

Welcome to the course!

Thomas Vincent Head of Data Science, Getty Images

Prerequisites

- Intro to Python for Data Science
- Intermediate Python for Data Science

Time series in the field of Data Science

- Time series are a fundamental way to store and analyse many types of data
- Financial, weather and device data are all best handled as time series

Time series in the field of Data Science

Course overview

- Chapter 1: Getting started and personalizing your first time series plot
- Chapter 2: Summarizing and describing time series data
- Chapter 3: Advanced time series analysis
- Chapter 4: Working with multiple time series
- Chapter 5: Case Study

Reading data with Pandas

```
In [1]: import pandas as pd
In [2]: df = pd.read csv('ch2 co2 levels.csv')
In [3]: print(df)
       datestamp co2
      1958-03-29 316.1
0
      1958-04-05 317.3
      1958-04-12 317.6
. . .
. . .
. . .
2281
                  371.2
      2001 - 12 - 15
2282
      2001-12-22
                 371.3
2283
      2001-12-29
                 371.5
```


Preview data with Pandas

```
In [4]: print(df.head(n=5))
   datestamp co2
  1958-03-29 316.1
0
  1958-04-05 317.3
  1958-04-12 317.6
3
  1958-04-19 317.5
  1958-04-26 316.4
In [5]: print(df.tail(n=5))
      datestamp co2
     2001-12-01 370.3
2279
2280
     2001-12-08 370.8
2281
     2001 - 12 - 15
                371.2
     2001-12-22 371.3
2282
     2001 - 12 - 29
2283
                371.5
```


Check data types with Pandas

```
In [6]: print(df.dtypes)
datestamp    object
co2     float64
dtype: object
```


Working with dates

To work with time series data in pandas, your date columns needs to be of the datetime64 type.

Let's get started!

Plot your first time series

Thomas Vincent Head of Data Science, Getty Images

The Matplotlib library

- In Python, matplotlib is an extensive package used to plot data
- The pyplot submodule of matplotlib is traditionally imported using the plt alias

```
In [1]: import matplotlib.pyplot as plt
```


Plotting time series data

Plotting time series data

```
In [1]: import matplotlib.pyplot as plt
In [2]: import pandas as pd
In [3]: df = df.set_index('date_column')
In [4]: df.plot()
In [5]: plt.show()
```


Adding style to your plots

```
In [6]: plt.style.use('fivethirtyeight')
In [7]: df.plot()
In [8]: plt.show()
```


FiveThirtyEight style

Matplotlib style sheets

```
In [9]: print(plt.style.available)
['seaborn-dark-palette', 'seaborn-darkgrid',
'seaborn-dark', 'seaborn-notebook', 'seaborn-pastel',
'seaborn-white', 'classic', 'ggplot', 'grayscale',
'dark_background', 'seaborn-poster',
'seaborn-muted', 'seaborn', 'bmh', 'seaborn-paper',
'seaborn-whitegrid', 'seaborn-bright', 'seaborn-talk',
'fivethirtyeight', 'seaborn-colorblind', 'seaborn-deep'
'seaborn-ticks']
```


Describing your graphs with labels

```
In [10]: ax = df.plot(color='blue')
In [11]: ax.set_xlabel('Date')
In [12]: ax.set_ylabel('The values of my Y axis')
In [13]: ax.set_title('The title of my plot')
In [14]: plt.show()
```


Figure size, linewidth, linestyle and fontsize

Let's practice!

Customize your time series plot

Thomas Vincent Head of Data Science, Getty Images

Slicing time series data

```
In [1]: discoveries['1960':'1970']
In [2]: discoveries['1950-01':'1950-12']
In [3]: discoveries['1960-01-01':'1960-01-15']
```


Plotting subset of your time series data

```
In [4]: import matplotlib.pyplot as plt
In [5]: plt.style.use('fivethirtyeight')
In [6]: df_subset = discoveries['1960':'1970']
In [7]: ax = df_subset.plot(color='blue', fontsize=14)
In [8]: plt.show()
```


Adding markers

```
In [1]: ax.axvline(x='1969-01-01', color='red', linestyle='--')
In [2]: ax.axhline(y=100, color='green', linestyle='--')
```


Using markers: the full code

```
In [1]: ax = discoveries.plot(color='blue')
In [2]: ax.set_xlabel('Date')
In [3]: ax.set_ylabel('Number of great discoveries')
In [4]: ax.axvline('1969-01-01', color='red', linestyle='--')
In [5]: ax.axhline(4, color='green', linestyle='--')
```


Highlighting regions of interest

```
In [1]: ax.axvspan('1964-01-01', '1968-01-01', color='red', alpha=0.5)
In [2]: ax.axhspan(8, 6, color='green', alpha=0.2)
```


Highlighting regions of interest: the full code

```
In [1]: ax = discoveries.plot(color='blue')
In [2]: ax.set_xlabel('Date')
In [3]: ax.set_ylabel('Number of great discoveries')
In [4]: ax.axvspan('1964-01-01', '1968-01-01', color='red', alpha=0.3)
In [5]: ax.axhspan(8, 6, color='green', alpha=0.3)
```


Let's practice!