Лабораторная работа № 7

- 1. Тема: вычисление элементарных функций с использованием многочленных приближений Чебышева.
- 2. Постановка задачи:
 - 1. Вычислить элементарные функции, разложением в ряд:

$$\ln{(1+x)} = \sum_{n=1}^{\infty} (-1)^{n+1} x^n / n.$$
 для x = 0.5

И

$$rctgx = x - rac{x^3}{3} + rac{x^5}{5} - rac{x^7}{7} + \dots + rac{(-1)^n x^{2n+1}}{2n+1} - \dots = \sum_{n=1}^{\infty} rac{(-1)^n x^{2n+1}}{2n+1}, |x| \le 1$$
. для $x = \operatorname{pi} / 6$

3. Мат. модель:

Формулы и коэффициенты взяты из «Справочная математическая библиотека. Математический анализ. Вычисление элементарных функций. Физматгиз, 1963»

1) ln(1+x)

a)
$$\ln (1+x) \approx \sum_{k=1}^{4} a_k x^k$$
, $r = 7.5 \cdot 10^{-5}$ $(0 \le x \le 1)$.

$$\begin{vmatrix} a_1 & 0.9974442 & a_3 & 0.2256685 \\ a_2 & -0.4712839 & a_4 & -0.0587527 \end{vmatrix}$$

$$p0 = \frac{x^{k+1}}{x^k} = \frac{x^k x}{x^k} = x$$

$$u = a_k p0, k = 1 \div 4$$

$$s = s + u$$

2) arctg(x)

a)
$$\operatorname{arctg} x \approx \sum_{k=0}^{2} a_{2k+1} x^{2k+1}, \quad r = 7 \cdot 10^{-4}.$$

$$\begin{vmatrix} a_0 & 0,995354 \\ a_3 & -0,288679 \\ a_5 & 0,079331 \end{vmatrix}$$

$$p0 = \frac{x^{2(k+1)+1}}{x^{2k+1}} = \frac{x^{2k+2+1}}{x^{2k+1}} = \frac{x^{2k+1}x^2}{x^{2k+1}} = x^2$$

$$u = a_k p0, k = 0, 3, 5$$

$$s = s + u$$

4. Список идентификаторов: (в скобках указаны функции, в которых находится переменная)

Имя	Тип	Смысл
x1	const	Аргумент функции ln(1+x)
x2	const	Аргумент функции arctg(x)
e	const	Точность вычисления
f0(fx, n)	double(double, int)	Функция для вычисления начального значения ln(1+x)
f1(fx)	double(double)	Функция для вычисления множителя для вычисления
		следующего значения ln(1+x)
f02(fx, n)	double(double, int)	Функция для вычисления начального значения
		arctg(x)
f12(fx)	double(double)	Функция для вычисления множителя для вычисления
		следующего значения arctg(x)
fA, fB, n	double, double, int	Функции, содержащие массивы с коэффициентами
		для функций ln(1+x) и arctg(x) соответственно, где n –
		номер элемента массива
X	double	Значение аргумента функции
fm	double(double, int)	Функция для вычисления начального значения
		переданной функции
fk	double(double)	Функция для вычисления следующего значения
		переданной функции
fZ	double(int)	Функция для выбора массива коэффициентов,
		передается в функцию
m	int	Переменная для вычисления начального значения k
p0	double	Текущее значение функции
u	double	Текущее значение функции с коэффициентом
S	double	Значение функции
k	int	Текущий порядок многочлена

5. Код программы:

#include <iostream>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#define x1 0.5

#define x2 3.14/6

#define e 0.0000001

using namespace std;

```
double f0(double fx, int n){
 return pow(fx, n);
}
double f1(double fx){
 return fx;
}
double f02(double fx, int n){
 return pow(fx, 2*n + 1);
double f12(double fx){
 return fx*fx;
}
double fA(int n){
  double A[] = \{0.997442, -0.4712839, 0.2256685, -0.0587527\};
  return A[n-1];
}
double fB(int n){
  double B[] = \{0.995354, -0.288679, 0.079331\};
  return B[n];
}
double elFunc(double x, double (*fm)(double, int), double (*fk)(double),
double (*fZ)(int), int m){
 double p0 = fm(x, m), u = 1, s = 0;
 int k = m;
 while (fabs(u) > e)
  u = fZ(k)*p0;
  s += u;
  p0 *= fk(x);
  k++;
 return s;
int main(){
  cout << "ln(1 + x) = " << elFunc(x1, f0, f1, fA, 1) << ", x = 0.5" << endl;
```