Natural Gradients via the Variational Predictive Distribution

Da Tang¹ and Rajesh Ranganath²

Columbia University¹ New York University²

December 8, 2017

Pathological Curvature of the ELBO

- The curvature of the ELBO may be pathological
- Example: A bivariate Gaussian model with unknown mean and known covariance $\Sigma=\begin{pmatrix}1&1-arepsilon\\1-arepsilon&1\end{pmatrix}$, $0<arepsilon\ll1$

• The natural gradient (Hoffman et al., 2013) fails to help

The Variational Predictive Natural Gradient

• Approximate the posterior predictive distribution:

$$r(\mathbf{x}'|\mathbf{x}_i; \boldsymbol{\lambda}) = \int p(\mathbf{x}'|\mathbf{z}_i, \boldsymbol{\beta}) q(\mathbf{z}_i|\mathbf{x}_i, \boldsymbol{\beta}; \boldsymbol{\lambda}) q(\boldsymbol{\beta}; \boldsymbol{\lambda}) d\mathbf{z}_i d\boldsymbol{\beta}$$

• The variational predictive Fisher information:

$$F_r = \mathbb{E}_{Q_{\mathbf{x}_i}, r(\mathbf{x}'|\mathbf{x}_i; \boldsymbol{\lambda})} [\nabla_{\boldsymbol{\lambda}} \log r(\mathbf{x}'|\mathbf{x}_i; \boldsymbol{\lambda}) \cdot \nabla_{\boldsymbol{\lambda}} \log r(\mathbf{x}'|\mathbf{x}_i; \boldsymbol{\lambda})^{\top}]$$

Eigenspace comparison:

- (a) Precision mat Σ^{-1}
- (b) *q*-Fisher info F_q (c) Our Fisher info F_r

Experiment: Learning a VAE

- Training on the MNIST dataset (Lecun et al., 1998)
- Learning curves:

Thank you!