Hierarchical Implicit Models and Likelihood-Free Variational Inference

Sebastian Wagner-Carena

arXiv:1702.08896

Hierarchical Implicit Models (HIMs)

• The building blocks of HIMs are the same hierarchical Bayesian models we often use in astronomy:

$$p(\mathbf{x}, \mathbf{z}, \boldsymbol{\beta}) = p(\boldsymbol{\beta}) \prod_{n=1}^{N} p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\beta}) p(\mathbf{z}_n \mid \boldsymbol{\beta}) \longrightarrow \mathbf{x}_n$$

• We often make x_n conditionally independent of β given z_n

Hierarchical Implicit Models (HIMs)

• A HIM does not assume that we have access to the exact likelihood but does assume that we can sample from it (for example using a simulation).

$$\mathcal{P}(\mathbf{x}_{n} \in A \mid \mathbf{z}_{n}, \boldsymbol{\beta}) = \int_{\{g(\boldsymbol{\epsilon}_{n} \mid \mathbf{z}_{n}, \boldsymbol{\beta}) = \mathbf{x}_{n} \in A\}} s(\boldsymbol{\epsilon}_{n}) \, d\boldsymbol{\epsilon}_{n}$$
with
$$\mathbf{x}_{n} = g(\boldsymbol{\epsilon}_{n} \mid \mathbf{z}_{n}, \boldsymbol{\beta}), \quad \boldsymbol{\epsilon}_{n} \sim s(\cdot)$$

• Notice that this integral is still intractable. However, we can now calculate anything the involves an expectation value of x_n conditioned on z_n , β

Variational Inference

- To approximate our posterior $-p(z,\beta|x)$ we will use variational inference with an approximating family q
- We want an objective that fits two criteria:
 - **Scalability**: We can get an unbiased estimate of the objective by sampling a subset of the data (i.e. a batch)
 - Admits implicit local approximations: The objective must not require having an explicit form for the function $q(z_n|x_n,\beta)$. It should be calculable with samples of z_n
- The Kullback-Leibler (KL) divergence meets both of these criteria

KL Objective

• Minimizing the KL divergence between *q* and the posterior is equivalent of maximizing the evidence lower bound (ELBO):

$$\mathcal{L} = \mathbb{E}_{q(\boldsymbol{\beta}, \mathbf{z} \mid \mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}, \boldsymbol{\beta}) - \log q(\boldsymbol{\beta}, \mathbf{z} \mid \mathbf{x})]$$

• We restrict our choice of q such that it can factorize:

$$q(\boldsymbol{\beta}, \mathbf{z} | \mathbf{x}) = q(\boldsymbol{\beta}) \prod_{n=1}^{N} q(\mathbf{z}_n | \mathbf{x}_n, \boldsymbol{\beta})$$

• Substituting this in we get:

$$\mathcal{L} = \mathbb{E}_{q(\boldsymbol{\beta})}[\log p(\boldsymbol{\beta}) - \log q(\boldsymbol{\beta})] + \sum_{n=1}^{N} \mathbb{E}_{q(\boldsymbol{\beta})q(\mathbf{z}_n \mid \mathbf{x}_n, \boldsymbol{\beta})}[\log p(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta}) - \log q(\mathbf{z}_n \mid \mathbf{x}_n, \boldsymbol{\beta})]$$

Ratio Estimation

• We know we can't evaluate $p(x_n, z_n | \beta)$ and we do not want to restrict ourselves to being able to evaluate $q(x_n, z_n | \beta)$. So let's subtract a constant value from our loss:

$$\log q(x_n) = \log q(x_n, z_n | \beta) - \log q(z_n | x_n, \beta)$$

• This gives:

$$\mathcal{L} \propto \mathbb{E}_{q(\boldsymbol{\beta})}[\log p(\boldsymbol{\beta}) - \log q(\boldsymbol{\beta})] + \sum_{n=1}^{N} \mathbb{E}_{q(\boldsymbol{\beta})q(\mathbf{z}_n \mid \mathbf{x}_n, \boldsymbol{\beta})} \left[\log \frac{p(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta})}{q(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta})} \right]$$

• This final term is a ratio for which we can use ratio estimation techniques

Ratio Estimation (2)

• We introduce a ratio function (usually a neural network) that models the probability that a sample belongs to p given a sample from p or q: $\sigma(r(\mathbf{x}_n, \mathbf{z}_n, \boldsymbol{\beta}; \boldsymbol{\theta}))$

• We connect this to a "proper scoring rule" loss function. The example they offer is:

$$\mathcal{D}_{\log} = \mathbb{E}_{p(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta})}[-\log \sigma(r(\mathbf{x}_n, \mathbf{z}_n, \boldsymbol{\beta}; \boldsymbol{\theta}))] + \mathbb{E}_{q(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta})}[-\log(1 - \sigma(r(\mathbf{x}_n, \mathbf{z}_n, \boldsymbol{\beta}; \boldsymbol{\theta})))]$$

• Where the gradients can be calculated using Monte Carlo sampling.

