TESIS: Teoria dos Sistemas

- Formas de controlo de sistemas realimentados
 - controlo proporcional
 - controlo proporcional e integral
 - saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Formas de controlo de sistemas realimentados
 - existem três acções básicas de controlo
 - acção proporcional
 - acção integral
 - acção diferencial ou derivativa

- Formas de controlo de sistemas realimentados
 - estas três acções de controlo, quando juntas, levam ao controlador PID, de acordo com a expressão

PID
$$m(t) = K \left(\frac{e}{e} + \frac{1}{T_i} \int_{0}^{t} e(t') dt' + T_d \frac{de}{dt} \right)$$

onde K, T_i , T_d são parâmetros a ajustar

• nota: e = r - c, se r = constante, vem

$$m(t) = K \left(e + \frac{1}{T_i} \int_0^t e(t') dt' - T_d \frac{dc}{dt} \right)$$

- Formas de controlo de sistemas realimentados
 - controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

Controlo proporcional

$$m(t) = K \left(\frac{e}{T_i} + \frac{1}{T_i} \int_{0}^{t} e(t') dt' + T_d \frac{de}{dt} \right)$$

• se T_d = 0 e T_i = ∞ tem-se um controlador proporcional

$$m(t) = Ke(t)$$

- Controlo proporcional
 - viu-se anteriormente que este tipo de controlador é incapaz de eliminar e_{ss} de sistemas tipo zero, para uma referência em degrau, R(s) = 1/s

$$e_{ss} = \frac{1}{1+K}$$

- para diminuir e_{ss} é necessário aumentar K
 - em geral, esta estratégia origina um aumento do tempo de estabelecimento e, eventualmente, a instabilidade

- Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

Controlo proporcional e integral

$$m(t) = K \left(\frac{e}{T_i} + \frac{1}{T_i} \int_{0}^{t} e(t') dt' + T_d \frac{de}{dt} \right)$$

• se T_d = 0 tem-se um controlador PI

$$m(t) = K \left(e + \frac{1}{T_i} \int_0^t e(t') dt' \right)$$

- Controlo proporcional e integral
 - acção integral produz uma função de transferência com um pólo na origem
 - erro em regime permanente, ao degrau de entrada, é nulo desde que o sistema seja estável

$$m(t) = K \left(e + \frac{1}{T_i} \int_0^t e(t') dt' \right)$$

- Controlo proporcional e integral
 - parâmetro T_i (tempo integral) quantifica a razão de variação da saída do controlador PI quando a entrada é um degrau
 - tempo necessário para que a contribuição da parte integral seja igual à contribuição da parte proporcional

Controlo proporcional e integral

- muitos fabricantes exprimem T_i nas unidades min/repetições ou repetições/min
- tipicamente
 - 0,02 repetições/min ≤ T_i ≤ 50 repetições/min

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Saturação por efeito da acção integral
 - os actuadores têm um intervalo limitado de funcionamento linear e a maioria exibe uma característica entrada-saída não-linear do tipo "saturação"
 - assim, quando o controlador produz valores de saída elevados, a adopção de modelos lineares pode conduzir a conclusões erradas
 - este fenómeno é particularmente importante quando ocorrem variações significativas da referência ou da carga (perturbações)
 - em ambos os casos, existe um erro e(t) elevado que pode conduzir à saturação do actuador

Saturação por efeito da acção integral

- Saturação por efeito da acção integral
 - no caso de ocorrer saturação, a variável de saída c(t) demora mais tempo a atingir o valor desejado
 - a acção integral tem mais tempo para integrar o erro e aumenta até um valor elevado (*integral windup*) até que o erro muda de sinal e, então, começa a decrescer
 - devido ao elevado valor atingido, a saída do controlador demora mais tempo a mudar de sinal e, consequentemente, até isso se verificar a variável de saída c(t) continua a crescer
 - como consequência ocorre uma sobreelongação elevada

- Saturação por efeito da acção integral
 - resposta do sistema para um degrau de entrada
 - r(t) com amplitude 10

$$K(s) = 1 + \frac{1}{s}$$

$$K(s) = 1 + \frac{1}{s}$$

$$W(s) = \frac{2}{s+0,1}$$

- Saturação por efeito da acção integral
 - se o controlador parar a integração quando ocorre a saturação (batch switch), o desempenho vem melhorado

- Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Acção diferencial
 - quando $T_d \neq 0$ e $T_i \neq \infty$ obtém-se um controlador PID

$$m(t) = K \left(\frac{e}{T_i} + \frac{1}{T_i} \int_{0}^{t} e(t') dt' + T_d \frac{de}{dt} \right)$$

