Liste d'exercices 1

Exercice 1 Etudier la convergence des séries suivantes :

- 1. $\sum \frac{1}{1+n+n^2}$.
- 2. $\sum n^{\alpha} (\ln n)^{\beta}$ pour $\alpha, \beta \in \mathbb{R}$.
- 3. $\sum \frac{(-1)^n}{n^{\alpha}}$ pour $\alpha \in \mathbb{R}$.

Exercice 2 Etudier la convergence des intégrales suivantes :

- 1. $\int_1^\infty x^{\alpha} (\ln x)^{\beta} dx$ et $\int_0^1 x^{\alpha} (\ln x)^{\beta} dx$, pour $\alpha, \beta \in \mathbb{R}$.
- $2. \int_0^\infty \frac{\sin x}{x} \ dx.$

Exercice 3 Etant donnée une fonction continue $\varphi:[0,1]\to\mathbb{R}$, étudier la convergence simple et la convergence uniforme sur [0,1] de la suite de fonctions $f_n(x)=(1-x)^n\varphi(x)$.

Exercice 4 Montrer que la suite de fonctions $f_n(x) = n(\cos x)^n \sin x$ converge simplement sur $[0, \frac{\pi}{2}]$. Calculer $\int_0^{\frac{\pi}{2}} f_n(x) dx$. La suite (f_n) converge-t'elle uniformément sur $[0, \frac{\pi}{2}]$?

Exercice 5 1. Rappeler les définitions des limites supérieures et inférieures d'une suite (u_n) de nombres réels. On les note $\limsup u_n$ et $\liminf u_n$.

- 2. Montrer que pour toute suite (u_n) on a $\liminf u_n \leq \limsup u_n$, avec égalité si et seulement si (u_n) converge dans $[-\infty, +\infty]$.
- 3. Que valent $\limsup u_n$ et $\liminf u_n$ dans les cas suivants :
 - (a) $u_n = (-1)^n (1 + \frac{1}{n}).$
 - (b) $u_n = \cos \frac{2n\pi}{3}$.
 - (c) $u_n = \cos n$.
- 4. Soit (u_n) une suite de nombres réels. Montrer qu'il existe une sous-suite de (u_n) qui converge vers $\lim \inf u_n$ et une sous-suite qui converge vers $\lim \sup u_n$.

Exercice 6 Soit X un ensemble et soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties de X. On définit la limite supérieure et inférieure de (A_n) par

$$\lim \sup A_n = \bigcap_{n=0}^{+\infty} (\bigcup_{k \geqslant n} A_k), \quad \lim \inf A_n = \bigcup_{n=0}^{+\infty} (\bigcap_{k \geqslant n} A_k).$$

- 1. Montrer que $x \in \limsup A_n$ si et seulement si x appartient à une infinité de A_k .
- 2. Montrer que $x \in \liminf A_n$ si et seulement si il existe $k_0 \in \mathbb{N}$ tel que $x \in A_k$ pour tout $k \ge k_0$.
- 3. Traiter l'exemple $X = \mathbb{R}$, $A_{2n} = [-1, 2 + \frac{1}{n}[, A_{2n+1} =] 2 \frac{1}{n}, 1]$.

Exercice 7 Montrer que [0, 1] n'est pas dénombrable.

Exercice 8 Soit $A \subset \mathbb{R}$ un sous-ensemble dont tous les points sont isolés. Autrement dit, pour tout $a \in A$ il existe $\varepsilon > 0$ tel que $|a - \varepsilon, a + \varepsilon| \cap A = \{a\}$.

- 1. Montrer que A est dénombrable. (Indication : si A_{ε} désigne l'ensemble des $a \in A$ satisfaisant la relation ci-dessus, alors $A_{\varepsilon} \cap I$ est fini pour tout intervalle borné I.)
- 2. Donner un exemple d'un sous-ensemble dénombrable de \mathbb{R} qui ne possède aucun point isolé.

Exercice 9 On dit que deux ensembles X et Y ont même cardinal si il existe une bijection de X sur Y, ou ce qui est équivalent (théorème de Schroeder-Bernstein) si il existe une injection de X dans Y et une injection de Y dans X.

On dit que X est de cardinal inférieur à Y s'il existe une injection de X dans Y.

1. Montrer que l'ensemble $\mathcal{P}(\mathbb{N})$ des parties de \mathbb{N} , l'ensemble $\{0,1\}^{\mathbb{N}}$, et l'intervalle [0,1] ont même cardinal.

- 2. (Théorème de Cantor) Montrer que tout ensemble A a un cardinal strictement inférieur à celui de l'ensemble $\mathcal{P}(A)$ de ses parties. (Indication : montrer par l'absurde qu'il n'existe pas de surjection f de A sur $\mathcal{P}(A)$ en considérant l'ensemble $\{a \in A \mid a \notin f(a)\}$.
- 3. En déduire que [0, 1] n'est pas dénombrable.

