Homework 1 for AMAT840: Multiparameter Persistent Homology

Jingyi Li * Institut Polytechnique de Paris , Palaiseau, France jingyi.li@ip-paris.fr

September 13, 2022

1 Posets and Basic Category Theory

Exercise 1.1 (3.12). Draw the Hasse diagrams of all the posets (up to isomorphism) with 4 elements.

Solution. There are 17 Hasse diagrams of posets with 4 elements:

^{*}This is a course taught by Michael Lesnick from SUNY Albany.

Exercise 1.2 (3.26). Show that a fully faithful functor F is **essentially injective**, i.e., $F_x \cong F_y$ implies $x \cong y$.

Proof. If $F_x \cong F_y$, there exists a morphism $\gamma: F_x \to F_y$ such that γ is an isomorphism. The morphism $\gamma^{-1}: F_y \to F_x$ is also an isomorphism. The functor F is fully faithful, so there exist a unique morphism η such that $F(\eta) = \gamma$ and a unique morphism η' such that $F(\eta') = \gamma^{-1}$. Then use the composition operation:

$$F(\eta \circ \eta') = F(\eta) \circ F(\eta') = \gamma \circ \gamma^{-1} = Id_{F_y}$$
$$F(\eta' \circ \eta) = F(\eta') \circ F(\eta) = \gamma^{-1} \circ \gamma = Id_{F_y}$$

For $\forall x \in ObC$, the function $F : hom(x, x) \to hom(F_x, F_x)$ is bijective. So for $Id_{F_x} \in hom(F_x, F_x)$, there exists a unique $\delta \in hom(x, x)$ such that $F(\delta) = Id_{F_x}$, and we know

that $F(Id_x) = Id_{F_x}$ according to the definition of functor, so $\delta = Id_x$, which means that the preimage of an identity map must be an identity map for a fully faithful functor. Thus, $\eta \circ \eta' = Id_y$ and $\eta' \circ \eta = Id_x$, so η is bijective and $x \cong y$.

Exercise 1.3 (3.27). Recall the construction of a category from a poset given in Example 3.16. Show that this extends to a fully faithful functor $Pst \rightarrow Cat$.

Proof. Consider the functor $F : \mathbf{Pst} \to \mathbf{Cat}$.

First, let's define the functor.

The category Pst has objects all posets and morphisms all poset maps.

For $\forall P \in Ob\mathbf{Pst}$, F(P) is the catogory whose objects are all elements in P and whose morphisms are the partially ordered relation between two elements. So we can say that the elements in P and the objects in F(P) are one-to-one, and we denote the corresponding object in F(P) as \tilde{x} if $x \in P$.

For $\forall P, P' \in Ob\mathbf{Pst}$ and $\gamma \in hom(P, P')$, $F(\gamma) \in hom(F(P), F(P'))$ is a functor from F(P) to F(P'). For $x \in P$ and $y \in P'$, if $y = \gamma(x)$, then let $\tilde{y} = F(\gamma)(\tilde{x})$. It's obvious that F respects the composition operation and maps identity morphisms to identity morphisms, so F is indeed a functor.

Then, prove *F* is faithful.

For $\forall P, P' \in ob\mathbf{Pst}$ and $\forall \gamma, \gamma' \in hom(P, P')$, if $F(\gamma) = F(\gamma')$, we have $F(\gamma)(\tilde{x}) = F(\gamma')(\tilde{x})$ for $\forall \tilde{x} \in F(P)$. Thus $\gamma(x) = \gamma'(x)$ for $\forall x \in P$ according to the above definition of the functor. So $F(\gamma) = F(\gamma')$ implies $\gamma = \gamma'$, i.e., F is faithful.

Finally, prove *F* is full.

For $\forall \eta \in hom(F(P), F(P'))$, we define a morphism $\gamma \in hom(P, P')$ such that if $\tilde{y} = \eta(\tilde{x})$, then $y = \gamma(x)$. Thus $F(\gamma) = \eta$ according to the definition of the functor F. So F is full.

Exercise 1.4 (3.30). As in the previous example, a natural transformation between functors $F, G : \{0,1\} \times \{0,1\} \rightarrow \textbf{Top}$ can be thought of as a commutative diagram. Sketch this diagram.

Solution.

Exercise 1.5 (3.34). Show that a morphism in $\mathcal{D}^{\mathcal{C}}$ is an isomorphism if and only if it is a natural isomorphism in the sense defined above.

