소켓프로그래밍 라즈베리파이로 배우는 소켓 통신 <u>프로그래밍</u>

동양미래대학교 컴퓨터공학부 정석용

GPIO (General Purpose Input Output)

GPIO 핀 x 40

- 주변장치와 통신하기 위해 범용으로 사용하는 입출력 포트
- 라즈베리파이 모델 2 이후 40개의 핀 제공
- 5V 전원용 핀 2개, 3.3V 전원용 핀 2개, 그라운드(GND) 핀 8개, 범용 3.3V 핀 28개

그림 출처: https://www.raspberrypi.org/documentation/usage/gpio/

전원용 GPIO 핀: 5V 전원용 핀 2개, 3.3V 전원용 핀 2개

- GPIO 핀의 전원은 라즈베리파이의 전원을 이용
- 상시 전원 공급용으로 5V 전원용 핀 2개, 3.3V 전원용 핀 2개 존재
- 많은 전기를 사용하는 디바이스를 연결할 때는 별도의 외부 전원 사용

그림 출처: https://www.raspberrypi.org/documentation/usage/gpio/

그라운드 GPIO 핀: 그라운드(GND) 핀 8개

- 그라운드로 사용할 수 있는 그라운드(GND) 핀 8개 존재

그림 출처: https://www.raspberrypi.org/documentation/usage/gpio/

범용 GPIO 핀 x 28

- 3.3V를 기본 전압으로 사용
- 입력(Input) : 핀을 input type으로 설정,

핀에 걸린 전압이 3.3V이면 ON(High 또는 1), 0V 이면 OFF(low 또는 0) 상태로 파악

- 출력(Output) : 핀을 output type으로 설정,

3.3V 전압을 걸어 ON(High 또는 1), 0V 전압을 걸어 OFF(low 또는 0) 상태로 만듦

그림 출처: https://www.raspberrypi.org/documentation/usage/gpio/

범용 GPIO 핀 x 28

- 입력 유형(Input type) 설정:

스위치나 센서처럼 GPIO 핀으로 값을 받아들이는 경우

- 출력 유형(Output type) 설정:

LED나 모터 처럼 GPIO 핀으로 무언가를 동작시키는 Actuator의 경우

범용 GPIO 핀 x 28

- GPIO 핀은 3.3V를 기본 전압으로 사용
- GPIO핀에 3.3V가 아닌 5V 전압을 연결할 때는 전압 레벨을 낮추어 사용해야 함
- GPIO 핀의 값을 설정(ON 또는 Off)로 설정하면 계속 설정된 값을 유지(래치)

GPIO 핀 넘버링

- ① 물리적 넘버링(보드 넘버링): 기판의 핀 순서대로 일련번호를 붙여 사용
- ② GPIO 넘버링(BCM 넘버링): 'GPIO + X'로 표기 된 번호
- ③ wiringPi 넘버링 : GPIO 핀을 제어할 수 있는 3'rd 파티 C 라이브러리 wiringPi에서 부여한 번호

ď	pi@raspl	perrypi: /tm	np														
oi			i:/tmp \$ gg														
+		wPi	Name	Mode			Phys	sic	cal			Mode	Name	ı	wPi	всм	1
			3.3v		Γ		1			ī	ī		5 v	Γ			
	2	8	SDA.1	IN			3		4				5v	i	i		
			SCL.1	IN			5						0v	ı	- 1		
	4		GPIO. 7	IN			7					IN	TxD		15 I	14	
			0v				9		10			IN	RxD	ı	16	15	
	17		GPIO. 0	IN			11		12			IN	GPIO. 1	ı	1	18	-1
	27		GPIO. 2	IN			13		14				$0\mathbf{v}$	ı	· ·		-1
	22		GPIO. 3	IN			15		16			IN	GPIO. 4	ı	4	23	П
			3.3v				17		18			IN	GPIO. 5	ı	5 [24	
	10	12	MOSI	IN			19		20				0v	L			
		13	MISO	IN			21		22			IN	GPIO. 6	П	6	25	
	11	14	SCLK	IN			23		24			IN	CE0		10		
			0 v				25		26			IN	CE1		11		
		30	SDA.0	IN			27		28			IN	SCL.0	ı	31		
		21	GPIO.21	IN			29		30				$0\mathbf{v}$	ı	ı		
		22	GPIO.22	IN			31		32			IN	GPIO.26	ı	26	12	
	13	23	GPIO.23	IN			33		34				0 v	ı	ı		
	19	24	GPIO.24	IN			35 I		36			IN	GPIO.27		27	16	
	26	25	GPIO.25	IN			37		38				GPIO.28		28	20	
1			0 v		Į	1		1	40	1			GPIO.29		29	21	1
į			Name														

