hw2

李晨昊 2017011466

2019-9-21

目录

1	exercise 9.2.1		
	1.1		. 2
	1.2		. 3
2	exercise	9.2.3	3
3	exercise	9.2.7	4
	3.1		. 4
	3.2		. 5
4	exercise 9.2.8		
	4.1		. 5
	4.2		. 6
	4.3		. 6

1 exercise 9.2.1

对图 9-10 中的流图, 计算下列值:

- 1. 每个基本块的 gen 和 kill 集合
- 2. 每个基本块的 IN 和 OUT 集合

图 9-10 练习 9.1.1 的流图

1.1

$$gen(B_1) = \{(1), (2)\}$$

$$gen(B_2) = \{(3), (4)\}$$

$$gen(B_3) = \{(5)\}$$

$$gen(B_4) = \{(6), (7)\}$$

$$gen(B_5) = \{(8), (9)\}$$

$$gen(B_6) = \{(10), (11)\}$$

$$kill(B_1) = \{(8), (10), (11)\}$$

$$kill(B_2) = \{(5), (6)\}$$

$$kill(B_3) = \{(4), (6)\}$$

$$kill(B_4) = \{(4), (5), (9)\}$$

$$kill(B_5) = \{(2), (7), (11)\}$$

$$kill(B_6) = \{(1), (2), (8)\}$$

1.2

$$IN(B_1) = \emptyset$$

$$IN(B_2) = \{(1), (2), (3), (5), (8), (9)\}$$

$$IN(B_3) = \{(1), (2), (3), (4), (6), (7), (8), (9)\}$$

$$IN(B_4) = \{(1), (2), (3), (5), (7), (8), (9)\}$$

$$IN(B_5) = \{(1), (2), (3), (5), (7), (8), (9)\}$$

$$IN(B_6) = \{(1), (3), (5), (8), (9)\}$$

$$OUT(B_1) = \{(1), (2)\}$$

$$OUT(B_2) = \{(1), (2), (3), (4), (8), (9)\}$$

$$OUT(B_3) = \{(1), (2), (3), (5), (7), (8), (9)\}$$

$$OUT(B_4) = \{(1), (2), (3), (6), (7), (8)\}$$

$$OUT(B_5) = \{(1), (3), (5), (8), (9)\}$$

$$OUT(B_6) = \{(3), (5), (9), (10), (11)\}$$

2 exercise 9.2.3

对图 9-10 的流图, 计算活跃变量分析中的 def, use, IN, OUT 集合 (图见上题)

$$def(B_1) = \{a, b\}$$

$$def(B_2) = \{c, d\}$$

$$def(B_3) = \emptyset$$

$$def(B_4) = \{d\}$$

$$def(B_5) = \{e\}$$

$$def(B_6)=\{a\}$$

$$use(B_1)=\emptyset$$

$$use(B_2) = \{a,b\}$$

$$use(B_3) = \{b, d\}$$

$$use(B_4) = \{a, b, e\}$$

$$use(B_5) = \{a, b, c\}$$

$$use(B_6) = \{b, d\}$$

$$IN(B_1) = \{e\}$$

$$IN(B_2) = \{a, b, e\}$$

$$IN(B_3) = \{a, b, c, d, e\}$$

$$IN(B_{4}) = \{a, b, c, e\}$$

$$IN(B_5) = \{a, b, c, d\}$$

$$IN(B_6) = \{b, d\}$$

$$OUT(B_1) = \{a, b, e\}$$

$$OUT(B_2) = \{a,b,c,d,e\}$$

$$OUT(B_3) = \{a, b, c, d, e\}$$

$$OUT(B_4) = \{a, b, c, d, e\}$$

$$OUT(B_5) = \{a, b, d, e\}$$

$$OUT(B_6) = \emptyset$$

3 exercise 9.2.7

证明算法 9.11 的正确性, 也就是证明:

- 1. 如果定值 d 被放到 IN(B) 或者 OUT(B) 中,那么相应地必然有一条从 d 到基本块 B 的开始或结尾处的路径。在这条路径中,由 d 定值的变量不会被重新定值
- 2. 如果定值 d 最后没有被放到 IN(B) 或者 OUT(B) 中,那么相应地必然没有从 d 到基本块 B 的开始或结尾处的路径。在这条路径中,由 d 定值的变量不会被重新定值

