Amendments to the Claims:

BEST AVAILABLE COPY

This listing of claims will replace all prior versions, and listings, of claims in the application:

IN THE CLAIMS:

1. (Previously amended) A radio-frequency amplifier comprising:

a transistor having an input terminal, an output terminal, a control terminal, and a transconductance g_m ;

a series-connected feed-through impedance connected in parallel with the input terminal and the output terminal of the transistor;

a load resistance R_L connected to the output terminal of the transistor; and

wherein the control terminal of the transistor is biased at a fixed voltage, and the transistor and a signal source impedance r_s satisfy the equation:

$$g_{m} = \frac{1}{r_{s}} \left(\frac{\delta \alpha}{\gamma} (1 + \chi)^{2} \eta(\omega_{o}) + \eta^{2} (\omega_{o}) \right)^{\frac{1}{2}}$$

where

 δ = a gate noise coefficient of the transistor,

 α = a ratio of g_m to a channel conductance at zero drain-to-source voltage of the transistor, g_{d0} ,

 γ = a channel thermal noise coefficient of the transistor,

 χ = a ratio of a backgate transconductance g_{mb} of the transistor to g_{m} .

 ω_o = an operation frequency, and

 $\eta(\omega_0)$ = a ratio of a gate admittance g_g of the transistor to g_m .

- 2. (Original) The radio-frequency amplifier of claim 1 further comprising a tank circuit connected between a voltage source V_{dd} and the input terminal of the transistor.
- 3. (Previously amended) The radio-frequency amplifier of claim 1 wherein the transconductance g_m of the transistor is larger than $1/r_s$.

BEST AVAILABLE COPY

10/731,832

- 4. (Previously amended) The radio-frequency amplifier of claim 1 wherein the feed-through impedance is formed by a real resistor R_P in parallel with the transistor drain-source small-signal resistance r_{ds} .
- 5. (Previously amended) The radio-frequency amplifier of claim 3 wherein the feed-through impedance further comprises an inductance L_P.

Claim 6 (cancelled).

7. (Previously amended) The radio-frequency amplifier of claim 2 wherein the tank circuit comprises a parallel combination of a resistance, a capacitance, and an inductance.

Claims 8-11 (cancelled).

- 12. (Currently amended) A radio-frequency amplifier amplifier comprising:
- a common gate amplifier having an input and an output; and
- a feed-through circuit having a resistance R_f coupled in parallel with the common gate amplifier, wherein the resistive feed-through circuit reduces output noise power, and the common gate amplifier and a signal source impedance r_s satisfy the equation:

$$g_{m} = \frac{1}{r} \left(\frac{\delta \alpha}{\lambda} (1 + \chi)^{2} \eta(\omega_{o}) + \eta^{2} (\omega_{o}) \right)^{\frac{1}{2}}$$

where

 $g_m = an amplifier transconductance,$

 δ = a gate noise coefficient of the amplifier,

 α = a ratio of g_m to a channel conductance at zero drain-to-source voltage of the amplifier, g_{d0} ,

γ = a channel thermal noise coefficient of the amplifier,

 χ = a ratio of a backgate transconductance g_{mb} of the amplifier to g_m ,

 ω_0 = an operation frequency, and

 $\eta(\omega_0)$ = a ratio of a gate admittance g_g of the amplifier to g_m .

13. (Previously amended) The radio-frequency amplifier of claim 12 wherein the feed-through circuit further comprises an inductance L_n.

10/731.832

2005

14. (Previously amended) The radio-frequency amplifier of claim 12 wherein the feed-through circuit comprises a feed-through resistance R_P and a feed-through capacitance C_P.

Claim 15 (cancelled).

16. (Currently amended) A radio-frequency amplifier amplifier comprising: a common gate amplifier having an input and an output; and

common gate amplifier transconductance and feed-through means for reducing transistor noise that is passed on to the load, wherein the common gate amplifier transconductance and feed-through means satisfies the equation:

$$g_{m} = \frac{1}{r_{s}} \left(\frac{\delta \alpha}{\lambda} (1 + \chi)^{2} \eta(\omega_{o}) + \eta^{2} (\omega_{o}) \right)^{-\frac{1}{2}}$$

where

 $g_m = an amplifier transconductance.$

 $\underline{\mathbf{r}_{s}} = \mathbf{signal} \mathbf{source} \mathbf{impedance}$

 δ = a gate noise coefficient of the amplifier,

 α = a ratio of g_m to a channel conductance at zero drain-to-source voltage of the amplifier, g_{d0} ,

y = a channel thermal noise coefficient of the amplifier,

 $\chi = a$ ratio of a backgate transconductance g_{mh} of the amplifier to g_{ms}

 ω_0 = an operation frequency, and

 $n(\omega_0) = a$ ratio of a gate admittance g_g of the amplifier to g_m .

Claim 17 (cancelled).

- 18. (Previously presented) The radio-frequency amplifier of claim 16 comprising: a first stage including the common gate amplifier transconductance and feed-through means;
- a second stage coupled to the first stage including a common-source amplifier with inductive degeneration; and

a third stage coupled to the second stage including a common-source amplifier with inductive degeneration.

