

01205242 Electronic circuit & System 1

Report on

Final project 2nd semester year 2564

Made by

Jakkaphob Kongthanarith 6210554725

Present to

Dr. Chugiat Gayagate

Faculty of Electrical Engineering, Kasetsart University

Semester 2/2020

Preface

This report is a part of 01205242 Electronic circuit &system 1, Semester 2/2564. The report included experiment result, theory and conclusion of Electronic circuit &system's Midterm project. If there are any mistake occurred in the report, we would like to apologize here and now.

Jakkaphob Kongthanarith

1. Circuit's condition

- 1. let Amplifier $(A_v = V_0/V_s)$ have extension rate more or equal to 10 times $(|A_v >= 10|)$.
- 2. the circuit can maintain extension rate in condition 1 in the given temperature.
- 3. Output signal (V_0) have to be 'Sine' signal.
- 4. Supply voltage (V_{cc}), Signal input scale (V_a), Output signal frequency (f_{in}), Load resistance (R_L) and temperature (Temp) will be given in the chart below.

V_{cc}	V _a	f_{in}	R_L	Temp
5 V	75 mV	1 KHZ	50	60

2. State and calculate parameters

The transistor that will be used in the project is transistor code 2N2222 which it's data sheet will be shown below

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	40	Vdc	
Collector-Base Voltage	V _{CBO}	75	Vdc	
Emitter-Base Voltage	VEBO	6.0	Vdc	
Collector Current — Continuous	lc	600	mAdc	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	625 5.0	mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C	
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150	*C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Ambient	R _{UA}	R _{UA} 200		
Thermal Resistance, Junction to Case	R _B JC	83.3	°C/W	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)		40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		75	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 _I Adc, I _C = 0)	V(BR)EBO	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	ICEX	_	10	nAdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C)	ICBO	_	0.01 10	μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	IEBO	_	10	nAdc
Collector Cutoff Current (V _{CE} = 10 V)		_	10	nAdc
Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)	IBEX	_	20	nAdc

Since the Datasheet information are calculated by given T = 25C, we will need to recalculate H_{FE} at Temperature 60C using equation below

$$H_{FETemp} = H_{FEMax} \times [1 + (T_{actual} - 25 \circ C)*0.0058]$$

Minimum HF E = 50 at 25°C and for the maximum HF E = 150 at 75°C yields an HF ET emp of 194 and VBE of 0.50V

Load line and Q-point

A static or DC load line can be drawn onto the output characteristics curves of the transistor to show all the possible operating points of the transistor from fully "ON" ($I_C = V_{CC}/(R_C + R_E)$) to fully "OFF" ($I_C = 0$). The quiescent operating point or **Q-point** is a point on this load line which represents the values of I_C and V_{CE} that exist in the circuit when no input signal is applied. Knowing V_B , I_C and V_{CE} can be calculated to locate the operating point of the circuit as follows:

$$V_E = V_B - V_{BE}$$

So, the emitter current,

$$I_{E} \approx I_{C} = \frac{V_{E}}{R_{E}}$$
 and $V_{CE} = V_{CC} - I_{C}(R_{C} + R_{E})$

It can be noted here that the sequence of calculation does not need the knowledge of β and I_B is not calculated. So the Q-point is stable against any replacement of the transistor.

Since the aim of any small signal amplifier is to generate an amplified input signal at the output with minimum distortion possible, the best position for this Q-point is as close to the centre position of the load line as reasonably possible, thereby producing a Class A type amplifier operation, i.e. $V_{CE} = 1/2V_{CC}$.

3. Design stage

I will integrate circuit in to 'Multistage Amplifier' that have 4 stages, which is

Stage 1: Common Collector

Stage 2 and 3: Common Emitter

Stage 4: Darlington Configuration

The calculation part will be done from part 4 to part 1.

