Код Хемінга відноситься до систематичних кодів, в яких з п символів, які утворюють комбінацію, n_0 символів є інформаційними, а останні $k = \pi - n_0$ с надлишковими (контрольними), призначеними для перевірки (контрольні символи у всіх комбінаціях займають однакові позиції). Коди Хемінга дозволяють виправити всі одиничні помилки (при кодовій відстані d=3) і визначити всі подвійні помилки (при d=4), але не виправляти їх.

Зв'язок між кількістю інформаційних та контрольних символів в коді Хемінга знаходять на основі таких міркувань. При передачі комбінації по каналу з шумами може бути спотворений довільний з п символів коду, або комбінація може бути передана без спотворень. Таким чином може бути n+1 варіантів спотворення (включаючи передачу без спотворення). Використовуючи контрольні символи, необхідно перевірити всі n+1варіантів. За допомогою контрольних символів k можна описати k0 подій. Для цього повинна бути використана умова:

В таблиці 1 подана залежність між k і n_0 , яка отримана з цієї невірності, де k - число контрольних символів в коді Хемінга, n_0 - інформаційних символів.

Таблиця 1 – Розміщення контрольних символів в комбінаціях коду Хемінга

n_0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
k	2	3	3	3	4	4	4	4	4	4	4	5	5	5	5

В коді Хемінга контрольні символи розташовують на місцях, кратних степеню числа 2, тобто на позиціях 1, 2, 4, 8 і т. п. Інформаційні символи розташовують на місцях, що залишилися. Наприклад, для семиелементної закодованої комбінації можна записати

$$k_1$$
 k_2 a_{04} k_3 a_{03} a_{02} a_{01}
 a_1 a_2 a_3 a_4 a_5 a_6 a_7

Символи коду Хемінга, які обведені прямокутниками, є контрольними, останні – інформаційні, де аз – старший (четвертий) розряд вихідної кодової комбінації двійкового коду, який необхідно кодувати, ат – молодший (перший) розряд. Після розташування на відповідних місцях кодової комбінації контрольних і інформаційних символів в коді Хемінга складають спеціальні перевірні рівняння, які використовують для визначення наявності спотворень і їх виправлення. З перевірних рівнянь і отримують контрольні символи при кодуванні вихідної кодової комбінації двійкового коду. Для визначення контрольних символів необхідно використати такий алгоритм.

1. Всі символи коду Хемінга з номерами розрядів розташовують в порядку збільшення номерів і під ними записують номери розрядів в двійковому коді

a1 a 2 a3 a4 a5 a6 a7

0001 0010 0011 0100 0101 0110 0111

2. Перше перевірне рівняння складають як суму за mod 2 всіх розрядів, в номерах яких в молодшому розряді 20 стоїть одиниця: $S_1=a_1\oplus a_2\oplus a_5\oplus a_5$.

Друге перевірне рівняння складають як суму за mod 2 всіх розрядів, в номерах яких стоїть одиниця на другому місці відповідного двійкового еквівалента (2¹): $S_2 = a_2 \oplus a_3 \oplus a_6 \oplus a_7$

Третє перевірне рівняння складають як суму за mod 2 всіх розрядів, в номерах яких стоїть одиниця на третьому місці (2²): $S_3=a_4\oplus a_5\oplus a_6\oplus a_7$.

Аналогічно утворюються і інші перевірні суми (при більшій кількості інформаційних і контрольних символів, відповідно).

Як видно з наведених рівнянь, в кожну перевірну суму входить тільки один невизначений контрольний символ k_i (a_1 , a_2 , a_4 , відповідно), а всі інші інформаційні символи відомі

Всі перевірні рівняння за умовою Хемінга повинні дорівнювати 0 при підсумовуванні за mod 2. З цієї умови і знаходять контрольні символи.