

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 2

Название: Трудоёмкость алгоритмов умножения матриц

Дисциплина: Анализ алгоритмов

Студент	ИУ7-51Б		О.А. Тюрин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Л.Л. Волкова
		(Полпись, дата)	(И.О. Фамилия)

Содержание

\mathbf{B}	Введение 3		
1	Ана	алитическая часть	4
	1.1	Описание алгоритмов	4
		1.1.1 Обычный алгоритм умножения матриц	4
		1.1.2 Алгоритм Винограда	5
		1.1.3 Оптимизированный алгоритм Винограда	5
	Выв	вод	5
2	Кон	нструкторская часть	6
	2.1	Разработка алгоритмов	7
		2.1.1 Схема алгоритмов	7
	Выв	вод	9
3	Tex	кнологическая часть	10
	3.1	Требования к программному обеспечению	10
	3.2	Средства реализации	10
	3.3	Листинг кода	10
		3.3.1 Обычный алгоритм умножения	10
		3.3.2 Алгоритм Винограда	11
		3.3.3 Улучшенный алгоритм Винограда	12
	3.4	Сравнительный анализ обычного и улучшенного Алгоритма Винограда	13
	3.5	Трудоемкость алгоритмов	13
		3.5.1 Классический алгоритм	13
		3.5.2 Алгоритм Винограда	13
		3.5.3 Оптимизированный алгоритм Винограда	14
		3.5.4 Описание тестирования	14
	Выв	вод	15
4	Экс	спериментальная часть	16
	4.1	Сравнительный анализ на основе замеров времени работы алгоритмов	16
За	клю	рчение	18

Введение

Целью данной лабораторной работы является исследование методов умножения матриц, получение практического навыка синтезации алгоритма и рассчёт сложности алгоритмов. Помимо обычного метода будут рассмотрены алгоритм Винограда умножения матриц и оптимизированный алгоритм Винограда умножения матриц.

Применение: умножение матрицы на вектор используется в графике для поворота образа. Задачи для данной ЛР:

- изучение алгоритмов умножения матриц: стандартный и алгоритм Винограда;
- оптимизировать алгоритм Винограда умножения матриц;
- дать теоретическую оценку всем трём алгоритмам;
- релизовать все три алгоритма на одном из языков программирования;
- эксперементально подтвердить различия во временной эффективности всех трёх алгоритмов при помощи разработанного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирущихся размерностях матриц.

1 Аналитическая часть

Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов. Умножение матриц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведением матриц. Матрицы А и В могут быть перемножены, если они **совместимы** в том смысле, что число столбцов матрицы А равно числу строк В.

1.1 Описание алгоритмов

В данном разделе будет описан каждый из исследуемых алгоритмов.

1.1.1 Обычный алгоритм умножения матриц

Пусть даны две прямоугольные матрицы A и B размеров [M*N] и [N*Q] соответственно.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & a_{1q} \\ b_{21} & b_{22} & \dots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & a_{n2} & \dots & a_{nq} \end{pmatrix}$$

В результате произведения матриц A и В получим матрицу C размера [M*Q], в которой:

$$c_{i,j} = \sum_{r=1}^{N} a_{i,r} \cdot b_{r,j}. \tag{1.1}$$

1.1.2 Алгоритм Винограда

Основной целью алгоритма Винограда является сокращение доли умножений в самом затратном участке кода.

Рассмотри два вектора:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \end{pmatrix}$$

$$B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

$$A * B = a_1 * b_1 + a_2 * b_2 + a_3 * b_3 + a_4 * b_4 \tag{1.2}$$

Но в то же время:

$$A * B = (a_1 + b_2) * (a_2 + b_1) + (a_3 + b_4) * (a_4 + b_3) - a_1 * a_2 - a_3 * a_4 - b_1 * b_2 - b_3 * b_4$$
 (1.3)

В данном примере значения b_1*b_2 , b_3*b_4 можно вычислить заранее и использовать при каждом умножении на строку матрицы А. Значения a_1*a_2 , a_3*a_4 также можно вычислить заранее и использовать при каждом умножении на столбец матрицы В.

1.1.3 Оптимизированный алгоритм Винограда

Для оптимизации алгоритма Винограда могут использоваться такие стратегии, как:

- предварительные вычисления повторяющихся одинаковых действий;
- использование более быстрых операций при вычислении (такие, как смещение битов вместо умножения или деления на 2);
- уменьшения количества повторных проверок;
- использование аналогичных конструкций, уменьшающих трудоёмкость операций (к примеру, замена сложения с 1 на инкремент).

