

Technical Assessment Neil Menghani

Introduction

Problem Statement

Can we identify characteristics associated with a person making more or less than \$50,000 per year?

Proposed Solution

Develop a data analysis and modeling pipeline using data collected by the U.S. Census Bureau.

Steps:

- 1. Explore dataset for clear trends
- Prepare dataset for modeling
- 3. Develop a predictive model to determine income level above or below \$50,000

Methodology

Explore Data

Determine correlations between variables

Graphically analyze trends in key variables

Prepare Data

Build a data pipeline for:

- Data Cleaning & Preprocessing
- Feature Engineering

Model

Build Machine Learning models for binary classification problem:

- Logistic Regression
- Tree-Based Models
- Neural Network

Evaluate models, extract feature importance, and draw conclusions

Technologies Used: Python (pandas, scikit-learn, keras/tf); Dataiku (Charts, Recipes, Jupyter Notebooks)

Exploratory Analysis

Correlation Matrix

Figure 1a: Correlation matrix of numerical features.

Figure 1b: Correlation matrix of categorical features.

ncome Leve

Exploratory Analysis

of education appear to translate to higher income.

Income appears to increase as a function of these features.

Plots of Key Features

Data Preparation

Data Cleaning & Preprocessing

- Removed Null Values
- Converted Columns into Binary Features
 - Sex, Veterans, Year, and Hispanic
- Removed Redundant Columns
 - State, Household Family Status,
 Move Within Region
- Normalized Features
 - No Improvement to Model

Feature Engineering

- Reduced categories for categorical features (avoid wide data)
 - Re-categorized education into various levels (e.g. 9th-12th into Some High School)
 - Re-categorized country of birth into regions (e.g. Panama and Honduras into Central America)
- Generated one-hot encoding for categorical features

Machine Learning

Modeling Steps

- Split the training set into train and validation sets (75/25 split)
 - Avoids learning on the test set
- Trained and tuned parameters for 3 types of machine learning models
 - Binary classification problem with target variable representing income above or below \$50,000
- Generated test predictions for evaluation of model

Models Used

Logistic Regression

Tree-Based Ensemble Methods (Random Forest, Gradient Boosting)

Neural Network (1 Hidden Layer)

Model Evaluation

Model Results

	Train Accuracy	Validation Accuracy	Test Accuracy	AUC-ROC	F1-Score
Logistic Regression	0.9518	0.9515	0.9521	0.6821	0.7335
Random Forest	<mark>0.9656</mark>	0.9523	0.9526	0.6516	0.7108
Gradient Boosting	0.9640	<mark>0.9538</mark>	<mark>0.9539</mark>	0.6846	0.7398
Neural Network	0.9518	0.9523	0.9516	<mark>0.7066</mark>	<mark>0.7485</mark>

Figure 3a: Table shows training, validation, and testing accuracy; area under curve (ROC); and f1-score. Best-performing models for each metric are highlighted in yellow.

<u>Feature</u> <u>Importance</u>

Figure 3b: Pie chart shows importance of each feature. Low-importance features grouped into Other category.

Conclusions

Findings

- Key Variables According to Model:
 - Capital Gains, Dividends from Stocks, and Capital Losses
 - Weeks Worked in a Year
 - Sex and Age
- Best-Performing Models:
 - Accuracy: Gradient Boosted Ensemble Model
 - AUC/F1-Score: Neural
 Network with 1 Hidden Layer

Future Work

- Handle categorical features differently for Tree-Based Methods
- Use under-sampling methods to balance target variable
- Introduce other demographic datasets such as physical and mental traits
- Modify Neural Network
 - Introduce more hidden layers
 - Train for more epochs