Numerical Optimization

Todd Munson

Mathematics and Computer Science Division Argonne National Laboratory

January, 2014

Part I

Introduction

Overview of Optimization

- One-dimensional unconstrained optimization
 - Characterization of critical points
 - ▶ Basic algorithms
- Nonlinear systems of equations
- Multi-dimensional unconstrained optimization
 - Critical points and their types
 - Computation of local minimizers
- Multi-dimensional constrained optimization
 - Critical points and Lagrange multipliers
 - Second-order sufficiency conditions
 - Globally-convergent algorithms
- Complementarity constraints
 - Stationarity concepts
 - Constraint qualifications
 - Numerical methods

One-dimensional Unconstrained Optimization

Critical Points

► Stationarity: $\nabla f(x) = -4x^3 + 10x + 1 = 0$

▶ Local maximizer: $\nabla^2 f(x) = -12x^2 + 10 < 0$

▶ Local minimizer: $\nabla^2 f(x) = -12x^2 + 10 > 0$

Locally Convergent Newton Method

- All good algorithms are variants of Newton's method
- ▶ Compute stationary points: $F(x) = \nabla f(x) = 0$
 - Form Taylor series approximation around x^k

$$F(x) \approx \nabla F(x^k)(x - x^k) + F(x^k)$$

Solve for x and iterate

$$x^{k+1} = x^k - \frac{F(x^k)}{\nabla F(x^k)}$$

- Several possible outcomes
 - ► Convergence: $\lim_{k\to\infty} x^k = x^*$
 - ▶ Divergence: $\lim_{k\to\infty} ||(f(x^k), x^k)|| \to \infty$
 - Sequence cycles
 - Multiple convergent subsequences (limit points)
 - Limit points are not solutions

Illustration of Divergence

Illustration of Cycling

Globally Convergent Newton Method

Use Newton method to compute a direction

$$s^k = -\frac{F(x^k)}{\nabla F(x^k)}$$

► Check direction for descent using objective function

$$\nabla f(x^k)s^k < 0$$

- ▶ Determine an appropriate stepsize
 - ▶ Line search to minimize the objective function

$$f(x^k + ts^k) \le f(x^k) + \sigma t \nabla f(x^k) s^k$$

- Trust region around the approximation
- ▶ Iterate until convergence
- ► Two possible outcomes
 - Convergence: $\lim_{k\to\infty} x^k \to x^*$
 - ▶ Divergence: $\lim_{k\to\infty} \|(f(x^k), x^k)\| \to \infty$

Newton Method for Square Systems of Equations

▶ Given $F: \Re^n \to \Re^n$, compute x such that

$$F(x) = 0$$

► First-order Taylor series approximation

$$\nabla F(x^k)(x-x^k) + F(x^k) = 0$$

▶ Solve linear system of equations

$$x^{k+1} = x^k - \nabla F(x^k)^{-1} F(x^k)$$

- Direct method compute factorization
- ► Iterative method use Krylov subspace
- ▶ Method has local (fast) convergence under suitable conditions
 - ▶ If x^k is near a solution, method converges to a solution x^*
 - ▶ The distance to the solution decreases quickly; ideally,

$$||x^{k+1} - x^*|| \le c||x^k - x^*||^2$$

Globally Convergent Newton Method

► Solve linear system of equations

$$\nabla F(x^k)s_k = -F(x^k)$$

▶ Determine step length by minimizing merit function

$$t_k \in \arg\min_{t \in (0,1]} ||F(x^k + ts_k)||_2^2$$

Update iterate

$$x^{k+1} = x^k + t_k s_k$$

Globalized Newton Method with Proximal Perturbation

▶ Solve linear system of equations

$$(\nabla F(x^k) + \lambda_k I)s_k = -F(x^k)$$

- ▶ Check step and possibly use steepest descent direction
- ▶ Determine step length

$$t_k \in \arg\min_{t \in (0,1]} \|F(x^k + ts_k)\|_2^2$$

▶ Update iterate

$$x^{k+1} = x^k + t_k s_k$$

Update perturbation

Nonsquare Nonlinear Systems of Equations

▶ Given $F: \Re^n \to \Re^m$, compute x such that

$$F(x) = 0$$

- ▶ System is underdetermined if m < n
 - More variables than constraints
 - Solution typically not unique
 - Need to select one solution

$$\min_{x} ||x||_2$$
 subject to $F(x) = 0$

- ▶ System is overdetermined if m > n
 - More constraints than variables
 - Solution typically does not exist
 - ▶ Need to select approximate solution

$$\min_{x} \|F(x)\|_2$$

- ▶ System is square if m = n
 - Jacobian has full rank then solution is unique
 - If Jacobian is rank deficient then
 - Underdetermined when compatible
 - Overdetermined when incompatible

Part II

Unconstrained Optimization

Model Formulation

- Classify m people into two groups using v variables
 - $c \in \{0,1\}^m$ is the known classification
 - $d \in \Re^{m \times v}$ are the observations
 - ▶ $\beta \in \Re^{v+1}$ defines the separator
 - ▶ logit distribution function
- Maximum likelihood problem

$$\max_{\beta} \quad \sum_{i=1}^{m} c_i \log(f(\beta, d_{i, \cdot})) + (1 - c_i) \log(1 - f(\beta, d_{i, \cdot}))$$

where

$$f(\beta, x) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{\nu} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{\nu} \beta_j x_j\right)}$$

Model Formulation

- Classify m people into two groups using v variables
 - $c \in \{0,1\}^m$ is the known classification
 - $d \in \Re^{m \times v}$ are the observations
 - ▶ $\beta \in \Re^{\nu+1}$ defines the separator
 - ▶ logit distribution function
- Maximum likelihood problem

$$\min_{eta} \quad -\left(\sum_{i=1}^m c_i \log(f(eta, d_{i,\cdot})) + (1-c_i) \log(1-f(eta, d_{i,\cdot}))\right)$$

where

$$f(\beta, x) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{\nu} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{\nu} \beta_j x_j\right)}$$

