Занятие 6

Тема: Строение вещества. Процессы в газах.

Цель: Молекулярное строение вещества. Идеальный газ. Равновесные состояния. Уравнение Клапейрона-Менделеева. Равновесные процессы в газах.

Краткая теория

- Вещество состоит из атомов и молекул, последние образуются из атомов при объединении их электронных оболочек.
- Атомная единица массы (а.е.м.)— внесистемная единица массы, используемая для измерения масс атомов и молекул. За а.е.м. принята $\frac{1}{12}$ массы атома углерода ¹²C: 1 а.е.м. = 1,66·10⁻²⁷ кг.
- Молярная масса. Если у массы молекулы вещества m_0 , выраженной в а.е.м., вместо а.е.м. подставить килограммы, то получится величина μ , называемая молярной массой вещества. Количество вещества равное μ носит название киломоля вещества, поэтому молярную массу измеряют в килограммах на киломоль (кг/кгмоль).
- Из определения киломоля следует, что в киломоле любого вещества всегда содержится одинаковое количество молекул N_A , называемое **числом Авогадро**. Действительно,

$$N_{_{A}} = \frac{\mu(\kappa \varepsilon / \kappa \varepsilon \text{моль}) \cdot 1(\kappa \varepsilon \text{моль})}{m_{_{0}}(a.e.m.)} = \frac{m_{_{0}}(\kappa \varepsilon)}{m_{_{0}}(a.e.m.)} = \frac{1 \, \kappa \varepsilon}{1 \, a.e.m.} = \frac{1 \, \kappa \varepsilon}{1,66 \cdot 10^{-27} \, \kappa \varepsilon} = 6,023 \cdot 10^{26} \, \text{частиц} \, .$$

С учетом полученного результата, массу молекулы вещества можно найти как:

$$m_0 = \frac{\mu}{N_A} \ .$$

- Количество вещества в киломолях: $v = \frac{m}{\mu} = \frac{N}{N_A}$, где m масса вещества (в килограммах), μ его молярная масса (в килограммах на киломоль), N количество молекул, $N_A = 6{,}023{\cdot}10^{26}$ 1/кгмоль число Авогадро.
- Идеальный газ модель реального газа. Частицы идеального газа представляют собой материальные точки, не взаимодействующие

между собой помимо моментов соударений. Реальные газы можно рассматривать как идеальные при не слишком высоких давлениях и при не слишком низких температурах.

- Равновесное состояние состояние газа, при котором параметры состояния (температура, давление, концентрация частиц и другие) одинаковы во всем объеме.
- **Равновесный процесс** с газом процесс, осуществляемый через ряд равновесных состояний. Обязательным условием равновесного процесса является квазистационарность, то есть очень медленное изменение состояния газа, что и позволяет выполнять указанное выше условие.
- Уравнение состояния идеального газа.

Равновесное состояние идеального газа описывает **уравнение** Клапейрона-Менделеева (уравнение газового состояния)

$$PV = vRT = \frac{m}{\mu}RT = \frac{N}{N_A}RT = NkT,$$

где $R=8,31\cdot 10^3$ Дж/(кгмоль·К) - универсальная газовая постоянная, m — масса газа, V — занимаемый им объем, P — давление газа, T=(273+t °C) К - абсолютная температура по шкале Кельвина, N — концентрация частиц газа, $k=1,38\cdot 10^{23}$ Дж/К — постоянная Больцмана.

• Закон Дальтона — выражает давление смеси невзаимодействующих между собой идеальных газов через парциальные давления компонент смеси:

$$P = P_1 + P_2 + ... + P_n$$
,

где P_i - парциальное давление газа, одной из компонент смеси, m_i - масса и μ_i - молярная масса этой компоненты. Объем V и температура T - общие для всех газов смеси, при этом для каждого газа по отдельности выполнено уравнение Клапейрона-Менделеева

$$P_i V = \frac{m_i}{\mu_i} RT.$$

- **Нормальные условия** соответствуют нормальному атмосферному давлению $P_{\theta} = 1{,}013{\cdot}10^5$ Па и температуре $T_{\theta} = 273$ К (0 °C). Давление P_{θ} составляет 1 атм (атмосферу), внесистемную единицу давления. Молярный объем, то есть объем 1 киломоля, *любого* газа (близкого по свойствам к идеальному) при нормальных условиях равен $V_{\theta} = 22{,}4{\cdot}10^{-3}$ м³ (22,4 литра).
- При анализе поведения газа во внешнем поле сил уравнение Клапейрона-Менделеева выполнено только в малых объемах газа.

