

《大数据概论》 大数据架构与处理

鲍鹏 软件学院

目录

- 集中式分布架构
- 分布式计算架构
 - MapReduce
 - Spark
- 大数据计算处理加速技术

Spark简介

- Spark最初由美国加州伯克利大学(UC Berkeley)的 AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。
- 2013年Spark加入Apache孵化器项目后发展迅猛,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(Hadoop、Spark、Storm)。
- · Spark在2014年打破了Hadoop保持的基准排序纪录
 - Spark/206个节点/23分钟/100TB数据
 - Hadoop/2000个节点/72分钟/100TB数据
 - Spark用十分之一的计算资源,获得了比Hadoop快3倍的速度。

Spark简介

- · Spark的主要特点如下:
 - 运行速度快: 使用DAG执行引擎以支持循环数据 流与内存计算。
 - 容易使用: 支持使用Scala、Java、Python和R语言 进行编程,可以通过Spark Shell进行交互式编程。
 - 通用性: Spark提供了完整而强大的技术栈,包括 SQL查询、流式计算、机器学习和图算法组件。
 - 运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。

Spark与Hadoop的对比

- 相比于Hadoop, Spark主要具有如下优点:
 - Spark的计算模式也属于MapReduce,但不局限于 Map和Reduce操作,还提供了多种数据集操作类型, 编程模型比Hadoop MapReduce更灵活。
 - Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更高。
 - Spark基于DAG的任务调度执行机制,要优于 Hadoop MapReduce的迭代执行机制。

Spark与Hadoop的对比

(b) Spark执行流程

Spark与Hadoop的对比

- · 使用Hadoop进行迭代计算非常耗费资源。
- Spark将数据载入内存后,之后的迭代计算都可以直接使用内存中的中间结果作运算,避免了从磁盘中频繁读取数据。

Hadoop与Spark执行逻辑回归的时间对比

• Spark生态系统已经成为伯克利数据分析软件 栈BDAS(Berkeley Data Analytics Stack)的 重要组成部分。

Access and Interfaces	Spark Streaming	BlinkDB	GraphX	MLBase	
		Spark SQL		MLlib	
Processing Engine	Spark Core				
Storage	Tachyon				
	HDFS, S3				
Resource Virtualization	Mesos		Hadoop Yarn		

BDAS架构

表 Spark生态系统组件的应用场景

应用场景	时间跨度	其他框架	Spark生态系统中的组件
复杂的批量数据 处理	小时级	MapReduce \ Hive	Spark
基于历史数据的 交互式查询	分钟级、秒级	Impala、Dremel、 Drill	Spark SQL
基于实时数据流 的数据处理	毫秒、秒级	Storm, S4	Spark Streaming
基于历史数据的 数据挖掘		Mahout	MLlib
图结构数据的处理		Pregel, Hama	GraphX

Spark运行架构

- 基本概念
- 架构设计
- Spark运行基本流程
- · RDD运行原理

Spark运行架构—基本概念

- RDD: Resilient Distributed Dataset (弹性分布式数据集) 简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型。
- DAG: 是Directed Acyclic Graph (有向无环图)的简称,反映 RDD之间的依赖关系。
- Executor: 是运行在工作节点(Worker Node)的一个进程,负责运行Task。
- Application: 用户编写的Spark应用程序。
- Task: 运行在Executor上的工作单元。
- Job: 一个Job包含多个RDD及作用于相应RDD上的各种操作。
- Stage: 是Job的基本调度单位,一个Job会分为多组Task,每组 Task被称为Stage,或者也被称为TaskSet,代表了一组关联的、 相互之间没有Shuffle依赖关系的任务组成的任务集。

• Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)。

Spark运行架构

- 与Hadoop MapReduce计算框架相比,Spark所采用的 Executor有两个优点:
 - 一是利用多线程来执行具体的任务,减少任务的启动开销。
 - 二是Executor中有一个BlockManager存储模块, 会将内存和磁盘共同作为存储设备,有效减少IO 开销。

 一个Application由一个Driver和若干个Job构成,一个 Job由多个Stage构成,一个Stage由多个没有Shuffle关 系的Task组成。

Spark中各种概念之间的相互关系

• 当执行一个Application时,Driver会向集群管理器申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行Task,运行结束后,执行结果会返回给Driver,或者写到HDFS或者其他数据库中。

- (1) 首先为应用构建基本的运行环境,即由Driver创建一个 SparkContext,进行资源的申请、任务的分配和监控。
- (2) 资源管理器为Executor分配资源,并启动Executor进程。

Spark运行基本流程图

• (3) SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给 DAGScheduler解析成Stage,然后把一个个TaskSet提交给底层调度器 TaskScheduler处理; Executor向SparkContext申请Task,Task Scheduler 将Task发放给Executor运行,并提供应用程序代码。

• (4) Task在Executor上运行,把执行结果反馈给TaskScheduler,然后反馈给DAGScheduler,运行完毕后写入数据并释放所有资源。

Spark运行基本流程图

- · Spark运行架构具有以下特点:
 - 每个Application都有自己专属的Executor进程,并 且该进程在Application运行期间一直驻留。 Executor进程以多线程的方式运行Task。
 - Spark运行过程与资源管理器无关,只要能够获取 Executor进程并保持通信即可。
 - Task采用了数据本地性和推测执行等优化机制。

- 设计背景
- RDD概念
- RDD特性
- · RDD之间的依赖关系
- · Stage的划分
- · RDD运行过程

• 设计背景

- 许多迭代式算法(比如机器学习、图算法等)和交互 式数据挖掘工具,共同之处是,不同计算阶段之间会 重用中间结果。
- 目前的MapReduce框架通常把中间结果写入到HDFS中, 带来了大量的数据复制、磁盘IO和序列化开销。
- RDD为满足这种需求而出现,它提供了一个抽象的数据架构,使得不必考虑底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,避免中间数据存储。

