

Test report nr.

2121<mark>11</mark>FCC15

Measurements performed in accordance with:

FCC Rules: code of Federal Regulations (CFR) no. 47

PART 15 – RADIO FREQUENCY DEVICES

Product: Transceiver

Tested model: TempoTel 2

FCC ID YBU2826X09X

Applicant: elero gmbh Antriebstechnik

Linsenhofer Str. 59-63

D-72660 Beuren

Manufacturer: elero gmbh Antriebstechnik

Linsenhofer Str. 59-63

D-72660 Beuren

Trademark: elero

Testing Laboratory Nice S.p.A.

Via Pezza Alta, 13

I-31046 Rustignè di Oderzo (TV)

Registration number: 771316

Date of receipt sample: 10th March 2015

Testing date: 16th March – 07th April 2015

14th September – 15th September 2015

Desco Comprie,

Issue date: 14 January 2016

Tested by: L. Pastres

Checked by: E. Campion

Notice: The result of tests and checks reported in this Test Report refer exclusively to the samples tested and described in the Report itself.

This report shall not be reproduced partially or in its entirely without written approval of Nice S.p.A.

Report nr. 212111FCC15 page 1 / 48 date: 11 January 2016

Nice S.p.A. Oderzo TV Italia tel. +39.0422.853838 <u>www.niceforyou.com</u>

Contents

Conte	ents	2
1 Ger	neral Description of Equipment under Test	
	Applicant	
1.2	Manufacturer	3
1.3	Equipment classification	3
1.4	Basic Description of equipment under test	4
	Feature of equipment under test	
2 Tes	st configuration of equipment under test	6
	Environmental conditions	
2.2	Propertion of support equipment	6
2.3	Interface identification and connection diagram of test system	7
	eration of equipment under test	
3.1	Operating test conditions	8
4 Tes	sts identification and result	9
4.1	Methods of measurement	9
4.2	Prequency range investigated	9
5 Tes	sts	10
5.1	Antenna requirements	10
5.2	Conduced emission	11
	Radiated emission	
	Timing of the transmitter	
5.5	Transmit behaviour after releasing the TX-button	23
5.6	Radiated output power	25
5.8	Compliance with the limit of FCC	31
5.9	Spurious emission - radiated	32
5.1	OOccuped bandwith	34
	asurement and Test Equipment instrumentation	
	otographic Documentation	
	EUT Identification	
8.2	Prest Set-up	44
Anne	ex 1	47
۵nna	ny 2	48

date: 11 January 2016

Nice

FCC test report

1 General Description of Equipment under Test

1.1 Applicant

Name: elero gmbh Antriebstechnik

Address: Linsenhofer Str. 65

D-72660 Beuren

Country: GERMANY

1.2 Manufacturer

Name: elero gmbh Antriebstechnik

Address: Linsenhofer Str. 65

D-72660 Beuren

Country: GERMANY

1.3 Equipment classification

According to definition 15.3 (o) is a intentional Radiator operating within the *Frequency*: 915.3MHz and 918.3MHz.

so it shall fulfil provisions of 47CFR Part 15 Subpart C – international radiators – and Section 15.209.

According to definition 15.3 (z) is a unintentional Radiator:

So it shall fulfil provisions of 47CFR Part 15 Subpart B – Unintentional radiator and section 15.231.

Report nr. **212111FCC15** page 3 / 48 date: **11 January 2016**

1.4 Basic Description of equipment under test

Parameters	Value
Type of equipment:	Transceiver for screen applications
Model:	TempoTel 2
FCC ID:	YBU2826 <mark>X</mark> 09 X
Trade Name:	Elero GmbH Antriebstechnik
Data cable:	-
Telecom cable:	-
Power supply type:	3Vdc (2 x 1.5 battery type AA)
AC power input cable:	-
DC power input cable:	-

Model	Description
TEMPOTEL	The transceiver has a unidirectional transmission at 915.3MHz and bidirectional transmissions at 918.3MHz

Report nr. **212111FCC15** page 4 / 48 date: **11 January 2016**

1.5 Feature of equipment under test

Parameters	Value
Power specification	3Vdc (2 x 1.5V battery type AA)
Operating frequency:	915.3MHz (unidirectional), 918.3MHz (bidirectional)
Maximum RF output power:	72.81dBμV/m (average), 98.91dBμV/m (peak) (918.3MHz) 73.06dBμV/m (average), 99.09dBμV/m (peak) (915.3MHz)
Occupied Bandwidth (99% BW):	123kHz (918.3MHz) 122kHz (915.3MHz)
Emission Designator (ITU):	123KF1D (918.3MHz) 122KF1D (915.3MHz)
Modulation:	FSK (915.3MHz) G <i>FSK</i> (918.3MHz)
Channel spacing:	-
Antenna:	Integral
Rx Sensitivity:	-
Main SW identification:	-
Main HW board identification:	-
Peripherals included (for system application):	-
Interfaces:	-
Integrated interfaces	-
AC adapter:	-

