Threshold-Free Cluster Enhancement

Luigi Giugliano¹, Marco Mecchia¹

¹Università degli studi di Salerno

24 maggio 2016

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
 - Dettagli implementativi
- 6 Conclusioni

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
 - Dettagli implementativi
- 6 Conclusioni

Mappa statistica associata ad un esperimento FMRI

Mappa statistica

Per un dato esperimento di *Risonanza Magnetica Funzionale* (*FMRI*), una mappa statistica é un immagine in cui ad ogni voxel corrisponde un valore statistico.

- Solitamente, tali valori rappresentano la significativitá statistica di attivazioni neuronali avvenute durante l'esperimento.
- Le attivazioni vengono stimate attraverso il GLM, su cui viene fatta inferenza per ottenere i valori statistici.

GLM - Aspetti teorici (1/3)

Il Generelized Linear Model (GLM) descrive il comportamento di ogni voxel con la seguente equazione:

$$y = X\beta + \epsilon$$

Genaralized Linear Model

Descrive la risposta y in termini della combinazione lineare di tutti i fattori in gioco $(X\beta)$, includendo l'errore ϵ .

GLM - Aspetti teorici (2/3)

Osservando i voxel piú volte, si ottiene la matrice caratterizzante del GLM.

GLM - Aspetti teorici (3/3)

I predittori hanno una certa durata temporale, che influenzano il valore dei voxel.

Generazione delle mappe statistiche da FMRI

GLM - Problemi

Problemi del GLM:

- 1 Il segnale BOLD non é un interruttore ON/OFF.
- 2 Disturbi dovute alle basse frequenze.
- 3 Assunzioni sulla natura dell'errore (distribuzione normale, correlazione temporale).
- 4 Disturbi di natura fisiologica (movimenti della testa, respiro, battito di ciglia... etc)

Generazione delle mappe statistiche da FMRI

GLM - Stima dei β

Il numero dei parametri spesso é << del numero di data point, per cui tra le infinite soluzioni del sistema si sceglie quella che minimizza l'errore residuale, cioé la stima dei minimi quadrati:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Nei casi in cui (X^TX) risulti non invertibile, si utilizza la *Pseudoinversa di Monroe*.

GLM - Inferenza statistica(1/2)

- Per poter effettuare inferenza statistica sui valori restituiti dal GLM, occorre stimare la varianza del residuale.
- Si suppone che il rumore abbia una distribuzione gaussiana, per cui é
 possibile stimare la varianza tramite la distribuzione chi quadrato:

$$\hat{\sigma}^2 = \frac{\epsilon^T \epsilon}{J - p} \sim \sigma^2 \frac{\chi_{J - p}^2}{J - p}$$

dove:

- ϵ é il rumore.
- *J* é il numero di data points.
- p = rank(X) é il numero di parametri indipendenti introdotto.
- J p rappresenta il numero di gradi di libertá del GLM.

GLM - Inferenza statistica(2/2)

Se la matrice X é a rango pieno allora:

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^T X)^{-1})$$

Segue che qualunque combinazione lineare dei β , cioé un contrasto statistico segue la stessa distribuzione:

$$c^T \hat{\beta} \sim \mathcal{N}(c^T \beta, c^T \sigma^2 (X^T X)^{-1} c)$$

Pertanto, dopo la stima, si calcola direttamente il parametro T:

$$T = \frac{c^T \hat{\beta} - d}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}}$$

Sogliatura delle immagini statistiche

Sogliatura statistica

Generalmente, in statistica la sogliatura é un processo che permette di visualizzare i risultati di un esperimento maggiori di una soglia scelta.

Una soglia ben scelta consente di visualizzare solo i risultati più significativi di un esperimento, eliminando in parte il rumore.

Sogliatura delle immagini statistiche

Spatial information enhancing

Lo spatial information enhancing é una tecnica particolarmente utile per la sogliatura di mappe statistiche derivate da FMRI:

- le informazioni spaziali vengono usate per aumentare l'autenticità di estese aree di segnale.
- le regioni del segnale sono infatti più estese del rumore e quindi trovare tali zone aumenta la possibilità che esse siano segnale e non artefatti.

