Math 316 Project

Jered McCullough, Yuhan Hudson, Alice R. Pitt ${\rm May}\ 2,\, 2013$

Problem 1

1. Suppose that $f:[0,2]\to\mathbb{R}$ is twice differentiable and $f(0)=0,\,f(1)=2,\,f(2)=4$

Prove: There is a number $c \in (0,2)$ where f''(c) = 0

Proof:

Suppose $f:[0,2] \to \mathbb{R}$ is twice differentiable and f(0)=0, f(1)=2, f(2)=4. Since f is twice differentiable we know that f' and f'' both exist and are continuous (differentiability implies continuity) on [0,2]. So we can apply the **Mean Value Theorem**, lets observe 2 subintervals of [0,2], [0,1] and [1,2]. There exists an $a \in [0,1]$ and $b \in [1,2]$ where $f'(a) = \frac{f(1)-f(0)}{1-0}$ and $f'(b) = \frac{f(2)-f(1)}{2-1}$.

Then,

$$f'(a) = \frac{2-0}{1-0} = 2$$

$$f'(b) = \frac{4-2}{2-1} = 2$$

Now we have f'(a) = 2 and f'(b) = 2. We can now apply the **Mean Value Theorem** again. So there exists a $c \in [0, 2]$ such that $f''(c) = \frac{f'(b) - f'(a)}{b - a}$.

Here we don't really need to know what b and a are just that they exist in the interval [0, 2].

Now we see that,

$$f''(c) = \frac{f'(b) - f'(a)}{b - a}$$
$$f''(c) = \frac{2 - 2}{b - a}$$

f''(c) = 0

Which is what we set out to show.

2. Suppose a > 0 and $g[-a, a] \to \mathbb{R}$ is differentiable with $g'(x) \le 1$ for all $x \in (-a, a)$.

Prove: If g(a) = a and g(-a) = -a then g(x) = x for all $x \in (-a, a)$

Proof:

Suppose g is defined as above and that $g(q) \neq q$ for some $q \in [-a, a]$. By the **Mean Value Theorem** there must exist some $c \in [-a, q]$ such that $g'(c) = \frac{g(q) - g(-a)}{q - (-a)} = \frac{g(q) + a}{q + a}$. By our assumptions $g(q) \neq q$, $q \geq -a$ and $g'(c) \leq 1$ therefore $g(q) \leq -a$. Furthermore there must also exist some $d \in [q, a]$ such that

 $g'(d) = \frac{g(a) - g(q)}{a - q} = \frac{a - g(q)}{a - q}$, and by our assumptions q < a. Here we have a contradiction because we showed that $g(q) \le -a$, but that means that g'(d) > 1. The contradiction arises because we assumed that $g(q) \ne q$ therefore g(q) = q for all $q \in [-a, a]$

Problem 2

1. **Prove**: If C is a closed set of real numbers that contains the set of irrational numbers between 0 and 1 then C contains the interval [0,1].

Proof:

Let C be defined as above. By the definition of closed sets $P=[0,1]\cap C^c$ must be an open set. By the definition of an open set, for some $\epsilon > 0$, if $a \in P$ the $N(a,\epsilon) \subseteq P$, where $N(a,\epsilon) = (a-\epsilon,a+\epsilon)$. However $P\subseteq [0,1]$ so $a\in [0,1]$ and by the properties of the real number system there exists some irrational number between a and $a+\epsilon$, therefore $N(a,\epsilon) = (a-\epsilon,a+\epsilon) \not\subset P$, so $a \notin P$. Thus $P=\emptyset$, and $[0,1] \subseteq C$.

2. **Prove**: The set of irrational numbers between 0 and 1 does not have measure 0

Proof: Let $C = \{\text{the set of irrational numbers between 0 and 1} \}$ and let $P = [0,1] \cap C^c = \{\text{the set of rational numbers between 0 and 1} \}$. Let us assume that C has measure 0. Observe that P is countably infinite, and therefore has measure 0. So P + C must have measure 0, but P + C = [0,1] which does not have measure 0. Therefore C must not have measure 0.

Problem 3

1. Suppose c_0 is any real number and for any $n \ge 0$, $c_{n+1} = \cos(c_n)$.

Prove: The sequence converges and the $\lim_{n\to\infty} c_n = c$ where c is the unique solution to the equation $\cos(x) = x$

Proof: To make things a bit easier I broke this problem into four parts

Definition: $Cos(Cos(...Cos(A)..) = Cos_n(a)$ where n is the number of consecutive Cos's

Part 1

The derivative of Cos(x) is -Sin(x), and -Sin(x) < 0 in the interval [0,1]. Therefore if $a,b \in [0,1]$ and a < b, then Cos(a) > Cos(b) and $Cos_2(a) < Cos_2(b)$.

