Practical No: - 1

Aim: - Import the legacy data from different sources such as (Excel, SqlServer, Oracle etc.) and load in the target system. (You can download sample database such as Adventureworks, Northwind, foodmart etc.)

Steps: -

1. Open PowerBi Desktop -> Get Data -> SQL Server Database

2. Type your server name -> OK

3. Navigator will show your database -> select any table -> Load

4. Finally convert data into graph and display the output.

Practical No: - 2

Aim: - Perform the Extraction Transformation and Loading (ETL) process to construct the database in the SqlServer.

Steps: -

1. Open PowerBi Desktop -> Get Data -> SQL Server Database

2. Type your server name -> OK

3. Navigator will show your database -> select any table -> Transform Data

4. Manage Columns -> Remove Columns with null values and unnecessary data to display only what is required.

5. Manage Columns -> Convert Column -> Change data unit into Whole Number.

6. Manage Columns -> Expand another table (Human Resources) -> add selected columns of choice.

7. Add Custom Column -> Calculate a new column value (Bonus Percentage)

8. Rename & Reorder the columns

9. Show the relationship output (Gender Based Sales & Bonus Relationship)

Practical No: - 3

Aim: - Create the Data staging area for the selected database & Create the cube with suitable dimension and fact tables based on ROLAP, MOLAP and HOLAP model.

Steps: -

1. Create a new Multidimensional Project.

2. Go to DataSource & add a new source.

3. Create a view from the added Source.

4. Create a new cube to generate data to be displayed.

5. Change properties of Multidimensional Project.

6. Show Deployment Process.

6. Click on browse and fire a query.

Practical No: - 4

Aim: - a. Create the ETL map and setup for execution. b. Execute the MDX queries to extract the data from the Datawarehouse.

Steps: -

PART A -> Create the ETL map and setup for execution

1. Create a new Multidimensional Project.

2. Go to DataSource & add a new source.

3. Create a view from the added Source.

4. Create a new cube to generate data to be displayed.

5. Change properties of Multidimensional Project.

6. Show Deployment Process.

6. Click on browse and fire a query.

PART B -> Execute MDX Query to extract data from Warehouse.

1. Open SQL Server Management Studio -> Select Analysis Server Engine -> Connect.

2. Open the Multi Dimension Project from earlier and load it.

3. Execute MDX Query to fetch result from Data Warehouse. (Select total production cost).

Practical No: - 5

Aim: - a. Import the Datawarehouse data in Microsoft Excel and create the Pivot table and Pivot Chart. b. Import the cube in Microsoft Excel and create the Pivot table and Pivot Chart to perform data analysis.

PART A -> Import the Datawarehouse data in Microsoft Excel and create the Pivot table and Pivot Chart

Steps: -

1. Export dB from Microsoft SQL Server Management Studio.

2. Open excel file & generate a graph using the data available.

PART B -> Import the cube in Microsoft Excel and create the Pivot table and Pivot Chart to perform data analysis

Steps: -

1. Connect to database server and add the dB with cubes.

Data Connection Wizard	?	×
Save Data Connection File and Finish		
Enter a name and description for your new Data Connection file, and press Finish to save.		
File Name:		
THEDARKKNIGHT_MSSQL15 MultidimensionalPractical3 Adventure Works2017.odc	B <u>r</u> o	wse
Save password in file		
<u>D</u> escription:		
Friendly Name:		
THEDARKKNIGHT_MSSQL15 MultidimensionalPractical3 Adventure Works2017	1	
Search Keywords: Always attempt to use this file to refresh data		
Excel Services: A <u>u</u> thentication Settings		
Cancel < <u>B</u> ack Next >	<u>E</u> i	nish

2. Render the graph

Practical No: - 6

Aim: - Apply the what – if Analysis for data visualization. Design and generate necessary reports based on the data warehouse data.

Steps: -

1. Import data from dB to excel.

2. ETL the data.

3. Select Data -> What If Analysis -> Scenario Manager -> Add New Scenario.

Scenario: all unit prices increased by 200

4. Click on Summary to check the result.

В	С	D	Е
Scenario	Summ	ary	
		Current Values:	unit price increased by 200
Changing	g Cells:		
	\$E\$2	50	250
	\$E\$3	45	245
	\$E\$4	46	246
	\$E\$5	16	216
	\$E\$6	57	257
	\$E\$7	37	237
	\$E\$8	27	227
	\$E\$9	27	227
	\$E\$10	34	234
	\$E\$11	46	246
Result Ce	lls:		
	\$F\$2	200	1000
	\$F\$3	135	735
	\$F\$4	138	738
	\$F\$5	8800	118800
	\$F\$6	171	771
	\$F\$7	20350	130350
	\$F\$8	14850	124850
	\$F\$9	14850	124850
	\$F\$10	18700	128700
	\$F\$11	25300	135300

Notes: Current Values column represents values of changing cells at time Scenario Summary Report was created. Changing cells for each scenario are highlighted in gray.

Practical No: - 7

Aim: - Perform the data classification using classification algorithm.

PART A -> Perform logistic regression in the given data warehouse.

