Lógica Booleana

Contest Local, Universidade de Ulm Alemanha

Timelimit: 1

Proposições são fórmulas lógicas que consistem em símbolos de proposição e operadores conectivos. Eles são definidos recursivamente pelas seguintes regras:

- 1. Todos os símbolos de proposição (neste problema, caracteres alfabéticos minúsculos, por exemplo, a e z) são proposições.
- 2. Se P é uma proposição, (!P) é uma proposição, e P é uma subfórmula direta dela.
- 3. Se P e Q são proposições, (P&Q), (P|Q), (P-->Q), e (P<->Q) são proposições, e P e Q são subfórmulas diretas delas.
- 4. Nada mais é uma proposição.

As operações !, &, |, -->, e <-> denotam negação, conjunção, disjunção, implicação e equivalência, respectivamente. A proposição P é uma subfórmula de uma proposição R se P=R ou se P é uma subfórmula direta de uma proposição Q e Q é uma subfórmula de R.

Seja P uma proposição e atribui-se valores boleanos (isto é, 0 ou 1) a todos os símbolos de proposição que ocorrem em P. Isto induz um valor booleano para todas as subfórmulas de P, de acordo com a semântica padrão dos operadores lógicos:

Negação	Conjunção	Disjunção	Implicação	Equivalência
! 0=1	0 & 0 = 0	0 0=0	0>0=1	0<->0=1
! 1=0	0&1=0	0 1=1	0>1=1	0<->1=0
	1&0=0	1 0=1	1>0=0	1<->0=0
	1&1=1	1 1=1	1>1=1	1<->1=1

Dessa forma, o valor de P pode ser calculado. Este valor depende da escolha da atribuição de valores booleanos aos símbolos proposição. Se P contém n símbolos proposição diferentes, existem 2^n atribuições diferentes. Para avaliar todas as tarefas possíveis, podemos utilizar tabelas de verdade.

Uma tabela verdade contém uma linha por atribuição (ou seja, 2^n linhas no total). Cada linha contém os valores de todas as subfórmulas sob a designação escolhida. O valor de uma subfórmula está alinhado com o símbolo da proposição, se a subfórmula é um símbolo proposição, e, de outra forma, com o centro do operador.

Entrada

A entrada contém vários casos de teste, cada um em uma linha separada. Cada caso de teste denota uma proposição e pode conter quantidades arbitrárias de espaços no meio. O arquivo de entrada termina imediatamente após o símbolo de nova linha após o último caso de teste.

Saída

Para cada caso de teste seu programa deve gerar uma tabela verdade para a proposição denotada. Comece a tabela verdade repetindo a linha de entrada. Avalie a proposição (e as suas subfórmulas) para todas as atribuições para as suas variáveis, e use uma linha para cada atribuição. A linha deve ter o mesmo comprimento que a linha de entrada correspondente e deve conter apenas espaços e os caracteres 0 e 1.

Imprima uma linha em branco após cada caso de teste.

Deixe os símbolos de proposição (s1, ..., sn) na proposição denotada classificados em ordem alfabética. Então, todas as atribuições de 0 a s1 devem preceder as atribuições de 1 a s1. Dentro de cada um destes blocos de atribuições, todas as atribuições de 0 a s2 devem preceder as atribuições de 1 a s2, e assim por diante.

Exemplo de Entrada	Exemplo de Saída										
((b> a) <-> ((! a)> (! b)))	((b	_	->	a)	<->	((! å	a)	>	(! k))))	
((y & a)>(c c))	0		1	0	1	1	0	1	1	. 0	
	1		0	0	1	1	0	0	() 1	
	0		1	1	1	0	1	1	1	. 0	
	1		1	1	1	0	1	1	() 1	
	((y	&	a)	_	-> (C	(c))				
	0	0	0	1	L 0	00					
	1	0	0	1	L 0	00					
	0	0	0	1	1	11					
	1	0	0	1	1	11					
	0	0	1	1	L 0	00					
	1	1	1	C) 0	00					
	0	0	1	1	1	11					
	1	1	1	1	1	11					

Univeristy of Ulm Local Contest 2004/2005