INDEX

Unsupervised Learning	2
Dimension Reduction.	2
— · Clustering	2
1. K-means	3
2. Hierarchical Agglomerative Clustering (HAC)	4
二、Distributed Representation (Dimension Reduction)	5
1. Feature Selection	5
2. Principle Component Analysis (PCA)	5

Unsupervised Learning

Data 皆不具 label,且訓練時僅有 input 而無法直接獲得 output 的學習模式。 主要可分作兩類,Dimension Reduction 與 Generation。

Dimension Reduction

基本精神為「化簡為繁」,意即把本來比較複雜的 input 變成比較簡單的 output。

→ Clustering

假設現在要做 image 的 clustering,那就是把一大堆的 image 分成好幾類。 將本來有些不同的 image 都用同一個 class 來表示。

1. K-means

將一大堆的 unlabeled data 把他們分作 K 個 cluster。

首先就是找這些 cluster 的 center,從 training data 裡面隨機找 K 個 object 出來,當成 K 個 cluster 的 center。

接下來決定每一個 object 屬於 1 到 K 的哪一個 cluster。假設現在的 object \mathbf{x}^n ,跟第 i 個 cluster 的 center 最接近的話,那 \mathbf{x}^n 就屬於 \mathbf{c}^i 。

簡而言之用一個 binary 的 value b (上標 n ,下標 i)來代表第 n 個 object 有沒有屬於第 i 個 class ,如果第 n 個 object 屬於第 i 個 class 的話,那這一個 binary 的 value 就是 1 ,反之就是 0 。

接下來,就是 update cluster,把所有屬於第 i 個 cluster 的 object 做平均,得到 第 i 個 cluster 的 center \mathbf{c}^i 。

最後就重複上述步驟即可。

K-means

- Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
- Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
- Repeat
 - For all x^n in X: $b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$
 - Updating all c^i : $c^i = \sum_{x^n} b^n_i x^n \Big/ \sum_{x^n} b^n_i$

2. Hierarchical Agglomerative Clustering (HAC)

該方法是先建一個 tree,假設現在有 5 個 example,兩兩去算他的相似度,然後挑最相似的那一個 pair 出來。

假設現在最相似的 pair ,是第一個和第二個 example ,那就把第一個 example 和第二個 example merge 起來,像是對他們取平均得到一個新的 vector (下圖黃色方塊),同時代表第一個和第二個 example。

接下來變成有四個 example,再對這 4 筆 data 兩兩去計算他們的相似度,假設是第三筆和第四筆最像,那就再把他們 merge 起來,得到另外一筆 data (下圖紅色方塊)。

最終得到這個 tree 的 root,建立出一個 tree structure

接下來要決定在這個 tree structure 上面哪地方切一刀,就可將 example 分成好 幾個 cluster。

HAC 跟 K-means 最大的差別就是,如何決定 cluster 的數目。在 K-means 裡面要需要決定那個 K 的 value 是多少,而到底有多少個 cluster 是不容易決定的; HAC 的好處就是不直接決定幾個 cluster,而是決定要切在這個樹的 structure 的哪裡。

□ · Distributed Representation (Dimension Reduction)

然而在做 cluster 的時候比較以偏概全,因為每一個 object 最後都必須要屬於某一個 cluster。實際上來說應該用一個 vector 來表示各個 object,那這個 vector 裡面的每一個 dimension 就代表了某一種 attribute。 該方式就稱 distributed representation。

1. Feature Selection

假設 data 的分布本來在二維的平面上,然後發現幾乎都集中在 x_2 的 dimension 而已,如此就可以拿掉 x_1 這個 dimension。

然而這個方法不見得總是有用,因為有很多時候處理的 case 是任何一個 dimension 都不能拿掉的。

2. Principle Component Analysis (PCA)

假設這個 function 是一個很簡單的 linear function,這個 input z 跟這個 output z 之間的關係就是 linear 的 transform,也就是把這個 x 乘上一個 matrix w 可得到 output z。

