# Al 2002 Artificial Intelligence

- We can bias Uniform-cost search to find the shortest path to the goal.
- In fact, we are interested in by using a **heuristic** function h(n) which is an estimate of the distance from a state to the goal.
- It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost to get from the node to the goal:

$$f(n) = g(n) + h(n)$$

# **Optimality Principle**

# Dynamic Programming Optimality Principle

Given that path length is additive, the shortest path from S to G via a state X is made up of the shortest path from S to X and the shortest path from X to G.

Only need to keep the shortest path, discard all other paths.

Once we expand path to state X, we do not need to expand any other path to state X.

# A\* Search without Expanded List

#### (without Expanded List)

- ☐ Pick best (by path length + heuristic value) element of Q
- Add path extensions to Q

|   | Q                           |
|---|-----------------------------|
| 1 | (90 S)                      |
| 2 | (101 A S) <u>(3 B S)</u>    |
| 3 | (94 C B S) (101 A S)        |
| 4 | (101 A S) (104 G C B S)     |
| 5 | (92 C A S) (104 G C B S)    |
| 6 | (102 G C A S) (104 G C B S) |



- **☐** Blue Color represents added paths
- ☐ <u>Underline</u> paths are selected for extension

# A\* Search with Expanded List

#### (with strict Expanded List)

- Pick best (by path length + heuristic value) element of Q
- Add path extensions to Q

|   | Q                                   | Expanded             |
|---|-------------------------------------|----------------------|
| 1 | (90 S)                              | S                    |
| 2 | (101 A S) <u>(3 B S)</u>            | S, B                 |
| 3 | (94 C B S) (101 A S)                | S, B, C              |
| 4 | (101 A S) (104 G C B S)             | S, B, C, A           |
| 5 | (104 G C B S) <del>(92 C A S)</del> | S, B, C, A, <b>G</b> |



- Blue Color represents added paths
- Underline paths are selected for extension.

But the shortest path to goal is **G,C,A,S** and the cost is 102.

#### (with strict Expanded List)

- ☐ Pick best (by path length + heuristic value) element of Q
- ☐ Add path extensions to Q

$$h(S) - h(A) \le c(S, a, A)$$
$$90 - 100 \le 1$$
$$-10 \le 1$$

$$h(B) - h(C) \le c(S, a, A)$$
$$1 - 90 \le 1$$
$$-90 \le 1$$



$$h(S) - h(B) \leq c(S, B)$$

$$90 - 88 \leq 2$$

$$h(A) - h(C) \le c(A, C)$$

$$100 - 90 \le 1$$

$$10 \le 1$$

$$h(A) - h(C) \leq c(A, C)$$

$$100 - 99 \leq 1$$



Heuristic Values

A=100 C=90 S=90

B=1 G=0

$$h(n) - h(n') \le c(n, a, n')$$
  
$$h(n) \le c(n, a, n') + h(n')$$

#### (with strict Expanded List)

- Pick best (by path length + heuristic value) element of Q
- Add path extensions to Q

|   | Q                                   | Expanded      |
|---|-------------------------------------|---------------|
| 1 | (90 S)                              | S             |
| 2 | (101 A S) <u>(3 B S)</u>            | S, B          |
| 3 | (94 C B S) (101 A S)                | S, B, C       |
| 4 | (101 A S) (104 G C B S)             | S, B, C, A    |
| 5 | (104 G C B S) <del>(92 C A S)</del> | G, S, B, C, A |

- **☐** Blue Color represents added paths
- Underline paths are selected for extension.



$$h(S) - h(B) \leq c(S, B)$$

$$90 - 88 \leq 2$$



#### **Heuristic Values**

$$h(A) - h(C) \le c(A, C)$$

$$100 - 90 \le 1$$

$$10 \le 1$$

$$h(A) - h(C) \leq c(A, C)$$

$$100 - 99 \leq 1$$

#### (with strict Expanded List)

- Pick best (by path length + heuristic value) element of Q
- ☐ Add path extensions to Q
- Heuristic is admissible and consistent

|   | Q                         | Expanded             |
|---|---------------------------|----------------------|
| 1 | (90 S)                    | S                    |
| 2 | (101 A S) <u>(90 B S)</u> | S, B                 |
| 3 | (103 C B S) (101 A S)     | S, B, A              |
| 4 | (101 C A S) (103 C B S)   | S, B, A, C,          |
| 5 | (102 G C A S)             | S, B, A, C, <b>G</b> |



- **☐** Blue Color represents added paths
- ☐ <u>Underline</u> paths are selected for extension

# **A\* Search with Pathmax**

$$h(n) - h(n') \le c(n, a, n')$$
  
$$h(n) \le c(n, a, n') + h(n')$$

#### (with pathmax and Expanded List)

- Pick best (path length + heuristic value) element of Q
- ☐ Add path extensions to Q
- Heuristic is admissible but not consistent

|   | Q                  | Expanded   |
|---|--------------------|------------|
| 1 | (90 S)             | [S, 90]    |
| 2 | (101 A S) (90 B S) | [B, 90], S |
|   |                    |            |
|   |                    |            |
|   |                    |            |
|   |                    |            |

