Linking of ATP-binding cassette (ABC) transporters and lipid transfer proteins (LTPs) in Arabidopsis

Background

Arabidopsis thaliana is the principal genetic model and standard reference organism in plant and crop science. This is due to its short generation time, small size and space requirements, prolific seed production, and small, genetically tractable genome.1

ATP-binding cassette (ABC) transporters are one of the largest protein families in all living organisms. They function as a method of transmembrane transport driven by ATP hydrolysis. In prokaryotes, they not only serve as importers (prokaryotes only) and exporters but are also thought to function in DNA repair and translation.² In Arabidopsis, 22 out of 130 ABC protein types have been functionally analyzed.³ All of these have been localized to

membranes and are involved in roles including but not limited to

detoxification, organ growth, plant nutrition, plant development, abiotic stress response, pathogen resistance, plant-environment interaction, pathogen response, surface lipid deposition, phytate accumulation in seeds, and transport of the phytohormones auxin

Generally, each ABC transporter contains two transmembrane domains (TMDs) and two cytosolic/nucleotide-binding domains (NBDs). In plants, the encoding of each subunit varies by subgroups. All may be coded by individual genes, two genes may each encode an NBD and TMD pair and form heterodimers, a single gene may encode an NBD and TMD pair and form homodimers, or a single gene can encode all four domains. Note that there are 8 different ABC subgroups (A, B, C, D, E, F, G, I) and the I subgroup has bacterial origins.

Lipid Transfer Proteins (LTPs) are small, compact proteins folded around a hydrophobic cavity, enabling it to transport other hydrophobic molecules like lipids. In fact, it has been shown that the majority of lipid traffic is done by LTPs rather than vesicles.⁴ It is thought to be key in the colonization of land as it is encoded by gene families in all land plants but not algae or other organisms.⁵ There is evidence that LTPs are involved in the transfer and deposition of monomers required for the assembly of water-proof lipid barriers and signaling during pathogen attacks. Additionally, it has been theorized that LTPs facilitate the transfer of barrier materials and adhesion between barriers and extracellular materials

Problem

It has been shown that ABC transporters often work in parallel with LTPs that 'pick up' the compound from ABC transporters. This project aims to identify possible gene pairs of ABC transporters and LTPs to provide a branching point for future research of cellular transport mechanisms in plants. This is vital as transport mechanisms are vital in most plant pathways and its understanding can aid not just future research but also the production of high-value plant products or crops.

Approach

In general, the project aims to take co-expression data of Arabidopsis genes and rule out spurious relations by cross-referencing with protein-protein interactions.

- 1. Obtain Arabidopsis data from ATTED & BioGRID
- 2. Load data using Python's Jupyter Notebooks and Pandas, OS libraries
- 3. Remove excess annotations and irrelevant gene data
- 4. Plot preliminary figures using Matplotlib, Numpy, and Networkx libraries
- 5. Create weighted graph using Networkx
- 6. Use Networkx's astar shortest path algorithm to get all gene interactions less than cutoff
- 7. Compare to list of top 50 ABC-LTP gene pairs with lowest Mutual Rank (MR) from ATTED data
- 8. Check if any of output pairs have studies done on them
- 9. Attempt to recreate with tissue-specificity

Methods & Software

The main libraries used in this project are Pandas, Networkx, Matplotlib, Numpy, OS, Seaborn, Collections.

Functions:

- Pandas read csv(",sep ='\t')
 - I: Tab-separated textfile
 - O: Pandas DataFrame
- · Taxonomy Name/ID Status Report
 - I: Strings of names/ NCBI taxonomy ID
 - O: Tab-separated text file with 'code', 'taxid', 'primary taxid', and 'taxname'
- Networkx from_pandas_edgelist()
 - I: DataFrame, source, target
 - O: Networkx graph
- Networkx add_edge()
 - I: Source node, target node, weight
 - O: Networkx graph
- Networkx draw_netwokx_nodes()
 - I: Networkx Graph, position, node size
 - O: plot of just nodes
- · Networkx draw_netwokx_edgess()
 - I: Networkx Graph, position, edgelist, width, edge color, line style
 - O: plot with edges between nodes
- Networkx draw_netwokx_labels()
 - . I: Networkx Graph, position, font size, font family
 - O: Nodes are labelled
- Networkx astar_path_length()
 - I: Graph, source node, target node
 - O: Length of shortest path between source and target using Astar heuristic algorithm thats optimal for big datasets

