Towards typed repositories of proofs MIPS 2010

Matthias Puech^{1,2} Yann Régis-Gianas² puech@cs.unibo.it yrg@pps.jussieu.fr

 $^1\mathrm{Dept.}$ of Computer Science, University of Bologna $^2\mathrm{University}$ Paris 7, CNRS, and INRIA, PPS, team πr^2 July 10, 2010

How are *constructed* formal mathematics?

What is the common point between the working mathematician and the working programmer?

How are *constructed* formal mathematics?

What is the common point between the working mathematician and the working programmer?

A: They both spend more time editing than writing

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

```
\dots And yet,
```

Workflow of formal mathematics is still largely inspired by legacy software development:

- ► File-based scripts (emacs)
- Separate compilation (make)
- ► Text-based versioning (svn, diffs...)

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

```
... And yet,
```

Workflow of formal mathematics is still largely inspired by legacy software development:

- ► File-based scripts (emacs)
- ► Separate compilation (make)
- ► Text-based versioning (svn, diffs...)

Isn't it time to make these tools metatheory-aware?

Motivations

Rigidity of linear edition

- ► ((edit; compile)*; commit)* loop does not scale to proofs
- ► Concept freeze inhibits the discovery process
- ▶ No room for alternate definitions

Motivations

Rigidity of linear edition

- ► ((edit; compile)*; commit)* loop does not scale to proofs
- ► Concept freeze inhibits the discovery process
- ▶ No room for alternate definitions

Laxity of textual representation

- ► Textual scripts diffs do not reflect the semantics
- ► Not even the syntax

Motivations

Rigidity of linear edition

- ► ((edit; compile)*; commit)* loop does not scale to proofs
- ► Concept freeze inhibits the discovery process
- ▶ No room for alternate definitions

Laxity of textual representation

- ► Textual scripts diffs do not reflect the semantics
- ► Not even the syntax

... Maybe it wasn't adapted to software development

▶ File-based separate compilation

- ▶ File-based separate compilation
- ► Interaction loop with global undo

- ▶ File-based separate compilation
- ► Interaction loop with global undo

- ▶ File-based separate compilation
- ▶ Interaction loop with global undo

- ▶ File-based separate compilation
- ▶ Interaction loop with global undo

- ▶ File-based separate compilation
- ► Interaction loop with global undo

- ▶ File-based separate compilation
- ► Interaction loop with global undo

► AST representation

- ► AST representation
- \blacktriangleright Explicit dependency DAG

- ► AST representation
- ► Explicit dependency DAG

```
parsing

version management + proof-checking
```

- ► AST representation
- ► Explicit dependency DAG
- ▶ Typing annotations

```
parsing

version management + proof-checking
```

- ► AST representation
- ► Explicit dependency DAG
- ► Typing annotations
- ► Incremental type-checking

A core meta-language for incremental type-checking

Expresses

- ▶ (abstract) Syntax
- ▶ (object-) Logics
- ▶ Proofs (-terms)

Features

- ► Typing
- ► Incrementality
- Dependency

A kernel for a typed version control system?

► "Content-adressable"

- ► "Content-adressable"
- ▶ Name reflects content

- ► "Content-adressable"
- ▶ Name reflects content
- ► Maximal sharing (or hash-consing)

Let's do the same with *proofs*

- ► "Content-adressable"
- ► Name reflects content
- ► Maximal sharing (or hash-consing)

Syntax

$$t ::= [x:t] \cdot t \mid (x:t) \cdot t \mid x \mid t \mid t \mid *$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t]$$

Judgement

 $\Gamma \vdash t : u$

Syntax

$$t ::= [x:t] \cdot t \mid (x:t) \cdot t \mid \mathbf{x} \mid \mathbf{t} \mid *$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t]$$

Judgement

 $\Gamma \vdash t : u$

Syntax

$$t ::= [x:t] \cdot t \mid (x:t) \cdot t \mid \stackrel{a}{a} \mid *$$

$$a ::= x \mid a x$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t]$$

Judgement

$$\Gamma \vdash t : u$$

Syntax

$$t ::= [x:t] \cdot t \mid (x:t) \cdot t \mid a \mid * \mid (x = a) \cdot t$$
$$a ::= x \mid a x$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t] \mid \Gamma[x=a:t]$$

Judgement

 $\Gamma \vdash t : u$ "In environment

Syntax

$$t ::= [x:t] \cdot t \mid (x:t) \cdot t \mid a \mid * \mid (x=a) \cdot t$$
$$a ::= x \mid a x$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t] \mid \Gamma[x=a:t]$$

Judgement

 $\Gamma \vdash t : u$ "In environme

Syntax

$$t ::= (x:t) \cdot t \mid a \mid * \mid (x=a) \cdot t$$
$$a ::= x \mid a x$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t] \mid \Gamma[x=a:t]$$

Judgement

 $\Gamma \vdash t : u$

Syntax

$$t ::= (x:t) \cdot t \mid a \mid * \mid (x=a) \cdot t$$
$$a ::= x \mid a x$$

Environments

$$\Gamma ::= \cdot \mid \Gamma[x:t] \mid \Gamma[x=a:t]$$

Judgement

 $\Gamma \vdash t : u \Rightarrow \Delta$ "From repository Γ , term t of type u leads to the new repository Δ "

Product

$$\frac{\Gamma \vdash t : *}{\Gamma \vdash (x : t) \cdot u : *} \frac{\Gamma[x : t] \vdash u : *}{\Gamma \vdash (x : t) \cdot u : *}$$

