EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Produto de solubilidade - 3

- 1) Significado do K_{DS}
- 2) Gráfico do K_{DS}
- 3) Produto iônico
- 4) Reação de precipitação
- 5) Precipitação seletiva

PROFESSOR: THÉ

LIÇÃO: 117

1) Reações de Precipitação

Significado de K_{PS}

Imagine um ônibus de 40 lugares; neste ônibus então cabem 20 casais (20 homens e 20 mulheres).

Entretanto podíamos preencher os assentos deste ônibus com um número variável de homens e mulheres.

Um ônibus lotado pode ter 18 homens e 22 mulheres ou 30 homens e 10 mulheres, etc.

Assim o ônibus estará lotado quando a soma de homens e mulheres for igual a 40.

HOMENS	MULHERES
20	20
18	22
30	10
2	38
	:

Analogamente, para saturar (lotar) uma solução de $\mathbf{Ag}^+\mathbf{Cl}^-$ o produto dos íons dissolvidos deve dar 1,8.10⁻¹⁰ que é o seu \mathbf{K}_{PS} .

$$\mathbf{K_{PS}} = \left[\mathbf{Ag}^{+}\right] \mathbf{x} \left[\mathbf{CI}^{-}\right]$$
1) 1,8.10⁻¹⁰ = $\left(1,34.10^{-5}\right)\left(1,34.10^{-5}\right)$
2) 1,8.10⁻¹⁰ = $\left(2,68.10^{-5}\right)\left(0,67.10^{-5}\right)$
3) 1,8.10⁻¹⁰ = $\left(0,67.10^{-5}\right)\left(2,68.10^{-5}\right)$

Existem diversas maneiras de saturar a solução (atingir o K_{PS}), variando as concentrações dos íons \mathbf{Ag}^+ e \mathbf{CI}^-

Solução saturada de um composto iônico é aquela na qual o K_{PS} foi atingido

2) Gráfico do K_{PS}

Desejando representar graficamente as concentrações dos íons \mathbf{Ag}^+ e \mathbf{Cl}^- , de várias soluções saturadas de AgCl parte-se da expressão de K_{PS} para se obter a função matemática.

$$\left[\mathbf{A} \mathbf{g}^{+} \right] \! \left[\mathbf{C} \mathbf{I}^{-} \right] \! = \! \mathbf{K}_{\mathsf{PS}} \qquad \left[\mathbf{A} \mathbf{g}^{+} \right] \! = \! \mathbf{K}_{\mathsf{PS}} \cdot \! \frac{1}{\left[\mathbf{C} \mathbf{I}^{-} \right]} \to \mathbf{A}$$

 $\left[\mathbf{A} \mathbf{g}^{+} \right]$ é inversamente proporcional a $\left[\mathbf{C} \mathbf{I}^{-} \right]$.

Generalizando

Pontos da curva	Solução
Na curva	Saturada
Abaixo da curva	Insaturada
Acima da curva	Supersaturada

Conclusões:

A solução saturada pode ser obtida de diversas maneiras:

- A primeira é dissolvendo o composto inteiro (casais dentro do ônibus) até o limite de saturação. A solubilidade do composto referese apenas a uma das formas de se atingir a saturação (K_{PS}).
- 2) As outras, são variando as concentrações do cátion e do ânion, desde que o K_{PS} seja atingido.

3) Produto iônico (PI)

Para classificar a solução em saturada, insatura ou supersaturada, utiliza-se a expressão do K_{PS}, que agora passa a ser chamada de produto iônico (PI). Considere o exemplo (AgCI).

$$\underbrace{ \begin{array}{c} \textbf{AgCI}_{\left(s\right)} \rightarrow \textbf{Ag}_{\left(aq\right)}^{+} + \textbf{CI}_{\left(aq\right)}^{-} \\ \\ \textbf{1,8.10}^{-10} = \underbrace{ \left[\textbf{Ag}_{\left(aq\right)}^{+} \right] . \left[\textbf{CI}_{\left(aq\right)}^{-} \right] }_{\textbf{PI}}$$

- > A solução será insaturada se o PI for menor que o K_{PS};
- > Se o PI for igual ao K_{PS} a solução será saturada;
- Se o PI for maior que o K_{PS} a solução será supersaturada, o que resultará em precipitação do composto, permanecendo dissolvidos apenas os íons no limite da solução saturada.

