Fusemachines Research and Training Center

Syllabus

Computer Vision

Microdegree in Artificial Intelligence Program

Version	Significant Changes (Marked with a Symbol)	Modified by	Modification Date
1.0	First Version of the course	Pradip, Rojesh	

[©] Fusemachines Inc 2019

Contents

Introduction Sullabus Aims	4
Syllabus Aims	4
Introduction to the Course	4
Tentative Teaching Guide	4
Pre-requisites	5
Distinct Features Used in the Syllabus	5
Syllabus Outline:	6
Recommended Books	6
Assessment	7
Course Contents	8
Introduction to Computer Vision (CV)	8
Introduction to the Course	8
Image formation	8
Image Processing	11
Feature Detection and Matching	14
Introduction to the Module	14
Local Features	14
Morphological operations	16
Module Summary	16
Introduction to the Module	16
Traditional Image Classification, Detection, Matching and Recognition	17
Dataset Preparation Tools and Public Datasets for Computer Vision	17
Deep Learning in Image Classification	18
Deep Learning in Object Detection	19
Deep Learning in Image Matching	20
Module Summary	20
Introduction to the Module	20
Region Segmentation	21
Semantic Segmentation	21
Module Summary	21
Introduction to the Module	21
Introduction 3D Vision and Applications	22
3D Information of the Scene	22
Structure from Motion	23
3D Point Cloud Processing	23
3D Reconstruction	24
Module Summary	24
Motion & Videos	24
Introduction to the Module	24
Tracking and Motion Estimation	25
Dense motion Estimation	26
Module Summary	26
Generating Synthetic Images	26

Introduction to the Modul	26
Image-based rendering	27
Generative Adversarial Network	27
Module Summary	27
Deep Learning in Image and Video Processing	28
Introduction to the Module	28
Superresolution	28
De-blurring	29
Frame interpolation	29
Module Summary	29
Computational Photography and Imaging	30
Introduction to the Module	30
High dynamic range (HDR)	30
Computational Processing	30
Computational Imaging/Optics	31
Computational Sensor	31
Module Summary	31
Trustworthy Computer Vision	31
Introduction to the Module	31
Explainable Computer Vision	32
Robustness and adversarial attacks	32
Module Summary	33
lossary of command words	34

Introduction

All the syllabuses are reviewed regularly so that it will be able to reflect the latest thinking and current best practices employed in industries and take into account different national and international contexts in which these courses will be taught.

Syllabus Aims

The Syllabus aims to:

- Provide a worthwhile learning experience for all learners and enable them to acquire sufficient knowledge and skills to get started in the domain of Al
- Facilitate and Standardise Course Content Development and Delivery

Introduction to the Course

This is the second part of the Microdegree course covering different topics in Deep Learning.

Tentative Teaching Guide

12 weeks course maximum of 4 hours per week.

Day	Units Covered	Teaching Guide (Instructions for Instructors)	Self-Study Hrs
1	1.1, and 1.2		
2	2.1 and 2.2		
3	3.2.1, 3.2.2 and 3.2.3		
4	3.2.4, 3.3.5 and 3.3.1		
5	4.2 and 4.3		
6	4.4.1, 4.4.2.A(e) and 4.4.2.B(a)		
7	4.5 and 4.6		
8	5.2.1.H and 5.3		
9	6.2 and 6.3		
10	6.4 and 6.5		
11	6.6 and 6.7		

12	Mid-Examination	
13	7.1 and 7.2.1-7.2.3	
14	7.2.4, 7.2.5 and 7.3	
15	8.1 and 8.2	
16	8.3 and 8.3.2.A.d	
17	9.1 and 9.2	
18	9.3 and 9.4	
19	10.1 and 10.2	
20	10.3, 10.4 and 10.5	
21	11.1 and 11.2	
22	11.3	
23	Final Project Presentation	
24	Examination	

Pre-requisites

Students must have completed the Machine Learning and Deep Learning course.

Distinct Features Used in the Syllabus

Bold Outcomes refers to Must Have learning outcomes,

Normal Text refers to Should Have learning outcomes,

Italic Outcomes refer to Good to Have or Could Have learning outcomes.

Red Outcomes refers to Won't have Outcomes

Colour based on Categories

Bold Dark Blue Teach Fundamental Concepts

Bold Dark Green Covers State-of-the-Art Research Topics

Bold Dark Orange Focuses on **Application in different fields** the topic is being used.

Indicators:

Indicator	Indicates
LO#.#.# (eg: Re LO2.2.2.A)	Learning Objective 'A' of chapter 2 of Module 2, unit 2
Re	Revisit or Relate to

(D)	Demo/ Walkthrough
AO# (eg: AO3)	Focusing on Assessment Objective 3, i.e to apply
(W /P /G /I)	Possible Activities Whole class / Group work/ Pair Activities / Individual Activities
(H)	Homework to be covered in assignments or Projects
(F)	Formative assessment

Syllabus Outline:

Computer Vision

Recommended Books

1.	Digital Image Processing 4th ed, Gonzalez and Woods	
2.	Computer Vision, Algorithms and Applications, Szeliski	
3.	Forsyth & Ponce, Computer Vision: A Modern Approach	
4.	Multiple View Geometry in Computer Vision, 2nd ed, Hartley & Zisserman	

Assessment

The Assessment will be based on the cognitive domain of Bloom's Taxonomy to classify learning objectives into different levels of complexity and specificity, viz. Remember, Understand, Apply, Analyze, Evaluate, Create

Assessment Objectives	Categories	Objective	Action Words	
AO1	Remember	Recall Facts and basic concepts	Define, list, memorize, repeat, state, recognize	
AO2	Understand	Explain Ideas or Concepts Classify, describe, discuss, explaidentify, locate, recognize, report translate, interpret, exemplify,		
AO3	Apply	Use Information in a new situation, mathematical modeling	Execute, implement, solve, use, demonstrate, interpret, operate, schedule, sketch	
AO4	Analyze	Draw connections among ideas Differentiate, organize, relate, contrast, distinguish, examine experiment, question, test		
AO5	Evaluate	Justify a stand or decision	Check, Appraise, argue, defend, judge, select, support, value, critique, weigh	
AO6	Create	Produce new or original Work	Design, assemble, construct, conjecture, develop, generate, plan, produce, formulate, investigate	

