EE 207 Worked Solutions Spring Session 2006-07 Charge neutrality condition: n + Na = p + Nd $-1so \qquad np = n;$ " n2 - (Nd-Na) n - n; = 0 For n-type exprissic semiconductor, Nd-Na > n; n = Nd - Na = Ndsince $p = ni^{2} = ni^{2} = ni^{2}$ For near compensantated case, ni >> Nd-Na so above is n x ni + Nd-Na = ni, p = nit = ni o) Intriusic conductivity $G_{i} = \frac{1}{p_{i}} = R_{i}e\left(\mu e + \mu u\right)$ $\frac{1}{5\times10^3} = 2\times10^4 = \pi_1^2 \times 1.6\times10^{-19} (0.12+0.05) = \pi_1^2 \times 272\times10^{-19}$ $n: = \frac{2 \times 10^{-19}}{0.272 \times 10^{-19}} = 7.35 \times 10^{-15} \text{ m}^{3}$ (3.) With initial n-doping only, pt is 10 pi = 10 x 5x10 = 0.5 Since n-doped, ignove ni 1 2 eNdple => 1 = 2 = 1.6 × 10 × Nd × 0.12 -, Nd = 1.04 X10 m Doping can only reduce recistivity c.f. intrinsic value.

__

After compensation, P = 7.61×10 22-m	
For compensated case,	
1 = 5 = e(nue + pun) = e(nue + ni2 un)	
$\frac{1}{44\times10^{2}} = 1.314\times10^{3} = 1.6\times10^{-13} \int_{-1.4}^{13} n \times 0.12 + \left(\frac{7.35\times10^{5}}{1.35\times10^{5}}\right) \times 0.00$	0.5
1-61x10 ²	
$n^2 - 6.84 \times 10^{\circ} \text{ N} + 2.25 \times 10^{\circ} = 0$	
$n = 6.84 \times 10^{-16} \pm \sqrt{(6.84 \times 10^{-16})^2 - 4 \times 2.25 \times 10^{3}}$	· · · · · · · · · · · · · · · · · · ·
7	
n = 6.81×10 or 3.2×10	, , , le
n must be >n; so n = 6.81 × 10 m	t of wor
0 ni2 (7.35×10)	1 = 7 < 7 ?
$P = \frac{ni^2}{n} = \frac{(7.35 \times 10^{15})^2}{6.81 \times 10^{16}} = 7.93 \times 10^{14} \text{ m}^{-3}$	(2)(3)?
	more make for
We need Na: From charge neutrality,	these workings
$Na = P + Nd - N = 7.93 \times 10 + 1.04 \times 10 -$	6.81×10
= 1.039×10 ²⁰ m ⁻³	(2)
	[10]
-) To get back original resistivity requires sli	
acceptor doping. The doping control required	
to happen makes this impossible in practice	
is this right?	[4]
LS VIIIS	

Total bound -					
	Jap = 1.	42 + Eigle	ct. + Ein	018	. (3
Eleket =	(6.63×10	9-11×10 ×1-6	•	l eV	
, 5(126)	8×0.063×	9-4x10 x1-6	x10-19 L	2	
Eihole = _	(6.63×1	-34)	:	l eV	
' h-ole	8×0.48×	9-11×10 ×	-19 1./×10	12	
	(0)				· · · · · · · · · · · · · · · · · · ·
1-46 = 1	. // ⊃ - }-	6,768×10	- 18		
1 76 - 1	742 4	12			(2)
		ev 13 v		<u> </u>	(3)
_ = 1·3×	:10 m	≈ 13 v	ım		[6
		· ·			
In realit	y, as to	re au d	inens ion	reduces	, the
ouset of	f tunnel	ling tur	ough to	e finite	barrie
		nciniana			
				4	
		•			
			· .		[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3
					[3

