ЯНДЕКС

Яндекс

Goal-Oriented диалоговые движки

Евгений Волков

Что сегодня узнаем?

- Что такое Goal-Oriented DM
- Подходы к построению
- Как устроен production сейчас
- Как он может быть устроен в будущем
- Какие проблемы с голосом/чатботами?

Goal-Oriented DM

- Помогает решить задачу пользователя:
 - > Заказать такси
 - > Забронировать гостиницу
 - > Узнать погоду

Goal-Oriented vs Neural Conversational Models

- Результат действие в реальном мире (RPC, API)
- Датасетов для вашего проекта скорее всего нет
- Доступные датасеты
 - > DSTC (Dialog State Tracking Challenge)
 - > ATIS (только NLU)

Goal-Oriented DM. Голос

Goal-Oriented DM. Чатбот

N-Best ASR

Маршрут до <u>Люблинской</u> улицы дом 5

- Маршрут до <u>Люблинской</u> улицы дом 5 **(0.5)**
- Маршрут до <u>Люсиновской</u> улицы дом 5 **(0.3)**
- У Маршрут до Люсиновской улицы дом <u>5а</u> (0.2)

N-Best NLU

- Заехать на Люблинскую улицу дом 5
 - > Route(<u>to</u>='Люблинская улица дом 5') **(0.80)**
 - > Route(<u>via</u>='Люблинская улица дом 5') **(0.20)**

(N-Best ASR) × (N-Best NLU)

Заехать на <u>Люблинская</u> улица дом 5

- > Route(<u>to</u>='<u>Люблинская</u> улица дом 5') **(0.50)**
- > Route(via='Люблинская улица дом 5') (0.20)
- > Route(<u>to='Люсиновская</u> улица дом 5') (0.10)
- > Route(via='Люсиновская улица дом 5') (0.10)
- > Route(to='Люсиновская улица дом 5a') (0.05)
- angle Route(<u>via</u>='Люсиновская улица дом <u>5а')</u> (0.05)

N-Best опечаточника

Маршрут до <u>Люинской</u> улицы дом 5

- Маршрут до <u>Люблинской</u> улицы дом 5 **(0.7)**
- Маршрут до Люсиновской улицы дом 5 (0.3)

Goal-oriented dm

Подходы

- CallFlow
- > FormFilling
- > Reinforcement Learning
- Supervised Learning
- > Supervised Learning + Reinforcement Learning

CallFlow

CallFlow

CallFlow

CallFlow. Достоинства

- Наглядность
- Дизайн диалога может делать непрограммист

CallFlow. Недостатки

Не учитывает модели пользовательского поведения

- > Добрый день, я хочу заказать такси
- > Куда подать машину?
- На Льва Толстого дом 16 поеду в Одинцово через 2 часа

CallFlow. Недостатки

He учитывает ошибки ASR

- У Итак, вы решили заказать такси от улицы льва толстого дом 16
- **у** до одинцово через 2 часа. Всё верно?
- > Шаверма (0.5)
- **>** Да верно (0.3)
- > Да наверное (0.2)

CallFlow. Недостатки

Действия на основе интуиции дизайнера диалогов, но не оптимизация критериев

Работает в production на миллионах пользователей и никак не учитывает этот факт!

FormFilling

Для расчёта приблизительной стоимости поездки заполните поля «Откуда» и «Куда».

FormFilling

(адрес)

- Форма Заказ_Такси:
 - **Откуда**
 - Куда (адрес)
 - > Когда

(дата_и_время)

Слоты

- > Детское_Кресло (логический)
- > Кондиционер

(логический)

7

Пример:

 Мне нужно заказать такси от улицы Льва Толстого дом 16 до улицы Маршала Неделина дом 6 через 15 минут, мне нужно детское кресло

Пример:

 Мне нужно заказать такси от улицы Льва Толстого дом 16 до улицы Маршала Неделина дом 6 через 15 минут, мне нужно детское кресло

Форма Заказ_Такси (intent):

У Откуда улица Льва Толстого дом 16

У Куда улица Маршала Неделина дом б

У Когда через 15 минут

> Детское_Кресло True

> Кондиционер None

- NLU Natural Language Understanding
- Основные компоненты:
 - > Классификатор интентов
 - > Теггер слотов

FormFilling. NLU. Классификатор

Примеры:

- > Мне нужно заказать такси
- > Я хочу отменить заказ
- > Скажи погоду
- > Поставь будильник на 7 утра

- -> intent=Заказ_Такси
- -> intent=Отмена_Заказа
- -> intent=Погода
- -> intent=Будильник

FormFilling. NLU. Классификатор

Алгоритмы?

