Reproduction of "Non-economic factors in violence: Evidence from organized crime, suicides and climate in Mexico"

Ming Senn Teo, Alica Modica, Bianca Rein Del Rosario, Seungmin Kim April 26th, 2024

Abstract

Edward Miguel et al. (2018) examined the role of economic and non-economic factors in violence, using evidence from killings by drug trafficking organizations, homicides, and suicides in Mexico. Temperature was used as the main independent variable, given its well-established effect on both economic production and psychological factors that could be drivers of violence. Various controls were added to test their role in mediating the relationship between climate and violent outcomes. While finding only a partial effect of economic factors, non-economic factors were found to be significant in explaining the rise of violence. We have conducted a reproduction using the same statistical procedures and data as the original paper, excluding the analysis on DTO killings due to the unavailability of this data. We confirm the sign, magnitude, and statistical significance of the original estimates on violence.

1 Introduction

The paper written by Edward Miguel, Ceren Baysan, Marshall Burke, Felipe González and Solomon Hsiang (2018)[1] attempts to understand which factors lie behind the presence of violence, using evidence on killings by drug trafficking organizations, homicides, and suicides in Mexico. In particular, it investigates which ones between economic and non-economic factors better explain the relationship between temperature and violence. Temperature is used to model a "taste for violence", leveraging the well-established positive relationship between hot climates and spikes in violence. Temperature has been shown to cause not only impacts on economic production, but also psychological distress on individuals.

The conclusions of the study imply that temperature can induce large additional

increase in violence on homicides, and that this relationship cannot be explained by economic factors alone, as the limited impact of a cash transfer program suggests. Non-economic psychological and physiological factors that are affected by temperature, instead, likely play an important role in causing violence.

As suicide is know to be heavily influenced by mental distress, and the effect of temperature changes on the latter is well-established, this phenomenon is used in the study as a benchmark to show the role of psychological factors in temperature's effect on violence. The study ultimately confirms that inter-group and interpersonal violence respond to temperature in the same way suicide does.

The original paper also adds evidence to the already well-established relationship between suicides and climate, and proposes that, at least in the setting of the study, economic interventions to moderate the effect of climate change on rising intra-personal violence are not sufficient. We have conducted a reproduction using the same statistical procedures and data as the original paper. The data presents official records of homicides and suicides from Mexico's Bureau of Statistics (IN-EGI) for the period between January 1990 and December 2010. In order to avoid confounding with the Mexican Drug War, the data is split into two periods, "prewar" (January 1990 - December 2006) and "war" (January 2007 - December 2010), and only the first one is used in the analysis of homicides and suicides.

We have excluded from our reproduction the tables and regressions using DTO (Drug Trafficking Organizations) killings as a variable representing intergroup violence, since it was not present in the dataset available for reproduction.

2 Reproducibility

There weren't any coding errors found from the original STATA code by the authors. However, when trying to reproduce the results, the data for drug traffic organizations(DTO) killings was not included in the public datasets. As a result, we were not able to reproduce figures and tables that involved this variable.

2.1 Challenges

- **2.1.1 Figure 1:** We did not produce this figure as this is just a visual that shows the spectrum of violence and there was no relevant STATA code.
- **2.1.2 Figure 2:** We were able to reproduce it almost identically, except for the DTO killings data and the format of the X-axis labels due to Python.
- **2.1.3 Figure 3, 5, 6:** Although the trends of the graphs are similar, the estimates of our parameters and confidence intervals are different than in the paper.

The regressions for these figures include three fixed effects: municipality, year, and month. However, the package PanelOLS from linearmodels cannot take in more than two fixed effects so we could not properly account for the time-fixed effects[2]. Additionally, we tried to calculate fixed effects using dummy variables along with the statsmodel api but the results were drastically different from the paper and the runtime was 45 minutes[A-1, A-2]. As a result, we were only able to calculate with municipality and a combined month and year fixed effects so the reproduced figure was not the same as the one in the original paper.

Though the values were different, the trends were the same so it does not affect the main argument of the paper. Figure 3 still shows a positive linear relationship between temperature and homicide rates. Similarly, Figure 5 still shows a positive linear relationship between temperature and suicide rates. The regression estimates in figure 6 are similar to the paper with only a difference in confidence intervals. One minor discrepancy we saw that wasn't necessarily a coding error for figures 3 and 5 but perhaps the way STATA produces visualizations is with the widths of the temperature bins. In the original figure, the bins are a width of 3 but we believe they just failed to specify that the left point was inclusive and the endpoint was

2.1.4 Figure 4: This figure was not reproduced as the results came from another paper and the panel from the paper that was presented as evidence for the claim is seen in other figures and tables.

exclusive.

- 2.1.5 Table 1: The standard deviations within statistics, which is "the standard deviation of the corresponding variable after removing municipality fixed effects", were not calculated for this table as the package to calculate this, f_oneway from scipy.stats, cannot calculate the statistics for more than 9 groups and there are over 2000 groups(municipalities). The original STATA code uses loneway which is similar as they both conduct a one-way ANOVA test.
- **2.1.6 Table 2:** Referring to the notes that columns 2-6 used data in the periods from 2007 to 2010, the data used on the reproduction was actually before 2007. With these contradictory conditions of data, the figures in the result differ. However, the overall trends look consistent in that each figure has identical signs and is close in magnitude.
- **2.1.7 Table 3:** With the original stata code, 'areg', it was not possible to calculate the means of the dependent variable and 'within standard deviations.' However, the coefficients of dependent variables, numbers of observations, and R-squared are the

same. Standard deviations and p-values are found to be different from the original table.

- **2.1.8 Table 4, 5, 6, 8** The regressions match those in the original paper, with only some minor differences in the coefficients, which will be discussed in the next section.
- **2.1.9 Table 7:** This regression was not performed as the dependent variable, DTO, was not present in the dataset.

3 Regression model

The regression estimates and confidence intervals derived from figures 3 and 5:

$$y_{nsmt} = \beta \text{Temp}_{nsd} + \delta \text{Precip}_{nsd} + \xi_d + \lambda_n + \zeta_n + \epsilon_{nsd}$$
 (1)

where y is the number of DTO killings, homicides, or suicides per 100,000 inhabitants in municipality n, state s, month m, and year t; ξ and λ are full sets of month and year fixed effects; ζ is a full set of municipality fixed effects, respectively; Temp is average temperature, measured in degrees celsius; Precip is total precipitation, measured in thousands of millimeters; and ϵ is an error term clustered at the state level. The x-axis indicates the deviation from the municipality temperature average while the y-axis is the deviation from the municipality average for the variable in study(homicide and suicide rates).

The regression estimates and confidence intervals derived from figure 6:

$$y_{smt} = \alpha + \xi_m + \lambda_t + \zeta_s + \sum_{k=-6}^{6} \beta_{t+k} \text{Temp}_{sm,t+k} + \sum_{k=-6}^{6} \delta_{t+k} \text{Precip}_{sm,t+k} + \epsilon_{smt}$$
(2)

where y is the number of DTO killings, homicides, or suicides per 100,000 inhabitants in municipality s, month m, and year t; ξ_m , λ_t , and ζ_s are month, year, and municipality fixed effects; $Temp_{smt}$ and $Precip_{smt}$ are temperature measured in degrees celsius and precipitation measured in thousands of millimeters respectively. ϵ is an error term clustered at the state level. The x-axis indicates the lags and leads of the effects of temperature in month t -1 (lags) and month t + 1 (leads) on violence in month t, while the y-axis is the deviation from the municipality average for the variable in study(homicide and suicide rates).

For table 1, it was finding mean and standard deviation that no other special

regression model was required.

For table 2, column(1), which is column 4 in the original paper, required deriving regression result with the effect of temperature and precipitation and no other fixed effects considered. The regression expression was therefore the following:

Homicides =
$$\beta_0 + \beta_1$$
Temperature + β_2 Precipitation + ϵ (3)

The column(2), which is column(6) in the original paper, required the model to be modified with fixed effects of Time. By adding 'TimeEffects' into the code, we made the regression expression like the following where the greek letter xi stands for the Time fixed effect:

Homicides =
$$\beta_0 + \beta_1$$
Temperature + β_2 Precipitation + $\xi + \epsilon$ (4)

Lastly, the column(3), originally column(5), was with the fixed effects of both Time effects and Entity effects. Same as the column(2), by adding 'TimeEffedts' and 'EntityEffects,' the regression expression for the column 3 was the following, where the greek letter epsilon stands for entity effect:

Homicides =
$$\beta_0 + \beta_1$$
Temperature + β_2 Precipitation + $\xi + \lambda + \epsilon$ (5)

For table 3, there were 4 regressions for total, where independent variables and fixed effects are all same but dependent variables changing by the regressions. The dependent variable for the first regression was homicide rate that the equation was following:

Homicides =
$$\beta_0 + \beta_1$$
Temperature + β_2 Precipitation + $C_{month} + C_{year} + C_{id} + \epsilon$ (6)

Same logic as the first regression, the dependent variable for the second regression was 'car thefts,' 'extortion' for the third and 'kidnap' for the third. Modifying only dependent variable, the regression is like the followings:

Car Theft =
$$\beta_0 + \beta_1$$
Temperature + β_2 Precipitation + C_{month} + C_{year} + C_{id} + ϵ (7)

Extortion =
$$\beta_0 + \beta_1$$
Temperature + β_2 Precipitation + $C_{month} + C_{year} + C_{id} + \epsilon$ (8)

$$Kidnap = \beta_0 + \beta_1 Temperature + \beta_2 Precipitation + C_{month} + C_{year} + C_{id} + \epsilon \quad (9)$$

In order to test whether municipality-level economic variables mediate the temperatureviolence relationship, the original paper presents different regressions controlling for municipality-level income variables. The researchers estimated in STATA a panel data regression with month and year fixed effects, as well as municipality fixed effects. Year and month effects were added by creating dummies for each unique year and month, while entity effects where added using specific STATA syntex. In Python, panel data regression is not as straightforward as in STATA. While creating dummies for each year, month and municipality would. We set on the use of the package *PanelOLS* from the package *linearmodels*. This package allows to add entity and time fixed effects, but can support only one variable for each effect. Therefore, we created a variable Date to capture the effect of both the year variable and the month variables, and used it to add time fixed effects to the regression. The unique code identifier for each municipality was used to capture entity effects. Moreover, as in STATA, we weighted the analysis on the variable *popw* and we clustered the standard errors at the state level. The regression equation estimated in Table 4 is:

$$Homicides_{nsmt} = \beta Temp_{nsd} + \delta Precip_{nsd} + \xi_d + \lambda_n + \gamma Temp_{nsd} \times Control_{nsd} + \epsilon_{nsd}$$
 (10)

where y is the number of homicides for 100,000 people in municipality n on day d; ξ is a set of time fixed effects; λ is a set of municipality fixed effects; Temp is average temperature measured in degrees Celsius; Precip is total precipitation measured in thousands of millimeters; and ε is an error term clustered at the state level. The results in Table 4 match those in the original paper. The effect of temperature on the homicide rate is positive and statistically significant at the 1% confidence level. It appears that both income and the Gini Index, respectively measures of income and of economic inequality, do not mediate the relationship between temperature and violence, as shown by small and non significant coefficients on these variables. The same conclusions can be drawn for the variables representing average temperatures and air conditioning. There is only little evidence that the latter could induce a reduction in violence in richer households that have air conditioning, with a small coefficient with significance at the 10% confidence level.

A second approach to studying the role of economic factors on violence was brought forward by the researchers using data on a large-scale cash transfer program, Progresa. Transfers to families started in 1998, therefore the data is filtered to exclude years when the program had not been established yet.

$$Homicides_{nsmt} = \beta Temp_{nsd} + \delta Precip_{nsd} + \sigma Progresa_{nsd} + \gamma Temp_{nsd} \times Progresa_{nsd} + \xi_d + \lambda_n + \epsilon_{nsd}$$
(11)

The effect of temperature and Progresa cash transfers on homicides is estimated

by adding, as in the previous regressions, day and municipality fixed effects, as well as an interaction γ between the two main regressors.

The results of the reproduction confirmed the outcomes of the original paper, with only minor differences of 0.001 in all but one coefficient. We believe that this difference can be discarded, as it could be caused simply by the use of a different software. The results of both the original and the reproduced regressions conclude that the effect of these variables is small and not statistically significant.

The third and last approach to studying the role of economic factors on violence was to explore the impacts on violence during economically critical times. The following regression model is estimated, using growing season, households in rural areas, and workers in the agricultural sector as controls:

$$Homicides_{nsmt} = \beta Temp_{nsd} + \delta Precip_{nsd} + \sigma Control_{nsd} + \xi_d + \lambda_n$$
 (12)

The results we gained show that temperature shocks during the growing season, the percentage of households living in rural areas, and the percentage of workers in the agricultural sector fail to explain the relationship between climate and violence. All of the coefficients are small and not statistically significant. There is only one minor difference from the original paper that can be spotted, which is the fact that the Temperature variable when controlling for households living in rural areas has a higher level of significance at 1% confidence level.

Lastly, the regressions in Table 8 in the original paper (Table 7 in this paper), investigate the role of psychological factors in the link between temperature and violence. The following regression model is estimated, using different economic variables as controls:

Suicides_{nsmt} =
$$\beta \text{Temp}_{nsd} + \delta \text{Precip}_{nsd} + \sigma \text{Control}_{nsd} + \gamma \text{Temp}_{nsd} \times \text{Control}_{nsd} + \xi_d + \lambda_n + \epsilon_{nsd}$$
(13)

The results we obtained confirm the fact that the response of suicides to temperature mirrors that of homicides, and that economic variables fail to explain the relationship between variations in climate and violence. Most coefficients are small and not significant, and the only ones with significance have signs opposite to what would be expected. Only some minor differences from the original paper can be spotted, such as the fact that, in column (6), the interaction variable between Temperature and Progresa Transfers has a coefficient of -0.002 instead of -0.001. Additionally, in column (7), Python, unlike STATA, absorbed the variable growing_season as it had the same effect as the interaction between it and the

Temperature variable, also included in the regression.

4 Conclusion

Overall, the reproduction was possible but challenging because of the amount of data that we had to process as well as finding compatible Python packages that can replicate STATA functions. PanelOLS and statsmodel proved to be helpful for running the regressions but had computational limitations such as the number of fixed effects and runtime. Additionally, chatGPT helped find packages to use and gave skeleton code.

Despite these challenges, the reproduced evidence is closely aligned with the original paper's three main findings: supporting the established relationship between temperature and violence(intergroup and interpersonal), the lack of influence of economic factors on this association, and the presence of non-economic factors for explaining this link. As mentioned, the main difference between the reproduction and the original paper was the absence of the DTO killings variable to strengthen various analyses like proving the relationship between temperature and intergroup violence. Despite this, other variables like homicide rate are still strong metrics for evidence for these claims.

