10.3 Polar coordinates

- 1. polar coordinates 極座標 $x = r \cos \theta$, $y = r \sin \theta$.
- 2. polar curve 極曲線
- 3. symmetry 對稱性
- 4. tangent 切線 $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ if $\frac{dx}{d\theta} \neq 0$.

0.1 Polar coordinate

以前的 (x, y) 叫 Cartesian coordinates system 卡氏 (直角) 坐標系, Newton 引進 polar coordinates system 極座標系:

Define:

- pole (origin) 極 (原點): O.
- $polar\ axis$ 極軸: \overrightarrow{Ox} , x-axis 正向。
- polar coordinates $\triangle E = |\overrightarrow{OP}|$ and $\theta = \angle xOP$.

Note:

- 1. θ counterclockwise + 逆時針爲正, clockwise 順時針爲負。
- 2. 表示法不唯一: $(r, \theta + 2\pi) = (r, \theta)$ for r > 0, $O(0, \theta)$ for any θ . (差一圈)
- 3. 延伸定義 $(-r, \theta) = (r, \theta + \pi)$. (差半圏)
- 4. 座標轉換:

Polar
$$\rightarrow$$
 Cartesian: $\boxed{x = r \cos \theta, y = r \sin \theta}$. (唯一解)

Cartesian
$$\rightarrow$$
 Polar: $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$. (解不唯一)

Example 0.1 Plot polar coordinates $(1, \frac{5\pi}{4})$, $(2, 3\pi)$, $(2, -\frac{2\pi}{3})$, $(-3, \frac{3\pi}{4})$.

$$(2, -\frac{2\pi}{3}) = (2, \frac{4\pi}{3})$$

Example 0.2 Convert polar coordinates $(2, \pi/3)$ to Cartesian coordinates.

$$O \xrightarrow{2} \frac{\pi}{3}$$

$$0 \xrightarrow{2} \frac{\pi}{3}$$

$$x = r \cos \theta = 2 \cos \frac{\pi}{3} = 2 \cdot \frac{1}{2} = 1,$$

$$y = r \sin \theta = 2 \sin \frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}.$$

$$(x, y) = (1, \sqrt{3}).$$

Example 0.3 Represent Cartesian coordinates (1, -1) by polar coordinates.

$$\begin{array}{c|c}
y \\
\hline
O & & \\
\hline
& (1,-1)
\end{array}$$

Example 0.3 Represent Cartesian coordinates
$$(1,-1)$$
 by polar coordinates $(1,-1)$ by polar coo

0.2 Polar curve

Cartesian curve: $\{(x,y): y=f(x) \text{ or } F(x,y)=0\}$. The **graph** of a **polar equation** 極方程式 $r=f(\theta)$ or $F(r,\theta)=0$ is

$$\{(r,\theta): r = f(\theta) \text{ or } F(r,\theta) = 0\}$$

Example 0.4 r = 2.

Example 0.5 $\theta = 1$.

Note: 1. r = a 是半徑 a 圓心 O 的圓。2. $\theta = t$ 是夾極軸 t 的直線。

Example 0.6 $r = 2\cos\theta$, and find a Cartesian equation.

$$x = r \cos \theta, \ x^2 + y^2 = r^2 = r \cdot 2 \cos \theta = 2x$$
 $\Longrightarrow (x - 1)^2 + y^2 = 1.$ (圓心在 $(1, 0)$ 的單位圓。)
$$r$$

	θ	r
$\rightarrow x$	0	2
	$\pi/6$	$\sqrt{3}$
	$\pi/4$	$\sqrt{2}$
	$\pi/3$	1
	$\pi/2$	0
	$2\pi/3$	-1
	$3\pi/4$	$-\sqrt{2}$
	$5\pi/6$	$-\sqrt{3}$
	π	-2
		•

Example 0.7 $r = 1 + \sin \theta$. (cardioid [kardi,oid], [卡底歐乙的] 心臟線)

Other cardioids (cardiac 心臟的):

Example 0.8 $r = \cos 2\theta$. (four-leaved rose)

Additionally:

- 1. $r = a \sin \theta, r = a \cos \theta$ 也都是圓。(半徑=? 圓心=?)
- 2. $r = a \sec \theta$, $r = a \csc \theta$ 也是直線。(什麼線?)

