Математика для Data Science. Математический анализ. Шпаргалка

Содержание

Вторая неделя. Последовательности и пределы	2
Знакомство с последовательностями и пределом	2
Арифметика пределов	2
Завершаем арифметику пределов	

Вторая неделя. Последовательности и пределы

Знакомство с последовательностями и пределом

Последовательность элементов множества X — это функция $f: \mathbb{N} \to X$. Действительно, обозначив $x_1 = f(1), x_2 = f(2), x_3 = f(3), \ldots$, мы получим последовательность.

Элемент x_i называют i-ым *членом* последовательности, а число i называют его undercom.

Последовательность x_1, x_2, x_3, \ldots принято компактно записывать при помощи фигурных скобок: $\{x_n\}_{n=1}^{\infty}$ или просто $\{x_n\}$.

Виды ограниченных последовательностей

- 1. Последовательность *ограничена снизу*, если существует такое число $C_1 \in \mathbb{R}$, что для всех $n \in \mathbb{N}$ выполнено $x_n > C_1$.
- 2. Последовательность ограничена сверху, если существует такое число $C_2 \in \mathbb{R}$, что для всех $n \in \mathbb{N}$ выполнено $x_n < C_2$.
- 3. Последовательность *ограничена*, если она ограничена и сверху, и снизу. То есть, если существуют такие числа $C_1 \in \mathbb{R}$ и $C_2 \in \mathbb{R}$, что для всех $n \in \mathbb{N}$ выполнено $C_1 < x_n < C_2$.

Число a называется npedenom последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ найдётся натуральное число N, такое что $|x_n - a| < \varepsilon$ при всех $n \ge N$.

Другими словами, a — предел $\{x_n\} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N : |x_n - a| < \varepsilon$.

Предел последовательности x_n обозначается $\lim_{n\to\infty} x_n$.

Способы записать, что $\lim_{n\to\infty}\mathbf{x_n}=\mathbf{a}$

- x_n стремится к a,
- последовательность $\{x_n\}$ сходится к a,
- $x_n \xrightarrow[n \to \infty]{} a$ или, короче, $x_n \to a$.

Если у последовательности есть предел, то мы будем говорить, что последовательность является *сходящейся* или же просто *сходится*.

Арифметика пределов

Свойства предела последовательности

- 1. Если у последовательности есть предел, то он единственен.
- 2. Если последовательность $\{x_n\}$ сходится, то она ограничена.
- 3. Пусть $\lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} y_n = b$, тогда
 - $\lim_{n\to\infty} c \cdot x_n = c \cdot a$, где c некоторое число $(c \in \mathbb{R})$;
 - $\bullet \lim_{n \to \infty} (x_n + y_n) = a + b;$
 - $\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b;$
 - если $b \neq 0$ и $y_n \neq 0$ для всех n, то $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$.

Последовательности, стремящиеся к $+\infty$ и $-\infty$

1. Последовательность $\{x_n\}$ стремится к плюс бесконечности, если для любого $C \in \mathbb{R}$ начиная с некоторого номера $N \in \mathbb{N}$ все члены последовательности больше C.

Обозначение:
$$x_n \to +\infty$$
 или $\lim_{n \to \infty} x_n = +\infty$.

Другими словами,
$$x_n \to +\infty \iff \forall C \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n \geq N : x_n > C.$$

2. Последовательность $\{x_n\}$ стремится κ минус бесконечности, если для любого $C \in \mathbb{R}$ начиная с некоторого номера $N \in \mathbb{N}$ все члены последовательности меньше C.

Обозначение:
$$x_n \to -\infty$$
 или $\lim_{n \to \infty} x_n = -\infty$.

Другими словами,
$$x_n \to -\infty \iff \forall C \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n \geq N : x_n < C.$$

Завершаем арифметику пределов

Бесконечно малой последовательностью называют последовательность, которая сходится к нулю.

Свойства бесконечно малых последовательностей

- 1. Если a предел последовательности $\{x_n\}$, то её можно представить в виде $\{a+\alpha_n\}$, где $\{\alpha_n\}$ бесконечно малая последовательность.
- 2. Пусть $\{\alpha_n\}$, $\{\beta_n\}$ бесконечно малые последовательности, $c \in \mathbb{R}$, тогда бесконечно малыми будут также последовательности $\{c \cdot \alpha_n\}$, $\{\alpha_n + \beta_n\}$ и $\{\alpha_n \cdot \beta_n\}$.