \pmod{9}, \\ -1 & \text{if } p^a \equiv \pm 4 \pmod{9}; \end{cases} \\ \sum_{k=0}^{p^a-1} \frac{\binom{3k}{k+1}}{9^k} &\equiv \begin{cases} 0 & \text{if } p^a \equiv \pm 1 \pmod{9}, \\ -5 & \text{if } p^a \equiv \pm 2 \pmod{9}, \\ -7 & \text{if } p^a \equiv \pm 4 \pmod{9}. \end{cases} \end{aligned}$$

Consequently,

$$\sum_{k=1}^{p^a-1} \frac{C_k^{(2)}}{9^k} \equiv -3[p^a \equiv \pm 2 \pmod{9}] \pmod{p}$$

and

$$\sum_{k=1}^{p^a-1} \frac{\bar{C}_k^{(2)}}{9^k} \equiv 3[p^a \not\equiv \pm 1 \pmod{9}] \pmod{p}.$$

Theorem 1.6. Let $p \neq 7$ be a prime and let $a \in \mathbb{Z}^+$. Then

$$\begin{aligned} \sum_{k=1}^{p^a-1} \frac{\binom{3k}{k}}{7^k} &\equiv -3[p^a \equiv \pm 2 \pmod{7}] \pmod{p}; \\ \sum_{k=0}^{p^a-1} \frac{\binom{3k}{k-1}}{7^k} &\equiv \begin{cases} 0 & \text{if } p^a \equiv \pm 1 \pmod{7}, \\ -1 & \text{if } p^a \equiv \pm 2 \pmod{7}, \\ 1 & \text{if } p^a \equiv \pm 3 \pmod{7}; \end{cases} \\ \sum_{k=0}^{p^a-1} \frac{\binom{3k}{k+1}}{7^k} &\equiv \begin{cases} 0 & \text{if } p^a \equiv \pm 1 \pmod{7}, \\ -7 & \text{if } p^a \equiv \pm 2 \pmod{7}, \\ -1 & \text{if } p^a \equiv \pm 3 \pmod{7}. \end{cases} \end{aligned}$$

Consequently,

$$\sum_{k=0}^{p^a-1} \frac{C_k^{(2)}}{7^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv \pm 1 \pmod{7}, \\ 0 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{7}, \\ -1 \pmod{p} & \text{if } p^a \equiv \pm 3 \pmod{7}; \end{cases}$$

and

$$\sum_{k=1}^{p^a-1} \frac{\bar{C}_k^{(2)}}{7^k} \equiv [p^a \not\equiv \pm 1 \pmod{7}] \pmod{p}.$$

Theorem 1.7. Let p be a prime and let $a \in \mathbb{Z}^+$. If $p \neq 5, 13$, then

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k}{k}}{13^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv \pm 1, \pm 5 \pmod{13}, \\ -4/5 \pmod{p} & \text{if } p^a \equiv \pm 2, \pm 3 \pmod{13}, \\ -1/5 \pmod{p} & \text{if } p^a \equiv \pm 4, \pm 6 \pmod{13}, \end{cases}$$

and

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k+1}{k+1}}{13^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv \pm 1, \pm 5 \pmod{13}, \\ -53/5 \pmod{p} & \text{if } p^a \equiv \pm 2, \pm 3 \pmod{13}, \\ -47/5 \pmod{p} & \text{if } p^a \equiv \pm 4, \pm 6 \pmod{13}. \end{cases}$$

Also,

$$\sum_{k=0}^{p^a-1} \frac{C_k^{(2)}}{13^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv \pm 1, \pm 5 \pmod{13}, \\ 2 \pmod{p} & \text{if } p^a \equiv \pm 2, \pm 3 \pmod{13}, \\ -3 \pmod{p} & \text{if } p^a \equiv \pm 4, \pm 6 \pmod{13}; \end{cases}$$

and

$$\sum_{k=0}^{p^a-1} \frac{C_k^{(2)}}{19^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv \pm 1, \pm 7, \pm 8 \pmod{19}, \\ -4 \pmod{p} & \text{if } p^a \equiv \pm 2, \pm 3, \pm 5 \pmod{19}, \\ 3 \pmod{p} & \text{if } p^a \equiv \pm 4, \pm 6, \pm 9 \pmod{19}. \end{cases}$$

Now we turn to our results involving third-order and fourth-order Catalan numbers.

Theorem 1.8. Let $p \neq 5$ be a prime and let $a \in \mathbb{Z}^+$. Set

$$S_d = \sum_{k=0}^{p^a-1} \frac{\binom{4k}{k+d}}{5^k} \quad \text{for } d = -2, -1, \dots, 3p^a.$$

(i) When $p \neq 11$, we have

$$S_0 \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -9/11 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -1/11 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}; \end{cases}$$

$$S_1 \equiv \begin{cases} 0 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -5/11 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -14/11 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}; \end{cases}$$

$$S_{-1} \equiv \begin{cases} 0 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -3/11 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ 7/11 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ -4/11 \pmod{p} & \text{if } p^a \equiv -2 \pmod{5}; \end{cases}$$

$$S_{-2} \equiv \begin{cases} 0 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -1/11 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -16/11 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ 17/11 \pmod{p} & \text{if } p^a \equiv -2 \pmod{5}. \end{cases}$$

(ii) For $d = 2, \dots, 3p^a$ we have

$$S_d - S_{d-1} + 6S_{d-2} + 4S_{d-3} + S_{d-4} \equiv \begin{cases} 6 \pmod{p} & \text{if } d = p^a + 1, \\ 4 \pmod{p} & \text{if } d = 2p^a + 1, \\ 0 \pmod{p} & \text{otherwise.} \end{cases}$$

(iii) We have

$$\sum_{k=0}^{p^a-1} \frac{C_k^{(3)}}{5^k} \equiv \begin{cases} 1 \pmod{p} & \text{if } p^a \equiv 1, -2 \pmod{5}, \\ 0 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -2 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}. \end{cases}$$

Also,

$$\sum_{k=0}^{p^a-1} \frac{\bar{C}_k^{(3)}}{5^k} \equiv \begin{cases} 3 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -2 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ 1 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}. \end{cases}$$

Theorem 1.9. Let $p > 3$ be a prime and let $a \in \mathbb{Z}^+$. Then

$$\sum_{k=1}^{p^a-1} \frac{3^{3k}}{4^{4k}} C_k^{(3)} \equiv \frac{(\frac{-2}{p^a}) - 1}{12} \pmod{p}$$

and

$$\sum_{k=1}^{p^a-1} \frac{3^{3k}}{4^{4k}} \binom{4k}{k+p^a} \equiv -\frac{(\frac{-2}{p^a}) + 20}{48} \pmod{p}.$$

Theorem 1.10. *Let $p > 3$ be a prime.*

(i) *If $(\frac{p}{7}) = 1$, then*

$$\sum_{k=1}^{p-1} \frac{\bar{C}_k^{(3)}}{3^k} \equiv \begin{cases} -6 \pmod{p} & \text{if } p \equiv 2 \pmod{3}, \\ 0 \pmod{p} & \text{if } p = x^2 + 3y^2 \text{ and } (\frac{x+5y}{p}) = (\frac{x-3y}{p}), \\ -3 \pmod{p} & \text{otherwise.} \end{cases}$$

(ii) *Suppose that $(\frac{p}{23}) = 1$. In the case $p \equiv 1 \pmod{3}$, if there exists an integer $t \in \mathbb{Z}$ such that $t^2 \equiv 69 \pmod{p}$ and $(97 - 3t)/2$ is a cubic residue modulo p then*

$$\sum_{k=1}^{p-1} (-1)^k \bar{C}_k^{(4)} \equiv 0 \pmod{p},$$

otherwise

$$\sum_{k=1}^{p-1} (-1)^k \bar{C}_k^{(4)} \equiv -13 \pmod{p}.$$

In the case $p \equiv 2 \pmod{3}$, if $v_{(p+1)/3} \equiv -13 \pmod{p}$ (where $v_0 = 2$, $v_1 = -97$ and $v_{n+1} = -97v_n - 13^2 v_{n-1}$ for $n \in \mathbb{Z}^+$), then

$$\sum_{k=1}^{p-1} (-1)^k \bar{C}_k^{(4)} \equiv -10 \pmod{p};$$

otherwise we have

$$\sum_{k=1}^{p-1} (-1)^k \bar{C}_k^{(4)} \equiv 3 \pmod{p}.$$

In the next section we are going to establish a general theorem relating $\sum_{k=0}^{p^a-1} \binom{(h+1)k}{k+d} \pmod{p}$ to a linear recurrence of order $h+1$. In Section 3 we shall prove Theorem 1.1. Theorems 1.2-1.6 will be proved in Section 4. (We omit the proof of Theorem 1.7 since it is similar to that of Theorem 1.6.) Section 5 is devoted to the proof of Theorem 1.8. In Section 6 we will show Theorem 1.9. The proof of Theorem 1.10 is very technical, so we omit it.

2. A GENERAL THEOREM

The following lemma is a well known result due to Sylvester which follows from Lagrange's interpolation formula.

Lemma 2.1. *Define an m -th linear recurrence $\{u_n\}_{n \in \mathbb{Z}}$ by*

$$u_0 = \cdots = u_{m-2} = 0, \quad u_{m-1} = 1,$$

and

$$u_{n+m} + a_1 u_{n+m-1} + \cdots + a_m u_n = 0 \quad (n \in \mathbb{Z}),$$

where $a_1, \dots, a_m \in \mathbb{C}$ and $a_m \neq 0$. Suppose that the equation $x^m + a_1 x^{m-1} + \cdots + a_0 = 0$ has m distinct zeroes $\alpha_1, \dots, \alpha_n \in \mathbb{C}$. Then

$$u_n = \sum_{i=1}^m \frac{\alpha_i^n}{\prod_{j \neq i} (\alpha_i - \alpha_j)} \quad \text{for all } n \in \mathbb{Z}.$$

Now we present our general theorem on connections between sums involving binomial coefficients and linear recurrences.

