

Euklideszi tér

TÁVOLSÁG, SZÖG, MERŐLEGESSÉG

Wettl Ferenc

ALGEBRA TANSZÉK

Carlo Carrà
The Engineer's Lover
L'amante dell'ingegnere
1921
Metaphysical art
Peggy Guggenheim
Collection, Venice, Italy
55 x 45 cm

Ismeretek, képességek, célok

- Áttérés másik bázisra (báziscsere).
- Valós és komplex euklideszi tér fogalma, használata, izomorfizmusa.
- Norma, szög, merőlegesség.
- Ortogonális és ortonormált vektorrendszer.

Áttérés másik bázisra, hasonlóság

A báziscsere mátrixszorzatos alakja

- P Áttérés standard bázisra: $\mathcal{B} = \{ (1,2,3), (0,2,3), (3,5,8) \}$ az \mathbb{R}^3 egy bázisa. Írjuk fel $\mathbf{v}_{\mathcal{B}}$ standard bázisbeli koordinátás alakját egyetlen mátrixszorzással. (Pl. $\mathbf{v}_{\mathcal{B}} = (3,2,-1)$)
- $\mathbf{M} \ \mathbf{v}_{\mathcal{B}} = (3, 2, -1)$ azt jelenti, hogy

$$\mathbf{v} = 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 7 \end{bmatrix}, \text{ azaz } \mathbf{v} = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 5 \\ 3 & 3 & 8 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 7 \end{bmatrix}.$$

Legyen $\mathbf{v}_{\mathcal{B}} = (x, y, z)$. Ekkor

$$\mathbf{v} = x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} + z \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 5 \\ 3 & 3 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

A báziscsere mátrixszorzatos alakja 2

D Áttérés mátrixa

Legyen $\mathcal{B} = \{ \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \}$ a \mathcal{V} egy bázisa és \mathcal{C} egy \mathcal{V} -t tartalmazó vektortér egy bázisa (pl. a \mathcal{V} vektortéré). Az

$$T_{\mathcal{C} \leftarrow \mathcal{B}} = [\,[b_1]_{\mathcal{C}} \mid [b_2]_{\mathcal{C}} \mid \cdots \mid [b_n]_{\mathcal{C}}\,]$$

mátrixot a $\mathcal B$ bázisról a $\mathcal C$ -re való áttérés mátrixának nevezzük.

Á Koordináták változása a bázis cseréjénél

Ha $\mathcal B$ a $\mathcal V$ vektortér bázisa, és $\mathcal C$ egy $\mathcal V$ -t tartalmazó tér bázisa, akkor bármely $\mathbf v\in \mathcal V$ vektorra

$$v_{\mathcal{C}} = T_{\mathcal{C} \leftarrow \mathcal{B}} v_{\mathcal{B}}.$$

B Legyen $[\mathbf{v}]_{\mathcal{B}} = (v_1, v_2, \dots, v_n)$. A koordinátás alak jelentése szerint

$$\mathbf{v} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + \ldots + v_n \mathbf{b}_n.$$

Ennek koordinátás alakja a $\mathcal C$ bázisban

$$\begin{aligned} \mathbf{v}_{\mathcal{C}} &= \mathbf{v}_1[\mathbf{b}_1]_{\mathcal{C}} + \mathbf{v}_2[\mathbf{b}_2]_{\mathcal{C}} + \dots + \mathbf{v}_n[\mathbf{b}_n]_{\mathcal{C}} \\ &= [\,[\mathbf{b}_1]_{\mathcal{C}} \mid [\mathbf{b}_2]_{\mathcal{C}} \mid \dots \mid [\mathbf{b}_n]_{\mathcal{C}}\,] \, [\mathbf{v}]_{\mathcal{B}} \\ &= T_{\mathcal{C} \leftarrow \mathcal{B}} \mathbf{v}_{\mathcal{B}}. \end{aligned}$$

 \mathcal{E} az \mathbb{R}^4 standard bázisa, és $\mathcal{B} = \{(1,1,0,-2),(2,3,3,-2)\}$. vektorok által kifeszített altér. Írjuk fel az $T_{\mathcal{E}\leftarrow\mathcal{B}}$ mátrixot és adjuk meg a $(-1,1)_{\mathcal{B}}$ és a $(-3,2)_{\mathcal{B}}$ vektorok \mathcal{E} -beli koordinátás alakját!

