

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 0.73 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 12.72 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Procesure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away hom the duridoo.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.06	$C_{d} = 1.25$	to calculate C_s .

SCHLETTER

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W ^{M}$ $1.238D + 0.875E ^{O}$ $1.1785D + 0.65625E + 0.75S ^{O}$ $0.362D + 0.875E ^{O}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>135.52</u>	<u>5258.31</u>	k
Compressive Load =	<u>3479.92</u>	4392.69	k
Lateral Load =	<u>401.84</u>	3308.84	k
Moment (Weak Axis) =	<u>0.78</u>	<u>0.30</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 133843.2 \text{ in-lbs}$ Resisting Force Required = 2027.93 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3379.88 lbs to resist overturning. Minimum Width = <u>27 in</u> in Weight Provided = 5383.13 lbs Sliding Force = 795.02 lbs Use a 132in long x 27in wide x 18in tall Friction = 0.4 ballast foundation to resist sliding. Weight Required = 1987.54 lbs Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 795.02 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

	Ballast Width				
	<u>27 in</u>	<u>28 in</u>	<u>29 in</u>	<u>30 in</u>	
$P_{tta} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) =$	5383 lbs	5583 lbs	5782 lbs	5981 lbs	

ASD LC		1.0D	+ 1.0S			1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W			
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1317 lbs	1317 lbs	1317 lbs	1317 lbs	1132 lbs	1132 lbs	1132 lbs	1132 lbs	1697 lbs	1697 lbs	1697 lbs	1697 lbs	-58 lbs	-58 lbs	-58 lbs	-58 lbs
F _B	1256 lbs	1256 lbs	1256 lbs	1256 lbs	1868 lbs	1868 lbs	1868 lbs	1868 lbs	2211 lbs	2211 lbs	2211 lbs	2211 lbs	-2522 lbs	-2522 lbs	-2522 lbs	-2522 lbs
F_V	202 lbs	202 lbs	202 lbs	202 lbs	1456 lbs	1456 lbs	1456 lbs	1456 lbs	1223 lbs	1223 lbs	1223 lbs	1223 lbs	-1590 lbs	-1590 lbs	-1590 lbs	-1590 lbs
P _{total}	7956 lbs	8155 lbs	8355 lbs	8554 lbs	8383 lbs	8583 lbs	8782 lbs	8981 lbs	9291 lbs	9491 lbs	9690 lbs	9889 lbs	649 lbs	769 lbs	889 lbs	1008 lbs
M	3687 lbs-ft	3687 lbs-ft	3687 lbs-ft	3687 lbs-ft	3216 lbs-ft	3216 lbs-ft	3216 lbs-ft	3216 lbs-ft	4788 lbs-ft	4788 lbs-ft	4788 lbs-ft	4788 lbs-ft	3344 lbs-ft	3344 lbs-ft	3344 lbs-ft	3344 lbs-ft
е	0.46 ft	0.45 ft	0.44 ft	0.43 ft	0.38 ft	0.37 ft	0.37 ft	0.36 ft	0.52 ft	0.50 ft	0.49 ft	0.48 ft	5.15 ft	4.35 ft	3.76 ft	3.32 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	240.2 psf	239.4 psf	238.6 psf	237.9 psf	267.9 psf	266.1 psf	264.4 psf	262.8 psf	269.9 psf	268.0 psf	266.3 psf	264.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	402.7 psf	396.1 psf	389.9 psf	384.2 psf	409.6 psf	402.7 psf	396.3 psf	390.4 psf	480.9 psf	471.5 psf	462.7 psf	454.6 psf	549.9 psf	190.9 psf	141.2 psf	123.2 psf

Maximum Bearing Pressure = 550 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in

Seismic Design

Overturning Check

 $M_O = 1774.4 \text{ ft-lbs}$

Resisting Force Required = 1577.22 lbs

S.F. = 1.67

Weight Required = 2628.69 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		27 in			27 in		27 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	310 lbs	673 lbs	219 lbs	810 lbs	2163 lbs	740 lbs	122 lbs	197 lbs	32 lbs	
F _V	226 lbs	222 lbs	231 lbs	166 lbs	163 lbs	180 lbs	227 lbs	223 lbs	229 lbs	
P _{total}	6974 lbs	7337 lbs	6883 lbs	7154 lbs	8507 lbs	7084 lbs	2071 lbs	2145 lbs	1981 lbs	
М	882 lbs-ft	871 lbs-ft	897 lbs-ft	656 lbs-ft	659 lbs-ft	702 lbs-ft	881 lbs-ft	869 lbs-ft	886 lbs-ft	
е	0.13 ft	0.12 ft	0.13 ft	0.09 ft	0.08 ft	0.10 ft	0.43 ft	0.40 ft	0.45 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	186.8 psf	202.6 psf	181.5 psf	218.4 psf	272.7 psf	210.6 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	376.8 psf	390.3 psf	374.7 psf	359.7 psf	414.7 psf	361.9 psf	179.4 psf	180.6 psf	177.2 psf	

Maximum Bearing Pressure = 415 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.677 k	Maximum Axial Load = 3.501 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>36%</u>	Utilization = 47%
Diagonal Strut		
Maximum Axial Load =	2.141 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>29%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 48.27 in

Allowable Story Drift for All

Other Structures, Δ =

Max Drift, Δ_{MAX} = 0.732 in

0.732 \leq 0.965, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 129 \text{ in}$$

$$J = 0.432$$

$$356.874$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Not Used

Weak Axis:

3.4.14

$$\begin{split} L_b &= 129 \\ J &= 0.432 \\ 226.951 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} F_{Cy}}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.2 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 23.1 \, \, \text{ksi} \\ y = & 446476 \, \, \text{mm}^4 \\ & 1.073 \, \, \text{in}^4 \\ x = & 45.5 \, \, \text{mm} \\ \text{Sy} = & 0.599 \, \, \text{in}^3 \\ M_{\text{max}} W \, k = & 1.152 \, \, \text{k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = 29.4 \text{ ksi}$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$

 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.2$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

43.2 ksi

3.363 k-ft

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $M_{max}St =$

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L}_b = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \mathsf{\phiF_L} = & 31.4 \text{ ksi} \\ \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc} *\sqrt{((\mathsf{LbSc})/(\mathsf{Cb} *\sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

24.5

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

 $0.621 in^{3}$

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

3.4.7

$$\lambda = 0.57371$$
 $r = 0.81 \text{ in}$
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$82^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14
$$L_b = 86.60 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(IyJ)/2}))}]$$

$$\phi F_L = 29.6 \text{ ksi}$$

Weak Axis:

$$L_b = 86.6$$
 $J = 0.942$
135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.6$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

$\varphi F_L =$

3.4.16.1

3.4.16

N/A for Weak Direction

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$

 $S2 = \frac{k_1 Bp}{1.6Dp}$

S1 = 12.2

24.5

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$Sx = 0.621 \text{ In}^3$ $M_{\text{max}}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.0 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L St =$

3.4.7 $\lambda = 1.63853$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.80939$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 10.5516 \text{ ksi}$

3.4.9

b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.55 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 10.86 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeSurfa	ace(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Y	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-40.786	-40.786	0	0
2	M14	٧	-40.786	-40.786	0	0
3	M15	V	-65.613	-65.613	0	0
4	M16	V	-65.613	-65.613	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	92.212	92.212	0	0
2	M14	V	70.932	70.932	0	0
3	M15	V	39.013	39.013	0	0
4	M16	V	39 013	39 013	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Y		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Y		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Y		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Y		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Y		1	.362					6	.875											Π	

