$\int_{\mathcal{X}} \int_{\mathbb{R}} \mathcal{L}(Y, f(X)) P(X, Y) dX dY$ $\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \mathbb{E}_{Y|X}[f(X,Y)|X]$ **Empirical Risk** $\mathbb{E}_{Y|X}[f(X,Y)|X] = \int_{\mathbb{T}^n} f(X,y) p_{Y|X}(y) dy$ $Z^{train} = (X_1, Y_1), ..., (X_n, Y_n)$ Variance & Covariance $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ $Z^{test} = (X_{n+1}, Y_{n+1}), ..., (X_{n+m}, Y_{n+m})$ Var[X + Y] = Var[X] + Var[Y] XYiidEmpirical Risk Minimizer \hat{f} s.t. $Var[\alpha X] = \alpha^2 Var[X]$ $f \in \operatorname{arg\,min}_{f \in \mathcal{C}} \hat{R}(\hat{f}, Z^{train})$ $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$ Training error: **Conditional Probabilities** $\hat{R}(\hat{f}, Z^{train}) = \frac{1}{n} \sum_{i=1}^{n} Q(Y_i, \hat{f}(X_i))$ $P[X|Y] = \frac{P[X,Y]}{P[Y]}, P[\overline{X}|Y] = 1 - P[X|Y]$ Test error: $\hat{R}(\hat{f}, Z^{test}) = \frac{1}{m} \sum_{i=n+1}^{n+m} Q(Y_i, \hat{f}(X_i))$ Distributions $\mathcal{N}(x|\mu,\sigma^2) = 1/(\sqrt{2\pi\sigma^2}) \exp^{-(x-\mu)^2/(2\sigma^2)} \hat{R}(\hat{f},Z^{test}) \neq \mathbb{E}_X[R(f,X)]$ $\mathcal{N}(x|\mu,\Sigma) = \frac{1}{(2\pi)^{2D/|\Sigma|^{1/2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$ **Linear Regression Data**: $Z = (x_i, y_i) \in \mathbb{R}^3 \times \mathbb{R} : 1 \le i \le n$ $\operatorname{Exp}(x|\lambda) = \lambda e^{-\lambda x} \operatorname{Ber}(x|\theta) = \theta^{x} (1-\theta)^{(1-x)}$ X are iids and Y depends on X. Sigmoid: $\sigma(x) = 1/(1 + \exp(-x))$ **Model:** $\mathbf{Y} = \beta_0 + \sum_{i=1}^d \mathbf{X_i} \beta_i \quad \mathbf{Y} \subset \mathbb{R}$ Chebyshev & Consistency Introduce $X_0 = 1$ and rewrite $P(|X - \mathbb{E}[X]| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$ $\mathbf{Y} = \mathbf{X}^T \boldsymbol{\beta} \quad \mathbf{X} \in \mathbb{R}^{(d+1) \times n}, \boldsymbol{\beta} \in \mathbb{R}^{d+1}$ $\lim n \to \infty P(|\hat{\mu} - \mu| > \epsilon) = 0$ additive Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$ Cramer Rao lower bound $\hat{\mathbf{v}} = \mathbf{X}\hat{\beta} + \boldsymbol{\epsilon}$ $Var[\hat{\theta}] \ge \mathcal{I}_n(\theta)$ $\hat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$ and $\mathcal{I}_n(\theta) = -\mathbb{E}\left[\frac{\vartheta^2 \log[\mathcal{X}_n|\theta]}{\vartheta \theta^2}\right] \quad \hat{\theta} \text{ unbiased}$ $p(Y|X,\beta,\sigma) \sim \mathcal{N}(Y|X^T\beta,\sigma^2)$ Efficiency of $\hat{\theta}$: $e(\theta_n) = \frac{1}{\text{Var}[\hat{\theta}_n]\mathcal{I}_{\backslash}(\theta)}$ A Regression has Optimum: $f^*(x) = \mathbb{E}_Y[Y|X=x]$ $e(\theta_n) = 1$ (efficient) **Linear Regression** $\lim_{n\to\infty} e(\theta_n) = 1$ (asymp. efficient) Setting: Minimize RSS. **Matrix Derivations** $\mathcal{L} = RSS(\beta) = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 =$ $\frac{\vartheta \mathbf{a}^T \mathbf{x}}{\vartheta \mathbf{x}} = \mathbf{a} \quad \frac{\vartheta \mathbf{a}^T \mathbf{X} \mathbf{b}}{\vartheta \mathbf{X}} = \mathbf{a} \mathbf{b}^T \quad \frac{\vartheta \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\vartheta \mathbf{X}} = \mathbf{b} \mathbf{a}^T$ $= (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$ $\frac{\vartheta \mathbf{a}^T \mathbf{X} \mathbf{a}}{\vartheta \mathbf{X}} = \mathbf{a}^T (\mathbf{X} + \mathbf{X}^T)$ $X \in \mathbb{R}^{n \times (d+1)}$, $y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^{d+1}$ $\frac{\vartheta}{\vartheta_{\mathbf{X}}} \mathbf{f}(\mathbf{x})^T \mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x})^T \frac{\vartheta \mathbf{g}(\mathbf{x})}{\vartheta_{\mathbf{X}}} + \mathbf{g}(\mathbf{x})^T \frac{\vartheta \mathbf{f}(\mathbf{x})}{\vartheta_{\mathbf{X}}}$ **Solution:** differentiate w.r.t β $\mathbf{X}^T \mathbf{X}$: only invertible if none of the $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ Eigenvalue is 0. Inversion instable if Is an orth. projection with lowest varatio from X's smallest EV to the larriance of all unbiased estimates. gest is big. Prediction: $\hat{y} = X \hat{\beta} = X(X^T X)^{-1} X^T y$ **Optimization** Ridge Regression (L2 penalty) **Gradient Descent Setting**: Penalize the β s $\theta^{\text{new}} \leftarrow \theta^{\text{old}} - n \nabla_{\theta} \mathcal{L}$ $\mathcal{L} = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \sum_{i=1}^{d} \beta_i^2 =$ Convergence isn't guaranteed. $= (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta$ Less zigzag by adding momentum: $\theta^{(l+1)} \leftarrow \theta^{(l)} - \eta \nabla_{\theta} \mathcal{L} + \mu(\theta^l - \theta^{(l-1)})$ **Solution:** differentiate w.r.t β $\hat{\beta}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{v}$ Newton's Method Use 2nd order derivation. (Hessian) Lasso (L1 penalty) $\theta^{\text{new}} \leftarrow \theta^{\text{old}} - \eta(\nabla_{\theta} \mathcal{L}/\nabla_{\theta}^2 \mathcal{L})$ **Setting:** seek for a sparse solution $H = \nabla_{\theta}^2 \mathcal{L}$ has to be p.d (convex func). $\mathcal{L} = \sum_{i=1}^n (y_i - x_i^T \beta)^2 + \lambda \sum_{i=1}^d |\beta_i|$

