CS 5173/4173 Computer Security

Topic 5.1 Basic Number Theory --Foundation of Public Key Cryptography

GCD and Euclid's Algorithm

Some Review: Divisors

- Set of all integers is $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- b divides a (or b is a divisor of a) if a = mb for some m
 - denoted b a
 - any $b \neq 0$ divides 0
- For any a, 1 and a are trivial divisors of a
 - all other divisors of a are called factors of a

Primes and Factors

- a is prime if it has no non-trivial factors
 - examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,...
- Theorem: there are infinitely many primes
- Any integer a > 1 can be factored in a unique way as $p_1^{a_1} \cdot p_2^{a_2} \cdot ... p_t^{a_t}$
 - where all $p_1>p_2>...>p_t$ are prime numbers and where each $a_i>0$

Examples:

$$91 = 13^{1} \times 7^{1}$$

 $11,011 = 13^{1} \times 11^{2} \times 7^{1}$

Common Divisors

 A number d that is a divisor of both a and b is a common divisor of a and b

Example: common divisors of 30 and 24 are 1, 2, 3, 6

• If $d \mid a$ and $d \mid b$, then $d \mid (a+b)$ and $d \mid (a-b)$

Example: Since 3 | 30 and 3 | 24, 3 | (30+24) and 3 | (30-24)

• If d|a and d|b, then d|(ax+by) for any integers x and y

Example: $3 \mid 30 \text{ and } 3 \mid 24 \rightarrow 3 \mid (2*30 + 6*24)$

Greatest Common Divisor (GCD)

• $gcd(a,b) = max\{k \mid k \mid a \text{ and } k \mid b\}$

```
Example: gcd(60,24) = 12, gcd(a,0) = a
```

Observations

```
-\gcd(a,b) = \gcd(|a|, |b|)
-\gcd(a,b) \le \min(|a|, |b|)
-\operatorname{if } 0 \le n, \operatorname{then } \gcd(an, bn) = n^*\gcd(a,b)
```

• For all positive integers d, a, and b... ... if $d \mid ab$...and gcd(a,d) = 1 ...then $d \mid b$

GCD (Cont'd)

Computing GCD by hand:

```
if a = p_1^{a1} p_2^{a2} ... p_r^{ar} and b = p_1^{b1} p_2^{b2} ... p_r^{br}, ... where p_1 < p_2 < ... < p_r are prime, ... and ai and bi are nonnegative, ... then gcd(a, b) = p_1^{\min(a1, b1)} p_2^{\min(a2, b2)} ... p_r^{\min(ar, br)}
```

- ⇒Slow way to find the GCD
 - requires factoring a and b first (which, as we will see, can be slow)

Euclid's Algorithm for GCD

• Insight:

```
gcd(x, y) = gcd(y, x \mod y)
```

Procedure euclid(x, y):

```
r[0] = x, r[1] = y, n = 1;
while (r[n] != 0) {
    n = n+1;
    r[n] = r[n-2] % r[n-1];
}
return r[n-1];
```

Example

n	r_n
0	595
1	408
2	595 mod 408 = 187
3	408 mod 187 = 34
4	$187 \mod 34 = 17$
5	$34 \mod 17 = 0$

$$gcd(595,408) = 17$$

Running Time

Running time is logarithmic in size of x and y

```
Enter x and y: 102334155 63245986
Step 1: r[i] = 39088169
Step 2: r[i] = 24157817
Step 3: r[i] = 14930352
Step 4: r[i] = 9227465
Step 35: r[i] = 3
Step 36: r[i] = 2
Step 37: r[i] = 1
Step 38: r[i] = 0
gcd of 102334155 and 63245986 is
```

Extended Euclid's Algorithm

- Let $\mathcal{L}C(x,y) = \{ux+vy : x,y \in \mathbb{Z}\}$ be the set of linear combinations of x and y
- Theorem: if x and y are any integers > 0, then gcd(x,y) is the smallest positive element of $\mathcal{L}C(x,y)$
- Euclid's algorithm can be extended to compute u and v, as well as gcd(x,y)
- Procedure exteuclid(x, y): (next page...)

