		l o t males	- Nos per	ugher Defects,	/cm2
1-) Wafer_X	16cm	Cost per word	64	0,02	
Water- Y	20cm	24	100	0,03	
(T=3			44		
A) Wafer-	× ?				2
R=	16 z = 8	wofer area	= TL12=1	64 tcm2 = 12	0.36cm
1 0	4.	die rea≈	vojer ore	64 Tcm2 = 120 ca = 2 6470 vajes = 64	- [3,14cm²]
Wales-					
P: 20	0 1=10	mater area	= Tr2 =1	100 TC cm2 /=	1314cm
				2 100 T.cm	
B) (T=3, wafer_)	(3	,			
O	yield	=		=0 =	1 =)
		(1+(0,02)	$\times \frac{3,14}{2})^2$	$= \frac{1}{(1+0)}$	0314))2
	=) (1,	$\frac{1}{10314)^2} = \frac{1}{1,00}$	63 = 0,3	94	
	cost per	die = 15	= 0,	249	
		64 x 6	0,94		
moter-		1		1	
	yield =	1 (1+(0,03 ×	$\frac{3,14}{2}$)) ² (1+(0,047))2=	1,096
		1000 = 0,9			
		$r die = \frac{2}{100} \times$		24= 0,26	37
		× 001	0,91	01	

I = 1 billion

%30 R-Type %50 1-Type %20. j-Type

A) P1:
$$1 \times 10^{8} \cdot \frac{3}{10} \cdot 2 + 1 \times 10^{9} \cdot \frac{5}{10} \cdot 4 + 1 \times 10^{9} \cdot \frac{2}{10} \cdot 3 =$$

=) $6 \times 10^{8} + 20 \times 10^{8} + 6 \times 10^{8} =$) 32×10^{9}

P2: $1 \times 10^{8} \cdot \frac{3}{10} \cdot 3 + 1 \times 10^{9} \cdot \frac{5}{10} \cdot 3 + 1 \times 10^{9} \cdot \frac{2}{10} \cdot 3 =$)

$$1 \times 10^9 \cdot \frac{3}{10} \cdot 2 + 1 \times 10^9 \cdot \frac{5}{10} \cdot \frac{1}{10} + 1 \times 10^9 \cdot \frac{2}{10} \cdot \frac{3}{10} =$$
=) $0.6 \times 10^9 + 2 \times 10^9 + 0.6 \times 10^9 =)$ [32 × 10⁹ total cycles]
ava CPI for P1 - 3.2×10^9 [22]

$$1 \times 10^9$$
. $\frac{3}{10}$. $\frac{3}$

C) P1: CP1: 3.2 $36H_2$ # of instruction 1×10^9 $3.2 \times 1 \times 10^9 = 3.2 \times 10^9$ billion clock cycle $t_1 = \frac{3.2 \times 10^8}{3 \times 10^9} \Rightarrow \frac{3.2}{3} \text{ s} \Rightarrow \boxed{1.075}$

P2; cP1: 3 1,56Hz # of instruction 1×10^9 $3 \times 1 \times 10^9 = 3 \times 10^9 \text{ billion clock eyele}$ $t_2 = \frac{3 \times 10^9}{15 \times 10^9} = \boxed{25}$

0) P1 is 1,86 times faster than P2

2 = 1,86 1,07 ×

> Muhammed Bedes ULUCAY Millard