Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Севастопольский государственный университет»

РАСЧЕТ ЧИСЛОВЫХ ХАРАКТЕРИСТИК И ЭНТРОПИИ НЕПРЕРЫВНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Методические указания

к выполнению лабораторной работы для студентов, обучающихся по направлению **09.03.02 "Информационные системы и технологии"** очной и заочной форм обучения

УДК 621.391

Расчет числовых характеристик и энтропии непрерывной случайной

величины: методические указания к лабораторной работе №2 по дисциплине

«Теоретические основы информационных процессов» для студентов направления

09.03.02 "Информационные системы и технологии" / Сост. С.В. Доценко, Е.Н.

Заикина, Ю.В. Коваленко, С.А. Кузнецов. — Севастополь: Изд-во СевГУ, 2015. —

21 c.

Цель указаний: оказание помощи студентам направления 09.03.02

"Информационные системы и технологии" при выполнении лабораторной

работы №2 по дисциплине «Теоретические основы информационных процессов»

в интегрированной среде MAPLE.

Методические указания составлены в соответствии с требованиями про-

граммы дисциплины «Теоретические основы информационных процессов» для

студентов направления 09.03.02 "Информационные системы и технологии" и

утверждены на заседании кафедры «Информационные системы» протоколом №

1 от 31 августа 2015 года.

Допущено учебно-методическим центром СевГУ в качестве методических

указаний.

Рецензент: профессор кафедры Технической кибернетики Скороход Б.А.

2

СОДЕРЖАНИЕ

1. ЦЕЛЬ РАБОТЫ	4
2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	4
2.1 Непрерывные случайные величины. Плотность распределения	
вероятностей.	4
2.2 Числовые характеристики непрерывной случайной величины.	5
2.3 Дифференциальная энтропия	6
2.4 Некоторые законы распределения непрерывной случайной	
величины	6
3. ПРОГРАММА И МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ	8
4. ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ	9
СОДЕРЖАНИЕ ОТЧЕТА	22
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ	22
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	22

1. ЦЕЛЬ РАБОТЫ

- 1.1 Изучение способов описания непрерывных случайных величин.
- 1.2 Приобретение практических навыков расчета *числовых характеристик* и *энтропии* непрерывной случайной величины по ее *плотности* распределения вероятности.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1 Непрерывные случайные величины. Плотность распределения вероятностей.

Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами. Для непрерывных случайных величин справедливо следующее положение: вероятность любого отдельного значения непрерывной случайной величины равна нулю. Механическая интерпретация непрерывной случайной величины сводится к непрерывному распределению единичной массы (суммарной вероятности, равной единице) по оси абсцисс, причем ни одна точка не обладает конечной массой. Подавляющее число непрерывных случайных величин, встречающихся в задачах практики, имеют непрерывный и дифференцируемый интегральный закон распределения F(x).

Пусть имеется непрерывная случайная величина ξ с интегральной функцией распределения F(x), которая является непрерывной и дифференцируемой. Функция

$$p(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta F(x)}{\Delta x} = \frac{dF(x)}{dx} = F'(x)$$
 (2.1)

носит название *плотность* распределения вероятностей. Иногда функцию p(x) называют дифференциальной функцией распределения или дифференциальным законом распределения. С точки зрения механической интерпретации распределения функция p(x) характеризует линейную плотность распределения единичной массы по оси абсцисс.