那現在要做的事情就是根據一大堆的 x 把 W 找出來。可理解成將 x 投影到 W 上,使他們在 W 有較大的 variance,而投影後在 W 上的點就是 z。

假設把 x 投影到一維,我們希望選一個 w^1 ,他經過 projection 以後,得到的這些 z^1 的分布越大越好。也就是說,我們不希望通過這個 projection 以後,所有的點通通擠在一起(見上圖)。

所以我們希望找一個 projection 的方向,它可以讓 projection 後的 variance 越大越好。因此現在要去 maximize 的對象是 z_l 的 variance,就是 summation over 所有的(z_l - z_l \bar) 的平方;而 z_l \bar 就是做 z_l 的平均值。因此只要找到一個 w^l 讓 z_l 的 variance 最大就結束了。

再來可能不只要投影到一維,推廣至二維的情況大略相同。同樣是找一個 \mathbf{w}^2 讓 \mathbf{z}_2 的 variance 最大。

只是在一維時我們必須限制 \mathbf{w}^1 的 2-norm,使 \mathbf{w}^1 跟 \mathbf{x} 做內積能直接得到 \mathbf{z}_1 ;但是為避免 \mathbf{w}^2 與 \mathbf{w}^1 同值,必須再限制兩者的內積值為 1。

$$z_1=w^1\cdot x$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2 \|w^1\|_2 = 1$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2 \|w^1\|_2 = 1$$

 $z_1 = w^1 \cdot x$

$$z_2 = w^2 \cdot x$$

We want the variance of z_2 as large as possible

$$W = \begin{bmatrix} (w^1)^T \\ (w^2)^T \\ \vdots \end{bmatrix}$$

$$Var(z_2) = \frac{1}{N} \sum_{z_2} (z_2 - \overline{z_2})^2 \|w^2\|_2 = 1$$
$$w^1 \cdot w^2 = 0$$

Orthogonal matrix

(1) Lagrange Multiplier

前面提到 z_1 等於 w^1 跟 x 的內積值,那 z_1 的平均值就是 summation over 所有 w^1 跟 x 的內積再除以總數。可進一步簡化成 w^1 與 x\bar 的內積,即:

$$\overline{z_1} = w^1 \cdot \frac{1}{N} \sum x = w^1 \cdot \bar{x}$$

而 z_1 的 variance 可整理為 w^1 的 transpose 乘上 x 的 covariance 再乘上 w^1 。 而此處用 S 來描述 x 的 covariance matrix 。

所以現在要解的問題是找出一個 \mathbf{w}^1 可以 maximize 該式。但這個 optimization 的對象是有 constraint 的,如果沒有 constraint 的話,這裡的 \mathbf{w}^1 每一個值都變無 窮大就結束了。所以這裡的 constraint 是說 \mathbf{w}^1 的 2-norm 要等於 1。

$$Var(z_{1}) = \frac{1}{N} \sum_{z_{1}} (z_{1} - \bar{z_{1}})^{2}$$

$$= \frac{1}{N} \sum_{x} (w^{1} \cdot x - w^{1} \cdot \bar{x})^{2} \qquad (a \cdot b)^{2} = (a^{T}b)^{2} = a^{T}ba^{T}b$$

$$= \frac{1}{N} \sum_{x} (w^{1} \cdot (x - \bar{x}))^{2} \qquad \text{Find } w^{1} \text{ maximizing}$$

$$= \frac{1}{N} \sum_{x} (w^{1})^{T} (x - \bar{x})(x - \bar{x})^{T} w^{1} \qquad (w^{1})^{T} Sw^{1}$$

$$= (w^{1})^{T} \frac{1}{N} \sum_{x} (x - \bar{x})(x - \bar{x})^{T} w^{1} \qquad ||w^{1}||_{2} = (w^{1})^{T} w^{1} = 1$$

$$= (w^{1})^{T} Cov(x)w^{1} \qquad S = Cov(x)$$

那有了這些以後,我們就要解這一個 optimization 的 problem。 由於 S 是 symmetric 又是 positive-semidefinite 的關係,他所有的 eigenvalue 都是 non-negative 的。

