

TNO-rapport
PML 1997-A39

**Samenvatting van de resultaten en evaluatie
van het project 'Feasibility study of an IM
Ignitor' ten behoeve van het project 'Ther-
mische Initiatie'**

TNO Prins Maurits Laboratorium

19980408 113

TNO-rapport
PML 1997-A39

TNO Prins Maurits Laboratorium

**Samenvatting van de resultaten en evaluatie
van het project 'Feasibility study of an IM
Ignitor' ten behoeve van het project 'Ther-
mische Initiatie'**

Lange Kleiweg 137
Postbus 45
2280 AA Rijswijk

Telefoon 015 284 28 42
Fax 015 284 39 58

Datum
november 1997

Auteur(s)
Ir. J.H.G. Scholtes

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unrestricted

Rubricering : Ing. J.A. van Gool
Vastgesteld door : 26 augustus 1997
Vastgesteld d.d. : (deze rubricering wijzigt niet)

Titel : Ongerubriceerd
Managementuitreksel : Ongerubriceerd
Samenvatting : Ongerubriceerd
Rapporttekst : Ongerubriceerd

Alle rechten voorbehouden.
Niets uit deze uitgave mag worden
vermenigvuldigd en/of openbaar
gemaakt door middel van druk, foto-
kopie, microfilm of op welke andere
wijze dan ook, zonder voorafgaande
toestemming van TNO.

Indien dit rapport in opdracht werd
uitgebracht, wordt voor de rechten en
verplichtingen van opdrachtgever en
opdrachtnemer verwezen naar de
Algemene Voorwaarden voor Onder-
zoeksopdrachten aan TNO, dan wel
de betreffende terzake tussen de
partijen gesloten overeenkomst.
Het ter inzage geven van het
TNO-rapport aan direct belang-
hebbenden is toegestaan.

Exemplaarnr. : 15
Oplage : 25
Aantal pagina's : 18 (excl. RDP & distributielijst)
Aantal bijlagen : -

DTIC QUALITY INSPECTED 3

© 1997 TNO

TNO Prins Maurits Laboratorium is onderdeel
van de hoofdgroep TNO Defensieonderzoek
waartoe verder behoren:

TNO Fysisch en Elektronisch Laboratorium
TNO Technische Menskunde

Nederlandse Organisatie voor toegepast-
natuurwetenschappelijk onderzoek TNO

Managementuittreksel

Titel : Samenvatting van de resultaten en evaluatie van het project 'Feasibility study of an IM Ignitor' ten behoeve van het project 'Thermische Initiatie'
Auteur(s) : Ir. J.H.G. Scholtes
Datum : november 1997
Opdrachtnr. : A95KL408
Rapportnr. : PML 1997-A39

In het kader van het project 'Feasibility study of an IM-Ignitor' is door het TNO Prins Maurits Laboratorium (TNO-PML) onderzoek gedaan naar de ontwikkeling van een ontsteker voor raketsystemen. Het doel van dit onderzoek was een ontsteker zodanig te ontwikkelen dat de kans op een IM-classificatie voor het raketsysteem vergroot zou worden. Hieraan lag de filosofie een ontsteker te bouwen die eerder dan de hoofdlading ontsteekt ten grondslag. In dit onderzoek is enerzijds de aandacht uitgegaan naar de bepaling van specifieke parameters, zoals de brand-snelheid en verbrandingstemperatuur van de stuwwallen en anderzijds naar de responsie van een stuwwal ten gevolge van een thermische stimulus, ook wel 'Cook-off' genoemd. Daar dit onderzoek hoogstwaarschijnlijk nuttige gegevens zou kunnen opleveren voor het project 'Thermische Initiatie (TI)', is een opsomming van de resultaten en een korte evaluatie van het bovengenoemde project in de planning van het TI-project opgenomen.

Er is een aantal nieuwe stuwwallen ontwikkeld dat voldoet aan de gestelde specificaties, omschreven in dit onderzoeksproject. Met deze stuwwallen is een groot aantal testen uitgevoerd en zijn parameters bepaald bij verhoogde temperatuur. De resultaten van deze testen en de parameters kunnen gebruikt worden in het Thermische Initiatie onderzoek. Hierbij kan gedacht worden aan het doorrekenen van een gecombineerd thermisch/chemisch-mechanisch systeem van een raketmotor tot voor het moment van initiatie.

Op grond van de resultaten kan het volgende gesteld worden. De bovengenoemde filosofie, dat de ontsteker bij een ongewenste opwarming eerder dan de hoofdlading ontsteekt, zou van toepassing kunnen zijn op dit systeem. Als randvoorwaarde zou, bij het gebruik van de aangegeven stuwwallen, gesteld moeten worden dat het raketsysteem als open systeem beschouwd mag worden. Tevens zouden de mechanische eigenschappen van de hoofdlading zodanig dienen te zijn dat er geen versnelde verbranding of DDT optreedt.

De ontsteektemperatuur van de HTPB/AP-stuwwal is sterk afhankelijk van de mate van opsluiting en wordt sterk bepaald door het al dan niet aanwezig zijn van radicalen in het reactiesysteem. De ontwikkelde stuwwallen reageerden vrij heftig

in de slow Cook-off test. De reactie is meer dan slechts een verbranding van de initiator en kan als een explosie aangeduid worden.

