Principles of Operations Management: Sustainability and Supply Chain Management

Twelfth Edition, Global Edition

Chapter 4
Forecasting

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

1

Outline

- Global Company Profile: Walt Disney Parks & Resorts
- · What Is Forecasting?
- · The Strategic Importance of Forecasting
- · Seven Steps in the Forecasting System
- · Forecasting Approaches

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

2

Outline (continued)

- · Time-Series Forecasting
- Associative Forecasting Methods: Regression and Correlation Analysis
- · Monitoring, Controlling and Adapting Forecasts
- · Forecasting in the Service Sector

Pearson

3

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

How Forecasting Provides a Competitive Advantage for Disney (1 of 4)

- Global portfolio includes parks in Shanghai, Hong Kong, Paris, Tokyo, Orlando, and Anaheim
- Revenues are derived from people how many visitors and how they spend their money
- Daily management report contains only yesterday's forecast and actual attendance at each park – an error close to zero is expected

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

How Forecasting Provides a Competitive Advantage for Disney (2 of 4)

- Disney generates daily, weekly, monthly, annual, and 5-year forecasts
- Forecast used by labor management, maintenance, operations, finance, and park scheduling
- Forecast used to adjust opening times, rides, shows, staffing levels, and guests admitted

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

How Forecasting Provides a Competitive Advantage for Disney (3 of 4)

- 20% of customers come from outside the USA
- Economic model includes gross domestic product (GDP), cross-exchange rates, arrivals into the USA
- A staff of 35 analysts and 70 field people survey 1 million park guests, employees, and travel professionals each year

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

5

How Forecasting Provides a Competitive Advantage for Disney (4 of 4)

- Inputs to the forecasting model include airline specials, Federal Reserve policies, Wall Street trends, vacation/holiday schedules for 3,000 school districts around the world
- Average forecast error for the 5-year forecast is 5%
- Average forecast error for annual forecasts is between 0% and 3%

Pearson

7

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

8

Pearson

Learning Objectives

When you complete this chapter you should be able to:

- 4.1 Understand the three time horizons and which models apply for each
- 4.2 Explain when to use each of the four qualitative models
- **4.3 Apply** the naive, moving-average, exponential smoothing, and trend methods

Learning Objectives (continued)

When you complete this chapter you should be able to:

- 4.4 Compute three measures of forecast accuracy
- 4.5 Develop seasonal indices
- 4.6 Conduct a regression and correlation analysis
- 4.7 Use a tracking signal

What is Forecasting?

- The art and science of predicting future events
- Underlying basis of all business decisions
 - Production
 - Inventory
 - Personnel
 - Facilities

Cx

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

9

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

10

Pearson

Forecasting Time Horizons

- 1. Short-range forecast
 - Up to 1 year, generally less than 3 months
 - Purchasing, job scheduling, workforce levels, job assignments, production levels
- 2. Medium-range forecast
 - 3 months to 3 years
 - Sales planning, production planning and budgeting, cash budgeting, and analysis of various operating plans
- 3. Long-range forecast
 - 3+ years
 - New product planning, facility location or expansion, capital expenditures, research and development

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Distinguishing Differences

- Medium/long range forecasts deal with more comprehensive issues and support management decisions regarding planning and products, plants and processes
- 2. Short-term forecasting usually *employs different* methodologies than longer-term forecasting
- 3. Short-term forecasts *tend to be more accurate* than longer-term forecasts

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

12

Types of Forecasts

1. Economic forecasts

 Address business cycle – inflation rate, money supply, housing starts, etc.

2. Technological forecasts

- Predict rate of technological progress
- Impacts development of new products

3. Demand forecasts

- Predict sales of existing products and services

advantages in product innovation, cost and speed to market

Strategic Importance of Forecasting

Human Resources – Hiring, training, laying off workers

· Supply Chain Management - Good supplier relations,

 Capacity – Capacity shortages can result in undependable delivery, loss of customers, loss of market share

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

13

Pearson

Seven Steps in Forecasting

- 1. Determine the use of the forecast
- 2. Select the items to be forecasted
- 3. Determine the time horizon of the forecast
- 4. Select the forecasting model(s)
- 5. Gather the data needed to make the forecast
- 6. Make the forecast

Pearson

15

7. Validate and implement the results

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

16

Pearson

The Realities!

Pearson

14

- Most forecasting techniques assume that there is some underlying stability in the system; many firms automate their predictions using computerized forecasting software
- Product family and aggregated forecasts are more accurate than individual product forecasts – helps balance the over- and underpredictions
- Outside factors that we cannot predict or control often impact the forecast: extreme events can wreck havoc in the forecasting systems – e.g. the COVID-19 pandemic

Forecasting Approaches

Qualitative Methods

- · Used when situation is vague and little data exist
 - New products
 - New technology
- Involves intuition, emotions, personal experiences, and value system

Forecasting Approaches (continued)

Quantitative Methods

- · Used when situation is 'stable' and historical data exist
 - Existing products
 - Current technology
- · Involves mathematical techniques
 - e.g., forecasting sales of color televisions

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

17

Overview of Qualitative Methods

1. Jury of executive opinion

 Pool opinions of high-level experts or managers, sometimes augmented by statistical models

