A37467 ANY CALCULATOR

UNIVERSITY^{OF} BIRMINGHAM

School of Physics and Astronomy

DEGREE OF B.Sc. & M.Sci. WITH HONOURS

FIRST-YEAR EXAMINATION

03 19718

LC QUANTUM MECHANICS / OPTICS & WAVES

SUMMER EXAMINATION 2024

Time Allowed: 2 hours

Answer four questions from Section 1 and two questions from Section 2.

Section 1 consists of four questions and carries 44% of the marks for the examination.

Answer *all four* questions from this Section.

Section 2 consists of two questions and carries 56% of the marks.

Answer **both** questions in Section 2. Note that each question has two parts, of which only **one part** should be answered. If you answer both parts, credit will only be given for the best answer.

The approximate allocation of marks to each part of a question is shown in brackets [].

PLEASE USE A SEPARATE ANSWER BOOK FOR SECTION 1 AND SECTION 2 QUESTIONS.

A formula sheet and a table of physical constants and units that may be required will be found at the end of this question paper.

SECTION 1

Answer all four questions from this Section.

1. A monoenergetic beam of electrons scatters from a crystal with planes of atoms separated by $0.335~\mathrm{nm}$. Find the lowest electron accelerating voltage at which constructive interference will occur at an angle of 20° from the crystal planes.

[8]

2. A photon of wavelength $13.5~\mathrm{nm}$ is emitted when a single-electron atom makes a transition from its first excited state. How much energy is required to ionise the atom from its ground state? Express your answer in units of eV . What is the atomic number Z of the atom?

[8]

3. The transverse displacement y at position x and time t of a harmonic wave on a string is given by

$$y = 0.006\sin(0.1x - 2.2t + 0.1),$$

where x and y are measured in metres while t is measured in seconds. Find the amplitude, wavelength, frequency and period of this wave. Use the above equation to show that this wave travels in the $\pm x$ direction. What is the speed of this wave?

[8]

4. Two taut strings of the same mass per unit length and held at the same tension are $2.10\,\mathrm{m}$ and $2.12\,\mathrm{m}$ long, respectively. The ends of each string are fixed. Given that the speed of waves along the strings is $1000\,\mathrm{m\,s^{-1}},$ what is the fundamental frequency of each string? Describe what is heard when both strings are oscillating at their fundamental frequencies.

[8]

SECTION 2

Answer **both** questions in this Section. Note that each question has two parts, of which only **one part** should be answered. If you answer both parts, credit will only be given for the best answer.

5. EITHER Part A

- (a) Using the time-independent Schrödinger equation (TISE) as an example, explain the terms eigenvalue equation, eigenfunction and eigenvalue. Identify the operators in the TISE.
- (b) When the potential function takes a constant positive value, $V(x) = V_0$, show that the wave function $\psi(x) = A \exp(ikx)$ is an eigenfunction of the TISE, and determine its eigenvalue.
- (c) A particle of mass, m, and energy, E, moving in the positive x-direction is incident upon a semi-infinite positive potential step at x=0. The potential function is V(x)=0 for x<0 and $V(x)=V_0$ for $x\geq 0$. The solution of the TISE in the region x<0 is

$$\psi(x) = A \exp(ikx) + B \exp(-ikx).$$

Consider the situation where $E < V_0$.

i. By solving the TISE, show that the wave function in the region $x \geq 0$ is a <u>real</u> exponential of the form

$$\psi(x) = C \exp(-\alpha x),$$

where C and α are constants. Find an expression for α in terms of the other constants in the problem. [4]

- ii. Explain why the wave function, and the gradient of the wave function, must be continuous at the boundary at x=0. Hence show that $|A|^2=|B|^2$ and explain the significance of this result. [5]
- iii. By normalising the wave function in the region $x \ge 0$, find an expression for the probability that a barrier-penetrating particle penetrates a depth $x \ge L$ into the potential step. [5]

OR Part B

(a)	Describe two features of the photoelectric effect that are inconsistent with	
	classical physics. For each feature, state what classical physics predicts	
and how the photon hypothesis explains the result.		

