AIGaAs Infrared Emitting Diode

FEATURES

- TO-46 metal can package
- · Choice of flat window or lensed package
- 90° or 20° (nominal) beam angle option
- 880 nm wavelength
- Higher output power than GaAs at equivalent drive currents
- Wide operating temperature range (- 55°C to +125°C)
- · Ideal for high pulsed current applications
- Mechanically and spectrally matched to SD3421/5421 photodiode, SD3443/5443/5491phototransistor, SD3410/5410 photodarlington and SD5600 series Schmitt trigger

The SE3470/5470 series consists of aluminum gallium arsenide infrared emitting diode mounted in a TO-46 metal can package. The SE3470 series has flat window cans providing a wide beam angle, while the SE5470 series has glass lensed cans providing a narrow beam angle. These devices typically exhibit 70% greater power output than gallium arsenide devices at the same forward current. The TO-46 packages offer high power dissipation capability and are ideally suited for operation in hostile environments.

OUTLINE DIMENSIONS in inches (mm)

3 plc decimals ±0.005(0.12) Tolerance ±0.020(0.51) 2 plc decimals

SE3470

DIM_005a.ds4

SE5470

DIM_005b.ds4

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

AIGaAs Infrared Emitting Diode

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

T T T T T T T T T T T T T T T T T T T	1					
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Total Power Output (1)	Po				mW	I _F =100 mA
SE3470-001		7.0				
SE3470-002		9.0				
SE3470-003		10.5				
SE5470-001		7.0				
Irradiance (2)	Н				mW/cm ²	I _F =100 mA
SE5470-002		1.5				
SE5470-003		2.6		5.9		
SE5470-004		3.5				
Forward Voltage	VF			1.9	V	I _F =100 mA
Reverse Breakdown Voltage	V_{BR}	3.0			V	I _R =10 μA
Peak Output Wavelength	λ_p		880		nm	
Spectral Bandwidth	$\Delta \lambda$		80		nm	
Spectral Shift With Temperature	$\Delta \lambda_p / \Delta_T$		0.2		nm/°C	
Beam Angle (3)	Ø				degr.	I _F =Constant
SE3470			90		-	
SE5470			20			
Radiation Rise And Fall Time	t _r , t _f		0.7		μs	

- Notes
 1. Total power emitted from the package in mW.
 2. Measured into a 0.25 (6.35) aperture placed at 1.20(30.5) from lens tip.
 3. Beam angle is defined as the total included angle between the half intensity points.

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted) Continuous Forward Current 100 mA Peak Forward Current 3 A

(1µs pulse width, 300 pps)

150 mW (1) Power Dissipation Operating Temperature Range -55°C to 125°C Storage Temperature Range -65°C to 150°C

Soldering Temperature (10 sec) 260°C

1. Derate linearly from 25°C free-air temperature at the rate of

1.43 mW/°C.

AIGaAs Infrared Emitting Diode

Radiant Intensity vs Angular Displacement (SE5470) gra_023.ds4 1.0 0.9 Relative intensity 0.7 0.6 0.5 0.4 0.2 0.1 0.0 -40 -20 -10 ò +10 +20 +30 Angular displacement - degrees

AIGaAs Infrared Emitting Diode

All Performance Curves Show Typical Values