



## **Data Collection and Preprocessing Phase**

| Date          | 15 July 2024                                                   |
|---------------|----------------------------------------------------------------|
| Team ID       | 739885                                                         |
| Project Title | Golden Harvest: A Predictive Model for Apple Quality Assurance |
| Maximum Marks | 6 Marks                                                        |

## **Data Exploration and Preprocessing Template**

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

| Section               | Description            |       |                   |             |             |                   |             |             |                   |             |          |
|-----------------------|------------------------|-------|-------------------|-------------|-------------|-------------------|-------------|-------------|-------------------|-------------|----------|
|                       | Descriptive Statistics |       |                   |             |             |                   |             |             |                   |             |          |
|                       | • data.describe()      |       |                   |             |             |                   |             |             |                   |             |          |
|                       | <del>_</del>           |       | A_id              | Size        | Weight      | Sweetness         | Crunchiness | Juiciness   | Ripeness          | Acidity     |          |
|                       |                        | count | 4000.000000       | 4000.000000 | 4000.000000 | 4000.000000       | 4000.000000 | 4000.000000 | 4000.000000       | 4000.000000 |          |
|                       |                        | mean  | 1999.500000       | -0.502695   | -0.991229   | -0.472248         | 0.984194    | 0.513127    | 0.498102          | 0.076639    |          |
|                       |                        | std   | 1154.844867       | 1.917446    | 1.574517    | 1.931684          | 1.369437    | 1.917024    | 1.866614          | 2.101441    |          |
| Data Overview         |                        | min   | 0.000000          | -5.750201   | -5.075890   | <b>-</b> 5.548946 | -2.684440   | -4.757179   | <b>-</b> 4.578510 | -5.709299   |          |
| Data Overview         |                        | 25%   | 999.750000        | -1.816765   | -2.011770   | -1.738425         | 0.062764    | -0.801286   | -0.771677         | -1.377424   |          |
|                       |                        | 50%   | 1999.500000       | -0.513703   | -0.984736   | -0.504758         | 0.998249    | 0.534219    | 0.503445          | 0.022609    |          |
|                       |                        | 75%   | 2999.250000       | 0.805526    | 0.030976    | 0.801922          | 1.894234    | 1.835976    | 1.766212          | 1.510493    |          |
|                       |                        | max   | 3999.000000       | 4.738963    | 3.095097    | 4.612442          | 4.641439    | 5.791870    | 5.573044          | 5.842368    |          |
|                       | {x}                    |       | <pre>data.s</pre> |             |             |                   |             |             |                   |             |          |
|                       | © <u>.</u>             | L     | 4001,             | 3)          |             |                   |             |             |                   |             | $\equiv$ |
| Univariate Analysis   | -                      |       |                   |             |             |                   |             |             |                   |             |          |
| Bivariate Analysis    | -                      |       |                   |             |             |                   |             |             |                   |             |          |
| Multivariate Analysis |                        |       |                   |             |             |                   |             |             |                   |             |          |





















































|                     | [ ] data.isnull().sum()                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                     | A_id 1 Size 1 Weight 1 Sweetness 1 Crunchiness 1 Juiciness 1 Ripeness 1 Acidity 0 Quality 1 dtype: int64  [ ] data.dropna(inplace=True) |
| Data Transformation | -                                                                                                                                       |
| Feature Engineering | Code for creating new features or modifying existing ones.                                                                              |
| Save Processed Data | <pre>[ ] import pickle  pickle.dump(model1,open("model.pkl","wb"))</pre>                                                                |