

Задача А. Напишіть чекер

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Організатори хотіли зробити цю задачу дуже простою, просто A+B. Вам мали бути дані два числа a і b, і ви повинні були б вивести їхню суму a+b.

Але організатори були так зайняті підготовкою цього змагання, що забули написати чекер для цієї задачі. Будь ласка, допоможіть їм: який вердикт має отримати дана відповідь: Accepted, чи Wrong Answer?

Формат вхідних даних

Перший рядок вводу містить два цілі числа $a, b \ (1 \le a, b \le 10^9)$.

Другий рядок вводу містить одне ціле число $answer~(1\leqslant answer\leqslant 2\cdot 10^9)~-$ відповідь, яку ви повинні перевірити.

Формат вихідних даних

Якщо answer = a + b, виведіть Accepted. В іншому випадку виведіть Wrong Answer.

Приклади

standard input	standard output
2 2	Accepted
4	
42 69	Wrong Answer
100	

Зауваження

У першому прикладі, оскільки 2+2=4, відповідь правильна, і ви повинні вивести **Accepted**.

У другому прикладі, оскільки $42+69=111\neq 100$, відповідь неправильна, і ви повинні вивести Wrong Answer.

Задача В. Фіксовані точки

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Для масиву a визначимо його вагу як кількість елементів, які не зміняться після сортування. Наприклад, вага масиву [7,3,1,10] дорівнює 2: після сортування він стане рівним [1,3,7,10], тому другий і четвертий елементи не зміняться, а інші два зміняться.

Вам дано перестановку p цілих чисел від 1 до n. Знайдіть суму ваг всіх її $\frac{n(n+1)}{2}$ підмасивів.

Тут під підмасивом мається на увазі послідовний відрізок масиву. Наприклад, масив [7,3,1,10] має 10 підмасивів: [7],[3],[1],[10],[7,3],[3,1],[1,10],[7,3,1],[3,1,10].

Формат вхідних даних

Перший рядок містить одне ціле число $t\ (1\leqslant t\leqslant 10^4)\ -$ кількість тестових наборів. Далі йде опис тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (1\leqslant n\leqslant 2000)\ -$ довжину перестановки.

Другий рядок кожного тестового набору містить n цілих чисел p_1, p_2, \ldots, p_n ($1 \leqslant p_i \leqslant n$, всі p_i попарно різні)— елементи перестановки.

Гарантується, що сума n^2 по всіх тестових наборах не перевищує $4 \cdot 10^6$.

Формат вихідних даних

Для кожного тесту виведіть одне ціле число — суму ваг всіх його $\frac{n(n+1)}{2}$ підмасивів.

Приклад

standard input	standard output
3	20
4	9
1 2 3 4	37
5	
5 4 3 2 1	
8	
4 6 1 2 8 5 3 7	

Зауваження

У першому тестовому наборі для кожного підмасиву всі його елементи після сортування залишаться незмінними. Тому відповідь дорівнює $1 \cdot 4 + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 = 20$, оскільки є 4 підмасиви довжиною 1, 3 підмасиви довжиною 2, 2 підмасиви довжиною 3 і 1 підмасив довжиною 4.

Задача С. Залишкові конфігурації

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Вам дано масив a_1, a_2, \ldots, a_n додатних цілих чисел. Ви можете виконувати наступну операцію будь-яку кількість разів:

• Виберіть додатне ціле число x. Потім замініть a_i на $a_i \mod x$ для кожного $1 \leqslant i \leqslant n$.

Скільки різних масивів a_1, a_2, \ldots, a_n можна отримати за допомогою цих операцій? Оскільки ця кількість може бути дуже великою, виведіть її за модулем 998244353.

Тут $x \mod y$ позначає залишок від ділення x на y. Наприклад, $6 \mod 3 = 0$, а $6 \mod 4 = 2$.

Формат вхідних даних

Перший рядок вводу містить одне ціле число n $(1 \le n \le 500)$ — довжину масиву. Другий рядок вводу містить n цілих чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 500)$ — елементи масиву.

