

DEIOAC-UPV

3. Métodos de Programación Lineal (I)

Objetivos

Al finalizar el tema, deberás ser capaz de:

- Conocer e identificar las características de un problema de Programación Lineal.
- Resolver gráficamente modelos lineales con dos variables.
- Analizar la sensibilidad de la solución óptima a cambios en los datos de entrada del modelo.
- Expresar en forma estándar un problema lineal.
- Conocer y saber manejar los términos básicos relacionados con la Programación Lineal: solución básica, variables básicas, coste reducido, coste de oportunidad, etc.
- Conocer los fundamentos del algoritmo Simplex.
- Resolver problemas lineales mediante el algoritmo Simplex.
- Identificar e interpretar la información correspondiente a la solución óptima obtenida mediante el algoritmo Simplex.
- Interpretar los informes de solución óptima y análisis de sensibilidad obtenidos con software de optimización.

CONTENIDOS

- 3.1 Introducción
- 3.2 Región factible y solución gráfica
- 3.3 Variables de holgura
- 3.4 Análisis de sensibilidad
- 3.5 Resolución de modelos con el software de optimización LINGO[©]
- 3.6 Conceptos básicos de Programación Lineal
- 3.7 Algoritmo Simplex: conceptos básicos
- 3.8 Algoritmo Simplex en forma de tablas
- 3.9 Algoritmo Simplex revisado
- 3.10 Algoritmo Simplex Dual

Los sistemas de toma de decisiones basados en optimización tienen una arquitectura bien definida como se muestra en el siguiente gráfico:

¿Qué características ha de tener un *modelo* para ser de **Programación Lineal?**

¿Cómo se obtiene la *Solución Óptima* de un modelo de Programación Lineal?

- Programación Lineal: es uno de los métodos más poderosos y flexibles para el análisis cuantitativo.
- Se utiliza en todo tipo de organizaciones diariamente para resolver gran variedad de problemas:
 - planificación de la producción,
 - problemas de mezclas,
 - gestión de personal,
 - gestión de inventarios,
 - gestión de rutas de vehículos,
 - corte de materias primas,
 - **...**

- Hemos visto una variedad de problemas decisionales que pueden ser formulados y analizados como problemas de programación lineal. El siguiente paso es, una vez modelizado como un programa lineal, cómo resolverlo para encontrar una solución óptima?
- La solución más sencilla es hacer 'click en el botón Resolver' de un optimizador.... Pero,

Necesitamos saber algo más de lo que ocurre al pulsar el botón 'Resolver'

- Razones para adquirir algunos conocimientos básicos sobre los procedimientos de solución:
- 1. Incrementar la confianza en la validez y potencia de estos algoritmos
- 2. Comprender el significado de la información contenida en los informes de solución
- Comprender el significado de algunos resultados no muy frecuentes al resolver estos problemas (e.g. el problema no tiene solución, la solución es no acotada).

> UN PROBLEMA DE PRODUCCIÓN

- ▶ Una empresa de producción de componentes informáticos dispone de 3 departamentos. La fabricación de los componentes se hace en el departamento 1 (producción), el test de los mismos se realiza en el departamento 2 (control de calidad) y en el departamento 3 (montaje) se realiza el ensamblado
- Debido a la disminución en los beneficios, la gerencia ha decidido reorganizar la producción de la empresa

- Se interrumpirá la producción de componentes no rentables para comenzar la producción de dos nuevas placas base
 - Placa base 1 (más sencilla, se testea en el departamento de producción)
 - Placa base 2 (fabricada por otra empresa)
- La placa base 1 requiere parte de la capacidad de producción en los departamentos 1 y 3 y nada en el departamento 2
- La placa base 2 sólo necesita trabajo en los departamentos 2 y
 3

- La compañía puede vender todas las placas base que se puedan fabricar
- Cada placa base se fabricará en lotes de 50 placas
- Capacidad productiva de los departamentos y requerimientos de cada lote:

	Tiempo de producción (h/lote)		
	PRODUCTO		
Departamento	Placa 1	Placa 2	Tiempo de producción disponible (h/semana)
1 (Producción)	1	0	4
2 (Calidad)	0	2	12
3 (Montaje)	3	2	18

Teniendo en cuenta la capacidad de producción de los departamentos y que el beneficio por lote es 3000 y 5000 € respectivamente,

¿Cuál es la producción que maximiza el beneficio total de la compañía?

VARIABLES:

Las variables decisión del problema son:

X1: Número de lotes de la placa base 1 fabricados por semana

X2: Número de lotes de la placa base 2 fabricados por semana

► HIPÓTESIS 1 DE PROGRAMACIÓN LINEAL: DIVISIBILIDAD

Todas las variables pueden asumir cualquier valor real

Si las variables solo tienen sentido en el caso de tomar valores discretos pero toman un valor real elevado (superior a 10) en la solución óptima, es aceptable considerarlas como continuas y redondear su valor

► HIPÓTESIS 2 DE PROGRAMACIÓN LINEAL: CONDICIONES

DE NO NEGATIVIDAD

Todas las variables son no negativas

- Si Xi ≤ 0
 - Sustituir en el modelo Xi por Xi' = -Xi; Xi' ≥ 0
 - Cuando se obtenga la solución óptima se deshace el cambio
- Si Xi no restringida en signo
 - ▶ Indicar que Xi = Xi1 Xi2; $Xi1,Xi2 \ge 0$
 - Sustituir en el modelo Xi por (Xi1 Xi2)
 - Cuando se obtenga la solución óptima se deshace el cambio

FUNCIÓN OBJETIVO:

Placas Base	Beneficio por lote (€)	Lotes fabricados por semana	Beneficio por semana	
Tipo 1	3000	X_1	3000 X ₁	
Tipo 2	5000	X ₂	5000 X ₂	
Beneficio Total = 3000 X ₁ + 5000 X ₂ = Z				

▶ Teniendo en cuenta la capacidad productiva de los departamentos y requerimientos de cada lote:

	Tiempo de producción (h/lote)		
	PRODUCTO		
Departamento	Placa 1	Placa 2	Tiempo de producción disponible (h/semana)
1 (Producción)	1	0	4
2 (Calidad)	0	2	12
3 (Montaje)	3	2	18

... RESTRICCIONES

▶ RESTRICCIONES:

Capacidad de los departamentos

$$X_1 \leq 4$$

(Departamento 1)

$$2 X_2 \leq 12$$

(Departamento 2)

$$3X_1 + 2X_2 \le 18$$

(Departamento 3)

► HIPÓTESIS 3 DE PROGRAMACIÓN LINEAL: LINEALIDAD

Todas las relaciones entre variables son lineales

Proporcionalidad de las contribuciones

La contribución individual de cada variable es estrictamente proporcional a su valor; y el factor de proporcionalidad es constante para toda la gama de valores que la variable puede asumir

Aditividad de las contribuciones

La contribución total de las variables es igual a la suma de las contribuciones individuales, sea cual sea el valor de las variables

Formulación del programa lineal

Determinar los valores de las variables:

$$X_1 \ge 0$$
 y $X_2 \ge 0$

que optimicen, maximicen en este caso (en otros puede ser minimizar) la *función objetivo*:

Max
$$3 X_1 + 5 X_2$$
 (miles euros)

y verifiquen las *restricciones*:

$$X_1 \leq 4$$
 (Departamento 1)

$$2X_2 \le 12$$
 (Departamento 2)

$$3X_1 + 2X_2 \le 18$$
 (Departamento 3)

Formulación general de un programa lineal

Determinar los valores de las variables decisión

$$X_i \ge 0$$
 para $j = 1, 2, ..., n$

que optimicen (max o min) la función objetivo

$$MAX \Sigma C_j X_j$$
 (MAX $Z \equiv MIN (-Z)$)

con la condición

$$\sum a_{ij} X_i \leq 1, = 1, \geq b_i$$
 $i=1,2,...,m$

Donde

- **n**: número de variables
- ▶ m: número de restricciones (=, \leq o \geq)
- Los c_i , a_{ii} y b_i son los parámetros del modelo

► HIPÓTESIS 4 DE PROGRAMACIÓN LINEAL: CERTIDUMBRE

Se asume que todos los parámetros del modelo c_j , a_{ij} y b_i son constantes conocidas

MÉTODOS DE RESOLUCIÓN DE PL

- Método gráfico (problemas con dos variables).
- Método Simplex (George Dantzig, 1947).
- ▶ Algoritmo del Punto Interior (API; Narendra Karmarkar, 1984).

El API sólo supera al Simplex en problemas muy grandes.

