

ROB 311 – Lecture 3

- Today:
 - Review design framework
 - Review motors and transmissions
 - Begin planar modeling of a ball-bot
 - Hopefully get to Matlab example
 - Create a Github account

Design Analysis Framework

- We've begun with a framework for learning how to model the required capabilities of a robot's actuation system
- We use knowledge of the task requirements to guide the selection of a motor and transmission ratio, which impact physical design / control
- We are reviewing this framework before completing it using the ball-bot's task

Framework outcome: A motor that has the desired operating voltage, that is able to complete the task without overheating

Modeling Transmissions

- Transmissions are parameterized by their ratio and efficiency
- Efficiency depends on transmission type and stages (number of compound transmissions used)
- The ratio is often selected in tandem with the motor to produce the required torque-speed (or force-speed)
- Transmissions scale torque and speed inversely
- Usually input speed >> output speed
- Usually input torque << output torque
- Lets think about a cartoon example

Modeling Transmissions

Quick example using input/output:

$$\frac{3D}{D} = \frac{n_2}{n_1} = \frac{\dot{\theta}_{input}}{\dot{\theta}_{output}} = \frac{T_{output}}{T_{input}}$$
Notice torque and speed fractions reversed, also torque is ideal

- What is the equivalent inertia felt at the input? Or, how does J_L affect the inertia experience by the motor?
 - Look at systems kinetic energy

$$KE = \frac{1}{2}J_{m}\dot{\theta}_{input}^{2} + \frac{1}{2}J_{L}\dot{\theta}_{output}^{2} \quad \dot{\theta}_{output} = \frac{\dot{\theta}_{input}}{N} \quad \text{Known as:}$$

$$E = \frac{1}{2}J_{m}\dot{\theta}_{input}^{2} + \frac{1}{2}J_{L}\left(\frac{\dot{\theta}_{input}}{N}\right)^{2} \quad KE = \frac{1}{2}\left(J_{m} + \frac{J_{L}}{N^{2}}\right)\dot{\theta}_{input}^{2}$$

 $\frac{J_L}{N^2}$ is reflected inertia on motor side

- Which is right for your application?
- We quantify required torque / speed and current / voltage to make decision
- Typically assessed in tandem with the transmission ratio

- DC brushed motors
 - Rules of thumb:
 - Voltage is proportional to speed (effort)
 - Current is proportional to torque (flow)

 Think of a motor as a transformer – it transforms power in the form of current and voltage to power in the form of current and torque (plus loss as heat)

derivatives → solve

for $i_w(t)$

Modeling Brushed DC Motors

Torque to

accelerate

inertia

Motor

torque

Torque

lost to

friction

Governing equations

Motor

output

torque

At steady state, no damping (ideal)

$$k_t i_w(t) = T_x(t) \to i_w(t) = \frac{T_x(t)}{k_t}$$
$$v_w(t) = i_w(t)R + k_t \dot{\psi}(t)$$

$$v_w(t) = \frac{RT_x(t)}{k_t} + k_t \dot{\psi}(t)$$

$$T_{x}(t) = \frac{k_t^2}{R} \dot{\psi}(t) + \frac{k_t}{R} v_w(t)$$

Slope of diamond

Stall torque \rightarrow $T_{stall} = \frac{k_t}{R} v_w = k_t \cdot i_{stall}$ No-load speed \rightarrow $\dot{\theta}_{no-load} = \frac{v_w}{k_t}$

Mech.

Elec.

Power: $T_x(t)\dot{\psi}(t)$

 $v_w(t)i_w(t)$

- Mechanical and electrical power:
- Power is the derivative of energy
- Positive electrical power:

$$v_w(t) = i_w(t)R + L \frac{d}{dt}i_w(t) + k_t \dot{\Psi}(t)$$

$$+ + +/- +$$

$$v_{w}(t) = i_{w}(t)R + L \frac{d}{dt}i_{w}(t) + k_{t}\dot{\psi}(t)$$

$$- +/- -$$

Negative power: torque and velocity in opposite direction

Positive power: torque and velocity in same direction

Positive power: 'motoring'

Negative power: 'generating'

Mech.

Elec.

Power: $T_x(t)\dot{\psi}(t)$

 $v_w(t)i_w(t)$

Negative power:

$$v_w(t) = i_w(t)R + L \frac{d}{dt}i_w(t) + k_t \dot{\psi}(t)$$

$$+ - +/- +$$

$$v_w(t) = i_w(t)R + L \frac{d}{dt}i_w(t) + k_t \dot{\psi}(t)$$

$$- + +/- -$$

Negative power: torque and velocity in opposite direction

Positive power: torque and velocity in same direction

Positive power: 'motoring'

Negative power: 'generating'

^{*}It is possible for negative mechanical power to have positive electrical power*

Beginning Mechanical Modeling

- We are stopping here and beginning to model a simplified ball-bot
- Then we will return to thermal analysis
- These procedures we will learn to model the mechanics / task are general
- We begin with Newton's 2nd Law:

$$Force = mass \cdot acceleration \qquad F = m \cdot \ddot{x}$$

$$Torque = Moment \ of \ inertia \cdot angular \ acceleration \qquad T = J \cdot \ddot{\theta}$$

But we need an understanding of the forces, properties, and motion

- We need a more detailed description of the torques required
- In this step, we will model the mechanics of the system → get torque
- Lets identify some major components and properties of the ball-bot in a single plane