그림 출처:

https://www.raspberrypi.org/documentation/usage/gpio/

GPIO 핀 넘버링 – 물리적 번호

- 기판의 핀 순서대로 일련번호를 붙여 사용
- 보드 넘버링이라고도 부르며, 기판 뒷부분을 보면 알 수 있음
- 항상 1번 핀은 네모난 납 땜으로 되어 있음

Python에서 물리적 번호를 사용하기 위해서는

import Rpi. GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

GPIO 핀 넘버링 – GPIO 넘버링

- 'GPIO + X'로 표기 된 번호
- BCM 넘버링이라고도 부르며, 프린팅해서 참조
- 핀 배열이 바뀌어도 프로그램 변경 없이 사용 가능

Python에서 물리적 번호를 사용하기 위해서는

import Rpi. GPIO as GPIO

GPIO.setmode(GPIO.BCM)

그림 출처:

https://www.raspberrypi.org/documentation/usage/gpio/

GPIO 핀 넘버링 – GPIO 확장 연결 보드

그림 출처: 자체

출처: https://www.instructables.com/Use-a-real-Bread-Board-for-prototyping-your-circui/

앞면

- 부품의 핀을 꼽을 수 있는 구멍(hole)을 가짐
- 위 가로 2줄(①,②)과 아래 가로 2줄(③,④)의 구멍(hole)은 전기적으로 연결되어 있음
- 가운데 5개 구멍(hole)의 각각의 세로줄(⑤,⑥)도 전기적으로 연결되어 있음
- 가로 줄(①,②,③,④)은 전원을 공급하기 위해 사용
 - 가로 줄(1,3)에는 전원(-) 또는 GND를 연결
 - 가로 줄(2,4)에는 전원(+)을 연결

[그림 2] 뒷면

- 보드를 뒤집어 커버를 벗기면
- 가로, 세로 연결 상태를 볼 수 있음

실습을 위해 뒷면 커버를 벗긴 것으로, 커버를 벗기면 보드가 망가질 수 있음

(GND) 가로 줄(①,③) 중 한 구멍에 GND를 연결하면 가로 방향의 모든 구멍을 GND로 사용

(+전원) 가로 줄(②,④) 중 한 구멍에 +전원을 연결하면 가로 방향의 모든 구멍은 +전원 연결

- LED 2개의 핀이 **가운데 5개 구멍(hole)의 세로줄에 꼽힘**
- LED 2개의 핀은 서로 전기적으로 연결됨 (Short)

- 저항 2개의 핀이 **가운데 5개 구멍(hole)의 세로줄에 꼽힘**
- 저항 2개의 핀은 서로 전기적으로 연결됨 (Short)

- 전통적으로, <u>빨간색</u> 케이블은 전원(+)에 연결하고 <u>검정색</u> 케이블은 전원(-)나 그라운드 연결에 사용
- 반대로 연결하면, 시각적 혼란을 초래함

- 4개의 색 띠를 통해 저항 값을 읽을 수 있다.

