Proyecto

Novoa Gastaldi Alejandro Silvestre

(silvestre.novoa@ciencias.unam.mx)

```
Clear["Global`*"]
borra
Zigzag = 4.;
Armchair = 4.;
NZigzag = 1. + 2 * Zigzag;
NArmchair = 2 * Armchair;
NEdos = 1 * NZigzag * NArmchair;
t = -1.;
      Notacion \{n; ...\} = \{0, ..., 0, 1, 0, ..., 0; ...\} *
Base = Table[ Table[ -0. , {i, 1, 6}] , {j, 1, 1}];
      tabla
              tabla
Base = Flatten[ Table[
                           Base , {i, 1, NZigzag * NArmchair, 1}] , 1];
      aplana
                 tabla
              Base[[i, 1]] = j , \{i, 1+1*(j-1), 1+1*(j-1), 1\} ,
Do [
       Do [
repite repite
  {j, 1., NZigzag * NArmchair, 1.}];
Print[ Style["Base ", 18, Bold, Purple]
escribe estilo
                           negrita púrpura
MatrixForm [ Base ]
forma de matriz
Base
```

```
      1.
      0.
      0.
      0.
      0.
      0.

      2.
      0.
      0.
      0.
      0.
      0.

      3.
      0.
      0.
      0.
      0.
      0.

      4.
      0.
      0.
      0.
      0.
      0.

      5.
      0.
      0.
      0.
      0.
      0.

      6.
      0.
      0.
      0.
      0.
      0.

      7.
      0.
      0.
      0.
      0.
      0.

      8.
      0.
      0.
      0.
      0.
      0.

      9.
      0.
      0.
      0.
      0.
      0.

      10.
      0.
      0.
      0.
      0.
      0.

      11.
      0.
      0.
      0.
      0.
      0.

      12.
      0.
      0.
      0.
      0.
      0.

      13.
      0.
      0.
      0.
      0.
      0.

      15.
      0.
      0.
      0.
      0.
      0.
```

```
16. 0. 0. 0. 0. 0.
17. 0. 0. 0. 0. 0.
          0.
18. 0. 0.
             0. 0.
19. 0. 0. 0.
             0. 0.
20. 0. 0. 0. 0. 0.
21. 0. 0. 0. 0. 0.
22. 0. 0. 0. 0. 0.
23. 0. 0. 0. 0. 0.
24. 0. 0. 0. 0. 0.
25. 0. 0. 0. 0. 0.
26. 0. 0. 0. 0. 0.
27. 0. 0. 0. 0. 0.
28. 0. 0. 0. 0. 0.
29. 0. 0. 0. 0. 0.
30. 0. 0. 0. 0. 0.
31. 0. 0. 0. 0. 0.
32. 0. 0. 0. 0. 0.
33. 0. 0. 0.
             0. 0.
34. 0. 0.
          0.
             0. 0.
35. 0. 0.
             0. 0.
          0.
36. 0. 0.
          0.
             0. 0.
37. 0. 0.
          0.
             0. 0.
38. 0. 0.
          0.
             0. 0.
39. 0. 0.
          0.
             0. 0.
40. 0. 0. 0.
             0. 0.
41. 0. 0.
          0.
             0. 0.
42. 0. 0.
          0.
             0. 0.
43. 0. 0.
          0.
             0. 0.
44. 0. 0.
          0.
             0. 0.
45. 0. 0. 0.
             0. 0.
46. 0. 0. 0.
             0. 0.
47. 0. 0. 0. 0. 0.
48. 0. 0. 0. 0. 0.
49. 0. 0. 0. 0. 0.
50. 0. 0. 0. 0. 0.
51. 0. 0. 0. 0. 0.
52. 0. 0. 0. 0. 0.
53. 0. 0. 0. 0. 0.
54. 0. 0. 0. 0. 0.
55. 0. 0. 0. 0. 0.
56. 0. 0. 0. 0. 0.
57. 0. 0. 0. 0. 0.
58. 0. 0. 0. 0. 0.
59. 0. 0. 0. 0. 0.
60. 0. 0. 0. 0. 0.
61. 0. 0. 0.
             0. 0.
62. 0. 0. 0. 0. 0.
63. 0. 0. 0. 0. 0.
64. 0. 0.
          0.
             0. 0.
65. 0. 0.
          0.
             0. 0.
66. 0. 0.
          0.
             0. 0.
67. 0. 0.
          0.
             0.
                0.
68. 0. 0.
          0.
             0.
                0.
69. 0. 0.
          0.
             0.
                0.
70. 0. 0.
          0.
             0.
                0.
71. 0. 0.
          0.
             0.
                0.
72. 0. 0. 0. 0. 0.
```

```
(****************** ---- HAMILTONIANO
      en Espacio de Estados ---- *******************
HEdoBase = Table[Table[ 0. , {i, 1, NEdos, 1}], {j, 1, NEdos, 1}];
                           tabla tabla
 (* NO DIAGONAL: Transicion entre sitios*)
 (*Transporte entre sitios*)
Base[[1]];
Base[[1+1]];
Base[[1]] + UnitVector[6, 1];
                              vector unidad
              Notacion: b_{n+1}^{\dagger} b_n \{n; ...\} = \sqrt{1} \sqrt{0+1} \{0, ..., 0, 1-1, 0+1, ..., 0; ...\} = \{n+1; ...\} *
Do Do HEdoBase [[i, i+1]] = t, \{i, 1+1*NZigzag*(j-1), 1+1*NZigzag*(j
rep·· repite
         1* ( NZigzag - 1 + (j - 1) * NZigzag ) , 1}], {j, 1, NArmchair, 1}
 (*Para interacciones entre filas {n;...} y {n+1;...} en direccion zigzag *)
Do \left[ Do \left[ HEdoBase \left[ \left[ i+1*(j-1), i+1*(j-1+NZigzag) \right] \right] = t, \{i, 1, 1, 1\} \right] \right]
rep·· repite
                         (NArmchair - 1) * NZigzag , 2} ]
 (*Para interacciones entre filas {n;...} y {n+1;...} en direccion zigzag *)
HEdoBase = (HEdoBase + ConjugateTranspose[HEdoBase]);
                                                           transpuesto conjugado
 (* Se ingresa las posiciones atomicas que actuaran de Fuente y Drenante *)
PosicionFuente = Table[ i , {i, 1, NZigzag, 1}]; (*Table[ i ,{i,1,NZigzag,1}]*)
                                            tabla
                                                                                                                                            tabla
PosicionDrentante = Table[ NEdos - NZigzag + i , {i, 1, NZigzag, 1}];
                                                    tabla
PosicionFuente = Table [ Round[{PosicionFuente[[i]] , PosicionFuente[[i]] }] ,
```

```
Γειπειο πιαν διονιπο
   {i, 1, Length[PosicionFuente], 1}];
(* Genera las posiciones correspondientes a la matriz *)
PosicionDrentante = Table [ Round[{PosicionDrentante[[i]], PosicionDrentante[[i]]}] ,
                   tabla
                            entero más próximo
   {i, 1, Length[PosicionDrentante], 1}];
         longitud
(* Matrices de Autoenergías *)
   matrices
SigmaFuente = -i * tF *
   SparseArray[{ PosicionFuente → Table[1., {i, 1, Length[PosicionFuente], 1}]
                                   tabla
                                                    longitud
   array disperso
    {NEdos, NEdos}];
SigmaDrenante = -i * tD * SparseArray[{ PosicionDrentante →
                       array disperso
      Table[1., {i, 1, Length[PosicionDrentante], 1}] }, {NEdos, NEdos}];
                      longitud
      tabla
HEdoBase I = HEdoBase - SigmaDrenante;
        número i
HEdoBase // MatrixForm;
           forma de matriz
MatrixPlot[HEdoBase , PlotTheme → "Detailed", ImageSize → Large, ColorFunction → Hue]
(* Solución Numerica *)
{eval, evec} = Eigensystem[HEdoBase, 1, Method → {"Arnoldi", "Criteria" → "RealPart"} ]
             autovalores y autovectores
                                      método
Print[ Style["Energias Numericas ", 18, Bold, Purple]
escribe estilo
                                       negrita púrpura
Style[ MatrixForm[ eval ] , {Medium, Bold, Purple}]
       forma de matriz
                            tamaño… negrita púrpura
(* Solución Exacta: Usa el mismo hamiltoniano de interacción *)
t1 * HEdoBase // MatrixForm;
                forma de matriz
Print[ Style["Energias Exactas ", 18, Bold, Purple]
Lacoriha Lactila
                                     nogrita núrnura
```

