MA4005 Syllabus

- Functions of several variables and partial differentiation.
- The indefinite integral. Integration techniques: of standard functions, by substitution, by parts and using partial fractions.
- The definite integral. Finding areas, lengths, surface areas, volumes, and moments of inertial.
- Numerical integration: trapezoidal rule, Simpson's rule.
- Ordinary differential equations.
- First order including linear and separable. Linear second order equations with constant coefficients.
- Numerical solution by Runge-Kutta.
- The Laplace transform: tables and theorems and solution of linear ODEs.
- Fourier series: functions of arbitary period, even and odd functions, half-range expansions.
- Application of Fourier series to solving ODEs.
- Matrix representation of and solution of systems of linear equations.
- Matrix algebra: invertibility, determinants.
- Vector spaces: linear independence, spanning, bases, row and column spaces, rank.
- Inner products: norms, orthogonanality. Eigenvalues and eignenvectors.

• Numerical solution of systems of linear equations. Gauss elimination, LU decomposition, Cholesky decomposition, iterative methods. Extension to non-linear systems using Newton's method.

Trigonometric Substitution

$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$

$$x = a\sin(\theta), \quad dx = a\cos(\theta) d\theta, \quad \theta = \arcsin\left(\frac{x}{a}\right)$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a\cos(\theta) d\theta}{\sqrt{a^2 - a^2 \sin^2(\theta)}}$$

$$= \int \frac{a\cos(\theta) d\theta}{\sqrt{a^2 (1 - \sin^2(\theta))}}$$

$$= \int \frac{a\cos(\theta) d\theta}{\sqrt{a^2 \cos^2(\theta)}}$$

$$= \int d\theta = \theta + C$$

$$= \arcsin\left(\frac{x}{a}\right) + C$$
(1)

Augmented Matrices

Given the matrices A and B, where

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 5 & 2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix},$$

the augmented matrix (A|B) is written as

$$(A|B) = \begin{bmatrix} 1 & 3 & 2 & | & 4 \\ 2 & 0 & 1 & | & 3 \\ 5 & 2 & 2 & | & 1 \end{bmatrix}.$$

This is useful when solving systems of linear equations.

$$x + 2y + 3z = 0$$
$$3x + 4y + 7z = 2$$
$$6x + 5y + 9z = 11$$

the coefficients and constant terms give the matrices

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 7 \\ 6 & 5 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 2 \\ 11 \end{bmatrix},$$

and hence give the augmented matrix

$$(A|B) = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 4 & 7 & 2 \\ 6 & 5 & 9 & 11 \end{bmatrix}$$

$$\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array} \right]$$

Reduced Row Echelon Form

Specifically, a matrix is in row echelon form if

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.

• All entries in a column below a leading entry are zeroes (implied by the first two criteria).[1]

$$\begin{bmatrix}
1 & a_0 & a_1 & a_2 & a_3 \\
0 & 0 & 1 & a_4 & a_5 \\
0 & 0 & 0 & 1 & a_6
\end{bmatrix}$$

Newton-Raphson Method

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Numerical Integration

Numerical integration constitutes a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations.

Numerical Integration: Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right].$$

Trapezoidal Rule

$$\int_{a}^{b} f(x) dx \approx (b - a) \frac{f(a) + f(b)}{2}$$

Laplacian Analysis: convolution

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau = F(s) \cdot G(s)$$

0.1 ODEs: Integrating factor

The integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations.

$$y' + P(x)y = Q(x)$$

the integration factor is

$$M(x) = e^{\int P(x')dx'}$$

ODEs: Example

Solve the differential equation

$$y' - \frac{2y}{x} = 0.$$

We can see that in this case

$$P(x) = \frac{-2}{x}$$

$$M(x) = e^{\int P(x) \, dx}$$

$$M(x) = e^{\int \frac{-2}{x} dx} = e^{-2\ln x} = (e^{\ln x})^{-2} = x^{-2}$$

(Note we do not need to include the integrating constant - we need only a solution, not the general solution)

$$M(x) = \frac{1}{x^2}.$$

Multiplying both sides by

we obtain

$$\frac{y'}{x^2} - \frac{2y}{x^3} = 0$$

$$\frac{y'x^3 - 2x^2y}{x^5} = 0$$

$$\frac{x(y'x^2 - 2xy)}{r^5} = 0$$

$$\frac{y'x^2 - 2xy}{x^4} = 0.$$

0.2 Partial Derivatives: Volume of a Cone

The volume "V" of a cone depends on the cone's height "h" and its radius 'r' according to the formula

$$V(r,h) = \frac{\pi r^2 h}{3}.$$

The partial derivative of "V" with respect to 'r' is

$$\frac{\partial V}{\partial r} = \frac{2\pi rh}{3},$$

which represents the rate with which a cone's volume changes if its radius is varied and its height is kept constant. The partial derivative with respect to "h" is

$$\frac{\partial V}{\partial h} = \frac{\pi r^2}{3},$$

which represents the rate with which the volume changes if its height is varied and its radius is kept constant.

