Chapitre 15

TABLE DES MATIÈRES

Ι	Définition et premières propriétés	2
II	Sous-espaces vectoriels	6
III	I Familles de vecteurs	15

Première partie

Définition et premières propriétés

Définition: Soit E un ensemble muni d'une loi <u>interne</u> + et d'une loi · définie sur $\mathbb{K} \times E$ à valeurs dans E où \mathbb{K} est un corps.

On dit que $(E,+,\cdot)$ est un $\underline{\mathbb{K}\text{-espace vectoriel}}$ (ou un
 $\underline{\text{espace vectoriel sur }\mathbb{K}})$ si

- 1. (E, +) est un groupe abélien
- 2. (a)

$$\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2,$$
$$\mu \cdot (\lambda \cdot u) = (\underbrace{\mu \times \lambda}_{\times \text{ de } \mathbb{K}}) \cdot u$$

(b) $\forall u \in E, 1_{\mathbb{K}} \cdot u = u$

3. (a)

$$\forall u \in E, \forall (\lambda, \mu) \in \mathbb{K}^2 \\ (\lambda \cdot u) \underbrace{+ (\mu \cdot u)}_{+ \text{ de } E} = (\lambda \underbrace{+ \mu}_{+ \text{ de } \mathbb{K}}) \cdot u$$

(b)

$$\forall \lambda \in \mathbb{K}, \forall (u,v) \in E^2,$$

$$\lambda \cdot (u+v) = (\lambda \cdot u) + (\lambda \cdot v)$$

Les éléments de E sont alors appelés <u>vecteurs</u> et les éléments de $\mathbb K$ sont dits <u>scalaires</u>. Par convention, \cdot est prioritaire sur +.

Exemple:

Soit $\mathbb K$ corps, $\mathbb K$ est un $\mathbb K\text{-espace}$ vectoriel

Ехемеле:

Soit $\overrightarrow{\mathscr{P}}$ l'ensemble des vecteurs du plan. $\overrightarrow{\mathscr{P}}$ est un \mathbb{R} -espace vectoriel.

Exemple:

 $\mathbb C$ est un $\mathbb R\text{-espace}$ vectoriel.

En généralisant, tout corps $\mathbb K$ est un $\mathbb L\text{-espace}$ vectoriel pour $\mathbb L$ un sous-corps de $\mathbb K$

Exemple:

 $(\mathbb{K}^n, +, \cdot)$ avec

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

 $\lambda \cdot (y_1, \dots, y_n) = (\lambda \cdot y_1, \dots, \lambda \cdot y_n)$

est un espace vectoriel.

Exemple:

Soient $(E,+,\cdot)$ un $\mathbb K$ -espace vectoriel et $\mathscr D$ un ensemble non vide. $(E^\mathscr D,+,\cdot)$ est un $\mathbb K$ -espace vectoriel où pour $f,g\in E^\mathscr D$ et $\lambda\in\mathbb K$

$$f + g : \mathscr{D} \longrightarrow E$$

 $x \longmapsto f(x) + g(x)$

$$\lambda f: \mathscr{D} \longrightarrow \mathbb{K}$$
 $x \longmapsto \lambda \cdot f(x)$

Par exemple, $\mathbb{C}^{\mathbb{N}}$ est un \mathbb{R} -espace vectoriel $\mathscr{C}^0(\mathcal{D},\mathbb{R})$ est un \mathbb{R} -espace vectoriel

Exemple: — \mathbb{R}^+ n'est pas un \mathbb{R} -espace vectoriel

— $\{(x,0) \mid x \in \mathbb{R}\} \cup \{(0,y) \mid y \in \mathbb{R}\}$ n'est pas un \mathbb{R} -espace vectoriel pour les lois usuelles

Proposition: Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel.

1.
$$\forall u \in E, 0_{\mathbb{K}} \cdot u = 0_E$$

2.
$$\forall \lambda \in \mathbb{K}, \lambda \cdot 0_E = 0_E$$

3.
$$\forall \lambda \in \mathbb{K}, \forall u \in E, \lambda \cdot u = 0_E \implies \lambda = 0_{\mathbb{K}}$$
 ou $u = 0_E$

Preuve: 1. Soit $u \in E$.

$$\begin{aligned} 0_{\mathbb{K}} \cdot u &= (0_{\mathbb{K}} + 0_{\mathbb{K}}) \cdot u \\ &= 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}} \cdot u \end{aligned}$$

(E,+) est un groupe donc $0_E = 0_{\mathbb{K}} \cdot u$

2. Soit $\lambda \in \mathbb{K}$.

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E$$

 $\lambda \cdot 0_E$ est régulier pour + :

$$0_E = \lambda \cdot 0_E$$

3. Soit $\lambda \in \mathbb{K}$ et $u \in E$ tel que $\lambda \cdot u = 0_E$

Cas 1
$$\lambda=0_{\mathbb K}$$

Cas 2 $\lambda\neq0_{\mathbb K}$ Alors, $\lambda^{-1}\in\mathbb K$ et donc

$$\begin{split} \lambda \cdot u &= 0_E \implies \lambda^{-1}(\lambda \cdot u) = \lambda^{-1} \\ &\implies (\lambda^{-1} \times \lambda) \cdot u = 0_E \text{ d'après 2.} \\ &\implies 1_{\mathbb{K}} \cdot u = 0_E \\ &\implies u = 0_E \end{split}$$

Proposition: Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $u \in E$. Alors, $-u = (-1_{\mathbb{K}}) \cdot u$

