FCC TEST REPORT

For Coagent Electronic S&T Co., Ltd.

Car DVD/TV/Radio/Bluetooth/GPS

Model No.: CA1621G, CA3612G, CA3600G, CA3602G, CA3611G, CA3616G, CA3620G, CA3621G, CA3625G, CA3626G, CA3628G, CA3632G, CA3633G, CA3635G, CA3636G, CA3638G, CA3639G, CA3640G, CA3641G, CA3651G, CA3652G, CA3657G, CA3658G, CA3659G, CA1622G, CA1623G, CA3650G, CA3646G, CA3649G, CA3050G

Test Report Number: EST0903-014-F

EST COMPLIANCE LABORATORY LIMITED

6/F, 207 Building, Nanyou No. 2 Industrial Park, Dengliang Road Nanshan District, Shenzhen 518053, China Tel:+86-755-26648640 Fax:+86-755-26648637

TABLE OF CONTENTS

1 - GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 DESCRIPTION OF TEST FACILITY	
1.3 Measurement Uncertainty	5
2 - MEASURING DEVICE AND TEST EQUIPMENT	6
3 - TECHNICAL TEST	7
3.1 SUMMARY OF TEST RESULTS	7
3.2 Antenna Requirement	
4 - CONDUCTED POWER LINE TEST	•
4.1 TEST EQUIPMENT	
4.2 TEST PROCEDURE	_
4.4 CONFIGURATION OF THE EUT	
4.5 EUT OPERATING CONDITION	
4.6 CONDUCTED POWER LINE EMISSION LIMITS	-
4.7 CONDUCTED POWER LINE TEST RESULT	
5. FCC PART 15.247 REQUIREMENTS FOR FHSS SYSTEMS	10
5.1 TEST EQUIPMENT	
5.2 TEST PROCEDURE	
5.3 TEST SETUP	
5.4 CONFIGURATION OF THE EUT	
5.5 EUT OPERATING CONDITION	
5.6 LIMIT	
5.7 Test Result	12
6. TRANSMITTER SPURIOUS RADIATED EMISSION AT 3 METERS	23
6.1 Test Equipment	
6.2 TEST PROCEDURE	
6.3 TEST SETUP	
6.4 Test Procedure	
6.5 LIMIT	
6.6 Test Result	25
7. RF EXPOSURE REQUIREMENTS	27
7.1 TEST EQUIPMENT	
7.1 TEST EQUIPMENT	
7.3 Test Result	
APPENDIX A - EUT PHOTOGRAPHS	
EUT - Overall View	
EUT - FRONT VIEW	_
EUT -Back View	
EUT - FRONT VIEWEUT - BACK VIEW	_
EUT - Inside View	
EUT - Inside View	32
EUT - Inside View	
PCB of EUT - Front View	
PCB of EUT - Back View	
PCB of EUT - FRONT VIEW	
PCB of EUT - Back View	
APPENDIX B - TEST SETUP PHOTOGRAPHS	36
RADIATED EMISSION	36

TEST REPORT

Applicant : Coagent Electronic S&T Co., Ltd.

Manufacturer : Coagent Electronic S&T Co., Ltd.

EUT : Car DVD/TV/Radio/Bluetooth/GPS

Model No. : CA1621G, CA3612G, CA3600G, CA3602G, CA3611G, CA3616G,

CA3620G, CA3621G, CA3625G, CA3626G, CA3628G, CA3632G, CA3633G, CA3635G, CA3636G, CA3638G, CA3639G, CA3640G, CA3641G, CA3651G, CA3652G, CA3657G, CA3658G, CA3659G, CA1622G, CA1623G, CA3650G, CA3646G, CA3649G, CA3050G

Trade Mark : CASKA
Rated Power Supply : DC 12~15V

Measurement Procedure Used:

FCC Part 15 Subpart C, Paragraph 15.247

The device described above is tested by EST COMPLIANCE LABORATORY LIMITED to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and EST COMPLIANCE LABORATORY LIMITED is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of EST COMPLIANCE LABORATORY LIMITED.

Date of Test:	Mar. 23~Apr. 15, 2009
Prepared by :	Daniel be
	(Engineer)
Reviewer:	Mass Ou
	(Project Manager)
Approved & Authorized Signer:	Alexalon
	(Manager)

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Coagent Electronic S&T Co., Ltd.

