DAY 7

1. If tan A = cot B then prove that $A + B = 90^{\circ}$

Sol:
$$\cdot$$
 tan A = cot B

$$\Rightarrow \tan A = \tan(90^{\circ} - B)$$

{If T Ratios are equal then angles are also equal}

$$\Rightarrow A = 90^{\circ} - B$$

$$\Rightarrow$$
 A + B = 90⁰

Note:- This is very important standard result which can be used directly

• If
$$\begin{cases} \tan A = \cot B \\ \sin A = \cos B \\ \sec A = \csc B \end{cases}$$
 then $A + B = 90^{\circ}$

i. e. If T Ratios are complementary then angles are also complementary.

Lets discuss some examples on it.

2. If $\sin 3A = \cos (A - 26^{\circ})$ then find A.come-become-educated

Sol: - Given $\sin 3A = \cos (A - 26^0)$

{If T Ratios are complementary then angles are also complementary}

$$\Rightarrow$$
 3A + (A - 26°) = $\frac{90}{}$ °

$$\Rightarrow 4A - 26^0 = 90^0$$

$$\Rightarrow 4A = 90^{0} + 26^{0} = 116^{0}$$

$$\Rightarrow 3A + (A - 26^{0}) = 90^{0} \Rightarrow 4A - 26^{0} = 90^{0}$$

$$\Rightarrow 4A = 90^{0} + 26^{0} = 116^{0} \Rightarrow A = \frac{116^{0}}{4} = 29^{0}$$

3. If $\tan 4\theta = \cot (\theta + 20^0)$ then find θ .

Sol: - Given $\tan 4\theta = \cot (\theta + 20^0)$

{If T Ratios are complementary then angles are also complementary}

$$\Rightarrow 40 + (0 + 20^{0}) = 90^{0}$$
 $\Rightarrow 50 + 20^{0} = 90^{0}$

$$\Rightarrow 5\theta + 20^0 = 90^0$$

$$\Rightarrow 50 = 90^{0} - 20^{0} = 70^{0} \qquad \Rightarrow \qquad 0 = \frac{70^{0}}{5} = 14^{0}$$

$$\Rightarrow \quad \theta = \frac{70^0}{5} = 14^0$$

4. If $\sec 2A = \csc (A - 18^0)$ then find A.

Sol: - Given $\sec 2A = \csc (A - 18^0)$

{If T Ratios are complementary then angles are also complementary}

$$\Rightarrow 2A + (A - 18^{0}) = 90^{0} \Rightarrow 3A - 18^{0} = 90^{0}$$

$$\Rightarrow 3A - 18^0 = 90^0$$

$$\Rightarrow 3A = 90^{0} + 18^{0} = 108^{0}$$

$$\Rightarrow$$
 3A = 90⁰ + 18⁰ = 108⁰ \Rightarrow A = $\frac{108^0}{3}$ = 36⁰

5. In
$$\triangle ABC$$
, prove that $\sin\left(\frac{A+B}{2}\right) = \cos\frac{C}{2}$

Sol:- In
$$\triangle ABC$$
, $A + B + C = 180^{\circ} \dots \dots \dots i$

Now LHS
$$\sin\left(\frac{A+B}{2}\right) = \sin\left(\frac{180^0 - C}{2}\right)$$
 {from i)}

$$= \sin\left(\frac{180^0}{2} - \frac{C}{2}\right) = \sin\left(90^0 - \frac{C}{2}\right) = \cos\frac{C}{2}$$

6. Prove that $\tan 20^{\circ}$. $\tan 40^{\circ}$. $\tan 50^{\circ}$. $\tan 70^{\circ} = 1$

Sol:- LHS
$$\tan 20^{\circ} \cdot \tan 40^{\circ} \cdot \tan 50^{\circ} \cdot \tan 70^{\circ}$$

{Here 20° and 70° , 40° and 50° are complementary pairs}

$$= (\tan 20^{\circ}. \tan 70^{\circ}). (\tan 40^{\circ}. \tan 50^{\circ})$$

=
$$\{\cot(90^{0} - 20^{0}) \cdot \tan 70^{0}\} \cdot \{\cot(90^{0} - 40^{0}) \cdot \tan 50^{0}\}$$

$$= (\cot 70^{\circ}. \tan 70^{\circ}). (\cot 50^{\circ}. \tan 50^{\circ})$$

$$=\left(\frac{1}{\tan 70^{0}}.\tan 70^{0}\right).\left(\frac{1}{\tan 50^{0}}.\tan 50^{0}\right)=1\times 1=1=RHS$$

come-become-educated

EXERCISE

- 1. If $\sin A = \cos B$ then prove that $A + B = 90^{\circ}$
- 2. If sec P = cosec Q then prove that P + Q = 90°
- **3.** If $\sin 3A = \cos (A 10^0)$ then find A.
- **4.** If $\sec 4\theta = \csc (\theta 40^0)$ then find θ .
- **5.** If $\tan 2A = \cot (A + 15^{\circ})$ then find A.
- **6.** Prove that $\tan 23^{\circ}$. $\tan 42^{\circ}$. $\tan 48^{\circ}$. $\tan 67^{\circ} = 1$
- 7. In $\triangle ABC$, prove that $\sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2}$
- **8.** In $\triangle ABC$, prove that $\tan\left(\frac{A+C}{2}\right) = \cot\frac{B}{2}$