Equidistributed sequences and the analytic properties of a strange class of L-functions

Daniel Miller

August 11, 2016

1 Motivation

Let $E_{/\mathbf{Q}}$ be an elliptic curve without complex multiplication. By an old theorem of Faltings, the quantities

$$a_p(E) = p + 1 - \#E(\mathbf{F}_p) = \operatorname{tr} \rho_{E,l}(\operatorname{fr}_p)$$

determine E up to isogeny. The starting point of this investigation is the corollary of a theorem of Harris, that the collection $\{\operatorname{sgn} a_p(E)\}_p$ in fact determines E up to isogeny. Ramakrishna had the insight that this fact means the "strange L-function"

$$L_{\operatorname{sgn}}(E,s) = \prod_{p} \frac{1}{1 - \operatorname{sgn} a_p(E)p^{-s}}$$

determines E up to isogeny. In this note, I define a more general class of strange L-functions, and show that their analytic properties are closely tied to the equidistribution of the $a_p(E)$.

Here is a brief discussion of this generalization in the case of a non-CM curve $E_{/\mathbf{Q}}$. It is convenient to repackage these traces of Frobenius as follows:

$$\theta_p(E) = \cos^{-1}(a_p(E)/2\sqrt{p}).$$

The Hasse Bound guarantees that the $\theta_p(E)$ are well-defined angles laying in the interval $[0,\pi]$. Write $\mu_{\rm ST}=\frac{2}{\pi}\sin^2\theta\,\mathrm{d}\theta$. Then the Sato–Tate conjecture (now a theorem) tells us that for any continuous function $f:[0,\pi]\to\mathbf{C}$, we have:

$$\left| \frac{1}{\pi(C)} \sum_{p \leqslant C} f(\theta_p) - \int_0^{\pi} f \, \mathrm{d}\mu_{\mathrm{ST}} \right| = o(1)$$

as $C \to \infty$. It is well-known that this is equivalent to the analytic continuation of all the *L*-functions $L(\operatorname{sym}^k E, s)$. We take as our starting point the stronger conjecture, due to Akiyama–Tanigawa [AT99], that

$$\left| \frac{1}{\pi(C)} \sum_{p \leqslant C} f(\theta_p) - \int_0^{\pi} f \, \mathrm{d}\mu_{\mathrm{ST}} \right| = O_f(C^{-\frac{1}{2} + \epsilon}).$$

They prove that this conjecture implies the Riemann Hypothesis for E. I prove that not only does their conjecture imply the Riemann Hypothesis for all $L(\operatorname{sym}^k E, s)$, it also does for all the strange L-functions

$$L_f(E, s) = \prod_p \frac{1}{1 - f(\theta_p(E))p^{-s}}$$

These results make perfect sense in a much more general context, and I will prove them there. In section 2 I set up this context and carefully define strange L-functions there. In section 3, I prove basic analytic properties of the strange L-functions, and in section 4, I prove the main results connecting the analytic properties of strange L-functions with the equidistribution of a sequence. Finally, in section 6, I apply the general results to the following cases: a non-CM elliptic curve $E_{/\mathbf{Q}}$, the product $E_1 \times E_2$ of a pair of non-isogenous non-CM elliptic curves over \mathbf{Q} , and the Jacobian of a generic genus-2 curve $C_{/\mathbf{Q}}$.

2 Definitions

Let $\mathbf{D} = \{z \in \mathbf{C} : |z| \leq 1\}$. Write \mathbf{D}^{∞} for the set of sequences in \mathbf{D} indexed by the primes, i.e. $\lambda \in \mathbf{D}^{\infty}$ is $(\lambda_2, \lambda_3, \dots)$.

Definition 2.1. Let $\lambda \in \mathbf{D}^{\infty}$. The associated strange L-function is given by

$$L(\boldsymbol{\lambda},s) = \prod_{p} \frac{1}{1 - \lambda_{p} p^{-s}},$$

wherever this product converges.

We will see that the analytic properties of $L(\lambda, s)$ are closely tied to estimates for the sums $A_{\lambda}(x) = \sum_{p \leqslant x} \lambda_p$. One often gets such estimates in the context of equidistribution, which we consider next.

