Министерство образования и науки Российской Федерации «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ» (государственный университет)

ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ КАФЕДРА ПРИКЛАДНОЙ МЕХАНИКИ

На правах рукописи УДК 532.546-3:536.42

Новиков Алексей Викторович

Математическое моделирование термогидродинамических процессов в пласте для определения структуры околоскважинной зоны

Выпускная квалификационная работа магистра
Направление подготовки 010922
«Фундаментальная и прикладная геофизика»

Заведующий кафедрой	к.т.н Негодяев С.С.
Научный руководитель	Торопов К.В.
Студент-дипломник	Новиков А.В.

Содержание

Введе	ние	3
Обозн	ачения	7
Глава	1. Основы механики и термодинамики насыщенных пори-	
СТЬ	их сред	9
1.1	Кофигурации. Градиент деформации. Подходы Эйлера и Лагран-	
	жа описания движения сплошной среды	9
1.2	Тезоры деформаций. Уравнение совместности скоростей и де-	
	формаций	11
1.3	Пористость. Эффективная и истинная плотности. Закон сохра-	
	нения масс.	12
1.4	Напряжения. Законы сохранения импульса и момента импульса.	13
1.5	Закон сохранения энергии. Второе начало термодинамики	15
1.6	Определяющие уравнения	17
	2. Неизотермическая фильтрация флюида к несовершенм скважинам.	18
	3. Аналитические и численные методы решения задач	19
неи	зотермической фильтрации.	19
Списо	к использованных источников	20

Введение

Традиционно расчёт фильтрации флюидов в нефтегазоносных пластах проводят пренебрегая изменением температуры среды. Во-первых, потому, что изменения температуры при фильтрации крайне малы, и не оказывают сколько-нибудь заметного влияния на свойства среды. Во-вторых, для записи температурных данных необходимы высокоточные датчики, которые получили широкое распространение лишь в последнее десятилетие. В-третьих, при дополнительном расчёте теплопереноса возникает необходимость указания большого количества характеристик (как компонентов среды, так и задачи в целом), значения которых неизвестны, либо известны с весьма плохой точностью. В этой связи, модели неизотермической фильтрации при гидродинамическом моделировании месторождений остаются не у дел.

Тем не менее существует ряд задач, в которых привлечение термодинамики насыщенной пористой среды позволяет определить некоторые эксплуатаиионные характеристики пласта. Речь идет о измерении давления, дебита и температуры в стволе скважины и последующей совместной интерпретации этих данных на основе соответствующих моделей массо- и теплопереноса. Такие исследования носят название термогидродинамических, и подразделяются на два вида:

- измерение параметров вдоль ствола скважины;
- измерение параметров во времени на определённой глубине.

Первый тип исследования относится к стандартным *геофизическим* исследованиям, проводимым на этапе освоения и эксплуатации скважин. Их результатом является определение следующих хакрактеристик пласта:

- выявление работающих пластов;
- определение интервалов притока;
- оценка состава флюида, определение интервалов притока воды, нефти и газа;
- определение дебита, обводнённости, коэффициента продуктивности;
- определение пластового давления и температуры.

Результаты исследований по второму типу представляют особую ценность, т.к. позволяют определить динамические характеристики экплуатируемых пластов. Широко распространённой техникой являются, так называемые, гидродинамические исследования (ГДИ). Этот метод позволяет, на основе интерпретации кривых востановления уровня (КВУ), кривых востановления давления (КВД), определить проницаемость пласта, суммарный скин-фактор, продуктивность скважины, которая, в свою очередь, является основным показателем работы скважины. Тем не менее, метод не даёт никаких более подробных сведений о структуре околоскважинной зоны пласта (ОЗП), тогда как с гидродинамической точки зрения эта область представляет наибольший интерес.

Начиная с первичного вскрытия пласта, когда происходит проникновение фильтрата бурового раствора, формируется сложная структура ОЗП, в результате чего, меняются и её фильтрационно-ёмкостные свойства (ФЕС). На Рис. 1 изображена структура ОЗП. В дальнейшем, на этапе освоения и эксплуатации скважины, структура также может претерпевать изменения.

Рис. 1. Современное представление о структуре ОЗП. Выделяют: 1 – внешняя фильтрационная корка, 2 – внутренняя корка (зона кольматации), 3 – зона проникновения фильтрата.

Для определения этой структуры, в последнее время начинают применяться *термогидродинамические исследования* (ТГДИ) скважин [16, 18, 19, 22], основа которых была заложена ещё более полувека тому назад Э.Б. Чекалюком [6]. Эти исследования основаны на моделях неизотермической фильтрации, с помощью которых расчитывается забойная температура. Они ис-

пользуются для интерпретации промысловых данных, дополняя развитую технику интерпретации ГДИ.

