

Digital Communications Short Introduction (more details in moodle)

- 1) Definitions
- 2) Propagation channel
- 3) Elements of the communication channel
- 4) Performance criteria

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

Basic digital transmission channel

Transmit a given bit rate Rb = Number of bits to be transmitted per second.

DVB example: BER<10⁻¹⁰, (QEF transmission) $Rb \sim 30 \text{ à } 40 \text{ Mbps}$

Analog signal: sound, image ... **Digitization** Binary information to transmit: 0 1 1 0 0 1 0 1 1 0 **Transmitter** В A S **Analog signal** C **Propagation channel** C Н **Corrupted analog signal** Example: N N Е Receiver BER = 4/10Received Binary information: 0 1 0 1 0 1 1 1 1 1 1

2

Obtain a given Bit Error Rate:

BER = Number of erroneous bits Number of transmitted bits

Basic digital transmission channel

Propagation channel: Additive noise

→ Additive noise: example of free space propagation

- → Other signals received in addition to the useful communication signal.
 - Coming from natural sources: atmosphere (storm, lightning, thunder), earth, sky (sun, milky way)
 - Coming from artificial sources: human activity.
- → Electronic devices in the receiver: amplifiers, antenna, etc.

→ Examples of introduced distorsions

Examples:

NRZ-type transmitted signal

Transmitted image

Noisy signal, $SNR_{dB} = 10 \text{ dB}$

Received image, SNR_{dB} = 10 dB

Noisy signal, $SNR_{dB} = 0 dB$

Received image, SNR_{dB} = 0 dB

Propagation channel One or several paths between the transmitter and the receiver

- Only one path: the line of sight (LOS) between the transmitter and the receiver

Several paths between the transmitter and the receiver (« multi-paths » channel)

Propagation channel: model

Mais aussi canal non stationnaire, sélectif en temps ... (voir en 2A)

Propagation channel

Example of a frequency selective channel: DTV (DVB-T) transmission

Example of distorsions introduced by a frequency selective channel

Basic digital transmission channel: synchronization

Basic digital transmission channel: performance criteria

Digital Communications

Baseband Modulation/Demodulation: joint optimization

- Signal generation => Spectral efficiency
- 2) Inter Symbol Interference(ISI) => Nyquist criterion
- 3) Noise influence => Matched filtering
- 4) BER computation => Power efficiency

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

Some signal examples

General model

Symbol rate = number of symbols transmitted per seconds:

Example (NRZ, M=4):

Example on Matlab

Generation of a polar NRZ

```
%Symbol duration in number of samples
Ns=4;
%Number of generated bits
nb bits=100;
%Bit generation
bits=randint(1,nb bits);
%Symbol generation: 0->-1, 1->1
Symboles=2*bits-1;
%Weighted Dirac delta function series
Diracs=kron(Symboles, [1 zeros(1,Ns-1)]);
%Shaping filter impulse response (for NRZ)
h=ones(1,Ns)
%Shaping filtering
y=filter(h,1,Diracs);
%Signal display
plot(y);
axis([0 nb bits-1 -1.5 1.5]);
```


QUESTION

The mapping and the shaping filter impulse response h(t) are:

Mapping: 0 -> -1, 1 -> +1

Mapping: 0 -> +1, 1 -> -1

Mapping: 0 -> -1, 1 -> +1

Not enough elements to answer

QUESTION

The symbol rate will be:

- The same as the bit rate
- Higher than the bit rate
- Lower than the bit rate
- Not enough elements to answer

General model

Baseband Pulse Amplitude Modulation: M-PAM = Linear Modulation, spectrum around frequency 0

$$S_{x}(f) = \frac{\sigma_{a}^{2}}{T_{s}}\left|H(f)\right|^{2} + 2\frac{\sigma_{a}^{2}}{T_{s}}\left|H(f)\right|^{2} \sum_{k=1}^{\infty} \mathfrak{Re}\left[R_{a}(k)e^{j2\pi fkT_{s}}\right] + \frac{\left|m_{a}\right|^{2}}{T_{s}^{2}} \sum_{k}\left|H\left(\frac{k}{T_{s}}\right)\right|^{2} \delta\left(f - \frac{k}{T_{s}}\right)$$

where:
$$\sigma_a^2 = E\left[|a_k - m_a|^2\right]$$
; $m_a = E\left[a_k\right]$; $R_a(k) = \frac{E\left[a_m^* a_{m-k}\right] - \left|m_a\right|^2}{\sigma_a^2}$

$$a_k \in \{\pm 1, \pm 3\}$$

Some spectrum examples

→ Two level NRZ (GPS waveform)

