Análise Matemática

Séries Capítulo 5

Licenciatura em Engenharia Informática / ISEP (2024/2025)

Conteúdo

- 🚺 Séries Numéricas
 - Definição
 - Convergência de séries numéricas
 - Séries Geométricas
 - Séries de Riemann
 - Séries Alternadas
- Séries Funcionais
 - Definição
 - Séries de Potências: Definição
 - Séries de Potências: Convergência
- Representação de Funções em Séries de Potências
 - Séries de Taylor e de MacLaurin
 - Polinómios de Taylor e de MacLaurin

- Uma coleção de objectos ou acontecimentos está em sucessão, se estiver ordenada de acordo com um determinado critério.
- Uma sucessão de números reais é uma sequência de números escritos numa determinada ordem

$$a_1, a_2, a_3, a_4, ..., a_n, ...; n \in \mathbb{N}.$$

Note-se:

- O número a₁ denomina-se primeiro termo, a₂ denomina-se segundo termo, e em geral, a_n denomina-se o n-ésimo termo, ou termo de ordem n.
- Trata-se de sequências infinitas, logo para cada a_n existe sempre um sucessor a_{n+1} .
- Cada termo a_n da sucessão é obtido por um determinado critério dependente de n.

Por exemplo,

A sequência 2, 4, 6, 8, ... é uma sucessão tal que:

- o primeiro termo é $a_1 = 2$ obtido para n = 1;
- o segundo termo é $a_2 = 4$ obtido para n = 2;
- o terceiro termo é $a_3 = 6$ obtido para n = 3;
- qual será o termo de ordem n = 100?, ou seja $a_{100} =$?.

O critério aplicado para obter todos os termos da sucessão é

$$a_n = 2n$$

logo $a_{100} = 2 \times 100 = 200$.

Sucessão: Definição

Uma sucessão é uma sequência ordenadas de números reais, ou seja, é uma função real de variável natural:

$$a_n: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto a_n$

em que a_n é o termo de ordem n.

- Esta relação indica que a cada valor natural n, corresponde um número real an que ocupa a posição n na sequência.
- A expressão que representa o termo genérico a_n, e que nos permite calcular qualquer termo da sucessão, sabendo a sua ordem, chama-se termo geral.
- A sucessão $\{a_1, a_2, a_3, a_4...\}$ pode representar-se por $\{a_n\}$.

Séries Numéricas: Definição

Seja dada uma sucessão numérica,

$$\{u_n\}=\{u_1,u_2,u_3,u_4...\}.$$

A expressão

$$u_1 + u_2 + u_3 + u_4 + ... + u_n + ... = \sum_{n=1}^{\infty} u_n,$$

chama-se série numérica, sendo:

- os números $u_1, u_2, u_3, ..., u_n, ...$ os termos da série;
- n o índice de cada termo na série;
- *u_n* chama-se termo geral da série.

Assim: Uma série (infinita) de números reais é a soma infinita dos termos de uma sucessão de números reais.

Será que faz sentido falar na soma de uma sucessão infinita de termos?

Por exemplo, consideremos a série,

$$1+2+3+4+5+6+7+...+n+...=\sum_{n=1}^{\infty}n.$$

Verifica-se:

- À medida que o n aumenta, os termos da série tornam-se cada vez maiores e assim,
- a soma torna-se infinitamente grande.

Neste caso dizemos que a série é divergente, ou seja não tem soma.

Será que faz sentido falar na soma de uma sucessão infinita de termos?

Por exemplo, consideremos a série,

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n}.$$

Verifica-se:

- À medida que o *n* aumenta, os termos da série tornam-se cada vez menores e assim,
- a soma converge para um determinado valor (a partir de uma certa ordem, os termos da série são "quase nulos").

Neste caso dizemos que a série é convergente, ou seja tem soma. Para este exemplo a soma é 1.

A saber:

- Existem séries numéricas convergentes e séries numéricas divergentes.
- Existem alguns critérios que nos permitem concluir sobre a convergência/divergência de séries numéricas.
- Vamos estudar algumas séries particulares:
 - geométricas,
 - de Riemann,
 - alternadas,

nomeadamente os critérios que nos permitem concluir sobre a convergência/divergência de cada uma delas.

Seja $\sum_{n=1}^{\infty} u_n$ uma série e S_n a sucessão das somas parciais.

- Diz-se que a série $\sum_{n=1}^{\infty} u_n$ é *convergente*, se a sucessão S_n for convergente;
- Se a sucessão S_n for divergente, a série $\sum_{n=1}^{\infty} u_n$ diz-se *divergente*.