Вероятность попадания случайной величины ξ на отрезок $[x_1, x_2]$ можно выразить через плотность вероятности p(x) следующим образом:

$$P(x_1 < \xi < x_2) = \int_{x_1}^{x_2} p(x) dx.$$
 (2.2)

Зная дифференциальный закон распределения, можно получить интегральный закон:

$$F(x) = \int_{-\infty}^{x} p(x)dx.$$
 (2.3)

Плотность распределения вероятностей обладает следующими основными свойствами:

- 1) условие неотрицательности: $p(x) \ge 0$,
- 2) условие нормировки:

$$\int_{-\infty}^{\infty} p(x)dx = 1. \tag{2.4}$$

2.2 Числовые характеристики непрерывной случайной величины

 $\it Haчanьным\ \it momentum \it s$ -го $\it nopsdka$ непрерывной случайной величины $\it \xi$ называется интеграл вида

$$\alpha_s(\xi) = \int_{-\infty}^{\infty} x^s p(x) dx.$$
 (2.5)

Первый начальный момент случайной величины ξ называется ее математическим ожиданием:

$$\alpha_1(\xi) = M(\xi) = \int_{-\infty}^{\infty} xp(x)dx.$$
 (2.6)

Центральным моментом s-го порядка непрерывной случайной величины ξ называется интеграл вида

$$\mu_s(\xi) = \int_{-\infty}^{\infty} [x - M(\xi)]^s p(x) dx. \qquad (2.7)$$

Второй центральный момент случайной величины ξ называется ее дисперсией:

$$\mu_2(\xi) = D(\xi) = \int_{-\infty}^{\infty} [x - M(\xi)]^2 p(x) dx.$$
 (2.8)

Такие числовые характеристики как среднее квадратическое отклонение, коэффициент асимметрии и коэффициент эксцесса для непрерывных случайных величин определяются аналогично соответствующим числовым характеристикам дискретных случайных величин (см. методические указания к лабораторной работе N1).

2.3 Дифференциальная энтропия

 \mathcal{L}_{u} ференциальной энтропией непрерывной случайной величины ξ , характеризуемой плотностью вероятности p(x), называется величина

$$H(\xi) = -\int_{-\infty}^{\infty} p(x) \log p(x) dx.$$
 (2.9)

Дифференциальная энтропия является мерой априорной неопределенности непрерывной случайной величины.

В отличие от энтропии дискретной случайной величины дифференциальная энтропия является *относительной* мерой неопределенности. Ее значение зависит от масштаба случайной величины, а, следовательно, и от выбора единицы измерения. Дифференциальная энтропия может принимать положительные, отрицательные и нулевые значения. Как и энтропия дискретной случайной величины, дифференциальная энтропия не зависит от математического ожидания случайной величины.

2.4 Некоторые законы распределения непрерывной случайной величины

1. Закон арксинуса

$$p(x) = \begin{cases} 0, x \in (-\infty, -a) \cup (a, \infty), \\ \frac{1}{\pi \sqrt{a^2 - x^2}}, x \in (-a, a), \end{cases}$$
 (2.10)

где a > 0.

2. Экспоненциальный односторонний закон

$$p(x) = \begin{cases} 0, & x \in (-\infty, 0), \\ ae^{-ax}, & x \in (0, \infty), \end{cases}$$
 (2.11)

где a > 0.

3. Показательно-степенной закон

$$p(x) = \begin{cases} 0, x \in (-\infty, 0), \\ \frac{x^m}{m!} e^{-x}, x \in (0, \infty), \end{cases}$$
 (2.12)

где m — целое неотрицательное число.

4. Закон Рэлея

$$p(x) = \begin{cases} 0, x \in (-\infty, 0), \\ \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), x \in (0, \infty), \end{cases}$$
 (2.13)

где $\sigma > 0$.

5. Закон Максвелла

$$p(x) = \begin{cases} 0, x \in (-\infty, 0), \\ \frac{4x^2}{\sqrt{\pi} (2\sigma^2)^{3/2}} \exp\left(-\frac{x^2}{2\sigma^2}\right), x \in (0, \infty), \end{cases}$$
 (2.14)

где $\sigma > 0$.

6. Логарифмически-нормальный закон

$$p(x) = \begin{cases} 0, x \in (-\infty, 0), \\ \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], x \in (0, \infty), \end{cases}$$
 (2.15)

где $\sigma > 0$.

