#### Generalizing trace monoids

S. Karageorgieva, N. Kumar, R. Liu, A. Roze Supervised by Prof. Azadeh Farzan

November 12, 2022

• Let  $\Sigma$  be a finite alphabet of letters.

- Let  $\Sigma$  be a finite alphabet of letters.
- Let I be an irreflexive symmetric relation (simple graph) with vertices in  $\Sigma^*$ .

- Let  $\Sigma$  be a finite alphabet of letters.
- Let  $\mathbb{I}$  be an irreflexive symmetric relation (simple graph) with vertices in  $\Sigma^*$ .
- A generalized trace monoid is a monoid with the presentation

$$\langle \Sigma \mid uv = vu \text{ for}(u, v) \in \mathbb{I} \rangle.$$

Its elements are called **traces**.

- Let  $\Sigma$  be a finite alphabet of letters.
- Let I be an irreflexive symmetric relation (simple graph) with vertices in  $\Sigma^*$ .
- A generalized trace monoid is a monoid with the presentation

$$\langle \Sigma \mid uv = vu \text{ for}(u, v) \in \mathbb{I} \rangle.$$

Its elements are called **traces**.

• Reminder: in the context of classical trace theory,  $\mathbb{I}$  is a graph over  $\Sigma$ .

- Let  $\Sigma$  be a finite **alphabet** of **letters**.
- Let I be an irreflexive symmetric relation (simple graph) with vertices in  $\Sigma^*$ .
- A generalized trace monoid is a monoid with the presentation

$$\langle \Sigma \mid uv = vu \text{ for}(u, v) \in \mathbb{I} \rangle.$$

Its elements are called **traces**.

- Reminder: in the context of classical trace theory,  $\mathbb{I}$  is a graph over  $\Sigma$ .
- Example:

$$ebdaac = bdeaac$$
 $bdeaac = aabdec$ 
 $aabdec = aacbde$ 



 $\bullet$  Words  $\longleftrightarrow$  program executions

- $\bullet$  Words  $\longleftrightarrow$  program executions
- ullet Languages  $\longleftrightarrow$  sets of executions

- $\bullet \ \, \text{Words} \longleftrightarrow \text{program executions}$
- $\bullet$  Languages  $\longleftrightarrow$  sets of executions
  - Models for programs

- Words  $\longleftrightarrow$  program executions
- Languages  $\longleftrightarrow$  sets of executions
  - Models for programs
  - Models for desirable properties of programs

- Words  $\longleftrightarrow$  program executions
- Languages  $\longleftrightarrow$  sets of executions
  - ► Models for programs
  - ► Models for desirable properties of programs
- ullet Regular languages  $\longleftrightarrow$  well-behaved models

- Words  $\longleftrightarrow$  program executions
- Languages  $\longleftrightarrow$  sets of executions
  - Models for programs
  - ► Models for desirable properties of programs
- ullet Regular languages  $\longleftrightarrow$  well-behaved models
  - ► Closure properties (complement, union, intersection, Kleene star)

- Words  $\longleftrightarrow$  program executions
- Languages  $\longleftrightarrow$  sets of executions
  - Models for programs
  - ► Models for desirable properties of programs
- Regular languages  $\longleftrightarrow$  well-behaved models
  - ► Closure properties (complement, union, intersection, Kleene star)
  - ► Constant-space algorithm for checking membership

- Words  $\longleftrightarrow$  program executions
- Languages  $\longleftrightarrow$  sets of executions
  - Models for programs
  - ► Models for desirable properties of programs
- Regular languages  $\longleftrightarrow$  well-behaved models
  - ► Closure properties (complement, union, intersection, Kleene star)
  - ► Constant-space algorithm for checking membership
  - Decidability of emptiness and language inclusion

- Words  $\longleftrightarrow$  program executions
- Languages  $\longleftrightarrow$  sets of executions
  - Models for programs
  - ► Models for desirable properties of programs
- ullet Regular languages  $\longleftrightarrow$  well-behaved models
  - ► Closure properties (complement, union, intersection, Kleene star)
  - ► Constant-space algorithm for checking membership
  - Decidability of emptiness and language inclusion
- $\bullet$  Traces  $\longleftrightarrow$  executions up to concurrency

• Main goal:

- Main goal:
  - ▶ Study one generalization of trace monoids.

