PEC2-Análisis de Datos de Ultrasecuenciación Análisis de Datos Ómicos

Alba Moya Garcés

7 de junio, 2020

Contents

Pipeline	1
Abstract	2
Objetivos	2
Material	2
Software	2
Datos	2
Métodos	2
Preparación del área de trabajo:	2
Instalación de paquetes en R $\ \ldots \ \ldots$	3
Lectura y selección de los datos	3
Control de calidad de los datos	5
Resultados	5
Discusión	5
Bibliografía	5

Pipeline

- 1. Definición de los datos tal como se ha descrito en el párrafo anterior
- 2. Preprocesado de los datos: filtraje y normalización
- 3. Identificación de genes diferencialmente expresados
- 4. Anotación de los resultados
- 5. Busca de patrones de expresión y agrupación de las muestras (comparación entre las distintas comparaciones).
- 6. Análisis de significación biológica ("Gene Enrichment Analysis")

Abstract

Objetivos

Material

El código completo para desarrollar este análisis, o cualquier otro a partir de su adaptación, puede descargarse del siguiente repositorio de GitHub:

https://github.com/albamgarces/analisis-de-datos-de-RNA-seq.git.

Software

Se realizó este análisis utilizando el lenguaje R version 3.6.3 (2020-02-29) R en la interfaz RStudio versión 1.1.456 y las librerías desarrolaldas para este tipo de análisis por el proyecto Bioconductor. El programa estadístico R se puede descargar desde la página web del proyecto CRAN (The Comprehensive R Archive Network) siguiendo las indicaciones. R-Studio puede descargarse desde su página web https://www.rstudio.com/.

Finalmente, las librerías adicionales necesarias para llevar a cabo este análisis se obtuvieron del proyecto Bioconductor versión 3.10, el cuál se instala junto con algunos paquetes básicos mediante el siguiente código:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install()
```

Datos

Los archivos counts.csv y targets.csvcontienen la información de un estudio obtenido del repositorio del proyecto GTEx (Genotype-Tissue Expression). Encontramos los datos de expresión (RNA-seq) pertenecientes a un análisis del tiroide donde se comparan tres tipos de infiltración en 292 muestras:

- tejidos no infiltrados (NIT): 236 muestras
- infiltración focalizada (SFI): 42 muestras
- infiltración linfoide extensiva (ELI): 14 muestras

Métodos

Preparación del área de trabajo:

Para llevar a cabo el análisis, se debe gestionar una gran cantidad de archivos entre aquesllos que ocupan los datos originales y los generados durante su análisis. Es por ello que siempre se debería comenzar creando als carpetas necesarias para simplificar la ruta de trabajo. Se recomienda generar una **carpeta principal** con el nombre de nuestro proyecto en cuyo interior alojaremos una carpeta con los archivos de **datos** y otra con los **resultados** generados del análisis

Estas carpetas las genereamos rápidamente desde el explorador de archivos o la consola de cualquiera de los sistemas operativos usuales. Desde R también podemos generar estas subcarpetas mediante el siguiente código:

```
setwd(".")
dir.create("data")
dir.create("results")
```

Instalación de paquetes en R

A continuación se muestran los paquetes necesarios fpara este estudio que requieren instalación:

