Search for charged Higgs boson with the $extbf{H}^\pm o t extbf{b}$ decay in fully hadronic final state

B2G Resonances meeting

A. Attikis¹, K. Christoforou¹, M. Kolosova¹, **S. Konstantinou**¹, S. Lehti², C.Leonidou¹, L.Paizanos¹, F. Ptochos¹, H. Saka¹, A. Stepennov¹

¹UCY ²HIP

Friday 25th November, 2022

 $\ensuremath{\mathsf{H}}^\pm \ensuremath{\mathsf{predicted}}$ by many BSM theories that extend their Higgs sector

- two-Higgs-doublet models (2HDMs) predict 5 physical states:
 - ▶ two \mathcal{CP} -even h^0 and H^0 , \mathcal{CP} -odd A^0 , two H^{\pm}

Three mass categories are commonly defined in H^\pm searches:

lacktriangle Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$, heavy $m_{
m H^\pm} > m_{
m t} + m_{
m b}$

BRs of $H^{\pm} \rightarrow tb$ dominanates at high $m_{H^{\pm}}$, for wide range of $tan \beta$

Fully-hadronic final state of associated production characterised by:

- ► High jet & b jet multiplicities
- ✓ Large branching ratio $B \simeq 46\%$
- ✓ Invariant mass reconstruction of H[±]
- X QCD multijet & tt background
- Combinatorial (self-)background

Various m_{H^\pm} reconstruction techniques available due to signal process kinematics:

- **Resolved t**: At moderate $m_{\mathrm{H}^{\pm}}$ & $p_{\mathrm{T},\mathrm{H}^{\pm}}$ the decay products of H^{\pm} are well separated
- \blacktriangleright Boosted W/t: As $\mathrm{m_{H^\pm}}$ increases the H $^\pm$ decay products become boosted

boosted t

STRATEGY

Previous results

- Resolved t, Boosted W/t studied separately by dedicated analyses
- 2016 ReReco data
- ► CADI HIG-18-015

This work

- ▶ 3 main categories
 - 2 resolved t
 - ► 1 resolved, 1 boosted t < NEW
 - 2 boosted t
- ► Last report (B2G-RES): 12 Nov 2022
- ► This analysis targets full Run II data
- ► This talk presents a study using 2018 data

Datasets	Luminosity (pb ⁻¹)
JetHT_Run2018A_UL2018_MiniAODv2_v1_315257_316995	14026.95
JetHT_Run2018B_UL2018_MiniAODv2_v1_317080_319310	7060.79
JetHT_Run2018C_UL2018_MiniAODv2_v1_319337_320065	6894.78
JetHT_Run2018D_UL2018_MiniAODv2_v2_320413_325172	31834.89
Total:	59817 41

MC simulated samples include:

- ► Signal: $m_{\rm H}^{\pm} = 200 3000 \text{ GeV (17 points)}$
- ► QCD (*H*_T binned)
- ► Top (Single top, $t\bar{t}$, $t\bar{t} + X$)
- ► V+jets, diboson, triboson

Signal events are collected by the OR of:

HLT_PFHT380_SixPFJet32_DoublePFBTagCSV_2p2 HLT_PFHT1050

HLT_PFHT380_SixPFJet32_DoublePFBTagDeepCSV_2p2 HLT_AK8PFJet500

HLT_PFHT400_SixPFJet32_DoublePFBTagDeepCSV_2p94 HLT_AK8PFJet400_TrimMass30

HLT_PFHT430_SixPFJet40_PFBTagCSV_1p5 HLT_AK8PFHT800_TrimMass50

HLT_PFHT430_SixPFJet40_PFBTagDeepCSV_1p5

HLT_PFHT450_SixPFJet36_PFBTagDeepCSV_1p5

- ▶ Trigger efficiency is measured in events with 1μ , \geq 7 jets, \geq 3 bjets
 - ► Reference trigger is HLT_IsoMu24
- ightharpoonup 2D Scale factors are calculated to correct simulation ($H_{
 m T}$ vs $p_{
 m T-6~jet}$)

 Syst unc applied in SF measurement

Resolved analysis

Signal region (SR):

Trigger	
$\ell(au_{\it h})$ veto	$p_{ m T} > 10(20)$ GeV, $ \eta < 2.4(2.3)$
≥ 7 jets	$p_T^{6th} >$ 40 GeV, $p_T^{7th} >$ 30 GeV, $ \eta <$ 2.4, Tight ID
$H_T > 500 \text{ GeV}$	
\geq 3 b jets	$p_{ m T} >$ 40 GeV, DeepJet Medium WP
\geq 2 resolved top (t^{res})	$130 < m_{ m t^{res}} < 210 \; { m GeV}$
	medium (loose) WP: 5(10)% misID rate

SR categorization based on t^{res}

- ► $1M1L_{t^{res}}$: medium $t_{p_{T,1}}^{res}$ loose-not-medium $t_{p_{T,2}}^{res}$
- ▶ $2M_{t^{res}}$: both t^{res} medium tagged

Invariant H[±] mass reconstruction:

$$m_{\rm tb} = t_{p_{T,1}}^{\rm res} + b_{p_{T,1}}$$

TOP TAGGING

A fully connected NN is developed to reconstruct resolved top-quarks

▶ Distinguishes trijets from top-quark decays and trijets from combinatorial background.

