THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Solutions to Tutorial for Week 3

MATH1903: Integral Calculus and Modelling (Advanced)

Semester 2, 2012

Lecturers: Daniel Daners and James Parkinson

Topics covered

In lectures last week:

П	The	Funds	mental	Theorem	$\circ f$	Calculus
	1115	TUHILI	1111511661	1 115015111	()	Valuutio.

- □ Functions defined using integrals: the logarithm, the error function, the inverse tangent function, the Fresnel integrals, the sine integral, the logarithmic integral.
- ☐ Elementary antiderivatives (Liouville's Theorem).

Objectives

After completing this tutorial sheet you will be able to:

- ☐ Apply the Fundamental Theorem of Calculus in various settings.
- □ Quantitatively and qualitatively analyse functions defined by integrals.
- □ Decide if certain functions defined by integrals are elementary (challenging!).
- \square Use integration and differentiation to prove a beautiful theorem: π is irrational.

Preparation questions to do before class

1. Find the derivative of $f(x) = \int_{1}^{\sqrt{x}} \frac{s^2}{s^2 + 1} ds$

Solution: Let $g(x) = \int_1^x \frac{s^2}{s^2+1} ds$. Then $f(x) = g(\sqrt{x})$, and so by the Fundamental Theorem of Calculus and the chain rule we compute

$$f'(x) = g'(\sqrt{x}) \frac{1}{2\sqrt{x}} = \frac{x}{x+1} \frac{1}{2\sqrt{x}} = \frac{\sqrt{x}}{2(x+1)}.$$

2. Use integration by parts to calculate $\int_0^1 C(x) dx$, where $C(x) = \int_0^x \cos(t^2) dt$.

Solution: Let u = C(x) and $\frac{dv}{dx} = 1$. Then $\frac{du}{dx} = \cos(x^2)$ and v = x, and so

$$\int_0^1 C(x) \, dx = xC(x) \Big|_0^1 - \int_0^1 x \cos(x^2) \, dx = C(1) - \frac{1}{2} \sin(x^2) \Big|_0^1 = C(1) - \frac{1}{2} \sin 1.$$

Questions to do in class

3. Find the derivative of the following functions.

(a)
$$f(x) = \int_{x}^{4} (2 + \sqrt{u})^{8} du$$

Solution: By the Fundamental Theorem of Calculus,

$$f'(x) = -\frac{d}{dx} \int_{4}^{x} (2 + \sqrt{u})^{8} du = -(2 + \sqrt{x})^{8}.$$

(b)
$$f(x) = \int_{x}^{\cos x} e^{-t^2} dt$$

Solution: Write

$$f(x) = \int_0^{\cos x} e^{-t^2} dt - \int_0^x e^{-t^2} dt.$$

By the Fundamental Theorem of Calculus and the chain rule we have

$$\frac{d}{dx} \int_0^{\cos x} e^{-t^2} dt = -\sin x \, e^{-\cos^2 x},$$

and so

$$f'(x) = -\sin x \, e^{-\cos^2 x} - e^{-x^2}.$$

4. Recall that the logarithmic integral $\operatorname{Li}(x)$ is defined by $\operatorname{Li}(x) = \int_2^x \frac{dt}{\ln t}$. For $\alpha > 1$, calculate

$$\int_{2}^{\alpha} \frac{\operatorname{Li}(x)}{x^{2}} \, dx.$$

Solution: Using integration by parts, with u = Li(x) and $\frac{dv}{dx} = \frac{1}{x^2}$, gives

$$\int_2^\alpha \frac{\operatorname{Li}(x)}{x^2} \, dx = -\frac{\operatorname{Li}(x)}{x} \bigg|_2^\alpha + \int_2^\alpha \frac{1}{x \ln x} \, dx = -\frac{\operatorname{Li}(\alpha)}{\alpha} + \int_2^\alpha \frac{1}{x \ln x} \, dx,$$

where we have used Li(2) = 0. Making the change of variable $t = \ln x$ gives

$$\int_{2}^{\alpha} \frac{1}{x \ln x} dx = \int_{\ln 2}^{\ln \alpha} \frac{1}{t} dt = \ln \ln \alpha - \ln \ln 2.$$

Therefore

$$\int_{2}^{\alpha} \frac{\operatorname{Li}(x)}{x^{2}} dx = \ln \ln \alpha - \ln \ln 2 - \frac{\operatorname{Li}(\alpha)}{\alpha}.$$

5. Let f(x) be a continuous function on [a, b]. Apply the Mean Value Theorem to the function

$$F(x) = \int_{a}^{x} f(t) dt$$

to show that there exists $c \in (a, b)$ such that

$$\frac{1}{b-a} \int_a^b f(t) dt = f(c),$$
 and interpret this geometrically.

