Measurement and visualization, 2

Frank Edwards

9/17/2019

Last time

Visualizing data

· ggplot

- geom_bar(), geom_histogram(), geom_boxplot(), geom_point()
- Wickham Chapter 3:

https://r4ds.had.co.nz/data-visualisation.html

- Recommended reading: Kieran Healy, Data Visualization. Available free at socviz.co
- · Available workshops on tidyverse, ggplot, rmarkdown at New Brunswick

Today: Measurement in the social sciences

- · Survey methods with randomization
- Administrative data and agency surveys
- Unit, item non-response
- Desirability bias
- · Latent variables, latent groups
- · More visualization

Surveys and censuses

- A census records information about a population, with measurement for each individual or unit in the population
- A survey samples from a population to make an inference about population characteristics

The basic motivation for survey sampling

```
n<-1e6
marbles<-data.frame(
  color = c(rep("blue", n),
            rep("green", n),
            rep("red", n)))
table(marbles$color)
##
##
      blue
             green
                        red
## 1000000 1000000 1000000
```

How could we know how many of each color are in the enormous bag of marbles?

- · Count them all (tedious!)
- · Sample

The Truth

How many random draws is enough to accurately measure the characteristics of 3 million marbles?

Random sampling

With a sufficiently large sample and equal probability of sampling for all units in the population, a simple random sample allows for unbiased measurement of population characteristics.

Such a sample is representative of the population across both measured and unmeasured characteristics

If you are sampling, it should (in general) be randomized

Stratified random sampling

If we wish to learn about particular sub-populations (i.e. geographies), we can use multi-stage or stratified sampling

- Randomly sample larger units (geographic) or select larger units of interest purposively
- 2. Randomly sample individuals within these larger units

EXAMPLE: The American Community Survey (simplified)

- 1. Take a list of all US Census tracts
- Randomly sample households within tract based on complete list of addresses (sampling frame)
- 3. Randomly sample adults within household, conduct survey

When surveys go wrong

- 1. Unit non-response
- 2. Item non-response
- 3. Lying

Unit non-response

Individual (or organization) doesn't respond to the survey

- · How are surveys actually administered?
- · Response rates are generally low (and decreasing!)

Completely random non-response is not a problem.

Unit non-response

Individual (or organization) doesn't respond to the survey

- How are surveys actually administered?
- · Response rates are generally low (and decreasing!)

Completely random non-response is not a problem.

When would non-response be an issue?

Question non-response

Individual takes the survey, but refuses to answer (skips) a particular question

· Why might this occur?

Question non-response

Individual takes the survey, but refuses to answer (skips) a particular question

- · Why might this occur?
- · When would this be a problem?

Lying (ok... misrepresentation)

- · Social desirability bias
 - · Did you vote? Remember HW 1?
 - · Are you a racist?
 - · What kinds of crimes do you like to do?

Examining non-response in a survey of exposure to violence in Afghanistan

Load the data

```
library(qss)
data(afghan)
data(afghan.village)
```

table(afghan\$province)

```
##
```

```
## Helmand Khost Kunar Logar Uruzgan
## 855 630 396 486 387
```

table(afghan\$district)

##					
##	Asadabad	Bak	Baraki Barak	Chapa Dara	Dangam
##	54	54	180	108	63
##	Dihrawud	Garmser	Ghaziabad	Khas Uruzgan	Khoshi
##	117	225	63	117	54
##	Khost	Lashkar Gah	Musa Qala	Naw Zad	Puli Alam
##	243	108	225	216	252
##	Qalandar	Shahidi Hassas	Spira	Tani	Washer
##	63	153	99	171	81
##	Wata Pur				
##	108				

##

1149 1605

```
table(afghan$employed)
##
```

```
table(afghan$income)
##
##
    10,001-20,000
                    2,001-10,000 20,001-30,000 less than 2,000
                             1420
##
              616
                                               93
                                                              457
##
      over 30,000
##
               14
## for ordered categorical
afghan<-afghan %>%
 mutate(income =
          factor(income,
                 levels = c(
                   "less than 2,000", "2,001-10,000",
                   "10,001-20,000", "20,001-30,000",
                   "over 30,000")))
table(afghan$income)
##
## less than 2,000
                     2,001-10,000 10,001-20,000
                                                  20,001-30,000
              457
                             1420
##
                                              616
                                                               93
      over 30,000
##
##
               14
```

```
afghan %>%
  select(employed, violent.exp.ISAF, violent.exp.taliban) %>%
  summary()
```

```
##
      employed
                  violent.exp.ISAF violent.exp.taliban
##
   Min.
         :0.0000
                  Min.
                         :0.0000
                                 Min. :0.0000
##
   1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
##
   Median :1.0000
                  Median :0.0000
                                 Median :0.0000
##
   Mean :0.5828
                  Mean :0.3749
                                 Mean :0.3289
##
   3rd Qu.:1.0000
                  3rd Qu.:1.0000
                                 3rd Qu.:1.0000
   Max. :1.0000
                  Max. :1.0000
                                 Max. :1.0000
##
##
                  NA's :25 NA's :54
```

head(afghan.village)

```
##
     altitude population village.surveyed
## 1
      1959.08
                     197
      2425.88
                     744
## 2
## 3
      2236.60
                     179
##
      1691.76
                     225
## 5
      1928.04
                     379
## 6
      1194.56
                     617
                                         0
```

ggplot(afghan.village, aes(x=altitude)) + geom_histogram()

ggplot(afghan.village, aes(x=population)) + geom_histogram()

Explore the variables in afghan.village: logs help!

ggplot(afghan.village, aes(x=log(population))) + geom_histogram(


```
mean(afghan.village$village.surveyed)
```

[1] 0.1094421

Is the sampling representative of villages?

ggplot(afghan.village, aes(x=village.surveyed==1, y = altitude))
geom_boxplot()

Is the sampling representative of villages?

ggplot(afghan.village, aes(x=village.surveyed==1, y = log(popula
geom_boxplot()

Does item non-response bias estimates of violence by region?

Summary

- Unit non-responses can bias survey estimates
- Item non-response can bias survey estimates
- · Social desirability can bias survey estimates
- Errors induced by these biases can lead to incorrect conclusions (see polling consensus on 2016 election)

Returning to the IPV example

Load the data

```
ipv<-read_csv("./data/dhs_ipv.csv")
## on your machine, path is /slides/data/
head(ipv)</pre>
```

A tibble: 6 x 8 X1 beat burnfood beat goesout sec school no media countr ## ## <dbl> <dbl> <dbl> <dbl> <dbl> <chr> ## 1 4.4 18.6 25.2 1.5 Albani ## 2 4 4.9 19.9 67.7 8.7 Armeni 5 2.1 10.3 67.6 2.2 Armeni ## 3 ## 4 6 0.3 3.1 46 6.4 Armeni ## 5 12.1 42.5 74.6 7.4 Azerba ## 6 8 NANA24 41.9 Bangla

Look at bivariate relationships

Is there a change in sec_school by region over time across this sample? Does time matter here?

```
ipv_ts<-ipv %>%
group_by(region, year) %>%
summarise(sec_school=mean(sec_school))

ggplot(ipv_ts, aes(x=year, y = sec_school, color = region)) +
geom_line()
```


Correlation

Correlation

Correlation (math time): Z-scores

First, we need the variables to be comparable, so we transform them to be on a standard deviation scale.

A z-score scales a variable measures the number of standard deviations an observation is away from it's mean.

$$z \text{ score of } x_i = \frac{x_i - \bar{x}}{S_x}$$

Where \bar{x} is the mean, and S_x is the standard deviation of variable x. Z scores have a mean zero, and a range defined by the range of the data on a standard deviation scale.

For a normally (Gaussian) distributed variable, this will typically range between $\begin{bmatrix} -3, 3 \end{bmatrix}$

In R, we can transform a numeric into a z-score using scale()

Z-scores in R

```
ipv_scale<-ipv %>%
 mutate(sec scale = scale(sec school)) %>%
 select(sec school, sec scale)
summary(ipv_scale)
##
     sec_school
                    sec_scale.V1
##
   Min. : 3.10 Min. :-1.345006
##
   1st Qu.:10.18 1st Qu.:-0.898292
##
   Median :22.40 Median :-0.126408
##
   Mean :24.40 Mean : 0.000000
   3rd Qu.:34.90
                  3rd Qu.: 0.662840
##
##
   Max. :74.60 Max. : 3.169492
##
   NA's :3 NA's :3
```

Z-scores in R

Correlation

Correlation measures the degree to which two variables are associated with each other. We often use the letter r to denote a correlation.

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \overline{x}}{S_x} \times \frac{y_i - \overline{y}}{S_y}$$

Note that this is equal to the average of the product of the z-scores of x and y

In R, you can use cor()

Returning to our example: Are sec_school and no_media correlated?

Obtaining the correlation coefficient

```
cor(ipv$sec_school, ipv$no_media, use="complete")

## [1] -0.6077951

## z score method
mean(scale(ipv$sec_school) * scale(ipv$no_media), na.rm=TRUE)

## [1] -0.6084724
```

Latent structure

Data often *cluster* based on unobserved or unobservable characteristics. We can use *classification methods* to try to uncover these latent structures in data.

k-means is a straightforward method we can use to identify *k* latent groupings in our data, based on proximity of observations for specified variables.

The k-means algorithm

An algorithm is a sequential set of steps used to solve a problem.

A centroid is the mean value of a cluster within a group.

- 1. Choose the initial centroids for each of the k clusters
- 2. Assign each observation to the cluster with the nearest centroid
- Assign a new centroid based on the within-cluster mean for assigned observations
- 4. Repeat steps 2 and 3 until the cluster assignments no longer change

We arbitrarily choose the number of clusters k, and R randomly selects starting centroid values for step 1.

The k-means algorithm

Implementing k-means for the IPV data

```
ipv_kmeans<-ipv %>%
 select(sec school, no media) %>%
 mutate(sec_school = scale(sec_school),
     no_media = scale(no_media)) %>%
 filter(!(is.na(sec school)), !(is.na(no media))) %>%
 kmeans(centers = 3, nstart=10)
ipv kmeans
## K-means clustering with 3 clusters of sizes 72, 17, 46
##
## Cluster means:
   sec_school no_media
## 1 -0.6135490 0.7910351
## 2 1.8803248 -1.1669709
## 3 0.2071354 -0.7678187
##
## Clustering vector:
  ##
## Within cluster sum of squares by cluster:
## [1] 52.858371 8.657364 24.241269
  (between SS / total SS = 68.3 %)
##
## Available components:
##
```

Working with the k-means object

```
str(ipv kmeans)
## List of 9
## $ cluster : int [1:135] 3 2 2 2 2 1 1 1 1 1 ...
## $ centers : num [1:3, 1:2] -0.614 1.88 0.207 0.791 -1.167 ...
## ..- attr(*, "dimnames")=List of 2
## ....$ : chr [1:3] "1" "2" "3"
## ....$ : chr [1:2] "sec_school" "no_media"
## $ totss : num 270
  $ withinss : num [1:3] 52.86 8.66 24.24
## $ tot withings: num 85.8
## $ betweenss : num 184
## $ size : int [1:3] 72 17 46
## $ iter : int 3
## $ ifault : int 0
## - attr(*, "class")= chr "kmeans"
```

```
ipv_clusters<-ipv %>%
  filter(!(is.na(sec_school)), !(is.na(no_media))) %>%
  mutate(cluster = factor(ipv_kmeans$cluster))

library(broom)
centers<-tidy(ipv_kmeans)
centers</pre>
```


What if we thought there were 4 clusters?

What if we thought there were 10 clusters?

Summary

- · Measurement and design matter!
- Always check your data, and think about how unit and item non-response may inform your conclusions
- Think about desirability and other forms of response bias as you interpret your results
- Design visuals and exploratory analyses to check hypotheses about what's going on in the data
- Think about the structure of your data, use descriptive statistics like correlations to describe relationships
- · Think about latent structures in your data to capture clustering

Homework

- · Complete exercise 3.9.2, use data(vignettes)
- · You can use geom_vline() to add vertical lines
- See https://jrnold.github.io/qsstidy/measurement.html#quantile-quantile-plot for an example of making a quantile-quantile plot with ggplot()
- · You can do this! Use Slack to ask questions when you are stuck!