Inhaltsverzeichnis

0 Grundlagen			
	0.1	Zeicher	n, Wörter und Sprachen
		0.1.1	Alphabete und Zeichen
		0.1.2	Wörter
		0.1.3	Operationen auf Wörtern
		0.1.4	Sprachen
		0.1.5	Operationen auf Sprachen
1	Reg	guläre S	prachen und endliche Automaten 21
	1.1	Regulä	re Sprachen
	1.2	Endlich	ne Automaten
	1.3	Determ	inistische endliche Automaten
		1.3.1	Definition DEA
		1.3.2	Die Übergangsschrittrelation \vdash_A
		1.3.3	Die akzeptierte Sprache $L(A)$
			Das 'endliche Gedächtnis' eines Automaten
			Entwurf eines DEA für eine gegebene Sprache
			Eine Sprache, für die kein DEA existiert
			Die Funktionsschreibweise δ^*
			Konventionen
	1.4		eterministische endliche Automaten
			Definition NDEA
			Die Übergangsschrittrelation \vdash_A
			Die akzeptierte Sprache $L(A)$
			Ein NDEA für eine gegebene Sprache
		1.4.5	Vom NDEA zum DEA
		-	Die Potenzautomaten-Konstruktion
			Beschränkung auf erreichbare Zustände
			Bestimmung der erreichbaren Zustände
			Tote Zustände
			Die Sprachklassen \mathcal{L}_{reg} , \mathcal{L}_{DEA} , \mathcal{L}_{NDEA}
	1.5		As $\ldots \ldots \ldots$
	1.0		Definition c-NDFA

		1.5.2	Vom ε -NDEA zum NDEA	78
		1.5.3	Die Sprachklasse \mathcal{L}_{EA}	88
		1.5.4	Abschlusseigenschaften von \mathcal{L}_{EA}	89
		1.5.5	Vom Mengenausdruck zum Automaten	96
		1.5.6	Weitere Abschlusseigenschaften von \mathcal{L}_{EA}	98
		1.5.7	Vom Automaten zum Mengenausdruck	102
	1.6	Regulä	ire Ausdrücke	110
		1.6.1	Syntax und Semantik	110
		1.6.2	Anwendungen	115
	1.7	Entsch	neidbarkeitsfragen für reguläre Sprachen	117
	1.8	Grenze	en regulärer Sprachen	121
		1.8.1	Das Schubfachprinzip	121
		1.8.2	L-Äquivalenzklassen	127
		1.8.3	Der Satz von Myhill und Nerode	131
		1.8.4	Der Myhill-Nerode-Automat	135
		1.8.5	Anwendungsbeispiel: Textsuche	137
		1.8.6	Exkurs: Minimalisierung	146
		1.8.7	A-Äquivalenzklassen	147
		1.8.8	Konstruktion des minimalen DEA	149
		1.8.9	Das Pumping Lemma für reguläre Sprachen	161
		1.8.10	Das starke Pumping Lemma	168
2	Koı	ntextfr	eie Sprachen und Kellerautomaten	172
	2.1		rung	172
	2.2		xtfreie Grammatiken	175
		2.2.1	Definition KFG	175
		2.2.2	Ableitungen und die erzeugte Sprache $L(G)$	179
		2.2.3	Kontextfreie Sprachen	181
		2.2.4	Linksableitungen	183
		2.2.5	Ableitungsbäume	185
		2.2.6	Eindeutige und mehrdeutige Grammatiken	188
		2.2.7	Korrektheitsbeweise	194
		2.2.8	Rechtslineare Grammatiken	202
		2.2.9	Vom NDEA zur rechtslinearen Grammatik	204
		2.2.10		