Risks and Losses

Conditional Expected Risk

Total Expected Risk R(f) =

 $R(f,X) = \int_{\mathbb{R}} \mathcal{L}(Y,f(X))P(Y|X)dY$

 $= \mathbb{E}_X[R(f,X)] = \int_{\mathcal{X}} R(f,X)P(X)dX =$

Expected Risk

Advanced Machine Learning HS18

 $\mathbb{E}[X] = \int_{\Omega} x f(x) dx = \int_{\Omega} x P[X=x] dx$

Ignacio Castañeda

 $\mathbb{E}_{Y|X}[Y] = \mathbb{E}_{Y}[Y|X]$

Probabilities

Expectation

 $p(\beta|\mathbf{X},\mathbf{y},\Lambda,\sigma) = \mathcal{N}(\mu_{\beta},\Sigma_{\beta})$ $\mu_{\beta} = \sigma^2 (\mathbf{X}^T \mathbf{X} + \sigma^2 \Lambda)^{-1} (X)^T \mathbf{y}$ $\Sigma_{\beta} = \sigma^2 (\mathbf{X}^T \mathbf{X} + \sigma^2 \Lambda)^{-1}$ **Nonlinear Regression Idea:** Feature space transformation Model: $\mathbf{Y} = f(\mathbf{X}) = \sum_{m=1}^{M} \beta_m h_m(\mathbf{X})$ Transformation $h_m(\mathbf{X}): \mathbb{R}^d \to \mathbb{R}$ **Cubic Spline** e.g. for d=1 with knots at ξ_1 and ξ_2 $h_1(X)=1$ $h_3(X)=X^2$ $h_5(X)=(X-\xi_1)^3_+$ $h_2(X) = X$ $h_4(X) = X^3$ $h_6(X) = (X - \xi_2)^3 + \chi^n = \{x_1, \dots, x_n\}$ Wavelets Functions that measure local properties of the underlying data. Keep the most important ones and get rid of the noise. **Gaussian Process Regression** joint Gaussian over all outputs $\mathbf{y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}|\mathbf{0}, \sigma \mathbb{I}_n)$ We can rewrite the distribution $P(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix}) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \begin{bmatrix} \mathbf{C_n} \\ \mathbf{k}^T \end{bmatrix})$ Such that for prediction: $p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) = \mathcal{N}(y_*|\mu_*,\sigma_*^2)$ $\mu_{v_*} = \mathbf{k}^T \mathbf{C}_n^{-1} \mathbf{y} \quad \mathbf{C}_n = \mathbf{K} + \sigma^2 \mathbf{I}$ $\sigma_{\star}^2 = c - \mathbf{k}^T \mathbf{C}_n^{-1} \mathbf{k}$ $c = k(x_{\star}, x_{\star}) + \sigma^2$ $\mathbf{k} = k(x_{*}, \mathbf{X})$ k is the kernel function. lengthscale in kernel: how far can we reliably extrapolate **Bias-Variance tradeoff** $\operatorname{Bias}(\hat{f}) = \mathbb{E}[\hat{f}] - f^*$ $\operatorname{Var}(\hat{f}) = \mathbb{E}[(\hat{f} - \mathbb{E}[\hat{f}])^2]$ $|\mathcal{Z}| \downarrow |\mathcal{F}| \uparrow \Rightarrow Var \uparrow$ Bias ↓ $|\mathcal{Z}| \uparrow |\mathcal{F}| \downarrow \Rightarrow Var \downarrow$ Bias 1 **Squared Error Decomposition** $\mathbb{E}_D \mathbb{E}_{X,Y} [(\hat{f}(X) - Y)^2] =$ $\mathbb{E}_{X,Y}[(\mathbb{E}_Y[Y|X]-Y)^2]$ (noise)

 $= (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda ||\beta||_1$

Lasso has no closed form.

e.g. Linear Regression:

rem to find the posterior

