



| UZUPEŁNIA ZDAJĄCY |       |                        |
|-------------------|-------|------------------------|
| KOD               | PESEL | miejsce<br>na naklejkę |

### **EGZAMIN MATURALNY Z MATEMATYKI** POZIOM PODSTAWOWY

DATA: 20 sierpnia 2019 r. GODZINA ROZPOCZECIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

| UZUPEŁNIA ZESPÓŁ<br>NADZORUJĄCY |                                                                              |  |
|---------------------------------|------------------------------------------------------------------------------|--|
| Uprawnienia zdającego do:       |                                                                              |  |
|                                 | dostosowania<br>kryteriów oceniania<br>nieprzenoszenia<br>zaznaczeń na kartę |  |
|                                 | dostosowania<br>w zw. z dyskalkulią                                          |  |

#### Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.



MMA-P1 **1**P-194

NOWA FORMULA

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba log<sub>√7</sub> 7 jest równa

Α. 2 В. 7 **C.**  $\sqrt{7}$ 

**D.**  $\frac{1}{2}$ 

Zadanie 2. (0-1)

Kwadrat liczby  $8-3\sqrt{7}$  jest równy

**A.**  $127 + 48\sqrt{7}$ 

**B.**  $127 - 48\sqrt{7}$  **C.**  $1 - 48\sqrt{7}$ 

**D.**  $1+48\sqrt{7}$ 

Zadanie 3. (0-1)

Jeżeli 75% liczby a jest równe 177 i 59% liczby b jest równe 177, to

**A.** b-a=26

**B.** b - a = 64

**C.** a-b=26

**D.** a - b = 64

Zadanie 4. (0-1)

Równanie x(5x+1) = 5x+1 ma dokładnie

**A.** jedno rozwiązanie: x = 1.

**B.** dwa rozwiązania: x = 1 i x = -1.

C. dwa rozwiązania:  $x = -\frac{1}{5}$  i x = 1.

**D.** dwa rozwiązania:  $x = \frac{1}{5}$  i x = -1.

Zadanie 5. (0-1)

Para liczb x = 3 i y = 1 jest rozwiązaniem układu równań  $\begin{cases} -x + 12y = a^2 \\ 2x + ay = 9 \end{cases}$  dla

**A.**  $a = \frac{7}{3}$ 

**B.** a = -3 **C.** a = 3 **D.**  $a = -\frac{7}{3}$ 

Zadanie 6. (0-1)

Równanie  $\frac{(x-2)(x+4)}{(x-4)^2} = 0$  ma dokładnie

**A.** jedno rozwiązanie: x = 2.

**B.** jedno rozwiązanie: x = -2.

C. dwa rozwiązania: x = 2, x = -4.

**D.** dwa rozwiązania: x = -2, x = 4.



### Zadanie 7. (0-1)

Miejscami zerowymi funkcji kwadratowej f określonej wzorem  $f(x) = 9 - (3 - x)^2$  są liczby

- **A.** 0 oraz 3
- **B.** −6 oraz 6
- **C.** 0 oraz 6
- **D.** 0 oraz 6

### **Zadanie 8.** (0–1)

Na rysunku przedstawiono fragment paraboli będącej wykresem funkcji kwadratowej g. Wierzchołkiem tej paraboli jest punkt W = (1, 1).



Zbiorem wartości funkcji g jest przedział

- A.  $(-\infty, 0)$
- **B.**  $\langle 0, 2 \rangle$
- C.  $\langle 1, +\infty \rangle$  D.  $(-\infty, 1)$

### Zadanie 9. (0–1)

Liczbą większą od 5 jest

- **B.**  $\left(\frac{1}{25}\right)^{\frac{1}{5}}$
- C.  $125^{\frac{2}{3}}$
- **D.**  $125^{\frac{1}{3}}$

### Zadanie 10. (0-1)

Punkt A = (a, 3) leży na prostej określonej równaniem  $y = \frac{3}{4}x + 6$ . Stąd wynika, że

- **A.** a = -4 **B.** a = 4
- **C.**  $a = \frac{33}{4}$  **D.**  $a = \frac{39}{4}$



### Zadanie 11. (0-1)

W ciągu arytmetycznym  $(a_n)$ , określonym dla  $n \ge 1$ , dane są dwa wyrazy:  $a_1 = -11$  i  $a_9 = 5$ . Suma dziewięciu początkowych wyrazów tego ciągu jest równa

### Zadanie 12. (0-1)

Wszystkie wyrazy ciągu geometrycznego  $(a_n)$ , określonego dla  $n \ge 1$ , są liczbami dodatnimi. Drugi wyraz tego ciągu jest równy 162, a piąty wyraz jest równy 48. Oznacza to, że iloraz tego ciągu jest równy