Data

ATTED

ATTED-II is a plant coexpression database created from numerous DNA microarray analysis studies.^{7,8} The ATTED-II data seems to be a rma.mrgeo.d file. Specifically, the folder that I downloaded, "Ath-mB.v17-08.G20819-S16033.rma_combat.mrgeo.d," contains multiple files, with each being a coexpressed gene list for that specific query gene. Each file has the gene ID, a mutual rank of the gene (MR), and the Pearson's correlation coefficient (PCC) of each gene to a given gene. The creators of the data recommended that MR be used rather than the PCC for data analysis. Data is shown to the right.

814630 2/23/2020 11:10 PM 834026 825107 825107 818391 831094 835934 819049 817489 837449 834808 2/23/2020 11:10 PM 814637 2/23/2020 11:10 PM 814641 2/23/2020 11:10 PM 814642 2/23/2020 11:10 PM 814643 814644 831304 819025 21.94 21.99 26.22 27.32 27.78 28.37 31.69 33.57 829577 825502 836032 841264 816763 814645 2/23/2020 11:10 PM 814646 2/23/2020 11:10 PM 814650 2/23/2020 11:10 PM

t ... > Ath-m8.v17-08.G20819-S16033.rma combat.mrgeo.d V D Search Ath-m8.v1

BioGRID

Biological General Repository for Interaction Datasets (BioGRID), which is a curated database of genetic, protein, and chemical interactions as well as post-translational modifications. ⁹ The "BIOGRID-ORGANISM-3.5.181.tab2.zip" file that I downloaded contains the protein-protein interactions of all organisms but I will

specifically be using the file for Arabidopsis: "BIOGRID-ORGANISM-Arabidopsis_thaliana_Columbia-3.5.181.tab2". This file is formatted as a Tab 2.0 Delimited Text file and contains all interaction and associated annotation data. Data is shown below.

