Criação de chatbot para SAC utilizando LLMs e IA generativa

Mateus Almeida, Raphael Lisboa, Renato Machado, Sergio Lucas, Stefano Butori, Thomas I

agosto de 2024

Abstract

A Brastel Co., Ltd (Brastel) enfrenta uma demanda significativa no seu Serviço de Atendimento ao Cliente (SAC). A fim de resolver esse problema, é proposta a implementação de um chatbot baseado em inteligência artificial generativa (GenAI), integrado a uma aplicação web. No presente trabalho, foram realizadas etapas de análise exploratória de dados, pré-processamento e implementação de diversos modelos de processamento de linguagem natural (NLP), incluindo: um modelo baseline com Bag of Words e Naive Bayes; um modelo com Word2Vec; uma LSTM com camada de embedding e um modelo LLM (Meta Llama 3.1). Também foram aplicadas técnicas de data augmentation para lidar com problemas como desbalanceamento de classes e um volume relativamente reduzido de dados para treino e validação. Foi possível notar que o modelo LSTM com camada de embedding e o modelo BERT tiveram bons desempenhos, alcançando índices de acurácia e F1-score superiores a 91%. A implementação do chatbot utilizando esses modelos pode permitir à Brastel melhorar significativamente a experiência de atendimento ao cliente, reduzindo a carga de trabalho dos atendentes humanos e aumentando a satisfação dos usuários.

Introdução

Fundada em 1996 em Tóquio, a Brastel Co., Ltd. destaca-se por oferecer serviços financeiros e de telecomunicações para estrangeiros residentes no Japão, incluindo cartões telefônicos e serviços de voz por IP.

A crescente demanda no Serviço de Atendimento ao Cliente (SAC) tem superado a capacidade dos atendentes, dificultando um atendimento eficiente. Para resolver esse desafio, propomos a implementação de um chatbot baseado em inteligência artificial generativa, integrado a uma aplicação web. Essa solução permitirá que os clientes tirem suas dúvidas de forma rápida, aliviando a carga dos atendentes e melhorando a experiência do usuário, o que pode aumentar a base de clientes.

Além de atender os clientes, a aplicação permitirá que a equipe gerencie e publique novas instruções, controle o versionamento, defina o modelo de linguagem natural

(LLM) a ser utilizado e gerencie o acesso aos diversos chats. O desenvolvimento envolve a coleta e preparação de dados relevantes, o treinamento e ajuste fino do LLM e sua integração à aplicação. Um componente essencial é o modelo de classificação de intenção, que identificará as intenções dos usuários para gerar respostas mais precisas e contextualmente adequadas.

Este projeto alinha-se com as metas estabelecidas no TAPI, incluindo criar uma solução para a alta demanda no SAC, melhorar a satisfação dos clientes e aumentar a base de clientes. Com o objetivo de atender mais de 25 mil atendimentos mensais via chat online e suportar uma operação multilíngue, o chatbot visa não apenas aliviar a carga dos atendentes humanos, mas também proporcionar análises contínuas para aprimorar o serviço. Ao final, entregaremos uma solução integrada com um LLM otimizado e um classificador de intenção eficiente, proporcionando um atendimento mais ágil, preciso e escalável para a Brastel, contribuindo significativamente para o crescimento e a satisfação dos usuários da empresa.

Trabalhos relacionados

Nesta seção, revisamos estudos recentes sobre a aplicação de Modelos de Linguagem de Grande Escala (LLMs) e Inteligência Artificial (IA) Generativa no atendimento ao cliente. Os artigos selecionados exploram diversas abordagens e inovações para melhorar a eficiência, personalização e qualidade do suporte ao cliente, destacando desafios e oportunidades dessa tecnologia emergente.

Utilizamos Google e Google Scholar com termos como "LLM", "ChatBot", "Customer Service", "Generative AI" e "Artificial Intelligence". As buscas mais relevantes foram "LLM Chatbot" e "LLM Customer Service".

1. Bamberger et al., 2023

Este estudo da Boston Consulting Group analisa o impacto atual da IA generativa no atendimento ao cliente, destacando sua implementação em diversas indústrias e benefícios como aumento de produtividade e satisfação do cliente.

Pontos Positivos: Demonstra como a IA generativa pode aumentar a produtividade em até 50%, fornecendo exemplos práticos que evidenciam seu potencial transformador.

Pontos Negativos: Destaca a necessidade de supervisão humana para mitigar erros e vieses, limitando a automação completa. Poderia explorar mais soluções para esses desafios.

