

NPN Silicon Digital Transistor

- Built in bias resistor (R_1 = 4.7 k Ω , R_2 = 4.7 k Ω)
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Туре	Marking	Pin Configuration F			Package
BCR512	XFs	1=B	2=E	3=C	SOT23

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\sf CEO}$	50	V
Collector-base voltage	V_{CBO}	50	
Input forward voltage	V _{i(fwd)}	30	
Input reverse voltage	V _{i(rev)}	10	
Collector current	I _C	500	mA
Total power dissipation-	P _{tot}	330	mW
<i>T</i> _S ≤ 79 °C			
Junction temperature	T _j	150	°C
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	≤ 215	K/W

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Symbol		Values		
	min.	typ.	max.]
			T	
V _{(BR)CEO}	50	-	-	V
V _{(BR)CBO}	50	-	_	
I _{CBO}	-	-	100	nA
I _{EBO}	-	-	1.61	mA
h _{FE}	60	-	-	-
V _{CEsat}	-	-	0.3	V
V _{i(off)}	0.6	-	1.5	
$V_{i(on)}$	1	-	2.2	
R ₁	3.2	4.7	6.2	kΩ
R_1/R_2	0.9	1	1.1	_
f_{T}	-	100	-	MHz
	V(BR)CEO V(BR)CBO ICBO IEBO VCEsat Vi(off) Vi(on) R1 R1/R2	V(BR)CEO 50 V(BR)CBO 50	min. typ. V(BR)CEO 50 - V(BR)CBO 50 - ICBO - - IEBO - - VCEsat - - Vi(off) 0.6 - Vi(on) 1 - R1 3.2 4.7 R1/R2 0.9 1	min. typ. max. V(BR)CEO 50 - - V(BR)CBO 50 - - ICBO - - 100 IEBO - - 1.61 VESat - - 0.3 Vi(off) 0.6 - 1.5 Vi(on) 1 - 2.2 R1 3.2 4.7 6.2 R1/R2 0.9 1 1.1

¹Pulse test: $t < 300\mu s$; D < 2%

DC current gain $h_{FE} = f(I_C)$

 V_{CE} = 5 V (common emitter configuration)

Input on Voltage $Vi_{(On)} = f(I_C)$

 V_{CE} = 0.3V (common emitter configuration)

Collector-emitter saturation voltage

 $V_{CEsat} = f(I_{C}), I_{C}/I_{B} = 20$

Input off voltage $V_{i(Off)} = f(I_C)$

 V_{CE} = 5V (common emitter configuration)

Total power dissipation $P_{tot} = f(T_S)$

Permissible Pulse Load $R_{thJS} = f(t_p)$

Permissible Pulse Load

$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$$

Package Outline

Foot Print

1) Lead width can be 0.6 max. in dambar area

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.