

Elizabeth Hofer

December 30, 2020

1 Revision History

Date	Version	Notes
11.19.2020	1.0	Initial Release

2 Symbols, Abbreviations and Acronyms

 $See SRS\ Documentation\ at\ https://github.com/liziscool/cas741_project/blob/master/docs/SRS/SRS.pdf$

Contents

1	Revision History									
2	Symbols, Abbreviations and Acronyms									
3	Introduction									
4	Not	ation								
5	Mo	dule D	Decomposition							
6	MIS	MIS of Control Module								
	6.1	Modul	le							
	6.2	Uses								
	6.3	Syntax	x							
		6.3.1	Exported Constants							
		6.3.2	Exported Access Programs							
	6.4	Seman	n <mark>tics</mark>							
		6.4.1	State Variables							
		6.4.2	Environment Variables							
		6.4.3	Assumptions							
		6.4.4	Access Routine Semantics							
		6.4.5	Local Functions							
7	MIS	S of Sp	pecification Parameter Module							
	7.1		<u>le</u>							
	7.2	Uses								
	7.3	Syntax	x							
		7.3.1	Exported Constants							
		7.3.2	Exported Access Programs							
	7.4	Seman	ntics							
		7.4.1	State Variables							
		7.4.2	Environment Variables							
		7.4.3	Assumptions							
		7.4.4	Access Routine Semantics							
		7.4.5	Local Functions							
	7.5	Consid	$rac{ m derations}{ m derations}$							
3	MIS	S of In	put Param Module							
	8.1	_	le							
	8.2									
	8.3		X							
			Exported Constants							

		8.3.2	Exported Access Programs	7
	8.4	Seman	atics	7
		8.4.1	State Variables	7
		8.4.2	Environment Variables	8
		8.4.3	Assumptions	8
		8.4.4	Access Routine Semantics	8
		8.4.5		10
_	D ATO			
9				11
	9.1			11
	9.2			11
	9.3			11
		9.3.1	1	11
		9.3.2		11
	9.4			11
		9.4.1	State Variables	11
		9.4.2	Environment Variables	11
		9.4.3	Assumptions	11
		9.4.4	Access Routine Semantics	11
		9.4.5	Local Functions	12
10			v	13
	10.1	Modul	le	13
	10.2	Uses		13
	10.3	Syntax	X	13
		10.3.1	Exported Constants	13
		10.3.2	Exported Access Programs	13
	10.4	Seman	atics	13
				13
		10.4.2	Environment Variables	13
				13
			•	13
				14
	10.5			14
	10.0	Combie	torwions	
11	MIS	of ST	CFT Module	15
	11.1	Modul	e	15
	11.2	Uses		15
				15
				15
			1	15
	11 4		•	15
	11.1			15

	11.4.2	Environment Variables	15
		Assumptions	
	11.4.4	Access Routine Semantics	15
		Local Functions	
12 MIS	of Wa	avelet	17
		<u>e</u>	
12.2	Uses		17
12.3	Syntax		17
	12.3.1	Exported Constants	17
	12.3.2	Exported Access Programs	17
12.4	Seman	i <mark>tics</mark>	17
	12.4.1	State Variables	17
	12.4.2	Environment Variables	17
		Assumptions	
	12.4.4	Access Routine Semantics	17
	12.4.5	Local Functions	18
		tput Verification Module	19
		<u>e</u>	
13.3	Syntax	<u>«</u>	
		Exported Constants	
		Exported Access Programs	
13.4		itics	
	13.4.1	State Variables	19
	13.4.2	Environment Variables	19
	13.4.3	Assumptions	19
	13.4.4	Access Routine Semantics	19
	13.4.5	Local Functions	20
		ıtput Module	21
		e	
14.3		<u>«</u>	
	14.3.1	Exported Constants	
	14.3.2	Exported Access Programs	
14.4		i <mark>tics</mark>	
	14.4.1	State Variables	21
	14.4.2	Environment Variables	21
	14.4.3	Assumptions	21
	14.4.4	Access Routine Semantics	21
	14.4.5	Local Functions	21