Source: https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

Weight Distribution on

Components	AO1	AO2	AO3	AO4	AO5	AO6	Weights
Quizzes	20%	20%	20%	20%	10%	-	
Programming Assignment	10%	20%	20%	20%	10%	10%	
Projects	-	-	10%	20%	20%	50%	
Classroom Assessment							

Course Contents

1. Introduction to Computer Vision (CV)

1.1. Introduction to the Course

Students should be able to:

Introduction to the Course	 A. Describe the overall goals of Computer vision and image understanding B. Justify that computer vision is multidisciplinary exemplified by different algorithms and applications of computer vision with popular vision systems in use C. Differentiate between Image processing, Computer vision and Computer Graphics D. Recall what course covers and what it does not cover 	
2. Course Logistics	A. Recall and follow the assessment and evaluation criteria B. Recall and follow the honor code and violation issues	
Brief History of Computer Vision	A. List different application areas of computer vision a. Autonomous driving b. Medical Imaging c. Drones d. Manufacturing e. Biometrics (face, fingerprint etc.) f. Surveillance B. Explain why computer vision is difficult, in terms of being inverse problem and explaining the different challenges such as a. Scale b. Viewpoint variation c. Non-Rigid Deformation d. Intra-object/class variations e. Illumination f. Color and illusions g. Occlusion h. Background Clutter and Camouflage i. Motion j. Local ambiguity	

1.2. Image formation

	A. Describe Image Formation using Lambertian Model, as a
	function of shape, illumination, and reflectance
	B. Describe pinhole perspective camera
	C. Describe camera with lens for gathering light, depth of
	field (or depth of focus), and challenges (blur vs. noisy
	images)
	D. Describe Projection Models (3D to 2D)
	a. Perspective Projection (Pinhole Model) and
	similarity triangle relation
1. Imaging	b. Orthographic Projection (UAV Images)

 Imaging Geometry 	 A. Use Projective Transformation with homogeneous coordinates to perform Translation, Scaling, Rotation and their inverses B. Describe how Intrinsic and Extrinsic Parameters affect imaging (Details on how they can be recovered should be covered later.) C. Use Perspective Transformation to relate homogeneous world coordinate to homogeneous image coordinate. And the inverses. D. Rodrigue's Formula E. Quaternions 	
 Digital Camera Color 	A. Describe different blocks and concepts in digital camera: a. Optics (Lens) b. Aperture c. Shutter d. Sensor e. Gain-ISO f. A/D converter g. Demosaic h. f-number i. Exposure/Integration time j. Vignetting B. Describe different Image Sensors a. CCD vs CMOS sensors and camera setup b. Quantum efficiency C. Camera optics a. Describe aberrations: lens distortion and chromatic aberration. b. Motion-blur and noise and relation to integration time c. Color Filters: R, G and B d. Understand Gray and RGB camera e. Understand Bayer filter mosaic used by RGB camera D. Discuss about Image Sampling and Quantization and represent Pixel as a function E. Describe different types of noise and sources and how they can be modelled: a. Shot noise due to photon counting process with Gaussian (with central limit theorem) b. Salt and pepper noise c. Random noise due to ISO d. Fixed pattern noise e. Quantization noise	
	B. Describes physics of color C. Color Image theory a. Tristimulus theory b. Colourimetric equation D. Luminosity function	

	 E. Perception based colour models: CIE RGB and CIE XYZ F. Additive and subtractive colour models: RGB and CMY G. Luminance and chrominance colour models: YUV, YIQ, YCbCr H. Additive perceptual colour models: HSV and HLS I. Implement Image color transformation RGB to Gray, YUV, HSV using OpenCV 	
Theories of Vision	A. Explain mechanisms underlying visual object recognition in the brain a. Marr's theory of vision b. Ventral Visual Stream study in Monkey c. Core object recognition B. Compare Primate Vision, Human Vision and Machine Vision C. Understand important functions and limitations of human vision	Mechanisms Underlying Visual Object Recognition: Humans vs. Neurons vs. Machines Figure1 Seeking Categories in the Brain
	A. Geometric primitives a. 2D point b. 3D point c. Describe a point in world coordinate and image coordinate	
	B. Describe transformations 2D and 3D a. Translation b. Rotation c. Scaling C. 3D to 2D projections	
	a. Perspective projection b. Camera matrix i. Intrinsic parameters ii. Extrinsic parameters	
	D. Multi-view geometry a. Two view geometry i. Epipolar geometry 1. Epipoles 2. Epipolar line	
5. Basics for Multi-view	 b. Map a 3D point from one camera to other camera c. Fundamental Matrix d. Homography E. Robust model estimation a. RANSAC b. LMEDS 	
geometry	N. LIVILUS	

2. Image Processing

Introduction to the Module

1. Introduction to the	A.	Understand image data, color formats and conversion between the formats	
------------------------	----	---	--