- (b) When light of wavelength $200~\mathrm{nm}$ is shone onto a metal surface the maximum electron energy is measured to be $2.41~\mathrm{eV}$. What is the maximum wavelength for which electrons will be emitted?
- (c) The X-ray absorption spectrum of a particular element is found to have three absorption edges at $0.4~{\rm keV},\,2.6~{\rm keV}$ and $20~{\rm keV}.$
 - i. Explain what the appearance of edges in the absorption spectrum tells you about the electronic structure of atoms.[4]
 - ii. Use the data provided to find the atomic number of the element. [4]
- (d) Find the longest incident wavelength for which the energy of a photon can be halved in the process of Compton scattering. [4]

6. EITHER Part A

- (a) An object $1 \, \mathrm{cm}$ high is placed $70 \, \mathrm{cm}$ in front of a thin converging lens of focal length $40\,\mathrm{cm}$. Find the position and size of the image
 - i. qualitatively using a ray diagram.
 - ii. quantitatively using the lens equation.

[4]

(b) The experimental setup described in a) is moved from air into a large bath of water of refractive index 1.33. If the lens is made of plastic of refractive index 1.20, determine the position and size of the image using both a ray diagram and the lens equation. The focal length f of a lens of refractive index n_l in the medium of refractive index n_m is given by

$$\frac{1}{f} = \left(\frac{n_l}{n_m} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right).$$

[4]

(c) Two thin lenses with focal lengths f_1 and f_2 are placed together to form a combination lens. Assuming that the distance between the two lenses is zero, show that the combined lens has an effective focal length f such that

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}.$$

[4]

- (d) A person has near point of $150 \, \mathrm{cm}$. What is the power of the contact lens that is required to bring this near point to $25 \,\mathrm{cm}$? [3]
- (e) A diver finds when looking up at the surface of the water that it is possible to observe light from above the water only in a circular region on the water's surface. If the refractive index of the water is $n_w = 1.33$, what is the opening angle of the cone which is defined by the diver's eye and the circular region? You may assume that the medium above water is air with a refractive index $n_{air} = 1$. What does the diver see outside the cone?

[5]

OR Part B

Two semi-infinite strings of different mass per unit length, μ_1 and μ_2 , are joined at the position x = 0. The tension in the strings is T.

 μ_2 tends to infinity and ii) μ_2 tends to zero?

A wave, given by $y = A\cos(k_1x - \omega t)$, travels along string 1 from left to right.

(a) Show that the amplitudes of the reflected and transmitted waves, C and B, respectively, are given by:

$$B = \frac{2k_1}{k_1 + k_2}A$$
 and $C = \frac{k_1 - k_2}{k_1 + k_2}A$

where k_1 and k_2 are the wave-numbers for strings 1 and 2, respectively. State the boundary conditions that you used for the derivation. [7]

- (b) What happens to the amplitudes of the reflected and transmitted waves if i) [3]
- (c) For $\mu_2 = 0$, the resultant wave on string 1 can be obtained by superposition of the incident and the reflected waves. Express the resultant wave in terms of A, k_1 and ω . Where is the first node from x = 0? [4]
- (d) For a particular combination of the two strings, C=(-A)/2 for the reflected wave. Assume that string 2 is infinitely long so that no reflected waves come from the right end of string 2, show that the resultant wave on string 1 can be expressed as the sum of a standing wave and a travelling wave. Are there any nodes on string 1 where the displacement is constantly zero? Comment on how energy transport from string 1 to string 2 is affected by the junction. [6]

Quantum Mechanics Formula Sheet

Stefan-Boltzmann Law

$$\frac{P}{A} = \sigma T^4$$

Wien's Displacement Law

$$\lambda_{\rm peak}T = 2.898 \times 10^{-3} \,\mathrm{Km}$$

Planck's Formula

$$\overline{E}(\lambda) = \frac{hc/\lambda}{\exp(hc/\lambda k_B T) - 1}$$

Einstein's Photoelectric Formula

$$KE_{max} = hf - \phi$$

Compton Shift Equation

$$\lambda_2 - \lambda_1 = \frac{h}{m_e c} \left(1 - \cos \theta \right)$$

Hydrogen Energy Levels

$$E_n = -\frac{13.6}{n^2} \,\text{eV}$$

Bragg's Law

$$2d\sin\theta = n\lambda$$

Moseley's Law

$$f_{K_{\alpha}} = (2.48 \times 10^{15} \text{ Hz}) \times (Z - 1)^2$$

Heisenberg's Uncertainty Principle

$$\Delta p_x \Delta x \ge \frac{h}{4\pi}$$

Free-Particle Wave Function

$$\Psi\left(x,t\right) = A \exp\left(\pm i \left(kx - \omega t\right)\right)$$

Momentum Operator

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$

Energy Operator

$$\hat{E} = i\hbar \frac{\partial}{\partial t}$$

Expectation Value

$$\langle O \rangle = \int_{-\infty}^{+\infty} \Psi^* \hat{O} \Psi dx$$

Time-Independent Schrödinger Equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

