LAPLACE TRANSFORM

INTEGRAL TRANSFORM:

An **integral transform** maps a function into another function space through integration. The transformed function can be mapped back to the original function by performing another suitable integration which is called the *inverse transform*.

Use of integral transform is for mathematical convenience. It is a part of **Mathematical Methods** and has very important applications in different areas of mathematics.

There are several such transforms like Fourier Transform, Hankel transform, etc.

DEFINITION OF LAPLACE TRANSFORM

Let F(t) be a function of t > 0. Then the Laplace transform of F(t), denoted by L{ F(t)}, is defined by

L{
$$F(t)$$
}= $f(s) = \int_0^\infty e^{-st} F(t) dt$,

where the parameter *s* is assumed real or complex.

The Laplace transform of F(t) is said to exist if the above integral is convergent.

NOTATION

If a function of t is indicated in terms of capital letter, such as F(t), G(t), Y(t), etc, the Laplace transform of the function is denoted by the corresponding lower case letter, f(s), g(s), y(s), etc.

EXAMPLES:

1)
$$F(t) = 1, t > 0$$

$$f(s) = L\{1\}$$

$$= \int_0^\infty e^{-st} (1) dt$$

$$= \lim_{P \to \infty} \int_0^P e^{-st} dt, \text{ if } s > 0$$

$$= \lim_{P \to \infty} \left[\frac{e^{-st}}{-s} \right]_0^P$$

$$= \lim_{P \to \infty} \frac{1 - e^{sP}}{s}$$

$$= \frac{1}{s}, \text{ if } s > 0.$$

2)
$$F(t) = t, t > 0$$

$$f(s) = L\{t\}$$

$$= \int_0^\infty e^{-st}(t) dt$$

$$= \lim_{P \to \infty} \int_0^P t e^{-st} dt$$

$$= \lim_{P \to \infty} \left[(t) \left(\frac{e^{-st}}{-s} \right) - (1) \left(\frac{e^{-st}}{s^2} \right) \right]_0^P$$

$$= \lim_{P \to \infty} \left(\frac{1}{s^2} - \frac{e^{-sP}}{s^2} - \frac{Pe^{-sP}}{s} \right)$$

$$= \frac{1}{s^2} \text{ if } s > 0.$$

PIECEWISE CONTINUITY

A function is called *piecewise continuous* in an interval $\alpha \leq t \leq \beta$ if the interval can be subdivided into a finite number of intervals in each of which the function is continuous and has finite right and left hand limits.

FUNCTIONS OF EXPONENTIAL ORDER

If real constants k > 0 and γ exist such that for all t > N

$$|e^{-\gamma t}F(t)| < k \text{ or, } |F(t)| < k e^{\gamma t}.$$

We say that F(t) is a function of exponential order γ as $t \to \infty$, or, briefly, is of exponential order.

 $F(t) = t^2$ is of exponential order 3 (for example), since

$$|t^2| = t^2 < e^{3t}$$
 for all $t > 0$.

 $F(t)=e^{t^3}$ is not of exponential order, since $\left|e^{-\gamma t}e^{t^3}\right|=\left|e^{t^3-\gamma t}\right|$ can be made larger than any given constant by increasing t.

CONDITION FOR EXISTENCE OF LAPLACE TRANSFORM

Theorem 1: If F(t) is sectionally continuous in every finite interval $0 \le t \le N$ and of exponential order γ for t > N, then its Laplace transform f(s) exists for all $s > \gamma$.

SOME PROPERTIES OF LAPLACE TRANSFORM

LINEARITY PROPERTY

If c_1 and c_2 are any constants while $F_1(t)$ and $F_2(t)$ are functions with Laplace transform $f_1(s)$ and $f_2(s)$ respectively, then

$$L\{c_1F_1(t) + c_2F_2(t)\}\$$

$$= c_1L\{F_1(t)\} + c_2L\{F_2(t)\}\$$

$$= c_1f_1(s) + c_2f_2(s)$$

FIRST SHIFTING PROPERTY

If
$$L{F(t)} = f(s)$$
, then

$$L\{e^{at}F(t)\} = f(s-a).$$

SECOND SHIFTING PROPERTY

If L{F(t)} =
$$f(s)$$
 and $G(t) = \begin{cases} F(t-a), & \text{if } t > a \\ 0, & \text{if } t < a \end{cases}$
then L{G(t)} = $e^{-as}f(s)$.

CHANGE OF SCALE PROPERTY

If
$$L\{F(t)\} = f(s)$$
, then $L\{F(at)\} = \frac{1}{a}f\left(\frac{s}{a}\right)$.