Soma de séries numéricas convergentes

No caso de a série $\sum_{n=1}^{\infty} u_n$ ser convergente, existe um valor real S, tal que.

$$\lim_{n\to+\infty} S_n = \lim_{n\to+\infty} \sum_{n=1}^{\infty} u_n = S.$$

O limite *S* designa-se por *soma da série* e escreve-se,

$$\lim_{n\to+\infty}\sum_{n=1}^\infty u_n=S.$$

Algumas Propriedades das Séries Numéricas

- Se as séries $\sum_{n=1}^{\infty} u_n$ e $\sum_{n=1}^{\infty} v_n$ são convergentes com somas S_1 e S_2 , respetivamente:
 - \rightarrow A série $\sum_{n=1}^{\infty} (u_n + v_n)$ é convergente e tem soma $S_1 + S_2$;
 - \rightarrow A série $\sum_{n=1}^{\infty} (u_n v_n)$ é convergente e tem soma $S_1 S_2$;
 - \rightarrow A série $\sum_{n=1}^{\infty} ku_n$ é convergente e tem soma kS_1 .
- Se a série $\sum_{n=1}^{\infty} u_n$ for convergente e a série $\sum_{n=1}^{\infty} v_n$ for divergente então a série $\sum_{n=1}^{\infty} (u_n + v_n)$ é divergente.

• Condição necessária de convergência: Se a série numérica

$$\sum_{n=1}^{\infty} u_n$$
 é uma série convergente então $\lim_{n \to +\infty} u_n = 0$.

Sendo uma condição apenas necessária de convergência, este resultado é particularmente útil para decidir que uma série é divergente.

• Critério de Divergência: Se $\lim_{n\to\infty} u_n \neq 0$ então $\sum_{n=1}^{\infty} u_n$ é divergente.

- 1º Critério de Comparação: Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de termos não negativos. Suponhamos que, a partir de certa ordem, $a_n \leq b_n$. Tem-se:
 - ightarrow Se $\sum_{n=1}^{\infty}b_n$ converge então $\sum_{n=1}^{\infty}a_n$ também é convergente e $\sum_{n=1}^{\infty}a_n\leq\sum_{n=1}^{\infty}b_n$.
 - \rightarrow Se $\sum_{n=1}^{\infty} a_n$ diverge então $\sum_{n=1}^{\infty} b_n$ também é divergente.

- 2º Critério de Comparação: Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de termos não negativos. Se a partir de certa ordem, $b_n > 0$ e $\lim_{n \to +\infty} \frac{a_n}{b_n} = L \in \mathbb{R}^+$, então, se $L \neq 0, +\infty$ as séries são da mesma natureza.
- Critério da Razão: Seja $\sum_{n=1}^{\infty} u_n$ uma série de termos não nulos e suponha-se que,

$$\rho=\lim_{n\to\infty}\frac{u_{n+1}}{u_n}.$$

- Se ρ < 1, a série é convergente;
- Se $\rho > 1$, a série é divergente;
- Se $\rho = 1$, o critério é inconclusivo.

Série Geométrica: Definição

A série $\sum_{n=1}^{\infty} u_n$ é geométrica se se trata de uma série do tipo:

$$\sum_{n=1}^{\infty} a r^{n-1},$$

em que:

- $a \in o$ primeiro termo da série ($a \neq 0$);
- r é a razão da série, $r = \frac{u_{n+1}}{u_n}$, $n \in \mathbb{N}$.

Ou seja, uma série geométrica é aquela em que o quociente entre cada termo e o anterior é uma constante.

Convergência da Série Geométrica

A série geométrica,

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots$$

é convergente se |r| < 1 e a sua soma é

$$S = \sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, |r| < 1.$$

Se $|r| \ge 1$, a série geométrica é divergente.

Exercício 1: Prove que a série $\sum_{n=1}^{\infty} \frac{1}{3^n}$ é geométrica e indique o primeiro termo e a razão.

Exercício 2: Prove que a série $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ é geométrica e indique o primeiro termo e a razão.

Exercício 3: Estude a convergência da série geométrica $\sum_{n=1}^{\infty} \frac{2^{2n+1}}{5^{n-2}}$ e, se que possível, calcule a sua soma.

Série de Riemann

Trata-se de uma série do tipo:

$$\sum_{n=1}^{\infty}\frac{1}{n^{p}},p\in\mathbb{R}.$$

Esta série é:

- convergente se e só se p > 1;
- divergente se e só se $p \le 1$.

