Задания для проектов по компьютерной арифметики

- 1. Проект №1" Логические операции над битовыми данными"
- 1) Разработать программную модель операции вида:

$$\{ [y((m-1), j_{(m-1)})]_{k_{y((m-1), j_{(m-1)})}}, j_{(m-1)} \in [0, l_{m-1} - 1] = f_{((m-1), j_{(m-1)})} \{ [y((m-2), j_{(m-2)})]_{k_{y((m-2), j_{(m-1)})}} \}, j_{(m-2)} \in [0, l_{m-2} - 1]$$
(1)

Для $\forall \alpha$, $[y]_{k}$ справедливо:

$$\begin{split} \{ & [y((m-1),j_{(m-1)})] \} = f_{((m-1)j_{(m-1)})}(\{ [y((m-2),j_{(m-2)})] \}), j_{(m-2)} \in [0,l_{m-2}-1]; \\ \{ & [y((m-2),j_{(m-2)})] \} = f_{((m-2)j_{(m-2)})}(\{ [y((m-3),j_{(m-3)})] \}), j_{(m-3)} \in [0,l_{m-3}-1]; \\ \dots \\ \{ & [y(2,j_2)] \} = f_{(2,j_2)}(\{ [y1,j_1] \}), j_1 \in [0,l_1-1]; \\ \{ & [y(1,j_1)] \} = f_{(1,j_1)}(\{ [y0,j_0] \}), j_0 \in [0,l_0-1] \end{split}$$

где $[y(i,j_i)]_{k_{y(i,j)}} \in \mathbb{Z}$ - число уровня і в системе счисления с основанием $k_{y(i,l_i)}$; j_i – номер числа в уровне і; $j_i \in [0,1,...,(l_{i-1})];$ $\{[y((m-1),j_{(m-1)})]_{k_{y((m-1),j_{(m-1)})}}\},j_{(m-1)}\in [0,l_{m-1}-1]$ - множество выходных чисел, их уровень равен m-1; $\{[y(0,j_0)]_{k_{y((m-1),j_{(m-1)})}}\},j_0\in [0,l_0-1]$ - множество входных чисел, их уровень равен 0. Количество чисел на уровне $\mathbb{N} \cap \mathbb{R}$ - $\mathbb{R} \cap \mathbb{R}$

- 2) Каждое число определяется как функция вида $f_{(i,j_i)}(y((i-1),j_{(i-1)})),f_{(i,j_i)}{\in}P_2$ см. (2).
- 3) Перечень параметров модели:

Входные переменные (числа) $\{[y(0,j_0)]_{k_{y(m-1),j_{m-0}}}\}, j_0 \in [0,l_0-1]$. Каждое число вида $y(0,j_0)$ является результатом работы генератора случайных чисел (ГСЧ), закон распределения — квази-равномерный. Разрядность каждого числа — \mathbf{r}_y — также задается автоматически с помощью ГСЧ в ходе работы модели.

- а) **Промежуточные числа** $[y(i,j_i)]_{k_{y(i,j)}}$. Для любого уровня параметр i= const, параметр j_i является результатом работы ГСЧ, $j_i=0,1,...,l_i-1$.
- b) **Функции** $f_{(i,j_i)}(y((i-1),j_{(i-1)})), f_{(i,j_i)}$ ∈ P_2 . Количество функций в уровне № і равно l_i-1 , параметр l_i является результатом работы ГСЧ. Конкретный вид функции (&,

- ⊕,V и т. д.) каждый раз задается как результат случайной выборки из базы данных функций двух переменных. Исключение составляют константы "0" и "1".
- с) **Основание числовой системы** для каждого из чисел . Определяется как результат работы ГСЧ, $k_{v(i,l)} {\in} \mathbb{Z}$, $1{<}k_{v(i,l)} {\leqslant} 10$.

Таким образом, выходные числа модели операции конструируются с помощью функций вида $[y(i,j_i)]_{k_{y(i,i)}}$, граф алгоритма построения выходных чисел является ориентированным,

ациклическим и представлен в виде ярусно-параллельной формы.

Пример работы модели операции над битовыми данными.

Исходные данные (Γ СЧ). Система генерирует m = 5.

• **Уровень 0.** i: = 0. Система: $l_0 = 10 \Rightarrow j_0 = 0,1,..., 9$.

