层次聚类

一、原理及方法

1、层次法

先计算样本之间的距离,每次将距离最近的点合并到同一个类;然后,再计算类与类之间的距离,将距离最近的类 合并为一个大类。

2、计算类与类之间的方法

(1) 最短距离法 (single): 将类与类的距离定义为类与类之间样本的最短距离;

$$d(u, v) = min(dist(u[i], v[j])$$

其中: u, v为类; i为u类中的点; j为v类中的点。

(2) 最长距离法 (complete): 将类与类的距离定义为类与类之间样本的最长距离;

$$d(u,v) = \max(dist(u[i],v[j])$$

其中: u, v为类; i为u类中的点; j为v类中的点。

(3)均值距离法(average):计算两个组合数据点中的每个数据点与其他所有数据点的距离,将所有距离的均值作为两个组合数据点间的距离(非加权);

$$d(u,v) = \sum_{ij} rac{d(u[i],v[j])}{(|u|st|v|)}$$

其中: |u|, |v|是聚类u和v中元素的的个数。

(4) weighted距离法:难以用图和文字说明,直接看公式吧,它和均值距离法得区别可参见下面实际应用中得例子;

$$d(u,v) = (dist(s,v) + dist(t,v))/2$$

其中: u是由s和t形成的,而v是森林中剩余的聚类簇,这被称为WPGMA (加权分组平均)法。

(5) ward方法 (沃德方差最小化算法)

• 具体解释如下 (摘自<u>CSDN</u>):

I输入距离矩阵,初始化每一个点为cluster,此时每个组内的ESS为0,ESS公式如下:

$$ESS = \sum_{ij}^{\mathsf{n}} x_{_{\mathrm{i}}}^2 - rac{1}{\mathsf{n}} \left(\sum_{ij}^{\mathsf{n}} x_{_{\mathrm{i}}}^2
ight)^2$$
 = $nVar(X) = nE[(X - E(X))^2]$

Ⅱ 计算合个cluster的成本:

cost = ESS (总-合并后) -ESS (总-合并前) ESS (总-合并前) =ESS (红) +ESS (黄) +ESS (其他没画出来的组) ESS (总-合并后) =ESS (红黄) +ESS (其他没画出来的组)

画的那个树状图的高度,可以认为是上面说的这个"成本"。

• 其中在 python scipy.cluster.hierarchy 算法中又到的目标函数如下:

$$d(u,v) = \sqrt{rac{|v| + |s|}{T} d(v,s)^2 + rac{|v| + |t|}{T} d(v,t)^2 - rac{|v|}{T} d(s,t)^2}$$

u是s和t组成的新的聚类,v是森林中未使用的聚类。T = |v|+|s|+|t|, |*|是聚类簇中观测值的个数。在下一章节中会有具体的例子来说明这一公式。

二、实际应用

假设一样本数据(距离矩阵)如下,根据不同计算距离的方法画出层次聚类图:

	a	b	С	d	e	f
a		21.6	22.6	63.9	65.1	17.7
b	21.6		1	42.3	43.5	3.9
С	22.6	1		41.3	42.5	4.9
d	63.9	42.3	41.3		1.2	46.2
e	65.1	43.5	42.5	1.2		47.4
f	17.7	3.9	4.9	46.2	47.4	

1、最短距离法

(1) 两两之间b与c之间的距离最小,先聚合b和c,并重新计算距离距离、更新矩阵:

例如层u(b,c)与a的距离为: d(u(b,c),a)=min(d(b,a),d(c,a))=min(21.6,22.6)=21.6

А	D	U	U		Г	G	П	1	J	I N	
第一次更	新距离矩阵	【b&c聚合					第二次更	新距离矩阵	【d&e聚台	i]	
	a	(b,c)	d	e	f			a	(b,c)	(d,e)	f
a		21.6	63.9	65.1	17.7		a		21.6	64.5	17.
(b,c)	21.6		41.3	42.5	4.9		(b,c)	21.6		41.3	4.9
d	63.9	41.3		3	46.2		(d,e)	64.5	41.3		46.
e	65.1	42.5	3		47.4		f	17.7 (4.9	46.2	
f	17.7	4.9	46.2	47.4							
第三次更	新距离矩阵	[u(b,c)&	f聚合】				第四次更	新距离矩阵	[u(b,c,f)	&a聚合】	
	a	(b,c,f)	(d,e)					(a,b,c,f)	(d,e)		
a		17.7	64.5				(a,b,c,f)		41.3		
(b,c,f) (17.7		41.3				(d,e)	41.3			
(d,e)	64.5	41.3									

- (2) 基于新的距离矩阵, d和e之间的距离最小, 聚合d和e, 再次更新距离矩阵;
- (3) 重复以上步骤,知道所有的样本都在一个类中,最后画出层次聚类图。