Report nr. **212111FCC15** page 5 / 48 date: **11 January 2016**

Test configuration of equipment under test

2.1 Environmental conditions

Test conditions	Measured
Ambient temperature:	20 ÷ 25°C
Relative humidity:	50 ÷ 60%
Atmospheric pressure:	900 ÷ 1010mb

2.2 Description of support equipment

Equipment	Manufacturer	Model
-	-	-

Report nr. **212111FCC15** page 6 / 48 date: **11 January 2016**

Nice S.p.A. Oderzo TV Italia tel. +39.0422.853838 <u>www.niceforyou.com</u>

2.3 Interface identification and connection diagram of test system

Enclosure

#	Interface	Description	Maximum length	Ref. Document
1	Enclosure	Plastic	-	-
2	AC mains power input	Not present	-	-
3	DC power port	Battery	-	-
4	Signal / control port	Nor present	-	-
5	Antenna port	Not present	-	-
6	Telecommunication	Not present	-	-

Report nr. **212111FCC15** page 7 / 48 date: **11 January 2016**

3 Operation of equipment under test

3.1 Operating test conditions

#	Description	
1	Receiving mode	
2	Transmission mode	

Report nr. **212111FCC15** page 8 / 48 date: **11 January 2016**

Nice S.p.A. Oderzo TV Italia tel. +39.0422.853838 <u>www.niceforyou.com</u>

4 Tests identification and result

CFR47 Part 15	Title	Operating condition	Result
Section			
15.203	Antenna requirements	-	PASS
15.247 (b)(4)(i)			
15.207 (a)	Conduced emission	-	Not applicable
15.209 (a) (f)	Radiated emission	#1, 2	PASS
15.35 (c)	Timing of the transmitter	#2	PASS
15. <mark>231</mark> (a)	Transmit behaviour after releasing the	=	<u>PASS</u>
	TX-button		
15. <mark>231</mark> (b)	Radiated output power	#2	PASS
15.35 (c)	Typical pulse train of a signal	#2	PASS
15. <mark>231</mark> (c)	Compliance with the limit of FCC	#2	PASS
15. <mark>231</mark> (a)	Spurious emission - radiated	#2	PASS
15. <mark>231</mark> (<mark>a</mark>)	Occupied bandwidth	#2	PASS

4.1 Methods of measurement

All compliance measurements has been carried out using the procedures described in the standard ANSI C63.4-2014 (excluding sub-par. 4.1.5.2, 5.7.9 and 14), C63.10-2013 and Section 15.31 of CFR47 Part 15 – Subpart A (General).

4.2 Frequency range investigated

- a) Conduced emission tests: from 9kHz to 30MHz.
- b) Radiated emission tests: from 150kHz to tenth harmonic of fundamental.

Report nr. **212111FCC15** page 9 / 48 date: **11 January 2016**

5 Tests

5.1 Antenna requirements

Specify:	
Base standard:	47CFR Part 15 Sections 15.203, 15.204

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, bu the use of a standard antenna jack or electrical connector is prohibited. This requirements does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219 or 15.221. Further, this requirements does not apply to intentional radiators which, in accordance with Section 15.31 (d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Antenna Specification:	
N° of authorized antenna type:	-
Antenna type:	Integral
Maximum total gain:	0dB
External power amplifiers:	-

Antenna description:		
No.	Manufacturer	Model Type
-	-	-

Comments:
the antenna is integral to the product

Report nr. 212111FCC15 page 10 / 48 date: 11 January 2016

5.2 Conduced emission

Specify:	
Base standard:	47CFR Part 15 Section 15.207

- The EUT was placed on wooden table size 80cm, raised 80cm in which is located 40cm away from the vertical wall shielded room.
- Each EUT powered input cord was individually connected through a 50Ω/50µH LISN to the input power source.
- 3) Exploratory measurements were made identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was than performed over the frequency range of 0,15MHz to 30MHz.
- 5) The measurements were made with the detector set to PEAK and AVERAGE amplitude within a bandwidth of 10kHz during the measurements.
- 6) The measurements with Quasi-Peak detector are performed only for frequencies for which the Peak values are ≥ (Q.P. limit 6dB)

Test Requirements:						
Test Setup:	ANSI C63.4					
Limit of mains terminal disturbance voltage:	15.207 (a)					
Frequency range:	9kHz — 150kHz 150kHz — 30MHz					
IF Bandwidth:	200Hz 9kHz					
EMC class	₽					

Limits (1):							
Frequency [MHz]	Quasi-Peak (dBμV)	Average (dBμV)					
0,15 - 0,5	66 56	56 46					
0,5 – 5	56	46					
5 - 30	60	50					