```
# UNCOMMENT IF INSTALL REQUIRES
##install.packages("readr")
##install.packages("sampling")
# install.packages("knitr")
#install.packages("cluster")
# install.packages("gplots")
# install.packages("ggplot2")
# install.packages("ggrepel")
# install.packages("BiocManager")
# BiocManager::install("oligo")
# BiocManager::install("arrayQualityMetrics")
# BiocManager::install("pvca")
# BiocManager::install("pacman")
# BiocManager::install("geneplotter")
# BiocManager::install("org.Dm.eq.db")
# BiocManager::install("limma")
# BiocManager::install("genefilter")
# BiocManager::install("drosophila2.db")
# BiocManager::install("ReactomePA")
```

Lectura y selección de los datos

Importamos los archivos proporcionados a R. El archivo targets contiene las 292 muestras identificadas por un número según sean provenientes de tejidos NIT (1), SFI (2) o ELI (3).

Sample_Name	${\it Grupo_analisis}$	$molecular_data_type$	sex	Group
GTEX-111CU-0226-SM-5GZXC	1	Allele-Specific Expression	male	NIT
GTEX-111FC-1026-SM-5GZX1	1	RNA Seq (NGS)	male	NIT
GTEX-111VG-0526-SM-5N9BW	3	RNA Seq (NGS)	$_{\mathrm{male}}$	ELI
GTEX-111YS-0726-SM-5GZY8	1	Allele-Specific Expression	male	NIT
GTEX-1122O-0226-SM-5N9DA	1	RNA Seq (NGS)	female	NIT
GTEX-1128S-0126-SM-5H12S	1	Allele-Specific Expression	female	NIT

El archivo counts contempla las 292 muestras como variables y nos informa del número de veces que se ha detectado cada uno de los 56202 genes identificados en la primera columna.

Table 2: Fragmento de la tabla de datos count

	GTEX.111CU.0226.SM.5GZXC	GTEX.111FC.1026.SM.5GZX1
ENSG00000223972.4	7	0
ENSG00000227232.4	401	1064
ENSG00000243485.2	4	0

	GTEX.111CU.0226.SM.5GZXC	GTEX.111FC.1026.SM.5GZX1
ENSG00000237613.2	2	0
ENSG00000268020.2	0	0
ENSG00000240361.1	0	1

Con el fin de simplificar el análisis, se decidió seleccionar aleatoriamente 10 muestras de cada tipo de tejido.

	Sample_Name	$molecular_data_type$	sex	Group
36	GTEX-11TTK-0826-SM-5N9EG	RNA Seq (NGS)	female	NIT
107	GTEX-13O61-0226-SM-5KM52	RNA Seq (NGS)	male	NIT
129	GTEX-144GL-1226-SM-5O9A4	RNA Seq (NGS)	male	NIT
139	GTEX-14753-0926-SM-5Q5BI	RNA Seq (NGS)	male	NIT
164	GTEX-P4QS-2626-SM-2I3EV	Allele-Specific Expression	male	NIT
165	GTEX-P4QT-2626-SM-2I3FM	Allele-Specific Expression	female	NIT
172	GTEX-Q2AI-0326-SM-2I3EK	Allele-Specific Expression	male	NIT
180	GTEX-QV44-0826-SM-2S1RG	Allele-Specific Expression	male	NIT
190	GTEX-RNOR-0926-SM-2TF56	RNA Seq (NGS)	female	NIT
209	GTEX-T8EM-0226-SM-3DB7C	RNA Seq (NGS)	male	NIT
29	GTEX-11NV4-0626-SM-5N9BR	RNA Seq (NGS)	male	ELI
100	GTEX-13NZ9-1126-SM-5MR37	RNA Seq (NGS)	male	ELI
146	GTEX-14ABY-0926-SM-5Q5DY	Allele-Specific Expression	male	ELI
147	GTEX-14AS3-0226-SM-5Q5B6	RNA Seq (NGS)	female	ELI
149	GTEX-14BMU-0226-SM-5S2QA	Allele-Specific Expression	female	ELI
167	GTEX-PLZ4-1226-SM-2I5FE	RNA Seq (NGS)	female	ELI
186	GTEX-R55G-0726-SM-2TC6J	RNA Seq (NGS)	female	ELI
211	GTEX-TMMY- 0826 -SM- 33 HB9	Allele-Specific Expression	female	ELI
251	GTEX-YFC4-2626-SM-5P9FQ	Allele-Specific Expression	female	ELI
253	GTEX-YJ89-0726-SM-5P9F7	RNA Seq (NGS)	male	ELI
14	GTEX-11DXY-0426-SM-5H12R	RNA Seq (NGS)	male	SFI
21	GTEX-11EQ8-0826-SM-5N9FG	Allele-Specific Expression	$_{\mathrm{male}}$	SFI
22	GTEX-11EQ9-0626-SM-5A5K1	RNA Seq (NGS)	male	SFI
23	GTEX-11GS4-0826-SM-5986J	RNA Seq (NGS)	male	SFI
90	GTEX-13FXS-0726-SM-5LZXJ	RNA Seq (NGS)	male	SFI
98	GTEX-13NYC-2426-SM-5MR3K	RNA Seq (NGS)	male	SFI
185	GTEX-R55E-0826-SM-2TC5M	Allele-Specific Expression	male	SFI
199	GTEX-S341-0226-SM-5S2VG	RNA Seq (NGS)	female	SFI
224	GTEX-WYVS-0326-SM-3NM9V	RNA Seq (NGS)	female	SFI
261	GTEX-ZE7O-1126-SM-57WC8	Allele-Specific Expression	female	SFI

Control de calidad de los datos

Resultados

Discusión

Bibliografía

Baumbach, Janina, Mitchell P Levesque, and Jordan W Raff. 2012. "Centrosome Loss or Amplification Does Not Dramatically Perturb Global Gene Expression in Drosophila." *Biology Open* 1 (10). The Company of Biologists Ltd: 983–93.

Benjamini, Yoav, and Yosef Hochberg. 1995. "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing." *Journal of the Royal Statistical Society: Series B (Methodological)* 57 (1). Wiley Online Library: 289–300.

Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon K. Smyth. 2015. "limma powers differential expression analyses for RNA-sequencing and microarray studies." *Nucleic Acids Research* 43 (7): e47–e47. doi:10.1093/nar/gkv007.