1 Fundamental Theorem of Calculus

The fundamental theorem of calculus states that the integral of a function f over the interval [a, b] can be calculated by finding an antiderivative F of f:

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

2 Curl

In vector calculus, the curl is a vector operator that describes the infinitesimal rotation of a 3-dimensional vector field. At every point in the field, the curl of that field is represented by a vector. The attributes of this vector (length and direction) characterize the rotation at that point.

3 Laplacian Operator

$$\Delta f = \nabla^2 f = \nabla \cdot \nabla f$$

4 Notation

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}$$

5 Example

$$f(x, y, z) = 2x + 3y^2 - \sin(z)$$

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} = 2\mathbf{i} + 6y\mathbf{j} - \cos(z)\mathbf{k}$$

6 Stoke's Theorem

$$\iint_{\Sigma} \nabla \times \mathbf{F} \cdot d\mathbf{\Sigma} = \oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r},$$

7 Laplace Transforms

If $g(t) = k \times f(t)$ then $G(S) = k \times F(S)$ where k is a constant. $\{(\sqcup) = F(S)\}$.

$$f(t) = (t+1)^{2}$$

$$= t^{2} + 2t + 1$$
(3)

8 Laplace Transforms Using 1st Shifting Theorem

$$g(t) = e^{at} f(t) \quad \Leftrightarrow \quad G(S) = F(S - a)$$

The function g(t) is presented in a form whereby a and f(t) are easily identifiable. First determine F(S) by finding the Laplace transform of f(t). Then replace all S terms with S-a.

9 Laplace Transforms Using 2nd Shifting Theorem

$$g(t) = u^a f(t - a) \quad \Leftrightarrow \quad G(S) = e^{-aS} F(S)$$

The function g(t) is presented in a form whereby a and f(t-a) are easily identifiable. $(U_a(t))$ is called the unit step function. First determine f(t) by replace all t-a terms in f(t-a) with t. Then calculate the laplace transform of f(t) i.e. F(S). The solutions is in form $G(S) = e^{-aS}F(S)$.

10 Inverse Laplace Transforms (2 questions)

Partial fraction expansion is used in questions 4 and 5.

11 Inverse Laplace Transforms 2

The denominator has form $S^2 - 2aS + a^2 + k$ which is equivalent to $(S - a)^2 + k$. Therefore G(S) will have form F(S - a)

The function G(S) may have the form $\frac{S+D}{S^2+(C+D)S+CD}$, where C and D are constants. This expression simplifies $\frac{S+D}{(S+C)(S+D)}$ and again to $\frac{1}{S+C}$. The inverse laplace transform g(t) can be easily determined.

12 Convolution

We are asked to find a function h(t) which is the convolution of two given functions f(t) and g(t). i.e h(t) = h * g(t).

Importantly $H(S) = F(S) \times G(S)$. We determine the laplace transforms, F(S) and G(S), and multiply them to determine H(S). We then find the inverse Laplace transform of H(S) to yield our solution.

12.1 Example

Find h(t) when h(t) = f * g(t), with $f(t) = e^t$ and $g(t) = e^{-t}$.

$$f(t) = e^{t} \quad \Leftrightarrow \quad F(S) = \frac{1}{S - 1}$$
$$g(t) = e^{-t} \quad \Leftrightarrow \quad G(S) = \frac{1}{S + 1}$$
$$H(S) = F(S) \times G(S) = \frac{1}{(S - 1)(S + 1)}$$

12.2 Example

Find h(t) when h(t) = f * g(t), with f(t) = t and $g(t) = t^2$.

$$f(t) = t \Leftrightarrow F(S) = \frac{1}{S^2}$$

$$g(t) = t^2 \Leftrightarrow G(S) = \frac{2}{S^3}$$

$$H(S) = F(S) \times G(S) = \frac{2}{S^5}$$

$$(H(S) \text{ is in form } k \frac{n!}{S^{n+1}})$$

With $n=4,\ n!=4!=24$. Solving for $k,\ k\times n!=2$. Therefore $k=\frac{1}{12}$. The solution is $\mathcal{L}^{-\infty}[\mathcal{H}(\mathcal{S})]$

13 Period of a trigonometric function

Period of a function is denoted 2l. (Sometimes it is denoted as L, with L=2l).

When given a trigonometric function in form f(t) = Cos(kx) or f(t) = Sin(kx), the period of the function can be calculated as follows:

$$2l = \frac{2\pi}{k}$$

13.1 Example

$$f(t) = Cos(\frac{2\pi x}{3})$$

$$2l = \frac{2\pi}{(\frac{2\pi}{3})} = \frac{1}{(\frac{1}{3})} = 3$$

13.2 Example

$$f(t) = Sin(\frac{5x}{2})$$

$$2l = \frac{2\pi}{(\frac{5}{2})} = \frac{4\pi}{5}$$

14 Even and Odd Function

Even Functions: Cos(X), |X| (i.e absolute value of X) and X^2 , X^4 etc

Odd Functions: Sin(X), X, X^3 etc

Functions that are products of two even functions are also **even** functions.

Functions that are products of two odd functions are **even** functions. (e.g $X \times X^3 = X^4$)

Functions that are products of an even function and an odd function are \mathbf{odd} functions.

15 Fourier Series - determining the arguments

Given a period 2l, we must determine the form of the fourier series. $sin(\frac{nx\pi}{l})$

16 Fourier Series

Χ