# Mikroprogramuojama struktūra

Laboratoriniam darbui paruoštas mikroprogramuojamos struktūros, kuri parodyta 1 paveiksle, modelis VHDL kalba.



1 pav. Mikroprogramuojama struktūra

1 paveiksle pateikta struktūra, kurioje parodyti pagrindiniai jos komponentai ir jų sąryšiai. Tai supaprastinto procesoriaus variantas. Su išorine aplinka šis procesorius siejamas tokiais ryšiais (paveiksle jie pažymėti alyvine spalva):

- RST struktūros komponentų nustatymo į pradinę būseną signalas;
- CLK sinchronizacijos signalas;
- **Din** 16 bitų duomenų įvestis;
- Dout 16 bitų duomenų išvestis;
- **S\_Done** darbo pabaigos signalas.

#### Procesorių sudaro šie komponentai:

- valdymo signalų formavimo schema CTRL,
- aritmetinis loginis įtaisas ALU,
- mikrokomandu atmintis ROM,
- 6 bendros paskirties registrai REG A—REG F,

- multiplekseris MUX,
- skaitiklis CNT,
- požymių (loginių sąlygų) registras FLAG.

### 1. Aritmetinis loginis įtaisas (ALU)

ALU\_Dout

Tai pagrindines aritmetines ir loginę operacijas atliekanti kombinacinė schema. ALU turi dvi duomenų įvestis: kairįjį (L) ir dešinįjį (R), bei rezultato išvestį (M). Pilnas ALU įvesčių ir išvesčių sąrašas pateikiamas lentelėje 1.2.

1 lentelė. ALU įvestys ir išvestys

| Įvestis     | Paskirtis                            |
|-------------|--------------------------------------|
| ALU_CMD     | Komanda (5 bitų)                     |
| ALU_Din_L   | Kairioji duomenų įvestis (16 bitų)   |
| ALU_Din_R   | Dešinioji duomenų įvestis (16 bitų)  |
| Išvestis    | Paskirtis                            |
| FLG ALU CMD | Pernaša, išvedama i požymiu registra |

Rezultato išvestis (16 bitų)

ALU atliekamos operacijos yra apibrėžtos 2 lentelėje. Vieno ciklo metu ALU gali atlikti tik vieną aritmetinę operaciją. Jei vienoje mikrokomandoje bus pažymėta daugiau nei viena ALU operacija, ALU įvykdys tą, kurios kodas yra didžiausias.

2 lentelė. ALU atliekamos operacijos

| ALU_CMD | Komanda            | Operacija             |
|---------|--------------------|-----------------------|
| 000     | M = L + R          | Sudėtis               |
| 001     | $M = \overline{L}$ | Invertuojamas L       |
| 010     | $M = \overline{R}$ | Invertuojamas R       |
| 011     | M = L + 1          | L padidinimas vienetu |
| 100     | M = L - 1          | L sumažinimas vienetu |
| 101     | M = R + 1          | R padidinimas vienetu |
| 110     | M = R - 1          | R sumažinimas vienetu |
| 111     | $M = L \oplus R$   | L xor R               |

<u>Pastaba.</u> Modelyje realizuoto ALU operacijos išrinkimo bitai yra penki. 2 lentelėje nurodytoms operacijoms išrinkti yra panaudoti tik paskutiniai trys bitai; naudojant visus 5 bitus, ALU galėtų atlikti 32 skirtingas operacijas. Ši išplėtimo galimybė skirta studentams, kurie norėtų papildyti ALU operacijų sąrašą pagal individualius poreikius.

### 2. Registrai

Procesoriuje yra 6 universalūs 16 bitų registrai, identifikuojami raidėmis **A**, **B**, **C**, **D**, **E**, **F**. Registrų įvestys ir išvestys yra apibrėžtos 3 lentelėje.

