633. Sum of Square Numbers

Medium Math Two Pointers Binary Search

Problem Description

The problem is about determining if it's possible to find two non-negative integers a and b, such that when you square each of them and add them together, the result is equal to a given non-negative integer c. This can be expressed with the equation a^2 + $b^2 = c$. You are required to check if there exists at least one pair (a, b) that satisfies this equation for the given c.

Intuition

sum up to the square of the longest side (Pythagorean theorem). In this problem, the non-negative integers a and b are similar to the two shorter sides, and c is like the square of the longest side.

The intuition behind the solution is based on the properties of a right-angled triangle where the squares of the two shorter sides

The solution approach is inspired by binary search, which is typically used to find an element in a sorted array. Rather than searching through all possible pairs of a and b, which would be inefficient, the algorithm starts with two potential candidates: a starting from 0 and b from the square root of c, since b can't be larger than sqrt(c) if b^2 is to stay less than or equal to c.

The while loop then examines the sum of squares of a and b. If the sum equals c, the answer is True. If the sum is less than c, a is incremented to increase the sum, exploring the possibility of larger a^2 contributions. If the sum is greater than c, b is decremented to decrease the sum, as **b** might be too large. This searching process ends when a becomes greater than b because, at that point, all pairs that could potentially add up to c

have already been tested. If no such pair has been found by then, the algorithm returns False, indicating no such pair exists for the given c. **Solution Approach**

The implementation uses a two-pointer technique that starts with the two pointers at the minimal and maximal possible values of a and b that could satisfy the equation $a^2 + b^2 = c$. Pointer a starts from 0, as it represents the smallest possible square

contributing to c. Pointer b starts from int(sqrt(c)), which is the largest integer that when squared does not exceed c. The algorithm's core logic is a loop that continues to execute as long as a is less than or equal to b. During each iteration, it computes the sum s of the squares of a and b. This sum $s = a^2 + b^2$ is then compared to the target sum c:

• If s is equal to c, then we know that such a pair (a, b) exists, and the function immediately returns True. • If s is less than c, the sum is too small, and a is incremented by 1 to try a larger value for a^2. • If s is greater than c, the sum is too large, and b is decremented by 1 to try a smaller value for b^2.

- The loop continues this process, incrementing a or decrementing b as necessary, stopping when a exceeds b. If the loop
- concludes without finding a matching pair, the function returns False, indicating there are no two perfect square numbers that add up to c.

a sorted array, it "searches" through a conceptualized sorted space of squared numbers, moving one of the boundaries (either a or b) closer to a potential solution at each step. The reason why the algorithm stops once a exceeds b is because we're dealing with non-negative integers, and squares of

integers grow very quickly. Once a > b, the possible sums of squares will no longer decrease (since a^2 is now greater than

This algorithm follows an approach similar to a binary search, as the reference approach indicates, where instead of searching in

b^2), which means we can be certain no subsequent iterations will result in the sum c. The efficiency and elegance of this solution lie in its O(sqrt(c)) time complexity, as b is reduced from sqrt(c) to 0 in the worst case, and a is increased from 0 to sqrt(c) in the worst case. This is much more efficient than a brute-force approach that would be O(c), where we would have to check every pair (a, b).

Example Walkthrough To illustrate the solution approach, let's work through a small example with c = 5.

a starts from 0, as it represents the smallest possible square contributing to c.

• b starts from int(sqrt(c)), which is 2 in our example because 2^2 = 4 is the largest square less than or equal to c.

Now, let's begin the process:

Initially, we start with two pointers for a and b such that:

In the first iteration, the sum of squares s will be $a^2 + b^2 = 0^2 + 2^2 = 0 + 4 = 4$. Since s is less than c, we need to increase a. We increment a to 1.

found that the pair (a, b) = (1, 2) satisfies the equation $a^2 + b^2 = c$. The algorithm returns True.

Initialize two pointers. `left` starts at 0, and `right` starts at the square root of target,

// If the sum of squares is less than 'c', we increment 'smallest' to get a larger sum

// If we exit the loop, then there are no such 'a' and 'b' that satisfy $a^2 + b^2 = c'$

// This method checks if the input 'c' can be expressed as the sum of squares of two integers.

// Start another pointer 'b' from the largest possible square that is less than or equal to 'c'.

// If the sum equals to 'c', we found the two numbers whose squares sum up to 'c'.

// If the sum is less than 'c', then we need to increase 'a' to get a larger sum.

// Start one pointer 'a' from the smallest possible square, 0.

// Calculate the sum of the squares of 'a' and 'b'.

// Continue the search as long as 'a' is less than or equal to 'b'.

// If we exit the loop, no valid pair was found that fulfills the condition.

additional memory is used for the variables a, b, and s.