Поскольку рассматриваемые исследования основаны на интерпретации нестационарных данных, принципиальным моментом здесь является скорость процесса. Давление очень быстро реагирует на изменение режима добычи и не позволяет получить информацию о ОЗП. В свою очередь, скорость основных тепловых процессов существенно ниже, что даёт возможность использовать ТГДИ для исследования ОЗП.

На пути прогресса распространения этой методики долгое время стояла недостаточная разрешающая способность темпертурных датчиков. Современные же устройства позволяют определять температуру с точностью до 0,0001 K, что является достаточным для идентификации даже незначительных изменений температурного фона в стволе скважины.

Тем не менее стоит отметить, что непосредственное применение ТГДИ на практике возможно лишь при наличии соотвествующего оборудования и его правильной установки, проведении исследований тепловых РVТ свойств флюида и породы, определённых системах заканчивания скважины, вкупе с другими геофизическими и промысловыми исследованиями.

Обзор литературы

Подробный вывод и описание законов сохранения и определяющих соотношений механики и термодинамики насыщенной пористой среды можно найти в [5]. Описание процессов тепло- и массо- переноса в многофазных многокомпонентных средах представлено в [3, 7]. Основные задачи фильтрации флюидов в нефтегазоносных пластах рассмотрены в [1,2]. Модели неизотермической фильтрации представлены в [6,8].

Математической моделью задач тепло- и массопереноса в пористых средах, как правило, является смешанная задача для системы нелинейных уравнений в частных производных. Для однородной прямоугольной области области задача массопереноса имеет аналитическое решение через функцию Грина [9]. Применение функций Грина для расчёта притока к скважинам произвольной геометрии рассмотрено в [25]. В [23] метод применяется к интерпретации ГДИ и обсуждаются вопросы суммирования рядов. Распространение метода на случай многофазной фильтрации можно найти в [24]. В радиальном случае проблема суммирования ряда, отмеченная в [1], до сих пор

не решена. Решение задач методом функций Грина в неоднородных областях преставляет большие трудности.

Зачастую, как в аналитических, так и в численных рассмотрениях пренебрегается зависимостью PVT характеристик континуумов от температуры (расщепление по физическим процессам). Несмотря на это, уравнение баланса энергии в случае многофазной фильтрации имеет сложный вид, его решение в общем виде неизвестно. В случае однофазной фильтрации и в пренебрежение теплопроводностью уравнение имеет гиперболический вид и имеет аналитическое решение [6, 18]. В работе [26] задача решается аналитически посредством расщепления на гиперболическое (конвекция, фазовые переходы, эф-т Джоуля-Томпсона, адиабатика) и параболическое (теплопроводность) уравнения.

Основным подходом при решении рассматриваемых задач является использование численных методов решения уравнений в частных производных [10]. Численные методы, схемы и варианты аппроксимаций уравнений фильтрации подробно рассмотрены в [11–13].

Актуальность

Новизна

Апробация

Обозначения

Здесь и далее будем обозначать индексом с заглавной буквой $A=\{F,G,S\}$ эффективные характеристики соответствующего континуума, со строчной $a=\{f,g,s\}$ – истинные характеристики.

Верхний индекс " θ " означает равновесную составляющую физической величины, в то время как "dis" – диссипативную составляющую.

Обозначения и операторы:

- \mathbb{E}^3 трёхмерное евклидово пространство,
- κ_A отсчётная конфигурация континуума A,
- $\chi(t)$ текущая конфигурация системы,
 - ∇_{κ} градиент в переменных \boldsymbol{X} ,
 - ∇ градиент в переменных \boldsymbol{x} ,
 - ⊗ тензорное умножение,
 - $oldsymbol{arepsilon}$ абсолютный антисимметричный тензор 3-го ранга Леви-Чивита,
 - $oldsymbol{n}$ вектор единичной нормали к поверхности,

Общие характеристики среды:

- ${m X}_A$ радиус-вектор материальной точки континуума A в отсчётной конфигурации,
 - $oldsymbol{x}$ радиус-вектор материальной точки в актуальной конфигурации,
 - v вектор скорости материальной точки континуума A,
- w_A в зависимости от контекста: либо дифузионная скорость (относительно центра масс среды), либо скорость движения флюида A относительно скелета S,
- ${m F}_A$ градиент деформаций (дисторсия) среды A,
- ϕ_A объёмная доля континуума A,
 - ϕ пористость среды,

- S насыщенность среды нефтью (жидкой фазой),
- ρ плотность массы,
- q_A объёмная интенсивность перехода массы вещества в континуум A, Характеристики напряжённого состояния:
 - t вектор напряжений,
 - σ тензор напряжений Коши,
 - \boldsymbol{b} плотность массовых сил,
 - $oldsymbol{b}^{int}$ объёмная сила взаимодействия континуумов,

Термические характеристики:

- θ температура среды,
- *r* плотность внешних источников,
- r^{int} скорогсть объёмного теплообмена между континумами,
- h_A поверхностный приток тепла,
 - q вектор теплового потока,
 - e плотность полной энергии,
 - u плотность внутренней энергии,
 - η плотность энтропии,
 - ψ плотность свободной энергии,
 - δ диссипация энергии,

Глава 1

Основы механики и термодинамики насыщенных пористых сред

Насыщенная пористая среда — совокупность твёрдого деформируемого скелета и флюида, насыщающего этот скелет. Под флюидом понимается смесь жидкостей и газов, способная перемещаться внутри порового пространства скелета. Для описания совместного движения скелета и флюида используется гипотеза суперпозиции континуумов, которая предполагает что в каждой точке пространства находится и скелет, и флюид.

