Part I Logic

- L01 Propositional Logic
- L02 Predicate Logic
- L03 Inference Rules and Proof Techniques

What is Logic?

- Puzzles
- Prerequisite of law schools (LSAT)
 - Riders A, B, C, D, E, F, and G take busses 1, 2, 3 to work.
 - Neither E nor G takes bus 1 on a day when B does.
 - G does not take bus 2 on a day when D does.
 - When A and F take the same bus, it is always bus 3.
 - C always takes bus 3.
 - Who takes which bus?
- Rules of mathematical reasoning
- Automated reasoning and artificial intelligence
 - Four color theorem
 - Still in progress

L01: Propositional Logic

- Outline
 - Propositions
 - Compound Propositions
 - Propositional Equivalences
- Reading
 - Kenneth Rosen, section 1.1-1.3

Proposition

Definition

A **proposition** is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both

Remark

Propositions are the basic building blocks of logic. The area of logic that deals with propositions is called **propositional logic**.

Definition

The **truth value** of a proposition is true, denoted by T, if it is a true proposition, and false, denoted by F, if it is a false proposition.

Examples

- Each of the following declarative statements is a proposition:
 - (a) Beijing is the capital of China.
 - (b) COMP 2711 is an elective course for the COMP program.
 - (c) $2 + 2 = 2^2$
 - (d) 1 + 1 = 3

Propositions (a) and (c) are true but (b) and (d) are false.

Examples

- These statements are not propositions:
 - (a) No parking
 - (b) Who has an iPad?
 - (c) $y = \log(x+1)$
 - (d) $x^2 3x + 1 = 0$
 - (c) and (d) can become propositions if x and y are assigned values
- Logical paradoxes are not propositions
 - (a) This sentence is false. (Liar paradox)
 - (b) All I know is that I know nothing. (Socratic paradox)

Outline

- Introduction to Propositions
- Compound Propositions
- Propositional Equivalence

Logical Operator and Truth Table

- Logical operators or logical connectives can be used to turn existing propositions into new propositions.
- The definition of a logical operator can be given in the form of a truth table by enumerating all possible truth values of the proposition(s) involved.

Negation

Definition

Let p be a proposition. The **negation** of p, denoted by $\neg p$ or \bar{p} and read as "not p", is the statement "it is not the case that p". The truth value of $\neg p$ is the opposite of the truth value of p.

p	$\neg p$
T	F
F	T

• Example:

- p = "Tom's iPhone has at least 32GB of memory"
- $\neg p$ = "It is not the case that Tom's iPhone has at least 32GB of memory"
- $\neg p$ = "Tom's iPhone has less than 32GB of memory"

Conjunction

Definition

Let p and q be propositions. The **conjunction** of p and q, denoted by $p \land q$, is the proposition "p and q".

The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

p	q	$p \wedge q$
Т	Т	Т
T	F	F
F	T	F
F	F	F

Disjunction

Definition

The **disjunction** of p and q, denoted by $p \lor q$, is the proposition "p or q".

The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive Or

Definition

The **exclusive** or of p and q, denoted by $p \oplus q$, is the proposition that is true when exactly one of p and q is true and is false otherwise.

p	q	$p \oplus q$
T	Τ	F
T	F	T
F	Т	Т
F	F	F

Conditional Statement

Definition

The **conditional statement** $p \rightarrow q$ is the proposition "if p, then q".

p is called the **hypothesis** (or **premise**) and q is called the **conclusion** (or **consequence**).

Also called an implication.

Note: There does not need to be any connection between the hypothesis and the conclusion. The true value of p→q depends only on the truth values of p and q.

p	q	p o q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Examples

- "If Beijing is the capital of China, then Beijing is a city of China".
- True.
- "If Beijing is a city of China, then Beijing is the capital of China."
- True.
- "If the moon is made of green cheese, then I have more money than Bill Gates."
- True.
- "If the moon is not made of green cheese, then I have more money than Bill Gates."
- False.

Necessary and sufficient conditions

- If p → q is true, then p is a sufficient condition of q, and q is a necessary condition of p
- Example:
 - "If I am elected, then taxes will be lowered."
 - "I am elected" is a sufficient condition for "lower taxes".
 - Other candidate may also lower taxes.
 - "Lower taxes" is a necessary condition for "I am elected"
 - If taxes are not lowered, then I am definitely not elected.

Other Ways to Express conditional statements in English

- Equivalent ways of expressing $p \rightarrow q$:
 - if *p*, then *q*
 - q if p
 - *q* when *p*
 - p implies q
 - q follows from p
 - p is a sufficient condition for q
 - q is a necessary condition for p
 - p only if q (falsity of q implies falsity of p)
 - "The company can succeed only if it has sufficient funding."

Converse, Contrapositive

Definition

The **converse** of $p \rightarrow q$ is $q \rightarrow p$. The **contrapositive** of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

The **inverse** of $p \rightarrow q$ is $\neg p \rightarrow \neg q$.

 $p \rightarrow q$ and it contrapositive are **equivalent**.

p	q	p o q	$\neg p$	$\neg q$	eg q o eg p
Т	Т	Т	F	F	Т
T	F	F	F	T	F
F	T	Т	Т	F	Т
F	F	Т	Т	T	Т

Biconditional Statement

Definition

The **biconditional statement** $p \leftrightarrow q$ is the proposition "p if and only if q".

The statement is true when p and q have the same truth value and is false otherwise.

Equivalent ways of expressing

$$p \leftrightarrow q$$
:

- p if and only if q
- p iff q
- p is necessary and sufficient for q
- if p then q, and conversely

р	q	$p \leftrightarrow q$
Т	Т	Т
T	F	F
F	T	F
F	F	Т

Ambiguity in natural language

- Sometimes, "if ... then ..." in natural language actually means "if and only if".
- "If you finish your meal, then you can have dessert"
- What if you don't finish your meal?
 - In natural language: then you can't have dessert.
 - In logic: unspecified
- In this course, we should avoid such ambiguities.

Precedence of Logical Operators

- Multiple logical operators can be used to construct compound propositions.
- Parentheses can be used for clarity

$$p \vee \neg q \rightarrow p \wedge q$$

may be written more clearly as

$$(p \lor \neg q) \rightarrow (p \land q).$$

R	6	m	a	r	k
			•		•

- Boolean operations in programming languages (e.g., &&, ||, !, == in C++) correspond to \lor , \land , \neg , \leftrightarrow
- "if ... then ..." statements in programming languages do not correspond to →

Operator	Precedence
¬	1
٨	2
V	3
\rightarrow	4
\leftrightarrow	5

Outline

- Introduction to Propositions
- Compound Propositions
- Propositional Equivalence

Tautology and Contradiction

Definition

A tautology is a compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it.

A contradiction is a compound proposition that is always false.

A **contingency** is a compound proposition that is neither a tautology nor a contradiction.

Tautology and Contradiction

Example

 $p \lor \neg p$ is a tautology $p \land \neg p$ is a contradiction $p \rightarrow \neg p$ is a contingency

p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$	p o eg p
Т	F	T	F	F
F	Т	Т	F	Т

Logical Equivalence

- Compound propositions that always have the same truth values are called logically equivalent
- Equivalent definition
 The compound propositions p and q are called logically equivalent if p ↔ q is a tautology.
- The notation is $p \equiv q$ (or $p \Leftrightarrow q$).
- Remark

The symbol \equiv is not a logical operator and $p \equiv q$ is not a compound proposition but rather is the statement that $p \leftrightarrow q$ is a tautology.

The use of \equiv , \leftrightarrow , =

- = denotes logical equivalence regardless of truth values of the propositional variables
- is not used on propositions. It is only used between two mathematical quantities.
- Examples:
 - $(p \to q) \leftrightarrow (\neg p \lor q) \equiv T$
 - $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
 - $T \leftrightarrow F \equiv F$
 - $(2 = 3) \land (5 \neq 4) \equiv F$

Logical Equivalence

Example

Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

p	9	$p \vee q$	¬ ((p V)	q)	$\neg p$	$\neg q$	7/	ŋ ∧ -	79	$\neg (p \lor q) \\ \leftrightarrow \\ \neg p \land \neg q$
Т	Т	Т		F		F	F		F		Т
Т	F	Т		F		F	Т		F		Т
F	Т	Т		F		Т	F		F		Т
F	F	F		Т		Т	Т		Т		Т

Logical Equivalence

Example

Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Propositional Equivalences

The following table summarizes the major propositional equivalences:

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \vee F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p)\equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	

Propositional Equivalences (cont'd)

Equivalence	Name
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$ abla (p \wedge q) \equiv \neg p \vee \neg q$	De Morgan's laws
$\neg(p\lor q)\equiv \neg p\land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	
$p \lor \neg p \equiv T$	Negation laws
$p \wedge \neg p \equiv F$	

Propositional Equivalences (cont'd)

Equivalence	Name
$p o q \equiv \neg p \lor q$	Involving conditional statements
$p ightarrow q \equiv eg q ightarrow eg p$	
$(p o q) \wedge (p o r) \equiv p o (q \wedge r)$	
$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$	
$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$	
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$	
$p \leftrightarrow q \equiv (p ightarrow q) \wedge (q ightarrow p)$	Involving biconditional statements
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$	
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$	

Examples

Example

Use De Morgan's laws to express the negations of "Alice will send a secret message or Bob will send a secret message" and "today is Saturday and today is a holiday".

Example

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

Revisit the Knight and Knave puzzle

- Let p be "A is knight" and q be "B is knight"
- A: "We are both knaves": $\neg p \land \neg q$
- B says nothing
- Two possibilities
 - If A's claim is true, then $\neg p \land \neg q$ is true. If A is telling the truth, then he is knight and p is true. However, $\neg p \land \neg q$ and p cannot both be true.
 - If A's claim is false, then $\neg p \land \neg q$ is false, i.e., $\neg (\neg p \land \neg q)$ is true. Using de Morgan's law, $\neg (\neg p \land \neg q) \equiv p \lor q$. Since A's claims is false, he is a khave, so p is false. Therefore, q must be true.

Examples

Example

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

Answer

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land (\neg(\neg p \land q))$$

$$\equiv \neg p \land (\neg(\neg p) \lor \neg q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv \neg p \land \neg q$$

Examples

Example

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology by developing a series of logical equivalences.