In opgesloten toestand ontlopen de ontsteektemperaturen van de HTPB en PPG-stuwstof elkaar niet veel. De mechanische eigenschappen van de HTPB beginnen volgens de TMA-meting bij 150 °C te veranderen, die van de PPG-houdende stuwstof reeds eerder. De rekeigenschappen van de PPG-stuwstof zijn beter dan die van de HTPB-stuwstof. De maximale sterkte is daarentegen bij de HTPB-stuwstof iets beter, maar niet beduidend. Algemeen kan gesteld worden dat de eigenschappen van de stuwstoffen nog niet optimaal zijn. Dit geldt zowel voor de rek als de sterkte.

Vervolgonderzoek zou wenselijk zijn om tot betere mechanische eigenschappen van stuwstoffen en van explosieve stoffen te komen. Hiervoor is een beter inzicht nodig in welke eigenschappen belangrijk zijn zodat bij een ongewenste stimulus een milde respons het gevolg is.

Samenvatting

In het kader van het project 'Feasibility study of an IM-Ignitor' is door het TNO Prins Maurits Laboratorium (TNO-PML) onderzoek gedaan naar de ontwikkeling van een ontsteker voor raketsystemen. Het doel van dit onderzoek was een ontsteker zodanig te ontwikkelen dat de kans op een IM-classificatie voor het raketsysteem vergroot zou worden. In dit onderzoek is enerzijds de aandacht uitgegaan naar de bepaling van specifieke parameters, zoals de brandsnelheid en verbrandingstemperatuur van de stuwwallen, en anderzijds naar de responsie van een stuwwallen ten gevolge van een thermische stimulus, ook wel 'Cook-off' genoemd. Daar dit onderzoek hoogstwaarschijnlijk nuttige gegevens zou kunnen opleveren voor het project 'Thermische Initiatie (TI)', is een opsomming van de resultaten en een korte evaluatie van het bovengenoemde project gemaakt.

Uit het project volgt dat een gewenste vroegtijdige zelfontbranding van de ontsteker een normale verbranding in plaats van een heftige explosie van het raketsysteem zou kunnen opleveren. Als randvoorwaarden zou gesteld moeten worden dat het raketsysteem een open systeem is en dat de mechanische eigenschappen van de hoofdlading op het moment van ontsteking zodanig zijn dat er geen versnelde verbranding of een DDT-reactie optreedt. Verder kunnen met de gevonden resultaten Cook-off berekeningen uitgevoerd worden om het Cook-off computermodel te verifiëren en te verbeteren.

Inhoud

Managementuitreksel	2
Samenvatting	4
1 Inleiding	6
2 Overzicht van werkzaamheden	7
3 Overzicht resultaten van het Feasibility-onderzoek.....	8
3.1 Inleiding.....	8
3.2 Resultaten	8
3.3 Thermisch/chemische gegevens	10
4 Evaluatie	15
5 Conclusies	16
6 Referenties	17
7 Ondertekening.....	18

1 Inleiding

In het kader van het project 'Feasibility study of an IM-Ignitor' is door het TNO Prins Maurits Laboratorium (TNO-PML) onderzoek gedaan naar de ontwikkeling van een ontsteker voor raketsystemen. Het doel van dit onderzoek was een ontsteker zodanig te ontwikkelen dat de kans op een IM-typeclassificatie voor het raket-systeem vergroot zou worden. Hieraan lag de filosofie een ontsteker te bouwen die eerder dan de hoofdlading ontsteekt ten grondslag. In dit onderzoek is enerzijds de aandacht uitgegaan naar de bepaling van specifieke parameters, zoals de brand-snelheid en verbrandingstemperatuur van de stuwwallen, en anderzijds naar de responsie van een stuwwal ten gevolge van een thermische stimulus, ook wel 'Cook-off' genoemd. Daar dit onderzoek hoogstwaarschijnlijk nuttige gegevens zou kunnen opleveren voor het project 'Thermische Initiatie (TI)', is een opsomming van de resultaten en een korte evaluatie van het bovengenoemde project in de planning van het TI-project opgenomen.

In hoofdstuk 2 wordt een kort overzicht van de werkzaamheden van het Feasibility-project gegeven en in hoofdstuk 3 het overzicht van de resultaten. Hoofdstuk 4 bevat de evaluatie van het project gevolgd door de conclusies in hoofdstuk 5.

2 Overzicht van werkzaamheden

In het 'Raketsysteem feasibility-onderzoek' zijn tal van testen en onderzoeken verricht om tot het gewenste doel te komen. Naast de ontwikkeling van een computermodel voor ontstekers en van zogenaamde 'battleship-testen', het uitvoeren van testen zoals de Standburner-test en de L-start test, zijn tal van werkzaamheden verricht en testen uitgevoerd die van belang kunnen zijn voor het TI-project.

