Page 1 of 2

BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-126221

(43) Date of publication of application: 16.05.1995

(51)Int.CI.

C07C 69/96 C07C 68/06 C08G 64/02 // C08G 18/44

(21)Application number : **05–294505**

(71)Applicant: NIPPON PAINT CO LTD

DAICEL CHEM IND LTD

(22)Date of filing:

28.10.1993

(72)Inventor: NAKANO SHINJI

MORIMOTO TAKAO YAMADA SHINYA FUJIWA TAKAAKI MATSUI HIDEKI

TABUCHI TAKEHARU

(54) HYDROXYL-BEARING ALIPHATIC CARBONATE

(57)Abstract:

PURPOSE: To provide a new aliphatic carbonate having chemically stable carbon ate linkage, useful as a raw material for polyurethanes or plastics. CONSTITUTION: The aliphatic polycarbonate of formula I (A is aliphatic hydrocarbon residue which may contain ≤20C ether linkage(s); R1 and R2 are each 2−8C alkylene; x is 0 or 1−6; y and z are each 1−6), e.g. butyl 2,2−dimethyl−3− hydroxypropyl carbonate can be obtained by reaction between an alcohol compound of formula II and a cyclic carbonate compound of formula III in the presence of a catalyst.

$$V = \{ (0 - 1)^{\frac{1}{2}} \cdot \mathbb{R}_{+} \} \times \{ 0 \in \mathbb{Q} \setminus \mathbb{R}_{+} \}^{\frac{1}{2}} = 0 \, \mathbb{R}_{+} \}^{\frac{1}{2}}$$

п

$$D = C R^{\frac{1}{2}}$$
 (8)

LEGAL STATUS

[Date of request for examination]

12.03.1999

[Date of sending the examiner's decision of rejection]

30.04.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

Ī

Date of final disposal for application

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

BEST AVAILABLE COPY

(19) [1本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-126221

(43)公開日 平成7年(1995)5月16日

(51) Int.Cl.6 識別記号 庁内整理番号 FΙ 技術表示箇所 C 0 7 C 69/96 Z 9279-4H 68/06 Z 9279-4H C 0 8 G 64/02 NPT // C08G 18/44 NDW

審査請求 未請求 請求項の数6 FD (全 5 頁)

(21)出願番号 特願平5-294505 (71)出願人 000230054 日本ペイント株式会社 (22)出願日 平成5年(1993)10月28日 大阪府大阪市北区大淀北2丁目1番2号 (71)出願人 000002901 ダイセル化学工業株式会社 大阪府堺市鉄砲町1番地 (72)発明者 仲野 伸司 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内 (72)発明者 森本 孝夫 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内 (74)代理人 弁理士 赤岡 迪夫 最終頁に続く

(54) 【発明の名称】 水酸基を有する脂肪族カーボネート

(57)【要約】

【目的】 化学的に安定なカーボネート結合によって炭 化水素鎖に結合した水酸基含有基を有する化合物を提供 する。

【構成】 5~7員環脂肪族環状カーボネートを脂肪族 モノまたは多価アルコールで開環付加(重合)すること によって、式

【化1】

(式中、Aは総炭素数20までのエーテル結合を含んで もよい脂肪族炭化水素基、R'およびR² は炭素数2~ 8のアルキレン鎖、xは0または1~6の整数、yおよ び 2 は 1~6 の整数である。) を有する水酸基を有する 脂肪族カーボネートが得られる。

(2)

* 【化1】

特開平7-126221

【特許請求の範囲】 【請求項1】式

((0 Ĉ − R ¹) √ -(ОСО-R²)уОН) в

(式中、Aは総炭素数20までのエーテル結合を含んで もよい脂肪族炭化水素残基、R1 およびR2 は炭素数2 ~8のアルキレン鎖、xは0または1~6の整数、yお よび 2 は 1 ~ 6 の整数である。) を有する脂肪族カーボ ネート。

【請求項2】Aが飽和脂肪族モノアルコールの残基であ る請求項1の脂肪族カーボネート。

【請求項3】Aがエーテル結合を含んでもよい不飽和脂 防族モノアルコールの残基である請求項1の脂肪族カー ボネート。

【請求項4】Aがエーテル結合を含んでもよい脂肪族多 価アルコールの残基である請求項1の脂肪族カーポネー

【請求項5】 R^1 が1, 5-ペンチレン鎖であり、xが $1 \sim 6$ の整数である請求項1 ないし4 のいずれかの脂肪 20 を有する脂肪族モノおよび多価アルコールを提供する。 族カーポネート。

