1/69/1

DIALOG(R) File 351: Derwent WPI

(c) 2007 The Thomson Corporation. All rts. reserv.

0006024569

WPI ACC NO: 1992-260328/ XRAM Acc No: C1992-116272

Deodorisation of mixed polyoxyalkylene-polysiloxane block copolymers - by catalytic hydrogenation catalyst, used as foam stabilisers, cosmetic emulsifiers etc.

Patent Assignee: GOLDSCHMIDT AG TH (GOLD)

Inventor: HEINRICH L; SCHATOR H

Patent Family (5 patents, 4 countries) Patent Application Number Kind Date Number Kind Date Update 19920806 DE 4116419 A 19910518 199232 B DE 4116419 C 19921119 EP 1992107615 A 19920506 199247 E A1 EP 513645 199328 NCE Α 19930706 US 1992861532 A 19920401 US 5225509 B1 19950906 EP 1992107615 A 19920506 199540 EP 513645 199546 E A 19920506 DE 59203523 G 19951012 DE 59203523 EP 1992107615 A 19920506

Priority Applications (no., kind, date): US 1992861532 A 19920401; DE 4116419 A 19910518

Patent Details

Number	Kind	Lan	Рg	Dwg	Filing Notes
DE 4116419	C	DE	4	0	
EP 513645	A1	DE	5	0	
Regional Desig	nated	States	,Ori	ginal	: DE FR GB IT
US 5225509	Α	EN	4	0	
EP 513645	B1	DE	6	0	
Regional Designated States, Original: DE FR GB IT					
DE 59203523	G	DE			Application EP 1992107615
					Based on OPI patent EP 513645

Alerting Abstract DE C

Process for deodorisation of mixed block copolymers (I) with polyoxyalkylene and polysiloxane blocks comprises treating the copolymer with H2 in the presence of a hydration catalyst at 20-200 deg. C, 1-100 bar for 0.5-10 hours. (I) has the polysiloxane blocks bound to the polyether blocks by Si-C bonds and is prod. by the addition of alkene polyethers to hydrosiloxane in the presence of Pt. catalysts.

Pref. the temp. is 110-140 deg. C, the H2 pressure is 2-15 bar and the catalyst is Ni, Cu, Cr or a Pt gp. metal.

USE/ADVANTAGE - The products (I) are used as stabilisers of polyurethane foam, emulsifiers, in cosmetics, etc. The process removes smell without forming gel cpds. which are difficult to remove or tox

Equivalent Alerting Abstract US A

The deodorising of polyoxyalkylene polysiloxane mixed block polymers where the polysiloxane blocks are linked to the polyether blocks thorugh SiC linkages, comprises causing H to act on the mixed block polymer in the presence of a hydrogenation catalyst (I) at 20-200 deg.C., pref. 110-140 deg.C., and at 1-100 bar, pref. 2 to 15 bar, for 0.5-10 hours. Pref. (I) is Ni, Cu, Cr or a metal of the Pt gp.. Pref. H is caused to act on the polymer in the presence of 0.1-1 wt.% of acidic clay and 0.1-1 wt.% of water, most pref. in the presence of an aq. buffer soln. of a pH of 3-6.

ADVANTAGE - Simple process, without by-prod. formation.

Title Terms /Index Terms/Additional Words: DEODORISE; MIX; POLYOXYALKYLENE; POLY; SILOXANE; BLOCK; COPOLYMER; CATALYST; HYDROGENATION; FOAM; STABILISED; COSMETIC; EMULSION

Class Codes

International Classification (Main): C08G-077/06, C08G-077/34
 (Additional/Secondary): C08G-077/38, C08G-077/46

File Segment: CPI

DWPI Class: A25; A60; A96; D21

Manual Codes (CPI/A-M): A05-H01; A06-A00D; A08-S07; A10-E13; A10-G01B; A12-S02; A12-V04; D09-C

Chemical Indexing

Derwent Registry Numbers: 1694-U

Plasdoc Codes (KS): 0005 0013 0091 0124 0130 0133 0205 0229 1279 1294 1306 1587 1594 1608 2011 2043 2044 2051 2064 2065 2070 2149 2152 2198 2204 2272 2277 2394 2400 2506 2536 2572 2578 2589 2595 2674 2761 3216 3253 3273

Polymer Fragment Codes (PF):

001 014 028 03- 035 038 05- 07& 07- 147 15& 150 18& 19& 19- 198 200 229 231 248 262 263 278 293 296 311 318 325 336 344 346 359 38- 398 402 417 420 473 491 50& 516 518 523 525 527 532 536 55& 575 583 59& 597 600 623 624 689 693 720 728

Derwent Chemistry Resource Numbers: (Linked) 107016-USE (Unlinked) 107016-U

Key Word Indexing

1 107016-USE

?

