# HYUNGJOO KWON

**PORTFOLIO** 



INTRODUCE MY
MY
PROJECT

O1Chest X-ray Abnormalties Detection인공지능을 이용한 X-ray 이상 징후 탐지

Pedestrian Light Recognition 인공지능을 이용한 보행자 신호 인식

 03
 — Driver Pengsoo

 이동로봇 원격 제어 및 앱 개발

OpenCV를 이용한 커넥터 불량 판별

### 01. Chest X-ray Abnormalties Detection

#### **Project Summary**

전문의도 진단하기 어려운 흉부 X-ray 질병 판단을 보조할 딥러닝 모델(YOLO, DETR) 개발

(191.82GB 크기의 18000장 Dicom 이미지 사용)

#### Language & Framework & Tool

Python Pytorch Colab, Visual Studio Code

#### Project Url

https://github.com/HyungJoo-Kwon/project/tree/main/Kaggle%20X-Ray%20project Yolo





Dote





### 01. Chest X-ray Abnormalties Detection

#### My Role

질병 조사 데이터 전처리 (크기 조절, coco dataset 변환) EDA(IOU >= 0.4 경우 중복되는 질병) DETR 모델 구현을 통한 이상 징후 탐지

#### Why DETR?

간단한 구조 및 큰 객체에 대한 높은 정확도 but 작은 객체에 대해 낮은 정확도

#### Problem

아래 그래프를 통해 모델이 과대적합된 것을 확인할 수 있었지만 1 epoch 당 20분 이상의 학습시간에 의 해 새로운 모델을 만드는데 어려움이 있었습니다.

의학적 지식의 부족으로 EDA한 데이터를 이용한 중복된 Label의 처리를 하지 못했습니다.



|      | overlap                                        | count |
|------|------------------------------------------------|-------|
| 221  | Aortic enlargement + Cardiomegaly              | 3847  |
| 94   | Pleural effusion + Pleural thickening          | 479   |
| 149  | Pleural thickening + Pulmonary fibrosis        | 310   |
| 159  | Aortic enlargement + Pleural thickening        | 300   |
| 207  | Aortic enlargement + Pulmonary fibrosis        | 277   |
|      |                                                |       |
| 952  | Calcification + Consolidation + ILD + Pleural  | 1     |
| 950  | Calcification + Lung Opacity + Nodule/Mass + O | 1     |
| 348  | Atelectasis + Calcification + Lung Opacity + N | 1     |
| 945  | Consolidation + Infiltration + Lung Opacity +  | 1     |
| 1251 | Calcification + Infiltration + Lung Opacity    | 1     |





### 02. Pedestrian Light Recognition

#### **Project Summary**

교통약자를 위한 보행자 신호 인식 프로그램 개발

#### Language & Framework & Tool

Python

Java

Yolo v3

Flask

Labelimg

OpenCV

Colab

Visual Studio Code

Android Studio

#### Project Url

https://github.com/HyungJoo-Kwon/project/tree/main/Pedestrian light rec ognition







### 02. Pedestrian Light Recognition

#### My Role

데이터 수집, 전처리 Yolo 모델 개발 앱 개발

#### Why Yolo?

간단한 처리과정으로 빠른속도 낮은 background error 객체에 대한 좀 더 일반화된 특징을 학습 but 작은 객체에 대해 상대적으로 낮은 정확도

#### Problem

아래 그래프를 통해 모델이 과대적합된 것을 확인할수 있었지만 1 epoch 당 20분 이상의 학습시간에 의해 새로운 모델을 만드는데 어려움이 있었습니다.

의학적 지식의 부족으로 EDA한 데이터를 이용한 중복된 Label의 처리를 하지 못했습니다.



### 03. Driver Pengsoo

#### **Project Summary**

앱을 통한 이동로봇 원격 제어 자율주행에 기초가 되는 기능 구현 (장애물 피하기, 라이더 기능, 객체 추적 및 인식, 음성제어, 주행 정보 저장) Language & Framework & Tool

Python
Java
Android studio
OpenCV
Visual Studio Code
Pymongo
Mjpg-Streamer
RPI

#### Project Url

<a href="https://github.com/HyungJoo-Kwon/project/tree/main/DriverPengsoo">hhttps://github.com/HyungJoo-Kwon/project/tree/main/DriverPengsoo</a>









### 03. Driver Pengsoo

#### My Role

UDP통신, 라이더 기능, 객체 인식 및 추적 모터 알고리즘, 장애물 피하기, mjpg-streamer를 통해 앱에서 실시간 스트리밍 구현

#### Problem

실시간 스트리밍 시 와이파이의 사용량에 따라 delay차이가 심했습니다. 이러한 문제로 프레임 및 비디오 사이즈 조절로 Delay를 최소화했습니다.

라이더 센서가 아닌 초음파 센서를 이용하여 장애물 피하기, 라이더 기능의 구현으로 인해 정확한 위치의 방향과 거리의 측정에 어려움이 있었습니다. 조금 더 자연스러운 구동 및 기능 수행을 위해 멀티 스레드를 사용하여 문제를 해결하였습니다.



### 04. Connector Defect Determination

#### **Project Summary**

OpenCV를 활용하여 커넥터의 불량 유무 및 불량 위치 판별

#### Language & Framework & Tool

Python C++ OpenCV Visual Studio Code

#### Project Url

https://github.com/HyungJoo-Kwon/project/tree/main/connector









### 04. Connector Defect Determination

#### My Role

개인 Project로 OpenCV를 이용하여 불량 판별을 위한 다양한 함수 구현

#### Problem

프로그램 개발 과정 중 사각형의 꼭지점 좌표를 구하는 과정에서 코드가 길어지는 문제를 겪었습니 다. 각 좌표마다 다른 조건을 임의로 계속 바꿔줬으 며 코드 클래스화의 필요성을 느낄 수 있었습니다.









### RECENT STUDY

#### 밑바닥부터 시작하는 딥러닝 3 학습

- 학습을 통해 딥러닝, 머신러닝이 사용되는 프레임 워크에 대한 자세한 내용을 알아보고 사용할 수 있 었습니다.
- 학습할 때 사용한 클래스와 메서드를 활용하여 본인만의 새로운 패키지를 만들고 배포하였습니 다.
- url : <a href="https://hyungjoo-kwon.github.io/">https://hyungjoo-kwon.github.io/</a>





## MY STORAGE

O1 — Github

https://github.com/HyungJoo-Kwon

O2 — Git Blog

https://hyungjoo-kwon.github.io/