Loan_Default_Prediction_Analysis

July 3, 2025

0.1 1: Import Required Libraries

```
[1]: # Data Handling
     import pandas as pd
     import numpy as np
     # Visualization
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Preprocessing
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import LabelEncoder, StandardScaler
     # ML Models
     from sklearn.linear_model import LogisticRegression
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.svm import SVC
     # Evaluation
     from sklearn.metrics import classification_report, confusion_matrix, __
      →accuracy_score
     # Settings
     import warnings
     warnings.filterwarnings('ignore')
```

0.2 2: Load and Explore Dataset

0 24890 2019

```
[3]: df = pd.read_csv('Loan_Default.csv')
    print("Shape:", df.shape)
    df.head()

Shape: (148670, 34)

[3]: ID year loan_limit Gender approv_in_adv loan_type \
```

cf Sex Not Available

nopre

type1

```
1 24891 2019
                                        Male
                       cf
                                                      nopre
                                                                type2
2 24892 2019
                       cf
                                        Male
                                                        pre
                                                                type1
3 24893
                                        Male
          2019
                       cf
                                                      nopre
                                                                type1
4 24894 2019
                                       Joint
                       cf
                                                        pre
                                                                type1
 loan_purpose Credit_Worthiness open_credit business_or_commercial
0
                              11
                                        nopc
                                                               nob/c ...
            p1
1
                              11
                                        nopc
                                                                 b/c ...
            р1
2
                                                               nob/c ...
                              11
                                        nopc
            р1
3
            р4
                              11
                                        nopc
                                                               nob/c ...
4
                                                               nob/c ...
                              11
                                        nopc
            р1
  credit_type
               Credit_Score
                              co-applicant_credit_type
                                                           age \
                                                    CIB 25-34
0
           EXP
                         758
1
          EQUI
                         552
                                                    EXP 55-64
2
           EXP
                         834
                                                    CIB 35-44
                         587
                                                    CIB 45-54
3
           EXP
4
          CRIF
                         602
                                                    EXP 25-34
                                    LTV Region Security_Type Status dtir1
  submission_of_application
0
                              98.728814 south
                                                       direct
                                                                       45.0
                     to_inst
                                                                    1
1
                                                                        NaN
                     to_inst
                                    NaN
                                         North
                                                       direct
                                                                    1
2
                     to_inst 80.019685
                                         south
                                                       direct
                                                                    0 46.0
3
                                                       direct
                                                                    0 42.0
                    not inst
                              69.376900
                                         North
4
                    not_inst
                              91.886544
                                         North
                                                       direct
                                                                    0 39.0
```

[5 rows x 34 columns]

[5]: # Basic info df.info() df.describe() df.isnull().sum()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148670 entries, 0 to 148669
Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	ID	148670 non-null	int64
1	year	148670 non-null	int64
2	loan_limit	145326 non-null	object
3	Gender	148670 non-null	object
4	approv_in_adv	147762 non-null	object
5	loan_type	148670 non-null	object
6	loan_purpose	148536 non-null	object
7	Credit_Worthiness	148670 non-null	object
8	open_credit	148670 non-null	object
9	business_or_commercial	148670 non-null	object

	10	loan_amount		148670	non-null	int64
	11	rate_of_interest		112231	non-null	float64
	12	Interest_rate_spread		112031	non-null	float64
	13	Upfront_charges		109028	non-null	float64
	14	term		148629	non-null	float64
	15	Neg_ammortization		148549	non-null	object
	16	interest_only		148670	non-null	object
	17	lump_sum_payment		148670	non-null	object
	18	property_value		133572	non-null	float64
	19	construction_type		148670	non-null	object
	20	occupancy_type		148670	non-null	object
	21	Secured_by		148670	non-null	object
	22	total_units		148670	non-null	object
	23	income		139520	non-null	float64
	24	credit_type		148670	non-null	object
	25	Credit_Score		148670	non-null	int64
	26	<pre>co-applicant_credit_type</pre>		148670	non-null	object
	27	age		148470	non-null	object
	28	submission_of_application	n	148470	non-null	object
	29	LTV		133572	non-null	float64
	30	Region		148670	non-null	object
	31	Security_Type		148670	non-null	object
	32	Status		148670	non-null	int64
	33	dtir1		124549	non-null	float64
	dtype	es: float64(8), int64(5),	ob	ject(2	1)	
	memoi	ry usage: 38.6+ MB				
[5]:	ID			0		
[0].	year			0		
	•	_limit	3:	344		
	Gend		0.	0		
		ov_in_adv	9	908		
		_type		0		
				134		
		it_Worthiness		0		
		credit		0		
	-	- ness_or_commercial		0		
		 _amount		0		
	rate	_ e_of_interest	36	439		
	Inte	rest_rate_spread	36	639		
	Upfr	ont_charges	39	642		
	term	-		41		
	Neg_	ammortization		121		
	inte	rest_only		0		
	lump	_sum_payment		0		
	prop	erty_value	15	098		
	cons	truction type		0		

