基于物理属性的卫星可见光和红外数据融合

韩 雷 中国海洋大学信息学院

hanlei@ouc.edu.cn

提纲

- > 研究背景
- ➤ Fusion Plan 1:

 MRA + post-correction
- ➤ Fusion Plan 2:

 Direct fusion without MRA

卫星在灾害天气的预警中非常重要!

因强对流灾害天气造成的损失, 每年上千亿元。

红外图像 (亮温)

可见光图像(反照率)

MTSAT卫星, 2006 年7月25日12点33分

4 **2014/12/26**

现有融合算法的问题

- > 主要关注点:视觉效果
- ➤ 但如果分析其物理意义,则会出现: spectral distortion的问题

定性分析可以,定量分析不行!

可见光图像

红外图像

小波融合后的图像

原理示意图

黑体辐射 – the Stefan-Boltzmann Law

■ 斯特藩-波尔兹曼公式:

$$J^* = \varepsilon \sigma T^4$$

- j代表黑体单位时间单位表面积辐射的能量
- *T* 是黑体的热力学温度
- σ是斯特藩-波尔兹曼常数

黑体辐射 – the Stefan-Boltzmann Law

辐射能量守恒

9 **2014/12/26** 9

算法:

- 1.常规的MRA融合,如多小波融合
- 2. post-correction (使用Stefan-Boltzmann Law保证辐射能量守恒)

多小波融合:

Post-correction 辐射能量守恒

-- 但会有马赛克现象

修正算法

$$j_F^*(x,y) = j_F(x,y) \cdot \frac{\eta^2 \sum_{u=1}^{N} \sum_{v=1}^{N} j_{IR}(u,v)}{\sum_{x=1}^{M} \sum_{v=1}^{M} j_F(x,y)}, \quad 1 \le x, y \le \eta$$

局部修正效果

可见光图像。气旋部分外围云系并没有被拍摄到。

红外图像。记录到气旋外 围细长的低温云带。

多小波融合结果。图像分辨 率提升,保留红外图像中的 外围云系影像。

修正后的图像。基本维持融 合图像的分辨率,气旋中心 温度更接近红外图像。

局部修正效果

可见光图像

红外图像

多小波融合结果

修正后的图像

局部修正效果

客观评价

红外图像上部分点 亮温的变化情况 (℃)

No.城市	IR原信息	小波融合后	最终结果
1香港	22.14	22.44	22.44
2哈尔滨	13.83	15.22	13.17
3西宁	-8.22	21.63	7.47
4兰州	31.99	33.33	32.81
5成都	-13.09	-21.1	-18.93
6济南	19.44	23.44	19.46
7长春	11.45	8.07	10.01
8北京	14.46	21.73	17.29

客观评价指标

- (1)Information Entropy (IE) and Mutual Information (MI).
- (2) Average Gradient (AG).
- (3) Objective Fusion Performance Measure (Qabf).
- (4) Universal Image Quality Index (QI) and Edgedependent Quality Index (QE).
- (5) Thermal Energy Deviation (AVGD and RMSD).

客观评价

亮温均匀程度

细节纹理增强

评价名称	红外	可见光	融合	修正
信息熵 (bit)	7.1530	5.1118	7.2397	7.2164
平均梯度	0.7712	2.1499	2.5737	2.6825

评价名称	红外+可见光+ 融合	红外+可见光+ 修正	
融合性能评价 参数 <i>Q_{abf}</i>	0.6041	0.5359	

降低的原因:修正后与可见 光的相似度下降

2006年08月25日13:00 MTSAT卫星

	Œ	AG	Qabf	AVGD	RMSD
IR	6.9091	0.6502			
VIS	4.9791	2.4797			
FUS	7.0560	2.7412	0.6510	667.0806	924.3553
COR	6.9890	2.8865	0.5633	375.2017	557.3362

Reference

1. Sensors, 2014, 14: 10187-10202
Physical Property-based Fusion of Satellite Visible and Infrared Images.
Lei Han et al.

Plan 2: Direct fusion without MRA

审稿人1的意见:

"..... In this sense, could we correct the visible image directly without any MRA processing...."

直接融合算法:

- Resample and interpolate the IR image so that both VIS and IR images are on the same pixel scale.
- Use the Stefan-Boltzmann Law to convert both the IR and VIS images into their corresponding thermal radiation maps.
- Traverse the two radiation maps to adjust the regional radiation energy.

结果对比

MRA+ post-correction

Direct Fusion

结果对比

MRA+ post-correction

Direct Fusion

评分指标对比

	Œ	$\overline{\mathrm{AG}}$	Q_{abf}	AVGD	RMSD
IR	6.9091	0.6502			
VIS	4.9791	2.4797			
FUS	7.0552	2.6771	0.6740	649.6730	906.2315
COR1	6.9934	2.9388	0.5407	366.8883	551.5277
COR2	6.9828	2.7804	0.5728	374.7601	562.7176

计算时间对比

对3000*3000的卫星图像,处理时间分别为:

260.2秒 VS. 5.7秒

算法目前存在的问题

- 受太阳高度角的影响
- 11-13点效果最好

Reference

1. Sensors, 2014, 14: 10187-10202

Physical Property-based Fusion of Satellite Visible and Infrared Images.

Lei Han et al.

2. Sensors, 2014, accepted

Direct Fusion of Geostationary Meteorological Satellite Visible and Infrared Images.

Lei Han et al.