References

- [1] Felipe González Solomon Hsiang Ceren Baysan, Marshall Burke and Edward Miguel. Economic and Non-Economic Factors in Violence: Evidence from Organized Crime, Suicides and Climate in Mexico. *National Bureau of Economic Research*, pages 1–40, 2018.
- [2] Matheus Facure Alves. Causal inference for the brave and true, 2022. Last accessed 26 April 2024.

5 Figures

Figure 2: Time Series in Violence

Notes: Time averages (weighted by population) for homicide rate in all municipalities in Mexico. The dashed vertical black line denotes the beginning of the Mexican Drug War.

Figure 3: Temperatures and Violence in Mexico

Figure 3: Temperature and violence in Mexico

Notes: Temperature response functions for suicides using temperature bins of width 2°C. Regression estimates and confidence intervals derived from Equation (1).

Figure 5: Temperatures and suicides

Notes: Temperature response functions for suicides using temperature bins of width 2°C. Regression estimates and confidence intervals derived from Equation (1).

0.04 Homicides rate 0.02 0.00 -0.02 Ó 0.015 0.010 Suicides rate 0.005 0.000

Figure 6: Temporal distribution of estimates

 $Notes \colon$ Regression estimates of β_{t+k} of equation 2 from section 3 Regression.

-<u>'</u>2

6 Tables

-0.005

Table 1. Descriptive statistics

Period:	Januar	January 1990 - December 2006	ber 2006	Januar	January 2007 - December 2010	ber 2010
	Mean	St. Dev.	St. Dev within	Mean	St. Dev.	St. Dev within
Homicides per 100,000 inhabitants	0.98	5.23	1	0.83	4.13	1
Suicides per 100,000 inhabitants	0.21	1.92	ı	0.26	2.21	ı
Population	39057.12	116901.42	ı	44584.62	130760.44	ı
Temperature (°C)	20.10	5.00	1	20.02	5.09	ı
Precipitation (millimeters)	93	112	ı	81	107	ı
Municipalities Observations	2,456 494.724			2,456 117.696		

Note: Standard errors clustered at the state level. Standardized effects in brackets. $^*p<0.1; ^{**}p<0.05; ^{***}p<0.01$

Table 2. Temperature and violence in Mexico

Dependent variable:		Homicides	
	(1)	(2)	(3)
Temperature	0.0729***	0.0218	0.033
	(0.000)	(0.317)	(0.114)
	[0.017]	[0.022]	[0.021]
Precipitation	-0.2087*	-0.2151*	-0.0078
	(0.089)	(0.082)	(0.799)
	[0.123]	[0.124]	[0.031]
Municipality F.E.	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes
Month F.E.	Yes	No	Yes
Month-state F.E.	No	No	Yes
State trends	No	Yes	No
Observations	117,458	117,458	117,458

Note: Standard errors clustered at the state level. Standardized effects in brackets. p < 0.1; p < 0.05; p < 0.01

Table 3. Temperature and economically motivated crimes

Dependent variable:	Homicides	Car thefts	Extortions	Kidnappings
	(1)	(2)	(3)	(4)
Temperature	0.050***	0.067	-0.005	-0.007
	(0.000)	(0.441)	(0.323)	(0.635)
	[0.013]	[0.086]	[0.006]	[0.001]
Precipitation	-0.285	-0.363	0.220	0.060
	(0.571)	(0.916)	(0.317)	(0.268)
	[0.503]	[3.429]	[0.220]	[0.054]
Mean of dep. variable	-	-	-	-
(Within st. dev.)	(-)	(-)	(-)	(-)
Municipality, year & month F.E.	Yes	Yes	Yes	Yes
Observations	1535	1535	1535	1535
R^2	0.714	0.886	0.603	0.392

Note: Standard errors clustered at the state level. Standardized effects in brackets. *p < 0.1; **p < 0.05; ***p < 0.01

Table 4. Interaction with economic variables

Dependent variable:		Hom	icides	
	(1)	(2)	(3)	(4)
Temperature	0.014*** (0.004)	0.016*** (0.004)	0.022^{***} (0.005)	0.016*** (0.004)
\times Income (1990)	0.003 (0.002)			
× Gini (1990)		0.001 (0.003)		
imes Houses with air conditioning (2010)			-0.002* (0.001)	
\times Average temperature (1990-2010)				$0.000 \\ (0.002)$
Municipality F.E.	Yes	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes	Yes
Month F.E.	Yes	Yes	Yes	Yes
Observations	$486,\!132$	482,868	121,056	493,908

Note: Standard errors clustered at the state level.

*p<0.1; **p<0.05; ***p<0.01

Table 5. Progresa transfers

Dependent variable:		Homicides	
	(1)	(2)	(3)
Temperature	0.013***	0.013***	0.013***
	(0.003)	(0.003)	(0.003)
Progresa Transfers		0.004	0.004
		(0.011)	(0.012)
Progresa Transfers x Temperature			-0.002
-			(0.002)
Municipality F.E.	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes
Month F.E.	Yes	Yes	Yes
Observations	262,992	262,992	262,992
Note: Standard errors clustered at the state level.	*p<0.1	; **p<0.05; **	**p<0.01

Table 6. Interaction with agricultural variables

Dependent variable		Hom_3	Homicides	
	(1)	(2)	(3)	(4)
Temperature	0.016*** (0.004)	0.013***	0.015*** (0.005)	0.015*** (0.005)
imes Growing season indicator		0.005		
imes Households in rural areas (1990)			-0.000 (0.002)	
imes Workers in agricultural sector (1990)				-0.000 (0.002)
Municipality F.E.	Yes	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes	Yes
Month F.E.	Yes	Yes	Yes	Yes
Observations	493,908	493,908	488,784	488,784
Note: Standard errors clustered at the state level.	* *	*p<0.11 **p<0.05 ***p<0.01	. *** n<0.01	

Table 7. Temperature and suicides in Mexico

Temperature	(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)
•	0.007***	0.006*** (0.001)	0.007***	0.005***	0.007***	0.009***	0.009***	0.007***	0.006***
× Income		0.001 (0.001)							
× Gini			0.000 (0.001)						
imes Homes with Air Conditioning				0.001 (0.001)					
imes Average Temperature					0.001* (0.001)				
imes Temperature $ imes$ Progresa						-0.002 (0.002)			
imes Progresa Transfers						-0.009* (0.005)			
imes Growing Season							-0.004** (0.002)		
imes Households in Rural Areas								-0.000 (0.001)	
imes Agricultural Workers									-0.000
Municipality F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month F.E. Observations	$\frac{\mathrm{Yes}}{493.908}$	$\mathop{\mathrm{Yes}}_{486,132}$	$\underset{482,868}{\operatorname{Yes}}$	$_{ m Yes}$ $_{ m 121,056}$	$^{ m Yes}_{493,908}$	$^{ m Yes}_{262,992}$	$^{ m Yes}_{493,908}$	Yes 488,784	$\frac{\mathrm{Yes}}{488.784}$

7 Appendix

A-1: Figure 3 - Attempt

Figure 3: Temperature and violence in Mexico

Notes: Figure with a manual calculation of fixed effects and using the package statsmodel.

A-2: Figure 3 - Attempt Code

```
m = sm.regression.linear_model.0LS(y, X, weights=fig_3_1['popw'])
r = m.fit(cov_type='cluster', cov_kwds={'groups': fig_3_1['state']})

Python

Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/statsmodels/regression/linear_model.py:922: ValueWarning: Weights are not supported in OLS and will be ignoredAn exception will be raised in the next version.
warnings.warn(msg, ValueWarning)
/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/statsmodels/base/model.py:130: ValueWarning: unknown kwargs ['weights']
warnings.warn(msg, ValueWarning)

c = r.params
ci = r.conf_int()
rdf = pd.DataFrame({'coefficient': c, 'CI_lower': ci[0], 'CI_upper': ci[1]})
rdf = rdf.iloc[2:11]

Python
```

Notes: Dummy variables for fixed effects made with pandas and regression calculated with statsmodel.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from linearmodels import PanelOLS
import datetime
from scipy.stats import f_oneway
import statsmodels.api as sm
```

Data Cleaning

Tables

```
In [2]: muni = pd.read_stata('mexico_muni_jebo.dta')
    muni.head()
```

Out[2]:		muni_code	state	municipality	year	month	temp_pop	precip_pop	id	
	0	1001	Aguascalientes	Aguascalientes	2001.0	4.0	23.817400	0.113894	1.0	0
	1	1001	Aguascalientes	Aguascalientes	1998.0	4.0	22.207600	0.000000	1.0	0
	2	1001	Aguascalientes	Aguascalientes	2001.0	11.0	16.335100	0.038703	1.0	0
	3	1001	Aguascalientes	Aguascalientes	2000.0	2.0	17.702499	0.002461	1.0	0
	4	1001	Aguascalientes	Aguascalientes	2001.0	7.0	21.856300	1.110245	1.0	0

 $5 \text{ rows} \times 57 \text{ columns}$

```
In [3]: # Add a date column to support datetime data type
    muni['day'] = 1
    muni['date'] = pd.to_datetime(dict(year=muni.year, month=muni.month, day=muni.day))
# Convert Year and Month to Integers
    muni['year'] = muni['year'].astype('int')
    muni['month'] = muni['month'].astype('int')
```

```
In [4]: state = pd.read_stata("mexico_state_jebo.dta")
    state.head()
```

C:\Users\blahb\anaconda3\lib\site-packages\pandas\io\stata.py:1457: UnicodeWarning: One or more strings in the dta file could not be decoded using utf-8, and so the fallback encoding of latin-1 is being used. This can happen when a file has been incorrectly encoded by Stata or some other software. You should verify the string values returned are correct.

warnings.warn(msg, UnicodeWarning)

Out[4]:		id	year	state	month	temperature	homsegob_rate	kid_rate	ext_rate
	0	1804.0	1990.0	Aguascalientes	1.0	15.166670	NaN	NaN	NaN
	1	1804.0	1990.0	Aguascalientes	2.0	14.666670	NaN	NaN	NaN
	2	1804.0	1990.0	Aguascalientes	3.0	17.866671	NaN	NaN	NaN
	3	1804.0	1990.0	Aguascalientes	4.0	19.833330	NaN	NaN	NaN
	4	1804.0	1990.0	Aguascalientes	5.0	24.600000	NaN	NaN	NaN
	4								•
In [5]:	st st # st	ate['day ate['da <i>Convert</i> ate['ye	y'] = 1 te'] = <i>Year ar</i> ar'] = :	umn to support od.to_datetime nd Month to In state['year']. state['month'	(dict(ye tegers astype('	ear=state.yea	r, month=state.	month, da	ny=state.d

Figure 2: Time Series in Violence

1.520228

1.353619

4 5.0 1990-05-01 1.453345

2 3.0 1990-03-01

3 4.0 1990-04-01

```
In [7]: # Create the plot
fig, ax = plt.subplots(figsize = (12,6))

# Plot ranges and points
plt.stackplot(fig2_df['date'], fig2_df['hom_rate'])
plt.axvline(x = datetime.date(2006, 12, 1), linestyle = "--", color = 'gray')

# Styling
plt.xlabel('Date')
plt.ylabel('Deaths Rate', fontweight='bold')
plt.title('Figure 2: Time series in violence')
plt.ylim(0, 3)
ticks = fig2_df['date'].iloc[[0, 203,251]]
labels = [ i.strftime("%Y-%m-%d") for i in ticks ]
ax.set_xticks(ticks)
ax.set_xticklabels(labels)
```


Figure 3: Temperature and violence in Mexico

```
In [8]: # Bins for the temperature
    t_bins = ['temp_bin_pop_0_9', 'temp_bin_pop_10_12', 'temp_bin_pop_13_15', 'temp_bin
    # More Table Data cleaning: Filter for years and drop Nan rows
    fig_3 = muni[muni['year'] < 2007].dropna(subset = ['hom_rate', 'precip_pop'] + t_bi

# Set the Index for the Entity Effects and Time Effects
    fig_3 = fig_3.set_index(['muni_code', 'date'])
    fig_3 = fig_3[['state', 'hom_rate', 'temp_pop', 'precip_pop', 'popw'] + t_bins]
    fig_3.head()</pre>
```

Out[8]: state hom_rate temp_pop precip_pop popw temp_bin

```
muni code
             date
     1001
            2001-
                    Aquascalientes
                                    0.301511 23.817400
                                                            0.113894 655030.9375
            04-01
            1998-
                                              22.207600
                    Aguascalientes
                                                            0.000000 655030.9375
                                    0.642868
            04-01
            2001-
                    Aguascalientes
                                    0.297347
                                              16.335100
                                                            0.038703 655030.9375
            11-01
            2000-
                    Aguascalientes
                                    0.000000
                                              17.702499
                                                            0.002461 655030.9375
            02-01
            2001-
                    Aguascalientes
                                    0.149856
                                              21.856300
                                                            1.110245 655030.9375
            07-01
```

In [9]: # Regressions with Time and Municipality Fixed Effects that are weighted population
fig3_mod = PanelOLS.from_formula('hom_rate ~ ' + ' + '.join(t_bins) + '+ precip_pop
fig3_results = fig3_mod.fit(cov_type='clustered', clusters = fig_3['state'])
fig3_coef = fig3_results.params
95% confidence Level
fig3_ci = fig3_results.conf_int(level = 0.95)

fig3_result_df = pd.DataFrame({'coefficient': fig3_coef, 'CI_lower': fig3_ci['lower fig3_result_df']

Out[9]: coefficient Cl_lower Cl_upper temp_bin_pop_0_9 -0.002133 -0.018948 0.014681 0.026716 temp_bin_pop_10_12 0.007094 -0.012527 temp bin pop 13 15 0.005532 -0.008829 0.019894 0.007021 -0.007913 0.021954 temp_bin_pop_16_18 temp_bin_pop_19_21 0.007710 -0.007377 0.022796 -0.006913 0.023583 temp_bin_pop_22_24 0.008335 0.011026 -0.004287 0.026338 temp_bin_pop_25_27 temp_bin_pop_28_30 0.012324 -0.002477 0.027124 temp_bin_pop_31_Inf 0.014794 -0.001063 0.030650

```
In [10]: # Create the plot
fig, ax = plt.subplots()

# Plot ranges and points
ax.plot(fig3_result_df.index, fig3_result_df['coefficient'], '-o', color='blue')
ax.fill_between(fig3_result_df.index, fig3_result_df['CI_lower'], fig3_result_df['C
```

