ST

LEVEL-I

1.	. If the bisector of angle A of ΔABC makes an angle θ with BC, then sincto			
	(A) $\cos\left(\frac{B-C}{2}\right)$	(B) $\sin\left(\frac{B-C}{2}\right)$		
	(C) $\sin\left(B - \frac{A}{2}\right)$	(D) $\sin\left(C - \frac{A}{2}\right)$		
2.	If the radius of the circumcircle of an isosce AB = AC then the angle A is	les triangle ABC is equal to		
	(A) π/6 (C) π/2	(B) π/3 (D) 2π/3		
3.	In a triangle ABC, if $\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c}$	$\frac{C}{c} = \frac{a}{bc} + \frac{b}{ca}$, then the value of the		
	angle A is (A) 30° (C)60°	(B)45° (D) 90°		
4.	If A = 45° , B = 75° then a + $c\sqrt{2}$ is equal to (A) 2b	(B) 3b		
	(C) $\sqrt{2}$ b	(D) b		
5.	The sides of a triangle inscribed in a given centre. The minimum value of the arithmetic and $\cos(\gamma + \pi/2)$ is equal to			
	(A) 0	(B) $1/\sqrt{2}$		
	(C) -1	(D) $-\sqrt{3}/2$		
6.	A regular polygon of nine sides, each of leng radius of the circle is	gth 2, is inscribed in a circle. The		
	(A)sec $\frac{\pi}{9}$	(B) $\sin \frac{\pi}{9}$		
	(C) $\csc \frac{\pi}{9}$	(D) $\tan \frac{\pi}{9}$		
7.	In an acute angled triangle ABC, the least v (A) 6 (B) 9	ralue of secA + secB + secC is (B)3 (D) 4		
8.	A circle is inscribed in an equilateral triangle of side a. The area of any squinscribed in the circle is			
	(A) $a^2/4$	(B) $a^2/6$		

	(C) $a^2/9$	(D) 2a ² /3
9.	If $3 \sin^2 A + 2\sin^2 B = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and	$\sin 2B = 0$, where A and B are acute (B) $\pi/4$ (D) none of these.
	. ,	
10.	If in a ∆ABC, cos(A - C)cosB + cos2B = 0, (A) A.P. (C) H. P.	then a ² , b ² , c ² are in (B) G.P. (D) none of these
11.	If tan(A+B), tanB, tan(B+C) are in A.P., th (A) A.P. (C) H.P.	en tanA, cotB, tanC are in (B) G.P. (D) none of these
12.	If twice the square of the diameter of a circl of the sides of the inscribed triangle ABC to	
	(A) 2 (C) 4	(B) 3 (D) 1
13.	Consider a triangle ABC, with given $\angle A$ a triangle would exist if, (x is a given positive)	
	(A) $a < x \sin \frac{A}{2}$	(B) $a > 2x \sin \frac{A}{2}$
	(C) $a < 2 \times \sin \frac{A}{2}$	(D) None of these .
14.	If in ∆ABC a, b, c are in geometric progres (A) cot²A, cot²B, cot²C are in G.P. (B) cosec²A, cosec²B, cosec²C are in A.P. (C) cosec²A, cosec²B, cosec²C are in G.F. (D) none of these.) <u>.</u>
15.	If in a \triangle ABC, $8R^2 = a^2 + b^2 + c^2$, then the (A) Equilateral (C) Isosceles	triangle is (B) Right angled (D) None of these
16.	In a triangle ABC, angle B is greater than a	angle A, B $-A < \frac{2\pi}{2}$. If the values of A
	and B satisfy the equation $3\sin x - 4\sin^3 x - k$ to	c = 0 (0 < k < 1), then angle C is equal
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{6}$
	(C) $\frac{2\pi}{3}$	(D) None of these