$15 \mathrm{M}$	IS of Compute Transform
15	.1 Module
15	.2 Uses
15	.3 Syntax
	15.3.1 Exported Constants
	15.3.2 Exported Access Programs
15	.4 Semantics
	15.4.1 State Variables
	15.4.2 Environment Variables
	15.4.3 Assumptions
	15.4.4 Access Routine Semantics
	15.4.5 Local Functions
15	.5 Considerations
16 M	IS of Zero Pad Module
16	.1 Module
16	.2 Uses
16	.3 Syntax
	16.3.1 Exported Constants
	16.3.2 Exported Access Programs
16	.4 Semantics
	16.4.1 State Variables
	16.4.2 Environment Variables
	16.4.3 Assumptions
	16.4.4 Access Routine Semantics
	16.4.5 Local Functions
17 M	IS of Matrix Data Structure Module
17	7.1 Module
17	.2 Uses
17	3 Syntax
	17.3.1 Exported Constants
	17.3.2 Exported Access Programs
17	7.4 Semantics
	17.4.1 State Variables
	17.4.2 Environment Variables
	17.4.3 Assumptions
	17.4.4 Access Routine Semantics
	17.4.5 Local Functions

18	MIS	of Plo	otting Module
	18.1	Modul	e
	18.2	Uses	
	18.3	Syntax	ζ
		18.3.1	Exported Constants
		18.3.2	Exported Access Programs
	18.4	Seman	t <mark>tics</mark>
		18.4.1	State Variables
		18.4.2	Environment Variables
		18.4.3	Assumptions
		18.4.4	Access Routine Semantics
		18.4.5	Local Functions

3 Introduction

The following document details the Module Interface Specifications for Time_Freq_Analysis, a program to compute the time-frequency analysis of a 1 dimensional signal.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/liziscool/cas741_project.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Time_Freq_Analysis.

Data Type	Notation	Description
character integer	char Z	a single symbol or digit a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
complex	\mathbb{C}	a number with a real part a and an imaginary part b s.t. $a+bi$ where i is the imaginary number

The specification of Time_Freq_Analysis uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Time_Freq_Analysis uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
	Input Parameter Module Specification Param Module Load Data Module
Behaviour-Hiding Module	Boundary Configuration Module STFT Module Wavelet Module Output Verification Module Output Module Compute Transform Module
	Control Module Plotting Module
Software Decision Module	Zero-Pad Module Matrix Data Structure Module Fast Fourier Transform Module

Table 1: Module Hierarchy

6 MIS of Control Module

6.1 Module

main

6.2 Uses

Compute Transform Module 15, Output Module 14, Output Verification Module, Plotting Module 18

6.3 Syntax

6.3.1 Exported Constants

None.

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	$argc$: \mathbb{N} ,	< -	-
	$argv_1, \ldots, argv_{argc}$	>	
	s.t. $argv_n : string$		

6.4 Semantics

6.4.1 State Variables

None.

6.4.2 Environment Variables

None.

6.4.3 Assumptions

- User enters correct inputs for calculation that is expected.
- User enters inputs in correct format.

6.4.4 Access Routine Semantics

main():

- transition: Controls the entire program, transition through the program as follows:
 - 1. Sets param from command line arguments set_inputs().

- 2. Calls compute transform module with comp_transform().
- 3. Plots output with plot_matrix()

6.4.5 Local Functions

7 MIS of Specification Parameter Module

7.1 Module

spec_param

7.2 Uses

None.

7.3 Syntax

7.3.1 Exported Constants

Name	Type
MIN_FREQ	\mathbb{R}
MAX_FREQ	\mathbb{R}
MIN_SIG_LEN	\mathbb{N}
MAX_SIG_LEN	\mathbb{N}
STEP_SIZE	\mathbb{N}
WIN_SIZE	\mathbb{N}

7.3.2 Exported Access Programs

None.

7.4 Semantics

7.4.1 State Variables

None.

7.4.2 Environment Variables

None.

7.4.3 Assumptions

None.

7.4.4 Access Routine Semantics

7.4.5 Local Functions

None.

7.5 Considerations

This module basically just holds all of the constants.

8 MIS of Input Param Module

8.1 Module

 $input_param$

8.2 Uses

Specification Param Module 7, Hardware Hiding Module

8.3 Syntax

8.3.1 Exported Constants

None.

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
set_input	$argc : \mathbb{N}, <$	-	bad_arguments,
	$argv_1, \dots, argv_a$	$_{rgc} >$	bad_min_time,
	s.t. $argv_n$:	bad_max_time,
	string		bad_time_range,
			bad_min_freq,
			bad_max_freq,
			bad_freq_range ,
			bad_transform_type
N	-	\mathbb{N}	
f_1	-	\mathbb{R}	
f_2	-	\mathbb{R}	
n_1	-	\mathbb{R}	
n_2	-	\mathbb{R}	
$transform_type$	-	$\{W,S\}$	
$time_res$	_	\mathbb{N}	
$freq_res$	-	\mathbb{N}	
sig_file	-	string	

8.4 Semantics

8.4.1 State Variables

- f_1
- \bullet f_2

- n_1
- n_2
- transform_type
- param.time_res
- param.freq_res
- param.sig_file

As outlined in the table above.

