```
In [1]: # Dependencies and Setup
import pandas as pd
import numpy as np

# File to Load (Remember to Change These)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
purchase_data.head()
```

Out[1]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44

```
In [2]: #Player Count
    total_players = len(purchase_data['SN'].unique())

# Display the total number of players
    players_count = pd.DataFrame({"Total Players":[total_players]})
    players_count
```

Out[2]:

	Total Players
0	576

```
In [3]: #Purchasing Analysis (Total)
        #Run basic calculations to obtain number of unique items, average price,
        etc.
        unique items = len((purchase_data["Item ID"]).unique())
        average price = purchase data["Price"].mean()
        number_of_purchases = purchase_data["Item ID"].count()
        total revenue = purchase data["Price"].sum()
        #Number of Unique Items / Average Price /Number of Purchases / Total Rev
        enue
        summary_data = pd.DataFrame(
            {"Number of Unique Items": [unique items],
             "Average Price": [average price],
             "Number of Purchases":[number_of_purchases],
             "Total Revenue": [total_revenue]
        )
        #summary data.style.format({'Average Price': "${:,.2f}",'Total Revenue':
        "${:,.2f}"})
        summary_data["Average Price"] = summary_data["Average Price"].astype(flo
        at).map("${:,.2f}".format)
        summary_data["Total Revenue"] = summary_data["Total Revenue"].astype(flo
        at).map("${:,.2f}".format)
        #Display the summary data frame
        summary data
```

Out[3]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$3.05	780	\$2,379.77

Out[4]:

Total Count Percentage of Players

Male	484	84.03
Female	81	14.06
		4.04
Other / Non-Disclosed	11	1.91

#Run basic calculations to obtain: Purchase Count / Average Purchase Pri

In [5]: #Purchasing Analysis (Gender)

ce / Total Purchase Value /Avg Total Purchase per Person
purchase_count_by_gender = purchase_data_gender["Purchase ID"].count()
avg_purchase_price_by_gender = purchase_data_gender["Price"].mean()
avg_purchase_total_by_gender = purchase_data_gender["Price"].sum()
avg_purchase_per_person = avg_purchase_total_by_gender / total_players_gender

#Create a summary data frame to hold the results
purchasing_analysis_gender = pd.DataFrame({
 "Purchase Count": purchase_count_by_gender,
 "Average Purchase Price": avg_purchase_price_by_gender,
 "Average Purchase Value": avg_purchase_total_by_gender,
 "Avg Purchase Total per Person": avg_purchase_per_person})

gender demographics.index.name = "Gender"

#Format data (Optional: give the displayed data cleaner formatting)
purchasing_analysis_gender["Average Purchase Price"] = purchasing_analys
is_gender["Average Purchase Price"].astype(float).map("\${:,.2f}".format)
purchasing_analysis_gender["Average Purchase Value"] = purchasing_analys
is_gender["Average Purchase Value"].astype(float).map("\${:,.2f}".format)
purchasing_analysis_gender["Avg Purchase Total per Person"] = purchasing
_analysis_gender["Avg Purchase Total per Person"].astype(float).map("\$
{:,.2f}".format)

#Display the summary data frame
purchasing analysis gender

Out[5]:

	Purchase Count	Average Purchase Price	Average Purchase Value	Avg Purchase Total per Person
Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non- Disclosed	15	\$3.35	\$50.19	\$4.56

```
In [8]: #Age Demographics
        #Establish bins for ages
        bins = [0, 9, 14, 19, 24, 29, 34, 39, 100]
        #Labels for bins
        grouped names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35
        -39", "40+"]
        #Categorize the existing players using the age bins. Hint: use pd.cut()
        purchase_data["Age Group"] = pd.cut(purchase_data['Age'], bins, labels =
        grouped_names)
        #Calculate the numbers and percentages by age group
        age group = purchase data.groupby("Age Group")
        total_age = age_group["SN"].nunique()
        percentage_age = (total_age/total_players) * 100
        #Display Age Demographics Table
        age_demographics = pd.DataFrame({"Total Count":total_age,"Percentage of
         Players": percentage age})
        age_demographics.index.name = None
        #Optional: round the percentage column to two decimal points
        age demographics.style.format({"Percentage of Players":"{:,.2f}"})
```

Out[8]:

	Total Count	Percentage of Players
<10	17	2.95
10-14	22	3.82
15-19	107	18.58
20-24	258	44.79
25-29	77	13.37
30-34	52	9.03
35-39	31	5.38
40+	12	2.08

In [9]: #Purchasing Analysis (Age) #Create a summary data frame to hold the results #Optional: give the displayed data cleaner formatting #Display the summary data frame #Run basic calculations to obtain purchase count, avg. purchase price, a vg. purchase total per person etc. in the table below purchase age count = age group["Purchase ID"].count() Average purchase price age = age_group["Price"].mean() total purchase value = age group["Price"].sum() Average purchase person age = total purchase value/total age #Create a summary data frame to hold the results #Display the summary data frame #Optional: give the displayed data cleaner formattingage demographics.in dex.name = Noneage demographics = pd.DataFrame({"Purchase Count": purchase age count, "Average Purchase Price": Average purch ase price_age, "Total Purchase Value":total purchase v alue, "Average Total Purchase per Person": Av erage purchase person age}) age demographics.style.format({"Average Purchase Price":"\${:,.2f}}","Tota l Purchase Value":"\${:,.2f}", "Average Total Purchase per Person": "\$ {:,.2f}"})

Out[9]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Average Total Purchase per Person
<10	23	\$3.35	\$77.13	\$4.54
10- 14	28	\$2.96	\$82.78	\$3.76
15- 19	136	\$3.04	\$412.89	\$3.86
20- 24	365	\$3.05	\$1,114.06	\$4.32
25- 29	101	\$2.90	\$293.00	\$3.81
30- 34	73	\$2.93	\$214.00	\$4.12
35- 39	41	\$3.60	\$147.67	\$4.76
40+	13	\$2.94	\$38.24	\$3.19

In [30]: #Top Spenders #Run basic calculations to obtain the results in the table below top_spenders = purchase_data.groupby("SN") purchasing_spender = top_spenders["Purchase ID"].count() Average purchasing price per spender = top spenders["Price"].mean() purchase_total_spender = top_spenders["Price"].sum() #Create a summary data frame to hold the results #Display a preview of the summary data frame top spenders = pd.DataFrame({"Purchase Count": purchasing spender, "Average Purchase Price": Average_purchasin g price per spender, "Total Purchase Value":purchase total spend er}) #Sort the total purchase value column in descending order format spenders frame = top spenders.sort values(["Total Purchase Value"], ascending=False).head() #Optional: give the displayed data cleaner formatting format_spenders_frame.style.format({"Average Purchase Total":"\${:,.2f}", "Average Purchase Price": "\${:,.2f}", "Total Purchase Value": "\${:,.2f}"})

Out[30]:

Purchase Count Average Purchase Price Total Purchase Value

~	NI
	N
•	••

Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

```
In [31]: #Most Popular Items
         #Retrieve the Item ID, Item Name, and Item Price columns
         #Group by Item ID and Item Name. Perform calculations to obtain purchase
         count, item price, and total purchase value
         #Create a summary data frame to hold the results
         #Sort the purchase count column in descending order
         #Optional: give the displayed data cleaner formatting
         #Display a preview of the summary data frame
         item_name = purchase_data[["Item ID", "Item Name", "Price"]]
         item_group = item_name.groupby(["Item ID","Item Name"])
         purchasing item = item group["Price"].count()
         purchasing_value = (item_group["Price"].sum())
         price = purchasing value/purchasing item
         popular items = pd.DataFrame({"Purchase Count": purchasing item,
                                             "Item Price": price,
                                             "Total Purchase Value":purchasing_val
         ue})
         most popular format = popular_items.sort_values(["Purchase Count"], asce
         nding=False).head()
         most popular format.style.format({"Item Price":"${:,.2f}","Total Purchas
         e Value":"${:,.2f}"})
```

Out[31]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

In [32]: #Most Profitable Items
 #Sort the above table by total purchase value in descending order
 #Optional: give the displayed data cleaner formatting
 #Display a preview of the data frame
 most_profitable_format = popular_items.sort_values(["Total Purchase Value"],ascending=False).head()
 most_profitable_format.style.format({"Item Price":"\${:,.2f}","Total Purchase Value":"\${:,.2f}"})

Out[32]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80

In []: