Survival Analysis

Chao Cheng

December 2, 2022

Contents

1			wledge		
	1.1	Surviv	val and hazard		
	1.2	Censo	o <mark>r</mark>		
		1.2.1	Right censor		
		1.2.2	Left censor		
		1.2.3	Interval censor		
2	MLE				
	2.1	Param	netric MLE		
		2.1.1	One-sample setting		
		2.1.2	Two-sample setting		
	2.2	Nonpa	arametric MLE		
		2.2.1	Discrete time points		
		2.2.2	Continuous time points		
		2.2.3	Some extensions		

1 Basic knowledge

1.1 Survival and hazard

Let T denote the time to an event that we are interested in. Then we know the c.d.f.

$$F_T(t) = P(T \le t)$$
,

and the corresponding p.d.f.

$$f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_T(t).$$

Here to simplify the discussion, we assume T is a continuous random variable. In the context of survival analysis, the *event* often refers to death. Then T represents the lifespan of the subject. So $F_T(t)$ represents the probability that the death occurs before t. In another word, we know the probability that the subject survives passes t is

$$S_{T}\left(t\right)=1-F_{T}\left(t\right)=P\left(T>t\right).$$

 $S_T(t)$ is often called the survival function? and clearly

$$f_T(t) = -\frac{\mathrm{d}}{\mathrm{d}t} S_T(t) .$$

The **hazard function** h(t) is defined as

$$h\left(t\right) = \lim_{\Delta \to 0} \frac{P\left(T \le t + \Delta | T > t\right)}{\Delta} = \lim_{\Delta \to 0} \frac{F_T\left(t + \Delta\right) - F_T\left(t\right)}{\Delta \cdot S_T\left(t\right)} = \frac{f_T\left(t\right)}{S_T\left(t\right)}.$$
 (1)

h(t) represents the instant hazard? unified probability? that the subject will be dead instantly after t given the fact that it's alive at t. And the **cummulative hazard function** is

$$H(t) = \int_{0}^{t} h(x) dx = \int_{0}^{t} \frac{f_{T}(x)}{S_{T}(x)} dx = \int_{0}^{t} \frac{-dS_{T}(x)}{S_{X}(t)} = -\log(S_{T}(x))|_{0}^{t} = -\log(S_{T}(t)).$$

Proposition 1. The random variable H(T) follows unit exponential distribution EXP(1).

Proof.

$$P(H(T) \le t) = P(-\log S(T) \le t)$$

$$= P(1 - F(T) \ge e^{-t})$$

$$= P(T \le F^{-1}(1 - e^{-t}))$$

$$= F(F^{-1}(1 - e^{-t}))$$

$$= 1 - e^{-t}.$$

which is the c.d.f of EXP(1). Here to simplify the deduction we make some assumptions that

- F(t) is continuous.
- $F^{-1}(t)$ is well defined.

Also to simplify the notation and avoid confusion, we use $S(\cdot)$ and $F(\cdot)$ instead of $S_T(\cdot)$ and $F_T(\cdot)$ like before.

1. **Exponential distribution:** Denote $T \sim EXP(\lambda)$. Then

$$\begin{split} f\left(t\right) &= \lambda e^{-\lambda t} \\ F\left(t\right) &= 1 - e^{-\lambda t} \qquad S\left(t\right) = e^{-\lambda t} \\ h\left(t\right) &= \lambda \qquad \text{constant hazard} \\ H\left(t\right) &= \lambda t \\ \mathrm{E}\left(T\right) &= 1/\lambda \qquad \mathrm{Var}\left(T\right) = 1/\lambda^2 \end{split}$$

2. Weibull distribution: Denote $T \sim W(p, \lambda)$. Then

$$f(t) = p\lambda^{p}t^{p-1}\exp\left(-\left(\lambda t\right)^{p}\right)$$

$$F(t) = 1 - \exp\left(-\left(\lambda t\right)^{p}\right) \qquad S(t) = \exp\left(-\left(\lambda t\right)^{p}\right)$$

$$h(t) = p\lambda^{p}t^{p-1}$$

$$H(t) = \left(\lambda t\right)^{p}$$

$$E(T) = \frac{1}{\lambda} \cdot \Gamma\left(1 + \frac{1}{p}\right) \qquad \operatorname{Var}(T) = \frac{1}{\lambda^{2}}\left(\Gamma\left(1 + \frac{2}{p}\right) - \Gamma\left(1 + \frac{1}{p}\right)\right)$$

$$E(T^{m}) = \frac{1}{\lambda^{m}}\Gamma\left(1 + \frac{m}{p}\right)$$

1.2 Censor

1.2.1 Right censor

• Type I: an i.i.d sample $T_1, \dots, T_n \sim F$ and a fixed constant c. And the observed data is (U_i, δ_i) for $i = 1, \dots, n$ where

$$U_i = \min(T_i, c)$$
$$\delta_i = 1_{T_i \le c}.$$

So the observed data consists of a random number, r, of uncensored observations, all of which are less than c. And n-r censored observations, all are c.

