Bizonyítással kért tételek

1. A szuprémum elv.

Tétel

Ha $\emptyset \neq H \subset \mathbb{R}$ felülről korlátos, akkor H felső korlátjai között van legkisebb, azaz $\exists \min\{K \in \mathbb{R} | K \text{ felső korlátja } H\text{-nak}\}$

Bizonyítás

Adott: $H \neq \emptyset$ felülről korlátos halmaz. $A \coloneqq H, B \coloneqq \{K \in \mathbb{R} | K \text{ felső korlátja } H\text{-nak}\}$. Ekkor Az $A \neq \emptyset, B \neq \emptyset$: $\forall \alpha \in A \text{ és } \forall K \in B$: $\alpha \leq K \xrightarrow{\text{teljességi}} \exists \xi \in \mathbb{R}$: $\alpha \leq \xi \leq K \ (\forall \alpha \in A, \forall K \in B)$

A ξ a legkisebb felső korlát, ugyanis:

- $a \le \xi$: $\forall a \in A \ (\xi \text{ felső korlát})$
- Ha K felső korlát és $\xi \leq K$, akkor $\xi = \min\{K \in \mathbb{R} | K \text{ felső korlátja } H\text{-nak}\}$.

2. Az Arkhimédész-tétel.

Tétel

 $\forall a, b \in \mathbb{R}, \forall a > 0 : \exists n \in \mathbb{N} : b < na$

Bizonyítás

Indirekt: Tegyük fel, hogy $\exists a>0$ és $\exists b>0$: $\forall n\in\mathbb{N}:b\geq na$. Legyen $H\coloneqq\{na|n\in\mathbb{N}\}$. Ekkor $H\neq\emptyset$ és felülről korlátos (pl.: b egy felső korlát), emiatt $\exists \sup H=:\xi$. Mivel ξ a legkisebb felső korlátja H-nak, így $\xi-a$ nem felső korlát, azaz $\exists n_0\in\mathbb{N}:\xi-a< n_0a\Longrightarrow \xi<(n_0+1)a$, ez pedig ellentmondás, mert a ξ felső korlát. \blacksquare

3. A Cantor-féle közösrész-tétel.

Tétel

Tegyük fel, hogy $\forall n \in \mathbb{N}$ -re adott az $[a_n, b_n] \subset \mathbb{R}$ korlátos és zárt intervallum úgy, hogy: $[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \ \forall n \in \mathbb{N}$ -re. Ekkor

$$\bigcap_{n\in\mathbb{N}}^{+\infty}[a_n,b_n]\neq\emptyset.$$

Bizonyítás

Legyen $A := \{a_n | n \in \mathbb{N}\}, B := \{b_n | n \in \mathbb{N}\}$. Ekkor $A \neq \emptyset, B \neq \emptyset$ és $a_n \leq b_m \ (\forall n, m \in \mathbb{N})$, ugyanis:

- 1. Ha $n \le m$, akkor $a_n \le a_m \le b_m$;
- 2. Ha n > m, akkor $a_n \le b_n \le b_m$.

Így a teljességi axióma feltételei teljesülnek, emiatt pedig $\exists \xi \in \mathbb{R}: a_n \leq \xi \leq b_m \ (n, m \in \mathbb{N})$, ezért $a_n \leq \xi \leq b_n$, azaz $\xi \in [a_n, b_n] \ (\forall n \in \mathbb{N}) \Rightarrow$

$$\xi \in \bigcap_{n \in \mathbb{N}}^{+\infty} [a_n, b_n] \neq \emptyset. \blacksquare$$

Minden valós sorozatnak van monoton részsorozata.

Az a_{n_0} az (a_n) sorozat csúcsa, ha $\forall n \geq n_0$: $a_n \leq a_{n_0}$.

Két eset lehetséges:

- 1. (a_n) -nek végtelen sok csúcsa van. Ekkor $\exists n_0$ csúcs $\forall n \ge n_0$: $a_{n_0} \ge a_n$.
 - $\exists n_1 > n_0 : a_{n_1} \text{ is csúcs: } \forall n \geq n_1 : (a_{n_0} \geq) a_{n_1} \geq a_n$
 - $\exists n_2 > n_1$: a_{n_2} is csúcs: $\forall n \ge n_2$: $(a_{n_0} \ge a_{n_1} \ge) a_{n_2} \ge a_n$, és így tovább.

$$\Rightarrow \exists a_{n_0}, a_{n_1}, a_{n_2}, \dots : a_{n_0} \geq a_{n_1} \geq a_{n_2} \geq \dots \Rightarrow \exists (a_{n_k}) \searrow \text{részsorozat}$$

- 2. (a_n) -nek véges sok csúcsa van. Ekkor: $\exists N \in \mathbb{N}: \forall n \geq N: a_n$ nem csúcs.
 - a_{n_0} nem csúcs $\Rightarrow \exists n_1 > n_0 : a_{n_0} < a_{n_1}$
 - a_{n_1} nem csúcs, $\Rightarrow \exists n_2 > n_1 : a_{n_1} < a_{n_2}$
 - a_{n_2} nem csúcs, $\Rightarrow \exists n_3 > n_2 : a_{n_2} < a_{n_3}$, és így tovább.

$$\Rightarrow \exists a_{n_0} < a_{n_1} < a_{n_2} < \cdots$$
, azaz $\Rightarrow \exists (a_{n_k}) \land \text{r\'eszsorozat.} \blacksquare$

5. Konvergens sorozatok hányadosára vonatkozó tétel.

(A segédtétel bizonyítását is kérjük.)

Tétel

Tegyük fel, hogy (a_n) és (b_n) konvergensek és $\lim(a_n) = A$, $\exists \lim(b_n) = B$ és ha még $0 \notin \mathcal{R}_{(b_n)}$ és $B \neq 0 \Longrightarrow \left(\frac{a_n}{b_n}\right)$ konvergens, és $\lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B}$.

