Digital Signal Processing

Breathing Rate Detection System Design

Today's Agenda

- Breathing rate system design
- Need your ideas on how to design the system
- Review the requirements and brainstorm a block diagram
 - We'll use google jamboard
 - https://jamboard.google.com/
 - Link is in myCourses

System Design Process

- Define system requirements
 - Might come from customers (internal or external)
- Consider the technologies we have available
 - What have we done so far this semester?
 - What are the constraints and limitations

System Design Process

- Start with a High Level View then drill down
- Brainstorm! Throw out ideas!
- Jot your ideas on the jamboard!

System Description

- Build a breathing rate monitor to warn of a potential acute respiratory problem (pneumonia) in a child age 11 months to 5 years.
- In children, a breathing rate of greater than 50 breaths per minute can indicate pneumonia.

Fewer than 12 breaths per minute can also indicate an abnormal condition

System Requirements

Monitor shall detect if the breathing rate is greater than 40 breaths per minute

- Monitor shall detect a breathing rate below 12 breaths per minute
 - May indicate that the sensor is disconnected, or other abnormal condition is occurring
- Either condition shall be detected and alert the caregiver within 2 minutes of its occurrence

System Requirements

- A warning shall be sounded for a breathing rate greater than 40 breaths per minute
- A warning shall be sounded for a breathing rate less than 12 breaths per minute

The warning for low breathing rate shall be different from that of the warning for high breathing rate

How Do We Design this System

Consider what you have been working on this semester

- Understanding of signal statistics
- Using dithering, oversample and averaging to improve ADC resolution

How Do We Design this System?

- Using filtering to remove noise
- Using filtering to separate the frequency content of signals
- Computing statistics efficiently in computing systems

More Detailed Things to Consider

- What number systems should I use and why?
 - Integers
 - Longs
 - Floating point
- What types of filters should I use and where?
 - FIR
 - Recursive filters
 - LPF, HPF, BPF, BSF

What are some of my design constraints?

- Program memory limitations
- Data memory limitations
- Processor execution times

What drives these factors?

- What are my tradeoffs?
 - Execution speed / Data precision
 - Memory usage / Data precision

Let's work on a block diagram

Start with a high level and then add more detail to each block

- What functions should be included at the highest level?
 - Open up your microphones
 - Video encouraged
 - Build on ideas, make suggestions, feel free to jot down on the jamboard

High Level System Block Diagram

