

Ruido de impactos Ensayos, requisitos normativos y soluciones

Xavier Costa

Laboratorio de Acústica LGAI Technological Center (Applus) xavier.costa@applus.com

- Fuerza aplicada por una fuente directamente a una estructura
- Fuentes de vibración estables o fuentes de impacto
- Facilidad en transmitir la energía de vibración a superficies lejanas en contacto con la estructura
- Más radiación en estructuras ligeras y poco amortiguadas

- Impacto: fuerza de corta duración capaz de hacer vibrar una estructura
- Diferencias entre los impactos generados por elementos duros y elementos blandos
- El problema más común: en la situación de dos salas superpuestas, se genera ruido de impacto en la sala superior y se recibe en la inferior

$$\int_0^\tau F(t)dt = 2 m v_0$$

Normas que rigen los ensayos de aislamiento al ruido de impacto:

Anulada UNE-EN ISO 140/6 Medición en laboratorio

UNE-EN ISO 140/7: Medición 'in situ'

UNE-EN ISO 140/8: Medición en laboratorio de la mejora de aislamiento al ruido de impacto por un recubrimiento

Anulada UNE-EN ISO 140/11: Idem anterior sobre suelos ligeros

- > UNE-EN ISO 10052: Medición "in situ". Método de control
- UNE-EN ISO 717/2: Evaluación del aislamiento acústico al ruido de impactos

- > Nueva estructura de la ISO 10140:2011 para ensayos en laboratorio:
 - ➤ UNE-EN ISO 10140-1 Reglas de aplicación de productos específicos
 - > UNE-EN ISO 10140-2 Medición del aislamiento acústico a ruido aéreo
 - > UNE-EN ISO 10140-3 Medición del aislamiento acústico a ruido de impacto
 - > UNE-EN ISO 10140-4 Procedimientos y requisitos de medición
 - ➤ UNE-EN ISO 10140-5 Requisitos para instalaciones y equipos de ensayo

Esta norma anula y sustituye a:

EN 20140-10:1992, EN ISO 104-1:1997, EN ISO 140-3:1995, EN ISO 140-6:1998,

EN ISO 140-8:1997, EN ISO 140-11:2005, EN ISO 140-16:2006

Posiciones de la máquina de impactos

Posiciones de micrófono

- Ensayo 'in situ': el mismo procedimiento de ensayo
- > Se definen los parámetros:

$$L'_{n} = L_{i} + 10 \log (A/A_{0})$$

 $L'_{nT} = L_{i} - 10 \log (T/T_{0})$ $T_{0} = 0.5 s$

Requisitos establecidos en la NBE- CA 88

Identificación de validez de soluciones para ruido de impactos en forjados.

Aislamiento entre	Niveles de ruido de impacto
Recinto habitable – recinto de actividad ó con	< 80 dBA
instalaciones	
Recinto habitable – recinto habitable ó común	< 80 dB A

Identificación de validez de soluciones para ruido de impactos en cubiertas.

Aislamiento entre	Niveles de ruido de impacto
Recinto habitable – cubierta transitable	< 80 dBA

Requisitos establecidos en el CTE

Identificación de validez de soluciones para ruido de impactos en forjados.

Aislamiento entre	Niveles de ruido de impacto
Recinto habitable – recinto de actividad ó con instalaciones	< 60 dB
Recinto habitable – recinto habitable ó común	< 65 dB

Identificación de validez de soluciones para ruido de impactos en cubiertas.

Aislamiento entre	Niveles de ruido de impacto
Recinto habitable – cubierta transitable	< 65 dB

Magnitudes globales del aislamiento a ruido de impactos de elementos de construcción y entre habitaciones en edificios

Derivada de valores en bandas de tercio de octava		Definido en
Magnitud global	Término y símbolo	Delillido eli
Nivel normalizado ponderado de la presión sonora de impactos, L _{n,w}	i Niivai normaiizano na ia nragion i	EN ISO 10140-3
Nivel normalizado ponderado de la presión sonora de impactos, L' _{n,w} Nivel normalizado de la presión sonora de impactos, L' _n ISO 140-7		ISO 140-7
Nivel estandarizado ponderado de la presión sonora de presión sonora de impactos, L'n,T,w		ISO 140-7

Curva de referencia

Frecuencia	Ln
(Hz)	Curva referencia
100	62,0
125	62,0
160	62,0
200	62,0
250	62,0
315	62,0
400	61,0
500	60,0
630	59,0
800	58,0
1000	57,0
1250	54,0
1600	51,0
2000	48,0
2500	45,0
3150	42,0
4000	
5000	