Bizonyítás

Mivel $0 \notin \mathcal{R}_{(b_n)} \Longrightarrow \left(\frac{a_n}{b_n}\right)$ valóban sorozat.

Segédtétel:

Ha (b_n) konvergens, és $\lim(b_n)=B\neq 0$ és $\left(0\notin\mathcal{R}_{(b_n)}\right)$, akkor $\left(\frac{1}{|b_n|}\right)$ sorozat korlátos.

Segédtétel bizonyítása:

Legyen
$$B > 0$$
.

$$\begin{split} & \lim(b_n) = B \Longrightarrow \varepsilon = \frac{|B|}{2} > 0 \colon \exists n_0 \in \mathbb{N}, \forall n \geq n_0 \colon |b_n - B| < \frac{|B|}{2}. \\ & |b_n| \stackrel{\binom{als\delta}{becslés}}{=} |(b_n - B) + B| = |B - (B - b_n)| \stackrel{|a - b| \geq |a| - |b|}{\geq} |B| - |B - b_n| \geq |B| - \frac{|B|}{2} = \frac{|B|}{2}. \\ & \Longrightarrow \forall n \geq n_0 \colon \frac{1}{|b_n|} \leq \frac{2}{|B|} \\ & \Longrightarrow \forall n \in \mathbb{N} \colon \frac{1}{|b_n|} \leq \max\left\{\frac{1}{|b_0|}, \frac{1}{|b_1|}, \dots, \frac{1}{|b_{n_0}|}, \frac{2}{|B|}\right\} \\ & \Longrightarrow \frac{1}{|b_n|} \text{ korlátos.} \quad \blacksquare \end{split}$$

Tétel bizonyítása:

Igazoljuk, hogy
$$\left(\frac{a_n}{b_n} - \frac{A}{B}\right)$$
 nullsorozat:

Igazoljuk, hogy
$$\left(\frac{a_n}{b_n} - \frac{A}{B}\right)$$
 nullsorozat:
$$\forall n \in \mathbb{N} \text{ -re } \frac{a_n}{b_n} - \frac{A}{B} = \frac{a_n B - Ab_n}{b_n B} \stackrel{\mp AB}{=} \frac{(a_n B - AB) + (BA - Ab_n)}{b_n B} \le \frac{1}{b_n} \cdot \underbrace{(a_n - A)}_{\text{nullsorozat}} + \underbrace{\frac{A}{B}}_{\text{nullsorozat}} \cdot \underbrace{\frac{1}{b_n}}_{\text{nullsorozat}} \cdot \underbrace{(b_n - B)}_{\text{nullsorozat}} \text{ azaz } \lim \left(\frac{a_n}{b_n} - \frac{A}{B}\right) = 0, \text{ tehát } \lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B}. \blacksquare$$

$$\begin{array}{c|c} b_n & \underbrace{(u_n - A)}_{\text{nullsorozat}} + \underbrace{B} & \underbrace{b_n}_{\text{nullsorozat}} \\ \underbrace{(\text{lsd. st.})}_{\text{nullsorozat}} & \underbrace{\text{nullsorozat}}_{\text{nullsorozat}} \end{array}$$

nullsorozat

6. A közrefogási elv.

Tétel

 (a_n) , (b_n) , (c_n) : $\mathbb{N} \to \mathbb{R}$. Tegyük fel, hogy:

- $\exists N \in \mathbb{N} : \forall n \geq N : a_n \leq b_n \leq c_n;$
- $\exists \lim(a_n) \in \overline{\mathbb{R}}, \lim(c_n) \in \overline{\mathbb{R}} \text{ és } \lim(a_n) = \lim(c_n) =: A \in \overline{\mathbb{R}}.$

Ekkor $\exists \lim(b_n)$ és $\lim(b_n) = A$.

Bizonyítás

1. $A \in \mathbb{R}$

$$\forall \varepsilon > 0 \colon \begin{cases} \exists n_1 \in \mathbb{N} \colon \forall n \geq n_1 \colon |a_n - A| < \varepsilon \colon A - \varepsilon < a_n < A + \varepsilon \\ \exists n_2 \in \mathbb{N} \colon \forall n \geq n_2 \colon |c_n - A| < \varepsilon \colon A - \varepsilon < c_n < A + \varepsilon \end{cases}$$
 Legyen $n_0 \coloneqq \max\{n_1, n_2, N\} \Longrightarrow \forall n \geq n_0 \colon A - \varepsilon < a_n \leq b_n \leq c_n < A + \varepsilon \Longrightarrow |b_n - A| < \varepsilon < a_n \leq b_n \leq c_n < A + \varepsilon \end{cases}$

 $\Rightarrow \lim(b_n) = A.$

2. $A = +\infty$: $\lim(a_n) = +\infty$

 $\forall \underline{P} \in \mathbb{R} : \exists n_1 \in \mathbb{N} : \forall n \geq n_1 : a_n > \underline{P}$

Legyen $n_0 := \max\{n_1, N\} \Longrightarrow \forall n \ge n_0 : b_n \ge a_n > \underline{P} \Longrightarrow \lim(b_n) = +\infty.$

3. $A = -\infty$: $\lim(c_n) = -\infty$

 $\forall \underline{P} \in \mathbb{R} : \exists n_1 \in \mathbb{N} : \forall n \geq n_1 : c_n < \underline{P}$

1. Legyen $n_0 := \max\{n_1, N\} \Longrightarrow \forall n \ge n_0 : b_n \le c_n < \underline{P} \Longrightarrow \lim(b_n) = -\infty$.

7. Monoton sorozatok határértékére vonatkozó tételek.

Tétel

Minden monoton sorozatnak van határértéke.

1.

- a. Ha (a_n) \nearrow és felülről korlátos, akkor konvergens és $\lim(a_n) = \sup\{a_n | n \in \mathbb{N}\}.$
- b. Ha $(a_n) \setminus$ és alulról, akkor konvergens és $\lim (a_n) = \inf\{a_n | n \in \mathbb{N}\}.$

2.

