Fields Of Interest

Energy transition, Dynamical Systems & Control, Reduced-Order Modeling, Physics-Informed Machine Learning, Uncertainty Quantification

Education

2019-2025 Ph.D., University of Arizona, Tucson, AZ.

(expected) Applied Mathematics

2019-2021 M.S., University of Arizona, Tucson, AZ.

Applied Mathematics

2012-2016 B.S., University of Arizona, Tucson, AZ.

Mathematics & Physics

Research

2021-present Optimal Natural Gas Flows in a Network with Uncertainty

We work to determine optimal flows on a natural gas network under the coupled gas and energy grids upon inclusion of intermittent renewable energies and under stressing scenarios.

2020-present Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor

We use cutting edge machine learning techniques to create physics-informed reduced order models of the inherently chaotic evolution of the velocity gradient tensor in isotropic turbulence.

Experience

2020-present **Graduate Research Assistant**, *University of Arizona*, Tucson, AZ.

Summers Graduate Student Researcher, Los Alamos National Labs, Los Alamos, NM.

2020-22

2019-2020 **Graduate Teaching Assistant**, *University of Arizona*, Tucson, AZ.

2016-2019 **Software Engineer II**, Raytheon Missile Systems, Tucson, AZ.

Talks

May, 2023 Control of Line Pack in Natural Gas System: Balancing of Limited Resources Under Uncertainty

Pipeline Simulation Interest Group 2023

Nov, 2022 Applicability of Machine Learning Methodologies to Model the Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor

APS Division of Fluid Dynamics Meeting

- Nov, 2021 Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor APS Division of Fluid Dynamics Meeting
- Nov, 2020 Machine Learning Statistical Lagrangian Geometry of Turbulence APS Division of Fluid Dynamics Meeting

Fellowships

Aug 2021 - NSF Data-Driven Research Training Group Traineeship University of Arizona College of Science, May 2023 Mathematics

Jan 2022 - Roots for Resilience Data Science Scholarship University of Arizona Data Science Institute, Arizona May 2022 - Institute for Resilience

Computer Languages

Julia Proficient Used daily in development of research software, (SciML/DifferentialEquations/Flux)

 ${\sf C}/{\sf C}++$ Proficient Used extensively in an embedded environment at Raytheon Missile Systems

Python Comfortable Used weekly, (pytorch/tensorflow)

Bash Comfortable Basic functionality used daily

Matlab Comfortable Interpretted monthly

Cuda Beginner

Computer skills

Open git, LATEX,

Software

HPC Slurm, Docker, Singularity

Methodologies CI, TDD, Agile

Operating Linux, Windows

Systems

Service and Leadership

Apr 2023 Organized and presented "Introduction to Parallelization" for NSF Data-Driven Research Training Group

Mar 2023 Graduate Mentor for American Statistical Association DataFest Competition

Quarterly Organized and presented "Introduction to HPC" seminar for Math PhD students

2021-2022

Aug 2021 - SIAM Brownbag Student Colloquium Organizer

May 2022

Jul 2018 - Jul Certified Scrum Master: Scaled Agile Framework

2019

Human Languages

English Native Speaker

Spanish Basic

Contact

Phone +1.520.651.1433

Address 2525 E Prince Rd, Apt 61, Tucson AZ, 85716

Email cmhyett@math.arizona.edu

Publications & Conference Proceedings

- [1] **Hyett, Criston** et al. **2023**. Control of Line Pack in Natural Gas System: Balancing Limited Resources under Uncertainty. arXiv: 2304.01955 [math.DS].
- [2] **Hyett, Criston** et al. **2022a**. "Applicability of Machine Learning Methodologies to Model the Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor". In: *Bulletin of the American Physical Society*.
- [3] Tian, Yifeng et al. **2022b**. "Lagrangian Large Eddy Simulations via Physics Informed Machine Learning". In: arXiv preprint arXiv:2207.04012.
- [4] Chertkov, Michael et al. **2022c**. "Lagrangian Large Eddy Simulations via Physics-Informed Machine Learning". In: *Bulletin of the American Physical Society*.
- [5] Woodward, Michael et al. **2022d**. "Physics Informed Machine Learning with Smoothed Particle Hydrodynamics: Compressibility and Shocks". In: *Bulletin of the American Physical Society*.
- [6] Tian, Yifeng et al. **2022e**. "Physics-informed Machine Learning for Reduced-order Modeling of Lagrangian Turbulence". In: *Bulletin of the American Physical Society*.
- [7] **Hyett, Criston** et al. **2021a**. "Data-Analysis of the Coarse-Grained Velocity Gradient Tensor". In: *APS Division of Fluid Dynamics Meeting Abstracts*, N01–011.
- [8] Tian, Yifeng et al. **2021b**. "Machine Learning Lagrangian Large Eddy Simulations with Smoothed Particle Hydrodynamics". In: *APS Division of Fluid Dynamics Meeting Abstracts*, A11–008.
- [9] **Hyett, Criston** et al. **2021c**. "Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor". In: *APS Division of Fluid Dynamics Meeting Abstracts*, E31–009.
- [10] Woodward, Michael et al. **2021d**. "Physics Informed Machine Learning of Smooth Particle Hydrodynamics: Solving Inverse Problems using a mixed mode approach". In: *APS Division of Fluid Dynamics Meeting Abstracts*, N01–050.
- [11] Woodward, Michael et al. **2021e**. "Physics Informed Machine Learning of Smooth Particle Hydrodynamics: Validation of the Lagrangian Turbulence Approach". In: *APS Division of Fluid Dynamics Meeting Abstracts*, T24–008.
- [12] Woodward, Michael et al. **2021f**. "Physics Informed Machine Learning of SPH: Machine Learning Lagrangian Turbulence". In: *arXiv preprint arXiv:2110.13311*.
- [13] **Hyett, Criston**, Chertkov, Michael, Tian, Yifeng, and Livescu, Daniel. **2020**. "Machine Learning Statistical Lagrangian Geometry of Turbulence". In: *APS Division of Fluid Dynamics Meeting Abstracts*, S01–024.