STOR 565 Homework

- 1. Describe the difference between a fixed classification rule and a data based classification rule. Define and discuss the risk of rules of both types of classification rules.
- 2. Describe and discuss linear discriminant analysis.
- 3. Let $X \sim \mathcal{N}_k(\mu, \Sigma)$ and let Y = AX + b where $A \in \mathbb{R}^{l \times k}$ and $b \in \mathbb{R}^l$.
 - a. Find $\mathbb{E}Y$ and Var(Y).
 - b. Argue carefully that Y is multinormal.
 - c. Fix $v \in \mathbb{R}^l$. Using the results above, find the distribution of $U = \langle v, Y \rangle$.
- 4. Let X and Y be two jointly distributed random variables. Suppose that we wish to predict the value of Y based on the value of X via a function $g(\cdot)$. Suppose that we judge the quality of the prediction g(X) by the expected squared error $\mathbb{E}(Y g(X))^2$. Then it turns out that the best estimate of Y given X is the conditional expectation E(Y | X).
 - a. Let $g(\cdot)$ be a function. Show that $\mathbb{E}[(Y \mathbb{E}[Y|X])(\mathbb{E}[Y|X] g(X))|X] = 0$. (Hint: expand the product and use basic properties of conditional expectations.)
 - b. Note that $(Y g(X))^2 = (Y E(Y \mid X) + E(Y \mid X) g(X))^2$. Show by expanding the square and using the result from (a) that

$$\mathbb{E}[(Y - g(X))^2 | X] \ = \ \mathbb{E}[(Y - E[Y | X])^2 | X] \ + \ \mathbb{E}[(\mathbb{E}[Y | X] - g(X))^2 | X]$$

- c. Deduce from (b) that $\mathbb{E}[(Y g(X))^2] \ge \mathbb{E}[(Y \mathbb{E}[Y \mid X])^2]$
- 5. Consider a classification problem in which the conditional probability $\mathbb{P}(Y=1\,|\,X=x)$ is defined implicitly via the equation

$$logit(\eta(x:\beta)) = \beta^t x \tag{1}$$

where logit(u) = log[u/(1-u)] for 0 < u < 1 is the logistic (or logit) function.

a. Sketch the logistic function.

b. Show that, by inverting the relation (1) we have

$$\eta(x:\beta) = \frac{e^{\beta^t x}}{1 + e^{\beta^t x}} = \frac{1}{1 + e^{-\beta^t x}}$$

- c. Consider the case that β and x are one-dimensional, and therefore real valued. Find the partial derivatives $\partial \log(\eta(x:\beta))/\partial \beta$ and $\partial^2 \log(\eta(x:\beta))/\partial^2 \beta$, and show that the second partial is always negative.
- 6. Let $\mathcal{P} = \{f_{\theta} : \theta > 0\}$ be the family of exponential pdfs $f_{\theta}(x) = \theta e^{-\theta x}$ for $x \geq 0$. Suppose that we draw n samples independently from a fixed distribution $f_{\theta_0} \in \mathcal{P}$ and observe values $x_1, \ldots, x_n \in \mathbb{R}$.
 - a. Write down the likelihood $L(\theta)$ and the log-likelihood $\ell(\theta)$ for the family \mathcal{P} .
 - b. Find the maximum likelihood estimate $\hat{\theta}_n^{\text{MLE}}$ of θ_0 .
- 7. Recall from class that the Bayes rule can be written in the form $\phi^*(x) = \mathbb{I}(\delta_1(x) \ge \delta_0(x))$ where $\delta_k(x) = \log \pi_k f_k(x)$.
 - a. Show that if $f_k = \mathcal{N}(\mu_k, \Sigma_k)$ then

$$\delta_k(x) = -\frac{1}{2} x^t \Sigma_k^{-1} x + \langle x, \Sigma_k^{-1} \mu_k \rangle - \frac{1}{2} \left[\log(2\pi)^d \pi_k^{-2} + \det(\Sigma_k) + \mu_k^t \Sigma_k^{-1} \mu_k \right]$$

b. Show that if $\Sigma_0 = \Sigma_1 = \Sigma$ then the decision boundary of the Bayes rule is a hyperplane

$$B = \{x : x^t \Sigma^{-1}(\mu_1 - \mu_0) + (c_0 - c_1) = 0\}$$

where c_0, c_1 are constants that do not depend on x.

c. Show that if $\Sigma_0 \neq \Sigma_1$ then the decision boundary of the Bayes rule is a quadratic surface of the form

$$B = \left\{ x : -\frac{1}{2}x^{t}(\Sigma_{1}^{-1} - \Sigma_{0}^{-1})x + x^{t}(\Sigma_{1}^{-1}\mu_{1} - \Sigma_{0}^{-1}\mu_{0}) + (c_{0} - c_{1}) = 0 \right\}$$

- 8. Let X be a standard normal random variable and let $Y = X^2$.
 - a. Using the cdf method, find the density of Y.
 - b. Are X and Y independent? Why or why not?
 - c. What is Cov(X,Y)? What do these results reveal about the relationship between covariance and independence?

2