Homework 08

Duplicate this Jupyter Notebook in your week-10 folder (right-click -> Duplicate) and then add your last name to the beginning of it (ie. blevins-hw-08.ipynb - otherwise you risk having all your work overwritten when you try to sync your GitHub repository with your instructor's repository.

Overview

In this assignment, you'll synthesize some of the Python skills you've learned over the past month or so, including Pandas and Plotly. You'll be analyzing the opening of new businesses in Colorado during the 1940s.

Draw on the following tutorials:

- Walsh, Pandas Basics Part 1
- Malsh, Pandas Basics Part 2
- Malsh, Pandas Basics Part 3
- Pandas Concepts
- Introduction to Plotly
- Eleaning Excel Files

The Data

First, get the necessary data files from our shared course repository:

- Open GitHub Desktop and select your course repository (lastname-sp25-data-materials)
- Click Fetch origin to check for updates
- Go to Branch → Merge into current branch → select upstream/main ->
 Merge
- Click Push origin to sync everything up
- Launch Jupyter Lab and navigate to the week–10 folder

You should see a single Excel file that you will be working with: co-new-businesses-1940s.xlsx. Inside that Excel file, there are two separate sheets: New CO Businesses and Cities 1940.

• New CO Businesses: This is a subset of new businesses that were established in Colorado during the 1940s - a subset of data drawn from this database.

• Cities 1940: this contains population statistics for Colorado cities in the 1940 Census.

Import Libraries and Load Data

- Import the necessary libraries:
 - pandas (using the alias pd)
 - plotly.express (using the alias px)

```
In [7]: import pandas as pd
import plotly.express as px
```

- · Load both sheets from the Excel file:
 - Create a variable called businesses_df to store the "New CO Businesses"
 sheet in the Excel file
 - Create a variable called cities_df to store the "Cities 1940" sheet in the
 Excel file
 - Use pd.read_excel() with the appropriate parameters

```
In [9]: businesses_df = pd.read_excel('co-new-businesses-1940s.xlsx', sheet_name='Necities_df = pd.read_excel('co-new-businesses-1940s.xlsx', sheet_name='Cities_df')
```

Familiarize Yourself with the Data

Familiarize yourself with the data:

- Display a sample of 10 rows from each dataframe.
- Check the data types for the columns in each dataframe

```
In [11]: print(businesses_df.sample(10))
    print(cities_df.sample(10))

    print(businesses_df.columns)
    print(cities_df.columns)
```

```
entityid
                                              Business entity name
97
     19871050689
                         CHRISTIAN FIDELITY LIFE INSURANCE COMPANY
518
    19871110768
                                        BONNIE BRAE BAPTIST CHURCH
344
    19871001208
                                             ST. MARY CREDIT UNION
    19871193754
                 NATIONAL ASSOCIATION OF INSURANCE WOMEN (INTER...
792
                  THE MEDICAL PROTECTIVE COMPANY, Delinquent May...
138
    19871009642
862
    19871277982
                                    GREAT WESTERN INORGANICS, INC.
133
    19871008589
                             SOUTHERN STATES LIFE INSURANCE COMPANY
                 HALLIBURTON ENERGY SERVICES, INC., Delinquent ...
13
     19871030120
                    MEMORIAL HOSPITAL, Dissolved December 29, 1972
317 19461110447
297
    19871152159
                 THE UNITED PRESBYTERIAN CHURCH OF TRINIDAD, CO...
                                                 zip code Country \
                      Address
                                     city state
97
     2721 North Central Avenue
                                  Phoenix
                                             ΑZ
                                                      NaN
                                                               US
518
          700 BONNIE BRAE BLVD
                                             C0
                                                  80209.0
                                                               US
                                   DENVER
344
                   116 E 6thSt
                               Walsenburg
                                             C0
                                                  81089.0
                                                               US
792
      1 Glenlake Pkwy Ste 1200
                                  Atlanta
                                             GA
                                                  30328.0
                                                               US
138
                                      NaN
                                            NaN
                                                              NaN
                          NaN
                                                      NaN
862
              17400 Highway 72
                                             C0
                                   Arvada
                                                  80007.0
                                                               US
133
                          NaN
                                      NaN
                                            NaN
                                                      NaN
                                                              NaN
13
                                                               US
     3000 N Sam Houston Pkwy E
                                  Houston
                                             TX
                                                  77032.0
317
                                      NaN
                                            NaN
                                                      NaN
                                                              NaN
                          NaN
297
             801 SAN PEDRO ST
                                  TRINIDAD
                                             C0
                                                               US
                                                  81082.0
    date entity formed
                       year entity formed
97
            1945-09-07
                                     1945
518
            1946-05-16
                                     1946
344
            1943-01-09
                                     1943
792
            1942-01-30
                                     1942
138
            1947-07-02
                                     1947
862
            1946-11-13
                                     1946
133
            1946-08-15
                                     1946
13
            1945-04-28
                                     1945
                                     1946
317
            1946-03-20
297
            1946-04-05
                                     1946
                   city
                               total population
                         year
208
                 walden
                         1940
                                            668
6
                         1940
                                            777
                   aspen
    hot sulphur springs
100
                         1940
                                            235
                                            779
22
            buena vista 1940
129
                   lyons
                         1940
                                            654
174
               red cliff
                         1940
                                            715
179
              rocky ford
                         1940
                                           3494
141
             monte vista
                         1940
                                           3208
33
                collbran 1940
                                            301
                  akron 1940
                                           1417
dtype='object')
Index(['city', 'year', 'total population'], dtype='object')
```

