Universidade do Estado do Amazonas Escola Superior de Tecnologia

Data: 9 de Maio de 2019 Professora: Elloá B. Guedes

Disciplina: Fundamentos Teóricos da Computação

Projeto Prático III Simulando Máquinas de Turing

1 Apresentação

Entende-se por $M\'{a}quina$ de Turing Universal uma M\'{a}quina de Turing capaz de simular uma M\'{a}quina de Turing arbitr\'{a}ria sobre uma entrada ω qualquer. Para tanto, a M\'{a}quina Universal recebe como entrada em sua fita a descrição da M\'{a}quina a ser simulada e a respectiva entrada. Este é o princípio teórico que inspirou a Arquitetura de Von Neumann e que usamos até hoje!

Neste projeto prático, vamos usar o nosso computador como uma Máquina de Turing Universal, executando Máquinas de Turing sobre entradas! No nosso caso, vamos nos restringir à simulação de Máquinas de Turing decisoras, para evitar o caso de ter que lidar com Máquinas de Turing que entram em *loop infinito* sobre certas entradas.

Em nosso projeto, as Máquinas de Turing a serem simuladas são determinísticas cujo cabeçote pode mover-se para direita (D), esquerda (E) ou permanecer parado (P). Estas máquinas serão fornecidas sob a forma de dicionários contendo a função de transição (delta), o estado de aceitação (aceita e o estado inicial (inicial). Todos os estados são numerados em ordem crescente a partir do zero. Seu objetivo então será simular esta máquina e determinar a saída produzida considerando certas entradas. Para fins de simplificação, será considerado o alfabeto de entrada $\Sigma = \{0,1\}$ e o alfabeto da fita $\Gamma = \Sigma \cup \{x,\#,b\}$, em que b representa o branco na fita.

As entradas para este projeto são as seguintes:

- 1. Dicionário. Contém as informações essenciais da Máquina de Turing a ser simulada:
 - inicial: mapeado para um inteiro correspondendo ao índice do estado inicial;
 - aceita: mapeado para um inteiro correspondendo ao índice do estado de aceitação;
 - delta: mapeada para uma lista de tuplas, em que cada tupla corresponde a uma instrução que a Máquina de Turing é capaz de realizar. Cada tupla é da seguinte forma: (x,y,u,v,w), em que:
 - i. x é um inteiro, correspondendo ao estado atual da Máquina;
 - ii. y é um inteiro, correspondendo ao novo estado que a Máquina irá assumir;
 - iii. u é um símbolo de Γ , correspondendo ao conteúdo da fita na qual o cabeçote está posicionado;
 - iv. v é um símbolo de Γ , correspondendo ao novo conteúdo que deve ser escrito na fita na posição que o cabeçote está posicionado;

- v. $w \in \{D, E, P\}$ corresponde à movimentação do cabeçote.
- 2. **Inteiro**. Representa a quantidade de palavras que serão fornecidas como entrada, uma de cada vez;
- 3. Palavras. Palavras de comprimento maior igual a 1, em que apenas uma palavra é disposta por linha. Cada palavra deverá ser computada, ter estado final da fita impresso na tela e o estado final "ACEITA" ou "REJEITA" deverá ser impressa. Não havendo transição a partir de um determinado estado e do conteúdo da fita onde o cabeçote está posicionado, deve-se rejeitar a entrada.

2 Exemplos de Entradas e Saídas

Entrada	Saída
{ 'inicial': 0, 'aceita': 1, '	O11 ACEITA
delta: [(0,0,'0','1','D'),(0,0,'1','0','D'),	01010 ACEITA
,(0,2,'b','b','E'), (2,1,'0','0','P'),	111111111 ACEITA
(2,1,'1','1','P')] }	
3	
100	
10101	
00000000	

3 Observações Importantes

- Lembre-se, a entrada de dados é feita via input e a saída via print;
- Atenha-se exatamente ao padrão de entrada e saída fornecidos nos exemplos. Qualquer mensagem adicional na entrada ou na saída de dados pode culminar em incorretude;
- Para facilitar a leitura da entrada, é permitido utilizar o pacote ast e a função literal_eval;
- Em caso de plágio, todos os envolvidos receberão nota zero!

4 Prazos Importantes

- **Início**. 09/05/2019 as 13h (horário do servidor)
- Encerramento. 20/05/2019 às 23h55min (horário do servidor)