Week 3 - Regression

DS3010 - Introduction to Machine Learning

Instructions

- 1. Provide commented, indented code. Variables should have meaningful names.
- 2. Submit one .ipynb file containing all answers. The name should be [student name][roll_number] assignment[number].ipynb
- 3. Read the questions carefully before answering. If a question asks to follow a particular approach or to use a specific data structure, then it must be followed.
- 4. Write questions in separate text blocks in Jupyter Notebook before the code blocks containing answers.
- 5. All plots should have appropriate axis labels, titles, and legends.

Task for the Lab

1. Ordinary Least Square Method (9 points)

- a. Randomly generate an independent variable 'x_i' of size 100 between 0 and 5. Afterwords generate dependent variable 'y_i', using equation y_i = x_i**2 +ax_i +b+e_i, where a, b and e_i are also randomly sampled. Where a and b are fixed for all x_i for and e_i varies. Generate 100 such x_i and y_i pairs. (1)
- b. Find the linear regressor y = mx+c which best fits the above generated data. Hint: Use the following formula to find parameter: (1)

c. Evaluate the model using mean square error (mse) (import from sk-learn) and print mse error. (1)

- d. Print the learned parameter and plot data along with the learned fitted line. (1)
- e. Report mse loss and learned parameters using linear regression model from sk-learn. Plot the data with the learned fitted line. (2)
- f. Fit quadratic curve on same data using linear regression model from sk-learn. Report mse loss and learn Parameters. Plot new fitted curve on previous plot. Analyze the result. (3)

2. Multivariate Regression

- a. Data Preprocessing (7 points)
 - i. Load the given medical expenditure dataset for the regression task. (1)
 - ii. Find all feature vectors with a null value and impute them using the appropriate method with justification. (2)
 - iii. Find out the columns with the categorical values and convert them into numerical features using appropriate methods. (2)
 - iv. Separate features and target column (charges). (1)
 - v. Split the data into train-tests in a ratio 8:2. (1)

b. Linear Regression (8 points)

- i. Create an instance of a linear regression model. (1)
- ii. Fit the model to training data created in the previous question.(1)
- iii. Store the prediction for the training set. (1)
- iv. Find the prediction for the testing set. (1)
- v. Compute the mean squared error loss for the training set. (1)
- vi. Compute the R2 score of the model on the testing set. (1)
- vii. Plot bar graph of feature with its corresponding weight and print the top 2 important features. (2)

c. Ridge Regression (8 points)

- i. Create an instance of a ridge regression model with "alpha" = 1.(1)
- ii. Fit the model to training data created in question 2a. (1)
- iii. Store the prediction for the training set. (1)
- iv. Find the prediction for the testing set. (1)

- v. Compute the mean squared error loss for the training set. (1)
- vi. Compute the R2 score of the model on the testing set. (1)
- vii. Plot bar graph of feature with its corresponding weight and print the top 2 important features. (2)