7.2 Exercices sur les endomorphismes orthogonaux ou symétriques.

- 4. Corrigé: matrices d'endomorphismes en dimension 2.
 - (1) Dans chaque cas, déterminons sans calcul si f est orthogonal. On a montré en cours que :

$$\mathcal{O}_2(\mathbb{R}) = \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \in \mathcal{M}_2(\mathbb{R}) / a^2 + b^2 = 1 \right\} \bigcup \left\{ \left(\begin{array}{cc} a & b \\ b & -a \end{array} \right) \in \mathcal{M}_2(\mathbb{R}) / a^2 + b^2 = 1 \right\}$$

* Formellement, si une matrice M d'ordre 2 est orthogonale, alors ou bien $M = a \cdot I_2 + A$ avec A antisymétrique, ou bien M est symétrique.

Avec ce premier critère formel,
$$M_1 = \begin{pmatrix} 1 & 5 \\ 3 & 4 \end{pmatrix}$$
, $M_4 = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $M_5 = \begin{pmatrix} \frac{4}{7} & \frac{\sqrt{33}}{7} \\ -\frac{\sqrt{33}}{7} & -\frac{4}{7} \end{pmatrix}$

sont caractérisées comme n'étant pas orthogonales.

* Il reste donc à examiner M_2 , M_3 , M_6 , M_7 . Le plus simple est ici un argument numérique si évident qu'on l'obtient sans calcul : déterminant comparé à ± 1 , norme comparée à 1, produit scalaire comparé à 0.

minant comparé à ±1, norme comparée à 1, produit scalaire comparé à 0.
Avec ce deuxième critère numérique,
$$M_2 = \begin{pmatrix} 1 & 4 \\ 4 & 4 \end{pmatrix}$$
, $M_6 = \begin{pmatrix} 4 & \sqrt{33} \\ \sqrt{33} & -4 \end{pmatrix}$ qui ont chacune au moins une colonne dont les coefficients absolus sont supérieurs ou égaux à 1, sont carac-

au moins une colonne dont les coefficients absolus sont supérieurs ou égaux à 1, sont caractérisées comme n'étant pas orthogonales.

* Il reste donc à examiner
$$M_3$$
, M_7 .
$$M_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ est orthogonale car } : M_3 = \operatorname{Mat}_{\mathcal{B}}(f) \text{ avec } \begin{cases} f(u_1) &= -u_2 \\ f(u_2) &= u_1 \end{cases}.$$

Par hypothèse, $\mathcal{B} = (u_1, u_2)$ est une b.o.n. donc $(-u_2, u_1) = (f(u_1), f(u_2))$ l'est aussi. Donc f est un endomorphisme orthogonal de \mathbb{R}^2 donc $M_3 = \operatorname{Mat}_{\mathcal{B}}(f)$ est orthogonal.

$$M_7 = \frac{1}{7} \begin{pmatrix} 4 & \sqrt{33} \\ -\sqrt{33} & 4 \end{pmatrix}$$
 est la seule matrice pour laquelle un seul calcul est nécessaire.

Sans calcul, on sait que $f(u_1)$, $f(u_2)$ sont orthogonaux (voir exercice 9 p. 23 §1). $f(u_1)$, $f(u_2)$

ayant les mêmes coordonnées à l'ordre et au signe près, il suffit de calculer <u>une</u> norme :

$$\frac{1}{7^2}\sqrt{4^2+33} = \frac{1}{7^2}\sqrt{49} = 1$$

 M_7 est caractérisée comme matrice orthogonale.

* Conclusion:

$$M_3, M_7 \in \mathcal{O}_2(\mathbb{R})$$

- (2) Représentations graphiques de l'image de \mathcal{B} par f à construire seul. Remarques:
 - * Si le déterminant est positif, observer que l'orientation de la base est conservé. i.e.: le sens de rotation pour passer de la direction de u_1 à celle de u_2 est le même que le sens de rotation pour passer de la direction de $f(u_1)$ à celle de $f(u_2)$.
 - * M_5 est la matrice d'une symétrie <u>non</u> orthogonale par rapport à $Vect(u_1 u_2)$.