MÉTODOS DE RESOLUCIÓN DE PL

- Método gráfico (problemas con dos variables).
- Método Simplex (George Dantzig, 1947).
- ▶ Algoritmo del Punto Interior (API; Narendra Karmarkar, 1984).

El API sólo supera al Simplex en problemas muy grandes.

SOLUCIÓN POSIBLE

 Combinación de valores de las variables que satisface simultáneamente todas las restricciones

▶ REGIÓN FACTIBLE

Conjunto de todas las soluciones posibles (C.S.P.)

¡ La Región Factible NO depende de la Función Objetivo!

SOLUCIÓN GRÁFICA: MAXIMIZAR BENEFICIO

Ejercicio Propuesto:

- Teniendo en cuenta que el coste de cada lote de placas tipo 1 es de 6.000€ y 2.000€ en el caso de las placas de tipo 2, si el objetivo fuera minimizar los costes semanales ¿cuál es la solución óptima?
- Calcula la solución óptima teniendo en cuenta que se desea minimizar los costes y satisfacer una demanda de al menos 2 lotes de placas tipo 2.

Pasos para llevar a cabo la resolución gráfica:

- 1. Dibujar la recta «frontera» de cada restricción.
- 2. Para cada restricción de desigualdad, determinar en qué parte de la «frontera» están los puntos que cumplen la restricción.
- La región factible son los puntos que cumplen TODAS y cada una de las restricciones simultáneamente, incluida la condición de no negatividad.
- 4. La solución óptima, si existe, se encuentra en (al menos) uno de los vértices o «picos» de la región factible. Es posible deducir el/los vértice/s óptimo/s dibujando la pendiente de la función objetivo. Alternativamente: si no hay muchos vértices, podemos ir comprobando en cada uno de ellos el valor de la función objetivo.
- 5. Atención a los casos especiales (véase a continuación).

- Al resolver un programa lineal podemos encontrarnos con cuatro casos
 - 1. Solución única (el problema de planificación de la producción en la empresa de componentes informáticos)
 - 2. Soluciones alternativas (infinitas soluciones)

3. Solución no acotada

4. No hay solución

3.3 Variables de holgura

FORMA ESTÁNDAR DE UN PROBLEMA LINEAL (PL)

Un PL está en forma estándar si cumple:

- Todas las restricciones son igualdades.
- Todas las variables son de naturaleza no negativa.

Cómo pasar a forma estándar cualquier PL:

- Desigualdades: añadir variables de holgura.
- Variables: aplicar equivalencias. (vistas en las Hipótesis de PL)

Todo PL puede expresarse en forma estándar.

3.3 Variables de holgura

FORMA ESTÁNDAR DE UN PROBLEMA LINEAL (PL)

Un PL está en forma estándar si cumple:

- Todas las restricciones son igualdades.
- Todas las variables son de naturaleza no negativa.

Cómo pasar a forma estándar cualquier PL:

- Desigualdades: añadir variables de holgura.
- Variables: aplicar equivalencias. (vistas en las Hipótesis de PL)

Todo PL puede expresarse en forma estándar.

3.3 Variables de holgura

VARIABLES DE HOLGURA

Holgura

Ante una solución posible, diferencia entre el valor que toma la restricción y el coeficiente del segundo miembro

Variable de holgura

Con frecuencia, resulta interesante identificar de una forma explícita esta diferencia introduciendo en la restricción una variable

Estas variables están sujetas a las mismas consideraciones de divisibilidad y no negatividad que las variables decisión

3.3 Variables de holgura

MODELO EN FORMA GENERAL

ESTANDAR

$$X_1 + X_3 = 4 \qquad (depto.1)$$

$$2 X_2 + X_4 = 12$$
 (depto.2)

$$3 X_1 + 2 X_2 + X_5 = 18$$
 (depto.3)

$$\sum_{j=1}^n a_{ij} x_j \leq b_i \longrightarrow \sum_{j=1}^n a_{ij} x_j + X \text{holgura} = b_i$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \longrightarrow \sum_{j=1}^{n} a_{ij} x_{j} - Xexceso = b_{i}$$

3.3 Variables de holgura

 Interpretación de las variables de holgura (dada una solución)

=0: Restricción Limitativa (Cuello de botella del sistema)

>0: Recursos no utilizados o capacidad no utilizada

3.3 Variables de holgura

 En Programación Lineal: los coeficientes del modelo son datos de entrada (parámetros fijos del modelo)

En problemas reales:

- Los coeficientes del modelo no están (en general) perfectamente fijados ya que dependen de parámetros no controlables y no pueden predecirse con exactitud
- Resulta interesante estudiar cómo varía la solución óptima o el plan de producción si cambia algún parámetro de entrada

- Cada variación de los parámetros del modelo generará un nuevo programa lineal
- El ANÁLISIS DE SENSIBILIDAD (A.S.) proporciona herramientas para el cálculo de las soluciones óptimas y el plan de producción de los problemas resultantes tras la modificación de los parámetros originales del problema, SIN RESOLVER DE NUEVO EL MODELO
 - □ A.S. COEFICIENTES DE LA FUNCIÓN OBJETIVO (C_i)
 - □ A.S. VECTOR RECURSOS (b_i)

Aprenderemos a deducirlo/razonarlo gráficamente, y más adelante lo veremos también en prácticas, con la ayuda de LINGO®.

ANÁLISIS DE SENSIBILIDAD DE CI

- Observación: La modificación del coeficiente de una variable en la función objetivo implica cambiar la pendiente de la función objetivo
- Si el cambio es suficientemente grande habrá cambio de solución óptima

OBJETIVO:

Determinar el intervalo de variación de C_i dentro del cual la solución óptima o plan óptimo de producción (valor de las variables decisión y de holgura) **NO CAMBIA**.

El valor óptimo de la función objetivo puede cambiar

ANÁLISIS DE SENSIBILIDAD DE CI

- EJEMPLO
 - □ El departamento comercial había estimado incorrectamente el beneficio asociado a cada lote de placas tipo 1 que es 9000€ en lugar de 3000€ (manteniéndose el resto de coeficientes con sus valores anteriores)
 - □ La FO será: MAX $Z = 9*X_1 + 5*X_2$

¿HABRÁ CAMBIADO LA SOLUCIÓN ÓPTIMA?

Ver Applet

Gráficamente, ¿cuándo se mantendrá la solución óptima inalterada?

ETSInf-Ingeniería Informática 47

 $IVIAA \ Z = 0 \ A I + 5 \ A Z$

CONCLUSIONES

- □ En el intervalo de análisis de sensibilidad C1∈ [0,...,7.5]:
- la solución óptima NO CAMBIA, solución óptima en punto C (X1=2, X2=6)
- SÍ CAMBIA el VALOR DE LA FUNCIÓN OBJETIVO (se puede recalcular su valor exacto)
- Para los valores extremos del intervalo, existen soluciones alternativas (por tanto, infinitas soluciones) todas con el mismo valor de la función objetivo

Ejercicio propuesto:

A partir del análisis de sensibilidad para C1 que acabamos de calcular, indica el valor de una solución óptima así como el valor de la función objetivo cuando C1=0.

 Calcula el intervalo de Análisis de Sensibilidad para C2 (suponiendo que el resto de parámetros del modelo son los del problema original).

Ver Applet

ANÁLISIS DE SENSIBILIDAD DE bi

COSTE DE OPORTUNIDAD de una RESTRICCIÓN:

"VARIACIÓN" del valor de la Función Objetivo por <u>unidad</u>
 <u>adicional</u> en el segundo miembro de la restricción

OBJETIVO:

- Determinar el intervalo de variación de b_i dentro del cual el
 COSTE DE OPORTUNIDAD es CONSTANTE
 - En este intervalo,
 - La <u>base</u> (variables con valor cero y variables con valor distinto de cero) permanece constante
 - Se puede predecir el nuevo valor óptimo de la función objetivo

■ EJEMPLO de PRODUCCIÓN

 La gerencia se está planteando la adquisición de nueva maquinaria en el departamento 3 que supondría aumentar la capacidad de producción de dicho departamento a 21 horas semanales

¿CUÁL SERÍA EL NUEVO BENEFICIO? ¿SEGUIRÍAMOS FABRICANDO UNIDADES DE LOS MISMOS TIPOS DE PLACA BASE?

Y, ¿cuál es el efecto del incremento unitario del lado derecho de la restricción 3?

Y, ¿en qué rango de valores puede cambiar b3 y mantenerse el C.Oportunidad constante?

