2 Lesson 2

2.1 Finite Automaton

e.g. 2.1. Automatic Door

	front	rear	both	neither
front	\checkmark	×	\checkmark	×
rear	×	\checkmark	\checkmark	×

e.g. 2.2. $L = \{w \in \{0,1\}^* | w = w_1 w_2 \cdots w_n, w_n = 0\}$

remark. $q_0:$ accepted state

$$Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \delta : Q \times \Sigma \to Q$$

	0	1
q_0	q_0	q_1
q_1	q_0	q_1

def 2.1. (finite automaton)

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- 1. Q is a finite set called the states
- 2. Σ is the alphabet
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function

- 4. q_0 is the start state
- 5. $F \subseteq Q$ is the set of accept states

def 2.2. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton, let $w = w_1 w_2 \cdots w_n$ be a string, where each $w_i \in \Sigma$.

Then M accept w if there is a sequence of states $r_0, r_1, \dots, r_n \in Q$, such that:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, 1, 2, \dots, n-1$
- 3. $r_n \in F$

def 2.3. If L is the set of strings that M accepts, we say L is the language of M, and write L(M) = L, we say M recognizes/decides/accepts L.

If M accepts no string, it recognizes one language namely, the empty language.

e.g. 2.3. $L = \{w \in \{0,1\}^* | w = w_1 w_2 \cdots w_n, w_n = w_1\}$

2.2 Regular Language

def 2.4. (regular language) $L \subseteq \Sigma^*$ is a regular language if there is a finite automaton that accepts L

Let $A, B \subseteq \Sigma^*$, define:

- $(union) A \cup B = \{x \in \Sigma^* | x \in A \text{ or } x \in B\}$
- (concatenation) $AB = \{xy | x \in A, y \in B\}$

• $(star) A^* = \{x_1 x_2 \cdots x_k | k \ge 0, x_1, x_2, \cdots, x_k \in A\}$

thm 2.5. If A_1, A_2 are regular languages, so is $A_1 \cup A_2$

Proof. Let $M_1 = (Q_1, \Sigma_1, \delta_1, q_{10}, F_1)$ accepts A_1 , $M_2 = (Q_2, \Sigma_2, \delta_2, q_{20}, F_2)$ accepts A_2 , construct $M = (Q, \Sigma, \delta, q_0, F)$:

- 1. $Q = Q_1 \times Q_2 = \{(r_1, r_2) | r_1 \in Q_1, r_2 \in Q_2\}$
- 2. $\delta: Q \times \Sigma \to Q$ is defined as for each $(r_1, r_2) \in Q$, and each $a \in \Sigma$, let $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- 3. $q_0 = (q_{10}, q_{20})$
- 4. $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

remark. so is $A \cap B$

thm 2.6. If A_1, A_2 are regular languages, so is A_1A_2

- **DFA**: deterministic finite automaton
- NFA: nondeterministic...

If at least one of these processes accepts, then the entire computation accepts.

e.g. 2.4. NFA:

input: 010110

e.g. 2.5. Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA recognizes A.

Figure 1: The computation of NFA on input 010110

Figure 2: Deterministic and nondeterministic computations with an accepting branch

e.g. 2.6. $L = \{0^k, 2|k \text{ or } 3|k\}$

def 2.7. (NFA)

An **NFA** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- $1.\ Q$ is a finite set of states
- 2. Σ is the alphabet
- 3. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to P(Q)$ is the transive funtion
- 4. $a_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

def 2.8.

Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA, and let $w\in\Sigma^*$. Say N accepts w if we can write $w=y_1y_2\cdots y_m$, where $y_i\in\Sigma\cup\{\varepsilon\}$, and there exist $r_0,r_1,\cdots,r_m\in Q$, such that:

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, 1, \dots, m-1$
- 3. $r_m \in F$

thm 2.9. Every NFA has an equivalent DFA

Proof.