• Type II: an i.i.d sample $T_1, \dots, T_n \sim F$ and a pre-defined number of failure r. The observation is stopped when r failure occurs and the stopping time is c. The observed data is still the form (U_i, δ_i) for $i = 1, \dots, n$, the same as that in Type I censor. But in actuality, we observe the first r order statistics

$$T_{(1,n)}, \cdots, T_{(r,n)}$$
.

Note that here $(U_1, \delta_1), \dots, (U_n, \delta_n)$ are dependent whereas they are independent for Type I.

• Type III (Random censor): The underlying data is

$$c_1, \dots, c_n$$
 constant $T_1, \dots, T_n \sim F$.

And the observed data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, c_i)$$

$$\delta_i = 1_{T_i \le c_i}.$$

Note: for inference, c_i is often treated as constant. For study design or studying the asymptotic property, they are often treated as i.i.d random variables C_1, \dots, C_n .

1.2.2 Left censor

 T_i is censored when $T_i \leq l_i$.

1.2.3 Interval censor

 $l_i \leq T_i \leq u_i$, but only l_i and u_i are observed.

2 MLE

There is an i.i.d survival time sample T_1, \dots, T_n with common and unknown c.d.f. $F(\cdot)$ and the observated data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, C_i)$$

$$\delta_i = 1 (T_i \le C_i)$$

and C_i is the (fixed or random) censoring time. Let \bot denote "is independent of". We assume $T_i\bot C_i$ (Non-informative censoring, the key assumption) and (U_i, δ_i) are also i.i.d. The observed data consists of two parts. U_i is continuous while δ_i is binary.

$$(U_i, \delta_i) = (u_i, 1)$$
 T_i is uncensored at u_i
 $(U_i, \delta_i) = (u_i, 0)$ T_i is censored at u_i

When C_i s are known constants, the likelihood for (U_i, δ_i) is

$$L_{i}(F) = \begin{cases} f(u_{i}) & \text{if } \delta_{i} = 1\\ 1 - F(u_{i}) & \text{if } \delta_{i} = 0 \end{cases}$$
$$= f(u_{i})^{\delta_{i}} (1 - F(u_{i}))^{1 - \delta_{i}}$$

Therefore

$$L(F) = \prod_{i=1}^{n} L_i(F) = \prod_{i=1}^{n} \left(f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right) = \prod_{i=1}^{n} \left(h(u_i)^{\delta_i} S(u_i) \right).$$
(2)

The last equality relies on the fact that f(t) = h(t) S(t).

When C_i s are i.i.d. $\sim G$, where G is continuous with p.d.f g. Then we have

$$P(U_i \le u, \delta_i = 1) = P(T_i \le u, T_i \le C_i) = \int_0^u \int_t^\infty f(t) g(c) dc dt = \int_0^u f(t) (1 - G(t)) dt$$

Therefore the likelihood for $\delta_i = 1$ is

$$L_i(F, G) = f(u_i)(1 - G(u_i))$$
 when $\delta_i = 1$.

And similarly, for $\delta_i = 0$, the likelihood is

$$L_i(F, G) = g(u_i)(1 - F(u_i))$$
 when $\delta_i = 0$.

Hence the full likelihood is

$$L(F,G) = \prod_{i=1}^{n} \left\{ (f(u_i) (1 - G(u_i)))^{\delta_i} ((1 - F(u_i)) g(u_i))^{1 - \delta_i} \right\}$$

$$= \prod_{i=1}^{n} \left\{ f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right\} \cdot \prod_{i=1}^{n} \left\{ g(u_i)^{1 - \delta_i} (1 - G(u_i))^{\delta_i} \right\}$$
(3)

So the core to maximize L(F,G) with respect to F in (3) is the same as that in (2).

