Special Problem 7 Solutions

- 7. It is possible that the image and kernel of a matrix can be the same. Of course, this means the matrix would have to be square. Since the kernel is a subspace of the domain and the image is a subspace of the co-domain, if the two subspaces are the same, the domain and co-domain are the same. So, the hypothesis only makes sense if the matrix is square.
- a. Using the Rank-Nullity Theorem, show that, for an $n \times n$ matrix A, ker(A) = im(A) implies that n must be a positive even integer. [Consequently, there are no 3×3 matrices whose kernel and image is the same subspace.]

Let k be the dimension of $\ker(A) = \operatorname{im}(A)$. So, their dimensions, the nullity and rank of A are both k. This is a non-negative integer and the Rank-Nullity Theorem tells us that n = k + k = 2k. Therefore, n must be an even positive integer.

- b. Show that if $\ker(A) = \operatorname{im}(A)$, A cannot be the zero matrix yet its square, A^2 , is the zero matrix. For any vector \vec{x} in \mathbf{R}^n , $A\vec{x}$ is a vector in $\operatorname{im}(A)$. Since the image and kernel are the same for A, $A\vec{x}$ is also a vector in $\operatorname{im}(A)$. Therefore, $A\vec{x}$ belongs to $\ker(A)$ and so, $A(A\vec{x}) = A^2\vec{x} = \vec{0}$. Since \vec{x} is arbitrary, it follows that A^2 is the zero matrix. Now, A cannot be the zero matrix because that would imply $\ker(A) = \mathbf{R}^n$ but $\operatorname{im}(A) = \{\vec{0}\}$.
- c. Find a 2×2 matrix such that ker(A) = im(A). [Here is another example in which matrices differ from ordinary real numbers. We know that the square of a real number is zero if and only if that number is zero.]

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then, $A^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & (a+d)b \\ (a+d)c & bc+d^2 \end{bmatrix}$ and we have $a^2 + bc = 0$, $(a+d)b = 0$, $(a+d)c = 0$, $bc+d^2 = 0$ and so, A

must be a matrix of the form $\begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$ where a and b are any real

numbers but not both are 0. For example, if we set a = b = 0, we get

$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}.$$
 It is easy to check that $\ker(A) = \operatorname{im}(A) = \operatorname{span}\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$ and
$$A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$