10. Applications of Derivatives – II

Solution : Given that
$$f(x) = x^3 - 4x + 1 \dots (I)$$

f(x) is a polynomial which is continuous on [-2, 2] and it is differentiable on (-2, 2)

Let
$$a = -2$$
 and $b = 2$

For x = a = -2 from (I) we get,

$$f(a) = f(-2) = (-2)^3 - 4(-2) + 1 = -8 + 8 + 1 = 1$$

For x = b = 2 from (I) we get,

$$f(b) = f(2) = (2)^3 - 4(2) + 1 = 8 - 8 + 1 = 1$$

So, here
$$f(a) = f(b)$$
 i.e. $f(-2) = f(2) = 1$

Hence conditions of Rolle's theorem are satisfied. So, there exists $c \in (-2, 2)$ such that f'(c) = 0.

Differentiating (I) w. r. t. x.

$$f'(x) = 3x^2 - 4$$
 : $f'(c) = 3c^2 - 4$

Now,
$$f'(c) = 0 \Rightarrow 3c^2 - 4 = 0 \Rightarrow c = \pm \frac{2}{\sqrt{3}}$$

$$\therefore c_1 = -\frac{2}{\sqrt{3}} \quad \text{and } c_2 = \frac{2}{\sqrt{3}} \text{ both belong to (-2, 2)}.$$

Ex. (2). Determine the local extrema of the function $f(x) = \sin x - \cos x$ in $[0, 2\pi].$

Solution: Given that $f(x) = \sin x - \cos x$...(I)

Differentiate w. r. t. x.

$$f'(x) = \cos x + \sin x$$
 ... (II)
 $f'(x) = 0$, for extreme values of $f(x)$

$$f'(x) = 0$$
, for extreme values of $f(x)$

i.e.
$$\cos x + \sin x = 0 \Rightarrow \tan x = -1$$

we have
$$\tan\left(\frac{3\pi}{4}\right) = -1$$
 and $\tan\left(\frac{7\pi}{4}\right) = -1$

$$\therefore x = \frac{3\pi}{4}$$
 and $x = \frac{7\pi}{4}$ are the values at which $f'(x) = 0$ and

f(x) has its extreme values. Also, both $\frac{3\pi}{4}$, $\frac{7\pi}{4} \in [0, 2\pi]$ Differentiate (II) w. r. t. x.

$$f''(x) = -\sin x + \cos x \dots (III)$$
For $x = \frac{3\pi}{4}$, from (III) we get [angle $\frac{3\pi}{4}$ is in II quadrant]
$$f''\left(\frac{3\pi}{4}\right) = -\sin\left(\frac{3\pi}{4}\right) + \cos\left(\frac{3\pi}{4}\right)$$

$$= -\frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{-2}{\sqrt{2}}$$

$$f''\left(\frac{3\pi}{4}\right) = -\sqrt{2} < 0$$

$$\therefore \text{ For } x = \frac{3\pi}{4}, f(x) \text{ has a maxima.}$$

$$f \max = \sin\left(\frac{3\pi}{4}\right) - \cos\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}} - \left(-\frac{1}{\sqrt{2}}\right)$$

$$f \max = \sin\left(\frac{3\pi}{4}\right) - \cos\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}} - \left(-\frac{1}{\sqrt{2}}\right)$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

$$\therefore f \max = \sqrt{2}$$
For $x = \frac{7\pi}{4}$, from (III) $\left[\frac{7\pi}{4} \text{ is in IV quadrant}\right]$

$$f''\left(\frac{7\pi}{4}\right) = -\sin\left(\frac{7\pi}{4}\right) + \cos\left(\frac{7\pi}{4}\right)$$

$$= -\left(-\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

$$f''\left(\frac{7\pi}{4}\right) = \sqrt{2} > 0$$

$$\therefore \text{ For } \mathbf{x} = \frac{7\pi}{4}, f(\mathbf{x}) \text{ has a minima.}$$

$$f \min = \sin\left(\frac{7\pi}{4}\right) - \cos\left(\frac{7\pi}{4}\right) = \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}}$$

$$\therefore f \min = -\sqrt{2}$$

- Ex. (3). Given the function $f(x) = x^3 2x^2 x + 1$. Find all points c satisfying the conditions of the Lagrange's Mean Value Theorem for the function on the interval [-2, 2].
- **Solution:** Given that $f(x) = x^3 2x^2 x + 1$... (I)

f(x) is a polynomial which is continuous on [-2, 2] and it is differentiable on [-2, 2]. So, f(x) satisfies the conditions of LMVT.

There exists a
$$c \in (-2, 2)$$
 such that $f'(c) = \frac{f(b) - f(a)}{b-a}$
Let $a = -2$ and $b = 2$

For
$$x = a = ...$$
 from (I) we get,

$$f(\alpha) = f(-2) = (...2...)^3 - 2 (...2...)^2 - (...2...) + 1 = ...13$$

For
$$x = b = \frac{2}{100}$$
 from (I) we get,

$$f(b) = f(2) = (2)^3 - 2(2)^2 - 2 + 1 = ...$$

Differentiate (I) w. r. t. x.

$$f'(x) = ...3x^2 - 4x - 1 ... f'(c) = ...3c^2 - 4c - 1$$

Now,
$$f'(c) = \frac{-1 - (-13)}{2 - (-2)} = 3$$

Thus, $3c^2 - 4c - 1 = 3$ i.e. $3c^2 - 4c - 1 = 3$

$$3c^2 - 4c - ...4 ... = 0 \Rightarrow 3c^2 - (6c) + (2c) - 4 = 0$$

$$\Rightarrow$$
 3c (C-2) + 2 (C-2) = 0 i.e. (C-2) (3c + 2) = 0

$$\Rightarrow$$
 ... = 0 or ... 3. $c+2$ = 0. \Rightarrow $c = ... 2$... or $c = -\frac{2}{3}$...

