Teoria degli Algoritmi

Corso di Laurea Magistrale in Matematica Applicata a.a. 2020-21

Gabriele Tolomei

Dipartimento di Informatica Sapienza Università di Roma tolomei@di uniroma1 it

Table of Contents

- Computability
- ② Diagonalization
- The Halting Problem
- 4 Beyond Undecidability
- Summary

Computability

Table of Contents

- Computability
- ② Diagonalization
- 3 The Halting Problem
- 4 Beyond Undecidability
- Summary

 We introduced the Turing Machine (TM) as a model of general-purpose computation

Decidability & Recognizability

- We introduced the Turing Machine (TM) as a model of general-purpose computation
- We defined the (formal) notion of algorithm in terms of TMs leveraging the Church-Turing thesis

Decidability & Recognizability

- We introduced the Turing Machine (TM) as a model of general-purpose computation
- We defined the (formal) notion of algorithm in terms of TMs leveraging the Church-Turing thesis
- In other words, we identify the set of **computable functions** with those calculated by a Turing machine:
 - partial computable functions are those recognized by a TM (i.e., the machine may never halt)
 - total computable functions are those decided by a TM (i.e., the machine always halts)

Decidability & Recognizability

- We introduced the Turing Machine (TM) as a model of general-purpose computation
- We defined the (formal) notion of algorithm in terms of TMs leveraging the Church-Turing thesis
- In other words, we identify the set of **computable functions** with those calculated by a Turing machine:
 - partial computable functions are those recognized by a TM (i.e., the machine may never halt)
 - total computable functions are those decided by a TM (i.e., the machine always halts)
- We also refer to (Turing-)recognizable or recursively-enumerable languages and (Turing-)decidable or recursive languages

5 / 59

Uncomputable Functions

Question

A natural question arises:

is there any problem (i.e., function) that cannot be solved by **any** algorithm?

March 4, 2021

Uncomputable Functions

Question

A natural question arises:

is there any problem (i.e., function) that cannot be solved by **any** algorithm?

To put it differently, yet equivalently:

is there any function that cannot be computed by any Turing machine?

 Why should we care about problems that cannot be algorithmically solved?

- Why should we care about problems that cannot be algorithmically solved?
- After all, showing that a problem is unsolvable does not appear to be of any interest

- Why should we care about problems that cannot be algorithmically solved?
- After all, showing that a problem is unsolvable does not appear to be of any interest
- Two reasons why we should bother of problems that cannot be solved by an algorithm:
 - To realize they must simplified first, before searching for an algorithmic solution to them

Uncomputable Functions: Why Bother?

- Why should we care about problems that cannot be algorithmically solved?
- After all, showing that a problem is unsolvable does not appear to be of any interest
- Two reasons why we should bother of problems that cannot be solved by an algorithm:
 - To realize they must simplified first, before searching for an algorithmic solution to them
 - To stimulate your imagination!

Table of Contents

- Computability
- ② Diagonalization
- A Beyond Undecidability
- Summary

• A clever technique used to proof the existance of uncomputable functions/undecidable languages

- A clever technique used to proof the existance of uncomputable functions/undecidable languages
- This was discovered by Georg Cantor in 1873, who was concerned with the problem of measuring the size of (infinite) sets

- A clever technique used to proof the existance of uncomputable functions/undecidable languages
- This was discovered by Georg Cantor in 1873, who was concerned with the problem of measuring the size of (infinite) sets

Question

If we have two sets A and B, how can we tell if one is larger than the other or if they are of the same size?

- A clever technique used to proof the existance of uncomputable functions/undecidable languages
- This was discovered by Georg Cantor in 1873, who was concerned with the problem of measuring the size of (infinite) sets

Question

If we have two sets A and B, how can we tell if one is larger than the other or if they are of the same size?

 For finite sets, the answer is of course straightforward: just count the elements of each A and B!

- A clever technique used to proof the existance of uncomputable functions/undecidable languages
- This was discovered by Georg Cantor in 1873, who was concerned with the problem of measuring the size of (infinite) sets

Question

If we have two sets A and B, how can we tell if one is larger than the other or if they are of the same size?

- For finite sets, the answer is of course straightforward: just count the elements of each A and B!
- The same does not work for infinite set as we will never finish counting!

March 4, 2021

Example

Consider the set of **even** natural $\mathbb{E} = \{ n \in \mathbb{N} \mid n \mod 2 = 0 \}$.

Then, consider the set of all possible binary strings of any (finite) length $\Sigma^* = \{0,1\}^*$

The Size of Sets: Example

Example

Consider the set of **even** natural $\mathbb{E} = \{n \in \mathbb{N} \mid n \mod 2 = 0\}$. Then, consider the set of all possible binary strings of any (finite) length $\Sigma^* = \{0,1\}^*$

Question

Of course, both $\mathbb E$ and Σ^* are infinite (thus, larger than any finite set). However, is one of the two larger than the other? Can we figure this out?

Cantor proposed a brilliant solution to the problem posed before

- Cantor proposed a brilliant solution to the problem posed before
- He observed that two finite sets A and B have the same size if the elements of one set can be paired with the elements of the other set

- Cantor proposed a brilliant solution to the problem posed before
- He observed that two finite sets A and B have the same size if the elements of one set can be paired with the elements of the other set
- This method compares the size of sets without resorting to counting!

- Cantor proposed a brilliant solution to the problem posed before
- He observed that two finite sets A and B have the same size if the elements of one set can be paired with the elements of the other set
- This method compares the size of sets without resorting to counting!
- Interestingly enough, this approach extends also to infinite sets

Definition (Same Size Sets)

Suppose we have two sets A and B, and a function $f: A \mapsto B$. We say that f is **one-to-one** (or **injective**) if it never maps two different elements to the same place, i.e., $\forall a, a' \in A, \ a \neq a' \Rightarrow f(a) \neq f(a')$

Definition (Same Size Sets)

Suppose we have two sets A and B, and a function $f:A\mapsto B$. We say that f is **one-to-one** (or **injective**) if it never maps two different elements to the same place, i.e., $\forall a, a' \in A, \ a \neq a' \Rightarrow f(a) \neq f(a')$ Moreover, we say that f is **onto** (or **surjective**) if $\forall b \in B \ \exists a \in A \ \text{s.t.}$ f(a) = b.

Definition (Same Size Sets)

Suppose we have two sets A and B, and a function $f: A \mapsto B$. We say that f is **one-to-one** (or **injective**) if it never maps two different elements to the same place, i.e., $\forall a, a' \in A, \ a \neq a' \Rightarrow f(a) \neq f(a')$ Moreover, we say that f is **onto** (or **surjective**) if $\forall b \in B \exists a \in A \text{ s.t.}$ f(a) = b.