Product

$$\frac{\Gamma \vdash t : * \Rightarrow _ \quad \Gamma[x : t] \vdash u : * \Rightarrow \triangle}{\Gamma \vdash (x : t) \cdot u : * \Rightarrow \triangle}$$

Product

$$\frac{\Gamma \vdash t : * \Rightarrow _ \qquad \Gamma[x : t] \vdash u : * \Rightarrow \triangle}{\Gamma \vdash (x : t) \cdot u : * \Rightarrow \triangle}$$

Init

$$\frac{}{\Gamma \vdash x:t} \quad [x:t] \in \Gamma$$

Product

$$\frac{\Gamma \vdash t : * \Rightarrow _ \qquad \Gamma[x : t] \vdash u : * \Rightarrow \triangle}{\Gamma \vdash (x : t) \cdot u : * \Rightarrow \triangle}$$

Init

$$\frac{}{\Gamma \vdash x:t\Rightarrow \Gamma} \quad [x:t] \in \Gamma$$

Equality binder

$$\frac{\Gamma \vdash a : u \Rightarrow _ \quad \Gamma[x = a : u] \vdash t : * \Rightarrow \triangle}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \triangle} \quad [y = a : u] \notin \Gamma$$

Equality binder

$$\frac{\Gamma \vdash a : u \Rightarrow \Gamma[x = a : u] \vdash t : * \Rightarrow \Delta}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \Delta} \quad [y = a : u] \notin \Gamma$$

$$\frac{\Gamma \vdash t\{y/x\} : * \Rightarrow \Delta}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \Delta} \quad [y = a : u] \in \Gamma$$

Equality binder

$$\frac{\Gamma \vdash a : u \Rightarrow \Gamma[x = a : u] \vdash t : * \Rightarrow \Delta}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \Delta} \quad [y = a : u] \notin \Gamma$$

$$\frac{\Gamma \vdash t\{y/x\} : * \Rightarrow \Delta}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \Delta} \quad [y = a : u] \in \Gamma$$

Application

$$\frac{\Gamma \vdash a : (y : u) \cdot t \Rightarrow \Delta}{\Gamma \vdash a \; x : t\{x/y\} \Rightarrow \Delta} \quad [x : u] \in \Gamma$$

Given "a", how to decide efficiently " $[y = a : u] \in \Gamma$ "?

Given "a", how to decide efficiently " $[y = a : u] \in \Gamma$ "?

 $\begin{array}{lll} |\cdot| & : & \vec{\kappa} \to \kappa & \text{Hash function} \\ \equiv & : & \kappa \to \kappa \to \mathbb{B} & \text{Efficient comparison} \\ \nu & : & \text{unit} \to \kappa & \text{Fresh key generator} \end{array}$

Given "a", how to decide efficiently " $[y = a : u] \in \Gamma$ "?

 $\begin{array}{lll} |\cdot| & : & \vec{\kappa} \to \kappa & \text{Hash function} \\ \equiv & : & \kappa \to \kappa \to \mathbb{B} & \text{Efficient comparison} \\ \nu & : & \text{unit} \to \kappa & \text{Fresh key generator} \end{array}$

$$\frac{\Gamma \vdash a : u \Rightarrow _ \quad \Gamma[|a| = a : u] \vdash t\{x/|a|\} : * \Rightarrow \triangle}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \triangle} \quad [y = a : u] \notin \Gamma$$

Given "a", how to decide efficiently " $[y = a : u] \in \Gamma$ "?

 $\begin{array}{lll} |\cdot| & : & \vec{\kappa} \to \kappa & \text{Hash function} \\ \equiv & : & \kappa \to \kappa \to \mathbb{B} & \text{Efficient comparison} \\ \nu & : & \text{unit} \to \kappa & \text{Fresh key generator} \end{array}$

$$\frac{\Gamma \vdash a : u \Rightarrow \bot \quad \Gamma[|a| = a : u] \vdash t\{x/|a|\} : * \Rightarrow \triangle}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \triangle} \quad [y = a : u] \notin \Gamma$$

$$\frac{\Gamma \vdash t : * \Rightarrow \bot \quad \Gamma[k:t] \vdash u\{x/k\} : * \Rightarrow \triangle}{\Gamma \vdash (x:t) \cdot u : * \Rightarrow \triangle} \quad k = \nu()$$

Given "a", how to decide efficiently " $[y = a : u] \in \Gamma$ "?

$$\begin{array}{lll} |\cdot| & : & \vec{\kappa} \to \kappa & \text{Hash function} \\ \equiv & : & \kappa \to \kappa \to \mathbb{B} & \text{Efficient comparison} \\ \nu & : & \mathsf{unit} \to \kappa & \text{Fresh key generator} \end{array}$$

$$\frac{\Gamma \vdash a : u \Rightarrow \bot \quad \Gamma[|a| = a : u] \vdash t\{x/|a|\} : * \Rightarrow \triangle}{\Gamma \vdash (x = a) \cdot t : * \Rightarrow \triangle} \quad [y = a : u] \notin \Gamma$$

$$\frac{\Gamma \vdash t : * \Rightarrow _ \quad \Gamma[k : t] \vdash u\{x/k\} : * \Rightarrow \triangle}{\Gamma \vdash (x : t) \cdot u : * \Rightarrow \triangle} \quad k = \nu()$$

$$\Gamma : \kappa \to \vec{\kappa} * \tau$$

Further Work

What if we reintroduce $[x:t] \cdot t$?

Further Work

What if we reintroduce $[x:t] \cdot t$?

1. Constructive metatheory

Further Work

What if we reintroduce $[x:t] \cdot t$?

- 1. Constructive metatheory
- 2. A language to express patches?