Solution: Applying the Mean Value Theorem to the function F(x) on the interval [a, b] tells us that there is $c \in (a, b)$ such that

$$F'(c) = \frac{F(b) - F(a)}{b - a}.$$

But F'(c) = f(c) and F(a) = 0, which establishes the required equality. One way to geometrically interpret this, at least in the case when $f(x) \ge 0$, is that the area

$$\int_{a}^{b} f(x) \, dx$$

under the curve is equal to the area of a rectangle with base [a, b] and height f(c) for some $c \in (a, b)$. This is 'clear' from drawing a picture.

Questions for extra practice

6. Let
$$f(x) = \int_0^x x \sin(t^2) dt$$
. Find $f''(x)$.

Solution: Since x is constant as far as the integrating variable t is concerned, we can write $f(x) = x \int_0^x \sin(t^2) dt$. Now by the product rule and the Fundamental Theorem of Calculus,

$$f'(x) = x\sin(x^2) + \int_0^x \sin(t^2) dt,$$

$$f''(x) = \sin(x^2) + x\frac{d}{dx}\sin(x^2) + \sin(x^2) = 2\sin(x^2) + 2x^2\cos(x^2).$$

7. Suppose that a function y = f(x) has the following graph:

Let F(x) be the function defined by $F(x) = \int_0^x f(t) dt$ for $0 \le x \le 8$. Sketch the graph of y = F(x), indicating points where F has a local maximum or minimum, and any points of inflection.

Solution: F'(x) = f(x) by the Fundamental Theorem of Calculus, and so we see from the graph of y = f(x) that $F'(x) \ge 0$ for $0 \le x \le 3$ and for $6 \le x \le 8$, while F'(x) < 0 for 3 < x < 6. So F(x) is increasing on [0,3] and on [6,8], but

decreasing on [3,6]. So F(x) has a local maximum at x=3 and a local minimum at x=6. Also, F''(x)=f'(x), which is negative for 0 < x < 4.5 and positive for $4.5 < x \le 8$. Hence F(x) is concave downwards on [0,4.5], concave upwards on [4.5,8], and has a point of inflection at x=4.5. Note also that F(0)=0. We can now sketch the graph of y=F(x):

8. If $x \sin(\pi x) = \int_0^{x^2} f(t) dt$, find f(4).

Solution: Differentiating both sides of the given equation we get

$$\sin(\pi x) + \pi x \cos(\pi x) = 2x f(x^2).$$

Evaluating both sides of this at x=2, we see that $f(4)=\pi/2$.

- **9.** Suppose that f(t) is continuous on [a,b]. Recall the following:
 - The Extreme Value Theorem says that f(x) attains a global maximum M and a global minimum m on [a,b].
 - Then the *Intermediate Value Theorem* implies that if $m \leq A \leq M$ then there exists $c \in [a, b]$ such that f(c) = A.

Let p(t) be Riemann integrable on [a, b] with $p(t) \geq 0$ for all $t \in [a, b]$.

(a) Explain why

$$m \int_a^b p(t) dt \le \int_a^b f(t)p(t) dt \le M \int_a^b p(t) dt.$$

Solution: It is a general fact that if f and g are Riemann integrable on [a,b] with $f(x) \leq g(x)$ for all $x \in [a,b]$, then

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx. \tag{1}$$

This is obvious if we think in terms of areas. To sketch a proof using Riemann sums, let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b], and let $x_j^* \in [x_{j-1}, x_j]$ be a choice of sample points. Since $f(x_j^*) \leq g(x_j^*)$ for each j we have

$$\sum_{j=1}^{n} f(x_j^*) \Delta x_j \le \sum_{j=1}^{n} g(x_j^*) \Delta x_j.$$

As $||P|| \to 0$ the left hand side approaches $\int_a^b f(x) dx$ and the right hand side approaches $\int_a^b g(x) dx$. Therefore (1) holds.

