

Descriptive Inference Examples for Single Variables Using Hypothesis Testing

Brady T. West

Example 1: One-Sample Tests for Proportions

Research Question:

Did 33% (one-third) of non-Hispanic African-Americans age 18+ in U.S. in 2015-2016 have systolic blood pressure greater than 130 mmHg, or was population proportion different than one-third?

Inference Approach:

Perform a one-sample test (two-tailed) to either **reject** or **fail to reject** null hypothesis: population proportion = 0.33

Step 1: Define the Null and Alternative

- Null: Population proportion (a) is 0.33
- Alternative: Population proportion isot equal to 0.33

Alternative allows proportion to be *either* greater or less than 0.33 → **two-tailed test** need more evidence against null hypothesis to reject it!

Significance Level = 5%

Step 2: Compute the Test Statistic

- Best Point Estimate: Assuming simple random sample of black adults, sample proportion is $\frac{465}{1135} = 0.4097$
- **Test Statistic:** Assuming sampling distribution of estimated proportion is normal,

Estimate is

more than 5

standard errors

from 0.33 null

value

$$z = \frac{best \ estimate - null \ value}{null \ standard \ error} = \frac{0.4097 - 0.33}{\sqrt{\frac{0.33(1 - 0.33)}{1135}}} = 5.71$$

Step 3: Determine P-Value

- If null hypothesis was true, would a test statistic value of z = 5.71 be considered unusual enough to reject the null?
- **P-value** = Probability of seeing test statistic of 5.71 or *more extreme*assuming the null hypothesis is true.
- If null hypothesis true, Z follows "standard" follows normal distribution, and two ailed test
 - → more extreme measured in both tails.

P-value ≅0

Step 4: Make a Decision about the Null

- If population proportion really was 0.33, then observing a sample proportion of 0.4097 or more extreme is not likely.
- Since our P-value is much less than 0.05 significance level, strong evidence against the null \rightarrow we **reject the null!**

Based on estimated proportion (0.4097), we **support** the population proportion is not 0.33 (and likely larger)

Example 2: One-Sample Tests for

Research Question:

Was the **mean** systolic blood pressure for non-Hispanic African-Americans age 18+ in U.S. in 2015-2016 equal to 128 mmHg or was the population mean <u>different</u> from 128?

Inference Approach:

Perform a one-sample test (two-tailed!) to either reject or fail to reject null hypothesis: population mean = 128 mmHg

Step 1: Define the Null and Alternative

- Null: Population meanu is 128 mmHg
- Alternative: Population mean is **not equal** to 128 mmHg

Alternative allows mean to be *either* greater or less than 128mmHg → two -tailed test need more evidence against null hypothesis to reject it!

Significance Level = 5%

Step 2: Compute the Test Statistic

- **Best Point Estimate**: Assuming simple random sample of black adults, sample mean is 128.252 mmHg
- Test Statistic: Assuming sampling distribution of estimated mean is normal,

$$t = \frac{best \ estimate - null \ value}{estimated \ std \ error} = \frac{128.252 - 128}{\frac{19.958}{\sqrt{1135}}} = \mathbf{0.425}$$

Estimate is *less than* ½ standard error from 128 null value

Step 3: Determine P-Value

• If null hypothesis was true, would a test statistic value of only t = 0.425 be unusual enough to reject the null?

• P-value = Probability of seeing test statistic of 0.425 or more extreme

assuming the null hypothesis is true.

If null hypothesis was true, t follows a Student t distribution with degrees of freedom
 n - I = I I 34, and two tailed test

→ More extreme measured in both tails.

P-value = 0.3 | 75

Step 4: Make a Decision about the Null

- If population mean really was 126mHg then observing a sample mean of 128.252 or more extreme is quite likely.
- Since our Pvalue is much bigger than 0.05 significance level, weak evidence against the null → wfail to reject the null!

Based on estimated mean (128.252 mmHg), we *cannot support*the population mean differs from 128 mmHg

What's Next?

How to make inferences about differences between subgroups

Confidence intervals for differences in means and proportions

Hypothesis testing for comparing means and proportions