Exercice 1. Soient $E, f \subset \mathbb{R}$ et $f: e \to F$ une fonction bijective et monotone. Est-ce que f^{-1} est monotone?

Comme f est bijective, elle est injective, donc strictement monotone.

Sans perte de généralité, pour tou $x, x' \in E, x < x' \implies f(x) < f(x')$.

Prenons $y, y' \in F$ tels que y = f(x) et y' = f(x').

Comme la fonction inverse de f, f^{-1} est bijective alors $x = f^{-1}(y)$ et $x' = f^{-1}(y')$.

Donc, $f^{-1}(y) < f^{-1}(y') \implies y < y'$ et par contraposée, $y \ge y' \implies f^{-1}(y) \ge f^{-1}(y')$. Par conséquent, f^{-1} est (strictement) monotone.

Exercice 2. Les fonctions suivantes sont-elles bien définies? injectives? surjectives? bijectives?

- (i) $a: \mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$
- (ii) $b: \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x$
- (iii) $c: [0, \infty) \to (-\infty, 0]$ $x \mapsto x^2$
- (iv) $d: \mathbb{N} \to \{-1, 1\}$ $n \mapsto \begin{cases} 1 & \text{si } n \text{ est pair,} \\ -1 & \text{si } n \text{ est impair} \end{cases}$
- (v) $e: \mathbb{N} \to \{-1, 1\}$ $n \mapsto (-1)^n$

Exercice 2

(i) a est bien dépinie, injective :
$$0+1=0+1 \implies 0+1-1=0+1-1 \implies 0=0$$

, pas surjective : $a(x) \neq 0$, $0 \in \mathbb{N}$.

(ii) b est bien dépinie, injective : $2x = 2x' \implies 2x = 2x' \implies x = x'$

, surjective : $\forall y \in \mathbb{R}$, $\exists x = \frac{1}{2} \neq y \neq y = b(x)$

b est donc bijective, avec b': $x \mapsto \frac{1}{2} \cdot x$

(ii) c n'est pas bien dépinie, car pour $x = 4 \in [e, \infty)$, $f(x) = 4^2 = 16 f(-2, 0]$

(iv) d est bien dépinie, pas injective : $d(2) = d(4)$

, Surjective : $d(2) = 1$, $d(3) = -1$, $donc \forall y \in \{1, 3, 3, 6, 8, y = d(x), y = d(x), y = d(x)\}$

(v) $e = d$.

Exercice 3. Soit $E \subset \mathbb{R}$. Montrer que sup E, s'il existe, est unique.

Soit $E \subset \mathbb{R}$, muni d'un supremum noté sup E.

Supposons un deuxième supremum de E, noté sup' E. Alors sup' E est un majorant de E, et comme pour tout majorant M de E, sup $E \leq M$, alors sup $E \leq \sup' E$.

De la même manière, comme sup E est un majorant de E, sup $E \leq \sup E$.

Comme $\sup E \leq \sup' E$ et $\sup' E \leq \sup E$, $\sup E = \sup' E$.

Exercice 4. Trouver le supremum et infimum dans \mathbb{R} de :

- (i) $E = \{\frac{1}{n} + (-1)^n : n \in \mathbb{N}^*\}$
- (ii) $E = \{x \in \mathbb{R} : 0 \le x < 1\}$
- (iii) $E = \{x \in \mathbb{R} : -8 \le x^3 \le -1 \text{ ou } 2 \le x+1 < 6\}$

Est-ce que ce sont des maximums et des minimums?

Exercice 5. Déterminer quelles sont les fonctions injectives, surjectives, et bijections parmi la liste suivante. Justifier vos affirmations.

- (i) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ $x \mapsto \frac{1}{x}$
- (ii) $g: \mathbb{N} \setminus \{0,1\} \to \mathbb{N}$ $n \mapsto \text{le plus petit nombre premier divisant } n$
- (iii) Soit E un ensemble,

$$\chi : \mathcal{P}(E) \rightarrow \{0, 1\}^E$$

$$A \mapsto \chi_A$$

où χ_A est la fonction caractéristique de l'ensemble A.