For the remainder of this section, let X be a compact separable metric space with no isolated points. We write X^{∞} for the space of sequences in X indexed by rational primes, i.e. points $\boldsymbol{x} \in X^{\infty}$ are of the form $\boldsymbol{x} = (x_2, x_3, \ldots)$. By [Eng89, Cor. 2.3.16 & Th. 4.2.2], the compact space X^{∞} is metrizable and separable, also with no isolated points.

Definition 2.2. For $x \in X^{\infty}$ and C > 0, write x^{C} for the probability measure given by

$$\int_X f \, \mathrm{d} \boldsymbol{x}^C = \boldsymbol{x}^C(f) = \frac{1}{\pi(C)} \sum_{p \leqslant C} f(x_p).$$

Let μ be a Borel measure on X. Recall that \boldsymbol{x} is μ -equidistributed if $\boldsymbol{x}^C \to \mu$ weakly, i.e. $\boldsymbol{x}^C(f) \to \mu(f)$ for all $f \in C(X)$. In fact, we can extend this to not-necessarily-continuous functions as follows:

Theorem 2.3 (Mazzone). Let μ be a Borel measure on X and let $f: X \to \mathbb{C}$ be bounded and measurable. Then f is continuous almost everywhere if and only if $\mathbf{x}^C(f) \to \mu(f)$ for all μ -equidistributed \mathbf{x} .

Proof. This follows directly from the proof of [Maz95, Th. 1].

Fix a Borel measure μ on X, and write $C^{ae}(X,\mu)$ for the space of bounded, almost-everywhere continuous functions $f: X \to \mathbf{C}$.

Theorem 2.4. Endowed with the supremum norm $||f||_{\infty} = \sup_{x \in X} |f(x)|$, $C^{\text{ae}}(X, \mu)$ is a Banach space.

Proof. This is an elementary corollary of the fact that a countable union of measure-zero sets has measure zero. \Box

Definition 2.5. Let $f \in C^{ae}(X,\mu)$, $\boldsymbol{x} \in X^{\infty}$. The associated strange L-function is defined as

$$L_f(x, s) = L(f(x), s) = \prod_p \frac{1}{1 - f(x_p)p^{-s}}$$

for all $s \in \mathbf{C}$ for which the product converges.

Our typical source of a strange L-function is as follows. $X = G^{\natural}$, the space of conjugacy classes in a compact Lie group, and $f \colon G^{\natural} \to \mathbf{C}$ one of the "angles" of [KS99]. More precisely, let G be a compact Lie group and $\rho \colon G \to \mathrm{U}(d)$ an irreducible representation. Following [KS99, Le. 1.0.9], write $\varphi_1^{\rho}, \ldots, \varphi_d^{\rho}$ for the sequence of functions $G^{\natural} \to [0, 2\pi)$ such that for each $x \in G^{\natural}$, the unitary conjugacy class $\rho(x)$ has eigenvalues $e^{i\varphi_1^{\rho}(x)}, \ldots, e^{i\varphi_d^{\rho}(x)}$, and $\varphi_1^{\rho}(x) \leqslant \cdots \leqslant \varphi_d^{\rho}(x)$. We have, using Serre's notation $L(\rho, s)$, the identity:

$$L(\rho, s) = \prod_{j=1}^{\deg \rho} L_{\exp(i\varphi_j^{\rho})}(\boldsymbol{x}, s).$$

The rest of our definitions concern discrepancy, which for now we define only in a special context. Let $X = [0, a_1) \times \cdots \times [0, a_r)$. Given $x = (x_1, \dots, x_r) \in X$, we write $[0, x) = [0, x_1) \times \cdots \times [0, x_r)$.

Definition 2.6. Given X as above, and $x \in X^{\infty}$, the *star-discrepancy* of x with respect to a Borel measure μ on X is:

$$\operatorname{disc}(\boldsymbol{x}^{C}, \mu) = \sup_{x \in X} |\boldsymbol{x}^{C}(1_{[0,x)}) - \mu(1_{[0,x)})|.$$

The following result is essential:

Theorem 2.7 (Koksma–Hlawka). Let X be as above. Let $f: X \to \mathbf{C}$ be such that $f \, \mathrm{d} x$ is a measure with bounded variation. Let μ be a probability measure on X. Then

$$|\boldsymbol{x}^{C}(f) - \mu(f)| \leq \operatorname{Var}(f)\operatorname{disc}(\boldsymbol{x}^{C}, \mu).$$

Proof. This is [Ökt99, Th. 3.2].