Preuve:

$$\begin{aligned} u + (-1_{\mathbb{K}}) \cdot u &= (1_{\mathbb{K}} \cdot u) + (-1_{\mathbb{K}}) \cdot u \\ &= (1_{\mathbb{K}} + (-1_{\mathbb{K}})) \cdot u \\ &= 0_{\mathbb{K}} u \\ &= 0_{E} \end{aligned}$$

Donc $-u = (-1_{\mathbb{K}}) \cdot u$

Deuxième partie

Sous-espaces vectoriels

Définition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel. Soit $F\subset E.$ On dit que F est un <u>sous- \mathbb{K} -espace vectoriel</u> de E si

- 1. $F \neq \emptyset$
- 2. $\forall (u, v) \in F^2, u + v \in F$
- 3. $\forall \lambda \in \mathbb{K}, \forall u \in F, \lambda u \in F$

Proposition: Avec les notations précédentes, $(F,+,\cdot)$ est un \mathbb{K} -espace vectoriel

Preuve: — D'après 2., + est interne dans F

- (E,+) est un groupe abélien donc + est associative et commutative dans E donc dans F
- $F \neq \emptyset$. Soit $u \in F$. D'après 3.,

$$0_{\mathbb{K}} \cdot u \in F$$

Comme $u \in E$ et $(E, +, \cdot)$ est un K-espace vectoriel,

$$0_{\mathbb{K}} \cdot u = 0_{E}$$

Donc, $0_E \in F$

— Soit $u \in F$. Comme $u \in E$,

$$-u = -(1_{\mathbb{K}}) \cdot u \in F$$
 d'après 3.

— Les autres axiomes sont aisément vérifiés.

Proposition: Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel et $F\subset E$. F est un sous-espace vectoriel de $(E,+,\cdot)$ si et seulement si

- 1. $F \neq \emptyset$
- 2. $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (u, v) \in F^2, \lambda \cdot u + \mu \cdot v \in F$

Preuve: " \Longrightarrow " On sait déjà que F est non vide.

$$\forall u, v \in F, \forall \lambda, \mu \in \mathbb{K}, \quad \frac{\lambda u \in F}{\mu v \in F} \} \text{ donc } \lambda u + \mu v \in F$$

- "
 " On sait déjà que F est non-vide
 - Soient $u, v \in F$

$$u+v=1_{\mathbb{K}}\cdot u+1_{\mathbb{K}}\cdot v\in F$$

— Soit $u \in F, \lambda \in \mathbb{K}$.

$$\lambda \cdot u = \lambda \cdot u + 0_{\mathbb{K}} \cdot u \in F$$

Définition: Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $(u_1, \dots, u_n) \in E^n$. Une <u>combinaison linéaire</u> de (u_1, \dots, u_n) est un vecteur de E de la forme $\sum_{i=1}^n \lambda_i u_i$ où $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$

Remarque:

On peut aussi démontrer que F est un sous-espace vectoriel de E si et seulement si

$$F \neq \emptyset$$
 et $\forall u, v \in F, \forall \lambda \in \mathbb{K}, \lambda u + v \in F$

Exemple: 1. $F = \{z \in \mathbb{C} \mid \Re(z) + \Im(z) = 1\} \subset \mathbb{C}$

F est un sous- $\mathbb R$ -espace vectoriel de $\mathbb C$?

Non car $0 \notin F$

2. $F=\{z\in\mathbb{C}\mid\Re\mathfrak{e}(z)+\Im\mathfrak{m}(z)=0\}$ est un sous- \mathbb{R} -espace vectoriel de \mathbb{C} mais pas un sous- \mathbb{C} -espace vectoriel.

En effet, $1-i \in F$ $i(1-i) = i+1 \notin F$

3. $E=\mathbb{R}^{\mathbb{N}}$ est un $\mathbb{R}\text{-espace}$ vectoriel.

 $F = \left\{ u \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+1} = 3u_n \right\} \text{ est un sous-espace vectoriel de } E.$

 $G = \left\{u \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+1} = 3u_n + 2\right\} \text{ n'est pas un sous-espace vectoriel de } E$ puique $0_E \not\in G$.

4. $E = \mathbb{R}^D$ est un \mathbb{R} -espace vectoriel

 $F = \mathscr{C}^0(D, \mathbb{R})$ est un sous-espace vectoriel de E (fonctions continues)

 $G=\mathscr{D}(D,\mathbb{R})$ est un sous-espace vectoriel de E (fonctions dérivables)

Si D=]-a,a[avec $a\in\mathbb{R},H=\{f\in E\mid f\text{ impaire }\}$ est un sous-espace vectoriel de E

Si $D = \mathbb{R}, L = \{f \in E \mid f \text{ 1-périodique }\}$ est un sous-espace vectoriel de E

 $M = \{ f \in E \mid f \text{ périodique } \}$ n'est pas un sous-ensemble vectoriel de E

5. L'ensemble des solutions sur un intervalle I d'une équation différentielle linéaire est un sous-espace vectoriel de \mathbb{R}^I

Exercice (Exercice):

Trouver tous les sous- \mathbb{R} -espaces vectoriels de \mathbb{R}^2

- $\{(0,0)\}$ est un sous-espace vectoriel de \mathbb{R}^2
- Les droites passant par O sont des sous-espaces vectoriels de \mathbb{R}^2
- \mathbb{R}^2 est un sous-espace vectoriel de \mathbb{R}^2

et rien d'autre!

Proposition: Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et \mathscr{F} une famille non vide de sous-espaces vectoriels de E. Alors $\bigcap_{E \in \mathscr{E}} F$ est un sous-espace vectoriel de E.

Preuve

On pose
$$G = \bigcap_{F \in \mathscr{F}} F$$
.