No exemplo do AgCl, temos:

PI [Ag ⁺][CI ⁻]	1,8.10 ⁻¹⁰	
PI <	K _{PS}	Solução insaturada
PI =	K _{PS}	Solução saturada (não ocorre precipitação)
PI > K _{PS}		Solução supersaturada (ocorre precipitação)

EXEMPLO - 1

K_{PS} do sulfato de prata é 1,6.10⁻⁵. Quais das soluções abaixo são saturadas ou insaturadas?

Dado: Fórmula do K_{ps} do sulfato de prata, Ag₂SO₄.

$$\mathbf{K}_{\mathsf{PS}} = \left[\mathbf{A}\mathbf{g}^{+}\right]^{2} \left[\mathbf{SO}_{4}^{2-}\right]$$

	Concentração dos íons	
Soluções	$\left[Ag^{^{+}}\right]$	$\left[\mathbf{SO}_{4}^{2-} ight]$
Α	2.10^{-10}	10^{-10}
В	4.10^{-3}	4.10^{-3}
С	3,18.10 ⁻²	$1,59.10^{-2}$
D	10^{-1}	$1,3.10^{-3}$

A solução será saturada se K_{PS} for atingido e será insaturada se o K_{PS} não for atingido.

Aplicando a fórmula do K_{PS} com os valores propostos

a)
$$\left[\mathbf{Ag}^{+} \right]^{2} \left[\mathbf{SO}_{4}^{2-} \right]$$
 $\left(2.10^{-10} \right)^{2} \left(10^{-10} \right) = 4.10^{-30} \therefore \underbrace{ 4.10^{-30} < \mathbf{K}_{PS} }_{\text{insaturada}}$

b)
$$(4.10^{-3})^2 (4.10^{-3}) = 64.10^{-9} \therefore \underbrace{64.10^{-9} < \mathbf{K}_{PS}}_{\text{insaturada}}$$

c)

$$(3,18.10^{-2})^2 (1,59.10^{-2}) = 1,6.10^{-2}$$
 $\therefore \underbrace{1,6.10^{-5} = \mathbf{K}_{PS}}_{saturada}$

d)
$$(10^{-1})^2 (1,6.10^{-3}) = 1,6.10^{-5} \therefore \underbrace{1,6.10^{-5} = \mathbf{K}_{PS}}_{\text{caturada}}$$

Soluções insaturadas: A, B. Soluções saturadas: C, D

4) Reações de precipitação

Dissolvendo-se NaCl em água obtêm-se os íons livres de Na⁺ e Cl⁻.

$$\mathrm{NaCl}_{(\mathrm{s})} \, o \mathrm{Na}^{\scriptscriptstyle +} + \mathrm{Cl}^{\scriptscriptstyle -}$$

Dissolvendo-se AgNO $_3$ em água obtêm-se os íons livres de \mathbf{Ag}^+ e \mathbf{NO}_3^- .

$$AgNO_3 \rightarrow Ag^+ + NO_3^-$$

Na reunião destes íons em solução, dependendo de suas concentrações pode ocorrer ou não precipitação do AgCl.

Ocorrerá a precipitação a partir do momento que o PI ultrapassar o $K_{\rm ps}$.

EXEMPLO - 2

Reúnem-se em uma solução de NaCl e AgNO₃ obtendo-se as seguintes concentrações molares.

$$[NaCl] = 0.1 mol/L$$
; $[AgNO_3] = 0.05 mol/L$

A solução obtida em relação ao AgCl formado será insaturada, saturada sem precipitação ou solução saturada com corpo de fundo?

$$K_{PS(AgCl)} = 1.8.10^{-10}$$

RESOLUÇÃO

Determinando as concentrações dos íons, no momento da mistura inicial.

