Chapitre 3: Notion de fonction

I Notion de fonction :

1) Activités d'introduction

Activité 1 : Associer un nombre à un autre

On considère les instructions suivantes, que l'on peut appliquer à tout nombre réel :

- instruction A: « retrancher 5 »
- instruction B: « multiplier par 3 »
- instruction C : « élever au carré »

On considère un nombre x et on se propose d'appliquer successivement ces instructions dans un certain ordre. Associer chacune des successions d'instructions suivantes à une expression à exprimer en fonction de x:

- 1) Instructions A C B
- 2) Instructions B A C
- 3) Instructions C B A
- 4) Instructions C B A B

Activité 2 : Exprimer un nombre « en fonction » d'un autre

Longueur considérée : GH

- 1) Exprimer « en fonction de x » chacune des longueurs considérées.
- 2) Calculer chaque longueur dans le cas x = 10 puis dans le cas $x = \frac{2}{7}$

Activité 3 : Relier deux quantités par une formule

Un cinéma propose pour la saison 2014 - 2015, deux tarifs différents :

- le tarif « normal », correspondant à 7 € la place ;
- le tarif « abonné » : le spectateur doit acheter une carte annuelle à
 16 € qui lui permet ensuite de payer 4 € la place.

On appelle x le nombre de places achetées par un spectateur, N le prix qu'elle paierait au tarif normal et A le prix qu'elle paierait au tarif abonné.

- 1) Calculer les prix à payer pour l'achat de trois tickets au tarif normal et au tarif abonné. Quelle ligne du tableur résume ces résultats ?
- 2) Exprimer, en fonction de x, les prix N et A.
- 3) a) Indiquer la formule à entrer dans la cellule B2 qui, copiée vers le bas » permet d'obtenir les prix au tarif normal.
- b) Indiquer la formule à entrer dans la cellule C2 qui, copiée vers le bas » permet d'obtenir les prix au tarif abonné.

	A	В	С	
1	x	N	Α	
2	1	7	20	
3	2	14	24	
4	3	21	28	
5	4	28	32	
6	5	35	36	
7	6	42	40	
8	7	49	44	
9	8	56	48	
10	9	63	52	
11	10	70	56	
12	11	77	60	
13	12	84	64	

<u>Définition</u>: Définir une fonction f c'est se donner un ensemble de nombres D et associer à chacun des nombres x appartenant à D, <u>une seule valeur</u> y que l'on note f(x) et que l'on appelle image de x par la fonction f.

Remarque: la fonction f est parfois notée $f: x \mapsto f(x)$

Exemple: On peut considérer la fonction f définie sur [-1;2] et qui à tout nombre x appartenant à [-1;2] fait correspondre le nombre $f(x) = x^2 - 1$. On peut noter cette fonction $f: x \mapsto x^2 - 1$

<u>Définition</u>: L'ensemble D est appelé ensemble de définition de la fonction f, c'est l'ensemble des valeurs sur lesquelles on définit la fonction f. On le note souvent D $_f$.

Exemples:

- 1) Dans l'exemple précédent $D_f = [-1; 2]$.
- 2) $g(x) = \frac{1}{x-1}$, g est définie pour tout nombre réel différent de 1 donc $D_g = \mathbb{R} \setminus \{1\}$
- 3) $h(x) = \sqrt{x-3}$, h n'est définie que pour les réels x tels que $x-3 \ge 0$ c'est à dire $x \ge 3$ donc $D_h = [3; +\infty[$

2) Image et antécédent par une fonction

Activité 4: Image et antécédent par une fonction

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 4$

1) Calculer l'image de 1 par la fonction f.

 $f(1) = 1^2 - 4 = -3$ « on dira que l'image de 1 par la fonction f est - 3 »

2) Déterminer le ou les nombres qui ont pour image 0 par la fonction f.

$$f(2) = 0$$
 et $f(-2) = 0$

On dira que 2 et -2 sont des antécédents de 0 par la fonction f.

Déterminer le ou les nombres qui ont pour image - 4 par la fonction f.

$$f(0) = -4$$

On dira que 0 est un antécédent de - 4 par la fonction f.

3) Trouver les antécédents de - 5 par f.

If n'y en a pas car
$$f(x) = x^2 - 4 \ge -4$$
.

Tous les nombres n'ont pas forcément un antécédent par f.

<u>Définition</u>: Etant donné un nombre réel y, on appelle antécédent(s) de y par la fonction f le ou les nombres réels $x \in D_f$ qui ont pour image y c'est à dire tels que f(x) = y.