```
# Styling
ax.set_title('Figure 3: Temperature and violence in Mexico')
ax.axhline(0, color='black', linewidth=1, linestyle='dashed')
ax.set_xticks(fig3_result_df.index)
ax.set_xticklabels(["<10", "10-12", "13-15", "16-18", "19-21", "22-24", "25-27", "2
ax.set_ylabel('Homicides rate', fontweight='bold')
ax.set_xlabel('')

# Show the plot
plt.show()</pre>
```

Figure 3: Temperature and violence in Mexico

Figure 5: Temperature and suicides

```
In [11]: # More Table Data cleaning: Filter for years and drop Nan rows with same temperatur
fig_5_df = muni[muni['year'] < 2007].dropna(subset = ['sui_rate', 'precip_pop'] + t

# Clustered around state, and have fixed effects for (muni_code, year, month)
fig_5_df = fig_5_df.set_index(['muni_code', 'date'])
fig_5_df = fig_5_df[['state', 'sui_rate', 'precip_pop', 'popw'] + t_bins]
fig_5_df.head()</pre>
```

```
Out[11]:
                                     state
                                            sui_rate precip_pop
                                                                       popw temp_bin_pop_0_9 te
          muni code
                       date
                1001
                      2001-
                                                                                            0.0
                             Aguascalientes 0.150756
                                                        0.113894 655030.9375
                      04-01
                      1998-
                             Aguascalientes 0.160717
                                                                                            0.0
                                                        0.000000
                                                                 655030.9375
                      04-01
                      2001-
                                                                                            0.0
                             Aguascalientes 0.446021
                                                        0.038703 655030.9375
                      11-01
                      2000-
                             Aguascalientes 0.620399
                                                        0.002461 655030.9375
                                                                                            0.0
                      02-01
                      2001-
                                                                                            0.0
                             Aguascalientes 0.449569
                                                        1.110245 655030.9375
                      07-01
In [12]: # Regressions with Time and Municipality Fixed Effects that are weighted population
          fig5_mod = PanelOLS.from_formula('sui_rate ~ ' + ' + '.join(t_bins) + '+ precip_pop
          fig5_results = fig5_mod.fit(cov_type='clustered', clusters = fig_5_df['state'])
          fig5 coef = fig5 results.params
          # 95% confidence level
          fig5_ci = fig5_results.conf_int(level = 0.95)
          fig5_result_df = pd.DataFrame({'coefficient': fig5_coef, 'CI_lower': fig5_ci['lower']
          fig5_result_df
Out[12]:
                               coefficient
                                           CI lower
                                                     Cl_upper
            temp_bin_pop_0_9
                                 -0.001114
                                           -0.005392
                                                     0.003164
          temp_bin_pop_10_12
                                 0.001647
                                          -0.001652
                                                     0.004946
          temp bin pop 13 15
                                 0.001935
                                           -0.001005
                                                     0.004874
                                           -0.000739
                                 0.002260
                                                     0.005258
          temp_bin_pop_16_18
          temp_bin_pop_19_21
                                 0.003365
                                           0.000266
                                                     0.006464
                                 0.003625
                                            0.000666
                                                     0.006584
          temp_bin_pop_22_24
                                 0.004514
                                           0.001389
                                                     0.007640
          temp_bin_pop_25_27
          temp_bin_pop_28_30
                                 0.005622
                                            0.002486
                                                     0.008759
          temp_bin_pop_31_Inf
                                 0.005633
                                           0.001465
                                                     0.009801
In [13]: # Create the plot
          fig, ax = plt.subplots()
          # Plot ranges and points
          ax.plot(fig5_result_df.index, fig5_result_df['coefficient'], '-o', color='purple')
          ax.fill_between(fig5_result_df.index, fig5_result_df['CI_lower'], fig5_result_df['CI_lower']
```

```
# Styling
ax.set_title('Figure 5: Temperature and suicides')
ax.axhline(0, color='black', linewidth=1, linestyle='dashed')
ax.set_xticks(fig5_result_df.index)
ax.set_xticklabels(["<10", "10-12", "13-15", "16-18", "19-21", "22-24", "25-27", "2
ax.set_ylabel('Suicides rate', fontweight='bold', fontsize = 16)
ax.set_xlabel('')
ax.set_yticks([-0.01, 0.00, 0.01])

# Show the plot
plt.show()</pre>
```

Figure 5: Temperature and suicides

The data is different from what is being replicated (Width of 2 for temp_pop bins in the data vs Width of 3 bins shown in the paper)

Figure 6: Temporal distribution of estimates

Homicides Rate

```
In [14]: fig6_df = muni.copy()
for i in range(1, 7):
    fig6_df[f'L{i}_temp_pop'] = muni['temp_pop'].shift(-i)
    fig6_df[f'F{i}_temp_pop'] = muni['temp_pop'].shift(i)
    fig6_df[f'L{i}_precip_pop'] = muni['precip_pop'].shift(-i)
    fig6_df[f'F{i}_precip_pop'] = muni['precip_pop'].shift(i)
```

fig6_df

Out[14]:		muni_code	state	municipality	year	month	temp_pop	precip_pop	
	0	1001	Aguascalientes	Aguascalientes	2001	4	23.817400	0.113894	
	1	1001	Aguascalientes	Aguascalientes	1998	4	22.207600	0.000000	
	2	1001	Aguascalientes	Aguascalientes	2001	11	16.335100	0.038703	
	3	1001	Aguascalientes	Aguascalientes	2000	2	17.702499	0.002461	
	4	1001	Aguascalientes	Aguascalientes	2001	7	21.856300	1.110245	
	•••					•••			
	618907	32058	Zacatecas	Santa María de la Paz	1994	5	26.773199	0.082976	2،
	618908	32058	Zacatecas	Santa María de la Paz	1994	10	23.050100	0.558740	2.
	618909	32058	Zacatecas	Santa María de la Paz	1997	11	19.530899	0.683117	2,
	618910	32058	Zacatecas	Santa María de la Paz	1994	11	20.543400	0.122095	2,
	618911	32058	Zacatecas	Santa María de la Paz	1996	2	19.468500	0.262075	2،

618912 rows × 83 columns

```
In [15]: temp_lags = ['L1_temp_pop', 'L2_temp_pop', 'L3_temp_pop', 'L4_temp_pop', 'L5_temp_p
    temp_leads = ['F1_temp_pop', 'F2_temp_pop', 'F3_temp_pop', 'F4_temp_pop', 'F5_temp_
    precip_lags = ['L1_precip_pop', 'L2_precip_pop', 'L3_precip_pop', 'L4_precip_pop',
    precip_leads = ['F1_precip_pop', 'F2_precip_pop', 'F3_precip_pop', 'F4_precip_pop',
    fig_6_hom_df = fig6_df[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'temp_pop

# Clustered around state, and have fixed effects for (muni_code, year, month)
    fig_6_hom_df = fig_6_hom_df.set_index(['muni_code', 'date'])
    fig_6_hom_df = fig_6_hom_df[['state', 'hom_rate', 'temp_pop', 'precip_pop', 'popw',
    fig_6_hom_df</pre>
```

\bigcirc	i + 1	11	- 7 -
υı	オレト	Щ.	ノ ・

		state	hom_rate	temp_pop	precip_pop	popw	year	m
muni_code	date							
1001	1995- 05-01	Aguascalientes	0.511190	24.609200	0.276077	655030.9375	1995	
	2004- 03-01	Aguascalientes	0.000000	18.081400	0.224986	655030.9375	2004	
	2001- 02-01	Aguascalientes	0.000000	17.777901	0.003232	655030.9375	2001	
	2004- 11-01	Aguascalientes	0.138814	15.954700	0.044783	655030.9375	2004	
	2000- 12-01	Aguascalientes	0.000000	14.781200	0.066093	655030.9375	2000	
•••	•••							
32058	2006- 11-01	Zacatecas	0.000000	18.696400	0.192440	2711.0000	2006	
	2005- 12-01	Zacatecas	0.000000	17.435801	0.000000	2711.0000	2005	
	2005- 03-01	Zacatecas	38.355366	19.163700	0.044328	2711.0000	2005	
	2006- 03-01	Zacatecas	0.000000	21.108900	0.002020	2711.0000	2006	
	2005- 06-01	Zacatecas	0.000000	26.785601	0.608296	2711.0000	2005	

493862 rows × 31 columns

```
In [16]: mod_fig_6_hom = PanelOLS.from_formula('hom_rate ~ temp_pop + ' + ' + '.join(temp_la
fig6_results = mod_fig_6_hom.fit(cov_type='clustered', clusters = fig_6_hom_df['sta
fig6_coef = fig6_results.params
fig6_ci = fig6_results.conf_int() # 95% confidence level

result_df_fig_6_hom = pd.DataFrame({'coefficient': fig6_coef, 'CI_lower': fig6_ci['

# Add the estimate together for the lags and leads for the plots
result_df_fig_6_hom = result_df_fig_6_hom.iloc[:-13, :].reindex(temp_lags[::-1] + [
result_df_fig_6_hom
```

Out[16]:		coefficient	CI_lower	Cl_upper
	L6_temp_pop	-0.000799	-0.003210	0.001613
	L5_temp_pop	-0.000194	-0.002995	0.002607
	L4_temp_pop	-0.003508	-0.005920	-0.001097
	L3_temp_pop	-0.001269	-0.003478	0.000939
	L2_temp_pop	-0.000978	-0.004269	0.002313
	L1_temp_pop	-0.002053	-0.004532	0.000425
	temp_pop	0.015693	0.008152	0.023233
	F1_temp_pop	-0.000493	-0.002661	0.001675
	F2_temp_pop	0.001945	-0.000697	0.004587
	F3_temp_pop	0.002411	-0.000944	0.005766
	F4_temp_pop	0.002045	0.000166	0.003925
	F5_temp_pop	-0.000621	-0.003371	0.002130
	F6_temp_pop	0.001212	-0.001288	0.003713

Suicides Rate

```
In [17]: fig_6_sui_df = fig6_df[fig6_df['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_
fig_6_sui_df = fig_6_sui_df.set_index(['muni_code', 'date'])
fig_6_sui_df = fig_6_sui_df[['state', 'sui_rate', 'temp_pop', 'precip_pop', 'popw',
fig_6_sui_df</pre>
```

Out[17]:

•			state	sui_rate	temp_pop	precip_pop	popw	year	mo
r	muni_code	date							
1001	1995- 05-01	Aguascalientes	0.340793	24.609200	0.276077	655030.9375	1995		
	2004- 03-01	Aguascalientes	0.422671	18.081400	0.224986	655030.9375	2004		
	2001- 02-01	Aguascalientes	0.151361	17.777901	0.003232	655030.9375	2001		
		2004- 11-01	Aguascalientes	0.694070	15.954700	0.044783	655030.9375	2004	
		2000- 12-01	Aguascalientes	0.151972	14.781200	0.066093	655030.9375	2000	
	•••	•••			•••				
	32058	2006- 11-01	Zacatecas	0.000000	18.696400	0.192440	2711.0000	2006	
	2005- 12-01	Zacatecas	0.000000	17.435801	0.000000	2711.0000	2005		
	2005- 03-01	Zacatecas	0.000000	19.163700	0.044328	2711.0000	2005		
	2006- 03-01	Zacatecas	0.000000	21.108900	0.002020	2711.0000	2006		
		2005- 06-01	Zacatecas	0.000000	26.785601	0.608296	2711.0000	2005	

493862 rows × 31 columns

```
In [18]: mod_fig_6_sui = PanelOLS.from_formula('sui_rate ~ temp_pop + ' + ' + '.join(temp_la results_sui = mod_fig_6_sui.fit(cov_type='clustered', clusters = fig_6_sui_df['stat coefficients_sui = results_sui.params confidence_interval_sui = results_sui.conf_int() # 95% confidence level result_df_fig_6_sui = pd.DataFrame({'coefficient': coefficients_sui, 'CI_lower': co # Add the estimate together for the lags and leads for the plots result_df_fig_6_sui = result_df_fig_6_sui.iloc[:-13, :].reindex(temp_lags[::-1] + [result_df_fig_6_sui
```

Out[18]:		coefficient	CI_lower	CI_upper
	L6_temp_pop	-0.000551	-0.001558	0.000455
	L5_temp_pop	-0.000051	-0.000862	0.000761
	L4_temp_pop	-0.000393	-0.000997	0.000211
	L3_temp_pop	-0.000195	-0.000809	0.000419
	L2_temp_pop	-0.000118	-0.001220	0.000984
	L1_temp_pop	-0.000003	-0.001066	0.001060
	temp_pop	0.007186	0.005241	0.009130
	F1_temp_pop	0.000063	-0.000788	0.000913
	F2_temp_pop	-0.000950	-0.002253	0.000353
	F3_temp_pop	0.000137	-0.001282	0.001557
	F4_temp_pop	0.000511	-0.000198	0.001221
	F5_temp_pop	0.000017	-0.000948	0.000982

-0.000606 -0.001656 0.000445

F6_temp_pop

```
In [19]: x = np.arange(-6, 7)
         fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 10))
         ax1.scatter(x, result_df_fig_6_hom['coefficient'], color='blue')
         ax1.vlines(x, result_df_fig_6_hom['CI_lower'], result_df_fig_6_hom['CI_upper'], col
         ax1.axhline(0, linestyle='--', color='gray', alpha = 0.2)
         ax1.axhline(0.0158, linestyle='--', color='blue', alpha = 0.5)
         ax1.axvline(0, linewidth = 10, color='blue', alpha = 0.1)
         ax1.set_xlabel('')
         ax1.set_ylabel('Homicides rate', fontweight='bold', fontsize= 16)
         ax1.set_yticks([-.02, 0, .02, .04])
         ax2.scatter(x, result df fig 6 sui['coefficient'], color='purple')
         ax2.vlines(x, result_df_fig_6_sui['CI_lower'], result_df_fig_6_sui['CI_upper'], col
         ax2.axhline(0, linestyle='--', color='gray', alpha = 0.2)
         ax2.axhline(0.0070, linestyle='--', color='purple', alpha = 0.5)
         ax2.axvline(0, linewidth = 10, color='purple', alpha = 0.1)
         ax2.set_xlabel('')
         ax2.set_ylabel('Suicides rate', fontweight='bold', fontsize= 16)
         ax2.set_yticks([-.005, 0, .005, .01, .015])
         plt.show()
```


Table 1: Descriptive Statistics

