Internship Report

Solal Rapaport

June 2022

1 Introduction

There are two goals here, the first one is to build formulas that will allow robots, spread on a ring, to gather. We have k robots and we will use view vectors to build those formulas. The formulas will be an interpretation of the pseudo-code given in the research report [1].

The formulas we are building, will be used with formulas given in an other research report [2], and then will be tested in the acceleration algorithm using an interpolant [2]. Which leads us to the second goal, we want to implement and, if possible, improve this algorithm.

2 Logical Formulas

In this section, we will translate the algorithms given in the research report [1]. Some changes will have to be made because we can't literally translate an algorithm into a first-order logic formula.

Before each formula we will describe briefly their scope: when will they be true (or false). We won't present to you the implementation of those formulas in this report. There will be an annex available with the Python implementation that we use in order to test those formulas and to put them in the algorithm [2].

We have three strategies. Each of them allows a robot to move in a given direction based on its environment. They all have the same definition, they take one argument: the view vector (distance vector).

2.1 Configurations with single multiplicity

The strategy ϕ_{SM} is true if the given configuration has a single multiplicity and that the robot calling the strategy should move toward the robot at distance d_0 :

$$\phi_{SM}(d_0, \dots, d_{k-1}) := (\bigvee_{i=0}^{k-1} (d_i = 0 \bigwedge_{j=0}^{k-1} (d_j > 0 \lor (d_j = 0 \land d_{j-1} = 0)))) \land (d_{k-1} \neq 0) \land ((d_1 = 0 \land d_{k-2} = 0 \land d_0 \le d_{k-1}) \lor (d_1 = 0 \land d_{k-2} \neq 0))$$

$$InitSM(p_0, \dots, p_{k-1}, s_0, \dots, s_{k-1}, t_0, \dots, t_{k-1}, size_{ring}) := \bigvee_{i=0}^{k-1} (p_i \neq p_{i+1 \mod k-1}) \land (\bigwedge_{i=0}^{k-1} (p_i \geq 0 \land p_i < size_{ring} \land s_i = -1 \land t_i = 0)) \land (\bigvee_{i=0}^{k-1} (\bigvee_{j=0, j \neq i}^{k-1} (p_j = p_i \land \bigwedge_{h=0}^{k-1} (\bigwedge_{l=0, l \neq h}^{k-1} (p_h \neq p_l \lor p_h = p_i)))))$$

Figure 1: Single multiplicity configuration. Here, the view vector or C is (4, 0, 5, 3). Because there's only one 0 we know there is a single multiplicity. Because the 0 isn't the last int of the vector we know C is not on the multiplicity. There's only one free segment toward the multiplicity, hence C can move on this segment.

2.2 Gathering rigid configurations

Let d_{ij} be the value j of the view vector of the robot i, and ds_{ij} the value j of the symmetrical view of the robot i. The robot is calling the strategy ϕ_R .

Here are all the logic formulas used in order to build ϕ_R :

AllView is true if $d_{00}, \ldots, d_{k-1k-1}$ are all the views you can obtain from a single view vector $dist_0, \ldots, dist_{k-1}$:

$$AllView(dist_0, \dots, dist_{k-1}, d_{00}, \dots, d_{k-1k-1}) := (\bigwedge_{i=0}^{k-1} (\bigwedge_{j=0}^{k-1} (d_{ij} = dist_{(j+i) \mod k})))$$

IsRigid is true if the given configuration is a rigid configuration. Meaning, all views are distinct, there is no multiplicity, and the configuration isn't symmetric nor periodic.

$$IsRigid(d_{00}, \dots, d_{k-1k-1}, ds_{00}, \dots, ds_{k-1k-1}) := \bigwedge_{i=0}^{k-1} (\bigwedge_{j=0}^{k-1} d_{ij} \neq 0) \land \\ \bigwedge_{i=0}^{k-1} (\bigwedge_{l=0}^{k-1} d_{ij} \neq d_{lj}) \land (\bigvee_{j=0}^{k-1} d_{ij} \neq ds_{lj}) \\ \land (\bigvee_{j=0}^{k-1} ds_{ij} \neq d_{lj}) \land (\bigvee_{j=0}^{k-1} ds_{ij} \neq ds_{lj})))$$

AllCode is true if (α'_r, β'_r) is the set of two natural numbers of the robot r such as α'_r and β'_r are codes of r's views, with $\alpha'_r < \beta'_r$. The process which leads us to obtain all view codes is defined in the research report [1].

