BLOKI FUNKCJONALNE

KOMBINACYJNE

SEKWENCYJNE

PAMIĘCI

UKŁADY ARYTMETYCZNO -LOGICZNE UKŁADY KOMUTACYJNE

REJESTRY

LICZNIKI

ROM

RAM

SUMATOR ALU KOMPARATOR MULTIPLEKSER
DEMULTIPLEKSER
DEKODER
KODER
TRANSKODER
MAGISTRALA

SISO SIPO PISO PIPO SZEREGOWE RÓWNOLEGŁE

ROM PROM EPROM EEPROM DRAM SRAM

Uklad kombinacyjny Y = f (X,S) Uklad sekwencyjny Y= f_s (Y,X)

MULTIPLEKSERY – PO CO?

Multiplekser służy do wybierania jednego z wielu słów wejściowych i przesyłania go na wyjście. Na wyjściu Y pojawia się słowo wejściowe wskazane adresem A (wg naturalnego kodu binarnego).

Demultiplekser służy do przesyłania słowa wejściowego na jedno z wielu wyjść; numer tego wyjścia jest równy aktualnej wartości adresu.

MULTIPLEKSER I JEGO SCHEMAT ZASTĘPCZY

Multiplekser

Demultiplekser

Multiplekser kaskadowy

Multiplekser grupowy

Uklad '151

- multiplekser 8 na 1
 (3 wejscia adresowe 8 wejsc informacyjnych)
- wyjscie wprost i zanegowane
- wejscie "Enable" (strobujace)
- W ofercie wersje:

 -LS -HC -F -HCT –ACT –LVQ
 ceny od 0,18 do 1 USD

	Wyj- ście			
D	С	В	A	F
0 0 0 0 0 0 0 1 1 1	0	0	0	0
0	0 0	0	1	0
0	0	1	0 1 0	0 0 0
0	0	1	1	1
0	0			1
0	1	0	0	0
0	1	1	0	0 0
0		1	1	
7	0		1 0 1	1 1
1	0	0 0	1	
1	1 0 0 0 0	1	0	0 0 1
7	0	1		7
1	1	0	1 0	0
1	1	0 1 1	1	0
1	1	1	0	1
1	1	1	1	1

Przy pomocy multipleksera zrealizowac kazda funkcje logiczna jezeli liczba argumentów funkcji równa jest liczbie wejsc adresowych multipleksera

Postac kanoniczna !!!

	INPUTS					
Ē	s	nl ₀	nl ₁	nY		
Н	Х	Х	Х	L		
L	L	Lya	X	L		
L	L	Н	X	Н		
Ĺ	Н	X	L	L		
L	Н	X	Н	Н		

Układ '157

- •Poczwórny multiplekser 2 na 1 (1 wspólne wejście adresowe 4x2 wejścia informacyjne
- •Wejście "*Enable*" sterujące

DEMULTIPLEKSER '138

Układ '138

•3 na 8 dekoder demultiplekser

		INP	UTS										
	ENABLE		0=	ADDRES	S	1			OUT	PUTS			
E3	E2	E1	A2	A1	A0	Υ0	YT	Y2	A3	Y4	Y5	Υ6	Y 7
Х	Х	Н	Х	Х	Х	Н	Н	Н	H	Н	Н	Н	Н
L	Х	Х	Х	Х	Х	н	Н	Н	н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	H	Н	Н	Н	H	Н
Н	La	°Es	E	L	L	L	Н	Ĥ	Н	Н	Н	H	H
Н	L	L	L	L	Н	Н	L	Н	Н	H.	Н	H	Э
Н	L	L	L	Н	L	Н	Н	L	н	Н	Н	Н	Н
Н	L	L	L	Н	н	Н	Н	Н	L	Н	Н	Н	Н

DEKODERY, KONWERTERY KODÓW

KODER – konwertuje kod "1 z N" na BCD

DEKODER – konwertuje kod BCD na "1 z N"

