Circuito Integrado 555

Eletrônica para Computação Prof. José Paulo G. de Oliveira

Conteúdo

- Visão geral
- Circuitos astáveis
- Frequência de oscilação
- Circuitos monoestáveis
- Controle de frequência
- Aplicações

Circuito Integrado 555

- •Lançado em 1971 pela *Signetics* (Adquirida pela *Philips* em 1975)
- Um dos Cls mais populares e mais vendidos no mundo
- •2 diodos, 23 transistores e 16 resistores
- Corrente de saída máxima 0.2 A

Circuito Integrado 555

The 'T' Package

Tipos de circuito com 555

- 555 Timer como multivibrador astável
- 555 Timer como multivibrador monoestável
- 555 Timer no modo bi-estável

Flip-flop

Flip-Flpo SR

Operação do FF SR

S	R	Ação
0	0	-
0	1	Q = 0
1	0	Q = 1
1	1	Proibido

Comparador

Comparador

Circuitos Astáveis com 555

Primeiro passo - início:

- C está descarregado
- Comparador 1 => Off
- Comparador 2 => On
- FF => On
- Saída => On

Segundo passo – Carga do capacitor:

- C se carregando por R1 e R2
- C => 1/3 Vcc
- Comparador 1 => Off
- Comparador 2 => Off
- FF => On
- Saída => On

Terceiro passo – Saída em Off:

- $C \Rightarrow 2/3 \ Vcc$
- Comparador 1 => Off
- Comparador 2 => On
- FF => Off
- Saída => Off

Quarto passo – Descarga do capacitor:

- Comparador 1 => Off
- Comparador 2 => Off
- FF => Off
- Saída => Off
- Saída complementar => On
- Transistor aterrado
- Capacitor se descarrega via
 R2

Formas de Onda

Valores de tempo

Valores de frequência

Configuração Simétrica

$$Se R_1 = R_2 = R_t$$

$$T_{alto} = T_{baixo} = 0.67 R_t C$$

$$T_{total} = 1.34R_tC$$

$$f = \frac{0.74}{R_t C}$$

Circuito Monoestável

Aplicação

Conta-se o tempo a partir de um evento

Circuito Bi-estável

Controle de Tensão

Controle de Tensão

Controle de Tensão

- •Tensão de controle pode variar entre 0.45Vcc e 0.9 Vcc
- A frequência do sinal de saída varia de acordo com essa tensão

VCO – Voltage Controlled Oscillator

Time - 0.5 ms/div

PWM – Pulse Width Modulation

Gerador de áudio intermitente

Gerador de áudio intermitente

Gerador de áudio de dois tons

Gerador de áudio de dois tons

Gerador de áudio de frequência ascendente e descendente

Gerador de áudio de freqüência ascendente e descendente

Temporizador com *Buzzer*

https://www.brighthubengineering.com/diy-electronics-devices/121945-simple-astable-and-monostable-multivibrator-circuits-using-ic-555-explained/

Acionamento de Cargas Indutivas

Corrente máxima suportada pelo transistor de saída = 0.2 A

Acionamento de Cargas Indutivas

Corrente máxima suportada pelo transistor de saída = 0.2 A

Acionamento de Cargas Indutivas

Corrente máxima suportada pelo transistor de saída = 0.2 A

Exemplo de Cargas Indutivas

Relé

Exemplo de Cargas Indutivas

Funcionamento

Exercício

1 - Qual o comportamento do circuito?

Exercício

Exercício

2 – Calcule o tempo em cada um dos LEDs fica aceso. Faça um esboço do comportamento de cada LED em função do tempo.

Informações

http://pcbheaven.com/wikipages/555_Theory/

http://www.electronics-tutorials.ws/waveforms/555_timer.html