(51) Int. Cl.5:

BUNDESREPUBLIK **DEUTSCHLAND**

Patentschrift

DEUTSCHES PATENTAMT Aktenzeichen:

P 41 16 419.9-44

Anmeldetag:

18. 5.91

Offenlegungstag:

Veröffentlichungstag der Patenterteilung:

6. 8.92

C 08 G 77/34 C 08 G 77/46 C 08 G 77/38 // C08J 9/00, C08L 75:04,83:10 (C08G 18/08,101:00)B01F 17/54,B29C 33/64,

A61K 7/00

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Th. Goldschmidt AG, 4300 Essen, DE

(72) Erfinder:

Heinrich, Lothar, Dr.; Schator, Helmut, 4300 Essen,

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

US

45 15 979

EP

03 98 684 A2 »Central Patents Index« 1988, Ref. 88-275419/39 der

JP 63-2 02 629 A;

- (54) Verfahren zum Desodorieren von SiC-gebundenen Polyethersiloxanen
- Verfahren zum Desodorieren von Polyoxyalkylen-Polysiloxan-Blockmischpolymeren, bei denen die Polysiloxanblöcke durch SiC-Bindungen an die Polyetherblöcke gebunden sind, mit dem Kennzeichen, daß man auf die Blockmischpolymere Wasserstoff in Gegenwart an sich bekannter Hydrierungskatalysatoren bei Temperaturen von 20 bis 200°C und einem Druck von 1 bis 100 bar über einen Zeitraum von 0,5 bis 10 Stunden einwirken läßt.

Beschreibung

Die Erfindung betrifft ein Verfahren zum Desodorieren von Polyoxyalkylen-Polysiloxan-Blockmischpolymeren, bei denen die Polysiloxanblöcke durch SiC-Bindungen an die Polyetherblöcke gebunden sind und welche durch Anlagerung von Alkenpolyethern an Wasserstoffsiloxan in Gegenwart von Pt-Katalysatoren herge-

Derartige Polyoxyalkylen-Polysiloxan-Blockmisch- 10 polymere können folgender allgemeiner Formel entsprechen

$$R^{1} - Si - \begin{bmatrix} R^{1} \\ | \\ OSi - \\ | \\ R^{2} \end{bmatrix}_{n} \begin{bmatrix} R^{1} \\ | \\ OSi - \\ | \\ R^{3} \end{bmatrix}_{m} \begin{bmatrix} R^{1} \\ | \\ OSi - R^{1} \\ | \\ R^{1} \end{bmatrix}$$

oder

$$R^{3}-Si-\begin{bmatrix}R'\\|\\OSi-\\R'\end{bmatrix}$$

$$R^{1}\begin{bmatrix}R'\\|\\OSi-R'\\R'\end{bmatrix}$$

R1 = Alkylrest, im Regelfall Methylrest,

R² = Alkylrest mit 2 bis 20 Kohlenstoffatomen,

 $R^3 = (CH_2)_3O(C_2H_4O)_x(C_3H_6O)_yR^4$,

R⁴ = Wasserstoff- oder Alkylrest mit 1 bis 4 Kohlenstoffatomen,

n = 0 bis 100.

m = 1 bis 8,

x = 1 bis 25,

y = 0 bis 25.

Dabei verwendet man einen Überschuß von Allylpolyethern, wobei unter den Bedingungen der Anlagerung ein Teil der Allylpolyether in die nicht anlagerungsfähigen Propenylpolyether umgelagert wird. Polyoxyalkylen-Polysiloxan-Blockmischpolymere der vorgenannten 45 Art enthalten somit im allgemeinen Anteile an nicht umgesetzten Allylpolyethern und Propenylpolyethern.