M Az áttérés mátrixa

$$\mathsf{T}_{\mathcal{E}\leftarrow\mathcal{B}} = [\,[\mathsf{b}_1]_{\mathcal{E}} \mid [\mathsf{b}_2]_{\mathcal{E}}\,] = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 3 \\ -2 & -2 \end{bmatrix}.$$

Így a két vektor koordinátás alakja a standard bázisban

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 3 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 3 \\ -2 & -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 6 \\ 2 \end{bmatrix}.$$

Lineáris transzformáció mátrixa különböző bázisokban

Legyen $L: \mathcal{V} \to \mathcal{V}$ egy lineáris transzformáció, \mathcal{A} és \mathcal{B} a \mathcal{V} két bázisa. Az L mátrixa e bázisokban $L_{\mathcal{A}}$ és $L_{\mathcal{B}}$.

$$\begin{split} L_{\mathcal{B}}C_{\mathcal{B}\leftarrow\mathcal{A}}x_{\mathcal{A}} &= C_{\mathcal{B}\leftarrow\mathcal{A}}L_{\mathcal{A}}x_{\mathcal{A}} \\ L_{\mathcal{B}}C_{\mathcal{B}\leftarrow\mathcal{A}} &= C_{\mathcal{B}\leftarrow\mathcal{A}}L_{\mathcal{B}}C_{\mathcal{B}\leftarrow\mathcal{A}}x_{\mathcal{A}} \\ L_{\mathcal{B}}C_{\mathcal{B}\leftarrow\mathcal{A}} &= C_{\mathcal{B}\leftarrow\mathcal{A}}L_{\mathcal{A}} \\ L_{\mathcal{A}} &= C_{\mathcal{A}\leftarrow\mathcal{B}}L_{\mathcal{B}}C_{\mathcal{B}\leftarrow\mathcal{A}} &= C_{\mathcal{B}\leftarrow\mathcal{A}}^{-1}L_{\mathcal{B}}C_{\mathcal{B}\leftarrow\mathcal{A}} \end{split}$$

Valami hasonló a Rubik-kockán

D Az $n \times n$ -es A mátrix hasonló a B mátrixhoz, ha létezik olyan invertálható C mátrix, hogy $B = C^{-1}AC$. Jelölés: $A \sim B$.

Hasonlóság

- T Hasonló mátrixok hatása Két mátrix pontosan akkor hasonló, ha van két olyan bázis, melyekben e két mátrix ugyanannak a lineáris leképezésnek a mátrixa.
- $B \quad B = C_{\mathcal{E} \leftarrow \mathcal{C}}^{-1} A C_{\mathcal{E} \leftarrow \mathcal{C}}.$
- T Hasonlóságra invariáns tulajdonságok Ha A és B hasonló mátrixok, azaz A ~ B, akkor
 - 1. r(A) = r(B),
 - 2. $\dim(\mathcal{N}(A)) = \dim(\mathcal{N}(B))$,
 - 3. $\det(A) = \det(B)$,
 - 4. trace(A) = trace(B).

Valós euklideszi tér

Skaláris szorzat másik bázisban

- P Legyen $\mathcal{B} = \{(2,0,1), (1,1,0), (0,-1,1)\}$. Milyen képlettel számolható ki az $\mathbf{x} \cdot \mathbf{y}$ skaláris szorzat, ha a két vektor \mathcal{B} -beli koordinátás alakját ismerjük?
- J Az x vektor \mathcal{B} -beli koordinátás alakja $x_{\mathcal{B}}$, a standard alak $x_{\mathcal{E}}$.
- M Ekkor $\mathbf{x}_{\mathcal{E}} = \mathbf{A}_{\mathcal{E} \leftarrow \mathcal{B}} \mathbf{x}_{\mathcal{B}}$. Így

$$x \cdot y = x_{\mathcal{E}}^T y_{\mathcal{E}} = (A_{\mathcal{E} \leftarrow \mathcal{B}} x_{\mathcal{B}})^T A_{\mathcal{E} \leftarrow \mathcal{B}} y_{\mathcal{B}} = x_{\mathcal{B}}^T (A_{\mathcal{E} \leftarrow \mathcal{B}}^T A_{\mathcal{E} \leftarrow \mathcal{B}}) y_{\mathcal{B}} = x_{\mathcal{B}}^T B y_{\mathcal{B}}.$$