接著用 Lagrange multiplier (開頭如下式假設),

$$g(w^1) = (w^1)^T S w^1 - \alpha ((w^1)^T w^1 - 1)$$

把這個 function 對 w 的第一個 element 做偏微分,再對第二個 element 做偏微分,依此類推。然後令這些式子通通等於 0,整理完後得到,會得到一個式子帶入 \mathbf{w}^1 後使其為 0。

$$S(w^1) - \alpha(w^1) = 0$$

而 \mathbf{w}^1 就是 \mathbf{S} 的 eigenvector,接下來看哪一個 eigenvector 代到下式,可以 maximize 該式。

$$(w^1)^T S(w^1) = \alpha(w^1)^T (w^1) = \alpha$$

所以問題變成找一個 w^l 使 α 最大。而當 α 最大時,這個 α 就是最大的 eigenvalues λ_l ; w^l 是對應到最大的 eigenvalue 的 eigenvector。

Find
$$w^1$$
 maximizing $(w^1)^T S w^1$ $(w^1)^T w^1 = 1$

$$S = Cov(x)$$
 Symmetric Positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier [Bishop, Appendix E]

$$g(w^1) = (w^1)^T S w^1 - \alpha \left((w^1)^T w^1 - 1 \right)$$

$$\partial g(w^1) / \partial w_1^1 = 0$$

$$\partial g(w^1) / \partial w_2^1 = 0$$

$$\vdots$$

$$Sw^1 - \alpha w^1 = 0$$

$$Sw^1 = \alpha w^1 \quad w^1 : \text{eigenvector}$$

$$(w^1)^T S w^1 = \alpha (w^1)^T w^1$$

$$= \alpha \quad \text{Choose the maximum one}$$

 w^1 is the eigenvector of the covariance matrix S Corresponding to the largest eigenvalue λ_1 同理,如果要找 \mathbf{w}^2 的話,就要 maximize 根據 \mathbf{w}^2 投影以後的 variance :

$$(w^2)^T S(w^2)$$

同樣假設 function g 裡面包含了你要 maximize 的對象,還有兩個 constraint $(w^l \ \mathbb{R} \ w^2)$ 他們是 orthogonal 的),然後分別乘上 $\alpha \ \mathbb{R} \ \beta$ 。

$$g(w^2) = (w^2)^{\mathrm{T}} S(w^2) - \alpha((w^2)^T w^2 - 1) - \beta((w^2)^T w^1 - 0)$$

接下來對所有的參數做偏微分得到這個值:

$$S(w^2) - \alpha(w^2) - \beta(w^1) = 0$$

接著式子左邊同乘 w¹ 的 transpose 變為:

$$(w^1)^T S(w^2) - \alpha(w^1)^T (w^2) - \beta(w^1)^T (w^1) = 0$$

紅字部分為一個 scalar (vector* matrix* vector),而 scalar 在做 transpose 以後還是他自己,所以 transpose 結果是一樣的,得到:

$$(w^1)^T S(w^2) = (w^2)^T (S^T)(w^1) = (w^2)^T S(w^1)$$

(因為S是 symmetric的,所以 transpose 以後還是他自己)

接下來我們已經知道 \mathbf{w}^1 是 \mathbf{S} 的 eigenvector,而且它對應到最大的 eigenvalue $\mathbf{\lambda}^1$,所以寫為下式:

$$: S(w^1) = (\lambda^1)(w^1)$$

$$\therefore (w^2)^T S(w^1) = (w^2)^T (\lambda^1)(w^1) = (\lambda^1)(w^1)(w^2)^T$$

因為 $(w^1)^*(w^2)^T$ 又等於 0 (orthogonal),所以得到的結論是如果 β 等於 0 的話,剩下的 $S^*(w^2)$ 會等於 $\alpha^*(w^2)$ 。

所以 w^2 也是一個 eigenvector 且必須跟 w^1 orthogonal ,故選第二大的 w^2 ,然後 他對應到第二大的 eigenvalue λ^2 。

其餘維度依此類推。

 w^2 is the eigenvector of the covariance matrix S Corresponding to the 2nd largest eigenvalue λ_2

另外 PCA 中 z 的 covariance 會是一個 diagonal matrix。

也就是說,假設 PCA 所得到的新的 feature z 給其他的 model 描述某一個 class 的 distribution (假設為 generative model)。