So, since $p(t) \ge 0$ we have $mp(t) \le f(t)p(t) \le Mp(t)$ for all $t \in [a, b]$, and hence

$$m \int_a^b p(t) dt \le \int_a^b f(t)p(t) dt \le M \int_a^b p(t) dt.$$

(b) Deduce that there is $c \in [a, b]$ such that

$$\int_a^b f(t)p(t) dt = f(c) \int_a^b p(t) dt.$$

This is called the *Mean Value Theorem for integrals*. It is a generalisation of Question 5. We will use it later in the course (§6.2 of the course notes).

Solution: Let $I = \int_a^b p(t) dt$. If I = 0 then the inequality in (a) shows that

$$\int_{a}^{b} f(t)p(t) dt = 0,$$

and since 0 = f(c)I for any $c \in [a, b]$ there is nothing to prove. If $I \neq 0$ then we have

$$m \leq \frac{1}{I} \int_a^b f(t)p(t) dt \leq M.$$

Thus by the second bullet point above, there is $c \in [a, b]$ such that

$$f(c) = \frac{1}{I} \int_{a}^{b} f(t)p(t) dt,$$

which rearranges to give the desired equality.

Challenging questions

10. Suppose that f(x) and g(x) are rational functions. Recall that Liouville's Theorem says that

$$\int f(x)e^{g(x)}\,dx$$

is an elementary function if and only if there is a rational function r(x) such that f(x) = r'(x) + g'(x)r(x). Is

$$\int e^{1/x} \, dx$$

an elementary function?

Solution: After trying a few changes of variables, and after throwing my whole bag of integration tricks at it, I begin to think that this integral is *not* an elementary function. Let's prove this. Suppose, for a contradiction, that it is an elementary function. Then Liouville tells us that there is a rational function

$$r(x) = \frac{p(x)}{q(x)} \qquad \text{such that} \qquad 1 = r'(x) - \frac{r(x)}{x^2}, \tag{2}$$

where p(x) and q(x) have no factors in common. Rearranging gives

$$x^{2} = x^{2}r'(x) - r(x). {3}$$

If q(x) is a constant then $x^2r'(x)$ is a polynomial with degree $\deg(p) + 1$, and r(x) is a polynomial with degree $\deg(p)$, and therefore the degree of $x^2r'(x) - r(x)$ is $\deg(p) + 1$. Then (3) gives $\deg(p) = 1$, and so r(x) = p(x) = a + bx. But then (3) gives $x^2 = bx^2 - bx - a$ for all x, and so a = b = 0 and so r(x) = 0, a contradiction.

Therefore q(x) is not a constant, and so by the Fundamental Theorem of Algebra there is a number $\alpha \in \mathbb{C}$ such that $q(\alpha) = 0$. If this root of q(x) has multiplicity m, then

$$r(x) = \frac{h(x)}{(x - \alpha)^m}$$

where h(x) is a rational function whose numerator and denominator do not vanish at $x = \alpha$ (here we have used the fact that p(x) and q(x) have no roots in common). Plugging this into (3) gives

$$x^{2} = \frac{x^{2}h'(x)}{(x-\alpha)^{m}} - mx^{2} \frac{h(x)}{(x-\alpha)^{m+1}} - \frac{h(x)}{(x-\alpha)^{m}}.$$

Rearranging gives

$$mx^{2} \frac{h(x)}{x - \alpha} = x^{2} h'(x) - h(x) - x^{2} (x - \alpha)^{m}.$$
 (4)

If $\alpha \neq 0$ then the left hand side is unbounded as $x \to \alpha$ (we have used the fact that the numerator and denominator of h(x) does not vanish at $x = \alpha$), while the right hand side tends to $\alpha^2 h'(\alpha)$. This forces $\alpha = 0$, in which case (4) becomes

$$mxh(x) = x^2h'(x) - h(x) - x^{m+2}$$

Rearranging this we get

$$\frac{h(x)}{x} = xh'(x) - mh(x) - x^{m+1}.$$

Again, the left hand side is unbounded as $x \to 0$ (because the numerator and denominator of h(x) does not vanish at $x = \alpha = 0$), which the right hand side tends to -mh(0). Therefore there is no rational function r(x) satisfying (2), and therefore by Liouville's Theorem the integral is *not* an elementary function.