2. Dam, S. K. et al., 2024

Apresenta uma revisão abrangente do uso de chatbots baseados em LLMs, abordando aplicações, arquitetura e desafios na implementação em diversos setores.

Pontos Positivos: Oferece análise detalhada das capacidades dos LLMs e sua personalização para diferentes contextos, contribuindo para interações mais eficazes.

Pontos Negativos: Poderia incluir análises práticas das limitações, como mitigação de vieses e necessidade de grandes volumes de dados, enriquecendo a discussão com estudos de caso.

3. Kolasani, S., 2023

Discute otimizações para LLMs visando melhorar o atendimento ao cliente, focando em personalização hiper-relevante e crescimento sustentável das empresas.

Pontos Positivos: Propõe abordagens inovadoras que aumentam a relevância das interações, melhorando satisfação e retenção de clientes, e impulsionando crescimento e receita.

Pontos Negativos: Implementação pode exigir investimentos significativos, não sendo viável para todas as empresas. Poderia discutir trade-offs entre complexidade e benefícios para auxiliar na tomada de decisões.

4. Shi, J. et al., 2024

Apresenta o sistema CHOPS, que utiliza LLMs para interagir com perfis de clientes, oferecendo atendimento personalizado e proativo, antecipando necessidades e melhorando eficiência.

Pontos Positivos: CHOPS representa avanço na personalização, permitindo soluções proativas e reduzindo intervenção humana, aumentando eficiência operacional.

Pontos Negativos: Enfrenta desafios de escalabilidade e integração; o artigo não aprofunda como superá-los. Análises técnicas e estudos de caso poderiam fornecer insights práticos.

5. Smith et al., 2023

Artigo do blog da Databricks sobre como LLMs revolucionam o suporte ao cliente, proporcionando respostas mais rápidas e precisas, e a importância de integrar dados corporativos.

Pontos Positivos: Destaca a capacidade dos LLMs em fornecer respostas precisas e contextuais, melhorando a qualidade do suporte. Integração de dados específicos é estratégica.

Pontos Negativos: Requer estratégia robusta de gerenciamento de conteúdo; o artigo carece de detalhes sobre como desenvolvê-la. Recomendações práticas seriam úteis.

6. Xiaoliang, M. et al., 2024

Descreve o design de um LLM para melhorar o atendimento ao cliente em operadoras de telecomunicações, abordando integração com sistemas existentes e aumento da satisfação.

Pontos Positivos: O LLM pode reduzir tempo de resposta e melhorar satisfação do cliente, integrando-se bem aos sistemas atuais, mostrando alto potencial prático.

Pontos Negativos: Identifica barreiras tecnológicas, como compatibilidade com sistemas legados, sem oferecer estratégias claras para superá-las. Soluções práticas facilitariam a transição.

Tabela 1: Comparativo entre os trabalhos relacionados

Estudo	Tecnologia(s) Ano Analisada(s)	Observação
Estudo	Allo Allalisada(s)	Obsel vação
Bamberger	2023 LLMs e IA Generativa	Aumento de produtividade com
et al.		LLMs e supervisão humana.
Dam, S.	2024 Revisão sobre Chatbots	Discussão sobre capacidades e
K. et al.	baseados em LLMs	desafios dos chatbots com LLMs.
Kolasani,	2023 Otimização de LLMs	Melhoria na personalização e
S.	para Personalização	crescimento sustentável no
		atendimento.
Shi, J. et	2024Sistema CHOPS com	Atendimento personalizado e
al.	LLMs	proativo utilizando LLMs.
Smith et	2023LLMs para Suporte ao	Revolução no suporte com
al.	Cliente	integração de dados específicos.
Xiaoliang,	2024Design de LLM para	Melhoria no atendimento em
M. et al.	suporte ao cliente em	operadoras de telecomunicações.
	Telecom	- -

Materiais e Métodos

Esta seção descreve as etapas realizadas neste trabalho, desde a análise exploratória e o pré-processamento até a implementação dos modelos de NLP, visando possibilitar a reprodução por qualquer leitor com acesso a este artigo.

A base de dados utilizada contém 505 linhas com quatro colunas: id, motivo do contato (intenção), pergunta e respectiva resposta. Foram criadas 11 perguntas (Tabela 2) para entender essa base, respondidas por meio de análise exploratória usando a biblioteca pandas do Python.