Note: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

Test Data:							
Port under test Operating condition Result							

Comments:

Report nr. 212111FCC15 page 11 / 48 date: 11 January 2016

5.3 Radiated emission

Specify:	
Base standard:	47CFR Part 15 Section 15.209

- 1) The EUT was placed on turntable which is 0,8m above the ground plane.
- 2) The turntable shall rotate from 0° to 360° degrees to determine the position of maximum emission level.
- 3) The EUT is positioned 3m away from the receiving antenna which varied from 1 to 4m to find the highest emission.
- 4) The measurements were made with the detector set to PEAK and AVERAGE amplitude within a bandwidth of 100kHz below 1000MHz and 1MHz above 1000MHz.
- 5) The receiving antenna was positioned in both horizontal and vertical polarization.
- 6) The measurements with Quasi-Peak detector, below 1000MHz are performed only for frequencies for which the Peak values are ≥ (Q.P. limit 6dB).

Test Requirements:	
Test Setup:	ANSI C63.4
Test facility:	Anechoic chamber
Test distance:	3m
Limits for radiated disturbances:	15.209 (a)
Frequrncy range:	150kHz to 1GHz
IF bandwidth (below 30MHz):	9kHz
IF badwidth (below 1000MHz):	120kHz
IF badwidth (above 1000MHz):	1MHz
EMC class:	В
Uncertainty:	2.3dB

Frequency [MHz]	Field Strength (μV/m)	Measurement distance (m)
0,0009 - 0,490	2400/F(kHz)	300
0,490 – 1,750	24000/F(kHz)	30
1,750 - 30	30	30
30 - 88	100	30
88 -216	150	3
216 - 960	200	3
above 960	500	3

Note: (1) to convert the measuring distance from 3m to 300m and 30m to 300m a correction factor from 40dB/decade was used

Test Data.:						
Port under test	Operating condition	Result				
Enclosure	#1, #2	Complies				

Comments:

The results represent the worst case of emissions between three polarizations verified (X, Y and Z). The table was rotate of 360° and antenna receiving moved from 1m to 4m to find the maximum emission. *For frequency* 915.3MHz the result is same.

Report nr. 212111FCC15 page 12 / 48 date: 11 January 2016

Nice

FCC test report

Transmission (30MHz to 1GHz)

Report nr. **212111FCC15** page 13 / 48 date: **11 January 2016**

Nice

FCC test report

Receiving (30MHz to 1GHz)

Report nr. **212111FCC15** page 14 / 48 date: **11 January 2016**

Transmission (1GHz-6GHz)

Report nr. **212111FCC15** page 15 / 48 date: **11 January 2016**

Nice

FCC test report

Signal List

Sig	Trc	Freq	PEAK Amptd	QPD Amptd	EAVG Amptd	PEAK vs LL3	QPD vs LL3	EAVG vs LL2	RBW	RBW Type
1	1	1.8305 GHz	49.210 dBuV/m	48.478 dBuV/m	47.745 dBuV/m	-4.769 dB	-5.501 dB		1.00 MHz	CISPR
2	1	2.6550 GHz	37.181 dBuV/m	31.276 dBuV/m	23.353 dBuV/m	-16.798 dB	-22.703 dB	_	1.00 MHz	CISPR
3	1	2.7456 GHz	38.903 dBuV/m	35.478 dBuV/m	30.205 dBuV/m	-15.076 dB	-18.501 dB		1.00 MHz	CISPR
4	1	3.0235 GHz	37.686 dBuV/m	32.837 dBuV/m	24.940 dBuV/m	-16.294 dB	-21.142 dB		1.00 MHz	CISPR
5	1	3.2330 GHz	36.658 dBuV/m	32.025 dBuV/m	24.110 dBuV/m	-17.321 dB	-21.954 dB		1.00 MHz	CISPR
6	1	4.0825 GHz	37.718 dBuV/m	32.452 dBuV/m	24.636 dBuV/m	-16.261 dB	-21.527 dB		1.00 MHz	CISPR
7	1	4.5765 GHz	42.308 dBuV/m	39.497 dBuV/m	35.834 dBuV/m	-11.672 dB	-14.483 dB		1.00 MHz	CISPR
8	1	4.9950 GHz	40.240 dBuV/m	35.262 dBuV/m	27.337 dBuV/m	-13.740 dB	-18.717 dB		1.00 MHz	CISPR
9	1	5.4685 GHz	41.298 dBuV/m	36.126 dBuV/m	28.248 dBuV/m	-12.682 dB	-17.854 dB		1.00 MHz	CISPR
10	1	5.9335 GHz	43.035 dBuV/m	37.892 dBuV/m	30.021 dBuV/m	-10.944 dB	-16.087 dB		1.00 MHz	CISPR

