CH₂

CH 2

2.1 Forms of Energy
 Total Energy
 the expression of E
 the forms of energy of interactions
 Mechanical energy
2.2 Energy Transfer by Heat
 Heat
 Adiabatic Process
 Calculation of Heat
 Work
 Directional Quantities
 the Similarities between Heat and Work

2.1 Forms of Energy

Total Energy

the sum of thermal, mechanical, kinetic, potential, electric, magnetic, chemical, and nuclear

$$e = \frac{E}{m} \, (\mathrm{kJ/kg})$$

- the macroscopic forms of energy
 - kinetic energy

$$KE=rac{1}{2}mV^2 \qquad KE=rac{1}{2}I\omega^2$$

potential energy

$$PE = mgz$$

- the microscopic forms of energy
 - translational energy
 - o rotational kinetic energy
 - vibrational kinetic energy
 - o spin energy

the expression of E

$$E=U+KE+PE=U+rac{1}{2}mV^2+mgz$$

• for a closed system or a control mass

$$\Delta E = \Delta U$$

• for an open system or a control volume

mass flow rate

$$\dot{m}=
ho\dot{V}=
ho A_c V_{avg}$$

energy flow rate

$$\dot{E} = \dot{m}e$$

the forms of energy of interactions

- a closed system: **Heat Transfer** and **work**
- a control system: **Heat Transfer**, **work** and **mass flow**

Mechanical energy

Definition: the form of energy that can be converted to mechanical work completely and directly by an ideal mechanical device

$$e_{mech} = rac{P}{
ho} + rac{V^2}{2} + gz$$

2.2 Energy Transfer by Heat

Heat

defined as the form of energy that is transferred between two systems by virtue of a temperature difference

Adiabatic Process

a process during which there is no heat transfer

- well insulated
- no temperature difference

Calculation of Heat

$$Q=\int_{t_{1}}^{t_{2}}\dot{Q}\mathrm{d}t\qquad Q=\dot{Q}\Delta t$$

Work

the energy transfer associated with a force acting through a distance

Directional Quantities

both heat and work are directional quantities

- heat transfer to a system and work done by a system(+/positive)
- heat transfer from a system and work done on a system(-/negative)

the Similarities between Heat and Work

- both heat and work are boundary phenomena
- systems possess energy, but not heat or work
- both are associated with a process, not a state
- both are path functions