					teractor A	Entrez Gene			BioGRID ID Interactor A Bio
251838	828230	832208	13519	17483	AT4G00020	AT5G20850	BRCA2(RAD51 BRCA2A BREAST CANCI
251839	828230	821860	13519	7192	AT4G80929	AT3G22880	BRCA2(IV)	DMC1 BRCA2A BREAST CANCE
265014	836259	818903	21503	4240	AT5G61380	AT2G43010	TOC1	PIF4	APRR1 AtTOC1 MFB13.13 MFB1
265015	836259	825075	21503	10390	AT5G61388	AT3G59060	TOC1	PIL6	APRR1 AtTOC1 MFB13.13 MFB13
265016	836259	836259	21503	21503	AT5G61380	AT5G61380	TOC1	TOC1	APRR1 AtTOC1 MFB13.13 MFB1
265017	836259	819292	21503	4627	AT5G61388	AT2G46790	TOC1	PRR9	APRR1 AtTOC1 MFB13.13 MFB13
265018	819292	819292	4627	4627	AT2G46790	AT2G46798	PRR9	PRR9	APRR9 Arabidopsis pseudo-re
265019	819292	836259	4627	21503	AT2G46790	AT5G61380	PRR9	TOC1	APRR9 Arabidopsis pseudo-re
265021	834224	816408	19474	1765	AT5G42190	AT2G18915	ASK2	LKP2	ARABIDOPSIS SKP1-LIKE 2 Ara
265022	817111	816408	2463	1765	AT2G25700	AT2G18915	SK3	LKP2	ASK3 F3N11.15 F3N11 15 SKP
265023	838684	816408	23843	1765	AT1G20140	AT2G18915	SK4	LKP2	ASK4 SKP1-like 4 T28H2.8 T2
265024	825172	816408	18486	1765	AT3G60020	AT2G18915	SK5	LKP2	ASK5 SKP1-like 5 T209.2 ADJ
265025	829569	816408	14851	1765	AT4G34210	AT2G18915	SK11	LKP2	ASK11 F10M10.2 SKP1-like 1
265026	814846	816408	248	1765	AT2G03170	AT2G18915	SK14	LKP2	ASK14 SKP1-like 14 T18E12.:
265027	819203	816408	4539	1765	AT2G45950	AT2G18915	SK20	LKP2	ASK20 F4I18.7 SKP1-like 20
265028	816408	816408	1765	1765	AT2G18915	AT2G18915	LKP2	LKP2	ADAGIO 2 ADO2 LOV KELCH pro
265029	816408	835842	1765	21086	AT2G18915	AT5G57360	LKP2	ZTL	ADAGIO 2 ADO2 LOV KELCH pro
265030	816408	843133	1765	28354	AT2G18915	AT1G68850	LKP2	FKF1	ADAGIO 2 ADO2 LOV KELCH pro
265031	836259	835842	21503	21086	AT5G61380	ATSG57360	TOC1	ZTL	APRR1 AtTOC1 MFB13.13 MFB1
265032	836259	816408	21503	1765	AT5G61380	AT2G18915	TOC1	LKP2	APRR1 AtTOC1 MFB13.13 MFB1
265033	836259	843133	21503	28354	AT5G61380	AT1G68050	TOC1	FKF1	APRR1 ATTOC1 MFB13.13 MFB1

```
In [1]: | %%time
        # Import necessary Libraries
        import os
        import pandas as pd
        import numpy as np
        import networkx as nx
        import matplotlib.pyplot as plt
        import seaborn as sns
        import collections
        # Reading in BioGRID as DataFrame
        path = os.path.join('C:\\Users\\ysman\\OneDrive\\Desktop\\project_data\\BIOGRID-ORGANISM-Arabidopsis_thaliana_Columbia-3.5.181.tab2.txt'
        bioGRID_file = open(path, "r")
        testFile = open(os.path.join('C:\\Users\\ysman\\OneDrive\\Desktop\\project_directory\\data\\test.txt'), 'r')
        bioGRID_DF = pd.read_csv(bioGRID_file, sep = '\t')
        # Simplified DataFrame to only include interactions
        simplebGRID = bioGRID DF[['Entrez Gene Interactor A', 'Entrez Gene Interactor B']]
        # Identifying Organisms Present in BioGRID
        OrganismTypesA = list(bioGRID_DF['Organism Interactor A'].unique())
        OrganismTypesB = list(bioGRID_DF['Organism Interactor B'].unique())
        OrganismTypesA.sort()
        OrganismTypesB.sort()
        OrganismTypes = list(set([*OrganismTypesA, *OrganismTypesB]))
        OrganismTypes.sort()
        # Use NCBI's Taxonomy Name/ID Status Report - Plug in OrganismTypes and get .txt
        organismIDs = pd.read_csv('../../project_data/tax_report.txt', sep = '\t')
        organismIDs.drop(columns = ['|','|.1','|.2', 'code', 'primary taxid'],inplace = True)
        # Categorize into different subsets based on organism ID. We know '3702' is Arabidopsis
        mask1 = bioGRID_DF['Organism Interactor A'] == 3702
        mask2 = bioGRID_DF['Organism Interactor B'] == 3702
        onlyArabDF = bioGRID_DF[mask1& mask2]
        oneArabDF = bioGRID_DF[~mask1|~mask2]
        noArabDF = bioGRID DF[~mask1 & ~mask2]
        # Get list of genes so I can import the necessary ATTED Data. Note that the ATTED data has a text file by Entrez gene ID
        # WhoLeData:
        wholeGenesA = list(bioGRID_DF['Entrez Gene Interactor A'].unique())
        wholeGenesB = list(bioGRID_DF['Entrez Gene Interactor B'].unique())
        wholeGenesA.sort()
        wholeGenesB.sort()
        wholeGenes = list(set([*wholeGenesA, *wholeGenesB]))
        wholeGenes.sort()
        # Only Arabidopsis Subset
        ArabGenesA = list(onlyArabDF['Entrez Gene Interactor A'].unique())
        ArabGenesB = list(onlyArabDF['Entrez Gene Interactor B'].unique())
        ArabGenesA.sort()
        ArabGenesB.sort()
        ArabGenes = list(set([*ArabGenesA, *ArabGenesB]))
        ArabGenes.sort()
        # Read in only the Overlapping Genes
        # Get a list of all genes in ATTED
        atted = pd.read_csv('../../project_data/Ath-mB.v17-08.G20819-S16033.rma_combat.mrgeo.d/814630', sep = '\t', header = None)
        atted = atted.sort_values(by = 0)
        a1 = np.array(atted[0])
        attedGenes = list(a1)
        # Reading in of Overlapping Genes
        attedpath = 'C:\\Users\\ysman\\OneDrive\\Desktop\\project_data\\Ath-mB.v17-08.G20819-S16033.rma_combat.mrgeo.d\\'
        overlapGenes = []
        for i in range (len(wholeGenes)):
            if os.path.exists(attedpath+'{}'.format(wholeGenes[i])):
                overlapGenes.append(wholeGenes[i])
        DF = {0:attedGenes}
        for x in overlapGenes:
            tempAtted = pd.read_csv('../../project_data/Ath-mB.v17-08.G20819-S16033.rma_combat.mrgeo.d/{}'.format(x), sep = '\t', header= None)
            tempAtted = tempAtted.sort_values(by = 0)
            templist = list(tempAtted[1])
            DF.update({x:templist})
        attedData = pd.DataFrame(DF,dtype='float64')
```

```
Systematic Name Interactor B', Systematic Name Interactor A',

'Systematic Name Interactor B', 'Official Symbol Interactor A',

'Official Symbol Interactor B', 'Synonyms Interactor A',

'Synonyms Interactor B', 'Experimental System',

'Experimental System Type', 'Author', 'Pubmed ID',

'Organism Interactor A', 'Organism Interactor B', 'Throughput', 'Score',

'Modification', 'Phenotypes', 'Qualifications', 'Tags',
          'Source Database'],
        dtype='object')
#BioGRID Interaction ID
                                             int64
Entrez Gene Interactor A
                                             int64
Entrez Gene Interactor B
                                             int64
BioGRID ID Interactor A
                                             int64
BioGRID ID Interactor B
                                             int64
Systematic Name Interactor A
                                            object
Systematic Name Interactor B
                                            object
Official Symbol Interactor A
                                            object
Official Symbol Interactor B
                                            object
Synonyms Interactor A
                                            object
Synonyms Interactor B
                                            object
Experimental System
                                            object
Experimental System Type
                                            object
Author
                                            object
Pubmed ID
                                             int64
Organism Interactor A
                                             int64
Organism Interactor B
                                             int64
Throughput
                                            object
Score
                                            object
Modification
                                            object
Phenotypes
                                            object
Qualifications
                                            object
                                            object
Tags
Source Database
                                            object
dtype: object
```