Esetünkben

$$\mathbf{A}_{\mathcal{E}\leftarrow\mathcal{B}} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}_{\mathcal{E}\leftarrow\mathcal{B}}^{\mathsf{T}} \mathbf{A}_{\mathcal{E}\leftarrow\mathcal{B}} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

K Mit tudunk a B = A^TA mátrixról?
Szimmetrikus, invertálható, de ez még kevés.

A skaláris szorzás alaptulajdonságai \mathbb{R}^n -ben

- T Legyen \mathbf{u} , \mathbf{v} és \mathbf{w} az \mathbb{R}^n három tetszőleges vektora, és legyen c egy teszőleges valós. Ekkor
 - a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ a művelet fölcserélhető (kommutatív)
 - b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ disztributív
 - c) $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$ a két szorzás kompatibilis
 - d) $\mathbf{u} \cdot \mathbf{u} \ge \mathbf{0}$ és $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$ pontosan akkor teljesül, ha $\mathbf{u} = \mathbf{0}$.
- **m** A d) pont szerint egy másik bázisban felírva a skaláris szorzást, $\mathbf{x}^\mathsf{T} \mathbf{B} \mathbf{x} > 0$ kell $\forall \mathbf{x} \neq \mathbf{0}$ vektorra.
- D A $\mathbf{B} \in \mathbb{R}^{n \times n}$ szimmetrikus mátrixot pozitív definitnek nev., ha $\forall \mathbf{x} \neq \mathbf{0} : \mathbf{x}^\mathsf{T} \mathbf{B} \mathbf{x} > 0$.

Valós euklideszi tér

 ${f D}$ Legyen ${\cal V}$ egy tetszőleges valós vektortér, és legyen

$$\langle .,. \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$

olyan függvény, melyre bármely $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}$ vektorok és $c \in \mathbb{R}$ skalár esetén

$$\begin{array}{ll} \langle u,v\rangle = \langle v,u\rangle & \text{szimmetria} \\ \langle cu,v\rangle = c\, \langle u,v\rangle & \text{homogenitás} \\ \langle u,v+w\rangle = \langle u,v\rangle + \langle u,w\rangle & \text{additivitás} \\ \langle u,u\rangle > 0, \text{ ha } u\neq 0 & \text{pozitivitás} \end{array}$$

E $\langle .,. \rangle$ függvényt a \mathcal{V} -n értelmezett skaláris szorzásnak, a skaláris szorzással ellátott \mathcal{V} vektorteret euklideszi térnek nev.

m Nem vihető át komplex vagy véges testekre módosítás nélkül!

D Bilineáris fv.: kétváltozós, mindkét változójában lineáris fv.

Példák valós euklideszi térekre

- P $\langle x,y\rangle=x^T(A^TA)y$ skaláris szorzás \mathbb{R}^n -ben, ha A invertálható. (Be fogjuk látni, hogy $\langle x,y\rangle=x^TBy$ pontosan akkor skaláris szorzás, ha B pozitív definit.)
- P Az $x=(x_0,x_1,\ldots,x_n,\ldots)$ sorozatok, melyekre $\sum_{n=0}^{\infty}x_n^2<\infty$. vektorteret alkotnak, melyen skaláris szorzást definiál $\langle x,y\rangle=\sum_{n=0}^{\infty}x_ny_n$.
- P Az [a,b] intervallumon folytonos függvények C[a,b] vektorterén az $f,g\in C[a,b]$ függvényekre az $\langle f,g\rangle=\int_a^b fg$ skaláris szorzás. (E tér altere a polinomok tere, az is euklideszi tér e skalárszorzással.)