- 19. (Previously presented) The radio-frequency amplifier of claim 16 wherein the common gate amplifier transconductance and feed-through means further comprises a resistance $R_{\rm f}$.
- 20. (Previously presented) The radio-frequency amplifier of claim 19 wherein the resistance R_f is formed by a resistance R_P in parallel with a transistor drain-source resistance r_{ds} .
- 21. (Previously presented) The radio-frequency amplifier of claim 16 wherein the common gate amplifier transconductance and feed-through means further comprises an inductance L_p.
- 22. (Previously presented) The radio-frequency amplifier of claim 16 driven by a signal source with output impedance r_s , wherein a transconductance g_m of the radio-frequency amplifier is larger than $1/r_s$, a series-connected resistor R_f and capacitor C_f is connected between the input terminal and the output terminal of the radio-frequency amplifier, so that the real part of an input impedance of the radio-frequency amplifier is increased.
- 23. (Previously presented) The radio-frequency amplifier of claim 1 wherein oscillation is prevented by ensuring that the real part of an input port impedance Z_{in} and the real part of an output port impedance Z_{out} are positive, where $Re[Z_{in}]$ and $Re[Z_{out}]$ can be expressed as

$$Re[Z_{m}] = \frac{R_{f} + Re[Z_{L}]}{1 + g_{m}R_{f}(1 + \chi)}$$

$$Re[Z_{out}] = R_{f} + [g_{m}R_{f}(1 + \chi) + 1]Re[Z_{S}]$$

where

 R_f = a feed-through resistance,

 Z_S = a source impedance, and

 Z_L = a load impedance.

24. (Previously presented) The radio-frequency amplifier of claim 12 wherein oscillation is prevented by ensuring that the real part of an input port impedance Z_{in} and the real part of an output port impedance Z_{out} are positive, where $Re[Z_{in}]$ and $Re[Z_{out}]$ can be expressed as

$$Re[Z_{lm}] = \frac{R_f + Re[Z_L]}{1 + g_m R_f (1 + \chi)}$$

$$Re[Z_{out}] = R_f + [g_m R_f (1 + \chi) + 1] Re[Z_S]$$

where

 R_f = a feed-through resistance,

 Z_S = a source impedance, and

 Z_L = a load impedance.

25. (Previously presented) The radio-frequency amplifier of claim 16 wherein oscillation is prevented by ensuring that the real part of an input port impedance Z_{in} and the real part of an output port impedance Z_{out} are positive, where $Re[Z_{in}]$ and $Re[Z_{out}]$ can be expressed as

$$\operatorname{Re}[Z_{in}] = \frac{R_f + \operatorname{Re}[Z_L]}{1 + g_m R_f (1 + \chi)}$$

$$\operatorname{Re}[Z_{out}] = R_f + [g_m R_f (1 + \chi) + 1] \operatorname{Re}[Z_S]$$

where

 g_m = an amplifier transconductance,

 R_f = a feed-through resistance,

 Z_S = a source impedance,

 Z_L = a load impedance, and

 χ = a ratio of a backgate transconductance g_{mb} of the amplifier to g_{m} .

26. (New) A radio-frequency amplifier comprising:

a common gate amplifier having an input and an output; and

common gate amplifier transconductance and feed-through means for reducing transistor noise that is passed on to the load, wherein the common gate amplifier transconductance and feed-through means further comprises a resistance R_f , and the resistance R_f is formed by a resistance R_P in parallel with a transistor drain-source resistance r_{ds} .

٠:

- 27. (New) The radio-frequency amplifier of claim 26 further comprising common gate amplifier transconductance and feed-through means for reducing transistor noise that is passed on to the load, wherein the common gate amplifier transconductance and feed-through means further comprises an inductance L_p .
 - 28. (New) A radio-frequency amplifier comprising:

a common gate amplifier having an input and an output; and

common gate amplifier transconductance and feed-through means for reducing transistor noise that is passed on to the load, driven by a signal source with output impedance r_s , wherein a transconductance g_m of the radio-frequency amplifier is larger than $1/r_s$, a series-connected resistor R_f and capacitor C_f is connected between the input terminal and the output terminal of the radio-frequency amplifier, so that the real part of an input impedance of the radio-frequency amplifier is increased.

29. (New) A radio-frequency amplifier comprising:

a common gate amplifier having an input and an output; and

common gate amplifier transconductance and feed-through means for reducing transistor noise that is passed on to the load, 16 wherein oscillation is prevented by ensuring that the real part of an input port impedance Z_{in} and the real part of an output port impedance Z_{out} are positive, where $Re[Z_{in}]$ and $Re[Z_{out}]$ can be expressed as

$$Re[Z_{in}] = \frac{R_f + Re[Z_L]}{1 + g_m R_f (1 + \chi)}$$

$$Re[Z_{out}] = R_f + [g_m R_f (1 + \chi) + 1] Re[Z_S]$$

where

g_m = an amplifier transconductance,

 R_f = a feed-through resistance,

 Z_S = a source impedance,

 Z_L = a load impedance, and

 χ = a ratio of a backgate transconductance g_{mb} of the amplifier to g_{m} .