- > Логистическая регрессия
- > Глубокие нейронные сети
- **>** ...

FormFilling. NLU. Terrep

Пример:

У Мне нужно такси на улицу Льва Толстого дом 16 через 15 минут

FormFilling. NLU. Terrep

- Пример:
 - У Мне нужно такси на улицу Льва Толстого дом 16 через 15 минут
- Заказ_Такси:
 - > Откуда='улица Льва Толстого дом 16'
 - > Когда='через 15 минут'

FormFilling. NLU. Terrep

Алгоритмы

- CRF Conditional random fields
- Рекуррентные нейронные сети

- NLG Natural Language Generation
- Задача
 - > Из формы генерировать фразу на естественном языке

- Подтвердить:
 - > Откуда='улица Льва Толстого дом 16'
 - > Когда='через 15 минут'

- Подтвердить:
 - > Откуда='улица Льва Толстого дом 16'
 - > Когда='через 15 минут'

- Результат:
 - У Итак, вы заказали такси на улицу Льва Толстого дом 16 через 15 минут. Всё верно?

Алгоритмы

- > Контекстно-свободные грамматики
- > Нейронные сети *

^{*} Tsung-Hsien Wen et al. "Multi-domain Neural Network Language Generation for Spoken Dialogue Systems"

FormFilling. DM

Задачи

- > Связывает все компоненты вместе (NLU, NLG, API, и т.д.)
- > Выбор действия
- > Стек форм
- > Связь между формами
- > Переходы между формами
- > Вложенные формы

FormFilling. NLU+DM+NLG+API

FormFilling. NLU+DM+NLG+API

- > Улица Льва Толстого дом 16
- > Куда поедете?

Заказ_Такси

Действие: СПРОСИ_КУДА

- Улица Маршала Неделина дом6
- > Когда подать машину?

Заказ_Такси

ОТКУДА=улица Льва Толстого дом 16

КУДА=улица Маршала Неделина дом 6

КОГДА=

ДЕТСКОЕ_КРЕСЛО=

КОНДИЦИОНЕР=

Действие: СПРОСИ_КОГДА

- У Через 30 минут и учтите пожалуйста, что я возьму с собой ребёнка
- У Итак, вы хотите заказать такси от улицы Льва Толстого 16 до улицы Маршала Неделина дом 6 через 30 минут и нужно детское кресло.
- **У** Всё верно?

Заказ_Такси

ОТКУДА=улица Льва Толстого дом 16

КУДА=улица Маршала Неделина дом 6

КОГДА=через 30 минут

ДЕТСКОЕ_КРЕСЛО=True

КОНДИЦИОНЕР=

Действие: ПОДТВЕРДИТЬ_ВСЁ

- **>** Да, всё верно!
- > Хорошо, заказ сформирован!

Заказ_Такси

ОТКУДА=улица Льва Толстого дом 16

КУДА=улица Маршала Неделина дом 6

КОГДА=через 30 минут

ДЕТСКОЕ_КРЕСЛО=True

КОНДИЦИОНЕР=

Действие: ВЫПОЛНИТЬ

- А теперь звонит более опытный пользователь
- Он видимо часто заказывает такси

- Мне нужно заказать такси на улицу Льва Толстого дом 16 через 30 минут с детским креслом
- > Куда поедете?

Заказ_Такси

Действие: СПРОСИ_КУДА

- На улицу Маршала Неделина дом 6
- У Итак, вы хотите заказать такси от улицы Льва Толстого 16 до улицы Маршала Неделина дом 6 через 30 минут и нужно детское кресло.
- **У** Всё верно?

