실해석학 스터디 5주차

JEAWON NA

교재: Walter Rudin - Real and Complex Analysis-McGraw-Hill Education (1986) 범위: CHAPER TWO, "POSITIVE BOREL MEASURES": The Riesz Representation Theorem

The Riesz Representation Theorem

2.14

Let X be a locally compact Hausdorff space, and let Λ be a positive linear functional on $C_c(X)$.

Then there exists a σ -algebra \mathfrak{M} in X which contains all Borel sets in X, and there exists a unique positive measure μ on \mathfrak{M} which represents Λ in the sense that

- (a) $\Lambda f = \int_X f d\mu$ for every $f \in C_c(X)$, and which has the following additional properties:
- (b) $\mu(K) < \infty$ for every compact set $K \subset X$.
- (c) For every $E \in \mathfrak{M}$, we have

$$\mu(E) = \inf \{ \mu(V) : E \subset V, V \text{ open} \}.$$

(d) The relation

$$\mu(E) = \sup \{ \mu(K) : K \subset E, K \text{ compact} \}$$

holds for every open set E, and for every $E \in \mathfrak{M}$ with $\mu(E) < \infty$.

(e) If $E \in \mathfrak{M}$, $A \subset E$, and $\mu(E) = 0$, then $A \in \mathfrak{M}$.

지난 시간에는 μ 와 \mathfrak{M} 을 적당히 정의한 뒤, STEP I부터 IV까지 증명했었다. 이번에는 지난 증명에 이어서 진행해보자.

STEP V

If $E \in \mathfrak{M}_F$ and $\epsilon > 0$, there is a compact K and an open V such that $K \subset E \subset V$ and $\mu(V - K) < \epsilon$.

Date: 2025. 6. 3.

2 JEAWON NA

어떤 집합 E가 \mathfrak{M}_F 에 있으면 E를 사이에 둔 상태에서 충분히 가까운 compact K와 open V를 찾을 수 있다.

⟨ proof ⟩

 $\mu(E)$ 는 정의에 의해 $\mu(E)=\inf\{\mu(V):E\subset V,V \text{ open}\}$ 이고, \mathfrak{M}_F 에 속한다고 했으므로 $\mu(E)=\sup\{\mu(K):K\subset E,K \text{ compact}\}$ 이다. 따라서, 다음과 같은 $K\subset E\subset V$ 를 찾을 수 있다.

$$\mu(V) - \frac{\epsilon}{2} < \mu(E) < \mu(K) + \frac{\epsilon}{2}$$

이 때 locally compact Hausdorff space에서 compact이면 closed이므로 K^c 는 open이고, 따라서 $V-K=V\cap K^c$ 는 open이다. STEP III에 의해 open이면 \mathfrak{M}_F 에 속한다. 따라서 $V-K\in \mathfrak{M}_F$ 이고, STEP IV에 의해

$$\mu(K) + \mu(V - K) = \mu(V) < \mu(K) + \epsilon$$

이다. (K와 V-K는 당연히 disjoint이다.) 따라서 $\mu(V-K) < \epsilon$.

STEP VI

If $A \in \mathfrak{M}_F$ and $B \in \mathfrak{M}_F$, then A - B, $A \cup B$, and $A \cap B$ belong to \mathfrak{M}_F .

⟨ proof ⟩

Let $\epsilon > 0$. STEP V에 의해, A와 B에 대해 $K_1 \subset A \subset V_1$, $K_2 \subset A \subset V_2$, and $\mu(V_1 - K_1) < \epsilon$, $\mu(V_2 - K_2) < \epsilon$ 인 K_i 와 V_i 를 찾을 수 있다. 이 때 간단한 집합 연산에 의해

$$A - B \subset V_1 - K_2 \subset (V_1 - K_1) \cup (K_1 - V_2) \cup (V_2 - K_2)$$

가 성립한다. * 직관적인 이해: 우변 $V_1 - K_1$ 에서, 빠질땐 K_1 의 일부만 빠짐. (겹치는 부분만). 근데 합칠때는 $K_1 - V_2$ 에서 다 합침. 그리고 다시 V_2 에서 일부만 빠짐. 만약에 합칠때 빠졌던 부분(일부)만 그대로 합친다면 좌변과 동일. 근데 그거보다 더 많이 합치니까, 커짐.

따라서, 다음이 성립한다.

$$\mu(A-B) \le \mu((V_1 - K_1) \cup (K_1 - V_2) \cup (V_2 - K_2)) \le \epsilon + \mu(K_1 - V_2) + \epsilon. \tag{14}$$

 $K_1 - V_2$ 는 compact subset of A - B이다. 왜냐하면 $K_1 - V_2 = K_1 \cap V_2^c$ 이고, Hausdorff space 에서 closed와 compact의 교집합은 compact이니까. (see Corollary (b) of Theorem 2.5).