3 Preliminary results

Theorem 3.1. Let $\lambda \in \mathbf{D}^{\infty}$. Then $L(\lambda, s)$ defines a holomorphic function on the region $\{\Re s > 1\}$. Moreover, on that region,

$$\log L(\lambda, s) = \sum_{p^n} \frac{\lambda_p^n}{p^{ns}}.$$

Proof. Expanding the product for $L(\lambda, s)$ formally, we have

$$L(\lambda, s) = \sum_{n \ge 1} \frac{\prod_{p|n} \lambda_p^{v_p(n)}}{n^s}.$$

An easy comparison with Riemann's zeta function tells us that the series expansion is holomorphic on $\{\Re s > 1\}$. By [Apo76, Th. 11.7], the product formula holds on the same region. The formula for $\log L(\lambda, s)$ comes from [Apo76, 11.9 Ex. 2].

Theorem 3.2. Assume $A_{\lambda}(x) = O(x^{\frac{1}{2} + \epsilon})$. Then $L(\lambda, s)$ converges on $\{\Re > \frac{1}{2}\}$, and $\log L(\lambda, s)$ has no poles on that region.

Proof. Standard reductions reduce this to showing that

$$\sum_{p} \frac{\lambda_p}{p^s}$$
 and $\sum_{p} \frac{\log(p)\lambda_p}{p^s}$

converge on that region. We deal with $\sum \log(p) \lambda_p p^{-s}$; the other is similar. Use Abel summation:

$$\sum_{p \leqslant x} \frac{\lambda_p}{p^s} = \frac{\log x}{x^s} A_{\boldsymbol{\lambda}}(x) - \int_2^x \frac{1 - s \log t}{t^{s+1}} A_{\boldsymbol{\lambda}}(t) \, \mathrm{d}t.$$

We show that the first term approaches zero and that the integral converges absolutely. We have:

$$\left|\frac{\log x}{x^s}A_{\pmb{\lambda}}(x)\right|\ll \frac{\log x}{x^{\Re s}}x^{\frac{1}{2}+\epsilon}.$$

Since ϵ is arbitrary, the exponent of x is negative. Moreover,

$$\int_{2}^{x} \frac{1}{t^{s+1}} |A_{\lambda}(t)| dt \ll \int_{2}^{x} \frac{1}{t^{\Re s+1}} t^{\frac{1}{2} + \epsilon} dt$$
$$\int_{2}^{x} \frac{\log t}{t^{s+1}} |A_{\lambda}(t)| dt \ll \int_{2}^{x} \frac{\log t}{t^{\Re s+1}} t^{\frac{1}{2} + \epsilon} dt.$$

Both these integrals converge because ϵ is arbitrary.

4 Main results

Let $E_{/\mathbf{Q}}$ be an elliptic curve, or more generally, let M be a motive. The associated analytic L-function L(M,s) is of the form

$$L(M,s) = \prod_{p} P_p(M, p^{-s})^{-1},$$

where the $P_p(M,t) \in \mathbf{Z}[t]$ have absolute value 1. In the case of $E_{/\mathbf{Q}}$, we have $pt^2 - a_pt + 1$, which are normalized to

$$(t - e^{i\theta_p})(t - e^{-i\theta_p}) = t^2 - 2\cos(\theta_p)t + 1 = t^2 - \frac{a_p}{\sqrt{p}}t + 1.$$

Let $d = \deg P_p(M, t)$. Then we can write

$$P_p(M,t) = (t - e^{i\theta_p^{(1)}}) \dots (t - e^{-i\theta_p^{(d)}}),$$

where $\theta^{(1)} < \cdots < \theta^{(d)}$ in $[0, 2\pi]$. Then

$$L(M,s) = L(\boldsymbol{\theta}^{(1)}, s) \cdots L(\boldsymbol{\theta}^{(d)}, s)$$

More general example:

$$L(\operatorname{sym}^k E, s) = L(\boldsymbol{\theta}^k, s)L(\boldsymbol{\theta}^{k-1})$$