17.	If in a triangle ABC, b + c = 4a. Then $\cot \frac{B}{2}$	cot C is equal to
	2	(B) $\frac{3}{5}$
	(A) $\frac{5}{3}$ (C) $\frac{5}{8}$	(D) None of these
18.	The ex-radai of a triangle r_1 , r_2 , r_3 are in Hab, c are in	armonic progression, then the sides a,
	(A) A.P (C) H.P	(B) G.P (D) none of these
19.	In a \triangle ABC A = 30°, B = 60°, then a : b : c is	
	(A) 1:2:3 (C) 1:2: $\sqrt{3}$	(B) 1: $\sqrt{3}$: 2 (D) 1: $\sqrt{2}$: 3
20.	In a \triangle ABC, the value of a (cos B + cos C) +	b (cos A + cos C) + c (cos A + cos B)
	is (A) a + b (C) b + c	(B) a + b + c (D) b + c -a
21.	In a triangle a = 13, b = 14, c = 15, r = (A) 4 (C) 2	(B) 8 (D) 6
22.	In a triangle ABC, If $b + c = 3a$, then the val	ue of $\cot \frac{B}{2} \cot \frac{C}{2}$ is
	(A) 1 (C) $\sqrt{3}$	(B) 2 (D) 3
23.	In a triangle ABC, then 2ac sin $\frac{1}{2}$ (A –B + C	s) is
	(A) $a^2 + b^2 - c^2$ (D) $b^2 - c^2 - a^2$	(B) $c^2 + a^2 - b^2$ (D) $c^2 - a^2 - b^2$
24.	The angle A of the triangle ABC, in which (a (A) 30° (C) 60°	a + b + c) (b + c –a) = 3bc is (B) 45° (D) 120°
25.	In a triangle ABC, Let $\angle C = \frac{\pi}{2}$, if r is the inr	radius and R is the circumradius of the
	triangle, then $2 (r + R)$ is equal to (A) $a + b$ (C) $c + a$	(B) b + c (D) a + b + c
26.	In a triangle ABC, $\frac{c+b}{c-b}$. $\tan \frac{A}{2}$ is equal to	

	(A) $\tan\left(\frac{A}{2} + B\right)$		(B) $\cot\left(\frac{A}{2} + B\right)$	
	(C) $\tan\left(A + \frac{B}{2}\right)$		(D) none of these	
27.	In a ∆ABC, a =	2b and A -B	$= \frac{\pi}{3}$, the measure	e of angle C
28.	In a \triangle ABC, the sides $-40 = 0 \text{ tl}$	a, b and c are such the	of $\frac{\cos A}{a} + \frac{\cos A}{b}$	$\frac{B}{C} + \frac{\cos C}{C} = \frac{\cos C}{C}$
29.		e the medians of a ΔA	ABC, then (AD ² + BE ²	+ CF ²) : (BC ² +
30.	sin A, sin B, sin C are (A) altitudes are in A. (C) altitudes are in H.		hen (B) sides are in A.P (D) medians are in A	.Р
31.	In a triangle ABC, tar (A) tan A . tan B < 1 (C) tan A + tan B +		(B) tan A . tan B > 1 (D) tan A + tan B +	tan C > 0
32.	If in a triangle ABC,	$c + c = 4a$. Then $\cot \frac{B}{2}$	$\cot \frac{C}{2}$ is equal to	
	(A) $\frac{5}{3}$ these	(B) $\frac{3}{5}$	(C) $\frac{5}{8}$	(D) None of
33.	If in a triangle ABC, (A) right angled these	$cosA = \frac{sinB}{sinC} + \frac{sinC}{sinB} - \frac{sinB}{sinB}$ (B) isosceles	sin ² A sinBsinC (C) scalene	riangle is (D) None of
34.	angles are in A.P.	ths of the two larger s , then the length of thi		ectively. If the
	(A) $5 - \sqrt{6}$		(B) 3 (D) $3\sqrt{3}$	
	(C) 5		(U) 3 \3	

In a \triangle ABC, maximum value of c cos (A - θ) + a cos(C + θ), equals (A) a (B) b

(D) $\sqrt{a^2 + c^2}$

35.

(C) c

36.	In a triangle ABC, $a^2 (\cos^2 B - \cos^2 C) + b^2 (\cos^2 C - \cos^2 A) + c^2 (\cos^2 A \cos^2 B)$ equals		
	(A) 0	(B) 1	
	(C) -1	(D) none of these	
37.	In a \triangle ABC, the angles A and λ , $ \lambda $ < 2. Then \angle C equals	B are two values of θ satisfying $\sqrt{3} \sin\theta + \cos\theta =$	
	(A) 60°	(B) 90°	
	(C) 120°	(D) none of these	
38.	If the ex-radii of a triangle AB	C are in H.P., then the sides a, b, c are in	
	(A) A.P.	(B) G.P.	
	(C) H.P.	(D) None of these	

