	18EC	E231J – IOT	SYSTEM
½ Ho	urs		
		•	
****		•	
		the way in w	nich an iC
(A)	Internet	(B)	Cloud
(C)	Automata	(D)	Network
A sn	nart object is defined by		
` '			Compute
(C)	Simulator	(D)	Emulator
` /	-	` '	350 kbps
(C)	250 kbps	(D)	150 kbps
. ,		()	32 bits
(C)	64 bits	(D)	128 bits
			AC moto
(C)	Thyristor	(D)	Screw jac
	_		ayer of pro
. /	_	` '	Network
(C)	Transport and applicati	on (D)	Applicati
		protocol for	low power
(A)	RPL	(B)	OSPF
(C)	AODV	(D)	DODAG
The	bit length of the IPV6 is		
(A)	32 bits	(B)	128 bits
	Whit with (A) (C) IEEI (A) (C) Choo (A) (C) The (A) (C) The (A) (C) The (A) (C)	Part - A should be answered in over to hall invigilator at the er Part - B should be answered in Part - B should be answered in Part - B should be answered in Part - A Answer Which of the following is twith data? (A) Internet (C) Automata A smart object is defined by (A) Sensor, actuator (C) Simulator IEEE 802.15.4 is to provide (A) 450 kbps (C) 250 kbps In 6LOWPAN address, how (A) 16 bits (C) 64 bits Choose the electrochemical and (A) Comb drive (C) Thyristor The UIP stock implements the (A) Network and security (C) Transport and application which of these is a routing IPV6? (A) RPL (C) AODV	PART – A (25 × 1 = 25 Answer ALL Questi Which of the following is the way in w with data? (A) Internet (B) (C) Automata (D) A smart object is defined by IPSO (A) Sensor, actuator (B) (C) Simulator (D) IEEE 802.15.4 is to provide transfer data (A) 450 kbps (C) 250 kbps (D) In 6LOWPAN address, how many bits are (A) 16 bits (B) (C) 64 bits (C) 64 bits (D) Choose the electrochemical actuator from (A) Comb drive (B) (C) Thyristor (D) The UIP stock implements the

			-					
Reg. No.								

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022 Sixth and Seventh Semester

I DESIGN

ear 2018-2019 to 2019-2020)

ote		D	4 A should be ensured in OMB	shoot r	within first 40 minutes and OMR shee	t shou	ld be	han	ded
(i)		r to hall invigilator at the end of 40 th			t snou	iu Di	, man	lucu
(i	i)		t - B should be answered in answer						
									5 .5
im	e: 2 ¹	½ Ho	urs			Max.	Ma	ırks:	75
			$PART - A (25 \times 1)$	I 25 I	Marks)	Marks	BL	CO	PO
			Answer ALL						
	1.	Whi			hich an IOT device is associated	1	1	1	1
	1,		n data?	,					
		(A)	Internet	(B)	Cloud				
		(C)	Automata	(D)	Network				
	2	A	mout abject is defined by IDSO			1	1	1	1
	۷.		nart object is defined by IPSO Sensor, actuator	(R)	Computer				
		(C)		` ′	Emulator				
		(C)	Simulator	(13)					
	3.	IEE	E 802.15.4 is to provide transfe	r data 1	rates of	1	2	1	1
		(A)	450 kbps	(B)	350 kbps				
		(C)	250 kbps	(D)	150 kbps	4			
	4	In 6	LOWPAN address, how many 1	hits are	globally unique	1	2	1	1
	т.		16 bits		32 bits				
		(C)		(D)					
	_	CI		u fuam	the following	1	1	1	1
	٥.		ose the electrochemical actuato Comb drive		AC motor				
		(A) (C)	Thyristor	(D)		- 5			
		(0)	Thyristor	(D)	Solon Juda				
	6.	The	UIP stock implements the	la	ayer of protocols of the IP family.	1	1	2	1
			Network and security	(B)	Network and transport				
		(C)	Transport and application	(D)	Application and network				
	7	Whi	ch of these is a routing protoc	col for	low power lossy networks over	1	2	2	1
	,.	IPV			20.1. P				
		(A)	RPL	(B)	OSPF				
		(C)	AODV	(D)	DODAG				
	Q	The	bit length of the IPV6 is			1	1	2	1
	0.		32 bits	(B)	128 bits				
		(C)	126 bits	(D)	256 bits				
		\ - /		. /					