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	633.549	2	1026.387	2	.756	1	.003	1	0	1	0	1
2		min	-801.391	3	-1231.747	3	-37.469	5	225	4	0	1	0	1
3	N7	max	.041	9	1049.967	1	738	12	001	12	0	1	0	1
4		min	134	2	-29.129	5	-309.111	4	601	4	0	1	0	1
5	N15	max	.034	9	2676.859	1_	0	11	0	11	0	1	0	1
6		min	-1.546	2	-104.248	3	-294.261	4	581	4	0	1	0	1
7	N16	max	2394.843	2	3378.99	2	0	3	0	3	0	1	0	1
8		min	-2545.259	3	-4044.857	3	-37.243	5	227	4	0	1	0	1
9	N23	max	.046	14	1049.967	1	13.338	1	.026	1	0	1	0	1
10		min	134	2	925	3	-299.406	5	585	4	0	1	0	1
11	N24	max	633.549	2	1026.387	2	048	12	0	12	0	1	0	1
12		min	-801.391	3	-1231.747	3	-38.168	5	227	4	0	1	0	1
13	Totals:	max	3660.126	2	9815.673	1	0	11						
14		min	-4148.124	3	-6614.45	3	-1009.296	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	130.033	1	391.827	1	-9.791	12	0	3	.311	1	0	4
2			min	7.296	12	-576.175	3	-195.652	1	012	2	.018	12	0	3
3		2	max	130.033	1	274.671	1	-7.658	12	0	3	.136	4	.586	3
4			min	7.296	12	-405.491	3	-150.513	1	012	2	.007	12	398	1
5		3	max	130.033	1	157.516	1	-5.524	12	0	3	.07	5	.969	3
6			min	7.296	12	-234.807	3	-105.375	1	012	2	049	1	656	1
7		4	max	130.033	1	40.36	1	-3.391	12	0	3	.035	5	1.147	3
8			min	7.296	12	-64.123	3	-60.236	1	012	2	147	1	774	1
9		5	max	130.033	1	106.561	3	-1.257	12	0	3	.004	5	1.122	3
10			min	7.296	12	-76.796	1	-28.436	4	012	2	192	1	753	1
11		6	max	130.033	1	277.246	3	30.041	1	0	3	009	12	.893	3
12			min	3.468	15	-193.952	1	-21.103	5	012	2	183	1	591	1
13		7	max	130.033	1	447.93	3	75.18	1	0	3	007	12	.46	3
14			min	-6.725	5	-311.107	1	-17.802	5	012	2	121	1	289	1
15		8	max	130.033	1	618.614	3	120.318	1	0	3	0	10	.152	1
16			min	-18.986	5	-428.263	1	-14.501	5	012	2	068	4	177	3
17		9	max	130.033	1	789.298	3	165.457	1	0	3	.167	1	.734	1
18			min	-31.247	5	-545.419	1	-11.2	5	012	2	081	5	-1.018	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	130.033	1	959.983	3	210.596	1	.003	14	.391	1	1.455	1
20			min	7.296	12	-662.574	1	-127.675	14	012	2	.015	12	-2.063	3
21		11	max	130.033	1	545.419	1	-7.277	12	.012	2	.167	1	.734	1
22			min	7.296	12	-789.298	3	-165.457	1	0	3	.005	12	-1.018	3
23		12	max	130.033	1	428.263	1	-5.144	12	.012	2	.065	5	.152	1
24			min	7.296	12	-618.614	3	-120.318		0	3	004	1	177	3
25		13	max	130.033	1	311.107	1	-3.01	12	.012	2	.029	5	.46	3
26			min	7.296	12	-447.93	3	-75.18	1	0	3	121	1	289	1
27		14	max	130.033	1	193.952	1	876	12	.012	2	002	15	.893	3
28		17	min	7.296	12	-277.246	3	-32.818	4	0	3	183	1	591	1
29		15	max	130.033	1	76.796	1	15.098	1	.012	2	009	12	1.122	3
30		13		.553		-106.561	3	-22.149	5	_	3	192	1	753	1
		16	min		15		3			0	2			1.147	3
31		16	max	130.033	1	64.123		60.236	1	.012		006	12		1
32		47	min	-11.129	5	-40.36	1	-18.848	5	0	3	147	1	774	_
33		17	max	130.033	1	234.807	3	105.375	1	.012	2	0	12	.969	3
34		1.0	min	-23.391	5	-157.516	1	-15.547	5	0	3	09	4	656	1
35		18	max	130.033	1_	405.491	3	150.513	1	.012	2	.104	1	.586	3
36			min	-35.652	5	-274.671	1	-12.246	5	0	3	094	5	398	1
37		19	max	130.033	1_	576.175	3	195.652	1	.012	2	.311	1_	0	1
38			min	-47.913	5	-391.827	1	-8.945	5	0	3	107	5	0	3
39	M14	1	max	64.009	4	411.188	1	-10.051	12	.007	3	.352	1	0	4
40			min	3.048	12	-449.762	3	-201.367	1	009	2	.019	12	0	3
41		2	max	57.718	1	294.032	1	-7.917	12	.007	3	.191	4	.46	3
42			min	3.048	12	-319.747	3	-156.228	1	009	2	.009	12	421	1
43		3	max	57.718	1	176.876	1	-5.784	12	.007	3	.103	5	.764	3
44			min	3.048	12	-189.731	3	-111.089	1	009	2	021	1	702	1
45		4	max	57.718	1	59.721	1	-3.65	12	.007	3	.054	5	.913	3
46			min	3.048	12	-59.715	3	-65.951	1	009	2	127	1	844	1
47		5	max	57.718	1	70.301	3	-1.517	12	.007	3	.009	5	.906	3
48			min	.935	15	-57.435	1	-41.629	4	009	2	179	1	845	1
49		6	max	57.718	1	200.316	3	24.327	1	.007	3	009	12	.745	3
50		Ĭ	min	-10.798	5	-174.591	1	-32.735	5	009	2	177	1	707	1
51		7	max	57.718	1	330.332	3	69.465	1	.007	3	007	12	.428	3
52			min	-23.059	5	-291.746	1	-29.434	5	009	2	121	1	428	1
53		8	max	57.718	1	460.348	3	114.604	1	.007	3	0	10	0	9
54		-	min	-35.32	5	-408.902	1	-26.133	5	009	2	107	4	044	3
55		9	max	57.718	1	590.364	3	159.743	1	.007	3	.153	1	.549	1
56		9	min	-47.582	5	-526.058	1	-22.832	5	009	2	132	5	672	3
57		10		81.409		720.379	3	204.881	1	.007	3	.371	1	1.247	1
		10	max		12	-643.213		-130.423			2		12		3
58		11	min	3.048			1_		14	009		.015		-1.455	3
59		11	max		4	526.058	1	-7.018	12	.009	2	.192	4	.549	
60		40	min	3.048	12	-590.364	3	-159.743		007	3	.005	12	672	3
61		12	max	57.718	1	408.902	1	-4.884	12	.009	2	.101	5	0	9
62		40	min	3.048	12	-460.348	3	-114.604		007	3	011	1	044	3
63		13			1	291.746	1	-2.75	12	.009	2	.052	5	.428	3
64			min	3.048	12	-330.332	3	-69.465	1	007	3	121	1_	428	1
65		14	max		1	174.591	1	617	12	.009	2	.006	5	.745	3
66			min	3.048	12	-200.316	3	-42.507	4	007	3	177	1_	707	1
67		15	max		1	57.435	1	20.812	1	.009	2	008	12	.906	3
68			min	3.048	12	-70.301	3	-32.945	5	007	3	179	1	845	1
69		16	max		1	59.715	3	65.951	1	.009	2	005	12	.913	3
70			min	-5.751	5	-59.721	1	-29.644	5	007	3	127	1	844	1
71		17	max	57.718	1	189.731	3	111.089	1	.009	2	.001	3	.764	3
72			min	-18.012	5	-176.876	1	-26.343	5	007	3	113	4	702	1
73		18	max	57.718	1	319.747	3	156.228	1	.009	2	.138	1	.46	3
74			min	-30.273	5	-294.032	1	-23.042	5	007	3	135	5	421	1
75		19	max		1	449.762	3	201.367	1	.009	2	.352	1	0	1
									•						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]						<u>z-z Mome</u>	
76			min	-42.534	5	-411.188	1	-19.741	5	007	3	161	5	0	3
77	M15	1	max	90.061	5	550.35	2	-10.008	12	.009	2	.352	1	0	2
78			min	-60.856	1	-244.007	3	-201.333	1	006	3	.019	12	0	12
79		2	max	77.8	5	392.102	2	-7.875	12	.009	2	.23	4	.25	3
80			min	-60.856	1	-174.992	3	-156.194	1	006	3	.009	12	563	2
81		3	max	65.538	5	233.853	2	-5.741	12	.009	2	.13	5	.418	3
82			min	-60.856	1	-105.976	3	-111.056	1	006	3	021	1	937	2
83		4	max	53.277	5	75.604	2	-3.608	12	.009	2	.071	5	.503	3
84			min	-60.856	1	-36.961	3	-65.917	1	006	3	127	1	-1.121	2
85		5		41.016	5	32.054	3	-1.474	12	.009	2	.015	5	.506	3
		5	max		<u> </u>		2	-50.659	4		3		1		2
86			min	-60.856		-82.645			_	006		179	-	<u>-1.117</u>	
87		6	max	28.755	_5_	101.069	3	24.36	1	.009	2	009	12	.427	3
88			min	-60.856	_1_	-240.894	2	-41.727	5	006	3	177	1	924	2
89		7	max	16.494	_5_	170.084	3_	69.499	1	.009	2	007	12	.265	3
90			min	-60.856	1_	-399.143	2	-38.426	5	006	3	121	1	542	2
91		8	max	4.232	5	239.099	3	114.637	1	.009	2	0	10	.029	2
92			min	-60.856	1_	-557.392	2	-35.125	5	006	3	134	4	0	15
93		9	max	-3.487	12	308.114	3	159.776	1	.009	2	.153	1	.79	2
94			min	-60.856	1	-715.641	2	-31.824	5	006	3	169	5	306	3
95		10	max	-3.487	12	377.129	3	204.915	1	.009	2	.371	1	1.739	2
96			min	-60.856	1	-873.889	2	-135.041	14	006	3	.015	12	716	3
97		11	max	729	15	715.641	2	-7.06	12	.006	3	.229	4	.79	2
98			min	-60.856	1	-308.114	3	-159.776	1	009	2	.005	12	306	3
99		12	max	-3.487	12	557.392	2	-4.927	12	.006	3	.127	5	.029	2
		12			1				1	009	2		1	<u>.029</u>	15
100		40	min	-60.856	•	-239.099	3	-114.637				011			
101		13	max	-3.487	12	399.143	2	-2.793	12	.006	3	.067	5	.265	3
102			min	-60.856	1_	-170.084	3	-69.499	1	009	2	121	1	<u>542</u>	2
103		14	max	-3.487	12	240.894	2	659	12	.006	3	.011	5	.427	3
104			min	-60.856	1_	-101.069	3	-51.567	4	009	2	177	1	924	2
105		15	max	-3.487	12	82.645	2	20.779	1	.006	3	008	12	.506	3
106			min	-65.421	4	-32.054	3	-41.942	5	009	2	179	1	-1.117	2
107		16	max	-3.487	12	36.961	3	65.917	1	.006	3	005	12	.503	3
108			min	-77.682	4	-75.604	2	-38.641	5	009	2	127	1	-1.121	2
109		17	max	-3.487	12	105.976	3	111.056	1	.006	3	0	3	.418	3
110			min	-89.943	4	-233.853	2	-35.34	5	009	2	14	4	937	2
111		18	max	-3.487	12	174.992	3	156.194	1	.006	3	.138	1	.25	3
112				-102.205	4	-392.102	2	-32.039	5	009	2	174	5	563	2
113		19	max	-3.487	12	244.007	3	201.333	1	.006	3	.352	1	0	2
114		10		-114.466	4	-550.35	2	-28.738	5	009	2	21	5	0	5
115	M16	1	max	87.999	5	530.923	2	-9.654	12	.009	1	.313	1	0	2
	IVITO			-139.477	1	-229.883		-195.888		009	3		12	0	3
116		_										.017			
117		2		75.738	_5_	372.674	2	-7.521	12	.009	1	.177	4	.233	3
118				-139.477	_1_	-160.868	3	-150.75	1	009	3	.007	12	<u>54</u>	2
119		3		63.477	_5_	214.425	2	-5.387	12	.009	1	1	5	.384	3
120				-139.477	_1_	-91.853	3	-105.611	1	009	3	048	1	89	2
121		4	max		5_	56.176	2	-3.254	12	.009	1	.053	5	.453	3
122			min	-139.477	_1_	-22.838	3	-60.472	1	009	3	147	1	-1.052	2
123		5	max	38.954	5	46.177	3	-1.12	12	.009	1	.011	5	.439	3
124			min	-139.477	1	-102.073	2	-37.842	4	009	3	192	1	-1.024	2
125		6	max		5	115.192	3	29.805	1	.009	1	009	12	.342	3
126				-139.477	1	-260.321	2	-30.368	5	009	3	183	1	808	2
127		7	max		5	184.207	3	74.943	1	.009	1	006	12	.164	3
128		Ė		-139.477	1	-418.57	2	-27.067	5	009	3	121	1	403	2
129		8	max	2.171	5	253.222	3	120.082	1	.009	1	0	10	.192	2
130				-139.477	1	-576.819	2	-23.766	5	009	3	094	4	098	3
		9											1		
131		9	max		<u>15</u>	322.237	3	165.221	1	.009	1	.166		.975	2
132			ITHIN	-139.477	<u> 1</u>	-735.068	2	-20.465	5	009	3	118	5	441	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
133		10	max	-7.547	12	391.252	3	210.359	1	.009	1	.39	1	1.948	2
134			min	-139.477	1	-893.317	2	-132.353	14	009	3	.016	12	867	3
135		11	max	-6.684	15	735.068	2	-7.414	12	.009	3	.183	4	.975	2
136			min	-139.477	1	-322.237	3	-165.221	1	009	1	.006	12	441	3
137		12	max	-7.547	12	576.819	2	-5.281	12	.009	3	.091	4	.192	2
138			min	-139.477	1	-253.222	3	-120.082	1	009	1	004	1	098	3
139		13	max	-7.547	12	418.57	2	-3.147	12	.009	3	.044	5	.164	3
140				-139.477	1	-184.207	3	-74.943	1	009	1	121	1	403	2
141		14	max	-7.547	12	260.321	2	-1.014	12	.009	3	0	15	.342	3
142				-139.477	1	-115.192	3	-42.125	4	009	1	183	1	808	2
143		15	max	-7.547	12	102.073	2	15.334	1	.009	3	009	12	.439	3
144				-139.477	1	-46.177	3	-31.395	5	009	1	192	1	-1.024	2
145		16	max	-7.547	12	22.838	3	60.472	1	.009	3	006	12	.453	3
146				-139.477	1	-56.176	2	-28.094	5	009	1	147	1	-1.052	2
147		17	max	-7.547	12	91.853	3	105.611	1	.009	3	001	12	.384	3
148			min	-139.477	1	-214.425	2	-24.793	5	009	1	119	4	89	2
149		18	max	-7.547	12	160.868	3	150.75	1	.009	3	.106	1	.233	3
150		10		-139.477	1	-372.674	2	-21.492	5	009	1	134	5	54	2
151		19	max	-7.547	12	229.883	3	195.888	1	.009	3	.313	1	0	2
152		13		-142.183	4	-530.923	2	-18.191	5	009	1	158	5	0	5
153	M2	1	max	899.693	1	1.957	4	.599	1	0	12	0	3	0	1
154	IVIZ	1		-1065.937	3	.473	15	-36.828	4	0	4	0	1	0	1
155		2		900.169	<u> </u>	1.871	4	.599	1	0	12	0	1	0	15
					3		15	-37.244	4		4	012	4		4
156		2		-1065.58		.453			-	0	_		1	0	
157		3	max	900.645	1	1.786	4	.599	1	0	12	0		0	15
158		4	min	-1065.223	3	.433	15	-37.66	4	0	4	024	4	001	4
159		4		901.121	1_	1.7	4	.599	1	0	12	0	1	0	15
160		_		-1064.866	3	.412	15	-38.077	4	0	4	036	4	002	4
161		5		901.596	_1_	1.615	4	.599	1	0	12	0	1	0	15
162				-1064.51	3	.392	15	-38.493	4	0	4	049	4	002	4
163		6	max		_1_	1.529	4	.599	1	0	12	0	1	0	15
164		_		-1064.153	3	.372	15	-38.909	4	0	4	061	4	003	4
165		7		902.548	1_	1.443	4	.599	1	0	12	.001	1	0	15
166			min	-1063.796	3	.352	15	-39.326	4	0	4	074	4	003	4
167		8	max	903.024	_1_	1.358	4_	.599	1_	0	12	.001	1_	0	15
168			min	-1063.439	3	.332	15	-39.742	4	0	4	087	4	004	4
169		9		903.499	_1_	1.272	4	.599	1	0	12	.002	1_	001	15
170			min	-1063.082	3	.312	15	-40.159	4	0	4	1	4	004	4
171		10	max		_1_	1.187	4	.599	1	0	12	.002	1	001	15
172				-1062.725	3	.292	15	-40.575	4	0	4	113	4	005	4
173		11		904.451	_1_	1.101	4	.599	1	0	12	.002	1	001	15
174				-1062.369	3	.267	12	-40.991	4	0	4	126	4	005	4
175		12		904.927	1_	1.015	4	.599	1	0	12	.002	1_	001	15
176			min	-1062.012	3	.233	12	-41.408	4	0	4	139	4	005	4
177		13	max	905.402	1	.93	4	.599	1	0	12	.002	1	001	15
178			min	-1061.655	3	.2	12	-41.824	4	0	4	153	4	006	4
179		14	max	905.878	1	.844	4	.599	1	0	12	.003	1	001	15
180				-1061.298	3	.167	12	-42.24	4	0	4	166	4	006	4
181		15		906.354	1	.759	4	.599	1	0	12	.003	1	002	15
182				-1060.941	3	.133	12	-42.657	4	0	4	18	4	006	4
183		16	max	906.83	1	.679	2	.599	1	0	12	.003	1	002	15
184				-1060.585	3	.1	12	-43.073	4	0	4	194	4	006	4
185		17		907.305	1	.612	2	.599	1	0	12	.003	1	002	15
186		- '	min	-1060.228	3	.067	12	-43.489	4	0	4	208	4	007	4
187		18	max			.546	2	.599	1	0	12	.003	1	002	15
188		10	min	-1059.871	3	.033	12	-43.906	4	0	4	222	4	007	4
189		19		908.257	1	.479	2	.599	1	0	12	.003	1	002	15
100		10	πιαλ	000.201		.713		.000			14	.000	\perp	.002	10

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	<u>. LC</u>
190			min	-1059.514	3	016	3	-44.322	4	0	4	237	4	007	4
191	M3	1	max	532.878	2	7.8	4	5.805	4	0	12	0	1	.007	4
192			min	-679.099	3	1.843	15	.015	12	0	4	034	4	.002	15
193		2	max	532.708	2	7.036	4	6.342	4	0	12	0	1	.004	2
194			min	-679.227	3	1.664	15	.015	12	0	4	032	4	0	12
195		3	max		2	6.271	4	6.879	4	0	12	0	1	.002	2
196			min	-679.355	3	1.484	15	.015	12	0	4	029	4	0	3
197		4	max		2	5.507	4	7.416	4	0	12	0	1	0	15
198			min	-679.483	3	1.304	15	.015	12	0	4	026	4	002	3
199		5	max	532.196	2	4.742	4	7.953	4	0	12	0	1	0	15
200		5		-679.61	3	1.125	15	.015	12	0	4	023	4	004	6
			min								_				
201		6	max		2	3.978	4	8.49	4	0	12	.001	1	001	15
202		_	min	-679.738	3	.945	15	.015	12	0	4	<u>019</u>	5	005	6
203		7	max		2	3.213	4	9.027	4	0	12	.001	1	002	15
204			min	-679.866	3	.765	15	.015	12	0	4	016	5	007	6
205		8	max		2	2.449	4	9.564	4	0	12	.001	1	002	15
206			min	-679.994	3	.586	15	.015	12	0	4	012	5	008	6
207		9	max	531.515	2	1.685	4	10.101	4	0	12	.001	1	002	15
208			min	-680.121	3	.406	15	.015	12	0	4	008	5	009	6
209		10	max	531.345	2	.92	4	10.638	4	0	12	.002	1	002	15
210			min	-680.249	3	.226	15	.015	12	0	4	004	5	009	6
211		11	max		2	.241	2	11.175	4	0	12	.002	1	002	15
212			min	-680.377	3	11	3	.015	12	0	4	0	12	01	6
213		12	max		2	133	15	11.712	4	0	12	.006	4	002	15
214		12	min	-680.505	3	61	9 6	.015	12	0	4	0	12	01	6
215		13			2	313	15	12.249	4	0	12	.011	4	002	15
		13	max						12						
216		4.4	min	-680.632	3	-1.374	6	.015		0	4	0	12	<u>009</u>	6
217		14	max		2	493	15	12.785	4	0	12	.016	4	002	15
218		4.5	min	-680.76	3	-2.138	6	.015	12	0	4	0	12	008	6
219		15	max	530.493	2	672	15	13.322	4	0	12	.022	4	002	15
220			min	-680.888	3	-2.903	6	.015	12	0	4	0	12	007	6
221		16	max		2	852	15	13.859	4	0	12	.027	4	001	15
222			min	-681.016	3	-3.667	6	.015	12	0	4	0	12	006	6
223		17	max	530.152	2	-1.032	15	14.396	4	0	12	.033	4	001	15
224			min	-681.144	3	-4.432	6	.015	12	0	4	0	12	004	6
225		18	max	529.982	2	-1.211	15	14.933	4	0	12	.039	4	0	15
226			min	-681.271	3	-5.196	6	.015	12	0	4	0	12	002	6
227		19	max	529.812	2	-1.391	15	15.47	4	0	12	.046	4	0	1
228			min	-681.399	3	-5.961	6	.015	12	0	4	0	12	0	1
229	M4	1	max	1046.9	1	0	1	738	12	0	1	.038	4	0	1
230				-30.56	5	0	1	-308.03	4	0	1	0	12	0	1
231		2		1047.071	1	0	1	738	12	0	1	.003	4	0	1
232			min		5	0	1	-308.177	4	0	1	0	12	0	1
233		3		1047.241	1	0	1	738	12	0	1	0	12	0	1
234		3	min		5	0	1	-308.325		0	1	033	4	0	1
235		4		1047.411	1	0	1	738	12	0	1	<u>033</u> 0	12	0	1
		4													
236		_	min		5	0	1_	-308.473		0	1	068	4	0	1
237		5		1047.582	1_	0	1	738	12	0	1	0	12	0	1
238			min	-30.242	5	0	1	-308.62	4	0	1	<u>104</u>	4	0	1
239		6		1047.752	1	0	1	738	12	0	1	0	12	0	1
240			min	-30.163	5	0	1	-308.768		0	1	139	4	0	1
241		7	max	1047.922	1	0	1	738	12	0	1	0	12	0	1
242			min	-30.083	5	0	1	-308.916	4	0	1	174	4	0	1
243		8	max	1048.093	1	0	1	738	12	0	1	0	12	0	1
244			min	-30.004	5	0	1	-309.063	4	0	1	21	4	0	1
245		9		1048.263	1	0	1	738	12	0	1	0	12	0	1
246			min		5	0	1	-309.211	4	0	1	245	4	0	1
					-					•					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1048.433	_1_	0	1	738	12	0	1	0	12	0	1
248			min	-29.845	5	0	1	-309.358	4	0	1	281	4	0	1
249		11	max	1048.604	_1_	0	1	738	12	0	1	0	12	0	1
250			min	-29.765	5	0	1	-309.506	4	0	1	317	4	0	1
251		12	max	1048.774	1	0	1	738	12	0	1	0	12	0	1
252			min	-29.686	5	0	1	-309.654	4	0	1	352	4	0	1
253		13	max	1048.944	1	0	1	738	12	0	1	0	12	0	1
254			min	-29.606	5	0	1	-309.801	4	0	1	388	4	0	1
255		14	max	1049.115	1	0	1	738	12	0	1	0	12	0	1
256			min	-29.527	5	0	1	-309.949	4	0	1	423	4	0	1
257		15		1049.285	1	0	1	738	12	0	1	001	12	0	1
258			min	-29.447	5	0	1	-310.097	4	0	1	459	4	0	1
259		16		1049.455	1	0	1	738	12	0	1	001	12	0	1
260		10	min	-29.368	5	0	1	-310.244	4	0	1	494	4	0	1
261		17		1049.626		0	1	738	12	0	1	001	12	0	1
262		11/	min	-29.288	5	0	1	-310.392	4	0	1	53	4	0	1
263		18		1049.796	1	0	1	738	12	0	1	001	12	0	1
264		10	min	-29.209	5	0	1	-310.539	4	0	1	566	4	0	1
		10					1		12		1		12	_	1
265		19		1049.967	1_	0		738		0		001		0	
266	MC	1	min	-29.129	5_	0	1	-310.687	4	0	1	601	4	0	1
267	M6	1		2904.857	1_	2.149	2	0	1	0	1	0	4	0	1
268			min	-3501.162	3_	.263	12	-37.227	4	0	4	0	1	0	1
269		2		2905.333	1_	2.082	2	0	1	0	1	0	1	0	12
270			min	-3500.805	3_	.23	12	-37.643	4	0	4	012	4	0	2
271		3		2905.809	1_	2.016	2	0	1	0	1	0	1	0	12
272			min	-3500.448	3_	.196	12	-38.06	4	0	4	024	4	001	2
273		4		2906.284	_1_	1.949	2	0	1	0	1	0	1	0	12
274			min	-3500.092	3_	.163	12	-38.476	4	0	4	037	4	002	2
275		5	max		_1_	1.882	2	0	1	0	1	0	1	0	12
276			min	-3499.735	3	.129	12	-38.893	4	0	4	049	4	003	2
277		6		2907.236	_1_	1.816	2	0	1	0	1	0	1_	0	12
278			min	-3499.378	3_	.095	3	-39.309	4	0	4	062	4	003	2
279		7		2907.712	_1_	1.749	2	0	1	0	1	0	1_	0	12
280			min	-3499.021	3	.045	3	-39.725	4	0	4	075	4	004	2
281		8	max	2908.187	_1_	1.682	2	0	1	0	1	0	1_	0	12
282			min	-3498.664	3	005	3	-40.142	4	0	4	088	4	004	2
283		9	max	2908.663	<u>1</u>	1.615	2	0	1	0	1	0	1	0	12
284			min	-3498.308	3	055	3	-40.558	4	0	4	101	4	005	2
285		10	max	2909.139	1	1.549	2	0	1	0	1	0	1	0	12
286			min	-3497.951	3	105	3	-40.974	4	0	4	114	4	005	2
287		11	max	2909.615	1	1.482	2	0	1	0	1	0	1	0	3
288			min		3	155	3	-41.391	4	0	4	127	4	006	2
289		12	max	2910.09	1	1.415	2	0	1	0	1	0	1	0	3
290				-3497.237	3	205	3	-41.807	4	0	4	141	4	006	2
291		13		2910.566	1	1.349	2	0	1	0	1	0	1	0	3
292				-3496.88	3	255	3	-42.223	4	0	4	154	4	007	2
293		14		2911.042	1	1.282	2	0	1	0	1	0	1	0	3
294			min		3	305	3	-42.64	4	0	4	168	4	007	2
295		15		2911.518	1	1.215	2	0	1	0	1	0	1	0	3
296			min		3	355	3	-43.056	4	0	4	182	4	008	2
297		16		2911.993	1	1.149	2	0	1	0	1	0	1	0	3
298		10		-3495.81	3	405	3	-43.472	4	0	4	196	4	008	2
299		17	+	2912.469	<u> </u>	1.082	2	0	1	0	1	0	1	0	3
300		17		-3495.453	3	455	3	-43.889	4	0	4	21	4	008	2
301		10	1	2912.945	<u>ა</u> 1	1.015	2	0	1	0	1	0	1	006 0	3
302		10	min		3	505	3	-44.305	4	0	4	224	4	009	2
303		19		2913.421	<u> </u>	.949	2	0	1	0	1	0	1	0	3
JUJ		19	ınax	Z313.421		.545				U		U			ວ