5 Connection to Serre's perspective

Let G be a compact connected Lie group, G^{\natural} the space of conjugacy classes in G, and \boldsymbol{x} a sequence in G^{\natural} . Given $\rho \in \widehat{G}$, Serre defines an L-function

$$L(\rho, s) = \prod_{p} \det(1 - \rho(x_p)p^{-s})^{-1}.$$

Given $x \in G^{\natural}$, the matrix $\rho(x)$ has eigenvalues $\lambda_p^{(1),\rho}, \ldots, \lambda_p^{(\deg \rho),\rho}$ whose angles form a nondecreasing sequence in $[0,2\pi]$. The functions $\lambda_p^{(j),\rho} \colon G^{\natural} \to \mathbf{C}$ are almost-everywhere continuous, and

$$L(\rho,s) = \prod_{j=0}^{\deg \rho} L(\lambda_p^{(j),\rho},s) = \prod_{j=0}^{\deg \rho} L_{\lambda^{(j),\rho}}(\boldsymbol{x},s).$$

6 Applications

Recall, following [Bug08] that the *irrationality exponent* $\mu(\alpha)$ a real irrational number α is the supremum of all real numbers μ such that

$$\left| \alpha - \frac{p}{q} \right| < q^{-\mu}$$

for infinitely many $p/q \in \mathbf{Q}$. Bugeaud proves that for any $\mu \geq 2$, there is an element ξ_{μ} of the Cantor set with $\mu(\xi_{\mu}) = \mu$. Moreover, by [KN74, ?], for every $\epsilon > 0$, the sequence $x_n = n\alpha \mod 1$ has discrepancy $\mathrm{disc}(\boldsymbol{x}^C) = \Omega(C^{-\frac{1}{\mu(\alpha)-1}-\epsilon})$.

Theorem 6.1. Let $X = S^1$ with the natural Haar measure. For every $\eta \in (0, \frac{1}{2})$, there is a sequence $\mathbf{x} = (x_2, x_3, \dots) \in (S^1)^{\infty}$ such that for all $f \in C^{\infty}(S^1)^{\|\cdot\|_{\infty} \leq 1}$, the function $\log L_f(\mathbf{x}, s)$ has analytic continuation to $\{\Re > \frac{1}{2}\}$, but for all $\epsilon > 0$, $|\operatorname{disc}(\mathbf{x}^C)| = \Omega(C^{-\eta - \epsilon})$.

Proof. Let $\mu > 3$, and let $\boldsymbol{x} = \{x_2, x_3, \dots\}$ be the sequence $x_{p_n} = e^{2\pi i n \xi_{\mu}}$. To prove that $\log L_f(\boldsymbol{x}, s)$ has analytic continuation to $\{\Re > \frac{1}{2}\}$, we need only to prove that $|A_{\exp(2\pi i m \boldsymbol{x})}(t)| \ll t^{1/2}$, uniformly for each $m \in \mathbf{Z}$. This follows easily from:

$$\left| \sum_{n=1}^{N} e^{2\pi i m n \alpha} \right| \leq \frac{|-1 + e^{2\pi i M n \alpha}|}{|-1 + e^{2\pi i a m}|} \leq ? \leq \frac{1}{2} m (\eta - 1) \ll_{\eta} m$$

References

- [AT99] Shigeki Akiyama and Yoshio Tanigawa. "Calculation of values of L-functions associated to elliptic curves". In: $Math.\ Comp.\ 68.227\ (1999),$ pp. 1201–1231.
- [Apo76] Tom M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976.
- [Bug08] Yann Bugeaud. "Diophantine approximation and Cantor sets". In: *Math. Ann.* 341.3 (2008), pp. 677–684.
- [Eng89] Ryszard Engelking. General topology. Second. Vol. 6. Sigma Series in Pure Mathematics. Translated from the Polish by the author. Heldermann Verlag, Berlin, 1989.
- [KS99] Nicholas M. Katz and Peter Sarnak. Random matrices, Frobenius eigenvalues, and monodromy. Vol. 45. American Mathematical Society ety Colloquium Publications. American Mathematical Society, Providence, RI, 1999.
- [KN74] L. Kuipers and H. Niederreiter. *Uniform distribution of sequences*. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], 1974.
- [Maz95] Fernando Mazzone. "A characterization of almost everywhere continuous functions". In: *Real Anal. Exchange* 21.1 (1995/96).
- [Ökt99] G. Ökten. "Error reduction techniques in quasi-Monte Carlo integration". In: *Math. Comput. Modelling* 30.7-8 (1999), pp. 61–69.