	2.3	Kellera	automaten
		2.3.1	Definition Kellerautomat
		2.3.2	Die Übergangsschrittrelation \vdash_M
		2.3.3	Die akzeptierte Sprache $L(M)$
		2.3.4	Von der KFG zum Kellerautomaten
	2.4	Abschl	lusseigenschaften der Klasse \mathcal{L}_{kf}
	2.5		eidbarkeitsfragen für kontextfreie Sprachen
		2.5.1	Das Wortproblem
		2.5.2	Entfernung von ε - und Einheitsproduktionen
		2.5.3	Entscheidungsalgorithmen
	2.6	Grenze	en kontextfreier Sprachen
		2.6.1	Intuition
		2.6.2	Das Pumping Lemma für kontextfreie Sprachen
	2.7	Detern	ninistisch kontextfreie Sprachen
		2.7.1	Deterministische Kellerautomaten
		2.7.2	Deterministisch kontextfreie Sprachen
		2.7.3	$\mathcal{L}_{dkf} \subseteq \mathcal{L}_{kf} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		2.7.4	Abschlusseigenschaften der Klasse \mathcal{L}_{dkf}
		2.7.5	$\mathcal{L}_{dkf} \neq \mathcal{L}_{kf}$
3	\mathbf{Ber}	echenb	parkeitstheorie 282
	3.1	Berech	enbarkeit und Entscheidbarkeit
		3.1.1	Einführung
		3.1.2	Berechenbare Funktionen
		3.1.3	Gödelnummern
		3.1.4	Entscheidbare und semi-entscheidbare Mengen
		3.1.5	Halteproblem und Selbsthalteproblem
		3.1.6	Die Unentscheidbarkeit des Selbsthalteproblems
		3.1.7	Die Unentscheidbarkeit des Halteproblems
		3.1.8	'Entscheidbar = $2 \times$ semi-entscheidbar'
		3.1.9	Rekursive Aufzählbarkeit
		3.1.10	'Semi-entscheidbar = rekursiv aufzählbar'
		3.1.11	Funktionen mit mehrstelligem Resultat
		3.1.12	Komposition berechenbarer Funktionen
		3.1.13	Charakterisierungen semi-entscheidbarer Mengen

	3.1.14	Charakterisierungen entscheidbarer Mengen	25
		Reduzierbarkeit	
	3.1.16	Weitere unentscheidbare Probleme	30
	3.1.17	Weitere Untersuchungen zur Semi-Entscheidbarkeit	35
	3.1.18	Der Satz von Rice	38
3.2	Unters	schiedliche Berechenbarkeitsbegriffe und Churchsche These	41
3.3		und loop-berechenbare Funktionen	44
	3.3.1	while-Programme: Syntax und Semantik	44
	3.3.2	Die vom Programm P berechnete Funktion	49
	3.3.3	Korrektheitsbeweise	53
	3.3.4	Ein Interpreter für while-Programme	56
	3.3.5	Codierung von Zahlenfolgen und Speicherzuständen	57
	3.3.6	Codierung von Anweisungen und Programmen	59
	3.3.7	Simulation des Übergangsschrittes	61
	3.3.8	Zusammensetzung von while-Programmen	63
	3.3.9	Programme zur Codierung und Decodierung	73
	3.3.10	Simulation einer Berechnung	79
	3.3.11	loop-Programme	82
3.4		iv rekursive und μ -rekursive Funktionen	85
	3.4.1	Die Grundfunktionen	86
	3.4.2	Substitution	87
	3.4.3	Primitive Rekursion	90
	3.4.4	Die Klasse \mathcal{PR} der primitiv rekursiven Funktionen	93
	3.4.5	Abschlusseigenschaften der Klasse \mathcal{PR}	96
	3.4.6	Der unbeschränkte μ -Operator	03
	3.4.7	Die Klasse $\mu - \mathcal{REC}$ der μ -rekursiven Funktionen	06
	3.4.8	Der beschränkte μ -Operator	07
3.5	Äquiva	alenzen zwischen den Berechenbarkeitsbegriffen	14
	3.5.1	Von der primitiv rekursiven Funktion zum loop-Programm 4	15
	3.5.2	Von der μ -rekursiven Funktion zum while-Programm 4	19
	3.5.3	Vom loop-Programm zur primitiv rekursiven Funktion 45	21
	3.5.4	Vom while-Programm zur μ -rekursiven Funktion 42	24
	3.5.5	Grenzen der primitiven Rekursion	27

\mathbf{Index}

ø, 110	$L_1 \circ L_2, 14$
$(\alpha)^*, 110$	$L_1 \cup L_2, 14$
$(\alpha\beta)$, 110	$L_1\setminus L_2,14 \ ar{L},14$
$(\alpha \mid \beta), 110$	L,~14
A-äquivalent, 147	$L_{fix}, 19$
F(m) 79	L_{float} , 19
E(p), 78	$L_{int},19$
H, 297, 303, 304, 306, 329	$L_{nat}, 19$
K, 299, 303, 306, 329	$L_{bin}, 101$
$ar{K}, 299, 306$	I 109 109
H_0 , 330, 335	$L_{ij}, 102, 103$
$H_{\exists}, 330, 335$	$L_{ij}^k, 103$
$H_{\forall}, 330, 335$	$R^*, 31$
v, 333, 333	$R^+, 31$
$I^k, 356, 379$	$R^n, 31$
	$R_1 \circ R_2, 31$
L-Ergänzung, 127	-1 -2) -
L-Aquivalenzklasse, 128	$X_i, 344$
L-äquivalent, 127	
L-unterscheidbar, 122	$[q]_A, 147$
T (1) 00 F1	$[u]_L, 128$
L(A), 32, 51	
L(G), 180	Σ^* , 4, 6
$L(\alpha), 111$	$\Sigma^+, 4, 6$
I* 16	Σ^n , 6
$L^*, 16$ $L^+, 16$	$\lceil P \rceil$, 360
L^{R} , 16 L^{R} , 16	
$L^{n}, 10$ $L^{n}, 15$	$\lceil st \rceil$, $\lceil stl \rceil$, 359
$L_1L_2, 14$	
$L_1L_2, 14$ $L_1 \cap L_2, 14$	$\langle \sigma \rangle_m, 358$
$L_1 \cap L_2, 14$	$\langle n_1,\ldots,n_k\rangle,\ 356,\ 357$