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304			min	-3494.739	3	555	3	-44.721	4	0	4	239	4	009	2
305	M7	1		2084.589	2	7.813	6	5.481	4	0	1	0	1	.009	2
306			min	-2139.19	3	1.834	15	0	1	0	4	034	4	0	3
307		2		2084.418	2	7.049	6	6.018	4	0	1	0	1	.006	2
308			min	-2139.318	3	1.654	15	0	1	0	4	032	4	002	3
309		3		2084.248	2	6.284	6	6.555	4	0	1	0	1	.004	2
310		-	min	-2139.446	3	1.475	15	0	1	0	4	029	4	004	3
311		4		2084.078	2	5.52	6	7.092	4	0	1	0	1	.002	2
312		-	min	-2139.574	3	1.295	15	0	1	0	4	027	4	005	3
313		5		2083.907	2	4.755	6	7.629	4	0	1	0	1	0	2
314			min	-2139.702	3	1.115	15	0	1	0	4	024	4	006	3
315		6		2083.737	2	3.991	6	8.166	4	0	1	0	1	001	15
316			min	-2139.829	3	.936	15	0	1	0	4	02	4	007	3
317		7		2083.567	2	3.226	6	8.703	4	0	1	0	1	002	15
318			min	-2139.957	3	.756	15	0	1	0	4	017	4	007	3
319		8		2083.396	2	2.462	6	9.24	4	0	1	0	1_	002	15
320		_	min	-2140.085	3	.567	12	0	1	0	4	013	4	008	4
321		9		2083.226	2	1.797	2	9.777	4	0	1	0	1	002	15
322			min	-2140.213	3	.269	12	0	1	0	4	009	4	009	4
323		10		2083.055	2	1.201	2	10.314	4	0	1	0	1	002	15
324			min		3	082	3	0	1	0	4	005	4	009	4
325		11		2082.885	2	.605	2	10.851	4	0	1_	0	1_	002	15
326			min	-2140.468	3	528	3	0	1	0	4	0	5	01	4
327		12		2082.715	2	.01	2	11.388	4	0	_1_	.004	4	002	15
328			min	-2140.596	3	975	3	0	1	0	4	0	1	01	4
329		13	max	2082.544	2	322	15	11.924	4	0	1	.009	4	002	15
330			min	-2140.724	3	-1.422	3	0	1	0	4	0	1	009	4
331		14	max	2082.374	2	502	15	12.461	4	0	1	.014	4	002	15
332			min	-2140.851	3	-2.125	4	0	1	0	4	0	1	008	4
333		15	max	2082.204	2	682	15	12.998	4	0	1	.02	4	002	15
334			min	-2140.979	3	-2.889	4	0	1	0	4	0	1	007	4
335		16	max	2082.033	2	861	15	13.535	4	0	1_	.025	4	001	15
336			min	-2141.107	3	-3.654	4	0	1	0	4	0	1	006	4
337		17	max	2081.863	2	-1.041	15	14.072	4	0	1	.031	4	001	15
338			min	-2141.235	3	-4.418	4	0	1	0	4	0	1	004	4
339		18	max	2081.693	2	-1.221	15	14.609	4	0	1_	.037	4	0	15
340			min	-2141.362	3	-5.182	4	0	1	0	4	0	1	002	4
341		19	max	2081.522	2	-1.4	15	15.146	4	0	1_	.043	4	0	1
342			min	-2141.49	3	-5.947	4	0	1	0	4	0	1	0	1
343	M8	1	max	2673.792	1	0	1	0	1	0	1	.036	4	0	1_
344				-106.548		0	1	-297.034	4	0	1	0	1	0	1
345		2	max	2673.963	1	0	1	0	1	0	1	.002	5	0	1
346			min	-106.42	3	0	1	-297.182	4	0	1	0	1	0	1
347		3		2674.133		0	1	0	1	0	1	0	1	0	1
348				-106.292		0	1	-297.329	4	0	1	033	4	0	1
349		4	max	2674.303	1	0	1	0	1	0	1	0	1	0	1
350				-106.164		0	1	-297.477	4	0	1	067	4	0	1
351		5	max	2674.474	1	0	1	0	1	0	1	0	1	0	1
352				-106.037		0	1	-297.625	4	0	1	101	4	0	1
353		6		2674.644		0	1	0	1	0	1	0	1	0	1
354			min	-105.909	3	0	1	-297.772	4	0	1	135	4	0	1
355		7	max	2674.814	1	0	1	0	1	0	1	0	1	0	1
356				-105.781	3	0	1	-297.92	4	0	1	169	4	0	1
357		8		2674.985	1	0	1	0	1	0	1	0	1	0	1
358				-105.653		0	1	-298.068	4	0	1	203	4	0	1
359		9		2675.155		0	1	0	1	0	1	0	1	0	1
360				-105.526		0	1	-298.215	4	0	1	238	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		11 1	LC	_	
361		10		2675.325	1_	0	1	0	1	0	1	0	1	0	1
362		4.4		-105.398	3	0	1	-298.363	4	0	1_	272	4	0	1
363		11		2675.496	1_	0	1	0	1	0	1	0	1	0	1
364		40		-105.27	3	0	1	-298.51	4	0	1	306	4	0	1
365		12		2675.666	1	0	1	0	11	0	1_	0	1	0	1
366		40		-105.142	3	0	1	-298.658	4	0	1_	34	4	0	1
367		13		2675.836	1_	0	1	0	1	0	1	0	1	0	1
368				-105.015	3	0	1	-298.806	4	0	1	375	4	0	1
369		14		2676.007	1	0	1	0	1	0	1	0	1	0	1
370		4.5		-104.887	3	0	1	-298.953	4	0	1_	409	4	0	1
371		15		2676.177	1_	0	1	0	1	0	1	0	1	0	1
372		4.0	min	-104.759	3	0	1	-299.101	4	0	1	443	4	0	1
373		16		2676.348	_1_	0	1	0	1	0	1	0	1	0	1
374				-104.631	3	0	1	-299.249	4	0	1	478	4	0	1
375		17		2676.518	1_	0	1	0	1	0	1	0	1	0	1
376				-104.504	3_	0	1	-299.396	4	0	1	512	4	0	1
377		18		2676.688	_1_	0	1	0	1_	0	_1_	0	1	0	1
378				-104.376	3	0	1	-299.544	4	0	1_	547	4	0	1
379		19		2676.859	1_	0	1	0	1	0	1	0	1	0	1
380				-104.248	3	0	1	-299.692	4	0	1_	581	4	0	1
381	<u>M10</u>	1	max	899.693	_1_	1.9	6	03	12	0	_1_	0	4	0	1
382			min	-1065.937	3	.435	15	-37.196	4	0	5	0	3	0	1
383		2		900.169	_1_	1.815	6	03	12	0	_1_	0	10	0	15
384				-1065.58	3	.415	15	-37.613	4	0	5	012	4	0	6
385		3	max	900.645	_1_	1.729	6	03	12	0	_1_	0	12	0	15
386			min	-1065.223	3	.395	15	-38.029	4	0	5	024	4	001	6
387		4	max		<u>1</u>	1.644	6	03	12	0	<u>1</u>	0	12	0	15
388			min	-1064.866	3	.374	15	-38.445	4	0	5	037	4	002	6
389		5	max	901.596	_1_	1.558	6	03	12	0	_1_	0	12	0	15
390			min	-1064.51	3	.354	15	-38.862	4	0	5	049	4	002	6
391		6	max	902.072	_1_	1.473	6	03	12	0	1_	0	12	0	15
392			min	-1064.153	3	.334	15	-39.278	4	0	5	062	4	003	6
393		7	max	902.548	1	1.387	6	03	12	0	1	0	12	0	15
394			min	-1063.796	3	.314	15	-39.694	4	0	5	075	4	003	6
395		8	max	903.024	1	1.301	6	03	12	0	1	0	12	0	15
396			min	-1063.439	3	.294	15	-40.111	4	0	5	088	4	004	6
397		9	max	903.499	1	1.216	6	03	12	0	1	0	12	0	15
398			min	-1063.082	3	.274	15	-40.527	4	0	5	101	4	004	6
399		10	max	903.975	1	1.13	6	03	12	0	1	0	12	001	15
400			min	-1062.725	3	.254	15	-40.944	4	0	5	114	4	004	6
401		11	max	904.451	1	1.045	6	03	12	0	1	0	12	001	15
402			min	-1062.369	3	.234	15	-41.36	4	0	5	127	4	005	6
403		12		904.927	1	.959	6	03	12	0	1	0	12	001	15
404			min	-1062.012	3	.214	15	-41.776	4	0	5	141	4	005	6
405		13	max	905.402	1	.879	2	03	12	0	1	0	12	001	15
406			min		3	.193	15	-42.193	4	0	5	154	4	005	6
407		14	max	905.878	1	.813	2	03	12	0	1	0	12	001	15
408				-1061.298	3	.167	12	-42.609	4	0	5	168	4	006	6
409		15	max	906.354	1	.746	2	03	12	0	1	0	12	001	15
410			min	-1060.941	3	.133	12	-43.025	4	0	5	182	4	006	6
411		16	max		1	.679	2	03	12	0	1	0	12	001	15
412			min	-1060.585	3	.1	12	-43.442	4	0	5	196	4	006	6
413		17		907.305	1	.612	2	03	12	0	1	0	12	001	15
414				-1060.228	3	.067	12	-43.858	4	0	5	21	4	006	6
415		18	max		1	.546	2	03	12	0	1	0	12	001	15
416			min	-1059.871	3	.033	12	-44.274	4	0	5	224	4	006	6
417		19		908.257	1	.479	2	03	12	0	1	0	12	001	15
											<u> </u>				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-1059.514	3	016	3	-44.691	4	0	5	239	4	007	6
419	M11	1	max	532.878	2	7.756	6	5.634	4	0	1	0	12	.007	6
420			min	-679.099	3	1.814	15	279	1	0	4	034	4	.001	15
421		2	max	532.708	2	6.992	6	6.171	4	0	1	0	12	.004	2
422			min	-679.227	3	1.634	15	279	1	0	4	032	4	0	12
423		3	max		2	6.227	6	6.708	4	0	1	0	12	.002	2
424			min	-679.355	3	1.455	15	279	1	0	4	029	4	0	3
425		4	max		2	5.463	6	7.245	4	0	1	0	12	0	2
426			min	-679.483	3	1.275	15	279	1	0	4	026	4	002	3
427		5	max	532.196	2	4.699	6	7.782	4	0	1	0	12	0	15
428			min	-679.61	3	1.095	15	279	1	0	4	023	4	004	4
429		6	max		2	3.934	6	8.319	4	0	1	0	12	001	15
430			min	-679.738	3	.916	15	279	1	0	4	02	4	006	4
431		7	max	531.856	2	3.17	6	8.855	4	0	1	0	12	002	15
432		<u> </u>	min	-679.866	3	.736	15	279	1	0	4	016	4	007	4
433		8	max		2	2.405	6	9.392	4	0	1	0	12	002	15
434		<u> </u>	min	-679.994	3	.556	15	279	1	0	4	012	4	008	4
435		9	max		2	1.641	6	9.929	4	0	1	0	12	002	15
436		<u> </u>	min	-680.121	3	.376	15	279	1	0	4	008	4	009	4
437		10	max	531.345	2	.876	6	10.466	4	0	1	0	12	003	15
438		10	min	-680.249	3	.197	15	279	1	0	4	004	4	002	4
439		11	max		2	.241	2	11.003	4	0	1	0	5	002	15
440			min	-680.377	3	11	3	279	1	0	4	002	1	002	4
441		12		531.004	2	163	15	11.54	4		1	.005	5	002	15
		12	max						1	0	4		1		
442 443		13	min	-680.505 530.834	3	653 342	<u>4</u> 15	279 12.077	4	0	1	002 .01	5	01 002	15
		13	max		2										
444		4.4	min	-680.632	3	-1.418	4	279	1	0	4	002	1	009	4
445		14	max		2	522	15	12.614	4	0	1	.015	5	002	15
446		4.5	min	-680.76	3	-2.182	4	279	1	0	4	002	1	009	4
447		15	max		2	702	15	13.151	4	0	1	.021	5	002	15
448		4.0	min	-680.888	3	-2.947	4	279	1	0	4	002	1	007	4
449		16	max		2	881	15	13.688	4	0	1	.026	5	001	15
450		47	min	-681.016	3	-3.711	4	279	1	0	4	002	1	006	4
451		17	max	530.152	2	-1.061	15	14.225	4	0	1	.032	5	001	15
452		40	min	-681.144	3	-4.476	4	279	1_	0	4	002	1	004	4
453		18	max		2	-1.241	15	14.762	4	0	1	.038	5	0	15
454		4.0	min	-681.271	3	-5.24	4	279	1	0	4	002	1	002	4
455		19	max		2	-1.42	15	15.299	4	0	1	.044	5	0	1
456	1440		min	-681.399	3	-6.004	4	279	1	0	4	003	1	0	1
457	M12	1	max	1046.9	1_	0	1	13.741	1	0	1	.037	5	0	1
458			min		3	0	1	-299.553	4	0	1	002	1	0	1
459		2		1047.071	1_	0	1	13.741	1	0	1	.003	5	0	1
460			min		3	0	1	-299.7	4	0	1	0	1_	0	1
461		3		1047.241	1_	0	1	13.741	1	0	1	.001	1	0	1
462			min		3	0	1	-299.848		0	1	032	4	0	1
463		4		1047.411	_1_	0	1	13.741	1	0	1	.003	1	0	1
464			min		3	0	1	-299.996		0	1	067	4	0	1
465		5		1047.582	1_	0	1	13.741	1	0	1	.004	1	0	1
466			min		3_	0	1	-300.143		0	1	101	4	0	1
467		6		1047.752	1_	0	1	13.741	1	0	1	.006	1	0	1
468			min		3	0	1	-300.291	4	0	1	135	4	0	1
469		7		1047.922	_1_	0	1	13.741	1	0	1_	.007	1	0	1
470			min		3	0	1	-300.439	4	0	1	17	4	0	1
471		8	max	1048.093		0	1	13.741	1	0	1	.009	1	0	1
472			min		3	0	1	-300.586	4	0	1	204	4	0	1
473		9	max	1048.263	_1_	0	1	13.741	1	0	1	.01	1	0	1
474			min	-2.203	3	0	1	-300.734	4	0	1	239	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
475		10	max	1048.433	1	0	1	13.741	1	0	1	.012	1	0	1
476			min	-2.075	3	0	1	-300.881	4	0	1	274	4	0	1
477		11	max	1048.604	1	0	1	13.741	1	0	1	.014	1	0	1
478			min	-1.947	3	0	1	-301.029	4	0	1	308	4	0	1
479		12	max	1048.774	1	0	1	13.741	1	0	1	.015	1	0	1
480			min	-1.82	3	0	1	-301.177	4	0	1	343	4	0	1
481		13	max	1048.944	1	0	1	13.741	1	0	1	.017	1	0	1
482			min	-1.692	3	0	1	-301.324	4	0	1	377	4	0	1
483		14	max	1049.115	1	0	1	13.741	1	0	1	.018	1	0	1
484			min	-1.564	3	0	1	-301.472	4	0	1	412	4	0	1
485		15		1049.285	1	0	1	13.741	1	0	1	.02	1	0	1
486			min	-1.436	3	0	1	-301.62	4	0	1	447	4	0	1
487		16	max	1049.455	1	0	1	13.741	1	0	1	.022	1	0	1
488			min	-1.309	3	0	1	-301.767	4	0	1	481	4	0	1
489		17	max	1049.626	1	0	1	13.741	1	0	1	.023	1	0	1
490			min	-1.181	3	0	1	-301.915	4	0	1	516	4	0	1
491		18	max	1049.796	1	0	1	13.741	1	0	1	.025	1	0	1
492			min	-1.053	3	0	1	-302.063	4	0	1	55	4	0	1
493		19	max	1049.967	1	0	1	13.741	1	0	1	.026	1	0	1
494			min	925	3	0	1	-302.21	4	0	1	585	4	0	1
495	M1	1	max		1	576.148	3	47.881	5	0	1	.311	1	0	3
496			min	-8.945	5	-390.504	1	-129.855	1	0	3	107	5	012	2
497		2	max	196.375	1	575.218	3	49.122	5	0	1	.243	1	.196	1
498			min	-8.611	5	-391.744	1	-129.855	1	0	3	081	5	303	3
499		3	max	416.136	3	439.107	1	14.484	5	0	3	.174	1	.393	1
500			min	-243.038	2	-415.63	3	-129.521	1	0	1	055	5	594	3
501		4	max		3	437.866	1	15.725	5	0	3	.106	1	.161	1
502			min	-242.322	2	-416.561	3	-129.521	1	0	1	047	5	375	3
503		5	max		3	436.626	1	16.966	5	0	3	.037	1	003	15
504			min	-241.606	2	-417.491	3	-129.521	1	0	1	039	5	155	3
505		6	max	I I	3	435.385	1	18.208	5	0	3	002	12	.066	3
506			min	-240.89	2	-418.422	3	-129.521	1	0	1	037	4	317	2
507		7	max		3	434.144	1	19.449	5	0	3	006	12	.287	3
508			min	-240.173	2	-419.352	3	-129.521	1	0	1	099	1	545	2
509		8	max	418.822	3	432.904	1	20.691	5	0	3	006	15	.508	3
510			min	-239.457	2	-420.282	3	-129.521	1	0	1	168	1	772	2
511		9	max		3	40.588	2	64.348	5	0	9	.098	1	.594	3
512			min	-154.631	2	.375	15		1	0	3	145	5	885	2
513		10	max		3	39.347	2	65.589	5	0	9	0	12	.578	3
514			min	-153.915	2	0	15	-187.278	1	0	3	112	4	906	2
515		11		435.56		38.107	2		5	0	9	006	12	.563	3
516				-153.199	2	-1.529	4	-187.278	1	0	3	1	1	926	2
517		12		451.158	3	274.156	3	167.326	5	0	2	.166	1	.49	3
518			min		10	-513.026	2	-126.506		0	3	229	5	821	2
519		13			3	273.226	3	168.568	5	0	2	.099	1	.346	3
520			min	-91.564	10	-514.267	2	-126.506		0	3	141	5	55	2
521		14		452.232	3	272.295	3	169.809	5	0	2	.032	1	.202	3
522			min		10	-515.507	2	-126.506		0	3	051	5	28	1
523		15	max		3	271.365	3	171.051	5	0	2	.039	5	.058	3
524		ľ	min	-90.37	10	-516.748	2	-126.506	1	0	3	035	1	027	1
525		16		453.306	3	270.434	3	172.292	5	0	2	.129	5	.267	2
526			min	-89.774	10	-517.988	2	-126.506		0	3	101	1	085	3
527		17		453.843	3	269.504	3	173.533	5	0	2	.221	5	.541	2
528			min		10	-519.229	2	-126.506		0	3	168	1	227	3
529		18			5	532.673	2	-7.548	12	0	5	.215	5	.272	2
530		0	min	-196.599	1	-229.017	3	-143.583		0	2	239	1	113	3
531		19	max		5	531.433	2	-7.548	12	0	5	.158	5	.009	3
UUI		10	παλ	10.10		JU1.700		7.070	14			. 100		.000	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