Távolság és szög valós euklideszi térben

- D L! $u, v \in \mathcal{V}_{\mathbb{R}}$ két tetszőleges vektor.
 - Az u vektor hosszán (abszolút értékén, normáján) önmagával vett skaláris szorzatának gyökét értjük, azaz

$$|\mathbf{u}| = \|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}. \tag{1}$$

2. Az **u** és **v** vektorok (hajlás)szögének koszinusza:

$$\cos(\mathbf{u}, \mathbf{v})_{\angle} := \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\mathbf{u}||\mathbf{v}|} \tag{2}$$

3. Amh az **u** és **v** vektorok merőlegesek egymásra, ha

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0. \tag{3}$$

4. A két vektor (végpontjának) távolsága

$$d(\mathbf{u}, \mathbf{v}) = |\mathbf{u} - \mathbf{v}| \tag{4}$$

Koordinátás alakok

P
$$\mathbf{u} = (2,3,4,14)$$
, $\mathbf{v} = (4,6,-10,10)$, $\mathbf{w} = (0,3,6,-2)$, $|\mathbf{u}| = ?$, $d(\mathbf{u},\mathbf{v}) = ?$, $\cos(\mathbf{u},\mathbf{w})_{\angle} = ?$

M Az (1), a (4) és a (2) képletekkel:

$$\begin{aligned} |\mathbf{u}| &= \sqrt{2^2 + 3^2 + 4^2 + 14^2} = \sqrt{225} = 15, \\ d(\mathbf{u}, \mathbf{v}) &= \sqrt{(2 - 4)^2 + (3 - 6)^2 + (4 - (-10))^2 + (14 - 10)^2} \\ &= \sqrt{2^2 + 3^2 + 14^2 + 4^2} = 15 \\ \cos(\mathbf{u}, \mathbf{w})_{\angle} &= \frac{2 \cdot 0 + 3 \cdot 3 + 4 \cdot 6 + 14 \cdot (-2)}{15 \cdot \sqrt{0^2 + 3^2 + 6^2 + (-2)^2}} = \frac{1}{21}. \end{aligned}$$

Skaláris szorzat és abszolút érték (norma) kapcsolata

T Polarizációs formulák: Tetszőleges $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ vektorokra

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4} \left(|\mathbf{u} + \mathbf{v}|^2 - |\mathbf{u} - \mathbf{v}|^2 \right)$$
 (5)

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{2} \left(|\mathbf{u} + \mathbf{v}|^2 - |\mathbf{u}|^2 - |\mathbf{v}|^2 \right)$$
 (6)

B* Az abszolút érték (1)-beli definíciója alapján

$$\begin{split} &\frac{1}{4}\left(|u+v|^2-|u-v|^2\right) = \frac{1}{4}\left(\langle u+v,u+v\rangle - \langle u-v,u-v\rangle\right) \\ &= \frac{1}{4}\left(\langle u,u\rangle + \langle u,v\rangle + \langle v,u\rangle + \langle v,v\rangle - \langle u,u\rangle + \langle u,v\rangle + \langle v,u\rangle - \langle v,v\rangle\right) \\ &= \frac{1}{4}\left(4\langle u,v\rangle\right) = \langle u,v\rangle \,. \end{split}$$

A másik formula hasonlóan bizonyítható.

Ortonormált és ortogonális bázis

OR és ONR lineáris függetlensége

- O A páronként merőleges vektorokból álló vektorrendszert ortogonális rendszernek (OR), az egységvektorokból álló OR-t ortonormált rendszernek (ONR) nevezzük.
- $\acute{\mathbf{A}}$ Egy valós euklideszi térben ha a $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}$ vektorrendszer vektorai zérusvektortól különbözőek és OR-t alkotnak, akkor
 - függetlenek,
 {v_i/|v_i|} ONR.
- **B** TFH valamely c_1 , c_2 ,..., c_k konstansokra
 - $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}.$
 - Mivel $i \neq j$ esetén $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$, ezért a \mathbf{v}_i vektorral beszorozva $c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0$, amiből $\langle \mathbf{v}_i, \mathbf{v}_i \rangle \neq 0$ miatt következik, hogy $c_i = 0$.
 - 2. $\frac{\langle \mathbf{v}_i, \mathbf{v}_j \rangle}{|\mathbf{v}_i| |\mathbf{v}_j|} = \left\langle \frac{\mathbf{v}_i}{|\mathbf{v}_i|}, \frac{\mathbf{v}_j}{|\mathbf{v}_j|} \right\rangle$

