MyMONIT

Collecting measurements to monitor CERN's experiments

Table of Contents

High-level description	2
Requirements	3
Functional requirements	4
Non-Functional Requirements	4
Assumptions	5
Architecture	6
Information flow	8
Security	10
Overview	10
Authentication	10
Authorization	10
Code quality	10
Auditing	10
Security Risks	11
Spoofing	11
Tampering	12
Repudiation	13
Information disclosure	14
Denial of service	15
Elevation of privilege	16
System Requirements	18
Storage space	18
CPU and memory	18
GDPR Consideration	19
References	20

Word count: 1013

High-level description

CERN uses a variety of independently developed systems to monitor its infrastructure (Aimar et al., 2019). MyMONIT will be a solution to unify the monitoring of experiments into a single software integrating different streams of measurements to centralize this information.

MyMONIT will be scalable to ensure that it can cope with increasing demand. The solution will also include monitoring to detect anomalies in the system itself and the flow of the measurements.

MyMONIT will store confidential information and will be a key component in the monitoring infrastructure. Adequate security measures will be implemented to address the associated risks.

Requirements

The following diagram illustrates all the use cases.

Functional requirements

There will be three user types with the following role matrix:

role	resource	scope	access
Administrators	users	complete	RW
	experiments	complete	RW
	measurements	complete	R
	audits	No access	1
Scientists	users	user's record	RW
	experiments	only records associated with the user	R
	measurements	only records associated with user's experiments	R
	audits	No access	1
	users	No access	1
Auditors	experiments	No access	1
Additors	measurements	No access	1
	audits	complete	R

- For each source, an adapter will normalize the measure and transmit it to MyMONIT.
- The measures will be persisted, indexed per experiment, and made available through APIs to authorized scientists.
- A complete audit will be available from a separate interface.

Non-Functional Requirements

- · Access points will be authenticated.
- Access to experiments will require per-user authorization.
- The system must serve concurrent users and concurrent experiments.

- 100% of data must be retained.
- The attack surface must be limited.

Assumptions

- The system's capacity must accommodate at least 10 years of data.
- Autoscale functionalities will be sufficient to deal with variable demand (Kubernetes, N.D. a).
- It is expected an elevated flow of measurements and that queues will absorb peaks of traffic (Reagan, 2018).
- Users will visualize measures polling the APIs and pagination will be sufficient to reduce the performance load.
- The total number of users will be in the range of a few thousand.
- Experiments will produce less than 1 million measurements each.

Architecture

The adapters (in green) will send the measurements to the solution (in blue) where the main component (in yellow) will index them and expose them via REST APIs.

- Docker and Docker Compose: the solution will be containerized and will be portable to compatible solutions such as Kubernetes (Kubernetes, N.D. b).
- The adapters will be Python scripts customized to each specific case and will be installed at the experiment's location.
- Nginx will be used as a reverse proxy with SSL offloading and will hide all HTTP resources from the outside network. Nginx is currently one of the market leaders in this field (W3Techs, 2022).
- RabbitMQ will be used as MQ Broker to accept data streams from the
 experiments encrypted in TLS. RabbitMQ is a popular solution and it was
 preferred to Kafka because it guarantees global message ordering in a cluster
 (Souza, 2020) even if Kafka offers better scalability for high volumes of traffic
 (Rabiee, 2018; Souza, 2020)

- MySQL will be responsible for the storage of the application's data. The
 design will allow to replace it with a more scalable NoSQL database if
 necessary (Khasawneh, 2020).
- ELK Stack (Elastic Search, Logstash, and Kibana) will be used for log collection and dashboarding. Filebeats will be used as an adapter where needed. ELK Stack is the only open source among the most popular solutions of this kind (Gillespie & Givre, 2021).

• MyMONIT will be a Python application using Flask and Pika. Flask allows for rapid web development (Ghimire, 2020). Pika is the recommended library to support RabbitMQ in Python (RabbitMQ, N.D.). The following diagram illustrates the internal design of MyMONIT. There will be no direct interactions between the components consuming messages from the broker (in blue) and the components exposing REST endpoints (in green). The Storage (in yellow) will mediate the communications between the two parts.

Information flow

The diagram shows from a location perspective how information flows between components.

The following diagram, instead, represents the same flow from a time perspective:

Security

Overview

The main security concerns are the risks of sabotage and information leak. Being a monitoring tool, an attacker may try to disrupt the operations to cover another attack. Information leaks could endanger the process of peer reviews allowing scientists to steal data from parallel research. Being an application exposed only to an internal network, cyberattacks from external sources will be limited.