CONCLUSIONES DEL ANÁLISIS DE SENSIBILIDAD DE b3:

- Mientras b3 ∈ [12,..,24]
- El coste de oportunidad de la restricción del departamento 3 se mantiene constante e igual a +1.
- La solución óptima cambia al tratarse de una restricción limitativa en la solución óptima.
- El valor de la función objetivo cambia pero se puede predecir su valor (en función del C.Oportunidad)
- Se mantiene la misma Solución Básica (variables que son $0 \text{ y} \neq 0$

Además, hay que tener en cuenta que:

- El coste de oportunidad de una restricción que no se verifica estrictamente en la Solución óptima es = 0
- El coste de oportunidad de una restricción que se verifica estrictamente en la Solución Óptima es en general ≠ 0
- Los costes de oportunidad proporcionan a la gerencia una valiosa información acerca de los beneficios que pueden obtenerse al suavizar las restricciones. Si estos beneficios superan el coste que provoca suavizar una restricción dada, entonces dichos cambios son interesantes

COSTE DE OPORTUNIDAD de una **RESTRICCIÓN: "VARIACIÓN"** del valor de la Función Objetivo por <u>unidad adicional</u> en el segundo miembro de la restricción

- COSTE DE OPORTUNIDAD de una RESTRICCIÓN ≤
 - "MEJORA" del valor de la Función Objetivo por <u>unidad</u>
 <u>adicional</u> en el segundo miembro de la restricción
 - MEJORA: si MAX → aumento en el valor de la F.O. si MIN → disminución en el valor de la F.O.
- COSTE DE OPORTUNIDAD de una RESTRICCIÓN ≥
 - "EMPEORAMIENTO" del valor de la Función Objetivo por unidad adicional en el segundo miembro de la restricción
 - **EMPEORAMIENTO**: si MAX → disminución en el valor de la F.O.

si MIN \rightarrow aumento en el valor de la F.O.


```
!EJEMPLO1: UN EJEMPLO DE PLANIFICACIÓN DE LA
    PRODUCCION;
[OBJ] MAX = 3 * X1 + 5 * X2;
[DEPTO1] X1 <= 4;
[DEPTO2] 2*X2 <= 12;
[DEPTO3] 3*X1 + 2*X2 <= 18;</pre>
```

SOLUCIÓN ÓPTIMA

Objective value:		36.00000 (VALOR FUNCION OBJETIVO)	
	VALOR \	/ARIABLES	
Variable	e Value	Reduced Cost	(COSTE REDUCIDO)
X1	2.000000	0.000000	
X2	6.00000	0.000000	
	VALOR RES	STRICCIONES	
Row	Slack or Surplus (HC	OLGURA) Dual Price	(COSTE DE OPORTUNIDAD)
OBJ	36.00000	1.000000	
DEPTO1	2.000000	0.0000000	
DEPTO2	0.000000	1.500000	
DEPTO3	0.000000	1.000000	

ANALISIS DE SENSIBILIDAD

Ranges in which the basis is unchanged:

Objective Coefficient Ranges (A.S.COEFICIENTES F.O.)

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	3.000000	4.500000	3.000000
X2	5.000000	INFINITY	3.000000

Righthand Side Ranges (A.S. 2° MIEMBRO RESTRICCIONES)

Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
DEPTO1	4.000000	INFINITY	2.000000
DEPTO2	12.00000	6.00000	6.000000
DEPTO3	18.00000	6.00000	6.000000

COSTE REDUCIDO

- El coste reducido para una variable igual a cero en la solución óptima, indica el cambio en el valor de la función objetivo por unidad de incremento en el valor de dicha variable.
- El coste reducido indica cuánto debería mejorar el coeficiente en la función objetivo de una variable que es cero en la solución óptima actual, antes de que empezara a interesar que dicha variable fuese distinta de cero.

CUESTIONES:

- ¿Qué impacto tendría sobre el plan óptimo de producción y sobre el valor óptimo de la función objetivo un incremento de 4 (miles de €) en el beneficio asociado a las placas base tipo 1?
- 2. Idem si el incremento fuera de 5 (miles de €).
- 3. ¿Qué impacto tendría sobre el plan óptimo de producción y sobre el valor óptimo de la función objetivo un incremento de 4 horas en la capacidad del departamento 2? Y si el incremento fuera de 8 horas?
- 4. ¿Qué impacto tendría sobre el plan óptimo de producción y el valor óptimo de la función objetivo un incremento de 10 horas en la capacidad del departamento 1?

CUESTIONES:

- 5. Se dispone de una partida presupuestaria para aumentar la capacidad de un departamento. ¿Cuál de los tres departamentos mejorarías? Justifica la respuesta.
- 6. Nos plantean la posibilidad de fabricar semanalmente un tercer tipo de placa base que requeriría 1 hora del departamento de Producción y 1 hora en el departamento de Calidad. Este nuevo tipo de placa base no necesita pasar por el departamento de Montaje. El beneficio de cada lote de la nueva placa base es de 2000€.

Teniendo en cuenta la información de la solución óptima actual, ¿sería rentable producir el nuevo producto?

CONCEPTOS FUNDAMENTALES

- **SOLUCIÓN POSIBLE:** Combinación de valores de las variables que satisfacen simultáneamente todas las restricciones
- ▶ **REGION FACTIBLE:** Conjunto de todas las soluciones posibles
- HOLGURA (SLACK): Diferencia entre el valor que toma la restricción y el coeficiente del segundo miembro.
- COSTE REDUCIDO (REDUCED COST) asociado a una variable en una solución, es la cantidad en la que debe mejorar su contribución a la función objetivo para que dicha variable tome un valor positivo en la solución.
- COSTE DE OPORTUNIDAD (DUAL PRICE) asociado a una restricción, es el ratio de "variación" en el valor óptimo de la función objetivo por unidad adicional en el segundo miembro de la restricción.

Una empresa produce dos modelos de ordenadores personales, uno portátil y otro para escritorio. En la única planta que posee fabrica las cajas, monta los componentes en las tarjetas de circuito impreso y las ensambla.

Durante el último trimestre del año produjo 2000 portátiles y 600 para escritorio cada mes. En la reunión trimestral de ejecutivos el gerente de ventas sugirió dejar de producir el modelo para escritorio porque no era rentable. El jefe de producción argumentó que se debía a la fabricación de pocas unidades y a unos costes fijos elevados. Sin embargo, si se fabricaran más unidades, por ejemplo acudiendo a <u>subcontratación en la operación de montaje de tarjetas</u>, ya no existiría este problema.

Para tomar una buena decisión el jefe de producción ha planteado y resuelto un modelo de planificación de la producción mensual. Los resultados obtenidos son los que se adjuntan.

Se ha considerado que el montaje de tarjetas de circuito impreso puede realizarse en la empresa o puede subcontratarse con otra. Pi representa el número de portátiles con tarjetas de circuito montadas en la empresa y Pe las unidades fabricadas con tarjetas montadas fuera (subcontratación). Análogamente, para Oi y Oe, que son las variables que representan el número de ordenadores del modelo para escritorio. Los coeficientes de la función objetivo son los márgenes brutos (precio de venta menos coste variable) y vienen expresados en miles de u.m. Se supone que la demanda de ordenadores se mantendrá alta.

!MAXIMIZAR EL MARGEN BRUTO EN PLANIFICACION DE LA PRODUCCION (miles de u.m.);

$$MAX = 60 * Pi + 59 * Pe + 58 * Oi + 57 * Oe;$$

[CAJAS]
$$Pi + Pe + 2 * Oi + 2 * Oe <= 4000;$$

[ENPORT]
$$Pi + Pe \le 2000$$
;

ETSInf-Ingeniería Informática

70

Solución Óptima

Variable	Value	Reduced Cost
Pi	1666.667	0.0000000
Pe	333.333	0.0000000
Oi	1000.000	0.0000000
Oe	0.000000	0.1666679

Row	Slack or Surplus	Dual Price
OBJ	177666.7	1.00000
CAJAS	0.00000	28.58333
TARJETAS	0.00000	0.83333
ENPORT	0.00000	30.41667
ENESCR	800.000	0.00000

Análisis de Sensibilidad

Ranges in which the basis is unchanged:

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
Pi	60.00000	0.2000015	1.000000
Pe	59.00000	1.000000	0.2000015
Oi	58.00000	60.83333	0.1666679
Oe	57.00000	0.1666679	INFINITY

Righthand Side Ranges

Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
CAJAS	4000.000	1600.000	800.0002
TARJETAS	3000.000	400.0001	2000.000
ENPORT	2000.000	2000.000	571.4286
ENESCR	1800.000	INFINITY	800.0000

PREGUNTAS:

- 1. Está funcionando la empresa de forma adecuada? En caso negativo ¿Qué debería fabricar? ¿Debe subcontratar? ¿Cuánto podría mejorar el margen bruto obtenido por la empresa?
- 2. ¿Es aceptable esta solución o tendríamos que trabajar con variables de naturaleza entera? Justifica la respuesta.
- 3. ¿Qué conclusiones se obtienen del análisis de sensibilidad?
- 4. Si una tercera empresa ofreciera realizar el montaje de las tarjetas 500 u.m. más barato por unidad en el modelo de escritorio. ¿Cambiaría el plan óptimo de producción? ¿Por qué?
- 5. ¿Interesaría aumentar la capacidad de ensamblado de portátiles en 1000 unidades mensuales si el coste implicado fuera de 10 millones de u.m.? Justifica la respuesta.

