Aula 2: Desigualdalde

Princípios e Medidas

Guilherme Jacob

29/07/2021

Roteiro

- Medidas de desigualdade e propriedades centrais
- Algumas medidas de desigualdade
 - Variância e Coeficiente de Variação;
 - Razão de Palma:
 - Índice de Gini;
 - Índices de Entropia Generalizada.

Medidas de desigualdade e propriedades centrais

- Uma medida de desigualdade tenta expressar a desigualdade em uma distirbuição como um número real.
 - Completude: $x, y \in \mathbb{R}$, $x \ge y$ ou $x \le y$;
 - A distância entre medidas de desigualdade de duas distribuições tem significado.
- Propriedades centrais da mensuração de desigualdade:
 - Simetria:
 - Invariância Populacional;
 - Independência de Escala;
 - Princípio de Pigou-Dalton.

Simetria

- Sob simetria, se permutarmos a renda de duas unidades da população, a medida de desigualdade deve permanecer inalterada.
 - Ou seja: não importa quem recebe, mas o quanto recebe.
- Este princípio também é chamado de princípio da anonímia.

Invariância populacional

- Sob invariância populacional, se repetirmos todas as observações m vezes, o índice de desigualdade é o mesmo;
- Isso significa que a medida é independente do tamanho da população;
 - Podemos comparar populações de tamanhos diferentes.

Invariância de escala

- Sob independência de escala, se multiplicarmos a renda de cada indivíduo por uma constante $\gamma>0$, a medida de desigualdade é a mesma.
- Isso significa que podemos comparar populações com unidades de renda diferentes.
 - Podemos comparar a curva de Lorenz do Brasil calculada em reais com a dos Estados Unidos calculados em dólares.

Princípio de Pigou-Dalton (Dalton, 1920; Pigou, 1912)

- Considere uma distribuição de renda A;
- ullet Gere uma distribuição de renda A' com uma transferência regressiva.
 - Transferência regressiva: transferir parte da renda de alguém mais pobre para alguém mais rico.
 - "o de cima sobe e o de baixo desce", com uma quantia fixa
- Sob o Princípio (Forte) de Pigou-Dalton, I(A) < I(A'). -Ou seja: uma transferência regressiva aumenta a medida de desigualdade.
- Sob o Princípio Fraco de Pigou-Dalton, $I(A) \leq I(A')$.
 - Ou seja: uma transferência regressiva não pode diminui a medida de desigualdade.

Recapitulando: curva de Lorenz

- Curva de Lorenz: os p% menos ricos possuem L(p)% da renda total;
 - Por exemplo: a frase "os 20% mais pobres possuem 10% da renda total" é escrita como L(20%) = 10%.
- Por se basear em proporções, a curva de Lorenz:
 - Não depende do tamanho da população; e
 - Não depende do total das rendas.
- Quanto mais a curva observada se afasta da curva de igualdade perfeita, mais desigual é a distribuição.

- Suponha duas distribuições, A e B;
 - Com curvas de Lorenz $L_A(p)$ e $L_B(p)$, respectivamente.
- Há Lorenz-dominância de A sobre B quando $L_A(p)\geqslant L_B(p), \forall p\in [0,1]$
 - Ou seja: quando os p% menos ricos de A possuem uma proporção maior da renda total de A do que os mesmos p% em B em relação à renda total de B, para todo p% entre 0% e 100%.

- Em notação, A Lorenz-domina B é escrito como $A \leq B$;
- Quando $A \leq B$, todas as medidas que atendam os quatro princípios (SIM, IP, IE e PPD) vão ordenar as distribuições da mesma maneira.

- Neste caso:
 - Sul ≤ Sudeste;
- Mas: Norte ? Sudeste.

- Quando curvas de Lorenz se cruzam:
 - Não há Lorenz-dominância;
 - Não há ordenamento unânime de medidas de desigualdade das duas distribuições.
- Ou seja:
 - Para medidas de desigualdade $I_1(\cdot)$ e $I_2(\cdot)$; e
 - Populações A e B;
 - Podemos ter $I_1(A) > I_1(B)$ e $I_2(A) < I_2(B)$ ao mesmo tempo.
- Medidas de desigualdade podem discordar!

	Medidas			Ranking de Desigualdade			
Região	Gini	Theil-L	Theil-T	Gini	Theil-L	Theil-T	
Sul	0.462	0.381	0.427	3	3	3	
Sudeste	0.523	0.492	0.567	2	2	1	
Norte	0.532	0.526	0.561	1	1	2	

Fonte: PNAD Contínua 2019, 1ª Visita. Microdados.

Propriedades Adicionais

- Normalização
- Decomponibilidade por Grupo
- Sensibilidade à transferência

15 / 40

Normalização

- O princípio da normalização estabelece que a medida só pode assumir valores no intervalo [0, 1].
- Existe um valor de igualdade perfeita e desigualdade perfeita.

