ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

AKA Δ . ETO Σ : 2020-21

2η Σειρά Εργαστηριακών Ασκήσεων

Οι εργαστηριακές ασκήσεις είναι ατομικές. Οι απαντήσεις θα πρέπει να υποβληθούν με turnin, το αργότερο μέχρι την Παρασκευή 2 Απριλίου 2021, ώρα 16:45. Πριν ξεκινήσετε να γράφεται τα προγράμματα που ζητούνται στις ασκήσεις της σειράς αυτής, διαβάστε πολύ προσεκτικά τις αναλυτικές οδηγίες που ακολουθούν.

Οδηγίες

- Για τη συγγραφή των προγραμμάτων επιτρέπεται να χρησιμοποιήσετε προκαθορισμένες συναρτήσεις και προκαθορισμένους τελεστές μόνο εφόσον αναφέρονται στις σημειώσεις του μαθήματος. Δεν επιτρέπεται η χρήση του import.
- Για τη συγγραφή των συναρτήσεων θα πρέπει να χρησιμοποιήσετε το αρχείο πρότυπο Lab2.hs (που υπάρχει στην ιστοσελίδα του μαθήματος), στο οποίο υπάρχουν έτοιμες οι δηλώσεις τύπων των συναρτήσεων που θα πρέπει να κατασκευάσετε καθώς και μία ισότητα που ορίζει τις συναρτήσεις ώστε να επιστρέφουν μία προκαθοριμένη τιμή για όλες τις τιμές των ορισμάτων. Για να απαντήσετε σε μία άσκηση μπορείτε να αντικαταστήσετε την παραπάνω ισότητα με τις κατάλληλες ισότητες που ορίζουν την τιμή της συνάρτησης. Δεν θα πρέπει να τροποποιήσετε το τύπο ούτε το όνομα της συνάρτησης.
- Μπορείτε να χρησιμοποιήσετε όσες βοηθητικές συναρτήσεις θέλετε, οι οποίες θα καλούνται από τις συναρτήσεις που σας ζητείται να υλοποιήσετε. Σε καμία περίπτωση δεν θα πρέπει να προσθέσετε άλλα ορίσματα στις συναρτήσεις που σας ζητούνται (καθώς αυτό συνεπάγεται αλλαγή του τύπου τους).
- Αν χρησιμοποιήσετε προκαθοριμένες συναρτήσεις ή τελεστές που δεν αναφέρονται στις σημειώσεις του μαθήματος ή αν χρησιμοποιήσετε το import για να ενσωματώσετε έτοιμο κώδικα, η αντίστοιχη άσκηση δεν θα βαθμολογηθεί.
- Ο έλεγχος της ορθότητας των απαντήσεων θα γίνει με ημι-αυτόματο τρόπο. Σε καμία περίπτωση δεν θα πρέπει ο βαθμολογητής να χρειάζεται να κάνει παρεμβάσεις στο αρχείο που θα υποβάλετε.
 Συνεπώς θα πρέπει να λάβετε υπόψη τα παρακάτω:
 - 1. Κάθε μία από τις συναρτήσεις που σας ζητείται να υλοποιήσετε θα πρέπει να έχει το συγκεκριμένο όνομα και το συγκεκριμένο τύπο που περιγράφεται στην εκφώνηση της αντίστοιχης άσκησης και που υπάρχει στο αρχείο πρότυπο Lab2.hs. Αν σε κάποια άσκηση το όνομα ή ο τύπος της συνάρτησης δεν συμφωνεί με αυτόν που δίνεται στην εκφώνηση, η άσκηση δεν θα βαθμολογηθεί.
 - 2. Το αρχείο που θα παραδώσετε δεν θα πρέπει να περιέχει συνταχτικά λάθη. Αν υπάρχουν τμήματα κώδικα που περιέχουν συνταχτικά λάθη, τότε θα πρέπει να τα διορθώσετε ή να τα

