

MOSFET: Metal Oxide Semiconductor Field-Effect Transistor

In lightly doped p-type substrate, two highly doped n regions (source and drain) are diffused Insulator is grown over surface and holes are cut into it to have contact with source and drain For Si substrate, SiO_2 is used as the Insulator

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

n-channel

Drain Source (+) Induced channel NType

MOSFET operation

Substrate: Grounded

Gate: + ve voltage

An electric field is directed perpendicularly through oxide

Negative charge is induced on semiconductor

A channel is formed between drain and source

Width of channel depends on gate voltage

Electrons may flow through Channel

Basic Operation

- 1) Source and substrate grounded (zero voltage)
- 2) (+) voltage on the gate
 - Attracts e⁻s to Si/SiO2 interface; forms channel
- 3) (+) voltage on the drain
 - e-s in the channel drift from source to drain
 - current flows from drain to source

MOSFET

Metal-oxide-semiconductor field-effect transistor

G = gate, D = drain, S = source, B = body (substrate)

N enhance FET at Pinchoff

Drain characteristics for an ideal representative N-channel enhancement-mode MOSFET.

(a) I_D versus V_{DS} (b) I_D versus V_{GS} for a fixed V_{DS}

As $V_{\rm GS}$ is made positive $I_{\rm D}$ increases slowly at first and then much rapidly $I_{\rm D}$ reaches significant value (some predefined small) at threshold voltage

N channel Depletion mode FET ON – No gate bias

A channel is diffused between source and Drain

Channel Depletion with application of negative voltage

Induced +ve charge makes the channel less conductive

Causes effective depletion of majority carriers

Analogous to JFET characteristics

N channel Depletion mode FET off

nMOS Cutoff

- No channel
- $I_{ds} \approx 0$

nMOS Linear

- Channel forms
- Current flows from d to s
 - e⁻ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current *saturates*
- Similar to current source

N channel Depletion mode MOSFET

May be used for both enhancement and depletion mode

Lower threshold voltage than enhancement type

Switch using an N-channel enhancementmode MOSFET.

Comparison between p- with n-channel FET

p-channel is easier to fabricate

n-channel is faster as the mobility of electrons is 3 times greater than the mobility of holes

n-channel takes less space

Classification scheme for field effect transistors

Terminal Voltages

Mode of operation depends on V_g, V_d, V_s

$$-V_{gs} = V_g - V_s$$

$$-V_{gd} = V_g - V_d$$

$$- V_{ds} = V_{d} - V_{s} = V_{gs} - V_{gd}$$

- Hence
$$V_{ds}$$
 ≥ 0

- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation

nMOS Cutoff

- No channel
- $I_{ds} \approx 0$

nMOS Linear

- Channel forms
- Current flows from d to s
 - e⁻ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current *saturates*
- Similar to current source

I-V Characteristics

 $\rm I_{ds}$ is dependent on both $\rm V_{ds}$ and $\rm V_{gs}$

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Transfer characteristics (n channel FET)

Operating range decides the type of FET

Inverter Operation

- Plus signal input turns transistor on
- Ground is connected to output, thus a 1 (+) in gives 0 (Gnd) out
- A 0 input opens transistor and output is pulled high by resistor

NMOS Inverter

Resistor dissipates heat

Fabrication of resistor is not easy

Even modest values of Resistors occupy excessively large areas in silicon substrate

A transistor may be used as a resistor

In Pull down NMOS
For input=1, Pull down conducts
For input =0, Pull down is off

Pull up as an enhancement type NMOS

Pull up transistor input (V_{GG}) should be high

Dissipation is high since current flows when input=1

V_{out} can never be zero

 V_{out} can never reach VDD (logical 1) if $V_{GG} = V_{DD}$ as is normally the case

If V_{GG} is higher than V_{DD} , then an extra rail is required

Depletion type NMOS is used in pull up for better performance

Depletion type NMOS is used in pull up for better performance

Dissipation is high since current flows when input=1

V_{out} can never be zero

Drawbacks of Metal-gate MOS Transistors

- High current flow for input at logic 1 in case of an inverter
- Excess surface state charges and mobile ion contamination cause the threshold variation.
- V_{out} never becomes exactly zero
- Suffer from excessive overlap capacitance.
- Parasitic capacitances C_{gs} and C_{gd} slow the transistor because they must be charged and discharged during switching.
- Aluminum is used as gate material which can erode completely causing contact spiking.

Complementary MOS Transistors (CMOS)

- When A is pulled high (V_{DD}) , the PMOS inverter is turned off, while the NMOS is turned on pulling the output down to V_{SS}
- When A is pulled low (V_{SS}), the NMOS inverter is turned off, while the PMOS is turned on pulling the output up to V_{DD}

Complementary MOS Transistors (CMOS)

No current flow either for logical 0 or for logical 1 inputs

Full logical 1 and 0 levels are presented at output

For devices of similar dimension p-channel is slower than n-channel device

 V_{tpd}

 V_{in}

Complementary MOS Transistors (CMOS)

Types of MOSFET

Pullup may be enhancement type PMOS

CMOS Inverter Technology

- Complementary MOS, or CMOS, needs both PMOS and NMOS devices for their logic gates to be realized
- The concept of CMOS was introduced in 1963 by Wanlass and Sah, but it did not become common until the 1980's as NMOS microprocessors were dissipating as much as 50 W and alternative design technique was needed
- CMOS still dominates digital IC design today

CMOS Inverter

- (a) Circuit schematic for a CMOS inverter
- (b) Simplified operation model with a high input applied
- (c) Simplified operation model with a low input applied