Tabela 2: Perguntas da Análise Exploratória

$\mathrm{N}^{\scriptscriptstyle \mathrm{Q}}$	Pergunta	Justificativa
1	Quais são as intenções mais comuns nas interações de chat com os clientes?	Identificar as intenções mais comuns para analisar a distribuição dos dados e a necessidade de técnicas de data augmentation.
2	Existem padrões de comprimento nas perguntas ou respostas que se destacam entre diferentes intenções?	Compreender se o comprimento das perguntas é uma feature importante para o modelo e se as respostas devem ter um comprimento específico.
3	Quais palavras são mais frequentes nas perguntas e nas respostas?	Analisar o vocabulário comum dos usuários e do sistema para identificar palavras menos relevantes.
4	Para cada intenção, quais são as palavras que aparecem unicamente para essa intenção?	Identificar palavras exclusivas por intenção para refinar o modelo de classificação, atribuindo maior peso a essas palavras.
5	Existem palavras que aparecem apenas uma única vez? Se sim, quais são elas?	Identificar palavras que podem ser ruído ou outliers para melhorar a limpeza dos dados e a robustez do modelo.
6	Qual a média do tamanho das perguntas no geral?	Auxilia na definição de parâmetros para o modelo e na identificação de outliers.
7	Qual a média do tamanho das respostas no geral?	Auxilia no ajuste da geração de respostas, garantindo concisão e informatividade.
8	Qual a média do tamanho das perguntas por intenção?	Personaliza a modelagem para diferentes tipos de perguntas, melhorando a precisão e eficiência.
9	Qual a média do tamanho das respostas por intenção?	Permite ajustar o nível de detalhe das respostas para diferentes intenções.
10	Qual a relação entre o tamanho das perguntas e das respostas no geral?	Ajuda a calibrar a quantidade de informação fornecida pelo sistema com base no comprimento das perguntas.
11		Auxilia na calibração específica por intenção,

A análise exploratória revelou que a intenção "Confirmação de câmbios/taxas" é a mais frequente, com metade das perguntas concentradas nas três intenções mais comuns, indicando distribuição assimétrica à direita. As perguntas tendem a ser mais curtas (50-100 caracteres), enquanto as respostas variam, chegando a 400 caracteres. Nuvens de palavras mostraram que termos comuns e não relevantes devem ser removidos no pré-processamento. As palavras únicas por intenção destacaram termos específicos que ajudam na categorização. Em média, as perguntas têm 15 palavras e as respostas cerca de 30, sendo mais detalhadas

tamanho das perguntas e das respostas por intenção? podendo melhorar a predição do modelo.

para evitar dúvidas. Não há correlação clara entre o tamanho das perguntas e das respostas, que variam dependendo da intenção.

Pipeline de Pré-Processamento

A pipeline de pré-processamento é um conjunto de etapas aplicadas aos dados brutos para prepará-los para a modelagem. Inclui tokenização, remoção de stopwords, lematização, entre outras, projetadas para limpar e estruturar os textos (JULURU et al., 2021; EL KAH; ZEROUAL, 2021). A pipeline consiste nas seguintes etapas (Figura 1):

Figura 1: Fluxograma do Pipeline de Pré-Processamento

- Carregamento dos Dados: Dados brutos s\(\tilde{a}\) carregados de um arquivo CSV.
- 2. **Tokenização**: Segmentação dos textos em palavras ou subpalavras, com classificação de cada token.
- 3. Remoção de Stopwords: Remoção de palavras comuns sem significado semântico relevante.
- 4. Lematização: Redução das palavras à sua forma base ou lema.
- 5. Remoção de Pontuação: Eliminação de sinais de pontuação dos textos.
- Retorno dos Dados: Dados pré-processados são retornados para uso na modelagem.

Após essas etapas, os resultados obtidos são mostrados na Figura 2:

Figura 2: Resultado do Pipeline de Pré-Processamento

Utilizamos o spaCy, uma biblioteca gratuita e de código aberto para processamento avançado de linguagem natural em Python. A Figura 3 ilustra a transformação dos dados originais após o pré-processamento, mostrando a tokenização, classificação, lematização e remoção de stopwords e pontuações.

```
# 1. Carregamento dos Dados
carregar_arquivo_csv("dados.csv")
frase_exemplo = "Como enviar dinheiro do Japão?"
```

```
# 2. Tokenização
tokens = tokenizar(frase_exemplo)
retorno(["Como", "enviar", "dinheiro", "do", "Japão", "?"])
# 3. Remoção de Stopwords
tokens_sem_stopwords = remover_stopwords(tokens)
retorno(["enviar", "dinheiro", "Japão", "?"])
# 4. Lematização
tokens_lematizados = lematizar(tokens_sem_stopwords)
retorno(["enviar", "dinheiro", "Japão", "?"])
# 5. Remoção de Pontuação
tokens_limpos = remover_pontuacao(tokens_lematizados)
retorno(["enviar", "dinheiro", "Japão"])
# 6. Retorno dos Dados
retornar_dados_pre_processados(tokens_limpos)
retorno(["enviar", "dinheiro", "Japão"])
```

Figura 3: Exemplo de execução do Pipeline de Pré-Processamento

Modelos de Classificação de Intenção

Métricas de Avaliação

As métricas de avaliação escolhidas foram a matriz de confusão combinada com precisão, acurácia, recall e F1-Score, por fornecerem insights específicos sobre o desempenho do modelo.

