

Practical ML Advice

8 Evaluation.

Rishabh Iyer

Proper Experimental Methodology Can Have a Huge Impact:

A 2002 paper in *Nature* (a major journal) needed to be corrected due to "training on the testing set"

Original report: 95% accuracy (5% error rate)

Corrected report (which still is buggy):

73% accuracy (27% error rate)

Error rate increased over 400%!!!

Some Typical ML Experiments

Typical Experiments

Ablation Experiments

Regression Comp A = Extra Features Comp B = Poly Features

	Test Set Performance
Full System (A+B)	80%
Without Module A	18-1 75%
Without Module B	62%

Experimental Methodology

- 1) Start with a dataset of labeled examples
- 2) Randomly partition into N groups
- 3a) *N* times, combine *N* -1 groups into a train set
- 3b) Provide training set to learning system
- 3c) Measure accuracy on "left out" group (the test set)

train test train train

Called N-fold cross validation

Validation Sets

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning

(rain

- Better method
 - Set aside part of the training set
 - Measure performance on this validation data to estimate future performance for a given set of hyperparameters
 - Use best hyperparameter settings, train with all training data (except test set) to estimate future performance on new examples

VM-

Tune Hyper-parameters (w,b) = Train (Data, i) Hyperparens = > (E.g.: Regulariza, Deph of tree,.) $(w_{\lambda},b_{\lambda}) = Train(Date, \lambda)$ $(w_{\lambda},b_{\lambda}) \in Test \text{ on } Val$ $Val_{\lambda} = Val_{\lambda}(w_{\lambda},b_{\lambda}) \in Test \text{ on } Val$ Test (Wy+, by+) & Deploy (Wy, by+) > = x / Val>

A typical Learning system

Statistical techniques such as 10fold cross *t*-tests are results

Typical Hyper-Parameter Tuning L(w) + > || w[|2 Nelidation _under htt g C Linear Regression overfitty > (Regularza) Noy 19 min Underfitting K (nn) Over (t

Multiple Tuning sets

- Using a single tuning set can be unreliable predictor, plus some data "wasted"
 - 1) For each possible set of hyperparameters
 - a) Divide <u>training</u> data into **train** and **valid**. sets, using **N-fold cross** validation
 - b) Score this set of hyperparameter values: average **valid**. set accuracy over the *N* folds
 - 2) Use **best** set of hyperparameter settings and **all** (train + valid.) examples
 - 3) Apply resulting model to **test** set

EVALUATING ML MODELS

[classification]

Contingency Tables

(special case of 'confusion matrices')

Tit Lobel.

True Answer

	+	-
+	n(1,1)	n(1,0)
Algorithm	[true pos]	[false pos]
Answer	n(0,1)	n(0,0)
Prediction	[false neg]	[true neg]

Counts of occurrences

TPR and FPR

True Positive Rate
$$= n(1,1) / (n(1,1) + n(0,1))$$

 $= \text{correctly categorized +'s / total positives}$
 $\sim P(\text{algo outputs + } | + \text{is correct})$
 $= n(1,0) / (n(1,0) + n(0,0))$
 $= \text{incorrectly categorized -'s / total neg's}$
 $\sim P(\text{algo outputs + } | - \text{is correct})$
 $\longrightarrow P(\text{algo outputs + } | - \text{is correct})$

Can similarly define False Negative Rate and True Negative Rate

ROC Curves

- ROC: Receiver Operating Characteristics
- Started for radar research during WWII
- Judging algorithms on accuracy alone may not be good enough when getting a positive wrong costs more than getting a negative wrong (or vice versa)
 - e.g., medical tests for serious diseases
 - e.g., a movie-recommender system

ROC Curves Graphically

Different
algorithms can
work better in
different parts
of ROC space.
This depends
on cost of false
+ vs false -

Creating an ROC Curve

The Standard Approach:

- You need an ML algorithm that outputs NUMERIC results such as prob(example is +) p(Y > 1)
- You can use ensemble methods to get this from a model that only provides Boolean outputs
 - e.g., have 100 models vote & count votes

Alg. for Creating ROC Curves

Step 2: Locate a threshold between examples with opposite categories

Step 1: Sort predictions on test set $\leftarrow P(Y=1|A)$ = Conf of being -

Step 3: Compute TPR & FPR for each threshold of Step 2

Step 4: Connect the dots

Model pred.

thresh = 0-3 -Ive. Mish Score (Model pred
posible) (Motel pred negative)

Plotting ROC Curves - Example

ML Algo Output (Sorted) Correct Category

Ex 9	.99		+
Ex 7	.98	TPR=(2/5), FPR=(0/5)	+
Ex 1	.72	TPR=(2/5), FPR=(1/5)	_
Ex 2	.70		+
Ex 6	.65	TPR=(4/5), FPR=(1/5)	+
Ex 10	.51		-
Ex 3	.39	TPR=(4/5), FPR=(3/5)	_
Ex 5	.24	TPR=(5/5), FPR=(3/5)	+
Ex 4	.11		-
Ex 8	.01	TPR=(5/5), FPR=(5/5)	
·			

Algorithm predicts + if its output is ≥ 0

Area Under ROC Curve

- A common metric for experiments is to numerically integrate the ROC Curve
 - Usually called AUC
 - Probability that ML alg. will "rank" a randomly chosen positive instance higher than a randomly chosen negative one
 - Can summarize the curve too much in practice

Why According is Bad Choice for Imbalanced problems Model 1 82 Acc = 901-Spam = 10%. Not span = 90% moted 2 Model 1 Actual Acholi Pred

-10 90

Asymmetric Error Costs

- Assume that cost(FP) ≠ cost(FN)
- You would like to pick a threshold that minimizes

```
E(total\ cost) = \ cost(FP) \times pr(FP) \times (\#\ of\ neg\ ex's)cost(FN) \times pr(FN) \times (\#\ of\ pos\ ex's)
```

 You could also have (maybe negative) costs for TP and TN (assumed zero in above)

ROC's & Skewed Data

 One strength of ROC curves is that they are a good way to deal with skewed data (|+| >> |-|) since the axes are fractions (rates) independent of the # of examples

- You must be careful though!
 - Low FPR * (many negative ex) = sizable number of FP
 - Possibly more than # of TP

Precision vs. Recall

Think about search engines...

#TP #TP + #FP. H (Pred Pos) HTP

Notice that n(0,0) is not used in either formula
 Therefore you get no credit for filtering out irrelevant items

ROC vs. Precision-Recall

You can get very different visual results on the same data!

The reason for this is that there may be lots of – ex's (e.g., might need to include 100 neg's to get 1 more pos)

Rejection Curves

- In most learning algorithms, we can specify a threshold for making a rejection decision
 - Probabilistic classifiers: adjust cost of rejecting versus cost of FP and FN
 - Decision-boundary method: if a test point x is within θ of the decision boundary, then reject
 - Equivalent to requiring that the "activation" of the best class is larger than the second-best class by at least θ

Rejection Curves

Vary θ and plot fraction correct versus fraction rejected

The F1 Measure

Figure of merit that combines precision and recall

$$F_1 = 2 \cdot \frac{P \cdot R}{P + R} \qquad \square \qquad \qquad \qquad \bigcirc$$

where P = precision; R = recall. This is twice the harmonic mean of P and R.

• We can plot F1 as a function of the classification threshold θ