— $\forall F \in \mathscr{F}, 0_E \in F$ car F est un sous espace vectoriel de E donc $0_E \in G$.

Soient $u, v \in G$ et $\lambda, \mu \in \mathbb{K}$. On pose $w = \lambda u + \mu v$.

$$\forall F \in \mathscr{F}, \quad \begin{array}{c} u \in F \\ v \in F \end{array} \} \text{ donc } w \in F$$

donc $w \in G$

Remarque (Attention \wedge):

Une réunion de sous-espaces vectoriels n'est pas un sous-espace vectoriel en général.

 $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$

Définition: Soient F et G deux sous-espaces vectoriels de E. On définit leur somme F+G par

$$F+G=\{x+y\mid x\in F,y\in G\}$$

Proposition: Avec les notations précédentes, F+G est le plus petit sous-espace vectoriel de E contenant $F \cup G$.

$$\begin{array}{ll} \textit{Preuve:} & -- & 0_E = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G} \in F + G \\ & -- \text{ Soient } u \in F + G, v \in F + G, \lambda, \mu \in \mathbb{K} \\ & \text{ On pose} \end{array}$$

$$\begin{cases} u = x + y \text{ avec } \begin{cases} x \in F \\ y \in G \end{cases} \\ v = a + b \text{ avec } \begin{cases} a \in F \\ b \in G \end{cases}$$

Donc,

$$\begin{split} \lambda u + \mu v &= \lambda (x+y) + \mu (a+b) \\ &= \lambda x + \lambda y + \mu a + \mu b \\ &= \underbrace{(\lambda x + \mu a)}_{\in F} + \underbrace{\lambda y + \mu b}_{\in G} \in F + G \end{split}$$

Ainsi F+G est un sous-espace vectoriel de E.

Soit $x \in F \cup G$.

Si
$$x \in F$$
 alors $x = \underbrace{x}_{\in F} + \underbrace{O_E}_{\in G} \in F + G$
Si $x \in G$ alors $x = \underbrace{0_E}_{\in F} + \underbrace{x}_{\in G} \in F + G$

Donc, $F \cup G \subset F + G$

— Soit $\overset{.}{H}$ un sous-espace vectoriel de E tel que $F\cup G\subset H$

Soit
$$u \in F + G$$
. On pose $u = x + y$ avec
$$\begin{cases} x \in F \\ y \in G \end{cases}$$
$$\begin{cases} x \in F \subset F \cup G \subset H \\ y \in G \subset F \cup G \subset H \end{cases}$$

H est un sous-espace vectoriel de E donc $x+y\in H.$ On a montré que $F+G\subset H$

Définition: Soit $(E, +, \cdot)$ un K-espace vectoriel et $(F_i)_{i \in I}$ une famille quelconque non vide de sous-espaces vectoriels de E. On définit $\sum F_i$ par

$$\sum_{i \in I} F_i = \left\{ \sum_{i \in I} x_i \mid (x_i)_{i \in I} \in \prod_{i \in I} F_i; (x_i) \text{ presque nulle } \right\}$$

$$= \left\{ \sum_{i \in I} x_i \mid (x_i) \in \prod_{i \in I} F_i; \{i \in I \mid x_i \neq 0_E\} \text{ est fini } \right\}$$

 $\sum_{i \in I} F_i$ est l'ensemble de sommes $\underline{\text{finies}}$ obtenues à partir d'éléments de $\prod_{i \in I} F_i$

Exemple: $E = \mathbb{R}^{\mathbb{R}}$

Proposition: Une somme quelconque de sous-espaces vectoriels est le plus petit sousespace vectoriel contenant leur réunion.

Définition: Soient F et G deux sous-espaces vectoriels de E. On dit qu'ils sont en $\underline{\text{somme directe}}$ si

$$\forall u \in F + G, \exists ! (x, y) \in F \times G, u = x + y$$

Dans ce cas, l'espace F+G est noté $F\oplus G$

Exemple:

 $E = \mathbb{R}^3$ $F = \{(x, 0, x) \mid x \in \mathbb{R}\}$

$$G = \left\{ (x,y,z) \mid (S) : \begin{cases} x+y+z = 0 \\ y-z = 0 \end{cases} \right\}$$

 $F \oplus G$?

$$\lambda u + \mu v = \lambda(x, 0, 0) + \mu(y, 0, y)$$
$$= (\lambda x, 0, \lambda x) + (\mu y, 0, \mu y)$$
$$= (\lambda x + \mu y, 0, \lambda x + \mu y) \in F$$

Donc F est un sous-espace vectoriel de E $(0,0,0) \in G \text{ car } (S) \text{ est homogène}$ $\begin{cases} u = (x,y,z) \in G \\ v = (a,b,c) \in G \end{cases}$ Soient $\lambda, \mu \in \mathbb{R}$

$$\lambda u + \mu v \in G \iff \lambda(x, y, z) + \mu(a, b, c) \in G$$

$$\iff (\lambda x + \mu a, \lambda y + \mu b, \lambda z + \mu c) \in G$$

$$\iff \begin{cases} (\lambda x + \mu a) + (\lambda y + \mu b) + (\lambda z + \mu c) = 0 \\ (\lambda y + \mu b) - (\lambda z + \mu c) = 0 \end{cases}$$

$$\iff \begin{cases} \lambda \underbrace{(x + y + z)}_{=0} + \mu \underbrace{(a + b + c)}_{=0} \\ \lambda \underbrace{(y - z)}_{=0} + \mu \underbrace{(b - c)}_{=0} = 0 \end{cases}$$

$$\iff \begin{cases} 0 = 0 \\ 0 = 0 \end{cases}$$

— Soit $w \in E$. On pose w = (x, y, z)

$$\begin{aligned} w \in F + G &\iff \exists (u,v) \in F \times G, w = u + v \\ &\iff \exists x' \in \mathbb{R}, \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} w = (x',0,x') + (a,b,c) \\ a+b+c = 0 \\ b-c = 0 \end{cases} \\ &\iff \exists \left(x',a,b,c\right) \in \mathbb{R}^4, \begin{cases} (x,y,z) = (a+x',b,c+x') \\ a+b+c = 0 \\ b-c = 0 \end{cases} \\ &\iff \exists \left(x',a,b,c\right) \in \mathbb{R}^4, (S') : \begin{cases} a+x' = x \\ b = y \\ c+x' = z \\ a+b+c = 0 \\ b-c = 0 \end{cases} \end{aligned}$$