Заказ_Такси

ОТКУДА=улица Льва Толстого дом 16

КУДА=улица Маршала Неделина дом 6

КОГДА=через 30 минут

ДЕТСКОЕ_КРЕСЛО=True

КОНДИЦИОНЕР=

Действие: ПОДТВЕРДИТЬ_ВСЁ

- > Да, всё верно!
- > Хорошо, заказ сформирован!

Заказ_Такси

ОТКУДА=улица Льва Толстого дом 16

КУДА=улица Маршала Неделина дом 6

КОГДА=через 30 минут

ДЕТСКОЕ_КРЕСЛО=True

КОНДИЦИОНЕР=

Действие: ВЫПОЛНИТЬ

- Мне нужно заказать гостиницу в Испании на 30 декабря
- > Когда планируете отъезжать?

БРОНИРОВАНИЕ_ГОСТИНИЦ

СТРАНА=Испания

ДАТА_ЗАЕЗДА=30 декабря

ДАТА_ОТЪЕЗДА=

- Мне нужно заказать гостиницу
 в Испании на 30 декабря
- > Когда планируете отъезжать?
- > Кстати, какая там будет погода?

БРОНИРОВАНИЕ_ГОСТИНИЦ

Мне нужно заказать гостиницу
 в Испании на 30 декабря

У Когда планируете отъезжать?

- > Кстати, какая там будет погода?
- Погода в Испании на 30 декабря: +15

БРОНИРОВАНИЕ_ГОСТИНИЦ

- > Продолжим бронировать гостиницу?
- **>** Да
- > Так когда планируете отъезд?

БРОНИРОВАНИЕ_ГОСТИНИЦ

СТРАНА=Испания

ДАТА_ЗАЕЗДА=30 декабря

ДАТА_ОТЪЕЗДА=

FormFilling. Вложенные формы

FormFilling. Достоинства

- Учитывает модели пользовательского поведения
 - > Пользователь может говорить как ему удобно
 - **У** Вся полезная информация попадает в форму

FormFilling. Недостатки

- DM логика из скриптов *
- He учитывает ошибки ASR
- Действия на основе интуиции дизайнера диалогов, но не оптимизация критериев
- Работает в production на миллионах пользователей и никак не учитывает этот факт!

^{*} Higashinaka et al ."On the difficulty of improving hand-crafted rules in chat-oriented dialogue systems"

RL — Reinforcement Learning

План

- **>** Зачем?
- > Основы RL
- > RL в диалогах

RL. Зачем?

- Задача максимизировать **«счастье»** клиента
 - > Решить за минимальное время (кол-во шагов)
 - > Решить максимально корректно

RL. Зачем?

Как?

- > Действия должны быть оптимальны
- > Нужно учитывать ошибки ASR, NLU, и т.д.

- Мне нужны билеты в Бостон
 - > Бостон (0.5)
 - > Остин (0.4)
 - > Лондон (0.1)

Какое действие выбрать?

- > В слот -> Бостон
- > Спросить Бостон?
- > Спросить Бостон или Остин?
- > и т.д. ...

- Мне нужны билеты в Бостон
 - > Бостон (0.80)
 - > Остин (0.15)
 - > Лондон (0.05)

Какое действие выбрать?

- > В слот -> Бостон
- > Спросить Бостон?
- > Спросить Бостон или Остин?
- > ит.д....

Мне нужно такси от улицы Маршала Неделина дом 6 до улицы Льва Толстого дом 16 через 15 минут

Как подтверждать слоты?