Set: Tag Times in


```
\{\{2.85911\},
   \{\{0.0235754, -0.0298333, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0617212, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0617212, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, 0.0762916, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482713, -0.0482712, -0.0482713, -0.0482712, -0.0482713, -0.0482712, -0.0482713, -
           -0.0298333, 0.0235754, -0.0375713, 0.0838451, -0.098363, 0.135664, -0.121583,
          0.135664, -0.098363, 0.0838451, -0.0375713, 0.0588429, -0.103788, 0.154053,
           -0.167932, 0.19042, -0.167932, 0.154053, -0.103788, 0.0588429, -0.0644503, 0.125428,
           -0.168733, 0.202946, -0.208566, 0.202946, -0.168733, 0.125428, -0.0644503,
          0.0644503, -0.125428, 0.168733, -0.202946, 0.208566, -0.202946, 0.168733, -0.125428,
           0.0644503, -0.0588429, 0.103788, -0.154053, 0.167932, -0.19042, 0.167932,
           -0.154053, 0.103788, -0.0588429, 0.0375713, -0.0838451, 0.098363, -0.135664,
          0.121583, -0.135664, 0.098363, -0.0838451, 0.0375713, -0.0235754, 0.0298333,
           -0.0617212, 0.0482713, -0.0762916, 0.0482713, -0.0617212, 0.0298333, -0.0235754}}
```

Energias Numericas

(2.85911)