Part 2

The functions f(x) = x and $g(x) = \operatorname{Cos}(x)$ are both continuous in \mathbb{R} so the function $h(x) = \operatorname{Cos}(x) - x$ is continuous in \mathbb{R} . Since h(0) > 0 and h(1) < 0 by the **Intermediate Value Theorem** there must be a point p in the interval [0,1] such that h(p) = 0. Furthermore if $q \in \mathbb{R}$ such that $q \neq p$ and h(q) = 0 then q > p or q < p. Without loss of generality allow q > p, it follows that h(q) < h(p) because $h'(x) \leq 0$ for all $x \in \mathbb{R}$, and h'(p) < 0, but here is a contradiction because h(q) = h(p) = 0 therefore q = p.

Part 3

Let Cos(p) = p and let $a \in [0, 1]$, by observation of the unit circle, since both p and $a \in [0, 1]$ they are both in the first quadrant. Furthermore if we let |a - p| represents the difference in the angles a and p along the arc of the unit circle then |Cos(a) - Cos(p)| represent the projection of |a - p| onto the x-axis we see that $|Cos(a) - Cos(p)| = |Cos(a) - p| \le |a - p|$. Graphically it looks like this model of 1^{st} quadrant of the unit circle

Part 4

Let Cos(p) = p and let $\{a_n\}$ represent a sequence of Real numbers starting with $a_0 \in \mathbb{R}$ such that $a_{n+1} = Cos(a_n)$. By observation we can see that $Cos(a_0) \in [-1,1]$ and $Cos_2(a_0) \in [0,1]$ so $a_2 \in [0,1]$. Furthermore since $a_2 \in [0,1]$ then $|a_n - p| > |a_{n+1} - p|$ (by part 3) so for n > 2, $a_n \in [0,1]$. Notice also that $\{a_n\}$ oscillates around p, (part 1), so we can separate the original sequence into 2 sequences, $\{c_n\}$ and $\{d_n\}$, such that if $a_r < p$ then $c_i = a_r$ and if $a_m \ge p$ then $d_i = a_m$ for any a_m , $a_r \in \{a_n\}$. Observe that $\{c_n\} \cup \{d_n\} = \{a_n\}$. By part 2 we see that $\{c_n\}$ is bounded above by p and $\{d_n\}$ is bounded below by p therefore $\{c_n\}$ and $\{d_n\}$ are bounded monotonic a sequences (part 3), so they are both convergent. Furthermore $c_{n+1} = Cos_2(c_n)$ and $d_{n+1} = Cos_2(d_n)$ (Part 1)

Observe that because $Cos_2(x)$ is continuous, it is ϵ/δ continuous. Therefore if $\epsilon > 0$ there must exist some δ such that $Cos_2(N(x,\delta)) \subseteq N(Cos_2(x),\epsilon)$ and as ϵ gets smaller δ must also get smaller, thus there exists some $\epsilon + \delta < |\frac{Cos(q) - q}{100}|$.

Now let $\epsilon + \delta < |\frac{\operatorname{Cos}(q) - q}{100}|$, let $\beta > 0$ such that $\beta < \delta$ and suppose without loss of generality that $\{d_n\}$ converges to $q \neq p$ then $\lim_{n \to \infty} d_n = q$ and for β there exists some M such that if n > M then $a_n \in N(q, \beta)$. Observe that $N(q, \beta) \subseteq N(q, \delta)$ so $\operatorname{Cos}_2(d_n) \in N(\operatorname{Cos}_2(q), \epsilon)$ however $N(\operatorname{Cos}_2(q), \epsilon) \cap N(q, \delta) = \emptyset$ this means that $d_{n+1} \notin N(q, \beta)$ so q cannot be the limit. Therefore p must be the limit of $\{c_n\}$ and $\{d_n\}$, and since $\{c_n\}$ and $\{d_n\}$ both converge to p, $\{c_n\} \cup \{d_n\}$ must converge to p and so $\{a_n\}$ must converge to p.

Graphically it can be represented like this:

2. Suppose K is a compact subset of \mathbb{R} and $\{x_n\}$ with $x_n \in K$ for all n.

(a) **Prove** : $\{x_n\}$ has a convergent subsequence.

Proof:

Assume K is a compact subset of \mathbb{R} and $\{x_n\}$ is a sequence with $x_n \in K$ for all n. We know from the reverse of the **Heine-Borel Theorem** that if K is a compact subset of \mathbb{R} then K is closed and bounded which means $\{x_n\}$ is a bounded sequence. Thus, by the **Bolzano-Weierstass Theorem**, since $\{x_n\}$ is bounded it has a convergent subsequence.

(b) **Prove**: If $\lim_{n\to\infty} x_n = a$ then $a \in K$.

Proof:

Assume K is a compact subset of \mathbb{R} and $\{x_n\}$ is a sequence with $x_n \in K$ for all $n \in \mathbb{N}$. Let $\lim_{n\to\infty} x_n = q$ with $q \notin K$. Since K is a compact subset of \mathbb{R} , K^c is an open set and if $q \notin K$ then $q \in K^c$. By the properties of open sets $N(q, \epsilon) \subseteq K^c$. However since $x_n \in K$ for all n and the $\lim_{n\to\infty} x_n = q$, then for any $\delta > 0$, $x_n \in N(q, \delta)$. But if we let $\delta < \epsilon$ we have a contradiction because $x_n \in K$ and $x_n \in N(q, \delta)$, this conflict arises because $q \notin K$, therefore q must be an element of K.

