Intro to IT Security

CS306C-Fall 2022

Prof. Antonio R. Nicolosi

Antonio.Nicolosi@stevens.edu

Asymmetric Encryption Schemes

Lecture 1 13 October 2022

Crypto Requirements: Data Secrecy

- Protect against unauthorized disclosure of the msg
 - If **A** sends a msg to **B**, no one else should understand its content

Asymmetric Encryption

- Defined by three algorithms:
 - $Gen(\lambda) \rightarrow (SK, PK)$ outputs secret key SK and public key PK
 - $Enc(PK, m) \rightarrow c$ encrypt m using public key PK
 - $Dec(SK, c) \rightarrow m$ or \bot decrypt c using SK

Asymmetric Encryption

- Bob wants to send a secret message m to Alice
- Alice creates a (encryption/decryption) key pair (pk_A, sk_A)
- Alice publishes the encryption key pk_A and keeps secret sk_A
- Bob uses Alice's encryption key pk_{Δ} to generate an encryption of m
- Alice recovers the secret message m using her decryption key sk_A

ecture 1 (13 October 2022

Let p be a prime and consider the finite field of order p.

Let $\mathbb{G} \subset \mathbb{Z}_p$ be a cyclic group of order q (|q| = n), q|(p-1). Let g be a generator.

- $KG(1^n, \mathbb{G}, q, g)$: choose random $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x \mod p$ $pk \stackrel{def}{=} \langle \mathbb{G}, q, g, h \rangle \qquad sk \stackrel{def}{=} x$
- $Enc_{pk}(m)$: choose random $r \leftarrow \mathbb{Z}_q$ and outputs the ciphertext $c := (g^r \mod p, h^r \cdot m \mod p)$
- $Dec_{sk}(c = (c_1, c_2))$: outputs $m := c_2 \cdot (c_1^x)^{-1} \mod p$ $c_2 \cdot (c_1^x)^{-1} \mod p = h^r \cdot m \cdot ((g^r)^x)^{-1} \mod p$ $= (g^x)^r \cdot m \cdot ((g^r)^x)^{-1} \mod p$ $= m \mod p$

Let p be a prime and consider the finite field of order p.

Let $\mathbb{G} \subset \mathbb{Z}_p$ be a cyclic group of order q(|q|=n), q|(p-1). Let g be a generator.

• $KG(1^n, \mathbb{G}, q, g)$: choose random $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x \mod p$

$$pk \stackrel{\text{def}}{=} \langle \mathbb{G}, q, g, h \rangle$$
 $sk \stackrel{\text{def}}{=} x$

•
$$Dec_{sk}(c = (c_1, c_2))$$
: outputs $m := c_2 \cdot (c_1^x)^{-1} \mod p$

$$c_2 \cdot (c_1^x)^{-1} \mod p = h^r \cdot m \cdot ((g^r)^x)^{-1} \mod p$$

$$= (g^x)^r \cdot m \cdot ((g^r)^x)^{-1} \mod p$$

$$= m \mod p$$

Let p be a prime and consider the finite field of order p.

Let $\mathbb{G} \subset \mathbb{Z}_p$ be a cyclic group of order q(|q|=n), q(p-1). Let q be a generator.

- $KG(1^n, \mathbb{G}, q, g)$: choose random $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x \mod p$ $pk \stackrel{\text{def}}{=} \langle \mathbb{G}, a, a, h \rangle$ $sk \stackrel{\text{def}}{=} x$
- $Enc_{pk}(m)$: choose random $r \leftarrow \mathbb{Z}_q$ and outputs the ciphertext $c := (a^r \mod p, h^r \cdot m \mod p)$

Let p be a prime and consider the finite field of order p.

Let $\mathbb{G} \subset \mathbb{Z}_p$ be a cyclic group of order q (|q| = n), q|(p-1). Let g be a generator.

• $KG(1^n, \mathbb{G}, q, g)$: choose random $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x \mod p$

$$pk \stackrel{\text{def}}{=} \langle \mathbb{G}, q, g, h \rangle$$
 $sk \stackrel{\text{def}}{=} x$

• $Enc_{pk}(m)$: choose random $r \leftarrow \mathbb{Z}_q$ and outputs the ciphertext

$$c := (g^r \mod p, h^r \cdot m \mod p)$$

• $Dec_{sk}(c = (c_1, c_2))$: outputs $m := c_2 \cdot (c_1^x)^{-1} \mod p$ $c_2 \cdot (c_1^x)^{-1} \mod p = h^r \cdot m \cdot ((g^r)^x)^{-1} \mod p$ $= (g^x)^r \cdot m \cdot ((g^r)^x)^{-1} \mod p$ $= m \mod p$

Security of the ElGamal Encryption Scheme

Theorem. If the DDH problem is hard relative to \mathbb{G} , then the ElGamal encryption scheme has indistinguishable encryption under chosen plaintext attack.

