Trigonométrie

Généralités

QCOP TRG. 1

 \blacksquare Définir la relation de congruence modulo 2π .

- ${\it S}$ Soient $x, x', y, y' \in \mathbb{R}$ et $\lambda \in \mathbb{C}^*$
 - (a) Montrer que

$$\begin{cases}
x \equiv x' & [2\pi] \\
y \equiv y' & [2\pi]
\end{cases} \implies x + y \equiv x' + y' & [2\pi].$$

(b) Montrer que

$$x \equiv y \ [2\pi] \iff \frac{x}{\lambda} \equiv \frac{y}{\lambda} \ \left[\frac{2\pi}{\lambda}\right] \iff \lambda x \equiv \lambda y \ [2\pi].$$

Trouver deux réels x et y tels que

$$\begin{cases} x \equiv x' & [2\pi] \\ y \equiv y' & [2\pi] \end{cases}$$

mais $xy \not\equiv x'y'$ [2 π].

QCOP TRG.2

- \blacksquare Définir le cercle trigonométrique, ainsi que $cos(\theta)$ et $sin(\theta)$ pour $\theta \in \mathbb{R}$.
- Montrer que sin est une fonction impaire.
- Montrer que

$$\forall x \in \mathbb{R}, \quad \left| \sin(x) \right| \leqslant 1.$$

% (a) Montrer que

$$\forall x \in [1, +\infty[, \sin(x) \leqslant x.$$

(b) Montrer, à l'aide d'une étude de fonction, que

$$\forall x \in [0,1], \quad \sin(x) \leqslant x.$$

- (c) Montrer que $x \mapsto |\sin(x)|$ est une fonction paire.
- (d) En déduire que

$$\forall x \in \mathbb{R}, \quad \left| \sin(x) \right| \leqslant |x|.$$

Formules de trigonométrie

QCOP TRG.3

 \blacksquare Soient $a, b \in \mathbb{R}$. Écrire les formules donnant $\cos(a+b)$, $\sin(a+b)$ et $\cos(2a)$.

? Calculer, pour $a, b \in \mathbb{R}$, tan(a + b), puis tan(2a).

lpha Soit $a \in \mathbb{R}$. On pose $t \coloneqq an \left(rac{a}{2}
ight)$. Montrer que

$$\cos(a) = \frac{1-t^2}{1+t^2}, \quad \sin(a) = \frac{2t}{1+t^2}, \quad \tan(a) = \frac{2t}{1-t^2}.$$

QCOP TRG.4

 \blacksquare Soient $a, b \in \mathbb{R}$. Écrire les formules donnant $\cos(a+b)$ et $\cos(a-b)$.

Soient $p, q \in \mathbb{R}$. Montrer que

$$cos(p) + cos(q) = 2 cos\left(\frac{p+q}{2}\right) cos\left(\frac{p-q}{2}\right).$$

Soit $\theta \in \mathbb{R}$. Soit $n \in \mathbb{N}$. On pose $X := \cos(\theta)$. On définit

$$\mathsf{T}_n(\mathsf{cos}(\theta)) := \mathsf{cos}(n\theta).$$

Montrer que

$$T_{n+2}(X) + T_n(X) = 2XT_{n+1}(X).$$