- a. Ha (a_n) \nearrow és felülről nem korlátos, akkor $\lim(a_n) = +\infty$.
- b. Ha $(a_n) \setminus$ és alulról nem korlátos, akkor $\lim (a_n) = -\infty$.

Bizonyítás

- 1a. (a_n) felülről korlátos $\Rightarrow \exists \sup\{a_n | n \in \mathbb{N}\} A \in \mathbb{R}$ (véges!)
 - i. $\forall n \in \mathbb{N}: a_n \leq A$
 - ii. $\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : A \varepsilon < a_{n_0} \le A$

$$\mathrm{De}\;(a_n) \nearrow \Longrightarrow \forall n \geq n_0 : A - \varepsilon < a_{n_0} \leq a_n \leq A \Longrightarrow |a_n - A| < \varepsilon \Longrightarrow \lim(a_n) = A.$$

(A másik hasonlóan igazolható)

2a. (a_n) felülről NEM korlátos $\Rightarrow \forall \underline{P} \in \mathbb{R} : \exists n_0 \in \mathbb{N} : a_{n_0} > \underline{P}$

De
$$(a_n) \nearrow \Rightarrow \forall n \ge n_0$$
: $a_n \ge a_{n_0} > P \Rightarrow \lim(a_n) = +\infty$.

(A másik hasonlóan igazolható) ■

8. A Cauchy-féle konvergencia kritérium.

Tétel

 (a_n) konvergens \Leftrightarrow (a_n) Cauchy-sorozat.

 \Longrightarrow : Tegyük fel, hogy (a_n) konvergens és $\lim(a_n) = A \in \mathbb{R}$ véges)

 $\Longrightarrow \forall \varepsilon > 0 \colon \exists n_0 \in \mathbb{N} \colon \forall n \geq n_0 \colon |a_n - A| < \varepsilon$

 $\operatorname{Ha} n, m \geq n_0 \colon |a_n - a_m| = |a_n - A + A - a_m| \leq |a_n - A| + |A - a_m| < \varepsilon + \varepsilon = 2\varepsilon \Longrightarrow$ (a_n) Cauchy-sorozat.

Tegyük fel, hogy (a_n) Cauchy-sorozat, azaz $\forall \varepsilon > 0$: $\exists n_0 \in \mathbb{N}$: $\forall n, m \ge n_0$: $|a_n - a_m| < \varepsilon$

1. Áll.: (a_n) korlátos is.

Valóban: (a_n) Cauchy-sorozat $\Rightarrow \varepsilon = 1$ -hez $\exists n_0 \in \mathbb{N}: \forall n, m \ge n_0: |a_n - a_m| < 1 \Rightarrow$ $|a_n| = |a_n - a_{n_0} + a_{n_0}| \le |a_n - a_{n_0}| + |a_{n_0}| < 1 + |a_{n_0}|$

Viszont: $\forall n \in \mathbb{N}: |a_n| \le \max\{1 + |a_{n_0}|, |a_0|, |a_1|, ..., |a_{n_0}|\} \Longrightarrow (a_n)$ korlátos sorozat.

2. Bolzano-Weierstrass kiválasztási tétel $\Rightarrow \exists (a_{n_k})$ konvergens részsorozat. Legyen $\lim (a_{n_k}) = A \in \mathbb{R}$.

3. Igazoljuk, hogy $\lim(a_n)=A$: $|a_n-A|=\left|a_n-a_{n_k}+a_{n_k}-A\right|\leq \left|a_n-a_{n_k}\right|+$ $|a_{n_k} - A|$

Legyen $\varepsilon > 0$ rögzített.

• Mivel $a_{n_k} \to A \Longrightarrow \exists n_1 \in \mathbb{N}: |a_{n_k} - A| < \varepsilon: \forall n \ge n_1.$

Mivel (a_n) Cauchy-sorozat $\Rightarrow \exists n_2 \in \mathbb{N}: |a_n - a_{n_k}| < \varepsilon: \forall n \geq n_2$.

 $\operatorname{Így} \forall n \ge n_0 \coloneqq \max\{n_1, n_2\} : |a_n - A| \le |a_n - a_{n_k}| + |a_{n_k} - A| < \varepsilon \Longrightarrow \lim(a_n) = A. \blacksquare$

9. Pozitív szám m-edik gyökének előállítása rekurzív módon megadott sorozatok határértékével. **Tétel**

 $m = 2,3, \dots$ rögzített.

2. Az $\begin{cases} a_0 > 0 \text{ tetszőleges} \\ a_{n+1} \coloneqq \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \ (n = 0,1,...) \end{cases}$ sorozat konvergens, és $\lim(x_n) = \alpha$.

Bizonyítás

A bizonyítás több lépésben történik:

1. lépés: (a_n) "jól definiált"; $a_n > 0 \ (\forall n \in \mathbb{N})$.

2. lépés: egyértelműség (indirekt), $0 < \alpha_1 < \alpha_2 \Rightarrow \alpha_1^m < \alpha_2^m$.

3. lépés: (a_n) konvergens.

