#### ASSIGNMENT -2 Python Programming

# Question-1:

### 1. Importing Required Package

#### **Solution:**

import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt %matplotlib inline

# $Question \hbox{-} 2:$

1. Loading the Dataset Solution

÷

df = pd.read\_csv("/content/Churn\_Modelling.csv")
df

#### **Output:**

| 1    | RowNumber | CustomerId | Surname   | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited |
|------|-----------|------------|-----------|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|----------------|-----------------|--------|
| 0    | 1         | 15634602   | Hargrave  | 619         | France    | Female | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | 1      |
| 1    | 2         | 15647311   | Hill      | 608         | Spain     | Female | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       | 0      |
| 2    | 3         | 15619304   | Onio      | 502         | France    | Female | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | 1      |
| 3    | 4         | 15701354   | Boni      | 699         | France    | Female | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | 0      |
| 4    | 5         | 15737888   | Mitchell  | 850         | Spain     | Female | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        | 0      |
| ***  | ***       | ***        |           | ***         | ***       |        | *** |        |           |               | ***       | ***            | ***             | ***    |
| 9995 | 9996      | 15606229   | Obljiaku  | 771         | France    | Male   | 39  | 5      | 0.00      | 2             | 1         | 0              | 96270.64        | 0      |
| 9996 | 9997      | 15569892   | Johnstone | 516         | France    | Male   | 35  | 10     | 57369.61  | 1             | 1         | 1              | 101699.77       | 0      |
| 9997 | 9998      | 15584532   | Liu       | 709         | France    | Female | 36  | 7      | 0.00      | 1             | 0         | 1              | 42085.58        | 1      |
| 9998 | 9999      | 15682355   | Sabbatini | 772         | Germany   | Male   | 42  | 3      | 75075.31  | 2             | 1         | 0              | 92888.52        | 1      |
| 9999 | 10000     | 15628319   | Walker    | 792         | France    | Female | 28  | 4      | 130142.79 | 1             | 1         | 0              | 38190.78        | 0      |

# 3. Visualizations Question-3:

### 3.1 Univariate Analysis

**Solution:** 

sns.displot(df.Tenure)

#### **Output:**



# 3.2 Bi-Variate Analysis

#### **Solution:**

df.plot.line()

### **Output:**



# 3.3 Multi - Variate Analysis

#### **Solution:**

sns.lmplot("Age","NumOfProducts",df,hue="NumOfProducts", fit\_reg=False);

### **Output:**



#### 4. Perform descriptive statistics on the dataset.

# Question-4:

#### **Solution:**

df.describe()

#### **Output:**



### **5. Handle the Missing values.**

## Question-5:

#### **Solution:**

data = pd.read\_csv("Churn\_Modelling.csv")
pd.isnull(data["Gender"])

#### **Output:**

```
C+ 0
           False
           False
           False
           False
    9995
           False
    9996
           False
    9997
           False
    9998
           False
    9999
           False
    Name: Gender, Length: 10000, dtype: bool
```

# Question-6:

1. Find the outliers and replace the outliers. Solution:

df["Tenure"] = np.where(df["Tenure"] > 10, np.median,df["Tenure"]) df["Tenure"]

#### **Output:**

```
D* 0 2 1 1 2 8 3 1 4 2 9995 5 9996 10 9997 7 9998 3 9999 4 Length: 18080, dtype: object
```

# Question-7:

1. Check for Categorical columns and perform encoding. Solution:

pd.get\_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"] ).head()

#### **Output:**

|   | RowNumber | CustomerId | Surname  | CreditScore | Geography | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember |     | Gender_78 |
|---|-----------|------------|----------|-------------|-----------|--------|-----------|---------------|-----------|----------------|-----|-----------|
| 0 | 1         | 15634602   | Hargrave | 619         | France    | 2      | 0.00      | 1             | 1         | 1              | 444 | 0         |
| 1 | 2         | 15647311   | Hill     | 608         | Spain     | 1      | 83807.86  | 1             | 0         | 1              |     | 0         |
| 2 | 3         | 15619304   | Onio     | 502         | France    | 8      | 159660.80 | 3             | 1         | 0              |     | 0         |
| 3 | 4         | 15701354   | Boni     | 699         | France    | 1      | 0.00      | 2             | 0         | 0              |     | 0         |
| 4 | 5         | 15737888   | Mitchell | 850         | Spain     | 2      | 125510.82 | 1             | 1         | 1              |     | 0         |

#### **Output:**



# Question-8:

1. Split the data into dependent and independent variables 8.1 Split the data into Independent variables.

**Solution:** 

#### **Output:**

```
[1 15634602 'Hargrave' ... 1 1 1]
[2 15647311 'Hill' ... 1 0 1]
[3 15619304 'Onio' ... 3 1 0]
...
[9998 15584532 'Liu' ... 1 0 1]
[9999 15682355 'Sabbatini' ... 2 1 0]
[10000 15628319 'Walker' ... 1 1 0]]
```

### 8.2 Split the data into Dependent variables.

#### **Solution:**

A.

#### **Output:**

```
[101...110]
```

# Question-9:

# 1. Scale the independent variables Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler scaler =
MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df)
```

#### **Output:**

```
Spain
                         15647311 Hill 608
15619304 Onio 502
15701354 Boni 699
15737888 Mitchell 850
            0.0001
                                                                                       Female
                                                                                                    41
            0.0002
                                                                           France
                                                                                       Female
                                                                                                   39
43
            0.0004
                                                                            Spain Female
                        15606229 Obijiaku 771
15569892 Johnstone 516
15584532 Liu 709
15682355 Sabbatini 772
15628319 Walker 792
         0.9996
                                                                           France
         0.9997
0.9998
0.9999
                                                                           France
                                                                           France Female
Germany Male
                                                                          Germany
                        15628319
      Tenure Balance NumOfProducts HasCrCard IsActiveMember \
          2 0.00
1 83807.86
8 159660.80
                       0.00
           2 125510.82
        5 0.00
10 57369.61
7 0.00
3 75075.31
4 130142.79
9999
      EstimatedSalary Exited
101348.88 1
                112542.58
               113931.57
93826.63
                 79084.10
                96270.64
                101699.77
                 92888.52
38190.78
9999
[10000 rows x 14 columns]
```

# Question-10:

1. Split the data into training and testing Solution:

#### **Output:**



# **TEAM LEADER: SUPRAJA B**

# **TEAM MEMBERS:**

- 1. PRAVINA A
- 2. PRIYADHARSHINI B
- 3. UMA MAHESHWARI

**TEAM ID: PNT2022TMID25406** 

**TEAM SIZE**: 4

TEAM MENTOR NAME: DR. SRIVENKATESWARAN C