

2023-2024 AVDC MSc Individual Research Project:

Aircraft Communications Availability based Flight Dynamics Restriction

1st Interim Project Review

Supervisors: Prof Saba Alrubaye, Dr Dmitry Ignatyev and Dr Christantus Obinna Nnamani

Introduction

A320 Denver CO USA 2009

TBM8, Birmingham UK, 2011

A319, Nantes, 2006

Aim and objectives

Aim: Develop a system integrating real-time flight data and dynamic parameters able to intelligently manage and optimize communication resources, ensuring efficient and secure aircraft communication during different phases of flight.

Objectives:

- Develop a model in Unity able to simulate air to ground communications
- Integrate an algorithm to compute the quality of the signals
- Develop an algorithm to swap between antennas to always get the best signal
- Predict no communication zones and avoid them

Literature Review

Control system

Impact of the control system on the communication system

satellite-based communications

ground-based communications

ground network

and around airports

Communication system

https://www.aviationsafetymagazine.com/features/commercial-maneuvers/

https://www.researchgate.net/figure/Integration-of-different-aeronautical-communication-systems-into-a-global-airborne_fig2_224989091

Literature Review – Manoeuvres

Manoeuvre	Rudder Position	Ailerons Position	Elevators/Horizontal Stabilizer Position	Flaps/Slats Position
Level Flight	Neutral	Neutral	Neutral	Neutral
Climb	Neutral or Slight Deflection towards turn direction	Neutral	Upward	Neutral
Descent	Neutral or Slight Deflection opposite turn direction	Neutral	Neutral Downward	
Turn (Banking)	Deflected towards turn direction	Up in the direction of the bank	Neutral	Neutral
Roll (Aileron Roll)	Neutral	Full deflection in the direction of roll	Neutral	Neutral
Pitch Up	Neutral	Neutral	Upward	Neutral
Pitch Down	Neutral	Neutral	Downward	Neutral
Takeoff	Neutral	Neutral Upward		Extended
Landing	Neutral	Neutral Downward		Fully extended
Stall Recovery	Neutral or opposite to stall direction	Neutral	Neutral	Neutral

D. Ignatyev, "Basic aerodynamics," [Online]. Available: https://canvas.cranfield.ac.uk/courses/27249/files/1921602?wrap=1.

Literature Review – Antennas

Antenna Type	Antenna Description	Main function of the antenna	Wavelength
VHF Antenna	Whip-like, often located on top or bottom of fuselage	Communicates with ground stations for voice and data	118–137 MHz (30 MHz-300 MHz)
GPS Antenna	Small, dome-shaped or blade- like	•	
ATC/UHF/DME Antenna	Blade or cone-shaped, on the bottom of the aircraft		
TCAS Antenna	Blade or circular disk	Transmits and receives signals for Traffic Collision Avoidance System (TCAS)	2.0 GHz - 3.0 GHz
ELT Antenna	Whip or blade-like	Transmits Emergency Locator Transmitter signals in distress	121.5 MHz, 243 MHz and 406 MHz
Weather Radar Antenna Large, dish-shaped		Sends and receives radar signals for weather detection	3.0 GHz - 30.0 GHz
7(7		Communicates with ground stations for everything	410-7125 MHz or 24.25-52.6 GHz

S. I. A. M. L. W. Douglas W.Burgess, «TCAS: Maneuvering Aircraft in the Horizontal PLane,» THE LINCOLN LABORATORY JOURNAL, vol. 7, n° %12, pp. 295-312, 1994.

W. contributors, «Very high frequency,» Wikipedia, The Free Encyclopedia., 4 May 2024. [En ligne]. Available: https://en.wikipedia.org/w/index.php?title=Very_high_frequency&oldid=1227114617.

W. contributors, «GPS signals,» Wikipedia, The Free Encyclopedia, 3 May 2024. [En ligne]. Available: https://en.wikipedia.org/w/index.php?title=GPS_signals&oldid=1224166622.

W. contributors, «Distance measuring equipment,» Wikipedia, The Free Encyclopedia, 22 February 2024. [En ligne]. Available: https://en.wikipedia.org/w/index.php?title=Distance measuring equipment&oldid=1209645947.

Literature Review – Cross Impact

In What respect the control system affects the communication:

- Shadowing effect
- Antenna beam deflection
- Link Budget (position)

Other impacts on the communication:

- Antenna position
- Weather

(a) Variation of the received power in 3-D geometry for Channel 1

Yu Song Meng, Yee Hui Lee, Study of shadowing effect by aircraft maneuvering for air-to-ground communication, AEU - International Journal of Electronics and Communications, Volume 66, Issue 1,2012, Pages 7-11, ISSN 1434-8411.

R. Sun, D. W. Matolak and W. Rayess, "Air-Ground Channel Characterization for Unmanned Aircraft Systems—Part IV: Airframe Shadowing," in IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7643-7652, Sept. 2017, doi: 10.1109/TVT.2017.2677884.

Problem statement

Model:

- Unity
- Ansys
- Boeing 727
- VHF

Antennas:

- Antennas of the Boeing 727
- VHF
- Multiple ground antennas
- Possibility to move the Aircraft antenna

Link Budget:

- Free space loss
- Antenna loss
- Temperature loss

https://www.thalesgroup.com/en/markets/aerospace/thales-connected-aircraft

Simulation Software

- 3D simulation easy to get and modify
- Faster implementation
- Flexibility

Allow 3D simulation with CAD designs

Methodology

Result to date

Implemented Systems

- Ray Tracing
- Real time Link Budget
- Trajectory Simulation

Model used

- Boeing 727
- VHF antenna C50-17

Result to date

Model of the antenna radiation pattern:

- Dipole
- Horn

Risk register

Category	Risk event	Probab ility	Impact	Priority	Risk Response
Project management	Delay	Medium	High	High	Use of GitHub as a productivity and management tool
Design	Ineffective research and literature review	Medium	High	High	Seek for some experts by asking to the supervisors
Design	Unable to properly design the antenna radiation pattern	Low	Medium	Medium	Slight change of the antenna or change software
Design	Unable to perform the best antenna switch	Medium	High	Low	Change algorithm and performances analysis

Gantt chart

Gantt chart

Conclusion

Thank you!