

2017

HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black pen
- · Draw diagrams using pencil
- NESA approved calculators may be used
- A data sheet and Periodic Table are provided at the back of this paper

Total marks: 100

Section I - 75 marks (pages 2-28)

This section has two parts, Part A and Part B

Part A - 20 marks

- Attempt Questions 1–20
- Allow about 35 minutes for this part

Part B – 55 marks

- Attempt Questions 21–30
- Allow about 1 hour and 40 minutes for this part

Section II - 25 marks (pages 29-39)

- Attempt ONE question from Questions 31–35
- · Allow about 45 minutes for this section

Section I

75 marks

Part A – 20 marks Attempt Questions 1–20 Allow about 35 minutes for this part

Use the multiple-choice answer sheet for Questions 1–20.

1 In an experiment, 30 mL of water is to be transferred into a conical flask.

Which piece of equipment would deliver the volume with the greatest accuracy?

- A. Burette
- B. Beaker
- C. Test tube
- D. Measuring cylinder

2 Which row of the table correctly matches an ion with its flame colour during a flame test?

	Ion	Flame colour
A.	Barium	Orange-red
B.	Calcium	Blue-green
C.	Carbonate	Orange-red
D.	Copper	Blue-green

3 What is the name of this compound?

- A. 2-chloro-1-fluorobutane
- B. 3-chloro-4-fluorobutane
- C. 1-fluoro-2-chlorobutane
- D. 4-fluoro-3-chlorobutane

4 Esterification can be carried out in a school laboratory using the equipment shown.

How could the safety of the process shown be improved?

- A. Place a stopper on top of the condenser.
- B. Add concentrated sulfuric acid to the flask.
- C. Change the direction of water flow through the condenser.
- D. Replace the Bunsen burner with an electric heating mantle.
- 5 Which of the following substances is amphiprotic in nature?
 - A. HSO_4^-
 - B. H_2SO_4
 - C. SO₄²⁻
 - D. H₂SO₃
- Which of the following is a transuranic element that is most likely to have been produced in a nuclear reactor?
 - A. Co-60
 - B. Np-239
 - C. U-238
 - D. Hs-265

7 Three test tubes were set up as shown.

Bromine water was added to *X* and *Y* in the absence of UV light.

Which of the following best represents the changes in test tubes X and Y?

8 There are two unlabelled solutions. One is barium nitrate and the other lead nitrate.

Which of the following could be added to the two unlabelled solutions to distinguish between them?

- A. Sodium sulfate
- B. Sodium nitrate
- C. Sodium chloride
- D. Sodium carbonate

9 The following equipment was set up to measure the heat of combustion of an alkanol.

Black deposits were observed on the bottom of the conical flask and the heat of combustion measured was lower than the theoretical value.

Which of the following equations could account for these observations?

A.
$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

B.
$$C_3H_8O(g) + 4O_2(g) \rightarrow CO_2(g) + CO(g) + 4H_2O(g)$$

C.
$$2C_4H_{10}O(g) + 3O_2(g) \rightarrow 8C(s) + 2H_2(g) + 8H_2O(g)$$

D.
$$2C_2H_6O(g) + 4O_2(g) \rightarrow 2CO_2(g) + 2C(s) + 6H_2O(g)$$

10 The diagrams show a dry cell and a lead-acid cell. The electrodes are labelled \widehat{X} and \widehat{Y} .

When either cell is connected to supply energy, which row of the table correctly describes the electrodes and their charges?

	Electro	ode (X)	Electro	ode (Y)
A.	Anode	Positive	Cathode	Negative
B.	Cathode	Positive	Anode	Negative
C.	Anode	Negative	Cathode	Positive
D.	Cathode	Negative	Anode	Positive

11 Consider the following redox reaction.

$$2\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7(aq) \ + \ 2\mathrm{H}_2\mathrm{O}(l) \ + \ 3\mathrm{S}(s) \ \longrightarrow \ 2\mathrm{Cr}_2\mathrm{O}_3(aq) \ + \ 4\mathrm{KOH}(aq) \ + \ 3\mathrm{SO}_2(g)$$

Which species is being oxidised?

