Групповой проект "Неравновесная агрегация, фракталы". Этап 3

Программная реализация проекта

Ищенко И. О., Мишина А. А., Дикач А. О., Барсегян В. Л., Галацан Н. И., Дудырев Г. А.

Российский университет дружбы народов, Москва, Россия

Состав исследовательской команды

Студенты группы НПИбд-02-22:

- Ищенко Ирина Олеговна
- Мишина Анастасия Алексеевна

И студенты группы НПИбд-01-22:

- Дикач Анна Олеговна
- Барсегян Вардан Левонович
- Галацан Николай Ильич
- Дудырев Глеб Андрееевич

Вводная часть

Вводная часть

Цель работы

Реализовать алгоритм моделирования агрегации, ограниченной диффузией (DLA), на языке программирования Julia.

Задачи

- Изучить принципы неравновесной агрегации и условия образования фрактальных структур
- Проанализировать математическую модель DLA
- Реализовать DLA и визуализировать смоделированные кластеры

Алгоритм DLA

- 1. Инициализация: в центре поля размещается "зародыш" кластера (одна частица).
- 2. Генерация частицы: новая частица появляется на окружности большого радиуса вокруг кластера.
- 3. Случайное блуждание: частица перемещается случайным образом (в одном из 8 направлений).
- 4. Агрегация: если частица касается кластера, она прилипает к нему.
- 5. Условия остановки:
- Частица уходит слишком далеко → удаляется.
- Достигнуто нужное количество частиц ightarrow симуляция завершается

Программная реализация

алгоритма

```
function randomAtRadius(radius, seedX, seedY)
    theta = 2*pi * rand()
    x = round(Int, radius * cos(theta)) + seedX
    y = round(Int, radius * sin(theta)) + seedY
    return [x, y]
end
```

Функция performRandomWalk(location, squareSize)

```
function performRandomWalk(location, squareSize)
    x, y = location
    step = rand((-1, 0, 1), 2)
    new_x = clamp(x + step[1], 1, squareSize)
    new_y = clamp(y + step[2], 1, squareSize)
    return [new_x, new_y]
end
```

```
function growDLAcluster(radius, maxParticles)
    squareSize = radius * 2 + 5
    matrix = zeros(Int, squareSize, squareSize)
    center = squareSize ÷ 2
    matrix[center, center] = 1
    . . .
    return matrix
end
```

Инициализация параметров и моделирование

```
radius = 50
maxParticles = 1000
matrix = growDLAcluster(radius, maxParticles)
```

```
heatmap(matrix,
    title="DLA ($maxParticles частиц)",
    xlabel="X",
    ylabel="Y",
    seriescolor=cgrad(ColorSchemes.viridis, rev=true),
    aspect_ratio=:equal,
    size=(800, 800),
    dpi=300
```

Примеры построения кластеров

Кластер из 1000 частиц

Рис. 1: Кластер из 1000 частиц

Кластер из 3000 частиц

Рис. 2: Кластер из 3000 частиц

Кластер из 5000 частиц

Рис. 3: Кластер из 5000 частиц

Заключение

Был реализован алгоритм моделирования агрегации, ограниченной диффузией, на языке программирования Julia.