Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 03

Moaz Haque, Felix Oechelhaeuser, Leo Pirker, Dennis Schulze ${\bf August~22,~2020}$

Contents

1	Auf	gabe 1	L																					2
	1.1	a) .																						2
		1.1.1																						2
		1.1.2	\mathbf{z}	2				 																2
	1.2	b) .																						2
		1.2.1																						2
		1.2.2																						3
			•	-																				
2	Auf	gabe 2	2																					3
	2.1	a) .																						3
	2.2	b) .															•							3
3	Auf	gabe 3	3																					4
																								4
	3.1	a) .			•	•		 																
	3.1 3.2	a) . b) .																						4
4	3.2	b) .																					•	4 5
4	3.2 Auf	b) . gabe 4	 1		•				•			٠	•	•	•	•		•	•	•	•			5
4	3.2 Auf 4.1	b) . gabe 4 a) .	 1 					 				•												5 5
4	3.2 Auf 4.1 4.2	b) . Gabe 4 a) . b) .	 1 				 	 		 	 			 										5 5
4	3.2 Auf 4.1	b) . gabe 4 a) .	 1 				 	 		 	 			 										5 5
4	3.2 Auf 4.1 4.2 4.3	b) . Gabe 4 a) . b) .	1 				 	 		 	 			 										5 5
	3.2 Auf 4.1 4.2 4.3 Auf	b) . gabe 4 a) . b) . c)	 1 				 		 	 	 			 		 						 		5 5 5 5 5

6	Auf	Aufgabe 6																									
	6.1	a)																									-
	6.2	b)																									Ę

1 Aufgabe 1

1.1 a)

1.1.1 z_1

$$z_{1} = 4e^{-\frac{\pi}{6}i} = 4(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}))$$

$$= 4(\frac{\sqrt{3}}{2} - \frac{1}{2}i)$$

$$= 2\sqrt{3} - 2i$$
(1)

$1.1.2 z_2$

$$z_{2} = 2e^{\frac{16}{3}\pi i} = 2e^{(\frac{4}{3}+4)\pi i} = 2e^{\frac{4}{3}\pi i}$$

$$= -2e^{\frac{1}{3}\pi i}$$

$$= -2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$$

$$= -2(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)$$

$$= -\sqrt{2} - \sqrt{2}i$$
(2)

1.2 b)

1.2.1 z_1

$$r^{2} = (-3)^{2} + (-3)^{2} = 18$$
$$\tan(\phi) = \frac{-3}{-3}$$

Der Nenner ist kleiner als 0:

$$\Rightarrow \phi = \arctan(\frac{-3}{-3}) + \pi = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$$

Damit ist \mathbf{z}_1 in Eulerdarstellung:

$$z_1 = \sqrt{18}e^{\frac{5\pi}{4}i}$$

 $1.2.2 z_2$

$$r^2 = 2^2 + (\sqrt{12})^2 = 4 + 12 = 16$$

 $\Leftrightarrow r = 4$

$$\tan(\phi) = \frac{\sqrt{12}}{2}$$

Der Nenner ist größer 0:

$$\Rightarrow \phi = \arctan(\frac{\sqrt{12}}{2}) = \frac{\pi}{3}$$

Damit ist z_2 in Eulerdarstellung:

$$z_2 = 4e^{\frac{\pi}{3}i}$$

2 Aufgabe 2

2.1 a)

$$z^{3} + \sqrt{2} - \sqrt{2}i = 0$$

$$\Leftrightarrow z^{3} + 2e^{\frac{-\pi}{4}i} = 0$$

$$\Leftrightarrow z^{3} = -2e^{\frac{-\pi}{4}i}$$

$$\Leftrightarrow z = \sqrt[3]{-2}e^{\frac{-\pi}{12}i} = z_{1}$$
(3)

