Aerospace Propulsion

Lecture 5

Combustion: Part III

Combustion: Part III

- Flames
- Transport Phenomena
- Combustion Modes
- Turbulent Flames
- Combustion of Liquids/Solids

Flames

- Definition:
 - Turns: "A self-sustaining propagation of a localized combustion zone at subsonic velocities"
 - Interaction between transport and chemical reactions that gives rise to local heat release

Transport Phenomena

Continuity

$$\bullet \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Advective transport (Bulk motion)

Momentum (Navier-Stokes)

•
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u u) = -\nabla p + \nabla \cdot \tau + \rho g$$

Advective Molecular transport (Collisions)

τ is the viscous stress tensor

Transport Phenomena

Species

•
$$\frac{\partial \rho Y_k}{\partial t} + \nabla \cdot (\rho u Y_k) = \nabla \cdot (\rho D \nabla Y_k) + \dot{m}_k$$
Advective Molecular Chemical Source term

*Assumed Fickian diffusion

Energy (Temperature form)

•
$$\rho c_p \frac{\partial T}{\partial t} + \rho c_p \boldsymbol{u} \cdot \nabla T = \frac{dp}{dt} + \nabla \cdot (\lambda \nabla T) + \sum c_{p,k} \rho D \nabla Y_k \cdot \nabla T - \sum h_k \dot{m}_k$$

Advective

Fourier's Law (molecular)

Transport of heat by species (molecular)

Transport Phenomena

- Transport coefficients
 - Scalings (from kinetic theory)

•
$$\mu \propto T^{\frac{1}{2}} \overline{M}^{\frac{1}{2}}$$

•
$$\lambda \propto T^{\frac{1}{2}} \overline{M}^{-\frac{1}{2}}$$

•
$$D \propto T^{\frac{3}{2}}\overline{M}^{-\frac{1}{2}}p^{-1}$$

- Non-dimensional numbers
 - Prandtl Number: $\Pr = \frac{\nu}{\alpha} = \frac{\mu/\rho}{\lambda/(\rho c_p)}$
 - Schmidt Number: $Sc = \frac{v}{D}$
 - Lewis Number: Le = $\frac{\alpha}{D}$

Some Notes on AFT

- Adiabatic Flame Temperature reaches a maximum at approximately $\phi=1$
 - Most CO2 and H2O production

AFT is a function of pressure when considering more than just

the global reaction

High pressure -> closer to ideal

- Low pressure -> far from ideal
 - Decreases temperature
 - Shifts maximum to rich

- Homogenous ignition
 - Consider an adiabatic box homogeneously filled with reactants
 - Given enough time, reactants will become products
 - This is **not** a flame (chemically controlled, no transport)

- Premixed Flame
 - Flame propagates through a homogenous reactant mixture (fuel + air)
 - Unburned reactants in front of flame, burned products behind

Fto
U=5L
Sc
Gld
Scactnets
Product

- Premixed Flame
 - Laminar burning velocity S_L
 - Speed at which the flame moves relative to stationary unburned gases
 - Depends on equivalence ratio, pressure, and unburned gas temperature
 - Property only of mixture/thermochemical state

- Maximum burning velocity near $\phi = 1$
 - Actually, slightly richer

- Burning velocity always increases with T_0
- Depending on fuel, might increase, decrease, or not change with pressure.

takkness

Premixed Flame

thornal

- Flame thickness $\delta \propto \frac{\alpha}{c}$
 - Typical values: 1mm at 1 atm, 0.1mm at 20 atm
 - Decreasing with increasing pressure
- Quenching distance $d_p \propto \delta$
 - Flame doesn't burn within one flame thickness of a wall
 - Heat/radical losses overcome chemistry
- Flammability Limits
 - Lean and rich equivalence ratios at which the burning velocity goes to zero

- Nonpremixed (Diffusion) Flame
 - Flame forms between initially unmixed fuel and oxidizer
 - Burning is limited by mixing between fuel and oxidizer

- Nonpremixed (Diffusion) Flame
 - Flame speed?
 - No! Location decided by mixing
 - Flame thickness?
 - No! Thickness decided by mixing
 - Extinction
 - Damköhler Number: $Da = \frac{t_{flow}}{t_{chem}}$

 Chemical equilibrium is locally approached at each local equivalence ratio with increasing Da number

- Partially Premixed Flames
 - In practice, combustion occurs somewhere between these modes
 - Maintaining homogenous mixtures is difficult
 - Sometimes, partially premixed has benefits
 - In partially premixed combustion, both premixed and nonpremixed behavior occurs simultaneously
 - Premixed flame propagation through a varying equivalence ratio with localized mixing-controlled burning
 - Partially premixed combustion is common when using liquid/solid fuels

- Why do we care about turbulence?
- Approximate values for a jet engine combustor:
 - $U_{in} \approx 30 \, m/s$

- $S_{L,JF-A} \approx 0.5 \ m/s$
- Flame is too slow to anchor within the combustor and would blow-off
- Turbulence affects two important phenomena
 - Premixed burning velocity
 - Fuel-air mixing

- What is turbulence?
 - Chaotic motion of fluid flow at large Reynolds numbers

- Characterized by $Re = \frac{ul}{v}$
- Smallest turbulent scale called the "Kolmogorov" scale

· How much does turbulence increase mixing? → By ~ factor of the

writeles flanc

Mu= Pu SL AT = Pu ST AL

- Premixed Flames
 - Turbulent Burning Velocity S_T

 $\bullet \ \frac{S_T}{S_L} \sim O(1-100)$

Nonpremixed Flames

W

- Accelerated fuel-air mixing
- Makes flames more compact

Lanker flam

1) converthe the from

ext to the (1)

to ~ he /U

2) differshe the

from side to middle (e)

to = \frac{\pi^2}{\gamma}

3) Equal at the $t_c=t_1$ $\frac{h_c}{U} = \frac{v^2}{V}$ $h_{f,L} \approx \frac{w^2 U}{V}$

Terbular

1) Converte to x ha/U

2) (jikrushi +j= \(\times \) \(\times \)

3) tc=td

$$h_{f,T} \approx w \qquad \frac{h_{f,L}}{h_{f,T}} \approx R\epsilon$$

Combustion of Liquids and Solids

• Burning a liquid or solid (at steady state):

- Heat from the burned products is transported (convection/radiation) towards the liquid/solid surface
- 2. This heat causes the surface of the liquid/solid to melt/vaporize/decompose at the surface
 - a) The surface is converted to a gaseous mixture
- 3. Gaseous combustion proceeds as previously described
- Describing the burning of liquids/solids is one of the most complex problems in combustion