8.4.2 Environment Variables

None.

8.4.3 Assumptions

While there will be measures in place to check that the input values comply with the ability of the program, some additional assumptions are listed below

- 1. The user inputs the correct file path.
- 2. The bounds are appropriate for the signal.
- 3. The input parameters must be set (initialized) before they are accessed.

8.4.4 Access Routine Semantics

set_input():

- transiton:= as follows
 - 1. Read arguments from command line and assign to respective variable
 - 2. Check arguments for exceptions, as follows:
- exception: exc:=

param.N:

- ullet output: out:=N
- exception: none

param.f1:

- output: $out := f_1$
- exception: none

param.f2:

- output: $out := f_2$
- exception: none

param.n1:

- output: $out := n_1$
- \bullet exception: none

param.n2:

- output: $out := n_2$
- exception: none

param.time_div:

- output: $out := time_div$
- exception: none

 $param.freq_div:$

- output: $out := freq_div$
- exception: none

param.time_res:

- \bullet output: $out := time_res$
- exception: none

param.freq_res:

- output: out := freq res
- exception: none

param.sig_filename:

- \bullet output: $out := sig_filename$
- exception: none

8.4.5 Local Functions

9 MIS of Load Data Module

9.1 Module

 $load_data$

9.2 Uses

Input Param Module 8

9.3 Syntax

9.3.1 Exported Constants

None.

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_sig	sig_filename:string	$\langle x_1, \dots, x_N \rangle x_n : \mathbb{R}$	bad_path,
			empty_file,
			$file_wrong_format$

9.4 Semantics

9.4.1 State Variables

None.

9.4.2 Environment Variables

sig_file the file type variable of the external signal file

9.4.3 Assumptions

1. File should be in correct format.

9.4.4 Access Routine Semantics

read_sig():

• output: out := $\langle x_1, \dots, x_N \rangle$

• exception: exc :=

 $\begin{cases} bad_file & \text{if the file or a directory on the path does not exist} \\ empty_file & \text{if the file has no data in it} \\ file_format_wrong & \text{if data in the folder is not in } \mathbb{R} \text{ or uses incorrect delimter} \end{cases}$

9.4.5 Local Functions

10 MIS of Boundary Configuration Module

10.1 Module

bound_config

10.2 Uses

Specification Param Module 7

10.3 Syntax

10.3.1 Exported Constants

None.

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
calc_freq_res	$f_1: \mathbb{R}, f_2: \mathbb{R}, \text{ win_size}: \mathbb{N}$	\mathbb{R}	-
$calc_time_res$	$n_1: \mathbb{N}, n_2: \mathbb{R}, \text{ step_size}: \mathbb{N}$	\mathbb{N}	-

10.4 Semantics

10.4.1 State Variables

None.

10.4.2 Environment Variables

None.

10.4.3 Assumptions

None.

10.4.4 Access Routine Semantics

calc_freq_res(f_1 , f_2 , win_size):

• output: out := $(f_2 - f_1) * win_size$

calc_time_res(n_1 , n_2 , win_size):

• output: out := $\frac{(n_2-n_1)}{\frac{win_size}{step_size}}$

10.4.5 Local Functions

None.

10.5 Considerations

At the time this document was written, the writer is not totally confident in the methods to calculate time_res or freq_res. The equations provided above are sufficient to communicate the point, but in execution it may be more complicated, and at that time this section of the document will be updated to reflect that.

11 MIS of STFT Module

11.1 Module

STFT

11.2 Uses

FFT Module, Boundary Configuration Module 10, Matrix Data Structure Module 17

11.3 Syntax

11.3.1 Exported Constants

None.

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
comp_stft	$\langle x_1, \ldots, x_N \rangle$ where	<	-
	$x_n : \mathbb{R}, N : \mathbb{N},$ time_res: \mathbb{N} , freq_res: \mathbb{N}	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,0}$ where $x_{i,j} : \mathbb{C}$	$_1,\ldots,X_{I,J}>$

11.4 Semantics

11.4.1 State Variables

None.

11.4.2 Environment Variables

None.

11.4.3 Assumptions

None.

11.4.4 Access Routine Semantics

comp_stft(sig): where sig is the input signal $\langle x_1, \ldots, x_N \rangle$ where $x_n : \mathbb{R}, N : \mathbb{N}$

• output: out := $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ where $X_{i,j} : \mathbb{C}$ s.t.

$$X(i,j) = \sum_{i=0}^{WIN_SIZE} x_i w_i e^{-\hat{i}\omega j}$$
 (1)

and $I[0, time_res]$ and $J[0, freq_res]$ and \hat{i} is the imaginary number.

