Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Programs were mostly entered using punched cards or paper tape. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Code-breaking algorithms have also existed for centuries. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Also, specific user environment and usage history can make it difficult to reproduce the problem. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Different programming languages support different styles of programming (called programming paradigms). The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Code-breaking algorithms have also existed for centuries. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Also, specific user environment and usage history can make it difficult to reproduce the problem. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. There are many approaches to the Software development process. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. There exist a lot of different approaches for each of those tasks. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards.