Surname				Other	Names			
Centre Number					Cand	lidate Number		
Candidate Signature								

For Examiner's Use

General Certificate of Education January 2009 Advanced Subsidiary Examination

PHYSICS (SPECIFICATION A) PHA3/W Unit 3 Current Electricity and Elastic Properties of Solids

Tuesday 13 January 2009 1.30 pm to 2.30 pm

For this paper you must have:

- a pencil and a ruler
- a calculator
- a data sheet insert.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 50.
 This includes up to 2 marks for the Quality of Written Communication.
- The marks for questions are shown in brackets.
- A Data Sheet is provided as a loose insert.
- You are expected to use a calculator where appropriate.
- Questions 1(a)(iii) and 4(b) should be answered in continuous prose. In these questions you will be marked on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.

For Examiner's Use						
Question	Question	Mark				
1						
2						
3						
4						
5						
Total (Co	olumn 1) -	-				
Total (Co	olumn 2) -	-				
Quality o						
TOTAL						
Examine	r's Initials					

Answer all questions in the spaces provided.

1 A student investigates how the current through a $6.0 \, \mathrm{V}$ filament lamp varies as the potential difference across it is changed up to $6.0 \, \mathrm{V}$.

1 (a) (i) Draw a suitable circuit diagram for this investigation.

1 (a) (ii) Use the axes below to sketch a graph showing how the current through the lamp varies with the potential difference across it.

Current O pd

1	(a)	(iii)	Explain the shape of the graph.
			You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer.
			(8 marks)
	<i>a</i> >	****	
1	(b)	Whe The	n the potential difference across the lamp is 6.0V, the current through it is 0.30A. lamp filament consists of a metal wire of area of cross-section $1.1 \times 10^{-8} \mathrm{m}^2$.
1	(b)	(i)	Calculate the resistance of the filament wire for this current.
1	(b)	(ii)	Calculate the length of the filament wire.
			resistivity of the wire at the operating temperature of the filament = $1.2 \times 10^{-6} \Omega \text{m}$
			(3 marks)

Turn over >

2 Figure 1 shows a circuit containing a battery of emf 12.0V and negligible internal resistance.

Figure 1

2	(a)	(1)	Calculate the total circuit resistance.
_			
2	(a)	(ii)	Show that the potential difference across each resistor is 6.0V.
			(5 marks)
			(3 marks)

2	(b)	Explain, without further calculation, why the power supplied to the 20Ω resistor is the same as the power supplied to the parallel combination of the 30Ω resistor and the 60Ω resistor.
		(2 marks)

Turn over for the next question

Turn over >

3			c cooker is designed to operate from a 230V rms mains supply. On full power, the erates at 5.3kW.
3	(a)	(i)	Calculate the peak voltage of the mains supply.
3	(a)	(ii)	Calculate the rms current supplied to the cooker when it is operating at full power. (3 marks)
3	(b)	conn	cooker is connected permanently to the ac mains electricity supply using its own aecting cable of length $5.2\mathrm{m}$. Each metre of the connecting cable has a resistance 020Ω .
3	(b)	(i)	Calculate the voltage drop along the cable when the cooker operates at full power.
3	(b)	(ii)	Calculate the average power wasted in the cable due to the heating effect of the electric current passing through it when the cooker operates at full power.

				\neg
3	(b)	(iii)	Explain why the connecting cable needs to have such a low resistance per metre.	
	(-)	\ '	1	
			(6 marks))
			Turn over for the next question	
			Turn over for the next question	

Turn over >

4 Figure 2 shows a circuit used to measure the resistance of a thermistor, T. The circuit includes a 3.0 V battery of negligible internal resistance. The resistance of T increases when its temperature is decreased.

Figure 2

With the thermistor maintained at a constant temperature, the ammeter reading is $0.60\,\text{mA}$ and the voltmeter reading is $1.2\,\text{V}$.

