CS/ECE 473 Fall 2020	Ryan Prendergast (ryanp4)
Homework 3 Problem 3	Noah Watson (nwatson3)
	Lawson Probasco (lawsonp2)

3.a

Write down a description of randomized quick selection in pseudocode. Show that the expected depth of the recursion of randomized quick selection is O(log n), and that the expected running time is O(n).

Solution: We provide the following pseudocode for randomized quickselect on an array A of size n. It takes the arguments l,j as indeces into A: $l \le n$, $r \le n$ and r >= l. We are looking to find the kth largest element in A. We name the function RQS. We use the standard partition subroutine which, given an array

Algorithm 1 RandomizedQuickSelect(l, r, k)

```
if l == r then

return

end if

pivot \leftarrow RandInt(l..r)

partition(l, r, pivot)

if pivot == k then

return A[k]

else

return RQS(pivot + 1, r, k)

end if
```

We first define the recurrence $\bar{T}(n)$ to be the expected value of the amount of work on a problem of size n. We know that the partition function requires n-1 comparisons to solve a problem of size n.

$$\bar{T}(n) = n - 1 + max[\bar{T}(k-1), \bar{T}(n-k)]$$

We define a good pivot to be in the middle 50% of elements and a bad one to be in the lower 25 or upper 75. In the event of a good pivot,

$$\bar{T}(n) \le n - 1 + \bar{T}(3/4 * n)$$

and in the event of a bad pivot

$$\bar{T}(n) \le n - 1 + \bar{T}(n)$$

Because the pivot is selected uniformly randomly, there is equal probability of 1/2 of both. So,

$$\bar{T}(n) \le 2n - 2 + .5 * \bar{T}(n) + .5 * \bar{T}(3/4 * n)$$

 $\bar{T}(n) \le 4n - 4 + \bar{T}(3/4 * n)$

1

By the master theorem, we know that the right side recurrence runs in O(n) time, and this serves as an upper bound.

Next we define the recurrence $\bar{D}(n)$ to be the expected value of the depth of the recursion tree of a problem of size n. We know that each call to the function adds one to the recursion tree depth.

$$\bar{D}(n) = 1 + \max[\bar{D}(k-1), \bar{D}(n-k)]$$

We will use the same definition of a good and bad pivot as previously: define a good pivot to be in the middle 50% of elements and a bad one to be in the lower 25 or upper 75. In the event of a good pivot,

$$\bar{D}(n) \le 1 + \bar{D}(3/4 * n)$$

and in the event of a bad pivot

$$\bar{D}(n) \le 1 + \bar{D}(n)$$

Because the pivot is selected uniformly randomly, there is equal probability of 1/2 of both. So,

$$\bar{D}(n) \le 2 + .5 * \bar{D}(n) + .5 * \bar{D}(3/4 * n)$$

 $\bar{D}(n) \le 4 + \bar{D}(3/4 * n)$

By the master theorem, we know that the right side recurrence runs in O(log n) time, and this serves as an upper bound.

CS/ECE 473 Fall 2020	Ryan Prendergast (ryanp4)
Homework 3 Problem 3	Noah Watson (nwatson3)
	Lawson Probasco (lawsonp2)

3.b

Solution: