Introduzione a rischio e rendimento

http://www.unibo.it/docenti/emilio.tomasini

DUE LEZIONI PER DUE OBIETTIVI DIVERSI ANCHE SE DI ORDINE LOGICO CONSECUTIVO

- In questo capitolo vediamo come stimare il rischio e il rendimento di un asset
- Nel prossimo capitolo discuteremo di come legare funzionalmente rischio e rendimento

	CCN (% su ricavi)	10%		15,50	17,05	18,76	20,63	
	- Variazione CCN			-15,50	-1,55	-1,71	-1,88	20,63
			0	1	2	3	4	5
	Ricavi			155,00	170,50	187,55	206,31	
	Costi fissi	-15,00		-15,00	-15,00	-15,00	-15,00	
	Costi variabili (% su ricavi)	20%		-31,00	-34,10	-37,51	-41,26	
	EBITDA			109,00	121,40	135,04	150,04	
	Ammortamenti			-42,50	-42,50	-42,50	-42,50	
	EBIT			66,50	78,90	92,54	107,54	
	Tasse (aliquota %)	30%		-19,95	-23,67	-27,76	-32,26	
	NOPAT			46,55	55,23	64,78	75,28	
	Ammortamenti			42,50	42,50	42,50	42,50	
	Flusso di Cassa Operativo			89,05	97,73	107,28	117,78	
	- Variazione CCN			-15,50	-1,55	-1,71	-1,88	20,63
	Investimento		-170,00					
	Flusso di Cassa		-170,00	73,55	96,18	105,57	115,91	20,63
	Fattore di sconto (r)	10%		0,91	0,83	0,75	0,68	0,62
	VA dei FDC		-170,00	66,86	79,49	79,32	79,16	12,81
	VAN		147,64					
	TR		2,00					
-	TRA		tra 2 e 3					
	IR		0,87					

RISCHIO: COSA È?

L'ideogramma cinese Wei Ji è il risultato della unione di due parole:

- ·pericolo
- ·opportunità

Il valore dell'investimento di \$1 nel 1926

Il valore dell'investimento di \$1 nel 1926

TASSI DI RENDIMENTO (MEDIA MATEMATICA)

Portafoglio	Tasso medio di rendimento annuo (NOMINALE)	Tasso medio di rendimento annuo (REALE)	Premio medio per il rischio (rendimento differenziale rispetto ai titoli di Stato a breve termine)
Titoli di Stato USA a breve termine	4.1	1.1	0
Titoli di Stato USA a lungo termine	5.2	2.3	1.2
Azioni (Indice SP500)	11.7 (medio annuo composto 10.1)	8.7 (medio annuo composto 6.7)	7.6

Media aritmetica e media geometrica

Geometric average return
=
$$[(1 + R_1) \times (1 + R_2) \times ... \times (1 + R_T)]^{1/T} - 1$$

Arithmetic mean return

Mean =
$$\overline{R} = \frac{(R_1 + \cdots + R_T)}{T}$$

ESEMPIO MEDIA GEOMETRICA

Calculate the geometric average return for French stocks for 2007-2011.

Step 1:

CAC40 Returns	Product	
-17.3	0.827	
-44.4	× 0.556	
42.8	× 1.428	
9.9	× 1.099	
-21.2	× 0.788	
	0.5686	

Step 2:

Geometric average return = .5686^{1/5} - 1 = -.1068, or -10.68%

Worldwide Risk Premiums Relative to Bonds, 1900-2010

Country	Geometric Mean (%)	Arithmetic Mean (%)	Standard Dev. (%)	Min. Return (%)	Year	Max. Return (%)	Year
Australia	5.9	7.8	19.8	-52.9	2008	66.3	1980
Belgium	2.6	4.9	21.4	-60.3	2008	84.4	1940
Canada	3.7	5.3	18.2	-40.7	2008	48.6	1950
Denmark	2	3.4	17.2	-54.3	2008	74.9	1972
Finland	5.6	9.2	30.3	-56.3	2008	173.1	1999
France	3.2	5.6	22.9	-50.3	2008	84.3	1946
Germany	5.4	8.8	28.4	-50.8	2008	116.6	1949
Ireland	2.9	4.9	19.8	-66.6	2008	83.2	1972
italy	3.7	7.2	29.6	-49.4	2008	152.2	1946
lapan	5	9.1	32.8	-45.2	2008	193	1948
The Netherlands	3.5	2.1	22.2	-55.6	2008	107.6	1940
New Zealand	3.8	1.7	18.1	-59.7	1987	72.7	1983
Norway	2.5	5.5	28	-57.8	2008	192.1	1979
South Africa	5.5	1.9	19.6	-34.3	2008	70.9	1979
Spain	2.3	4.3	20.8	-42.7	2008	69.1	1986
Sweden	3.8	6.1	22.3	-48.1	2008	87.5	1905
Switzerland	2.1	3.6	17.6	-40.6	2008	52.2	1985
UK	3.9	1.6	17	-38.4	2008	80.8	1975
US	4.4	1.9	20.5	-50.1	2008	57.2	1933
Europe	3.9	5.2	16.6	-47.6	2008	67.9	1923
World ex-US	3.8	1.5	15.5	-47.1	2008	51.7	1923
World	3.8	5	15.5	-47.9	2008	38.3	1954

Note: All statistics for Germany are based on 109 years, excluding hyperinflationary 1922 - 23.