- Acção diferencial
 - inclusão da parcela $T_d.dc/dt$ (ou $T_d.de/dt$) ultrapassa as limitações das acções P e I
 - requerem, respectivamente, um erro elevado e um intervalo de tempo elevado, para produzir uma saída com valor apreciável
 - acção D responde à razão de variação da variável, possibilitando uma reacção mais rápida do controlador, mesmo para erros pequenos
 - parâmetro T_d é uma medida da capacidade de reacção

- Acção diferencial
 - por exemplo, considerando r = 0 e c(t) a variar linearmente, as acções P e PD dão origem aos gráficos seguintes

Acção diferencial

$$m(t) = K\left(e + T_d \frac{de}{dt}\right) m(t) = -K\left(c + T_d \frac{dc}{dt}\right)$$

- Acção diferencial
 - note-se que para t ≥ t₀ a resposta da acção PD fica "avançada" de T_d unidades de tempo face à resposta da acção P
 - acção D pode ser implementada como $T_d.de/dt$ ou como $-T_d.dc/dt$
 - a adopção da variável de saída c evita que a saída do controlador "dê um salto" sempre que ocorre um degrau de variação na entrada
 - para sistemas com pólos/zeros no semi-plano esquerdo a acção D tende a estabilizar o sistema

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Sintonia do controlador
 - como seleccionar os valores para K, T_i e T_d , de forma a obter um desempenho satisfatório no controlo do sistema
 - para calcular os parâmetros é necessário um modelo matemático do sistema
 - identificação do sistema pode ser complexa e trabalhosa
 - problema simplificado se nos restringirmos a uma classe de modelos de ordem baixa

- Sintonia do controlador
 - experiência demonstrou que os dois modelos seguintes são adequados para a maioria dos processos industriais

$$W_1(s) = \frac{K_p e^{-sT}}{s\tau + 1}$$

$$W_2(s) = \frac{K'_p e^{-sT}}{s}$$

- Sintonia do controlador
 - uma técnica de sintonia consiste nas fases
 - um teste para estimar os parâmetros do modelo
 - um conjunto de fórmulas que relacionem os parâmetros do controlador (K, T_i, T_d) com o modelo
 - de forma a obter uma resposta com as características desejadas
 - técnicas de sintonia podem ser classificadas em
 - métodos de malha aberta
 - e métodos em malha fechada

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Sintonia do Controlador Métodos em Malha Aberta
 - parâmetros $\{Kp, T, \tau\}$ ou $\{K'p, T\}$ estimados a partir da resposta c(t) do sistema a uma entrada em degrau com amplitude M

- Sintonia do Controlador Métodos em Malha Aberta
 - \bullet $W_1(s)$
 - Kp = M'/M
 - T obtém-se a partir do ponto de intersecção da recta tangente no ponto de declive máximo

- Sintonia do Controlador Métodos em Malha Aberta
 - \bullet $W_1(s)$

• resposta de $Kp/(\tau s+1)$ a um degrau aplicado em t=0, atinge 63,2% do valor final para $t=\tau$ então $\tau=t'-T$

onde c(t') = 0.632M'

- Sintonia do Controlador Métodos em Malha Aberta
 - $W_2(s)$
 - resposta em regime permanente, a um degrau de entrada de amplitude M, apresenta um declive MK'p
 - ponto de intersecção da recta dá o valor de T

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Sintonia do Controlador Métodos em Malha Fechada
 - com o anel de realimentação fechado e com as acções I e D anuladas (i.e., $T_d = 0$, $1/T_i = 0$) o ganho K é aumentado gradualmente até que a variável de saída oscile com amplitude constante
 - neste caso, tem-se o ganho final, Ku (ultimate gain) e o período final, Pu (ultimate period) de oscilação

- Sintonia do Controlador Métodos em Malha Fechada
 - este método é simples de aplicar mas muitos sistemas não toleram as oscilações, o que condiciona a sua aplicação
 - é também importante verificar que não haja saturação de um elemento do sistema, sob pena dos resultados não terem significado

- Sintonia do Controlador Métodos em Malha Fechada
 - fórmulas para o ajuste dos parâmetros do controlador dependem da resposta desejada para um degrau na carga ou um degrau na referência
 - fórmulas mais populares
 - as de Ziegler e Nichols, Shinskey, Cohen e Coon
 - o seu objectivo é determinar o conjunto de parâmetros que produzem uma razão de decaimento de um quarto

