Boltzmann Machine

Probability Form

$$prob(s_i = 1) = \frac{1}{1 + e^{-z_i}}$$

$$z_i = b_i + \sum_j s_j w_{ij}$$

Probability Form

$$prob(s_i = 1) = \frac{1}{1 + e^{-z_i}}$$

Energy State of v

$$E(\mathbf{v}) = -\sum_{i} s_i^{\mathbf{v}} b_i - \sum_{i < j} s_i^{\mathbf{v}} s_j^{\mathbf{v}} w_{ij}$$

$$P(\mathbf{v}) = e^{-E(\mathbf{v})} / \sum_{\mathbf{u}} e^{-E(\mathbf{u})}$$

Energy State of v

$$E(\mathbf{v}) = -\sum_{i} s_i^{\mathbf{v}} b_i - \sum_{i < j} s_i^{\mathbf{v}} s_j^{\mathbf{v}} w_{ij}$$

$$P(\mathbf{v}) = e^{-E(\mathbf{v})} / \sum_{\mathbf{u}} e^{-E(\mathbf{u})}$$

Learning without hidden layers

$$\left\langle \frac{\partial \log P(\mathbf{v})}{\partial w_{ij}} \right\rangle_{\text{data}} = \langle s_i s_j \rangle_{\text{data}} - \langle s_i s_j \rangle_{\text{model}}$$

Energy Based Model Perspective

RBM Energy Form

$$E(v,h) = -b'v - c'h - h'Wv$$

$$\mathcal{F}(v) = -b'v - \sum_{i} \log \sum_{h_i} e^{h_i(c_i + W_i v)}.$$

Energy Based Model Perspective

Energy Based Model Function

$$p(x) = \frac{e^{-E(x)}}{Z}$$
. $Z = \sum_{x} e^{-E(x)}$

$$\mathcal{F}(x) = -\log \sum_{h} e^{-E(x,h)}$$
 Free Energy Function

RBM Energy Form

$$E(v,h) = -b'v - c'h - h'Wv$$

$$\mathcal{F}(v) = -b'v - \sum_{i} \log \sum_{h_i} e^{h_i(c_i + W_i v)}.$$

Probability Perspective

RBM Energy Form

$$E(v,h) = -b'v - c'h - h'Wv$$

$$\mathcal{F}(v) = -b'v - \sum_{i} \log \sum_{h_i} e^{h_i(c_i + W_i v)}.$$

Conditional Probability

$$p(h|v) = \prod_{i} p(h_i|v)$$

$$p(h|v) = \prod_{i} p(h_i|v)$$
$$p(v|h) = \prod_{j} p(v_j|h).$$

Probability Perspective

$$p(h|v) = \prod_{i} p(h_i|v)$$

$$P(v_j = 1|h) = sigm(b_j + W'_j h)$$

$$p(v|h) = \prod_{j} p(v_j|h).$$

$$P(v_j = 1|h) = sigm(b_j + W'_j h)$$

RBM Free Energy under Sigmoid

$$\mathcal{F}(v) = -b'v - \sum_{i} \log(1 + e^{(c_i + W_i v)}).$$

Deep Network Perspective

Deep Network Perspective

Deep Network Perspective

input

Weighted Inputs Combine @Hidden Node

Multiple Hidden Layers

Reconstruction

Reconstruction