(c) Suppose L is a subset of \mathbb{R} with the property that if $\{x_n\}$ is a sequence with $x_n \in L$ for all n then $\{x_n\}$ has a subsequence that converges to an element of L.

Prove: L is compact.

Proof:

Consider M, a subsequence of the sequence $\{x_n\}$ that converges to an element in L. That is, there is a $c \in L$ where $\lim_{n\to\infty} m_n = c$. We know from properties of convergent sequences that if a subsequence converges it is bounded (both above and below). This means M is bounded, $M \subset [a, b]$ for some a and b. By the **Heine Borel Theorem**, [a, b] is compact. So, M is a closed subset of L which is a subset of \mathbb{R} . Thus M is compact. Observe that if L is not compact then $L\cap M^c$ must be an open set. Furthermore if we let $S=\{a-a\in L \text{ and } a\notin \{x_n\} \text{ for any } \{x_n\} \text{ with a convergent subsequence}\}$ then N is an open set. Now let $a_0\in S$ therefore for some $\epsilon_0>0$ $N(a_0,\epsilon_0)\subseteq N$ and furthermore we let $a_1=a_0+\frac{\epsilon_0}{2}$ then $a_1\in N$. Let $\{a_n\}$ represent the sequence $a_{n+1}=a_n+\frac{\epsilon_n}{2}$. $\{x_n\}\subseteq L$ therefore it must have a convergent subsequence. This causes a contradiction because $x_n\in S$ for all $n\in \mathbb{N}$ and therefore $S=\emptyset$ and so L must be a union of closed and bounded intervals, and by the **Heine Borel Theorem** it must be compact.

Problem 4

Definition: If A is a set of real numbers, the closure of A, denoted K(A), is the intersection of the family of all closed sets L where A is a subset of L.

1. **Prove** : K((2,3))=[2,3]

Proof:

Observe that $K((2,3))\subseteq[2,3]$, and K((2,3)) is a closed set therefore $[2,3]\cap K((2,3))^c$ must be an open set. Let $[2,P)\cup(Q,3]$ represent this set, observe that if 2< P,Q<3 then $P,Q\in(2,3)$ so P=2 and Q=3. If $a\in[2,3]$ and $a\notin K((2,3))$ then $a\in[2,2)\cup(3,3]$, and also for some $\epsilon>0$, $N(a,\epsilon)\subseteq[2,2)\cup(3,3]$ by the rules of open sets. However for any $\epsilon>0$, $2+\epsilon$ and $3-\epsilon\in(2,3)$ therefore $a\notin[2,2)\cup(3,3]$. Thus $[2,3]\cap K((2,3))^c=\emptyset$, and [2,3]=K((2,3)).

2. **Prove** $K(\mathbb{Q} \cap (0,1)) = [0,1]$ where \mathbb{Q} is the set of rational numbers.

Proof:

Let $C=K(\mathbb{Q}\cap(0,1))$ observe that $C\subseteq[0,1]$ and also that C is a closed set, by the rules of intersections of open and closed sets. If we let $D=C^c\cup[0,1]$, then D must be open, so for any $a\in C^c$ there must exist some $\epsilon>0$ such that $N(a,\epsilon)\subset D$. For any $\epsilon>0$ the interval $(a+\epsilon,a-\epsilon)$ must contain a rational number, so $a\notin D$. So $D=\emptyset$ and because C+D=[0,1], it must be true that C=[0,1].

3. **Prove**: For any set of real numbers A, K(A)=A if and only if A is a closed set

Proof:

Let A be closed. $A\subseteq A$, therefore $K(A)\cap A=K(A)$ so $K(A)\subseteq A$ and $A\subseteq K(A)$, thus K(A)=A.

Now let K(A)=A. By the rules of closed sets the intersection of closed sets is closed therefore K(A)=A is a closed set.

Problem 5

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function

1. **Prove**: If A is a closed set of real numbers then $f^{-1}(A) = \{x : f(x) \in A\}$ is a closed set.

Proof:

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Let A be a closed set of real numbers, by the rules of closed sets A^c must be an open set. Furthermore by the topological definition of continuity since A^c is open then $f^{-1}(A^c)$ must be open. Finally since $f^{-1}(A^c)$ is open $f^{-1}(A^c)^c$ must be closed, but $f^{-1}(A^c)^c = f^{-1}(A)$ so $f^{-1}(A)$ must be closed.

2. **Prove**: If f(x+5) = f(x) for all x then f is uniformly continuous.

Proof:

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that f(x+5) = f(x). By theorem 6.2.9 from http://pirate.shu.edu/ wachsmut/ira/cont/proofs/ctunifct.html we know that since [0,5] is a compact set and f is continuous over \mathbb{R} then f must be uniformly continuous over it [0,5]. Furthermore since every interval [5i,5i+5] for all $i \in \mathbb{I}$ is an exact image of [0,5] we know that f must be uniformly continuous over \mathbb{R} .