

GigaMOS™ TrenchT2 HiperFET™ Power MOSFET

IXFK360N15T2 IXFX360N15T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum I	Ratings
V _{DSS}	T _{.1} = 25°C to 175°C	150	V
V _{DGR}	$T_J^{\circ} = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$	150	V
V _{GSS}	Continuous	± 20	V
V _{GSM}	Transient	± 30	V
I _{D25}	T _C = 25°C (Chip Capability)	360	А
I _{L(RMS)}	External Lead Current Limit	160	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	900	Α
I _A	T _C = 25°C	100	Α
E _{AS}	$T_{c} = 25^{\circ}C$	TBD	J
P _D	T _c = 25°C	1670	W
dV/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 175^{\circ}C$	20	V/ns
T,		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T,	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in.
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb.
Weight	TO-264	10	g
	PLUS247	6	<u>g</u>

Symbol (T _J = 25°C U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 3mA$	150			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 8mA$	2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	-000		50	μΑ
	$T_J = 15$	50°C		5	mΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 60A, Note 1$			4.0	mΩ

 $V_{DSS} = 150V$ $I_{D25} = 360A$ $R_{DS(on)} \le 4.0m\Omega$ $t_{rr} \le 150ns$

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbo		Test Conditions	Cha	racteristi	ic Values
$(T_J = 25)$	5°C Uı	nless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	140	230	S
C _{iss})			47.5	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3060	pF
\mathbf{C}_{rss}	J			665	pF
t _{d(on)})			50	ns
t _r		Resistive Switching Times		170	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 100A$ $R_{G} = 1\Omega$ (External)		115	ns
t _f	J	G , ,		265	ns
$\mathbf{Q}_{g(on)}$)			715	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		185	nC
\mathbf{Q}_{gd}	J			200	nC
R _{thJC}					0.09 °C/W
R_{thCS}				0.15	°C/W

Source-Drain Diode

Symb	ol Test Conditions	Cha	aracteristi	c Values	
$(T_J = 2)$	25°C, Unless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			360	Α
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			1440	Α
V _{SD}	I _F = 60A, V _{GS} = 0V, Note 1			1.2	V
t _{rr} Q _{RM}	$ \begin{cases} I_{_{\rm F}} = 160\text{A}, -\text{di/dt} = 100\text{A/}\mu\text{s} \\ V_{_{\rm R}} = 60\text{V}, V_{_{\rm GS}} = 0\text{V} \end{cases} $		0.50 9.00	150	ns μC Α

Note 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

TO-264 (IXFK) Outline Back side Pins: 1 - Gate 2.4 - Drain 3 - Source

Dim.	Millimeter		Inches	
Dilli.	Min.	Max.	Min.	Max.
Α	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
С	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
Е	19.81	19.96	.780	.786
е	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
Р	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
Т	1.57	1.83	.062	.072

Terminals:	1 - Gate
	2 - Drain
	2 Cours

Dim.	Millimeter		Inches		
	Min.	Max.	Min.	Max.	
Α	4.83	5.21	.190	.205	
$A_{_{1}}$	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b_1	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
E	15.75	16.13	.620	.635	
е	5.45	BSC	.215	BSC	
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 180A Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 180A Value vs.

Fig. 6. Drain Current vs. Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 19. Maximium Transient Thermal Impedance