Code: -

```
input <- mtcars [, c("am","cyl","hp","wt")]
print(head(input))
am.data=glm (formula=am~cyl+hp+wt, data=input, family=binomial)
print(summary(am.data))</pre>
```

```
R Console
                                                                   - © X
Call:
glm(formula = am ~ cyl + hp + wt, family = binomial, data = input)
Deviance Residuals:
    Min 1Q
                    Median
                                 3Q
-2.17272 -0.14907 -0.01464 0.14116 1.27641
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 19.70288 8.11637
                               2.428
                                       0.0152 *
           0.48760
                               0.455
                      1.07162
                                       0.6491
cyl
           0.03259 0.01886 1.728
                                       0.0840 .
hp
           -9.14947 4.15332 -2.203 0.0276 *
wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 43.2297 on 31 degrees of freedom
Residual deviance: 9.8415 on 28 degrees of freedom
AIC: 17.841
Number of Fisher Scoring iterations: 8
>
                                                                 - - X

    C:\Users\ampee\Documents\practical9.R - R Editor

input <- mtcars[,c("am","cyl","hp","wt")]
print(head(input))
am.data=glm(formula=am~cyl+hp+wt,data=input,family=binomial)
print(summary(am.data))
```

PART B -> Perform the data classification using classification algorithm

Code: -

dev.off()

```
library(party)
print(head(readingSkills))
input<-readingSkills [c (1:105),]
print(head(input))
png(file="decisiontree.png")
output. tree<-ctree (nativeSpeaker~age+shoeSize+score, data=input)
plot (output. tree)
dev off ()
```

```
dev.off ()
                                                                       - - X
 😱 R Console
 6: package 'sandwich' was built under R version 3.5.3
 > print(head(readingSkills))
  nativeSpeaker age shoeSize
                                score
           yes
                  5 24.83189 32.29385
 2
            yes
                  6 25.95238 36.63105
 3
             no 11 30.42170 49.60593
                  7 28.66450 40.28456
            ves
            yes 11 31.88207 55.46085
            yes 10 30.07843 52.83124
 > input<-readingSkills[c(1:105),]
 > print(head(input))
  nativeSpeaker age shoeSize
                               score
            yes 5 24.83189 32.29385
                 6 25.95238 36.63105
 2
            yes
             no 11 30.42170 49.60593
                  7 28.66450 40.28456
            yes
            yes 11 31.88207 55.46085
             yes 10 30.07843 52.83124
 > png(file="decisiontree.png")
 > output.tree<-ctree(nativeSpeaker~age+shoeSize+score,data=input)
 > plot(output.tree)
 > dev.off()
 null device
 >
                                                                      C:\Users\ampee\Documents\practical9.R - R Editor
 print(head(readingSkills))
 input<-readingSkills[c(1:105),]
 print(head(input))
 png(file="decisiontree.png")
 output.tree<-ctree(nativeSpeaker~age+shoeSize+score,data=input)
 plot(output.tree)
```

From the decision tree, we can conclude the people with reading skills less than 38.3 and also age is greater than 6 they are not a motive speaker.

PART C -> Linear Regression with Excel

Steps: -

1. Import data into excel

2. Apply Data Analysis -> Regression

3. Render the Output & Check the result -> APPLY Formula=B17+B18*A36+B19*B36

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.980681			
R Square	0.961736			
Adjusted R				
Square	0.942604			
Standard				
Error	310.5239			
Observations	7			

ANOVA

						Significance
	df		SS	MS	F	F
Regression		2	9694300	4847150	50.26854	0.001464
Residual		4	385700.4	96425.11		
Total		6	10080000			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	8536.214	386.9117	22.06243	2.5E-05	7461.975	9610.453	7461.975	9610.453
Price	-835.722	99.65304	-8.38632	0.001106	-1112.4	-559.041	-1112.4	-559.041
Advertising	0.592228	0.104347	5.675579	0.004755	0.302515	0.881942	0.302515	0.881942

RESIDUAL OUTPUT 🎡

Predicted					
Observation	Qua	ıntity Sold	Residuals		
1		8523.009	-23.009		
2		4476.048	223.9522		
3		6265.938	-465.938		
4		7160.883	239.1166		
!	5	6252.733	-52.7333		
	6	7095.058	204.9419		
	7	5726.33	-126.33		

		quantity
Price	advertisement	sold
4	4 3000	6970.01

Practical No: - 9

Aim: - Perform the Linear regression on the given data warehouse data.

Code: -

```
x <-c (151,174,138,186,128,136,179,163,152,131)

y <-c (63,81,56,91,47,57,76,72,62,48)

relation <- lm(y^xx)

print(relation)

print(summary(relation))

a <-data. frame(x=170)

result <- predict (relation, a)

print(result)

plot (y, x, col = "blue", main = "Height & Weight Regression",

abline(lm(x^yy)), cex = 1.3, pch = 16, xlab = "Weight in Kg", ylab = "Height in cm")

Red (64-b0)

Red (64-b0)
```


Practical No: - 10

Aim: - Perform the logistic regression on the given data warehouse data.

Code: -

bodysize=rnorm (20,30,2)
bodysize=sort(bodysize)
survive=c (0,0,0,0,1,0,1,0,0,1,1,0,1,1,1,0)
dat=as.data. frame (cbind (bodysize, survive))
dat
plot (bodysize, survive, xlab="Body size", ylab="Probability of survival")
g=glm (survive~bodysize, family=binomial, dat)
curve (predict (g, data. frame(bodysize=x), type="resp"), add=TRUE)
points (bodysize, fitted(g), pch=20)