$$AllCode(d_{00}, \dots, d_{k-1k-1}, ds_{00}, \dots, ds_{k-1k-1}, \alpha_0, \dots, \alpha_{k-1}, \beta_0, \dots, \beta_{k-1}, \alpha'_0, \dots, \alpha'_{k-1}, \beta'_0, \dots, \beta'_{k-1}) := \\ \bigwedge_{i=0}^{k-1} (\alpha'_i < \beta'_i \land (\alpha'_i = \alpha_i \lor \alpha'_i = \beta_i) \land (\beta'_i = \alpha_i \lor \beta'_i = \beta_i)) \land \\ ((\alpha_0 < \alpha_1 < \dots < \alpha_{k-1} < \beta_0 < \dots < \beta_{k-1}) \land \\ (\bigvee_{p=0}^{k-1} (\bigwedge_{q=0}^{p-1} (d_{0q} = d_{1q}) \land d_{0p} > d_{1p})) \land \dots \land \\ (\bigvee_{p=0}^{k-1} (\bigwedge_{q=0}^{p-1} (ds_{(k-2)q} = ds_{(k-1)q}) \land ds_{(k-2)p} > ds_{(k-1)p})) \\ \lor \\ ((\alpha_0 < \alpha_2 < \alpha_1 < \dots < \alpha_{k-1} < \beta_0 < \dots < \beta_{k-1}) \land \dots) \lor \dots)$$

CodeMaker is true if the configuration is rigid and if $(a_0, \ldots, a_{k-1}, as_0, \ldots, as_{k-1})$ are each code of each view passed as a parameter:

$$CodeMaker(d_{00}, \dots, d_{k-1k-1}, ds_{00}, \dots, ds_{k-1k-1}, a_0, \dots, a_{k-1}) := IsRigid(d_{00}, \dots, d_{k-1k-1}, ds_{00}, \dots, ds_{k-1k-1}) \land \exists \alpha_0, \dots, \alpha_{k-1}, \beta_0, \dots, \beta_{k-1}, \alpha'_0, \dots, \alpha'_{k-1}, \beta'_0, \dots, \beta'_{k-1}, AllCode(d_{00}, \dots, d_{k-1k-1}, ds_{00}, \dots, ds_{k-1k-1}, \alpha_0, \dots, \alpha_{k-1}, \beta_0, \dots, \beta_{k-1}, \alpha'_0, \dots, \alpha'_{k-1}, \beta'_0, \dots, \beta'_{k-1})$$

$$(\bigwedge_{i=0}^{k-1} (\bigwedge_{j=0, j\neq i}^{k-1} ((a_i > a_j \land \alpha'_j > \alpha'_i) \lor (a_i < a_j \land \alpha'_j < \alpha'_i)))) \land \bigwedge_{i=0}^{k-1} (\bigwedge_{j=0, j\neq i}^{k-1} a_i \neq a_j)$$

FindMax is true if Max is the highest value of the view vector passed as a parameter

:

$$FindMax(dist_0, \dots, dist_{k-1}, Max) := (\bigwedge_{i=0}^{k-1} (Max \ge dist_i) \wedge (\bigvee_{i=0}^{k-1} (Max = dist_i)))$$

FindM is true if M is the index of the robot (index in the view vector) which has the largest code of view and a neighboring robot at distance Max:

$$FindM(d_{00},\ldots,d_{k-1k-1},a_0,\ldots,a_{k-1},Max,dM_0,\ldots,dM_{k-1}) := \bigvee_{m=0}^{k-1} ((\bigwedge_{i=0}^{k-1} ((a_m \geq a_i \wedge (d_{i0} = Max \vee d_{ik-1} = Max)) \vee (d_{i0} < Max \wedge d_{ik-1} < Max))) \wedge M = m)$$

FindN is true if N is the index of the robot (index in the view vector) with the largest code of view and M as a neighboring robot at distance Max:

$$FindN(d_{00}, \dots, d_{k-1k-1}, a_0, \dots, a_{k-1}, Max, M, N) := (d_{M0} = Max \land d_{Mk-1} = Max \land ((N = ((M+1) \mod k) \land a_{(M+1) \mod k} > a_{(M-1) \mod k}) \lor (N = ((M-1) \mod k) \land a_{(M-1) \mod k} > a_{(M+1) \mod k}))) \lor \lor (d_{M0} = Max \land d_{Mk-1} \neq Max \land N = ((M+1) \mod k)) \lor (d_{M0} \neq Max \land d_{Mk-1} = Max \land N = ((M-1) \mod k))$$

