Hengfeng Wei

Institute of Computer Software Nanjing University

December 8, 2016

- The MST Problem
- 2 The Generic MST Algorithm
- 3 The Algorithms of Kruskal and Prim

- 1 The MST Problem
- 2 The Generic MST Algorithm
- 3 The Algorithms of Kruskal and Prim

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G = (V, E)
- ightharpoonup edge weight w(e)

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G=(V,E)
- edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

► connected, acyclic

Definition (MST)

Given:

- \triangleright connected, undirected, weighted graph G = (V, E)
- ightharpoonup edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

ightharpoonup connected, acyclic (n-1 edges)

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G = (V, E)
- edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

- ightharpoonup connected, acyclic (n-1 edges)
- $\mathbf{v}(T) = \sum_{e \in T} w(e)$

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G = (V, E)
- ightharpoonup edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

- ightharpoonup connected, acyclic (n-1 edges)
- $\mathbf{v}(T) = \sum_{e \in T} w(e)$

MST: Mimimize w(T) over all possible STs

MST Example

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S); ||S| - |V \setminus S|| \le 1$

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S); ||S| - |V \setminus S|| \le 1$ (Cut)

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S); ||S| - |V \setminus S|| \le 1$ (Cut)

Conquer: T_1 : an MST of S; T_2 : an MST of $V \setminus S$

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S); ||S| - |V \setminus S|| \le 1$ (Cut)

Conquer: T_1 : an MST of S; T_2 : an MST of $V \setminus S$

Combine: $T_1 + T_2 + \{e\}$: e is a **lightest** edge across $(S, V \setminus S)$

4/9

What is wrong?

The edges bc and ad do **not** belong to any MST.

What is wrong?

The edges bc and ad do **not** belong to any MST.

What if:

Invariant: Manages a set of edges X which is a subset of **some** MST.

- 1 The MST Problem
- 2 The Generic MST Algorithm
- 3 The Algorithms of Kruskal and Prim

Overview: Grow the MST one edge at a time

Overview: Grow the MST one edge at a time

State: Manage a set of edges X

Overview: Grow the MST one edge at a time

State: Manage a set of edges X

Invariant: Prior to each iteration, X is a subset of some MST

Overview: Grow the MST one edge at a time

State: Manage a set of edges X

Invariant: Prior to each iteration, X is a subset of some MST

Iteration: Pick an edge e s.t.

 $X \cup \{e\}$ is also a subset of some MST

Overview: Grow the MST one edge at a time

State: Manage a set of edges X

Invariant: Prior to each iteration, X is a subset of some MST

Iteration: Pick a safe edge e s.t.

 $X \cup \{e\}$ is also a subset of some MST

Proof.

Initialization:

Maintenance:

Termination:

The Cut Property

Cut Property

- Graph G = (V, E); X is part of an MST.
- ▶ A cut $(S, V \setminus S)$ respecting X (X does not cross $(S, V \setminus S)$)
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Then, $X + \{e\}$ is part of some MST T.

8/9

The Cut Property

Proof.

Basic idea: $e \notin T \Rightarrow e \in T'$.

- $ightharpoonup T + \{e\}$ to construct a cycle C
- $ightharpoonup \exists e' \in C \text{ such that } e' \text{ across the cut; } w(e') \geq w(e)$
- $T' = T + \{e\} \{e'\}$
- $w(T') \le w(T) \Rightarrow w(T') = w(T) \Rightarrow T'$ is an MST

- 1 The MST Problem
- 2 The Generic MST Algorithm
- 3 The Algorithms of Kruskal and Prim