2018 Prof. María Luján Ferreira Química IS

Estructura Atómica

Esfera

positiva

Modelo atómico de Thomson

Modelos atómicos

- Teoría atómica de Dalton
- Modelo atómico de Thomson
- Modelo atómico de Rutherford
- Teoría Cuántica
- Modelo atómico de Bohr
- Modelo atómico de Schrodinger

EL ESPECTRO ELECTROMAGNÉTICO

Espectro electromagnético

FRECUENCIAS

Onda de frecuencia baja

Onda de frecuencia alta

Determinar las frecuencias de las radiaciones electromagnéticas de las longitudes de onda siguientes: 1 Å; 5000 Å; 4,4 µm; 89 m; 562 nm

$$v = \frac{c}{\lambda}$$

Estas es la relación entre **frecuencia** y **longitud de onda** (λ, lambda). La constante de proporcionalidad entre ambas variables es la velocidad de propagación de la onda, que en el caso de la radiación electromagnética es la **velocidad de la luz**, cuyo valor es muy aproximadamente igual a 3·10⁸ ms⁻¹.

Los espectros atómicos

- > Los átomos emiten (o absorben) luz discontinua (sólo de algunas frecuencias o longitudes de onda λ)
- Los espectros atómicos son discontinuos

 El modelo atómico de Rutherford tampoco explica la discontinuidad de los espectros atómicos

Modelo de Bohr

Modelo de Bohr: cuantización de r y E

- El número cuántico n está asociado con r de la órbita. A menor n, menor radio. También con la energía (mayor n, mayor energía)
- n = 1 es el estado basal o fundamental
- n > 1 es un estado excitado

Limitaciones del modelo de Bohr

- > Explica sólo el espectro del átomo de H
- No funciona para átomos polielectrónicos (atracciones e-núcleo y repulsiones e-e)
- Los electrones no "viajan" en órbitas fijas (r definidos)

Nuevo modelo atómico

Dualidad onda-partícula

1924 Louis De Broglie: los electrones pueden tener propiedades ondulatorias:

$$\lambda = h/mv$$

1927 Heisenberg: es imposible conocer simultáneamente la posición exacta y el momento (velocidad) de dicha partícula

Modelo mecánico-cuántico del átomo

- Naturaleza dual de la materia y la energía mecánica cuántica
- 1926, Schrodinger propone una ecuación (base del modelo atómico actual)

Orbital atómico

La función de onda (¥) es una función matemática sin significado físico en la mecánica clásica → describe el movimiento del electrón en función del tiempo y de su posición.

- > Concepto de densidad electrónica: probabilidad de encontrar al electrón en una cierta región del átomo (relacionada con Ψ^2)
- La zona del espacio en la cual es mas probable encontrar al electrón la denominamos orbital atómico.

Los números cuánticos

- > Cuatro números cuánticos:
 - Número cuántico principal (n): entero positivo (1,2,3,...).
 - Define el tamaño del orbital y su energía.
 - Número cuántico del momento angular (1): entero (0, 1, 2,..., n-1). Define la forma del orbital.
 - Los posibles valores de l se designan con una letra:

Niveles y subniveles

- Número cuántico del momento magnético (m_I): entero (-1,...,0,...+1). Define la orientación del orbital en el espacio
- Número cuántico del espín (m_s): +1/2 o -1/2. Define la orientación del electrón en presencia de un campo magnético
- El conjunto de orbitales que tienen el mismo valor de n forman un nivel o capa
- Los orbitales que tienen los mismos valores de n y l se conocen como subnivel
- Los orbitales que tienen la misma energía se denominan degenerados

Orbitales s

Todos los orbitales con l = 0 son orbitales s y tienen forma esférica

Orbitales p

- Todos los orbitales con | = 1 son orbitales p
- Comienzan en el segundo nivel de energía (n = 2)
- > 3 orbitales $(m_1 = -1, 0, +1)$, 3 orientaciones distintas

Orbitales d

- > 1 = 2 describe orbitales d
- Comienzan en el tercer nivel de energía (n = 3)
- > 5 orbitales $(m_1 = -2,-1, 0, +1,+2),$ 5 orientaciones distintas