Формат вихідних даних

Виведіть одне ціле число — кількість різних масивів, які можна отримати за допомогою цих операцій.

Приклади

standard input	standard output
1	4
5	
2	7
6 5	
5	69
1 2 4 8 16	

Зауваження

У першому прикладі ви можете отримати наступні масиви: [5], [2], [1], [0].

У другому прикладі ви можете отримати наступні масиви: [6, 5], [2, 1], [1, 0], [0, 5], [0, 2], [0, 1], [0, 0].

Задача D. XOR > AND

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Вам дано n чисел a_1, a_2, \ldots, a_n . Чи можете ви розбити їх на дві **непорожні** групи так, щоб **ХОК** чисел у першій групі був більший за **AND** чисел у другій групі?

Нагадаємо, що XOR позначає операцію **побітового виключного ABO**, а AND позначає операцію **побітового І**. Наприклад:

- 13 XOR 6=11, адже в двійковому записі 13=1101, а 6=0110, тому їх XOR має бути рівним 1011=11;
- 13 AND 6=4, адже в двійковому записі 13=1101, а 6=0110, тому їх AND має бути рівним 0100=4.

Формат вхідних даних

Перший рядок містить одне ціле число t $(1 \leqslant t \leqslant 10^5)$ — кількість тестових наборів. Далі слідує опис тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (2\leqslant n\leqslant 2\cdot 10^5)\ -$ кількість чисел.

Другий рядок кожного тестового набору містить n цілих чисел $a_1, a_2, \ldots, a_n \ (1 \leqslant a_i < 2^{30}).$

Гарантується, що сума n по всіх тестових наборах не перевищує $2 \cdot 10^5$.

Формат вихідних даних

Для кожного тестового набору, якщо немає способу розбити числа, що задовольняє умові, виведіть NO.

Інакше, виведіть YES. На наступному рядку виведіть одне ціле число $k\ (1\leqslant k\leqslant n-1)\ -$ розмір першої групи.

На наступному рядку виведіть k цілих чисел $pos_1, pos_2, \dots, pos_k$ $(1 \leq pos_i \leq n,$ всі pos_i попарно різні) — **позиції** елементів, які ви збираєтесь помістити в першу групу.

Ви можете вивести YES i NO у будь-якому регістрі (наприклад, рядки yEs, yes, Yes будуть вважатися позитивною відповіддю).

Приклад

standard input	standard output
3	YES
2	1
3 2	1
4	NO
69 69 69 69	YES
5	3
8 9 10 11 12	3 4 5

Зауваження

У першому тестовому наборі ми можемо помістити число 3 в першу групу, а число 2 в другу групу. XOR чисел у першій групі буде 3, а AND чисел у другій групі буде 2.

У другому тестовому наборі немає способу розбити числа.

У третьому тестовому наборі ми можемо помістити числа 10, 11, 12 в першу групу, а числа 8, 9 в другу групу. XOR чисел у першій групі буде 10 XOR 11 XOR 12 = 13, а AND чисел у другій групі буде 8 AND 9 = 8.

Задача Е. Неспадний

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Вам дано масив цілих чисел a довжиною n та ціле число x. Ви можете виконувати наступну операцію:

• Оберіть будь-яке i таке, що $1 \le i \le n$, і встановіть $a_i = x$.

Знайдіть найменшу кількість операцій, яку вам потрібно виконати, щоб зробити масив a неспадним. Масив a довжиною n називається неспадним, якщо $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_n$.

Оскільки ця задача занадто проста, вирішіть її для кожного x від 1 до n.

Формат вхідних даних

Перший рядок містить одне ціле число t $(1\leqslant t\leqslant 10^4)$ — кількість тестових наборів. Далі слідують описи тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (1\leqslant n\leqslant 2\cdot 10^5)\ -$ довжину масиву.

Другий рядок кожного тестового набору містить n цілих чисел $a_1, a_2, \ldots, a_n \ (1 \leqslant a_i \leqslant n)$ — елементи масиву.

