Homework 1 CS2233

1. Propositions

- p := "You passed CS2233"
- q := "You passed CS3333"
- r := "You can register for CS3343"
- s := "You understand Boolean Algebra"
- a: You have not passed CS2233 but you understand boolean algebra.

Rewrite: You understand boolean algebra and you have not passed CS2233.

b: You can not register for CS3343 only if you have not passed both CS2233 and CS3333 Rewrite: If you have not passed CS2233 and CS3333 then you cannot register for CS3343

c: If you can register for CS3343 then you have passed CS2233 and you understand boolean algebra if you passed CS2233.

Rewrite: If you passed CS2233 then you can register for CS3343 and you understand boolean algebra.

$$p \rightarrow (r \land s)$$

2: Equivalences

1: Show that $(\neg q \land (p \lor p)) \rightarrow \neg q$ is a tautology (i.e. $(\neg q \land (p \lor p)) \rightarrow \neg q \equiv T$)

1a: Show using a truth table

p	q	$\neg q$	(¬q p)	$(\neg q \ p) \rightarrow \neg q$	T	$(\neg q \ p) \rightarrow \neg q \ T$
T	T	F	F	T	T	T
T	F	T	T	T	T	T
F	T	F	F	T	T	T
F	F	T	T	T	T	T

1b: Show using a sequence of equivalences

1b alternate sequence:

```
Idempotent Law
                     p p=p
                                                                    ¬q p
                                                                               \neg q
Table 7, Line 1
                     u -w = \neg u -w, u = (\neg q p), w = (\neg q)
                                                                    \neg(\neg q p) \neg q
De Morgan's Law
                     \neg(\neg q \ p) = q \ \neg p
                                                                        ¬р
                                                                             \neg q
                     q - q = T
Negation Law
                                                                    \neg p T
Domination Laws u = T = T, u = (\neg p)
                                                                    Т
```

2: Show that $\neg q \rightarrow (p \quad r) \quad (\neg q \rightarrow r) \& (q \quad p)$

2a: Show using Truth tables

2b: Show using a sequence of equivalences

$$\neg q \rightarrow (p \quad r) \quad (\neg q \rightarrow r) \quad (q \quad p)$$

$$q$$
 (p r) Table 7, line 1
(q p) and (q r) Distributive Law LHS = $(q$ p) $(q$ r)

$$RHS = (\neg q \rightarrow r) \quad (p \quad q) \quad Commutative \ law$$

$$(q \quad r) \quad (p \quad q) \qquad \qquad Table \ 7 \ Line \ 1$$

$$RHS = (q \quad p) \quad (q \quad r)$$

$$LHS \quad RHS$$

$$Tautology$$

2b alternate sequence :

3. Additional Operators

1: Using truth tables, show that is associative. i.e., $p \land (q \land r) \equiv (p \land q) \land r$

p q r T T T	q r T	(p (q r)) T	p q T	((p q) r) T	((p q) r) (p (q r))
TTF	F	F	Ť	F	T
T F T	F	F	F	F	T
T F F	F	F	F	F	T
F T T	T	F	\mathbf{F}	F	T
F T F	F	F	\mathbf{F}	F	T
F F T	F	F	F	F	T
F F F	F	F	F	F	T

2: Using truth tables show that $\ensuremath{\uparrow}$ is not associative,

i.e., $p \uparrow (q \uparrow r) \neq (p \uparrow q) \uparrow r$

p	q	r	$q \uparrow r$	p ↑ (q ↑ r)	$\mathbf{p} \uparrow \mathbf{q}$	$(p \uparrow q) \uparrow r$	$((p \uparrow q) \uparrow r) (p \uparrow (q \uparrow r))$
T	T	T	F	T	\mathbf{F}	T	T
T	T	F	T	F	\mathbf{F}	T	F
T	F	T	T	F	T	F	T
T	F	F	T	F	T	T	F
F	T	T	F	T	T	F	F
F	T	F	T	T	T	T	T
F	F	T	T	T	T	F	F
F	F	F	T	T	T	T	T