

Лекция 12

«Линейное пространство»

Содержание лекции:

Ключевые слова:

Авторы курса:

Свинцов М.В.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

На предыдущей лекции были рассмотрены различные алгебраические структуры. Наибольший интерес для нас представляет линейное пространство. С одной стороны, в силу своей широкой применимости к различным естественным множествам с их операциями. С другой стороны, в силу ценности самих алгебраических рассуждений, непременно возникающих при более детальном рассмотрении структуры. Естественно, что первая причина обусловлена второй.

12.1 Структуры и линейные пространства

Вспомним, что линейное пространство мы определяли как множество, на котором определен внутренний закон композиции (сложение) и внешний закон композиции (умножение на скаляр). С одной стороны, теория множеств говорит о том, что в любом множестве можно выбрать подмножество, а с другой стороны, что между множествами могут быть построены соответствия. Как два этих факта связаны с уже введенной алгебраической структурой?

12.1.1 Линейные подпространства

Рассмотрим линейное пространство X. В первую очередь это множество элементов, а значит в нем можно выбрать какое-то подмножество L. Нам необходимо разобраться, будет ли любое подмножество обладать той же алгебраической структурой, что и X.

Линейным подпространством L линейного пространства X будем называть подмножество $L\subseteq X$, замкнутое относительно линейных операций, индуцированных из X. Иными словами, справедливо, что

$$\forall x, y \in L \subseteq X, \quad \forall \alpha \in \mathbb{K}: \qquad x + y \in L, \quad \alpha x \in L$$

Любое множество среди своих подмножеств содержит само себя и пустое множество. Будут ли они являться линейными подпространствами?

Пример 12.1.

- 1. Само X (несобственное подмножество) является линейным подпространством;
- 2. Пустое множество Ø не является линейным подпространством, т.к. в нем должен содержаться нулевой элемент (согласно аксиомам);
- 3. Множество, состоящее из нулевого элемента $\{0_X\}$ пространства X будет являться линейным подпространством: в нем присутствует нейтральный элемент, для нулевого противоположным является он сам, а также умножение на любой скаляр не выводит из этого подмножества. Действительно

$$\alpha \cdot 0_X = \alpha(0 \cdot 0_X) = (\alpha \cdot 0) \cdot 0_X = 0 \cdot 0_X = 0_X$$

Можно также рассматривать менее тривиальные примеры.

Пример 12.2.

- 1. Множество векторов, принадлежащих прямой, проходящей через начало системы координат.
- 2. Множество полиномов, содержащих только четные степени.

Одним из наиболее интересных для нас примеров будет следующий.

Пример 12.3. Пусть $A \in M_{m \times n}$ - произвольная прямоугольная матрица системы линейных алгебраических уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots &= \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

которую, как известно, можно представить в матричном виде:

$$Ax = b, A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

Если столбец свободных членов равен нулевому, то такая система называется однородной

$$Ax = 0$$

Очевидно, что нулевой вектор всегда будет являться решением этой системы, так называемое тривиальное решение.

Более того, можно заметить, что если x_1 и x_2 являются решениями однородной системы, то и их сумма $x = x_1 + x_2$ также будет являться решением однородной системы:

$$Ax = A(x_1 + x_2) = Ax_1 + Ax_2 = 0 + 0 = 0$$

Аналогично и с умножением на скаляр $\lambda \in \mathbb{K}$:

$$A(\lambda x) = (A\lambda)x = (\lambda A)x = \lambda(Ax) = \lambda \cdot 0 = 0$$

Следовательно, если рассматривать линейное пространство матричных столбцов $M_{m\times 1}$, то любое множество решений X образует линейное подпространство пространства $M_{m\times 1}$.

12.1.2 Изоморфизм линейных пространств

Помимо построения подмножеств теория множеств говорит нам о возможности построения соответствия между двумя множествами. Вспомним основные определения.

Соответствием $F: X \to Y$ между множествами X и Y называется подмножество декартова произведения множеств $F \subseteq X \times Y$.

В нашем рассмотрении важно не произвольное соответствие, а взаимно-однозначное отображение (биекция).

Взаимно-однозначным отображением, или биекцией, называется соответствие, при котором каждому элементу одного множества соответствует ровно один элемент другого множества, и также существует обратное соответствие, обладающее этим же свойством.

Нам также важно, чтобы свойства алгебраической структуры сохранялись при соответствии. Такой тип соответствий называется гомоморфизмом.

Пусть $S_1=(G_1,\circ)$ и $S_2=(G_2,*)$. Отображение $f:G_1\to G_2$ называется гомоморфизмом, если оно сохраняет основные операции и свойства. Иными словами, если

$$f(a \circ b) = f(a) * f(b), \quad a, b \in G_1, \quad f(a), f(b) \in G_2$$

Два этих понятия (биекции и гомоморфизма) в совокупности позволяют строить изоморфизмы, объединяющие и те, и другие свойства.