Например, в однородном поле силы тяжести давление газа убывает с высотой h по экспоненциальному закону (барометрическая формула):

$$P = P_0 \exp(-\frac{\mu g}{R} \int_0^h \frac{dz}{T(z)})$$
, где P_θ – давление у поверхности Земли,

g - ускорение свободного падения. T(z) - зависимость температуры T от высоты z в этой формуле может быть произвольной. В случае постоянства температуры газа барометрическая формула принимает

_{вид}
$$P = P_0 \exp(-\frac{\mu g h}{RT})$$
.

Примеры решения задач

- 6-1. Оценить диаметр молекулы жидкого сероуглерода CS_2 . Считать, что молекулы жидкости можно рассматривать как плотно упакованные шарики. Плотность сероуглерода $\rho = 1,26\cdot10^3$ кг/м³.
- Молярная масса сероуглерода $\mu = 12 + 2.32 = 76$ кг/кгмоль. В 1 м³ содержится ρ кг жидкости или ρ / μ киломолей. Значит, количество молекул в 1 м³ составит $N = N_A \cdot \rho$ / μ . При плотной упаковке на каждую молекулу приходится элементарный кубик пространства, в который молекула вписана как геометрический шар. Отсюда понятно, что диаметр молекулы совпадает с длиной ребра элементарного кубика. Количество таких кубиков в 1 м³ составляет N, а на один кубик приходится объем $\frac{1}{n}$. Значит, ребро кубика

приходится объем
$$\frac{1}{N}$$
. Значит, ребро
$$d = \sqrt[-3]{N} = \sqrt[-3]{\frac{\rho N_A}{\mu}} = \sqrt[-3]{\frac{1,26\cdot 10^3\cdot 6,02\cdot 10^{26}}{76}} \cong 5\cdot 10^{-10}\,\mathrm{M}.$$

Ответ: $d \cong 5.10^{-10}$ м.

- 6-2. В сосуде объемом V находится идеальный газ плотностью ρ_0 при температуре T_0 . После того, как часть газа была выпущена наружу, давление в сосуде понизилось на величину Δp без изменения температуры газа. Найти массу выпущенного газа.
- Указанный процесс происходит при постоянной температуре, но он не является изотермическим, потому что количество вещества в сосуде меняется. Значит, для решения задачи нельзя использовать уравнение изотермического процесса (процесса при постоянных температуре и массе газа). Поступим иначе. Массу газа найдем из уравнения

Клапейрона-Менделеева: $m=\frac{\mu V}{RT_0}P$. Она пропорциональна давлению. Следовательно, изменение массы газа в сосуде (масса выпущенного газа) пропорционально изменению давления: $\Delta m=\frac{\mu V}{RT_0}\Delta P$. В этом уравнении неизвестна только молярная масса μ , но ее можно выразить через плотность, так как молярная масса — это масса молярного объема газа:

 $\mu = \rho_0 \cdot V_0$. Поэтому $\Delta m = \frac{\rho_0 V_0 V}{R T_0} \Delta P$. Это уже ответ, но его можно упростить, если записать уравнение Клапейрона-Менделеева для одного киломоля газа при нормальных условиях: $P_0 V_0 = \frac{\mu}{\mu} R T_0$. Из него находим $V_0 = \frac{R T_0}{P_0}$. Подставив это выражение, преобразуем результат к ответу $\Delta m = \frac{\rho_0 V}{P_0} \Delta P$.

- 6-3. Газ с молярной массой μ находится под давлением P между двумя одинаковыми горизонтальными пластинами. Температура газа растет линейно от температуры T_1 у нижней пластины до T_2 у верхней. Объем газа между пластинами равен V. Найти массу газа.
- Одно из условий термодинамического равновесия постоянство температуры (а также давления, плотности газа, концентрации молекул) в пределах объема, занимаемого газом. В задаче это условие не выполнено. Поэтому нельзя использовать уравнение равновесного состояния, то есть, уравнение Клапейрона-Менделеева для всего объема, занимаемого газом. Однако без него не определить массу газа. быть? Выход существует рассматривать горизонтальные слои газа, настолько тонкие, что изменением температуры в пределах каждого такого слоя можно пренебречь. В объеме любого слоя равновесие есть, но в каждом слое – свои условия равновесия, со своими температурой и концентрацией молекул. В вводят подобной ситуации обычно понятие локального термодинамического равновесия. Если вертикальную координату (в направлении роста температуры) обозначить через z, а площадь пластин — через S (площадь в условии задачи не указана, поэтому и в окончательный ответ она не должна войти!), то объем тонкого