2. Delphi method

 Panel of experts (decision makers, staff personnel and respondents), queried iteratively

Pearson Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

19

Overview of Qualitative Methods (continued)

3. Sales force composite

 Estimates from individual salespersons are reviewed for reasonableness, then aggregated

4. Market Survey

- Ask the customer about future purchasing plans

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

20

Jury of Executive Opinion

- · Involves small group of high-level experts and managers
- · Group estimates demand by working together
- · Combines managerial experience with statistical models
- · Relatively quick
- · 'Group-think' disadvantage

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

21

Delphi Method

- Iterative group process, continues until consensus is reached
- · Three types of participants
 - Decision makers
 - Staff
 - Respondents

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

22

Sales Force Composite

- · Each salesperson projects his or her sales
- · Combined at district and national levels
- · Sales reps know customers' wants
- May be overly optimistic

Market Survey

- Ask customers about purchasing plans
- Useful for demand forecasting, product design, and planning for new products
- What consumers say and what they actually do may be different
- · May be overly optimistic

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

23

Overview of Quantitative Approaches

- 1. Naive approach
- 2. Moving averages
- 3. Exponential smoothing
- 4. Trend projection
- 5. Linear regression

Time-series models

Associative model

Time-Series Forecasting

- · Set of evenly spaced numerical data
 - Obtained by observing response variable at regular time periods (weekly, monthly, quarterly, and so on)
- · Forecast based only on past values, no other variables important
 - Assumes that factors influencing past and present will continue influence in future

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

25

26

Time-Series Components

27

Components of Demand

28

Trend Component

- · Persistent, overall upward or downward pattern
- · Changes due to population, technology, age, culture, etc.
- · Typically several years duration

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Seasonal Component

- · Regular pattern of up and down fluctuations
- · Due to weather, customs, etc.
- · Occurs within a single year

PERIOD LENGTH	"SEASON" LENGTH	NUMBER OF "SEASONS" IN PATTERN
Week	Day	7
Month	Week	4 – 4.5
Month	Day	28 – 31
Year	Quarter	4
Year	Month	12
Year	Week	52

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

29

Cyclical Component

- · Repeating up and down movements
- · Affected by business cycle, political, and economic factors
- · Multiple years duration
- · Often causal or associative relationships

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

31

Random Component

- "Blips" in data caused by chance and unusual situations
- · Follow no discernible pattern
- · Cannot be predicted

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

32

Naive Approach

- Assumes demand in next period is the same as demand in most recent period
 - e.g., If January smart phone sales were 68, then February sales will be 68

 Can be good starting point for comparison with more sophisticated models

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

33

Moving Averages

- · MA is a series of arithmetic means
- Useful is we can assume that market demands will stay fairly steady over time
- · Used often for smoothing
 - Provides overall impression of data over time

Moving average =
$$\frac{\sum demand in previous n periods}{n}$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

34

Moving Average Example

MONTH	ACTUAL SHED SALES	3-MONTH MOVING AVERAGE
January	10 -	
February	12	$\overline{}$
March	13	\rightarrow
April	16	(10 + 12 + 13)/3 = 11 ² / ₃
May	19	(12 + 13 + 16)/3 = 13 2/3
June	23	(13 + 16 + 19)/3 = 16
July	26	(16 + 19 + 23)/3 = 19 1/3
August	30	(19 + 23 + 26)/3 = 22 2/3
September	28	(23 + 26 + 30)/3 = 26 1/3
October	18	(26 + 30 + 28)/3 = 28
November	16	(30 + 28 + 18)/3 = 25 1/3
December	14	(28 + 18 + 16)/3 = 20 ² / ₃

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Weighted Moving Average (1 of 3)

- Used when some trend or pattern might be present
 - Older data usually less important
- · Weights based on experience and intuition

 $Weighted \ moving \ average = \frac{\sum \bigl(\bigl(\mathsf{Weight} \ \mathsf{for} \ \mathsf{period} \ n \bigr) \bigl(\mathsf{Demand} \ \mathsf{in} \ \mathsf{period} \ n \bigr) \bigr)}{\sum \mathsf{Weights}}$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

35

Weighted Moving Average (2 of 3)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

37

Weighted Moving Average (3 of 3)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

38

Potential Problems With Moving Average

- 1. Increasing *n* smooths the forecast but makes it less sensitive to changes
- 2. Does not forecast trends well
- 3. Requires extensive historical data

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

39

Graph of Moving Averages

Figure 4.2

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

40

Exponential Smoothing

- · Form of weighted moving average
 - Weights decline exponentially
 - Most recent data weighted most
- Requires smoothing constant (α)
 - Ranges from 0 to 1
 - Subjectively chosen
- · Involves little record keeping of past data

Exponential Smoothing (continued)

New forecast = Last period's forecast

+ α (Last period's actual demand – Last period's forecast)

$$F_t = F_{t-1} + \alpha(A_{t-1} - F_{t-1})$$

where

 F_{i} = new forecast

 F_{t-1} = previous period's forecast

 α = smoothing (or weighting) constant (0 $\leq \alpha \leq$ 1)

 A_{t-1} = previous period's actual demand

Pearson Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

41

Exponential Smoothing Example (1 of 3)

