

DESIGN & ANALYSIS OF ALGORITHM (BCSC0012)

Chapter 5: Divide and Conquer Merge Sort

Prof. Anand Singh Jalal

Department of Computer Engineering & Applications

Divide and Conquer

Divide the problem into a number of sub-problems that are smaller instances of the same problem.

Conquer the sub-problems by solving them recursively.

Combine the solutions to the sub-problems into the solution for the original problem.

Divide and Conquer

- Sorting Algorithms
 - Bubble sort
 - Selection sort
 - Insertion Sort
 - Quick Sort
 - Merge Sort

Divide-Conquer Approach

- **DIVIDE**: Divide the unsorted list into two sub lists of about half the size.
- **CONQUER**: Sort each of the two sub lists recursively. If they are small enough just solve them in a straight forward manner.

• **COMBINE**: Merge the two-sorted sub lists back into one sorted list.

- MergeSort is a recursive sorting procedure that uses at most O(n lg(n)) comparisons.
- To sort an array of **n** elements, we perform the following steps in sequence:
 - If n < 2 then the array is already sorted.</p>
 - Otherwise, n > 1, and we perform the following three steps in sequence:
 - 1. Sort the left half of the the array using MergeSort.
 - 2. Sort the right half of the the array using MergeSort.
 - 3. Merge the sorted left and right halves.

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Execution Example

Partition

Execution Example (cont.)

Recursive call, partition

Execution Example (cont.)

Recursive call, partition

Execution Example (cont.)

Recursive call, base case

Execution Example (cont.)

Recursive call, base case

Execution Example (cont.)

Merge

Execution Example (cont.)

• Recursive call, ..., base case, merge

Execution Example (cont.)

Merge

Execution Example (cont.)

• Recursive call, ..., merge, merge

Execution Example (cont.)

Merge

INPUT: a sequence of *n* numbers stored in array A

OUTPUT: an ordered sequence of *n* numbers

```
MergeSort (A, p, r) // sort A[p..r] by divide & conquer1 if p < r2 then q \leftarrow \lfloor (p+r)/2 \rfloor3 MergeSort (A, p, q)4 MergeSort (A, q+1, r)5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort(*A*, 1, *n*)


```
Merge(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
         for i \leftarrow 1 to n_1
             \operatorname{do} L[i] \leftarrow A[p+i-1]
         for j \leftarrow 1 to n_2
         \mathbf{do} \ R[j] \leftarrow A[q+j]
       L[n_1+1] \leftarrow \infty
        R[n_2+1] \leftarrow \infty
         i \leftarrow 1
        j \leftarrow 1
         for k \leftarrow p to r
11
             do if L[i] \leq R[j] \leftarrow
                 then A[k] \leftarrow L[i]
13
14
                          i \leftarrow i + 1
15
                 else A[k] \leftarrow R[j]
                         j \leftarrow j + 1
16
```

Input: Array containing sorted subarrays A[p..q] and A[q+1..r].

Output: Merged sorted subarray in A[p..r].

Sentinels, to avoid having to check if either subarray is fully copied at each step.

Merge – Example

Analysis of Merge Sort

Running time T(n) of Merge Sort:

- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 subproblems takes 2T(n/2)
- Combine: merging n elements takes $\Theta(n)$
- ◆ Total:

$$T(n) = \Theta(1)$$
 if $n = 1$
 $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$

$$\Rightarrow T(n) = \Theta(n \lg n)$$

Recursion Tree for Merge Sort

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

- •Each level has total cost *cn*.
- •Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves
- \Rightarrow cost per level remains the same.
- •There are $\lg n + 1$ levels, height is $\lg n$. (Assuming n is a power of 2.)
 - •Can be proved by induction.
- •Total cost = sum of costs at each level = $(\lg n + 1)cn = cn\lg n + cn = \Theta(n \lg n)$.

Any Questions?

Dr. Anand Singh Jalal Professor

Email: asjalal@gla.ac.in