горизонтального слоя толщиной dz равен $dV = S \cdot dz$. Уравнение Клапейрона-Менделеева для этого объема $P \cdot dV = \frac{dm}{U}RT$ позволяет определить массу газа в слое: $dm = \frac{\mu P dV}{RT} = \frac{\mu P S dz}{RT}$. Дальнейшие действия понятны необходимо просуммировать горизонтальных вычислить слоев, TO есть, интеграл $m = \int_{0}^{L} dm = \int_{0}^{L} \frac{\mu PS}{RT(z)} dz$. Здесь через l обозначено расстояние между пластинами. Чтобы вычислить этот интеграл, надо знать зависимость температуры от координаты z. Согласно условию эта зависимость линейная, то есть, - имеет вид $T = a + b \cdot z$. На нижней пластине (при z= 0) температура составляет $T_1=a$, а на верхней - $T_2=a+b\cdot l$. Из этих двух равенств находим коэффициенты $a = T_1$ и $b = \frac{T_2 - T_1}{I}$, так что $T(z) = T_1 + \frac{T_2 - T_1}{I}z$. С учетом полученного выражения можно задать интеграл в явном виде и вычислить его. Используем также то, что объем газа между пластинами $V = S \cdot l$. Отметим, что при интегрировании произведена замена переменной z на $x = a + b \cdot z$, а это привело к изменению верхнего и нижнего пределов интегрирования. В результате

$$m = \frac{\mu PS}{R} \int_{0}^{l} \frac{dz}{a + bz} = \frac{\mu PS}{Rb} \int_{a}^{a+bl} \frac{dx}{x} = \frac{\mu PS}{Rb} \ln x \Big|_{a}^{a+bl} = \frac{\mu PS}{Rb} \ln \frac{a + bl}{a} = \frac{\mu PS}{R(T_{2} - T_{1})} \ln(\frac{T_{2}}{T_{1}}) = \frac{\mu PV}{R(T_{2} - T_{1})} \ln(\frac{T_{2}}{T_{1}}) .$$

Otbet:
$$m = \frac{\mu PV}{R(T_2 - T_1)} \ln \left(\frac{T_2}{T_1}\right)$$
.

6-4. Высокий цилиндрический сосуд с азотом находится в однородном поле тяжести, ускорение свободного падения в котором равно g. Температура азота меняется по высоте так, что его плотность всюду одинакова. Найти градиент температуры $\frac{dT}{dh}$.

• Для произвольного объема V, в пределах которого состояние газа можно считать равновесным, из уравнения Клапейрона-Менделеева получим плотность газа $\rho = \frac{m}{V} = \frac{\mu P}{RT}$. Используя барометрическую формулу, найдем зависимость плотности азота от высоты $\rho = \frac{m}{V} = \frac{\mu P_0}{RT} \exp(-\frac{\mu g}{R} \int_0^h \frac{dz}{T})$. Так как плотность всюду одинакова, ее градиент $\frac{d\rho}{dh}$ должен быть равен нулю. Вычислим эту производную, воспользовавшись правилом дифференцирования произведения двух функций:

$$\frac{d\rho}{dh} = -\frac{\mu P_0}{RT^2} \cdot \frac{dT}{dh} \cdot \exp(-\frac{\mu g}{R} \int_0^h \frac{dz}{T}) + \frac{\mu P_0}{RT} \cdot \exp(-\frac{\mu g}{R} \int_0^h \frac{dz}{T}) \cdot (-\frac{\mu g}{RT}) = 0.$$

в полученном результате первое слагаемое отражает температурную зависимость знаменателя, а второе возникает из дифференцирования экспоненты. Решая полученное уравнение, находим $\frac{dT}{dh} = -\frac{\mu g}{R} = -\frac{28 \cdot 9.8}{8 \cdot 31 \cdot 10^3} = -33 \cdot 10^{-3} \text{ K/m}.$

Otbet:
$$\frac{dT}{dh} = -\frac{\mu g}{R} = -33 \cdot 10^{-3} \text{ K/m}.$$

- 6-5. В сосуде находится смесь $m_1 = 7.0$ г азота и $m_2 = 11.0$ г углекислого газа при температуре T = 290 К и нормальном давлении $P_0 = 1$ атм. Найти плотность этой смеси, считая газы идеальными.
- По закону Дальтона давление смеси $P_0 = P_1 + P_2$. Оно равно сумме парциальных давлений азота $P_1 = \frac{m_1 RT}{\mu_1 V}$ и кислорода $P_2 = \frac{m_2 RT}{\mu_2 V}$, так

