

bilinearity and commutative rings

 ${\bf Canonical\ name} \quad {\bf Bilinearity And Commutative Rings}$

Date of creation 2013-03-22 17:24:19 Last modified on 2013-03-22 17:24:19 Owner Algeboy (12884) Last modified by Algeboy (12884)

Numerical id 5

Author Algeboy (12884)

Entry type Theorem Classification msc 13C99 We show that a bilinear map $b: U \times V \to W$ is almost always definable only for commutative rings. The exceptions lie only where non-trivial commutators act trivially on one of the three modules.

Lemma 1. Let R be a ring and U, V and W be R-modules. If $b: U \times V \to W$ is R-bilinear then b is also R-middle linear.

Proof. Given
$$r \in R$$
, $u \in U$ and $v \in V$ then $b(ru, v) = rb(u, v)$ and $b(u, rv) = rb(u, v)$ so $b(ru, v) = b(u, rv)$.

Theorem 2. Let R be a ring and U, V and W be faithful R-modules. If $b: U \times V \to W$ is R-bilinear and (left or right) non-degenerate, then R must be commutative.

Proof. We may assume that b is left non-degenerate. Let $r, s \in R$. Then for all $u \in U$ and $v \in V$ it follows that

$$b((sr)u,v) = sb(ru,v) = sb(u,rv) = b(su,rv) = b((rs)u,v).$$

Therefore b([s,r]u,v)=0, where [s,r]=sr-rs. This makes [s,r]u an element of the left radical of b as it is true for all $v \in V$. However b is non-degenerate so the radical is trivial and so [s,r]u=0 for all $u \in U$. Since U is a faithful R-module this makes [s,r]=0 for all $s,r \in R$. That is, R is commutative.

Alternatively we can interpret the result in a weaker fashion as:

Corollary 3. Let R be a ring and U, V and W be R-modules. If $b: U \times V \to W$ is R-bilinear with $W = \langle b(U, V) \rangle$ then every element [R, R] acts trivially on one of the three modules U, V or W.

Proof. Suppose $[r, s] \in [R, R]$, $[r, s]U \neq 0$ and $[r, s]V \neq 0$. Then we have shown 0 = b([r, s]u, v) = [r, s]b(u, v) for all $u \in U$ and $v \in V$. As $W = \langle b(U, V) \rangle$ it follows that [r, s]W = 0.

Whenever a non-commutative ring is required for a biadditive map $U \times V \to W$ it is therefore often preferable to use a scalar map instead.