MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Fall 2013 Issued : Oct 22, 2013 Problem Set 6 Due : Oct 29, 2013

Problem 1: Differential Pair with Active Load

Find $\frac{v_{out}}{v_1-v_2}$ at midband, assuming $\beta_{npn}=200,\ \beta_{pnp}=50,\ V_{A,npn}=100\mathrm{V},\ V_{A,pnp}=50\mathrm{V},$ Common-Mode Voltage $V_{CM}=0,$ and $V_{BIAS}=4\mathrm{V}.$

Problem 2: Op Amp Applications

Assume the following circuit is operating at room temperature (T = 300K)

- (a) When $R_1 = 15.7R_2$, v_o is of the form $v_o = Alog_{10}(x)$. Find A and x.
- (b) Solve for R_1 in terms of R_2 such that $v_o = Alog_2(x)$ behavior.

Problem 3: Op Amp Frequency Response

The following op amp has a finite gain with frequency response $A(s) = \frac{a_o}{\tau s + 1}$ $a_o = 10^6$, $\tau = 10^{-6}$, and f = [1, 0.1, 0.01, 0.001].

- (a) Solve for the closed-loop DC gain and upper -3dB frequency for each value of f.
- (b) Sketch the Bode Plot magnitude of $\frac{V_{OUT}}{V_{IN}}(s)$ for each value of f on one plot.
- (c) What effect does f (gain) have on the step response?

Problem 4: Op Amp Filter

Find the transfer functions $\frac{V_{LOW}}{V_{IN}}(s)$ and $\frac{V_{BAND}}{V_{IN}}(s)$ such that the denominator is of the form:

$$D(s) = s^2 + \zeta \omega_o s + \omega_o^2 \tag{1}$$

Find ζ and ω_o .