Proof. Let F, G be two functors $C \to D$ and N be a natural transformation from F to G.

If N is an isomorphism, then there exists a natural transformation M from G to F such that $M \circ N = Id_F$ and $N \circ M = Id_G$, i.e., for $\forall x \in Ob\mathcal{C}$, $M_x \circ N_x = Id_{F_x}$ and $N_x \circ M_x = Id_{G_x}$, so each N_x is an isomorphism and N is a natural isomorphism.

If N is a natural isomorphism, then for $\forall x \in ObC$, N_x is an isomorphism. Thus $\exists M_x \in hom(G_x, F_x)$ such that $M_x \circ N_x = Id_{F_x}$ and $N_x \circ M_x = Id_{G_x}$. So $M = (M_x : G_x \to F_x)_{x \in ObC}$ is a natural transformation such that $M \circ N = Id_F$ and $N \circ M = Id_G$, then N is an isomorphism.

Exercise 1.6 (3.39).

- (a) Describe all functors $\mathbb{Z} \to \mathbb{Z}$.
- (b) Describe all equivalences $\mathbb{Z} \to \mathbb{Z}$.
- (c) Describe all equivalences $\mathbb{Z} \to \mathbb{Z}^{op}$.

Solution. (i) \mathbb{Z} is a poset, so each object in the category \mathbb{Z} is an integer. hom(x,y) has one element if $x \leq y$, otherwise hom(x,y) is empty.

For a functor $F : \mathbb{Z} \to \mathbb{Z}$, it satisfies that if $x \le y$, then $F(x) \le F(y)$, so $F : Ob\mathbb{Z} \to Ob\mathbb{Z}$ is a non-decreasing function.

- (ii) If $F : \mathbb{Z} \to \mathbb{Z}$ is an equivalence, then it is fully faithful and essentially surjective, so $F : Ob\mathbb{Z} \to Ob\mathbb{Z}$ should be F(x) = x + n where n is any given interger.
- (iii) If $F : \mathbb{Z} \to \mathbb{Z}^{op}$ is an equivalence, it should be F(x) = n x where n is any given interger.

Exercise 1.7. Show that for any category C, there exists an equivalent category D in which no two distinct objects are isomorphic.

Proof. For each isomorphism class in $Ob\mathcal{C}$, we choose one as the representative object. Let $Ob\mathcal{D}$ be the collection of all these representative objects. If $x \in Ob\mathcal{C}$, we denote the corresponding representative object as $\overline{x} \in Ob\mathcal{D}$. Since $x \cong \overline{x}$, there exist isomorphisms $i_x : x \to \overline{x}$ and $i_x^{-1} : \overline{x} \to x$.

Now let's define the functor $F: \mathcal{C} \to \mathcal{D}$.

For $\forall x \in Ob\mathcal{C}$, let $F(x) = \overline{x} \in Ob\mathcal{D}$. For $\forall f \in hom(x,y)$, let $F(f) = i_y \circ f \circ i_x^{-1} \in hom(\overline{x},\overline{y}) = hom(F(x),F(y))$.

Then let's check that F is a functor.

For $\forall f \in hom(x,y)$ and $\forall g \in hom(y,z)$, $F(g \circ f) = i_z \circ g \circ f \circ i_x^{-1}$. Then $F(g) \circ F(f) = i_z \circ g \circ i_y^{-1} \circ i_y \circ f \circ i_x^{-1} = i_z \circ g \circ f \circ i_x^{-1} = F(g \circ f)$, so F respects composition. For $Id_x \in hom(x,x)$, $F(Id_x) = i_x \circ Id_x \circ i_x^{-1} = Id_{\overline{x}} = Id_{F_x}$, so F is indeed a functor.

Then we define the functor $G : \mathcal{D} \to \mathcal{C}$ as an inclusion.

For $\forall x \in Ob\mathcal{D}$, G(x) = x and for $\forall g \in hom(x, y)$, G(g) = g. It's obvious that G is a functor.