3. ПРОГРАММА И МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Получить у преподавателя вариант задания.
- 2. Написать функцию, определяющую *распределение вероятностей непрерывной случайной величины* в соответствии с заданным законом распределения.
- 3. Проверить условие нормировки.
- 4. Написать функцию для определения *начального момента s-го порядка*. Выписать соответствующую формулу.
- 5. Найти начальный момент нулевого порядка. Объяснить результат.
- 6. Написать функцию для определения математического ожидания. Выписать соответствующую формулу.
- 7. Построить графики зависимости математического ожидания от параметров распределения.
- 8. Написать функцию для определения *центрального момента s-го порядка*. Выписать соответствующую формулу.
- 9. Найти центральный момент нулевого порядка. Объяснить результат.
- 10. Найти центральный момент первого порядка. Объяснить результат.
- 11. Написать функцию для определения *дисперсии*. Выписать соответствующую формулу.
- 12. Построить графики зависимости дисперсии от параметров распределения.
- 13. Написать функцию для определения *среднего квадратического отклонения*. Выписать соответствующую формулу.
- 14. Построить графики зависимости среднего квадратического отклонения от параметров распределения.
- 15. Написать функцию для определения коэффициента асимметрии. Выписать соответствующую формулу.
- 16. Построить графики зависимости коэффициента асимметрии от параметров распределения.
- 17. Написать функцию для определения коэффициента эксцесса. Выписать соответствующую формулу.
- 18. Построить графики зависимости коэффициента эксцесса от параметров распределения.

- 19. Построить графики распределения вероятностей для разных параметров распределения.
- 20. Написать функцию, определяющую интегральный закон распределения непрерывной случайной величины, подчиненной заданному закону распределения.
- 21. Построить графики интегрального закона распределения для разных параметров распределения.
- 22. Написать функцию для вычисления энтропии.
- 23. Построить графики зависимости энтропии от параметров распределения.
- 24. Сделать развернутые выводы по результатам исследований.

4. ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ.

Распределение непрерывной случайной величины, подчиненной логарифмически-нормальному закону, описывается формулой (2.15).

- 4.1 Опишем ограничения, накладываемые на параметры распределения (2.15)
- > assume(x>0); # при x<0 плотность вероятности равна нулю
 > assume(sigma>0); # параметр логнормального распределения
- 4.2 Проверка ограничений

```
> about(x,sigma);
Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),infinity)
Originally sigma, renamed sigma~:
  is assumed to be: RealRange(Open(0),infinity)
```

4.3 Напишем функцию, определяющую плотность распределения вероятностей (2.15)

```
> p:=(x,sigma,mu)->(1/(sqrt(2*Pi)*sigma*x))*exp(-((ln(x)-mu)^2)/(2*(sigma^2))); p:=(x,\sigma,\mu) \to \frac{e^{\left(-1/2\frac{(\ln(x)-\mu)^2}{\sigma^2}\right)}}{\sqrt{2\,\pi}\,\,\sigma\,x}
```

- 4.4 Выполним проверку условия нормировки
- > int(p(x,sigma,mu),x=0..infinity); # проверка условия нормировки

4.5 Напишем функцию для определения начального момента s-го порядка

Очевидно, с учетом (2.15) выражение для начального момента s-го порядка (2.5) можно записать в виде

$$\alpha_s(\sigma,\mu) = \int_0^\infty x^s p(x,\sigma,\mu) dx. \qquad (2.16)$$

> alpha:=(sigma,mu,s)->int((x^s)*p(x,sigma,mu),x=0..infinity); # начальный момент s-го порядка

$$\alpha := (\sigma, \mu, s) \to \int_0^\infty x^s p(x, \sigma, \mu) dx$$

> simplify(alpha(sigma,mu,s)); $e^{(1/2 s (s \sigma^2 + 2 \mu))}$

Итак, для начального момента s-го порядка можно выписать следующую формулу:

$$\alpha_s(\sigma,\mu) = \exp\left[\frac{s}{2}(s\sigma^2 + 2\mu)\right].$$
 (2.17)