Basic Theory

$$\min_{x} f(x)$$

- ► Convex functions local minimizers are global minimizers
- Nonconvex functions
 - ▶ Stationarity: $\nabla f(x) = 0$
 - ▶ Local minimizer: $\nabla^2 f(x)$ is positive definite (min eig positive)
 - ▶ Local maximizer: $\nabla^2 f(x)$ is negative definite (max eig negative)

Solution Techniques

$$\min_{x} f(x)$$

Main ingredients of solution approaches:

- ▶ Local method: given x_k (solution guess) compute a step s^k
 - Gradient Descent
 - Quasi-Newton Approximation
 - Sequential Quadratic Programming
- ▶ Globalization strategy: converge from any starting point
 - Trust region
 - ▶ Line search

Trust-Region Method

$$\min_{s \text{ subject to }} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

Trust-Region Method

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve trust-region subproblem

min_s
$$f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

subject to $||s||_2 \le \Delta_k$

Trust-Region Method

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve trust-region subproblem

min_s
$$f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

subject to $||s||_2 \le \Delta_k$

- 2.2 Accept or reject iterate
- 2.3 Update trust-region radius
 - Increase if actual reduction more than predicted
 - Decrease if actual reduction less than predicted
- 3. Check convergence

Solving a Convex Quadratic Program

Assume the quadratic program is strictly convex

$$\min_{s} \quad \frac{1}{2}s^{T}Hs + c^{T}s$$

- ▶ *H* is symmetric and positive definite
- $ightharpoonup H^{-1}$ exists
- Stationary points are necessary and sufficient

$$Hs = -c$$

- Cholesky factorization
 - Compute (sparse) lower triangular matrix with $H = LL^T$
 - Solve $s = L^{-T}(L^{-1}c)$ exploiting lower triangular property
- Conjugate gradient method
 - Iteratively compute a set of H conjugate directions
 - Analytically minimize quadratic along the directions
 - Objective function decreases monotonically
 - ► Guaranteed convergence in *n* steps

Solving a Nonconvex Quadratic Program

No assumptions on the quadratic program

$$\min_{s} \frac{1}{2} s^{T} H s + c^{T} s$$
subject to $||s||_{2} \leq \Delta_{k}$

- Trust region bounds objective function
- No unbounded solutions
- ► Can detect inertia with a LDL^T factorization and use direct method
- ► Global solutions computed with Moré-Sorensen method
 - Requires repeated factorization of a matrix
 - Can be expensive to calculate
 - Little benefit
- Conjugate gradient method with a trust region
 - ▶ Iteratively compute a set of *H* conjugate directions
 - ► Analytically minimize quadratic along the directions
 - Stop when trust region boundary is encountered
 - Objective function decreases monotonically

- 1. Initialize perturbation to zero
- 2. Solve perturbed quadratic model

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s$$

- 1. Initialize perturbation to zero
- 2. Solve perturbed quadratic model

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s$$

- 3. Find new iterate
 - 3.1 Search along Newton direction
 - 3.2 Search along gradient-based direction

- 1. Initialize perturbation to zero
- 2. Solve perturbed quadratic model

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s$$

- 3. Find new iterate
 - 3.1 Search along Newton direction
 - 3.2 Search along gradient-based direction
- 4. Update perturbation
 - Decrease perturbation if the following hold
 - Iterative method succeeds
 - Search along Newton direction succeeds
 - Otherwise increase perturbation
- 5. Check convergence

Solving the Subproblem

- ▶ Use LDL^T to determine inertia and update perturbation
- ▶ Apply conjugate gradient method and stop on unbounded directions

Solving the Subproblem

- ▶ Use LDL^T to determine inertia and update perturbation
- ▶ Apply conjugate gradient method and stop on unbounded directions
- Conjugate gradient method with trust region
 - ► Initialize radius
 - Update radius

Performing the Line Search

- Backtracking Armijo line search
 - Find t to satisfy sufficient decrease condition

$$f(x_k + ts) \leq f(x_k) + \sigma t \nabla f(x_k)^T s$$

- ▶ Try $t = 1, \beta, \beta^2, \dots$ for $0 < \beta < 1$
- ▶ More-Thuente line search
 - Find t to satisfy strong Wolfe conditions

$$\begin{array}{rcl} f(x_k + ts) & \leq & f(x_k) + \sigma t \nabla f(x_k)^T s \\ |\nabla f(x_k + ts)^T s| & \leq & \delta |\nabla f(x_k)^T s| \end{array}$$

- ► Construct cubic interpolant
- ▶ Compute *t* to minimize interpolant
- Refine interpolant

Updating the Perturbation

1. If increasing and $\lambda_k = 0$

$$\lambda_{k+1} = \mathsf{Proj}_{[\ell_0, u_0]} \left(\alpha_0 \| \nabla f(x^k) \| \right)$$

2. If increasing and $\lambda_k > 0$

$$\lambda_{k+1} = \mathsf{Proj}_{[\ell_i, u_i]} \left(\mathsf{max} \left(\alpha_i \| \nabla f(x^k) \|, \beta_i \lambda_k \right) \right)$$

3. If decreasing

$$\lambda_{k+1} = \min \left(\alpha_d \| \nabla f(x^k) \|, \beta_d \lambda_k \right)$$

4. If $\lambda_{k+1} < \ell_d$, then $\lambda_{k+1} = 0$

Trust-Region Line-Search Method

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve trust-region subproblem

min_s
$$f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

subject to $||s|| \le \Delta_k$

- 2.2 Search along direction
- 2.3 Update trust-region radius
- 3. Check convergence

Iterative Methods

- ► Conjugate gradient method
 - Stop if negative curvature encountered
 - ► Stop if residual norm is small

Iterative Methods

- Conjugate gradient method
 - Stop if negative curvature encountered
 - ► Stop if residual norm is small
- ► Conjugate gradient method with trust region
 - Nash
 - Follow direction to boundary if first iteration
 - Stop at base of direction otherwise
 - Steihaug-Toint
 - Follow direction to boundary
 - Generalized Lanczos
 - Compute tridiagonal approximation
 - Find global solution to approximate problem on boundary
 - Initialize perturbation with approximate minimum eigenvalue