- Main goal:
  - ▶ Study one generalization of trace monoids.
  - Recover useful properties.

- Main goal:
  - Study one generalization of trace monoids.
  - ► Recover useful properties.
- Two important languages:

- Main goal:
  - Study one generalization of trace monoids.
  - Recover useful properties.
- Two important languages:
  - The ordered language  $\mathcal{L}_{x \prec y}$ , for  $x, y \in \Sigma$ , contains all words  $xuy \in \Sigma^*$  such that  $\dot{x}u\dot{y}$  is not equivalent to any word of the form  $v\dot{y}v'\dot{x}v''$ .

- Main goal:
  - Study one generalization of trace monoids.
  - Recover useful properties.
- Two important languages:
  - The ordered language  $\mathcal{L}_{x \prec y}$ , for  $x, y \in \Sigma$ , contains all words  $xuy \in \Sigma^*$  such that  $\dot{x}u\dot{y}$  is not equivalent to any word of the form  $v\dot{y}v'\dot{x}v''$ .
    - ★ Can event  $\dot{y}$  possibly occur before event  $\dot{x}$ ?

- Main goal:
  - Study one generalization of trace monoids.
  - Recover useful properties.
- Two important languages:
  - II The ordered language  $\mathcal{L}_{x \prec y}$ , for  $x, y \in \Sigma$ , contains all words  $xuy \in \Sigma^*$  such that  $\dot{x}u\dot{y}$  is not equivalent to any word of the form  $v\dot{y}v'\dot{x}v''$ .
    - ★ Can event  $\dot{y}$  possibly occur before event  $\dot{x}$ ?
  - 2 The lexicographical language  $Lex(\mathcal{L})$  contains the lexicographically least representative of each trace in the trace language  $\mathcal{L}$ .

- Main goal:
  - Study one generalization of trace monoids.
  - Recover useful properties.
- Two important languages:
  - The ordered language  $\mathcal{L}_{x \prec y}$ , for  $x, y \in \Sigma$ , contains all words  $xuy \in \Sigma^*$  such that  $\dot{x}u\dot{y}$  is not equivalent to any word of the form  $v\dot{y}v'\dot{x}v''$ .
    - ★ Can event  $\dot{y}$  possibly occur before event  $\dot{x}$ ?
  - 2 The lexicographical language  $Lex(\mathcal{L})$  contains the lexicographically least representative of each trace in the trace language  $\mathcal{L}$ .
    - $\star$  Normal form which faithfully represents the original trace language.

• Answer: No!

$$\langle \{a,b,c\} \mid bc = cb, bca = abc \rangle.$$

• Answer: No!

$$\langle \{a,b,c\} \mid bc = cb, bca = abc \rangle.$$

#### Problem

How can we recover regularity of the languages  $\mathcal{L}_{x \prec y}$  and  $Lex(\mathcal{L})$  in the generalized setting?

• Answer: No!

$$\langle \{a, b, c\} \mid bc = cb, bca = abc \rangle.$$

#### Problem

How can we recover regularity of the languages  $\mathcal{L}_{x \prec y}$  and  $Lex(\mathcal{L})$  in the generalized setting?

 $\bullet$  What additional and sufficient conditions can we impose on our choice of  $\mathbb I$  to retain regularity?

• Answer: No!

$$\langle \{a, b, c\} \mid bc = cb, bca = abc \rangle.$$

#### Problem

How can we recover regularity of the languages  $\mathcal{L}_{x \prec y}$  and  $Lex(\mathcal{L})$  in the generalized setting?

- $\bullet$  What additional and sufficient conditions can we impose on our choice of  $\mathbb I$  to retain regularity?
- Is regularity preserved in simpler but related languages?

• Answer: No!

$$\langle \{a, b, c\} \mid bc = cb, bca = abc \rangle.$$

#### Problem

How can we recover regularity of the languages  $\mathcal{L}_{x \prec y}$  and  $Lex(\mathcal{L})$  in the generalized setting?