Флюид, в свою очередь, может быть многофазным и многокомпонентным. Здесь и далее будем отождествлять понятие компоненты с химическим веществом, входящим в состав флюида. Фазой будем называть термодинамически равновесное состояние вещества, качественно отличное от других равновесных состояний того же вещества.

Подробное изложение законов сохранения, построение определяющих соотношений для таких систем можно найти в [2,4–6]. Вопросы динамики многофазных сред описаны в [7].

Здесь и далее, для простоты, будем рассматривать флюид, состоящий из двух компонент, которые могут находится в двух фазах (жидкой и газообразной) – бинарную смесь. В данной главе будут представлены законы сохранения, основные определяющие соотношения такой системы. Как результат будут получены математические модели процессов массо- и теплопереноса в пористых средах.

1.1 Кофигурации. Градиент деформации. Подходы Эйлера и Лагранжа описания движения сплошной среды.

Материальная точка или элементарный объём – объём сплошной среды, пренебрежимо малый по сравнению с размерами рассматриваемой задачи, но, при том, достаточный для того чтобы можно было проводить по нему осреднение. Дальнейшее рассмотрение будет проводится именно для таких объёмов.

Обозначим $\kappa_A \in \mathbb{E}^3$ – область, которую занимают частицы скелета (A=S)

или флюида (A=F, G) в момент времени t=0. Область κ_A в дальнейшем будем называть *отсчётной (начальной) конфигурацией* скелета или флюида соответственно. Область $\chi(t) \in \mathbb{E}^3$, занятую в момент времени t>0 частицами скелета и флюида, назовём *актуальной* или *текущей конфигурацией*. Отображения $\kappa_A \to \chi(t)$ будем называть деформацией концинуума A.

Здесь и далее предполагается, что области κ_A , $\chi(t)$ – регулярны, отображения $\kappa_A \to \chi(t)$ – кусочно-гомеоморфны и дифференцируемы. Тогда существуют взаимнооднозначные дифференцируемые связи:

$$\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{X}_A, t), \quad t > 0, \quad \boldsymbol{x} \in \chi(t), \quad \boldsymbol{X}_A \in \kappa_A,$$
 (1.1)

которые называются *законами движения* материальных точек скелета и флюида.

Возмём дифференциал от (1.1):

$$d\mathbf{x} = d\mathbf{X}_A \cdot (\nabla_{\kappa} \otimes \mathbf{x}) = d\mathbf{X} \cdot \mathbf{F}_A^T = \mathbf{F}_A \cdot d\mathbf{X},$$
$$\mathbf{F}_A(\mathbf{X}, t) = [\nabla_{\kappa} \otimes \mathbf{x}(\mathbf{X}_A, t)]^T, \tag{1.2}$$

где \mathbf{F}_A — тензор второго ранга, называемый градиентом деформации (дисторсией) континуума А.

Для градиента деформаций \mathbf{F}_A справедлива *теорема Коши о полярном* разложении, которая позволяет представить деформацию элемента $d\mathbf{X}_A$ как комбинацию растяжения (сжатия) и вращения как жесткого целого:

$$\boldsymbol{F}_A = \boldsymbol{R}_A \cdot \boldsymbol{U}_A = \boldsymbol{V}_A \cdot \boldsymbol{R}_A, \tag{1.3}$$

где \mathbf{R}_A – ортогональный тензор второго ранга, называемый *тензором поворо-* ma, \mathbf{U}_A , \mathbf{V}_A – симметричные положительной определённые тензоры второго ранга, называемые *правым и левым тензорами растяжения*. Разложение (1.19) единственно.

Частной производной закона движения (1.1) по времени является *вектор скорости материальной точки*:

$$\boldsymbol{v}_{A}(\boldsymbol{X}_{A},t) \equiv \dot{\boldsymbol{x}}(\boldsymbol{X}_{A},t) = \left. \frac{\partial \boldsymbol{x}(\boldsymbol{X},t)}{\partial t} \right|_{\boldsymbol{X}_{A}}.$$
 (1.4)

Здесь и далее точкой будем обозначать материальную производную по времени (при постоянном X_A).