Symmetry 0.3

- (a) If $F(r, -\theta) = F(r, \theta)$, then the curve is symmetric about the polar axis. Ex: $\cos(-\theta) = \cos \theta$.
- (b) If $F(-r,\theta) = F(r,\theta)$ or $F(r,\theta+\pi) = F(r,\theta)$, then the curve is symmetric about the pole. Ex: $tan(\theta + \pi) = tan \theta$.
- (c) If $F(r, \pi \theta) = F(r, \theta)$, then the curve is symmetric about the vertical line $\theta = \frac{\pi}{2}$ (y-axis). Ex: $\sin(\pi - \theta) = \sin \theta$.

0.4Tangent

The polar curve $r = f(\theta)$ is also the curve of parametric equations with parameter θ : (當成參數 θ 的參數方程/曲線)

$$x = r \cos \theta = f(\theta) \cos \theta, \qquad y = r \sin \theta = f(\theta) \sin \theta.$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}, \quad \text{if } \frac{dx}{d\theta} \neq 0$$

Note: if $\frac{dy}{d\theta} = 0 \neq \frac{dx}{d\theta}$: horizontal tangent 水平切線;

if $\frac{dy}{d\theta} \neq 0 = \frac{dx}{d\theta}$: vertical tangent 垂直切線; if $\frac{dy}{d\theta} = 0 = \frac{dx}{d\theta}$ 什麼都有可能。

Example 0.9 (a) For the cardioid $r = 1 + \sin \theta$, find the slope of the tangent line when $\theta = \pi/3$.

(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

$$r = 1 + \sin \theta, \ \frac{dr}{d\theta} = \cos \theta,$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}.$$

$$(a) \frac{dy}{dx}\Big|_{\theta=\pi/3} = \frac{\cos\frac{\pi}{3}(1+2\sin\frac{\pi}{3})}{(1+\sin\frac{\pi}{3})(1-2\sin\frac{\pi}{3})} = \frac{\frac{1}{2}(1+2\cdot\frac{\sqrt{3}}{2})}{(1+\frac{\sqrt{3}}{2})(1-2\cdot\frac{\sqrt{3}}{2})} = -1.$$

(b)
$$\frac{dy}{d\theta} = \cos\theta(1+2\sin\theta) = 0$$
 when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.

$$\frac{dx}{d\theta} = (1 + \sin \theta)(1 - 2\sin \theta) = 0 \text{ when } \theta = \boxed{\frac{3\pi}{2}}, \frac{\pi}{6}, \frac{5\pi}{6}.$$

When $\theta = \frac{3\pi}{2}$, $\frac{dy}{d\theta}$ 與 $\frac{dx}{d\theta}$ 同時爲 $0 \left(\frac{0}{0}\right)$, 要看看是不是端點。(不是)

用 l'Hospital's rule 求極限

$$\lim_{\theta \to \frac{3\pi}{2}^{-}} \frac{dy}{dx} = \left(\lim_{\theta \to \frac{3\pi}{2}^{-}} \frac{1 + 2\sin\theta}{1 - 2\sin\theta}\right) \left(\lim_{\theta \to \frac{3\pi}{2}^{-}} \frac{\cos\theta}{1 + \sin\theta}\right) = -\frac{1}{3} \lim_{\theta \to \frac{3\pi}{2}^{-}} \frac{\cos\theta}{1 + \sin\theta}$$

$$\lim_{\theta \to \frac{3\pi}{2}^{-}} \frac{-\sin\theta}{\cos\theta} = \infty, \text{ also } \lim_{\theta \to \frac{3\pi}{2}^{+}} \frac{dy}{dx} = -\infty, \text{ : vertical tangent.}$$

$$(r$$
 座標用 $1 + \sin \theta$ 算。)

$$(2,\frac{\pi}{2}),(\frac{1}{2},\frac{7\pi}{6}),(\frac{1}{2},\frac{11\pi}{6});$$
 (極座標)

$$(0, \frac{3\pi}{2}) = (0, 0), (\frac{3}{2}, \frac{\pi}{6}), (\frac{3}{2}, \frac{5\pi}{6}).$$

Attention: $0 \neq 1 + \sin 0$, 雖然是同一點, 但最好別寫 (0,0)。

Limaçons of Pascal: $r = 1 + c \sin \theta$

帕斯卡的 limaçon [ˈlɪmaˌsan], [哩麻送] 蝸線 (snail in French)。

\blacklozenge Additional: Sketch polar curve

