Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Métodos Numéricos para la Ciencia e Ingeniería FI3104-1

TAREA 3 Oscilador de Van der Pol y Atractor de Lorenz: Integración con el Método de Runge-Kutta

Gustavo Lagos RUT: 18.636.203-9

Profesor: Valentino González

Auxiliar: Felipe Pesce

Fecha de entrega: 10 de octubre, 2015

1. Pregunta 1

1.1 Introducción

El oscilador del Van der Pol describe la dinámica de algunos circuitos eléctricos, mediante la siguiente ecuación diferencial ordinaria (EDO):

$$\frac{d^2x}{dt^2} = -kx - \mu(x^2 - a^2)\frac{dx}{dt}$$
 (1)

donde k es la constante elástica y μ es un coeficiente de roce. Si |x| > a, el roce amortigua el movimiento, pero si |x| < a, el roce inyecta energía. Se busca un cambio de variable tal que la EDO sea de la forma:

$$\frac{d^2y}{ds^2} = -y - \mu^*(y^2 - 1)\frac{dy}{ds}$$
 (2)

donde $\mu^* = 1.203$.

Luego del cambio de variable, se busca integrar la ecuación de movimiento usando el método de Runge-Kutta de orden 3, implementando un algoritmo propio, desde T = 0 a $T = 20\pi$. Las condiciones iniciales del problema están dadas por:

$$1)\frac{dy}{ds} = 0; y = 0.1$$

$$2)\frac{dy}{ds} = 0; y = 4.0$$

1.2 Procedimiento

Para determinar el cambio de variable se observa que para que el término $(x^2 - a^2)$ pase a ser de la forma $(y^2 - 1)$ debe factorizarse de alguna forma por a^2 , por lo que un candidato a cambio de variable sería x = ay.

Reemplazando en (1) se llega a que:

$$\frac{d^2y}{dt^2} = -ky - \mu a(y^2 - 1)\frac{dy}{dt}$$

Por regla de la cadena, la expresión anterior es equivalente a

$$\frac{d}{dt}\left(\frac{dy}{ds}\cdot\frac{ds}{dy}\right) = -ky - \mu a(y^2 - 1)\frac{dy}{ds}\cdot\frac{ds}{dy}$$

El término – ky debe pasar a – y y las derivadas deben ser con respecto a s, por lo que un cambio de variable lógico sería uno que elimine k y reemplace t por s. Con $t = s/\sqrt{k}$, se tiene que $\frac{ds}{dy} = \sqrt{k}$, y que $\frac{d}{dt} \left(\frac{dy}{ds} \cdot \frac{ds}{dy} \right) = k \frac{d^2y}{ds^2}$, con lo cual se obtiene la expresión (2).

En cuanto a la integración de la ecuación de movimiento, para que el problema se simplifique, se realizó el cambio de variable v = dy/ds. Con esto la EDO queda de la forma:

$$\frac{dv}{ds} = -y - \mu^*(y^2 - 1)v = F(y, v)$$

Para resolver esta EDO se implementó el método RK3 en la función RK3(mu, h, n, v, y0), creando un sistema de ecuaciones iterativo:

$$dv_1 = hF(y, v)$$

$$dy_1 = hv$$

$$dv_2 = hF\left(y + \frac{dy_1}{2}, v + \frac{dv_1}{2}\right)$$

$$dy_2 = h\left(v + \frac{dv_1}{2}\right)$$

$$dv_3 = hF\left(y + \frac{dy_2}{2}, v + \frac{dv_2}{2}\right)$$

$$dy_3 = h(v + \frac{dv_2}{2})$$

donde h es el paso de tiempo.

Para cada iteración se definió un valor de dy y dv de la siguiente forma:

$$dy = \frac{dy_1 + 4dy_2 + dy_3}{6}$$

$$dv = \frac{dv_1 + 4dv_2 + dv_3}{6}$$

Cada iteración guarda un valor en el arreglo v e y, por lo que al implementar la función RK3, se obtiene dichos arreglos.

1.3 Resultados

Figura 1. Gráficos de y(s) y $\frac{dy}{ds}(y)$ para las condiciones iniciales $\frac{dy}{ds} = 0$ e y = 0

Figura 2. Gráficos de y(s) y $\frac{dy}{ds}(y)$ para las condiciones iniciales $\frac{dy}{ds} = 0$ e y = 4.0

2. Pregunta 2

2.1 Introducción

El sistema de Lorenz es un sistema de EDOs conocido por tener soluciones caóticas, siendo el más famoso el sistema atractor de Lorenz:

$$\frac{dx}{dt} = \sigma(y - x) = F(x, y)$$

$$\frac{dy}{dt} = x(\rho - z) = F(x, z)$$

$$\frac{dz}{dt} = xy - \beta z = F(x, y, z)$$

Se busca resolver el sistema anterior con el algoritmo de Runge-Kutta de orden 4 (RK4) disponible en scipy.integrate. Los valores de los parámetros son $\sigma = 10$, $\beta = 8/3$ y $\rho = 28$, y las condiciones iniciales (x_0, y_0, z_0) .

Finalmente se busca graficar la solución en 3D.

2.2 Procedimiento

Para resolver el sistema de EDOs, lo primero que se hizo fue crear una función que devuelva las funciones F(x,y), F(x,z) y F(x,y,z). Luego se creó un arreglo de tiempo y se definieron los parámetros $(\sigma, \beta y \rho)$. Finalmente se utilizó la función odeint para resolver el sistema de ecuaciones, con lo cual se graficó la solución en 3D

2.3 Resultados

Figura 3. Gráfico 3D de las soluciones para x, y y z.