We say that A and B are same size sets if there is a one-to-one, onto function $f: A \mapsto B$; such a function is called a **bijection** or correspondence.

Definition (Same Size Sets)

Suppose we have two sets A and B, and a function $f: A \mapsto B$. We say that f is **one-to-one** (or **injective**) if it never maps two different elements to the same place, i.e., $\forall a, a' \in A, \ a \neq a' \Rightarrow f(a) \neq f(a')$ Moreover, we say that f is **onto** (or **surjective**) if $\forall b \in B \exists a \in A \text{ s.t.}$ f(a) = b.

We say that A and B are same size sets if there is a one-to-one, onto function $f: A \mapsto B$; such a function is called a **bijection** or correspondence.

In a correspondence between A and B, every element of A maps to a unique element of B and every element of B has a unique element of A that maps to it.

Example (The size of \mathbb{N} vs. the size of \mathbb{E})

Let $\mathbb N$ be the set of natural numbers, i.e., $\mathbb N=\{1,2,3,\ldots\}$, and let $\mathbb E$ be the set of **even** natural numbers, i.e., $\mathbb{E} = \{2, 4, 6, \ldots\}$. Using Cantor's argument, prove that $\mathbb N$ and $\mathbb E$ have the same size.

The Size of the Set of Even Natural Numbers

Example (The size of \mathbb{N} vs. the size of \mathbb{E})

Let $\mathbb N$ be the set of natural numbers, i.e., $\mathbb N=\{1,2,3,\ldots\}$, and let $\mathbb E$ be the set of **even** natural numbers, i.e., $\mathbb{E} = \{2, 4, 6, \ldots\}$. Using Cantor's argument, prove that \mathbb{N} and \mathbb{E} have the same size.

Intuitively, this sounds odd: \mathbb{E} seems "smaller" than \mathbb{N} , as the former is a proper subset of the latter

Example (The size of \mathbb{N} vs. the size of \mathbb{E})

Let $\mathbb N$ be the set of natural numbers, i.e., $\mathbb N=\{1,2,3,\ldots\}$, and let $\mathbb E$ be the set of **even** natural numbers, i.e., $\mathbb{E} = \{2, 4, 6, \ldots\}$. Using Cantor's argument, prove that $\mathbb N$ and $\mathbb E$ have the same size.

- Intuitively, this sounds odd: \mathbb{E} seems "smaller" than \mathbb{N} , as the former is a proper subset of the latter
- However, we can find a correspondence $f: \mathbb{N} \mapsto \mathbb{E}$ which maps each element of \mathbb{N} to an element of \mathbb{E} :

$$\forall n \in \mathbb{N}, \ f(n) = 2n \in \mathbb{E}$$

Countable Set

Definition (Countable Set)

A set A is **countable** if either it is finite or it has the same size of \mathbb{N}

The Size of the Set of Rational Numbers

Example (The size of \mathbb{Q} vs. the size of \mathbb{N})

Let $\mathbb Q$ be the set of (positive) rational numbers, i.e., $\mathbb Q=\{\frac{m}{n}\mid m,n\in\mathbb N\}$. Using Cantor's argument, prove that $\mathbb Q$ is countable as there exists a correspondence with $\mathbb N$.

Example (The size of \mathbb{Q} vs. the size of \mathbb{N})

Let $\mathbb Q$ be the set of (positive) rational numbers, i.e., $\mathbb Q=\{\frac{m}{n}\mid m,n\in\mathbb N\}$. Using Cantor's argument, prove that $\mathbb Q$ is countable as there exists a correspondence with $\mathbb N$.

• Intuitively, this sounds even stranger than the example before: $\mathbb Q$ seems "much larger" than $\mathbb N$

The Size of the Set of Rational Numbers

Example (The size of \mathbb{Q} vs. the size of \mathbb{N})

Let \mathbb{Q} be the set of (positive) rational numbers, i.e., $\mathbb{Q} = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \}$. Using Cantor's argument, prove that \mathbb{Q} is countable as there exists a correspondence with \mathbb{N} .

- Intuitively, this sounds even stranger than the example before: $\mathbb Q$ seems "much larger" than $\mathbb N$
- However, we can find a correspondence $f:\mathbb{Q}\mapsto\mathbb{N}$ which maps each element of \mathbb{Q} to an element of \mathbb{N}

The Size of the Set of Rational Numbers

- An easy way to build the correspondence $f: \mathbb{Q} \mapsto \mathbb{N}$ is to
 - list **all** the elements of $\mathbb{Q}: \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots, \frac{2}{1}, \frac{2}{2}, \dots$
 - pair the first element of the list with the number 1 from \mathbb{N} , the second with 2, and so on and so forth
 - ensure that every member of \mathbb{Q} appears exactly once (e.g., $\frac{1}{1} = \frac{2}{2} = \frac{3}{3} \dots$)

• To build the list of all the elements of \mathbb{Q} , just make an infinite matrix containing all the positive rational numbers

- To build the list of all the elements of Q, just make an infinite matrix containing all the positive rational numbers
- The *i*-th row contains all the numbers whose numerator is equal to *i*

- To build the list of all the elements of Q, just make an infinite matrix containing all the positive rational numbers
- The *i*-th row contains all the numbers whose numerator is equal to *i*
- ullet The j-th column contains all the numbers whose denominator is equal to j

- To build the list of all the elements of Q, just make an infinite matrix containing all the positive rational numbers
- The *i*-th row contains all the numbers whose numerator is equal to *i*
- ullet The j-th column contains all the numbers whose denominator is equal to j
- In other words, the rational number $q=rac{i}{j}$ is located on the *i*-th row and the *j*-th column of the matrix

We must turn the infinite matrix into a list

- We must turn the infinite matrix into a list
- A first (bad) attempt of doing this would be to begin the list with all the elements in the first row

- We must turn the infinite matrix into a list
- A first (bad) attempt of doing this would be to begin the list with all the elements in the first row
- That would not work as the first row is infinite and we would never get to the second row!