Module	 B. Understand and use image filtering as a function of the local neighborhood for various applications C. Understand image processing in spatial and frequency domains D. Understand multi-resolution image E. Understand image assessment techniques F. Understand the flow of the contents in the module (overview) and their learning outcomes 	
2.1.	Image Operators	
	 A. Plot histogram of image and locate/estimate mean and standard deviation B. Convert image to other color spaces and view each component/channel a. YUV b. Lab c. HSV C. Define and Implement simple point/pixel operators: a. Brightness and contrast adjustment with scaling and by adding bias b. Brightness and contrast adjustment with gamma correction c. Brightness and contrast adjustment with histogram equalization or tone mapping d. Color balancing D. Define Blend Operator and blend two images 	Szeliski 3.1 https://docs.opencv.org/3.4/d3/ dc1/ tutorial_basic_linear_transform.ht
Point Operators	E. Implement Image matting and compositing as blue/green	<u>ml</u>
Convolutions and cross-correlations	 A. Introduce convolution and discuss properties: a. Commutative b. Associative c. Distributive d. Scaling e. Shift invariance B. Introduce convolution two dimension C. Padding techniques a. Zero b. Constant c. Clamp d. Wrap 	
3. Spatial domain processing	 A. Introduce spatial domain processing and some examples of spatial frequencies/details in images B. Linear filtering a. Explain 2D Gaussian filter and plot the filter response for various mean and sigma values b. Show in spatial domain 2D convolution with 2D Gaussian filter c. Introduce separable filters for 2D Gaussian filter and discuss saving on computational cost d. Explain Gabor filter 	

d. Explain Gabor filtere. Use OpenCV API to apply Box, Canny, Sobel

	filters and visual results C. Image derivatives (High and Bandpass filtering) a. Revisit idea of forward, backward and central difference techniques to compute derivatives b. Image derivatives of first and second orders with finite difference technique c. Show how noise is amplified with finite difference technique d. Apply Gaussian filtering for noise reduction followed by finite difference e. Image derivative with the derivative of the gaussian filter (combine derivative and gaussian filter using associative rule) f. Plot filter responses of derivative kernels and derivative of Gausisian (for first and second orders)	
4. Frequency domain processing	 A. Introduce frequency domain processing with fourier transform B. Computer convolution in fourier domain and compare execution time with convolution in spatial domain C. Wiener filtering D. Properties of fourier transform a. Shift invariance b. Rotation c. Frequency scaling d. Importance of phase E. Other transforms a. Discrete cosine transforms b. Discrete hartley transform F. Wavelets a. Gabor b. Haar G. Use OpenCV API to perform Wiener filtering 	
5. Scale-space or multiresolution image processing	 A. Describe multi-resolution representation of image with image pyramid: coarse, medium and fine details B. Visual images at different scales and derivatives C. Describe some applications a. Feature tracking in image pyramid b. Multi-band blending of two images 	
6. Integral Image	 A. Introduce the concept of integral image B. Feature computation using box filter in face detection originally used by Viola C. Discuss approximation and integral image to accelerate convolution: a. Approximation of Gaussian derivative filters in Hessian as in SURF b. Approximation of first order Gaussian derivative filter in LOCOCO 	SURF: http://people.ee.ethz.ch/~ surf/eccv06.pdf LOCOCO: https://ieeexplore.ieee.org /document/5727936

1. De-noising	A. Introduce the concept of image de-noising a. Describe models for various sources of noise covered in Sec. 1.1 b. Introduce noise into some example images e.g. additive gaussian noise, salt and pepper noise, etc. B. Use OpenCV API to show image noise removal for noise given in Sec. 1.1 a. Gaussian smoothing b. Box filter smoothing c. Median filtering d. Bilateral filtering e. Non-local means	
2. Sharpening	A. Introduce the concept of sharpening/deblurring a. Describe the role of lens for blurring and model the system with Gaussian b. Describe the role of integration time for motion blurring B. Describe models for a. out-of-focus blur (Gaussian) b. motion blur (box filter) c. Introduce corresponding blur types into some example images and visualize C. Use OpenCV API to show image sharpening a. Out-of-focus deblurring using unsharp mask	
Image upscaling and downscaling	A. Introduce image downscaling a. Describe aliasing problem b. Describe smoothing and downsampling B. Introduce image upscaling with interpolation techniques a. Linear interpolation b. Bilinear c. Bicubic C. Use OpenCV API to show downscaling and upscaling operations by x2 and x4 times	
Image quality assessment metrics	A. Describe image assessment techniques a. PSNR b. SSIM B. Use OpenCV API to demonstrate the use of SSIM with ground truth and recovered images C. Deep learning based perceptual metrics a. LPIPS	https://arxiv.org/pdf/ 1801.03924.pdf https://github.com/richzhang/ PerceptualSimilarity
Assignment	A. Use non-local means to de-noise the image.	

2. Feature Detection and Matching

2.1. Introduction to the Module

- 1. Introduction to the 2. Understand different local operators to detect local Module features such as edge, corner and blobs. 3. Understand the importance of edge and feature detection as one of the most important lower-level computer vision for various applications 2.2. **Local Features** Students should be able to: A. Describe various edge detectors a. Prewitt edge b. Sobel c. Canny d. Laplacian B. Use OpenCV API to apply these detectors and visualize **Edge Detectors** the results Szeliski 3.1 A. Describe salient features: corner, blob. B. Describe feature invariance for: translation, planar rotation, scaling, affine, perspective, noise, blur C. Describe Harris corner detector a. Explain cornerness measure with eigenvalues related with trace and determinant Use OpenCV API to detector corner in image and visualize results D. Feature detectors a. Lapalacian and Difference-of-Gaussian b. Hessian c. Gabor (e.g. SIFER) E. Scale-invariant detectors a. Describe SIFT feature detector Describe scale-scape pyramid with Gaussian smoothing ii. Describe Difference of Gaussian for feature detection and explain how it approximates Laplacian of Gaussian and relation to invariance b. Describe SURF feature detector Describe approximation of second order gaussian derivatives with box kernel Explain Hessian feature detector c. Use OpenCV API to detect features in the image and also compare execution times
 - 2. Feature Detection (e.g. blob and corners, ..)
- G. Describe feature invariance for: translation, planar rotation, scaling, affine, perspective, noise, blur