Preconditioners to Improve Performance

Modify system of equations solved

$$AHs = -Ac$$

- A is symmetric positive definite
- $ightharpoonup A^{-1}$ can be easily applied to vector
- ► AH is well conditioned or has clustered eigenvalues
- Corresponds to changing to an elliptic trust region

$$\begin{array}{ll}
\min_{s} & \frac{1}{2}s^{T}Hs + c^{T}s \\
\text{subject to} & \|s\|_{A} \leq \Delta_{k}
\end{array}$$

- Preconditioners are problem specific
- Many possibly preconditioners
 - ▶ No preconditioner A = I
 - ▶ Diagonal of Hessian $A = |diag(H(x_k))|$
 - ▶ Diagonal of perturbed Hessian $A = |\text{diag}(H(x_k) + \lambda_k I)|$
 - Quasi-newton approximation to Hessian matrix
 - Incomplete Cholesky factorization of Hessian
 - Block Jacobi with Cholesky factorization of blocks

Termination

- ► Typical convergence criteria
 - ▶ Absolute residual $\|\nabla f(x_k)\| < \tau_a$
 - ▶ Relative residual $\frac{\|\nabla f(x_k)\|}{\|\nabla f(x_0)\|} < \tau_r$
 - ▶ Unbounded objective $f(x_k) < \kappa$
 - ▶ Slow progress $|f(x_k) f(x_{k-1})| < \epsilon$
 - ▶ Iteration limit
 - ► Time limit
- Check the solver status

Convergence Issues

- Quadratic convergence best outcome
- Linear convergence
 - ▶ Far from a solution $-\|\nabla f(x_k)\|$ is large
 - ► Hessian is incorrect disrupts quadratic convergence
 - ▶ Hessian is rank deficient $-\|\nabla f(x_k)\|$ is small
 - Limits of finite precision arithmetic
 - 1. $\|\nabla f(x_k)\|$ converges quadratically to small number
 - 2. $\|\nabla f(x_k)\|$ hovers around that number with no progress
- ▶ Domain violations such as $\frac{1}{x}$ when x = 0
 - Make implicit constraints explicit
- Nonglobal solution
 - Apply a multistart heuristic
 - Use global optimization solver

Some Available Software

- ► TRON Newton method with trust-region
- ▶ LBFGS Limited-memory quasi-Newton method with line search
- ► TAO Toolkit for Advanced Optimization
 - ► NLS Newton line-search method
 - ▶ NTR Newton trust-region method
 - ▶ NTL Newton line-search/trust-region method
 - LMVM Limited-memory quasi-Newton method
 - CG Nonlinear conjugate gradient methods

- Methods of last resort
- ▶ Limited to small problems (up to 100 variables)
- ▶ Derivatives exist but are not computed

- ▶ Methods of last resort
- Limited to small problems (up to 100 variables)
- Derivatives exist but are not computed
- Nelder-Mead
 - Initialize a simplex
 - Update simplex based on function values
 - ► Increase size of the simplex
 - Reduce size of the simplex
 - Reflection of the simplex
 - Convergent methods can be constructed
 - Matlab and numerical recipes versions do not have guarantees

- ▶ Methods of last resort
- Limited to small problems (up to 100 variables)
- Derivatives exist but are not computed
- Nelder-Mead
 - ▶ Initialize a simplex
 - Update simplex based on function values
 - Increase size of the simplex
 - Reduce size of the simplex
 - ▶ Reflection of the simplex
 - Convergent methods can be constructed
 - Matlab and numerical recipes versions do not have guarantees
- Pattern search methods
 - Evaluate objective along coordinate directions
 - ▶ If no improvement shrink the length
 - Show convergence

- ▶ Methods of last resort
- Limited to small problems (up to 100 variables)
- Derivatives exist but are not computed
- Nelder-Mead
 - ▶ Initialize a simplex
 - Update simplex based on function values
 - ▶ Increase size of the simplex
 - Reduce size of the simplex
 - ▶ Reflection of the simplex
 - Convergent methods can be constructed
 - Matlab and numerical recipes versions do not have guarantees
- Pattern search methods
 - Evaluate objective along coordinate directions
 - If no improvement shrink the length
 - Show convergence
- Model based methods
 - Sample the objective at various points
 - Construct a model based on the samples
 - Compute optimal solution for the model
 - ▶ Update the set of sample points
 - Show convergence

Part III

Constrained Optimization

Social Planning Model

- ▶ Economy with *n* agents and *m* commodities
 - $ightharpoonup e \in \Re^{n \times m}$ are the endowments
 - \bullet $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
 - lacksquare $\lambda \in \Re^n$ are the social weights
- Social planning problem

$$\max_{\substack{k \geq 0 \\ x \geq 0}} \sum_{i=1}^{n} \lambda_{i} \left(\sum_{k=1}^{m} \frac{\alpha_{i,k} (1 + x_{i,k})^{1 - \beta_{i,k}}}{1 - \beta_{i,k}} \right)$$
subject to
$$\sum_{i=1}^{n} x_{i,k} \leq \sum_{i=1}^{n} e_{i,k} \qquad \forall k = 1, \dots, m$$

Life-Cycle Saving Model

- Maximize discounted utility
 - $u(\cdot)$ is the utility function
 - R is the retirement age
 - ► T is the terminal age
 - w is the wage
 - \triangleright β is the discount factor
 - r is the interest rate
- Optimization problem

$$\max_{s,c} \sum_{t=0}^{T} \beta^{t} u(c_{t})$$
subject to
$$s_{t+1} = (1+r)s_{t} + w - c_{t} \quad t = 0, \dots, R-1$$

$$s_{t+1} = (1+r)s_{t} - c_{t} \quad t = R, \dots, T$$

$$s_{0} = s_{T+1} = 0$$

Theory Revisited

▶ Strict descent direction *d*

$$\nabla f(x)^T d < 0$$

- Stationarity conditions (first-order conditions)
 - ► No feasible, strict descent directions
 - For all feasible directions d

$$\nabla f(x)^T d \geq 0$$

▶ Unconstrained case, $d \in \Re^n$ and

$$\nabla f(x) = 0$$

- Constrained cases
 - Characterize superset of feasible directions
 - ▶ Requires constraint qualification