Address of applicant: Section C, Xi'nan industrial zone, Sanshui district, Foshan city,

China

Coagent Electronic S&T Co., Ltd. Manufacturer:

Section C, Xi'nan industrial zone, Sanshui district, Foshan city, Address of manufacturer:

China

General Description of E.U.T

EUT Description: Car DVD/TV/Radio/Bluetooth/GPS

Trade Name: CASKA

Model No.: CA1621G, CA3612G, CA3600G, CA3602G, CA3611G,

> CA3616G, CA3620G, CA3621G, CA3625G, CA3626G, CA3628G, CA3632G, CA3633G, CA3635G, CA3636G, CA3638G, CA3639G, CA3640G, CA3641G, CA3651G, CA3652G, CA3657G, CA3658G, CA3659G, CA1622G, CA1623G, CA3650G, CA3646G, CA3649G, CA3050G

Frequency: 2402~2480 MHz

Rate: DC 12~15V Power Supply: **DC 12V**

Date of receiver: Mar. 20, 2009

Date of test: Mar. 23~Apr. 15, 2009

Remark: The models of CA1621G, CA3612G, CA3600G, CA3602G, CA3611G, CA3616G,

CA3620G, CA3621G, CA3625G, CA3626G, CA3628G, CA3632G, CA3633G, CA3635G, CA3636G, CA3638G, CA3639G, CA3640G, CA3641G, CA3651G, CA3652G, CA3657G, CA3658G, CA3659G, CA1622G, CA1623G, CA3650G, CA3646G, CA3649G, CA3050G, are identical except appearance of equipment. Unless otherwise specified, all tests were performed on model CA3633G to represent the other similar models.

1.2 Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

VCCI-Registration No.: R-2197 and C-2383

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (VCCI) Voluntary Control Council for Interference by Information Technology Equipment. The acceptance letter from the VCCI is maintained in our files. Registration R-2197 and C-2383, September 29, 2005.

FCC-Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., No.1 Workshop,M-10,Middle Section, Science & Technology Park, Shenzhen, China 518057, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, August 04, 2005.

IC-Registration No.: 6002

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 6002, August 25, 2005.

Test Location

All Emissions tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd. at No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China

1.3 Measurement Uncertainty

Radiation Uncertainty : Ur = ± 4.26 dB

Conduction Uncertainty: Uc = ± 2.66 dB

2 - MEASURING DEVICE AND TEST EQUIPMENT

Equipment	Manufacturer	Model#	Serial #	Data of Cal.	Due Data
EMI Test Receiver	Rohde & Schwarz	ESCI	100119	Mar. 03, 2009	Mar. 03, 2010
EMI Test Receiver	Rohde & Schwarz	ESIB26	100249	Sep. 22, 2008	Sep. 22, 2009
Spectrum Analyzer	Rohde & Schwarz	FSP40	100273	Sep. 18, 2008	Sep. 17, 2009
Signal Generator	Rohde & Schwarz	SMR27	100124	Jul. 25, 2007	Jul. 24, 2009
Signal Generator	Rohde & Schwarz	SML03	102319	Aug. 01, 2007	Jul. 31, 2009
AC Power Source	All Power Electronic	APW-1100N	890869	N/A	N/A
	Co.				
Absorbing Clamp	Rohde & Schwarz	MDS21	100218	Apr. 30, 2007	Apr. 29, 2009
Power Meter	Rohde & Schwarz	NRVD	101287	Jul. 19, 2007	Jul. 18, 2009
Coaxial Cable	N/A	N/A	N/A	May. 31, 2008	May. 30,
					2009
Coaxial Cable	N/A	N/A	N/A	May. 31, 2008	May. 30,
					2009
Coaxial Cable	N/A	N/A	N/A	May. 31, 2008	May. 30,
	7.11000	G1 57 72 0 0	101=21	~	2009
Universal radio	Rohde & Schwarz	CMU200	101724	Sep.08, 2008	Sep.07, 2010
Communication					
tester					
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	N/A	N/A	N/A
BiConilog Antenna	ETS-LINDGREN	3142C	00042670	Mar.03, 2009	Mar.02, 2010
BiConilog Antenna	ETS-LINDGREN	3142C	00042673	Mar.03, 2009	Mar.02, 2010
Double-ridged	ETS-LINDGREN	3117	00035926	Dec.30, 2007	Dec.29, 2009
Waveguide horn					
Double-ridged	ETS-LINDGREN	3117	00041545	Dec.30, 2007	Dec.29, 2009
Waveguide horn					
Pre-amplifier	Rohde & Schwarz	AFS42-	1091457	Jul.17, 2008	Jul.16, 2010
1		00101800-			,
		25-S-42			
Thermo-/Hygrometer	N/A	TH01	N/A	May.03, 2008	Mar.03, 2010
Shielding Room	Zhong Yu Electron	GB-88	N/A	N/A	N/A
Sinciding Room		05 00	11/11		11/11
3m Semi-Anechoic	ETS-LINDGREN	N/A	N/A	Apr.28, 2007	Apr.27, 2009
Chamber	LIS DINDORDI	11/71	11/71	11p1.20, 2007	Apr.27, 2009
Chamber					