- We must turn the infinite matrix into a list
- A first (bad) attempt of doing this would be to begin the list with all the elements in the first row
- That would not work as the first row is infinite and we would never get to the second row!
- Instead, we list the elements following the diagonals, starting from the top-left corner

• The first diagonal contains the single element $\frac{1}{1}$

- The first diagonal contains the single element $\frac{1}{1}$
- The second diagonal, instead, contains two elements: $\frac{1}{2}$ and $\frac{2}{1}$

- The first diagonal contains the single element $\frac{1}{1}$
- The second diagonal, instead, contains two elements: $\frac{1}{2}$ and $\frac{2}{1}$
- The first three elements of our list are: $\frac{1}{1}, \frac{1}{2}, \frac{2}{1}$

Teoria degli Algoritmi a.a. 2020-21

- The first diagonal contains the single element $\frac{1}{1}$
- The second diagonal, instead, contains two elements: $\frac{1}{2}$ and $\frac{2}{1}$
- The first three elements of our list are: $\frac{1}{1}, \frac{1}{2}, \frac{2}{1}$
- In the third diagonal, things get a little bit more complicated as this contains: $\frac{1}{3}, \frac{2}{2}, \frac{3}{1}$

- The first diagonal contains the single element $\frac{1}{1}$
- The second diagonal, instead, contains two elements: $\frac{1}{2}$ and $\frac{2}{1}$
- The first three elements of our list are:
- In the third diagonal, things get a little bit more complicated as this contains: $\frac{1}{3}$, $\frac{2}{7}$, $\frac{3}{1}$
- We can't add those to our list as we would repeat $\frac{1}{1} = \frac{2}{2}$, so we add only $\frac{3}{1}$ and $\frac{1}{3}$

- The first diagonal contains the single element $\frac{1}{1}$
- The second diagonal, instead, contains two elements: $\frac{1}{2}$ and $\frac{2}{1}$
- The first three elements of our list are:
- In the third diagonal, things get a little bit more complicated as this contains: $\frac{1}{3}$, $\frac{2}{7}$, $\frac{3}{1}$
- We can't add those to our list as we would repeat $\frac{1}{1} = \frac{2}{2}$, so we add only $\frac{3}{1}$ and $\frac{1}{3}$
- If we keep going this way we will obtain the list of all the elements of Q

 We may be tempted to conclude that any two infinite sets have the same size...

- We may be tempted to conclude that any two infinite sets have the same size...
- After all, we just need to show that a **correspondence** between the two exists

- We may be tempted to conclude that any two infinite sets have the same size...
- After all, we just need to show that a correspondence between the two exists
- However, for some infinite sets no correspondence (with the set \mathbb{N}) exists

- We may be tempted to conclude that any two infinite sets have the same size...
- After all, we just need to show that a **correspondence** between the two exists
- However, for some infinite sets no correspondence (with the set N) exists
- We call those sets uncountable

The Set of Real Numbers $\mathbb R$

ullet The set of real numbers ${\mathbb R}$ is an example of an uncountable set

The Set of Real Numbers \mathbb{R}

- The set of real numbers \mathbb{R} is an example of an uncountable set
- A real number is one that has a decimal representation
 - ullet For example: $\pi=3.1415926\ldots$ or $\sqrt{2}=1.4142135\ldots$ are real numbers

- ullet The set of real numbers ${\mathbb R}$ is an example of an uncountable set
- A real number is one that has a decimal representation
 - For example: $\pi=3.1415926\ldots$ or $\sqrt{2}=1.4142135\ldots$ are real numbers
- Cantor proved that \mathbb{R} is uncountable, and to do so he introduced the so-called **diagonalization method**

• To show that $\mathbb R$ is uncountable, we must show that no correspondence exists between $\mathbb N$ and $\mathbb R$

R is Uncountable: Cantor's Proof

- To show that $\mathbb R$ is uncountable, we must show that no correspondence exists between $\mathbb N$ and $\mathbb R$
- The proof works by contradiction, i.e., assuming that a correspondence $f: \mathbb{N} \mapsto \mathbb{R}$ exists

- To show that $\mathbb R$ is uncountable, we must show that no correspondence exists between $\mathbb N$ and $\mathbb R$
- The proof works by contradiction, i.e., assuming that a correspondence $f: \mathbb{N} \mapsto \mathbb{R}$ exists
- Eventually, we want to get to an absurd!

- To show that $\mathbb R$ is uncountable, we must show that no correspondence exists between $\mathbb N$ and $\mathbb R$
- The proof works by contradiction, i.e., assuming that a correspondence $f: \mathbb{N} \mapsto \mathbb{R}$ exists
- Eventually, we want to get to an absurd!
- For f to be a correspondence it has to pair **all** the elements of $\mathbb N$ with **all** the elements of $\mathbb R$

- To show that $\mathbb R$ is uncountable, we must show that no correspondence exists between $\mathbb N$ and $\mathbb R$
- The proof works by contradiction, i.e., assuming that a correspondence $f: \mathbb{N} \mapsto \mathbb{R}$ exists
- Eventually, we want to get to an absurd!
- For f to be a correspondence it has to pair **all** the elements of $\mathbb N$ with **all** the elements of $\mathbb R$
- The idea is to find an element $x \in \mathbb{R}$ that is not paired with any element of \mathbb{N}

• To find the counterexample $x \in \mathbb{R}$ that leads to a contradiction, we use an example

- To find the counterexample $x \in \mathbb{R}$ that leads to a contradiction, we use an example
- Suppose (again) that f exists and some of its values are:
 - $f(1) = \pi = 3.14159...$
 - f(2) = 55.55555...
 - f(3) = 0.12345...
 - f(4) = 0.50000...
 - ...

- To find the counterexample $x \in \mathbb{R}$ that leads to a contradiction, we use an example
- Suppose (again) that f exists and some of its values are:
 - $f(1) = \pi = 3.14159...$
 - f(2) = 55.55555...
 - f(3) = 0.12345...
 - f(4) = 0.50000...
 - ...
- Now, we construct our counterexample x by giving its decimal representation as follows:
 - It is a number between 0 and 1, so all its significant digits are decimals

- To find the counterexample $x \in \mathbb{R}$ that leads to a contradiction, we use an example
- Suppose (again) that f exists and some of its values are:
 - $f(1) = \pi = 3.14159...$
 - f(2) = 55.55555...
 - f(3) = 0.12345...
 - f(4) = 0.50000...
 - ...
- Now, we construct our counterexample x by giving its decimal representation as follows:
 - It is a number between 0 and 1, so all its significant digits are decimals
 - Our goal is to ensure that $\forall n \in \mathbb{N}, x \neq f(n)$

R is Uncountable: Cantor's Proof

• To ensure that $x \neq f(1)$, we let the **first** digit of x to be anything different from the **first** decimal digit of f(1) (i.e., 1): let it be **4**

R is Uncountable: Cantor's Proof

- To ensure that $x \neq f(1)$, we let the **first** digit of x to be anything different from the **first** decimal digit of f(1) (i.e., 1): let it be **4**
- To ensure that $x \neq f(2)$, we let the **second** digit of x to be anything different from the **second** decimal digit of f(2) (i.e., 5): let it be **6**