Example: If $F(t) = e^{\alpha t}$, then

$$f(s) = L\{e^{\alpha t}\}\$$

$$= \int_0^\infty e^{-st} e^{\alpha t} dt$$

$$= \lim_{P \to \infty} \int_0^P e^{-st} e^{\alpha t} dt$$

$$= \lim_{P \to \infty} \left[\frac{-e^{-(s-a)t}}{s-a} \right]_0^P$$

$$= \lim_{P \to \infty} \frac{1 - e^{-(s-a)P}}{s-a}$$

$$= \frac{1}{s-a}, \quad s > a.$$

Example: If F(t) = coshat, then

$$= L\left\{\frac{1}{2}(e^{at} + e^{-at})\right\}$$

$$= \frac{1}{2}L\left\{e^{at}\right\} + \frac{1}{2}L\left\{e^{-at}\right\}$$

$$= \frac{1}{2}\left(\frac{1}{s-a} + \frac{1}{s+a}\right)$$

$$= \frac{s}{s^2 - a^2}, \ s > |a|$$

Problem: Prove that

$$L\{sinhat\} = \frac{a}{s^2 - a^2}, s > |a|$$

Example: If F(t) = cosat, then

$$f(s) = L\{cosat\}$$

$$= \int_0^\infty e^{-st} \cos at \ dt$$

$$= \lim_{P \to \infty} \int_0^P e^{-st} \cos at \ dt$$

$$= \lim_{P \to \infty} \left[\left(\frac{e^{-st}}{s^2 + a^2} \right) \left(-scosat + asinat \right) \right]_0^P$$

$$= \lim_{P \to \infty} \left\{ \frac{s}{s^2 + a^2} - \frac{e^{-sP} \left(scosaP - asinaP \right)}{s^2 + a^2} \right\}$$

$$= \frac{s}{s^2 + a^2}, \quad s > 0.$$

Problem: Prove that $L\{sinat\} = \frac{a}{s^2 + a^2}$

Example: Let $F(t) = t^2$

$$f(s) = L \{t^2\}$$

$$= \int_0^\infty e^{-st} t^2 dt$$

$$= \lim_{P \to \infty} \int_0^P e^{-st} t^2 dt$$

Integrating by parts, we get

$$= \lim_{P \to \infty} \left\{ \left[\frac{-t^2 e^{-st}}{s} \right]_0^P + \int_0^P 2t \frac{e^{-st}}{s} dt \right\}$$
$$= \lim_{P \to \infty} \left\{ \frac{2}{s} \left[\frac{-e^{-st}}{s} t \right]_0^P + \frac{2}{s} \int_0^P \frac{e^{-st}}{s} dt \right\},$$

since
$$p^2e^{-sp} \to 0$$
 as $p \to \infty$.

$$=\lim_{r\to\infty} \frac{2}{s^2} \left[\frac{e^{-st}}{-s} \right]_0^P = \frac{2}{s^3}, s > 0.$$

Problem:

If n be positive, not necessarily an integer, then prove that

$$L\{t^n\} = \frac{\Gamma(n+1)}{s^{n+1}}, \ s > 0.$$

Solution: L $\{t^n\}$

$$= \int_0^\infty e^{-st} t^n dt$$

$$= \int_0^\infty e^{-u} \frac{u^n}{s^{n+1}} du , putting st = u$$

$$= \frac{\Gamma(n+1)}{s^{n+1}}.$$

When n is a positive integer,

$$L\{t^n\} = \frac{n!}{s^{n+1}} \left[: \Gamma(n+1) = n! \right]$$

Example: Let $F(t) = e^{-t} \cos 2t$

Since
$$L\{cos2t\} = \frac{s}{s^2 + 4}$$
, we have,

$$L\{e^{-t} \cos 2t\} = \frac{s+1}{(s+1)^2+4}$$
$$= \frac{s+1}{s^2+2s+5}.$$

Example: Let

$$F(t) = 4t^{2} - 3\cos 2t + 5e^{-t},$$

$$L\{4t^{2} - 3\cos 2t + 5e^{-t}\}$$

$$= 4L\{t^{2}\} - 3L\{\cos 2t\} + 5L\{e^{-t}\}$$

$$=\frac{8}{s^3}-\frac{3s}{s^2+4}+\frac{5}{s+1}.$$

 $=4\left(\frac{2!}{s^3}\right)-3\left(\frac{s}{s^2+4}\right)+5\left(\frac{1}{s+1}\right)$

Example: Let F(t) = sin3t.

