Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Object localization

What are localization and detection?

Image classification

" Car"

Classification with localization

"Cw

bjert

Detection

Classification with localization

4 - background

Defining the target label y

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
(\dot{y}_{1}, y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2} \\
+ \dots + (\dot{y}_{8} - y_{8})^{2} & \text{if } y_{1} = 1 \\
(\dot{y}_{1} - y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2}
\end{cases}$$

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Landmark detection

Landmark detection

 b_x , b_y , b_h , b_w

ConvNet ConvNet

129

Object detection

Car detection example

Sliding windows detection Corportation cost

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Convolution implementation of sliding windows

Bounding box predictions

Output accurate bounding boxes

YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Specify the bounding boxes

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Non-max suppression

Non-max suppression example

Non-max suppression example

19x19

Non-max suppression example

Pc

Non-max suppression algorithm

Each output prediction is:

STEP 1

Discard all boxes with $p_c \leq 0.6$

>>> While there are any remaining boxes:

STEP 2 •

Here is a simple example, lets assume I have 5 boxes (5 P_c) here, and they are [0.2, 0.5, 0.6, 0.7, 0.9]. After step 1, the 0.2 and 0.5 will be gone. leftover are 0.6, 0.7, 0.9

step 2: box 0.9 is the highest in the leftover. So, 0.9 box here will be picked as the prediction.

step 3: the box of 0.6 will do IoU with 0.9, and box of 0.7 will do IoU with 0.9, whichever IoU >= 0.5 will be deleted.

(f IoU between box 0.6 and box 0.9 is >= 0.5, this means that there is a chance that both boxes are referring to the same object, so you want to keep only the box that has a higher probability (which is box 0.9), and drop the others (which is box 0.6).

If IoU between box 0.7 and box 0.9 is < 0.5, then there is a chance that these boxes are referring to two different objects, so we want to keep the box 0.7. After we have a list of boxes to keep, we pass it back to step 2 and then step 3 which will end up in a shorter list, and then step 2 and 3 again and again, until the list is empty

Pick the box with the largest p_c Output that as a prediction.

Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Anchor boxes

Overlapping objects:

$$\mathbf{y} = \begin{bmatrix} b_{c} \\ b_{x} \\ b_{y} \\ b_{h} \\ b_{w} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

Anchor box 1:

Anchor box 2:

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

3x3x 2x8

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

Putting it together: YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Making predictions

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Region proposals (Optional)

Region proposal: R-CNN

Faster algorithms

 \rightarrow R-CNN:

Propose regions. Classify proposed regions one at a time. Output <u>label</u> + bounding box.

Fast R-CNN:

Propose regions. Use convolution implementation of sliding windows to classify all the proposed regions.

Faster R-CNN: Use convolutional network to propose regions.

[Girshik et. al, 2013. Rich feature hierarchies for accurate object detection and semantic segmentation] [Girshik, 2015. Fast R-CNN]

[Ren et. al, 2016. Faster R-CNN: Towards real-time object detection with region proposal networks]

Andrew Ng

Convolutional Neural Networks

Semantic segmentation with U-Net

Object Detection vs. Semantic Segmentation

Input image

Object Detection

Semantic Segmentation

Motivation for U-Net

Chest X-Ray

Brain MRI

Per-pixel class labels

- 1. Car
- 0. Not Car

Per-pixel class labels

- 1. Car
- 2. Building
- 3. Road

```
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
   13333333333331
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
```

Segmentation Map

Deep Learning for Semantic Segmentation

Transpose Convolution

Normal Convolution

Transpose Convolution

Transpose Convolution

filter $f \times f = 3 \times 3$

padding p = 1 stride s = 2

Deep Learning for Semantic Segmentation

U-Net

