CNC MACHINING TOOL-WEAR DETECTION

Nathan Krumholz

Background

Tool Ware

Tool wear evolution of end milling: (a) a new tool, (b) a worn tool, (c) and (d) severely worn tools

Tool Wear in Micro-End milling: Material Microstructure Effects, Modeling and Experimental Validation

Data Set

- 18 experiments
- 45 Variables
- X,Y,Z,S dimensions
- Position, Velocity, Acceleration
- Command and Actual
- Output power
- Current feedback
- Sequence (G-code Line) and group
- Feedrate

DATA SET

PCA

Goals: Reduce

- Dimensionality
- Correlation

Results:

- First 20 Components
- Preserved 96% of Variance

PCA

Clustering?

Tree Model: PCA

Tree Model: PCA

Compiled Results Over Time-Series

Confusion Matrix	0	1
0	41%	7%
1	6%	46%

Important Variables

- PC1
- Actual and Command Position and Current in Spatial Dimensions
- Velocity and Current of Rotational Dimension
- PC15
- X,Y Output Current
- Sequence Number
- PC13
- Dominated by Current Program Number

Random Forest: PCA

Compiled Results Over Time-Series

Confusion Matrix	0	1
0	41%	7%
1	6%	46%

Cosine Similarity

Tree Model: Cosine Similarity

Tree Model: Cosine Similarity

Compiled Results Over Time-Series

Confusion Matrix	0	1
0	27%	12%
1	20%	41%

Future Actions

- Tool-wear happens slowly over time
- Not necessarily a binary response
- Used 1 tool in 1 program