 (S^{\prime}) est un système linéaire à 4 inconnues $(x^{\prime},a,b,c),$ 5 équations, 3 paramètres (x,y,z)

$$(S') \iff \begin{cases} b = y \\ c = y \\ x' = z - y \\ a = x - z + y \\ x + 3y - z = 0 \end{cases}$$

Si $x+3y-z\neq 0$ alors (S') n'a pas de solutions et donc $w\not\in F+G$ Si x+3y-z=0 alors (S') a une unique solution alors

$$\exists ! (u,v) \in F \times G, w = u + v$$

On a montré que

$$F \oplus G = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y - z = 0\}$$

Proposition: Soient $(E, +, \cdot)$ un K-espace vectoriel, F et G deux sous-espaces vectoriels de ${\cal E}$

F et G sont en somme directe si et seuelement si $F \cap G = \{0_E\}$

Preuve: " \Longrightarrow " On suppose la somme directe.

Soit $x \in F \cap G$.

Soit
$$x \in F \cap G$$
.
D'une part, $0_E = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G}$
D'autre part, $0_E = \underbrace{x}_{\in F} + \underbrace{(-x)}_{\in G}$

Par unicité, $x=0_E$ " $\begin{cases} \leftarrow$ " On suppose $F\cap G=\{0_E\}$

Soit $x \in F + G$ et on supoise que x a deux décompositions :

$$\begin{cases} x = u + v, & u \in F, v \in G \\ x = u' + v', & u' \in F, v' \in G \end{cases}$$

D'où,
$$u-u'=v'-v$$

Or,
$$\begin{cases} u-u' \in F \\ v-v' \in G \end{cases}$$
Donc, $u-u' \in F \cap G = \{0_E\}$

Donc, $u - u' \in F \cap G = \{0_E\}$ donc $u - u' = 0_E$ donc u = u' donc v' = v

Remarque:

Ce résultat est inutile pour l'instant (en l'absence d'arguments dimensionnels) pour prouver un resultat de la forme $E=F\oplus G$

Exemple:

 $E = \mathbb{R}^{\mathbb{R}}$

$$F = \{f \in E \mid f \text{ paire}\} \text{ et } F = \{f \in E \mid f \text{ impaire}\}$$

Prouvons que $E=F\oplus G$

Soit $f \in F \cap G$ donc

$$\forall x \in \mathbb{R}, f(-x) = f(x) = -f(x)$$

Donc

$$\forall x \in \mathbb{R}, f(x) = -f(x)$$

et donc

$$\forall x \in \mathbb{R}, f(x) = 0$$

donc $f = 0_E$

Ainsi, la somme de F est G est directe

$$F + G = F \oplus G$$

Montrons que E = F + G. Soit $f \in E$.

Analyse Soient $g \in G$ et $g \in F$ telles que

$$f = g + h$$

Donc

$$\forall x \in \mathbb{R}, \begin{cases} f(x) = g(x) + h(x) \\ f(-x) = -g(x) + h(x) \end{cases}$$

et donc

$$\begin{cases} h(x) = \frac{1}{2}(f(x) + f(-x)) \\ \\ g(x) = \frac{1}{2}(f(x) - f(-x)) \end{cases}$$

Donc $F + G = F \oplus G$.

Synthèse On pose

$$\begin{cases} g: x \longmapsto & \frac{1}{2}(f(x) - f(-x)) \\ h: x \longmapsto & \frac{1}{2}(f(x) + f(-x)) \end{cases}$$

On vérifie que
$$\begin{cases} g \in F \\ h \in F \\ g+h=f \end{cases}$$
 On a prouvé que $E=F+G$

Exemple:

$$E=\mathscr{M}_2(\mathbb{C})$$

$$F = S_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}$$

$$G = A_2(\mathbb{C}) = \left\{ \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \mid a \in \mathbb{C} \right\}$$

$$E=F\oplus G$$

 Définition: Soit $(E,+,\cdot)$ un $\mathbb K\text{-espace}$ vectoriel. On dit que F et G sont $\underline{\text{supplémen-}}$ $\underline{\text{taires}}$ dans Esi

$$E = F \oplus G$$

en d'autres termes,

$$\forall x \in E, \exists ! (y,z) \in F \times G, x = y + z$$

$$E = \mathbb{R}^2$$

Exemple:
$$E = \mathbb{R}^2$$

$$F = \{(x, y) \in \mathbb{R}^2, y = x\}$$

 $G_1 \oplus F = E$ et $G_2 \oplus F = E$ Soit $(x, y) \in E$

$$(x,y) = \underbrace{(x,x)}_{\in F} + \underbrace{(0,y-x)}_{\in G_1}$$

$$= \underbrace{\left(\frac{x+y}{2}, \frac{x+y}{2}\right)}_{\in F} + \underbrace{\left(\frac{x+y}{2}, \frac{x+y}{2}\right)}_{\in G_2}$$

