БГУИР

Кафедра ЭВМ

Отчет по лабораторной работе № 5 Тема: «Исследование работы счетчиков»

Выполнил: студент группы 150502 Альхимович Н.Г.

Проверил: к.т.н., доцент Селезнёв И.Л.

1 ЦЕЛЬ РАБОТЫ

Изучить работу счетчиков.

2 ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

Работа выполняется с использованием базового стенда и лабораторных модулей dLab12, dLab13, dLab14.

Для достижения поставленной цели необходимо реализовать ряд задач. Изучить работу двоичного счетчика.

- 1. В статическом режиме:
- сформировать таблицу истинности и получить диаграмму состояний;
- по таблице состояний определить тип исследуемого счетчика: суммирующий или вычитающий, коэффициент Ксч;
- 2. В динамическом режиме:
- получить временную диаграмму, отражающую его работу в режимах сброса и счета;
- по полученной диаграмме определить, при каких состояниях входов асинхронного сброса счетчик находится в режиме счета, а при каких – в режиме сброса;
- по полученной временной диаграмме и выходным индикаторам «QO», «Q1», «Q2» и «Q3» определить, по какому перепаду уровня импульсов на входе С происходит переключение счетчика. Изучить работу двоично-десятичного счетчика.
- 1. В статическом режиме:
- сформировать таблицу истинности и получить диаграмму состояний;
- по таблице состояний определить тип исследуемого счетчика: суммирующий или вычитающий, его коэффициент пересчета Ксч;
- 2. В динамическом режиме:
- получить диаграмму состояний, отражающую полный цикл работы счетчика в режимах счета, сброса и установки;
- по временной диаграмме определить, при каких состояниях входов «R1», «R2» счетчик находится в режиме счета, а при каких в режиме сброса;
- по временной диаграмме определить, при каких состояниях входов «S1», «S2» счетчик находится в режиме счета, а при каких в режиме предварительной установки кода «1001»;
- по временной диаграмме и выходным индикаторам «Q0», «Q1», «Q2» и «Q3» определить, по какому перепаду уровня входных импульсов («0» -> «1» или «1» -> «0») происходит его переключение;

Изучить работу реверсивного счетчика.

- 1. В режиме счета на увеличение:
- сформировать таблицу истинности и получить диаграмму состояний;
- по таблице истинности и диаграмме состояний определить, удается ли в статическом режиме исследования зарегистрировать изменение сигнала окончания счета (сигнала переноса) «PU» при появлении на выходе счетчика кода «1111»;
- 2. В режиме счета на уменьшение:
- сформировать таблицу истинности и получить диаграмму состояний;
- по таблице истинности и диаграмме состояний определить, удается ли в статическом режиме исследования зарегистрировать изменение сигнала переноса «PD» при появлении на выходе счетчика кода «0000»;
- определить коэффициент пересчета Ксч счетчика в режиме счета на уменьшение.
- 3. В режиме параллельной загрузки:
- по индикаторам выходных сигналов счетчика «QO», «Q1», «Q2» и «Q3» определить состояние счетчика;
- определить, при каком логическом уровне сигнала «L» происходит параллельная загрузка;
- 4. Изучить работу реверсивного счетчика в динамическом режиме:
- получить временные диаграммы работы счетчика в режимах счета на увеличение и уменьшение;
- определить по какому перепаду на тактовых входах «CU» и «CD» происходит изменение состояния счетчика в указанных режимах;
- определить, при каких состояниях счетчика формируются сигналы переноса «PU» «PD»;
- получить временные диаграммы работы счетчика в режимах сброса и параллельной загрузки;
- определить, при каких уровнях входных сигналов на входах «R» и «L» происходит, соответственно, сброс и загрузка счетчика;
- определить условия, при каких происходит формирование сигналов переноса «PU» и «PD» в режимах сброса и параллельной загрузки.

3 ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

3.1 Двоичный счетчик

Счетчиком называется устройство для подсчета числа входных импульсов. При поступлении каждого импульса на тактовый вход С состояние

счетчика изменяется на единицу. Счетчик можно реализовать на нескольких триггерах, при этом состояние счетчика будет определяться состоянием его триггеров. В суммирующих счетчиках каждый входной импульс увеличивает число на его выходе на единицу, в вычитающих счетчиках каждый входной импульс уменьшает это число на единицу. Наиболее простые счетчики – двоичные. На рисунке 3.1 представлен суммирующий двоичный счетчик.

