

VBF Higgs to Invisible HIG-14-038, AN-14-243

Overview

- We predict almost twice as many $\mu\nu$ events than $e\nu$ events
- $W \to \mu \nu$: $101.8 \pm 6.1 \pm 12.2$, $W \to e \nu$: $57.4 \pm 7.3 \pm 6.7$
- \blacktriangleright Data driven scale factors are different but compatible at just over 1σ when systematics are accounted for
- ▶ We see a significant difference in the signal region MC yield (24% difference)
- ▶ It was suggested that we separate events by gen lepton in/outside acceptance
- If difference is due to ID we should see no difference outside acceptance

Inside/outside acceptance check

- lackbox Check MC yield in signal region from $W
 ightarrow {
 m e}/\mu
 u$
- i.e. we veto any reconstructed leptons
- \blacktriangleright Split into events with gen lepton inside acceptance ($|\eta|<2.1)$ and outside acceptance ($|\eta|>2.4)$

Process	Inside acceptance	Outside acceptance
W o e u	73.7 ± 6.8	30.2 ± 4.9
$W o \mu u$	61.5 ± 6.8	74.4 ± 7.3

- ► Inside acceptance results are as expected:
 - slightly more $\mathrm{e}
 u$ events
- this is because electron ID efficiency is lower so fewer events are vetoed
- Outside acceptance results not as expected:
- outside acceptance there are a lot fewer e
 u events than $\mu
 u$

Distributions inside acceptance

► Shape agreement is also reasonably good inside acceptance

Distributions outside acceptance

Analysis of outside acceptance distributions

- lacktriangle Outside acceptance e
 u events have a lot more jets
- No $e\nu$ events with gen lepton p_T much higher than 30 GeV
- We believe this is because outside acceptance electrons are often reconstructed as jets
- this is much rarer for muons
- Extra jets then cause the event to fail the jetmetdphi cut
- \blacktriangleright As a further check jetmetdphi was loosened to check that this cut was rejecting $e\nu$ events

Outside acceptance - jetmetphi> 1

- ightharpoonup events still have more jets when jetmetdphi is loosened
- lacktriangle e
 u events have lower jetmetdphi than $\mu
 u$
- ightharpoonup ev Events with gen lepton p_T much higher than 30 GeV are still failing even this looser jetmetdphi cut
- ightharpoonup All consistent with hypothesis that e
 u events are failing because outside acceptance electrons are often reconstructed as a jet

Summary

- $W \to e \nu$ vs $W \to \mu \nu$ difference is mostly for outside acceptance events
- In this region unreconstructed electrons are reconstructed as jets more often than muons are
- These fake jets then cause events to fail our jetmetdphi cut
- Also as the electrons deposit their energy they don't contribute to the met, so even if the event doesn't fail jetmetdphi it may not pass the met cut

Backup