그러므로, $\sup\{\mu(K): K\subset A-B, K \text{ compact}\}<\mu(A-B)$ 일 수 없다. 왜냐면 $\mu(A-B)$ 보다 조금이라도 작은 값에 대해서는 그것보다 큰 K_1,V_2 를 찾아낼 수 있으니까. (ϵ 을 반토막내서 등호 빼버릴 수 있음.)

따라서 $\sup\{\mu(K): K\subset A-B, K \text{ compact}\} \geq \mu(A-B)$ 이다. 그리고 μ 의 monotone 에 의해, $\sup\{\mu(K): K\subset A-B, K \text{ compact}\} \leq \mu(A-B)$. 따라서 $\sup\{\mu(K): K\subset A-B, K \text{ compact}\} = \mu(A-B)$. $A-B\subset A$ 에서 finite 조건은 쉽게 알 수 있다. 따라서, $A-B\in\mathfrak{M}_F$.

 $A \cup B = (A - B) \cup B$, $A - B \in \mathfrak{M}_F$, 따라서 $A \cup B \in \mathfrak{M}_F$. $A \cap B = A - (A - B)$, $A - B \in \mathfrak{M}_F$, 따라서 $A \cup B \in \mathfrak{M}_F$.

STEP VII

 \mathfrak{M} is a σ -algebra in X which contains all Borel sets.

⟨ proof ⟩

$1. A \in \mathfrak{M}$ 이면, $A^c \in \mathfrak{M}$ 임을 보이자.

Let K be an arbitrary compact set in X. $A \in \mathfrak{M}$, then $A^c \cap K = K - (A \cap K)$, 이 때 compact set $K \in \mathfrak{M}_F$ 이고, \mathfrak{M} 의 정의에 의해 $A \cap K \in \mathfrak{M}_F$, 따라서 $A^c \cap K \in \mathfrak{M}_F$, for arbitrary compact set K. 따라서 $A^c \in \mathfrak{M}$.

2. M이 countable union에 대해 닫혀있음을 보이자.

Let K be an arbitrary compact set in X. $A_i \in \mathfrak{M}$ 인 A_i 들에 대해, $A = \bigcup_{1}^{\infty} A_i$ 라 하자. $B_1 = A_1 \cap K$ 라 두고, B_n 을 다음과 같이 정의하자.

$$B_n = (A_n \cap K) - (B_1 \cup \dots \cup B_{n-1}) \qquad (n = 2, 3, 4, \dots).$$
 (15)

즉, B_n 은 K 중에서 A_1 부터 A_{n-1} 을 모두 피하다가 A_n 과 딱 겹치는 부분을 의미한다. 이렇게 하면, B_n 을 만들 때 B_{n-1} 까지를 다 빼버리니까 $\{B_n\}$ 이 disjoint임은 자명하다. 그리고 $A_1 \in \mathfrak{M}_F$, $K \in \mathfrak{M}_F$ (since K is compact), 따라서 $A_1 \cap K \in \mathfrak{M}_F$ (by STEP VI), 그리고 B_1 부터 B_{n-1} 까지 \mathfrak{M}_F 에 속한다고 가정하면 $B_1 \cup \cdots \cup B_{n-1} \in \mathfrak{M}_F$ (by STEP VI), 그리고 $A_n \in \mathfrak{M}_F$, 따라서 $B_n \in \mathfrak{M}_F$, induction에 의해 $B_n \in \mathfrak{M}_F$ for all n. 이 때 $A_n \cap K = \bigcup_1^n B_i$, $A \cap K = \bigcup_1^\infty B_n$ (마찬가지로 엄밀하게는 by induction)에서 $\bigcup_1^\infty B_n \in \mathfrak{M}_F$ (By STEP VI), $A \cap K \in \mathfrak{M}_F$, for arbitrary compact set K. 따라서 $A \in \mathfrak{M}$.

3. 전체집합 $X \in \mathfrak{M}$ 임을 보이자.

모든 closed set C는 \mathfrak{M} 에 속한다. 왜냐하면, 임의의 compact set K에 대해, $C \cap K$ 는 compact 이고, compact set은 항상 \mathfrak{M}_F 에 속하기 때문이다. X는 closed이므로, $X \in \mathfrak{M}$.

모든 closed set이 \mathfrak{M} 에 속한다는 것은, 모든 open set이 \mathfrak{M} 에 속한다는 말과 같다. 왜냐하면, 어떤 open set V에 대해, V^c 는 closed이므로 $V^c \in \mathfrak{M}$ 이니까 $(V^c)^c = V \in \mathfrak{M}$. 따라서, \mathfrak{M}

4 JEAWON NA

은 모든 open set을 포함하는 σ -algebra이므로, 모든 Borel set을 포함해야 한다. (Borel set 이 제일 작은거니까.)

