0.1 Постановка задачи

Решается двумерная задача Дирихле для двумерного стационарного оператора диффузии

$$\begin{cases} \operatorname{div}(-\mathbb{D}u) = f, x \in \Omega, \\ u|_{\partial\Omega} = g. \end{cases}$$

$$\Omega = [0, 1]^2, D = diag(d_x, d_y).$$

Задача решается методом конечных разностей на регулярной квадратной сетке с шагом

$$h = \frac{1}{N}$$

Решение ищется с помощью библиотеки INMOST.

0.2 Численный эксперимент

Для следующих задач известно аналитическое решение:

1.
$$f = \sin(\pi x)\sin(\pi y)$$
, $g = 0$, $d_x = d_y = 1$. $u = \frac{\sin(\pi x)\sin(\pi y)}{2\pi^2}$.

2.
$$f = \sin(4\pi x)\sin(\pi y)$$
, $g = 0$, $d_x = 5$, $d_y = 1$. $u = \frac{\sin(4\pi x)\sin(\pi y)}{(16d_x + d_y)\pi^2}$.

3.
$$f = \sin(10x)\sin(10y)$$
, $g = \frac{\sin(10x)\sin(10y)}{200}$, $d_x = d_y = 1$. $u = \frac{\sin(10x)\sin(10y)}{200}$.

Построены графики С-нормы и L2 нормы.

Рис. 1: $f = \sin(\pi x)\sin(\pi y)$, $d_x = 1$, $d_y = 1$

Рис. 2: $f = \sin(10x)\sin(10y), d_x = 1, d_y = 1$

Рис. 3: $f = \sin(4\pi x)\sin(\pi y)$, $d_x = 5$, $d_y = 1$

Рис. 4: n = 1000