```
In [20]: vars = ['hom_rate', 'sui_rate', 'population', 'temp_pop', 'precip_pop']
  tbl1_1 = muni[muni['year'] < 2007][vars].describe().loc[['mean', 'std', 'count']].a
  tbl1_1</pre>
```

Out[20]:		hom_rate	sui_rate	population	temp_pop	precip_pop
	mean	0.98	0.21	39057.12	20.10	0.93
	std	5.23	1.92	116901.42	5.00	1.12
	count	494724.00	494724.00	494724.00	500208.00	500208.00

```
In [21]: vars = ['hom_rate', 'sui_rate', 'population', 'temp_pop', 'precip_pop']
   tbl1_2 = muni[muni['year'] >= 2007][vars].describe().loc[['mean', 'std', 'count']].
   tbl1_2
```

Out[21]:	hom_rate		sui_rate	population	temp_pop	precip_pop
	mean	0.83	0.26	44584.62	20.05	0.81
	std	4.13	2.21	130760.44	5.09	1.07
	count	117650.00	117650.00	117650.00	117696.00	117696.00

```
In [22]: tbl1_df_filtered = muni[muni['year'] < 2007]
    tbl1_df = tbl1_df_filtered.groupby('muni_code')['hom_rate'].apply(list)
    x = f_oneway(tbl1_df[1001],tbl1_df[1002],tbl1_df[1003],tbl1_df[1004],tbl1_df[1005],
    print(x)</pre>
```

F_onewayResult(statistic=nan, pvalue=nan)

Cannot run f_oneway for data with more than 9 groups

Table 2: Temperature and Violence in Mexico

```
In [23]: |tbl2_df = muni[muni['year'] < 2007].dropna().set_index(['muni_code', 'date'])[['tem</pre>
          tbl2_df.head()
Out[23]:
                                                      state hom_rate precip_pop
                                  temp_pop
                                                                                        popw
          muni code
                            date
               1001
                     2001-04-01
                                  23.817400 Aguascalientes
                                                             0.301511
                                                                         0.113894 655030.9375
                      1998-04-01
                                                                         0.000000 655030.9375
                                  22.207600 Aguascalientes
                                                             0.642868
                      2001-11-01
                                                                         0.038703 655030.9375
                                  16.335100
                                                             0.297347
                                             Aguascalientes
                      2000-02-01
                                  17.702499
                                             Aguascalientes
                                                             0.000000
                                                                         0.002461
                                                                                  655030.9375
                                 21.856300 Aguascalientes
                                                                         1.110245 655030.9375
                      2001-07-01
                                                             0.149856
In [24]:
         # Column 5
```

col5_model = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + EntityEffect
col5_results = col5_model.fit(cov_type='clustered', clusters = tbl2_df['state'])

print(col5_results)

PanelOLS Estimation Summary

===========	=======================================		=========
Dep. Variable:	hom_rate	R-squared:	0.0005
Estimator:	Pane10LS	R-squared (Between):	0.1645
No. Observations:	119136	R-squared (Within):	-0.0001
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.1004
Time:	15:10:14	Log-likelihood	-2.159e+05
Cov. Estimator:	Clustered		
		F-statistic:	27.802
Entities:	584	P-value	0.0000
Avg Obs:	204.00	Distribution:	F(2,118347)
Min Obs:	204.00		
Max Obs:	204.00	F-statistic (robust):	10.238
		P-value	0.0000
Time periods:	204	Distribution:	F(2,118347)
Avg Obs:	584.00		
Min Obs:	584.00		
Max Obs:	584.00		

Parameter Estimates

========	========	========	========	========	========	=======
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0164	0.0040	4.0847	0.0000	0.0085	0.0243
precip_pop	-0.0050	0.0089	-0.5637	0.5729	-0.0225	0.0125

F-test for Poolability: 155.29

P-value: 0.0000

Distribution: F(786,118347)

Included effects: Entity, Time

Table 3: Temperature and Economically Motivated Crimes

```
In [25]: tbl3_df = state[state['year'] >= 2007]
   tbl3_df['month'] = pd.Categorical(tbl3_df['month'])
   tbl3_df['year'] = pd.Categorical(tbl3_df['year'])
   tbl3_df
```

C:\Users\blahb\AppData\Local\Temp\ipykernel_16636\686763787.py:2: SettingWithCopyWar
ning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

tbl3_df['month'] = pd.Categorical(tbl3_df['month'])

C:\Users\blahb\AppData\Local\Temp\ipykernel_16636\686763787.py:3: SettingWithCopyWar
ning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u ser_guide/indexing.html#returning-a-view-versus-a-copy tbl3_df['year'] = pd.Categorical(tbl3_df['year'])

Out[25]:		id	year	state	month	temperature	homsegob_rate	kid_rate	ext_rat
	204	1804.0	2007	Aguascalientes	1	13.600000	0.178575	0.000000	0.62501
	205	1804.0	2007	Aguascalientes	2	14.566670	0.535724	0.000000	0.17857
	206	1804.0	2007	Aguascalientes	3	18.100000	0.089287	0.178575	0.44643
	207	1804.0	2007	Aguascalientes	4	19.299999	0.178575	0.267862	0.17857
	208	1804.0	2007	Aguascalientes	5	22.066669	0.357149	0.267862	0.26786
	•••								
	8059	1835.0	2010	Zacatecas	8	21.160000	0.402504	0.000000	0.06708
	8060	1835.0	2010	Zacatecas	9	19.936001	0.603756	0.000000	0.13416
	8061	1835.0	2010	Zacatecas	10	17.436001	0.805008	0.067084	0.06708
	8062	1835.0	2010	Zacatecas	11	14.444000	0.872092	0.268336	0.06708
	8063	1835.0	2010	Zacatecas	12	12.864000	0.939176	0.067084	0.20125

1536 rows × 12 columns

```
In [26]: model_a = sm.OLS.from_formula('homsegob_rate ~ temperature + precipitation + C(mont result_a = model_a.fit()

model_b = sm.OLS.from_formula('car_rate ~ temperature + precipitation + C(month) +
```

