Operações sobre palavras

- A **concatenação** de duas palavras $x=a_1a_2...a_m$ e $y=b_1b_2...b_n$, denotada por xy, é a justaposição das duas sequências, uma após a outra. Ou seja, $xy=a_1a_2...a_mb_1b_2...b_n$. O elemento identidade da concatenação é a palavra vazia. Logo, $\lambda w=w\lambda=w$. A operação também é associativa. Portanto, (xy)z=x(yz)=xyz. Denotamos a concatenação de uma palavra com ela mesma n-1 vezes por w^n .
- Exemplo: x = aab e y = cc.
 - 1. yx = ccaab
 - 2. $x^2 = aabaab$
 - 3. $xy^2x = aabccccaab$

Seja w = xyz uma palavra qualquer formada pela concatenação de três outras palavras. Dizemos que:

- x é um prefixo de w.
- y é uma subpalavra de w
- z é um sufixo de w.

Note que $\lambda = w$ são prefixos, sufixos e subpalavras de qualquer palavra w.

- Exemplo: Considere a palavra w = abc.
 - Prefixos: λ , a, ab, abc
 - Sufixos: λ , c, bc, abc
 - Subpalavras: λ , a, b, c, ab, bc, abc
 - A subpalavra *b* é a única que não é nem prefixo, nem sufixo de *w*
- \bigcirc 0 **reverso** de uma palavra $w = a_1 a_2 ... a_n$, denotado por w^R , é a sequência inversa da palavra; ou seja, $w^R = a_n a_{n-1} ... a_1$. Uma palavra w é chamada de **palíndromo** se $w = w^R$.

1 of 1 14/01/2021 20:42