3 lentelė. Registrų įvestys ir išvestys

| Įvestys               | Paskirtis                              |  |
|-----------------------|----------------------------------------|--|
| CLK                   | Sinchronizavimo signalas               |  |
| RST                   | Reset signalas                         |  |
| REG_Din               | Duomenų įvestis (16 bitų)              |  |
| REG_CMD               | Komanda (3 bitai)                      |  |
| <i>l</i> švestys      | Paskirtis                              |  |
| REG_FLAG <sub>H</sub> | 15-o bito reikšmė (į požymių registrą) |  |
| REG_FLAG <sub>L</sub> | 0-o bito reikšmė (į požymių registrą)  |  |
| REG_Dout              | Duomenų išvestis (16 bitų)             |  |

Registras **REG A** atlieka akumuliatoriaus funkciją. Į jį duomenys gali būti įrašomi tik iš ALU išėjimo. Registro **REG A** išėjimas yra tiesiogiai sujungtas su dešiniuoju (**R**) ALU įėjimu ir multiplekserio **Din 2** įėjimu. Registrų **REG B-REG F** duomenų įėjimai yra prijungti prie pagrindinės duomenų magistralės, o išėjimai atitinkamai prie multiplekserio **Din 2** – **Din 7** jėjimų.

Kiekvienas registras gali atlikti 8 operacijas; jos ir jas inicijuojančios valdymo signalų reikšmės pateiktos 4 lentelėje.

Veiksmas REG\_CMD Operacija A = ASaugojimas 000 001 A = DinDuomenų įvedimas A = LL1(A)010 Loginis postūmis į kairę per 1 bitą 011 A = LR1(A)Loginis postūmis į dešinę per 1 bitą A = AL1(A)100 Aritmetinis postūmis i kaire per 1 bita 101 A = AR1(A)Aritmetinis postūmis į dešinę per 1 bita A = CL1(A)110 Ciklinis postūmis į kairę per 1 bita 111 A = CR1(A)Ciklinis postūmis į dešinę per 1 bitą

4 lentelė. Registrų atliekamos operacijos

## 3. Multiplekseris

Multiplekseris (MUX) yra įtaisas, turintis 8 duomenų ir 1 valdymo įėjimus, bei 1 duomenų išvestį. Visi MUX įėjimai ir išėjimai yra apibrėžti 5 lentelėje. Valdymo signalų reikšmės yra pateiktos 6 lentelėje.

Priklausomai nuo valdymo signalų, vienas iš įėjimų yra perduodamas į išėjimą.

#### 4. Skaitiklis

Skaitiklis (**CNT**) yra 16 bitų registras, kuris sumažina savo turinį vienetu, gavęs valdymo signalą **CNT\_CMD**. Skaitiklio įėjimai ir išėjimai yra apibrėžti 7 lentelėje. Skaitiklis yra naudojamas ciklams realizuoti mikroprogramoje. Kai skaitiklio turinys pasiekia kritinę reikšmę, skaitiklis išduoda signalą į požymių registro 13-ą bitą. Pradinė ir kritinės reikšmės yra

nurodomos skaitiklio programiniame kode.

5 lentelė. Multiplekserio jėjimai ir išėjimai

| Įvestys     | Paskirtis                |
|-------------|--------------------------|
| $MUX_{C}MD$ | Sinchronizavimo signalas |
| MUX_Din0    | 16 bitų duomenų įvestis  |
| MUX_Din1    | 16 bitų duomenų įvestis  |
| MUX_Din2    | 16 bitų duomenų įvestis  |
| MUX_Din3    | 16 bitų duomenų įvestis  |
| MUX_Din4    | 16 bitų duomenų įvestis  |
| MUX_Din5    | 16 bitų duomenų įvestis  |
| MUX_Din6    | 16 bitų duomenų įvestis  |
| MUX_Din7    | 16 bitų duomenų įvestis  |
| Išvestis    | Paskirtis                |
| MUX Dout    | 16 bitu duomenu išvestis |

| Išvestis | Paskirtis                |
|----------|--------------------------|
| MUX_Dout | 16 bitų duomenų išvestis |