Extended Euclid's Algorithm

```
r[0] = x, r[1] = y, n = 1;
u[0] = 1, u[1] = 0;
v[0] = 0, v[1] = 1;
while (r[n] != 0) {
  n = n+1;
  r[n] = r[n-2] % r[n-1];
  q[n] = (int) (r[n-2] / r[n-1]);
  u[n] = u[n-2] - q[n]*u[n-1];
  v[n] = v[n-2] - q[n]*v[n-1];
return r[n-1], u[n-1], v[n-1];
```

floor function

Extended Euclid's Example

n	q_n	r_n	u_n	v_n
0	-	595	1	0
1	-	408	0	1
2	1	187	1	-1
3	2	34	-2	3
4	5	17,	11	-16
5	2	0	-24	35

$$gcd(595,408) = 17 = 11*595 + -16*408$$

$$11*595 + -16*408$$

Relatively Prime

- Integers a and b are relatively prime iff gcd(a,b) = 1
 - example: 8 and 15 are relatively prime
- Integers $n_1, n_2, ..., n_k$ are pairwise relatively prime if $gcd(n_i, n_i) = 1$ for all $i \neq j$

Review of Modular Arithmetic

Remainders and Congruency

- For any integer a and any positive integer n, there are two unique integers q and r, such that $0 \le r < n$ and a = qn + r
 - -r is the *remainder* of *a* divided by *n*, written $r = a \mod n$

```
Example: 12 = 2*5 + 2 \implies 2 = 12 \mod 5
```

• a and b are congruent modulo n, written $a \equiv b \mod n$, if $a \mod n = b \mod n$

```
Example: 7 \mod 5 = 12 \mod 5 \implies 7 \equiv 12 \mod 5
```

Remainders (Cont'd)

- For any positive integer n, the integers can be divided into n equivalence classes according to their remainders modulo n
 - denote the set as Z_n
- i.e., the (mod n) operator maps all integers into the set of integers $\mathbb{Z}_n = \{0, 1, 2, ..., (n-1)\}$

Modular Arithmetic

- Modular addition
 - $-[(a \bmod n) + (b \bmod n)] \bmod n = (a+b) \bmod n$

Example: $[16 \mod 12 + 8 \mod 12] \mod 12 = (16 + 8) \mod 12 = 0$

- Modular subtraction
 - $-[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$

Example: $[22 \mod 12 - 8 \mod 12] \mod 12 = (22 - 8) \mod 12 = 2$

- Modular multiplication
 - $-[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Example: $[22 \mod 12 \times 8 \mod 12] \mod 12 = (22 \times 8) \mod 12 = 8$

Properties of Modular Arithmetic

- Commutative laws
 - $-(w + x) \mod n = (x + w) \mod n$
 - $-(w \times x) \mod n = (x \times w) \mod n$
- Associative laws
 - $-[(w + x) + y] \mod n = [w + (x + y)] \mod n$
 - $-[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
- Distributive law
 - $-[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$

Properties (Cont'd)

- Idempotent elements
 - $-(0+m) \mod n = m \mod n$
 - $(1 \times m) \mod n = m \mod n$
- Additive inverse (-w)
 - for each $m \in \mathcal{Z}_n$, there exists z such that $(m + z) \mod n = 0$

Example: 3 are 4 are additive inverses mod 7, since $(3 + 4) \mod 7 = 0$

- Multiplicative inverse
 - for each positive $m \in \mathcal{Z}_n$, is there a z s.t. (m * z) mod n = 1

Multiplicative Inverses

- Don't always exist!
 - Ex.: there is no z such that $6 \times z = 1 \mod 8$ (m = 6 and n=8)

Z	0	1	2	3	4	5	6	7	
6×z	0	6	12	18	24	30	36	42	•••
6×z mod 8	0	6	4	2	0	6	4	2	

- An positive integer $m \in \mathbb{Z}_n$ has a multiplicative inverse $m^{-1} \mod n$ iff $\gcd(m, n) = 1$, i.e., m and n are relatively prime
 - \Rightarrow If n is a prime number, then all positive elements in \mathbb{Z}_n have multiplicative inverses