Hieronder vallen de werkzaamheden:

- een algemene literatuurstudie;
- ontwikkeling van stuwwerken (HTPB/AP en PPG/AP/AN);
- drukproeven ter bepaling van de mechanische eigenschappen van de stuwwerken;
- trekproeven ter bepaling van de mechanische eigenschappen (bij verhoogde temperaturen);
- Small scale Cook-off bomb (SCB) testen;
- Slow Cook-off testen (SCO);
- TNO-PML Cook-off testen;
- testen ter bepaling van de reactiekinetiek (niet nulde orde);
- bepaling van de soortelijke warmte;
- bepaling van het glaspunt;
- bepaling van de lineaire uitzettingscoëfficiënt;
- computersimulaties van een raketsysteem om de warmtedoorvoer te berekenen.

Deze werkzaamheden en testen hebben tal van gegevens en parameters opgeleverd die interessant zijn voor het TI-onderzoek. Voor een volledig overzicht van de gegevens wordt naar de volgende rapporten en notities verwezen:

- het rapport 'IM aspecten van raketsystemen: karakterisering van de stuwwerken (literatuurstudie)' van W.A. Mak [1];
- de notitie IMIGN PML TN9609(1) 'IM stuwwerken -resultaten brand- en mechanische testen' van R.P. van den Berg en J.R. Miedema [2];
- het interne rapport 'Thermisch computersimulaties van een raketsysteem' van J.H.G. Scholtes [3];
- een intern memo 'Resultaten proeven van een raketstuwwerf', van J.C. Makkus [4];
- de technische notities 'Resultaten TA-onderzoek' deel 1 - deel 6 van W.P.C. de Klerk [5].

Kopieën van deze rapporten zijn opgenomen in het literatuurbestand van de researchgroep Eigenschappen Energetische Materialen van de Divisie Munitietechnologie en Explosieveiligheid van het TNO-PML.

3 Overzicht resultaten van het Feasibility-onderzoek

3.1 Inleiding

In het Feasibility-onderzoek zijn meerdere stuwestofcomposities ontwikkeld, met de bedoeling tot composities te komen die aan de gestelde specificaties, de brand-snelheid en de verbrandingstemperatuur, voldoen. Alleen de uiteindelijke composities met de naam CK123 (HTPB/AP) en CK124 (PPG/AN/AP) hebben het gehele traject van testen doorlopen. In tabel 1 zijn de samenstellingen van deze beide stuwestoffen gegeven. In de volgende paragrafen zijn de belangrijkste resultaten en gegevens van de testen opgesomd.

Tabel 1: Samenstellingen van stuwestoffen in procenten.

Stofnaam	AP	AN	Catocean	PPG	HTPB	AL	Fe2O3	IPDI
CK123	85,00	0,00	2,00	0,00	10,15	0,00	0,00	1,06
CK124	76,03	4,85	3,52	11,24	0,00	0,00	0,00	2,21

N.b. de dichtheid van beide stuwestoffen is 1,70 gr/cm³.

3.2 Resultaten

3.2.1 Druk- en trekproefresultaten

Om een indruk te krijgen van de mechanische eigenschappen vlak na de aanmaak van een nieuwe stuwestof zijn eenvoudige drukproeven uitgevoerd op een drukbank. Voor de uiteindelijke stuwestoffen zijn trekbankproeven bij verschillende temperaturen uitgevoerd. In tabellen 2 en 3 zijn de resultaten voor de stuwestoffen CK123 en CK124 te vinden.

Tabel 2: Trekbankresultaten.

Stuwestof	Temperatuur (°C)	E-modulus (MPa)	Max. spanning (MPa)	Rek bij max. spanning (%)	Breukspanning (MPa)	Breukrek (%)
CK123	-40	91,85	3,11	7,35	2,14	14,95
	20	31,31	1,13	7,03	0,90	10,93
	60	23,76	0,78	5,15	0,77	5,49
	80	14,50	0,63	6,45	0,58	7,70
	100	12,01	0,52	6,00	0,50	6,35
	120	10,55	0,46	6,10	0,45	6,30
CK124	20	15,01	0,95	17,00	0,75	41,40
	80	4,19	0,33	15,15	0,26	22,45
	100	2,36	0,18	14,47	0,07	30,10

Tabel 3: *Drukproefresultaten.*

Stuwstof	Temperatuur (°C)	E-modulus (MPa)	Max. spanning (MPa)	Rek bij max. spanning (%)	Spanning bij p-punt (MPa)	Rek in p-punt (%)
CK123	20	20,44	2,2	16,00	-	-
CK124	20	12,21	-	-	2,77	26,57

