Part III Advanced Probability Based on lectures by P. Sousi

Notes taken by Pantelis Tassopoulos Michaelmas 2023

Contents

1	Con	ditional Expectation	:
	1.1	Basic definitions	
	1.2	Expectation	
	1.3	Countably generated sigma algebra	
	1.4	General case	

1 Conditional Expectation

Lecture 1 1.1 Basic definitions

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Remember the following definitions

Definition 1.1 (Sigma algebra). \mathcal{F} is a sigma algebra if and only if: $(\mathcal{F} \in \mathcal{P}\Omega)$

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}\implies\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$

Definition 1.2 (Probability measure). \mathbb{P} is a probability measure if

- 1. $\mathbb{P}: \mathcal{F} \to [0,1]$ (i.e. a set function)
- 2. $\mathbb{P}(\Omega) = 1$, and $\mathbb{P}(\emptyset) = 0$
- 3. $(A_n)_{n\in\mathbb{N}}$ pairwise disjoint $\implies \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n=1}^{\infty}\mathbb{P}(A_n).$

Definition 1.3 (Random Variable). $X : \Omega \to \mathbb{R}$ is a <u>random variable</u> if for all B open in \mathbb{R} , $X^{-1}(B) \in \mathcal{F}$.

Remark. Observe that the sigma algebra $\mathcal{G} = \{B \subseteq \mathbb{R} : X(B) \in \mathcal{F}\} \supseteq \mathcal{O} \implies \mathcal{G} \supseteq \mathcal{B}(\mathbb{R})$, the former being the collection of open sets in \mathbb{R} and the latter the Borel sigma algebra on \mathbb{R} with the usual topology, namely, $\sigma(\mathcal{O})$ (see below for the notation).

Let \mathcal{A} be a collection of subsets of Ω . We define

 $\begin{array}{ll} \sigma(\mathcal{A}) &= \text{smallest sigma algebra containing } \mathcal{A} \\ &= \bigcap \{\mathcal{T}: \mathcal{T} \text{ sigma algebra containing } \mathcal{A}\}. \end{array}$

Definition 1.4 (Borel sigma algebra on \mathbb{R}). Let $\mathcal{O} = \{\text{open sets}\mathbb{R}\}$. Then, the Borel sigma algebra $\mathcal{B}(\mathbb{R}) (:= \mathcal{B})$ is defined as above, namely,

$$\mathcal{B}(\mathbb{R}) \coloneqq \sigma(\mathcal{O}).$$

Let $(X_i)_{i\in I}$ be a family of random variables, then $\sigma(X_i:i\in I)=$ the smallest sigma algebra that makes them all measurable. We also have the characterisation $\sigma(X_i:i\in I)=\sigma(\{\underbrace{\omega\in\Omega:X_i(\omega)\in B\}}_{Y^{-1}(B)},i\in I,B\in\mathcal{B}(\mathbb{R})\}).$

1.2 Expectation

Note we use the following for the indicator function on some event A

$$\mathbf{1}(A)(x) = \mathbf{1}(x \in A) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}, \quad A \in \mathcal{F}.$$

We now begin the construction of the expectation of generic random variables.

Positive simple random variables: $X = \sum_{i=1}^{n} \mathbf{1}(A_i), c_i \ge 0, A_i \in \mathcal{F}...$

$$\mathbb{E}[X] := \sum_{i=1}^{n} c_i \mathbb{P}(A_i).$$

Non-negative random variables: $(X \ge 0)$. We proceed by approximation. Namely, let $X_n(\omega) := 2^{-n}[2^{-n} \cdot X(\omega)] \wedge n \uparrow X(\omega), n \to \infty$. Now, by monotone convergence,

$$\mathbb{E}[X] := \uparrow \lim_{n \to \infty} \mathbb{E}[X_n] = \sup \mathbb{E}[X].$$

<u>General random variables:</u> Have the decomposition $X = X^+ - X^-$, where $X^+ = X \vee 0$, $X^- = -X \wedge 0$. If one of $\mathbb{E}[X^+], \mathbb{E}[X^-] < \infty$ then set

$$\mathbb{E}[X] := \mathbb{E}[X^+] - \mathbb{E}[X^-].$$

Definition 1.5. X is called integrable if $\mathbb{E}[|X|] < \infty$.

