Содержание

1.	Ряды	2
	1.1 Числовые ряды	2
2.	Свойства числовых рядов	4
3.	Условия сходимости рядов	6
	3.1. Необходимое	6
	3.2. Критерии (Необходимое и Достаточное условия)	6
	3.3. Достаточное условие (признаки сходимости)	7
4.	Знакочерелующиеся ряды	11

1. Ряды

1.1 Числовые ряды

1. Определения

Mem. Числовая последовательность: $\{u_n\} = \{u_1, u_2, \dots, u_n, \dots\}, u_n \in \mathbb{R}$

 $Ex.\ 1.\$ Бесконечно убывающая геометрическая прогрессия: $u_n = bq^n, \quad \frac{1}{2^n} \stackrel{n=0,1,\dots}{=} \{1,\frac{1}{2},\frac{1}{4},\dots\}$

Ex. 2. $u_n = 1, -1, 1, -1, \dots$

 $\mathbf{Def.}\ \{u_n\}$ - последовательность

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 называется числовым рядом

Nota. Начальное значение n произвольно (целое)

Ex.
$$u_n = \frac{1}{(n-4)^3}$$
, $n = 5, 6, ...$

$$u_n = \frac{1}{n^3}, \quad n = 2024, 2025, \dots$$

 $Nota. u_n$ называется общим членом ряда

Nota. Существует ли сумма $\sum_{n=1}^{\infty} u_n$ и в каком смысле?

$$Ex. \ 3. \ \sum_{n=1}^{\infty} n = 1 + 2 + 3 + \dots = \infty$$
 - существует, но бесконечная

Ex. 4.
$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + \dots = \begin{bmatrix} 0 + 0 + \dots = 0 \\ 1 + 0 + 0 + \dots = 1 \end{bmatrix}$$

Ex. 5.
$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$$

Def. Частичная сумма ряда $S_n \stackrel{def}{=} \sum_{l=1}^n u_k$

Nota. Последовательность частичных сумм - $S_1, S_2, S_3, S_4, \ldots$

Ex. $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$

$$S_1 = u_1 = 1$$
 $S_2 = \frac{3}{2}$ $S_3 = \frac{7}{4}$ $S_4 = \frac{15}{8}$

 $S_1=u_1=1$ $S_2=\frac{3}{2}$ $S_3=\frac{7}{4}$ $S_4=\frac{15}{8}$ $\lim_{n\to\infty}S_n=?$, но проблема заключается в том, что бы найти формулу для S_n

 $\mathbf{Def.}$ Если $\exists \lim_{n \to \infty} S_n = S \in \mathbb{R}$, то ряд $\sum_{n=1}^{\infty} u_n$ называют сходящимся, а S называют суммой ряда

$$\sum_{n=1}^{\infty} u_n = S$$

Nota. В противном случае ряд расходится, суммы не может быть или она бесконечна

Ех. Поиск суммы по определению

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$u_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S_n = \sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 = S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Nota. При исследовании на сходимость используются эталонные ряды

Ex. Геометрический ряд (эталонный): $\sum_{n=0}^{\infty} bq^n$

$$S_n = \sum_{k=0}^n bq^k = b(1+q+q^2+q^3+\cdots+q^n) = b\frac{1-q^n}{1-q}$$

Исследуем предел $\lim S_n$:

$$|q| < 1 \qquad \lim_{n \to \infty} S_n = \frac{b}{1 - q} \lim_{n \to \infty} (1 - q^n) = \frac{b}{1 - q}$$

$$|q| > 1 \qquad \lim_{n \to \infty} S_n = \infty(q^n \to \infty)$$

$$|q| > 1$$
 $\lim_{n \to \infty} S_n = \infty(q^n \to \infty)$

$$|q| = 1 \qquad \lim_{n \to \infty} b \frac{0}{0}? \qquad \sum_{n=0}^{\infty} b q^n = \sum_{n=0}^{\infty} b = \infty \quad (b \neq 0)$$

$$q=-1$$
 $\sum_{n=0}^{\infty}b(-1)^n$ - расходится (из четвертого примера)

