Distribution-Aware Binary Neural Networks for Sketch Recognition

A. Prabhu, V. Batchu, A. Munagala, R. Gajawada, A. Namboodiri

Center For Visual Information Technology, KCIS, IIIT Hyderabad, India

Quick Recap: Why Binarization?

- Extreme form of Quantization
- Layer weights and activations mapped to {-1, 1}
- Allows XNOR-Popcount operations for convolutional operations
- x64 speedup, x16 compression rate
- High accuracy losses! (Examples - XNOR)

Method	Compression	
Finetuned SVD 2 [35]	2.6x	
Circulant CNN 2 [7]	3.6x	
Adaptive Fastfood-16 [35]	3.7x	
Collins <i>et al</i> . [8]	4x	
Zhou <i>et al</i> . [39]	4.3x	
ACDC [27]	6.3x	
Network Pruning [14]	9.1x	
Deep Compression [14]	9.1x	
GreBdec [38]	10.2x	
Srinivas <i>et al</i> . [31]	10.3x	
Guo <i>et al</i> . [13]	17.9x	
Binarization	≈32x	

Expressivity

- Are Binary Networks as expressible as infinitely precise ones?
- Consider p(x) be a multivariate monomial, expressed as the product of **n** numbers as assumed in [Lin et al. 2017].

$$\prod_{i=1}^{n} x_i = rac{1}{2^n} \sum_{\{s\}} s_1 ... s_n \sigma(s_1 x_1 + ... + s_n x_n),$$

- Can be implemented using a flat network (one hidden layer) with exactly 2ⁿ binary neurons [Lin et al., 2017].
- Networks with binary weights require exactly the same number (2ⁿ) neurons for approximating multivariate monomials too. Hence, in the context of this measure of expressivity- only binary weights are required to approximate a monomial, as good as infinitely-precise weights!
- This also can be extended to deeper networks with a constant factor of complexity, valid if conjecture 5.2 [Lin et al.] holds Elaborated in Poster!

Generalized Binary Representation

- Why binarize to {-1, 1} or {0, 1}?
- Arbitrary two values- α , β forming a binary representation
- Binarized weight vector is of form $[\alpha\alpha\beta\beta\alpha...\beta\alpha\beta]$
- Or $\alpha^*(e)$ + $\beta^*(1-e)$ where e is the selection vector of the form [11001...010]
- How do we calculate optimal α , β and e?

Finding optimal α , β and e

- Weight vector \mathbf{W} , binarize to form $[\alpha\alpha\beta\beta\alpha...\beta\alpha\beta]$.
- ullet Formulate it as an optimization problem- $\widetilde{\mathbf{W}}^* = \mathop{argmin}_{\widetilde{\mathbf{W}}} ||\mathbf{W} \widetilde{\mathbf{W}}||^2$
- Here, α , β are values, and $\mathbf{e} \in \{0,1\}^n \ni \mathbf{e} \neq \mathbf{0}$ and $\mathbf{e} \neq \mathbf{1}$.
- $K = e^{T}e$, denoting the number of 1s in e.

$$\widetilde{\mathbf{W}}^* = \alpha \mathbf{e} + \beta (\mathbf{1} - \mathbf{e}) \ where$$

$$\alpha = \frac{\mathbf{W}^T \mathbf{e}}{K}, \ \beta = \frac{\mathbf{W}^T (\mathbf{1} - \mathbf{e})}{n - K}$$

• To find the optimal e, check error for all possible K:

$$\mathbf{e}^* = \underset{e}{argmax}(\frac{||\mathbf{W}^T\mathbf{e}||^2}{K} + \frac{||\mathbf{W}^T(\mathbf{1} - \mathbf{e})||^2}{n - K})$$

Finding optimal K

- DP algorithm
- Top 'K' or Bottom 'K' values are significant
- Check for each K iteratively
- Reuse past computations
- O(n.logn) due to sort

Algorithm 1 Finding an optimal K value.

```
1: Initialization
 2: W = 1D weight vector
 3: T = \text{Sum of all the elements of } \mathbf{W}
4: Sort(W)
 5: D = [00...0] // Empty array of same size as W
 6: optK_1 = 0 // Optimal value for K
7: maxD_1 = 0 // Value of D for optimal K value
 8:
9: for I=1 to D.size do
       P_i = P_{i-1} + \mathbf{W}_i
       D_i = \frac{P_i^2}{i} + \frac{(T - P_i)^2}{n - i}
       if D_i > maxD_1 then
           maxD_1 = D_i
13:
           optK_1 = i
15:
16: Sort(W, reverse=true) and Repeat steps 4-13 with
   optK_2 and maxD_2
17:
18: optK_{final} = optK_1
19: if maxD_2 > maxD_1 then
       optK_{final} = optK_2
21:
22: return optK_{final}
```


Datasets & Models

- TU-Berlin The most popular sketch dataset consisting of 20,000 sketches distributed over 250 classes
- Sketchy The most popular SBIR dataset consisting of 75,471 sketches distributed over 125 classes

- Sketch-A-Net A widely known alexnet-like network designed for sketch recognition task.
- ResNet-18 & GoogleNet Popular compact architectures widely used to benchmark performance of binarization algorithms.

- Our DAB-Nets outperform XNOR-Nets by significant amounts on both the datasets as shown in the table
- On Sketch-A-Net we observe a 0.8% improvement and a 2% improvement on TU-Berlin and Sketchy respectively.
- On ResNet-18 we observe a 2.5% and a 1.4% improvement
- On GoogleNet we observe a 1.5% and a 0.6% improvement

Models	Method	Accuracies	
		TU-Berlin	Sketchy
Sketch-A-Net	FPrec	72.9%	85.9%
	WBin (BWN)	73.0%	85.6%
	FBin (XNOR-Net)	59.6%	68.6%
	WBin DAB-Net	72.4%	84%
	FBin DAB-Net	60.4%	70.6%
Improvement	XNOR-Net s DAB-Net	+0.8%	+2.0%
ResNet-18	FPrec	74.1%	88.7%
	WBin (BWN)	73.4%	89.3%
	FBin (XNOR-Net)	68.8%	82.8%
	WBin DAB-Net	73.5%	88.8%
	FBin DAB-Net	71.3%	84.2%
Improvement	XNOR-Net s DAB-Net	+2.5%	+1.4%
GoogleNet	FPrec	75.0%	90.0%
	WBin (BWN)	74.8%	89.8%
	FBin (XNOR-Net)	72.2%	86.8%
	WBin DAB-Net	75.7%	90.1%
	FBin DAB-Net	73.7%	87.4%
Improvement	XNOR-Net s DAB-Net	+1.5%	+0.6%

Observations - 1

• Variation of α and β across a filter's weights during training

WACV 2018

Variation of K for a filter during training

Variation of K for a filter across layers

Conclusions and take-aways

- Binary networks might be as expressible as infinite-precision networks!
- We propose a general binary approximation layer, with efficient algorithms for forward and backward pass.
- DAB-Nets can represent the space, capturing the distribution of data effectively.
- We hope that this project encourages more investigations into working with binary networks for all the cool applications presented at WACV '18!
- Our codes are available online! Links are given in our paper.

Thank You!

(Looking for a 6-12 month RAship/Internship! Please let me know there are any openings)

I'm available in the poster session. ameya.prabhu@research.iiit.ac.in