From EFE to Sigularity

Dowling Wong

December 4, 2023

1 Einstein Field Equation

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

- $G_{\mu\nu} \equiv R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R$, is called Einstein Tensor, represents the curvature of spacetime due to matter.
- \bullet Λ is called cosmological constant, and acts as a force that can accelerate the expansion of the universe
- $\kappa = \frac{8\pi G_N}{c^4}$, is a coefficient, and $T_{\mu\nu}$ is the Einstein stress tensor

Figure 1: Stress tensor

• And our goal is to solve for $g_{\mu\nu}$, the metric to describe spacetime satisfies assumptions.

2 What metric to describe Black Hole

A black hole, should be black

Topologically, all light rays orthogonal to the trapped surface converge when traced toward the future. This is contrary to a spherical surface in flat space, where outward-directed light-rays diverge. So we come to a few conditions that Schwarzschild metric need to satisfy:

- It needs to be spherically symmetric
- Non-rotating, for simplicity

• Start from vacuum, $G_{\mu\nu} = 0$

To describe in spherical coordinates, general static spherically symmetric metric in Schwarzschild coordinates can be written as:

$$ds^{2} = -e^{2\alpha(r)}dt^{2} + e^{2\beta(r)}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

Substituting this ansatz into the Einstein field equations and solving for $\alpha(r)$ and $\beta(r)$, we find:

$$e^{2\beta(r)} = \left(1 - \frac{2GM}{c^2r}\right)^{-1}, e^{2\alpha(r)} = 1 - \frac{2GM}{c^2r}$$

Where M is the mass of the central object, the Schwarzschild metric is thus obtained:

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

Schwarzchild in Eddington-Finkelstein coordinates

We do a substitution of variable, introduce the advanced spacetime variable v

$$dv = dt + \frac{dr}{1 - \frac{2GM}{c^2r}}$$

And then rewrite the Schwarzschild metric in a new form involving the singularity at $r = \frac{2GM}{c^2}$ (the Schwarzschild radius).

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dv^{2} + 2dvdr + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

This form is the original form that appeared in R.Penrose's paper (1965), and we will introduce how it works in visualization of black hole.

3 Visualization of Black Hole

3.1 Conformal Structure

Conformal structure is a technique R.Penrose introduced in his 1963 paper, such a transformation keep angles retained but scale changed. The infinity is treated as 3-dimensional boundary $\mathfrak g$ to a finite 4-dimensional conformal region $\mathcal M$.

Accordingly, we assign a new unphysical metric $g_{\mu\nu}$ to spacetime, which is conformal to original physical metric $g_{\mu\nu}^{\tilde{}}$

$$g_{\mu\nu} = \Omega^2 g_{\mu\nu}^{\tilde{}}$$

In this diagram, three "points" I^0, I^+, I^- represent the spatial infinity, future infinity, and past infinity. The boundary, two null hyper-surface $\mathfrak{g}^+, \mathfrak{g}^-$ representing the future and past null infinities, topologically a 3-dimensional cylinders.

Figure 2: Conformal Structure

3.2 Singularity Theorem

3.2.1 Raychaudhuri and Komar singularity theorems

The first Singularity theorem has been derived by from eqations:

$$\frac{d\theta}{d\tau} = -\frac{1}{3}\theta^2 - \sigma_{\mu\nu}\sigma^{\mu\nu} + \omega_{\mu\nu}\omega^{\mu\nu} - R_{\mu\nu}U^{\mu}U^{\nu}$$

In which the expansion $\theta = \nabla_{\mu}U^{\mu}$, Shear $\sigma_{\mu\nu} = \nabla_{(\mu}U_{\nu)} - \frac{1}{3}\theta h_{\mu\nu} - \omega_{\mu\nu}$, rotation $\omega_{\mu\nu} = \nabla_{[\mu}U_{\nu]}$ and timelike convergence condition: $R_{\mu\nu}U^{\mu}U^{\nu} \geq 0$ defined respectively.

Indicates a perfect fluid whose velocity vector field is geodesic and irrotational. If the expansion is negative at an instant of time and convergence holds, then the energy density ρ of the fluid diverges in the finite future along every integral curve of velocity vector field.

<u>Translate:</u> The expansion scalar in the Raychaudhuri equations becomes negative, implying a convergence of geodesics. This convergence suggests the formation of a singularity where densities and curvature can become infinite.

3.2.2 Penrose singularity theorems

If the space-time contains a non-compact Cauchy hypersurface Σ and a closed future-trapped surface, and if the convergence condition $R_{\mu\nu}U^{\mu}U^{\nu} \geq 0$ holds for null fluid velocity vector field, then there are future incomplete null geodesics. (Spacetime contains singularity)

3.3 Singularity Visualization

What is singularity?

Consider a spherically symmetrical matter distribution of finite radius in C^3 which collapses symmetrically. When sufficient thermal energy has been radiated away, the body contracts and continues to contract until a physical singularity is encountered at r=0 and forms an infinitely dense point called "singularity"

Back to Schwarzchild metric

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dv^{2} + 2dvdr + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

In which the advanced spacetime variable $dv = dt + \frac{dr}{1 - \frac{2GM}{2r}}$ Schwarzschild met-

Figure 3: Collapsing Star

ric in the ingoing Eddington-Finkelstein coordinates (one space dimension suppressed)

Recall the Schwarzschild radius $r = \frac{2GM}{c^2}$, define such a 2-sphere with S-radius. The matter inside such a sphere contracts to singularity and is invisible (takes infinity time because light rays are bent and asymptotic to singularity) to the outside observer. This sphere is an example of a trapped surface. A point to

Figure 4: Cross section of event horizon

notice here is inside the horizon, direction of time axis pointing radially inward.

This could be observed from Schwarzchild metric:

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

As r < 2M, $(1 - \frac{2GM}{c^2r}) < 0$, we could either think the sign changed to swap the term or add an i to rotate the unit vector by $\pi/2$ No escape from black hole

3.4 Penrose Diagram

As stated in section 3.1, in conformal structure we can draw infinity in a finite diagram. So the asymptotic problem in star collapsing could also be conclude into a Penrose diagram.

Figure 5: Collapsing Star in Penrose Diagram

3.5 Hawking Bekenstein Entropy

Take a spherically symmetric and stationary or we say "Schwarzschild black hole", we have black hole's mass M, horizon's radius $r_h = \frac{2GM}{c^2}$, area count as a circle $4\pi r_h^2$, thus we could easily get the area of black hole as

$$A = 16\pi (GM/c^2)^2$$

The event horizon area of a black hole cannot decrease; it increases in most transformations of the black hole. This increasing behavior is reminiscent of

thermodynamic entropy of closed systems. Thus it is reasonable that the black hole entropy should be a monotonic function of area, and it turns out to be simplest such function.

$$S_{BH} = \frac{A}{4G_N} = \frac{A}{4l_p^2}$$

As G_N stands for Newtonian gravity, l_p is the plank length, and \hbar is the Planck-Dirac constant(Reduced Planck constant), they have relationship as $l_p = \sqrt{\frac{G\hbar}{c^3}}$. So be more precisely, the Bekenstein-Hawking entropy should be written as:

$$S_{BH} = \frac{A}{4{l_p}^2} = \frac{c^3 A}{4G\hbar}$$