• This routine will utilize the fast Fourier transform.

11.4.5 Local Functions

window_function(WIN_SIZE):

• output: out := $\langle w_0, \dots, w_{WIN_SIZE} \rangle$ where

$$w_n = \left(\sin\frac{\pi * n}{WIN_SIZE}\right)^2 \tag{2}$$

12 MIS of Wavelet

12.1 Module

wavelet

12.2 Uses

FFT Module, Boundrey Configuration Module 10, Matrix Data Structure Module 17

12.3 Syntax

12.3.1 Exported Constants

None.

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
comp_waveletT	$\langle x_1,\ldots,x_N\rangle$ where	<	_
	$x_n : \mathbb{R}, N : \mathbb{N},$	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}$	$1,\ldots,X_{I,J}>$
	time_res: \mathbb{N} , freq_res :	where $x_{i,j}:\mathbb{C}$	
	\mathbb{N}		

12.4 Semantics

12.4.1 State Variables

None.

12.4.2 Environment Variables

None.

12.4.3 Assumptions

None.

12.4.4 Access Routine Semantics

comp_waveletT(sig): where sig is the $\langle x_1, \ldots, x_N \rangle$ where $x_n : \mathbb{R}, N : \mathbb{N}$

• output: out :=
$$\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$$
 s.t.

$$X(a,b) = \frac{1}{\sqrt{a}} \sum_{n=0}^{wav_scale_a} w_{a,b,n} x_n$$
 (3)

where $w_{a,b,n}$ represents the wavelet scaled by a and shifted by b.

12.4.5 Local Functions

 $wavelet_function()$:

• output: out := $< w_0, \dots, w_{wav_scale_a} >$ where

$$w_n = c_\sigma \pi^{-\frac{1}{4}e^{-\frac{1}{2}t}} (e^{i\sigma n} - \kappa_\sigma) \tag{4}$$

and where $\kappa_{\sigma}=e^{1\frac{1}{2}\sigma^2}$ and $c_{\sigma}=(1+e^{-\sigma^2}-2e^{-\frac{3}{4}\sigma^2})^{\frac{1}{2}}$, a.k.a. a Morlet Wavelet.

13 MIS of Output Verification Module

13.1 Module

 $output_verify$

13.2 Uses

Matrix Data Module

13.3 Syntax

13.3.1 Exported Constants

None.

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
verify_out	tput <	$b: \mathbb{B}$	-
	$X_{0,0}, X_{0,1}, \dots$	$X_{1,0}, X_{1,1}, \ldots, X_{I,J} > $	
	where $x_{i,j}:\mathbb{R}$		

13.4 Semantics

13.4.1 State Variables

None.

13.4.2 Environment Variables

None.

13.4.3 Assumptions

None.

13.4.4 Access Routine Semantics

verify_output():

$$\bullet$$
 output: out :=
$$\begin{cases} T & \text{if transform passes verification} \\ F & \text{if transform fails verification} \end{cases}$$

To pass the verification the output matrix must pass the following conditions:

$$\sum_{j=0}^{freq_res} X_{i,j} \le \sum x_n \tag{5}$$

where Σx_n and corresponds to the portion of the signal represented by i in $X_{i,j}$.

13.4.5 Local Functions

14 MIS of Output Module

14.1 Module

output

14.2 Uses

Hardware Hiding Module

14.3 Syntax

14.3.1 Exported Constants

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
get_output	-	<	_
		$X_{0,0}, X_{0,1}, \ldots, X_{1,0}, X_{1,0}$	$1,\ldots,X_{I,J}>$
		where $x_{i,j}:\mathbb{R}$	

14.4 Semantics

14.4.1 State Variables

None.

14.4.2 Environment Variables

None.

14.4.3 Assumptions

1. The user requires the memory location of the output matrix, as in it does not need to be written to any external file.

14.4.4 Access Routine Semantics

get_output():

• output: out := $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ where $X_{i,j} : \mathbb{R}$ where X is the time frequency representation of the data as calculated by Time_Freq_Analysis.

14.4.5 Local Functions

15 MIS of Compute Transform

15.1 Module

 $comp_transform$

15.2 Uses

Load Data Module 9, Wavelet Module 12, STFT Module 11, Zero Pad Module 16, Matrix Data Structure Module 17

15.3 Syntax

15.3.1 Exported Constants

None.

