EXAMEN DEL SEGUNDO PARCIAL

Programación de Alto Rendimiento

8 de agosto de 2025

Instrucciones:

A continuación se le presentan una serie de preguntas, léalas cuidadosamente, resuelvalos en forma clara y ordenada. Todas las respuestas deben de presentarse en formato .pdf y escritos en LaTeX; todo el código que presente debe se estar debidamente formateado usando el ambiente minted. No incluya archivos de código completos, puede solo presentar el código relevante a la solución a cada problema pero debe estar preparado para presentar el código completo y funcionando en caso de solicitarlo. Puede usar el código de este examen como plantilla.

1. Imagen Docker

Escriba un Dockerfile que genere una imagen de un contenedor docker con las siguientes Instrucciones (5 pts/cu):

- 1. Instale la última versión de la distribución de linux alpine.
- 2. Instale los paquetes necesarios para compilar código C y descargar repositorios de github.com usando en manejador de paquetes de alpine
- 3. Clone el repositorio de la clase: https://github.com/lab156/PAD-2025.
- 4. Compile los programas generate_write.c y lineal_args.c ambos ubicados en la carpeta PAD-2025/gradiente/regresion.
- 5. Establecer en el Dockerfile que al correr la imagen solo con el comando run (es decir, sin modo interactivo -it) debe de crear una carpeta llamada data, ejecutar generate_write y guardar los resultados en data y finalmente ejecutar este archivo con el ejecutable lineal_args.

2. Python ctypes

En este problema, es necesario utilizar el "virtual environment" que creamos en clase y disponible en el repositorio de la clase en la carpeta ProyectoUno.

Primero, agregue la librería de Python scikit-learn. Esta libreria contiene la base de datos llamada iris. El código para leer esta base de datos está incluido en el archivo read_iris.py, especificamente en la función get_iris_data:

```
def get_iris_data():
iris = load_iris()
# target is the dependent variable
y = iris.target
# data has 4 columns, we will only use the first one
x = [row[0] for row in iris.data]
return x, y
```

Usando la librería ctypes de Python, enviar los datos a una función en C que encuentre la recta de regresión de los datos en x y y. Finalmente regrese a la función en Python los valores de m y b. Muestre los resultados imprimiendolos en la pantalla **desde Python**. (40pts).

3. LAPACK

Escriba un programa en C que genere dos matrices aleatorias con componentes distribuidos uniformemente entre 0 y 100 de tamaño 300×200 con componentes de tipo float. Calcule el producto de la traspuesta de la primera por la segunda de forma que quede una matrix simétrica de 200×200 . Finalmente encuentre e imprima el número de condicionamiento del producto aprovechando la simetría de la matrix, e.j. sircom. Use solo funciones de la librería LAPACK (35pts).