Lab. Доказать при q = -1 по def $(S_n = ?)$

2. Свойства числовых рядов

Nota. Свойства рядов используются в арифметических операциях с рядами и при исследовании на сходимость

Тh. 1. Отбрасывание или добавление конечного числа членов ряда не влияет на сходимость, но влияет на сумму

 $\sum_{n=1}^{\infty}u_{n}$ и $\sum_{n=1}^{\infty}u_{n}$ одновременно сходятся или расходятся

$$S_{n}^{u} = \sum_{n=1}^{\infty} u_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{k} + u_{k+1} + \dots + u_{n} + \dots$$

$$S_{n}^{v} = \sum_{n=k}^{\infty} v_{n} \qquad u_{n} = v_{n} \quad \forall n \ge k$$

$$S_{n}^{u} = \underbrace{u_{1} + u_{2} + \dots + u_{k-1}}_{\sigma \in \mathbb{R}} + \underbrace{u_{k} + \dots + u_{n}}_{S_{n}^{v}} = \sigma + S_{n}^{v}$$

$$\lim_{n \to \infty} S_{n}^{u} = \lim_{n \to \infty} (\sigma + S_{n}^{v}) = \sigma + \lim_{n \to \infty} S_{n}^{v}$$

Оба предела либо существуют (либо конечны, либо нет), либо не существуют

Th. 2.
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}$$
, $\alpha \in \mathbb{R}$
Тогда $\alpha \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \alpha u_n = \alpha S$

□ По свойству пределов □

$$extbf{Th. 3.} \sum_{n=1}^{\infty} u_n = S \in \mathbb{R}, \ \sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R}$$
 Тогда $\sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$ - сходится

 \square По свойству пределов $\lim_{n\to\infty}(S_n\pm\sigma_n)=\lim_{n\to\infty}S_n\pm\lim_{n\to\infty}\sigma_n=S\pm\sigma$ \square

Nota. Обратное неверно! Теорема разрешает складывать и вычитать сходящиеся ряды, но из сходимости суммы рядов не следует сходимость каждого из них

$$Ex. \ \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \quad$$
 но: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, \ \mathrm{a} \ \sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n+1}$ расходятся

Nota. Докажем расходимость $\sum_{n=1}^{\infty} \frac{1}{n}$

Ех. Гармонический ряд (эталонный)

$$\sum_{n=1}^{\infty} u_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \dots$$

$$\sum_{n=1}^{\infty} v_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16}$$

А так как нижний ряд почленно меньше верхнего, а нижний расходится, то и верхний расходится

Так как $u_n \geq v_n$, то $S_n \geq \sigma_n$, тогда $\lim_{n \to \infty} S_n \geq \lim_{n \to \infty} \sigma_n$

$$\sigma_n = 1 + \frac{1}{2} \cdot n \to \infty \Longrightarrow S_n \to \infty$$

Th. 4. Если ряд сходится к числу S, то члены ряда можно группировать произвольным образом, не переставляя, и сумма всех рядов будет равна S

Группировка означает выделение различных подпоследовательностей из последовательности частичных сумм

$$Ex.$$
 Было $\sum (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + 1 - \dots = \begin{bmatrix} 0, \\ 1, \end{bmatrix}$ так как ряд расходится

$$Nota.$$
 В условиях **Th.** важно, что переставлять члены ряда нельзя $Ex.$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \frac{1}{15} + \dots$

Далее будет доказано, что этот ряд сходится

Найдем сумму, переставив члены ряда

$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{4} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{8} + \left(\frac{1}{7} - \frac{1}{14}\right) - \frac{1}{12} + \left(\frac{1}{9} - \frac{1}{18}\right) + \dots$$

$$S = 1 - \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6}\right) = 1 + \frac{1}{2} \left(-1 - \frac{1}{2} + \frac{1}{3} - \dots\right) = 1 + \frac{1}{2} \left(-2 + 1 - \frac{1}{2} + \frac{1}{3} + \dots\right) = \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \dots\right) = \frac{1}{2} S ?!$$

Nota. Можно доказать, что в подобных рядах перестановкой членов можно получить любое наперед заданное число

Nota. Сходящиеся ряды допускают умножение, но непочленное. В действительности используют формулы перемножения рядов (см. литературу)

$$\sum_{n=1}^{\infty} u_n = S, \sum_{n=1}^{\infty} v_n = \sigma$$
Тогда $\left(\sum_{n=1}^{\infty} u_n\right) \left(\sum_{n=1}^{\infty} v_n\right) = S\sigma$

3. Условия сходимости рядов

3.1. Необходимое

Th.
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R} \Longrightarrow \lim_{n \to \infty} u_n = 0$$

$$\lim_{n \to \infty} S_n = S, \quad \lim_{n \to \infty} (S_n - S_{n-1}) = 0$$

Nota. Обратное неверно! (см. гармонический ряд)

$$Ex. \sum_{n=1}^{\infty} (2n+3) \sin \frac{1}{n}$$
$$\lim_{n \to \infty} (2n+3) \sin \frac{1}{n} = \lim_{n \to \infty} (2+\frac{3}{n}) = 2 \neq 0$$

3.2. Критерии (Необходимое и Достаточное условия)

Mem. Критерий Коши для последовательности: $\{x_n\}$ сходится $\Longleftrightarrow \forall \varepsilon > 0$ $\exists n_0 \in \mathbb{N} \mid \forall m > n > n_0 \mid x_m - x_k \mid < \varepsilon$

Th. (без док-ва)
$$\sum_{n=1}^{\infty} u_n \, \operatorname{сходится} \iff \forall \varepsilon > 0 \, \exists n_0 \in \mathbb{N} \, \mid \, \forall m > n > n_0 \, \mid u_n + \dots + u_m \mid < \varepsilon \\ \mid S_m - S_k \mid < \varepsilon \mid$$

Nota. Хвост ряда попадает в ε -трубу

Nota. Критерий не удобен для непосредственного исследования на сходимость, в отличии от признаков

3.3. Достаточное условие (признаки сходимости)

Здесь мы рассмотрим:

- 1. Признак сравнения (в неравенствах)
- 2. Предельный признак сравнения
- 3. Признак Даламбера
- 4. Признак Коши (радикальный)
- 5. Признак Коши (интегральный)

Далее $\sum_{n=1}^{\infty} u_n$ - исследуемый ряд, $\sum_{n=1}^{\infty} v_n$ - вспомогательный (уже исследован на сходимость), для простоты $v_n, u_n > 0$ (для отрицательных доказывается аналогично)

Th. 1. Признак сравнения (в неравенствах)

- а) $\exists 0 < u_n \le v_n$. Тогда $\sum v_n$ сходится $\Longrightarrow \sum u_n$ сходится $६) \ \exists 0 \le v_n \le u_n$. Тогда $\sum v_n$ расходится $\Longrightarrow \sum u_n$ расходится

а) Строим частичные суммы:

$$\sum v_n$$
 сходится \iff $\exists \lim_{n \to \infty} \sigma_n = \sigma \in \mathbb{R}$

 $\sum v_n$ сходится \iff $\exists \lim_{n \to \infty} \sigma_n = \sigma \in \mathbb{R}$ S_n, σ_n возрастают и обе ограничены числом σ

Следовательно $\exists \lim_{n \to \infty} S_n = S \le \sigma$

Аналогично пункт б)

Тh. 2. Предельный признак

$$\lim_{n\to\infty}\frac{u_n}{v_n}=q\in\mathbb{R}\setminus\{0\}\implies \begin{bmatrix} \sum u_n \text{ сходится, если }\sum v_n \text{ сходится}\\ \sum u_n \text{ расходится, если }\sum v_n \text{ расходится} \end{cases}$$

По определению предела

$$\exists \lim_{n \to \infty} \frac{u_n}{v_n} = q \in \mathbb{R} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | \frac{u_n}{v_n} - q | < \varepsilon$$
$$|\frac{u_n}{v_n} - q| < \varepsilon \iff q - \varepsilon < \frac{u_n}{v_n} < q + \varepsilon$$
$$(q - \varepsilon)v_n < u_n < (q + \varepsilon)v_n$$

