> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific Approache

Frama - (

Verificatio Examples

Concluding remarks

Software quality and formal methods: Hoare/Dijkstra approach

Dr. Ivan S. Zapreev

Neat Software Designs

2020-01-17

Dr. Ivan S. Zapreev

Software Quality

Scientific Scientific

Approache

Verification Examples

Concluding remarks

Outline:

- Software Quality
 - Motivating Examples
 - Software Development
 - Formal Verification
- Programming Languages
 - Language generations
 - Imperative programming
 - ANSI-C
- Scientific Approach
 - Various methods
 - Software verification
 - Hoare/Dijkstra approach
- Frama C
 - Platform description
 - Plugins overview
 - Introduction to ACSL
- Verification Examples
- Concluding remarks

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific Approache

Frama - (

Verificatio Examples

Concluding remarks

Software Quality

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Approach

Frama - (

Verificatio Examples

Concluding remarks

Motivating Examples: Major

- 1985–1987 Therac-25:
 - Radiation therapy overdose
 - Control software flaw:
 - Race conditions
 - Death of 6 (six) cancer patients
- 1996 *Ariane-5 missile:*
 - Missile crash
 - Control software flaw:
 - 64-bit float to 16-bit int
 - \$7 billion development program
 - \$500 million cargo
- 2005 Toyota Camry:
 - Sudden unintended acceleration:
 - Control software flaw:
 - Recursion causing stack overflow
 - 89 deaths and 57 injuries
 - \$1.2 billion compensations

Software

Dr. Ivan S. Zapreev

Software Quality

Programmin, Languages

Scientific

Approach

Verificatio Examples

Concluding

Motivating Examples: More

The 12 Software Bugs That Caused Epic Failures: <a href="mailto:slin

BUGS EVERYWHERE

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific Approach

Frama -

Verification Examples

Concluding remarks

Software Development: V-model

Figure 1: Software development process

Dr. Ivan S. Zapreev

Software Quality

Programmin Languages

Scientific Approach

Frama -

Verification Examples

Concluding remarks

Software Development: V & V

Is formally defined in, e.g.: ISO-9000:2015:

- Verification "Confirmation, through the provision of objective evidence, that specified requirements have been fulfilled."
- Validation "Confirmation, through the provision of objective evidence, that the requirements for a specific intended use or application have been fulfilled."

> Dr. Ivan S. Zapreev

Software Quality

Programmin Languages

Scientific Approach

Approach

Verification Examples

Concluding

Software Development: Testing

Verification:

- Are we building the product right?
- Does the system comply with its specification?

Validation:

- Are we building the right product?
- Does the system meet the needs of the customer?

Figure 2: Devision of testing types

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Approache

Frama -

Verification Examples

Concluding remarks

Formal Verification

Facts:

- No glabally recognized definition of Formal Methods¹.
- Local attempts to have one², e.g.:

Formal methods are techniques used to model complex systems as mathematical entities.

By building a rigorous model of a complex system, it is possible to verify the system's properties in a more thorough fashion than empirical testing.

Conclusion:

Formal methods are techniques suitable for Verification.

¹"Formal Methods for Industrial Critical Systems", S. Gnesi, T. Margaria

² "Formal Methods", Michael Collins, CMU

> Dr. Ivan S. Zapreev

Software Quality

Languages

Scientific Approach

Verificatio

Concluding

Formal Software Verification

A program shall satisfy a formal specification of its behavior.

Figure 3: Verification methods

> Dr. Ivan S. Zapreev

Quality

Programming Languages

Scientific Approache

Frama - C

Verification Examples

Concluding remarks

Programming Languages

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific Approach

Дрргоасп

Verificatio Examples

Concluding

Language generations

Figure 4: Generations of Programming languages

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific

Frama -

Verification Examples

Concluding remarks

Imperative programming: Main

 Imperative – Describes computation in terms of statements that change a program state. Imperative JavaScript example:

```
function sum(a, b) {
  return a + b;
}
console.log( sum(5, 3) );
```

 Declarative – Expresses what to accomplish without specifying concrete steps. Declarative JavaScript example:

```
const sum = a => b => a + b;
console.log( sum (5) (3) );
```

Procedural language – is an imperative language in which the program is built from one or more subroutines.

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific

Frama -

Verificati Examples

Concludin remarks

Imperative programming: Test

Dr. Ivan S. Zapreev

Programming

Languages

ANSI-C

An imperatice procedral language.

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Languages
Scientific

Approache

Frama - (

Verification Examples

Concluding remarks

Scientific Approache

> Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Languages
Scientific

Approache

Frama -

Verification Examples

Concluding

Overview

> Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Scientific

Approache

Erama

Verification Examples

Concluding

Formal Methods

Software

Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Scientific

Approache

Frama -

Verification Examples

Concluding

Hoare/Dijkstra approach

> Dr. Ivan S. Zapreev

Quality

Programming Languages

Scientific

Frama - C

Verification Examples

Concluding

Frama - C

Dr. Ivan S. Zapreev

Quality

Languages

Approach

Frama - C

Verificatio Examples

Concluding remarks

General info

A plugin-based open-source cross-platform framework for C source-code analysis:

- Browsing unfamiliar code
- Static code analysis
- Dynamic code analysis
- Code transformations
- Certification of critical software

You can easily build upon the existing plug-ins to implement your own analysis.

Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific

Approache Frama - C

Verification Examples

Concluding remarks

Plugins overview

Figure 6: Frama-C plugins

Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Scientific

Approache Frama - C

Verification

Examples

Weakest Precondition plugin

Figure 7: Frama-C WP plugin

> Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Languages

Approac

Frama - C

Verificatio

Examples

Verification Process

Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Scientific

Approacr

Frama - C

Verification Examples

Concluding remarks

ACSL: General

> Dr. Ivan S. Zapreev

Software Quality

Programming Languages

Scientific

Approac

Frama -

Verification Examples

Concluding

Verification Examples

> Dr. Ivan S. Zapreev

Softwar Quality

Programming Languages

Scientific

Approach

Frama - (

Verification Examples

Concluding remarks

Concluding remarks