1. feladat 6 pont

- (a) Döntse el, hogy a következő állítások igazak vagy hamisak (helyes válasz: fél pont, nincs válasz/helytelen válasz: 0 pont). **2 pont**
 - (1) Ha z komplex szám, akkor $z \overline{z}$ valós. I H
 - (2) Ha az R relációra $R \subseteq A \times A$, ahol A egy kételemű halmaz, akkor R biztosan tranzitív. I H
 - (3) Egy részbenrendezett halmazban legfeljebb egy legkisebb elem létezhet. I H
 - (4) Ha f függvény, és f^{-1} is függvény, akkor mindkettő injektív. I H
- (b) Határozza meg az $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 2|x| 5 = y\} \subseteq \mathbb{Z} \times \mathbb{Z}$ reláció értékkészletét és az $R^{-1}(\{6,7\})$ inverz képet. **2 pont**
- (c) Konstruáljon az $\{1,2,3\}$ halmazon olyan R relációt mely szimmetrikus, tranzitív, reflexív, de nem antiszimmetrikus. **2 pont**

2. feladat 10 pont

- (a) Igazolja, hogy az $R \subseteq \mathbb{Z} \times \mathbb{Z}$, $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3x + 5y \text{ páros } \}$ reláció ekvivalenciareláció. Mik lesznek az ekvivalenciaosztályok? **5 pont**
- (b) Adjon meg olyan nem üres A, B és C halmazokat, amelyekre teljesül a következő összefüggés: $(A \setminus B) \setminus C = A \setminus (B \setminus C)$. **2 pont**
- (c) Igazolja, hogy tetszőleges A,B és C halmazok esetén igaz a következő összefüggés: $A\setminus (B\cup C)\subseteq A\Delta(B\Delta C)$. Adjunk meg olyan A,B,C halmazokat, ahol a tartalmazás valódi. **3 pont**

3. feladat 5 pont

Legyen $R \subseteq \mathbb{R} \times \mathbb{R}$, $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x + 3y = 2\}$ és $S \subseteq \mathbb{R} \times \mathbb{R}$, $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 3x + y = 5\}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

4. feladat 5 pont

(a) Döntse el a következő függvényekről, hogy injektívek-e. **3 pont**

$$f_1: \mathbb{Z} \to \mathbb{R}, f_3(x) = (x - 1/4)^2$$

 $f_2: \mathbb{R} \to \mathbb{R}, f_2(x) = x^3 - x$

(b) Döntse el, hogy az $f: \mathbb{R}_0^+ \to \mathbb{R}, \ f(x) := -2\sqrt{|x+42|}$ függvény injektív-e, illetve szürjektív-e. **2 pont**

5. feladat 7 pont

A trigonometrikus alak segítségével számítsa ki z értékét trigonometrikus és algebrai alakban is, majd adja meg az összes olyan w komplex számot trigonometrikus alakban, melyekre $w^4=z$, ahol $z=\frac{\left(\sqrt{3}-i\right)^{18}}{\left(2-2i\right)^{20}}.$

6. feladat – komplex 7 pont

Ábrázolja a Gauss-számsíkon a következő halmazokat:

- (a) $\{z \in \mathbb{C} \mid \operatorname{Re}(z) \operatorname{Im}(z) = 1 \wedge \operatorname{Im}(z) \leq 5\}$ 3 pont
- (b) $\{z \in \mathbb{C} \mid |z-1| \ge |z+1|\}$ 4 pont

6. feladat – relációs 7 pont

- (a) Adjunk meg egy olyan $f: \{1,2,3,4\} \rightarrow \{1,2,3,4\}$ függvényt, mely függvényként injektív, relációként pedig antiszimmetrikus. **3 pont**
- (b) Legyen Sszimmetrikus reláció. Igazoljuk, hogy ekkor $R\circ S\circ R^{-1}$ is szimmetrikus reláció. ${\bf 4}$ pont