- 4.6 Найдем начальный момент нулевого порядка
- > alpha(sigma,mu,0); # начальный момент нулевого порядка
- > # соответствует условию нормировки
- 4.7 Напишем функцию для определения математического ожидания
- > M:=(sigma,mu)->alpha(sigma,mu,1); # математическое ожидание $M := (\sigma, \mu) \rightarrow \alpha(\sigma, \mu, 1)$
- > simplify(M(sigma,mu));

Таким образом, для математического ожидания справедливо выражение

$$M(\sigma, \mu) = \alpha_1(\sigma, \mu) = \exp(\mu + \sigma^2/2). \tag{2.18}$$

4.8 Построим график зависимости математического ожидания от параметров σ и μ распределения

> plot3d(M(sigma,mu),sigma=0..1.2,mu=2..2,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,14],
labels=["sigma","mu","M"],orientation=[225,50],shading=ZGRAYSCALE,
title="график зависимости МО от параметров\плогнормального
распределения",titlefont=[TIMES,ROMAN,12]);

Результат выполнения команды представлен на рисунке 1.1.

график зависимости МО от параметров логнормального распределения

Рисунок 1.1 – График зависимости математического ожидания от параметров σ и μ логнормального распределения

4.9 Напишем функцию для определения центрального момента s-го порядка

Очевидно, с учетом (2.15) выражение для центрального момента s-го порядка (2.7) можно записать в виде

$$\mu_s(\sigma,\mu) = \int_0^\infty [x - M(\sigma,\mu)]^s p(x,\sigma,\mu) dx. \qquad (2.19)$$

> mu:=(sigma,mu,s)->int(((x-M(sigma,mu))^s)*p(x,sigma,mu),x=0..infinity); # центральный момент s-го порядка

$$\mu := (\sigma, \mu, s) \to \int_0^\infty (x - \mathbf{M}(\sigma, \mu))^s \, \mathbf{p}(x, \sigma, \mu) \, dx$$

> simplify(mu(sigma,mu,s));

$$\int_{0}^{\infty} \frac{1}{2} \frac{(x - e^{(1/2 \sigma^{2} + \mu)})^{s} \sqrt{2} e^{\left(-1/2 \frac{(\ln(x - \mu)^{2})^{2}}{\sigma^{2}}\right)}}{\sqrt{\pi} \sigma^{2} x} dx$$

4.10 Найдем центральный момент нулевого порядка

> simplify(mu(sigma,mu,0)); # центральный момент нулевого порядка
Definite integration: Can't determine if the integral is convergent.
Need to know the sign of --> 1/sigma^2*mu+1
Will now try indefinite integration and then take limits.

- 4.11 Найдем центральный момент первого порядка
- > simplify(mu(sigma,mu,1)); # центральный момент первого порядка
 Definite integration: Can't determine if the integral is convergent.
 Need to know the sign of --> 1/sigma^2*mu+1
 Will now try indefinite integration and then take limits.
 Definite integration: Can't determine if the integral is convergent.
 Need to know the sign of --> 1/sigma^2*mu
 Will now try indefinite integration and then take limits.
- 4.12 Напишем функцию для определения дисперсии
- > Dsp:=(sigma,mu)->mu(sigma,mu,2); # дисперсия $Dsp := (\sigma, \mu) \rightarrow \mu(\sigma, \mu, 2)$
- > simplify(Dsp(sigma,mu));

Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu+1 Will now try indefinite integration and then take limits. Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu+2 Will now try indefinite integration and then take limits. Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu+1 Will now try indefinite integration and then take limits. Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu Will now try indefinite integration and then take limits. $e^{(2\mu+2\sigma^2)} - e^{(\sigma^2+2\mu)}$

