Теортест-1 (Вариант 94)

Тема – определенный интеграл

Задача 1

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F непрерывна на [a,b];
- 2. F ограничена на [a, b];
- 3. F первообразная для f на [a, b];
- 4. F дифференцируема на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a,b] и f((a+b)/2)=1;
- 2. f(a) = f(b) = 1;
- 3. f(a) > 0, f(b) > 0;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f интегрируема на [a,b], то она ограничена на [a,b];
- 2. Если f интегрируема на [a,b], то она монотонна на [a,b];
- 3. Если f ограничена на [a,b], то она интегрируема на [a,b];
- 4. Если f непрерывна на [a,b], то она интегрируема на [a,b];

Задача 4

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)dx = \int f(\ln t)tdt$;
- 2. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 3. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt;$
- 4. $\int f(x^2)dx = 2 \int f(t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. dv = udt + C;
- $2. \ u = dv + C;$
- 3. du = v;
- 4. v = du + C:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-1, 20];
- 2. [-10, 20];
- 3. [-2, 20];
- 4. [-2, 10];

Задача 7

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. $S(A) = S(A \cap B) + S(A \setminus B)$;
- 2. площадь графика любой функции равна нулю;
- 3. площадь графика интегрируемой функции равна нулю;
- 4. если $A \subset B$, то площадь A меньше площади B;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^4}{(x^5+1)^3}$;
- $2. \frac{x^2+1}{x^5};$
- 3. $\frac{x^4}{r^2-1}$;
- 4. $\frac{2x+1}{x^2+x+1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\forall \tau, \exists \xi : s_{\tau} < \sigma_{\tau}(\xi) < S_{\tau};$
- 2. $\forall \varepsilon > 0 \ \forall \tau : S_{\tau} s_{\tau} < \varepsilon$;
- 3. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 4. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \exists \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$

Задача 10

Выберите все верные утверждения:

- 1. Длины противоположных путей равны;
- 2. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 3. Спрямляемы только кусочно-гладкие кривые;
- 4. Любая кривая имеет неотрицательную длину;
- 5. Кусочно-гладкая кривая спрямляема;