O caso particular de p = 1, a série toma o nome de série harmónica (divergente).

Exercício 4: Caracterize a série $\sum_{n=1}^{\infty} \left(\frac{5}{n^2} + \frac{1}{\sqrt[3]{n}} \right)$.

Exercício 5: Prove que as séries $\sum_{n=1}^{\infty} 5$, $\sum_{n=1}^{\infty} (-1)^n n$ e $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+1}$ são divergentes.

Exercício 6: Estude a convergência da série $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$.

Exercício 7: Estude a convergência da série $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$.

Exercício 8: Estude a convergência da série $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$.

Exercício 9: Estude a convergência da série $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}.$

Séries Alternadas

As séries cujos termos consecutivos têm sinais contrários são designadas por séries alternadas, podendo assumir uma das seguintes formas:

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n \qquad \text{OU} \qquad \sum_{n=1}^{\infty} (-1)^n u_n.$$

Observação: Na primeira forma, o 1º termo da série é positivo, enquanto que na segunda é negativo.

Série dos Módulos de uma Série Alternada: Definição

Dada uma série alternada $\sum_{n=1}^{\infty} (-1)^n u_n$, a série dos módulos é dada por

$$\sum_{n=1}^{\infty} |(-1)^n u_n| = \sum_{n=1}^{\infty} |u_n|.$$

Estudar a Convergência de uma Série Alternada

- Se a série dos módulos for convergente, a série alternada diz-se absolutamente convergente (terminando o estudo da convergência).
- Se a série dos módulos for divergente deverá aplicar-se o Critério de Leibniz.

Série Alternada: Critério de Leibniz

- $\frac{u_{n+1}}{u_n}$ < 1 (u_n é sucessão decrescente);
- $\bullet \lim_{n\to\infty} u_n = 0.$
- Caso as duas condições do critério de Leibniz sejam satisfeitas, a série alternada diz-se simplesmente convergente.
- Caso uma das condições do critério de Leibniz falhar, a série alternada diz-se divergente.

Exercício 10: Verifique a convergência da série $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

Exercício 11: Verifique a convergência da série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.

Exercício 12: Considere as seguintes sucessões: $u_n = \frac{5^{-n}}{3^{-2n-1}}$, $v_n = (-1)^n w_n$ e $w_n = \frac{1}{n^{2\alpha-1}}$.

- **12.1** Verifique se a série $\sum_{n=1}^{\infty} u_n$ é convergente e calcule, se possível, a sua soma.
- **12.2** Determine α para que a serie alternada $\sum_{n=1}^{\infty} v_n$ seja absolutamente convergente.
- **12.3** Seja $\alpha = 2$, analise o comportamento da série $\sum_{n=1}^{\infty} (w_n + 2)$, justifique convenientemente.

- **Exercício 13:** Considere a seguinte sucessão: $u_n = \frac{3^{n+1}}{(-5)^{2n-1}}$, $v_n = \sqrt[6]{n-5}$ e $w_n = k$; $k \in \mathbb{R} \setminus \{0\}$.
- **13.1** Verifique se a série geométrica $\sum_{n=1}^{\infty} u_n$ é convergente e calcule, se possível, a sua soma. Justifique.
- **13.2** Analise o comportamento da série $\sum_{n=1}^{\infty} (u_n + w_n)$, justificando convenientemente a sua resposta.
- **13.3** Prove que a que a série $\sum_{n=1}^{\infty} (-1)^{n+1} v_n$ é simplesmente convergente. Justifique convenientemente a sua resposta.

Exercício 14: Considere as sucessões: $u_n = \frac{3^{1-2n}}{2^{-3n-2}}$ e $v_n = \frac{1}{\sqrt[3]{n^{1-3\alpha}}}$, em que $\alpha \in \mathbb{R}$, $n \in \mathbb{N}$.

- **14.1** Estude a convergência da série geométrica $\sum_{n=1}^{\infty} u_n$ e calcule, se possível, a sua soma. Justifique.
- **14.2** Determine α , de modo que a série $\sum_{n=1}^{\infty} v_n$, seja divergente. Justifique convenientemente a sua resposta.
- **14.3** Para $\alpha = 0$, prove que a série $\sum_{n=1}^{\infty} (-1)^n v_n$ é simplesmente convergente. Justifique convenientemente a sua resposta.

Série de Funções: Definição

Uma série de funções é uma soma infinita de termos, dependentes de uma variável, cujo termo geral é representado por $u_n(x)$:

$$u_1(x) + u_2(x) + u_3(x) + u_4(x) + ... = \sum_{n=1}^{\infty} u_n(x).$$

Por atribuição de valores à variável x, obtém-se diferentes séries numéricas, as quais, naturalmente podem convergir ou divergir.