- Predicted demand = 142 Ford Mustangs
- · Actual demand = 153
- Smoothing constant $\alpha = .20$

Exponential Smoothing Example (2 of 3)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

43

44

Exponential Smoothing Example (3 of 3)

Predicted demand = 142 Ford Mustangs

Actual demand = 153

Smoothing constant $\alpha = .20$

New forecast = 142 + .2(153 - 142)= 142 + 2.2= $142.2 \approx 144$ cars

Effect of Smoothing Constants

- Smoothing constant generally $.05 \le \alpha \le .50$
- As α increases, older values become less significant

WEIGHT ASSIGNED TO					
SMOOTHING CONSTANT	MOST RECENT PERIOD (α)	2 ND MOST RECENT PERIOD α(1 – α)	3 RD MOST RECENT PERIOD α(1 – α) ²	4th MOST RECENT PERIOD α(1 – α) ³	5th MOST RECENT PERIOD α(1 – α)4
α = .1	.1	.09	.081	.073	.066
α = .5	.5	.25	.125	.063	.031

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

46

45

Impact of Different α (continued)

- \bullet Choose high values of α when underlying average is likely to change
- Choose low values of α when underlying average is stable

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Impact of Different a

47

Measuring Forecast Error

The objective is to obtain the most accurate forecast no matter the technique

We generally do this by selecting the model that gives us the lowest forecast error according to one of three preferred measures:

- Mean Absolute Deviation (MAD)
- Mean Squared Error (MSE)
- · Mean Absolute Percent Error (MAPE)

Common Measures of Error (1 of 3)

Mean Absolute Deviation (MAD)

$$MAD = \frac{\sum |Actual - Forecast|}{n}$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

49

50

Determining the MAD

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST WITH $\alpha = .10$	FORECAST WITH α = .50
1	180	175	175
2	168	175.50 = 175.00 + .10(180 - 175)	177.50
3	159	174.75 = 175.50 +.10(168 - 175.50)	172.75
4	175	173.18 = 174.75 + 10(159 - 174.75)	165.88
5	190	173.36 = 173.18 +.10(175 - 173.18)	170.44
6	205	175.02 = 173.36 +.10(190 - 173.36)	180.22
7	180	178.02 = 175.02 +.10(205 - 175.02)	192.61
8	182	178.22 = 178.02 +.10(180 - 178.02)	186.30
9	?	178.59 = 178.22 +.10(182 - 178.22)	184.15

Pearson

Copyright $\ensuremath{@}$ 2023 Pearson Education, Ltd. All Rights Reserved

51

Determining the MAD (continued)

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST WITH α=.10	ABSOLUTE DEVIATION FOR α = .10	FORECAST WITH α = .50	ABSOLUTE DEVIATION FOR α = .50
1	180	175	5.00	175	5.00
2	168	175.50	7.50	177.50	9.50
3	159	174.75	15.75	172.75	13.75
4	175	173.18	1.82	165.88	9.12
5	190	173.36	16.64	170.44	19.56
6	205	175.02	29.98	180.22	24.78
7	180	178.02	1.98	192.61	12.61
8	182	178.22	3.78	186.30	4.30
	Sum of abso	lute deviations:	82.45		98.62
	MAD =	Σ Deviations	10.31		12.33

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

52

Common Measures of Error (2 of 3)

Mean Squared Error (MSE)

$$MSE = \frac{\sum (Forecast \, errors)^2}{n}$$

Determining the MSE

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST FOR $\alpha = .10$	(ERROR) ²
1	180	175	5 ² = 25
2	168	175.50	$(-7.5)^2 = 56.25$
3	159	174.75	$(-15.75)^2 = 248.06$
4	175	173.18	$(1.82)^2 = 3.31$
5	190	173.36	$(16.64)^2 = 276.89$
6	205	175.02	$(29.98)^2 = 898.80$
7	180	178.02	$(1.98)^2 = 3.92$
8	182	178.22	$\frac{(3.78)^2 = 14.29}{\text{Sum of errors squared} = 1,526.52}$

MSE = $\frac{\sum (\text{Forecast errors})^2}{n}$ = 1,526.52/8 = 190.8

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

53

Common Measures of Error (3 of 3)

Mean Absolute Percent Error (MAPE)

$$MAPE = \frac{\sum_{i=1}^{n} 100 |Actual_{i} - Forecast_{i}| / Actual_{i}}{n}$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserve

55

Determining the MAPE

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST FOR $\alpha = .10$	ABSOLUTE PERCENT ERROR 100 (ERROR /ACTUAL)
1	180	175.00	100(5/180) = 2.78%
2	168	175.50	100(7.5 / 168) = 4.46%
3	159	174.75	100(15.75/159) = 9.90%
4	175	173.18	100(1.82/175) = 1.05%
5	190	173.36	100(16.64/190) = 8.76%
6	205	175.02	100(29.98/205) = 14.62%
7	180	178.02	100(1.98/180) = 1.10%
8	182	178.22	100(3.78/182) = 2.08% Sum of % errors = 44.75%

$$\label{eq:mape} \begin{split} \text{MAPE} &= \frac{\sum absolute \, percent \, error}{n} = \frac{44.75\%}{8} = 5.59\% \\ &\quad \text{Copyright @ 2023 Pearson Education, Ltd. All Rights Reserved} \end{split}$$

