Answer all the questions in the spaces provided.

- 1 (a) Make estimates of
 - (i) the mass, in kg, of a wooden metre rule,

(ii) the volume, in cm³, of a cricket ball or a tennis ball.

(b) A metal wire of length *L* has a circular cross-section of diameter *d*, as shown in Fig. 1.1.

Fig. 1.1

The volume *V* of the wire is given by the expression

$$V = \frac{\pi d^2 L}{4}.$$

The diameter, length and mass M are measured to determine the density of the metal of the wire. The measured values are:

 $d = 0.38 \pm 0.01 \,\text{mm},$ $L = 25.0 \pm 0.1 \,\text{cm},$ $M = 0.225 \pm 0.001 \,\text{g}.$

Calculate the density of the metal, with its absolute uncertainty. Give your answer to an appropriate number of significant figures.

density =
$$\pm$$
 kg m⁻³ [5]

[Total: 7]

© UCLES 2016 9702/21/M/J/16

Answer all the questions in the spaces provided.

1 The speed v of a transverse wave on a uniform string is given by the expression

$$v = \sqrt{\frac{Tl}{m}}$$

where T is the tension in the string, l is its length and m is its mass.

An experiment is performed to determine the speed v of the wave. The measurements are shown in Fig. 1.1.

quantity	measurement	uncertainty
T	1.8N	± 5%
l	126cm	± 1%
m	5.1g	± 2%

Fig. 1.1

(a)	State an appropriate instrument to measure the length <i>l</i> .		
		[1]
(b)	o) (i) Use the data in Fig. 1	.1 to calculate the speed <i>v</i> .	

$$v = \dots ms^{-1}$$
 [2]

(ii) Use your answer in (b)(i) and the data in Fig. 1.1 to determine the value of v, with its absolute uncertainty, to an appropriate number of significant figures.

$$v = \dots \pm \dots \pm m s^{-1}$$
 [3]

[Total: 6]