The following questions use a nice mixture of differentiation and integration to show that π , π^2 , and e^r ($r \in \mathbb{Q} \setminus \{0\}$) are irrational. They are adapted from proofs in *Irrational Numbers*, by Ivan Niven (The Carus Mathematical Monographs, No. 11, 1956). The first proof of the irrationality of π (Johann Lambert, 1768) was considerably more complicated.

- **11.** Let $n \ge 0$ be an integer, and let $f_n(x) = \frac{x^n(1-x)^n}{n!}$.
 - (a) Show that $f_n^{(j)}(0)$ and $f_n^{(j)}(1)$ are integers for all $j \in \mathbb{N}$. Hint: Binomial Theorem to see that $f_n^{(j)}(0)$ is integral. Then use $f_n(1-x) = f_n(x)$.

Solution: By the Binomial Theorem we have

$$f_n(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{n+k}}{(n-k)!k!}.$$
 (5)

If $0 \le j < n$ then $f_n^{(j)}(0) = 0$ because $f_n(x) = x^n \times (\text{a polynomial})$. If $n \le j \le 2n$ write $j = n + \nu$ where $0 \le \nu \le n$. Then by (5) we have

$$f_n^{(j)}(0) = (-1)^{\nu} \frac{(n+\nu)!}{(n-\nu)!\nu!} = (-1)^{\nu} \binom{n}{\nu} (n+1)(n+2)\cdots(n+\nu),$$

which is an integer (binomial coefficients are integers).

If j > 2n then $f_n^{(j)}(0) = 0$ (because f_n is a polynomial of degree 2n).

Thus $f_n^{(j)}(0)$ is an integer for all $j \geq 0$, and since $f_n(1-x) = f_n(x)$ we deduce that $f_n^{(j)}(1-x) = (-1)^j f_n^{(j)}(x)$. Therefore $f^{(j)}(1) = (-1)^j f^{(j)}(0)$ is also an integer for all j > 0.

(b) Assume that $\pi^2 = \frac{a}{b}$ is rational, with $a, b \in \mathbb{N} \setminus \{0\}$. Let

$$F_n(x) = b^n \sum_{k=0}^n (-1)^k \pi^{2n-2k} f_n^{(2k)}(x).$$

Use (a) to show that $F_n(0)$ and $F_n(1)$ are integers.

Solution: Using $\pi^2 = a/b$ gives

$$F_n(x) = \sum_{k=0}^{n} a^{n-k} b^k f_n^{(2k)}(x).$$

Since $a, b, f_n^{(2k)}(0)$ and $f_n^{(2k)}(1)$ are integers it is clear that $F_n(0)$ and $F_n(1)$ are also integers.

(c) Calculate $\frac{d}{dx} (F_n'(x) \sin \pi x - \pi F_n(x) \cos \pi x)$ and deduce that

$$I_n = \pi a^n \int_0^1 f_n(x) \sin \pi x \, dx$$
 is an integer for all n .

Solution: We have

$$\frac{d}{dx} (F'_n(x)\sin \pi x - \pi F_n(x)\cos \pi x) = (F''_n(x) + \pi^2 F_n(x))\sin \pi x$$
$$= b^n (\pi^{2n+2} f_n(x) + (-1)^n f_n^{(2n+2)}(x))\sin \pi x.$$

But $f^{(2n+2)}(x) = 0$ for all x, and therefore

$$\frac{d}{dx}(F'_n(x)\sin \pi x - \pi F_n(x)\cos \pi x) = b^n \pi^{2n+2} f_n(x)\sin \pi x = \pi^2 a^n f_n(x)\sin \pi x.$$

By the Fundamental Theorem of Calculus this implies that

$$\pi^2 a^n \int_0^1 f_n(x) \sin \pi x \, dx = \pi \left(F_n(0) + F_n(1) \right).$$

The result follows since $F_n(0)$ and $F_n(1)$ are integers.

