Methodology

- > Choose features
 - > Clean data
 - > Patient segmentation
 - > Effects of dialysis on mortality rate
 - > Recommendations

Choosing features

- Domain experts
 - Clinicians
 - Google
- Feature quality assessment
 - % of missing data
 - sensible?

age apache_iv apachescore CREATININE_min CREATININE max BUN min BUN_max POTASSIUM min POTASSIUM_max CHLORIDE min CHLORIDE max SODIUM min SODIUM max PLATELET max PLATELET_min heartrate max heartrate_min AVG_HEART_RATE resprate max resprate_min AVG RESPRATE nibp_diastolic_max nibp_diastolic_min

AVG NIBP DBP nibp_systolic_max nibp_systolic_min AVG_NIBP_SBP temp_max temp_min AVG TEMP BICARBONATE min BICARBONATE max GLUCOSE max GLUCOSE_min total_urineoutput dialysis actualicumortality predictedicumortality group

Data after cleaning

elCU, 7854 patients, 36 features

- Survival (in ICU)
 - 88% yes
 - 12% no
- Dialysis
 - 95% no
 - 5% yes

Normalized

- All features are normalized
 - (X mean)/std_dev

Patient Segmentation

- K-means clustering
 - K = 6
 - 6 groups of patients

3D for visualization, we use all 36 features

Effects of Dialysis

Dialysis increases mortality rate! Group 2 patients do not respond well to dialysis.

For each group:

- Predicted ICU mortality - Actual ICU mortality

- with dialysis and without dialysis

How is Group 2 different from the rest?

- Look at distribution of features
 - Group 2 vs. the rest

Group 2 lower APACHE scores!

Group 2 lower respiratory rate lower diastolic blood pressure!