Описание характристик материальной точки функциями от $oldsymbol{X}_A$ носит на-

звание материального или лагранжевого описания среды, а радиус-вектор \mathbf{X}_A носит название материальной или лагранжевой переменной. Если же характеристики представляются функциями \boldsymbol{x} , то такой подход называется пространственным или эйлеровым описанием среды, переменная \boldsymbol{x} – пространственной или эйлеровой переменной.

1.2 Тезоры деформаций. Уравнение совместности скоростей и деформаций.

Для того чтобы охарактеризовать деформации континуума вводятся специальные меры — mензоры конечных деформаций. Наиболее употребительными являются mensoph Коши-Грина E_A и Альманзи A_A :

$$\boldsymbol{E}_{A} = \frac{1}{2} \left(\boldsymbol{F}_{A}^{T} \cdot \boldsymbol{F}_{A} - \boldsymbol{I} \right) \tag{1.5}$$

$$\boldsymbol{A}_{A} = \frac{1}{2} \left(\boldsymbol{I} - \boldsymbol{F}_{A}^{-1T} \cdot \boldsymbol{F}_{A}^{-1} \right). \tag{1.6}$$

Представляя градиент деформаций (1.2) через вектор перемещений $\boldsymbol{u}_A = \boldsymbol{x}_A - \boldsymbol{X}_A$, подставляя в (1.5) и пренебрегая членами второго порядка малости, получим тензор малых деформаций \boldsymbol{e}_A :

$$\boldsymbol{e}_{A} = \frac{1}{2} \left((\nabla \otimes \boldsymbol{u}) + (\nabla \otimes \boldsymbol{u})^{T} \right), \tag{1.7}$$

где в принятых допущениях: $\nabla_{\kappa} \simeq \nabla$.

Величины $F_A(X_A,t)$ и $v_A(X_A,t)$ являются первыми производными отображения $\kappa_A \to \chi(t)$. Предполагая отображение (1.1) кусочно дважды непрерывнодифференцируемым, получим соотношение:

$$\dot{\boldsymbol{F}}_A = (\nabla_{\kappa} \otimes \boldsymbol{v}_A)^T, \tag{1.8}$$

называемое уравнением совместности скоростей и деформаций.

1.3 Пористость. Эффективная и истинная плотности. Закон сохранения масс.

Для описания доли пустот в твёрдом скелете используется скалярная величина $\phi(\boldsymbol{x},t)$ – nopucmocmb, определяемая выражением:

$$\phi(\boldsymbol{x},t) = \frac{1}{V(\boldsymbol{x},t)} \int_{V(\boldsymbol{x})} \tilde{\varphi}(\boldsymbol{z},t) dV, \qquad (1.9)$$

где интеграл берётся по элементарному объёму $V(\boldsymbol{x}),\, \tilde{\varphi}(\boldsymbol{z},t)$ – индикаторная функция скелета.

Наряду с пористостью введём понятия объёмных долей флюидов в объёме среды ϕ_F , ϕ_G . Для них справедливо соотношение: $\phi_F + \phi_G = \phi_S$, где $\phi_S \equiv \phi$. Насыщенностью пористой среды флюидом A называется величина:

$$S_A = \frac{\phi_A}{\phi}, \quad 0 \le S_A \le 1, \quad S_F + S_G = 1.$$
 (1.10)

Здесь и далее будем считать: $S \equiv S_F$, $1 - S = S_G$.

Масса пористого насыщенного тела β равна:

$$m(\beta) = \int_{\chi(\beta,t)} \rho(\boldsymbol{x},t)dV = \sum_{A=\{F,G,S\}} \int_{\chi(\beta,t)} \rho_A(\boldsymbol{x},t)dV, \qquad (1.11)$$

$$\rho_A(\boldsymbol{x},t) = \phi_A(\boldsymbol{x},t)\rho_a(\boldsymbol{x},t), \quad A = \{F,G,S\}, \tag{1.12}$$

где $\rho(\boldsymbol{x},t)$, $\rho_A(\boldsymbol{x},t)$ — $ocpe \partial h \ddot{e} h h b le$ (эффективные) плотности насыщенной пористой среды и континуума A, $\rho_a(\boldsymbol{x},t)$ — ucmuhh b le плотности континуума A.

В предположении, что обмен массой между континуумами отсутствует, запишем локальный закон сохранения массы континуума в форме Лагранжа:

$$\rho_{\kappa_A} = \rho_A \left| \det \mathbf{F}_A \right|, \quad A = \{F, G, S\}, \tag{1.13}$$

где ρ_{κ_A} , ρ_A — плотности массы континуума A в отсчётной и актуальной конфигурациях.