Convergence Criteria

$$\min_{x} f(x)$$
 subject to $c(x) \ge 0$

- ▶ Feasible and no strict descent directions
 - Constraint qualification LICQ, MFCQ
 - ▶ Linearized active constraints characterize directions
 - ▶ Objective gradient is a linear combination of constraint gradients

Optimality Conditions

▶ If x^* is a local minimizer and a constraint qualification holds, then there exist multipliers $\lambda^* \ge 0$ such that

$$\nabla f(x^*) - \nabla c_{\mathcal{A}}(x^*)^T \lambda_{\mathcal{A}}^* = 0$$

- ▶ Lagrangian function $\mathcal{L}(x,\lambda) := f(x) \lambda^T c(x)$
- Optimality conditions can be written as

$$\nabla f(x) - \nabla c(x)^T \lambda = 0$$

$$0 \le \lambda \quad \perp \quad c(x) \ge 0$$

Complementarity problem

Solving Constrained Optimization Problems

Main ingredients of solution approaches:

- ▶ Local method: given x_k (solution guess) find a step s.
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - ► Interior-Point Method (IPM)
- Globalization strategy: converge from any starting point.
 - Trust region
 - Line search
- ► Acceptance criteria: filter or penalty function.

Sequential Linear Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate

Sequential Linear Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve linear program

$$\min_{s} f(x_k) + s^T \nabla f(x_k)$$
subject to
$$c(x_k) + \nabla c(x_k)^T s \ge 0$$

$$\|s\| \le \Delta_k$$

Sequential Linear Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve linear program

$$\begin{aligned} \min_{s} & f(x_k) + s^T \nabla f(x_k) \\ \text{subject to} & c(x_k) + \nabla c(x_k)^T s \geq 0 \\ & \|s\| \leq \Delta_k \end{aligned}$$

- 2.2 Accept or reject iterate
- 2.3 Update trust-region radius
- 3. Check convergence

Sequential Quadratic Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate

Sequential Quadratic Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve quadratic program

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s$$
subject to
$$c(x_k) + \nabla c(x_k)^T s \ge 0$$

$$\|s\| \le \Delta_k$$

Sequential Quadratic Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve quadratic program

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s$$
subject to
$$c(x_k) + \nabla c(x_k)^T s \ge 0$$

$$\|s\| \le \Delta_k$$

- 2.2 Accept or reject iterate
- 2.3 Update trust-region radius
- 3. Check convergence

Sequential Linear Quadratic Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate

Sequential Linear Quadratic Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve linear program to predict active set

$$\min_{\substack{d \text{ subject to}}} f(x_k) + d^T \nabla f(x_k)$$

$$c(x_k) + \nabla c(x_k)^T d \ge 0$$

$$||d|| \le \Delta_k$$

Sequential Linear Quadratic Programming

- 1. Initialize trust-region radius
- 2. Compute a new iterate
 - 2.1 Solve linear program to predict active set

$$\min_{d} f(x_k) + d^T \nabla f(x_k)$$
subject to
$$c(x_k) + \nabla c(x_k)^T d \ge 0$$

$$||d|| \le \Delta_k$$

2.2 Solve equality constrained quadratic program

min
$$f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s$$

subject to $c_A(x_k) + \nabla c_A(x_k)^T s = 0$

- 2.3 Accept or reject iterate
- 2.4 Update trust-region radius
- 3. Check convergence

Acceptance Criteria

- ▶ Decrease objective function value: $f(x_k + s) \le f(x_k)$
- ▶ Decrease constraint violation: $||c_{-}(x_k + s)|| \le ||c_{-}(x_k)||$

Acceptance Criteria

- ▶ Decrease objective function value: $f(x_k + s) \le f(x_k)$
- ▶ Decrease constraint violation: $||c_{-}(x_k + s)|| \le ||c_{-}(x_k)||$
- Four possibilities

	P	
1.	step can decrease both $f(x)$ and $ c_{-}(x) $	GOOD
2.	step can decrease $f(x)$ and increase $ c_{-}(x) $???
3.	step can increase $f(x)$ and decrease $ c_{-}(x) $???
4.	step can increase both $f(x)$ and $ c_{-}(x) $	BAD

Acceptance Criteria

- ▶ Decrease objective function value: $f(x_k + s) \le f(x_k)$
- ▶ Decrease constraint violation: $||c_{-}(x_k + s)|| \le ||c_{-}(x_k)||$
- Four possibilities
 - 1. step can decrease both f(x) and $||c_{-}(x)||$
 - 2. step can decrease f(x) and increase $||c_{-}(x)||$
 - 3. step can increase f(x) and decrease $||c_{-}(x)||$
 - 4. step can increase both f(x) and $||c_{-}(x)||$
- ► Filter uses concept from multi-objective optimization

$$(h_{k+1},f_{k+1})$$
 dominates (h_ℓ,f_ℓ) iff $h_{k+1}\leq h_\ell$ and $f_{k+1}\leq f_\ell$

GOOD

??? ???