【請求項6】R2 が2, 2-ジメチル-1, 3-プロピ レン鎖である請求項1ないし5のいずれかの脂肪族カー ポネート。

【発明の詳細な説明】

 $A \rightarrow (OC - R^{\dagger})_{x} (OCO - R^{2})_{y} OH)_{z}$

Ж

(式中、Aは総炭素数20までのエーテル結合を含むこ ともある脂肪族炭化水素残基、R1 およびR2 は炭素数 30 2~8のアルキレン鎖、xは0または1~6の整数、y およびぇは1~6の整数である。)を有する。

【0006】本発明の脂肪族カーボネート化合物は、式 (化31

$$A = \frac{O}{(OC - R')} \times OH)_z$$

(式中、A, R¹, xおよびzは前記に同じ。) のアル コール化合物と、式

(化4)

$$O = C \bigcap_{Q \in \mathcal{Q}} R^2$$

(式中、R² は前記に同じ。) の環状カーボネート化合 物とを、触媒の存在下反応させることによって合成する ことができる。

【0007】詳細な議論

式、

※【0001】本発明の背景

本発明は、水酸基を有する脂肪族カーポネート化合物に 関する。

【0002】エステル結合を含む水酸基含有脂肪族化合 10 物は、エチレングリコールモノアセテートのように溶剤 として、またはポリカプロラクトンポリオールや他のポ リエステルポリオールのように、例えばポリウレタンの 原料として広く使用されている。

【0003】ところがエステル結合は加水分解を受け易 く、エステル結合を含むポリオール類を原料としたポリ ウレタンでは耐水性の向上は期待できない。そこで本発 明は、エステル結合を有する脂肪族モノまたは多価アル コール類に代わって、ポリウレタンやプラスチックの原 料として使用し得る、化学的に安定なカーボネート結合

【0004】本発明の開示

本発明により、化学的に安定な、水酸基含有脂肪族カー ボネート化合物が提供される。

【0005】該化合物は、式

【化2】

【化5】

((0 Ё – R¹) " ОН) "

のアルコール化合物としては、1価のアルコールとし て、メタノール、エタノール、プロパノール、イソプロ パノール、ヘキサノール、2-エチルヘキサノール、ラ ウリルアルコール、ステアリルアルコール等の炭素数2 0までのアルカノールがある。ここでいう「脂肪族アル コール」とは、アルコール性水酸基が結合する炭素原子 が脂肪族性であることを意味し、従ってベンジルアルコ 40 ール、フェネチルアルコール、シクロヘキサノール、 3, 3, 5-トリメチルシクロヘキサノールなども含ま れる。また、メトキシプロパノール、3-メトキシブタ ノール、エチレングリコールモノメチルエーテル、エチ レングリコールモノエチルエーテル、トリエチレングリ コールモノエチルエーテル、エチレングリコールモノブ チルエーテル、グリシドールのようなエーテル結合を含 んだ脂肪族モノアルコールも含まれる。

【0008】さらに、アリルアルコール、ヒドロキシエ チルビニルエーテル、ヒドロキシブチルビニルエーテ 50 ル、エチレングリコールモノアリルエーテル、プロパル 5

ウム塩を用いてもよい。

· 【0016】また、n-ブチルリチウム、sec-ブチ ルリチウムなどのアルキルアルカリ金属、L1-、Na -、K-エチラート、-ブチラート、-イソブチラー ト、-t-ブチラート、-オクチラートなどのアルカリ 金属アルコラートなども有効な触媒である。また、ジエ チルアミン、トリエチルアミン、ジプチルアミン、N. N-ジメチルシクロヘキシルアミン、ジメチルベンジル アミン、ヘキサメチレンテトラミン、1,8-ジアザビ 有効な触媒である。

【0017】触媒の添加量は、1ppm~5%、好まし くは5~5000ppmである。

【0018】触媒の添加量が1ppmより少なくなると 反応速度がきわめて遅く、実用的な意味を持たず、逆に 5%より多くなると脱炭酸やエステル交換による副反応 が多く発生するようになり好ましくない。

【0019】反応温度は、出発原料であるアルコールお よび触媒の種類にもよるが、一般に室温ないし150℃ の温度である。

【0020】反応は、無溶媒もしくはペンゼン、トルエ ンなどの芳香族炭化水素、酢酸エチル、酢酸ブチルなど のエステル類、アセトン、メチルイソプチルケトンなど のケトン類、ジクロロメタン、ジクロロエタンなどのハ ロゲン化炭化水素、テトラヒドロフラン、1,4-ジオ キサンなどのエーテル、アセトニトリル、ニトロベンゼ ン、ニトロメタンなど非プロトン性有機溶媒中で行うこ とができる。

【0021】溶剤を使用するのは、系内を均一にするこ とにより反応中の温度コントロールなどを容易にするた 30 た。 めである。不活性な溶剤の使用量は、5~80重量%、 好ましくは10~50重量%である。