4	(b)	Discuss how the ammeter reading and the voltmeter reading would change if the temperature of the thermistor were reduced.
		You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer.
		(5 marks)

Turn over for the next question

Turn over ▶

5		etal w ne free	ire is suspended vertically and a weight, sufficient to make the wire taut, is fixed end.
5	(a)		load on the wire is increased by adding a 30N weight. The extension of the wire its initial length is then measured accurately and found to be 1.28mm.
5	(a)	(i)	Assuming the wire obeys Hooke's Law, calculate the elastic energy stored in the wire after the 30 N weight has been added.
5	(a)	(ii)	Two further measurements need to be made to determine the Young modulus of the material of the wire. State what these measurements are and describe how you would make them. measurement 1
			measurement 2
5	(a)	(iii)	Show how you would use these measurements and the data above to calculate the Young modulus of the material of the wire.
			(8 marks)

(b)	When an additional 30 N weight was added, the total extension of the wire became 2.73 mm. The total load of 60 N was then removed and the wire regained its initial length.
	Discuss whether or not the assumption made in part (a)(i) is still valid and describe the behaviour of the wire in terms of elasticity and Hooke's Law when it was loaded and unloaded.
	(4 marks)
	Quality of Written Communication (2 marks)
	END OF QUESTIONS

PHYSICS (SPECIFICATION A) PHA3W Unit 3 Current Electricity and Elastic Properties of Solids Data Sheet