- A. Cr⁶⁺
- B. K⁺
- C. O²⁻
- D. S

12 What is the product when propene undergoes addition polymerisation?

13 25.0 mL of a 0.100 mol L^{-1} acid is to be titrated against a sodium hydroxide solution until final equivalence is reached.

Which of the following acids, if used in the titration, would require the greatest volume of sodium hydroxide?

- A. Acetic
- B. Citric
- C. Hydrochloric
- D. Sulfuric

One litre of an aqueous solution is formed from mixing equal volumes of 0.2 mol L^{-1} hydrochloric acid (HCl) and 0.2 mol L^{-1} sodium chloride (NaCl).

How effective as a buffer is the aqueous solution formed?

- A. Ineffective, because HCl is a strong acid
- B. Effective, because Cl⁻ is the conjugate base of HCl
- C. Ineffective, because NaCl forms a neutral salt solution
- D. Effective, because the pH would change when a solution of NaOH is added
- 15 Dinitrogen oxide (N₂O) contains a coordinate covalent bond.

Which Lewis electron dot structure correctly represents N_2O ?

- A. :N::N::O:
- B. N. N.O.
- C. N··N::0:
- D. :N::N::O:
- 16 The following equilibrium is established in a closed system.

$$CO_2(g) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$$
 $\Delta H = -19.4 \text{ kJ mol}^{-1}$

How can the gas pressure in the system be decreased?

- A. Add more $CO_2(g)$
- B. Add hydroxide ions to the solution
- C. Decrease the volume of the container
- D. Increase the temperature of the system
- What is the density of ozone at 25°C and 100 kPa?
 - A. 1.291 g L^{-1}
 - B. 1.500 g L^{-1}
 - C. 1.936 g L^{-1}
 - D. 2.114 g L^{-1}

18 Three gases X, Y and Z were mixed in a closed container and allowed to reach equilibrium. A change was imposed at time T and the equilibrium was re-established. The concentration of each gas is plotted against time.

- Which reaction is represented by the graph?
- A. $X(g) + Y(g) \rightleftharpoons 2Z(g)$
- B. $2X(g) \rightleftharpoons Y(g) + Z(g)$
- C. $2X(g) \rightleftharpoons Y(g) + 3Z(g)$
- D. $X(g) \rightleftharpoons Y(g) + Z(g)$

The sulfate content of a fertiliser is 48% by mass. 1.20 g of this fertiliser is completely dissolved in water and an excess of $Ba(NO_3)_2(aq)$ is added.

What mass of precipitate would be formed?

- A. 0.006 g
- B. 0.58 g
- C. 1.40 g
- D. 1.57 g
- 20 $20.0 \, \text{mL}$ of $0.020 \, \text{mol} \, L^{-1}$ barium hydroxide solution is added to $50.0 \, \text{mL}$ of $0.040 \, \text{mol} \, L^{-1}$ hydrochloric acid solution.

What is the pH of the final solution?

- A. 0.2
- B. 1.6
- C. 1.8
- D. 2.9

BLANK PAGE

BLANK PAGE

2017 HIGHER SCHOOL CERTIFICATE EXAMINATION						
			Ce	ntre	Nun	nbe
Chemistry						
Section I Part B			Stud	dent	Nun	nbe

55 marks
Attempt Questions 21–30
Allow about 1 hour and 40 minutes for this part

Instructions

Answer Booklet

- Write your Centre Number and Student Number at the top of this page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Extra writing space is provided at the back of this booklet.
 If you use this space, clearly indicate which question you are answering.
- Show all relevant working in questions involving calculations.

Please turn over

BLANK PAGE

Question 21 (5 marks)

(a)	Outline ONE effect of ozone in the troposphere and ONE in the stratosphere.	2
(b)	Qualitatively compare TWO properties of oxygen (O_2) and ozone (O_3) .	2
(c)	Using ONE chemical equation, show how a chlorine radical (Cl•) reacts with ozone.	1

3

Question 22 (5 marks)

Atomic absorption spectroscopy was used to determine the concentration of zinc in a water sample. The absorbance of a series of standard solutions of known concentration of zinc was measured. The results are shown in the table.

Zinc concentration (ppm)	0.00	1.00	2.00	3.00	4.00	5.00
Absorbance	0.00	0.17	0.34	0.48	0.65	0.83

(a) Plot the data on the grid and draw a line of best fit.