a. Describe MSER detectorb. Describe FAST detectorc. Describe ORB

F. Intensity based detectors

H. Describe feature repeatability to measure the quality of feature detectors for invariance

SIFER: Scale-Invariant
Feature Detector with
Error Resilience

3. Feature Descriptor	A. Filtering based descriptors a. Describe SIFT feature descriptor b. Describe SURF feature descriptor c. Describe PCA-SIFT feature for dimensionality reduction B. Intensity based descriptors a. Describe ORB descriptor and BRIEF b. Describe FREAK c. Describe DAISY descriptor C. Describe feature discriminability to measure the quality of feature descriptors
4. Feature Matching	 A. Describe nearest neighbor distance ratio (NNDR) feature matching B. Describe locality sensitive hashing technique for feature matching C. Describe k-d tree and FLANN for for efficient feature matching D. Use OpenCV API to demonstrate feature matching using AADR and FLANN.
5. Applications	A. Image Registration or Feature based alignment a. Describe image registration application b. Briefly describe Homogrpahy and RANSAC c. Use OpenCV API using SIFT for image registration i. Detect feature and show results on both the images ii. Match image features and show correspondences on the images iii. Use RANSAC to estimate Homography model iv. Generate registered images B. Describe panorama creation using OpenCV API a. Follow all the steps in image registration b. Describe some blending techniques c. Use blending to create panorama C. Describe basics of Camera Calibration D. Describe basics of Pose Estimation
Assignment for the unit	A. User feature based technique for video stabilization for a hand held camera.
Assignment for the unit	nana nela camera.

2.3. Morphological operations

	A. Morphological operations	
	B. Grey level morphology	
 Morphological 	C. Grey level dilation and erosion	
Processing	D. Minkowski operators	
Assignment	A. Use OpenCV API	

a. Convert image to grey levelb. Demo erosion for detecting contours	
---	--

2.4. Module Summary

Students should be able to:

	A. Robot navigation (Visual SLAM)	
	a. Robots need to localize themselves while exploring navigation.	
	 b. Use local features to estimate pose of the robot to support navigation and path finding 	
	c. Estimate pose	
	B. Camera calibration (3D vision)	
	a. Calibrating the camera (intrinsic and extrinsic) is important in 3D vision	
	b. Use one of the feature detectors to calibrate the	
Project Ideas for the Module	camera	

3. Image Classification, Recognition and Matching

3.1. Introduction to the Module

Students should be able to:

	A. Introduce image classification task as finding different categories of objects (e.g. car, mug, dog, cat,)
	B. Introduce image detection as finding objects and their
	location (where the objects/faces are in image)
	C. Introduce recognition task as identifying the face (e.g.
	whose face e.g. Geoffrey Hinton)
Introduction	D. Introduce image matching as a task whether the given two
	images are similar or not
	A. Autonomous driving
	B. Medical
	C. Cybersecurity
	D. Drones
	E. Robots
Applications	F. Face matching in smartphone

3.2. Traditional Image Classification, Detection, Matching and

Recognition

1. Introduction	A. Introduce building blocks of traditional object detection	

	 a. Feature engineering b. Machine learning algorithm for classification B. Motivation of feature engineering for invariance to: noise, blur, scale, light, contrast, etc. C. Challenges and limitations of hand-engineered features and motivation for deep learning
	 A. Image classification a. Image classification using bag of words (e.g. SIFT features) B. Detection algorithms a. Viola's face detection algorithm describing feature extractor and Adaboost for classification b. Pedestrian Detection using HOG features and SVM C. Recognition
Classification, detection, recognition and matching algorithms	a. Face recognition with Eigenfaces D. Matching a. Image retrieval/matching in database using bag of words (e.g. SIFT features)
3. Assignments	A. Use SIFT features to create bag of words. Classify some object categories by using the method.

3.3. Dataset Preparation Tools and Public Datasets for Computer Vision

Students should b	oe able	to:
Data preparation tools	A.	Recap a need for data preparation, annotation and labeling for computer vision,
		a. Classification needs: picture + label
		b. Detection: bounding box + label
		c. Segmentation: polygon + label
		d. 3D cuboids (eg: SDC)
		e. Key-Point and Landmark
		f. Lines and Splines (eg: lanes detection)
	B.	Discuss on different type of annotation and annotation and
		data preparation tools and format for computer vision
		a. Visual Object Tagging Tool (VoTT)
		(https://github.com/microsoft/VoTT)
		b. VGG Image Annotator (VIA) (<u>Visual Geometry</u>
		Group)
		c. Computer Vision Annotation Tool (CVAT)
		(https://github.com/opencv/cvat)
		d. <u>Labelbox</u>
		e. LabelMe. The Open annotation tool
	C	f. <u>Scalabel</u> Annotation Formats:
	C.	
		a. COCO dataset JSON files with 5 types of
		annotation: for object detection, keypoint detection,

	stuff segmentation, panoptic segmentation, and image captioning. b. Pascal VOC stores annotation in XML file c. YOLO labeling format, a .txt file D. Online platform a. Amazon mechanical turk	
Databases for Computer Vision	A. Introduce some of the public databases with annotation and label used in classification, detection and recognition B. Classification a. MNIST b. CIFAR c. ImageNet d. PASCAL VOC e. MS COCO f. Youtube-8M g. KITTI C. Object Detection a. MS COCO b. PASCAL VOC c. KITTI D. Recognition a. Labelled Faces in the Wild b. CelebFaces E. Matching a. AT&T face	
Assignments	B. Load and visual data from KITTI dataset (autonomous driving)	

3.4. Deep Learning in Image Classification

Stadents should	be able to .	
Review concepts of deep learning	A. Introduce that learning feature using CNN is also part of learning in deep learning based techniques B. Review some concepts in deep learning a. CNN and describe its role in reducing the number of parameters b. Pooling c. 1x1 convolution d. Fully connected layer e. Attention layer f. Overfitting: dropout, regularization g. Loss: L1, L2, Logistic loss C. Review learning algorithm a. Backpropagation b. Review some optimizers i. SGD and Mini-batch GD ii. Adagrad iii. RMSprop	
	iii. RMSprop iv. Adam D. Review deep learning frameworks	

		а	. Tensorflow	
		b	. Pytorch	
		A. Imag	e classification	
		а	. LeNet	
		b	. Alexnet	
		C	. GoogleNet	
		d	. Network-in-Network	
		e	. ResNet	
		f.	DenseNet	
		g	. ResNeXt	
		h	. EfficientNet	
		i.	SENet (Squeeze-and-Excitation Networks)	
		B. Tech	niques with low-complexity	
		а	. MobileNet	
		b	. SqueezeNet	
2.	Review deep learning	C	. SqueezeNext	
	architectures for image	C. Use	Tensorflow or Pytorch API to demonstrate one of these	
	classification	algor	thms (e.g. ResNet)	
		A. Imple	ment ResNet-50 and test on ImageNet dataset or	
Assign	ments	some	natural images for classification.	

