Package 'rKIN'

October 3, 2023

Type Package

Title (Kernel) Isotope Niche Estimation

Version 1.0.2

Date 2023-10-02

URL https://github.com/salbeke/rKIN

BugReports https://github.com/salbeke/rKIN/issues

Depends R (>= 3.0), ks, sf

Imports ggplot2, MASS, RColorBrewer, randomcoloR, shades, dplyr

Maintainer Shannon E Albeke <salbeke@uwyo.edu>

Description Applies methods used to estimate animal homerange, but instead of geospatial coordinates, we use isotopic coordinates. The estimation methods include: 1) 2-dimensional bivariate normal kernel utilization density estimator, 2) bivariate normal ellipse estimator, and 3) minimum convex polygon estimator, all applied to stable isotope data. Additionally, functions to determine niche area, polygon overlap between groups and levels (confidence contours) and plotting capabilities.

License GPL (>= 3)

LazyData TRUE

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author Shannon E Albeke [aut, cre]

Repository CRAN

Date/Publication 2023-10-02 22:20:02 UTC

bw_hbcv

R topics documented:

bw_hbcv							 											2
bw_hlscv							 											3
bw_hnm							 											4
bw_hns							 											4
bw_hpi							 											5
bw_hscv							 											6
bw_hucv							 											6
bw_ref							 											7
calcOverlap							 											8
createSPDF							 											8
estEllipse							 											9
estKIN							 											10
estMCP							 											11
genCircle							 											12
getArea							 											13
getColors							 											14
get Kernel Threshold							 											14
plotKIN							 											15
rKIN							 											16
rodents			•		•	•	 			•		•						16
																		18

bw_hbcv

Index

Biased cross-validation bandwidth matrix selector for bivariate data.

Description

A simple wrapper for the ks::Hbcv function.

Usage

 $bw_hbcv(x)$

Arguments

Χ

2d matrix of data values.

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

bw_hlscv 3

Examples

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hbcv(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

bw_hlscv

Least-squares cross-validation bandwidth matrix selector for multivariate data.

Description

A simple wrapper for the ks::Hlscv function.

Usage

```
bw_hlscv(x)
```

Arguments

Х

2d matrix of data values.

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hlscv(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

4 bw_hns

bw_hnm

Normal mixture bandwidth.

Description

A simple wrapper for the ks::Hnm function.

Usage

```
bw_hnm(x)
```

Arguments

Х

2d matrix of data values.

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hnm(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

bw_hns

Normal scale bandwidth using ks::Hns function.

Description

A simple wrapper for the ks::Hns function.

Usage

```
bw_hns(x)
```

Arguments

Χ

2d matrix of data values.

bw_hpi 5

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hns(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

bw_hpi

Default Plug-in bandwidth selector using ks::Hpi function.

Description

A simple wrapper for the ks::Hpi function.

Usage

```
bw_hpi(x)
```

Arguments

Х

2d matrix of data values.

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hpi(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

6 bw_hucv

bw_hscv

Smoothed cross-validation bandwidth selector.

Description

A simple wrapper for the ks::Hscv function.

Usage

```
bw_hscv(x)
```

Arguments

Χ

2d matrix of data values.

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hscv(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

bw_hucv

Least-squares cross-validation bandwidth matrix selector for multivariate data.

Description

A simple wrapper for the ks::Hucv function.

Usage

```
bw_hucv(x)
```

Arguments

Χ

2d matrix of data values.

bw_ref 7

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hucv(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

bw_ref

Normal Reference Distribution.

Description

A simple wrapper for the MASS::bandwidth.nrd function. Divides values by 4 to match the scale of ks methods

Usage

```
bw_ref(x)
```

Arguments

Х

2d matrix of data values.

Value

A numeric vector of estimated x and y bandwidths. Must subset your data if you wish to obtain group specific bandwidths.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

```
data("rodents")
# Subset the data for a single species
spec1<- rodents[rodents$Species == "Species1", ]
# Calculate the bandwidth
bw_hucv(as.matrix(spec1[, c("Ave_C", "Ave_N")]))</pre>
```

8 createSPDF

calcOverlap

Calculate Percent Overlap of Isotopic Niche Space

Description

Calculates the percent of polygon overlap between each group and level.

Usage

```
calcOverlap(estObj)
```

Arguments

est0bj

List object of class estObj containing returned sf data frames from estimating functions estKIN, etc.

Value

A data frame containing the percent of the polygon overlap for each group and level. Rows are the 1st input polygon, columns are the 2nd input, the returned area of overlap is divided by the area of the 1st polygon (row).