Пусть X и Y - линейные пространства над одним и тем же полем \mathbb{K} . Говорят, что пространства X и Y изоморфны, если между их элементами установлено взаимнооднозначное соответствие, сохраняющее их линейную структуру

$$\begin{aligned} x_1, x_2 \in X, & y_1, y_2 \in Y \\ x_1 \leftrightarrow y_1, & x_2 \leftrightarrow y_2 \\ x_1 + x_2 \leftrightarrow y_1 + y_2 & \alpha x_i \leftrightarrow \alpha y_i, & \forall \alpha \in \mathbb{K} \end{aligned}$$

А что делать с нулем?

Лемма 12.1. Пусть X и Y изоморфны. Тогда имеет место

$$0_X \leftrightarrow 0_Y$$

Пусть $x \in X$ и $y \in Y$ такие, что $x \leftrightarrow y$. Тогда справедлива следующая цепочка равенств

$$0_X = 0 \cdot x \leftrightarrow 0 \cdot y = 0_Y$$

Приведем несколько наиболее важных изоморфизмов.

Пример 12.4.

1. Пространство комплексных чисел \mathbb{C} изоморфно пространству \mathbb{R}^2 . Действительно можно построить биекцию между произвольным комплексным числом и \mathbb{R}^2 , которое сохраняет алгебраические операции.

$$\forall z \in \mathbb{C}: \quad z \leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \operatorname{Re} z \\ \operatorname{Im} z \end{pmatrix}$$

Важно, что изоморфизм сохраняет лишь операции данной структуры (в данном случае линейные операции). Иными словами, сохранение линейных операций не обязательно влечет сохранение, например, комплексного умножения, т.к. это уже другая групповая структура.

- 2. Основываясь на предыдущем примере, можно сказать, что \mathbb{C}^n изоморфно \mathbb{R}^{2n} .
- 3. Матричное пространство $M_{n\times m}$ изоморфно \mathbb{R}^{nm} .
- 4. Пространство полиномов \mathcal{P}_n степени не выше n изоморфно \mathbb{R}^{n+1} .

Данные примеры показывают, что результаты, справедливые для пространства \mathbb{R}^n будут также справедливы и для любого комплексного, матричного и полиномиального линейных пространств. Весь аппарат рассмотренный здесь и далее применим к абсолютно любому рассматриваемому изоморфному линейному пространству.

12.2 Линейные соотношения

Уже очевидно, что операции сложения и умножения на скаляр (линейные операции) являются центральными при любом рассмотрении линейного пространства. В связи с этим можно пойти дальше и говорить композиции этих операций. Обобщим уже известные понятия, которые вводились для строк матрицы и геометрических вектроов.

12.2.1 Линейная комбинация

Линейной комбинацией элементов линейного пространства $x_1, x_2, \dots x_n \in X$ с коэффициентами $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$ называется объект вида

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$

Аналогично и с понятиями линейной зависимости и независимости.

Набор элементов линейного пространства $x_1, x_2, \dots x_n \in X$ называется линейно зависимым, если существует ненулевой набор коэффициентов, при котором линейная комбинация равна нулю:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0_X, \qquad (\alpha_1, \dots, \alpha_n) \neq \vec{0}$$

Набор элементов линейного пространства $x_1, x_2, \dots x_n \in X$ называется линейно независимым, если линейная комбинация равна нулю тогда и только тогда, когда все коэффициенты равны нулю:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0_X, \qquad \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

Как и говорилось, вследствие изоморфности некоторых любимых нами пространств, наибольшую ценность приобретает определение линейной зависимости на пространстве \mathbb{R}^n .

Пример 12.5. Пусть $X = \mathbb{R}^n = \{x = (\xi_1, \xi_2, \dots, \xi_n)^T, \xi_i \in \mathbb{R}\}$. Тогда условие их линейной независимости элементов $x_1, x_2, \dots, x_m \in X$

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_m x_m = 0_X$$

иначе

$$\alpha_1 \begin{pmatrix} \xi_1^1 \\ \xi_1^2 \\ \dots \\ \xi_1^n \end{pmatrix} + \alpha_2 \begin{pmatrix} \xi_1^1 \\ \xi_2^2 \\ \dots \\ \xi_2^n \end{pmatrix} + \dots + \alpha_m \begin{pmatrix} \xi_m^1 \\ \xi_m^2 \\ \dots \\ \xi_m^n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

будет определяться решениями однородной системы линейных алгебраических уравнений. Действительно, записанное равенство можно представить в виде СЛАУ

$$\begin{pmatrix} \xi_1^1 & \xi_2^1 & \dots & \xi_m^1 \\ \xi_1^2 & \xi_2^2 & \dots & \xi_m^2 \\ \dots & \dots & \dots & \dots \\ \xi_1^n & \xi_2^n & \dots & \xi_m^n \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

Эта система всегда имеет тривиальное решение (нулевое решение). Оно является свидетельством линейной независимости только в том случае, если является единственным. Как уже известно, если множество решений однородной СЛАУ отлично от $\{0\}$, то оно образует целое линейное подпространство ненулевых решений. В таком случае набор векторов является линейно зависимым.