Authentication

The authentication will be based on JSON web tokens that will remain valid for a limited time and will be required in all interactions. A shared secret (API key) will also be required to limit the chances of brute force attacks (OWASP, REST Security).

Authorization

Authorization to the users, experiments, and measurements endpoints will be rolebased. Auditors will have full access limited to audits.

Code quality

- Secure coding practices (OWASP, Secure coding)
- Automated code scanners

Auditing

The main goal will be:

- identification of incidents and fraudulent activity
- detection of anomalies

The following events will be logged:

- failed authentications
- authorization failures
- throughput

The following data will never be logged:

- · credentials and tokens
- · personal data, except for staff identification

(OWASP, Logging)

Security Risks

Using the STRIDE model, the following threats were identified and classified with DREAD (OWASP, Threat Modeling).

Spoofing

User's credentials violation		
Туре	Level	
Damage	High (10), experiments would be exposed, users' records compromised, data leak	
Reproducibility	High (10)	
Exploitability	High (10)	
Affected users	Low-Medium (4). One user. All, if the user is administrator	
Discoverability	Medium (6). User's credentials may be easy to guess	
DREAD	High (8)	
Mitigation	Password policy: minimum complexity with expiration	

Measurements	s adapter's credential violation
Туре	Level

Damage	High (10). It could allow for DDoS on queues or tampering
Reproducibility	Low (2). Audit will reveal additional login attempts
Exploitability	High (10). If discovered, credentials could be easily used to authenticate scripts
Affected users	Low (2). One experiment
Discoverability	Medium (6). Adapters may be poorly designed with low security in their design
DREAD	Medium (6)
Mitigation	Complex passwords with password rotation

Cross site request forgery		
Туре	Level	
Damage	High (10). Administrators may accidentally modify data	
Reproducibility	Low (1). It would be very difficult to perform such an attack	
Exploitability	Medium (5). The setup may be easy	
Affected users	High (8). Potentially all users	
Discoverability	Low (1). The attacker needs a deep understanding of the system	
DREAD	Medium (5)	
Mitigation	Correct APIs design, usage of token (OWASP, CSRF)	

Tampering

Employee installs tampered measurement adapter		
Туре	Level	
Damage	High (10), experiments would be invalidated	
Reproducibility	Medium (6). The highest risk is broker's authentication	
Exploitability	High (10). Employees in certain position have easy access	
Affected users	High (10). All scientists	
Discoverability	Medium (6). Employees in certain positions have easy access	
DREAD	High (8.4)	
Mitigation	Mandatory lifecycle management for production software, including measurement	

Employee manipulates audits		
Туре	Level	
Damage	Medium (5), it could be part of a more vast attack and it could delay the detection of	
	an issue	
Reproducibility	Low (1). It requires another violation	
Exploitability	Low (1). It is hard to manipulate audits stored in Elasticsearch	
Affected users	Low (3). Auditors	
Discoverability	Low (1). Elasticsearch is not directly exposed. Only a limited number of employees	
	could easily explore possible attacks.	
DREAD	Low (2.2)	
Mitigation	Access to the filesystem must be restricted. Filesystem should be encrypted.	

Administrator manipulates documents		
Туре	Level	
Damage	Medium (4), data could be recovered through backups, activities could suffer delays	
Reproducibility	High (10). Administrators could easily manipulate records	
Exploitability	High (10). Administrators can manipulate records as part of their role	
Affected users	High (10). All scientists	
Discoverability	High (10). Administrators can manipulate records as part of their role	
DREAD	High 8.8	
Mitigation	Monitoring and auditing will detect fraudulent activity. Screening of employees in	
-	this role is recommended.	

Repudiation

User denie	s committing ar	action	
Туре	Level		

Damage Low (1).

Reproducibility Low (1). All actions are audited. Administrator do not have W access to audits

Exploitability Low (1). Administrators do not have W access to audits

Affected users Low (1).

Discoverability Low (1). Without an attack to audits, repudiation would be ineffective

DREAD Low (1)

Mitigation No mitigation is necessary

Information disclosure

Database breach

Type Level

Damage High (10), data would be compromised.

Reproducibility Low (1). Database is not directly exposed, authentication is in place

Exploitability Low (1). Attacker should compromise at least another system first

Affected users High (10). All

Discoverability Low (1). Only few employees could easily explore attacks

DREAD Medium (4.6)

Mitigation Database won't be exposed to the external network, access will be authenticated

Scientists stealing information

Type Level

Damage Medium (5). Peer reviews may be invalid

Reproducibility Low (1). It requires another violation

Exploitability Low (1). It requires another violation

Affected users Medium (5). Scientists involved in the experiments, external stakeholders

Discoverability Low (1)

DREAD Low (2.4)

No mitigation will be implemented. Employer's disciplinary procedures should be a

Mitigation

sufficient deterrent.

Auditors steal information through audits		
Туре	Level	
Damage	Medium (4). Peer reviews may be invalid. Security may be compromised	
Reproducibility	High (10). Auditors have access to audits as part of their role	
Exploitability	High (10). Auditors have access to audits as part of their role	
Affected users	High (10). Administrator, Scientists, and Stakeholders	
Discoverability	High (10). Auditors have access to audits as part of their role	
DREAD	High (8.8)	
Mitigation	Auditors actions will be audited as well. Employer's disciplinary procedures should	
	be a sufficient deterrent.	

Denial of service

DDoS on APIs		
Туре	Level	
Damage	High (10), system may become inoperative	
Reproducibility	Low (3). The system should be exposed only in the internal network	
Exploitability	Low (3). It would be easy to block the attack in the internal network	
Affected users	High (10). All	
Discoverability	Low (1). It would be difficult to plan an effective attack.	
DREAD	Medium (5.4)	
Mitigation	Out of scope in this project. System administrator must be able to isolate the	
	segment of the network causing the attack.	

DDoS on Audit and Monitoring		
Туре	Level	
Damage	Medium (6). It may cover a more vast attack	
Reproducibility	Low (1). The system should be exposed only in the internal network	
Exploitability	Low (1). It would be easy to block the attack in the internal network	
Affected users	Low (3). Auditors	
Discoverability	Low (1). It would be difficult to plan an effective attack.	

DREAD	Low (2.4)			
Mitigation	Out of scope in this project. System administrator must be able to isolate the			
Willigation	segment of the network causing the attack.			

Ransomware attack			
Туре	Level		
Damage	High (10), all data may be lost		
Reproducibility	Medium (6). Measures are in place, but every day organizations fall under this		
	attack		
Exploitability	High (10). The attack may come in the form of phishing.		
Affected users	High (10). All		
Discoverability	Medium (6). It is hard to evaluate the level of the current defenses		
DREAD	High (8.4)		
Mitigation	MyMONIT's network will be in a separate segment and virtualized in the container		
	infrastructure. Containers' images will be maintained up-to-date. Offline backups		
	will ensure the recoverability of data. (OWASP, Ransomware)		

Elevation of privilege

Scientists becoming administrators			
Туре	Level		
Damage	High (8), the attacker could disrupt the system		
Reproducibility	Low (1). It would require database access since no system function manipulates		
	roles		
Exploitability	Low (1). Attacker should compromise at least another system first		
Affected users	High (10). All		
Discoverability	Low (1)		
DREAD	Medium (4.2)		
Mitigation	Code reviews and vulnerability scanner will be used to improve the quality of the		

code and limit this risk

Auditor getting Administrator privileges or Administrator accessing to audits			
Туре	Level		
Damage	Medium (5). It can result in information leakage or be part of a larger attack		
Reproducibility	Low (1). The two sets of users are separated		
Exploitability	Low (1). Being part of one of the two groups does not give any advantage to		
	elevate privileges. Audits do not contain usernames or passwords		
Affected users	High (8). Administrators and Auditors		
Discoverability	Low (1)		
DREAD	Low (3.2)		
Mitigation	No action will be taken		

System Requirements

Storage space

User and experiment data will require less than 1Kb per record, therefore a few megabytes will be sufficient to store them.

Each measurement is expected to require at least 22 bytes. With 1 million measures per experiment, each experiment will require about 21Mb of space.

field	type	size
Measure type	integer	2 bytes
Timestamp	Timestamp with nano precision	8 bytes
Experiment id	integer	4 bytes
Measure	Double precision floating point	8 bytes

CPU and memory

CPU and memory requirements will be determined with load testing after the initial deployment. Minimum resources will be set to values able to sustain the expected average daily traffic. Maximum resources will be set to values able to sustain 200% of the maximum expected traffic. Autoscale will be configured to follow the demand and contain costs.

GDPR Consideration

The application design requires only a minimal amount of personal information. All users will be able to retrieve, update and delete their own information, in compliance with GDPR. Complete deletion will preserve Staff Identification for traceability (GDPR, 2016).