Report nr. **212111FCC15** page 16 / 48 date: **11 January 2016**

Receiving (1GHz to 6GHz)

Report nr. 212111FCC15 page 17 / 48 date: 11 January 2016

Nice

FCC test report

Signal List

Sig	Trc	Freq	PEAK Amptd	QPD Amptd	EAVG Amptd	PEAK vs LL3	QPD vs LL3	EAVG vs LL2	RBW	RBW Type
1	1	2.4200 GHz	36.392 dBuV/m	31.079 dBuV/m	23.215 dBuV/m	-17.587 dB	-22.900 dB	-	1.00 MHz	CISPR
2	1	2.7615 GHz	37.308 dBuV/m	32.089 dBuV/m	24.213 dBuV/m	-16.672 dB	-21.890 dB	-	1.00 MHz	CISPR
3	1	2.9340 GHz	37.306 dBuV/m	32.449 dBuV/m	24.555 dBuV/m	-16.673 dB	-21.531 dB	_	1.00 MHz	CISPR
4	1	3.2420 GHz	37.257 dBuV/m	32.168 dBuV/m	24.272 dBuV/m	-16.723 dB	-21.811 dB	_	1.00 MHz	CISPR
5	1	3.7475 GHz	36.513 dBuV/m	31.721 dBuV/m	23.853 dBuV/m	-17.466 dB	-22.258 dB	_	1.00 MHz	CISPR
6	1	4.1000 GHz	37.652 dBuV/m	32.752 dBuV/m	24.904 dBuV/m	-16.328 dB	-21.227 dB	-	1.00 MHz	CISPR
7	1	4.4360 GHz	38.311 dBuV/m	33.528 dBuV/m	25.682 dBuV/m	-15.669 dB	-20.451 dB	_	1.00 MHz	CISPR
8	1	4.7745 GHz	38.662 dBuV/m	33.780 dBuV/m	25.863 dBuV/m	-15.317 dB	-20.199 dB	_	1.00 MHz	CISPR
9	1	5.4265 GHz	41.185 dBuV/m	36.080 dBuV/m	28.197 dBuV/m	-12.795 dB	-17.900 dB	_	1.00 MHz	CISPR
10	1	5.7740 GHz	41.977 dBuV/m	37.289 dBuV/m	29.389 dBuV/m	-12.002 dB	-16.690 dB	_	1.00 MHz	CISPR

Report nr. **212111FCC15** page 18 / 48 date: **11 January 2016**

5.4 Timing of the transmitter

Specify:	
Base standard:	CFR47 Part 15 Section 15.35 (c)

Unless otherwise specified, e.g. Section 15.225 (b), when the radiated emission limits are expressed in term of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0,1 seconds. As an alternative (provided the transmitter operates for longer than 0,1 seconds) or in cases where the pulse exceeds 0,1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0,1 second interval strength shall be submitted with any application fro certification or shall be retained in the measurement data file for equipment subjected to notification or verification.

Test requirements:	
Test Setup:	CFR47 Part 15 Section 15.35 (c)
RBW:	1MHz
VBW:	3MHz
Uncertainty:	<u>0.2μs</u>

Test Data:	
Frequency.	918.3MHz
Frame period:	100ms
Pause:	-
Pulse train length:	-
ON Time:	4.95ms
OFF Time:	376ms

Comments:

Every 100ms is present a single impulse with duration of 4.95ms.

The duty-cycle is: 4.95/100 = 0.0495, therefore the correction is $20 \times \log (0.0495) = -26.1 dB$

Report nr. **212111FCC15** page 19 / 48 date: **11 January 2016**

Nice

FCC test report

Report nr. 212111FCC15 page 20 / 48 date: 11 January 2016

Specify:	
Base standard:	CFR47 Part 15 Section 15.35 (c)

Unless otherwise specified, e.g. Section 15.225 (b), when the radiated emission limits are expressed in term of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0,1 seconds. As an alternative (provided the transmitter operates for longer than 0,1 seconds) or in cases where the pulse exceeds 0,1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0,1 second interval strength shall be submitted with any application fro certification or shall be retained in the measurement data file for equipment subjected to notification or verification.

Test requirements:	
Test Setup:	CFR47 Part 15 Section 15.35 (c)
RBW:	1MHz
VBW:	3MHz
Uncertainty:	<mark>0.2μs</mark>

Test Data:	
Frequency.	915.3MHz
Frame period:	100ms
Pause:	-
Pulse train length:	-
ON Time:	4.990ms
OFF Time:	> 100ms

Comments:

Every 100ms is present a single impulse with duration of 4.99ms.