- Matriz de Confusão: Detalha como as classes estão sendo classificadas, identificando quais classes são mais confundidas entre si (scikit-learn.metrics.confusion matrix).
- Acurácia: Mede a taxa de acerto, dividindo o número de previsões corretas pelo total de previsões (scikit-learn.metrics.accuracy_score).
- **F1-Score**: Equilibra precisão e recall, útil quando há desequilíbrio entre classes ou necessidade de trade-off entre precisão e recall (scikit-learn.metrics.f1_score).

Comparação de CPU x GPU

Foi avaliado o desempenho dos modelos utilizando CPU e GPU, em termos de tempo de processamento e uso de memória. A comparação foi realizada por meio de experimentos controlados, com múltiplas iterações de treinamento e inferência para obter resultados consistentes.

Modelo Baseline (Bag of Words com Naive Bayes)

Para o modelo baseline, utilizamos o método Bag of Words (BoW) combinado com o algoritmo Naive Bayes, devido à sua simplicidade e eficácia em tarefas de classificação de texto com conjuntos de dados relativamente pequenos.

Pipeline do Modelo Baseline:

- Pré-processamento: Aplicação do pipeline descrito anteriormente.
- Transformação BoW: Conversão dos textos pré-processados em uma matriz BoW.
- Treinamento do Naive Bayes: Uso da matriz BoW para treinar o modelo Naive Bayes.
- Avaliação Inicial: Aplicação das métricas de avaliação para avaliar o desempenho.

Modelo com Rede Neural e Word2Vec Pré-Treinado

A combinação de redes neurais com embeddings pré-treinados como o Word2Vec é eficaz em tarefas de NLP. O Word2Vec transforma palavras em vetores de alta dimensão, capturando relações semânticas, que ao serem integrados em uma rede neural, melhoram a performance em classificação de texto.

Arquitetura do Modelo:

- Embeddings com Word2Vec: Utilizado modelo pré-treinado do Word2Vec com vetores de 300 dimensões.
- Camadas da Rede Neural:
 - 1. Input Layer: Recebe os vetores de palavras do Word2Vec.
 - 2. Hidden Layers: Camadas densas com função de ativação ReLU.
 - 3. Output Layer: Camada densa com função de ativação softmax para classificação multiclasse.

Modelo com LSTM e Embedding Layer

Implementamos um modelo baseado em LSTM (Long Short-Term Memory) e RNN (Recurrent Neural Network) usando TensorFlow e Keras. As LSTMs foram escolhidas por sua capacidade de mitigar a perda de memória dos inputs iniciais em RNNs tradicionais (GLENN et al., 2023).

Arquitetura do Modelo:

- Embedding Layer: Input de 5000 dimensões.
- Camadas LSTM: Duas camadas LSTM bidirecionais com inputs de 64 e 32 dimensões, respectivamente.
- **Dropout Layer**: 30% para reduzir overfitting.
- Output Layer: Função de ativação softmax para classificação multiclasse.

Após a codificação das sequências de texto com o tokenizer do Keras e padronização com pad sequences, os dados foram alimentados na Embedding Layer.

Data Augmentation

Aumentação utilizando LLM

Para aumentar a diversidade dos dados, utilizamos um Modelo de Linguagem de Grande Escala (LLM) para gerar novas perguntas dentro de um contexto fornecido por prompts específicos. A metodologia incluiu:

- Identificação de Dados Relevantes: Aplicação de redução de dimensionalidade nos embeddings das mensagens e clusterização usando k-vizinhos mais próximos para determinar o valor ideal de "k".
- Geração de Novas Mensagens: Seleção de 10 entradas de exemplo enviadas como prompt para o LLM (ChatGPT), que gerou 50 novas mensagens com variação de tamanho, contexto e até erros ortográficos.
- Aproveitamento da Diversidade: Aumenta o conjunto de dados com variações significativas na escrita, enriquecendo o treinamento.