PAD

BAD

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs (h_{ℓ}, f_{ℓ})

- ▶ new x_{k+1} is acceptable to filter \mathcal{F} iff for all $\ell \in \mathcal{F}$
 - 1. $h_{k+1} \le h_{\ell}$ or
 - $2. \ f_{k+1} \leq f_{\ell}$

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs (h_{ℓ}, f_{ℓ})

- ▶ new x_{k+1} is acceptable to filter \mathcal{F} iff for all $\ell \in \mathcal{F}$
 - 1. $h_{k+1} \leq h_{\ell}$ or
 - $2. f_{k+1} \leq f_{\ell}$
- remove redundant filter entries

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs (h_{ℓ}, f_{ℓ})

- ▶ new x_{k+1} is acceptable to filter \mathcal{F} iff for all $\ell \in \mathcal{F}$
 - 1. $h_{k+1} \le h_{\ell}$ or
 - $2. f_{k+1} \leq f_{\ell}$
- remove redundant filter entries
- ▶ new x_{k+1} is rejected if for some $\ell \in \mathcal{F}$
 - 1. $h_{k+1} > h_{\ell}$ and
 - 2. $f_{k+1} > f_{\ell}$

Termination

- ▶ Feasible and complementary $\|\min(c(x_k), \lambda_k)\| \le \tau_f$
- ▶ Optimal $\|\nabla_x \mathcal{L}(x_k, \lambda_k)\| \le \tau_o$
- Other possible conditions
 - Slow progress
 - ▶ Iteration limit
 - ► Time limit
- Multipliers and reduced costs

Convergence Issues

- Quadratic convergence best outcome
- Globally infeasible linear constraints infeasible
- ► Locally infeasible nonlinear constraints locally infeasible
- ► Unbounded objective hard to detect
- Unbounded multipliers constraint qualification not satisfied
- Linear convergence rate
 - ▶ Far from a solution $-\|\nabla f(x_k)\|$ is large
 - Hessian is incorrect disrupts quadratic convergence
 - ▶ Hessian is rank deficient $-\|\nabla f(x_k)\|$ is small
 - Limits of finite precision arithmetic
- ▶ Domain violations such as $\frac{1}{x}$ when x = 0
 - Make implicit constraints explicit
- Nonglobal solutions
 - ► Apply a multistart heuristic
 - Use global optimization solver

Some Available Software

- filterSQP
 - trust-region SQP; robust QP solver
 - filter to promote global convergence
- ▶ SNOPT
 - line-search SQP; null-space CG option
 - ℓ_1 exact penalty function
- ► SLIQUE part of KNITRO
 - SLP-EQP
 - trust-region with ℓ_1 penalty
 - use with knitro_options = "algorithm=3";

Interior-Point Method

Reformulate optimization problem with slacks

Construct perturbed optimality conditions

$$F_{\tau}(x, y, z) = \begin{bmatrix} \nabla f(x) - \nabla c(x)^{T} \lambda - \mu \\ c(x) \\ X\mu - \tau e \end{bmatrix}$$

- ▶ Central path $\{x(\tau), \lambda(\tau), \mu(\tau) \mid \tau > 0\}$
- lacktriangle Apply Newton's method for sequence $au \searrow 0$

Interior-Point Method

- 1. Compute a new iterate
 - 1.1 Solve linear system of equations

$$\begin{bmatrix} W_k & -\nabla c(x_k)^T & -I \\ \nabla c(x_k) & 0 & 0 \\ \mu_k & 0 & X_k \end{bmatrix} \begin{pmatrix} s_x \\ s_\lambda \\ s_\mu \end{pmatrix} = -F_\tau(x_k, \lambda_k, \mu_k)$$

- 1.2 Accept or reject iterate
- 1.3 Update parameters
- 2. Check convergence

Convergence Issues

- Quadratic convergence best outcome
- ▶ Globally infeasible linear constraints infeasible
- ► Locally infeasible nonlinear constraints locally infeasible
- ▶ Dual infeasible dual problem is locally infeasible
- Unbounded objective hard to detect
- Unbounded multipliers constraint qualification not satisfied
- Duality gap
- ▶ Domain violations such as $\frac{1}{x}$ when x = 0
 - Make implicit constraints explicit
- Nonglobal solutions
 - Apply a multistart heuristic
 - Use global optimization solver

Termination

- ▶ Feasible and complementary $\|\min(c(x_k), \lambda_k)\| \le \tau_f$
- ▶ Optimal $\|\nabla_x \mathcal{L}(x_k, \lambda_k)\| \le \tau_o$
- Other possible conditions
 - Slow progress
 - Iteration limit
 - ► Time limit
- Multipliers and reduced costs

Some Available Software

- ▶ IPOPT open source in COIN-OR
 - ▶ line-search filter algorithm
- ► KNITRO
 - trust-region Newton to solve barrier problem
 - ℓ_1 penalty barrier function
 - Newton system: direct solves or null-space CG
- ▶ LOQO
 - line-search method
 - Newton system: modified Cholesky factorization

Part IV

Optimal Control

Optimal Technology

Optimize energy production schedule and transition between old and new reduced-carbon technology to meet carbon targets

- Maximize social welfare
- Constraints
 - Limit total greenhouse gas emissions
 - ▶ Low-carbon technology less costly as it becomes widespread
- ▶ Assumptions on emission rates, economic growth, and energy costs

Model Formulation

- Finite time: $t \in [0, T]$
- ▶ Instantaneous energy output: $q^{o}(t)$ and $q^{n}(t)$
- ▶ Cumulative energy output: $x^{o}(t)$ and $x^{n}(t)$

$$x^n(t) = \int_0^t q^n(\tau) d\tau$$

Discounted greenhouse gases emissions

$$\int_0^T e^{-at} \left(b_o q^o(t) + b_n q^n(t) \right) dt \le z_T$$

- ▶ Consumer surplus S(Q(t), t) derived from utility
- Production costs
 - c_o per unit cost of old technology
 - $ightharpoonup c_n(x^n(t))$ per unit cost of new technology (learning by doing)

Continuous-Time Model

$$\max_{\{q^o,q^n,x^n,z\}(t)} \qquad \int_0^T e^{-rt} \left[S(q^o(t) + q^n(t),t) - c_o q^o(t) - c_n(x^n(t)) q^n(t) \right] dt$$
 subject to
$$\dot{x^n}(t) = q^n(t) \quad x(0) = x_0 = 0$$

$$\dot{z}(t) = e^{-st} \left(b_o q^o(t) + b_n q^n(t) \right) \quad z(0) = z_0 = 0$$

$$z(T) \le z_T$$

$$q^o(t) \ge 0, \quad q^n(t) \ge 0.$$

Discretization:

