Задача 5. (2017-09-09 КН) Даден е свързан граф G = (V, E) с |V| = n.

Под "път в G" разбираме прост път – такъв, в който няма повтаряне на върхове. Докажете, че ако $p=u_1u_2\dots u_k$ е произволен най-дълъг път в G и k< n, то u_1 и u_k НЕ са съседи.

Решение.

$$p = u_1 u_2 \dots u_k \qquad \qquad \underbrace{\qquad \qquad \qquad }_{u_1 \quad u_2 \quad u_3 \quad u_{k-1} \quad u_k} \qquad \qquad \underbrace{\qquad \qquad }_{u_{k-1} \quad u_k}$$

От $k < n \Rightarrow \exists$ поне един връх, който не е от p. Нека един от тези върхове е u_{k+1} .

От това, че G е свързан $\Rightarrow \exists$ връх, който не е от p и е съсед на връх от p. Без ограничение на общността нека u_{k+1} е такъв връх.

I сл. Нека u_{k+1} е свързан с някой от краищата на p (или с u_1 или с u_k).

Без ограничение на общността нека $(u_{k+1},u_1)\in E$ (или аналогично $(u_{k+1},u_k)\in E$). Тогава $p_1=u_{k+1}u_1u_2\dots u_{k-1}u_k$ (или аналогично $p_2=u_1u_2\dots u_{k-1}u_ku_{k+1}$) е прост път в G с дължина $|p_1|=k+1>k=|p|$, което е противоречие с това, че p е с найголяма дължина.

II сл. Нека u_{k+1} е свързан с някой от междинните върхове от p.

Нека (u_{k+1}, u_t) ∈ E, 1 < t < k.

Допускаме, че u_1 и u_k са съседи, тоест $(u_1, u_k) \in E$.

Тогава в G има прост път $p_t = u_{k+1}u_tu_{t+1}\dots u_ku_1\dots u_{t-1}$ с дължина $|p_t| = k+1 > k = |p|$. Последното е противоречие с това, че p е с най-голяма дължина. Следователно $(u_1,u_k) \notin E$ и u_1 и u_k не са съседи.