02. Convex Sets – 凸集合

By Yang Lin¹ (2023 秋季, @NJU)

Contents

- 1 Affine and convex sets
- 2 Some important examples
- 3 Operations that preserve convexity
- 4 Generalized inequalities
- 5 Separating and supporting hyperplanes
- 6 Dual cones and generalized inequalities

Define set with closed operations ...

Definition: For set V (e.g. \mathbb{R}^n) and field F (e.g. \mathbb{R}), define addition on V

$$\forall x, y \in V \Rightarrow x + y \in V,$$

and scalar multiplication

$$\forall x \in V, \forall \alpha \in F \Rightarrow \alpha x \in V,$$

Also, satisfies (ignored on real numbers)

- $\Box x + y = y + x$
- \Box 1x = x
- $\square (\alpha + \beta)x = \alpha x + \beta x$
- $\square \ \alpha(\beta x) = (\alpha \beta) x$

Linear subspace: if a subset of linear space V(F) is a linear space, then it is a subspace of V(F)

Theorem 1 $W \neq \emptyset$ and $W \subset V$. W is a subspace of V(F) iff

$$\forall x, y \in W \Rightarrow x + y \in W, \forall x \in W, \forall \alpha \in F \Rightarrow \alpha x \in W$$

Or equivalently

$$\forall x, y \in W, \ \forall \alpha, \beta \in F \Rightarrow \alpha x + \beta y \in W$$

(only justify it is closed on sums and scalar multiplication)

Theorem 2 $S, T \subset V(F)$ are subspaces, then $S \cap T$ is a subspace, $S \cup T$ is usually not a subspace, S + T is a subspace

$$S + T := \{z | z = x + y, x \in S, y \in T\}$$

Theorem 3 a subspace spanned by a set of vectors x_1, \ldots, x_m

$$\mathbf{Span}\{x_1,\ldots,x_m\} = \left\{x | x = \sum_{i=1}^m \alpha_i x_i, \alpha_i \in F, \ i = 1,\ldots,m\right\}$$

is the minimum subspace containing x_1, \ldots, x_m

Element in a linear space

$$x = \sum_{i=1}^{m} \alpha_i x_i, \alpha_i \in F, \ i = 1, \dots, m$$

Linear space is closed on linear combination

Linearly dependent there are α_i some of which are nonzeros, such that $\sum_{i=1}^{m} \alpha_i x_i = 0$

Linearly independent $\sum_{i=1}^{m} \alpha_i x_i = 0$ iff $\alpha_i = 0, \forall i$

Dimension of a lianear space In space V, there exists $\{x_1, \ldots, x_m\}$ which are linearly independent; and for any set of m+1 vectors, the elements are linearly dependent, we call $\{x_1, \ldots, x_m\}$ as the maximal linearly independent system.

 $\dim V = m$

Base of a linear space

Important fact on linear dependency and independency:

Vector $y \in \mathbf{Span}\{x_1, \dots, x_m\}$ has unique coeficients in $y = \sum_{i=1}^m \alpha_i x_i$ iff x_1, \dots, x_m are linearly independent

Theorem subspaces W_1 and W_2 , there is

$$\dim(W_1 \cap W_2) \le \min\{\dim(W_1), \dim(W_2)\}$$

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

Preliminaries: linear map

Definition If V, V' are linear spaces with the same domain F, if $\sigma: V \to V'$ satisfies

$$\sigma(x+y) = \sigma(x) + \sigma(y), \ \forall x, y \in V$$

$$\sigma(\alpha x) = \alpha \sigma(x), \ \forall x \in V, \forall \alpha \in F$$

 σ is a linear map from V to V'

A linear map is linear isomorphism map if it is a one-to-one map

A linear map is called linear transformation if $\sigma: V \to V$

Theorem Assume V, V' are subspaces, all linear maps from V to V' consists of set $\mathcal{L}(V, V')$. $\mathcal{L}(V, V')$ is also a subsapces, with the following equations holding

$$(\sigma + \tau)(x) = \sigma(x) + \tau(x), \ \forall x \in V$$
$$(\alpha \sigma)(x) = \alpha \sigma(x), \ \forall x \in V, \forall \alpha \in F$$

Preliminaries: linear map

What is matrix (understand matrix thru linear space)

- (1) A set of numbers according to an order (like vector, certainly a linear space)
- (2) A set of (row/column) vectors/first-order equations (rank)

The rank of matrix determines the dimension of the **linear space** that those vectors can span, the solution vector spans the rest (垂 直于行向量)

(3) Linear operator/map (linear space)

Line Through x_1 and x_2 , all points:

$$x = \theta x_1 + (1 - \theta)x_2, \ (\theta \in \mathbf{R})$$

Affine set (仿射集合): contains the line through any two distinct points in the set

 \Box Example (look at analysis in next slide): solution set of linear equations $\{x|Ax=b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations)

Alternative explanation of affine set

Assume C is affine, then

$$C = V + x_0 = \{v + x_0 | v \in V\}$$

for some x_0 , where V is a subspace

Analysis: For an affine set C and $x_0 \in C$

$$V = C - x_0 = \{x - x_0 | x \in C\}$$

is a subspace (closed under sums and scalar multiplication)

proof?

proof.

