Justifique as suas respostas

cotações indicadas

Duração: 2h00

- 1. Considere um sinal $v_1(t) = 2.\sin(2t-45^\circ).u(t)$
 - a) determine A e B que realizam a igualdade $A.\cos(2t+B) = v_1(t) v_1(t)$ (1 v.)
 - b) esboce os sinais $v_1, v_1' = v_2(t) = A.\cos(2t + B)$ (1 v.)
 - c) calcule a média e o valor eficaz do sinal $y(t) = v_2^2(t)$ (1 v.)
- 2. Será que [u(t)-u(t-2)].t = t.u(t).u(2-t) é uma igualdade verdadeira para todo o tempo? Esboce graficamente os dois membros da equação e compare-os. (2 v.)
- 3. Considere o seguinte circuito de corrente contínua
 - a) obtenha o equivalente de Norton ou de Thévenin do circuito compreendido entre os terminais A-B (1,5 v.)
 - b) se não conseguiu resolver a) substitua o ramo entre A e B por uma resistência de 4Ω ; depois determine as correntes em todos os ramos pelo método das correntes fictícias(1,5 v.)
 - c) determine as correntes em todos os ramos pelo método da sobreposição (1,5 v.)
 - d) determine as tensões em todos os nós pelo método das tensões nodais (1 v.)
- 4. Considere o seguinte circuito alimentado por uma fonte sinusoidal com $\omega = 500 \text{ rad/s}$,
 - a) Determine a capacidade C que torna real o valor da impedância vista pela fonte $v_e(t)$. (1 v.)
 - b) Esboce o diagrama fasorial do circuito [se não resolveu a), assuma que C=1,5mF] (2 v.)
 - c) Determine as potências $P_{\text{consumida}}$, Q e S nos três ramos, para $\overline{I_L} = 1 \angle o^{\circ}(A)$ (1 v.)
 - d) Determine a expressão da função (1 v.) transferência $H(\omega) = \frac{v_s(\omega)}{v_e(\omega)}$.
 - e) Esboce o gráfico de $|H(\omega)|$ e determine o tipo de filtro implementado (Iv.)
- 5. Obtenha a equação diferencial que caracteriza a relação entre $v_e(t)$ e $i_L(t)$ e, a partir daí, determine a resposta temporal completa do circuito, sabendo que $i_L(0^-)=0,5$ A. (3,5 v.)