```
result_b = model_b.fit()
model_c = sm.OLS.from_formula('ext_rate ~ temperature + precipitation + C(month) +
result_c = model_c.fit()
model_d = sm.OLS.from_formula('kid_rate ~ temperature + precipitation + C(month) +
result_d = model_d.fit()
```

In [27]: print(result_a.summary())

OLS Regression Results

Dep. Variable: homsegob rate R-squared: 0.714 Model: OLS Adj. R-squared: 0.705 Method: Least Squares F-statistic: 78.99 Date: Fri, 26 Apr 2024 Prob (F-statistic): 0.00 Time: 15:10:14 Log-Likelihood: -1876.4 No. Observations: 1535 AIC: 3849. Df Residuals: 1487 BIC: 4105.

47

Covariance Type: nonrobust

Df Model:

______ coef std err + P>|t| [0.025 0.9751 Intercept -0.8281 0.224 -3.705 0.000 -1.267 -0.390 C(month)[T.2] -0.1004 0.107 -0.938 0.348 -0.310 0.110 C(month)[T.3] -0.0558 0.113 -0.493 0.622 -0.277 -0.1996 0.127 -1.569 0.117 -0.449 C(month)[T.4] C(month)[T.5] -0.1452 0.146 -0.996 0.320 -0.431 C(month)[T.6] -0.1176 0.164 -0.719 0.472 -0.438 C(month)[T.7] -0.1635 0.140 -1.169 0.243 -0.438 C(month)[T.8] -0.0748 0.173 -0.433 0.665 -0.414

0.3414

0.182

1.880

0.060

-0.015

C(id)[T.1831.0]

0.698

0.00

C(id)[T.1832.0]	-0.1043	0.172	-0.606	0.544	-0.442	0.233
C(id)[T.1833.0]	-0.2099	0.198	-1.061	0.289	-0.598	0.178
C(id)[T.1834.0]	-0.7318	0.209	-3.497	0.000	-1.142	-0.321
C(id)[T.1835.0]	0.0367	0.171	0.215	0.830	-0.298	0.371
temperature	0.0500	0.013	3.946	0.000	0.025	0.075
precipitation	-0.2852	0.503	-0.567	0.571	-1.273	0.702
===========	=======	========	========			====
Omnibus:		333.910	Durbin-Wats	son:	0	.563
Prob(Omnibus):		0.000	Jarque-Bera	a (JB):	6278	.150

Kurtosis: 12.858 Cond. No. 759.

0.496 Prob(JB):

Notes:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [28]: print(result_b.summary())

OLS Regression Results

______ Dep. Variable: car_rate R-squared: 0.886 OLS Adj. R-squared: Model: 0.882 Method: Least Squares F-statistic: 245.2 Fri, 26 Apr 2024 Prob (F-statistic): 15:10:14 Log-Likelihood: Date: 0.00 0.00 4821.7 Time: No. Observations: 1535 AIC: 9739. Df Residuals: 1487 BIC: 9996.

Df Model: 47
Covariance Type: nonrobust

Covariance Type:		nonrobust				
=======================================	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.1116	1.523	5.984	0.000	6.125	12.099
C(month)[T.2]	-0.7535	0.729	-1.033	0.302	-2.184	0.677
C(month)[T.3]	-0.0992	0.770	-0.129	0.897	-1.610	1.411
C(month)[T.4]	-1.0083	0.866	-1.164	0.245	-2.707	0.691
C(month)[T.5]	-0.3103	0.994	-0.312	0.755	-2.260	1.639
C(month)[T.6]	-0.3848	1.114	-0.345	0.730	-2.570	1.800
C(month)[T.7]	0.0202	0.953	0.021	0.983	-1.848	1.889
C(month)[T.8]	0.3539	1.177	0.301	0.764	-1.955	2.663
C(month)[T.9]	0.3914	1.151	0.340	0.734	-1.867	2.650
C(month)[T.10]	1.0691	0.884	1.209	0.227	-0.665	2.803
C(month)[T.11]	0.7541	0.744	1.014	0.311	-0.704	2.213
C(month)[T.12]	1.1761	0.717	1.641	0.101	-0.230	2.582
C(year)[T.2008]	2.2378	0.411	5.449	0.000	1.432	3.043
C(year)[T.2009]	2.2570	0.411	5.488	0.000	1.450	3.064
C(year)[T.2010]	4.7792	0.412	11.611	0.000	3.972	5.587
C(id)[T.1805.0]	65.7676	1.173	56.091	0.000	63.468	68.068
C(id)[T.1806.0]	1.5914	1.210	1.315	0.189	-0.782	3.965
C(id)[T.1807.0]	-12.4254	1.363	-9.116	0.000	-15.099	-9.752
C(id)[T.1808.0]	-10.4977	1.319	-7.959	0.000	-13.085	-7.910
C(id)[T.1809.0]	43.6889	1.172	37.283	0.000	41.390	45.987
C(id)[T.1810.0]	-6.6415	1.180	-5.627	0.000	-8.956	-4.326
C(id)[T.1811.0]	-7.2718	1.343	-5.413	0.000	-9.907	-4.637
C(id)[T.1812.0]	12.0962	1.259	9.605	0.000	9.626	14.567
C(id)[T.1813.0]	3.0583	1.165	2.625	0.009	0.773	5.344
C(id)[T.1814.0]	-6.4172	1.161	-5.527	0.000	-8.695	-4.140
C(id)[T.1815.0]	-5.4527	1.272	-4.287	0.000	-7.947	-2.958
C(id)[T.1816.0]	-4.8264	1.165	-4.143	0.000	-7.112	-2.541
C(id)[T.1817.0]	-4.1277	1.190	-3.469	0.001	-6.462	-1.793
C(id)[T.1818.0]	8.5017	1.181	7.200	0.000	6.186	10.818
C(id)[T.1819.0]	-3.8846	1.203	-3.230	0.001	-6.243	-1.526
C(id)[T.1820.0]	2.0046	1.238	1.620	0.106	-0.423	4.432
C(id)[T.1821.0]	-6.4401	1.221	-5.273	0.000	-8.836	-4.045
C(id)[T.1822.0]	9.2310	1.179	7.833	0.000	6.919	11.543
C(id)[T.1823.0]	-9.9065	1.230	-8.057	0.000	-12.318	-7.495
C(id)[T.1824.0]	-7.3084	1.185	-6.169	0.000	-9.632	-4.984
C(id)[T.1825.0]	-4.0836	1.175	-3.475	0.001	-6.389	-1.778
C(id)[T.1826.0]	-5.9988	1.431	-4.192	0.000	-8.806	-3.192
C(id)[T.1827.0]	-6.5833	1.172	-5.616	0.000	-8.883	-4.284
C(id)[T.1828.0]	6.5008	1.278	5.086	0.000	3.994	9.008
C(id)[T.1829.0]	1.8938	1.207	1.570	0.117	-0.473	4.261
C(id)[T.1830.0]	-7.4100	1.484	-4.992	0.000	-10.322	-4.498
C(id)[T.1831.0]	5.1062	1.237	4.127	0.000	2.679	7.533

Jarque-Bera (JB):

10136.823

0.00

Omnibus:		330.297	Durbin-Wats	son:	0	.296
		========				====
precipitation	-0.3632	3.429	-0.106	0.916	-7.090	6.363
temperature	0.0666	0.086	0.771	0.441	-0.103	0.236
C(id)[T.1835.0]	-3.9206	1.162	-3.374	0.001	-6.200	-1.641
C(id)[T.1834.0]	-11.7955	1.426	-8.274	0.000	-14.592	-8.999
C(id)[T.1833.0]	-9.3248	1.348	-6.917	0.000	-11.969	-6.681
C(id)[T.1832.0]	-8.4107	1.172	-7.178	0.000	-10.709	-6.112

Kurtosis: 15.580 Cond. No. 759.

-0.241 Prob(JB):

0.000

Skew:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [29]: print(result_c.summary())

OLS Regression Results

______ Dep. Variable: ext_rate R-squared: 0.603 Model: OLS Adj. R-squared: 0.590 Method: Least Squares F-statistic: 47.96 Fri, 26 Apr 2024 Prob (F-statistic): 1.45e-260 15:10:14 Log-Likelihood: -605.89 Date: Time: No. Observations: 1535 AIC: 1308. Df Residuals: 1487 BIC: 1564.

Df Model: 47
Covariance Type: nonrobust

Covariance Type:		nonrobust				
======================================					========	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.2571	0.098	2.632	0.009	0.066	0.449
C(month)[T.2]	-0.0075	0.047	-0.161	0.873	-0.099	0.084
C(month)[T.3]	0.0421	0.049	0.853	0.394	-0.055	0.139
C(month)[T.4]	0.0931	0.056	1.675	0.094	-0.016	0.202
C(month)[T.5]	0.0402	0.064	0.630	0.529	-0.085	0.165
C(month)[T.6]	0.0201	0.071	0.282	0.778	-0.120	0.160
C(month)[T.7]	0.0173	0.061	0.284	0.777	-0.103	0.137
C(month)[T.8]	-0.0195	0.076	-0.259	0.796	-0.168	0.129
C(month)[T.9]	0.0167	0.074	0.226	0.821	-0.128	0.162
C(month)[T.10]	0.0413	0.057	0.729	0.466	-0.070	0.153
C(month)[T.11]	-0.0125	0.048	-0.263	0.793	-0.106	0.081
C(month)[T.12]	-0.0270	0.046	-0.587	0.557	-0.117	0.063
C(year)[T.2008]	0.1273	0.026	4.832	0.000	0.076	0.179
C(year)[T.2009]	0.2683	0.026	10.167	0.000	0.217	0.320
C(year)[T.2010]	0.2273	0.026	8.608	0.000	0.175	0.279
C(id)[T.1805.0]	0.6657	0.075	8.850	0.000	0.518	0.813
C(id)[T.1806.0]	0.5423	0.078	6.987	0.000	0.390	0.695
C(id)[T.1807.0]	-0.3062	0.087	-3.502	0.000	-0.478	-0.135
C(id)[T.1808.0]	-0.1635	0.085	-1.933	0.053	-0.330	0.002
C(id)[T.1809.0]	0.2027	0.075	2.696	0.007	0.055	0.350
C(id)[T.1810.0]	-0.2041	0.076	-2.696	0.007	-0.353	-0.056
C(id)[T.1811.0]	-0.3009	0.086	-3.491	0.000	-0.470	-0.132
C(id)[T.1812.0]	0.4076	0.081	5.045	0.000	0.249	0.566
C(id)[T.1813.0]	0.3214	0.075	4.300	0.000	0.175	0.468
C(id)[T.1814.0]	0.0110	0.074	0.148	0.882	-0.135	0.157
C(id)[T.1815.0]	-0.1735	0.082	-2.127	0.034	-0.334	-0.013
C(id)[T.1816.0]	0.0359	0.075	0.480	0.631	-0.111	0.182
C(id)[T.1817.0]	0.4276	0.076	5.601	0.000	0.278	0.577
C(id)[T.1818.0]	-0.3581	0.076	-4.728	0.000	-0.507	-0.210
C(id)[T.1819.0]	0.1647	0.077	2.135	0.033	0.013	0.316
C(id)[T.1820.0]	1.7288	0.079	21.773	0.000	1.573	1.885
C(id)[T.1821.0]	-0.3188	0.078	-4.070	0.000	-0.473	-0.165
C(id)[T.1822.0]	-0.2427	0.076	-3.209	0.001	-0.391	-0.094
C(id)[T.1823.0]	0.5821	0.079	7.380	0.000	0.427	0.737
C(id)[T.1824.0]	-0.3403	0.076	-4.478	0.000	-0.489	-0.191
C(id)[T.1825.0]	-0.1864	0.075	-2.472	0.014	-0.334	-0.039
C(id)[T.1826.0]	0.3797	0.092	4.136	0.000	0.200	0.560
C(id)[T.1827.0]	0.5119	0.075	6.807	0.000	0.364	0.659
C(id)[T.1828.0]	-0.0879	0.082	-1.072	0.284	-0.249	0.073
C(id)[T.1829.0]	-0.1985	0.077	-2.565	0.010	-0.350	-0.047
C(id)[T.1830.0]	0.3176	0.095	3.336	0.001	0.131	0.504
C(id)[T.1831.0]	-0.0539	0.079	-0.678	0.498	-0.210	0.102

C(id)[T.1832.0]	-0.3515	0.075	-4.676	0.000	-0.499	-0.204
C(id)[T.1833.0]	0.0422	0.086	0.488	0.626	-0.127	0.212
C(id)[T.1834.0]	-0.2956	0.091	-3.231	0.001	-0.475	-0.116
C(id)[T.1835.0]	-0.2002	0.075	-2.686	0.007	-0.346	-0.054
temperature	-0.0055	0.006	-0.989	0.323	-0.016	0.005
precipitation	0.2203	0.220	1.001	0.317	-0.211	0.652

 Omnibus:
 1193.799
 Durbin-Watson:
 0.950

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 56571.437

 Skew:
 3.185
 Prob(JB):
 0.00

 Kurtosis:
 32.051
 Cond. No.
 759.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [30]: print(result_d.summary())

OLS Regression Results

______ Dep. Variable: kid_rate R-squared: 0.392 Model: OLS Adj. R-squared: 0.372 Method: Least Squares F-statistic: 20.34 Fri, 26 Apr 2024 Prob (F-statistic): 3.79e-127 15:10:14 Log-Likelihood: 1538.7 Date: Time: No. Observations: 1534 AIC: -2981. Df Residuals: 1486 BIC: -2725.

Df Model: 47
Covariance Type: nonrobust

Covariance Type:		nonrobust				
=========	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0809	0.024	3.349	0.001	0.034	0.128
C(month)[T.2]	0.0020	0.012	0.169	0.866	-0.021	0.025
C(month)[T.3]	0.0242	0.012	1.985	0.047	0.000	0.048
C(month)[T.4]	0.0080	0.014	0.584	0.559	-0.019	0.035
C(month)[T.5]	0.0127	0.016	0.805	0.421	-0.018	0.044
C(month)[T.6]	-0.0008	0.018	-0.046	0.963	-0.035	0.034
C(month)[T.7]	0.0199	0.015	1.318	0.188	-0.010	0.050
C(month)[T.8]	-0.0028	0.019	-0.151	0.880	-0.039	0.034
C(month)[T.9]	-0.0019	0.018	-0.105	0.916	-0.038	0.034
C(month)[T.10]	9.874e-05	0.014	0.007	0.994	-0.027	0.028
C(month)[T.11]	0.0160	0.012	1.357	0.175	-0.007	0.039
C(month)[T.12]	0.0057	0.011	0.505	0.614	-0.017	0.028
C(year)[T.2008]	0.0366	0.007	5.610	0.000	0.024	0.049
C(year)[T.2009]	0.0597	0.007	9.142	0.000	0.047	0.072
C(year)[T.2010]	0.0656	0.007	10.042	0.000	0.053	0.078
C(id)[T.1805.0]	0.0978	0.019	5.263	0.000	0.061	0.134
C(id)[T.1806.0]	-0.0834	0.019	-4.347	0.000	-0.121	-0.046
C(id)[T.1807.0]	-0.1006	0.022	-4.656	0.000	-0.143	-0.058
C(id)[T.1808.0]	-0.0908	0.021	-4.343	0.000	-0.132	-0.050
C(id)[T.1809.0]	0.1876	0.019	10.098	0.000	0.151	0.224
C(id)[T.1810.0]	-0.0285	0.019	-1.523	0.128	-0.065	0.008
C(id)[T.1811.0]	-0.0821	0.021	-3.854	0.000	-0.124	-0.040
C(id)[T.1812.0]	-0.0291	0.020	-1.459	0.145	-0.068	0.010
C(id)[T.1813.0]	0.0397	0.018	2.147	0.032	0.003	0.076
C(id)[T.1814.0]	-0.0581	0.018	-3.156	0.002	-0.094	-0.022
C(id)[T.1815.0]	-0.0168	0.020	-0.831	0.406	-0.056	0.023
C(id)[T.1816.0]	-0.0638	0.018	-3.455	0.001	-0.100	-0.028
C(id)[T.1817.0]	-0.0976	0.019	-5.172	0.000	-0.135	-0.061
C(id)[T.1818.0]	-0.0540	0.019	-2.883	0.004	-0.091	-0.017
C(id)[T.1819.0]	0.0552	0.019	2.897	0.004	0.018	0.093
C(id)[T.1820.0]	-0.0375	0.020	-1.911	0.056	-0.076	0.001
C(id)[T.1821.0]	-0.0973	0.019	-4.998	0.000	-0.135	-0.059
C(id)[T.1822.0]	-0.0940	0.019	-5.030	0.000	-0.131	-0.057
C(id)[T.1823.0]	-0.0665	0.019	-3.411	0.001	-0.105	-0.028
C(id)[T.1824.0]	-0.0951	0.019	-5.065	0.000	-0.132	-0.058
C(id)[T.1825.0]	-0.1045	0.019	-5.607	0.000	-0.141	-0.068
C(id)[T.1826.0]	-0.0394	0.023	-1.736	0.083	-0.084	0.005
C(id)[T.1827.0]	-0.0884	0.019	-4.757	0.000	-0.125	-0.052
C(id)[T.1828.0]	-0.0679	0.020	-3.349	0.001	-0.108	-0.028
C(id)[T.1829.0]	-0.0965	0.019	-5.043	0.000	-0.134	-0.059
C(id)[T.1830.0]	-0.0378	0.024	-1.605	0.109	-0.084	0.008
C(id)[T.1831.0]	-0.0256	0.020	-1.305	0.192	-0.064	0.013

C(id)[T.1832.0]	-0.1134	0.019	-6.103	0.000	-0.150	-0.077
C(id)[T.1833.0]	-0.1086	0.021	-5.083	0.000	-0.151	-0.067
C(id)[T.1834.0]	-0.1148	0.023	-5.078	0.000	-0.159	-0.070
C(id)[T.1835.0]	-0.0128	0.018	-0.695	0.487	-0.049	0.023
temperature	-0.0007	0.001	-0.475	0.635	-0.003	0.002
precipitation	0.0603	0.054	1.109	0.268	-0.046	0.167
=======================================					========	====
Omnibus:		821.064	Durbin-Wats	on:	1	.165
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	10489	.425
Skew:		2.208	Prob(JB):			0.00
Kurtosis:		15.025	Cond. No.			759.
==========	=======	========		:=======	========	====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

Table 4: Interaction with Economic Variables

```
In [31]: #TABLE 4 COLUMN 5
    table_4_inc_df = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'temp_pop'
    table_4_inc_df = table_4_inc_df.set_index(['muni_code', 'date'])
    table_4_inc_df = table_4_inc_df[['state', 'hom_rate', 'popw', 'temp_pop', 'precip_p
    table_4_inc_df</pre>
```

Out[31]:			state	hom_rate	popw	temp_pop	precip_pop	temp_inc
	muni_code	date						
	1001	2001-	A 11.	0.204544	655020.0275	22.047400	0.442004	2.52

muni_code	date						
1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894	2.53
	1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000	1.67
	2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.038703	-1.44
	2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002461	-0.71
	2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245	1.49
•••	•••						
32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	1.39
	1993- 03-01	Zacatecas	2.608534	124968.4375	13.100000	0.016000	-0.59
	2003- 07-01	Zacatecas	0.000000	124968.4375	16.400000	1.907000	0.22
	2005- 12-01	Zacatecas	1.503913	124968.4375	11.900000	0.031000	-0.89
	2004- 11-01	Zacatecas	1.517868	124968.4375	13.100000	0.029000	-0.59

486132 rows × 6 columns

```
In [32]: mod_inc = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + temp_income + T
         result_inc = mod_inc.fit(cov_type='clustered', clusters = table_4_inc_df['state'])
         print(result_inc.summary)
```

=======================================			
Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	PanelOLS	R-squared (Between):	0.1482
No. Observations:	486132	R-squared (Within):	-0.0001
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0669
Time:	15:11:42	Log-likelihood	-1.034e+06
Cov. Estimator:	Clustered		
		F-statistic:	33.295
Entities:	2383	P-value	0.0000
Avg Obs:	204.00	Distribution:	F(3,483543)
Min Obs:	204.00		
Max Obs:	204.00	F-statistic (robust):	7.6896
		P-value	0.0000
Time periods:	204	Distribution:	F(3,483543)
Avg Obs:	2383.0		
Min Obs:	2383.0		
Max Obs:	2383.0		

Parameter Estimates

=========										
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI				
temp_pop precip_pop temp_income	0.0138 -0.0033 0.0028	0.0043 0.0081 0.0018	3.1721 -0.4103 1.5827	0.0015 0.6816 0.1135	0.0053 -0.0191 -0.0007	0.0223 0.0125 0.0062				

F-test for Poolability: 101.78

P-value: 0.0000

Distribution: F(2585,483543)

```
In [33]: #TABLE 4 COLUMN 6
  table_4_gini_df = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'temp_pop
  table_4_gini_df = table_4_gini_df.set_index(['muni_code', 'date'])
  table_4_gini_df = table_4_gini_df[['state', 'hom_rate', 'popw', 'temp_pop', 'precip
  table_4_gini_df</pre>
```

state	hom_rate	popw	temp_pop	precip
	state	state hom_rate	state hom_rate popw	state hom_rate popw temp_pop

:		state	hom_rate	popw	temp_pop	precip_pop	temp_gin
muni_cod	e date						
100	1 2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894	2.16750
	1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000	1.43586
	2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.038703	-1.23313
	2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002461	-0.61166
	2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245	1.27620
••	• •••						
3205	5 2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	-0.38565
	1993- 03-01	Zacatecas	2.608534	124968.4375	13.100000	0.016000	0.16496
	2003- 07-01	Zacatecas	0.000000	124968.4375	16.400000	1.907000	-0.06216
	2005- 12-01	Zacatecas	1.503913	124968.4375	11.900000	0.031000	0.24756
	2004- 11-01	Zacatecas	1.517868	124968.4375	13.100000	0.029000	0.16496

482868 rows × 6 columns

```
In [34]: mod_gini = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + temp_gini + Ti
         result_gini = mod_gini.fit(cov_type='clustered', clusters = table_4_gini_df['state'
         print(result_gini.summary)
```

=======================================			
Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	Pane10LS	R-squared (Between):	0.1638
No. Observations:	482868	R-squared (Within):	-0.0001
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0741
Time:	15:13:20	Log-likelihood	-1.026e+06
Cov. Estimator:	Clustered		
		F-statistic:	32.459
Entities:	2367	P-value	0.0000
Avg Obs:	204.00	Distribution:	F(3,480295)
Min Obs:	204.00		
Max Obs:	204.00	F-statistic (robust):	6.7431
		P-value	0.0002
Time periods:	204	Distribution:	F(3,480295)
Avg Obs:	2367.0		
Min Obs:	2367.0		
Max Obs:	2367.0		

Parameter Estimates

========		========				
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop precip_pop temp_gini	0.0155 -0.0036 0.0008	0.0037 0.0082 0.0026	4.1984 -0.4453 0.3126	0.0000 0.6561 0.7546	0.0083 -0.0196 -0.0043	0.0228 0.0124 0.0059

F-test for Poolability: 102.24

P-value: 0.0000

Distribution: F(2569,480295)