Valóban:
$$(a_n) \searrow$$
, azaz $a_{n+1} \le a_n \ (\forall n \in \mathbb{N}) \Leftrightarrow \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \stackrel{?}{\underset{A \le a_n^m \ (\forall n \in \mathbb{N})}{}} a_n \ (\forall n \in \mathbb{N})$

Ez viszont igaz, mert $a_n^m \stackrel{\text{TRÜKK}}{=} \left(\frac{\frac{A}{a_{n-1}^m} + \overline{a_{n-1} + \cdots + a_{n-1}}}{m} \right)^m \ge \frac{A}{a_{n-1}^m} \cdot a_{n-1}^m = A \Longrightarrow$

 \Rightarrow $(a_n) \setminus$ és alulról korlátos \Rightarrow konvergens.

$$\lim(a_n) = \alpha$$

Ekkor $\alpha \ge 0$ (ugyanis $a_n > 0 \ \forall n$), de $\alpha = 0$ nem lehet: $a_n^m \ge A > 0 \implies \alpha > 0$

4. lépés:

Valóban:
$$\underline{a_{n+1}}_{\substack{n \to +\infty \\ \downarrow}} = \underbrace{\frac{1}{m}}_{\substack{\frac{A}{\alpha^{m-1}}\\ a_n^{m-1}}} + \underbrace{\frac{(m-1)a_n}{(m-1)a_n}}_{\substack{n \to +\infty \\ \downarrow}} (\forall n \in \mathbb{N})$$

$$\alpha = \underbrace{\frac{1}{m}}_{\substack{\alpha = 1 \\ \alpha^{m-1}}} + (m-1)\alpha \Rightarrow \alpha^m = A. \blacksquare$$

10. A geometriai sor konvergenciája.

Tétel

Legyen (q^n) , $q \in \mathbb{R}$

A $\sum (q^n)$ konvergens, $\Leftrightarrow |q| < 1$, és ekkor

$$\sum_{n=0}^{+\infty} q^n = 1 + q + q^2 + \dots = \frac{1}{1-q}.$$

Bizonyítás

$$s_n = 1 + q + q^2 + \dots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q}, & \text{ha } q \neq 1 \\ n + 1, & \text{ha } q = 1 \end{cases}$$

 (s_n) konvergens $\stackrel{q \neq 1}{\Longleftrightarrow} (q^{n+1})$ konvergens $\iff |q| < 1$ és ekkor $\lim_{n \to +\infty} q^{n+1} = 0$

$$\Rightarrow \lim(s_n) = \lim_{n \to +\infty} \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q} = \sum_{n=0}^{+\infty} q^n \blacksquare$$

11. A Cauchy-felé gyökkritérium.

Tétel

Tegyük fel, hogy a $\sum a_n$ sorra $\exists \lim_{n \to +\infty} \sqrt[n]{|a_n|} =: A \in \overline{\mathbb{R}}$. Ekkor:

- Ha $0 \le A < 1 \Rightarrow$ a $\sum a_n$ sor abszolút konvergens, tehát $\sum a_n$ konvergens is;
- Ha $A > 1 \Rightarrow \sum a_n$ divergens;
- Ha $A = 1 \Rightarrow \sum a_n$ lehet konvergens, illetve divergens is.

Tegyük fel, hogy $0 \le A < 1$

$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = A \implies q\text{-hoz } \exists n_0 \in \mathbb{N}: \forall n \ge n_0: 0 \le \sqrt[n]{|a_n|} < q \implies 0 < |a_n| < q^n \ (\forall n \ge n_0).$$
 Mivel $0 < q < 1 \implies \sum q^n$ konvergens $\underset{\text{Majoráns}}{\Longrightarrow} \sum |a_n|$ konvergens.

Tegyük fel, hogy A > 1

$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = A \Longrightarrow q\text{-hoz } \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : \sqrt[n]{|a_n|} > q \Longrightarrow |a_n| > q^n \ (\forall n \ge n_0).$$
Mivel $q > 1 \Longrightarrow \lim_{n \to +\infty} q^n = +\infty \Longrightarrow (a_n)$ nem nullsorozat $\Longrightarrow \sum_{n \to +\infty} a_n$ divergens.

Tegyük fel, hogy A = 1

•
$$\sum \frac{1}{n}$$
 divergens; $\lim_{n \to +\infty} \sqrt{\frac{1}{n}} = \lim_{n \to +\infty} \left(\frac{1}{\frac{n\sqrt{n}}{\sqrt{n}}}\right) = 1$

•
$$\sum \frac{1}{n^2}$$
 konvergens; $\lim_{n \to +\infty} \sqrt[n]{\frac{1}{n^2}} = \lim_{n \to +\infty} \left(\frac{1}{\sqrt[n]{n}}\right)^2 = 1$

12. A D'Alembert-felé hányados-kritérium.

Tétel

Tegyük fel, hogy a $\sum a_n$ sorra:

- $a_n \neq 0 \ (\forall n \in \mathbb{N});$ $\exists \lim \left| \frac{a_{n+1}}{a_n} \right| =: A \in \overline{\mathbb{R}}.$

- $0 \le A < 1 \Longrightarrow \sum a_n$ sor abszolút konvergens, tehát konvergens is;
- $A > 1 \Longrightarrow \sum a_n$ sor divergens;
- $A = 1 \Rightarrow \sum a_n$ sor lehet konvergens, illetve divergens is.

Tegyük fel, hogy
$$0 \le A < 1$$

$$\overline{\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|} = A \Longrightarrow q \text{-hoz } \exists n_0 \in \mathbb{N}, \, \forall n \ge n_0 \colon \left| \frac{a_{n+1}}{a_n} \right| < q.$$

Legyen
$$n \ge n_0$$
.
$$\frac{\left|\frac{a_n}{a_{n-1}}\right| < q}{\left|a_{n+1}\right| < q \cdot |a_n|} < q^2 |a_{n+1}| < \dots < q^{n+1-n_0} |a_{n_0}| = \frac{\left|a_{n_0}\right|}{q^{n_0-1}} q^n$$

$$\Rightarrow |a_{n+1}| < c \cdot q^n \ (\forall n \ge n_0)$$

Mivel $0 \le q < 1 \Longrightarrow \sum_{n=n_0} q^n$ konvergens $\Longrightarrow \sum_{n=n_0} |a_n|$ konvergens $\Longrightarrow \sum |a_n|$ konvergens \Longrightarrow $\sum a_n$ konvergens.

