[弯曲传感器模块]

一、产品介绍

弯曲传感器是一种测量弯曲角度或偏转量的装置。通常, Flex 传感器是由一种可变电阻组成的,覆盖在 Flex 传感器的表面,对弯曲做出反应。不同的弯曲角度会改变传感器的电阻值,根据传感器的阻值变化即可判断弯曲角度。

Flex sensor 弯曲传感器末端引脚部分(即非弯曲传感部分)十分脆弱,非常容易造成损坏,存在使用耐久差的弊端。为此我们设计了这款弯曲传感器模块,该模块解决了传感器使用耐久性差的弊端,同时具有电源级联接口方便多模块级联使用,宽电压工作范围兼容 3.3V 和 5V 系统,即插即用,使用简单方便。

二、模块介绍及引脚定义

弯曲传感器模块如下图所示。

模块引脚定义如下表所示。

序号	引脚定义	功能描述	备注
1	VCC	模块供电正极	3.3V~5V
2	GND	模块供电负极	
3	DO	高低电平信号输出	
4	AO	模拟电压信号输出	

三、传感器模块技术指标

供电电压: 3.3V~5V 转换精度: ±0.01V

可调电位器旋转角度: 260° ±20°

分压电阻阻值: 100KΩ 模块尺寸: 12.5mm×43.5mm

特点:

- (1) 测量灵敏度高;
- (2) Flex 传感器末端保护设计,提高使用耐久性;
- (3) 具有电源级联接口方便多模块级联使用;
- (4) 兼容 5V、3.3V 测量系统;

四、Flex sensor 技术参数

(一) flex 2.2 "单向弯曲传感器

技术规格	参数
笔直状态的电阻	25ΚΩ
电阻值公差	±30%
弯曲电阻变化	10ΚΩ~125ΚΩ
额定功率	0.5W
峰值功率	1W
弯曲寿命	>1 百万次
工作温度	-35℃~+80℃
尺寸	77mm * 6.35mm (长*宽)
接口类型	2-Pin 金属引脚(间距 0.1")

(二) flex 4.5"单向弯曲传感器

技术规格	参数
笔直状态的电阻	10ΚΩ
电阻值公差	±30%
弯曲电阻变化	60ΚΩ~110ΚΩ
额定功率	0.5W
峰值功率	1W
弯曲寿命	>1 百万次
工作温度	-35°C~+80°C
尺寸	112.24mm * 6.35mm (长*宽)
接口类型	2-Pin 金属引脚(间距 0.1")

五、传感器模块使用方法

(一) 模拟电压信号 AO 使用方法

第一步: 连接 Flex 传感器与传感器模块, 给模块提供电源 VCC(3.3V 或 5V), 连接 AO 口至单片机 ADC 采集口(ADC 参考电压需与模块供电电压一致);

第二步:修改测试例程中的变量 VCC 为供电电压值(单位 V),烧录 AO 测试例程;

const float VCC =5.0V; // 模块供电电压,ADC参考电压为V 第三步: 打开串口调试助手(波特率 9600),可以看到当前打印的电阻值。分别记录水平和最大待测弯曲度时的电阻值(单位 Ω);

第四步: 修正测试例程中的水平电阻值变量 STRAIGHT_RESISTANCE 和最大弯曲度 BEND RESISTANCE 的值后,重新烧录测试例程;

const float STRAIGHT_RESISTANCE =37300.0; // 平直时的电阻值 const float BEND RESISTANCE =90000.0; // 90度弯曲时的电阻值

(二) 数字开关信号 DO 使用方法

弯曲 Flex 传感器至设定弯曲度,然后调节比较阈值电位器至指示灯 D2 刚好变亮后,往回调节一下至指示灯刚好不亮即可完成比较阈值设定。

注: 顺时针方向调节电阻值增大;

六、注意事项

1、Flex 传感器只能向印字一侧弯曲(如下图所示),向另一个方向弯曲传感器不会产生任何可靠的数据,可能会损坏传感器。同时注意不要将传感器弯曲到靠近底部的位置,因为它们有扭结和失效的可能。

2、	Flex	传感器之	间阳值	存在个	体差异,	每个	传感器	在使用	前需讲得	行标定。
	1 1021			11 11 1		-J- 1	1 × 100 HH	上 人 / 3	110 1111 2	

3. Flex sensor 3	弯曲传感器末端引脚部分	(即非弯曲传感部分)	十分脆弱,
非常容易造成损坏,	使用时需避免受力弯折。		