Since L{sint} = $\frac{1}{s^2+1}$, we have

$$L\{sin3t\} = \frac{1}{3} \cdot \frac{1}{\left(\frac{s}{3}\right)^2 + 1}$$

$$=\frac{3}{s^2+9}.$$

LAPLACE TRANSFORM OF DERIVATIVES

Theorem: If $L\{F(t)\}=f(s)$, then

$$L\{F'(t)\} = sf(s) - F(0)$$

if F(t) is continuous for $0 \le t \le M$ and of exponential order for t > M, while F'(t) is sectionally continuous for $0 \le t \le M$.

If in the above result F(t) fails to be continuous at t = a, then

$$L\{F'(t)\} = sf(s) - F(0) - e^{-as} \{F(a+) - F(a-)\}$$

where F(a +) - F(a -) is sometimes called the **jump** at the discontinuity at t = a.

Example: If
$$F(t) = cos3t$$
, then $L{F(t)} = \frac{s}{s^2 + 9}$

$$L{F'(t)} = L{-3sin3t}$$

$$= s\left(\frac{s}{s^2 + 9}\right) - 1$$

$$= \frac{-9}{s^2 + 9}.$$

General formula:

If L{
$$F(t)$$
}= $f(s)$, then
$$L\{F^{(n)}(t)\}$$

$$= s^n f(s) - s^{n-1} F(0) - s^{n-2} F'(0) - \dots - s F^{(n-2)}(0) - F^{(n-1)}(0)$$
if $F(t)$, $F'(t)$, ..., $F^{(n-1)}(t)$ are continuous for $0 \le t \le M$ and of exponential order for $t > M$, while $F^{(n)}(t)$ is sectionally continuous for $0 \le t \le M$.

LAPLACE TRANSFORM OF INTEGRALS

If $L{F(t)} = f(s)$, then

$$L\left\{\int_0^t F(u)du\right\} = \frac{f(s)}{s}$$

Example: Since $L\{sin2t\} = \frac{2}{s^2 + 4}$, we have

$$L\left\{\int_0^t \sin 2u du\right\} = \frac{2}{s(s^2+4)}$$

Problem: Verify the above result by direct calculation.

MULTIPLICATION BY t^n

Theorem: If $L\{F(t)\}=f(s)$, then

$$L\{t^n F(t)\} = (-1)^n \frac{d^n}{ds^n} f(s)$$
$$= (-1)^n f^{(n)}(s).$$

Example:

Since $L\{e^{2t}\} = \frac{1}{s-2}$, we have

$$L\{te^{2t}\} = -\frac{d}{ds} \left(\frac{1}{s-2}\right)$$
$$= \frac{1}{(s-2)^2}.$$

$$L\{t^{2}e^{2t}\} = \frac{d^{2}}{ds^{2}} \left(\frac{1}{s-2}\right)$$
$$= \frac{2}{(s-2)^{3}}$$

DIVISION BY t

Theorem. If $L\{F(t)\}=f(s)$, then

$$L\left\{\frac{F(t)}{t}\right\} = \int_{s}^{\infty} f(u) du$$

provided $\lim_{t\to 0} F(t)/t$ exists.

Example: Since
$$L\{sint\} = \frac{1}{s^2+1}$$

and
$$\lim_{t\to 0} \frac{\sin t}{t} = 1$$
,

we have,

$$L\left\{\frac{sint}{t}\right\} = \int_{s}^{\infty} \frac{du}{u^{2}+1}$$
$$= \tan^{-1}\left(\frac{1}{s}\right)$$

PERIODIC FUNCTIONS

Theorem: Let F(t) have period T > 0 so that F(t + T) = F(t)

Then L{
$$F(t)$$
} = $\frac{\int_0^T e^{-st} F(t) dt}{1 - e^{-st}}$

Prove that (a) $L\{sinhat\} = \frac{a}{s^2 - a^2}$

L{sinhat}

$$= L\left\{\frac{e^{at} - e^{-at}}{2}\right\}$$

$$= \int_0^\infty e^{-st} \left(\frac{e^{at} - e^{-at}}{2} \right) dt$$

$$= \frac{1}{2} \int_0^\infty e^{-st} e^{at} dt - \frac{1}{2} \int_0^\infty e^{-st} e^{-at} dt$$

$$= \frac{1}{2} L\{e^{at}\} - L\{e^{-at}\}$$

$$= \frac{1}{2} \left\{ \frac{1}{s-a} - \frac{1}{s+a} \right\}$$

$$= \frac{a}{s^2 - a^2} \text{ for } s > |a|$$

Problem:

Prove that $L\{coshat\} = \frac{s}{s^2 - a^2}$, if s > |a|.