3.2.2 Cook-off testresultaten

Er zijn drie soorten Cook-off testen uitgevoerd. De SCB-test [6], de TNO-PML Cook-off test [7] en de slow Cook-off test in een open configuratie [6]. De SCB-testen zijn uitgevoerd met een opwarmsnelheid van 3 °C/min. en geven door de ervaring met deze test een goede indicatie van de gevoeligheid van de stuwwallen bij opwarming. De TNO-PML Cook-off test is een geïnstrumenteerde test, die uitgevoerd is in het kader van het TI-project met stuwwallen uit het Feasibility project. De testen zijn uitgevoerd om de temperatuurveranderingen intern te kunnen volgen en eveneens een goede waarde voor de warmtegeleidingscoëfficiënt te bepalen. De slow Cook-off test is uitgevoerd om na te gaan hoe een open systeem configuratie, de initiator, reageert op een langzame opwarming. De wandtemperaturen op het moment van de explosie zijn in tabel 4 weergegeven. Van één van de slow Cook-off testen met de HTPB/AP-stuwstof zijn in figuur 1 de temperatuur-tijdcurven van deze test weergegeven. Rond een temperatuur van 200 °C is een tijdelijke verhoging van de temperatuur ten opzichte van de lineaire opwarming te constateren. Dit leidt in een gesloten systeem, zoals in de SCB-test, tot een explosie terwijl dit, in dit open systeem waarbij de gassen aangevoerd kunnen worden, géén consequenties heeft.

Algemeen kan gezegd worden dat de PPG/AN/AP-stuwallen iets heftiger reageren dan de HTPB/AP-stuwallen. Eveneens is geconstateerd dat in de slow Cook-off test de beide stuwwallen exploderen in plaats van een versnelde verbranding van de initiator te leveren. Dit zou in een volledig raketsysteem tot een heftige reactie kunnen leiden. Voor een volledige beschrijving van de TNO-PML Cook-off testen wordt verwezen naar rapport [7].

Tabel 4: *Cook-off temperaturen van de raketstuwwallen.*

	CK124 PPG/AP/AN (°C)	CK123 HTPB/AP (°C)
SCB	193, 191	198, 199
TNO-PML Cook-off	202, 202	206, 203
Slow Cook-off (open)	179, 179	272, 272

Figuur 1: Slow Cook-off test met HTPB/AP-compositie (SO61403a).

3.3 Thermisch/chemische gegevens

In de volgende subparagrafen is een aantal thermische en chemische parameters gegeven dat in het Feasibility-project is gegenereerd. Het betreft onder andere de TG/DTA-meetresultaten en de daaruit afgeleide kinetische reactievergelijkingen, de soortelijke warmte als functie van de temperatuur, het glaspunt van de stuurstoffen, de warmtegeleidingscoëfficiënt en de lineaire uitzettingscoëfficiënt als functie van de temperatuur.

3.3.1 TG/DTA-metingen

Met de TG (Thermo Gravimetrie) en de DTA (Differentiële Thermische Analyse) kan bepaald worden wanneer chemische reactiestappen (endo- of exotherm) starten en de hoeveelheid stof die in een bepaalde stap omgezet wordt. Eveneens kunnen aan de hand van modellen zoals die van Ozawa en Flynn/Dillimore de reactiekinetische vergelijkingen berekend worden. In de tabellen 5 en 6 zijn de reactiestappen en de bijbehorende massa-omzettingen (procentueel) en temperatuuren gegeven. In de volgende paragraaf worden de modellen voor de reactiekinetiek van Flynn en Dillimore en Ozawa beschreven en de resultaten voor de beide stuurstoffen gegeven.

Tabel 5: TG-metingen van stuwwachten CK123 en CK124.

Stuwstof	Atmosf.	1e stap Temp.	1e stap massa	2e stap Temp.	2e stap massa	3e stap Temp.	3e stap massa	Totale massa
CK123	N2	186	5,9	242	14,9	310	79,2	100,0
HTPB/AP	N2	187	6,9	253	12,0	305	81,1	100,0
	air	187	6,6	249	14,3	312	79,1	100,0
	air	186	7,1	252	15,9	310	77,0	100,0
CK124	N2	165	1,8	193	98,2	201*		100,0
PPG/AN/AP	N2	163	3,1	200	96,6	205*		100,0
	air	164	4,3	197	95,7	203*		100,0

* Eindtemperatuur van TG-experiment.

Tabel 6: DTA-metingen van stuwwachten CK123 en CK124.

Stuwstof	Atmosf.	Onset-1 DTA	Onset-2 DTA	Enthalpie
CK123	N2	171	271	-1413
	N2	174	275	-1577
	air	173	278	-1576
	air	168	277	-1627
CK124	N2	164		-216
	N2	157		-429
	air	157		-337

3.3.2 Reactiekinetiek

Reactiekinetische bepalingen met de TG/DTA zijn berekend aan de hand van het model van Flynn en Dillimore. Hierbij worden de volgende formules gebruikt.

De verandering van de ene stof naar de andere (omzetgraad) kan als volgt beschreven worden:

$$\frac{d\alpha}{dt} = k(1-\alpha)^n \Rightarrow \frac{d\alpha}{dt} = kf(\alpha)$$

met α de omzetgraad; n de orde van de reactie; t de tijd en k die een Arrhenius afhankelijkheid bezit: de opwärmsnelheid is:

$$k = A \exp\left(\frac{-E}{RT}\right) \quad \beta = \frac{dT}{dt}$$

Hieruit volgt:

$$k = \frac{\frac{d\alpha}{dT} \beta}{f(\alpha)} = A \exp\left(\frac{-E}{RT}\right) \Rightarrow \ln k = \ln\left(\frac{\frac{d\alpha}{dT} \beta}{f(\alpha)}\right) = \ln A + \frac{-E_a}{RT}$$

In de plot wordt het volgende uitgezet:

$$\frac{1}{T} \text{ versus } \ln\left(\frac{d\alpha}{dT} \frac{\beta}{f(\alpha)}\right) \text{ met } f(\alpha) = (1-\alpha)^n \text{ en } n = 0.5, 1, 2$$

waarbij de helling overeenkomt met $-E_a/R$ en het intercept met $\ln(A)$.

