Focus Area *) : Food

Output **) : Scopus Indexed International Journal (Min. Q3)

Code/Knowledge Cluster ***): 431

PROPOSAL PENELITIAN UNGGULAN DANA HIBAH RKAT FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

INVESTIGASI NUMERIK PENGARUH ARAH ALIRAN DAN TEMPERATUR PENGERING TERHADAP DISTRIBUSI KONTUR DAN KARATERISTIK PARTIKEL HASIL PENGERINGAN METODE SPRAY DRYER UNTUK PRODUKSI TEH HIJAU BERKUALITAS TINGGI

TIM PENGUSUL

 Ir. Eflita Yohana, MT., PhD
 196204281990012001

 Dr. M. Tauviqirrahman, ST., MT
 198105202003121002

 Abdul Basit, S.Pd.
 21050120410012

 Yosua Wijaya
 21050117120017

 Luhung Damarran Achmad
 21050118140148

DEPARTEMEN TEKNIK MESIN
FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO
TAHUN 202

Judul Penelitian : Investigasi Numerik Pengaruh Arah Aliran dan Temperatur

Pengering Terhadap Distribusi Kontur dan Karateristik Partikel Hasil Pengeringan Metode *Spray Dryer* Untuk Produksi Teh

Hijau Berkualitas Tinggi

Luaran Penelitian : Publikasi Jurnal Terindeks Scopus minimal Q3 dan MoU atau

MoA

Ketua Peneliti :

a. Nama Lengkap : Ir. Eflita Yohana, MT., PhD
b. NIP/NIDN 196204281990012001
c. Jabatan Fungsional : IIID/Lektor Kepala
d. Departemen : Teknik Mesin
e. Nomor HP 085201207619

f. Alamat Email : efnan2003@gmail.com

Anggota Peneliti (1) :

a. Nama Lengkap : Dr. M. Tauviqirrahman, ST., MT

b. NIP/NIDN 198105202003121002
c. Jabatan Fungsional : IIID/Lektor Kepala
d. Departemen : Teknik Mesin
e. Nomor HP : 024-7460059

f. Alamat Email : <u>mtauviq99@yahoo.com</u>

Anggota Mahasiswa : 1. Abdul Basit (21050120410012)

Yosua Wijaya (21050117120017)
 Luhung Damarran Achmad (21050118140148)

Lama Penelitian : 6 (enam) bulan Biaya Penelitian : Rp. 30.000.000,-

Sumber Dana : RKAT Fakultas Teknik Undip Tahun 2021

Semarang, 22 Februari 2021

Ketua Peneliti,

(Ir. Eflita Yohana, MT., PhD) NIP. 196204281990012001

DAFTAR ISI

HALA	MAN SAMPULi
HALA	MAN PENGESAHANii
DAFT	AR ISIiii
DAFT	AR GAMBARv
DAFT	AR TABELv
RING	KASANvi
BAB I	PENDAHULUAN1
1.1	Latar Belakang1
1.2	Tujuan Penelitian
1.3	Batasan Masalah
1.4	Metode Penelitian
1.5	Sistematika Penulisan
BAB I	I. TINJAUAN PUSTAKA5
2.1	Pengetahuan Umum Industry Teh5
2.2	Fluida 6
2.3	Pengeringan 6
2.4	Spray Dryer8
2.5	Analogi Perpindahan Panas dan Perpindahan Massa
2.6	Computational Fluid Dynamics (CFD)9
BAB I	II. METODOLOGI PENELITIAN11
3.1	Prosedur Penelitian
3.2	Tempat dan Waktu Penelitian
3.3	Alat dan Bahan
3.4	Metode Pelaksanaan Penelitian
	3.4.1 Tahapan Pre-Processing
	3.4.1.1 Pemodelan Geometri 3D
	3.4.1.2 Pembentukan <i>Mesh (Grid)</i>
	3.4.1.3 <i>Input</i> Parameter Simulasi
	3.4.2 Tahap <i>Processing</i>
	3.4.3 Tahap <i>Post-Processing</i> 16

3.5 Meto	ode Analisa Data	16
3.6 Pena	rikan Kesimpulan	16
BAB IV. BIA	AYA DAN JADWAL PENELITIAN	17
4.1 Ang	garan Biaya	17
4.2 Jadw	val penelitian	17
DAFTAR PU	USTAKA	19
LAMPIRAN	ſ	22
Lampiran A.	Justifikasi Anggaran Penelitian	22
Lampiran B.	Susunan Organisasi Tim Penelitian dan Pembagian Tugas	24
Lampiran C.	Biodata Ketua dan Anggota-Dosen dan Mahasiswa	25
I amniran D	Surat Pernyataan Ketua Peneliti	40

DAFTAR GAMBAR

Gambar 2.1 Tanaman Teh di Indonesia
Gambar 2.2 Efek tegangan geser konstan terhadap (a) benda padat (solid)
dan (b) fluida6
Gambar 2.3 Skema Proses Spray Drying
Gambar 2.4 Analogi Perpindahan Panas dan Perpindahan Massa
Gambar 2.5 Perpindahan Massa Uap Air Secara Konveksi dari Permukaan
Ke Aliran Udara9
Gambar 3.1 Diagram alir penelitian
Gambar 3.2 Dimensi Spray Dryer Aliran Mixed
Gambar 3.3 Rentang Kualitas <i>Mesh</i>
DAFTAR TABEL
Tabel 3.1 Dimensi geometri spray dryer 14
Tabel 4.1 Anggaran Biaya Penelitian Unggulan Perguruan Tinggi 17
Tabel 4.2 Jadwal Penelitian Unggulan 18

RINGKASAN

Spray drying merupakan teknologi pengolahan produk yang digunakan untuk mengubah bentuk cairan menjadi partikel kering dengan media semprot pengeringan panas. Kondisi operasi spray dryer dan komposisi produk memiliki peranan penting dalam tingkat pengeringan dan kualitas produk yang dihasilkan. Banyak kajian yang telah dilakukan untuk mengetahui karakteristik spray dryer dengan mengevaluasi efek dari kondisi operasional spray dryer. Perbedaan arah aliran udara dan variasi inlet temperature akan disimulasikan guna mengetahui pengaruh terhadap distribusi mass fraction H2OL, relative humidity, temperatur, dan kecepatan di dalam drying chamber, serta karateristik partikel hasil pengeringan. Variasi arah aliran udara yang digunakan adalah aliran mixed dan co-current, dengan variasi temperatur sebesar 100°C, 120°C, 140°C, 160°C, dan 180°C. Model k-ω SST dan k-ε Standart digunakan untuk mensimulasikan aliran yang terjadi dan pendekatan Eulerian-Lagrangian digunakan untuk memprediksi pergerakan partikel pada spray dryer.

Kata kunci: Spray Dryer, Arah Aliran, Inlet Temperature, Water Content, Particles Collecting

BAB I

PENDAHULUAN

1.1 Latar Belakang

Teh adalah bahan minuman penyegar yang sudah lama dikenal dan membudaya dalam kehidupan masyarakat Indonesia. Teh merupakan salah satu komoditas pertanian yang dikembangkan di Indonesia yang memiliki beberapa manfaat untuk kesehatan tubuh diantaranya sebagai antioksidan, mencegah kanker, memperbaiki sel-sel yang rusak, mengurangi kolestrol dalam darah, melancarkan sirkulasi darah, mencegah serangan jantung, melangsingkan tubuh, dan menghaluskan kulit (Hidayati, Lestariana and Huriyati, 2012).

Industri teh merupakan salah satu industri yang pengembangannya pesat sesuai dengan prospek pasar yang selama ini ada dan terus berkembang. Data Kementerian Perdagangan menunjukkan industri pengolahan teh tumbuh dengan rata-rata per tahun sebesar 36% periode 2006 sampai 2009. Industri teh Indonesia pada tahun 1999 diperkirakan menyerap sekitar 300.000 pekerja dan menghidupi sekitar 1,2 juta jiwa. Selain itu, secara nasional industri teh menyumbang Produk Domestik Bruto (PDB) sekitar 1,2 triliun (0,3 % dari total PDB nonmigas) dan menyumbang devisa bersih sekitar 110 juta dollar AS per tahun (Indarti, 2015). Dapat dikatakan bahwa setiap tahun bisnis pengolahan teh semakin menjanjikan. Komoditas perkebunan teh cukup banyak dihasilkan di Indonesia, bahkan Indonesia termasuk ke dalam lima besar produsen teh di dunia. Dengan rasa dan aroma harum yang khas, teh menjadi semakin banyak dikonsumsi dan dijadikan sebagai minuman penjamu tamu (Djumena, 2013).

Meningkatnya luas areal teh mengakibatkan peningkatan produksi teh di Indonesia, yang harus diikuti dengan peningkatan kualitas dari teh tersebut. Proses pengolahan teh harus dilakukan dengan baik untuk menjaga kualitas teh. Berdasarkan pengolahannya teh terbagi atas 4 macam yaitu teh hijau, teh oolong, teh hitam dan teh wangi. Kualitas teh dikatakan tinggi apabila dipetik dari lembar pucuk pertama sampai lembar pucuk ketiga, karena dalam ketiga lembar daun tersebut terdapat kandungan katekin dan kafein yang tinggi sebagai penambah rasa segar. Katekin sendiri merupakan senyawa polifenol yang berfungsi sebagai antioksidan. Salah satu jenis teh yang banyak dikonsumsi masyarakat Indonesia adalah teh hitam (Tuminah, 2004).

Saat ini, produk minuman instan sangat digemari oleh masyarakat dan dijual dalam berbagai bentuk kemasan. Salah satunya produk minuman instan yang banyak tersedia dipasaran adalah minuman teh instan. Proses pembuatan teh instan menjadi produk serbuk

umumnya menggunakan teknologi *spray drying*. *Spray drying* merupakan teknologi pengolahan produk yang digunakan untuk mengubah bentuk cairan menjadi bentuk partikel kering dengan media semprot pengeringan panas (Anandharamakrishnan *et al.*, 2010). Proses pengeringan yang singkat dengan kondisi operasional yang terkontrol dapat mempertahankan temperatur *droplet* agar tetap rendah sehingga dapat menerapkan temperatur udara pengeringan yang tinggi tanpa mempengaruhi produk. Suhu produk yang rendah dan waktu pengeringan yang singkat memungkinkan metode *spray drying* dapat digunakan untuk pengeringan produk yang sangat sensitif terhadap panas dan mempertahankan berkualitas produk seperti warna, rasa, dan nutrisi (Mujumdar, 2014). Metode *spray drying* dapat meminimalkan penanganan dan mempertahankan produk dari degradasi bakteri, sehingga menghasilkan produk bubuk ekstrak sari buah/sayur dengan harga jual lebih tinggi (Dewi and Satibi, 2009).