Pathmax changes f value from 3 to 90



$$h(S) - h(B) \le c(S, a, B)$$
$$90 - 1 \le 2$$
$$89 \le 1$$



Heuristic Values

$$h(n) - h(n') \le c(n, a, n')$$
  
$$h(n) \le c(n, a, n') + h(n')$$

$$h(B) - h(C) \le c(B, a, C)$$

$$88 - 90 \le 2$$

$$-2 \le 2$$

#### (with pathmax and Expanded List)

- Pick best (path length + heuristic value) element of Q
- Add path extensions to Q
- Heuristic is admissible but not consistent

|   | Q                    | Expanded           |
|---|----------------------|--------------------|
| 1 | (90 S)               | [S, 90]            |
| 2 | (101 A S) (90 B S)   | [B, 90], S         |
| 3 | (94 C B S) (101 A S) | [C, 94], B, S      |
|   |                      |                    |
|   |                      |                    |
|   |                      |                    |
|   | Pathmax changes f    | value from 3 to 90 |

Heuristic Values
A=100 C=90 S=90
B=1 G=0
B=88

$$h(n) - h(n') \le c(n, a, n')$$
  
$$h(n) \le c(n, a, n') + h(n')$$

$$h(C) - h(G) \le c(B, a, C)$$
  
 $90 - 0 \le 100$   
 $90 \le 100$ 

#### (with pathmax and Expanded List)

- Pick best (by path length + heuristic value) element of Q
- Add path extensions to Q
- ☐ Heuristic is admissible but not consistent

|                                      | Q                       | Expanded       |  |
|--------------------------------------|-------------------------|----------------|--|
| 1                                    | (90 S)                  | [S, 90]        |  |
| 2                                    | (101 A S) (90 B S)      | [B, 90], S     |  |
| 3                                    | (94 C B S) (101 A S)    | [C, 94], B, S  |  |
| 4                                    | (101 A S) (104 G C B S) | [A, 101], B, S |  |
|                                      |                         |                |  |
|                                      |                         |                |  |
| Pathmay changes fivalue from 3 to 90 |                         |                |  |

Heuristic Values
A=100 C=90 S=90
B=1 G=0

B=88

16

$$h(n) - h(n') \le c(n, a, n')$$
  
$$h(n) \le c(n, a, n') + h(n')$$

$$h(A) - h(C) \le c(B, a, C)$$
$$100 - 90 \le 1$$
$$10 \le 1$$

#### (with pathmax and Expanded List)

- ☐ Pick best (path length + heuristic value) element of Q
- Add path extensions to Q
- Heuristic is admissible but not consistent

|   |     | Q                         | Expanded             |   |
|---|-----|---------------------------|----------------------|---|
|   | 1   | (90 S)                    | [S, 90]              |   |
| 8 | 2   | (101 A S) (90 B S)        | [B, 90], S           | ( |
|   | 3   | (94 C B S) (101 A S)      | [C, 94], B, S        |   |
|   | 4   | (101 A S) (104 G C B S)   | [A, 101], B, S       |   |
|   | 5 ( | (101 C A S) (104 G C B S) | [C, 101], A, B, S    |   |
|   |     |                           |                      |   |
|   |     |                           | company and a second |   |



C=99

G=0

17

Pathmax changes f value from 3 to 90

Pathmax changes f value from 92 to 101, node is added to Q even though C is on expanded list (and C is removed from expanded).

B=1

**B=88** 

#### (with pathmax and Expanded List)

- ☐ Pick best (by path length + heuristic value) element of Q
- ☐ Add path extensions to Q
- ☐ Heuristic is admissible but not consistent

|     | Q                           | Expanded           |
|-----|-----------------------------|--------------------|
| 1   | (90 S)                      | [S, 90]            |
| 2   | (101 A S) (90 B S)          | [B, 90], S         |
| 3   | (94 C B S) (101 A S)        | [C, 94], B, S      |
| 4   | (101 A S) (104 G C B S)     | [A, 101], B, S     |
| 5 ( | (101 C A S) (104 G C B S)   | [C, 101], A, B, S  |
| 6   | (102 G C A S) (104 G C B S) | [G, 0], A, B, S, C |



A=100 C=90 S=90 B=1 C=99 G=0 B=88

Pathmax changes f value from 3 to 90

Pathmax changes f value from 92 to 101, node is added to Q even though C is on expanded list (and C is removed from expanded).

#### (with pathmax and expanded List)

- In step 2, when we generate a path to B, we need to modify the value of h(B) drastically,
  - The estimate at S is 90 and the edge length to B is 2, then the estimate at B is:

$$h(S) - h(B) \leq c(S, B)$$
  
$$90 - ? \leq 2$$

So, the lowest consistent value for  $\boldsymbol{h}(\boldsymbol{B})$  is 88, and  $\boldsymbol{f}(\boldsymbol{B})$  becomes,

$$f(B) = h(B) + c(S, B)$$
  
= 88 + 2  
= 90 (not 3).