• RDD概念

- 一个RDD是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。
- RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和groupby)而创建得到新的RDD。

• RDD概念

- RDD提供了一组丰富的操作以支持常见的数据运算,分为"动作"(Action)和"转换"(Transformation)两种类型。
- RDD提供的转换接口较为简单,都是类似map、filter、group By、join等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改。
- 表面上RDD的功能很受限、不够强大,实际上RDD已被 实践证明可以高效地表达许多框架的编程模型(比如 MapReduce、SQL、Pregel)。
- Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作。

- · RDD典型的执行过程如下:
 - RDD读入外部数据源进行创建。
 - RDD经过一系列的转换(Transformation)操作,每一次都会产生不同的RDD,供给下一个转换操作使用。
 - 最后一个RDD经过"动作"操作进行转换,并输出到外部数据源类型。

RDD执行过程的一个实例

- · RDD典型的执行过程如下:
 - 这一系列处理称为一个Lineage(血缘关系),即DAG 拓扑排序的结果。
 - 优点: 惰性调用、管道化、避免同步等待、不需要保存中间结果、每次操作变得简单。

• RDD特性

- Spark采用RDD能够实现高效计算的原因主要在于:
 - (1) 高效的容错性
 - 现有容错机制:数据复制或者记录日志
 - RDD: 血缘关系、重新计算丢失分区、无需回滚系统、重算过程在不同节点之间并行、只记录粗粒度的操作。
- (2) 中间结果持久化到内存,数据在内存中的多个 RDD操作之间进行传递,避免了不必要的读写磁盘开销。
- (3) 存放的数据可以是Java对象,避免了不必要的对象序列化和反序列化。

- · RDD之间的依赖关系
 - 窄依赖: 表现为一个父RDD的分区对应于一个子RDD的分区,或多个父RDD的分区对应于一个子RDD的分区,或多个父RDD的分区对应于一个子RDD的分区。
 - 宽依赖:表现为存在一个父RDD的一个分区对应一个子RDD的多个分区。

· RDD之间的依赖关系

- Stage的划分
 - Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD中的分区之间的依赖关系来决定如何划分Stage。
 - 具体划分方法:
 - · 在DAG中进行反向解析,遇到宽依赖就断开。
 - · 遇到窄依赖就把当前的RDD加入到Stage中。
 - · 将窄依赖尽量划分在同一个Stage中,可以实现流水 线计算。

- · Stage的划分
 - 如图,RDD被分成三个Stage,在Stage2中,从map 到union都是窄依赖,这两步操作可以形成一个流水 线操作。

• Stage的划分

- 流水线操作实例: 分区7通过map操作生成的分区9,可以不用等待分区8到分区10这个map操作的计算结束,而是继续进行union操作,得到分区13,这样流水线执行大大提高了计算的效率。

• Stage的划分——两类Stage

- ShuffleMapStage: 不是最终的Stage, 在它之后还有其他Stage, 它的输出一定需要经过Shuffle过程,并作为后续Stage的输入; 这种Stage是以Shuffle为输出边界,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出,其输出可以是另一个Stage的开始;在一个Job里可能有该类型的Stage,也可能没有该类型Stage。
- ResultStage: 最终的Stage,没有输出,而是直接产生结果或存储。这种Stage是直接输出结果,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出。在一个Job里必定有该类型Stage。因此,一个Job含有一个或多个Stage,其中至少含有一个ResultStage。

- · RDD运行过程
 - (1) 创建RDD对象;
 - (2) SparkContext负责计算RDD之间的依赖关系,构建DAG;
 - (3) DAGScheduler负责把DAG图分解成多个Stage,每个Stage中包含了多个Task,每个Task会被TaskScheduler分发给各个Worker Node上的Executor去执行。

- Apache Storm
- Apache Spark
- Apache Samza

Apache Storm

- Storm需预先设计一个用于实时计算的图状结构,称之为拓扑(topology)。这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代,将任务分配给工作节点(worker node)执行。
- 一个拓扑中包括 spout 和 bolt 两种角色,其中 spout发送消息,负责各数据流以 tuple元组的形式 发送出去;而 bolt 则负责转换这些数据流,在bolt 中可以完成计算、过滤等操作,bolt自身也可以随 机将数据发送给其他bolt。由 spout发射出的 tuple 是不可变数组,对应着固定的键值对。

Spork Streaming

Apache Spark

- Spark Streaming是核心 Spark API的一个扩展,其并不像Storm一次一个地处理数据流,而是在处理前按时间间隔预先将其切分为一段一段的批处理作业。
- Spark针对持续性数据流的抽象称为 Stream (Discretized stream),一个 Stream是一个微批处理 (micro-batching)的RDD(弹性分布式数据集);而 RDD则是一种分布式数据集,能够以两种方式并 行运作,分别是任意函数和滑动窗口数据的转换。

Apache Samza

- Samza处理数据流时,会分别按次处理每条收到的消息。Samza的流单位既不是元组,也不是 Stream,而是一条条消息。
- 在 Samza中数据流被切分开来,每个部分都由一组 只读消息的有序数列构成,而这些消息每条都有一 个特定的ID。
- 该系统还支持批处理,即逐次处理同一个数据流分区的多条消息。 Samza的执行与数据流模块都是可插拔式的,尽管 Samza的特色是依赖 Hadoop的 Yarn(另一种资源调度器)和Apache Kafka。

- 三种计算架构共同之处:
 - 三种实时计算系统均为开源的分布式系统,具有低延迟、可扩展和容错性等优点。
 - 允许用户在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行运行。
 - 均提供了简单的API来简化底层实现的复杂程度。