```
See for 4
                                 \mathcal{L} = (\partial_{N} \phi^{*})(\partial_{N} \phi) - m^{2} \phi^{*} \phi
 - review of PS 3
                                 what does wick's theorem look like? recall & ~ b+ct.
 - practice with diagrams
                                 (0) T (x) ((x) 10) has to be zero.
     - complex sigles
    - scalar Yukawa thery.
                            more fund: act with the generator of U(1) sym. Q,
       (0/T (x) d(y)10) = (0/Eia d eia d T(U(x) eia d eia d (x)) eia d eia d ()
                                201 eid T (Ø(x) Ø(x)) eid
        so this corelator is equal to elid fines itself -> must be zero. similarly colt (x) (x) (x) (x) (x) = 0.
        only nonzero one is (0|TO^{+}(x)O(y)|0) = :O^{+}(x)O(x):+O_{E}(x-y).
   Siglar Yukawa theory: &= = = (0, 0)2 - = m2 gt + 10, 412 - M2/412 - 9 44 40.
```

Single intending field theory. Hint = gldx 4 1/x) P(x) P(x) P(x) P(x)

Q: What is amp. for $d \rightarrow \psi \psi \psi$ decay? Let $d \sim q + at$, $d \sim b + ct$. Three left to right. $|i\rangle = \sqrt{2E_p} \ a_p^+ |0\rangle$ $|f\rangle = \sqrt{4E_q} \ E_{q_1} \ e_{q_1} \ e_{q_2} \ e_{q_3} \ e_{q_4} \ e_{q_5} \ e_{q_5}$

Q = what is amp. For 44 scattering?

 $|i\rangle = \sqrt{4E_{1}E_{1}E_{2}} b_{1}^{\dagger} b_{1}^{\dagger} |0\rangle$ $|f\rangle = \sqrt{4E_{1}E_{1}E_{2}} b_{1}^{\dagger} b_{2}^{\dagger} |0\rangle$ $M = \langle f|U_{I}(\infty, -\infty)|i\rangle$ $No contrib at O(9^{u}), O(9^{1})$

 $M = \frac{(-iq)^2}{2} \left\{ f \left[\int d^4x_1 d^4x_2 \, T \left(\psi^{\dagger}(x_1) \psi(x_1) \psi(x_1) \psi(x_2) \psi(x_2) \psi(x_2) \right] \right\} \right\}$ the rule for Wiele: You can contract any number of pairs to yet D_F 's, and the rest of a normal ordered product. We must contract the d's.

 $M = \frac{(-ig)^{2}}{2} \langle f | \int d^{4}x_{1} d^{4}x_{2} \cdot \psi^{+}(x_{1}) \psi(x_{1}) \psi^{+}(x_{2}) \psi(x_{2}) \cdot D_{f}(x_{1} - x_{2}) | i \rangle.$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi(x_{1}) \psi(x_{2}) | i \rangle D_{f}(x_{1} - x_{2})$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi(x_{1}) \psi(x_{2}) | i \rangle D_{f}(x_{1} - x_{2})$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | i \rangle D_{f}(x_{1} - x_{2})$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | i \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | i \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | i \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | i \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0) \langle O | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{4}x_{1} d^{4}x_{2} \cdot (f | \psi^{+}(x_{1}) \psi^{+}(x_{2}) | 0 \rangle$ $= \frac{(-ig)^{2}}{2} \int d^{$

four terms, of which there are pairs of duplicates. yet ...

$$\mathcal{M} = (-iq)^2 \int d^4x_1 d^4x_2 \int \frac{d^4k}{(2\pi)^4} \frac{ie^{ik\cdot(x_1-x_2)}}{k^2-m^2+i\epsilon} \times (phase factors)$$

$$= (-iq)^{2} \int \frac{d^{n}k}{(2\pi)^{n}} \frac{i}{k^{2-m^{2}+i\epsilon}} \int d^{n}x_{1}d^{n}x_{2} \left(e^{i(q_{1}-p_{1}+k)\cdot x_{1}} e^{i(q_{2}-p_{2}-k)\cdot x_{2}} + e^{i(q_{2}-p_{1}+k)\cdot x_{1}} e^{i(q_{1}+p_{2}-k)\cdot x_{2}} \right)$$

$$= (-ig)^2 \int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon} \left((2\pi)^8 \delta(q_1 - p_1 + k) \delta(q_2 - p_2 - k) + (2\pi)^8 \delta(q_2 - p_1 + k) (q_1 + p_2 - k) \right)$$

$$= (-iq)^{2} (2\pi)^{4} \delta (p_{1} + p_{2} - q_{1} - q_{2}) \left(\frac{i}{(p_{1} - q_{1})^{2} - m^{2} + i\epsilon} + \frac{i}{(p_{1} - q_{2})^{2} - m^{2} + i\epsilon} \right).$$

$$= (-iq)^{2} (2\pi)^{4} \delta (p_{1} + p_{2} - q_{1} - q_{2}) \left(\frac{i}{(p_{1} - q_{1})^{2} - m^{2} + i\epsilon} + \frac{i}{(p_{1} - q_{2})^{2} - m^{2} + i\epsilon} \right).$$

$$= (-iq)^{2} (2\pi)^{4} \delta (p_{1} + p_{2} - q_{1} - q_{2}) \left(\frac{i}{(p_{1} - q_{1})^{2} - m^{2} + i\epsilon} + \frac{i}{(p_{1} - q_{2})^{2} - m^{2} + i\epsilon} \right).$$

$$= (-iq)^{2} (2\pi)^{4} \delta (p_{1} + p_{2} - q_{1} - q_{2}) \left(\frac{i}{(p_{1} - q_{1})^{2} - m^{2} + i\epsilon} + \frac{i}{(p_{1} - q_{2})^{2} - m^{2} + i\epsilon} \right).$$

$$= (-iq)^{2} (2\pi)^{4} \delta (p_{1} + p_{2} - q_{1} - q_{2}) \left(\frac{i}{(p_{1} - q_{1})^{2} - m^{2} + i\epsilon} + \frac{i}{(p_{1} - q_{2})^{2} - m^{2} + i\epsilon} \right).$$

the scalar Yukawa Ferman rules

$$\frac{\rightarrow k}{\rightarrow k} = \frac{i}{k^2 - n^2 + i\epsilon}$$

$$= \frac{i}{k^2 - n^2 + i\epsilon}$$

munatur conserved at votres

Sum over diagrams. divide by sym. factor.

fix which are is which managem. Connect only -- to -- and > to >

incoming arrow on incoming line } is particle

only connected, diagrams (no legit post of this now)

fun exercis!	Find the leading diagrams for	44-144 has: >- /	"perguin diagram"	
44x -> 44x	+ >	00-00 D+	+ /	
40 -> 40	+	total of 6	distinct diagrams.	
$\psi \to \psi \psi^{k}$ $+ O(g^{2})$	0.	0(gu)		
to 0(g ³)) / >-0-{	J (Y
only one dia	10t Con	neofed	vertex rerum.	XX
comb for u	V'		Z J	
V - YYYYYK		1. 1.		
	Possestive held theory: if &	very heavy, its pap ~ 1/m? at low	energies_	: in b' they = OP D-?
+ perms. (12 h	otal)	: X ~ 92 42	y y=y. at o	(/")