Итак, оказалось, что для дисперсии справедливо следующее выражение:

$$D(\sigma, \mu) = \mu_2(\sigma, \mu) = \exp(2\mu + \sigma^2) \left[\exp(\sigma^2) - 1\right]. \tag{2.20}$$

4.13 Построим график зависимости дисперсии от параметров σ и μ распределения

```
> plot3d(Dsp(sigma,mu),sigma=0..1,mu=-
0.8..0.8,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,
14],labels=["sigma","mu","D"],orientation=[200,50],shading=ZGRAYSC
ALE,title="график зависимости дисперсии от
параметров\плогнормального
распределения",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.2.

график зависимости дисперсии от параметров логнормального распределения

Рисунок 1.2 – График зависимости дисперсии от параметров σ и μ логнормального распределения

4.14 Напишем функцию для определения среднего квадратического отклонения

```
> Sko:=(sigma,mu)->(Dsp(sigma,mu))^(1/2); Sko:=(\sigma,\mu)\rightarrow\sqrt{Dsp(\sigma,\mu)}
```

> simplify(Sko(sigma,mu));

Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu+1 Will now try indefinite integration and then take limits. Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu+2 Will now try indefinite integration and then take limits. Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu+1 Will now try indefinite integration and then take limits. Definite integration: Can't determine if the integral is convergent. Need to know the sign of --> 1/sigma^2*mu Will now try indefinite integration and then take limits. $\sqrt{e^{(\sigma^2-2)}-1} \sqrt{e^{(\sigma^2+2\mu)}}$

Для определения среднего квадратического отклонения можно выписать следующее выражение:

$$Sko(\sigma, \mu) = \sqrt{D(\sigma, \mu)} = \sqrt{\exp(2\mu + \sigma^2) \exp(\sigma^2) - 1}.$$
 (2.21)

4.15 Построим график зависимости среднего квадратического отклонения от параметров σ и μ распределения

> plot3d(Sko(sigma,mu),sigma=0..1,mu=-0.8..0.8,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,14],labels=["sigma","mu","CKO"],orientation=[200,50],shading=ZGRAY SCALE,title="график зависимости СКО от параметров\плогнормального распределения",titlefont=[TIMES,ROMAN,12]);

Результат выполнения команды представлен на рисунке 1.3.

график зависимости СКО от параметров логнормального распределения

Рисунок 1.3 – График зависимости СКО от параметров σ и μ логнормального распределения

4.16 Напишем функцию для определения коэффициента асимметрии

> Sk:=(sigma,mu)->mu(sigma,mu,3)/((Sko(sigma,mu))^3); # коэффициент асимметрии

$$Sk := (\sigma, \mu) \rightarrow \frac{\mu(\sigma, \mu, 3)}{\text{Sko}(\sigma, \mu)^3}$$

> simplify(Sk(sigma,mu));

$$\frac{(\mathbf{e}^{(9/2 \, \sigma^{2} + 3 \, \mu)} - 3 \, \mathbf{e}^{(5/2 \, \sigma^{2} + 3 \, \mu)} + 2 \, \mathbf{e}^{(3 \, \mu + 3/2 \, \sigma^{2})}) \, \mathbf{e}^{(-3/2 \, \sigma^{2})}}{\sqrt{\mathbf{e}^{(6 \, \mu)}} \, (\mathbf{e}^{(\sigma^{2})} - 1)}$$

Очевидно, для коэффициента асимметрии можно выписать следующую формулу:

$$Sk(\sigma, \mu) = \frac{\mu_3(\sigma, \mu)}{\left[Sko(\sigma, \mu)\right]^3} = \frac{\exp(\sigma^2)\left[\exp(2\sigma^2) - 3\right] + 2}{\left[\exp(\sigma^2) - 1\right]^{3/2}}.$$
 (2.22)

Оказывается, что коэффициент асимметрии непрерывной случайной величины, распределенной по логнормальному закону, зависит только от параметра σ и не зависит от параметра μ . При σ = 0 распределение расположено симметрично относительно математического ожидания; при σ > 0 распределение имеет положительную асимметрию («скошено влево» относительно математического ожидания).