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

createSPDF

Internal helper function

Description

Create empty sf data frame with estObj schema

Usage

```
createSPDF()
```

estEllipse 9

Value

An empty sf data frame object matching the expected schema of the estKIN function.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Estimate Bivariate Normal Entipse Isotope Niche	estEllipse	Estimate Bivariate Normal Ellipse Isotope Niche
---	------------	---

Description

Calculates the Bivariate Normal Ellipse Polygon for isotopic values at multiple confidence levels. Returns a list of sf data frames, each list item representing the grouping variable (i.e. species).

Usage

```
estEllipse(data, x, y, group, levels = c(50, 75, 95), smallSamp = FALSE)
```

Arguments

data	data.frame object containing columns of isotopic values and grouping variables
X	character giving the column name of the x coordinates
У	character giving the column name of the y coordinates
group	character giving the column name of the grouping variable (i.e. species)
levels	Numeric vector of desired percent levels (e.g. c(10, 50, 90). Should not be less than 1 or greater than 100)
smallSamp	logical value indicating whether to override minimum number of samples. Currently 10 samples are required.

Value

A list of sf data frames, each list item representing the grouping variable.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

10 estKIN

estKIN

Estimate Kernel Isotope Niche

Description

Calculates the 2D kernel for isotopic values at multiple confidence levels. Returns a list of sf data frames, each list item representing the grouping variable (i.e. species).

Usage

```
estKIN(
    data,
    x,
    y,
    h = "ref",
    hval = NULL,
    group,
    levels = c(50, 75, 95),
    scaler = 10,
    smallSamp = FALSE
)
```

Arguments

data	data.frame object containing columns of isotopic values and grouping variables
X	character giving the column name of the x coordinates
у	character giving the column name of the y coordinates
h	character describing the bandwidth estimator method. Default = "ref". See Details for more information.
hval	numeric vector of length 2 describing the bandwidth in \boldsymbol{x} and \boldsymbol{y} directions. Default = NULL
group	character giving the column name of the grouping variable (i.e. species)
levels	Numeric vector of desired percent levels (e.g. c(10, 50, 90). Should not be less than 1 or greater than 99)
scaler	numeric value to expand the min/max x and y values. This assists with error given smaller sample sizes. Default value = 10
smallSamp	logical value indicating whether to override minimum number of samples. Currently 10 samples are required.

Details

Details For the h argument there are 8 different bandwidth estimation options ("hns", "hpi", "hscv", "hlscv", "hbcv", "hm", "hucv", "ref"). "ref" = The default MASS::kde2d bandwidth method. The remaining options are obtained from the 'ks' package with the default method being "hpi". For all ks package methods, the default values are accepted and only the x and y values are passed to the

estMCP 11

bivariate bandwidth estimating functions. For all bandwidth estimation methods, reducing the data to an individual group will provide the same bandwidths as used during rKIN estimation.

* hpi - Default Plug-in bandwidth selector using ks::Hpi function. Values can be obtained using bw_hpi(). * hns - Normal scale bandwidth using ks::Hns function.Values can be obtained using bw_hns(). * hscv - Smoothed cross-validation bandwidth selector. Values can be obtained using bw_hscv(). * hlscv - Least-squares cross-validation bandwidth matrix selector for multivariate data. Values can be obtained using bw_hlscv(). * hbcv - Biased cross-validation bandwidth matrix selector for bivariate data. Values can be obtained using bw_hbcv(). * hnm - Normal mixture bandwidth. Values can be obtained using bw_hnm(). * hucv - Least-squares cross-validation bandwidth matrix selector for multivariate data. Values can be obtained using bw_hucv(). * ref - Uses MASS::bandwidth.nrd for both x and y separately, dividing values by 4 to match the scale of ks methods. Values can be obtained using bw_ref(). See MASS:kde2d() for details (i.e. the function divides the values by 4).

Value

A class rKIN object containing a list of sf data frames, each list item representing the grouping variable.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

estMCP

Estimate Minimum Convex Polygon (MCP) Isotope Niche

Description

Calculates the Minimum Convex Polygon for isotopic values at multiple confidence levels. Returns a list of sf data frames, each list item representing the grouping variable (i.e. species).

Usage

```
estMCP(data, x, y, group, levels = c(50, 75, 95), smallSamp = FALSE)
```

12 genCircle

Arguments

data	data.frame object containing columns of isotopic values and grouping variables
x	character giving the column name of the x coordinates
У	character giving the column name of the y coordinates
group	character giving the column name of the grouping variable (i.e. species)
levels	Numeric vector of desired percent levels (e.g. c(10, 50, 90). Should not be less than 1 or greater than 100)
smallSamp	logical value indicating whether to override minimum number of samples. Currently 10 samples are required.

Value

A list of sf data frames, each list item representing the grouping variable.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

genCircle

Create a sequence of points on a circle

Description

This is a helper function that creates a sequence of points on a circle of radius r as a resolution determined by n. This function was directly borrowed from SIBER package (Intended for generating various SIBER ellipses). It is not intended for direct calling. NB not an exported function.

Usage

```
genCircle(n = 100, r)
```

Arguments

n the number of points to create around the circle. Defaults to 100.

r the radius of the circle to create.

getArea 13

Value

A 2 x n matrix of x and y coordinates of points on a circle.

getArea

Method to extract Niche Polygon Areas

Description

Extracts the polygon area for an rKIN object for each group and level.

Usage

```
getArea(estObj)
```

Arguments

est0bj

List object created from estKIN, estMCP or estEllipse functions

Value

A data.frame() of polygon areas.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

14 getKernelThreshold

getCo]	Lors

Create a list of colors for plotKIN function

Description

The list of colors were obtained from Colorbrewer2.org using single hue. This is run within the function plotKIN()

Usage

```
getColors(groups, levels, colors = NULL)
```

Arguments

groups	The number of groups within grouping variable (i.e. species)
levels	The number of confidence intervals provided by the user
colors	Character vector of hex codes representing desired colors

Value

A character vector of RGB colors

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

getKernelThreshold	Miscellaneous functions to complete kernel 2D estimates: Get contour
	threshold values

Description

Obtains the quantile threshold levels for a vector of probabilities from a kernel density estimate.

Usage

```
getKernelThreshold(x, levels = c(50, 75, 95))
```

Arguments

X	Numeric vector of probabilities from a kernel density estimate
levels	Numeric vector of desired percent levels (e.g. c(10, 50, 90). Should

Numeric vector of desired percent levels (e.g. c(10, 50, 90). Should not be less

than 1 or greater than 99)

plotKIN 15

Value

A list of threshold values for each percent.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

plotKIN

Plotting function for rKIN polygons

Description

Using ggplot2 methods, simultaneously plot all of the groups and levels of niche space

Usage

```
plotKIN(
   estObj,
   scaler = 1,
   alpha = 0.3,
   title = "",
   xlab = "x",
   ylab = "y",
   xmin = NULL,
   ymin = NULL,
   ymax = NULL,
   colors = NULL
)
```

Arguments

estObj	list object created from estKIN, estMCP or estEllipse functions
scaler	numeric value indicating number of isotopic units to expand the x and y axes of the plot. Default is 1.
alpha	numeric value between 0 and 1, representing the amount of transparency of each polygon. 0 is transparent, 1 is opaque.
title	character string for a plot title.
xlab	character or expression string for the x-axis label.
ylab	character or expression string for the y-axis label.
xmin	default is NULL, numeric value of user specified minimum x axis value
xmax	default is NULL, numeric value of user specified maximum x axis value
ymin	default is NULL, numeric value of user specified minimum y axis value
ymax	default is NULL, numeric value of user specified maximum y axis value
colors	default is NULL, character vector of hex codes representing colors for plot

16 rodents

Value

A plot of all groups and levels.

Author(s)

Shannon E. Albeke, Wyoming Geographic Information Science Center, University of Wyoming

Examples

rKIN

rKIN: A package for computating isotopic niche space

Description

The rKIN This package applies methods used to estimate animal homerange, but instead of geospatial coordinates, we use isotopic coordinates. The estimation methods include: 1) 2-dimensional bivariate normal kernel utilization density estimator with multiple bandwidth estimation methods, 2) bivariate normal ellipse estimator, and 3) minimum convex polygon estimator, all applied to stable isotope data. Additionally, functions to determine niche area, polygon overlap between groups and levels (confidence contours) and plotting capabilities.

rKIN functions

The rKIN functions: estKIN, estEllipse, estMCP, plot.kin, getArea, calcOverlap

rodents

Isotopic data from rodent blood samples.

Description

A dataset containing the individual Species, Habitat sampled, and Percent delta C and N.

Usage

rodents

rodents 17

Format

A data frame with 530 rows and 4 variables:

Species Generic species used as a grouping variable

Habitat Habitat in which the individual was captured

Ave_C Averaged delta 13C present within the blood sample

Ave_N Averaged delta 15N present within the blood sample ...

Source

http://www.uwyo.edu/zoology/people/bendavid.html

Index

```
\ast datasets
    rodents, 16
bw_hbcv, 2
bw_hlscv, 3
bw_hnm, 4
bw_hns, 4
bw_hpi, 5
bw_hscv, 6
bw_hucv, 6
bw_ref, 7
calcOverlap, 8
createSPDF, 8
estEllipse, 9
estKIN, 10
estMCP, 11
genCircle, 12
getArea, 13
getColors, 14
{\tt getKernelThreshold}, {\tt 14}
plotKIN, 15
rKIN, 16
rKIN-package (rKIN), 16
rodents, 16
```