*김지후, *류세민, *한채림, 이창의, 이종현, 이민재, 오민규, 박세진 계명대학교 컴퓨터공학전공

e - mail : jihu0210@naver.com, tpals3799@naver.com, cofla0904@naver.com, rhljh7410@gmail.com, jhyeon2450@gmail.com, qzqzcaraz00@gmail.com, alsrb4719@gmail.com, baksejin@kmu.ac.kr

Voice frequency analysis for response to voice phishing using deep voice

*Ji-Hu Kim, *Se-min Ryu, *Chae-Rim Han, Chang-Ui Lee, Jong-Hyeon Lee, Min-Jae Lee, Min-Gyu Oh, Se-Jin Park

Department of Computer Engineering Keimyung University

Abstract

With the development of deep learning along with artificial intelligence, ethical problems that abuse it while providing convenience to humans have increased. While the problem of voice phishing intensifies with deep voices synthesized using artificial neural networks, this paper analyzes the similarities and differences between real voices and voices coated with voice synthesis technology to explore factors that can identify voices. As a result of the paper, it was confirmed that the characteristics of the experimenter's voice were maintained in certain areas even though they were synthesized as deep voices. Through this area, it was possible to specify the voice before synthesis in the deep voice.

Ι.

(Artificial Intelligence)
(Deep Learning)
,
가 .[1]

(Deep Voice)
가 .[2]

.

П.

가

2.3

Praat Praat Pitch() Formant . Formant 가 가 .[7] Intensity(), Speech Synthesis(.[8] " We are ready" " Yes we can "

가

voice.ai[6] . voice.ai

가

Praat

2 Pitch [Hz] [Hz] [Hz] 109.269 177.37 398.958 1594.235 78.858

2

3

	Pitch Mean	Pitch	Pitch	Intensity	First	Second
	[Hz]	Minimum	Maximum	[dB] Formant		Formants
		[Hz]	[Hz]		[Hz]	[Hz]
	115.172	77.075	75.082	67.885	640.336	1994.463
	116.716	81.726	162.124	75.763	643.534	1918
	117.384	87.655	86.894	81.005	637.008	1982

2 가

Pitch

Formants, Intensity가

First Formants 가 372Hz,

192Hz 가

First

Formants 가

First Formants '', ''

.[9] First Formants

'Ready' 'Yes'

4	'Ready'					
	Pitch Mean [Hz]	Intensity [dB]	First Formants [Hz]	Second Formants [Hz]		
	122.445	61.368	455.864	1331.997		
	116.156	81.188	694.381	721.701		
	115.343	88.051	718.154	991.407		

5 'Yes'

	Pitch Mean [Hz]	Intensity [dB]	First Formants [Hz]	Second Formants [Hz]
	115.781	72.895	872.929	1910.349
Ī	107.016	76.165	487.122	1522.748
	112.052	86.582	492.734	1682.691

'Ready'

′rεď 'Yes' ′jεs′

Pitch Intensity

Formants , 4 First Formants 455Hz,

694Hz

718Hz

. Second Formants

1331Hz, 721Hz

991Hz

가

5 Formants

가

가

가

[1](N.d.).https://www.etnews.com/202305180001

[2](N.d.).http://stock.mk.co.kr/news/view/176363_

[3] Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,

- Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016, September 19). WaveNet: A Generative Model for Raw Audio.
- [4] Shen, J., Pang, R., Weiss, ron J, Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang, Y., Ryan, R. S., Saurous, R. A., Agiomyrgiannakis, Y., & Wu, Y. (2018, February 16). Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions.
- [5] , . (2022).

- [6](N.d). https://voice.ai/
- [7] (N.d.).http://www.ktword.co.kr/test/view/view.php?m_temp1 = 3745
- [8] (N.d.). https://www.fon.hum.uva.nl/praat/
- [9] , , (2023).

.

84(1), 5 - 43, 10.22557/HG.2023.3.84.1.5