Emergency Facilities Readiness Project

Name: Yuqian Yang Classes:ALY6050

Instructor: Roy Wada

Date: 03/2/2020

Introduction

In Defense system test and evaluation, collecting sufficient data to evaluate system performance against operationally realistic threats is often not possible due to cost and resource restrictions, safety concerns, or lack of adequate or representative threats. Thus, a simulation technique frequently are used to augment live testing in order to facilitate a more complete evaluation of performance. In this project we will explore how many victims each hospital might expect in a disaster, and how long it would take to transport victims to the hospitals. We will focus on five hospitals in the Boston area and test how victims will be distributed to the hospitals in the event of a disaster. The dependent variables in this analysis include the first-aid facility, capabilities of the five hospitals and the proximity of the hospitals to the university campus. It is estimated that the transit time to each hospital is exponentially distributed with a certain average value depending on the overall capacity of the hospital. We can assume that each hospital has two ambulances, when one ambulance returned to the hospital, another ambulance arrived on campus. Below we will explore the number of victims in different hospitals step by step through simulation models.

Analysis

Problem 1

a. Average number of victims that can be expected at each hospital.

Triangle Distribution functions provide information for us about the triangle distribution on the interval from 20 to 85 with a maximum at 350. After performing 5,000 simulations, based on the different capabilities of these five hospitals, I derived the expected damage for each hospital The average number of people. In order to observe this result more intuitively I will list the average number of victims expected in each hospital in the table below:

	Allocation of	Average	Theoretical
	Disaster Victims	Number of	average
		victims	
Beth Israel Medical	20%	30.41764	30.3

Tufts	30%	45.62646	45
Medical			
Massachusetts	15%	22.81323	22.5
General			
Boston	20%	30.41764	30
Medical			
Brigham and	15%	22.81323	22.5
Women's			

b. For each hospital, the average total time (in hours) needed to transport all victims hospital in the table below:

	Allocation of Disaster Victims	The average total time (in hours)
Beth Israel Medical	15	456.2646
Tufts	8	365.0117
Medical		
Massachusetts	25	570.3307
General		
Boston	10	304.1764
Medical		
Brigham and	12	273.7588
Women's		

Let's take Beth Israel Medical as an example. The minimum and maximum are 20 and 350 victims respectively, and the peak is 85 victims. The theoretical average is equal to (450/3) * 20% = 30.3.

c. For part (a) above, create a chart the displays the Law of Large Numbers in action for the Beth Israel Medical

	1	100 29.24751	21	2100 30.20667	41	4100 30.39259	61	6100 30.32383	81	8100 30.12041	
	2	200 29.15236	22	2200 30.65420	42	4200 30.19025	62	6200 30.08198	82	8200 30.25043	
	3	300 30.07902	23	2300 30.33184	43	4300 29.98659	63	6300 30.50607	83	8300 30.53637	
	4	400 30.48424	24	2400 30.37423	44	4400 30.53494	64	6400 30.62205	84	8400 30.39745	
	5	500 28.96350	25	2500 30.46338	45	4500 30.54552	65	6500 30.56708	85	8500 30.51490	
	6	600 30.22847	26	2600 30.22900	46	4600 30.23433	66	6600 30.05452	86	8600 30.16175	
	7	700 31.20931	27	2700 30.64139	47	4700 30.18859	67	6700 30.03028	87	8700 30.19387	
	8	800 29.69038	28	2800 30.07245	48	4800 30.06083	68	6800 30.28479	88	8800 30.51178	
	9	900 30.40499	29	2900 30.50124	49	4900 30.44160	69	6900 30.33399	89	8900 30.27541	
	10	1000 30.87250	30	3000 30.24159	50	5000 30.53845	70	7000 30.34203	90	9000 30.20094	
	11	1100 30.97345	31	3100 30.47376	51	5100 30.05334	71	7100 30.22358	91	9100 30.23997	
	12	1200 29.73739	32	3200 30.84950	52	5200 30.71375	72	7200 30.42057	92	9200 30.51936	
ı	13	1300 29.78830	33	3300 30.11516	53	5300 30.40018	73	7300 29.96686	93	9300 30.53672	
1	14	1400 30.33040	34	3400 30.41576	54	5400 30.03890	74	7400 30.67791	94	9400 30.25100	
	15	1500 30.81243	35	3500 29.90104	55	5500 30.12537	75	7500 30.63715	95	9500 30.06026	
	16	1600 30.70048	36	3600 30.72550	56	5600 30.21010	76	7600 30.33559	96	9600 30.39152	
	17	1700 30.12086	37	3700 30.62558	57	5700 30.16653	77	7700 30.51623	97	9700 30.30508	
	18	1800 29.92337	38	3800 30.76414	58	5800 30.00649	78	7800 30.51535	98	9800 30.11158	
	19	1900 30.06752	39	3900 30.26540	59	5900 30.05170	79	7900 30.13670	99	9900 30.14701	
	20	2000 30.10780	40	4000 30.53237	60	6000 30.61495	80	8000 30.54703	100	10000 30.55069	

By observing the chart above, I found that as the number of simulations increases, the average number of victims observed will approach 30.3, which is in line with the law of large numbers. d. perform an exploratory data analysis of the total transport time.

After testing, we found that the 95% confidence interval for the total transit time of Beth Israel Medical Hospital was [311.3581 331.1317].

