PROBLEMS FOR CHAPTER 2

5. Determine the smallest positive root between (0,2) of the given equation using Bisection method with an error less than 0.02.

$$2x = e^x - 0.9$$

Solution:

 $2x - e^x + 0.9 = 0$

using incremental search we get

X	0	1	2
f(x)	-0.1	0.181718	2.48906

Therefore, root is in between 0 and 1

a = 0 and b = 1

f(a)=-0.1 and f(b)=0.181718

p = 0.5 and f(p) = 0.2513

Therefore p is the new b. continue using bisection we get

n	A	b	p	fa	fb	fp	er
1	0	1	0.5	-0.1	0.181718	0.251279	
2	0	0.5	0.25	-0.1	0.251279	0.115975	1
3	0	0.25	0.125	-0.1	0.115975	0.016852	1
4	0	0.125	0.0625	-0.1	0.016852	-0.03949	1
5	0.0625	0.125	0.09375	-0.03949	0.016852	-0.01079	0.333333
6	0.09375	0.125	0.109375	-0.01079	0.016852	0.003169	0.142857
7	0.09375	0.109375	0.101563	-0.01079	0.003169	-0.00377	0.076923
8	0.101563	0.109375	0.105469	-0.00377	0.003169	-0.00029	0.037039
9	0.105469	0.109375	0.107422	-0.00029	0.003169	0.00144	0.018181

Therefore, x = 0.106446

10. Use the method of False Position to find the positive root of the equation correct to 4 decimal places.

$$2x + cosx - 2 = 0$$

Solution:

$$2x + Cosx - 2 = 0$$

Using incremental search we get

X	0	1
f(x)	-1	0.5403

using false position method

$$p = \frac{a f(b) + b f(a)}{f(b) - f(a)}$$
$$= \frac{0 (0.5403) - 1 (-1)}{(0.5403) - (-1)} = 0.6492$$

$$f(p) = 0.095$$

$$p = b \text{ new}$$

continuing in table form

n	a	В	p	fa	fb	fp	er
1	0	1	0.649223	-1	0.540302	0.095	
2	0	0.649223	0.592898	-1	0.095	0.015121	0.095
3	0	0.592898	0.584066	-1	0.015121	0.00236	0.015121
4	0	0.584066	0.582691	-1	0.002359	0.000367	0.00236
5	0	0.582691	0.582477	-1	0.000367	5.71E-05	0.000367
6	0	0.582477	0.582444	-1	5.66E-05	8.81E-06	5.71E-05
7	0	0.582444	0.582439	-1	8.78E-06	1.37E-06	8.81E-06
8	0	0.582439	0.582438	-1	1.53E-06	2.38E-07	1.33E-06

12. Evaluate the smallest positive root of the following equation by Newton-Raphson method and 4 significant digits.

$$3x^2 - tanx$$

Solution:

from incremental search we get

X1	0	0.1	0.2	0.3	0.4
$f(x_1)$	1	-0.0703	-0.0827	-0.0393	0.0572

Therefore,

$$x_0 = 0.3$$

$$f'(x) = 6x - \sec^2(x) = f'(0.3) = 0.7043$$

therefore,

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_1 = 0.3 - \frac{-0.03934}{0.7043} = 0.35585$$

Continuing in table form

i	xi	fxi	f'xi	xi+1	error
0	0.3	-0.03934	0.704311	0.355851	0.15695
1	0.355851	0.008216	0.996963	0.34761	0.023708
2	0.34761	0.000175	0.95438	0.347426	0.000529
3	0.347426	8.74E-08	0.953429	0.347426	2.64E-07

23. Apply Secant method to find the root of the following equation to 5 decimal places.

$$2x + 1 - e^x = 0$$

Solution:

$$2x + 1 - e^x = 0$$

From incremental search method

	X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Ī	f(x)	0	-0.08517	-0.1414	-0.16986	-0.17182	-0.14872	-0.10212	-0.03375	0.054459

Therefore,

$$\begin{split} &x_n = 0.7 \qquad x_{n-1} = 0.6 \\ &f'(x_n) = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = \frac{(-0.03375) - (-0.10212)}{0.7 - 0.6} = 0.683661 \\ &x_{n+1} = x_n - (\frac{f(x_n)}{f'(x_n)}) = 0.7 - (\frac{-0.03375}{0.683661}) = 0.749371 \end{split}$$

Continuing in table form

i	X_{n-1}	$\mathbf{X}_{\mathbf{n}}$	$f(x_n)$	$f(x_{n-1})$	$f'(x_n)$	x_{n+1}	Σ
0	0.6	0.7	-0.03375	-0.10212	0.683661	0.749371	0.065883
1	0.7	0.749371	-0.007445	-0.03375	0.83445	0.740449	0.012049
2	0.749371	0.740449	-0.00035	-0.007445	0.873381	0.740847	0.000537
3	0.740449	0.740847	-3.2 * 10 ⁻⁶	-0.00035	0.865298	0.74085	5 * 10-6

Therefore,

x = 0.74085