Recall...

- Euler Theorem
 - $-x^{\phi(n)} \equiv 1 \mod n$
- Fermat Theorem
 - p prime
 - $-x^{p-1} \equiv 1 \mod p \text{ (in } \mathbb{Z}_p)$
 - equivalently $x^p \equiv x \mod p$ (in $\mathbb{Z}_p *$)

(RSA = Rivest-Shamir-Adleman)

- KG(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $pk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $fwd_{pk}(m) = m^e \mod n$
- $bwd_{sk}(c) = c^d \mod n$
- Note: $(m^e)^d \equiv m \mod n$ Since $ed = 1 + h\phi(n)$ we

$$m^{ed} \equiv m^{1+h\phi(n)} \mod n$$

 $\equiv m \cdot (m^{\phi(n)})^h \mod n$
 $\equiv m \cdot 1^h \mod n$

(RSA = Rivest-Shamir-Adleman)

- $KG(1^n)$:
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $pk \stackrel{def}{=} (n, e)$ and $sk \stackrel{def}{=} (n, d)$.
- $fwd_{pk}(m) = m^e \mod n$
- $bwd_{sk}(c) = c^a \mod n$
- Note: $(m^e)^d \equiv m \mod n$ Since $ed = 1 + h\phi(n)$, we have

$$m^{ed} \equiv m^{1+h\phi(n)} \mod n$$

 $\equiv m \cdot (m^{\phi(n)})^h \mod n$
 $\equiv m \cdot 1^h \mod n$
 $\equiv m \mod n$

(RSA = Rivest-Shamir-Adleman)

- $KG(1^n)$:
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $pk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $fwd_{pk}(m) = m^e \mod n$
- $bwd_{sk}(c) = c^d \mod n$
- Note: $(m^e)^d \equiv m \mod n$ Since $ed = 1 + h\phi(n)$, we have

$$m^{ed} \equiv m^{1+h\phi(n)} \mod n$$

 $\equiv m \cdot (m^{\phi(n)})^h \mod n$
 $\equiv m \cdot 1^h \mod n$
 $\equiv m \mod n$

(RSA = Rivest-Shamir-Adleman)

- KG(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $pk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $fwd_{pk}(m) = m^e \mod n$
- $bwd_{5k}(c) = c^d \mod n$
- Note: $(m^e)^d \equiv m \mod n$

Since $ed = 1 + h\phi(n)$, we have

$$m^{ed} \equiv m^{1+h\phi(n)} \mod n$$
$$\equiv m \cdot (m^{\phi(n)})^h \mod n$$
$$\equiv m \cdot 1^h \mod n$$
$$\equiv m \mod n$$

Basic "Textbook" RSA is not a Secure Encryption Scheme

- The RSA algorithm is deterministic
 - Cannot work for encryption
 - Proper terminology is trapdoor permutation
- Several attacks have been shown in the past
- ⇒ Need a padding scheme: OAEP

Optimal Asymmetric Encryption Padding (OAEP)

- n is the number of bits in the RSA modulus.
- k_0 and k_1 are integers fixed by the protocol.
- m is the plaintext message, a $(n k_0 k_1)$ -bit string
- *G* and *H* are typically some cryptographic hash functions fixed by the protocol.

acture 1 (12 October 2022)

Brof Antonio B Nicola

Optimal Asymmetric Encryption Padding (OAEP)

To encode:

- 1. messages are padded with k_1 zeros to be $n k_0$ bits in length.
- 2. r is a random k_0 bit string
- 3. *G* expands the k_0 bits of r to $n k_0$ bits.
- 4. $X = m00..0 \oplus G(r)$
- 5. H reduces the $n k_0$ bits of X to k_0 bits.
- 6. $Y = r \oplus H(X)$
- 7. The output is X||Y where X is shown in the diagram as the leftmost block and Y as the rightmost block.

