Travail individuel de rédaction en temps libre À rendre le mardi 29 novembre

On rappelle le résultat suivant, utile tout au long du problème.

THÉORÈME.— Soit f un application continue définie sur [a,b] (avec a < b) à valeurs dans \mathbb{R} .

- Si f strictement croissante, alors f réalise une bijection de [a, b] sur [f(a), f(b)].
- Si f strictement décroissante, alors f réalise une bijection de [a, b] sur [f(b), f(a)].

Problème 1 Étude d'une suite définie implicitement

Dans tout ce problème, n désigne un entier non nul et f_n la fonction définie par

$$\forall x \in \mathbb{R}, f_n(x) = x^{2n} - x^n - x - 3.$$

Partie A Généralités sur f_n

- **A1.** Résoudre dans \mathbb{R} l'équation $f_1(x) = 0$.
- **A2.** Déterminer les valeurs de *n* pour lesquelles -1 est solution de l'équation $f_n(x) = 0$.
- **A3.** Calculer les dérivées première et seconde f'_n et f''_n de la fonction f_n .
- **A4.** Montrer qu'il existe une unique valeur $a_n > 0$ que l'on précisera telle que $f_n''(a_n) = 0$.
- **A5.** En déduire le signe de f_n'' sur \mathbb{R}_+ puis les variations de f_n' sur \mathbb{R}_+ .
- **A6.** En déduire qu'il existe une unique valeur $b_n > 0$ telle que $f'_n(b_n) = 0$. On ne cherchera pas à calculer explicitement b_n mais on montrera son existence et son unicité par un argument théorique.
- **A7.** Déterminer les variations de f_n sur \mathbb{R}_+ et démontrer que l'équation $f_n(x) = 0$ admet une et une seule solution strictement positive. Cette unique solution sera désormais notée x_n . On ne cherchera pas à calculer explicitement x_n .

Partie B Convergence de la suite $(x_n)_{n\in\mathbb{N}^*}$

- **B1.** Démontrer l'encadrement $\forall n \geq 2, 1 < x_n < 2$.
- **B2.** En utilisant l'égalité $f_n(x_n) = 0$, démontrer que $f_{n+1}(x_n) > 0$. En déduire que la suite $f_n(x_n)$ est monotone.
- **B3.** Démontrer que la suite (x_n) est convergente. On note ℓ sa limite. Donner un encadrement de ℓ .
- **B4.** Soit $\alpha > 1$. Calculer $\lim_{n \to +\infty} f_n(\alpha)$.
- **B5.** Déduire de la question précédente que $\ell = 1$.

Partie C Détermination d'un encadrement de x_n

C1. Démontrer que
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$
.

- C2. Démontrer que la suite de terme général $f_n(1+\frac{1}{n})$ converge vers e^2-e-4 .
- C3. En partant de l'encadrement $\frac{8}{3}$ < e < 3, déterminer le signe de $e^2 e 4$.
- **C4.** Déduire des questions 2 et 3 qu'il existe $N_0 \in \mathbb{N}^*$, tel que pour tout $n \ge N_0$, $f_n(1 + \frac{1}{n}) > 0$.
- **C5.** Déduire de la question précédente que pour tout $n \ge N_0$, $x_n < 1 + \frac{1}{n}$.
- **C6.** En suivant le même raisonnement, démontrer qu'il existe $N_1 \in \mathbb{N}^*$, tel que pour tout $n \ge N_1$, $1 + \frac{1}{2n} < x_n$.

Partie D Détermination d'un équivalent de $x_n - 1$

- **D1.** Soit k > 0. Calculer $\lim_{n \to +\infty} \left(1 + \frac{k}{n}\right)^n$ puis $\lim_{n \to +\infty} f_n \left(1 + \frac{k}{n}\right)$.
- **D2.** Étudier le signe de $\phi(t) = e^{2t} e^t 4$ pour $t \in \mathbb{R}$. On désigne par λ l'unique valeur pour laquelle la fonction ϕ s'annule.
- **D3.** Soit $k > \lambda$. Montrer qu'à partir d'un certain rang, $f_n(1 + \frac{k}{n}) > 0$ et $x_n < 1 + \frac{k}{n}$.
- **D4.** Soit $k < \lambda$. Montrer qu'à partir d'un certain rang, $f_n(1 + \frac{k}{n}) < 0$ et $x_n > 1 + \frac{k}{n}$.
- **D5.** Conclure que $x_n 1 \sim \frac{\lambda}{n \to +\infty} \frac{\lambda}{n}$, et que ceci peut aussi écrire

$$x_n = 1 + \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$
 lorsque $n \to +\infty$.