In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [2]: df = pd.read_csv(r"D:\data analysis\children addiction\Students Social Media
df

Out[2]:		Student_ID	Age	Gender	Academic_Level	Country	Avg_Daily_Usage_I
	0	1	19	Female	Undergraduate	Bangladesh	
	1	2	22	Male	Graduate	India	
	2	3	20	Female	Undergraduate	USA	
	3	4	18	Male	High School	UK	
	4	5	21	Male	Graduate	Canada	
	700	701	20	Female	Undergraduate	Italy	
	701	702	23	Male	Graduate	Russia	
	702	703	21	Female	Undergraduate	China	
	703	704	24	Male	Graduate	Japan	
	704	705	19	Female	Undergraduate	Poland	

705 rows \times 13 columns

In [3]: df.describe()

Out[3]:		Student_ID	Age	Avg_Daily_Usage_Hours	Sleep_Hours_Per_Night
	count	705.000000	705.000000	705.000000	705.000000
	mean	353.000000	20.659574	4.918723	6.868936
	std	203.660256	1.399217	1.257395	1.126848
	min	1.000000	18.000000	1.500000	3.800000
	25%	177.000000	19.000000	4.100000	6.000000
	50%	353.000000	21.000000	4.800000	6.900000
	75 %	529.000000	22.000000	5.800000	7.700000
	max	705.000000	24.000000	8.500000	9.600000

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 705 entries, 0 to 704
      Data columns (total 13 columns):
            Column
                                         Non-Null Count Dtype
            -----
                                         _____
                                                         ----
       0
           Student ID
                                         705 non-null
                                                         int64
       1
           Age
                                         705 non-null
                                                         int64
                                         705 non-null
       2
           Gender
                                                         object
       3
           Academic Level
                                         705 non-null
                                                         object
                                         705 non-null
       4
           Country
                                                         object
                                         705 non-null
       5
           Avg Daily Usage Hours
                                                         float64
       6
           Most Used Platform
                                         705 non-null
                                                         object
       7
           Affects_Academic_Performance 705 non-null
                                                         object
       8
           Sleep Hours Per Night
                                         705 non-null
                                                         float64
           Mental Health Score
       9
                                         705 non-null
                                                         int64
       10 Relationship Status
                                         705 non-null
                                                         object
       11 Conflicts Over Social Media
                                         705 non-null
                                                         int64
        12 Addicted Score
                                         705 non-null
                                                         int64
       dtypes: float64(2), int64(5), object(6)
       memory usage: 71.7+ KB
In [5]: df.isnull().sum()
                           #Give the sum of the null values in each column
Out[5]: Student ID
                                        0
                                        0
        Age
        Gender
                                        0
        Academic Level
                                        0
        Country
                                        0
        Avg Daily Usage Hours
        Most_Used_Platform
                                        0
        Affects Academic Performance
                                        0
        Sleep Hours Per Night
                                        0
        Mental Health Score
                                        0
        Relationship Status
                                        0
        Conflicts Over Social Media
                                        0
        Addicted Score
                                        0
        dtype: int64
In [6]: df.duplicated()
Out[6]: 0
               False
        1
               False
        2
               False
        3
               False
        4
               False
               . . .
        700
               False
        701
               False
        702
               False
        703
               False
        704
               False
        Length: 705, dtype: bool
In [7]:
        plt.figure(figsize = (4,4))
        ax = sns.countplot(x="Gender", data=df)
        ax.bar label(ax.containers[0])
```


Total sample size = 705% of Male population = (352/700)*100 = 49.93% % of Female population = (353/700)*100 = 50.07% This shows our data is balance

```
In [8]: df1 = df["Country"].value counts()
Out[8]: Country
         India
                        53
        USA
                        40
         Canada
                        34
         France
                        27
         Mexico
                        27
         0man
                         1
         Afghanistan
                         1
         Syria
         Yemen
         Bhutan
         Name: count, Length: 110, dtype: int64
```

Total Countries in the dataset = 110 Top 5 countries: India USA Canda France Mexico

Q1. What is the average daily social media usage (in hours) across all students?