Energias Exactas

```
\{ \{ En \rightarrow -2.85923 \ t1 \}, \{ En \rightarrow -2.72777 \ t1 \}, \{ En \rightarrow -2.63632 \ t1 \}, \} 
      \mathsf{En} 	o \left( -2.53328 - 0.116669 \,\dot{\mathtt{l}} \right) \,\mathsf{t1} \big\}, \big\{ \mathsf{En} 	o \left( -2.53328 + 0.116669 \,\dot{\mathtt{l}} \right) \,\mathsf{t1} \big\},
      [En \rightarrow (-2.35283 - 0.202545 i) t1], \{En \rightarrow (-2.35283 + 0.202545 i) t1\},
      \mathsf{En} 	o (-2.15729 - 0.266044 \, i) \, \mathsf{t1}, \{\mathsf{En} 	o (-2.15729 + 0.266044 \, i) \, \mathsf{t1}\},
      	ext{En} 
ightarrow ig( -1.95512 - 0.289793 \, i ig) \, 	ext{t1} ig\}, \, ig\{ 	ext{En} 
ightarrow ig( -1.95512 + 0.289793 \, i ig) \, 	ext{t1} ig\},
      \mathsf{En} 	o \left( -1.75338 - 0.279317 \ i \right) \ \mathsf{t1} \right\}, \left\{ \mathsf{En} 	o \left( -1.75338 + 0.279317 \ i \right) \ \mathsf{t1} \right\},
    \left\{ \text{En} \rightarrow -\text{1.59922 t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} - \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{ t1} \right\} \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{0.251103 i} \right) \text{, } \left\{ \text{En} \rightarrow \left( -\text{1.5669} + \text{
      ig( \mathsf{En} 
ightarrow ig( -1.40334 - 0.138558 \, f i ig) \, \, \mathsf{t1} ig\} , ig\{ \mathsf{En} 
ightarrow ig( -1.40334 + 0.138558 \, f i ig) \, \, \mathsf{t1} ig\} ,
      \left[\text{En}\rightarrow\left(-\text{1.38489}-\text{0.223217 i}\right)\,\text{t1}\right] , \left\{\text{En}\rightarrow\left(-\text{1.38489}+\text{0.223217 i}\right)\,\text{t1}\right\} ,
    \{ \mathsf{En} 	o -1.36007 \ \mathsf{t1} \}, \{ \mathsf{En} 	o (-1.23802 - 0.242747 \ \mathrm{i}) \ \mathsf{t1} \}, \{ \mathsf{En} 	o (-1.23802 + 0.242747 \ \mathrm{i}) \ \mathsf{t1} \},
      ig( \mathsf{En} 
ightarrow ig( -1.12409 - 0.242117 \, ar{\mathtt{i}} ig) \, \, \mathsf{t1} ig\} , ig\{ \mathsf{En} 
ightarrow ig( -1.12409 + 0.242117 \, ar{\mathtt{i}} ig) \, \, \mathsf{t1} ig\} ,
      En \rightarrow (-1.03483 - 0.222828 i) t1, En \rightarrow (-1.03483 + 0.222828 i) t1, En \rightarrow -1.00442 t1,
      En \rightarrow (-0.973345 - 0.191176 i) t1, \{En \rightarrow (-0.973345 + 0.191176 i) t1\}, \{En \rightarrow -0.945638 t1\},
      En \rightarrow (-0.928138 - 0.169418 i) t1, \{En \rightarrow (-0.928138 + 0.169418 i) t1\},
      En \rightarrow (-0.874899 - 0.138161 i) t1, \{En \rightarrow (-0.874899 + 0.138161 i) t1\},
      ig( \mathsf{En} 
ightarrow ig( -0.828222 - 0.0881248 \ ar{\mathfrak{u}} ig) \ \mathsf{t1} ig\} , ig\{ \mathsf{En} 
ightarrow ig( -0.828222 + 0.0881248 \ ar{\mathfrak{u}} ig) \ \mathsf{t1} ig\} ,
      (En \rightarrow (-0.776174 - 0.0187978 i) t1), \{En \rightarrow (-0.776174 + 0.0187978 i) t1\},
    \{En \rightarrow -0.725686 \, t1\}, \{En \rightarrow -0.649652 \, t1\}, \{En \rightarrow -0.524734 \, t1\}, \{En \rightarrow -0.32382 \, t1\},
    \{En \rightarrow -0.013183 \ t1\}, \{En \rightarrow 0.013183 \ t1\}, \{En \rightarrow 0.32382 \ t1\}, \{En \rightarrow 0.524734 \ t1\},
    \{ \mathsf{En} 	o \mathbf{0.649652\ t1} \}, \{ \mathsf{En} 	o \mathbf{0.725686\ t1} \}, \big\{ \mathsf{En} 	o \big( \mathbf{0.776174} - \mathbf{0.0187978\ i} \big)\ \mathsf{t1} \big\},
      	ilde{	ilde{E}}En 
ightarrow \left(	ilde{0}.776174 + 	ilde{0}.0187978 i
ight) t1
ight\}, \left\{	ilde{E}n 
ightarrow \left(	ilde{0}.828222 - 	ilde{0}.0881248 i
ight) t1
ight\},
      \mathsf{En} 	o (\mathsf{0.828222} + \mathsf{0.0881248}\ \dot{\mathtt{i}})\ \mathsf{t1}\} , \big\{\mathsf{En} 	o \big(\mathsf{0.874899} - \mathsf{0.138161}\ \dot{\mathtt{i}}\big)\ \mathsf{t1}\big\} ,
      \mathsf{En} \to (\mathsf{0.874899} + \mathsf{0.138161}\,\,\dot{\mathtt{l}})\,\,\mathsf{t1}\}, \{\mathsf{En} \to (\mathsf{0.928138} - \mathsf{0.169418}\,\,\dot{\mathtt{l}})\,\,\mathsf{t1}\},
      En \rightarrow (0.928138 + 0.169418 i) t1, \{En \rightarrow 0.945638 t1\}, \{En \rightarrow (0.973345 - 0.191176 i) t1\},
      \mathsf{En} \to \left( \texttt{0.973345} + \texttt{0.191176} \ \dot{\mathtt{i}} \right) \ \mathsf{t1} \big\} \text{, } \left\{ \mathsf{En} \to \texttt{1.00442} \ \mathsf{t1} \right\} \text{, } \left\{ \mathsf{En} \to \left( \texttt{1.03483} - \texttt{0.222828} \ \dot{\mathtt{i}} \right) \ \mathsf{t1} \right\} \text{, } \right\}
      [En \rightarrow (1.03483 + 0.222828 i) t1], \{En \rightarrow (1.12409 - 0.242117 i) t1],
      	ext{En} 
ightarrow ig( 	ext{1.12409} + 	ext{0.242117 i} ig) 	ext{ t1} ig\}, ig\{ 	ext{En} 
ightarrow ig( 	ext{1.23802} - 	ext{0.242747 i} ig) 	ext{ t1} ig\},
      En \rightarrow (1.23802 + 0.242747 i) t1, {En \rightarrow 1.36007 t1}, {En \rightarrow (1.38489 - 0.223217 i) t1},
      	ext{En} 
ightarrow \left( 	ext{1.38489} + 	ext{0.223217 i} 
ight) 	ext{t1} 
ight\}, \left\{ 	ext{En} 
ightarrow \left( 	ext{1.40334} - 	ext{0.138558 i} 
ight) 	ext{t1} 
ight\},
      En \rightarrow (1.40334 + 0.138558 i) t1, En \rightarrow (1.5669 - 0.251103 i) t1,
      En \rightarrow (1.5669 + 0.251103 i) t1}, {En \rightarrow 1.59922 t1}, {En \rightarrow (1.75338 - 0.279317 i) t1},