Cluster-based Thresholding

Il cluster-based thresholding é l'approccio piú comune in neuroimaging:

■ Consiste nel visualizzare solo i voxel che fanno parte di aree la cui estensione é ≥ di una soglia fissata.

Problemi:

- Necessitá di definire una soglia di clustering.
- Sogliatura di tipo hard.
- Difficoltá nel riconoscimento di eventuali subcluster.

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
 - Dettagli implementativi
- 6 Conclusioni

TFCE

TFCE tenta di superare i problemi degli approcci precedenti.

- Input: Una mappa statistica di qualsiasi tipo(T, Z, F).
- Output: Una mappa statistica in cui il valore di ogni voxel é un punteggio che rappresenta il contributo spaziale del cluster di cui fa parte.
- Clustering dell'immagine intrinseco.

Assegnazione dei punteggi (1/2)

Il punteggio del voxel p viene stabilito dalla seguente formula:

$$TFCE(p) = \int_{h=h_0}^{h_p} e(h)^E h^H dh$$

dove:

- h_p é il valore statistico del voxel p.
- e(h) é l'area del cluster ad altezza h.
- E ed H sono costanti.

Questo integrale viene calcolato approssimandolo con una sommatoria ponendo dh = 0.1.

L'algoritmo TFCE

Calcolo dei punteggi

Assegnazione dei punteggi (2/2)

Calcolo estensione cluster (1/2)

- Il calcolo dell'estensione del cluster nel caso di immagini tridimensionali risulta essere più complesso.
- Occorre controllare il vicinato di ogni voxel in base alla 26 connectivity.

$$(x-1,y+1)$$
 $(x,y+1)$ $(x+1,y+1)$
 $(x-1,y)$ (x,y) $(x+1,y)$
 $(x-1,y-1)$ $(x,y-1)$ $(x+1,y-1)$

8-neighbourhood

Calcolo estensione cluster (2/2)

La nostra implementazione consiste in un semplice algoritmo:

- 1 Viene generata, a partire dall'immagine statistica, una mappa binaria in base alla soglia *h* corrente.
- 2 Una visita in ampiezza della mappa binaria etichetta tutti i cluster.

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 3 & 3 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 2 \end{bmatrix}$$

3 Per ogni voxel della mappa, il valore e(h) é il numero di elementi presenti nel cluster di cui fa parte.

$$\begin{bmatrix} 1 & 1 & 0 & 3 & 3 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 5 & 0 & 2 & 2 \\ 5 & 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 2 & 2 \end{bmatrix}$$

Scelta dei parametri E ed H (1/2)

Ricordando la formula di assegnazione dei punteggi:

$$TFCE(p) = \int_{h=h_0}^{h_p} e(h)^E h^H dh$$

- La scelta dei parametri E ed H risulta essere cruciale per avere dei punteggi coerenti.
- Tali parametri sono stati scelti in modo da adattarsi ad un ampio set di segnali e rumore.

Scelta dei parametri E ed H (2/2)

La scelta finale é stata H = 2 ed E = 0.5 poiché:

- Scegliere H > 1 ha il risultato di far si che gli score scalino piú che linearmente con l' "altezza" dei cluster.
 - Ció é desirabile in quanto vengono favoriti cluster di intensitá molto alta rispetto a quelli con intensitá piú bassa.
- Scegliere E < 1 fa si che il risultati scali meno che linearmente con la "larghezza" dei cluster.
 - Ció é desirabile specie con h molto basso poiché é probabile che ci siano pochi cluster di dimensioni molto grandi, che forniscono poca informazione spaziale.

Sogliatura esplicita

L'algoritmo TFCE produce un'immagine con gli score calcolati sull'immagine originale.

Tuttavia, l'immagine prodotta manca di valenza stastica.

Per calcolare la valenza statistica dell'immagine degli score, occorre calcolare i p-value per ogni voxel.

Essendo TFCE una particolare statistica che sfrutta informazioni spaziali, é possibile calcolare i p-value effettuando il test delle permutazioni sull'esperimento originale.

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
 - Dettagli implementativi
- 6 Conclusioni

Metodo di montecarlo per la sogliatura basata su cluster

Il metodo prende in input una soglia di significatività α e restituisce la taglia del cluster a cui sogliare.

