

Variant classifier

Developing a knowledge-based approach using IMPACT data

November 8, 2018

Papaemmanuil Lab

Pierre Guilmin | Elsa Bernard In collaboration with A. Zehir, R. Ptashkin and C. Debyani

100 patients

Table of ≈ 1000 coding mutations to check one by one

The goal

Create a tool that classifies variant automatically

- real vs artefact OR driver vs passenger
- using Supervised Machine Learning Classification
- all cancer, all mutation type
- on the IMPACT dataset

IMPACT, the dataset

IMPACT dataset

coding + splicing (194,211 mutations = 36%)

IMPACT dataset

coding + splicing (194,211 mutations = 36%) impact curation

real 96%

artefact 4%

coding + splicing (194,211 mutations = 36%) impact curation

real 96%

artefact 4% driver 33%

passenger 63%

OncoKB

artefact 4%

coding + splicing (194,211 mutations = 36%)

coding + splicing (194,211 mutations = 36%)

driver 2 class: driver | passenger OncoKB

The features used in our model

- Sequencing features (n = 11)

 Tumor VAF, tumor depth
- Cancer population (n = 4) COSMIC count, OncoKB

- Genomic coordinates (n = 3) Chromosome, Hugo Symbol
- Normal control (n = 1)

 Frequency in normals

• Control population (n = 12)

GnomAD allele frequency

• Mutation consequence (n = 6)
Protein effect, SIFT & PolyPhen class

Algorithm comparison

Algorithm comparison

Best algorithm probability output

The variant classifier performances

The variant classifier performances

predicted probability

The variant classifier performances

144/1000 mutations to check one by one instead of 1000/1000

× 8/40 artefacts considered as real

Main challenges

Imbalanced dataset

somatic 96%

non-somatic 4%

Main challenges

Imbalanced dataset

Main challenges

Imbalanced dataset

real 96% (187,012) artefact 4% (7,199) Evolution over time

Next steps

Compare with new paper

A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data

Benjamin J. Ainscough 1,2,12, Erica K. Barnell 1,12, Peter Ronning, Katie M. Campbell 1, Alex H. Wagner 1, Todd A. Fehniger 2,3, Gavin P. Dunn, Ravindra Uppaluri, Ramaswamy Govindan, Thomas E. Rohan, Malachi Griffith 1,2,3,7, Elaine R. Mardis, S. Joshua Swamidass 10,11* and Obi L. Griffith 1,2,3,7*

Get detailed calling features
Variant caller flags, read mapping quality, ...

Explore new methods

- Deep learning
- Improved under-sampling strategy

•

Create a 2-steps web-based classifier

Optimisation of clinical heme panel