Some spectrum examples

→ <u>Biphase or Manchester (Ethernet waveform : IEEE802.3)</u>

Some spectrum examples

→ Square root raised cosine shaping (DVB-C, DVB-S waveform)

Spectral efficiency

→ Bandwidth definition:

• Definition 1: frequency bandwidth B concentrating x % of the signal energy (typical values : 95 à 99 %)

$$\frac{\int_0^B S_x(f)df}{\int_0^\infty S_x(f)df} = \frac{x}{100}$$

• Definition 2: frequency bandwidth beyond which the minimum rejection is of x dB (typical values: 20 à 30 dB)

→ <u>Spectral Efficiency (bits/s/Hz):</u>

$$\eta = rac{R_b}{B} = rac{\log_2(M)}{k}$$
 $a_k \in \{\pm V, \pm 3V, ..., \pm (M-1)V\}$ M -ary symbols $B = kR_s$

QUESTION

The transmission spectral efficiency will be:

- A Higher if signal $x_1(t)$ is tranmitted
- B Higher if signal $x_2(t)$ is transmitted
- The same for both signals transmission
- Not enough elements to answer

Bits to transmit: 00100111

Mapping: -V -V +V -V -V +V +V +V

QUESTION

By using a square root raised cosine filter, the obtained spectral efficiency will be:

- Higher than the one obtained using a rectangular shaping filter
- B Lower than the one obtained using a rectangular shaping filter
- The same as the one obtained using a rectangular shaping filter
- Not enough elements to answer

Joint optimization with the modulation

Joint optimization with the modulation

→ Interference visualization at the sampler input : example

On the signal:

- \rightarrow Interference suppression at t₀+mT_s: Nyquist criterion
 - Time domain expression:

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbf{Z}^* \end{cases}$$

$$z(t_0 + mT_s) = a_m g(t_0) + w(t_0 + mT_s)$$

• Frequency domain expression:

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases}$$

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases} \xrightarrow{\text{FT}} \left[\sum_{k} G^{(t_0)} \left(f - \frac{k}{T_s} \right) = cte \right] \text{ with } G^{t_0}(f) = FT \left[\frac{g(t + t_0)}{g(t_0)} \right]$$

Joint optimization with the modulation

→ Interference suppression at t₀+mT_s: frequency domain Nyquist criterion

Nyquist bandwidth

$$G^{(t_0)}\left(f + \frac{2}{T_s}\right) G^{(t_0)}\left(f + \frac{1}{T_s}\right) G^{(t_0)}(f) G^{(t_0)}\left(f - \frac{1}{T_s}\right) G^{(t_0)}\left(f - \frac{2}{T_s}\right) \\ \dots \\ -\frac{1}{2T_s} \\ \frac{1}{2T_s}$$

Nyquist Bandwidth

 $B_N = \frac{1}{2T_s} = \frac{R_s}{2}$ \Rightarrow Maximum symbol rate without interferences at time sampling instants : $R_s \leq 2B_N$ 25

Joint optimization with the modulation

→ Example of Nyquist filter : raised cosine filter

$$\mathbf{G^{(t_0)}(f)} = \begin{cases} \mathbf{T_s} \text{ for } \left| \mathbf{f} \right| \leq \frac{1-\alpha}{2\mathsf{T_s}} \\ \frac{\mathsf{T_s}}{2} \left[1 + \mathsf{cos} \left(\frac{\pi \mathsf{T_s}}{\alpha} \left(\left| \mathbf{f} \right| - \frac{1-\alpha}{2\mathsf{T_s}} \right) \right) \right] \mathsf{pour} \ \frac{1-\alpha}{2\mathsf{T_s}} \leq \left| \mathbf{f} \right| \leq \frac{1+\alpha}{2\mathsf{T_s}} \\ 0 \text{ elsewhere} \end{cases}$$

Filtre en cosinus surélevé avec différents roll off α

Joint optimization with the modulation

→ Example of Nyquist filter : raised cosine filter

$$g^{(t_0)}(t) = \frac{1}{T_S} \sin c \left(\frac{\pi t}{T_S}\right) \frac{\cos \left(\frac{\alpha \pi t}{T_S}\right)}{1 - \left(2\alpha \frac{t}{T_S}\right)^2}$$
 (0 \le \alpha \le 1)

Filtre en cosinus surélevé avec différents roll off α

Some typical values: α =0.22 (UMTS), α =0.35 (DVB-S), α =0.15 (DVB-C)

Joint optimization with the modulation

→ Example of Nyquist filter : raised cosine filter

Some eyediagrams without noise (on 2T_s)