Data Cleaning and Preparation

Cleaning column names

For both datasets, you want to clean and standardize the column names (headers):

- Change column names to all lowercase
- Replace any whitespace with an underscore (_) ex. some column becomes
 some column
- Hint: Use str.lower() and str.replace()
- Show the first 10 rows of your dataframe to make sure it worked

```
In [13]: businesses_df.columns = [col.strip().lower().replace(' ', '_') for col in bu
cities_df.columns = [col.strip().lower().replace(' ', '_') for col in cities
print(businesses_df.head(10))
print(cities_df.head(10))
```

```
entityid
                                               business_entity_name
                                               ALAMOSA CREDIT UNION
   19871004753
   19871241137
                  THE UNITED METHODIST CHURCH OF STEAMBOAT SPRINGS
                              ALLIED JEWISH FEDERATION OF COLORADO
   19871275274
                        Iglesia CRISTO REY + Christ the King, ELCA
3
   19871127721
                    LYNCH-COTTEN POST NO. 190, THE AMERICAN LEGION
   19871117433
                         THE BEAR RIVER VALLEY FARMERS COOPERATIVE
   19871105155
   19871162072
                                              Belmar Baptist Church
                       Bethel Lutheran Church of Windsor, Colorado
7
   19871110810
  19871116977
                 BLACKINTON AND DECKER, INC., Delinquent Novemb...
   19871113871
                                               BOW-MAR OWNERS, INC.
                                                    zip code country
                address
                                       city state
0
          2437 MAIN ST
                                    ALAMOSA
                                               C0
                                                     81101.0
                                                                  US
                         STEAMBOAT SPRINGS
                                                                  US
1
            736 OAK ST
                                               C0
                                                     80487.0
2
     300 S. Dahlia St.
                                     DENVER
                                               C0
                                                     80246.0
                                                                  US
3
      2300 S Patton Ct
                                     Denver
                                               C0
                                                     80219.0
                                                                  US
4
        425 Highway 92
                                   Crawford
                                               C0
                                                     81415.0
                                                                  US
5
   193 E Jefferson Ave
                                                     81639.0
                                                                  US
                                     Hayden
                                               C0
6
      460 S Kipling St
                                   Lakewood
                                               C0
                                                     80226.0
                                                                  US
7
                                                                  US
         328 Walnut St
                                   Windsor
                                               C0
                                                     80550.0
8
             424 LIPAN
                                     DENVER
                                               C0
                                                     80204.0
                                                                  US
9
     5380 Lakeshore Dr
                                               C0
                                                                  US
                                 Littleton
                                                     80123.0
  date entity formed
                       year entity formed
0
          1945-03-27
                                      1945
                                      1949
1
          1949-03-09
2
          1946-05-23
                                      1946
3
          1945-09-06
                                      1945
4
          1949-12-30
                                      1949
5
          1940-03-22
                                      1940
          1943-08-20
                                      1943
6
7
          1946-05-24
                                      1946
8
          1946-05-20
                                      1946
9
          1948-01-12
                                      1948
       city year
                    total_population
0
      akron
             1940
                                 1417
1
    alamosa
             1940
                                5613
2
       alma
             1940
                                 469
3
   antonito
             1940
                                1220
                                 286
     arriba
             1940
5
     arvada
             1940
                                 1482
6
             1940
                                 777
      aspen
7
             1940
                                3437
     aurora
8
     basalt
             1940
                                  212
   bayfield
             1940
                                  372
```