- ▶ $t \in [0, T]$ replaced by N + 1 equally spaced points $t_i = ih$
- ightharpoonup h := T/N time integration step-length
- ▶ approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq_i^n$$

Discretization:

- ▶ $t \in [0, T]$ replaced by N + 1 equally spaced points $t_i = ih$
- ho h := T/N time integration step-length
- ▶ approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq_i^n$$

Output of new technology between t = 24 and t = 35

Solution with Varying h

Output for different discretization schemes and step-sizes

Add adjustment cost to model building of capacity: Capital and Investment:

- $ightharpoonup K^j(t)$ amount of capital in technology j at t.
- ▶ $I^{j}(t)$ investment to increase $K^{j}(t)$.
- ▶ initial capital level as \bar{K}_0^j :

Notation:

- $Q(t) = q^{o}(t) + q^{n}(t)$
- $C(t) = C^{o}(q^{o}(t), K^{o}(t)) + C^{n}(q^{n}(t), K^{n}(t))$
- $I(t) = I^{o}(t) + I^{n}(t)$
- $K(t) = K^{o}(t) + K^{n}(t)$

$$\begin{aligned} & \underset{\{q^j,K^j,l^j,x,z\}(t)}{\text{maximize}} & \left\{ \int_0^T e^{-rt} \left[\tilde{S}(Q(t),t) - C(t) - K(t) \right] dt + e^{-rT} K(T) \right\} \end{aligned}$$
 subject to
$$\dot{x}(t) = q^n(t), \quad x(0) = x_0 = 0$$

$$\dot{K}^j(t) = -\delta K^j(t) + l^j(t), \quad K^j(0) = \bar{K}^j_0, \quad j \in \{o,n\}$$

$$\dot{z}(t) = e^{-at} [b_o q^o(t) + b_n q^n(t)], \quad z(0) = z_0 = 0$$

$$z(T) \leq z_T$$

$$q^j(t) \geq 0, \ j \in \{o,n\}$$

$$l^j(t) \geq 0, \ j \in \{o,n\}$$

Optimal output, investment, and capital for 50% CO2 reduction.

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2}\int_0^1 u^2(t) + 2y^2(t)dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

$$\text{minimize } \frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.$$

Discretize with 2nd order RK

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$
 minimize $\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2$

subject to
$$(k = 0, ..., K)$$
:

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0,1],
y(0) = 1.$$

$$y_{k+1/2} = y_k + \frac{h}{2}(\frac{1}{2}y_k + u_k),
y_{k+1} = y_k + h(\frac{1}{2}y_{k+1/2} + u_{k+1/2}),$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

$$\text{minimize } \frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.$$

Discretize with 2nd order RK

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$
 minimize $\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2$

subject to (k = 0, ..., K):

$$y_{k+1/2} = y_k + \frac{h}{2}(\frac{1}{2}y_k + u_k),$$

 $y_{k+1} = y_k + h(\frac{1}{2}y_{k+1/2} + u_{k+1/2}),$

Discrete solution (k = 0, ..., K):

$$y_k = 1, \quad y_{k+1/2} = 0,$$

 $u_k = -\frac{4+h}{2h}, \quad u_{k+1/2} = 0,$

DOES NOT CONVERGE!

Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- \blacktriangleright Refine discretization: h=1 discretization is nonsense
- Check implied discretization of adjoints

Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- \blacktriangleright Refine discretization: h=1 discretization is nonsense
- Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

- Consistent adjoint/dual discretization
- Discretized gradients can be wrong!
- Harder for inequality constraints

Part V

Complementarity Constraints

Nash Games

- ▶ Non-cooperative game played by *n* individuals
 - ▶ Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- ▶ Equilibrium reached when no improvement is possible

Nash Games

- ▶ Non-cooperative game played by *n* individuals
 - ▶ Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- ▶ Characterization of two player equilibrium (x^*, y^*)

$$x^* \in \left\{ egin{array}{ll} rg \min_{x \geq 0} & f_1(x,y^*) \ \mathrm{subject\ to} & c_1(x) \leq 0 \ rg \min_{y \geq 0} & f_2(x^*,y) \ \mathrm{subject\ to} & c_2(y) \leq 0 \end{array}
ight.$$

Nash Games

- ▶ Non-cooperative game played by *n* individuals
 - ► Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- ▶ Characterization of two player equilibrium (x^*, y^*)

$$x^* \in \left\{ egin{array}{ll} \mathop{\mathrm{arg\,min}}_{x \geq 0} & f_1(x,y^*) \ \mathop{\mathsf{subject\ to}} & c_1(x) \leq 0 \ \\ y^* \in \left\{ egin{array}{ll} \mathop{\mathrm{arg\,min}}_{y \geq 0} & f_2(x^*,y) \ \\ \mathop{\mathsf{subject\ to}} & c_2(y) \leq 0 \end{array}
ight.$$

- Many applications in economics
 - Bimatrix games
 - Cournot duopoly models
 - General equilibrium models
 - Arrow-Debreau models

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x,\cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- ▶ Then the first-order conditions are necessary and sufficient

$$\begin{array}{lll} \min\limits_{\substack{x \geq 0 \\ \text{subject to}}} & f_1(x,y^*) & \Leftrightarrow & 0 \leq x & \bot & \nabla_x f_1(x,y^*) + \lambda_1^T \nabla_x c_1(x) \geq 0 \\ & 0 \leq \lambda_1 & \bot & -c_1(x) \geq 0 \end{array}$$

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x,\cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- ▶ Then the first-order conditions are necessary and sufficient

$$\begin{array}{lll} \min\limits_{\substack{y \geq 0 \\ \text{subject to}}} & f_2(x^*,y) \\ & c_2(y) \leq 0 \end{array} \Leftrightarrow & \begin{array}{lll} 0 \leq y & \bot & \nabla_y f_2(x^*,y) + \lambda_2^T \nabla_y c_2(y) \geq 0 \\ & 0 \leq \lambda_2 & \bot & -c_2(y) \geq 0 \end{array}$$

