

TECALL:
$$\frac{1}{4}$$
 $y'' = \frac{3}{81} = \frac{1}{61} \left(-\frac{1}{2} \times +C \right)$ integrale

 $y' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrale

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61} \left(-\frac{1}{2} \times \frac{1}{2} + C \times \right) + D$ integrals

 $y'' = \frac{1}{61}$