CS113/DISCRETE MATHEMATICS-SPRING 2024

Worksheet 17

Topic: Strong Induction

Today, we will learn another powerful form of induction known as Strong Induction. Strong Induction, also known as Complete Induction or Course-of-Values Induction, is a variant of mathematical induction that allows us to establish the validity of statements about natural numbers or other well-ordered sets. Happy Learning!

Student's Name and ID:	
Instructor's name:	

1. Which amounts of money can be formed using just two dollar bills and five-dollar bills? Prove your answer using strong induction

2.	Prove that every positive using strong induction.	integer g	reater	than	1 can	be ex	pressed	as a	product	of prime	e number	rs by
				Р	age 2							

3. Given $n \in \mathbb{N}$, define a_n recursively as follows:

$$a_n = \begin{cases} 1, & \text{if } n = 0\\ 3, & \text{if } n = 1\\ 2a_{n-1} - a_{n-2}, & \text{if } n \ge 2 \end{cases}$$

Prove for all $n \ge 0$, $a_n = 2n + 1$.