• 1st band : 10의 자리 수

• 2nd band : 1의 자리 수

• Multiplier : 10의 제곱수

• Tolerance : 오차 범위

출처: https://www.instructables.com/Resistors/

컬러(Color)	1 st band	2 nd band	10의 제곱수	오차범위	
Black	0	0	×10 ⁰	_	
Brown	1	1	×10 ¹	±1%	F
Red	2	2	×10 ²	±2%	G
Orange	3	3	×10³	_	
Yellow	4	4	×10 ⁴	(±5%)	_
Green	5	5	×10 ⁵	±0.5%	D
Blue	6	6	×10 ⁶	±0.25%	С
Violet	7	7	×10 ⁷	±0.1%	В
Gray	8	8	×10 ⁸	±0.05% (±10%)	Α
White	9	9	×10 ⁹	_	
Gold	_	_	×10 ⁻¹	±5%	J
Silver	_	_	×10 ⁻²	±10%	К
None	_	_	_	±20%	М

색띠 배열: Brown (1) Black (0) Yellow (104) Gold (±5%)

저항 값 : 10 x 10⁴ = 100,000 = 100kΩ

저항 종류	저항 값
빨빨갈금	220Ω
청갈흑금	61Ω
 갈흑빨금	1ΚΩ
빨 흑 빨금	2ΚΩ
 갈흑오금	10kΩ
 갈흑청금	1MΩ

회로에서 저항을 생략하면 과전류에 의해 회로가 급격히 뜨거워지고 고장

회로 구성에 필요한 기본 소자 – 단색 LED

LED light Emitting Diode 발광 다이오드

- 전류가 흐르면 빛을 내는 다이오드
- 회로구성에서 동작 중임을 ON/OFF로 알려주는 인디케이터로 많이 사용
- 극성이 있어 반드시 극성에 맞추어 연결해 주어야 함
 - 긴 다리(+ Anode): + 전원에 연결
 - 짧은 다리(- Cathod) : 전원 또는 GND에 연결

회로 구성에 필요한 기본 소자 – 단색 LED

[실습] LED에 불이 들어오도록 회로를 구성해 보자

- LED의 Anode(+) 핀은 <u>65 Ω 이상의</u> 저항을 통해 라즈베리파이 3.3V 상시 전원(pin #1)에 연결
- LED의 cathod(-) 핀은 라즈베리파이 GND(pin #30)에 연결
- 라즈베리파이에 전원을 연결하면, LED에 불이 들어오는 것을 확인할 수 있음

회로 구성에 필요한 기본 소자 – 푸시 버튼(Push Button) 스위치

Push Button Switch 푸시 버튼 스위치

- 4개의 pin으로 구성되고, 2개씩 한 쌍으로 사용
- 거리가 먼 핀(①과**②, ③과④)들은 서로 연결됨**
- 스위치를 누르면, 모든 핀이 연결되는 구조

회로 구성에 필요한 기본 소자 – 푸시 버튼(Push Button) 스위치

[실습] 스위치를 추가하여 스위치를 누르면, LED에 불이 들어오도록 회로를 구성해 보자

- LED의 Anode(+) 핀은 <u>65 Ω 이상의</u> 저항을 통해 푸시 버튼 스위치에 연결
- 푸시 버튼 스위치는 라즈베리파이 3.3V 상시 전원(pin #1)에 연결
- LED의 cathod(-) 핀은 라즈베리파이 GND(pin #30)에 연결
- 푸시버튼을 누르면, LED에 불이 들어오는 것을 확인할 수 있음

WiringPi 설치

WiringPi 설치

- BCM2835/BCM2836 GPIO를 C언어로 제어할 수 있게 제공된 라이브러리
- wiringPi는 Arduino의 wiring 시스템을 사용했던 개발자에게 익숙하도록 설계
- wiringPi은 wiring에서 사용한 함수와 기능을 동일하게 제공

```
$ sudo apt purge wiringpi
```

\$ hash -r

\$ git clone https://github.com/WiringPi/WiringPi.git

\$ Is

\$ cd WiringPi

\$ git pull origin

\$./build

\$ gpio -v

\$ gpio readall

GPIO 핀 번호 확인

- wiringPi에서는 GPIO 핀에 대해 BroadCom에서 사용하는 번호 체계와는 다른 번호 체계를 사용
- wiringPi에서 사용하는 GPIO 번호체계는 gpio 명령을 통해 확인 가능