e.g. Ridge:

Posterior

Bayesian Linear Regression

Procedure: solve $\nabla_{\theta} log P(\mathcal{X}|\theta) = 0$ **Bootstrap** Efficient & easy to calculate. $\overline{S} = 2\hat{S} - \frac{1}{R} \sum_{b} \hat{S}^*(b)$ Consistent. Converge to best model Classification θ_0 Warning: Overfitting! **Maximum A Posteriori** Assume Knowledge of a prior $P(\theta)$ Find: $\hat{\theta} \in \arg\max_{\theta} P(\theta|\mathcal{X}) =$ $= \arg \max_{\theta} P(\mathcal{X}|\theta) P(\theta)$ Solve $\nabla_{\theta} log P(\mathcal{X}|\theta) P(\theta) = 0$ **Bayesian Learning Expected Error:** Prior Knowledge of $p(\theta)$ Find Posterior Density: $p(\theta|\mathcal{X})$ (add term from \mathcal{D}) Can be done using Baye's Rules **Loss Functions** We can use this Recursively: $p(\theta|\mathcal{X}^n) = \frac{p(x_n|\theta)p(\theta|\mathcal{X}^{n-1})}{\int p(x_n|\theta)p(\theta|\mathcal{X}^{n-1}d\theta)} \text{ with}$ Exponential Loss: $p(\theta|\mathcal{X}^0)p(\theta)$ Difficult & needs prior knowledge. Logistic Loss: But better against overfitting. **Numerical Est. Techinques** Hinge Loss: **Setting**: Estimate $\hat{f}(x) \in \mathcal{F}$ with minimal prediction error. **K-Fold Cross Validation** Initialisation (split training set): $\mathcal{Z} = \mathcal{Z}_1 \cup \mathcal{Z}_2 \cup \cdots \cup \mathcal{Z}_K, \mathcal{Z}_u \cap \mathcal{Z}_v = \emptyset$ with map $\kappa: \{1, \dots, n\} \to \{\dots, K\}$ $|\mathcal{Z}_k| \approx n \frac{K-1}{\nu}$ **Discriminant Functions** Learning: $\hat{f}^{-\nu}(x) = \operatorname{arg\,min}_{f \in \mathcal{F}} \frac{\sum_{i \notin \mathcal{Z}_{\nu}} (y_i - f(x_i))^2}{|\mathcal{Z} - \mathcal{Z}_{\nu}|}$ Validation: $\hat{R}^{cv} = \frac{1}{n} \sum_{i \le n} (y_i - \hat{f}^{-\kappa(i)}(x_i))^2$ $g_k(x) = P[y|x] \propto P[x|y]P[y] \Rightarrow$ tendance to Underfit $g_k(x)=lnP[x|y]+lnP[y]=lnP[x|y]+\pi_v$ **Leave-one-out:** K = n (unbiased but implements an opt. Baye classifier. Var can be large \leftarrow corr. datasets) **Decision Surface of Discriminant Bootstrapping** Solve: $g_{k_1}(x) - g_{k_2}(x) = 0$ Special case Bootstrap samples: $\mathcal{Z}^* = \{\mathcal{Z}_1^*, \dots \mathcal{Z}_n^*\}$ with Gaussian classes: each data point in \mathbb{Z}_{i}^{*} was randomly if $\Sigma_v = \Sigma \Rightarrow$ linear decision surface drawn from \mathcal{Z} with replacement. $g_k(x) = w^T(x - x_0)$ $w = \Sigma^{-1}(\mu_1 - \mu_2)$ e_0 Estimator: the error rate for the $x_0 = \frac{1}{2} (\mu_1 + \mu_2) - \frac{\sigma^2(\mu_1 - \mu_2)}{(\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2)} \log \frac{\pi_1}{\pi_2}$ test data (data that wasn't selected by

