o teorema de Lagrange

produto de subconjuntos de um grupo

Definição. Sejam G um grupo e $X, Y \subseteq G$. Chama-se produto de X por Y, e representa-se por XY, ao conjunto

$$XY = \begin{cases} \{xy \in G : x \in X \text{ e } y \in Y\} & \text{se } X \neq \emptyset \text{ e } Y \neq \emptyset; \\ \emptyset & \text{se } X = \emptyset \text{ ou } Y = \emptyset. \end{cases}$$

Se $X \neq \emptyset$, chama-se *inverso de* X, e representa-se por X^{-1} , ao conjunto $X^{-1} = \{x^{-1} : x \in X\}$.

Proposição. Sejam G um grupo e $\mathcal{P}(G) = \{X \mid X \subseteq G\}$. Então, $\mathcal{P}(G)$ é um semigrupo com identidade $\{1_G\}$, quando algebrizado com o produto de subconjuntos de G.

Observação. Na prática, a proposição anterior assegura que dados um grupo G e $A,B,C\subseteq G$, podemos falar no subconjunto ABC de G, uma vez que ABC=A(BC)=(AB)C. É também importante referir que, de um modo geral, no semigrupo $\mathcal{P}(G)$, o elemento A^{-1} não é elemento oposto de A, como mostra o seguinte exemplo.

Exemplo. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein,* i.e., o grupo cuja operação é dada pela tabela

Se $A = \{a, b\}$, então, $A^{-1} = \{a^{-1}, b^{-1}\} = \{a, b\}$, pelo que

$$A^{-1}A = \{aa, ab, ba, bb\} = \{e, c\} \neq \{e\}.$$

Logo, no semigrupo $\mathcal{P}(G)$, o elemento A^{-1} não é o oposto do elemento A.

Notação. Dados $a \in G$ e $Y \subseteq G$, escreve-se aY para representar $\{a\}$ Y e Ya para representar Y $\{a\}$. Assim,

$$aY = \{ay \in G \mid y \in Y\}, \qquad Ya = \{ya \in G \mid y \in Y\}.$$

relações de congruência num grupo

Recordar. Dado um conjunto X, chamamos relação binária em X a qualquer subconjunto R de $X \times X$. Para $x, y \in X$, dizemos que x está R relacionado com y se $(x,y) \in R$ e podemos escrever x R y em vez de $(x,y) \in R$.

Uma relação binária R num dado conjunto X diz-se uma relação de equivalência se R é:

- Reflexiva $(\forall x \in X, x R x)$;
- Simétrica ($\forall x, y \in X, x R y \Rightarrow y R x$);
- Transitiva $(\forall x, y, z \in X, (x R y \land y R z \Rightarrow x R z).$

Se num conjunto X estiver definida uma operação binária (como é o caso dos grupos), uma relação de equivalência ρ em X diz-se:

- uma relação de congruência à esquerda se: $\forall x, y, z \in X, x \rho y \Rightarrow zx \rho zy$;
- uma relação de congruência à direita se: $\forall x, y, z \in X, \ x \rho y \Rightarrow xz \rho yz$;
- uma relação de congruência se: $\forall x, y, z \in X, \ x \rho y \Rightarrow (zx \rho zy \land xz \rho yz)$.

Proposição. Sejam G um grupo e H < G. A relação $\equiv^e \pmod{H}$, definida em G por

$$\forall x, y \in G, \qquad x \equiv^e y \pmod{H} \iff x^{-1}y \in H$$

é uma relação de congruência à esquerda.

Demonstração. Primeiro, verifiquemos que $\equiv^e \pmod{H}$ é uma relação de equivalência. De facto:

- (i) Para todo $x \in G$, $x^{-1}x = 1_G \in H$, pelo que a relação é reflexiva.
- (ii) Sejam $x, y \in G$ tais que $x \equiv^e y \pmod{H}$. Então,

$$x \equiv^e y \, (\operatorname{mod} H) \Leftrightarrow x^{-1} y \in H \Rightarrow y^{-1} x = \left(x^{-1} y\right)^{-1} \in H \Leftrightarrow y \equiv^e x \, (\operatorname{mod} H) \, .$$

Logo, a relação é simétrica.

(iii) Sejam $x, y, z \in G$ tais que $x \equiv^e y \pmod{H}$ e $y \equiv^e z \pmod{H}$. Então,

$$x \equiv^e y \pmod{H}$$
 e $y \equiv^e z \pmod{H}$ \iff $x^{-1}y \in H$ e $y^{-1}z \in H$
 \Rightarrow $x^{-1}z = x^{-1}yy^{-1}z \in H$
 \iff $x \equiv^e z \pmod{H}$,

pelo que a relação é transitiva.