Banyak kajian eksperimental maupun numerikal telah dilakukan untuk mengetahui karakteristik proses *spray drying*. Anandharamakrishnan, *et al* (2010) membandingkan hasil eksperimental dan simulasi, dan menghasilkan prediksi profil kecepatan dan temperatur selama proses *spray drying* menggunakan simulasi komputasi dinamika fluida. Penelitian mengenai pengaruh temperatur pada proses *spray drying* telah dilakukan oleh Arepally and Goswami (2019). Dalam penelitian tersebut menyatakan bahwa semakin tinggi temperatur pengeringan, maka semakin rendah nilai *moisture content* dan *water activity* pada produk yang dihasilkan. Sedangkan, Jubaer, *et al* (2019) melakukan penelitian tentang pengaruh model turbulensi yang digunakan pada simulasi *spray drying* pada tingkat akurasi hasil yang didapatkan.

Untuk mempermudah dalam proses analisis, simulasi numerik dapat digunakan untuk menghemat biaya desain dan optimasi. Metode CFD (*Computational Fluid Dynamics*) memiliki potensi besar untuk memprediksi karakteristik aliran dan lintasan partikel di dalam *spray drying* (Anandharamakrishnan *et al.*, 2010), kemudian mulai muncul sejumlah penelitian secara numerik menggunakan metode komputasi dinamika fluida. Habtegebriel, *et al* (2019) juga melakukan penelitian untuk membandingkan pengaruh parameter pengeringan dengan metode simulasi komputasi dinamika fluida.

Berdasarkan uraian yang telah dijelaskan di atas, maka perlu dilakukan simulasi untuk mengetahui pengaruh parameter pengeringan pada proses *spray dryer*. Dalam penelitian ini, parameter pengeringan yang digunakan adalah arah aliran udara pengering dan suhu pengeringan. Simulasi dilakukan secara numerik dengan pemodelan 3 dimensi menggunakan

Computational Fluid Dynamics (CFD). Hasil yang diperoleh akan menunjukkan tingkat pengaruh parameter pengeringan terhadap performa spray dryer.

1.2 Tujuan Penelitian

Adapun tujuan yang ingin dicapai dalam penelitian unggulan ini yaitu:

- 1. Menganalisis pengaruh perbedaan arah aliran udara pengering pada proses *spray dryer* terhadap kontur distribusi *mass fraction* H2O L, *relative humidity*, temperatur, dan kecepatan.
- 2. Menganalisis pengaruh variasi temperatur pengering pada proses *spray dryer* terhadap kontur distribusi *mass fraction* H2O L, *relative humidity*, temperatur, dan kecepatan.
- 3. Menganalisis pengaruh arah aliran udara dan variasi temperatur pengering terhadap karateristik *outlet spray dryer*.
- 4. Menganalisis pengaruh arah aliran udara dan variasi temperatur pengering terhadap karateristik partikel hasil pengeringan

1.3 Batasan Masalah

Batasan masalah yang digunakan dalam penelitian unggulan ini sebagai berikut:

- 1. Desain yang digunakan adalah *spray dryer* yang digunakan pada penelitian pengeringan teh di Teknik Mesin, Universitas Diponegoro.
- 2. Kecepatan alir udara panas yang digunakan adalah 8 m/s.
- 3. Kedua jenis *spray dryer* memiliki bilangan *Reynold* yang sama.
- 4. Variasi arah laju udara pengering adalah dari atas dan samping *spray drying chamber*.
- 5. Partikel diasumsikan bulat dengan diameter partikel antara 50 μm-130 μm.

1.4 Metode Penelitian

Metode penelitian yang digunakan pada penelitian unggulan ini adalah:

- 1. Studi Literatur
 - Studi literatur dilakukan dengan membaca dan mengolah data yang diperoleh dari literatur. Data yang dibaca dan diolah adalah data yang berhubungan dengan hasil-hasil penelitian yang telah dilakukan para peneliti sebelumnya.
- 2. Metode pemodelan proses dan simulasi numerik
 - Metode pemodelan dan simulasi dilakukan dengan cara memodelkan permasalahan ke dalam suatu program kemudian disimulasikan dengan perangkat lunak bantu. Hasil simulasi dibandingkan dengan eksperimen yang telah dilakukan untuk memvalidasi

- hasil penelitian. Setelah proses validasi, selanjutnya adalah pemecahan masalah sesuai topik. Kemudian tahap penarikan kesimpulan dari analisis yang telah dilakukan.
- 6. Simulasi numerik dilakukan dengan model turbulensi *k-omega SST* pada aliran *incompressible* untuk aliran dari arah samping *chamber*.
- 7. Simulasi numerik dilakukan dengan model turbulensi *RNG k-epsilon* pada aliran *incompressible* untuk aliran dari arah atas *chamber*.
- 8. Variasi temperatur adalah 100°C, 120°C, 140°C, 160°C, dan 180°C
- 9. Kandungan *moisture* pada partikel teh sebesar 60 %.
- 10. Pemodelan multifasa menggunakan pendekatan Eulerian-Lagrangian.

1.5 Sistematika Penulisan

Bab I tentang pendahuluan akan membahas mengenai latar belakang, tujuan penelitian, batasan-batasan masalah, metode penelitian, dan sistematika penulisan proposal unggulan.

Bab II tentang tinjauan pustaka akan membahas mengenai teori dasar yang berhubungan dengan topik penelitian, seperti: teh, fluida, *spray dryer*, pemodelan permasalahan dalam CFD, *meshing*, persamaan pembangun untuk memecahkan masalah numerik, dll.

Bab III tentang metode penelitian akan menjelaskan mengenai diagram alir, deskripsi permasalahan, simulasi validasi, pembuatan geometri model simulasi dan simulasi numerik, yang mencakup proses geometri, *pre-processing*, *processing* (*solver*), dan *post-processing*.

Bab IV tentang biaya dan jadwal penelitian yang berisi mengenai justifikasi ringkasan anggaran biaya pada penelitian dan jadwal pelaksanaan penelitian dengan estimasi waktu 6 bulan dalam bentuk *bar chart*.

BAB II DASAR TEORI

2.1 Pengetahuan Umum Industri Teh

Teh (*Camellia sinensis*) merupakan salah satu minuman terpopuler di dunia (Chen *et al.*, 2003; Lin, Wu and Lin, 2003). Selain sebagai minuman yang menyegarkan, teh telah lama diyakini memiliki khasiat kesehatan bagi tubuh. Teh mengandung *theaflavin* dan katein dan telah diteliti mengandung anti oksidan dan anti inflamasi yang potensial dalam mencegah penyakit jantung koroner (PJK). Selain memberikan rasa segar teh juga bermanfaat bagi kesehatan, diantaranya untuk mencegah kanker, mengurangi stress, menurunkan tekanan darah tinggi dan menghaluskan kulit. Manfaat tersebut berasal dari kandungan senyawa kimia yang berasal dalam daun teh tersebut (Setyamidjaja, 2000).

Agroindustri teh di Indonesia pernah tercatat sebagai penghasil devisa negara yang cukup penting dalam perekonomian nasional. Perkembangan areal tanaman teh di Indonesia terus menurun sejak tahun 2000 hingga tahun 2015, hanya tersisa seluas 118.441 ha dengan 44,58 persen lahan diusahakan oleh Perkebunan Rakyat sedangkan sisanya berupa Perkebunan Besar Negara dan Perkebunan Besar Swasta (Kementerian Pertanian, 2016). Pada tahun 2008 produksi teh di Indonesia sebesar 137.499 ton, pada tahun 2009 turun menjadi 136.481 ton dan pada tahun 2010 hanya 129.200 ton. Sebagai penghasil devisa negara, pada tahun 2008 tercatat nilai ekspor teh olahan sebesar US \$ 162,8 juta, tahun 2009 sebesar US \$ 174,4 juta, dan tahun 2010 mencapai US \$ 184,9 juta atau meningkat 6% dari tahun 2009. Indonesia tercatat menjadi urutan keenam eksportir teh dunia setelah Kenya, Sri Lanka, India dan Vietnam. Negara tujuan ekspor teh Indonesia adalah Jepang, Korea Selatan, Amerika Serikat dan negara-negara Eropa (Badan Penelitian Tamanan Industri dan Penyegar, 2014).

Gambar 2. 1 Tanaman Teh di Indonesia

Menurut Fernández, *et al* (2002), berdasarkan proses pengolahannya, teh diklasifikasikan ke dalam tiga jenis yaitu teh fermentasi (teh hitam), teh semi fermentasi (teh oolong) dan teh tanpa fermentasi (teh hijau). Teh hitam diolah dengan cara daun dirajang dan dijemur di bawah sinar matahari sehingga mengalami perubahan kimiawi dan warna daun menjadi cokelat serta memberikan cita rasa teh hitam yang khas. Teh oolong merupakan jenis peralihan teh hitam dan teh hijau, dengan adanya proses fermentasi terdapat citarasa dan karakteristik tersendiri. Sedangkan pada teh hijau, daun teh sedikit mengalami proses pengolahan, yaitu hanya pemanasan dan pengeringan sehingga warna hijau dapat dipertahankan. Meskipun demikian, ketika jenis teh tersebut memiliki khasiat dan potensi kesehatan yang sama (Hartoyo, 2003).

2.2 Fluida

Fluida merupakan zat yang terdeformasi secara terus menerus. Hal ini berbeda dengan fasa solid yang tidak terdeformasi secara terus menerus apabila diberi gaya. Pada fasa solid, besarnya tegangan akan sebanding dengan nilai deformasi yang terjadi. Sedangkan pada fluida, besarnya tegangan akan sebanding dengan laju deformasinya (Cengel and Cimbala, 2006). Gambar 2.2 menunjukkan ilustrasi deformasi yang terjadi pada fasa solid dan fluida.

Gambar 2.2 Efek tegangan geser konstan terhadap (a) benda padat (*solid*) dan (b) fluida (Fox *et al.*, 2011).