- $\bullet$  What additional and sufficient conditions can we impose on our choice of  $\mathbb I$  to retain regularity?
- Is regularity preserved in simpler but related languages?
- What other results can we obtain that give us insight into the languages using generalized traces?

#### Conditions on I

• Consider the relation  $\mathbb{I} = \{(a, bc), (b, c)\}$ . Then a commutes with all words of the form  $(bc)^*$ .

#### Conditions on I

- Consider the relation  $\mathbb{I} = \{(a, bc), (b, c)\}$ . Then a commutes with all words of the form  $(bc)^*$ .
- However, take

$$abccb \leftrightarrow abcbc \leftrightarrow bcbca$$

Then a commutes with every word w in which  $|w|_b = |w|_c$ , which is not regular.

#### Conditions on $\mathbb{I}$

- Consider the relation  $\mathbb{I} = \{(a, bc), (b, c)\}$ . Then a commutes with all words of the form  $(bc)^*$ .
- However, take

$$abccb \leftrightarrow abcbc \leftrightarrow bcbca$$

Then a commutes with every word w in which  $|w|_b = |w|_c$ , which is not regular.

• The irregularity arises from the fact that these words can be internally transformed into different words.

#### Conditions on $\mathbb{I}$

- Consider the relation  $\mathbb{I} = \{(a, bc), (b, c)\}$ . Then a commutes with all words of the form  $(bc)^*$ .
- However, take

$$abccb \leftrightarrow abcbc \leftrightarrow bcbca$$

Then a commutes with every word w in which  $|w|_b = |w|_c$ , which is not regular.

- The irregularity arises from the fact that these words can be internally transformed into different words.
- Not a problem in the non-generalized case, since letters are discrete!

#### Conditions on $\mathbb{I}$

- Consider the relation  $\mathbb{I} = \{(a, bc), (b, c)\}$ . Then a commutes with all words of the form  $(bc)^*$ .
- However, take

$$abccb \leftrightarrow abcbc \leftrightarrow bcbca$$

Then a commutes with every word w in which  $|w|_b = |w|_c$ , which is not regular.

- The irregularity arises from the fact that these words can be internally transformed into different words.
- Not a problem in the non-generalized case, since letters are discrete!
- Can we make strings in  $\tilde{\mathbb{I}} = \{ w \mid \exists v \text{ such that } (w, v) \in \mathbb{I} \}$  behave like letters?

#### Unique Decompositions

**Yes!** We identified conditions that allow words in  $\tilde{\mathbb{I}}$  to behave like letters:

#### Unique Decompositions

**Yes!** We identified conditions that allow words in  $\tilde{\mathbb{I}}$  to behave like letters:

#### Prefix-Suffix Condition

If  $u, v \in \tilde{\mathbb{I}}$ , then no **prefix** of u can be a **suffix** of v.

#### Unique Decompositions

**Yes!** We identified conditions that allow words in  $\tilde{\mathbb{I}}$  to behave like letters:

#### Prefix-Suffix Condition

If  $u, v \in \tilde{\mathbb{I}}$ , then no **prefix** of u can be a **suffix** of v.

#### Partitioning Condition

We can partition  $\Sigma$  into  $\Sigma_1 \cup \Sigma_2$ , such that words in  $\Sigma_1^*$  can only commute with words in  $\Sigma_2^*$  (vice versa). Furthermore, no  $v' \in \tilde{\mathbb{I}}$  is a prefix or suffix of  $v \in \tilde{\mathbb{I}}$ .

**Yes!** We identified conditions that allow words in  $\tilde{\mathbb{I}}$  to behave like letters:

#### Prefix-Suffix Condition

If  $u, v \in \tilde{\mathbb{I}}$ , then no **prefix** of u can be a **suffix** of v.

### Partitioning Condition

We can partition  $\Sigma$  into  $\Sigma_1 \cup \Sigma_2$ , such that words in  $\Sigma_1^*$  can only commute with words in  $\Sigma_2^*$  (vice versa). Furthermore, no  $v' \in \tilde{\mathbb{I}}$  is a prefix or suffix of  $v \in \tilde{\mathbb{I}}$ .

#### Weak Prefix-Suffix Condition

If  $u, v \in \tilde{\mathbb{I}}$ , then u cannot be a **prefix** nor **suffix** of v.