Verifiquemos agora que a relação é compatível com a multiplicação à esquerda:

Sejam $x,y\in G$ tal que $x\equiv^e y\ (\operatorname{mod} H)$ e $a\in G$. Queremos provar que $ax\equiv^e ay\ (\operatorname{mod} H)$. De facto,

$$x \equiv^{e} y \pmod{H} \iff x^{-1}y \in H$$

$$\iff x^{-1}ey \in H$$

$$\iff x^{-1}a^{-1}ay \in H$$

$$\iff (ax)^{-1}ay \in H$$

$$\iff ax \equiv^{e} ay \pmod{H}.$$

Concluímos então que $\equiv^e \pmod{H}$ é uma relação de congruência à esquerda.

Analogamente, provamos que

Proposição. Sejam G um grupo e H < G. A relação $\equiv^d \pmod{H}$, definida em G por

$$\forall x, y \in G, \qquad x \equiv^d y \pmod{H} \iff xy^{-1} \in H$$

é uma relação de congruência à direita.

Definição. Sejam G um grupo e H < G. À relação $\equiv^e \pmod{H}$ chama-se congruência esquerda módulo H e à relação $\equiv^d \pmod{H}$ chama-se congruência direita módulo H.

Cada uma destas relações de equivalência define em G uma partição (que pode não ser necessariamente a mesma). Representando por $[a]_e$ a classe de equivalência do elemento $a \in G$ quando consideramos a congruência esquerda módulo H, temos que

$$x \in [a]_e \Leftrightarrow x \equiv^e a \pmod{H} \Leftrightarrow x^{-1}a \in H \Leftrightarrow \exists h \in H : x^{-1}a = h$$

 $\Leftrightarrow \exists h \in H : x^{-1} = ha^{-1} \Leftrightarrow \exists h \in H : x = ah^{-1} \Leftrightarrow x \in aH,$

pelo que

$$[a]_e = aH, \quad \forall a \in G.$$

De modo análogo, representando por $[a]_d$ a classe de equivalência do elemento $a \in G$ quando consideramos a congruência direita módulo H, temos que

$$[a]_d = Ha, \quad \forall a \in G.$$

Definição. Sejam G um grupo e H < G. Para cada $a \in G$, o subconjunto aH designa-se por classe lateral esquerda de a módulo H e o subconjunto Ha designa-se por classe lateral direita de a módulo H.

Exemplo 22. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein,* i.e., o grupo cuja operação é dada pela tabela

Considerando o subgrupo $H = \{e, a\}$, as classes laterais esquerdas são

$$eH = H = aH$$
 e $bH = \{b, c\} = cH$

e as classes laterais direitas são iguais já que o grupo é comutativo.

Exemplo 23. Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela

Então, considerando o subgrupo $H = \{e, a\}$, as classes laterais esquerdas são

$$eH = H = aH$$
, $bH = \{b, q\} = qH$ e $cH = \{c, p\} = pH$
e as classes laterais direitas são
 $He = H = Ha$, $Hb = \{b, p\} = Hp$ e $Hc = \{c, q\} = Hq$.

classes inversas

Hq é a classe inversa de pH, pq, p* q = e pq 'e' é o elemento neutro Proposição. Sejam G um grupo e H < G. Se H é finito então cada classe módulo H tem a mesma cardinalidade que H.

Demonstração. Sejam G um grupo e $a \in G$. As aplicações

$$\rho_a: G \longrightarrow G$$
 $x \longmapsto x_a$

são bijecções em G. Logo, $\lambda_a|_H$ e $\rho_a|_H$ são bijecções de H em $\lambda_a(H)=aH$ e de H em $\rho_a(H) = Ha$, respetivamente. Assim, se H for finito,

$$\sharp (aH) = \sharp H = \sharp (Ha)$$
. a cardinalidade é a msm, H, aH

Proposição. Sejam G um grupo finito e H < G. Se a_1H, a_2H, \ldots, a_rH são exatamente as classes laterais esquerdas de H em G (com r > 1 e $a_1, a_2, \ldots, a_r \in G$), então, $Ha_1^{-1}, Ha_2^{-1}, \ldots, Ha_r^{-1}$ são exatamente as classes laterais direitas de H em G.

