Question	Scheme	Marks
number		
6 (a)	$y = x^{2} \sqrt{(2x-3)} \Rightarrow \frac{dy}{dx} = x^{2} \times (2x-3)^{-\frac{1}{2}} + (2x-3)^{\frac{1}{2}} \times 2x$ $\frac{dy}{dx} = \frac{5x^{2} - 6x}{\sqrt{(2x-3)}} = \frac{x(5x-6)}{\sqrt{(2x-3)}} * \text{ cso}$	M1A1 dM1A1 cso (4)
(b) (c)	$x = 2 \Rightarrow \frac{dy}{dx} = \frac{2(10-6)}{1} = 8$ Gradient of normal $= -\frac{1}{8}$ $y = 2^2 \sqrt{(2 \times 2 - 3)} = '4'$ $(y-4) = '-\frac{1}{8}'(x-2)$ $x+8y-34=0$	B1 (1) B1ft B1 M1A1ft A1 (5) [10]

Addit	Additional Notes			
Part	Mark	Guidance		
(a)	M1	An attempt to differentiate each term and to use product rule. Minimally acceptable attempt for the award of this mark is given below:		
		$\frac{dy}{dx} = lx\sqrt{2x - 3} + x^{2}k(2x - 3)^{-\frac{1}{2}}$		
	A1	Correct unsimplified $\frac{dy}{dx} = x^2 \times (2x-3)^{-\frac{1}{2}} + (2x-3)^{\frac{1}{2}} \times 2x$		
	dM1	For an attempt to use a common denominator to simplify their $\frac{dy}{dx}$		
		Minimally acceptable attempt; $\frac{lx\sqrt{2x-3} \times \sqrt{2x-3} + x^2k}{m(2x-3)^{\frac{1}{2}}}$ where k, l and		
		are constants which must be consistent from their $\frac{dy}{dx}$. Do not accept		
		incorrect work here. This is an A mark in Epen2		
	A1	For the correct expression as shown in the question. cso		
		Note: This is a show question – every step must be correct for the award of this mark.		
(b)	B1	For $\frac{dy}{dx} = 8$		
(c)	B1ft	For gradient of normal $=-\frac{1}{8}$ (Follow through their answer to part (b)		
	B1	For $y = 4$		
	M1	Uses either the formula correctly with their values of y and their gradient		
		of the normal (their gradient of the normal cannot be their $\frac{dy}{dx}$)		
		or uses $y = mx + c$ with their values for y and m.		
		If they use $y = mx + c$ award this mark when they find a value for c.		
	A1	For a correct equation in any form with the correct values		
	A 1	For the correct equation in the specified form.		
		Accept any form with integer coefficients with all terms on one side;		
		• $x+8y-34=0$, $8y+x-34=0$		
		• $34-x-8y=0$, $34-8y-x=0$		