вариант	ф. номер	група	поток	курс	специалност
K2.1					
Име:					

Писмен изпит по логическо програмиране 25 януари 2022 год

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали . .
- 2. При параметри ..., предикатът ... генерира ... в ...
- 3. p(...) е истина тогава и само тогава, когато . . . Следното условие е достатъчно, за да няма зацикляне с предиката: .

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нека G = (V, E) е ориентиран граф. За два върха $v,u\in V$ на G казваме, че u е c ссеd на v, ако $(u,v)\in E$ е ребро на G. Ще наричаме графа G k-соворшен, ако за всеки връх $v \in V$ множеството от съседите на v съвпада с множеството от онези върхове $u \in V$, за които има път (незадължително прост) от v до u с дължина точно k. Представяне на G наричаме такъв списък Edges от двуелементни списъци, че за всяко ребро $(u,v)\in E$ на G списъкът [u,v] е елемент на Edges и множеството E и списъкът Edges имат един и същ брой елементи. Да се дефинира на пролог двуместен предикат рс Gr(Edges, K), който по дадени представяне Edges на ориентиран граф G без изолирани върхове и естествено число K>1 разпознава дали G е K-съвършен.

Зад. 2. Pазdеляне на краен списък $L=[a_1,a_2,\ldots,a_n]$ наричаме такава двойка (L_1,L_2) от списъци, че $L_1=[a_{i_1},a_{i_2},\ldots,a_{i_k}]$, $L_2=[a_{j_1},a_{j_2},\ldots,a_{j_{n-k}}]$ и $\{i_1,i_2,\ldots,i_k\}\cup\{j_1,j_2,\ldots,j_{n-k}\}=$ $\{1, 2, \dots, n\}$. Разбиване на естествено число N наричаме списък L от положителни цели числа, чиято сума е N. За едно разбиване L на N казваме, че е ypashosecumo, ако има такова разделяне (L_1,L_2) на L, че L_1 и L_2 са разбивания на едно и също естествено число.

Да се дефинира на пролог двуместен предикат equPart(N, L), който по дадено естествено число N при преудовлетворяване генерира в L последователно всички уравновесими разбивания на N.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
K2.1					
Име:					

Писмен изпит по логическо програмиране 25 януари 2022 год

Да няма лист, на който е писано по повече от една задача! . За **всеки дефиниран** предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали . . .
- 2. При параметри ..., предикатът ... генерира ... в ...
- p(...) е истина тогава и само тогава, когато . . . Следното условие е достатъчно, за да няма зацикляне с предиката: . .

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нека G = (V, E) е ориентиран граф. За два върха $v,u\in V$ на G казваме, че u е съсед на v, ако $(u,v)\in E$ е ребро на G. Ще наричаме графа G k-съвършен, ако за всеки връх $v \in V$ множеството от съседите на v съвпада с множеството от онези върхове $u \in V$, за които има път (незадължително прост) от v до u с дължина точно k. Представяне на G наричаме такъв списък Edges от двуелементни списъци, че за всяко ребро $(u,v)\in E$ на G списъкът [u,v] е елемент на Edges и множеството E и списъкът Edges имат един и същ брой елементи. Да се дефинира на пролог двуместен предикат pc Gr(Edges, K), който по дадени представяне Edges на ориентиран граф G без изолирани върхове и естествено число K>1 разпознава дали $G \in K$ -съвършен.

Зад. 2. Pазdеляnе на краен списък $L = [a_1, a_2, \dots, a_n]$ наричаме такава двойка (L_1,L_2) от списъци, че $L_1=[a_{i_1},a_{i_2},\ldots,a_{i_k}],$ $L_2=[a_{j_1},a_{j_2},\ldots,a_{j_{n-k}}]$ и $\{i_1,i_2,\ldots,i_k\}\cup\{j_1,j_2,\ldots,j_{n-k}\}=$ $\{1, 2, \dots, n\}$. Разбиване на естествено число N наричаме списък L от положителни цели числа, чиято сума е N. За едно разбиване L на N казваме, че е ypashosecumo, ако има такова разделяне (L_1,L_2) на L, че L_1 и L_2 са разбивания на едно и също естествено число.

Да се дефинира на пролог двуместен предикат equPart(N, L), който по дадено естествено число N при преудовлетворяване генерира в L последователно всички уравновесими разбивания

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
K2.2					
Име:					

Писмен изпит по логическо програмиране 25 януари 2022 год.