Theorem 2.1. Let p be a prime and $m \in \mathbb{Z}_p$ with $m \not\equiv 0 \pmod{p}$. Let $a, h \in \mathbb{Z}^+$. Define an integer sequence $\{u_n\}_{n \in \mathbb{Z}}$ by

$$u_0 = \cdots = u_{h-1} = 0, \quad u_h = 1 \tag{2.1}$$

and

$$\sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) u_{n+j} = 0 \quad (n \in \mathbb{Z}). \tag{2.2}$$

(i) For $d \in \{-h+1, \dots, hp^a\}$ we have

$$\begin{aligned} & \sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) \sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d+j}}{m^k} \\ & \equiv [p^a \mid d+h] \binom{h+1}{(d+h)/p^a + 1} \pmod{p} \end{aligned} \tag{2.3}$$

and

$$\sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d}}{m^k} \equiv - \sum_{r=1}^h \binom{h+1}{r+1} u_{h-1+\min\{d-rp^a, 0\}} \pmod{p}. \tag{2.4}$$

(ii) Suppose that

$$D((1+x)^{h+1} - mx^h) \not\equiv 0 \pmod{p}.$$

Then, for $d \in \{-h+1, \dots, hp^a\}$ we have

$$\begin{aligned} & \sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d}}{m^k} \equiv (h+1-m)u_{d+h-1} + u_{p^a+d+h-1} \\ & + \sum_{0 < r \leq \lfloor (d-1)/p^a \rfloor} \binom{h+1}{r+1} u_{d+h-1-rp^a} \pmod{p}. \end{aligned} \tag{2.5}$$

Proof. (i) We first show (2.3) for any given $d \in \{-h+1, \dots, hp^a\}$. Observe that

$$\begin{aligned} & \frac{\binom{(h+1)p^a}{p^a+d+h}}{m^{p^a-1}} + m \sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d+h}}{m^k} \\ &= \sum_{k=1}^{p^a} \frac{\binom{(h+1)k}{k+d+h}}{m^{k-1}} = \sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k+h+1}{k+d+h+1}}{m^k} \\ &= \sum_{k=0}^{p^a-1} \frac{\sum_{i=0}^{h+1} \binom{h+1}{i} \binom{(h+1)k}{k+d+h+1-i}}{m^k} \\ &\quad (\text{by the Chu-Vandermonde identity (see (5.22) of [GKP, p. 169])}) \\ &= \sum_{j=0}^{h+1} \binom{h+1}{j} \sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d+j}}{m^k} \end{aligned}$$

and hence

$$\sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) \sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d+j}}{m^k} \equiv \binom{(h+1)p^a}{p^a+d+h} \pmod{p}$$

by Fermat's little theorem. If $d+h \not\equiv 0 \pmod{p^a}$, then

$$\binom{(h+1)p^a}{p^a+d+h} = \frac{(h+1)p^a}{p^a+d+h} \binom{(h+1)p^a-1}{p^a+d+h-1} \equiv 0 \pmod{p};$$

if $d+h = p^a q$ for some $q \in \mathbb{Z}^+$, then

$$\binom{(h+1)p^a}{p^a+d+h} = \binom{(h+1)p^a}{(q+1)p^a} \equiv \binom{h+1}{q+1} \pmod{p}$$

by Lucas' theorem (see, e.g., [HS]). Therefore (2.3) follows from the above.

Next we want to prove (2.4) by induction.

For $d \in \{hp^a - h, \dots, hp^a\}$, as $d \geq h(p^a - 1)$ and $(h-1)p^a - d \leq h - p^a < h$ we have

$$\sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d}}{m^k} = \frac{\binom{(h+1)(p^a-1)}{p^a-1+d}}{m^{p^a-1}} \equiv \delta_{d,h(p^a-1)} \pmod{p}$$

and also

$$\begin{aligned} & \sum_{i=1}^h \binom{h+1}{i+1} u_{h-1+\min\{d-ip^a, 0\}} \\ &= \sum_{\substack{1 \leq i \leq h \\ ip^a \geq d+h}} \binom{h+1}{i+1} u_{h-1+d-ip^a} \\ &= [hp^a \geq d+h] u_{h-1+d-hp^a} = \delta_{d,hp^a-h} u_{-1} = -\delta_{d,h(p^a-1)}. \end{aligned}$$

So (2.4) holds for all $d = hp^a - h, \dots, hp^a$.

Let $-h < d < hp^a - h$ and assume that (2.4) with d replaced by a large integer not exceeding hp^a holds. For $r \in \{1, \dots, h\}$, if $ip^a < d + h$ then

$$\sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) u_{h-1+\min\{d+j-rp^a, 0\}} = 0$$

since $u_0 = \dots = u_{h-1} = 0$; if $ip^a \geq d + h$, then

$$\begin{aligned} & \sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) u_{h-1+\min\{d+j-rp^a, 0\}} \\ &= \sum_{j=0}^h \left(\binom{h+1}{j} - m\delta_{j,h} \right) u_{h-1+d+j-rp^a} + u_{h-1+\min\{d+h+1-rp^a, 0\}} \\ &= \sum_{j=0}^h \left(\binom{h+1}{j} - m\delta_{j,h} \right) u_{h-1+d+j-rp^a} - \delta_{d+h, rp^a} = -\delta_{d+h, rp^a}. \end{aligned}$$

So we have

$$\begin{aligned} & \sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) \sum_{r=1}^h \binom{h+1}{r+1} u_{h-1+\min\{d+j-rp^a, 0\}} \\ &= \sum_{i=1}^h \binom{h+1}{r+1} \sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) u_{h-1+\min\{d+j-rp^a, 0\}} \\ &= \sum_{r=1}^h \binom{h+1}{r+1} (-\delta_{rp^a, d+h}) = -[p^a \mid d+h] \binom{h+1}{(d+h)/p^a + 1}. \end{aligned}$$

Combining this with (2.3) and the induction hypothesis, we obtain (2.4). This concludes the induction step.

(ii) Write

$$\sum_{j=0}^{h+1} \left(\binom{h+1}{j} - m\delta_{j,h} \right) x^j = (x+1)^{h+1} - mx^h = \prod_{i=1}^{h+1} (x - \alpha_i)$$

with $\alpha_1, \dots, \alpha_{h+1} \in \mathbb{C}$. As $D := D((x+1)^{h+1} - mx^h) \neq 0$, $\alpha_1, \dots, \alpha_{h+1}$ are distinct. Clearly all those α_i , α_i^{-1} , and

$$c_i := \frac{D}{\prod_{j \neq i} (\alpha_i - \alpha_j)} = \prod_{\substack{1 \leq s < t \leq h+1 \\ s, t \neq i}} (\alpha_s - \alpha_t)^2 \times \prod_{j \neq i} (\alpha_i - \alpha_j)$$

are algebraic integers.

Fix $d \in \{-h+1, \dots, dp^a\}$. By part (i),

$$-\sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d}}{m^k} \equiv \sum_{\substack{1 \leq r \leq h \\ rp^a \geq d}} \binom{h+1}{r+1} u_{h-1+d-rp^a} \pmod{p}.$$

By Lemma 2.1, for any $n \in \mathbb{N}$ we have

$$u_n = \sum_{i=1}^{h+1} \frac{\alpha_i^n}{\prod_{j \neq i} (\alpha_i - \alpha_j)} = \frac{1}{D} \sum_{i=1}^{h+1} c_i \alpha_i^n.$$

Therefore

$$-\sum_{k=0}^{p^a-1} \frac{\binom{(h+1)k}{k+d}}{m^k} \equiv \frac{1}{D} \sum_{i=1}^{h+1} c_i \alpha_i^{d+h-1} \sum_{\substack{1 \leq r \leq h \\ rp^a \geq d}} \binom{h+1}{r+1} \alpha_i^{-rp^a} \pmod{p}.$$

Since

$$\sum_{j=0}^{h+1} \binom{h+1}{j} \alpha_i^{jp^a} \equiv \left(\sum_{j=0}^{h+1} \binom{h+1}{j} \alpha_i^j \right)^{p^a} = (m \alpha_i^h)^{p^a} \equiv m \alpha_i^{hp^a} \pmod{p},$$

we have

$$m \equiv \sum_{j=0}^{h+1} \binom{h+1}{j} \alpha_i^{(j-h)p^a} = \sum_{r=-1}^h \binom{h+1}{r+1} \alpha_i^{-rp^a} \pmod{p}$$

and hence

$$\sum_{r=1}^h \binom{h+1}{r+1} \alpha_i^{-rp^a} \equiv m - h - 1 - \alpha_i^{p^a} \pmod{p}.$$

Therefore $\sum_{k=0}^{p^a-1} \binom{(h+1)k}{k+d}/m^k$ is congruent to

$$\begin{aligned} & \frac{1}{D} \sum_{i=1}^{h+1} c_i \alpha_i^{d+h-1} \left(h + 1 - m + \alpha_i^{p^a} + \sum_{0 < rp^a \leq d-1} \binom{h+1}{r+1} \alpha_i^{-rp^a} \right) \\ &= (h+1-m)u_{d+h-1} + u_{p^a+d+h-1} + \sum_{0 < r \leq \lfloor (d-1)/p^a \rfloor} \binom{h+1}{r+1} u_{d+h-1-rp^a} \end{aligned}$$

modulo p . This proves (2.5).

The proof of Theorem 2.1 is now complete. \square

3. PROOF OF THEOREM 1.1

To prove Theorem 1.1 in the case $c \equiv -1/4 \pmod{p}$, we give the following theorem.

