Machine Learning

ECE 4332 / ECE 5332 Spring 2019

Project 2

- 1. Generate the training set:
 - a. $N^{Train} = 10$
 - b. X^{Train} contains samples from a uniform distribution $\mathcal{U}(0,1)$.
 - c. $t^{Train} = \sin(2\pi X^{Train}) + \varepsilon$, where ε is drawn from a Gaussian (Normal) distribution $\mathcal{N}(0, \sigma = 0.3)$.
- 2. Generate the test set:
 - a. $N^{Test} = 100$
 - b. X^{Test} contains samples from a uniform distribution $\mathcal{U}(0,1)$.
 - c. $t^{Test} = \sin(2\pi X^{Test}) + \varepsilon$, where ε is drawn from a Gaussian distribution $\mathcal{N}(0, \sigma = 0.3)$.
- 3. Use the method of linear regression with non-linear models to fit polynomials of degree M = 0,1,2,...,9 to the training set.
- 4. Record the training and testing errors for each of the 10 cases.
- 5. Produce the plot as shown below, where

$$E_{RMS} = \sqrt{J(\underline{w})/N}$$

6. Repeat the exercise for $N^{Train} = 100$.

Upload your .m or .py file to Blackboard before midnight on Feb 10th.

