학과/학번	항공우주공학과 / 201527137
조/이름	1분반-4조 / 정대현
제출일자	2020. 5. 19.

	점수	비고
항공IT융합실험		

<u>실습일자</u> <u>2020. 5. 12. (화)</u> <u>실습장소/시간</u> 캡스톤디자인실 <u>/ 18:00~22:00</u>
실습주제 Ch. 1 수동소자 및 계측기기 Ch.2 기초전자회로 실급

사용장비/부품	균격	수량	사용장비/부품	균격	수량
오실로스코프		1EA	레귤레이터	7805	1EA
멀티미터		1EA	FND		1EA
파워서플라이		1EA	LED		1EA
9 Pin Array		1EA	가변저항		1EA
수광부 LED		1EA	발광부 LED		1EA

※ 강의내용 캡쳐 및 실습코드 삽입 금지, 줄간격 130% 이하

실습 내용 (실습사진 첨부가능)

계측기기 작동 방법을 익히기 위한 신호의 모양을 시간에 따른 전압으로 표현하는 오실로스코프 Oscilloscope)와 전원을 공급하는 파워서플라이 전압/저항, 단선/쇼트 도통테스트를 가능하게 하는 멀티미터등의 기본적인 작동방법을 익혔습니다.

전자 회로의 시제품을 만드는데 사용하고 재사용할 수 있는 무땝납 장치인 브레드보드 속칭 빵판을 이용하여 정전압 레귤레이터를 사용한 다음 오실로스코포로 전압을 확인하는 실습을 진행하였습니다.

학과/학번	항공우주공학과 / 201527137
조 /이르	1브바-//조 / 저대형
<u> </u>	<u> 1군인 4</u> 조 / /8대연
제출일자	2020. 5. 19.

그리고 위에서 만든 회로에서 저항과 LED를 추가해서 단선 및 쇼트체크, 출력전압과 LED점등을 확하는 모습입니다.

학과/학번	항공우주공학과 / 201527137
조/이름	1분반-4조 / 정대현
제출일자	2020. 5. 19.

FND(Fixable Numeric Display) 여러개의 LED를 조합하여 만든 LED 모듈로 원하는 숫자를 표현하기 위해 9 Pin Array 저항을 이용,4조이기에 숫자 4를 표현하는 실습모습입니다.

학과/학번	항공우주공학과 / 201527137
조/이름	1분반-4조 / 정대현
제출일자	2020. 5. 19.

다음은 가변저항을 실습하는 모습이다. 일반적으로 저항은 고정된 값을 가지나, 가변저항은 필요에 따라 미세조정드라이브를 사용해서 저항 값을 변경 할 수 있다. 앞서 만들어둔 정전압레귤레이터에다가 가변저항을 물려 이를 미세조정드라이버로 돌리면서 오실로스코프에 출력되는 값이 실시간으로 변경되는 것을 확인하고 있다.

학과/학번	항공우주공학과 / 201527137
조/이름	1분반-4조 / 정대현
제출일자	2020. 5. 19.

적외선 센서 사용 실습을 위해서 발광부와 수광부를 연결해둔 실습사진이다. 해당 센서는 적외선에 반응하기에 눈으로는 관찰하지 못하며, 연결해둔 오실로스코프의 값이 실시간으로 변하면서 적외선 LED의 센서가 작동하는지 간접적으로 알 수 있었다. 휴대폰 촬영을 하면 때때로 보라색 빛으로 나오는 것을 볼 수 있다고 하였지만 나를 포함한 조원들의 휴대폰으로는 딱히 관찰하지 못했다.

학과/학번	항공우주공학과 / 201527137
조/이름	<u>1분반-4조 /</u> 정대현
제출일자	2020. 5. 19.

결론 및 고찰 (10줄 이상)

※ 글자크기 12pt이하, 줄간격 130% 이하

앞서 계측장비를 사용할때 멀티미터와 오실로스코프를 비교해 보았는데, 오실로스코프는 값과 특 파형을 시각적으로 바로 확인 할 수 있으나 멀티미터는 특성은 알 수 없어도 실시간 측정치를 알 수 있다. 오실로스코프는 비전공자의 사용이 까다로우며 확인할 수 있는 특성이 한계가 있으나, 멀티미터는 전압 전류 저향 극성등 여러가지 기능을 사용 할 수 있으며, 비전공자도 간단한 사용법을 익히면 금방 사용 할 수 있다. 휴대와 작동이 간편하기에 회로를 작업하는 중간 도통테스트를 하기 위해서는 멀티미터를 자주 사용 하였다. 실제로 메인보드를 만드는 과정에서 멀티미터를 중간중간 이용하면서 회로가 연결이 잘 되었는지 수시로 확인하였다.

정전압레귤레이터는 전압을 컷을 해서 원하는 값을 안정적으로 공급 할 수 있는데, 파워서플라이를 통해서 원하는 값을 세부조정하기 보다. 정전압레귤레이터를 연결하고 해당하는 전압보다 보다 높게 대략적으로 걸어주면 원하는 값을 안정적으로 뽑아 줄 수 있다. 다만 이 과정에서 발열이 일어나기에 방열판이 달려 있으며 뜨거울 수 있으니 주의해야 한다.

처음에 저항은 1가지만 연결을하고 변하지 않는 것이라고 생각을 했으니 9 pin Array 저항과, 가변 저항을 통해서 상황에 맞는 저항을 적절하게 사용하면 회로를 더욱 다양하게 구상을 해 볼 수 있는 것을 보았다. 마지막으로 FND의 작동방법을 이용해서 숫자 출력을 위해서 적외선 센서를 결합한다거나, 다양한 방법을 모색 해 볼 수 있을 것이다.

*HWP편집 프로그램 한글이 없어서 다른 무료소프트웨어로 편집했는데 문서 깨짐 현상이 있습니다. 다음 보고서부터는 개선하겠습니다.