      [En \rightarrow (1.75338 + 0.279317 i) t1], \{En \rightarrow (1.95512 - 0.289793 i) t1],
      	ext{En} 
ightarrow ig( 1.95512 + 0.289793 \, i ig) \, 	ext{t1} ig\}, \, ig\{ 	ext{En} 
ightarrow ig( 2.15729 - 0.266044 \, i ig) \, 	ext{t1} ig\},
      En \rightarrow (2.15729 + 0.266044 i) t1, \{En \rightarrow (2.35283 - 0.202545 i) t1\},
      \mathsf{En} 	o ig( 2.35283 + 0.202545 \ i ig) \ \mathsf{t1} ig\} , ig\{ \mathsf{En} 	o ig( 2.53328 - 0.116669 \ i ig) \ \mathsf{t1} ig\} ,
      \{ \mathsf{En} 
ightarrow \left( \mathsf{2.53328} + \mathsf{0.116669} \ \mathrm{i} \ \right) \, \mathsf{t1} \} , \{ \mathsf{En} 
ightarrow \mathsf{2.63632} \, \mathsf{t1} \} , \{ \mathsf{En} 
ightarrow \mathsf{2.72777} \, \mathsf{t1} \} , \{ \mathsf{En} 
ightarrow \mathsf{2.85923} \, \mathsf{t1} \}
```

```
(***************** ---- HAMILTONIANO
  en Espacio Real ---- ************************
            real
(*Para este problema simplificado queda identico*)
HReal = HEdoBase;
```

```
HEdoBase // MatrixForm;
            forma de matriz
MatrixPlot[HEdoBase , PlotTheme → "Detailed", ImageSize → Large, ColorFunction → Hue]
(* Para usar Green se requiere el
 Hamiltoniano discretiado (Matriz) en el espacio Real *)
                                                real
(* Con Green obtendremos observables en función de la energía *)
Energia = En * IdentityMatrix[ Round[NEdos] ];
            matriz identidad
                            entero más próximo
(* Se ingresa las posiciones atomicas que actuaran de Fuente y Drenante *)
PosicionFuente = Table[ i , {i, 1, NZigzag, 1}]; (*Table[ i ,{i,1,NZigzag,1}]*)
                                                 tabla
PosicionDrentante = Table[ NEdos - NZigzag + i , {i, 1, NZigzag, 1}];
                  tabla
PosicionFuente = Table [ Round[{PosicionFuente[[i]], PosicionFuente[[i]]}] ,
                tabla
                         entero más próximo
   {i, 1, Length[PosicionFuente], 1}];
         longitud
(* Genera las posiciones correspondientes a la matriz *)
PosicionDrentante = Table [ Round[{PosicionDrentante[[i]], PosicionDrentante[[i]]}] ,
                   tabla
                            entero más próximo
   {i, 1, Length[PosicionDrentante], 1}];
         longitud
(* Matrices de Autoenergías *)
   matrices
SigmaFuente = -i * tF *
   SparseArray[{ PosicionFuente → Table[1., {i, 1, Length[PosicionFuente], 1}]
   array disperso
                                                    longitud
    {NEdos, NEdos}];
SigmaDrenante = -i * tD * SparseArray[{
                                       PosicionDrentante →
                       array disperso
      Table[1., {i, 1, Length[PosicionDrentante], 1}] }, {NEdos, NEdos}];
      tabla
                       longitud
tF = 1.;
tD = 1.;
t1 = 1.;
```



```
número i
eval[[1]];
EdoBase = evec[[1]];
(* I_i = i * (e/h) * 2 * \pi * (H Gn - Gn H) Notacion: b_{n+1}^{\dagger} b_n \{n; ...\} =
```

```
\sqrt{1}\sqrt{0+1}\{0,\ldots,0,1-1,0+1,\ldots,0;\ldots\} = \{n+1;\ldots\} *
(HEdoBase - SigmaFuente - SigmaDrenante) * GnMatrizDensidad // MatrixForm;
                                                                        forma de matriz
GnMatrizDensidad = Table[ Table[
                     tabla
     Conjugate[ EdoBase[[j]] ] * EdoBase[[i]] , {i, 1, NEdos, 1}] , {j, 1, NEdos, 1}];
     conjugado
GnMatrizDensidad // MatrixForm;
                       forma de matriz
IOperador = i * ( (HEdoBase + SigmaDrenante) * GnMatrizDensidad +
      GnMatrizDensidad * (HEdoBase + SigmaDrenante) );
IVal = Im[IOperador];
      parte imaginaria
IVal // MatrixForm
        forma de matriz
ILocalY = Table
                   Table [-IVal[[il, (jl-1) * NZigzag + Mod[il-1, NZigzag, 1]]] +
          tabla
                     tabla
                                                                 operación módulo
      IVal[[il, (jl-1) * NZigzag + Mod[il+1, NZigzag, 1]]],
                                      operación módulo
     \{il, 1 + (jl - 1) * NZigzag, jl * NZigzag, 1\}, \{jl, 1, NArmchair, 1\};
ILocalY = Flatten[ ILocalY];
          aplana
ILocalX = Join[ Table[ IVal[[il, il + NZigzag]] ,
           junta
     \{il, 1, NZigzag * (NArmchair - 1), 1\} ], Table[0., {jl, 1, NZigzag, 1}] ];
ILocal =
                \left\{ \begin{array}{ll} \textbf{1. + IntegerPart} \left[ \begin{array}{ll} \left( \textbf{i - 1} \right) / \left( \textbf{NZigzag} \right) \end{array} \right], & \textbf{Mod[i, NZigzag, 1.]} \\ & | \text{parte entera} \end{array} \right\} , 
     {ILocalX[[i]], ILocalY[[i]]} }, {i, 1, NEdos, 1.}];
ListVectorPlot[ ILocal , ImageSize → Large, VectorColorFunction → "Rainbow",
VectorPoints → 10, VectorScale → 0.08, PlotLegends → Automatic]
número de puntos de ve· escala de vector
                                           leyendas de rep··· automático
ListStreamPlot[ ILocal , ImageSize → Large, VectorColorFunction → "Rainbow",
                               I tamaño de i··· I grande I función de color de vector
renresentación de fluio de lista
```