Diese SiC-gebundenen Polyoxyalkylen-Polysiloxan-Blockmischpolymere werden bevorzugt als Stabilisatoren bei der Herstellung von Polyurethanschäumen, als 50 Emulgatoren, Trennmittel und als Wirkstoffe in kosmetischen Produkten eingesetzt. Sie besitzen einen mehr oder weniger stark ausgeprägten unangenehmen, stechenden Geruch, der sich häufig bei der Lagerung noch verstärkt. Dieser Geruch stört bei der Verwendung der 55 und ihrer hohen Standzeiten Nickelkatalysatoren. Blockmischpolymere und insbesondere bei ihrer Verwendung als Wirkstoffe in kosmetischen Produkten.

Man hat bereits versucht, die geruchsbildenden Komponenten durch Ausblasen mit Inertgas oder durch Wasserdampfbehandlung zu entfernen. Es hat sich je- 60 doch gezeigt, daß der Geruch nach Lagerung der Blockmischpolymere bzw. nach Einarbeitung in kosmetische Formulierungen wieder auftritt.

Mit der Entfernung dieser Geruchskomponenten bepäische Patentanmeldung ein gereinigtes Polyethersiloxan, welches in einem geschlossenen System während eines Zeitraumes von 24 Stunden mit 10-4n wäßriger

Salzsäure in einer Menge von bis zu 1000 ppm, bezogen auf Polyether, bei 60°C behandelt worden ist. Das so gereinigte Produkt wird dann unter vermindertem Druck mit Wasserdampf behandelt, um die bei der Säurebehandlung gebildeten Aldehyde und Ketone zu ent-

Als nachteilig wurde jedoch gefunden, daß man zur Entfernung der gebildeten Aldehyde und Ketone, bezogen auf das Gewicht des behandelten Polyethersiloxans, die etwa 11/2 fache Gewichtsmenge Wasserdampf benötigt. Man erhält deshalb dabei erhebliche Mengen eines übelriechenden, sauren Kondensats, welches schwierig zu entsorgen ist.

Ein weiterer Nachteil der Säurebehandlung besteht 15 darin, daß falls das Polyethersiloxan noch restliche SiH-Gruppen enthält, häufig die Bildung von Gelteilchen beobachtet wird. Diese Gelteilchen lassen sich durch Filtration nur schwierig entfernen.

Ein weiteres Verfahren zum Desodorieren von Poly-20 oxyalkylen-Polysiloxan-Blockmischpolymeren kann der US-PS 45 15 979 entnommen werden. Nach diesem Verfahren gibt man zu dem Blockmischpolymer während oder nach seiner Herstellung Phytinsäure zu. Bei der Phytinsäure handelt es sich um einen Hexaphosphate-25 ster des Myoinosits der allgemeinen Formel C₆H₁₈O₂₄P₆. Diese Verbindung ist ein natürlich vorkommendes und ungiftiges Naturprodukt, welches in Körnern und Samen vorkommt. Für einen technischen Einsatz ist dieses Produkt nicht zuletzt seines hohen Preises wegen ungeeignet.

Die vorliegende Erfindung befaßt sich mit dem technischen Problem, ein Verfahren zum Desodorieren von Polyoxyalkylen-Polysiloxan-Blockmischpolymeren zu finden, welches in einfacher Weise technisch durchführ-35 bar ist und Produkte liefert, die frei von störenden Nebenprodukten sind. Dabei soll die Bildung schwer zu entsorgender Abfallprodukte möglichst vermieden oder zumindest eingeschränkt werden.

Gemäß der vorliegenden Erfindung gelingt dies dadurch, daß man auf die Blockmischpolymere Wasserstoff in Gegenwart an sich bekannter Hydrierungskatalysatoren bei Temperaturen von 20 bis 200°C und einem Druck von 1 bis 100 bar über einen Zeitraum von 0,5 bis 10 Stunden einwirken läßt.

Vorzugsweise läßt man den Wasserstoff auf die Blockmischpolymere bei Temperaturen von 110 bis 140°C und einem Druck von 2 bis 15 bar einwirken.

Als Katalysatoren können aus dem Stand der Technik bekannte übliche Hydrierungskatalysatoren verwendet werden. Besonders geeignet sind dabei Nickel, Kupfer, Chrom oder die Metalle der Platingruppe. Dabei können die Katalysatoren auf einem geeigneten Träger niedergeschlagen sein. Besonders bevorzugt sind wegen ihres relativ niedrigen Preises, ihrer hohen Reaktivität

Man verwendet im allgemeinen die Katalysatoren in einer Menge von 0,003 bis 1 Gew.-% Metall, bezogen auf Polyethersiloxan.