(d) Obtain a contradiction by noticing that $0 < f_n(x) < \frac{1}{n!}$ for $x \in (0,1)$. Thus π^2 is irrational. Deduce that π is irrational too.

Solution: The inequality $0 < f_n(x) < \frac{1}{n!}$ for $x \in (0,1)$ implies that

$$0 < I_n < \pi \frac{a^n}{n!} \int_0^1 \sin \pi x \, dx = \frac{2a^n}{n!}.$$

Since $\lim_{n\to\infty} \frac{a^n}{n!} = 0$ we obtain a contradiction: Once n is large enough we have $0 < I_n < 1$ which contradicts the fact that I_n is an integer.

Therefore π^2 is irrational. If π is rational then π^2 is also rational, and so π must be irrational.

Remark: A number $\alpha \in \mathbb{R}$ is algebraic if it is the root of a (nontrivial) polynomial equation with integer coefficients. For example, $\sqrt{2}$ and $\frac{1+\sqrt{5}}{2}$ are algebraic, being roots of the equations

$$x^2 - 2 = 0$$
 and $x^2 - x - 1 = 0$

respectively. A number which is not algebraic is transcendental. In other words, $\alpha \in \mathbb{R}$ is transcendental if there is no equation

$$a_0 + a_1 \alpha + \dots + a_n \alpha^n = 0$$
 with $\alpha_0, \dots, \alpha_n \in \mathbb{Z}$ not all zero, and $n \in \mathbb{N}$.

In particular if α is transcendental then α is irrational (because if $\alpha = \frac{p}{q}$ then α satisfies the polynomial equation $q\alpha - p = 0$).

In 1882 Ferdinand von Lindemann proved that π is transcendental. This is a truly sophisticated piece of mathematics. There have been numerous modifications and simplifications of his proof; see Niven's book for a proof along the lines of the above argument. Note that this proves that $\pi^{m/n}$ is irrational for all $m, n \in \mathbb{N}$ (with $m, n \neq 0$), for if $\pi^{m/n}$ is rational then $\pi^{m/n} = p/q$ and so $q^n \pi^m - p^n = 0$ and so π is algebraic, a contradiction.

Lindemann's Theorem also shows that the (at least) 2000 year old problem from antiquity of *squaring the circle* is impossible. You'll discuss this in later mathematics courses when you study *Galois Theory*.

- 12. Let $f_n(x)$ be as in Question 11.
 - (a) Let $m \in \mathbb{N} \setminus \{0\}$ and define $G_n(x)$ (depending on n and m) by

$$G_n(x) = \sum_{k=0}^{2n} (-1)^k m^{2n-k} f_n^{(k)}(x) .$$

Show that $G_n(0)$ and $G_n(1)$ are integers. Calculate $\frac{d}{dx}\left(e^{mx}G_n(x)\right)$ and deduce that

$$m^{2n+1} \int_0^1 e^{mx} f_n(x) dx = e^m G_n(1) - G_n(0)$$
.

Solution: By Question 11(a) it is clear that $G_n(0)$ and $G_n(1)$ are integers. We compute

$$\frac{d}{dx}\left(e^{mx}G_n(x)\right) = me^{mx}G_n(x) + e^{mx}G'_n(x) = e^{mx}\left(m^{2n+1}f_n(x) + f_n^{(2n+1)}(x)\right)$$

Since $f^{(2n+1)}(x) = 0$ it follows that

$$m^{2n+1} \int_0^1 e^{mx} f_n(x) dx = e^m G_n(1) - e^0 G_n(0) = e^m G_n(1) - G_n(0).$$

(b) Now assume that $e^m = \frac{p}{q}$ is rational. Obtain a contradiction.