что $P_0 = \frac{m_1 RT}{\mu_1 V} + \frac{m_2 RT}{\mu_2 V}$. Отсюда находим объем, занимаемый смесью,

 $V = (\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}) \frac{RT}{P_0}$, и плотность смеси как отношение суммарной массы

к полному объему: $\rho = \frac{m_1 + m_2}{V} = \frac{(m_1 + m_2)P_0}{(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2})RT}$. Остается вычислить

значение плотности
$$\rho = \frac{(7,0 \cdot 10^{-3} + 11,0 \cdot 10^{-3}) \cdot 10^{5}}{(\frac{7,0 \cdot 10^{-3}}{28} + \frac{11,0 \cdot 10^{-3}}{44}) \cdot 8,31 \cdot 10^{3} \cdot 290} = 1,5$$

 $\kappa\Gamma/M^3$.

Otbet:
$$\rho = \frac{(m_1 + m_2)P_0}{(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2})RT} = 1.5$$
 Kr/M³.

- 6-6. Поршневым насосом откачивают сосуд объемом V. За один цикл (ход поршня) насос захватывает объем газа ΔV . Через какое количество циклов давление в сосуде уменьшится в k раз? Процесс считать происходящим при постоянной температуре, газ идеальным.
- Пусть начальное давление газа в сосуде P. При этом газ занимает весь объем сосуда V. Рассмотрим первый ход поршня насоса. В начале хода то же самое количество газа теперь занимает суммарный объем сосуда и насоса $V+\Delta V$. Давление газа после первого хода поршня наружу обозначим через P_I . Процесс происходит при постоянной температуре и количество газа остается неизменным, поэтому справедливо уравнение $P_1(V+\Delta V)=PV$, так что
- $P_1 = P \frac{V}{V + \Delta V}$ (1). Напомним, что $PV = v_1 RT$. Далее поршень совершает движение внутрь, во время которого захваченный насосом воздух выходит через клапан в атмосферу, но достигнутое давление P_1 в откачиваемом сосуде при этом не изменяется. На этом заканчивается первый цикл работы насоса. Аналогичным образом происходит работа насоса во время второго цикла, по окончании которого устанавливается давление P_2 , вычисляемое по формуле, которую получаем по аналогии с формулой (1):
- $P_2 = P_1 \frac{V}{V + \Delta V}$ (2). Давление P_2 можно выразить через начальное давление, подставив P_1 из уравнения (1): $P_2 = P \bigg(\frac{V}{V + \Delta V} \bigg)^2$. Рассуждая аналогичным образом, получим, что после n циклов работы насоса давление в сосуде станет равным $P_n = P \bigg(\frac{V}{V + \Delta V} \bigg)^n$. Согласно условию

оно в k раз меньше начального давления P: $k = \frac{P}{P_n} = \left(\frac{V + \Delta V}{V}\right)^n$. Логарифмируя это равенство, находим количество циклов, необходимых для такого снижения давления: $n = \frac{\lg k}{\lg\left(\frac{V + \Delta V}{V}\right)}$.

Other:
$$n = \frac{\lg k}{\lg\left(\frac{V + \Delta V}{V}\right)}$$
.

- 6-7. Найти максимально возможную температуру идеального газа в процессе, происходящем по закону $P = P_0 \alpha V^2$, где P_θ и α положительные постоянные, а V молярный объем газа.
- Выразим температуру одного киломоля газа (v = 1, так как в условии речь идет о молярном объеме) из уравнения Клапейрона-Менделеева: $T = \frac{PV}{R}$. Подставляя в это выражение указанную в условии

зависимость давления от объема, получим $T=\frac{1}{R}\left(P_0V-\alpha V^3\right)$. Теперь задача сводится к поиску экстремума (локальных максимума или минимума) температуры как функции объема. Способы определения экстремума подробно рассмотрены в курсе дифференциального исчисления. Необходимое условие максимума — обращение в нуль первой производной температуры по объему $T'=\frac{1}{R}\left(P_0-3\alpha V^2\right)=0$. Решая это уравнение относительно объема, находим положение экстремума $V_{_{^{9KCMp}}}=\sqrt{\frac{P_0}{3\alpha}}$. Поскольку вторая производная в этой точке $T''=\frac{1}{R}\left(P_0V_1-\alpha V_1^3\right)=\frac{2P_0}{3R}\sqrt{\frac{P_0}{3\alpha}}$.

