DSC 40B Theoretical Foundations II

Lecture 6 | Part 1

Binary Search Recurrence

Binary Search

```
import math
def binary_search(arr, t, start, stop):
    Searches arr[start:stop] for t.
    Assumes arr is sorted.
     ,, ,, ,,
    if stop - start <= 0:
    middle = math.floor((start + stop)/2)
if arr[middle] == t:
    return middle
    elif arr[middle] > t:
         return binary search(arr, t, start, middle)
    else:
         return binary search(arr, t, middle+1, stop)
```

Binary Search

- What is the time complexity of binary_search?
- \triangleright Best case: Θ(1).
- Worst case:

$$T(n) = \begin{cases} T(n/2) + \Theta(1), & n \ge 2 \\ \Theta(1), & n = 1 \end{cases}$$

Simplification

▶ When solving, we can replace $\Theta(f(n))$ with f(n):

$$T(n) = \begin{cases} T(n/2) + 1, & n \ge 2 \\ 1, & n = 1 \end{cases}$$

As long as we state final answer using Θ notation!

Another Simplification

 \blacktriangleright When solving, we can assume n is a power of 2.

Step 1: Unroll several times
$$T(n) = \begin{cases} T(n/2) + 1, & n \ge 2 \\ 1, & n = 1 \end{cases}$$

= [T(1/8)+1]+2 = T(1/8)+3

T(n/4)=T(n/8)+1

$$T(n) = \begin{cases} T(n/2) + 1, & n \ge 2 \\ 1, & n = 1 \end{cases}$$

$$T(n/z) + 1$$

$$= T(n/z) + 1$$

$$= T(n/4) + 1$$

= T(1/4)+2

Step 2: Find general formula

$$T(n) = T(n/2) + 1$$
 step
= $T(n/4) + 2$ 2
= $T(n/8) + 3$ 3

On step k:

$$T(n) = T(n/2^{\kappa}) + \kappa$$

Step 3: Find step # of base case

► On step k,
$$T(n) = T(n/2^k) + k$$

▶ When do we see T(1)?

$$\frac{n}{2^k} = 1$$
 $n = 2^k \implies k = \log n$

Step 4: Plug into general formula

$$T(n) = T(n/2^k) + k$$

$$T(n) = \Theta(\log n)$$

▶ Base case of T(1) reached when $k = \log_2 n$.

So:
$$T(n) = T\left(\frac{n}{2\log n}\right) + \log n$$

= $T\left(\frac{n}{n}\right) + \log n = T(1) + \log n$
= $1 + \log n$

Note

- ► Remember: $\log_b x = (\log_a x)/(\log_a b)$
- ► So we don't write $\Theta(\log_2 n)$
- Instead, just: Θ(log n)

Time Complexity of Binary Search

Best case: Θ(1)

 \triangleright Worst case: Θ(log n)

Is binary search fast?

- Suppose all 10¹⁹ grains of sand are assigned a unique number, sorted from least to greatest.
- Goal: find a particular grain.
- Assume one basic operation takes 1 nanosecond.

Is binary search fast?

- Suppose all 10¹⁹ grains of sand are assigned a unique number, sorted from least to greatest.
- ► Goal: find a particular grain.
- Assume one basic operation takes 1 nanosecond.
- Linear search: 317 years.

Is binary search fast?

- Suppose all 10¹⁹ grains of sand are assigned a unique number, sorted from least to greatest.
- ► Goal: find a particular grain.
- Assume one basic operation takes 1 nanosecond.
- ► Linear search: 317 years.
- ▶ Binary search: ≈ 60 nanoseconds.

Exercise

Binary search seems so much faster than linear search. What's the caveat?

Caveat

- ► The array must be **sorted**.
- ► This takes Ω(n) time.

Why use binary search?

- ► If data is **not sorted**, sorting + binary search takes longer than linear search.
- ▶ But if doing **multiple queries**, looking for nearby elements, sort once and use binary search after.

