

Developing predictive models for Li-ion Cell Health

Enabling second-life battery production.

LifeTIME

7 AFFORDABLE AND CLEAN ENERGY

11 SUSTAINABLE CITIES AND COMMUNITIES

RESPONSIBLE CONSUMPTION AND PRODUCTION

Pathways of cell degradation. Source: Vermeer, W.; Mouli, G. R. C.; Bauer, P. - IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 8, NO. 2, JUNE 2022\10.1109/TTE.2021.3138357

What does failure look like?

What does failure look like?

What does failure look like?

How do we measure failure?

How do we measure failure?

EIS (Electrochemical Impedance Spectroscopy)

- Voltage frequency sweep across the cell.
- Measure impedance.
- Plot on a Nyquist diagram.

How can it indicate degradation?

 Rate of electrochemical reaction (or degradation process) -> relevant frequency range.

ICA (Incremental Capacity Analysis)

- Battery voltage and charge measured over a full or partial cell cycle.
- Produces a plot of dQ/dV which can be used to infer battery characteristics.
- Useful in the field as it uses properties that are already measured by battery management systems (current, voltage).
- ICA curves have been shown to be dependent on cell environment and state of health (Xu 2022 & Bloom 2005).
- Existing analysis suffers from chemistry dependencies that reduce model generality.

Project Plan

Project Plan

Interim Presentation

Contingency?

The chance of producing a useful model in this timeframe is slim.

Alternatives:

- Replicate existing study on new dataset.
- Provide analysis and visualisation of LiFETIME data.
- Provide recommendations for future research based on literature review.
- Provide comprehensive, open-source documentation of work completed, with particular attention paid to pitfalls.

The only risk is poor

management.

Hazard	Possible effects/harm	Risk Rating	Detail mitigations	Revised risk rating H, M, L
Eye Strain	Headaches, discomfort, blurry vision.	L	Regular breaks. Spread project schedule to reduce the need for long periods of sustained work.	L
Stress	Reduced ability to concentrate, sleep. Cardiovascular issues.	L	Regular discussion of project schedule. Planned contingencies allowing for a reduction in scope during the project.	L
Repetitive Strain Injury (RSI)	Short and long-term musculoskeletal pain.	М	Regular breaks, maintain proper workstation ergonomics.	L