533 M5		Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
534				min		1					0	2		1_		1
536		<u>M5</u>	1_	max		1_		3	106.052	5	0	1		_1_		2
S36				min		12		•					246			3
537 3 max 1340 638 3 1351 662 1 76 225 4 0 4 0 1 1.38 4 1.987 539 4 max 1341 176 3 1349 821 1 77 467 4 0 4 0 1 688			2			1		3	107.293	5	0	1		1_	.717	1
538				min				1				4	19	4		3
539			3	max	1340.638	3		1	76.225	4	0	4		_1_		1
541				min	-876.175	2	-1347.708	3		1	0	1	134	4		3
541	539		4	max		3		_	77.467	4	0	4	_	1_		1
542	540			min	-875.459	2		3	0	1	0	1	093	4	-1.276	3
Second Color	541		5	max	1341.713	3	1348.581	1	78.708	4	0	4	0	1	.003	9
544 min 874 026 2 41950.499 3 0 1 0 1 -01 5 -799 546 546 max 1342 787 3 1344 859 1 82.432 4 0 4 0.033 4 861 1 544 546 min -873.31 2 -1351.43 3 0 1 0 1 0 1 -1.502 2 547 8 max 1343.324 3 1344.859 1 82.432 4 0 4 0.76 4 1.574 3 548 9 max 1371.213 3 1344.859 1 82.432 4 0 4 0.76 4 1.574 3 549 9 max 1371.213 3 135.038 2 212.047 4 0 1 0 1 -215 4 -2.51 2 550 min 698.657 2 3.76 15 0 1 0 1 -215 4 -2.51 2 551 1 0 max 1371.751 3 133.797 2 213.289 4 0 1 0 1 -1.03 4 -2.581 2 552 min -697.224 2 -1.334 6 0 1 0 1 -1.03 4 -2.681 2 553 11 max 1372.288 3 132.557 2 214.53 4 0 1 0 1 -1.03 4 -2.681 2 555 12 max 1400.848 3 879.341 3 247.824 0 1 0 1 -2.165 4 -2.651 2 555 12 max 1400.848 3 879.341 3 247.824 4 0 1 0 1 -2.651 4 -2.651 2 556 min 522.591 2 -1605.26 2 0 1 0 4 -341 4 -2.374 4 -2.374 4 -2.374 4 -2.374 4 -2.374 4 -2.374 4 -2.374 4 -2.374 4 -2.374	542			min	-874.742	2	-1349.569	3	0	1	0	1	052	4	564	3
546	543		6	max	1342.25	3	1347.34	1	79.95	4	0	4	0	1	.148	3
Second Color	544			min	-874.026	2	-1350.499	3	0	1	0	1	01	5	799	2
Second Color	545		7	max	1342.787	3	1346.1	1	81.191	4	0	4	.033	4	.861	3
S48						2		3				1		1		2
548			8			3		-	82.432	4		4	.076	4		3
554								3						1		2
550			9						212.047	4		1		1		3
551													_			2
552			10							4		1				3
11			1.0						_							2
5564			11						•	4		1				3
555												_				2
556			12							•	_		_	•		3
557			12									<u> </u>				2
558			13							· · ·		_				3
559			13									<u> </u>				2
560			1.1													3
561 15 max 1401.922 3 877.481 3 250.307 4 0 1 .053 4 .168 2 562 min -521.159 2 -1607.08 2 0 1 0 4 0 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004 0 1 .366 3 565 17 max 1402.996 3 875.62 3 252.79 4 0 1 .318 4 1.866 2 566 min -519.726 2 -1610.189 2 0 1 0 4 0 1 .328 2 1 0 4 .356 4 .962 2 568 min -421.445 1 -781.988 3 -25.572 5 0			14									<u> </u>	_			1
562			15						•							
563 16 max 1402.459 3 876.55 3 251.548 4 0 1 .185 4 1.017 2 564 min -520.442 2 -1608.948 2 0 1 0 4 0 1 -36 3 565 17 max 1402.996 3 875.62 3 252.79 4 0 1 .318 4 1.866 3 566 min -519.726 2 -1610.189 2 0 1 0 4 0 1 .383 4 .962 2 567 18 max -19.453 12 1790.864 2 0 1 0 4 .356 4 .962 2 568 min -421.445 1 -781.988 3 -25.572 5 0 1 0 1 -433 3 24.331 5 0 1 0 1 <td< td=""><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			15													
564 min -520.442 2 -1608.948 2 0 1 0 4 0 1 36 3 565 17 max 1402.996 3 875.62 3 252.79 4 0 1 .318 4 1.866 2 566 min -519.726 2 -1610.189 2 0 1 0 4 0 1 -822 3 567 18 max -19.453 12 1799.864 2 0 1 0 4 .356 4 .962 2 568 min -421.445 1 -781.988 3 -25.572 5 0 1 0 1 43 3 569 19 max -19.095 12 1789.624 2 0 1 0 1 43 3 129.855 1 0 1 0 1 017 3 181			16									_	_			13
565 17 max 1402.996 3 875.62 3 252.79 4 0 1 .318 4 1.866 2 566 min -519.726 2 -1610.189 2 0 1 0 4 0 1 -822 3 567 18 max -19.453 12 1790.864 2 0 1 0 4 .356 4 .962 2 568 min -421.445 1 -781.988 3 -25.572 5 0 1 0 1 -43 3 569 19 max -19.095 12 1789.624 2 0 1 0 4 .344 4 .019 4 .311 1 .011			16													
566 min -519.726 2 -1610.189 2 0 1 0 4 0 1 -,822 3 567 18 max -19.453 12 1790.864 2 0 1 0 4 .356 4 .962 2 568 min -421.445 1 -781.988 3 -25.572 5 0 1 0 1 -43 3 569 19 max -19.095 12 1789.624 2 0 1 0 4 .344 4 .019 1 570 min -420.729 1 -782.918 3 -24.331 5 0 1 0 1 -017 3 -018 12 0 3 018 12 0 3 018 12 0 3 018 12 0 3 014 12 .196 1 575 1 .755.218 3 <td< td=""><td></td><td></td><td>47</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>•</td><td></td><td>3</td></td<>			47										_	•		3
567 18 max -19.453 12 1790.864 2 0 1 0 4 .356 4 .962 2 568 min -421.445 1 -781.988 3 -25.572 5 0 1 0 1 -43 3 569 19 max -19.095 12 1789.624 2 0 1 0 4 .344 4 .019 1 570 min -420.729 1 -782.918 3 -24.331 5 0 1 0 1 .017 .017 3 571 M9 1 max 195.658 1 576.148 3 129.855 1 0 3 018 12 0 2 .011 1 .017 .017 2 .014 12 .196 1 .014 12 .196 1 .014 .201 1 .017 .017 .196			17									<u> </u>				
568 min -421.445 1 -781.988 3 -25.572 5 0 1 0 1 -43 3 569 19 max -19.095 12 1789.624 2 0 1 0 4 .344 4 .019 1 570 min -420.729 1 -782.918 3 -24.331 5 0 1 0 1 -0.017 3 571 M9 1 max 195.658 1 576.148 3 129.855 1 0 3 018 12 0 3 018 12 0 4 311 1 012 2 max 196.375 1 575.218 3 129.855 1 0 3 014 12 .196 1 574 min 10.149 12 -391.744 1 7.296 12 0 4 243 1 303 3 1			40									_	_			3
569 19 max -19.095 12 1789.624 2 0 1 0 4 .344 4 .019 4 .570 570 min -420.729 1 -782.918 3 -24.331 5 0 1 0 1017 3 .571 571 M9 1 max 195.658 1 576.148 3 129.855 1 0 3018 12 0 3 .572 572 min 9.791 12 -390.504 1 7.296 12 0 4311 1012 2 max 196.375 1 575.218 3 129.855 1 0 3014 12 196 1 12 .96			18													2
570 min -420.729 1 -782.918 3 -24.331 5 0 1 0 1 017 3 571 M9 1 max 195.658 1 576.148 3 129.855 1 0 3 018 12 0 3 572 min 9.791 12 -390.504 1 7.296 12 0 4 311 1 012 2 573 2 max 196.375 1 575.218 3 129.855 1 0 3 014 12 .196 1 574 min 10.149 12 -391.744 1 7.296 12 0 4 243 1 303 3 575 3 max 416.136 3 439.107 1 129.521 1 0 1 01 12 .393 1 577 4 max 41			4.0											_ •		3
571 M9 1 max 195.658 1 576.148 3 129.855 1 0 3 018 12 0 3 572 min 9.791 12 -390.504 1 7.296 12 0 4 311 1 012 2 573 2 max 196.375 1 575.218 3 129.855 1 0 3 014 12 .196 1 574 min 10.149 12 -391.744 1 7.296 12 0 4 243 1 303 3 575 3 max 416.136 3 439.107 1 129.521 1 0 1 01 12 .393 1 576 min -243.038 2 -415.63 3 7.265 12 0 3 174 1 594 3 577 4 max			19													1
572 min 9.791 12 -390.504 1 7.296 12 0 4 311 1 012 2 573 2 max 196.375 1 575.218 3 129.855 1 0 3 014 12 .196 1 574 min 10.149 12 -391.744 1 7.296 12 0 4 243 1 303 3 575 3 max 416.136 3 439.107 1 129.521 1 0 1 01 12 .393 1 576 min -243.038 2 -415.63 3 7.265 12 0 3 174 1 594 3 577 4 max 416.673 3 437.866 1 129.521 1 0 1 006 12 .161 1 578 min -242.322 2													_			3
573 2 max 196.375 1 575.218 3 129.855 1 0 3 014 12 .196 4 574 min 10.149 12 -391.744 1 7.296 12 0 4 243 1 303 3 575 3 max 416.136 3 439.107 1 129.521 1 0 1 01 12 .393 4 576 min -243.038 2 -415.63 3 7.265 12 0 3 174 1 594 3 577 4 max 416.673 3 437.866 1 129.521 1 0 1 006 12 .161 4 578 min -242.322 2 -416.561 3 7.265 12 0 3 106 1 375 3 579 5 max 417.21		<u>M9</u>	1											-		3
574 min 10.149 12 -391.744 1 7.296 12 0 4 243 1 303 3 575 3 max 416.136 3 439.107 1 129.521 1 0 1 01 12 .393 1 576 min -243.038 2 -415.63 3 7.265 12 0 3 174 1 594 3 577 4 max 416.673 3 437.866 1 129.521 1 0 1 006 12 .161 1 578 min -242.322 2 -416.561 3 7.265 12 0 3 106 1 375 3 579 5 max 417.21 3 436.626 1 129.521 1 0 1 002 12 003 1 580 min -241.606 2						-								_		2
575 3 max 416.136 3 439.107 1 129.521 1 0 1 01 12 .393 1 576 min -243.038 2 -415.63 3 7.265 12 0 3 174 1 594 3 577 4 max 416.673 3 437.866 1 129.521 1 0 1 006 12 .161 1 578 min -242.322 2 -416.561 3 7.265 12 0 3 106 1 375 3 579 5 max 417.21 3 436.626 1 129.521 1 0 1 002 12 003 1 580 min -241.606 2 -417.491 3 7.265 12 0 3 053 4 155 3 581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1			2													1
576 min -243.038 2 -415.63 3 7.265 12 0 3 174 1 594 3 577 4 max 416.673 3 437.866 1 129.521 1 0 1 006 12 .161 1 578 min -242.322 2 -416.561 3 7.265 12 0 3 106 1 375 3 579 5 max 417.21 3 436.626 1 129.521 1 0 1 002 12 003 1 580 min -241.606 2 -417.491 3 7.265 12 0 3 053 4 155 3 581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1 .066 3 582 min -240.89 2																3
577 4 max 416.673 3 437.866 1 129.521 1 0 1 006 12 .161 1 578 min -242.322 2 -416.561 3 7.265 12 0 3 106 1 375 3 579 5 max 417.21 3 436.626 1 129.521 1 0 1 002 12 003 1 580 min -241.606 2 -417.491 3 7.265 12 0 3 053 4 155 3 581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1 .066 3 582 min -240.89 2 -418.422 3 7.265 12 0 3 025 5 317 2 583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1			3	1								_				1
578 min -242.322 2 -416.561 3 7.265 12 0 3 106 1 375 3 579 5 max 417.21 3 436.626 1 129.521 1 0 1 002 12 003 1 580 min -241.606 2 -417.491 3 7.265 12 0 3 053 4 155 3 581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1 .066 3 582 min -240.89 2 -418.422 3 7.265 12 0 3 025 5 317 2 583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2								3						_		3
579 5 max 417.21 3 436.626 1 129.521 1 0 1 002 12 003 1 580 min -241.606 2 -417.491 3 7.265 12 0 3 053 4 155 3 581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1 .066 3 582 min -240.89 2 -418.422 3 7.265 12 0 3 025 5 317 2 583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 <t< td=""><td></td><td></td><td>4</td><td>max</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>			4	max												1
580 min -241.606 2 -417.491 3 7.265 12 0 3 053 4 155 3 581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1 .066 3 582 min -240.89 2 -418.422 3 7.265 12 0 3 025 5 317 2 583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2						2		3								3
581 6 max 417.747 3 435.385 1 129.521 1 0 1 .031 1 .066 3 582 min -240.89 2 -418.422 3 7.265 12 0 3 025 5 317 2 583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 <td< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td></td<>			5													15
582 min -240.89 2 -418.422 3 7.265 12 0 3 025 5 317 2 583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 .594 3				min		2		3		12	0	3		4		3
583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 .594 3			6	max		3		1			0	1		1_	.066	3
583 7 max 418.284 3 434.144 1 129.521 1 0 1 .099 1 .287 3 584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 .594 3	582			min	-240.89	2	-418.422	3		12	0	3	025	5		2
584 min -240.173 2 -419.352 3 7.265 12 0 3 005 5 545 2 585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 .594 3	583		7	max	418.284	3		1	129.521	1	0	1	.099	1	.287	3
585 8 max 418.822 3 432.904 1 129.521 1 0 1 .168 1 .508 3 586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 .594 3				min		2		3		12		3		5		2
586 min -239.457 2 -420.282 3 7.265 12 0 3 .009 12 772 2 587 9 max 434.486 3 40.588 2 187.278 1 0 3 005 12 .594 3			8								0			1		3
587 9 max 434.486 3 40.588 2 187.278 1 0 3005 12 .594 3										12		3		12		2
			9													3
588 min -154.631 2 .382 15 10.308 12 0 9184 4885 2																2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	435.023	3	39.347	2	187.278	1	0	3	.001	1	.578	3
590			min	-153.915	2	.008	15	10.308	12	0	9	111	4	906	2
591		11	max	435.56	3	38.107	2	187.278	1	0	3	.1	1	.563	3
592			min	-153.199	2	-1.478	6	10.308	12	0	9	061	5	926	2
593		12	max	451.158	3	274.156	3	218.184	4	0	3	009	12	.49	3
594			min	-92.161	10	-513.026	2	6.826	12	0	2	295	4	821	2
595		13	max	451.695	3	273.226	3	219.426	4	0	3	005	12	.346	3
596			min	-91.564	10	-514.267	2	6.826	12	0	2	18	4	55	2
597		14	max	452.232	3	272.295	3	220.667	4	0	3	002	12	.202	3
598			min	-90.967	10	-515.507	2	6.826	12	0	2	064	4	28	1
599		15	max	452.769	3	271.365	3	221.909	4	0	3	.053	4	.058	3
600			min	-90.37	10	-516.748	2	6.826	12	0	2	.002	12	027	1
601		16	max	453.306	3	270.434	3	223.15	4	0	3	.17	4	.267	2
602			min	-89.774	10	-517.988	2	6.826	12	0	2	.005	12	085	3
603		17	max	453.843	3	269.504	3	224.392	4	0	3	.288	4	.541	2
604			min	-89.177	10	-519.229	2	6.826	12	0	2	.009	12	227	3
605		18	max	-10.013	12	532.673	2	139.649	1	0	2	.31	4	.272	2
606			min	-196.599	1	-229.017	3	-89.488	5	0	3	.013	12	113	3
607		19	max	-9.655	12	531.433	2	139.649	1	0	2	.313	1	.009	3
608			min	-195.883	1	-229.948	3	-88.246	5	0	3	.017	12	009	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.09	2	.007	3	7.536e-3	2	NC	1	NC	1
2			min	761	4	011	3	003	2	-1.226e-3	3	NC	1	NC	1
3		2	max	.001	1	.327	3	.055	1	8.746e-3	2	NC	5	NC	2
4			min	761	4	126	1	028	5	-1.31e-3	3	762.032	3	4862.342	1
5		3	max	.001	1	.601	3	.133	1	9.956e-3	2	NC	5	NC	3
6			min	761	4	295	1	033	5	-1.394e-3	3	421.096	3	1971.392	1
7		4	max	0	1	.768	3	.2	1	1.117e-2	2	NC	5	NC	3
8			min	761	4	391	1	021	5	-1.479e-3	3	331.168	3	1298.646	1
9		5	max	0	1	.806	3	.236	1	1.238e-2	2	NC	5	NC	3
10			min	761	4	4	1	002	5	-1.563e-3	3	315.604	3	1102.797	1
11		6	max	0	1	.719	3	.228	1	1.359e-2	2	NC	5	NC	5
12			min	761	4	326	1	.012	15	-1.647e-3	3	353.031	3	1139.157	1
13		7	max	0	1	.534	3	.18	1	1.48e-2	2	NC	5	NC	3
14			min	761	4	186	1	.016	10	-1.731e-3	3	473.384	3	1447.023	1
15		8	max	0	1	.298	3	.105	1	1.601e-2	2	NC	4	NC	3
16			min	761	4	015	9	.005	10	-1.815e-3	3	834.663	3	2488.256	1
17		9	max	0	1	.155	2	.038	4	1.722e-2	2	NC	4	NC	2
18			min	761	4	.004	15	005	10	-1.9e-3	3	2709.692	3	6727.881	4
19		10	max	0	1	.22	2	.023	3	1.843e-2	2	NC	3	NC	1
20			min	761	4	013	3	015	2	-1.984e-3	3	1998.721	2	NC	1
21		11	max	0	12	.155	2	.031	1	1.722e-2	2	NC	4	NC	2
22			min	761	4	.004	15	023	5	-1.9e-3	3	2709.692	3	8831.496	1
23		12	max	0	12	.298	3	.105	1	1.601e-2	2	NC	4	NC	3
24			min	761	4	015	9	022	5	-1.815e-3	3	834.663	3	2488.256	1
25		13	max	0	12	.534	3	.18	1	1.48e-2	2	NC	5	NC	3
26			min	761	4	186	1	006	5	-1.731e-3	3	473.384	3	1447.023	1
27		14	max	0	12	.719	3	.228	1	1.359e-2	2	NC	5	NC	5
28			min	761	4	326	1	.01	15	-1.647e-3	3	353.031	3	1139.157	1
29		15	max	0	12	.806	3	.236	1	1.238e-2	2	NC	5	NC	3
30			min	762	4	4	1	.02	12	-1.563e-3	3	315.604	3	1102.797	1
31		16	max	0	12	.768	3	.2	1	1.117e-2	2	NC	5	NC	3
32			min	762	4	391	1	.017	12	-1.479e-3	3	331.168	3	1298.646	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.601	3	.133	1	9.956e-3	2	NC	<u>5</u>	NC	3
34			min	762	4	295	1	.012	12	-1.394e-3	3	421.096	3	1971.392	1
35		18	max	0	12	.327	3	.055	1	8.746e-3	2	NC	5	NC	2
36			min	762	4	126	1	.004	10	-1.31e-3	3	762.032	3	4862.342	1
37		19	max	0	12	.09	2	.007	3	7.536e-3	2	NC	1_	NC	1
38			min	762	4	011	3	003	2	-1.226e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.178	3	.007	3	4.474e-3	2	NC	1	NC	1
40			min	561	4	296	2	003	2	-3.135e-3	3	NC	1	NC	1
41		2	max	0	1	.495	3	.039	1	5.391e-3	2	NC	5	NC	2
42			min	561	4	604	2	041	5	-3.842e-3	3	811.024	1	6100.51	5
43		3	max	0	1	.762	3	.108	1	6.309e-3	2	NC	15	NC	3
44		+ -	min	561	4	875	1	048	5	-4.548e-3	3	437.385	1	2438.547	1
45		4		0	1	.944	3	.173	1	7.227e-3	2	NC	15	NC	3
		+	max	561	4							329.325	1		
46		-	min			-1.068	1	031	5	-5.255e-3	3			1507.623	
47		5	max	0	1	1.023	3	.21	1	8.145e-3	2	9556.558	<u>15</u>	NC 4000 000	3
48			min	<u>561</u>	4	<u>-1.168</u>	1	002	5	-5.961e-3	3	292.262	1_	1236.889	
49		6	max	0	1	1.002	3	.208	1	9.063e-3	2	9561.145	<u>15</u>	NC	3
50			min	561	4	<u>-1.173</u>	1	.019	15	-6.668e-3	3	290.617	1_	1250.088	
51		7	max	0	1	.898	3	.167	1	9.98e-3	2	NC	15	NC	3
52			min	561	4	-1.103	2	.015	10	-7.374e-3	3	316.916	1	1563.629	1
53		8	max	0	1	.747	3	.099	1	1.09e-2	2	NC	15	NC	3
54			min	561	4	992	2	.005	10	-8.081e-3	3	370.677	2	2654.965	1
55		9	max	0	1	.602	3	.055	4	1.182e-2	2	NC	15	NC	2
56			min	561	4	88	2	005	10	-8.787e-3	3	441.633	2	4822.669	
57		10	max	0	1	.535	3	.021	3	1.273e-2	2	NC	5	NC	1
58		10	min	561	4	827	2	014	2	-9.494e-3	3	485.915	2	NC	1
59		11	max	0	12	.602	3	.03	1	1.182e-2	2	NC	15	NC	2
60		+ ' '	min	561	4	88	2	04	5	-8.787e-3	3	441.633	2	6441.636	
61		12			12	<u>00</u> .747	3	.099	1			NC	15	NC	3
		12	max	0						1.09e-2	2				
62		40	min	<u>561</u>	4	992	2	045	5	-8.081e-3	3	370.677	2	<u>2654.965</u>	1
63		13	max	0	12	.898	3	.167	1	9.98e-3	2	NC	<u>15</u>	NC 4500,000	3
64			min	<u>561</u>	4	-1.103	2	027	5	-7.374e-3	3	316.916	_1_	1563.629	1
65		14	max	0	12	1.002	3	.208	1	9.063e-3	2	9560.773	15	NC	3
66			min	561	4	-1.173	1	.001	15		3	290.617	1_	1250.088	
67		15	max	0	12	1.023	3	.21	1	8.145e-3	2	9556.093	<u> 15</u>	NC	3
68			min	561	4	-1.168	1	.018	12	-5.961e-3	3	292.262	1_	1236.889	1
69		16	max	0	12	.944	3	.173	1	7.227e-3	2	NC	15	NC	3
70			min	561	4	-1.068	1	.015	12	-5.255e-3	3	329.325	1	1507.623	1
71		17	max	0	12	.762	3	.108	1	6.309e-3	2	NC	15	NC	3
72			min	561	4	875	1	.01	12	-4.548e-3	3	437.385	1	2438.547	1
73		18		0	12	.495	3	.057	4	5.391e-3	2	NC	5	NC	2
74		1.0	min	561	4	604	2	.002	10	-3.842e-3	3	811.024	1	4516.154	
75		19	max	<u>301</u> 0	12	.178	3	.002	3	4.474e-3	2	NC	1	NC	1
76		13	min	561	4	296	2	003	2	-3.135e-3	3	NC	1	NC	1
	NAS	4													
77	M15	1	max	<u>0</u>	12	.182	3	.006	3	2.705e-3	3	NC NC	1	NC NC	1
78			min	453	4	295	2	003	2	-4.671e-3	2	NC NC	1	NC NC	1
79		2	max	0	12	.379	3	.039	1	3.321e-3	3	NC	5_	NC 475.4.450	2
80			min	<u>453</u>	4	<u>697</u>	2	053	5	-5.633e-3	2	641.7	2	4754.452	
81		3	max	0	12	.548	3	.108	1	3.936e-3	3	NC	<u>15</u>	NC	3
82			min	453	4	-1.037	2	063	5	-6.595e-3	2	347.627	2	2432.054	
83		4	max	0	12	.671	3	.173	1	4.552e-3	3	NC	15	NC	3
84			min	453	4	-1.273	2	043	5	-7.557e-3	2	263.796	2	1504.527	1
85		5	max	0	12	.738	3	.211	1	5.167e-3	3	9571.817	15	NC	3
86			min	453	4	-1.384	2	008	5	-8.52e-3	2	236.981	2	1234.605	
87		6	max	0	12	.748	3	.209	1	5.783e-3	3	9579.509	15	NC	3
88			min	453	4	-1.37	2	.019	12	-9.482e-3	2	240.077	2	1247.71	1
89		7	max	0	12	.711	3	.167	1	6.398e-3	3	NC	15	NC	3
			IIIUA							0.0000					

