CSE310 P1 Report

Jiahui Li (1220317163)

1. The average compression ratio; in addition to the average, compute the minimum, maximum, and standard deviation of the compression ratio. You might consider using a box and whiskers plot for this metric.

She sells sea shells. n = 9

Index	Symbol	Freq	Encode	ExpectedNumberBits	CompressionRatio
10	\n	1	100	1/9*3=1/3	(log ₂ 9-1/3)
					/log ₂ 9*100%≈89
32		3	11	3/9*2=2/3	(log ₂ 9-2/3)
					/log₂9*100%≈79
46		1	10	1/9*2=2/9	(log ₂ 9-2/9)
					/log₂9*100%≈93
83	S	1	01010	1/9*5=5/9	(log ₂ 9-5/9)
					/log ₂ 9*100%≈82
97	а	1	01011	1/9*5=5/9	(log ₂ 9-5/9)
					/log₂9*100%≈82
101	е	4	000	4/9*3=4/3	(log ₂ 9-4/3)
					/log₂9*100%≈58
104	h	2	0100	2/9*4=8/9	(log ₂ 9-8/9)
					/log₂9*100%≈72
108	I	4	001	4/9*3=4/3	(log ₂ 9-4/3)
					/log ₂ 9*100%≈58
115	S	5	011	5/9*3=5/3	(log ₂ 9-5/3)
					/log ₂ 9*100%≈47

2. The time to sort input instances for each type of sort, i.e., for Insertion Sort and for Merge

Sort. Plot the run time as a function of input size on one figure. For this experiment you should run your sorting algorithms outside of the context of the encoding/decoding problem. Do the running times cross each other? Which algorithm is better for sorting smaller instances? Which algorithm is better for sorting larger instances?

Insertion Sort: $O(n^2)$. Merge Sort: $O(nlog_2n)$. Insertion Sort is better for sorting smaller instances. Merge Sort is better for sorting larger instances.

- 3. The time to encode and decode input instances. Plot the run time as a function of input size.
- 4. How do you expect the compression ratio to vary according to n?

inversely proportional.