FDP 2022 Mécanique classique et quantique - Examen

24 Avril, 2021

La durée de l'examen est **3 heures** et représente 40% de la note finale. Il y a 2 exercices et 3 problèmes au total, avec un poids uniforme.

Exercises

1) Mécanique lagrangienne et newtonienne

Ecrivez les lagrangiens et récupérez les équations de Newton (sans les résoudre) pour les situations suivantes:

- (a) L'oscillateur harmonique unidimensionnel: F = -kx
- (b) Particule chargée dans un champ électromagnétique: $\vec{F} = q(\vec{E} + \vec{v} \wedge \vec{B})$, d'où:

$$\vec{E} = -\vec{\nabla}\phi - \frac{1}{c}\frac{\partial\vec{A}}{\partial t} \tag{1}$$

$$\vec{B} = \vec{\nabla} \wedge \vec{A}.\tag{2}$$

2) Propriétés des paquets d'ondes gaussiens

Nous considérons un paquet d'ondes gaussien unidimensionnel centré à l'origine, avec la quantité de mouvement p_0 :

$$\psi(x) = e^{ip_0 x'/\hbar} \frac{e^{(-x'^2/(2\Delta^2))}}{(\pi\Delta^2)^{1/4}}.$$
(3)

En utilisant les intégrales gaussiennes,

- (a) Trouvez la densité de probabilité $P_{\psi}(x)$ du paquet d'onde et montrez qu'elle est normalisée à l'unité.
- (b) Montrer que le paquet a une position moyenne $\langle X \rangle_{\psi} = 0$, quantité de mouvement moyenne $\langle P \rangle_{\psi} = p_0$, écart type de la position $(\Delta X)_{\psi} = \Delta/2^{1/2}$, et écart type de la quantité de mouvement $(\Delta P)_{\psi} = \hbar/(2^{1/2}\Delta)$.
- (c) Montrez que la borne inférieure donnée par la principe d'incertitude de Heisenberg est saturée par ce paquet d'ondes.

Problèmes

1) Pendule sphérique

Un pendule de masse m et un bâton sans masse de longueur L fixé se déplace en trois dimensions sous l'influence d'un champ gravitationnel constant, avec une accélération gravitationnelle g:

- (a) En travaillant avec les coordonnées sphériques (r, θ, ϕ) comme indiqué dans le diagramme, notez le lagrangien du problème. Combien de degrés de liberté le problème a-t-il?
- (b) Notez les équations de mouvement du pendule.
- (c) Montrez que la magnitude du moment cinétique autour de l'axe z, L_z , est égale à l'impulsion généralisée, p_{ϕ} . Pourquoi est-il conservé ?
- (d) Résolvez les équations de mouvement dans le cas particulier où $\dot{\phi} = 0$, et θ est petit. À quelle situation cela correspond-il?

2) L'ammoniac

Considérons une molécule d'ammoniac libre au repos, qui peut être décrite par un vecteur dans un espace de Hilbert bidimensionnel. La base orthonormée $\{|1\rangle, |2\rangle\}$ formée par les vecteurs de base $|1\rangle$ et $|2\rangle$ correspondent aux configurations géométriques suivantes de la molécule:

L'hamiltonien de la molécule dans cette base est représenté par:

$$\hat{H} = \begin{pmatrix} E_0 & -A \\ -A & E_0 \end{pmatrix},\tag{4}$$

où E_0 et A sont des réels positifs. Dans ce problème, nous étudions la stabilité de ces configurations géométriques de l'ammoniac.

- (a) Montrer que les valeurs propres de \hat{H} sont $E_0 + A$ et $E_0 A$, avec les vecteurs propres $|E_1\rangle = \frac{1}{\sqrt{2}}(|1\rangle |2\rangle)$ et $|E_2\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)$.
- (b) Construire le propagateur, $\hat{U}(t)$.
- (c) Nous supposons que l'état initial $|\psi(0)\rangle$ de la molécule est $|1\rangle$. Déterminez son évolution temporelle, i.e. trouvez $|\psi(t)\rangle$.
- (d) Déterminer la probabilité de trouver l'état $|1\rangle$ à temps t.
- (e) Esquissez la probabilité en fonction du temps. Que pouvez-vous dire sur la stabilité de l'état initial |1\? Donnez un exemple d'état qui est stable.

3) les crochets canoniques

(a) Montrer la relation de commutation canonique entre les opérateurs position et impulsion, soit:

$$[\hat{x}, \hat{p}] = i\hbar \hat{\mathbb{1}},\tag{5}$$

où $[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}$ est la commutation entre deux operators \hat{A} and \hat{B} . (Indice: le commutateur est un opérateur. Travaillez dans la base de position et appliquez cet opérateur à un état arbitraire $|\psi\rangle$.)

(b) L'inégalité de Heisenberg-Robertson pour des operators \hat{A} and \hat{B} est donnée par:

$$(\Delta A)_{\rho}^{2}(\Delta B)_{\rho}^{2} \ge \frac{1}{4} \langle i[\hat{A}, \hat{B}] \rangle_{\rho}^{2}. \tag{6}$$

Retrouvez la relation d'incertitude de Heisenberg en utilisant cette inégalité.

(c) La relation de commutation canonique quantique a un analogue dans le formalisme hamiltonien de la mécanique classique. Au lieu du commutateur $[\hat{A}, \hat{B}]$ entre deux opérateurs, les *crochets de Poisson* entre deux variables dynamiques classiques $\omega(x, p)$ and $\lambda(x, p)$ sont définis comme:

$$\{\omega, \lambda\} \equiv \frac{\partial \omega}{\partial x} \frac{\partial \lambda}{\partial p} - \frac{\partial \omega}{\partial p} \frac{\partial \lambda}{\partial x}.$$
 (7)

Montrer que:

$$\{x, p\} = 1. \tag{8}$$

(d) Montrez que les équations canoniques de Hamilton peuvent être écrites avec les crochets de Poisson:

$$\dot{x} = \{x, H\} \tag{9}$$

$$\dot{p} = \{p, H\}. \tag{10}$$