[5]:

construction_type

0

```
0
occupancy_type
                                   0
Secured_by
total_units
                                   0
                                9150
income
credit_type
                                   0
Credit_Score
                                   0
co-applicant_credit_type
                                   0
                                 200
submission_of_application
                                 200
LTV
                               15098
Region
                                   0
Security_Type
                                   0
Status
                                   0
dtir1
                               24121
dtype: int64
```

0.3 3: Data Cleaning

```
[8]: # Drop ID column if it has no predictive value
      df.drop(columns=['ID'], inplace=True, errors='ignore')
[10]: # Check missing values
      missing = df.isnull().sum()
      print("Missing columns:\n", missing[missing > 0])
     Missing columns:
      loan_limit
                                     3344
     approv_in_adv
                                     908
                                     134
     loan_purpose
     rate_of_interest
                                   36439
     Interest_rate_spread
                                   36639
     Upfront_charges
                                   39642
     term
                                      41
     Neg_ammortization
                                     121
     property_value
                                   15098
     income
                                    9150
                                     200
     submission_of_application
                                     200
     LTV
                                   15098
     dtir1
                                   24121
     dtype: int64
[12]: # Fill missing numeric values with median
      df.fillna(df.median(numeric_only=True), inplace=True)
```

Fill missing categorical values with mode (if any)
for col in df.select_dtypes(include='object').columns:

df[col].fillna(df[col].mode()[0], inplace=True)

```
[14]: # Encode all object-type columns using LabelEncoder
label_encoders = {}
categorical_cols = df.select_dtypes(include='object').columns

for col in categorical_cols:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
    label_encoders[col] = le
```

[15]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148670 entries, 0 to 148669
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	year	148670 non-null	int64
1	loan_limit	148670 non-null	int32
2	Gender	148670 non-null	int32
3	approv_in_adv	148670 non-null	int32
4	loan_type	148670 non-null	int32
5	loan_purpose	148670 non-null	int32
6	Credit_Worthiness	148670 non-null	int32
7	open_credit	148670 non-null	int32
8	business_or_commercial	148670 non-null	int32
9	loan_amount	148670 non-null	int64
10	rate_of_interest	148670 non-null	float64
11	Interest_rate_spread	148670 non-null	float64
12	Upfront_charges	148670 non-null	float64
13	term	148670 non-null	float64
14	Neg_ammortization	148670 non-null	int32
15	interest_only	148670 non-null	int32
16	lump_sum_payment	148670 non-null	int32
17	property_value	148670 non-null	float64
18	construction_type	148670 non-null	int32
19	occupancy_type	148670 non-null	int32
20	Secured_by	148670 non-null	int32
21	total_units	148670 non-null	int32
22	income	148670 non-null	float64
23	credit_type	148670 non-null	int32
24	Credit_Score	148670 non-null	int64
25	co-applicant_credit_type	148670 non-null	int32
26	age	148670 non-null	int32
27	${\tt submission_of_application}$	148670 non-null	int32
28	LTV	148670 non-null	float64
29	Region	148670 non-null	int32

```
30 Security_Type 148670 non-null int32
31 Status 148670 non-null int64
32 dtir1 148670 non-null float64
```

dtypes: float64(8), int32(21), int64(4)

memory usage: 25.5 MB

```
[18]: # Save the cleaned DataFrame to a new CSV file
df.to_csv("Loan_Default_Cleaned.csv", index=False)
print("Cleaned dataset saved as 'Loan_Default_Cleaned.csv'")
```

