	N			N									N				
Question I. $m(x)=$	$\frac{1}{N}\sum_{i=1}^{N}x_{i}$ Cor	v (X,))=	<u>, </u>	_(x;	-m	<u>(x))</u>	(y:-	m(1))	S	=	<u>, </u>	(xi	-m	(x)) ²	
1.1 m(a+bx)=	i=1																
$=\frac{1}{N}\sum_{i=1}^{N}\left(\alpha+bx_{i}\right)$																	
$= \frac{1}{N} \left(\sum_{i=1}^{N} a_i + \sum_{i=1}^{N} b_{X_i} \right)$																	
$= \frac{1}{N} \left(a \sum_{i=1}^{N} 1 + b \sum_{i=1}^{N} x_i \right)$	1.	4 x≥	x' ⇒	g(x)≥	g(x')		g i	s nor	-decr	easing							_
$= a\left(\frac{1}{N}\right) + b \cdot \frac{1}{N} \sum_{i=1}^{N} x_{i}$	let	r mediar	(X)=m X≤m)≥	,50:	. 0/4												_
= a + b·m(x)	X <u>∠</u> ,	P(m⇒g(_
	P(g(x)≤	g(m))=	P(X	: _m /≥(.5, P(g(X)≥	g(m))=	P(X≥	m) ≥ 0.	5						_
1.2 cov(X, a+bY)=		median	Eg (x)]= g1	lmedio	ın (X))	, for a	ny non-	decreas	sing tr	ansform	nation	9				_
$=\frac{1}{N}\sum_{i=1}^{N}\left(x_{i}-m(X)\right)\left(a+bY-m(a+bY)\right)$		Quartile Q : 25	!S: th pero	entile.													_
$= \frac{1}{N} \sum_{i=1}^{N} (x_i - m(x)) (a/+b/-a+b-m(y))$		Q3:75	th per	entile													_
		values	± Q, 1	become	= g((= = g((G²) 'Y')											_
$= \frac{1}{N} \sum_{i=1}^{N} (x_i - m(x)) b (Y - m(Y))$		Q,1	g(x)]	= g (Q,	(x),	Q ₃ [g(X)]=e	(03[X	1)								_
= b cov (X,Y)		IQR = 0		range	= max-	min											_
1.3 cov(a+bx, a+bx)=		IDR	[g(X)]= ge[g(X	g(Qs)	- g(Q	(min)											_
$= \frac{1}{N} \sum_{i=1}^{N} (a+b) - m(a+b)(a+b) - m(a+b)$		L/M	ze i gov	11 - A (1	···~1_6	,,											_
$= \frac{1}{n} \sum_{k=1}^{n} (a + px - a + p \cdot m(x)) (a + px - a + p \cdot m(x))$	1		Yes, f														_
		1	he or	der o	f all v	alues	. Hal	f the	value	s rem	ain b	elow	and a	bove			_
$= \frac{1}{l} \sum_{i=1}^{l} b(X - w(X)) b(X - w(X))$			g(m(X g is no	///			s the	mean	an de	1111111	JH. 11	IIS OI	ily wo	JIKS I.			_
$= b^{2} \frac{1}{N} \sum_{i=1}^{N} (X - m(X))(X - m(X)) \rightarrow b^{2} s^{2}$																	_
= b ² cov (X,X)																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
																	_
Made with Goodnotes																	_