Die anderen Lösungen z_2 und z_3 lassen sich finden, wenn man den Term $\frac{2k\pi}{3}$ mit $k\in\{1,\,2\}$ hinzu addiert. Somit erhält man:

$$z_{k} = \sqrt[3]{-2}e^{(\frac{-\pi}{12} + \frac{2k\pi}{3})i}, k \in 0, 1, 2$$

$$\Leftrightarrow z_{k} = \sqrt[3]{-2}e^{(\frac{-\pi}{12} + \frac{8k\pi}{12})i}$$

$$\Leftrightarrow z_{k} = \sqrt[3]{-2}e^{(\frac{8k-1)\pi}{12}i}$$
(4)

2.2 b)

$$z^{5} = \frac{1+i}{1-i} \Leftrightarrow z^{5} = \frac{(1+i)^{2}}{2}$$

$$\Leftrightarrow z^{5} = \frac{2i}{2} \Leftrightarrow z^{5} = i$$

$$\Leftrightarrow z^{5} = e^{\frac{\pi}{2}i}$$

$$\Leftrightarrow z = e^{\frac{\pi}{10}i}$$
(5)

Analog zu 2a) erhält man die anderen Lösungen mit den Term $\frac{2k\pi}{5}$ mit $k \in \{1, 2, 3, 4\}$. Womit man erhält:

$$z_{k} = e^{\left(\frac{\pi}{10} + \frac{2k\pi}{5}\right)i}, k \in 0, 1, 2, 3, 4$$

$$\Leftrightarrow z_{k} = e^{\left(\frac{\pi}{10} + \frac{4k\pi}{10}\right)i}$$

$$\Leftrightarrow z_{k} = e^{\frac{(1+4k)\pi}{10}i}$$
(6)

3 Aufgabe 3

3.1 a)

$$\deg(p(z)) = 4$$

Die Nullstellen von p
 sind $\{4,\,i,\,-5\},$ wobei $z_2=i$ eine zwei-fache Nullstelle ist

3.2 b)

$$p(z) = \frac{z^5 + 4z^4 - 3z^3 + 2z^2 - z + 1}{z^2 - 3}$$

Die folgenden "Gleichungen" sind nicht als solche zu betrachten. Sie zeigen lediglich die einzelnen Schritte der Polynomdivision.

$$(z^{5} + 4z^{4} - 3z^{3} + 2z^{2} - z + 1)/(z^{2} - 3) = 0$$

$$(4z^{4} - 6z^{3} + 2z^{2} - z + 1)/(z^{2} - 3) = z^{3}$$

$$(-6z^{3} - 10z^{2} - z + 1)/(z^{2} - 3) = z^{3} + 4z^{2}$$

$$(-10z^{2} + 17z + 1)/(z^{2} - 3) = z^{3} + 4z^{2} - 6z$$

$$(17z + 31)/(z^{2} - 3) = z^{3} + 4z^{2} - 6z - 10$$

$$(7)$$

Das Polynom nach der Division:

$$p(z) = z^3 + 4z^2 - 6z - 10 + \frac{17z + 31}{z^2 - 3}$$

- 4 Aufgabe 4
- 4.1 a)

$$p(2i) = (2i)^{4} + (2i)^{3} + 2(2i)^{2} + 4(2i) - 8$$

$$= 16 - 8i - 8 + 8i - 8$$

$$= 0$$
(8)

4.2 b)

$$\frac{p(z)}{q(z)} = \frac{z^4 + z^3 + 2z^2 + 4z - 8}{z^2 + 4}$$

Wie in 3b) sind die "Gleichungen" nur repräsentativ für den Schritt, der gerade durchgeführt wird.

$$(z^{4} + z^{3} + 2z^{2} + 4z - 8)/(z^{2} + 4) = 0$$

$$(z^{3} - 2z^{2} + 4z - 8)/(z^{2} + 4) = z^{2}$$

$$(-2z^{2} - 8)/(z^{2} + 4) = z^{2} + z$$

$$(0)/(z^{2} + 4) = z^{2} + z - 2$$

$$(9)$$

Das Polynom ist dann nach der Division:

$$\frac{p(z)}{q(z)} = z^2 + z - 2$$

- 4.3 c)
- 5 Aufgabe 5
- 5.1 a)
- 5.2 b)
- 6 Aufgabe 6
- 6.1 a)
- 6.2 b)