Theoretical Lower Bounds

- A lower bound for searching a sorted list is $\Omega(\log n)$.
- This means that binary search has optimal worst case time complexity.

Databases

- Some database servers will sort by key, use binary search for queries.
- Often instead of sorting, B-Tree indexes are used.
- But sorting + binary search still used when space is limited.

DSC 40B Theoretical Foundations II

Lecture 6 | Part 2

Selection Sort and Loop Invariants

Sorting

Sorting is a very common operation.

But why is it important?

Sorting

- Sorting is a very common operation.
- But why is it important?
- ▶ A e s t h e t i c reasons?

Sorting

- Sorting is a very common operation.
- But why is it important?
- ▶ A e s t h e t i c reasons?
- Sorting makes some problems easier to solve.

Today

How do we sort?

- How fast can we sort?
- How do we use sorted structure to write faster algorithms?

Today

► **Also:** how to understand complex loops with loop invariants.

Selection Sort

- Repeatedly remove smallest element.
- Put it at beginning of new list.

Example: arr = [5, 6, 3, 2, 1]

In-place Selection Sort

- We don't need a separate list.
 - We can swap elements until sorted.
- Store "new" list at the beginning of input list.
- Separate the old and new with a barrier.

Example: arr = [5, 6, 3, 2, 1]1 2 3 5 6 1 6 3 2 5

barrier_ix

```
def selection sort(arr):
    """In-place selection sort."""
    n = len(arr)
    if n <= 1:
        return
    for barrier ix in range(n-1):
        # find index of min in arr[start:]
        min ix = find minimum(arr. start=barrier ix)
        #swap
        arr[barrier ix], arr[min ix] = (
                arr[min ix]. arr[barrier ix]
```

arr[i], arr[j] = arr[j], arr[i]

```
def find_minimum(arr, start):
    """Finds index of minimum. Assumes non-empty."""
    n = len(arr)
    min_value = arr[start]
    min_ix = start
    for i in range(start + 1, n):
        if arr[i] < min value:</pre>
```

min value = arr[i]

min ix = i

return min ix

Loop Invariants

- How we understand an iterative algorithm?
- A **loop invariant** is a statement that is true after every iteration.
 - And before the loop begins!

Loop Invariant(s)

After the α th iteration of selection sort, each of the first α elements is \leq each of the remaining elements.

```
Example: arr = [5, 6, 3, 2, 1]
```

Loop Invariant(s)

After the α th iteration, the first α elements are sorted.

```
Example: arr = [5, 6, 3, 2, 1]
```


Loop Invariants

- Plug the total number of iterations into the loop invariant to learn about the result.
 - selection_sort makes n 1 iterations:
 - After the (n 1)th iteration, the first (n 1) elements are sorted.
 - After the (n 1)th iteration, each of the first (n 1) elements is ≤ each of the remaining elements.

Time Complexity

```
(n-1)+(n-2)+(n-3)
+...+3+2+1
def selection sort(arr):
    """In-place selection sort."""
    n = len(arr)
                                               = (=)(n2)
    if n <= 1:
        return
    for barrier ix in range(n-1):
        # find index of min in arr[barrier ix:]
        min value = arr[barrier ix]
        min ix = barrier ix
        for i in range(barrier ix + 1, n):
            if arr[i] < min value:</pre>
                min value = arr[i]
                min ix = i
        #swap
        arr[barrier_ix], arr[min_ix] = (
                arr[min ix]. arr[barrier ix]
```

Time Complexity

▶ Selection sort takes $\Theta(n^2)$ time.

Exercise

Modify selection_sort so that it computes a **median** of the input array. What is the time complexity?

```
def selection sort(arr):
    """In-place selection sort."""
    n = len(arr)
    if n <= 1:
        return
    for barrier_ix in range(n):
        # find index of min in arr[start:]
        min ix = find minimum(arr, start=barrier ix)
        #swap
        arr[barrier ix], arr[min ix] = (
                arr[min ix]. arr[barrier ix]
```

DSC 40B Theoretical Foundations II

Lecture 6 | Part 3

Mergesort

Can we sort faster?