Inverses (Cont'd)

\mathbf{Z}	0	1	2	3	4	5	6	7
5×z	0	5	10	15	20	25	30	35
5×z mod 8	0	5	2	7	4	1	6	3

Finding the Multiplicative Inverse

- Given m and n, how do you find m^{-1} mod n?
- Extended Euclid's Algorithm exteuclid(m,n):

```
m^{-1} \mod n = \mathbf{v}_{n-1}
```

- if $gcd(m,n) \neq 1$ there is no multiplicative inverse $m^{-1} \mod n$

Example

X	q_x	r_x	u_x	v_x
0	-	35	1	0
1	-	12	0	1
2	2	11	1	-2
3	1	1	-1	3
4	11	0	12	-35

Modular Division

• If the inverse of $b \mod n$ exists, then $(a \mod n) / (b \mod n) = (a * (b^{-1} \mod n)) \mod n$

```
Example: (13 \mod 11) / (4 \mod 11) = (13*(4^{-1} \mod 11)) \mod 11 = (13*3) \mod 11 = 6
```

Example: (8 mod 10) / (4 mod 10) not defined since 4 does not have a multiplicative inverse mod 10

Modular Exponentiation (Power)

Modular Powers

Example: show the powers of 3 mod 7

i	0	1	2	3	4	5	6	7	8
3^i	1	3	9	27	81	243	729	2187	6561
$3^i \mod 7$	1	3	2	6	4	5	1	3	2

And the powers of 2 mod 7

i	0	1	2	3	4	5	6	7	8	9
2^i	1	2	4	8	16	32	64	128	256	512
$2^i \mod 7$	1	2	4	1	2	4	1	2	4	1

Fermat's "Little" Theorem

• If p is prime ...and a is a positive integer not divisible by p, ...then $a^{p-1} \equiv 1 \pmod{p}$

```
Example: 11 is prime, 3 not divisible by 11, so 3^{11-1} = 59049 \equiv 1 \pmod{11}
```

Example: 37 is prime, 51 not divisible by 37, so $51^{37-1} \equiv 1 \pmod{37}$

The Totient Function

- $\phi(n) = |Z_n^*|$ = the number of integers less than n and relatively prime to n
 - a) if *n* is prime, then $\phi(n) = n-1$

Example: $\phi(7) = 6$

b) if $n = p^{\alpha}$, where p is prime and $\alpha > 0$, then $\phi(n) = (p-1)^* p^{\alpha-1}$

Example: $\phi(25) = \phi(5^2) = 4*5^1 = 20$

c) if n=p*q, and p, q are relatively prime, then $\phi(n) = \phi(p)*\phi(q)$

Example: $\phi(15) = \phi(5*3) = \phi(5) * \phi(3) = 4 * 2 = 8$

Exercise

- $\phi(21) = ?$
- $\phi(33) = ?$
- $\phi(12) = ?$

- $\phi(n) = |Z_n^*|$ = the number of integers less than n and relatively prime to n
 - a) if *n* is prime, then $\phi(n) = n-1$

Example:
$$\phi(7) = 6$$

b) if $n = p^{\alpha}$, where p is prime and $\alpha > 0$, then $\phi(n) = (p-1)*p^{\alpha-1}$

Example:
$$\phi(25) = \phi(5^2) = 4*5^1 = 20$$

c) if n=p*q, and p, q are relatively prime, then $\phi(n) = \phi(p)*\phi(q)$

Example: $\phi(15) = \phi(5*3) = \phi(5) * \phi(3) = 4 * 2 = 8$

Euler's Theorem

• For every a and n that are relatively prime, $a^{\phi(n)} \equiv 1 \mod n$

Example: For a = 3, n = 10, which relatively prime:
$$\phi(10) = \phi(2*5) = \phi(2) * \phi(5) = 1*4 = 4$$

 $3^{\phi(10)} = 3^4 = 81 \equiv 1 \mod 10$

Example: For a = 2, n = 11, which are relatively prime:
$$\phi(11) = 11 - 1 = 10$$

 $2^{\phi(11)} = 2^{10} = 1024 \equiv 1 \mod 11$

More Euler...