Exercice 10 Soit $u_n = \frac{(-1)^n}{n}$ $(n \in \mathbb{N}^*)$. La famille $\{u_n\}_{n \in \mathbb{N}^*}$ est-elle sommable? Montrer que pour tout $\ell \in \mathbb{R}$, il existe une bijection $\varphi : \mathbb{N} \to \mathbb{N}^*$, $k \mapsto n_k$, telle que $\sum_{k=0}^{+\infty} u_{n_k} = \ell$.

Exercice 11 1. Montrer que la série $\sum_{s=2}^{+\infty} (\sum_{n=2}^{+\infty} n^{-s})$ est convergente et calculer sa somme.

2. Calcular $\sum_{s=2}^{+\infty} \sum_{n=2}^{+\infty} (-1)^n n^{-s}$.

Exercice 12 Discuter, selon les valeurs de $\alpha \in \mathbb{R}$, la sommabilité des familles :

$$u_{pq} = \frac{1}{(p+q)^{\alpha}}$$
 , $v_{pq} = \frac{1}{(p^2+q^2)^{\alpha}}$

où (p,q) parcourt $\mathbb{N}^2 \setminus \{(0,0)\}.$

Exercice 13 Soit $\mu: \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ définie pour tout $E \subset \mathbb{R}$ par :

$$\mu(E) = \operatorname{diam}(E) = \sup_{x,y \in E} |x - y|.$$

Déterminer les tribus \mathcal{F} de \mathbb{R} pour lesquelles l'application μ est-elle une mesure sur $(\mathbb{R}, \mathcal{F})$.

Exercice 14 Soit Ω un ensemble, soit $\{x_i\}_{i\in I}$ une famille quelconque de points de Ω et soit $\{m_i\}_{i\in I}$ une famille de nombres réels strictement positifs. On définit $\mu: \mathcal{P}(\Omega) \to [0, +\infty]$ par

$$\mu(E) = \sum_{\{i \in I \mid x_i \in E\}} m_i.$$

Montrer que μ est une mesure sur $(\Omega, \mathcal{P}(\Omega))$. (Elle est en général notée $\sum_{i \in I} m_i \delta_{x_i}$).

Exercice 15 (Lemme de Borel-Cantelli) Soit μ une mesure définie sur un espace mesurable (Ω, \mathcal{F}) . Soit $\{A_i\}_{i\in I}$ une famille dénombrable d'éléments de \mathcal{F} telle que $\sum_{i\in I} \mu(A_i) < \infty$. Montrer que l'ensemble des éléments qui appartiennent à une infinité de A_i est de mesure nulle.

Exercice 16 Soit μ une mesure définie sur un espace mesurable (Ω, \mathcal{F}) . Soit $\{A_i\}_{i\in I}$ une famille dénombrable d'éléments de \mathcal{F} telle que

$$\mu(\cup_i A_i) < \infty \text{ et } \inf_i \mu(A_i) = \alpha > 0.$$

- 1. Montrer que l'ensemble A des éléments qui appartiennent à une infinité de A_i satisfait $\mu(A) \geqslant \alpha$.
- 2. La première condition est-elle essentielle?

Exercice 17 Montrer que la tribu $\mathcal{B}(\mathbb{R})$ est également engendrée par chacune des familles suivantes :

- 1. $\{ |a, b| \mid a, b \in \mathbb{R}, \ a < b \}.$
- $2. \{]-\infty, a] \mid a \in \mathbb{Q} \}.$

Exercice 18 Soit λ la mesure de Lebesgue sur \mathbb{R} .

- 1. Montrer que pour tout $\varepsilon > 0$, on peut trouver un ouvert $U \subset [0,1]$ dense dans [0,1] avec $\lambda(U) < \varepsilon$.
- 2. En déduire que pour tout $\varepsilon > 0$, on peut trouver un fermé $F \subset [0,1]$ d'intérieur vide et de mesure $\lambda(F) > 1 \varepsilon$. Existe-t'il un fermé $F \subset [0,1]$ d'intérieur vide et de mesure 1?

Exercice 19 Soit λ la mesure de Lebesgue sur \mathbb{R} .

1. Montrer que λ est régulière c'est-à-dire qu'elle satisfait pour tout $E \in \mathcal{B}(\mathbb{R})$:

$$\lambda(E) = \inf\{\lambda(U) \mid U \text{ ouvert, } E \subset U\}.$$

2. Montrer que pour tout $A \in \mathcal{B}(\mathbb{R})$, on a :

$$\lambda(A) = \sup\{\lambda(F) \mid F \text{ ferm\'e}, \ F \subset A\}.$$

Exercice 20 Soit X un ensemble et μ une mesure sur X.