Для поиска решений данной системы используется метод Гаусса.

Если количество m векторов в наборе совпадает с количеством n элементов, входящих в каждый вектор, то система становится квадратной и к ней в явном виде применимы рассуждения, известные из предыдущих лекций. Рассмотрим следующий набор векторов, который нередко будет фигурировать в дальнейшем:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix}, \qquad \dots, \qquad e_n = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

В таком случае система принимает простой вид и, как следствие, очевидное решение, которое к тому же и единственно по теореме Крамера:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} \alpha^1 = 0 \\ \alpha_2 = 0 \\ \dots \\ \alpha^n = 0 \end{cases}$$

Единственное решение системы является тривиальным, следовательно набор $\{e_i\}_{i=1}^n$ является линейно независимым.

Рассмотрим также еще один пример.

Пример 12.6. Пусть \mathcal{P}_n - линейное пространство полиномов, представимых в виде $p(t) = a_0 + a_1 t + a_2 t^2 + \dots a_n t^n$. Рассмотрим следующий набор функций

$$\{1, t, t^2, \dots t^n\}$$

Покажем, что он будет линейно независимым. Иными словами, что только при всех нулевых коэффициентах линейная комбинация равна нулю

$$\alpha_1 \cdot 1 + \alpha_2 \cdot t + \ldots + \alpha_n \cdot t^n = 0(t)$$

Действительно, последовательно найдем значения производных (включая нулевой порядок производной - саму функцию):

0:
$$\alpha_1 + \alpha_2 \cdot 0 + \alpha_3 \cdot 0 + \ldots + \alpha_n \cdot 0 = 0(t)$$

1:
$$2\alpha_2 + 3\alpha_3 \cdot 0 + \ldots + n\alpha_n \cdot 0 = 0(t)$$

2:
$$2 \cdot 3 \cdot \alpha_3 + \ldots + n(n-1)\alpha_n \cdot 0 = 0(t)$$

i: ...

n:
$$n! \cdot \alpha_n = 0(t)$$

Откуда можно сделать вывод, что действительно все коэффициенты равны 0.

12.2.2 Несколько слов о линейной зависимости

Напрямую из определений линейной зависимости следует несколько утверждений.

Лемма 12.2. Любой набор элементов линейного пространства, содержащий нулевой вектор, является линейно зависимым.

Лемма 12.3. Набор, содержащий линейно зависимый поднабор, является линейно зависимым.

Лемма 12.4. Любой поднабор линейно независимого набора также является линейно независимым.

Обратное утверждения, строго говоря, не является верным. Линейно зависимый набор может содержать в себе линейно независимый поднабор. Следующая лемма отражает альтернативное определение линейной зависимости, или иначе одно из свойств:

Teopema 12.1. Система векторов линейно зависимы тогда и только тогда, когда хотя бы один из векторов набора выражается линейной комбинацией остальных.

$$\{x_i\}_{i=1}^n$$
- линейно зависим $\qquad\Leftrightarrow\qquad \exists\, k\in\{1,\ldots,n\}\colon\ x_k=\sum_{i\neq k}\beta^ix_i$

 \Rightarrow Пусть $\{x_i\}_{i=1}^n$ - линейно зависимый набор, тогда

$$\exists k \in \{1, \dots, n\} \colon \sum_{i=1}^{n} \alpha^{i} x_{i} = 0, \quad \alpha^{k} \neq 0 \qquad \Rightarrow \qquad x_{k} = -\sum_{i \neq k} \frac{\alpha^{i}}{\alpha^{k}} x_{i}$$

 \Leftarrow Пусть набор $\{x_i\}_{i=1}^n$ такой, что

$$\exists k \in \{1, \dots, n\} \colon x_k = \sum_{i \neq k} \beta^i x_i \quad \Rightarrow \quad \sum_{i \neq k} \beta^i x_i - 1 \cdot x_k = 0 \quad \Rightarrow \quad \{x_i\}_{i=1}^n - J3$$

Nota bene Важно, что в линейно зависимом наборе достаточно *хотя бы одного* элемента, который выражается линейной комбинацией остальных. Однако не утверждается, что любой элемент такого набора будет представим разложением по остальным.