Assume $x_0 \in C$ and C is affine, there is:

- (1) $0 \in C x_0$ (do we need that?)
- (2) Closed under scalar multiplication

$$x_1 \in C - x_0 \Leftrightarrow x_1 + x_0 \in C$$

 $ax_1 + x_0 = a(x_1 + x_0) + (1 - a)x_0 \in C \Rightarrow ax_1 \in C - x_0$

(3) Closed under sums

$$x_1 \in C - x_0, x_2 \in C - x_0 \Rightarrow 2x_1 \in C - x_0, 2x_2 \in C - x_0$$

 $x_1 + x_2 + x_0 = \frac{1}{2}(2x_1 + x_0) + \frac{1}{2}(2x_2 + x_0) \in C$

Line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2, \ (\theta \in [0, 1])$$

Convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \ \theta \in [0, 1] \Rightarrow \theta x_1 + (1 - \theta) x_2 \in C$$

Examples: one convex, two non-convex

Convex Combination (凸组合) of x_1, \ldots, x_k : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k,$$

with $\theta_1 + \cdots + \theta_k = 1$, and $\theta_i \ge 0$

(Convex set: convex combination lies in the set)

Convex hull (凸包) convS: set of all convex combinations of points in S

Conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2,$$

with $\theta_1 \geq 0$, and $\theta_2 \geq 0$

Convex cone: set that contains all conic combinations of points in the set

Hyperplane: set of the form $\{x|a^Tx=b\}, a \neq 0$

Halfspace: set of the form $\{x|a^Tx \leq b\}$ $(a \neq 0)$

a is the normal vector (确定了法线的方向) hyperplanes are affine and convex; halfspaces are convex

(Euclidean) ball: with center x_c and radius r:

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\}$$

Ellipsoid (椭球): set of the form

$$\{x \mid \|(x - x_c)^T P^{-1}(x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

Other representation: $\{x_c + Au | ||u|| \le 1\}$ with A square and nonsingular (非奇异方阵)

Norm: a function $\|\cdot\|$ that satisfies:

- (1) $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- (2) $||tx|| = |t|||x||, t \in \mathbf{R}$
- $(3) ||x+y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\mathtt{symb}}$ is particular norm

Norm ball(范数球): with center x_c and radius r: $\{x | ||x-x_c|| \le r\}$ Norm cone (范数锥): $\{(x,t)| ||x|| \le t\}$ (Euclidean norm cone is called second-order cone)

x₂ -1 -1 -1

Norm balls and cones are convex

Polyhedra (多面体): solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

 $(A \in R^{m \times n}, C \in R^{p \times n}, \leq \text{ is componentwise inequality})$

Polyhedron is intersection of finite number of halfspaces and hyperplanes

Notations:

 S^n is set of symmetric $n \times n$ matrices

 $\mathbf{S}^n_+ = \{X \in \mathbf{S}^n | X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \ge 0 \text{ for all } z$$

 S_{+}^{n} is a convex cone

 $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n | X \succ 0\}$: positive definite $n \times n$ matrices

Example:
$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in S_+^2$$

proof. Assume $A \succeq 0$ and $B \succeq 0$ For any $\theta_1, \theta_2 > 0$

$$x^{T}(\theta_1 A + \theta_2 B)x = \theta_1 x^{T} A x + \theta_2 x^{T} B x \ge 0$$

That is $\theta_1 A + \theta_2 B \in \mathbf{S}_+^n$

Practical methods for establishing convexity of a set C:

1. Apply definition

$$x_1, x_2 \in C, 0 \le \theta \le 1 \Rightarrow \theta x_1 + (1-\theta)x_2 \in C$$

- 2. Show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - □ Intersection
 - □ Affine functions
 - □ Perspective function 透视函数
 - □ Linear-fractional functions 线性分式

Intersection

The intersection of (any number of) convex sets is convex **Example**

$$S = \{x \in \mathbf{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where
$$p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$$

for $m = 2$

Affine function

Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$, then:

1. The image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \Rightarrow f(S) = \{f(x) | x \in S\} \text{ convex}$$

2. The inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \Rightarrow f^{-1}(C) = \{x \in \mathbf{R}^n | f(x) \in C\} \text{ convex}$$

Examples:

- □ Scaling, translation, projection
- □ Solution set of linear matrix inequality $\{x|x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- □ Hyperbolic cone $\{x | x^T P x \le (c^T x)^2, c^T x \ge 0\}$ (with $P \in S_+^n$)

proof. of Example 2

Define
$$f(x) := B - A(x) = B - (x_1 A_1 + \dots + x_m A_m)$$

It is affine

For any x, the images y = f(x) construct a subspace

With $f(x) \succeq 0$, y = f(x) form a positive semidefinite cone, which is convex

x satisfies $f(x) \succeq 0$ is also convex

proof. of Example 3

The above set is obtained from the inverse image of $\{(z,t)|z^Tz \leq t^2, t \geq 0\}$ through affine function $f(x) = (P^{1/2}x, c^Tx)$

Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x, t) = x/t, \ \mathbf{dom}P = \{(x, t)| \ t > 0\}$$

Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$, then:

Images and inverse images of convex sets under perspective are convex

Linear-fractional function: $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, $dom f = \{x | c^T x + d > 0\}$

Images and inverse images of convex sets under linear-fractional functions are convex

Example of a linear-fractional function:

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

4 Generalized inequalities — 广义不等式

A convex cone $K \subseteq \mathbf{R}^n$ is a proper cone (正常锥) if

- \square K is closed (contains its boundary)
- \square *K* is solid (has nonempty interior)
- \square K is pointed (contains no line)

Examples:

- 1. Nonnegative orthant $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} | x_i \geq 0, i = 1, \dots, n\}$
- 2. Positive semidefinite cone $K = S_+^n$
- 3. Nonnegative polynomials on [0, 1]:

$$K = \{ x \in \mathbf{R}^n | x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

4 Generalized inequalities – 广义不等式

Generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \quad x \prec_K y \iff y - x \in \mathbf{int} \ K$$

Examples:

1. Componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \leq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \ i = 1, \dots, n$$

2. Matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \leq S_+^n Y \iff Y - X$$
 positive semidefinite

These two types are so common that we drop the subscript in \preceq_K Many properties of \preceq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_K y$$
, $u \leq_K v \Rightarrow x + u \leq_K y + v$

4 Generalized inequalities – 广义不等式

Minimum and minimal elements

 \preceq_K is not in general a linear ordering: we can have $x \npreceq_K y$ and $y \npreceq_K x$

 $x \in S$ is the minimum element of S with respect to \leq_K if

$$y \in S \Rightarrow x \leq_K y$$

 $x \in S$ is the minimal element of S with respect to \leq_K if

$$y \in S, \ y \leq_K x \Rightarrow y = x$$

Example:

5 Separating and supporting hyperplanes

Separating hyperplane theorem

If C and D are disjoint convex sets, then there exists a $a \neq 0, b$ such that

$$a^T x \le b \text{ for } x \in C, \ a^T x \ge b \text{ for } x \in D$$

The hyperplane $\{x|a^Tx = b\}$ separates C and DStrict separation requires additional assumptions (e.g., C) is closed, D is a singleton

5 Separating and supporting hyperplanes

Supporting hyperplane to set C at boundary point x_0 :

$$\{x|a^Tx = a^Tx_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

6 Dual cones and generalized inequalities

Dual cone of a cone K:

$$K^* = \{ y | y^T x \ge 0 \text{ for all } x \in K \}$$

Examples:

- $\square K = \mathbf{R}_+^n \colon K^* = \mathbf{R}_+^n$
- \square $K = S_+^n : K^* = S_+^n$

First three examples are **self-dual cones**

Dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

6 Dual cones and generalized inequalities

Minimum and minimal elements via dual inequalities Minimum element with respect to \leq_K : x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

$$K^* = \{ y | y^T x \ge 0 \text{ for all } x \in K \}$$

Minimal element with respect to \leq_K : if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

If x is a minimal element of a convex set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

6 Dual cones and generalized inequalities

Optimal production frontier

- \square Different production methods use different amounts of resources $x \in \mathbf{R}^n$
- \square Production set P: resource vectors x for all possible production methods
- $\hfill\Box$ Efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \pmb{R}^n_+

example (n =2): x_1, x_2, x_3 are efficient; x_4, x_5 are not