6 lentelė. Multiplekserio operacijos

| MUX_CMD | Operacija            |
|---------|----------------------|
| 000     | S_Data = Din         |
| 001     | S_Data = Din         |
| 010     | S_Data = REG_A_Dout  |
| 011     | S_Data = REG_B_Dout  |
| 100     | S_Data = REG_C_Dout  |
| 101     | S_Data = REG_D_Dout  |
| 110     | S_Data = REG_E_Dout  |
| 111     | S_Data = REG_F _Dout |

7 lentelė. Skaitiklio įėjimai ir išėjimai

| Įvestys  | Paskirtis                    |
|----------|------------------------------|
| CLK      | Sinchronizavimo signalas     |
| CNT_CMD  | Skaitiklio turinio mažinimas |
| RST      | Reset signalas               |
| Išvestis | Paskirtis                    |
| CNT Flag | Požymio signalas             |

## 5. Valdymo signalų formavimo schema

Ši schema, 1 paveiksle pažymėta CTRL simboliu, organizuoja procesoriaus darbą pagal vartotojo sukurtą mikroprogramą, esančią pastoviojoje atmintyje ROM. Kiekvieno takto pradžioje CTRL iš ROM išrenka vieną mikrokomandą (MK) ir į struktūros komponentus perduoda atitinkamus valdymo signalus. MK struktūra priklauso nuo naudojamo MK adresavimo būdo (žr. dokumentą "Mikroprogramavimo pagrindai.docx").

8 lentelėje pateiktos visos valdymo signalų formavimo schemos įvestys ir išvestys.

8 lentelė. Valdymo signalų formavimo schemos įvestys ir išvestys

| Įvestys | Paskirtis                           |
|---------|-------------------------------------|
| CLK     | Sinchronizavimo signalas            |
| RST     | Reset signalas                      |
| ROM_Din | MK komandos įvestis iš ROM          |
| Din     | 16 bitų duomenų įvestis             |
| FlagV   | Požymių registro vektoriaus įvestis |

| Išvestys  | Paskirtis                                    |
|-----------|----------------------------------------------|
| CNT_CMD   | Skaitiklio valdymo signalas                  |
| MUX_CMD   | 3 bitų MUX valdymo signalas                  |
| ALU_CMD   | 5 bitų ALU valdymo signalas                  |
| REG_A_CMD | 3 A registro valdymo signalas                |
| REG_B_CMD | 3 B registro valdymo signalas                |
| REG_C_CMD | 3 C registro valdymo signalas                |
| REG_D_CMD | 3 D registro valdymo signalas                |
| REG_E_CMD | 3 E registro valdymo signalas                |
| REG_F_CMD | 3 F registro valdymo signalas                |
| RST_COMP  | 9 Reset signalai į individualius komponentus |
| Done      | Mikroprogramos vykdymo pabaigos signalas     |
| CTRL_Dout | 16 bitų rezultato išvedimas                  |

## 6. Mikrokomandų atmintis

Mikrokomandų pastovioji atmintis (**ROM**), yra sistemos elementas, kuriame patalpinta vykdomoji mikroprograma. **ROM** turi **RST\_ROM**, **ROM\_CMD** įėjimus ir **ROM\_DATA** duomenų išėjimą. Aukšto lygio **RST\_ROM** signalu nuskaitoma adresu 0 esanti mikrokomanda.

**ROM\_CMD** nurodo, kelinta atminties eilutė (mikrokomanda) bus perduota į **ROM\_DATA** išėjimą.

**ROM** žodžio (mikrokomandos) ilgis priklauso nuo MO skaičiaus ir naudojamos adresavimo būdo. Jei naudojama priverstinė adresacija, mikrokomandos yra lygus MO, LS ir NA koduojančių bitų skaičiaus sumai. Natūralios adresacijos atveju **ROM** mikrokomandos yra lygus MO skaičiui +1.