Theorem 3.1. *Let $p > 3$ be a prime and let $a \in \mathbb{Z}^+$. Then*

$$\begin{aligned} & \sum_{k=0}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k+d} \\ & \equiv \begin{cases} ((-1)^d 4^{2-d} - 7(9d+1)2^d)/81 \pmod{p} & \text{if } d \in \{-1, \dots, p^a\}, \\ ((-1)^d 4^{3-d} - (9d+1)2^d)/81 \pmod{p} & \text{if } d \in \{p^a, \dots, 2p^a\}. \end{cases} \end{aligned} \quad (3.1)$$

In particular,

$$\begin{aligned} \sum_{k=0}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k} & \equiv \frac{1}{9} \pmod{p}, \quad \sum_{k=1}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k+p^a} \equiv -\frac{2}{9} \pmod{p}, \\ \sum_{k=1}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k+1} & \equiv -\frac{16}{9} \pmod{p}, \quad \sum_{k=1}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k-1} \equiv -\frac{4}{9} \pmod{p}. \end{aligned}$$

Proof. Let $u_0 = u_1 = 0$, $u_2 = 1$, and

$$u_{n+3} + \left(3 - \frac{27}{4}\right) u_{n+1} + u_n = 0 \quad \text{for } n = 0, 1, 2, \dots.$$

Since

$$x^3 + \left(3 - \frac{27}{4}\right) x^2 + 3x + 1 = \left(x + \frac{1}{4}\right) (x-2)^2,$$

there are $a, b, c \in \mathbb{C}$ such that $u_n = (an+b)2^n + c(-1/4)^n$ for all $n \in \mathbb{N}$. By $u_0 = u_1 = 0$ and $u_2 = 1$, we can easily determine the values of a, b, c explicitly. It follows that

$$u_n = \frac{16}{81} \left(\left(-\frac{1}{4}\right)^n + \left(\frac{9}{8}n-1\right) 2^n \right) \quad \text{for all } n \in \mathbb{N}. \quad (3.2)$$

Let $d \in \{-1, \dots, 2p^a\}$. Applying (2.4) with $h = 2$ and $m = 27/4$ we get

$$\begin{aligned} - \sum_{k=0}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k+d} & \equiv \sum_{r=1}^2 \binom{3}{r+1} u_{1+\min\{d-rp^a, 0\}} \\ & \equiv 3[d \leq p^a] u_{1+d-p^a} + u_{1+d-2p^a} \pmod{p}. \end{aligned}$$

By (3.2) and Fermat's little theorem,

$$u_{d+1-p^a} \equiv \frac{(-1)^d 4^{2-d} + (9d+1)2^{d+1}}{81} \pmod{p}$$

and

$$u_{d+1-2p^a} \equiv \frac{(-1)^{d-1} 4^{3-d} + (9d+1)2^d}{81} \pmod{p}.$$

Thus (3.1) follows.

Applying (3.1) with $d = 0, \pm 1, p^a$ we immediately obtain the last four congruences in Theorem 3.1. We are done. \square

Now we need some knowledge about Lucas sequences.

Given $A, B \in \mathbb{C}$ with $B \neq 0$, the Lucas sequences $u_n = u_n(A, B)$ and $v_n = v_n(A, B)$ ($n \in \mathbb{Z}$) are defined as follows:

$$\begin{aligned} u_0 &= 0, \quad u_1 = 1, \quad \text{and} \quad u_{n+1} = Au_n - Bu_{n-1} \quad (n \in \mathbb{Z}); \\ v_0 &= 2, \quad v_1 = A, \quad \text{and} \quad v_{n+1} = Av_n - Bv_{n-1} \quad (n \in \mathbb{Z}). \end{aligned}$$

It is easy to see that $v_n = 2u_{n+1} - Au_n$ for all $n \in \mathbb{Z}$. Let α and β be the two roots of the equation $x^2 - Ax + B = 0$. It is well known that

$$(\alpha - \beta)u_n = \alpha^n - \beta^n \quad \text{and} \quad v_n = \alpha^n + \beta^n.$$

Lemma 3.1. *Let p be an odd prime and let $a \in \mathbb{Z}^+$. Let $A, B \in \mathbb{Z}_p$ with $\Delta = A^2 - 4B \not\equiv 0 \pmod{p}$. Then for any $n \in \mathbb{Z}$ we have*

$$u_{n+p^a} \equiv \frac{Au_n + (\frac{\Delta}{p^a})v_n}{2} \pmod{p} \quad \text{and} \quad Bu_{n-p^a} \equiv \frac{Au_n - (\frac{\Delta}{p^a})v_n}{2} \pmod{p},$$

where $u_k = u_k(A, B)$ and $v_k = v_k(A, B)$.

Proof. Let α and β be the two roots of the equation $x^2 - Ax + B = 0$. Clearly

$$v_{p^a} = \alpha^{p^a} + \beta^{p^a} \equiv (\alpha + \beta)^{p^a} = A^{p^a} \equiv A \pmod{p}.$$

Since

$$(\alpha - \beta)u_{p^a} = \alpha^{p^a} - \beta^{p^a} \equiv (\alpha - \beta)^{p^a} \pmod{p},$$

we have

$$\Delta u_{p^a} \equiv (\alpha - \beta)^{p^a+1} = \Delta^{(p^a-1)/2} \Delta \pmod{p}$$

and hence

$$u_{p^a} \equiv (\Delta^{(p-1)/2})^{\sum_{i=0}^{a-1} p^i} \equiv \left(\frac{\Delta}{p^a}\right)^a = \left(\frac{\Delta}{p^a}\right) \pmod{p}.$$

Now,

$$\begin{aligned} 2u_{n+p^a} &= \frac{\alpha^n - \beta^n}{\alpha - \beta} (\alpha^{p^a} + \beta^{p^a}) + \frac{\alpha^{p^a} - \beta^{p^a}}{\alpha - \beta} (\alpha^n + \beta^n) \\ &= u_n v_{p^a} + u_{p^a} v_n \equiv Au_n + \left(\frac{\Delta}{p} \right) v_n \pmod{p}. \end{aligned}$$

Also,

$$\begin{aligned} 2u_{n-p^a} &= \frac{\alpha^n - \beta^n}{\alpha - \beta} (\alpha^{-p^a} + \beta^{-p^a}) + \frac{\alpha^{-p^a} - \beta^{-p^a}}{\alpha - \beta} (\alpha^n + \beta^n) \\ &= u_n \frac{\alpha^{p^a} + \beta^{p^a}}{(\alpha\beta)^{p^a}} + \frac{\beta^{p^a} - \alpha^{p^a}}{\alpha - \beta} \cdot \frac{v_n}{(\alpha\beta)^{p^a}} = u_n \frac{v_{p^a}}{B^{p^a}} - \frac{u_{p^a}}{B^{p^a}} v_n \end{aligned}$$

and hence

$$2Bu_{n-p^a} \equiv 2B^{p^a} u_{n-p^a} = u_n v_{p^a} - u_{p^a} v_n \equiv Au_n - \left(\frac{\Delta}{p^a} \right) v_n \pmod{p}.$$

This concludes the proof. \square

For Theorem 1.1 in the case $c \not\equiv -1/4 \pmod{p}$, we need the following general result.

Theorem 3.2. *Let p be an odd prime and let $a \in \mathbb{Z}^+$. Let $c \in \mathbb{Z}_p$ with $c \not\equiv 0, -1, 2, -1/4 \pmod{p}$, and let $d \in \{-1, 0, \dots, p^a\}$. Then*

$$\begin{aligned} &\sum_{k=0}^{p^a-1} \frac{c^{2k}}{(c+1)^{3k}} \binom{3k}{k+d} \\ &\equiv u_{d+1} + \frac{3c+1}{(c+1)^2(c-2)} \left(u_{d+1} - c^d + \frac{u_d}{c^2} \right) \tag{3.3} \\ &\quad + \frac{v_d + c^2 v_{d+1}}{2(c+1)^2(c-2)} \left(1 - \left(\frac{4c+1}{p^a} \right) \right) \pmod{p}, \end{aligned}$$

where $u_n = u_n((3c+1)/c^2, -1/c)$ and $v_n = v_n((3c+1)/c^2, -1/c)$.

Proof. Set $m = (c+1)^3/c^2$. Then c is a zero of the polynomial

$$x^2 + (3-m)x^2 + 3x + 1 = (x+1)^3 - mx^2.$$

The discriminant of this polynomial is $D = (4m-27)m^2$. Note that

$$c^2(4m-27) = 4(c+1)^3 - 27c^2 = (4c+1)(c-2)^2 \not\equiv 0 \pmod{p}.$$

We can write

$$x^2 + (3-m)x^2 + 3x + 1 = (x-c)(x-\alpha)(x-\beta)$$

with α, β, c distinct. Clearly $-c-\alpha-\beta = 3-m$ and $(-c)(-\alpha)(-\beta) = 1$. It follows that $\alpha+\beta = A$ and $\alpha\beta = B$, where $A = (3c+1)/c^2$ and $B = -1/c$.