а) Если $\sum v_n$ сходится, то из правой части неравенства: $0 < u_n < (q+\varepsilon)v_n$

По признаку сравнения $\sum u_n$ также сходится

б) Если $\sum v_n$ расходится, то из левой части неравенства: $0 < (q-\varepsilon)v_n < u_n$

Тогда по пункту б) **Th. 1.** $\sum u_n$ расходится

$$Ex.\ 1.\ \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} u_n$$
 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} v_n$ сходится $\frac{1}{n(n+1)} = \frac{1}{n^2+n} > \frac{1}{n^2+2n+1} = \frac{1}{(n+1)^2}$ $\sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится по признаку сравнения

$$Ex. \ \mathcal{Z}. \ \sum_{n=1}^{\infty} \frac{1}{n!} = \sum_{n=1}^{\infty} u_n$$
 $\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} v_n \ \text{сходится}$

Начиная с некоторого n_0 $n! > 2^n$. Тогда $u_n < v_n$ при $n > n_0$, по признаку сравнения $\sum_{n=1}^{\infty} \frac{1}{n!}$ сходится

$$Ex. \ 3. \ \sum_{n=1}^{\infty} \ 1_{\overline{n}}$$

Nota. Члены рядов u_n и v_n - бесконечно малые последовательности. Иначе ряды расходятся по необходимому условию. Тогда в Тh. 2. сравниваются порядки бесконечно малых, и ряды одновременно сходятся или расходятся, если u_n и v_n одного порядка малости. По этому принципу подбирается вспомогательный ряд

$$u_n = \arcsin \frac{1}{n} \sim \frac{1}{n} = v_n$$
 $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится

Th. 3. Признак Даламбера

$$\sum_{n=1}^{\infty}u_n$$
 - исследуемый, $\exists \mathcal{D}=\lim_{n o\infty}rac{u_{n+1}}{u_n}\in\mathbb{R}^+$

- a) $0 \le \mathcal{D} < 1 \implies \sum u_n$ сходится б) $\mathcal{D} > 1 \implies \sum u_n$ расходится
- в) $\mathcal{D} = 1$ \Longrightarrow ничего не следует, требуется другое исследование

а) По определению предела
$$\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}, \ 0 \le \mathcal{D} < 1 \Longleftrightarrow$$

а) По определению предела
$$\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}, \ 0 \le \mathcal{D} < 1 \Longleftrightarrow$$
 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \mid \forall n > n_0 \mid \frac{u_{n+1}}{u_n} - \mathcal{D} \mid < \varepsilon \iff \mathcal{D} - \varepsilon < \frac{u_{n+1}}{u_n} < \mathcal{D} + \varepsilon$ Так как $0 \le \mathcal{D} < 1$, можно втиснуть число r между \mathcal{D} и 1 : $\mathcal{D} < r < 1$

Положим $\varepsilon = r - \mathcal{D}$, то есть $\mathcal{D} + \varepsilon = r$

Смотрим правую часть $\frac{u_{n+1}}{u_n} < r$ для $\forall n > n_0,$ где $n_0 = n_0(\varepsilon), \varepsilon = r - \mathcal{D}$

 $u_{n_0+1} < ru_{n_0}$

$$u_{n_0+2} < r u_{n_0+1} < r^2 u_{n_0}$$

$$u_{n_0+l} < r^l u_{n_0}$$

$$\sum_{n=1}^{\infty} u_n = \underbrace{u_1 + u_2 + \dots + u_{n_0 - 1}}_{k} + u_{n_0} + \dots = k + \sum_{m=1}^{\infty} v_m$$

Члены $v_m < r^l u_{n_0}; \ u_{n_0}$ - фикс. число, а $\sum_{l=1}^{\infty} r^l$ сходится как геометрический при |r| < 1

Итак ряд $\sum_{i=1}^{\infty} r^l u_{n_0}$ сходится и почленно превышает $\sum v_m = (\sum u_n) - k$