De verkregen resultaten met een opwarmsnelheid van 1, 2 en 5 °C/min. zijn in de tabellen 7 en 9 weergegeven.

Tabel 7: Resultaten van de kinetiekberekeningen voor CK123.

Snelheid	Orde	-E/r	Ea(kJ/mol)	ln(A)	A(min ⁻¹)
1 °C/min	1	-6,75975	56,20	10,541	3,78E4
	2	-8,60023	71,21	14,665	2,34E6
	0,5	-5,83951	48,55	8,4792	4,81E3
2 °C/min	1	-7,37129	61,29	9,0754	8,74E3
	2	-8,84024	73,50	12,297	2,19E5
	0,5	-6,63681	55,18	7,4647	1,75E3
5 °C/min	1	-7,70783	64,09	10,184	2,65E4
	2	-8,59043	71,42	12,126	1,85E5
	0,5	-7,26653	60,42	9,2134	1,00E4

Bij de andere methode, die van Ozawa, worden plots gemaakt van de temperaturen bij een bepaalde conversie als functie van de opwarmsnelheid. In feite is deze methode alleen goed uitvoerbaar op reacties met een enkele stap, hetgeen hier niet van toepassing is. De kinetische waarden zijn bij een conversie van 2, 4 en 8% berekend, hetgeen overeenkomt met de ontleding van het begin van de curve en dus hoofdzakelijk de binder. De methode van Dollimore/Flynn daarentegen fit ??? meer de gehele conversie en kan daardoor als een gemiddelde omzetting gezien worden. Hierdoor zijn de activeringsenergieën bij de methode van Ozawa aanzienlijk hoger. De resultaten van de methode van Ozawa zijn in de tabellen 8 en 10 opgesomd.

Tabel 8: Resultaten voor de reactiekinetiek van CK123 met de methode van Ozawa.

Conversie 2%	Ea = 187,42 kJ/mol	Qo = 5,4515E19 J/kg·s
Conversie 4%	Ea = 232,04 kJ/mol	Qo = 4,2952E23 J/kg·s
Conversie 8%	Ea = 118,22 kJ/mol	Qo = 1,1543E11 J/kg·s

De fit van de 8%-conversie van CK123 was niet optimaal daar niet alleen de zuivere binderreactie gefit ??? is maar ook de vervolgreacties. Dit geldt ook voor CK124. De beste fits zijn bij een conversies van 1 en 2% gevonden.

Tabel 9: Resultaten van de kinetiekberekeningen voor CK124.

Snelheid	Orde	-E/r	Ea(kJ/mol)	ln(A)	A(min ⁻¹)
1 °C/min	1	-6,81471	56,66	8,757	6,36E3
	2	-8,29090	68,93	12,210	2,01E5
	0,5	-6,07666	50,52	7,0312	1,13E3
2 °C/min	1	-7,23950	60,19	9,8017	1,18E4
	2	-8,35611	69,48	12,401	2,43E5
	0,5	-6,68120	55,55	8,5020	4,92E3
5 °C/min	1	-6,64950	55,29	9,1746	9,65E3
	2	-7,51023	62,44	11,156	6,99E4
	0,5	-6,21913	51,71	8,1842	3,58E3

Tabel 10: Resultaten voor de reactiekinetiek van CK123 met de methode van Ozawa.

Conversie 1%	$E_a = 107,64 \text{ kJ/mol}$	$Q_o = 5,51 \text{ E}11 \text{ J/kg}\cdot\text{s}$
Conversie 2%	$E_a = 130,42 \text{ kJ/mol}$	$Q_o = 8,45 \text{ E}13 \text{ J/kg}\cdot\text{s}$
Conversie 4%	$E_a = 180,50 \text{ kJ/mol}$	$Q_o = 1,47 \text{ E}19 \text{ J/kg}\cdot\text{s}$
Conversie 8%	$E_a = 207,87 \text{ kJ/mol}$	$Q_o = 8,00 \text{ E}21 \text{ J/kg}\cdot\text{s}$

3.3.3 De soortelijke warmte

De soortelijke warmte is aan de hand van DSC-metingen bepaald in het temperatuurgebied tussen 40 en 120 °C. Voor de bepaling van de C_p is het gemiddelde genomen van drie experimenten en zijn de meetwaarden gefit met een derdegraads polynoom. Voor de stuurstof CK124 (PPG/AP/AN) is vanwege de kristalfaseovergang de curve opgesplits in twee delen.

