

Sistema de Visión Configurable

Trabajo Final del Máster en Sistemas Electrónicos para Entornos Inteligentes

Manuel Lorente Almán

14 de octubre de 2021

Objetivo y motivación

- En los próximos 25 minutos verán del diseño hardware de una videocámara, a partir de un sensor de imagen, y de una aplicación software para la captura de imágenes y reconocimiento de rostros en tiempo real.
- Tras la presentación serán capaces de entender posibles aplicaciones del sistema:
 - Identificación de personas en aeropuertos u hoteles.
 - Sistema de acceso de propósito general.
- El objetivo del sistema VICON es ser un producto modular, portable y de código abierto, para acelerar el proceso de integración en sistemas más complejos.

Contexto del proyecto

Requisitos principales

Els	sistema debe ser capaz de
	Adquirir imágenes en escala de grises.
	Adquirir imágenes al menos en formato VGA (640x480).
	Capturar a una tasa de al menos 10 imágenes por segundo.
	Adquirir imágenes sólo bajo petición del usuario.
	Detener y reanudar la adquisición de imágenes bajo petición del usuario.
	Almacenar una imagen en el ordenador imagen bajo petición del usuario.
	dentificar rostros que aparezcan en las imágenes bajo petición del usuario
	Ser autocontenido y portable para plataforma Windows.

Arquitectura

Vista general

Diseño hardware: sistema digital para capturar imágenes del sensor MT9V111 de Micron.

☐ Lenguaje VHDL, IDE VIVADO 2018, interfaz UM232H-B de FTDI Chip y FPGA Artix 7 de Xilinx como herramientas principales.

Diseño software: software para visualizar imágenes del sensor, y realizar la detección de rostros.

☐ Lenguaje C#, IDE Visual Studio 2017, y SDK .NET Framework 4.6.1 como herramientas principales.

Bloques principales

CGU (Clock Generation Unit)

☐ Generación de señal de reloj del módulo sensor MT9V111.

IMAGE CHANNEL

- Generación de imagen sintética emulando comportamiento del módulo sensor.
- Lectura de datos del módulo sensor usando las señales de sincronización FVAL y LVAL.

FT245 CHANNEL

☐ Envío bidireccional de datos:

FPGA-PC □ envío de imágenes

PC-FPGA □ petición de imágenes

Diseño hardware cgu

- ☐ Copia reloj externo para generar el reloj principal de 100 MHz para todos los bloques del sistema.
- ☐ Divide el reloj externo para generar una señal periódica a 25 MHz para el módulo sensor y así obtener una tasa de aproximadamente 27 FPS en formato VGA.

Esquema de sincronización

- ☐ El sistema posee un sólo dominio de reloj (MCLK), y algunas señales externas son asíncronas como RXF# y TXE# del módulo UM232-H-B.
- ☐ Es necesaria una estrategia de sincronización.
- ☐ Se implementa un sincronizador de dos etapas formado por un registro de desplazamientos con dos Flip-Flops para retrasar cada señal asíncrona, y así operar siempre con señales síncronas.

Diseño hardware FT245 CHANNEL

- ☐ Activa señal REQUEST para indicar la petición de imagen tras recibir un dato desde el PC.
- ☐ Gestiona la lectura de la memoria FIFO (POP).
- ☐ Garantiza los tiempos de lectura y escritura en el dispositivo UM232-H-B (WR_ENA y RD ENA).

Diseño hardware IMAGE CHANNEL

- Incluye una memoria FIFO para ajustar ancho de banda de salida del sensor y de transmisión al PC.
- Precisa gestionar la petición de imagen desde el PC.
- Módulo receptor (RECEIVER) sólo lee datos de píxeles pares debido al formato de salida YUV 4:2:2

E.T.S. DE INGENIERÍA DE

Diseño hardware RECEIVER

- ☐ Sincroniza la petición de imagen que hace el PC (REQUEST), con el envío de un frame completo capturado por el sensor.
- Gestiona el vaciado de la memoria FIFO se vacía en los periodos de blanking del sensor.
- ☐ Garantiza que sólo se envíen los bytes pares como datos válidos (DVAL).