Définition: Soit $(F_i)_{i\in I}$ une famille non vide de sous-espaces vectoriels de $(E, +, \cdot)$. On dit qu'ils sont en somme directe si

$$\forall x \in \sum_{i \in I} F_i, \exists ! (x_i)_{i \in I} \in \prod_{i \in I} F_i \text{ presque nulle telle que } x = \sum_{i \in I} x_i$$

Dans ce cas, on écrit $\bigoplus_{i \in I} F_i$ à la place de $\sum_{i \in I} F_i$

Exemple:

E : l'espace des fonctions polynomiales

$$\forall i \in \mathbb{N}, F_i = \{x \mapsto ax^i \mid a \in \mathbb{K}\}$$

$$E = \bigoplus_{i \in \mathbb{N}} F_i$$

Exemple: $E = \mathbb{R}^2$

$$\begin{cases} F = \{(x,x) \mid x \in \mathbb{R}\} \\ G = \{(0,x) \mid x \in \mathbb{R}\} \\ F = \{(x,-x) \mid x \in \mathbb{R}\} \end{cases}$$

On a $F \cap G \cap H = \{0_E\}$ mais leur somme n'est pas directe

$$(0,0) = \underbrace{(1,1)}_{\in F} + \underbrace{(0,-2)}_{\in G} + \underbrace{(-1,1)}_{\in H}$$
$$= \underbrace{(2,2)}_{\in F} + \underbrace{(0,-4)}_{\in G} + \underbrace{(-2,2)}_{\in H}$$

Troisième partie

Familles de vecteurs

Définition: Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $A \in \mathcal{P}(E)$. Le <u>sous-espace vectoriel</u> engendré par A est le plus petit sous espace vectoriel V de E tel que $A \subset V$. On le note Vect(A)

Exemple:

E un \mathbb{K} -espace vectoriel.

- Vect $(\{0_E\}) = \{0_E\}$
- $-- \operatorname{Vect}(\varnothing) = \{0_E\}$
- Vect(E) = E
- Soit $u \in E \setminus \{0_E\}$
- $\operatorname{Vect}(\{u\}) = \{\lambda u \mid \lambda \in \mathbb{K}\} = \mathbb{K}u$
- Soient $u, v \in \exists \setminus \{0_E\}$

 $\operatorname{Vect}(\{u,v\}) = \{\lambda u + \mu v \mid (\lambda,\mu) \in \mathbb{K}^2\} = \mathbb{K}u + \mathbb{K}v$

Définition: Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $u \in E \setminus \{0_E\}$. La <u>droite (vectorielle)</u> engendrée par u est $\mathbb{K}u = \text{Vect}(u) = \text{Vect}(\{u\})$. Soit $v \in E$. On dit que u et v sont colinéaires si $v \in \mathbb{K}u$. Si v n'est pas colinéaire à u alors, $\mathrm{Vect}(u,v) = \mathbb{K}u + \mathbb{K}v$ est appelé <u>plan (vectoriel) engendré</u> par u et v.

Exemple:

L'ensemble des solutions d'une équation différentielle linéaire homogène d'ordre 1 est une droite vectorielle.

L'ensemble des solutions d'une équation différentielle linéaire homogène d'ordre 2 à coefficiants constants est un plan vectoriel.

$$\{y \in \mathcal{C}^2(\mathbb{R}) \mid y'' + y = 0\} = \text{Vect}(\cos, \sin)$$

Proposition: Soit $(e_i)_{i \in I}$ un famille non vide de vecteurs d'un K-espace vectoriel

$$\operatorname{Vect}((e_i)_{i \in I}) = \left\{ \sum_{i \in I} \lambda_i e_i \mid (\lambda_i)_{i \in I} \in \mathbb{K}^I \text{ et } (\lambda_i) \text{ presque nulle } \right\}$$
$$= \sum_{i \in I} \mathbb{K} e_i$$

Preuve: On pose $F = \sum_{i \in I} \mathbb{K}e_i$

F est un sous espace vectoriel de E.

$$\forall i \in I, e_i = \sum_{j \in I} \lambda_j e_j \text{ où } \lambda_j = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$
$$= \delta_{i,j} \text{ (symbole de Kronecker)}$$

Soit G un sous espace vectoriel de E tel que

$$\forall i \in I, e_i \in G$$

Soit $u \in F$. Soit $(\lambda_i)_{i \in I}$ une famille presque nulle de scalaires telle que $u = \sum_{i \in I} \lambda_i e_i$

Soit $\{i_1,\ldots,i_k\} = \{i \in I \mid \lambda_i \neq 0_{\mathbb{K}}\}$

$$u = \sum_{j=1}^{k} \underbrace{\lambda_{ij} e_{ij}}_{\in G} \in G$$

Donc $F \subset G$

Définition: On dit que $(e_i)_{i\in I}$ est une famille génératrice de E si

$$E = \text{Vect}((e_i)_{i \in I})$$

Exemple:

$$E = \mathbb{R}^3$$

$$\begin{cases} e_1 &= (1,0,1) \\ e_2 &= (0,1,1) \\ e_3 &= (1,1,1) \\ e_4 &= (1,0,0) \\ e_5 &= (0,1,2) \end{cases}$$

Soit $(x, y, z) \in \mathbb{R}^3$. On cherche $(\lambda_1, \dots, \lambda_5) \in \mathbb{R}^5$ tels que