 Sintonia do Controlador – Métodos em Malha Fechada

- Sintonia do Controlador Métodos em Malha Fechada
 - dois primeiros métodos (Ziegler e Nichols, Shinskey) consideram o modelo do sistema W₂(s), enquanto o terceiro (Cohen e Coon) considera o modelo W₁(s)
 - em geral estas fórmulas originam valores distintos para os parâmetros $\{K, T_i, T_d\}$ e não produzem exactamente a resposta desejada
 - valores obtidos são uma primeira estimativa para um processo de ajuste com várias iterações

Fórmulas para a Sintonia do Controlador

Controller	Setting	Ziegler–Nichols (closed-loop)		Ziegler–Nichols (open-loop)	Cohen-Coon
P	K	0.5 K _u	0.5 K _u	$\frac{1}{T R_{\rm r}}$	$\frac{\tau}{TK_{p}}\left(1+0.33\frac{T}{\tau}\right)$
PI	K	0.45 K _u	0.5 K _u	$\frac{0.9}{T R_r}$	$\frac{\tau}{TK_{\rm p}}\left(0.9 + 0.082\frac{T}{\tau}\right)$
	$T_{\rm i}$	0.833 P _u	0.43 P _u	3.33 T	$T\left(\frac{3.33 + 0.3T/\tau}{1 + 2.2T/\tau}\right)$
	K	0.6 K _u	0.5 K _u	$\frac{1.2}{T R_{\rm r}}$	$\frac{\tau}{TK_{\rm p}}\left(1.35+0.27\frac{T}{\tau}\right)$
PID	T_{i}	0.5 P _u	0.34 P _u	2 T	$T\left(\frac{2.5 + 0.5T/\tau}{1 + 0.6T/\tau}\right)$
	T_{d}	0.125 P _u	0.08 P _u	0.5 T	$T\left(\frac{0.37}{1+0.2T/\tau}\right)$

$$R_r = K'_p$$

- Fórmulas para a Sintonia do Controlador
 - verifica-se que
 - introdução da acção I traduz-se por uma diminuição do ganho K para compensar o efeito destabilizador
 - introdução da acção D traduz-se pelo reforço das acções P e I
 - acção D tem um efeito adverso na resposta transitória de sistemas com um tempo de atraso predominante, isto é, onde a razão τ/T é elevada
 - somente o método de Cohen e Coon avalia esta razão pelo que apresenta melhor desempenho

- Fórmulas para a Sintonia do Controlador
 - de seguida são analisados três exemplos que ilustram a aplicação das fórmulas
 - considera-se a resposta c(t) em resposta a uma perturbação P(s) em degrau unitário

- Fórmulas para a Sintonia do Controlador
 - exemplo 1
 - este exemplo mostra a influência de uma aproximação de primeira ordem a um sistema de ordem mais elevada
 - sistema

$$G_P(s) = \frac{1}{(s+1)^3}$$

- Sintonia do Controlador
 - Resposta ao degrau unitário (M=1) com sistema em malha aberta
 - Recta com máxima inclinação em t=2, com declive=0.271 e com intersecção em t=0.806
 - Resposta c=0.63 para
 t=3.235

Modelo W1

 $K_p=1$, T=0.806, tau=3.235-0.806=2.45

 $K_u = 8$, $P_u = 3.626$

isep

Controladores PID

- Sintonia do Controlador
 - Resposta ao degrau unitário (M=1) com sistema em malha fechada

Modelo W2

 $K'_p = R_r = 1$, T=0.806

Sintonia do Controlador

	Α	В	С	D	Е	F	G
1	Ku	Pu	T	<u>R</u> r	τ	Kp	
2	8	3.626	0.806	0.271	2.45	1	
3							
4	Controlador	Parametro	ZN-mf	S	ZN-ma	CC	
5	Р	K	4.000	4.000	4.578	3.370	
6	PI	K	3.600	4.000	4.120	2.818	
7		Ti	3.020	1.559	2.684	1.603	
8	PID	K	4.800	4.000	5.494	4.374	
9		Ti	1.813	1.233	1.612	1.794	
10		Ţ₫	0.453	0.290	0.403	0.280	
11							
12							

isep

- Sintonia Ziegler-Nichols (open-loop)
 - K_p=4
 - $G_c(s)=4$

- Sintonia Ziegler-Nichols (open-loop)
 - $K_p = 3.6$
 - $T_i = 3.02$

• $G_c(s)=(3.6s+1.19)/s$

 Sintonia Ziegler-Nichols (open-loop)