3.5. Deep Learning in Object Detection

Students should be able to:

	 A. Introduce shortcoming of image classification algorithms in terms of localization B. Review algorithm using region proposal and existing image classification (two stage): a. RCNN C. Review some algorithms for object detection (classification
Object Detection Algorithms	+ localization, together) (one stage): a. YOLO b. SSD c. SqueezeDet d. RetinaNet D. Use Tensorflow or Pytorch API to demonstrate one of these algorithms (e.g. YOLO and tinyYOLO and/or RetinaNet)
Assignments	A. Use tiny YOLO architecture to train your face. Compare the performance with Viola's face detector.

3.6. Deep Learning in Image Matching

	A.	Describe image matching concept to verify whether given image is similar to the template (one example application is	
		in biometrics for face based access control for smartphone)	
	B.	Describe Siamese CNN Network	
	C.	Use Tensorflow or Pytorch API to implement Siamese	
Image matching		Network	

	Using AT&T face dataset design a deep-learning based face	
	matching algorithm. Give two images of face to the network and let	
Assignment	the network predict whether these images are the same or not.	

3.7. Module Summary

Students should be able to:

Summary of Object Classification and Detection	A. Understand classification, recognition, matching and detection tasks.B. Discuss on different application of Object discussion	
Project Ideas for the Module	A. Use RetinaNet to detect objects in images/video in KITTI dataset.	

4. Segmentation

4.1. Introduction to the Module

Students should be able to:

1. Image Segmentation and so on.	
a. Traditiona not tell wh 2. Segmentation b. Deep lear	tion techniques in literature techniques which give segmentation but do at object label they have. hing based technique that relate each pixel bel and called semantic segmentation

4.2. Region Segmentation

	<u> </u>	A.	Introduce region based segmentation	
		B.	Watershed algorithm and use OpenCV API	
		C.	Connected component	
		D.	Region based	
			a. Region splitting algorithms	
			b. Region merging algorithms	
		E.	Level set	
		F.	Graph cuts	
		G.	Normalized cuts	
		H.	Mean-shift	
1.	Region segmentation	I.	Use OpenCV API to implement segmentation technique using	
	techniques		Mean-shift and Graph cut	
		Α.	Use the Mean-shift algorithm for region segmentation for	
Assign	ment		images of the KITTI dataset.	
		•		

4.3. Semantic Segmentation

Students should be able to:

				Resources: https://arxiv.org/pdf/ 1606.02147.pdf
1. Semanti	c segmentation	A. B.	pixel to class label Review some of semantic segmentation techniques: a. ENet b. UNet c. Fully Convolutional Network (FCN) d. Dilated convolutions	https:// www.pyimagesearch.com/ 2018/09/03/semantic- segmentation-with-opencv- and-deep-learning/ https://github.com/ matterport/Mask RCNN
techniqu	•	C.	Use Mask-RCNN code to demonstrate the segmentation	_
Assignment		A.	Compare performance of Dilated convolutions and Mask-RCNN to segment out images	

4.4. Module Summary

Students should be able to:

Module summary	A. Understand region segmentation and semantic segmentation	
Project for the Module	A. Use Mask-RCNN to segment out images in KITTI dataset	

5. 3D Vision

5.1. Introduction to the Module

Students should be able to:

1. Introduction	A. Understand how humans perceive 3D information B. Understand computer vision techniques for 3D vision, 3D sensors
	A. Autonomous driving B. Medical C. Cybersecurity
	D. Drones
	E. Robots
Applications	F. Face matching in smartphone

5.2. Introduction 3D Vision and Applications

1. Introduction to 3D Vision	A. Introduce 3D vision	
	B. Introduce how human perceive 3D information	
	C. Sensing 3D information	
	a. 3D sensor	
	b. Stereo correspondence	

c. Structure from motion
D. Describe following applications and why 3D vision is
required:
a. Autonomous driving
b. Augmented reality
c. Virtual reality
d. Visual SLAM (Simultaneous localization and
Mapping)
e. Robots

5.3. 3D Information of the Scene

		A. Describe 3D sensing techniques: a. Stereo camera b. Active 3D sensing i. Microsoft kinect ii. PrimeSense	
1.	Sensing 3D information	iii. LIDAR	
2.	3D Geometry	A. Describe important concepts in two-view geometry a. Epipolar geometry b. Stereo geometry (disparity) c. Essential matrix d. Fundamental matrix e. Eight point algorithm	
		A. Introduce concept of shape from X	
		B. Describe techniques	
		a. 3D from shading and texture	
3.	3D from single image	b. 3D from focus/defocus	
		A. Describe rectification and discuss how it eases matching	
		B. Describe steps in stereo matching	
		 a. Matching cost computation 	
		b. Cost aggregation	
		c. Disparity computation and optimization	
		d. Disparity refinement	
		C. Introduce Spare and Dense correspondence	
		D. Describe Dense correspondence techniques:	
1	Stereo matching	a. Local methodsb. Global optimization	
4.	(traditional)	E. Use OpenCV API to demonstrate depth map extraction	
	(traditional)		
		A. Give overview of public datasets:	
		a. KITTI	
		 B. Describe some techniques for depth estimation using deep learning: 	https://
		a. Hourglass module	www.cs.toronto.edu/
		b. DispNet	~urtasun/publications/
		c. CRL	luo etal cvpr16.pdf
		d. GC-Net	
5.	Stereo matching based	e. EdgeStereo	https://arxiv.org/pdf/
	on deep learning	f. MSFNet	1512.02134.pdf
			•