Energía de los orbitales en el H

- átomo de H energía (E)→n. Aumenta n y aumenta E:
 - 1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f <
- ➤ El electrón en n = 1 → estado fundamental (o de menor energía)
- > El electrón en n > 1 → estado excitado
- En el átomo de H los orbitales del nivel n = 2 (2s y 2p) tienen igual energía y los subniveles s, p y d del nivel 3 tienen igual energía.
- No sucede lo mismo en un átomo polielectrónico

Átomos polielectrónicos

- > Soluciones aproximadas:
 - Los orbitales atómicos son semejantes a los del hidrógeno
 - Se emplean los mismos números cuánticos (n, l, m_l) para describir orbitales

- Sistemas con más de 1 electrón, hay que tener en cuenta:
 - Cuarto número cuántico (m_s)
 - Limitar nº electrones por orbital (P. Exclusión Pauli)
 - > Conjunto de niveles de energía más complejo

Configuración electrónica

- Combinación de 4 números cuánticos (n, l, m_l, m_s) identifican a cada electrón en un orbital.
 - ¿cuáles son los números cuánticos que identifican a un electrón en el orbital 1s?

```
n = 1; | = 0; ml = 0; ms = \pm \frac{1}{2}
2 posibles combinaciones: (1,0,0,+1/2) y (1,0,0,-1/2)
```

- Configuración electrónica: distribución de los electrones en los distintos orbitales atómicos, en orden de energía creciente.
- > Átomo de H- sistema más simple:

Principio de exclusión de Pauli

- Necesario para determinar configuraciones electrónicas de átomos polielectrónicos: "dos electrones de un átomo no pueden tener los 4 números cuánticos iguales"
 - Ejemplo: configuración electrónica del He (Z = 2)

Existen 3 formas de distribuir los dos electrones en el orbital 1s:

He: 1s² " uno s dos"

Energía de los orbitales en el átomo polielectrónico

- ► En el átomo de hidrógeno E(2s) = E(2p): $E \rightarrow n$.
- > En un átomo polielectrónico E→ ny l

Configuración electrónica del Li (Z = 3):

Átomo polielectrónico

Orbitales y energía

Átomo de Hidrógeno

Regla de Hund

- Regla de Hund: "la distribución electrónica más estable es aquella que tiene el mayor número de electrones con espines paralelos"
- > Be (Z = 4) y B (Z = 5):

Be: 1s² 2s²

Be:

$$\begin{array}{c|c} \uparrow \downarrow & \uparrow \downarrow \\ 1s^2 & 2s^2 \end{array}$$

▶ B: 1s² 2s² 2p¹

B:
$$1s^2$$
 $2s^2$ $2p^1$

- > C(Z = 6):
 - C: 1s² 2s² 2p² Tres posibilidades de colocar el 6° electrón:

Prohibidas por Regla de Hund

Regla de Hund

- \rightarrow N (Z = 7), O (Z = 8), F (Z = 9) y Ne (Z = 10):
 - $ightharpoonup N: 1s^2 2s^2 2p^3$
 - > O: 1s² 2s² 2p⁴

> F: 1s² 2s² 2p⁵

Ne: 1s² 2s² 2p⁶

El principio de construcción

- Principio de construcción (aufbau): "los electrones se suman de a uno en uno en los orbitales para construir la configuración electrónica de los elementos
- > Configuraciones en el estado fundamental
- Reglas:
 - > Orbitales se llenan de menor a mayor valor de n
 - Cada orbital se ocupa con un máximo de dos electrones con sus espines apareados (Pauli)
 - Para orbitales degenerados, cada electrón ocupará un orbital diferente antes de aparearse (regla de Hund)

Configuraciones electrónicas y la tabla periódica

- La Tabla Periódica puede utilizarse como guía para las configuraciones electrónicas
- El número del período coincide con el valor de n
- \rightarrow grupos 1 y 2 \rightarrow orbitales de tipo s
- \rightarrow grupos 13 al 18 \rightarrow orbitales de tipo p
- > grupos 3 al 12 →orbitales de tipo d
- ▶ Lantánidos y Actínidos → orbitales f

Configuraciones electrónicas y la tabla periódica

