Taxonomy Category	Strategy	Reference	Title	Fron
Pre	RF with SI	Behrens et al. (2018) Dhara et al. (2018)	Spatial modelling with Euclidean distance fields and machine learning Machine learning based methods for estimation and stochastic simulation	
		Hengl et al. (2018)	Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables	
		Møller et al. (2020)	Oblique geographic coordinates as covariates for digital soil mapping	S
		Sekulić et al. (2020)	Random forest spatial interpolation A random forest-based algorithm for data-intensive spatial interpolation	S S
		(2021) Hu et al. (2022)	In crop yield mapping In crop yield mapping Incorporating spatial autocorrelation into house sale price prediction	
			using random forest model	_
		(2022)	Contrasts among cationic phytochemical landscapes in the southern United States	_
		Talebi et al. (2022)	A truly spatial random forests algorithm for geoscience data analysis and modelling	Q
	RF with FFS	Meyer et al. (2019)	$Importance\ of\ spatial\ predictor\ variable\ selection\ in\ machine\ learning\ applications$	
Post	RF-RK	Guo et al. (2015)	Digital mapping of soil organic matter for rubber plantation at regional	S
		Hengl et al. (2015)	scale: an application of random forest plus residuals kriging approach Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions	S
		Fayad et al. (2016)	significantly improve currien predictions Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: application on French Guiana	S
		Ahmed et al. (2017)	Assessing soil carbon vulnerability in the Western USA by geospatial modeling of pyrogenic and particulate carbon stocks	S
		Garcìa-Tomillo et al. (2017)	Estimating soil organic matter using interpolation methods with a electromagnetic induction sensor and topographic parameters: a case study in a humid region	
		Vaysse & Lagacherie (2017)	Using quantile regression forest to estimate uncertainty of digital soil mapping products	S
		dos Reis et al. (2018)	Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods	
		Liu et al. (2018)	Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach	Q
		Fox et al. (2020)	Comparing spatial regression to random forests for large environmental data sets	S
		Còrdoba et al. (2021)	$\label{lem:approx} A \ spatially \ based \ quantile \ regression \ forest \ model \ for \ mapping \ rural \ land \ values$	Q
			Statistical models of yield in on-farm precision experimentation Performance of linear mixed models and random forests for spatial pre-	Q Q
		Mammadov et al. (2021)	diction of soil Ph Estimation and mapping of surface soil properties in the Caucasus Mountains, Azerbaijan using high-resolution remote sensing data	Q
		Szatmári et al. (2021)	testimating soil organic carbon stock change at multiple scales using machine learning and multivariate geostatistics	Q
		(2022)	Soil organic matter and clay predictions by laboratory spectroscopy: data spatial correlation	_
		Smith et al. (2022)	Spatial variability and uncertainty of soil nitrogen across the conterminous United States at different depths	Q
	RF-sGs	Koch et al. (2019)	Modeling depth of the redox interface at high resolution at national scale using random forest and residual Gaussian simulation	Q
In-Post	RF-GLS-RK	Saha et al. (2021)	Random forests for spatially dependent data	Q
Pre-Post	RF-RK with SI	Li et al. (2011) Kurina et al. (2019)	Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation Spatial predictive modelling essential to assess the environmental impacts of herbicides	
	RF-RK with SB		Mapping gamma radiation and its uncertainty from weathering products	
		(2014) Szatmári & Pásztor (2019)	in a Tasmanian landscape with a proximal sensor and random forest kriging Comparison of various uncertainty modelling approaches based on geo- statistics and machine learning algorithms	

Table 1 List of the 32 documents identified through the PRISMA methodology and categorised by the proposed taxonomy (see Figure 5).

Adopted strategy: RF with SI: Random Forest with Spatial Information; RF with FFS: Random Forest with Forward Feature Selection; RF-RK: Random Forest Residual Kriging; RF-sGs: Random Forest sequential Gaussian simulation; RF-RK with SI: Random Forest Residual Kriging with Spatial Information; RF-RK with SB: Random Forest Residual Kriging with Spatial Bootstrap; RF-GLS-RK: Random Forest based on GLS Residual Kriging.

From: Q: query; S: backward snowballing.

study would be desirable. However, this is beyond the purpose of this review and could be considered as future research.