16 / 40

Decomponibilidade por Grupo (Shorrocks, 1984)

- Sob este princípio, a medida de desigualdade pode ser decomposta em duas componentes:
 - Desigualdade Intra-grupos; e
 - Desigualdade Inter-Grupos.
- Isso ajuda a responder perguntas do tipo:
 - A desigualdade nesta região decorre da desigualdade dentro de cada município ou entre cada município?
 - Quanto da desigualdade total é atribuído à desigualdade dentro de cada setor ou entre setores?

Sensibilidade à transferência (Shorrocks e Foster, 1987)

- Transferência Composta Favorável:
 - Duas transferências simultâneas:
 - **1** Uma transferência regressiva de δ entre os mais ricos; e
 - 2 Uma transferência progressiva de δ entre os mais pobres.
 - Pelo princípio de Pigou-Dalton:
 - Aumenta a desigualdade entre os mais ricos; e
 - 2 Reduz a desigualdade entre os mais pobres.

Sensibilidade à transferência (Shorrocks e Foster, 1987)

- Pelo princípio da sensibilidade à diferença, quando ocorre uma transferência composta favorável, a medida de desigualdade deve diminuir.
- Esse princípio ajuda a diferenciar desigualdade e polarização de renda.

19 / 40

Algumas medidas de desigualdade

- Variância e Coeficiente de Variação;
- Razão de Palma;
- Indice de Gini;
- Indices de Entropia Generalizada.

20 / 40

• A variância da renda é definida como:

$$\sigma^2 = \frac{\sum_{i=1}^n (y_i - \mu)^2}{n}$$

- Atende: Simetria, Invariância Populacional, Pigou-Dalton,
- Decomponibilidade por Grupo.
- Falha: Independência de escala.
- Lorenz-dominância não funciona.

• O coeficiente de variação (CV) resolve a independência de escala:

$$CV = \sqrt{\frac{\sigma^2}{\mu^2}} = \frac{\sigma}{\mu}$$

Lorenz-dominância funciona.

- Considere duas distribuições de renda:
 - A = (10, 40, 100); e
 - B = (20, 20, 110).
- $\mu = 50$ nas duas distribuições.
- Neste caso, $CV_A^2 = 2.24 \text{ e } CV_B^2 = 2.88.$
 - Pelo CV^2 , \dot{A} é mais desigual que B.
- Porém, em B, mais pessoas recebem a mesma renda.
 - Ou seja: poderíamos argumentar que B seria menos "desigual".

- \bullet O CV^2 coloca muito peso nas rendas mais altas;
 - Média das distâncias quadráticas em relação à média.
- Falha na sensibilidade à transferência.
 - Dispersão ≠ Desigualdade.

- Analisadno as distribuições de renda dos países ao longo do tempo,
 Palma (2011) encontrou um padrão:
 - O grupo entre os decis 5 e 9 costumam possuir aproximadamente 50% da renda total
- A variabilidade das distribuições é explicada por duas frações:
 - Total da renda apropriado pelos 40% mais pobres; e
 - Total da renda apropriado pelos 10% mais ricos.

- Em termos da curva de Lorenz:
 - A fração da renda dos 40% mais pobres: L(40%);
 - A fração da renda dos 10% mais ricos: 1 L(90%).
- Razão de Palma:

$$P_R = \frac{1 - L(90\%)}{L(40\%)}$$

Vantagem: fácil de explicar.

	Medidas						
Região	Palma	Gini	Theil-L	Theil-T			
Sul	2.569	0.462	0.381	0.427			
Sudeste	3.612	0.523	0.492	0.567			
Norte	3.917	0.532	0.526	0.561			

Fonte: PNAD Contínua 2019, 1ª Visita. Microdados.

- E o Princípio de Pigou-Dalton?
- Divida a população em três partes:
 - 40% mais pobres;
 - 10% mais ricos; e
 - A "classe média", entre 40% mais pobres e os 10% mais ricos.
- A medida aumenta quando há transferência regressiva de membros:
 - Da classe mais pobre para membros de qualquer outra classe;
 - Da "classe média" para a classe mais rica.
- É insensível às transferências dentro de cada classe.
 - É possível ter transferência regressiva e não ter aumento da medida.

Índice de Gini

- Sem dúvida, é a medida de desigualdade mais utilizada.
- Existe uma dúzia de maneiras de ver o índice de Gini, mas duas são mais interessantes:
 - Como áreas abaixo da curva de Lorenz sob igualdade perfeita;
 - Como média de distância entre rendas.

Índice de Gini

- Lembrando: quanto mais afastada da diagonal, mais desigual é a sociedade.
- O índice de Gini é proporcional à área entre a diagonal e a curva observada.
 - No caso de igualdade perfeita, a área é 0.
 - No caso de desigualdade perfeita, a área entre as curvas é de 0.5.
- O índice de Gini é o dobro destas áreas.