**Yes!** We identified conditions that allow words in  $\tilde{\mathbb{I}}$  to behave like letters:

#### Prefix-Suffix Condition

If  $u, v \in \tilde{\mathbb{I}}$ , then no **prefix** of u can be a **suffix** of v.

### Partitioning Condition

We can partition  $\Sigma$  into  $\Sigma_1 \cup \Sigma_2$ , such that words in  $\Sigma_1^*$  can only commute with words in  $\Sigma_2^*$  (vice versa). Furthermore, no  $v' \in \tilde{\mathbb{I}}$  is a prefix or suffix of  $v \in \tilde{\mathbb{I}}$ .

#### Weak Prefix-Suffix Condition

If  $u, v \in \tilde{\mathbb{I}}$ , then u cannot be a **prefix** nor **suffix** of v.

#### Result

We regain regularity of  $\mathcal{L}_{x \prec y}$ !

• Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).
- What if a swap happens?

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).
- What if a swap happens?
  - ▶ Either we swap  $w_i \leftrightarrow w_{i+1}$ .

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).
- What if a swap happens?
  - ▶ Either we swap  $w_i \leftrightarrow w_{i+1}$ .
  - ▶ Or we swap something 'internal' to  $w_i$ .

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).
- What if a swap happens?
  - ▶ Either we swap  $w_i \leftrightarrow w_{i+1}$ .
  - Or we swap something 'internal' to  $w_i$ .
  - We cannot break  $w_i$ , since that would violate the prefix-suffix condition!

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).
- What if a swap happens?
  - ightharpoonup Either we swap  $w_i \leftrightarrow w_{i+1}$ .
  - Or we swap something 'internal' to  $w_i$ .
  - We cannot break  $w_i$ , since that would violate the prefix-suffix condition!
- It follows that the  $w_i$  behave like letters, and the question reduces to being able to move  $w_1$  beyond  $w_n$ .

- Consider words such that  $w = w_1 w_2 w_3 \dots w_n$  where  $w_i \in \tilde{\mathbb{I}}$ .
- If such a decomposition exists, it is **unique** (easy observation).
- What if a swap happens?
  - ▶ Either we swap  $w_i \leftrightarrow w_{i+1}$ .
  - Or we swap something 'internal' to  $w_i$ .
  - We cannot break  $w_i$ , since that would violate the prefix-suffix condition!
- It follows that the  $w_i$  behave like letters, and the question reduces to being able to move  $w_1$  beyond  $w_n$ .
- We can apply the same proof as the non-generalized case, essentially a homomorphism to the letter case.

• We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .

- We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .
- Decomposition is again unique.

- We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .
- Decomposition is again unique.
- We then check if each  $u_i$  and  $v_i$  can be broken into  $\{u_{ij}\}_{j\in[k]}, \{v_{ij}\}_{j\in[k']}$ , where the elements of each decomposition are in  $\tilde{\mathbb{I}}$

$$u_1v_1 \cdot u_2 \cdot v_2 \dots u_nv_n \equiv u_1v_1 \cdot u_{2,1} \dots u_{2,k} \cdot v_2 \dots u_nv_n$$

- We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .
- Decomposition is again unique.
- We then check if each  $u_i$  and  $v_i$  can be broken into  $\{u_{ij}\}_{j\in[k]}, \{v_{ij}\}_{j\in[k']}$ , where the elements of each decomposition are in  $\tilde{\mathbb{I}}$

$$u_1v_1 \cdot u_2 \cdot v_2 \dots u_n v_n \equiv u_1v_1 \cdot u_{2,1} \dots u_{2,k} \cdot v_2 \dots u_n v_n$$

• Further consider each  $u_{ij}$  and  $v_{i'j'}$  to be a block.

- We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .
- Decomposition is again unique.
- We then check if each  $u_i$  and  $v_i$  can be broken into  $\{u_{ij}\}_{j\in[k]}, \{v_{ij}\}_{j\in[k']}$ , where the elements of each decomposition are in  $\tilde{\mathbb{I}}$

$$u_1v_1 \cdot u_2 \cdot v_2 \dots u_n v_n \equiv u_1v_1 \cdot u_{2,1} \dots u_{2,k} \cdot v_2 \dots u_n v_n$$

• Further consider each  $u_{ij}$  and  $v_{i'j'}$  to be a block.

