KEPLACED BY HRTICLE 19 AMENDMENT.

WHAT IS CLAIMED IS:

1. A pneumatic tire in which a plurality of blocks demarcated by circumferential grooves extending in a circumferential direction of the tire and grooves intersecting the circumferential grooves, are provided on a tread,

wherein at least a portion of a block edge is chamfered from the side of a block center to a groove wall surface of each of the blocks;

a heightwise cross sectional form of a chamfer portion perpendicular to the groove wall surface is formed by a combination of a plurality of chamfer forms; and

an angle formed by a tangential line of the chamfer portion with respect to a horizontal extension line of the surface of the block center in a heightwise cross section perpendicular to the groove wall surface increases from the side of the block center to the side of the block end.

- 2. A pneumatic tire according to claim 1, wherein the cross sectional form of the chamfer portion is provided such that a portion of the cross sectional form of the chamfer portion on the block central side is formed as a straight line portion and a portion of the cross sectional form of the chamfer portion on the block end side is formed by at least one curved line portion having a fixed curvature.
- 3. A pneumatic tire according to claim 1 or claim 2, wherein the cross sectional form of the chamfer portion is comprised of two curved

line portions having different curvatures.

- 4. A pneumatic tire according to any one of claims 1 to 3, wherein when in the heightwise cross section perpendicular to the groove wall surface, a length of the chamfer portion measured along a horizontal extension line of the surface of the block central portion is represented by L1 and a likewise measured length of the block is represented by L0, the ratio L1/L0 is in the range from 0.02 to 0.3.
- 5. A pneumatic tire according to any one of claims 1 to 4, wherein a distance, measured along a radial direction of the tire, between the horizontal extension line of the surface of the block central portion and an intersection point of the chamfer portion and the groove wall surface is in the range from 0.10 to 2.50 mm.
- 6. A pneumatic tire according to any one of claims 1 to 5, wherein when a heightwise distance between a groove bottom of the block and the intersection point of the chamfer portion and the groove wall surface is represented by H1 and the maximum height of the block is represented by H0, the ratio H1/H0 is greater than or equal to 0.75 and less than 1.0.
- 7. A pneumatic tire according to any one of claims 1 to 6, wherein the cross sectional form of the chamfer portion changes at a peripheral edge of the block for each portion of the block.

- 8. A pneumatic tire according to any one of claims 1 to 7, wherein a peripheral protuberant portion is formed on a tread surface of the block in the vicinity of the end edge thereof in such a manner that the height of the block gradually decreases toward the block end edge and also toward the central portion of the block.
- 9. A pneumatic tire according to claim 8, wherein the peripheral protuberant portion is formed in at least both end edge portions of the block in the cross section of the block taken along the heightwise direction.
- 10. A pneumatic tire according to claim 8 or claim 9, wherein the peripheral protuberant portion is disposed in vicinities of the end edges at both sides of the block in the circumferential direction of the tire.
- 11. A pneumatic tire according to any one of claims 8 to 10, wherein the peripheral protuberant portion is disposed in vicinities of the end edges at both side of the block in the transverse direction of the tire.
- 12. A pneumatic tire according to any one of claims 8 to 11, wherein a dimension HH1 measured along a radial direction of the tire, between an intersection point of a groove wall surface of the block and

the peripheral protuberant portion, and a height position of a top of the peripheral protuberant portion is in the range from 0.1 to 2.5 mm.

- 13. A pneumatic tire according to any one of claim 8 to 12, wherein a dimension HH2 measured along the radial direction of the tire, between a maximum depth portion in a central region of the block and the height position of the top of the peripheral protuberant portion is in the range from 0.1 to 2.50 mm.
- 14. A pneumatic tire according to any one of claims 8 to 13, wherein the ratio between the dimension HH1 measured along a radial direction of the tire, between an intersection point of a groove wall surface of the block and the peripheral protuberant portion, and a height position of a top of the peripheral protuberant portion, and the dimension HH2 measured along the radial direction of the tire, between a maximum depth portion in a central region of the block and the height position of the top of the peripheral protuberant portion, that is, HH2/HH1, is 1.5 or less.
- 15. A pneumatic tire according to any one of claims 8 to 14, wherein a dimension LL1 measured in a direction of the tread surface, between the intersection point of the groove wall surface of the block and the peripheral protuberant portion, and the top of the peripheral protuberant portion is 10.0 mm or less.

- 16. A pneumatic tire according to any one of claims 8 to 15, wherein the ratio between the dimension LL1 measured in a direction along the tread surface, between the intersection point of the groove wall surface of the block and the peripheral protuberant portion, and the top of the peripheral protuberant portion, and a dimension LL2 measured in the direction along the tread from the top of the peripheral protuberant portion to the maximum depth portion in the central region of the block, that is, LL1/LL2 is 2.0 or less.
- 17. A pneumatic tire according to any one of claims 8 to 16, wherein the ratio between the dimension HH1 measured along a radial direction of the tire, between an intersection point of a groove wall surface of the block and the peripheral protuberant portion, and a height position of a top of the peripheral protuberant portion, and the dimension LL1 measured in a direction along the tread surface, between the intersection point of the groove wall surface of the block and the peripheral protuberant portion, and the top of the peripheral protuberant portion, that is, HH1/LL1 is 1.0 or less.
- 18. A pneumatic tire according to any one of claims 8 to 17, wherein the ratio between the dimension HH2 measured along the radial direction of the tire, between a maximum depth portion in a central region of the block and the height position of the top of the peripheral protuberant portion, and the dimension LL2 measured in the direction along the tread from the top of the peripheral

protuberant portion to the maximum depth portion in the central region of the block, that is, HH2/LL2 is 1.0 or less.

- 19. A pneumatic tire according to any one of claims 8 to 18, wherein the ratio between the maximum height H0 and the minimum height T1 of the block, that is, T1/H0 is set in the range of $0.75 \le T1/H0 < 1.0$.
- 20. A pneumatic tire according to any one of claims 8 to 19, wherein the peripheral protuberant portion is formed along an entire periphery of the end edge of the block.