Гарантується, що сума n по всіх тестових наборах не перевищує $2 \cdot 10^5$.

Формат вихідних даних

Для кожного тестового набору виведіть n цілих чисел — відповіді на задачу для $x=1,2,\ldots,n$.

Приклад

standard input	standard output
4	2 2 2 3
4	0 0 0 0
2 1 3 2	1 1 3 3 4
4	3 4 3 4 3 4 3 4
1 2 2 4	
5	
3 2 2 2 4	
8	
1 3 5 7 1 3 5 7	

Зауваження

Для першого тестового набору нижче наведено оптимальні операції для x = 1, 2, 3, 4:

- Для x=1: ми можемо перетворити [2,1,3,2] в [1,1,1,2] замінивши перший і третій елементи на 1.
- Для x=2: ми можемо перетворити [2,1,3,2] в [2,2,2,2] замінивши другий і третій елементи на 2.
- Для x=3 : ми можемо перетворити [2,1,3,2] в [2,3,3,3] замінивши другий і четвертий елементи на 3.
- Для x=4 : ми можемо перетворити [2,1,3,2] в [2,4,4,4] замінивши останні три елементи на 4

Задача F. Антипаліндромний

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Вам дано рядок s. Ви хочете переставити його символи, отримуючи рядок r, так щоб виконувалася наступна умова:

• Для кожного i = 2, 3, ..., |s|, рядок $r_1 r_2 ... r_i$ не є паліндромом.

Чи можете ви це зробити? Якщо таких рядків r декілька, ви можете вивести довільний з них. Нагадаємо, що рядок s називається **паліндромом**, якщо він читається однаково зліва направо

і справа наліво. Наприклад, tenet є паліндромом.

Формат вхідних даних

Перший рядок містить одне ціле число t $(1\leqslant t\leqslant 10^5)$ — кількість тестових наборів. Далі йде опис тестових наборів.

Єдиний рядок кожного тестового набору містить рядок s, що складається з малих латинських літер.

Гарантується, що сума довжин s по всіх тестових наборах не перевищує 10^6 .

Формат вихідних даних

Для кожного тестового набору, якщо немає потрібного способу переставити символи s, виведіть NO.

В іншому випадку, виведіть YES. На наступному рядку виведіть рядок r. Він повинен бути перестановкою символів s і задовольняти вимогам з умови.

Ви можете виводити YES і NO в будь-якому регістрі (наприклад, рядки yEs, yes, Yes будуть вважатися позитивною відповіддю).

Приклад

standard input	standard output
5	YES
a	a
sos	YES
abba	oss
icpc	NO
tenet	YES
	icpc
	YES
	tente

Задача G. Конфігурації мінімумів

Ліміт часу: 3 seconds

Ліміт використання пам'яті: 256 megabytes

Задано два цілі числа n та m. Знайдіть кількість пар (a,b) цілих масивів довжиною n, для яких виконуються наступні умови:

- Усі елементи a та b є цілими числами від 1 до m;
- Для будь-яких $1 \leqslant i < j \leqslant n, \min(a_i, b_j) = \min(a_j, b_i).$

Оскільки ця кількість може бути великою, виведіть її за модулем 998244353.

Формат вхідних даних

У єдиному рядку вводу містяться два цілі числа $n, m \ (1 \le n, m \le 10^6)$.

Формат вихідних даних

Виведіть одне ціле число — відповідь до задачі за модулем 998244353.

Приклади

standard input	standard output
1 3	9
2 2	10
69 42	608932821

Зауваження

У першому прикладі будь-яка пара масивів ([x],[y]) з $1\leqslant x,y\leqslant 3$ задовольняє умовам задачі, їх 9.

У другому прикладі ось відповідні пари масивів:

- ([1,1],[1,1]);
- ([1,1],[1,2]);
- ([1,1],[2,1]);
- ([1,1],[2,2]);
- ([1,2],[1,1]);
- ([1,2],[1,2]);
- ([2,1],[1,1]);
- ([2,1],[2,1]);
- ([2,2],[1,1]);
- ([2,2],[2,2]).