2.3 Pengeringan

Pengeringan (*drying*) adalah proses perpindahan panas dan perpindahan massa secara simultan yang memerlukan energi panas yang banyak digunakan dalam industri pangan. Energi panas tersebut digunakan untuk menguapkan kandungan air yang dipindahkan dari permukaan bahan yang dikeringkan. Pengeringan dapat diartikan dengan memindahkan atau mengambil kandungan zat cair dari benda padatan atau bahan yang mengandung air. Proses pengeringan dapat digunakan untuk mengawetkan bahan pangan yang mudah rusak saat penyimpanan, sehingga dapat memperpanjang umur suatu produk. Keuntungan dari proses pengeringan adalah dapat meningkatkan stabilitas penyimpanan karena pengurangan berat dan volume produk akibat dari pengurangan kandungan air untuk menghambat pertumbuhan

mikroba dan aktivitas enzim, pengemasan menjadi lebih mudah dan murah, dan penyimpanan serta pengangkutan yang lebih efisien. Proses pengeringan mempunyai kelemahan yaitu kualitas dan nilai nutrisi dalam pangan menjadi sedikit rusak (Setyamidjaja, 2000).

2.4 Spray Drying

Proses pengeringan yang menghasilkan produk serbuk umumnya menggunakan teknologi *spray drying*. *Spray drying* merupakan teknologi pengolahan produk yang digunakan untuk mengubah bentuk cairan menjadi bentuk partikel kering dengan media semprot pengeringan panas (Anandharamakrishnan *et al.*, 2010). Proses pengeringan yang singkat dengan kondisi operasional yang terkontrol dapat mempertahankan temperatur *droplet* agar tetap rendah sehingga dapat menerapkan temperatur udara pengeringan yang tinggi tanpa mempengaruhi produk. Suhu produk yang rendah dan waktu pengeringan yang singkat memungkinkan metode *spray drying* dapat digunakan untuk pengeringan produk yang sangat sensitif terhadap panas dan mempertahankan berkualitas produk seperti warna, rasa, dan nutrisi (Mujumdar, 2014). Metode *spray drying* dapat meminimalkan penanganan dan mempertahankan produk dari degradasi bakteri, sehingga menghasilkan produk bubuk ekstrak sari buah/sayur dengan harga jual lebih tinggi (Dewi and Satibi, 2009). Skema proses pengeringan menggunakan metode *spray drying* dapat dilihat pada Gambar 2.3 berikut.

Gambar 2.3 Skema Proses Spray Drying

2.5 Perpindahan Panas

Perpindahan panas merupakan sejumlah energi yang ditransfer dari medium dengan temperatur yang lebih tinggi menuju medium dengan temperatur yang lebih rendah, kemudian akan berhenti bila sudah memiliki temperatur yang sama (Cengel and Cimbala, 2006).

Jumlah panas yang ditransfer selama proses dilambangkan dengan Q, sedangkan jumlah panas yang ditransfer per satuan waktu disebut laju perpindahan panas dan dilambangkan dengan \dot{Q} , seperti yang terlihat pada persamaan 2.1. Laju perpindahan panas memiliki satuan J/s, yang setara dengan W.

$$Q = \int_{0}^{\Delta t} Q dt \tag{2.1}$$

Selain itu, laju perpindahan panas per satuan luas disebut *heat flux* yang dapat dinyatakan pada persamaan 2.2.

$$\dot{q} = \frac{\dot{Q}}{A} \tag{2.2}$$

Dimana *A* adalah luas permukaan perpindahan panas. *Heat flux* memiliki satuan W/m². Perpindahan panas dapat terjadi melalui 3 cara yaitu konduksi, konveksi dan radiasi.

Tidak seperti perpindahan panas, perpindahan massa hanya dibagi atas perpindahan massa konduksi dan perpindahan panas konveksi. Gaya pendorong untuk perpindahan massa adalah perbedaan konsentrasi. Oleh karena itu, baik panas maupun massa ditransfer dari daerah terkonsentrasi tinggi ke daerah terkonsentrasi rendah, seperti yang terlihat pada Gambar 2.4. Demikian juga, jika tidak ada perbedaan antara konsentrasi suatu spesies di berbagai bagian medium, tidak akan akan terjadi perpindahan massa (Cengel, 2003).

Gambar 2.4 Analogi Perpindahan Panas dan Perpindahan Massa (Cengel, 2003)

Laju difusi massa dari spesies kimia A dalam medium stasioner dalam arah x sebanding dengan gradien konsentrasi dC/dx dan dinyatakan oleh hukum difusi Fick, seperti yang terlihat pada persamaan 2.3.

Dimana m diff adalah laju perpindahan massa konduksi, D_{AB} adalah koefisien difusi (difusivitas massa) spesies dalam campuran, A adalah luas permukaan, dan C_A adalah konsentrasi spesies dalam campuran di lokasi tersebut (Cengel, 2003).

Jika medium tempat berdifusi ikut mengalir, maka hal tersebut disebut sebagai perpindahan massa konveksi. Salah satu bentuk perpindahan massa konveksi dapat dilihat pada Gambar 2.5 (Cengel, 2003).

Gambar 2.5 Perpindahan Massa Uap Air Secara Konveksi dari Permukaan Ke Aliran Udara (Cengel, 2003)

Pada Gambar 2.5 sejumlah massa air akan mengalami evaporasi dan berdifusi ke dalam udara kering yang mengalir. Karena udara kering yang mengalir, perpindahan massa ini disebut perpindahan massa konveksi. Fenomena ini persis sama dengan proses perpindahan panas konveksi proses pengeringan teh pada *fluidizd bed dryer*. laju perpindahan massa konveksi dinyatakan dalam persamaan 2.4.

$$m_{conv} = h_{mass} A_s (C_s - C_{\infty})$$
 (2.4)

Dimana m conv adalah laju perpindahan massa konveksi, h_{mass} adalah koefisien perpindahan massa konveksi, A_s adalah luas permukaan, dan $C_s - C_\infty$ adalah perbedaan konsentrasi di lapisan batas konsentrasi (Cengel, 2003).

2.6 Computational Fluid Dynamics (CFD)

Computational fluid dynamics atau CFD merupakan ilmu yang mempelajari tentang analisa aliran fluida, perpindahan panas dan fenomena yang berhubungan dengannya seperti reaksi kimia dengan menyelesaikan persamaan matematika dan menggunakan bantuan simulasi komputer (Biringen and Chow, 2011). Persamaan-persamaan aliran fluida dapat dideskripsikan dengan persamaan differensial parsial yang tidak dapat dipecahkan secara analitis kecuali dengan kasus yang spesial. Sehingga dibutuhkan suatu metode pendekatan untuk menentukan suatu hasil. CFD merupakan analisis numerik dengan menggunakan

kontrol volume sebagai elemen dari integrasi persamaan-persamaan, yang terdiri dari persamaan keseimbangan massa, momentum dan energi. CFD memberikan hasil untuk informasi yang sulit, mahal atau tidak mungkin dipecahkan secara eksperimen konvensional (Verstegg and Malalasakera, 1995).

BAB III

METODE PENELITIAN

Dalam melakukan penelitian unggulan ini diperlukan metode penelitian yang sesuai agar penelitian dapat berjalan dengan baik. Berikut merupakan metode penelitian yang diterapkan pada pengerjaan penelitian unggulan mengenai *spray dryer*.

3.1 Prosedur Penelitian

Dalam melakukan suatu penelitian diperlukan adanya diagram alir yang menunjukkan alur kerja atau proses dalam melakukan penelitian. Adapun diagram alir untuk penelitian ini dapat dilihat pada Gambar 3.1.

Gambar 3.1 Diagram alir penelitian

Gambar 3.1 Diagram alir penelitian (lanjutan)

3.2 Tempat dan Waktu Penelitian

Kegiatan penelitian ini dilaksanakan di Laboratorium Komputer dan Laboratorium Efisiensi Energi, Departemen Teknik Mesin, Universitas Diponegoro. Jangka waktu pelaksanaan penelitian ini yaitu 6 bulan. Kegiatan yang dilaksanakan secara online mematuhi protokol kesehatan yang berlaku untuk menghindari penularan COVID-19.

3.3 Alat dan Bahan

Kegiatan penelitian ini berupa kajian komputasi dan analisis hasil dengan standar ISO membutuhkan alat dan bahan sebagai berikut :

1. Seperangkat komputer

Simulasi ruang *spray dryer* membutuhkan sebuah komputer yang cukup kuat untuk melakukan perhitungan komputasi. Komputer simulasi memiliki spesifikasi processor i7 dan RAM 16 GB.

2. Aplikasi Solidwork 2020

Aplikasi *Solidwork* digunakan untuk mendesain geometri simulasi berupa bentuk *spray dryer*.

3. Aplikasi ANSYS Fluent 19.2

Aplikasi *ANSYS Fluent* digunakan untuk mensimulasi aliran *fluida* dan *heat transfer* di dalam *spray dryer* yang dapat disajikan dalam bentuk kontur.

4. Aplikasi Origin Lab

Aplikasi Origin Lab digunakan untuk membuat grafik analisis hasil simulasi.

5. Aplikasi Corel Draw X7

Aplikasi *Corel Draw* digunakan untuk mendesain grafis tampilan hasil simulasi dan tampilan grafis lainnya.

3.4 Metode Pelaksanaan Penelitian

Tahap pelaksanaan penelitian secara simulasi ini terdiri dari 3 proses:

3.4.1 Tahap Pre-processing

Tahap *pre-processing* merupakan tahapan yang dilakukan sebelum melakukan proses simulasi. Dalam tahap *pre-processing* terdiri dari pemodelan geometri, *meshing*, serta input parameter untuk proses simulasi.

3.4.1.1 Pemodelan Geometri 3D

Pada penelitian ini, terdapat dua macam geometri *spray dryer* yang disimulasikan. Perbedaan geometri tersebut disebabkan karena adanya perbedaan arah aliran masuk udara pengering, yaitu proses *spray dryer* dengan arah aliran masuk udara pengering dari atas (*co-current*) dan proses *spray dryer* dengan arah aliran masuk udara pengering dari samping.

Desain *spray dryer* yang digunakan adalah desain *spray dryer* dengan rasio dimensi 1:2. Geometri *spray dryer* dibuat menggunakan SolidWorks *software* dan disimpan dengan menggunakan format IGES. Bentuk dan dimensi geometri *spray dryer* ditunjukkan pada Gambar 3.2 dan Tabel 3.1.

Gambar 3.2 Dimensi Spray Dryer Aliran Mixed

Tabel 3.1 Dimensi geometri *spray dryer*

Geometri	Dimensi (mm)
Diameter body, D1	600
Diameter silinder, D2	50
Diameter 1 nozzle, Dn1	40
Diameter 2 nozzle, Dn2	20
Diameter 1 pipe, Dp1	26
Diameter 2 pipe, Dp2	24
Dimensi inlet, a×b	147x125
Tinggi silinder, H1	900
Tinggi cone, H2	300
Tinggi silinder, H3	480
Tinggi nozzle, Hn	20
Jarak pipe ke silinder, Hp	150
Panjang spray dryer, L	1275

3.4.1.2 Pembentukan Mesh (Grid)

Mesh merupakan metode untuk membagi suatu benda yang akan disimulasi menjadi elemen-elemen kecil. Dalam setiap elemen tersebut, persamaan pembangun untuk setiap kasus akan dipecahkan. Salah satu hal yang penting dalam mesh adalah ukuran elemen mesh yang diterapkan pada model. Semakin kecil ukuran mesh pada model, maka hasil yang didapatkan semakin teliti, tetapi membutuhkan daya komputasi dan waktu yang lebih lama. Sehingga, perlu menentukan ukuran elemen mesh yang tepat.