Tegyük fel, hogy A > 1.

$$\overline{\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|} = A \Longrightarrow q\text{-hoz } \exists n_0 \in \mathbb{N}, \forall n \ge n_0 \colon \left| \frac{a_{n+1}}{a_n} \right| > q.$$

Ha
$$n \ge n_0$$
: $|a_{n+1}| \ge q \cdot |a_n| > q^2 \cdot |a_{n-1}| > \cdots > q^{n+1-n_0} |a_{n_0}|$

 $\text{Ha } n \geq n_0 \colon |a_{n+1}| \geq q \cdot |a_n| > q^2 \cdot |a_{n-1}| > \cdots > q^{n+1-n_0} |a_{n_0}|$ $\text{Mivel } q > 1 \Rightarrow \lim_{n \to +\infty} q^n = +\infty \Rightarrow \lim(|a_n|) = +\infty, \text{ azaz } (a_n) \text{ nem nullsorozat } \xrightarrow{\overline{A \text{ konvergencia}}} \sum a_n$

divergens.

Tegyük fel, hogy
$$A = 1$$
.

• A $\sum \frac{1}{n}$ divergens, $\lim_{n \to +\infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to +\infty} \frac{n}{n+1} = \lim_{n \to +\infty} \frac{1}{1+\frac{1}{n}} = 1$

• A
$$\sum \frac{1}{n^2}$$
 konvergens, és $\lim_{n \to +\infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to +\infty} \frac{1}{\left(1+\frac{1}{n}\right)^2} = 1$.

13. Leibniz-típusú sorok konvergenciája.

Tétel

Tegyük fel, hogy $\sum (-1)^{n+1} a_n$ Leibniz-típusú sor

Ekkor:

1. (Konvergencia)

 $\sum (-1)^{n+1} a_n$ konvergens $\iff \lim (a_n) = 0$;

(Hibabecslés)

Tegyük fel, hogy $\sum (-1)^{n+1}a_n$ konvergens és

$$A \coloneqq \sum_{n=1}^{+\infty} (-1)^{n+1} a_n.$$

Ekkor

$$|A - s_n| = \left| A - \sum_{k=1}^n (-1)^{k+1} a_k \right| \le a_n (\forall n = 1, 2, ...)$$

1. Konvergencia

$$\Longrightarrow : \sum_{n=0}^{\infty} (-1)^{n+1} a_n \text{ konvergens} \xrightarrow{\text{A konvergencia}} \lim_{n \to \infty} ((-1)^n a_n) = 0 \Rightarrow \lim_{n \to \infty} (a_n) = 0.$$

 \sqsubseteq : Tegyük fel, hogy $\sum (-1)^{n+1}a_n$ Leibniz-típusú sor és $\lim (a_n) = 0$.

$$s_n = \sum_{k=1}^n (-1)^{k+1} a_k = a_1 - a_2 + a_3 - a_4 + \dots \pm a_n$$

Igazoljuk:

i.
$$(s_{2n+1}) >$$

ii.
$$(s_{2n}) \nearrow$$

i.
$$s_1 = a_1 \ge s_1 - \underbrace{(a_2 - a_3)}_{>0} = a_1 - a_2 + a_3 = s_3 \ge s_3 - \underbrace{(a_4 - a_5)}_{\ge 0} = a_1 - a_2 + a_3 - \underbrace{(a_4 - a_5)}_{\ge 0} = a_1 - \underbrace{(a_4 - a_5)}_{\ge 0} = \underbrace{$$

$$a_4 + a_5 = s_5 \ge \dots \ge s_{2n+1}$$

ii.
$$s_2 = a_1 - a_2 \le s_2 + \underbrace{(a_3 - a_4)}_{\ge 0} = a_1 - a_2 + a_3 - a_4 = s_4 \le s_4 + (a_5 - a_6) = s_4 + a_5 + a_5 = s_4 + a_5 + a_6 = s_4 + a_6 = s_5 + a_6 = s_6 = s_6 + a_6 = s_6 = s_6 + a_6 = s_6 = s_6 + a_6 =$$

$$a_1 - a_2 + a_3 - a_4 + a_5 - a_6 \le \dots \le s_{2n}$$

$$a_1 - a_2 + a_3 - a_4 + a_5 - a_6 \le \dots \le s_{2n}$$

 $s_2 \le s_{2n} = s_{2n-1} - a_{2n} \le s_{2n-1} \le s_1 \quad (\forall n = 1, 2, \dots)$

 $(s_{2n+1}), (s_{2n})$ konvergens.

Legyen: $\alpha := \lim(s_{2n+1}), \beta := \lim(s_{2n})$

de:
$$\underline{s_{2n}}_{\beta} = \underbrace{s_{2n-1}}_{\substack{(n \to +\infty) \\ \alpha}} - \underbrace{a_{2n}}_{0} (\forall n)$$

$$\Rightarrow \alpha = \beta$$

2. Hibabecslés

$$s_{2n} \le \alpha = A \le s_{2n+1} \quad (\forall n \in \mathbb{N})$$

 $\Rightarrow |s_{2n} - A| \le s_{2n+1} - s_{2n} = a_{2n+1} \le a_{2n} (\forall n \in \mathbb{N})$
 $|s_{2n} - A| \le s_{2n+1} - s_{2n} = a_{2n+1}$
 $\Rightarrow |A - s_n| \le a_n (\forall n \in \mathbb{N}) \blacksquare$

14. Számok tizedestört alakban való előállítása.

Ha α ∈ [0,1], akkor : \exists (α_n): \mathbb{N} → {0,1, ...,9}:

$$\alpha = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}$$

Bizonyítás

Ötlet: 10 egyenlő intervallumra osztjuk

- 1. Lépés: $\exists a_1 \in \{0,1,...,9\}$: $\alpha \in I_1 := \left[\frac{a_1}{10}, \frac{a_1+1}{10}\right]$: $\frac{a_1}{10} \le \alpha \le \frac{a_1+1}{10}$;
- 2. Lépés: *I*₁-et 10 egyenlő intervallumra osztjuk.

