6.3.7.2 Thermal Economic Equivalent (TEE) [%]

Description

Thermal economic equivalent (TEE) corresponds to the economic benefit derived from using alternative fuel by showing the relationship between the fuel costs and the theoretical fuel costs if no alternative fuels were used.

Reference to Process

- Main cost center 'Clinker Production'
- Pre-process cost centers 'Traditional Fuels Preparation and Handling' and 'Alternative Fuels Preparation and Handling' (at plant only)
- Product sub-segment Clinker and Cement

Purpose

To measure the economic benefit of substituting traditional with alternative fuel.

Calculation

Note that A, B, C, D, E, F and G refer to the lines of the table shown in the 'Comments and Examples'.

TEE [%] = [1 -
$$\frac{\text{Actual Cost of Thermal Energy} \times (1-TSR)}{\text{Actual Cost of Traditional Thermal Energy}}$$
] × 100

Depreciation and amortization are not included.

Comments and Examples

TIS data normalization code: ICS Code 400+TEE+CLINKE

This indicator includes the actual costs of the 'Traditional Fuels Preparation and Handling' and 'Alternative Fuels Preparation and Handling' pre-process costs centers (see <u>Definition</u> of pre-process cost centers) and also the compulsory sub-type of costs 'Traditional Fuel' and 'Alternative Fuel' within main cost center 'Clinker Production').

The following table considers five examples of the TEE application:

		Example 1	Example 2	Example 3	Example 4	Example 5
Compulsory Sub-Type of Cost Traditional Fuel [RC]	А	359176	359'176	179'588	95'095	106'899
Actual Cost of Pre-Process Cost Centers Traditional Fuel Preparation and	В		25-267 28/2307 5-25-		5000 WOOD	200,000,000
Handling' (RC)		18'904	18'904	9'452	5'005	5'626
Actual Cost of Traditional Thermal Energy [RC]	A+B	378'080	378'080	189'040	100'100	112'525
Compulsory Sub-Type of Cost Alternative Fuel [RC]	С	200'000	100'000	180'032	-150'000	-200'000
Actual Cost of Pre-Process Cost Centers 'Alternative Fuel Preparation and	D	470000	001040	400/500	501000	24/24.2
Handling' [RC]	C+D	178'080	89'040	103'528	50'000	31'212
Actual Cost of Alternative Thermal Energy [RC]	7.7	378'080	189'040	283'560	-100'000	-168'788
Actual Cost of Thermal Energy [RC]	A+B+ C+D	756'160	567'120	472'600	100	-56'263
Traditional Thermal Energy Consumption in the Kiln System [MJ]	E	216'046				0.0740.00000
Alternative Thermal Energy Consumption in the Kiln System [MJ]	F	216'046	216'046	324'069	200'000	192'900
Total Thermal Energy Consumption in the Kiln System [MJ]	G= E+F	432'092	432'092	432'092	257'200	257'200
Thermal Substitution Rate, TSR [%]	F/G	50.00%	50.00%	75.00%	77.76%	75.00%
Thermal Economic Equivalent, TEE [%] 1- ((A+B+C+D)* (1-F/G)/(A+B))		0.00%	25.00%	37.50%	99.98%	112.50%

If TEE is 100% the total fuel costs are equal to zero.

Reporting Requirements

The indicator is reported in SAP FC.