THE INVERSE LAPLACE TRANSFORM

Definition: If the Laplace transform of F(t) is f(s), i.e. $L\{F(t)\}=f(s)$, then F(t) is called *inverse Laplace transform* of f(s) and we write symbolically $F(t)=L^{-1}\{f(s)\}$ where L^{-1} is called the inverse Laplace operator.

Example: Since $L\{e^{-3t}\} = \frac{1}{s+3}$ we can write

$$L^{-1}\left\{\frac{1}{s+3}\right\} = e^{-3t}$$
.

Two different functions with the same Laplace transform.

Example:

The two different function $F_1(t) = e^{-3t}$ and

$$F_2(t) = \begin{cases} 0, & t = 1 \\ e^{-3t}, & \text{otherwise} \end{cases}$$

have the same Laplace transform i.e. $\frac{1}{s+3}$.

We see that inverse Laplace transform is not unique.

Some Inverse Laplace transforms:

1.
$$L^{-1}\left\{\frac{1}{s}\right\} = 1$$

2.
$$L^{-1}\left\{\frac{1}{s^2}\right\} = t$$

3.
$$L^{-1}\left\{\frac{1}{s^{n+1}}\right\} = \frac{t^n}{n!}, n = 0,1,...$$

4.
$$L^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}$$

5.
$$L^{-1}\left\{\frac{1}{s^2+a^2}\right\} = \frac{sinat}{a}$$

6.
$$L^{-1}\left\{\frac{s}{s^2+a^2}\right\} = cosat$$

7.
$$L^{-1}\left\{\frac{1}{s^2-a^2}\right\} = \frac{\sinh at}{a}$$

8.
$$L^{-1}\left\{\frac{s}{s^2-a^2}\right\} = coshat$$

LINEARITY PROPERTY

If c_1 and c_2 are any constants while $f_1(s)$ and $f_2(s)$ are functions with Laplace transform $F_1(t)$ and $F_2(t)$ respectively, then

$$L^{-1}\{c_1f_1(s) + c_2f_2(s)\}\$$

$$= c_1L^{-1}\{f_1(s)\} + c_2L^{-1}\{f_2(s)\}\$$

$$= c_1F_1(t) + c_2F_2(t)$$

FIRST TRANSLATION OR SHIFTING PROPERTY

If
$$L^{-1}{f(s)} = F(t)$$
, then

$$L^{-1}{f(s-a)} = e^{at}F(t).$$

SECOND TRANSLATION OR SHIFTING PROPERTY

If
$$L^{-1}{f(s)} = F(t)$$
, then

$$L^{-1}\{e^{-as}f(s)\} = \begin{cases} F(t-a), & \text{if } t > a \\ 0, & \text{if } t < a \end{cases}$$

CHANGE OF SCALE PROPERTY

If
$$L^{-1}\{f(s)\} = F(t)$$
, then

$$L^{-1}\{f(ks)\} = \frac{1}{k}f\left(\frac{t}{k}\right)$$

Example:

Find Inverse Laplace Transform of $\frac{1}{s^2 - 2s + 5}$

i.e.
$$L^{-1}\left\{\frac{1}{s^2-2s+5}\right\}$$

Since

$$L^{-1}\left\{\frac{1}{s^2+4}\right\} = \frac{\sin 2t}{2}$$
, we have

$$L^{-1}\left\{\frac{1}{s^2 - 2s + 5}\right\} = L^{-1}\left\{\frac{1}{(s - 1)^2 + 4}\right\} = \frac{1}{2}e^t \sin 2t$$

Example:

Find Inverse Laplace Transform of $\frac{e^{-\frac{\pi}{3}s}}{s^2+1}$

i.e.
$$L^{-1}\left\{\frac{e^{-\frac{\pi}{3}s}}{s^2+1}\right\}$$

Since

 $L^{-1}\left\{\frac{1}{s^2+1}\right\} = sint$, we have

$$L^{-1}\left\{\frac{e^{-\frac{\pi}{3}s}}{s^2+1}\right\} = \begin{cases} \sin\left(t-\frac{\pi}{3}\right), & \text{if } t > \frac{\pi}{3} \\ 0, & \text{if } t < \frac{\pi}{3} \end{cases}$$

Example:

Find the Inverse Laplace Transform of $\frac{2s}{(2s)^2+16}$

i.e.
$$L^{-1}\left\{\frac{2s}{(2s)^2+16}\right\}$$

 $L^{-1}\left\{\frac{s}{s^2+16}\right\} = cos4t$, we have

$$L^{-1}\left\{\frac{2s}{(2s)^2+16}\right\} = \frac{1}{2}\cos\frac{4t}{2} = \frac{1}{2}\cos 2t.$$