Package 'koolmaps3d'

December 6, 2019

Type Package
Title Makes your heatmap 3D!
Version 0.1.0
Author The Hell Boy George Michael Jordan Creeds
Description Takes your data makes 3d heatmap comparing two populations. Use four spaces when indenting paragraphs within the Description.
License GPL-3
Encoding UTF-8
LazyData true
Imports rayshader, ggplot2, devtools (>= 2.0.0), dplyr, Hmisc, tibble, tidyr, magrittr, reshape
Suggests rmarkdown, knitr, testthat
VignetteBuilder knitr
NeedsCompilation no
Maintainer Jordan Creed <pre>Greed <pre>Greed@moffitt.org></pre></pre>
R topics documented:
dual_matrix 1 kool_plot 3 plot_data 4
dual_matrix Creates matrix to plot.
Description

dual_matrix(dataset1, dataset2, snp1, snp2, pos1, pos2, ld)

Usage

Takes two long format data sets and combines into a single matrix for plotting in a 3D KOOL MAP.

2 dual_matrix

Arguments

dataset1	Data set with position 1 and 2 with rs numbers 1 and 2 and some measure of ld to plot.
dataset2	Same as data set 1 but different population
snp1	Col name of snp1
snp2	Col name of snp1
pos1	Col name of position 1
pos2	Col name of position 2
ld	Col name of ld measure

Value

Returns a matrix to plot

Note

no more notes

Author(s)

THe Hell Boy George Michael Jordan Creeds

References

None

Examples

```
##---- Should be DIRECTLY executable !! ----
\#\#-- ==>  Define data, use random,
##--or do help(data=index) for the standard data sets.
\#\# The function is currently defined as
function (dataset1, dataset2, snp1, snp2, pos1, pos2, ld)
    dataset1 <- dataset1 %>% dplyr::mutate(rsnum = paste(dataset1[[snp1]],
        "|", dataset1[[snp2]], sep = ""), pos = paste(dataset1[[pos1]],
        "|", dataset1[[pos2]], sep = ""))
    dataset2 <- dataset2 %>% dplyr::mutate(rsnum = paste(dataset2[[snp1]],
        "|", dataset2[[snp2]], sep = ""), pos = paste(dataset2[[pos1]],
        "|", dataset2[[pos2]], sep = ""))
    rsnum <- setdiff(dataset1[[rsnum]], dataset2[[rsnum]])</pre>
    pos <- setdiff(dataset1[[pos]], dataset2[[pos]])</pre>
    rowstoadd <- data.frame(rsnum, pos, stringsAsFactors = FALSE)</pre>
    dftest <- bind_rows(dataset1, rowstoadd)</pre>
    dftestv2 <- bind_rows(dataset2, rowstoadd)</pre>
    wtf <- strsplit(dftest$rsnum, "|", fixed = TRUE)</pre>
    rsdf <- do.call(rbind.data.frame, wtf)</pre>
    names(rsdf) <- c("rs1", "rs2")</pre>
    rsdf$rs1 <- as.character(rsdf$rs1)
    rsdf$rs2 <- as.character(rsdf$rs2)</pre>
    pos2 <- strsplit(dftest$pos, "|", fixed = TRUE)</pre>
    posdf <- do.call(rbind.data.frame, pos2)</pre>
```