2、均值距离法

(1) 两两之间b与c之间的距离最小, 先聚合b和c, 并重新计算距离距离、更新矩阵:

例如在第三次更新距离矩阵时层u(b,c,f)与a的距离为: d(u(b,c,f),a)=sum(d(b,a),d(c,a),d(f,a))/3=(21.6+22.6+17.7)=20.633

第一次更	新距离矩阵	【b&c聚t	合】			第二次更	新距离矩阵	【d&e聚	合】	
	a	(b,c)	d	e	f		a	(b,c)	(d,e)	f
a		22.1	63.9	65.1	17.7	a		22.1	64.5	17.7
(b,c)	22.1		41.8	43	7.45	(b,c)	22.1		42.4	7.45
d	63.9	41.8		3	46.2	(d,e)	64.5	42.4		46.8
e	65.1	43	3		47.4	f	17.7	7.45	46.8	
f	17.7	7.45	46.2	47.4						
第三次更	新距离矩阵	[u(b,c)8	xf聚合】			第四次更	新距离矩阵	u(b,c,f) ()&a聚合]	
	a	(b,c,f)	(d,e)				(a,b,c,f)	(d,e)		
a		20.6	64.5			(a,b,c,f)		49.025		
(b,c,f)	20.6		42.4			(d,e)	49.025			
(d,e)	64.5	42.4								

- (2) 基于新的距离矩阵, d和e之间的距离最小, 聚合d和e, 再次更新距离矩阵;
- (3) 重复以上步骤,知道所有的样本都在一个类中,最后画出层次聚类图。

均值距离法

3、weighted距离法

步骤均与以上两种方法相同。通过相同的例子来说明和均值距离法得差别:

例如在第三次更新距离矩阵时层u(b,c,f)与a的距离为【采用第二次更新后的矩阵】: d(u(b,c,f),a)=sum(d(u(b,c),f),d(f,a))/2=(21.1+17.7)=19.9

第一次更	新距离矩阵	【b&c聚台	<u> </u>			第二次更	新距离矩阵	【d&e聚	合]	
	a	(b,c)	d	e	f		a	(b,c)	(d,e)	
a		22.1	63.9	65.1	17.7	a		22.1	64.5	
(b,c)	22.1		41.8	43	7.45	(b,c)	22.1		42.4	
d	63.9	41.8		3	46.2	(d,e)	64.5	42.4		
e	65.1	43	3)	47.4	f	17.7	7.45	46.8	
f	17.7	7.45	46.2	47.4						
第三次更	国新距离矩阵	[u(b,c)8	·f聚合]			第四次更	新距离矩阵	[u(b,c,f	&a聚合】	
	a	(b,c,f)	(d,e)				(a,b,c,f)	(d,e)		
a		19.9	64.5			(a,b,c,f)		54.55		
(b,c,f)	19.9		44.6			(d,e)	54.55			
(d,e)	64.5	44.6								

4、ward距离法

下面以第三次更新矩阵后为例, 计算层 u(d,e) 与 u(b,c,f) 之间的距离:

- 根据公式中提到的u是s和t组成的新的聚类, v是森林中未使用的聚类。
- 在该例中新的聚类u极为u(b,c,f),s为u(b,c),v为f。
- T = |v| + |s| + |t| = 2 + 1 + 2 = 5

因此公式为:

$$d(u(b,c,f),u(b,c)) = \sqrt{\frac{4}{5}}d(u(b,c),u(d,e))^2 + \frac{3}{5}d(f,u(d,e))^2 - \frac{2}{5}d(f,u(b,c))^2 = \sqrt{\frac{4}{5}}59.93^2 + \frac{3}{5}54.0^2 - \frac{2}{5}9.07^2 = 67.76$$

第一次則	厄新距离矩阵	【b&c聚	合】			第二次更	新距离矩阵	【d&e聚	合】	
	a	(b,c)	d	e	f		a	(b,c)	(d,e)	f
a		25.5	63.9	65.1	17.7	a		25.5	74.5	17.7
(b,c)	25.5		48.26	49.65	9.07	(b,c)	25.5		59.93	9.07
d	63.9	48.26		3	46.2	(d,e)	74.5	59.93		54.02
e	65.1	49.65	3		47.4	f	17.7	9.07	54.0	
f	17.7	9.07	46.2	47.4						
第三次頭	」 更新距离矩阵	[u(b,c)8	2.f聚合]			第四次更	新距离矩阵	[u(b,c,	f)&a聚合】	
	a	(b,c,f)	(d,e)				(a,b,c,f)	(d,e)		
a		24.99	74.46			(a,b,c,f)		79.94		
(b,c,f)	24.99)	67.76			(d,e)	79.94			
(d,e)	74.5	67.76								

