I HXAS The University of Texas at Austin

Abelian: A Compiler and Runtime for Graph Analytics on Distributed, Heterogeneous Platforms

Gurbinder Gill and Keshav Pingali

Department of Computer Science The University of Texas at Austin

Distributed Heterogeneous Graph Analytics

Programming model:

- Generalization of vertex programming model
- Nodes and edges have labels, which are iteratively updated
- Labels updated by applying operator to active nodes (activity)
- Finding active nodes:
 - Topology driven
 - Data driven:
 - Worklist based
 - Filter based
- Bulk synchronous execution

Graph Partitioning

Distributed Heterogeneous Execution Model

IrGL/CUDA

IrGL/CUDA Gluon Plugin

Gluon Device Comm. Runtim

Gluon Comm. Runtime

An example of partitioning a graph for 2 hosts:

Host 1

Galois/Ligra

Galois/Ligra Gluon Plugin

Gluon Comm. Runtime

Communication Patterns:

- Reduce: values at mirrors are combined on the master using a reduction operation
- Broadcast: value at the master is broadcast to the mirrors

Pagerank Source Program

NodeData { uint32_t nout; float rank; std::atomic<float> res; struct PageRank { Graph* g; or()(**GNode** src, Worklist& wl){ auto&sd = g->getData(src);auto res_old = sd.res.exchange(0); sd.rank += res_old; delta = res_old*alpha/sd.nout; for(auto e : g.getEdges(src)){ **GNode** dst = g->getEdgeDst(e); auto & dd = g->getData(dst); dd.res += delta; if(dd.res > tolerance) { wl.push(dst);

Graph-Data Access Analysis

Restructuring Computation

Inserting Communication

 $\mathbf{C}++$

CPU code

Galois:for_each(g, PageRank{g}); **Graph-Data Access Analysis** Type of field access: Reduction: Read and updated Read-only **C**++ Input Device

Independent

Device

Specific

OpenCL

<u>-----</u>

GPU code

Gluon Runtime

Overview of the Abelian Compiler

- Where is field accessed:

 - At any

Restructuring Computation

- Fine-grain iteration level parallelism to Bulk synchronous parallelism
 - Operator splitting
 - Worklist elimination

Overview of Abelian System

Partitione

- Supports Heterogeneity in Programming model:
 - D-Galois = Galois + Gluon
- D-Ligra = Ligra + Gluon
- Supports Heterogeneity in Architecture:
 - D-IrGL = IrGL + Gluon (GPU)

References

- "Abelian: A compiler and runtime for graph analytics on distributed, heterogeneous platforms" Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and Keshav Pingali. To appear in Euro-Par 2018, 2018.
- "Gluon: A communication optimizing framework for distributed heterogeneous graph analytics" Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. To appear in PLDI 2018, 2018.
- "A lightweight communication runtime for distributed graph analytics" Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks, Nikoli Dryden, Andrew Lenharth, Loc Hoang, Keshav Pingali, and Marc Snir. To appear in IPDPS 2018, 2018.

Gluon Sync API

- Compiler generated synchronization structures:
 - Reduce API :
 - struct reduceField { static ValTy extract(NodeData& n) {/*return field val*/}
 - static bool reduce (NodeData& n, ValTy y) {/*reduce field with y on master*/}
 - static void reset(NodeData& n) {/*reset field to identity val*/}
 - Broadcast API :
 - broadcastField {
 - static ValTy extract(NodeData& n) {/*return field val*/}
 - static void setVal(NodeData& n, ValTy y) {/*set field to y (received from master)*/}
 - Sync call :
 - g.sync<reduceDst, readSrc, reduceField,</pre> broadcastField>(fieldBitVec);

- Write-only
- At source of edge
- At destination of edge

Inserting Communication

- Fine-grained communication: Communicate only updated fields using field specific bitVectors
- On-demand communication: Precisely specifies the local reads and writes to exploit *Gluon* structural optimizations.
 - Pre-operator: Sync field if dirty and is being read in the operator
 - Post-operator: Mark field dirty if written/updated in the operator

Results

Gluon based systems (Hand-Tuned):

- Gluon based systems scale well
- D-Galois is ~3.9x faster than Gemini
- D-IrGL is ~4.9x faster than Gemini
- Compiler generated versions:

Clueweb12

- UO: Unoptimized Code FG: Fine-grained Code
- FO : Fine-grained + On-demand (Default of Abelian Compiler)
- HT : Hand-tuned (D-Galois)

Rmat28

- ~23x reduction in communication volume over UO
- FO matches performance HT (within 12%)
- Increased productivity without performance loss