Рисунок 3.1 – Двоичный суммирующий счетчик

При построении счетчика триггеры соединяют последовательно. Выход каждого триггера непосредственно действует на тактовый вход следующего. Для того чтобы реализовать суммирующий счетчик, необходимо счетный вход очередного триггера подключать к инверсному выходу предыдущего. Для того чтобы изменить направление счета (реализовать вычитающий счетчик), можно предложить следующие способы:

- считывание выходных сигналов счетчика не с прямых, а с инверсных выходов триггеров;
- изменение структуры связей в счетчике путем подачи на счетный вход триггера сигнала не с инверсного, а с прямого выхода предыдущего каскада.

Счетчики характеризуются числом состояний в течение одного периода (цикла) счета. Число состояний определяется количеством триггеров m в структуре счетчика. Так для двоичного счетчика при m=3 число состояний равно $2^m=2^3=8$ (выходной код изменяется от 000 до 111).

Число состояний счетчика принято называть коэффициентом пересчета $K_{\text{СЧ}}$. Этот коэффициент равен отношению числа импульсов N_{BX} на входе к числу импульсов N_{BMX} на выходе старшего разряда счетчика за период счета:

$$K_{CY} = \frac{N_{BX}}{N_{BbIX}} \tag{3.1}$$

Если на вход счетчика подавать периодическую последовательность импульсов с частотой f_{BX} , то частота f_{BbIX} на выходе старшего разряда счетчика будет меньше в $K_{C\Psi}$ раз:

$$K_{CY} = \frac{f_{BX}}{f_{BMX}} \tag{3.2}$$

Поэтому счетчики можно использовать в качестве делителей частоты, величина $K_{CЧ}$ в этом случае будет называться коэффициентом деления. Для увеличения $K_{CЧ}$ приходится увеличивать число триггеров в схеме счетчика. Каждый дополнительный триггер удваивает число состояний счетчика, а, следовательно, и число $K_{CЧ}$. Для уменьшения коэффициента $K_{CЧ}$ можно в качестве выхода счетчика рассматривать выходы триггеров промежуточных каскадов. Например, для счетчика на трех триггерах $K_{CЧ} = 8$, если взять выход 2-го триггера, то $K_{CЧ} = 4$. При этом $K_{CЧ}$ всегда будет являться целой степенью числа 2, а именно: 2, 4, 8, 16 и т. д.

Интегральная микросхема К555ИЕ5 содержит 4 триггера. Первый триггер работает как делитель на 2. Он имеет тактовый вход C0 и выход Q0. Три остальных триггера образуют делитель на 8. Этот делитель имеет вход C1 и три выхода: Q1, Q2 и Q3. Оба делителя могут работать независимо друг от друга. Для организации счетчика-делителя на 16 нужно выход Q0 делителя на 2 соединить с тактовым входом C1 делителя на 8. На рисунке 3.2 показано условное графическое обозначение двоичного счетчика Л555ИЕ5, включенного с коэффициентом пересчета $K_{\text{C4}} = 16$.

Рисунок 3.2 – Условное графическое обозначение двоичного счетчика К555ИЕ5

Режимы работы микросхемы К555ИЕ5, включенной с коэффициентом пересчета $K_{C^q} = 16$, при различных значениях входных сигналов приведены в таблице 3.1. В ней символ \times обозначает безразличное состояние входа, а символ \downarrow – срез тактового сигнала.

Таблица 3.1 – Режимы работы микросхемы К555ИЕ5

Danaru nagamu	_	Вход		Выход			
Режим работы	<i>R1</i>	<i>R2</i>	CO	Q0	Q1	Q2	<i>Q</i> 3
Сброс	1	1	×	0 0 0			0
_	0	1	\downarrow	Увеличение кода			
Счет	1	0	\downarrow				да
	0	0	1				

Микросхема имеет два входа асинхронного сброса R1 и R2, которые объединены логической функцией «И». При одновременной подаче сигналов логической 1 на входы сброса все триггеры устанавливаются в состояние логического 0. В режиме счета по срезу каждого тактового импульса, поступающего на вход C0, происходит увеличение выходного кода счетчика на единицу.

