Factorization in Deep Neural Networks

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- Pruning,
- 4 Factorization,
- 5 Distillation,
- Operators and Architectures,
- Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- 3 Pruning,
- 4 Factorization,
- 5 Distillation,
- Operators and Architectures,
- Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

- Overview of unsupervised learning
 - Clustering
 - Decomposition using Sparse Dictionary Learning
 - Decomposition using (Deep) Auto-encoders
 - Manifold Learning

Factorization in deep neural networks

- Overview of unsupervised learning
 - Clustering
 - Decomposition using Sparse Dictionary Learning
 - Decomposition using (Deep) Auto-encoders
 - Manifold Learning

2 Factorization in deep neural networks

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets.
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications :
 - Quantization,
 - Visualization...

Example: clustering using L_2 norm

An example to perform clustering is to rely on distances to centroids. We define K cluster centroids $\Omega_k, \forall k \in [1..K]$

Definitions

We denote $q: \mathbb{R}^d \to [1..K]$ a function that associates a vector \mathbf{x} with the index of (one of) its closest centroid $q(\mathbf{x})$. Formally:

- $\forall k \in [1..K], \Omega_k \in \mathbb{R}^d$
- $\forall \mathbf{x} \in X, \forall j \in [1..K], \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_{2} \leq \|\mathbf{x} \Omega_{j}\|_{2}$
- Error $E(q) \triangleq \sum_{\mathbf{x} \in X} \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2$
- $X = \bigcup_k \underbrace{\{\mathbf{x} \in X, q(\mathbf{x}) = k\}}$

cluster k

Example: clustering using L_2 norm

Example: clustering using L_2 norm

Clustering using L_2 norm

Quantizing MNIST

- Replace **x** by $\Omega_{k(\mathbf{x})}$
- Compression factor $\kappa = 1 K/N$

Clustering using L_2 norm

Choosing K

- Finding a compromise between error and compression,
- Simple practical method : "elbow".

Sparse Dictionary Learning

Definitions

Dictionary learning solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using a dictionary $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and a code $U \in \mathcal{M}_{N \times k}(\mathbb{R})$, with the lines of V being with norm 1,
- Error $E(U, V) \triangleq ||X UV||_2 + \alpha ||U||_1$
- Training: find U^* , V^* that minimizes $E(U^*, V^*)$
- α is a sparsity control parameter that enforces codes with soft (ℓ_1) sparsity

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Manifold Learning

Approaches to uncover lower dimensional structure of high dimensional data. Source: Manifold module, sklearn website

- Overview of unsupervised learning
 - Clustering
 - Decomposition using Sparse Dictionary Learning
 - Decomposition using (Deep) Auto-encoders
 - Manifold Learning

Factorization in deep neural networks

Using clustering to factorize a network

from https://arxiv.org/abs/1510.00149

Pruning and compressing neural networks while training

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning reduces the number of weights by $10\times$, while quantization further improves the compression rate: between $27\times$ and $31\times$. Huffman coding gives more compression: between $35\times$ and $49\times$. The compression rate already included the meta-data for sparse representation. The compression scheme doesn't incur any accuracy loss.

Results only on LeNet and VGG...

https://arxiv.org/abs/1510.00149

Deep k-means

Principle

- Training
- Row-wise k-means clustering for parameters (per layer)
- Re-training using k-means regularization

Model	Δ (%)	CR
Soft Weight-Sharing	-2.02	45
Deep k-Means WR	-16.02	45
Deep k-Means WR	-25.45	47
Deep k-Means WR	-45.08	50
Deep k-Means	-1.63	45
Deep k-Means	-2.23	47
Deep k-Means	-4.49	50

Table 3. Compressing Wide ResNet in comparison to soft weight-sharing (Ullrich et al., 2017).

https://arxiv.org/abs/1806.09228
Similar to Ulrich et al. 2017 (https://arxiv.org/abs/1702.04008)
which used soft-weight sharing using Gaussian Mixture Models.