Optimal Asymmetric Encryption Padding (OAEP)

To decode:

- 1. recover the random string as $r = Y \oplus H(X)$
- 2. recover the message as $m00..0 = X \oplus G(r)$

- *KG*(1ⁿ):
 - Compute *n* as the product of two *k*-bit primes *p* and *q*;
 - Let $\phi(n) = (p-1)(q-1)$.
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work);

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.);
- Let $pk \stackrel{def}{=} (n, e)$ and $sk \stackrel{def}{=} (n, d)$.
- $Enc_{pk}(m,r) = [OAEP(m,r)]^e \mod n = [X||Y]^e \mod r$
- $Dec_{sk}(c) =$
 - 1. $(X||Y) \leftarrow c^d \mod r$
 - 2. $m \leftarrow OAEP^{-1}(X||Y)$

- *KG*(1ⁿ):
 - Compute *n* as the product of two *k*-bit primes *p* and *q*;
 - Let $\phi(n) = (p-1)(q-1)$.
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work);

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.);
- Let $pk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $Enc_{pk}(m, r) = [OAEP(m, r)]^e \mod n = [X||Y]^e \mod n$
- $Dec_{sk}(c) =$
 - 1. $(X||Y) \leftarrow c^d \mod r$
 - 2. $m \leftarrow OAEP^{-1}(X||Y)$

- KG(1ⁿ):
 - Compute n as the product of two k-bit primes p and q;
 - Let $\phi(n) = (p-1)(q-1)$.
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work);

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.);
- Let $pk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $Enc_{pk}(m,r) = [OAEP(m,r)]^e \mod n = [X||Y]^e \mod n$
- $Dec_{sk}(c) =$
 - 1. $(X||Y) \leftarrow c^d \mod n$
 - 2. $m \leftarrow OAEP^{-1}(X||Y)$

Specifically:

- *Enc_{pk}*(*m*, *r*):
 - 1. $X \stackrel{\text{def}}{=} m0...0 \oplus G(r) \mod n$
 - 2. $Y \stackrel{\text{def}}{=} r \oplus H(X)$
 - 3. $c \stackrel{def}{=} (X||Y)^e \mod n$

Specifically:

- Enc_{pk}(m, r):
 - 1. $X \stackrel{\text{def}}{=} m0...0 \oplus G(r) \mod n$
 - 2. $Y \stackrel{\text{def}}{=} r \oplus H(X)$
 - 3. $c \stackrel{def}{=} (X||Y)^e \mod n$
- *Dec_{sk}(c)*:
 - 1. $(X||Y) \leftarrow c^d \mod n$
 - 2. $r = Y \oplus H(X)$
 - 3. $m0...0 = X \oplus G(r)$

OAEP+

- OAEP-RSA is CCA-secure
 - But OAEP does not work with all trapdoor permutations...
- OAEP+ works for every family of trapdoor permutations

Intro to IT Security

CS306C-Fall 2022

Prof. Antonio R. Nicolosi

Antonio.Nicolosi@stevens.edu

Digital Signatures

Lacture 1 (13 October 2022)

Crypto Requirements: Data Integrity

Intercept, Tamper, Release

- The receiver should be able to check whether the msg was modified during transmission
 - No one should be able to tamper with the msg, without the recipient noticing the alteration

Crypto Requirements: Data Origin

- The receiver of a msg should be able to verify its origin
 - No one else should be able to send a msg to A pretending to be B

Crypto Requirements: Non-Repudiation

• The sender should not be able to later deny responsibility for msgs sent

antura 1 /12 Ontober 2022

Drof Antonio D Nicolos

Crypto Requirements: Non-Repudiation

• The sender should not be able to later deny responsibility for msgs sent

Digital Signature: Scenario

- Alice wants to send Bob a message that he knows came from her
- With paper messages, she would sign her name
- What to do in the electronic setting?
- Alice would like a way to digitally sign documents that maintains the properties we usually expect from a signature:
 - Anyone who knows Alice should be able to verify a legitimate signature
 - No one should be able to forge a signature

Digital Signature vs. MAC

- Public verifiability
- Transferability
- Non repudiation

Digital Signature

- Defined by three algorithms:
 - $Gen(\lambda) \rightarrow (SK, VK)$ outputs secret key SK and public key VK
 - Sign(SK, m) \rightarrow (m, σ) sign m using secret signing key SK
 - Vrfy(VK, m, σ) \rightarrow 1/0 verify σ using m and VK

Systems with passwords: Examples

- Bad examples: PGP & ssh private keys
 - Stored in user's home directory, encrypted with password
 - Given encrypted private key, can guess password off-line
 - Cost of guess comparable to that of password crypt
- Good example: OpenBSD/FreeBSD bcrypt
 - Hashing password is exponential in cost parameter
 - Cost goes in hashed password along with salt

Network Passwords

- Many systems grant access through a password
- How to implement? Example:
 - Server stores user's password (or hash)
 - Client connects to server, sends username, password
 - Server compares password to stored version
 - Grants access if they match
- Is this a good approach?

