I worked with John Pharo on this worksheet. It took about five hours.

Solving Large Linear Systems of Equations

(A)

The script I wrote to allow you to read in A and b is load_data() in ws9.py. These return lists of the $A_{(i)}$ and $b_{(i)}$, where $A_{(i)}$ and $b_{(i)}$ come from file pair i. You can then inspect $A_{(i)}$ and $b_{(i)}$ by printing them (though some of these have millions of elements) or printing some of their elements. You can also query the sizes of $A_{(i)}$ and $b_{(i)}$, to make sure they are the right shape (if $A_{(i)}$ is $n \times n$ then b should be length n). And for LSE i to be solvable, $A_{(i)}$ must not be singular; i.e., $\det(A_{(i)}) \neq 0$. This is because it must be that the solution $x = A^{-1}b$; if A^{-1} does not exist then there is no solution. My code in Part A of ws9.py print out the sizes of the $A_{(i)}$ and the $b_{(i)}$ and determines whether or not the $A_{(i)}$ are singular. The output follows.

- $A_{-}(1)$ has shape (10, 10), while $b_{-}(1)$ has shape (10,).
- A_(1) is nonsingular (has nonzero determinant). The LSE can be solved.
- $A_{-}(2)$ has shape (100, 100), while $b_{-}(2)$ has shape (100,).
- A_(2) is nonsingular (has nonzero determinant). The LSE can be solved.
- $A_{-}(3)$ has shape (200, 200), while $b_{-}(3)$ has shape (200,).
- A_(3) is nonsingular (has nonzero determinant). The LSE can be solved.
- $A_{-}(4)$ has shape (1000, 1000), while $b_{-}(4)$ has shape (1000,).
- A_(4) is nonsingular (has nonzero determinant). The LSE can be solved.
- $A_{-}(5)$ has shape (2000, 2000), while $b_{-}(5)$ has shape (2000,).
- A_(5) is nonsingular (has nonzero determinant). The LSE can be solved.

One can see that the shapes of the $A_{(i)}$ and the $b_{(i)}$ are compatible and none of the $A_{(i)}$ are singular, therefore these LSEs are all solvable.

(B)

I implemented my own Gaussian elimination LSE solver in gauss_elim_solve() of ws9.py. I tested it on the LSE Ax = b with

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix}, \qquad b = \begin{pmatrix} 8 \\ -11 \\ 3 \end{pmatrix},$$

which has solution

$$x = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

The output of my driver code for this LSE is

Simple LSE:

A =

[[2 1 -1]

[-3 -1 2]

[-2 1 2]]

b =

[[8]

[-11]

[-3]]

```
Solution: x =
[[ 2.]
  [ 3.]
  [-1.]]
Time elapsed: 0.118 ms
```

My solver produces the correct output for this LSE.

I then ran my solver on the five provided LSEs; the timing information follows:

```
For the five given LSEs, the times required were: #1 0.646 ms #2 65.088 ms #3 251.003 ms #4 8214.902 ms #5 40681.824 ms (C)
```

decomposition. When using this solver on the five given LSEs, the following timing information results:

For the five given LSEs, the times required were: #1 0.040 ms #2 0.200 ms #3 0.399 ms #4 31.280 ms #5 198.421 ms

One can see that for the larger LSEs (higher numbered), NumPy's solver works about two orders of magnitude faster than my solver.

The only straightforward NumPy LSE solver I could find was numpy.linalg.solve(). It works by LU