3.2 Двоично-десятичный счетчик

Счетчик с коэффициентом пересчета К_{СЧ}, равным любому целому числу, можно реализовать на основе двоичного счетчика путем ввода обратных связей для исключения запрещенных состояний. Например, для счетчика на трех триггерах реализуется K_{C4} в пределах от 2 до 7, но при этом один или два триггера могут оказаться лишними. При использовании всех трех триггеров можно получить $K_{CY} = 5...7$, т.е. $2 < K_{CY} < 2^3$. Счетчик с $K_{CY} = 5$ должен иметь 5 состояний, которые в простейшем случае образуют последовательность: {0, 1, 2, 3, 4}. Циклическое повторение этой последовательности означает, что коэффициент деления счетчика равен 5. Для построения суммирующего счетчика с $K_{CY} = 5$ надо, чтобы после формирования последнего числа из последовательности $\{0, 1, 2, 3, 4\}$ счетчик переходил не к числу 5, а к числу 0. В двоичном коде это означает, что от числа 100 нужно перейти к числу 000, а не 101. Изменение естественного порядка счета возможно при введении дополнительных связей между триггерами счетчика. Можно воспользоваться следующим способом: как только счетчик попадает в нерабочее состояние (в данном случае 101), этот факт должен быть опознан и выработан сигнал, который перевел бы счетчик в состояние 000. Нерабочее состояние счетчика описывается логическим уравнением:

$$F = (101) \vee (110) \vee (111) = Q_2 \wedge \overline{Q_1} \wedge Q_0 \vee Q_2 \wedge Q_1 \wedge \overline{Q_0} \vee Q_2 \wedge Q_1 \wedge Q_0 = Q_2 \wedge Q_0 \vee Q_2 \wedge Q_1$$
(3.3)

Состояния 110 и 111 также являются нерабочими и поэтому учтены при составлении уравнения. Если на выходе эквивалентной логической схемы F=0, значит, счетчик находится в одном из работах состояний: $0 \lor 1 \lor 2 \lor 3 \lor 4$. Как только он попадает в одно из нерабочих состояний $5 \lor 6 \lor 7$, формируется

сигнал F=1. Появление сигнала F=1 должно переводить счетчик в начальное состояние 000, следовательно, этот сигнал нужно использовать для воздействия на установочные входы триггеров счетчика, которые осуществляли бы сброс счетчика в состояние $Q_1=Q_2=Q_3=0$. Один из вариантов построения счетчика с $K_{C4}=5$ представлен на рисунке 3.3.

Рисунок 3.3 – Схема счетчика с коэффициентом пересчета 5

При последовательном включении делителя на 2 и счетчика с $K_{C4} = 5$ образуется двоично-десятичный счетчик, у которого $K_{C4} = 10$, а выходной код представлен в двоичной форме. Данный подход реализован в интегральной микросхеме K555ИE2. Она содержит 4 триггера, один из которых работает самостоятельно и имеет тактовый вход CO и выход Q0, а три остальных образуют делитель на 5 с входом C1 и выходами QI, Q2 и Q3. На рисунке 3.4 приведено условное графическое обозначение двоично-десятичного счетчика K555ИE2, включенного с коэффициентом пересчета $K_{C4} = 10$. Для этого выход Q0 соединен с входом C1.

Рисунок 3.4 — Условное графическое обозначение двоично-десятичного счетчика K555ИE2

Режимы работы микросхемы К555ИЕ2, включенной с коэффициентом пересчета $K_{CP} = 10$, при различных значениях входных сигналов приведены в таблице 3.2.

Таблица 3.2 – Режимы работы микросхемы К555ИЕ2

Davierra nacionari			Bxod						
Режим работы	<i>R1</i>	<i>R2</i>	S1	<i>S</i> 2	CO	Q0	Q1	Q2	Q3
Canaa	1	1	0	×	×	0	0	0	0
Сброс	1	1	×	0	×	0	0	0	0
Предварительная установка	×	×	1	1	×	1 0 0 1			
	0	×	0	×	\downarrow				
Счет	×	0	×	0	\downarrow	V		11110 100	ПО
C4e1	0	×	×	0	\downarrow	Увеличение кода			
	×	0	0	×	\downarrow				

Микросхема имеет два входа асинхронного сброса R1 и R2, объединенные логической функцией «И». В счетчике предусмотрена возможность предварительной асинхронной установки двоичного кода 1001. Для этого используются входы S1 и S2, также объединенные логической функцией «И». В режиме счета по срезу каждого тактового импульса, поступающего на вход C0, происходит увеличение выходного кода счетчика на единицу.