Let $U_0 = U_1 = 0$, $U_2 = 1$ and $U_{n+3} + (3-m)U_{n+2} + 3U_{n+1} + U_n = 0$ for $n \in \mathbb{Z}$. Also set $u_n = u_n(A, B)$ and $v_n = v_n(A, B)$ for $n \in \mathbb{Z}$. By Lemma 2.1, for any $n \in \mathbb{Z}$ we have

$$\begin{aligned} U_n &= \frac{c^n}{(c-\alpha)(c-\beta)} + \frac{\alpha^n}{(\alpha-c)(\alpha-\beta)} + \frac{\beta^n}{(\beta-c)(\beta-\alpha)} \\ &= \frac{1}{(c-\alpha)(c-\beta)} \left(c^n + \frac{\alpha^n(\beta-c) - (\alpha-c)\beta^n}{\alpha-\beta} \right) \\ &= \frac{1}{c^2 - Ac + B} \left(c^n + B \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha-\beta} - c \frac{\alpha^n - \beta^n}{\alpha-\beta} \right) \\ &= \frac{c}{c^3 - 3c - 2} (c^n - c^{-1}u_{n-1} - cu_n) = \frac{c^{n+1} - u_{n-1} - c^2u_n}{(c+1)^2(c-2)}. \end{aligned}$$

In light of Theorem 2.1(ii),

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \equiv (3-m)U_{d+1} + U_{p^a+d+1} \pmod{p}$$

and hence

$$\begin{aligned} &\sum_{k=0}^{p^a-1} \frac{c^{2k}}{(c+1)^{3k}} \binom{3k}{k+d} - U_{p^a+d+1} \\ &\equiv \left(3 - \frac{(c+1)^3}{c^2} \right) \frac{c^{d+2} - u_d - c^2u_{d+1}}{(c+1)^2(c-2)} \pmod{p}. \end{aligned} \tag{3.4}$$

Note that

$$\Delta := A^2 - 4B = \frac{(3c+1)^2}{c^4} + \frac{4}{c} = \frac{(c+1)^2(4c+1)}{c^4} \not\equiv 0 \pmod{p}$$

and

$$\left(\frac{\Delta}{p^a} \right) = \left(\frac{4c+1}{p^a} \right).$$

By Lemma 3.1,

$$2u_{p^a+d} \equiv \left(\frac{4c+1}{p} \right) v_d + Au_d \pmod{p}$$

and

$$2u_{p^a+d+1} \equiv \left(\frac{4c+1}{p} \right) v_{d+1} + Au_{d+1} \pmod{p}.$$

Thus

$$\begin{aligned} U_{p^a+d+1} &= \frac{c^{p^a+d+2} - u_{p^a+d} - c^2 u_{p^a+d+1}}{(c+1)^2(c-2)} \\ &\equiv \frac{2c^{d+3} - ((\frac{4c+1}{p})v_d + Au_d) - c^2((\frac{4c+1}{p})v_{d+1} + Au_{d+1})}{2(c+1)^2(c-2)} \pmod{p}. \end{aligned}$$

Note that

$$\begin{aligned} &\frac{v_d + c^2 v_{d+1}}{2} + A \frac{u_d + c^2 u_{d+1}}{2} \\ &= \frac{v_d + Au_d}{2} + c^2 \frac{v_{d+1} + Au_{d+1}}{2} = u_{d+1} + c_{d+2}^u \\ &= u_{d+1} + c^2 \left(\frac{3c+1}{c^2} u_{d+1} + \frac{u_d}{c} \right) = (3c+2)u_{d+1} + cu_d. \end{aligned}$$

Therefore

$$U_{p^a+d+1} \equiv \frac{c^{d+3} + (v_d + c^2 v_{d+1}) \frac{1-(\frac{4c+1}{p^a})}{2} - ((3c+2)u_{d+1} + cu_d)}{(c+1)^2(c-2)} \pmod{p}.$$

Combining this with (3.4) we finally obtain the desired (3.3). \square

Corollary 3.1. *Let $p > 3$ be a prime and let $d \in \{-1, 0, \dots, p^a\}$ with $a \in \mathbb{Z}^+$. Then*

$$\sum_{k=0}^{p^a-1} \frac{3^k}{8^k} \binom{3k}{k+d} \equiv \begin{cases} \frac{(-3)^{d/2}}{28} (1 + 27(\frac{p^a}{3})) \pmod{p}, & \text{if } 2 \mid d, \\ \frac{(-3)^{(d+3)/2}}{28} (1 - (\frac{p^a}{3})) \pmod{p}, & \text{if } 2 \nmid d. \end{cases} \quad (3.5)$$

Proof. Set $c = -1/3$. Then $c^2/(c+1)^3 = 3/8$, $(3c+1)/c^2 = 0$ and $-1/c = 3$. Let $u_n = u_n(0, 3)$ and $v_n = v_n(0, 3)$ for $n \in \mathbb{Z}$. We clearly have

$$u_{2n} = v_{2n+1} = 0, \quad u_{2n+1} = (-3)^n \text{ and } v_{2n} = 2(-3)^n \text{ for all } n \in \mathbb{Z}.$$

Applying Theorem 3.2 we immediately get the desired result. \square

Proof of Theorem 1.1. In the case $c \equiv -1/4 \pmod{p}$, we have $c^2/(c+1)^3 \equiv 4/27 \pmod{p}$ and $c' \equiv -8/9 \pmod{p}$, hence the desired congruences follow from Theorem 3.1.

Below we assume that $c \not\equiv -1/4 \pmod{p}$. For the first three congruences in Theorem 1.1, we may simply apply Theorem 3.2 with $d = 0, \pm 1$.

As in the proof of Theorem 3.2, we define $A = (3c+1)/c^2$, $B = -1/c$ and $\Delta = A^2 - 4B$. Let $u_n = u_n(A, B)$ and $v_n = v_n(A, B)$ for $n \in \mathbb{Z}$. By Lemma 3.1,

$$2u_{p^a+1} = Au_1 + \left(\frac{\Delta}{p^a}\right)v_1 = A + A\left(\frac{4c+1}{p^a}\right) \pmod{p}$$

and

$$\begin{aligned} v_{p^a+1} &= 2u_{p^a+2} - Au_{p^a+1} = Au_{p^a+1} - 2Bu_{p^a} \\ &\equiv \frac{A^2 + A^2(\frac{4c+1}{p^a})}{2} - 2B\left(\frac{4c+1}{p^a}\right) = \frac{A^2 + \Delta(\frac{4c+1}{p^a})}{2} \pmod{p}. \end{aligned}$$

These, together with Theorem 3.2 in the case $d = p^a$, yield the last congruence in Theorem 1.1. We are done. \square

4. PROOFS OF THEOREMS 1.2-1.6

Lemma 4.1. *Let $p > 3$ be a prime and let $a \in \mathbb{Z}^+$. Let*

$$u_0 = u_1 = 0, \quad u_2 = 1, \quad \text{and } u_{n+3} + a_1u_{n+2} + a_2u_{n+1} + a_3u_n = 0 \text{ for all } n \in \mathbb{N},$$

where $a_1, a_2, a_3 \in \mathbb{Z}$. Suppose that $d \in \mathbb{Z}$ and

$$d^2 \equiv D(x^3 + a_1x^2 + a_2x + a_3) \not\equiv 0 \pmod{p}.$$

Set $b = -2a_1^3 + 9a_1a_2 - 27a_3$. Then

$$\begin{aligned} u_{p^a} &\equiv \begin{cases} 0 \pmod{p} & \text{if } p \mid a_1^2 - 3a_2 \text{ or } b/(3d) \in C_0(p^a), \\ \pm(a_1^2 - 3a_2)/d \pmod{p} & \text{if } \pm b/(3d) \in C_1(p^a); \end{cases} \\ u_{p^a+1} &\equiv \begin{cases} b^{(p^a-1)/3} \pmod{p} & \text{if } p \mid a_1^2 - 3a_2, \\ 1 \pmod{p} & \text{if } b/(3d) \in C_0(p^a), \\ (\pm(9a_3 - a_1a_2) - d)/(2d) \pmod{p} & \text{if } \pm b/(3d) \in C_1(p^a); \end{cases} \\ u_{p^a+2} &\equiv \begin{cases} -a_1(2b^{(p^a-1)/3} + 1)/3 \pmod{p} & \text{if } p \mid a_1^2 - 3a_2, \\ -a_1 \pmod{p} & \text{if } b/(3d) \in C_0(p^a), \\ \pm(a_2^2 - 3a_1a_3)/d \pmod{p} & \text{if } \pm b/(3d) \in C_1(p^a). \end{cases} \end{aligned}$$

Proof. In the case $a = 1$, this is a result due to Z. H. Sun [S03, Theorems 3.2-3.3]. Modifying the proof for the case $a = 1$ slightly, we get the result with general a . \square

Actually we just need the following particular result implied by Lemma 4.1.

Lemma 4.2. Let $p > 3$ be a prime and let $a \in \mathbb{Z}^+$. Let $m, t \in \mathbb{Z}$ with $2t + 1 \not\equiv 0 \pmod{p}$, $m \equiv t^2 + t + 7 \not\equiv 0 \pmod{p}$. Define $\{u_n\}_{n \geq 0}$ by

$$u_0 = u_1 = 0, \quad u_2 = 1, \quad \text{and } u_{n+3} + (3-m)u_{n+2} + 3u_{n+1} + u_n = 0 \text{ for } n \in \mathbb{N}.$$

Set $c = (2m^2 - 18m + 27)/(6t + 3)$. Then

$$\begin{aligned} u_{p^a} &\equiv \begin{cases} 0 \pmod{p} & \text{if } p \mid m - 6 \text{ or } c \in C_0(p^a), \\ \pm(m - 6)/(2t + 1) \pmod{p} & \text{if } \pm c \in C_1(p^a); \end{cases} \\ u_{p^a+1} &\equiv \begin{cases} 2^{(p^a-1)/3} \pmod{p} & \text{if } p \mid m - 6, \\ 1 \pmod{p} & \text{if } c \in C_0(p^a), \\ \pm 3/(4t + 2) - 1/2 \pmod{p} & \text{if } \pm c \in C_1(p^a); \end{cases} \\ u_{p^a+2} &\equiv \begin{cases} 2^{(p^a+2)/3} + 1 \pmod{p} & \text{if } p \mid m - 6, \\ m - 3 \pmod{p} & \text{if } c \in C_0(p^a), \\ \pm 3/(2t + 1) \pmod{p} & \text{if } \pm c \in C_1(p^a). \end{cases} \end{aligned}$$

Proof of Theorem 1.2. The discriminant of the polynomial $(x + 1)^3 - 6x^2$ is $D = (4 \times 6 - 27)6^2 = -108$.