Definition 1.6. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$. Then for all $A \in \mathcal{F}$, set

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Now for an integer-valued random variable X, we set:

$$\mathbb{E}[X|B] \coloneqq \frac{\mathbb{E}[X \cdot \mathbf{1}_B]}{\mathbb{P}(B)}$$

1.3 Countably generated sigma algebra

Lecture 2 We now extend the definition of the conditional expectation for a countably generated sigma algebra. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We call the sigma algebra $\overline{\mathcal{G}}$ countably generated if there exists a colection $(B_n)_{n\in\mathbb{N}}$ of pairwise disjoint events such that $\bigcup_{n\in I} B_n = \Omega$ with (I countable) and $\mathcal{G} = \sigma(B_i : i \in I)$.

Let X be an integrable random variable. We want to define $\mathbb{E}[X|\mathcal{G}]$.

Define $X'(\omega) = \mathbb{E}[X|B_i]$, whenever $w \in B_i$, i.e.

$$X' = \sum_{i \in I} \mathbf{1}(B_i) \cdot \mathbb{E}[X|B_i].$$

We make the convention that $\mathbb{E}[X|B_i] = 0$ if $\mathbb{P}(B_i) = 0$. It is easy to check that X' is \mathcal{G} -measurable. We also have that

$$\mathcal{G} = \left\{ \bigcup_{j \in I} B_j : J \subseteq I \right\}$$

and X' satisfies for all $G \in \mathcal{G}: \mathbb{E}[X \cdot \mathbf{1}_G] = \mathbb{E}[X' \cdot \mathbf{1}_G]$ and

$$\mathbb{E}[|X'|] \leqslant \mathbb{E}\left[\sum_{i \in I} |\mathbb{E}[X|B_i]\mathbf{1}(B_i)\right]$$

$$= \sum_{i \in I} \mathbb{P}(B_i) \cdot |\mathbb{E}[X|B_i]|$$

$$\leqslant \sum_{i \in I} \mathbb{P}(B_i) \cdot \underbrace{\mathbb{E}[X \cdot \mathbf{1}(B_i)]}_{\mathbb{P}(B_i)}$$

$$= \mathbb{E}[|X|] < \infty.$$

We say $A \in \mathcal{F}$ happens <u>a.s.</u> if $\mathbb{P}(A) = 1$. <u>Recall</u> (from measure theory and basic functional analysis):

Theorem 1.1 (Monotone Convergence Theorem (MCT)). Let $(X_n)_{n\in\mathbb{N}}$ be such that $X_n \geq 0, X$ be random variables such that $X_n \uparrow X$ as $n \to \infty$. Then, $\mathbb{E}[X_n] \uparrow \mathbb{E}[X]$ as $n \to \infty$.

Theorem 1.2 (Dominanted Convergence Theorem (DCT)). Let $(X_n)_{n\in\mathbb{N}}$ be random variables such that $X_n \to X$ a.s. as $n \to \infty$ and $|X_n| \le Y$ a.s. for all $n \in \mathbb{N}$, where Y is integrable, then $\mathbb{E}[X_n] \to \mathbb{E}[X]$, as $n \to \infty$.

Let $1 \leq p < \infty$ and f a measurable function, then set $||f||_p := (\mathbb{E}[||f||^p])^{\frac{1}{p}}$. If $p = \infty$, then set $||f||_{\infty} := \inf\{\lambda : |f| \leq \lambda \text{ a.s.}\}$. Recall for all p, the Lebesgue spaces, $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) = \{f : ||f||_p < \infty\}$.

Theorem 1.3. $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a Hilbert space, with inner product $\langle u, v \rangle_2 = \mathbb{E}[u \cdot v]$. Furthermore, for any closed subspace \mathcal{H} , if $f \in \mathcal{L}^2$, there exists a unique $g \in \mathcal{H}$ s.t. $||f - g||_{\mathcal{L}^2} = \inf_{h \in \mathcal{H}} ||f - h||_{\mathcal{L}^2}$ and $\langle f - g, h \rangle = 0$, for all $h \in \mathcal{H}$. We say that g is the <u>orthogonal projection</u> of f in \mathcal{H} .

1.4 General case

We now construct the conditional expectation in the general case, for any integrably random variable with respect to an arbitrary sigma algebras.