Demonstração. Cada elemento de G pertence exatamente a uma e uma só classe lateral esquerda a_1H, a_2H, \ldots, a_rH . Sejam $x \in G$ e $1 \le i \le r$. Então,

$$x \in Ha_i^{-1} \Leftrightarrow x\left(a_i^{-1}\right)^{-1} \in H \Leftrightarrow xa_i \in H \Leftrightarrow \left(x^{-1}\right)^{-1}a_i \in H$$

 $\Leftrightarrow x^{-1} \in a_iH.$

Como a condição $x^{-1} \in a_i H$ é verdadeira para exatamente um valor de i, então também a expressão $x \in Ha_i^{-1}$ é verdadeira para exatamente um valor de i.

relação da esq e dir,

Observação. No seguimento desta proposição, escrevemos

$$G/_{\equiv^e (\operatorname{mod} H)} = \{a_1H, a_2H, \dots, a_rH\}$$

se e só se

$$G/_{\equiv^d (\mathrm{mod}\, H)} = \left\{ Ha_1^{-1}, Ha_2^{-1}, \dots, Ha_r^{-1} \right\}.$$

teorema de Lagrange

Definição. Sejam G um grupo finito e H < G. Chama-se:

- 1. ordem do grupo G, e representa-se por |G|, ao número de elementos de G;
- 2. *índice de H*, e representa-se por [G:H], ao número de classes laterais esquerdas (ou direitas) de H em G.

Teorema. (Teorema de Lagrange) Sejam G um grupo finito e H < G. Então,

$$|G| = [G:H] \cdot |H|$$

Demonstração. Imediata, tendo em conta que, se se considerar a partição em G definida pela congruência esquerda módulo H, temos |G:H| classes, cada uma das quais com |H| elementos.

Corolário. Num grupo finito G, a ordem de cada elemento divide a ordem do grupo. 6 e 10, nao da -> 10 nao divide 6 2 e 10 -> nao se sabe

Demonstração. Imediata, tendo em conta que $o(a) = |\langle a \rangle|$, para todo $a \in G$.

Corolário. Sejam G um grupo finito e p um primo tal que |G|=p. Então, existe $b\in G$ tal que $G=\langle b\rangle$.

Demonstração. Como p é primo, $p \neq 1$, pelo que $G \neq \{1_G\}$. Seja $x \in G$ tal que $x \neq 1_G$. Então,

$$\begin{aligned} \mathbf{H} &< \mathbf{G} \Rightarrow |\mathbf{H}| \ |\mathbf{G}| \\ \mathbf{H} &< \mathbf{G} &<= |\mathbf{k}| \ |\mathbf{G}| \\ |\mathbf{H}| &= \mathbf{k} \end{aligned}$$

-Nem sempre é verdade, se K for primo, ja é verdade

O recíproco do teorema de Lagrange nem sempre é verdadeiro: o facto de a ordem de um grupo admitir um determinado fator, não implica que exista necessariamente um subgrupo desse grupo cuja ordem é esse fator.

No entanto, se esse fator é um número primo, temos:

Teorema. (*Teorema de Cauchy*) Sejam G um grupo de ordem $n \in \mathbb{N}$ e p um primo divisor de n. Então, existe um elemento $a \in G$ tal que o(a) = p.

$$|\langle a \rangle| = p$$

subgrupos normais e grupos quociente

subgrupos normais

Definição. Sejam G um grupo e H < G. Diz-se que H é subgrupo normal ou invariante de G, e escreve-se $H \triangleleft G$, se

$$\forall x \in G, xH = Hx.$$

Exemplo 24. Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela

grupo nao comutativo, + pequeno

(ver Exemplo 23) e $H = \{e, a\}$. Então, como $\underline{bH} = \{b, q\} \neq \{b, p\} = Hb$, concluímos que H não é subgrupo normal de G. No entanto, se considerarmos o subgrupo $K = \{e, p, q\}$, temos que $K \triangleleft G$, uma vez que

$$eK = Ke = pK = kp = qK = Kq = K = \{e, p, q\}$$

е

$$aK = Ka = bK = Kb = cK = Kc = \{a, b, c\}.$$

k é um subgrupo normal, qnd as classes esq sao iguais a direitas

Proposição. Dado um grupo G qualquer, o subgrupo trivial e o subgrupo impróprio são subgrupos normais de G.

Demonstração. Sejam G um grupo e $a \in G$. Então, como as equações ax = b e ya = b têm soluções únicas, para qualquer $b \in G$, temos que

$$aG = \{ag : g \in G\} = G = \{ga : g \in G\} = Ga,$$

o que permite concluir que $G \triangleleft G$.Além disso,

$$a\{1_G\} = \{a1_G\} = a = \{1_Ga\} = \{1_G\}a,$$

ou seja, $\{1_G\} \triangleleft G$.

