COLLEGE OF ENGINEERING & TECHNOLOGY, SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SET-D

Cycle Test – II -Answer key

Academic Year: 2021-2022 (EVEN SEM)

Program offered: B.Tech Year / Sem: I/II

Course Code and Title: 18EES101J/ BASIC ELECTRICAL

AND ELECTRONICS ENGINEERING

Maximum Marks: 50

Learning Assessment (CLA 1)							
Levels	Level of Thinking	Weightage Required (%)	Weightage Provided(%)				
1	Remember	40%	36%				
1	Understand	40%	30%				
	Apply						
2	Analyze	60%	64%				
	Create						

PART A

	(Answer all the questions) PART A L 10x1 MARK=10 MAR	KS		•	<u> </u>	
Q. No.	Questions	Refe renc e to CO	Refer ence to PO	Bloom's Taxonomy	Marks Allotted	Marks Scored
1.	If current in a conductor increases then according to Lenz's law self-induced voltage will	CO2	1	Understand	1	
2.	The power factor of an AC circuit is equal to Cosine of the phase angle Sine of the phase angle Unity for a resistive circuit Unity for a reactive circuit	CO2	1,2	Understand	1	
3.	The function of pole shoes in the case of D.C. machine is To reduce the reluctance of the magnetic path To spread out the flux to achieve uniform flux density To support the field coil To discharge all the above functions	CO2	1,2	Understand	1	
4.	What is the working principle of a Transformer? O Transformer works on the principle of self-induction Transformer works on the principle of mutual induction Transformer works on the principle of ampere law Transformer works on the principle of coulomb law	CO2	1,2	Understand	1	
5.	The current drawn by the armature of DC motor is directly proportional to • Torque • Speed • The voltage across the terminals • Cannot be determined	CO2	1,2	Understand	1	
6.	The type of wiring that is highly suitable for a temporary shed is Cleat wiring Wooden capping and casing wiring Lead sheathed wiring	CO3	1,2	Understand	1	

	 Conduit wiring 					
	o Conduit wiring					
	damping method is common in moving coil instruments					
7.	o Eddy current	CO2	1.2	II. danatan d	1	
/.	o Fluid	CO3	1,2	Understand	1	
	Spring					
	o Air					
	As the temperature of a semiconductor increases its					
	 Conductivity increases 					
8.	 Resistivity increases 	CO3	1,2	Understand	1	
	 Atomic number decreases 					
	 Temperature co-efficient becomes zero 					
	In a C-E configuration, an emitter resistor is used for:					
	 Stabilization 					
9.	o ac signal bypass	CO3	1,2	Understand	1	
	 collector bias 					
	higher gain					
	Which of the following can be used in series with a Zener					
	diode so that combination has almost zero temperature co-					
10.	efficient?					
	o Diode	CO3	1	Understand	1	
	o Resistor					
	o Transistor					
	MOSFET					

COLLEGE OF ENGINEERING & TECHNOLOGY, SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Cycle Test – II

Date: 03-06-2022

Academic Year: 2021-2022 (EVEN SEM)

SET-D

Program offered: B.Tech

Year / Sem: I/II

Course Code and Title: 18EES101J/ BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Maximum Marks: 50

PART B(Answer all the questions)

4x4 MARKS=16 MARKS

Q. No.	Questions	Refer ence to CO	Refer ence to PO	Blooms Taxonomy	Mar ks Allot ted	Marks Scored
11.	Derive the average and RMS value of sinusoidal AC waveform. Average value of AC waveform $I_{av} = \frac{1}{\pi} \int_0^\pi I_m sin\theta \mathrm{d}\theta \qquad I_{av} = \frac{2}{\pi} I_m = 0.637 I_m$ RMS value of AC waveform $I_{rms} = \sqrt{\left(\frac{1}{2\pi} \int_0^{2\pi} I_m^2 sin^2\theta \mathrm{d}\theta\right)}$ $I_{rms} = \sqrt{\frac{I_m^2}{2}} = 0.707 I_m$	CO2	1,2	Apply	4	
12.	Obtain the expression for the current through the pure inductor, with the voltage across it is $V = V_m$ Sinot $i = \frac{E_o}{L} \int \sin \omega t \ dt$ $= \frac{E_o}{L} \left[-\frac{\cos \omega t}{\omega} \right] = -\frac{E_o \cos \omega t}{\omega L}$ $i = \frac{E_o}{\omega L} \sin (\omega t - \frac{\pi}{2})$ $i = I_o \cdot \sin (\omega t - \frac{\pi}{2})$ where $I_o = \frac{E_o}{\omega L}$ Phasor Diagram e_L	CO2	1	Apply	4	
13.	Outline the operation of Clamper circuit along with circuit diagram A Clamper circuit can be defined as the circuit that consists of a diode, a resistor and a capacitor that shifts the waveform to a desired DC level without changing the actual appearance of the applied signal.	CO3	1	Understand	4	