2.1 Parametric MLE

2.1.1 One-sample setting

Suppose T_1, \dots, T_n are i.i.d. $Exp(\lambda)$, and subject to noninformative right censoring. Then (2) becomes

$$L = L(\lambda) = \prod_{i=1}^{m} \left\{ \left(\lambda e^{-\lambda u_i} \right)^{\delta_i} \left(e^{-\lambda u_i} \right)^{1-\delta_i} \right\} = \lambda^{\sum_{i=1}^{n} \delta_i} e^{-\lambda \sum_{i=1}^{n} u_i} = \lambda^r e^{-\lambda W},$$

where $r = \sum_{i=1}^{n} \delta_i$ is the number of observed events and $W = \sum_{i=1}^{n} u_i$ is the total of observed time. Therefore $\log L = r \log \lambda - \lambda W$ and the MLE for λ is

$$\hat{\lambda} = \frac{r}{W}.$$

Furthermore, we know that

$$\begin{cases} \frac{\partial \log L}{\partial \lambda} = \frac{r}{\lambda} - W\\ \frac{\partial^2 \log L}{\partial \lambda^2} = -\frac{r}{\lambda^2} \end{cases}.$$

Based on properties of fisher information (See the notes about fisher information for more details.), we know that at the true underlying value λ , it must satisfy

$$\begin{cases}
E \frac{\partial \log L}{\partial \lambda} = \frac{Er}{\lambda} - EW = 0 \\
I(\lambda) = -E \frac{\partial^2 \log L}{\partial \lambda^2} = \frac{Er}{\lambda^2} \\
I^*(\lambda) = \frac{1}{n}I(\lambda) = \frac{Er}{n\lambda^2}
\end{cases} \tag{4}$$

Note that in (4), r and W are random variables. And the probability to observe an event is

$$p = P(\delta_i = 1) = P(U_i \le \infty, \delta_i = 1) = \int_0^\infty f(t) (1 - G(t)) dt.$$

Therefore $r \sim binomial(n, p)$, Er = np. And from property of MLE, we can write

$$\frac{\sqrt{n}\left(\hat{\lambda}-\lambda\right)}{\sqrt{I^{\star}\left(\lambda\right)^{-1}}} = \frac{\left(\hat{\lambda}-\lambda\right)}{\sqrt{I\left(\lambda\right)^{-1}}} \stackrel{D}{\to} N\left(0,1\right),$$

which means approximately

$$\hat{\lambda} \stackrel{\text{apx}}{\sim} N\left(\lambda, I\left(\lambda\right)^{-1}\right) = N\left(\lambda, \frac{\lambda^2}{np}\right).$$

Unfortunately, both λ and p (essentially $G(\cdot)$) are unknown. We plug in the estimation $\hat{\lambda} = r/W$ and $\hat{p} = r/W$ and apply Slutsky's theorem. This means for the purpose of estimation, we use

$$\begin{cases} \hat{\lambda} = \frac{r}{W} \\ I(\hat{\lambda}) = \frac{r}{\hat{\lambda}^2}, \quad I^{\star}(\hat{\lambda}) = \frac{r}{n\hat{\lambda}^2} \end{cases}$$
 (5)

Not that unlike (4), here in (5), r and W are observations. And we have

$$\hat{\lambda} \stackrel{\text{apx}}{\sim} N\left(\lambda, \frac{r}{W^2}\right). \tag{6}$$

Note that it turns out that a better approximation is to assume $\log \hat{\lambda}$ is normal. Using the delta method, this gives

$$\log \hat{\lambda} \stackrel{\text{apx}}{\sim} N\left(\log \lambda, \frac{1}{np}\right) \approx N\left(\log \lambda, \frac{1}{r}\right).$$
 (7)

Now based on (6) or (7), we can construct CI on λ , which also means we can perform hypothesis testing about λ .

2.1.2 Two-sample setting

For two samples x_1, \dots, x_n and y_1, \dots, y_m , both follow exponential distribution with parameters λ_1 and λ_2 . Assume noninformative censoring in each group, using same tech in Section 2.1.1 we can get

$$Z = \frac{\log \hat{\lambda}_1 - \log \hat{\lambda}_2}{\sqrt{\frac{1}{r_1} + \frac{1}{r_2}}} \stackrel{\text{apx}}{\sim} N(0, 1).$$

2.2 Nonparametric MLE

The NPMLE of survivor function $S(\cdot)$ based on i.i.d. survival time and non-informative right censoring is often known as Kaplan-Meier estimator or the Product-Limit Estimator. Here we provide some heuristic development, but formal proofs will be deferred to other notes. With the same notation as before, the observed data is

$$U_i = \min (T_i, C_i), \qquad \delta_i = 1 (T_i \le C_i),$$

where T_i s are i.i.d survival times and C_i s are i.i.d non-informative censoring time. The full likelihood is already shown in (3).