Двоично-десятичные счетчики широко используются для построения цифровых измерительных приборов с удобным для оператора десятичным отсчетным устройством.

3.3 Реверсивный счетчик

Реверсивным называется счетчик, который может работать как в режиме суммирования, так и в режиме вычитания. Направление счета в реверсивном счетчике определяется способом передачи сигнала между триггерами соседних разрядов.

Счетчики находят широкое применение в вычислительных и управляющих устройствах, цифровых измерительных приборах. Следует отметить, что счетчик является цифровым аналогом генератора линейно изменяющегося напряжения, т.к. на его выходе может быть сформирован линейно изменяющийся код.

В зависимости от выбранного способа управления внутренними триггерами реверсивные счетчики могут быть как асинхронными (последовательными), так и синхронными (параллельными).

Для построения асинхронного реверсивного счетчика достаточно с помощью коммутационных узлов обеспечить подачу сигналов с прямого (при

суммировании) или с инверсного (при вычитании) выхода предыдущего триггера на вход последующего триггера. Схема реверсивного асинхронного двоичного счетчика приведена на рисунке 3.5.

Рисунок 3.5 – Схема реверсивного асинхронного двоичного счетчика

В этой схеме в качестве коммутационного узла использованы логические элементы «Исключающее ИЛИ». При V=0 элементы «Исключающее ИЛИ» работают как повторители входных логических сигналов, в результате чего реализуется схема суммирующего счетчика. При V=1 элементы «Исключающее ИЛИ» инвертируют выходные сигналы триггеров предыдущих каскадов, в результате чего схема выполняет функции вычитающего счетчика.

Последовательные счетчики проще параллельных по устройству, но работают медленнее, кроме того, при переключении последовательной цепочки триггеров из-за задержки распространения тактового сигнала на их выходах могут кратковременно возникать ложные комбинации сигналов, нарушающие нормальную работу счетчика. В результате при смене направления счета записанная информация может быть потеряна.

Более совершенным в этом плане является синхронный реверсивный счетчик, в котором счетные импульсы поступают одновременно на входы всех триггеров. Примером синхронного реверсивного четырехразрядного счетчика является интегральная микросхема К555ИЕ7, условное графическое обозначение которой приведено на рисунке 3.6.

Рисунок 3.6 – Условное графическое обозначение синхронного реверсивного четырехразрядного счетчика К555ИЕ7

Счетчик имеет управляющий вход L, называемый также входом предварительной записи. Тактовые импульсы подаются на счетные входы: CU – прямого счета и CD – обратного счета. Если на вход CU приходит фронт тактового импульса, то содержимое счетчика увеличивается на единицу. Аналогичный перепад, поданный на вход CD, уменьшает на единицу содержимое счетчика.

Информационные входы D0-D3 позволяют записать в счетчик начальный код, с которого будет выполняться изменение состояния счетчика. Запись производится подачей логического нуля на управляющий вход L. При этом информация с D1-D4 записывается в триггеры счетчика и появляется ка его выходах Q0-Q3, независимо от состояния сигналов на счетных входах CU и CD. Выходы счетчика Q3, Q2, Q1, Q0 имеют веса 8-4-2-1.

Для каскадного наращивания нескольких счетчиков предусмотрены выходы окончания счета на увеличение (PU) и окончания счета на уменьшение (PD). Эти выходы подключаются, соответственно, к входам CU и CD, следующего (старшего) счетчика.

Временная диаграмма переключений реверсивного счетчика показана на рисунке 3.7.

Рисунок 3.7 — Временная диаграмма переключений реверсивного счетчика

В зависимости от состояний входов возможны следующие режимы работы реверсивного счетчика (см. таблицу 3.3):

- режим счета реализуется, когда L=1: при подаче счетных импульсов на счетный вход CU происходит увеличение двоичного выходного кода, при подаче счетных импульсов на счетный вход CD уменьшение, информационные входы DO-D3 могут находиться в любом состоянии, что обозначено в таблице символом ×;
- режим параллельной записи обеспечивается, когда L=0, при этом кодовые наборы, установленные на информационных входах, повторяются на выходах соответствующих разрядов, независимо от состояния счетных входов;
- сброс счетчика осуществляется подачей высокого уровня напряжения на вход R, что приводит к отключению всех других входов и запрещению записи. В результате на информационных выходах устанавливаются сигналы Q_n =0 (n = 0, 1, 2, 3), на выходе окончания счета на увеличение сигнал PU = 1, а сигнал на выходе окончания счета на уменьшение PD дублирует состояние счетного входа CD. Во всех других режимах R = 0.