	Implement stereo matching algorithm (e.g. normalized cross	
	correlation) to estimate depth map from data in middlebury	
Assignment	dataset	

5.4. Structure from Motion

Students should be able to:

1.	Introduction	A. Introduce to recover 3D structure from image sequences	
		A. Techniques to recover structure from motion	
		a. Triangulation	
		b. Two frame structure from motion	
2.	Methods Structure	c. Factorization	
	from Motion	d. Bundle adjustment	

5.5. 3D Point Cloud Processing

Students should be able to:

	 A. Describe 3D point cloud generated from LIDAR B. Introduce Point Cloud Library (PCL) C. Describe importance of LIDAR in autonomous driving and robotics D. Describe KITTI dataset in detail 	https://arxiv.org/pdf/ 1912.12033.pdf http:// www.pointclouds.org/
1. Introduction	E. Visualize 3D point cloud in KITTI dataset	about/ https://arxiv.org/pdf/ 1912.12033.pdf https://arxiv.org/pdf/
	 A. Describe DNN architecture for point cloud based inputs B. Describe some notable technique on 3D point clouds a. Classification: RCNet-E, PointWeb b. Object detection: 3D FCN, SECOND, PointPillars c. Object tracking: Complexor-YOLO 	1904.07537.pdf https://arxiv.org/pdf/ 1903.01784.pdf
Computer vision tasks on 3D point clouds	d. Segmentation: PointNet, KP-FCNNe. Scene flow: FlowNet3D	https://arxiv.org/pdf/ 1806.01411.pdf
Assignment	A. Implement one of the object detection algorithms (e.g. PointPillars) for 3D point cloud processing.	

5.6. 3D Reconstruction

	A. Introduce 3D reconstruction	
	B. Traditional 3D reconstruction from	
	 a. Surface representations 	
	b. Point based representation	
	c. Volume representation	
1. 3D reconstruction	d. Model based reconstruction	
2. Deep learning 3D	A. Describe dataset for training	https://arxiv.org/pdf/

		1710.06104v2.pdf
	a. ShapeNet	
	B. Deep learning methods for 3D reconstruction	https://github.com/
	a. 3D GAN	timzhang642/3D-Machine-
	b. OctNetFusion	<u>Learning#3d_synthesis_dl</u>
reconstruction	c. RingNet	<u>_based</u>
Assignment	A. Implement RingNet and experiment 3D reconstruction.	

5.7. Module Summary

Students should be able to:

	A. Understand how human perceive 3D informationB. Understand 3D sensor and stereo visionC. Understand algorithms to compute 3D depth map	
Summary	 D. UnderstandMerits and demerits of stereo vision and 3D sensor for sensing depth information E. Understand real life autonomous driving data and 3D point cloud processing 	
Project for the Module	A. Implement e.g. MSFNet stereo matching algorithm to estimate depth map from data in KITTI dataset.	

6. Motion & Videos

6.1. Introduction to the Module

Students should be able to:

Introduction	 A. Understand need of tracking when camera or scene is motion B. Understand how motion information can lead to better signal processing e.g. Video denoising
Applications	A. Introduction to motion in videos B. Describe the following application domains: a. Tracking object in autonomous driving b. Video stabilization c. Frame interpolation d. Video denoising

6.2. Tracking and Motion Estimation

1. Feature tracking	A. Describe sparse feature tracking method	
	B. Describe Kanade-Lucas-Tomasi (KLT tracking)	
	 a. Describe corner feature detection 	
	b. Describe tracking of features and brightness	

		1	constraint Describe KLT tracking in pyramid Use OpenCV API to demonstrate tracking of feature in	
2.	Dense motion estimation	B. C.	Describe motion models Describe dense motion estimation and contrast with spare feature tracking Describe optical flow technique for dense motion estimation Use OpenCV API to implement dense motion estimation	
3.	Object or window tracking (traditional)	B. C. D.	Introduce the need of object tracking e.g. pedestrian, car, etc. Describe HOG and color histogram for pedestrian tracking Describe Mean Shift algorithm Describe Camshift algorithm Use OpenCV API to demonstrate object tracking in a video	
4.	Deep learning based object tracking	B. C.	Introduce the CNN and Siamese deep network for object tracking Describe multi-object tracking in the scene Describe the techniques in the literature a. MDNet and GOTURN b. SiamFC c. SiamRPN d. SiamRPN++ Use Tensorflow or PyTorch library to implement object tracking using one of these techniques	https://www.robots.ox.ac.uk/ ~luca/siamese-fc.html
5.	Filtering based tracking	B. C.	Particle filter Use OpenCV API to demonstrate to use the Kalman filter to track the window/object (e.g.car) in the video	
Assign	ment	, \.	dataset e.g. KITTI.	

6.3. Dense motion Estimation

Optical flow (traditional)	A. Describe dense motion estimate B. Describe steps in optical flow	
Optical flow based on deep learning	A. Describes technique based on DL: a. FlowNet b. SceneFlowNet	
Assignment	A. Implement SceneFlowNet and understand the architectural details.	

6.4. Module Summary

Students should be able to:

	Understand object tracking and how it is different from object detection	
Module Summary	B. Understand traditional and deep learning based tracking algorithms	
Project for the Module	A. Implement SiamFC and use it to track objects in the KITTI dataset.	

7. Generating Synthetic Images

7.1. Introduction to the Modul

Students should be able to:

Introduction to Synthetic Image Generation	A. Applications of synthetic image generation from the distribution a. Generate more training data b. Image/video restoration B. Distinguish with computer graphics for: shading, texture mapping, shadows, reflection, etc.	
Generation	mapping, snadows, reflection, etc.	