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

90		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
92															
94			8												
94															
95			9												
99			10												
98			10												
99			11												
99															
100			12												
101						4									
102	101		13		0	1	.711	3			3		15		
105	102			min	453	4	-1.253	2	037		2	269.374	2	1560.005	1
105	103		14	max	0	1	.748	3	.209	1 5.783e-3	3	9579.22	15	NC	3
106				min	453	4									
108			15	max											
108															
109			16												3
110															1
111			17			-				1 3.936e-3					
112			40							12 -6.595e-3					-
113			18							4 3.321e-3					
114			40										_		
115			19												
116		M16	1												
117		IVITO													_
118			2												_
119															1
120			3								•				3
121			T .												
122			4												
123															-
124			5			12					3		5		3
126				min	15	4					1	373.442	2	1103.004	1
127 7 max 0 12 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 128 min 15 4 333 2 .017 10 -1.227e-2 1 623.819 2 1441.024 1 129 8 max 0 12 0 5 .106 1 1.101e-2 3 NC 4 NC 3 130 min 15 4 105 2 .007 10 -1.324e-2 1 1384.919 2 2461.841 1 131 9 max 0 12 .118 1 .049 4 1.91e-2 3 NC 2 NC 2 132 min 15 4 12 3 003 10 -1.421e-2 1 4209.482 3 5304.48 4 133 10 max 0 1	125		6	max	0	12	.161	3	.228	1 9.207e-3	3	NC	5	NC	3
128 min 15 4 333 2 .017 10 -1.227e-2 1 623.819 2 1441.024 1 129 8 max 0 12 0 5 .106 1 1.101e-2 3 NC 4 NC 3 130 min 15 4 105 2 .007 10 -1.324e-2 1 1384.919 2 2461.841 1 131 9 max 0 12 .118 1 .049 4 1.191e-2 3 NC 2 NC 2 132 min 15 4 12 3 003 10 -1.421e-2 1 4209.482 3 5304.48 4 133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 1 134 min 15 4 16	126			min	15		516	2	.012	15 -1.129e-2	1	432.107	2	1137.473	1
129 8 max 0 12 0 5 .106 1 1.101e-2 3 NC 4 NC 3 130 min 15 4 105 2 .007 10 -1.324e-2 1 1384.919 2 2461.841 1 131 9 max 0 12 .118 1 .049 4 1.191e-2 3 NC 2 NC 2 132 min 15 4 12 3 003 10 -1.421e-2 1 4209.482 3 5304.48 4 133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 1 134 min 15 4 16 3 012 2 -1.519e-2 1 2210.705 1 NC 1 135 11 max 0 1 .118 1 .032 1 </td <td></td> <td></td> <td>7</td> <td>max</td> <td>0</td> <td>12</td> <td></td> <td></td> <td>.18</td> <td>1 1.011e-2</td> <td>3</td> <td></td> <td>5</td> <td></td> <td>3</td>			7	max	0	12			.18	1 1.011e-2	3		5		3
130 min 15 4 105 2 .007 10 -1.324e-2 1 1384.919 2 2461.841 1 131 9 max 0 12 .118 1 .049 4 1.191e-2 3 NC 2 NC 2 132 min 15 4 12 3 003 10 -1.421e-2 1 4209.482 3 5304.48 4 133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 1 134 min 15 4 16 3 012 2 -1.519e-2 1 2210.705 1 NC 1 135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 15 4 12				min	15		333						2		1
131 9 max 0 12 .118 1 .049 4 1.191e-2 3 NC 2 NC 2 132 min 15 4 12 3 003 10 -1.421e-2 1 4209.482 3 5304.48 4 133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 1 134 min 15 4 16 3 012 2 -1.519e-2 1 2210.705 1 NC 1 135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 15 4 12 3 033 5 -1.421e-2 1 4209.482 3 7735.127 5 137 12 max 0 1 0 15 .106 1 </td <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1.101e-2</td> <td></td> <td></td> <td></td> <td></td> <td></td>			8							1 1.101e-2					
132 min 15 4 12 3 003 10 -1.421e-2 1 4209.482 3 5304.48 4 133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 1 134 min 15 4 16 3 012 2 -1.519e-2 1 2210.705 1 NC 1 135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 15 4 12 3 033 5 -1.421e-2 1 4209.482 3 7735.127 5 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 15 4 105															
133 10 max 0 1 .2 1 .017 3 1.281e-2 3 NC 4 NC 1 134 min 15 4 16 3 012 2 -1.519e-2 1 2210.705 1 NC 1 135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 15 4 12 3 033 5 -1.421e-2 1 4209.482 3 7735.127 5 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 15 4 105 2 034 5 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 <			9												_
134 min 15 4 16 3 012 2 -1.519e-2 1 2210.705 1 NC 1 135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 15 4 12 3 033 5 -1.421e-2 1 4209.482 3 7735.127 5 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 15 4 105 2 034 5 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 15 4 333			10								_		_		
135 11 max 0 1 .118 1 .032 1 1.191e-2 3 NC 2 NC 2 136 min 15 4 12 3 033 5 -1.421e-2 1 4209.482 3 7735.127 5 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 15 4 105 2 034 5 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 15 4 333 2 015 5 -1.227e-2 1 623.819 2 1441.024 1 141 max 0 1 .161			10												
136 min 15 4 12 3 033 5 -1.421e-2 1 4209.482 3 7735.127 5 137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 15 4 105 2 034 5 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 15 4 333 2 015 5 -1.227e-2 1 623.819 2 1441.024 1 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 15 4 516 </td <td></td> <td></td> <td>4.4</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>			4.4			_					_		_		
137 12 max 0 1 0 15 .106 1 1.101e-2 3 NC 4 NC 3 138 min 15 4 105 2 034 5 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 15 4 333 2 015 5 -1.227e-2 1 623.819 2 1441.024 1 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 15 4 516 2 .01 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1			11												
138 min 15 4 105 2 034 5 -1.324e-2 1 1384.919 2 2461.841 1 139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 15 4 333 2 015 5 -1.227e-2 1 623.819 2 1441.024 1 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 15 4 516 2 .01 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 15 4 61 </td <td></td> <td></td> <td>12</td> <td></td>			12												
139 13 max 0 1 .076 3 .18 1 1.011e-2 3 NC 5 NC 3 140 min 15 4 333 2 015 5 -1.227e-2 1 623.819 2 1441.024 1 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 15 4 516 2 .01 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 15 4 61 2 .018 12 -1.032e-2 1 373.442 2 1103.004 1			12								1				1
140 min 15 4 333 2 015 5 -1.227e-2 1 623.819 2 1441.024 1 141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 15 4 516 2 .01 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 15 4 61 2 .018 12 -1.032e-2 1 373.442 2 1103.004 1			12								2				2
141 14 max 0 1 .161 3 .228 1 9.207e-3 3 NC 5 NC 3 142 min 15 4 516 2 .01 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 15 4 61 2 .018 12 -1.032e-2 1 373.442 2 1103.004 1			13			-									
142 min 15 4 516 2 .01 15 -1.129e-2 1 432.107 2 1137.473 1 143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 15 4 61 2 .018 12 -1.032e-2 1 373.442 2 1103.004 1			14												
143 15 max 0 1 .209 3 .235 1 8.307e-3 3 NC 5 NC 3 144 min 15 4 61 2 .018 12 -1.032e-2 1 373.442 2 1103.004 1			T -												
144 min15 461 2 .018 12 -1.032e-2 1 373.442 2 1103.004 1			15												
			'								1				
			16								3				
146 min15 459 2 .015 12 -9.347e-3 1 384.809 2 1300.815 1															