Without noise, different roll off at the transmitter and receiver:

Let's consider $g(t)=h(t)*h_c(t)*h_r(t)$, the whole transmission channel impulse response:

 $(T_s = symbol duration)$

QUESTION

The transmission channel:

- Respect the Nyquist criterion
- Can respect the Nyquist criterion
- Cannot respect the Nyquist criterion
- Not enough elements to answer

Let's consider $g(t)=h(t)*h_c(t)*h_r(t)$, the whole transmission channel impulse response:

QUESTION

The transmission channel:

- Respect the Nyquist criterion
- Can respect the Nyquist criterion
- Cannot respect the Nyquist criterion
- Not enough elements to answer

 $H(f)H_r(f)$ is given below, where H(f) is the shaping filter frequency response and $H_r(f)$ is the receiver filter impulse response:

The channel frequency response is given by:

QUESTION

The transmission channel:

- Can respect the Nyquist criterion
- Cannot respect the Nyquist criterion
- Not enough elements to answer

Joint optimization with the modulation

$$z(t_0+mT_s) = \underbrace{a_m g(t_0)} + \underbrace{\sum_{k \neq m} a_k g(t_0+(m-k)T_s) + w(t_0+mT_s)}_{\text{Left}} \longrightarrow \underbrace{\begin{cases} \widehat{a}_k \end{cases}}_{\text{Decisions}} \longrightarrow \{\widehat{a}_k \}}_{\text{Decisions}} \longrightarrow \{\widehat{a}_k \}$$

$$\text{ISI at sampling } \text{Noise instants} \qquad \text{(filtered and sampled)} \qquad \text{(Inter Symbol Interference)}$$

 \rightarrow Interference suppression at t₀+mT_s: Nyquist criterion

Term of Interest
$$z(t_0+mT_s)=\underbrace{a_mg(t_0)}+\underbrace{w(t_0+mT_s)}$$
 Filtered and sampled noise: $\mathbf{w_m}$, variance σ^2

 \rightarrow SNR maximisation at t₀+mT_s: matched filter (to the received waveform)

$$\text{Maximize } SNR_{t_0} \Leftrightarrow \text{Maximize } \frac{|g(t_0)|^2}{\sigma^2} \\ h_e(t) = h(t) * h_c(t)$$

$$\left[\frac{|g(t_0)|^2}{\sigma^2} \right]_{max} \text{for } H_r(f) = \lambda H_e^*(f) e^{-j2\pi f t_0} \overset{\text{FT}^{-1}}{\longrightarrow} \underbrace{ h_r(t) = \lambda h_e^*(t_0 - t) }_{max} \text{Matched Filter}$$

(Cauchy-Schwarz inequality:
$$\left| \int_{-\infty}^{\infty} a(f)b^*(f)df \right|^2 \le \int_{-\infty}^{\infty} a(f)a^*(f)df \int_{-\infty}^{\infty} b(f)b^*(f)df$$
, equality for $a(f) = kb(f)$

The shaping filter impulse response is given below:

The receiver filter impulse response is given below:

QUESTION

The signal to noise ratio, computed after sampling is maximized:

- TRUE
- FALSE
- Not enough elements to answer

Decision block

→ <u>Decision rule: Maximum A Posteriori</u>

$$\widehat{a}_{m} = \arg \max_{\widetilde{a}_{m}} P\left(\widetilde{a}_{m} | z_{m}\right)$$

 $\widehat{a}_m = \arg \max_{\widetilde{a}_m} p\left(z_m | \widetilde{a}_m\right)$ for equally likely symbols

Nyquist criterion is fulfilled: $z(t_0 + mT_s) \equiv z_m = a_m g(t_0) + w_m$

$$p(z_m|\widetilde{a}_m) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_m - \widetilde{a}_m g(t_0))^2}{2\sigma^2}\right)$$

Binary case: \widetilde{a}_m

$$\widetilde{a}_m \in \{\pm V\}$$

$$MAP \ decision \ rule \implies \begin{cases} z_m \ge 0 : \widehat{a}_m = +V \\ z_m < 0 : \widehat{a}_m = -V \end{cases}$$

4-ary case: $\widetilde{a}_m \in \{\pm V, \pm 3V\}$

$$MAP \ decision \ rule \implies \begin{cases} z_m \le -2Vg(t_0) : \widehat{a}_m = -3V \\ -2Vg(t_0) < z_m \le 0 : \widehat{a}_m = -V \\ 0 < z_m \le 2Vg(t_0) : \widehat{a}_m = +V \\ z_m \ge 2Vg(t_0) : \widehat{a}_m = +3V \end{cases}$$