The duty-cycle is: 4.99 / 100 = 0.0499, therefore the correction is 20 x log (0.0499) = -26.03dB

Report nr. 212111FCC15 page 21 / 48 date: 11 January 2016

Report nr. **212111FCC15** page 22 / 48 date: **11 January 2016**

5.5 Transmit behaviour after releasing the TX-button

Specify:	
Base standard:	47CFR Part 15 Section 15.231 (a)

Test requirements:	
Test Setup:	47CFR Part 15 Section 15.35 (c)
RBW:	<mark>1MHz</mark>
VBW:	3MHz
Uncertainty:	<u>0.2μs</u>

Test data:	
T1:	0µs
T2:	31.3ms
T2-T1:	31.3ms < 5s

Comments:

Date: 14.DEC.2015 17:07:45

Report nr. 212111FCC15 page 23 / 48 date: 11 January 2016

Date: 14.DEC.2015 17:05:56

Report nr. **212111FCC15** page 24 / 48 date: **11 January 2016**

5.6 Radiated output power

Specify:	
Base standard:	FCC 15. <mark>231</mark> (b)

Test Requirements:	
RBW / VBW:	200Hz (f < 150kHz) 9kHz (150kHz < f < 30MHz) 120kHz (30MHz < f < 1000MHz) 1MHz (f > 1000MHz)
Uncertainty.	3.7dB

Test data:

Output radiated power (3m of distance): Peak 99.09 dB \(\pu\setminus V/m\) at distance of 3m (915.3MHz) Peak 98.91 dB \(\pu\setminus V/m\) at distance of 3m (918.3MHz)

Comments:

The results represent the worst case of emissions between three polarizations verified (X, Y and Z). The table was rotate of 360° and antenna receiving moved from 1m to 4m to find the maximum emission.

Date: 14.SEP.2015 13:40:08

Report nr. 212111FCC15 page 25 / 48 date: 11 January 2016

Date: 14.SEP.2015 13:46:58

Report nr. **212111FCC15** page 26 / 48 date: **11 January 2016**

5.7 Typical pulse train of a signal

Specify:	
Base standard:	47CFR Part 15 Section 15.35 (c)

Test Setup:	
RBW:	1MHz
VBW:	3MHz
Uncertainty:	<mark>0.2μs</mark>

Test Data:	
Duty-cycle	0.0495
TX on	4.95ms
TX off	100ms
Average correction factor (20*log(duty cycle):	20 log (4.95 / 100ms) = -26.1dB

Comments:

Every 100ms is present a single impulse with duration of 6.67ms.

The duty-cycle is: 6.67/100 = 0.0495, therefore the correction is $20 \times \log (0.0495) = -26.1$ dB.

Report nr. 212111FCC15 page 27 / 48 date: 11 January 2016

Report nr. **212111FCC15** page 28 / 48 date: **11 January 2016**

Specify:	
Base standard:	47CFR Part 15 Section 15.35 (c)

Test Setup:		
RBW:	1MHz	
VBW:	3MHz	
Uncertainty:	<mark>0.2μs</mark>	

Test Data:	
Duty-cycle	<mark>0.0499</mark>
TX on	4.99ms
TX off	100ms
Average correction factor (20*log(duty cycle):	20 log (4.99 / 100ms) = -26.03dB

Comments:

Every 100ms is present a single impulse with duration of 4.99ms. The duty-cycle is: 4.99/100 = 0.0499, therefore the correction is $20 \times \log (0.0499) = -26.03$ dB

Report nr. **212111FCC15** page 29 / 48 date: **11 January 2016**

Report nr. **212111FCC15** page 30 / 48 date: **11 January 2016**

5.8 Compliance with the limit of FCC

Specify:	
Base standard:	47CFRF Part 15 Section 15.231 (c)

Test Setup:	
RBW / VBW:	200Hz (f < 150kHz) 9kHz (150kHz < f < 30MHz) 120kHz (30MHz < f < 1000MHz) 1MHz (f > 1000MHz)
Uncertainty:	3.7dB

Frequency [MHz]	Field Strength of the fundamental	Field Strength of spurious emissions
902 - 928	<mark>81.9</mark> dBμV/m	500μV/m / 54dBμV/m

Test Result:	
Frequency:	
Calculated average (3m of	$(98.91 - 26.1) dB\mu V/m = 72.81 dB\mu V/m < 81.9 dB\mu V/m (918.3 MHz)$
distance):	$(99.09 - 26.03) dB\mu V/m = 73.06 dB\mu V/m < 81.9 dB\mu V/m (915.3 MHz)$

Comments:

The results represent the worst case of emissions between three polarizations verified (X, Y and Z). The table was rotate of 360° and antenna receiving moved from 1m to 4m to find the maximum emission.