Out[2]:

	#BioGRID Interaction ID	Entrez Gene Interactor A	Entrez Gene Interactor B	BioGRID ID Interactor A	BioGRID ID Interactor B	Systematic Name Interactor A	Systematic Name Interactor B	Official Symbol Interactor A	Official Symbol Interactor B	Synonyms Interactor A	 Pubme II
0	251838	828230	832208	13519	17483	AT4G00020	AT5G20850	BRCA2(IV)	RAD51	BRCA2A BREAST CANCER 2 like 2A EDA20 EMBRYO SA	 1501444
1	251839	828230	821860	13519	7192	AT4G00020	AT3G22880	BRCA2(IV)	DMC1	BRCA2A BREAST CANCER 2 like 2A EDA20 EMBRYO SA	 1501444
2	265014	836259	818903	21503	4240	AT5G61380	AT2G43010	TOC1	PIF4	APRR1 AtTOC1 MFB13.13 MFB13_13 PRR1 PSEUDO-RES	 1463416
3	265015	836259	825075	21503	10390	AT5G61380	AT3G59060	TOC1	PIL6	APRR1 AtTOC1 MFB13.13 MFB13_13 PRR1 PSEUDO-RES	 1463416
4	265016	836259	836259	21503	21503	AT5G61380	AT5G61380	TOC1	TOC1	APRR1 AtTOC1 MFB13.13 MFB13_13 PRR1 PSEUDO-RES	 1463416

5 rows × 24 columns

In [2]: print(bioGRID_DF.columns)
 print(bioGRID_DF.dtypes)
 bioGRID_DF.head()

In [3]: simplebGRID.head()

Out[3]:

	Entrez Gene Interactor A	Entrez Gene Interactor B
0	828230	832208
1	828230	821860
2	836259	818903
3	836259	825075
4	836259	836259

In [4]: organismIDs

Out[4]:

	taxid	taxname
0	3055	Chlamydomonas reinhardtii
1	3702	Arabidopsis thaliana
2	3847	Glycine max
3	4081	Solanum lycopersicum
4	4098	Nicotiana tomentosiformis
5	4577	Zea mays
6	9606	Homo sapiens
7	9823	Sus scrofa
8	9913	Bos taurus
9	10090	Mus musculus
10	10116	Rattus norvegicus
11	10298	Human alphaherpesvirus 1
12	12242	Tobacco mosaic virus
13	39947	Oryza sativa Japonica Group
14	284812	Schizosaccharomyces pombe 972h-
15	316407	Escherichia coli str. K-12 substr. W3110
16	559292	Saccharomyces cerevisiae S288C

