Memory.

August 10, 2025

1 Notations and Definitions.

Consider a code with a 2-colorized (k-colorized) Tanner graph, such that any two left bits of the same color share no stabilizer (check). For a subset of bits S, we denote by S_{c_1} its restriction to color c_1 . We use the integer Δ to denote half of the stabilizers connected to a single bit. (We assume fixed left and right degree in the graph). Our computation is subjected to p-depolarized noise. We denote by m the block length of the code. The decoder works as follows:

- 1. Pick a random color.
- 2. For any (q)bit at that color, check if flipping it decreases the syndrome. If so, then flip it.

We say that a density matrix ρ , induced on the m-length block, is a **good noisy distribution** if:

- 1. ρ is subjected to q local stochastic noise.
- 2. Denote by S the support of an error occurring on ρ (S is a random variable). Then, with high probability¹, $|S_{c_1}| > \frac{1}{4}|S|$. ([COMMENT] See the comment in blue below, it gets complicated.)

Claim 1.1. Given density ρ , which is a **good noisy distribution**, then with high probability, after correction and noise accumulation, it will remain a **good noisy distribution**.

Figure 1: Illustration of the cycle.

1.1 Proof.

First, let's bound the probability that the error after the decoding round (E_2) is supported on S. (We use here the fact that views of the bits through their stabilizer don't overlap since we took only bits of the same color for the decoding):

$$\Pr\left[\operatorname{\mathbf{Sup}}\left(E_{2}\right)=S\right]\leq\Pr\left[\operatorname{any bit }v\in S_{c_{1}}\text{ sees majority of statisfied stabilizers }\right]\leq q^{\Delta\left|S\right|_{c_{1}}}$$

Now, for roughly analyzing the error after observing a round of p-depolarized noise, we consider a model in which new errors due to the depolarized channel don't correct previous errors. So we get:

¹I'm leaving specifying what it is to later.

Let's bound the right term:

$$\leq \sum_{S' \subset S \text{ and } |S'_{c_1}| \geq \frac{1}{4}|S'|} q^{\Delta |S'_{c_1}|} p^{|S/S'|} + \mathbf{Pr} \left[|S'_{c_1}| \geq \frac{1}{4}|S'| \right] \cdot 1$$

$$\leq \sum_{S' \subset S} q^{\Delta \frac{1}{4}|S'|} p^{|S/S'|} + \mathbf{Pr} \left[|S'_{c_1}| \geq \frac{1}{4}|S'| \right]$$

$$\leq \left(q^{\frac{1}{4}\Delta} + p \right)^{|S|} + \mathbf{Pr} \left[|S'_{c_1}| \geq \frac{1}{4}|S'| \right]$$

[COMMENT] Observes that for $\Pr\left[|S'_{c_1}| \geq \frac{1}{4}|S'|\right]$ being low, we might want the colorization c_1 to be made at random. Otherwise, S could be picked such that $S_{c_1} = \emptyset$ and therefore for any subset $S' \subset S$ it would also hold that $S'_{c_1} = \emptyset$.

So, it remains to show that property (2) still holds with high probability. The following is incorrect, yet almost correct. I want to say that a new error observed by the depolarized channel has to spread evenly on bits at color c_1 , and by concentration get that they are far away from $\frac{1}{4}$ with probability less than $\exp(-\varepsilon m)$.

Then, let $S^{t} = \mathbf{Sup}(E)$ at time t and denote by \mathcal{P}_{t} the probability that $|S_{c_{1}}^{t}| > \frac{1}{4}|S^{t}|$. Then:

$$\mathcal{P}_{t+1} \ge \mathbf{Pr} \left[|S_{c_1}^t| > \frac{1}{4} |S_t| \text{ and } |(S_{t+1}/S_t)_{c_1}| \ge \frac{1}{4} |S_{t+1}/S_t| \right]$$

$$\ge \mathcal{P}_t \cdot \left(1 - e^{-\varepsilon m}\right) \ge \mathcal{P}_0 \left(1 - e^{-\varepsilon m}\right)^{t+1}$$

$$\ge \mathcal{P}_0 \left(1 - (t+1)e^{-\varepsilon m}\right)$$

There is a problem with the assumption that the new error spreads uniformly across the colors. In particular, m should be taken as the untapped qubits, so it changes over time and might not contain qubits of color c_1 at all.