	NKB (8421)	Aikena (2421)	XS3	1 z 10	abcdefg
0	0000	0000	0011	0000000001	1111110
1	0001	0001	0100	000000010	0110000
2	0010	0010	0101	000000100	1101101
3	0011	0011	0110	0000001000	1111001
4	0100	0100	0111	0000010000	0110011
5	0101	1011	1000	0000100000	1011011
6	0110	1100	1001	0001000000	1011111
7	0111	1101	1010	0010000000	1110010
8	1000	1110	1011	0100000000	1111111
9	1001	1111	1100	1000000000	1111011

KODER 1 z 10 na NKB

	1 z 10	NKB (8421)
	\mathbf{y}_9 \mathbf{y}_0	$\mathbf{b}_3\mathbf{b}_2\mathbf{b}_1\mathbf{b}_0$
0	000000001	0000
1	000000010	0001
2	000000100	0010
3	0000001000	0011
4	0000010000	0100
5	0000100000	0101
6	0001000000	0110
7	0010000000	0111
8	0100000000	1000
9	1000000000	1001

RÓWNANIA KODERA:

$$b_0 = y_1 + y_3 + y_5 + y_7 + y_9$$

$$b_1 = y_2 + y_3 + y_6 + y_7$$

$$b_2 = y_4 + y_5 + y_6 + y_7$$

$$b_3 = y_8 + y_9$$

DEKODER NKB na 1 z 10

	NKB (8421)	1 z 10
	$\mathbf{b_3}\mathbf{b_2}\mathbf{b_1}\mathbf{b_0}$	y ₉ y ₀
0	0000	000000001
1	0001	000000010
2	0010	000000100
3	0011	0000001000
4	0100	0000010000
5	0101	0000100000
6	0110	0001000000
7	0111	0010000000
8	1000	0100000000
9	1001	100000000

DEKODER:

- 1. <u>Odrzucający</u> fałszywe kombinacje wejściowe
 - Równania wprost z tabelki zerojedynkowej.
- 2. <u>Nieodrzucający</u> fałszywych kombinacji wejściowych

Tabela Karnaugha, prostsze równania.

1. DEKODER odrzucajacy fałszywe kombinacje wejściowe

$$y_0 = \overline{b_3} \overline{b_2} \overline{b_1} \overline{b_0} \qquad y_4 = \overline{b_3} b_2 \overline{b_1} \overline{b_0}$$

$$y_1 = \overline{b_3} \overline{b_2} \overline{b_1} b_0 \qquad y_5 = \overline{b_3} b_2 \overline{b_1} b_0 \qquad y_8 = b_3 \overline{b_2} \overline{b_1} \overline{b_0}$$

$$y_2 = \overline{b_3} \overline{b_2} b_1 \overline{b_0} \qquad y_6 = \overline{b_3} b_2 b_1 \overline{b_0} \qquad y_9 = b_3 \overline{b_2} \overline{b_1} b_0$$

$$y_3 = \overline{b_3} \overline{b_2} b_1 b_0 \qquad y_7 = \overline{b_3} b_2 b_1 b_0$$

1. DEKODER nieodrzucajacy fałszywych kombinacji wejściowych

$$y_0 = \overline{b_3} \overline{b_2} \overline{b_1} \overline{b_0} \qquad y_5 = b_2 \overline{b_1} b_0$$

$$y_1 = \overline{b_3} \overline{b_2} \overline{b_1} b_0 \qquad y_6 = b_2 b_1 \overline{b_0}$$

$$y_2 = \overline{b_2} b_1 \overline{b_0} \qquad y_7 = b_2 b_1 b_0$$

$$y_3 = \overline{b_2} b_1 b_0 \qquad y_8 = b_3 \overline{b_0}$$

$$y_4 = b_2 \overline{b_1} \overline{b_0} \qquad y_9 = b_3 b_0$$

KONWERTER KODU (TRANSKODER) zamiana kodu

o określonej pojemności na inny

NKB (8421) b ₃ b ₂ b ₁ b ₀	Aikena (2421) a₃ a₂ a₁ a₀
0000	0000
0001	0001
0010	0010
0011	0011
0100	0100
0101	1011
0110	1100
0111	1101
1000	1110
1001	1111