3 - Technical Test

3.1 Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.203, 15.247(b)(4)(iii)	Antenna Requirement	PASS	Complies
FCC Part 15, Paragraph 15.107, 15.207	Conducted Test	N/A	N/A
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)	20dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency	PASS	Complies
	Band Edges		
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

^{*} The digital circuit porting of the EUT has been tested and verified to comply with FCC Part 15 Subpart B Class B Digital Devices and the associated Radio Receiver has also been tested and found to comply with FCC Part 15, Subpart B – Radio Receivers.

3.2 Antenna Requirement

A. Regulation

FCC section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219 or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

B. Result

The internal antenna used in this product is a monopole antenna and integrated on PCB and it is considered to meet antenna requirement of FCC.

4 - Conducted Power Line Test

4.1 Test Equipment

Please refer to section 2 this report

4.2 Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm/50µH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50µH coupling impedance with 50ohm termination.

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2003 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

4.3 Test Setup

Horizontal Reference Ground Plane

For the actual test configuration, Please refer to the related items – Photos of Testing.

4.4 Configuration of the EUT

The EUT was configured according to ANSI C63.4-2003. EUT was used battery. The operation frequency is from 2400MHz~2483.5MHz. Enable the signal transmitted from the EUT. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

Note:

- 1) Operating Modes: Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements. The EUT operates in normal FHSS.
- 2) Special Test Software & Hardware: Special firmware and hardware provided by the Applicant are installed to allow the EUT to operates in FHSS at each channel frequency continuously. For example, the transmitter will be operated at each of lowest, middle and highest frequencies individually continuously during testing.
- 3) Transmitter Test Antenna: The EUT is tested with the antenna fitted in a manner typical of normal intended use as an integral / non-integral antenna equipment as describe with the test results.
- 4) Frequency(ies) Tested: 2402MHz, 2441MHz and 2480MHz were pre-tested, The worst case one, was chosen for conducted emission test.
- 5) Above 1GHz, the 2402MHz, 2441MHz and 2480MHz were tested individually.
- 6) Normal Test Modulation: FHSS
- 7) Modulating Signal Source: Internal
- * Associated Antenna Descriptions: The antenna used in this product is embedded antenna

4.5 EUT Operating Condition

Operating condition is according to ANSI C63.4 - 2003

- 4.5.1 Setup the EUT and simulator as shown as Section 4.3.
- 4.5.2 Turn on the power of all equipment.
- 4.5.3 Let the EUT work in test mode (On) and measure it.

4.6 Conducted Power Line Emission Limits

FCC Part 15 Paragraph 15.207				
Frequency Range	Limits (dBµV)			
	Class A	Class B		
	QP/AV QP/AV			
0.15 ~ 0.50	79/66	66 ~ 56 / 56 ~ 46*		
0.50 ~ 5.00	73/60	56/46		
5.00 ~ 30.0	73/60	60/50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. In the above table, the tighter limit applies at the band edges.

4.7 Conducted Power Line Test Result

Owing to DC operation of EUT, this test item is not performed.

