Fragmentación y Asignación

Profesor Heider Sanchez

CHRISTIAN LEDGARD

P1. Estudiante

Dado la siguiente tabla Estudiante con los siguientes datos:

MATRICULA	NOMBRE	DIR	GRUP O	PROMEDIO	EDA D	SEXO
0001	Selene Aguirre	Las palmas 34	Α	8.5	17	F
0002	Martin Porres	Blvd. Lopez Mateos	С	9	23	M
0003	Miriam Gutierréz	Águila 34	Α	7	21	F
0004	Benito López	Rueda 23	В	10	19	M
0005	Victor Pérez	Carlos Carrillo 567	В	8	20	M
0006	Nicolás Rosas	20 de nov. 123	С	10	22	M
0007	María Gutiérrez	Av. Américas No. 65	Α	6	18	F
8000	José Carrillo	Azueta No. 23	С	8	19	М
0009	Azucena Pérez	Abasolo No. 44	В	9	21	F
0010	Carlos Sosa	Arco Sur No. 426	Α	7	17	M
0011	Luis Espino	Hidalgo No. 65	С	10	25	M

1. Se sabe que un 60% de las consultas se realizan sobre el campo GRUPO y un 35% sobre el campo EDAD. Usando la técnica de términos mínimos, halle el conjunto de fragmentos finales en base a ambos atributos considerando el vector de partición de EDAD [18, 22].

Predicados: Grupo={A,B,C}, Edad={<18, 18<= and <22, >=22}

Fragmento 1:	Edad < 18 and Grupo = A		
Fragmento 2:	Edad < 18 and Grupo = B		
Fragmento 3:	Edad < 18 and Grupo = C		
Fragmento 4:	Edad >= 18 and Edad < 22 and Grupo = A		
Fragmento 5:	Edad >= 18 and Edad < 22 and Grupo = B		
Fragmento 6:	Edad >= 18 and Edad < 22 and Grupo = C		
Fragmento 7:	Edad >= 22 and Grupo = A		
Fragmento 8:	Edad >= 22 and Grupo = B		
Fragmento 9:	Edad >= 22 and Grupo = C		

2. Asumiendo que tenemos tres servidores de base de datos disponibles, como quedarían distribuido los fragmentos.

	Fragmentos
Servidor 1	Fragmento 1, 4 y 7 -> Grupo A
Servidor 2	Fragmento 2, 5 y 8 -> Grupo B
Servidor 3	Fragmento 3, 6 y 9 -> Grupo C

- 3. El área de Control Escolar realiza constantes consultas sobre los campos NOMBRE, DIR y GRUPO, mientras que al área de Estadística le interesan los campos PROMEDIO, EDAD y SEXO.
 - 1. Realice la fragmentación vertical de la tabla.

Fragmento 1 = {Matricula, Nombre, Dir, Grupo} Fragmento 2 = {Matricula, Promedio, Edad, Sexo}

2. Cree una vista en SQL para unificar los fragmentos. Verifique que cumpla la propiedad de Join sin perdida.

SELECT VIEW UnionDeFragmentos AS SELECT Fragmento1, Fragmento2

P2. Libros

Dado el siguiente esquema de BD:

1. Realizar la fragmentación horizontal de Libro sobre el atributo Precio [20,50,100]

Libro 1	Precio <= 20
Libro 2	Precio > 20 and Precio <= 50
Libro 3	Precio > 50 and Precio <= 100
Libro 4	Precio < 100

2. Realizar la fragmentación horizontal de Almacén sobre el atributo CodPostal [3500,70000]

Almacén 1	CodPostal < 3500
Almacén 2	CodPostal >= 3500 and CodPostal < 70000
Almacén 3	CodPostal >= 70000

3. Realizar la fragmentación horizontal derivada de Existencias respecto a Almacén.

Existencias 1	Existencias → Almacen1	
Existencias 2	Existencias ⋈ Almacen2	
Existencias 3	Existencias ™ Almacen3	

4. Como sería la creación de dicha fragmentación derivada en PostgresSQL.

```
CREATE TABLE Existencias1 AS SELECT E.* FROM EXISTENCIAS E WHERE EXIST(
    SELECT 1 FROM Almacen1 as A1 WHERE A1.CODIGO = E.ALMACEN
)

CREATE TABLE Existencias2 AS SELECT E.* FROM EXISTENCIAS E WHERE EXIST(
    SELECT 1 FROM Almacen2 as A2 WHERE A2.CODIGO = E.ALMACEN
)

CREATE TABLE Existencias3 AS SELECT E.* FROM EXISTENCIAS E WHERE EXIST(
    SELECT 1 FROM Almacen3 as A3 WHERE A3.CODIGO = E.ALMACEN
)
```

5. Si se tiene tres servidores disponibles, asigne a criterio los fragmentos resultantes en cada servidor:

	Servidor 1	Servidor 2	Servidor 3
Libro	Libro1	Libro2, Libro3	Libro4
Almacén	Almacén1	Almacén2	Almacén3
Existencias	Existencias1	Existencias2	Existencias3

6. En base a la asignación anterior. Qué subconsultas genera la ejecución de la siguiente consulta en cada servidor:

select Código, TotalExistencias from Libro where Precio>15 and Precio<55

Servidor 1	SELECT Codigo, TotalExistencias FROM Libro WHERE Precio > 15 AND PRECIO <= 20
Servidor 2	SELECT Codigo, TotalExistencias FROM Libro WHERE Precio > 20 AND PRECIO <= 55
Servidor 3	No Query

7. Escribir un ejemplo de consulta que ejecutada en el servidor 3 genere una subconsulta en el servidor 2.

SELECT Codigo, TotalExistencias
FROM Libro L, Almacen A
WHERE A.CodPostal = 6000 AND L.Precio > 100 AND L.Precio <= 200

P3. Fragmentación vertical

Se considera las aplicaciones AP1, AP2, AP3 y AP4. Estas aplicaciones trabajan con la tabla T definido como T(C, C1, C2, C3, C4) donde C es la clave primaria:

- AP1: Select C1 from T where C4 = 100;
- AP2: Select C4 from T;
- AP3: Update T set C3 = 15 where C2=50;
- AP4: Update T set C1=5 where C3=20;

Además, se tiene las frecuencias de acceso de las aplicaciones a los atributos de la siguiente forma:

```
acc1(AP1)=1 acc2(AP1)=0 acc3(AP1)=2 acc4(AP1)=0 acc1(AP2)=0 acc2(AP2)=4 acc3(AP2)=3 acc4(AP2)=0 acc1(AP3)=0 acc2(AP3)=0 acc3(AP3)=4 acc4(AP3)=0 acc1(AP4)=3 acc2(AP4)=0 acc3(AP4)=0 acc4(AP4)=0
```

Se pide construir lo siguiente:

1. Matriz de usos.

	C1	C2	C3	C4
AP1	1			1
AP2				1
AP3		1	1	
AP4	1		1	

2. Matriz de afinidad.

	C1	C2	C3	C4
AP1	6		3	3
AP2		4	4	
AP3	3	4	4	
AP4	3	3		10

3. Matriz de afinidad agrupada.

	C1	C2	C3	C4
AP1	10			3
AP2		7	4	3
AP3		4	4	
4AP4	3	3		6

4. Fragmentación vertical resultante.

	C1	C2	C3	C4
AP1	10			3
AP2		7	4	3
AP3		4	4	
AP4	3	3		6