開放平台期末專題

道路品質檢測系統

1051511 管若嵐 1051530 王繶蓁 1051531 鄭靖潔 1051539 彭梓瑄 1053332 吳芷芳

June 14, 2019

Outline I

- Introduction
 - Introduction to our team
 - The problem we're trying to solve
- 2 Methodology
 - Architecture
 - Our model
 - Input of our model
 - Output of our model
 - Each layer of our model
 - Save model
 - File size of our model
 - Our loss functions
 - Our optimizer and the setting of hyperparameter

Outline II

- Oataset
 - The size of our dataset
 - Collect/build our dataset
 - Samples in our dataset
- Experimental Evaluation
 - Experimental environment
 - Epochs our set for training
 - Qualitative evaluation
 - Quantitative evaluation
- 6 Live demo

Introduction to our team

我們的組員有管若嵐、王繶蓁、鄭靖潔、彭梓瑄、吳芷芳

The problem we're trying to solve

隨著車聯網(Internet of Vehicle, IoV)技術的發展,國內外各大車廠皆積極發展自動駕駛車(Self-Driving Car)。其中,在自動駕駛車的安全防護設計中,各大車廠積極鑽研於軟硬體的co-design,以避免交通事故發生。

但是在自動駕駛車的應用情景中,常因爲路面不平整、路面破損,導致 車輛感測器的感測能力下降,進而影響自動駕駛車的行車安全。 因此我們提出道路品質檢測系統,準確偵測路面破損,並同時評估各路

因此我們提出通路的質檢測系統,华確慎測路面破損,並同時評估各路段的整體道路品質。本系統可導入自動駕駛車的設計,提高行車安全,亦可將破損路面資訊,提供給相關維運單位,以提供更好的用路品質。

Architecture

Figure: 以VGG16模型作爲骨幹網路,延伸建立一個路面品質檢測模型

Our model

Figure: 以VGG16模型作爲骨幹網路

Input of our model

Figure: 道路視訊串流影像

Output of our model

Figure: 路面品質密度圖

Each layer of our model

此模型共分為6個區塊(Blocks),分別為區塊1至區塊6:

- 區塊1與區塊2各使用兩個卷積層(Convolution Layer)與一個池化層(Pooling Layer)
- 區塊3、區塊4與區塊5各使用三個卷積層與一個池化層
- 區塊6使用三個反卷積層(Deconvolution Layer)

Save model

 $keras.save_model$

File size of our model

47,111KB

Our loss functions

- categorical_crossentropy
 由於模型最後對圖片的每個像素值進行分類,因此選用此loss
 function更了解分類誤差
- accuracy
 選用accuracy是想了解系統產生的密度圖我們手動標記答案的相似 程度,以了解系統訓練的準確率

Our optimizer and the setting of hyperparameter

 $optimizer = Adam(Ir = 0.0001, \ beta_1 = 0.9, \ beta_2 = 0.999)$

The size of our dataset

- •1532張道路視訊串流影像
- 1532張路面品質密度圖

Collect/build our dataset

利用MATLAB,設計標記工具,依照路面影像中的路面狀況,以手動方式標記出路面破損處,製作各路面影像對應的路面品質密度圖

Samples in our dataset

Samples	Quantities		
Training samples	1066		
Validating samples	266		
Testing samples	200		

Table: Samples

Experimental environment

路面品質大數據庫

Matlab R2017a

路面品質檢測模型

- Windows 10
- Python 3.6
- OpenCV 3.4
- Keras 2.2.2
- GPU顯卡

路面品質雲端平台

- Python 3.6
- PyQt 5
- OpenWeatherMap

Epochs our set for training

845 Epochs

Qualitative evaluation

24.966245 N

在質化成果部分,我們以路面品質密度圖,來呈現本系統的路面品質檢測成果,並將其呈現於Dashboard介面上,本系統對於水溝蓋、補丁、坑洞與裂縫,都能準確分析並進行標示,如下圖(a)~(d)所示:

■ 中用破损

■ 粗度破损

(c)

Quantitative evaluation

在量化成果部分,我們導入MSE(Mean Squared Error)公式,以評估整體系統分析的準確性。

MSE的數值,爲路面品質密度圖,與手動標記正確密度圖的差異值。 數值越小,代表差異越小,得到的成果越準確,反之亦然。

本團隊在路面品質大數據庫中,針對每種道路破損狀況,各挑出40張未訓練過之道路視訊串流影像,分別輸入至本系統之路面品質檢測模型,與VGG16模型中,進行測試與比較,實際量化成果如表1所示。

	正常道路	水溝蓋	補丁	坑洞	裂缝
VGG16	0.000	0.085	0.115	0.015	0.084
Ours	0.000	0.058	0.066	0.010	0.060

Table: 本系統與VGG16之量化成果比較表(四捨五入至小數點後三位)

實機測試

END

謝謝你的聆聽!