Вывод

Было рассмотрено теоретическое описание исследуемых алгоритмов: Обычный алгоритм умноженмя и алгоритм Винограда.

2 Конструкторская часть

Требования к вводу: на вход подаются размерности каждой из матриц и сами матрицы.

Требования к программе:

- корректное умножение двух матриц;
- программа должна корректно обрабатывать ситуацию несовместности двух матриц.

2.1 Разработка алгоритмов

В данном разделе представлены схемы реализуемых алгоритмов.

2.1.1 Схема алгоритмов

На рисунке 1.1 представлена схема алгоритма тривиального умножения матриц.

Рис. 1.1: Схема алгоритма тривиального умножения матриц

На рисунке 1.2 представлена схема алгоритма Винограда.

Рис. 1.2: Схема алгоритма Винограда

На рисунке 1.3 представлена схема улучшенного алгоритма Винограда.

Рис. 1.3: Схема улучшенного алгоритма Винограда

Вывод

В данном разделе были рассмотрены схемы реализуемых алгоритмов.

3 Технологическая часть

В данном разделе будет описана технологическая часть лабораторной работы: требования к ПО, листинг кода, сравнительный анализ всех алгоритмов.

3.1 Требования к программному обеспечению

Входные данные: Размерности двух матриц, сами матрицы.

Выходные данные: результат умножения двух матриц.

Среда выполнения: Windows 10 x64.

3.2 Средства реализации

Для выполнения данной лабораторной работы использовался ЯП Python 3.9.0

3.3 Листинг кода

В данном разделе будет представлен листинг кода разработанных алгоритмов (листинги 3.1 - 3.3).

3.3.1 Обычный алгоритм умножения

Ниже, на листинге 3.1, представлена реализация обычного алгоритма умножения матриц:

Листинг 3.1: Обычный алгоритм умножения матриц

```
1
   def default mult(matrix1, matrix2):
2
        if get columns (matrix1) != get rows (matrix2):
            print('Error')
3
            return
4
5
        result = [[0 for j in range(get rows(matrix1))]
6
7
            for i in range (get columns (matrix 2))
8
       for i in range (len (matrix1)):
9
            for j in range (len (matrix 2 [0])):
10
                for k in range (len (matrix1 [0])):
11
                     result[i][j] += matrix1[i][k] * matrix2[k][j]
12
13
       return result
14
```

3.3.2 Алгоритм Винограда

Ниже, на листинге 3.2, представлена реализация алгоритма Винограда:

Листинг 3.2: Алгоритм Винограда

```
def winograd multiply (matrix1, matrix2):
 1
 2
        if get columns(matrix1) != get rows(matrix2):
             print('Error')
 3
             return
 4
 5
        M = get rows(matrix1)
 6
        N = get columns(matrix1)
 7
        Q = get\_columns(matrix2)
 8
 9
        result = [[0 \text{ for } j \text{ in } range(M)]]
10
11
             for i in range (Q)
12
13
        \text{mulH} = [0 \text{ for } i \text{ in } \text{range}(M)]
        for i in range (M):
14
15
             for j in range (int(N / 2)):
                  mulH[i] += matrix1[i][j * 2] * matrix1[i][j * 2 + 1]
16
17
        mulV = [0 \text{ for } i \text{ in } range(Q)]
18
        for i in range (Q):
19
20
             for j in range (int(N / 2)):
                  \operatorname{mulV}[i] += \operatorname{matrix} 2[j * 2][i] * \operatorname{matrix} 2[j * 2 + 1][i]
21
22
23
        for i in range (M):
24
             for j in range (Q):
25
                  result[i][j] = -mulH[i] - mulV[j]
                  for k in range (int(N / 2)):
26
27
                       result[i][j] += (matrix1[i][2 * k] +
                            matrix2[2 * k + 1][j]) * (matrix1[i][2 * k + 1] +
28
29
                                 matrix2[2 * k][j]
30
        if N \% 2 == 1:
31
32
             for i in range (M):
                  for j in range (Q):
33
                       result[i][j] += matrix1[i][N-1] *
34
                            matrix2[N - 1][j]
35
36
37
        return result
```

3.3.3 Улучшенный алгоритм Винограда

Ниже, на листинге 3.3, представлена реализация улучшенного алгоритма Винограда:

Листинг 3.3: Улучшенный алгоритм Винограда

```
def improved winograd multiply (matrix1, matrix2):
 1
 2
        if get columns(matrix1) != L:
             print('Error')
 3
             return
 4
 5
        M = get rows(matrix1)
 6
        N = get columns(matrix1)
 7
        Q = get columns(matrix2)
 8
 9
        L = get rows(matrix2)
        Lmod2 = L \% 2
10
        Nmod2 = N \% 2
11
12
13
        result = [[0 \text{ for } j \text{ in } range(M)]]
             for i in range (Q)
14
15
16
        \text{mulH} = [0 \text{ for } i \text{ in } \text{range}(M)]
        mulV = [0 \text{ for } i \text{ in } range(Q)]
17
18
        for i in range (M):
19
20
             for j in range (0, N - Nmod 2, 2):
21
                 mulH[i] += matrix1[i][j] * matrix1[i][j + 1]
22
23
        for i in range (Q):
24
             for j in range (0, L - Lmod2, 2):
25
                 \text{mulV}[i] += \text{matrix} 2[j][i] * \text{matrix} 2[j+1][i]
26
27
        for i in range (M):
             for j in range (Q):
28
29
                  buff = -mulH[i] - mulV[j]
30
                  for k in range (0, N-
                      Nmod2, 2):
31
32
                       buff += (matrix1[i][k+1] + matrix2[k][j]) *
33
                                (matrix1[i][k] + matrix2[k + 1][j])
34
                  result[i][j] = buff
35
36
        if Nmod2:
37
             for i in range (M):
38
                  for j in range (Q):
39
                       result[i][j] += matrix1[i][N-1] *
                           matrix2[N-1][j]
40
41
        return result
42
```

3.4 Сравнительный анализ обычного и улучшенного Алгоритма Винограда

Улучшенный вариант алгоритма Винограда отличается от обычного тем, что теперь заранее высчитываются значения, для избавления от деления в цикле. А также инициализируется буфер для накопления результата умножения, который после цикла сбрасывается в ячейку матрицы.

3.5 Трудоемкость алгоритмов

Введем модель трудоемкости для оценки алгоритмов:

- базовые операции стоимостью 1: +, -, *, /, =, ==, <=, >=, !=, +=, [], получение полей класса (в том числе и геттеры);
- оценка трудоемкости цикла: $F_{cycle} = init + N * (statement + iteration + F_{body}) + statement$, где init инициализация цилка, N количество итераций цикла, iteration действие в конце каждой итерации цикла, statement выражение, описывающее условие цикла;
- стоимость условного перехода применим за 0, стоимость вычисления условия остаётся.

3.5.1 Классический алгоритм

Рассмотрим трудоемкость классического алгоритма с матрицами A и B и размерами $m \times n$ и $n \times k$:

$$2 + M(2 + 2 + K(2 + 2 + N(2 + 6 + 2))) = 10MNK + 4MK + 4M + 2.$$

3.5.2 Алгоритм Винограда

Аналогично рассмотрим трудоемкость алгоритма Винограда при тех же матрицах и размерах.

Часть алгоритма	Трудоёмкость
Инициализация mulH и mulV	$2\cdot 3$
Заполнение mulH	$2 + m \cdot (2 + 2 + n/2 \cdot (3 + 6 + 6))$
Заполнение mulV	$2 + k \cdot (2 + 2 + n/2 \cdot (3 + 6 + 6))$
Подсчёт результата	$2 + m \cdot (2 + 2 + k \cdot (2 + 7 + 2 + n/2 \cdot (3 + 23)))$
Условный оператор нечёт. n	2
Для матриц с нечёт n	$2 + m \cdot (2 + 2 + k \cdot (2 + 8 + 5))$

Таблица 1: трудоёмкость алгоритма Винограда

$$f = 13NMK + 7.5NM + 7.5KN + 11KM + 8M + 4K + 14 + \left\{ \begin{array}{l} 0, \text{если m чётное} \\ 15 \cdot K \cdot M + 4 \cdot M + 2, \text{иначе} \end{array} \right.$$

3.5.3 Оптимизированный алгоритм Винограда

Теперь рассмотрим трудоемкость оптимизированого алгоритма Винограда при тех же матрицах и размерах.