(b) In order for water to be considered safe for drinking, the concentration of zinc must be less than 2.80 ppm.

The absorbance of the water sample was 0.58. Explain whether this water is safe for drinking.

.....

2

Question 23 (6 marks)

The diagram shows a galvanic cell.

	<u> </u>	
(a)	Explain why a salt bridge is required.	2
(b)	The initial mass of each electrode was $10.0~\rm g$. After some time, the electrodes were removed from the solutions, dried and reweighed. The mass of the zinc electrode had changed by $1.00~\rm g$.	4
	Calculate the new mass of the silver electrode.	

Question 24 (5 marks)

A solution of sodium hydroxide was titrated against a standardised solution of acetic acid which had a concentration of 0.5020 mol L^{-1} .

(a)	The end point was reached when 19.30 mL of sodium hydroxide solution had been added to 25.00 mL of the acetic acid solution.	3
	Calculate the concentration of the sodium hydroxide solution.	
(b)	Explain why the pH of the resulting salt solution was not 7. Include a relevant chemical equation in your answer.	2

Question 25 (4 marks)

relevant chemical equations in your answer.

3

Question 26 (7 marks)

(a)	Outline TWO reasons why the release of sulfur dioxide into the atmosphere is a concern.

Question 26 continues on page 21

- The diagram shows the concentrations of sulfur dioxide (SO₂) in the lower atmosphere above a landmass. High concentrations of sulfur dioxide were recorded above a metal smelter and coal fired power stations.
- 4

- $< 0.2 \times 10^{12}$ molecules SO_2 per litre
- 0.5×10^{12} molecules SO_2 per litre
- 1×10^{12} molecules SO_2 per litre
- 2×10^{12} molecules SO_2 per litre

Do NOT write in this area.

Explain the varying concentrations of sulfur dioxide shown on the map. Include relevant chemical equations in your answer.

•••••	•••••	• • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		•••••	•••••	•••••	•••••	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
											• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••			•••••
											•••••			
											• • • • • • • • • •			
•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	• • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	••••••	•••••	•••••
		• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • •		• • • • • • • •		• • • • • • • • •			• • • • • •

End of Question 26

5

Question 27 (5 marks)

The boiling points and molar masses of three compounds are shown in the table.

Compound	Boiling point (°C)	Molar mass (g mol ⁻¹)
Acetic acid	118	60
Butan-1-ol	117	74
Butyl acetate	116	116

similar boiling points. Explain why in terms of the structure and bonding of the three compounds.

Question 28 (7 marks)

(a)	Outline TWO advantages and TWO disadvantages of using ethanol as an alternative fuel for motor vehicles.	4
(b)	The molar heat of combustion (ΔH_c) for ethanol is 1360 kJ mol ⁻¹ .	3
	Calculate the energy generated per kg of CO_2 released by the combustion of ethanol.	

Question 29 (4 marks)

Rivertown sits at the junction of two rivers.

A simple water purification system has been purchased for the town water supply. It consists ONLY of a sedimentation tank, pH control, sand filters and a chlorination facility.

The system is to draw water either from Site *X* or Site *Y*.

A water chemist has obtained the following data from each site.

Factor	X	Y
Turbidity (NTU)	2	400
рН	7.3	6.0
Calcium (ppm)	120	5
Phosphate (ppm)	1.00	0.0001

Question 29 continues on page 25

Question 29 (continued)

be the preferred water source for the town water supply.

End of Question 29

7

Question 30 (7 marks)

Analyse the conditions required to optimise the production of ammonia using the Haber process.

2017 HIGHER SCHOOL CERTIFICATE

Chemistry

Section II

25 marks Attempt ONE question from Questions 31–35 Allow about 45 minutes for this section

Answer parts (a)–(d) of one question in the Section II Writing Booklet. Extra writing booklets are available.

Show all relevant working in questions involving calculations.

	Pages
Question 31	Industrial Chemistry
Question 32	Shipwrecks, Corrosion and Conservation
Question 33	The Biochemistry of Movement
Question 34	The Chemistry of Art
Ouestion 35	Forensic Chemistry

1012 - 29 -

Question 31 — Industrial Chemistry (25 marks)

Answer parts (a) and (b) of the question on pages 2–4 of the Section II Writing Booklet. Start each part of the question on a new page.