Standardize and clean data for cities

- Standardize city names in the business data so that it removes any trailing or leading whitespace and changes the values to all lowercase (hint: use .str.strip() and .str.lower())
- Show the first 10 rows of your dataframe to make sure it worked

I wanted it to be title case so I did that

In [16]: businesses_df['city'] = businesses_df['city'].str.strip().str.title()
businesses_df.head(10)

Out[16]:		entityid	business_entity_name	address	city	state	zip_code	countr
	0	19871004753	ALAMOSA CREDIT UNION	2437 MAIN ST	Alamosa	СО	81101.0	U:
	1	19871241137	THE UNITED METHODIST CHURCH OF STEAMBOAT SPRINGS	736 OAK ST	Steamboat Springs	СО	80487.0	U
	2	19871275274	ALLIED JEWISH FEDERATION OF COLORADO	300 S. Dahlia St.	Denver	СО	80246.0	U
	3	19871127721	Iglesia CRISTO REY + Christ the King, ELCA	2300 S Patton Ct	Denver	СО	80219.0	U
	4	19871117433	LYNCH-COTTEN POST NO. 190, THE AMERICAN LEGION	425 Highway 92	Crawford	СО	81415.0	U
	5	19871105155	THE BEAR RIVER VALLEY FARMERS COOPERATIVE	193 E Jefferson Ave	Hayden	СО	81639.0	U
	6	19871162072	Belmar Baptist Church	460 S Kipling St	Lakewood	СО	80226.0	U:
	7	19871110810	Bethel Lutheran Church of Windsor, Colorado	328 Walnut St	Windsor	СО	80550.0	U
	8	19871116977	BLACKINTON AND DECKER, INC., Delinquent Novemb	424 LIPAN	Denver	СО	80204.0	U
	9	19871113871	BOW-MAR OWNERS, INC.	5380 Lakeshore Dr	Littleton	СО	80123.0	U

In [17]: #realizing I need to make the other one title case for merging purposes late
 cities_df['city'] = cities_df['city'].str.strip().str.title()
 cities_df.head(10)

Out[17]:

	city	year	total_population
0	Akron	1940	1417
1	Alamosa	1940	5613
2	Alma	1940	469
3	Antonito	1940	1220
4	Arriba	1940	286
5	Arvada	1940	1482
6	Aspen	1940	777
7	Aurora	1940	3437
8	Basalt	1940	212
9	Bayfield	1940	372

Categorize Cities

Define your function

Create a function called categorize_city_size that does the following:

- Takes in a number that corresponds to the population for a city and returns the following based on the size of the city:
 - Small Town if population is less than 1,000
 - Medium Town if population is between 1,000 to 5,000
 - Large Town if population is between 5,000 to 20,000
 - City if population greater than or equal to 20,000

Test Your Function

Test out the function on a single number (2,000) to make sure it returns Medium

Town

note below that I interpreted the question to be about inputting a city rather than population number, and when I realized the difference I figured it was good to figure out the inputting a city thing anyway

```
return 'Small Town'
elif citypop >= 1000 and citypop < 5000:
    return 'Medium Town'
elif citypop >= 5000 and citypop < 20000:
    return 'Large Town'
elif citypop >= 20000:
    return 'City'

categorize_city_size('Akron')
```

Out[22]: 'Medium Town'

Apply the function

- Take your cities_df dataframe and add a new column called city_category that applies your function to the total_population column of the dataframe.
- Hint: use apply()
- Show the first 10 rows of your dataframe to make sure it worked

```
In [24]: cities_df['city_category'] = cities_df['city'].apply(categorize_city_size)
    cities_df.head(10)
```

	cities_df.head(10)										
Out[24]:		city	year total_population		city_category						
	0	Akron	1940	1417	Medium Town						
	1	Alamosa	1940	5613	Large Town						
	2	Alma	1940	469	Small Town						
	3	Antonito	1940	1220	Medium Town						
	4	Arriba	1940	286	Small Town						
	5	Arvada	1940	1482	Medium Town						
	6	Aspen	1940	777	Small Town						
	7	Aurora	1940	3437	Medium Town						
	8	Basalt	1940	212	Small Town						

Analyze Businesses by Year

Bayfield 1940

Let's take a look at how many new businesses were formed in Colorado in each year during the 1940s:

Small Town

372

Calculate new businesses by year

Create a variable called businesses_per_year by:

- Counting the number of new businesses based on year_entity_formed
- Hint: use value_counts() and reset_index()
- Show the first 10 rows of your dataframe

```
In [26]: businesses_per_year = businesses_df['year_entity_formed'].value_counts().res
businesses_per_year.head(10)
```

Out[26]:	у	ear_entity_formed	count
(0	1947	161
	1	1948	156
2	2	1946	153
;	3	1949	133
4	4	1945	87
	5	1940	72
(6	1941	69
:	7	1943	47
8	8	1944	43
9	9	1942	35

Visualize new businesses by year

Create a bar chart using Plotly Express showing new businesses per year:

- Set x-axis to the year
- Set y-axis to the number of new businesses
- Add an appropriate title and labels
- Display text on each bar
- Hint: Use px.bar()

```
hoverlabel=dict(
    bgcolor="white",
    font_size=12,
    font_family="Arial")
)
businesses_per_year_fig.update_xaxes(type='category', categoryorder='category')
businesses_per_year_fig.show()
```

Analyze Businesses by City

Let's take a look at how many new businesses were formed in each Colorado city during the 1940s:

Calculate number of new businesses by city

Create a new variable called city_businesses that contains:

- A dataframe with counts of the number of new businesses in each city
- Hint: Use value_counts() and reset_index()
- Show the first 10 rows of your dataframe

```
In [30]: city_businesses = businesses_df['city'].value_counts().reset_index()
          city businesses.head(10)
Out[30]:
                         city count
          0
                      Denver
                                152
           1 Colorado Springs
                                 34
          2
                    Lakewood
                                 22
                       Pueblo
          3
                                 20
          4
                      Arvada
                                 14
          5
               Grand Junction
                                 14
          6
                   Fort Collins
                                 13
          7
                      Greeley
                                 13
          8
                   Centennial
                                 12
                   Englewood
                                 12
```

Visualize new businesses by city

Create a bar chart with Plotly Express showing the top 10 cities with the most new businesses created during the 1940s:

- Filter to only show the top 10 cities (hint: use _ head())
- Set x-axis to city
- Set y-axis to count
- Add an appropriate title and labels

```
In [32]: city_businesses_fig = px.bar(city_businesses.head(10), x='city', y='count',
                                          labels={'city': 'City', 'count': 'Number of
         city_businesses_fig.update_layout(
             title_text='New Businesses in Colorado in the 1940s by City', title_x=0.
             xaxis_title='City',
             yaxis title='Number of New Businesses',
             xaxis_tickangle=-45,
             height=500,
             width=800,
             title_font=dict(size=22),
             plot_bgcolor='white',
             margin=dict(l=40, r=40, t=80, b=80),
             hoverlabel=dict(
                 bgcolor="white",
                 font_size=12,
                  font_family="Arial")
```

```
city_businesses_fig.show()
```

Combine Business and City Data

We have two datasets, both of which contain information about Colorado cities. Let's combine the two into a single dataframe that contains both information about new businesses and their population in the 1940 census.

Merge dataframes

Merge the two dataframes together:

- Create a new variable called merged_df
- Use pd.merge() on the city_businesses and cities_df dataframes
- Figure out which column is shared between the two to use as your "key" to merge them
- A Note: use the how='inner' parameter for your merge
- Show the first 10 rows of your new dataframe

Out[34]:

	city	count	year	total_population	city_category
0	Denver	152	1940	322412	City
1	Colorado Springs	34	1940	36789	City
2	Pueblo	20	1940	52162	City
3	Arvada	14	1940	1482	Medium Town
4	Grand Junction	14	1940	12479	Large Town
5	Fort Collins	13	1940	12251	Large Town
6	Greeley	13	1940	15995	Large Town
7	Englewood	12	1940	9680	Large Town
8	Littleton	11	1940	2244	Medium Town
9	Aurora	10	1940	3437	Medium Town

Filter out missing values

You'll note that several rows of data contain NaN or missing values - this means that there was a city listed in the businesses dataframe but it didn't have a corresponding match in the population dataframe. For now, remove these from the merged_df dataframe:

- Filter out rows where total_population is NaN
- Hint: use a filter + _notna()

```
In [36]: merged_df['total_population'].notna().value_counts()

Out[36]: total_population
    True    113
    Name: count, dtype: int64

In [37]: city_businesses.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 243 entries, 0 to 242
Data columns (total 2 columns):
  # Column Non-Null Count Dtype
--- 0 city 243 non-null object
1 count 243 non-null int64
dtypes: int64(1), object(1)
memory usage: 3.9+ KB
```

Calculate new businesses on a per capita rate

To make it easier to compare larger cities with smaller cities, you're going to calculate a new column for each city: the number of new businesses per 1,000 residents.