Nach erfolgter Einwirkung des Wasserstoffs auf die Polyoxyalkylen-Polysiloxan-Blockmischpolymere können die Katalysatoren in geeigneter Weise z. B. durch Filtration oder Zentrifugieren, von den Polyoxyalkylen-Polysiloxan-Blockmischpolymeren abgetrennt werden.

Da die Polyoxyalkylen-Polysiloxan-Blockmischpolyfaßt sich die EP-A-03 98 684. Dabei betrifft diese euro- 65 mere häufig Produkte mit einer höheren Viskosität sind, kann es zweckmäßig sein, die Hydrierung der Blockmischpolymere in Gegenwart geeigneter Lösungsmittel durchzuführen.

60

Die erfindungsgemäß behandelten Polyoxyalkylen-Polysiloxan-Blockmischpolymere sind frei von störenden Gerüchen und bleiben auch bei Lagerung oder nach Einarbeitung in kosmetische Formulierungen frei von den aus dem Stand der Technik bekannten unangenehmen und störenden Gerüchen.

Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß die behandelten Polyoxyalkylen-Polysiloxan-Blockmischpolymere und ihre Lösungemäß behandelten Produkte bzw. ihre Lösungen sind klar, weitgehend farblos und frei von Trübungen.

Darüber hinaus hat sich überraschenderweise gezeigt, daß die stabilisierende Wirkung der erfindungsgemäß behandelten Blockmischpolymere bei der Herstel- 15 lung von Polyurethanschäumen verbessert wird. Dies zeigt sich im allgemeinen in einer Erhöhung der Fließlänge der Polyurethanschäume und in einer Verminderung der Schaumstörungen.

Durch das erfindungsgemäße Verfahren gelingt es so- 20 40,0 Teilen Trichlorfluormethan mit, von störenden Gerüchen freie und in ihren anwendungstechnischen Eigenschaften in überraschender Weise verbesserte Polyoxyalkylen-Polysiloxan-Blockmischpolymere herzustellen.

Das erfindungsgemäße Verfahren wird anhand der 25 folgenden Beispiele noch näher erläutert.

Zur Hydrierung wird ein 1-l-Autoklav mit Begasungsrührer verwendet. Der Katalysator wird vom Polymer umhüllt, mit diesem in den Autoklaven gefüllt. Der Autoklav wird verschlossen und durch dreimaliges Evaku- 30 ieren und Begasen mit Wasserstoff luftfrei gemacht. Nach dem Aufheizen auf die Hydriertemperatur wird der erforderliche Druck durch Zugabe von Wasserstoff eingestellt. Die Hydrierung erfolgt so, daß jeweils nach Druckabfall von 1 bar der Ausgangsdruck durch Was- 35 serstoffaufdrücken wieder hergestellt wird. Nach Beendigung der Wasserstoffaufnahme wird der Autoklav entspannt und der Inhalt unter Inertgas filtriert.

Beispiel 1

700 g eines Polyoxyalkylen-Polydimethylsiloxan-Blockmischpolymers mit 25 bis 30 Si-Atomen, 60 bis 70 Oxyethylen- und 10 bis 20 Oxypropylen-Einheiten und einem durchschnittlichen Mol-Gewicht von 6000, das 45 40% Überschuß, bezogen auf das eingesetzte ≡ SiH, an nicht addierten Polyoxyalkenen enthält, wird in Gegenwart von 1 g Nickelkatalysator mit 60% Ni auf Kieselgur im Druckbereich 6/5 bar bei 120°C in 1 Stunde hydriert. Der Wasserstoffverbrauch beträgt 6,5 l unter 50 Normalbedingungen. Nach dem Filtrieren bei 120°C in N2-Atmosphäre wird ein farbloses, klares Produkt erhalten, das frei von dem unangenehmen stechenden Geruch ist. Dieser Geruch ist auch nach 10 Wochen nicht wieder feststellbar. Zusätzlich wird durch eine Schnell- 55 methode auf nachträgliche Geruchsbildung geprüft, in dem 1 g hydriertes Polymer in 10 g Wasser mit Zitronensäure auf pH 3 bis 4 angesäuert wird. Auch bei dieser Probe ist nach 1 Woche und auch nach 6 Wochen kein stechender Geruch nachweisbar.