Frebresettración de trajo de tista

Liamano de i Egrande Endicion de color de vector

VectorPoints → 10, VectorScale → 0.08, PlotLegends → Automatic]

escala de vector leyendas de rep··· automático

Clear[En]

borra

(0.	0.00140666	0.	0.	0.	0.	0.	0.
0.00140666	0.	0.00368269	0.	0.	0.	0.	0.
0.00140000	0.00368269	0.00308203	0.00595872	0.	0.	0. 0.	0.
0.	0.	0.00595872	0.00393872	0.00736538	0. 0.	0. 0.	0.
0. 0.	0. 0.	0.00393672	0.00736538	0.00730338	0.00736538	0. 0.	0.
0. 0.	0. 0.	0. 0.	0.00730338	0.00736538	0.	0.00595872	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0.	0.00595872	0.00393672	0.00368269
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.00595872	0.00368269	0.00368265
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.	0.00140666
0.00177152	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.
0.001//132	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.
0. 0.	0.	0.0121422	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0.0121422	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0.0185516	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0.0183310	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.0121422	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.0121422	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0.
0. 0.	0. 0.	0. 0.	0. 0.	0.	0.	0. 0.	0.
0. 0.	0.	0. 0.	0. 0.	0.	0.	0.	0.
0. 0.	0.	0. 0.	0.	0.	0.	0.	0.
0. 0.	0.	0. 0.	0. 0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
ø.	0.	ø.	ø.	0.	0.	ø.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
1							

0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.


```
(∗ Con Green obtendremos observables en función de la energía ∗)
EnMin = -4.;
EnMax = 4.;
NEnPuntos = 501.;
DEn = Abs[EnMax - EnMin] / (NEnPuntos - 1.);
     valor absoluto
EnergiasValores = Table [ (i) , {i, EnMin, EnMax, DEn} ];
Energia = Table [ (i) * IdentityMatrix[ Round[NEdos] ] , {i, EnMin, EnMax, DEn} ];
                      matriz identidad entero más próximo
(*Broadening Matrix*)
GammaFuente = i * ( SigmaFuente - ConjugateTranspose[ SigmaFuente ]);
                              transpuesto conjugado
GammaDrenante = i * ( SigmaDrenante - ConjugateTranspose[ SigmaDrenante ]);
                                  transpuesto conjugado
(*Funcion de Green del Nanosistema*)
            verde
FGreen = Table[ Inverse[
        tabla
                matriz inversa
    Energia [[i]] - HEdoBase - SigmaFuente - SigmaDrenante ] , {i, 1, NEnPuntos, 1}];
(*Funcion de Transmision*)
Print[ Style["Función de Transmisión", 18, Bold, Purple]
escribe estilo
                                         negrita púrpura
FTranmision =
            \{ EnMin + DEn * (i-1), Tr[GammaDrenante. FGreen[[i]].GammaFuente. \} \}
  Table[
                                      traza
      transpuesto conjugado
```

```
ListPlot[ FTranmision , PlotStyle → {{PointSize[0.01], Red}},
representación de lista
                           estilo de represe··· tamaño de punto
 LabelStyle → {14, Black}, AxesLabel → {"E", "T(E)"}, ImageSize → Large, Joined → True]
estilo de etiqueta | negro | etiqueta de ejes | númer··· | tamaño de i··· | grande | unido | verdade
(*Función Espectral*)
A = Table
    tabla
   i* ( FGreen[[i]] - ConjugateTranspose[ FGreen[[i]] ] ) , {i, 1, NEnPuntos, 1}];
                         transpuesto conjugado
(*DOS: Densidad de Estados*)
Print[ Style["DOS", 18, Bold, Purple]
escribe estilo
                          negrita púrpura
DOS = Table
       tabla
   { EnMin + DEn * (i - 1) , Re[ Tr[A[[i]]] / (2 * \pi) } , {i, 1, NEnPuntos, 1}];
                                 par traza
ListPlot[ DOS , PlotStyle → {{PointSize[0.01], Red}}, LabelStyle → {14, Black},
representación de lista estilo de represe··· tamaño de punto
                                                   rojo estilo de etiqueta
 AxesLabel → {"E", "DOS(E)"}, ImageSize → Large, Joined → True]
etiqueta de ejes | número e | núme··· | tamaño de i··· | grande | unido | verdadero
(*LDOS: Densidad Local de Estados*)
Print[ Style["LDOS", 18, Bold, Purple] ]
escribe
        estilo
                            negrita púrpura
                      Re[Diagonal[A[[i]]]/(2*\pi)], {i, 1, NEnPuntos, 1}];
LDOS =
        Table
        tabla
                      pa... diagonal
(*Los elementos de la Diagonal de A *)
                        diagonal
                                        \{EnMin + DEn * (i-1), LDOS[[i,j]]\},
LDOSSitios = Table
                             Table
                             tabla
     \{i, 1, NEnPuntos, 1\} , \{j, 1, NEdos, 1\};
ListPlot[ LDOSSitios , PlotStyle → {{PointSize[0.012], Blue},
representación de lista
                           estilo de represe·· tamaño de punto azul
    {PointSize[0.015], Red}, {PointSize[0.01], Green}, {PointSize[0.006], Orange},
                     rojo
                              tamaño de punto
                                                 verde
                                                           tamaño de punto
    \{PointSize [0.003], Yellow\}, \{PointSize [0.008], Pink\}\}, LabelStyle \rightarrow \{14, Black\}, \{PointSize [0.008], Pink\}\}, LabelStyle \rightarrow \{14, Black\}, \{PointSize [0.008], Pink\}\}
    tamaño de punto amarillo tamaño de punto rosa estilo de etiqueta negro
 AxesLabel → {"E", "LDOS(E)"}, ImageSize → Large, Joined → True]
               Inúmero e Inúme... I tamaño de i... I grande I unido I verdadero
```