Взяв материальную производную от интегралов в (1.11), получим локальное уравнение баланса массы континуума A в форме Эйлера:

$$\dot{\rho}_A + \rho_A \nabla \cdot \boldsymbol{v}_A = 0, \quad A = \{F, G, S\}, \tag{1.14}$$

или в дивергентной форме:

$$\frac{\partial \rho_A}{\partial t}\Big|_{x} + \nabla \cdot (\rho_A \boldsymbol{v}_A) = 0, \quad A = \{F, G, S\}.$$
 (1.15)

Выражения (1.13), (1.14), (1.15) справедливы при отсутствии химических (фазовых) превращений. В противном случае необходимо писать в правой части соответствующие интенсивности переходов q_A :

$$\frac{\partial \rho_A}{\partial t}\Big|_{\boldsymbol{x}} + \nabla \cdot (\rho_A \boldsymbol{v}_A) = q_A, \quad A = \{F, G, S\}.$$
 (1.16)

1.4 Напряжения. Законы сохранения импульса и момента импульса.

Cuny, действующую континуум A в объёме тела β , представим в виде суммы объёмных массовых сил, объёмных сил взаимодействия континуумов и контактных сил:

$$\boldsymbol{f}_{A} = \boldsymbol{f}_{A}^{b} + \boldsymbol{f}_{A}^{int} + \boldsymbol{f}_{A}^{c} = \int_{\chi(\beta,t)} \rho_{A} \boldsymbol{b}_{A} dV + \int_{\chi(\beta,t)} \boldsymbol{b}_{A}^{int} dV + \oint_{\partial \chi(\beta,t)} \boldsymbol{t}_{A} dS, \quad (1.17)$$

где $\boldsymbol{b}_A(\boldsymbol{x},t)$ – плотность внешней массовой силы, \boldsymbol{b}_A^{int} – плотность сил, действующих на континуум A со стороны остальных континуумов в элементарном объёме, \boldsymbol{t}_A – контактная сила, действующая на континуум A из вне области χ со стороны того же континуума.

Для объёмных сил взаимодействия предполагатся:

$$\boldsymbol{b}_F^{int} + \boldsymbol{b}_G^{int} + \boldsymbol{b}_S^{int} = 0. \tag{1.18}$$

Сила \mathbf{t}_A называется вектором парциальных напряжений континуума A, задаётся на поверхности и является функцией координат и ориентации поверхности(постулат Kowu): $\mathbf{t}_A = \mathbf{t}_A(\mathbf{x}, \mathbf{n})$. Для вектора \mathbf{t}_A справедлива фундаметальная теорема Kowu:

$$\boldsymbol{t}_A(\boldsymbol{x}, \boldsymbol{n}) = \boldsymbol{\sigma}_A(\boldsymbol{x}) \cdot \boldsymbol{n}, \tag{1.19}$$

где тензор σ_A называется тензором эффективных (парциальных) напряжений Коши для континуума A. Для тензора σ_A справедливо выражение:

$$\boldsymbol{\sigma}_A(\boldsymbol{x},t) = \phi_A(\boldsymbol{x},t)\boldsymbol{\sigma}_a(\boldsymbol{x},t), \qquad (1.20)$$

где $\sigma_a(x,t)$ – тензор истинных напряжений Коши для континуума A.

Используя (1.19) и теорему Гаусса-Остроградского запишем *законы со*хранения импульса и момента импульса для континуума A в виде:

$$\int_{\chi(\beta,t)} \left(\frac{\partial (\rho_A \boldsymbol{v}_A)}{\partial t} + \nabla \cdot \left(\boldsymbol{v}_A \otimes \rho_A \boldsymbol{v}_A - \boldsymbol{\sigma}_A^T \right) - \rho_A \boldsymbol{b}_A - \boldsymbol{b}_A^{int} \right) dV = 0, \tag{1.21}$$

$$\int_{\chi(\beta,t)} \left[\boldsymbol{r} \times \left(\frac{\partial (\rho_A \boldsymbol{v}_A)}{\partial t} + \nabla \cdot \left(\boldsymbol{v}_A \otimes \rho_A \boldsymbol{v}_A - \boldsymbol{\sigma}_A^T \right) - \rho_A \boldsymbol{b}_A - \boldsymbol{b}_A^{int} \right) + \boldsymbol{\varepsilon} : \boldsymbol{\sigma}_A \right] dV = 0,$$
(1.22)

где ε — тензор Леви-Чивита. Подставляя (1.21) в (1.22) получим:

$$\boldsymbol{\sigma}_A = \boldsymbol{\sigma}_A^T. \tag{1.23}$$

Для выполнения закона сохранения момента импульса (1.22) необходимо и достаточно выполнения (1.23).

Выражения (1.21), (1.22) справедливы, если можно пренебречь вкладом квадрата пульсаций скорости в действующую силу и момент силы. В противном случае в законах сохранения необходимо записывать пульсационные и моментные напряжения.

Используя (1.16), запишем закон сохранения для континуума A в виде:

$$\rho_A \dot{\boldsymbol{v}}_A + q_A \boldsymbol{v}_A - \nabla \cdot \boldsymbol{\sigma}_A = \rho_A \boldsymbol{b}_A + \boldsymbol{b}_A^{int}. \tag{1.24}$$

Выражение (1.24) называется уравнением движения континуума A.