Kualitas struktur *meshing* pada suatu geometri, dapat dilihat pada nilai *skewness* dan *orthogonal quality*. Setelah kualitas *meshing* dari geometri yang akan disimulasikan mencapai rentang aman, proses dilanjutkan pada *solver execution*. Rentang kualitas *mesh* dapat dilihat pada Gambar 3.3.

Gambar 3.3 Rentang Kualitas *Mesh* (Ansys Inc, 2020)

3.4.1.3 Input Parameter Simulasi

Bagian ini merupakan bagian yang sangat penting dari proses simulasi atau kajian komputasi. Kesalah penginputan parameter pada simulasi mengakibatkan hasil simulasi tidak sesuai dengan kondisi *real*. Oleh karenanya parameter yang diinputkan dalam simulasi harus sama dengan parameter pada kondisi *real*. Pada simulasi *spray dryer* parameter yang digunakan yaitu turbulensi dengan model *kepsilon*.

3.4.2 Tahap Processing

Tahap *processing* atau *solver* pada simulasi *Fluent* merupakan proses penyelesaian persamaan pembangun di setiap *node* pada elemen fluida menggunakan metode-metode simulasi yang telah ditentukan sebelumnya. Durasi penyelesaian persamaan pembangun bergantung pada tingkat kerumitan suatu kasus. Tahap *solver* dikatakan telah selesai apabila nilai minimum yang harus dicapai residual pada proses iterasi telah konvergen.

Dalam proses *solver*, *Fluent* akan menampilkan grafik residual setiap iterasi untuk memantau dan mengontrol proses.

3.4.3 Tahap Post-processing

Tahap *post-processing* merupakan tahap yang dilakukan setelah proses *solver* telah selesai. Pada tahap ini dilakukan pengolahan dan penyajian data ke dalam bentuk grafik, vektor, dan kontur dari masing-masing parameter yang dianalisis seperti kontur temperatur pada *spray dryer*, serta analisis partikel di dalam *spray dryer*. Setiap data disajikan untuk masing-masing variasi. Data hasil variasi kemudian dianalisis dan ditarik kesimpulan dari pembahasan yang telah dilakukan.

3.5 Metode Analisis Data

Analisis hasil simulasi bertujuan untuk menunjukan kelayakan dari suatu simulasi. Data-data hasil simulasi selanjutnya diolah dengan dibuat grafik dan grafis menggunakan aplikasi Origin Lab dan *Corel Draw*. Garfik selanjutnya di analisis untuk menentukan pengaruh temperatur udara pengering dan arah aliran udara pengering terhadap distribusi *mass fraction* H2O L (*liquid*), *relative humidity*, *temperature*, dan kecepatan pada *drying chamber* dan karakteristik partikel produk hasil pengeringan.

3.6 Penarikan Kesimpulan

Penarikan kesimpulan diambil dari hasil analisis data yang telah dilakukan berdasarkan tujuan penelitian yang telah ditetapkan. Penarikan kesimpulan berguna untuk merangkum hasil akhir dari penelitian.

BAB IV BIAYA DAN JADWAL PENELITIAN

4.1 Biaya Anggaran Penelitian Unggulan

Total dana yang diperlukan dalam pelaksanaan penelitian ini adalah Rp.30.000.000, - (tiga puluh juta rupiah) dengan rincian setiap tahapan dapat dilihat pada Tabel 4.1 sebagai berikut:

Tabel 4.1 Anggaran Biaya Penelitian Unggulan Perguruan Tinggi

No.	Uraian	Jumlah (Rp)
a	В	С
I	BELANJA PERSONIL/ HONORARIUM (maks 30%) Belanja Honorarium di Luar Dosen Peneliti	4.500.000
II	BELANJA OPERASIONAL (sewa, SPPD, dll)	4.500.000
	Belanja Jasa, dan Publikasi	15.000.000
	Biaya Perjalanan/SPPD	4.250.000
III	BELANJA MODAL (peralatan, dll)	
	Belanja Barang/Barang Habis Pakai	6.250.000
	Jumlah	30.000.000

4.2 Jadwal Penelitian

Penelitian ini dijalankan dengan perkiraan waktu 6 bulan dengan rincian kegiatan seperti pada Tabel 4.2. Penelitian dimulai dengan tahap persiapan dan studi literatur, validasi, simulasi pemecahan masalah, analisis data hasil simulasi yang selanjutnya akan disusun untuk memenuhi target luaran penelitian ini, yaitu jurnal internasional terindeks Scopus. Jenis kegiatan sesuai jadwal yang sudah disusun dapat dilihat sebagai berikut:

Tabel 4.2 Jadwal Penelitian Unggulan

No.	Jenis Kegiatan	Bulan ke-					
110.	Jenis Regiatan		2	3	4	5	6
1	Studi Literatur						
2	Observasi						
3	Mengukur Dimensi <i>Spray Dryer</i> yang Akan di Analisis						
4	Menganalisis Neraca Energi dari Analisis Perhitungan						
5	Membuat Desain Geometri dengan Solidworks						
6	Simulasi dengan Ansys Fluent						
7	Penyusunan Laporan, Paper, dan Draft Seminar Internasional						

DAFTAR PUSTAKA

- Anandharamakrishnan, C. et al. (2010) 'A Study of Particle Histories during Spray Drying Using Computational Fluid Dynamic Simulations', *Drying Technology*, 28(5), pp. 566–
- Ansys Inc (2009) Ansys Fluent 12.0 User's Guide. Ansys Inc.
- Arepally, D. and Goswami, T. K. (2019) 'Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying', *LWT*. Elsevier, 99(October 2018), pp. 583–593. doi: 10.1016/j.lwt.2018.10.022.
- Badan Penelitian Tamanan Industri dan Penyegar (2014) *Perkembangan Pasar Teh Indonesia* di Pasar Domestik dan Pasar Internasional.
- Biringen, S. and Chow, C.-Y. (2011) An Introduction To Computational Fluid Mechanics by Example. New Jersey: John Wiley & Sons, Inc.
- Cengel (2003) 'Heat Transfer'.
- Cengel, Y. A. and Cimbala, J. M. (2006) *Fluid Mechanics Fundamentals and Applications*. Boston, US: McGraw-Hill Higher Education.
- Chen, C. N. *et al.* (2003) 'Capillary Electrophoretic Determination of Theanine, Caffeine, and Catechins in Fresh Tea Leaves and Oolong Tea and Their Effects on Rat Neurosphere Adhesion and Migration', *Journal of Agricultural and Food Chemistry*, 51(25), pp. 7495–7503. doi: 10.1021/jf034634b.
- Dewi, A. K. and Satibi, L. (2009) 'Kajian Pengaruh Temperatur Pengeringan Semprot (Spray Dryer) Terhadap Waktu Pengeringan dan Rendemen Bubuk Santan Kelapa (Coconu Milk Powder', pp. 25–31.
- Djumena, D. (2013) 'Teh Indonesia Terpuruk', Kompas.
- Fernández, P. L. et al. (2002) 'Study of catechin and xanthine tea profiles as geographical tracers', *Journal of Agricultural and Food Chemistry*, 50(7), pp. 1833–1839. doi: 10.1021/jf0114435.
- Fox, R. W. et al. (2011) Fox and McDonald's Introduction to Fluid Mechanics. 8th penyun. US: John Wiley & Sons, Inc.
- Habtegebriel, H. *et al.* (2019) 'The potential of computational fluid dynamics simulation to investigate the relation between quality parameters and outlet temperature during spray drying of camel milk', *Drying Technology*. Taylor & Francis, 0(0), pp. 1–15. doi: 10.1080/07373937.2019.1684317.
- Hartoyo, A. (2003) Teh dan Khasiatnya bagi Kesehatan. Yogyakarta: Kanusius.
- Hidayati, A. O., Lestariana, W. and Huriyati, E. (2012) 'Efek ekstrak teh hijau (Camellia sinensis (L.) O. Kuntze var. assamica) terhadap berat badan dan kadar malondialdehid wanita overweight', *Jurnal Gizi Klinik Indonesia*, 9(1), p. 41. doi: 10.22146/ijcn.15377.

- Indarti, D. (2015) *Outlook Teh Komoditas Pertanian Subsektor Perkebunan*. Jakarta: Sekretariat Jenderal Kementerian Pertanian. Available at: http://perpustakaan.bappenas.go.id/lontar/file?file=digital/167030-[_Konten_]-Konten D1895.pdf.
- Jubaer, H. *et al.* (2019) 'On the effect of turbulence models on CFD simulations of a counter-current spray drying process', *Chemical Engineering Research and Design*. Institution of Chemical Engineers, 141, pp. 592–607. doi: 10.1016/j.cherd.2018.11.024.
- Kementerian Pertanian (2016) Outlook Teh Komoditas Pertanian Subsektor Perkebunan.
- Mujumdar, A. S. (2014) *Handbook of Industrial Drying*. Fourth Edi. CRC Press.
- Setyamidjaja, D. (2000) Teh: Budi daya dan pengolahan Pascapanen. Yogyakarta: Kanisius.
- Tuminah, S. (2004) 'Teh [Camellia sinensis O.K var. Assamica (Mast)] sebagai Salah Satu Sumber Antioksidan', *Cermin Dunia Kedokteran*, 144.
- Verstegg, H. K. and Malalasakera, W. (1995) An Introduction to Computational Fluid Dynamics The Finite Volume Method. Essex: Longman Scientific & Technical.

LAMPIRAN-LAMPIRAN

Lampiran A. Justifikasi Anggaran Penelitian

RENCANA/ LAPORAN PENGGUNAAN DANA HIBAH PENELITIAN UNGGULAN

FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2020

Ketua Peneliti/Pengabdian : Ir. Eflita Yohana, MT., Ph.D.

Golongan III

Departemen : Teknik Mesin

Fakultas : Teknik

Judul Penelitian/Pengabdian : Investigasi Numerik Pengaruh Arah Aliran dan Temperatur

Pengering Terhadap Distribusi Kontur dan Karateristik

Partikel Hasil Pengeringan Metode Spray Dryer Untuk

Produksi Teh Hijau Berkualitas Tinggi

Total Dana (100%) : Rp. 30.000.000

PPh Pasal 21 5%/15% : Rp. Sisa 95%/85% : Rp.