- (a) (i) Write an equation using structural formulae to describe saponification.

 Use ethyl propanoate as one of the reactants.
 - (ii) Describe a procedure that can be used to carry out saponification and test the product in a school laboratory.

2

(b) The Contact process for the production of sulfuric acid includes a step whereby sulfur dioxide is converted to sulfur trioxide in an equilibrium reaction:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g) \quad \Delta H = -99 \text{ kJ mol}^{-1}$$

 SO_2 and O_2 were added to a closed container. The production of SO_3 over time is shown on the graph below.

(i) Copy the graph below into your answer booklet and sketch a second curve on the same axes to demonstrate the production of SO₃ over time when the reaction is repeated at a higher temperature. Clearly label the two curves.

(ii) At a certain temperature, the equilibrium constant, *K*, is 12.1 for this reaction as written in the equation above.

At the same temperature, 1.0 mol SO_2 and 1.0 mol O_2 were added to a 1.0 litre closed container. At a point in time, the concentration of SO_3 in the container was measured as 0.70 mol L^{-1} .

Had equilibrium been reached in the container at this point? Use calculations to justify your answer.

Question 31 continues on page 31

Question 31 (continued)

Answer parts (c) and (d) of the question on pages 5-8 of the Section II Writing Booklet. Start each part of the question on a new page.

(c) The raw materials required to produce sodium carbonate by the Solvay process are limestone and brine. Part of the process is represented by the flow chart.

Name the products labelled **X** and **Y**. (i)

2

- (ii) How is the brine purified? Include a relevant chemical equation in your answer.
- 2
- (iii) Explain the role of ammonia in the manufacture of sodium carbonate. Include relevant chemical equation(s) in your answer.
- 3

7

Assess the extent to which technological advances have overcome the technical (d) and environmental issues associated with the industrial production of sodium hydroxide.

End of Question 31

Question 32 — Shipwrecks, Corrosion and Conservation (25 marks)

Answer parts (a) and (b) of the question on pages 2–4 of the Section II Writing Booklet. Start each part of the question on a new page.

- (a) A first-hand investigation is to be carried out to compare the rate of corrosion of metals in acidic and neutral solutions.
 - (i) Outline a suitable procedure for this investigation.

2

(ii) Explain the expected result. Include relevant half equations in your answer.

3

(b) (i) Outline TWO different ways to increase the rate of an electrolysis reaction.

2

(ii) When two carbon electrodes were placed in a blue, 3 mol L⁻¹ solution of CuCl₂ and connected to a 6V DC power supply, bubbles started appearing at the anode. After some time, the mass of the cathode had increased and the intensity of the blue colour had decreased.

4

Account for these observations. Include relevant chemical equations in your answer.

Answer parts (c) and (d) of the question on pages 5–8 of the Section II Writing Booklet. Start each part of the question on a new page.

- (c) In 1912, the ship *Titanic* sank in water over 3 km deep. The wreck was discovered in 1985.
- 2
- (i) Why did scientists predict that the rate of corrosion would have been slow at this depth?
- 2
- (ii) Explain why extra precautions need to be taken when retrieving wooden artefacts from sea water compared to fresh water.
- 3

7

- (iii) Describe how electrolysis can be used to remove chloride ions from a metallic artefact. Support your answer with a labelled diagram.
- (d) Analyse the effect that the work of Volta and Davy had in reducing corrosion of ocean-going vessels.

Question 33 — The Biochemistry of Movement (25 marks)

Answer parts (a) and (b) of the question on pages 2–4 of the Section II Writing Booklet. Start each part of the question on a new page.

(a) (i) The graph shows the activity of a biological enzyme over a given pH range.

Explain the activity of the enzyme at pH 9.

- (ii) Describe a suitable procedure to investigate the effect of temperature on enzyme activity.
- (b) (i) How does the structure of ATP give rise to energy production?
 - (ii) Each gram of mammalian skeletal muscle consumes ATP at a rate of 1×10^{-3} mol min⁻¹ during contraction. Concentrations of ATP in muscle are about 4×10^{-3} mol L⁻¹ and the density of muscle tissue is 1.2 g mL^{-1} .

