[Wine Quality Dataset 분석]

- 와인 품질 예측 모델 만들기
- 데이터 출처 : https://www.kaggle.com/datasets/yasserh/wine-quality-dataset?select=WineQT.csv (https://www.kaggle.com/datasets/yasserh/wine-quality-dataset?select=WineQT.csv)
- 데이터 분석 코드
 - github 코드 (https://github.com/LDJWJ/dataAnalysis/blob/main/)
 - HTML코드 (https://ldjwj.github.io/dataAnalysis/)

대회 개요

- 데이터 세트는 와인에 존재하는 다양한 화학 물질의 양과 와인 품질에 미치는 영향을 설명. 이 데이터로 분류 또는 회귀 문제를 생각해 볼 수 있음.
- 미션 : 주어진 데이터를 이용하여 와인의 품질을 예측하기.

데이터 설명

Input variables (based on physicochemical tests):

```
1 - fixed acidity (고정 산도)
2 - volatile acidity (휘발성 산도)
3 - citric acid (구연산)
4 - residual sugar (잔류 설탕)
5 - chlorides (염화물)
6 - free sulfur dioxide (유리 이산화황)
7 - total sulfur dioxide (총 이산화황)
8 - density (밀도)
9 - pH₩ (pH)
10 - sulphates (황산염)
11 - alcohol (알코올)

* Output variable (based on sensory data):
12 - quality (score between 0 and 10) (품질)
```

라이브러리 불러오기

In [1]:

```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
```

데이터 불러오기

In [2]:

```
dat = pd.read_csv("./data/WineQT/WineQT.csv")
dat.shape
```

Out[2]:

(1143, 13)

• 데이터 셋: 1143개 13열

In [3]:

```
dat.columns
```

Out[3]:

In [4]:

dat.head()

Out [4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											•

In [5]:

dat.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	рН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	ld	1143 non-null	int64
		/ - \	

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

• 결측치 없음.

· target columns : quality

In [6]:

dat.quality.unique()

Out[6]:

array([5, 6, 7, 4, 8, 3], dtype=int64)

In [7]:

dat.head()

Out[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											•

01 우선 데이터를 나누고,

02 모델을 선택 및 학습하고, 이를 토대로 자체 평가를 토대로 모델 최종 선택

03 마지막 선택된 모델로 test의 quality를 예측하고 제출

01 데이터 나누기

In [8]:

dat.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	рН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	ld	1143 non-null	int64
5 6 7 8 9 10	free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality	1143 non-null 1143 non-null 1143 non-null 1143 non-null 1143 non-null 1143 non-null	float64 float64 float64 float64 float64 int64

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

In [9]:

```
sns.countplot(dat['quality'])
```

C:\Users\totofriend\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future\array ning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out [9]:

<AxesSubplot:xlabel='quality', ylabel='count'>

우선 결측치 처리된 컬럼을 이용해 보자.

In [10]:

Out [10]:

```
((800, 4), (343, 4))
```

In [11]:

```
from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier
```

In [12]:

```
model1 = KNeighborsClassifier()
model1.fit(X_train, y_train)
print("학습용 정확도: ", model1.score(X_train,y_train))
print("테스트용 정확도: ", model1.score(X_test,y_test))

model2 = DecisionTreeClassifier(max_depth=3, random_state=0)
model2.fit(X_train, y_train)
print("학습용 정확도: ", model2.score(X_train,y_train))
print("테스트용 정확도: ", model2.score(X_test,y_test))

model3 = RandomForestClassifier(max_depth=3, random_state=0)
model3.fit(X_train, y_train)
print("학습용 정확도: ", model3.score(X_train,y_train))
print("태스트용 정확도: ", model3.score(X_test,y_test))
```

학습용 정확도 : 0.655

테스트용 정확도 : 0.5131195335276968

학습용 정확도 : 0.53125

테스트용 정확도: 0.5160349854227405

학습용 정확도 : 0.52125

테스트용 정확도: 0.5335276967930029

• 성능이 가장 좋은 모델은 현재 RandomForestClassifier이다.

In [13]:

```
depth_num = range(1, 10)

for num in depth_num:
    model1 = RandomForestClassifier(max_depth=num, random_state=0)
    model1.fit(X_train, y_train)

print("max_depth : ", num)
    print("학습용 정확도 : ", model1.score(X_train,y_train))
    print("테스트용 정확도 : ", model1.score(X_test,y_test))
```

max_depth : 1

학습용 정확도 : 0.49625

테스트용 정확도 : 0.5189504373177842

 max_depth : 2

학습용 정확도 : 0.505

테스트용 정확도: 0.5189504373177842

 $max_depth: 3$

학습용 정확도 : 0.52125

테스트용 정확도 : 0.5335276967930029

max depth: 4

학습용 정확도 : 0.56375

테스트용 정확도 : 0.5451895043731778

 $max_depth: 5$

학습용 정확도 : 0.63875

테스트용 정확도 : 0.5830903790087464

 $max_depth : 6$

학습용 정확도 : 0.705

테스트용 정확도: 0.5889212827988338

 $max_depth: 7$

학습용 정확도 : 0.76875

테스트용 정확도 : 0.6064139941690962

max_depth: 8

학습용 정확도 : 0.835

테스트용 정확도 : 0.6122448979591837

max_depth: 9

학습용 정확도 : 0.885

테스트용 정확도: 0.5947521865889213

• 과대적합도 어느정도 고려하여 max depth가 7일때를 선택

In [14]:

```
model1 = RandomForestClassifier(max_depth=7, random_state=0)
model1.fit(X_train, y_train)
print("학습용 정확도 : ", model1.score(X_train,y_train) )
print("테스트용 정확도 : ", model1.score(X_test,y_test) )
```

학습용 정확도 : 0.76875

테스트용 정확도 : 0.6064139941690962

최종 예측 모델 성능 학습용 76.8%, 테스트용 60.6%로 확인