Solution thermodynamics Assignment:

- 1. The molar volume (cm³.mol⁻¹) of a binary liquid mixture at T and P is given by $V = 120x_1 + 70x_2 + (15x_1 + 8x_2)x_1x_2$
 - a) Find expression for the partial molar volume of species 1 and 2 at T and P.
 - b) Show that the expression satisfies Gibbs-Duhem equation.
 - c) Show that $(\frac{d\widehat{v_1}}{dx_1})_{x_1 = 1} = (\frac{d\widehat{v_2}}{dx_1})_{x_1 = 0} = 0$
- 2. Find out the fugacity of the following
 - a) Cyclopentane at 110 °C and 275 bar. At 110 °C VAPOUR PRESSUR OF CYCLOPENTANE IS 5.276 BAR
 - b) 1-Butane AT 120 $^{\circ}$ C and 30 bar. Vapour pressure of 1 butane is 25.83 bar at 120 $^{\circ}$ C.
- 3. The volume change of mixing (cm³.mol⁻¹) for the system ethanol (1)/methyl butyl ether (2) at 25 °C is given by

$$\Delta V = x_1 x_2 [-1.026 + 0.0220(x_1 - x_2)]$$

Given that $V_1 = 58.63 \text{ cm}^3 \text{.mol}^{-1}$ and $V_2 = 118.46 \text{ cm}^3 \text{.mol}^{-1}$, what volume of mixture is formed when 750 cm³ of pure species 1 is mixed with 1500 cm³ of species 2 at 25 °C? What would be volume if an ideal solution were formed?

- 4. A 20 mol% LiCl/H₂O is made by six different mixing process. Mixing is isothermal at 25 °C. Determine the heat effect in J.mol⁻¹ of the final solution for each case.
 - a) Mix LiCl (s) with H₂O(l).
 - b) Mix H₂O(l) with a 25 mol% LiCl/H₂O solution.
 - c) Mix LiCl.H₂O (s) with H₂O (l).
 - d) Mix LiCl (s) with a 10 mole% LiCl/H₂O solution.
 - e) Mix a 25 mol% LiCl/H₂O) with a 10 mole% LiCl/H₂O solution.
 - f) Mix a LiCl/H₂O(s) with a 10 mole% LiCl/H₂O solution.
- 5. The following empirical two parameter expression has been proposed for correlation of excess properties of symmetric liquid mixtures:

$$M^{E} = Ax_{1}x_{2}(\frac{1}{x_{1}+Bx_{2}} + \frac{1}{x_{2}+Bx_{1}})$$

Here, A and B are parameter that depend on T.

Determine the expression for \widehat{M}_1^E and \widehat{M}_2^E

Determine the expression for (\widehat{M}_1^E) and \widehat{M}_2^E at infinite dilution.

6. The molar enthalpy changes of mixing of methanol (1) - water (2) at a particular temperature is as follows

\mathbf{X}_{1}	Δh _m (kJ/mol)	\mathbf{X}_1	Δh _m (kJ/mol)
0.05	- 0.342	0.40	- 0.887
0.10	- 0.599	0.60	- 0.718
0.20	- 0.871	0.80	- 0.455
0.30	- 0.917	0.95	- 0.127

Determine the difference between partial molar and pure component enthalpies for methanol and water for $X_1 = 0.35$ and $X_2 = 0.65$.

- 7. It is required to prepare 1 m³ of methanol (1) water (2) solution at 25 °C with $X_1 = 0.7779$. the density of methanol (1) water (2) solution at 25 °C with $X_1 = 0.7779$ is $0.825.959 \text{ kg/m}^3$. The partial molar volume of water in the solution is $15.686 \times 10^{-6} \text{ m}^3/\text{mol}$. Determine volume of methanol and water. The density of methanol at 25 °C is 786.846 kg/m^3 .
- 8. The van Laar constant A and B for a system ethanol (1) and benzene (2) at 50 °C are 1.7910 and 1.8262 respectively. Calculate the activity coefficient of the component in the solution containing 60 mol% ethanol.
- 9. Determine the bubble pressure and the composition of vapor if $x_1 = 0.4$ for a liquid mixture of methanol (1) benzene (2) at 60 °C by using NRTL equation.
- 10. In a binary mixture the activity coefficient (Υ_1) of component is given by $R \ln \Upsilon_1 = A x_2^2 + B x_2^3$

This equation is valid in the range of composition $x_2 = 0$ to $x_2 = 1$. Derive an expression to find out the activity coefficient of component 2.

- 11. The system chloroform (1) and acetone (2) form a minimum boiling azeotrope at 64.5 °C and 760 torr. Determine the van Laar constants and P-x-y diagram for the system at 64.5 °C.
- 12. For a particular binary system, the activity coefficients are adequately represented by $ln\Upsilon_1=0.5~x_2^2~$ and $ln\Upsilon_2=0.5~x_1^2$

the saturation pressure of the component at 80 °C are given by $P_1^S = 900$ Torr and $P_2^S = 600$ Torr. Is it possible to exhibit azeotrope at 80 °C? If so, what is the azeotropic composition and what pressure is the azeotrope likely to form?