Case 1. $p \equiv -1 \pmod{3}$. In this case, $(\frac{D}{p}) = -1$ and hence $(x+1)^2 - 6x^2 \pmod{p}$ has exactly two irreducible factors, thus $(c+1)^3 \equiv 6c^2 \pmod{p}$ for some $c \in \mathbb{Z}$. Clearly $c \not\equiv 0, -1, 2, -1/4 \pmod{p}$. Note that a is even since $p^a \equiv 1 \pmod{3}$. As

$$\left(\frac{4c+1}{p^a}\right) = \left(\frac{4c+1}{p}\right)^a = 1,$$

the first congruence in Theorem 1.2 follows from Theorem 1.1.

Case 2. $p \equiv 1 \pmod{3}$. In this case, for some $t \in \mathbb{Z}$ we have $(2t+1)^2 \equiv -3 \pmod{p}$, i.e., $t^2 + t + 7 \equiv 6 \pmod{p}$. Let $u_0 = u_1 = 0$, $u_2 = 1$ and

$$u_{n+3} + (3 - 6)u_{n+2} + 3u_{n+1} + u_n = 0 \quad (n = 0, 1, 2, \dots).$$

By Theorem 2.1(ii), for $d = -1, \dots, p^a$ we have

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k}{k+d}}{6^k} \equiv u_{p^a+d+1} + (3 - 6)u_{d+1} \pmod{p}.$$

Combining this with Lemma 4.2 in the case $m = 6$, we are able to determine $\sum_{k=0}^{p^a-1} \binom{3k}{k+d}/6^k \pmod{p}$ for $d = 0, \pm 1$. Note that

$$\bar{C}_k^{(2)} = \frac{2}{k+1} \binom{3k}{k} = 2 \binom{3k}{k} - \binom{3k}{k+1}.$$

So we have all the desired congruences in Theorem 1.2. \square

Proof of Theorem 1.3. Define $\{u_n\}_{n \geq 0}$ as in Lemma 4.2. By Theorem 2.1(ii), for $d = -1, \dots, p^a$ we have

$$\sum_{k=0}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \equiv u_{p^a+d+1} + (3-m)u_{d+1} \pmod{p}.$$

Observe that $c^2 + 3 \not\equiv 0 \pmod{p}$ since

$$(2m^2 - 18m + 27)^2 + 3(6t + 3)^2 \equiv 4m(m-6)^2 \pmod{p}.$$

By applying Lemma 4.2 we obtain the desired result. \square

Proof of Theorem 1.4. Fix $d \in \{0, \pm 1\}$. By Theorem 3.1 (or Theorem 1.1 in the case $c = -1/4$),

$$\sum_{k=1}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k+d} \equiv -\frac{2^{d+3}}{9} \pmod{p}.$$

Let $m \in \{1, \dots, p-1\}$ with $m \not\equiv 27/4 \pmod{p}$. If $(c+1)^3 \equiv mc^2 \pmod{p}$ for some $c \in \mathbb{Z}$, then $c \not\equiv 0, -1, 2, -1/4 \pmod{p}$. Thus, by Theorem 1.1 we have

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \equiv 0 \pmod{p}$$

since $\left(\frac{4c+1}{p^a}\right) = \left(\frac{4c+1}{p}\right)^a = 1$.

Now assume that $(x+1)^3 \equiv 6x^2 \pmod{p}$ is not solvable over \mathbb{Z} . Then, by Stickelberger's theorem,

$$\left(\frac{p}{3}\right) = \left(\frac{-108}{p}\right) = \left(\frac{D((1+x)^3 - 3x^2)}{p}\right) \equiv (-1)^3 - 1 = 1$$

and hence $p \equiv 1 \pmod{3}$. By Theorem 1.2,

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+d}}{6^k} \equiv 0 \pmod{p}$$

since

$$2^{(p^6-1)/3} = 2^{(p^2-1)(p^4+p^2+1)/3} \equiv 1 \pmod{p}.$$

Now suppose that $m \not\equiv 6 \pmod{p}$ and $(x+1)^3 \equiv mx^2 \pmod{p}$ is not solvable over \mathbb{Z} . Then

$$\left(\frac{(4m-27)m^2}{p} \right) = \left(\frac{D((x+1)^3 - mx^2)}{p} \right) = 1$$

and hence $m \equiv t^2 + t + 7 \pmod{p}$ for some $t \in \mathbb{Z}$ with $t \not\equiv -1/2 \pmod{p}$. Let $c = (2m^2 - 18m + 27)/(6t + 3)$. By Theorem 1.3,

$$\left(\frac{c+1+2\omega}{p^a} \right)_3 = \left(\frac{c+1+2\omega}{p} \right)_3^3 = 1.$$

Hence $c \in C_0(p^a)$ and

$$\sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \equiv 0 \pmod{p}.$$

In view of the above,

$$\begin{aligned} - \sum_{\substack{0 < k < p^a \\ k \equiv r \pmod{p-1}}} \binom{3k}{k+d} &\equiv \sum_{k=1}^{p^a-1} \binom{3k}{k+d} (p-1)[p-1 \mid k-r] \\ &\equiv \sum_{k=1}^{p^a-1} \binom{3k}{k+d} \sum_{m=1}^{p-1} m^{r-k} = \sum_{m=1}^{p-1} m^r \sum_{k=1}^{p^a-1} \frac{\binom{3k}{k+d}}{m^k} \\ &\equiv \frac{27^r}{4^r} \sum_{k=1}^{p^a-1} \frac{4^k}{27^k} \binom{3k}{k+d} \equiv -\frac{27^r}{4^r} \cdot \frac{2^{d+3}}{9} \pmod{p}. \end{aligned}$$

So we have the first congruence in Theorem 1.4. The second congruence follows immediately since

$$\sum_{k=1}^{p^a-1} \binom{3k}{k+d} = \sum_{r=0}^{p-2} \sum_{\substack{0 < k < p^a \\ k \equiv r \pmod{p-1}}} \binom{3k}{k+d}$$

and

$$\sum_{r=0}^{p-2} \frac{27^r}{4^r} = \frac{27^{p-1}/4^{p-1} - 1}{27/4 - 1} \equiv -[p = 23] \pmod{p}.$$

This concludes the proof of Theorem 1.4. \square

Proof of Theorem 1.5. It suffices to deduce the first, the second and the third congruences in Theorem 1.5. Since we can handle the case $p = 2$ by detailed analysis, below we assume $p > 3$.

By Theorem 1.3 in the case $m = 9$ and $t = 1$, we only need to show that

$$\begin{aligned} 3 \in C_0(p^a) &\iff p^a \equiv \pm 1 \pmod{9}, \\ 3 \in C_1(p^a) &\iff p^a \equiv \pm 2 \pmod{9}, \\ 3 \in C_2(p^a) &\iff p^a \equiv \pm 4 \pmod{9}. \end{aligned} \tag{4.1}$$

Note that

$$\left(\frac{3+1+2\omega}{p^a} \right)_3 = \left(\frac{2}{p} \right)_3^a \left(\frac{2+\omega}{p^a} \right)_3 = \left(\frac{2+\omega}{p^a} \right)$$

and

$$\overline{\left(\frac{2+\omega}{p^a} \right)_3} = \left(\frac{2+\bar{\omega}}{p^a} \right)_3 = \left(\frac{1-\omega}{p^a} \right)_3 = \omega^{((\frac{p^a}{3})p^a-1)/3}.$$

(See, e.g., [IR].) Clearly,

$$\frac{(\frac{p^a}{3})p^a - 1}{3} \equiv \begin{cases} 0 & \text{if } p^a \equiv \pm 1 \pmod{9}, \\ 2 \pmod{3} & \text{if } p^a \equiv \pm 2 \pmod{9}, \\ 1 \pmod{3} & \text{if } p^a \equiv \pm 4 \pmod{9}. \end{cases}$$

Therefore the three formulae in (4.1) are valid. We are done. \square

Proof of Theorem 1.6. We only need to deduce the first, the second and the third congruences in Theorem 1.6. Since we can handle the case $p = 2, 3$ by detailed analysis, below we assume $p > 3$.

By Theorem 1.3 in the case $m = 7$ and $t = 0$, it suffices to show that

$$\begin{aligned} -\frac{1}{3} \in C_0(p^a) &\iff p^a \equiv \pm 1 \pmod{7}, \\ -\frac{1}{3} \in C_1(p^a) &\iff p^a \equiv \pm 3 \pmod{7}, \\ -\frac{1}{3} \in C_2(p^a) &\iff p^a \equiv \pm 2 \pmod{7}. \end{aligned} \tag{4.2}$$

Clearly

$$\left(\frac{3}{p^a} \right)_3 \left(\frac{-1/3 + 1 + 2\omega}{p^a} \right)_3 = \left(\frac{2}{p^a} \right)_3 \left(\frac{1+3\omega}{p^a} \right)_3,$$

and hence

$$\left(\frac{-1/3 + 1 + 2\omega}{p^a} \right)_3 = \left(\frac{1+3\omega}{p^a} \right)_3$$

since $\left(\frac{2}{p^a} \right) = \left(\frac{3}{p^a} \right) = 1$. Observe that the norm of $1+3\omega$ is $N(1+3\omega) = (1+3\omega)(1+3\bar{\omega}) = 7$. By the cubic reciprocity law,

$$\left(\frac{1+3\omega}{p^a} \right)_3 = \left(\frac{p^a}{1+3\omega} \right)_3.$$