Modelyje maksimalus **ROM** žodžių skaičius – 256 (tai maksimalus mikroprogramos ilgis).

## 7. Požymių registras

Požymių registras (**FLAG**) yra komponentas, fiksuojantis loginių sąlygų reikšmes. Šio registro bitų paskirtis pateikta 9 lentelėje. *FLAG*(1) bitas parodo, jog A registro 15 (kairiausias – *REG\_A\_H*) bitas lygus 1, kas rodo, jog registre yra įrašytas neigiamas skaičius, ir yra naudingas, jei reikia tikrinti skaičiaus ženklo skiltį. *FLAG*(1) bitas parodo, jog A registro

žemiausioji (dešiniausioji –  $REG\_A\_L$ ) skiltis lygi 1. Šis bitas yra naudojamas tikrinant žemiausiąją skaičiaus skiltį.

Analogiškai požymių registro 3-11 bitai atitinka registrų B-F aukščiausių ir žemiausių skilčių reikšmes.

Požymių registro įėjimo ir išėjimo signalai apibrėžti 10 lentelėje.

9 lentelė. Požymių registro bitai

| RST_COMP bitas   | Paskirtis         |
|------------------|-------------------|
| FLAG(1)          | REG_A(15)         |
| FLAG(2)          | REG_A(0)          |
| FLAG(3)          | <i>REG_B</i> (15) |
| FLAG(4)          | REG_B(0)          |
| FLAG(5)          | REG_C(15)         |
| FLAG(6)          | REG_C(0)          |
| FLAG(7)          | REG_D(15)         |
| FLAG(8)          | REG_D(0)          |
| FLAG(9)          | <i>REG_E</i> (15) |
| <i>FLAG</i> (10) | REG_E(0)          |
| <i>FLAG</i> (11) | REG_F(15)         |
| FLAG(12)         | REG_F(0)          |
| FLAG(13)         | CNT=0             |
| FLAG(14)         | ALU pernaša       |
| FLAG(15)         | 1 = 0             |
| <i>FLAG</i> (16) | 1 = 0             |
| FLAG(17)         | 1 = 0             |
| FLAG(18)         | 1 = 0             |

10 lentelė. Požymių registro įėjimai ir išėjimai

| Įvestys  | Paskirtis                |
|----------|--------------------------|
| CLK      | Sinchronizavimo signalas |
| RST      | Reset signalas           |
| Xin      | 18 bitų įvestis          |
| Išvestys | Paskirtis                |
| FLG_Dout | 18 bitų išvestis         |

## 8. Valdymo signalai

Išorinis **RST** signalas nustato pagrindinius komponentus į pradinę būseną, valdymo signalų formavimo schemai perduodant RST signalus šiems komponentams. Mikroprogramuotojas reikiamu metu gali atitinkamus komponentus nustatyti į pradinę būseną, naudodamas *RST\_COMP* signalus (žr. 11 lentelę).

11 lentelė. Individualūs komponentų Reset signalai

| RST_COMP bitas | Valdomas komponentas |
|----------------|----------------------|
| RST_COMP (0)   | REG_A                |
| RST_COMP (1)   | REG_B                |
| RST_COMP (2)   | REG_C                |
| RST_COMP (3)   | REG_D                |
| RST_COMP (4)   | REG_E                |
| RST_COMP (5)   | REG_F                |
| RST_COMP (6)   | CNT                  |
| RST_COMP (7)   | ROM                  |
| RST_COMP (8)   | FLG                  |

Sinchronizacijos signalas yra naudojamas sistemos apibrėžtumo laipsniui padidinti. Komponentai, turintys savyje atminties elementus, atlieka savo operacijas lygiagrečiai, reaguodami į kylantį sinchronizacijos signalo frontą. **ALU** ir **MUX** nenaudoja sinchronizacijos signalo, nes yra kombinacinės logikos tipo ir keičia savo išėjimus, kai sulaukia kontrolės ar duomenų signalų pasikeitimo.

