SAM/BAM format, samtools, and IGV-ish

Applied Computational Genomics, Lecture 08

https://github.com/quinlan-lab/applied-computational-genomics

Aaron Quinlan

Departments of Human Genetics and Biomedical Informatics
USTAR Center for Genetic Discovery
University of Utab

University of Utah quinlanlab.org

SAM format: a **text**-based **standard(!)** for representing sequence alignments

BIOINFORMATICS APPLICATIONS NOTE

Vol. 25 no. 16 2009, pages 2078–2079 doi:10.1093/bioinformatics/btp352

Sequence analysis

The Sequence Alignment/Map format and SAMtools

Heng Li^{1,+}, Bob Handsaker^{2,+}, Alec Wysoker², Tim Fennell², Jue Ruan³, Nils Homer⁴, Gabor Marth⁵, Goncalo Abecasis⁶, Richard Durbin^{1,*} and 1000 Genome Project Data Processing Subgroup⁷

¹Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, ²Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, ³Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China, ⁴Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, ⁵Department of Biology, Boston College, Chestnut Hill, MA 02467, ⁶Center for Statistical Genetics, Department of Biotstatistics, University of Michigan, Ann Arbor, MI 48109, USA and ⁷http://1000genomes.org

Received on April 28, 2009; revised on May 28, 2009; accepted on May 30, 2009

Advance Access publication June 8, 2009

Associate Editor: Alfonso Valencia

Table 1. Mandatory fields in the SAM format

No.	Name	Description
1	QNAME	Query NAME of the read or the read pair
2	FLAG	Bitwise FLAG (pairing, strand, mate strand, etc.)
3	RNAME	Reference sequence NAME
4	POS	1-Based leftmost POSition of clipped alignment
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIGAR	Extended CIGAR string (operations: MIDNSHP)
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)
8	MPOS	1-Based leftmost Mate POSition
9	ISIZE	Inferred Insert SIZE
10	SEQ	Query SEQuence on the same strand as the reference
11	OUAL	Query QUALity (ASCII-33=Phred base quality)

SAM format overview

- In the dark ages, sequence aligners used disparate output formats. Pain.
- 1000 Genomes Project sought to **standardize**. **Standards are good.**
- The result is imperfect, but it's a **huge** improvement.
- Strengths of the SAM and BAM formats
 - Compressed: less disk hungry
 - Indexed: fast viewing, slicing, etc.
 - Single-end and paired-end
 - Relatively simple to produce
 - Good toolkits available

What critical information do we need

for sequence alignments?

)	•
_	BY

SAM format overview

Col#	Name	Meaning	Example
1	QNAME	Read or Pair name	HWI:ST156_1:278:1:1058:4544:0
2	FLAG	Bitwise FLAG	Much more soon!
3	RNAME	Reference sequence name	chr1
4	POS	1-based alignment start coordinate	8,724,005
5	MAPQ	Mapping quality	60
6	CIGAR	Extended CIGAR string	Much more soon!
7	MRNM	If paired, the mate's reference seq.	chr1
8	MPOS	If paired, the mate's alignment start	8,724,505
9	ISIZE	If paired, the insert size	562
10	SEQ	The sequence of the query/mate	ACAAATTCAG
11	QUAL	The quality string for the query/mate	HHH\$^^%\$\$\$
12	OPT	Optional Tags	XA:i:2, MD:Z:0T34G15