No.	Uraian		Satua n	Biaya Satuan (Rp)	Jumlah (Rp)
a	<u>b</u>	c	d	e	f
I	BELANJA PERSONIL/ HONORARIUM (maks 30%)				
	Pembantu Peneliti 1	50	OJ	30.000	1.500.000
	Pembantu Peneliti 2	50	OJ	30.000	1.500.000
	Pembantu Peneliti 3	50	OJ	30.000	1.500.000
			Sub	Total I (Rp)	4.500.000
II	BELANJA OPERASIONAL				
	Pendaftaran Seminar internasional	1	Judul	3.500.000	4.000.000
	Publikasi Jurnal Internasional	1	Judul	8.000.000	8.000.000
	SPD Seminar Internasional di Jakarta Untuk 3 Orang 2 Hari	1	kali	4.250.000	4.250.000
	SPD Uji analisa kaboratorium Semarang- Yogyakarta untuk 3 orang 1 hari	2	kali	825.000	1.650.000
	Transportasi dalam kota untuk pembelian bahan, supervisi fabrikasi alat dan uji fungsional alat (3 orang 1 hari)	3	kali	450.000	1.350.000
			Sub	Total II (Rp)	19.250.000
III	BELANJA MODAL				
	Kertas HS A4 Sidu 80 gram	5	rim	40.000	200.000
	HP Catridge Tinta Hitam 27 (C8727AA)	2	buah	340.000	680.000
	HP Catridge Tinta Warna 27 (C8727AA)	1	buah	370.000	370.000
	Flashdisk Kingston 16 GB	3	buah	125.000	375.000
	Ballpoint Hitam	2	dos	25.000	50.000
	Temperature Sensor Type Ca	3	buah	250.000	750.000

Humidity Sensor Type THD-2	1	buah	1.250.000	1.250.000	
Temperature COntrol	1	buah	1.920.000	1.920.000	
Fotocopy Laporan Kemajuan	625	lembar	200	125.000	
Jilid Laporan Kemajuan	10	exp	20.000	200.000	
Fotocopy Laporan Akhir	650	Lemba r	200	130.000	
Jilid Laporan Akhir	10	exp	20.000	200.000	
Sub Total III (Rp)					
Jumlah Keseluruhan					

Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama / NIP / NIDN / NIM	Departemen	Bidang Ilmu	Alokasi Waktu (jam/mingg u)	Uraian Tugas
1	Ir. Eflita Yohana, MT., PhD/19620428199001 2001	Teknik Mesin	Konversi Energi	7	-Mengawasi pengerjaan simulasi ANSYS FLUENT -Menyiapkan alat dan bahan kebutuhan penelitian
2	Dr. M. Tauviqirrahman, ST., MT/198105202003121 002	Teknik Mesin	Perancan gan Teknik	7	-Mengawasi perancangan desain spray dryer -Mereview publikasi jurnal internasional dan seminar internasional
3	Abdul Basit, S.Pd./ 21050120410012	Teknik Mesin	Konversi Energi	10	-Mendesain rancangan bentuk spray dryer -Menganalisis variasi dimensi spray dryer
4	Yosua Wijaya/210501171200 17	Teknik Mesin	Konversi Energi	10	-Membantu menjalankan program analisis ANSYS FLUENT -Membantu pengadaan alat dan bahan kebutuhan penelitian
5	Luhung Damarran Ahmad/210501181401 48	Teknik Mesin	Konversi Energi	10	-Membantu menjalankan program analisis ANSYS FLUENT -Membantu proses pengerjaan publikasi jurnal internasional dan seminar internasional

Lampiran C. Biodata Ketua dan Anggota Dosen dan Mahasiswa Biodata Ketua Penelitian

A. Identitas Diri

1	Nama Lengkap	Ir. Eflita Yohana, MT., Ph.D.
2	Jenis Kelamin	Perempuan
3	Program Studi	S1-Teknik Mesin
4	NIDN	0028056209
5	Tempat dan Tanggal Lahir	Lirik-Rengat, 28 April 1962
6	Alamat Email	efnan2003@yahoo.com
7	Nomor Telepon/HP	081325959317

B. Riwayat Pendidikan

Gelar Akademik	Sarjana (S1)	Magister (S2)	Doktor (S3)
Nama Institusi	Universitas Brawijaya	Universitas Gadjah Mada	Pukyong National University Busan, Korea Selatan
Jurusan/Prodi	Teknik Mesin	Teknik Mesin	Mechanical Engineering
Tahun Masuk- Lulus	1981 - 1987	1997 - 2000	2004- 2011

C. Pengalaman Penelitian 5 (lima) Tahun Terakhir (diurut berdasarkan tahun terakhir)

Judul Riset	Tahun Riset (dari dan sampai dengan)	Nilai Pendanaan Riset (Rp.)	Sumber Pendanaan Riset	Peran/ Posisi	Mitra Riset
Komersialisasi produk nanopolifenol teh hijau bebas kafein sebagai inkorporasi functional food melalui teknik inaktivasi enzimatis	2020	1.205.000.000	Direktorat Riset dan Pengabdian Masyarakat Deputi Bidang Penguatan Riset dan Pengembangan Kementrian Riset dan Teknologi /Badan Riset Dan Inovasi Nasional	-	-
Pengembangan Produksi Powder Teh Hijau Bebas Kafein melalui Spray Dryer	2020	157.562.200	Direktorat Riset dan Pengabdian Masyarakat Deputi Bidang Penguatan Riset dan	-	-

Dengan Teknik			Pengembangan		
Dehumidifikasi			Kementrian Riset		
Menggunakan			dan Teknologi		
Liquid Dessicant			/Badan Riset Dan		
			Inovasi Nasional		
Potential of Fly			LPPM (Lembaga		
Ash and Bentonite	2019	112.500.000	Penelitian dan	_	-
Composites as		112.000.000	Pengabdian kepada		
Landfill Liners			Masyarakat)		
Perancangan					
Reaktor Pirolisis			Alokasi anggaran		
Tempurung Kelapa			RKAT Fakultas		
dengan Kapasitas	2019	20.000.000		-	-
Proses 1000 kg			Teknik Undip		
sebagai Penghasil			Tahun 2019.		
Arang dan Bio-Oil					
Identifikasi					
Kepuasan dan			Alokasi anggaran		
Harapan Stacholder			RKAT Fakultas		
terhadap Fakultas	2018	20.000.000	Teknik Undip	-	-
Teknik Universitas			Tahun 2018.		
			Talluli 2016.		
Diponegoro					
Analytical Method			Alokasi anggaran		
Of Vibro Fluidized	2010	20,000,000	RKAT Fakultas		_
Bed Dryer Green	2018	20.000.000	Teknik Undip	-	
Tea Using Finite			Tahun 2018.		
Element Method					
Implementasi					
Inverter sebagai					
Pengembangan			Alokasi anggaran		
Protable Spot			RKAT Fakultas		
Welding untuk	2018	50.000.000	Teknik Undip	-	-
Industri Rumahan			Tahun 2018.		
bagi Masyarakat			1 anun 2018.		
Ter-PHK d					
Semarang					
The Aplication Of					
Vibro-					
Dehumidication					
Absorption Drying	2018	75.000.000	Riset Publikasi	_	-
Process In The	2010	72.000.000	Internasional (RPI)		
Production					
Development Of	<u> </u>				

	T	T	T	ı	
High Catechin					
Green Tea Ctc					
Powder					
Development of					
innovative design					
of texturing and					
hydrophobic			Riset Publikasi		
coating – a study	2019	75 000 000	Internasional		_
on a newly	2018	75.000.000	Bereputasi Tinggi	-	
developed			(RPIBT)		
technologies					
towards "green					
bearing"					
Development of an					
artificial					
reef knockdown					
system for					
shore protection –					
A	2018	75.000.000	Riset Publikasi	_	-
novel concept	2010	75.000.000	Internasional (RPI)		
towards					
multipurpose					
sustainable					
solutions					
			Diget Ungaylan		
Upaya			Riset Unggulan Universitas		
pemanfaatan					
limbah padat			Diponegoro (RUU)		
Geothermal Dieng					
menjadi Adsorben					
Silika Aerogel					
Superhidrofilik	2017			_	-
bagi					
optimalisasi					
Produk Biodiesel					
serta Hasil					
Samping Gliserin					
dan					
Metanol					
Refining Minyak					
Sawit Untuk			Penelitian Unggulan		
Reduksi Senyawa	2017	200.000.000	Perguruan Tinggi	-	-
3-Mcpd Melalui			Dipa Undip		
Bioadsorpsi					

Dengan Tandan					
Kosong Sawit					
Termodifikasi					
Produksi Dan					
			Disclete set sistem		
Komersialisasi			Direktorat sistem		
Natural Sweet	2017	210 777 000	Inovasi dan		_
Vanillin (Nas-Va)	2017	318.775.000	Direktorat	-	
Melalui Proses			Perusahaan Pemula		
Ekstraksi			berbasis Teknologi		
Hidrotermolisis					
A Detailed Study					
of Vibro Fluidized					
Bed Dryer Exergy	2017	20.000.000	Dipa Fakultas		-
and Energy Models	2017	20.000.000	Teknik Undip	_	
with Application to					
Tea Process					
Simulasi CFD					
untuk menentukan					
distribusi					
temperatur dan					
kelembaban relatif					
ruangan dengan	•01-	• • • • • • • • • • • • • • • • • • • •	Dipa Fakultas		_
menggunakan	2017	20.000.000	Teknik Undip	-	
udara dari sistem			1		
dehumidifikasi					
Menggunakan					
Fluidizied Bed					
Dryer					
Produksi Powder					
Teh Hijau CTC					
Melalui Fluidized					
Bed Dryer dengan			Dipa Fakultas		
Teknik	2016	20.000.000	Teknik Undip	-	-
Dehumidifikasi			Teknik endip		
Menggunakan					
Liquid Dessicant					
Simulasi CFD					
untuk menentukan					
distribusi					
	2016	15 000 000	Dipa Fakultas		_
temperatur dan	2016	15.000.000	Teknik Undip	_	
kelembaban relatif					
ruangan dengan					
menggunakan					