- CK123 $Cp(T) = 1013,356 - 0,992 T + 0,032 T^2 - 1,22E-4 T^3$ [J/kg°C].
- CK124 (totaal) $Cp(T) = 1102,019 + 6,402 T - 0,067 T^2 - 2,99E-4 T^3$ [J/kg°C].
- CK124 (1^e fase) $Cp(T) = -288,223 + 99,94 T - 2,133 T^2 + 1,53.E-2 T^3$ [J/kg°C].
- CK124 (2^e fase) $Cp(T) = 916,832 + 13,03 T - 0,143 T^2 + 5,87E-4 T^3$ [J/kg°C].

3.3.4 De glaspunttemperatuur en lineaire uitzettingscoëfficiënt

Met behulp van de (Dynamisch) Thermisch Mechanische Analyse (DTMA) kunnen zogenaamde glaspunttemperaturen en de lineaire uitzettingscoëfficiënten van een materiaal bepaald worden. Het glaspunt is bepaald met een sinuoidale belasting van 5 gram en een frequentie van 0,02 Hz. De opwärmsnelheid bedroeg 10 °C/min.. Voor de uitzettingscoëfficiënt bepalingen bedroeg de opwärmsnelheid 10 °C/min.. Achteraf is gebleken dat voor de homogeniteit van het 'sample' een opwärmsnelheid van 3 tot 5 °C/min. beter geweest zou zijn.

De glaspunttemperaturen van de stuwwallen bedragen:

- CK123 tussen - 61,2 en -61,6 °C;
- CK123 tussen - 37,2 en -35,2 °C.

De lineaire uitzettingscoëfficiënten tussen -89 tot 81 °C (in duplo) zijn:

- CK123(1) $\alpha = 1,026E-4 + 5,969E-8 T - 1,787E-9 T^2;$
- CK123(2) $\alpha = 1,010E-4 + 1,452E-7 T - 1,285E-9 T^2;$

- CK124(1) $\alpha = 1,126E-4 - 3,745E-7 T - 1,667E-8 T^2$;
- CK124(2) $\alpha = 1,015E-4 - 5,541E-8 T - 2,069E-9 T^2$.

Met behulp van de TMA is eveneens geconstateerd dat de HTPB/AP-stuwstof een verandering van uitzetting krijgt bij 150 °C terwijl deze bij de PPG/AP/AN-stuwstof rond de 50 °C verandert. Dit duidt op een verandering in de mechanische eigenschappen als functie van de temperatuur.

3.3.5 Geleidingscoëfficiënt

Met behulp van de interne temperaturen, die in de TNO-PML Cook-off test gemeten worden, kan aan de hand van de temperatuurgradiënt, de geleidingscoëfficiënt van de teststof bepaald worden. Voor de achterliggende theorie wordt naar het rapport [8] verwezen. De volgende waarden zijn voor de beide stuwwstoffen op verschillende momenten uit de opwarmcurve berekend.

Tabel 11: Resultaten van de geleidingscoëfficiëntberekeningen aan de hand van de TNO-PML Cook-off buisresultaten.

Stuwstof	T gemiddeld [°C]	λ [J/smK]
CK123	59	0,353
	71	0,340
	97	0,346
	123	0,359
CK124	76	0,316
	101	0,321
	127	0,322
	153	0,318

4 Evaluatie

Uit de metingen met de SCB, TNO-PML Cook-off test en de slow Cook-off test (test met open systeem) blijkt dat er een groot verschil bestaat in de reactie-ontsteektemperatuur van een HTPB/AP in een open of gesloten systeem (zie tabel 4). De vorming van gassen die een katalytische werking op de volgreacties hebben zijn hiervan de oorzaak. In een open systeem kunnen deze gassen vluchten terwijl in een gesloten systeem deze in het reactiesysteem aanwezig blijven.

Bij een de PPG/AP/AN-stuwstof geeft, zoals verwacht, de ontleding van AN en PPG een verlaagde reactietemperatuur ten opzichte van een HTPB/AP-stuwstof in een open systeem. Bij een PPG/AP/AN-stuwstof ontlopen de reactietemperaturen in de verschillende testen elkaar niet zoveel, maar zijn meer volgens de verwachting dat in een slow Cook-off test de reactietemperatuur lager ligt dan in een relatief snelle SCB-test. De HTPB/AP-stuwstof gaf in de slow Cook-off test (een open systeem) bij 200 °C een tijdelijke een verhoging van de temperatuur die niet tot een 'runaway'-reactie leidde. Bij welke mate van opsluiting deze reactie wel doorgedragen zou hebben is moeilijk in te schatten. De responsie van beide stuwtstoffen in de SCO-test was vrij heftig en zou waarschijnlijk in een volledig raketsysteem tot een heftige reactie geleid hebben. In de gesloten systemen (SCB en TNO-PML Cook-off test) ontlopen de Cook-off temperaturen elkaar niet zoveel.

Indien een raketsysteem (met een centrale boring) als een open systeem beschouwd wordt dan zou de filosofie, dat een ontsteekstuwstof eerder ontsteekt dan de hoofdlading zodat een milde reactie optreedt, kunnen werken. Dit is ook reeds aangetoond door testen in de UK [9]. Hiervoor dienen op moment van ontsteking (180 °C voor de PPG-stuwstof) de mechanische eigenschappen van de hoofdlading zodanig te zijn dat een versnelde verbranding of DDT-reactie niet zal optreden.