Система генерирует с помощью ГСЧ значения (k) оснований числовых систем и массив входных чисел:

j ₍₀₎	0	1	2	3	4	5	6	7	8	9
$\{k_{y_{(0,j_{(0)})}}\}$	7	3	2	3	5	4	2	6	6	2
$\{y_{(0,j_{(0)})}\}$	3	1	0	2	3	2	1	4	5	1

/Исходные числа/

Назначение функций. В системе должна быть реализована база данных функций, номер каждой функции назначается с помощью ГСЧ. Пример:

No	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Функция	\ \	٨	\oplus	=	\rightarrow	\rightarrow		$\neg {\rightarrow}$	$\neg x$	X	y	+	-	$\neg y$

• **Уровень 1.** i:=1. Генерация: $l_1 = 4$, $\Rightarrow j_1 = 0,...,3$. Затем система генерирует функции

 $f_{(1,\,j_1)}$, связанные с ними числа $\,y_{1,\,j_1}\,$ и основания $\,k_{y_1,j_1}$:

$\{y_{1,j_1}\}$	$y_{(1,0)}$	$y_{(1,1)}$	$y_{(1,2)}$	$y_{(1,3)}$
k_{y_1,j_1}	4	3	3	2

Генерация функций:

$\{y_{0,j_0}\}$	[3] ₇	[1] ₃	$[0]_{2}$	[2] ₃	[3]5	$[2]_{4}$	$[1]_{2}$	[4] ₆	$[5]_{6}$	$[1]_{2}$	
-----------------	------------------	------------------	-----------	------------------	------	-----------	-----------	------------------	-----------	-----------	--

$[y_{(1,0)}]_4$	V	V						V		
$[y_{(1,1)}]_3$		\oplus		\oplus	\oplus	\oplus				
$[y_{(1,2)}]_3$			^				^	٨	٨	
$[y_{(1,3)}]_2$							\rightarrow		\downarrow	\

Работа системы:

$$\begin{split} &[y_{(1,0)}]_4 = [3]_7 \vee [1]_3 \vee [4]_6 = [011]_2 \vee [001]_2 \vee [100]_2 = [111]_2 = [013]_4 \\ &[y_{(1,1)}]_3 = [1]_3 \oplus [2]_3 \oplus [3]_5 \oplus [2]_4 = [001]_2 \oplus [010]_2 \oplus [011]_2 \oplus [010]_2 = [010]_2 = [002]_3 \\ &[y_{(1,2)}]_3 = [0]_2 \wedge [1]_2 \wedge [4]_6 \wedge [5]_6 = [000]_2 \wedge [001]_2 \wedge [100]_2 \wedge [100]_2 = [000]_2 = [000]_3 \\ &[y_{(1,3)}]_2 = [1]_2 \Psi [5]_6 \Psi [1]_2 = [001]_2 \Psi [101]_2 \Psi [001]_2 = [010]_2 \end{split}$$

Выходные значения $\{y_{1,j_1}\}$ должны быть сформированы в виде двух массивов:

 $[\{y_{1,j_1}^{}\}]_{k_{\mathrm{v.i.}}}$ и $[\{y_{1,j_1}^{}\}]_2$. Это необходимо для проверки и контроля.

• **Уровень 2.** i:=2. Генерация: $l_2 = 6$, $\Rightarrow j_2 = 0$,...,5. Затем система генерирует функции

 $f_{(2,j_2)}$, связанные с ними числа y_{2,j_2} и основания k_{y_2,j_2} :

{	y_{2,j_2}	y _(2,0)	$y_{(2,1)}$	y _(2,2)	$y_{(2,3)}$	$y_{(2,4)}$	$y_{(2,5)}$
	k_{y_2,j_2}	7	3	4	5	2	3

Генерация функций:

$\{y_{1,j_1}\}$	[013]4	[002] ₃	[000]3	[010]2
$[y_{(2,0)}]_7$	=		=	
$[y_{(2,1)}]_3$		^		^
$[y_{(2,2)}]_4$	\rightarrow			\rightarrow
$[y_{(2,3)}]_5$				
$[y_{(2,4)}]_2$	$\neg \! \rightarrow$		$\neg \rightarrow$	$\neg \overline{\rightarrow}$
$[y_{(2,5)}]_3$		V		V