Por exemplo

$$\sum_{n=1}^{\infty} x^{n-1} = 1 + x + x^2 + x^3 + \dots$$

é uma série geométrica de razão r=x. Se |x|<1, a série é convergente e se $|x|\geq 1$, a série é divergente.

Série de Potências: Definição

Designa-se por série de potências de x-a, centrado em a a série de funções do tipo:

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \dots + c_n(x-a)^n + \dots$$

- $c_0, c_1, c_2, c_3, ..., c_n, ... \in \mathbb{R}$ são os coeficientes da série;
- $a \in \mathbb{R}$ é o centro de convergência da série.

Interessa-nos estudar a convergência deste tipo de séries.

Nota: Relativamente às séries numéricas, a diferença é que as séries de potências podem convergir para determinados valores de x e divergir para outros.

Critério da Razão ou de D'Alembert para convergência absoluta

Seja $\sum_{n=1}^{\infty} u_n$ uma série de termos não nulos e suponha-se que

$$\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=\rho.$$

- Se ρ < 1, a série é absolutamente convergente.
- Se $\rho > 1$, a série é divergente.
- Se $\rho = 1$, o critério é inconclusivo.

Convergência de uma série de potências

Dada a série de potências $\sum_{n=0}^{\infty} c_n(x-a)^n$ verifica-se um dos casos:

- (1) A série é convergente apenas para x = a;
- (2) A série é convergente para todo o valor de x;
- (3) Existe um número positiva R tal que a série converge se |x a| < R e diverge se |x a| > R.
- O número R em (3) chama-se raio de convergência;
- Por convenção, tem-se R=0 no caso (1) e $R=\infty$ no caso (2);
- O intervalo de convergência (I.C.), de uma série de potências é o intervalo de todos os valores de x para os quais a série converge.
 - No caso (1), I.C. = {a};
 - No caso (2), *I.C.* = $]-\infty, +\infty[;$
 - No caso (3), I.C. =]a R, a + R[. Dependendo das séries podemos ter as seguintes situações I.C. =]a R, a + R[ou I.C. =]a R, a + R[ou I.C. = [a R, a + R]].

- a → centro de convergência;
- R → raio de convergência;
- $|x a| < R \Rightarrow I.C. =]a R, a + R[\mapsto intervalo de convergência.$

Exercício 15: Indique o centro, o raio e o intervalo de convergência das séries seguintes:

15.1:
$$\sum_{n=1}^{\infty} n! x^n$$
.

15.2:
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}.$$

15.3:
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{2^{2n} (n!)^2}.$$

15.4:
$$\sum_{n=1}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$$

15.5:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^{3n}} (x+4)^n.$$

- Nesta secção vamos aprender como representar certo tipo de funções como uma série de potências.
- Podemos perguntar o porquê de guerermos representar uma função conhecida como uma soma infinita de termos...
- Estas aproximações são úteis para, por exemplo:

- Integrar funções para as quais não se conhece uma primitiva;
- Resolver equações diferenciais;
- Aproximar funções por polinómios, muitas vezes útil em programação.

Por exemplo, tem-se:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^n, \quad |x| < 1.$$

- A igualdade entre a função e a série de potência só é válida para os valores para os quais a série é convergente, ou seja, só é válida no intervalo de convergência da respetiva série.
- Neste caso, a série $\sum_{n=0}^{\infty} x^n$ corresponde a uma série geométrica de razão r=x, que sabemos que só é convergente se |x|<1.
- A igualdade entre a função e a série obtém-se se somarmos todos os termos da série (infinitos termos). Conseguimos aproximações da função quando somamos só alguns termos, calculando somas parciais da série.

Na figura está representada a função assim como a representação de algumas somas parciais da respetiva série:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^n, \quad |x| < 1.$$

Na figura S_2 representa a soma com 2 termos, S_5 representa a soma com 5 termos e assim sucessivamente. Notar que a aproximação só é válida no intervalo]-1,1[.

Como determinar a representação em série de potências de funções?

Suponhamos que uma dada função f é representada por um desenvolvimento em série de potências, em torno a x = a:

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + ...; |x-a| < R$$

Nesta expressão, uma vez que a é conhecido, só os coeficientes

$$\textbf{\textit{c}}_0,\textbf{\textit{c}}_1,\textbf{\textit{c}}_2,\textbf{\textit{c}}_3,...$$

são desconhecidos.

Vejamos de seguida um método que nos permite determinar estes coeficientes, desde que a função tenha derivadas de qualquer ordem.

Cálculo dos coeficientes da série de potências

Coeficiente c_0 : $f(a) = c_0$.

Coeficiente c_1 :

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + 5c_5(x-a)^4 + ...$$

 $f'(a) = c_1 \implies c_1 = f'(a).$

Coeficiente c₂:

$$f''(x) = 2c_2 + 3 \times 2c_3(x-a) + 4 \times 3c_4(x-a)^2 + 5 \times 4c_5(x-a)^3 + ...$$

 $f''(a) = 2c_2 \implies c_2 = \frac{f''(a)}{2}.$

Coeficiente c₃:

$$f'''(x) = 3 \times 2c_3 + 4 \times 3 \times 2c_4(x-a) + 5 \times 4 \times 3c_5(x-a)^2 + \dots$$

$$f'''(a) = 3 \times 2c_3 \implies c_3 = \frac{f'''(a)}{3 \times 2} = \frac{f'''(a)}{3!}.$$

Cálculo dos coeficientes da série de potências

Coeficiente c₄:

$$f^{(4)}(x) = 4 \times 3 \times 2c_4 + 5 \times 4 \times 3 \times 2c_5(x-a) + \dots$$

$$f^{(4)}(a) = 4 \times 3 \times 2c_4 \implies c_4 = \frac{f^{(4)}(a)}{4 \times 3 \times 2} = \frac{f^{(4)}(a)}{4!}.$$

Generalizando:

$$c_n=\frac{f^{(n)}(a)}{n!}.$$

Teorema

Se uma função *f* é representada por uma série de potências,

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n; |x-a| < R,$$

então os coeficientes da série são definidos por

$$c_n=\frac{f^{(n)}(a)}{n!},\ \forall n\in\mathbb{N}_0.$$

Substituindo a expressão de c_n na série de potências, vem

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots$

A série definida por:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + ...$

chama-se Série de Taylor da função f em torno a x = a.

No caso particular em que a = 0, a série definida por:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

= $f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + ...$

chama-se Série de MacLaurin da função f.

Exercício 16: Encontre a série de MacLaurin da função $f(x) = e^x$ e o seu raio de convergência.

Exercício 17: Encontre a série de Taylor em torno a a = 2 da função $f(x) = \ln x$ e o seu raio de convergência.

Exercício 18: Determine a série de Maclaurin representativa da seguinte função, indicando o intervalo de convergência $f(x) = \frac{1}{1-x}$.

Exercício 19: Determine a série de Taylor representativa da função $f(x) = \ln(1 + 2x)$, a = 1, indicando o intervalo de convergência.

Polinónios de Taylor e de MacLaurin

Seja *f* uma função que possui derivadas até à ordem *n* no ponto *a*:

$$f'(a), f''(a), ..., f^{(n)}(a).$$

Define-se Polinómio de Taylor de grau n da função f no ponto x = a:

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

- Note-se que o polinómio de Taylor não é mais do que a soma parcial de ordem n + 1 da série de Taylor da função.
- Se o ponto em torno do qual se efetua o desenvolvimento é a = 0, dá-se-lhe o nome de Polinómio de MacLaurin.

Assim, os polinómios de Taylor representam aproximações da função f. À medida que se aumenta o grau do polinómio de Taylor melhor é essa aproximação em torno do ponto. Podemos escrever:

$$f(x) \approx P_n(x)$$
.

Define-se Resto do Polinómio de Taylor de grau n da função f no ponto x = a e representa-se por $R_n(x)$, como sendo a diferença entre f(x) e $P_n(x)$, para cada valor de x, isto é

$$R_n(x) = f(x) - P_n(x).$$

Teorema

Se $f(x) = P_n(x) + R_n(x)$, sendo $P_n(x)$ o polinómio de Taylor de ordem n de f em a e

$$\lim_{n\to\infty}R_n(x)=0,$$

para |x-a| < R, então f é igual à soma dos termos da série de Taylor, no intervalo |x-a| < R.

Exercício 20: Sendo dada a função $f(x) = \frac{1}{(2x+1)^2}$, representável por um desenvolvimento em série de MacLaurin, cujo intervalo de convergência é]-1/2,1/2[, determine:

- O polinómio de MacLaurin de ordem n = 3.
- Um valor aproximado de $f(\frac{1}{4})$.
- Com base no polinómio de MacLaurin associado a f é possível obter um valor aproximado de f(2) = 1/25? Justifique.