- To ensure that $x \neq f(1)$, we let the **first** digit of x to be anything different from the **first** decimal digit of f(1) (i.e., 1): let it be **4**
- To ensure that $x \neq f(2)$, we let the **second** digit of x to be anything different from the **second** decimal digit of f(2) (i.e., 5): let it be **6**
- To ensure that $x \neq f(3)$, we let the **third** digit of x to be anything different from the **third** decimal digit of f(3) (i.e., 3): let it be **7**

- To ensure that $x \neq f(1)$, we let the **first** digit of x to be anything different from the **first** decimal digit of f(1) (i.e., 1): let it be **4**
- To ensure that $x \neq f(2)$, we let the **second** digit of x to be anything different from the **second** decimal digit of f(2) (i.e., 5): let it be **6**
- To ensure that $x \neq f(3)$, we let the **third** digit of x to be anything different from the **third** decimal digit of f(3) (i.e., 3): let it be **7**
- ullet We keep doing this all the way down the "diagonal" of the table for f

\mathbb{R} is Uncountable: Cantor's Proof

- To ensure that $x \neq f(1)$, we let the **first** digit of x to be anything different from the **first** decimal digit of f(1) (i.e., 1): let it be **4**
- To ensure that $x \neq f(2)$, we let the **second** digit of x to be anything different from the **second** decimal digit of f(2) (i.e., 5): let it be **6**
- To ensure that $x \neq f(3)$, we let the **third** digit of x to be anything different from the **third** decimal digit of f(3) (i.e., 3): let it be **7**
- We keep doing this all the way down the "diagonal" of the table for f
- Eventually, we build x = 0.467... which is not equal to any f(n), as it differs from it in its n-th decimal digit

• The fact that $\mathbb R$ is uncountable has profound implications also for the theory of computation

\mathbb{R} is Uncountable: Implications

- \bullet The fact that $\mathbb R$ is uncountable has profound implications also for the theory of computation
- Indeed, it tells us that there exist some numbers that cannot be computed

\mathbb{R} is Uncountable: Implications

- ullet The fact that ${\mathbb R}$ is uncountable has profound implications also for the theory of computation
- Indeed, it tells us that there exist some numbers that cannot be computed
- In other words, there exist some languages that are not decidable (nor even recognizable)

Teoria degli Algoritmi a.a. 2020-21

Table of Contents

- Computability
- The Halting Problem
- A Beyond Undecidability
- Summary

 This is one of the most fundamental problem in the theory of computation

- This is one of the most fundamental problem in the theory of computation
- Informally, it aims to find an algorithm that can tell whether a Turing machine M halts and accepts or not when this is given an input x

- This is one of the most fundamental problem in the theory of computation
- Informally, it aims to find an algorithm that can tell whether a Turing machine M halts and accepts or not when this is given an input x
- Using the same Cantor's diagonalization argument, we will prove that the halting problem is algorithmically undecidable:
 - There is no such an algorithm (i.e., Turing machine) that can decide if another Turing machine will ever halt and accept on a given input

- This is one of the most fundamental problem in the theory of computation
- Informally, it aims to find an algorithm that can tell whether a Turing machine M halts and accepts or not when this is given an input x
- Using the same Cantor's diagonalization argument, we will prove that the halting problem is algorithmically undecidable:
 - There is no such an algorithm (i.e., Turing machine) that can decide if another Turing machine will ever halt and accept on a given input
- This result has profound philosophical and practical implications, showing that computers are inherently limited in a fundamental way

The Halting Problem: Formal Definition (1)

Definition (The Halting Problem)

We aim to find a **total computable function** $HALT_{ACC}: \Sigma^* \mapsto \Sigma$ such that for every string representation of a Turing machine along with its input $\langle M, x \rangle \in \Sigma^*$:

$$HALT_{ACC}(\langle M, x \rangle) = \begin{cases} 1 & \text{if } M(x) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Definition (The Halting Problem)

We aim to find a **total computable function** $HALT_{ACC}: \Sigma^* \mapsto \Sigma$ such that for every string representation of a Turing machine along with its input $\langle M, x \rangle \in \Sigma^*$:

$$HALT_{ACC}(\langle M, x \rangle) = \begin{cases} 1 & \text{if } M(x) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Note

 $\langle M, x \rangle$ can be thought of as the concatenation of two encodings: the Turing machine $\langle M \rangle$ and its input $\langle x \rangle$.

 $HALT_{ACC}$ is the boolean function that outputs 1 if M halts (and accepts) x, i.e., M(x) = 1, or 0 otherwise (i.e., if M(x) = 0 or $M(x) = \bot$)

Definition (The Halting Problem)

Consider the **language** A_{TM} : $\{\langle M, x \rangle \in \Sigma^* \mid M \text{ is a TM and } M(x) = 1\}$. We can also define:

$$HALT_{ACC}(\langle M, x \rangle) = \begin{cases} 1 & \text{if } \langle M, x \rangle \in A_{TM} \\ 0 & \text{if } \langle M, x \rangle \notin A_{TM} \end{cases}$$

The Halting Problem: Formal Definition (2)

Definition (The Halting Problem)

Consider the **language** A_{TM} : $\{\langle M, x \rangle \in \Sigma^* \mid M \text{ is a TM and } M(x) = 1\}$. We can also define:

$$HALT_{ACC}(\langle M, x \rangle) = \begin{cases} 1 & \text{if } \langle M, x \rangle \in A_{TM} \\ 0 & \text{if } \langle M, x \rangle \notin A_{TM} \end{cases}$$

Note

Finding whether the **total computable function** $HALT_{ACC}$ exists is equivalent to determine whether the language A_{TM} is **decidable**

 The actual definition of the halting problem is subtly different from the one given above

- The actual definition of the halting problem is subtly different from the one given above
- Our definition asks the function to output 1 if and only if the input TM M halts and accepts its input x

- The actual definition of the halting problem is subtly different from the one given above
- Our definition asks the function to output 1 if and only if the input TM M halts and accepts its input x
- However, a more accurate definition would be provided by the following HALT function, which outputs 1 whenever M halts on x (no matter if it accepts or rejects):

$$HALT(\langle M, x \rangle) = \begin{cases} 1 & \text{if } M(x) = 1 \lor M(x) = 0 \\ 0 & M(x) = \bot \end{cases}$$

- The actual definition of the halting problem is subtly different from the one given above
- Our definition asks the function to output 1 if and only if the input TM M halts and accepts its input x
- However, a more accurate definition would be provided by the following HALT function, which outputs 1 whenever M halts on x (no matter if it accepts or rejects):

$$HALT(\langle M, x \rangle) = \begin{cases} 1 & \text{if } M(x) = 1 \lor M(x) = 0 \\ 0 & M(x) = \bot \end{cases}$$

 We will see that the two definitions are equivalent, i.e., both HALT_{ACC} and HALT are undecidable

Theorem (The Halting Problem is not Decidable)

The function $HALT_{ACC}$ as defined above is **not total and computable**. Equivalently, the language A_{TM} is **not decidable**.