- Stage 4: Darlington Configuration

Find H_{FETemp} from H_{FETemp} = H_{FEMax} × [1 + (T_{actual} - 25°C)*0.0058]

$$H_{FETemp} = 300 \times [1 + (60 \circ C - 25 \circ C) * 0.0058] = 360.9$$

Find V_{CEQ} : $V_{CEQ} = V_{cc} * 0.5 = 5/2 = 2.5V$

Use KVL in order to find V_F

$$V_F = 5 - 2.5 = 2.5 \text{ V}$$

Let $R_B = 70 \Omega$ and calculate for R_B

$$R_B = (360.9 + 1)^2 * (70/10) = 916.801 k \Omega$$

Calculate $I_{E2} = V_E/R_E = 2.5/70 = 35.7 \text{ mA}$

Use KCL in the circuit $I_{E2} = (\beta + 1)^2$ and find $I_{B1} : I_{B1} = 38.5 \text{mA}/360.9^2 = 0.29 \ \mu\text{A}$

By observing the circuit, we know it's Thevenin's Theorem and use these formular below to find R_1 and R_2 :

$$V_{TH} = (R_2/(R_1+R_2))*V_{cc}$$

$$R_B = (R_1 * R_2)/(R_1 + R_2)$$

KVL:
$$-V_{TH} + I_B R_{B+2V} BBQ + V_E = 0$$

$$V_{cc}R_{B/}R_1 = I_BR_{B+}2V_{BEQ} + V_E$$

Calculate R_1 : (5*916.801 k)/ R_1 = 0.29u*916.801 k + 1.4 + 2.5

$$R_{4,1}$$
 = 1099019.413 Ω = 1099.019 k Ω

$$R_{4,1} = 1.099 \text{ M }\Omega$$

Calculate R_2 : $R_B = (R_1 * R_2)/(R_1 + R_2)$

916.801 k = $(1099019.413 *R_2)/(1099019.413 +R_2)$

$$R_{4,2} = 5529530.562 \Omega = 5529.53 k \Omega$$

$$R_{4,2} = 5.53 \text{ Meg}$$

Observe the Small Signal Model

 $= 273.78 \Omega$

$$r_{\pi 1} = V_T/I_{B1} = kT/qI_{B1} = ((1.38*10^{-23})*(60+273.15))/(1.152*10^{-19})*(1.152*10^{-6}))$$
$$= 99083.4 \Omega = 99.083 k \Omega$$

$$r_{\pi 2} = V_T/I_{B2} = kT/qI_{B1} = ((1.38*10^{-23})*(60+273.15))/(1.16*10^{-19})*(360.9+1)*(1.18*10^{-6}))$$

$$Z_{in4} = R_1 | R_2 | (r_{\pi 1} + (\beta + 1))[r_{\pi 2} + (\beta + 1)(R_E | R_L)] = 808811.82 \Omega = 808.811 k \Omega$$

Stage 4 Extension rate

$$A_{vi} = (181.45)^2(29.16)/((34.642k+181.45)*(95.7+(181.45*29.16)) = 0.918$$

Calculate capacitor

Calculate C in Cut-Off period C = $1/2\pi fR$

Since we want transistor conduct electricity, C need to be equal or more than $1/2\pi fR$

$$C >= 1/2\pi fR$$

Thus $C_{i4} \ge 1/2\pi 1000*808811.82$

 $C_{i4} >= 1.96776*10^{-10} F$

 $C_0 >= 1/2\pi 1000*70 = 2.27 \,\mu\text{F}$

Stage 4 circuit

Stage 4 Simulation result

- The graph above shown its frequency response as High Pass Filter with Magnitude = - 528.92mdb when frequency more than 1khz and phase = 0 when frequency closer to infinity

2. Circuit extension rate

Extension rate = 70.27/74.84 = 0.938 which Is close to A_{vi} that I've calculated, 0.918

- Stage 3 : Common Emitter

Let R_{E} = 5000 Ω and A_{vi} = -5

 H_{FETemp} from $H_{FETemp} = H_{FEMax} \times [1 + (T_{actual} - 25 \circ C)*0.0058]$

$$H_{FETemp} = 300 \times [1 + (60 \circ C - 25 \circ C) * 0.0058] = 360.9$$

 $V_{cc} = 5$, VCEQ = 2.5V

Calculate R_c

$$A_{vi} = -(R_c \mid \mid Z_{in})/R_E$$

$$-5 = -(R_c \mid \mid Z_{in})/5000$$

Rc = 25797.3853
$$\Omega$$
 = 25.797 k Ω

Use KVL in order to find I_c and I_B

$$I_c = (5-2.5)/(5k+25797.3853)$$

=
$$8.117*10^{-5} = 0.811 \,\mu$$
 A $I_B = I_c/\beta = 8.117*10^{-5}/360.9$ = $2.249258*10^{-7} = 0.2249 \,\mu$ A