udara dari sistem dehumidifikasi Pengembangan Produksi Super Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi Pencairan Dan				T	ı	
Pengembangan Produksi Super Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	udara dari sistem					
Produksi Super Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi						
Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi						
dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	=					
Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Biodisel Kontinyu					
Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	=	2015	150 000 000	Penelitian Unggulan	_	-
Distilasi Reaktif (Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Kemiri Sunan	2013	130.000.000	Dikti		
(Tahun ke-II) Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Melalui Proses					
Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Distilasi Reaktif					
pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	(Tahun ke-II)					
Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Torefaksi Kontinyu					
Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	pada Biomassa					
Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Briket Campuran					
Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Kulit Mete dan					
Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Sekam Padi Supaya					
Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Terjadi	2016	50,000,000	Ditlitahmaa Dileti		-
Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Peningkatan Nilai	2016	50.000.000	Ditilitadinas Dikti	-	
Bahan Bakar Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Kalor dan Dapat di					
Alternatif Boiler. (Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Gunakan sebagai					
(Tahun ke-II) Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Bahan Bakar					
Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Alternatif Boiler.					
Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	(Tahun ke-II)					
Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Pengembangan					
Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Teknik					
Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Dehumidifikasi					
Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	Absorpsi Pada	2015	20,000,000	T . 151 1		_
Produksi Teh Hijau Kaya Polifenol Pengembangan Teknologi	_	2015	30.000.000	Internal Fakultas	-	
Kaya Polifenol Pengembangan Teknologi	Dryer Untuk					
Kaya Polifenol Pengembangan Teknologi	Produksi Teh Hijau					
Teknologi	=					
Teknologi						
	Teknologi					
, , , , , , , , , , , , , , , , , , , ,	_					
Penyimpanan 169 000 000 K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Penyimpanan	2017	170 000 000	17 ' 1 191 .*		_
Biogas Cair 2015 168.000.000 Kemenristekdikti -		2015	168.000.000	Kemenristekdikti	-	
Dengan Alat	•					
Penukar Kalor	_					
Cryogenic	Cryogenic					
Torefaksi Kontinyu						
pada Biomassa	=					
Briket Campuran 2015 65.000.000 Ditlitabmas Dikti -	=	2015	65.000.000	Ditlitabmas Dikti	-	-
Kulit Mete dan	_					
Sekam Padi Supaya	Sekam Padi Supaya					

Terjadi					
Peningkatan Nilai					
Kalor dan Dapat di					
Gunakan sebagai					
Bahan Bakar					
Alternatif Boiler.					
(Tahun ke-I)					
Pengembangan					
Produksi Super					
Biodisel Kontinyu					
dari Minyak					
Kemiri Sunan	2015	90.000.000	Kemenristekdikti	-	-
Melalui Proses					
Distilasi Reaktif					
(Tahun ke-I)					
Pengaruh Variasi					
Temperatur Udara					
Masuk Pada Sistem					_
Regenerator	2015	15.000.000	Internal Fakultas	-	_
Menggunakan					
Liquid Desiccant					
Pengembangan					
Mini Plant Super					
Teh Hijau					
Kompetitif melalui	2014-2015	1.082.347.000	RISPRO LPDP DEPKEU	Anggot a	PTTK Gamb ung
Proses Inaktivasi					
dengan					
menggunakan					
Mechanically					
Dispersed-Rotary					
Steamer					
Pengurangan					
Kelembaban	2014	10,000,000	Demonstrat 1 D 1		_
Menggunakan	2014	10.000.000	Pemerintah Daerah	-	
Sistem Absopsi					

D. Prestasi (yang relevan dengan judul riset)

D.1. Publikasi

No	Tahun	Judul Artikel Ilmiah	Volume/ Nomor	Nama Jurnal
1.	2020	Effect of vortex limiter position and metal rod insertion on the flow field, heat rate, and performance of cyclone separator	Volume 377, Pages 464-475 ISSN 0032-5910	Powder Technology
2.	2020	Inovasi Komposter Sebagai Upaya Pengelolaan Sampah Di Kelurahan Gedawang Semarang, Jawa Tenga	e-ISSN: 2685-886X Vol. 2, No. 2 Tahun 2020 https://ejournal2.undip. ac.id/index.php/pasopat i/article/view/5753	JURNAL PASOPATI
3.	2020	Potensi Energi Listrik Dari Konversi Biogas Di Kampung Tematik Sapi Perah Desa Gedawang Kecamatan Banyumanik Kota SEMARANG	e-ISSN: 2685-886X Vol. 2, No. 1 Tahun 2020 http://ejournal2.undip.a c.id/index.php/pasopati	JURNAL PASOPATI
4.	2020	Analisis Tekanan dan Jumlah Pompa untuk Menginjeksi 35000 BWPD di Echo Flow Station Milik Pertamina Hulu Energy Offshore North West Java (ONWJ)	p-ISSN: 1411-027X; e- ISSN: 2406 – 9620 Vol 22, No 3 (2020) https://ejournal.undip.ac .id/index.php/rotasi/arti cle/view/32519	Jurnal Teknik Mesin
5.	2020	Effect of particle size and bed height on the characteristic of a fluidized bed dryer	Volume 7, Issue 1, 2020 ISSN: 2331-1916 https://www.cogentoa.c om/article/10.1080/233 11916.2020.1738185	Cogent Engineering
6.	2019	Analisis Pengaruh Temperatur dan Laju Aliran Massa Cooling Water Terhadap Efektivitas Kondensor di PT. Geo Dipa Energi Unit Dieng	p-ISSN: 1411-027X; e-ISSN: 2406 – 9620 Vol 21, No 3 (2019) https://ejournal.undip.ac .id/index.php/rotasi/issu e/view/2606	Jurnal Teknik Mesin
7.	2019	Analisis Kekuatan Material Air Receiver Drum Berdasarkan ASME Section VIII Division I	p-ISSN: 1411-027X; e- ISSN: 2406 – 9620 Vol 21/No.1/2019	Jurnal Teknik Mesin

8.	2018	Analisis Distribusi Temperatur dan Aliran Fluida pada Proses Pengeringan Butiran Teh Bentuk Silinder Di Dalam	https://ejournal.undip.ac .id/index.php/rotasi/issu e/view/2565 p-ISSN: 1411-027X; e- ISSN: 2406 – 9620 Vol 20/No.4/2018 https://ejournal.undip.ac .id/index.php/rotasi/issu	Jurnal Teknik
		Fluidized Bed Dryer Menggunakan Computational Fluid Dynamic (CFD)	e/view/2499	Mesin
9.	2018	Analisis Perpindahan Panas dan Exergi pada Boiler Wanson I Tipe Fire Tube	ISSN 2303-1972 Vol. 20/No. 2/ Tahun2018 https://ejournal.undip.ac.id/index.php/rotasi/issue/view/2361	Jurnal Teknik Mesin
10.	2018	Numerical analysis on Effect of the vortex finder diameter and the length of vortex limiter on flow field and particle collection in a new cyclone separator	Vol. 5(1), 1562319. https://doi.org/10.1080/ 23311916.2018.156231 9	Cogent Engineering
11.	2017	Analisa Efisiensi Isentropik dan Exergy Destruction pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap	ISSN 2303-1972 Vol. 19/No. 3/ Tahun2017 https://ejournal.undip.ac.id/index.php/rotasi/issue/view/2204	Jurnal Teknik Mesin
12.	2017	Simulasi Distribusi Temperatur dan Kelembaban Relatif Ruangan dari Sistem Dehumidifikasi Menggunakan Computational Fluids Dynamics (Cfd)	ISSN 2303-1972 Vol. 19/No. 1/ Tahun2017 https://ejournal.undip.ac.id/index.php/rotasi/issue/view/1989	Jurnal Teknik Mesin
13.	2017	CFD Analysis of Dehumidification Characteristics of Cross Flow Dehumidifier with Calcium Chloride as Liquid Desiccant	ISSN 0973-4562 Vol. 12/No. 7 / Tahun2017 https://www.ripublicatio n	Internationa 1 Journal of Applied Engineerin g Research

14.	2016	A Study of Slip Position on Improving The Hydrodynamic Lubrication Performance of Single-Textured Bearing Using a Mass Conserving Numerical Approach	ISSN 0975-4024 Vol. 8/No. 2/ Tahun2016 http://www.enggjournals.c	Internatio nal Journal of Engineerin g and Technolog y
15.	2016	Anilisis CFD Distribusi Temperatur dan Kelembapan Relatif pada Proses Dehumidifikasi <i>Sample House</i> dengan Konsentrasi <i>Liquid Dessicant</i> 60% dan Suhu <i>Liquid Dessicant</i> 10°C"	ISSN 2303-1972 Vol. 4/No. 2/ Tahun2016 http://ejournal-s1.undip	Jurnal Teknik Mesin
16.	2016	Simulasi Distribusi Temperatur dan Kelembapan Relatif pada Ruang Steamer dengan menggunakan Metode Computational Fluid Dynamics	ISSN 2303-1972 Vol. 4/No. 1/ Tahun2016 http://ejournal-s1.undip	Jurnal Teknik Mesin
17.	2016	Effect of Temperature and Relative Humidity on the Performance of Steamer Using Computational Fluid Dynamic (CFD)	ISSN 0975-4024 Vol. 8/No. 4/ Tahun2016 DOI: 10.21817/ijet/2016/v	Internatio nal Journal of Engineerin g and Technolog y
18.	2016	Analisis Efisiensi Siklus Combine Cycle Power Plant (CCPP) Gas Turbine Generator Terhadap Benan Operasi PT Krakatau Daya Listrik	ISSN 2406-9621 Vol. 18/No. 4/ Tahun2016 http://ejournal.undip.ac	ROTASI
19.	2016	Analisis Numerik dan Validasi Kasus Kavitasi Pompa Setrifugal Mission Magnum I Menggunakan CFD	ISSN 2406-9620 Vol. 18/No. 3/ Tahun2016 http://ejournal.undip.ac	ROTASI