- Vengono generate n mappe statistiche random con il metodo di Montecarlo
- Od ogni mappa viene applicato uno smoothing spaziale calcolato sulla mappa di input
- Si sceglie la taglia t tale che la probabilità di osservare cluster generati casualmente di taglia maggiore di t sia uguale ad α

Il valore così ottenuto viene utilizzato per la sogliatura basata su cluster.

Bonferroni

In statistica la correzione di Bonferroni viene utilizzata per contrastare il problema dei confronti multipli.

Cercando di mantenere il **familywise error rate** (FWER) all'interno di una determinata soglia.

L'FWER è la probabilità di effettuare errori di Tipo 1 "falsi positivi" su tutte le ipotesi, quando si effettuano test multipli.

Se si sta svolgendo un esperimento con m ipotesi, un modo per mantenere l'FWER è quello di testare ogni ipotesi individualmente con una significanza statistica di 1/m moltiplicato per il livello massimo desiderato.

Quindi se vogliamo un p-value totale di α , la correzione di Bonferroni testerà ogni singolo esperimento con un p-value di α/m è rifiuterà l'ipotesi nulla se il p-value di quell'esperimento è minore di tale valore.

False Discovery Rate

Il False Discovery Rate come la correzione di Bonferroni si prefigge l'obiettivo di contrastare il problema dei confronti multipli.

La procedura per il controllo FDR è stata creata per gestire la proporzione attesa di rifiuto dell'ipotesi nulla, che però sarebbe stato sbagliato rifiutare (false discoveries).

La procedura FDR fornisce un controllo meno stringente sugli errori di $Tipo\ 1$ rispetto a Bonferroni.

Sia:

- V il numero di falsi positivi (Errori di Tipo 1)
- *S* il numero di veri positivi
- R = V + S

La FDR è definita:

$$FDR = E\left[\frac{V}{S+V}\right] = E\left[\frac{V}{S+V}\right]$$

dove
$$\frac{V}{R} = 0$$
 quando $R = 0$.

Avendo $H_1 \dots H_m$ test sull'ipotesi nulla e $p_1 \dots p_m$ p-value corrispondenti. Ordiniamo i p-value in ordine crescente; il p-value più piccolo corrisponde al test con valore statistico più alto.

La procedura Benjamini–Hochberg controlla il false discovery rate (al livello α) con i seguenti passi:

- **1** Per un dato α , trova il più grande k per cui: $p_k \leq \frac{k}{m}\alpha$
- 2 Rifiuta l'ipotesi nulla (accetta come discovery vere) tutte i test $H_i \dot{H}_k$

La procedura di Benjamini–Hochberg è valida quando i m test sono indipendenti e soddisfa anche la seguente equazione:

$$FDR \leq \frac{m_0}{m} \alpha \leq \alpha$$

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
- Dettagli implementativi
- 6 Conclusioni

Threshold-Free Cluster Enhancement

Confronto risultati

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
- Dettagli implementativi
- 6 Conclusioni

Suddivisione del codice

I file principali che compongono il plugin sono:

- Tfce.cpp
- Utilities.cpp

Tfce è il core del plugin, dove avviene il calcolo dei punteggi. Utilities contiene tutte le funzioni di supporto.

Funzioni pubbliche (1/3)

L'unica funzione che viene esposta dal file Tfce.h è:

Funzioni pubbliche (2/3)

Le funzioni che espone **Utilities.h** sono:

```
void findMinMax(float *map, int n, float *min, float
    *max, float * range);

int * getBinaryVector(float * map, int n, int
    (*confront)(float, float), float value, int *
    numOfElementsMatching);
```

Funzioni pubbliche (3/3)

```
float * fromBinaryToRealVector(float * map, int n, int
   * binaryVector);
float * fill0(int n);
void apply function(float * vector, int n, float (*
   operation) (float a, float b), float argument);
int linearIndexFromCoordinate(int x, int y, int z, int
   max x, int max y);
void coordinatesFromLinearIndex(int index, int max x,
   int max y, int *x, int *y, int *z);
float * copyAndConvertIntVector(int * vector, int n);
```

