Fundamentos e Teoria da Computação

Gabriel Santos Ferreira de Pádua

TP1

Autômatos Finitos (Não) Determinísticos

INTRODUÇÃO

O trabalho prático trata-se de construir autômatos finitos determinísticos e não determinísticos que reconheçam algumas linguagens regulares, a fim de testar o conhecimento adquirido em aulas .

INTRODUÇÃO	1
Questão 1:	2
Questão 2:	3
Questão 3:	5
Questão 4:	6
Questão 5:	7
Questão 6:	8
Questão 7:	9
Questão 8:	10
Questão 9:	11
Questão 10:	12
Ouestão 11:	13

Questão 1:

 $\{w \in (0,1)^* \mid w \text{ tenha um tamanho maior do que 3}\}$

Input	Result
000 001 111 0000 1111 0101	Reject
001	Reject
111	Reject
0000	Accept
1111	Accept
0101	Accept

Questão 2:

 $\{w \in (0,1)^* \mid |w| \ge 5$, e cujos dois primeiros símbolos sejam sempre diferentes um do outro $\}$

□	
Input	Result
000	Reject
110	Reject
0110	Reject
10101 01011	Accept
	Accept
0101111111	Accept

Questão 3:

 $\{w \in (0,1)^* \mid \text{cada } 0 \text{ de } w \text{ \'e imediatamente seguido de, no mínimo, dois } 1\text{'s}\}$

Questão 4:

 $\{w \in (0,1)^* \mid |w| > 3 \text{ e os primeiros } 3 \text{ símbolos de } w \text{ contêm, no mínimo, dois } 1's\}$

Input	Result
001	Reject
111	Reject
011	Reject
0111	Accept
1101	Accept
10100	Accept

Questão 5:

 $\{w \in (0,1)^* \mid w$ não possui a subpalavra 110 e nem a subpalavra 001

Obs: inclui palavra fazia nos possíveis reconhecimentos, já que questão não especifica mínimo como as outras.

Questão 6:

 $\{w \in (a,b)^* \mid w \text{ sempre começa com dois símbolos diferentes } e \mid w \mid > 1\}$

al∟	J.
Input	Result
aa	Reject
	Reject
bb aba bab	Reject
aba	Accept
bab	Accept
abaaaaaa	Accept

Questão 7:

 $\{w \in (a,b,c)^* \mid o \text{ primeiro símbolo de } w \text{ \'e sempre diferente do \'ultimo}\}$

Result
Reject
Reject
Reject
Accept
Accept Accept
Accept

Questão 8:

 $\{w \in (0,1)^* \mid w \text{ tem como prefixo } 00 \text{ ou } 111\}$

Table Text Size	
Input	Result
11	Reject
110101011111	Reject
0101010110101	Reject
00111110	Accept
11111111	Accept
00	Accept

Questão 9:

 $\{w \in (0,1)^* \mid w \text{ tem no mínimo dois 0's consecutivos após cada 1}\}$

Table Text Size		
Input	Result	
01	Reject	
0010	Reject	
01001100	Reject	
	Accept	
00000000100	Accept	
100100100100000000	Accept	
	· ·	

Questão 10:

 $\{w \in \{0,1\}^* \mid w \text{ possui um único } 1 \text{ e um número ímpar de 0's antes deste } 1 \text{ e um número par de 0's após este } 1\}$

Questão 11:

Três linguagens regulares quaisquer, definidas por você. Você deverá escrever também em português, a definição da linguagem, escrever da forma como foi feito nos dez primeiros itens aqui, fazer a máquina e fazer os testes de aceitação.

Definição : define-se linguagens regulares aquelas que podem ser lidas e reconhecidas por AFNs e AFDs.