Theorem (The Halting Problem is not Decidable)

The function $HALT_{ACC}$ as defined above is **not total and computable**. Equivalently, the language A_{TM} is **not decidable**.

Note

Before getting into the proof, let us first observe that $HALT_{ACC}$ is partial and computable (i.e., A_{TM} is recognizable)

Theorem (The Halting Problem is Recognizable)

The following Turing machine U computes a partial function $HALT_{ACC}$ (i.e., recognizes A_{TM}):

 $U = On input \langle M, x \rangle$, where M is a TM and x an input to it:

- Simulate M on input x;
- ② If M ever halts and accepts x (i.e., M(x) = 1) then return 1; if M ever halts and rejects x (i.e., M(x) = 0) then return 0

Theorem (The Halting Problem is Recognizable)

The following Turing machine U computes a partial function $HALT_{ACC}$ (i.e., recognizes A_{TM}):

 $U = On input \langle M, x \rangle$, where M is a TM and x an input to it:

- Simulate M on input x;
- ② If M ever halts and accepts x (i.e., M(x) = 1) then return 1; if M ever halts and rejects x (i.e., M(x) = 0) then return 0

Note

The Turing machine U above loops on input $\langle M, x \rangle$ if M loops on x. This is why U computes a partial but **not** a total function (i.e., U recognizes but **not** decides A_{TM})

• The halting problem is not just a purely theoretical exercise!

- The halting problem is not just a purely theoretical exercise!
- For example, think about managing the Apple's App Store or Google's Play Store: given some app code, you would like to know whether this gets into an infinite loop!

- The halting problem is not just a purely theoretical exercise!
- For example, think about managing the Apple's App Store or Google's Play Store: given some app code, you would like to know whether this gets into an infinite loop!
- If U had some way to determine that M would loop forever on x, it could output 0

- The halting problem is not just a purely theoretical exercise!
- For example, think about managing the Apple's App Store or Google's Play Store: given some app code, you would like to know whether this gets into an infinite loop!
- If U had some way to determine that M would loop forever on x, it could output 0
- Unfortunately, no algorithm exists that can make this determination for every possible TMs and their inputs

Theorem (The Halting Problem is not Decidable)

Consider the language A_{TM} : $\{\langle M, x \rangle \in \Sigma^* \mid M \text{ is a } TM \text{ and } M(x) = 1\}.$ We can also define:

$$HALT_{ACC}(\langle M, x \rangle) = \begin{cases} 1 & \text{if } \langle M, x \rangle \in A_{TM} \\ 0 & \text{if } \langle M, x \rangle \notin A_{TM} \end{cases}$$

The function $HALT_{ACC}$ as defined above is **not total and computable**. Equivalently, the language A_{TM} is **not decidable**.

• We assume that A_{TM} is decidable and obtain a contradiction

- We assume that A_{TM} is decidable and obtain a contradiction
- Let H be a decider for A_{TM} , such that on input $\langle M, x \rangle$, where M is a TM and x is a (binary) string:
 - H halts and outputs 1 if M outputs 1 on x
 - *H* halts and outputs **0** if *M* fails to output 1 on *x* (i.e., either outputs 0 or loop forever)

March 4, 2021

- We assume that A_{TM} is decidable and obtain a contradiction
- Let H be a decider for A_{TM} , such that on input $\langle M, x \rangle$, where M is a TM and x is a (binary) string:
 - H halts and outputs 1 if M outputs 1 on x
 - H halts and outputs 0 if M fails to output 1 on x (i.e., either outputs 0 or loop forever)
- In other words:

$$H(\langle M, x \rangle) = egin{cases} 1 & ext{if } M(x) = 1 \ 0 & ext{if } M(x) = 0 \lor M(x) = ot \end{cases}$$

• Let's construct another TM called D, which uses H as a subroutine

- Let's construct another TM called D, which uses H as a subroutine
- This new TM calls H to determine what M does when the input to M is its own description \langle M \rangle

- Let's construct another TM called D, which uses H as a subroutine
- This new TM calls H to determine what M does when the input to M is its own description $\langle M \rangle$
- Once D has determined this information, it does the **opposite**, i.e., it outputs 0 if $H(\langle M, \langle M \rangle \rangle) = 1$ or 1 if $H(\langle M, \langle M \rangle \rangle) = 0$

$$D(\langle M \rangle) = \begin{cases} 1 & \text{if } H(\langle M, \langle M \rangle \rangle) = 0 \Leftrightarrow M(\langle M \rangle) = 0 \lor M(\langle M \rangle) = \bot \\ 0 & \text{if } H(\langle M, \langle M \rangle \rangle) = 1 \Leftrightarrow M(\langle M \rangle) = 1 \end{cases}$$

What happens if we run D with its own description $\langle D \rangle$ as input?

$$D(\langle D \rangle) = \begin{cases} 1 & \text{if } H(\langle D, \langle D \rangle \rangle) = 0 \Leftrightarrow D(\langle D \rangle) = 0 \lor D(\langle D \rangle) = \bot \\ 0 & \text{if } H(\langle D, \langle D \rangle \rangle) = 1 \Leftrightarrow D(\langle D \rangle) = 1 \end{cases}$$

What happens if we run D with its own description $\langle D \rangle$ as input?

$$D(\langle D \rangle) = \begin{cases} 1 & \text{if } H(\langle D, \langle D \rangle \rangle) = 0 \Leftrightarrow D(\langle D \rangle) = 0 \lor D(\langle D \rangle) = \bot \\ 0 & \text{if } H(\langle D, \langle D \rangle \rangle) = 1 \Leftrightarrow D(\langle D \rangle) = 1 \end{cases}$$

Note

No matter what D does, it is forced to do the opposite, which leads us to a contradiction! As such, neither D nor H can exist!

March 4, 2021

• Where is the diagonalization argument in this proof?

