4 Friday, February 11, 2011

Last time, we gave a proof that almost every plane curve of degree d is smooth parameter space $\mathbb{A}^N: N=\binom{d+2}{2}$.

Another proof, continuing from the middle of the last one:

Proof. The dimension of S (as defined last time) is N+2-3=N-1 (the three from $F_x=F_y=F_z=0$). So $\pi(S)$ is at most N-1 dimensional, and so it's $\overline{\pi(S)}$. But dim Z=N, so $\overline{\pi(S)}\neq Z$. \square

Some words about topology $\mathbb{A}^N = \mathbb{C}^N$ is a complex variety of dimension N. As a real manifold, it's dimension is 2N. In the complex topology, you can have closed disks, e.g. $|z| \leq 1$ (has positive measure). In the Zariski topology, closed subsets have no measure. e.g., in \mathbb{C} , the only closed subsets are finite point sets. In \mathbb{C}^2 , V(ax+by+c) has no measure (it's a complex plane (dimension 1)).

Proposition. A smooth curve C of degree 3 in \mathbb{P}^2 contains exactly 9 flex points.

Proof. Let f be a cubic defining C. The second partial derivatives of f are linear, so the determinant of the Hessian is a cubic polynomial which defines the Hessian curve H.

Theorem (Bézout's theorem). A curve of degree m in \mathbb{P}^2 intersects a curve of degree n in exactly mn points.

By this theorem (not yet proved), the two cubics C and H intersect in 9 points. One can show that the multiplicities are one, and that C and H don't have a factor in common. Thus, we get exactly 9 flexes.

Example.
$$y^2 = x^3 - x$$

homogenization gives $y^2z = x^3 - xz^2$
Then $f = x^3 - xz^2 - y^2z$.
The Hessian matrix is

$$\begin{bmatrix} 6x & 0 & -2z \\ 0 & -2z & -2y \\ -2z & -2y & -2x \end{bmatrix}$$

Then $H(f) = 8(3zx^2 - 3y^2x + z^3)$.

The flexes: You can eliminate z from f = H(f) = 0. Then you get a homogeneous polynomial in x and y. You can solve for x/y, let y be 1, and then plug back in and solve for z. In this example, we get that one of the flex points is at (x:y:z) = (0:1:0).

Genus and Euler characteristic

Goal: Want to understand the topological structure of smooth plane curves.

It's useful to put them in a family. Notation as above. Let $U = Z - \Sigma = Z - \pi(S)$. This is the parameter space for smooth plane curves of degree d. The smooth plane curves are the fibers of the projection $\mathcal{C} \subset \mathbb{P}^2 \times U$ to U.

Proposition. All the smooth curves of degree d are homeomorphic to each other (as real manifolds of dimension 2).

Proof. The problem set shows that U is path-connected (in the complex topology). Connect the two points in U (which correspond to curves in $\mathbb{P}^2 \times U$) by a path.

We have a function $f: M \to [0,1]$. Define a diffeomorphism by taking the gradient of f, and look at the gradient flow. This tells us how to identify the fibers.

Corollary. Smooth plane curves are orientable, connected surfaces.

Proof. Orientability is simple. To orient a smooth surface, we must give a continuously varying orientation to the tangent planes. But tangent plane is a \mathbb{C} -vector space (of dimension one, $\sum f_i(p)v_i=U$). So multiplying any tangent vector by i defines a counterclockwise rotation by 90°, which orients the tangent plane.

We'll do connected next time. \Box