To есть $\sum u_n$ сходится

б) Lab. (взять r между \mathcal{D} и 1, $1 < r < \mathcal{D}$, $\mathcal{D} - r = \varepsilon$)

Сравнить $\sum u_n$ с $\sum r^l$ (расходящимся)

$$Ex.\ 1.\ \sum_{n=1}^{\infty} \frac{1}{n!}$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$ - сходится

$$Ex.\ \mathcal{Z}.\ \sum_{n=1}^{\infty} \frac{1}{n}$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{n}{n+1} = 1$ - расходится

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \mathcal{D} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1 - \text{сходится}$$

Тh. 4. Радикальный признак Коши

$$\sum_{n=1}^{\infty} u_n \qquad u_n \ge 0 \text{ и } \exists \lim_{n \to \infty} \sqrt[q]{u_n} = K \in \mathbb{R}$$

а)
$$0 \le K < 1 \Longrightarrow \sum u_n$$
 сходится

б)
$$K > 1 \Longrightarrow \sum u_n$$
 расходится

Nota. K = 1 - ничего не следует

а) По определению предела
$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | \sqrt[q]{u_n} - K | < \varepsilon \iff k - \varepsilon < \sqrt[q]{u_n} < k + \varepsilon \ Положим \ \varepsilon = r - K, \ где \ K < r < 1 \implies 0 \le u_n < r^n$$
 - геом. ряд с $|r| < 1$, то есть $\sum r^n$ сходится

б) Аналогично

$$Ex.\ 1.\ \sum_{n \to \infty} \left(\frac{n}{n+1}\right)^n \qquad K = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^n} = \lim_{n \to \infty} \frac{n}{n+1} = 1$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{\left(1 - \frac{1}{n+2}\right)^{n+1}}{\left(1 - \frac{1}{n+1}\right)^n}$ Но $\lim_{n \to \infty} u_n = e^{-1} \neq 0$ - необходимое условие не выполняется

$$Ex. \ 2. \ \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}, \qquad K = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^n} = e^{-1} < 1$$
 - сходится

Тh. 5. Интегральный признак Коши

Если существует $f(x):[1;+\infty]\to\mathbb{R}^+, f(x)$ монотонно убывает, $f(n)=u_n,$ то $\sum_{i=1}^n u_i$ и

 $\int_{-\infty}^{\infty} f(x)dx$ одновременно сходятся или расходятся

$$\int_{1}^{+\infty} f(x)dx = \lim_{b \to \infty} \int_{1}^{b} f(x)dx$$

$$\sum_{n=2}^{b} u_{n} = u_{2} \cdot 1 + u_{3} \cdot 1 + \dots < \int_{1}^{b} f(x)dx < u_{1} \cdot 1 + u_{2} \cdot 1 + \dots = \sum_{n=1}^{b-1} u_{n}$$
Обозначим
$$\sum_{n=1}^{b-1} u_{n} = S_{b-1}, \quad \sum_{n=2}^{b} u_{n} = S_{b-1} - u_{1} + u_{b}$$

$$0 < S_{b-1} - u_{1} + u_{b} < \int_{1}^{b} f(x)dx < S_{b-1}$$

$$0 < \sum_{n=1}^{\infty} u_{n} - u_{1} + u_{b} < \int_{1}^{\infty} f(x)dx < \sum_{n=1}^{\infty} u_{n}$$
Если
$$\int \text{ сходится, то смотрим правую часть}$$
Если
$$\int \text{ расходится, то смотрим левую часть неравенства}$$

4. Знакочередующиеся ряды

$$\mathbf{Def.}\ \sum_{n=0}^{\infty} (-1)^n u_n\ (u_n>0)$$
 - знакочередующийся ряд

Th. Признак Лейбница

Если для знакочередующегося ряда
$$\sum_{n=0}^{\infty} (-1)^n u_n$$
 верно, что $u_n \to 0$ и $|u_1| > |u_2| > \cdots > |u_n|$,

то ряд
$$\sum_{n=0}^{\infty} (-1)^n u_n$$
 сходится