Physical Constants and Units

Acceleration due to gravity	g	$9.81\mathrm{ms^{-2}}$
Gravitational constant	G	$6.674 \times 10^{-11}\mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Ice point	T_{ice}	273.15 K
Avogadro constant	N_A	$6.022 imes 10^{23} ext{mol}^{-1}$
· ·		[N.B. 1 mole $\equiv 1$ gram-molecule]
Gas constant	R	$8.314\mathrm{JK^{-1}mol^{-1}}$
Boltzmann constant	k,k_B	$1.381 \times 10^{-23} \mathrm{J K^{-1}} \equiv 8.62 \times 10^{-5} \mathrm{eV K^{-1}}$
Stefan constant	σ	$5.670\times 10^{-8}\hbox{W}\hbox{m}^{-2}\hbox{K}^{-4}$
Rydberg constant	R_{∞}	$1.097 \times 10^7 m^{-1}$
	$R_{\infty}hc$	13.606 eV
Planck constant	h	$6.626 imes 10^{-34} \mathrm{J} \mathrm{s} \equiv 4.136 imes 10^{-15} \mathrm{eV} \mathrm{s}$
$h/2\pi$	\hbar	$1.055 \times 10^{-34} \text{J} \text{s} \equiv 6.582 \times 10^{-16} \text{eV} \text{s}$
Speed of light in vacuo	c	$2.998\times10^8\text{m}\text{s}^{-1}$
	$\hbar c$	197.3 MeV fm
Charge of proton	e	$1.602 imes 10^{-19}\text{C}$
Mass of electron	m_e	$9.109 imes 10^{-31} kg$
Rest energy of electron		0.511 MeV
Mass of proton	m_p	$1.673 imes 10^{-27} \mathrm{kg}$
Rest energy of proton		938.3 MeV
One atomic mass unit	u	$1.66 imes 10^{-27} kg$
Atomic mass unit energy equivalent		931.5 MeV
Electric constant	ϵ_0	$8.854 \times 10^{-12}\mathrm{F}\mathrm{m}^{-1}$
Magnetic constant	μ_0	$4\pi imes10^{-7}\mathrm{Hm^{-1}}$
Bohr magneton	μ_B	$9.274\times 10^{-24}\text{A}\text{m}^2~(\text{J}\text{T}^{-1})$
Nuclear magneton	μ_N	$5.051\times 10^{-27}\text{A}\text{m}^2\;(\text{J}\text{T}^{-1})$
Fine-structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	7.297×10^{-3} = 1/137.0
Compton wavelength of electron	$\lambda_c = h/m_e c$	$2.426 \times 10^{-12} \text{m}$
Bohr radius	a_0	$5.2918 \times 10^{-11} \mathrm{m}$
angstrom	Å	$10^{-10}{\rm m}$
barn	b	$10^{-28}\mathrm{m}^2$
torr (mm Hg at 0 °C)	torr	$133.32 \text{Pa (N m}^{-2})$

Do not complete the attendance slip, fill in the front of the answer book or turn over the question paper until you are told to do so.

Important Reminders

- Coats/outwear should be placed in the designated area.
- Unauthorised materials (e.g. notes or Tippex) <u>must</u> be placed in the designated area.
- Check that you do not have any unauthorised materials with you (e.g. in your pockets, pencil case).
- Mobile phones and smart watches <u>must</u> be switched off and placed in the designated area or under your desk. They must not be left on your person or in your pockets.
- You are <u>not</u> permitted to use a mobile phone as a clock. If you have difficulty seeing a clock, please alert an Invigilator.
- You are <u>not</u> permitted to have writing on your hand, arm or other body part.
- Check that you do not have writing on your hand, arm or other body part
 if you do, you must inform an Invigilator immediately
- Alert an Invigilator immediately if you find any unauthorised item upon you during the examination.

Any students found with non-permitted items upon their person during the examination, or who fail to comply with Examination rules may be subject to Student Conduct procedures.