Comp session of

Phonon evaluation

Download template

- Open this URL by firefox

https://www.dropbox.com/s/I3lb571e77w7vt9/ files.zip?dl=0

Pick up the downloaded file 'files.zip'
 on your Desktop.

(File includes all the I/O for phonon calc.)

- Unzip the file to get ~/Desktop/files

Confirm your contents

Each folder contains step-by-step

procedure of phonon calculations

Procedure

ph.x/q2r.x: evaluating the 2nd. order force constant

2_phonon/, 3_q2r/

matdyn.x: calculating phonon DOS, dispersion

4_phdos/, 6_phband/

fqha.x: evaluating Helmholtz free energy

5_freeE/

plotband.x: making phonon dispersion graph

7_disp_phband/

pw.x

pw.x: evaluating wavefunction

- 1) Go to '1_scf/' directory
- 2) Follow the instruction shown by Ichibha

outputs

gaas.wfc: wavefunction data

gaas.wfc1,2,...,N: wave function data

for parallel processing

gaas.save: eigen values of KS orbitals

Getting smooth q-dep.

q2r.x/Fourier transform from 'q to r'

'discrete q-pt' evaluation

Fourier Tr. to 'r'

again inv-Fourier Tr. to 'q'

'continuous q-pt' interpolation

ph.x

ph.x/q2r.x: evaluating the 2nd. order force constant

- 1) Go to '2_phonon/' directory
- 2) copy wavefunction from 1_scf cp ../1_scf/gaas.* .
- 3) Follow the instruction shown by Ichibha

outputs

gaas.dyn1,2,...: force constants of sampling q point

q2r.x

ph.x/q2r.x: evaluating the 2nd. order force constant

- 1) Go to '3_q2r/' directory
- 2) copy the force constants of sampling q points cp ../2_phonon/gaas.dyn* .
- 3) Follow the instruction shown by Ichibha outputs

gaas444.fc: force constants of real space space

Getting smooth q-dep.

q2r.x/Fourier transform from 'q to r'

'discrete q-pt' evaluation

Fourier Tr. to 'r'

again inv-Fourier Tr. to 'q'

'continuous q-pt' interpolation

matdyn.x /DOS

matdyn.x: calculating phonon <u>DOS</u>, dispersion

- 1) Go to '4_phdos/' directory
- 2) copy the force constants of sampling real space cp ../3_q2r/gaas444.fc .
- 3) Follow the instruction shown by Ichibha

outputs

PHDOS.out: phonon DOS data

fqha.x

fqha.x: evaluating Helmholtz free energy

- 1) Go to '5_freeE/' directory
- 2) get the phonon DOS cp ../4_phdos/PHDOS.out .
- 3) Follow the instruction shown by Ichibha outputs

gaas.thermal: Helmholtz free energy

matdyn.x/dispersion

matdyn.x: calculating phonon DOS, dispersion

- 1) Go to '6_phband/' directory
- 2) copy the force constants of sampling real space cp ../3_q2r/gaas444.fc .
- 3) Follow the instruction shown by Ichibha

outputs

matdyn.modes: force constants of picked up q points gaas.freq: frequencies of picked up q points

plotband.x

plotband.x: making phonon dispersion graph

- 1) Go to '7_disp_phband/' directory
- 2) copy the phonon dispersion data cp ../6_phband/gaas.freq .
- 3) Follow the instruction shown by Ichibha

outputs

gaas-phdisp.ps : phonon dispersion graph image
gaas-phdisp.xmgr : phonon dispersion data

fin

ph.x

For each \vec{q} point, mode frequency $\omega_{\vec{q}}$ is given as eigen values of this eigen equation

$$\omega_{\vec{q}}^{2} \tilde{U}_{i,\vec{q}}^{\alpha} \left(\omega_{\vec{q}}\right) = \sum_{j,\beta} D_{ij}^{\alpha\beta} \left(\vec{q}\right) \tilde{U}_{j,\vec{q}}^{\beta} \left(\omega_{\vec{q}}\right) \tag{1}$$

Here,

$$D_{ij}^{\alpha\beta}(\vec{q}) \equiv \frac{1}{\sqrt{m_i}\sqrt{m_j}} \sum_{J'} \frac{\partial^2 E_{tot}}{\partial u_{0,i}^{\alpha} \partial u_{J',j}^{\beta}} \cdot e^{i\vec{q}\cdot(\vec{R}_{J'}-\vec{R}_0)}$$
(2)

This matrix is calculated in a few sampling \vec{q} points Following process, we'll get $D_{ij}^{\alpha\beta}(\vec{q})$ for arbitrary \vec{q}

q2r.x

$$D_{ij}^{\alpha\beta}(\vec{q}) \equiv \frac{1}{\sqrt{m_i}\sqrt{m_j}} \sum_{J'} \frac{\partial^2 E_{tot}}{\partial u_{0,i}^{\alpha} \partial u_{J',j}^{\beta}} \cdot e^{i\vec{q}\cdot(\vec{R}_{J'}-\vec{R}_0)}$$
(3)

Fourier transform

$$\frac{1}{\sqrt{m_i}\sqrt{m_j}}\frac{\partial^2 E_{tot}}{\partial u_{0,i}^{\alpha}\partial u_{J,j}^{\beta}} = \frac{\Omega}{(2\pi)^3}\int D_{ij}^{\alpha\beta}(\vec{q})e^{-i\vec{q}\cdot(\vec{R}_J-\vec{R}_0)}d\vec{q}$$
 (4)

is approximated by

$$\frac{1}{\sqrt{m_i}\sqrt{m_j}}\frac{\partial^2 E_{tot}}{\partial u_{0,i}^{\alpha}\partial u_{J,j}^{\beta}} \simeq \frac{1}{N_{sample}}\sum_{\vec{q}'}D_{ij}^{\alpha\beta}(\vec{q}')e^{-i\vec{q}'\cdot(\vec{R}_J-\vec{R}_0)}$$
(5)

Here, N_{sample} is number of sampling \hat{q} points

matdyn.x

substitute

$$\frac{1}{\sqrt{m_i}\sqrt{m_j}}\frac{\partial^2 E_{tot}}{\partial u_{0,i}^{\alpha}\partial u_{J,j}^{\beta}} \simeq \frac{1}{N_{sample}}\sum_{\vec{q}'}D_{ij}^{\alpha\beta}(\vec{q}')e^{-i\vec{q}'\cdot(\vec{R}_J-\vec{R}_0)}N_{sample}$$
 (5)

into

$$D_{ij}^{\alpha\beta}(\vec{q}) \equiv \frac{1}{\sqrt{m_i}\sqrt{m_j}} \sum_{J} \frac{\partial^2 E_{tot}}{\partial u_{0,i}^{\alpha} \partial u_{J,j}^{\beta}} \cdot e^{i\vec{q}\cdot(\vec{R}_J - \vec{R}_0)}$$
(2)

finally, you can get

$$D_{ij}^{\alpha\beta}(\vec{q}) = \sum_{J} \sum_{\vec{q}'} D_{ij}^{\alpha\beta}(\vec{q}') \cdot e^{i(\vec{q} - \vec{q}') \cdot (\vec{R}_J - \vec{R}_0)}$$
(6)