In [5]: attedData.head()

Out[5]:

	0	814630	814637	814641	814643	814644	814646	814647	814649	814651	 3767983	3768737	3768753	3768908	3769417	3769951
0	814630.0	0.00	13293.00	3853.85	1178.08	11468.52	9484.30	1937.88	8729.24	17812.21	 12788.20	15990.21	12623.05	13868.44	5235.79	13968.73
1	814636.0	318.41	1345.84	3478.57	1796.04	160.36	11708.48	1387.92	3212.26	10825.32	 6007.37	13585.46	9601.16	4391.35	5081.69	9042.38
2	814637.0	13293.00	0.00	2975.28	3094.54	3910.94	16486.87	3222.50	2356.92	16362.67	 16634.63	15844.40	13778.88	10607.97	2558.52	15105.20
3	814638.0	2012.21	6477.10	4150.36	11929.09	10871.97	18827.22	17722.02	8126.23	14922.36	 11786.21	17986.79	10007.81	7227.17	11842.46	14021.38
4	814639.0	391.97	10638.69	7853.09	7441.45	8371.53	10912.49	1848.11	10229.29	18331.34	 15761.09	10034.88	9979.45	10097.74	3848.97	12749.52

5 rows × 8782 columns

Preliminary Data Analysis

The BioGRID data shows that there are 15 other organisms interacting with Arabidopsis. Of the 56198 total interactions, 55814 are Arabidopsis:Arabidopsis interactions, 384 are Arabidopsis:Other interactions, and 0 that don't involve Arabidopsis. There are 10550 unique genes in the dataset but only 10367 genes involved in only Arabidopsis:Arabidopsis interactions. There are some missing annotations in the dataset, but they are not relevant to this project and can be ignored.

There are 20819 total genes in the ATTED dataset out of which 8782 are also present in the BioGRID set. The dataset contains no missing values.

In [6]: # Create Violin Plots

sns.set()
vioColnames= list(attedData.columns)
vioColnames = vioColnames[1:]
vioColnames
ax = plt.figure(figsize = (20,3))
ax =sns.violinplot(data = attedData[vioColnames[:25]])

This plot shows that the data is normalized and the distribution of the Mutal Rank values of the ATTED genes are relatively similar across multiple genes.

```
In [7]: | # Create BioGRID Networkx Graph
        G = nx.from_pandas_edgelist(simplebGRID, source = 'Entrez Gene Interactor A', target = 'Entrez Gene Interactor B')
         # ATTED Degree-Rank based on MR
         sumMR_A = attedData.sum()
         sumMR_A = sumMR_A.drop(0)
        sumMR_A = list(sumMR_A)
         rank_sumMR_A = sorted(sumMR_A, reverse = True)
         # BioGRID Degree-Rank based on MR
        deg_Bio = [G.degree(gene) for gene in wholeGenes]
         rank_deg_bio = sorted(deg_Bio, reverse = True)
         # ATTED Degree-Count based on MR
        binsize = 1000000
        binMR= (np.array(sumMR_A)/binsize).astype('int')
        attedCount = collections.Counter(binMR)
        MR_A, cnt_A = zip(*attedCount.items())
        n bins = len(MR A)
         # BioGRID Degree-Count
        deg_Bio_count = collections.Counter(deg_Bio)
        deg_B,cnt_B = zip(*deg_Bio_count.items())
```

```
In [8]: # Visualize MR distribution of ATTED (pseduo histogram)
sns.set_style('whitegrid')
plt.scatter(MR_A,cnt_A)
plt.title('Overlapped ATTED Cumulative Mutual Rank (N_bins = {})'.format(n_bins))
plt.xlabel('Cumulative Mutual Rank (x10^{:.0f})'.format(np.log10(binsize)))
plt.ylabel('Count')
```