Source: Dimson et al. (2002, 2011).

MEDIA MATEMATICA E GEOMETRICA

- Quando scontiamo la media geometrica < media matematica,
 quando capitalizziamo media geometrica > media aritmetica
- o Questi rendimenti delle azioni sono medie aritmetiche e tengono conto sia dei capital gains che dei dividendi
- o La crisi del 2008 ha ridotto i rendimenti di quasi il 50% se si considera il punto di minimo
- O Rischio di un indice azionario (SP500 negli USA o FTSE MIB 40 in Italia) è considerato il rischio di mercato perché l'indice comprende azioni di tutti i settori (in Italia soprattutto bancario e assicurativo).
- Non è verosimile che il rendimento di mercato o rischio di mercato sia stabile nel corso del tempo e non serve allungare la media per stimarlo
- LA FINANZA AZIENDALE E' IN CONTINUO DIVENIRE, IL MONDO CAMBIA RAPIDAMENTE E DOBBIAMO SEMPRE CORRERE PER ADEGUARCI AI CAMBIAMENTI. MA QUESTO E' IL BELLO DI UNA MATERIA SEMPRE VIVA.

A SECONDA DI COME CALCOLATE LA MEDIA DIMOSTRATE TUTTO E IL CONTRARIO DI TUTTO

Real equity returns 2000-2008 and over a longer run

RISCHIO DI MERCATO

• La formula del rischio di mercato è intuitiva:

Rm = rf + premio normale per il rischio

Il premio «normale» per il rischio serve a convincere l'investitore a non investire senza rischio in rf ma a prendersi un rischio

Per questo importante calcolare sia rf che rm per calcolare il premio per il rischio.

IL PREMIO PER IL RISCHIO OVVERO L'ARABA FENICE

- Il premio per il rischio varia a seconda del periodo storico
- Il premio per il rischio varia a seconda dello stato dell'economia
- Il premio per il rischio varia a seconda della latitudine geografica
- Il premio per il rischio varia a seconda dello stato sociale di chi lo deve prendere
- o Il premio per il rischio varia a seconda dell'età
- Il premio per il rischio varia a seconda del sesso ? (siamo per le pari opportunità e quindi non ci pronunciamo)

RISCHIO DI MERCATO, PREMIO MEDIO(1999-2000)

Premio per il rischio di mercato, %

Stato

STUDI RELATIVI ALL'ITALIA

- **Panetta e Violi:** tasso di rendimento medio annuo pari a 6.72% dalla formazione del regno di Italia al 1994
- Siciliano: premio per il rischio al netto dell'imposizione fiscale e dei costi di transazione nel periodo 1906 1998 del 3.9%

Tassi di rendimento 1926-2000

Rendimenti degli indici azionari

Anno

Fonte: Ibbotson Associates

Paese che vai rendimento che trovi

	REAL RETURNS	S FROM DIFFER	ENT ASSETS	REAL 2000 VA	LUE OF 1 CURF	ENCY UNIT
		TS 1900-2000			TED IN 1900 IN	
COUNTRY	SHARES	BONDS	CASH	SHARES	BONDS	CASH
Australia	7.5	1.1	0.4	1,487	3.02	1.50
Belgium	2.5	-0.4	-0.3	12	0.67	0.74
Canada	6.4	1.8	1.7	526	6.06	5.49
Denmark	4.6	2.5	2.8	94	12.11	16.27
France	3.8	-1.0	-3.3	43	0.36	0.03
Germany**	3.6	-2.2	-0.6	36	0.11	0.54
Ireland	4.8	1.5	1.3	114	4.50	3.69
Italy	2.7	-2.2	-4.1	15	0.11	0.01
Japan	4.5	-1.6	-2.0	85	0.20	0.13
The Netherlands	5.8	1.1	0.7	297	3.02	2.02
South Africa	6.8	1.4	0.8	769	4.07	2.24
Spain	3.6	1.2	0.4	36	3.34	1.50
Sweden	7.6	2.4	2.0	1,633	10.97	7.39
Switzerland***	5.0	2.8	1.1	138	16.27	3.02
United Kingdom	5.8	1.3	1.0	297	3.69	2.73
United States	6.7	1.6	0.9	699	4.97	2.47
Average	5.1	0.7	0.2	153	2.04	1.19
** German bond a	and cash fi	gures excl	ude 1922-23	3		
***Swiss equities	from 1911					

<u>Varianza</u> – Media degli scarti al quadrato del valore atteso. Misura della variabilità in valore assoluto.

Varianza rendimento effettivo = (rendimento effettivo – rendimento atteso)²

Scarto quadratico medio — Radice quadrata della varianza. Misura della variabilità in percentuale: nel caso dei rendimenti quindi è nella stessa unità di misura

PERCHÉ LA VARIANZA È AL QUADRATO?

- Per quale motivo <u>si chiede lo studente</u> per misurare la variabilità delle osservazioni si usa la varianza per poi calcolare la sua radice (riottenendo così l'unità di misura originaria delle osservazioni) ... quando esistono i valori assoluti?
- RISPOSTA: Si usa la varianza perché, matematicamente, è molto più comodo trattare una funzione come $f(x)=x^2$ di cui è facile calcolare tutto, continua e derivabile in tutto il dominio, che f(x)=|x| E' una scelta, diciamo, di semplicità.

Calcolo della varianza e dello scarto quadratico medio giocando a testa o croce con 100 euro: tirate due monete, ogni volta che viene testa ricevete 100 euro + 20%, ogni volta che viene croce 100 euro - 10%

(1)	(2)	(3)
Tasso di rendimento (%)	Scarto dalla media	Scarto al quadrato del valore atteso
+ 40	+ 30	900
+10	0	0
+10	0	0
- 20	- 30	900

Varianza = Media degli scarti al quadrato del valore atteso = 1800/4 = 450Scarto quadratico medio = Radice quadrata della varianza = $\sqrt{450} = 21,2\%$

SCARTI QUADRATICI MEDI STORICI USA

Portafoglio	Scarto Quadratico medio	Varianza
Buoni del Tesoro	2.8 %	7.9
Titoli di Stato a lungo termine	8.2 %	68
Azioni	20.1 %	402.6

Istogramma dei tassi di rendimento annui

n. di anni

Rendimento %

- <u>Diversificazione</u> Strategia volta a ridurre il rischio mediante l'allargamento del portafoglio di attività a molteplici investimenti.
- Rischio unico Costituito dai fattori di rischio aventi influenza solo su una specifica azienda. Anche detto "rischio diversificabile",
- Rischio del mercato Costituito dai generali fattori di rischio insiti dell'economia, i quali influenzano il mercato nel suo complesso. Anche detto "rischio sistematico".

RISCHIO DI PORTAFOGLIO

La varianza di un portafoglio di due azioni è la somma di questi quattro addendi:

	Azione 1	Azione 2
Azione 1	$x_{1}^{2}\sigma_{1}^{2}$	$X_1X_2\sigma_{12} =$
AZIONE I		$X_1X_2\rho_{12}\sigma_1\sigma_2$
Azione 2	$X_1X_2\sigma_{12} =$	$x_2^2\sigma_2^2$
	$X_1X_2\rho_{12}\sigma_1\sigma_2$	

Varianza del portafoglio = $\mathbf{x_1^2}\sigma_1^2 + \mathbf{x_2^2}\sigma_2^2 + 2(\mathbf{x_1}\mathbf{x_2}\rho_{12}\sigma_1\sigma_2)$

Se il rho è negativo allora anche il segno del terzo addendo è negativo e riduce / annulla la varianza del portafoglio

RISCHIO DI PORTAFOGLIO

Le caselle sulla diagonale (blu) contengono i termini che indicano le varianze; le altre caselle indicano le covarianze.

Per calcolare la varianza del portafoglio, effettuate la somma delle caselle.

RISCHIO DI PORTAFOGLIO

Esempio

La deviazione standard dei ritorni giornalieri annualizzati, è rispettivamente del 31,5% e del 58,5%. Assumendo coefficiente di correlazione pari a 1,0, la varianza del portafoglio è data da:

	Coca - Cola	Reebok
Coca - Cola	$\mathbf{x}_{1}^{2}\sigma_{1}^{2} = (0,65)^{2} \times (31,5)^{2}$	$x_1 x_2 \rho_{12} \sigma_1 \sigma_2 = 0.65 \times 0.35$ $\times 1 \times 31.5 \times 58.5$
Reebok	$x_1 x_2 \rho_{12} \sigma_1 \sigma_2 = 0.65 \times 0.35$ $\times 1 \times 31.5 \times 58.5$	$\mathbf{x_2^2}\sigma_2^2 = (0,35)^2 \times (58,5)^2$

Portfolio Variance =
$$[(0,65)^2 \times (31,5)^2]$$

+ $[(0,35)^2 \times (58,5)^2]$
+ $2(0,35 \times 0,65 \times 31,5 \times 58,5) = 1.006,1$
Standard Deviation = $\sqrt{1.006,1} = 31,7 \%$

CORRELAZIONE

- La diversificazione riduce il rischio di portafoglio solo quando la correlazione è inferiore a 1
- Se la correlazione è perfettamente negativa, ovvero -1, c'è sempre una strategia di portafoglio che elimina completamente il rischio
- Infatti se nella formula del calcolo della varianza di un portafoglio il rho è negativo allora anche il terzo addendo diventa con segno negativo e diminuisce o annulla la somma finale.

RENDIMENTO ATTESO DEL PORTAFOGLIO

Tasso di rendimento del portafoglio

Frazione del portafoglio investita nella prima attività Tasso di rendimento della prima attività

Frazione del portafoglio investita nella seconda attività x lella seconda attività

Rendimento atteso del portafoglio = $(x_1r_1) + (x_2r_2)$

RISCHIO DI PORTAFOGLIO

Esempio

Supponete di investire il 65% del vostro portafoglio in azioni Coca Cola e il restante 35% in Reebok. Dato il rendimento atteso del 10% per Coca Cola e del 20% per Reebo, il rendimento atteso dell'intero portafoglio è pari a:

Rendimento Atteso = $(0.65 \times 10) + (0.35 \times 20) = 13,5\%$

LIMITI DELLA DIVERSIFICAZIONE

Quando ci sono molti titoli (N), il numero delle covarianze è molto maggiore del numero delle varianze. Quindi la variabilità di un portafoglio ben diversificato riflette principalmente le covarianze

3 ASSUNTI PER SEMPLIFICARE

- Tutte le covarianze sono uguali
- Tutte le varianze sono uguali
- Tutti i pesi sono uguali (1/N)

Security	1	2	3	•••	N
1	(1/N²) var	(1/N²) cov	(1/N²) cov		(1/N²) cov
2	(1/N²) cov	$(1/N^2)$ var	(1/N²) cov		(1/N²) cov
3	$(1/N^2)$ $\overline{\text{cov}}$	(1/N ²) cov	$(1/N^2)$ var		(1/N ²) cov
N	(1/N²) cov	(1/N²) cov	(1/N²) cov		(1/N²) var

Variance of portfolio =
$$N$$
 × $\left[\frac{1}{N^2}\right]\overline{\text{var}}$ + $N(N-1)$ × $\left[\frac{1}{N^2}\right]\overline{\text{cov}}$

Number of diagonal terms

| Number of diagonal terms | terms | terms | terms |
| = $\left[\frac{1}{N}\right]\overline{\text{var}}$ + $\left[\frac{N^2-N}{N^2}\right]\overline{\text{cov}}$

| = $\left[\frac{1}{N}\right]\overline{\text{var}}$ + $\left[1-\frac{1}{N}\right]\overline{\text{cov}}$

- se N cresce all'infinito la varianza di un portafoglio si avvicina alla covarianza media covarianza media + 1/N * (varianza media covarianza media)
- Il rischio sistematico è la covarianza media di tutti i titoli ovvero il rischio «duro» che rimane dopo che la diversificazione ha esercitato i suoi effetti

IL BETA DI UNA AZIONE E DI UN PORTAFOGLIO

- Il rischio di un portafoglio ben diversificato dipende dal rischio sistematico dei titoli inclusi nel portafoglio stesso
- Il rischio di un singolo titolo è misurato dal beta che può essere spiegato in due modi: algoritmico e grafico
- Il rischio di un portafoglio (beta) è dato dalla somma del rischio (beta) ponderato per i pesi dei singoli titoli

Beta e rischio unico

Beta e rischio unico

Cosa significa il beta

- Le azioni con un beta > 1 tendono ad amplificare le oscillazioni del mercato
- Le azioni con un beta < 1 tendono ad attutire le oscillazioni del mercato
- Le azioni con un beta negativo sono come una assicurazione all'interno di un portafoglio perché quando varia negativamente l'indice loro variano positivamente e viceversa (caso di scuola)
- Le azioni con un beta pari a zero hanno un rendimento pari al tasso fisso ma non sono un risk free asset perché non hanno rischio sistematico ma hanno un rischio unico (caso di scuola)

Additività del valore

- La diversificazione non aumenta il valore di una impresa né lo diminuisce. Se fosse vero l'inverso ogni negozio di alimentari dovrebbe vendere televisori e cavi elettrici e viceversa.
- Gli investitori possono diversificare in maniera più efficiente di una impresa comprando titoli diversi in Borsa e detenendoli per un breve periodo
- Abbiamo visto in precedenza che la somma del valore di due attività (progetti) è pari alla somma algebrica dei due valori = > additività dei valori
- Ergo la teoria di portafoglio non serve a niente per valutare i progetti aziendali