LEVEL-II

1	The every $(a+b+c)(b+c-a)(c+a-b)$	(a+b-c) is equal to			
1.	The expression $\frac{(a+b+c)(b+c-a)(c+a-b)}{4b^2c^2}$	is equal to			
	(A) cos ² A	(B) sin ² A			
	(C) cosA cosB cosC	(D) None of these			
2.	The perimeter of a triangle ABC is 6 times t	he arithmetic mean of the sines of its			
	angles. If the side a is 1, then the an				
	(A) π/6	(B) π/3			
	(C) π/2	(D) π			
	,	,			
3.	If a ² , b ² ,c ² are in A.P, then cotA, cotB, cotC	are in			
	(A) A.P (B) G.I	P			
	(C) H.P	(D) None of these			
4.	The area of the circle and the regular polygo	on of n sides and of equal perimeter			
	are in the ratio of				
	(A) $tan(\pi/n)$: π/n	(B) $\cos (\pi/n)$: π/n			
	(C) $sin(\pi/n)$: π/n	(D) $\cot(\pi/n)$: π/n			
5.	In a triangle ABC, $(a+b+c)(b+c-a) = \lambda bc$ if				
	$(A) \lambda < 0$	(B) $\lambda > 0$			
	(C) $0 < \lambda < 4$	(D) $\lambda > 4$			
C	In a triangle ADC AD is the altitude from A	Circon by a C 220 and AD			
6.	In a triangle ABC, AD is the altitude from A.	Given $b > c$, $C = 23^{\circ}$ and AD			
	= $\frac{abc}{b^2-c^2}$ then $\angle B$ is equal to				
		_			
	(A) 23 ⁰	(B) 113 ⁰			
	$(C) 67^{0}$	(D) 90°			
_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A) 3 (A D):			
7.	In any triangle ABC, $a^3\cos(B-C) + b^3\cos(C-C)$				
	(A) 6abc	(B) 9abc			
	(C) 3abc	(D) None			
_					
8.	In a triangle ABC, $\sqrt{a} + \sqrt{b} - \sqrt{c}$ is				
	(A) always positive (B) always negative				
	(C) positive only when c is smallest (D) none of these.				
0	to a federal code adds a bound of a constate	ala (assahiran dha aidea AO and OD ia			
9.	In a triangle with sides a,b, and c, a semicing				
	inscribed whose diameter lies on AB. The				
	(A) a/2	(B) ∆/ s			
	(C) $\frac{2\Delta}{a+b}$	(D) $\frac{2abc}{(s)(a+b)}\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$			
	` a + b	(s)(a+b) 2 2 2			
10.	A triangle is inscribed in a circle. The verti				
	in to three arcs of length 3, 4 and 5 units	s, then area of the triangle is equal			

to,

	(A) $r_1 = \frac{11}{7}r$	(B) $r_2 = 11r$	
	(C) $r_3 = \frac{2}{11}r$	(D) None of these	
19.	If a cos A = b cos B, the triangle is (A) equilateral (C) isosceles	(B) right angled (D) right angled or iso	osceles
20.	The sides of a triangle are a, b and $\sqrt{a^2 + a}$	$\overline{b + b^2}$, then the greate	est angle is
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{2}$	
	(C) $\frac{2\pi}{3}$	(D) none of these	
21.	Two sides of a Δ are given by the roots of	the equation $x^2 - 2\sqrt{3}$	3x + 2 = 0. The
	angle between the sides is $\frac{\pi}{3}$. The perimeter	er of the triangle is	
22.	In a triangle ABC, R = circumradius $\frac{a\cos A + b\cos B + c\cos C}{a + b + c}$ is equal to	and r = inradius.	The value of
	(A) $\frac{R}{r}$	(B) $\frac{R}{2r}$	
	(C) $\frac{r}{R}$	(D) $\frac{2r}{R}$	
23.	In a triangle ABC, 2 cos $\frac{A-C}{2} = \frac{a+c}{\sqrt{a^2+c^2-c^2}}$, then	
	$(A) B = \frac{\pi}{3}$	(B) B = C	
	(D) A, B, C are in A.P	(D) $B + C = A$	
24.	The distance of the circumcentre of the ac CA and AB are in the ratio	cute angled ∆ABC fror	n the sides BC,
	(A) a sin A : b sin B : c sin C (C) a cot A : b cot B : c cot C	(B) cos A : cos B : co (D) none of these	s C
25.	If twice the square of the diameter of a circl of the sides of the inscribed triangle ABC		
	to (A) 2 (B) 3	(C) 4	(D) 1
26.	In $\triangle ABC$, if $\frac{c+a}{12} = \frac{a+b}{14} = \frac{b+c}{18}$, then		

