Supplementary Handout for Dis 9: Intro to Estimation

1 Motivation

- Last week, we talked about sampling distributions, which are distributions of some sample statistics
 of interest.
- Recall that our goal is to perform statistical inference: use sample statistic to draw conclusion on population parameter.
- We are finally going to connect the pieces:
 - The sample statistics of interest from last week are **point estimators**. A point estimator takes a best guess at the true value of an underlying population parameter.
 - Sometimes, one might instead want to estimate a range that's likely to include the true population parameter. The estimator that provides such a range is called an interval estimator.
- Sorting through some terminologies:
 - An estimator (point or interval) tries to estimate (a point value or a range of) the corresponding true population parameter.
 - An estimator follows a sampling distribution.
 - A population parameter follows a probability distribution.

2 Point Estimator

- Definition: a point estimator takes a (single) best guess at the true value of an underlying population parameter.
- Examples of point estimator:
 - The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ used to estimate population mean μ_{X} .
 - The sample variance $s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})$ used to estimate population variance σ_X^2 .
 - The sample covariance $s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ used to estimate population covariance σ_{XY} .
- How do you evaluate if an estimator is "good"?
 - \Rightarrow use the following three criteria:
 - 1. Unbiased: an estimator is unbiased if

E[estimator] = population parameter

2. **Relatively efficient**: an estimator is relatively efficient if, compared to another estiamtor with the same amount of bias, it has lower variance. That is, if

 $E[estimator_a] = population parameter and <math>E[estimator_b] = population parameter$

Then estimator $_a$ is relatively efficient if

$$V(\text{estimator}_a) < V(\text{estimator}_b)$$

- 3. **Consistent**: an estimator is consistent if, as $n \to \infty$, the following two hold:
 - (a) **Asymptotically unbiased**: $E[\text{estimator}] \rightarrow \text{population parameter}$, and
 - (b) $V(\text{estimator}) \rightarrow 0$

[Go to Exercise 1 and 2]

3 Interval Estimator: Confidence Interval

- Definition: an interval estimator estimates a range that's likely to include the true population parameter.
- One interval estimator that we often look at: confidence interval

3.1 Construct a confidence interval

• Think about a standard normal distribution:

• If we want to cover $(1 - \alpha)$ portion of this standard normal distribution, then

• We can think about this standard normal distribution as the sampling distribution of the mean, where the sample mean estimator has been standardized:

$$P\left(-Z_{\alpha/2} \le Z \le Z_{\alpha/2}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(-Z_{\alpha/2} \le \frac{\bar{X} - \mu_X}{\sigma_X/\sqrt{n}} \le Z_{\alpha/2}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(-Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}} \le \bar{X} - \mu_X \le Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(\bar{X} - Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}} \le \mu_X \le \bar{X} + Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}\right) = 1 - \alpha$$

Thus, for $(1 - \alpha)$ portion of area covered, the confidence interval constructed is

$$\left[\bar{X}-Z_{\alpha/2}\frac{\sigma_X}{\sqrt{n}}, \bar{X}+Z_{\alpha/2}\frac{\sigma_X}{\sqrt{n}}\right]$$

We call $(1 - \alpha)$ the **confidence level** for the above interval.

• What are some common confidence level and the associated Z score ($Z_{\alpha/2}$)?

Confidence level	α	$Z_{\alpha/2}$
90%	0.1	1.645
95%	0.05	1.96
99%	0.01	2.575

• Interpretation:

Say that, for example, a 95% confidence interval of the mean of X, using a sample of size 70, is estimated to be [4,8]. The following are some examples of correct interpretation of this confidence interval constructed.

- **Correct version 1**: There's a 5% probability that the population mean of *X* lies outside of the confidence interval <u>estimator</u>. For this sample of size 70, we <u>estimate</u> the confidence interval to be [4,8].
- Correct version 2: If random sample of size 70 were repeatedly selected, then in the long run, 95% of the confidence intervals formed would contain the true mean of *X*, which in this case is between 4 and 8.

[Go to Exercise 3]

3.2 Sample size needed given a already constructed confidence interval and confidence level

• We just saw that a confidence interval with $(1 - \alpha)$ confidence level is constructed to be

$$\left[\bar{X} - Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}, \bar{X} + Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}\right]$$

In other words, the lower and upper bound of this confidence interval is calculated to be

$$\bar{X} \mp Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}$$

• Say that instead, we want to specify how tight the confidence interval is. Usually, we do this by specifying a bound (B), which is the value that is subtracted from or added to the \bar{X} . That is, we want the lower and upper bound of a confidence interval to be calculated as

$$\bar{X} \mp B$$

• This implies that

$$B = Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}$$

• Using this expression, we have chosen what B is. Often times, people also have in mind of what they want the confidence level to be (i.e. α is chosen), and σ_X is given. Thus, in order to set the bound as B, one can specify the sample size n:

$$B = Z_{\alpha/2} \frac{\sigma_X}{\sqrt{n}}$$

$$\sqrt{n} = \frac{Z_{\alpha/2} \cdot \sigma_X}{B}$$

$$n = \left(\frac{Z_{\alpha/2} \cdot \sigma_X}{B}\right)^2$$

• The sample size *n* obtained in this way is, more appropriately speaking, a lower bound, since a bigger *n* always shrinks the variance of the sample mean, meaning that the bound can be even tighter if needed.

Thus, in order to achieve bound B under some α and σ_X , one needs sample size

$$n \ge \left(\frac{Z_{\alpha/2} \cdot \sigma_X}{B}\right)^2$$

[Go to Exercise 4]