7.2. Image-based rendering

Students should be able to:

		A.	Introduce image based rendering
		B.	Describe image based rendering:
			a. View interpolation
			b. Layered depth images
			c. Light fields
1.	Image-based		d. Environment mattes
	rendering		e. Video-based rendering

7.3. Generative Adversarial Network

1. GAN	A.	Recall and describe generative and discriminative models	https://papers.nips.cc/paper/
		and explain how GAN works	5423-generative-adversarial-
		a. Describe role of generator and discriminator	nets.pdf
	В.	Describe conditional GAN	
	C.	Describe DCGAN	https://arxiv.org/pdf/
		a. Describe vector operation on visual objects	1511.06434.pdf
	D.	Explain the difficulties in training GAN	

	https://
	developers.google.com/
a. Vanishing gradient	machine-learning/gan/
b. Mode collapse	<u>problems</u>
c. Failure to converge	
E. Remedies for training GAN	https://arxiv.org/pdf/
a. Wasserstein loss	1701.04862.pdf
b. Unrolled GANs	
c. Adding noise to discriminator inputs	https://arxiv.org/pdf/
d. Penalizing discriminator weights	1705.09367.pdf
A. Discuss on list applications of GAN	
a. Frame interpolation	
b. Super-resolution	
c. Blur removal	
d. Image to image translation	
e. Text to image generation	
e. Text to image generation	
f. Inpainting	https://arxiv.org/pdf/
	https://arxiv.org/pdf/ 1411.1784.pdf
f. Inpainting	

7.4. Module Summary

Students should be able to:

Module Summary	 A. Understand image rendering techniques and their applications B. Understand GAN and difficulties surrounding GAN while training and remedies C. Understand GAN to generate images
Project for the Module	A. Implement cGAN in Keras and generate cartoons with hair and eyes with different colors.

8. Deep Learning in Image and Video Processing

8.1. Introduction to the Module

Students should be able to:

Introduction to the Module	Understand the role of deep learning on image and video processing. Understand different deep learning algorithms for superresolution, deblurring and frame interpolation.	

8.2. Superresolution

	A. Introduce super-resolution	
	B. Discuss GAN for Super-resolution	
	C. Perceptual loss and VGG features	
1. Introduction	D. Effect of L1 and L2 loss in training	
	A. Discuss public dataset for super-resolution:	
	a. DIV2K	
	b. Set5, Set14	
	c. B100	
	d. Urban100	
	e. Vimeo90k	
	f. Vid4	
	B. Deep learning algorithms for super-resolution	
	a. SRCNN	
	b. ESPCN and Sub-pixel CNN	
	c. DRCN	
	d. EDSR	
	e. EnhanceNet	
	f. RBPN and DBPN	
	C. GAN based algorithms:	
	a. SRGAN	
	b. FCGAN	
2. Super-resolution	c. TecoGAN	
	A. Implement EDSR and use computer super-resolution of	
	some real-life images. Compare the visual quality with	
Assignment	bicubic interpolation.	

8.3. De-blurring

Students should be able to:

	A. Introduce de-blurring and role of deep learning
	B. Perceptual loss and VGG features
	C. Adversarial loss
1. Introduction	D. Effect of L1 and L2 loss in training
	B. Discuss public dataset for de-blurring:
	a. GOPRO
	b. Kohler dataset
	C. Deep learning for deblurring
	a. DeepDeblur
	b. SRN
	D. GAN
2. De-blurring	a. DeblurGAN
	A. Visualize images in GOPRO dataset for deblurring and
Assignment	use DeepDeblur to recover sharp image.

8.4. Frame interpolation

1.	Introduction	A.	Introduce frame-interpolation	
----	--------------	----	-------------------------------	--

	B. Discuss importance of frame interpolationC. Discuss role of CNN with features in frame interpolation	
	A. Datasets a. Vid4 B. Deep learning based algorithms a. SepConv	
	b. SuperSlomo c. DAIN C. GAN based algorithms a. FINNiGAN	
2. Frame interpolation	b. FIGAN	
Assignment	Use SuperSlomo to create intermediate video frames.	

8.5. Module Summary

Students should be able to:

Summary	A. Understand the role of CNN and GAN on image and video restoration tasksB. Understand merits and demerits of L1 and L2 loss and perceptual and adversarial loss.	
Project	A. Use DeepDeBlur orDeblurGan to de-blur the image in the KITTI dataset and apply RetinaNet to detect objects. Observe whether there is improvement in object detection.	

9. Computational Photography and Imaging

9.1. Introduction to the Module

Students should be able to:

	A. Differentiate between computational photography and
	computer vision in general
	B. Describe flash/no-flash images
	C. Describe multi-exposure images with different integration
	times
	D. Describe applications:
	a. High dynamic range
	b. Super-resolution 4K TV
	c. Lytro adjusting depth of field (refocus)
Introduction	d. L16 camera

9.2. High dynamic range (HDR)

A. Give introduction to high dynamic rar	ange (HDR)
--	------------

1.	Introduction	B. (Give some example pictures of HDR images	
2.	Traditional technique to create HDR	B. U	Use OpenCV API to do tone mapping Introduce HDR file format	http:// static.googleusercontent.com/ media/hdrplusdata.org/en// hdrplus.pdf
3.	Deep learning for HDR	В. [, , ,	https://github.com/ gabrieleilertsen/hdrcnn

9.3. Computational Processing

Students should be able to:

1. Introduction	 A. Describe image recovery from multiple images e.g. different exposures, illumination, etc. 	
	A. Describe optical blur and motion blur (or camera shake)	https://dl.acm.org/doi/
	B. Visualize images at different exposure values (images at	10.1145/1275808.1276379
	short exposure being noisy and long exposure with	
	camera shake)	http://openaccess.thecvf.com/
	C. Describe deconvolution of camera shake image with long	content_ECCV_2018/papers/
	exposure with image with short exposure as prior	Miika_Aittala_Burst_Image_Debl
2. Blur removal	D. Burst image deblurring	urring_ECCV_2018_paper.pdf

