TABLE IX
EFFECT OF RESULT REUSING ON DATAGEN-90-FB (UNIT: MILLISECOND)

Method	P1	P2	P3	P4	P5	P6	P7
w/ Reuse	1817	2447	2736	44700	13755	3242	3046
w/o Reuse	7687	6957	13898	50012	46563	12993	12549
Speedup	4.22	2.84	5.07	1.11	3.38	4.01	4.11

TABLE X
EFFECT OF RESULT REUSING ON FRIENDSTER (UNIT: MILLISECOND)

Method	P1	P2	P3	P4	P5	P6	P7
w/ Reuse	3190	3684	4368	59814	17042	5727	5111
w/o Reuse	8952	8310	22496	63715	55673	21672	21001
Speedup	2.81	2.25	5.14	1.06	3.26	3.78	4.11

APPENDIX

Reusing intermediate results of set intersections can effectively eliminate redundant computation in subgraph matching and thus significantly accelerate the computation, especially in big graphs with more intermediate results to reuse.

We conducted an ablation study to verify the effectiveness of our reusing technique on the two largest graphs, and the results are shown in Table X and Table X respectively. We can see that result reusing can achieve up to $5.14\times$ speedup when compared with the case when result reusing is disabled, which shows the necessity of this important optimization technique.