WO 2004/013240 PCT/US2003/024090

What is claimed is:

A can, comprising:
a body portion; and
an end portion,

wherein at least one of the body and end portions are aluminum and are coated on at least one major surface with a coating composition comprising: one or more polyester resins, wherein at least one of the polyester resins has a T_g less than about 50 °C, wherein the polyester resin is formed by the reaction of one or more polyacid molecules and one or more polyol molecules; and a crosslinker, and

wherein the coating composition is substantially free of mobile BPA and aromatic glycidyl ether compounds.

- 2. The can of claim 1, wherein the coating composition is essentially free of mobile BPA and aromatic glycidyl ether compounds.
- 3. The can of claim 1, wherein the coating composition is essentially completely free of mobile BPA and aromatic glycidyl ether compounds.
- 4. The can of claim 1, wherein the coating composition is also substantially free of bound BPA and aromatic glycidyl ether compounds.
- 5. The can of claim 1, wherein the coating composition is essentially free of mobile BPA, BADGE, BFDGE and NOGE compounds.
- 6. The can of claim 1, wherein the polyol molecules used to make the polyester resin are substantially free of NPG.
- 7. The can of claim 2, wherein at least one of the polyester resins has a T_g less than about 25 °C.

WO_2004/013240 PCT/US2003/024090

8. The can of claim 1, wherein the coating composition comprises a blend of two or more polyester resins, wherein the blend has between about 60 and 90 weight percent polyester resin having a T_g less than about 50 °C and between about 10 and 40 weight percent polyester resin having a T_g greater than about 50 °C.

- 9. The can of claim 3, wherein the coating composition comprises a blend of two or more polyester resins, wherein the blend has between about 70 and 90 weight percent polyester resin having a T_g less than about 50 °C and between about 10 and 30 weight percent polyester resin having a T_g greater than about 50 °C.
- 10. The can of claim 1, wherein the polyester resin has a number average molecular weight between about 5,000 and 20,000 Daltons.
- 11. The can of claim 1, wherein the polyester resin has an acid number less than about 5.
- 12. The can of claim 1, wherein the polyester resin has an OH number less than about 20.
- 13. The can of claim 1, wherein the coating composition comprises between 60 and 95 weight percent polyester resin based on solids content.
- 14. The can of claim 1, wherein the coating composition comprises between 65 and 85 weight percent polyester resin based on solids content.
- 15. The can of claim 1, wherein the coating composition comprises between 10 and 30 weight percent crosslinker based on solids content.

-Replacement Page-

DT01 Rec'd PCT/PT 2 5 JAN 200

- 16. The can of claim 1, wherein the coating composition further comprises 2 to 10 weight percent acrylate copolymer, based on solids content.
- 17. The can of claim 16, wherein the acrylate copolymer comprises one or more glycidyl groups.
- 18. The can of claim 1, wherein the end portion is made of aluminum and the coating is applied to the aluminum prior to the end being fabricated.
- 19. The can of claim 18, wherein both sides of the end portion are coated with the coating composition.
- 20. A method of making a can, comprising the steps of: forming a can body; forming a can end;

wherein at least one of the end and the body are coated on at least one side with a coating composition comprising: one or more polyester resins, wherein at least one of the polyester resins has a T_g less than about 50 °C, wherein the polyester resin is formed by the reaction of one or more polyacid molecules and one or more polyol molecules; and a crosslinker, wherein the coating composition is substantially free of mobile BPA and aromatic glycidyl ether compounds;

filling the body with a liquid; and attaching the end to the body.

21. The method of claim 20, wherein the coating composition is applied to a metal sheet and cured, and wherein the coated sheet is then formed into at least one of the end and the body.

1.

-Replacement Page-

22. A coating composition for an aluminum substrate, comprising: one or more polyester resins formed by the reaction of one or more polyacid molecules and one or more polyol molecules, wherein the polyol molecules are substantially free of NPG, and wherein at least one of the polyester resins has a Tg less than about 50 °C; and

a crosslinker,

wherein the coating composition is substantially free of mobile BPA and aromatic glycidyl ether compounds, and

wherein the composition is adapted for use as a coating for an aluminum substrate and passes less than 10 milliamp current when fabricated into a can end and tested as described herein.

- 23. The coating composition of claim 22, wherein the composition is in the form of a food contact packaging coating.
- 24. The composition of claim 22, wherein the composition is in the form of a packaging coating for can ends.
- 25. The composition of claim 22, wherein the composition is also substantially free of bound BPA and aromatic glycidyl ether compounds.