Endine Eramano de l'Egrande Edindo Lveruauero

Función de Transmisión

Ε

2

-2

EnergiasValores

```
\{-4., -3.984, -3.968, -3.952, -3.936, -3.92, -3.904, -3.888, -3.872, -3.856, -3.84,
-3.824, -3.808, -3.792, -3.776, -3.76, -3.744, -3.728, -3.712, -3.696, -3.68, -3.664,
-3.648, -3.632, -3.616, -3.6, -3.584, -3.568, -3.552, -3.536, -3.52, -3.504, -3.488,
-3.472, -3.456, -3.444, -3.424, -3.408, -3.392, -3.376, -3.36, -3.344, -3.328, -3.312,
-3.296, -3.28, -3.264, -3.248, -3.232, -3.216, -3.2, -3.184, -3.168, -3.152, -3.136,
-3.12, -3.104, -3.088, -3.072, -3.056, -3.04, -3.024, -3.008, -2.992, -2.976,
-2.96, -2.944, -2.928, -2.912, -2.896, -2.88, -2.864, -2.848, -2.832, -2.816, -2.8,
-2.784, -2.768, -2.752, -2.736, -2.72, -2.704, -2.688, -2.672, -2.656, -2.64,
-2.624, -2.608, -2.592, -2.576, -2.56, -2.544, -2.528, -2.512, -2.496, -2.48,
-2.464, -2.448, -2.432, -2.416, -2.4, -2.384, -2.368, -2.352, -2.336, -2.32, -2.304,
-2.288, -2.272, -2.256, -2.24, -2.224, -2.208, -2.192, -2.176, -2.16, -2.144,
-2.128, -2.112, -2.096, -2.08, -2.064, -2.048, -2.032, -2.016, -2., -1.984, -1.968,
-1.952, -1.936, -1.92, -1.904, -1.888, -1.872, -1.856, -1.84, -1.824, -1.808,
-1.792, -1.776, -1.76, -1.744, -1.728, -1.712, -1.696, -1.68, -1.664, -1.648,
-1.632, -1.616, -1.6, -1.584, -1.568, -1.552, -1.536, -1.52, -1.504, -1.488, -1.472,
-1.456, -1.44, -1.424, -1.408, -1.392, -1.376, -1.36, -1.344, -1.328, -1.312,
-1.296, -1.28, -1.264, -1.248, -1.232, -1.216, -1.2, -1.184, -1.168, -1.152, -1.136,
-1.12, -1.104, -1.088, -1.072, -1.056, -1.04, -1.024, -1.008, -0.992, -0.976,
-0.96, -0.944, -0.928, -0.912, -0.896, -0.88, -0.864, -0.848, -0.832, -0.816, -0.8,
-0.784, -0.768, -0.752, -0.736, -0.72, -0.704, -0.688, -0.672, -0.656, -0.64,
-0.624, -0.608, -0.592, -0.576, -0.56, -0.544, -0.528, -0.512, -0.496, -0.48, -0.464,
-0.448, -0.432, -0.416, -0.4, -0.384, -0.368, -0.352, -0.336, -0.32, -0.304, -0.288,
-0.272, -0.256, -0.24, -0.224, -0.208, -0.192, -0.176, -0.16, -0.144, -0.128, -0.112,
-0.096, -0.08, -0.064, -0.048, -0.032, -0.016, 0.0016, 0.032, 0.048, 0.064, 0.08,
0.096, 0.112, 0.128, 0.144, 0.16, 0.176, 0.192, 0.208, 0.224, 0.24, 0.256, 0.272, 0.288,
0.304, 0.32, 0.336, 0.352, 0.368, 0.384, 0.4, 0.416, 0.432, 0.448, 0.464, 0.48, 0.496,
0.512, 0.528, 0.544, 0.56, 0.576, 0.592, 0.608, 0.624, 0.64, 0.656, 0.672, 0.688, 0.704,
0.72, 0.736, 0.752, 0.768, 0.784, 0.8, 0.816, 0.832, 0.848, 0.864, 0.88, 0.896, 0.912,
0.928, 0.944, 0.96, 0.976, 0.992, 1.008, 1.024, 1.04, 1.056, 1.072, 1.088, 1.104, 1.12,
1.136, 1.152, 1.168, 1.184, 1.2, 1.216, 1.232, 1.248, 1.264, 1.28, 1.296, 1.312, 1.328,
1.344, 1.36, 1.376, 1.392, 1.408, 1.424, 1.44, 1.456, 1.472, 1.488, 1.504, 1.52, 1.536,
1.552, 1.568, 1.584, 1.6, 1.616, 1.632, 1.648, 1.664, 1.68, 1.696, 1.712, 1.728, 1.744,
1.76, 1.776, 1.792, 1.808, 1.824, 1.84, 1.856, 1.872, 1.888, 1.904, 1.92, 1.936, 1.952,
1.968, 1.984, 2., 2.016, 2.032, 2.048, 2.064, 2.08, 2.096, 2.112, 2.128, 2.144, 2.16,
2.176, 2.192, 2.208, 2.224, 2.24, 2.256, 2.272, 2.288, 2.304, 2.32, 2.336, 2.352, 2.368,
2.384, 2.4, 2.416, 2.432, 2.448, 2.464, 2.48, 2.496, 2.512, 2.528, 2.544, 2.56, 2.576,
2.592, 2.608, 2.624, 2.64, 2.656, 2.672, 2.688, 2.704, 2.72, 2.736, 2.752, 2.768, 2.784,
2.8, 2.816, 2.832, 2.848, 2.864, 2.88, 2.896, 2.912, 2.928, 2.944, 2.96, 2.976, 2.992,
3.008, 3.024, 3.04, 3.056, 3.072, 3.088, 3.104, 3.12, 3.136, 3.152, 3.168, 3.184, 3.2,
3.216, 3.232, 3.248, 3.264, 3.28, 3.296, 3.312, 3.328, 3.344, 3.36, 3.376, 3.392,
3.408, 3.424, 3.44, 3.456, 3.472, 3.488, 3.504, 3.52, 3.536, 3.552, 3.568, 3.584, 3.6,
3.616, 3.632, 3.648, 3.664, 3.68, 3.696, 3.712, 3.728, 3.744, 3.76, 3.776, 3.792,
3.808, 3.824, 3.84, 3.856, 3.872, 3.888, 3.904, 3.92, 3.936, 3.952, 3.968, 3.984, 4.}
```

```
(*LDOS en Espacio REAL*)
Print[ Style["LDOS", 18, Bold, Purple]
escribe estilo
                            negrita púrpura
EnVal = -1.76;
NEn = 1. + (EnVal - EnMin) / DEn;
LDOSRealMatrix =
                     Table[
                     tabla
    SparseArray[ \{\{i_, i_\} \rightarrow 0.\}, \{NZigzag, NArmchair\} , \{j, 1, NEnPuntos, 1\}];
   array disperso
Do [
        Do [
               LDOSRealMatrix[[j,
                                      Mod[i, NZigzag, 1.] ,
repite repite
                                        operación módulo
      1. + IntegerPart [(i-1)/NZigzag]] = Re[LDOS[[j, i]]],
    {i, 1, NEdos, 1.}] , {j, 1, NEnPuntos, 1}];
MatrixPlot[ LDOSRealMatrix[[NEn]] ,
representación de matriz
 PlotTheme → "Detailed", ColorFunction -> "TemperatureMap",
 tema de representación
                           función de color
 FrameLabel → {{"Largo", HoldForm["=E "] En}, {"Ancho", None}}]
                           forma sin eva⋯ número e
LDOSRealDensity =
  Table
                Table [ \{ 1. + IntegerPart [ (i-1) / NZigzag ], Mod[i, NZigzag, 1.], ] \}
                         parte entera
                                                                     operación módulo
       \text{Re}[ \ \text{LDOS} \ [[j,i]] \ ] \Big\}, \quad \{i,1,\text{NEdos},1.\} \Big] \qquad , \quad \{j,1,\text{NEnPuntos},1\} \Big]; 
      parte real
ListDensityPlot[ LDOSRealDensity[[NEn]] ,
representación de densidad de lista
 FrameLabel → {{"Ancho", StringTemplate["E = `1` t"][En]}, {"Largo", None}},
                                                                              ninguno
 etiqueta de marco
                           plantilla de cadena ··· número e
 ImageSize → Large, ColorFunction → "Rainbow", InterpolationOrder → 1,
              grande función de color
                                         orden de interpolación
 MaxPlotPoints \rightarrow 50, Mesh \rightarrow {6, 7}, PlotLegends \rightarrow Automatic]
 máximo número de punto·· malla
                                      leyendas de rep··· automático
ListContourPlot[ LDOSRealDensity[[NEn]] ,
representación de contornos de lista
 FrameLabel → {{"Ancho", StringTemplate["E = `1` t"][En]}, {"Largo", None}},
                           plantilla de cadena ··· número e
                                                                              ninguno
 ImageSize → Large, ColorFunction → "Rainbow", InterpolationOrder → 1,
              grande función de color
                                                   orden de interpolación
 MaxPlotPoints \rightarrow 50, Mesh \rightarrow {6, 7}, PlotLegends \rightarrow Automatic]
                                      leyendas de rep··· automático
```