$[\![P]\!], 352, 383$	\vdash_M , 212
$\delta^*, 46$	$\wp(\Sigma^*), 12$
A o u, 175	$a_B, 294$ $c_B, 294$
$\Rightarrow, 179$ $\Rightarrow_{G}, 179$ $\stackrel{*}{\Rightarrow}_{G}, 180$ $\stackrel{+}{\Rightarrow}_{G}, 180$ $\stackrel{n}{\Rightarrow}_{G}, 180$	f(A), 319 $f: A \hookrightarrow B$, 286 $f^{-1}(B)$, 319 $g \circ f$, 319
μ-Operator, 385, 403	$\dot{m-n}$, 348
μ -rekursiv, 385, 406 $\mu(g)$, 403 $\mu - \mathcal{REC}$, 406	$p \sim_A q, 147$ $p \sim_n q, 154$
$ \mu^{\leq}(g), 407 \mu z. (g(n_1, \dots, n_k, z) = 0), 403 \mu z \leq m. (g(n_1, \dots, n_k, z) = 0), 407 $	$u_1 \not\sim_L u_2, 127$ $u_1 \sim_L u_2, 127$
$\pi_i, 292$	$v \circ w$, 7 vw, 7
$\sigma_0, 345$	w^R , 9 w^n , 8
ε , 4 ε -Abschluss, 78	$w_n, 287$
ε -NDEA, 76	$\mathcal{L}_{reg}, 74$
ε -Produktion, 239	$\mathcal{L}_{DEA}, 74$
⊢, 212, 347, 348	$\mathcal{L}_{NDEA}, 74$
+, 347	$\mathcal{L}_{\varepsilon\text{-}NDEA}, 77$
-+, 347	$\mathcal{L}_{EA}, 88$ $\mathcal{L}_{kf}, 208$
+n, 347	\mathcal{L}_{dkf} , 278
\vdash_A , 28, 29, 51, 77	- unj , 0
A^* , 28, 29, 51	Def(f), 319
$\begin{array}{c} +_{A}, 28, 29, 51 \\{A}^{+}, 28, 29, 51 \\{B}^{n}, 28, 29, 51 \end{array}$	Equiv, 330, 335
$\stackrel{n}{A}$, 28, 29, 51	$Erg_L(u), 127$

Graph(f), 317 Assoziativität, 7, 14 $If(q; h_1, h_2), 396$ Aufpumpen, 163 Iter(q), 398 Aufzählungsalgorithmus, 308 Loc, 344 Basisfunktionen, 386 Prim(g, h), 390berechenbare Funktion, 289, 315 Store, 345Berechenbarkeit, 343 $Sub(g; h_1, \ldots, h_l), 387$ berechnete Funktion, 289, 349 $const_c^k$, 386 beschränkter μ -Operator, 407 $const_m$, 290 beschriebene Sprache, 111 pr_i^m , 315 Bild, 319 $proj_i^k$, 386 charakteristische Funktion, 294 succ, 386Churchsche These, 343 abgeschlossen, 89 Codierung einer Anweisung, 359 ableitbar, 180 Codierung einer Anweisungsliste, 359 Ableitung, 180 Codierung einer Zahlenliste, 357 Ableitungsbaum, 185 Codierung eines Programms, 360 Ableitungsschritt, 179 Codierung eines Speicherzustands, 358 Abschlussoperator, 18 Codierung eines Wortes, 287 Ackermann-Funktion, 384 akzeptierbar, 294 DEA, 26 akzeptierender Zustand, 23, 26, 209 Definitionsbereich, 319 akzeptierte Sprache, 32, 51, 214 deterministisch kontextfrei, 270 akzeptiertes Wort, 32, 52, 214 deterministischer endlicher Automat, 26 Akzeptorfunktion, 294 deterministischer Kellerautomat, 268 allgemeines Halteproblem, 298 Diagonale, 317 allgemeines Wortproblem, 237 Diagonalfunktion, 316 Alphabet, 2 Diagonalisierung, 301 dovetailing, 312, 313, 324, 336, 380 Anfangswort, 10 Anweisung, 344 Durchschnitt, 14 Anweisungsliste, 344 EA. 88 antisymmetrisch, 11 eindeutige Grammatik, 188 äquivalent, 330 Eingabealphabet, 209 äquivalente Grammatiken, 244