4.17 Построим график зависимости коэффициента асимметрии от параметра σ распределения

plot(Sk1(sigma),sigma=0..2,axes=BOXED,axesfont=[COURIER,BOLD,12],color=black,font=[TIMES,ITALIC,14],labels=["sigma","Sk"],linestyle=[SOLID,DOT,DASHDOT],thickness=2,title="графики зависимости коэф. асимметрии\n от параметра sigma\nлогнормального распределения",titlefont=[TIMES,ROMAN,12]);

Результат выполнения команды представлен на рисунке 1.4.

Рисунок 1.4 – График зависимости коэффициента асимметрии от параметра σ логнормального распределения

4.18 Напишем функцию для определения коэффициента эксцесса

> Ex:=(sigma,mu)->(mu(sigma,mu,4)/((Sko(sigma,mu))^4))-3; # коэффициент эксцесса

$$Ex := (\sigma, \mu) \rightarrow \frac{\mu(\sigma, \mu, 4)}{\operatorname{Sko}(\sigma, \mu)^4} - 3$$

> simplify (Ex (sigma, mu));

$$-\frac{-e^{(8\sigma^2+4\mu)}+4e^{(4\mu+5\sigma^2)}-12e^{(4\mu+3\sigma^2)}+6e^{(4\mu+2\sigma^2)}+3e^{(4\mu+4\sigma^2)}}{(-e^{(2\mu+2\sigma^2)}+e^{(2\mu+\sigma^2)})}$$

Очевидно, для коэффициента эксцесса можно выписать следующую формулу:

$$Ex(\sigma, \mu) = \frac{\mu_4(\sigma, \mu)}{[Sko(\sigma, \mu)]^4} - 3 = \frac{\exp(6\sigma^2) - 4\exp(3\sigma^2) - 3\exp(2\sigma^2) + 12\exp(\sigma^2) - 6}{[\exp(\sigma^2) - 1]^2}. (2.23)$$

Таким образом, коэффициент эксцесса непрерывной случайной величины, распределенной по логнормальному закону, как и коэффициент асимметрии, зависит только от параметра σ и не зависит от параметра μ . При $\sigma=0$ островершинность распределения такая же, как и для соответствующего нормального распределения; при $\sigma>0$ островершинность логнормального распределения превосходит островершинность соответствующего нормального распределения.

4.19 Построим график зависимости коэффициента эксцесса от параметра σ распределения

plot(Ex1(sigma),sigma=0..1,axes=BOXED,axesfont=[COURIER,BOLD,12],color=black,font=[TIMES,ITALIC,14],labels=["sigma","Ex"],linestyle=[SOLID,DOT,DASHDOT],thickness=2,title="rpaфики зависимости коэф. эксцесса\n от параметра sigma\nлогнормального распределения",titlefont=[TIMES,ROMAN,12]);

Результат выполнения команды представлен на рисунке 1.5.

графики зависимости коэф. эксцесса

Рисунок 1.5 – График зависимости коэффициента эксцесса от параметра σ логнормального распределения

4.20 Построим графики плотности распределения вероятностей для различных значений параметров σ и μ

```
> plot3d(p(x,0.1,mu),x=0.4..1.5,mu=-
0.5..0.3,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,
14],labels=["x","mu","p(x)"],orientation=[220,45],shading=ZGRAYSCA
LE,title="плотность распределения
вероятностей",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.6.

Рисунок 1.6 – График плотности распределения вероятностей, $\sigma = 0.1$

```
> plot3d(p(x,0.7,mu),x=0..3,mu=-
0.5..0.3,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,
14],labels=["x","mu","p(x)"],orientation=[250,55],shading=ZGRAYSCA
LE,title="плотность распределения
вероятностей",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.7.

плотность распределения вероятностей

Рисунок 1.7 – График плотности распределения вероятностей, $\sigma = 0.7$

```
> plot3d(p(x,1,mu),x=0..2,mu=-
0.3..1,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,14],labels=["x","mu","p(x)"],orientation=[240,50],shading=ZGRAYSCALE,title="плотность распределения
вероятностей",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.8.

