T.D. IV - Matrices inversibles

I - Résolution de systèmes

Exercice 1. (😂) Résoudre les systèmes linéaires suivants :

1.
$$(S_1)$$

$$\begin{cases} 5x + y - 2z &= 3 \\ x + 4y + z &= 2 \\ -3x + 2y + 3z &= -2 \end{cases}$$
2. (S_2)
$$\begin{cases} 2x + 3y - z &= 1 \\ 5x + 2y + 3z &= 0 \\ -x + y + z &= 5 \end{cases}$$
3. (S_3)
$$\begin{cases} x + y - z &= 2 \\ 3x + 5y - z &= 1 \\ 2x + 2y + z &= 1 \end{cases}$$
4. (S_4)
$$\begin{cases} x + 2y - z &= 1 \\ 3x + 4y - z &= 2 \\ x + 3y + z &= 10 \end{cases}$$

3.
$$(S_3)$$

$$\begin{cases} x+y-z = 2\\ 3x+5y-z = 1\\ 2x+2y+z = 1 \end{cases}$$

2.
$$(S_2)$$

$$\begin{cases} 2x + 3y - z &= 1\\ 5x + 2y + 3z &= 0\\ -x + y + z &= 5 \end{cases}$$

4.
$$(S_4)$$

$$\begin{cases} x + 2y - z &= 1\\ 3x + 4y - z &= 2\\ x + 3y + z &= 10 \end{cases}$$

Exercice 2. Résoudre les systèmes linéaires suivants :

1.
$$(S_1)$$

$$\begin{cases} 2x + y + z + t &= 3\\ x + y + z + t &= 12\\ 3x + 2y + 2z + t &= 3\\ 3x + y + 2z + 3t &= 5 \end{cases}$$

1.
$$(S_1)$$

$$\begin{cases} 2x + y + z + t &= 3 \\ x + y + z + t &= 12 \\ 3x + 2y + 2z + t &= 3 \\ 3x + y + 2z + 3t &= 5 \end{cases}$$
 2. (S_2)
$$\begin{cases} 2x + 2y + z + t &= 1 \\ x + y + 3z + t &= 2 \\ 3x + y + 2z + 2t &= -1 \\ 3x + y + 2z + 3t &= 5 \end{cases}$$

II - Inverses par calculs de produits

Exercice 3. (4) Dans chacune des questions suivantes, calculer le produit AB, en déduire que A est inversible et exprimer A^{-1} .

1.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 2 \\ 0 & 3 & 3 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} 0 & -3 & 2 \\ -3 & -3 & 3 \\ 3 & 3 & -2 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 3 & 3 & 3 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} -1 & -2 & 1 \\ -2 & -1 & 1 \\ 3 & 3 & -1 \end{pmatrix}$.

3.
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 2 & -2 \\ -2 & -1 & 3 \end{pmatrix}$.

4.
$$A = \begin{pmatrix} 0 & -2 & 2 \\ -3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & -4 & 6 \\ -4 & 2 & 6 \\ 5 & 2 & 6 \end{pmatrix}$.

Exercice 4. On pose

$$M = \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

1. Calculer PQ. En déduire que P est inversible et donner P^{-1} .

2. On pose $A = PMP^{-1}$. Montrer par récurrence que pour tout n entier naturel,

$$M^n = P^{-1}A^nP.$$

III - Inverses par polynômes de matrices

Exercice 5. On pose $M = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

1. Calculer M^2 et en déduire que $M^4 = I$.

2. En déduire que M est inversible et donner l'expression de M^{-1} en fonction de M.

Exercice 6. ($\mathfrak{S}_{\bullet}^{\bullet}$) On pose $A = \begin{pmatrix} 1 & -2 & 2 \\ -3 & 0 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

1. Calculer $A^3 - 2A^2 - 12A + 19I_3$.

2. En déduire que A est inversible et déterminer A^{-1} .

Exercice 7. (
$$\mathbf{Q}_{\mathbf{s}}^{\mathbf{s}}$$
) On pose $A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 3 & -1 & 1 \end{pmatrix}$.

- 1. Calculer $A^3 2A^2 + 3A + 14I_3$.
- **2.** En déduire que A est inversible et déterminer A^{-1} .

Exercice 8. Soit
$$M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
.

- **1.** Calculer le produit matriciel (M-I)(M+3I).
- **2.** En déduire que M est inversible et déterminer son inverse.

IV - Non inversibilité

Exercice 9. (**) Soit
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$
.

- 1. Déterminer α tel que que $A^3 = \alpha A$.
- $\mathbf{2.}$ Montrer par l'absurde que A n'est pas inversible.

Exercice 10. (**) On pose
$$A = \begin{pmatrix} 0 & 2 & -2 \\ -1 & -4 & 3 \\ -2 & -6 & 4 \end{pmatrix}$$
.

- **1.** Calculer A^2 puis A^3 .
- **2.** En déduire que A n'est pas inversible.

Exercice 11. (**) On pose
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & 2 & -1 \\ 1 & 4 & 3 \\ 0 & 3 & 3 \end{pmatrix}$.

- **1.** Calculer AB et AC.
- 2. En déduire que A n'est pas inversible.

