1.1 Predicates and Quantifiers in Z

Predicates

- **#** 0-ary predicates can be regarded as propositions (sentences) because they are simply statements of facts independent of any individual variables.
- **u** Unary predicates are simply properties of objects (individuals).
- **#** Binary predicates are relations between pairs of objects (individuals), and in general *n*-ary predicates express relations among *n*-tuple of objects (individuals).

Quantifiers

- # Universal quantifier, Existential quantifier.
- # Unique quantified, Counting quantifier.

1.2 Predicates and Quantifiers in Z

■ Universal quantifier

 \blacksquare The universal quantifier is written as ' \forall ' and its pronounced 'for all' (it looks like an upside-down 'A' in for All). It is used in the form:

∀ declaration | constraint • predicate which state that for the variable given in the declaration, restricted to certain values (constraint, ' | constraint ' may be omitted), the predicate holds for all values.

Existential quantifier

The existential quantifier is written as '\exists' and is pronounced "(it looks like a backwards 'E' in there Exists). It is used in the form:

∃ declaration | constraint • predicate which state that for the variable given in the declaration, restricted to certain values (constraint, ' | constraint ' may be omitted), the predicate holds for some value(s).

1.3 Predicates and Quantifiers in Z

■ Unique quantifier

The unique quantifier is written as ' \exists_1 ' and is similar to the existential quantifier except that is states that there exists only one value for which the predicate is true.

***** Counting quantifier

- **#** The counting quantifier counts for how many values of the variable the predicate holds.
- In Z this is not needed; we use a set comprehension to construct the set of values for which the predicate holds, and the finds the size of the set.

1.4 Predicates and Quantifiers in Z

■ Set comprehension

- **#** It constructs (defines) a set by giving a condition (predicate) which must hold for all members of the set.
- **#** The general form of set comprehension is

{declaration | constraint • expression}

where the declaration is for a typical element and it gives the element's type; the constraint ('| constraint' may be the omitted) restricts the possible values of the typical element and it is a logical expression which must be true for that value of the typical element to be included; the expression is an expression indicating the value to be included in the set.

Examples

- $\pi \{x: Z \mid \text{Even}(x) \cdot x \cdot x \}$ the set of the squares of the even integers
- $\pi \{x: Z \cdot x * x \}$ the set of the squares of the integers

2.1 Relations in Z

■ Declaring a relation

- # A relation relates elements of a set called the source or from-set to elements of a set called the target or to-set.
- **¤** Relation R relates typed set X to typed set Y:

$$R: X \longleftrightarrow Y (X \longleftrightarrow Y == P(X \times Y))$$

EX: [COUNTRY] the set of all countries [LANGUAGE] the set of all languages speaks: COUNTRY← LANGUAGE

2.2 Relations in Z

Maplets

- $\mathbf{n} \times \mathbf{R} \mathbf{y} == \mathbf{x} \rightarrow \mathbf{y} \in \mathbf{R} == (\mathbf{x}, \mathbf{y}) \in \mathbf{R}$
- \sharp Ex: GB \rightarrow English \in speaks == (GB, English) \in speaks

2.3 Relations in Z

■ Domain and Range of a relation

n Relation R relates types set X to typed set Y:

$$R: X \longleftrightarrow Y (X \longleftrightarrow Y == P(X \times Y))$$

- $m \operatorname{dom} R == \{a \mid (\exists b)((a, b) \in R)\}, \operatorname{dom} R \subseteq X$
- π ran $R == \{b \mid (\exists a)((a, b) \in R)\}, ran <math>R \subseteq Y$

■ Relational image

- **¤** For S⊆ dom R, R(|S|) == {b | $(\exists a)((a, b) \in R)$ }, R (|S|) ⊆ ran R
- **R** (|S|) is pronounced 'the image of S under R' or 'the relational image of S in R'.

2.4 Relations in Z

Infix relations

- $n R_: X \longleftrightarrow Y$
- **# Ex: _speaks_: COUNTRY → LANGAUGE, GB speaks** English

■ Inverse of a relation

n Relation R relates types set X to typed set Y:

$$R: X \longleftrightarrow Y (X \longleftrightarrow Y == P(X \times Y))$$

In The inverse relation of the relation R, written as R^{\sim} , relates typed set Y to typed set X such that if x R y then y $R^{\sim}x$.

