



### Boolean Algebra

Azkario Rizky Pratama





- Boolean Expressions
- Representing Boolean Functions
- Logic Gates
- Karnaugh Maps





 We study Boolean algebra as a foundation for designing and analyzing digital systems!

Boolean Algebra: a useful mathematical system for specifying and

transforming logic functions.



allpcb.com



# Boolean Expressions





- Correspond to logical NOT, OR, and AND.
- We will denote the two logic values as
   0:≡F and 1:≡T, instead of False and True.
  - Using numbers encourages algebraic thinking.
- New, more algebraic-looking notation for the most common Boolean operators:

$$\overline{x} :\equiv \neg x$$
  $x \cdot y :\equiv x \wedge y$   $x + y :\equiv x \vee y$ 

Precedence order  $\rightarrow$ 



- Boolean values:
  - True
  - False
- Operation
  - Conjunction (AND)
    - A · B; A Λ B
  - Disjunction (OR)
    - A + B; A **v** B
  - Negation (NOT)
    - Ā;¬A;A'

• Truth tables

| Α | В | A • B |  |
|---|---|-------|--|
| 0 | 0 | 0     |  |
| 0 | 1 | 0     |  |
| 1 | 0 | 0     |  |
| 1 | 1 | 1     |  |

| Α | В | A + B |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 1     |

| Α | Α' |  |
|---|----|--|
| 0 | 1  |  |
| 1 | 0  |  |

Logic gates







- Let  $B = \{0, 1\}$ , the set of Boolean values.
- For all  $n \in \mathbb{Z}^+$ , any function  $f:B^n \to B$  is called a Boolean function of degree n.
- There are 2<sup>2</sup>" (wow!) distinct Boolean functions of degree *n*.
  - B/c  $\exists$  2<sup>n</sup> rows in truth table, w. 0 or 1 in each.

| <u>Degree</u> | How many | <u>Degree</u> | <u>How many</u>             |
|---------------|----------|---------------|-----------------------------|
| 0             | 2        | 4             | 65,536                      |
| 1             | 4        | 5             | 4,294,967,296               |
| 2             | 16       | 6             | 18,446,744,073,709,551,616. |
| 3             | 256      |               |                             |

### **Boolean Expressions**



- Let  $x_1, ..., x_n$  be *n* different Boolean variables.
  - *n* may be as large as desired.
- A *Boolean expression* (recursive definition) is a string of one of the following forms:
  - Base cases:  $0, 1, x_1, ..., \text{ or } x_n$ .
  - Recursive cases:  $E_1$ ,  $(E_1E_2)$ , or  $(E_1+E_2)$ , where  $E_1$  and  $E_2$  are Boolean expressions.
- A Boolean expression represents a Boolean function.
  - Furthermore, every Boolean function (of a given degree) can be represented by a Boolean expression.





- Two Boolean expressions  $e_1$  and  $e_2$  that represent the exact same function f are called equivalent. We write  $e_1 \Leftrightarrow e_2$ , or just  $e_1 = e_2$ .
  - Implicitly, the two expressions have the same value for *all* values of the free variables appearing in  $e_1$  and  $e_2$ .
  - E.g., Boolean expressions xy, xy+0, xy · 1



### Hypercube Representation

• A Boolean function of degree *n* can be represented by an *n*-cube (hypercube) with the corresponding function value at each vertex.







| TABLE 5 Boolean Identities.                                    |                              |  |
|----------------------------------------------------------------|------------------------------|--|
| Identity                                                       | Name                         |  |
| $\overline{\overline{x}} = x$                                  | Law of the double complement |  |
| $ \begin{aligned} x + x &= x \\ x \cdot x &= x \end{aligned} $ | Idempotent laws              |  |
| $ \begin{aligned} x + 0 &= x \\ x \cdot 1 &= x \end{aligned} $ | Identity laws                |  |
| $x + 1 = 1$ $x \cdot 0 = 0$                                    | Domination laws              |  |
| x + y = y + x $xy = yx$                                        | Commutative laws             |  |

| x + (y + z) = (x + y) + z $x(yz) = (xy)z$                                                   | Associative laws  |
|---------------------------------------------------------------------------------------------|-------------------|
| x + yz = (x + y)(x + z) $x(y + z) = xy + xz$                                                | Distributive laws |
| $\frac{\overline{(xy)} = \overline{x} + \overline{y}}{(x+y)} = \overline{x} \ \overline{y}$ | De Morgan's laws  |
| x + xy = x $x(x + y) = x$                                                                   | Absorption laws   |
| $x + \overline{x} = 1$                                                                      | Unit property     |
| $x\overline{x} = 0$                                                                         | Zero property     |



#### Example 10

• Prove the absorption law x(x+y) = x using other identities of Boolean algebra.

$$x(x + y) = (x + 0)(x + y)$$
 Identity law for the Boolean sum
$$= x + 0 \cdot y$$
 Distributive law of the Boolean sum over the Boolean product
$$= x + y \cdot 0$$
 Commutative law for the Boolean product
$$= x + 0$$
 Domination law for the Boolean product
$$= x$$
 Identity law for the Boolean sum.



