Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №3 Вариант 9

Выполнил:

Прокофьев Арсений Александрович P3213

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Исходные данные:

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- 2. Пределы интегрирования задаются пользователем.
- 3. Точность вычисления задается пользователем.
- 4. Начальное значение числа разбиения интервала интегрирования: n=4.
- 5. Ввод исходных данных осуществляется с клавиатуры.

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя:
 - а. Метод прямоугольников (3 модификации: левые, правые, средние)
 - b. Метод трапеций
 - с. Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной(ого) функции/класса.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.

6. В отчете отразить последовательные вычисления.

Рабочие формулы методов:

Формула Симпсона

$$\int_{a}^{b} f(x) = \frac{h}{3} \left[(y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n) \right]$$

Формула трапеций:

$$\int_{a}^{b} f(x)dx = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right)$$

Формула средних прямоугольников:

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} f(x_{i-1/2})$$

Формула правых треугольников:

$$I_{\text{прав}} = h \sum_{i=1}^{n} y_i$$

Формула левых треугольников:

$$I_{\text{лев}} = h \sum_{i=1}^{n} y_{i-1}$$

Вычисление заданного интеграла:

Интеграл: $\int_{1}^{2} (2x^{3} - 3x^{2} + 5x - 9) dx$

Метод Симпсона: n = 10

$$h = \frac{a-b}{n} = \frac{2-1}{10} = 0.1$$

i	x(i)	y(i)	
0	1	-5	
1	1.1	-4.468	
2	1.2	-3.864	
3	1.3	-3.176	
4	1.4	-2.392	
5	1.5	-1.5	
6	1.6	-0.488	
7	1.7	0.656	
8	1.8	1.944	
9	1.9	3.388	
10	2	5	

$$\int_{1}^{2} (2x^{3} - 3x^{2} + 5x - 9)dx \approx \frac{h}{3} [y_{0} + y_{n} + 4(y_{1} + y_{3} + \dots + y_{n-1}) + 2(y_{2} + y_{4} + \dots + y_{n-2})]$$

$$= \frac{0.1}{3} [-5 + 5 + 4(-4.468 + \dots + 3.388) + 2(-3.864 + \dots + 1.944)] = -1$$

Четвертая производная: f''''(x) = 0

$$|R| \le \max_{x \in [a,b]} |f''''(x)| * \frac{(b-a)^5}{180n^4} = 0 * \frac{(2-1)^5}{180 * 10^4} = 0$$

Ответ: $I = -1 \pm 0$

Метод трапеций: n = 10

$$h = \frac{a-b}{n} = \frac{2-1}{10} = 0.1$$

i	x(i)	y(i)	
0	1	-5	
1	1.1	-4.468	
2	1.2	-3.864	
3	1.3	-3.176	
4	1.4	-2.392	
5	1.5	-1.5	
6	1.6	-0.488	
7	1.7	0.656	
8	1.8	1.944	
9	1.9	3.388	
10	2	5	

$$\int_{1}^{2} (2x^{3} - 3x^{2} + 5x - 9)dx \approx h * \left(\frac{y_{0} + y_{n}}{2} + \sum_{i=1}^{n-1} y_{i}\right) = 0.1 * \left(\frac{-5 + 5}{2} + (-4.468 + \dots + 3.388)\right)$$
$$= 0.1 * (-9.9) = -0.99$$

Вторая производная f''(x) = 12x - 6

$$f''(a) = 6$$

$$f''(b) = 18$$

$$|R| \le \max_{x \in [a,b]} |f''(x)| * \frac{(b-a)^3}{12n^2} = 18 * \frac{(2-1)^3}{12 * 10^2} = 0.015$$

Ответ: $I = -0.99 \pm 0.015$

Метод средних прямоугольников n = 10:

$$h = \frac{a-b}{n} = \frac{2-1}{10} = 0.1$$

		4-5		
i	x(i)	y(i)	X(i-1/2)	F(x(i-1/2))
0	1	-5		
1	1.1	-4.468	1.05	-4.742
2	1.2	-3.864	1.15	-4.176
3	1.3	-3.176	1.25	-3.531
4	1.4	-2.392	1.35	-2.797
5	1.5	-1.5	1.45	-1.96
6	1.6	-0.488	1.55	-1.01
7	1.7	0.656	1.65	0.067
8	1.8	1.944	1.75	1.281
9	1.9	3.388	1.85	2.646
10	2	5	1.95	4.172

$$\int_{1}^{2} (2x^{3} - 3x^{2} + 5x - 9) dx \approx h * \left(\sum_{i=1}^{n} f(x_{i-\frac{1}{2}}) \right) = 0.1 * (-4.742 + \dots + 4.172) = 0.1 * -10.05 =$$

$$= -1.005$$

$$|R| \le \max_{x \in [a,b]} |f''(x)| * \frac{(b-a)^{3}}{24n^{2}} = 18 * \frac{(2-1)^{3}}{24 * 10^{2}} = 0.0075$$

Ответ: $I = -1.005 \pm 0.0075$

Программная реализация задачи:

https://github.com/MakeCheerfulInstall/Computational-Math-2024/tree/main/P3213/Prokofiev 367502/lab3

Вывод:

Написав реализации всех трех методов решения интегралов, можно сделать вывод, что самым точным и быстрым является метод Симпсона.