5. FCC Part 15.247 Requirements for FHSS Systems

5.1 Test Equipment

Please refer to Section 2 this report

5.2 Test Procedure

Refer to FCC 15.247(a)(2), ANSI C63.4: 2003

20 dB Bandwidth:

- a. Place the EUT on the table and set it in the transmitting mode.
- b. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- c. Set the spectrum analyzer as RBW = 30 kHz, VBW = 100 kHz, Span = 2 MHz, Sweep = 100ms.
- d. Mark the peak frequency and -20dB (upper and lower) frequency.
- e. Repeat until all the rest channels are investigated.

Peak Power:

The transmitter output is connected to the test receiver. The test receiver is set to the peak power detection. The power is equal to the reading level on test receiver plus cable loss at the EUT RF output terminal.

100kHz Bandwidth of Band Edges Measurement:

- a. The transmitter output was connected to the spectrum analyzer via a low lose cable.
- b. Set both RBW and VBW of spectrum analyzer to 100kHz with suitable frequency span including 100kHz bandwidth from band edge.
- c. The band edges was measured and recorded.

Peak Power Spectral Density:

- a. The transmitter output is connect to a test receiver, The spectrum analyzer's resolution bandwidth was set at 3kHz RBW and 30kHz VBW as that of the fundamental frequency. Set the sweep time=100ms.
- b. The power spectral density was measured and recorded.
- c. The sweep time is allowed to be longer than span/3kHz for a full response of the mixer in the spectrum analyzer.

Frequency Separation:

- a. Place the EUT on the table and set it in the transmitting mode.
- b. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- c. Set the spectrum analyzer as RBW = 100kHz, VBW = 100kHz, Span = 2MHz, Sweep = 100ms.
- d. Set center frequency spectrum analyzer = middle of hopping channel. **Number of Hopping Frequency:**

- a. Place the EUT on the table and set it in the transmitting mode.
- b. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- c. Set spectrum analyzer Start = 2400MHz, Stop = 2483.5MHz, RBW = 100kHz, VBW = 300kHz, Sweep = 100ms.
- d. Max hold, view and count how many channel in the band.

Time of Occupancy (Dwell Time):

- a. Place the EUT on the table and set it in the transmitting mode.
- b. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- c. Set center frequency of spectrum analyzer = operating frequency, RBW = 100kHz, VBW = 300kHz, Sweep = 2ms.
- d. Repeat above procedures until all frequency measured were complete.

5.3 Test Setup

5.4 Configuration of the EUT

Same as section 4.4 of this report.

5.5 EUT Operating Condition

Same as section 4.5 of this report.

5.6 Limit

20 dB Bandwidth: For frequency hopping systems operating in the 2400MHz~2483.5MHz no limit for 20dB bandwidth

Peak Power: For frequency hopping systems operating in the 2400~2483.5MHz band employing at least 75 hopping channel, and all frequency hopping systems in the 5725 ~ 5850 MHz band: 1Watt. For all other frequency hopping systems in the 2400~2483.5MHz band: 0.125Watts.

100kHz Bandwidth of Band Edges Measurement: According to §15.247(c), in any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

Peak Power Spectral Density: According to §15.247(d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Frequency separation: According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 20dBbandwidth of the hopping channel, whichever is greater. Number of Hopping Frequency: According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400~2483.5MHz bands shall use at least 15hopping frequencies.

Number of Hopping Frequency: According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400~2483.5MHz bands shall use at least 15hopping frequencies.

Time of Occupancy (Dwell Time): According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400~2483.5MHz. The average time of occupancy on any frequency shall not greater than 0.4s within period of 0.4 seconds multiplied by the number of hopping channel employed.