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали .
- 2. При параметри . . . , предикатът . . . генерира . . . в . . .
- 3. p(...) е истина тогава и само тогава, когато . . . Следното условие е достатъчно, за да няма зацикляне с предиката:

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нека G = (V, E) е ориентиран граф. За два върха $v,u\in V$ на G казваме, че u е c сосед на v, ако $(v,u)\in E$ е ребро на G. Ще наричаме графа G k-соворшен, ако за всеки връх $v \in V$ множеството от съседите на v съвпада с множеството от онези върхове $u \in V$, за които има път (незадължително прост) от v до u с дължина точно k. Представяне на G наричаме такъв списък Edges от двуелементни списъци, че за всяко ребро $(u,v)\in E$ на G списъкът [u,v] е елемент на Edges и множеството E и списъкът Edges имат един и същ брой елементи. Да се дефинира на пролог двуместен предикат $\operatorname{pr} \operatorname{Gr}(Edges, K)$, който по дадени представяне Edges на ориентиран граф G без

Зад. 2. Pазdеляне на краен списък $L=[a_1,a_2,\ldots,a_n]$ наричаме такава двойка (L_1,L_2) от списъци, че $L_1=[a_{i_1},a_{i_2},\ldots,a_{i_k}]$, $L_2=[a_{j_1},a_{j_2},\ldots,a_{j_{n-k}}]$ н $\{i_1,i_2,\ldots,i_k\}\cup\{j_1,j_2,\ldots,j_{n-k}\}=1$ $\{1, 2, \dots, n\}$. Разбиване на естествено число N наричаме списък L от положителни цели числа, чиято сума е N. За едно разбиване L на N казваме, че е $\mathit{6anancupyemo}$, ако има разделяне (L_1,L_2) на L, за което $|N_1-N_2|=1$, където L_1 и L_2 са разбивания съответно на N_1 и на N_2 .

изолирани върхове и естествено число K>1 разпознава дали

Да се дефинира на пролог двуместен предикат balPart(N, L), който по дадено естествено число N при преудовлетворяване генерира в L последователно всички балансируеми разбивания на N.

Пожелаваме ви приятна и успешна работа!

G е K-съвършен.

вариант	ф. номер	група	поток	курс	специалност
K2.2					
Име:					

Писмен изпит по логическо програмиране 25 януари 2022 год.

Да няма лист, на който е писано по повече от една задача! За **всеки дефиниран** предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри . . . , предикатът . . . разпознава дали . . .
- 2. При параметри . . . , предикатът . . . генерира . . . в . . .
- p(...) е истина тогава и само тогава, когато . . . Следното условие е достатъчно, за да няма зацикляне с предиката:

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Нека G = (V, E) е ориентиран граф. За два върха $v,u\in V$ на G казваме, че u е c ссеd на v, ако $(v,u)\in E$ е ребро на G. Ще наричаме графа G k-съвършен, ако за всеки връх $v \in V$ множеството от съседите на v съвпада с множеството от онези върхове $u \in V$, за които има път (незадължително прост) от v до u с дължина точно k. Представяне на G наричаме такъв списък Edges от двуелементни списъци, че за всяко ребро $(u,v)\in E$ на G списъкът [u,v] е елемент на Edges и множеството E и списъкът Edges имат един и същ брой елементи. Да се дефинира на пролог двуместен предикат pr Gr(Edges, K),

който по дадени представяне Edges на ориентиран граф G без изолирани върхове и естествено число K>1 разпознава дали G е K-съвършен.

Зад. 2. Pазdеляnе на краен списък $L = [a_1, a_2, \ldots, a_n]$ наричаме такава двойка (L_1,L_2) от списъци, че $L_1=[a_{i_1},a_{i_2},\ldots,a_{i_k}],$ $L_2 = [a_{j_1}, a_{j_2}, \dots, a_{j_{n-k}}]$ и $\{i_1, i_2, \dots, i_k\} \cup \{j_1, j_2, \dots, j_{n-k}\}$ = $\{1, 2, \dots, n\}$. Разбиване на естествено число N наричаме списък L от положителни цели числа, чиято сума е N. За едно разбиване L на N казваме, че е $\mathit{балансируемo}$, ако има разделяне (L_1,L_2) на L, за което $|N_1-N_2|=1$, където L_1 и L_2 са разбивания съответно на N_1 и на N_2 .

Да се дефинира на пролог двуместен предикат balPart(N, L), който по дадено естествено число N при преудовлетворяване генерира в L последователно всички балансируеми разбивания

Пожелаваме ви приятна и успешна работа!