Fotometría usando CCDs Parámetros básicos

Felipe Barrientos Pontificia Universidad Católica de Chile Agosto 2016

En este documento se resumen los parámetros básicos a considerar en el proceso de obtener fotometría estelar utilizando CCDs. Este material esta pesando para ser usado en los curso de la Licenciatura de Astronomía UC.

Intensidad: z(x,y) se registra en unidades digitales (*digital units*, ADU). El rango típico es $0 \rightarrow \pm 32767$ (16 bit).

Ganancia (g) es el factor de conversión entre fotones y ADU (e/ADU)

Pozo de Potencial: Capacidad por pixel. Representa el máximo número de electrones que pueden ser registrados antes que se alcance el nivel de saturación. Este valor es diferente de chip a chip, típicamente en el rango 30000 →300000 e, aunque la no linearidad puede ocurrir antes que la saturación se alcance.

Ruido de lectura (Q): introducido por la electrónica de lectura del CCD. Impone un nivel mínimo de incertidumbre en el número de electrones por pixel, típicamente $5 \rightarrow 80$ e rms

Rango dinámico: $D = \frac{(pozo\ potencial)}{O}$, típicamente 5000.

Eficiencia cuántica (QE): es la efectividad de detección de fotones. Esta depende fuertemente de la longitud de onda de la radiación incidente.

Eficiencia de transferencia de carga (CTE): Es la eficiencia del traslado de la carga de un pixel a otro. Debe ser mayor que 0.99999 por columna. Fuente potencial de problemas para los detectores de gran tamaño.

La Fórmula fundamental

El flujo proveniente de una estrella se mide utilizando una apertura de radio R, en una imagen CCD

Figura 2 Estrella en una imagen CCD, con su perfil en intensidad a la derecha obtenido en un corte como el de la imagen.

La calidad de la observación está dada principalmente por la razón señal/ruido (S/N).

La señal está data simplemente por S=rt, donde r es tasa de detección de electrones de la estrella (e/sec) y t es el tiempo de exposición.

El ruido, por otro lado, tiene 3 fuentes que son independientes.

- 1. Estadística de fotones de la fuente, donde la varianza es rt
- 2. Estadística de fotones del cielo, la varianza es nz_st , donde $n=\pi\,R^2$, o el número de pixeles en la apertura y z_s es la intensidad del cielo / pixel.
- 3. Ruido de lectura, que es constante y cuya varianza está dada por O^2 . Se mide en e / pixel.

Estas diferentes fuentes contribuyen al ruido final, donde la varianza es la suma directa de las varianzas.

 $N^2 = rt + nz_s t + nQ^2$, con lo cual la razón señal ruido es entonces

$$\frac{S}{N} = \frac{rt}{\sqrt{rt + n(z_s t + Q^2)}}$$

La magnitud de un objeto se define como

 $m_{inst} = -2.5 \log_{10}(\sum r_i) + const$, donde $\sum r_i$ corresponde a la suma del número de cuentas recibidas de la estrellas por segundo

El valor de la S/N se puede utilizar para determinar la incertidumbre en la magnitud

$$m \pm \epsilon(m) = K - 2.5 \log(S \pm N)$$

$$= K - 2.5 \log(S) - 2.5 \log(1 \pm \frac{1}{S/N})$$

$$\rightarrow \quad \epsilon \approx \pm 2.5 \log(1 + \frac{1}{S/N})$$

Adicionalmente se puede definir la magnitud límite de una imagen donde S/N = 5. Bajo suposiciones razonables, este nivel en la razón señal a ruido corresponde aproximadamente al 50% de detección de los objetos en la imagen.

Revisando la ecuación fundamental podemos ver que existen tres regímenes límite que son:

 Fuentes brillantes: aquí el límite viene dado por el ruido de fotones de la fuente misma.

$$\frac{S}{N} = \sqrt{rt} \sim t^{1/2}$$

 Fuentes débiles con exposiciones cortas, limitadas por el ruido de lectura del CCD

$$\frac{S}{N} = \frac{rt}{\sqrt{nQ^2}} \sim t$$

 Fuentes débiles con exposiciones largas, limitadas por el flujo proveniente del cielo

$$\frac{S}{N} = \frac{rt}{\sqrt{n z_s t}} \sim t^{1/2}$$

Además de lo anterior, es importante escoger la apertura adecuada en orden a

maximizar la razón señal-ruido. Pequeñas aperturas incluyen muy poco de la imagen y son muy dependientes de errores de centrado. Por otro lado, aperturas muy grandes incluyen demasiado ruido del cielo, tal como se muestra en la figura.

Figura 3 Perfil en intensidad de una estrella. Aquí se muestran dos posibles aperturas para obtener el flujo. Una es claramente muy grande con lo cual se introduce mucho ruido, y la segunda es muy pequeña con lo que se producen errores de centrado.

Un compromiso se puede alcanzar para imágenes limitadas por el cielo.

$$\frac{S}{N} = \frac{rt}{\sqrt{n z_s t}} = r \sqrt{\frac{t}{\pi R^2 z_s}}$$

Sea el I(R) el perfil de intensidad estelar

$$\rightarrow r = \int_0^R I(\rho) 2 \pi \rho \, d\rho \quad \rightarrow \quad \frac{S}{N} \sim \frac{1}{R} \int_0^R \rho \, I \, d\rho$$

y para un perfil tipo gaussiana, $I(R)=I_0e^{(-R^2/2\sigma^2)}$, y al máximo se la señal a ruido se encuentra para $R_0{\simeq}1.6\sigma{\simeq}\frac{2}{3}FWHM$. Para perfiles con alas más extendidas se recomienda $R_0{\simeq}2\sigma$.