2.2.1 Discrete time points

To begin with, let's assume $F(\cdot)$ takes discrete values with mass points at $\{v_i\}$ s: $0 \le v_1 < v_2 < \cdots < \cdots$, and define the discrete hazard functions as

$$h_1 = P(T = v_1)$$

 $h_j = P(T = v_j | T > v_{j-1})$ $j > 1.$ (8)

Note that (8) can be seen as discrete version of (1). And for $t \in [v_j, v_{j+1}]$,

$$S(t) \stackrel{\text{def}}{=} P(T > t) = P(T > v_j)$$

$$= P(T > v_j | T > v_{j-1}) P(T > v_{j-1})$$

$$= P(T > v_j | T > v_{j-1}) P(T > v_{j-1} | T > v_{j-2}) P(T > v_{j-2})$$

$$= \cdots$$

$$= P(T > v_1) \prod_{i=1}^{j-1} P(T > v_{i+1} | T > v_i)$$

$$= \prod_{i=1}^{j} (1 - h_i) \qquad j > 1.$$

For discrete case, the p.m.f $f(\cdot)$ is

$$f(v_1) = P(T = v_1) = h_1$$

$$f(v_j) = P(T = v_j) = P(T = v_j | T > v_{j-1}) P(T > v_{j-1}) = h_j \prod_{i=1}^{j-1} (1 - h_i).$$

Then if we want to estimate $F(\cdot)$ from likelihood, either (2) or (3), we are just trying to maximizing

$$L(F) = \prod_{i=1}^{n} \left\{ f(u_i)^{\delta_i} (1 - F(u_i))^{1 - \delta_i} \right\}$$
$$= \prod_{\{u_i | \delta_i = 1\}} f(u_i) \prod_{\{u_i | \delta_i = 0\}} S(u_i).$$

Let $I(\cdot)$ be an index mapping function that returns the index in v_i s that matches u_i , i.e. $I(u_i) = j$ if and only if $u_i \in [v_j, v_{j+1})$. Then we know that $u_i = v_{I(u_i)}$ and we can write

$$L(F) = \prod_{\{u_{i} | \delta_{i} = 1\}} f(v_{I(u_{i})}) \prod_{\{u_{i} | \delta_{i} = 0\}} S(v_{I(u_{i})})$$

$$= \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} = v_{1}\}} f(v_{1})\right] \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} \neq v_{1}\}} f(v_{I(u_{i})})\right] \left[\prod_{\{u_{i} | \delta_{i} = 0\}} \prod_{k=1}^{I(u_{i})} (1 - h_{k})\right]$$

$$= \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} = v_{1}\}} h_{1}\right] \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} \neq v_{1}\}} \left(h_{I(u_{i})} \prod_{k=1}^{I(u_{i}) - 1} (1 - h_{k})\right)\right] \left[\prod_{\{u_{i} | \delta_{i} = 0\}} \prod_{k=1}^{I(u_{i})} (1 - h_{k})\right]$$

$$= \left[\prod_{\{u_{i} | \delta_{i} = 1\}} h_{I(u_{i})}\right] \left[\prod_{\{u_{i} | \delta_{i} = 1, u_{i} \neq v_{1}\}} \prod_{k=1}^{I(u_{i}) - 1} (1 - h_{k})\right] \left[\prod_{\{u_{i} | \delta_{i} = 0\}} \prod_{k=1}^{I(u_{i})} (1 - h_{k})\right].$$

$$(9)$$

Note that in (9), the first part is

$$\prod_{\{u_i|\delta_i=1\}} h_{I(u_i)} = \prod_{j=1}^{\infty} h_j^{d_j},\tag{10}$$

where $d_j = \sum_{i=1}^n \delta_i \cdot 1$ $(u_i = v_j)$ is the number of event at v_j . The second and third part in (9) is