```
In [35]: #TABLE 4 COLUMN 7
    table_4_ac_df = muni[(muni['year'] <= 2006) & (muni['ac_data'] == 1)].dropna(subset
    table_4_ac_df = table_4_ac_df.set_index(['muni_code', 'date'])
    table_4_ac_df = table_4_ac_df[['state', 'hom_rate', 'popw', 'temp_pop', 'precip_pop
    table_4_ac_df</pre>
```

Out[35]:	state	hom_rate	popw	temp_pop	precip_pop	temp_ac

		54440	nom_rate	popii	temp_pop	b.cc.b_bob	temp_at
muni_code	date						
1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894	-1.352743
	1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000	-0.896125
	2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.038703	0.769604
	2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002461	0.381742
	2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245	-0.796479
•••	•••						
32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	-2.459257
	1993- 03-01	Zacatecas	2.608534	124968.4375	13.100000	0.016000	1.051976
	2003- 07-01	Zacatecas	0.000000	124968.4375	16.400000	1.907000	-0.396407
	2005- 12-01	Zacatecas	1.503913	124968.4375	11.900000	0.031000	1.578662
	2004- 11-01	Zacatecas	1.517868	124968.4375	13.100000	0.029000	1.051976

121056 rows × 6 columns

```
In [36]: mod_ac = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + temp_ac + TimeEf
    result_hom = mod_ac.fit(cov_type='clustered', clusters = table_4_ac_df['state'])
    print(result_hom.summary)
```

=======================================			
Dep. Variable:	hom_rate	R-squared:	0.0005
Estimator:	PanelOLS	R-squared (Between):	0.2073
No. Observations:	121056	R-squared (Within):	-0.0003
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.1263
Time:	15:13:33	Log-likelihood	-2.193e+05
Cov. Estimator:	Clustered		
		F-statistic:	20.628
Entities:	599	P-value	0.0000
Avg Obs:	202.10	Distribution:	F(3,120251)
Min Obs:	24.000		
Max Obs:	204.00	F-statistic (robust):	7.9397
		P-value	0.0000
Time periods:	204	Distribution:	F(3,120251)
Avg Obs:	593.41		
Min Obs:	585.00		
Max Obs:	599.00		

Parameter Estimates

========	=======	========		========		========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0218	0.0053	4.1176	0.0000	0.0114	0.0321
precip_pop	-0.0049	0.0089	-0.5526	0.5805	-0.0223	0.0125
temp_ac	-0.0022	0.0012	-1.8150	0.0695	-0.0045	0.0002

F-test for Poolability: 154.13

P-value: 0.0000

Distribution: F(801,120251)

```
In [37]: #TABLE 4 COLUMN 8
  table_4_at_df = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'temp_pop',
    table_4_at_df = table_4_at_df.set_index(['muni_code', 'date'])
  table_4_at_df = table_4_at_df[['state', 'hom_rate', 'popw', 'temp_pop', 'precip_pop
  table_4_at_df</pre>
```

0.297347 655030.9375 16.335100

17.702499

0.038703

0.002461

0.

0.

•					, ,			
Out[37]:			state	hom_rate	popw	temp_pop	precip_pop	temp_av
	muni_code	date						
	1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894	-1.
		1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000	-0.

	2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245	-0.
•••	•••	•••			•••		
32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440	-1.
	2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000	-1.
	2005- 03-01	Zacatecas	38.355366	2711.0000	19.163700	0.044328	-0.
	2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020	-0.
	2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296	1.

0.000000 655030.9375

493908 rows × 6 columns

2001-

11-01

2000-

02-01

Aguascalientes

Aguascalientes

```
In [38]: mod_at= PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + temp_avg_temp + T
    result_at = mod_at.fit(cov_type='clustered', clusters = table_4_at_df['state'])
    print(result_at.summary)
```

hom_rate	R-squared:	0.0002
PanelOLS	R-squared (Between):	0.1660
493908	R-squared (Within):	-0.0002
Fri, Apr 26 2024	R-squared (Overall):	0.0748
15:15:03	Log-likelihood	-1.051e+06
Clustered		
	F-statistic:	32.758
2447	P-value	0.0000
201.84	Distribution:	F(3,491255)
24.000		
204.00	F-statistic (robust):	6.1980
	P-value	0.0003
204	Distribution:	F(3,491255)
2421.1		
2396.0		
2447.0		
	PanelOLS 493908 Fri, Apr 26 2024 15:15:03 Clustered 2447 201.84 24.000 204.00 204	PanelOLS R-squared (Between): 493908 R-squared (Within): Fri, Apr 26 2024 R-squared (Overall): 15:15:03 Log-likelihood Clustered F-statistic: 2447 P-value 201.84 Distribution: 24.000 204.00 F-statistic (robust): P-value 204 Distribution: 2421.1 2396.0

Parameter Estimates

=========	:=======	========				=======
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0157	0.0038	4.0986	0.0000	0.0082	0.0232
precip_pop	-0.0031	0.0082	-0.3729	0.7093	-0.0192	0.0130
temp_avg_temp	0.0003	0.0018	0.1522	0.8790	-0.0032	0.0038
	.=======		.=======			

F-test for Poolability: 100.44

P-value: 0.0000

Distribution: F(2649,491255)

Included effects: Entity, Time

Table 5: Progresa Transfers

```
In [39]: #TABLE 5 COLUMN 4
  table_5_temp_df = muni[(muni['year'] <= 2006) & (muni['year'] >= 1998)].dropna(subs
  table_5_temp_df = table_5_temp_df.set_index(['muni_code', 'date'])
  table_5_temp_df = table_5_temp_df[['state', 'hom_rate', 'popw', 'temp_pop', 'precip
  table_5_temp_df
```

Out[39]:

		state	hom_rate	popw	temp_pop	precip_pop
muni_code	date					
1001	2001-04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894
	1998-04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000
	2001-11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.038703
	2000-02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002461
	2001-07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245
•••	•••				•••	•••
32058	2006-11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440
	2005-12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000
	2005-03-01	Zacatecas	38.355366	2711.0000	19.163700	0.044328
	2006-03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020
	2005-06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296

262992 rows × 5 columns

=======================================			
Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	PanelOLS	R-squared (Between):	0.1777
No. Observations:	262992	R-squared (Within):	-0.0004
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0794
Time:	15:15:27	Log-likelihood	-4.977e+05
Cov. Estimator:	Clustered		
		F-statistic:	23.621
Entities:	2447	P-value	0.0000
Avg Obs:	107.48	Distribution:	F(2,260436)
Min Obs:	24.000		
Max Obs:	108.00	F-statistic (robust):	8.2345
		P-value	0.0003
Time periods:	108	Distribution:	F(2,260436)
Avg Obs:	2435.1		
Min Obs:	2421.0		
Max Obs:	2447.0		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI	
temp_pop	0.0127	0.0032	4.0075	0.0001	0.0065	0.0190	
precip_pop	0.0071	0.0084	0.8434	0.3990	-0.0094	0.0235	

F-test for Poolability: 51.954

P-value: 0.0000

Distribution: F(2553,260436)

```
In [41]: #TABLE 5 COLUMN 5
  table_5_pro_df = muni[(muni['year'] <= 2006) & (muni['year'] >= 1998)].dropna(subse
  table_5_pro_df = table_5_pro_df.set_index(['muni_code', 'date'])
  table_5_pro_df = table_5_pro_df[['state', 'hom_rate', 'popw', 'temp_pop', 'progresa
  table_5_pro_df
```

-	F 7	
()11+	1 /1 /1	
UILL	141	

•			state	hom_rate	popw	temp_pop	progresa_per_capita
	muni_code	date					
	1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.002714
		1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000
		2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.004456
		2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002706
		2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	0.001304
	•••	•••					
	32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.000000
		2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000
		2005- 03-01	Zacatecas	38.355366	2711.0000	19.163700	0.000000
		2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.000000
		2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.000000

262992 rows × 6 columns

```
In [42]: mod_pro = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + progresa_per_ca
    result_pro = mod_pro.fit(cov_type='clustered', clusters = table_5_pro_df['state'])
    print(result_pro.summary)
```

Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	Pane10LS	R-squared (Between):	0.1778
No. Observations:	262992	R-squared (Within):	-0.0004
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0795
Time:	15:15:46	Log-likelihood	-4.977e+05
Cov. Estimator:	Clustered		
		F-statistic:	15.805
Entities:	2447	P-value	0.0000
Avg Obs:	107.48	Distribution:	F(3,260435)
Min Obs:	24.000		
Max Obs:	108.00	F-statistic (robust):	5.5385
		P-value	0.0008
Time periods:	108	Distribution:	F(3,260435)
Avg Obs:	2435.1		
Min Obs:	2421.0		
Max Obs:	2447.0		

Parameter Estimates

==============		=======	=======	=======		======
===	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper
CI						
temp_pop	0.0127	0.0032	4.0060	0.0001	0.0065	0.0
190						
precip_pop	0.0071	0.0084	0.8449	0.3982	-0.0093	0.0
235						
<pre>progresa_per_capita</pre>	0.0042	0.0114	0.3662	0.7142	-0.0182	0.0
266						
=======================================		========	========	========		======

F-test for Poolability: 51.938

P-value: 0.0000

Distribution: F(2553,260435)

```
In [43]: #TABLE 5 COLUMN 6
  table_5_pt_df = muni[(muni['year'] <= 2006) & (muni['year'] >= 1998)].dropna(subset
  table_5_pt_df = table_5_pt_df.set_index(['muni_code', 'date'])
  table_5_pt_df = table_5_pt_df[['state', 'hom_rate', 'popw', 'temp_pop', 'progresa_p
  table_5_pt_df
```

_		
() 1 1 -	1 71 22 1	
UUU	1471	

		state	hom_rate	popw	temp_pop	progresa_per_capita
muni_code	date					
1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.002714
	1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000
	2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.004456
	2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002706
	2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	0.001304
•••	•••					
32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.000000
	2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000
	2005- 03-01	Zacatecas	38.355366	2711.0000	19.163700	0.000000
	2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.000000
	2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.000000

262992 rows × 7 columns

```
In [44]: mod_pt = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + progresa_per_cap
    result_pt = mod_pt.fit(cov_type='clustered', clusters = table_5_pt_df['state'])
    print(result_pt.summary)
```

		==========
hom_rate	R-squared:	0.0002
Pane10LS	R-squared (Between):	0.1780
262992	R-squared (Within):	-0.0004
Fri, Apr 26 2024	R-squared (Overall):	0.0795
15:16:03	Log-likelihood	-4.977e+05
Clustered		
	F-statistic:	11.951
2447	P-value	0.0000
107.48	Distribution:	F(4,260434)
24.000		
108.00	F-statistic (robust):	4.1933
	P-value	0.0021
108	Distribution:	F(4,260434)
2435.1		
2421.0		
2447.0		
	PanelOLS 262992 Fri, Apr 26 2024 15:16:03 Clustered 2447 107.48 24.000 108.00 108 2435.1 2421.0	PanelOLS R-squared (Between): 262992 R-squared (Within): Fri, Apr 26 2024 R-squared (Overall): 15:16:03 Log-likelihood Clustered

Parameter Estimates

==============		=======	=======	=======	========	======
=== CI	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper
temp_pop 190	0.0128	0.0032	4.0042	0.0001	0.0065	0.0
precip_pop 235	0.0071	0.0084	0.8483	0.3963	-0.0093	0.0
<pre>progresa_per_capita 272</pre>	0.0045	0.0116	0.3866	0.6991	-0.0183	0.0
temp_progresa 022	-0.0024	0.0024	-1.0216	0.3070	-0.0070	0.0
=======================================	=======	=======	=======	=======		======
===						

F-test for Poolability: 51.938

P-value: 0.0000

Distribution: F(2553,260434)

Included effects: Entity, Time

Table 6: Interaction with Agricultural Variables

```
In [45]: #Column 5
    table_6_hom_df = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'temp_pop'
    table_6_hom_df = table_6_hom_df.set_index(['muni_code', 'date'])
    table_6_hom_df = table_6_hom_df[['state', 'hom_rate', 'popw', 'temp_pop', 'precip_p
    table_6_hom_df</pre>
```

() 1 1 	

		state	hom_rate	popw	temp_pop	precip_pop
muni_code	date					
1001	2001-04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894
	1998-04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000
	2001-11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.038703
	2000-02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002461
	2001-07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245
•••	•••					
32058	2006-11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440
	2005-12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000
	2005-03-01	Zacatecas	38.355366	2711.0000	19.163700	0.044328
	2006-03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020
	2005-06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296

493908 rows × 5 columns

```
In [46]: mod_table_6 = PanelOLS.from_formula('hom_rate ~ temp_pop + precip_pop + TimeEffects
    result_hom = mod_table_6.fit(cov_type='clustered', clusters = table_6_hom_df['state
    print(result_hom.summary)
```

=======================================			
Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	Pane10LS	R-squared (Between):	0.1666
No. Observations:	493908	R-squared (Within):	-0.0002
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0750
Time:	15:17:34	Log-likelihood	-1.051e+06
Cov. Estimator:	Clustered		
		F-statistic:	49.099
Entities:	2447	P-value	0.0000
Avg Obs:	201.84	Distribution:	F(2,491256)
Min Obs:	24.000		
Max Obs:	204.00	F-statistic (robust):	9.2778
		P-value	0.0001
Time periods:	204	Distribution:	F(2,491256)
Avg Obs:	2421.1		
Min Obs:	2396.0		
Max Obs:	2447.0		

Parameter Estimates

========	=======	========		========	========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0158	0.0039	4.0921	0.0000	0.0082	0.0233
precip_pop	-0.0031	0.0082	-0.3758	0.7071	-0.0191	0.0130

F-test for Poolability: 100.44

P-value: 0.0000

Distribution: F(2649,491256)

```
In [47]: #Column 6
    table_6_hom_df_growing = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 't
    table_6_hom_df_growing = table_6_hom_df_growing.set_index(['muni_code', 'date'])
    table_6_hom_df_growing = table_6_hom_df_growing[['state', 'hom_rate', 'popw', 'temp
    table_6_hom_df_growing</pre>
```

-		
Out	17	
Out	+/	

•			state	hom_rate	popw	temp_pop	precip_pop	temp_gr
	muni_code	date						
	1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	0.113894	
		1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	0.000000	
		2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	0.038703	
	2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	0.002461		
		2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	1.110245	
	•••	•••				•••	•••	
	32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440	
		2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000	
		2005- 03-01	Zacatecas	38.355366	2711.0000	19.163700	0.044328	
		2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020	
		2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296	

493908 rows × 7 columns