(E):
$$(x, y, z) = \sum_{i=1}^{5} \lambda_i e_i$$

$$(E) \iff (x, y, z) = (\lambda_1 + \lambda_3 + \lambda_4, \lambda_2 + \lambda_3 + \lambda_5, \lambda_1 + \lambda_2 + \lambda_3 + 2\lambda_5)$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 + \boxed{\lambda_4} = x \\ \lambda_2 + \boxed{\lambda_3} + \lambda_5 = y \\ \boxed{\lambda_1} + \lambda_2 + \lambda_3 + 2\lambda_5 = z \end{cases}$$

$$\iff \begin{cases} \lambda_4 = x - \lambda_1 - \lambda_3 \\ \lambda_3 = y - \lambda_2 - \lambda_5 \\ \lambda_1 = z - \lambda_2 - \lambda_3 - 2\lambda_5 \end{cases}$$

Par exemple, $(\lambda_1=z-y,\lambda_2=0,\lambda_3=y,\lambda_4=x-z,\lambda_5=0)$ est solution

 Donc

$$Vect(e_1, e_2, e_3, e_4, e_5) = E$$

Exemple:

$$E = \mathbb{R}^4$$

$$\begin{cases} e_1 = (1, 0, 1, 0) \\ e_2 = (0, 1, 0, 1) \\ e_3 = (1, 1, 1, 1) \\ e_4 = (1, -1, 1, -1) \\ e_5 = (1, 1, 0, 0) \end{cases}$$

Soit $(x, y, z, t) \in \mathbb{R}^4$, $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) \in \mathbb{R}^5$

$$(E) \quad (x, y, z, t) = \sum_{i=1}^{5} \lambda_{i} e_{i} \iff \begin{cases} x = \lambda_{1} + \lambda_{3} + \lambda_{4} + \lambda_{5} \\ y = \lambda_{2} + \lambda_{3} - \lambda_{4} + \lambda_{5} \\ z = \lambda_{1} + \lambda_{3} + \lambda_{4} \\ t = \lambda_{2} + \lambda_{3} - \lambda_{4} \end{cases}$$

$$\iff \begin{cases} \lambda_{5} = x - z \\ \lambda_{5} = y - t \\ \lambda_{1} + \lambda_{3} + \lambda_{4} = z \\ \lambda_{2} + \lambda_{3} - \lambda_{4} = t \end{cases}$$

$$\iff L_{2} \leftarrow L_{2} - L_{1} \begin{cases} \lambda_{5} = x - z \\ \lambda_{1} + \lambda_{3} + \lambda_{4} = z \\ \lambda_{1} + \lambda_{3} + \lambda_{4} = z \\ \lambda_{1} + \lambda_{3} - \lambda_{4} = t \end{cases}$$

Par exemple; $(1,0,0,0) \notin \text{Vect}(e_1,e_2,e_3,e_4,e_5)$

Proposition: Soit $(e_i)_{i\in I}$ une famille génératrice de E et $(u_j)_{j\in J}$ une surfamille de $(e_i)_{i\in I}$ constituée de vecteurs de E: $\forall i\in I, \exists j\in J, e_i=u_j$ Alors, $(u_j)_{j\in J}$ engendre E.

$$\forall i \in I, \exists i \in J, e_i = u$$

Proposition: Soit $(e_i)_{i\in I}$ une famille génératrice de E et $i_0\in I$

$$(e_i)_{i \in I \setminus \{i_0\}}$$
 engendre $E \iff e_{i_0} \in \text{Vect}\left((e_i)_{i \in I \setminus \{i_0\}}\right)$
 $\iff e_{i_0}$ est une combinaison linéaire des e_i $(i \in I, i \neq i_0)$

 $\begin{array}{ll} \textit{Preuve:} & \text{``} \implies \text{'`} E = \mathrm{Vect}\left((e_i)_{i \neq i_0}\right) \text{ et } e_{i_0} \in E \\ & \text{``} \iff \text{''} \text{ Soit } u \in E. \text{ Soit } (\lambda_i)_{i \in I} \text{ une famille presque nulle de scalaires telle que} \end{array}$

$$u = \sum_{i \in I} \lambda_i e_i$$

Soit $(\mu_i)_{i\neq i_0}$ une famille de scalaires telle que

$$e_{i_0} = \sum_{i \in I \setminus \{i_0\}} \mu_i e_i$$

D'où,

$$\begin{split} u &= \lambda_{i_0} e_{i_0} + \sum_{i \in I \setminus \{i_0\}} \lambda_i e_i \\ &= \lambda_{i_0} \sum_{i \in I \setminus \{i_0\}} \mu_i e_i + \sum_{i \in I \setminus \{i_0\}} \lambda_i e_i \\ &= \sum_{i \in I \setminus \{i_0\}} (\lambda_{i_0} \mu_i + \lambda_i) e_i \\ &\in \operatorname{Vect} \left((e_i)_{i \in I \setminus \{i_0\}} \right) \end{split}$$

III

Proposition: Soit $(e_i)_{i\in I}$ une famille génératrice de $E,\,i_0\in I.$

1. On pose
$$u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ \lambda e_{i_0} & \text{sinon} \end{cases}$$
 où $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$

1. On pose
$$u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ \lambda e_{i_0} & \text{sinon} \end{cases}$$
 où $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$
Alors, $(u_i)_{i \in I}$ engendre E

2. Soit $v \in \text{Vect}\left((e_i)_{i \in I \setminus \{i_0\}}\right)$.

On pose $u_i = \begin{cases} e_i & \text{si } i \neq i_0 \\ e_{i_0} + v & \text{sinon} \end{cases}$ où $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$
Alors, $(u_i)_{i \in I}$ engendre E