$$\left[\prod_{\{u_{i} \mid \delta_{i}=1, u_{i} \neq v_{1}\}} \prod_{k=1}^{I(u_{i})-1} (1-h_{k})\right] \left[\prod_{\{u_{i} \mid \delta_{i}=0\}} \prod_{k=1}^{I(u_{i})} (1-h_{k})\right] \\
= \left[\prod_{k=1}^{\infty} \prod_{\{i \mid \delta_{i}=1, I(u_{i})-1 \geq k\}} (1-h_{k})\right] \left[\prod_{k=1}^{\infty} \prod_{\{i \mid \delta_{i}=0, I(u_{i}) \geq k\}} (1-h_{k})\right] \\
= \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} \delta_{i} \cdot 1(I(u_{i})-1 \geq k)}\right] \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} (1-\delta_{i}) \cdot 1(I(u_{i}) \geq k)}\right] \\
= \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} \delta_{i} \cdot [1(I(u_{i}) \geq k)-1(I(u_{i})=k)]}\right] \left[\prod_{k=1}^{\infty} (1-h_{k})^{\sum_{i=1}^{n} (1-\delta_{i}) \cdot 1(I(u_{i}) \geq k)}\right] \\
= \prod_{k=1}^{\infty} (1-h_{k})^{Y(v_{k})-d_{k}},$$
(11)

where

$$Y(v_k) = \sum_{i=1}^{n} 1(I(u_i) \ge k) = \sum_{i=1}^{n} 1(u_i \ge v_k)$$

is the number of subjects that are "at risk" at time v_k . **Note:** by the word "at risk", we also count the subjects that died just at v_k , which means $Y(v_j) \ge d_j$. But we do NOT count the subjects that are censored before v_j .

Then from (10) and (11) we know that (9) can be written as

$$L(F) = \prod_{j=1}^{\infty} h_j^{d_j} (1 - h_j)^{Y(v_j) - d_j}.$$
 (12)

And the NPMLE is just

$$\hat{h}_j = \frac{d_j}{Y(v_i)} \tag{13}$$

for $j = 1, \dots, \infty$ and $Y(v_j) > 0$. (13) implies some properties of this discrete NPMLE:

- 1. This estimation makes sense: the probability of dying at v_j given the fact you live past v_{j-1} can be estimated by the proportion of subjects die at v_j over the number of "at risk" at v_j .
- 2. \hat{h}_j is only defined at time points where $Y(v_j) > 0$. Therefore, for large enough v_j , there will be no observation, no matter event or censoring, resulting inability to make estimation about hazard at those time points.
- 3. For time points where $Y(v_j) > 0$ but no event occurs, the hazard is estimated to be 0.

This means

$$\hat{S}(t) = \begin{cases} 1 & t < v_1 \\ \prod_{j=1}^{k} (1 - \hat{h}_j) & v_k \le t < v_{k+1} \end{cases}$$

Note: $S(\cdot)$ is defined to be right-continuous.

Let v_g denotes the largest time point with observation, which means $Y(v_g) > 0$ and $Y(v_{g+1}) = 0$. Then either $d_g = Y(v_g)$ or $d_g < Y(v_g)$. If $d_g = Y(v_g)$, then $\hat{h}_g = 1$ and $\hat{S}(t) = 0$ for $t \ge v_g$. But if $d_g < Y(v_g)$, then $\hat{S}(t) > 0$ for $v_g \le t < v_{g+1}$ and $\hat{S}(t)$ is undefined on $t \in [v_{g+1}, \infty)$.

Here one might say that the KM estimator is undefined on $t \in [v_{g+1}, \infty)$. Or another explanation is that NPMLE is not unique and any survival function that is identical to \hat{S} at previous time is the NPMLE.

2.2.2 Continuous time points

Now, if we don't know in advance the times at which F had mass, or even did not want to assume F was discrete distribution? The core of likelihood still takes the form of (2), but now we have to maximize it over all c.d.f., including discrete, continuous and mixed distributions.

Kaplan and Meier argue that the solution must be a discrete distribution with mass on the observed times u_i only. That is, the KM (product-limit) estimator of $F(\cdot)$ is

$$\hat{S}(t) = \begin{cases} 1 & t < v_1 \\ \prod_{j=1}^{k} \left(1 - \frac{d_j}{Y(v_j)} \right) & v_k \le t < v_{k+1} \end{cases}$$
 (14)

Note that (14) only puts weight at the observed (uncensored) failure time. Another (equivalent) representation of $\hat{S}(t)$ is given by

$$\hat{S}(t) = \prod_{j:v_j \le t} \left(\frac{Y(v_j) - d_j}{Y(v_j)} \right) \quad \text{for } t \le \max(v_i),$$
(15)

where $v_1 < v_2 < \cdots$ are the distinct observed failure time.

2.2.3 Some extensions

Besides the KM-estimator, there is also Efron's "Redistribution of Mass" algorithm that gives the same results.

