CIR1 et CNB1 - Mathématiques

DEVOIR SURVEILLÉ 16/10/2020

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 5 exercices qu'il comporte sont indépendants et peuvent être faits dans l'ordre de votre choix.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.
- Une copie soignée est gage d'une bonne note!

Exercice 1. (4 Points)

- (a) Donner les formules d'Euler.
- (b) Calculer pour $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$ $S_1 = \sum_{k=2}^n e^{ik\theta}$.
- (c) Pour $n \in \mathbb{N}$ et $(\theta, \alpha) \in \mathbb{R}^2$, calculer $S_2 = \sum_{k=2}^n \sin(\alpha + k\theta)$.

Exercice 2. (6 Points)

(a) Soit la relation \mathcal{R} définie sur \mathbb{C} par :

$$z\mathcal{R}z' \Leftrightarrow |z| = |z'|.$$

Montrer que \mathcal{R} est une relation d'équivalence.

- (b) (BONUS) La classe d'équivalence pour \mathcal{R} de $z \in \mathbb{C}$ est l'ensemble des complexes qui sont en relation avec $z : \mathcal{C}(z) = \{z' \in \mathbb{C}/z\mathcal{R}z'\}$. Montrer que la classe d'équivalence de $z \in \mathbb{C}$ est un cercle dont on donnera les caractéristiques.
- (c) Résoudre $z^4 + 10z^2 + 169 = 0$. On pourra d'abord poser $Z = z^2$ afin de se ramener à une équation du second degré.
- (d) (BONUS) Les racines trouvées à la question précédente appartiennent-elles à une même classe d'équivalence de \mathcal{R} ? Justifier.
- (e) Soit la similitude $s: z \mapsto iz + 5 + i$. Déterminer les caractéristiques de s: éventuel(s) invariant(s), type de transformation (directe, indirecte, rotation, homothétie, symétrie, composition de plusieurs transformations?), rapport et angle si applicable.
- (f) Déterminer les images par la similitude s des points d'affixes respectives les 4 solutions de l'équation de la question 3. Quelle figure obtient-on ?

Exercice 3. (4 Points)

(a) Soit la fonction $f:[0,1] \to [0,1]$ telle que

$$f(x) = \begin{cases} x & \text{si } x \in [0, 1] \cap \mathbb{Q}, \\ 1 - x & \text{sinon.} \end{cases}$$

Démontrer que $f \circ f = id$.

(b) Soient $g: \mathbb{R} \to \mathbb{R}$ et $h: \mathbb{R} \to \mathbb{R}$ telles que g(x) = 3x + 1 et $h(x) = x^2 - 1$. A-t-on $g \circ h = h \circ g$?

Exercice 4. (6 Points)

On considère l'équation différentielle suivante :

$$y' - 3y = 5\cos(2x) \quad (E)$$

- (a) Pourquoi (E) est une équation différentielle ? Définissez son type.
- (b) Résolvez l'équation différentielle homogène associée à (E).
- (c) Trouvez une solution particulière de (E) en justifiant votre démarche.
- (d) Donnez l'ensemble de toutes les solutions de (E).
- (e) Soit la condition initiale y(0) = 1. Existe-t-il une solution de (E) satisfaisant cette condition? Si oui, quelle est-elle?
- (f) (BONUS) Résolvez l'équation différentielle : $y'-3y=5\cos(2x)+xe^{-3x}$ (E₂)

Exercice 5. (BONUS - 2 points)

Soit E un ensemble à p éléments et F un sous-ensemble de E contenant n éléments (avec $(p, n) \in (\mathbb{N}^*)^2$). Quel est le nombre de parties de E qui contiennent un et un seul élément de F?