Matrix Representations and Similarity

1. Recall:

Cut V and V' be vector spaces with ordered basis $B = (b_1, b_2, ..., b_n)$ and $B' = (b'_1, b'_2, ..., b'_n)$, respectively. Then, the matrix rep of T relative to B, B' is denoted by RB, B' and is given by

RB, B' = TCbi)B' TCbz)B' TCbn)B'

where T(bi) B' is the coordinate vector of T(bi) relative to B'. Furthermore, RB, B' is the unique matrix Satisfying

T(V)B' = RB,B' VB

To find RB,B', we need

- 1. MTCb), the mxn matrix whose col vectors are TCb).
- 2. MB)

[MB MTCB)] ~ [I | RB, B']

2. Multiplicative Property of Matrix Reps:

Cut T: R"->R" and T': R"->R's be 2 linear transformations. Then, Matrix for (T'OT) = (Matrix for T) (Matrix for T).

3. Relationship Between Matrix Rep of Linear Transformations and Change of Bases Matrix:

Cut B and B' be ordered bases for Rn.

RB' = CB, B' RB CB', B

Consequently, RB' and RB are similar matrices.

Thms

2 nxn matrices are similar iff they are matrix reps of the same linear transformation. T relative to suitable ordered basis.

Similar matrices have the same eigenvalues.

4. Eigenvalues and Eigenvectors of Similar Matrices:

Cut A and R be similar nxn matrices sit.

R=C'AC. Let the eigenvalues of A be

\[\lambda_1, \lambda_1, \lambda_1, \lambda_1, \lambda_1, \lambda_1 \]

be distinct. Then,

1. The eigenvalues of R are also >1, >1, ... >n.

2. The algebraic and geometric multiplicity of each 2i are the same for A and R.

3. If Vi in R" is an eigenvector of A corresponding to Di, then C'Vi is an eigenvector of R corresponding to Di.

Recall:

The algebraic multiplicity of an eigenvalue is how many times that eigenvalue appears.

E.g.

Suppose $0 = (\lambda - 3)^2 (\lambda + 4)$. Then, $\lambda_1 = 3$ and $\lambda_2 = -4$. However, since 3 occurs twice, the algebraic multiplicity of $\lambda_1 = 2$, while the algebraic multiplicity of $\lambda_2 = 1$.

The geometric multiplicity of an eigenvalue is the nullspace of its eigenspace.

E.g.

Suppose En = [120]

Then, the nullspace of Ex. = 2, so its geometric multiplicity is 2.

If an eigenvalue's geo = its alge, then A is diagonizable.

Note: An eigenvalue's geo is always = its alge.

5. Diagonalization:

A linear transformation of a finite-dimensional vector space V is diagonalizable if V has an ordered basis consisting of eigenvectors of T.

Fig.

Consider the vector space Pz of all polynominals of degree at most 2 and let B' be the ordered basis (1, x, x²) for Pz. Let T: Pz -> Pz be the lin trans s.t.

T(1) = 3+2x+x²

T(x²) = 2x²

Find T"(x+2)

Solution:

$$R_{8}^{2} = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

To find the eigenvalues of RB, I do

0 = det (RB' - 71)

	$= (3-7) \left[(-7)(2-7) \right] - 2 \left[(2)(2-7) \right]$ $= (3-7) \left[(-2)(2-7) \right] - 2 \left[(4-2) \right]$ $= -67 + 32^2 + 22^2 - 2^3 - 8 + 42$ $= -3^3 + 53^2 - 27 - 8$
	$\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 4$ When $\lambda_1 = -1$
	$\begin{array}{c} R_{B'} - \lambda_{1}I \\ = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix} \end{array}$
	2 1 0 1 0 3 0 0 0
	$ \begin{bmatrix} 0 & 1 & -6 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} $
	$ \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & 0 \end{bmatrix} $
	(A) $x_3 = 5$ $x_1 + 3x_3 = 0$ $x_1 = -3x_3$ $x_2 - 6x_3 = 6x_3$ $x_3 = 6x_3$
0	=-35 = 6s

The eigenvector of 21 is [-3, 6, 1].
P(>1)=-3+6x+x2
When $\lambda_z = 2$ $R_{B^3} - \lambda_z I = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
~ \[\begin{picture}(0 & 2 & \dots) \\ 0 & -2 & \dots \\ 1 & \dots & \dots \end{picture}\]
~ [1 0 0 0]
(id X3 = 5
The eigenvector of n= T0,0,1).
$P(\lambda_2) = \chi^2$
When $\lambda_3 = 4$
$R_{3'} - \gamma_{3}I = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \\ 1 & 0 & -2 \end{bmatrix}$
$ \begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} $
$ \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} $

Let $x_3 = 5$ Then, the eigenvector of λ_3 is [a, 1, 1]. $P(\lambda_3) = 2 + x + x^2$

(it B be the ordered basis (-3+6x+x², x², 2+x+x²). The coordinate vector d of x+2 relative to the basis B is To,-1, 1].

-1	0	2	27	do =0
6	0	1	1	d1 =-1
1	1	1	0	d2 = 1

	0	0	13	13
~	6	0	1	1
	0	1	3	12

	6	0	1	11
2	0	1	3	2
	0	0	1	11

	6	0	0	0
~	0	1	0	-1
	0	0	1	11

	1	0	0	0
~	0	1	0	-1
	0	0	1	11

Then, Tk(x+2) = (21)k(do)(-3+6x+x2)+(22)k(di)(x2) +(23)k(d2)(2+x+x2)

 $T^{4}(x+2) = 2^{4}(-1)(x^{2}) + 4^{k}(1)(2+x+x^{2})$ $= -16x^{2} + 256(2+x+x^{2})$ $= 240x^{2} + 256x + 512$