

reward

MAL2 – Spring 2025

AGE

Learning in Dynamic Environments

What is it?

An agent
makes observations
and takes actions
within an environment
and in return receives rewards

What is it?

agent ∴ observations ∴ actions ∴ environment ∴ rewards

Classes of Learning Problems

Supervised Learning

Data: (x, y)

 \boldsymbol{x} is data, \boldsymbol{y} is label

Goal: Learn function to map

$$x \rightarrow y$$

Apple example:

This thing is an apple.

Classes of Learning Problems

Supervised Learning

Data: (x, y)

 \boldsymbol{x} is data, \boldsymbol{y} is label

Goal: Learn function to map

 $x \rightarrow y$

Apple example:

This thing is an apple.

Unsupervised Learning

Data: x

 \boldsymbol{x} is data, no labels!

Goal: Learn underlying

structure

Apple example:

This thing is like the other thing

Classes of Learning Problems

Supervised Learning

Data: (x, y)

 \boldsymbol{x} is data, \boldsymbol{y} is label

Goal: Learn function to map

$$x \rightarrow y$$

Apple example:

This thing is an apple.

Unsupervised Learning

Data: x

 \boldsymbol{x} is data, no labels!

Goal: Learn underlying structure

Apple example:

This thing is like the other thing

Reinforcement Learning

Data: State-action pairs

Goal: Maximize future rewards over many time steps

Apple example:

Eat this thing because it keeps the doctor away.

RL: Our focus today

Reinforcement Learning

Data: State-action pairs

Goal: Maximize future rewards

over many time steps

Apple example:

Eat this thing because it keeps the doctor away.

Agent: takes actions

Environment: the world in which the agent exists and operate

Action: a move the agent can make in the environment.

Action space A: the set of possible actions an agent can make in the environment

Observations: of the environment after taking actions.

State: a situation which the agent perceives.

Reward: feedback that measures the success or failure of the agent's action.

 γ : discount factor; $0 < \gamma < 1$

Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q\left(\mathbf{s_t}, \mathbf{a_t}\right) = \mathbb{E}\left[R_t \mid s_t, a_t\right]$$

The Q-function captures the **expected total future reward** an agent in state, s, can receive by executing a certain action, a

How to take actions given a Q-function?

$$Q\left(oldsymbol{s_t}, oldsymbol{a_t}
ight) = \mathbb{E}\left[R_t \mid s_t, a_t
ight]$$
 (State, action)

Ultimately, the agent needs a policy $\pi(s)$, to infer the best action to take at its state, s

How to take actions given a Q-function?

$$Q\left(oldsymbol{s_t}, oldsymbol{a_t}
ight) = \mathbb{E}\left[R_t \mid s_t, a_t
ight]$$
 (State, action)

Ultimately, the agent needs a policy $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes future rewards

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Shark Tank: The Game

Shark Tank: The Game

We need a **policy**, π, that informs us which **action**, a, to take in a given **state**, s.

T:

Shark Tank: The Game

$$Q(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \middle| s_0 = s, a_0 = a\right]$$

$$Q(s,a) = \sum_{t=0}^{\infty} \gamma^t r_{t+1}$$

$$\begin{array}{c} \text{Say } \gamma = 0.95 \\ \text{Q}(1,1) = 0.95^{\circ} \cdot 1 = 1 \\ \text{Q}(0,0) = 0.95^{\circ} \cdot (-1) = -1 \\ \text{Q}(0,1) = 0.95^{\circ} \cdot 0 + 0.95^{-1} \cdot 1 = 0.95 \\ \text{Q}(1,0) = 0.95^{\circ} \cdot 0 + 0.95^{-1} \cdot 0 + 0.95^{-1} = 0.9025 \\ \text{Q}(1,0) = 0.95^{\circ} \cdot 0 + 0.95^{-1} \cdot 0 + 0.95^{-1} = 0.9025 \end{array}$$

policy transform a to s
$$a = TT(s) = argmax Q(sa)$$

$$T(1) = argmax [0.9025, 1]$$

$$T(1) = argmax [0.9025, 1]$$

$$= 1$$

There is a smarter way

$$Q(s,a) = r + \gamma \max_{a'} Q\left(s',a'\right) \qquad \text{and update according to this}$$

In practice, the above method will diverge, so we usually introduce a learning rate to slow things down:

Q(S₁a) =
$$(1-\alpha)$$
Q(S₁a) + α (r+ γ maxQ(S',a'))

Quickly becomes near impossible

Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions?

$$\mathcal{L} = \mathbb{E}[\|(\underbrace{\left(r + \gamma \max_{a'} Q\left(s', a'\right)\right)}^{\text{target}} - \underbrace{Q(s, a)}^{\text{predicted}}\|^2]$$

Q-Loss

Deep Q Network Summary

Use NN to learn Q -function and then use to infer the optimal policy, $\pi(s)$

Two Families of RL Algorithms

Value Learning

Find Q(s, a)

$$a = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Policy Learning

Find $\pi(s)$

Sample $a \backsim \pi(s)$

Two Families of RL Algorithms

Value Learning

Find Q(s, a)

$$a = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Policy Learning

Find $\pi(s)$

Sample $a \backsim \pi(s)$

Downsides of Q-Learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

Flexibility:

 Policy is deterministically computed from the Q function by maximizing the reward → cannot learn stochastic policies

To address these, consider a new class of RL training algorithms:

Policy gradient methods

Deep Q Network Summary

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

Discrete vs Continuous Action Spaces

Discrete action space: which direction should I move?

Discrete vs Continuous Action Spaces

Discrete action space: which direction should I move?

Continuous action space: which direction should I move?

Policy Gradient: Enables modeling of continuous action space

Training Policy Gradients: Case Study

Reinforcement Learning Loop

Training Policy Gradients: Case Study

Reinforcement Learning Loop

Self-Driving Cars

Agent: Vehicle

State: camera, lidar, etc.

Action: steering wheel angle

Reward: distance traveled

Training Algorithm	l I	
	1 1	
	1 1	
		1

Training Algorithm

1. Initialize the agent

- 1. Initialize the agent
- 2. Run a policy until termination

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrese probability of actions that resulted in low reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- Decrese probability of actions that resulted in low reward
- Increase probability of actions that resulted in high reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrese probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrese probability of actions that resulted in low reward
- Increase probability of actions that resulted in high reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrese probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

Training Algorithm

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrese probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

log-likelihood of action

$$loss = -\log P(a_t \mid s_t) R_t$$

reward

Gradient descent update:

$$w' = w - \nabla \log P$$

$$w' = w + \nabla \log P(a_t \mid s_t) R_t$$
Policy gradient!

Reinforcement Learning in Real Life

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrese probability of actions that resulted in low reward
- Increase probability of actions that resulted in high reward

Reinforcement Learning: Summary

Fondations

- Agents acting in environment
- State-action pairs

 maximize future
 rewards
- Discouting

Q-Learning

- Q function: expected total reward given s, a
- Policy determined by selecting action that maximizes Q function

Policy Gradients

- Learn and optimize the policy directly
- Applicable to continuous action spaces