- The tight theoretical lower bound for **comparison** sorting is $\Theta(n \log n)$.
- Selection sort is quadratic.
- \triangleright How do we sort in Θ($n \log n$) time?

Mergesort

- Mergesort is a fast sorting algorithm.
- Has **best possible** (worst-case) time complexity: Θ(n log n).
- ► Implements divide/conquer/recombine strategy.

The Idea

- ▶ **Divide**: split the array into halves
 - \triangleright [6,1,9,2,4,3] \rightarrow [6,1,9],[2,4,3]
- ► **Conquer**: sort each half, recursively
 - \triangleright [6,1,9] → [1,6,9] and [2,4,3] → [2,3,4]
- Combine: merge sorted halves together
 - $[1,6,9],[2,3,4] \rightarrow [1,2,3,4,6,9]$

Aside: splitting arrays

Warning! Creates a copy!

Mergesort

```
def mergesort(arr):
    """Sort array in-place."""
    if len(arr) > 1:
        middle = math.floor(len(arr) / 2)
        left = arr[:middle]
        right = arr[middle:]
        mergesort(left)
        mergesort(right)
        merge(left, right, arr)
```

The Idea

Understanding Mergesort

- 1. What is the base case?
- 2. Are the recursive problems smaller?
- 3. Assuming the recursive calls work, does the whole algorithm work?

1. Base Case: *n* = 1

- Arrays of size one are trivially sorted.
- Returns immediately. Correct!

2. Smaller Problems?

Are arr[:middle] and arr[middle:] always smaller than arr?

► Try it for len(arr) == 2.

3. Does it Work?

- ► Assume mergesort works on arrays of size < n.
- Does it work on arrays of size n?

Mergesort

```
def mergesort(arr):
    """Sort array in-place."""
    if len(arr) > 1:
        middle = math.floor(len(arr) / 2)
        left = arr[:middle]
        right = arr[middle:]
        mergesort(left)
        mergesort(right)
        merge(left, right, arr)
```

DSC 40B Theoretical Foundations II

Lecture 6 | Part 4

Merge

Merging

We have sorted each half.

Now we need to **merge** together.

Merging

- We have sorted each half.
- Now we need to merge together.
- Note: this is an example of a problem that is made easier by sorting.

3))))

3]]]]

1

[3]]]

1||2

5

1] [2] [3]

7

1) (2) (3) (5

7]]

1 2 3 5 6

3

1 2 3 5 6 7


```
def merge(left, right, out):
    """Merge sorted arrays, store in out."""
    left.append(float('inf'))
    right.append(float('inf'))
    left ix = ⊙
    right ix = \odot
    for ix in range(len(out)):
        if left[left ix] < right[right ix]:</pre>
            out[ix] = left[left ix]
            left ix += 1
        else:
            out[ix] = right[right ix]
            right_ix += 1
```

Loop Invariant

Assume left and right are sorted.

Loop invariant: After αth iteration,
out[:α] == sorted(left + right)[:α]

Key of mergesort

merge is where the actual sorting happens.

```
Example: merge([3], [1], ...) results in
[1,3]
```

Time Complexity of merge

```
m/2 m/2 m
def merge(left, right, out):
           """Merge sorted arrays, store in out."""
           left.append(float('inf'))
           right.append(float('inf'))
           left ix = ⊙
           right ix = \odot
           for ix in range(len(out)):
if left[left_ix] < right[right_ix]:
    out[ix] = left[left_ix]
    left_ix += 1
else:
    out[ix] = right[right_ix]
    right_ix += 1</pre>
```

DSC 40B Theoretical Foundations II

Lecture 6 | Part 5

Time Complexity of Mergesort

T(n) = G(i) + G(n) + 2T(n/2)Time Complexity

Aside: Copying

► What is arr[:middle] doing "under the hood"?

What is the time complexity?

