Características do controle motor nas habilidades: movimentos que requerem precisão e velocidade e Lateralidade no controle motor

Disciplina: Controle Motor

Prof. Daiana Amaral Medeiros Professor Titular: Prof. Dr. Tércio Apolinário de Souza

CONTEÚDOS

- **◆** PRECISÃO E VELOCIDADE
- LATERALIDADE E CONTROLE MOTOR

VELOCIDADE E PRECISÃO

• Woodworth (1899) estudou habilidades motoras, mostrando que a precisão dos movimentos de desenho de linha diminuía à medida que seu comprimento e velocidade aumentavam.

Fig. 8.—Relation of accuracy to speed, in the 'coördinate paper experiment.'

MODELO DE WOODWORTH

(WOODWORTH, 1899; Elliott e Chua, 1993)

VELOCIDADE E PRECISÃO

A LEI DE FITTS EXPLICA A RELAÇÃO ENTRE A VELOCIDADE E A PRECISÃO DE MOVIMENTOS. QUANDO UMA PESSOA REALIZA MOVIMENTOS RÁPIDOS, COMO ATINGIR ALVOS ALTERNADOS,

O TEMPO DE MOVIMENTO (TM) AUMENTA SE: 1. AUMENTAR A DISTÂNCIA (A) ENTRE OS ALVOS.

2. DIMINUIR O TAMANHO (W) DOS ALVOS.

QUANTO MAIOR O ID, MAIS LENTO É O MOVIMENTO, POIS MOVIMENTOS MAIS LONGOS E PRECISOS EXIGEM MAIOR CONTROLE. ESSA LEI APLICA-SE A TAREFAS DIVERSAS, DESDE TOCAR ALVOS ATÉ MANIPULAR OBJETOS PEQUENOS.

■ FIGURA 6.1 Ilustração de um indivíduo realizando uma tarefa de batidas de Fitts. O sujeito bate entre dois alvos de largura (W) variável e com diferentes amplitudes entre eles (A), na tentativa de se mover tão rapidamente quanto possível enquanto minimiza o número de erros do alvo.

TROCA LINEAR VELOCIDADE-PRECISÃO

- Relação inversa entre velocidade e precisão em movimentos rápidos.
- Maior distância do movimento → Mais imprecisão.
- Menor tempo de movimento (TM) → Maior erro.

Controle motor em circuito aberto:

- Reduções no TM afetam a consistência do movimento, mesmo sem tempo para feedback.
- Movimentos rápidos sacrificam precisão devido a limitações no planejamento motor.

Conclusão: Quanto mais rápido ou mais distante o movimento, maior o risco de erro.

FIGURA 6.5 Variabilidade de pontos finais de movimento (W_e) em uma tarefa de pontaria rápida como função de velocidade média do movimento (A/TM).

Reproduzida, com autorização, de Schmidt et al. 1979.

• Erro e Variabilidade:

- Movimentos rápidos têm maior erro com aumento da distância ou redução do tempo de movimento (TM).
- o Programas motores determinam ordem e intensidade das contrações musculares, mas apresentam variabilidade.

• Causas de Erros:

- Processos "ruidosos": Impulsos inconsistentes do sistema nervoso central para ativar músculos.
- Atividades reflexas: Contribuem para contrações inconsistentes.

Força e Variabilidade:

- Força aplicada varia entre tentativas devido ao "ruído" no sistema nervoso.
- Maior força de contração → Maior variabilidade nas aplicações de força.

Analogia: Semelhante a ruídos em um sistema de som que alteram a fidelidade da gravação original.

PRECISÃO ESPACIAL E TEMPORAL

Precisão Espacial:

- Refere-se à exatidão de alcançar um ponto ou alvo no espaço.
- Influenciada pela troca velocidade-precisão (Lei de Fitts).
- Movimentos rápidos geralmente reduzem a precisão espacial
- Exemplo: Chutar uma bola no gol.