Задача Н. Різні суми

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Дано масив цілих чисел a довжиною n. Ви хочете розбити його на найбільшу можливу кількість послідовних підмасивів, так щоб виконувалася наступна умова:

• Нехай k — кількість підмасивів, а s_1, s_2, \ldots, s_k — суми елементів у відповідних підмасивах. Тоді $s_i \neq s_{i+1}$ для всіх $1 \leq i \leq k-1$. (Зверніть увагу, що вам не потрібно, щоб всі k сум були попарно різними, вам потрібно лише, щоб сусідні суми були різними).

На яку найбільшу кількість підмасивів ви можете розбити масив a за такої умови?

Формат вхідних даних

Перший рядок містить одне ціле число t $(1\leqslant t\leqslant 10^5)$ — кількість тестових наборів. Далі йде опис кожного тестового випадку.

Перший рядок кожного тестового набору містить одне ціле число $n\ (1\leqslant n\leqslant 2\cdot 10^5)\ -$ довжину масиву.

Другий рядок кожного тестового набору містить n цілих чисел $a_1, a_2, \ldots, a_n \ (1 \leqslant a_i \leqslant 10^9)$ елементи масиву.

Формат вихідних даних

Для кожного тестового набору виведіть одне ціле число — відповідь на задачу.

Приклад

standard input	standard output
3	4
4	3
1 2 3 4	5
5	
1 1 1 1 1	
6	
2 1 1 1 1 2	

Зауваження

У першому тестовому наборі ми можемо розбити [1,2,3,4] на 4 підмасиви [1],[2],[3],[4]. Суми в цих підмасивах дорівнюють 1,2,3,4, жодні дві сусідні суми не рівні.

У другому тестовому наборі ми можемо розбити [1, 1, 1, 1] на 3 підмасиви [1], [1, 1, 1], [1]. Суми в цих підмасивах дорівнюють 1, 3, 1, жодні дві сусідні суми не рівні.

У третьому тестовому наборі ми можемо розбити [2,1,1,1,1,2] на 5 підмасивів [2],[1],[1,1],[1],[2]. Суми в цих підмасивах дорівнюють 2,1,2,1,2, жодні дві сусідні суми не рівні.

Задача І. Максимальні суми підмасивів

Ліміт часу: 3 seconds

Ліміт використання пам'яті: 256 megabytes

Для масиву цілих чисел a визначимо f(a) як найбільшу суму елементів будь-якого з його послідовних підмасивів (можливо, порожнього). Наприклад, f([-1,-2,-1])=0, а f([1,-2,3,1,-2,1]) дорівнює 4, що досягається на [3,1].

Також, для двох масивів a, b визначимо concat(a, b) як їхню конкатенацію. Наприклад, concat([1, 3], [2, 4]) = [1, 3, 2, 4]).

Вам надано n масивів $arr_1, arr_2, \dots, arr_n$. Знайдіть суму $f(concat(arr_i, arr_j))$ по всіх парах (i, j) цілих чисел з $1 \leq i, j \leq n$.

Формат вхідних даних

Перший рядок містить одне ціле число t $(1\leqslant t\leqslant 10^4)$ — кількість тестових наборів. Далі йде опис тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (1\leqslant n\leqslant 4\cdot 10^5)\ -$ кількість масивів.

i-й з наступних n рядків містить ціле число k_i та k_i цілих чисел $arr_{i,1}, arr_{i,2}, \ldots, arr_{i,k_i}$ $(1 \leqslant k_i \leqslant 4 \cdot 10^5, -10^7 \leqslant arr_{i,j} \leqslant 10^7)$ — довжину arr_i та його елементи.

Гарантується, що сума довжин усіх масивів у всіх тестових наборах не перевищує $4 \cdot 10^5$.

Формат вихідних даних

Для кожного тестового набору виведіть одне ціле число — суму $f(concat(arr_i, arr_j))$ по всіх парах (i, j) цілих чисел з $1 \leq i, j \leq n$.