An administrator will be able to assist users with their GDPR request.

Document	Field	Description	
User's record	Staff identification	Unique id number from the HR system	
User's record	Name	Given name(s)	
User's record	Surname	Family name	
User's record	Email Address	Professional email address	
Experiment	None		
Measurement	None		
Audit	User's staff identification	Only the user's staff identification will be	
		stored in the audit	

References

- Aimar, A., Corman, A. A., Andrade, P., Fernandez, J. D., Bear, B. G.,
 Karavakis, E., ... & Magnoni, L. (2019). MONIT: monitoring the CERN data
 centres and the WLCG infrastructure. In EPJ Web of Conferences (Vol. 214,
 p. 08031). EDP Sciences. Available from
 https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep20
 18_08031.pdf [Accessed 2/April/2022]
- GDPR Consolidated text: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) – Art 17 – right to be forgotten (2016). Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?
 uri=CELEX:02016R0679-20160504&from=EN
- Gillespie M. & Givre C. (2021) Understanding Log Analytics at Scale. 2nd Ed.
 O'Reilly Media Inc.
- Ghimire, D. (2020). Comparative study on Python web frameworks: Flask and Django. Available from https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf? sequence=2 [Accessed 2/April/2022]
- Khasawneh, T. N., AL-Sahlee, M. H., & Safia, A. A. (2020, April). Sql, newsql, and nosql databases: A comparative survey. In 2020 11th International
 Conference on Information and Communication Systems (ICICS) (pp. 013-021). IEEE. Available from https://www.researchgate.net/profile/Mahmoud-

Alsahlee/publication/

- 340978543_SQL_NewSQL_and_NOSQL_Databases_A_Comparative_Surve y/links/5ec46445a6fdcc90d685d608/SQL-NewSQL-and-NOSQL-Databases-A-Comparative-Survey.pdf [Accessed 2/April/2022]
- Kubernetes (N.D.) Horizontal Pod Autoscaling. Available from
 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

 [Accessed 2/April/2022]
- Kubernetes (N.D.) Translate a Docker Compose File to Kubernetes
 Resources. Available from https://kubernetes.io/docs/tasks/configure-pod-container/translate-compose-kubernetes/ [Accessed 2/April/2022]
- OWASP (N.D.) Cross Site Request Forgery (CSRF). Available from https://owasp.org/www-community/attacks/csrf [Accessed 2/April/2022]
- OWASP (N.D.) Logging Cheatsheet. Available from
 https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
 [Accessed 2/April/2022]
- OWASP (N.D.) OWASP Anti-Ransomware Guide. Available from https://owasp.org/www-project-anti-ransomware-guide/migrated_content
 <a href="https://owasp.org/www-project-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide/migrated_content-anti-ransomware-guide
- OWASP (N.D) REST Security Cheatsheet. Available from
 https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Shee
 t.html [Accessed 2/April/2022]
- OWASP (N.D.) Secure Coding Practices. Available from
 https://owasp.org/www-project-secure-coding-practices-quick-reference-quide/migrated_content [Accessed 2/April/2022]

- OWASP (N.D) Threat Modeling Process. Available from
 https://owasp.org/www-community/Threat_Modeling_Process#stride
 [Accessed 2/April/2022]
- Rabiee, A. (2018). Analyzing Parameter Sets For Apache Kafka and RabbitMQ On A Cloud Platform. Available from https://www.diva-portal.org/smash/get/diva2:1232563/FULLTEXT01.pdf
 [Accessed 2/April/2022]
- RabbitMQ (N.D.) Client Libraries and Developer Tools. Available from https://www.rabbitmq.com/devtools.html [Accessed 2/April/2022]
- Reagan, R. (2018). Message Queues. In: Web Applications on Azure. Apress,
 Berkeley, CA. https://doi.org/10.1007/978-1-4842-2976-7_9
- Souza, R. D. A. (2020). Performance analysis between Apache Kafka and RabbitMQ. Available from
 http://dspace.sti.ufcg.edu.br:8080/jspui/bitstream/riufcg/20339/1/RONAN
 %20DE%20ARAU%CC%81JO%20SOUZA%20-%20TCC%20CIE%CC
 %82NCIA%20DA%20COMPUTAC%CC%A7A%CC%83O%202020.pdf
 [Accessed 2/April/2022]
- W3Techs (2022) Usage statistics of Nginx. Available from
 https://w3techs.com/technologies/details/ws-nginx [Accessed 2/April/2022]