GPIO 핀 번호 확인

\$ gpio readall

- Physical numbering
- 2 BCM numbering (GPIO numbering)
- 3 wiringPi(wPi) Numbering

\$ gpio readall

물리번호 12번 핀의

- 1. GPIO(또는 BCM) 번호체계에서의 번호는 ? 18
- 2. wiringPi(wPi) 번호체계에서의 번호는 ? 1

\$ gpio readall

물리번호 12번 핀의 상태 확인

- 1. input/output mode? Input type
- 2. 핀의 값? 0

	+	i:/tmp			Pi	4B	+	+	+	+	
BCM	wPi	Name	Mode	l V	Phys	ical	l V	Mode	Name	WPi	BCM
		+ l 3.3v	+ !	+	+ 1	1 2	+	+	 5 v	+	
2	8	SDA.1	I IN	1 1	1 1 I	1 4	1	:	5 v		
3	9	SCL.1	I IN	1 1	5 1	1 6	1	:	0 v		
4	7	GPIO. 7	I IN	I 1	1 7 1	1 8	1 1	IN	TxD	' 15	14
-	<i>'</i>	0v	1		91	1 10	1.4	I IN	RxD	13 16	15
17	0	GPIO. 0	l IN	10	11 1	1 12	0	(IN)	GPIO. 1	1 1	18
27	2	GPIO. 2	I IN	1 0	13 1	1 14		1 (114)	0 v	1 +	10
22	3	GPIO. 3	IN	1 0	15	1 16	io	IN	GPIO. 4	1 4	23
22	ı	3.3v	111		17	1 18	1 0	IN	GPIO. 5	15	24
10	12	MOSI	IN	10	19	1 20	1	114	0 v	ı	24
9	13		IN	0	21	22	io	IN	GPIO. 6	I 6	25
11	14	SCLK	IN	0	23	24	1 1	IN	CE0	1 10	8
		0v		ľ	25	26	1 1	IN	CE1	111	7
0	30	SDA.0	IN	1 1	27	1 28	1 1	IN	SCL.0	31	1
5	21	GPIO.21	IN	1 1	29	1 30	1		0v	01	-
6	22	GPIO.22	IN	1	31	1 32	io	IN	GPIO.26	26	12
13	23	GPIO.23	IN	1 0	33 1	1 34	i		0 v	 I	
19	24	GPIO.24	IN	. o_	35 1	1 36	i o	IN	GPIO.27	I 27	16
26	25		IN	i 0	37 i	1 38	1 0	IN	GPIO.28	28	20
		0 v		i	39	40	0	IN		29	21
		+	+	+		+	+	+		+	

gpio 명령으로 핀 상태 제어 (wPi 번호 사용) – mode 변경

\$ gpio mode 1 out

\$ gpio readall

(토의 1) wPi 1번 핀의 모드가 IN(INPUT)에서 OUT(OUTPUT)으로 변경 된 것을 확인하자

gpio 명령으로 핀 상태 제어 (wPi 번호 사용) – 값 변경

(토의 2) wPi 1번 핀의 값이 0에서 1로 변경 된 것을 확인하자.

gpio 명령으로 핀 상태 제어 (BCM 번호 사용) – mode 변경

```
$ gpio -g mode 18 in
$ gpio readall
```