Training on simulated $t\bar{t}$ events

► Signal: truth-matched trijets

► Background: non-matched trijets (> 1 non-matched jet)

background

Mass decorrelation using sample reweighting:

Background is reweighted such that m_{top} matches the signal.

Calibration performed

HIG-21-010 Submitted to JHEP Documentation: AN 2021/019

Approved by JMAR group

BACKGROUND

Main background for the $H^{\pm} \rightarrow$ tb fully hadronic final state:

- ► QCD multijet < DATA DRIVEN
- ► EWK processes (mainly tt̄) < SIMULATION

QCD background measurement

Defining 3 orthogonal control regions (CR) for each SR

- ▶ t_{assoc}^{res} mass: On-mass \rightarrow Off-mass "sidebands"
- $ightharpoonup t_{H^{\pm}}^{\textit{res}}$ mva: t-tagged (t) ightharpoonup non t-tagged (!t)

"ABCD" method

$$N_{QCD}^{SR} = \sum_{i}^{\text{bins}} N_{QCD,i}^{CR(off-m,t)} \cdot \left(\frac{N_{QCD,i}^{CR(on-m,t)}}{N_{QCD,i}^{CR(off-m,1t)}} \right)$$

- $\blacktriangleright \ \mathsf{N}_{\mathrm{QCD}} = \mathsf{N}_{\mathrm{Data}} \mathsf{N}_{t\bar{t}} \mathsf{N}_{t,tt+X,EW}$
- ▶ Performed in bins of the t_{assoc}^{res} p_{T}

Correlation of the variables that define the ABCD method

 $ightharpoonup t_{H^{\pm}}^{res}$ mva in m (t_{assoc}^{res}) regions

- No correlation between SR and SB
- Syst unc account for differences related to the SB selection

Two validation regions (VRs) for each SR

- ▶ $t\bar{t}$ enriched: == 2 b jets, $m_{t_{H}^{res}} \in [155, 195]$ GeV, $\Delta R_{min}(bb) > 1.2$
- ▶ QCD enriched: == 2 b jets, $m_{t_{H^{\pm}}}^{res} \notin [155, 195]$ GeV, $\Delta R_{min}(bb) < 1.0$

SIGNAL EXTRACTION

A parameterized DNN is developed to extract signal from SM background

- ▶ Signal: H^{\pm} → tb for different mass hypotheses
- ▶ Background: $t\bar{t} \to SR$, Combinatorial $\to CR^{(\textit{off-m},t)} < t\bar{t} MC$

Input variables

1
$$\Delta\theta(t_{H+}, b_{H+})$$
 in H^{\pm} CM

$$2 H_{T,3b}$$

$$3 p_T(bb_{dRmin})$$

4
$$m(bb_{maxPt})$$

5 y23 =
$$p_{T,j3}^2/(p_{T,j1}+p_{T,j2})^2$$

6
$$p_{T,b(H^{\pm})}/H_{T,3b}$$

8
$$p_T^{Asym}(H^{\pm}, b_{H^{\pm}})$$

- 9 Circularity
- 10 Sphericity
- 11 Aplanarity
- 12 Number of medium tops
- 13 True mass

Parameterized DNN

$$\theta = \theta_{a}$$

$$x_{1} - \cdots - f_{a}(x_{1}, x_{2})$$

$$\theta = \theta_{b}$$

$$x_{1} - \cdots - f_{b}(x_{1}, x_{2})$$

$$x_{2} - \cdots - f_{b}(x_{1}, x_{2})$$

- ightharpoonup True mass is the θ parameter
- In background events, the true mass is randomly assigned to the same values used for signal
- ► Training (test) is done using 2017 (2018) data

SIGNAL EXTRACTION Parameterized DNN

Parameterized DNN is trained using 6 different mass hypotheses.