### Duality

- The *dual* ed of a Boolean expression e representing function f is obtained by exchanging + with , and 0 with 1 in e.
  - The function represented by  $e^{d}$  is denoted  $f^{d}$ .

Find the duals of x(y + 0) and  $\overline{x} \cdot 1 + (\overline{y} + z)$ .

**Solution:** Interchanging  $\cdot$  signs and + signs and interchanging 0s and 1s in these expressions produces their duals. The duals are  $x + (y \cdot 1)$  and  $(\overline{x} + 0)(\overline{y}z)$ , respectively.





A *Boolean algebra* is a set B with two binary operations  $\vee$  and  $\wedge$ , elements 0 and 1, and a unary operation  $\overline{\phantom{a}}$  such that these properties hold for all x, y, and z in B:

$$\begin{cases}
 x \lor 0 = x \\
 x \land 1 = x
 \end{cases}$$

Identity laws

$$\begin{cases}
 x \lor \overline{x} = 1 \\
 x \land \overline{x} = 0
 \end{cases}$$

Complement laws

$$(x \lor y) \lor z = x \lor (y \lor z)$$
  
$$(x \land y) \land z = x \land (y \land z)$$

Associative laws

$$\begin{cases}
 x \lor y = y \lor x \\
 x \land y = y \land x
 \end{cases}$$

Commutative laws

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

Distributive laws



Tentukan ekspresi Boolean dari tabel kebenaran berikut ini dan sederhanakan!

| x | у | z | F(x, y, z) |
|---|---|---|------------|
| 1 | 1 | 1 | 1          |
| 1 | 1 | 0 | 1          |
| 1 | 0 | 1 | 0          |
| 1 | 0 | 0 | 1          |
| 0 | 1 | 1 | 0          |
| 0 | 1 | 0 | 1          |
| 0 | 0 | 1 | 0          |
| 0 | 0 | 0 | 1          |

$$F(x,y,z) = xyz + xy\bar{z} + x\bar{y}\bar{z}, +\bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$$

Dengan identitas diatas fungsi tersebut dapat kita sederhanakan menjadi

$$= xyz + \bar{z}(xy + x\bar{y} + \bar{x}y + \bar{x}\bar{y})$$

$$= xyz + \bar{z}(x+\bar{x})(y+\bar{y})$$

$$= xyz + \bar{z}$$

Dengan absorption law

$$= xyz + (\bar{z} + \bar{z}xy)$$

$$= xyz + xy\bar{z} + \bar{z}$$

$$= xy(z + \bar{z}) + \bar{z}$$

$$= xy + \bar{z}$$



Tentukan ekspresi Boolean dari tabel kebenaran berikut ini dan sederhanakan!

| X | у | Z | F(x,y,z) |
|---|---|---|----------|
| 0 | 0 | 0 | 0        |
| 0 | 0 | 1 | 0        |
| 0 | 1 | 0 | 1        |
| 0 | 1 | 1 | 1        |
| 1 | 0 | 0 | 0        |
| 1 | 0 | 1 | 0        |
| 1 | 1 | 0 | 0        |
| 1 | 1 | 1 | 1        |



## Logic Gates





- Inverter (logical NOT, Boolean complement).
- AND gate (Boolean product).
- OR gate (Boolean sum).
- XOR gate (exclusive-OR, sum mod 2).





### UNIVERSITAS GADJAH MADA

### Multi-input AND, OR, XOR

- Can extend these gates to arbitrarily many inputs.
- Two commonly seen drawing styles:
  - Note that the second style keeps the gate icon relatively small.







- Just like the earlier icons, but with a small circle on the gate's output.
  - Denotes that output is complemented.
- The circles can also be placed on inputs.
  - Means, input is complemented before being used.







 What about an inverter symbol without a circle?



- This is called a *buffer*. It is the identity function.
- It serves no logical purpose, but...
- It represents an explicit delay in the circuit.
  - This is sometimes useful for timing purposes.
- All gates, when physically implemented, incur a non-zero delay between when their inputs are seen and when their outputs are ready.



- Gates: The basic elements of electronic circuits
- Combinational circuits: the circuits whose output depends only on the input and not on the current state of the circuit (no memory).

### Karnaugh Maps



 K-map is a graphical method for finding terms to combine for Boolean functions involving a relatively small number of variables.

$$wx\overline{y}\overline{z} + w\overline{x}yz + w\overline{x}y\overline{z} + w\overline{x}\overline{y}\overline{z} + \overline{w}x\overline{y}\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}\overline{y}\overline{z}$$









#### Don't Care Conditions

- When we care only about the output for some combinations of input values, because other combinations of input values are not possible or never occur.
  - Those combinations that never occur can be arbitrarily chosen.