The Recurrence

```
def mergesort(arr):
    """Sort array in-place."""
    if len(arr) > 1:
        middle = math.floor(len(arr) / 2)
        left = arr[:middle]
        right = arr[middle:]
        mergesort(left)
        mergesort(right)
        merge(left, right, arr)
```

Solving the Recurrence

$$T(n) = 2T(n/2) + \Theta(n)$$

$$= 2 \left[2T(\frac{n}{4}) + \frac{n}{2} \right] + n$$

$$= 4T(\frac{n}{4}) + n + n$$

$$= 4T(\frac{n}{4}) + 2n$$

$$= 8T(\frac{n}{3}) + 3n$$

$$T(n/2) = 2T(\frac{n}{4}) + \frac{n}{2}$$

$$2^{k} + \left(\frac{n}{2^{k}}\right) + kn$$

$$= \frac{n}{2^{k}} = 1 \implies k = \log_{2} n$$

$$= 8T(\frac{n}{3}) + 3n$$

$$2\log_{2} n + (1) + (\log_{2} n) n$$

= nT(i) + nlogn

Optimality

Theorem: Any (comparison) sorting algorithm's worst-case time complexity must be $\Omega(n \log n)$.

Mergesort is optimal!

Be Careful!

- It is possible for a sorting algorithm to have a best case time complexity smaller than n log n.
 - Insertion sort, for example.
- Mergesort has best case time complexity of $\Theta(n \log n)$.
- Mergesort is sub-optimal in this sense!

Be Careful!

- The $Θ(n \log n)$ lower-bound is for **comparison** sorting.
- It is possible to sort in worst-case $\Theta(n)$ time without comparing.¹

¹Bucket sort, radix sort, etc.

What if?

- Divide: split the array into halves
- Conquer: sort each half using selection sort
- Combine: merge sorted halves together

mergeselectionsort

```
def mergeselectionsort(arr):
    """Sort array in-place."""
    if len(arr) > 1:
        middle = math.floor(len(arr) / 2)
        left = arr[:middle]
        right = arr[middle:]
        selection_sort(left)
        selection_sort(right)
        merge(left, right, arr)
```

Exercise

What is the time complexity of this algorithm?

DSC 40B Theoretical Foundation II

Lecture 6 | Part 6

Using Sorted Structure

Sorted structure is useful

- Some problems become much easier if input is sorted.
 - For example, median, minimum, maximum.
- Sorting is useful as a preprocessing step.

Recall: The Movie Problem

- You're on a flight that will last D minutes.
- You want to pick two movies to watch.
- You want the total time of the two movies to be as close as possible to D.

The Movie Problem

- ▶ Brute force algorithm: $\Theta(n^2)$
- ▶ We can do better, if movie times are **sorted.**

Example

- ► Flight duration *D* = 155
- Movie times: 60, 80, 90, 120, 130

	60	80	90	120	130
60					
80					
90					
120					
130					

Best pair:

The Algorithm

- Keep index of shortest and longest remaining.
- On every iteration, pair the shortest and longest.
- If this pair is too long, remove longest movie; otherwise remove shortest.
 - If times are **sorted**, finding new longest/shortest movie takes Θ(1) time!

60, 80, 90, 120, 130

The Algorithm

```
def optimize entertainment(times, target):
    """assume times is sorted."""
    shortest = 0
    longest = len(times) - 1
    best pair = (shortest, longest)
    best_objective = None
    for i in range(len(times) - 1):
        total time = times[shortest] + times[longest]
        if abs(total time - target) < best objective:</pre>
            best objective = abs(total time - target)
            best_pair = (shortest. longest)
        if total time == target:
            return (shortest, longest)
        elif total time < target:
            shortest += 1
        else: # total time > target
            longest -= 1
    return best pair
```

Main Idea

Sorted structure allows you to rule out possibilities without explicitly checking them. But, it requires you to spend the time sorting first.

Tip: when designing an algorithm, think about sorting the input first.