$$\Rightarrow \exists a_2 \in \{0,1,...,9\}: \ \alpha \in I_2 \coloneqq \left[\frac{a_1}{10} + \frac{a_2}{10^2}, \frac{a_1}{10} + \frac{a_2+1}{10^2}\right] \Rightarrow \frac{a_1}{10} + \frac{a_2}{10^2} \le \alpha \le \frac{a_1}{10} + \frac{a_2+1}{10^2},$$

$$\vdots \ \text{folytatva}$$

$$\exists a_n \in \{0,1,\dots,9\}: \qquad \alpha \in I_n = \left[\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}, \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_{n+1}}{10^n}\right], \qquad \text{azaz}$$

$$\underbrace{\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}}_{:=s_n} \le \alpha \le \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_{n+1}}{10^n}$$

$$\Rightarrow s_n \le \alpha \le s_n + \frac{1}{10^n} (\forall n \in \mathbb{N})$$

$$\Rightarrow |s_n - \alpha| \le \frac{1}{10^n} \quad (\forall n \in \mathbb{N}) \Rightarrow s_n \xrightarrow[n \to +\infty]{} \alpha, \text{ azaz}$$

$$\alpha = \sum_{n=1}^{+\infty} \frac{a_n}{10^n} \blacksquare$$

15. Abszolút konvergens sorok szorzására vonatkozó Cauchy-tétel.

Tétel

Ha $\sum_{n=0} a_n$ és $\sum_{n=0} b_n$ sorok abszolút konvergensek. \Longrightarrow

- a. A $\sum_{n=0} t_n$ Téglány-szorzat is abszolút konvergens;
- b. A $\sum_{n=0}^{\infty} c_n$ Cauchy-szorzat is abszolút konvergens;
- c. Az összes $a_i b_j$ (i, j = 0,1,2,...) szorzatból tetszés szerinti sorrendben és csoportosításban képzett $\sum_{n=0} d_n$ sor is abszolút konvergens, és

$$\sum_{n=0}^{+\infty} d_n = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

Bizonyítás

$$A_N \coloneqq \sum_{n=0}^N |a_n| \underset{n \to +\infty}{\longrightarrow} A \in \mathbb{R}$$

$$B_N \coloneqq \sum_{n=0}^N |b_n| \underset{n \to +\infty}{\longrightarrow} B \in \mathbb{R}$$
mert abszolút konvergensek

Tekintsük a $\sum_{n=0}^{\infty} d_n$ sort, ahol $d_n = \sum_{i=0}^{\infty} a_i b_i$. (véges sok)

$$\sum_{n=0}^{N} |d_n| \le \left(\sum_{n=0}^{I} |a_n|\right) \left(\sum_{n=0}^{J} |b_n|\right) \le A \cdot B \ (\forall N \in \mathbb{N})$$

I: max i-nek a d_0, d_1, \dots, d_N -ben

J: max j-nek a d_0 , d_1 , ..., d_N -ben

 $\Rightarrow \sum_{n=0} d_n$ abszolút konvergens

Tehát $\sum_{n=0} t_n$, $\sum_{n=0} c_n$ is abszolút konvergens, viszont

$$\sum_{n=0}^{+\infty} t_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

és $\sum_{n=0} t_n$ abszolút konvergens $\stackrel{...}{\Rightarrow}$ tetszőleges módon átrendezhető, csoportosítható az összeg megváltoztatása nélkül.

A $\sum_{n=0}^{\infty}d_n$ és a $\sum_{n=0}^{\infty}c_n$ megkapható $\sum_{n=0}^{\infty}t_n$ -ből alkalmas csoportosítással, átrendezéssel.

16. Hatványsor konvergenciahalmazára vonatkozó, a konvergenciasugarát meghatározó tétel. (A segédtétel bizonyítását is kérjük.)

Tétel

Tetszőleges $\sum \alpha_n(x-a)^n$ ($x \in \mathbb{R}$) hatványsor konvergenciahalmazára a következő 3 eset egyike teliesül:

- a. ∃! 0 < R < + ∞: a hatványsor:
 - $\forall x: |x a| < R$: abszolút konvergens.
 - $\forall x: |x-a| > R$: divergens.
- b. A hatványsor csak az x = a-ban konvergens Legyen ekkor R := 0.
- c. A hatványsor $\forall x \in \mathbb{R}$ konvergens. Legyen ekkor $R := + \infty$, R a hatványsor konvergenciasugara.

Feltehető, hogy a = 0, azaz elég tekinteni

$$\sum_{n=0}^{\infty} \alpha_n x^n \ (x \in \mathbb{R})$$

 $\sum_{n=0}^\infty \alpha_n x^n \ (x\in\mathbb{R})$ sort, mert $a\neq 0$ esetén $y\coloneqq x-a$ -val $\sum_{n=0}^\infty \alpha_n y^n$

Segédtétel:

Tegyük fel, hogy $\sum_{n=0} \alpha_n x^n$ hatványsor konvergens egy $x_0 \neq 0$ pontban.

Ekkor $\forall x: |x| < |x_0|$ esetén $\sum_{n=0}^{\infty} \alpha_n x^n$ abszolút konvergens.