Since those formulas can't be implemented in Python because it is impossible to work around a variable index, we choose to build a new formula, FindMN that will be true if both vectors dM and dN are the view vector of, respectively, M and N.

$$FindMN(d_{00},\ldots,d_{k-1k-1},a_{0},\ldots,a_{k-1},Max,M,N,\\ dM_{0},\ldots,dM_{k-1},dN_{0},\ldots,dN_{k-1}):=\\ \bigvee_{m=0}^{k-1}(\ (\bigwedge_{i=0}^{k-1}((a_{m}\geq a_{i}\wedge(d_{i0}=Max\vee d_{ik-1}=Max))\\ \lor(d_{i0}< Max\wedge d_{ik-1}< Max)))\wedge M=m\wedge\\ (\ (d_{m0}=Max\wedge d_{mk-1}=Max\wedge\\ ((N=M+1\ \operatorname{mod}\ k\wedge a_{(m+1)\ \operatorname{mod}\ k}>a_{(m-1)\ \operatorname{mod}\ k})\vee\\ (N=M-1\ \operatorname{mod}\ k\wedge a_{(m-1)\ \operatorname{mod}\ k}>a_{(m+1)\ \operatorname{mod}\ k})))\vee\\ (d_{m0}=Max\wedge d_{mk-1}\neq Max\wedge N=M+1\ \operatorname{mod}\ k)\vee\\ (d_{m0}\neq Max\wedge d_{mk-1}=Max\wedge N=M-1\ \operatorname{mod}\ k))\wedge\\ ((N=M-1\ \operatorname{mod}\ k\wedge (\bigwedge_{l=0}^{k-1}(dN_{l}=d_{(m-1\ \operatorname{mod}\ k)l}\wedge dM_{l}=d_{ml})))\vee\\ (N=M+1\ \operatorname{mod}\ k\wedge (\bigwedge_{l=0}^{k-1}(dN_{l}=d_{(m+1\ \operatorname{mod}\ k)l}\wedge dM_{l}=d_{m((k-1)-l)}))))))$$

 ϕ_R is true if the configuration is rigid, and if the robot is M and has a closest neighbor than N, or if the robot is N and has a closest neighbor than M.

```
 \phi_R(dist_0,\dots,dist_{k-1}) := \\ \exists d_{00},\dots,d_{k-1k-1}, \ AllView(dist_0,\dots,dist_{k-1},d_{00},\dots,d_{k-1k-1}) \land \\ \exists ds_{00},\dots,ds_{k-1k-1}, \bigwedge_{i=0}^{k-1} (ViewSym(d_{i0},\dots,d_{ik-1},ds_{i0},\dots,ds_{ik-1})) \land \\ \exists Max,a_0,\dots,a_{k-1},dM_0,\dots,dM_{k-1},dN_0,\dots,dN_{k-1}, \\ CodeMaker(d_{00},\dots,d_{k-1k-1},ds_{00},\dots,ds_{k-1k-1},a_0,\dots,a_{k-1}) \land \\ FindMax(dist_0,\dots,dist_{k-1},Max) \land \\ FindMN(d_{00},\dots,d_{k-1k-1},a_0,\dots,a_{k-1},Max,dM_0,\dots,dM_{k-1},dN_0,\dots,dN_{k-1}) \land \\ \exists dM2_0,\dots,dM2_{k-1},dN2_0,\dots,dN2_{k-1}, \\ ((\bigwedge_{i=0}^{k-1}(dM2_i=dM_{i+1}\ \ \text{mod}\ k)) \lor (\bigwedge_{i=0}^{k-1}(dM2_i=dM_{i-1}\ \ \text{mod}\ k))) \land \\ (\bigvee_{i=0}^{k-1}(dM2_i\neq dN_i)) \land \\ ((\bigwedge_{i=0}^{k-1}(dN2_i=dN_{i+1}\ \ \text{mod}\ k)) \lor (\bigwedge_{i=0}^{k-1}(dN2_i=dN_{i-1}\ \ \text{mod}\ k))) \land \\ \bigvee_{i=0}^{k-1}(distM_i=(\sum_{i=0}^{i}dM_i) \land distN_i,\dots,distN_{k-1}, \\ \bigwedge_{i=0}^{k-1}(distM_i=(\sum_{i=0}^{i}dM_i) \land distN_i=(\sum_{i=0}^{i}dN_i)) \land \\ (\bigvee_{i=0}^{k-1}((distM_i< distN_i) \bigwedge_{q=0}^{i}(distM_q=distN_q) \bigwedge_{j=0}^{k-1}(dN_j=dist_j)) \lor \\ (distM_i>distN_i \bigwedge_{q=0}^{i}(distM_q=distN_q) \bigwedge_{j=0}^{k-1}(dN_j=dist_j)) ) )
```

2.3 Gathering an odd number of robots

We are now building a strategy, ϕ_{ON} , that will gather an odd number of robots on a non-periodic configuration. It is the strategy with the lowest priority, meaning that the configuration won't be rigid and won't have any multiplicity.

