

KOMERU LAKSHWAIAH

B.Tech - Even Sem : End Semester Exam Academic Year: 2021-2022 19CS3214R - AUTOMATA THEORY & COMPILER DESIGN Set No: 3

Time:			Max.Marks: 100					
S.NO	Answer All Questions	Choice	Options	Marks	со	CO BTL	COI BTL	
1.	Construct e-NFA for the following regular expression using subset method and then convert it to DFA. (a+b)* (aa+bb)(a+b)*.	choice Q-2		10Marks	CO1	4	3	
2.	Outline the properties of Regular Expressions in detail.			10Marks	CO1	4	1	
3.	Answer 3A and 3B.	choice Q-4		15Marks	CO1	4	4	
3.A.	Derive the regular expression for the language accepting all combinations of a's except the null string, over the set $\Sigma = \{a\}$.	i ritau	into esco	5Marks	CO1	4	4	
3.B.	Design NFA with $\Sigma = \{0, 1\}$ and accept all string of length at least 2.		tangerij	10Marks	CO1	4	2	
1.	Answer 4A and 4B.	AAT 2	rat blen	15Marks	CO1	4	5	
1.A.	Formulate NFA for language $L = a(bab)^* \cup a(ba)^*$.	dril fet	adrio d	5Marks	CO1	4	2	
4.B.	Construct the parse tree for the strings 'ababbba' and 'bbbbba' from the following grammar $S \rightarrow aS/bS/a/b/$ \in .		E. Co	10Marks	CO1	4	5	
i.	Demonstrate various phases of language processing system with an example high level code for finding the factorial of a number.	choice Q-6	Furne Rob	10Marks	CO2	5	2	
	Relate the phases of compiler for the given expression, position = initial + rate * 60.			10Marks	CO2	5	2	
	Answer 7A and 7B.	choice Q-8		15Marks	CO2	5	5	
.A.	Consider the following grammar: $S \rightarrow aAS \mid aA \rightarrow SbA \mid SS \mid ba$ For the input string "aabbaa" find LMD and RMD.			5Marks	CO2	5	3	
.В.	Draw the derivation tree for the above example given in 7A.			10Marks	CO2	5	5	
	Answer 8A and 8B.			15Marks	CO2	2 5	5	
.A.	Describe the processes in lexical analysis.			5Marks	CO2	2 5	4	
- 1	Construct CFG's for the language {w the length of w is odd and its middle is 0}.			10Marks	CO2	2 5	5	
'.	How to remove unreachable productions as a part of parsing. Demonstrate with the below example. $S \rightarrow aB \mid bAA \rightarrow a \mid bAA \mid aSB \rightarrow b \mid aBB \mid bSC \rightarrow aD \mid bS \mid \mathcal{E}$ $D \rightarrow bD \mid \mathcal{E}$	choice Q-10		10Marks	s CO3	3 5	1	
	Describe in detail about, Lexical Analysis, Syntactic Analysis and Semantic Analysis during parsing an input string.			10Marks	CO3	3 5	1	
ı			1	T -				