kool_plot 3

```
names(posdf) <- c("pos1", "pos2")</pre>
rsdf$pos1 <- as.character(posdf$pos1)</pre>
rsdf$pos2 <- as.character(posdf$pos2)</pre>
dftest2 <- dftest2 %>% dplyr::mutate(X1 = ifelse(is.na(X1),
    pos1, X1), X2 = ifelse(is.na(X2), pos1, X2), X4 = ifelse(is.na(X4), pos1, X2)
    rs1, X4), X5 = ifelse(is.na(X5), rs2, X5))
bad_snp <- c(setdiff(dftest2$pos1, dftest2$pos2), setdiff(dftest2$pos2,</pre>
    dftest2$pos1))
dftest3 <- dftest2 %>% dplyr::mutate(pos1 = as.numeric(pos1)) %>%
    dplyr::mutate(pos2 = as.numeric(pos2)) %>% left_join(dftestv2 %>%
    select(pos, other_ld = {
        {
            1 d
    )), by = c("pos")) %>% dplyr::mutate(ld1 = {
        1d
    }
}) %>% dplyr::mutate(ld1 = replace_na(ld1, 0)) %>% dplyr::mutate(other_ld = replace_r
    0)) %>% arrange(pos1, pos2) %>% dplyr::mutate(pos1 = as_factor(pos1)) %>%
    dplyr::mutate(pos2 = as_factor(pos2))
data1 <- dftest3 %>% dplyr::select(pos1, pos2, ld1) %>% dplyr::pivot_wider(names_from
    values_from = ld1, values_fill = list(ld1 = 0)) %>% magrittr::set_rownames(.$pos1
    dplryr::select(-pos1) %>% as.matrix
data2 <- dftest3 %>% dplyr::select(pos1, pos2, other_ld) %>%
    dplyr::pivot_wider(names_from = pos2, values_from = other_ld,
        values_fill = list(other_ld = 0)) %>% magrittr::set_rownames(.$pos1) %>%
    dplyr::select(-pos1) %>% as.matrix
data1 <- data1[!(row.names(data1) %in% bad_snp), !(colnames(data1) %in%</pre>
    bad_snp) ]
data2 <- data2[!(row.names(data2) %in% bad_snp), !(colnames(data2) %in%</pre>
    bad_snp)]
plot_data <- matrix(NA, nrow = nrow(data1), ncol = ncol(data1))</pre>
plot_data[upper.tri(plot_data)] <- data1[upper.tri(data1,</pre>
    diag = FALSE)
plot_data[lower.tri(plot_data)] <- data2[upper.tri(data2,</pre>
    diag = FALSE)
row.names(plot_data) <- row.names(data1)</pre>
colnames(plot_data) <- colnames(data1)</pre>
```

kool_plot

Creates a KOOL MAP! (Creates 3D heat map and movie)

Description

Function that takes output from dual_matrix function and returns a static 3D plot or movie

Usage

```
kool_plot(data_matrix, movie)
```

Arguments

4 plot_data

Details

Function

Value

A KOOL MAP movie or image

Author(s)

The HELL BOY GEORGE MICHAEL JORDAN CREEDS

References

None

Examples

```
##---- Should be DIRECTLY executable !! ----
\#\#-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (data_matrix, movie)
             df <- reshape::melt(data_matrix)</pre>
             df$value <- as.numeric(df$value)</pre>
             p \leftarrow ggplot2::ggplot(df, aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x = X1, y = X2)) + ggplot2::geom_tile(aes(fill = value), aes(x =
                           color = "white") + ggplot2::coord_equal() + ggplot2::scale_fill_viridis_c(NULL,
                           option = "plasma") + ggplot2::theme_minimal() + ggplot2::geom_abline(intercept =
                           slope = 1, color = "white", size = 2) + ggplot2::theme(axis.title = element_blank
                           legend.position = "bottom", axis.ticks = element_blank(),
                           axis.text.x = element_text(angle = 60, hjust = 1))
             if (movie == "") {
                           return(p)
             else {
                           rayshader::plot_gg(p, width = 5, height = 5)
                           rayshader::render_movie(movie, frames = 600)
```

plot_data

plot_data

Description

LD from HapMap CEU and JPT populations

Format

```
The format is: num [1:103, 1:103] NA 0.007 0.015 0.449 0.007 1 0.454 0.002 0.425 0.786 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:103] "17766858" "17773336" "17773458" "17778418" ... ..$: chr [1:103] "17766858" "17773336" "17778418" ...
```

plot_data 5

Details

103 SNPS

Source

HapMap

References

HapMap

Examples

```
data(plot_data)
## maybe str(plot_data); plot(plot_data) ...
```