```
In [48]: mod_table_6_growing = PanelOLS.from_formula('hom_rate ~ temp_pop + temp_growing_sea
    result_hom_growing = mod_table_6_growing.fit(cov_type='clustered', clusters = table
    print(result_hom_growing.summary)
```

===========			==========
Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	Pane10LS	R-squared (Between):	0.1449
No. Observations:	493908	R-squared (Within):	-0.0001
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0653
Time:	15:19:06	Log-likelihood	-1.051e+06
Cov. Estimator:	Clustered		
		F-statistic:	33.119
Entities:	2447	P-value	0.0000
Avg Obs:	201.84	Distribution:	F(3,491255)
Min Obs:	24.000		
Max Obs:	204.00	F-statistic (robust):	7.1735
		P-value	0.0001
Time periods:	204	Distribution:	F(3,491255)
Avg Obs:	2421.1		
Min Obs:	2396.0		
Max Obs:	2447.0		

Parameter Estimates

============	=======	=======	=======	=======	=======	======
=== CI	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper
temp_pop 231	0.0131	0.0051	2.5865	0.0097	0.0032	0.0
<pre>temp_growing_season 178</pre>	0.0050	0.0065	0.7715	0.4404	-0.0078	0.0
precip_pop 138	-0.0028	0.0084	-0.3276	0.7432	-0.0193	0.0
=======================================	=======	=======	=======	=======	========	======
===						

F-test for Poolability: 100.40

P-value: 0.0000

Distribution: F(2649,491255)

```
In [49]: #Column 7
    table_6_hom_df_rural = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'tem
    table_6_hom_df_rural = table_6_hom_df_rural.set_index(['muni_code', 'date'])
    table_6_hom_df_rural = table_6_hom_df_rural[['state', 'hom_rate', 'popw', 'temp_pop
    table_6_hom_df_rural</pre>
```

Out[49]:			state	hom_rate	popw	temp_pop	temp_rural	precip_pc
	muni_code	date						

muni_code	date						
1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	-7.394476	0.11389
	1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	-4.898471	0.00000
	2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	4.206873	0.0387(
	2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	2.086713	0.00246
	2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	-4.353780	1.11024
•••	•••	•••		•••			
32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	-8.945066	1.4650(
	1993- 03-01	Zacatecas	2.608534	124968.4375	13.100000	3.826359	0.01600
	2003- 07-01	Zacatecas	0.000000	124968.4375	16.400000	-1.441853	1.90700
	2005- 12-01	Zacatecas	1.503913	124968.4375	11.900000	5.742074	0.03100
	2004- 11-01	Zacatecas	1.517868	124968.4375	13.100000	3.826359	0.02900

488784 rows × 6 columns

```
In [50]: mod_table_6_rural = PanelOLS.from_formula('hom_rate ~ temp_pop + temp_rural + preci
         result_hom_rural = mod_table_6_rural.fit(cov_type='clustered', clusters = table_6_h
         print(result_hom_rural.summary)
```

=======================================			=======================================
Dep. Variable:	hom_rate	R-squared:	0.0002
Estimator:	PanelOLS	R-squared (Between):	0.1606
No. Observations:	488784	R-squared (Within):	-0.0001
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0724
Time:	15:20:37	Log-likelihood	-1.04e+06
Cov. Estimator:	Clustered		
		F-statistic:	32.617
Entities:	2396	P-value	0.0000
Avg Obs:	204.00	Distribution:	F(3,486182)
Min Obs:	204.00		
Max Obs:	204.00	F-statistic (robust):	7.2288
		P-value	0.0001
Time periods:	204	Distribution:	F(3,486182)
Avg Obs:	2396.0		
Min Obs:	2396.0		
Max Obs:	2396.0		

Parameter Estimates

========	=======	========		========	========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0152	0.0055	2.7756	0.0055	0.0045	0.0259
temp_rural	-0.0004	0.0018	-0.2185	0.8270	-0.0040	0.0032
precip_pop	-0.0036	0.0082	-0.4471	0.6548	-0.0196	0.0123

F-test for Poolability: 101.68

P-value: 0.0000

Distribution: F(2598,486182)

```
In [51]: #Column 8
    table_6_hom_df_agric = muni[muni['year'] <= 2006].dropna(subset = ['hom_rate', 'tem
    table_6_hom_df_agric = table_6_hom_df_agric.set_index(['muni_code', 'date'])
    table_6_hom_df_agric = table_6_hom_df_agric[['state', 'hom_rate', 'popw', 'temp_pop
    table_6_hom_df_agric</pre>
```

Out[51]:	state	hom_rate	popw	temp_pop	temp_agric	precip_po

•			State	nom_rate	popw	remp_pop	temp_agric	brecib_br
ı	muni_code	date						
	1001	2001- 04-01	Aguascalientes	0.301511	655030.9375	23.817400	-9.399092	0.1138
		1998- 04-01	Aguascalientes	0.642868	655030.9375	22.207600	-6.226429	0.0000
		2001- 11-01	Aguascalientes	0.297347	655030.9375	16.335100	5.347341	0.0387
		2000- 02-01	Aguascalientes	0.000000	655030.9375	17.702499	2.652413	0.0024
		2001- 07-01	Aguascalientes	0.149856	655030.9375	21.856300	-5.534073	1.1102
	•••	•••	•••			•••		
	32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	-11.386839	1.4650
		1993- 03-01	Zacatecas	2.608534	124968.4375	13.100000	4.870856	0.0160
		2003- 07-01	Zacatecas	0.000000	124968.4375	16.400000	-1.835442	1.9070
		2005- 12-01	Zacatecas	1.503913	124968.4375	11.900000	7.309511	0.0310
		2004- 11-01	Zacatecas	1.517868	124968.4375	13.100000	4.870856	0.0290

488784 rows × 6 columns

```
In [52]: mod_table_6_agric = PanelOLS.from_formula('hom_rate ~ temp_pop + temp_agric + preci
result_hom_agric = mod_table_6_agric.fit(cov_type='clustered', clusters = table_6_h
print(result_hom_agric.summary)
```

Dep. Variable:	hom_rate	R-squared:	0.0002			
Estimator:	Pane10LS	R-squared (Between):	0.1597			
No. Observations:	488784	R-squared (Within):	-0.0001			
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0721			
Time:	15:22:06	Log-likelihood	-1.04e+06			
Cov. Estimator:	Clustered					
		F-statistic:	32.632			
Entities:	2396	P-value	0.0000			
Avg Obs:	204.00	Distribution:	F(3,486182)			
Min Obs:	204.00					
Max Obs:	204.00	F-statistic (robust):	7.2355			
		P-value	0.0001			
Time periods:	204	Distribution:	F(3,486182)			
Avg Obs:	2396.0					
Min Obs:	2396.0					
Max Obs:	2396.0					

Parameter Estimates

========	========	========				========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0151	0.0055	2.7319	0.0063	0.0043	0.0259
temp_agric	-0.0004	0.0017	-0.2486	0.8037	-0.0036	0.0028
precip_pop	-0.0036	0.0082	-0.4446	0.6566	-0.0196	0.0124

F-test for Poolability: 101.68

P-value: 0.0000

Distribution: F(2598,486182)

Included effects: Entity, Time

Table 8: Temperature and Suicides in Mexico

```
In [53]: #Column 1
    table_8_rural_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_po
    table_8_rural_df = table_8_rural_df.set_index(['muni_code', 'date'])
    table_8_rural_df = table_8_rural_df[['state', 'sui_rate', 'popw', 'temp_pop', 'prec
    table_8_rural_df</pre>
```

_		
()ıı+	L E 2	
C/L/L	1 2 7 1	

		state	sui_rate	popw	temp_pop	precip_pop
muni_code	date					
1001	2001-04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894
	1998-04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000
	2001-11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703
	2000-02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461
	2001-07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245
•••	•••					
32058	2006-11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440
	2005-12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000
	2005-03-01	Zacatecas	0.000000	2711.0000	19.163700	0.044328
	2006-03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020
	2005-06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296

493908 rows × 5 columns

Dep. Variable:	sui_rate	R-squared:	0.0003			
Estimator:	Pane10LS	R-squared (Between):	0.2921			
No. Observations:	493908	R-squared (Within):	0.0006			
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0765			
Time:	15:23:39	Log-likelihood	-5.606e+05			
Cov. Estimator:	Clustered					
		F-statistic:	85.888			
Entities:	2447	P-value	0.0000			
Avg Obs:	201.84	Distribution:	F(2,491256)			
Min Obs:	24.000					
Max Obs:	204.00	F-statistic (robust):	33.552			
		P-value	0.0000			
Time periods:	204	Distribution:	F(2,491256)			
Avg Obs:	2421.1					
Min Obs:	2396.0					
Max Obs:	2447.0					

Parameter Estimates

========	========	========			========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0072	0.0010	7.2590	0.0000	0.0052	0.0091
precip_pop	-0.0048	0.0024	-2.0513	0.0402	-0.0094	-0.0002

F-test for Poolability: 40.201

P-value: 0.0000

Distribution: F(2649,491256)

```
In [55]: #Column 2
  table_8_rural_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_po
  table_8_rural_df = table_8_rural_df.set_index(['muni_code', 'date'])
  table_8_rural_df = table_8_rural_df[['state', 'sui_rate', 'popw', 'temp_pop', 'prec
  table_8_rural_df</pre>
```

\cap	14-	$\Gamma =$	E 1	
U	ИL	LΖ	2	۰

			state	sui_rate	popw	temp_pop	precip_pop	temp_incc
	muni_code	date						
	1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	2.531
		1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	1.676
		2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	-1.440
		2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	-0.714
		2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	1.490
	•••	•••						
	32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	1.397
		1993- 03-01	Zacatecas	0.869511	124968.4375	13.100000	0.016000	-0.597
		2003- 07-01	Zacatecas	0.771639	124968.4375	16.400000	1.907000	0.225
		2005- 12-01	Zacatecas	0.751956	124968.4375	11.900000	0.031000	-0.896
		2004- 11-01	Zacatecas	0.758934	124968.4375	13.100000	0.029000	-0.597

486132 rows × 6 columns

```
In [56]: mod_inc = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_income + T
    result_inc8 = mod_inc.fit(cov_type='clustered', clusters = table_8_rural_df['state'
    print(result_inc8.summary)
```

=======================================			=========
Dep. Variable:	sui_rate	R-squared:	0.0004
Estimator:	PanelOLS	R-squared (Between):	0.2708
No. Observations:	486132	R-squared (Within):	0.0006
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0716
Time:	15:25:16	Log-likelihood	-5.497e+05
Cov. Estimator:	Clustered		
		F-statistic:	58.285
Entities:	2383	P-value	0.0000
Avg Obs:	204.00	Distribution:	F(3,483543)
Min Obs:	204.00		
Max Obs:	204.00	F-statistic (robust):	22.350
		P-value	0.0000
Time periods:	204	Distribution:	F(3,483543)
Avg Obs:	2383.0		
Min Obs:	2383.0		
Max Obs:	2383.0		

Parameter Estimates

========	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0065	0.0010	6.3719	0.0000	0.0045	0.0085
precip_pop	-0.0048	0.0024	-1.9550	0.0506	-0.0095	1.217e-05
temp_income	0.0010	0.0009	1.1492	0.2505	-0.0007	0.0028

F-test for Poolability: 41.090

P-value: 0.0000

Distribution: F(2585,483543)

```
In [57]: #Column 3
    table_8_gini_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_pop
    table_8_gini_df = table_8_gini_df.set_index(['muni_code', 'date'])
    table_8_gini_df = table_8_gini_df[['state', 'sui_rate', 'popw', 'temp_pop', 'precip
    table_8_gini_df</pre>
```

() i	14-1	6.7	
U.	1 L I	2/	

•			state	sui_rate	popw	temp_pop	precip_pop	temp_gini
	muni_code	date						
10	1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	2.167502
		1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	1.435862
	2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	-1.233138	
	2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	-0.611667	
		2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	1.276200
	•••	•••		•••				
	32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	-0.385651
		1993- 03-01	Zacatecas	0.869511	124968.4375	13.100000	0.016000	0.164967
	2003- 07-01	Zacatecas	0.771639	124968.4375	16.400000	1.907000	-0.062163	
		2005- 12-01	Zacatecas	0.751956	124968.4375	11.900000	0.031000	0.247560
		2004- 11-01	Zacatecas	0.758934	124968.4375	13.100000	0.029000	0.164967

```
In [58]: mod_gini8 = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_gini + T
    result_gini8 = mod_gini8.fit(cov_type='clustered', clusters = table_8_gini_df['stat
    print(result_gini8.summary)
```

Dep. Variable:	sui_rate	R-squared:	0.0004			
Estimator:	Pane10LS	R-squared (Between):	0.2886			
No. Observations:	482868	R-squared (Within):	0.0006			
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0764			
Time:	15:26:46	Log-likelihood	-5.452e+05			
Cov. Estimator:	Clustered					
		F-statistic:	57.417			
Entities:	2367	P-value	0.0000			
Avg Obs:	204.00	Distribution:	F(3,480295)			
Min Obs:	204.00					
Max Obs:	204.00	F-statistic (robust):	23.819			
		P-value	0.0000			
Time periods:	204	Distribution:	F(3,480295)			
Avg Obs:	2367.0					
Min Obs:	2367.0					
Max Obs:	2367.0					

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI		
temp_pop precip_pop temp_gini	0.0071 -0.0048 0.0005	0.0010 0.0024 0.0014	7.3739 -2.0124 0.3476	0.0000 0.0442 0.7281	0.0052 -0.0096 -0.0023	0.0089 -0.0001 0.0033		

F-test for Poolability: 41.198

P-value: 0.0000

Distribution: F(2569,480295)

```
In [59]: #Column 4
  table_8_ac_df = muni[(muni['year'] <= 2006) & (muni['ac_data'] == 1)].dropna(subset
  table_8_ac_df = table_8_ac_df.set_index(['muni_code', 'date'])
  table_8_ac_df = table_8_ac_df[['state', 'sui_rate', 'popw', 'temp_pop', 'precip_pop
  table_8_ac_df</pre>
```

	F 7	
() i i +		
VUL	1 22 1	

0			state	sui_rate	popw	temp_pop	precip_pop	temp_ac
muni_c	ode	date						
1	001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	-1.352743
		1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	-0.896125
		2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	0.769604
		2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	0.381742
		2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	-0.796479
	•••	•••						
32	056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	-2.459257
		1993- 03-01	Zacatecas	0.869511	124968.4375	13.100000	0.016000	1.051976
		2003- 07-01	Zacatecas	0.771639	124968.4375	16.400000	1.907000	-0.396407
		2005- 12-01	Zacatecas	0.751956	124968.4375	11.900000	0.031000	1.578662
		2004- 11-01	Zacatecas	0.758934	124968.4375	13.100000	0.029000	1.051976