Frecuencia	Ln	Ln
(Hz)	Referencia	Medición
100	62,0	58,1
125	62,0	59,2
160	62,0	57,5
200	62,0	58,2
250	62,0	58,5
315	62,0	60,0
400	61,0	61,7
500	60,0	63,1
630	59,0	63,8
800	58,0	63,5
1000	57,0	63,8
1250	54,0	63,3
1600	51,0	63,1
2000	48,0	63,0
2500	45,0	62,4
3150	42,0	61,2
4000		
5000		

Frecuencia (Hz)	L' _{nT} (dB)
100	62,2
125	68,3
160	70,2
200	69,1
250	66,8
315	60,9
400	59,6
500	58,0
630	57,4
800	53,0
1000	52,6
1250	49,3
1600	47,2
2000	45,7
2500	42,4
3150	37,3
4000	32,1
5000	25,3

Frecuencia	L' _{nT}
(Hz)	(Octavas)
125	72,8
250	71,5
500	63,2
1000	56,7
2000	50,3
4000	38,6

desfarvorab.	desplazada
1,23	61
7,30	61
9,21	61
8,11	61
5,84	61
0,00	61
0,00	60
0,00	59
0,00	58
0,00	57
0,00	56
0,00	53
0,00	50
0,00	47
0,00	44
0,00	41

Desviac.

Curva Ref

SUMA 31,68

NIVEL GLOBAL ESTANDARIZADO, $L_{nT,w}$

dB

59

Desplazamiento Curva Referenc

- Clasificación de las muestras (UNE EN ISO 10140-1:Anexo H):
 - Categoría I (muestras pequeñas): revestimientos flexibles (caucho, corcho, compuestos de fibras) que pueden instalarse sueltos
 - Categoría II (muestras grandes): revestimientos rígidos. Se ha de poder ensayar con carga
 - Categoría III (materiales que se extienden): revestimientos flexibles que cubren el suelo de pared a pared
 - Materiales de clasificación incierta: el laboratorio de ensayo decidirá si se ensayan muestras grandes o pequeñas

Curva de referencia

Frecuencia	Ln,r,0
(Hz)	Curva referencia
100	67,0
125	67,5
160	68,0
200	68,5
250	69,0
315	69,5
400	70,0
500	70,5
630	71,0
800	71,5
1000	72,0
1250	72,0
1600	72,0
2000	72,0
2500	72,0
3150	72,0
4000	
5000	

- Medición de L_i (sin y con recubrimiento) y A: cálculo de L_{n0} y L_n
- ightharpoonup Cálculo de $\Delta L = L_{n0} L_{n}$
- ightharpoonup Cálculo de $L_{n,r} = L_{n,r,0} \Delta L$
- ightharpoonup Cálculo de $L_{n,r,0,w}$ y $L_{n,r,w}$
- ightharpoonup Cálculo de $\Delta L_{w} = L_{n,r,0,w} L_{n,r,w}$

Rigidez dinámica según norma UNE EN 29052-1

$$f_r = \frac{1}{2\pi} \sqrt{\frac{s'_t}{m'_t}}$$

Rigidez dinámica, s'_{t,} en N/m³

Masa superficial, m'_t, en kg/m²

• Suelos flotantes a base de arena/cemento:

$$\Delta L = 30 \text{ Log } \frac{f}{f_0} \text{ dB}$$

Suelos flotantes asfálticos o secos:

$$\Delta L = 40 \text{ Log } \frac{f}{f_0} \text{ dB}$$

$$f_0 = 160 \sqrt{\frac{s'}{m'}}$$

Rigidez dinámica, s'_{t,} en MN/m³ Masa superficial, m'_t, en kg/m²

- A es el índice global estimado
- B es la masa superficial del suelo flotante
- C es la rigidez dinámica, en MN/m³

Control del ruido transmitido a través de la estructura

- > Atenuación en la fuente
- > Atenuación a lo largo de la vía de propagación
- > Atenuación cerca del receptor

- Atenuación en la fuente
 - Habitualmente el control más eficaz
 - Colocar la fuente alejada de zonas críticas
 - Reducir la potencia de la fuente de vibración
 - Instalar aisladores de vibración
 - Aplicar capas elásticas entre las superficies sometidas a impacto
 - Reducir la velocidad de la masa que impacta
 - Reforzar la estructura en los puntos de excitación

© C.M. Harris - McGraw-Hill

- Atenuación a lo largo de la vía de transmisión
 - Discontinuidades estructurales
 - Discontinuidades estructurales completas
 - Separación mediante conexiones elásticas
 - ✓ Aplicar un tratamiento de amortiguamiento de la vibración a la estructura que la transmite

© C.M. Harris – McGraw-Hill

Caso real: D_{nT,A} pasó de 41 dBA a 51 dBA

Atenuación cerca del receptor

 Cubrir superficies radiantes (techos suspendidos, capas flexibles)

✓ Reducir las vibraciones en las superficies radiantes mediante elementos de amortiguación

© C.M. Harris - McGraw-Hill