// If the sum of squares is greater than 'c', we decrement 'largest' to get a smaller sum

truncated to an integer, which is the largest possible value for a or b if $a^2 + b^2 == target$.

and quickly identifies the correct pair without needing to check every single possibility. If we had a larger c where no squares add up to c, the algorithm would continue incrementing a and decrementing b until a

surpasses b. If no valid pair is found by the time a exceeds b, the algorithm will return False, indicating no such pair exists for

In this example, we found that c can indeed be expressed as the sum of two squared integers. The algorithm works efficiently

In the second iteration, s will be $a^2 + b^2 = 1^2 + 2^2 = 1 + 4 = 5$, which is exactly equal to c. At this point, we have

the given c. Solution Implementation

Python from math import sqrt

left, right = 0, int(sqrt(target)) # Loop until the two pointers meet while left <= right:</pre>

return true;

if (sumOfSquares < c) {</pre>

++smallest;

--largest;

} else {

return false;

bool iudgeSquareSum(int c) {

long b = static_cast<long>(sqrt(c));

long sumOfSquares = a * a + b * b;

if (sumOfSquares == c) return true;

long a = 0;

while (a <= b) {

def judgeSquareSum(self, target: int) -> bool:

current_sum = left ** 2 + right ** 2

Calculate the sum of squares of the two pointers

class Solution:

```
# If the sum equals the target, we found a solution
            if current sum == target:
                return True
            # If the sum is less than the target,
            # increment the left pointer to try a larger square for `a^2`
            elif current sum < target:</pre>
                left += 1
            # If the sum is greater than the target.
            # decrement the right pointer to try a smaller square for `b^2`
            else:
                right -= 1
        # If no pair of squares was found that sums up to the target, return False
        return False
# Example usage:
# solution = Solution()
# print(solution.judgeSquareSum(5)) # Output: True
# print(solution.judgeSquareSum(3)) # Output: False
Java
class Solution {
    public boolean judgeSquareSum(int c) {
        // Initialize two pointers. 'smallest' starts at 0 and 'largest' starts at the square root of 'c'
        long smallest = 0;
        long largest = (long) Math.sqrt(c);
        // Use a two-pointer approach to find if there exist two numbers 'a' and 'b'
        // such that a^2 + b^2 equals to 'c'
        while (smallest <= largest) {</pre>
            // Calculate the sum of squares of 'smallest' and 'largest'
            long sumOfSquares = smallest * smallest + largest * largest;
            // Check if the current sum of squares equals to 'c'
            if (sumOfSquares == c) {
                // If yes, then we found that 'c' can be expressed as a sum of squares.
```

C++

public:

class Solution {

```
if (sumOfSquares < c)</pre>
                ++a;
            // If the sum is greater than 'c', we need to decrease 'b' to get a smaller sum.
            else
                --b;
        // If no pair of integers has been found whose squares sum up to 'c', return false.
        return false;
};
TypeScript
// This function checks if a given number c can be written as the sum
// of the squares of two integers (c = a^2 + b^2).
function judgeSquareSum(c: number): boolean {
    // Starting with a at the smallest square (0) and b at the largest
    // square not greater than the square root of c.
    let a = 0;
    let b = Math.floor(Math.sgrt(c));
    // Loop until a and b meet or cross each other.
    while (a <= b) {
        // Calculating the sum of squares of both a and b.
        let sumOfSquares = a ** 2 + b ** 2;
        // If the sum of squares is equal to c, we found a valid pair.
        if (sumOfSquares == c) {
            return true;
        // If the sum of squares is less than c, we need to try a larger value of a.
        if (sumOfSquares < c) {</pre>
            ++a; // Increment a to increase the sum.
        } else {
            --b; // Decrement b to decrease the sum.
```

```
from math import sqrt
```

return false;

```
class Solution:
    def iudgeSquareSum(self, target: int) -> bool:
        # Initialize two pointers. `left` starts at 0. and `right` starts at the square root of target.
        # truncated to an integer, which is the largest possible value for a or b if a^2 + b^2 == target.
        left, right = 0, int(sqrt(target))
        # Loop until the two pointers meet
        while left <= right:</pre>
            # Calculate the sum of squares of the two pointers
            current_sum = left ** 2 + right ** 2
            # If the sum equals the target, we found a solution
            if current sum == target:
                return True
            # If the sum is less than the target,
            # increment the left pointer to try a larger square for `a^2`
            elif current sum < target:</pre>
                left += 1
            # If the sum is greater than the target,
            # decrement the right pointer to try a smaller square for `b^2`
            else:
                right -= 1
        # If no pair of squares was found that sums up to the target, return False
        return False
# Example usage:
 solution = Solution()
# print(solution.judgeSquareSum(5)) # Output: True
# print(solution.judgeSquareSum(3)) # Output: False
Time and Space Complexity
```

int(sqrt(c)), moving closer to each other with each iteration. The loop terminates when a exceeds b, and since b decrements with a magnitude that is at most the square root of c (as that is its starting value), we can bound the number of iterations by 2*sqrt(c) (since both a and b can move sqrt(c) times at most).

The space complexity of the code is 0(1) because the space used does not scale with the value of c. Only a constant amount of

The time complexity of the given code is <code>0(sqrt(c))</code> because the while loop runs with a starting from <code>0</code> and <code>b</code> starting from