Assignment 5

Ojjas Tyagi - CS20BTECH11060

Download latex-tikz codes from

https://github.com/tyagio/AI1103/tree/main/ assignment5/assignment5.tex

1 Problem

Let $X \ge 0$ be a random variable on (Ω, \mathcal{F}, P) with E(X) = 1 .Let $A \in \mathcal{F}$ be an event with 0 < P(A) < 1. Which of the following defines another probability measure on (Ω, \mathcal{F}) ?

1)
$$Q(B) = P(A \cap B) \quad \forall B \in \mathcal{F}$$

2)
$$Q(B) = P(A \cup B) \quad \forall B \in \mathcal{F}$$

3)
$$Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$$

3)
$$Q(B) = E(XI_B)$$
 $\forall B \in \mathcal{F}$
4) $Q(B) = \begin{cases} P(A|B), & \text{if } P(B) > 0\\ 0, & \text{if } P(B) = 0 \end{cases}$

2 Solution

Any probability measure \mathbb{P} on (Ω, \mathcal{F}) is a function from \mathcal{F} to [0,1] with the following properties

- 1) $\mathbb{P}(\phi) = 0$
- 2) $\mathbb{P}(\Omega) = 1$
- 3) If $A_1, A_2...$ are disjoint \mathcal{F} -measurable sets then $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

Now we know that $E(XI_B) \ge 0 \ \forall B$ as $X \ge 0$ also that for $Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$ to be valid probability measure

$$E(XI_B) = E(X \times 1) = 1$$
 when $B = \Omega$ (2.0.1)
 $E(XI_B) = E(X \times 0) = 0$ when $B = \phi$ (2.0.2)

Let
$$B' = \bigcup_{i=1}^{\infty} A_i$$
, where A_i are disjoint sets $\in \mathcal{F}$

$$\Longrightarrow E(XI_{B'}) = \sum_{i=1}^{\infty} E(XI_{A_i})$$
 (2.0.3)

Now to prove that (2.0.3) is true

$$E(XI_B) = \sum_{\omega \in \Omega} \frac{X(\omega) \times I_B(\omega)}{|\Omega|}$$
 (2.0.4)

Now $I_B(\omega)$ is indicator function which

is 1 if
$$\omega \in B$$
 and 0 if $\omega \notin B$ (2.0.5)

$$\Longrightarrow E(XI_B) = \sum_{\omega \in B} \frac{X(\omega)}{|\Omega|}$$
 (2.0.6)

$$\implies \sum_{i=1}^{\infty} E(XI_{A_i}) = \sum_{i=1}^{\infty} \sum_{\omega \in A_i} \frac{X(\omega)}{|\Omega|}$$
 (2.0.7)

$$\implies \sum_{\omega \in R'} \frac{X(\omega)}{|\Omega|} = E(XI_B') \tag{2.0.8}$$

This proves that (2.0.3) is true Similarly to prove (2.0.1) and (2.0.2)

if
$$B = \phi$$

$$\implies E(XI_B) = \sum_{\omega \in \Omega} \frac{X(\omega) \times 0}{|\Omega|} = 0 \qquad (2.0.9)$$

Also if $B = \Omega$

$$\implies E(XI_B) = \sum_{\omega \in \Omega} \frac{X(\omega) \times 1}{|\Omega|} = E(X) = 1$$
(2.0.10)

This proves that (2.0.1) and (2.0.2) are true Now we can state that

$$Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$$

is a well defined probability measure.

 \implies option 3 is correct answer.