Helaas zal, gezien de heftigheid van de responsie van PPG/AP/AN-stuwstof in de slow Cook-off test, bij een ontbranding/ontsteking van de initiator de kans op een normale verbranding van de hoofdlading klein zijn. Verder blijkt uit de TMA-resultaten dat reeds bij 150 °C de HTPB-stuwstof van mechanische eigenschappen begint te veranderen. Hoe deze op het moment van ontsteking van de PPG-stuwstof (180 °C) zijn bepaalt in grote mate de heftigheid van de reactie. Er zijn wel mechanische eigenschappen gemeten bij verhoogde temperatuur, maar slechts tot 120 °C. Deze temperatuur benadert bij lange na niet de ontsteektemperatuur van de PPG-stuwstof. Verder blijkt eveneens de PPG-stuwstof bij lage temperatuur (± 50 °C) reeds van mechanische eigenschappen te veranderen.

Algemeen reageert de PPG stuwtstof iets milder dan de HTPB-stuwstof. De rekeigenschappen zijn eveneens beter dan die van de HTPB-stuwstof. De maximale rek van de PPG-stuwstof loopt van 17% terug naar 14,5% bij temperatuurverhoging. Die van HTPB van 6 naar 7% bij eenzelfde verhoging. De sterkte is van de HTPB-stuwstof iets beter maar ook niet noemenswaardig.

5 Conclusies

Er is een aantal nieuwe stuwwallen ontwikkeld dat voldoet aan gestelde specificaties, omschreven in het Feasibility-onderzoeksproject. Met deze stuwwallen is een groot aantal testen uitgevoerd en zijn parameters bepaald bij verhoogde temperatuur. De resultaten van deze testen en de parameters kunnen gebruikt worden in het Thermische Initiatie onderzoek. Hierbij kan gedacht worden aan het doorrekenen van een gecombineerd thermisch/chemisch-mechanisch systeem van een raketsysteem tot voor het moment van initiatie.

Verder kan op grond van de resultaten het volgende gesteld worden. De filosofie, dat de ontsteker bij een ongewenste opwarming eerder dan de hoofdlading ontsteekt, zou van toepassing kunnen zijn. Als randvoorwaarde zou gesteld moeten worden dat het raketsysteem als open systeem beschouwd mag worden. Tevens zouden de mechanische eigenschappen van de hoofdlading nog zodanig dienen te zijn dat er geen versnelde verbranding of DDT optreedt.

Verder is geconstateerd dat de ontsteektemperatuur van de HTPB/AP-stuwwal sterk afhankelijk is van de mate van opsluiting en sterk bepaald wordt door het al dan niet aanwezig zijn van radicalen in het reactiesysteem. De ontwikkelde stuwwallen reageren vrij heftig in de slow Cook-off test. De reactie is meer dan slechts een verbranding van de initiator en kan als een explosie aangeduid worden.

In gesloten toestand ontlopen de ontsteektemperaturen van de HTPB- en PPG-stuwwal elkaar niet veel. De mechanische eigenschappen van de HTPB beginnen volgens de TMA-meting bij 150 °C te veranderen, die van de PPG-houdende stuwwal reeds eerder. De rekeigenschappen van de PPG-stuwwal zijn beter dan die van de HTPB-stuwwal. De maximale sterkte is daarentegen bij de HTPB-stuwwal is iets beter maar niet beduidend. Algemeen kan gesteld worden dat de eigenschappen van de stuwwallen nog niet optimaal zijn. Dit geldt zowel voor de rek als de sterkte.

Vervolgonderzoek zou wenselijk zijn om tot betere mechanische eigenschappen van stuwwallen en van explosieve stoffen te komen. Hiervoor is een beter inzicht nodig in welke eigenschappen belangrijk zijn zodat bij een ongewenste stimulus een milde respons het gevolg is.

6 Referenties

- [1] Mak, W.A.,
‘IM aspecten van raketmotoren: karakterisering van de stuwtstof (literatuurstudie)’,
Interne notitie, TNO-PML 1996.
- [2] Berg, R.P. van den; Miedema, J.R.,
‘IM stuwtstoffen -resultaten brand- en mechanische testen’,
Interne notitie IMIGN PML TN9609 (1).
- [3] Scholtes, J.H.G.,
‘Thermisch computersimulaties van een raketsysteem’,
Interne notitie, TNO-PML 1996.
- [4] Makkus J.C.,
‘Resultaten proeven Feasibility project’,
Interne notitie, TNO-PML 1996.
- [5] Klerk, W.P.C. de
‘Resultaten TA-onderzoek’,
Deel 1-deel 6, Interne memos uit 1996.
- [6] ‘Recommendation of transport of dangerous goods’,
Tests and criteria, second edition st/sg/ac.10/11 rev.1,
United Nations, New York 1990.
- [7] Scholtes, J.H.G.,
‘Strain rate result of the TNO-PML Cook-off test with HTPB/AP en PPG/AP/AN propellants’,
TNO-rapport PML 1996-A87.
- [8] Scholtes, J.H.G.,
‘Temperture and strain gauge measurements in the TNO-PML Cook-off test’,
TNO-rapport PML 1996-A62.
- [9] Mason, A.,
‘Discussion of IM Thermal Trails carried out on the steel strip Laminate ASRAAM Rocket motor’,
Presented at the Joint NIMIC/KTA 4-20 Workshop ‘Cook-off and XDT Mechanisms’ China Lake USA, 1996.