**A.** 
$$\frac{2}{3}$$

**B.** 
$$\frac{3}{4}$$
 **C.**  $\frac{1}{3}$ 

C. 
$$\frac{1}{3}$$

**D.** 
$$\frac{1}{2}$$

### Zadanie 13. (0-1)

Cosinus kąta ostrego  $\alpha$  jest równy  $\frac{12}{13}$ . Wtedy

**A.** 
$$\sin \alpha = \frac{13}{12}$$

**B.** 
$$\sin \alpha = \frac{1}{13}$$

$$\mathbf{C.} \quad \sin \alpha = \frac{5}{13}$$

**A.** 
$$\sin \alpha = \frac{13}{12}$$
 **B.**  $\sin \alpha = \frac{1}{13}$  **C.**  $\sin \alpha = \frac{5}{13}$  **D.**  $\sin \alpha = \frac{25}{169}$ 

### Zadanie 14. (0–1)

Dany jest trójkat równoramienny ABC, w którym |AC| = |BC|. Na podstawie AB tego trójkata leży punkt D, taki że |AD| = |CD|, |BC| = |BD| oraz  $\angle BCD = 72^{\circ}$  (zobacz rysunek). Wynika stad, że kat ACD ma miarę



### Zadanie 15. (0-1)

Okrąg, którego środkiem jest punkt S = (a,5), jest styczny do osi Oy i do prostej o równaniu y = 2. Promień tego okręgu jest równy



### Zadanie 16. (0-1)

Podstawą ostrosłupa prawidłowego czworokątnego ABCDS jest kwadrat ABCD (zobacz rysunek). Wszystkie ściany boczne tego ostrosłupa są trójkątami równobocznymi. Miara kąta SAC jest równa

- **A.** 60°
- В. 45°
- 90°
- **D.** 75°



### Zadanie 17. (0-1)

Proste o równaniach y = (4m+1)x-19 oraz y = (5m-4)x+20 są równoległe, gdy

**A.** 
$$m = 5$$

**B.** 
$$m = -\frac{1}{4}$$
 **C.**  $m = \frac{5}{4}$  **D.**  $m = -5$ 

**C.** 
$$m = \frac{5}{4}$$

**D.** 
$$m = -5$$

### Zadanie 18. (0-1)

W układzie współrzędnych punkt S = (40, 40) jest środkiem odcinka KL, którego jednym z końców jest punkt K = (0, 8). Zatem

**A.** 
$$L = (20, 24)$$

**B.** 
$$L = (-80, -72)$$

C. 
$$L = (-40, -24)$$

**D.** 
$$L = (80, 72)$$

### Zadanie 19. (0-1)

Punkt P = (-6, -8), przekształcono najpierw w symetrii względem osi Ox, a potem w symetrii względem osi Oy. W wyniku tych przekształceń otrzymano punkt Q. Zatem

**A.** 
$$Q = (6,8)$$

**B.** 
$$Q = (-6, -8)$$

C. 
$$Q = (8,6)$$

**B.** 
$$Q = (-6, -8)$$
 **C.**  $Q = (8, 6)$  **D.**  $Q = (-8, -6)$ 

### Zadanie 20. (0-1)

W układzie współrzędnych na płaszczyźnie danych jest 5 punktów: A = (1,4), B = (-5,-1), C = (-5, 3), D = (6, -4), P = (-30, -76).

Punkt P należy do tej samej ćwiartki układu współrzędnych co punkt

**A.** A

**B.** *B* 

**C.** *C* 

**D.** *D* 



### Zadanie 21. (0-1)

Dany jest prostopadłościan o wymiarach 30 cm × 40 cm × 120 cm (zobacz rysunek), a ponadto dane są cztery odcinki a, b, c, d, o długościach – odpowiednio – 119 cm, 121 cm, 129 cm i 131 cm.



Przekątna tego prostopadłościanu jest dłuższa

- **A.** tylko od odcinka *a*.
- **B.** tylko od odcinków *a* i *b*.
- C. tylko od odcinków a, b i c.
- **D.** od wszystkich czterech danych odcinków.