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	.001	1	.156	3	.132	1	6.507e-3	3	NC	5	NC	3
148			min	15	4	452	2	.011	12	-8.374e-3	1_	484.278	2	1978.385	
149		18	max	.001	1	.062	3	.064	4	5.606e-3	3_	NC	5	NC 1050.051	2
150		40	min	149	4	215	2	.004	10	-7.401e-3	1_	871.529	2	4052.954	
151		19	max	.001	1	.084	1	.005 003	3	4.706e-3	3	NC NC	1	NC NC	1
152	MO	1	min	<u>149</u>	4	058	3		2	-6.428e-3	1_	NC NC	1	NC NC	2
153	<u>M2</u>	1	max	.006	3	.006	3	.01	1	1.621e-3	5	NC NC	1		
154 155		2	min	007 .006	1	<u>011</u> .005	2	711 .009	1	-2.883e-4 1.728e-3	<u>1</u> 5	NC NC	1	98.346 NC	2
156			max	007	3	011	3	654	4	-2.717e-4	1	NC NC	1	107.01	4
157		3	max	.007	1	.004	2	.008	1	1.834e-3	5	NC NC	1	NC	2
158		3	min	006	3	01	3	596	4	-2.55e-4	1	NC	1	117.284	4
159		4	max	.005	1	.003	2	.008	1	1.94e-3	5	NC	1	NC	2
160		_	min	006	3	01	3	54	4	-2.384e-4	1	NC	1	129.585	4
161		5	max	.005	1	.002	2	.007	1	2.047e-3	5	NC	1	NC	1
162		T .	min	006	3	01	3	484	4	-2.218e-4	1	NC	1	144.477	4
163		6	max	.004	1	.001	2	.006	1	2.153e-3	5	NC	1	NC	1
164			min	005	3	009	3	43	4	-2.052e-4	1	NC	1	162.741	4
165		7	max	.004	1	0	2	.005	1	2.259e-3	5	NC	1	NC	1
166			min	005	3	009	3	377	4	-1.886e-4	1	NC	1	185.479	4
167		8	max	.004	1	0	2	.004	1	2.366e-3	5	NC	1	NC	1
168			min	004	3	008	3	326	4	-1.72e-4	1	NC	1	214.294	4
169		9	max	.003	1	0	2	.004	1	2.472e-3	5	NC	1	NC	1
170			min	004	3	008	3	278	4	-1.554e-4	1	NC	1	251.589	4
171		10	max	.003	1	0	15	.003	1	2.579e-3	4	NC	1	NC	1
172			min	004	3	007	3	232	4	-1.388e-4	1	NC	1	301.098	4
173		11	max	.003	1	0	15	.003	1	2.691e-3	4	NC	1_	NC	1
174			min	003	3	007	3	19	4	-1.222e-4	1_	NC	1_	368.894	4
175		12	max	.002	1	0	15	.002	1	2.804e-3	4	NC	_1_	NC	1
176			min	003	3	006	3	15	4	-1.056e-4	1_	NC	_1_	465.404	4
177		13	max	.002	1	0	15	.001	1	2.916e-3	_4_	NC	_1_	NC	1
178			min	002	3	005	3	<u>115</u>	4	-8.899e-5	1_	NC	1_	609.8	4
179		14	max	.002	1	0	15	.001	1	3.028e-3	4_	NC	1	NC	1
180		4.5	min	002	3	005	3	083	4	-7.238e-5	1_	NC	1_	840.619	4
181		15	max	.001	1	0	15	0	1	3.141e-3	4_	NC NC	1	NC	1
182		4.0	min	002	3	004	3	056	4	-5.577e-5	1_	NC NC	1_	1245.272	4
183		16	max	.001	3	0	15	0 034	1	3.253e-3	4	NC NC	1	NC 2050 02	1
184		17	min	<u>001</u>	1	003	15		1	-3.917e-5 3.366e-3	1_		1	2059.92	4
185 186		17	max	<u> </u>	3	0 002	6	0 017	4	-2.256e-5	<u>4</u> 1	NC NC	1	NC 4129.334	4
187		12	max		1	002 0	15	017 0	1	3.478e-3		NC NC	1	NC	1
188		10	min	0	3	001	6	005	4	-5.956e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	<u>005</u>	1	3.59e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	4.546e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-2.008e-7	12	NC	1	NC	1
192	1410	•	min	0	1	0	1	0	1	-9.039e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.017	4	2.316e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-1.823e-4	5	NC	1	NC	1
195		3	max	0	3	0	15	.032	4	5.461e-4	4	NC	1	NC	1
196			min	Ō	2	004	6	0	12	2.704e-6	12	NC	1	NC	1
197		4	max	0	3	001	15	.047	4	1.271e-3	4	NC	1	NC	1
198			min	0	2	006	6	0	12	4.156e-6	12	NC	1	8884.08	5
199		5	max	.001	3	002	15	.06	4	1.996e-3	4	NC	1	NC	1
200			min	001	2	008	6	0	12	5.608e-6	12	NC	1	8139.37	5
201		6	max	.002	3	002	15	.072	4	2.721e-3	4	NC	1	NC	1
202			min	001	2	009	6	0	12	7.06e-6		9764.941	6	8195.231	5
203		7	max	.002	3	002	15	.083	4	3.446e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