- ► Training masses = [220, 350, 600, 1000, 1500, 2500] GeV < solid line
- lacktriangle Performance compared to DNNs with fixed $m_{
 m H}^{\pm}$ dashed line

- ► Each curve is evaluated at the true mass DNN(x,m_H±)
- Comparable results!
- ► Good prediction even for masses not given in the training

ADD HERE THE OVERTRAINING TEST FOR 2 MASSES

Sources of systematic uncertainties

- Shape
 - ► Trigger efficiency
 - ▶ b (mis)tagging efficiency
 - ► top (mis)tagging efficiency
 - ▶ jet energy scale and resolution
 - ▶ pile-up
 - ▶ stat. unc. on the QCD transfer factors
- Constant
 - luminosity
 - top-quark mass
 - ► RF scale acceptance
 - ► cross section (scale & pdf)
 - ► lepton efficiency
 - ▶ syst. unc. on the QCD measurement <

Estimated QCD background affected by:

1 Sideband definition: t_{assoc}^{res} mass

2 Sideband definition: $t_{H^{\pm}}^{res}$ MVA

Subtracted background

4 Binning of the $t_{assoc}^{res} p_{T}$

 $2M_{tres}$

Estimated QCD background affected by:

1 Sideband definition: t_{assoc}^{res} mass

Sideband definition: $t_{\mu\pm}^{res}$ MVA

Subtracted background

Binning of the t_{assoc}^{res} p_{T}

Subtracted bkg CMS Preliminary 59.8 fb⁻¹ (13 TeV) 95000 Events 90000 90000 20000 15000 10000 5000 /ar/nominal 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $2M_{tres}$

Fitted ratio to quantify the variation

- Flat variation
- ► For each source:
 - ► Fitting the DNN score for each mass hypothesis (17 distributions)
 - Final value: distribution that gives the minimum χ^2
 - The maximum variation is applied
- ► All sources measured independently

SIGNAL REGION

Sat 7th Jan, 2023

Expected limits on
$$\sigma_{\operatorname{H}^\pm t(b)} imes \mathcal{B}(\operatorname{H}^\pm o \operatorname{tb})$$

Preliminary

- Statistical uncertainties only
- lacktriangle Sensitivity comes to a plateau for $m_{\mu^\pm}>1250$ GeV
- ▶ Results improved by a factor of 2 wrt 2016 data analysis

Boosted analysis

STRATEGY

Two SRs based on the number of boosted tops (t^{bst}) :

 $\begin{array}{l} {\rm SR1} \; : \; {\rm N}_{t^{bst}} == 1 \\ {\rm SR2} \; : \; {\rm N}_{t^{bst}} == 2 \end{array}$

Preliminary

SR1	SR2	
Trigger	Trigger	
ℓ veto	ℓ veto	same as resolved
$= 1 t^{bst}$	$= 2 t^{bst}$	$p_{ m T} >$ 400 GeV, $ \eta <$ 2.4, <code>PNet_TvsQCD</code> Medium WP (5% misID rate)
≥ 4 jets	\geq 2 jets	$p_{\mathrm{T}} >$ 40 GeV, $ \eta <$ 2.4, tight ID, $H_{\mathcal{T}} >$ 500 GeV
\geq 2 b jets	≥ 1 b jets	DeepJet Medium WP
$\leq 2 t^{res}$		custom DNN loose, $130 < m_{ m t^{res}} < 210$ GeV
$\Delta R(t^{bst}, b^{ldg}) > 1.2$		
$\max(m_{bb}) > 200 \text{ GeV}$		

Invariant H[±] mass reconstruction:

$$m_{\mathsf{t}\,\mathsf{b}} = t_{p_{\mathcal{T},1}}^{\mathit{bst}} + \mathsf{b}_{p_{\mathcal{T},1}}$$

JET TAGGING

Boosted top/W jets identified with the ParticleNet discriminators

- Calibration performed in semileptonic tt events (tag & probe)
- ▶ 3 jet types: top-matched, W-matched, non-matched
- ▶ 2D $(m_{SD}^{jet}$, jet p_T) templates derived for each:
 - ▶ jet type ▶ WP of the tagger ▶ Pass/Fail the selected WP

Efficiency in Data: Simultaneous fit of all jet types, for both pass/fail events

Pass, TvsQCD, 2018, misID=1%

- $ightharpoonup SF_i = \frac{\epsilon_{Data,i}}{\epsilon_{MC,i}}$, i = top, W, non-matched
- ▶ SF_i free parameters, $\epsilon_{MC,i}$ contant
- ► Number of pass/fail events from each jet-type category in data determined by the SF_i $(\epsilon_{Data,i} = \frac{P_i}{P_i + F_i})$
- Scale factors expressed vs jet p_T
- Presentation in JME

Boosted top jets t^{bst} identification with ParticleNet_TvsQCD

Designed decorrelated tagger (DDT)

A 3D map of the tagger's score for a fixed mID rate vs $p_{\rm T}$ and $\rho=\ln(m_{SD}^2/p_T^2)$

- ► Calculated with simulation QCD multijet events
- ▶ For each (p_T, ρ) bin: estimate the WP that corresponds to 5% mID rate: X(5%)
- ► Transformed score: $X(DDT) = X_{raw} X(5\%) < p_t$, ρ dependent
- ▶ Selection requirement X(DDT) > 0