Report nr. 212111FCC15 page 31 / 48 date: 11 January 2016

5.9 Spurious emission - radiated

Specify:	
Base standard:	47CFR Part 15 Section 15.231 (a)

Test Setup:	
Uncertainty:	3.9dB

Limits:		
Frequency [MHz]	Field Strength of the fundamental	Field Strength of spurious emissions
above 470	50mV/m / 94dBμV/m	500μV/m / 54dBμV/m
Note: -		

Test Result:					
Frequency [MHz]	Peak Amplitude of emission (dBµV/m)	Average Amplitude of emission (dB _µ V/m)	Limit maximum allowed emission power	Actual attenuation below frequency of operation (dB)	Results
<u>918.2640</u>	<mark>98.91</mark>	<mark>72.81</mark>	<mark>81.9</mark> dΒμV/m	<mark>9.09</mark>	operating frequency
1836.677	<mark>52.70</mark>	<mark>26.60</mark>	54	<mark>27.40</mark>	Complies
<mark>2754.980</mark>	<mark>45.03</mark>	<mark>18.93</mark>	54	<mark>35.07</mark>	Complies
<mark>3675.468</mark>	<mark>36.16</mark>	<u>10.06</u>	54	<mark>43.49</mark>	Complies
<mark>4591.616</mark>	<mark>46.02</mark>	<mark>19.92</mark>	54	<mark>34.08</mark>	Complies
<u>5509.719</u>	<mark>41.75</mark>	<u>15.65</u>	54	<mark>38.35</mark>	Complies
6428.452	<mark>45.69</mark>	<mark>19.59</mark>	54	<mark>34.41</mark>	Complies
7343.680	<u>38.43</u>	<u>12.33</u>	54	<mark>41.67</mark>	Complies
<mark>8265.133</mark>	<mark>43.68</mark>	<mark>17.58</mark>	54	<mark>36.42</mark>	Complies
9182.551	<mark>49.78</mark>	<mark>23.60</mark>	54	<u>30.40</u>	Complies

Comments:

The results represent the worst case of emissions between three polarizations verified (X, Y and Z). The table was rotate of 360° and antenna receiving moved from 1m to 4m to find the maximum emission.

Report nr. **212111FCC15** page 32 / 48 date: **11 January 2016**

Specify:	
Base standard:	47CFR Part 15 Section 15.249 (c)

Test Setup:	
Uncertainty:	3.9dB

Limits: Frequency [MHz]	Field Strength of the fundamental	Field Strength of spurious emissions
above 470	50mV/m / 94dBμV/m	500μV/m / 54dBμV/m
Note: -		

Test Result:					
Frequency [MHz]	Peak Amplitude of emission (dBµV/m)	Average Amplitude of emission (dB _µ V/m)	Limit maximum allowed emission power	Actual attenuation below frequency of operation (dB)	Results
<mark>915.3340</mark>	<mark>99.09</mark>	<mark>73.06</mark>	<mark>81.9</mark> dΒμV/m	<mark>8.84</mark>	operating frequency
<u>1830.550</u>	<u>53.45</u>	<mark>27.42</mark>	54	<mark>26.58</mark>	Complies
<mark>2745.775</mark>	<mark>37.64</mark>	<u>11.61</u>	54	<mark>42.39</mark>	Complies
<u>3661.160</u>	<u>35.57</u>	<mark>9.84</mark>	54	<mark>44.46</mark>	Complies
4576.370	<mark>39.84</mark>	<u>13.81</u>	54	<mark>40.19</mark>	Complies
<u>5491.570</u>	<u>40.72</u>	<mark>14.69</mark>	54	<mark>39.31</mark>	Complies
6406.710	<mark>39.49</mark>	<mark>13.46</mark>	54	<mark>40.54</mark>	Complies
7322.060	<mark>40.89</mark>	<u>14.86</u>	54	<mark>39.14</mark>	Complies
8237.755	<mark>36.30</mark>	<u>10.27</u>	54	<mark>43.73</mark>	Complies
<u>9152.605</u>	<u>39.56</u>	<u>13.53</u>	54	<mark>40.47</mark>	Complies

Comments:

The results represent the worst case of emissions between three polarizations verified (X, Y and Z). The table was rotate of 360° and antenna receiving moved from 1m to 4m to find the maximum emission.

Report nr. **212111FCC15** page 33 / 48 date: **11 January 2016**

5.10 Occuped bandwith

Specify:	
Base standard:	47CFR Part 15.231 (c)

The bandwidth of the emission shall be no wider than 0,25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0,5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

Test Setup:	
RBW:	<mark>1</mark> kHz
VBW:	3kHz
Uncerrainty:	20Hz

Limits:

< 0,5% of the centre frequency, here 4.57MHz

Test Data:

Occupied bandwidth at –20dB: 82kHz < 4.57MHz (918.3MHz) 83kHz < 4.57MHz (915.3MHz)

Comments:

Date: 2.NOV.2015 15:53:00

Report nr. 212111FCC15 page 34 / 48 date: 11 January 2016

Nice

FCC test report

Date: 2.NOV.2015 15:52:00

date: 11 January 2016

Date: 2.NOV.2015 15:56:13

Report nr. **212111FCC15** page 36 / 48 date: **11 January 2016**

FCC test report

6 **Measurement and Test Equipment instrumentation**

Code	nr.	Manufacturer	Model	Serial number	Date of Calibration	Calibration Due
ANA	7	<u>Agilent</u>	N9020A	MY48011101	19/03/2014	18/03/2016
ANT	1	EMCO	3121C DB-4	9312-901		I
ANT	3	Schwarzbeck	VULB9160	3180	24/07/2015	23/07/2017
ANT	4	AH System	SAS-571	<mark>684</mark>	23/07/2015	22/07/2017
ANT	<u>5</u>	AH System	SAS-562B	<mark>236</mark>	<mark>24/07/2015</mark>	23/07/2019
ANT	6	AH System	SAS-571	1025	23/07/2015	22/07/2017
ANT	7	<u>Aaronia</u>	BicoLOG 30100	1293	23/07/2015	22/07/2017
ATT	1	-	PE7021-6	ı	ı	I
ATT	2	Tyco Electronics Co.	50WCW	-	ı	1
<u>ATT</u>	<u>5</u>	RADIALL	R414.710.000	-		ı
ATT	6	RADIALL	R414.710.000	-	I	I
ATT	7	RADIALL	R414.720.000	-	ı	ı

Report nr. 212111FCC15 page 37 / 48 date: 11 January 2016

FCC test report

Code	nr.	Manufacturer	Model	Serial number	Date of Calibration	Calibration Due
CAV	1	Rohde & Schwarz	HFU2-Z5	-	<mark>18/09/2013</mark>	<mark>18/09/2015</mark>
CAV	2	Rohde & Schwarz	HFU2-Z4	-	18/09/2013	18/09/2015
CAV	3	TESE0	CAVO A	-	18/09/2013	18/09/2015
CAV	<mark>5</mark>	TESEO	CAVO C	- <u>18/09/2013</u>		18/09/2015
CAV	<mark>6</mark>	TESEO	CAVO D	-	18/09/2013	18/09/2015
CAV	7	TESEO	CAVO E	-	18/09/2013	18/09/2015
CAV	<mark>13</mark>	TESEO	CAVO G	-	18/09/2013	18/09/2015
CAV	14	TESEO	CAVO H	- <u>18/09/2013</u>		18/09/2015
CAV	<mark>15</mark>	TESEO	CAVO I	-	18/09/2013	18/09/2015
CAV	<mark>16</mark>	Rohde & Schwarz	9111505/200 (CAVO J)	5995-12-161- 6890	18/09/2013	18/09/2015
CAV	<mark>17</mark>	<u>Nice</u>	CAVO K	<u>.</u>	18/09/2013	<u>18/09/2015</u>

Report nr. 212111FCC15 page 38 / 48 date: 11 January 2016

FCC test report

Code	nr.	<u>Manufacturer</u>	<u>Model</u>	Serial number	Date of Calibration	Calibration Due
CAV	<mark>18</mark>	Nice	CAVO L	<u>-</u>	18/09/2013	18/09/2015
CAV	<mark>19</mark>	<u>Nice</u>	Cavo M	- 18/09/2013		18/09/2015
CAV	20	<u>Nice</u>	Cavo N	<u>-</u>	18/09/2013	18/09/2015
CAV	<mark>21</mark>	Nice	Cavo P	- <u>18/09/2013</u>		18/09/2015
CAV	22	Nice	Cavo R	-	18/09/2013	18/09/2015
CSA	1	TESEO	EN 55022 EN 610004-3	NSA	11/08/2015	10/08/2016
CSA	1	TESEO	EN 55022 EN 610004-3	CISPR 16-1-4	14/04/2009	14/04/2019
CSA	<mark>1</mark>	TESEO	EN 55022 EN 610004-3	EN 61000-4-3	14/10/2014	14/10/2015
GEN	7	Rohde & Schwarz	SML 03	102178	22/07/2014	21/07/2016
GEN	8	<u>Agilent</u>	N5182A	MY48180288	23/09/2013	<mark>22/09/2016</mark>
LIS	2	Rohde & Schwarz	ESH2-Z5	100183	23/07/2015	22/07/2017
PAS	1	FCC	F-202	197	11/06/2012	11/06/2016

Report nr. 212111FCC15 page 39 / 48 date: 11 January 2016

FCC test report

Code	nr.	Manufacturer	<mark>Model</mark>	Serial number	Date of Calibration	Calibration Due
POW	1	Rohde & Schwarz	<u>NRVD</u>	101221	12/02/2014	12/02/2016
POW	2	Rohde & Schwarz	NRV-Z5	100314	14/02/2014	14/02/2016
POW	3	Rohde & Schwarz	NRV-Z5	100315	14/02/2014	14/02/2016
PRE	2	Schwarzbeck	BBV 9718	9718-178	30/07/2014	29/07/2016
RIC	1	Rohde & Schwarz	ESCI	100140	18/03/2015	17/03/2016
RIC	2	Rohde & Schwarz	ESR 7	<u>101498</u>	9/11/2015	8/11/2016
SOF	1	Rohde & Schwarz	EMC32	V8.54.0		