- We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .
- Decomposition is again unique.
- We then check if each  $u_i$  and  $v_i$  can be broken into  $\{u_{ij}\}_{j\in[k]}, \{v_{ij}\}_{j\in[k']}$ , where the elements of each decomposition are in  $\tilde{\mathbb{I}}$

$$u_1v_1 \cdot u_2 \cdot v_2 \dots u_nv_n \equiv u_1v_1 \cdot u_{2,1} \dots u_{2,k} \cdot v_2 \dots u_nv_n$$

- Further consider each  $u_{ij}$  and  $v_{i'j'}$  to be a block.
- ullet Since elements of  $\tilde{\mathbb{I}}$  cannot be prefixes or suffixes of each other, swaps are limited.

- We can partition any word into  $w = u_1 v_1 u_2 v_2 \dots u_n v_n$  where  $u_i \in \Sigma_1^*, v_i \in \Sigma_2^*$ .
- Decomposition is again unique.
- We then check if each  $u_i$  and  $v_i$  can be broken into  $\{u_{ij}\}_{j\in[k]}, \{v_{ij}\}_{j\in[k']}$ , where the elements of each decomposition are in  $\tilde{\mathbb{I}}$

$$u_1v_1 \cdot u_2 \cdot v_2 \dots u_nv_n \equiv u_1v_1 \cdot u_{2,1} \dots u_{2,k} \cdot v_2 \dots u_nv_n$$

- Further consider each  $u_{ij}$  and  $v_{i'j'}$  to be a block.
- ullet Since elements of  $\tilde{\mathbb{I}}$  cannot be prefixes or suffixes of each other, swaps are limited.
- We can again replicate the same proof as the non-generalized case.

 $\bullet$  Idea of both these proofs: Unique Decomposition

- Idea of both these proofs: Unique Decomposition
- $\bullet$  We place conditions on  $\mathbb I$  such that the elements of  $\widetilde{\mathbb I}$  behave like letters

- Idea of both these proofs: Unique Decomposition
- $\bullet$  We place conditions on  $\mathbb I$  such that the elements of  $\widetilde{\mathbb I}$  behave like letters
- $\bullet$  Essentially a reduction from the generalized case to the non-generalized case

- Idea of both these proofs: Unique Decomposition
- $\bullet$  We place conditions on  $\mathbb I$  such that the elements of  $\widetilde{\mathbb I}$  behave like letters
- $\bullet$  Essentially a reduction from the generalized case to the non-generalized case
- $\bullet$  Can we apply other methods to understand regularity in this context without imposing additional structure to  $\mathbb{I}?$

Another approach is to consider simpler but related languages instead of imposing conditions on  $\mathbb{I}$ . Increasing the complexity of the languages we can get "closer" to the languages of interest.

Another approach is to consider simpler but related languages instead of imposing conditions on  $\mathbb{I}$ . Increasing the complexity of the languages we can get "closer" to the languages of interest.

#### Theorem

Let  $\mathbb{I}$  be **any** subset of  $\Sigma^* \times \Sigma^*$ 

•  $L_v := \{u \mid uv \equiv vu\}$  is a submonoid.

Another approach is to consider simpler but related languages instead of imposing conditions on  $\mathbb{I}$ . Increasing the complexity of the languages we can get "closer" to the languages of interest.

#### Theorem

Let  $\mathbb{I}$  be **any** subset of  $\Sigma^* \times \Sigma^*$ 

- $L_v := \{u \mid uv \equiv vu\}$  is a submonoid.
- $L_v \cap w^*$  is regular for any  $w \in \Sigma^*$ .

Another approach is to consider simpler but related languages instead of imposing conditions on  $\mathbb{I}$ . Increasing the complexity of the languages we can get "closer" to the languages of interest.

#### Theorem

Let  $\mathbb{I}$  be **any** subset of  $\Sigma^* \times \Sigma^*$ 

- $L_v := \{u \mid uv \equiv vu\}$  is a submonoid.
- $L_v \cap w^*$  is regular for any  $w \in \Sigma^*$ .
- $\{w_1^n w_2^m \mid w_2^n w_1^m \equiv w_2^m w_1^n\}$  is regular for any  $w_1, w_2 \in \Sigma^*$ .