2

How long could contraction continue on ATP alone?

Question 33 continues on page 34

Question 33 (continued)

Answer parts (c) and (d) of the question on pages 5–8 of the Section II Writing Booklet. Start each part of the question on a new page.

(c) (i) This incomplete equation represents the formation of a dipeptide from alanine and glycine.

In your writing booklet, complete the equation.

- (ii) Explain, using a model, why enzymes are specific to their substrate. 3
- (iii) Outline the limitations of the model described in part (ii).
- (d) Explain how long chain fatty acids are used in the production of usable energy. 7

End of Question 33

Question 34 — The Chemistry of Art (25 marks)

Answer parts (a) and (b) of the question on pages 2–4 of the Section II Writing Booklet. Start each part of the question on a new page.

- (a) (i) Outline a test that can be carried out to observe the flame colour of ONE metal ion. Include a safety precaution in your answer.
 - (ii) Account for the flame colour that should be observed in part (i). 3
- (b) (i) Outline the two main components of paint.
 - (ii) Explain how the colour of ONE mineral used by Aboriginal peoples relates to its chemical composition and the position of its metallic component in the Periodic Table.

4

Question 34 continues on page 36

Question 34 (continued)

Answer parts (c) and (d) of the question on pages 5–8 of the Section II Writing Booklet. Start each part of the question on a new page.

(c) (i) A student draws this Lewis electron dot structure to represent an oxygen atom.

Identify the error in the representation and justify your answer using Hund's rule.

Use the following graph to answer parts (ii) and (iii). The graph shows the successive ionisation energies for some elements.

- (ii) Explain why the predominant oxidation state of scandium (Sc) is 3+.
- (iii) Explain why Sc³⁺ compounds are white or colourless whereas V³⁺ compounds have colour.

2

(d) Using an example, explain the bonding in complex ions of transition metals. 7

End of Question 34

Question 35 — Forensic Chemistry (25 marks)

Answer parts (a) and (b) of the question on pages 2–4 of the Section II Writing Booklet. Start each part of the question on a new page.

(a) (i) Outline a test that could be carried out in a school laboratory to distinguish between sodium carbonate and starch.

3

2

4

(ii) The emission spectrum of sodium is shown.

With reference to atomic structure, explain how the lines on the emission spectrum are produced.

(b) (i) A group of students tried to use chromatography to separate the pigments extracted from a plant leaf. They put a small spot of the pigments on a strip of paper and drew a line across the paper to show the starting point. They then allowed solvent to run up the paper.

Explain why a pencil rather than a pen should be used to draw the line.

(ii) The students then tried to use chromatography to separate an alkanol and an alkanoic acid. They found that the spot of the alkanol and alkanoic acid mixture did not move when an alkane was used as the solvent.

Justify a modification to the experiment that would lead to the separation of the alkanol and the alkanoic acid.

Question 35 continues on page 38

Question 35 (continued)

m/z

Answer parts (c) and (d) of the question on pages 5–8 of the Section II Writing Booklet. Start each part of the question on a new page.

- (c) Electrophoresis of proteins can be used to test for performance enhancing drugs.
 - (i) Using structural formulae, draw a chemical equation to show how a protein fragment can become positively charged in a low pH solution.
 - (ii) Explain how electrophoresis is used to separate and identify proteins. 3 Include a labelled diagram in your answer.
 - (iii) Mass spectrometry can be used to identify other drugs in a blood sample. **2** Below is a spectrum obtained from the analysis of a blood sample.

Analysis of a blood sample

The mass spectra of four substances (Diagrams 1 to 4) are shown on the next page.

100 120 140 160 180 200 220 240 260 280

Using the diagrams, deduce which of the substances are present in the blood sample. Justify your answer.

7

(d) Discuss the use of DNA analysis in finding lost relatives. Include the relevant underlying chemistry in your answer.