Proposição. Seja G um grupo abeliano. Então, qualquer subgrupo H de G é normal em G.

Demonstração. Basta ter em conta que, se G é abeliano e $a \in G$, então, $aH = \{ah \in G : h \in H\} = \{ha \in G : h \in H\} = Ha$.

Exemplo 25. Seja G um grupo. Então, $Z(G) \triangleleft G$. De facto, seja $g \in G$. Então,

$$x \in gZ(G) \Leftrightarrow (\exists a \in Z(G)) \quad x = ga$$

 $\Leftrightarrow (\exists a \in Z(G)) \quad x = ag \Leftrightarrow x \in Z(G)g.$

sendo abeliano, o centro é o G

tem 2 classes

Exemplo 26. Sejam G um grupo e H < G tal que G : H = 2. Então, $H \triangleleft G$. De facto, de G : H = 2, temos que existe $X \in G \backslash H$ tal que $X = X \cap A$. Assim,

para todo $y \in G$, como

$$yH = \begin{cases} H & \text{se } y \in H \\ xH & \text{se } y \notin H \end{cases}$$

е

$$Hy = \left\{ \begin{array}{ll} H & \text{se } y \in H \\ Hx & \text{se } y \notin H, \end{array} \right.$$

temos que yH = Hy, qualquer que seja $y \in G$.

Vimos já que a comutatividade num grupo G implica a normalidade dos subgrupos. Assim, podemos afirmar que se H é um subgrupo de G tal que, para todos $a \in G$ e $h \in H$, ah = ha, então $H \triangleleft G$.

Reciprocamente, se H é um subgrupo normal de G o que podemos afirmar é que $\mathbf{aH} = \mathbf{Ha}$

$$\forall a \in G, \ \forall h_1 \in H, \ \exists h_2 \in H: \ ah_1 = h_2a.$$

Teorema. Sejam G um grupo e H < G. Então,

$$H \triangleleft G \iff (\forall x \in G) (\forall h \in H) \quad xhx^{-1} \in H.$$

Demonstração. [\Rightarrow] Suponhamos que $H \lhd G$. Então, para todo $x \in G$,

$$xH = Hx$$
.

Sejam $g \in G$ e $h \in H$. Temos que existe $h' \in H$

$$ghg^{-1} = (gh)g^{-1} = (h'g)g^{-1} = h'(gg^{-1}) = h',$$

pelo que $ghg^{-1} \in H$.

[\Leftarrow] Suponhamos que, para todos $x \in G$ e $h \in H$, $xhx^{-1} \in H$.

Queremos provar que $H \triangleleft G$.

Seja $g \in G$. Então,

$$y \in gH$$
 \Leftrightarrow $(\exists h' \in H)$ $y = gh'$
 \Leftrightarrow $(\exists h' \in H)$ $y = gh' (g^{-1}g)$
 \Leftrightarrow $(\exists h' \in H)$ $y = (gh'g^{-1})g$
 \Rightarrow $y \in Hg$ por hipótese,

pelo que $gH \subseteq Hg$. De modo análogo, prova-se que $Hg \subseteq gH$ e, portanto, Hg = gH.

Exemplo 27. O Teorema anterior pode ser usado para provar facilmente que a interseção de dois subgrupos normais de um mesmo grupo é ainda um subgrupo normal desse grupo.

Sejam G um grupo e H_1 e H_2 dois subgrupos normais de G. Sabemos já que $H_1 \cap H_2 < G$. Para provar que este subrupo é normal em G, basta considerar $x \in G$ e $h \in H_1 \cap H_2$ e provar que $xhx^{-1} \in H_1 \cap H_2$. De facto, se $h \in H_1 \cap H_2$, então $h \in H_1$ e $h \in H_2$.

Como $H_1 \triangleleft G$, $x \in G$ e $h \in H_1$, temos, pelo teorema anterior, que $xhx^{-1} \in H_1$. Analogamente, como $H_2 \triangleleft G$, temos que $xhx^{-1} \in H_2$. Logo $xhx^{-1} \in H_1 \cap H_2$ e, novamente pelo teorema anterior, $H_1 \cap H_2 \triangleleft G$.

grupos quociente

Observação. É óbvio que, se um grupo G admite um subgrupo normal H, as relações $\equiv^e \pmod{H}$ e $\equiv^d \pmod{H}$ são uma e uma só relação de congruência. De facto,

$$x \equiv^{e} y \pmod{H} \quad \Leftrightarrow x^{-1}y \in H \Leftrightarrow y \in xH = Hx$$
$$\Leftrightarrow yx^{-1} \in H \Leftrightarrow x \equiv^{d} y \pmod{H}.$$

Assim, fala-se de uma única relação $\equiv \pmod{H}$, que, por sua vez, define um único conjunto quociente, que se representa por G/H. Logo,

$$G/H = \{xH \mid x \in G\} = \{Hx \mid x \in G\}.$$

Proposição. Sejam G um grupo e $H \triangleleft G$. Então, G/H é grupo, se considerarmos o produto de subconjuntos de G.