Digital Signature: Correctness

 $Pr[Ver_{vk}(m, Sign_{sk}(m)) = 1] = 1$

where the probability is over $(sk, vk) \leftarrow KG(1^n)$, and the randomness used in the signing algorithm Sign

Digital Signature: Security

Given a signature scheme $\Pi = (KG, Sign, Ver)$, and an adversary A, consider the following experiment.

Let
$$(sk, vk) = KG(1^n)$$
:

Attacker $(1^n, vk)$

$$\xrightarrow{m_0, \dots, m_t}$$

Challenger

$$\xrightarrow{\sigma_0 = Sign_{sk}(m_0), \dots, \sigma_t = Sign_{sk}(m_t)}$$

$$\xrightarrow{(m^*, \sigma^*)}$$

$$Ver_{vk}(m^*, \sigma^*)$$

The output of the experiment is 1 if $Ver_{Vk}(m^*, \sigma^*) = 1$, and 0 otherwise.

- *KG*(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $vk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $Sign_{sk}(m) : \sigma = m^d \mod r$
- $Ver_{Vk}(m, \sigma) : m \stackrel{?}{=} \sigma^e \mod n$
- Note: $(m^e)^d \equiv m \mod n$

Since
$$ed \equiv 1 \mod \phi(n)$$
, we have

$$\sigma^e \mod n = (m^d)^e \mod n = m \mod n$$

- *KG*(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $vk \stackrel{def}{=} (n, e)$ and $sk \stackrel{def}{=} (n, d)$.
- $Sign_{sk}(m) : \sigma = m^d \mod n$
- $Ver_{Vk}(m,\sigma): m \stackrel{?}{=} \sigma^e \mod n$
- Note: $(m^e)^d \equiv m \mod n$

Since $ed \equiv 1 \mod \phi(n)$, we have

$$\sigma^e \mod n = (m^d)^e \mod n = m \mod n$$

- *KG*(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $vk \stackrel{def}{=} (n, e)$ and $sk \stackrel{def}{=} (n, d)$.
- $Sign_{sk}(m) : \sigma = m^d \mod n$
- $Ver_{vk}(m, \sigma) : m \stackrel{?}{=} \sigma^e \mod n$
- Note: $(m^e)^d \equiv m \mod n$

Since $ed \equiv 1 \mod \phi(n)$, we have

$$\sigma^e \mod n = (m^d)^e \mod n = m \mod n$$

- KG(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

(most random e will work)

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Let $vk \stackrel{\text{def}}{=} (n, e)$ and $sk \stackrel{\text{def}}{=} (n, d)$.
- $Sign_{sk}(m) : \sigma = m^d \mod n$
- $Ver_{Vk}(m, \sigma) : m \stackrel{?}{=} \sigma^e \mod n$
- Note: $(m^e)^d \equiv m \mod n$

Since $ed \equiv 1 \mod \phi(n)$, we have

$$\sigma^e \mod n = (m^d)^e \mod n = m \mod n$$

Basic "Textbook" RSA is not a Secure Signature Scheme

- Knowing only the public parameters, can create forgery on a random message
 - pick a random signature σ and set the message to be $\sigma^e \mod n$
- Easy to forge a signature on a chosen message, given two signatures of adversary choice:
 - given $\sigma_1 = m_1^d \mod n$ and $\sigma_2 = m_2^d \mod n$:

$$\sigma_1 * \sigma_2 = (m_1^d)(m_2^d) \mod n = (m_1 m_2)^d \mod n$$

- In general, given a signature σ for a message m, one can create a signature on a related message m^t
 - Note: $\sigma^t = (m^d)^t = (m^t)^d \mod n$
- ⇒ Need a padding scheme: Hashed-RSA

Hashed-RSA

- *KG*(1ⁿ):
 - Compute *n* as the product of two *k*-bit primes *p* and *q*
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Select $H: \{0,1\}^* \to \mathbb{Z}_n^*$, collision-resistant
- Let $vk \stackrel{\text{def}}{=} (n, e, H)$ and $sk \stackrel{\text{def}}{=} (n, d)$
- $Sign_{sk}(m) : \sigma = H(m)^d \mod n$
- $Ver_{sk}(m, \sigma) : \sigma^e \stackrel{?}{=} H(m) \mod r$