Таблица 3.3 – Режимы работы реверсивного счетчика

		Вход								Выход				
Режим	R	$oldsymbol{L}$	\boldsymbol{C}	\boldsymbol{C}	D	D	D	D	Q Q Q P		P	P		
	Λ	L	$oldsymbol{U}$	\boldsymbol{D}	0	1	2	3	0	1	2	3	$oldsymbol{U}$	\boldsymbol{D}
Cana	1	×	×	0	×	×	×	×	0	0	0	0	1	0
Сброс	1	×	×	1	×	×	×	×	0	0	0	0	1	1
	0	0	×	0	0	0	0	0	0	0	0	0	1	0
Параллельна	0	0	×	1	0	0	0	0	0	0	0	0	1	1
я загрузка	0	0	0	×	1	1	1	1	1	1	1	1	0	1
	0	0	1	×	1	1	1	1	1	1	1	1	1	1
Счет на	0	1	*	1					У	вели	чени	ие	1	1
увеличение	U	1		1	×	×	×	×	кода 1 1		1			
Счет на	0	1	1	1					Уменьшение 1 1		1			
уменьшение	U	1	1		×	×	×	×			1			

Режимы сброса и параллельной записи используются для начальной установки счетчика. Режим счета является основным рабочим режимом устройства.

4 ВЫПОЛНЕНИЕ РАБОТЫ

4.1 Двоичный счетчик

4.1.1 Исследование двоичного счетчика в статическом режиме

Сформировать таблицу истинности двоичного счетчика (см. рисунок 4.1). Полученные данные представлены в таблице 4.1.

Рисунок 4.1 – Условно графическое обозначение двоичного счетчика

Таблица 4.1 – Таблица истинности двоичного счетчика

	R2	R1	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	п	0	0	0	1
Шаг 2	0	0	П	0	0	1	0
Шаг 3	0	0	П	0	0	1	1
Шаг 4	0	0	П	0	1	0	0
Шаг 5	0	0	П	0	1	0	1
Шаг 6	0	0	П	0	1	1	0
Шаг 7	0	0	П	0	1	1	1
Шаг 8	0	0	П	1	0	0	0
Шаг 9	0	0	П	1	0	0	1
Шаг 10	0	0	П	1	0	1	0
Шаг 11	0	0	П	1	0	1	1
Шаг 12	0	0	П	1	1	0	0
Шаг 13	0	0	П	1	1	0	1
Шаг 14	0	0	П	1	1	1	0
Шаг 15	0	0	П	1	1	1	1
Шаг 16	0	0	П	0	0	0	0

Получить диаграмму состояний двоичного счетчика. Диаграмма приведена на рисунке 4.2.

Рисунок 4.2 – Диаграмма состояний двоичного счетчика

В результате, можно определить, что исследуемый счетчик является суммирующим, так как каждый входной импульс увеличивает число на его выходе на единицу. Коэффициент пересчета $K_{\mathbb{C}^q}$ равен 16, что определяется по количеству состояний в течение одного цикла счета.

4.1.2 Исследование двоичного счетчика в динамическом режиме

Получить диаграмму состояний двоичного счетчика, отражающую полный цикл его работы в режимах счета и сброса. Диаграмма приведена на рисунке 4.3.

Рисунок 4.3 – Диаграмма состояний двоичного счетчика в динамическом режиме

Изменяя в процессе работы счетчика состояние входов асинхронного сброса «R1» и «R2», можно определить по временной диаграмме, при каких состояниях этих входов счетчик находится в режиме счета, а при каких – в режиме сброса. Полученные данные представлены в таблице 4.2.

Таблица 4.2 – Режимы работы двоичного счетчика

Bxod R2	Bxod R1	Режим работы
0	0	
0	1	Режим счета
1	0	
1	1	Режим сброса

По временной диаграмме и выходным индикаторам «Q0», «Q1», «Q2» и «Q3» можно определить, что переключение счетчика происходит по перепаду уровня импульсов на входе «С» из «1» в «0».