- Add a new column to merged_df called biz_per_thousand that is filled with:
 - A calculation dividing the count column by the total_population column and multiplying by 1,000
- Sort the merged dataframe by biz_per_thousand in descending order
- Show the first 10 rows of the dataframe to check if it worked

```
In [39]: merged_df['biz_per_thousand'] = (merged_df['count']/merged_df['total_populat
    merged_df = merged_df.sort_values(by='biz_per_thousand', ascending=False)
    merged_df.head(10)
```

()	H.	Τ.	н	-<	u	-	
U	u	٠.	L	J	J	1	

	city	count	year	total_population	city_category	biz_per_thousand
92	Green Mountain Falls	1	1940	87	Small Town	11.494253
36	Keenesburg	3	1940	284	Small Town	10.563380
59	Bennett	2	1940	199	Small Town	10.050251
3	Arvada	14	1940	1482	Medium Town	9.446694
52	Morrison	2	1940	216	Small Town	9.259259
20	Castle Rock	5	1940	580	Small Town	8.620690
33	Woodland Park	3	1940	372	Small Town	8.064516
54	Granby	2	1940	251	Small Town	7.968127
79	Grover	1	1940	137	Small Town	7.299270
96	Timnath	1	1940	147	Small Town	6.802721

Visualize new business creation by city

Let's say we want to see the cities with the highest *rate* of business creation (ie. new businesses per thousand residents)

- Create a bar chart in Plotly of merged_df:
 - Filter to only show the top 10 cities (use .head(10))
 - Set x-axis to city
 - Set y-axis to biz_per_thousand
 - Use city_category for color
 - Add an appropriate title and labels

```
In [41]: biz_per_thousand_fig = px.bar(merged_df.head(10), x='city', y='biz_per_thous
                                          labels={'city': 'City', 'biz_per_thousand':
         biz per thousand fig.update layout(
             title_text='Colorado Cities With Highest Rate of Business Creation: 1940
             xaxis_title='City',
             yaxis_title='Number of New Businesses Per Thousand Residents',
             xaxis_tickangle=-45,
             height=500,
             width=800,
             showlegend=True,
             legend_title_text='City Category',
             title_font=dict(size=22),
             plot_bgcolor='white',
             margin=dict(l=40, r=40, t=80, b=80),
             hoverlabel=dict(
                 bgcolor="white",
                 font_size=12,
                 font_family="Arial")
         biz per thousand fig.update xaxes(categoryorder='total descending')
         biz_per_thousand_fig.show()
```

Bonus: New businesses by city category

Let's say we want to compare different size categories to see whether new businesses were cropping up in smaller places or bigger cities.

Create a new dataframe

First, you'll need to create a new dataframe that consists of four rows, with each row a different category of city containing the total number of businesses created within that category of city.

- Create a new dataframe called city_category_totals
- Start with merged_df
- Group by city_category
- Add up (sum()) the count column
- Use .reset index()

```
In [43]: city_category_totals = merged_df.groupby('city_category').sum('count').reset
city_category_totals.head()
```

Out[43]:	city_category		count	year	total_population	biz_per_thousand
	0	City	206	5820	411363	1.779057
	1	Large Town	97	25220	121943	10.205952
	2	Medium Town	156	83420	99517	77.352727
	3	Small Town	82	104760	27963	205.226406

Visualize businesses by city category

- Create a pie chart in Plotly:
 - Use px.pie() with appropriate parameters
 - Use city_category_totals as your dataframe
 - Use count for your values
 - Use city_category for your names
 - Add an appropriate title and labels

Bonus Challenge: Create a Scatterplot

Create a scatter plot in Plotly showing:

- The relationship between city population (x-axis) and new businesses (y-axis)
- Only data for towns with a population of 2,000 or more people.
- Dots sized according to the number of new businesses in that city
- Dots colored according to their size category

```
scatter_fig.update_layout(
    title_text='New Businesses in Colorado: 1940s', title_x=0.5,
    showlegend=True,
    legend_title_text='City Category',
    width=1300,
    height=700
)
scatter_fig.show()
```

Submission Guidelines

- Run all code cells and make sure it is outputting without errors
- Submit both the notebook file (.ipynb) and a PDF export of your notebook on Canvas

• Note: the PDF probably won't display the Plotly figures - that's okay