LIST OF SELECTED CONSTANT VALUES

Speed of light in vacuum	С	$= 3.00 \times 10^8 ms^{-1}$			
Permeability of free space	μ_o	$= 4\pi \times 10^{-7} H m^{-1}$			
Permittivity of free space	ϵ_o	$= 8.85 \times 10^{-12} F m^{-1}$			
Electron charge magnitude	е	$= 1.6 \times 10^{-19} C$			
Planck constant	h	$= 6.63 \times 10^{-34} Js$			
Electron mass	m_e	$= 9.11 \times 10^{-31} kg$ $= 5.49 \times 10^{-4} u$			
Neutron mass	m_n	$= 1.674 \times 10^{-27} kg$ $= 1.008665u$			
Proton mass	m_p	$= 1.672 \times 10^{-27} kg$ $= 1.007277u$			
Hydrogen mass	m_H	$= 1.673 \times 10^{-27} kg$ $= 1.007825u$			
Deuteron mass	m_d	$= 3.34 \times 10^{-27} kg$ $= 2.014102u$ $= 8.31 J K^{-1} mol^{-1}$			
Molas gas constant	R				
Avogadro constant	N_A	$= 6.02 \times 10^{23} mol^{-1}$			
Boltzmann constant	k	$= 1.38 \times 10^{-23} J K^{-1}$			
Free-fall acceleration	g	$= 9.81ms^{-2}$			
Atomic mass unit	1 <i>u</i>	$= 1.66 \times 10^{-27} kg$ $= 931.5 \frac{MeV}{c^2}$			
Electron volt	1eV	$= 1.6 \times 10^{-19} J$			
Constant of proportionality for Coulomb's Law	$k = \frac{1}{4\pi\varepsilon_o}$	$9.0 \times 10^9 \ N \ m^2 \ C^{-2}$			
Atmospheric pressure	1atm	$=1.013\times10^5 Pa$			
Density of water	$ ho_w$	$=100kgm^{-3}$			

LIST OF SELECTED FORMULAE

	LIST OF SELECTED FORMULAE									
1	v = u + at	23	$\theta = \frac{1}{2}(\omega_o + \omega)t$	43	$v = f\lambda$	63	$\gamma = 3\alpha$			
2	$s = ut + \frac{1}{2}at^2$	24	$\omega^2 = \omega_o^2 + 2\alpha\theta$	44	$y(x,t) = A \sin(\omega t \pm kx)$	64	$n = \frac{m}{M} = \frac{N}{N_A}$			
3	$v^2 = u^2 + 2as$	25	$\tau = rF \sin \theta$	45	$v_y = A\omega \cos(\omega t \pm kx)$	65	$v_{rms} = \sqrt{\langle v^2 \rangle}$			
4	$s = \frac{1}{2}(u+v)t$	26	$I = \Sigma mr^2$	46	$y = 2A\cos kx \sin \omega t$	66	$v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$			
5	p = mv	27	$I_{\text{solid sphere}} = \frac{2}{5}MR^2$	47	$f_n = \frac{nv}{2L}$	67	$PV = \frac{1}{3}Nmv_{rms}^2$			
6	$J = F\Delta t$	28	$I_{\text{solid cylinder/disc}} = \frac{1}{2}MR^2$	48	$f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$	68	$P = \frac{1}{3} \rho v_{rms}^2$			
7	$J = \Delta p$ $= mv - mu$	29	$I_{ring} = MR^2$	49	$f_n = \frac{nv}{4L}$	69	$K_{tr} = \frac{3}{2} \left(\frac{R}{N_A} \right) T = \frac{3}{2} kT$			
8	$f = \mu N$	30	$I_{\rm rod} = \frac{1}{12} M L^2$	50	$v = \sqrt{\frac{T}{\mu}}$	70	$U = \frac{1}{2}fNkT = \frac{1}{2}fnRT$			
9	$W = \vec{F} \cdot \vec{s}$ $= Fs \cos \theta$	31	$\Sigma \tau = I \alpha$	51	$\mu = \frac{m}{L}$	71	$\Delta U = Q - W$			
10	$K = \frac{1}{2}mv^2$	32	$L = I\omega$	52	$f_a = \left(\frac{v \pm v_o}{v \mp v_s}\right) f$	72	$W = nRT \ln \left(\frac{V_f}{V_i} \right)$ $= nRT \ln \left(\frac{P_i}{P - f} \right)$			
11	U = mgh	33	$y = A \sin \omega t$	53	$\sigma = \frac{F}{A}$	73	$W = \int P dV = P(V_f - V_i)$			
12	$U_s = \frac{1}{2}kx^2 = \frac{1}{2}Fx$	34	$v = \omega A \cos \omega t$ $= \pm \omega \sqrt{A^2 - y^2}$	54	$\varepsilon = \frac{\Delta L}{L_o}$	74	$W = \int P dV = 0$			
13	$W = \Delta K$	35	$a = -\omega^2 A \sin \omega t$ $= -\omega^2 y$	55	$Y = \frac{\sigma}{\varepsilon}$					
14	$P_{av} = \frac{\Delta W}{\Delta t}$	36	$K = \frac{1}{2}m\omega^2(A^2 - y^2)$	56	$U = \frac{1}{2}F\Delta L$					
15	$P = \vec{F} \cdot \vec{v}$ $= Fv \cos \theta$	37	$U = \frac{1}{2}m\omega^2 y^2$	57	$\frac{U}{V} = \frac{1}{2}\sigma\varepsilon$					
16	$a_c = \frac{v^2}{r} = r\omega^2$ $= v\omega$	38	$E = \frac{1}{2}m\omega^2 A^2$	58	$\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$					
17	$F_c = \frac{mv^2}{r} = mr\omega^2$ $= mv\omega$	39	$\omega = \frac{2\pi}{T} = 2\pi f$	59	$\Delta L = \alpha L_o \Delta T$					
18	$s = r\theta$	40	$T = 2\pi \sqrt{\frac{l}{g}}$	60	$\Delta A = \beta A_o \Delta T$					
19	$v = r\omega$	41	$T = 2\pi \sqrt{\frac{m}{k}}$	61	$\Delta V = \gamma V_o \Delta T$					
20	$a_t = r\alpha$	42	$k = \frac{2\pi}{\lambda}$	62	$\beta = 2 \alpha$					
21	$\omega = \omega_o + \alpha t$									
22	$\theta = \omega_o t + \frac{1}{2} \alpha t^2$									