Inleiding programmeren

Martijn Stegeman & Ivo van Vulpen

http://progns.mprog.nl

Week 6: simulaties

programma

Tentamen

1) N-body probleem (gravitatie)

2) Geometrie

Punten op een bol equi-distant 3 / 10 ? Waar en afstanden ?

Gemiddelde afstand tussen 2 punten in een vierkant ?

opgaves week 6

Gedrag van een groep deeltjes in de tijd

Start: in een doos (0<x<1 en 0<y<1) worden op tijdstip t=0 vanuit een bron $(x_{bron}, y_{bron}) = (0.25, 0.75)$ een aantal deeltjes gegenereerd die elk een random snelheid en richting hebben.

Deeltjes hebben random snelheid en richting

snelheid (v_i) : $0 < v_i < 0.10$

hoek (α): $0 < \alpha < 2\pi$

Doel: kijk hoe het systeem evolueert

neem kleine stapjes in de tijd en hou voor elk deeltje de positie x, y en de snelheid v_x en v_y bij. Tuples als vorige week (of lists)

basis-opgave

Aannames:

- de deeltjes botsen elastisch tegen de wanden
- de deeltjes hebben geen afmeting en botsen niet
- in 2e deel van de opgave zit er een gat in de doos

Opgaves:

- 1) Aantal deeltjes aan de rechter kant van de doos (x>0.5) als functie van de tijd.
- 2) Gemiddelde afstand tussen de deeltjes als functie van de tijd
- \rightarrow Er ontstaat nu een gat in de doos (y_{gat} = 0 en 0.8<x_{gat}<0.9)
- 3) Aantal deeltjes in de doos als functie van de tijd. Hoe lang duurt het voor de helft van de deeltjes verdwenen is $(t_{1/2})$?
- 4) Beginsnelheden 2x zo groot \rightarrow wat gebeurt er met $t_{1/2}$?

Tips:

Tip 1: Neem kleine stapjes Δt in de tijd en kijk wat er verandert in positie en snelheid

$$x(t+1) = x(t) + v_x(t)^* \Delta t$$

Tip 2: Hou op elk tijdstip alleen de posities (x,y) en de snelheden (v_x,v_y) van alle deeltjes bij. Transformeer hoek en absolute snelheid aan het begin dan ook gelijk in (v_x,v_y)

Tip 3: Behandel x en y afzonderlijk. Waarom kan dat in dit geval?

Tip 4: Probeer vooraf te beredeneren wat je verwacht

Hacker

Toevoegen realisme:

- deeltjes hebben een afmeting en kunnen botsen
- animatie (film) van de evolutie van het systeem

Hacker uitbreidingen:

- 1) Gebruik animaties (template.py gegeven op de website)
- Geef deeltjes een afmeting
- 3) Laat deeltjes 'echt' botsen, waarbij afmeting (= massa) van deeltjes apart kuinnen worden ingesteld en de botsing ook realistisch is.
- 4) Hacker hacker: Boltzman snelheidsverdeling (vraag de assistent)

Voorbeelden: http://www.nikhef.nl/~ivov/Animation