11.1) Sejam 3 máquinas M1, M2 e M3, que leem respectivamente as linguagens L1, L2, e L3, e estas linguagens definidas por:

L1: $\{w \in \{a,b\}^* \mid \text{ deve iniciar com o símbolo a e deve ter obrigatoriamente o sufixo bb}\}$

L2: $\{w \in \{a,b\}^* \mid \text{ palavra deve iniciar com o símbolo b e ser precedida de pares símbolos a's}\}$

 $L3: \{w \in \{a,b\}^* \mid deve \ ser \ capaz \ de \ ler \ entradas \ vazias, \ tanto \ como$ reconhecer ou L1 e L2, como também ser capaz de reconhecer L1 seguida de L2 ou vice-versa}

Autômato de L3:

Teste de L1:

Input	Result
3	Reject
aaab	Reject
abababab	Reject
aabb	Reject Accept Accept
aaaaaaaabb	Accept
abababababb	Accept

Teste de L2:

· · · · · · · · · · · · · · · · · · ·	,
Input	Result
baaa	Reject
ba	Reject
b	Reject
baa	Accept
baaaaaaaaa	Accept
baaaa	Accept

Teste de L3: L3 = (L1 U L2) U (L1L2):

Input	Result
abbaa baabb	Reject
baabb	Reject
abababbaaaa	Reject
	Accept
abbbaa	Accept
baaabb	Accept
ababababaabbbaa	Accept

Explicação: esse autômato (máquina M3) é uma máquina capaz de ler entradas vazias, tanto como ler entrada de outras duas máquinas (M1 e M2); Por mais que isso nao apresenta usos óbvios , sua utilidade pode abranger várias áreas, como por exemplo passar dados de uma máquina a outra , sendo essas máquinas interligadas por internet (IOT)

EX: relógio que lê batimentos cardíacos possui sua linguagem em seu sistema, assim como óculos por iot, que seriam capazes de serem lidos por um celular (máquina que reconheceria ambas as linguagens).

11.2) Existe uma máquina capaz de ler números telefônicos em formatação padrão sendo (xx)xxxxx-xxxx onde sua linguagem é definida por L:

L: $\{w \in (1,2,3,(,),-)^* \mid w \text{ inicia com } (,\text{ após dois números recebe mais um símbolo }), seguidos de 5 símbolos numéricos, seguido por -, e por fim mais 4 símbolos numéricos}$

L:
$$((1,2,3)^{+2})(1,2,3)^{5}$$
- $(1,2,3)^{4}$

Input	Result
(31)1231-2233	Reject
(11)8002-4922 é o funk do yudi que vai dar PS2	Reject
(21)999-209-503	Reject
	Reject
(21)12332-3212	Accept
(11)23312-3311	Accept
(31)12312-2233	Accept

Explicação: Tratasse de uma abstração de reconhecimento de números telefônicos, obviamente com escalas reduzidas já que em vez de reconhecer os 9 algarismos possíveis reconhece apenas 3;

Também é possível notar que não reconhece a entrada vazia/ Palavra vazia, já que isso em sistema de reconhecimento de números telefônicos, como uma agenda, não faria sentido.

11.3)Suponhamos uma máquina que reconhecesse discos lidos, sabendo assim se um game é de playstation ,xbox ou nintendo , máquina essa chamada MB (maquina brainiac), então é proposto uma máquina que reconheça discos de todas as plataformas e também discos que não sejam apenas de jogos , essa máquina se chamaria MUC (máquina universal code)

proposta: MB possui L1 como linguagem e MUC possui L2 , sendo L2 uma máquina que possui um fecho de kleene.

 $L1{:}\{w \in (0{,}1)^* \mid w \text{ tem como prefixo } 101,\, 011 \text{ ou } 000,\, \text{mas tamb\'em}$ reconhece entrada de $\lambda\}$

L2: L2*

L2: $\{w \in (0,1)^*\}$

MB:

Reconhece todos os prefixos que determina a plataforma, o restante da entrada seria uma abstração do binário do game.

A entrada vazia sendo reconhecida seria a abstração de que o leitor pode não ter um disco pra ler.

MUC:

Leria até mesmo sem precisar de um sufixo para definir a plataforma, mas ainda sim conseguiria ler a linguagem L1, já que esta encontra-se abrangida dentro de L2.