Col#	Name	Meaning	Example
1	QNAME	Read or Pair name	HWI:ST156_1:278:1:1058:4544:0
2	FLAG	Bitwise FLAG	Much more soon!
3	RNAME	Reference sequence name	chr1
4	POS	1-based alignment start coordinate	8,724,005
5	MAPQ	Mapping quality	60
6	CIGAR	Extended CIGAR string	Much more soon!
7	MRNM	If paired, the mate's reference seq.	chr1
8	MPOS	If paired, the mate's alignment start	8,724,505
9	ISIZE	If paired, the insert size	562
10	SEQ	The sequence of the query/mate	ACAAATTCAG
11	QUAL	The quality string for the query/mate	HHH\$^^%\$\$\$
12	OPT	Optional Tags	XA:i:2, MD:Z:0T34G15


```
ST-E00223:32:H5J57CCXX:6:2123:15189:52872
                         97
                             1
                                 10001
                                     0
                                         4S15M1I54M2I50M25S
                                                          699063 0
CCCCCACCCAACCCCACCCCCAC
MD:Z:119
                                 RG:Z:15-0017315 1 NM:i:3 MO:i:47 AS:i:104
XS:i:103
ST-E00223:46:HG7V5CCXX:2:1116:12601:22862
                        1123
                                 10006 0
                                         81M70S =
                                                  10106
CTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTATCATTCACTCGAACCCTAACACTACCGCTAGCGCTAACTCCAGCCC
GCACACTATCGCTAACCCTCACGC
ST-E00223:32:H5J57CCXX:5:2208:10074:43308
                        99
                                 10008 36 101M1I41M7S
                                                      10107 137
ACCCTAACCCTAACCCTACCCCG
,,<A,7<AFKK<,<,,7,,,,,( MC:Z:112S38M
                     MD:Z:49A28A5A5A6A44
                                 RG:Z:15-0017315 1 NM:i:6 MO:i:36 AS:i:110
XS:i:113
ST-E00223:46:HG7V5CCXX:5:2119:12936:64896
                         99
                                 10013 0
                                         90M61S =
                                                      211
                                                  10176
TAACCCTAAGCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCAAACCCTAACCCTAACCCTAACCCGAACCGTAAGCCAAAACATAACCACAACCATAACCAT
AACCAAAACCTTAACGTTAAACAT
A<AFFKKKK,AAAFKK<FKKKKAK,<A,AFKKKKAFFFKKKKAFKKFAFFFKKA7,FFA,F,7F,AFF77AFFAFFKAFKKA,,FFKF,AA,F,,7F,A,,7A,,,,7A,,,,,AFK,,,AA,,,
7FKA,A,AFF,<,,,,,,77<AA MC:Z:99S48M4S MD:Z:9C49C6T23 RG:Z:15-0017315 1 NM:i:3 MO:i:0 AS:i:75 XS:i:75
ST-E00223:32:H5J57CCXX:1:1205:17290:54577
                         99
                                 10019 1 92M59S =
                                                  10354 414
TAACCCCTAACCCCAACCCTGACC
<,7FFA7,A,,AA,<,,AFA,7AF MC:Z:72S79M
                    MD:Z:92 RG:Z:15-0017315 1 NM:i:0 MQ:i:20 AS:i:92 XS:i:97
```


Recall: Edit distance

How many edits (changes) must be made to a word or kmer to make it match (align) to another word or kmer?

HORT → Edit distance = 1. Delete R

TGTTACGG GGTTGACTA TG-TT-ACGG -GGTTGACTA TGTT-ACGG GGTTGACTA

Edit distance = 5

Edit distance = 4

The CIGAR string: encode the details of the alignment

Operation	Meaning
М	Match*
D	Deletion w.r.t. reference
	Insertion w.r.t. reference
N	Split or spliced alignment
S	Soft-clipping
Н	Hard-clipping
P	Padding

Reference: ACCTGTC--TACCTTACG
Experimental: ACCT-TCCATACTTTATC

4M 1D 2M 2l 7M 2S

CIGAR string: 4M1D2M2I7M2S

The extended CIGAR string: M become = and X

Operation	Meaning
=	Exact match
Х	Mismatch
D	Deletion w.r.t. reference
	Insertion w.r.t. reference
N	Split or spliced alignment
S	Soft-clipping
Н	Hard-clipping
Р	Padding

Reference: ACCTGTC - - TACCTTACG

Experimental: ACCT-TCCATACTTTATC

CIGAR string: 4=1D2=2I3=1X3=2S

The FLAG column

Sequence ID	FLAG	CHROM	POS
ST-E00223:32:H5J57CCXX:6:2123:15189:52872	97	1	10001
ST-E00223:46:HG7V5CCXX:2:1116:12601:22862	1123	1	10006
ST-E00223:32:H5J57CCXX:5:2208:10074:43308	99	1	10008
ST-E00223:46:HG7V5CCXX:5:2119:12936:64896	99	1	10013
ST-E00223:32:H5J57CCXX:1:1205:17290:54577	99	1	10019
ST-E00223:32:H5J57CCXX:6:1115:16844:11013	81	1	10026
ST-E00223:32:H5J57CCXX:7:2113:18935:32356	99	1	10032
ST-E00223:46:HG7V5CCXX:6:2117:3082:44239	99	1	10040
ST-E00223:46:HG7V5CCXX:5:2213:10744:58813	163	1	10074
ST-E00223:32:H5J57CCXX:4:1220:14651:8868	99	1	10086