那在做這個 Gaussian 的假設的時候,假設說 input data 的 covariance 就是 diagonal,且不同的 dimension 之間沒有 correlation,這樣一來減少參數量。 所以他就可以用比較簡單的 model 來處理 input data,避免 overfitting 的情形

$$Cov(z) = \frac{1}{N} \sum_{K} (z - \bar{z})(z - \bar{z})^{T} = WSW^{T} \qquad S = Cov(x)$$

$$= WS[w^{1} \quad \cdots \quad w^{K}] = W[Sw^{1} \quad \cdots \quad Sw^{K}]$$

$$= W[\lambda_{1}w^{1} \quad \cdots \quad \lambda_{K}w^{K}] = [\lambda_{1}Ww^{1} \quad \cdots \quad \lambda_{K}Ww^{K}]$$

$$= [\lambda_{1}e_{1} \quad \cdots \quad \lambda_{K}e_{K}] = D \qquad \text{Diagonal matrix}$$

(2) SVD

假設在考慮的是 MNIST,這些數字其實是由一些 basic 的 component(筆畫)所組成的。那這些 component 寫作 $\mathbf{u}^1, \mathbf{u}^2, \mathbf{u}^3$ 等等。則 input \mathbf{x} 會等於 \mathbf{u}^1 這個 component 乘上 \mathbf{c}^1 加上 \mathbf{u}^2 這個 component 乘上 \mathbf{c}^2 ,以此類推,然後再加上 \mathbf{x} \bar 代表所有的 image 的平均。

所以每一張 image 就是有一堆 component 的 linear combination,然後再加上它的平均所組成的。

Basic Component:

接著這一些 linear combination 的結果減去 x kar,該值必須與目標值 x head 越近越好,即:

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

因此就必須找 K 個 vector 去 minimize 他們的距離 (reconstruction error)

Reconstruction error :
$$\|(x - \bar{x}) - \hat{x}\|_2$$

$$L = \min_{\{u^1, \dots, u^K\}} \sum_{K} \|(x - \bar{x}) - \hat{x}\|_2$$

$$\hat{x} = \sum_{k=1}^{K} c_k u^k$$

接下來,可進一步將 reconstruction error 表示為 matrix 的乘積。

接著可以用 SVD 把 matrix X 拆成 U, Σ 與 V 三個 matrix 的乘積,U 就是代表 matrix u^K ; Σ *V 就是代表 matrix c_K 。

然後 U 這個 matrix,他的 k 個 column,其實就是一組 orthonormal vector,對應 到的就是 $X*X^T$ 最大的 k 個的 eigenvector。

而這個 $X^*(X^T)$ 就是 covariance matrix ,也就是 PCA 找出來的那一些 w (covariance matrix 的 eigenvector)等同於解出來的 U 的每一個 column 的 vector 。

換句話說,根據 PCA 找出來的那些 w 其實就是在 minimize 這個 reconstruction error;那 Dimension Reduction 的結果就是這些 vector。

(3) Neural Network

已知從用 PCA 找出來的 w^l 到 w^K 就是 K 個 component $, u^l, u^2$ 到 u^K ,再根據 component linear combination 得到的結果叫做 $x \cdot head$,也就是 $(w^K) \cdot c_k$ 做 linear combination 的結果。

接著我們會希望這個 x\head 跟(x - x\bar)他的距離越近越好,也就是要 minimize 這個 reconstruction error。

由於 W 已經找出來了,所以接下來只需要找的 c_k 的值。由於這些 K 個 vector w^K 是 orthonormal 的,因此只要把(x-x\bar)跟 w^k 做內積,就可找出 c_k 。

而該內積的過程可以想成用 neural network 來表示,最終我們要使 NN 的 output 與 $(x - x \setminus bar)$ 的距離越近越好;

換句話說就是讓 input 等於 output,而這個東西就叫作 Autoencoder。

PCA looks like a neural network with one hidden layer (linear activation function)

Autoencoder

If $\{w^1, w^2, \dots w^K\}$ is the component $\{u^1, u^2, \dots u^K\}$