- 1. Soit f_1, f_2, g_1, g_2 des fonctions μ -mesurables. On suppose que $f_1 = g_1$ μ -p.p. et $f_2 = g_2$ μ -p.p. Montrer que $f_1 + f_2 = g_1 + g_2$ μ -p.p.
- 2. Soit (f_n) et (g_n) deux suites de fonctions μ -mesurables. On suppose que $f_n = g_n \mu$ -p.p. On pose $f = \sup_n f_n$ et $g = \sup_n g_n$. A t'on $f = g \mu$ -p.p.?

Exercice 21 On considère sur \mathbb{R} la mesure de Lebesgue λ . Les assertions suivantes sont-elles vraies ou fausses?

- 1. Deux fonctions continues égales presque partout sont égales.
- 2. Une fonction presque partout continue est égale presque partout à une fonction continue.
- 3. Une fonction presque partout égale à une fonction continue est presque partout continue.

Exercice 22 (Ensembles de Cantor) Soit (δ_n) une suite strictement décroissante de nombres réels positifs tels que $\delta_0 = 1$. Soit $E_0 = [0,1]$. Supposons l'ensemble E_n construit de sorte qu'il soit réunion de 2^n intervalles fermés E_n^k $(1 \le k \le 2^n)$ deux à deux disjoints, chacun de longueur $\delta_n 2^{-n}$. On construit alors E_{n+1} de la manière suivante : dans chaque intervalle E_n^k on retire un intervalle ouvert de même centre que celui de E_n^k de sorte que les deux intervalles restants aient pour longueur $\delta_{n+1} 2^{-n-1}$ (ce qui est possible puisque $\delta_{n+1} < \delta_n$). Les 2^{n+1} intervalles ainsi obtenus forment E_{n+1} . L'ensemble de Cantor associé à (δ_n) est défini par

$$E = \bigcap_{n=0}^{+\infty} E_n.$$

- 1. Dessiner E_1, E_2, E_3 dans le cas où $\delta_n = (\frac{2}{3})^n$.
- 2. Montrer que E est un compact sans point isolé, et qu'il est d'intérieur vide.
- 3. Montrer que E est en bijection avec $\{0,1\}^{\mathbb{N}}$.
- 4. Calculer la mesure de Lebesgue de E en fonction de la suite (δ_n) .
- 5. Identifions E avec $\{0,1\}^{\mathbb{N}}$. Comparer la tribu borélienne de E avec la tribu produit $(\mathcal{P}(\{0,1\}))^{\otimes \mathbb{N}}$. Soit P la mesure de probabilité "pile ou face" sur $\{0,1\}^{\mathbb{N}}$. Que vaut $P(E_n^k)$?

Exercice 23 (Construction d'un sous-ensemble qui n'est pas Lebesgue mesurable)

- 1. A l'aide de l'axiome du choix, montrer qu'il existe une partie $A \subset [0,1]$ qui possède la propriété suivante : pour tout $x \in \mathbb{R}$ il existe un unique $a \in A$ tel que $x a \in \mathbb{Q}$.
- 2. Montrer que

$$[0,1]\subset \big(\bigcup_{r\in\mathbb{Q}\cap[-1,1]}A+r\big)\subset [-1,2],$$

et que si r et s sont deux rationnels distincts alors A + r et A + s sont disjoints.

3. En déduire que A n'est pas Lebesgue mesurable.

Exercice 24 (Mesure de Lebesgue sur \mathbb{R}^d lorsque $d \geq 2$) On appelle $pav\acute{e}$ de \mathbb{R}^d tout sous-ensemble de la forme $P = I_1 \times ... \times I_d$, où $I_1, ..., I_d$ sont des intervalles ouverts, tous de même longueur. Leur longueur commune est appelée la longueur des cotés de P et notée long(P). Le volume de P est vol $(P) = \log(P)^d$. On définit $\lambda^* : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^+$ de la façon suivante. Pour tout sous-ensemble E de \mathbb{R}^d :

$$\lambda^*(E) = \inf\{\sum_{j \in J} \operatorname{vol}(P_j) \mid \{P_j\}_{j \in J} \text{ est un recouvrement dénombrable de } E \text{ par des pavés}\}.$$

- 1. Montrer que λ^* est une mesure extérieure sur \mathbb{R}^d .
- 2. Montrer que $\mathcal{B}(\mathbb{R}^d)$ est contenue dans la tribu des sous-ensembles mesurables de λ^* , notée Σ_{λ^*} . La restriction de λ^* à Σ_{λ^*} s'appelle la mesure de Lebesgue de \mathbb{R}^d et se note λ .
- 3. Montrer que $\lambda(P) = \text{vol}(P)$ pour tout pavé $P \subset \mathbb{R}^d$.
- 4. Montrer que $(\mathbb{R}^d, \Sigma_{\lambda^*}, \lambda)$ est égal à l'extension complète de $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda|_{\mathcal{B}(\mathbb{R}^d)})$.