Segédtétel bizonyítása:

$$\sum_{n=0}^{\infty} \alpha_n x_0^n \text{ konvergens.} \underset{\text{szüks. felt.}}{\longrightarrow} \lim_{n \to +\infty} (\alpha_n x_0^n) = 0$$

 $\Rightarrow \alpha_n x_0^n \text{ korlátos, azaz } \exists M>0 \colon |\alpha_n x_0^n| \leq M \; (\forall n \in \mathbb{N}).$

Legyen
$$|x| < |x_0|$$
. Ekkor $|\alpha_n x_n| = |\alpha_n x_0^n| \cdot \left|\frac{x}{x_0}\right|^n \le M \cdot \left|\frac{x}{x_0}\right|^n \ (\forall n \in \mathbb{N}).$

Mivel
$$\left|\frac{x}{x_0}\right| < 1 \Longrightarrow \sum M \cdot \left|\frac{x}{x_0}\right|^n$$
 konvergens $\underset{\text{beliefinity in the problem}}{\Longrightarrow} \sum_{n=0}^n |\alpha_n x^n|$ is konvergens, azaz $\sum \alpha_n x^n$

abszolút konvergens. ■

A tétel bizonyítása:

Tekintsük a $\sum_{n=0}^{\infty} \alpha_n x^n$ hatványsort. Ez az x=0-ban konvergens

$$\Rightarrow 0 \in KH(\sum_{n=0}^{\infty} \alpha_n x^n)$$
, azaz $KH(\sum_{n=0}^{\infty} \alpha_n x^n) \neq \emptyset$

$$\Rightarrow \exists \sup KH(\sum_{n=0} \alpha_n x^n) =: R \in \overline{\mathbb{R}}, \text{ sot } R \geq 0.$$

A következő 3 eset lehetséges:

a. $0 < R < +\infty$:

Legyen |x| < R

A szuprémum definíciójából $\Rightarrow \exists x_0, |x| < x_0$ és $\sum_{n=0}^{\infty} \alpha_n x_0^n$ konvergens $\Longrightarrow_{ST} \sum_{n=0} \alpha_n x^n$ abszolút konvergens.

Legyen $|x| > R \Rightarrow \exists x_0 : R < x_0 < |x| \text{ és } \sum \alpha_n x_0^n \text{ divergens } \Rightarrow \sum_{n=0}^\infty \alpha_n x^n \text{ sor is divergens.}$ (Ha konvergens lenne, $\underset{\text{ST}}{\Rightarrow} \sum \alpha_n x_0^n (\sum \alpha_n x^n)$ is konvergens)

Az ilyen R egyértelmű!

b. R = 0:

A $\sum \alpha_n x^n$ sor konvergens x = 0-ban és divergens $\forall |x| > 0$ esetén, ugyanis ha |x| > 0rögzített $\Rightarrow \exists x_0 : 0 < x_0 < |x|$ és $\sum_{n=0}^{\infty} \alpha_n x_0^n$ divergens $\Rightarrow \sum_{n=0}^{\infty} \alpha_n x^n$ is divergens.

Ekkor a $\sum_{n=0}^{\infty} \alpha_n x^n$ sor $\forall x \in \mathbb{R}$ esetén konvergens.

Ugyanis, ha $x \in \mathbb{R}$ tetszőleges $\Rightarrow \exists x_0: |x| < |x_0|$ és $\sum_{n=0}^{\infty} \alpha_n x_0^n$ konvergens $\Longrightarrow \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \alpha_n x^n$ abszolút konvergens.

17. Függvény határértékre vonatkozó átviteli elv.

Tétel

$$f \in \mathbb{R} \to \mathbb{R}, a \in \mathcal{D}'_f$$
. Ekkor

$$\lim_{a} f = A \in \overline{\mathbb{R}} \iff (*): \forall (x_n): \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim(x_n) = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = A.$$

Tehát: $\exists (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{n \to +\infty} x_n = a \text{ és } \lim_{n \to +\infty} f(x_n) \neq A, \text{ ez pedig ellentmondás. } \blacksquare$

18. Korlátos és zárt intervallumon folytonos függvény korlátos.

 $\Rightarrow f(x_{n_k})$ sorozat korlátos, ez ellentmond (*)-nak.

Tétel

Legyen
$$a,b \in \mathbb{R}: a < b$$

Tegyük fel, hogy $f: [a,b] \to \mathbb{R}$ folytonos $[a,b]$ -n
Bizonyítás
 f korlátos $[a,b]$ -n, ha $\exists K > 0: \forall x \in [a,b]: |f(x)| \le K$.

Indirekt: Tegyük fel, hogy f nem korlátos [a,b]-n, azaz $\forall K > 0$: $\exists x \in [a,b]$: $|f(x)| \leq K$.

Indirekt: Tegyük fel, hogy f nem korlátos [a,b]-n, azaz $\forall K > 0$: $\exists x \in [a,b]$: |f(x)| > K. $\Rightarrow \forall n \in \mathbb{N}$: $\exists x_n \in [a,b]$: $|f(x_n)| > n \Rightarrow (f(x_n))$ sorozat nem korlátos. (*)

Mivel $(x_n) \subset [a,b]$ korlátos sorozat, ezért:

Bolzano-Weierstrass-féle kiválasztási tétel $\Rightarrow \exists (x_{n_k})$ konvergens részsorozata.

Legyen $\alpha \coloneqq \lim(x_{n_k})$ Ekkor $\alpha \in [a,b]$ $\exists K(\alpha) \colon K(\alpha) \cap [a,b] \neq 0$ De $\alpha \coloneqq \lim(x_{n_k}) \Rightarrow K(\alpha)$ -hoz $\exists k_0 \in \mathbb{N}, \forall k \geq k_0 \colon x_{n_k} \in K(\alpha)$ és $x_{n_k} \in [a,b]$, ez ellentmondás.