LDOS


```
(****** ----- Corriente ----- *********)
Print[ Style["Corriente Total", 18, Bold, Purple] ]
escribe estilo
                           total
                                       negrita púrpura
fFermi2 = 1; (*Suponiendo Funciones de Fermi iguales a 1*)
SigmaDispersiva = GammaDrenante;
                                      (∗Energías de Dispersión, In-Scattering∗)
                                                                   entrada
FGreenIn =
  Table[
                FGreen[[i]] . SigmaDispersiva. ConjugateTranspose[ FGreen[[i]] ]
  tabla
                                                 transpuesto conjugado
                               (∗Funcion de Green de Dispersión∗)
   {i, 1, NEnPuntos, 1}];
                                             verde
                      Im[ 2 * FGreenIn[[i]] * fFermi2 ] , {i, 1, NEnPuntos, 1}];
IVal = Table[
        tabla
                      parte imaginaria
(*Matrices con los valores de las corrientes*)
ITotal = Table[
   \left\{ \text{EnMin} + \text{DEn} * (i-1), \text{Tr[IVal[[i]]]} \right\}, \left\{ i, 1, \text{NEnPuntos, 1} \right\};
(*Corriente Total en Función de la Energía: Unidades (h/e)*)
             total
ListPlot[ ITotal , PlotStyle → {{PointSize[0.0065], Red}},
                      estilo de represe··· tamaño de punto
 LabelStyle \rightarrow \{14, Black\}, AxesLabel \rightarrow \{"E", "I [h/e]"\}, ImageSize \rightarrow Large]
                    lnegro letiqueta de ejes lnú··· lnúmero i ltamaño de i··· lgrande
```