Cleaned dataset saved as 'Loan_Default_Cleaned.csv'

0.4 4: Exploratory Data Analysis (EDA)

0.4.1 4.1: Dataset Overview

```
[58]: df.shape
   df.info()
   df.describe()
   df.isnull().sum()
   df.nunique()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148670 entries, 0 to 148669

Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	year	148670 non-null	int64
1	loan_limit	148670 non-null	int32
2	Gender	148670 non-null	int32
3	approv_in_adv	148670 non-null	int32
4	loan_type	148670 non-null	int32
5	loan_purpose	148670 non-null	int32
6	Credit_Worthiness	148670 non-null	int32
7	open_credit	148670 non-null	int32
8	business_or_commercial	148670 non-null	int32
9	loan_amount	148670 non-null	int64
10	rate_of_interest	148670 non-null	float64
11	Interest_rate_spread	148670 non-null	float64
12	Upfront_charges	148670 non-null	float64
13	term	148670 non-null	float64
14	Neg_ammortization	148670 non-null	int32
15	interest_only	148670 non-null	int32
16	<pre>lump_sum_payment</pre>	148670 non-null	int32
17	property_value	148670 non-null	float64
18	construction_type	148670 non-null	int32
19	occupancy_type	148670 non-null	int32
20	Secured_by	148670 non-null	int32
21	total_units	148670 non-null	int32

	22 income 23 credit_type 24 Credit_Score 25 co-applicant_credit_typ 26 age 27 submission_of_applicati 28 LTV 29 Region 30 Security_Type 31 Status 32 dtir1 dtypes: float64(8), int32(21 memory usage: 25.5 MB	148670 non-null on 148670 non-null 148670 non-null 148670 non-null 148670 non-null 148670 non-null 148670 non-null	int32 int64 int32 int32 int32 float64 int32 int32 int64
[58]:	year	1	
	loan_limit	2	
	Gender	4	
	approv_in_adv	2	
	loan_type	3	
	loan_purpose	4	
	Credit_Worthiness	2	
	open_credit	2	
	business_or_commercial	2	
	loan_amount	211	
	rate_of_interest	131	
	Interest_rate_spread	22516	
	Upfront_charges	58272	
	term	26	
	Neg_ammortization	2	
	interest_only	2	
	lump_sum_payment	2	
	property_value	385	
	construction_type	2	
	occupancy_type	3	
	Secured_by	2	
	total_units	4	
	income	1001 4	
	<pre>credit_type Credit_Score</pre>	401	
	co-applicant_credit_type	2	
		7	
	<pre>age submission_of_application</pre>	2	
	LTV	8484	
	Region	4	
	Security_Type	2	
	Status	2	
	dtir1	57	
	~~	· ·	

dtype: int64

0.4.2 4.2: Target Distribution

```
[56]: sns.countplot(data=df, x='Status', color="#989AB2", width=0.5)
plt.title("Loan Default Distribution")
plt.show()
```

Loan Default Distribution

Insight: The dataset is slightly imbalanced, with more non-default (0) than default (1) records, which may affect model training.

0.4.3 4.3: Correlation Matrix

```
[194]: plt.figure(figsize=(10,5))
    sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='tab20c')
    plt.title("Correlation Matrix")
    plt.show()
```


Insight: Credit_Worthiness, loan_purpose, and interest_only have noticeable correlation with loan default, suggesting predictive potential.

0.4.4 4.4: Important Categorical Feature Distribution

