Then:
$$\frac{PV + EV}{PV} > \frac{\tau_c + \varepsilon_v}{\tau_c}$$

$$\Rightarrow (PV + EV) - \tau_c > PV (\tau_c + \varepsilon_v)$$

$$\Rightarrow PV + \varepsilon_v + \varepsilon$$

both we natural anaptions also assued here: 90 > PT &

maybe arme that:  $t_q = t_c + \varepsilon_{\tau}$ with  $0 \le \varepsilon_{\tau}$  small  $8 \neq p_{\overline{\nu}} + \varepsilon_{\overline{\nu}} = q_{\overline{\nu}}$ with  $0 \le \varepsilon_{\tau} \le \varepsilon_{\overline{\nu}}$ .

NTS: P(sq IV) > P(sc IV)

E proof exists (?) for flat prior to to

and initial string likelihood proque]

# Le Computational Pragmatics

Introduction to the Rational Speech Act framework Session 4

· ohay, it is dow that any pries for as for Sq will pull dose (4) towards by i show that, by new libelihood, the same result is expected; so set: Ex=0 PV + 9V PT + 9V (=> PVPV + PYQV > PYQV + 9V9V 79190 Epsoducing Vishen adequeste (PV +EP) PV > 9v (9v+Eq) is less likely than producing > 9v + Eq 9v V when adequate ] PVK9-PJZ + EP PV > 9v + Eqqu + Epq 9v Epooducing Violen inadequote is less likely then predicing Vishen inadequate or



 $[[Joe]] = \lambda e . \lambda w . Joe(e, w)$ 

### **KNOWLEDGE OF LANGUAGE**



GENERAL WORLD KNOWLEDGE









# Reference Games

### referential communication

context
set of objects/referents



utterances
single properties of objects

$$U = \{\text{"square"}, \text{"circle"}, \text{"green"}, \text{"blue"}\}$$

which object do you think a speaker meant when she selects "blue"?



## RSA for reference games (example)



literal interpreter

| "square" | .5 | 0  | .5 |
|----------|----|----|----|
| "circle" | 0  | 1  | 0  |
| "green"  | 0  | 0  | 1  |
| "blue"   | .5 | .5 | 0  |



rational speaker

| <br>"square" | "circle" | "green" | "blue" |
|--------------|----------|---------|--------|
| .5           | 0        | 0       | .5     |
| 0            | .89      | 0       | .11    |
| .11          | 0        | .89     | 0      |



rational interpreter

| "square" | .82 | 0   | .18 |
|----------|-----|-----|-----|
| "circle" | 0   | 1   | 0   |
| "green"  | 0   | 0   | 1   |
| "blue"   | .82 | .18 | 0   |

## vanila RSA

## Rational Speech Act model



#### STRATEGIC DEPTH 0



$$P_{lit}(s \mid u) = P(s \mid [[u]])$$



GRICEAN SPEAKER

STRATEGIC DEPTH 1



$$P_{S}(u \mid s) \propto \exp\left(\alpha \left(\log P_{lit}(s \mid u) - C(u)\right)\right)$$



GRICEAN INTERPRETATION

STRATEGIC DEPTH 2



$$P_L(s \mid u) \propto P(s) P_S(u \mid s)$$

## Pragmatic listener

## Pragmatic speaker

## Pragmatic speaker

## Pragmatic speaker

## Literal listener