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x,\cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- ▶ Then the first-order conditions are necessary and sufficient

$$0 \le x \qquad \bot \qquad \nabla_{x} f_{1}(x, y) + \lambda_{1}^{T} \nabla_{x} c_{1}(x) \ge 0$$

$$0 \le y \qquad \bot \qquad \nabla_{y} f_{2}(x, y) + \lambda_{2}^{T} \nabla_{y} c_{2}(y) \ge 0$$

$$0 \le \lambda_{1} \qquad \bot \qquad -c_{1}(y) \ge 0$$

$$0 \le \lambda_{2} \qquad \bot \qquad -c_{2}(y) \ge 0$$

- Nonlinear complementarity problem
 - ▶ Square system number of variables and constraints the same
 - Each solution is an equilibrium for the Nash game

Model Formulation

- ▶ Economy with *n* agents and *m* commodities
 - $e \in \Re^{n \times m}$ are the endowments
 - \bullet $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
 - ▶ $p \in \Re^m$ are the commodity prices
- ▶ Agent *i* maximizes utility with budget constraint

$$\max_{\substack{x_{i,*} \geq 0}} \qquad \sum_{\substack{k=1 \\ m}}^m \frac{\alpha_{i,k} (1+x_{i,k})^{1-\beta_{i,k}}}{1-\beta_{i,k}}$$
 subject to
$$\sum_{k=1}^m p_k \left(x_{i,k} - e_{i,k}\right) \leq 0$$

▶ Market *k* sets price for the commodity

$$0 \leq p_k \quad \perp \quad \sum_{i=1}^n \left(e_{i,k} - x_{i,k}\right) \geq 0$$

Methods for Complementarity Problems

- Sequential linearization methods (PATH)
 - 1. Solve the linear complementarity problem

$$0 \le x \perp F(x_k) + \nabla F(x_k)(x - x_k) \ge 0$$

- 2. Perform a line search along merit function
- 3. Repeat until convergence

Methods for Complementarity Problems

- Sequential linearization methods (PATH)
 - 1. Solve the linear complementarity problem

$$0 \le x \perp F(x_k) + \nabla F(x_k)(x - x_k) \ge 0$$

- 2. Perform a line search along merit function
- 3. Repeat until convergence
- Semismooth reformulation methods (SEMI)
 - ▶ Solve linear system of equations to obtain direction
 - Globalize with a trust region or line search
 - Less robust in general
- Interior-point methods

Semismooth Reformulation

Define Fischer-Burmeister function

$$\phi(a, b) := a + b - \sqrt{a^2 + b^2}$$

- $\phi(a,b)=0$ iff $a\geq 0$, $b\geq 0$, and ab=0
- Define the system

$$[\Phi(x)]_i = \phi(x_i, F_i(x))$$

- x^* solves complementarity problem iff $\Phi(x^*) = 0$
- ► Nonsmooth system of equations

Semismooth Algorithm

1. Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k :

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.

Semismooth Algorithm

1. Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k :

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.

2. Compute smallest nonnegative integer i^k such that

$$\Psi(x^k + \beta^{i^k} d^k) \le \Psi(x^k) + \sigma \beta^{i^k} \nabla \Psi(x^k) d^k$$

3. Set $x^{k+1} = x^k + \beta^{i^k} d^k$, k = k + 1, and go to 1.

Convergence Issues

- Quadratic convergence best outcome
- ► Linear convergence
 - ▶ Far from a solution $-r(x_k)$ is large
 - ▶ Jacobian is incorrect disrupts quadratic convergence
 - ▶ Jacobian is rank deficient $-\|\nabla r(x_k)\|$ is small
 - Converge to local minimizer guarantees rank deficiency
 - Limits of finite precision arithmetic
 - 1. $r(x_k)$ converges quadratically to small number
 - 2. $r(x_k)$ hovers around that number with no progress
- ▶ Domain violations such as $\frac{1}{x}$ when x = 0

Some Available Software

- ▶ PATH sequential linearization method
- MILES sequential linearization method
- ► SEMI semismooth linesearch method
- ► TAO Toolkit for Advanced Optimization
 - SSLS full-space semismooth linesearch methods
 - ► ASLS active-set semismooth linesearch methods
 - RSCS reduced-space method

Definition

- Leader-follower game
 - Dominant player (leader) selects a strategy y*
 - ▶ Then followers respond by playing a Nash game

$$x_i^* \in \begin{cases} \underset{x_i \ge 0}{\text{arg min}} & f_i(x, y) \\ \text{subject to} & c_i(x_i) \le 0 \end{cases}$$

Leader solves optimization problem with equilibrium constraints

$$\begin{array}{ll} \min\limits_{y\geq 0,x,\lambda} & g(x,y) \\ \text{subject to} & h(y)\leq 0 \\ & 0\leq x_i \perp \nabla_{x_i}f_i(x,y) + \lambda_i^T\nabla_{x_i}c_i(x_i)\geq 0 \\ & 0\leq \lambda_i \perp -c_i(x_i)\geq 0 \end{array}$$

- Many applications in economics
 - Optimal taxation
 - Tolling problems

Model Formulation

- Economy with n agents and m commodities
 - $e \in \Re^{n \times m}$ are the endowments
 - \bullet $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
 - ▶ $p \in \Re^m$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$\max_{\substack{x_{i,*} \geq 0}} \qquad \sum_{\substack{k=1 \\ m}}^m \frac{\alpha_{i,k} (1+x_{i,k})^{1-\beta_{i,k}}}{1-\beta_{i,k}}$$
 subject to
$$\sum_{k=1}^m p_k \left(x_{i,k} - e_{i,k}\right) \leq 0$$

▶ Market *k* sets price for the commodity

$$0 \leq p_k \quad \perp \quad \sum_{i=1}^n \left(e_{i,k} - x_{i,k}\right) \geq 0$$