Dėl sinchronizacijos signalo ir natūralaus elementų vėlinimo nėra įmanoma vieno takto metu modifikuoti vieno komponento išėjimo ir panaudoti šiuos naujus duomenis kitame komponente. Šis apribojimas verčia duomenis paruošti naudojimui bent vienu sinchronizacijos signalo taktu anksčiau, nei kad juos reikės apdoroti kitam komponentui.

Reikia atkreipti dėmesį, jog MK naudojamas unitarinis kodavimo principas (kiekvieną mikrooperaciją atitinka atskiras bitas), kuris leidžia viename takte valdymo signalus lygiagrečiai perduoti nors ir visiems komponentams. Tačiau komponentams siunčiami valdymo signalai yra užkoduoti dvejetainiu kodu, taip sutaupant siunčiamos informacijos kiekį, tačiau apribojant galimybę komponentams atlikti daugiau nei vieną operaciją vieno takto metu.

Požymių signalai yra signalų grupė, kuriuos automatiškai formuoja komponentai (registrai, ALU, skaitiklis). Šie signalai nustato požymių registro bitų reikšmes. Kiekvienas signalas yra priskirtas individualiam požymių registro bitui (žr. 9 lentelę).

## 9. Mikrokomandų formatai

Mikrokomandų formatai skirtingi priverstinės ir natūralios adresacijos atvejais.

Mikrokomandų formatas priverstinės adresacijos atveju parodytas 2 paveiksle, o natūralios adresacijos atveju – 3 paveiksle.



|             | Г   | 4  |
|-------------|-----|----|
| xnivi =>    |     | 43 |
| L11         |     | 44 |
| LR1         | REC | 45 |
| AL1         | 3 F | 46 |
| AR1         |     | 47 |
| CL1         |     | 48 |
| CR1         |     | 49 |
| M = L+R     |     | 50 |
| M= not L    |     | 51 |
| not R       | ALI | 52 |
| +1          | J   | 53 |
| M=L - 1     |     | 54 |
| M=R + 1     |     | 55 |
| M=R - 1     |     | 56 |
| M=LxorR     |     | 57 |
| REG_A       |     | 58 |
| REG_B       |     | 59 |
| REG_C       |     | 60 |
| REG_D       | Res | 61 |
| REG_E       | et  | 62 |
| REG_F       |     | 63 |
| CNT         |     | 64 |
| ROM         |     | 65 |
| FLAG        |     | 66 |
| Data OUTPUT |     | 67 |
| LND         |     | 68 |
| (8)3)       |     | 69 |
| LS(2) {     | LS  | 70 |
| LS(1)       |     | 71 |
| LS(0)       |     | 72 |
| N_ADDR(7)   |     | 73 |
| N_ADDR(6)   |     | 74 |
| N_ADDR(5)   | N A | 75 |
| _ADDR(4)    | ٩DD | 76 |
| _ADDR(3)    | R   | 77 |
| N_ADDR(2)   |     | 78 |
| N_ADDR(1)   |     | 79 |
| N_ADDR(0)   |     | 80 |

2 pav. Mikrokomandų formatas priverstinės adresacijos atveju



| REG E                                                  | REG F                                            | ALU ALU                                                          | Reset                                       | 08          | 69  |
|--------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|-------------|-----|
| <= Muk<br> L11<br> R11<br> AL1<br> AR1<br> CL1<br> CR1 | <= Din<br>LL1<br>LR1<br>AL1<br>AR1<br>CL1<br>CR1 | M = L+R M= not L M=not R M=L + 1 M=L - 1 M=R + 1 M=R - 1 M=R - 1 | REG_A REG_C REG_D REG_E REG_E REG_F CNT ROM | Data OUTPUT | CNT |

a) Operacinių mikrokomandų formatas (bitas P = 0)



b) Perėjimo mikrokomandų formatas (bitas P = 1)

3 pav. Mikrokomandų formatai natūralios adresacijos atveju