45011 Algoritmer og datastrukturer

Løsningsforslag eksamen 17. August 1996

Oppgave 1

a)

```
T(n) \ge 2T(n-2) + cn^2 \rightarrow Eksponensiell vekst!
 \ge \dots \ge c2^n (Ref. Fibonacci-tallet)
```

b)

"Gå over" tabellen med sort ved innsetting når nedbryting er stoppet på ca. 10 elementer. Dette fordi sortering ved innsetting er raskere enn quicksort ved sortering av små tallmengder.

c)

Asyklisk graf (DAG): Snu fortegn, bruk DAG-Shortest Path. Bellman-Ford kan brukes i tilfeller der ingen sykel med negativ samlet lengde finnes etter fortegns-snuing.

d)

Max-flyt algoritmen brukes $|V|^2$ ganger for hvert par (u,v) med kapasitet 1 på alle kanter. Snittet I den kjøring som viser **minst** flyt (mellom u^* og v^*) peker ut "flaskehalsen". Flytens **verdi** vil være antall kanter som må fjernes.

e)

Dette er å finne evt. Skjæringspunkt mellom to strengt monotone sekvenser. Kun ett skjæringspunkt c(k) = k er mulig. Binær-søk gir løsningen. (Sjekk ende-verdier først).

Oppgave 2

NB! "en-til-alle" er forutsatt, "alle til alle" ikke spurt etter.

```
Shortest-path(G,w,s);
Begin
B:=True;
If G er DAG then DAG-Shortest-Path(G,w,s)
Else
    if alle G's kantlengder er positive then Dijkstra(G,w,s)
    else
        B := Bellman-Ford(G,w,s);
    If B=false then skriv('Ingen endelig verdi på korteste vei');
End;
```

Oppgave 3

Noder = "tilstander", kanter har lengde = 1. Det blir (kan bli) et kortest-vei-problem $S \rightarrow T$.

b)

$$|V| = 9!$$

$$\sum_{v \in V} \deg ree(v) = 2|E|$$

$$|E| = (2 \cdot (4 \cdot 2 + 4 \cdot 3 + 1 \cdot 4)/9 \cdot 9!)/2$$

Forklaring:

2: to-veis kanter

(4.2 + 4.3 + 1.4)/9: 9 -posisjoner, hver med variabelt antall naboer (2,3 eller 4).

9! : Antall noder

/2: fra |E| (Denne formelen regner med urettet graf).

Altså : |E| = 2,667.9!

Oppgave 4

a)

S = Størrelsen på den **største** subgraf g i G der noder i g **ikke** har forbindelser innbyrdes. Problemet er det "inverse" av maks-klikk-problemet. La manglende kant bety kant og omvendt.

b)

Se oppgave 1a). Eksponensiell vekst.

c)

Dersom "kant" betyr "kan **ikke** være i samme gruppe", finner S ut det **maksimale** antall noder i G som kan være i samme gruppe. Dersom problemet kan løses i P-tid, kan også maks-klikk løses i P-tid. Problemet er NP-komplett!