No proof nets for MLL with units Proof equivalence in MLL is PSPACE-complete

Willem Heijltjes* and Robin Houston**

CSL-LICS, 16 July 2014

Linear Logic:

- · classical and computationally meaningful
- sequent calculus not natural deduction

Canonical proof nets

- canonical for proof equivalence
- independent of proofs by a correctness criterion

Canonical proof nets

- ► MLL⁻ [Girard 1987]
- ► ALL [Hu 1999; Hughes 2002]
- ► MALL⁻ [Hughes & Van Glabbeek 2005]
- ► ALL [Heijltjes 2011]

Main result

► MLL No: proof equivalence is too hard (PSPACE-complete)

$A, B, C := I \mid \bot \mid A \otimes B \mid A \otimes B$

$$\frac{\Gamma}{\Gamma} \qquad \frac{\Gamma, A \qquad B, \Delta}{\Gamma, A \otimes B, \Delta} \qquad \frac{\Gamma, A, B}{\Gamma, A \otimes B}$$

$$\frac{\Gamma, A \quad B, \Delta}{\Gamma, A \otimes B, \Delta, \perp} \quad \sim \quad \frac{\Gamma, A \quad B, \Delta}{\Gamma, A \otimes B, \Delta} \quad \sim \quad \frac{\Gamma, A}{\perp, \Gamma, A} \quad B, \Delta}{\Gamma, A \otimes B, \Delta, \perp}$$

$$\frac{\Gamma}{\Gamma,\perp} \sim \frac{\Gamma}{\perp,\Gamma}$$

$$\frac{\Gamma}{\perp,\Gamma,\perp}$$

Proof equivalence

 \sim

*-Autonomous categories

J

Proof net equivalence

(also generated by: rewire one jump preserving correctness)

[Seely 1989; Blute, Cockett, Seely & Trimble 1996; Hughes 2012]

Main result

MLL proof equivalence is PSPACE-complete

Corollary

Proof nets with

- ▶ canonicity
- tractable proof net equality
- tractable translation from proofs

would need P=PSPACE

PSPACE

- Turing machines with polynomial space and unbounded time
- canonical problem: quantified Boolean formulae (QBF)

 $NP, co-NP \subset PSPACE \subset EXPTIME$

Constraint Graphs:

- weighted edges
- ▶ sum weight of incoming edges ≥ vertex inflow constraint
- step: reverse one edge

Equivalence of constraint graphs is PSPACE-complete

Encoding Constraint Logic

Provable iff i = n and j = m

Provable iff i = n and j = m (or i = m and j = n)

- ► multiset $\{i_1, \ldots, i_{3n}\}$ with sum $n \times k$
- ▶ partition into *n* triples $\{i_a, i_b, i_c\}$ with sum *k*
- k/4 < i < k/2 \Rightarrow any subset with sum k is a triple

- ► multiset $\{i_1, \ldots, i_{3n}\}$ with sum $n \times k$
- ▶ partition into n triples $\{i_a, i_b, i_c\}$ with sum k
- k/4 < i < k/2 \Rightarrow any subset with sum k is a triple

$$\perp^{i_1}$$
 \perp^{i_2} \perp^{i_3} \perp^{i_4} \perp^{i_5} \perp^{i_6} ... \perp \perp \perp^{i_n}

$$I^k \otimes I^k \otimes \cdots \otimes I^k$$

[Garey & Johnson 1975]

- ► multiset $\{i_1, \ldots, i_{3n}\}$ with sum $n \times k$
- ▶ partition into *n* triples $\{i_a, i_b, i_c\}$ with sum *k*
- k/4 < i < k/2 \Rightarrow any subset with sum k is a triple

- ightharpoonup vertices connected by \otimes
- note: edges may connect to every vertex

$$\top \otimes \left(\top_i \otimes \top_j \otimes \top_k \right)$$

• constraint units for vertex
$$m$$
: $| m \otimes | n$

• weight units for edge
$$i - j$$
: $\perp^i \% \perp^{i-j} \% \perp^k$

$$i \equiv j \equiv 1 \pmod{3}$$

MLL proof equivalence is PSPACE-complete

- PSPACE-hard by the reduction from Constraint Logic
- in PSPACE by Savitch's Theorem (PSPACE = NPSPACE)