OTBET:
$$T_{\text{max}} = \frac{2P_0}{3R} \sqrt{\frac{P_0}{3\alpha}}$$
.

Задачи для самостоятельного решения

6-8. Оценить среднее расстояние < l> между центрами молекул водяного пара при нормальных условиях. Сравнить среднее расстояние с диаметром d самих молекул ($d = 0.311 \cdot 10^{-9}$ м).

Other: $\langle l \rangle = 3.5 \cdot 10^{-9} \text{ M}, \ \langle l \rangle / d \cong 11.$

6-9. Два одинаковых баллона соединены клапаном, пропускающим газ из одного баллона в другой при разности давлений $\Delta P \ge 1,10$ атм. Сначала в одном баллоне был вакуум, а в другом – идеальный газ при температуре $t_1 = 27^{\circ}\text{C}$ и давлении $P_1 = 1,00$ атм. Затем оба баллона нагрели до температуры $t_2 = 107^{\circ}\text{C}$. Найти давление газа в баллоне, где первоначально был вакуум.

Ответ:
$$P = \frac{1}{2} \left(\frac{P_1 T_2}{T_1} - \Delta P \right) = 10 \text{ кПа.}$$

6-10. Пусть для воздуха отношение $P/\rho^n = const$ не зависит от высоты (здесь n - постоянная, P - давление, и ρ - плотность). Найти градиент температуры воздуха.

OTBET:
$$\frac{dT}{dh} = \frac{-(n-1)\mu g}{nR}.$$

6-11. Идеальный газ с молярной массой μ находится в высоком вертикальном цилиндрическом сосуде с площадью основания S и высотой h. Температура газа T, его давление на дно P_{θ} . Считая, что температура и ускорение свободного падения не зависят от высоты, найти массу газа в сосуде.

Otbet:
$$m = \frac{P_0 S}{g} \left(1 - e^{-\mu gh/RT} \right)$$
.

6-12. В баллоне объемом V при температуре T находится смесь идеальных газов: V_I киломоля кислорода, V_2 киломоля азота и V_3 киломоля углекислого газа. Найти давление смеси и ее среднюю молярную массу.

OTBET:
$$P = \frac{(v_1 + v_2 + v_3)RT}{V}$$
, $\mu = \frac{v_1 \mu_1 + v_2 \mu_2 + v_3 \mu_3}{v_1 + v_2 + v_3}$.

6-13. Найти максимально возможную температуру идеального газа в процессе, описываемом законом $P = P_0 e^{-\alpha V}$, где P_θ и α -положительные постоянные, а V - молярный объем.

Otbet:
$$T_{\text{max}} = \frac{P_0}{e\alpha R}$$

6-14. В баллон объемом V, содержащий воздух при атмосферном давлении P_0 , насосом с рабочим объемом ΔV начинают нагнетать воздух из атмосферы. Какое давление установится в баллоне после n рабочих циклов насоса?

Otbet:
$$P = P_0 \left(1 + \frac{n\Delta V}{V} \right)$$

Контрольные задачи

- 6-15. Половина молекул азота массой 20 г распалась на атомы. Найти полное количество частиц в газе.
- 6-16. Идеальный газ с молярной массой μ находится в однородном поле тяжести, ускорение свободного падения в котором равно g. Найти зависимость давления газа от высоты h, если при h=0 давление составляет P_{θ} , а температура меняется с высотой по закону $T=T_0(1+\alpha h)$, где α положительная постоянная.
- 6-17. Сосуд объемом V = 20 л содержит смесь водорода и гелия при температуре t = 20°C и давлении P = 2,0 атм. Масса смеси m = 5,0 г. Найти отношение массы водорода к массе гелия в смеси.
- 6-18. Определить наименьшее возможное давление идеального газа в процессе, происходящем по закону $T = T_0 + \alpha V^2$, где T_θ и α положительные постоянные, а V объем киломоля газа.
- 6-19. В вертикальном закрытом с обоих торцов цилиндре находится массивный поршень, по обе стороны которого по одному киломолю воздуха. При температуре $T_1 = 300$ К отношение верхнего объема к нижнему $k_1 = 4,0$. При какой температуре это отношение станет равным $k_2 = 3,0$? Трение не учитывать.