PRZYKŁAD 1:

konwerter kodu NKB na Aikena

RÓWNANIA TRANSKODERA:

$$a_{0} = b_{0}$$

$$a_{1} = b_{3} + b_{1}\overline{b_{2}} + b_{0}\overline{b_{1}}b_{2}$$

$$a_{2} = b_{3} + b_{1}b_{2} + \overline{b_{0}}b_{2}$$

$$a_{3} = b_{3} + b_{0}b_{2} + b_{1}b_{2}$$

PRZYKŁAD 2:

konwerter kodu NKB na 7-segmentowy

NKB (8421)	7-segment
$b_3 b_2 b_1 b_0$	abcdefg
0000	1111110
0001	0110000
0010	1101101
0011	1111001
0100	0110011 /
0101	1011011
0110	1011111
0111	1110010
1000	1111111
1001	1111011

(b_1b_0)								
(b_3b_2)	00	01	11	10_				
00	0	0	1	1				
01	1	1	0	1				
11	<u> </u>	_	_	-				
10	1	1	_	_				

b g

RÓWNANIA TRANSKODERA:

$$b = \overline{b_2} + \overline{b_0}\overline{b_1} + b_0b_1$$

$$g = b_3 + \overline{b_1}b_2 + \overline{b_0}b_1 + b_1\overline{b_2}$$

UKŁADY ARYTMETYCZNE

(sumatory, akumulatory i komparatory)

Podział sumatorów:

- •dwójkowe
- •dziesiętne (na liczbach dziesiętnych zakodowanych binarnie)

Inny podział:

- •szeregowe
- •równoległe
- •szeregowo równoległe

Akumulator:

sumator, w którym następuje dodanie liczby wprowadzanej na wejście do jego aktualnej zawartości (do budowy wykorzystuje się sumatory i elementy pamięci)

Wprowadzanie informacji do akumulatora:

- •równolegle
- •szeregowo

Komparatory:

służą do porównywania liczb binarnych

Najprostszy sumator – ripple carry adder

$$y = cab \lor c\overline{a}\overline{b} \lor \overline{c}ab \lor \overline{c}a\overline{b} = c(\overline{a \oplus b}) \lor \overline{c}(a \oplus b)$$

$$y = c \oplus a \oplus b$$
ab
c
00 01 11 10
0 0 0 1 0
1 0 1 11 1

$$c_o = ab \lor c(a \lor b) = ab \lor c(a \oplus b)$$

ZASTOSOWANIA - ALU

Jednostka arytmetyczno-logiczna

Arytmometr (układ wykonawczy: mikrokontrolera, procesora sygnałowego)

Inne układy arytmetyczne:

układy mnożące układy kryptograficzne

...są budowane z sumatorów

	M = 1	M = 0			
	Funkcje	Funkcje arytmetyczne			
S3 S2 S1 S0	logiczne	$C_n = 0$	$C_n = 1$		
0 0 0 0	Ā	A - 1	A		
0 0 0 1	$\overline{A \wedge B}$	AB - 1	AB		
0 0 1 0	Ā+B	A B -1	Α Β		
0 0 1 1	1	-1	0		
0 1 0 0	$\overline{A \vee B}$	$A + (A \vee \overline{B})$	$A + (A \vee \overline{B}) + 1$		
0 1 0 1	B	$AB + (A \vee \overline{B})$	$AB+(A\vee \overline{B})+1$		
0 1 1 0	$\overline{A \oplus B}$	A - B - 1	$(A \vee \overline{B})+1$		
0 1 1 1	$A + \overline{B}$	$A + \overline{B}$	A - B		
1 0 0 0	ĀВ	$A + (A \lor B)$	$(A \vee \overline{B})+1$		
1 0 0 1	A⊕B	A + B	$A + (A \lor B) + 1$		
1 0 1 0	В	$A\overline{B} + (A \vee B)$	$A\overline{B} + (A \vee B) + 1$		
1 0 1 1	$A \vee B$	$A \vee B$	(A ∨ B)+1		
1 1 0 0	0	A	A + A + 1		
1 1 0 1	Α Β	AB + A	AB + A + 1		
1 1 1 0	AB	$A\overline{B}+A$	AB+A+1		
1 1 1 1	A	A	A + 1		

MAGISTRALE (SZYNY)

Budowane z elementów trójstanowych

Bramka trójstanowa

Łączenie bramek

Szyna zbudowana z bram trójstanowych sterowanych dekoderem