But
$$c = \not\in (-2, 2)$$
 and $c = ... \not\in (-2, 2)$

Hence LMVT is verified.

The sum of two positive numbers is 24. Find the numbers so that the Ex. (4). sum of their squares is minimum.

Solution: Let one of the numbers be x so the other number is $\frac{24}{}$

Let S be the sum of the squares of the numbers.

$$S = (24-x)^2 + (x)^2 = x^2 + .576 - ... + x^2$$

$$S = ... + x^2 - 48x + 576 - ... (I)$$

Differentiate (I) w. r. t. x.

$$\frac{dS}{dx} = \frac{4 \times -48}{} \dots (II)$$

For extreme values of S, we have $\frac{dS}{dr} = 0$

$$\therefore 4 \times -48 = 0 \qquad \qquad \therefore x = 12$$

Therefore at x = either there is a maxima or minima.

Differentiate (II) w. r. t. x.

$$\frac{d^2S}{dx^2} = \dots \qquad \dots (III)$$

Substituting x = 12 in (III), we get,

$$\left(\frac{d^2S}{dx^2}\right)_{x=12} = \dots + \dots > 0$$

Therefore S has a minima at x = ...12

Therefore the required numbers are and 24 - ... = ... 12...

Find the volume of the largest box that can be made by cutting equal $\mathbf{Ex.}$ (5). squares out of the corners of a piece of cardboard of dimensions 15 cm by 24 cm, and then turning up the sides.

Solution:

	Let dv =0
Let the side of square be x cm	Let dv =0
i. Length of box = (24-20x) cm	$1.12x^{2}-156x+360=0$
breadth of box = (15-2x) cm	$\pi^2 - 13\pi + 30 = 0$ solving
volume = v = 1 xbxh	: X=10 @ X = 3
V=(24-27)7(15-27)	d2 24×10-156 - 8470
V=(24x-2x2)(15-2x)	$\frac{d^2V}{dn^2} = 24 \times 10^{-156} = 8470$
= 360 x - 48 x 2	$\frac{d^2v}{dx^2} = 24 \times 3 - 156 = -84 < 0$
$= 30x^2 + 4x^3$	Volume is max for x=3
$V = 4x^3 - 78x^2 + 360x$	Put 21=3 in V
diff misito x	$V = 4(3)^3 - 78(3)^2 + 360 \times 3$
$\frac{dV}{dx} = 12x^2 + 156x + 360$	= 108-702+1080
diff was to see = (10)	= V = 486 Cu.cm,
$\frac{d^2v}{dn^2} = 24x - 156$	Rota watthe
For man volume dv = 0 2 d2 60	(1) - 120 - 903 - (4) }
Ex. (6). Examine the function $f(x) = x^3$	$-5x^2 + 8x - 4$ for maxima and minima.
Solution:	
$f(x) = x^3 - 5x^2 + 8x - 4 - I$	min value of function $f(2) = 2^3 - 5(2)^2 + 8x - 4 = 0$
ditt w. rito x	
$f'(x) = 3x^2 + 10x + 8 - II$	Now Put x = 4 in (II.)
diff w. s. to 2	$f''(\frac{4}{3}) = 6(\frac{4}{3}) - 10 = -240$
f''(x) = 6x - 10	$f(x) is max at x = \frac{4}{3}$
Let f'(n) =0	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
on solving.	: man value of function is
$\mathcal{H}=2$, (\mathcal{A}) $\mathcal{H}=\frac{4}{3}$	$f(\frac{4}{3}) = (\frac{4}{3})^3 - 5(\frac{4}{3})^2 + 8(\frac{4}{3}) - 4$
Put n = 2 in II	
$f''(2) = 6 \times 2 - 10 = 2 > 0$	$= \frac{64}{27} - \frac{80}{9} + \frac{32}{3} - 4$
function is min at x = 2 (61	27
01	

.. maxima =
$$\frac{4}{27}$$
 and minima = 0

brendth of box = (15-2x) cm .Ex. (7). Find two positive numbers x and y, such that x + y = 60 and xy3 is maximum.

Solution:

$$x+y=60$$
 $x=60-y$
 $y=0$ is not possible

 $x=60-y$
 $y=45$ in (III)

 $xy^3=(60-y)y^3$
 $y=60y^3-y^4$

Let $y=45$ in (III)

 $y=360x45-4(45)^3$
 $y=360y^3-y^4$
 $y=45$

Let $y=60$
 $y=45$
 $y=45$

Sign of Teacher:

since y.l.s.a. positive.

and my3 is maximum.

to K to min 21 moitonut

- On Solution Buddy, You Will Get:
- ✓ Exercise solutions for Class 8-12
- Previous Year Question Papers (10th & 12th)
- Free Textbook Downloads
- ✓ Practical Solutions (Class 10, 11 & 12)
- ✓ Water Security Exercise & Activity Solution
- Defence Studies Exercise Solution
- Website: solutionbuddy.netlify.app
- YouTube: youtube.com/@solutionbuddy

Solution Buddy