Theorem 1.4 (Conditional Expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{G} \subseteq \mathcal{F}$ a sub-sigma algebra, $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Then there exists an integrable random variable Y satisfying:

- 1. Y is \mathcal{G} -measurable
- 2. for all $G \in \mathcal{G}, \mathbb{E}[X \cdot \mathbf{1}(G)] = \mathbb{E}[Y \cdot \mathbf{1}(G)].$

Moreover, Y unique in the sense that if Y' also satisfies the above 1), 2), then Y = Y' a.s.. We call Y a version of the conditional expectation of X given G. We write $Y = \mathbb{E}[X\mathcal{G}]$ a.s. If $\mathcal{G} = \sigma(Z)$, where Z is a random variable, then we write $\mathbb{E}[Z] = \mathbb{E}[X|\mathcal{G}]$.

Remark. 2) could be replaced by $\mathbb{E}[X \cdot Z] = \mathbb{E}[Y \cdot Z]$ for all Z bounded \mathcal{G} -measurable random variables.

We now state and prove the main theorem of this section:

Proof. (Theorem 1.4) Uniqueness: Let Y, Y' satisfy 1), 2). Let $A = \{Y > Y'\} \in \mathcal{G}$. Then 2)

$$\implies \mathbb{E}[Y \cdot \mathbf{1}(A)] = \mathbb{E}[Y' \cdot \mathbf{1}(A)] = \mathbb{E}[X \cdot \mathbf{1}(A)]$$

$$\implies \mathbb{E}[(Y - Y') \cdot \mathbf{1}(A)] = 0$$

$$\implies \mathbb{P}(A) = \mathbb{P}(Y > Y') = 0$$

$$\implies Y \leq Y' \text{ a.s..}$$

We similarly obtain $Y \ge Y'$ a.s., hence we deduce that Y = Y' a.s. Existence: three steps.

1. Assume that $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Observe that $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Hence, Theorem 1.3, we have the decomposition $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) = \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P}) \oplus \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})^{\perp}$. Then, we have the corresponding decomposition X = Y + Z, where $Y \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ and $Z \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ respectively. Define $\mathbb{E}[X\mathcal{G}] := Y$, Y is \mathcal{G} -measurable and for all $A \in \mathcal{G}$, $\mathbb{E}[X \cdot \mathbf{1}(A)]\mathbb{E}[Y \cdot \mathbf{1}(A)] = \mathbb{E}[Z \cdot \mathbf{1}(A)]$ since $Z \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})^{\perp}$.

Claim: If $X \ge 0$, a.s. then $Y \ge 0$ a.s. Indeed, let $A = \{Y < 0\} \in \mathcal{G}$. Then observe that $0 \le \mathbb{E}[X \cdot \mathbf{1}(A)] = \mathbb{E}[Y \cdot \mathbf{1}(A)] \le 0$. Hence $\mathbb{E}[Y \cdot \mathbf{1}(A)] = 0$ and so $\mathbb{P}(A) = 0$, gibing Y = 0 a.s.

2. Assume $X \ge 0$.

Define $X_n = X \land n \leqslant n$, meaning X_n is bounded for all $n \in \mathbb{N}$. So $X_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Let $Y_n = \mathbb{E}[X_n]$ a.s.. $(X_n)_{n \in \mathbb{N}}$ is an increasing sequence. By the claim abose, so is $(Y_n)_{n \in \mathbb{N}}$ a.s. Define $Y = \limsup_n Y_n$ meaning Y is \mathcal{G} -measurable and $Y = \uparrow \lim_{n \to \infty} Y_n$ a.s. Now, we have that for all $A \in \mathcal{G}$, $\mathbb{E}[X_n \cdot \mathbf{1}(A)] = \mathbb{E}[Y_n \cdot \mathbf{1}(A)]$. Thus, by theorem 1.1 (MCT), $\mathbb{E}[X \cdot \mathbf{1}(A)] = \lim_{n \to \infty} \mathbb{E}[X_n \cdot \mathbf{1}(A)] = \lim_{n \to \infty} \mathbb{E}[Y_n \cdot \mathbf{1}(A)] = \mathbb{E}[Y \cdot \mathbf{1}(A)]$.

3. X general in \mathcal{L}^1 .

Decompose as before $X = X^+ - X^-$. Define, $\mathbb{E}[X\mathcal{G}] = \mathbb{E}[X^+|\mathcal{G}] - \mathbb{E}[X^-|\mathcal{G}]$.

Lecture 3

Remark. From the second step of the proof of Theorem 1.4 we see that we can define $\mathbb{E}[X|\mathcal{G}]$ for all $X \ge 0$, not necessarily integrable. It satisfies all conditions 1), 2) except for the integrability one.