Índice de Gini

 Índice de Gini como metade da média dos módulos das diferenças relativas:

$$G = \frac{1}{2n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{|y_i - y_j|}{\mu}$$

- Isso mostra como o índice de Gini não pode ser decomposto:
 - Pode decompor o numerador, mas não o denominador.
 - A não ser que os grupos sejam classes de renda não-sobrepostas.

Índices de Entropia Generalizada

- Até agora, só a variância era dominível em grupos;
- Shorrocks (1980) provou a seguinte aformação:
 - Uma medida de desigualdade que atende simultanteamente:
 - Princípio de Pigou-Dalton;
 - Invariância populacional;
 - Independência de escala;
 - Decomponibilidade por Grupo
 - ... só pode ser um Índice de Entropia Generalizada.
 - Ou uma transformação dele.

Índices de Entropia Generalizada

Os índices de Entropia Generalizada têm a seguinte fórmula:

$$\mathit{IEG}_{\alpha} = \begin{cases} \frac{1}{\alpha^2 - \alpha} \frac{1}{n} \sum_{i=1}^{n} \left[\left(\frac{y_i}{\mu} \right)^{\alpha} - 1 \right], & \alpha \in \mathbb{R} \setminus \{0, 1\} \\ -\frac{1}{n} \sum_{i=1}^{n} \ln \frac{y_i}{\mu}, & \alpha \to 0 \\ \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{\mu} \ln \frac{y_i}{\mu}, & \alpha \to 1. \end{cases}$$

onde α é um parâmetro de aversão/sensibilidade à desigualdade.

Índices de Entropia Generalizada

- Quanto menor o valor de α , mais importância é dada para as transferências entre os mais pobres.
 - Ou seja: transferências regressivas entre os mais pobres afetam mais a desigualdade do que entre os mais ricos.
- Quanto maior o valor de α , mais importância é dada para as transferências entre os mais ricos.
- Os casos especiais *IEG*₀ e *IEG*₁ são chamados de Theil-L e Theil-T.
 - Também podemos mostrar que $IEG_2 = CV^2$.

Antes do fim...

Segundo Subramanian (2019, p. 39), existem dois extremos:

- Fetichistas da mensuração, que raramente vêem a desigualdade como uma condição humana sentida e experimentada além das equações e fórmulas:
- Niilistas da mensuração, que consideram as medidas como um exercício frio, calculista e desalmado realizado por especialistas que usam símbolos arcanos e dados pouco confiáveis para construir imagens incorretas da realidade.

Mas a verdade está entre os dois.

Antes do fim...

Ainda segundo Subramanian (2019, p. 39),

- Mensuração é uma maneira de garantir que as nossas descrições são baseadas em evidências mais tangíveis e objetivas do que julgamentos baseados em impressões e empiricismo casual;
- Mensuração é indispensável, mas é pior que inútil quando ignora a coerência lógica e o apelo normativo.

Antes do fim...

- Análise de desigualdade não é apenas medir concentração. Existe um julgamento ético sobre quais distribuições são mais ou menos justas.
- É importante avaliar como cada medida trata diferenças na base ou no topo da distribuição de renda;
 - Ou seja: a sensibilidade em relação à renda dos mais pobres.

Referências

ATKINSON, A. B. On the Measurement of Inequality. **Journal of Economic Theory**, v. 2, n. 3, 3, p. 244–263, set. 1970.

COBHAM, A.; SCHLÖGL, L.; SUMNER, A. Inequality and the Tails: the Palma Proposition and Ratio. **Global Policy**, v. 7, n. 1, p. 25–36, 2016.

DALTON, H. The Measurement of the Inequality of Incomes. **The Economic Journal**, v. 30, set. 1920.

DASGUPTA, P.; SEN, A.; STARRETT, D. Notes on the measurement of inequality. **Journal of Economic Theory**, v. 6, n. 2, p. 180–187, 1973.

FOSTER, J. et al. A Unified Approach to Measuring Poverty and Inequality. Washignton, D.C.: The World Bank, 2013.

Referências

PALMA, J. G. Homogeneous Middles vs. Heterogeneous Tails, and the End of the 'Inverted-U': It's All About the Share of the Rich. **Development and Change**, v. 42, n. 1, p. 87–153, 2011.

PIGOU, A. C. Wealth and Welfare. London: Macmillan, 1912.

SHORROCKS, A. F. The Class of Additively Decomposable Inequality Measures. **Econometrica**, v. 48, n. 3, p. 613–625, 1980.

SHORROCKS, A. F. Inequality Decomposition by Population Subgroups. **Econometrica**, v. 52, n. 6, p. 1369–1385, 1984.

SHORROCKS, A. F.; FOSTER, J. E. Transfer Sensitive Inequality Measures. **The Review of Economic Studies**, v. 54, n. 3, p. 485–497, jul. 1987.

SUBRAMANIAN, S. **Inequality and Poverty**. Singapura: Springer Singapore, 2019.

Referências

VILLAR, A. **Lectures on Inequality, Poverty and Welfare**. Cham, Suíça: Springer International Publishing, 2017.

40 / 40