

☐ +86 15013641529 Inathan.wuqw@gmail.com Personal Website

RESEARCH INTERESTS & GOAL

My primary research interests encompass the dextrous manipulation and multimodal perception of robotics, focusing on reinforcement learning, imitation learning and visual-tactile perception. I aim to enhance robotic perception diversity and enable the completion of more complex tasks, achieving embodied AI.

EDUCATION

⚠ Sichuan University ☎ Bachelor Automation College of Electrical Engineering Comprehensive Ranking Overall GPA	09/2018 - 06/2022 ◆ Chengdu, China 2/117 3.52/4.00
 ⚠ University of California, Berkeley Summer School Artificial Intelligence and Business Analytics ⚠ Harbin Institute of Technology, Shenzhen Master Control Engineering School of Mechanical Engineering and Automation 	07/2019 - 08/2019 ◆ Berkeley, USA 09/2022 - 06/2025 ◆ Shenzhen, China
PUBLICATIONS	
Rapid Tactile Transfer Framework for Contact-Rich Manipulation Tasks © Qiwei Wu, Xuanbing Peng, Jiayu Zhou, Zhuoran Sun, Xiaogang Xiong, Yunjiang Lou IEEE/RSJ tional Conference on Intelligent Robots and Systems, IROS (Accepted) First Author	6/2024 Interna-
Tactile Affordance in Robot Synesthesia for Dextrous Manipulation © Qiwei Wu, Haidong Wang, Jiayu Zhou, Xiaogang Xiong, Yunjiang Lou IEEE Robotics and Automation Letters, RAL (Under Review) First Author	7/2024
SELECTED COMPETITION AWARDS	
RoboMaster University Championship 2021 National Second Prize, Top 16	8/2021
RoboMaster University League 2021 First Prize in Engineering Robot Mining, Top 5 in Southern China	8/2021
The 16th National College Student Intelligent Car Competition Second Prize in Baidu Intelligent Traffic Group, Top 20%	7/2021

WORK EXPERIENCE

Sony R&D Center China Laboratory

2020 RoboCup China Open

5/2024-Present

10/2020

Research Intern

Reinforcement Learning for Robotic Manipulation

- · Robotic Grasping System Design Contribution:
 - * Developed digital twins of robots in NVIDIA's IsaacLab simulation environment.
 - * Designed robotic grasping environments and implemented reinforcement learning algorithms for training.
 - * Developed and integrated the tactile sensor Tac3D into the system.

Outcome:

- * Open-sourced the robotic reinforcement learning framework IsaacLab.manipulation •
- * Open-sourced ROS support for the Tac3D sensor §.

Third Prize in Small Size Robot League, Obstacle Avoidance Challenge

Intelligent Perception and Control Lab, HITSZ *Graduate Student*, advised by Prof. Xiaogang Xiong §

10/2022-Present

Tactile Perception for Robotic Manipulation | Research Leader

Designed and developed tactile sensors

Contribution:

- * Reproduced and redesigned the tactile sensor Tactip.
- * Reproduced and redesigned the tactile sensor Insight.
- * Installed tactile sensors on the UR5 robotic arm system and implemented tactile servo.
- Sim2Real and policy transfer for tactile servo

Contribution:

- * Designed a unified tactile representation method based on the VAE-GAN framework.
- * Developed tactile servo manipulation policies using off-policy reinforcement learning methods.
- * Designed a teacher-student framework based on the Tactile Gym simulation environment to achieve Sim2Real for tactile servo.

Outcome:

- * Completed pushing and surface following tasks on a real robotic system.
- * Accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS.

Visual-Tactile Sensing and Learning for Robots | Research Leader

- Designed and developed a robotic visual-tactile simulation environment Contribution:
 - * Decoupled tactile perception information and implemented tactile simulation.
 - * Created digital twins of robotic systems in the IsaacGym simulation environment.
 - * Completed the development of tactile sensors Gelsight Mini and Digit.

Outcome:

- * Open-sourced the robotic visual-tactile simulation environment Visual-Tactile Gym •
- Achieved Sim2Real transfer for dexterous manipulation policies Contribution:
 - * Designed an object affordance prediction module using the PointNet++ method.
 - * Designed a mixed encoding method for visual and tactile features.
 - * Trained a teacher policy for dextrous manipulation using parallel reinforcement learning.
 - * Designed a point cloud-based imitation learning method to obtain the final student policy.

Outcome:

- * Completed dexterous tasks such as lifting objects, opening doors, pick-and-place, and drawer pulling on a real robotic system.
- * Submitted a manuscript to IEEE Robotics and Automation Letters, currently under review.

SKILLS

Languages: Mandarin (Native), English

Classes: Machine Learning, Deep Learning, Automatic Control Theory, Optimal estimation, Visual SLAM

Programming: Python, C, C++, Linux Shell, HTML, CSS, JavaScript

Others: Deep learning framework (Torch, Tensorflow, Paddlepadlle), robot simulation (IsaacLab, IsaacGym, Pybullet, Gazebo), ROS & ROS2, Embedded System Development, Photo & Video Editing