STEP VIII

 \mathfrak{M}_F consists of precisely those sets $E\in\mathfrak{M}$ for which $\mu(E)<\infty$. \mathfrak{M}_F 는 사실 \mathfrak{M} 중에서 $\mu(E)<\infty$ 인 E들만 모아놓았던 것이었다. 이 STEP을 통해, Theorem 의 (d)번을 증명할 수 있다.

⟨ proof ⟩

- (⇒) If $E \in \mathfrak{M}_F$, then STEP II에서 $K \in \mathfrak{M}_F$, STEP VI에 의해 $E \cap K \in \mathfrak{M}_F$ for every compact K이다.
- (\Leftarrow) Suppose $E \in \mathfrak{M}$ and $\mu(E) < \infty$. (2)번 식, μ 의 정의에 의해 \exists open set $V \supset E$ with $\mu(V) < \mu(E) + \epsilon$ for any $\epsilon > 0$. STEP III에 의해, such V is in \mathfrak{M}_F . STEP V에 의해, \exists open set W and \exists compact set K such that $K \subset V \subset W$ and $\leq \mu(W K) < \epsilon$. $E \in \mathfrak{M}$ 이고, \mathfrak{M} 의 정의에 의해 $E \cap K \in \mathfrak{M}_F$ 이므로, (3)번 식에 의해 \exists compact set $H \subset E \cap K$ with

$$\mu(E \cap K) - \epsilon < \mu(H).$$

Since $E = (E \cap K) \cup (E \cap K^c) \subset (E \cap K) \cup (W - K)$, it follows that

$$\mu(E) \le \mu(E \cap K) + \mu(W - K) < \mu(H) + 2\epsilon.$$

즉, $\mu(E) \leq \mu(H)$ for all compact set $H \subset E \Rightarrow \mu(E) \leq \sup\{\mu(H) : H \subset E, H \text{ compact}\}$, μ 의 monotone 성질에 의해 $\mu(E) \geq \sup\{\mu(H) : H \subset E, H \text{ compact}\}$, 따라서 $\mu(E) = \sup\{\mu(H) : H \subset E, H \text{ compact}\}$, $E \in \mathfrak{M}_F$.

STEP IX

 μ is a measure on \mathfrak{M} .

⟨ proof ⟩

만약 μ 의 값에 ∞ 가 있는 경우, 양쪽 모두 ∞ 가 됨. (한쪽은 monotone, 한쪽은 0이상 더하기에 무한대 있어서.) 모두 finite 한 경우, STEP IV와 STEP VIII에 의해 바로 증명됨.

STEP X

For every $f \in C_c(X)$, $\Lambda f = \int_x f d\mu$.

⟨ proof ⟩

complex function f = u + iv에 대해,

$$\int_{E} f d\mu = \int_{E} u^{+} d\mu - \int_{E} u^{-} d\mu + i \int_{E} v^{+} d\mu - i \int_{E} v^{-} d\mu$$

이고, u^+, u^-, v^+, v^- 는 모두 0 이상인 real function이므로, real function에 대해서만 (a)를 증명하면 Λ 의 linearlity에 의해 complex function에 대해서도 보일 수 있다. 그리고 우리는

$$\Lambda f \le \int_X f d\mu \tag{16}$$

for every real $f \in C_c(X)$ 만 증명하면 된다. 왜냐면, (16)번 식으로 인해

$$-\Lambda f = \Lambda(-f) \le \int_X (-f) d\mu = -\int_X f d\mu$$

가 성립하기 때문이다.

Real function $f \in C_c(X)$ 에 대해, f의 support를 K라고 하자. Theorem 2.10의 Corollary에 의해, f(K)의 range는 complex plane에서의 compact subset이다. f는 real function이므로, $f(X) \in [a,b]$ 인 a,b를 찾을 수 있다. 그리고 임의의 $\epsilon > 0$ 에 대해, a와 b 사이에 간격이 ϵ 보다 작아지도록 y_i 를 다음과 같이 배치하자.

$$y_0 < a < y_1 < \dots < y_n = b.$$
 (17)

구간의 길이가 finite이므로, finite개의 y_n 을 찾아낼 수 있다. E_i 를

$$E_i = \{x : y_{i-1} < f(x) \le y_i\} \cap K \qquad (i = 1, ..., n).$$
(18)

으로 정의하자. 이는 f의 range를 ϵ 보다 작게 조각내놓은 것과 대응되는 preimage 조각들이다. 이들은 disjoint하면서 합집합이 K가 된다.

