二次函数填空题一

一. 填空题(共40小题)

- 1. 当 m = 时,函数 y = (m 4) x $m^2 5m + 6 + 3x$ 是关于 x 的二次函数.
- 2. 已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式
- 3. 已知二次函数 $y = (x h)^2 (h 为常数)$,当自变量 x 的值满足 $-1 \le x \le 3$ 时,与其对应的函数值 y 的最小值为 4,则 h 的值为______.
- 4. 己知二次函数 $y=x^2-2mx+1$,当 x≥2 时,y 随 x 的增大而增大,则 m 的取值范围是 .
- 5. 将二次函数 $y=-2x^2+1$ 的图象绕点(0, 2)顺时针旋转 180° ,得到的图象所对应的函数表达式为_____.
- 6. 已知函数 $y = \begin{cases} -\mathbf{x}^2 + 2\mathbf{x}(\mathbf{x} > 0) \\ -\mathbf{x}(\mathbf{x} \leq 0) \end{cases}$ 的图象如图所示,若直线 y = x + m

与该图象恰有三个不同的交点,则 m 的取值范围为_____

- 8. 若 x、y、z 为实数,且 $\begin{cases} x+2y-z=4 \\ x-y+2z=1 \end{cases}$,则代数式 $x^2-3y^2+z^2$ 的最大值是______
- 9. 如图,在平面直角坐标系中,抛物线 $y=ax^2-2ax+3$ (a 为常数且 $a \ne 0$) 与 y 轴交于点人过点 A 作 AC//x 轴交抛物线于点 C,以 AC 为对角线作菱形 ABCD,若菱形的顶点 B 恰好落在工轴上,则菱形 ABCD 的面积为______.

10. 已知抛物线 $y=ax^2+4ax+4a+1$ ($a\neq 0$) 过点 A (m, 3), B (n, 3) 两点,若线段 AB 的长不大于 4,则代数式 a^2+a+1 的最小值是_____.

11. 如图,抛物线 $y=ax^2+bx+c$ $(a\neq 0)$ 过点 (-1,0),(0,2),且顶点在第一象限,设 M=4a+2b+c,则 M 的取值范围是

- 12. 已知二次函数 $f(x) = 2x^2 + ax + b$,若 f(a) = f(b+1),其中 $a \neq b+1$,则 f(1) + f(2) 的值为_____.
- 13. 如图,直线 y=x+1 与抛物线 $y=x^2-4x+5$ 交于 A, B 两点,点 P 是 y 轴上的一个动点, 当 $\triangle PAB$ 的周长最小时, $S_{\triangle PAB}=$ ______.

- 14. 将二次函数 $y=-2x^2$ 的图象先向右平移 2 个单位,再向下平移个 $\sqrt{3}$ 个单位,得到的抛物线的函数表达式为______.
- 15. 如图,已知点 A (6, 0),O 为坐标原点,P 是线段 OA 上任意一点(不含端点 O, A),过 P, O 两点的二次函数 y_1 和过 P, A 两点的二次函数 y_2 的图象开口均向上,它们的顶点分别为 B, C, 射线 OB 与 AC 交于点 D. 当 OD = AD = 5 时,这两个二次函数的最小值之和等于______.

16. 如图,四边形 ABCD、DEFG 都是正方形,边长分别为 m、n (m<n). 坐标原点 O 为 AD 的中点,A、D、E 在 y 轴上.若 二次函数 $y=ax^2$ 的图象过 C、F 两点,则 $\frac{\mathbf{n}}{-}=$ _____.

17. 如图,已知点 A (2, 4)、P (1, 0),B 为y 轴正半轴上的一个动点,以 AB 为边构造 $\triangle ABC$,使点 C 在 x 轴的正半轴上,且 $\angle BAC$ = 90°. 若 M 为 BC 的中点,则 PM 的最小值为_____.

18. 定义符号 $max\{a, b\}$ 的含义为: 当 $a \ge b$ 时, $max\{a, b\} = a$; 当 $a \le b$ 时, $max\{a, b\} = b$. 如 $max\{2, -3\} = 2$, $max\{-4, -2\} = -2$,则 $max\{-x^2 + 2x + 3, |x|\}$ 的最小值是______.

19. 如图,已知 AB=12,P 为线段 AB 上的一个动点,分别以 AP、PB 为边在 AB 的同侧作 菱形 APCD 和菱形 PBFE,点 P、C、E 在一条直线上, $\angle DAP=60^\circ$. M、N 分别是对角线 AC、BE 的中点. 当点 P 在线段 AB 上移动时,点 M、N 之间的距离最短为______. (结果留根号)

20. 如图,在平面直角坐标系中,抛物线 $y = \frac{1}{4} (x-3)^2 - 1$ 的顶点为 A,直线 l 过点 P (0,m)且平行于 x 轴,与抛物线交于点 B 和点 C. 若 AB = AC, $\angle BAC = 90^\circ$,则 $m = _____$.