12.2.3 Полный набор

Иным свойством представляющим ценность является полнота набора векторов.

Набор векторов $\{x_i\}_{i=1}^m$ называется полным в линейном пространстве X, если выполняется следующее условие:

$$\forall x \in X : \quad \exists (\alpha^1, \dots, \alpha^n) : \qquad x = \sum_{i=1}^n \alpha^i x_i$$

Иными словами, полнота набора означает, что любой вектор представим в виде линейной комбинации элементов данного набора. Дополним уже рассмотренные примеры этим свойством.

Пример 12.7. Пусть $X = \mathbb{R}^n$. Введенный ранее набор $\{e_i\}_{i=1}^n$ является полным. Действительно

$$\forall x \in X \colon \quad x = \begin{pmatrix} \xi^1 \\ \xi^2 \\ \dots \\ \xi^n \end{pmatrix} = \xi^1 \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} + \xi^2 \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix} + \dots + \xi^n \begin{pmatrix} 1 \\ 0 \\ \dots \\ 1 \end{pmatrix} = \sum_{i=1}^n \xi^i e_i$$

Пример 12.8. Пусть $X = \mathcal{P}_n$ - пространство полиномов степени не выше n. Набор $\{1, t, t^2, \dots, t^n\}$ является полным. Имеем

$$p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \ldots + \alpha_n t^n = \sum_{k=0}^n \alpha_k t^k$$

Две ключевые характеристики подходя с достаточно отличающихся позиций к рассмотрению набора векторов сходятся в едином понятии, если их свойства выполняются оба одновременно.

Базисом в линейном пространстве X называется упорядоченный полный линейно независимый набор.

Рассмотренные ранее в примерах наборы образуют базисы соответствующих пространств.

Пример 12.9.

- 1. $\{e_i\}_{i=1}^n$ образует базис в \mathbb{R}^n
- 2. $\{1,t,t^2,\ldots,t^n\}$ образует базис в \mathcal{P}_n

Порядок элементов в базисе может иметь значение.

Пример 12.10. Пусть $X=M_2$ - пространство квадратных матриц 2-го порядка. Выбор порядка элементов в \mathbb{R}^n достаточно очевиден (хоть и не фиксирован). Аналогично и в пространстве полиномов логично выбирать порядок либо по убыванию, либо по возрастанию степеней. Каков может быть базис в матрице и соответствующий порядок элементов.

$$A \in X: \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

В силу произвольности базис можно выбрать различными способами в смысле порядка. Первый способ:

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $e_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Второй способ:

$$e_1' = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad e_2' = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad e_3' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad e_4' \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Выбор порядка элементов в базисе может казаться несущественным, но все же имеет значение. Это отчетливо видно при явной записи разложения:

$$A = ae_1 + be_2 + ce_3 + de_4$$
$$A = ae'_1 + ce'_2 + be'_3 + de'_4$$

С такой точки зрения базис является минимальным (в смысле мощности) полным набором элементов линейного пространства. В некоторых случаях, как мы видели ранее, этот набор может быть даже конечным. В таком случае говорят о том, что линейное пространство конечномерно. Иначе, при рассмотрении других примеров, может оказаться, что выбор конечного базиса не представляется возможным.

Пример 12.11. Пусть $X = C_{[0,1]}$ - пространство непрерывных функций на отрезке [0,1] с поточечными операциями сложения и умножения на скаляр. Такое множество также образует линейное пространство, т.к. операции сложения и умножения на скаляр не выводят из множества и справедливы аксиомы линейного пространства. Однако в таком пространстве (в общем виде) не представляется выбор конечного полного набора, а соответственно и конечного базиса. В свою очередь этот факт не мешает использовать аппарат линейной алгебры по отношению к таким функциям.

В заключение стоит отметить, что конечномерность линейного пространства X вовсе не означает, что само множество X является конечным. И ведь действительно, линейное пространство определено над полем как минимум рациональных чисел, что вынуждает нас говорить о достаточной произвольности количества элементов самого линейного пространства. Можно себе представлять следующую аналогию. В некотором приближении вся материя состоит из конечного набора частиц (остановимся на атомах в рамках аналогии). Более того они даже упорядочены в таблицу Менделеева. Однако *потенциально* мы не ограничены в том, какое материи мы можем сконструировать, имея достаточное количество представителей каждого типа. Также и базис - может состоять из конечного числа элементов, но быть базисом пространства произвольной мощности, хоть мощности континуума. Действительно ли это так, оставим для рассуждения физикам и философам.