Lineare Algebra 2 Tutonium 3, 28.4.2021

Warm-Up

Richtig oder Falsch?

```
1. Eine Bilinearform \beta:V	imes V	o K ist genau dann symmetrisch, wenn die zugehörige Strukturmatrix B symmetrisch ist.
```

2. Ist
$$eta$$
 sowohl symmetrisch als auch schiefsymmetrisch, so ist $eta=0$.

3. Ist eta nicht-ausgeartet, so kann eta nicht schiefsymmetrisch sein. $m{ imes}$

4. Ist $U \subseteq V$ ein Unterraum, so ist $\dim_K(U^{\perp}) = \dim_K(U)$.

5. Es ist
$$U^{\perp\perp} = U$$
. X hr in Indialdin.

/3(v,w) = /3(w,v)

 $\beta(v, \omega) = -\beta(w, v)$ solvef.

=) 2/s(w,v) = 0

Pur falls cho: 42

 $\forall v, w \in V$

V die drombtenistik $\neq 2$ host, so folyt f(w,v)=0. (also f=0)

din $V = \dim U^{\frac{1}{2}} + \dim U \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ s will -anspeaset

In due K=2: -1 = +1(also solveforms. \iff Symmetrisch)

Charaberistik:

K Võpes

Mulhjoble hi-neuprales Element

Es gott innes einen eindlichiger Krighomowoghomus $\varphi: \mathbb{Z} \longrightarrow \mathcal{K}$

m ~> 1h+ ·-+ 1k =: m E K

lur 4 = ?

Han han reigen: In Z hat jeder

soldre les die Form p2

$$P = \{p : 2 \mid z \in \mathbb{Z}^2\}$$

$$P \text{ Primitable}, \text{ orders } p = 0$$

$$P \text{ (p)}$$

$$P \text{ with } = 0 \quad \text{ & p int die like inthe solden } 2 \text{ other } 2 \text$$

 β vicht-ausgentet: $V \xrightarrow{\xi} How(V, K) = V^*$ $V \xrightarrow{} (\beta(v, -): \times \mapsto \beta(v, \times))$ ist injelliv

Vendlid
Vendlid
Vendlid
Vendlid
Vendlid
Vendlid
V* ~ U* & W*

V > V her $G = \frac{1}{2} \text{ VEV} | \frac{1}{2} \text{ For isergan Fig.}$ Rougsetz: din V = din les Q + din in Q 5. U ≤ U^{LL} V (Gegenseigniel grist es ouf Blatt 2, Augg. 367) $S: V \times W \longrightarrow K$ $S: V \times W \longrightarrow K$ $\sim \hat{k}: W \rightarrow \omega$ Adjyrile setz (1.2.11) V1,..., Vy Basis von V waring was won W A die obsklude Nohx À - -Es soll gotten: $\beta(h(v), w) = \beta(v, h(w))$ Auf Basiselenatu: $s(h(v_i), w_j) = \mathcal{S}(\Sigma_k A_k; v_k, w_j)$

$$B(v_{1}, h^{2}(v_{2})) = \dots = (A^{T}B)_{ij}$$

$$B(v_{1}, h^{2}(v_{2})) = \dots = (BA)_{ij}$$

$$A^{T}B = BA = 0$$

$$A = B^{T}A^{T}B$$

$$B = \begin{pmatrix} S(v_{1}, v_{2}) & S(v_{1}, v_{2}) \\ S(v_{2}, v_{3}) & S(v_{1}, v_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 11 \\ 11 & 25 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \qquad B^{T} = \begin{pmatrix} 1 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \qquad B^{T} = \begin{pmatrix} 25 & -11 \\ -14 & 5 \end{pmatrix}$$
Allamativ: Neclesel and Solubasis:

Alternativ: Heclisel ouf sold basis:

Partellede Mohix van g in $(4, v_z)$ $= A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$

_ u ____ g in Stabasis

Aufgabe 3

Sei K ein Körper, V ein K-Vektorraum mit $\dim_K(V)=n<\infty$ und eta eine symmetrische Bilinearform. Seien weiter U_1,U_2 lineare Unterräume von V. Zeige:

1.
$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$$
.
2. $U_1^{\perp} + U_2^{\perp} \subseteq (U_1 \cap U_2)^{\perp}$.

1.
$$V \in (\mathcal{U}_1 + \mathcal{U}_2)^{\perp} \iff \forall u_1 \in \mathcal{U}_1 \forall u_2 \in \mathcal{U}_2$$
:

| $\mathcal{S}(V, u_1 + u_2) = 0$
|

*
$$\beta(v_1, u_1 + u_2) = \beta(v_1, u_1) + \beta(v_2, u_2) = 0 + 0$$

= δ

2. $u_1^{\perp} + u_2^{\perp} \subseteq (u_1 \cap u_2)^{\perp}$
 $v_1^{\perp} v_2^{\perp}$

27: $\beta(v_1 + v_2, u) = 0$
 $\psi(v_1, u) = 0$
 $\psi(v_2, u) = 0$
 $\psi(v_2, u) = 0$
 $\psi(v_2, u) = 0$

https://rtmader.github.io