1. Soit $u \in E$. On pose

$$u = \sum_{i \in I} \lambda_i e_i$$

où $(\lambda_i) \in \mathbb{K}^I$ presque nulle

$$u = \lambda_{i_0} e_{i_0} + \sum_{i \in I \setminus \{i_0\}} \lambda_i e_i$$
$$= \lambda_{i_0} \lambda^{-1} u_{i_0} + \sum_{i \in I \setminus \{i_0\}} \lambda_i u_i$$
$$\in \text{Vect}((u_i)_{i \in I})$$

2. Soit $u = \sum_{i \in I} \lambda_i e_i \in E$

$$\begin{split} u &= \lambda_{i_0} e_{i_0} + \sum_{i \in I \backslash \{i_0\} \lambda_i e_i} \\ &= \lambda_{i_0} \left(u_{i_0} - v \right) + \sum_{i \in I \backslash \{i_0\}} \lambda_i u_i \end{split}$$

Or,
$$v = \sum_{i \in I \setminus \{i_0\}} \mu_i e_i = \sum_{i \in I \setminus \{i_0\}} \mu_i u_i$$
 où $(\mu_i)_{i \in I} \in \mathbb{K}^I$ presque nulle Donc, $u = \lambda_{i_0} + \sum_{i \in I \setminus \{i_0\}} (\lambda_i - \lambda_{i_0} \mu_i) u_i \in \text{Vect}((u_i)_{i \in I})$

Définition: Soit $(e_i)_{i\in I}$ une famille de vecteurs. On dit que $(e_i)_{i\in I}$ est <u>libre</u> si aucun vecteur de cette famille n'est une combinaison linéaire des autres vecteurs de cette famille:

$$\forall i \in I, e_i \not\in \text{Vect}\left((e_j)_{j \in I \setminus \{i\}}\right)$$

On dit aussi que les e_i sont <u>linéairement indépendants</u>

III

Proposition:

 $(e_i)_{i \in I}$ est libre $\iff \forall (\lambda_i) \in \mathbb{K}^I$ presque nulle , $\left(\sum_{i \in I} \lambda_i e_i = 0_E \implies \forall i \in I, \lambda_i = O_{\mathbb{K}}\right)$

Preuve: " \Longrightarrow " Soit $(\lambda_i) \in \mathbb{K}^I$ presque nulle. On suppose que

$$\sum_{i \in I} \lambda_i e_i = 0_E$$

On suppose aussi qu'il existe $i_0 \in I$ tel que $\lambda_{i_0} \neq 0_{\mathbb{K}}$

$$\lambda_{i_0}e_{i_0} = -\sum_{i \in I \setminus \{i_0\}} \lambda_i e_i$$

 $\lambda_{i_0} \neq 0_{\mathbb{K}}$ donc il a un inverse $\lambda_{i_0}^{-1}$ donc

$$e_{i_0} = \sum_{i \in I \setminus \{i_0\}} \left(-\lambda_i \lambda_{i_0}^{-1} \right) e_i \in \text{Vect} \left((e_i)_{i \in I \setminus \{i_0\}} \right)$$

 \longleftarrow " On suppose que $(e_i)_{i\in I}$ n'est pas libre. On considère $i_0\in I$ tel que e_{i_0} soit une combinaison linéaire des $e_i, i \in I \setminus \{i_0\}$

$$e_{i_0} = \sum_{i \in I \setminus \{i_0\}} \mu_i e_i$$

avec
$$(\mu_i)_{i\in I\setminus\{i_0\}}$$
 famille presque nulle de scalaires. Alors, $1_{\mathbb{K}}e_{i_0}-\sum_{i\in I\setminus\{i_0\}}\mu_ie_i=0_E$ Par hypothèse

$$\begin{cases} 1_{\mathbb{K}} = 0_{\mathbb{K}} \\ \forall i \neq i_0, -\mu_i = 0_{\mathbb{K}} \end{cases}$$

une contradiction ξ

EXEMPLE.
$$E = \mathbb{R}^3 \text{ On pose } \begin{cases} e_1 = (1, 1, 0) \\ e_2 = (1, 0, 1) \end{cases}$$
Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

$$\lambda_1 e_1 + \lambda_2 e_2 = 0_E \iff (\lambda_1 + \lambda_2, \lambda_1, \lambda_2) = (0, 0, 0)$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$$

$$\iff \lambda_1 = \lambda_2 = 0$$

Donc, (e_1, e_2) est libre.

EXEMPLE:
$$E = \mathbb{R}^{\mathbb{R}}, e_1 = \cos, e_2 = \sin$$

Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

$$\begin{split} \lambda_1 e_1 + \lambda_2 e_2 &= 0_E \iff \forall x \in \mathbb{R}, \lambda_1 \cos(x) + \lambda_2 \sin(x) = 0 \\ &\implies \begin{cases} \lambda_1 = 0 & (x = 0) \\ \lambda_2 = 0 & (x = 0 \text{ dans la dérivée}) \end{cases} \end{split}$$

Donc (e_1, e_2) est libre.

Proposition: Soit $(e_i)_{i \in I}$ une famille libre de E. Alors

$$\sum_{i \in I} \mathbb{K}e_i = \bigoplus_{i \in I} \mathbb{K}e_i$$

i e

$$\forall u \in \sum_{i \in I} \mathbb{K} e_i, \exists ! (\lambda_i) \in \mathbb{K}^I \text{ presque nulle telle que } u = \sum_{i \in I} \lambda_i e_i$$

En d'autres termes, tout vecteur de E a <u>au plus</u> une décomposition en combinaisons linéaires des $e_i, i \in I$

Preuve

Soit
$$u \in \sum_{i \in I} \mathbb{K}e_i$$

On suppose que u a au plus 2 décompositions

$$u = \sum_{i \in I} \lambda_i e_i = \sum_{i \in I} \mu_i e_i$$

avec (λ_i) et (μ_i) presque nulles.