$$\underbrace{\begin{array}{c} \mathbf{NaCl} \\ \mathbf{0,1} \end{array}} \rightarrow \underbrace{\begin{array}{c} \mathbf{Na}^{+} \\ \mathbf{0,1} \end{array}} + \underbrace{\begin{array}{c} \mathbf{Cl}^{-} \\ \mathbf{0,1} \end{array}}$$

$$\underbrace{\mathbf{AgNO_3}}_{\mathbf{0,05}} \rightarrow \underbrace{\mathbf{Ag^+}}_{\mathbf{0,05}} + \underbrace{\mathbf{NO_3^-}}_{\mathbf{0,05}}$$

Cálculo do PI do AgCl

$$\mathbf{PI} = \left[\mathbf{Ag}^{+} \right] \left[\mathbf{CI}^{-} \right]$$

$$PI = (0,05)(0,1) = 5.10^{-3}$$

Ao compararmos o PI com Kps, conclui-se que ocorrerá precipitação porque o PI>KPS, logo, a solução final em relação ao AgCl, será saturada com o corpo de fundo (precipitado).

$$\underbrace{\frac{\text{PI}}{5.10^{-3}}}_{5.10^{-3}} > \underbrace{\frac{\text{K}_{\text{PS}}}{1,8.10^{-10}}}_{1}$$

5) Precipitação seletiva

Numa solução contendo vários íons, é possível fazer-se a separação destes, através da precipitação seletiva.

EXEMPLO - 3

Considere a solução abaixo, onde encontram-se presentes ions cloreto, Cl^- , e ions iodeto, l^- , nas seguintes concentrações molares:

$$\lceil \text{CI}^{-} \rceil = 10^{-5} \, \text{mol/L}$$

$$\lceil I^{-} \rceil = 10^{-5} \, \text{mol} / L$$

A esta solução adicionam-se cristais de nitrato de prata, AgNO₃. À medida que os íons de prata, Ag⁺ vão entrando em solução formam-se dois sais: o AgCl e o AgI de acordo com as equações:

$$Ag^+ + CI^- \rightarrow AgCI$$
 $Ag^+ + I^- \rightarrow AgI$

$$Ag^+ + I^- \rightarrow AgI$$

De início permanecem dissolvidos, mas após ultrapassar o K_{PS} de cada um começa a precipitação.

- a) Quem precipita primeiro, o AgCl ou o Agl.
- b) Qual deve ser a concentração de Ag+ para iniciar a precipitação do AgI e do AgCI?
- c) Qual deve ser a concentração de I, quando começar a precipitação de AgCI?

RESOLUÇÃO

a) Precipita primeiro aquele que atingir o K_{PS} primeiro. Geralmente aquele de menor KPS.

Sal	K _{PS}
AgCl	1,8.10 ⁻¹⁰
AgI	8,5.10 ⁻¹⁷

Agl é o de menor K_{PS}, portanto precipita primeiro.

b) Para atingir o K_{PS} do AgI

$$8,5.10^{-17} = (\mathbf{x})(10^{-5})$$

$$x = 8, 5.10^{-12} \text{ mol/L}$$

No K_{PS} a solução está saturada, então começa a precipitação do AgI, quando a Ag⁺ for maior que $8,5.10^{-12}$ mol/L.

Para atingir o K_{PS} do AgCl

$$\begin{bmatrix} \mathbf{K}_{PS(AgCI)} = [\mathbf{Ag}^{+}][\mathbf{CI}^{-}] \\ \mathbf{1}, 8.10^{-10} = (\mathbf{x})(10^{-5}) \end{bmatrix}$$

$$x = 1,8.10^{-5} \text{ mol} / L$$

No K_{PS} a solução está saturada, então começa a precipitação do AgCl, quando a Ag⁺ for maior que $1,8.10^{-5}$ mol/L.

c) Quando começar a precipitação do AgCl a concentração de $1,8.10^{-5}$, então a concentração de

I⁻ nesse momento será:

$$\mathbf{K}_{\mathsf{PS}\left(\mathsf{AgI}\right)} \!=\! \! \left[\mathbf{A} \mathbf{g}^{+} \right] \! \left[\mathbf{I}^{-} \right]$$

$$8.5.10^{-17} = (1.8.10^{-5})(x)$$
 \therefore $x = 4.7.10^{-12} \text{mol/L}$

EXEMPLO – 4

Adicionam-se à água dois sais bastante insolúveis (ZnS) e (SnS) contendo os dois um íon comum (o sulfeto, S²⁻). Observa-se que os dois precipitam. Determinar na solução sobrenadante a concentração de cada íon (Zn⁺, Sn²⁺, S⁻).