If $p^a \equiv \pm 1 \pmod{7}$, then

$$\left(\frac{p^a}{1+3\omega}\right)_3 = \left(\frac{\pm 1}{1+3\omega}\right)_3 = \left(\frac{\pm 1}{1+3\omega}\right)_3^3 = 1$$

and hence $-1/3 \in C_0(p^a)$. If $p^a \equiv \pm 2 \pmod{7}$, then

$$\left(\frac{p^a}{1+3\omega}\right)_3 = \left(\frac{\pm 2}{1+3\omega}\right)_3 \equiv (\pm 2)^{(N(1+3\omega)-1)/3} = 4 \equiv \omega^2 \pmod{1+3\omega},$$

hence $(\frac{p^a}{1+3\omega})_3 = \omega^2$ and $-1/3 \in C_2(p^a)$. If $p^a \equiv \pm 4 \pmod{7}$, then

$$\left(\frac{p^a}{1+3\omega}\right)_3 = \left(\frac{\pm 4}{1+3\omega}\right)_3 = \left(\frac{2}{1+3\omega}\right)_3^2 = (\omega^2)^2 = \omega$$

and hence $-1/3 \in C_1(p^a)$. This completes the proof. \square

5. PROOF OF THEOREM 1.8

In this section we define a sequence $\{u_n\}_{n \in \mathbb{Z}}$ by

$$u_0 = u_1 = u_2 = 0, \quad u_3 = 1$$

and

$$u_{n+4} - u_{n+3} + 6u_{n+2} + 4u_{n+1} + u_n = 0 \quad (n \in \mathbb{Z}).$$

We also set

$$v_n^{(1)} = u_{n+2} - 3u_{n+1} \quad \text{and} \quad v_n^{(2)} = 3u_{n+1} + 2u_n. \quad (5.1)$$

Recall that the Lucas sequence $\{L_n\}_{n \in \mathbb{Z}}$ is given by

$$L_0 = 2, \quad L_1 = 1, \quad \text{and} \quad L_{n+1} = L_n + L_{n-1} \quad \text{for all } n \in \mathbb{Z}.$$

Lemma 5.1. (i) *We have*

$$x^4 - x^3 + 6x^2 + 4x + 1 = (x+1)^4 - 5x^3 = \prod_{\substack{\zeta^5=1 \\ \zeta \neq 1}} (x - (1+\zeta)^2). \quad (5.2)$$

(ii) *Let p be a prime, and let $a \in \mathbb{Z}^+$ and $s \in \{1, 2\}$. Then, for any $d \in \mathbb{N}$ we have*

$$\begin{aligned} 5(v_{p^a+d}^{(s)} - v_d^{(s)}) &\equiv 2L_{2d}([5 \mid d+2p^a - 2s+1] - [5 \mid d+2p^a - 2s]) \\ &\quad + 4L_{2d}([5 \mid d+p^a - 2s+1] - [5 \mid d+p^a - 2s]) \\ &\quad + \left(\frac{d+2p^a - 2s+1}{5}\right)L_{2d-(\frac{d+2p^a-2s+1}{5})} \\ &\quad - \left(\frac{d+2p^a - 2s}{5}\right)L_{2d-(\frac{d+2p^a-2s}{5})} \\ &\quad + 2\left(\frac{d+p^a - 2s+1}{5}\right)L_{2d-(\frac{d+p^a-2s+1}{5})} \\ &\quad - 2\left(\frac{d+p^a - 2s}{5}\right)L_{2d-(\frac{d+p^a-2s}{5})} \pmod{p}. \end{aligned}$$

Proof. (i) It is easy to verify that

$$(1 + (1 + x)^2)^4 - 5(1 + x)^6 = \frac{x^5 - 1}{x - 1}(x^4 + 7x^3 + 19x^2 + 23x + 11).$$

Therefore any primitive 5th root ζ of unity is a zero of $(1 + x)^4 = 5x^3$. So (5.2) follows.

(ii) For $n \in \mathbb{Z}$ let

$$V_n^{(s)} = \frac{1}{5} \sum_{\substack{\zeta^5=1 \\ \zeta \neq 1}} (\zeta^{1-2s} - \zeta^{-2s})(1 + \zeta)^{2n} = \frac{1}{5} \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s})(1 + \zeta)^{2n}.$$

Then $\{V_n\}_{n \in \mathbb{Z}}$ satisfies the recurrence relation

$$V_{n+4}^{(s)} - V_{n+3}^{(s)} + 6V_{n+2}^{(s)} + 4V_{n+1}^{(s)} + V_n^{(s)} = 0 \quad (n \in \mathbb{Z}).$$

Clearly we also have

$$v_{n+4}^{(s)} - v_{n+3}^{(s)} + 6v_{n+2}^{(s)} + 4v_{n+1}^{(s)} + v_n^{(s)} = 0 \quad (n \in \mathbb{Z}).$$

Note that

$$\frac{1}{5} \sum_{\zeta^5=1} \zeta^k = [5 \mid k] \quad \text{for any } k \in \mathbb{Z};$$

in particular

$$\frac{1}{5} \sum_{\zeta^5=1} \zeta^{1-2s} = 0 = \frac{1}{5} \sum_{\zeta^5=1} \zeta^{-2s}.$$

Thus

$$V_0^{(s)} = \frac{1}{5} \left(\sum_{\zeta^5=1} \zeta^{1-2s} - \sum_{\zeta^5=1} \zeta^{-2s} \right) = 0 = v_0^{(s)}$$

and

$$\begin{aligned} V_1^{(s)} &= \frac{1}{5} \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s})(1 + 2\zeta + \zeta^2) \\ &= \frac{1}{5} \sum_{\zeta^5=1} (\zeta^{3-2s} + \zeta^{2-2s}) = [s = 1] = v_1^{(s)}. \end{aligned}$$

Also,

$$\begin{aligned} V_2^{(s)} &= \frac{1}{5} \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s})(1 + 4\zeta + 6\zeta^2 + 4\zeta^3 + \zeta^4) \\ &= \frac{1}{5} \sum_{\zeta^5=1} (3\zeta^{4-2s} + 2\zeta^{3-2s} - 2\zeta^{2-2s}) = -2[s = 1] + 3[s = 2] = v_2^{(s)} \end{aligned}$$

and

$$\begin{aligned} V_3^{(s)} &= \frac{1}{5} \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s})(1 + 6\zeta + 15\zeta^2 + 20\zeta^3 + 15\zeta^4 + 6\zeta^5 + \zeta^6) \\ &= \frac{1}{5} \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s})(7\zeta + 15\zeta^2 + 20\zeta^3 + 15\zeta^4) \\ &= [s=1](7-15) + [s=2](20-15) = v_3^{(s)}. \end{aligned}$$

By the above, $V_n^{(s)} = v_n^{(s)}$ for all $n \in \mathbb{N}$.

Now fix $d \in \mathbb{N}$. For any algebraic integer ζ , we have $(1 + \zeta)^{p^a} \equiv 1 + \zeta^{p^a} \pmod{p}$ and hence

$$\begin{aligned} &(1 + \zeta)^{2(p^a+d)} - (1 + \zeta)^{2d} \\ &\equiv (1 + \zeta)^{2d}((1 + \zeta^{p^a})^2 - 1) \\ &\equiv \sum_{k=0}^{2d} \binom{2d}{k} (\zeta^{k+2p^a} + 2\zeta^{k+p^a}) \pmod{p}. \end{aligned}$$

Thus

$$\begin{aligned} &5(V_{p^a+d}^{(s)} - V_d^{(s)}) \\ &= \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s})((1 + \zeta)^{2p^a+2d} - (1 + \zeta)^{2d}) \\ &\equiv \sum_{\zeta^5=1} (\zeta^{1-2s} - \zeta^{-2s}) \sum_{k=0}^{2d} \binom{2d}{k} (\zeta^{k+2p^a} + 2\zeta^{k+p^a}) \\ &\equiv 5 \sum_{k+2p^a \equiv 2s-1 \pmod{5}} \binom{2d}{k} - 5 \sum_{k+2p^a \equiv 2s \pmod{5}} \binom{2d}{k} \\ &\quad + 10 \sum_{k+p^a \equiv 2s-1 \pmod{5}} \binom{2d}{k} - 10 \sum_{k+p^a \equiv 2s \pmod{5}} \binom{2d}{k} \pmod{p}. \end{aligned}$$

It is known that

$$5 \sum_{k \equiv r \pmod{5}} \binom{2d}{k} - 2^{2d} = [5 \mid d-r] 2L_{2d} + \left(\frac{d-r}{5} \right) L_{2d-(\frac{d-r}{5})}$$

for all $r \in \mathbb{Z}$. (Cf. [S92], [SS], [Su02] and [Su08].) Therefore $5(V_{p^a+d}^{(s)} - V_d^{(s)})$ is congruent to the right-hand side of the congruence in Lemma 5.1(ii) modulo p . So the desired congruence follows.

The proof of Lemma 5.1 is now complete. \square

Remark 5.1. On April 27, 2009, the author sent a message [Su09] to Number Theory List in which he raised the following conjecture: Let p be a prime and N_p denote the number of solutions of the congruence $x^4 - x^3 + 6x^2 + 4x + 1 \equiv 0 \pmod{p}$. If $p \equiv 1 \pmod{10}$ and $p \neq 11$, then $N_p = 4$; if $p \equiv 3, 7, 9 \pmod{10}$ then $N_p = 0$. Also,

$$v_p^{(1)} = u_{p+2} - 3u_{p+1} \equiv \begin{cases} 1 \pmod{p} & \text{if } p \equiv 1, 3 \pmod{10}, \\ -2 \pmod{p} & \text{if } p \equiv 7 \pmod{10}, \\ 0 \pmod{p} & \text{if } p \equiv 9 \pmod{10}. \end{cases}$$

In May 2009, the conjecture was confirmed by K. Buzzard [B], R. Chapman [Ch], E.H. Goins [G] and also D. Brink, K. S. Chua, K. Foster and F. Lemmermeyer (personal communications); all of them realized Lemma 5.1(i). The author would like to thank these clever mathematicians for their solutions to the problem.