Out[8]: Text(0, 0.5, 'Count')


```
In [9]: # Visualize MR distribution of ATTED (Histogram)
    plt.hist(sumMR_A,bins = np.arange(194000000,2400000000,10000000))
    plt.title('Overlapped ATTED Cumulative Mutual Rank (N_bins = {})'.format(n_bins))
    plt.xlabel('Cumulative Mutual Rank (x10^{{:.0f}})'.format(np.log10(binsize)))
    plt.ylabel('Count')
```

Out[9]: Text(0, 0.5, 'Count')

The Cumulative Mutual Rank follows a bimodal distribution with peaks at 207 million and 222 million with about 250 and 400 genes having cumulative MRs in that range.

```
In [10]: # Visualize degree distribution of BioGRID (psuedo bar plot)
    sns.set_style('whitegrid')
    sns.axes_style('ticks')
    plt.scatter(deg_B,cnt_B)
    plt.title('BioGRID Degrees')
    plt.xlabel('Gene Degree')
    plt.ylabel('Gene Count')
```

Out[10]: Text(0, 0.5, 'Gene Count')


```
In [11]: # Histogram Separated into 3 sections to see
fig, axs = plt.subplots(1, 3, figsize=(14, 4))
for i in range(3):
    axs[i].hist(deg_Bio, bins = np.arange(0,1500,10))
    axs[i].set_title('BioGRID Degrees')
    axs[i].set_xlabel('Gene Degree')
    axs[i].set_ylabel('Gene Count')
    axs[0].set_xlim(0,50)
    axs[1].set_xlim(50,100)
    axs[1].set_ylim(0,100)
    axs[2].set_ylim(0,100)
    axs[2].set_ylim(0,100)
    plt.tight_layout()
```


Most genes have between 0-10 connections but there is one gene with 1341 connections.

```
In [12]: sns.set_style('ticks')
    plt.loglog(rank_sumMR_A, 'b-', marker='o', markersize = 2)
    plt.title("cMR-Rank Plot of Overlapped ATTED Data")
    plt.ylabel("Cumulative Mutual Rank (cMR)")
    plt.xlabel("Rank")
```

Out[12]: Text(0.5, 0, 'Rank')


```
In [13]: sns.set_style('ticks')
  plt.loglog(rank_deg_bio, 'b-', marker='o', markersize = 2)
  plt.title("Degree Rank Plot of BioGRID Data")
  plt.ylabel("Degree")
  plt.xlabel("Rank")
```

Out[13]: Text(0.5, 0, 'Rank')

Toy Data

```
In [14]: # Create Toy Data from Actual BioGRID Data
toyGRID = simplebGRID.loc[:10]
# Add Weights
np.random.seed(1)
toyGRID['MR']=np.random.randint(1,10,len(toyGRID))
toyGRID
```

 $\verb|C:\Pr| orange a lib site-packages in yearned_launcher.py:5: Setting With Copy Warning: | orange a lib site-package and | ora$

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

Entroy Cons Interactor A Entroy Cons Interactor P MD

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

Out[14]:

	Entrez Gene Interactor A	Entrez Gene Interactor B	MR
0	828230	832208	6
1	828230	821860	9
2	836259	818903	6
3	836259	825075	1
4	836259	836259	1
5	836259	819292	2
6	819292	819292	8
7	819292	836259	7
8	834224	816408	3
9	817111	816408	5
10	838604	816408	6

```
In [15]: %%time
         # Initializes Networkx Graph
         toyG = nx.Graph()
         # Adds edges for each interaction
         for i in range(toyGRID.shape[0]):
             toyG.add_edge(toyGRID['Entrez Gene Interactor A'].loc[i], toyGRID['Entrez Gene Interactor B'].loc[i], weight = toyGRID['MR'].loc[i])
         # Categorizes edges based on weight
         elarge = [(u, v) for (u, v, d) in toyG.edges(data=True) if d['weight'] > 5]
         esmall = [(u, v) for (u, v, d) in toyG.edges(data=True) if d['weight'] <= 5]</pre>
         # Positions for all nodes
         toypos = nx.spring_layout(toyG)
         # Draw Nodes
         nx.draw_networkx_nodes(toyG, toypos, node_size=70)
         nx.draw_networkx_edges(toyG, toypos, edgelist=elarge, width=2)
         nx.draw_networkx_edges(toyG, toypos, edgelist=esmall, width=1, alpha=0.5, edge_color='b', style='dashed')
         nx.draw_networkx_labels(toyG, toypos, font_size=9, font_family='sans-serif')
         plt.axis('off')
         plt.show()
         print('Distance between gene 819292 and gene 818903 is {}.'.format(nx.astar_path_length(toyG, 819292, 818903)))
         print('This should output 13.')
```