204		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
2006	204			min	002	2	011	6		12	8.512e-6	12	8401.914	_	8952.6	5
207			8							_						
208				min						12						•
209			9						.104		4.896e-3					
210				min						12		12				1
211			10						.113							1
1212				min						12		12				
1213			11						.123		6.346e-3					_
214				min												•
215			12						.132							
1916				min						12		12				1
218			13													
15																•
219			14						.153							
220				min						12		12		6		1
221			15					15	.164	4		4_		_1_		1_
222				min												
17			16					15	.176					_1_		_
224				min			007			12	2.158e-5	12		1		1
18 max .006 3 0 15 .204 4 1.142e-2 4 NC 1 NC 1 226 min .004 2 .004 1 0 12 2.449e-5 12 NC 1 NC 1 NC 2 227 19 max .006 3 0 5 .22 4 1.215e-2 4 NC 1 NC 1 NC 2 228 min .005 2 .002 1 0 12 2.594e-5 12 NC 1 9455.187 1 1299 M4 1 max .003 1 .004 2 0 12 1.31e-4 1 NC 1 NC 3 3 3 3 3 3 3 3 3	223		17		.005		0	15	.189					1_	NC	1_
Page Page				min			006			12		12		1		1
19 max			18					15	.204					_1_		1_
228				min			004			12		12		1	NC	
229 M4	227		19	max	.006	3	0	5	.22	4		4	NC	1	NC	2
230	228			min	005	2	002	-	0	12		12	NC	1	9455.187	1
231	229	M4	1	max	.003	1	.004	2	0	12	1.131e-4	1	NC	1	NC	3
232	230			min	0	5	006	3	22	4	-8.3e-6	5	NC	1	112.654	4
233 3 max .002 1 .004 2 0 12 1.131e-4 1 NC 1 NC 3	231		2	max	.002	1	.004	2	0	12	1.131e-4	1	NC	1	NC	3
234	232			min	0	5	006	3	203	4	-8.3e-6	5	NC	1	122.423	4
235	233		3	max	.002	1	.004	2	0	12	1.131e-4	1	NC	1	NC	3
236	234			min	0	5	005	3	185	4	-8.3e-6	5	NC	1	134.053	4
237	235		4	max	.002	1	.004	2	0	12	1.131e-4	1	NC	1	NC	3
238	236			min	0	5	005	3	168	4	-8.3e-6	5	NC	1	148.027	4
239	237		5	max	.002	1	.003	2	0	12	1.131e-4	1	NC	1	NC	3
239	238			min	0	5	005	3	15	4	-8.3e-6	5	NC	1	165.001	4
241 7 max .002 1 .003 2 0 12 1.131e-4 1 NC 1 NC 2 242 min 0 5 004 3 117 4 -8.3e-6 5 NC 1 211.972 4 243 8 max .002 1 .003 2 0 12 1.131e-4 1 NC 1 NC 2 244 min 0 5 004 3 101 4 -8.3e-6 5 NC 1 245.142 4 245 9 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NR 245.142 4 246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1	239		6	max	.002	1	.003	2	0	12	1.131e-4	1	NC	1		2
242 min 0 5 004 3 117 4 -8.3e-6 5 NC 1 211.972 4 243 8 max .002 1 .003 2 0 12 1.131e-4 1 NC 1 NC 2 244 min 0 5 004 3 101 4 -8.3e-6 5 NC 1 245.142 4 245 9 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1<	240			min	0	5	004	3	133	4	-8.3e-6	5	NC	1	185.886	4
242 min 0 5 004 3 117 4 -8.3e-6 5 NC 1 211.972 4 243 8 max .002 1 .003 2 0 12 1.131e-4 1 NC 1 NC 2 244 min 0 5 004 3 101 4 -8.3e-6 5 NC 1 245.142 4 245 9 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1<	241		7	max	.002	1	.003	2	0	12	1.131e-4	1	NC	1	NC	2
244 min 0 5 004 3 101 4 -8.3e-6 5 NC 1 245.142 4 245 9 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 248 min 0 5 003 3 072 4 -8.3e-6 5 NC 1 345.674 4 249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 X25.674 4 2.3e-6 5 NC 1 A247.15	242			min	0	5	004	3	117	4	-8.3e-6	5	NC	1	211.972	4
244 min 0 5 004 3 101 4 -8.3e-6 5 NC 1 245.142 4 245 9 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 248 min 0 5 003 3 072 4 -8.3e-6 5 NC 1 345.674 4 249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1	243		8		.002	1	.003		0	12		1	NC	1		2
245 9 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 248 min 0 5 003 3 072 4 -8.3e-6 5 NC 1 345.674 4 249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 NC 2 250 min 0 5 003 3 058 4 -8.3e-6 5 NC 1 A24.715 4 251 min 0 5				min		5		3	101	4	-8.3e-6	5	NC	1		4
246 min 0 5 003 3 086 4 -8.3e-6 5 NC 1 288.233 4 247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 248 min 0 5 003 3 072 4 -8.3e-6 5 NC 1 345.674 4 249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 250 min 0 5 003 3 058 4 -8.3e-6 5 NC 1 424.715 4 251 12 max 0 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 252 min 0 5 002 3 <t></t>	245		9				.002	2		12		1		1		2
247 10 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 248 min 0 5 003 3 072 4 -8.3e-6 5 NC 1 345.674 4 249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 250 min 0 5 003 3 058 4 -8.3e-6 5 NC 1 424.715 4 251 12 max 0 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 252 min 0 5 002 3 046 4 -8.3e-6 5 NC 1 NC 1 253 13 max 0 1 .001 2 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>5</td> <td>003</td> <td></td> <td>086</td> <td>4</td> <td>-8.3e-6</td> <td>5</td> <td>NC</td> <td>1</td> <td>288.233</td> <td></td>					0	5	003		086	4	-8.3e-6	5	NC	1	288.233	
248 min 0 5 003 3 072 4 -8.3e-6 5 NC 1 345.674 4 249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 250 min 0 5 003 3 058 4 -8.3e-6 5 NC 1 424.715 4 251 12 max 0 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 252 min 0 5 002 3 046 4 -8.3e-6 5 NC 1 537.891 4 253 13 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 254 min 0 5 002 3			10		.001	1	.002	2		12		1	NC	1	NC	2
249 11 max .001 1 .002 2 0 12 1.131e-4 1 NC 1 NC 2 250 min 0 5 003 3 058 4 -8.3e-6 5 NC 1 424.715 4 251 12 max 0 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 252 min 0 5 002 3 046 4 -8.3e-6 5 NC 1 537.891 4 253 13 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 NC 1 708.468 4 -8.3e-6 5 NC 1 708.468 4 -8.3e-6 5 NC 1 708.468 4 -8.3e-6 5 NC 1 NC 1	248					5			072	4		5	NC	1		4
250 min 0 5 003 3 058 4 -8.3e-6 5 NC 1 424.715 4 251 12 max 0 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 252 min 0 5 002 3 046 4 -8.3e-6 5 NC 1 537.891 4 253 13 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 254 min 0 5 002 3 035 4 -8.3e-6 5 NC 1 708.468 4 255 14 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 256 min 0 5 002 3 025			11		.001	1				12		1		1		2
251 12 max 0 1 .002 2 0 12 1.131e-4 1 NC 1 NC 1 252 min 0 5002 3046 4 -8.3e-6 5 NC 1 537.891 4 253 13 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 254 min 0 5002 3035 4 -8.3e-6 5 NC 1 708.468 4 255 14 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 256 min 0 5002 3025 4 -8.3e-6 5 NC 1 983.766 4 257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5001 3017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1				min	_	5			058	4		5		1	424.715	4
252 min 0 5 002 3 046 4 -8.3e-6 5 NC 1 537.891 4 253 13 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 254 min 0 5 002 3 035 4 -8.3e-6 5 NC 1 708.468 4 255 14 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 256 min 0 5 002 3 025 4 -8.3e-6 5 NC 1 983.766 4 257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 <td></td> <td></td> <td>12</td> <td></td> <td>0</td> <td></td> <td>.002</td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td>			12		0		.002			12				1		1
253 13 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 254 min 0 5002 3035 4 -8.3e-6 5 NC 1 708.468 4 255 14 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 256 min 0 5002 3025 4 -8.3e-6 5 NC 1 983.766 4 257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5001 3017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1									046			5		1		4
254 min 0 5 002 3 035 4 -8.3e-6 5 NC 1 708.468 4 255 14 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 256 min 0 5 002 3 025 4 -8.3e-6 5 NC 1 983.766 4 257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1			13							12				1		
255 14 max 0 1 .001 2 0 12 1.131e-4 1 NC 1 NC 1 256 min 0 5 002 3 025 4 -8.3e-6 5 NC 1 983.766 4 257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1									035			5		1		4
256 min 0 5 002 3 025 4 -8.3e-6 5 NC 1 983.766 4 257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1			14											1		1
257 15 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1						_										
258 min 0 5 001 3 017 4 -8.3e-6 5 NC 1 1472.842 4 259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1			15													
259 16 max 0 1 0 2 0 12 1.131e-4 1 NC 1 NC 1			ľ													
			16							_				_		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	1.131e-4	1	NC	1_	NC	1
262			min	0	5	0	3	005	4	-8.3e-6	5	NC	1	5113.402	4
263		18	max	0	1	0	2	0	12	1.131e-4	1	NC	1	NC	1
264			min	0	5	0	3	001	4	-8.3e-6	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.131e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-8.3e-6	5	NC	1	NC	1
267	M6	1	max	.02	1	.025	2	0	1	1.729e-3	4	NC	3	NC	1
268	IVIO		min	024	3	034	3	718	4	0	1	2854.669	2	97.402	4
269		2	max	.018	1	.022	2	0	1	1.833e-3	4	NC	3	NC	1
				022	3				4		1	3139.639	2		4
270			min			032	3	66	_	0	_			105.983	
271		3	max	.017	1	.02	2	0	1	1.937e-3	4	NC	3	NC	1
272			min	021	3	031	3	602	4	0	_1_	3484.634	2	116.161	4
273		4	max	.016	1	.018	2	0	1	2.041e-3	_4_	NC	3	NC	1
274			min	02	3	029	3	545	4	0	1	3906.92	2	128.347	4
275		5	max	.015	1	.016	2	0	1	2.145e-3	4	NC	3	NC	1
276			min	018	3	027	3	489	4	0	1	4430.672	2	143.1	4
277		6	max	.014	1	.014	2	0	1	2.249e-3	4	NC	1	NC	1
278			min	017	3	025	3	434	4	0	1	5090.573	2	161.194	4
279		7	max	.013	1	.012	2	0	1	2.353e-3	4	NC	1	NC	1
280			min	016	3	023	3	381	4	0	1	5937.825	2	183.722	4
281		8	max	.012	1	.01	2	0	1	2.457e-3	4	NC	1	NC	1
282		0	min		3	021	3	33	4	0		7050.635	2	212.272	
				<u>014</u>						_	1_				4
283		9	max	.011	1	.008	2	0	1	2.561e-3	4_	NC 0550 440	1_	NC	1
284			min	013	3	<u>019</u>	3	281	4	0	1_	8553.418	2	249.225	4
285		10	max	.01	1	.007	2	0	1	2.665e-3	4_	NC	_1_	NC	1_
286			min	012	3	017	3	235	4	0	1	NC	1_	298.284	4
287		11	max	.009	1	.005	2	0	1	2.769e-3	4	NC	1_	NC	1
288			min	01	3	015	3	191	4	0	1	NC	1	365.469	4
289		12	max	.008	1	.004	2	0	1	2.873e-3	4	NC	1	NC	1
290			min	009	3	014	3	152	4	0	1	NC	1	461.116	4
291		13	max	.007	1	.003	2	0	1	2.977e-3	4	NC	1	NC	1
292			min	008	3	012	3	116	4	0	1	NC	1	604.236	4
293		14	max	.005	1	.002	2	0	1	3.081e-3	4	NC	1	NC	1
		14			3		3		4	0		NC NC	1	833.046	4
294		4.5	min	007		01		084			1_				
295		15	max	.004	1	0	2	0	1	3.185e-3	4_	NC	1	NC 4004.055	1
296		1.0	min	005	3	008	3	057	4	0	1_	NC	1_	1234.255	4
297		16	max	.003	1	0	2	0	1	3.289e-3	4	NC	_1_	NC	1
298			min	004	3	006	3	034	4	0	1_	NC	1_	2042.192	4
299		17	max	.002	1	0	2	0	1	3.393e-3	4	NC	1_	NC	1
300			min	003	3	004	3	017	4	0	1	NC	1	4095.478	4
301		18	max	.001	1	0	2	0	1	3.497e-3	4	NC	1	NC	1
302			min	001	3	002	3	006	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.601e-3	4	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	IVI /		min	0	1	0	1	0	1	-9.059e-4	4	NC	1	NC NC	1
		2							-						
307		2	max	.001	3	0	15	.017	4	0	1	NC	1	NC	1
308			min	001	2	002	3	0	1	-2.006e-4	4_	NC	1_	NC	1
309		3	max	.002	3	0	15	.033	4	5.047e-4	4_	NC	1_	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	001	15	.047	4	1.21e-3	4	NC	1_	NC	1
312			min	003	2	007	3	0	1	0	1	NC	1	8017.241	4
313		5	max	.004	3	002	15	.06	4	1.915e-3	4	NC	1	NC	1
314			min	004	2	009	3	0	1	0	1	NC	1	7235.157	4
315		6	max	.005	3	002	15	.072	4	2.621e-3	4	NC	1	NC	1
316			min	005	2	011	3	0	1	0	1	9736.356	3	7138.424	4
317		7			3		15	.083	4	3.326e-3	4	NC	1	NC	1
J1/			max	.006	J	003	LIO	.೮೦೨	_ 4	J.JZ08-3	4	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	_LC	x Rotate [r	LC	(n) L/y Ratio			
318			min	006	2	012	3	0	1	0	1_	8474.866	4	7576.995	4
319		8	max	.007	3	003	15	.093	4	4.031e-3	4	NC	_1_	NC	1
320			min	007	2	013	3	0	1	0	1	7622.654	4	8648.452	4
321		9	max	.008	3	003	15	.103	4	4.737e-3	4	NC	1_	NC	1_
322			min	008	2	014	3	0	1	0	1	7120.439	4	NC	1
323		10	max	.009	3	003	15	.112	4	5.442e-3	4	NC	_1_	NC	1
324			min	009	2	014	3	0	1	0	1	6881.094	4	NC	1
325		11	max	.01	3	003	15	.122	4	6.147e-3	4	NC	_1_	NC	1
326			min	01	2	015	3	0	1	0	1	6869.475	4	NC	1
327		12	max	.011	3	003	15	.131	4	6.853e-3	4	NC	1_	NC	1_
328			min	011	2	014	3	0	1	0	1	7088.95	4	NC	1
329		13	max	.012	3	003	15	.14	4	7.558e-3	4	NC	1_	NC	1
330			min	012	2	014	3	0	1	0	1	7584.433	4	NC	1
331		14	max	.013	3	003	15	.15	4	8.263e-3	4	NC	1	NC	1
332			min	013	2	013	3	0	1	0	1	8465.51	4	NC	1
333		15	max	.014	3	002	15	.16	4	8.969e-3	4	NC	1	NC	1
334			min	014	2	012	3	0	1	0	1	9974.464	4	NC	1
335		16	max	.015	3	002	15	.171	4	9.674e-3	4	NC	1_	NC	1
336			min	015	2	01	3	0	1	0	1	NC	1	NC	1
337		17	max	.017	3	001	15	.184	4	1.038e-2	4	NC	1	NC	1
338			min	016	2	009	3	0	1	0	1	NC	1	NC	1
339		18	max	.018	3	0	15	.197	4	1.108e-2	4	NC	1	NC	1
340			min	017	2	007	3	0	1	0	1	NC	1	NC	1
341		19	max	.019	3	0	10	.213	4	1.179e-2	4	NC	1	NC	1
342			min	018	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.017	2	0	1	0	1	NC	1	NC	1
344			min	0	3	019	3	213	4	-1.13e-4	4	NC	1	116.522	4
345		2	max	.006	1	.016	2	0	1	0	1	NC	1	NC	1
346			min	0	3	018	3	196	4	-1.13e-4	4	NC	1	126.635	4
347		3	max	.006	1	.015	2	0	1	0	1	NC	1	NC	1
348			min	0	3	017	3	179	4	-1.13e-4	4	NC	1	138.674	4
349		4	max	.005	1	.014	2	0	1	0	1	NC	1	NC	1
350			min	0	3	016	3	162	4	-1.13e-4	4	NC	1	153.14	4
351		5	max	.005	1	.013	2	0	1	0	1	NC	1	NC	1
352			min	0	3	015	3	145	4	-1.13e-4	4	NC	1	170.711	4
353		6	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
354			min	0	3	014	3	129	4	-1.13e-4	4	NC	1	192.329	4
355		7	max	.004	1	.012	2	0	1	0	1	NC	1	NC	1
356			min	0	3	013	3	113	4	-1.13e-4	4	NC	1	219.331	4
357		8	max	.004	1	.011	2	0	1	0	1	NC	1	NC	1
358			min	0	3	012	3	098	4	-1.13e-4	4	NC	1	253.666	4
359		9	max	.004	1	.01	2	0	1	0	1	NC	1	NC	1
360			min	0	3	011	3	083	4	-1.13e-4	4	NC	1	298.269	4
361		10	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
362		1	min	0	3	01	3	069	4	-1.13e-4	4	NC	1	357.728	4
363		11	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
364			min	0	3	009	3	056	4	-1.13e-4	4	NC	1	439.544	4
365		12	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	007	3	045	4	-1.13e-4	4	NC	1	556.697	4
367		13	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
368		10	min	0	3	006	3	034	4	-1.13e-4	4	NC	1	733.268	4
369		14	max	.002	1	.005	2	<u>.054</u>	1	0	1	NC	1	NC	1
370		17	min	0	3	005	3	024	4	-1.13e-4	4	NC	1	1018.245	_
371		15	max	.001	1	.004	2	_ 024	1	0	1	NC	1	NC	1
372		13	min	0	3	004	3	016	4	-1.13e-4	4	NC	1	1524.526	_
373		16	max	.001	1	.003	2	<u>016</u> 0	1	0	1	NC	1	NC	1
374		10	min	0	3	003	3	01	4	-1.13e-4	4	NC	1	2564.11	4
314			HIIII	U	J	003	J	01	4	-1.13 0-4	4	INC		2004.11	+