					pi@	prasi	pber	rypi: ~			
일(F)	편집	(E) 탭(T)	도움말	(H)							
@raspb	errypi	:~ \$									
	errypi										
		i:∼ \$ gpio			in						
@raspb	errypi	i:~ \$ gpio	readal								
BCM I	wPi	Name	Harana I Mode		+Pi 3				Name	+· I wPi	H+
+	WF 1		110ac	V 	+++-	+	+			+	++
		3.3v			1 :	2			5v		
2	8	SDA.1	ALT0	1	3 4	4	j		5v	İ	i i
3	9	SCL.1	ALT0	1	5 (6	ĺ		Θv		İ
4		GPIO. 7	IN	1	7 8	8	1	ALT5	TxD	15	14
		Θv			9 :	10 +	1	ALT5	RxD	16	15
17		GPIO. 0	IN	Θ		12	Θ	IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	Θ	13 :	14			θv		
22	3	GPIO. 3	IN	Θ	15 :	16	0	IN	GPIO. 4	4	23
		3.3v				18	Θ	IN	GPIO. 5	5	24
10	12	MOSI	ALT0	Θ		20	ا		0v		
9	13	MIS0	ALT0	0		22	Θ	IN	GPIO. 6	6	25
11	14	SCLK	ALT0	0		24	1	OUT	CE0	10	8
		0v				26	1	OUT	CE1	11	7
0	30	SDA.0	IN	1		28	1	IN	SCL.0	31	1
5	21	GPI0.21	IN	1		30			0v		
6	22	GPI0.22	IN	1		32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0		34			0v	0.7	
19	24	GPI0.24	IN	0		36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0		38	0	IN	GPI0.28	28	20
		Θv	 	+	39 4	40 +	0	IN	GPI0.29	29 +	21
ВСМ	wPi	Name	Mode	V	Physica	al	٧	Mode	Name	wPi	BCM
++			+		+Pi 3	B+	+		+	+	++
@raspb	errypi	:~ S									

(토의 3) BCM 18번 핀의 모드가 <u>OUT(OUTPUT)</u>에서 <u>IN(INPUT)</u>으로 변경 된 것을 확인하자

(실습과제 1) gpio 명령을 이용한 LED 점멸

- 회로구성

- LED의 Anode(+) 핀은 <u>65 Ω 이상의</u> 저항을 통해 라즈베리파이 GPIO 18(pin #12)에 연결
- LED의 cathod(-) 핀은 라즈베리파이 GND(pin #30)에 연결


```
$ gpio –g mode 18 out
$ gpio –g write 18 1
$ gpio –g write 18 0
$ gpio –g write 18 1
$ gpio –g write 18 0
```

- LED에 신호를 주기위해 GPIO 18번 핀을 출력용으로 설정 (output type)
- GPIO 18번 핀을 1 값으로 설정하면, 핀에 3.3V 전압이 걸이고 LED가 켜짐
- GPIO 18번 핀을 0 값으로 설정하면, 핀에 0V 전압이 걸이고 LED가 꺼짐

파이썬 소켓 프로그래밍

LED 반짝거리기

```
import RPi.GPIO as GPIO
import time
led_pin = 18
try:
   GPIO.setmode(GPIO.BCM)
   GPIO.setup(led_pin, GPIO.OUT)
   while True:
             GPIO.output(led_pin, True)
             time.sleep(0.5)
             GPIO.output(led_pin, False)
             time.sleep(0.5)
finally:
      print('clean up')
     GPIO.cleanup()
```


파이썬 소켓 프로그래밍

LED 원격제어 - client

```
import socket
import json
s = socket.socket()
host = '127.0.0.1'
port = 9000
s.connect((host, port))
data = {}
cmd = input('command : ')
led_no = input('led no : ')
act = input('on|off : ')
data['cmd'] = cmd
data['led_no'] = int(led_no)
data['act'] = act
body = json.dumps(data)
s.sendall(bytes(body, 'UTF-8'))
s.close()
```


파이썬 소켓 프로그래밍

LED 원격제어 - server

```
import socket
import json
s = socket.socket()
s.setsocketopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
host = '0.0.0.0'
port = 9000
s.bind((host, port))
s.listen(10)
while True:
   c. addr = s.accept()
   print('Got connection from', addr)
   data = c.recv(2048)
   msg = json.loads(data.decode())
   print('received data : ', msg)
   c.close()
s.close()
```


LED 원격제어 – client server

\$ python server.py

\$ python client.py

command: led

led_no : 10

on|off : on

