DISCRETE STRUCTURES Lecture 6. Mathematical Induction

Bui Anh Tuan

Advanced Program in Computer Science

Fall, 2018

Content

- Mathematical Induction
- Strong Induction and Well-Ordering

Examples

Many mathematical statements assert that a property is true for all positive integers.

Examples of such statements are that for every positive integer n:

- 2 $n^3 n$ is divisible by 3
- $\circled{3}$ a set with n elements has 2^n subsets
- 4 sum of the first n positive integers is n(n+1)/2

One method of proving those statements is Mathematical Induction.

Bui Anh Tuan

Induction

Suppose that we have an infinite ladder and we want to know whether we can reach every step on this ladder. The idea for mathematical induction are:

- We can reach the first rung of the ladder
- If we can reach a particular rung of the ladder, then we can reach the next rung

Induction

Principle of mathematical induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) true.
- Inductive step: We show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

Expressed as a rule of inference, this proof technique can be stated as

$$(P(1) \land \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall nP(n)$$

where the domain is the set of all positive integers.

Note: The assumption that P(k) is true is called the inductive hypothesis.

(□▶ ◀∰▶ ◀불▶ ◀불▶ = 불 ♥)९(

Why Mathematical Induction is Valid?

Well-ordering property

Every nonempty subset of the set of positive integers has a least element.

- Suppose that P(1) and the implication $P(k) \rightarrow P(k+1)$ is true for all positive k.
- Let S be the set of all positive integers n for which P(n) is false. Suppose that S is non-empty.
- S has a least element, say m, by the well-ordering property. And hence $m-1 \notin S$. Means P(m-1) is true. And then by the assumption, P(m) is true. This is a contradiction.

Induction: proving summation formulae

Example 1.1

Show that if n is a positive integer, then

$$1+2+\cdots+n = \frac{n(n+1)}{2}$$

Let P(n) be the proposition that the sum of the first n positive integers, $1+2+\cdots+n=\frac{n(n+1)}{2}$.

We must do:

- Prove the basis step, P(1) is true.
- ② Prove the inductive step, conditional statement P(k) implies P(k+1) for any arbitrary k.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

What is bad about Mathematical Induction?

- 1 It can not find a new theorem.
- 2 Do not provide insights of the problem.

Bui Anh Tuan

Conjecture and Proof

Question: Formula for the sum of first n positive odd integers?

Conjecture

$$1 + 3 + \cdots + (2n - 1) = n^2$$
.

Proof.

By mathematical induction.

Sums of Geometric Progressions

Use mathematical induction to prove this formula for the sum of a finite number of terms of a geometric progression with initial term a and common ratio r:

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r - 1}, \quad \text{when } r \neq 1,$$

where n is a nonnegative integer.

(□▶ ◀♬▶ ◀불▶ ◀불▶ - 불 - 쒸٩♡

Why "geometric"?

Induction: proving inequalities

Example 1.2

Use mathematical induction to prove the inequality

$$n < 2^n$$

for all positive integers n.

- Let P(n) be the proposition that $n < 2^n$
- Basis step ...
- 3 Inductive step ...

Inequality for Harmonic Numbers

The harmonic numbers H_i defined by

$$H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{j}$$

Use mathematical induction to show that

$$H_{2^n} \ge 1 + \frac{n}{2}$$

whenever n is nonnegative integer.

Note: This result shows that the harmonic series is a divergent infinite series.

4□ > 4□ > 4 = > 4 = > = 9 < 0

Exercises

- Q1. Prove that if h > -1, then $1 + nh \le (1 + h)^n$ for all nonnegative integers n. This is called Bernoulli's inequality.
- **Q2.** Suppose that a and b are real numbers with 0 < b < a. Prove that if n is a positive integer, then $a^n b^n \le na^{n-1}(a-b)$.
- **Q3.** Prove that $H_{2^n} \le 1 + n$ whenever n is a nonnegative integer.
- **Q4.** Prove that $H_1 + H_2 + \cdots + H_n = (n+1)H_n n$.