Az f folytonos [a,b]-n $\Rightarrow f \in C\{\alpha\}$ $\xrightarrow{\text{átviteli elv}} \lim(x_{n_k}) = \alpha \Rightarrow \lim(f(x_{n_k})) = f(\alpha)$

19. A Weierstrass-tétel.

Tétel

Legyen $-\infty < a < b < +\infty$ ha $f:[a,b] \to \mathbb{R}$ folytonos [a,b]-n $\Longrightarrow f$ -nek léteznek abszolút szélsőértékei, azaz $\exists \alpha, \beta \in [a,b]$: $f(\beta) \le f(\alpha)$ ($x \in [a,b]$)

 $f \in C[a, b] \implies f$ korlátos. Ezért:

- $\exists \sup\{f(x)|x \in [a,b]\} =: M < +\infty \text{ (véges)}$
- $\exists \inf\{f(x)|x\in[a,b]\} =: m < +\infty \ (m > -\infty) \ (\text{v\'eges})$

Igazoljuk: Létezik abszolút max. hely, azaz $\exists \alpha \in [a, b]$: $f(\alpha) = M$

sup. def.
$$\Rightarrow \forall n \in \mathbb{N}: \exists y_n \in \mathcal{R}_f: M - \frac{1}{n} < y_n \leq M$$
. Viszont $y_n \in \mathcal{R}_f \Rightarrow \exists x_n \in [a,b]: f(x_n) = y_n$ $(\forall n \in \mathbb{N}) \text{ Az } (x_n): \mathbb{N} \to [a,b] \text{ sorozat korlátos } \xrightarrow[\text{Bolzano-}]{} \exists (x_{n_k}) \text{ konvergens részsorozata.}$

Legyen $\alpha := \lim(x_{n_k})$

Ekkor $\alpha \in [a, b]$ (indirekt módon igazolható)

ERROR
$$\alpha \in [a, b]$$
 (indirect model igazolnato)
$$f \in C[a, b] \xrightarrow{\text{átviteli elv}} \lim (x_{n_k}) = \alpha \text{ miatt } \lim_{n_k \to +\infty} f(x_{n_k}) = f(\alpha)$$

Mivel
$$M - \frac{1}{n_k} < f(x_{n_k}) = y_{n_k} \le M \ (\forall n_k)$$

 $\Rightarrow \lim_{n_k \to +\infty} y_{n_k} = M \Rightarrow M = f(\alpha).$

$$\Rightarrow \lim_{n_k \to +\infty} y_{n_k} = M \Rightarrow M = f(\alpha).$$

Abszolút min. helyre hasonló a bizonyítás. ■

20. A Bolzano-tétel.

Tétel

Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$

- folytonos [a, b]-n,
- $f(a) \cdot f(b) < 0$

(a két végpontban f különböző előjelű)

Bizonyítás

(Bolzano-féle felezési eljárással)

Tegyük fel, hogy f(a) < 0, f(b) > 0

Legyen $[x_0, y_0] := [a, b]$

Megfelezzük [a, b]-t:

Három eset lehetséges:

- 1. $f(z_0) \coloneqq 0 \checkmark$
- 2. $f(z_0) > 0$ esetén: $[x_1, y_1] = [a, z_0]$ $\{x_1, y_1\}$ -et megfelezve is 3 eset lehetséges! 3. $f(z_0) < 0$ esetén: $[x_1, y_1] = [z_0, b]$ $\{x_1, y_1\}$ -et megfelezve is 3 eset lehetséges!

Vagy véges sok lépésben kapunk ξ -t

$$f(\xi) = 0$$

vagy nem. Ez utóbbi esetben:

 $\exists [x_n, y_n] (n \in \mathbb{N})$ intervallumsorozat.

- $[x_{n+1}, y_{n+1}] \subset [x_n, y_n] \ (n \in \mathbb{N});$
- $f(x_n) < 0; f(y_n) > 0 \ (\forall n \in \mathbb{N})$
- $y_n x_n = \frac{b-a}{2^n} (\forall n \in \mathbb{N})$ iii.

Cantor-féle közösrész tétel ⇒

$$\exists \xi \in \bigcap_{n \in \mathbb{N}} [x_n, y_n] \in [a, b]$$

$$x_n \nearrow \xi \qquad y_n \searrow \xi$$

 $x_{n} \nearrow \xi \qquad y_{n} \searrow \xi$ $f \text{ folytonos } [a, b] - n \Longrightarrow f \in \mathbb{C}\{\xi\} \xrightarrow{\text{átviteli elv } n \to +\infty} f(x_{n}) = f(\xi) = \lim_{n \to +\infty} f(y_{n})$ $\text{ii.} \Longrightarrow \forall n: \qquad f(x_{n}) < 0 \qquad \qquad f(y_{n}) > 0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $\lim_{n \to +\infty} f(x_{n}) \le 0 \qquad \qquad \lim_{n \to +\infty} f(y_{n}) \ge 0$ $\text{Tehát } f(\xi) \le 0 \text{ és } f(\xi) \ge 0 \Longrightarrow f(\xi) = 0 \blacksquare$

$$. \Longrightarrow \forall n: f(x_n)$$

$$f(x_n) < 0$$

$$f(y_n) > 0$$

$$\lim_{n \to +\infty} f(x_n) \le 0$$

$$\lim_{n \to +\infty} f(y_n) \ge 0$$

Bizonyítással kért tételek

- 1. A szuprémum elv.
- 2. Az Arkhimédész-tétel.
- 3. A Cantor-féle közösrész-tétel.
- 4. Minden valós sorozatnak van monoton részsorozata.
- 5. Konvergens sorozatok hányadosára vonatkozó tétel. (A segédtétel bizonyítását is kérjük.)
- 6. A közrefogási elv.
- 7. Monoton sorozatok határértékére vonatkozó tételek.
- 8. A Cauchy-féle konvergencia kritérium.
- 9. Pozitív szám m-edik gyökének előállítása rekurzív módon megadott sorozatok határértékével.
- 10. A geometriai sor konvergenciája.
- 11. A Cauchy-felé gyökkritérium.
- 12. A D'Alembert-felé hányados-kritérium.
- 13. Leibniz-típusú sorok konvergenciája.
- 14. Számok tizedestört alakban való előállítása.
- 15. Abszolút konvergens sorok szorzására vonatkozó Cauchy-tétel.
- 16. Hatványsor konvergenciahalmazára vonatkozó, a konvergenciasugarát meghatározó tétel. (A segédtétel bizonyítását is kérjük.)
- 17. Függvény határértékre vonatkozó átviteli elv.
- 18. Korlátos és zárt intervallumon folytonos függvény korlátos.
- 19. A Weierstrass-tétel.
- 20. A Bolzano-tétel.