Testowanie hipotez - podstawowe informacje

Niech $\mathbf{X} = (X_1, \dots, X_n)$ będzie próbą losową na przestrzeni \mathcal{X} , zaś $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby \mathcal{X} .

Definicja 1. Hipotezą zerową $\Theta_0 \subset \Theta$ nazywamy hipotezę, której prawdziwość chcemy zweryfikować na podstawie obserwacji. Hipoteza alternatywna jest postaci $\Theta_1 = \Theta \setminus \Theta_0$.

 $Hipoteza\ prosta$ zawiera jeden element, np. $H_0: \theta=2,\ hipoteza\ złożona$ zawiera więcej niż jeden element, np. $H_0: \theta>4.$

Definicja 2. Obszar krytyczny testu jest to obszar odrzucenia hipotezy zerowej. Najczęściej ma on postać $K = \{\mathbf{X} : T(\mathbf{X}) > c\}$, gdzie c jest poziomem krytycznym testu, wyznaczonym przez kwantyl rozkładu, z jakiego pochodzi statystyka testowa przy założeniu prawdziwości hipotezy zerowej (zależy on od przyjętego poziomu istotności testu).

Podsumowując, aby przeprowadzić test statystyczny, musimy mieć:

- 1. hipotezę zerową H_0 i hipotezę alternatywną H_1 ,
- 2. statystykę testową $T(\mathbf{X})$,
- 3. obszar krytyczny K,
- 4. poziom istotności $\alpha \in (0,1)$ bardzo mała liczba, np. 0,05.

Decyzja: jeżeli $T(\mathbf{X}) \in K$, to odrzucamy hipotezę H_0 , jeżeli $T(\mathbf{X}) \notin K$, to nie mamy podstaw do odrzucenia hipotezy zerowej.

Definicja 10. P-wartość (p-value) to graniczny poziom istotności - najmniejszy, przy którym zaobserwowana wartość statystyki testowej prowadzi do odrzucenia hipotezy zerowej. Jest to więc taki poziom istotności, przy którym zmienia się decyzja testu (zaczynając od lewej - od małego poziomu α , kiedy to nie mamy podstaw do odrzucenia H_0 , po przekroczeniu p-wartości zaczynamy odrzucać H_0).

P-wartość pozwala bezpośrednio ocenić wiarygodność hipotezy. Im p-wartość jest większa, tym bardziej hipoteza H_0 jest prawdziwa. Mała p-wartość świadczy przeciwko hipotezie zerowej.

Znajomość p-wartości pozwala przeprowadzić testowanie dla dowolnego poziomu istotności:

-odrzucamy hipotezę zerową H_0 , gdy

$$p$$
-wartość $\leq \alpha$,

-nie mamy podstaw do odrzucenia hipotezy zerowej H_0 , gdy

$$p$$
-wartość > α .

Test t-Studenta

Jest to parametryczny test istotności dla jednej lub dwóch prób, polegający na testowaniu równości wartości oczekiwanych.

- W przypadku jednej próby zawierającej realizacje zmiennej losowej X testujemy równość jej wartości oczekiwanej $\mathbb{E}X = \mu$ z pewną ustaloną stałą μ_0 .
- W przypadku dwóch prób zawierających realizacje zmiennych X oraz Y testujemy równość ich wartości oczekiwanych $\mathbb{E}X = \mu_1$ oraz $\mathbb{E}Y = \mu_2$.

Zakładamy, że pomiary podlegają rozkładowi normalnemu, lub mają dowolny rozkład o ile ich liczebności są dość duże (n > 30 w przypadku jednej próby oraz $n_1, n_2 \ge 100$ w przypadku dwóch prób), oraz że wariancje w próbach nie różnią się od siebie istotnie.

1. Test t-Studenta dla jednej próby

Hipotezy

$$H_0: \mu = \mu_0,$$

 $H_1: \mu > \mu_0,$ (1)
 $\mu < \mu_0,$ (2)

$$\mu \neq \mu_0 \tag{3}$$

• Statystyka testowa

$$T = \sqrt{n} \frac{\bar{x} - \mu_0}{s},$$

gdzie $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ to próbkowe odchylenie standardowe.

Obszar krytyczny
 Zależy od postaci hipotezy alternatywnej w następujący sposób:

$$K_{1} = \left(F_{t_{n-1}}^{-1} (1 - \alpha), +\infty\right), \tag{1}$$

$$K_{2} = \left(-\infty, -F_{t_{n-1}}^{-1} (1 - \alpha)\right), \tag{2}$$

$$K_{3} = \left(-\infty, -F_{t_{n-1}}^{-1} \left(1 - \frac{\alpha}{2}\right)\right) \cup \left(F_{t_{n-1}}^{-1} \left(1 - \frac{\alpha}{2}\right), +\infty\right), \tag{3}$$

gdzie $F_{t_{n-1}}^{-1}(a)$ to kwantyl rzędu a rozkładu t-Studenta z (n-1) stopniami swobody. Jeżeli wariancja rozkładu jest znana, wówczas s_X zastępujemy przez odchylenie standardowe rozkładu, zaś $F_{t_{n-1}}^{-1}(a)$ zastępujemy przez $\Phi^{-1}(a)$.

2. Test t-Studenta dla dwóch prób niezależnych

Hipotezy

$$H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 \neq \mu_2$$

• Statystyka testowa

$$T = \frac{\bar{x_1} - \bar{x_2}}{s_{\bar{x}_1 - \bar{x}_2}},$$

gdzie

$$s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)},$$

 s_1, s_2 to odchylenia standardowe z próbek, zaś n_1, n_2 to liczebności próbek.

• Obszar krytyczny

$$K = \left(-\infty, -F_{t_{n_1+n_2-2}}^{-1} \left(1 - \frac{\alpha}{2}\right)\right) \cup \left(F_{t_{n_1+n_2-2}}^{-1} \left(1 - \frac{\alpha}{2}\right), +\infty\right)$$

3. Test t-Studenta dla dwóch prób zależnych

• Hipotezy

$$H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 \neq \mu_2$$

• Statystyka testowa

$$T = \frac{\bar{d}}{s_{\bar{d}}},$$

gdzie

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i,$$

$$d_i = x_{1i} - x_{2i}, \quad i = 1, \dots, n,$$

$$s_{\bar{d}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2},$$

zaś x_{1i}, x_{2i} oznaczają wartości cechy X dla i-tego obiektu w pierwszym i drugim badaniu.

Obszar krytyczny

$$K = \left(-\infty, -F_{t_{n-1}}^{-1} \left(1 - \frac{\alpha}{2}\right)\right) \cup \left(F_{t_{n-1}}^{-1} \left(1 - \frac{\alpha}{2}\right), +\infty\right)$$

UWAGA: Gdy liczebność próby jest duża $(n > 30, n_1 + n_2 > 30)$, to kwantyl rozkładu t-Studenta zastępujemy przez kwantyl rozkładu standardowego normalnego $(F_{t_n}^{-1} \simeq \Phi)$.

W przypadku dwóch prób, możliwe jest testowanie hipotez jednostronnych postaci $H_1: \mu_1 > \mu_2, H_1: \mu_1 < \mu_2$. Wówczas, analogicznie jak w przypadku 1, zmianie ulegają obszary krytyczne.