RISET OPERASI – EKMA4413

MODUL 4

LINEAR PROGRAMMING: METODE GRAFIK

Hendri Sutrisno

hendri.uttaiwan@yahoo.com

PEMECAHAN MASALAH YANG MASUK BERBENTUK STANDAR DENGAN METODE GRAFIK

Contoh Soal 1.

PT Kembang Arum menghasilkan dua macam produk: Produk 1 dan Produk 1. Produk 1 memerlukan 2 kg bahan baku A dan 2 kg bahan baku B. Produk 2 memerlukan 1 kg bahan baku A dan 3 kg bahan baku B. Jumlah bahan baku A yang disediakan perusahaan adalah sebanyak 6.000 kg, dan bahan baku B sebanyak 9.000 kg. Keuntungan dari penjualan setiap unit Produk 1 adalah Rp 3, dan produk 2 adalah Rp 4.

	Produk 1	Produk 2	Ketersediaan Bahan
Bahan A	2	1	6000
Bahan B	2	3	9000
Harga Produk	\$ 3.00	\$ 4.00	

Variabel keputusan

 X_1 = Jumlah Produk 1 yang diproduksi

 X_2 = Jumlah Produk 2 yang diproduksi

Fungsi Tujuan

 $Max Profit Z = 3X_1 + 4X_2$

- $(1) \quad 2X_1 + X_2 \le 6000$
- $(2) \quad 2X_1 + 3X_2 \le 9000$
- (3) $X_1, X_2 \ge 0$

PEMECAHAN MASALAH YANG MASUK BERBENTUK STANDAR DENGAN METODE GRAFIK

Contoh Soal 2.

Produsen sepatu membuat 2 model sepatu menggunakan 2 bahan yang berbeda. Komposisi model pertama adalah 10 gr bahan pertama dan 5 gr bahan kedua, dan komposisi model kedua terdiri dari 15 gr bahan pertama dan 10 gr bahan kedua. Persediaan di gudang bahan pertama 5 kg dan bahan kedua 7 kg. Harga model pertama adalah Rp. \$6 dan model kedua \$10. Jika disimpulkan/disederhanakan dalam bentuk tabel menjadi berikut:

	Produk 1	Produk 2	Ketersediaan Bahan
Bahan A	10	15	5000
Bahan B	5	10	7000
Harga Produk	\$6	\$10	

Variabel keputusan

 X_1 = Jumlah Produk 1 yang diproduksi

 X_2 = Jumlah Produk 2 yang diproduksi

Fungsi Tujuan

 $Max Profit Z = 6X_1 + 10X_2$

- $(1) \quad 10X_1 + 15X_2 \le 5000$
- (2) $5X_1 + 10X_2 \le 7000$
- (3) $X_1, X_2 \ge 0$

PENYIMPANGAN DARI BENTUK STANDAR

1. FUNGSI BATASAN BERTANDA LEBIH BESAR ATAU SAMA DENGAN (≥)

$$4X_1 + 3X_2 \ge 2000$$

menjadi

$$-4X_1 - 3X_2 \le -2000$$

2. FUNGSI BATASAN BERTANDA SAMA DENGAN

$$2X_1 + 3X_2 = 9000$$

3. MEMINIMUMKAN FUNGSI TUJUAN

$$Min Z = 3X_1 + 4X_2$$

menjadi

$$Max Z = -3X_1 - 4X_2$$

CONTOH SOAL 3

Variabel keputusan X_1 , X_2

Fungsi Tujuan $Min Z = 3X_1 + 4X_2$

$$(1) \quad 2X_1 + X_2 \ge 6000$$

$$(2) \quad 2X_1 + 3X_2 = 9000$$

(3)
$$X_1, X_2 \ge 0$$

PENYIMPANGAN DARI BENTUK STANDAR

4. PERUBAHAN DALAM BATASAN NON-NEGATIF Contoh

- (1) $X_1 \le -500$
- (2) $X_1 \le 2000$

BEBERAPA ISTILAH/HAL PENTING DALAM LINEAR PROGRAMMING

1. DAERAH FEASIBLE

PENYIMPANGAN DARI BENTUK STANDAR

2. TITIK SUDUT YANG FEASIBLE

3. MASALAH YANG TIDAK MEMILIKI DAERAH FEASIBLE

Minimize $z = 200x_1 + 300x_2$

subject to

$$2x_1 + 3x_2 \ge 1200$$

$$X_1 + X_2 \le 400$$

$$2X_1 + 1.5X_2 \ge 900$$

$$X_1, X_2 \ge 0$$

- 4. PEMECAHAN / HASIL OPTIMAL
- 5. MASALAH YANG TIDAK MEMILIKI PEMECAHAN OPTIMAL

6. MASALAH YANG MEMILIKI LEBIH DARI SATU SOLUSI (MULTIPLE OPTIMAL SOLUTION)

Variabel keputusan X_1, X_2

Fungsi Tujuan $Max Z = 2X_1 + 3X_2$

- (1) $2X_1 + X_2 \le 6000$
- $(2) \quad 2X_1 + 3X_2 \le 9000$
- (3) $X_1, X_2 \ge 0$

PENYIMPANGAN DARI BENTUK STANDAR

7. HUBUNGAN ANTARA TITIK-TITIK SUDUT FEASIBLE

Contoh Soal

Variabel keputusan

 X_1 = Jumlah Produk 1 yang diproduksi

 X_2 = Jumlah Produk 2 yang diproduksi

Fungsi Tujuan

 $Max Profit Z = 3X_1 + 4X_2$

Batasan-Batasan

- (1) $2X_1 + X_2 \le 6000$
- (2) $2X_1 + 3X_2 \le 9000$
- (3) $X_2 \le 2000$
- (4) $X_1 \le 2800$
- (5) $X_1, X_2 \ge 0$

8. ANALISIS SENSITIVITAS

Contoh Soal

Variabel keputusan

 X_1 = Jumlah Produk 1 yang diproduksi

 X_2 = Jumlah Produk 2 yang diproduksi

Fungsi Tujuan

 $Max Profit Z = 3X_1 + 4X_2$

- $(1) \quad 2X_1 + X_2 \le 6000$
- $(2) \quad 2X_1 + 3X_2 \le 9000$
- (3) $X_1, X_2 \ge 0$