 $f \in C_c(X)$ 에서 f가 continuous이므로 f는 Borel measurable이다. 그래서 $(y_{i-1}, y_i]$ 의 preimage인 E_i 들은 X에서 Borel set이다. (왜냐하면 $(y_{i-1}, y_i]$ 은 Borel set in \mathbb{R} , see Theorem 1.12 (b).)

 $E_i \subset K$ 에서, $\mu(K) < \infty$ 이므로 식 (2)에 의해

$$\mu(W_i) < \mu(E_i) + \frac{\epsilon}{n} \qquad (i = 1, \dots, n)$$
(19)

인 $W_i \supset E_i$ 를 E_i 마다 찾아낼 수 있다. 그리고 $W_i' = f^{-1}([-\infty, y_i + \epsilon))$ 으로 정의하면, W_i' 는 open이고 $W_i' \supset E_i$. 그리고 $V_i = W_i \cap W_i'$ 로 두면, $V_i \supset E_i$ 는 (19)번 식을 만족하면서 $f(x) < y_i + \epsilon$ for all $x \in V_i$ 인 open set. 따라서 Theorem 2.13에 의해, $h_i \prec V_i$ such that $\sum h_i = 1$ on K인 h_i 들을 찾을 수 있다. 이 때, $\sum h_i = 1 \Rightarrow f = \sum h_i f$ 이고, $K \prec \sum h_i$ 이므로 STEP II에 의해

$$\mu(K) \le \Lambda(\sum h_i) = \sum \Lambda h_i$$

QQQQQ

 $Q.~K \prec \sum h_i$ 맞음? Theorem에서는 $\sum h_i = 1$ on K라고만 했는데, K 밖에서 h_i 들 중 일부가 만나 1보다 커지면 어떡하지? 2.13 증명과정 중 식 (3)에서 $\sum h_i \leq 1$ 임을 확인할 수 있음. QQQQQ

JEAWON NA

따라서 $h_i f \leq (y_i + \epsilon) h_i$ on $E_i \subset V_i$, $y_i - \epsilon < f(x)$ on $E_i \subset V_i$ 이고, E_i 들은 disjoint하고 합집합이 K임으로, 다음과 같이 쓸 수 있다.

$$\Lambda f = \Lambda(\sum_{i=1}^{n} h_{i} f) = \sum_{i=1}^{n} \Lambda(h_{i} f) \leq \sum_{i=1}^{n} \Lambda(y_{i} + \epsilon) h_{i}$$

$$= \sum_{i=1}^{n} (y_{i} + \epsilon) \Lambda h_{i} = \sum_{i=1}^{n} (|a| + y_{i} + \epsilon) \Lambda h_{i} - |a| \sum_{i=1}^{n} \Lambda h_{i}$$

$$\leq \sum_{i=1}^{n} (|a| + y_{i} + \epsilon) [\mu(E_{i}) + \epsilon/n] - |a|\mu(K)$$

$$= \frac{\epsilon}{n} \sum_{i=1}^{n} (|a| + y_{i} + \epsilon) + \sum_{i=1}^{n} (|a| + y_{i} + \epsilon) \mu(E_{i}) - |a|\mu(K)$$

$$= \sum_{i=1}^{n} [(y_{i} - \epsilon)\mu(E_{i}) + 2\epsilon\mu(E_{i}) + |a|\mu(E_{i})] - |a|\mu(K) + \frac{\epsilon}{n} \sum_{i=1}^{n} (|a| + y_{i} + \epsilon)$$

$$= \sum_{i=1}^{n} (y_{i} - \epsilon)\mu(E_{i}) + 2\epsilon\mu(K) + \frac{\epsilon}{n} \sum_{i=1}^{n} (|a| + y_{i} + \epsilon)$$

$$\leq \int_{X} f d\mu + \epsilon [2\mu(K) + |a| + b + \epsilon].$$

(Since 1. $h_i \prec V_i$, $\Lambda h_i \leq \mu(V_i)$ by the definition of $\mu(V_i) \Rightarrow \Lambda h_i \leq \mu(V_i) < \mu(E_i) + \epsilon/n$)

$$(2. \mu(K) \leq \sum_{i=1}^{n} \Lambda h_i$$
는 아까 했음.)

$$(3. \sum_{i=1}^{n} \mu(E_i) = \mu(K), \text{ by STEP IV}, \text{ and } E_i \text{ are Borel sets in } X, \text{ hence } E_i \in \mathfrak{M}.)$$

$$(4. \sum_{i=1}^{n} (y_i - \epsilon)\mu(E_i) \le \int_X f d\mu$$
, since $y_i - \le y_{i-1} < f(x)$ for all $x \in E_i$)

$$(5. \sum_{i=1}^{n} y_i < \sum_{i=1}^{n} b = nb)$$