5.7 Test Result

A. 20dB Bandwidth

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: 20dB BW Temperature: 24℃ Test Voltage: DC 12V (Power by Battery) Humidity: 55%RH

Test Result: PASS

Channel	Frequency	20dB Down BW
	(MHz)	(kHz)
Low	2402	739.48
Mid	2441	745.49
High	2480	733.47

B. Peak Power

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: Peak Power Temperature: 24° C Test Voltage: DC 12V (Power by Battery) Humidity: 55%RH

Test Result: PASS

Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	2402	-0.52	,	PASS
Mid	2441	0.59	1.0/30.00	PASS
High	2480	-0.19		PASS

C. 100kHz Band Edges Measurement

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: Band Edges Measurement Temperature: 24℃
Test Voltage: DC 12V (Power by Battery) Humidity: 55%RH

Test Result: PASS

Channel	Detector	Radiated	Conducted Method	The Max.	Limit	Margi
		Method	Between Carrier	Field	@3m	n (dB)
		Max. Field	Max.	Strength in	(dBµVm)	
		Strength	Power and Local	Restrict Band	Peak/	
		of Fundamental	Max.	(dBµV/m)	Average	
		(dBµV)	Emission in			
			Restrict			
			Band (dBc)			
Low	Peak	72.04	31.28	40.76	74.0 / 54.0	-33.24
High	Peak	74.59	38.86	35.73	74.0 / 54.0	-38.27

Note: 1. According to step 2 of Marker-Delta Method DA 00-705 (following plots included).

According to step 3 of Marker-Delta Method:
 The Max. Field Strength in Restrict Band = Filed Strength of Fundamental – Between Carrier Max. Power and Local Max. Emission in Restrict Band.

3. The average measurement was not performed when the peak measured data under the limit of average detection. If the reading given are average, peak measurement should also be supplied.

D. Peak Power Spectral Density

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: Peak Power Spectral Density Test Voltage: DC 12V (Power by Battery)

Test Result: PASS

Temperature: 24°C Humidity: 55%RH

Channel	Frequency	PPSD	FCC Limit	Result
	(MHz)	(dBm)	(dBm)	
Low	2402	-		N/A
			8.00	
Mid	2441	-		N/A
High	2480	-		N/A

Note: Not applicable, the device is FHSS modulation.

E. Frequency Separation

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: Frequency Separation Temperature: 24℃ Test Voltage: DC 12V (Power by Battery) Humidity: 55%RH

Test Result: PASS

Channel	Frequency (MHz)	Separation Read Value (kHz)	Separation Limit (kHz)
Low	2402	1000	745111
Mid	2441	1000	>745kHz
High	2480	1000	

F. Number of Hopping Frequency

Product: Car DVD/TV/Radio/Bluetooth/GPS

Test Item: Number of Hopping Frequency Test Voltage: DC 12V (Power by Battery)

Test Result: PASS

Test Mode: CH Low ~ CH High

Temperature: 24°C Humidity: 55%RH

Hopping Channel	Quantity Hopping Channel	Quantity of Hopping Channel
Frequency Ranger	Read Value	Limit
2402 ~ 2480	79	75

G. Time of Occupancy (Dwell Time)

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: Time of Occupancy Temperature: 24°C Humidity: 55%RH

Test Voltage: DC 12V (Power by Battery)

Test Result: PASS

Channel	Frequency	Average time of occupancy	Average time of
	(MHz)	Read Value (ms)	occupancy Limit (ms)
Low	2402	333.06	
			400
Mid	2441	333.06	100
High	2480	330.92	
_			

This channels was part of sweep in 31.6s

This channels was part of sweep in 31.6s

This channels was part of sweep in 31.6s

6. Transmitter Spurious Radiated Emission at 3 Meters

6.1 Test Equipment

Please refer to Section 2 this report

6.2 Test Procedure

- 1. The EUT was tested according to ANSI C63.4 2003. The radiated test was performed at SGS. This site is on file with the FCC laboratory division, Registration No. 556682.
- 2. The EUT, peripherals were put on the turntable which table size is 1m×1.5m, table high 0.8m. All set up is according to ANSI C63.4 2003.
- 3. The frequency spectrum from 30MHz to 1GHz was investigated. All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak values with a resolution bandwidth of 1MHz. Measurements were made at 3 meters.
- 4. The antenna high is varied from 1m to 4m high to find the maximum emission for each frequency.
- 5. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4dB of specification limit), and are distinguished with a "QP" in the data table.
- 6. The antenna polarization: Vertical polarization and Horizontal polarization.

6.3 Test Setup

For the actual test configuration, Please refer to the related items – Photos of Testing.

6.4 Test Procedure

Same as section 4.4 of this report

6.5 Limit

In any 100kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20dB below that in any 100kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in section 15.209(a), which lesser attenuation.

