BLG222E Computer Organization

Project 2

Due Date: 03.04.2019, 23:00

(Part-1) Design an Arithmetic Logic Unit (ALU) that has two 8-bit inputs and an 8-bit output. The ALU is shown in the left side of Figure 1. The ALU functions and the flags that will be updated (i.e., - means that the flag will not be affected and $\sqrt{}$ means that the flag changes based on the OutALU) are given in the right side of Figure 1:

- **FunSel** selects the function of the ALU.
- OutALU shows the result of the operation that is selected by FunSel and applied on A and/or B inputs.
- **Z** (zero) bit is set if **OutALU** is zero (e.g., **NOT B** is zero).
- C (carry) bit is set if OutALU sets the carry (e.g., LSL A produces carry).
- **N** (negative) bit is set if the ALU operation generates a negative result (e.g., **A–B** results in a negative number).
- O (overflow) bit is set if an overflow occurs (e.g., A+B results in an overflow).

FunSel	OutALU	Z	С	Ν	0
0000	A AND B	٧	-	٧	-
0001	A OR B	٧	_	٧	-
0010	NOT A	٧	_	٧	_
0011	A XOR B	٧	_	٧	_
0100	Α	٧	_	٧	-
0101	A + B	٧	٧	٧	٧
0110	A + B + Carry	٧	٧	٧	٧
0111	A - B	٧	٧	٧	٧
1000	В	٧	-	٧	-
1001	NOT B	٧	_	٧	-
1010	LSL A	٧	٧	٧	-
1011	LSR A	٧	٧	٧	_
1100	ASL A	٧	_	٧	٧
1101	ASR A	٧	_	٧	-
1110	CSL A	٧	٧	٧	٧
1111	CSR A	٧	٧	٧	٧

Figure 1: The ALU (Left) and its characteristic table (Right)

(Circular | Arithmetic | Logical) Shift (Left | Right) operations are depicted in Figure 2, Figure 3, and Figure 4.

Figure 2: Circular Shift Operations

Figure 3: Logical Shift Operations

Figure 4: Arithmetic Shift Operations

(Part-2) Implement the organization in Figure 5.

Figure 5: ALU System