By looking at the histogram of the average transit time of each victim, we find that it appears as a bell curve. So we can draw a preliminary conclusion that this is a normal distribution. Below we will further verify this conclusion through the Chi-squared Goodness of fit test. We find that because p-value (0.64)> 0.05, we do not reject the null hypothesis. This is a normal distribution 2.

In the second question, we assume that the total number of victims is normally distributed with a mean of 175 victims and a standard deviation of 63 victims. Under this premise we will perform a simulation analysis consisting of 5,000 simulations.

	Average in	Average	average	
	Minutes	Number of	total time	
		victims		
Beth Israel Medical	15	22.49460	67.48380	
Tufts	8	11.99712	23.99424	
Medical				
Massachusetts	25	37.49100	224.94600	
General				
Boston	10	14.99640	52.48740	
Medical				
Brigham and	12	17.99568	44.98920	
Women's				

Through simulation technology we obtained the average numbers of victims expected at each hospital and the average total time needed to transport all victims. We can conclude that the higher the total average transit time of the hospital, the greater the average number of victims.

1	100 26.39206	21	2100 26.37375	41	4100 26.40456	61	6100 26.44236	81	8100 26.12479	
2	200 26.14522	22	2200 25.95969	42	4200 26.44385	62	6200 26.20931	82	8200 26.15620	
3	300 26.07853	23	2300 26.13286	43	4300 26.12489	63	6300 26.17498	83	8300 26.28714	
4	400 25.58594	24	2400 26.20032	44	4400 26.31532	64	6400 26.09597	84	8400 26.21183	
5	500 25.63080	25	2500 26.28948	45	4500 25.98561	65	6500 26.11760	85	8500 26.13033	
6	600 26.08242	26	2600 26.31580	46	4600 26.12622	66	6600 26.27923	86	8600 26.22306	
7	700 26.26045	27	2700 25.99843	47	4700 26.33024	67	6700 26.29604	87	8700 26.14613	
8	800 26.60003	28	2800 26.30820	48	4800 26.41575	68	6800 26.20238	88	8800 26.25382	
9	900 26.69400	29	2900 26.41919	49	4900 26.23506	69	6900 26.31377	89	8900 26.31945	
10	1000 25.73421	30	3000 26.46659	50	5000 26.17960	70	7000 26.27328	90	9000 26.31886	
11	1100 26.11143	31	3100 26.37410	51	5100 26.35595	71	7100 26.31710	91	9100 26.44916	
12	1200 26.22482	32	3200 26.33797	52	5200 26.17799	72	7200 26.10356	92	9200 26.12960	
13	1300 26.09531	33	3300 26.09084	53	5300 26.32361	73	7300 26.32006	93	9300 26.28215	
14	1400 25.90687	34	3400 26.27755	54	5400 26.36054	74	7400 26.31327	94	9400 26.26882	
15	1500 26.26828	35	3500 25.95959	55	5500 26.06885	75	7500 26.24158	95	9500 26.23836	
16	1600 26.37965	36	3600 26.02505	56	5600 26.27136	76	7600 26.16033	96	9600 26.18927	
17	1700 26.06305	37	3700 26.07295	57	5700 26.19869	77	7700 26.30064	97	9700 26.33321	
18	1800 26.63528	38	3800 26.12252	58	5800 25.97767	78	7800 26.39450	98	9800 26.35804	
19	1900 26.12786	39	3900 26.00246	59	5900 26.29008	79	7900 26.11954	99	9900 26.38638	
20	2000 26.21165	40	4000 26.15074	60	6000 26.26397	80	8000 26.32034	100	10000 26.23571	

I will use Beth Israel Medical as a sample to verify the law of large numbers. As the number of simulations increases, the average number of victims I observe will approach the theoretical average of 26.25 (175 * 0.15).

under the significance level of 0.05., the confidence interval for the total transport time of Beth Israel Medical hospital is [311.7103, 319.4832].

Finally we verified again that this is a normal distribution by observing the histogram and the Chi-squared Goodness of fit test. Because the P value = 0.98 is greater than 0.05, we do not reject the null hypothesis.

Conclusion:

In this project, we analyzed digital prototypes of physical models through simulation modeling to predict their performance in the real world. By analyzing this case and performing the modeling process, we understand the power of simulation technology and master important methods. Simulation modeling is used to help designers and engineers understand whether, under what conditions, and in which ways a part could fail and what loads it can with stand. In this case, we can conclude that Tufts Medical has the best first aid measures and capabilities in in the Boston area, Massachusetts General's performance is relatively weak. Authorities can use this information to take steps to improve first aid efficiency and reduce the number of victims in the Boston area. But there are still many limitations here such as the difficulty in finding the optimal values increases due to an increase in the number of parameters. Also in this project, it does not yield an answer but merely provides a set of the system's responses to different operating conditions. Simulation techniques are often difficult to find accurate answers but will provide valuable reference information for decision makers. I believe that as technology advances, designers will be able to improve the accuracy of simulation through machine learning in the future.

REFERENCES:

- 1. Robert G. Sargent: "Verification and Validation of Simulation Models," Proceedings of the 2003 Winter Simulation Conference, pp. 37-48
- 2. Douglas C. Montgomery, "Design and analysis of experiments," John Wiley & Sons, 1990.
- 3. Jeong-Soo Park, "Optimal Latin-hypercube designs for computer experiments," Journal of statistical planning and inference 39.1, pp. 95-111, 1994.