In order to make the circuit stabilize, we need to make Rb value equal 10 time of $(\beta+1)$ R_E

$$R_B = (360.9+1)*(5k/10) = 180950 = 180.95 \text{ k} \Omega$$

Use KVL in order to find R₁

$$(5*180950)/R_1 = (2.249258*10^{-7}*180950) + 0.7 + 8.117*10^{-5}*5000$$

 $904750/R_1 = 11.4655$

$$R3_{,2} = 234951.6238 \Omega = 234.951 k \Omega$$

Observe the Small Signal Model

$$r_{\pi} = V_{T}/I_{B1} = kT/qI_{B1} = ((1.38*10^{-23})*(60+273.15))/((1.6*10^{-19})*(~2.249258*10^{-7}))$$

= 127749.629
$$\Omega$$
 = 127.749 k Ω

$$Z_{in3} = R_1 | R_2 | (r_{\pi 1} + (\beta + 1)R_E) = 181046.2068 | 1937249.629$$

=
$$165572.5754\Omega$$
 = $165.572 k \Omega$

Extension rate:

$$A_{vi} = (-360.9)*(25797.3853 | | 165572.5754)/(127749.629+361.9*5000)$$

$$= (-360.9*22319.80143)/(127749.629+361.9*5000)$$

Since we want transistor conduct electricity, C need to be equal or more than $1/2\pi fR$

$$C >= 1/2\pi f R$$

Thus
$$C_{i3} >= 1/2\pi 1000*165572.5754$$

$$C_{i3} >= 9.61239*10^{-10} F$$

Stage 3: Circuit design

Stage 3 simulation result

The graph above shown its frequency response as High Pass Filter with Magnitude = -65.45 dB when frequency less than 1khz and phase = 179.98 when frequency at 1kHz

2. Circuit extension rate

Extension rate = -312.365/74.838 = -4.1738 which Is close to A_{vi} that I've calculated, -4.15

-Stage 2 : Common Emitter

Let
$$A_{vi}$$
 = -3 and R_E = 4000

 H_{FETemp} from $H_{FETemp} = H_{FEMax} \times [1 + (T_{actual} - 25 \circ C)*0.0058]$

$$H_{FETemp} = 300 \times [1 + (60 \circ C - 25 \circ C) * 0.0058] = 360.9$$

 $V_{\text{CEQ}} = 2.5V$

Let A_{vi} = -3 and R_E = 4000 Ω = 4k Ω

 $-3 = -(R_c \mid \mid Z_{in})/4000$

 $-3 = -(R_C \mid \mid 165572.5754) / 4000$

Rc = 1986870905/153572.5954

 R_c = 12937.66742 Ω = 12.937 k Ω

Using KVL to find I_C and I_B

$$I_c = (5-2.5)/(4000+12937.66742)$$

$$I_c = 1.476*10^{-4}$$

$$I_B = (1.476*10^{-4})/360.9$$

$$= 4.089776*10^{-7} A = 0.4089 \mu A$$

In order to make the circuit stabilize, we need to make Rb value equal 10 time of $(\beta+1)$ R_E

$$R_B = (360.9+1)*(4000/10) = 144760 = 144.76 \text{ k} \Omega$$

Use KVL in order to find R₁

$$(5*144760)/R_1 = (4.089776*10^{-7}*144760) + 0.7 + 1.476*10^{-4}*4000$$

$$723800/R_1 = 1.3496$$

$$R_1 = 536305.62 \ \Omega = 536.305 \ k \ \Omega$$

$$R_2 = 198278.3002 = 198.278 \ k \ \Omega$$

Observe the Small Signal Model

$$\begin{split} r_{\pi} &= V_T/I_{B1} = kT/qI_{B1} = ((1.38*10^{-23})*(60+273.15))/(1.6*10^{-19})*(\ 4.089776*10^{-7})) \\ &= 70258.58507\ \Omega = 70.258\ k\ \Omega \\ \\ Z_{in2} &= R_1|\,|\,R_2|\,|\,(r_{\pi} + (\ \beta + 1)(R_E)) \\ &= 144759.1811\,|\,|\,70258.58507 + (361.9*4000) \\ &= 144759.1811\ |\,|\ 1517858.585 \\ &= 132155.43\ \Omega = 132.155\ k\ \Omega \end{split}$$

Extension rate:

Since we want transistor conduct electricity, C need to be equal or more than $1/2\pi fR$

$$C >= 1/2\pi f R$$

Thus
$$C_{i3} >= 1/2\pi 1000*51462.4415$$
 $C_{i3} >= 3.09*10^{-9} \, F$

Stage 2 circuit design

Stage 2 Simulation result

The graph above shown its frequency response as Low Pass Filter with Magnitude = 8.98dB when frequency less than 1khz and phase = -180.01 when frequency at 1kHz

2. Circuit extension rate

Extension rate = 209.96/74.97 = -2.80058 = -2.801 which Is equal to A_{vi} that I've calculated, -

Stage 1: Common Collector

2.801

Let $R_E = 100k$ and $A_{vi} = 1$

 $H_{FE} = 360.9, V_{CEQ} = 2.5 v$

 $I_{E2} = V_e/R_E = 2.5/100000 = 0.25 \mu A$

Thus, $I_B = 0.25*10/360.9 = 6.927*10^{-8}$

Use KVL to obtain R_B

$$R_B = 5-2.5-0.7/(6.927*10^{-8}) = 25985275.01 \Omega = 25985.275 k \Omega$$

Observe the Small Signal Model

$$r_{\pi} = V_{T}/I_{B1} = kT/qI_{B1} = ((1.38*10^{-23})*(60+273.15))/(1.6*10^{-19})*(0.4156*10^{-6}))$$

= $69139.04 \Omega = 69.139 k \Omega$

 $Z_{in1} = R_B | | (r_{\pi} + (\beta + 1)(R_E) | | R_{in2})$

= 25985275.01 ||69139.04+ 361.9*23738.88

= 25985275.01 || 8660241.684

= 8591045.129 Ω = 8591.045 k Ω

Extension rate:

 $A_{vi} = (360.9)*(\ 100000 \ | \ |\ 8591045.129)/(69139.04 + 361.9*(10000 \ | \ |\ 8591045.129))$

= 360.9*98849.3904/35842733.39

= 0.9953

Since we want transistor conduct electricity, C need to be equal or more than $1/2\pi fR$

$$C >= 1/2\pi fR$$

Thus $C_{i3} >= 1/2\pi 1000*69139.04$

 $C_{i3} >= 2.302*10^{-9} F$

Stage 1 Circuit Design

Stage 1 simulation result

The graph above shown it's frequency response as Low Pass Filter with Magnitude = -137.24 mdB when frequency less than 1khz and phase = -6.29 when frequency at 1kHz

2. Circuit extension rate

Extension rate = 73.578/74.9226 = 0.98205 which Is close to A_{vi} that I've calculated, 0.9953

4. Final Result

1. Multistage Amplifier

2. Simulation Result

1. Operating point & Analysis

The graph above shown it's frequency response as Low Pass Filter with Magnitude = 21.6259 dB when frequency less than 1khz and phase = -110.533 when frequency at 1kHz

2. Circuit extension rate

Extension rate = 904.553/74.773 = 12.09 which is according to the requirement, which is Extension rate more than 10.

3. Current graph from V_{cc}

 V_{ERT} = 59.82 mA

Conclusion

This is BJT circuit were built in order to expand small signal with also achieved all project requirement. The output of this circuit is a sine wave with error less than 3%. The A_{vi} is 0.918, -4.15, -2.801, 0.995 when all of them multiply together, the value will be 10.617, which is more than the requirement (10). Stage 1 and 4 A_{vi} can't be more than 1 since output are pulled by the emitter leg, resulting in calculation of resistor that can active the transistor. 2N2222 Transistor is used because of the fact that its specs are according to project requirement

4 Multistage Amplifier is used in this project, consist of Stage 1: Common Collector, Stage 2-3: Common Emitter, Stage 4: Darlington Configuration. Calculation part is start by define A_{vi} and R_E value, then calculate the other variables. When we got each resistance needed, we use them in the small signal equation in order to find it's real extension rate.

Stage 4 A_{vi} = 0.938 which is close to calculated A_{vi} , 0.918

Stage 3 A_{vi} = -4.173 which is close to calculated A_{vi} , -4.15

Stage 2 A_{vi} = -2.801 which is equal to calculated A_{vi} , -2.801

Stage 1 A_{vi} = 0.982 which is close to calculated A_{vi} , 0.995

 $A_{vi,all} = 0.918*-4.15*-2.801*0.995 = 10.61$