Setting: Define a prior over the β s. Jackknife **Parametric Density Estimation** Estimate of an Estimator \hat{S}_n 's Bias. Find the most likely parameter of a Assume β s distributed with mean 0 $\hat{S}^{JK} = \hat{S}_n - \text{bias}^{JK}$ is JK Estimator. distribution. $p(\beta|\Lambda) = \mathcal{N}(\beta|\mathbf{0},\Lambda^{-1}) \propto \exp(-\frac{1}{2}\beta^T\Lambda\beta)$ bias^{JK}= $(n-1)(\tilde{S}_n - \hat{S}_m)$ **Maximum Likelihood** Likelihood: $P(\mathcal{X}|\theta) = \prod_{i \le n} p(x_i|\theta)$ $\tilde{S}_n = \frac{1}{n} \sum_{i=1}^n \hat{S}_{n-1}^{(-i)}$ avg. LOO Estimator. equivalent to ridge with $\Lambda = \lambda \mathbb{I}$, $\sigma = 1$ Find: $\hat{\theta} \in \operatorname{arg\,max}_{\theta} P(\mathcal{X}|\theta)$ Debiased est. can have big variance! given observed X, y, use Baye's theogroup points in classes $1, \dots, k, \mathcal{D}, \mathcal{O}$ \mathcal{D} : doubt class, \mathcal{O} : outliers. Data: $\mathcal{Z} = \{z_i = (x_i, y_i) : 1 \le i \le n\}$ Assume we know $p_v(x) = P[X = x | Y = v]$ Found: classifier $\hat{c}: \mathcal{X} \rightarrow \mathcal{Y} := \{1, \dots, \mathcal{D}\}\$ Error: $\hat{R}(\hat{c}|\mathcal{Z}) = \sum_{(x_i, y_i) \in \mathcal{Z}} \mathbb{I}_{\{\hat{c}(x_i) \neq y_i\}}$ $\mathcal{R}(\hat{c}) = \sum_{y \le k} P[y] \mathbb{E}_{x|y} [\mathbb{I}_{\{\hat{c}(x_i) \ne y_i\}} | Y = y]$ 0-1 Loss: $L^{0-1}(y, z) = \begin{cases} 0 & \text{if } (z = y) \\ 1 & \text{if } (z \neq y) \end{cases}$ $L^{exp}(y,z) = \exp(-(2y-1)(2z-1))$ $L^{log}(y,z) = \ln(1 + \exp((2y-1)(2z-1)))$ Favors sparsity. Used in SVM $L^{hinge}(y,z) = \max\{0, 1-(2y-1)(2z-1)\}$ **Bayes Optimal Classifier** Minimizes total risk for 0-1 Loss $\int y \quad \text{if } p(y|x) = \max_{z \le k} p(z|x) > 1 - \epsilon$ $\hat{c}(x) = \begin{cases} y & \text{if } p(y|x), \\ \mathcal{D} & \text{if } p(y|x), \\ 1 & \text{otherwise} \end{cases}$ Generalize to other loss functions Functions $g_k(x)$ $1 \le k \le K$ Decide: $g_v(x) > g_z(x) \forall z \neq y \Rightarrow$ chose y Const factor doesn't change decision.

 $+\mathbb{E}_X\mathbb{E}_D[(\hat{f}_D(X) - \mathbb{E}_D[\hat{f}(X)])^2]$ (var.)

crossproducts)

 $+\mathbb{E}_X[(\mathbb{E}_D[\hat{f}_D(X)] - \mathbb{E}_Y[Y|X])^2]$ (bias²)

(can be derivated by vanishing of the

the bootstrap) is assumed to be the

error estimate (e.g. for classification):

Debiased

 $\hat{\mathcal{R}}(S(\mathcal{Z})) = \frac{1}{B} \sum_{b=1}^{B} \sum_{z_i \notin \mathcal{Z}^{*b}} \frac{\mathbb{I}_{c(x_i) \neq y_i}}{|y_i - \mathcal{Z}^{*b}|}$

Advanced Machine Learning HS18 Ignacio Castañeda
Linear Classifier
optimal for Gaussian with equal cov.
Stat. simplicity & comput. efficiency.
$g(x) = a^{T} \tilde{x}$ $a = (w_0, w)^{T}, \tilde{x} = (1, x)^{T}$
$a^T \tilde{x}_i > 0 \Rightarrow y_i = 1$ $a^T \tilde{x}_i < 0 \Rightarrow y_i = 2$
Normalization: $\tilde{x}_i \rightarrow -\tilde{x}_i$ if $y_i = 2$
Find $a: a^T \tilde{x} > 0$ (linearly separable)
Learning w. Gradient Descent:
$a(k+1) = a(k) - \eta(k)\nabla J(a(k))$
$J(.)$: cost function $\eta(.)$: learning rate
Newton's rule (opt. grad descent):
$a(k+1) = a(k) - H^{-1}\nabla J H = \frac{\vartheta^2 J}{\vartheta a_i \vartheta a_j}$
Perceptron Criterion
$J_P(a) = \sum_{\tilde{x} \in \tilde{\mathcal{X}}} (-a^T \tilde{x})$
\mathcal{X} set of misclassified samples.
$\Rightarrow a(k+1) = a(k) + \eta(k) \sum \sum_{\tilde{x} \in \tilde{\mathcal{X}}} \tilde{x} \text{ Con-}$
verges if data separable.
WINNOW Algorithm
Performs better when many di-
mensions are irrelevant. Search for 2 weight vectors a^+, a^- (for each

class). If a point is misclassified: $a_i^+ \leftarrow \alpha^{+\tilde{x}_i} a_i^+, a_i^- \leftarrow \alpha^{-\tilde{x}_i} a_i^- \text{ (class 1 err.)}$ $a_i^+ \leftarrow \alpha^{-\tilde{x}_i} a_i^+, a_i^- \leftarrow \alpha^{+\tilde{x}_i} a_i^- \text{ (class 2 err.)}$ Exponential update. Fisher's Linear Discriminant Analysis

Maximize distance of the means of the projected classes to find projection plane separating them best. proj mean: $\tilde{\mu}_{\alpha} = \frac{1}{n_{\pi}} \sum_{x \in \mathcal{X}_{\alpha}} w^T x = w^T \mu_{\alpha}$

Dist of proj means: $|w^T(\mu_1 - \mu_2)|$ Classes proj. cov: $\tilde{\Sigma}_1 + \tilde{\Sigma}_2 = w^T (\Sigma_1 + \Sigma_2) w$ Fishers Criterion:

 $J(w) = \frac{\|\mu_1 - \mu_2\|^2}{\tilde{\Sigma}_1 + \tilde{\Sigma}_2} = \frac{w^T (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w}{w^T (\Sigma_1 + \Sigma_2) w}$ Fishers Crit for Multiple Classes:

 $J(W) = \frac{|W^T S_B W|}{W^T S_W W}$ $S_B = \sum_{i=1}^k n_k (\mu_k - \mu) (\mu_k - \mu)^T$

 $S_W = \sum_{i=1}^k \sum_{x \in \mathcal{D}_i} (x - \mu_i)(x - \mu_i)^T$ **Linear Discriminant for Multiclasses**

Reformulate as (k-1) "class α - not class α "dichotomie. But some area are ambiguous

Support Vector Machine (SVM) Generalize Perceptron with margin

and kernel. Find plane that maximizes margin *m* s.t. $z_i g(\mathbf{y}) = z_i (\mathbf{w}^T \mathbf{y} + w_0) \ge m \quad \forall \mathbf{y}_i \in \mathcal{Y}$

Vectors \mathbf{y}_i are the support vectors Functional Margin Problem: minimizes $\|\mathbf{w}\|$ for m=1: $L(\mathbf{w}, w_0, \alpha) =$ $= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i [z_i(\mathbf{w}^T \mathbf{y}_i + w_0) - 1]$ where α s are Lagrange multipliers. $\frac{\partial L}{\partial w} = 0$ and $\frac{\partial L}{\partial w_0} = 0$ give us constraints $\mathbf{w} = \sum_{i=1}^{n} \alpha_i z_i \mathbf{y_i} \quad 0 = \sum_{i=1}^{n} \alpha_i z_i$ Replacing these in $L(\mathbf{w}, w_0, \alpha)$ we get $\tilde{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y_i}^T \mathbf{y_j}$ with $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i z_i = 0$ This is the dual representation. The

 $z_i \in \{-1, +1\}$ $\mathbf{y_i} = \phi(\mathbf{x_i})$

optimal hyperplane is given by $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* z_i \mathbf{y_i}$ $w_0^* = -\frac{1}{2}(\min_{z_i=1} \mathbf{w}^* \mathbf{y_i} + \max_{z_i=-1} \mathbf{w}^* \mathbf{y_i})$ Ensemble Methods where α maximize the dual problem. Only Support Vectors $(\alpha_i \neq 0)$ contribute to the evaluation. Optimal Margin: $\mathbf{w}^T \mathbf{w} = \sum_{i \in SV} \alpha_i^*$ Discrim.: $g^*(\mathbf{x}) = \sum_{i \in SV} z_i \alpha_i \mathbf{y_i}^T \mathbf{y_i} + w_0^*$

Soft Margin SVM Introduce slack to relax constraints

class = $sign(\mathbf{y}^T\mathbf{w}^* + \mathbf{w}_0^*)$

 $z_i(\mathbf{w}^T\mathbf{y}_i + w_0) \ge m(1 - \xi)$ $L(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i -\sum_{i=1}^{n} \alpha_i [z_i(\mathbf{w}^T \mathbf{y}_i^2 + w_0) - 1 + \xi_i]$ $-\sum_{i=1}^{n}\beta_i\xi_i$ C controls margin maximization vs. constraint violation Dual Problem same than usual SVM but with supplementary constraint: $\alpha_i \leq C$ Non-Linear SVM

 $g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i z_i K(\mathbf{x_i}, \mathbf{x})$ E.g solve the XOR Problem with: $K(x,y) = (1 + x_1y_1 + x_2y_2)^2$

Multiclass SVM \forall class $z \in \{1, 2, \dots, M\}$ we introduce

 \mathbf{w}_{τ} and define the margin m s.t.: $(\mathbf{w}_{z_{i}}^{T}\mathbf{y}_{i}+w_{z_{i},0})-max_{z\neq Z_{i}}(\mathbf{w}_{z}^{T}\mathbf{y}_{i}+w_{z,0})\geq$ $0 \quad \forall \mathbf{y}_i \in \mathcal{Y}$

Structured SVM

Each sample y is assigned to a structured output label z Output Space Representation: joint feature map: $\psi(z, y)$ scoring function: $f_{\mathbf{w}}(z, \mathbf{y}) = \mathbf{w}^T \psi(\mathbf{z}, \mathbf{y})$

Classify: $\hat{z} = h(\mathbf{y}) \arg \max_{z \in \mathcal{K}} f_{\mathbf{w}(z,\mathbf{y})}$

Kernels Similarity based reasoning

If $K_1 \& K_2$ are kernels K is too: $K(\mathbf{x}, \mathbf{x}') = K_1(\mathbf{x}, \mathbf{x}')K_2(\mathbf{x}, \mathbf{x}')$ $K(\mathbf{x}, \mathbf{x}') = \alpha K_1(\mathbf{x}, \mathbf{x}') + \beta K_2(\mathbf{x}, \mathbf{x}')$ $K(\mathbf{x}, \mathbf{x}') = K_1(h(\mathbf{x}), h(\mathbf{x}')) \quad h : \mathcal{X} \to \mathcal{X}$ $K(\mathbf{x}, \mathbf{x}') = h(K_1(\mathbf{x}, \mathbf{x}'))$ h: poly/exp Kernel Function Examples: $K(\mathbf{x},\mathbf{x}')=\mathbf{x}^T\mathbf{x}'$ $K(\mathbf{x},\mathbf{x}')=(\mathbf{x}^T\mathbf{x}'+1)^p$ RBF(Gauss): $K(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|_2^2/h^2)$ Sigmoid: $K(\mathbf{x}, \mathbf{x}') = \tanh(\alpha \mathbf{x}^T \mathbf{x}' + c)$ not p.s-d eg: x=[1,-1], x'=[-1,2]**Combining Regressors**

Gram Matrix $K = (K(\mathbf{x}_i, \mathbf{x}_i))$ $1 \le i, j \le n$

 $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$ $K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x})$

 $K(\mathbf{x}, \mathbf{x}')$ pos.semi-def. (all EV ≥ 0)

ple average: $\hat{f}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}_i(x)$ $\operatorname{Bias}[\hat{f}(x)] = \frac{1}{B} \sum_{i=1}^{B} \operatorname{Bias}[f_i(x)]$ $Var[\hat{f}(x)] \approx \frac{\sigma}{R}$ if the estimators are uncorrelated. **Combining Classifiers**

set of estimators: $\hat{f}_1(x), \dots, \hat{f}_B(x)$ sim-

Input: classifiers $c_1(x), \dots, c_R(x)$

Infer $\hat{c}_B(x) = sgn(\sum_{b=1}^B \alpha_b c_b(x))$ with weights $\{\alpha_h\}_{h=1}^B$ Requires diversity of the classifiers.

Train on bootstrapped subsets.

Bagging

 $\alpha_b = \log \frac{1 - \epsilon_b}{\epsilon_b}$

Sample: $Z = \{(x_1, y_1), \dots (x_n, y_n)\}$ \mathcal{Z}^* : chose i.i.d from \mathcal{Z} w. replacement Random Forest (Bagging strategy)

Collection of uncorr. decision trees. use kernel in discriminant funct: Partition data space recursively. Grow the tree sufficiently deep to reduce bias. Prediction with voting.

Boosting Combine uncorr. weak learners in sequence. (Weak to avoid overfitting). Coeff. of \hat{c}_{h+1} depend on \hat{c}_h 's results AdaBoost (minimizes exp. loss)

Init: $\mathcal{X} = \{(x_1, y_1), \dots, (x_n, y_n)\}, w_i^{(1)} = \frac{1}{n}$ Fit $\hat{c}_h(x)$ to \mathcal{X} weighted by $w^{(b)}$

 $\epsilon_b = \sum_{i=1}^n w_i^{(b)} \mathbb{I}_{\{c_b(x_i) \neq y_i\}} / \sum_{i=1}^n w_i^{(b)}$

 $w_i^{(b+1)} = w_i^{(b)} \exp(\alpha_i \mathbb{I}_{\left\{c_b(\hat{x_i}) \neq y_i\right\}})$

return $\hat{c}_B(x) = \operatorname{sgn}(\sum_{h=1}^B \alpha_h c_h(x))$

best approx. at log-odds ratio.

Neural Networks Multi Layer Perceptron $\{x_i\}_{i=1}^{J}$ input, $\{y_i\}_{i=1}^{I}$ output

 $w_m k^l$ weights from z_k^{l-1} to z_m^l

 $z_k^l = h(a_k^l) = h(\sum_{m=1}^{K(l-1)} w_{km}^l z_m^{l-1})$

 $y_i = \sigma(a_i^{L+1}) = h(\sum_{m=1}^{K(l-1)} w_{im}^{L+1} z_m^L)$

 $\{z_k^l\}_{k=1}^{K(l)}$ hidden nodes in layer $l \ 1 \le l \le L$

 $w_i k^{L+1}$ weights from z_k^L to output y_i

 $\mathcal{L}(\hat{y}(\mathbf{W}, \mathbf{X}), y) = \sum_{n=1}^{N} \mathcal{L}_n(\hat{y}(\mathbf{W}, \mathbf{X}_n), Y_n)$

Layers \Rightarrow generaliz. & simplicity.

Backpropagation

Model data generating mechanism.

Effic. evaluation of loss derivative: $\frac{\frac{\vartheta \mathcal{L}_n}{\vartheta w_{i+1}^{l+1}}}{\vartheta w_{i+1}^{l+1}} = \delta_i^{l+1} z_k^L \quad \frac{\vartheta \mathcal{L}_n}{\vartheta w_{i+k}^l} = \delta_m^l z_k^{l-1}$

L = 0 or $h(a) = a \Rightarrow$ multiple lin. reg.

