Data Structures, Algorithms & Data Science Platforms

Instructor: Chirag Jain (slides from Prof. Simmhan)

Slides contributed by:

Yogesh Simmhan, Venkatesh Babu & Sathish Vadhiyar, CDS, IISc

L5: Algorithm Types

Algorithms

Algorithm classification

- Algorithms that use a similar problem-solving approach can be grouped together
 - A classification scheme for algorithms
- Classification is neither exhaustive nor disjoint
- The purpose is not to be able to classify an algorithm as one type or another, but to highlight the various ways in which a problem can be attacked

A short list of categories

- Algorithm types we will consider include:
 - 1. Simple recursive algorithms
 - 2. Backtracking algorithms
 - 3. Divide and conquer algorithms
 - 4. Dynamic programming algorithms
 - 5. Greedy algorithms
 - 6. Branch and bound algorithms
 - 7. Brute force algorithms
 - 8. Randomized algorithms

Simple Recursive Algorithms

- A simple recursive algorithm:
 - 1. Solves the base cases directly
 - 2. Recurs with a simpler subproblem
 - 3. Does some extra work to convert the solution to the simpler subproblem into a solution to the given problem
- These are "simple" because several of the other algorithm types are inherently recursive
- Any seen so far?
 - Tree traversal
 - Binary search over sorted array

Backtracking algorithms

- Uses a depth-first recursive search over solution space
 - Test to see if a solution has been found, and if so, returns it; otherwise
 - For each choice that can be made at this point,
 - Make that choice
 - Recurse
 - If the recursion returns a solution, return it
 - If no choices remain, return failure
- Any seen so far?
 - DFS traversal

Sample backtracking algo.

Sudoku: Fill a 9×9 grid with digits so that each column, each row, and each of the nine 3×3 sub-grids that compose the grid contain all of the digits from 1 to 9.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

Divide and Conquer

- A divide and conquer algorithm consists of two parts:
 - Divide the problem into smaller subproblems of the same type, and solve these subproblems recursively
 - Combine the solutions to the subproblems into a solution to the original problem
- Traditionally, an algorithm is only called "divide and conquer" if it contains at least two recursive calls

Binary search tree lookup?

- Compare the key to the value in the root
 - If the two values are equal, report success
 - ► If the key is less, search the left subtree
 - ► If the key is greater, search the right subtree
- This is <u>not</u> a divide and conquer algorithm because, although there are two recursive calls, only one is used at each level of the recursion
- Sorting algorithms are good examples. E.g. Merge Sort, Quick Sort

Merge Sort: Idea

Merge Sort: Algorithm

```
MergeSort (A, left, right)
 if (left >= right) return
 else {
       middle = Floor((left+right)/2)
       MergeSort(A, left, middle)
       MergeSort(A, middle+1, right)
       Merge(A, left, middle, right)
```

Recursive Call

Merge: Given two sorted arrays, merges them into a single sorted array

Greedy algorithms

- An optimization problem is one in which you want to find, not just *a* solution, but the *best* solution
- A "greedy algorithm" sometimes works well for optimization problems
- A greedy algorithm works in phases: At each phase:
 - You take the best you can get right now, without regard for future consequences
 - You hope that by choosing a *local* optimum at each step, you will end up at a *global* optimum
- Any seen so far?
- Djikstra's Shortest path problem
 - Greedily pick the shortest among the vertices touched so far

Knapsack Problem

- We are given a set of n items, where each item i is specified by a weight w_i and a value v_i . We are also given a weight bound W (the capacity of knapsack).
- The goal is to find the subset of items of maximum total value such that sum of their weights is at most *W* (they all fit into the knapsack).
 - Exponential time to try all possible subsets
 - O(n.W) is achievable using dynamic programming (DP)

Knapsack Problem

■ 0-1 Knapsack:

- n items (can be the same or different)
- ► Must leave or take (i.e. 0-1) each item (e.g. bars of gold)
- Greedy does not guarantee maximum value (why?)