26NF6&7-18ECE231J Page 1 of 3

9.	The IPsec is compulsory in (A) IPV4 (B) IP (C) UIP (D) IE	PV6 EEE 802.11	1	1	2	1
10.	In UIP periodic processingtim	ner based action is performed.	1	2	2	1
		ongestion ransmission				
11.		etwork and APS	1	1	3	1
12.	(C) AF and APS (D) No Natural hazard monitoring and forecasting is	etwork and AF involves which type of traffic	1	2	3	1
	flow and topology?					
	(A) Mesh (B) Tr (C) Star (D) Ri					
13.	An automation system is related to		1	2	3	1
	(A) Distributed control system (B) D	istinct control system istributed control service				
	(C) Discrete control system (D) D	istributed control service				
14.	Z-wave alliance is developed for		1	1	3	1
		dustrial automation nart city				
15.	In smart metering (NAN), AMR refers to		1	1	3	1
		utomatic meter reading dvanced meter reading				
16.	Which of the following is the element of SCA	ADA?	1	1	4	1
	(A) Graphical displays (B) Ta					
	(C) Alarms (D) Tr	rends				
17.	Gateway provides the connection between (A) Cloud and controller (B) N	and	1	2	4	1
	(A) Cloud and controller(B) No(C) Network and controller(D) Controller					
18.	in the IOT architecture is gateway that pre-process the data.	the hardware and software	1	2	4	1
		ateways				
	(C) Data acquisition (D) Eq.	lge it				
19.	How many components IOT mainly consists	of	1	1	4	1
	(A) 2 (C) 4 (B) 3 (D) 5					
20.	How many levels does complex SCADA syst	em have?	1	1	4	1
	(A) 1 (B) 2					
5	(C) 3 (D) 4	363				

	21.	The core element of architecture of sn		•	1	1	5	1
		(A) Mobile unified service(C) Management centre		Urban application platform Integrated information provider				
	22	Which one of the following is not a va	alid N	NOSOL database?	1	2	5	1
	44.	(A) Cassandra		Scylla				
		(C) postgreSQL	` '	Hadhoop				
	23	Which tier analytics performs mainten	nance	a?	1	1	5	1
	23.	(A) 3-tier		2-tier				
		(C) 1-tier	` '	4-tier				
	24	Identify the language preferred for IO	T and	alatica	1	1	5	1
	24.	(A) Python		HTML				
		(C) PHP	` /	C++				
	25	One way to see absorvations addressi	na IC	NT analytica is	. 1	2	_ 5	1
	23.	One way to see observations addressing (A) 4-tier analytics	_	2-tier analytics	_	_	_	-
		(C) 1-tier analytics	` '	3-tier analytics				
			` '					
		$PART - B (5 \times 10 =$	50 N	Marks)	Marks	BL	со	РО
		Answer ALL Qu						
26	5. a.	Illustrate the functionalities of PHY a	nd M	IAC layers of LORA WAN.	10	3	1	4
		(OR)						
	b.	Explain the following IOT access tech	hnolo	ogy in detail IEEE 802.15.4 g/e.	10	4	1	1
2	7. a.	Explain the packet forwarding, memo	ry bu	affer management, API of UIP.	10	4	2	3
		(OR)			10	2	2	1
		Illustrate the different packet headers,				3	2	1
28	8. a.	Illustrate how, traffic monitoring and fining in smart cities and urban netwo		0.	10	3	3	3
		(OR)						
	b.	Explain the implementation of IOT systems to optimize the efficiency of category-core grid network monitorin	energ	gy infrastructure in the smart grid	10	4	3	3
29	9. a.	Explain one M2M IOT standardized a	archit	tecture.	10	4	4	3
		(OR)						
	b.	Illustrate in detail IOT application tra	nspo	rt method: SCADA.	10	3	4	1
3(0. a.	Demonstrate the purpose of mass NOSQL database.	sively	parallel processing database-	10	3	5	4
		(OR)						
	b.	Explain in detail the industrial automa	ation	control protocols.	10	4	5	1
		:						

* * * * *