First we build the formula, IsPeriodic, that will return true if the configuration is periodic with an odd number of robots:

$$\begin{split} & IsPeriodic(dist_0,\ldots,dist_{k-1}) := \\ \exists p \in [1; \lfloor \frac{k}{3} \rfloor], (p+1) \mod 2 = 0 \land \\ \exists d_0',\ldots,d_{p-1}', \bigwedge_{i=0}^{k-1} (d_{i \mod p}' = dist_i) \end{split}$$

Now, we build build ϕ_{OD} , the strategy returns true if the configuration is non-rigid, non-periodic, has no multiplicity and has an odd number of robots. If the robot is axial then it moves in order to create a multiplicity or a rigid configuration.

$$\begin{array}{c} \phi_{ON}(dist_0,\dots,dist_{k-1}) := \\ \exists d_{00},\dots,d_{k-1k-1},\ AllView(dist_0,\dots,dist_{k-1},d_{00},\dots,d_{k-1k-1}) \wedge \\ \exists ds_{00},\dots,ds_{k-1k-1},\bigwedge_{i=0}^{k-1}(ViewSym(d_{i0},\dots,d_{ik-1},ds_{i0},\dots,ds_{ik-1})) \wedge \\ \neg IsRigid(d_{00},\dots,d_{k-1k-1},ds_{00},\dots,ds_{k-1k-1}) \wedge \\ ((k+1) \mod 2 = 0) \wedge \\ \neg IsPeriodic(dist_0,\dots,dist_{k-1}) \wedge \\ (\bigwedge_{i=0}^{k-1}dist_i \neq 0) \wedge \\ (\bigwedge_{i=0}^{k-1}dist_i = ds_{0i}) \end{array}$$

3 Algorithms

Now that we have done all of our logical formulas, we need to test those in the acceleration algorithm using an interpolant [2] and in an alternate version of that same algorithm.

We needed to create an alternate version because of the way the formula, *BouclePerdante*, is done. Two ways it can be done:

- 1. we can try to create a loosing loop by trying to add as many AsyncPost as needed (increase the size of the loop if it's not a loosing one) with a maximum of the size of the graph of all possible configurations
- 2. or we can try to create a loop that comes back to a previous configuration with only one AsyncPost

The first possibility has been implemented in the acceleration algorithm using an interpolant [2]. In order to implement the second possibility we needed to change the algorithm because the winning condition wasn't good anymore.

First we will try to prove that the alternate version of the algorithm works. Here is the algorithm :

```
1 foreach synchronous winning strategy f do
       k = 1;
 \mathbf{2}
       while true \ do
 3
           I(c) = Init(c);
 4
 5
           continue = true;
           while continue do
 6
               if MaybeThisSize \neq null then
 7
                   NotThisSizeBis = [i \text{ for } i \text{ in range}(k) \text{ and } i \notin MaybeThisSize];
 8
                   if Init(c) \land Post(c, c1), Post(c1, c2) \land \cdots \land Post(c_{k-1}, c_k) \land
 9
                    BouclePerdante(c_k, NotThisSizeBis) SAT then
                       exit;
                                                                 /* Loosing Strategy */
10
                   end
               \mathbf{end}
12
               if I(c) \wedge Post(c, c1), Post(c1, c2) \wedge \cdots \wedge Post(c_{k-1}, c_k) \wedge \cdots
13
                BouclePerdante(c_k, NotThisSize) SAT then
                   if I = Init then
14
                                                                 /* Loosing Strategy */
                       exit;
15
                   else
16
                       MaybeThisSize.append(k);
                       k = k + 1;
18
                       continue = false;
19
                   end
20
               else
\bf 21
                   I' = Interpolant(I(c) \land Post(c, c1), Post(c1, c2) \land \cdots \land
22
                    Post(c_{k-1}, c_k) \wedge BouclePerdante(c_k, NotThisSize));
                   if I' \implies I then
23
\mathbf{24}
                       if k = size_{max} then
                          exit;
                                                                 /* Winning Strategy */
25
                       else
26
                           NotThisSize.append(k);
27
                           k = k + 1;
28
                           continue = false;
29
                       end
30
                   else
31
                    I = I \vee I';
32
                   end
33
               end
34
           end
35
36
       end
37 end
```