	V_i O D A					
14.	Using circuit diagram, Demonstrate the working of staircase wiring	CO3	1	Understand	4	
	Position of switch S ₁ Position of switch S ₂ Condition of lamp 1					

PART C(Answer all the questions)

2x12 MARKS=24 MARKS

Q. No.	Questions	Refer ence to CO	Refer ence to PO	Blooms Taxonomy	Marks Allotte d	Marks Scored
15. a	Develop a circuit to make the single-phase AC induction	CO2	1,2	Apply	12	
	motor self-starting with phasor diagram. Types • Split phase motors The stator of a split-phase induction motor is					
	provided with an auxiliary or starting winding S					
	in addition to the main or running winding M.					
	The starting winding is located 90° electrical					
	from the main winding and operates only during					
	the brief period when the motor starts up. The					
	two windings are so designed that the starting					
	winding S has a high resistance and relatively					
	small reactance while the main winding M has					
	relatively low resistance and large reactance					
	Winding Switch Wain Winding Cage Rotor					
	Schematic Diagram of Resistor- split phase motor					
	Capacitor start and run motors					
	Starting Winding Centrifugal Switch Is Main Winding Squirrel Cage Rotor					
	(or)					
15. b	A ferromagnetic core with mean path length is 40cm. Cross sectional area of the core is 12cm ² , the relative	CO2	1,2	Apply	12	

	permeability of the core is 4000, and the coil of wire on the core has 400 turns. There is a small gap of 0.05cm in the structure of the otherwise whole core. Assume that fringing effect is neglected. Utilize the above values and Find (a) The total reluctance of the flux path (iron plus air gap). (b) The current required to produce a flux density of 0.5T in the air gap. $R_1 = \frac{40 \times 10^{-2}}{4000 \times 4\pi \times 10^{-7} \times 12 \times 10^{-4}} = 66314.5596 \text{ At/Wb}$ $R_2 = \frac{0.05 \times 10^{-2}}{1 \times 4\pi \times 10^{-7} \times 12 \times 10^{-4}} = 331572.7981 \text{ At/Wb}$ The two reluctances are connected in series $R_{\text{total}} = R_1 + R_2 = 397887.3577 \text{ At/Wb} \text{ ##}$ $\Phi = B \times A_g = 0.5 \times 12 \times 10^{-4} = 6 \times 10^{-4} \text{ Wb}$ $N \times I = \Phi \times R_{\text{total}} = 6 \times 10^{-4} \times 397887.3577 = 238.7324 \text{ At}$ $I = 238.7324 / 400 = 0.5968 \text{ A}$					
16. a	With neat sketch, Explain the working principle of Permanent Magnet Moving Coil instrument. Permanent Magnet Moving Coil instrument. A light rectangular coil wound on an aluminum frame is pivoted within the air gaps between the two poles of a permanent magnet and a cylindrical soft iron core. This light rectangular coil carries the current to be measured. Soft iron core provides formation of uniform magnetic field. The aluminum frame supports the coil as well as provides eddy current damping. Two phosphor bronze springs coiled in opposite directions serve as leads for the current in the coil. The springs also provide controlling torque. (or)	CO3	1,2	Apply	12	
16. b	Describe the operation of Common Base configuration of BJT with necessary circuit diagram and characteristics. Input Characteristics Output Characteristics Output Characteristics $I_{E \text{ (mA)}}$ $I_{L_{E} \text{ (mA)}$	CO3	1,2	Apply	12	