Definition 1.7. $\underbrace{\mathcal{G}_1,\mathcal{G}_2,\dots}_{\text{sigma algebras}} \subset \mathcal{F}$. We call them <u>independent</u> if whenever $G_i \in \mathcal{G}_i$ and

$$i_1 < \dots i_k$$
 for some $k \in \mathbb{N}$, then $\mathbb{P}(G_{i_1} \cap \dots \cap G_{i_k}) = \prod_{j=1}^k \mathbb{P}(G_{i_j})$.

Moreover, let X be a random variable and \mathcal{G} a sigma algebra, then they are said to be int if $\sigma(X)$ is independent of \mathcal{G} .

Properties of conditional expectations: Fix $X, y \in \mathcal{L}^1$, $G \in \mathcal{F}$.

- 1. $\mathbb{E}[\mathbb{E}[X\mathcal{G}]] = \mathbb{E}[X]$ (take $A = \Omega$)
- 2. If X is \mathcal{G} -measurable, then $\mathbb{E}[X\mathcal{G}] = X$ a.s.
- 3. If X is independent of \mathcal{G} , then $\mathbb{E}[X\mathcal{G}] = \mathbb{E}[X]$
- 4. If $X \ge 0$ a.s., then $\mathbb{E}[X\mathcal{G}] \ge 0$ a.s.
- 5. For $\alpha, \beta \in \mathbb{R}$ $\mathbb{E}[\alpha X + \beta Y | \mathcal{G}] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$
- 6. $\mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[|X||\mathcal{G}]$ a.s.

Below we provide expensions of useful measure theoretic results for the expectation to their corresponding conditional counetparts. First recall:

Lemma 1.1 (Fatou's Lemma). Let $X_n \ge 0$ for all $n \in \mathbb{N}$. Then

$$\mathbb{E}[\liminf_{n} X_n] \leq \liminf_{n} \mathbb{E}[X_n]$$
 a.s

Theorem 1.5 (Jensen's Inequality). If X is integrable and $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function, then

$$\phi(\mathbb{E}[X]) \leqslant \mathbb{E}[\phi(X)]$$
 a.s.

Now the results themselves:

Theorem 1.6 (Conditional Monotone Convergence theorem (MCT)). Let $\mathcal{G} \subset \mathcal{F}$ be sigma algebras, $X_n \geq 0$ a.a. and $X_n \uparrow X$, as $n \to \infty$ a.s. Then

$$\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}]$$
 a.s.

Proof. Theorem 1.6 Set $Y_n = \mathbb{E}[X_n \mathcal{G}]$ a.s. Observe that Y_n is a.s. increasing. Set $Y = \limsup_n Y_n$. Y_n is \mathcal{G} -measurable, hence, so is Y (as a lim sup of \mathcal{G} -measurable random variables) is also \mathcal{G} -measurable. Also, $Y = \lim_{n \to \infty} Y_n$ a.s.

Need to show: $\mathbb{E}[Y \cdot \mathbf{1}(A)]\mathbb{E}[X \cdot \mathbf{1}(A)]$ for all $A \in \mathcal{G}$. Indeed,

$$\mathbb{E}[Y \cdot \mathbf{1}(A)] = \mathbb{E}[\lim_{n \to \infty} Y_n \cdot \mathbf{1}(A)] \stackrel{\text{MCT}}{=} \lim_{n \to \infty} \mathbb{E}[Y_n \cdot \mathbf{1}(A)]$$
$$= \lim_{n \to \infty} \mathbb{E}[X_n \cdot \mathbf{1}(A)] = \mathbb{E}[X \cdot \mathbf{1}(A)].$$

Proof. Theorem 1.1 $\liminf_n X_n = \lim_{n \to \infty} \left(\inf_{k \ge n} X_k \right)$, the limit of an increasing sequence. By Theorem 1.1, we have

$$\lim_{n\to\infty} \mathbb{E}[\inf_{k\geqslant n} X_n | \mathcal{G}] = \mathbb{E}[\liminf_n X_n | \mathcal{G}]$$

and

$$\mathbb{E}[\inf_{k \geqslant n} X_k | \mathcal{G}] \stackrel{\text{a.s.}}{\leqslant} \inf_{k \geqslant n} \mathbb{E}[X_k | \mathcal{G}]^1$$

which gives the result

$$\mathbb{E}[\liminf_{n} X_n] \leq \liminf_{n} \mathbb{E}[X_n]$$
 a.s.

