Network Communication Between LEO Satellites

Utilizing existing mega constellation infrastructure for LEO satellite missions.

Albert Werner Laursen

Jens Moeslund Larsen

Electronic Systems, Aalborg University

2025-01-24

Outline

Problem	2
System model	7
Preliminary results	10
Current / Future work	
Bibliography	18

Problem

Definition of the problem

- Multiple LEO missions have high latency sensitivity or high throughput requirements.
 - Weather missions
 - Emergency responder missions
 - Military mission
 - Hyperspectral imaging
 - ► 6G-gNB
- Traditional downlink methods have:
 - Low average throughput
 - High average latency

Average metrics are important for missions spanning the globe

Definition of the problem

Current solutions to the problem:

- Private groundstations
 - Price
 - Time to market
- Shared groundstations
 - KSAT, AWS, Azure
 - Limited resources
 - Still no full coverage

Figure 1: Downlink for smallsat, bandwidth 250 MHz

Utilizing existing infrastructure from mega constellations

- Starlink
- OneWeb
- Kuiper

Minimizing or eliminating the deadzones for the SUT satellite.

(a) Starlink Constellation [1]

(b) OneWeb constellation [1]

Focus of this thesis

An ISL selection algorithm for LEO satellite user terminals (SUT).

- For mega constellations assumed connected to the internet.
- Focus on selection of constellation satellites over link establishment.

Figure 3: Use Case Examples from [2]

System model

Satellite models

- Radiation pattern
 - User Satellite
 - Network Satellite
- Channel parameters

Figure 4: Radiation pattern example [2]

Figure 5: Angles between user u_j and network satellite c_i

Satellite models

- Starlink
 - Shorter connections
 - Higher throughput
- OneWeb
 - Longer connections
 - Lower throughput
- Tradeoff

Figure 6: Visibility analysis of NS from SUT perspective [3]

Preliminary results

Initial Optimization

- Choosing the best link for each time slot
 - Greedy / Iterative algorithm
- Optimizing for throughput

$$\begin{array}{ll} \text{maximise} & f(x) = \frac{1}{T} \sum_C \sum_U \sum_T x_{c,u,t} R_{c,u,t} + \dots \\ \\ \text{subject to} & \sum_C x_{c,u,t} \leq 1 & \forall u,t \\ \\ & x_{c,u,t} \in \{0,1\} & \forall c,u,t \end{array}$$

Results

OneWeb

(a) Solution using algorithms

(b) Solution using LP

Current / Future work

Discrete MODCODs

• Since the intersatellite links use MODCODs the achievable throughput is discrete

Figure 8: Example of applying modcods to the shannon capacity

Satellite utilization

Current / Future work

- Utilization modeling
- Models based on earth cell not satellite
- Simple model (high / low utilization)
- queuing model (M/M/1)

- Satellite coordinates in ECI
- Cell coordinates in ECEF

Figure 9: Europe divided into cells [1]

Optimization reframing

- Utilization as a RV with known distribution.
- Introducing requirements
- Minimize chance of failure to meet requirements

$$\label{eq:minimize} \begin{aligned} & \underset{x}{\text{minimize}} & g_u(x) = \mathbb{P}\Bigg(\frac{1}{T}\sum_{T}R_t(\alpha,c,u) \leq Q_u\Bigg) \end{aligned}$$

 $oldsymbol{R}_t(\cdot)$ Rate function $oldsymbol{lpha}$ Utilization of satellite $oldsymbol{Q}_u$ Requested rate for SUT u

Current / Future work

	QoS	Use Case	
	Low End	UE	
	Common	UE or gNB	
	Case		
	High End	UE or gNB	
\ _	High End+	gNB	
	Table 1: Use Case		
	Examples from [2]		

- The optimization problem becomes a large very sparse problem to solve
 - Reduce the compute complexity by representing the problem in a sparse way
- Seperate the problem into a deterministic part (done on central server), and a stochastic part(done on the SUT)?

Bibliography

- [1] "Starlink Satellite Tracker." Accessed: Jan. 24, 2025. [Online]. Available: https://satellitemap.space/
- [2] G. M. Capez *et al.*, "On the Use of Mega Constellation Services in Space: Integrating LEO Platforms into 6G Non-Terrestrial Networks," *IEEE Journal on Selected Areas in Communications*, p. 1, 2024, doi: 10.1109/JSAC.2024.3459078.
- [3] H. Al-Hraishawi, M. Minardi, H. Chougrani, O. Kodheli, J. F. M. Montoya, and S. Chatzinotas, "Multi-Layer Space Information Networks: Access Design and Softwarization," *IEEE Access*, vol. 9, pp. 158587–158598, 2021, doi: 10.1109/ACCESS.2021.3131030.