Demonstração. Sejam $x, y \in G$. Então,

$$xHyH = xyHH = xyH$$
,

pelo que G/H é fechado para o produto.

Mais ainda, a operação é associativa, H é o seu elemento neutro e cada classe xH admite a classe $x^{-1}H$ como elemento inverso.

Definição. Sejam G um grupo e $H \triangleleft G$. Ao grupo G/H chama-se grupo quociente.

Exemplo 28. Considere-se o subgrupo $3\mathbb{Z}=\{3k:k\in\mathbb{Z}\}$ do grupo (aditivo) \mathbb{Z} . Como a adição usual de inteiros é comutativa, concluímos que $3\mathbb{Z}\lhd\mathbb{Z}$. Como estamos a trabalhar com a linguagem aditiva, temos que, dados $x,y\in\mathbb{Z}$,

$$x\equiv y (\operatorname{mod} 3\mathbb{Z}) \Leftrightarrow x + (-y) \in 3\mathbb{Z} \Leftrightarrow x-y = 3k, \text{ para algum } k \in \mathbb{Z} \Leftrightarrow x \equiv y (\operatorname{mod} 3).$$

Assim, temos que

$$\mathbb{Z}/3\mathbb{Z} = \{[0]_3, [1]_3, [2]_3\} = \mathbb{Z}_3.$$

Proposição. Sejam G um grupo e θ uma relação de congruência definida em G. Então, a classe de congruência do elemento identidade, $[1_G]_{\theta}$, é um subgrupo normal de G. Mais ainda, para $x,y\in G$,

$$x \theta y \iff x^{-1}y \in [1_G]_{\theta}$$
.

Demonstração. Seja G um grupo e θ uma relação de congruência em G.

Pretendemos provar, primeiro, que

$$[1_G]_{\theta} = \{ x \in G \mid x\theta 1_G \} \vartriangleleft G.$$

De facto,

- (i) $[1_G]_{\theta} \neq \emptyset$, pois é uma classe de congruência;
- (ii) Sejam $x,y\in [1_G]_{ heta}$. Então,

$$x \theta 1_G \Rightarrow xy \theta 1_G y = y \theta 1_G \Rightarrow xy \theta 1_G$$

pelo que $xy \in [1_G]_{ heta}$;

(iii) Seja $x \in [1_G]_{ heta}$. Então,

$$x \theta 1_G \Rightarrow xx^{-1} \theta 1_G x^{-1} \Leftrightarrow 1_G \theta x^{-1} \Rightarrow x^{-1} \theta 1_G$$

pelo que $x^{-1} \in [1_G]_{\theta}$.

Logo, $[1_G]_{\theta}$ é um subgrupo de G.

Mais ainda, sejam $x \in G$ e $a \in [1_G]_{\theta}$. Então,

$$a \theta 1_G \Rightarrow xax^{-1} \theta x 1_G x^{-1} = xx^{-1} = 1_G,$$

pelo que $xax^{-1} \in [1_G]_{\theta}$ e, portanto, $[1_G]_{\theta}$ é invariante.

Finalmente, sejam $x, y \in G$. Então,

$$x \theta y \Rightarrow x^{-1} x \theta x^{-1} y \Leftrightarrow 1_G \theta x^{-1} y \Leftrightarrow x^{-1} y \in [1_G]_{\theta}$$

е

$$x^{-1}y \in \left[1_G\right]_\theta \Leftrightarrow x^{-1}y\,\theta\,1_G \Rightarrow xx^{-1}y\,\theta\,x1_G \Leftrightarrow y\,\theta\,x.$$

Logo,

$$x \theta y \iff x^{-1}y \in [1_G]_{\theta}$$
.

Observação. Com o que vimos até agora, é claro que existe uma relação biunívoca entre o conjunto das congruências possíveis de definir num grupo e o conjunto dos subgrupos normais nesse mesmo grupo: Cada subgrupo normal H de um grupo G define uma relação de congruência em G (relação mod H) e cada relação de congruência em G origina um subgrupo normal de G (a classe do elemento identidade).

62