- Where is the diagonalization argument in this proof?
- We must examine the tables of behavior for the two TMs used: H
 and D

- Where is the diagonalization argument in this proof?
- We must examine the tables of behavior for the two TMs used: H
 and D
- We start first by showing a more general table of behavior of all TMs when they are input with the description of some (other) TM

The Halting Problem is not Decidable: Proof

- Where is the diagonalization argument in this proof?
- We must examine the tables of behavior for the two TMs used: H
 and D
- We start first by showing a more general table of behavior of all TMs when they are input with the description of some (other) TM
- In other words, given a generic TM M_i the table shows the behavior of M_i when this is input with $\langle M_j \rangle$

The Halting Problem is not Decidable: Proof

- Where is the diagonalization argument in this proof?
- We must examine the tables of behavior for the two TMs used: H
 and D
- We start first by showing a more general table of behavior of all TMs when they are input with the description of some (other) TM
- In other words, given a generic TM M_i the table shows the behavior of M_i when this is input with $\langle M_j \rangle$
- Without loss of generality, the output of M_i when input with $\langle M_j \rangle$ is either: 1 (accept), 0 (reject), or \perp (does not halt)

The Behavior of All Turing Machines

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	 <m<sub>k></m<sub>	
M _I	accept	reject	accept	doesn't halt	 reject	
M ₂	accept	accept	accept	accept	 doesn't halt	
M ₃	reject	doesn't halt	doesn't halt	reject	 accept	
M ₄	accept	accept	reject	reject	 doesn't halt	•••
M _k	doesn't halt	reject	accept	accept	accept	

Entry i, j contains the output of TM M_i on input $\langle M_i \rangle$

The Behavior of H

The table below shows the behavior of TM H on inputs from the table above: if M_i accepts $\langle M_i \rangle$ so does H, if M_i either rejects or doesn't halt on $\langle M_i \rangle$ then H rejects

The Behavior of H

The table below shows the behavior of TM H on inputs from the table above: if M_i accepts $\langle M_j \rangle$ so does H, if M_i either rejects or doesn't halt on $\langle M_i \rangle$ then H rejects

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	 <m<sub>k></m<sub>	
M _I	accept	reject	accept	reject	 reject	
M ₂	accept	accept	accept	accept	 reject	
M ₃	reject	reject	reject	reject	 accept	
M ₄	accept	accept	reject	reject	 reject	
M _k	reject	reject	accept	accept	accept	

The Behavior of D

Assuming H exists, so does D! As such, D must be located somewhere in the list of **all** TMs

The Behavior of D

Assuming H exists, so does D! As such, D must be located somewhere in the list of all TMs

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	 <d></d>	
M _I	accept	reject	accept	reject	 reject	
M ₂	accept	accept	accept	accept	 reject	
M ₃	reject	reject	reject	reject	 accept	
M ₄	accept	accept	reject	<u>reject</u>	 reject	
D	reject	reject	accept	accept	?	

The Behavior of D

Since D computes the opposite of the diagonal entries, a contradiction occurs in correspondence of column $\langle D \rangle$, where the entry must be the opposite of itself!

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	 <d></d>	
M _I	accept	reject	accept	reject	 reject	
M ₂	accept	accept	accept	accept	 reject	
M ₃	reject	reject	reject	reject	 accept	
M ₄	accept	accept	reject	<u>reject</u>	 reject	
D	reject	reject	accept	accept	?	

- Computability
- ② Diagonalization
- 3 The Halting Problem
- 4 Beyond Undecidability
- Summary

• We have shown that the halting problem (i.e., the language it defines A_{TM}) is **undecidable** (or semi-decidable)

- We have shown that the halting problem (i.e., the language it defines A_{TM}) is **undecidable** (or semi-decidable)
- We know that A_{TM} is **recognizable**

- We have shown that the halting problem (i.e., the language it defines A_{TM}) is **undecidable** (or semi-decidable)
- We know that A_{TM} is recognizable
- However, there exist languages that are not even recognized by a TM

- We have shown that the halting problem (i.e., the language it defines A_{TM}) is **undecidable** (or semi-decidable)
- We know that A_{TM} is recognizable
- However, there exist languages that are not even recognized by a TM
- We will prove that using the same diagonalization argument

Corollary (Turing-unrecognizable Languages)

• There are countably many Turing machines

Corollary (Turing-unrecognizable Languages)

- There are countably many Turing machines
- There are uncountably many languages

Corollary (Turing-unrecognizable Languages)

- There are countably many Turing machines
- There are uncountably many languages
- Each Turing machine can recognize a single language

March 4, 2021

Corollary (Turing-unrecognizable Languages)

- There are countably many Turing machines
- There are uncountably many languages
- Each Turing machine can recognize a single language

Some languages are not Turing-recognizable

March 4, 2021

Turing-unrecognizable Languages: Proof

• To prove the corollary above we need to show that:

Turing-unrecognizable Languages: Proof

- To prove the corollary above we need to show that:
 - 1 The set of all Turing machines is countable

March 4, 2021

- To prove the corollary above we need to show that:
 - 1 The set of all Turing machines is countable
 - 2 The set of all languages is uncountable

- To prove the corollary above we need to show that:
 - 1 The set of all Turing machines is countable
 - 2 The set of all languages is uncountable
- Let's start with 1!

March 4, 2021

• We first observe that for any finite alphabet Σ the (infinite) set of all the finite-length strings Σ^* is countable

- We first observe that for any finite alphabet Σ the (infinite) set of all the finite-length strings Σ^* is countable
- We can indeed make a list of all the elements of Σ^* by noticing that there are finitely many strings of each specific length:
 - We enumerate all the strings of length 0, then those of length 1, length 2, etc.

- We first observe that for any finite alphabet Σ the (infinite) set of all the finite-length strings Σ^* is countable
- We can indeed make a list of all the elements of Σ^* by noticing that there are finitely many strings of each specific length:
 - We enumerate all the strings of length 0, then those of length 1, length 2, etc.
- The set of all Turing machines is countable because each TM has a finite (binary) string encoding $\langle M \rangle \in \Sigma^*$, where $\Sigma = \{0,1\}$

- We first observe that for any finite alphabet Σ the (infinite) set of all the finite-length strings Σ^* is countable
- We can indeed make a list of all the elements of Σ^* by noticing that there are finitely many strings of each specific length:
 - We enumerate all the strings of length 0, then those of length 1, length 2. etc.
- The set of all Turing machines is countable because each TM has a finite (binary) string encoding $\langle M \rangle \in \Sigma^*$, where $\Sigma = \{0,1\}$
- Therefore, we can list all those encodings $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$ as above

- We first observe that for any finite alphabet Σ the (infinite) set of all the finite-length strings Σ^* is countable
- We can indeed make a list of all the elements of Σ^* by noticing that there are finitely many strings of each specific length:
 - We enumerate all the strings of length 0, then those of length 1, length 2, etc.
- The set of all Turing machines is countable because each TM has a finite (binary) string encoding $\langle M \rangle \in \Sigma^*$, where $\Sigma = \{0,1\}$
- Therefore, we can list all those encodings $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$ as above
- In other words, we can easily find a correspondence between the set of natural numbers $\mathbb N$ and the (infinite) set of **all** Turing machines (encoded as binary strings)

2) The Set of All Languages is Uncountable

- Two approaches to show that this statement is true:
 - using the countable set of all the finite-length binary strings and Cantor's diagonalization
 - ② using the uncountable set of all the infinite-length binary strings

2) The Set of All Languages is Uncountable

- Two approaches to show that this statement is true:
 - using the countable set of all the finite-length binary strings and Cantor's diagonalization
 - 2 using the uncountable set of all the infinite-length binary strings
- Let's start from 1!