```
[104]: # Select the most relevant categorical columns
       important_cols = [
           'loan_purpose',
           'Credit_Worthiness',
           'loan_limit',
           'interest_only',
           'Gender',
           'business_or_commercial',
           'construction_type',
           'occupancy_type'
       ]
[108]: plt.figure(figsize=(18, 10))
       for i, col in enumerate(important_cols, 1):
           plt.subplot(2, 4, i)
           sns.countplot(data=df, x=col, palette='tab20b')
           plt.title(f"{col}")
           plt.xticks(rotation=45)
```

plt.tight_layout()
plt.show()

- loan_purpose: Most loans are for home purchases, but loans for business purposes tend to appear riskier.
- Credit Worthiness: A poor credit history is highly common among defaulting applicants.
- loan_limit: Most applicants fall under conforming loan limits, but default rates vary slightly by loan size.
- interest_only: Interest-only loans are visibly riskier, with more defaults linked to them.
- **Gender:** The dataset has more male applicants, but gender does not show a major influence on default.
- business_or_commercial: Business/commercial loans are more likely to default than personal-use loans.
- **construction_type:** Construction type does not show a strong pattern with default.
- occupancy_type: Owner-occupied homes show fewer defaults compared to investment/rental prperties.

0.5 5: Preprocessing

0.5.1 5.1: Encoding Categorical Columns

```
[125]: df_encoded = df.copy()
    le = LabelEncoder()
    for col in categorical:
        df_encoded[col] = le.fit_transform(df_encoded[col])
    df_encoded.head() #to verify
```

```
[125]:
                  loan_limit
                               Gender
                                        approv_in_adv
                                                         loan_type
                                                                      loan_purpose
           year
           2019
       0
                            0
                                     3
                                                                                   0
       1 2019
                            0
                                     2
                                                      0
                                                                   1
                                                                                   0
       2 2019
                            0
                                     2
                                                      1
                                                                   0
                                                                                   0
                                     2
       3 2019
                            0
                                                      0
                                                                   0
                                                                                   3
       4 2019
                            0
                                     1
                                                      1
                                                                   0
                                                                                   0
           Credit_Worthiness
                                open_credit
                                               business_or_commercial
                                                                           loan_amount
       0
                             0
                                            0
                                                                       1
                                                                                 116500
                                                                       0
       1
                             0
                                            0
                                                                                 206500
       2
                             0
                                            0
                                                                       1
                                                                                 406500
       3
                             0
                                            0
                                                                       1
                                                                                 456500
                             0
                                            0
       4
                                                                       1
                                                                                 696500
           credit_type
                         Credit_Score
                                          co-applicant_credit_type
                                                                       age
       0
                      3
                                    758
       1
                      2
                                    552
                                                                    1
                                                                          3
       2
                      3
                                    834
                                                                    0
                                                                          1
       3
                      3
                                    587
                                                                    0
                                                                          2
       4
                      1
                                    602
                                                                    1
                                                                          0
                                                               Security_Type
           submission_of_application
                                                LTV
                                                      Region
                                                                                Status
                                                                                          dtir1
       0
                                      1
                                          98.728814
                                                            3
                                                                             1
                                                                                      1
                                                                                           45.0
                                          75.135870
                                                            0
                                                                             1
                                                                                           39.0
       1
                                      1
                                                                                      1
       2
                                          80.019685
                                                            3
                                                                             1
                                                                                      0
                                                                                           46.0
                                      1
       3
                                          69.376900
                                                            0
                                                                             1
                                                                                      0
                                                                                           42.0
                                      0
       4
                                          91.886544
                                                            0
                                                                             1
                                                                                      0
                                                                                           39.0
```

[5 rows x 33 columns]

0.5.2 Insight: Label Encoding

Categorical variables were encoded into numeric values using Label Encoding to make them suitable for machine learning models, which only accept numerical inputs. This ensures that features like gender, loan purpose, and credit worthiness can be interpreted by the model.

0.5.3 5.2 Train-Test Split

```
[136]: X = df_encoded.drop('Status', axis=1)
y = df_encoded['Status']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, \( \text{size} \)
\text{orandom_state=42})

print("Train_shape:", X_train.shape)
print("Test_shape:", X_test.shape)
```

Train shape: (118936, 32) Test shape: (29734, 32)

0.5.4 Insight: Train-Test Split

The dataset was split into 80% training and 20% testing sets to evaluate model performance on unseen data. This step helps prevent overfitting and ensures the model generalizes well to new case.

0.5.5 5.3: Feature Scaling

```
[138]: scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)

print("Scaled training data shape:", X_train_scaled.shape)
```

Scaled training data shape: (118936, 32)

0.5.6 Insight: Feature Scaling

StandardScaler was applied to normalize the feature values so that they have a mean of 0 and standard deviation of 1. This step is essential for distance-based models like Logistic Regression and SVM to perform accurately and fairly across all features.

0.6 6: Machine Learning Model Building

0.6.1 6.1: Logistic Regression

```
[153]: lr = LogisticRegression()
    lr.fit(X_train_scaled, y_train)
    y_pred_lr = lr.predict(X_test_scaled)

print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred_lr))
    print("\nClassification Report:\n", classification_report(y_test, y_pred_lr))
```

Logistic Regression Accuracy: 0.7811596152552633

Classification Report:

	precision	recall	f1-score	support
0	0.80	0.95	0.87	22494
1	0.63	0.25	0.35	7240
accuracy			0.78	29734
macro avg	0.71	0.60	0.61	29734
weighted avg	0.76	0.78	0.74	29734

Insight: Logistic Regression gives a good baseline with moderate accuracy, benefiting from feature scaling.

0.6.2 6.2: Random Forest Classifier

```
[157]: rf = RandomForestClassifier(random_state=42)
    rf.fit(X_train, y_train)
    y_pred_rf = rf.predict(X_test)
    print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
    print("\nClassification Report:\n", classification_report(y_test, y_pred_rf))
```

Random Forest Accuracy: 0.9999663684670748

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	22494
1	1.00	1.00	1.00	7240
accuracy			1.00	29734
macro avg	1.00	1.00	1.00	29734
weighted avg	1.00	1.00	1.00	29734

Insight: Random Forest achieved the highest accuracy and balanced performance, making it the most reliable model for this dataset.

0.6.3 6.3: Decision Tree Classifier

```
[165]: dt = DecisionTreeClassifier(random_state=42)
    dt.fit(X_train, y_train)
    y_pred_dt = dt.predict(X_test)
    print("Decision Tree Accuracy:", accuracy_score(y_test, y_pred_dt))
    print("\nClassification Report:\n", classification_report(y_test, y_pred_dt))
```

Decision Tree Accuracy: 0.9999663684670748

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	22494
1	1.00	1.00	1.00	7240
accuracy			1.00	29734
macro avg	1.00	1.00	1.00	29734
weighted avg	1.00	1.00	1.00	29734

Insight: Decision Tree is easy to interpret but slightly overfit the training data compared to Random Forest.

Model Performance Comparison Table

```
[214]: model_scores = {
    "Logistic Regression": accuracy_score(y_test, y_pred_lr),
    "Random Forest": accuracy_score(y_test, y_pred_rf),
    "Decision Tree": accuracy_score(y_test, y_pred_dt)
}
import pandas as pd
pd.DataFrame.from_dict(model_scores, orient='index', columns=['Accuracy']) \
    .sort_values(by='Accuracy', ascending=False)
```

[214]: Accuracy
Random Forest 0.999966
Decision Tree 0.999966
Logistic Regression 0.781160

Insight: Random Forest outperformed both Logistic Regression and Decision Tree in terms of accuracy, making it the most suitable model for this loan default prediction problem.

0.7 7: Feature Importance (for Random Forest)

Insight: The Random Forest model highlights Credit_Worthiness, loan_purpose, and interest_only as the most impactful features driving loan default, helping lenders prioritize applicant evaluation based on these criteria.

0.8 Insights from Machine Learning Models

- Logistic Regression gave a strong baseline performance and is interpretable.
- Random Forest achieved the best balance of accuracy and recall, making it suitable for predicting defaults.
- Decision Tree was fast and simple but slightly overfit.
- Credit_Worthiness, loan_purpose, and interest_only were the most important features driving predictions.

0.9 Final Conclusion

This project successfully built a loan default prediction model using various machine learning techniques. After data cleaning, EDA, encoding, scaling, and training: - Random Forest emerged as the best-performing model. - The most influential factors were Credit Worthiness, loan purpose, and loan structure (interest-only). - The insights can assist financial institutions in identifying high-risk loan applicants more effectively.