Сила взаимодействия, тензор напряжений и объёмная доля представляются в виде:

$$\boldsymbol{b}_{A}^{int} = \boldsymbol{b}_{A}^{0} + \boldsymbol{b}_{A}^{dis}, \quad \boldsymbol{\sigma}_{A} = \boldsymbol{\sigma}_{A}^{0} + \boldsymbol{\sigma}_{A}^{dis}, \quad \phi_{A} = \phi_{A}^{0} + \phi_{A}^{dis}, \quad A = \{F, G, S\}, \quad (1.25)$$

где \boldsymbol{b}_{A}^{0} , $\boldsymbol{\sigma}_{A}^{0}$, ϕ_{A}^{0} и \boldsymbol{b}_{A}^{dis} , $\boldsymbol{\sigma}_{A}^{dis}$, ϕ_{A}^{dis} – равновесные и диссипативные значения силы взаимодействия, тензора напряжений и объёмной доли. При этом имеем: $\boldsymbol{b}_{A}^{0} = \boldsymbol{\sigma}_{a} \cdot \nabla(\phi_{A})$. Для \boldsymbol{b}_{A}^{dis} формулируются определяющие соотношения, которые приводят к закону Дарси.

Суммируя (1.24) по всем континуумам $A = \{F, G, S\}$, получим:

$$\rho_A \dot{\boldsymbol{v}} + \nabla \cdot \left(\sum_A \left(\boldsymbol{w}_A \otimes \rho_A \boldsymbol{w}_A \right) - \boldsymbol{\sigma} \right) = \rho \boldsymbol{b}, \tag{1.26}$$

$$\rho = \sum_{A} \rho_{A}, \quad \rho \boldsymbol{v} = \sum_{A} \rho_{A} \boldsymbol{v}_{A}, \quad \rho \boldsymbol{b} = \sum_{A} \rho_{A} \boldsymbol{b}_{A}$$
 (1.27)

$$\boldsymbol{w}_A = \boldsymbol{v} - \boldsymbol{v}_A, \quad \sum_A \rho_A \boldsymbol{w}_A = 0, \quad \boldsymbol{\sigma} = \sum_A \boldsymbol{\sigma}_A,$$
 (1.28)

где ρ – плотность среды, $\rho \boldsymbol{v}$ – среднемассовая (барицентрическая) скорость, \boldsymbol{w}_A – относительные (диффузионные) скорости континуума $A, \, \boldsymbol{\sigma}$ – тензор полных напряжений среды.

1.5 Закон сохранения энергии. Второе начало термодинамики.

Для описание теплопереноса в рассматриваемой системе воспользуемся гипотезой о локальном термодинамическом равновесии, которая предполагает, что внутри каждого элементарного объёма среды все континуумы находятся в состоянии термодинамического равновесия. Считается, что при малых скоростях движения флюидов и высокой теплопроводности, использование гипотезы оправдано. В таком случае можно ввести понятие температуры $\theta(\boldsymbol{x},t)$ для материальной точки \boldsymbol{x} в момент времени t.

Запишем скорость подвода тепла к континууму A в объёме тела β :

$$Q_A = \int_{\chi(\beta,t)} (\rho_A r_A + r_A^{int}) dV + \oint_{\partial \chi(\beta,t)} h_A dS, \qquad (1.29)$$

гле r_A – плотность внешних (по отношению к континууму A) объёмных источников тепла, h_A – поверхностный приток тепла, r_A^{int} – скорость объёмного теплообмена.

Величины r_A^{int} , h_A во многом аналогичны характеристикам напряженного состояния \boldsymbol{b}_A^{int} , \boldsymbol{t}_A . Для r_A^{int} справедливо соотношение:

$$r_F^{int} + r_G^{int} + r_S^{int} = 0, (1.30)$$

а для h_A справедлива $\phi y h \partial a M e h m a ль h a я meope Ma <math>\Phi y p ь e$ -С $m o \kappa c a$:

$$h_A(\boldsymbol{x}, \boldsymbol{n}) = \boldsymbol{q}_A(\boldsymbol{x}) \cdot \boldsymbol{n}, \tag{1.31}$$

где $oldsymbol{q}_A(oldsymbol{x})$ – вектор теплового потока.