V - Inversibilité des matrices de taille 2

Exercice 12. (Pour chacune des matrices d'ordre 2 suivante, déterminer si elle est inversible et, le cas échéant, déterminer son inverse.

1.
$$\begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$$
.
 3. $\begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$.
 5. $\begin{pmatrix} -1 & 3 \\ 1 & -3 \end{pmatrix}$.

 2. $\begin{pmatrix} 1 & 2 \\ -4 & 1 \end{pmatrix}$.
 4. $\begin{pmatrix} -1 & 5 \\ 1 & 1 \end{pmatrix}$.
 6. $\begin{pmatrix} 5 & -1 \\ 10 & -2 \end{pmatrix}$.

Exercice 13. On considère le système

$$\begin{cases} -x + 3y &= 11\\ x + 2y &= 9 \end{cases}.$$

On pose
$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $Y = \begin{pmatrix} 11 \\ 9 \end{pmatrix}$.

- 1. Déterminer une matrice A telle que AX = Y.
- **2.** Montrer que A est inversible et déterminer A^{-1} .
- 3. Utiliser A^{-1} pour résoudre le système.

VI - Inversibilité des matrices diagonales

Exercice 14. (Pour chacune des matrices suivantes, déterminer si elle est inversible et, le cas échéant, déterminer son inverse.

VII - Inversibilité des matrices triangulaires

Exercice 15. (🗱) Pour chacune des matrices suivantes, déterminer si elle est inversible.

$$\mathbf{1.} \ \begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}.$$

1.
$$\begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
.
3. $\begin{pmatrix} 0 & -5 & 75 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$.

2.
$$\begin{pmatrix} 3 & 0 & 0 \\ 12 & 0 & 0 \\ 27 & -4 & 0 \end{pmatrix}$$
. **4.** $\begin{pmatrix} -3 & 0 & 25 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

$$\mathbf{4.} \ \begin{pmatrix} -3 & 0 & 25 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

VIII - Inverses par méthodes du pivot

Exercice 16. (\$\omega\$) Inverser les matrices suivantes en résolvant le système AX = Y.

$$\mathbf{1.} \ \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

1.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.
2. $\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.
4. $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.

$$\mathbf{2.} \quad \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

$$\mathbf{4.} \ \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{pmatrix}$$

Exercice 17. (%) Inverser les matrices suivantes en utilisant la méthode de Gauss-Jordan.

1.
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

$$\mathbf{2.} \ \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ -2 & 0 & 1 \end{pmatrix}.$$

1.
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. 2. $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ -2 & 0 & 1 \end{pmatrix}$. 3. $\begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & 1 \\ -2 & 1 & 1 \end{pmatrix}$.

Exercice 18. On pose $M = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Calculer M^2 et en déduire que $M^4 = I$.
- **2.** Calculer $(M-I)(M^3+M^2+M+I)$.
- **3.** Montrer que M-I est inversible.
- **4.** En déduire la valeur de $M^3 + M^2 + M + I$.

IX - Calculs de puissances

Exercice 19. (\diamondsuit) Soit A, B, P des matrices d'ordre 2 telles que P soit inversible. On suppose que $P^{-1}AP = B$. Montrer par récurrence que pour tout n entier naturel; $A^n = PB^nP^{-1}$.

Exercice 20. On considère les matrices

$$A = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix},$$

et
$$Q = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

- 1. Calculer PQ. En déduire que P est inversible et expliciter P^{-1} .
- **2.** Vérifier que $A = PDP^{-1}$.
- **3.** Pour tout n entier naturel, expliciter D^n .
- Montrer par récurrence que pour tout n entier naturel, $A^n = PD^nP^{-1}$.
- 5. En déduire que pour tout n entier naturel,

$$A^{n} = \frac{1}{2} \begin{pmatrix} 3^{n} + 5^{n} & 0 & 3^{n} - 5^{n} \\ 0 & 2^{n+1} & 0 \\ 3^{n} - 5^{n} & 0 & 3^{n} + 5^{n} \end{pmatrix}.$$

- **6.** La matrice D est-elle inversible? Si oui, expliciter son inverse.
- 7. En déduire que A est inversible et déterminer son inverse.

Exercice 21. On considère les matrices

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}, M = \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix},$$

et
$$Q = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
.

1. Montrer par récurrence que pour tout n entier naturel,

$$A^{n} = \begin{pmatrix} 2^{n} & 0 & 3^{n} - 2^{n} \\ 0 & 3^{n} & n3^{n-1} \\ 0 & 0 & 3^{n} \end{pmatrix}.$$

- **2.** Calculer PQ. En déduire que P est inversible et déterminer son inverse P^{-1} .
- 3. Vérifier que $PMP^{-1} = A$.
- **4.** Montrer par récurrence que pour tout n entier naturel n, $M^n = P^{-1}A^nP$.
- 5. En déduire que pour tout n entier naturel,

$$M^{n} = \begin{pmatrix} 2 \times 3^{n} - 2^{n} & 0 & 2(2^{n} - 3^{n}) \\ -n3^{n-1} & 3^{n} & n3^{n-1} \\ 3^{n} - 2^{n} & 0 & 2^{n+1} - 3^{n} \end{pmatrix}.$$

ECT 2