Trabajaremos con el problema de producción del apartado anterior.
 El modelo y representación gráfica es la siguiente:

CONJUNTO CONVEXO: un conjunto es convexo si dados dos puntos A y B cualesquiera, contenidos en el mismo, el segmento de recta que los une queda contenido en dicho conjunto

 Esta es una característica de la REGIÓN FACTIBLE de todo programa lineal y es la base del procedimiento de resolución conocido como ALGORITMO SIMPLEX

- PUNTOS EXTREMOS: Vértices del polígono que forma la región factible (en el caso de dos variables)
- La solución óptima de un problema de programación lineal, si existe, es un punto extremo (vértice) de la región factible (i.e. cumple todas las restricciones). Si el problema tiene soluciones óptimas múltiples, entonces al menos dos deben ser puntos extremos. En este caso, cualquier solución óptima se obtendrá como combinación lineal convexa de dichos puntos extremos.

¿Cómo se generan estos puntos extremos algebraicamente?

Paso 1: Pasar el modelo a forma estándar (añadir variables de holgura):

Modelo en Forma General

Max 7=3x1 + 5x2

 $x1 \leq 4$

 $2x2 \le 12$

 $3x1 + 2x2 \le 18$

x1, x2≥ 0

Modelo en Forma Estándar

Max Z=3x1 + 5x2

x1 + x3 = 4

2x2 + x4 = 12

3x1 + 2x2 + x5 = 18

 $xj \ge 0$, para j=1,2,3,4,5

Paso 2: Resolver el sistema de ecuaciones resultante:

En el sistema de ecuaciones resultante al pasar el modelo a forma estándar:
 n > m, por tanto se pueden elegir n-m variables cualesquiera e igualarlas a cualquier valor arbitrario para resolver el sistema de m ecuaciones en términos de las m variables restantes. El método simplex usa 0 para ese valor arbitrario

Por ejemplo, el punto C
 que corresponde a la
 solución óptima se obtiene
 igualando X₄ y X₅ a cero.

La elección de las variables que se igualan a cero para obtener los puntos extremos no es arbitraria:

■ En el sistema de ecuaciones al igualar a cero X₁ y X₅ obtenemos el punto **E**: X₂=9 y X₄= -6 SOLUCIÓN **NO** FACTIBLE

SOLUCIÓN BÁSICA

Toda solución obtenida resolviendo el sistema de ecuaciones en el que se ha igualado a cero n-m variables

Dado un programa lineal en la forma estándar con n variables (de decisión y de holgura) y m restricciones podemos afirmar que el subconjunto de variables que forma una solución básica se encuentra igualando a cero (n-m) variables y resolviendo el sistema de m ecuaciones resultantes con m variables

Este sistema de ecuaciones tiene solución única

- En una solución básica, las (n-m) variables que se igualan a cero son las variables no básicas y las m restantes son las variables básicas
- SOLUCIÓN BÁSICA FACTIBLE: Es una solución básica en la cual toda $x_j \ge 0$
- SOLUCIONES BÁSICAS ADYACENTES: En un programa lineal con m restricciones, dos soluciones básicas son adyacentes si sus conjuntos de variables básicas tienen m-1 en común

$$\uparrow 0 \rightarrow (0, 0, \neq 0, \neq 0, \neq 0)$$

$$\downarrow A \rightarrow (\neq 0, 0, 0, \neq 0, \neq 0)$$

$$\uparrow A \rightarrow (\neq 0, 0, 0, \neq 0, \neq 0)$$

$$B \rightarrow (\neq 0, \neq 0, 0, \neq 0, 0)$$

IDEM: $B \leftrightarrow C$ $C \leftrightarrow D$

 $D \leftrightarrow O$

- **SOLUCIÓN DEGENERADA**: Es una solución básica factible que tiene menos de m variables estrictamente positivas
- SOLUCIÓN NO DEGENERADA: Es una solución básica factible con exactamente m variables estrictamente positivas
- **SOLUCIÓN ÓPTIMA**: Es una solución básica factible que optimiza la función objetivo del problema

- El método Simplex es el algoritmo de resolución de problemas de programación lineal más importante. Fue desarrollado en 1947 por George Dantzig y ha sido considerado uno de los algoritmos más importantes del siglo XX (Nash, 2002)
- El algoritmo Simplex se basa en la resolución de sistemas de ecuaciones lineales con el procedimiento de Gauss-Jordan apoyado con criterios para el cambio de la solución básica. Es un procedimiento iterativo que se aplica hasta que se cumple la condición de optimalidad

- La idea general del método Simplex consiste en partir de una solución básica factible e ir a una solución básica factible adyacente con mejor valor de la función objetivo
- Este proceso continúa <u>hasta que ya no se puedan obtener</u>
 <u>mejoras</u> y se habrá encontrado la solución óptima

La aplicación del método Simplex se desarrolla a través de las siguientes etapas:

Trabajaremos con el ejemplo de producción de componentes informáticos:

MAXIMIZAR
$$Z = 3x1 + 5x2$$

Sujeto a
 $x1 \le 4$
 $2x2 \le 12$
 $3x1 + 2x2 \le 18$
 $x1, x2 \ge 0$

- La aplicación del método simplex en forma de tablas implica:
 - 1. Expresar el modelo en forma estándar
 - 2. Construir la tabla simplex y mostrar las soluciones básicas obtenidas en forma tabular

1. Pasar el modelo a forma estándar introduciendo las correspondientes variables de holgura:

Max
$$Z = 3x1 + 5x2$$

 $x1 + x3 = 4$
 $2x2 + x4 = 12$
 $3x1 + 2x2 + x5 = 18$
 $xj \ge 0$, para $j=1,2,3,4,5$

2. Construir la tabla simplex y mostrar las soluciones básicas obtenidas en forma tabular:

E1:
$$x1+0x2+x3+0x4+0x5 = 4$$

E2:
$$0x1+2x2+0x3+x4+0x5 = 12$$

E3:
$$3x1 + 2x2 + 0x3 + 0x4 + x5 = 18$$

$$E4: -Z + 3x1 + 5x2 = 0$$

Condiciones de la Tabla Simplex:

- •Cada VBásica (**VB**) aparece con coeficiente no cero en una y sólo una de las ecuaciones.
- •En la ecuación en la que la VB aparece con coeficiente no cero, su coeficiente es 1
- Cada ecuación contiene sólo 1 VB con coeficiente 1 (para el resto será 0)
- •El valor de la función objetivo, Z, aparece sólo en la ultima ecuación y con coeficiente -1

2. Construir la tabla simplex y mostrar las soluciones básicas obtenidas en forma tabular:

E1:
$$x1+0x2+x3+0x4+0x5 = 4$$

E2: $0x1+2x2+0x3+x4+0x5 = 12$
E3: $3x1+2x2+0x3+0x4+x5 = 18$
E4: $-Z+3x1+5x2 = 0$

Condiciones de la Tabla Simplex:

- •Cada VBásica (**VB**) aparece con coeficiente no cero en una y sólo una de las ecuaciones.
- •En la ecuación en la que la VB aparece con coeficiente no cero, su coeficiente es 1
- Cada ecuación contiene sólo 1 VB con coeficiente 1 (para el resto será 0)
- •El valor de la función objetivo, Z, aparece sólo en la última ecuación y con coeficiente -1

Solución básica factible inicial (SB₀): todas las variables decisión igual a 0

- La ventaja de esta tabla es que permite disponer de la solución de forma inmediata. En particular, sabiendo que las Variables No Básicas (VNB) son igual a 0, el valor de las VB es el del segundo miembro de las ecuaciones.
- ▶ En nuestro ejemplo, cuando x1=x2=0, se determina fácilmente por observación que la solución es x3=4, x4=12, x5=18 y -z=0.
- ▶ En las sucesivas iteraciones del Simplex, se deben mantener estas mismas características, i.e., las VB siempre deben tener asociada la matriz identidad de modo que se disponga del valor de las mismas de forma inmediata.