	(A) $r_1 = \frac{11}{7}r$ these	(B) $r_2 = 11r$	(C) $r_3 = \frac{2}{11}r$	(D) None of
27.	In a triangle ABC, 2 s (A) right angled at A (C) right angled at C		$\frac{A}{C} = \frac{1}{2}$ then triangle is (B) right angled at B (D) none of these	
28.	In a triangle ABC, $\frac{(r_1)}{r_1}$	$\frac{+r_2)(r_2+r_3)(r_3+r_1)}{Rs^2}$ is	equal to	
	(A) 4	(B) 4 abc	(C) $\frac{4abc}{\Delta^2}$	(D) Δ
29.		$\frac{b\cos B + c\cos C}{\Delta^2}$ is equal $\frac{2}{\Delta R}$	ual to $(C) \frac{8\Delta^3}{abc}$	(D) None of
30.	a triangle ABC to the	opposite sides, then the	of perpendiculars from ne value of $p_1p_2p_3$ is (C) $\frac{a^2b^2c^2}{8R^4}$	
31.	If in a triangle cos ² A - (A) Right angled at A (C) Right angled at C	$+\cos^2 B - \cos^2 C = 1$, the	nen the triangle is (B) Right angled at B (D) not a right triangle)
32.		SinB – SinA SinC + Cosb (B) equilateral	$\frac{\cos A}{C} = 0$ then the tria (C) isosceles	ngle is (D) None of
33.	If $sin\theta$ and $-cos\theta$ are the sides of a triangle		$ion ax^2 - bx - c = 0, w$	here a, b, c are
	(A) $\cos B = 1 - \frac{c}{2a}$	(B) $\cos B = 1 - \frac{b}{2a}$	(C) cosB = $1 + \frac{c}{2a}$	(D) $cosB = 1$

these

 $+\frac{b}{2a}$

35.	If in a triangle ABC, $\angle C = 135^{\circ}$, then value (A) 0 (C) -1	of tan A + tan B + tan A tan B equals (B) 1 (D) none of these
36.	Suppose the angles of a triangle ABC are in $\sqrt{3}$: $\sqrt{2}$ then the angle A equals (A) 45° (C) 75°	A.P. and sides b and c satisfy b : $c =$ (B) 60° (D) 90°
37.	If a^2 , b^2 , c^2 are the roots of the equation x^3 - the sides of a triangle ABC then the value of (A) $\frac{P}{\sqrt{R}}$ (C) $\frac{P}{4\sqrt{R}}$	_
38.	In a triangle ABC, $\frac{b^2 - c^2}{a \sin(B - C)} + \frac{c^2 - a^2}{b \sin(C - A)}$ (A) R (B) 2R	equals $ \begin{array}{c} \overline{A} \\ \overline{A} \end{array} $ (B) $\frac{1}{2R}$ (D) none of these

35.

ANSWERS

LEVEL -I

	1. 5.	A D	2. 6.	D C	3. 7.	D A	4. 8.	A B
	9. 13. 17. 21.	C D A A	10. 14. 18. 22.	A C A B	11. 15. 19. 23.	C B B	12. 16. 20. 24.	A C B C
	25.		26.	D	27.		28.	C 9 16
	29. 33. 37.	A C	30. 34. 38.	B A A	31. 35.	C B	32. 36.	A A
LEVE	L -II							
	1. 5.	B C	2. 6.	A B	3. 7.	A C	4. 8.	A A
	9. 13. 17. 21.	C B,C A $\sqrt{6} \left(1+\sqrt{2}\right)$	10. 14. 18. 22.	A C A C	11. 15. 19. 23.	B C D	12. 16. 20. 24.	A C C C
	25. 28.	A	26.		27.			
	29. 33. 37.	C B	30. 34. 38.	A D	31. 35.	В	32. 36.	С