### Zadanie 22. (0-1)

Pole powierzchni całkowitej pewnego stożka jest 3 razy większe od pola powierzchni pewnej kuli. Promień tej kuli jest równy 2 i jest taki sam jak promień podstawy tego stożka. Tworząca tego stożka ma długość równą

- **A.** 12
- **B.** 11
- **C.** 24
- **D.** 22

### Zadanie 23. (0-1)

Średnia arytmetyczna dziesięciu liczb naturalnych 3, 10, 5, x, x, x, x, 12, 19, 7 jest równa 12. Mediana tych liczb jest równa

**A.** 14

- **B.** 12
- **C.** 16
- **D.** *x*

### Zadanie 24. (0–1)

Wszystkich liczb naturalnych czterocyfrowych parzystych, w których występują wyłącznie cyfry 1, 2, 3, jest

- **A.** 54
- B. 81
- **C.** 8
- **D.** 27

### Zadanie 25. (0-1)

W grupie 60 osób (kobiet i mężczyzn) jest 35 kobiet. Z tej grupy losujemy jedną osobę. Prawdopodobieństwo wylosowania każdej osoby jest takie samo. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy mężczyznę, jest równe

- **A.**  $\frac{1}{60}$
- **B.**  $\frac{1}{25}$  **C.**  $\frac{7}{12}$  **D.**  $\frac{5}{12}$



### Zadanie 26. (0-2)

Rozwiąż równanie  $(x^2-16)(x^3-1)=0$ .



Odpowiedź: .....

### Zadanie 27. (0-2)

Rozwiąż nierówność  $2x^2 - 5x + 3 \le 0$ .



Odpowiedź: .....

|             | Nr zadania          | 26. | 27. |
|-------------|---------------------|-----|-----|
| Wypełnia    | Maks. liczba pkt    | 2   | 2   |
| egzaminator | Uzyskana liczba pkt |     |     |

### Zadanie 28. (0-2)

Wykaż, że dla każdej liczby dodatniej x prawdziwa jest nierówność  $x + \frac{1-x}{x} \ge 1$ .



### Zadanie 29. (0–2)

Wierzchołki A i C trójkąta ABC leżą na okręgu o promieniu r, a środek S tego okręgu leży na boku AB trójkąta (zobacz rysunek). Prosta BC jest styczna do tego okręgu w punkcie C, a ponadto  $|AC| = r\sqrt{3}$ . Wykaż, że kąt ACB ma miarę  $120^{\circ}$ .





| Wypełnia<br>egzaminator | Nr zadania          | 28. | 29. |
|-------------------------|---------------------|-----|-----|
|                         | Maks. liczba pkt    | 2   | 2   |
|                         | Uzyskana liczba pkt |     |     |

#### Zadanie 30. (0-2)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wylosowana liczba ma w zapisie dziesiętnym cyfrę dziesiątek, która należy do zbioru  $\{1,3,5,7,9\}$ , i jednocześnie cyfrę jedności, która należy do zbioru  $\{0,2,4,6,8\}$ .



### Zadanie 31. (0–2)

Przekątne rombu ABCD przecinają się w punkcie  $S = \left(-\frac{21}{2}, -1\right)$ . Punkty A i C leżą na prostej o równaniu  $y = \frac{1}{3}x + \frac{5}{2}$ . Wyznacz równanie prostej BD.



|             | Nr zadania          | 30. | 31. |
|-------------|---------------------|-----|-----|
| Wypełnia    | Maks. liczba pkt    | 2   | 2   |
| egzaminator | Uzyskana liczba pkt |     |     |

### Zadanie 32. (0–4)

W ciągu arytmetycznym  $(a_1, a_2, ..., a_{39}, a_{40})$  suma wyrazów tego ciągu o numerach parzystych jest równa 1340, a suma wyrazów ciągu o numerach nieparzystych jest równa 1400. Wyznacz ostatni wyraz tego ciągu arytmetycznego.





|             | Nr zadania          | 32. |
|-------------|---------------------|-----|
| Wypełnia    | Maks. liczba pkt    | 4   |
| egzaminator | Uzyskana liczba pkt |     |

### Zadanie 33. (0–4)

Środek okręgu leży w odległości 10 cm od cięciwy tego okręgu. Długość tej cięciwy jest o 22 cm większa od promienia tego okręgu. Oblicz promień tego okręgu.





|             | Nr zadania          | 33. |
|-------------|---------------------|-----|
| Wypełnia    | Maks. liczba pkt    | 4   |
| egzaminator | Uzyskana liczba pkt |     |

### Zadanie 34. (0–5)

Długość krawędzi bocznej ostrosłupa prawidłowego czworokątnego ABCDS jest równa 12. (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt  $\alpha$  taki, że  $tg\alpha = \frac{2}{\sqrt{5}}$ . Oblicz objętość tego ostrosłupa.







|             | Nr zadania          | 34. |
|-------------|---------------------|-----|
| Wypełnia    | Maks. liczba pkt    | 5   |
| egzaminator | Uzyskana liczba pkt |     |