【0022】溶剤の使用量が80重量%より多くなると 重合反応が遅くなるため好ましくない。逆に溶剤の使用 量が5重量%より少なくなると粘度低下の効果が少な 11

【0023】通常、反応は溶媒、脂肪族アルコール、環 状カーボネート化合物および触媒の順序で反応器に仕込 み、次いで前記のような温度範囲で上昇させる。

【0024】脂肪族環式カーポネートの付加反応の終点 40 は、ガスクロマトグラフィーで行い、通常は環状カーボ ネートの濃度が1%以下になった時点を反応の終点とみ なす。

【0025】以下、例を挙げて本発明を説明するがこれ らによって本発明が限定されるものではない。

【0026】実施例1

ブチル2,2-ジメチル-3-ヒドロキシプロピルカー ポネートの合成

ネオペンチルグリコールカーボネート3.9gを、n-ブタノール4.44gに溶解し、ピリジニウム-p-ト 50 ルエンスルフォネート0.075gを加え、120℃で 20分間反応させた。反応終了後、ブタノールを減圧で 留去し、析出した未反応の環状カーボネートを濾別し、 表記化合物を得た。

【0027】実施例2

プチルポリ(2.2-ジメチル-3-ヒドロキシプロピ ル) カーポネートの合成

ネオペンチルグリコールカーポネート11.7gを、n ープタノール4. 44gに溶解し、ピリジニウム-p-シクロ〔5, 4, 0〕-7-ウンデセン等のアミン類も 10 トルエンスルフォネート0.075gを加え、120℃ で4時間反応させた。反応終了後、ブタノールを減圧で 留去し、析出した未反応の環状カーボネートを濾別し、 表記化合物を得た。

【0028】実施例3

カーボネートジオールの合成

ネオペンチルグリコールカーポネート3.9gを、エチ レングリコール6.2gに溶解し、ピリジニウム-p-トルエンスルフォネートO. 075gを加え、120℃ で3時間反応させた。反応終了後、エチレングリコール 20 を減圧で留去し、析出した未反応の環状カーポネートを 濾別し、表記化合物を得た。

【0029】実施例4

ポリカーボネートジオールの合成

ネオペンチルグリコールカーポネート15.6gを、エ チレングリコール 6.2 g に溶解し、 α , α – ジメチル ベンジルピリジニウムヘキサフルオロアンチモネート 0. 13gを加え、120℃で7時間反応させた。反応 終了後、エチレングリコールを減圧で留去し、析出した 未反応の環状カーボネートを濾別し、表記化合物を得

【0030】実施例5

ヘキシル2、2-ジメチル-3-ヒドロキシプロピルカ ーポネートの合成

ネオペンチルグリコールカーポネート3.9gを、n-ヘキサノール5.0gに溶解し、p-トルエンスルフォ ン酸 0. 0 7 5 gを加え、1 0 0 ℃で 2 0 分間反応させ た。反応終了後、ヘキサノールを減圧で留去し、析出し た未反応の環状カーボネートを濾別し、表記化合物を得 た。

【0031】実施例6

ネオペンチルグリコールカーポネート7.8gと、プラ クセル205 (ダイセル化学工業(株)製2官能カプロ ラクトンオリゴマー、分子量503、水酸基価530) 15.9gと、ピリジニウムーpートルエンスルフォネ ート0.075gを混合し、120℃で4時間反応させ た。反応終了後、反応液をメタノールに投入し、再沈澱 して水酸基価141のポリカーボネートポリオールを得 た。IR: λ3450 cm⁻¹ (OH), 1720 cm⁻¹ (C=0)

【0032】実施例7

7

ネオペンチルグリコールカーポネート11.7gと、プ・ラクセル305 (ダイセル化学工業(株) 製3官能カプロラクトンオリゴマー,分子量550,水酸基価305)16.5gと、ピリジニウム-p-トルエンスルフォネート0.075gを混合し、120℃で7時間反応

させた。反応終了後、反応被をメタノールに投入し、再 沈澱して水酸基価 179のポリカーボネートポリオール を得た。 $IR: \lambda 3450$ c m^{-1} (OH) , 1715 c m^{-1} (C=0)

フロントページの続き

(72)発明者 山田 真也

大阪府寝屋川市池田中町19番17号 日本ペイント株式会社内

イント株式会1 (72)発明者 藤輪 高明

広島県大竹市玖波4-13-5

(72)発明者 松井 秀樹

広島県大竹市玖波4-13-5

(72)発明者 田淵 丈晴

広島県大竹市玖波4-4-1

BEST AVAILABLE COPY