Nonlinear Programming Formulation

$$\begin{aligned} \min_{\substack{x,y,\lambda,s,t\geq 0\\ \text{subject to}}} & g(x,y)\\ \text{subject to} & h(y) \leq 0\\ & s_i = \nabla_{x_i} f_i(x,y) + \lambda_i^T \nabla_{x_i} c_i(x_i)\\ & t_i = -c_i(x_i)\\ & \sum_i \left(s_i^T x_i + \lambda_i t_i\right) \leq 0 \end{aligned}$$

- Constraint qualification fails
 - Lagrange multiplier set unbounded
 - Constraint gradients linearly dependent
 - ► Central path does not exist
- ▶ Able to prove convergence results for some methods
- ▶ Reformulation very successful and versatile in practice

Penalization Approach

$$\begin{aligned} \min_{\substack{x,y,\lambda,s,t\geq 0 \\ \text{subject to}}} & g(x,y) + \pi \sum_{i} \left(s_i^T x_i + \lambda_i t_i \right) \\ \text{subject to} & h(y) \leq 0 \\ & s_i = \nabla_{x_i} f_i(x,y) + \lambda_i^T \nabla_{x_i} c_i(x_i) \\ & t_i = -c_i(x_i) \end{aligned}$$

- Optimization problem satisfies constraint qualification
- ▶ Need to increase π

Relaxation Approach

$$\begin{aligned} \min_{\substack{x,y,\lambda,s,t\geq 0\\ \text{subject to}}} & g(x,y)\\ & h(y) \leq 0\\ & s_i = \nabla_{x_i} f_i(x,y) + \lambda_i^T \nabla_{x_i} c_i(x_i)\\ & t_i = -c_i(x_i)\\ & \sum_i \left(s_i^T x_i + \lambda_i t_i\right) \leq \tau \end{aligned}$$

ightharpoonup Need to decrease au

Limitations

- Multipliers may not exist
- ▶ Solvers can have a hard time computing solutions
 - ► Try different algorithms
 - Compute feasible starting point
- Stationary points may have descent directions
 - Checking for descent is an exponential problem
 - Strong stationary points found in certain cases
- Many stationary points global optimization

Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
 - ► Try different algorithms
 - Compute feasible starting point
- Stationary points may have descent directions
 - Checking for descent is an exponential problem
 - Strong stationary points found in certain cases
- Many stationary points global optimization
- Formulation of follower problem
 - Multiple solutions to Nash game
 - Nonconvex objective or constraints
 - Existence of multipliers

Part VI

Mixed Integer and Global Optimization

Global Optimization

I need to find the GLOBAL minimum!

- use any NLP solver (often work well!)
- use the multi-start trick from previous slides
- global optimization based on branch-and-reduce: BARON
 - constructs global underestimators
 - refines region by branching
 - tightens bounds by solving LPs
 - solve problems with 100s of variables
- "voodoo" solvers: genetic algorithm & simulated annealing no convergence theory ... usually worse than deterministic

Derivative-Free Optimization

My model does not have derivatives!

- ► Change your model ... good models have derivatives!
- ▶ pattern-search methods for min f(x)
 - evaluate f(x) at stencil $x_k + \Delta M$
 - move to new best point
 - extend to NLP; some convergence theory h
 - matlab: NOMADm.m; parallel APPSPACK
- solvers based on building interpolating quadratic models
 - DFO project on www.coin-or.org
 - ► Mike Powell's NEWUOA quadratic model
- "voodoo" solvers: genetic algorithm & simulated annealing no convergence theory ... usually worse than deterministic

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

- ▶ modeling discrete choices \Rightarrow 0 − 1 variables
- ▶ modeling integer decisions ⇒ integer variables e.g. number of different stocks in portfolio (8-10) not number of beers sold at Goose Island (millions)

MINLP solvers:

- branch (separate $z_i = 0$ and $z_i = 1$) and cut
- ▶ solve millions of NLP relaxations: MINLPBB, SBB
- outer approximation: iterate MILP and NLP solvers BONMIN (COIN-OR) & FilMINT on NEOS

Portfolio Management

- ▶ N: Universe of asset to purchase
- ► x_i: Amount of asset i to hold
- ▶ *B*: Budget

minimize
$$u(x)$$
 subject to $\sum_{i \in N} x_i = B$, $x \ge 0$

Portfolio Management

- ▶ N: Universe of asset to purchase
- ▶ x_i: Amount of asset i to hold
- ▶ *B*: Budget

minimize
$$u(x)$$
 subject to $\sum_{i \in N} x_i = B$, $x \ge 0$

- ► Markowitz: $u(x) \stackrel{\text{def}}{=} -\alpha^T x + \lambda x^T Q x$
 - ightharpoonup lpha: maximize expected returns
 - Q: variance-covariance matrix of expected returns
 - $ightharpoonup \lambda$: minimize risk; aversion parameter

More Realistic Models

- ▶ $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- ▶ Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x b)^T Q(x b)$
 - ▶ Constraint on $\mathbb{E}[\mathsf{Return}]$: $\alpha^T x \ge r$

More Realistic Models

- ▶ $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- ▶ Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - ▶ Constraint on $\mathbb{E}[Return]$: $\alpha^T x \ge r$
- ▶ Limit Names: $|i \in N : x_i > 0| \le K$
 - Use binary indicator variables to model the implication $x_i > 0 \Rightarrow y_i = 1$
 - Implication modeled with variable upper bounds:

$$x_i \leq By_i \quad \forall i \in N$$

Optimization Conclusions

Optimization is General Modeling Paradigm

- ▶ linear, nonlinear, equations, inequalities
- ▶ integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

- express optimization problems
- use automatic differentiation
- easy access to state-of-the-art solvers

Optimization Software

- open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)
- current solver limitations on laptop:
 - ▶ 1,000,000 variables/constraints for LPs
 - ▶ 100,000 variables/constraints for NLPs/NCPs
 - ▶ 100 variables/constraints for global optimization
 - ▶ 500,000,000 variable LP on BlueGene/P