Utilizamos também um modelo BERT ("bert-base-portuguese-cased") ajustado para classificação de categorias de atendimento ao cliente, com 19 classes. O modelo foi treinado por 5 épocas com early stopping para evitar overfitting.

Modelo LLM

Abordagem adotada

Utilizamos o Meta-Llama-3.1-8B-Instruct, com 8 bilhões de parâmetros, equilibrando desempenho e eficiência. Os modelos Llama 3 ajustados por instruções são otimizados para casos de uso de diálogo/chat (META, 2024). Aplicamos a técnica Low-Rank Adaptation (LoRA) juntamente com quantização para reduzir o peso do modelo sem comprometer significativamente o desempenho, reduzindo-o para cerca de 88 milhões de parâmetros.

Uma técnica de data augmentation utilizando a biblioteca nlpaug do Python, que usa Word2Vec para substituir palavras por sinônimos, foi aplicada para aumentar as intenções com poucas amostras, e uma análise foi realizada para verificar a eficácia.

Métricas de Avaliação com Justificativa

A métrica principal foi a **similaridade de cosseno** utilizando BERT para criação de embeddings, por sua capacidade de representar a similaridade de dois textos, onde valores próximos de 1 indicam textos semelhantes. O uso do BERT garante que os embeddings considerem o contexto além das palavras individualmente. A **perda (loss)** também foi utilizada para acompanhar a performance durante o treinamento e validação.

Comparação de GPUs

As implementações e comparações de desempenho foram feitas utilizando GPUs Nvidia T4 e A100 na plataforma Google Colab. Foram realizadas comparações referentes ao tempo de execução total em segundos e uso de memória RAM em MB.

Resultados

Resultado das métricas

Tabela 3: Resultados comparativos entre os modelos

Modelo	Acurácia	f1-score
BoW com Naive Bayes	75%	71%
Word2Vec	32%	54%
LSTM	92%	92%
BERT	$99{,}5\%$	$99{,}5\%$

A Tabela 3 apresenta os resultados dos modelos de classificação de intenção. O modelo baseline (BoW com Naive Bayes) obteve 75% de acurácia e 71% de f1-score. O modelo com Word2Vec atingiu 32% de acurácia e 54% de f1-score. O modelo LSTM alcançou 92% em ambas as métricas, enquanto o modelo BERT obteve 99,5% em acurácia e f1-score.

Na matriz de confusão do modelo baseline (Figura 4), destacam-se: 72 acertos na classe 7, 36 na classe 9, 37 na classe 6 e nenhuma predição nas classes 1, 5, 8 e 13.

Figura 4: Matriz de confusão do modelo baseline com dados de validação A matriz de confusão da LSTM (Figura 5) confirma as métricas, apresentando acertos expressivos em todas as categorias.

Figura 5: Matriz de Confusão para Rede Neural LSTM

Desempenho CPU x GPU

As Tabelas 6 e 7 mostram o tempo de processamento e uso de memória para treinamento e inferência dos modelos.

Tabela 6: Tempo de processamento para treinamento e inferência dos modelos (em segundos)

Modelo	CPU	T4 GPU	A100 GPU
Baseline	$0,05635$ $1963,89$ ~ 1800	0,07886	0,07988
Word2Vec		194,40	198,19
LSTM		~200	~200

Tabela 7: Uso de memória para treinamento e inferência dos modelos (em MB)

Modelo	CPU	T4 GPU	A100 GPU
Baseline	0,7324	0,7429	0,7324
Word2Vec	139,65	46,70	39,94
LSTM	46,86	44,47	2,09

Em geral, os modelos com redes neurais apresentaram menor tempo de processamento com o uso de GPU.

Modelo LLM

Sem Data Augmentation

Sem data augmentation, a perda de avaliação do modelo LLM diminui até aproximadamente 0,5855 na etapa 200, e a perda de treinamento atinge cerca de 0,5134 (Figura 6).

Figura 6: Gráfico de perda do modelo LLM no treino e validação sem data augmentation

Com Data Augmentation

Com data augmentation, a perda de avaliação diminui entre 0,6591 e 0,5221 na etapa 200, e a perda de treinamento atinge cerca de 0,4511 (Figura 7).

Figura 7: Gráfico de perda do modelo LLM no treino e validação com data augmentation

Comparação dos Resultados

Tabela 8: Comparação LLM com e sem data augmentation

Modelo	Similaridade de cosseno
LLM sem data augmentation	0,75
LLM com data augmentation	0,79

O data augmentation no modelo LLM aumentou a similaridade de cosseno de $0.75~\mathrm{para}~0.79.$

Desempenho

O treinamento do modelo LLM na GPU T4 levou 659.85 segundos (~11 minutos), enquanto na GPU A100 foi de 268.94 segundos (~4,5 minutos) (Figura 8). O uso de memória foi similar em ambas as GPUs, cerca de 190 MB (Figura 9).