Hashed-RSA

- *KG*(1ⁿ):
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Select $H: \{0,1\}^* \to \mathbb{Z}_n^*$, collision-resistant
- Let $vk \stackrel{\text{def}}{=} (n, e, H)$ and $sk \stackrel{\text{def}}{=} (n, d)$
- $Sign_{sk}(m) : \sigma = H(m)^d \mod n$
- $Ver_{sk}(m, \sigma) : \sigma^e \stackrel{?}{=} H(m) \mod n$

Hashed-RSA

- $KG(1^n)$:
 - Compute n as the product of two k-bit primes p and q
 - Let $\phi(n) = (p-1)(q-1)$
 - Choose e such that

$$gcd(e, \phi(n)) = 1$$

- Compute $d \equiv e^{-1} \mod \phi(n)$ (extended Euclidean alg.)
- Select $H: \{0,1\}^* \to \mathbb{Z}_n^*$, collision-resistant
- Let $vk \stackrel{def}{=} (n, e, H)$ and $sk \stackrel{def}{=} (n, d)$
- $Sign_{sk}(m) : \sigma = H(m)^d \mod n$
- $Ver_{sk}(m, \sigma) : \sigma^e \stackrel{?}{=} H(m) \mod n$

Schnorr Signature Scheme

• KG: Let q be a prime and let p = 2q + 1. Let g be a generator of prime order q. Pick $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and set $y = g^x \mod p$.

$$sk \stackrel{def}{=} x \qquad vk \stackrel{def}{=} y$$

- $Sign_{sk}(m)$
 - 1. $r \stackrel{\$}{\leftarrow} \mathbb{Z}_c$
 - 2. $a := g^r \mod p$
 - 3. $H: \{0,1\}^* \to \mathbb{Z}_q, \quad c := H(y||m||a)$
 - 4. $z := r + x \cdot c \mod g$
 - 5. $\sigma \stackrel{\text{def}}{=} (\alpha, z)$
- $Ver_{vk}(m, \sigma)$
 - 1. c := H(y||m||a)
 - 2. $g^z \mod p \stackrel{?}{=} a \cdot y^c \mod p$

Schnorr Signature Scheme

• KG: Let q be a prime and let p = 2q + 1. Let g be a generator of prime order q. Pick $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and set $y = g^x \mod p$.

$$sk \stackrel{\text{def}}{=} x \qquad vk \stackrel{\text{def}}{=} y$$

- $Sign_{sk}(m)$:
 - 1. $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 - 2. $a := g^r \mod p$
 - 3. $H: \{0, 1\}^* \to \mathbb{Z}_q, \quad c := H(y||m||a)$
 - 4. $z := r + x \cdot c \mod q$
 - 5. $\sigma \stackrel{\text{def}}{=} (a, z)$
- $Ver_{vk}(m, \sigma)$
 - 1. c := H(y||m||a)
 - 2. $g^z \mod p \stackrel{?}{=} a \cdot y^c \mod p$

Schnorr Signature Scheme

• KG: Let q be a prime and let p = 2q + 1. Let g be a generator of prime order q. Pick $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and set $y = g^x \mod p$.

$$sk \stackrel{\text{def}}{=} x \qquad vk \stackrel{\text{def}}{=} y$$

- Sign_{sk}(m):
 - 1. $r \stackrel{\$}{\leftarrow} \mathbb{Z}_a$
 - 2. $a := g^r \mod p$
 - 3. $H: \{0,1\}^* \to \mathbb{Z}_q, \quad c:=H(y||m||a)$
 - 4. $z := r + x \cdot c \mod q$
 - 5. $\sigma \stackrel{\text{def}}{=} (a, z)$
- $Ver_{vk}(m, \sigma)$:
 - 1. c := H(y||m||a)
 - 2. $g^z \mod p \stackrel{?}{=} a \cdot y^c \mod p$

Schnorr Signature Scheme: Security

• Schnorr signature scheme is existantial unforgeable under adaptive chosen-message attacks, under the discrete log assumption.

Hash-then-Sign

- Say we have a secure signature scheme for short messages (e.g. hashed RSA, Schnorr)
- How can we use it to sign long messages?
 - 1. Hash the long message: H(m)
 - 2. Sign the digested message: $\sigma = Sign(H(m), sk)$
- But does this work?
 - If $H(m_1) = H(m_2)$, then signature on m_1 is valid for m_2 , too!
 - If H is collision resistant, hard to find two messages with same digest