4.2 Двоично-десятичный счетчик

4.2.1 Исследование двоично-десятичного счетчика в статическом режиме

Сформировать таблицу истинности двоично-десятичного счетчика (см. рисунок 4.4). Полученные данные представлены в таблице 4.3.

Рисунок 4.4 — Условно графическое обозначение двоично-десятичного счетчика

Таблица 4.3 – Таблица истинности двоично-десятичного счетчика

	52	51	R2	R1	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	П	0	0	0	1
Шаг 2	0	0	0	0	П	0	0	1	0
Шаг 3	0	0	0	0	П	0	0	1	1
Шаг 4	0	0	0	0	П	0	1	0	0
Шаг 5	0	0	0	0	П	0	1	0	1
Шаг 6	0	0	0	0	П	0	1	1	0
Шаг 7	0	0	0	0	П	0	1	1	1
Шаг 8	0	0	0	0	П	1	0	0	0
Шаг 9	0	0	0	0	П	1	0	0	1
Шаг 10	0	0	0	0	П	0	0	0	0

Получить диаграмму состояний двоично-десятичного счетчика. Диаграмма приведена на рисунке 4.5.

Рисунок 4.5 – Диаграмма состояний двоично-десятичного счетчика

В результате, можно определить, что исследуемый счетчик является суммирующим, так как каждый входной импульс увеличивает число на его выходе на единицу. Коэффициент пересчета $K_{C^{\rm q}}$ равен 10, что определяется по количеству состояний в течение одного цикла счета.

4.2.2 Исследование двоично-десятичного счетчика в динамическом режиме

Получить диаграмму состояний двоично-десятичного счетчика, отражающую его работу в режимах счета и сброса при изменении состояний входов асинхронного сброса «R1» и «R2». Диаграмма приведена на рисунке 4.6.

Рисунок 4.6 – Диаграмма состояний счетчика в динамическом режиме при изменении состояний входов «R1» и «R2»

Изменяя в процессе работы счетчика состояние входов асинхронного сброса «R1» и «R2», можно определить по временной диаграмме, при каких состояниях этих входов счетчик находится в режиме счета, а при каких – в режиме сброса. Полученные данные представлены в таблице 4.4.

Таблица 4.4 – Режимы работы двоично-десятичного счетчика

Bxod R2	Bxod R1	Режим работы
0	0	
0	1	Режим счета
1	0	
1	1	Режим сброса

Получить диаграмму состояний двоично-десятичного счетчика, отражающую его работу в режимах счета и предварительной установки кода «1001» при изменении состояний входов асинхронной установки «S1» и «S2». Диаграмма приведена на рисунке 4.7.

Рисунок 4.7 — Диаграмма состояний счетчика в динамическом режиме при изменении состояний входов «S1» и «S2»

Изменяя в процессе работы счетчика состояние входов асинхронной установки «S1» и «S2», можно определить по временной диаграмме, при каких состояниях этих входов счетчик находится в режиме счета, а при каких — в режиме предварительной установки кода «1001». Полученные данные представлены в таблице 4.5.

Таблица 4.5 – Режимы работы двоично-десятичного счетчика

Bxod S2	Bxod S1	Режим работы			
0	0				
0	1	Режим счета			
1	0				
1	1	Режим предварительной установки кода «1001»			

По временной диаграмме и выходным индикаторам «Q0», «Q1», «Q2» и «Q3» можно определить, что переключение счетчика происходит по перепаду уровня импульсов на входе «С» из «1» в «0».

4.3 Реверсивный счетчик

4.3.1 Режим счета на увеличение

Сформировать таблицу истинности реверсивного счетчика (см. рисунок 4.8). Полученные данные представлены в таблице 4.6.

