

Bangladesh University of Business and Technology

Single Phase Shell Type Transformer

Team: "Kinetic Vision"

Course Name: Energy Conversion II (lab)

Course Code: EEE210

MEET OUR TEAMMATES

ID-20212208019

Md. Sabbir Hasan ID-20212208020

ID-20212208022

Nishat Biswas ID-20212208001

Kinetic Vision

AGENDA

Abstract

Introduction

Background

Literature Review

Materials Explanation

Proposed Method

Methodology

Circuit Diagram

Working Principle

Social Economy Impact

Conclusion

ABSTRACT

A transformer construction provides a magnetic circuit, known more commonly as the "transformer core", which is designed to provide a path for the magnetic field to flow around.

High side 220 V Low side 220 V

E-type and I-type core

High side-0.253 A High side-2.315 A

INTRODUCTION

❖ Transformer is a device that is used to transfer electrical energy from one circuit to another circuit without changing the frequency of the electrical energy.

Structure of Transformer

Faraday's Electromagnetic Induction Law

Working Principle of Transformer

Designing of A Transformer

Demonstration

BACKGROUND

N_p Secondary Coil turns

Electromagnetic Induction Law

Faraday's Electromagnetic Induction Law states that a time-varying magnetic field through a loop of wire will induce an electromotive force (EMF) in the wire, which can cause a current to flow. (EMF = N dΦ/dt)

E.M.F. Equation

❖ By this equation, we can easily find the number of turns for per voltage and other quantity for transformer.

Single Phase Transformer

• We use transformer to convert voltage and transfer current to a long distance.

LITERATURE REVIEW

Turns for Per Voltage

$$B_{\rm m}=1.2~{\rm Wb/m^2}$$

A = length * width

Flux,
$$\Phi_{\rm m} = B_{\rm m} * A$$

$$\mathbf{E} = \mathbf{4.44} \; \mathbf{f} \; \mathbf{\Phi}_{\mathbf{m}} \; \mathbf{N}$$

❖ By this equation, we have calculated the turns for per voltage

LITERATURE REVIEW

High Voltage and Low voltage Side

 $I_{HVS} = 0.253 \text{ A}$ $V_{HVS} = 220 \text{ V}$ $N_{HVS} = 473$ $V_{LVS} = 24 \text{ V}$ $N_{LVS} = 52 \text{ turns}$ $I_{LVS} = 2.315 \text{A}$ $I_{LVS} = 24 \text{ V}$ $N_{LVS} = 52 \text{ turns}$

Selected Apparent Power = 50 VA

Number of turns for windings, N = V * turns for per voltage

❖ By this equation, we have calculated the number of turns for both sides.

The Efficiency of This Transformer = 90% Current, I = VA / (90% of V)

By this equation, we have calculated the current for both sides.

MATERIALS EXPLANATION

18 gauge(SWG)

PROPOSED METHOD

Theory of Transformer

Applying The Equation

Selection of The Materials

METHODOLOGY

Electromagnetic Induction Law

Faraday's Electromagnetic Induction Law states that a time-varying magnetic field through a loop of wire will induce an electromotive force (EMF) in the wire, which can cause a current to flow. (EMF = N dΦ/dt)

Magnetic Flux

CIRCUIT DIAGRAM

CONSTANT FLUX MACHINE

SOCIAL ECONOMY IMPACT

There is chance to research about reducing the thickness of core.

There is chance to research about the conductance of the conductor.

CONCLUSION

❖ Despite some of the energy losses, transformers are still one of the highly efficient instruments used for power distribution.

❖ By transformer, electricity is being provided from urban area to rural area.

