Data distributions

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science, Ordergroove

Distribution assumptions

Observing your data

```
import matplotlib as plt

df.hist()
plt.show()
```


Delving deeper with box plots

Box plots in pandas

```
df[['column_1']].boxplot()
plt.show()
```


Paring distributions

import seaborn as sns
sns.pairplot(df)

Further details on your distributions

df.describe()

	Col1	Col2	Col3	Col4
count	100.000000	100.000000	100.000000	100.000000
mean	-0.163779	-0.014801	-0.087965	-0.045790
std	1.046370	0.920881	0.936678	0.916474
min	-2.781872	-2.156124	-2.647595	-1.957858
25%	-0.849232	-0.655239	-0.602699	-0.736089
50%	-0.179495	0.032115	-0.051863	0.066803
75%	0.663515	0.615688	0.417917	0.689591
max	2.466219	2.353921	2.059511	1.838561

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Scaling and transformations

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Data Scientist

Scaling data

Min-Max scaling

Min-Max scaling

Min-Max scaling in Python

```
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(df[['Age']])

df['normalized_age'] = scaler.transform(df[['Age']])
```

Standardization

Standardization in Python

Log Transformation

Log transformation in Python

```
from sklearn.preprocessing import PowerTransformer

log = PowerTransformer()

log.fit(df[['ConvertedSalary']])

df['log_ConvertedSalary'] = 
   log.transform(df[['ConvertedSalary']])
```

Final Slide

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Removing outliers

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Director of Data Science, Ordergroove

What are outliers?

Quantile based detection

Quantiles in Python

```
q_cutoff = df['col_name'].quantile(0.95)

mask = df['col_name'] < q_cutoff

trimmed_df = df[mask]</pre>
```

Standard deviation based detection

Standard deviation detection in Python

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Scaling and transforming new data

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robet O'Callaghan

Director of Data Science, Ordergroove

Reuse training scalers

```
scaler = StandardScaler()
scaler.fit(train[['col']])
train['scaled_col'] = scaler.transform(train[['col']])
 FIT SOME MODEL
test = pd.read_csv('test_csv')
test['scaled_col'] = scaler.transform(test[['col']])
```

Training transformations for reuse

```
train_mean = train[['col']].mean()
train_std = train[['col']].std()
cut_off = train_std * 3
train_lower = train_mean - cut_off
train_upper = train_mean + cut_off
# Subset train data
test = pd.read_csv('test_csv')
# Subset test data
test = test[(test[['col']] < train_upper) &</pre>
              (test[['col']] > train_lower)]
```

Why only use training data?

Data leakage: Using data that you won't have access to when assessing the performance of your model

Avoid data leakage!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