2.5 Example Using Relations

[COUNTRY] the set of all countries of the world [DATE] the dates of a given year

Hols

holidays: COUNTRY \longleftrightarrow DATE

REPLY ::= yes | no

Enquire

Ξ Hols

c?: COUNTRY

d?: DATE

rep!: REPLY

 $((c?, d?) \in holidays \land rep! = yes) \lor ((c?, d?) \not\in holidays \land rep! = no)$

2.5 Example Using Relations

Decree

A Hols

c?: COUNTRY

d?: DATE

holidays' = holidays $\cup \{(c?, d?)\}$

Abolish

A Hols

c?: COUNTRY

d?: DATE

holidays' = holidays \ $\{(c?, d?)\}$

Dates

Ξ Hols

c?: COUNTRY

ds!: PDATE

 $ds! = holidays (|\{c?\}|)$

2.6 Relations in Z

Domain restriction

■ The domain restriction operator (' < ') restricts a relation R to that part where the domain of that relation R is constrained in a particular set S:

S < R

pronounced 'the relation R domain restricted to S'.

■ Range restriction

n The range restriction operator (' \triangleright ') restricts a relation R to that part where the range of that relation R is contained in a particular set S:

 $R \triangleright S$

pronounced 'the relation R range restricted to S'.

2.7 Relations in Z

■ Domain subtraction

The domain subtraction operator ('<+') restricts a relation R to that part where the domain of that relation R is not constrained in a particular set S:

$$S \leftarrow R$$

pronounced 'the relation R domain subtracted to S'.

■ Range subtraction

The range subtraction operator ('+>') restricts a relation R to that part where the range of that relation R is not contained in a particular set S:

$$\mathbf{R} +> \mathbf{S}$$

pronounced 'the relation R range subtracted to S'.

2.8 Example Using Relations

[COUNTRY] the set of all countries of the world [DATE] the dates of a given year

Hols

holidays: COUNTRY DATE

EU: PCOUNTRY

EU < | holidays (mapping only **EU** countries to their holidays)

EU <+ holidays (mapping non-EU countries to their holidays)

Summer: **P**DATE

holidays > summer (countries to holidays in the summer)

holidays +> summer (countries to holidays not in the summer)

2.9 Relations in Z

♯ Forward composition

The relation formed by the relation R, then the relation Q, is called the forward composition of R with Q:

R:
$$X \leftrightarrow Y$$
, Q: $Y \leftrightarrow Z$,
R; Q: $X \leftrightarrow Z$

■ Backward composition

The backward composition of Q with R is the same as the forward composition of R with Q:

$$Q \cdot R == R ; Q$$

■ Repeated composition of homogeneous relation

$$R: X \longleftrightarrow X, R: X \longleftrightarrow X,$$

 $R: R: X \longleftrightarrow X$

2.10 Relations in Z

Transitive closure

The transitive closure R⁺, as used in:

$$x R^+ y$$

means that there is a repeated composition of R which relates x to y.

The identity relation

id X

is the relation which maps all x's on to themselves:

$$id X == \{x: X \cdot x \to x\}$$

2.11 Relations in Z

■ Reflexive Transitive closure

The repeated composition

$$= \mathbf{R}^+ \cup \operatorname{id} \mathbf{X}$$

includes the identity relation. The reflexive transitive closure is similar to the transitive closure except that it includes the identity relation.

$$x R^* x$$

this is always true, even is x R x is false.

2.12 Example: Using Relations to define Family Relationships

[PERSON] the set of all possible uniquely identified persons father, mother: PERSON ←→ PERSON

parent: PERSON ←→ PERSON

 $parent = father \cup mother$

sibling: PERSON \longleftrightarrow PERSON

sibling = (parent; parent ~) \ id PERSON

(Note: the relation parent composed with its own inverse is the set of persons with the same parents)

ancestor: PERSON ← PERSON

ancestor = parent +