ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 7: Correlation and Scatter Plots

William Marsh

Outline

- Aim: understand the idea of correlation (or dependence) between two variables
- Correlation and the scatter plot
- Correlation co-efficient
- Covariance
- Correlation matrix
- Limitations of 'correlation'

The Idea and Importance of Correlation

Correlation

- Suppose you run an educational establishment
 - Why do some pupils / students do better?
 - Why do some teachers get better results?
- What varies together? Do the results of teachers increase with their:
 - Height?
 - Experience?
 - Age?
 - Qualifications?

Independence

- The opposite of correlation (or dependence) is independence
- In probability, A and B independent if:
 - $-p(A, B) = p(A) \times p(B)$
 - $-p(A \mid B) = p(A)$
- Strength of correlation (informally)

Correlation between A & B	Knowing A
Perfect	Determines B
Strong	Narrows the distribution of possible B
Weak	Slightly narrows
None	Provide no information about B

Examples: Possible Correlations

- Person's height and weight
- Person's height and shoe size
- Patients' height and child's height
- Goals (runs) last season, goals (runs) this season
- Salary and political preference

•

Spurious Correlation

- 'Spurious' (i.e. 'not real')
 - Correlation is temporary or co-incidental
 - More in a later lecture

Divorce rate in Maine

correlates with

Per capita consumption of margarine

From: https://www.tylervigen.com/spurious-correlations

Quiz 1

Heart Data

From kaggle

Kaggle Data: Heart Disease I

Variable	Meaning	Type
Age	The person's age in years	Continuous
Sex	1 = male, 0 = female	Categorical
ChestPain	The chest pain experienced (1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic)	Categorical
RestBP	The person's resting blood pressure (mm Hg on admission to the hospital)	Continuous
Chol	The person's cholesterol measurement in mg/dl	Continuous
Bsugar	The person's fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)	Binary
RestECG	Resting electrocardiographic measurement (0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable e left ventricular hypertrophy)	Ordinal (?)

Kaggle Data: Heart Disease II

Variable	Meaning	Type
MaxRate	The person's maximum heart rate	Continuous
	achieved	
Angina	Exercise induced angina (1 = yes; 0 =	Binary
	no)	
ECG_ST_d	ST depression induced by exercise	Continuous
	relative to rest ('ST' relates to positions	
	on the ECG plot)	
ECG_ST_slope	The slope of the peak exercise ST	Categorical
	segment (1: upsloping, 2: flat, 3:	
	downsloping)	
Vessels	The number of major vessels (0-3)	Ordinal
	coloured by fluoroscopy	
Thallium	Thallium update test (0 = normal; 1 =	Categorical
	fixed defect; 2 = reversible defect)	
Disease	Heart disease (0 = no, 1 = yes)	Binary

About (Exercise) ECG

From https://en.wikipedia.org/wiki/ST segment

Distributions of Continuous Variables

Scatter Plot

Visualise two variables

Scatter Plot Principles

- Visualise the relationship between two variables
- There is a relationship
 - –Knowing X tellsyou(imprecisely)about Y
 - –As X increases,Y increases

Scatter Plot Principles

- Visualise the relationship between two variables
- There is a relationship
 - -Knowing X tellsyou(imprecisely)about Y
 - –As X increases,Y decreases

Scatter Plot Principles

- Visualise the relationship between two variables
- There is no relationship
 - –Knowing X tellsyou nothingabout Y

Scatter Matrix

The 'Hexbin'

- Problem of scatter when too many points
 - Solution 1: alpha value between 0 and 1
 - Solution 2: 'hex bins'

X-Y Plots for Very Dense Data

Quiz 2

Every lecture will have a 'learning reflection' slide

Misconceptions and Barriers

Obstacles on the path to understanding

Misconceptions and Barrier

Theory

- Barrier
 - A concept that you need to understand to move forward
- A misconception
 - A mistaken or incomplete understanding
 - Needs to be revised

Misconceptions and Barrier

Theory

- Barrier
 - A concept that you need to understand to move forward
- A misconception
 - A mistaken or incomplete understanding
 - Needs to be revised