(Threshold detector or slicer)

Baseband Digital Transmission (M-PAM)

Performances

→ Symbol Error Rate (SER)

Binary case:

$$a_m \in \{\pm V\}$$

 $rac{E_b}{N_0}$: SNR per bit at the receiver input

M-ary case

$$a_m \in \{\pm V, \pm 3V, ..., \pm (M-1)V\}$$

Nyquist & optimal decision thresholds

Matched filtering

$$SER \stackrel{\checkmark}{=} 2 \left(\frac{M-1}{M} \right) Q \left(\frac{Vg(t_0)}{\sigma} \right) \stackrel{\checkmark}{=} 2 \left(\frac{M-1}{M} \right) Q \left(\sqrt{\frac{6log_2(M)}{M^2 - 1} \frac{E_b}{N_0}} \right)$$

Obtained for an M-PAM (Baseband) modulation, in a Nyquist channel, with matched filtering.

Transmission M-PAM

Performances

→ Bit Error Rate (BER): Mapping optimization

« Natural » binary mapping

	bits	symboles	
	00	-3	
	01	-1	
1	10	+1	
	11	+3	

 $\frac{R_b = 1 \text{kbps}):}{P(\widehat{a}_b = -V/a_b = 0)}$

P_{e1}>>P_{e2}
$$P(\widehat{a}_k = -V/a_k = -3V) = Q(2) - Q(6) = 0.0228$$
 $P(\widehat{a}_k = +V/a_k = -3V) = Q(6) - Q(10) = 9.87 \ 10^{-10}$ $P(\widehat{a}_k = +3V/a_k = -3V) = Q(10) = 7.62 \ 10^{-24}$

Example (see exercises, for a 4-PAM with V=1, N_0 =10⁻³ V²/Hz,

On erroneous symbol = 2 erroneous bits

« Gray » mapping

bits	symboles
00	-3
01	-1
11	+1
10	+3

GRAY Mapping $\longrightarrow BER \simeq \frac{SER}{\log_2(M)}$

One erroneous symbol = 1 erroneous bit

$$(BER = \frac{Number of erroneous bits}{Number of transmitted bits} \approx \frac{Number of erroneous bits}{Number of transmitted bits}$$

Number of erroneous symbols

Number of transmitted symbols x Number of bits per symbol

Baseband Digital M-PAM Transmission

Power efficiency

Obtained results for a M-ary baseband modulations (M-PAM), in a Nyquist channel, with matched filtering and Gray mapping

QUESTION

If we consider a receiver filter with a rectangular impulse response of T_s duration, $t_0 = T_s$ and a threshold dectector with the following thresholds: -2V, 0, 2V, the symbol error rate will be the minimum one:

TRUE

FALSE

QUESTION

If we consider a receiver filter with a rectangular impulse response of T_s duration, $t_0 = T_s$ and a threshold dectector with the following thresholds: $-2VT_s$, 0, $2VT_s$, the symbol error rate will be the minimum one:

TRUE

FALSE

Baseband Modulation/Démodulation Summary

To be able to design the modulator in order to obtained the desired signal

Digital Baseband Modulation/Demodulation (M-PAM)

M=number of possible symbols

To be able to compare several modulation schemes in terms of spectral efficiency

Power spectral density of x(t)

$$SER_{min} = 2\left(\frac{M-1}{M}\right)Q\left(\sqrt{\frac{6log_2(M)}{M^2-1}\frac{E_b}{N_0}}\right)$$

To be able to design a modulator/demodulator allowing to minimize the bit error rate (BER)

To be able to compare several modulation schemes in terms of power efficiency

$$BER_{min} \approx 2 \left(\frac{M-1}{Mlog_2(M)} \right) Q \left(\sqrt{\frac{6log_2(M)}{M^2 - 1} \frac{E_b}{N_0}} \right)$$

References

French references

- → M. Joindot, A. Glavieux, « Introduction aux communications numériques », Dunod
- → J.C. Bic, D. Duponteil, J.C.Imbeaux, « Eléments de communications numériques », Dunod

English books

- → J. G. Proakis, « Digital Communications », Mac Graw Hill Book Cie
- → Lindsay and Simon, « Telecommunications system engineering », Prentice Hall

Example: DVB-S standard

- → J.J. Spilker, « Digital communication by satellite », Prentice Hall
- → Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for 11/12 GHz satellite services, norme ETSI EN 300 421.
- → Digital Video Broadcasting (DVB): User guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2), norme ETSI EN 102 376.