

Shape Context and Shape Matching

Computer Vision Exercise session 8

Shape Matching Objectives

- 1. Compute shape context descriptors
- 2. Match a template shape to a target set of points using shape contexts

- a. Compute shape context descriptors for both sets of points
- b. Estimate cost matrix between two sets of descriptors
- c. Use cost matrix to solve the correspondence problem between two sets of descriptors (e.g. with Hungarian algorithm)
- d. From the correspondence, estimate a transformation from template to target points (e.g. with Thin Plate Splines) and perform this transformation on the template points
- e. Iterate steps a-d.

- a. Compute shape context descriptors for both sets of points
- b. Estimate cost matrix between two sets of descriptors
- c. Use cost matrix to solve the correspondence problem between two sets of descriptors (e.g. with Hungarian algorithm)
- d. From the correspondence, estimate a transformation from template to target points (e.g. with Thin Plate Splines) and perform this transformation on the template points
- e. Iterate steps a-d.

Shape Context Descriptor

Shape Context Descriptor (2)

Belongie, et al, PAMI 2002, Shape matching and object recognition using shape contexts

- a. Compute shape context descriptors for both sets of points
- b. Estimate cost matrix between two sets of descriptors
- c. Use cost matrix to solve the correspondence problem between two sets of descriptors (e.g. with Hungarian algorithm)
- d. From the correspondence, estimate a transformation from template to target points (e.g. with Thin Plate Splines) and perform this transformation on the template points
- e. Iterate steps a-d.

Matching Costs

- a. Compute shape context descriptors for both sets of points
- b. Estimate cost matrix between two sets of descriptors
- c. Use cost matrix to solve the correspondence problem between two sets of descriptors (e.g. with Hungarian algorithm)
- d. From the correspondence, estimate a transformation from template to target points (e.g. with Thin Plate Splines) and perform this transformation on the template points
- e. Iterate steps a-d.

Correspondence Problem

- Minimize total cost of matching such that matching is one-to-one
- E.g. with Hungarian algorithm
- Code provided in hungarian.m

- a. Compute shape context descriptors for both sets of points
- b. Estimate cost matrix between two sets of descriptors
- c. Use cost matrix to solve the correspondence problem between two sets of descriptors (e.g. with Hungarian algorithm)
- d. From the correspondence, estimate a transformation from template to target points (e.g. with Thin Plate Splines) and perform this transformation on the template points
- e. Iterate steps a-d.

Transformation

Thin Plate Splines(1)

- •We are given a set of correspondences
- •We want to estimate the function T: $R^2 \rightarrow R^2$ that transforms A into B

Thin Plate Splines(1)

$$f(x,y) = a_1 + a_x x + a_y y + \sum_{i=1}^n \omega_i U(\| (x_i, y_i) - (x, y) \|)$$

Thin Plate Splines(2)

•From the correspondences, we get a displacement:

•Each component (vertical and horizontal) is a single function that we want to interpolate with a TPS. $T(x,y) = (f_x(x,y), f_y(x,y))$

- a. Compute shape context descriptors for both sets of points
- b. Estimate cost matrix between two sets of descriptors
- c. Use cost matrix to solve assignment problem between two sets of descriptors (e.g. with Hungarian algorithm)
- d. From the assignment, estimate a transformation from template to target points (e.g. with Thin Plate Splines)
- e. Iterate steps a-d.

Example 1 - Numbers

Belongie, et al, PAMI 2002, Shape matching and object recognition using shape contexts

Example 2 - Numbers

Example 2 - Numbers

Example 2 - Numbers

Belongie, et al, PAMI 2002, Shape matching and object recognition using shape contexts

Example 3 - Fish

Example 3 - Fish

Example 3 - Fish

implement required functions

- set lamba in shape_matching.m
- sc_compute(), chi2_cost(), tps_model()

include a main.m to run the code

- load shapes dataset.mat to test your code
- Use get_samples.m to sample points

write your report

- explain main steps of your implementation
- include images, comment the results
- answer the questions in the hand-out paper