- αφαιρέσετε πριν από την παράδοση. Αν το αρχείο που θα υποβάλετε περιέχει συντακτικά λάθη, τότε ολόκληρη η εργαστηριακή άσκηση θα μηδενιστεί.
- 3. Οι συναρτήσεις θα πρέπει να επιστρέφουν αποτέλεσμα για όλες τις τιμές των ορισμάτων που δίνονται για έλεγχο στο τέλος κάθε άσκησης. Αν κάποιες από τις τιμές που επιστρέφουν οι συναρτήσεις δεν είναι σωστές, αυτό θα ληφθεί υπόψη στη βαθμολογία, ωστόσο η άσκηση θα βαθμολογηθεί κανονικά. Αν ωστόσο οι συναρτήσεις δεν επιστρέφουν τιμές για κάποιες από τις τιμές ελέγχου (π.χ. προκαλούν υπερχείλιση στοίβας, ατέρμονο υπολογισμό ή κάποιο σφάλμα χρόνου εκτέλεσης) τότε η αντίστοιχη άσκηση δεν θα βαθμολογηθεί.
- 4. Κατα τη διόρθωση των ασκήσεων οι βαθμολογητές δεν θα κάνουν κλήσεις στις βοηθητικές συναρτήσεις που ενδεχομένως θα χρησιμοποιήσετε. Η χρήση των βοηθητικών συναρτήσεων θα πρέπει να γίνεται μέσα από τις συναρτήσεις που σας ζητείται να υλοποιήσετε.
- Μετά το τέλος της εκφώνησης κάθε άσκησης δίνονται τιμές που μπορείτε να χρησιμοποιήσετε για έλεγχο της ορθότητας των συναρτήσεων.
- Μπορείτε να συνδέεστε στην ομάδα ΈΡΓΑΣΤΗΡΙΟ στις ΑΡΧΕΣ ΓΛΩΣΣΩΝ ΠΡΟΓΡΑΜΜΑ-ΤΙΜΟΥ στο MsTeams τις ώρες του εργαστηρίου (Τρίτη 10-12), για την επίλυση αποριών και προβλημάτων που ενδέχεται να συναντήσετε κατά τη συγγραφή των προγραμμάτων στο πλάισιο των εργαστηριακών ασκήσεων. Για αντίστοιχα προβλήματα ή απορίες που θα προκύψουν στο διάστημα από την περάτωση του εργαστηρίου μέχρι την υποβολή της εργασίας μπορείτε να επικοινωνήσετε με την κ. Βίκυ Σταμάτη την Παρασκευή 10:00-12:00 είτε μέσω MsTeams (προσωπικό μήνυμα) είτε μέσω ηλεκτρονικού ταχυδρομείου (vstamati@uoi.gr). Θα απαντηθούν μόνο ηλεκτρονικά μηνύματα που έχουν σταλεί από τον ιδρυματικό σας λογαριασμό.
- Για υποβολή με turnin γράψτε:

turnin Haskell-2@myy401 Lab2.hs

Ασκηση 1.

Γράψτε μία συνάρτηση ab σε Haskell η οποία θα δέχεται ως όρισμα έναν θετικό ακέραιο αριθμό n και θα επιστρέφει ένα ζεύγος ακεραίων (a,b), τέτοια ώστε $1 \le a \le b$, $a \cdot b = n$ και το b-a να είναι το ελάχιστο δυνατό. Ο τύπος της συνάρτησης θα πρέπει να είναι Int->(Int,Int). Μπορείτε να υποθέσετε ότι n είναι μη αρνητικός ακέραιος αριθμός. Δεν επιτρέπεται να χρησιμοποιήσετε λίστες.

Για έλεγχο χρησιμοποιήστε τις παρακάτω τιμές:

Main> ab 15 (3,5)Main> ab 16 (4,4)Main> ab 24 (4,6)Main> ab 25 (5,5)Main> ab 31 (1,31)Main> ab 32 (4,8)Main> ab 72 (8,9)Main> ab 108 (9,12)Main> ab 999 (27,37)Main> ab 1024

(32, 32)

Ασκηση 2.

Γράψτε μία συνάρτηση sum2021 σε Haskell η οποία θα δέχεται ως ορίσματα δύο μη αρνητικούς άκεραιους αριθμούς m,n και θα επιστρέφει το άθροισμα:

$$\sum_{i=m}^{n} (n+i)^m$$

Ο τύπος της συνάρτησης θα πρέπει να είναι Integer->Integer. Μπορείτε να υποθέσετε ότι m,n είναι μη αρνητικοί ακέραιοι αριθμοί. Δεν επιτρέπεται να χρησιμοποιήσετε λίστες.

Για έλεγχο χρησιμοποιήστε τις παρακάτω τιμές:

Main> sum2021 1 4

26

Main> sum2021 2 4

149

Main> sum2021 3 4

855

Main> sum2021 4 4

4096

Main> sum2021 2 12

4081

Main> sum2021 5 15

124854125

Main> sum2021 20 20

Main> sum2021 10 100

1910978815586519919747325