Interpretación de los coeficientes en la Tabla Simplex: describen el efecto sobre cada VB al incrementar una VNB

- El coeficiente reducido de la función objetivo (C_j-Z_j) asociado a la variable x_j siempre representa la variación de la función objetivo por unidad de dicha variable (no básica) que entre en la base. Si es positivo aumentará el valor de la función objetivo, si es negativo disminuirá dicho valor
- El coeficiente reducido de las variables básicas siempre es cero
- Los C_i-Z_i en la solución óptima tienen una interpretación especial:
 - Asociados a <u>variable de holgura</u>: coste de oportunidad de la restricción asociada
 - Asociado a <u>variable decisión</u>: coste reducido

... Para cada SBFactible, la pregunta es: Esta solución, ¿es óptima?

PRUEBA DE OPTIMALIDAD: Criterio de la Función Objetivo = MAX

$$VNB = x1, x2$$

Tabla SB₀

V.BÁSICAS	x1	x2	х3	х4	х5	bi
х3	1	0	1	0	0	4
x4	0	2	0	1	0	12
х5	3	2	0	0	1	18
Cj-Zj	3	5	0	0	0	0

NO es solución óptima → ITERACIÓN (SB adyacente)

$$JE = x2$$

PRUEBA DE OPTIMALIDAD: ¿Esta solución es óptima?

$$Z = 3 x1 + 5 x2$$

■ El Cj-Zj de las variables no básicas (x_1, x_2) da la tasa de variación de Z si aumentara el valor de esa variable. Esas tasas de variación son positivas.

De hecho,

- □ si x_1 = 1 la función objetivo aumenta en 3
- = si $x_2 = 1$ la función objetivo aumenta en 5
- Por tanto, pueden existir puntos extremos con mejor valor de Z → el punto O NO es solución óptima

ITERACIÓN

PASO 1: Determinar la dirección de movimiento (Variable que ENTRA EN LA BASE: JE)

- □ Variables candidatas: (x_1, x_2)
- Tasa de cambio de Z:

$$Z = 3x1 + 5x2$$

- □ ¿aumento de x_1 ? Tasa de mejora en Z=3
- \square ¿aumento de x_2 ? Tasa de mejora en Z=5
- \square 5>3, por tanto se elige x_2 para aumentar Z

$$JE = x_2$$

PASO 2: ...¿Cuánto puede incrementarse una VNB?

! IS?

Tabla SB₀

V.BÁSICAS	x1	x2	х3	х4	х5	bi
х3	1	0	1	0	O	4
x4	0	2	0	1	0	12
x 5	3	2	0	0	1	18
Cj-Zj	3	5	0	0	0	0

Al modificar (aumentar) x₂ (**x1=0**) <u>cambia</u> en general <u>el valor de las variables básicas</u>:

(1)
$$x1 + x3 = 4$$
 $x3=4$

(2)
$$2x^2 + x^4 = 12$$
 $x^4 = 12 - 2x^2 \leftarrow 15$

(3)
$$3x1 + 2x2 + x5 = 18 x5=18-2x2$$

Para determinar la variable que sale de la base (IS) calculamos en una columna adicional el cociente:

 bi/α_{ij}^+ : número de unidades de xj que deben entrar en la base para que xi sea cero

V.BÁSICAS	x 1	x2	х3	x4	x5	bi	_ bi/α _{ij} +
х3	1	0	1	0	0	4	_ , -
x4	0	2	0	1	0	12	12/2 ← IS
x 5	3	2	0	0	1	18	18/2
Cj-Zj	3	5	0	0	0	0	_
		JE				θxj= m	— in <mark>bi</mark> , ∀αij>0

¿POR QUÉ NO SE HA CALCULADO EL COCIENTE bi/ α_{ij}^+ CORRESPONDIENTE A x3?

Para determinar la variable que sale de la base (IS) calculamos en una columna adicional el cociente:

bi/α_{ij}⁺ : número de unidades de xj que deben entrar en la base para que xi sea cero

V.BÁSICAS	x1	x2	х3	x4	x 5	bi	_ bi/α _{ij} +
х3	1	/0/		0	O	4	_ ·
x4	0	2	0	1	0	12	12/2 ← IS
x5	3	2 K	0	0	1	18	18/2
Cj-Zj	3 /	5	<u>\</u> 0	0	0	0	_
P	Pivote	JE	Sen	nipivote			

- La nueva Solución Básica (SB) debe estar en forma canónica
- Aplicando:

$$\alpha^{1}_{IS,j} = \alpha^{0}_{IS,j} / \alpha^{0}_{IS,JE} = \alpha^{0}_{IS,j} / \text{PIVOTE}$$

$$\alpha^{1}_{i,j} = \alpha^{0}_{i,j} - \text{SEMIPIVOTE} * \alpha^{1}_{IS,j}$$

se obtiene la nueva solución básica que se muestra en la siguiente tabla simplex:

Tabla SB₁

V.BÁSICAS	x1	x2	х3	x4	х5	bi
х3	1	0	1	0	0	4
x2	0	1	0	1/2	0	6
x5	3	0	0	-1	1	6
Cj-Zj	3	0	0	-5/2	0	-30

■ ITERACIÓN 2:

VNB = x1, x4

Tabla SB₁

V.BÁSICAS	x1	x2	х3	x4	x 5	bi	bi/α _{ij} +
х3	A	0	1	0	0	4	4/1
x2	0		0	1/2	0	6	_
x5	(3)	0	0	-1	1	6	6/3
Cj-Zj	3	0	0	-5/2	0	-30	

JE: x1 y **IS: x5**

■ ITERACIÓN 3:

Tabla SB₂

V.BÁSICAS	x1	x2	х3	х4	х5	bi
х3	0	0		1/3	-1/3	2
x2	0	1	0	1/2	0	6
x 1	1	0	0	-1/3	1/3	2
Cj-Zj	0	0	0	-3/2	-1	-36

(∀ Cj-Zj asociado a VNB ≤ 0 [MAX])

SOLUCIÓN ÓPTIMA

SOLUCIÓN: producir 2 lotes de placas base tipo 1 y 6 lotes de placas base tipo 2 con un beneficio de 36 miles de euros

V.BÁSICAS	x1 x2	x3 x4	x5 bi
х3	0 0	1 1/3	-1/3 2
x2	0 1	0 1/2	0 6
x1	1 0	0 -1/3	1/3 2
Cj-Zj	0 0	0 -3/2	-1 -36

- CRITERIO PARA ELEGIR LA VARIABLE QUE ENTRA EN LA BASE (JE)
 - La variable que entra en la base es aquella VNB tal que:

Maximización: $Max(C_i - Z_i)$, $\forall (C_i - Z_i) > 0$

Minimización: $Min(C_i-Z_i)$, $\forall (C_i-Z_i) < 0$

 Cuando en una iteración no existe ningún coeficiente reducido positivo (caso Max.) no podremos mejorar más el valor de la función objetivo

CRITERIO DE LA VARIABLE QUE SALE DE LA BASE (Independiente del criterio de la F.O.)

Dados los α_{ij} de la variable no básica (x_j) que entra en la base, la variable básica que sale (x_i) es aquella que satisface:

$$\theta x j = min \frac{valor de la variable basica xi}{\alpha i j}, \forall \alpha i j > 0$$

y θ_{xj} es el valor de x_j en la nueva solución

3.8 Algoritmo Simplex en forma de tablas

CRITERIO DE OPTIMALIDAD (maximización)

Una solución básica factible es óptima si: (Cj - Zj) ≤ 0 ∀ Variable No Básica

En minimización, (Cj-Zj) ≥ 0 ∀ VNB

3.8 Algoritmo Simplex en forma de tablas

Ejercicio Propuesto:

 Calcular la solución óptima del siguiente programa lineal aplicando el método simplex con tablas.

```
MAXIMIZAR Z = 600x1 + 900x2
s.a:
x1 + 2x2 \le 200
1/2x1 + x2 \le 175
x1, x2 \ge 0
```

en la tabla de la solución óptima identificar los costes de oportunidad y los costes reducidos y comentar su significado

3.8 Algoritmo Simplex en forma de tablas

EJERCICIO PROPUESTO:

 Calcular la solución óptima del siguiente programa lineal aplicando el método simplex con tablas.

$$MAXIMIZAR Z = 600x1 + 1200x2$$

s.a:
$$x1 + 2x2 \le 200$$

 $1/2x1 + x2 \le 175$
 $x1, x2 \ge 0$

en la tabla de la solución óptima identificar los costes de oportunidad y los costes reducidos y comentar su significado. La solución óptima, ¿presenta alguna característica particular?¿Cuál? Justificar la respuesta.

