Projet:

Prédictions structurées pour le traitement automatique du langage naturel

Pre-Train Transformer Versus Home-Made Transformer

Sommaire

- 1. Introduction
- 2. Une baseline LSTM
- 3. Les transformers pré-train
- 4. Les transformer fait maison
- 5. Résultats principaux
- 6. Bonus : dimension multi-tâche des modèles
- 7. Conclusion

Introduction

- Problématique : Les modèles pré-entraîné surperforment t-ils systématiquement les modèles spécifique à une tâche ?

- But : Créer des transformers et le comparer à des transformers pré-entraînés

Comparaison effectuée sur la tâche de POS Tagging

Introduction

- Les données utilisées : Le dataset UD French Sequoia :
 - 70% Train, 15% Validation, 15% Test

Le format : CoNLL-U

Environnement utilisé : Entraînement sur GPU (colab et local)

Une Baseline LSTM

- Une simple baseline
- L'entraînement
- Les paramètres :

Model	Learning Rate	Batch Size	Epochs	$Embedding_dim$	$Hidden_{-}dim$	Optimizer
baseline_LSTM	0.01	16	50	64	128	SGD

Table 1: Paramètres de la baseline

Transformer Pre-Train

BERT:

- Blocs d'encodeur des transformers empilés
- Self-Attention bidirectionnelle
- Attention multi-têtes
- Tokenisation BPE (WordPiece)

- Deux modèles différent de cette architecture :
 - CamemBERT-base
 - Bert-base-multilingual-cased

CamemBERT-base

Architecture du modèle :

- Basé sur le modèle pré-train RoBERTa
- Spécialisé sur le français
- 111 millions de paramètres
- Architecture BERT

Entrainement du modèle :

Entraîné sur le OSCAR dataset

Encodage des entrées :

- Algorithme SentencePiece (Tokenisation en divisant les séquences de caractères en sous mots)

Bert-base-multilingual-cased

Architecture du modèle :

- 179 millions de paramètres
- Architecture Bert

Entrainement du modèle :

- Entraîné sur les 104 langues les plus utilisées de wikipedia
- Variante "cased" permettant de prendre en compte la casse des lettres (Majuscule/Minuscule)

Encodage des entrées :

- Algorithme WordPiece (Tokenisation en divisant les mots en sous ensemble de sous mots)

Transformers Pre-Train

- Les différents paramètres fine-tunés :
 - Learning Rate
 - Batch Size
 - Nombre d'époques
 - Optimizer
- Les paramètres finaux obtenus :

Model	Learning Rate	Batch Size	Epochs	Optimizer
Camembert-base	0.0001	32	6	Adam
Bert-base-multilingual-cased	0.0001	64	7	Adam

Table 2: Paramètres finaux des modèles pré-entrainés

Home-Made Transformer

- -Embedding sur les mots ou convolution sur les caractères
- -Positional encoding
- -TransformerEncoder
- -Couche dense : sortie en dimension

(nombre de mot, nombre de POS)

Figure 3: Principe général de notre architecture (Source : Documentation PyTorch, modifié pour notre implémentation).

Embedding sur les mots

- -Mots représentés par des indices
- -Mots inconnus
- -Calcul des embeddings lors de l'entraînement

Convolution sur les caractères

- -Lettres représentées par des indices
- -Lettres inconnues

Hyperparamètres du modèle

- -Taille de l'embedding pour les caractères
- -Nombre de filtres
- -Nombre de têtes d'attention
- -Taille du noyau de convolution
- -Taille de la représentation des couches du transformer encoder
- -Nombre de couche de transformer encoder

Etude des hyperparamètres du modèle

- -Problème combinatoire
- -Si 5 valeurs testées pour chaque hyperparamètre ⇒ 6^5 = 7776 modèles à entraîner
- -Repérage des hyperparamètres importants
- -Choix de faire varier 4 hyperparamètres en fixant les autres : taille du noyau de convolution, le nombre de têtes d'attention, le nombre de filtres et le nombre de couche de transformer encoder.
- Adapter les hyperparamètres fixés au fur et à mesure.

Etude des hyperparamètres du modèle

Figure 4: Précision sur le test en fonction de la taille du noyau de convolution

Figure 5: Précision sur le test en fonction du nombre de têtes d'attention avec une taille de noyau de convolution fixé à 6

Etude des hyperparamètres du modèle

Figure 6: Précision sur le test en fonction du nombre de filtre de convolution

Figure 7: Précision sur le test en fonction du nombre de couche de Transformer avec un nombre de filtre à 1024

Résultats Principaux

- Choix de métrique : Accuracy et F1_Score
- Interprétation

Modèle	Train Accuracy	Test Accuracy	Test f1
base_line_LSTM	0.8869%	0.8664%	0.7892%
bert-base-multilingual-cased	0.9806%	0.9507%	0.8628%
camembert-base	0.9758%	0.9324%	0.8518%
home-made transformer encodage convolutif	0.9708%	0.9434%	0.8531%
home-made transformer embedding sur les mots	0.9678%	0.9110%	0.8217%

Table 3: Comparaison des performances des différents modèles

Bonus : dimension multi-tâches des modèles

- Une adaptation de nos modèles pour la tâche de lemmatisation
- Un choix d'hyperparamètres identiques à la tâche de POS-Tagging
- Axe d'amélioration possible

Modèle	Train Accuracy	Test Accuracy
base_line_LSTM	0.8379%	0.8580%
home-made transformer encodage convolutif	0.9947%	0.9722%

Table 4: Comparaison des performances des différents modèles pour prédiction de lemme

Conclusion

Difficultés :

- Temps d'entraînement long des transformers pré entraînés
- Conception de transformers fait maison
- Ce que nous a apporté le projet :
 - Manipulation de texte
 - Familiarisation avec l'entraînement sur GPU
 - Travailler avec des modèles pré-entraîné (hugging face...)

Conclusion

- Travaux futurs et potentiel d'amélioration
 - Plus de données pour les modèles fait maison
 - Tester les performances sur différents datasets
 - Plus de fine tuning

Bibliographie et travaux liés

- BERT: https://arxiv.org/abs/1810.04805

- CamemBERT: https://www.aclweb.org/anthology/2020.acl-main.645

- Dataset Sequoia: https://universaldependencies.org/treebanks/fr_sequoia/index.html

Autres liens utiles sur le rapport du projet

Pre-Train Transformer Versus Home-Made Transformer

Merci de votre attention! (It's all we needed)