Funzione tfce score

```
float * tfce score(float * map, int dim x, int dim y,
    int dim z, float E, float H, float dh){
findMinMax(map, n, &minData, &maxData, &rangeData);
precision = rangeData/dh;
if (precision > 200) {
increment = rangeData/200;
} else{
increment = rangeData/precision;
steps = ceil((maxData - minData) / (increment));
#pragma omp parallel for
for (i = 0; i < steps; i++) {
 computeTfceIteration(minData + i*increment, map, n,
    dim x, dim y, dim z, E, H, dh, toReturn);
return to Return;
```

Funzione compute Tfcelteration (1/3)

```
void computeTfceIteration(float h, float * map, int n,
    int dim_x, int dim_y, int dim_z, float E, float H,
    float dh, float * toReturn){
int * indexMatchingData = getBinaryVector(map, n,
        moreThan, h, &numOfElementsMatching);
clustered_map = find_clusters_3D(indexMatchingData,
        dim_x, dim_y, dim_z, n, &num_clusters);
extent_map = new int[n];
for (j = 0; j < n; ++j){
extent_map[j] = 0;
}
delete [] indexMatchingData;</pre>
```

Funzione compute Tfcelteration (2/3)

Funzione computeTfcelteration (3/3)

```
clustered map float =
    copyAndConvertIntVector(extent map, n);
apply function(clustered map float, n, elevate, E);
apply function(clustered map float, n, multiply,
   pow(h, H)):
apply function (clustered map float, n, multiply, dh);
for (i = 0; i < n; ++i) {
#pragma omp atomic
    toReturn[i] += (clustered map float[i]);
delete[] clustered map float;
delete[] clustered map;
delete[] extent map;
```

Funzione getBinaryVector

```
Questa funzione emula il risultato del costrutto Matlab (matrice <condizione> valore).
```

```
int * getBinaryVector(float * map, int n, int
   (*confront)(float, float), float value, int *
   numOfElementsMatching){
    int * binaryVector = new int [n];
    (*numOfElementsMatching) = 0;
    int i:
    for (i = 0; i < n; ++i) {
        if (confront(map[i], value)){
            binaryVector[i] = 1;
            (*numOfElementsMatching)++;
        else
            binaryVector[i] = 0;
    return binary Vector;
```

Calcolo dell'estensione dei cluster

```
La funzione find_cluster_3D:
```

```
int * find_clusters_3D(int * binaryVector, int dim_x,
    int dim_y, int dim_z, int n, int * num_clusters)
```

restituisce la mappa dei cluster trovati utilizzando la **26-connectivity** nell'immagine binaria fornita in input.

E' stato utilizzata la specifica OpenMP per rendere il calcolo degli score più veloce.

OpenMP (Open Multiprocessing) è un API multipiattaforma per la creazione di applicazioni parallele su sistemi a memoria condivisa.

Il comando:

#pragma omp parallel for viene utilizzato per rendere un for parallelo.

Il comando:

#pragma omp atomic

invece viene utilizzato per rendere un istruzione atomica.

Dettagli implementativi

Abbiamo deciso di utilizzare, OMP perché l'effort per utilizzarlo é praticamente nullo, e le prestazioni sono ottime.

Inoltre essendo che l'implementazione dei Thread in C cambia tra Windows e Linux, si sarebbe reso necessario modificare il codice per renderlo funzionante su entrambe le piattaforme.

Overview

- 1 Introduzione al problema
 - Generazione delle mappe statistiche da FMRI
 - Sogliatura delle immagini statistiche
 - Sogliatura basata su cluster
- 2 L'algoritmo TFCE
 - Calcolo dei punteggi
 - Calcolo dell'estensione dei cluster
 - Stima dei parametri
 - Sogliatura esplicita
- 3 Metodi di correzzione
 - Montecarlo simulation BrainVoyager
 - Bonferroni BrainVoyager
 - False Discovery Rate
- 4 Confronto risultati
- 5 Codice
 - Suddivisione del codice
 - Dettagli implementativi
- 6 Conclusioni

Threshold-Free Cluster Enhancement

Conclusioni