Al calcular la solución óptima mediante el algoritmo Simplex con tablas:

- ¿es necesario realizar todos los cálculos en cada iteración del algoritmo?
- ¿es necesario tener almacenada en memoria toda la información de la tabla Simplex actual?

Veamos qué información ha sido utilizada en cada iteración del problema ejemplo (sombrearemos la información necesaria):

SBo

V.BÁSICAS	x 1	x2	х3	x4	x5	bi	_ bi/α _{ij} +
х3	1	0	1	0	0	4	-
x4	0	2	0	1	0	12	12/2 ← IS
x5	3	2	0	0	1	18	18/2
Cj-Zj	3	5	0	0	0	0	
		<u> </u>				•	_
		JE					

SB₁

V.BÁSICAS	x1	x2	х3	x4	x5	bi	bi/α _{ij} +
х3	1	0	1	0	0	4	4/1
x2	0	1	0	1/2	0	6	-
x5	3	0	0	-1	1	6	6/3
Cj-Zj	3	0	0	-5/2	0	-30	

SB₂

V.BÁSICAS	x1	x2	х3	x4	х5	bi
x3	0	0	1	1/3	-1/3	2
x2	0	1	0	1/2	0	6
x1	1	0	0	-1/3	1/3	2
Cj-Zj	0	0	0	-3/2	-1	-36

- Necesitamos:
 - Valor de las VBasicas en la SB actual
 - ▶ Valor de la F.O. en la SB actual
 - Cj-Zj de las VNB para determinar si la SB actual es S.Óptima
 - Columna JE para determinar la variable que sale de la base (IS)

¿Cómo calcular los datos necesarios en cada iteración?

Sea un modelo de PL expresado en forma matricial:

Max Z =
$$c^t$$
 x
s.a: A x = b
x ≥ 0

Nomenclatura del Simplex Revisado:

x_B = Vector de variables básicas

ct_B = Coeficientes en la función objetivo asociados a variables básicas

 \mathbf{x}_{NR} = Vector de variables no básicas

c^t_{NB} = Coeficientes en la función objetivo asociados a variables no básicas

B = Matriz cuyas columnas son los vectores de coeficientes técnicos asociados a variables básicas

NB=Matriz cuyas columnas son los vectores de coeficientes técnicos asociados a variables no básicas

Entonces, dado el modelo expresado en forma matricial:

Max Z =
$$c_B^t x_B + c_{NB}^t x_{NB}^t$$

s.a:
B $x_B + NB x_{NB} = b$
 $x_B, x_{NB} \ge 0$

¿Cómo calcular la información necesaria en cualquier solución básica?

Aplicamos la anterior formulación al modelo ejemplo:

```
Max Z = 3x1 + 5x2

s.a:

x1 + x3 = 4

2x2 + x4 = 12

3x1 + 2x2 + x5 = 18

x1, x2, x3, x4, x5 \ge 0
```


En forma matricial:

Max Z =
$$c^t \cdot x = (3, 5, 0, 0, 0) \cdot \begin{cases} x^2 \\ x^3 \\ x^4 \\ x^5 \end{cases}$$

s.a:

Ax = **b**
$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}; a_2 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}; a_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; a_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; a_5 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

¿Cómo calcular el valor de una solución: X_B?

En cualquier solución, B x_B + NB x_{NB} = b

si multiplicamos ambos lados de las restricciones por B-1:

$$B^{-1} B x_B + B^{-1} NB x_{NB} = B^{-1} b$$

¿Cómo calcular el valor de una solución: X_B?

En cualquier solución, B x_B + NB x_{NB} = b

si multiplicamos ambos lados de las restricciones por B-1:

$$B^{-1} B x_B + B^{-1} NB x_{NB} = B^{-1} b$$

como (B^{-1} B) = I, entonces

¿Cómo calcular el valor de una solución: X_B?

En cualquier solución, B x_B + NB x_{NB} = b

si multiplicamos ambos lados de las restricciones por B-1:

$$B^{-1} B x_B + B^{-1} NB x_{NB} = B^{-1} b$$

como (B^{-1} B) = I, entonces

$$X_B + B^{-1} NB X_{NB} = B^{-1} b$$

¿Cómo calcular el valor de una solución: X_B?

En cualquier solución, B x_B + NB x_{NB} = b

si multiplicamos ambos lados de las restricciones por B-1:

$$B^{-1} B x_B + B^{-1} NB x_{NB} = B^{-1} b$$

como ($B^{-1} B$) = I, entonces
 $X_B + B^{-1} NB x_{NB} = B^{-1} b$

¿Cómo calcular el valor de una solución: X_B?

En cualquier solución, B x_B + NB x_{NB} = b

si multiplicamos ambos lados de las restricciones por B-1:

$$B^{-1}$$
 B x_B + B^{-1} NB x_{NB} = B^{-1} b
como (B^{-1} B) = I, entonces
 X_B + B^{-1} NB x_{NB} = B^{-1} b
como x_{NB} =0, entonces (B^{-1} NB x_{NB})= 0

 Por tanto, el valor de las variables básicas de cualquier solución, se puede calcular según:

$$X_B = B^{-1} b$$

¿Cómo calcular los α_{ij} asociados a la variable que entra en la base (y_{if}) ?

 Consideremos la solución obtenida en la segunda tabla del Simplex del problema ejemplo (SB₁):

V.BÁSICAS	x1	x2	х3	x4	x 5	bi	bi/α _{ij} +
х3	1	0	1	0	0	4	4/1
x2	0	1	0	1/2	0	6	-
x5	3	0	0	-1	1	6	6/3
Cj-Zj	3	0	0	-5/2	0	-30	

$$VB = (x3, x2, x5)$$

Según la nomenclatura del Simplex Revisado: (SB₁)

$$\mathbf{x}_{\mathsf{B}} = \begin{pmatrix} x3 \\ x2 \\ x5 \end{pmatrix}$$
 ; $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$; $\mathbf{x}_{\mathsf{NB}} = \begin{pmatrix} x1 \\ x4 \end{pmatrix}$; $\mathsf{NB} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 0 \end{pmatrix}$

Calculamos B⁻¹ (con dimensión mxm), y obtenemos:

$$\mathsf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

Siguiendo la nomenclatura del Simplex Revisado,
 SB₁ se puede expresar:

$$X_B + B^{-1} NB X_{NB} = B^{-1} b$$

$$\begin{pmatrix} x3 \\ x2 \\ x5 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x1 \\ x4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix}$$

$$\begin{pmatrix} x3 \\ x2 \\ x5 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x1 \\ x4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix}$$

$$\begin{pmatrix} y_{x1} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} ; y_{x4} = \begin{pmatrix} 0 \\ 1/2 \\ -1 \end{pmatrix}$$

■ Entonces, ¿Cómo calcular y_{x1}?:

¿Cómo calcular c_i-z_i ?:

c_i es conocido siempre

$$z_{j} = \sum_{i=1}^{m} c_{i} \alpha_{ij}$$

$$z_{j} = c_{B}^{t} y_{j} = (c_{B}^{t} B^{-1}) a_{j}$$

Común para todo z_i

¿Cómo calcular Z ?:

$$Z = c^t_B x_B$$

Resumen Simplex Revisado:

Con B-1, b, a_j y c (datos originales del problema) y sabiendo cuales son las variables básicas de la solución a estudiar (punto extremo):

El valor de las variables básicas:

$$X_{B} = B^{-1} b$$

Prueba de optimalidad (c_i-z_i):

$$z_j = c_B^t y_j = (c_B^t B^{-1}) a_j$$

El vector y_{JF} asociado a la variable que entra en la base:

$$Y_{JE} = B^{-1} a_j$$

Valor de la Función Objetivo:

$$Z = C_B^t X_B$$

Complejidad Simplex Revisado:

La complejidad del algoritmo simplex aumenta al aumentar el número de restricciones

¡ Sólo necesitamos tener almacenada B-1!

¡ El resto de datos se calculan a partir de B-1 y los datos originales del modelo!

