Module Title: Informatics 1A: Computation and Logic Exam Diet (Dec/April/Aug): Dec 2007 Brief notes on answers:

- 1. (a) A tautologous expression is true whatever the truth values of the atomic propositions from which it is composed.
 - (b) An appropriate truth table is:

				1		2	
a	b	c	a and b	$(a \ and \ b) \rightarrow c$	$b \rightarrow c$	$a \to (b \to c)$	$1 \leftrightarrow 2$
t	t	t	t	t	t	t	t
t	t	f	t	f	f	f	t
t	f	t	f	t	t	t	t
t	f	f	f	t	t	t	t
f	t	t	f	t	t	t	t
f	t	f	f	t	f	t	t
f	f	t	f	t	t	t	t
f	f	f	f	t	t	t	\mathbf{t}

(c) An appropriate proof is:

$$\begin{array}{l} [] & \vdash & ((a \ and \ b) \to c) \leftrightarrow (a \to (b \to c)) \\ 2 : [] & \vdash & ((a \ and \ b) \to c) \to (a \to (b \to c)) \\ 3 : [((a \ and \ b) \to c)] & \vdash & (a \to (b \to c)) \\ 3 : [a, ((a \ and \ b) \to c)] & \vdash & (b \to c) \\ 3 : [b, a, ((a \ and \ b) \to c)] & \vdash & c \\ 6 : [b, a, ((a \ and \ b) \to c)] & \vdash & (a \ and \ b) \\ 4 : [b, a, ((a \ and \ b) \to c)] & \vdash & a \\ 1 \\ 4 : [b, a, ((a \ and \ b) \to c)] & \vdash & b \\ 1 \\ 6 : [c, b, a, ((a \ and \ b) \to c)] & \vdash & c \\ 3 : [(a \to (b \to c))] & \vdash & ((a \ and \ b) \to c) \\ 3 : [(a \to (b \to c))] & \vdash & ((a \ and \ b) \to c) \\ 3 : [(a \ and \ b), (a \to (b \to c))] & \vdash & c \\ 5 : [a, b, (a \ and \ b), (a \to (b \to c))] & \vdash & c \\ 6 : [a, b, (a \ and \ b), (a \to (b \to c))] & \vdash & c \\ 6 : [(b \to c), a, b, (a \ and \ b), (a \to (b \to c))] & \vdash & c \\ 6 : [(b \to c), a, b, (a \ and \ b), (a \to (b \to c))] & \vdash & c \\ 1 \\ 6 : [c, (b \to c), a, b, (a \ and \ b), (a \to (b \to c))] & \vdash & c \\ 1 \\ \end{array}$$

2. (a) An expression in clausal form

$$[[E1_1,\ldots,E1_n],\ldots[EN_1,\ldots,EN_n]$$

corresponds to the propositional logic expression

$$(E1_1 \ or \ \dots \ or \ E1_n) \ and \ \dots \ and \ (EN_1 \ or \ \dots \ or \ EN_n)$$

- (b) The steps of conversion are:
 - $[a, (a \ and \ b) \rightarrow c, (d \ or \ e) \rightarrow b, a \rightarrow e]$
 - [a, not(a and b) or c, not(d or e) or b, not(a) or e]
 - $[a, not(a) \ or \ not(b) \ or \ c, not(d \ or \ e) \ or \ b, not(a) \ or \ e]$
 - $[a, not(a) \ or \ not(b) \ or \ c, (not(d) \ and \ not(e)) \ or \ b, not(a) \ or \ e]$
 - $[a, not(a) \ or \ not(b) \ or \ c, (not(d) \ or \ b) \ and (not(e) \ or \ b), not(a) \ or \ e]$
 - $[a, not(a) \ or \ not(b) \ or \ c, not(d) \ or \ b, not(e) \ or \ b, not(a) \ or \ e]$
 - [[a], [not(a), not(b), c], [not(d), b], [not(e), b], [not(a), e]]
- (c) An appropriate proof is:
 - Negate c as the input clause [notc]
 - Resolve [notc] with [not(a), not(b), c] giving [not(a), not(b)]
 - Resolve [not(a), not(b)] with [a] giving [not(b)]
 - Resolve [not(b)] with [not(e), b] giving [not(e)]
 - Resolve [not(e)] with [not(a), e] giving [not(a)]
 - Resolve [not(a)] with [a] giving []
 - Hence not(c) is contradictory
 - Hence c is true.
- 3. (a) An appropriate FSM is:

- (b) Depending on the FSM used in the previous answer, the number of states is likely to be $|A|^D$ where A is the alphabet set and D is the number of units of delay. A precise answer is not essential here only evidence that the student understand that we have a significant scaling issue.
- 4. An appropriate FSM is:

- 5. (a) $(a|b)^*a(a|b)^*$
 - (b) $((ba^*b)|a^*)^*$
 - (c) $((a|b)^*a(a|b)^*b(a|b)^*)|((a|b)^*b(a|b)^*a(a|b)^*)$
- 6. The steps of proof are:

$$\begin{array}{rcl} ((aa^*|\epsilon)c)|((b|b)c) & = & ((a^*c)|((b|b)c) \\ & ((a^*c)|((b|b)c) & = & ((a^*c)|((bc) \\ & & ((a^*c)|((bc) & = & (a^*|b)c \end{array})$$