References

- Ahmed, Z. U., Woodbury, P. B., Sanderman, J., Hawke, B., Jauss, V., Solomon, D. & Lehmann, J. (2017), 'Assessing soil carbon vulnerability in the Western USA by geospatial modeling of pyrogenic and particulate carbon stocks', *Journal of Geophysical Research: Biogeosciences* 122(2), 354–369.
- Balogun, A.-L., Tella, A., Baloo, L. & Adebisi, N. (2021), 'A review of the intercorrelation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information science', *Urban Climate* **40**, 100989.
- Banerjee, S., Carlin, B. & Gelfand, A. (2015), *Hierarchical Modeling and Analysis for Spatial Data, Second Edition*, CRC press.
- Behrens, T., Schmidt, K., Viscarra Rossel, R. A., Gries, P., Scholten, T. & MacMillan, R. A. (2018), 'Spatial modelling with Euclidean distance fields and machine learning', *European journal of soil science* **69**(5), 757–770.
- Breiman, L. (2001a), 'Random forests', Machine learning 45(1), 5–32.
- Breiman, L. (2001b), 'Statistical modeling: The two cultures (with comments and a rejoinder by the author)', *Statistical science* **16**(3), 199–231.
- Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. (1984), *Classification and regression tree analysis*, CRC Press.
- Còrdoba, M. & Balzarini, M. (2021), 'A random forest-based algorithm for dataintensive spatial interpolation in crop yield mapping', Computers and Electronics in Agriculture 184, 106094.
- Còrdoba, M., Carranza, J. P., Piumetto, M., Monzani, F. & Balzarini, M. (2021), 'A spatially based quantile regression forest model for mapping rural land values', *Journal of Environmental Management* **289**, 112509.
- Cressie, N. (1993), Statistics for spatial data, John Wiley & Sons.
- da Silva-Sangoi, D. V., Horst, T. Z., Moura-Bueno, J. M., Dalmolin, R. S. D., Sebem, E., Gebler, L. & da Silva Santos, M. (2022), 'Soil organic matter and clay predictions by laboratory spectroscopy: Data spatial correlation', *Geoderma Regional* **28**, e00486.
- Dhara, A., Trainor-Guitton, W. & Tura, A. (2018), Machine-learning-based methods for estimation and stochastic simulation, *in* 'SEG Technical Program Expanded Abstracts 2018', pp. 2261–2265.
- dos Reis, A. A., Carvalho, M. C., de Mello, J. M., Gomide, L. R., Ferraz Filho, A. C. & Acerbi Junior, F. W. (2018), 'Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods', New Zealand Journal of Forestry Science 48(1), 1–17.

- Dray, S., Legendre, P. & Peres-Neto, P. R. (2006), 'Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM)', *Ecological Modelling* 196(3), 483–493.
- Fayad, I., Baghdadi, N., Bailly, J.-S., Barbier, N., Gond, V., Hèrault, B., El Hajj, M., Fabre, F. & Perrin, J. (2016), 'Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana', *Remote Sensing* 8(3), 240.
- Fox, E. W., Ver Hoef, J. M. & Olsen, A. R. (2020), 'Comparing spatial regression to random forests for large environmental data sets', *PloS one* **15**(3), e0229509.
- Garcìa-Tomillo, A., Miràs-Avalos, J. M., Dafonte-Dafonte, J. & Paz-Gonzàlez, A. (2017), 'Estimating soil organic matter using interpolation methods with a electromagnetic induction sensor and topographic parameters: a case study in a humid region', *Precision Agriculture* 18(5), 882–897.
- Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. (2010), 'Variable selection using random forests', *Pattern recognition letters* **31**(14), 2225–2236.
- Greenhalgh, T. & Peacock, R. (2005), 'Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources', *Bmj* **331**(7524), 1064–1065.
- Griffith, D. A. & Peres-Neto, P. R. (2006), 'Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses', *Ecology* **87**(10), 2603–2613.
- Guo, P.-T., Li, M.-F., Luo, W., Tang, Q.-F., Liu, Z.-W. & Lin, Z.-M. (2015), 'Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach', *Geoderma* **237**, 49–59.
- Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., Mendes de Jesus, J., Tamene, L. et al. (2015), 'Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions', *PloS one* 10(6), e0125814.
- Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. & Gräler, B. (2018), 'Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables', *PeerJ* 6:e5518.
- Hu, L., Chun, Y. & Griffith, D. A. (2022), 'Incorporating spatial autocorrelation into house sale price prediction using random forest model', *Transactions in GIS* **26**(5), 2123–2144.
- James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021), An introduction to statistical learning: With applications in R, Springer.
- Koch, J., Stisen, S., Refsgaard, J. C., Ernstsen, V., Jakobsen, P. R. & Højberg, A. L. (2019), 'Modeling depth of the redox interface at high resolution at national scale using random forest and residual gaussian simulation', *Water Resources Research* 55(2), 1451–1469.
- Kurina, F. G., Hang, S., Macchiavelli, R. & Balzarini, M. (2019), 'Spatial predictive modelling essential to assess the environmental impacts of herbicides', *Geoderma* **354**, 113874.
- Li, J., Heap, A. D., Potter, A., Huang, Z. & Daniell, J. J. (2011), 'Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of