• Let $\Sigma^* = \{\sigma_1, \sigma_2, \ldots\}$ be the set of all the finite-length binary strings

- Let $\Sigma^* = \{\sigma_1, \sigma_2, \ldots\}$ be the set of all the finite-length binary strings
- We already shown that Σ^* is **countable**

- Let $\Sigma^* = \{\sigma_1, \sigma_2, \ldots\}$ be the set of all the finite-length binary strings
- We already shown that Σ^* is **countable**
- Any language L can be seen as a subset of Σ^*

- Let $\Sigma^* = \{\sigma_1, \sigma_2, \ldots\}$ be the set of all the finite-length binary strings
- We already shown that Σ* is countable
- Any language L can be seen as a subset of Σ^*
- We must show that the set \mathcal{L} of all languages is uncountable

March 4, 2021

ullet Suppose that ${\cal L}$ is, instead, countable

- Suppose that \mathcal{L} is, instead, countable
- Therefore, there exists a correspondence $f: \mathbb{N} \mapsto \mathcal{L}$

- Suppose that \mathcal{L} is, instead, countable
- Therefore, there exists a correspondence $f: \mathbb{N} \mapsto \mathcal{L}$
- We can define f(k) as the k-th element of \mathcal{L} , denoted by L_k (**Remember:** each element of \mathcal{L} is actually a subset of Σ^*)

- Suppose that \mathcal{L} is, instead, countable
- Therefore, there exists a correspondence $f: \mathbb{N} \mapsto \mathcal{L}$
- We can define f(k) as the k-th element of L, denoted by L_k
 (Remember: each element of L is actually a subset of Σ*)
- Now, we apply Cantor's diagonalization to build a new element $L_j \in \mathcal{L}$ as follows:
 - If $\sigma_k \in L_k$ then $\sigma_k \notin L_j$
 - If $\sigma_k \notin L_k$ then $\sigma_k \in L_j$

2) The Set of All Languages is Uncountable: First Proof

- Suppose that \mathcal{L} is, instead, countable
- Therefore, there exists a correspondence $f: \mathbb{N} \mapsto \mathcal{L}$
- We can define f(k) as the k-th element of L, denoted by L_k
 (Remember: each element of L is actually a subset of Σ*)
- Now, we apply Cantor's diagonalization to build a new element $L_j \in \mathcal{L}$ as follows:
 - If $\sigma_k \in L_k$ then $\sigma_k \notin L_j$
 - If $\sigma_k \notin L_k$ then $\sigma_k \in L_j$
- Then, we have found an element $L_j \in \mathcal{L}$, such that there is no $j \in \mathbb{N}, f(j) = L_j$

• In this second proof, instead, we start from a different perspective

- In this second proof, instead, we start from a different perspective
- We first observe that the set of all **infinite** binary sequences is uncountable

March 4, 2021

Beyond Undecidability 000000000000000

- In this second proof, instead, we start from a different perspective
- We first observe that the set of all infinite binary sequences is uncountable
- An infinite binary sequence is a never-ending sequence of binary symbols (0s and 1s)

- In this second proof, instead, we start from a different perspective
- We first observe that the set of all infinite binary sequences is uncountable
- An infinite binary sequence is a never-ending sequence of binary symbols (0s and 1s)
- ullet Let ${\mathcal B}$ be the set of all such infinite binary sequences: we can show ${\mathcal B}$ is uncountable using Cantor's diagonalization

Note

The infinite set of finite-length binary strings $\Sigma^* = \{0,1\}^*$ is **not equal** to the set of infinite-length binary strings \mathcal{B}

ullet To show that ${\cal B}$ is uncountable we assume it is, in fact, countable

Beyond Undecidability 00000000000000

- To show that \mathcal{B} is uncountable we assume it is, in fact, countable
- If that is the case, we will be able to list all the infinite-length binary sequences

- To show that \mathcal{B} is uncountable we assume it is, in fact, countable
- If that is the case, we will be able to list all the infinite-length binary sequences
- In other words, we can create a correspondence $f: \mathbb{N} \mapsto \mathcal{B}$, e.g.:
 - f(1) = 00000...
 - f(2) = 11010...
 - f(3) = 00101...
 - ...

- ullet To show that ${\cal B}$ is uncountable we assume it is, in fact, countable
- If that is the case, we will be able to list all the infinite-length binary sequences
- In other words, we can create a correspondence $f : \mathbb{N} \mapsto \mathcal{B}$, e.g.:
 - f(1) = 00000...
 - f(2) = 11010...
 - f(3) = 00101...
 - ...
- However, we can build another binary sequence b such that its i-th bit is the opposite of the i-th bit of each f(i). In the example above: b = 100...

- ullet To show that ${\cal B}$ is uncountable we assume it is, in fact, countable
- If that is the case, we will be able to list all the infinite-length binary sequences
- In other words, we can create a correspondence $f : \mathbb{N} \mapsto \mathcal{B}$, e.g.:
 - f(1) = 00000...
 - f(2) = 11010...
 - f(3) = 00101...
 - ...
- However, we can build another binary sequence b such that its i-th bit is the opposite of the i-th bit of each f(i). In the example above: b = 100...
- We have found a sequence b which is not paired with any natural number listed $\Longrightarrow \mathcal{B}$ is **uncountable**

• So far we have shown that \mathcal{B} is uncountable

- So far we have shown that B is uncountable
- Now we want to show that the set \mathcal{L} all languages over a finite alphabet Σ is uncountable as well

Beyond Undecidability 0000000000000000

- So far we have shown that B is uncountable
- Now we want to show that the set \mathcal{L} all languages over a finite alphabet Σ is uncountable as well
- To do so, we build a correspondence $f: \mathcal{L} \mapsto \mathcal{B}$, thus showing they both have the same size