Lemma 5.2. *Let $p \neq 5$ be a prime and let $a \in \mathbb{Z}^+$. For $s = 1, 2$ we have*

$$v_{p^a}^{(s)} \equiv [5 \mid p^a - s - 2] - [5 \mid p^a - s] + 2[5 \mid p^a - 2s + 1] - 2[5 \mid p^a - 2s] \pmod{p}.$$

Also,

$$v_{p^a+1}^{(1)} - 1 \equiv \begin{cases} -3 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ 2 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -1 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}; \end{cases}$$

$$v_{p^a+1}^{(2)} \equiv \begin{cases} \pm 3 \pmod{p} & \text{if } p^a \equiv \pm 1 \pmod{5}, \\ \pm 1 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}; \end{cases}$$

$$v_{p^a+2}^{(1)} - v_2^{(1)} \equiv \begin{cases} -6 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ 7 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ 2 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ 3 \pmod{p} & \text{if } p^a \equiv -2 \pmod{5}; \end{cases}$$

$$v_{p^a+2}^{(2)} - v_2^{(2)} \equiv \begin{cases} 2 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -3 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -4 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}; \end{cases}$$

$$v_{p^a+3}^{(2)} - v_3^{(2)} \equiv \begin{cases} -18 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ 16 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -8 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ -5 \pmod{p} & \text{if } p^a \equiv -2 \pmod{5}; \end{cases}$$

and

$$v_{p^a-1}^{(1)} \equiv \begin{cases} 0 \pmod{p} & \text{if } p^a \equiv \pm 1 \pmod{5}, \\ \pm 5 \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}. \end{cases}$$

Proof. Note that for $a \in \mathbb{Z}$ we have

$$\left(\frac{a}{5}\right) L_{-(\frac{a}{5})} = -\left(\frac{a}{5}\right)^2 = -[5 \nmid a] = [5 \mid a] - 1.$$

Thus Lemma 5.1 in the case $d = 0$ yields the first congruence in Lemma 5.2. We can also apply Lemma with $d = 1, 2, 3$ to get the five congruences in Lemma 5.2 following the first one.

Now we deduce the last congruence in Lemma 5.2. By the proof of Lemma 5.1,

$$5v_{p^a-1}^{(1)} = 5V_{p^a-1}^{(1)} = \sum_{\zeta^5=1} (\zeta^{-1} - \zeta^{-2})((1 + \zeta)^{2(p^a-1)} \pmod{p}).$$

For any primitive 5th root ζ of unity, clearly

$$(1 + \zeta)(\zeta + \zeta^3) = \zeta + \zeta^3 + \zeta^2 + \zeta^4 = -1$$

and hence

$$(1 + \zeta)^{-2} = (-\zeta - \zeta^3)^2 = 2\zeta^4 + \zeta^2 + \zeta = \zeta^4 - \zeta^3 - 1;$$

also

$$(\zeta^{-1} - \zeta^{-2})(\zeta^4 - \zeta^3 - 1) = \zeta - \zeta^{-1} - 2\zeta^2 + 2\zeta^{-2}$$

and

$$(1 + \zeta)^{2p^a} \equiv (1 + \zeta^{p^a})^2 \equiv 1 + 2\zeta^{p^a} + \zeta^{2p^a} \pmod{p}.$$

Therefore

$$\begin{aligned} 5v_{p^a-1}^{(1)} &\equiv \sum_{\zeta^5=1} (\zeta - \zeta^{-1} - 2\zeta^2 + 2\zeta^{-2})(1 + 2\zeta^{p^a} + \zeta^{2p^a}) \\ &\equiv \sum_{\zeta^5=1} (\zeta - \zeta^{-1} - 2\zeta^2 + 2\zeta^{-2})(2\zeta^{p^a} + \zeta^{2p^a}) \\ &\equiv \begin{cases} 5((-1) \times 2 + 2 \times 1) \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ 5(1 \times 2 + (-2) \times 1) \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ 5(2 \times 2 + 1 \times 1) \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ 5(-2 \times 2 + (-1) \times 1) \pmod{p} & \text{if } p^a \equiv -2 \pmod{5}. \end{cases} \end{aligned}$$

This yields the last congruence in Lemma 5.2. We are done. \square

Proof of Theorem 1.8. For the polynomial

$$x^4 - x^3 + 6x^2 + 4x + 1 = (x + 1)^4 - 5x^3,$$

its discriminant is $5^3 \times 11^2$.

(i) Suppose that $p \neq 11$. Then p does not divide $D((x+1)^4 - 5x^3)$. For any $n \in \mathbb{Z}$ we have

$$11u_n = (3u_{n+1} + 2u_n) - 3(u_{n+1} - 3u_n) = v_n^{(2)} - 3v_{n-1}^{(1)}.$$

Let $d \in \{-2, \dots, p^a\}$. Applying Theorem 2.1(ii) with $h = 4$ and $m = 5$, we get

$$S_d \equiv u_{p^a+d+2} - u_{d+2} \pmod{p}$$

and thus

$$11S_d \equiv (v_{p^a+d+2}^{(2)} - v_{d+2}^{(2)}) - 3(v_{p^a+d+1}^{(1)} - v_{d+1}^{(1)}) \pmod{p}.$$

Therefore, with the help of Lemma 5.2, we have

$$\begin{aligned} 11S_0 &\equiv (v_{p^a+2}^{(2)} - v_2^{(2)}) - 3(v_{p^a+1}^{(1)} - v_1^{(1)}) \\ &\equiv \begin{cases} 2 - 3(-3) \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -3 - 3 \times 2 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -4 - 3(-1) \pmod{p} & \text{if } p^a \equiv \pm 2 \pmod{5}; \end{cases} \end{aligned}$$

and

$$\begin{aligned} 11S_1 &\equiv (v_{p^a+3}^{(2)} - v_3^{(2)}) - 3(v_{p^a+2}^{(1)} - v_2^{(1)}) \\ &\equiv \begin{cases} -18 - 3(-6) \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ 16 - 3 \times 7 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -8 - 3 \times 2 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ -5 - 3 \times 3 \pmod{p} & \text{if } p^a \equiv -2 \pmod{5}. \end{cases} \end{aligned}$$

Also,

$$\begin{aligned} 11S_{-1} &\equiv (v_{p^a+1}^{(2)} - v_1^{(2)}) - 3(v_{p^a}^{(1)} - v_0^{(1)}) = v_{p^a+1}^{(2)} - 3v_{p^a}^{(1)} \\ &\equiv \begin{cases} 3 - 3 \times 1 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -3 - 3 \times 0 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ 1 - 3(-2) \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ -1 - 3 \times 1 \pmod{p} & \text{if } p^a \equiv -2 \pmod{p}. \end{cases} \end{aligned}$$

and

$$\begin{aligned} 11S_{-2} &\equiv (v_{p^a}^{(2)} - v_0^{(2)}) - 3(v_{p^a-1}^{(1)} - v_{-1}^{(1)}) = v_{p^a}^{(2)} - 3v_{p^a-1}^{(1)} \\ &\equiv \begin{cases} 0 - 3 \times 0 \pmod{p} & \text{if } p^a \equiv 1 \pmod{5}, \\ -1 - 3 \times 0 \pmod{p} & \text{if } p^a \equiv -1 \pmod{5}, \\ -1 - 3 \times 5 \pmod{p} & \text{if } p^a \equiv 2 \pmod{5}, \\ 2 - 3(-5) \pmod{p} & \text{if } p^a \equiv -2 \pmod{p}. \end{cases} \end{aligned}$$

This proves part (i).

(ii) Part (ii) follows from the first congruence in Theorem 2.1(i) with $h = 3$ and $m = 5$.

(iii) As $C_k^{(3)} = \binom{4k}{k} - 3\binom{4k}{k-1}$ and $\bar{C}_k^{(3)} = 3\binom{4k}{k} - 3\binom{4k}{k+1}$ for any $k \in \mathbb{N}$, if $p \neq 11$ then we can obtain the last two congruences in Theorem 1.8 by using the congruences on $S_0, S_{\pm 1} \pmod{p}$ in part (i).

Below we handle the case $p = 11$. This time we turn our resort to Theorem 2.1(i). By (2.4) in the case $h = 3$ and $m = 5$,

$$\begin{aligned} \sum_{k=0}^{p^a-1} \frac{C_k^{(3)}}{5^k} &= \sum_{k=0}^{p^a-1} \frac{\binom{4k}{k}}{5^k} - 3 \sum_{k=0}^{p^a-1} \frac{\binom{4k}{k-1}}{5^k} \\ &\equiv - \sum_{r=1}^4 \binom{4}{r+1} (u_{2-rp^a} - 3u_{2-1-rp^a}) = - \sum_{r=1}^3 \binom{4}{r+1} v_{-rp^a}^{(1)} \pmod{p}. \end{aligned}$$

and

$$\begin{aligned} \sum_{k=0}^{p^a-1} \frac{\bar{C}_k^{(3)}}{5^k} &= 3 \sum_{k=0}^{p^a-1} \frac{\binom{4k}{k}}{5^k} - \sum_{k=0}^{p^a-1} \frac{\binom{4k}{k+1}}{5^k} \\ &\equiv - \sum_{r=1}^4 \binom{4}{r+1} (3u_{2-rp^a} - u_{2+1-rp^a}) = \sum_{r=1}^3 \binom{4}{r+1} v_{1-rp^a}^{(1)} \pmod{p}. \end{aligned}$$

By the proof of Lemma 5.1, $v_n^{(1)} = V_n^{(1)}$ for all $n \in \mathbb{Z}$. Since $p^a = 11^a \equiv 1 \pmod{5}$, if ζ is a 5th root of unity then

$$(1 + \zeta)^{-2rp^a} \equiv (1 + \zeta^{p^a})^{-2r} = (1 + \zeta)^{-2r} \pmod{p}.$$