- Complete: Yes
  - A\* is complete and optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for GRAPH-SEARCH).
- ▶ Optimal: Yes, A\* is optimally efficient for any given consistent heuristic.
- Time: Exponential
  - The complexity results depend very strongly on the assumptions made about the state space.
  - The complexity of A\* often makes it impractical to insist on finding an optimal solution.
- Space: Keeps all nodes in memory,
  - A\* usually runs out of space long before it runs out of time.

- For problems with <u>constant step costs</u>, the growth in run time as a function of the optimal solution depth *d* is analyzed in terms of the **absolute error** or the **relative error** of the heuristic.
- The <u>absolute error</u> is defined as

$$\Delta \equiv h^* - h$$

where  $h^*$  is the actual cost of getting from the root to the goal

The <u>relative error</u> is defined as

$$\varepsilon \equiv (h^* - h)/h^*$$

The 8-puzzle problem with single goal:

The time complexity of A\* is exponential in the maximum absolute error, that is,

$$O(b^{\Delta})$$

For constant step costs, we can write this as

$$O(b^{\varepsilon d})$$

where d is the solution depth.

# Memory-bounded Heuristic Search ... (RBFS)

## Recursive Best-First Search (RBFS)

- Recursive Best-First Search (RBFS) is a simple recursive algorithm that attempts to mimic the operation of standard best-first search and A\* search,
  - but using only linear space
- It uses the f\_limit variable to keep track of the f\_value of the best alternative path.
- If the <u>current node exceeds this limit</u>, the recursion unwinds back to the alternative path.
  - As the recursion unwinds, RBFS replaces the f\_value of each node along the path with the best f\_value of its children.



A simplified road map of part of Romania.

#### Values of $h_{SLD}$ —straight-line distances to Bucharest

| Arad             | 366 | Mehadia        | 241 |
|------------------|-----|----------------|-----|
| <b>Bucharest</b> | 0   | Neamt          | 234 |
| Craiova          | 160 | Oradea         | 380 |
| Drobeta          | 242 | Pitesti        | 100 |
| Eforie           | 161 | Rimnicu Vilcea | 193 |
| Fagaras          | 176 | Sibiu          | 253 |
| Giurgiu          | 77  | Timisoara      | 329 |
| Hirsova          | 151 | Urziceni       | 80  |
| Iasi             | 226 | Vaslui         | 199 |
| Lugoj            | 244 | Zerind         | 374 |

| Arad      | 366 | Mehadia        | 241 |
|-----------|-----|----------------|-----|
| Bucharest | 0   | Neamt          | 234 |
| Craiova   | 160 | Oradea         | 380 |
| Drobeta   | 242 | Pitesti        | 100 |
| Eforie    | 161 | Rimnicu Vilcea | 193 |
| Fagaras   | 176 | Sibiu          | 253 |
| Giurgiu   | 77  | Timisoara      | 329 |
| Hirsova   | 151 | Urziceni       | 80  |
| Iasi      | 226 | Vaslui         | 199 |
| Lugoj     | 244 | Zerind         | 374 |

The  $f_{limit}$  value for each recursive call is shown on top of each current node, and every node is labeled with its  $f_{cost}$ .



| Arad      | 366 | Mehadia        | 241 |
|-----------|-----|----------------|-----|
| Bucharest | 0   | Neamt          | 234 |
| Craiova   | 160 | Oradea         | 380 |
| Drobeta   | 242 | Pitesti        | 100 |
| Eforie    | 161 | Rimnicu Vilcea | 193 |
| Fagaras   | 176 | Sibiu          | 253 |
| Giurgiu   | 77  | Timisoara      | 329 |
| Hirsova   | 151 | Urziceni       | 80  |
| Iasi      | 226 | Vaslui         | 199 |
| Lugoj     | 244 | Zerind         | 374 |



| Arad      | 366 | Mehadia        | 241 |
|-----------|-----|----------------|-----|
| Bucharest | 0   | Neamt          | 234 |
| Craiova   | 160 | Oradea         | 380 |
| Drobeta   | 242 | Pitesti        | 100 |
| Eforie    | 161 | Rimnicu Vilcea | 193 |
| Fagaras   | 176 | Sibiu          | 253 |
| Giurgiu   | 77  | Timisoara      | 329 |
| Hirsova   | 151 | Urziceni       | 80  |
| Iasi      | 226 | Vaslui         | 199 |
| Lugoj     | 244 | Zerind         | 374 |



# Recursive Best-first Search (RBFS)

- Like A\* tree search, RBFS is an optimal algorithm if the heuristic function h(n) is admissible.
- Its space complexity is linear in the depth of the deepest optimal solution,
- Its time complexity is rather difficult to characterize: it depends both on
  - The accuracy of the heuristic function and
  - How often the best path changes as nodes are expanded.

# **Reading Material**

- Artificial Intelligence, A Modern Approach Stuart J. Russell and Peter Norvig
  - Chapter 3.