Pearson

56

Comparison of Measures

Table 4.1 Comparison of Measures of Forecast Error

MEASURE	MEANING	APPLICATION TO CHAPTER EXAMPLE
Mean absolute deviation (MAD)	How much the forecast missed the target	For α = .10 in Example 4, the forecast for grain unloaded was off by an average of 10.31 tons.
Mean squared error (MSE)	The square of how much the forecast missed the target	For α = .10 in Example 5, the square of the forecast error was 190.8. This number does not have a physical meaning, but is useful when compared to the MSE of another forecast.
Mean absolute percent error (MAPE)	The average percent error	For α =.10 in Example 6, the forecast is off by 5.59% on average. As in Examples 4 and 5, some forecasts were too high, and some were low.

Pearson

Copyright $\ensuremath{@}$ 2023 Pearson Education, Ltd. All Rights Reserved

57

Comparison of Forecast Error (1 of 5)

Quarter	Actual Tonnage Unloaded	Rounded Forecast with α = .10	Absolute Deviation for α = .10	Rounded Forecast with α = .50	Absolute Deviation for α =.50
1	180	175	5.00	175	5.00
2	168	175.5	7.50	177.50	9.50
3	159	174.75	15.75	172.75	13.75
4	175	173.18	1.82	165.88	9.12
5	190	173.36	16.64	170.44	19.56
6	205	175.02	29.98	180.22	24.78
7	180	178.02	1.98	192.61	12.61
8	182	178.22	3.78	186.30	4.30
		-	82.45		98.62

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

58

Comparison of Forecast Error (2 of 5)

$MAD = \frac{\sum deviations }{n}$	Rounded Forecast with α = .50	Absolute Deviation for α = .50
For $\alpha = .10$	175 177.50	5.00 9.50
= 82.45/8 = 10.31	172.75 165.88	13.75
For α = .50	170.44 180.22	19.56 24.78
= 98.62/8 = 12.33	192.61 186.30	12.61 4.30
82 45		98.62

Pearson

59

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Comparison of Forecast Error (3 of 5)

$MSE = \frac{\sum (forecast errors)^2}{n}$	Rounded Forecast with α = .50	Absolute Deviation for α = .50
For $\alpha = .10$	175	5.00
1 οι α – . 10	177.50	9.50
= 1.526.52/8 = 190.8	172.75	13.75
	165.88	9.12
For $\alpha = .50$	170.44	19.56
	180.22	24.78
= 1,561.91/8 = 195.24	192.61	12.61
	186.30	4.30
82.45		98.62
MAD 10.31		12.33

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

60

Comparison of Forecast Error (4 of 5)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

61

Exponential Smoothing with Trend Adjustment (2 of 3)

Comparison of Forecast Error (5 of 5)

Absolute Deviation

for $\alpha = .10$

7.50

15.75

1.82

16.64

29.98

1.98

3.78

82.45

10.31

5.59%

with $\alpha = .50$

177.50

172.75

165.88

170.44

180.22

192.61

186.30

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

for $\alpha = .50$

5.00

9.50

13.75

9.12

24.78

12.61

4.30

98.62 12.33

6.75%

Rounded Forecast

with

 $\alpha = .10$

175.5

174.75

173.18

175.02

178.02

178.22

MAD

MAPE

Actual Tonnage Unloaded

168

159

175

205

180

6

Pearson

62

Forecast including trend(F/T_i) = Exponentially smoothed forecast average(F_i) + Exponentially smoothed trend(T_i)

$$F_{t} = \alpha(A_{t-1}) + (1 - \alpha)(F_{t-1} + T_{t-1})$$
$$T_{t} = \beta(F_{t} - F_{t-1}) + (1 - \beta) T_{t-1}$$

where

 F_i = exponentially smoothed forecast average

 T_t = exponentially smoothed trend

 A_1 = actual demand

 α = smoothing constant for average (0 \leq α \leq 1)

 β = smoothing constant for trend $(0 \le \beta \le 1)$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

64

Exponential Smoothing with Trend Adjustment (1 of 3)

When a trend is present, exponential smoothing must be modified

MONTH	ACTUAL DEMAND	FORECAST (F_i) FOR MONTHS 1 – 5
1	100	F ₁ =100 (given)
2	200	$F_2 = F_1 + \alpha(A_1 - F_2) = 100 + .4(100 - 100) = 100$
3	300	$F_3 = F_2 + \alpha(A_2 - F_2) = 100 + .4(200 - 100) = 140$
4	400	$F_4 = F_3 + \alpha(A_3 - F_3) = 140 + .4(300 - 140) = 204$
5	500	$F_5 = F_4 + \alpha(A_4 - F_4) = 204 + .4(400 - 204) = 282$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

63

Exponential Smoothing with Trend Adjustment (3 of 3)

Step 1: Compute F,

Step 2: Compute T,

Step 3: Calculate the forecast $FIT_t = F_t + T_t$

Exponential Smoothing with Trend Adjustment Example (1 of 6)

MONTH (t)	ACTUAL DEMAND (A,)	MONTH (t)	ACTUAL DEMAND (A,)
1	12	6	21
2	17	7	31
3	20	8	28
4	19	9	36
5	24	10	?

 $\alpha = .2$

 $\beta = .4$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

65

Exponential Smoothing with Trend Adjustment Example (2 of 6)

Table 4.2 Forecast with $\alpha = .2$ and $\beta = .4$

67

Exponential Smoothing with Trend Adjustment Example (3 of 6)

Table 4.2 Forecast with $\alpha = .2$ and $\beta = .4$

68

Exponential Smoothing with Trend Adjustment Example (4 of 6)

Table 4.2 Forecast with $\alpha = .2$ and $\beta = .4$

MONTH	ACTUAL DEMAND	FORECAST AVERAGE, F _t	SMOOTHED TREND, T _t	FORECAST INCLUDING TREND FIT,
1	12	11	2	13.00
2	17	12.80	1.92	14.72
3	20			+
4	19		1	Maria de la companya
5	24	Step 3: Calc	ulate FIT fo	r Month 2
6	21			\ /
7	31	FIT ₂	$= F_2 + T_2$ = 12.8 + 1	\ /
8	28	FIT	- 12 8 ± 1	92
9	36	1112		
			= 14.72 ur	nits

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

69

Pearson

Exponential Smoothing with Trend Adjustment Example (5 of 6)

Table 4.2 Forecast with $\alpha = .2$ and $\beta = .4$

MONTH	ACTUAL DEMAND	SMOOTHED FORECAST AVERAGE, F_t	SMOOTHED TREND, T _t	FORECAST INCLUDING TREND, FIT,
1	12	11	2	13.00
2	17	12.80	1.92	14.72
3	20	15.18	2.10	17.28
4	19	17.82	2.32	20.14
5	24	19.91	2.23	22.14
6	21	22.51	2.38	24.89
7	31	24.11	2.07	26.18
8	28	27.14	2.45	29.59
9	36	29.28	2.32	31.60
10		32.48	2.68	35.16

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

70

Exponential Smoothing with Trend Adjustment Example (6 of 6)

Trend Projections

- · Fitting a trend line to historical data points, to project into the medium to long-range
- · Linear trends can be found using the least-squares technique

 $\hat{y} = a + bx$

where $\hat{y} = \text{computed value of the variable to be predicted}$ (dependent variable)

a = y-axis intercept

b = slope of the regression line

x = the independent variable

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

71

Least Squares Method

Pearson

Pearson

75

73

Figure 4.4

Least Squares Method (continued)

Equations to calculate the regression variables

$$\hat{y} = a + bx$$

$$b = \frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n\overline{x}^2}$$

$$a = \overline{y} - b\overline{x}$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

74

Least Squares Example (1 of 5)

YEAR	ELECTRICAL POWER DEMAND	YEAR	ELECTRICAL POWER DEMAND
1	74	5	105
2	79	6	142
3	80	7	122
4	90		

Least Squares Example (2 of 5)

YEAR (x)	ELECTRICAL POWER DEMAND (y)	x²	хy
1	74	1	74
2	79	4	158
3	80	9	240
4	90	16	360
5	105	25	525
6	142	36	852
7	122	49	854
$\overline{\sum x} = 28$	$\overline{\sum} y = 692$	$\sum x^2 = 140$	$\overline{\sum xy} = 3,063$

$$\overline{x} = \frac{\sum x}{n} = \frac{28}{7} = 4$$
 $\overline{y} = \frac{\sum y}{n} = \frac{692}{7} = 98.86$

Pearson

13

76

Least Squares Example (3 of 5)

 $\bar{x} = \frac{\sum x}{n} = \frac{28}{7} = 4$ $\bar{y} = \frac{\sum y}{n} = \frac{692}{7} = 98.86$

Pearson Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Least Squares Example (4 of 5)

78

Least Squares Example (5 of 5)

Figure 4.5

Least Squares Requirements

- 1. We always plot the data to insure a linear relationship
- We do not predict time periods far beyond the database
- Deviations around the least squares line are assumed to be random

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

80

Seasonal Variations In Data

The multiplicative seasonal model can adjust trend data for seasonal variations in demand

Pearson

Pearson

79

Copyright © 2023 Pearson Education, Ltd. All Rights Reserv

81

Seasonal Variations In Data (continued)

Steps in the process for monthly seasons:

- 1. Find average historical demand for each month.
- 2. Compute the average demand over all months.
- 3. Compute a seasonal index for each month.
- 4. Estimate next year's total demand.
- Divide this estimate of total demand by the number of months, then multiply it by the seasonal index for that month. This provides the seasonal forecast.