Äquivalenzproblem, 253, 330

Einheitsproduktion, 239

Einsetzung, 387 endlicher Automat, 23, 88 Endwort, 10 Endzustand, 23, 26, 209 entscheidbar, 294 Entscheidbarkeit, 327 Entscheidungsalgorithmus, 117, 295 erkannte Sprache, 32, 51, 214 erreichbarer Zustand, 66

Fallunterscheidung, 396 formale Sprache, 12

erzeugte Sprache, 180

Gödelnummer, 292 Graph einer Funktion, 317 Grundfunktionen, 385, 386

Hüllenoperator, 18 Halteproblem, 298

induktiv definiert, 174 inhärent mehrdeutige Grammatik, 188 inkompatibel, 268 Interpreter, 356 Iteration, 398

Kelleralphabet, 209 Kellerautomat, 209 KFG, 175 Kleene-Abschluss, 16 kompatibel, 268 Komplement, 14 Komposition, 31, 319 Konfiguration, 28, 212, 347 Konkatenation, 7, 14 konsistent, 268 konstante Funktion, 386 Kontext, 182 Kontextbedingungen, 264 kontextfrei, 181, 182 kontextfreie Grammatik, 175

Länge eines Wortes, 4 leere Funktion, 290 leeres Wort, 4 Linksableitung, 183 Linksableitungsschritt, 183 linkslineare Grammatik, 202 loop-Programm, 382 loop-berechenbar, 383

mehrdeutige Grammatik, 188 Mengendifferenz, 14 minimaler DEA, 136 Monoid, 7, 14 Myhill-Nerode-Automat, 136

Nachfolgerfunktion, 386 NDEA, 50 Nebenparameter, 390 neutrales Element, 7, 14 nichtdeterministischer endlicher Automat, 50 Nichtterminalzeichen, 175

Parser, 264 partielle Funktion, 286 partielle Ordnung, 11 PDA, 209 pigeonhole principle, 43 Potenz, 8, 15 Potenzautomat, 61 Potenzmenge, 12 Präfix, 10 primitiv rekursiv, 385, 393, 401 primitive Rekursion, 385, 390 Produktion, 175 Projektion, 315, 386 pushdown automaton, 209

Rechtskongruenzrelation, 130 rechtslineare Grammatik, 202 reduzierbar, 326 reflexiv, 11 reflexiver transitiver Abschluss, 29 Regel, 175 reguläre Sprache, 21, 109 regulärer Ausdruck, 97, 110 Rekursionsparameter, 390 rekursiv aufzählbar, 308, 317

Schubfachprinzip, 43, 121 Selbsthalteproblem, 299 semantische Analyse, 264 semantische Eigenschaft, 338 semi-entscheidbar, 294 Semi-Entscheidungsalgorithmus, 295 simultane Induktion, 197 Speicherplatz, 344 Speicherzustand, 345 spezielles Äquivalenzproblem, 339 spezielles Halteproblem, 299, 330 Spiegelung, 9, 16 spontaner Zustandsübergang, 76 Sprache, 12 Sprachklasse, 74 Startzeichen, 175 Startzustand, 23, 26, 209

Substitution, 385, 387 Suchprogramme, 144 Suffix, 10 Symbol, 2 syntaktische Analyse, 264 Syntaxbaum, 185

Teilwort, 10 Terminalzeichen, 175 Totalitätsproblem, 330 toter Zustand, 72 Transition, 209 transitiv, 11 transitiver Abschluss, 29 Turing-mächtig, 343

überabzählbar, 288 Übergang, 209 Übergangsfunktion, 26 Übergangsrelation, 50, 209 Übergangsschritt, 29, 212 Übergangsschrittrelation, 28, 347 unbeschränkter μ -Operator, 403 Unentscheidbarkeit, 327 unerreichbarer Zustand, 66 Urbild, 319

Vereinigung, 14

while-Programm, 344 while-berechenbar, 352 Wort, 4 Wortproblem, 118, 237

Zeichen, 2 Zeichenvorrat, 2 Zustand, 26, 209, 345