Towards Parallel Boolean Function Synthesis

S. Akshay¹, Supratik Chakraborty¹, Ajith John², Shetal Shah¹

¹ IIT Bombay, India ² BARC, India presented earlier this year at TACAS

Dec 6-8, SAT-SMT Workshop, 2017

- Boolean Functions: fundamental building blocks in computing
- Easy to specify them declaratively; as a relation between input and output values.
- But we often need them constructively
 - output specified as a function of the inputs
- Deriving a boolean function from a boolean relation Boolean Function Synthesis

Problem Statement

Given: a boolean relation R(x₁,...x_n, y₁,...y_m) where each x_i is an input variable and each y_i is an output variable

Problem Statement

- Given: a boolean relation R(x₁,...x_n, y₁,...y_m) where each x_i is an input variable and each y_i is an output variable
- Synthesize: functions $F_i(x_1, ..., x_n)$, for each y_i such that $\exists y_1, ..., y_m R(x_1, ..., x_n, y_1, ..., y_m) \equiv R(x_1, ..., x_n, F_1, ..., F_m)$

Problem Statement

- Given: a boolean relation R(x₁,...x_n, y₁,...y_m) where each x_i is an input variable and each y_i is an output variable
- Synthesize: functions $F_i(x_1, ..., x_n)$, for each y_i such that $\exists y_1, ..., y_m R(x_1, ..., x_n, y_1, ..., y_m) \equiv R(x_1, ..., x_n, F_1, ..., F_m)$
- F_i is also called a Skolem Function
- R need not be true for every combination of $x_1, \ldots x_n$

Factorization using functional synthesis

• Given a relation R(X, Y, Z), set of all triples (X, Y, Z) s.t., $Z = X * Y, X \neq 1, Y \neq 1$.

• Our goal: To synthesize functions F, G, s,t., F(Z) = X, G(Z) = Y, R(X, Y, Z) holds

Applications of Boolean Function Synthesis

- 1. Factorization: Useful as a motivating example but a hard problem for boolean function synthesis!
- 2. Synthesizing Arithmetic Functions: from specifications of arithmetic relations
 - Example: floor, min, max, avg, ceil
- 3. Quantifier Elimination in Model Checking
- 4. Certifying Solvers: certificates for satisfiable quantified Boolean formulas (QBF)
- Disjunctive Decomposition: compute a disjunctive decomposition of implicitly specified state transition graphs of sequential circuits.
- 6. Circuit Synthesis: automatically synthesizing circuits from specifications New area: Reactive Circuit Synthesis.

Existing Approaches

- 1. Extract Skolem function from the proof of validity of $\forall X \exists YF(X, Y)$
 - succinct Skolem functions [Ben05], [JB11], [JBS+07], [HSB14], [RS16]
 - not applicable when $\forall X \exists YF(X, Y)$ is not valid
 - [RS16] latest version works for formulae which are not valid
- 2. Generate Skolem functions matching a given template.
 - Template-based program verification and program synthesis by Srivastava, Gulwani, and Foster [SGF13]
 - effective when the set of candidate Skolem functions is known and small
 - it is not always reasonable assumption
- 3. Composition based approaches [Jia09], [Tri03]
 - Work well for small-sized formulas
 - Compositions cause formula blow up and memory out

Existing Approaches Contd...

4. Boolean Function Synthesis Using BDDs [FTV16]

- scales for a class of benchmarks with predetermined orders
- Without prior knowledge of benchmark classes; good variable orders, performance can degrade considerably
- Recent work in FMCAD 2017 address factored formulae

5. CEGARSKOLEMGEN [JSC+15]

- Considers *factored formulas* wherein a formula is represented by a conjunction of factors
- Scales well if each factor contains a small subset of variables
- Does not perform well on large benchmarks which are not a conjunction of factors

Our Contributions

- Extend [JSC⁺15] to arbitrary boolean formulae
- A new compositional approach to synthesize functions.
- Capitalize on compositionality to enable parallelism
- Outperforms existing techniques in terms of the number of benchmarks solved and the time taken to synthesize boolean functions

Find F(X) such that $\exists y \varphi(X, y) \equiv \varphi(X, F(X))$.

— Set of all valuations to X.

Find F(X) such that $\exists y \varphi(X, y) \equiv \varphi(X, F(X))$.

—Can't set y to 1 to satisfy φ : $\Gamma_y(X) = \neg \varphi(X, y)[y \mapsto 1]$

Find F(X) such that $\exists y \varphi(X, y) \equiv \varphi(X, F(X))$.

— Can't set y to 0 to satisfy φ : $\Delta_{y}(X) = \neg \varphi(X, y)[y \mapsto 0]$

Find F(X) such that $\exists y \varphi(X, y) \equiv \varphi(X, F(X))$.

- Can't set y to 1 to satisfy φ : $\Gamma_{\nu}(X) = \neg \varphi(X, y)[y \mapsto 1]$
- Can't set y to 0 to satisfy φ : $\Delta_y(X) = \neg \varphi(X, y)[y \mapsto 0]$

Find F(X) such that $\exists y \varphi(X, y) \equiv \varphi(X, F(X))$.

- Can't set y to 1 to satisfy φ : $\Gamma_y(X) = \neg \varphi(X, y)[y \mapsto 1]$
- Can't set y to 0 to satisfy φ : $\Delta_y(X) = \neg \varphi(X,y)[y \mapsto 0]$
- A Skolem function for y in φ is any Interpolant of $(\Delta_y \setminus \Gamma_y)$ and $(\Gamma_y \setminus \Delta_y)$

Find F(X) such that $\exists y \varphi(X, y) \equiv \varphi(X, F(X))$.