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

82

Seasonal Index Example (1 of 6)

		DEMAND				
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE PERIOD DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90		
Feb	70	85	85	80		
Mar	80	93	82	85		
Арг	90	95	115	100		
May	113	125	131	123		
June	110	115	120	115		
July	100	102	113	105		
Aug	88	102	110	100		
Sept	85	90	95	90		
Oct	77	78	85	80		
Nov	75	82	83	80		
Dec	82	78	80	80		

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Seasonal Index Example (2 of 6)

		DEMAND				
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE PERIOD DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90	94	
Feb	70	9.5	95		94	
Mar				5	94	
Apr	Average		,128	04	94	
May	monthly	12.	months	94	94	
June	demand	1000		5	94	
July	100	TOZ	HO	105	94	
Aug	88	102	110	100	94	
Sept	85	90	95	90	94	
Oct	77	78	85	80	94	
Nov	75	82	83	80	94	
Dec	82	78	80	80	94	
	· ·		nnual demar	nd = 1,128		

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

83

Seasonal Index Example (3 of 6)

		DEMAND				
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE PERIOD DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90	94	.957 (= 90/94
Feb	70	85	85	80	94	
Mar	80	93	82	85	94	
Anr	90	95	115	100	94	
Seas	onal _	Average	monthly	demand for	oast 3 years	
	onal _	Average	monthly		oast 3 years	
Seas	onal _	Average	monthly	demand for	oast 3 years	
Seas inde	onal = .	Average	monthly Average	demand for promonthly dem	past 3 years and	
Seas inde	onal = . ex	Average	monthly Average	demand for properties of the demand for properties of the demand for the demand f	past 3 years and	
Seas inde	onal = .	Average	e monthly Average	demand for properties of the demand for prope	past 3 years and	

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

85

Seasonal Index Example (4 of 6)

		DEMAND				
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE PERIOD DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90	94	.957 (= 90/94)
Feb	70	85	85	80	94	.851 (= 80/94)
Mar	80	93	82	85	94	.904 (= 85/94)
Apr	90	95	115	100	94	1.064 (= 100/94)
May	113	125	131	123	94	1.309 (= 123/94)
June	110	115	120	115	94	1.223 (= 115/94)
July	100	102	113	105	94	1.117 (= 105/94)
Aug	88	102	110	100	94	1.064 (= 100/94)
Sept	85	90	95	90	94	.957 (= 90/94)
Oct	77	78	85	80	94	.851 (= 80/94)
Nov	75	82	83	80	94	.851 (= 80/94
Dec	82	78	80	80	94	.851 (= 80/94)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

86

Seasonal Index Example (5 of 6)

Seasonal forecast for Year 4

MONTH	DEMAND	MONTH	DEMAND
Jan.	$\frac{1,200}{12}$ × .957 = 96	July	$\frac{1,200}{12}$ x 1.117 = 112
Feb.	$\frac{1,200}{12}$ x .851 = 85	Aug.	$\frac{1,200}{12}$ x 1.064 = 106
Mar.	$\frac{1,200}{12} \times .904 = 90$	Sept.	$\frac{1,200}{12}$ × .957 = 96
Apr.	$\frac{1,200}{12}$ x 1.064 = 106	Oct.	$\frac{1,200}{12}$ x .851 = 85
May	$\frac{1,200}{12}$ × 1.309 = 131	Nov.	$\frac{1,200}{12}$ × .851 = 85
June	$\frac{1,200}{12}$ x 1.223 = 122	Dec.	$\frac{1,200}{12}$ x .851 = 85

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

87

89

Seasonal Index Example (6 of 6)

88

Applying both Trend and Seasonal Indices – Example 10: San Diego Hospital

iple Figure 4.6

San Diego Hospital (1 of 4)

	Seasonality Indices for Adult Inpatient Days at San Diego Hospital					
MONTH	SEASONALITY INDEX	MONTH	SEASONALITY INDEX			
January	1.04	July	1.03			
February	0.97	August	1.04			
March	1.02	September	0.97			
April	1.01	October	1.00			
May	0.99	November	0.96			
June	0.99	December	0.98			

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

90

San Diego Hospital (2 of 4)

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Apr Forecast with Trend & 9,911 9,265 9,764 9,691 9,520 9,542 76 July Aug Sept Oct Nov Dec Forecast with Trend & 9.949 10.068 9.411 9.724 9.355 9.572

San Diego Hospital (3 of 4)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

70

71

72

92

San Diego Hospital (4 of 4)

Pearson

Pearson

93

95

91

Figure 4.8 10,200 10,068 10,000 9,800 9,600 9,400 9 200 9.000 Aug. Sept. Oct. 74 75 76 May June July 71 72 73 (period = 67 for Jan. through 78 for Dec.)

Adjusting Trend Data with Seasonal Indices (Example 11)

Management at Jagoda Wholesalers, in Calgary, Canada, has used time-series regression based on point-of-sale data to forecast sales for the next 4 guarters. Sales estimates are \$100,000, \$120,000, \$140,000, and \$160,000 for the respective quarters. Seasonal indices for the 4 quarters have been found to be 1.30, .90, .70, and 1.10, respectively.