## Idea of the proof

•  $L_v \cap w^*$  is a submonoid of  $w^* \cong \mathbb{N}$ , hence, it is of the form  $(w^d)^* \setminus E$  for some d and some finite set E.

- $L_v \cap w^*$  is a submonoid of  $w^* \cong \mathbb{N}$ , hence, it is of the form  $(w^d)^* \setminus E$  for some d and some finite set E.
- If we fix m, then  $\{w_1^n \mid w_1^n w_2^m \equiv w_2^m w_1^n\}$  is regular and equal to  $(w_1^{d_m})^* \setminus E_m$  for some  $d_m$  and finite  $E_m$ . We want to prove that the sequence  $\{d_m\}$  is "nice", so that DFA's could handle it. This can be done in two steps:

- $L_v \cap w^*$  is a submonoid of  $w^* \cong \mathbb{N}$ , hence, it is of the form  $(w^d)^* \setminus E$  for some d and some finite set E.
- If we fix m, then  $\{w_1^n \mid w_1^n w_2^m \equiv w_2^m w_1^n\}$  is regular and equal to  $(w_1^{d_m})^* \setminus E_m$  for some  $d_m$  and finite  $E_m$ . We want to prove that the sequence  $\{d_m\}$  is "nice", so that DFA's could handle it. This can be done in two steps:
- Step 1: It is easy to show that
  - $ightharpoonup \{d_m\}$  is bounded.
  - $d_{i+j}$  divides  $lcm(d_i, d_j)$

- $L_v \cap w^*$  is a submonoid of  $w^* \cong \mathbb{N}$ , hence, it is of the form  $(w^d)^* \setminus E$  for some d and some finite set E.
- If we fix m, then  $\{w_1^n \mid w_1^n w_2^m \equiv w_2^m w_1^n\}$  is regular and equal to  $(w_1^{d_m})^* \setminus E_m$  for some  $d_m$  and finite  $E_m$ . We want to prove that the sequence  $\{d_m\}$  is "nice", so that DFA's could handle it. This can be done in two steps:
- Step 1: It is easy to show that
  - $ightharpoonup \{d_m\}$  is bounded.
  - $d_{i+j}$  divides  $lcm(d_i, d_j)$
- Step 2: These properties imply that  $\{d_m \mid m \geq M\}$  is periodic for sufficiently large M.

- $L_v \cap w^*$  is a submonoid of  $w^* \cong \mathbb{N}$ , hence, it is of the form  $(w^d)^* \setminus E$  for some d and some finite set E.
- If we fix m, then  $\{w_1^n \mid w_1^n w_2^m \equiv w_2^m w_1^n\}$  is regular and equal to  $(w_1^{d_m})^* \setminus E_m$  for some  $d_m$  and finite  $E_m$ . We want to prove that the sequence  $\{d_m\}$  is "nice", so that DFA's could handle it. This can be done in two steps:
- Step 1: It is easy to show that
  - $ightharpoonup \{d_m\}$  is bounded.
  - $d_{i+j}$  divides  $lcm(d_i, d_j)$
- Step 2: These properties imply that  $\{d_m \mid m \geq M\}$  is periodic for sufficiently large M.
- This yields the regularity of  $\{w_1^n w_2^m \mid w_1^n w_2^m \equiv w_2^m w_1^n\}$ .

We can combine these approaches (restricting  $\mathbb{I}$  and simplifying the languages):

We can combine these approaches (restricting  $\mathbb{I}$  and simplifying the languages):

## Corollary

If  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ , then  $L_{a \prec b} \cap a^*b^*$  is regular.

We can combine these approaches (restricting  $\mathbb{I}$  and simplifying the languages):

### Corollary

If  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ , then  $L_{a \prec b} \cap a^*b^*$  is regular.

#### Theorem

Suppose  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ ,  $|\mathbb{I}| < \infty$  and  $a \in \Sigma_1$ .