Ejemplo: Modelo con 50 Variables y 10 Restricciones (≤)

Modelo en forma estándar:

60 Variables (Decisión + Holgura)

10 Ecuaciones

SIMPLEX:

Número de α ij = 600 datos reales

SIMPLEX REVISADO:

 $B_{10X10}^{-1} \rightarrow 100$ datos reales

Algoritmo Simplex Revisado:

- O. Solución básica factible inicial (SB₀)
- 1. Prueba de optimalidad:

Calcular c_i-z_i ∀ variable no básica

Si solución óptima: → FIN

En otro caso: Seleccionar JE

- Calcular y_{JE}
- 3. Selectionar IS \rightarrow min $\{\frac{\mathcal{X}_{B}}{\mathcal{Y}_{JE}}\}$
- Cambio de base: Actualizar B⁻¹; calcular X_B, Calcular Z
 Ir al paso 1

- Aplicaremos el algoritmo Simplex Revisado al problema ejemplo:
- Modelo en forma estándar:

Max
$$Z = 3x1 + 5x2$$

s.a:
 $x1 + x3 = 4$
 $2x2 + x4 = 12$
 $3x1 + 2x2 + x5 = 18$
 $x1, x2, x3, x4, x5 \ge 0$

Solución Básica inicial (SB₀) – Punto O:

Variables básicas:
$$x_B = \begin{pmatrix} x3 \\ x4 \\ x5 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_B = B^{-1} b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix}$$

$$z_o = c_B^t x_B = (0, 0, 0) \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} = 0$$

Tabla Simplex Revisado SB₀

v.básicas		B-1		X _B
x3	1	0	0	4
x4	0	1	0	12
x5	0	0	1	18
Ct _B B-1	0	0	0	Z = 0

Prueba de optimalidad SB₀:

Calcular c_i - $z_i \forall$ variable no básica $\rightarrow x1,x2$

$$\mathbf{z}_{j} = \mathbf{c}^{t}_{B} \, \mathbf{y}_{j} = (\mathbf{c}^{t}_{B} \, \mathbf{B}^{-1}) \, \mathbf{a}_{j} \\
\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \rightarrow \quad \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
\mathbf{c}^{t}_{B} \, \mathbf{B}^{-1} = (0, 0, 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (0, 0, 0) \\
\mathbf{z}_{x1} = (0, 0, 0) \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = 0; \qquad \mathbf{z}_{x2} = (0, 0, 0) \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 0$$

$$\mathbf{c}_{x2} - \mathbf{z}_{x3} = 3 - 0 = 3 \quad \mathbf{c}_{x3} = 5 - 0 = 5$$

$$c_{x1}-z_{x1} = 3-0 = 3$$
; $c_{x2}-z_{x2} = 5-0 = 5$

2. Calcular y_{x2} :

$$y_{x2} = B^{-1} a_{x2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$

3. Selectionar IS \rightarrow min $\{\frac{\mathcal{X}_{B}}{\mathcal{Y}_{JE}}\}$

Tabla Simplex Revisado SB₀

v.básicas		B-1		X _B	y _{x2}	$\frac{x_B}{y_{x2}}$	
x3	1	0	0	4	0		
x 4	0	1	0	12	2	12/2	$\textbf{IS} \rightarrow \textbf{X4}$
x5	0	0	1	18	2	18/2	
ct _B B-1	0	0	0	Z = 0		-	

4. Cambio de base: Actualizar B-1 para nueva base:

$$\mathbf{X_B} = \begin{pmatrix} x3 \\ x2 \\ x5 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

4. Cambio de base: Actualizar B-1 para nueva base:

$$\mathbf{X}_{\mathbf{B}} = \begin{pmatrix} x3 \\ x2 \\ x5 \end{pmatrix}; \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{pmatrix} \qquad \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

Cálculo de B⁻¹ de la nueva solución, mediante las fórmulas del cambio de base aplicadas a B⁻¹ anterior:

$$\mathbf{B^{-1}_{anterior}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad \mathbf{y_{x2}} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \leftarrow \begin{array}{c} Semipivote \\ \leftarrow Pivote \\ \leftarrow Semipivote \\ \end{array}$$

Cálculo de la segunda fila:

$$\frac{0}{2} \frac{1}{2} \frac{0}{2} = 0$$
 1/2 0

- Cálculo de la primera fila
 Cálculo de la tercera fila

Entonces, la nueva SB es:

$$x_{B} = B^{-1} b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix}$$

Tabla Simplex Revisado SB₁

v.básicas		B-1		X _B
x3	1	0	0	4
x2	0	1/2	0	6
x5	0	-1	1	6
ct _B B-1	0	5/2	0	Z = 30

$$Z_1 = c_B^t x_B = (0, 5, 0) \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix} = 30$$

Prueba de optimalidad SB₁:

Calcular c_i - $z_i \forall$ variable no básica \rightarrow x1, x4

$$z_j = c_B^t y_j = (c_B^t B^{-1}) a_j$$

$$C_B^t B^{-1} = (0, 5, 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} = (0, 5/2, 0)$$

$$c_{B}^{t} B^{-1} = (0, 5, 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} = (0, 5/2, 0)$$

$$z_{x1} = (0, 5/2, 0) \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = 0; \qquad z_{x4} = (0, 5/2, 0) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 5/2$$

$$c_{x1}-z_{x1} = 3-0 \neq 3;$$

$$c_{x4}-z_{x4} = 0-5/2 = -5/2$$

La solución actual NO es óptima

Es posible mejorar todavía el valor de la función objetivo

$$JE \rightarrow X1$$

2. Calcular y_{x1}

$$y_{x1} = B^{-1} a_{x1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

3. Selectionar IS $\rightarrow \min \{\frac{\mathcal{X}_{B}}{\mathcal{Y}_{JE}}\}$

Tabla Simplex Revisado SB₁

v.básicas		•		XB	y _{x1}	x_R
		B ⁻¹				$\frac{D}{y_{x1}}$
x3	1	0	0	4	1	4
x2	0	1/2	0	6	0	_
x5	0	-1	1	6	(3)	6/3
c ^t _B B ⁻¹	0	5/2	0	Z = 30		

$$Z_1 = \mathbf{c}^{t_B} \mathbf{x}_B = (0, 5, 0) \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix} = 30$$

$$IS \rightarrow X5$$

4. Cambio de base: Actualizar B-1 para nueva base

$$\mathbf{x_B} = \begin{pmatrix} x3 \\ x2 \\ x1 \end{pmatrix}; \quad \mathbf{B^{-1}_{anterior}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

aplicando las fórmulas del cambio de base:

$$\mathbf{B}^{-1}_{\text{para la nueva SB}} = \begin{pmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{pmatrix}$$

$$x_B = B^{-1} b =$$

$$\begin{bmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{bmatrix} \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}$$

Entonces, la SB₂ es:

v.básicas				XB
		B ⁻¹		
x3	1	1/3	-1/3	2
x2	0	1/2	0	6
x1	0	-1/3	1/3	2
				Z = 36

$$Z_2 = \mathbf{c}_B^t \mathbf{x}_B = (0, 5, 3) \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} = 36$$

Criterio de optimalidad SB₂

Calcular c_{i} - z_{i} \forall variable no básica \rightarrow x4, x5 $z_i = c_B^t y_i = (c_B^t B^{-1}) a_i$

$$\mathbf{c^{t}_{B}} \; \mathbf{B^{-1}} = (\mathbf{0}, \, \mathbf{5}, \, \mathbf{3} \,) \begin{pmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{pmatrix} = (\mathbf{0}, \, \mathbf{3/2}, \, \mathbf{1})$$

$$z_{x4} = (0, 3/2, 1) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 3/2;$$
 $z_{x5} = (0, 3/2, 1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 1$
 $c_{x4}-z_{x4} = 0 - 3/2 = -3/2;$ $c_{x5}-z_{x5} = 0-1 = -1$

$$c_{x4}-z_{x4}=0-3/2=-3/2$$
;

$$c_{x5}$$
- z_{x5} = 0-1 = -1

LA SOLUCIÓN ACTUAL ES SOLUCIÓN ÓPTIMA $(cj-zj\leq 0, \forall xj NB)$

Interpretación Solución Óptima:

v.Básicas		B-1		X _B
X3	1	1/3	-1/3	2
x2	0	1/2	0	6
x1	0	-1/3	1/3	2
ct _B B ⁻¹	0	3/2	1	Z = 36

$$c_{x4}-z_{x4} = 0 - 3/2 = -3/2;$$
 $c_{x5}-z_{x5} = 0-1 = -1$

$$c_{x5}$$
- z_{x5} = 0-1 = -1

Los departamentos 2 y 3 (calidad y montaje) son los recursos escasos de la empresa ya que en la solución óptima se utilizan por completo sus capacidades (x4=x5=0, son VNB).