Pearson

94

Adjusting Trend Data with Seasonal Indices (Example 11) (continued)

 $\hat{y}_{\text{ceasonal}} = \text{Index } \times \hat{y}_{\text{trend forecast}}$

Quarter I: $\hat{y}_1 = (1.30)(\$100,000) = \$130,000$

Quarter II: $\hat{y}_{II} = (.90)(\$120,000) = \$108,000$ Quarter III: $\hat{y}_{III} = (.70)(\$140,000) = \$98,000$

Quarter IV: $\hat{y}_{IV} = (1.10)(\$160,000) = \$176,000$

Cyclical Variations

- · Cycles patterns in the data that occur every several years
 - Forecasting is difficult
 - Wide variety of factors

Pearson Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Associative Forecasting

Used when changes in one or more independent variables can be used to predict the changes in the dependent variable

Most common technique is linear-regression analysis

We apply this technique just as we did in the timeseries example

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

97

Pearson

Using Regression Analysis for Forecasting

Forecasting an outcome based on predictor variables using the least squares technique

$$\hat{y} = a + bx$$

where \hat{y} = value of dependent variable

a = y-axis intercept

b = slope of the regression line

x = the independent variable

. _

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

98

Associative Forecasting Example (1 of 6)

NODEL'S SALES (IN \$ MILLIONS), y	AREA PAYROLL (IN \$ BILLIONS), x	NODEL'S SALES (IN \$ MILLIONS), y	AREA PAYROLL (IN \$ BILLIONS), 3
2.0	1	2.0	2
3.0	3	2.0	1
2.5	4	3.5	7
	4.0 - 3.0 -	• • •	•
			1 1
	0	1 2 3 4 5 Area payroll (in \$ billion	6 7

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

99

Associative Forecasting Example (2 of 6)

SALES, y	PAYROLL, x	X ²	ху
2.0	1	1	2.0
3.0	3	9	9.0
2.5	4	16	10.0
2.0	2	4	4.0
2.0	1	1	2.0
3.5	7	49	24.5
$\sum y = \overline{15.0}$	$\sum x = \overline{18}$	$\sum x^2 = \overline{80}$	$\sum xy = \overline{51.5}$

$$\overline{x} = \frac{\sum x}{6} = \frac{18}{6} = 3$$
 $\overline{y} = \frac{\sum y}{6} = \frac{15}{6} = 2.5$

$$b = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2} = \frac{51.5 - (6)(3)(2.5)}{80 - (6)(3^2)} = .25 \qquad a = \overline{y} - b\overline{x} = 2.5 - (.25)(3) = 1.75$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

100

Associative Forecasting Example (3 of 6)

 $\overline{x} = \frac{\sum x}{6} = \frac{18}{6} = 3$ $\overline{y} = \frac{\sum y}{6} = \frac{15}{6} = 2.5$

 $b = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2} = \frac{51.5 - (6)(3)(2.5)}{80 - (6)(3^2)} = .25 \qquad a = \overline{y} - b\overline{x} = 2.5 - (.25)(3) = 1.75$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

101

Associative Forecasting Example (4 of 6)

 $b = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2} = \frac{51.5 - (6)(3)(2.5)}{80 - (6)(3^2)} = .25 \qquad a = \overline{y} - b\overline{x} = 2.5 - (.25)(3) = 1.75$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Associative Forecasting Example (5 of 6)

If payroll next year is estimated to be \$6 billion, then:

Sales (in \$ millions) = 1.75 + .25(6) = 1.75 + 1.5 = 3.25Sales = \$3,250,000

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

103

Associative Forecasting Example (6 of 6)

104

Standard Error of the Estimate (1 of 4)

- · A forecast is just a point estimate of a future value
- This point is actually the mean or expected value of a probability distribution

Figure 4.9

105

Standard Error of the Estimate (2 of 4)

$$S_{y,x} = \sqrt{\frac{\sum (y - y_c)^2}{n - 2}}$$

Where y = y-value of each data point

 Y_c = computed value of the dependent variable, from the regression equation

n = number of data points

Pearson

106

Standard Error of the Estimate (3 of 4)

Computationally, this equation is considerably easier to use

$$S_{y,x} = \sqrt{\frac{\sum y^2 - a\sum y - b\sum xy}{n-2}}$$

We use the standard error to set up prediction intervals around the point estimate

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

107

Standard Error of the Estimate (4 of 4)

$$S_{yx} = \sqrt{\frac{\sum y^2 - a\sum y - b\sum xy}{n - 2}} = \sqrt{\frac{39.5 - 1.75(15.0) - .25(51.5)}{6 - 2}}$$
$$= \sqrt{.09375}$$
$$= .306(in \$ millions)$$

The standard error of the estimate is \$306,000 in sales

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Correlation

- How strong is the linear relationship between the variables?
- · Correlation does not necessarily imply causality!
- Coefficient of correlation, r, measures degree of association
 - Values range from −1 to +1

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

109

Correlation Coefficient (1 of 4) Figure 4.10

110

Correlation Coefficient (2 of 4)

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{\left[n\sum x^2(\sum x)^2\right]\left[n\sum y^2(\sum y)^2\right]}}$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

111

Correlation Coefficient (3 of 4)

	•						
у		X ²		y²			
2.0	1	1	2.0	4.0			
3.0	3	9	9.0	9.0			
2.5	4	16	10.0	6.25			
2.0	2	4	4.0	4.0			
2.0	1	1	2.0	4.0			
3.5	7	49	24.5	12.25			
$\sum y = \overline{15.0}$	$\sum x = \overline{18}$	$\sum x^2 = \overline{80}$	$\sum xy = \overline{51.5}$	$\sum y^2 = \overline{39.5}$			

$$r = \frac{(6)(51.5) - (18)(15.0)}{\sqrt{\left[(6)(80) - (18)^2\right]\left[(6)(39.5) - (15.0)^2\right]}}$$
$$= \frac{309 - 270}{\sqrt{(156)(12)}} = \frac{39}{\sqrt{1.872}} = \frac{39}{43.3} = .901$$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

