

Pipeline Buffers

COEN 122 Lab 4

Grading

• Lab 1-4 (10% each) 40%

• Final Project 60%

Late Policy

 Late submissions submitted within 24 hours after the deadline receive 50% credit. After 24 hours, no credit is given.

Demo

- Labs submitted with no demo will receive no credit. Please demo to me before the lab is due.
- You can demo in either TAs Office Hours

Lab 4 Overview

- Objective: Implement a buffer for a CPU pipeline in Verilog using Vivado
 - Only one example is required, but we recommend implementing all buffers: IF/ID, ID/EX, EX/WB (or EX/MEM and MEM/WB)
- For the first 4 labs, you will be working individually, but will be working in teams for the project

Helpful website: http://www.asic-world.com/verilog/veritut.html

Design Flow

- Write code for logic block (e.g. IF/ID, ID/EX, EX/WB)
- Write test bench to verify proper function of logic block
- Run Synthesis
- Run Simulation
- View waveform, verify results

Pipeline buffers

- Buffers serve as a way to synchronize the pipeline across its multiples stages
- Each buffer is responsible for taking the data from the preceding stage and, on each clock cycle, transferring it into the following stage.

Simple Datapath for Single Cycle

Recommendation

 We know you are still covering the topic of pipelines in lecture, but implement your buffers with your final project in mind. You will be designing and implementing a datapath for your final project and doing some of the work now will make your life easier

 Hint: you've already implemented some of the modules, so think about how they would be connected through the buffers. Also take a look at the lecture slides for more sample pipelines.