

## **FISOP - Parcialito TP2**

1 mensaje

Formularios de Google <forms-receipts-noreply@google.com>

Para: pgallino@fi.uba.ar

3 de noviembre de 2023, 19:19

Gracias por rellenar FISOP - Parcialito TP2

Esto es lo que se recibió.

## FISOP - Parcialito TP2

Parcialito sobre el TP3 de la materia Sistemas Operativos (FIUBA)

Se ha registrado tu correo (pgallino@fi.uba.ar) al enviar este formulario.

Antes de arrancar, dejanos tus datos.

Ingresá tu padrón: \*

107587

| Gallino Pedro                 |                            |                                                |
|-------------------------------|----------------------------|------------------------------------------------|
| Preguntas                     |                            |                                                |
| Son 15 preguntas              | s en total.                |                                                |
| La instrucció                 | n "iret"                   |                                                |
| Puede se                      | er ejecutada en ring 3 p   | para volver al kernel                          |
| Cambia                        | atómicamente el eip, el    | cs y todos los registros de propósito general  |
| Funciona                      | a igual que la instrucción | n "ret"                                        |
| Permite                       | cambiar el eip que se e    | stá usando                                     |
| En la arquite<br>cambio de co |                            | e los registros según quién los modifica en el |
| Modificar: hacer              | uso explícito de una ins   | strucción como mov, movl, pop, push, etc.      |
|                               | Lo modifica JOS            | Lo modifica la arquitectura                    |
|                               |                            |                                                |

| ds                                         | $\checkmark$         |                                               |  |
|--------------------------------------------|----------------------|-----------------------------------------------|--|
| esp                                        |                      | $\checkmark$                                  |  |
| cs                                         |                      | $\checkmark$                                  |  |
|                                            | d algorítmica del s  | scheduler "round robin" es:                   |  |
| * N: cantidad de pro                       | ocesos totales       |                                               |  |
| <b>O</b> (N)                               |                      |                                               |  |
| O(1)                                       |                      |                                               |  |
| O(logN)                                    |                      |                                               |  |
| O(N^2)                                     |                      |                                               |  |
| Una de las ca "justo" (fair)  *  Verdadero |                      | importante del scheduler "round robin" es ser |  |
| Falso                                      |                      |                                               |  |
| El formato y o                             | orden del "struct Tr | apframe" se define por: *                     |  |
|                                            | ón de JOS            |                                               |  |

| La arquitectura cuando se realiza un cambio de contexto                                         |
|-------------------------------------------------------------------------------------------------|
| La arquitectura cuando se realiza un cambio de contexto y JOS                                   |
| Ninguna de las anteriores                                                                       |
| ¿Por qué es necesario tener dos macros: TRAPHANDLER_NOEC y TRAPHANDLER? *                       |
| Para distinguir entre interrupciones por hardware e interrupciones por software                 |
| Porque algunas interrupciones generan un código de error asociado                               |
| Para distinguir entre excepciones e interrupciones                                              |
| Porque algunas interrupciones no son recuperables (e.g. división por cero)                      |
| ¿Dónde almacena la arquitectura x86 el nivel de privilegio actual? *                            |
| En el registro eflags                                                                           |
| En el registro cs                                                                               |
| En la idt                                                                                       |
|                                                                                                 |
| En el registro cr0                                                                              |
| En el registro cr0  ¿Cuál es el mecanismo por el cuál se pasa de modo usuario a modo kernel?  * |

| Llamada a función                                                                                    |
|------------------------------------------------------------------------------------------------------|
| Interrupciones                                                                                       |
| Todas las anteriores                                                                                 |
| Indicar cuáles de las siguientes opciones deben cumplirse para un scheduler basado en prioridades: * |
| Todo proceso debe tener una prioridad asignada                                                       |
| Todos los procesos tienen el mismo tiempo de CPU que el resto                                        |
| El scheduler no puede tener preemption                                                               |
| Un proceso debe poder aumentar su propia prioridad                                                   |
| Un scheduler con preemption *                                                                        |
| Es siempre justo, porque garantiza el mismo time slice para todos los procesos                       |
| Evita que un proceso malicioso tome control de la CPU                                                |
| Permite volver a modo kernel únicamente a través de la interrupción del timer                        |
| Todas las anteriores                                                                                 |
| ¿Cual de las siguientes situaciones desencadena un cambio de contexto?                               |

|            | Un proceso de usuario derreferenciando un puntero a NULL                                                                                                                                                                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ | Un proceso de usuario realizando una syscall                                                                                                                                                                                                                                      |
| $\bigcirc$ | Un proceso de usuario intentando usar una instrucción privilegiada                                                                                                                                                                                                                |
| •          | Todas las anteriores                                                                                                                                                                                                                                                              |
| ¿El        | scheduler de JOS es preemptive?                                                                                                                                                                                                                                                   |
| •          | Verdadero                                                                                                                                                                                                                                                                         |
| $\bigcirc$ | Falso                                                                                                                                                                                                                                                                             |
| Se ti      | ene un scheduler preemptive con prioridades el cual no tiene mecanismo para                                                                                                                                                                                                       |
| rese       | tear las mismas, entonces  oco posee syscalls para modificar prioridades, y siempre comienza la búsqueda por la mejor                                                                                                                                                             |
| rese<br>*  | tear las mismas, entonces  oco posee syscalls para modificar prioridades, y siempre comienza la búsqueda por la mejor                                                                                                                                                             |
| rese<br>*  | tear las mismas, entonces  poco posee syscalls para modificar prioridades, y siempre comienza la búsqueda por la mejor dad.                                                                                                                                                       |
| rese<br>*  | tear las mismas, entonces  coco posee syscalls para modificar prioridades, y siempre comienza la búsqueda por la mejor dad.  No puede garantizarse que un proceso malicioso pueda apropiarse de la CPU                                                                            |
| rese<br>*  | tear las mismas, entonces  coco posee syscalls para modificar prioridades, y siempre comienza la búsqueda por la mejor dad.  No puede garantizarse que un proceso malicioso pueda apropiarse de la CPU  No puede garantizarse que todos los procesos se ejecuten al menos una vez |

| El código de error de la última syscall ejecutada                                         |
|-------------------------------------------------------------------------------------------|
| El valor del registro %err del entorno del proceso                                        |
| El valor de retorno de env_run                                                            |
| Ninguna de las anteriores                                                                 |
| Se tiene las siguientes instrucciones dentro de la función context_switch ¿son correctas? |
| movl 4(%esp), %esp popal pop %es pop %ds mov %esp, %eax  Está mal porque se pisa          |
| add \$8, %eax                                                                             |
| Considerar estas instrucciones como las únicas en la función                              |
| Verdadero                                                                                 |
| ○ Falso                                                                                   |

Crea tu propio formulario de Google Notificar uso inadecuado