E.T.S. DE INGENIERÍA DE TELECOMUNICACIÓN UNIVERSIDAD DE MÁLAGA

IMAGE PATTERN

- ☐ Emula mediante contadores el comportamiento del módulo sensor para depurar el diseño completo previa integración del sensor.
- ☐ Se incluyen píxeles de sincronismo indicando inicio y final de imagen, e inicio y final de fila con el objetivo de detectar errores en la fase de integración.

Distance_(pixels)	Gray_Value
0	3
1	51
2	51
3	51
4	51
5	51
6	51
7	51
8	51
9	51
10	51
11	51
12	51
13	51
14	51
15	51
16	51
17	51
18	51

Distance_(pixels)	Gray_Value
621	255
622	255
623	255
624	255
625	255
626	255
627	255
628	255
629	255
630	255
631	255
632	255
633	255
634	255
635	255
636	255
637	255
638	255
639	4

E.T.S. DE INGENIERÍA DE TELECOMUNICACIÓN UNIVERSIDAD DE MÁLAGA

Simulación modular – IMAGE CHANNEL

- El generador de patron está continuamente generando imágenes tal y como se comporta el modulo sensor.
 - Aunque se esté recibiendo dato, al no haber petición de imagen, no se transmite nada.
- 2 Hasta que no se recibe la petición de imagen, no se inicia la captura.
- Cuando se pide imagen de manera repetida, el canal las entrega de manera continua.

Diseño software

Diseño software

Lectura de datos

- ☐ Hilo que espera la activación del flag *fData* a través del botón *Connect* de la interfaz gráfica.
- ☐ Si no se ha solicitado imagen (flag *fRead*), se envía un byte a la FPGA a través dispositivo FT232H.
- ☐ La imagen VGA esperada es de 307200 bytes (640x480 píxeles, 1 byte por píxel).

Diseño software

Procesamiento de datos

- ☐ Se realiza en la propia función *GUIUpdate* que actualiza la interfaz gráfica con cada imagen entrante.
- ☐ Proceso que calcula la tasa de imágenes recibidas y el número de imagen recibida.
- ☐ Si la detección de rostros está activada (flag *fFaces*) se utiliza el clasificador haarcascade incluido en la librería OpenCV.

Plan de validación

Casos de uso

Plan de validación

E.T.S. DE INGENIERÍA DE TELECOMUNICACIÓN UNIVERSIDAD DE MÁLAGA

Pruebas realizadas

Prueba	Descripción	Errores
1 - Instalación	Instalar la aplicación en un ordenador con Windows 7 o posterior.	La aplicación falla, y no es posible completar la instalación.
1 - Instalación		La aplicación se instala, pero no puede ejecutarse.
	Se ejecuta la aplicación y se conecta la	La aplicación no muestra ningún tipo de imagen por pantalla
2 - Visualización de video	FPGA al PC mediante el controlador FT245.	No se consigue una tasa mínima de 10 FPS.
	Visualización de vídeo en tiempo real	El video recibido se pixela o entrecorta.
		El sistema no es capaz de reanudar o detener el vídeo.
3 - Habilitación de entrada de vídeo	Se detiene y reanuda la adquisición de imágenes.	El sistema sólo detiene o reanuda el vídeo una vez, y no vuelve a hacerlo.
		El sistema detiene el vídeo, pero no lo reanuda con imágenes en tiempo real.
		No se detecta ningún rostro a una distancia máxima de 2 metros.
4 - Detección de rostros	Se solicita detectar los rostros frente a la cámara.	Los rostros no se marcan con un rectángulo completamente.
		Únicamente detecta un rostro, pese a haber varios.
5 - Captura de imagen	Se solicita almacenar una imagen.	El sistema genera un archivo de imagen corrupto.

Plan de validación

E.T.S. DE INGENIERÍA DE TELECOMUNICACIÓN UNIVERSIDAD DE MÁLAGA

Demostración práctica

Conclusiones

Lecciones aprendidas

- ☐ Utilización de memoria FIFO intermedia para ajuste de anchos de banda entre interfaces.
- Necesidad de mecanismo de sincronización de entradas asíncronas al sistema.
- Utilidad del generador de imágenes sintéticas como mecanismo fundamental del depurado de la videocámara.

... y posibles mejoras

- □ Configuración mediante I2C del módulo sensor.
- ☐ Procesado de imágenes a color.
- ☐ Implementación de salida física de video mediante la salida VGA de la placa BASYS3.

Gracias por la atención