• Variant: for all n, $a^{k\phi(n)+1} \equiv a \mod n$ for all a in \mathbb{Z}_n^* , and all nonnegative k

```
Example: for n = 20, a = 7, \phi(n) = 8, and k = 3:

7^{3*8+1} \equiv 7 \mod 20
```

• Generalized Euler's Theorem: for n = pq (p and q distinct primes), $a^{k\phi(n)+1} \equiv a \mod n$ for all a in \mathbb{Z}_n , and all non-negative k

Example: for
$$n = 15$$
, $a = 6$, $\phi(n) = 8$, and $k = 3$:
 $6^{3*8+1} \equiv 6 \mod 15$

Modular Exponentiation

• $x^y \mod n = x^y \mod \phi(n) \mod n$

Example:
$$x = 5$$
, $y = 7$, $n = 6$, $\phi(6) = 2$
 $5^7 \mod 6 = 5^7 \mod 2 \mod 6 = 5 \mod 6$

• by this, if $y \equiv 1 \mod \phi(n)$, then $x^y \mod n = x \mod n$

Example:

$$x = 2$$
, $y = 101$, $n = 33$, $\phi(33) = 20$, $101 \mod 20 = 1$
 $2^{101} \mod 33 = 2 \mod 33$

The Powers of An Integer, Modulo n

- Consider the expression $a^m \equiv 1 \mod n$
- If a and n are relatively prime, then there is at least one integer m that satisfies the above equation
- Ex: for a = 3 and n = 7, what is m?

i	1	2	3	4	5	6	7	8	9
$3^i mod 7$	3	2	6	4	5	1	3	2	6

The Power (Cont'd)

- The smallest positive exponent m for which the above equation holds is referred to as...
 - the order of a (mod n), or
 - the length of the period generated by a

Understanding Order of a (mod n)

Powers of some integers a modulo 19

a	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{II}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}	\downarrow
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1	18
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1	9
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	3
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1	6
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1	9
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	2

Observations on The Previous Table

- The length of each period divides $18 = \phi(19)$
 - i.e., the lengths are 1, 2, 3, 6, 9, 18
- Some of the sequences are of length 18
 - e.g., the base 2 generates (via powers) all members of ${\mathcal{Z}_n}^*$
 - The base is called the primitive root
 - The base is also called the generator when n is prime

Reminder of Results

Totient function:

```
if n is prime, then \phi(n) = n-1
if n = p^{\alpha}, where p is prime and \alpha > 0, then \phi(n) = (p-1)^*p^{\alpha-1}
if n=p*q, and p, q are relatively prime, then \phi(n) = \phi(p)^*\phi(q)
```

```
Example: \phi(7) = 6
```

Example: $\phi(25) = \phi(5^2) = 4*5^1 = 20$

Example: $\phi(15) = \phi(5*3) = \phi(5) * \phi(3) = 4 * 2 = 8$

Reminder (Cont'd)

• Fermat: If p is prime and a is positive integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

Example: 11 is prime, 3 not divisible by 11, so $3^{11-1} = 59049 \equiv 1 \pmod{11}$

Euler: For every a and n that are relatively prime, then $a^{\emptyset(n)} \equiv 1 \mod n$

Example: For a = 3, n = 10, which relatively prime: $\phi(10) = 4$, $3^{\phi(10)} = 3^4 = 81 \equiv 1 \mod 10$

Variant: for all a in \mathbb{Z}_n^* , and all non-negative k, $a^{k\phi(n)+1} \equiv a \mod n$

Example: for n = 20, a = 7, $\phi(n) = 8$, and k = 3: $7^{3*8+1} \equiv 7 \mod 20$