Beispiel 2

700 g eines Polyoxyalkylen-Polydimethylsiloxan-Blockmischpolymers mit 40 bis 60 Si-Atomen, 90 bis 110 65 Oxyethylen- und 90 bis 110 Oxypropylen-Einheiten und einem durchschnittlichen Mol-Gewicht von 16 000, das 40% Überschuß an nicht addierten Polyoxyalkenen ent-

hält, wird in Gegenwart von 0,5 g des im Beispiel 1 genannten Katalysators im Druckbereich 15/14 bar bei 140°C in 3 Stunden hydriert. Der Wasserstoffverbrauch beträgt 11 unter Normalbedingungen. Nach dem Fil-5 trieren unter den unter Beispiel 1 genannten Bedingungen, wird ein farbloses, klares Produkt ohne stechenden Geruch erhalten. Auch mit der Schnellmethode ist keine nachträgliche Geruchsentwicklung nachweisbar.

Mit dem hydrierten und nicht hydrierten Polymer gen keine gelartigen Anteile enthalten. Die erfindungs- 10 wird je eine Polyurethan-Hartschaum-Herstellung durchgeführt. Dazu wird eine Rezeptur aus

> 100 Teilen Hartschaumpolyol mit einer OH-Zahl von 520

1,5 Teilen Wasser

2.0 Teilen Dimethylcyclohexylamin

1.0 Teilen erfindungsgemäß behandeltem bzw. zum Vergleich nicht behandeltem Blockmischpolymer als Stabi-

155,0 Teilen rohes Methyldiisocyanat

hergestellt und in ein L-förmiges Rohr hinein verschäumt. Es wird die Fließlänge des Schaumes gemessen und verglichen.

Der Schaum mit dem hydrierten Stabilisator hatte eine um 8% höhere Fließlänge. Die Porenstruktur wird visuell vergleichen. Der Schaum mit dem hydrierten Stabilisator zeigt weniger Schaumstörungen.

Beispiel 3

eines Polyoxyalkylen-Polydimethylsiloxan-Blockmischpolymers mit 20 bis 30 Si-Atomen, 80 bis 120 Oxyethylen-Einheiten und einem durchschnittlichen Mol-Gewicht von 5000, das 35% Überschuß an nicht addierten Polyoxyalkenen enthält, wird in Gegenwart von 0,5 g Nickelkatalysator mit 60% Ni auf Kieselgur im Druckbereich 15/14 bar bei 130°C in 2 Stunden hydriert. Der Wasserstoffverbrauch beträgt 4,5 l unter Normalbedingungen. Wie in den Beispielen 1 und 2, wird innerhalb von 6 Wochen sowohl am hydrierten Produkt als auch nach der Schnellmethode keine Geruchsentwicklung beobachtet. Mit diesem Polymer wird bei dem Beispiel 2 eine vergleichende Polyurethan-Hartschaum-Herstellung durchgeführt. Durch die Hydrierung können die Werte des Schaumes, die beim Einsatz des unhydrierten Produktes außerhalb der Spezifikation liegen, auf das geforderte Maß gebracht werden.

Patentansprüche

- 1. Verfahren zum Desodorieren von Polyoxyalkylen-Polysiloxan-Blockmischpolymeren, bei denen die Polysiloxanblöcke durch SiC-Bindungen an die Polyetherblöcke gebunden sind und welche durch Anlagerung von Alkenpolyethern an Wasserstoffsiloxan in Gegenwart von Pt-Katalysatoren hergestellt wurden, dadurch gekennzeichnet, daß man auf die Blockmischpolymeren Wasserstoff in Gegenwart an sich bekannter Hydrierungskatalysatoren bei Temperaturen von 20 bis 200°C und einem Druck von 1 bis 100 bar über einen Zeitraum von 0,5 bis 10 Stunden einwirken läßt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Wasserstoff bei Temperaturen von 110 bis 140° C einwirken läßt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch ge-

kennzeichnet, daß man Wasserstoff bei einem Druck von 2 bis 15 bar einwirken läßt.

- 4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man als Katalysatoren für Hydrierungsreaktionen an sich bekannte Schwermetallkatalysatoren verwendet
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man als Katalysatoren Ni, Cu, Cr oder Metalle der Platingruppe verwendet.