Tempo de processamento do treinamento por ambiente de execução (em segundos)

Figura 8: Gráfico com o tempo de processamento para treinamento do modelo ${\rm LLM}$

Figura 9: Gráfico com o uso de memória para treinamento do modelo LLM

Análise e Discussão

Modelos de classificação

Comparação dos Resultados Obtidos entre os Modelos

Foram testados três modelos com desempenhos distintos:

- Modelo Baseline (Naive Bayes com Bag of Words): Obteve 75% de acurácia. Destacou-se pela simplicidade e rapidez, mas teve limitações em capturar relações complexas entre palavras, especialmente em classes com menos exemplos, resultando em variações significativas de precisão e recall entre as categorias.
- Modelo de Rede Neural com Word2Vec: Apresentou acurácia de apenas 32%, desempenho inferior ao esperado. Possíveis causas incluem arquitetura não otimizada e desbalanceamento do dataset, dificultando o aprendizado das diferentes classes. O treinamento foi mais custoso em tempo e recursos computacionais.
- Modelo LSTM com Embedding Layer: Alcançou a melhor acurácia, com 92%. A LSTM capturou dependências de longo prazo em sequências de texto, e a camada de embedding treinada gerou representações densas de palavras. Houve baixa variância entre os conjuntos de treino e validação, indicando bom ajuste sem overfitting. A capacidade da LSTM em capturar dependências temporais e contextuais foi crucial para o desempenho superior.

A utilização de técnicas de data augmentation beneficiou o fine-tuning do modelo BERT, reduzindo o viés para classes majoritárias e aumentando a robustez frente ao desbalanceamento de categorias.

Análise sobre o treinamento com GPU e CPU

No treinamento do modelo baseline, a **CPU** teve o menor tempo de execução, pois o scikit-learn não está otimizado para GPUs, que introduzem overhead na transferência de dados.

Para redes neurais, as **GPUs**, especialmente a A100, foram muito eficientes, reduzindo o tempo de treinamento em mais de 10 vezes comparado à CPU e consumindo menos memória, graças ao alto paralelismo e otimizações para deep learning.

A comparação evidencia que, enquanto a CPU é mais rápida para modelos não otimizados para GPU, as redes neurais se beneficiam enormemente do uso de GPUs.

Comparação com modelos presentes na literatura

- Minaee et al. (2020): Modelos de deep learning superam abordagens clássicas em classificação de texto. O modelo LSTM deste estudo, com acurácia de 92%, confirma essa conclusão.
- Kalchbrenner et al. (2020) e Kim (2014): Destacam os benefícios de CNNs e RNNs combinadas com embeddings como Word2Vec. Embora tenha sido usada uma arquitetura mais simples, os resultados foram comparáveis.
- Kolluri et al. (2019): Afirmam que deep learning supera modelos tradicionais, especialmente em dados complexos. Nossos resultados corroboram parcialmente, mas o desbalanceamento de classes afetou o desempenho.
- Gupta et al. (2023): LSTM com GloVe alcança alta acurácia apesar do desbalanceamento. A acurácia da LSTM no presente estudo está alinhada com esses achados.
- Hasib et al. (2023): Propõem um modelo MCNN-LSTM eficaz para dados desbalanceados. Os resultados do nosso modelo LSTM são consistentes com a eficácia de redes neurais nesse contexto.

Tabela 9: Comparação dos resultados com a literatura

<u> </u>	N. 1.1	Principais	
Autor	Modelo	Resultados	Comparação
Minaee et al. (2020)	Word2Vec + CNN	Deep learning melhora acurácia e generalização.	O modelo atual confirma essa conclusão.
Kalchbrenner et al. (2020)	CNNs e RNNs com Word2Vec	Excelentes resultados com ajuste fino.	Resultados comparáveis, mesmo com arquitetura mais simples.
Kolluri et al. (2019)	Deep learning vs. tradicionais	Deep learning é superior em dados complexos.	Conclusões parcialmente corroboradas; des- balanceamento afetou o desempenho.
Gupta et al. (2023)	GloVe com LSTM	Alta acurácia apesar do desbalanceamento.	Acurácia da LSTM está de acordo com o esperado.

Autor	Modelo	Principais Resultados	Comparação
Hasib et al. (2023)	MCNN-LSTM	Eficaz para dados desbalanceados.	Resultados consistentes com a eficácia de redes neurais.