•  $L_a := \{u \in \Sigma_2^* \mid au \equiv ua\}$  is regular

We can combine these approaches (restricting  $\mathbb{I}$  and simplifying the languages):

## Corollary

If  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ , then  $L_{a \prec b} \cap a^*b^*$  is regular.

#### Theorem

Suppose  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ ,  $|\mathbb{I}| < \infty$  and  $a \in \Sigma_1$ .

- $L_a := \{ u \in \Sigma_2^* \mid au \equiv ua \}$  is regular
- $L_{a,v} := \{ u \in \Sigma_2^* \mid vau \equiv vua \}$  is regular
- $L_{v,a} := \{u \in \Sigma_2^* \mid uav \equiv auv\}$  is regular

We can combine these approaches (restricting  $\mathbb{I}$  and simplifying the languages):

## Corollary

If  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ , then  $L_{a \prec b} \cap a^*b^*$  is regular.

#### Theorem

Suppose  $\mathbb{I} \subseteq \Sigma_1^* \times \Sigma_2^* \cup \Sigma_2^* \times \Sigma_1^*$ ,  $|\mathbb{I}| < \infty$  and  $a \in \Sigma_1$ .

- $L_a := \{ u \in \Sigma_2^* \mid au \equiv ua \}$  is regular
- $L_{a,v} := \{ u \in \Sigma_2^* \mid vau \equiv vua \}$  is regular
- $L_{v,a} := \{ u \in \Sigma_2^* \mid uav \equiv auv \}$  is regular

#### Proof

The idea is to use the fact that 2NFA's (nondeterministic Turing machines that cannot write) recognize regular languages. We can construct a 2NFA that can simulate the swaps using its head to keep track of the position of the a.

#### Reminder

#### Reminder

We want to find a sufficient condition for the regularity of  $Lex(\Sigma^*)$ 

• We noticed that  $Lex(\Sigma^*)^c = \Sigma^* \setminus Lex(\Sigma^*)$  has a nice algebraic structure: it is an ideal  $(x \in Lex(\Sigma^*)^c \Rightarrow yxz \in Lex(\Sigma^*)^c$  for all  $y, z \in \Sigma^*)$ 

#### Reminder

- We noticed that  $Lex(\Sigma^*)^c = \Sigma^* \setminus Lex(\Sigma^*)$  has a nice algebraic structure: it is an ideal  $(x \in Lex(\Sigma^*)^c \Rightarrow yxz \in Lex(\Sigma^*)^c$  for all  $y, z \in \Sigma^*)$
- We can consider the set S of minimal words of  $Lex(\Sigma^*)^c$ , that is,  $S = \{w \mid w \in Lex(\Sigma^*)^c$ , no proper subword of w is an element of  $Lex(\Sigma^*)^c\}$

#### Reminder

- We noticed that  $Lex(\Sigma^*)^c = \Sigma^* \setminus Lex(\Sigma^*)$  has a nice algebraic structure: it is an ideal  $(x \in Lex(\Sigma^*)^c \Rightarrow yxz \in Lex(\Sigma^*)^c$  for all  $y, z \in \Sigma^*)$
- We can consider the set S of minimal words of  $Lex(\Sigma^*)^c$ , that is,  $S = \{w \mid w \in Lex(\Sigma^*)^c$ , no proper subword of w is an element of  $Lex(\Sigma^*)^c\}$
- It turns out that  $Lex(\Sigma^*)$  is regular iff S is regular.

#### Reminder

- We noticed that  $Lex(\Sigma^*)^c = \Sigma^* \setminus Lex(\Sigma^*)$  has a nice algebraic structure: it is an ideal  $(x \in Lex(\Sigma^*)^c \Rightarrow yxz \in Lex(\Sigma^*)^c$  for all  $y, z \in \Sigma^*)$
- We can consider the set S of minimal words of  $Lex(\Sigma^*)^c$ , that is,  $S = \{w \mid w \in Lex(\Sigma^*)^c$ , no proper subword of w is an element of  $Lex(\Sigma^*)^c\}$
- It turns out that  $Lex(\Sigma^*)$  is regular iff S is regular.
- ullet It would be great to find a condition on  $\mathbb I$  that would guarantee that S is regular/finite.

Questions?