CNS LAB

Batch: B1

Assignment: 7

PRN No: 2020BTECS00006

Name: Samrat Vishwas Jadhav

Title of assignment: Implementation of Euclidean and Extended Euclidean Algorithm.

1. Aim:

Implementation of Euclidean and Extended Euclidean Algorithm.

2. Theory:

The Euclidean algorithm is a way to find the greatest common divisor of two positive integers. GCD of two numbers is the largest number that divides both of them. A simple way to find GCD is to factorize both numbers and multiply common prime factors.

$$36 = 2 \times 2 \times 3 \times 3$$

 $60 = 2 \times 2 \times 3 \times 5$

Basic Euclidean Algorithm for GCD:

The algorithm is based on the below facts.

- If we subtract a smaller number from a larger one (we reduce a larger number), GCD doesn't change. So if we keep subtracting repeatedly the larger of two, we end up with GCD.
- Now instead of subtraction, if we divide the smaller number, the algorithm stops when we find the remainder 0.

Extended Euclidean algorithm also finds integer coefficients x and y such that: ax + by = gcd(a, b)

Examples:

Input: a = 30, b = 20

Output: gcd = 10, x = 1, y = -1 (Note that 30*1 + 20*(-1) = 10)

Input: a = 35, b = 15

Output: gcd = 5, x = 1, y = -2 (Note that 35*1 + 15*(-2) = 5)

How does Extended Algorithm Work?

As seen above, x and y are results for inputs a and b,

$$a.x + b.y = gcd --(1)$$

And x_1 and y_1 are results for inputs b%a and $a(b\%a).x_1 + a.y_1 = gcd$

When we put $b\%a = (b - (\lfloor b/a \rfloor).a)$ in above, we get following. Note that $\lfloor b/a \rfloor$ is floor(b/a) $(b - (\lfloor b/a \rfloor).a).x_1 + a.y_1 = \gcd$

Above equation can also be written as below

$$b.x_1 + a.(y_1 - (|b/a|).x_1) = gcd$$
 —(2)

After comparing coefficients of 'a' and 'b' in (1) and (2), we get following,

$$x = y_1 - \lfloor b/a \rfloor * x_1$$

 $y = x_1$

How is Extended Algorithm Useful?

The extended Euclidean algorithm is particularly useful when a and b are coprime (or gcd is 1). Since x is the modular multiplicative inverse of "a modulo b", and y is the modular multiplicative inverse of "b modulo a". In particular, the computation of the modular multiplicative inverse is an essential step in RSA public-key encryption method.

Code:

```
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
class menu
   public :
  long long find_multiplicative_inverse(long long a, long long
b) {
   long long q, r, t1 = 0, t2 = 1, t, main_a = a;
cout<<"\n
                                                   \n";
   cout<<"\n
                                                    \n";
   while (b > 0) {
       q = a / b;
       r = a \% b;
       t = t1 - (t2 * q);
       cout << " \t" << q << "\t \t" << a << "\t \t" << b <<
"\t \t" << r << "\t \t" << t1 << "\t \t" << t2 << "\t \t" << t <<
"\t \n";
     cout<<"\n
                                                         n"
       a = b;
       b = r;
       t1 = t2;
       t2 = t;
   }
   cout << " \t" << q << "\t \t" << a << "\t \t" << b << "\t \t"
<< r << "\t \t" << t1 << "\t \t" << t2 << "\t \t" << t <<
"\t \n";
                                                      \n";
   cout<<"\n
```

```
if (t1 < 0) {</pre>
        t1 += main_a;
    }
    return t1;
    long long find_large_number_gcd(long long a,long long b)
    {
        long long q,r;
             cout<<"\n_
  \n";
             cout<<" | \t\tQ\t\t | \t\tA\t\t | \t\tB\t\t | \t\tR\t\t | \n";</pre>
          cout<<"\n_
 \n";
            while(b>0)
                     q=a/b;
                     r=a%b;
                     cout<<" | \t\t"<<q<<"\t\t | \t\t"<<a<<"\t\t | \t\t"</pre>
<<b<<"\t\t|\t\t"<<r<<"\t\t|\n";
                  cout<<"\n____
       \n";
                     a=b;
                     b=r;
             }
              cout<<"|\t\t"<<q<<"\t\t|\t\t"<<b<<"\</pre>
t\t \t\t"<<r<<"\t\t \n";
    cout<<"\n____
                                                                 \n";
             cout<<endl;</pre>
            return a;
    }
```

```
int main()
    main menu:
    cout<<"\n
                                           \n";
    cout<<"\n1.Find Multiplicative Inverse (Extended Euclidien</pre>
Algo ) \n2.Find GCD Of large numbers(Euclideian Algo ) \n";
                                         \n";
    cout<<"Enter Choice Code :\t";</pre>
    menu object;
    int ch;
    cin>>ch;
    cout<<"\n";</pre>
    long long a,b,ans;
    switch(ch)
    {
        case 1:
             cout<<"\nEnter A and B ( must be A>B) :\t";
             cin>>a>>b;
             ans=object.find_multiplicative_inverse(a,b);
            cout<<"Multiplicative Inverse Of "<<a<<"\tAnd</pre>
"<<b<<"\t :\t"<<ans<<endl;</pre>
            goto main_menu;
        case 2:
             cout<<"\nEnter A and B :\t";</pre>
             cin>>a>>b;
              ans=object.find large number gcd(a,b);
             cout<<"\nGCD Of Of "<<a<<"\tAnd "<<b<<"\t</pre>
:\t"<<ans<<endl;
             goto main menu;
        default:
             cout<<"Invalid Input !";</pre>
            break;
```

```
}
return 0;
}
```

Output:

ter	Choice C	ode :	1								
ter	A and B	(must	t be A>B)		161						
	Q	T	A	ı	В		R	T1	T2	Т	
	5	T	161	I	28		21	0	1	-5	
	1	T	28	I	21		7	1	-5	6	
	3		21	I	7		0	-5	6	-23	
	3		-		<u>0</u>		0	6	-23	-23	

Enter Choice Code :	2							
Enter A and B : 1760	2740							
Ī Q	I			В		R	1	
<u> </u>	1	 274 0		1760		980	1	
 1		1760		980		780	1	
1		980		780		200	1	
] 3		 780		200		180	1	
1	1	 200		180		20	1	
 9		180		20			1	
9	1	 20					1	
GCD Of Of 2740	And 1760 :	28				Activate Windows Go to Settings to activate Windows		