Theorem 1.7 (Conditional Dominated Convergence Theorem). SUppose $X_n \to X$ a.s. $n \to \infty$ and $|X_n| \le Y$ a.s. for all $n \in \mathbb{N}$ with Y in tegrable. Then $\mathbb{E}[X_n \mathcal{G}] \to \mathbb{E}[X \mathcal{G}]$ a.s. as $n \to \infty$.

Proof. From $-Y \leq X_n \leq Y$, we have $X_n + Y \geq 0$ for all $n \in \mathbb{N}$ and $Y - X_n \geq 0$ a.s. By Theorem 1.1,

$$\mathbb{E}[X + Y\mathcal{G}] = \mathbb{E}[\liminf_{n} (X_n + Y)|\mathcal{G}]$$

$$\leq \liminf_{n} \mathbb{E}[X_n + Y|\mathcal{G}] = \liminf_{n} \mathbb{E}[X_n\mathcal{G}] + \mathbb{E}[X]$$

Thus,

$$\mathbb{E}[|X - Y||\mathcal{G}] = \mathbb{E}[Y - \liminf_{n} X_{n}|\mathcal{G}]$$

$$\leq \mathbb{E}[Y] + \liminf_{n} \mathbb{E}[X_{n}|\mathcal{G}]$$

Hence,

$$\limsup_{n} \mathbb{E}[X_n | \mathcal{G}] \leqslant \mathbb{E}[X | \mathcal{G}]$$

and

$$\liminf_{n} \mathbb{E}[X_n | \mathcal{G}] \geqslant \mathbb{E}[X | \mathcal{G}]$$

a.s., concluding the proof.

Theorem 1.8 (Conditional Jensen). Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}), \phi : \mathbb{R} \to \mathbb{R}$ be a convex function s.t. $\phi(X)$ is integrable or $\phi(X) \ge 0$

$$\phi(\mathbb{E}[X|\mathcal{G}]) \leq \mathbb{E}[\phi(X)|\mathcal{G}]$$
 a.s.

¹can take the infinum due to countability that preserves a.s.

Proof. Claim: (true for any convex function, no proof given) $\phi(x) = \sup_{i \in \mathbb{N}} (a_i x + b_i), \ a_i b_i \in \mathbb{R}$. Thus,

$$\mathbb{E}[\phi(X)|\mathcal{G}] \geqslant a_i \mathbb{E}[X|\mathcal{G}] + b_i$$
 for all $i \in \mathbb{N}$.

Taking the supremum gives ²

$$\mathbb{E}[\phi(X)|\mathcal{G}] \geqslant \sup_{i \in \mathbb{N}} (a_i \mathbb{E}[X|\mathcal{G}] + b_i)$$

= $\phi(\mathbb{E}[X|\mathcal{G}])$ a.s.

Corollary 1.8.1. For all $1 \leq p < \infty \|\mathbb{E}[X|\mathcal{G}]\|_p \leq \|X\|_p$.

 ${\it Proof.}$ Apply conditional Jensen.

Proposition 1.1 (Tower Property). Let X be integrable and $\mathcal{H} \subseteq \mathcal{G}$ sigma algebras. Then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$
 a.s.

Proof. (a) $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable.

(b) For all $A \in \mathcal{H}$ NTS:

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot \mathbf{1}(A)] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}] \cdot \mathbf{1}(A)]$$

Indeed, both terms above are equal to $\mathbb{E}[X \cdot \mathbf{1}(A)]$ since $A \in \mathcal{G} \subseteq \mathcal{H}$.

Proposition 1.2. Let $X \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$, Y bounded \mathcal{G} -measurable. Then

$$\mathbb{E}[X \cdot Y | \mathcal{G}] = Y \cdot \mathbb{E}[X | \mathcal{G}].$$

Proof. (a) RHS is clearly \mathcal{G} —measurable.

(b) For all $A \in \mathcal{G}$:

$$\begin{array}{ll} \mathbb{E}[X \cdot Y \cdot \mathbf{1}(A)] &= \mathbb{E}[Y \cdot \mathbb{E}[X\mathcal{G}] \cdot \mathbf{1}(A)] \\ \mathbb{E}[X \cdot (Y \cdot \mathbf{1}(A))] &= \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot Y \cdot \mathbf{1}(A)] = RHS. \end{array}$$

 \mathcal{G} -meas. and bounded

(Also observe that by a monotone class argument, we have for any integrable function $f: \Omega \to \mathbb{R}$, $\mathbb{E}[X \cdot f] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot f]$)

 $^{^{2}}$ can take the supremum due to countability which again preserves a.s.