A los recursos escasos les corresponde en general un coste de oportunidad $\neq 0$, en este caso:

- C.O. depto. 2: c_{x4} - z_{x4} = c_{x4} c_{B}^{t} B⁻¹ a_{x4} = -3/2, (restricción \leq), C.O. = +3/2 "el valor de la F.O. mejorará (aumentará) en 3/2 por unidad adicional de capacidad depto.2"
- C.O. depto. 3: c_{x5} - z_{x5} = c_{x5} c_B^t $B^{-1}a_{x5}$ = -1 \rightarrow **C.O.=+1** (idem depto.2)
- El departamento 1 (producción) es de holgura en la solución óptima. C.O.=0

Ejercicio Propuesto:

 Calcular la solución óptima del siguiente programa lineal aplicando el método simplex revisado

MAXIMIZAR
$$Z = 600x1 + 900x2$$

s.a.
 $x1 + 2x2 \le 200$
 $1/2x1 + x2 \le 175$
 $x1, x2 \ge 0$

en la solución óptima identificar los costes de oportunidad y los costes reducidos

¿Cuál sería la solución óptima si el departamento 3 incrementara en 3 unidades su capacidad? ¿y en el caso de incrementarla en 9 unidades?

 A partir de la tabla de la solución óptima es posible responder a estas cuestiones.

[depto.3]
$$3 X_1 + 2 X_2 + x5 = 18$$

bi_{actual} Depto. 3 = 18; bi_{nuevo} Depto. 3 = 21

v.básicas		B ⁻¹		X _B
x3	1	1/3	-1/3	2
x2	0	1/2	0	6
x1	0	-1/3	1/3	2
ct _B B-1	0	3/2	1	Z = 36

La modificación de un bi no afecta a la optimalidad pero sí puede afectar a la factibilidad, por tanto debemos recalcular x_B cuando b₃=21 y comprobar si la solución sigue siendo factible (y por tanto óptima).

$$\mathbf{x}_{\mathsf{B}} = \begin{pmatrix} x3 \\ x2 \\ x1 \end{pmatrix} = \mathsf{B}^{-1} \; \mathsf{b} = \begin{pmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 4 \\ 12 \\ 21 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$$

$$Z = c_B^t x_B = (0, 5, 3) \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix} = 39$$

... ¿y si b3 se incrementa en 9 unidades?

La modificación implica que el bi del departamento 3 cuyo valor inicial es 18 pase a ser 27:

$$b3 \rightarrow b3 + \Delta 9$$

La modificación de un bi no afecta a la optimalidad (c_j-c_BtB-1a_j no varía) pero sí puede afectar a la factibilidad.

Por tanto debemos recalcular x_B cuando $b_3=27$ y comprobar si la solución sigue siendo factible (y por tanto óptima) $\begin{pmatrix} x_3 \end{pmatrix} \begin{pmatrix} x_4 \end{pmatrix} \begin{pmatrix} x$

$$\mathbf{x}_{\mathsf{B}} = \begin{pmatrix} x3 \\ x2 \\ x1 \end{pmatrix} = \mathsf{B}^{-1} \; \mathsf{b} = \begin{pmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 4 \\ 12 \\ 27 \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \\ 5 \end{pmatrix}$$

SOLUCIÓN NO FACTIBLE (b3=27)

¿es posible alcanzar la <u>factibilidad</u> a partir de esta solución?

ALGORITMO SIMPLEX DUAL

▶ OBJETIVO: a partir de una SB que cumple el criterio de optimalidad primal y es no factible, encontrar una $SB_{adyacente}$ factible $(x_B \ge 0)$

- Variante del Algoritmo Simplex que se aplica para reoptimizar un problema cuando:
 - Se ha modificado algún parámetro del modelo que ha hecho que la solución óptima haya dejado de ser factible.
- Se diferencia del algoritmo Primal del Simplex en el orden en el que se escoge la variable que entra y la variable que sale en la solución básica.

Algoritmo Simplex:

Algoritmo Simplex Primal: 10: JE

2°: **IS**

3º: Cambio de base

Algoritmo Simplex Dual: 1°: IS

2°: JE

3º: Cambio de base

ALGORITMO SIMPLEX DUAL

- PASOS:
 - 1. Determinar variable IS: sale de la base la variable con bi más negativo:

IS:
$$x_i / b_{xi} = min\{ bi | bi < 0 \}$$

 Determinar variable JE: para conseguir que la factibilidad mejore y que el valor de la función objetivo empeore lo menos posible, se seleccionará para entrar en la base una variable xj cuyo y_{ii} < 0 tal que:

JE:
$$x_i / \left| \frac{C_{x_i} - Z_{x_i}}{y_{x_i}} \right| = \min_{1 \le k \le n} \left\{ \left| \frac{C_{x_k} - Z_{x_k}}{y_{x_k}} \right| \mid y_{x_k} < 0 \right\}$$

(Con el módulo se permite definir un único criterio para maximizar o minimizar)

3. Cambio de base: \rightarrow Actualizar B⁻¹;

Calcular nueva solución: x_B, Z

En el caso de no existir alguna VNB con valor estrictamente negativo en la fila de la variable que sale, el problema que estamos tratando de resolver es no factible

□ CRITERIO DE OPTIMALIDAD (dual)

Una solución x_B es óptima si es factible ($x_i \ge 0 \ \forall i$)

Aplicando el algoritmo dual del simplex a la tabla de la solución óptima (cuando b3=27):

v.básicas		B-1		X _B
х3	1	1/3	-1/3	-1
x2	0	1/2	0	6
x 1	0	-1/3	1/3	5
ct _B B-1	0	3/2	1	Z = 45

$$c_{x4}-z_{x4} = -3/2;$$
 $c_{x5}-z_{x5} = -1$

1. Elegir **IS**: $x_i / b_{xi} = min\{ bi | bi < 0 \}$

$$IS \rightarrow x3$$

2. Elegir JE:
$$x_j / \left| \frac{C_{x_j} - Z_{x_j}}{V_{x_j}} \right| = \min_{1 \le k \le n} \left\{ \left| \frac{C_{x_k} - Z_{x_k}}{V_{x_k}} \right| \mid y_{x_k} < 0 \right\}$$

Variables no básicas: $x_{NB} = \begin{pmatrix} x4 \\ x5 \end{pmatrix}$

$$y_{x4} = B^{-1} a_{x4} =$$

$$\begin{pmatrix}
1 & 1/3 & -1/3 \\
0 & 1/2 & 0 = \\
0 & -1/3 & 1/3
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
\begin{pmatrix}
1/3 \\
1/2 \\
-1/3
\end{pmatrix}$$

$$y_{x5} = B^{-1} a_{x5} = \begin{pmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 = \\ 0 & -1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} -1/3 \\ 0 \\ 1/3 \end{pmatrix}$$

$$JE \rightarrow x5$$

3. Cambio de base: Actualizar B⁻¹;

Calcular la nueva solución: X_B, Z

v.básicas		B-1		X _B
x5	-3	-1	1	3
x2	0	1/2	0	6
x 1	1	0	0	4
ct _B B-1	3	5/2	0	Z = 42
$c_{x3} - z_{x3} = -3$	$c_{x4}-z_{x4}=-5/2$			

4. Criterio de optimalidad (dual):

xi > 0 ∀i, por tanto la solución actual es SOLUCIÓN ÓPTIMA

Ejercicio Propuesto:

- La capacidad del Departamento 2 aumenta de 12 a 30 hrs.
- Obtener la S.O. y el valor de Z a partir de la S.O. del problema original aplicando el algoritmo simplex dual.

ETSInf-Ingeniería Informática

Ejercicios Propuestos

Obtener la solución óptima de los siguientes programas lineales aplicando el algoritmo simplex revisado:

a) Max Z =
$$5 \times 1 + 2 \times 2$$

s.a: $3 \times 1 + \times 2 <= 12$
 $\times 1 + \times 2 <= 5$
 $\times 1, \times 2 \ge 0$

SOLUCIÓN: x1=3.5; x2=1.5; Z = 20.5

b) Max Z = 24 x1 + 20 x2
s.a:
$$0.5 x1 + x2 \le 12$$

 $1.5 x1 + x2 \le 24$
 $x1, x2 \ge 0$

SOLUCIÓN: x1=12; x2=6; Z = 408

