

دانشكده مهندسي كامپيوتر

هوش مصنوعي

سوالات نظری مینیپروژه اول

دكتر رهبان

پارسا محمدیان — ۹۸۱۰۲۲۸۴

۸ آبان ۱۴۰۰

هوش مصنوعی **فهرست مطالب**

1																					1
١																				١.١	
١																	١.	١.	١.		
١																	۲.	١.	١.		
١																				۲.۱	
١																	١.	۲.	١.		
١																	۲.	۲.	١.		
١																					۲
١																				١.٢	
١																				۲. ۲	
۲																				٣.٢	
۲																					٣
۲																				١.٣	·
۲																				۲.۳	
۲																	١.	۲.	۳.		
۲																	۲.	۲.	۳.		
۲																				٣.٣	
٣																				4.4	
٣																				۵.۳	

١

1.1

1.1.1

False نقصای حالت این مسئله، می تواند یک آرایه دو بعدی $M \times N$ باشد که مقدار خانههای خالی آن False فر مقدار خانههای دیوار آن True است. همچنین مکان حشره و خانه X هر کدام به صورت (i,j) که $0 \le i \le M-1$ و مقدار خانههای دیوار آن $0 \le i \le M-1$ است، مشخص می شوند.

7.1.1

هر کدام از خانههای آرایه دو مقدار دارند. مکان حشره و مکان خانه X هر کدام M imes N مقدار دارند. پس در کل اندازه فضای حالت به صورت زیر محاسبه می شود.

$$2^{M\times N} + 2 \times (M\times N)$$

7.1

1.7.1

همان فضای حالت بخش قبل است، با این تفاوت که به جای مکان خانه X مکان حشره دوم را نگه میداریم.

7.7.1

هر کدام از خانههای آرایه دو مقدار دارند. مکان دو حشره هر کدام $M \times N - W$ مقدار دارند. که در آن $0 \leq W < M \times N - 2$ تعداد دیوارها است. پس در کل اندازه فضای حالت به صورت زیر محاسبه می شود.

$$\Sigma_{w=0}^{M\times N-3}\binom{M\times N}{w}+2\times (M\times N-w)$$

٢

1.7

میخواهیم به هر ۱۰ شهر برویم. پس هر کروموزوم ۱۰ ژن دارد.

7.7

الگوریتم crossover جدید را به این صورت تعریف می کنیم که یک عدد رندوم از [0,9] انتخاب کند. سپس به تعداد این عدد رندوم عدد رندوم در همین بازه تولید کند. (R_1,R_2,\ldots,R_n) حال به ازای هر S_i را شماره خانهای از کروموزوم دوم در نظر می گیریم که مقدار آن با خانه R_i م از کروموزوم اول برابر باشد. سپس در هر دو کروموزوم جای خانههای S_i و S_i را عوض می کنیم.

4.1

الگوریتم mutation را به این صورت تغییر می دهیم که یک عدد رندوم از [0,9] انتخاب کند. (i) سپس یک شهر رندوم انتخاب کند. (x) مقدار x در کروموزوم را به مقدار خانه iام از همان کروموزوم تغییر می دهیم. سپس مقدار خانه iام را برابر x قرار می دهیم. اینگونه با حفط سازگاری عملیات جهش را انجام داده ایم.

٣

1.7

$$f(x_1) = 16$$

 $f(x_2) = 7$
 $f(x_3) = 26$
 $f(x_4) = 2$

7.7

1.7.7

فیت ترین کروموزومها، x_1 و x_3 هستند.

$$\begin{vmatrix} x_1 = 765384 \\ x_3 = 928313 \end{vmatrix} \rightarrow \begin{cases} x_5 = 765313 \\ x_6 = 928384 \end{cases}$$

7.7.7

دو غیر فیت x_2 و موزومها، x_2 و هستند.

$$\begin{vmatrix} x_2 = 903642 \\ x_4 = 232384 \end{vmatrix} \rightarrow \begin{cases} x_7 = 902342 \\ x_8 = 233684 \end{cases}$$

٣.٣

$$f(x_5) = 22$$

$$f(x_6) = 20$$

$$f(x_7) = 8$$

$$f(x_8) = 1$$

4.4

بین کروموزومهای موجود، کروموزوم بهینه همچنان کروموزوم x_3 است. بین کروموزومهای نسل جدید کروموزوم x_5 فیت تر از بقیه است.

4.5

میدانیم بهینهترین کروموزوم، 999009 $x_f = 999009$ است. این رشته دو مقدار ۰ و چهار مقدار ۹ دارد. با توجه به اینکه کروموزومهای موجود در مجموع دو مقدار ۹ و یک مقدار صفر دارند، تنها با crossover هیچگاه به بهینهترین کروموزوم نمی رسیم. زیرا با crossover تنها ارقام جابجا می شوند ولی تعدادشان کم و زیاد نمی شود. پس نیاز به mutation داریم تا تعداد ارقام موجود تغییر کند.