Exercice 5

(i) \(\varphi\) est injective: \(\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \) \(\

Exercice 6. Déterminer quelles sont les fonctions croissantes et décroissantes parmi la liste suivante. Justifier vos affirmations.

- (i) $h: \mathbb{R} \to \mathbb{R}$ même question avec $i: [0, \infty) \to \mathbb{R}$ $x \mapsto x^2$
- (ii) $\begin{array}{ccc} \pi:\mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & \pi(n) \end{array}$ où $\pi(n)$ est le nombre de nombres premiers inférieurs ou égaux à n.

Exercice 6

(i) (h est décroissante sur (+8 0) et croissante sur (e.a.))

Soi ent x=-1, y=0, z=1, alors x<y et h(h) > h(y), mais y<z et h(y) < h(e).

Donc, h n'est pas monotone.

En revanche, puisque le domaine de définition de i est restreint à [0,00] x < y => x² < y²,

donc i est (strictement) croissante.

(ii) Soit p le plus grand nombre premier inférieur à n. Alors VSEN, p < n + 8.

Penc, le nombre de nombres premiers inférieur à n. Alors VSEN, p < n + 8.

Pour n, i.e. T(n) < T(n+8).

Docc Vn ell, T(h) < T(n+1) et Tt est donc croissante.

Exercice 7. Soient $E \subset F \subset \mathbb{R}$. Montrer que $\sup E \leq \sup F$ et $\inf E \geq \inf F$.

Exercice 7

Comme Ecf, F peut être écrit comme F=AUEUB, avec A= {xeF: VyeF, xsys}

Autrement dit, F est l'union des minorants de E dans F de E, et des majorants de E dans F.

Il suit que si B= #, supF = supE, sinon supF= supB.

De même, si A= #, snpF = ingE, Sinon ingF= ingA.

Comme ingA singE fant que A est non vide, par définition de A, et que supB > supE tant que B est non vide, on en conclut que ingF singE et supF > supE.

Exercice 8. Soit $f: E \to F$. Montrer que

$$E = \bigcup_{y \in F} f^{-1}(\{y\})$$

Exercise 8

$$F''(\{\gamma\}) = \{x \in E : F(x) \in \{\gamma\}\} = \{x \in E : F(x) = \gamma\}, Donc$$
 $U \in F''(\{\gamma\}) = U : \{x \in E : F(x) \in \{\gamma\}\} = \{x \in E : F(x) \in U : \{\gamma\}\} = \{x \in E : F(x) \in F\}.$

Commo une fonction s'applique à tous les éléments de son domaine de définition, tant que $F(x) \in F(x) \in F$ = $F(x) \in F$ = F

Exercice 9. Soient $f: E \to F$ et $g: F \to G$ deux fonctions.

- (i) Supposons que $g\circ f$ est injective, est-ce que f est injective? Même question avec g?
- (ii) Supposons que $g \circ f$ est surjective, est-ce que f est surjective? Même question avec g?
- (iii) Est-ce que $g \circ f$ bijective implique f et g bijectives?

Pour chaque question, si la réponse est oui, le prouver. Sinon, exhiber un contre-exemple.

Exercise 9
Soif $e: [0,\infty) \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow [0,\infty)$ $\times \longmapsto \times^2$ et $x \longmapsto [\times]$
Il ped être mostré que c est injective sans être surjective y est surjective sons être injective, et $g \circ p : L(g) \longrightarrow L(g)$ est bijective.
(i) Si gof est injective, alors f est injective.
Preuve par contraposée: Si & n'est pas injective, alors il existe x, x'e E tels
que x \neq x et f(x)=f(x). Alors, g(f(x))=g(f(x)), donc gof(x)=gof(x) et
9 n'est pas forcément injective, comme montré dans l'exemple ci-dessus.
(ii) Si gof est surjective, & n'est pas parsément surjective, comme montré dans l'exemple
Par contre, 3 est sorjective.
Preuve par contraposée: Si g n'est pas surjective alors il existe y E G tel que
pour tout XEF, g(x) xy. En particulier, pour tout eeE, g(f(e)) xy, Donc, gof(e) xy et par conséquent, gof n'est pas surjective.
(ii) Par (i) et (ii) il suit que si gop est bijective, alors p est injective et g