The FLAG score

base2	base10	base16	Meaning	Applies to:
00000000001	1	0x0001	The read originated from a paired sequencing molecule	Both
00000000010	2	0x0002	The read is mapped in a proper pair	Pairs only
00000000100	4	0x0004	The query sequence itself is unmapped	Both
00000001000	8	0x0008	The query's mate is unmapped	Pairs only
00000010000	16	0x0010	Strand of the query (0 for forward; 1 for reverse strand)	Both
00000100000	32	0x0020	Strand of the query's mate	Pairs only
00001000000	64	0x0040	The query is the first read in the pair	Pairs only
00010000000	128	0x0080	The read is the second read in the pair	Pairs only
00100000000	256	0x0100	The alignment is not primary	Both
01000000000	512	0x0200	The read fails platform/vendor quality checks	Both
10000000000	1024	0x0400	The read is either a PCR duplicate or an optical duplicate	Both

ST-E00223:32:H5J57CCXX:4:1220:14651:8868 99 1 10086

base2	base10	base16	Meaning	Applies to:
00000000001	1	0×0001	The read originated from a paired sequencing molecule	Both
00000000010	2	0×0002	The read is mapped in a proper pair	Pairs only
0000000100	4	0×0004	The query sequence itself is unmapped	Both
0000001000	8	0×0008	The query's mate is unmapped	Pairs only
0000010000	16	0x0010	Strand of the query (0 for forward; 1 for reverse strand)	Both
00000100000	32	0×0020	Strand of the queky's mate	Pairs only
00001000000	64	0×0040	The query is the first read in the pair	Pairs only
00010000000	128	0×0080	The read is the second read in the pair	Pairs only
00100000000	256	0×0100	The alignment is not primary	Both
01000000000	512	0x0200	The read fails platform/vendor\quality checks	Both
10000000000	1024	0×0400	The read is either a PCR duplicate or an optical duplicate	Both

$$2^{6}+2^{5}+2^{1}+2^{0} = 64+32+2+1 = 99$$

What is the best way to use tons of disk space and have very inefficient analyses? Text files of billions of alignments

Use samtools to convert SAM to BAM.

This takes a long time, but you do it <u>once</u>

Output is in SAM format.
Use multiple threads if you have a computer with multiple CPUs.

Output is in BAM format.

However, it is unsorted - that is, random genomic order as reads are randomly placed in FASTQ by sequencer.

Create BWT of reference genome.

Align paired-end FASTO

\$ bwa index grch38.fa

\$ bwa mem -t 16 grch38.fa 1.fq 2.fq > sample.sa

Convert SAM to BAM

\$ samtools view -Sb sample.sam > sample.bam

SAMTOOLS: Converting and manipulating SAM/BAM

Commands: -- Indexing dict create a sequence dictionary file faidx index/extract FASTA index index alignment -- Editing calmd recalculate MD/NM tags and '=' bases fixmate fix mate information reheader replace BAM header remove PCR duplicates rmdup cut fosmid regions (for fosmid pool only) targetcut addreplacerg adds or replaces RG tags

-- Viewing
flags explain BAM flags
tview text alignment viewer
view SAM<->BAM<->CRAM conversion

depad convert padded BAM to unpadded BAM

http://www.htslib.org/doc/samtools.html

SAMTOOLS: Converting and manipulating SAM/BAM

Commands:

```
-- File operations
```

collate shuffle and group alignments by name

cat concatenate BAMs

merge merge sorted alignments

split splits a file by read group

quickcheck quickly check if SAM/BAM/CRAM file appears intact

fastq converts a BAM to a FASTQ converts a BAM to a FASTA

-- Statistics

bedcov read depth per BED region

depth compute the depth

flagstat simple stats idxstats BAM index stats

phase phase heterozygotes

stats generate stats (former bamcheck)

https://gist.github.com/arg5x/4716b710f967998e9feaeb134e0ebe2b#file-bam-md

Tutorial for working with samtools

TABLE OF CONTENTS Synopsis Installing samtools Setup The samtools help Converting SAM to BAM with samtools "view" samtools "sort" samtools "index" samtools "view" Scrutinize some alignments Let's make the FLAG more readable Count the total number of alignments. Inspect the header. Capture the FLAG. Other options.

Synopsis

Our goal is to work through examples that demonstrate how to explore, process and manipulate SAM and BAM files with the samtools software package.

For future reference, use the samtools documentation.

Installing samtools

Follow these steps:

```
cd ~
# optional. you may already have a src directory
mkdir src
cd ~/src
git clone https://github.com/samtools/samtools
cd samtools
make
cp samtools ~/bin
```


Let's play around with a real BAM file

using samtools

•	•	١	

Use IGV to look at your BAM file

https://gist.github.com/arq5x/4716b710f967998e9feaeb134e0ebe2b#file-igv-md

IGV tutorial

https://github.com/griffithlab/rnaseq_tutorial/wiki/IGV-Tutorial