Запишем закон баланса энергии в виде:

$$\frac{d}{dt} \int_{\chi(\beta,t)} \rho e dV = \sum_{A} \left[\int_{\chi(\beta,t)} (\rho_{A} \boldsymbol{b}_{A} \cdot \boldsymbol{v}_{A}) dV + \oint_{\partial \chi(\beta,t)} (\boldsymbol{t}_{A} \cdot \boldsymbol{v}_{A}) dS \right] + \int_{\chi(\beta,t)} (\nabla \cdot \boldsymbol{q} + \rho r) dV$$
(1.32)

$$\rho e = \sum_{A} \rho_A e_A, \quad e_A = u_A + \frac{\boldsymbol{v}_A \cdot \boldsymbol{v}_A}{2}, \quad \boldsymbol{q} = \sum_{A} \boldsymbol{q}_A, \tag{1.33}$$

$$\rho r = \sum_{A} \rho_{A} r_{A}, \quad A = \{F, G, S\},$$
(1.34)

где e_A – *плотность полной энергии* системы, u_A – *плотность внутренней энергии*. В выражении (1.32) слева стоит материальная производная от полной энергии тела β – внутренней и кинетической, справа стоит мощность внешних сил и суммарная скорость подвода тепла.

Используя (1.16), (1.24) получим *приведённое уравнение баланса энергии* в виде:

$$\sum_{A} \left[\rho_{A} \dot{u}_{A} + q_{A} \left(u_{A} - \frac{\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}}{2} \right) \right] = \sum_{A} \left[\boldsymbol{b}_{A}^{int} \cdot \boldsymbol{w}_{A} + \boldsymbol{\sigma}_{A} : (\nabla \otimes \boldsymbol{v}_{A}) \right] + \nabla \cdot \boldsymbol{q} + \rho r,$$

$$(1.35)$$

где ${m w}_A$ — скорость материальной точки континуума A относительно скелета S.

Для формулировки второго начала термодинамики введём понятие плотности энтропии континуума $A - \eta_A$. Введение понятия энтропии позволяет верным образом учесть направление термодиначеских процессов, а также ввести понятие ноебратимых процессов. Между тем второе начало термодинамики будет использовано далее для построения определяющих соотношений насыщенной пористой среды.

Запишем второе начало термодинамики в интегральном виде:

$$\frac{d}{dt} \int_{\chi(\beta,t)} \sum_{A} \rho_{A} \eta_{A} dV \ge \int_{\chi(\beta,t)} \frac{\rho r}{\theta} dV + \oint_{\partial \chi(\beta,t)} \frac{\boldsymbol{q} \cdot \boldsymbol{n}}{\theta} dS. \tag{1.36}$$

Преобразуем (1.36) и запишем в дифференциальном виде:

$$\theta \sum_{A} \left[\rho_{A} \dot{\eta}_{A} + q_{A} \eta_{A} \right] - \nabla \cdot \boldsymbol{q} - \rho r + \frac{\boldsymbol{q} \cdot \nabla \theta}{\theta} \ge 0, \tag{1.37}$$

$$\delta_M = \theta \sum_A \left[\rho_A \dot{\eta}_A + q_A \eta_A \right] - \nabla \cdot \boldsymbol{q} - \rho r, \quad \delta_T = \frac{\boldsymbol{q} \cdot \nabla \theta}{\theta}, \quad (1.38)$$

$$\delta_M + \delta_T \ge 0, \tag{1.39}$$

где δ_M имеет смысл механической (внутренней) диссипации, а δ_T – термической диссипации, связанной с теплопроводностью среды.

Запишем (1.37) через плотность свобоной энергии $\psi_A = u_A - \theta \eta_A$. Для этого воспользуемся (1.8), (1.35), (1.25), получим:

$$-\sum_{A} \left[\rho_{A} \left(\dot{\psi}_{A} + \eta_{A} \dot{\theta} \right) + q_{A} \left(\psi_{A} - \frac{\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}}{2} \right) + \boldsymbol{\sigma}_{a} : \left(\nabla \otimes \phi_{A}^{0} \boldsymbol{w}_{A} \right) \right] + \left(\boldsymbol{\sigma} \cdot \boldsymbol{F}_{S}^{-1T} \right) : \dot{\boldsymbol{F}}_{S} + \delta_{f} + \delta_{T} \geq 0 \quad (1.40)$$

$$\boldsymbol{\sigma} = \sum_{A} \boldsymbol{\sigma}_{A}, \quad \delta_{f} = \sum_{A} \left[\boldsymbol{\sigma}_{A}^{dis} : (\nabla \otimes \boldsymbol{w}_{A}) + \boldsymbol{b}_{A}^{dis} \cdot \boldsymbol{w}_{A} \right],$$
 (1.41)

где σ — тензор полных напряжений среды, δ_f — диссипация фильтрации. Выражение (1.41) носит название — вторая форма приведённого неравенства Клаузиуса-Дюгема.

1.6 Определяющие уравнения.

Глава 2. Неизотермическая фильтрация флюида к несовершенным скважинам.

Глава 3. Аналитические и численные методы решения задач неизотермической фильтрации.