Рисунок 4.8 – Условное графическое обозначение реверсивного счетчика K555ИЕ7

Таблица 4.6 – Таблица истинности реверсивного счетчика

R L D3 D2 D1 D0 CU CD Q3 Q2 Q1 Q0 Шаг 1 0 1 0 0 0 0 LГ 1 0 0 0 1 Шаг 2 0 1 0 0 0 LГ 1 0 0 1 0 Шаг 3 0 1 0 0 0 LГ 1 0 0 1 1 Шаг 4 0 1 0 0 0 LГ 1 0 0 0	PU 1 1 1 1 1 1 1 1	PD 1 1 1 1 1 1
Шаг 2 0 1 0 0 0 0 LГ 1 0 0 1 0 UIar 3 0 1 0 0 0 LГ 1 0 0 1 1	1 1 1	1
Шаг 3 0 1 0 0 0 0 LГ 1 0 0 1 1	1	1
	1	
Шаг 4 0 1 0 0 0 0 LГ 1 0 1 0 0		1
	1	
Шаг 5 0 1 0 0 0 LГ 1 0 1 0 1		1
Шаг 6 0 1 0 0 0 0 LГ 1 0 1 1 0	1	1
Шаг 7 0 1 0 0 0 0 LГ 1 0 1 1 1	1	1
Шаг 8 0 1 0 0 0 0 LГ 1 1 0 0 0	1	1
Шаг 9 0 1 0 0 0 0 LГ 1 1 0 0 1	1	1
Шаг 10 0 1 0 0 0 0 LГ 1 1 0 1 0	1	1
Шаг 11 0 1 0 0 0 0 LГ 1 1 0 1 1	1	1
Шаг 12 0 1 0 0 0 0 LГ 1 1 1 0 0	1	1
Шаг 13 0 1 0 0 0 0 LГ 1 1 1 0 1	1	1
Шаг 14 0 1 0 0 0 0 LГ 1 1 1 0	1	1
Шаг 15 0 1 0 0 0 0 LГ 1 1 1 1 1	1	1
Шаг 16 0 1 0 0 0 0 LГ 1 0 0 0	1	1

Получить диаграмму состояний реверсивного счетчика. Диаграмма приведена на рисунке 4.9.

Рисунок 4.9 – Диаграмма состояний реверсивного счетчика

По таблице истинности и диаграмме состояний можно определить, что в статическом режиме исследования удается зарегистрировать изменение сигнала окончания счета (сигнала переноса) «PU» при появлении на выходе счетчика кода «1111».

Коэффициент пересчета $K_{C^{\rm H}}$ равен 16, что определяется по количеству состояний в течение одного цикла счета.

4.3.2 Режим счета на уменьшение

Сформировать таблицу истинности реверсивного счетчика. Полученные данные представлены в таблице 4.7.

Таблица 4.7 – Таблица истинности реверсивного счетчика

	1			1			r	1						
	R	L	D3	D2	D1	D0	CU	CD	Q3	Q2	Q1	Q0	PU	PD
Шаг 1	0	1	0	0	0	0	1	LΓ	1	1	1	1	1	1
Шаг 2	0	1	0	0	0	0	1	LΓ	1	1	1	0	1	1
Шаг 3	0	1	0	0	0	0	1	LΓ	1	1	0	1	1	1
Шаг 4	0	1	0	0	0	0	1	LГ	1	1	0	0	1	1
Шаг 5	0	1	0	0	0	0	1	LΓ	1	0	1	1	1	1
Шаг 6	0	1	0	0	0	0	1	LΓ	1	0	1	0	1	1
Шаг 7	0	1	0	0	0	0	1	LΓ	1	0	0	1	1	1
Шаг 8	0	1	0	0	0	0	1	LΓ	1	0	0	0	1	1
Шаг 9	0	1	0	0	0	0	1	LΓ	0	1	1	1	1	1
Шаг 10	0	1	0	0	0	0	1	LΓ	0	1	1	0	1	1
Шаг 11	0	1	0	0	0	0	1	LΓ	0	1	0	1	1	1
Шаг 12	0	1	0	0	0	0	1	LΓ	0	1	0	0	1	1
Шаг 13	0	1	0	0	0	0	1	LΓ	0	0	1	1	1	1
Шаг 14	0	1	0	0	0	0	1	LΓ	0	0	1	0	1	1
Шаг 15	0	1	0	0	0	0	1	LΓ	0	0	0	1	1	1
Шаг 16	0	1	0	0	0	0	1	LΓ	0	0	0	0	1	1

Получить диаграмму состояний реверсивного счетчика. Диаграмма приведена на рисунке 4.10.

Рисунок 4.10 – Диаграмма состояний реверсивного счетчика

По таблице истинности и диаграмме состояний можно определить, что в статическом режиме исследования удается зарегистрировать изменение сигнала переноса «PD» при появлении на выходе счетчика кода «0000».

Коэффициент пересчета К_{СЧ} равен 16, что определяется по количеству состояний в течение одного цикла счета.

4.3.3 Режим параллельной загрузки

По индикаторам выходных сигналов счетчика «Q0», «Q1», «Q2», «Q3» определить состояния счетчика. Полученные данные представлены в таблице 4.8.