9.4. Computational Imaging/Optics

Students should be able to:

Concepts on computational imaging	 A. Describe computational imaging B. Describe difficulties of inverse filtering (deconvolution) C. Describe coded aperture (and flutter shutter) for motion blur removal D. Describe plenoptic camera and digital refocus

9.5. Computational Sensor

1. Concepts on	A. Event camera or DVS sensor	https://www.zora.uzh.ch/id/eprint/
computation sensor	B. Fluttered shutter	17629/1/Lichtsteiner_Latency_V.pdf
	 a. Explain the application of motion deblurring 	
		https://inivation.com/dvs/
		http://web.media.mit.edu/~raskar/
		<u>deblur/</u>

	http://web.media.mit.edu/~raskar/

9.6. Module Summary

Students should be able to:

	A. Discuss the role of hardware on simplifying the computation for deblurring and tracking
	B. Combine multiple frames to create more HDR like image
	C. Understand how some sensors can be used for tracking such
Module Summary	as DVS and how they are different from frame cameras.
	A. Implement a burst imaging technique for deblurring and to
Project for the Module	create HDR image.

10. Trustworthy Computer Vision

10.1. Introduction to the Module

Students should be able to:

		http://iphome.hhi.de/samek/
		https://openai.com/blog/ adversarial-example- research/
	A. Introduce what is explainable AI and trustworthy AIB. Describe Clever Hans phenomenon	https://arxiv.org/abs/ 1712.07107
	C. Describe some adversarial samples and method to generate adversarial samples through optimization	https://medium.com/
	D. Explain deep models for image classification, matching, etc. are black box and difficult to interpret	•
Introduction	E. Explain some problems: change of one pixel classify pandas as giboon	own-adversarial-examples- a61eb7620fd8

10.2. Explainable Computer Vision

1.	Explanation methods	A.	Introduce trustworthy AI and explainable AI	https://christophm.github.io/
		B.	Describe Clever Hans phenomenon	interpretable-ml-book/
		C.	Explain deep models for image classification, matching, etc. are	intro.html
			black box and difficult to interpret the output	
		D.	Model agnostic	https://github.com/
			a. LIME (https://github.com/marcotcr/lime)	kundajelab/deeplift

	b. SHAP (<u>https://github.com/slundberg/shap</u>)c. ANCHOR	
	E. Deep model specific	
	a. Grad-CAM (https://arxiv.org/pdf/1610.02391.pdf)b. Deep LIFT	
	c. LRP	
	F. Understand merits and demerits of the current explanation	
	techniques (<u>Interpretable Machine Learning</u>)	http://iphome.hhi.de/samek/
	A. Use SHAP explanation to explain output of models for: a. Sentiment analysis. Identify keywords used for prediction and discuss whether these words look	
Assignment	relevant.	

10.3. Robustness and adversarial attacks

Assignment	A. Generate adversarial samples by modifying one pixel and reproduce results of one pixel attack.	
Robustness and adversarial attacks	 A. Introduce the adversarial attacks B. Describe some adversarial samples and method to generate adversarial samples through optimization C. Explain some problems: adding noise classify a panda as a giboon D. Describe some papers: a. Explaining and Harnessing Adversarial Examples b. One Pixel Attack for Fooling Deep Neural Networks c. Detecting Adversarial Samples from Artifacts d. Face Anti-Spoofing Using Patch and Depth-Based CNNs e. A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing E. Verifying Properties of Binarized Deep Neural Networks A. Generate adversarial samples by modifying one pixel and 	adversarial-example- research/ https://medium.com/ @ml.at.berkeley/tricking- neural-networks-create-your- own-adversarial-examples- a61eb7620fd8 https://arxiv.org/abs/ 1712.07107 https://arxiv.org/pdf/ 1412.6572.pdf https://arxiv.org/pdf/ 1710.08864.pdf https://arxiv.org/pdf/ 1703.00410.pdf
		https://openai.com/blog/

10.4. Module Summary

Module Summary	A.	Able to debug ML models with explainability and verify	
		whether operating in the expected way.	
	В.	Understand tool and how to generate explanation for	
		given instance of input	

	C. Able to verify models and whether operating correctlyD. Incorporate adversarial concepts to strengthen models against it.	
Project for the Module	A. Show the heatmap of the region in the image used for classification. Use this tool to verify your object classification algorithm.	

Glossary of command words

This glossary table below is a guide to develop learning outcomes for each chapter that would help to develop, teach and learn content as well as for evaluation.

Command words	АО	Indication (What it means)	Use Cases
Define,	1	Formal statement/phrases of definition	equations, terms
What is meant by	1	Definition + Significance or context of the term	
Describe	2	State the main points, with diagrams, examples or so on	Phenomena, experiment, observation
Explain	2	Reasoning with reference of theory applied	Relationship, cause- effects,
State	1	Express in concise words, without supporting arguments	Theorem, law, fact, value without calculation
List	1	List down number of points without elaboration	
Exemplify	1,2	Provide examples	
Discuss	5	Critical account on the topic	critique,
Deduce, solve, Predict	4	Produce the answer through logical connections than just by recall	
Suggest, propose	4	applying knowledge to a new situation or when there is no unique idea	
Calculate, find out, workout, carry out	3	get a numerical from given data, some value, through some work	Workout to calculate a value
Determine	3	Quantity calculated with certainty	Magnitude, scale ,
Show	3	Derive result through a structured explicit evidence	
Justify, support	4	Support a case with evidence/arguments	
Verify, prove	4	Confirm that a given statement/result is true	
Estimate	4,5	Reasoned order of magnitude for the quantity	
Sketch	3,4	Make freehand sketch drawing/curve with key features	Diagrams, graphs, figures
Compare	4	Provide similarities and differences	

Recognise, identify, name, select	1	identify from having encountered them before	
Implement, code	3,6		
Create, design, construct,	6		
understand			
appreciate			