K Egy zérusvektort nem tartalmazó OR, vagy ONR mindig bázisa az általa kifeszített altérnek. (Továbbiakban ONB)

Komplex euklideszi tér

Mi lehet a skaláris szorzás \mathbb{C}^n -ben?

m A $\sum_i z_i w_i$ nem működik:

$$(1,i) \cdot (1,i) \stackrel{?}{=} 1 - 1 = 0$$

 $(i,i) \cdot (i,i) \stackrel{?}{=} -1 - 1 = -2$

m Ötletadó kérdés: az 1-dimenziós térben mi az abszolút érték? A z = a + ib szám abszolút értékének négyzete $z\overline{z}$, és nem z^2 ! Eszerint $\mathbf{z} = (z_1, z_2, \dots, z_n)$ és a $\mathbf{w} = (w_1, w_2, \dots, w_n)$ vektorok skaláris szorzatának egy lehetséges definíciója

$$\mathbf{z} \cdot \mathbf{w} = z_1 \overline{w_1} + z_2 \overline{w_2} + \dots + z_n \overline{w_n}, \text{ vagy}$$

 $\mathbf{z} \cdot \mathbf{w} = \overline{z_1} w_1 + \overline{z_2} w_2 + \dots + \overline{z_n} w_n.$

Komplex mátrix adjungáltja

- D Az A komplex mátrix adjungáltján (vagy Hermite-féle transzponáltján) elemenkénti konjugáltjának transzponáltját értjük. Az A adjungáltját A*, vagy Hermite neve után A^H jelöli, tehát A^H = Ā^T.
- **m** semmi köze a "klasszikus adjungálthoz", mely egy négyzetes mátrix előjeles aldeterminánsai mátrixának transzponáltja!
- $P \quad \left[\begin{smallmatrix} i & 1+i \\ -i & 2 \end{smallmatrix}\right]^H = \left[\begin{smallmatrix} -i & i \\ 1-i & 2 \end{smallmatrix}\right], \left[1-i \ i\right]^H = \left[\begin{smallmatrix} 1+i \\ -i \end{smallmatrix}\right].$
- T Az adjungált tulajdonságai Legyenek A és B komplex mátrixok, c komplex szám. Ekkor
 - 1. $(A^{H})^{H} = A$,
 - 2. $(A + B)^H = A^H + B^H$,
 - 3. $(c\mathbf{A})^{\mathsf{H}} = \overline{c}\mathbf{A}^{\mathsf{H}}$
 - 4. $(AB)^H = B^H A^H$.
- m Az adjungált a "valós transzponált" kiterjesztése.

Skaláris szorzás definíciója

- Komplex vektorok skaláris szorzata A Cⁿ-beli z = (z₁, z₂,...,z_n) és w = (w₁, w₂,...,w_n) vektorok skaláris szorzatán a
 z·w:= \overline{z_1}w_1 + \overline{z_2}w_2 + ··· + \overline{z_n}w_n = z^H w komplex skalárt értjük.
- P (1, i) és (i, i) szorzatai:

$$\begin{split} &(1,i)\cdot(1,i)=\begin{bmatrix}1\\i\end{bmatrix}^H\begin{bmatrix}1\\i\end{bmatrix}=\begin{bmatrix}1\\i\end{bmatrix}=\begin{bmatrix}1\\-i\end{bmatrix}\begin{bmatrix}1\\i\end{bmatrix}=1-i^2=2,\\ &(i,i)\cdot(i,i)=\begin{bmatrix}i\\i\end{bmatrix}^H\begin{bmatrix}i\\i\end{bmatrix}=\begin{bmatrix}-i\\-i\end{bmatrix}\begin{bmatrix}i\\i\end{bmatrix}=-i^2-i^2=2,\\ &(1,i)\cdot(i,i)=\begin{bmatrix}1\\i\end{bmatrix}^H\begin{bmatrix}i\\i\end{bmatrix}=\begin{bmatrix}1\\-i\end{bmatrix}\begin{bmatrix}i\\i\end{bmatrix}=i-i^2=1+i,\\ &(i,i)\cdot(1,i)=\begin{bmatrix}i\\i\end{bmatrix}^H\begin{bmatrix}1\\i\end{bmatrix}=\begin{bmatrix}-i\\-i\end{bmatrix}\begin{bmatrix}1\\i\end{bmatrix}=-i-i^2=1-i. \end{split}$$

A komplex skaláris szorzás tulajdonságai

- T Legyen $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$, és legyen $c \in \mathbb{C}$. Ekkor
 - 1. $\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}$
 - 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$,
 - 3. $(c\mathbf{u}) \cdot \mathbf{v} = \overline{c}(\mathbf{u} \cdot \mathbf{v})$ és $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$,
 - 4. $\mathbf{u} \cdot \mathbf{u} > 0$, ha $\mathbf{u} \neq \mathbf{0}$, és $\mathbf{u} \cdot \mathbf{u} = 0$, ha $\mathbf{u} = \mathbf{0}$.
- m Kiterjesztése a valós skaláris szorzatnak!
- **m** A harmadik tulajdonságban felsoroltak bármelyike következik a másikból az első alapján.
- m Komplex vektor önmagával vett skaláris szorzata valós!

Komplex euklideszi tér

D L! $\mathcal{V}_{\mathbb{C}}$ egy vektortér, és $\langle .,. \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ olyan függvény, melyre bármely $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}$ vektorok és $c \in \mathbb{C}$ skalár esetén

C1
$$\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$$
 konjugált szimmetria
C2 $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$ homogenitás a 2. változóban
C3 $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ additivitás
C4 $\langle \mathbf{u}, \mathbf{u} \rangle > 0$, ha $\mathbf{u} \neq \mathbf{0}$ pozitivitás

 $E\langle .,. \rangle$ függvényt a \mathcal{V} -n értelmezett komplex skaláris szorzásnak, a skaláris szorzással ellátott \mathcal{V} vektorteret komplex euklideszi térnek, vagy \mathbb{C} fölötti euklideszi térnek nevezzük.

Komplex euklideszi tér

m Az első változóban a szorzás nem homogén, hisz

$$\langle cu,v\rangle=\overline{\langle v,cu\rangle}=\overline{c\,\langle v,u\rangle}=\bar{c}\overline{\langle v,u\rangle}=\bar{c}\,\langle u,v\rangle\,.$$

A komplex skaláris szorzás az első változóban nem lineáris, hanem ún. konjugált lineáris. Maga a komplex skaláris szorzás így nem bilineáris (hanem ún. szeszkvilineáris, vagy másféllineáris).

m A komplex skaláris szorzás definíciója a valós skaláris általánosítása, annak nem mond ellent.

