Aula do dia 11 de dezembro de 2023

Autor: Rodrigo Bissacot Proença

Transcrito para LaTeXpor: Lucas Amaral Taylor

11 de dezembro de 2023

Do exemplo da aula passada

Na aula passada, estávamos discutindo um exemplo muito importante apresentado a seguir:

$$x \longmapsto f(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1, \text{ se } x \in \mathbb{Q} \\ 0, \text{ se } x \notin \mathbb{Q} \end{cases}$$

 $(f:X\to\mathbb{R})$

f é descontínua em todos os pontos.

$$f$$
 é contínua em $x_0 \iff \forall \varepsilon > 0$, $\exists \delta = \delta(x_0, \delta) > 0$ (1)
 $tq \ x \in X \ e \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$

Observação: Podemos omitir a expressão $x \in X$ no caso de $X = \mathbb{R}$

f ser descontínua em x_0 ($X \in \mathbb{R}$). Para realizar a demonstração, devemos **negar** 1.

$$\exists \varepsilon > 0 \text{ tq } \forall \delta > 0 \exists x_{\delta} \in \mathbb{R} \text{ tq } |x_{\delta} - x_{0}| < \delta \text{ e } |f(x_{\delta}) - f(x_{0})| \ge \varepsilon$$
 (2)

Tome $\varepsilon = \frac{1}{2}$

1. Vamos mostrar que f é descontínua nos **racionais**.

Seja $x_0 \in \mathbb{Q}$. Logo, $f(x_0) = \chi_{\mathbb{Q}}(x_0) = 1$. Sabemos que $\mathbb{R} \setminus \mathbb{Q}$ é denso em \mathbb{R} Irracionais são densos em \mathbb{R}

Assim para cada $\delta > 0$, existe $x_{\delta} \in \mathbb{R} \setminus \mathbb{Q}$ tq $x_{\delta} \in (x_0 - \delta, x_0 + \delta)$. Donte, $|x_{\delta} - x_0|$ e, $f(x_{\delta}) - f(x_0)| = \chi_{\mathbb{Q}}(x_{\delta}) - \chi_{\mathbb{Q}}(x_0)||0 - 1| = 1 > \frac{1}{2} = \varepsilon$

2. Exercício: $x_0 \in \mathbb{R} \setminus \mathbb{Q}$

Caracterização de continuidade via sequências

 $X \subseteq \mathbb{R}$, $x_0 \in X$ e $f: X \to \mathbb{R}$. Então:

f é contínua em x_0 , se e somente se, para toda sequência $(x_n)_n$ tq $(x_n \in X, \forall n \in \mathbb{N})$ e $\lim_{n \to \infty} x_n = x_0$, temos:

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

Observação: Em geral, esse fato é denotado por:

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right)$$

(quando $\lim_{n\to\infty} x_n = x_0 \in X, \forall n \in \mathbb{N}$

Prova

Temos:

$$\forall \varepsilon>0 \ , \ \exists \delta=\delta(\varepsilon,x_0)>0 \ \mathrm{tq}$$

$$x\in X \ \mathrm{e} \ |x-x_0|<\delta \implies |f(x)-f(x_0)|<\varepsilon$$

Dado $\varepsilon > 0$, pelo apresentado acima, existe $\delta = \delta(\varepsilon, x) > 0$ satisfazendo a expressão apresentada acima.

Seja $(x_n)_n$ uma sequência t
q $(x_n \in X, \forall n)$ e $\lim_{n \to \infty} x_n = x_0$, para o $\delta = \delta(\varepsilon, x_0) > 0$ da definição de continuidade, existre $n_0 = n_0(\delta) = n_0(x_0, \varepsilon) \in \mathbb{N}$ tq:

$$|x_n - x_0| < \delta$$
, $\forall n \ge n_0$

Vale que:

$$x_n \in X \in |x_n - x_0| < \delta) \implies |f(x_n) - f(x_0)| < \varepsilon$$

Provamos que:

Dado $\varepsilon > 0$, $\exists n_0 = n_0(x, \varepsilon \in \mathbb{N} \text{ tq } |f(x_n| - f(x_0))| < \varepsilon$, $\forall n \ge n_0$

Sempre que $\lim_{n\to\infty} x_n = x_0$ e $x_n \in X \forall n \in \mathbb{N}$

Ou seja, mostramos que se f é contínua em x_0 . Então:

$$\lim_{n \to \infty} x_n = x_0 \land x_n \in X \quad \forall n \lim_{n \to \infty} f(x_n) = f(x_0)$$