Precisão Temporal:

- Relaciona-se ao tempo exato de execução do movimento.
- Fundamental em tarefas que requerem sincronia, como esportes.
- Movimentos rápidos e potentes melhoram a precisão temporal
- Exemplo: Acertar uma bola de tênis em movimento.

Exemplos?

PRECISÃO ESPACIAL E TEMPORAL

Precisão Espacial

Precisão Temporal

,

SITUAÇÕES EM QUE A TROCA VELOCIDADE-PRECISÃO NÃO SE APLICA

Movimentos Muito Potentes

- Movimentos de alta velocidade, como chutes ou tacadas, exigem precisão espacial e temporal.
- Aumenta a força sem comprometer a precisão.

Precisão Temporal Prioritária

 Em movimentos com grande sincronização (ex.: rebater uma bola), a precisão no tempo é mais importante que a precisão espacial.

Força Máxima e Precisão

 Movimentos com 50% a 84% da força máxima têm maior precisão espacial devido à redução da variabilidade na força.

Curva de Precisão Espacial

 Movimentos rápidos e lentos são mais precisos, enquanto movimentos de velocidade moderada têm mais erros.

• Implicações no Esporte

Atletas combinam velocidade e precisão por meio de ajustes finos na força e no tempo.

Definição:

"Um elemento dinâmico da motricidade humana, em que predisposições inatas são reforçadas ou modificadas pela contínua interação com o ambiente durante o ciclo de vida de um indivíduo" (Souza & Teixeira, 2009, p. 68).

- Aspectos Fundamentais:
 - o Assimetria de preferência: Uso preferencial de um membro sobre o outro.
 - Assimetria de desempenho: Diferença na qualidade do desempenho entre os membros.
 (Carson, 1989)

NIVEL NEUROBIOLÓGICO DO CONTROLE MOTOR

SNC

Associação de mecanismos do SNC com aspectos da resposta motora

Especialização Hemisférica

Proficiência relativa dos hemisférios cerebrais em determinados tipos de processamento

Corpo Caloso

Transmissão de informações entre os hemisférios

Estudo Seminal de Sperry (1950):

- Investigação com pacientes de cérebro dividido, evidenciando as diferenças no desempenho das mãos.
- O estudo mostrou como os hemisférios cerebrais influenciam de maneira distinta o controle motor e perceptivo.

Definição:

• As assimetrias de desempenho se referem às diferenças no controle motor de segmentos corporais contralaterais homólogos (como as mãos direita e esquerda), observadas em várias tarefas motoras, como movimentos de apontamento (Teixeira, 2006).

Essas diferenças são atribuídas à especialização hemisférica, onde cada hemisfério tem uma proficiência diferente no processamento percepto-motor (Todor & Smiley, 1985; Elliott & Roy, 1996).

ESPECIALIZAÇÃO HEMISFÉRICA

Hemisfério Esquerdo (Dominante):

- Função: Processa feedback visual e proprioceptivo de maneira mais eficiente, o que é crucial para o controle motor preciso.
- Organização sequencial do movimento: Melhor controle da sequência dos movimentos, favorecendo a coordenação e a velocidade (Teixeira, 2006; Boulinguez et al., 2000).
- Desempenho motor: Maior habilidade de correção e controle motor, refletindo em maior precisão e velocidade da mão direita (dominante para destros).

Hemisfério Direito (Não Dominante):

- Função: Tem um papel chave na preparação do movimento, principalmente na organização visuoespacial antes da execução.
- Processamento visuoespacial: Envolvido na percepção do ambiente e na preparação para o movimento, sendo crucial para ajustes espaciais (Bryden, 1990).

• Hemisfério Dominante (Esquerdo):

- Responsável pela execução mais rápida e precisa dos movimentos, especialmente com a mão direita (para destros).
- Controle motor superior: O hemisfério esquerdo oferece um controle mais refinado e rápido dos movimentos, refletindo em maior velocidade, precisão e correção.

Hemisfério Não Dominante (Direito):

- Especialização em preparação do movimento, sendo fundamental na organização inicial e ajustes espaciais.
- o Embora o hemisfério não dominante tenha um controle motor menor, ele ajuda na coordenação geral e na adequação do movimento ao ambiente.

