

Neural Intrinsic Embedding for Non-Rigid Point Cloud Matching

Puhua Jiang, Mingze Sun, Ruqi Huang

Code available

1. Motivation

Goal: Non-rigid point cloud matching

Challenges:

Lack of intrinsic structure

Varying sampling density

Artifacts like noise, partiality...

Lack of correspondences labels

Desiderata:

Intrinsic geometry aware

Computationally efficient

Robustness

Weak supervision

Solution: To develop an intrinsic geometry aware embedding scheme

Contributions:

- Neural Intrinsic Embedding (NIE): a learning-based framework to
 efficiently embed point cloud in an intrinsic geometry aware way.
- Neural Intrinsic Mapping (NIM): a weakly supervised deep functional maps framework based on NIE in place of eigenbasis.
- A modification of DGCNN: robust to sampling bias.

2. Method

Neural Intrinsic Embedding (NIE)

We design loss function to maintain the geodesic distance between points in NIE: $- \frac{|d_{\pi}^{i}(v_{m}, v_{a}) - d_{S}(v_{m}, v_{a})|^{2} }{}$

 $L_G(\Theta_B) = \sum_i \sum_{(p,q) \in S_i} rac{\left|d_E^i(v_p,v_q) - d_S(v_p,v_q)
ight|^2}{d_S(v_p,v_q)^2}$

where d_S denotes the geodesic on the surface and d_E is the Euclidean distance between embedding.

Furthermore, we strengthen the short-distance recovery from a statistical point of view as follows:

$$L_{KL}(\Theta_B) = \sum_i \sum_p KLig(P_E^p, P_S^pig)$$

where P_E^p and P_S^p are distance distributions of p.

Finally, we take a self-supervised approach to avoid rank deficiency.

$$egin{align} C_{ab} &= \Phi_i^{b\dagger}\Pi_{ba}\Phi_i^a, C_{ba} = \Phi_i^{a\dagger}\Pi_{ab}\Phi_i^b \ L_B(\Theta_B) &= \sum_{a,b,i} \|C_{ab}C_{ba} - I\|_F^2 + \|C_{ba}C_{ab} - I\|_F^2 \ \end{pmatrix}$$

where X_i^a and X_i^b are disjoint subsamples from X_i via FPS, and Φ_i^a and Φ_i^b are the respective embeddings.

Our method takes in a raw point cloud and produces segmentation that is intrinsic geometry-aware.

A modification of DGCNN

DGCNN is sensitive to sampling density. To alleviate this, we propose a simple yet effective modification on DGCNN

Given a point cloud X, we conduct FPS on X to obtain a evenly distributed subset X_s . Then, for a point v_q , instead of searching directly its k-NN within X, we find its nearest neighbor, v_p , in X_s , and then assign the k-NN of v_p within X_s to v_q .

Neural Intrinsic Mapping (NIM) network

We adopt the framework of [1,2] with the following changes:

- Replace the eigenbasis with our trained neural intrinsic embedding(NIE).
- Leverage NIE's intrinsic information to introduce a self-supervised loss.

Ours w/o sample

Ours w sample

3. Results

Ablation study of training loss terms

Method	OPT	Geo. Err.	Mat. Err.
L_G	4.4	8.8	13.2
$L_G + L_B$	3.5	12.4	11.8
$L_G + L_B + L_{KL}$	3.3	10.6	11.5
Full model with sample	3.1	9.5	11.0

Quantitative and Qualitative results

Method	F	S	F on S	S on F
3D-CODED(S)	2.5	31.	31.	33.
CorrNet-3D(U)	63.	58.	58.	63.
LIE(S)	3.6	12.	19.	12.
Ours(W)	5.5	11.	15.	8.7
	-			

Robustness to noise and various partiality

10.

6.5

5. References

[1] Or Litany et al. DeepFMap ICCV 2017

[2] Dvir et al. CyclicFMap ECCV 2020