Таблица 4.8 – 7	Габлица состоя	ний счетчика

$Q\theta$	Q1	Q2	<i>Q3</i>
0	1	1	1
0	0	0	1
1	1	1	1

В результате, можно определить, что параллельная загрузка происходит при логическом уровне «0» сигнала «L».

4.3.4 Динамический режим

Получить диаграмму состояний реверсивного счетчика в режимах счета на увеличение и уменьшение. Диаграмма приведена на рисунке 4.11.

Рисунок 4.11 – Диаграмма состояний реверсивного счетчика

По полученной диаграмме состояний можно определить, что изменение состояния счетчика в режимах счета на увеличение и уменьшение происходит по перепаду из 0 к 1 на входах «CU» и «CD» соответственно.

Сигнал переноса «PU» формируется при переходе от состояния 1111 к состоянию 0000, то есть при переходе от максимального значения к минимальному. Тогда как сигнал «PD» формируется при переходе от состояния 0000 к состоянию 1111, то есть при переходе от минимального значения к максимальному.

Получить диаграмму состояний реверсивного счетчика в режимах сброса и параллельной загрузки. Диаграмма приведена на рисунке 4.12.

Рисунок 4.12 – Диаграмма состояний реверсивного счетчика

По таблице состояний счетчика можно определить, что сброс происходит при логическом уровне «1» входного сигнала «R», загрузка — при уровне «0» сигнала «L».

В режиме сброса на выходе окончания счета на увеличение формируется сигнал PU=1, а сигнал на выходе окончания счета на уменьшение PD дублирует состояние счетного входа CD. В режиме параллельной загрузки значения 1111, которое является максимальным для данного счетчика, формируется сигнал переноса «PU».

5 ВЫВОДЫ

В процессе выполнения лабораторной работы было изучено функционирование двоичного, двоично-десятичного и реверсивного счетчика. Для каждого из них были сформированы таблицы истинности и диаграммы состояний.

В ходе изучения работы двоичного счетчика в статическом режиме было определено, что изучаемый двоичный счетчик является суммирующим, так как каждый входной импульс увеличивает число на его выходе на единицу, также коэффициент пересчета $K_{C^{\text{Ч}}}$ равен 16.

При изучении работы двоичного счетчика в динамическом режиме была составлена таблица режимов работы счетчика, также определено, что переключение счетчика происходит по перепаду уровня импульсов на входе «С» из «1» в «0».

Изучение работы двоично-десятичного счетчика в статическом режиме показало, что исследуемый счетчик является суммирующим, так как каждый

входной импульс увеличивает число на его выходе на единицу, а коэффициент пересчета Ксч равен 10.

В ходе изучения работы двоично-десятичного счетчика в динамическом режиме была составлена таблица режимов работы счетчика, также определено, что переключение счетчика происходит по перепаду уровня импульсов на входе «С» из «1» в «0».

В процессе изучения работы реверсивного счетчика в режиме счета на увеличение было определено, что зарегистрировать изменение сигнала окончания счета (сигнала переноса) «PU» удается при появлении на выходе счетчика кода «1111», а коэффициент пересчета $K_{\text{CЧ}}$ равен 16.

В ходе изучения работы реверсивного счетчика в режиме счета на уменьшение было определено, что зарегистрировать изменение сигнала переноса «PD» удается при появлении на выходе счетчика кода «0000», коэффициент пересчета K_{C4} равен 16.

Изучение работы реверсивного счетчика в режиме параллельной загрузки показало, что параллельная загрузка происходит при логическом уровне «0» сигнала «L». Также была составлена таблица состояний счетчика.

Также по результатам исследования работы реверсивного счетчика в динамическом режиме было определено, что изменение состояния счетчика в режимах счета на увеличение и уменьшение происходит по перепаду из 0 к 1 на входах «СU» и «CD». Сигнал переноса «PU» формируется при переходе от состояния 1111 к состоянию 0000, тогда как сигнал «PD» – при переходе от состояния 0000 к состоянию 1111; сброс происходит при уровне «1» входного сигнала «R», загрузка – при уровне «0» сигнала «L». В режиме сброса формируется сигнал PU=1, а сигнал на выходе «PD» дублирует состояние входа «CD». В режиме параллельной загрузки значения 1111 формируется сигнал переноса «PU».