1. Convolve the forward difference filter $\begin{bmatrix} -1 & 1 \end{bmatrix}$ with itself, padding on both sides with zeros so the output has three elements. How can you interpret the result?

Hint/Solution: the padded image is $\begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}$, the result is $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$.

2. Using the two Sobel filters, compute the gradient magnitude for each pixel in image I:

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Use zero padding so the result is the same size as I.

Hint/Solution: the padded image is $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$ Bold numbers indicate centers

of the image patches where the filters will be applied on.

The Sobel filter for the derivative along the x-axis is $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$. The Sobel filter for the derivative along the y-axis is $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$. Note that the x-axis direction is top-down and the y-axis direction is left-righ

3. Starting from $G(x,y) = \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$, derive the Laplacian $\nabla^2 G(x,y)$. Prove that $\nabla^2 G(x, y) = \nabla^2 G(x', y'),$

$$\nabla G(x,y) \equiv \nabla G(x,y),$$

where $x' = x\cos(\theta) - y\sin(\theta)$ and $y' = x\sin(\theta) + y\cos(\theta)$, where $\theta \in [0, 2\pi)$. What conclusion can be made from this result?

Hint/Solution: the definition the Laplacian is

$$\nabla^2 G(x,y) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

The result should be an expression containing $x^2 + y^2$ with no other terms contain x or y. From $x'^2 + y'^2 = x^2 + y^2$ it follows that $\nabla^2 G(x, y) = \nabla^2 G(x', y')$.

The conclusion is that the Laplacian operator is rotation invariant.

4. For a discrete signal

$$f[x] = \begin{cases} 1 & x = 0, 2 \\ 0 & x = 1, 3 \end{cases}$$
 with length $M = 4$,

find its M-point discrete Fourier transform F[u] for u = 0, 1, 2, 3. Sketch the result on the complex plane.

1

Hint/Solution: $F(u) = \sum_{x=0}^{M-1} f(x) \exp(-j2\pi ux/M)$ for u = 0, 1, 2, 3.