Activité 5 :

Soit f la fonction définie sur \mathbb{R} par f(x)= x^3 - $3x^2$ - 1

Utiliser la calculatrice pour répondre aux questions suivantes :

- 1) Calculer les images de $\frac{2}{3}$ et $\sqrt{3}$ par la fonction f.
- 2) 2 est-il un antécédent de 3 par f ? f (2) = -21 donc non
- 3) 1 est-il un antécédent de 3 par f ? f (1) = -3 donc oui.

II Représentation graphique d'une fonction.

1) Définition

Dans un repère du plan, la ligne formée de l'ensemble des points de coordonnées (x ; f(x)) avec $x \in D_f$ est appelée courbe représentative de la fonction f , on la note $\mathbf{C}_{\!_f}$.

On dit que courbe représentative de la fonction f a pour équation y = f(x) dans le repère choisi.

2) Lectures graphiques:

Activité 6:

Recherche d'images :

Exemples:

sur la courbe ci - contre :

$$f(2) = 0$$

 $f(-2) = -2$
 $f(4) = 3$
 $f(1) = -1$
 $f(-4) = 1$

Recherche d'antécédent(s):

Exemples:

Sur la courbe ci - contre :

- 4 et 3 sont les deux antécédents de 1 par la fonction f7 est le seul antécédent de 5 par la fonction f
- 4 n'a pas d'antécédent par la fonction f.

Conventions graphiques: Voici quelques conventions utilisées afin de noter des informations sur la courbe représentative $\mathscr C$ d'une fonction f:

Lorsqu'un point A sur la courbe est connu avec précision, il est noté par une croix ou un point :

Lorsqu'un point A est l'extrémité de la courbe, il est noté par un gros point:

Lorsqu'un point A à l'extrémité d'une courbe n'appartient pas à la courbe, il est noté par un crochet ouvert.

Une courbe est donnée dans une fenêtre : s'il n'y a pas d'extrémités, la courbe garde la même allure quand on la prolonge:

Une droite verticale (parfois en pointillés) signifie que si on prolonge la courbe, elle ne coupe pas la droite:

a n'appartient pas à l'ensemble de définition

Une droite horizontale en pointillés signifie que si on prolonge la courbe, elle ne coupe pas cette droite.

3) Résolution graphique d'équations

Equation f(x) = k avec k réel

On repère le nombre k sur l'axe des ordonnées puis on trace la droite parallèle à l'axe des abscisses. Si cette droite coupe $\mathscr{C}_{\scriptscriptstyle f}$ alors on lit les abscisses des points d'intersection, sinon l'équation n'a pas de solutions.

Remarque : si k = 0 alors les solutions sont les abscisses des points d'intersection de $\mathscr{C}_{_{\mathit{f}}}$ avec l'axe des abscisses.

L'équation f(x) = k a pour seule solution le nombre a.

Equation f(x) = g(x)

Les solutions sont les abscisses des points d'intersection des courbes $\mathscr{C}_{\mathfrak{f}}$ et $\mathscr{C}_{\mathfrak{g}}$

L'équation f(x) = g(x) a trois solutions : a_1 , a_2 , a_3 .

III Parité d'une fonction

Activité 7 :

1) On considère la fonction f définie sur [-4;4] par f(x) = 4 - $\frac{5}{1+x^2}$

a) Montrer que pour tout $x \in [-4; 4]$ on a f(-x) = f(x)

b) Observer à l'aide de la calculatrice la représentation graphique de f et proposer une conjecture sur cette représentation graphique.

c) Démontrer cette conjecture.

2) On considère la fonction g définie sur [- 3 ; 3] et qui pour tout $x \in [-3; 3]$ vérifie g(-x) = -g(x).

a) Compléter le tableau de valeurs ci-dessous :

X	- 3	- 2	- 1	0	1	2	3
g(x)	14			0	9	- 3	

b) Parmi les courbes représentatives suivantes laquelle représente une fonction qui possède la même propriété que celle de la fonction g?

 $\underline{\text{Définition:}} \text{ Soit } f \text{ une fonction définie sur un intervalle I centré en 0.}$

On dit que f est:

• paire sur I lorsque, pour tout $x \in I$, f(-x) = f(x)

• impaire sur I lorsque, pour tout $x \in I$, f(-x) = -f(x)

Propriétés:

f est paire sur I si, et seulement si, sa courbe représentative est symétrique par rapport à l'axe des ordonnées. f est impaire sur I si, et seulement si, sa courbe représentative est symétrique par rapport à l'origine du repère.

TICE : Représentations graphiques : TP calculatrice/ Tableur

1) Faire un tableau de valeurs 2) Afficher une courbe 3) Reproduire sur papier libre