Question 35 continues on page 39

Question 35 (continued)

Diagram 2 - Trifluor.d

Diagram 3 - Heroin

Diagram 4 - Ethanol

End of paper

BLANK PAGE

Chemistry

DATA SHEET

Avogadro constant, N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K)	22.71 L
at 25°C (298.15 K)	24.79 L
Ionisation constant for water at 25°C (298.15 K), K_w	1.0×10^{-14}
Specific heat capacity of water	$4.18\times 10^3~J~kg^{-1}~K^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^+] \qquad \qquad \Delta H = -mC\Delta T$$

Some standard potentials

		-	
$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	–2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	–2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^{-}$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^{-}$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^{-}$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}\mathbf{F}_2(g) + \mathbf{e}^-$	\rightleftharpoons	F-	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	He He	4.003 Helium	10	Ne	20.18	18	Ar	39.95	Argon	36	Kr	33.80	Krypton	54	Xe	131.3	Xenon	98	Rn		Radon	118	- s 0	Oganesson
		7			19.00 2												\dashv				statine	117	Ts	Tennessine O ₂
					16.00 1	-											\dashv				_	116		
						-															_			Moscovium Livermorium
					14.01	+			_				_				\dashv				_			
			9	ر ا	12.01	14	Si	28.09	Silicon	32	Ge	72.64	Germaniu	20	Sn	118.7	Tin	82	Pb	207.2	Lead	114	豆	Flerovium
			2	В	10.81 Boron	13	Al	26.98	Aluminium	31	Ga	69.72	Gallium	49	In	114.8	Indium	81	Ι	204.4	Thallium	113	Nn	Nihonium
FI FMFNTC										30	Zn	65.38	Zinc	48	Cq	112.4	Cadmium	80	$_{ m Hg}$	200.6	Mercury	112	Cn	Copernicium
										59	Cn	63.55	Copper	47	Ag	$10\bar{7.9}$	Silver	79	Au	197.0	Gold	111	Rg	Meitnerium Darmstadtium Roentgenium Copernicium
OF THE										28	Z	58.69	Nickel	46	Pd	106.4	Palladium	78	Pt	195.1	Platinum	110	Ds	Darmstadtium
TARIFC		KEY	62	Au	197.0	Dioo				27	ථ	58.93	Cobalt	45	Rh	102.9	Rhodium	77	Ir	192.2	Iridium	109	Mt	Meitnerium
		'	Atomic Number	Symbol	mic Weight	Tallic T				26	Æ	55.85	Iron	44	Ru	101.1	Ruthenium	9/	Os	190.2	Osmium	108	Hs	Hassium
PFPIONIC			Atom		Standard Atomic Weight					25	Mn	54.94	Manganese	43	ر ا		Technetium	75	Re	186.2	Rhenium	107	Bh	Bohrium
					9)					24	Ċ	52.00	Chromium	42	Mo	95.96	Molybdenum	74	≥	183.9	Tungsten	106	So So	Seaborgium
										23	>	50.94	Vanadium	41	Np	92.91	Niobium	73	Га	180.9	Tantalum	105	Dp	
										22	Ή	47.87	Titanium	40	Zr	91.22	Zirconium	72	Ht	178.5	Hafnium	104	Rf	Actinoids Rutherfordium Dubnium
										21	Sc	44.96	Scandium	39	X	88.91	Yttrium	57–71			Lanthanoids	89–103		Actinoids
			4	Be	9.012	12	Mg	24.31	Magnesium	20	Ca	40.08	Calcium	38	Sr	87.61	Strontium	99	Ba				Ra	Radium
	- н	1.008 Hydrogen	3	Ξ.	6.941		Na	22.99	Sodium	19	×	39.10	Potassium	37	Rb	85.47	Rubidium	55	Cs	132.9	Caesium	87	Ł	Francium
																	_			_	_			

57	28	59	09	61	62	63	64	65	99	<i>L</i> 9	89	69	70	71
La	Ce	Pr	PN	Pm	Sm	En	рŊ	Tb	Dy	Ho	Er	Пm	Yb	Lu
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

_			Ι
102	Š		Nobelium
101	Мd		Mendelevium
100	Fm		Fermium
66	Es		Einsteinium
86	Cť		Californium
97	Bk		Berkelium
96	Cm		Curium
95	Am		Americium
94	Pu		Plutonium
93	dN	4	Neptunium
92	n	238.0	Uranium
91	Pa	231.0	Protactinium
06	Th	232.0	Thorium
68	Ac		Actinium

Lawrencium

103 Lr

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.