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
375		17	max	0	1	.002	2	0	1	0	_1_	NC	_1_	NC	1
376			min	0	3	002	3	005	4	-1.13e-4	4	NC	1_	5293.344	4
377		18	max	0	1	0	2	0	1	0	_1_	NC	_1_	NC	1
378			min	0	3	001	3	001	4	-1.13e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	_1_	NC	_1_	NC	1
380			min	0	1	0	1	0	1	-1.13e-4	4	NC	1_	NC	1
381	M10	1	max	.006	1	.006	2	0	12	1.745e-3	4	NC	_1_	NC	2
382			min	007	3	011	3	717	4	1.677e-5	12	NC	_1_	97.498	4
383		2	max	.006	1	.005	2	0	12	1.847e-3	_4_	NC	1_	NC	2
384			min	007	3	011	3	659	4	1.582e-5	12	NC	1_	106.089	4
385		3	max	.005	1	.004	2	0	12	1.949e-3	4_	NC	_1_	NC	2
386		-	min	006	3	01	3	602	4	1.486e-5	12	NC	1_	116.277	4
387		4	max	.005	1	.003	2	0	12	2.052e-3	4	NC	1_	NC_	2
388		_	min	006	3	01	3	<u>544</u>	4	1.39e-5	12	NC	1_	128.476	4
389		5_	max	.005	1	.002	2	0	12	2.154e-3	4	NC	1_	NC 440.045	1
390			min	006	3	01	3	488	4	1.295e-5	12	NC	1_	143.245	4
391		6	max	.004	1	.001	2	0	12	2.256e-3	4	NC	1	NC 101.050	1
392		-	min	005	3	009	3	<u>433</u>	4	1.199e-5	12	NC	1_	161.359	4
393		7	max	.004	1	0	2	0	12	2.358e-3	4	NC		NC 400 040	1
394			min	005	3	009	3	38	4	1.103e-5	12	NC NC	1_	183.912	4
395		8	max	.004	1	0	2	0	12	2.46e-3	4	NC	1	NC 040,404	1
396		<u> </u>	min	004	3	008	3	329	4	1.007e-5	12	NC NC	1_	212.494	4
397		9	max	.003	1	0	2	0	12	2.562e-3	4	NC	1	NC 040.40	1
398		10	min	004	3	008	3	28	4	9.117e-6	12	NC NC	1_	249.49	4
399		10	max	.003	1	001	2	0	12	2.664e-3	4	NC NC	1	NC 000,007	1
400		44	min	004	3	007	3	234	4	8.16e-6	12	NC NC	1_	298.607	4
401		11	max	.003	1	002	2	0	12	2.766e-3	4	NC NC	1_	NC OCE 074	1
402		40	min	003	3	007	3	<u>191</u>	4	7.203e-6	12	NC NC	1_	365.874	4
403		12	max	.002	1	001	15	0	12	2.869e-3	4	NC	1_	NC 404 040	1
404 405		13	min	003	3	006	3 15	1 <u>52</u>	12	6.246e-6	12	NC NC	1	461.643 NC	1
		13	max	.002	3	001		0		2.971e-3	4		1		4
406		1.1	min	002 .002		005 001	3	<u>116</u>	4	5.289e-6	12	NC NC		604.953 NC	
407		14	max		3		15	0	12	3.073e-3 4.331e-6	4	NC NC	1		1
408		15	min	002	1	005	4	084 0	4		12	NC NC	1	834.085 NC	1
409 410		15	max	.001 002	3	001 004	15	057	12	3.175e-3 3.374e-6	<u>4</u> 12	NC NC	1	1235.901	4
411		16	min	.002	1	004 0	15	<u>057</u> 0	12	3.277e-3	4	NC NC	1	NC	1
412		10	max	001	3	003	4	034	4	2.417e-6	12	NC	1	2045.19	4
413		17	max	<u>001</u> 0	1	<u>003</u> 0	15	034 0	12	3.379e-3	4	NC	1	NC	1
414		17	min	0	3	002	4	017	4	1.46e-6	12	NC	1	4102.449	
415		1Ω	max	0	1	002 0	15	<u>017</u> 0	12			NC NC	1	NC	1
416		10	min	0	3	001	4	006	4	5.026e-7	12	NC	1	NC	1
417		19	max	0	1	0	1	0	1	3.584e-3	4	NC	-	NC	1
418		15	min	0	1	0	1	0	1	-1.065e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	4.323e-6	1	NC	1	NC	1
420	IVIII	-	min	0	1	0	1	0	1	-9.012e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.017	4	-1.251e-6		NC	1	NC	1
422			min	0	2	002	4	0	1	-1.931e-4		NC	1	NC	1
423		3	max	0	3	0	15	.032	4	5.179e-4	5	NC	1	NC	1
424			min	0	2	004	4	0	1	-5.063e-5	1	NC	1	NC	1
425		4	max	0	3	004 001	15	.046	4	1.223e-3	4	NC	1	NC	1
426			min	0	2	006	4	0	1	-7.811e-5	1	NC	1	8369.626	
427		5	max	.001	3	002	15	.059	4	1.931e-3	4	NC	1	NC	1
428			min	001	2	008	4	0	1	-1.056e-4	1	NC	1	7611.225	_
429		6	max	.002	3	002	15	.071	4	2.639e-3	4	NC	1	NC	1
430			min	001	2	01	4	0	1	-1.331e-4	1	9484.092	4	7586.148	_
431		7	max	.002	3	003	15	.082	4	3.347e-3	4	NC	1	NC	1
			max	.002				.002		0.0 .7 0 0					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	002	2	012	4	0	1	-1.605e-4	1_	8178.536	4	8167.098	
433		8	max	.002	3	003	15	.093	4	4.055e-3	4_	NC	2	NC	1_
434			min	002	2	<u>013</u>	4	001	1	-1.88e-4	<u>1</u>	7374.212	4_	9521.503	
435		9	max	.003	3	003	15	.103	4	4.763e-3	4_	NC	3	NC	1
436			min	002	2	014	4	002	1	-2.155e-4	_1_	6902.529	4_	NC	1
437		10	max	.003	3	003	15	.112	4	5.471e-3	4_	NC	5	NC	1
438			min	002	2	014	4	002	1	-2.43e-4	_1_	6682.059	4	NC	1
439		11	max	.003	3	004	15	.121	4	6.179e-3	4_	NC	3	NC	1
440			min	003	2	014	4	002	1	-2.705e-4	1_	6680.54	4	NC	1
441		12	max	.004	3	003	15	.13	4	6.887e-3	4_	NC	3	NC	1
442			min	003	2	014	4	003	1	-2.979e-4	_1_	6902.512	4_	NC	1
443		13	max	.004	3	003	15	.14	4	7.595e-3	_4_	NC	2	NC	1
444			min	003	2	013	4	004	1	-3.254e-4	<u>1</u>	7392.663	4_	NC	1
445		14	max	.004	3	003	15	.15	4	8.303e-3	4	NC	_1_	NC	1
446			min	003	2	012	4	004	1	-3.529e-4	_1_	8258.631	4_	NC	1
447		15	max	.005	3	003	15	.16	4	9.011e-3	4_	NC	<u>1</u>	NC	1
448			min	004	2	01	4	005	1	-3.804e-4	_1_	9737.618	4_	NC	1
449		16	max	.005	3	002	15	.172	4	9.719e-3	4_	NC	_1_	NC	1
450			min	004	2	008	4	006	1	-4.079e-4	1_	NC	1_	NC	1
451		17	max	.005	3	002	15	.184	4	1.043e-2	_4_	NC	_1_	NC	1
452			min	004	2	006	4	007	1	-4.353e-4	_1_	NC	_1_	NC	1
453		18	max	.006	3	001	15	.199	4	1.114e-2	4	NC	1	NC	1
454			min	004	2	004	1	008	1	-4.628e-4	_1_	NC	1_	NC	1
455		19	max	.006	3	0	10	.214	4	1.184e-2	4_	NC	_1_	NC	2
456			min	005	2	002	1	01	1	-4.903e-4	1_	NC	1_	9455.187	1
457	<u>M12</u>	1_	max	.003	1	.004	2	.01	1	-6.225e-6	12	NC	_1_	NC	3
458			min	0	3	006	3	214	4	-1.131e-4	<u>1</u>	NC	1_	115.748	4
459		2	max	.002	1	.004	2	.009	1	-6.225e-6	12	NC	_1_	NC	3
460			min	0	3	006	3	197	4	-1.131e-4	1_	NC	1	125.788	4
461		3	max	.002	1	.004	2	.008	1	-6.225e-6	12	NC	1	NC	3
462			min	0	3	005	3	18	4	-1.131e-4	_1_	NC	1_	137.74	4
463		4	max	.002	1	.004	2	.007	1	-6.225e-6	12	NC	_1_	NC	3
464			min	0	3	005	3	163	4	-1.131e-4	<u>1</u>	NC	1_	152.101	4
465		5	max	.002	1	.003	2	.007	1	-6.225e-6	12	NC	_1_	NC	3
466			min	0	3	005	3	146	4	-1.131e-4	1_	NC	1_	169.546	4
467		6	max	.002	1	.003	2	.006	1	-6.225e-6	12	NC	_1_	NC	2
468			min	0	3	004	3	13	4	-1.131e-4	<u>1</u>	NC	1_	191.008	4
469		7	max	.002	1	.003	2	.005	1	-6.225e-6	12	NC	_1_	NC	2
470			min	0	3	004	3	114	4	-1.131e-4	1_	NC	1_	217.816	4
471		8	max	.002	1	.003	2	.004	1	-6.225e-6	12	NC	_1_	NC	2
472			min	0	3	004	3	098	_	-1.131e-4	1_	NC	1_	251.905	4
473		9	max	.001	1	.002	2	.004	1	-6.225e-6		NC	_1_	NC	2
474			min	0	3	003	3	084	4	-1.131e-4	1_	NC	<u>1</u>	296.188	4
475		10	max	.001	1	.002	2	.003	1	-6.225e-6		NC	1_	NC	2
476			min	0	3	003	3	07	4	-1.131e-4	1_	NC	1_	355.219	4
477		11	max	.001	1	.002	2	.003	1	-6.225e-6	12	NC	1	NC 122	2
478			min	0	3	003	3	057	4	-1.131e-4	1_	NC	<u>1</u>	436.447	4
479		12	max	0	1	.002	2	.002	1	-6.225e-6		NC	1_	NC	1
480			min	0	3	002	3	045	4	-1.131e-4	1_	NC	1_	552.757	4
481		13	max	0	1	.001	2	.002	1	-6.225e-6	12	NC	_1_	NC	1
482			min	0	3	002	3	034	4	-1.131e-4	1_	NC	1_	728.056	4
483		14	max	0	1	.001	2	.001	1	-6.225e-6	12	NC	1	NC	1_
484			min	0	3	002	3	025	4	-1.131e-4	1_	NC	1_	1010.976	
485		15	max	0	1	0	2	0	1	-6.225e-6		NC	1	NC	1
486			min	0	3	001	3	016	4	-1.131e-4	1_	NC	1	1513.595	4
487		16	max	0	1	0	2	0	1	-6.225e-6	12	NC	1	NC	1_
488			min	0	3	001	3	01	4	-1.131e-4	1_	NC	1_	2545.643	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
489		17	max	0	1	0	2	0	1	-6.225e-6	12	NC	_1_	NC	1
490			min	0	3	0	3	005	4	-1.131e-4	1_	NC	1_	5255.022	4
491		18	max	0	1	0	2	00	1	-6.225e-6	<u>12</u>	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-1.131e-4	_1_	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-6.225e-6	<u>12</u>	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-1.131e-4	1_	NC	1_	NC	1
495	M1	1	max	.007	3	.09	2	.762	4	1.542e-2	1_	NC	_1_	NC	1
496			min	003	2	011	3	0	12	-2.45e-2	3	NC	1_	NC	1
497		2	max	.007	3	.043	2	.736	4	8.821e-3	4	NC	3	NC	1
498			min	003	2	003	3	007	1	-1.212e-2	3	2404.92	2	NC	1
499		3	max	.007	3	.011	3	.711	4	1.429e-2	4_	NC	5	NC	1
500		-	min	003	2	009	2	<u>01</u>	1	-2.099e-4	1_	1157.386	2	5885.531	5
501		4	max	.007	3	.037	3	<u>.684</u>	4	1.249e-2	4_	NC	5	NC	1
502		_	min	003	2	0 <u>67</u>	2	009	1	-4.326e-3	3	729.117	2	4227.211	5
503		5	max	.007	3	.07	3	.658	4	1.068e-2	4_	NC	_5_	NC	1
504			min	003	2	129	2	007	1	-8.53e-3	3	525.31	2	3397.459	
505		6	max	.007	3	.106	3	.63	4	1.259e-2	1_	NC	<u>15</u>	NC	1
506		<u> </u>	min	003	2	<u>188</u>	2	003	1	-1.273e-2	3	413.19	2	2899.647	5
507		7	max	.007	3	14	3	.602	4	1.685e-2	1	NC	<u>15</u>	NC	1_
508			min	003	2	241	2	0	12	-1.694e-2	3	347.085	2	2548.184	4
509		8	max	.007	3	.169	3	.573	4	2.112e-2	1	9195.526	<u>15</u>	NC	1
510		_	min	003	2	283	2	0	12	-2.114e-2	3	308.02	2	2292.405	4
511		9	max	.007	3	.188	3	.543	4	2.346e-2	1_	8590.625	<u>15</u>	NC	1
512			min	003	2	31	2	0	1	-2.118e-2	3	287.699	2	2135.126	4
513		10	max	.006	3	.195	3	<u>51</u>	4	2.549e-2	2	8406.489	<u>15</u>	NC	1
514		1.4	min	003	2	319	2	0	12	-1.847e-2	3	281.736	2	2090.509	
515		11	max	.006	3	.19	3	.475	4	2.761e-2	2	8590.312	<u>15</u>	NC	1
516		1.0	min	003	2	31	2	0	12	-1.575e-2	3	288.66		2140.008	
517		12	max	.006	3	.174	3	.437	4	2.678e-2	2	9194.817	15	NC OCCT CAG	1
518		10	min	003	2	282	2	001	1	-1.308e-2	3	310.968	2	2297.343	4
519		13	max	.006	3	.148	3	.396	4	2.149e-2	2	NC 054.005	15	NC	1
520		111	min	003	2	238	2	0	1	-1.047e-2	3	354.305	2	2693.905	4
521		14	max	.006	3	.115	3	.352	4	1.62e-2	2	NC 400,000	<u>15</u>	NC 0540,407	1
522		4.5	min	003	2	182	2	0	12	-7.855e-3	3	428.683	2	3512.427	4
523		15	max	.006	3	.078	3	.307	4	1.091e-2	2	NC FF7.000	5_	NC FOCC O4C	1
524		40	min	003	2	121	2	0	12	-5.243e-3	3	557.326	2	5266.216	
525		16	max	.005	3	.04	3	.263	4	9.747e-3	4	NC 700.00	5	NC	1
526		47	min	003	2	061	2	0	12	-2.63e-3	3	796.93	2	9901.142	
527		17	max	.005	3	.004	3	.221	4	1.093e-2	4	NC	5_	NC	1
528		40	min	003	2	005	1	0	12	-1.723e-5	3	1307.538	1_	NC NC	1
529		18	max	.005	3	.043		.183		1.072e-2		NC	4	NC NC	
530		10	min	003	2	028	3	0	12	-4.291e-3	3	2768.594	1_	NC NC	1
531		19	max	.005	3	.084	1	.149	4	2.146e-2	2	NC NC	1_	NC	1
532	NAC.	4	min	003	2	<u>058</u>	3	001	1	-8.726e-3	3	NC NC	1_	NC NC	1
533	<u>M5</u>	1_	max	.023	3	.22 013	2	<u>.761</u>	1	0	1_1	NC NC	<u>1</u> 1	NC NC	1
534		2	min	015			3	744		-5.059e-6	4_		5		•
535		2	max	.023	3	.102	2	.741	4	7.343e-3	4	NC 070 C40		NC 007C C4	1
536		-	min	016	2	.001	3	74.0	1	0	1_	979.642	2	8076.64	4
537		3	max	.023	3	.036	3	.718	4	1.446e-2	4	NC 400 FC0	5	NC	1
538		1	min	016	2	03	2	<u>0</u>	1	1 1790 2	1_1	462.568 9645.792	15	4719.83	1
539		4	max	.023	3	.108	3	.691	4	1.178e-2	4		<u>15</u>	NC	-
540		_	min	015	2	186	2	662	4	0 1040 2	1_1	284.475	<u>2</u>	3642.64	4
541		5	max	.022	3	.205	3	.662	1	9.104e-3	<u>4</u> 1	6754.804	<u>15</u>	NC	1
542		6	min	015	2	354		622	-			200.992	<u>2</u>	3128.251	4
543 544		6	max	.022 015	3	<u>.313</u> 52	3	<u>.632</u> 0	1	6.425e-3	<u>4</u> 1	5203.086 155.798	<u>15</u> 2	NC 2816.283	4
545		7	min		3	5 <u>2</u> .419			4		4				
545		//	max	.021	_ S	.419	3	.602	4	3.745e-3	4	4306.455	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	014	2	67	2	0	1	0	1_	129.505	2	2573.122	-
547		8	max	.021	3	.507	3	.572	4	1.066e-3	4_		<u>15</u>	NC	1
548			min	014	2	<u>791</u>	2	0	1	0	_1_	114.135	2	2334.574	
549		9	max	.02	3	.564	3	.543	4	0	1_	3517.327	15	NC 0400.070	1
550		40	min	014	2	<u>867</u>	2	0	1	-3.569e-6	5	106.222	2	2130.376	
551		10	max	.02	3	.584	3	.51	4	0	1	3436.712	<u>15</u> 2	NC 2103.634	4
552		11	min	014 .019	3	892 .569	3	<u> </u>	4	-3.46e-6	<u>5</u> 1	103.905 3517.429	15	NC	1
553 554			max	013	2		2	<u>.474</u> 0	1	-3.352e-6	5	106.589	2	2164.379	
555		12	max	.019	3	866 .52	3	.438	4	7.726e-4	4	3785.132	15	NC	1
556		12	min	013	2	787	2	<u>.436</u>	1	0	1	115.329	2	2254.944	-
557		13	max	.018	3	.441	3	.397	4	2.716e-3	4	4306.971	15	NC	1
558		13	min	013	2	66	2	0	1	0	1	132.585	2	2654.139	
559		14	max	.018	3	.342	3	.351	4	4.66e-3	4	5204.114	15	NC	1
560		17	min	013	2	502	2	0	1	0	1	162.701	2	3697.115	
561		15	max	.017	3	.231	3	.303	4	6.604e-3	4	6756.861	15	NC	1
562			min	013	2	331	2	0	1	0	1	215.935	2	6697.8	4
563		16	max	.017	3	.118	3	.256	4	8.547e-3	4	9650.132	15	NC	1
564			min	013	2	164	2	0	1	0	1	316.648	1	NC	1
565		17	max	.017	3	.012	3	.214	4	1.049e-2	4	NC	5	NC	1
566			min	012	2	016	2	0	1	0	1	533.673	1	NC	1
567		18	max	.017	3	.103	1	.178	4	5.327e-3	4	NC	5	NC	1
568			min	012	2	078	3	0	1	0	1	1161.455	1	NC	1
569		19	max	.017	3	.2	1	.15	4	0	1	NC	1	NC	1
570			min	012	2	16	3	0	1	-3.006e-6	4	NC	1	NC	1
571	M9	1	max	.007	3	.09	2	.761	4	2.45e-2	3	NC	1_	NC	1
572			min	003	2	011	3	001	1	-1.542e-2	1_	NC	1_	NC	1
573		2	max	.007	3	.043	2	.741	4	1.212e-2	3	NC	3	NC	1
574			min	003	2	003	3	0	12	-7.466e-3	1_	2404.92	2	8259.054	4
575		3	max	.007	3	.011	3	717	4	1.444e-2	_4_	NC	5_	NC	1
576			min	003	2	009	2	0	12	-1.22e-5	<u>10</u>	1157.386	2	4782.98	4
577		4	max	.007	3	.037	3	.69	4	1.132e-2	5	NC	5	NC	1
578			min	003	2	067	2	0	12	-4.064e-3	2	729.117	2	3655.822	
579		5	max	.007	3	.07	3	.662	4	8.53e-3	3_	NC 505.04	5_	NC 0440.500	1
580			min	003	2	129	2	0	12	-8.321e-3	1_	525.31	2	3112.569	
581		6	max	.007	3	.106	3	.632	4	1.273e-2	3	NC 442.40	<u>15</u>	NC	1
582		7	min	003	3	188	3	0	12	-1.259e-2	<u>1</u> 3	413.19 NC	2	2785.711	4
583			max	.007	2	.14	2	.602	1	1.694e-2	<u>ა</u> 1	347.085	<u>15</u> 2	NC 2541.972	4
584 585		8	min	003 .007	3	<u>241</u> .169	3	0 .573	4	-1.685e-2 2.114e-2	3	9174.255	15	NC	1
586		0	max min		2	283	2	001		-2.112e-2	1	308.02	2	2317.797	
587		9	max	.007	3	.188	3	.543	4	2.118e-2	3	8571.023	15	NC	1
588		9	min	003	2	31	2	<u>.545</u>	12	-2.346e-2	1	287.699	2	2128.22	4
589		10	max	.006	3	.195	3	.51	4	1.847e-2	3	8387.38	15	NC	1
590		10	min	003	2	319	2	0	1	-2.549e-2	2	281.736	2	2091.886	
591		11	max	.006	3	.19	3	.475	4	1.575e-2	3	8570.733	15	NC	1
592			min	003	2	31	2	0	1	-2.761e-2	2	288.66	2	2149.26	4
593		12	max	.006	3	.174	3	.438	4	1.308e-2	3	9173.705	15	NC	1
594	_		min	003	2	282	2	0	12	-2.678e-2	2	310.968	2	2272.766	
595		13	max	.006	3	.148	3	.396	4	1.047e-2	3	NC	15	NC	1
596			min	003	2	238	2	0	12	-2.149e-2	2	354.305	2	2696.604	4
597		14	max	.006	3	.115	3	.35	4	7.855e-3	3	NC	15	NC	1
598			min	003	2	182	2	002	1	-1.62e-2	2	428.683	2	3666.824	
599		15	max	.006	3	.078	3	.303	4	6.23e-3	5	NC	5	NC	1
600			min	003	2	121	2	006	1	-1.091e-2	2	557.326	2	6009.299	5
601		16	max	.005	3	.04	3	.257	4	8.385e-3	5	NC	5	NC	1
602			min	003	2	061	2	009	1	-5.626e-3	2	796.93	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.005	3	.004	3	.215	4	1.057e-2	4	NC	5	NC	1
604			min	003	2	005	2	01	1	-6.342e-4	1	1307.538	1	NC	1
605		18	max	.005	3	.043	1	.179	4	4.981e-3	5	NC	4	NC	1
606			min	003	2	028	3	007	1	-1.072e-2	2	2768.594	1	NC	1
607		19	max	.005	3	.084	1	.15	4	8.726e-3	3	NC	1	NC	1
608			min	003	2	058	3	0	12	-2.146e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.