$$\textbf{ZnS} \rightarrow \textbf{K}_{\textbf{PS}} = \textbf{10}^{-26}$$

$$SnS \rightarrow K_{PS} = 10^{-23}$$

$$\underbrace{\frac{\mathsf{ZnS}}{\mathsf{x}}} \iff \underbrace{\frac{\mathsf{Zn}^{2+}}{\mathsf{x}}} + \underbrace{\frac{\mathsf{S}^{2-}}{\mathsf{x}+\mathsf{y}}}$$

$$10^{-26} = (\mathsf{x})(\mathsf{x}+\mathsf{y})$$

$$\underbrace{\frac{SnS}{y}} \iff \underbrace{\frac{Sn^{2+}}{y}} + \underbrace{\frac{S^{2-}}{y+x}}$$

$$10^{-23} = (y)(x+y)$$

1) Relacionando os dois KPS

$$\frac{\text{ZnS}}{\text{SnS}} \rightarrow \frac{10^{-26}}{10^{-23}} = \frac{\text{(x)} \text{(x y)}}{\text{(y)} \text{(x y)}}$$
$$10^{-3} = \frac{\text{x}}{\text{y}} \therefore \boxed{\text{x} = 10^{-3} \text{y}}$$

2) Substituindo o valor de x na equação do ZnS

Substitution of valid the x file equal.
$$K_{PS(zns)} = \left[zn^{2+} \right] \left[s^{2-} \right]$$

$$10^{-26} = \left(10^{-3} y \right) \left[y + y \right]$$

$$10^{-26} = 10^{-3} y^{2}$$

$$10^{-23} = y^{2}$$

$$y = \sqrt{10.10^{-24}}$$

$$y = 3,2.10^{-12} \text{ mol/L}$$

$$\left[sn^{2+} \right] = 3,2.10^{-12} \text{ mol/L}$$

$$\mathbf{x} = 10^{-3} \, \mathbf{y}$$
 $\mathbf{x} = 10^{-3} \left(3, 2.10^{-12} \right) = 3, 2.10^{-15}$

$$\boxed{ \left[\mathbf{Z} \mathbf{n}^{2+} \right] = \mathbf{x} = 3, 2.10^{-15} \, \mathbf{mol/L} }$$

3) Concentração de x

$$\begin{bmatrix} \mathbf{S}^{2-} \end{bmatrix} = (\mathbf{x} + \mathbf{y})$$
$$\begin{bmatrix} \mathbf{S}^{2-} \end{bmatrix} = (3, 2.10^{-15} + 3, 2.10^{-12})$$
$$\begin{bmatrix} \mathbf{S}^{2-} \end{bmatrix} = 3, 2.10^{-12} \text{ mol/L}$$

RESUMO

- K_{PS} é o dado mais importante para prever quando um determinado composto iônico irá saturar uma solução iniciando sua precipitação.
- Chama-se de produto iônico (PI) a expressão K_{PS}.

$$A_x^{+n}B_{y(s)}^{-m} \Longleftrightarrow x\,A^{+n} + y\,B^{-m} \quad PI \!=\! \left[A^{+n}\right]^{\!x} \!\left[B^{-m}\right]^{\!y}.$$

Classifica-se a solução em insaturada, saturada ou supersaturada comprando-se o PI com o K_{PS}.

	Classificação das soluções	
PI < K _{PS}	Insaturada	
	(sem precipitação)	
$PI = K_{PS}$	Saturada	
	(sem precipitação)	
PI > K _{PS}	Supersaturada	
FI / Kps	(irá ocorrer a precipitação)	

Nas soluções contendo vários íons é possível precipitá-los seletivamente adicionando a essa solução um íon de carga contrária produzindo compostos insolúveis. Precipita primeiro aquele que atingir primeiro o K_{PS}.