- So far we have shown that B is uncountable
- Now we want to show that the set \mathcal{L} all languages over a finite alphabet Σ is uncountable as well
- To do so, we build a correspondence $f: \mathcal{L} \mapsto \mathcal{B}$, thus showing they both have the same size
- Let $\Sigma^* = \{\sigma_1, \sigma_2, \ldots\}$ the list of finite-length strings over Σ (e.g., $\Sigma = \{0, 1\}$

March 4, 2021

- So far we have shown that B is uncountable
- Now we want to show that the set \mathcal{L} all languages over a finite alphabet Σ is uncountable as well
- To do so, we build a correspondence $f: \mathcal{L} \mapsto \mathcal{B}$, thus showing they both have the same size
- Let $\Sigma^* = \{\sigma_1, \sigma_2, \ldots\}$ the list of finite-length strings over Σ (e.g., $\Sigma = \{0, 1\}$
- Each language $L \in \mathcal{L}$ can be described as a unique sequence in \mathcal{B} , where the *i*-th bit of that sequence is 1 if $\sigma_i \in L$, or 0 if $\sigma_i \notin L$

Note

Without loss of generality, each language $L \in \mathcal{L}$ is indeed composed of infinitely many finite-length strings, therefore represented as an infinite binary sequence

Definition (Characteristic Sequence)

We call the infinite binary sequence associated with each $L \in \mathcal{L}$ the **characteristic sequence** of L, denoted by χ_L

Definition (Characteristic Sequence)

We call the infinite binary sequence associated with each $L \in \mathcal{L}$ the characteristic sequence of L, denoted by χ_I

Example

Suppose L is the language of all strings starting with a 0 over the alphabet $\Sigma = \{0,1\}$. Then, its **characteristic sequence** χ_L will be as follows:

$$\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$$

$$L = \{0, 00, 01, 000, 001, \ldots\}$$

$$\chi_L = \{0, 1, 0, 1, 1, 0, 0, 1, 1, \ldots\}$$

• The function $f: \mathcal{L} \mapsto \mathcal{B}$, where $f(L) = \chi_L$ equals the characteristic sequence of L is one-to-one and onto, thus a correspondence

- The function $f: \mathcal{L} \mapsto \mathcal{B}$, where $f(L) = \chi_L$ equals the characteristic sequence of L is one-to-one and onto, thus a correspondence
- Given that \mathcal{B} is uncountable and we are able to put it into a correspondence with \mathcal{L} then \mathcal{L} is **uncountable** as well

March 4, 2021

- The function $f: \mathcal{L} \mapsto \mathcal{B}$, where $f(L) = \chi_L$ equals the characteristic sequence of L is one-to-one and onto, thus a correspondence
- Given that \mathcal{B} is uncountable and we are able to put it into a correspondence with \mathcal{L} then \mathcal{L} is **uncountable** as well
- We have shown (again) that the set of all languages $\mathcal L$ cannnot be put into correspondence with the set of all Turing machines

March 4, 2021

- The function $f: \mathcal{L} \mapsto \mathcal{B}$, where $f(L) = \chi_L$ equals the characteristic sequence of L is one-to-one and onto, thus a correspondence
- Given that $\mathcal B$ is uncountable and we are able to put it into a correspondence with $\mathcal L$ then $\mathcal L$ is **uncountable** as well
- ullet We have shown (again) that the set of all languages ${\cal L}$ cannnot be put into correspondence with the set of all Turing machines
- We can conclude that some languages are **not** recognized by any Turing machine

The Set of All Languages is Uncountable: Extra Proof

Theorem (Cantor's Theorem)

For any set A, the set of all subsets of A - also known as the **power set** of A, denoted by $\mathcal{P}(A)$ - has a strictly greater cardinality than A itself:

$$|\mathcal{P}(A)| > |A|$$

The Set of All Languages is Uncountable: Extra Proof

Theorem (Cantor's Theorem)

For any set A, the set of all subsets of A - also known as the **power set** of A, denoted by $\mathcal{P}(A)$ - has a strictly greater cardinality than A itself:

$$|\mathcal{P}(A)| > |A|$$

Example (Countably Finite Sets)

If A is countable and finite, the relation trivially holds:

Let
$$|A| = n$$
, then $|\mathcal{P}(A)| = 2^n$

The Set of All Languages is Uncountable: Extra Proof

Theorem (Cantor's Theorem)

For any set A, the set of all subsets of A - also known as the **power set** of A, denoted by $\mathcal{P}(A)$ - has a strictly greater cardinality than A itself:

$$|\mathcal{P}(A)| > |A|$$

Example (Countably Infinite Sets)

If A is countable and infinite, the relation still holds:

Let
$$A=\mathbb{N}$$
, then $|\mathbb{N}|=\aleph_0$ and $|\mathcal{P}(\mathbb{N})|=2^{\aleph_0}$

In particular, the power set of the set of natural numbers is uncountably infinite and has the same size as the set of real numbers, whose cardinality $\mathfrak{c}=2^{\aleph_0}$ is referred to as the **cardinality of the continuum**:

$$|\mathcal{P}(\mathbb{N})| = |\mathbb{R}| = \mathfrak{c} = 2^{\aleph_0} > \aleph_0 = |\mathbb{N}|$$

Table of Contents

- Computability
- ② Diagonalization
- 3 The Halting Problem
- 4 Beyond Undecidability
- Summary

• We ask ourselves whether there exists any problem that is not algorithmically solvable

Summary 00

- We ask ourselves whether there exists any problem that is not algorithmically solvable
- We consider as a reference example the well-known Halting Problem

algorithmically solvable

We ask ourselves whether there exists any problem that is not

- We consider as a reference example the well-known Halting Problem
- We proved the Halting Problem is undecidable (or semi-decidable), although it is of course recognizable

algorithmically solvable

We ask ourselves whether there exists any problem that is not

- We consider as a reference example the well-known Halting Problem
- We proved the Halting Problem is undecidable (or semi-decidable), although it is of course recognizable
- The proof is based on Cantor's diagonalization argument used to compare the size of (infinite) sets

algorithmically solvable

We ask ourselves whether there exists any problem that is not

- We consider as a reference example the well-known Halting Problem
- We proved the Halting Problem is undecidable (or semi-decidable), although it is of course recognizable
- The proof is based on Cantor's diagonalization argument used to compare the size of (infinite) sets
- Diagonalization allows us to prove that there are functions/languages that cannot be even recognized (i.e., we have countably many TMs yet uncountably many languages)