Alors,

$$0_E = u - u = \sum_{i \in I} \lambda_i e_i - \sum_{i \in I} \mu_i e_i = \sum_{i \in I} (\lambda_i - \mu_i) e_i$$

Or, $(e_i)_{i \in I}$ est libre donc

$$\forall i \in I, \lambda_i \mu_i = 0_{\mathbb{K}}$$

Proposition: Soit $(e_i)_{i \in I}$ une famille libre de E.

- 1. Toute sous famille de (e_i) est encore libre
- 2. Soit $u \in E$, $\mathscr{F} = (e_i \mid i \in I) \cup \{u\}$.

$$\mathscr{F}$$
 est libre $\iff u \not\in \operatorname{Vect}(e_i \mid i \in I)$

- 3. (a) Quand on remplace un vecteur e_i par λe_i avec $\lambda \neq 0_{\mathbb{K}}$, la famille obtenue est libre.
 - (b) Quand on remplace un vecteur e_i par $v+e_i$ avec $v\in {\rm Vect}(e_j\mid j\neq i),$ la famille obtenue est libre.

Définition: Soit $(e_i)_{i\in I}$ une famille de vecteurs de E. On dit que (e_i) est une <u>base</u> de E si c'est à la fois une famille libre et génératrice de E; i.e. si

$$E = \bigoplus_{i \in I} \mathbb{K} e_i$$

21

i.e. si

$$\forall u \in E, \exists ! (\lambda_i) \in \mathbb{K}^I$$
 presque nulle telle que $u = \sum_{i \in I} \lambda_i e_i$

Dans ce cas, on dit que les λ_i sont les coordonnées de u dans la base $(e_i)_{i\in I}$

1. (1,i) est une base de $\mathbb C$ en tant que $\mathbb R$ -espace vectoriel

2. (1) est une base de $\mathbb C$ en tant que $\mathbb C$ -espace vectoriel

$$\begin{cases} u = 1 + i \\ v = 1 - i \end{cases}$$

(u,v)est une R-base de C

En effet, soit $z = a + ib \in \mathbb{C}$ avec $(a, b) \in \mathbb{R}^2$. Soient $\lambda, \mu \in \mathbb{R}$.

$$z = \lambda u + \mu v \iff a + ib = \lambda + \mu + i(\lambda - \mu)$$

$$\iff \begin{cases} a = \lambda + \mu \\ b = \lambda - \mu \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{a + b}{2} \\ \mu = \frac{a - b}{2} \end{cases}$$

Autre méthode

$$(1,i)$$
 base

donc
$$(1, 1+i)$$
 base

donc
$$(1 - (1 + i), 1 + i)$$
 base

donc
$$(-2i, 1+i)$$
 base

donc
$$(1+i-2i,1+i)$$
 base

donc
$$(1-i, 1+i)$$
 base

Exemple (Bases canoniques): 1. La <u>base canonique</u> de \mathbb{K}^n est (e_1, \dots, e_n) où $\forall i, e_i = 1$ $(0_{\mathbb{K}},\ldots,0_{\mathbb{K}},\underbrace{1_{\mathbb{K}}},0_{\mathbb{K}},\ldots,0_{\mathbb{K}})$ car

$$\forall u \in \mathbb{K}^{n}, \exists ! (x_{1}, \dots, x_{n}) \in \mathbb{K}^{n}, u = (x_{1}, \dots, x_{n}) = x_{1}(1_{\mathbb{K}}, 0_{\mathbb{K}}, \dots, 0_{\mathbb{K}}) \\ + x_{2}(0_{\mathbb{K}}, 1_{\mathbb{K}}, \dots, 0_{\mathbb{K}}) \\ \vdots \\ + x_{n}(0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots, 1_{\mathbb{K}}) \\ = \sum_{i=1}^{n} x_{i} e_{i}$$

2. E l'ensemble des fonctions polynomiales de $\mathbb K$ dans $\mathbb K$ à coefficiants dans $\mathbb K$ où $\mathbb K$ est

 $\overline{\text{La base canonique}}$ de E est $(x \mapsto x^n)_{n \in \mathbb{N}}$ car

$$\forall P \in E, \exists ! n \in \mathbb{N}, \exists ! (a_0, \dots, a_n) \in \mathbb{K}^{n+1}, \forall x \in \mathbb{K}, P(x) = \sum_{i=0}^n a_i x^i$$

3. $E = \mathcal{M}_{n,p}(\mathbb{K})$

 $E = \mathcal{M}_{n,p}(\mathbf{E}_i)$ La <u>base canonique</u> de E est $(E_{i,j})_{1 \leqslant i \leqslant n}$ où $1 \leqslant j \leqslant p$

$$\forall i \in \llbracket 1, n \rrbracket, \forall j \in \llbracket 1, p \rrbracket, E_{i,j} = \left(\sigma_{i,j}^{k,\ell}\right)_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant \ell \leqslant p}}$$

$$E_{i,j} = \begin{pmatrix} 0_{\mathbb{K}} & \dots & 0_{\mathbb{K}} \\ \vdots & \vdots & \vdots \\ 0_{\mathbb{K}} & 1_{\mathbb{K}} & \vdots \\ 0_{\mathbb{K}} & \dots & 0_{\mathbb{K}} \end{pmatrix} \leftarrow i$$

$$\forall A = (a_{i,j}) \in \mathcal{M}_{n,p}, A = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_{i,j} E_{i,j}$$