Cryptographic Protocols Solution to Exercise 5

5.1 Consensus: An Example

a) The tables look as follows:

Scenario 1:

Doction 10				
	P_1	P_2	P_3	P_4
Input	_	1	1	0
WeakConsensus	_	1	1	Τ
${\tt GradedConsensus}$	-	(1, 1)	(1, 1)	(1,0)
$\mathtt{KingConsensus}_{P_1}$	_	1	1	0
WeakConsensus	_	1	1	\perp
${\tt GradedConsensus}$	-	(1, 1)	(1, 1)	(1,0)
${\tt KingConsensus}_{P_2}$	_	1	1	1

Scenario 2:

	P_1	P_2	P_3	P_4
Input	-	1	1	1
WeakConsensus	_	1	1	1
${\tt GradedConsensus}$	_	(1, 1)	(1, 1)	(1, 1)
$\mathtt{KingConsensus}_{P_1}$	_	1	1	1
WeakConsensus	_	1	1	1
${\tt GradedConsensus}$	_	(1, 1)	(1, 1)	(1, 1)
${\tt KingConsensus}_{P_2}$	_	1	1	1

- b) Scenario 1: Yes, it is possible the honest players agree on the value 0. A possible strategy achieving this is the following: P_1 behaves as an honest player with input 0. It is easy to verify that in that case the output will be 0.
 - Scenario 2: No, it is not possible, as in this scenario we have PRE-AGREEMENT on 1, i.e., all honest players have input 1, in which case the PERSISTENCY ensures that all honest parties output 1.
- c) If P_4 is corrupted, then every honest player has input 1. It follows from the PERSISTENCY that all players output 1.

If P_4 is honest, then the Persistency and the Termination are trivial, and the Consistency follows from the King Consistency property (as the king P_4 is honest).

5.2 Variations of GradedConsensus

a) Amélie's suggestion is bad—the resulting protocol does not achieve Graded Consensus. A concrete counterexample can be obtained in a similar setting as the Exercise 5.1. There, n=4 and P_1 is corrupted. P_2, P_3, P_4 have inputs 1, 0, 0, respectively. The strategy of P_1 is to send 1 to P_2 and 0 to the other parties during the weak consensus step. In the graded consensus step, it sends 1 to parties P_2 and P_3 , and 0 to P_4 . The following table contains the outputs of the parties after the graded consensus execution:

	P_1	P_2	P_3	P_4
Input	_	1	0	0
WeakConsensus	_		0	0
${\tt GradedConsensus}$	_	(1,0)	(1,0)	(0, 1)

b) Cindy's protocol is well defined, as it is not possible that the conditions (#zeros > t) and (#ones > t) are satisfied at the same time: the WEAK CONSISTENCY property of WEAK CONSENSUS guarantees that no two honest players P_i and P_j decide on different values $z_i, z_j \in \{0, 1\}$.

Cindy's protocol achieves GRADED CONSENSUS. This can be seen as follows:

GRADED PERSISTENCY: If all honest players have the same input x, then every honest player receives the value x (in Step 2) at least n-t > t times and, therefore, decides on (x, 1).

GRADED CONSISTENCY: Let P_i and P_j be honest and $g_i = 1$. Thus, P_i received y_i from at least n - t players, i.e., at least n - 2t honest players sent y_i also to P_j . Hence, P_j received y_i at least n - 2t > t times, which means that he decides on $y_j = y_i$.

TERMINATION: Obvious.

c) Hans's suggestion is bad—the resulting protocol does not achieve Graded Consensus. A concrete counterexample can be obtained as follows. The setting contains n=7 parties, and P_1,P_2 are corrupted. P_3,P_4,P_5,P_6,P_7 have inputs 0,0,1,1,1, respectively. The strategy of P_1 and P_2 is to send 1 to P_6 and P_7 , and 0 to the other parties in both steps. The following table contains the outputs of the parties after the graded consensus execution:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
Input	_	_	0	0	1	1	1
WeakConsensus	_	_	Τ			1	1
${\tt GradedConsensus}$	_	_	(0, 0)	(0, 0)	(0, 0)	(1, 1)	(1,1)

5.3 Two-Threshold Consensus

a) PERSISTENCY: Assume that at most t_p parties are corrupted and honest parties have preagreement on a value y. This guarantees that each honest party obtains at least $n-t_p$ times the value y. Given that each party decides on y if it obtains at least n-t times the value y, we need that $n-t_p \ge n-t$, or $t_p \le t$.

WEAK CONSISTENCY: Assume that P_i outputs value $y_i \in \{0, 1\}$, hence it received y_i from at least n-t parties, from which at least $n-t-t_c$ are honest. Hence, each P_j has received at least $n-t-t_c$ times the value y_i , and $1-y_i$ at most $t+t_c$ times. So we need that $t+t_c < n-t$, or $2t+t_c < n$.

If we set $t = t_p$, both properties are achievable if $t_c + 2t_p < n$.

b) PERSISTENCY: Assume that at most t_p parties are corrupted and honest parties have preagreement on a value y. From the PERSISTENCY of WEAK CONSENSUS, we have that every honest party P_i sends $z_i = y$ at Step 2. At Step 3, we need that $n - t_p > t_p$ so that every honest party P_i decides on $y_i = y$. Moreover, we need that every grade is 1, that is, that every honest party P_i receives y at least n - t times. Hence, we need that that $t_p < \frac{n}{2}$, and $n - t_p \ge n - t$, which is $t_p \le t$.

GRADED CONSISTENCY: Assume that at most t_c parties are corrupted and an honest party P_i outputs value $y_i \in \{0,1\}$ with grade $g_i = 1$. We need to argue that no other honest party P_j outputs on $1 - y_i$. In this case, P_i received $y = y_i$ at least n - t times. Hence, every other honest party P_j received y at least $n - t - t_c$ times after Step 2. Given the WEAK CONSISTENCY property, after Step 1, every honest party P_j has a value $z_j \in \{y, \bot\}$. Hence, after Step 2 each P_j receives at most t_c values 1 - y. The requirement we need is that $n - t - t_c > t_c$, or $2t_c + t < n$.

If we set $t = t_p$, both properties are achievable if $2t_c + t_p < n$ and $t_p < \frac{n}{2}$.