Solution: If $e^m = \frac{p}{q}$ (with $p, q \in \mathbb{N} \setminus \{0\}$) is rational then

$$J_n := qm^{2n+1} \int_0^1 e^{mx} f_n(x) \, dx = pG_n(1) - qG_n(0)$$

is an integer. But $0 < f_n(x) < \frac{1}{n!}$ for $x \in (0,1)$ implies that

$$0 < J_n < \frac{qm^{2n+1}}{n!} \int_0^1 e^{mx} dx = \frac{qm^{2n}}{n!} (e^m - 1).$$

We obtain a contradiction as before: For large enough n we have $0 < J_n < 1$, which is impossible since J_n is an integer.

(c) Deduce that e^r is irrational for all $r \in \mathbb{Q} \setminus \{0\}$.

Solution: If $r = \frac{m}{k} > 0$ is rational and if e^r is rational, then $e^{rk} = e^m$ is rational. Thus e^r is irrational for all rational r > 0, and therefore e^{-r} is irrational too.

Remark: In 1873 Hermite proved that e is transcendental. Hermite's Theorem can be proved using similar techniques to the above irrationality proofs, but it is noticeably more difficult! Here is an outline if you are interested.

Step 0: Let g(x) be a polynomial with integer coefficients, and let

$$f_n(x) = \frac{x^{n-1}}{(n-1)!}g(x)$$
 where $n \in \mathbb{N}$.

Show that (i) $f_n^{(k)}(0)$ is an integer for all $k \geq 0$, and (ii) if $k \neq n-1$ then $f_n^{(k)}(0)$ is divisible by n.

Step 1: Suppose that e is algebraic. Therefore e satisfies an equation

$$a_0 + a_1 e + a_2 e^2 + \dots + a_N e^N = 0$$

with $\alpha_0, \ldots, \alpha_N \in \mathbb{Z}$ not all zero, and $N \in \mathbb{N}$. We can assume without loss of generality that $a_0 \neq 0$.

Step 2: Let

$$f_n(x) = \frac{x^{n-1}}{(n-1)!} (x-1)^n (x-2)^n \cdots (x-N)^n$$

with N as in Step 1 (f_n is of the form of the function in Step 0). Let

$$F_n(x) = \sum_{k=0}^{(N+1)n-1} f_n^{(k)}(x).$$

Show that $\frac{d}{dx}(e^{-x}F_n(x)) = -e^{-x}f_n(x)$, and deduce that

$$\int_0^j f_n(x)e^{-x} \, dx = F_n(0) - e^{-j}F_n(j) \quad \text{for } j \in \mathbb{N}.$$

Step 3: Use Steps 1 and 2 to show that

$$\sum_{j=0}^{N} \left(a_j \int_0^j f_n(x) e^{j-x} \, dx \right) = -\sum_{j=0}^{N} \sum_{k=0}^{(N+1)n-1} a_j f_n^{(k)}(j).$$

Step 4: Use Step 0 to deduce that (i) $f_n^{(k)}(j)$ is an integer for all $0 \le j \le N$ and all $k \ge 0$, and (ii) if $0 \le j \le N$ and $j \ge 0$ then $f_n^{(k)}(j)$ is divisible by n except possibly for the case k = n - 1 and j = 0.

Step 5: Show that $f_n^{(n-1)}(0) = (-1)^{Nn} N!$

Step 6: Use Steps 3 and 4 to show that

$$\sum_{j=0}^{N} \left(a_j \int_0^j f_n(x) e^{j-x} \, dx \right) = I_n \quad \text{is an integer.}$$

Step 7: Now take n to be a large prime with $n > |a_0|$ and n > N. Use divisibility properties from Steps 4 and 5 to explain why $I_n \neq 0$.

Step 8: By Step 7 we have (for large prime n)

$$0 < |I_n| = \left| \sum_{j=0}^N \left(a_j \int_0^j f_n(x) e^{j-x} \, dx \right) \right| \le \sum_{j=0}^N \left(|a_j| \int_0^j |f_n(x)| e^{j-x} \, dx \right).$$

Arrive at a contradiction by using bound

$$|f_n(x)| \le \frac{N^{n-1}(N^n)^N}{(n-1)!} = \frac{N^{(N+1)n-1}}{(n-1)!}$$
 for $0 \le x \le N$.

Working through these beautiful proofs makes me think: "How on earth did they come up with this!". These were pretty amazing people to say the least.