Билет 67

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 07: Рав	вномерная	сходимость	степ	енного	ряда.	пепрер	ЭМВНО	СТЬ	Cyr	имы	CT	е-	
	пенного ряда.	Теорема А	А беля											1

0.1. Билет 67: Равномерная сходимость степенного ряда. Непрерывность суммы степенного ряда. Теорема Абеля.

Teopema 0.1.

R – радиус сходимости, 0 < r < R. Тогда в круге $|z| \le r$ ряд сходится равномерно.

сходится равномерно.

Доказательство. $r < R \implies \sum_{n=0}^{\infty} a_n r^n$ сходится абсолютно. Для ряда $\sum_{n=0}^{\infty} a_n z^n, \ |z| \leqslant r$ воспользуемся признаком Вейерштрасса. $|a_n z^n| \leqslant |a_n| r^n, \ |a_n| r^n$ сходится \implies по признаку Вейерштрасса $\sum_{n=0}^{\infty} a_n z^n, \ |z| \leqslant r$

Замечание.

Равномерной сходимости во всем круге может не быть.

Контрпимер $R=1,\;\sum\limits_{n=0}^{\infty}z^{n}=\frac{1}{1-z},\;$ хвост ряда $\sum\limits_{k=n}^{\infty}z^{k}=\frac{z^{n}}{1-z}\not\rightrightarrows 0,\;$ т.к. можем одновременно приблизить числитель к единице, а знаминатель к нулю, и дробь получается сколь угодно большой.

Следствие.

Сумма степенного ряда непрерывна в круге сходимости.

Доказательство.

Возьмем произвольную точку w из круга сходимости, достаточно доказать лишь непрерывность в окресности. Берем r, т.ч. |w| < r < R. Знаем, что в круге |z| < r ряд равномерно сходится. Есть равномерная сходимость и каждое слагаемое это непрерывная функция \Longrightarrow в круге |z| < r сумма непрерывна \Longrightarrow есть непрерывность суммы и в w. В силу произольности wсумма непрерывна в любой точке |z| < R.

Теорема 0.2 (Абеля).

. Пусть R – радиус сходимости ряда $\sum\limits_{n=0}^{\infty}a_nz^n$ и ряд сходится при z=R. Тогда на отрезке [0,R]ряд сходится равномерно.

Доказательство.

Доказательство. $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n.$ Применим признак Абеля. $\sum_{n=0}^{\infty} a_n R^n$ сходится равномерно (нет зависимости от x), $\left(\frac{x}{R}\right)^n \in [0,1]$ \Longrightarrow равномерно огранич., $\left(\frac{x}{R}\right)^n$ монотонно убывает, тогда по признаку Абеля $\sum_{n=0}^{\infty} a_n x^n$ сходится равномерно.

Следствие.

Билет 67 СОДЕРЖАНИЕ

 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, если выполнены условия теоремы, то $f(x) \in C[0,R]$, т.к. равномерная сходимость влечет непрерывность. В частности, $\lim_{x \to R^-} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n$.