21. 如图,在平面直角坐标系中,抛物线 $y=-x^2+3x+2$ 与 y 轴交于点 A,点 B 是抛物线的顶点,点 C 与点 A 是抛物线上的两个对称点,点 D 在 x 轴上运动,则四边形 ABCD 的两条对角线的长度之和的最小值为______.

22. 如图,点 P 为线段 AB (不含端点 A、B) 上的动点,分别以 AP、PB 为斜边在 AB 的同侧作 $Rt\triangle AEP$ 与 $Rt\triangle PFB$, $\angle AEP$ = $\angle EPF$ = $\angle PFB$ = 90° ,若 AE+PF=8,EP+FB=6,则线段 EF 的取值范围是______.

23. 若 - 2 \leq a<2,则满足 a (a+b) =b (a+1) +a 的 b 的取值范围为_____.

24. 已知二次函数 $v = (x - 2a)^2 + (a - 1)(a)$ 为常数), 当 a 取不同的值时, 其图象构成一 个"抛物线系",如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的 顶点在一条直线上,这条直线的解析式是

- 25. 若直线 y=x+m 与函数 $y=|x^2-2x-3|$ 的图象有四个公共点,则 m 的取值范围为_____.
- 26. 若二次函数 $y=ax^2+bx+c$ 的图象与 x 轴交于 A 和 B 两点,顶点为 C,且 b^2 4ac=4,则 **ZACB** 的度数为_____.
- 27. 如图, 二次函数 $y = \frac{4}{15} x^2 \frac{8}{15} x 4$ 的图象与 x 轴交于 A 、 B 两点(点 A 在点 B 的左 边), 与y轴交于点C, 其对称轴与x轴交于点D, 若P为y轴上 的一个动点,连接 PD,则 $\frac{3}{5}PC+PD$ 的最小值为______.

- 28. 二次函数 $v=-x^2+2mx+n$ (m, n 是常数) 的图象与 x 轴两个交 点及顶点构成等边三角形,若将这条抛物线向下平移 k 个单位后 (k>0),图象与 x 轴两 个交点及顶点构成直角三角形,则k的值是 .
- 29. 如图, 是二次函数 $v = -x^2 + bx + c$ 的部分图象, 则不等式 $-x^2 + bx + c$ >0 的解集是
- 30. 如图, 已知顶点为(-3,-6)的抛物线 $v=ax^2+bx+c$ 经过点(-1, -4), 下列结论: ① $b^2 > 4ac$: ② $ax^2 + bx + c \ge -6$: ③若点(-2, m), (-5, n) 在抛物线上,则 m > n; (4)关于 x 的一元二 次方程 $ax^2+bx+c=-4$ 的两根为 - 5 和 - 1, 其中正确的 是 .

31. 已知二次函数 $y=ax^2+bx$ ($a\neq 0$) 的最小值是 - 3,若关于 x的一元二次方程 $ax^2+bx+c=0$ 有实数根,则 c 的最大值

33. 如图,二次函数 $y=ax^2+bx+2$ 的图象与 x 轴交于 A、B 两点,与 y 轴交于点 C,若 $AC \perp BC$,则 a 的值为

- 34. 如图,一段抛物线: $y=-x(x-2)(0 \le x \le 2)$ 记为 C_1 ,它与 x 轴交于点 O, A_1 ;将 C_1 绕点 A_1 旋转 180° 得 C_2 ,交 x 轴于点 A_2 ;将 C_2 绕点 A_2 旋转 180° 得 C_3 ,交 x 轴于点 A_3 …如此进行下去,则 C_{2019} 的顶点坐标是______.
- 35. 已知二次函数 $y=-x^2+x+6$ 及一次函数 y=x+m,将该二次函数 在 x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线 y=x+m 与这个新图象有四个交点时,m 的取值范围是______.

36. 如图,已知函数 $y = -\frac{3}{x}$ 与 $y = ax^2 + bx$ (a > 0, b > 0) 的图象交于 点 P,点 P 的纵坐标为 1,则关于 x 的不等式 $bx + \frac{3}{x} > -a_x^2$ 的解集为______.

37. 如图,双曲线 $y = \frac{\mathbf{k}}{\mathbf{x}}$ 与抛物线 $y = ax^2 + bx + c$ 交于点 $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$,由图象可得不等式组 $0 < \frac{\mathbf{k}}{\mathbf{x}} < \mathbf{a_x}^2 + bx + c$ 的解集为______.

- 38. 已知二次函数 $y=2x^2+bx+c$ 的图象与坐标轴分别交于 A , B , C 三点,若 $\triangle ABC$ 是直角三角形,则 c 的值为
- 39. 已知函数 $y=x^2-2|x|-1$,若关于 x 的方程 $x^2-2|x|=k+3$ 恰好有三个解,则 k 的值为___
- 40. 已知函数 $y=x^2-2x-3$,当 $-1 \le x \le a$ 时, $-4 \le y \le 0$,则实数 a 的取值范围是_____.