Another point of view is that the KM estmator can be seen as the self-consistency estimator. If there's no censoring, the survival function can be estimated as

$$\hat{S}(t) = n^{-1} \sum_{i=1}^{n} 1(T_i > t).$$

In the precense of censoring, and the observed data $\{(U_i, \delta_i), i = 1, \dots, n\}$, the survival function can be estimated as

$$\hat{S}(t) = n^{-1} \sum_{i=1}^{n} E\{1(T_i > t) | U_i, \delta_i\}$$

where

$$\begin{split} & \text{E}\left\{1\left(T>t\right)|U_{i},\delta_{i}=1\right\} = & 1(U_{i}>t) \\ & \text{E}\left\{1\left(T>t\right)|U_{i},\delta_{i}=0\right\} = & \text{E}\left(1\left(T>t,U_{i}\leq t\right) + 1\left(T>t,U_{i}>t\right)|U_{i},\delta_{i}=0\right) \\ & = & \text{E}\left(1\left(T>t\right)|U_{i}=u_{i}\leq t,\delta_{i}=0\right)1\left(u_{i}\leq t\right) + 1\left(U_{i}>t\right) \\ & = & \text{E}\left(1\left(T>t\right)|T>u_{i}\right)1\left(u_{i}\leq t\right) + 1\left(U_{i}>t\right) \\ & = & P\left(T>t|T>u_{i}\right)1\left(u_{i}\leq t\right) + 1\left(U_{i}>t\right) \\ & = & S\left(t\right)/S\left(U_{i}\right)1\left(t\geq U_{i}\right) + 1\left(t< U_{i}\right). \end{split}$$

Unfortunately, $S(\cdot)$ is unknown, and we calculate $\hat{S}(\cdot)$ iteratively via

$$\hat{S}_{new}(t) = n^{-1} \sum_{i=1}^{n} \left\{ \delta_{i} \cdot 1\left(U_{i} > t\right) + \left(1 - \delta_{i}\right) \cdot 1\left(U_{i} \leq t\right) \cdot \frac{\hat{S}_{old}(t)}{\hat{S}_{old}(U_{i})} + \left(1 - \delta_{i}\right) \cdot 1\left(U_{i} > t\right) \right\}$$

$$= n^{-1} \sum_{i=1}^{n} \left\{ 1\left(U_{i} > t\right) + \left(1 - \delta_{i}\right) \cdot 1\left(U_{i} \leq t\right) \cdot \frac{\hat{S}_{old}(t)}{\hat{S}_{old}(U_{i})} \right\}$$

And the limit $\hat{S}(t)$ solves

$$\hat{S}(t) = n^{-1} \sum_{i=1}^{n} \left\{ 1 (U_i > t) + (1 - \delta_i) \cdot 1 (U_i \le t) \cdot \frac{\hat{S}(t)}{\hat{S}(U_i)} \right\},\,$$

which gives the same results as KM estimator.

Since $H(t) = -\log(S(t))$, it follows that a nonparametric estimator for H(t) is

$$\tilde{H}(t) = -\log(\hat{S}(t)) = -\sum_{i=1}^{k} \log(1 - \hat{h}_i)$$
 for $v_k \le t < v_{k+1}$.

Note that $\log(1-x) \approx \log(1) + \frac{-1}{1-x}|_{x=0} \cdot x = -x$, therefore an alternative estimator (for $k \ge 1$) is

$$\hat{H}(t) = \sum_{i=1}^{k} \hat{h}_{i} \quad \text{for } v_{k} \le t < v_{k+1}.$$

And this is called the Nelson-Aalen estimator of $H(\cdot)$.

Now what if we want to approximate the distribution of $\hat{S}(t)$? One can use the large-sample property of MLE (but the ordinary regularity conditions do not hold here since it is not a finite-dimensional parameter space). Nevertheless, let's proceed as if this is not a problem. Then from (12) we know that

$$-\frac{\partial^2 \log L}{\partial h_i h_j} = 0 \quad \text{for } i \neq j$$

$$-\frac{\partial^2 \log L}{\partial h_j^2} = -\frac{\partial^2}{\partial h_j^2} \left(d_j \log h_j + (Y(v_j) - d_j) \log (1 - h_j) \right)$$

$$= -\frac{\partial}{\partial h_j} \left(\frac{d_j}{h_j} - \frac{Y(v_j) - d_j}{1 - h_j} \right)$$

$$= -\left(-d_j h_j^{-2} + (Y(v_j) - d_j) (1 - h_j)^{-2} \right)$$

References