Приклад

standard input	standard output
3	20
2	22
3 1 1 -10	131
2 2 2	
3	
3 -10 1 -10	
3 -10 2 -10	
3 -10 3 -10	
5	
1 1	
2 5 -5	
3 -2 1 2	
5 3 -10 5 -10 3	
5 1 -10 5 -10 3	

Зауваження

У першому тестовому наборі необхідно знайти суму f наступних 4 підмасивів: $f([1,1,-10,1,1,-10])=2,\ f([1,1,-10,2,2])=4,\ f([2,2,1,1,-10])=6,\ f([2,2,2,2])=8.$ Загальна сума дорівнює 2+4+6+8=20.

Задача Ј. Максимізуйте префіксні максимуми

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Для масиву a довжиною n визначимо f(a) як кількість позицій $1 \leqslant i \leqslant n$, для яких $a_i = \max(a_1, a_2, \dots, a_i)$. Іншими словами, f(a) — кількість префіксних максимумів в масиві a.

Вам задана перестановка (p_1, p_2, \dots, p_n) цілих чисел від 1 до n. Знайдіть будь-яку перестановку (q_1, q_2, \dots, q_n) цілих чисел від 1 до n, для якої виконується наступна умова:

• $f((q_1,q_2,\ldots,q_n))+f((p_{q_1},p_{q_2},\ldots,p_{q_n}))$ є найбільшим серед усіх перестановок (q_1,q_2,\ldots,q_n) .

Якщо існує декілька таких перестановок, знайдіть будь-яку з них.

Формат вхідних даних

Перший рядок містить одне ціле число $t\ (1\leqslant t\leqslant 10^5)\ -$ кількість тестових наборів. Далі слідує опис тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (1\leqslant n\leqslant 2\cdot 10^5)\ -$ довжину перестановки.

Другий рядок кожного тестового набору містить n цілих чисел p_1, p_2, \ldots, p_n $(1 \leqslant p_i \leqslant n, \text{ всі } p_i$ різні)— елементи перестановки.

Гарантується, що сума n по всіх тестових наборах не перевищує $2 \cdot 10^5$.

Формат вихідних даних

Для кожного тестового набору виведіть n цілих чисел q_1,q_2,\ldots,q_n $(1\leqslant q_i\leqslant n,$ всі q_i різні) — будь-яку перестановку цілих чисел від 1 до n, яка **максимізує** значення $f((q_1,q_2,\ldots,q_n))+f((p_{q_1},p_{q_2},\ldots,p_{q_n}))$

Приклад

standard input	standard output
3	1 2 3
3	1 3 4 2
1 2 3	1 3 5 4 2
4	
2 4 3 1	
5	
1 5 2 4 3	

Зауваження

У першому тестовому наборі, для q=(1,2,3), значення дорівнює $f(1,2,3)+f(p_1,p_2,p_3)=f(1,2,3)+f(1,2,3)=3+3=6$.

У другому тестовому наборі, для q=(1,3,4,2), значення дорівнює $f(1,3,4,2)+f(p_1,p_3,p_4,p_2)=f(1,3,4,2)+f(2,3,1,4)=3+3=6$.

У третьому тестовому наборі, для q=(1,3,5,4,2), значення дорівнює $f(1,3,5,4,2)+f(p_1,p_3,p_5,p_4,p_2)=f(1,3,5,4,2)+f(1,2,3,4,5)=3+5=8$.

Задача К. Максимізуйте LCS перестановок

Ліміт часу: 2 seconds

Ліміт використання пам'яті: 256 megabytes

Дано перестановку (p_1, p_2, \ldots, p_n) цілих чисел від 1 до n. Знайдіть будь-яку перестановку (q_1, q_2, \ldots, q_n) цих чисел від 1 до n таку, що виконується наступна умова:

• $LCS((q_1, q_2, \ldots, q_n), (p_{q_1}, p_{q_2}, \ldots, p_{q_n}))$ є найбільшою серед усіх перестановок (q_1, q_2, \ldots, q_n) .

