This is a section-by-section list of all the major results, with their dependencies. Throughout: track down specific refs, ie Theorem 2.7 in [3], not just [3]

1. Introduction

Nothing to say here, I think.

2. ACTION OPERADS

Definition. symmetric operad **Definition.** non-symmetric operad **Definition.** braided operad **Definition.** operad map **Definition.** action operad **Definition.** map of action operads **Definition/Example.** ribbon braids, and their (action) operad Result (1). π is a map of operads. Dependency: defs Result (2). Operads internal to groups are action operads. Dependency: (1) **Result (3).** The kernel of an action operad is an action operad. Dependency: (1,2) **Result (4).** The image, in Σ of an action operad is an action operad. Dependency: (1)

Result (5). A kernel/image short exact sequence. Dependency: (3,4)

Result (6). Some calculations with $e_i's$. Dependency: defs

Result (7). Some calculations with $\Lambda(0)$. Dependency: (6)

Result (8). The big β, δ theorem. Dependency: (1)

Result (9). π is zero or surjective. Dependency: (8)

Examples. Cyclic, reflexive, hyperoctahedral, alternating. Dependency: (8)

Definition. If p stuff

Result (10). The category of action operads is lfp. Dependency: defs, external

Result (11). $U: AOp \rightarrow Sets/S$ preserves limits and filtered colimits. Dependency: defs Note: seriously check proof

Result (12). $F: \mathbf{Sets/S} \to \mathbf{AOp}$ left adjoint to U. Dependency: external

Definition. presentations for action operads Dependency: (12)

3. Operads with equivariance

Definition. Λ -operad

Definition. map of Λ -operads

Definition. category of Λ -operads

Result (13). A is a Λ -operad. Dependency: defs

Definition. algebra over a non-symmetric operad Note: delete?

Definition. algebra over a Λ -operad

Definition. category of algebras over a Λ -operad

Result (14). Endomorphism operad is a Λ-operad. Dependency: defs Note: should have independent endomorphism operad def beforehand, maybe rework all this stuff

Result (15). Change-of-operad functor. Dependency: defs

Result (16). Algebras are operad maps into endomorphisms operad. Dependency: (14)

Definition. monad associated to a Λ -operad

Result (17). Monad algebra category is operad algebra category. Dependency: defs

Result (18). Λ-algebras, as a Λ-operad, are monoids. Dependency: defs, maybe (16) Note: unclear hypotheses, should say in sets I think

Result (19). Three-part theorem about the adjunction between Λ - and Σ -operads and their categories of

algebras. Dependency: defs Note: check proof

Definition. monad mapNote: some text after that needs to be in an environment

Definition. cocomplete SMC Note: no emph in def, is wrong

Result (19). Lax symmetric monoidal functors transport operads, with a comparison monad map. Dependency: FUTURE! Note: eep in general! where did we define the tensor product over a group notation?

Result (20). Operad maps induce monad maps. Dependency: stuff that isn't in an environment above Note: continued eep

Result (21). Combining to get an adjunction. Dependency: (19, 20) Note: continued eep

Definition. collections, maps, the category thereof

Definition. substitution product of collections

Result (22). Substitution product gives monoidal structure, and monoids are operads. Dependency: (19, 20)

Result (23). $B\Lambda$ is a strict monoidal category. Dependency: FUTURE! also (6)

Result (24). n-fold Day convolution is a functor $B\Lambda \to \mathbf{Sets}$. Dependency: (23)

Result (25). Substitution product as coend using Day convolution. Dependency: ?? Note: seriously check proof

Proof of (22). Dependency: (23,24,25) Note: seriously check proof

4. Operads in the category of categories

Note: worth revisiting introductory material, maybe some of it needs environments

Definition. pseudoalgebras

Definition. strict algebras Dependency: previous defin

Definition. pseudomorphisms

Definition. strict morphisms Dependency: previous defin

Definition. algebra transformations

Definition. P-alg, strict and strong

Definition. 2-monads versions of the above

Result (26). 2-monad and operad algebra 2-categories agree, strict and strong. Dependency: definitions here

Result (27). 2-monad from an operad is finitary. Dependency: definitions here Note: check proof

Result (28). 2-monad from an operad preserves bijective-on-objects funtors. Dependency: definitions here

Result (29). Pseudoalgebras equivalent to strict ones. Dependency: definitions here Note: worth explaining how this strictifies unbiased monoidal categories to strict ones, but not biased ones

Definition. 2-cartesian 2-monad Note: we seem to need some definitions here

Result (30). Coequalizer of actions is sometimes the quotient. Dependency: noneNote: this looks like it could be improved, many aspects unclear

Result (31). Unit for P is cartesian for any symmetric operad P. Dependency: definitions here

Result (32). The 2-monad P preserves pullbacks iff group action is free. Dependency: (30)

Result (33). Multiplication for \underline{P} is cartesian if all group actions are free. Dependency: (30) Note: has some suspect proof-by-example looking text

Result (34). \underline{P} is 2-cartesian if and only if all group actions are free (symmetric case). Dependency: (31, 32, 33; 30)

Result (35). \underline{P} is 2-cartesian if and only if all group actions are free (symmetric case). Dependency: (31, 32, 33; 30)

Result (36). Lemma about free Σ -actions on categories with Λ -action. Dependency: defins Note: needs to be fixed up a bit in the whole groups actions on categories rework

Result (37). \underline{P} is 2-cartesian if and only if all group actions are free (Λ case). Dependency: (35, 36; 30, 31, 32, 33, 34)

- 5. The Borel construction for action operads
- 6. Monoidal structures and multicategories