Then, let's consider the natural transformation $N: F \circ G \to Id_{\mathcal{D}}$. For $\forall \overline{x}, \overline{y} \in Ob(D)$, $(F \circ G)_{\overline{x}} = \overline{x}$ and $(F \circ G)_{\overline{y}} = \overline{y}$, and for $\forall \gamma \in hom(\overline{x}, \overline{y})$, $(F \circ G)_{\gamma} = F_{\gamma} = i_{\overline{y}} \circ \gamma \circ i_{\overline{x}}^{-1} = \gamma$. Thus the following diagram

$$(F \circ G)(\overline{x}) \xrightarrow{(F \circ G)(\gamma)} (F \circ G)(\overline{y})$$

$$\downarrow^{N_{\overline{x}}} \qquad \qquad \downarrow^{N_{\overline{y}}}$$

$$Id_{\mathcal{D}}(\overline{x}) \xrightarrow{Id_{\mathcal{D}}(\gamma)} Id_{\mathcal{D}}(\overline{y})$$

is the same as

$$\begin{array}{ccc}
\overline{x} & \xrightarrow{\gamma} & \overline{y} \\
\downarrow N_{\overline{x}} & & \downarrow N_{\overline{y}} \\
\overline{x} & \xrightarrow{\gamma} & \xrightarrow{y} & \overline{y}
\end{array}$$

Let each $N_{\overline{x}}$ be $Id_{\overline{x}}$ for all $\overline{x} \in Ob\mathcal{D}$, the above diagram commutes. Since identity map is isomorphism, so N is a natural isomorphism and $F \circ G \cong Id_{\mathcal{D}}$.

Finally, let's consider the natural transformation $N': G \circ F \to Id_{\mathcal{C}}$. For $\forall x, y \in Ob(\mathcal{C})$, $G \circ F(x) = \overline{x}$ and $G \circ F(y) = \overline{y}$. For $\gamma \in hom(x, y)$, $G \circ F(\gamma) = i_x^{-1} \circ \gamma \circ i_y$. Thus, the following diagram

$$(G \circ F)(x) \xrightarrow{(G \circ F)(\gamma)} (G \circ F)(y)$$

$$\downarrow^{N'_{x}} \qquad \qquad \downarrow^{N'_{y}}$$

$$Id_{\mathcal{C}}(x) \xrightarrow{Id_{\mathcal{C}}(\gamma)} Id_{\mathcal{C}}(y)$$

is the same as

$$\overline{x} \xrightarrow{i_x^{-1} \circ \gamma \circ i_y} \overline{y} \\
\downarrow N_x' \qquad \qquad \downarrow N_y' \\
x \xrightarrow{\gamma} y$$

Let each N_x' be i_x^{-1} for all $x \in Ob\mathcal{C}$. The above diagram commutes and each N_x' is an isomorphism, so N' is a natural isomorphism and $G \circ F \cong Id_{\mathcal{C}}$.

Therefore, category \mathcal{C} and category \mathcal{D} are equivalent and there are no two distinct objects that are isomorphic in \mathcal{D} .

Exercise 1.8 (3.41).

- (i) Give an explicit description of all categories (up to isomorphism) with four morphisms.
- (ii) Which of these categories are equivalent to each other?
- (iii) Which are (isomorphic to) poset categories?

Solution. (i)If a category C has four morphisms, it has at most four objects because $Id_x \in hom(x,x)$ for all $x \in ObC$.

We use bullets to denote objects and arrows to denote morphisms.

If the category has four objects,

$$C1 = \bigcup_{Id} \quad \bigcup_{Id} \quad \bigcup_{Id} \quad \bigcup_{Id}$$

If the category has three objects,

$$C2 = \bigcup_{Id}^{\bullet \longrightarrow \bullet} \bigcup_{Id}^{\bullet} \bigcup_{Id}^{\bullet}$$

$$C3 = \bigcup_{Id} \quad \bigcup_{Id} \quad \bigcup_{Id}$$

If the category has two objects,

$$C4 = \bigcup_{Id} \qquad \bigcup_{Id}$$

$$C5 = \bigcup_{Id} \qquad \bigcup_{Id}$$

$$C6 = \bigcup_{Id} \bigcup_{Id}$$

$$C7 = \bigcup_{Id}^{\bullet} \bigcup_{Id}^{\bullet}$$

$$C8 = \bigcup_{Id} \bigcup_{Id}$$

$$C9 = \bigcup_{Id} \bigcup_{Id}$$

If the category has one object,

$$C10 = \bigcup_{Id}$$

(ii) $\mathcal{C}7$ and $\mathcal{C}10$ are equivalent because they have the same structure except the size of isomorphism classes differ, i.e. they have the same skeleton. The skeleton is:

$$C = \bigcup_{Id}^{\bullet}$$

(iii) C1, C2, C7 are (isomorphic to) poset categories, because for any objects x, y in the category, $|hom(x,y)| \le 1$.