- Lets model the ball bot as a single wheel instead of three
- Differences?
 - More torque will be required, since there's only one wheel
 - Serves as a conservative estimate
 - This image is the X-Z plane
 - What would be different if we modeled the Y-Z plane?
 - Nothing

- These components have physical properties
- These can be found using many tools: estimating, direct measurements, online resources, datasheets, intuition
- We measured / looked up:

Body / chassis:

Distance to CoM:

Mass:

Moment of inertia in x and y planes: $I_{x,y} = 0.01 \ kgm^2$

Moment of inertia in z plane:

Wheel:

Mass:

Radius:

Moment of inertia:

Ball:

Mass:

Radius:

Moment of inertia:

$$L = 0.23 m$$

$$m_A = 1.71 \ kg$$

 $I_z = 0.017 \ kgm^2$

$$m_w = 0.29 \, kg$$

$$r_w = 0.1 m$$

$$I_w = 0.001 \, kgm^2$$

$$m_k = 0.62 \ kg$$

$$r_k = 0.12 \ m$$

$$I_k = 0.004 \ kgm^2$$

- Now we want to think about the ball's motion
- We need to define parameters that describe this motion
- Both x and y planes are identical mechanically

Body / chassis motion:

Lean rotation around the ball ϑ_{x} or ϑ_{y} (rad)

Wheel motion:

- ψ_x or ψ_v (rad)Rotation
- ϑ_{x} or ϑ_{y} (rad)Rotation around the ball

Ball motion:

- x_k or y_k (m)Translation in x or y planes:
- φ_x or φ_y (rad)**Rotation**

- Now we want to think about the ball's motion
- We need to define parameters that describe this motion
- Both x and y planes are identical mechanically

- Degrees of freedom: Four
 - x_k Forward motion of ball
 - Theta ϑ Lean of body / chassis
 - Phi φ Rotation of ball
 - Psi ψ Rotation of wheel
- Constraints: Wheels do not slip

$$x_k = r_k \varphi$$
 Basketball does not slip on the floor at A
$$\psi = \frac{r_k}{r_w} (\varphi - \vartheta) - \vartheta$$
 Tangential velocity constraint at B-C interface

- Two remaining DOFs:
 - ϑ and x_k for inverse modeling
 - ϑ and ψ for forward modeling

- We need to prescribe motion to the two remaining degrees of freedom
- Lets begin with x_k

If we want to predict the torque required, we need to generate a motion

profile.

- We choose this when specing the task
 - How long do we want it to take?
 - Final velocity: $\dot{x}_k^{final} = 1 \frac{m}{s}$
 - Ramp duration: 3.5 s
 - Resulting acceleration
 - What does this say about current and voltage needed?
 - Acceleration ~ Torque ~ Current
 - Velocity ~ Voltage

Time (s)

10

8

- We need to prescribe motion to the two remaining degrees of freedom
- We also need to provide information for the other DOF ϑ chassis lean angle
- Similarly, we choose this—how far do we want to be able to lean?
- We know it should lean with the applied torque
- Approach: scale the linear acceleration to an acceptable trajectory
- Lean angle is physically constrained wheels will lose contact
- Lets use approx. 4 deg (0.07 rad) as an acceptable value

$$F_{K1} = g \cdot m_k$$

$$F_{W1} = g \cdot m_w$$

$$F_{A1} = g \cdot m_a$$

Ball radius r_k Wheel radius r_w

$$x_k = r_k \varphi$$
Constraints:
$$\psi = \frac{r_k}{r_w} (\varphi - \vartheta)$$

Ball velocity:
$$\dot{\varphi} = \frac{\dot{x}_k}{r_k}$$

Intermediate var: $\gamma = L \cdot m_a + (r_k + r_w) \cdot m_w$

Tangential contact force : $F_{W2} = (m_a + m_w) \cdot (g \cdot \sin(\theta) - r_k \ddot{\varphi} \cos(\theta)) - \gamma \ddot{\theta}$

$$\gamma = L \cdot m_a + (r_k + r_w) \cdot m_w$$

$$F_{W2} = (m_a + m_w) \cdot (g \cdot \sin(\vartheta) - r_k \ddot{\varphi} \cos(\vartheta)) - \gamma \ddot{\vartheta}$$

$$\dot{\varphi} = \frac{\dot{x}_k}{r_k}$$

$$\psi = \frac{r_k}{r_w} (\varphi - \vartheta) - \vartheta$$
 Constraints From free body diagram

$$\gamma = L \cdot m_a + (r_k + r_w) \cdot m_w$$

$$F_{W2} = (m_a + m_w) \cdot (g \cdot \sin(\theta) - r_k \ddot{\varphi} \cos(\theta)) - \gamma \ddot{\theta}$$

$$\dot{\varphi} = \frac{\dot{x}_k}{r_k}$$

$$\dot{\varphi} = \frac{\dot{x}_k}{r_k}$$
 $\psi = \frac{r_k}{r_w}(\varphi - \vartheta) - \vartheta$

$$i_w = \frac{\frac{T_x}{N\eta} + JN\ddot{\psi} + bN\dot{\psi}}{k_t}$$

$$v_w = i_w R + k_t N \dot{\psi} + L \frac{di_w}{dt}$$