Рисунок 1.8 – График плотности распределения вероятностей, $\sigma = 1$

4.21 Напишем функцию, определяющую интегральный закон распределения непрерывной случайной величины, распределенной по логнормальному закону

> F:=(x,sigma,mu)->int(p(chi,sigma,mu),chi=0..x); > # интегральный закон распределения

$$F := (x, \sigma, \mu) \to \int_0^x p(\chi, \sigma, \mu) d\chi$$

> simplify(F(x,sigma,mu)); >
simplify(F(0,sigma,mu));simplify(F(infinity,sigma,mu));

$$\frac{1}{2}\operatorname{erf}\left(\frac{1}{2}\frac{\sqrt{2}\left(\ln(x\sim)-\mu\right)}{\sigma\sim}\right) + \frac{1}{2}$$
0

Таким образом, для интегральной функции можно выписать следующую формулу:

$$F(x) = \frac{1}{2} \operatorname{erf}\left(\frac{\ln(x) - \mu}{\sqrt{2}\sigma}\right) + \frac{1}{2},\tag{2.24}$$

где erf(x) – интеграл вероятностей.

4.22 Построим графики интегральной функции для различных значений параметров σ и μ

```
> plot3d(F(x,0.1,mu),x=0.4..1.5,mu=-
0.5..0.3,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,
14],labels=["x","mu","F(x)"],orientation=[220,45],shading=ZGRAYSCA
LE,title="интегральный закон
распределения",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.9.

Рисунок 1.9 – График интегральной функции, $\sigma = 0.1$

```
> plot3d(F(x,0.7,mu),x=0..4,mu=-
0.5..0.3,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,
14],labels=["x","mu","F(x)"],orientation=[250,55],shading=ZGRAYSCA
LE,title="интегральный закон
распределения",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.10. интегральный закон распределения

Рисунок 1.10 – График интегральной функции, $\sigma = 0.7$

```
> plot3d(F(x,1,mu),x=0..5,mu=-
0.3..1,axes=BOXED,axesfont=[COURIER,BOLD,12],font=[TIMES,ITALIC,14
],labels=["x","mu","F(x)"],orientation=[240,50],shading=ZGRAYSCALE,
title="интегральный закон
распределения",titlefont=[TIMES,ROMAN,12]);
```

Результат выполнения команды представлен на рисунке 1.11.

Рисунок 1.11 – График интегральной функции, $\sigma = 1$

4.23 Напишем функцию для вычисления дифференциальной энтропии

> H:=(sigma,mu) ->-
int(p(x,sigma,mu)*ln(p(x,sigma,mu)),x=0..infinity);
$$H:=(\sigma,\mu) \rightarrow -\int_0^\infty p(x,\sigma,\mu) \ln(p(x,\sigma,\mu)) \, dx$$

> simplify(H(sigma,mu));

$$-\int_{0}^{\infty} -\frac{1}{4} \frac{\sqrt{2} e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(x\sim) - 2\ln\left(e^{\left(-\frac{1}{2} \frac{(-\ln(x\sim) + \mu)^{2}}{\sigma^{2}}\right) \left(\ln(2) + \ln(\pi) + 2\ln(\sigma\sim) + 2\ln(\pi) + 2\ln(\pi) + 2\ln(\pi) + 2\ln(\pi) \right) \right)}$$

 $dx \sim$

> with(student);

[D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum, midpoint, powsubs, rightbox, rightsum, showtangent, simpson, slope, summand, trapezoid]

