Navigation inertielle et fusion de données

Un corps solide (un avion par exemple) se déplace dans un plan vertical. On dispose à bord de deux accéléromètres et d'un gyromètre. Ces trois capteurs fournissent avec une fréquence d'échantillonnage rapide (de l'ordre du kHz) les deux composantes $a_1(t)$ et $a_2(t)$ de $\ddot{P}-\vec{g}$ dans le répère mobile (k) et la vitesse de rotation $\omega(t)$ de (k) par rapport au repère fixe (K). On dispose aussi d'un GPS, qui fournit avec une fréquence d'échantillonnage bien plus lente (de l'ordre de quelques fractions de Hz) les coordonnées (X_1, X_2) de P dans (K). L'objectif est de faire la fusion des données issues de ces deux types de capteurs pour en déduire une estimation, à la fréquence rapide, de la position (X_1, X_2) et de l'orientation θ . On souhaite aussi être robuste à des biais constants sur les accéléromètres et sur le gyromètre.

1. Montrer que:

$$\frac{d^2}{dt^2} X_1 = a_1(t) \cos \theta - a_2(t) \sin \theta, \quad \frac{d^2}{dt^2} X_2 = a_1(t) \sin \theta + a_2(t) \cos \theta - g, \quad \frac{d}{dt} \theta = \omega(t)$$
 (1)

- 2. Montrer que (1) est observable avec comme données d'entrée $t \mapsto (a_1(t), a_2(t), \omega(t))$ et comme mesure (sortie) $y(t) = (X_1, X_2)$.
- 3. On suppose θ petit, $|a_1| \ll g$ et $|a_2 g| \ll g$. Montrer que

$$\frac{d^2}{dt^2}X_1 = a_1(t) - g\theta, \quad \frac{d^2}{dt^2}X_2 = a_2(t) - g, \quad \frac{d}{dt}\theta = \omega(t)$$
 (2)

est alors une bonne approximation de (1).

- 4. Vérifier que (2) reste bien observable (au sens de la question 2).
- 5. La précision du GPS est telle que dans 99,7% des cas, l'écart entre la position (resp. vitesse) mesurée et la position (resp vitesse) réelle est inférieur à 15m (resp. 3m/s). Ecrire les matrices de covariances associées au bruits correspondants.
- 6. Comment doivent être choisis les matrices de covariance des bruits de dynamique pour une voiture de tourisme?
- 7. Ecrire les équations des filtres de Kalman transitoire et asymptotique qui reconstruisent l'état $(X_1, \dot{X}_1 = V_1, X_2, \dot{X}_2 = V_2, \theta)$.
- 8. On suppose que les mesures en temps quasi-continu a_1 , a_2 et ω ont chacunes un biais constant mais inconnu. Ainsi (2) devient :

$$\frac{d^2}{dt^2}X_1 = a_1(t) + p_1 - g\theta, \quad \frac{d^2}{dt^2}X_2 = a_2(t) + p_2 - g, \quad \frac{d}{dt}\theta = \omega(t) + p$$
 (3)

où (p_1, p_2, p) sont trois paramètres constants inconnus. Le système avec biais (3) est-il observable avec $y = (X_1, X_2)$ comme sortie? Quel nombre de biais peut-on espérer estimer à partir de y?

9. On considère uniquement $\frac{d^2}{dt^2}X_2 = a_2(t) + p_2 - g$ avec $y = X_2$. Donner l'observateur asymptotique qui estime l'état $(X_2, \dot{X}_2 = V_2, p_2)$ à partir de la mesure $y_2 = X_2$. Compte tenu du fait que y_2 est échantillonné à la période τ_y , comment choisir les gains d'observateur?