CONEXÃO INTER-HEMISFÉRICA

Função do Corpo Caloso

- Conexão entre os hemisférios cerebrais: O corpo caloso é a principal via de comunicação entre os hemisférios direito e esquerdo do cérebro.
- Sincronização neuronal: Ajuda a sincronizar a atividade oscilatória dos neurônios, facilitando o processamento de informações visuais.
- Função inibitória: Pode agir inibindo um hemisfério para que o outro possa dominar o processamento em determinadas tarefas
- Comunicação inter-hemisférica: As conexões calosas permitem a cooperação e também a competição entre os hemisférios, com destaque para a dominância de um hemisfério sobre o outro em certas situações.

CONEXÃO INTER-HEMISFÉRICA

Conexões Hemisféricas Inibitórias:

- Hemisfério Dominante (Esquerdo)
- Estabelece conexões inibitórias com o hemisfério não dominante (direito), um mecanismo evolutivo para otimizar o processamento paralelo e melhorar a performance motora (Gazzaniga, 2000; Rogers, Zucca, & Vallortigara, 2004).
- A conexão entre os córtices motores primários (M1) dos hemisférios direito e esquerdo se dá através do corpo caloso e é principalmente inibitória, com o hemisfério dominante inibindo o não dominante (Ferbert et al., 1992).

CONEXÃO INTER-HEMISFÉRICA

Impacto no Desempenho:

- Essas conexões inibitórias favorecem o controle predominante de um hemisfério, permitindo maior eficiência e especialização motoras.
- Explicação para a Diferença no Desempenho das Mãos: A dominância do hemisfério esquerdo resulta em maior precisão, velocidade e correção na execução de tarefas motoras com a mão direita (dominante para destros).

Vantagens da mão direita para:
Tempo de movimento e a precisão do movimento (erro radial)
(ex., FLOWERS, 1975; FERNANDES et al., 2024).

Vantagens da mão esquerda para:

Tempo de reação

(ex., CARSON et al., 1995;

CARSON; GOODMAN; ELLIOTT,

1992).

ESPECIALIZAÇÃO HEMISFÉRICA E CONTROLE MOTOR

Hemisfério Esquerdo (Dominante):

- Feedback visual e proprioceptivo (Boulinguez et al., 2000).
- Organização sequencial do movimento (Teixeira, 2006).
- Melhor controle: maior velocidade, precisão e correção (Gazzaniga, 2000).

Hemisfério Direito (Não Dominante):

- Processamento visuoespacial antes do movimento (Bryden, 1990).
- Papel principal na preparação motora (Gazzaniga, 2000).

RELAÇÃO ENTRE O NÍVEL COMPORTAMENTAL E NEUROBIOLÓGICO

daianaamaralfisio@gmail.com

REFERÊNCIAS

Schmidt, R. Wrisberg, C. (2016). Aprendizagem e desempenho motor: dos princípios de aplicação. Artmed.

CARSON, R. G. et al. Manual asymmetries: feedback processing, output variability, and spatial complexity – resolving some inconsistencies. Journal of Motor Behavior, v. 21, n. 1, p. 38-47, 1989.

ELLIOTT, D. et al. Goal-Directed Aiming: Two Components but Multiple Processes. Psychological Bulletin, v. 136, n. 6, p. 1023-1044, 2010.

FERBERT, A. et al. Interhemispheric inhibition of the human motor cortex. Journal of Physiology, v. 453, p. 525-546, 1992.

GAZZANIGA; RICHARD B. IVRY; GEORGE R. MANGUN. Cognitive Neuroscience The Biology of the Mind. 2014. ed. [s.l: s.n.].

SPERRY, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. The Journal of Comparative Psychology, v. 43, n. 6, p. 482 – 489, 1950.

TEIXEIRA, L. A. Controle Motor. Barueri: Manole, 2006.

WOODWORTH, R. S. The Accuracy of voluntary movement. Psychological Review, v. 3, p. 1-114, 1899.