BACKGROUND

Main background:

- ▶ tt̄ (merged-t, merged-W, non-merged)
- QCD multijet
- other (minor)
- ightharpoonup 2D (m_{SD}^t, m_{tb}) templates derived from MC simulation
- ightharpoonup Signal extraction: Signal, background simultaneous fit of $(m_{ exttt{SD}}^t, m_{ exttt{tb}})$

Summary

SUMMARY

Search for $H^\pm\!\!\to tb$ in fully hadronic final state presented with 2018 UL Data

New with respect to the previous results:

- Resolved Analysis:
 - ► Top tagging: custom mass-decorrelated DNN (almost published!)
 - ightharpoonup Event categorization based on the number of medium tagged t^{res}
 - ▶ Very good data-driven QCD background prediction
 - ► Mass parameterized DNN score used as a signal discriminant
 - ▶ Preliminary expected limits using 2018 data with statistical uncertainties only
- Boosted Analysis:
 - boosted top indentification with ParticleNet (mva-based)
 - ▶ New category with 1 boosted and 1 resolved top
 - ▶ Designed decorrelated top tagger to eliminate mass sculpting effects

FUTURE WORK

- Resolved Analysis:
 - ► Incorporate the systematic uncertainties < IN PROGRESS
 - ► Final touches on the parameterized DNN IN PROGRESS
- ► Boosted Analysis:
 - ► ParticleNet W/t re-calibration (L.Paizanos) < IN PROGRESS
 - ► Study the merged-W category < IN PROGRESS
 - \blacktriangleright Categorization based on the top tagging rate and N_{bjets}^{extra} IN PROGRESS
 - Extract QCD and tt templates for the fit IN PROGRESS
 - ▶ Produce first limits with simultaneous 2D-fit in (m_{SD}^{J}, m_{tb}) plane
 - Address systematic uncertainties
- Finalize and release documentation
- ► Complete the analysis with entire Run II (target Moriond23)

BACKUP

Resolved CADI: HIG-18-015

- ► Resolved t (t^{res}) identification: custom top tagger (BDT)
- ▶ Selected events contain \geq 7 jets, \geq 3 b-tagged, 2 t^{res}
- ▶ H[±]mass reconstruction (m_{bt}) : leading p_T t^{res} + leading p_T b jet
- ► Main background:
 - ► Misid. B: From data using CRs (ABCD method)
 - Genuine B: from simulation
- $ightharpoonup m_{bt}$ is used to extract the signal in the presence of the SM background.

Boosted

Events are split in four main categories

t1b

- Boosted t/W identification:
 - ▶ Based on m_{SD} , τ_N , $N_{b \text{ subjets}}$
- Further categorization according to:
 - $N_b \in [=1, =2, \geq 3]$
 - $N_i^{extra} \in [< 3, \ge 3]$
 - $m_{th} \in [below, in, above]$ of FWHM of signal
- Main background

QCD: from data using CRs (inverted τ_N), sidebands with $m_{\rm tb} \in [\text{below}, \text{above}])$

 $t\bar{t}$: from sim., normalized in CR with 1 ℓ

 H_T is used to extract the signal from SM background inside the m_{bt} window.

PREVIOUS RESULTS review

Upper limits on $\sigma_{\operatorname{H}^{\pm}t(b)} \times \mathcal{B}(\operatorname{H}^{\pm} \to \operatorname{tb})$

- Resolved and Boosted overlayed limits
- ► No excess above the estimated background
- Interpretation in hMSSM: max. $\tan \beta = 0.88$ excluded for $m_{\rm u}\pm 0.20$ -0.55 TeV

- Boosted analysis categories
- ► Most sensitive category is *t*1*b*
- Least sensitive category is Wbj

Correlation of the variables that define the ABCD method

 $ightharpoonup t_{H^{\pm}}^{res}$ mva in m (t_{assoc}^{res}) regions

- No correlation between SR and SB
- ► Syst unc account for differences related to the SB selection

Estimated QCD background affected by:

1 Sideband definition: t_{assoc}^{res} mass

Sideband definition: $t_{\mu\pm}^{res}$ MVA

Subtracted background

Binning of the t_{assoc}^{res} p_{T}

Estimated QCD background affected by:

1 Sideband definition: t_{assoc}^{res} mass

Sideband definition: $t_{\mu\pm}^{res}$ MVA

Subtracted background

Binning of the t_{assoc}^{res} p_{T}

Fitted ratio to quantify the variation

- Flat variation
- ► For each source:
 - ► Fitting the DNN score for each mass hypothesis (17 distributions)
 - Final value: distribution that gives the minimum χ^2
 - ▶ The maximum variation is applied
- ► All sources measured independently