Fractional Knapsack:

- n items (can be the same or different)
- Can take fractional part of each item (e.g. gold dust)
- Greedy guarantees maximum value (why?)

Greedy Solution 1

- From the remaining objects, select the object with maximum value that fits into the knapsack
- Does not guarantee an optimal solution
- E.g., n=3, w=[100,10,10], v=[20,15,15], weight bound W=105

Greedy Solution 2

- Select the one with minimum weight that fits into the knapsack
- Also, does not guarantee optimal solution
- E.g., n=2, w=[10,20], v=[5,100], W=25

Greedy Solution 3

- Select the one with maximum value density v_i/w_i that fits into the knapsack
- E.g., n=3, w=[20,15,15], v=[40,25,25], W=30
- Greedy still does not guarantee optimal solution
- Greedy works...if fractional items possible!

Dynamic Programming (DP)

- A dynamic programming algorithm "remembers" past results and uses them to find new results
 - Memoization
- Dynamic programming is generally used for optimization problems
 - Multiple solutions exist, need to find the "best" one
 - Requires "optimal substructure" and "overlapping subproblems"
 - Optimal substructure: Optimal solution can be constructed from optimal solutions to subproblems
 - Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up fashion
- This differs from Divide and Conquer, where subproblems generally need not overlap

Fibonacci numbers

- $n_i = n_{(i-1)} + n_{(i-2)}$
- **0**, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- To find the nth Fibonacci number:
 - If n is zero or one, return 1; otherwise,
 - Compute fibonacci(n-1) and fibonacci(n-2)
 - Return the sum of these two numbers
- This is a *recursive* algorithm
- Recursion leads to an expensive algorithm
 - Exponential time, that is, O(2n)
 - Binary tree of height 'n' with f(n) having two children, f(n-1), f(n-2)

Fibonacci numbers again

- To find the nth Fibonacci number:
 - ▶ If *n* is zero or one, return one; otherwise,
 - Look up in a table if present, otherwise recursively compute fibonacci(n-1),
 - Similarly, lookup or recursively compute fibonacci(n-2)
 - Find the sum of these two numbers
 - Store the result in a table and return it
- Since finding the nth Fibonacci number involves finding all smaller Fibonacci numbers, the second recursive call has little work to do
- The table may be preserved and used again later
- Other examples: Floyd—Warshall All-Pairs Shortest Path (APSP) algorithm, Towers of Hanoi, ...

Back to 0-1 Knapsack Problem

- Input: set of n items, where each item i is specified by a weight w_i and a value $v_{i,j}$ weight bound W
- Find the subset of items of maximum total value such that sum of their weights is at most *W*.
 - ► Solvable using *dynamic programming (DP) How?*

DP for 0-1 Knapsack

```
// n = # items still to choose from, W = capacity left
MaxValue(n, W)
{
   if (n==0) return 0;
   if (arr[n][W] is known) return arr[n][W];
   if (w_n > W)
      result = MaxValue (n-1, W);
   else
      result = \max\{v_n + \max\{u_n(n-1, W-w_n)\}
                        MaxValue(n-1, W)};
   arr[n][W] = result; // store
   return result;
}
```


Brute force algorithm

- A brute force algorithm simply tries all possibilities until a satisfactory solution is found
- Such an algorithm can be:
 - Optimising: Find the best solution. This may require finding all solutions, or if a value for the best solution is known, it may stop when any best solution is found
 - Example: Finding the best path for a traveling salesman
 - Satisfying: Stop as soon as a solution is found that is good enough

Improving brute force algorithms

- Often, brute force algorithms require exponential time
- Various heuristics and optimisations can be used
 - Heuristic: A "rule of thumb" that helps you decide which possibilities to look at first
 - Optimisation: In this case, a way to eliminate certain possibilities without fully exploring them

Randomised algorithms

- A randomised algorithm uses a random number at least once during the computation to make a decision
 - Example: In Quicksort, using a random number to choose a pivot
 - Example: Trying to factor a large number by choosing random numbers as possible divisors