INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT404012-stage binary ripple counter

Product specification
File under Integrated Circuits, IC06

December 1990

12-stage binary ripple counter

74HC/HCT4040

FEATURES

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4040 are high-speed Si-gate CMOS devices and are pin compatible with "4040" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4040 are 12-stage binary ripple counters with a clock input (\overline{CP}) , an overriding asynchronous master reset input (MR) and twelve parallel outputs

(Q_0 to Q_{11}). The counter advances on the HIGH-to-LOW transition of \overline{CP} .

A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of $\overline{\text{CP}}$.

Each counter stage is a static toggle flip-flop.

APPLICATIONS

- Frequency dividing circuits
- · Time delay circuits
- · Control counters

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	∇P to Q ₀		14	16	ns
	Q_n to Q_{n+1}		8	8	ns
f _{max}	maximum clock frequency		90	79	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	20	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

12-stage binary ripple counter

74HC/HCT4040

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
8	GND	ground (0 V)					
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q ₀ to Q ₁₁	parallel outputs					
10	CP	clock input (HIGH-to-LOW, edge-triggered)					
11	MR	master reset input (active HIGH)					
16	V _{CC}	positive supply voltage					

12-stage binary ripple counter

74HC/HCT4040

FUNCTION TABLE

INP	JTS	OUTPUTS			
CP	MR	Q _n			
1	L	no change			
↓	L	count			
X	Н	L			

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - ↑ = LOW-to-HIGH clock transition
 - ↓ = HIGH-to-LOW clock transition

12-stage binary ripple counter

74HC/HCT4040

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.]	(*)	
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay Q_n to Q_{n+1}		28 10 8	100 20 17		125 25 21		150 30 26	ns	2.0 4.5 6.0	Fig.7
t _{PHL}	propagation delay MR to Q _n		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.7
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _W	master reset pulse width; HIGH	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{rem}	removal time MR to CP	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency	6.0 30 35	27 82 98		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.7

12-stage binary ripple counter

74HC/HCT4040

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
CP	0.85						
MR	1.10						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL			74HCT								MANEGODIAG
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀		19	40		50		60	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay Q _n to Q _{n+1}		10	20		25		30	ns	4.5	Fig.7
t _{PHL}	propagation delay MR to Q _n		23	45		56		68	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.7
t _W	clock pulse width HIGH or LOW	16	7		20		24		ns	4.5	Fig.7
t _W	master reset pulse width; HIGH	16	6		20		24		ns	4.5	Fig.7
t _{rem}	removal time MR to CP	10	2		13		15		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency	30	72		24		20		MHz	4.5	Fig.7

12-stage binary ripple counter

74HC/HCT4040

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the clock (\overline{CP}) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock pulse frequency.

Also showing the master reset (MR) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (\overline{CP}) removal time.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".