Thus

$$v_{-rp^a}^{(1)} = V_{-rp^a}^{(1)} \equiv V_{-r}^{(1)} = v_{-rp^a}^{(1)} \pmod{p}$$

and

$$v_{1-rp^a}^{(1)} = V_{1-rp^a}^{(1)} \equiv V_{1-r}^{(1)} = v_{1-rp^a}^{(1)} \pmod{p}.$$

Therefore

$$\begin{aligned} \sum_{k=0}^{p^a-1} \frac{C_k^{(3)}}{5^k} &\equiv - \sum_{r=1}^3 \binom{4}{r+1} v_{-r}^{(1)} = -(6v_{-1}^{(1)} + 4v_{-2}^{(1)} + v_{-3}^{(1)}) \\ &\equiv v_1^{(1)} - v_0^{(1)} = u_3 - 3u_2 - (u_2 - 3u_1) = 1 \pmod{p}. \end{aligned}$$

and

$$\begin{aligned} \sum_{k=0}^{p^a-1} \frac{\bar{C}_k^{(3)}}{5^k} &\equiv \sum_{r=1}^3 \binom{4}{r+1} v_{1-r}^{(1)} = 6v_0^{(1)} + 4v_{-1}^{(1)} + v_{-2}^{(1)} \\ &\equiv v_1^{(1)} - v_2^{(1)} = u_3 - 3u_2 - (u_4 - 3u_3) = 3 \pmod{p}. \end{aligned}$$

In view of the above, we have completed the proof of Theorem 1.8. \square

6. PROOF OF THEOREM 1.9

Proof of Theorem 1.9. Let $U_0 = U_1 = U_2 = 0$, $U_3 = 1$ and

$$U_{n+4} + \left(4 - \frac{4^4}{3^3}\right)U_{n+3} + 6U_{n+2} + 4U_{n+1} + U_n = 0 \quad \text{for } n \in \mathbb{Z}.$$

Observe that

$$(1+x)^4 - \frac{4^4}{3^3}x^3 = (x-3)^2 \left(x - \frac{\alpha}{27}\right) \left(x - \frac{\beta}{27}\right),$$

where $\alpha + \beta = -14$ and $\alpha\beta = 81$. Let $u_n = u_n(-14, 81)$ and $v_n = v_n(-14, 81)$ for $n \in \mathbb{Z}$. By induction,

$$2^5 U_n = (6n-11)3^{n-1} + 3^{-3(n-1)}(5u_n - 11u_{n-1}) \quad \text{for } n \in \mathbb{Z}.$$

This, together with Fermat's little theorem and Theorem 2.1(i) with $h = 3$ and $m = 4^4/3^3$, yields that if $d \in \{-2, \dots, p^a\}$ then

$$\begin{aligned} & - \sum_{k=0}^{p^a-1} \frac{3^{3k}}{4^{4k}} \binom{4k}{k+d} \\ & \equiv 6U_{2+d-p^a} + 4U_{2+d-2p^a} + U_{2+d-3p^a} \\ & \equiv \frac{67}{64}(6d+1)3^{d-2} + \frac{5(2u_{d+2-p^a} + 36u_{d+2-2p^a} + 3^5u_{d+2-3p^a})}{64 \times 3^{2d-1}} \\ & \quad - \frac{11(2u_{d+1-p^a} + 36u_{d+1-2p^a} + 3^5u_{d+1-3p^a})}{64 \times 3^{2d-1}} \pmod{p}. \end{aligned}$$

Let n be any integer. Note that $v_n = 2u_{n+1} + 14u_n$ and $\Delta := (-14)^2 - 4 \times 81 = -2^7$. Applying Lemma 3.1 we get

$$u_{n-p^a} \equiv -\frac{7}{81} \left(1 + \left(\frac{-2}{p^a}\right)\right) u_n - \left(\frac{-2}{p^a}\right) \frac{u_{n+1}}{81} \pmod{p}.$$

It follows that

$$u_{n-2p^a} = u_{(n-p^a)-p^a} \equiv \frac{17 + 98(\frac{-2}{p^a})}{81^2} u_n + \frac{14}{81^2} \left(\frac{-2}{p^a}\right) u_{n+1} \pmod{p}$$

and

$$u_{n-3p^a} = u_{(n-p^a)-2p^a} \equiv \frac{(329 - 805(\frac{-2}{p^a}))u_n - 115(\frac{-2}{p^a})u_{n+1}}{81^3} \pmod{p}.$$

Combining the above, for any $d = -2, \dots, p^a$ we obtain the congruence

$$\begin{aligned} & 64 \sum_{k=0}^{p^a-1} \frac{3^{3k}}{4^{4k}} \binom{4k}{k+d} + 67(6d+1)3^{d-2} \\ & \equiv \frac{(1705 - 482(\frac{-2}{p^a}))u_{d+1} - (775 + 46(\frac{-2}{p^a}))u_{d+2}}{27^{d+2}} \pmod{p}. \end{aligned} \quad (6.1)$$

Putting $d = 0, -1$ in (6.1) we get

$$\sum_{k=0}^{p^a-1} \frac{3^{3k}}{4^{4k}} \binom{4k}{k} \equiv \frac{44 + (\frac{-2}{p^a})}{288} \pmod{p}$$

and

$$3 \sum_{k=0}^{p^a-1} \frac{3^{3k}}{4^{4k}} \binom{4k}{k-1} \equiv -\frac{220 + 23(\frac{-2}{p^a})}{288} \pmod{p}.$$

It follows that

$$\sum_{k=0}^{p^a-1} \frac{3^{3k}}{4^{4k}} C_k^{(3)} = \sum_{k=0}^{p^a-1} \frac{3^{3k}}{4^{4k}} \left(\binom{4k}{k} - 3 \binom{4k}{k-1} \right) \equiv \frac{(\frac{-2}{p^a}) - 1}{12} \pmod{p}.$$

By Lemma 3.1,

$$2u_{p^a+1} \equiv -14u_1 + \left(\frac{\Delta}{p^a} \right) v_1 = -14 - 14 \left(\frac{-2}{p^a} \right) \pmod{p}$$

and

$$2u_{p^a+2} \equiv -14u_2 + \left(\frac{\Delta}{p^a} \right) v_2 = 196 + 34 \left(\frac{-2}{p^a} \right) \pmod{p}.$$

Thus, by taking $d = p^a$ in (6.1) we obtain the second congruence in Theorem 1.9. We are done. \square

REFERENCES

- [B] K. Buzzard, *Re: a conjecture on a 4th recurrence mod p*, A Message to Number Theory List (May, 2009), on-line version is available from the website listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0905&L=nmbrrthry&T=0&P=179.
- [C] L. Carlitz, *A theorem of Stickelberger*, Math. Scand. **1** (1953), 82–84.
- [Ch] R. Chapman, *Re: a conjecture on a 4th recurrence mod p*, A Message to Number Theory List (May, 2009), on-line version is available from the website listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0905&L=nmbrrthry&T=0&P=305.
- [G] E. H. Goins, *Re: a conjecture on a 4th recurrence mod p*, A Message to Number Theory List (May, 2009), on-line version is available from the website listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0905&L=nmbrrthry&T=0&P=431.

- [GKP] R. L. Graham, D. E. Knuth and O. Patashnik, *Concrete Mathematics*, 2nd ed., Addison-Wesley, New York, 1994.
- [IR] K. Ireland and M. Rosen, *A Classical Introduction to Modern Number Theory* (Graduate texts in math.; 84), 2nd ed., Springer, New York, 1990.
- [HS] H. Hu and Z. W. Sun, *An extension of Lucas' theorem*, Proc. Amer. Math. Soc. **129** (2001), 3471–3478.
- [PS] H. Pan and Z. W. Sun, *A combinatorial identity with application to Catalan numbers*, Discrete Math. **306** (2006), 1921–1940.
- [St] R. P. Stanley, *Enumerative Combinatorics*, Vol. 2, Cambridge Univ. Press, Cambridge, 1999.
- [S92] Z.-H. Sun, *Combinatorial sum $\sum_{k \equiv r \pmod{m}} \binom{n}{k}$ and its applications in number theory (I)*, Nanjing Univ. J. Math. Biquarterly **9** (1992), no. 2, 227–240.
- [S03] Z. H. Sun, *Cubic and quartic congruences modulo a prime*, J. Number Theory **102** (2003), 41–89.
- [S98] Z. H. Sun, *On the theory of cubic residues and nonresidues*, Acta Arith. **84** (1998), 291–335.
- [SS] Z. H. Sun and Z. W. Sun, *Fibonacci numbers and Fermat's last theorem*, Acta Arith. **60** (1992), 371–388.
- [Su02] Z. W. Sun, *On the sum $\sum_{k \equiv r \pmod{m}} \binom{n}{k}$ and related congruences*, Israel J. Math. **128** (2002), 135–156.
- [Su08] Z. W. Sun, *On sums of binomial coefficients and their applications*, Discrete Math. **308** (2008), 4231–4245.
- [Su09] Z. W. Sun, *A conjecture on a 4th recurrence mod p*, A Message to Number Theory List (April 27, 2009), on-line version is available from the website listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0904&L=nmbrrthry&T=0&P=1549.
- [ST1] Z. W. Sun and R. Tauraso, *On some new congruences for binomial coefficients*, Acta Arith., to appear.
- [ST2] Z. W. Sun and R. Tauraso, *New congruences for central binomial coefficients*, Adv. in Math., to appear. <http://arxiv.org/abs/0805.0563>.
- [ZPS] L. Zhao, H. Pan and Z. W. Sun, *Some congruences for the second-order Catalan numbers*, Proc. Amer. Math. Soc., in press.