```
In [9]: Total_hours = df["Avg_Daily_Usage_Hours"].sum()
Total_population = 705
average_usage = Total_hours/Total_population
print(average_usage)
```

average daily social media usage (in hours) across all students = 4.9 hours

Q2. Which social media platform is the most frequently reported as "Most_Used_Platform"?

```
In [10]: Most_used_platform = df["Most_Used_Platform"].value_counts()
           Most used platform
Out[10]: Most Used Platform
           Instagram
                           249
           TikTok
                           154
           Facebook
                           123
                            54
           WhatsApp
           Twitter
                            30
           LinkedIn
                            21
           WeChat
                            15
           Snapchat
                            13
           VKontakte
                            12
           LINE
                            12
                            12
           KakaoTalk
           YouTube
                            10
           Name: count, dtype: int64
In [11]: plt.figure(figsize = (15,6))
           ax = sns.countplot(x="Most Used Platform", data=df)
           ax.bar label(ax.containers[0])
           plt.title("Scial Media platform by users")
           plt.show()
                                                Scial Media platform by users
          250
          200
          150
          100
           50
              Instagram
                      Twitter
                              TikTok
                                     YouTube
                                           Facebook
                                                   LinkedIn
                                                                  LINE
                                                                        KakaoTalk
                                                                               VKontakte
                                                                                       WhatsApp
                                                   Most Used Platform
```

Most Used plateform = Instagram top 5 plateform: Instagrma TikTok Facebook WhatsApp Twitter(X)

Q3. How many students report that social media affects their academic performance (Yes vs. No)?

453 students report that their addiction of social media affects their academic performance Their percentage = (453/705)*100 = 64.26%

Q4. What is the distribution of students by Relationship Status (Single, In Relationship, Complicated)?

Most of the student in this dataset are single % of singles = (384/705)*100 = 54.47 % of students that are in relationship = (289/705)*100 = 40.99 % of students otherwise (complicated) = 4.54

Q5. What is the distribution of students by Academic_Level?

```
academicLevel = df["Academic Level"].value counts()
In [15]:
         academicLevel
Out[15]: Academic Level
         Undergraduate
                           353
          Graduate
                           325
         High School
                            27
          Name: count, dtype: int64
In [16]: plt.figure(figsize = (6,6))
         ax = sns.countplot(x="Academic_Level", data=df)
         ax.bar label(ax.containers[0])
         plt.title("Academic level by population count")
         plt.show()
```

Academic level by population count

% of Undergraduates = (353/705)*100 = 50.07 % of Graduates = (325/705)*100 = 46.10 % of High School = (27/705)*100 = 3.83

Q6. Is there a correlation between daily social media usage and sleep duration?

```
# Labels and title
plt.title('Social Media Usage vs. Sleep Duration', fontsize=16)
plt.xlabel('Avg Daily Usage (Hours)', fontsize=12)
plt.ylabel('Sleep Hours Per Night', fontsize=12)
plt.grid(alpha=0.2)
plt.show()
```

Pearson r: -0.791, p-value: 0.0000

Social Media Usage vs. Sleep Duration


```
In [18]: from scipy import stats

# Calculate linear regression parameters
slope, intercept, r_value, p_value, std_err = stats.linregress(
          df['Avg_Daily_Usage_Hours'],
          df['Sleep_Hours_Per_Night']
)
print(slope,intercept)
```

-0.7085018080615694 10.353860595482416

Strong negative correlation (r = -0.791) High social media users (6+ hrs/day) sleep 1-3 hours less than low users "Blue light" effect: Screen exposure reduces melatonin, delaying sleep Behavioral displacement: Time spent on apps replaces sleep time Realworld insight: Reducing social media use by 1 hour may increase sleep by \sim 40 minutes (slope=0.7)

Q7. Which country has the highest average Addicted_Score? (Limit to top 5 countries)