- Can't set y to 1 to satisfy φ : $\Gamma_y(X) = \neg \varphi(X, y)[y \mapsto 1]$
- Can't set y to 0 to satisfy φ : $\Delta_y(X) = \neg \varphi(X,y)[y \mapsto 0]$
- A Skolem function any Interpolant of $(\Delta_y \setminus \Gamma_y)$ and $(\Gamma_y \setminus \Delta_y)$
- E.g. $\neg \Gamma_y = \varphi(X, y)[y \mapsto 1] = \varphi(X, 1)$
- and $\Delta_y = \neg \varphi(X, y)[y \mapsto 0] = \neg \varphi(X, 0)$

• Given propositional functions f(X) and g(X)

• Given propositional functions f(X) and g(X)

• Given propositional functions f(X) and g(X)

If $g \implies f$ then f is an abstraction of g and that g is a refinement of f

• Given propositional functions f(X) and g(X)

If $g \implies f$ then f is an abstraction of g and that g is a refinement of f

- Similarly, γ_i is a refinement of Γ_i , i.e., $\gamma_i \implies \Gamma_i$
- and δ_i is a refinement of Δ_i , i.e., $\delta_i \implies \Delta_i$

Using Compositionality

- *Input*: DAG representing $\varphi(X, Y)$ in NNF Form
 - Internal nodes tagged as AND/OR; negations pushed to leaves

Using Compositionality

- Can the DAG representation be exploited to obtain compositionality?
- i.e., can we compose Δ_i (δ_i) and Γ_i (γ_i) sets of a (operator) in terms of Δ_i (δ_i), Γ_i (γ_i) of its children?

Compositionality for an OR node

For an OR node N, with children c_1 and c_2 , for each y_i ,

Compositionality for an AND node

For an AND node N, with children c_1 and c_2 , for each y_i ,

Compositionality for an AND node

For an AND node N, with children c_1 and c_2 , for each y_i , To obtain $\Delta_i(N)$ and $\Gamma_i(N)$, we may need to perform CEGAR

Generalized Compositional Lemma and Parallelism

Generalized Compositional Lemma (Details in the paper)

For any boolean operator op with children c_1, \ldots, c_k

- Generalized Compositional Lemma indicates how δ_i 's and γ_i 's of c_1, \ldots, c_k can be combined to obtain δ_{op}, γ_{op}
- Allows us to work with refinements(δ_i and γ_i); exact Δ_i and Γ_i not necessary
- Computation of exact Δ_i and Γ_i required at the root
- Allows us to compute better refinements

Generalized Compositional Lemma and Parallelism

Generalized Compositional Lemma (Details in the paper)

For any boolean operator op with children c_1, \ldots, c_k

- Generalized Compositional Lemma indicates how δ_i 's and γ_i 's of c_1, \ldots, c_k can be combined to obtain δ_{op}, γ_{op}
- Allows us to work with refinements(δ_i and γ_i); exact Δ_i and Γ_i not necessary
- Computation of exact Δ_i and Γ_i required at the root
- Allows us to compute better refinements

Exploiting Compositionality to enable Parallelism

All nodes whose children's Δ_i and Γ_i sets are computed are candidates for processing in parallel

At the beginning: Identify nodes that can be processed in parallel, namely, leaf nodes

Once all children of a node are processed, it becomes candidate for processing

As we near the root of the DAG, fewer nodes can be processed in parallel

Once root, R, is processed, return $\neg \Gamma_1(R), \dots, \neg \Gamma_m(R)$

Experiment Results: ParSyn with different cores

- As #cores increases to 10-15, computation time decreases
- After a point, performance does not improve further
- Need to improve the parallelism of the algorithm

Experiment Results: ParSyn Vs Csk (based on [JSC+15])

```
# Disjunctive Decomposition Benchmarks = 27;
# Arithmetic Benchmarks = 15; #Factorization Benchmarks: 4;
Total Benchmarks = 46
```


#cores used for ParySyn = 20

- Csk was successful on only 12 of the 46 benchmarks; Most of the benchmarks with Csk was successful on were conjunctions of factors
- ParSyn was successful on 39 benchmarks

ParSyn Vs RSynth

Variable ordering: variable which occurs in the least number of transitive fan-ins

- ParSyn was on successful
 39 of the 46 benchmarks
- RSynth was successful on only 3 benchmarks

Experiment Results: ParSyn Vs Bloqqer

- Compared only instances where ∃YF(X, Y) is valid - 42 benchmarks
- Bloqqer successfully synthesized functions for 25, gave a Not Verified message for 17
- ParSyn was successful on 36 benchmarks

Conclusions and List of Publications

- A CEGAR approach for boolean function synthesis for arbitrary boolean formulae
- A first step towards parallelization: can we do better?

- Marco Benedetti.
 - sKizzo: A Suite to Evaluate and Certify QBFs.

 In *Proc. of CADE*, pages 369–376. Springer-Verlag, 2005.
- Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi.
 - BDD-based boolean functional synthesis. In *CAV*, 2016.
- Marijn Heule, Martina Seidl, and Armin Biere.
 - Efficient Extraction of Skolem Functions from QRAT Proofs. In *Proc. of FMCAD*, 2014.
- J.-H. R. Jiang and V Balabanov.
 - Resolution proofs and Skolem functions in QBF evaluation and applications.
 - In *Proc. of CAV*, pages 149–164. Springer, 2011.
- T. Jussila, A. Biere, C. Sinz, D. Kröning, and
 - C. Wintersteiger.
 - A First Step Towards a Unified Proof Checker for QBF.

 In Proc. of SAT, volume 4501 of LNCS, pages 201–214