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
$comp_transform$	$\langle x_1, \ldots, x_N \rangle$ where	<	-
	$x_n : \mathbb{R}, N : \mathbb{N}, f_1 :$	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots$	$X_{I,J} >$
	$\mathbb{R}, f_2 : \mathbb{R}, T :$	where $x_{i,j}:\mathbb{R}$	
	$\{`W',`S'\}$	-	

15.4 Semantics

15.4.1 State Variables

None.

15.4.2 Environment Variables

None.

15.4.3 Assumptions

None.

15.4.4 Access Routine Semantics

comp_transform():

• output: $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ where $x_{i,j} : \mathbb{R}$

Such that X is calculated in the following way:

- 1. The input signal is read using read_data 9 using the parameters specified by the Input Parameter Module 8.
- 2. The signal is zero-padded using Zero Pad Module.
- 3. Some computations are done regarding the boundary configuration using calc_freq_res and calc_time_res from 10 which are needed for the following step.
- 4. The signal is transformed using ether comp_waveletT if T=`W' or comp_STFT if T=`T'
- 5. The matrix output from the transforms are complex, to convert them to a real power values the matrix is X is computed from as followed:

$$X_{i,j} = \sqrt{X_{\mathbb{C}}.real^2 +_{\mathbb{C}}.im^2}$$

Where $X_{\mathbb{C}}.real$ is the real part of the transform and $X_{\mathbb{C}}.im$ is the imaginary part.

15.4.5 Local Functions

None.

15.5 Considerations

The Zero-Pad Module extends the size of the signal x by 2 times the window size WIN_SIZE , however, this doesn't affect the size of the output transform matrix.

16 MIS of Zero Pad Module

16.1 Module

zero_pad

16.2 Uses

None.

16.3 Syntax

16.3.1 Exported Constants

None.

16.3.2 Exported Access Programs

Name	In	Out	Exceptions
zero_pad_sig	$\langle x_1, \ldots, x_N \rangle$ where	$\langle x_1, \dots, x_{N+2WIN_SIZE} \rangle$	_
	$x_n : \mathbb{R}, N : \mathbb{N},$		
	WIN_SIZE		

16.4 Semantics

16.4.1 State Variables

None.

16.4.2 Environment Variables

None.

16.4.3 Assumptions

None.

16.4.4 Access Routine Semantics

zero_pad_sig():

• output: $\langle x_1, \dots, x_{N+2WIN_SIZE} \rangle$ such that $x_n = 0$ from $n[0, WIN_SIZE]$, $x_{n+WIN_SIZE} = \hat{x}_n$ from n[0, N] where \hat{x} is the original signal and N is the length of the original signal.

16.4.5 Local Functions

17 MIS of Matrix Data Structure Module

17.1 Module

mat

17.2 Uses

None.

17.3 Syntax

17.3.1 Exported Constants

None.

17.3.2 Exported Access Programs

Nam	e In	Out	Exceptions
init	$X:\mathbb{N},Y:\mathbb{N}$	$< X_{0,0}, X_{0,1}, \dots, X$	$\overline{Y_{1,0}, X_{1,1}, \dots, X_{X,Y}} > $
\mathbf{m}	$x: \mathbb{N}, y: \mathbb{N}$	$m:\mathbb{R}$	-

17.4 Semantics

17.4.1 State Variables

None.

17.4.2 Environment Variables

None.

17.4.3 Assumptions

None.

17.4.4 Access Routine Semantics

mat.init():

• output: $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{X,Y} \rangle$ Where $X_{x,y}$ is null but it is able to hold type \mathbb{R} .

mat.m():

• output: $m : \mathbb{R}$ m is the data in the matrix at the specified index.

17.4.5 Local Functions

18 MIS of Plotting Module

18.1 Module

plot

18.2 Uses

None.

18.3 Syntax

18.3.1 Exported Constants

None.

18.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot_matrix	<	$b:\mathbb{B}$	bad_path
	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,0}$	$1,\ldots,X_{X,Y}>$	
	where $x_{x,y}$:		

18.4 Semantics

18.4.1 State Variables

None.

18.4.2 Environment Variables

None.

18.4.3 Assumptions

None.

18.4.4 Access Routine Semantics

plot_matrix():

• output: out:=

 $\begin{cases} F & \text{if output file was not created successfully} \\ T & \text{if output file was created successfully} \end{cases}$

• exception: exc:= bad_path if out file was not written successfully.

18.4.5 Local Functions

Name	In	Out	Description
calc_colour	$x: \mathbb{R}$	$R, B, G : \mathbb{N}$	converts the matrix
			value into corresponding R,G,B values for
			heat map

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.