```
In [60]: mod_ac8 = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_ac + TimeE
    result_ac8 = mod_ac8.fit(cov_type='clustered', clusters = table_8_ac_df['state'])
    print(result_ac8.summary)
```

			==========
Dep. Variable:	sui_rate	R-squared:	0.0009
Estimator:	Pane10LS	R-squared (Between):	0.1955
No. Observations:	121056	R-squared (Within):	0.0015
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0922
Time:	15:27:02	Log-likelihood	-9.227e+04
Cov. Estimator:	Clustered		
		F-statistic:	36.915
Entities:	599	P-value	0.0000
Avg Obs:	202.10	Distribution:	F(3,120251)
Min Obs:	24.000		
Max Obs:	204.00	F-statistic (robust):	37.087
		P-value	0.0000
Time periods:	204	Distribution:	F(3,120251)
Avg Obs:	593.41		
Min Obs:	585.00		
Max Obs:	599.00		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI		
temp_pop	0.0049	0.0019	2.6588	0.0078	0.0013	0.0086		
precip_pop	-0.0059	0.0025	-2.3521	0.0187	-0.0108	-0.0010		
temp_ac	0.0009	0.0009	0.9506	0.3418	-0.0010	0.0027		

F-test for Poolability: 83.472

P-value: 0.0000

Distribution: F(801,120251)

```
In [61]: # Column 5
  table_8_at_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_pop',
    table_8_at_df = table_8_at_df.set_index(['muni_code', 'date'])
  table_8_at_df = table_8_at_df[['state', 'sui_rate', 'popw', 'temp_pop', 'precip_pop
  table_8_at_df</pre>
```

\bigcirc	1+	Γ6	17	
U	1 (Lυ	-]	۰

•		state	sui_rate	popw	temp_pop	precip_pop	temp_avg_
muni_code	date						
1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	-1.2
	1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	-0.7
	2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	0.6
	2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	0.3
	2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	-0.7
•••	•••						
32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440	-1.1
	2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000	-1.6
	2005- 03-01	Zacatecas	0.000000	2711.0000	19.163700	0.044328	-0.9
	2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020	-0.2
	2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296	1.9

```
In [62]: mod_at8 = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_avg_temp +
    result_at8 = mod_at8.fit(cov_type='clustered', clusters = table_8_at_df['state'])
    print(result_at8.summary)
```

Dep. Variable:	sui_rate	R-squared:	0.0004			
Estimator:	Pane10LS	R-squared (Between):	0.2840			
No. Observations:	493908	R-squared (Within):	0.0006			
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0744			
Time:	15:28:53	Log-likelihood	-5.606e+05			
Cov. Estimator:	Clustered					
		F-statistic:	60.651			
Entities:	2447	P-value	0.0000			
Avg Obs:	201.84	Distribution:	F(3,491255)			
Min Obs:	24.000					
Max Obs:	204.00	F-statistic (robust):	22.507			
		P-value	0.0000			
Time periods:	204	Distribution:	F(3,491255)			
Avg Obs:	2421.1					
Min Obs:	2396.0					
Max Obs:	2447.0					

Parameter Estimates

=========									
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI			
temp_pop	0.0069	0.0011	6.4216	0.0000	0.0048	0.0090			
precip_pop	-0.0048	0.0023	-2.0692	0.0385	-0.0093	-0.0003			
temp_avg_temp	0.0012	0.0007	1.7988	0.0721	-0.0001	0.0025			

F-test for Poolability: 40.200

P-value: 0.0000

Distribution: F(2649,491255)

```
In [63]: # Column 6
    table_8_pt_df = muni[(muni['year'] <= 2006) & (muni['year'] >= 1998)].dropna(subset
    table_8_pt_df = table_8_pt_df.set_index(['muni_code', 'date'])
    table_8_pt_df = table_8_pt_df[['state', 'sui_rate', 'popw', 'temp_pop', 'precip_pop
    table_8_pt_df
```

-	F 7	
()II+	162	
Ou t	1001	

		state	sui_rate	popw	temp_pop	precip_pop	progresa_
muni_code	date						
1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	
	1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	
	2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	
	2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	
	2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	
•••	•••						
32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440	
	2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000	
	2005- 03-01	Zacatecas	0.000000	2711.0000	19.163700	0.044328	
	2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020	
	2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296	

```
In [64]: mod_pt8 = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + progresa_per_ca
    result_pt8 = mod_pt8.fit(cov_type='clustered', clusters = table_8_pt_df['state'])
    print(result_pt8.summary)
```

sui_rate	R-squared:	0.0005
Pane10LS	R-squared (Between):	0.3705
262992	R-squared (Within):	0.0007
Fri, Apr 26 2024	R-squared (Overall):	0.0987
15:29:15	Log-likelihood	-3.103e+05
Clustered		
	F-statistic:	33.831
2447	P-value	0.0000
107.48	Distribution:	F(4,260434)
24.000		
108.00	F-statistic (robust):	13.204
	P-value	0.0000
108	Distribution:	F(4,260434)
2435.1		
2421.0		
2447.0		
	PanelOLS 262992 Fri, Apr 26 2024 15:29:15 Clustered 2447 107.48 24.000 108.00 108 2435.1 2421.0	PanelOLS R-squared (Between): 262992 R-squared (Within): Fri, Apr 26 2024 R-squared (Overall): 15:29:15 Log-likelihood Clustered F-statistic: 2447 P-value 107.48 Distribution: 24.000 108.00 F-statistic (robust): P-value 108 Distribution: 2435.1 2421.0

Parameter Estimates

===============	=======	========	========	========	========	======
=== CI	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper
temp_pop 120	0.0093	0.0014	6.7722	0.0000	0.0066	0.0
precip_pop 010	-0.0044	0.0028	-1.6086	0.1077	-0.0099	0.0
<pre>progresa_per_capita 007</pre>	-0.0091	0.0050	-1.8277	0.0676	-0.0189	0.0
temp_progresa 022	-0.0020	0.0021	-0.9256	0.3546	-0.0061	0.0
=======================================	=======	=======	=======	=======	=======	======
===						

F-test for Poolability: 19.723

P-value: 0.0000

Distribution: F(2553,260434)

```
In [65]: # Column 7
  table_8_tg_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_pop',
    table_8_tg_df = table_8_tg_df.set_index(['muni_code', 'date'])
  table_8_tg_df = table_8_tg_df[['state', 'sui_rate', 'popw', 'temp_pop', 'precip_pop
  table_8_tg_df</pre>
```

popw temp pop precip pop temp grou

state

sui rate

0 1		
()111	1651	
Out	000	

۰			state	sui_rate	popw	temp_pop	precip_pop	temp_gro
	muni_code	date						
	1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	
		1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	
		2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	
		2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	
		2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	
	•••	•••						
	32058	2006- 11-01	Zacatecas	0.000000	2711.0000	18.696400	0.192440	
		2005- 12-01	Zacatecas	0.000000	2711.0000	17.435801	0.000000	
		2005- 03-01	Zacatecas	0.000000	2711.0000	19.163700	0.044328	
		2006- 03-01	Zacatecas	0.000000	2711.0000	21.108900	0.002020	
		2005- 06-01	Zacatecas	0.000000	2711.0000	26.785601	0.608296	

```
In [66]: mod_tg = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_growing_sea
    result_tg = mod_tg.fit(cov_type='clustered', clusters = table_8_tg_df['state'])
    print(result_tg.summary)

C:\Users\blahb\AppData\Local\Temp\ipykernel_16636\1795527819.py:3: AbsorbingEffectWa
    rning:
    Variables have been fully absorbed and have removed from the regression:
    growing_season
    result_tg = mod_tg.fit(cov_type='clustered', clusters = table_8_tg_df['state'])
```

=======================================			=========
Dep. Variable:	sui_rate	R-squared:	0.0004
Estimator:	PanelOLS	R-squared (Between):	0.3380
No. Observations:	493908	R-squared (Within):	0.0005
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0884
Time:	15:31:09	Log-likelihood	-5.606e+05
Cov. Estimator:	Clustered		
		F-statistic:	59.064
Entities:	2447	P-value	0.0000
Avg Obs:	201.84	Distribution:	F(3,491255)
Min Obs:	24.000		
Max Obs:	204.00	F-statistic (robust):	24.749
		P-value	0.0000
Time periods:	204	Distribution:	F(3,491255)
Avg Obs:	2421.1		
Min Obs:	2396.0		
Max Obs:	2447.0		

Parameter Estimates

============		=======	=======	=======	========	======
=== CI	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper
temp_pop 126 precip_pop 005	0.0093 -0.0051	0.0017 0.0023	5.4755 -2.1731	0.0000 0.0298	0.0060 -0.0097	0.0
temp_growing_season	-0.0040	0.0019	-2.1662	0.0303	-0.0077	-0.0

F-test for Poolability: 40.147

P-value: 0.0000

===

Distribution: F(2649,491255)

```
In [67]: # Column 8
    table_8_rural_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_po
    table_8_rural_df = table_8_rural_df.set_index(['muni_code', 'date'])
    table_8_rural_df = table_8_rural_df[['state', 'sui_rate', 'popw', 'temp_pop', 'prec
    table_8_rural_df</pre>
```

\cap		$\Gamma \subset \mathcal{T}$	٦.
Uι	ΙL	[0/] .

•			state	sui_rate	popw	temp_pop	precip_pop	temp_rura
	muni_code	date						
	1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	-7.39447
		1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	-4.89847
		2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	4.20687
		2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	2.08671
		2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	-4.35378
	•••	•••		•••				
	32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	-8.94506
		1993- 03-01	Zacatecas	0.869511	124968.4375	13.100000	0.016000	3.82635
		2003- 07-01	Zacatecas	0.771639	124968.4375	16.400000	1.907000	-1.44185
		2005- 12-01	Zacatecas	0.751956	124968.4375	11.900000	0.031000	5.74207
		2004- 11-01	Zacatecas	0.758934	124968.4375	13.100000	0.029000	3.82635

```
In [68]: mod_rural = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_rural +
    result_rural = mod_rural.fit(cov_type='clustered', clusters = table_8_rural_df['sta
    print(result_rural.summary)
```

=======================================			==========
Dep. Variable:	sui_rate	R-squared:	0.0004
Estimator:	PanelOLS	R-squared (Between):	0.2801
No. Observations:	488784	R-squared (Within):	0.0006
Date:	Fri, Apr 26 2024	R-squared (Overall):	0.0739
Time:	15:33:09	Log-likelihood	-5.531e+05
Cov. Estimator:	Clustered		
		F-statistic:	57.850
Entities:	2396	P-value	0.0000
Avg Obs:	204.00	Distribution:	F(3,486182)
Min Obs:	204.00		
Max Obs:	204.00	F-statistic (robust):	23.182
		P-value	0.0000
Time periods:	204	Distribution:	F(3,486182)
Avg Obs:	2396.0		
Min Obs:	2396.0		
Max Obs:	2396.0		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI		
temp_pop precip_pop temp_rural	0.0068 -0.0049 -0.0003	0.0015 0.0024 0.0007	4.6382 -2.0192 -0.4070	0.0000 0.0435 0.6840	0.0039 -0.0096 -0.0017	0.0096 -0.0001 0.0011		

F-test for Poolability: 41.028

P-value: 0.0000

Distribution: F(2598,486182)

```
In [69]: #Column 9
  table_8_agri_df = muni[muni['year'] <= 2006].dropna(subset = ['sui_rate', 'temp_pop
  table_8_agri_df = table_8_agri_df.set_index(['muni_code', 'date'])
  table_8_agri_df = table_8_agri_df[['state', 'sui_rate', 'popw', 'temp_pop', 'precip
  table_8_agri_df</pre>
```

	F 7	
()ıı+	1601	
Ou L	1 02 1	

•		state	sui_rate	popw	temp_pop	precip_pop	temp_agri
muni_code	date						
1001	2001- 04-01	Aguascalientes	0.150756	655030.9375	23.817400	0.113894	-9.39909
	1998- 04-01	Aguascalientes	0.160717	655030.9375	22.207600	0.000000	-6.22642
	2001- 11-01	Aguascalientes	0.446021	655030.9375	16.335100	0.038703	5.34734
	2000- 02-01	Aguascalientes	0.620399	655030.9375	17.702499	0.002461	2.65241
	2001- 07-01	Aguascalientes	0.449569	655030.9375	21.856300	1.110245	-5.53407
•••	•••						
32056	2003- 05-01	Zacatecas	0.773258	124968.4375	21.100000	1.465000	-11.38683
	1993- 03-01	Zacatecas	0.869511	124968.4375	13.100000	0.016000	4.87085
	2003- 07-01	Zacatecas	0.771639	124968.4375	16.400000	1.907000	-1.83544
	2005- 12-01	Zacatecas	0.751956	124968.4375	11.900000	0.031000	7.30951
	2004- 11-01	Zacatecas	0.758934	124968.4375	13.100000	0.029000	4.87085

```
In [70]: mod_agric = PanelOLS.from_formula('sui_rate ~ temp_pop + precip_pop + temp_agric +
    result_agric = mod_agric.fit(cov_type='clustered', clusters = table_8_agri_df['stat
    print(result_agric.summary)
```

sui_rate	R-squared:	0.0004			
Pane10LS	R-squared (Between):	0.2695			
488784	R-squared (Within):	0.0006			
Fri, Apr 26 2024	R-squared (Overall):	0.0711			
15:35:01	Log-likelihood	-5.531e+05			
Clustered					
	F-statistic:	58.214			
2396	P-value	0.0000			
204.00	Distribution:	F(3,486182)			
204.00					
204.00	F-statistic (robust):	23.755			
	P-value	0.0000			
204	Distribution:	F(3,486182)			
2396.0					
2396.0					
2396.0					
	PanelOLS 488784 Fri, Apr 26 2024 15:35:01 Clustered 2396 204.00 204.00 204.00 204.00 204.00 204.00 204.00 204.00	PanelOLS R-squared (Between): 488784 R-squared (Within): Fri, Apr 26 2024 R-squared (Overall): 15:35:01 Log-likelihood Clustered F-statistic: 2396 P-value 204.00 Distribution: 204.00 204.00 F-statistic (robust): P-value 204 Distribution: 2396.0 2396.0			

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
temp_pop	0.0064	0.0014	4.7461	0.0000	0.0038	0.0091
precip_pop	-0.0048	0.0024	-2.0001	0.0455	-0.0096	-9.685e-05
temp_agric	-0.0005	0.0006	-0.8419	0.3998	-0.0016	0.0006

F-test for Poolability: 41.029

P-value: 0.0000

Distribution: F(2598,486182)