- У Машину нужно подать на улицу Маршала Неделина дом 6?
- > Да
- > Поедете на улицу Льва Толстого дом 16?
- **>** Да
- **У** Через **15 минут**?
- > Да
- > Ок, спасибо, заказ сформирован. Ожидайте

- > Хотите заказать такси от улицы Маршала Неделина дом 6 до улицы Льва Толстого дом 16 через 15 минут?
- **>** Да
- > Ок, спасибо, заказ сформирован. Ожидайте

- > Хотите заказать такси от улицы Маршала Неделина дом 6 через 15 минут?
- **>** Да
- > до улицы Льва Толстого дом 16?
- > Да
- > Ок, спасибо, заказ сформирован. Ожидайте

Oсновы RL

RL в диалогах

- State Tracking / Belief Monitoring:
 - > Цель пользователя -> скрытое состояние (belief state)
 - > Байесовский вывод для трекинга belief state
- Action Selection / Policy Optimization
 - > belief state -> action (policy)
 - > RL оптимизируем политику

Summary: POMDP-based Dialog Systems

Illustration: synthesizing across N-Best lists

N-Best model illustration

A Simple Two State Example

Policy Value Function at 30% Error Rate

Учитывает модели пользовательского поведения

- Учитывает модели пользовательского поведения
- Действия на основе минимизации кол-ва шагов

- Учитывает модели пользовательского поведения
- Действия на основе минимизации кол-ва шагов
- Учитывает ошибки ASR

- Учитывает модели пользовательского поведения
- Действия на основе минимизации кол-ва шагов
- Учитывает ошибки ASR
- Может обучаться в production на миллионах пользователей

RL. Недостатки

- Необходим симулятор пользователя
- Долго тренируется

SL — Supervised Learning

- Data Driven подход
- На вход размеченные диалоги (NLU, NLG, Actions)
- На выходе Actions (NLG, API calls)
- Задача: реконструирование диалога

SL. Достоинства

Учитывает модели пользовательского поведения

SL. Достоинства

- Учитывает модели пользовательского поведения
- Учитывает ошибки ASR

SL. Достоинства

- Учитывает модели пользовательского поведения
- Учитывает ошибки ASR
- Data Driven

SL. Недостатки

Кол-во шагов не минимизируется

SL. Недостатки

- Кол-во шагов не минимизируется
- Работает в production на миллионах пользователей и никак не учитывает этот факт!

SL+RL

- Data Driven подход
- Учимся на данных (реконструируем диалоги)

SL+RL

- Data Driven подход
- Учимся на данных (реконструируем диалоги)
- Симулятором пользователя эмулируем зашумлённую среду + поведение пользователя (возможно неадекватное)

Учитывает модели пользовательского поведения

- Учитывает модели пользовательского поведения
- Учитывает ошибки ASR

- Учитывает модели пользовательского поведения
- Учитывает ошибки ASR
- Data Driven

- Учитывает модели пользовательского поведения
- Учитывает ошибки ASR
- Data Driven
- Действия на основе данных, и минимизации кол-ва шагов

- Учитывает модели пользовательского поведения
- Учитывает ошибки ASR
- Data Driven
- Действия на основе данных, и минимизации кол-ва шагов
- Paботает в production на миллионах пользователей и учитывает этот факт!

SL + RL. Недостатки

- Сложность разработки
- Нужен симулятор пользователя
- Долго тренируется

Заключение

- CallFlow не гибко
- FormFilling лучше, но нужно больше масштабируемости
- SL + RL пожалуй самое лучшее решение, но пока ни у кого нет в production

Литература

- Jason D. Williams. "Spoken dialog systems as an application of POMDPs"
- Gokhan Tur, Renato De Mori. "Spoken Language Understanding. Systems For Extracting Semantic Information From Speech"
- Jason D. Williams et al. "Statistical approaches to dialogue systems"
- Jason D.Williams. "Applying POMDPs to Dialog Systems in the Troubleshooting Domain"
- Steve Young et al. "POMDP-based Statistical Spoken Dialogue Systems: a Review"
- Jason D. Williams. "Partially Observable Markov Decision Processes for Spoken Dialogue

Management

- Oliver Lemon et al. "Reinforcement learning for adaptive dialogue systems"
- Jason D. Williams et al. "End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning"
- Jason Weston et al. "Learning END-TO-END Goal-Oriented dialog"
- Tiancheng Zhao and Maxine Eskenazi. "Towards End-to-End Learning for Dialog State
- Tracking and Management using Deep Reinforcement Learning"

Вопросы?