Proof:

First let's talk about the termination of the algorithm:

- the list of synchronous winning strategy is finished
- we can exit the "while true" (1.3) loop with exit instructions that we find at line 10, 15 and 25.
 - we find a loosing loop without the interpolant and then we enter the exit at line 10 or the one at line 15 if I is still equal to Init
 - we find a loosing loop with the interpolant and then we increase k, we exit the "while continue" loop (l.6) which allows us to reinitialize I and test if a loosing loop exists for a higher k or for this k without the interpolant.
 - we don't find any loosing loop, then, eventually, the interpolant will stop growing and $(I \vee I') \implies I$, likewise, k will reach $size_{max}$ and we will enter the exit at line 25. k will always reach $size_{max}$ if there is no loosing loop, because if the condition line 13, which checks if there is a loosing loop, is false, then if $k < size_{max}$ we reached line 28 and we increase k. Also, the interpolant will eventually stop growing because the graph of all possible configurations is finished and the interpolant won't create new variables.
- to summarize, we can't have more than $size_{max}$ failure at finding a loosing loop and if we find one we either exit if Init = I or we keep trying until we find none or one where Init = I.
- TODO

4 Tests

In order to test the algorithm [2] we will use the python code we show you at the beginning : InitSM and phiSM.

We will use the SAT-solver to test different configurations. We will change the number of robots and the size of the ring from a test to an other.

4.1 Test InitSM

First, we test the function InitSM alone: can we have an initial configuration with a single multiplicity with those parameters?

nb-robot \size-ring	2	3	4	5	6
2	Unsat	Unsat	Unsat	Unsat	Unsat
3	Sat	Sat	Sat	Sat	Sat
4	Sat	Sat	Sat	Sat	Sat
5	Sat	Sat	Sat	Sat	Sat
6	Sat	Sat	Sat	Sat	Sat

The results make sense: we can't create a multiplicity with 2 robots which is not a winning configuration. Else, even on a ring size of 2 we can have a multiplicity on one spot and only one robot on the other spot.

4.2 Test ϕ_{SM}

Now we test ϕ_{SM} through the algorithm [2], we also use the function InitSM that makes sure we have a single multiplicity at the beginning.

nb-robot \size-ring	2	3	4	5	6
3	Timeout	Timeout	Timeout		
4	Timeout				
5					
6	•••	•••	•••		

Same test but with the function *Init* instead.

nb-robot \size-ring	2	3	4	5	6
3	Timeout	Loose	Loose	Loose	
4					
5					
6	•••				

For $nb_{robot} = 3$ and $size_{ring} = 2$ we face this problem :

Traceback (most recent call last):

File "algov5.py", line 56, in <module>

 $\begin{array}{ll} Ip = tree_interpolant \left(And \left(Interpolant \left(And \left(tmpAndInterpolant \right) \right) \right), \\ And \left(tmpAndContext \right) \right) \end{array}$

 $\label{eq:file_simple_simple} File \ "/usr/lib/python 3.8/site-packages/z 3/z 3.py", \ line \ 8297, \\ in \ tree_interpolant$

res = Z3_compute_interpolant(ctx.ref(),f.as_ast(),p.params,ptr,mptr)

 $\label{eq:file_state} File \ "/usr/lib/python 3.8/site-packages/z 3/z 3 core.py", \ line \ 4074, \\ in \ Z 3_compute_interpolant$

_elems.Check(a0)

File "/usr/lib/python3.8/site-packages/z3/z3core.py", line 1336, in Check raise self.Exception(self.get_error_message(ctx, err))

 $z3.\,z3types.\,Z3Exception\colon \ b'\ theory\ \ not\ \ supported\ \ by\ \ interpolation\ \ or\ \ bad\ \ proof'$

References

- [1] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asynchronous oblivious mobile robots in a ring. Tech. rep. RR-1422-07. UMR 5800 Université Bordeaux 1, 351, cours de la Libération, 33405 Talence CEDEX, France: Laboratoire Bordelais de Recherche en Informatique, Jan. 2007.
- [2] Nathalie Sznajder and Souheib Baarir. Algorithme d'accélération par interpolants. (French) [Acceleration Algorithm using an interpolant]. Tech. rep. Laboratoire Informatique de Paris 6 (LIP6), Feb. 2022.