Список литературы

- [1] Чарный И.А. Подземная гидрогазодинамика. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2006. 436 стр.
- [2] Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика: Учебник для вузов. М.: Недра, 1993. 416 с.: ил
- [3] Розенберг М.Д., Кундин С.А. Многофазная многокомпонентная фильтрация при добыче нефти и газа. М., «Недра», 1976. 335 с.
- [4] Кондауров В.И., Фортов В.Е. Основы термомеханики конденсированной среды. М.: Издательство МФТИ, 2002. 336 с.
- [5] Кондауров В.И. Механика и термодинамика насыщенной пористой среды: Учебное пособие. М.: МФТИ, 2007. 310 с.
- [6] Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
- [7] Нигматулин Р.И. Динамика многофазных сред. Ч. І. М.: Наука. Гл. ред. физ-мат. лит. 1987-464 с.
- [8] Алишаев М.Г., Розенберг М.Д., Теслюк Е.В. Неизотермическая фильтрация при разработке нефтяных месторождений. / Под ред. Г.Г. Вахитова М.: Недра, 1985. 271 с.
- [9] Владимиров В.С. Уравнения математической физики. изд. 4-е М.: Наука. Главная редакция физико-математической литературы, 1981. 512 с.
- [10] Петров И.Б., Лобанов А.И. Лекции по вычислительной математике: Учебное пособие М.: Интернет-Университет Информационных Технологий; БИНОМ.Лаборатория знаний, 2013.-523 с.: ил., табл. (Серия «Основы информационных технологий»)
- [11] Каневская Р.Д. Математическое моделирование гидродинамических процессов разработки месторождений углеводородов. Москва-Ижевск: Институт компьютерных исследований, 2003, 128 стр.

- [12] Азиз X., Сеттари Э. Математическое моделированиие пластовых систем. Москва-Ижевск: Институт компьютерных исследований, 2004, 416 стр.
- [13] Chen Zhangxin, Guanren Huan, and Yuanle Ma. Computational Methods for Multiphase Flows in Porous Media. Philadelphia: Society for Industrial and Applied Mathematics, 2006.
- [14] LeVeque R.J. Finite volume methods for Hyperbolic problems. Cambridge University Press, 2002.
- [15] Марченко Н.А. [и др.] / Иерархия явно-неявных разностных схем для решения задачи многофазной фильтрации // Препринты ИПМ им. Келдыша. 2008. № 97. 17 с. URL: http://library.keldysh.ru/preprint.asp?id=2008-97
- [16] Рамазанов А.Ш. Теоретические основы термогидродинамических методов исследования нефтяных пластов. Автореф. дис. докт. техн. наук. Уфа, 2004.
- [17] Рамазанов А.Ш., Паршин А.В. Температурное поле в нефтеводонасыщенном пласте с учётом разгазирования нефти // Электронный научный журнал «Нефтегазовое дело». 2006. №1. URL: http://ogbus.ru/authors/Ramazanov/Ramazanov_1.pdf
- [18] Ramazanov A.Sh., Valiullin R.A., Sadretdinov A.A., Shako V.V., Pimenov V.P., Fedorov V.N., Belov K.V. Thermal Modeling for Characterization of Near Wellbore Zone and Zonal Allocation. SPE 136256, Moscow: SPE Russian Oil and Gas Conference and Exhibition, 2010.
- [19] Валиуллин Р.А., Рамазанов А.Ш., Хабиров Т.Р., Садретдинов А.А., Шако В.В., Сидорова М.В., Котляр Л.А., Федоров В.Н., Салимгареева Э.М. Интерпретация термогидродинамических исследований при испытании скважины на основе численного симулятора. SPE-176589-RU, Российская нефтегазовая техническая конференция SPE, 26-28 октября, 2015, Москва, Россия.
- [20] Оливье Узе, Дидье Витура, Оле Фьярэ. Анализ динамических потоков. КАППА выпуск v4.10.01 - Октябрь 2008.

- [21] Civan, Faruk. Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. // Gulf Professional Publishing. 2007. P. 1135.
- [22] Posvyanskii D.V., Gaidukov L.A., Tukhvatullina R.R. Estimating Bottom Hole Damage Zone Parameters Based on Mathematical Model of Thermohydrodynamic Processes. // ECMOR XIV. 2014.
- [23] D.V. Posvyanskii, A.B. Starostin, V.S. Posvyanskii, E.S. Makarova, A.A. Vorobjev. An Application of Green Function Technique and Ewald's Algorithm for Well Test Analysis. // ECMOR XI. 2008.
- [24] D.V. Posvyanskii, ECMOR XV.
- [25] Wolfsteiner, C., Durlofsky, L. J. and Aziz, K.: "Calculation of Well Index for Nonconventional Wells on Arbitrary Grids", Computational Geosciences, 7, 61-82, 2003
- [26] Obinna Duru, Roland N. Horne. Modeling Reservoir Temperature Transients and Matching to Permanent Downhole Gauge Data for Reservoir Parameter Estimation. 2008 SPE Annual Technical Conference and Exhibition, Denver.