20.	2016	Analisa Perhitungan Efisiensi Circulating Water Pump 76LKSA-18 Pembangkit Listrik Tenaga Uap Menggunakan Metode Analitik	ISSN 2406-9620 Vol. 18/No. 1/ Tahun2016 http://ejournal.undip.ac	ROTASI
21.	2016	Analisis Total Efisiensi HRSG (Heat Recovery Steam Generator) pada Combine Cycle Power Plant (CCPP) 120 MW PT Krakatau Daya Listrik	ISSN 2406-9620 Vol. 18/No. 2/ Tahun2016 http://ejournal.undip.ac : : : : : : : : : : : : : : : : : : :	ROTASI
22.	2015	Pengurangan Kelembaban Udara Menggunakan Larutan Calsium Chloride (Cacl2) pada Waktu Siang Hari dengan Variasi Spraying Nozzle	ISSN 2406-9620 Vol. 17/No. 1/ Tahun2015 https://ejournal.undip.ac.id/index.php/rotasi/issue/view/1442	ROTASI
23.	2015	Analisis Pengaruh Kekentalan Fluida Air dan Minyak Kelapa pada Performansi Pompa Sentrifugal	ISSN 2303-1972 Vol. 3/No. 2/ Tahun2015 http://ejournal-s1.undip	Jurnal Teknik Mesin
24.	2014	Induction Hardening of Carbon Steel Material: The Effect of Specimen Diameter	ISSN 1022-6680 Vol. 911/No. 2014/ Tahun2014 http://www.scientific.net.	Advanced Materials Research
25.	2014	Mampu Bentuk Plastik pada Proses Vacuum Forming dengan Variasi Tekanan 0.979 bar, 0.959 bar, 0.929 bar, 0.909 bar pada Temperatur 200 °C	ISSN 2303-1972 Vol. 2/No. 2/ Tahun2014 http://ejournal-s1.undip	Jurnal Teknik Mesin
26.	2014	The Aerodynamics Analysis of Airfoils for Horizontal Axis Wind Turbine Blade Using Computational Fluid Dynamic	ISSN 1411-027X Vol. 16/No. 3/ Tahun2014 http://ejournal.undip.ac :	ROTASI

D.2. Paten/Hak Kekayaan Intelektual lainnya

No	Tahun	Judul/Tema HKI	Jenis	Nomor Pendaftaran/ Sertifikat
1.	2019	Sistem Pemanfaatan Evaporative Cooling untuk Penghematan Energi Listrik pada AC Split	Paten Sederhana	IDS000002394
2.	2016	Metode Pengeringan Serbuk Daun The Hijau Menggunakan Pengering Unggun Terfluidisasi	Paten Indonesia	HKI-3- HI.05.02.04.N o. S00201606703 -DS 1786
3.	2015	Super Teh Hijau Kompetitif melalui Proses Inaktivasi Enzimatis dengan menggunakan Mechanically Dispersed-Rotary Steamer	Paten Indonesia	No. ES0920150006 6

D.3. Penghargaan Riset/Inovasi

-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik Undip.

Semarang, 26-02-2021

Ketua Penelitian

(Ir. Eflita Yohana, M.T. PhD)

A. Identitas Diri

1.	Nama Lengkap	Dr. Mohammad Tauviqirrahman, S.T., MT
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S-1 Teknik Mesin
4.	NIDN	0020058102
5.	Tempat dan Tanggal Lahir	Rembang, 20 Mei 1981
6.	Alamat E-mail	mtauviq99@yahoo.com
7.	Nomer Telepon/HP	024-7460059

B. Riwayat Pendidikan

Gelar Akademik	Sarjana (S1)	Magister (S2)	Doktor (S3)
Nama Institusi	Universitas Diponegoro, Semarang	Institut Teknologi Bandung	Universitas Twente, Belanda
Jurusan/Prodi	Teknik Mesin	Teknik Mesin	Teknik Mesin
Tahun Masuk- Lulus	1999-2003	2004-2006	2009-2013

C. Pengalaman Penelitian 5 (lima) Tahun Terakhir (diurut berdasarkan tahun terakhir)

Judul Riset	Tahun Riset (dari dan sampai dengan)	Nilai Pendanaan Riset	Sumber Pendanaan Riset	Peran/ Posisi	Mitra Riset
Design and Optimization of A Hydrophobic Bearing For Enhancing Its Acoustic Performance	2020	63.000.000	Hibah Publikasi Internasional (RPI) – Dana selain APBN	•	-
Development of Innovative Design of Texturing and Hydrophobic Coating – A Study on A Newly Developed Technologies Towards "Green Bearing"	2020	130.000.000	Hibah Publikasi Internasional (RPI) – Dana selain APBN (Tahun ke-3)	-	
Pengembangan Sistem Pelumasan	2020	124.000.000	Hibah Publikasi Internasional	-	-

Berbahan Dasar			(RPI) – Dana		
Air (Water			selain APBN		
Lubrication) pada			Sciain Ai DIV		
Bantalan Mesin					
Untuk Teknologi					
Ramah Lingkungan					
Pengembangan Model Pelumasan					
Pada Besi Cor			Penelitian Dasar		
Produk Lokal			Unggulan		
Untuk	2019	141.000.000	Perguruan Tinggi	_	-
Kemandirian			(PDUPT) – Ristek		
Komponen			Dikti (Tahun ke-2)		
Otomotif Nasional			Dikti (Tallali ke 2)		
(Tahun II)					
Development of					
Innovative Design			Hibah Publikasi		
of Texturing and			Internasional		
Hydrophobic			Bereputasi Tinggi		
Coating – A Study	2019	130.000.000	(RPI BT) – Dana		-
on a Newly Developed	2019	130.000.000	selain APBN	-	
Technologies					
Towards "Green			DIPA UNDIP		
Bearing" (Tahun			(Tahun ke-2)		
II)					
Development of an					
artificial reef					
knockdown system					
for shore protection			Hibah Publikasi		
– A novel concept			Internasional		_
towards	2019	70.000.000	(RPI) – Dana	-	_
multipurpose			selain APBN		
sustainable			DIPA UNDIP		
solutions (Tahun					
II)					
Pengembangan Model Pelumasan					
			D IV. D		
Pada Besi Cor			Penelitian Dasar		
Produk Lokal	****		Unggulan		_
Untuk	2018	141.000.000	Perguruan Tinggi	-	_
Kemandirian			(PDUPT) – Ristek		
Komponen			Dikti		
Otomotif Nasional					
(Tahun I)					

		T	T	ı	
Development of					
Innovative Design					
of Texturing and			Hibah Publikasi		
Hydrophobic			Internasional		
Coating – A Study	2018	130.000.000	Bereputasi Tinggi	_	-
on a Newly			(RPI BT) – Dana		
Developed			selain APBN		
Technologies			DIPA UNDIP		
Towards "Green					
Bearing" (Tahun I)					
Development of an					
artificial reef			Hibah Publikasi		
knockdown system			Internasional		
for shore protection – A novel concept	2017	70.000.000	(RPI) – Dana	_	-
towards	2017	70.000.000	selain APBN		
multipurpose			DIPA UNDIP		
sustainable					
solutions (Tahun I)					
			Hibah Penelitian		
Fluid Flow			Unggulan FT		
Characterization of Artificial Reef	2017	40.000.000	UNDIP - Dana		_
System with A Zig-	2017	40.000.000	selain APBN	_	
Zag Formation			Fakultas Teknik		
Zagromanon			RKAT UNDIP		
Piezoviscous			IIII 1 D'		
Effects in			Hibah Riset		
Lubricated Sliding	2016	75.000.000	Publikasi	_	-
Systems With			Internasional –		
(Non) Newtonian Lubricant			PNBP UNDIP		
Piezoviscous					
Effects in			Hibah Riset		
Lubricated Sliding			Publikasi		
Systems With	2015	75.000.000	Internasional –	-	-
(Non) Newtonian			PNBP UNDIP		
Lubricant			TINDI CINDII		
Prediksi Ketebalan					
Film Pelumas					
dalam Penggantian					
	2015	15.000.000	Hibah Jurusan -		_
Sambungan Tulang	2013	13.000.000	UNDIP	_	
Panggul Buatan					
untuk Lifetime					
yang Lebih Baik					

Dangambangan		<u> </u>	<u> </u>		
Pengembangan Proses Manufaktur					
Excavator Teeth					
Produk UKM			Riset Andalan		
Menggunakan	2015	265 000 000	Perguruan Tinggi		_
Teknologi	2015	365.000.000	dan Industri	-	
Induction			(RAPID) - DIKTI		
Hardening untuk					
Memenuhi					
Kebutuhan					
Komponen Industri					
Pengembangan					
Proses Manufaktur					
Excavator Teeth					
Produk UKM			Riset Andalan		
Menggunakan					
Teknologi	2016	365.000.000	Perguruan Tinggi	-	-
Induction			dan Industri		
Hardening untuk			(RAPID) - DIKTI		
Memenuhi					
Kebutuhan					
Komponen Industri					
Pengembangan					
Evacuated Tube					
Solar Collectors					
Menggunakan					
Metode Direct dan					
Indirect pada			Penugasan Riset		
Sistem	2015	100.000.000	IPTEK - DIKTI	-	-
Therapeutical Pool					
untuk Terapi					
Penderita Stroke					
Berbasis Kontrol					
PLC					
Pengembangan					
Teknologi					
Induction					
Hardening pada Pin					
Kereta Api Produk	2014	175.000.000	Penprinas MP3EI	_	-
IKM Guna	2014	173.000.000	– DIKTI	_	
Meningkatkan					
Kualitas Produk					
dan Aspek					

Keselamatan					
Transportasi Publik					
Efek Slip Pada					
Bearing Dengan	2014	15.000.000	Hibah Jurusan -		-
Pelumas Non-	2014	13.000.000	UNDIP	-	
Newtonian					

D. Prestasi (yang relevan dengan judul riset)

D.1. Publikasi

No	Tahun	Judul Artikel Ilmiah	Volume/ Nomor	Nama Jurnal
1.	2020	Effect of vortex limiter position and metal rod insertion on the flow field, heat rate, and performance of cyclone separator	377	Powder Technology (Q1)
2.	2020	Effect of Particle Size and Bed Height on the Characteristic of a Fluidized Bed Dryer	7 (1)	Cogent Engineering (Q2)
3.	2019	Multiphase Computational Fluid Dynamics Analysis of Hydrodynamic Journal Bearing Under the Combined Influence of Texture and Slip	7 (97)	Lubricants (Q2)
4.	2019	Influence of roughness on the behavior of three-dimensional journal bearing based on fluid- structure interaction approach	33(10)	Journal of Mechanical Science and Technology (Q2)
5.	2019	Hydrodynamic Lubrication of Textured Journal Bearing Considering Slippage: Two- dimensional CFD Analysis Using Multiphase Cavitation Model	41 (3)	Tribology in Industry (Q2)
6.	2019	Effect of inertia on the cavitation phenomena of hydrodynamic textured bearings considering slip	41(387)	Journal of the Brazilian Society of Mechanical Sciences and Engineering (Q2)
7.	2019	Design and manufacturing orthotics shoe insole with optimum surface	14 (4), pp. 1799	Journal of Engineering

		roughness using the CNC milling	- 1819.	Science and Technology (JESTEC) (Q2)
8.	2019	CNC milling of EVA foam with varying hardness for custom orthotic shoe insoles and process parameter optimization	13(3)	Journal of Mechanical Engineering and Sciences (Q2)
9.	2019	Milling strategy optimized for orthotics insole to enhance surface roughness and machining time by Taguchi and response surface methodology	36(4), pp. 237- 247	Journal of Industrial and Production Engineering (Q2)
10.	2019	Optimization of key parameters in struvite (K) production for phosphorus and potassium recovery using a batch crystallizer	12 (2), April- June 2019, pp. 787- 795.	Rasayan Journal of Chemistry (Q2)
11.	2019	Optimal design and fabrication of shoe lasts for ankle foot orthotics for patients with diabetes	9 (2), pp. 62- 80.	International Journal of Manufacturing , Materials, and Mechanical Engineering (Q3)
12.	2019	Effect of spacing on flow field characteristic of tube artificial reefs with parallel formation by CFD	14 (3), pp. 913- 919	Journal of Engineering and Applied Science (Q3 Journal)
13.	2019	Optimization of Surface Roughness and Machining Time of Manufacturing for Ankle Foot Orthosis (AFO) with Subtractive Manufacturing using the Taguchi Method and Fuzzy Logic	14 (10), pp. 3179- 3193	Journal of Engineering and Applied Science (Q3 Journal)
14.	2019	A 3-dimensional computational fluid-structure interaction analysis in the hip-joint prosthesis during solat (prayer) activity	20, pp. 125-141	Jurnal Tribologi

