Лабораторная работа 1.6

Определение модуля Юнга на основе исследования деформации растяжения

Зотов Алексей 496 гр.

24 мая 2016 г.

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для одноосного растяжения. По результатам измерений вычислить модуль Юнга.

Закон Гука для малых упругих деформаций:

$$T = E \frac{\Delta l}{l_0} = E \varepsilon \tag{1}$$

где T - сила натяжения, Δl — приращение длины стержня, l_0 — длина недеформированного стержня. Если принять коэффициент упругости стержня: $k=E\frac{S}{l_0}$, то $T=k\Delta l$.

В работе используются: прибор Лермантова(рис.1), проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка или линейка.

Рис. 1: Экспериментальная установка.

Ход работы:

- 1. Диаметр проволоки d=0.46~mm Площадь поперечного сечения $S=\frac{\pi d^2}{4}\approx 0.17~{\rm mm}^2$
- 2. Измеренная длина проволоки $l_0 = 177.0 \pm 0.5 \; \mathrm{cm}$
- 3. Длина рычага r=13 мм Расстояние от рычага до зеркальца $h=138.7\pm0.05$ см Удлинение проволки :

$$\Delta l = \frac{2r\Delta n}{h} \tag{2}$$

Погрешность Δl рассчитывается по формуле:

$$\left(\frac{\sigma_{\Delta l}}{\Delta l}\right)^2 = \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{\Delta n}}{\Delta n}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2 \tag{3}$$

- 4. Чтобы не выйти за пределы области, где удлинение проволоки пропорционально ее натяжению, оценим максимальную величину нагрузки. Примем, что разрушающее напряжение равно $\sigma_{max} = 900~H/\text{мм}^2$, а допустимое напряжение не превышает 30% от разрушающего. Тогда получим ограничение на величину нагрузки $F = \sigma S \le 0.3 * \sigma_{max} S \approx 44.9~\text{H}$. Допустимая масса груза $m_{max} \approx 4.6~\text{kg}$.
- 5. Снимем зависимость удлинения проволоки Δl (по формуле (2)) от величины нагрузки :

m,\mathbf{r}	0	498	992	1455	1948	2442	1948	1455	992	498	0
п, дел	53.3	47.4	41.9	36.2	31.1	26.4	31.1	35.8	41.6	47.2	53.2
Δl , MM	0	0.13	0.25	0.36	0.48	0.58	0.48	0.37	0.25	0.13	0.002

m , Γ	0	498	992	1455	1948	2442	1948	1455	992	498	0
п, дел	53.2	47.3	41.6	36.8	31.2	26.9	30.9	35.7	41.5	47.3	53.2
Δl , MM	0	0.13	0.25	0.35	0.47	0.57	0.48	0.38	0.25	0.13	0

m , Γ	498	992	1455	1948	2442
Δl_{cp} , мм	0.13	0.25	0.365	0.475	0.57

6. Построим график зависимости $\Delta l(P)$, где P=mg - нагрузка

y=ax+b, $a\approx 0.023$, b=0.0234, $\sigma_a=0.0005$, $\sigma_b=0.003$ Тогда жесткость проволоки $k=\frac{P}{\Delta l}\approx \frac{1}{a}\approx 43~{
m H/mm}$, $\sigma_k\approx \frac{1}{a^2}\sigma_a\approx 1~{
m H/mm}$

7. Найдем модуль Юнга:

$$E = \frac{kl_0}{S} = 448\Gamma\Pi a \tag{4}$$

Оценим погрешность модуля Юнга:

$$\left(\frac{\sigma_E}{E}\right)^2 = \left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 \approx E\left(\frac{\sigma_k}{k}\right) \quad \Rightarrow \quad \sigma_E = 10\Gamma\Pi a$$

Наиболее близкое значение к модулю Юнга для вольфрама $E_w=415~\Gamma$ па.