 (\Leftarrow) Temos que:

$$\lim_{n \to \infty} x_n = x_0 \land x_n \in X \forall n \implies \lim_{n \to \infty} f(x_n) = f(x_0)$$
 (3)

Queremos mostrar que:

$$\forall \varepsilon > 0 , \exists \delta > 0 \text{ tq } (x \in X \land |x - x_0| < \delta) \implies |f(x) - f(x_0)| < \varepsilon$$
 (4)

Professor apagou bem na hora que eu ia escrever. Quem tem ai, complete por favor

Conclusão Construímos $(x_n)_n$ tal que $x_n \in X$, $\forall n$: $\lim_{n \to \infty} x_n = x_0$.

$$||f(x_n) - f(x_0)| \ge \varepsilon$$

 \implies não é verdade que $\lim_{n\to\infty} f(x_n) = f(x_0)$

Contradição, pois assumimos que vale 3.

Corolários

$$X \subseteq \mathbb{R}, x_0 \in X \in f: X \to \mathbb{R} \in g: X \to \mathbb{R}$$

- 1. Se f e g são contínuas em x_0 então f+g e $f\cdot g$ são contínuas em x_0 .
- 2. Como a função cosntante sempre é contínua, tomando g = c com $c \in \mathbb{R}$ $c \cdot f$ é contínua em x_0 .
- 3. Já sabemos que a função identidade, f(x) = x é contínua em $x_0 \in X$, quaisquer que seja x_0 e X.

Lembro: $f(x) = a \cdot x$ é contínua, faz a = 1

Dessa forma, como produtoo, o produto por escalar e a soma de funções contínua seque que qualquer polinômio:

$$p(x) = a_0 + a_1 x + \dots a_n x^n$$

é contínua em cada ponto de X.

4. Seja:

$$C(x) = \{f : X \to \mathbb{R} ; f \text{ \'e contínua em todos os pontos de } X\}$$

Então C(X) é uma álgebra.

- (a) C(X) é um espaço vetorial sobre \mathbb{R} ;
- (b) Posso multiplicar funções, etc.

Exercício: Mostre que $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ e $x \mapsto f(x) = \frac{1}{x}$ é contínua, usando ε e δ .

Permanência do sinal

Seja $X \subseteq \mathbb{R}$, $x_0 \in X$ e $f: X \to \mathbb{R}$ função contínua em x_0 . Suponha que $f(x_0) > 0$, então existe $\delta > 0$ tal que:

$$(x \in X \in |x - x_0| < \delta) \implies f(x) > 0$$

Prova: f é contínua em x_0 . Tomo $\varepsilon = \frac{f(x)}{2} > 0$. Existe $\delta > 0$ tq $x \in X$ e $|x - x_0| < \delta$, temos $|f(x) - f(x_0)| < \varepsilon = \frac{f(x)}{2}$

 $\exists \delta > 0 \text{ tal que:}$

$$(x \in X \text{ e } |x - x_0| < \delta) \implies |f(x) - f(x_0)| < \frac{f(x)}{2}$$

$$\iff f(x) \in \left(f(x_0) - \frac{f(x_0)}{2}, f(x_0) + \frac{f(x_0)}{2} \right)$$

$$\iff f(x) \in \left(\frac{f(x)}{2}, \frac{3f(x)}{2} \right) \implies f(x) > 0, \forall x \in X \text{ tq } x - x_0 < \delta$$

Exercício: $X \subseteq \mathbb{R}, x_0 \in X$ e $f: X \to \mathbb{R}$ contínua em x_0 . Mostre que se $f(x_0) > c$, então existe $\delta > 0$ tal que para todo $x \in X$ com $|x - x_0| < \delta$, temos f(x) > c.

Observação: Vale o mesmo para $f(x_0) < c$

Exercício Sejam $X \subseteq \mathbb{R}$, $x_0 \in X$ $f, g: X \to \mathbb{R}$ contínuas. Suponha que $f(x_0) \neq g(x_0)$. Mostre que existe $\delta > 0$ tal que $(x \in X \text{ e } |x - x_0| < \delta) \implies f(x) \neq g(x)$

Dica: Tome h(x) = f(x) - g(x). Daí, $h(x_0) = f(x_0) - g(x_0) \neq 0$. Separar em casos $h(x_0) > 0$ e $h(x_0) < 0$