

Georgios Priftis¹; Timothy J. Lang²; Themis Chronis¹

University of Alabama in Huntsville¹; Marshall Space Flight Center (NASA)²

1. Introduction

- Advanced Scatterometer (ASCAT) on-board Metop a,b:
 - Operating at C-band (5.2 GHz)
 - Measures the backscatter power related to the surface roughness -> wind vector
 - Sensitive at high wind speeds
 - Prone to attenuation effects under precipitation
- ❖ Approximately 45 minutes time interval between ASCAT a, b -> Unique opportunity to explore the evolution of maritime convection.
- Next Generation Radars (NEXRAD):
 - Coastal network over the US continent
 - Operating at S-band (10 cm)
 - Not heavily affected by precipitation
 - Dual polarization capabilities (Z_{dr} , K_{dp} , etc.)
 - Improved rainfall rate estimation
 - Well-developed hydrometeor algorithms (HID) for S-band
 - Single-Doppler retrieval of the wind field
- ❖ Polarimetric algorithm's products include the liquid water and ice mass, HID, and the median volume diameter (D0)

2. Motivation

Leveraging the constellation of space- and ground-based instrumentation we seek to better explore the characteristics of maritime storms.

- Which radar-observed characteristics indicate strong maritime convection?
- How are the radar-derived mass estimates related to the ASCAT winds?

5. Discussion

- High reflectivity is correlated with high winds and high liquid water content.
- Divergence aloft, as captured by the radar, and convergence near the surface, as depicted by ASCAT, denote an updraft in the southeast region of the convective system. Within a diameter of ~20 km around this region is where the highest winds and most of the variability occurred.
- Over the same region, a “ Z_{dr} column” associated with a correlation coefficient minimum (~0.9) further support the presence of an updraft.
- The buoy measured high winds (17.3 m/s) from 43°, 20 minutes after the overpass of the scatterometer, but in accordance with the ASCAT wind speed (17.43 m/s) and direction (80.3°).
- The wind speed measured by ASCAT reveals an increasing relationship with the median volume diameter. Is this indicative of potential C-band resonance effects?
- The effect of the integrated water mass on the wind measurement is more robust at higher wind speeds and for mass greater than 5 kg/m³ for this case study. How do the LWP and the D0 affect the ASCAT wind measurements?
- ASCAT Quality Control Flags also indicate the presence of rain over the domain, and more specifically coincident with the high LWC region.
- Other cases of strong oceanic convection exhibit similar characteristics, demonstrating utility of combining ground polarimetric radar and scatterometer.

3. Methodology

6. Acknowledgements

This research initiative has been funded under
NASA ROSES-13 A.11 OCEAN VECTOR WIND SCIENCE TEAM.

4. Case Study

--> KCRP (TX) 11/23/2014 <--