112

Correlation (continued)

- Coefficient of Determination, r², measures the percent of change in y predicted by the change in x
 - Values range from 0 to 1
 - Easy to interpret percent of variation in the dependent variable (y) that is explained by the regression equation

For the Nodel Construction example:

$$r = .901$$

 $r^2 = .81$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Multiple-Regression Analysis

If more than one independent variable is to be used in the model, linear regression can be extended to multiple regression to accommodate several independent variables

$$\hat{y} = a + b_1 x_1 + b_2 x_2$$

Computationally, this is quite complex and generally done on the computer

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

113

Multiple-Regression Analysis (continued)

In the Nodel example, including interest rates in the model gives the new equation:

$$\hat{y} = 1.80 + .30x_1 - 5.0x_2$$

An improved correlation coefficient of r = .96 suggests this model does a better job of predicting the change in construction sales

Sales =
$$1.80 + .30(6) - 5.0(.12) = 3.00$$

Sales = \$3,000,000

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

115

Monitoring, Controlling, and Adapting Forecasts

Tracking Signal

- · Measures how well the forecast is predicting actual values
- Ratio of cumulative forecast errors to mean absolute deviation (MAD)
 - Good tracking signal has low values
 - If forecasts are continually high or low, the forecast has a bias error

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

116

Monitoring, Controlling, and Adapting Forecasts (continued)

Tracking signal =
$$\frac{\text{Cumulative error}}{\text{MAD}}$$

$$= \frac{\sum (Actual\ demand\ in\ period\ i - Forecast\ demad\ in\ period\ i)}{\sum |Actual - Forecast\ |}$$
n

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

117

A Plot of Tracking Signals

Figure 4.11

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

118

Tracking Signal Example

QTR	ACTUAL DEMAND	FORECAST DEMAND	ERROR	CUM ERROR	ABSOLUTE FORECAST ERROR	CUM ABS FORECAST ERROR	MAD	TRACKING SIGNAL (CUM ERROR/MAD)
1	90	100	-10	-10	10	10	10.0	-10/10 = -1
2	95	100	-5	-15	5	15	7.5	-15/7.5 = -2
3	115	100	+15	0	15	30	10.0	0/10 = 0
4	100	110	-10	-10	10	40	10.0	10/10 = -1
5	125	110	+15	+5	15	55	11.0	+5/11 = +0.5
6	140	110	+30	+35	30	85	14.2	+35/14.2 = +2.5

At the end of quarter 6, MAD = $\frac{\sum |Forecast \, errors|}{n} = \frac{85}{6} = 14.2$

Tracking signal = $\frac{\text{Cumulative error}}{\text{MAD}} = \frac{35}{14.2} = 2.5 \,\text{MADs}$

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

119

Adaptive Smoothing

- It's possible to use the computer to continually monitor forecast error and adjust the values of the $\,\alpha$ and $\,\beta$ coefficients used in exponential smoothing to continually minimize forecast error
- This technique is called adaptive smoothing

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Focus Forecasting

- Developed at American Hardware Supply, based on two principles:
 - Sophisticated forecasting models are not always better than simple ones
 - 2. There is no single technique that should be used for all products or services
- Uses historical data to test multiple forecasting models for individual items
- Forecasting model with the lowest error used to forecast the next demand

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

121

Forecasting Under a Pandemic or Major Disruption

- Examples:
 2020 COVID-19 pandemic
 2008 financial crisis
- Traditional techniques based on historical data may be of little use
- Use of stagger charts (Intel and Motorola)

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

122

Stagger Chart (1 of 3)

- Emphasize current data, some of which may be intuitive or subjective, to provide a reoccurring fresh look at forecasts by using "rolling forecasts"
- Charts compare forecasts against a standard, such as a budget plan, average sales for the period in recent years, or booked sales

Stagger Chart (2 of 3)

Evaluation questions:

- "In what ways are the assumptions of the forecast made in recent months different from those used when the annual budget plan was prepared?"
- · What do we know now that we did not know then?"
- · "Is a competitor no longer in business?"
- "Have we had a significant change in demand due to the economy, interest rates, weather, and so on?"

Pearson

123

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

124

Pearson

Stagger Chart (3 of 3)

- Expose crucial insight necessary for adaptation during a disruptive period
- Provide a rapid and economical after-the-fact opportunity for evaluation, learning, and improvement of the forecasting process

Forecasting in the Service Sector

- · Presents unusual challenges
 - Special need for short-term records
 - Needs differ greatly as function of industry and product
 - Holidays and other calendar events
 - Unusual events

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

125

Fast Food Restaurant Forecast Figure 4.12a

Lopyright © 2023 rearson caucadon, Ltd. All Nights Reserved

Copyright

This work is protected by United Kingdom copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Pearson

Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

129

FedEx Call Center Forecast

(b)

Monday calls at a FedEx call center*

12%
11%
10%
9%
8%
7%
6%
5%
4%
3%
2%
-

Hour of day

Pearson Copyright © 2023 Pearson Education, Ltd. All Rights Reserved

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12