```
In [21]: Countries = df["Country"].value_counts()
Countries
```

```
Out[21]: Country
        India
                      53
        USA
                      40
        Canada
                      34
         France
                      27
        Mexico
                      27
                      . .
        0man
                      1
        Afghanistan 1
         Syria
                      1
        Yemen
                       1
         Bhutan
                      1
        Name: count, Length: 110, dtype: int64
```

In [23]: valid_countries = Countries[Countries >= 10].index
filtered_df = df[df['Country'].isin(valid_countries)]
filtered_df

Out[23]:		Student_ID	Age	Gender	Academic_Level	Country	Avg_Daily_Usage_I
	0	1	19	Female	Undergraduate	Bangladesh	
	1	2	22	Male	Graduate	India	
	2	3	20	Female	Undergraduate	USA	
	3	4	18	Male	High School	UK	
	4	5	21	Male	Graduate	Canada	
	700	701	20	Female	Undergraduate	Italy	
	701	702	23	Male	Graduate	Russia	
	702	703	21	Female	Undergraduate	China	
	703	704	24	Male	Graduate	Japan	
	704	705	19	Female	Undergraduate	Poland	

570 rows \times 13 columns

```
In [26]: country_scores = filtered_df.groupby('Country')['Addicted_Score'].mean().res
top_countries = country_scores.sort_values('Addicted_Score', ascending=False
top_countries
```

Out[26]:		Country	Addicted_Score
	23	USA	8.600000
	7	India	7.509434

23	USA	8.600000
7	India	7.509434
1	Bangladesh	7.500000
14	Pakistan	7.421053
12	Mexico	7.370370
21	Turkey	7.333333
18	Spain	7.296296
22	UK	7.227273
2	Canada	6.705882
11	Maldives	6.684211
13	Nepal	6.631579
15	Poland	6.500000
8	Ireland	6.444444
16	Russia	6.428571
9	Italy	6.380952
3	China	6.125000
17	South Korea	5.846154
19	Sri Lanka	5.789474
0	Australia	5.285714
5	France	5.148148
20	Switzerland	4.296296
4	Denmark	4.296296
6	Germany	3.857143
10	Japan	3.476190

```
In [31]: plt.figure(figsize = (10,7))
    ax = sns.barplot(x="Addicted_Score", y="Country", data=top_countries)
    ax.bar_label(ax.containers[0])
    plt.title("Addicted Score by Countries")
    plt.show()
```


USA have the highest Addictive Score followed by India and Bangladesh

Q8. Do students who report academic performance issues (Affects_Academic_Performance = "Yes") have higher average Addicted_Scores than those who don't?

Addicted_Score

```
In [32]:
         Performance = df["Affects Academic Performance"].value counts()
         Performance
         Affects Academic Performance
Out[32]:
                 453
          Yes
                 252
          No
          Name: count, dtype: int64
In [34]: AAS= df.groupby('Affects Academic Performance')['Addicted Score'].mean().res
         AAS
            Affects_Academic_Performance Addicted_Score
Out[34]:
          0
                                                   4.595238
                                        No
          1
                                        Yes
                                                   7.461369
```

yes, students whome academic performance are affected have higher addicted score (7.461369)

Q9. How does mental health (Mental_Health_Score) differ between genders?

Overall both genders has similar Mental health score

Q10. Do students in "Complicated" relationships experience more conflicts over social media (Conflicts_Over_Social_Media) than those "In Relationship" or "Single"?

In [39]:	<pre>Conflicts = df.groupby('Relationship_Status')['Conflicts_Over_Social_Media'] Conflicts</pre>						
Out[39]:		Relationship_Status	Conflicts_Over_Social_Media				
	0	Complicated	3.031250				
	1	In Relationship	2.761246				
	2	Single	2.901042				

yes, average conflicts over social media is more in case of students who have complicated relationship

This notebook was converted with convert.ploomber.io