Skriftlig eksamen på Økonomistudiet Sommeren 2018

MATEMATIK B

Lørdag den 9. juni 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

1. årsprøve 2018 S-1B ex

Skriftlig eksamen i Matematik B Lørdag den 9. juni 2018

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \begin{pmatrix} 2 & s & 1 \\ s & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

- (1) Udregn determinanten for matricen A(s), og bestem de $s \in \mathbf{R}$, for hvilke A(s) er regulær.
- (2) Bestem de $s \in \mathbf{R}$ for hvilke, matricen A(s) er positiv definit. Vis desuden, at matricen A(s) ikke er negativ definit for noget $s \in \mathbf{R}$.
- (3) Bestem de $s \in \mathbf{R}$ for hvilke, matricen A(s) er positiv semidefinit. Vis tillige, at matricen A(s) ikke er negativ semidefinit for noget $s \in \mathbf{R}$.
- (4) Bestem de $s \in \mathbf{R}$ for hvilke, matricen A(s) er indefinit.
- (5) Bestem egenværdierne og de tilhørende egenrum for matricen A(0). Her er s=0.
- (6) Bestem en diagonalmatrix D og en ortogonal matrix Q, så ligningen

$$D = Q^{-1}A(0)Q$$

er opfyldt.

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + x^2y^2 + 2y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2.$
- (4) Vis, at funktionen f ikke er konveks.

For ethvert $v \in \mathbf{R}$ betragter vi den kompakte mængde

$$K(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le v \land 0 \le y \le 1\}.$$

(5) Udregn integralet

$$I(v) = \int_{K(v)} f(x, y) d(x, y).$$

(6) Bestem grænseværdien

$$\lim_{v \to 0} \frac{I(v)}{e^v - 1}.$$

Opgave 3. Vi betragter differentialligningen

$$\frac{dx}{dt} = 2te^{t^2}x^3.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0) = \frac{1}{2}$ er opfyldt.

Opgave 4. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = \frac{x^2}{1+y^2}.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

(2) Bestem de stationære punkter og værdimængden for funktionen f.

Vi betragter den kompakte mængde

$$K = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1 \land 0 \le y \le 1\}.$$

(3) Godtgør, at restriktionen af funktionen f til den kompakte mængde K har både en størsteværdi og en mindsteværdi på K, og bestem disse værdier.

Vi betragter ligningen $f(x,y) = \frac{1}{5}$, og vi bemærker, at punktet $(x_0, y_0) = (1,2)$ er en løsning til denne ligning.

(4) Vis, at i en omegn U(1) af $x_0 = 1$ er den variable y givet implicit som en funktion y = y(x) af den variable x, og bestem differentialkvotienten y'(1).