Sheet						
Fundamen	tal constants a	ınd valı	ues		Mechanics and Applied	Fields, Waves, Quantum
Quantity		Symbol	Value	Units	Physics	Phenomena
speed of light in vacuo		c	3.00×10^{8}	m s ⁻¹	v = u + at	F
permeability of free space		μ_0	$4\pi \times 10^{-7}$	H m ⁻¹	$s = \left(\frac{u+v}{2}\right)t$	$g = \frac{F}{m}$
	of free space	ϵ_0	$\begin{array}{c} 8.85 \times 10^{-12} \\ 1.60 \times 10^{-19} \end{array}$	F m ⁻¹	$\begin{bmatrix} 3 & 1 & 2 & 1 \end{bmatrix}$	_ GM
charge of ele the Planck of				C	at^2	$g = -\frac{GM}{r^2}$
gravitationa		$\begin{array}{ c c c c c } h & 6.63 \times 10^{-34} \\ G & 6.67 \times 10^{-11} \end{array}$		$N m^2 k a^{-2}$	$s = ut + \frac{at^2}{2}$ $v^2 = u^2 + 2as$	
the Avogadi		$N_{\rm A} = \begin{cases} 0.67 \times 10 \\ 6.02 \times 10^{23} \end{cases}$		mol ⁻¹		$g = -\frac{\Delta V}{\Delta x}$
molar gas co		R	8.31	J K ⁻¹ mol ⁻¹	$v^2 = u^2 + 2as$	Δx
the Boltzma	nn constant	k	1.38×10^{-23}	J K ⁻¹	$-\Delta(mv)$	$V = -\frac{GM}{r}$
the Stefan c		σ	5.67×10^{-8}		$F = \frac{\Delta(m\nu)}{\Delta t}$	·
the Wien co		α	2.90×10^{-3}	m K	P = Fv	$a = -\left(2\pi f\right)^2 x$
electron resi		$m_{ m e}$	9.11×10^{-31}	kg		$v = \pm 2\pi f \sqrt{A^2 - x^2}$
	to 5.5×10^{-4} u)	alm	1.76×10^{11}	C kg ⁻¹	$efficiency = \frac{power\ output}{power\ input}$	•
proton rest	•	$m_{\rm p}$	1.70×10^{-27} 1.67×10^{-27}	kg	power input	$x = A \cos 2\pi f t$
•	to 1.00728u)	,,,,p	1.07 × 10		<i>v</i>	$T = 2\pi\sqrt{\frac{m}{k}}$
` -	ge/mass ratio	e/m_p	9.58×10^{7}	C kg ⁻¹	$\omega = \frac{1}{r} = 2\pi f$	$I = 2\pi\sqrt{\frac{k}{k}}$
neutron rest	-	$m_{\rm n}$	1.67×10^{-27}	kg	2	$T = 2\pi\sqrt{\frac{l}{g}}$
\ I	to 1.00867u)				$\omega = \frac{v}{r} = 2\pi f$ $a = \frac{v^2}{r} = r\omega^2$	1 - 2 11 V g
	l field strength	g	9.81	N kg ⁻¹ m s ⁻²	, r	$\lambda = \frac{\omega s}{D}$
	due to gravity	g	9.81	m s ~	$I = \sum mr^2$	_
atomic mass		u	1.661×10^{-27}	kg	$I = \sum_{i} mr^{2}$	$d \sin \theta = n\lambda$
(1u is equiva 931.3 MeV)					$E_{k} = \frac{1}{2} I \omega^{2}$	ρλ
)31.3 IVIC V)		ı	ı	i	$L_{\mathbf{k}} - 2 \mathcal{I} \omega$	$\theta \approx \frac{\lambda}{D}$
Fundamen	tal particles				$\omega_2 = \omega_1 + \alpha t$	$\sin \theta_1 = c_1$
runuamen	tai particles					$1 n_2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$
Class	Name	Syn	nbol R	est energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	n_2
			/N	1eV		$_{1}n_{2}=\frac{n_{2}}{n_{1}}$
photon	photon	γ	0		$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	$ u_{ m e}^{\cdot}$	0		$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$	$\sin \theta_{\rm c} = \frac{1}{n}$
		ν_{μ}	0		$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$	E = hf
	electron	e [±]	_	510999	$T = I\alpha$	$hf = \phi + E_{\mathbf{k}}$
	muon	μ^{\pm}		5.659		$hf = E_1 - E_2$
mesons	pion	π^{\pm}		9.576	angular momentum = $I\omega$	
mesons	pion	π^0		4.972	$W = T\theta$	$\lambda = \frac{h}{p} = \frac{h}{mv}$
	1				$P = T\omega$	1
	kaon	\mathbf{K}^{\pm} \mathbf{K}^{0}		3.821	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
		K°		7.762	angular momentum = Tt	$\gamma \mu_0 \varepsilon_0$
baryons	proton	p		8.257	$\Delta Q = \Delta U + \Delta W$	Electricity
	neutron	n	93	9.551	$\Delta W = p\Delta V$	Electricity
					$pV^{\gamma} = \text{constant}$	$ \epsilon = \frac{E}{O} $
Properties	of quarks					$\epsilon - \frac{1}{Q}$
Туре	Charge	Bar	yon St	rangeness	work done per cycle = area	$\in = I(R+r)$
-JF -	3-		nber	8	of loop	, , ,
	2				input power = calorific	$\frac{1}{-} = \frac{1}{-} + \frac{1}{-} + \frac{1}{-} + \cdots$
u	$+\frac{2}{3}$	+	$\frac{1}{3}$	0	value × fuel flow rate	R_{T} R_{1} R_{2} R_{3}
d	$-\frac{1}{3}$	+	$\frac{1}{3}$	0	J J 1555	$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$
	$-\frac{1}{3}$	+		-	indicated power as (area of $p - V$	$P = I^2 R$
S	$-\frac{2}{3}$	+	3	-1	$loop) \times (no.\ of\ cycles/s) \times$	
					(no. of cylinders)	$E = \frac{F}{O} = \frac{V}{d}$
Geometric	al equations					Q = a
arc length =	rθ				friction power = indicated power - brake power	F = 1 Q
Ü					power – orake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
-	$ce\ of\ circle = 2\pi$	r			W 0 0	, and the second
area of circle	$e = \pi r^2$				$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$
area of cylin	$der = 2\pi rh$				∠in ∠in	F = BIl
	$ylinder = \pi r^2 h$				maximum possible	F = BQv
					1	$Q = Q_0 e^{-t/RC}$
area of sphe					$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$	· ·
volume of sp	where = $\frac{4}{3} \pi r^3$				'н	$\Phi = BA$ Turn over
						Zurii Ovel

magnitude of induced emf = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \ \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

force = Bev

 $radius\ of\ curvature = \frac{mv}{Be}$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

 $F=6\pi\eta rv$

$$I = k \frac{I_0}{r^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

 Body
 Mass/kg
 Mean radius/m

 Sun
 2.00×10^{30} 7.00×10^{8}

 Earth
 6.00×10^{24} 6.40×10^{6}

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$

$$M = \frac{f_o}{f_c}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

$$v = Hd$$

$$P = \sigma A T^4$$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

$$\frac{\Delta \lambda}{1} = -\frac{\nu}{2}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

 $power = \frac{1}{f}$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level = $10 \log \frac{I}{I_0}$

$$I = I_0 e^{-\mu}$$

$$\mu_{\rm m} = \frac{\mu}{\alpha}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 summing