1-NN Error Rate the 1-NN error rate $\delta_{i}^{L+1} \!=\! (\hat{y_{i}} \!-\! y_{i}) \sigma' (\textstyle \sum_{m=1}^{K(L)} w_{im}^{L+1} z_{m}^{L})$ *P* is always $P^* \le P \le 2P^*$ where P^* is $\delta_m^l = (\sum_{r=1}^{K(l+1)} \delta_r^{l+1} w_{rm}^{l+1})$ the error rate of the Bayes rule. \Rightarrow as k goes to infinity kNN becomes opti $h'(\sum_{r=1}^{K(l-1)} w_{mr}^{l} z_r^{l-1})$ mal KNN not optimal if class densities $w_{ii}^l \leftarrow w_{ii}^l + \eta \delta_i^l z_i^{(l-1)}$ are very different. Regularizazion **Mixture Models** Avoid overfitting on complex nets. **Gaussian Mixture** Early Stopping separate data into **EM-Algorithm** train/error/validation sets. Latent Variable: unknown data → **Drop Out** Combine thinned nets with removed nodes. **Bayesian** priors on w's Autoencoder Data compression purposes, Output should reproduce input. \Rightarrow PCA **Convolutional Neural Network** Modelling invariance. Convolutional Layers (filters on a region) & Pooling Layers (aggregate nodes together). **Boltzmann Machine** Symmetric coupling. Visible and Hidden units. Update through vo-

ting of neighboors. Find the weights

which generate a defined activity of

 $p_i = \frac{n_i}{N\Delta_i}$ $n \le N$ in bin *i* of size Δ_i

 $K \simeq NP \quad P \simeq p(x)V \Rightarrow p(x) = \frac{K}{NV}$

probability of falling in it.

Kernel Density Estimator

Fix *V* and determine K.

Not scaling to multiple dimensions.

K #samples in region of volume V, P

visible nodes.

Histograms

Unsupervised Learning

What cluster generated each sample? EM does ML for unknown parame-Latent var. $M_{xc} = \begin{cases} 1 & \text{c generated x} \\ 0 & \text{else} \end{cases}$ $P(\mathcal{X}, M|\theta) = \prod_{\mathbf{x} \in \mathcal{X}} \prod_{c=1}^{k} (\pi_c P(\mathbf{x}|\theta_c))^{M_{\mathbf{x}c}}$ E-Step $\gamma_{\mathbf{x}c} = \mathbb{E}[M_{\mathbf{x}c}|\mathcal{X}, \theta^{(j)}] = \frac{P(\mathbf{x}|c, \theta^{(j)})P(c|\theta^{(j)})}{P(\mathbf{x}|\theta^{(j)})}$ M-Step

Parzen Window:

 $K = \sum_{n=1}^{N} \phi(\frac{x-x_n}{h}), \phi(u) = \mathbb{I}_{\{||x|| < \frac{1}{2}\}}$

This window has discontinuities.

Gaussian Kernel: $\phi(u) = \frac{\exp(-\frac{1}{2}||x||^2)}{\sqrt{2\pi}}$

Result in a smoother density model

 $p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}} \exp(-\frac{||x - x_n||^2}{2h^2})$

We can chose any other kernel ϕ with

 $\hat{p}(x) = \frac{1}{V_k(x)}, v_k(x)$ minimal volume

Classifier: classify x by the majority

around x containing k neighbors.

 $p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} \phi(\frac{x - x_{n}}{h})$

 $\phi(u) \ge 0 \quad \int \phi(u) du = 1$

K-Nearest Neighbors

of the vote of its k-NN.

Fix *K* and find *V*

$\mu_c^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} \mathbf{x}}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$ $(\sigma_c^2)^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} (\mathbf{x} - \mu_c)^2}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$ $\pi_c^{(j+1)} = \frac{1}{|\mathcal{X}|} \sum_{c \in \mathcal{X}} \gamma_{xc}$ k-Means

identify clusters of data. Given $\mathcal{X} = \{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ Find c(.) and \mathcal{Y} minimizing $\mathcal{R}^k m(c, \mathcal{Y}) = \sum_{x \in \mathcal{X}} ||x - \mu_{c(x)}||^2 \text{ Assign}$ to nearest cluster. Recompute all clusters and repeat. Also called hard EM. Special case of GMM w. uniform prior and diag. covariance (\rightarrow 0).