Generalized Euler's Theorem: for n = pq (p and q are distinct primes), all a in \mathbb{Z}_n , and all non-negative k, $a^{k\phi(n)+1} \equiv a \mod n$

Example: for n = 15, a = 6, $\phi(n) = 8$, and k = 3: $6^{3*8+1} \equiv 6 \mod 15$

 $x^y \mod n = x^{y \mod \phi(n)} \mod n$

Example: x = 5, y = 7, n = 6, $\phi(6) = 2$, $5^7 \mod 6 = 5^{7 \mod 2} \mod 6 = 5 \mod 6$

Computing (Cont'd)

Algorithm modexp (a,b,n)

```
d = 1;
for i = k downto 1 do
     d = (d * d) % n;
                                /* square */
     if (b_i == 1)
          d = (d * a) % n;
                               /* step 2 */
     endif
enddo
return d;
```

at each iteration, not just at end

Requires time $\propto k = \text{logarithmic in } b$

Example

• Compute $a^b \pmod{n} = 7^{560} \mod{561}$

$$-560_{10} = 1000110000_2$$

i		10	9	8	7	6	5	4	3	2	1
b _i		1	0	0	0	1	1	0	0	0	0
d	1	7	49	157	526	160	241	298	166	67	1
step 2											

Q: Can some other result be used to compute this particular example more easily? (Note: 561 = 3*11*17.)

Discrete Logarithms

Square Roots

• x is a non-trivial square root of 1 mod n if it satisfies the equation $x^2 \equiv 1 \mod n$, but x is neither 1 nor -1 mod n

Ex: 6 is a square root of 1 mod 35 since $6^2 \equiv 1 \mod 35$

- Theorem: if there exists a non-trivial square root of 1 mod n, then n is not a prime
 - i.e., prime numbers will not have non-trivial square roots

Roots (Cont'd)

- If $n = 2^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, where $p_1 \dots p_k$ are distinct primes > 2, then the number of square roots (including trivial square roots) are:
 - -2^k if $\alpha_0 \leq 1$

Example: for $n = 70 = 2^1 * 5^1 * 7^1$, $\alpha_0 = 1$, k = 2, and the number of square roots $= 2^2 = 4$ (1,29,41,69)

 -2^{k+1} if $\alpha_0 = 2$

Example: for $n = 60 = 2^2 * 3^1 * 5^1$, k = 2, the number of square roots $= 2^3 = 8$ (1,11,19,29,31,41,49,59)

 -2^{k+2} if $\alpha_0 > 2$

Example: for $n = 24 = 2^3 * 3^1$, k = 1, the number of square roots $= 2^3 = 8$ (1,5,7,11,13,17,19,23)

Primitive Roots

- Reminder: the highest possible order of $a \pmod{n}$ is $\phi(n)$
- If the order of $a \pmod{n}$ is $\phi(n)$, then a is referred to as a *primitive root of n*
 - for a prime number p, if a is a primitive root of p, then a, a^2 , ..., a^{p-1} mod p are all distinct numbers
- No simple general formula to compute primitive roots modulo n
 - trying out all candidates

Discrete Logarithms

- For a primitive root a of a number p, where $a^i \equiv b \mod p$, for some $0 \le i \le p-1$
 - the exponent i is referred to as the index of b for the base a (mod p), denoted as ind_{a,p}(b)
 - i is also referred to as the discrete logarithm of b
 to the base a, mod p

Logarithms (Cont'd)

Example: 2 is a primitive root of 19.
 The powers of 2 mod 19 =

b	1	2	3	4	5	6	7	8	9
$ind_{2,19}(b) = log(b) base 2 mod 19$	0	1	13	2	16	14	6	3	8

10	11	12	13	14	15	16	17	18
17	12	15	5	7	11	4	10	9

Given a, i, and p, computing $b = a^i \mod p$ is straightforward

Computing Discrete Logarithms

- However, given a, b, and p, computing $i = ind_{a,p}(b)$ is difficult
 - Used as the basis of some public key cryptosystems