Examples

- Condition is not an expression
 - An expression has a value
 - Value can be assigned to a variable

```
x > 3 #an expression with a value bigger = x > 3 #assignment
```

Misconceptions and Barrier

Theory

- Barrier
 - A concept that you need to understand to move forward
- A misconception
 - A mistaken or incomplete understanding
 - Needs to be revised

Examples

- Condition is not an expression
 - An expression has a value
 - Value can be assigned to a variable

```
x > 3 #an expression with a value
bigger = x > 3 #assignment
```

Combining partial conditions

$$btwn = x > 3 and < 7$$

$$btwn = (x > 3) and (x < 7)$$

Correlation Coefficient

Correlation – Insight

- Two variables X and Y
 - Each variable has a mean: μ_X , μ_Y
 - Values of X (written x_i) and of Y (y_i) can be above or below the mean

Correlated

- When x_i is far (above / below) from μ_X then ...
- $-\dots$ y_i is also far (in same direction) from μ_Y

Independent

- When x_i is far above (or below) from μ_X then ...
- $-\dots$ y_i is could be near μ_Y or far in the opposite direction

Correlation Coefficient: Definition

- Two variables X and Y
 - Each variable has a mean: μ_X , μ_Y
 - Values of X (written x_i) and of Y (y_i)
 - N values: (x_i, y_i)

Average (over N values) of the product of each variable's distance from its mean

Correlation coefficient:
-1 to 1

$$\rho_{X,Y} = corr(X,Y) = \frac{\frac{1}{N} \sum_{1}^{N} (x_i - \mu_X)(y_i - \mu_Y)}{\sigma_X \sigma_Y}$$

Standard deviations to normalise

Correlation Coefficient II

Variations in notation

$$\rho_{X,Y} = \frac{\frac{1}{N} \sum_{1}^{N} (x_i - \mu_X)(y_i - \mu_Y)}{\sigma_X \sigma_Y}$$
Expected (or average) value
$$\rho_{X,Y} = \frac{E[(x_i - \mu_X)(y_i - \mu_Y)]}{\sigma_X \sigma_Y}$$

Sample Correlation

- Correlation can be calculated for a sample
 - Population $\rho_{X,Y}$
 - Sample $r_{X,Y}$
- Turns out to be simple (no adjustment):

$$r_{X,Y} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

No need to remember this formula

Correlation Values

- Range -1 (-ve correlation) to 1 (+ve correlation)
- Corr = 0 implies uncorrelated

Correlation = 0.045

Correlation Values

Correlation Matrix (Heart Data)

- Shows correlation of all pairs of continuous variables
- Shade from correlation
- Symmetric
- Perfect correlation on diagonal

Covariance

Covariance

Extends variance (for one variable) to two variables

$$var(X) = E[(x_i - \mu_X)^2]$$

$$cov(X,Y) = E[(x_i - \mu_X)(y_i - \mu_Y)]$$

Covariance and Correlation

- Covariance can have any value, depending on variance of X and Y
- Correlation is between -1 and +1
 - Covariance 'normalised' by standard deviations

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Two 'Issues' with Correlation

The correlation coefficient is very widely used but there are 2 Issues to note

Issue 1: Correlation and Independence

- If X, Y independent, then corr(X,Y) close to zero
- However, corr(X,Y) can be close to zero even when X and Y not independent

Issue 1: Correlation and Independence

- All these datasets of (X, Y) have the same
 - Average X and average Y
 - Variance of X and variance of Y
 - Correlation

Issue 1: Correlation and Independence

- All these datasets of (X, Y) have the same
 - Average X and average Y
 - Variance of X and variance of Y
 - Correlation

Datasaurus: Never trust summary statistics alone; always visualize your data

Issue 2: Only for Continuous Variables

- Correlation defined using 'mean'
- Only applies to continuous variables
- If X and Y are categorical variables
 - Independent: knowing value of X does not change distribution of Y values
 - Not independent: distribution of Y values varies depending on the X value

Quiz 3

Summary

- Correlation captures idea of 'variables moving together'
- Relationship between two variables can be shown on a scatter plot
- Correlation coefficient
 - Measures correlation
 - Relates to covariance

How to look at relationship between categorical variables?