Corriente Total

EnergiasValores

```
\{-4., -3.984, -3.968, -3.952, -3.936, -3.92, -3.904, -3.888, -3.872, -3.856, -3.84,
-3.824, -3.808, -3.792, -3.776, -3.76, -3.744, -3.728, -3.712, -3.696, -3.68, -3.664,
-3.648, -3.632, -3.616, -3.6, -3.584, -3.568, -3.552, -3.536, -3.52, -3.504, -3.488,
-3.472, -3.456, -3.444, -3.424, -3.408, -3.392, -3.376, -3.36, -3.344, -3.328, -3.312,
-3.296, -3.28, -3.264, -3.248, -3.232, -3.216, -3.2, -3.184, -3.168, -3.152, -3.136,
-3.12, -3.104, -3.088, -3.072, -3.056, -3.04, -3.024, -3.008, -2.992, -2.976,
-2.96, -2.944, -2.928, -2.912, -2.896, -2.88, -2.864, -2.848, -2.832, -2.816, -2.8,
-2.784, -2.768, -2.752, -2.736, -2.72, -2.704, -2.688, -2.672, -2.656, -2.64,
-2.624, -2.608, -2.592, -2.576, -2.56, -2.544, -2.528, -2.512, -2.496, -2.48,
-2.464, -2.448, -2.432, -2.416, -2.4, -2.384, -2.368, -2.352, -2.336, -2.32, -2.304,
-2.288, -2.272, -2.256, -2.24, -2.224, -2.208, -2.192, -2.176, -2.16, -2.144,
-2.128, -2.112, -2.096, -2.08, -2.064, -2.048, -2.032, -2.016, -2., -1.984, -1.968,
-1.952, -1.936, -1.92, -1.904, -1.888, -1.872, -1.856, -1.84, -1.824, -1.808,
-1.792, -1.776, -1.76, -1.744, -1.728, -1.712, -1.696, -1.68, -1.664, -1.648,
-1.632, -1.616, -1.6, -1.584, -1.568, -1.552, -1.536, -1.52, -1.504, -1.488, -1.472,
-1.456, -1.44, -1.424, -1.408, -1.392, -1.376, -1.36, -1.344, -1.328, -1.312,
-1.296, -1.28, -1.264, -1.248, -1.232, -1.216, -1.2, -1.184, -1.168, -1.152, -1.136,
-1.12, -1.104, -1.088, -1.072, -1.056, -1.04, -1.024, -1.008, -0.992, -0.976,
-0.96, -0.944, -0.928, -0.912, -0.896, -0.88, -0.864, -0.848, -0.832, -0.816, -0.8,
-0.784, -0.768, -0.752, -0.736, -0.72, -0.704, -0.688, -0.672, -0.656, -0.64,
-0.624, -0.608, -0.592, -0.576, -0.56, -0.544, -0.528, -0.512, -0.496, -0.48, -0.464,
-0.448, -0.432, -0.416, -0.4, -0.384, -0.368, -0.352, -0.336, -0.32, -0.304, -0.288,
-0.272, -0.256, -0.24, -0.224, -0.208, -0.192, -0.176, -0.16, -0.144, -0.128, -0.112,
-0.096, -0.08, -0.064, -0.048, -0.032, -0.016, 0.0016, 0.032, 0.048, 0.064, 0.08,
0.096, 0.112, 0.128, 0.144, 0.16, 0.176, 0.192, 0.208, 0.224, 0.24, 0.256, 0.272, 0.288,
0.304, 0.32, 0.336, 0.352, 0.368, 0.384, 0.4, 0.416, 0.432, 0.448, 0.464, 0.48, 0.496,
0.512, 0.528, 0.544, 0.56, 0.576, 0.592, 0.608, 0.624, 0.64, 0.656, 0.672, 0.688, 0.704,
0.72, 0.736, 0.752, 0.768, 0.784, 0.8, 0.816, 0.832, 0.848, 0.864, 0.88, 0.896, 0.912,
0.928, 0.944, 0.96, 0.976, 0.992, 1.008, 1.024, 1.04, 1.056, 1.072, 1.088, 1.104, 1.12,
1.136, 1.152, 1.168, 1.184, 1.2, 1.216, 1.232, 1.248, 1.264, 1.28, 1.296, 1.312, 1.328,
1.344, 1.36, 1.376, 1.392, 1.408, 1.424, 1.44, 1.456, 1.472, 1.488, 1.504, 1.52, 1.536,
1.552, 1.568, 1.584, 1.6, 1.616, 1.632, 1.648, 1.664, 1.68, 1.696, 1.712, 1.728, 1.744,
1.76, 1.776, 1.792, 1.808, 1.824, 1.84, 1.856, 1.872, 1.888, 1.904, 1.92, 1.936, 1.952,
1.968, 1.984, 2., 2.016, 2.032, 2.048, 2.064, 2.08, 2.096, 2.112, 2.128, 2.144, 2.16,
2.176, 2.192, 2.208, 2.224, 2.24, 2.256, 2.272, 2.288, 2.304, 2.32, 2.336, 2.352, 2.368,
2.384, 2.4, 2.416, 2.432, 2.448, 2.464, 2.48, 2.496, 2.512, 2.528, 2.544, 2.56, 2.576,
2.592, 2.608, 2.624, 2.64, 2.656, 2.672, 2.688, 2.704, 2.72, 2.736, 2.752, 2.768, 2.784,
2.8, 2.816, 2.832, 2.848, 2.864, 2.88, 2.896, 2.912, 2.928, 2.944, 2.96, 2.976, 2.992,
3.008, 3.024, 3.04, 3.056, 3.072, 3.088, 3.104, 3.12, 3.136, 3.152, 3.168, 3.184, 3.2,
3.216, 3.232, 3.248, 3.264, 3.28, 3.296, 3.312, 3.328, 3.344, 3.36, 3.376, 3.392,
3.408, 3.424, 3.44, 3.456, 3.472, 3.488, 3.504, 3.52, 3.536, 3.552, 3.568, 3.584, 3.6,
3.616, 3.632, 3.648, 3.664, 3.68, 3.696, 3.712, 3.728, 3.744, 3.76, 3.776, 3.792,
3.808, 3.824, 3.84, 3.856, 3.872, 3.888, 3.904, 3.92, 3.936, 3.952, 3.968, 3.984, 4.}
```

```
(*Corriente LOCAL*)
EnVal = -1.76;
NEn = 1. + (EnVal - EnMin) / DEn;
IVal[[ NEn ]] // MatrixForm;
                  forma de matriz
ILocalY = Table[
                    Table [-IVal[[NEn, il, (jl-1) * NZigzag + Mod[il-1, NZigzag, 1]]] +
                                                                  operación módulo
     IVal[[NEn, il, (jl-1) * NZigzag + Mod[il+1, NZigzag, 1]]],
                                        operación módulo
     \{il, 1 + (jl - 1) * NZigzag, jl * NZigzag, 1\}, \{jl, 1, NArmchair, 1\};
ILocalY = Flatten[ILocalY];
         aplana
ILocalX = Join[ Table[ IVal[[NEn, il, il + NZigzag]] ,
     {il, 1, NZigzag * (NArmchair - 1), 1} ], Table[0., {jl, 1, NZigzag, 1}] ];
ILocal =
              \{ 1. + IntegerPart[ (i-1) / (NZigzag) ], Mod[i, NZigzag, 1.] \} ,
  Table [ {
  tabla
     {ILocalX[[i]], ILocalY[[i]]} }, {i, 1, NEdos, 1.}];
ListVectorPlot[ ILocal , ImageSize → Large, VectorColorFunction → "Rainbow",
                            tamaño de i··· grande función de color de vector
representación vectorial de lista
 VectorPoints → 10, VectorScale → 0.08, PlotLegends → Automatic]
                     escala de vector
                                         leyendas de rep··· automático
ListStreamPlot[ ILocal , ImageSize → Large, VectorColorFunction → "Rainbow",
                             tamaño de i··· grande función de color de vector
 VectorPoints → 10, VectorScale → 0.08, PlotLegends → Automatic]
                     escala de vector
                                         leyendas de rep··· automático
```