7 Ondertekening

Dr. B.J. van der Meer
Projectleider

Ir. J.H.G. Scholtes
Auteur

ONGERUBRICEERD
REPORT DOCUMENTATION PAGE
(MOD-NL)

1. DEFENCE REPORT NO. (MOD-NL)	2. RECIPIENT'S ACCESSION NO.	3. PERFORMING ORGANIZATION REPORT NO.
TD97-0039		PML 1997-A39
4. PROJECT/TASK/WORK UNIT NO.	5. CONTRACT NO.	6. REPORT DATE
221495017	A95KL408	November 1997
7. NUMBER OF PAGES	8. NUMBER OF REFERENCES	9. TYPE OF REPORT AND DATES COVERED
18 (excl. RDP & distribution list)	9	Final

10. TITLE AND SUBTITLE

Samenvatting van de resultaten en evaluatie van het project 'Feasibility study of an IM Ignitor' ten behoeve van het project 'Thermische Initiatie'
 [Evaluation of a 'Feasibility study of an IM Ignitor' and a summary of the results to be used in the 'Thermal Initiation' project]

11. AUTHOR(S)

Ir. J.H.G. Scholtes

12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TNO Prins Maurits Laboratory, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
 Lange Kleiweg 137, Rijswijk, The Netherlands

13. SPONSORING AGENCY NAME(S) AND ADDRESS(ES)

DMKL, Afdeling Munitie, P.O. Box 90822, 2509 LV The Hague, The Netherlands

14. SUPPLEMENTARY NOTES

The classification designation Ongerubriceerd is equivalent to Unclassified.

15. ABSTRACT (MAXIMUM 200 WORDS (1044 BYTE))

In the Frame of the project 'Feasibility study of an IM-Ignitor', research has been carried out to develop an Ignitor for a rocketsystem. The main goal of this project was development of an Ignitor to increase the probability for an IM-classification for a rocketsystem. Besides the development of new rocket propellants the work was emphasised on the determination of material parameters as a function of the temperature and the response of the propellants in different Cook-off tests. It was foreseen that this project would give a lot of interesting information for the project 'Thermische Initiatie'. Therefore a summary of the results and a short evaluation of the project is given. As a result of the project it can be stated that a planned early initiation of the ignitor in a Cook-off test could result in a mild response of the rocket motor instead of a severe explosion. As a condition for this statement the rocket system must be seen as an open system and the main charge must be in such a condition that, at the moment of initiation, the probability on a severe deflagration or DDT reaction is negligibly. The material parameter from this project can be used in Cook-off calculations in the TI-project for verification and improvement of the computer model.

16. DESCRIPTORS

IDENTIFIERS

Rocket igniters	Combustion
Rocket propellants	Cook off
Initiation	Tests
Burning rate	

**17a. SECURITY CLASSIFICATION
(OF REPORT)**

Ongerubriceerd

**17b. SECURITY CLASSIFICATION
(OF PAGE)**

Ongerubriceerd

**17c. SECURITY CLASSIFICATION
(OF ABSTRACT)**

Ongerubriceerd

18. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited Distribution

**17d. SECURITY CLASSIFICATION
(OF TITLES)**

Ongerubriceerd

Distributielijst*

1*/2* DWOO

3 DWOO

4 HWO-KL

5* HWO-KLu

6* HWO-KM

7* HWO-CO

8 DMKL, Afdeling Munitie
Ing. J.A. van Gool

9 DMKLu/DM/MWFAW1
Maj. J. Paap

10 KM/WAPCONSYS
LtZel ing. C.R. Timmer

11 Bureau TNO-DO

12* Bureau TNO-DO, accountcoördinator KL

13/15 Bibliotheek KMA

16* Lid Instituuts Advies Raad PML
Prof. B. Scarlett, M.Sc.

17* Lid Instituuts Advies Raad PML
Prof. ir. K.F. Wakker

18* Lid Instituuts Advies Raad PML
BGen. Prof. J.M.J. Bosch

19 TNO-PML, Directie; daarna reserve

20 TNO-PML, Hoofd Divisie Munitietechnologie en Explosieveiligheid
Ir. P.A.O.G. Korting

21/23 TNO-PML, Divisie Munitietechnologie en Explosieveiligheid, Groep Eigenschappen
Energetische Materialen
Dr. A.C. van der Steen, Dr. B.J. van der Meer en Ir. J.H.G. Scholtes

24 TNO-PML, Documentatie

25 TNO-PML, Archief

* De met een asterisk (*) gemerkte instanties/personen ontvangen uitsluitend de titelpagina, het managementuittreksel, de documentatiepagina en de distributielijst van het rapport.