Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 18 • INDICATIONS Applications linéaires

Exercice 18.1

Soit E un \mathbb{K} -espace vectoriel. Soit $u \in L(E)$ tel que

$$u^2 - 3u - 10 \operatorname{Id}_E = 0_{L(E)}$$
.

- **1.** Montrer que u est bijectif et exprimer u^{-1} en fonction de u.
- 2. Montrer que

$$E = \operatorname{Ker}(u + 2\operatorname{Id}_{E}) \oplus \operatorname{Ker}(u - 5\operatorname{Id}_{E}).$$

indication -

- **1.** Déterminer v tel que $u \circ v = v \circ u = \operatorname{Id}_E$ à l'aide de la relation vérifiée par u.
- **2.** Raisonner par analyse synthèse. En exprimant $x \in E$ comme x = y + z (avec $y \in \text{Ker}(u + 2 \text{Id}_E)$ et $z \in \text{Ker}(u 5 \text{Id}_E)$), écrire f(x) pour en déduire y et z en fonction de x et f(x).

Exercice 18.2

Soit E un espace vectoriel. Soient $f, g \in L(E)$ tels que $f \circ g = Id_E$.

- **1.** Montrer que $Ker(g \circ f) = Ker(f)$.
- **2.** Montrer que $Im(g \circ f) = Im(g)$.
- **3.** Montrer que $E = \text{Ker}(f) \oplus \text{Im}(g)$.

projections et les questions précédentes.

- indication -

- ${f 1.}$ Raisonner par double inclusion. L'une se fait sans difficulté et sans l'hypothèse $f\circ g={\sf Id}_E$.
- **2.** Raisonner par double inclusion. L'une se fait sans difficulté et sans l'hypothèse $f \circ g = \operatorname{Id}_{E}$.
- **3.** Raisonner par analyse-synthèse. Dans la phase d'analyse, lorsque l'on écrit x = y + z ($x \in E$, $y \in \text{Ker}(f)$ et $z \in \text{Im}(g)$), appliquer f pour déterminer z.

 Autre méthode. On peut montrer que $p := g \circ f$ est une projection, utiliser les résultats sur les

1

Exercice 18.3

On considère

$$\varphi: \left| \begin{array}{ccc} \mathbb{R}[\mathsf{X}] & \longrightarrow & \mathbb{R}[\mathsf{X}] \\ P & \longmapsto & P(\mathsf{X}^2) + (1+\mathsf{X}^2)P(\mathsf{X}). \end{array} \right|$$

- **1.** Montrer que φ est une application linéaire.
- **2.** Montrer que φ est injective.
- **3.** L'application φ est-elle surjective?

indication

- 1. Sans difficulté.
- **2.** Établir qu'un polynôme du noyau est nul ou de degré 2, puis regarder ce qu'il se passe pour un polynôme de degré 2.
- **3.** Remarquer que $deg(\varphi(P)) = -\infty$ ou 0 ou ≥ 2 .

Exercice 18.4

On note \mathscr{P} l'ensemble des fonctions paires de $\mathscr{F}(\mathbb{R},\mathbb{R})$ et \mathscr{G} l'ensemble des fonctions impaires de $\mathscr{F}(\mathbb{R},\mathbb{R})$.

- **1.** Montrer que \mathscr{P} et \mathscr{I} sont deux sous-espaces vectoriels supplémentaires dans $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- **2.** Déterminer le projeté de $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ sur \mathcal{P} parallèlement à \mathcal{G} .

— indication —

- **1.** Vérifier que \mathscr{P} et \mathscr{G} sont des sous-espaces vectoriels et $\mathscr{F}(\mathbb{R},\mathbb{R})$. Pour montrer que \mathscr{P} et \mathscr{G} sont supplémentaires, on pourra raisonner par analyse-synthèse.
- 2. Il s'agit de la fonction paire intervenant dans la décomposition « paire impaire » déterminée précédemment.

Exercice 18.5

Soit E un espace vectoriel. Soit $f \in L(E)$.

1. Montrer que

$$\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0_E\} \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2).$$

2. Montrer que

$$\operatorname{Im}(f) + \operatorname{Ker}(f) = E \iff \operatorname{Im}(f) = \operatorname{Im}(f^2).$$

indication

Sans contexte de dimension finie, tout montrer par double implication et les égalités ensemblistes par double inclusion.

2

Exercice 18.6

Trouver un espace vectoriel E et deux endomorphismes $u, v \in L(E)$ tels que

$$u \circ v = \operatorname{Id}_{E}$$
 et $v \circ u \neq \operatorname{Id}_{E}$.

- indication -

On pourra par exemple regarder des espaces de fonctions, tels que $E = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$. Remarque. Ne pas prendre un espace de dimension finie.

—— résultat —

$$E = \mathscr{C}^{0}(\mathbb{R}, \mathbb{R}), \quad u: f \longmapsto f', \quad \text{et} \quad v: f \longmapsto \left(x \longmapsto \int_{0}^{x} f(t) \, dt\right).$$

Exercice 18.7

Soit E un espace vectoriel. Soit $f \in L(E)$.

- **1.** Montrer que $\left(\operatorname{Im}(f^n)\right)_{n\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 2. Montrer que

$$\exists k_0 \in \mathbb{N} : \operatorname{Im}(f^{k_0}) = \operatorname{Im}(f^{k_0+1}) \implies \forall k \geqslant k_0, \operatorname{Im}(f^k) = \operatorname{Im}(f^{k_0}).$$

3. Donner un espace E et un endomorphisme f dont la suite $\left(\operatorname{Im}(f^n)\right)_{n\in\mathbb{N}}$ n'est pas stationnaire.

indication -

3

- 1. Sans difficulté.
- **2.** Montrer que $\forall k \in \mathbb{N}$, $Im(f^{k_0+k+1}) = Im(f^{k_0+k})$.
- **3.** On peut par exemple se placer dans $E = \mathbb{K}^{\mathbb{N}}$.

Exercice 18.8

Soit E un \mathbb{K} -espace vectoriel. Soit $f \in L(E)$.

• On dit que f est une homothétie lorsque

$$\exists \lambda \in \mathbb{K} : \forall x \in E, f(x) = \lambda x.$$

• On dit que f est une pseudo-homothétie lorsque

$$\forall x \in E, \quad \exists \lambda_x \in \mathbb{K} : \quad f(x) = \lambda_x x.$$

1. Montrer que

f est une homothétie \iff f est une pseudo-homothétie.

2. Déterminer l'ensemble

$$C(E) := \{ u \in L(E) \mid \forall v \in L(E), u \circ v = v \circ u \}.$$

On pourra admettre que tout sous-espace vectoriel de E admet un supplémentaire.

indication -

- **1.** ⇒ Sans difficulté.
 - On pourra considérer $x, y \in E \setminus \{0_E\}$ pour montrer que $\lambda_x = \lambda_y$. La disjonction de cas (x, y) libre et (x, y) liée peut aider.
- **2.** Raisonner par analyse-synthèse. En se donnant $u \in C(E)$, on peut considérer $x \neq 0_E$ et D := Vect(x). En notant S un supplémentaire de D, on peut considérer la projection sur D parallèlement à S, dans l'objectif de montrer que u est une pseudo-homothétie.

– résultat -

2. $C(E) = \{\lambda \operatorname{Id}_E \mid \lambda \in \mathbb{K}\}.$