CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 10 SETTEMBRE 2024

Svolgere i seguenti esercizi,

______ giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Decidere se la forma proposizionale $(p \Rightarrow (q \Rightarrow r)) \iff ((p \Rightarrow q) \Rightarrow r)$ è una tautologia.

Esercizio 2. Si consideri l'operazione binaria $*: (a, b) \in \mathbb{Z}_{12} \times \mathbb{Z}_{12} \mapsto a + \bar{9}b \in \mathbb{Z}_{12}$.

- (i) Che tipo di struttura (semigruppo, commutativo o meno, monoide, gruppo) è $(\mathbb{Z}_{12}, *)$?
- (ii) Determinare gli insiemi D degli elementi neutri a destra e S degli elementi neutri a sinistra in $(\mathbb{Z}_{12},*)$. $D \cup S$ è una parte stabile in $(\mathbb{Z}_{12},*)$?
- (iii) Sia $T = \{\overline{3n} \mid n \in \mathbb{Z}\}$. T è una parte stabile in $(\mathbb{Z}_{12}, *)$? Se lo è, che tipo di struttura (semigruppo, commutativo o meno, monoide, gruppo) è (T, *)?
- (iv) Risolvere, determinando tutte le soluzioni in $(\mathbb{Z}_{12}, *)$, le equazioni: (a): $\bar{7} * x = \bar{1}$; (b): $\bar{5} * x = \bar{1}$.

Esercizio 3. Consideriamo la funzione: (†)

$$\varphi \colon a_0 + a_1 x + \dots + a_{\deg f} x^{\deg f} \in \mathbb{Z}[x] \setminus \{0\} \longmapsto \prod_{i=0}^{\deg f} a_i \in \mathbb{Z}.$$

- (i) φ è suriettiva? È iniettiva?
- (ii) Descrivere $\vec{\varphi}(\{1, x^5 + 1\})$, $\vec{\varphi}(\{3\})$ e $\vec{\varphi}(\{2, 4\})$. Quanti polinomi irriducibili (in $\mathbb{Q}[x]$) di grado 1 contiene $\vec{\varphi}(\{3\})$?
- (iii) Sia \sim_{φ} il nucleo di equivalenza di φ . Se ha senso la domanda, determinare se ogni singolo elemento di $\mathbb{Z}[x]/\sim_{\varphi}$ è infinito.
- (iv) Dopo aver dato la definizione di polinomio associato ad un polinomio dato in un generico anello di polinomi A[x], dimostrare che ad ogni elemento di $\mathbb{Z}[x]/\sim_{\varphi}$ appartengono almeno due polinomi (distinti) tra loro associati.

Esercizio 4. Per ogni insieme X di numeri interi, sia ρ_X la relazione binaria in X definita da:

$$\forall a, b \in X \ (a \ \rho_X \ b \iff a|7b).$$

Siano $A = \{0, 1, 2, 8, 14, 49, 88\}$ e $B = \{0, 1, 2, -3, 11, 132, 330, 49\}$ (nota bene: $132 = 2 \cdot 66$).

(i) Spiegare perché una tra ρ_A e ρ_B è una relazione d'ordine e l'altra non lo è.

Detto S quello tra A e B tale che ρ_S sia una relazione d'ordine, e posto $\rho = \rho_S$,

- (ii) disegnare un diagramma di Hasse di (S, ρ) ;
- (*iii*) determinare, se esistono, $\inf_{(S,\rho)}(\{2,49\})$ e $\sup_{(S,\rho)}(\{2,49\})$;
- (iv) stabilire se (S, ρ) è un reticolo e, nel caso se è distributivo o complementato.

Esercizio 5. Spiegare perché, per ogni insieme non vuoto $V \subseteq \mathbb{N}^* \setminus \{1\}^{(\ddagger)}$, è ben definito il grafo (semplice) G_V su V in cui, per ogni $a, b \in V$, a e b sono adiacenti se e solo se a e b sono tra loro coprimi.

- (i) Cosa cambia se si assume, invece $V = \mathbb{N}^*$?
- (ii) Se $V = \mathbb{N}^* \setminus \{1\}$, G_V è connesso?
- (iii) Esiste $V \subseteq \mathbb{N}^* \setminus \{1\}$ tale che V non sia connesso?
- (iv) Se $V = \{2, 3, 4, 5, 6, 7, 8, 9\}, G_V$ ha cammini euleriani?

 $^{^{(\}dagger)}$ deg f indica il grado del polinomio f.

 $^{(1)^{(\}ddagger)}\mathbb{N}^* := \mathbb{N} \setminus \{0\}$