Rate control with packet corruption

Lachlan Andrew, Caltech with David Hayes

Outline

- Problem: What rate is "fair" on lossy links?
- Kelly's Optimisation framework
- Special case: TCP
- Detecting corruption
- Redundancy

What rate is fair on lossy links?

- ICCRG mailing list discussion on DCCP
 - How should we respond to corrupt packets?
 - TCP reduces rate; should DCCP?
- Suggestions
 - Ignore loss
 - Slow down anyway
 - Increase redundancy
- What if there is value in corrupted packets?

Aggressiveness with very high loss

Why slow down?

- Lost packets cause congestion before being lost
- If 99% of our packets are lost, we should send very little for network to get high overall throughput

Increase redundancy

- If application can use corrupt data
 - More corruption ⇒ Stronger error correcting code
- Should DCCP's rate refer to
 - Payload, before coding?
 - Raw rate, after coding?
- Corruption could increase raw rate
 - Desirable?

Kelly's utility maximisation

- Best framework for fairness is economics
 - (See Bob Briscoe's talk)
- Standard theory:
 - Users get utility from instantaneous rate
 - Want maximise sum of everyone's utility

Kelly's utility maximisation

- Kelly/Low algorithm
 - Links measure their congestion
 - Price p
 - Network sums prices of links on a user's path
 - Loss, ECN, delay, explicit
 - Sources set their rates to maximise their "net benefit" as if they were charged p per byte
- Distributed
- Fairness governed by choice of utility function

Special case: Lossy links

Assumptions:

- Corrupt packets still congest all links
 - e.g., WLAN download
- Sources can detect "corruption loss" vs other loss
- □ Utility is $U(x,\varepsilon) = U(x(1-\varepsilon),0)$
 - x = total rate, including corruption
 - ε = proportion corruption
 - "Benefit comes from the packets we receive correctly"

Results

- D(q) is the "response function"
 - What rate do I transmit at for congestion level q
- Going through the algebra gives

$$D(q,\varepsilon) = \frac{1}{1-\varepsilon} D\left(\frac{q}{1-\varepsilon}\right)$$

- Leading 1/(1-ε):
 - Don't count retransmission as part of the rate
- Inner factor of 1-ε:
 - Each congestion loss must count for more

Special case, including TCP

- Common to use $D(q) = q^{-1/\alpha}$
 - "Alpha fairness"
 - □ TCP: α = 2 Proportional fairness: α = 1
 - □ Max-Min $\alpha \rightarrow \infty$ Max-throughput $\alpha \rightarrow 0$
- In this case, $D(q,\varepsilon) = (1-\varepsilon)^{(1/\alpha)-1}D(q)$
 - Normal rate control mechanism (e.g., AIMD)
 - Effective window just multiple of what the mechanism calculates

Special cases

$$D(q,\varepsilon) = (1-\varepsilon)^{(1/\alpha)-1}D(q)$$

- Max throughput: $\alpha \rightarrow 0$
 - Most lossy links get vanishing throughput
- Proportional fairness: α=1
 - No change in window ignore loss!
- Max-Min: $\alpha \rightarrow \infty$
 - Retransmit free: window governs new packets
- "TCP-friendly": α = 2
 - Slight increase in transmit rate for higher ε

Network response

Setting $D(q;\varepsilon) = (1-\varepsilon)D(q)$ doesn't reduce throughput by (1- ε)

Smaller window ⇒less traffic⇒smaller q

 Network always reduces price to create bottleneck links

Detecting corruption

- Ideally: packet header sent with a flag
- Possible alternatives:
 - Successful packet says "I lost a burst of ..."
 - How to distinguish different streams?
 - Don't need to know which lost packets corrupted
 - Explicit signalling of mean corruption rate
 - Assume all loss is corruption
 - If main congestion signal not loss (delay, ECN)

Redundancy

- What help can FEC be?
- Capacity of an erasure channel is 1-ε
 - Same result as asking for retransmissions
 - Application-level decision
- What if packet not entirely erased?
 - Utility function can include some value for packets marked as corrupt
 - Burst errors mean corrupt packets usually lost

Conclusion

- Choose flow-level properties
 - Find mechanisms to implement them

Corruption loss should affect rate

- For TCP-like response functions, just scales the window
 - Up, in some cases!
 - If that's not desired, need new fairness measures