All other emissions inside restricted bands specified in section 15.205(a) shall not exceed the general radiated emission limits specified in section 15.209(a).

Note:

Applies to harmonics/spurious emissions that fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209. 47 CFR §15.237(c): The emission limits as specified above are based on measurement instrument employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.

15.205(a) - Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	167.72 - 173.2 240 - 285 322 - 335.4	3332 - 3339 3345.8 - 3358 3600 - 4400	31.2 - 31.8 36.43 - 36.5 (²)

Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

15.209(a) - Field Strength Limits within Restricted Frequency Bands

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 - 30.0	30	30	
30 - 88	100 **	3	
88 - 216	150 **	3	
216 - 960	200 **	3	
Above 960	500	3	

² Above 38.6

6.6 Test Result

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: Spurious Radiated Emissions
Test Voltage: DC 12V (Power by Battery)
Test Result: PASS Temperature: 24°C Humidity: 55%RH

Freq.	Ant.Pol.	Emission Level	Limit 3m	Margin	Note
(MHz)	H/V	(dBuV)	(dBuV/m)	(dB)	
99.841	V	35.13	43.50	-8.37	PK
101.780	V	33.52	43.50	-9.98	PK
136.780	V	35.38	43.50	-8.12	PK
187.140	V	35.44	43.50	-8.06	PK
191.078	V	35.76	43.50	-7.74	PK
235.58	V	37.61	46.00	-8.39	PK
113.420	Н	34.22	43.50	-9.28	PK
125.060	Н	35.15	43.50	-8.35	PK
152.664	Н	32.12	43.50	-11.38	PK
171.620	Н	31.24	43.50	-12.26	PK
206.540	Н	32.15	43.50	-11.35	PK
258.250	Н	37.51	46.00	-8.49	PK

(1) All Readings are Peak Value. Note:

(2) Emission Level= Reading Level+Probe Factor +Cable Loss

(3) The average measurement was not performed when the peak measured data under the limit of average detection.

CH Low

011 = 011				
Freq.	Emission (dBµV/m)	HORIZ /	Limits (dBµV/m)	Margin
(MHz)	Peak Detector	VERT	Peak / Average	(dB)
4804	-	HORIZ	74.0 / 54.0	-
4804	-	VERT	74.0 / 54.0	-
7206	-	HORIZ	74.0 / 54.0	-
7206	-	VERT	74.0 / 54.0	-
9608	-	HORIZ	74.0 / 54.0	-
9608	-	VERT	74.0 / 54.0	-
12010	-	HORIZ	74.0 / 54.0	-
12010	-	VERT	74.0 / 54.0	-
14412	-	HORIZ	74.0 / 54.0	-
14412	-	VERT	74.0 / 54.0	-
16814	-	HORIZ	74.0 / 54.0	-
16814	-	VERT	74.0 / 54.0	-
19216	-	HORIZ	74.0 / 54.0	-
19216	-	VERT	74.0 / 54.0	-
21618	-	HORIZ	74.0 / 54.0	-
21618	-	VERT	74.0 / 54.0	-
24020	-	HORIZ	74.0 / 54.0	-
24020	-	VERT	74.0 / 54.0	-
CH Mid	-			
Freq.	Emission (dBµV/m)	HORIZ /	Limits (dBµV/m)	Margin
(MHz)	Peak Detector	VERT	Peak / Average	(dB)

4882	-	HORIZ	74.0 / 54.0	-
4882	-	VERT	74.0 / 54.0	-
7323	-	HORIZ	74.0 / 54.0	-
7323	-	VERT	74.0 / 54.0	-
9764	-	HORIZ	74.0 / 54.0	-
9764	-	VERT	74.0 / 54.0	-
12205	-	HORIZ	74.0 / 54.0	-
12205	-	VERT	74.0 / 54.0	-
14646	-	HORIZ	74.0 / 54.0	-
14646	-	VERT	74.0 / 54.0	-
17087	-	HORIZ	74.0 / 54.0	-
17087	-	VERT	74.0 / 54.0	-
19528	-	HORIZ	74.0 / 54.0	-
19528	-	VERT	74.0 / 54.0	-
21969	-	HORIZ	74.0 / 54.0	-
21969	-	VERT	74.0 / 54.0	-
24410	-	HORIZ	74.0 / 54.0	-
24410	-	VERT	74.0 / 54.0	-

