

Attributes & Quality of Data

By

Dr. Sibarama Panigrahi

Assistant Professor, Department of Computer Sc. & Engineering National Institute of Technology, Rourkela, Odisha, 769008, India

Mobile No.: +91-7377302566

Email: panigrahis[at]nitrkl[dot]ac[dot]in panigrahi[dot]sibarama[at]gmail[dot]com

Outlines...

- Attributes
- Data Quality

- **Definition:** An attribute is a property or characteristic of an object that may vary, either from one object to another or from one time to another.
 - The nouns attribute, dimension, feature, and variable are often used interchangeably in the literature.
 - Attributes define Objects (also called as samples, examples, instances, data points).

• **Definition:** A measurement scale is a rule (function) that associates a numerical or symbolic value with an attribute of an object.

Source:

• Types of Attribute

-				
Attribute Type		Description	Examples	Operations
Categorical Qualitative)	Nominal	The values of a nominal attribute are just different names; i.e., nominal values provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, gender	mode, entropy, contingency correlation, χ^2 test
Cato (Qua	Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Numeric Quantitative)	Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. $(+, -)$	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviatio Pearson's correlation, t and F tests
Nui (Qua	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Source:

• Transformations defining Attribute levels:

	Transformation	Comment
Nominal	Any one-to-one mapping, e.g., a permutation of values	If all employee ID numbers are reassigned, it will not make any
Ordinal	An order-preserving change of values, i.e., $new_value = f(old_value)$, where f is a monotonic function.	difference. An attribute encompassing the notion of good, better, best can be represented equally well by the values $\{1, 2, 3\}$ or by $\{0.5, 1, 10\}$.
Interval Ratio	$new_value = a * old_value + b,$ $a \text{ and } b \text{ constants.}$ $new_value = a * old_value$	The Fahrenheit and Celsius temperature scales differ in the location of their zero value and the size of a degree (unit). Length can be measured in meters or feet.
	Ordinal	Ordinal An order-preserving change of values, i.e., $new_value = f(old_value),$ where f is a monotonic function. Interval $new_value = a * old_value + b,$ a and b constants.

Source:

Describing Attributes by the Number of Values:

– Discrete:

- A discrete attribute has a finite or countably infinite set of values.
- Such attributes can be categorical, such as zip codes or ID numbers, or numeric, such as counts.
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

– Continuous:

- A continuous attribute is one whose values are real numbers.
- Examples include attributes such as temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Source:

- Asymmetric Attributes
 - Only presence (a non-zero attribute value) is regarded as important
 - Words present in documents
 - Items present in customer transactions

Source:

Critiques of the attribute categorization

- Incomplete
 - Asymmetric binary
 - Cyclical
 - Multivariate
 - Partially ordered
 - Partial membership
 - Relationships between the data
- Real data is approximate and noisy
 - This can complicate recognition of the proper attribute type
 - Treating one attribute type as another may be approximately correct

Source:

Key Messages for Attribute Types

- The types of operations you choose should be "meaningful" for the type of data you have
 - Distinctness, order, meaningful intervals, and meaningful ratios are only four (among many possible) properties of data
 - The data type you see often numbers or strings may not capture all the properties or may suggest properties that are not present
 - Analysis may depend on these other properties of the data
 - Many statistical analyses depend only on the distribution
 - In the end, what is meaningful can be specific to domain.

Source:

Important Characteristics of Data

- Dimensionality (number of attributes)
 - The dimensionality of a data set is the number of attributes that the objects in the data set possess.
 - The *difficulties associated with analyzing high-dimensional data* are sometimes referred to as the **curse of dimensionality**.
 - Because of this, an important motivation in preprocessing the data is **dimensionality** reduction.
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Size
 - Type of analysis may depend on size of data

Data Quality

Poor data quality negatively affects many data processing efforts

- Data Science example:
 - a classification model for detecting people who are loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default

Source:

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Wrong data
 - Fake data
 - Missing values
 - Duplicate data

Source:

Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
 - The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
 - The magnitude and shape of the original signal is distorted

Outliers

- *Outliers* are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case 1: Outliers are noise that interferes with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

Source:

Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases
 (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects or variables
 - Estimate missing values
 - Example: time series of temperature
 - Example: census results
 - Ignore the missing value during analysis

Source:

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

Source:

For Your Valuable Time.