

Praktikum II – Hough Transformation

BV IM230 WS 2017/18, Prof. A. Siebert

Wir arbeiten in den nächsten Praktika darauf hin, die intrinsischen Kameraparameter Bildhauptpunkt (x_0, y_0) und Brennweite f bzw. Skalierungsfaktor α aus den Fluchtpunkten eines Bildes zu extrahieren.

Dazu müssen per Hough-Transformation die Fluchtpunkte bestimmt werden.

Wir starten aber zunächst damit, uns die *Ground Truth* zu beschaffen, d.h. für ein gegebenes Bild schätzen wir näherungsweise geometrisch die Fluchtpunkte und leiten daraus die Parameter ab.

Aufgabe 1. Fluchtpunkte vermessen, Kameraparameter konstruieren.

a. Für den Würfel in der Datei Rubik.jpg vermessen Sie die Fluchtpunkte, indem Sie auf einem genügend großen Stück Papier die parallelen Objekt-Geraden bis zu ihrem Schnittpunkt verlängern.

Notieren Sie die Koordinaten der drei Fluchtpunkte.

- b. Konstruieren Sie auf Papier den Bildhauptpunkt als Höhenschnittpunkt gemäß Skript 02, Folie 42.
- c. Konstruieren Sie auf Papier die Brennweite (in Millimeter und in Pixeleinheiten) gemäß Skript 02, Folie 44.
- d. Berechnen Sie Bildhauptpunkt und Brennweite algebraisch gemäß Skript 02, Folien 45/46. Zur Berechnung von Cholesky-Zerlegung und Matrix-Invertierung benutzen Sie Ihr Lieblingswerkzeug.

Aufgabe 2. Hough-Transformation

Implementieren Sie die Hough-Transformation (HT).

In diesem Praktikum geht es zunächst nur um die Basis-HT, mit der Geraden im gegebenen Bild gefunden werden sollen.

Die Berechnung der Fluchtpunkte durch eine zweite "Rückwärts-"-HT ist Gegenstand des dritten Praktikums.

Eine Beschreibung der HT finden Sie im Kurs Bildverarbeitung IB760, Moodle-Einschreibeschlüssel IB760, Skript 02 Operatoren, ab Folie 60. Die Parameter des Hough-Raumes sind α und ρ , gemäß der Geradengleichung

$$x \cdot \cos(\alpha) + y \cdot \sin(\alpha) = \rho$$

Granularität des Hough-Akkumulators:

- Diskretisieren Sie α in 1°-Schritten von 0° bis 179°.
- Diskretisieren Sie ρ in 1-Pixel-Schritten von $-\rho_{max}$ bis $+\rho_{max}$, mit gerundet $\rho_{max} = \sqrt{w^2 + h^2}$, w = Bildbreite, h = Bildh"ohe.

Für Rubik.jpg des Formats 400×450 ergibt sich die Akkumulatorgröße 1205×180.

Zur Berechnung der Kantenpunkte können Sie den Code der Datei Canny_SBT.java verwenden. Mit dem Aufruf

ByteProcessor ip_canny = canny(ip_byte, sigma);

wird für den ByteProcessor ip_byte das Ergebnis des Canny-Operators mit Parameter σ in den ByteProcessor ip_canny geschrieben: 0 = schwarz für Hintergrund, 255 = weiß für Kantenpixel.

Canny_SBT.java enthält die Methoden main(), setup(), run(), welche Sie für obigen Aufruf nicht benötigen, aber welche einen stand alone Betrieb erlauben.

Bei σ =1.0 ergeben sich für Rubik. jpg insgesamt 8573 Kantenpunkte.

Zeichnen Sie die ersten N Hough-Geraden in das Kantenbild ein. Gehen Sie dazu iterativ wie folgt vor:

- (i) Bestimmen Sie das globale Maximum des Hough-Akkumulators.
- (ii) Zeichnen Sie die Gerade, die zum Maximum gehört, in ein Overlay.
- (iii) Setzen Sie das globale Maximum und dessen 8-er Nachbarn auf 0.
- (iv) Wiederholen Sie (i) bis (iii) N-mal.

Das Erstellen von Overlays funktioniert in ImageJ grob wie folgt:

```
Overlay myOverlay = new Overlay();
Line myLine = new Line(x1, y1, x2, y2);
myOverlay.add(myLine);
ImagePlus impOverlay = new ImagePlus(title, ip);
impOverlay.setOverlay(myOverlay);
impOverlay.show();
```

Obiges Bild zeigt meine ersten 10 Hough-Linien, die erste Linie in grün.

Für das weitere Vorgehen filtern Sie den Hough-Akkumulator wie folgt: Es werden nur diejenigen Werte behalten, die ein lokales Maximum sind und deren Wert einen Schwellwert MIN_VOTE überschreitet. Alle anderen Werte werden auf 0 gesetzt. Ein geeigneter Wert von MIN_VOTE hängt etwas von der Bildgröße und der Länge der erwarteten Geraden ab. Ich habe hier mit MIN_VOTE = 70 gearbeitet. Bei mir hat der verbleibende Hough-Akkumulator 114 Einträge, die ungleich 0 sind.

Experimentieren Sie mit unterschiedlichen Bildern und unterschiedlichen Parameterwerten. Sie erkennen schnell, dass nicht jede extrahierte Hough-Gerade "schön" ist. Die signifikanteste Verbesserung der HT könnten Sie erreichen, indem Sie beim Füllen des Hough-Akkumulators die Gradientenrichtung berücksichtigen: Ein Kantenpunkt votiert nur dann für ein Parameter-Paar (α, ρ) , wenn α mit der Gradientenrichtung am Kantenpunkt verträglich ist.

Wenn Sie sich in diesem Praktikum austoben wollen, dann dürfen Sie gerne die Gradientenrichtung einbeziehen.