15.	2019	Numerical analysis on effect of the vortex finder diameter and the length of vortex limiter on flow field and particle collection in a new cyclone separator	5 (1), pp. 1-15	Cogent Engineering (Taylor & Francis, Q3 Journal)
16.	2019	Reverse innovative design of insole shoe orthotic for diabetic patient	14(1), pp.106- 113	Journal of Engineering and Applied Science (Q3 Journal)
17.	2018	Wear analysis of spherical graphite cast iron using pin-on disc tribotester	29(Supp . 2), pp. 15–26	Journal of Physical Science (Q3 Journal)
18.	2018	Computer-aided reverse engineering system in the design and production of orthotic insole shoes for patients with diabetes	5 / 1470916 , pp. 1– 20	Cogent Engineering (Taylor & Francis, Q3 Journal)
19.	2018	Optimization of surface roughness and machining time of manufacturing for ankle foot orthosis (AFO) with subtractive manufacturing using approach Taguchi method and Fuzzy logic	14 (10), pp. 3179- 3193	Journal of Engineering and Applied Science (Q3 Journal)
20.	2018	Analisis pelumasan elastohydrodynamic pada sambungan tulang panggul buatan untuk posisi sujud dalam salat dengan menggunakan teknik CFD dan FSI	Volume 9, Nomor 1, pp. 269-279.	Simetris
21.	2017	An analytical approach on the tribological behaviour of pocketed slider bearings with boundary slip including cavitation	Volume 29, pp. 133–152	Lubrication Science (Wiley- Blackwell, Q2 Journal)
22.	2017	Numerical Investigation of Texturing and Wall Slip in Lubricated Sliding Contact Considering Cavitation	Volume 12 (2) pp. 67- 75	Tribology Online (Japanese Society of Tribologist, Q2 Journal)
23.	2017	Theoretical investigation of boundary slip on the hydrodynamic lubrication performance in pocketed	Volume 11 (2), pp.100 -	International Journal of Surface Science

		bearings including cavitation	117	and Engineering (Q2)
24.	2016	Numerical investigation of pocketed slip slider bearing with non- Newtonian lubricant	Volume 10, pp. 64-69	Tribology - Materials, Surfaces & Interfaces (Q2)
25.	2016	Numerical investigation of the combined effects of slip and texture on tribological performance of bearing	Volume 10, pp. 85-88	Tribology - Materials, Surfaces & Interfaces (Q2)
26.	2015	CFD characterization of flow pattern around endothelial cell in dengue infection with plasma leakage	Volume 76 / Nomor 7, pp. 19-23	Jurnal Teknologi (Sciences & Engineering) (Q2)

D.2. Paten/Hak Kekayaan Intelektual lainnya

				Nomor
NT-	T-1	I 4-1/T IIIZI	T	
No	Tahun	Judul/Tema HKI	Jenis	Pendaftaran/
				Sertifikat
		Alat Untuk Mengubah Energi Gelombang	Sederhana	IDS000002592
1.	2010	Laut Menjadi Energi Listrik Secara		
1.	2019	Langsung Melalui Interaksi Antara Alat		
		Apungan dan Plat Penghela		
		Desain Bantalan Luncur Menggunakan	Sederhana	S00201911105
	2010	Texture Permukaan Gesek Berpelumas Air		
2.	2019	Laut		
		Yang Dapat Dibongkar Pasang Secara Cepat		
		Alat Kavitasi Sebagai Pemurni Air Limbah	Sederhana	SID201900200
3.	2019	Kayu		
		3		
		Metode Pengeringan Dengan Menggunakan	Sederhana	SID201805018
4 2010	2010	Pengeringan Mekanik Dan Kimiawi Untuk		
4.	2019	Menghilangkan Kelembapan Pada Sikat		
		Gigi		

D.3. Penghargaan Riset/Inovasi

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun	
1 500 Peneliti Terbaik Indonesia		Kementrian Riset dan Teknologi,	2020	
1	300 Feliciti Terbaik ilidollesia	Indonesia	2020	
	Best paper - 8 th International	Program Chairman IMETI 2019,	2019	
	Multi-Conference and	Taiwan	2019	

	Technology Innovation (IMETI)		
2	Satyalancana Karya Satya X Tahun	Presiden Republik Indonesia	2019
3	Dosen dengan Publikasi Jurnal Internasional Terbaik ke-5 tahun 2017	Universitas Diponegoro	2018
4	Outstanding Contribution in Reviewing "Applied Mathematics and Computation"	Elsevier	2018
5	Outstanding Contribution in Reviewing "Tribology International"	Elsevier	2017
6	Dosen dengan Artikel Ilmiah Terindeks Scopus Terbanyak III tahun 2016	Universitas Diponegoro	2017
7	Dosen dengan Artikel di Jurnal Internasional Bereputasi Terbanyak tahun 2015	Universitas Diponegoro	2015
8	Young Tribologist (Peneliti muda terbaik di bidang Tribologi)	TTRF (Taiho Kogyo Tribology Research Foundation), Jepang	2013

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik Undip.

Semarang, 26-02-2021

Anggota Penelitian 1

(Dr. Mohammad Tauviqirrahman, S.T., MT)

A. Identitas Diri

1.	Nama Lengkap	Abdul Basit, S. Pd.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S-2 Teknik Mesin
4.	NIM	21050120410012
5.	Tempat dan Tanggal Lahir	Pekalongan, 5 Desember 1996
6.	Alamat E-mail	basitmoedikal05@gmail.com
7.	Nomer Telepon/HP	089530064069

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1.	CRC (Creativity Research Club)	- Kepala Departemen Pengembangan Tim Mobil - Kepala Departemen Karya Ilmiah - Penasehat Pengembangan Tim Inovasi	2016/2019, Universitas Negeri Semarang
2.	EneRC (Engineering Research Club)	Staff SosialDevelopmentStaff Researchand Technology	2016/2018, Universitas Negeri Semarang
3.	RISTEK (Rohani Islam Teknik)	Kepala Departemen Pelayanan Umat	2017/2018, Universitas Negeri Semarang

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Medali Perak Singapore International Invention Show	Citizen Invention, Singapore	2020
2.	Prosiding Jurnal International ICMER Universitas Malaysia Pahang	ICMER	2019
3.	Prosiding Jurnal Internasional	EIC	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik Undip.

Semarang, 26-02-2021 Anggota Penelitian 2

(Abdul Basit, S.Pd.)

A. Identitas Diri

1.	Nama Lengkap	Yosua Wijaya
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S-1 Teknik Mesin
4.	NIM	21050117120017
5.	Tempat dan Tanggal Lahir	Perawang, 30 Juni 1998
6.	Alamat E-mail	yosuawawa4@gmail.com
7.	Nomer Telepon/HP	085274881207

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1.	Persekutuan Mahasiswa Kristen Protestan (PMKP) UNDIP	Anggota Bidang Mikat	2018/2019, UNDIP
2.	Himpunan Mahasiswa Mesin UNDIP	Staff Keorganisasian dan Kesejahteraan Mahasiswa	2018/2019, Teknik Mesin
3.	Pocalunar	Anggota Mekanik	2018/2020, Teknik
4.	Natal UNDIP	Ketua	2019, UNDIP
5.	Persekutuan Mahasiswa Kristen Protestan (PMKP) UNDIP	Koor. Bidang Acara	2019/2020, UNDIP

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Finalis Chem e-Car ITS	Institus Teknologi Sepuluh November	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik Undip.

Semarang, 26-02-2021 Anggota Penelitian 3

(Yosua Wijaya)

A. Identitas Diri

1.	Nama Lengkap	Luhung Damarran Achmad
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S-1 Teknik Mesin
4.	NIM	21050118140148
5.	Tempat dan Tanggal Lahir	Denpasar, 3 Juli 2000
6.	Alamat E-mail	luhungachmad@gmail.com
7.	Nomer Telepon/HP	0895394003660

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1.	Himpunan Mahasiswa Mesin UNDIP	Litbang Bidang 6	2021, UNDIP
2.	Undip Debating Forum	Head of External and Projects	2020/2021, UNDIP
3.	Badan Eksekutif Mahasiswa Fakultas Teknik UNDIP	Staff Bidang Harmonisasi Kampus	2020/2021, UNDIP

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Medali Perunggu Indonesia International Applied Science Project Olympiad	Indonesia Young Scientists Association	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik Undip.

Semarang, 26-02-2021 Anggota Penelitian 4

(Luhung Damarran Achmad)

Lampiran D. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN KETUA PENELITI

Yang bertanda tangan di bawah ini:

Nama : Ir. Eflita Yohana, MT., PhD

NIP/ NIDN 196204281990012001

Pangkat / Golongan : IIIC

Jabatan Fungsional : Lektor Kepala

Dengan ini menyatakan bahwa proposal penelitian saya dengan judul: "Investigasi Numerik Pengaruh Arah Aliran dan Temperatur Pengering Terhadap Distribusi Kontur dan Karateristik Partikel Hasil Pengeringan Metode Spray Dryer untuk Produksi Teh Hijau Berkualitas Tinggi" yang diusulkan dalam skema Penelitian Unggulan untuk tahun anggaran 2020 **bersifat original dan belum pernah dibiayai oleh lembaga / sumber dana lain**.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Semarang, 26 Februari 2021

Yang menyatakan,

Ir. Eflita Yohana, MT., Ph.D.

196204281990012001