Loan Default Prediction & Offline RL Report

1. Task 1 - Exploratory Data Analysis and Feature Selection

I performed initial data analysis and preprocessing to understand loan applicant data.

Key steps:

- **Data Cleaning:** Missing values handled via mean imputation (numerical) or constant 'missing' (categorical). Categorical variables one-hot encoded.
- **Feature Selection:** 19 features chosen based on financial logic and predictive power:

Feature	Justification
loan_amnt	Larger loans increase potential loss; critical for reward in RL.
int_rate	Determines profit and correlates with risk.
term_months	Longer terms increase default risk.
annual_inc	Repayment capacity.
dti	Debt-to-income ratio; high values indicate risk.
emp_length_yrs	Employment stability.
grade	Lending grade; pre-assessed risk.
home_ownership	Residential stability.
purpose	Loan purpose may correlate with default.
verification_status	Verified applicants less risky.
application_type	Joint vs individual applications.
revol_util	Credit utilization; high utilization indicates stress.
open_acc, total_acc Credit history and experience.	
delinq_2yrs	Recent delinquencies increase default probability.
inq_last_6mths	Recent credit inquiries indicate risk.
pub_rec	Public records (bankruptcy, judgments).
credit_age_years	Longer history reduces default risk.

• Class Balancing: Downsampling performed to create a balanced dataset (equal defaulted and fully paid loans).

2. Task 2 - Predictive Deep Learning Model (MLP)

- Objective: Predict probability of default.
- Model: Multi-Layer Perceptron with 256→128→1 architecture, ReLU activations, dropout 0.3, batch normalization.
- **Training:** Balanced dataset, binary cross-entropy loss, Adam optimizer, batch size 1024, 20 epochs.
- Evaluation Metrics:

Metric Result

AUC (Test) 0.733

F1-score (Test) 0.669

Interpretation:

- AUC > 0.7 indicates good discriminative ability.
- F1-score demonstrates a balance between precision and recall for default prediction.

The MLP effectively predicts default risk and can serve as a **baseline policy**: approve loans with predicted default probability below a threshold.

3. Task 3 – Offline Reinforcement Learning (Fitted Q Iteration, MLP)

- **Objective:** Learn a policy to approve or deny loans that maximizes profit while minimizing losses.
- **State:** Preprocessed features vector for each applicant.
- Action: {0: Deny, 1: Approve}
- Reward:
 - o Approve & Fully Paid → loan_amnt * int_rate * 10 (amplified profit)
 - Approve & Default → -loan_amnt * 5 (amplified loss)
 - o Deny → 0

- Algorithm: Fitted Q Iteration using separate MLP regressors per action.
- Training: 30 iterations, max 500 iterations per MLP, warm start enabled.

Evaluation Results:

Policy Approval Rate Avg Reward / Policy Value

Learned FQI-NN 4.87% -79.15

Baseline Heuristic 18.92% -634.89

Analysis:

- FQI agent drastically reduces defaults and potential loss compared to baseline.
- Policy is conservative, approving only highly profitable and low-risk loans.
- While average reward is negative, it is **significantly better than baseline**, showing the RL agent learns a safer policy.

4. Task 4 - Comparison and Insights

MLP vs RL:

- MLP predicts risk accurately (AUC/F1), implicitly defining a thresholdbased approval policy.
- RL learns a profit-driven approval policy directly, taking loan amounts and interest rates into account.

• Policy Differences:

- Some applicants with low default probability may still be denied by RL if loan amount is high and risk-reward is unfavorable.
- Conversely, MLP-based threshold may approve them, ignoring profit considerations.

Limitations:

- Offline RL relies on historical data; rare cases may be missed.
- Simplified reward amplification may exaggerate policy conservativeness.

• Future Steps:

 Experiment with more sophisticated RL algorithms (CQL, BCQ) for better policy optimization.

- Collect additional applicant data (credit bureau, employment verification) for more accurate models.
- o Combine MLP predictions with RL policy as a **hybrid policy**.

5. Summary

- Features selected based on financial relevance and predictive power.
- MLP predicts loan default with strong AUC and F1.
- Offline RL agent learns a safe, profit-oriented policy, outperforming heuristic baseline.
- Both approaches are complementary: ML predicts risk; RL maximizes expected profit while mitigating loss.