Module IV: Effective computation

Turing machines with resource constraints.

Resources for computation.

Time: the number steps for which the TM runs Space: the number of different cells on which the TM writes The number of times an input bit can be read

The amount of energy used

:

Why bound resorces?

Viewing TM as algorithms.

TM to help in computation of important problems.

Finer study of decidable languages.

How should we bound the resources?

Many different ways exist. ...

Time complexity and complexity classes

Let $t: \mathbb{N} \to \mathbb{N}$.

Definition

A language $L \subseteq \Sigma^*$ is said to be in class TIME(t(n)) if there exists a deterministic Turing machine M such that $\forall x \in \Sigma^*$,

M halts on x in time O(t(|x|)), where |x| indicates the length of x. if $x \in L$ then M accepts x.

if $x \notin L$ then M rejects x.

$$P = \bigcup_k \mathsf{TIME}(n^k)$$

$$EXP = \bigcup_{k} TIME(2^{n^k})$$

Time complexity and complexity classes

Let $t: \mathbb{N} \to \mathbb{N}$.

Definition

A language $L \subseteq \Sigma^*$ is said to be in class $\mathsf{NTIME}(t(n))$ if there exists a non-deterministic Turing machine M such that $\forall x \in \Sigma^*$,

each run of M halts on x in time O(t(|x|)), where |x| indicates the length of x.

if $x \in L$ then M accepts x on at least one run.

if $x \notin L$ then M rejects x on all runs.

$$NP = \bigcup_{k} \mathsf{NTIME}(n^k)$$