1.Document the entities that should be added to the diagram.

Entities: Horse, Owner, Person, Barn, Jockey, Trainer, Schedule, Race, Entry

2. Document possible attributes for the Horse entity based on the requirements scenario.

Horse Attributes, registration number, name, type, gender, trainer id, mother id, father id, barn_id

3. Document possible attributes for the Barn entity based on the requirements.

Barn Attributes: barn id, name.

4. Document possible attributes for the Person entity based on the requirements.

Person Attributes: id, name, street, address, phone no.

5. Document possible attributes for the Schedule entity based on the requirements.

Schedule Attributes:schedule id, racedate, name.

6. Document possible attributes for the Race entity based on the requirements.

Race Attributes: race id, name, race no, purse.

7. Document possible attributes for the Entry entity based on the requirements.

Entry Attributes: winner, participation, finishing_position.

8. Make a screen capture showing the ER diagram with four entities

Horse	Person
Race	Barn

9. Make a screen capture showing the ER diagram with nine entities and their attributes for the Darling Downs Race Track scenario.

Horse	
registration_number	int
name	varchar(40)
type	varchar(30)
gender	varchar(5)
trainer_id	int
father_id	int
mother_id	int
barn_id	int
last_sold_date	Date
last_price	int

Race		
race_id	int(PK)	
schedule_id	int	
purse	int	

owner_id	int
person_id	int
horse_id	int
percentage_ownership	Decimal

Barn	
barn_id	int
barn_name	varchar(40)

jockey		
jockey_id	int	
person_id	int	

Schedule		
schedule_id	int	
date	Date	

Person	
Person_id	int
name	varchar(40)
address	varchar(90)
phone_number	varchar(10)

trainer		
trainer_id	int	
person_id	int	

Entry	
entry_id	int
race_id	int
horse_id	int
jockey_id	int
gate_position	int
rank	int

Part 2

- 1. Document your notes about potential relationships, cardinality constraints, participation constraints, and weak entities.
- 1. Horse-Trainer Relationship: A Trainer can train multiple horses. (One-to-Many)
- 2.Horse-Owner Relationship: A horse can have multiple Owners as well as an Owner can own
- 3. Horse-Barn Relationship: A Barn can accommodate multiple horses. (One-to-Many)
- 4.Entry-Horse Relationship: A Horse can have multiple Entries. (One-to-Many)
- 5.Entry-Jockey Relationship: A Jockey can participate in multiple Entries. (One-to-Many)
- 6.Race-Entry Relationship: A Race can have multiple Entries. (One-to-Many)

Participants constrain.

multiple horses. (Many-to-Many)

- 1. Horse-Trainer Relationship: Every horse must have a Trainer assigned.
- 2. Horse-Barn Relationship: Every horse must be stabled at a barn.
- 3. Horse-Owner Relationship: Every horse must have at least one owner.
- **4.Person-Trainer Relationship**: Every person involved in horse racing is not necessarily a trainer.

Here, weak entities are trainers, and Entries depend on other entities to exist.

For instance, Entries depend on Horse, jockey and race and trainer depends on Horse and Person.

2. Make a screen capture showing the ER diagram with the Person, Owner, Trainer, and Jockey entities and the IsA relationships between them.

3. Make a screen capture showing the ER diagram with the Horse, Owner, and Trainer entities, the relationships between them, and their attributes.

4. Make a screen capture showing the ER diagram with the 7 entities, 2 weak entities, 12 relationships, and 18 attributes. *aqua color shows weak entities in this case.

Part 3

1. Document the names of each primary key attribute you selected or created for (a) Horse, (b) Barn, (c) Person, (d) Schedule, (e) Owner, (f) Trainer, and (g) Jockey.

Horse: registration_number

Barn: barn_id

Person: person_Id

Schedule: schedule_id

Owner: owner_id

Trainer: trainer_id

Jockey: jockey_id

2. Make a screen capture showing the ER diagram with primary keys for all of the strong entities.

*aqua color shows strong entities in this case.

3. Docum	ent the name	s of the binar	y relationships	that are n	nissing on	e or l	both
cardinality	y values.						

- 1. stablein
- 2. runsin
- 3. ridesin
- 4. Hosts
- 5.sireparents
- 6.damparents
- 4. Document your assumptions about the missing cardinality values as an statement that is understandable by an end user.
- 1. A barn can have many horses stabled
- 2. A horse may run in many entries
- 3.A jockey may run in many entries
- 4. A track can host multiple races.
- 5. A dam or sire can be a parent to one or many offspring.