C:\ProgramData\Anaconda3\lib\site-packages\networkx\drawing\nx_pylab.py:579: MatplotlibDeprecationWarning:
The iterable function was deprecated in Matplotlib 3.1 and will be removed in 3.3. Use np.iterable instead.
 if not cb.iterable(width):

Distance between gene 819292 and gene 818903 is 13. This should output 13. Wall time: 354 $\,\mathrm{ms}$

```
In [16]: # CLear Online Example
           G = nx.Graph()
          G.add_edge('a', 'b', weight=0.6)
G.add_edge('a', 'c', weight=0.2)
G.add_edge('c', 'd', weight=0.1)
          G.add_edge('c', 'e', weight=0.7)
G.add_edge('c', 'f', weight=0.9)
G.add_edge('a', 'd', weight=0.3)
           elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]
           esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]</pre>
           pos = nx.spring_layout(G) # positions for all nodes
           nx.draw_networkx_nodes(G, pos, node_size=700)
           # edges
           nx.draw_networkx_edges(G, pos, edgelist=elarge,
                                       width=6)
           nx.draw_networkx_edges(G, pos, edgelist=esmall,
                                      width=6, alpha=0.5, edge_color='b', style='dashed')
           # lahels
           nx.draw_networkx_labels(G, pos, font_size=20, font_family='sans-serif')
           plt.axis('off')
           plt.show()
           print('Distance between a and e is {}.'.format(nx.astar_path_length(G, 'a','e')))
           print('It should out put 0.9.')
```


Future Goals

- Get list of ABC transporter genes & list of LTPs genes and input permutations of these into the astar_path_length.
- · Collect top pairs.
- · Check literature for any evidence confirming or denying associa
- Gephi to draw out the graphs
- · Separate data into tissue-specific and run once more.

Sources

- 1. Krämer, Ute. "Planting Molecular Functions in an Ecological Context with Arabidopsis Thaliana." ELife, vol. 4, 25 Mar. 2015, doi:10.7554/elife.06100.
- 2. Davidson AL, Dassa E, Orelle C, Chen J (Jun 2008). "Structure, function, and evolution of bacterial ATP-binding cassette systems". Microbiology and Molecular Biology Reviews. 72 (2): 317–64, table of contents. doi:10.1128/MMBR.00031-07.
- 3. Kang, Joohyun, et al. "Plant ABC Transporters." The Arabidopsis Book, vol. 9, 6 Dec. 2011, doi:10.1199/tab.0153.
- 4. Salminen, Tiina A., et al. "Lipid Transfer Proteins: Classification, Nomenclature, Structure, and Function." Planta, vol. 244, no. 5, 25 Aug. 2016, pp. 971–997., doi:10.1007/s00425-016-2585-4.
- 5. Edqvist, Johan, et al. "Plant Lipid Transfer Proteins: Are We Finally Closing in on the Roles of These Enigmatic Proteins?" Journal of Lipid Research, vol. 59, no. 8, 19 Mar. 2018, pp. 1374–1382., doi:10.1194/jlr.r083139.
- 6. DeBono, Allan, et al. "Arabidopsis LTPG Is a Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein Required for Export of Lipids to the Plant Surface." The Plant Cell, vol. 21, no. 4, Apr. 2009, pp. 1230–1238., doi:10.1105/tpc.108.064451.
- 7. Takeshi Obayashi, Yuichi Aoki, Shu Tadaka, Yuki Kagaya, Kengo Kinoshita, ATTED-II in 2018: A Plant Coexpression Database Based on Investigation of the Statistical Property of the Mutual Rank Index, Plant and Cell Physiology, Volume 59, Issue 1, January 2018, Page e3, doi:10.1093/pcp/pcx191
- 8. Obayashi T., Hayashi S., Saeki M., Ohta H. & Kinoshita K. (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Research 37.D987–D991.

Acids Research, Volu	pe Breitkreutz, Teresa Reguly, Lo me 34, Issue suppl_1, 01 Janua	orrie Boucher, Ashton Brei ury 2006, Pages D535–D5	itkreutz, Mike Tyers, BioG 39, doi:10.1093/nar/gkj10	RID: a general repository 19	for interaction datasets,