配布日: 2008年4月23日

線形代数I演習

- (2) 平面ベクトルの幾何学的意味,内積,複素数と複素平面 -

担当: 佐藤 弘康

基本問題. 以下のことを確認せよ(定義を述べよ).

- (1) ベクトルの和, スカラー倍にはどのような幾何学的意味があるか?
- (2)「平面ベクトルの内積」とは?

問題 **2.1.** 次のベクトル u,v に対し、ベクトルの長さ $\|u\|$, $\|v\|$ および内積 (u,v) を計算し、u,v のなす角を求めよ。

(1)
$$\mathbf{u} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ (2) $\mathbf{u} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$

(3)
$$\mathbf{u} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$

問題 **2.2.** a,b を平面ベクトルとする。もし、 $\|a\| = \|b\|$ ならば、a+b と a-b は直交することを示せ。

問題 **2.3.** A, B を平面内の点とし、それぞれの点の位置ベクトルを a, b とする (ただし、a, b は線形従属でないとする)。このとき、三角形 OAB の面積は

$$\frac{1}{2}\sqrt{\|\bm{a}\|^2\|\bm{b}\|^2-(\bm{a},\bm{b})^2}$$

に等しいことを示せ.

- 内積の性質

平面ベクトルの内積が以下の性質を満たすことを示せ、

- (1) (a, b) = (b, a).
- (2) $c \in \mathbf{R}$ に対して、 $(c\mathbf{a}, \mathbf{b}) = c(\mathbf{a}, \mathbf{b})$. また、 $\|c\mathbf{a}\| = |c| \cdot \|\mathbf{a}\|$.
- (3) $(a_1 + a_2, b) = (a_1, b) + (a_2, b).$
- $||a|| \ge 0$. さらに等号が成り立つのは a = 0 のときのみである.

配布日: 2008年4月23日

基本問題. 以下のことを確認せよ(定義を述べよ).

- (1) 「複素平面」とは?
- (2)「複素数の絶対値、偏角」とは?
- (3) 複素数の和と積は、複素平面において幾何学的にどのように解釈できるか.
- (4) 「共役複素数」とは?

問題 **2.4.** 次の複素数を $r(\cos\theta + \sqrt{-1}\sin\theta)$ の形*1で表せ、ただし、r は正の実数とする。

(1)
$$\sqrt{-1}$$
 (2) -5 (3) $\sqrt{3} + 3\sqrt{-1}$

問題 **2.5.** $z = a + \sqrt{-1}b$ (a, b) は実数) に対して、 z^4 が実数になる条件を求めよ.

問題 **2.6.** $z, w \in \mathbb{C}$ に対して, $\overline{z}w + z\overline{w} = 0$ と $\arg z - \arg w = \frac{\pi}{2} \pmod{2\pi}$ は同値であることを証明せよ.

問題 **2.7.** $(2+\sqrt{-1})(3+\sqrt{-1})=5(1+\sqrt{-1})$ を確かめ、そのことを使って

$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$$

を示せ (ただし、 \tan^{-1} は $f(x) = \tan x$ の逆関数).

複素数の偏角の性質・

複素数の偏角が以下の性質を満たすことを示せ.

- (1) $z \in \mathbf{C}, a \in \mathbf{R}(a \neq 0)$ に対して、 $\arg(az) = \arg(z)$.
- (2) $z \in \mathbf{C}$ に対して、 $\arg \overline{z} = -\arg z$.
- (3) $z, w \in \mathbf{C}(w \neq 0)$ に対して、 $\arg\left(\frac{z}{w}\right) = \arg z \arg w$.

 $[\]frac{1}{r^{*1}} = r(\cos\theta + \sqrt{-1}\sin\theta) = re^{\sqrt{-1}\theta}$ を複素数 zの極表示という(教科書 p.12 参照).