Report nr. 212111FCC15 page 40 / 48 date: 11 January 2016

Nice S.p.A. Oderzo TV Italia tel. +39.0422.853838

FCC test report

7 **Photographic Documentation**

8.1 EUT Identification

Report nr. 212111FCC15 page 41 / 48 date: 11 January 2016

FCC test report

Report nr. **212111FCC15** page 42 / 48 date: **11 January 2016**

FCC test report

Report nr. **212111FCC15** page 43 / 48 date: **11 January 2016**

FCC test report

8.2 Test Set-up

Radiated emissions:

Report nr. **212111FCC15** page 44 / 48 date: **11 January 2016**

Nice S.p.A. Oderzo TV Italia tel. +39.0422.853838

FCC test report

Report nr. **212111FCC15** page 45 / 48 date: **11 January 2016**

FCC test report

Report nr. 212111FCC15 page 46 / 48 date: 11 January 2016

Nice S.p.A. Oderzo TV Italia tel. +39.0422.853838

www.niceforyou.com

FCC test report

Annex 1

Technical files

RF module system "Proline2" for Combio- XXX MHz, RolTop-XXX MHz

For: transceiver modules TMWA for Combio, RolTop

Brand: Elero GmbH Antriebstechnik

Linsenhoferstrasse 65 D- 72660 Beuren (Germany)

1. Description of the product

The RF modul for using as transceiver in different products (Combio-XXX MHz, RolTop-XXX MHz) based on the transceiver chip CC1101 (TI) with antenna matching networks. The CC1101 module is controlled by a application MCU via SPI using a protocol stack for RX and TX mode for the RF communication, only in the bidirectional application mode the CC1101 will be used as transmitter and receiver simultanously. All TX- and RX transmissions for bidirectional communication are packet oriented for short transmission times and use suitable LBT and CCA processes.

1.1 technical specifications

1.1.1 Duty cycle estimation

a) Transmitting specification Proline2 remote controls

Size of data protocol (including PHY) 68 Byte min. (1 Destination or Group) transfer rate packet mode transfer PHY 869,525 MHz/ deviation 32 kHz /RBW 210 kHz or 918,300 MHz/ deviation 32 kHz/ RBW 210 kHz

Traffictime (time to air) min. 4,3 ms / data protocol max. 7,1 ms / data protocol

Normally volume of traffic: </= 8 x traffic events/d by user about transmitter

(= 0,33 traffic events per hour)

b) Transmission modes

- Broadcast transmission (group > 10 destinations, no routing path)
 - ⇒ transmission of max. 1 * data protocol (4,3 ms)
 - ⇒ < 5 ms / user initiated event
- Unicast for 1 destination
 - \Rightarrow transmission of max. 2 * data protocol (2 * 4,3ms, cut off > 100 ms between sendings)
 - ⇒ < 9 ms / user initiated event
- Unicast for 10 destination
 - ⇒ transmission of max. 2 * data protocol (2 * 7,1 ms, cut off > 100 ms between sendings)
 - ⇒ < 15 ms / user initiated event
 </p>
- c) Estimation of duty cycle (worst case)
- Broadcast (group)
 - max. traffic time = 5 ms
 - max. traffic time * Normally volume of traffic per hour = 5 ms * 0,33 = 0,0016 s / h
- Unicast for 1 destination max. traffic time = 9 ms
- ⇒ max. traffic time * Normally volume of traffic per hour = 9 ms * 0,33 = 0,003 s / h
- Unicast for 10 destinations max. traffic time = 15 ms
 - ⇒ max. traffic time * Normally volume of traffic per hour = 15 ms * 0,33 **= 0,005 s / h**

Files	Project	Author	Rev. No.	Rev. Date
technical files_RF system Proline2	Proline2 UL	PRR		11.02.2013

FCC test report

Annex 2

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

May 17, 2013

Registration Number: 771316

NICE S.p.A. Via Pezza Alta, 13,

Oderzo, 31046 Italy

Attention:

Enrico Campion, Mr.

Re:

Measurement facility located at Via Pezza Alta, 13 - I-31046 Oderzo

Anechoic chamber (3 meter)
Date of Renewal: May 17, 2013

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Phyliks Parrish L Industry Analyst

Report nr. 212111FCC15 page 48 / 48 date: 11 January 2016

Nice S.p.A. Oderzo TV Italia

tel. +39.0422.853838

www.niceforyou.com