

DH Table 1	Link 1 2 3 4 5 6	ai	di	di	θ_i	in	mm
	1	25	$\pi/2$	400	D1		
	2	315	Ð	O	Ð2		
	3	35	$\pi/2$	0	Θз		
	4	0	-T/2	362	θ4		
	5	0	11/2	D	Ð5		
	6	-296.23	30	161,44	₽б		

Find D1:

Top view:

$$\frac{\alpha_1}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_1}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

$$\frac{\alpha_2}{\gamma_0} \times \alpha_2$$

Find Oz, O3

$$\begin{split} \overline{AD}^2 &= \overline{AE}^2 + \overline{DE}^2 - 2\overline{AE} \, \overline{DE} \, \cos\varphi \\ \left(\sqrt{\chi_c^2 + \chi_c^2} - \Omega_t \right)^2 + \left(\overline{\chi_c} - d_t \right)^2 = \Omega_z^2 + \Omega_s^2 + \operatorname{cl}_t^2 - 2 \, \Omega_z \, \overline{\Lambda_s^3 + \operatorname{cl}_t^2} \, \cos\varphi \\ D &= \overline{Cos} \, \varphi = \frac{\alpha_s^2 + \alpha_s^2 + \operatorname{cl}_t^2 - \left(\sqrt{\chi_c^2 + \chi_c^2} - \Omega_t \right)^2 - \left(\overline{\chi_c - \operatorname{cl}_t} \right)^2}{2 \cdot \Omega_z \sqrt{\Omega_s^2 + \operatorname{cl}_t^2}} \\ \varphi &= \operatorname{atanz} \left(-\sqrt{1 - D^2}, D \right) \\ \psi &= \operatorname{atanz} \left(-\sqrt{1 - D^2}, D \right) \\ \psi &= \operatorname{atanz} \left(-\sqrt{1 - D^2}, D \right) \\ \psi &= \operatorname{atanz} \left(-\sqrt{1 - D^2}, D \right) - \operatorname{atanz} \left(\alpha_s, \operatorname{cl}_s \right) \\ \overline{CE} &= \overline{DE} \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ &= \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ &= \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ \overline{AC} &= \overline{AE} + \overline{CE} = \Omega_2 + \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ \overline{AC} &= \overline{AE} + \overline{CE} = \Omega_2 + \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ \overline{AC} &= \overline{AE} + \overline{CE} = \Omega_2 + \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ \overline{AC} &= \overline{AE} + \overline{CE} = \Omega_2 + \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ \overline{AC} &= \overline{AE} + \overline{CE} = \Omega_2 + \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \sin\left(\Theta_s - \overline{\underline{u}} + \psi \right) , \, \Omega_2 + \sqrt{\alpha_s^2 + \operatorname{cl}_t^2} \, \cos\left(\Theta_s - \overline{\underline{u}} + \psi \right) \\ \overline{AC} &= \overline{AE} + \overline{CE} + \overline{$$