ییادهسازی کنترلر PI

در این قسمت همانند تمرین قبل، یک package شامل دو node برای حرکت و مانیتور ربات ساختم و در گره مربوط به حرکت ربات، یک PI Controller را پیاده کردم تا سرعت و زاویه را به روز رسانی کند.

به روزرسانی زاویه:

```
theta_star = math.atan2(delta_y, delta_x)
alpha = theta_star - self.theta
if alpha > math.pi:
    alpha -= 2 * math.pi
if alpha < -math.pi:
    alpha += 2 * math.pi
self.vel.angular.z = self.k_theta * alpha</pre>
```

به روزرسانی سرعت:

```
e = math.sqrt(delta_x ** 2 + delta_y ** 2)
e_p = e - self.d_star
if len(self.E) < self.window:
    self.E.append(e_p)
else:
    self.E.pop(0)
    self.E.append(e_p)
v = (self.k_p * e_p) + (self.k_i * np.array(self.E).sum())
self.vel.linear.x = v</pre>
```

پارامترهایی که در پیادهسازی استفاده شدهاند عبارتند از:

- k_theta که همان ضریب زاویه است که همواره برابر ۴۵.۰ قرار داده شدهاست.
- k_p که همان ضریب اپسیلون (خطای در لحظه) است که در ابتدای حرکت برابر ۱۵.۵ در نظر گرفته شده و با نزدیک شدن ربات به مسیر اصلیای که باید در آن حرکت کند به ۴۳.۵ تغییر میکند.
- k_i که همان ضریبی است که کنار انتگرال (همان مجموع خطاهای گذشته) قرار میگیرد که در این ابتدای حرکت برابر ۰.۰۲ در نظر گرفته شده و با نزدیک شدن ربات به مسیر اصلیای که باید در آن حرکت کند به ۱.۰۷ تغییر میکند.
- سindow که اندازهی پنجرهای است که برای جمع کردن خطاهای گذشته (برای محاسبهی انتگرال) در
 نظر گرفته میشود که مقدار آن ۵ در نظر گرفته شدهاست به این معنی که فقط ۵ خطای آخر را به
 حساب میآورد.
 - d_star که در صورت تمرین به عنوان ds داده شده و به معنای فاصلهای است که اگر ربات در آن نسبت به هدف قرار گیرد، هدف بعدی جایگزین هدف کنونی میشود.

مقادیری که برای k_p (به عنوان ضریب p) و همچنین k_i (به عنوان ضریب i) انتخاب شده بر این اساس بوده که اهمیت بیشتری داشته و با بوده که اهمیت بیشتری داشته و با نزدیکشدن ربات به هدف باید سرعت کمی کاهش مییافته یعنی k_p مقداری بیشتر از k_i دارد.

علی نظری – ۹۶۳۱۰۷۵ تمرین ۲ - رباتیک

اگر ضریب i خیلی کم شود، باعث میشود با نزدیک شدن ربات به هدف دیگر حرکتی نکند و از طرفی اگر این ضریب خیلی زیاد شود هم در زمان عوض شدن هدف و پیچیدن موجب انحراف ربات از مسیر میشود.

اگر ضریب p کم شود، باعث میشود ربات به صورت کلی آرامتر حرکت کند و اگر زیاد شود هم به خاطر عوض شدن خطاهایی که درون پنجره در نظر گرفتیم باعث نوسان سرعت در ربات میگردد.

خطایی که برای برای حرکت ربات در مسیر در نظر گرفته شده نیز به این صورت است که فاصلهی ربات در هر لحظه نسبت به نزدیکترین نقطهی مسیر بررسی میشود و میانگین تمامی این خطاها به عنوان خطای کلی گزارش میشود.

مسیر حرکت ربات

حال به سراغ مسیری که ربات (با شروع از مکان (2, 1)) برای دو مسیر تعریف شده در تمرین طی کرده است، میرویم:

- حرکت روی مسیر بیضی که قطر بزرگ آن ۳ (روی محور ۷) و قطر کوچک آن ۱ (روی محور x)

خطایی که حرکت ربات در این مسیر داشته برابر ۱۶.ه اندازهگیری شده است.

علی نظری – ۹۶۳۱۰۷۵ تمرین ۲ - رباتیک

- حرکت روی مسیر مارپیچی که growth factor آن برابر ۱.۰ در نظر گرفته شده

خطایی که حرکت ربات در این مسیر داشته نیز برابر ۱۰.۰ اندازهگیری شده است.