3.1

使用互归纳法证明对 $n \geq 1, n \in \mathbb{N}$, 若恰在第 n 轮迭代后定值 d 被放到 OUT(B),则存在从 d 到 B 的结尾处且过程中由 d 定值的变量不会被重新定值的路径; 对 $n \geq 2, n \in \mathbb{N}$, 若恰在 第 n 轮迭代后定值 d 被放到 IN(B) 中,则存在从 d 到 B 的开始处且过程中由 d 定值的变量不会被重新定值的路径 (第 1 轮迭代中后定值 d 不可能被放到任何 IN 中)。

施归纳于迭代的次数 n:

若 n=1 次迭代后,定值 d 被放到 OUT(B),一定是 $d \in gen(b)$,由 gen 集合的定义,存在一条从 d 到 B 的结尾处且过程中由 d 定值的变量不会被重新定值的路径。

若恰在 $n = m (m \ge 2, m \in \mathbb{N})$ 次迭代后,定值 d 被放到 IN(B) 中,一定是恰在第 m-1 轮 迭代后,定值 d 被放到 OUT(P) 中,其中 $P \in pred(B)$,所以存在一条从 d 到 P 的结尾处且过程中由 d 定值的变量不会被重新定值的路径,且 P 有一条直接指向 B 的边,所以存在从 d 到 B 的开始处且过程中由 d 定值的变量不会被重新定值的路径。

若恰在 $n = m (m \ge 2, m \in \mathbb{N})$ 次迭代后,定值 d 被放到 OUT(B) 中,一定是恰在第 m 轮迭代后,定值 d 被放到 IN(B) 中,所以存在一条从 d 到 B 的开始处且过程中由 d 定值的变量不会被重新定值的路径,经过 B 的过程中由 d 定值的变量不会被重新定值,所以存在从 d 到 B 的结尾处且过程中由 d 定值的变量不会被重新定值的路径。

3.2

定义路径的长度为经过的基本块的数量,从基本块中间的一点到基本块的末尾也算一个基本块。

使用与上面类似的方法可以证明对 $n \ge 1, n \in \mathbb{N}$,若存在从 d 到 B 的结尾处且过程中由 d 定值的变量不会被重新定值的长度为 n 路径,则至多在第 n 轮迭代后定值 d 被放到 OUT(B);对 $n \ge 1, n \in \mathbb{N}$,若存在从 d 到 B 的开始处且过程中由 d 定值的变量不会被重新定值的路 径,则至多第 n+1 轮迭代后定值 d 被放到 IN(B) 中,。

4 exercise 9.2.8

证明有关算法 9.14 的下列性质:

- 1. 各个 IN 和 OUT 的值不会缩小
- 2. 如果变量 x 被放到 IN(B) 或者 OUT(B) 中,那么相应地有一条从基本块 B 的开始或 结尾处出发的路径,在这条路径上 x 可能被使用
- 3. 如果变量 x 没有被放到 IN(B) 或者 OUT(B) 中,那么相应地没有从基本块 B 的开始 或结尾处出发的路径,使得在这条路径上 x 被使用

4.1

使用互归纳法证明对 $n \ge 1, n \in \mathbb{N}$,第 n 轮迭代中所有 IN 都不会缩小;对 $n \ge 2, n \in \mathbb{N}$,第 n 轮迭代中所有 OUT 都不会缩小(第 1 轮迭代中 OUT 是否缩小并无意义,因为第一轮迭代前 OUT 没有初始值)。

基础: 第 1 轮迭代中所有 IN 都不会缩小。这是显然的,因为第 1 轮迭代前所有 IN 都为。归纳: 设第 $n(n \ge 1, n \in \mathbb{N})$ 轮迭代中所有 IN 都不会缩小,则第 n+1 轮迭代中:

1. 所有 OUT 都不会缩小,因为 $OUT(B) = \bigcup_{s \in succ(B)} IN(B)$,而第 n 轮迭代中 IN 都不会缩小,所以每个运算数都不会缩小,所以 OUT(B) 不会缩小

2. 所有 IN 都不会缩小,因为 $IN(B)=use(B)\bigcup(OUT(B)-def(B))$,而第 n+1 轮迭代中 OUT 都不会缩小 (上面已证),所以所以 IN(B) 不会缩小

4.2

证明与 exercise 9.2.7 是完全类似的。

4.3

证明与 exercise 9.2.7 是完全类似的。