Minimizing the loss with a sufficiently expressive function should give:

$$r^*(\mathbf{x}_n, \mathbf{z}_n, \boldsymbol{\beta}) = \log p(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta}) - \log q(\mathbf{x}_n, \mathbf{z}_n \mid \boldsymbol{\beta})$$

Minimizing the KL Objective

• Assuming we have an optimal ratio function, then we can use this ratio estimator in our loss:

$$\mathcal{L} = \mathbb{E}_{q(\boldsymbol{\beta} \mid \mathbf{x})}[\log p(\boldsymbol{\beta}) - \log q(\boldsymbol{\beta})] + \sum_{n=1}^{N} \mathbb{E}_{q(\boldsymbol{\beta} \mid \mathbf{x})q(\mathbf{z}_{n} \mid \mathbf{x}_{n}, \boldsymbol{\beta})}[r(\mathbf{x}_{n}, \mathbf{z}_{n}, \boldsymbol{\beta})]$$

• We now introduce a global and local transformation:

$$\boldsymbol{\beta} = T_{\text{global}}(\boldsymbol{\delta}_{\text{global}}; \boldsymbol{\lambda}), \quad \boldsymbol{\delta}_{\text{global}} \sim s(\cdot)$$

$$\mathbf{z}_n = T_{\text{local}}(\boldsymbol{\delta}_n, \mathbf{x}_n, \boldsymbol{\beta}; \boldsymbol{\phi}), \quad \boldsymbol{\delta}_n \sim s(\cdot)$$

Minimizing the KL Objective (2)

• Assuming we have an optimal ratio function, then we can use this ratio estimator in our loss:

$$\mathcal{L} = \mathbb{E}_{q(\boldsymbol{\beta} \mid \mathbf{x})}[\log p(\boldsymbol{\beta}) - \log q(\boldsymbol{\beta})] + \sum_{n=1}^{N} \mathbb{E}_{q(\boldsymbol{\beta} \mid \mathbf{x})q(\mathbf{z}_{n} \mid \mathbf{x}_{n}, \boldsymbol{\beta})}[r(\mathbf{x}_{n}, \mathbf{z}_{n}, \boldsymbol{\beta})]$$

• We then have the update rules

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \mathbb{E}_{s(\boldsymbol{\delta}_{\text{global}})} [\nabla_{\boldsymbol{\lambda}} (\log p(\boldsymbol{\beta}) - \log q(\boldsymbol{\beta}))]] + \sum_{n=1}^{N} \mathbb{E}_{s(\boldsymbol{\delta}_{\text{global}})s_n(\boldsymbol{\delta}_n)} [\nabla_{\boldsymbol{\lambda}} r(\mathbf{x}_n, \mathbf{z}_n, \boldsymbol{\beta})]$$

$$\nabla_{\boldsymbol{\phi}} \mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{q(\boldsymbol{\beta})s(\boldsymbol{\delta}_n)} [\nabla_{\boldsymbol{\phi}} r(\mathbf{x}_n, \mathbf{z}_n, \boldsymbol{\beta})]$$

The final algorithm

Algorithm 1: Likelihood-free variational inference (LFVI)

```
Input: Model \mathbf{x}_n, \mathbf{z}_n \sim p(\cdot \mid \boldsymbol{\beta}), p(\boldsymbol{\beta})
Variational approximation \mathbf{z}_n \sim q(\cdot \mid \mathbf{x}_n, \boldsymbol{\beta}; \boldsymbol{\phi}), q(\boldsymbol{\beta} \mid \mathbf{x}; \boldsymbol{\lambda}),
Ratio estimator r(\cdot; \boldsymbol{\theta})
```

Output: Variational parameters λ , ϕ

Initialize θ , λ , ϕ randomly.

while not converged do

Compute unbiased estimate of $\nabla_{\theta} \mathcal{D}$ (Eq.6), $\nabla_{\lambda} \mathcal{L}$ (Eq.8), $\nabla_{\phi} \mathcal{L}$ (Eq.9). Update θ , λ , ϕ using stochastic gradient descent.

end