Távolság és a merőleges vetítés komplex terekben

- D Komplex vektorok hossza, távolsága, merőlegessége: Legyen V tetszőleges valós vagy komplex vektortér. Az u ∈ V vektor hossza, abszolút értéke vagy normája ||u|| = |u| = √⟨u, u⟩ (V = ℂⁿ esetén √u · u), két vektor távolsága megegyezik különbségük hosszával, azaz u, v ∈ V esetén d(u, v) = ||u v||.
- **D** Két vektort merőlegesnek tekintünk, ha skaláris szorzatuk 0.
- **m** Két vektor szöge nem definiálható a szokásos módon.
- Á Az $\mathbf{x} \in \mathcal{V}$ vektornak az $\mathbf{e} \in \mathcal{V}$ egységvektor egyenesére eső merőleges vetülete: $\mathbf{e} \langle \mathbf{e}, \mathbf{x} \rangle$ (\mathbb{C}^n -ben $\mathbf{e}(\mathbf{e} \cdot \mathbf{x}) = (\mathbf{e}\mathbf{e}^H)\mathbf{x}$), \mathbf{x} rá merőleges összetevője: $\mathbf{x} \mathbf{e} \langle \mathbf{e}, \mathbf{x} \rangle$ (\mathbb{C}^n -ben $(\mathbf{I} \mathbf{e}\mathbf{e}^H)\mathbf{x}$).
- $\mathsf{B} \ \langle \mathsf{e} \, \langle \mathsf{e}, \mathsf{x} \rangle \,, \mathsf{x} \mathsf{e} \, \langle \mathsf{e}, \mathsf{x} \rangle \rangle = | \, \langle \mathsf{e}, \mathsf{x} \rangle \, |^2 | \, \langle \mathsf{e}, \mathsf{x} \rangle \, |^2 = 0.$
- Á Az e normálvektorú hipersíkra való merőleges vetítés mátrixa $\mathbf{I} \mathbf{e}\mathbf{e}^H$, a merőleges tükrözés mátrixa $\mathbf{I} 2\mathbf{e}\mathbf{e}^H$, ahol $\mathbf{e} \in \mathbb{C}^n$ egységvektor.

CBS- vagy CS-egyenlőtlenség

T Cauchy-Bunyakovszkij-Schwartz-egyenlőtlenség

Legyen $\mathcal V$ egy valós vagy komplex euklideszi tér. Tetszőleges $\mathbf x, \mathbf y \in \mathcal V$ vektorra

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Egyenlőség pontosan akkor áll fenn, ha **x** és **y** lineárisan összefüggők, azaz ha egyik vektor a másik skalárszorosa.

hisz egyenlőség áll fenn, és a két vektor lineárisan összefüggő. Ha $x \neq 0$, akkor legyen $e = \frac{x}{|x|}$. - Az y vektor e-re merőleges összetevője: $y - e \langle e, y \rangle$. E vektor

 B^* Ha x = 0, akkor a tétel állításának mindkét része nyilván igaz,

hosszának négyzete nagyobb vagy egyenlő 0-nál:

$$0 \le |\mathbf{y} - \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle|^{2}$$

$$= \langle \mathbf{y} - \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle, \mathbf{y} - \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle\rangle$$

$$\stackrel{C3}{=} \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle\rangle - \langle \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle, \mathbf{y} \rangle + \langle \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle, \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle\rangle$$

$$\stackrel{C2}{=} |\mathbf{y}|^{2} - \langle \mathbf{e}, \mathbf{y} \rangle \langle \mathbf{y}, \mathbf{e} \rangle - \overline{\langle \mathbf{e}, \mathbf{y} \rangle} \langle \mathbf{e}, \mathbf{y} \rangle + \overline{\langle \mathbf{e}, \mathbf{y} \rangle} \langle \mathbf{e}, \mathbf{y} \rangle \langle \mathbf{e}, \mathbf{e} \rangle$$

$$= |\mathbf{y}|^{2} - \langle \mathbf{e}, \mathbf{y} \rangle \overline{\langle \mathbf{e}, \mathbf{y} \rangle} - \overline{\langle \mathbf{e}, \mathbf{y} \rangle} \langle \mathbf{e}, \mathbf{y} \rangle + \overline{\langle \mathbf{e}, \mathbf{y} \rangle} \langle \mathbf{e}, \mathbf{y} \rangle$$

$$= |\mathbf{y}|^2 - \frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{|\mathbf{x}|^2}.$$

 $= |\mathbf{v}|^2 - |\langle \mathbf{e}, \mathbf{v} \rangle|^2$

Ebből átrendezéssel $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq |\mathbf{x}||\mathbf{y}| \checkmark$

Egyenőség akkor áll fenn, ha $\mathbf{y} - \mathbf{e} \langle \mathbf{e}, \mathbf{y} \rangle = 0 \rightsquigarrow \mathbf{x}$ és \mathbf{y} lin.ö.f.