Часть алгоритма	Трудоёмкость
Заполнение mulH	$2 + m \cdot (2 + 2 + n/2 \cdot (2 + 5 + 3))$
Заполнение mulV	$2 + k \cdot (2 + 2 + n/2 \cdot (2 + 5 + 3))$
Подсчёт результата	$2 + m \cdot (2 + 2 + k \cdot (2 + 5 + 3 + 2 + n/2 \cdot (2 + 14)))$
Условный оператор нечёт. n	2
Для матриц с нечёт n	$2+2+m\cdot(2+2+k\cdot(2+6+2))$

Таблица 2: трудоёмкость оптимизированного алгоритма Винограда

$$f = 8NMK + 5NM + 5KN + 12KM + 8M + 4K + 18 + \left\{ egin{array}{l} 0,
m e c$$
ли m чётное $10 \cdot K \cdot M + 4 \cdot M + 4,
m u$ наче

3.5.4 Описание тестирования

Были проведены следующие тривиальные тесты:

Листинг 1: Число строк равно числу стобцов

```
A matrix:
1
2
   1 2
   3 4
3
4
   B matrix:
5
6
   5 6
7
   7 8
8
9
   Default multiplication:
10
   19 22
   43 50
11
12
   Winograd:
13
   19 22
14
15
   43 50
16
   Improved Winograd:
17
   19 22
18
19
   43 \ 50
```

Листинг 2: Число строк равно числу стобцов

```
1 A matrix:
2 1 2 3
3 4 5 6
4 7 8 9
5 B matrix:
```

```
1 2 3
7
   4 5 6
8
   7 8 9
9
10
   Default multiplication:
11
   30 36 42
12
   66 81 96
13
14
   102 126 150
15
16
   Winograd:
   30 36 42
17
   66 81 96
18
19
   102 126 150
20
21
   Improved Winograd:
22
   30 36 42
23
   66 81 96
24
   102 126 150
```

Ниже, на листинге 3.4, представлен листинг тестирования корректной работы алгоритмов.

Листинг 3.4: Тестирование корректной работы алгоритмов

```
def matrix test():
1
2
       M = random.randint(1, 30)
       N = random.randint(1, 30)
3
       Q = random.randint(1, 30)
4
5
       matrix1 = [[random.randint(1, 100) for j in range(M)]]
6
7
                            for i in range (N)
       matrix 2 = [[random.randint(1, 100)]]
8
                             for j in range (N) for i in range (Q)
9
10
       res1 = default_mult(matrix1, matrix2)
11
       res2 = winograd multiply (matrix1, matrix2)
12
       res3 = improved winograd multiply (matrix1, matrix2)
13
14
15
       return res1 = res2 = res3
```

Все тесты пройдены успешно.

Вывод

В данном разделе был представлен листинг реализованных алгоритмов, а также описание тестирование корректности их работы.

Экспериментальная часть 4

4.1 Сравнительный анализ на основе замеров времени работы алгоритмов

Эксперименты производятся на квадратных матрицах размером от $100/101 \times 100/101$ до $500/501 \times 500/501$ с шагом 100. Эксперимент для каждой размерности матрицы проводится 10 раз, а итоговое время усредняется. Время работы алгоритмов измеряется в секундах.

Сравнение времени работы алгоритмов при четном размере матрицы

На графике изображены зависимости времени выполнения программы от четного размера входных квадратных матриц:

График 1: Замеры времени работы алгоритмов

Сравнение времени работы алгоритмов при нечетном размере матрицы

На графике изображены зависимости времени выполнения программы от нечетного размера входных квадратных матриц:

График 2: Замеры времени работы алгоритмов

Вывод

По результатам тестирования все рассматриваемые алгоритмы реализованы так, что возвращают одинаковый результат. Самым медленным алгоритмом оказался алгоритм классического умножения матриц, а самым быстрым — оптимизированный алгоритм Винограда.

Заключение

Цель достигнута и все задачи выполнены.

В ходе работы были изучены и реализованы алгоритмы умножения матриц: классический алгоритм, алгоритм Винограда, улучшенный алгоритм Винограда. Была дана теоретическая оценка всех рассматриваемых алгоритмов, было проведено тестирование и выполнено сравнение всех рассматриваемых алгоритмов. В ходе исследования было установлено, что улучшенный алгоритм Винограда является самым быстрым алгоритмом по трудоемкости и времени выполнения среди рассмотренных алгоритмов умножения матриц. Изучены зависимости времени выполнения алгоритмов от размерности матриц.

Список литературы

- [1] Дж. Макконнелл. Анализ алгоритмов. Активный обучающий подход. М.: Техносфера, 2017. 267c
- [2] Кострикин А.И., Манин Ю.И. Линейная алгебра и геометрия. СПб: Лань, 2018. 303 с.
- [3] Официальный сайт Python, документация [электронный ресурс]. Режим доступа: https://docs.python.org/3.9, свободный (Дата обращения: 8.10.20)