- mud content across the southwest Australian margin', *Continental Shelf Research* **31**(13), 1365–1376.
- Liu, Y., Cao, G., Zhao, N., Mulligan, K. & Ye, X. (2018), 'Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach', *Environmental Pollution* 235, 272–282.
- Makungwe, M., Chabala, L. M., Chishala, B. H. & Lark, R. M. (2021), 'Performance of linear mixed models and random forests for spatial prediction of soil pH', *Geoderma* **397**, 115079.
- Mammadov, E., Nowosad, J. & Glaesser, C. (2021), 'Estimation and mapping of surface soil properties in the Caucasus Mountains, Azerbaijan using high-resolution remote sensing data', *Geoderma Regional* **26**, e00411.
- Meinshausen, N. (2006), 'Quantile regression forests.', *Journal of machine learning research* **7**(6), 983–99.
- Meyer, H., Reudenbach, C., Hengl, T., Katurji, M. & Nauss, T. (2018), 'Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation', *Environmental Modelling & Software* **101**, 1–9.
- Meyer, H., Reudenbach, C., Wöllauer, S. & Nauss, T. (2019), 'Importance of spatial predictor variable selection in machine learning applications—moving from data reproduction to spatial prediction', *Ecological Modelling* **411**, 108815.
- Møller, A. B., Beucher, A. M., Pouladi, N. & Greve, M. H. (2020), 'Oblique geographic coordinates as covariates for digital soil mapping', *Soil* **6**(2), 269–289.
- Molnar, C. (2022), Interpretable Machine Learning, 2 edn.
 - **URL:** https://christophm.github.io/interpretable-ml-book
- Nikparvar, B. & Thill, J.-C. (2021), 'Machine learning of spatial data', *ISPRS International Journal of Geo-Information* **10**(9), 600.
- Paccioretti, P., Bruno, C., Gianinni Kurina, F., Còrdoba, M., Bullock, D. & Balzarini, M. (2021), 'Statistical models of yield in on-farm precision experimentation', Agronomy Journal 113(6), 4916–4929.
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E. et al. (2021), 'The PRISMA 2020 statement: an updated guideline for reporting systematic reviews', Systematic reviews 10(1), 1–11.
- Pebesma, E. J. & Wesseling, C. G. (1998), 'Gstat: a program for geostatistical modelling, prediction and simulation', *Computers & Geosciences* **24**(1), 17–31.
- Saha, A., Basu, S. & Datta, A. (2021), 'Random forests for spatially dependent data', *Journal of the American Statistical Association* pp. 1–19.
- Saha, A., Basu, S. & Datta, A. (2022), 'Randomforestsgls: An r package for random forests for dependent data', *Journal of Open Source Software* **7**(71), 3780.
- Santiago-Rosario, L. Y., Harms, K. E. & Craven, D. (2022), 'Contrasts among cationic phytochemical landscapes in the southern United States', *Plant-Environment Interactions* **3**(5), 226–241.
- Sekulić, A., Kilibarda, M., Heuvelink, G. B., Nikolič, M. & Bajat, B. (2020), 'Random forest spatial interpolation', *Remote Sensing* **12**(10), 1687.

- Smith, E. M., Vargas, R., Guevara, M., Tarin, T. & Pouyat, R. V. (2022), 'Spatial variability and uncertainty of soil nitrogen across the conterminous United States at different depths', *Ecosphere* **13**(7), e4170.
- Szatmàri, G. & Pàsztor, L. (2019), 'Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms', *Geoderma* **337**, 1329–1340.
- Szatmàri, G., Pàsztor, L. & Heuvelink, G. B. (2021), 'Estimating soil organic carbon stock change at multiple scales using machine learning and multivariate geostatistics', *Geoderma* **403**, 115356.
- Talebi, H., Peeters, L. J., Otto, A. & Tolosana-Delgado, R. (2022), 'A truly spatial random forests algorithm for geoscience data analysis and modelling', *Mathematical Geosciences* **54**(1), 1–22.
- Vaysse, K. & Lagacherie, P. (2017), 'Using quantile regression forest to estimate uncertainty of digital soil mapping products', *Geoderma* **291**, 55–64.
- Viscarra Rossel, R. A., Webster, R. & Kidd, D. (2014), 'Mapping gamma radiation and its uncertainty from weathering products in a tasmanian landscape with a proximal sensor and random forest kriging', *Earth Surface Processes and Landforms* **39**(6), 735–748.
- Wadoux, A. M.-C., Minasny, B. & McBratney, A. B. (2020), 'Machine learning for digital soil mapping: Applications, challenges and suggested solutions', *Earth-Science Reviews* 210, 103359.
- Wylie, B. K., Pastick, N. J., Picotte, J. J. & Deering, C. A. (2019), 'Geospatial data mining for digital raster mapping', GIScience & Remote Sensing **56**(3), 406–429.