	,			
13	mhuic .	schottku ante	shuic drain contact	
(a)	source of	schottky gate	33-20-20	
·~)	n+	Jungin	n+ +- heavily don	ed nt region
		gate oxide (بالما المالية	m region
	p-ty	pe silicon		
	,			[4]
,				
		F., 4.74		
6)	1d = he ca	V5 - VT - Vd V	X	
	-			
	Saturation oc	curs when Vo	= Vg- V7 Ids	is
			5	2*
	12	g Vd ²		(7-)
	~ 1			
g.w	$= \frac{\partial T \partial}{\partial x}$	in saturation	region, so diffe,	reutiate above
	a vg (va			
-				
•	an - Ha Ca	Ma		(2)
* *	gm = place	· ·		
			4	
Rear	rrange and s	ubstitute into	expression of I	
	He Cg = 9w	= 2 Ids	·	
	12 Va	$=$ $\frac{2 \text{ Tds}}{\text{Vd}^2}$		
4 .	2 - 2	71		(1)
<u>** ** ** </u>	<u> </u>	-Ids Vd	<u> </u>	
<u> </u>				[5]
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
=)	9 Vdd			
	PRL			
		= 8 9.	Vg RL Vo	
~~~ √q				
	7	V = 9v	uvg . R_	
	Gain = Vo	= 1A1 = 9m	RL	(5)
	Gain = Vo	= 1131 - 112		(2)
	30 = gm	RL = 2 Ids.	RL = 2Ids. RL	(3)
	<u> </u>	~a	(Vold - Ids Ru)	
		•		

out.	30 = 2 x	30 × 10 R,			
	100 -	30×103 RL			
	gives R_ =	3,125 K	SZ.		(2)
9,	= 9.6ms =	Ho Co Vd			
7	= 9.6ms =	Q2			
12	= the Co Vol :	- 0.13 ×10	12 × 6.25		
	gm	9-6	×10 -3'		
		•			
	= 9.2 pm	(aate leveth)		
		J			
(n =	En Eir Amen =	£	1 width		
	EO EV. Area =		Go		
lanot.	= 0.1 width	-> undt	- 92		
aco y in	E OTT WINCE	-> 1010(10	- 125		•
+ s	o Er. L. widtu	- 11.8 x R	. 8 CX 10	9,2,	Q D
	<u>Cg</u>			10-12	12 μμ
:					
	BBnm				
	S G WINT		· · ·		
			· · · · · · · · · · · · · · · · · · ·		[4]
			· · ·		
			<u> </u>		
	Y .				~
					~
)				
	Y				

24 E = hf, C = fA= hc

 $\lambda = hc$ where E is in jouler

To get E in eV, divide numerator + demonstrator by 'e'

-. \ \(= \left(\frac{hc}{e} \right) \left(\frac{E}{e} \right) \)

-1. L = hc = 1.24 pm eV

de Broglie: p=mv=h

n= flance's constant, M = mass, v = velocity, h = wavelength

Equate K.E. to P.E $\frac{1}{2}mv^2 = eV \implies v = \left(\frac{2eV}{m}\right)^{1/2}$

From de Broglie, mr = h

 $\lambda = h = h = 1.225 \text{ nm}$ $(2eVm)^{1/2}$ $V^{1/2}$ $V^{1/2}$

= 0.204 nm, which is the minimum resolvable size.

(c) $E = E_0 + AK^2 + BK^4$ $M^* = (d^2E)^{-1}$ $P = \pi K$

 $m^* = h^2/d^2E$

cout. $dE = 2AK + 4BK^3$, $d^2E = 2A + 12BK^2$ dKAt K=0, M* = h2 (2A+0) = [6.626x10] [2x10] = 5.56 x10-31 = 0.61 ma At Brillianin zone edge, $v_g = 0$ $v_g = dE = \frac{1}{h} \cdot dE = \frac{1}{h} (2Ak + 4Bk^3) = 0$ $AK + 2BK^3 = 0 \Rightarrow K = \int A \int_{-7R}^{1/2} \left(Bis - ive so \int oK \right)$ Need M* @ K = T A T1/2 $= \frac{\left(6.626 \times 10^{-34}\right)^{2}}{2 \cdot 10^{-38}} = -2.78 \times 10^{-31}$ $= -2.78 \times 10^{-31}$ $= -0.305 \text{ M}_{\odot}$ Extrudes)