Modelo Meta Llama 3.1

Aplicação na geração de respostas

O Meta Llama 3.1 foi utilizado para gerar respostas coerentes e adequadas. Após reduzir os parâmetros de 8 bilhões para 88 milhões com a técnica Lora, o modelo manteve boa performance. O tempo de treinamento foi de 2,5 minutos por época na GPU A100 e 4,5 minutos na GPU T4.

Alternativas de treinamento com CPU e GPU

Treinar o Meta Llama 3.1 requer alta capacidade computacional. Sem a redução de parâmetros, o treinamento era inviável, mesmo com GPUs. Com a redução, as **GPUs T4 e A100** foram significativamente mais eficientes que a CPU, reduzindo o tempo de processamento. O treinamento total levou 11 minutos na A100 e 25 minutos na T4, com desempenho semelhante na qualidade das respostas geradas.

Conclusão

Este estudo enfatiza a importância de escolher o modelo e o ambiente de treinamento adequados. O BERT com fine-tuning e data augmentation mostrou-se eficaz na classificação de intenções no chatbot. O uso de GPU é recomendado para otimizar o tempo de treinamento em redes neurais complexas.

Na geração de respostas, o GPT-2 foi descartado pela baixa performance. O Meta Llama 3.1, com a configuração LoRA que reduz os parâmetros de 8 bilhões para 88 milhões, demonstrou desempenho superior e foi escolhido como modelo principal. O Llama-3.2 apresentou resultados promissores, mas requer análises adicionais.

A seleção criteriosa entre modelos como LSTM, BERT e Meta Llama, aliada ao uso de GPUs, é essencial para soluções robustas em compreensão e geração de linguagem natural. Futuros estudos podem explorar a otimização de hiperparâmetros, novas técnicas de data augmentation e o uso do LLama-3.2.

A implementação do chatbot com esses modelos permitirá à Brastel atender mais de 25 mil atendimentos mensais via chat online, suportando uma operação multilíngue e proporcionando um atendimento mais ágil e escalável. A redução

da carga de trabalho dos atendentes otimizará os recursos internos. Espera-se melhorar a experiência do cliente e aumentar a satisfação e a base de usuários.

Referências Bibliográficas

BAMBERGER et al. "How Generative AI Is Already Transforming Customer Service." Boston Consulting Group, 2023. Disponível em: https://web-assets-pdf.bcg.com/prod/how-generative-ai-transforms-customer-service.pdf. Acesso em: 26 set. 2024.

DAM, S. K. et al. "A Complete Survey on LLM-based AI Chatbots." arXiv, 2024. Disponível em: https://arxiv.org/pdf/2406.16937. Acesso em: 26 set. 2024.

DEVLIN, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Disponível em: https://arxiv.org/abs/1810.04805. Acesso em: 26 set. 2024.

EL KAH, A.; ZEROUAL, I. The effects of Pre-Processing Techniques on Arabic Text Classification . Int. J, v. 10, n. 1, p. 1–12, 2021. Disponível em: https://www.academia.edu/download/65735811/ijatcse061012021.pdf. Acesso em: 26 set. 2024.

SCIKIT-LEARN DEVELOPERS. Frequently Asked Questions. Disponível em: https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support. Acesso em: 11 set. 2024.

GLENN, A.; LACASSE, P.; COX, B. Emotion classification of Indonesian Tweets using Bidirectional LSTM. Neural Computing and Applications, 6 fev. 2023. Disponível em: https://link.springer.com/content/pdf/10.1007/s00521-022-08186-1.pdf. Acesso em: 26 set. 2024.

GOOGLE. google-bert/bert-base-uncased - Hugging Face. Disponível em: https://huggingface.co/google-bert/bert-base-uncased.

Frequently Asked Questions. Disponível em: https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support. Acesso em: 11 set. 2024.

JOSHUA, S. et al. A detailed review on word embedding techniques with emphasis on word2vec. Multimedia Tools and Applications, 3 out. 2023. Disponível em: https://link.springer.com/article/10.1007/s11042-023-17007-z

JULURU, K. et al. Bag-of-words technique in natural language processing: a primer for radiologists. **RadioGraphics**, v. 41, n. 5, p. 1420–1426, 2021. Disponível em: https://pubs.rsna.org/doi/pdf/10.1148/rg.2021210025. Acesso em: 26 set. 2024.