> changevar (x=ln(u), H(sigma, mu), u);
$$-\frac{1}{2}\sqrt{2}\left(-\frac{1}{2}\sigma\sim\ln(2)\sqrt{\pi}\sqrt{2}-\frac{1}{2}\sigma\sim\ln(\pi)\sqrt{\pi}\sqrt{2}-\sigma\sim\mu\sqrt{\pi}\sqrt{2}-\sigma\sim\ln(\sigma\sim)\sqrt{\pi}\sqrt{2}\right)$$
$$-\frac{1}{2}\sigma\sim\sqrt{\pi}\sqrt{2}\left(\sqrt{\pi}\sigma\sim\right)$$

> simplify(%);
$$\frac{1}{2}\ln(2) + \frac{1}{2}\ln(\pi) + \mu + \ln(\sigma^{\sim}) + \frac{1}{2}$$
 > H1:=(sigma, mu) ->1/2*ln(2)+1/2*ln(Pi)+mu+ln(sigma)+1/2;
$$HI := (\sigma, \mu) \rightarrow \frac{1}{2}\ln(2) + \frac{1}{2}\ln(\pi) + \mu + \ln(\sigma) + \frac{1}{2}$$

Итак, для дифференциальной энтропии справедлива следующая формула:

$$H(\sigma, \mu) = \ln \sqrt{2\pi\sigma} + \mu + 1/2.$$
 (2.25)

4.24 Построим графики зависимости дифференциальной энтропии от параметров σ и μ

> plot([H1(0.01,mu),H1(1,mu),H1(5,mu)],mu=-7..7,axes=NORMAL,axesfont=[COURIER,BOLD,12],color=black,font=[TIME S,ITALIC,14],labels=["mu","H"],linestyle=[SOLID,DOT,DASHDOT],thick ness=2,title="дифференциальная энтропия\n (логнормальное распределение, sigma=0.01,1,5)",titlefont=[TIMES,ROMAN,12]);

Результат выполнения команды представлен на рисунке 1.12.

Рисунок 1.12 – Графики зависимости дифференциальной энтропии от параметров σ и μ

СОДЕРЖАНИЕ ОТЧЕТА

Отчет должен содержать:

- Титульный лист;
- Цель работы;
- Программу и методику исследований;
- Результаты экспериментальных исследований;
- Выводы по работе.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

- 1. Что такое случайное событие?
- 2. Что такое исход? Что понимают под пространством исходов?
- 3. Охарактеризуйте операции над событиями: объединение, пересечение, дополнение.
- 4. Что понимают под вероятностью случайного исхода?
- 5. Что понимают под вероятностью случайного события?
- 6. Что такое случайная величина?
- 7. Какие случайные величины называют непрерывными?
- 8. Охарактеризуйте дифференциальный закон распределения и его свойства.
- 9. Охарактеризуйте интегральную функцию распределения непрерывной случайной величины.
- 10.Перечислите и охарактеризуйте числовые характеристики непрерывных случайных величин: моменты, математическое ожидание, дисперсия, среднее квадратическое отклонение, коэффициент асимметрии, коэффициент эксцесса.
- 11. Что называют дифференциальной энтропией?
- 12. Какова связь между энтропией дискретной случайной величины и дифференциальной энтропией?
- 13. Перечислите свойства дифференциальной энтропии.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Доценко С. В. Теория информации и математическая статистика. Конспект лекций.
- 2. Вентцель Е. С. Теория вероятностей / Е.С. Вентцель. М.: Высш. шк., 1998. 576 с.
- 3. Гнеденко Б.В. Курс теории вероятностей / Б.В. Гнеденко. М.: Едиториал УРСС,2005. 448 с.
- 4. Матросов А.В. Марle 6. Решение задач высшей математики и механики / А.В. Матросов. СПб.: БХВ, 2001.— 528с.
- 5. Прохоров Г.В. Математический пакет Maple V Release 4: Руководство пользователя / Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А. Калуга: Облиздат, 1998. 200с.

Заказ № _____ от «____» ____ 2015 г. Тираж экз.