- $K_p = 4.8$
- $T_i = 1.8$
- $T_d = 0.453$

• $G_c(s)=(2.67+4.8s+2.17s^2)/s$

- Fórmulas para a Sintonia do Controlador
 - exemplo 1
 - as figuras seguintes mostram as respostas dos controladores PID sintonizados pelos quatro métodos
 - verifica-se que o método ZN(MF) é o melhor devido à contribuição da acção D e à ausência de um tempo de atraso

- Fórmulas para a Sintonia do Controlador
 - nos dois exemplos seguintes compara-se a eficiência dos métodos em função de T/τ para um dado Pu
 - em ambos os casos considera-se um sistema com função de transferência

$$G_P(s) = \frac{e^{-sT}}{s\tau + 1}$$

- Fórmulas para a Sintonia do Controlador
 - exemplo 2
 - sistema

$$G_P(s) = \frac{e^{-0.88s}}{0.183s + 1}$$

- Fórmulas para a Sintonia do Controlador
 - exemplo 2
 - os parâmetros para o controlador vêm

- Fórmulas para a Sintonia do Controlador
 - exemplo 2
 - nos gráficos seguintes constata-se a má resposta para o controlador PID ajustado pelo método ZN(MA)

- Fórmulas para a Sintonia do Controlador
 - exemplo 2

- Fórmulas para a Sintonia do Controlador
 - exemplo 2
 - nos três exemplos, este é o caso mais difícil de controlar devido ao elevado valor de τ

- Fórmulas para a Sintonia do Controlador
 - exemplo 3
 - sistema

$$G_P(s) = \frac{e^{-0.542s}}{6s+1}$$

- Fórmulas para a Sintonia do Controlador
 - exemplo 2
 - os parâmetros para o controlador vêm

- Fórmulas para a Sintonia do Controlador
 - exemplo 2
 - neste caso o método S(MF) é o que apresenta pior desempenho

- Fórmulas para a Sintonia do Controlador
 - exemplo 2

- Fórmulas para a Sintonia do Controlador
 - exemplo 2

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- 3. Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Controlo em Cascata e por "Feedforward"
 - nos sistemas de controlo realimentados apresentados até ao momento a variável manipulada é somente função do desvio (erro) da variável de saída
 - este tipo de estratégia pode tratar todos os tipos de perturbações mas a acção correctiva só pode iniciar-se depois dos seus efeitos aparecerem na variável controlada
 - isto leva a desempenhos fracos para perturbações elevadas e com uma frequência elevada face à constante de tempo dominante ou ao tempo de atraso do sistema

- Controlo em Cascata e por "Feedforward"
 - muitas vezes é possível medir a perturbação directamente ou através dos seus efeitos num ponto intermédio do sistema
 - assim, através dessa informação é possível tornar a variável controlada menos sensível à perturbação

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Controlo em Cascata
 - considere-se que o sistema tem uma variável intermédia mensurável (c_2)

- Controlo em Cascata
 - um modo de acelerar a recuperação relativamente a uma perturbação d_2 é usar a informação de c_2 para iniciar uma acção correctiva

- Controlo em Cascata
 - uma possibilidade consiste na estrutura de controlo em cascata (cascade controller) onde um controlador secundário (G_{sc}) inicia uma acção correctiva antes da perturbação (d_2) atingir a saída c_1
 - esta estratégia é particularmente eficiente quando G_{p2} é um bloco predominante de um sistema com constante de tempo fixa, pois a influência de d_2 em c_2 (e, consequentemente, em c_1) é muito atenuada por um aumento do ganho no controlador secundário G_{sc}

- 1. Formas de controlo de sistemas realimentados
 - 1. controlo proporcional
 - 2. controlo proporcional e integral
 - 1. saturação por efeito da acção integral
 - 3. acção diferencial
- 2. Sintonia do controlador
 - métodos em malha aberta
 - métodos em malha fechada
- Controlo em cascata e por "Feedforward"
 - controlo em cascata
 - controlo por "Feedforward"

- Controlo por "Feedforward"
 - muitas vezes as perturbações podem ser medidas antes de entrarem no sistema
 - assim, pode-se conceber uma estratégia que prepara o sistema para o "impacto" da perturbação, variando directamente a variável manipulada em função das perturbações
 - esta estratégia designa-se de controlo por "feedforward"

Controlo por "Feedforward"

- Controlo por "Feedforward"
 - para uma perturbação na carga d a acção correctiva gerada pelo controlador de "feedforward" (G_F) pode cancelar o efeito na saída c se

$$G_F = -\frac{G_L}{G_V G_P}$$

• a dificuldade em aplicar esta estratégia consiste em ela exigir o conhecimento de G_V , G_P , G_L que raramente são conhecidos "à priori"