KHUNTIA, M.; GUPTA, D. Indian News Headlines Classification using Word Embedding Techniques and LSTM Model. Procedia Computer Science, v. 218, p. 899–907, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S1877050923000704

K. M. HASIB et al., MCNN-LSTM: Combining CNN and LSTM to Classify Multi-Class Text in Imbalanced News Data. IEEE Access, vol. 11, pp. 93048-93063, 2023. Disponível em: https://ieeexplore.ieee.org/abstract/document/10233873

KOLANASI, S. "Optimizing Natural Language Processing, Large Language Models (LLMs) for Efficient Customer Service, and Hyper-personalization to Enable Sustainable Growth and Revenue." Transactions on Latest Trends in Artificial Intelligence, 2023. Disponível em: https://ijsdcs.com/index.php/TLAI/article/download/476/196. Acesso em: 26 set. 2024.

LI, L. et al. Text sentiment analysis of film reviews using Word2Vec-LSTM. In Third International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2024) (Vol. 13181, pp. 182-187). SPIE. Disponível em: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13181/131810T/Text-sentiment-analysis-of-film-reviews-using-Word2Vec-LSTM/10.1117/12.3031046.short

LI, S. Multi Class Text Classification With Deep Learning Using BERT. Disponível em: https://towardsdatascience.com/multi-class-text-classification-with-deep-learning-using-bert-b59ca2f5c613

MALLIK, A.; KUMAR, S. Word2Vec and LSTM based deep learning technique for context-free fake news detection. Multimedia Tools and Applications, v. 83, n. 1, p. 919–940, 29 maio 2023. Disponível em: https://link.springer.com/article/10.1007/s11042-023-15364-3

MUREL, J.; KAVLAKOGLU, E. What is bag of words? Disponível em: https://www.ibm.com/topics/bag-of-words. Acesso em: 28 ago. 2024.

Repositório de Word Embeddings do NILC. Disponível em: http://nilc.icm c.usp.br/nilc/index.php/repositorio-de-word-embeddings-do-nilc SCIKIT-LEARN. sklearn.metrics.confusion_matrix — scikit-learn 0.21.3 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.metri cs.confusion_matrix.html. Acesso em: 28 ago. 2024.

SCIKIT-LEARN. accuracy_score. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#accuracy-score. Acesso em: 28 ago. 2024.

SCIKIT-LEARN. sklearn.metrics.fl $_$ score — scikit-learn 0.21.2 documentation. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fl $_$ score.html. Acesso em: 28 ago. 2024.

SHI, J. et al. "CHOPS: CHat with custOmer Profile Systems for Customer Service with LLMs." arXiv, 2024. Disponível em: https://arxiv.org/pdf/2404.01343. Acesso em: 26 set. 2024.

SMITH et al. "Driving a Large Language Model Revolution in Customer Service and Support." Databricks Blog, 2023. Disponível em: https://arxiv.org/pdf/23 11.13018. Acesso em: 26 set. 2024.

KOLLURI, J.; RAZIA, S.; NAYAK, S. R. Text classification using machine learning and deep learning models. International Conference on Artificial Intelligence in Manufacturing & Renewable Energy, 2019. Disponível em: https://ssrn.com/abstract=3618895. Acesso em: 29 de ago. 2024.

META. Introducing Meta Llama 3: The most capable openly available LLM to date. Disponível em: https://ai.meta.com/blog/meta-llama-3/. Acesso em: 27 set. 2024.

MINAEE, S.; KALCHBRENNER, N.; CAMBRIA, E.; NIKZAD, N.; CHENAGHLU, M.; GAO, J. Deep learning based text classification: A comprehensive review. arXiv preprint arXiv:2004.03705, 2020. Disponível em: https://arxiv.org/abs/2004.03705. Acesso em: 29 de ago. 2024.

KIM, Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Disponível em: https://arxiv.org/abs/1408.5882. Acesso em: 29 de ago. 2024.

WICKRAMASINGHE, Indika; KALUTARAGE, Harsha. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, v. 25, n. 3, p. 2277-2293, 2021. Disponível em: https://rgu-repository.worktribe.com/preview/969281/WICKRAMASI NGHE%202021%20Naive%20bayes.pdf. Acesso em: 26 set. 2024.

XIAOLIANG, M. et al. "Design of a Large Language Model for Improving Customer Service in Telecom Operators." Electronics Letters, 2024. Disponível em: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ell2.13218. Acesso em: 26 set. 2024.

ZHOU, Hai. Research of text classification based on TF-IDF and CNN-LSTM. In: Journal of Physics: Conference Series. IOP Publishing, 2022. p. 012021. Disponível em: https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/01 2021/pdf. Acesso em: 26 set. 2024.