Работа системы производится аналогично Уровню 1. Результаты:

$$[y_{(2,0)}]_7 = [000]_2 = [000]_7$$

$$[y_{(2,1)}]_3 = [010]_2 = [002]_3$$

$$[y_{(2,2)}]_4 = [010]_2 = [002]_4$$

$$[y_{(2,3)}]_5 = [111]_2 = [012]_5$$

$$[y_{(2,4)}]_2 = [000]_2$$

$$[y_{(2,5)}]_3 = [010]_2 = [002]_3$$

Выходные значения $\{y_{2,j_2}\}$ должны быть сформированы в виде двух массивов: $[\{y_{2,j_2}\}]_{k_{y,j_2}}$ и $[\{y_{2,j_2}\}]_2$. Это необходимо для проверки и контроля.

• **Уровень 3.** i:=3. Генерация: $l_3=2$, \Rightarrow $j_3=0$, 1. Затем система генерирует функции $f_{(3,j_3)}$, связанные с ними числа y_{3,j_3} и основания k_{y_3,j_3} :

$\{y_{3,j_3}\}$	y _(3,0)	$y_{(3,1)}$
k_{y_3,j_3}	5	3

Генерация функций:

$\{y_{2,j_2}\}$	[000] ₇	[002] ₃	[002]4	[012]5	[000] ₂	[002] ₃
$[y_{(3,0)}]_5$	\	\			\downarrow	
$[y_{(3,1)}]_3$						

Работа системы производится аналогично Уровню 2. Результаты:

•
$$[y_{(3,0)}]_5 = [101]_2 = [010]_5$$

 $[y_{(3,1)}]_3 = [101]_2 = [012]_3$

Выходные значения $\{y_{3,j_3}\}$ должны быть сформированы в виде двух массивов: $[\{y_{3,j_3}\}]_{k_{y_3,j_3}}$ и $[\{y_{3,j_3}\}]_2$. Это необходимо для проверки и контроля.

• **Уровень 4.** i:=4. Генерация: $l_4=1$, \Rightarrow $j_4=0$. Затем система генерирует функции $f_{(4,j_4)}$, связанные с ними числа y_{4,j_4} и основания k_{y_4,j_4} :

$\{y_{4,j_4}\}$	<i>y</i> _(4,0)
k_{y_4,j_4}	4

Генерация функций:

$$\{y_{3,j_3}\}$$
 [010]₅ [012]₃ $[y_{(4,0)}]_4$ \lor \lor

Работа системы производится аналогично Уровню 3. Результаты:

$$[y_{(4,0)}]_4 = [101]_2 = [011]_4$$

Таким образом, для исходных значений параметров модели система выдает $[y_{(4,0)}]_4$ = $[011]_4$ в качестве выходного параметра. После работы системы пользователь сам определяет выходное значение. В случае, если его значение совпадает с системой, на экран выдается "1", в противном случае "0".

Выходные значения $\{y_{4,j_4}\}$ должны быть сформированы в виде двух массивов: $[\{y_{4,j_4}\}]_{k_{y_a,b}}$ и $[\{y_{4,j_4}\}]_2$. Это необходимо для проверки и контроля.

Ярусно-параллельная форма алгоритма для данного примера имеет вид:

В результате генерации входных и настроечных параметров модели на экране монитора пользователя должны быть представлены следующие параметры:

- ✔ Количество уровней графа алгоритма m.
- \checkmark Параметры $l_{m, i}$, i = 0,51,...,(m-1).
- \checkmark Параметры $k_{y(i,l)}$.
- ✓ Массив входных чисел $\{[y(0,j_0)]_{k_{y(m-1),j_{m-1}}}\}$, j_0 \in $[0,l_0-1]$
- $m{arepsilon}$ Массив сгенерированных функций $f_{(i,j)}(y((i-1),j_{(i-1)}))$, $f_{(i,j)}\!\!\in\! P_2$

Вся перечисленная информация должна предоставляться пользователю в виде многоконного интерфейса, алгоритм может быть представлен в виде граф-схемы либо совокупности таблиц уровней — см. материал ТЗ выше.

Ответ пользователя должен вводиться в отдельном окне.