High

<u></u>				
Freq.	Emission (dBµV/m)	HORIZ /	Limits (dBµV/m)	Margin
(MHz)	Peak Detector	VERT	Peak / Average	(dB)
4960	1	HORIZ	74.0 / 54.0	-
4960	1	VERT	74.0 / 54.0	-
7440	ı	HORIZ	74.0 / 54.0	-
7440	1	VERT	74.0 / 54.0	-
9920	-	HORIZ	74.0 / 54.0	-
9920	-	VERT	74.0 / 54.0	-
12400	-	HORIZ	74.0 / 54.0	-
12400	-	VERT	74.0 / 54.0	-
14880	-	HORIZ	74.0 / 54.0	-
14880	-	VERT	74.0 / 54.0	-
17360	-	HORIZ	74.0 / 54.0	-
17360	-	VERT	74.0 / 54.0	-
19840	-	HORIZ	74.0 / 54.0	-
19840	-	VERT	74.0 / 54.0	-
22320	-	HORIZ	74.0 / 54.0	-
22320	-	VERT	74.0 / 54.0	-
24800	-	HORIZ	74.0 / 54.0	-
24800	-	VERT	74.0 / 54.0	-

- Note: 1. All Reading Levels below 1GHz are Quasi-Peak, above are peak and average value.

 2. Emission Level = Reading Level + Probe Factor + Cable Loss

 3. Receiver Setting (Peak Detector): RBW=1 MHz; VBW=1 MHz; Span=100MHz

 4. Receiver Setting (AVG Detector): RBW=1 MHz; VBW=30 Hz; Span=20MHz

 5. The average measurement was not performed when the peak measured data under the limit of average detection. If the reading given are average, peak measurement should also be supplied.
 - 6. Where an emission level is indicated by a -, levels had a margin greater than 20dB when compared to the limit

7. RF Exposure Requirements

7.1 Test Equipment

Please refer to Section 2 this report

7.2 Limit

According to FCC 15.247(i), Systems operating under provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commissions guidelines.

FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)(1) of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
(A) Limits for Occupational/Controlled Exposures						
614 1842/1 61.4	1.63 4.894 0.163	*(100) *(90042) 1.0 6/300 5	6 6 6 6			
or General Populati	on/Uncontrolled Exp	oosure				
614 824/1 27.5	1.63 2.19/1 0.073	"(100) "(180/f²) 0.2 1/1500 1.0	30 30 30 30 30			
	strength (V/m) its for Occupational 614 1842/1 61.4 or General Populati 614 824/1 27.5	Strength (V/m) Strength (A/m)	Strength (V/m) Power density (mW/cm²)			

7.3 Test Result

Product: Car DVD/TV/Radio/Bluetooth/GPS Test Mode: CH Low ~ CH High

Test Item: RF Exposure
Test Voltage: DC 12V (Power by Battery) Temperature: 24°C Humidity: 55%RH

Test Result: PASS

RE: Pd = $(Pout*G)/(4*pi*R^2)$ pls use a table and calculate it in your test report

Pd = power density in mW/cm2 Pout = output power to antenna in mW

G = gain of antenna in linear scale

R = distance between observation point and center of the radiator in cm

Antenna gain: 2dBi

Channel	Channel	Output Peak	Antenna Gain	Power density	Power density
	Frequency	power (mW)	(dBi)	at 20cm	Limits
	(MHz)	, ,	,	(mW/cm ²)	(mW/cm ²)
Low	2402	0.89	2	0.00028	1
Mid	2441	1.15	2	0.00036	1
High	2480	0.96	2	0.00030	1

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled initis apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

APPENDIX A - EUT PHOTOGRAPHS

EUT - Overall View

EUT - Front View

EUT -Back View

EUT - Front View

EUT - Back View

EUT - Inside View

PCB of EUT - Front View

PCB of EUT - Back View

PCB of EUT - Front View

PCB of EUT - Back View

APPENDIX B - TEST SETUP PHOTOGRAPHS

Radiated Emission

