3. Übungstest Analysis 2 26. 6. 2019

1 (10P): Bestimmen Sie das Maximum der Funktion $f(x,y) = x^{1/5}y^{4/5}$ unter der Nebenbedingung x + 2y = 2 mithilfe von Lagrangemultiplikatoren für x, y > 0.

Lösung.: $\nabla f \neq (0,0)$ für x,y>0, also ist etwaiges Maximum Lösung der Gleichungen $\nabla F=(0,0,0)$ mit $F(x,y,\lambda)=x^{1/5}y^{4/5}+\lambda(x+2y-2)$:

$$\frac{1}{5}x^{-4/5}y^{4/5} + \lambda = 0$$
$$\frac{4}{5}x^{1/5}y^{-1/5} + 2\lambda = 0$$
$$x + 2y - 2 = 0.$$

Gibt $2x^{-4/5}y^{4/5}=4x^{1/5}y^{-1/5}=-10\lambda$ bzw. y=2x und mit der 3. Glg. 5x-2=0, also ist (x,y)=(2/5,4/5) einziges mögliches Maximum von f unter der Nebenbedingung. Die Funktion g(x)=f(x,1-x/2) ist auf der kompakten Menge [0,1] stetig mit g(0)=g(1)=0 und $g(x)\geq 0$. Sie hat damit ein Maximum in (0,1). Da der Wertebereich von g in (0,1) gleich dem Wertebereich von f in $\{(x,y):x>0,y>0\}$ unter der Nebenbedingung ist, folgt dass f in (2/5,4/5) das Maximum $(2/5)^{1/5}(4/5)^{4/5}=4/5\sqrt[5]{2}$ unter der Nebenbedingung in $\{(x,y):x,y>0\}$ hat.

2 (**10P**): Zeigen Sie:

- Ein Unterraum eines Hausdorffraumes ist mit der Relativtopologie ein Hausdorffraum.
- Sind X_i , $i \in I$ Hausdorffräume, so ist $\prod_{i \in I} X_i$ mit der Produkttopologie ein Hausdorffraum.

Lösung: Sei (X, \mathcal{T}) Hausdorffraum, $A \subseteq X$ und $a_1, a_2 \in A$ mit $a_1 \neq a_2$. Da (X, \mathcal{T}) Hausdorffraum ist, gibt es $O_1, O_2 \in \mathcal{T}$ mit $a_i \in O_i$, i = 1, 2 und $O_1 \cap O_2 = \emptyset$. Dann sind nach der Definition der Relativtop. die Mengen $A \cap O_1$ und $A \cap O_2$ disjunkte, in der Relativtopologie von A offene Mengen. Wegen $a_i \in A \cap O_i$, i = 1, 2 sind dies disjunkte Umgebungen von a_1, a_2 bez. der Relativtopologie. Damit ist A mit der Relativtopologie ein Hausdorffraum.

Für $x=(x_i)_{i\in I},y=(y_i)_{i\in I}\in\prod_{i\in I}X_i$ mit $x\neq y$ gibt es $j\in I$ mit $x_j\neq y_j$. Da X_j Hausdorffraum ist, gibt es disjunkte Umgebungen O_{x_j},O_{y_j} von x_j,y_j in X_j . Da pr $_j$ stetig auf $\prod_{i\in I}X_i$ mit der Produkttop. ist, sind $\operatorname{pr}_j^{-1}(O_{x_j}),\ \operatorname{pr}_j^{-1}(O_{y_j})$ offen und disjunkt im Produktraum $\prod_{i\in I}X_i$. Wegen $x\in\operatorname{pr}_j^{-1}(O_{x_j}),\ y\in\operatorname{pr}^{-1}(O_{y_j})$ sind dies disjunkte Umgebungen von x resp. y im Produktraum $\prod_{i\in I}X_i$. Damit ist $\prod_{i\in I}X_i$ ein Hausdorffraum.