Якщо існує декілька таких перестановок, знайдіть будь-яку з них.

Тут LCS(a,b) позначає довжину найбільшої спільної підпослідовності послідовностей a і b. Наприклад, LCS((1,3,4,2,5),(3,1,2,4,5))=3, а однією з спільних підпослідовностей довжини 3 є (1,2,5).

Формат вхідних даних

Перший рядок містить одне ціле число t $(1\leqslant t\leqslant 10^5)$ — кількість тестових наборів. Далі йде опис тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (1\leqslant n\leqslant 10^6)\ -$ довжину перестановки.

Другий рядок кожного тестового набору містить n цілих чисел p_1, p_2, \ldots, p_n $(1 \leqslant p_i \leqslant n, \text{ всі } p_i$ різні)— елементи перестановки.

Гарантується, що сума n по всіх тестових наборах не перевищує 10^6 .

Формат вихідних даних

Для кожного тестового набору виведіть n цілих чисел q_1,q_2,\ldots,q_n $(1\leqslant q_i\leqslant n,$ всі q_i різні) — будь-яку перестановку цілих чисел від 1 до n, яка **максимізує** значення $LCS((q_1,q_2,\ldots,q_n),(p_{q_1},p_{q_2},\ldots,p_{q_n})).$

Приклад

standard input	standard output
2	1 2 3 4
4	1 6 2 5 3 4
1 2 3 4	
6	
6 5 4 3 2 1	

Зауваження

У першому тестовому наборі, для q = (1, 2, 3, 4), маємо:

 $LCS((1,2,3,4),(p_1,p_2,p_3,p_4)) = LCS((1,2,3,4),(1,2,3,4)) = 4.$

У другому тестовому наборі, для q = (1, 6, 2, 5, 3, 4), маємо:

 $LCS((1,6,2,5,3,4),(p_1,p_6,p_2,p_5,p_3,p_4)) = LCS((1,6,2,5,3,4),(6,1,5,2,4,3)) = 3;$ однією з спільних підпослідовностей довжиною $3 \in (1,2,3)$.

Задача L. Не зростаючий

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Вам дано масив a_1, a_2, \ldots, a_n з додатніми цілими числами. За одну операцію ви можете збільшити будь-який елемент масиву на 1.

Ви ненавидите зростаючі масиви. Знайдіть найменшу кількість операцій, необхідних, щоб зробити масив **не** зростаючим.

Масив називається зростаючим, якщо $a_1 < a_2 < \ldots < a_n$.

Формат вхідних даних

Перший рядок містить одне ціле число t ($1 \le t \le 10^4$) — кількість тестових наборів. Далі слідують описи тестових наборів.

Перший рядок кожного тестового набору містить одне ціле число $n\ (2\leqslant n\leqslant 2\cdot 10^5)\ -$ довжину масиву.

Другий рядок кожного тестового набору містить n цілих чисел $a_1, a_2, \ldots, a_n \ (1 \leqslant a_i \leqslant 10^9) -$ елементи масиву.

Гарантується, що сума n по всіх тестових наборах не перевищує $2 \cdot 10^5$.

Формат вихідних даних

Для кожного тестового набору виведіть одне ціле число — найменшу кількість операцій, необхідних, щоб зробити масив не зростаючим.

Приклад

standard input	standard output
3	27
2	0
42 69	111
3	
1 1 1	
5	
123 234 345 456 567	

Зауваження

У першому тестовому наборі початковий масив є зростаючим. Один зі способів зробити його не зростаючим за 27 операцій — 27 разів збільшити перший елемент на 1. Масив стане рівним [69, 69].

У другому тестовому наборі початковий масив вже не зростаючий.

У третьому тестовому наборі початковий масив є зростаючим. Один зі способів зробити його не зростаючим за 111 операцій — 111 разів збільшити другий елемент на 1. Масив стане рівним [123, 345, 345, 456, 567].