

A decade of volcanic observations from Aura and the A-Train

Simon Carn

Dept of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA

Currently at: *National Museum of Natural History, Smithsonian Institution, Washington DC, USA*

Volcano team: Nick Krotkov, Kai Yang, Arlin Krueger, Eric Hughes, Jun Wang, Verity Flower, Jennifer Telling

Volcanic SO₂ clouds measured by TOMS

- Low sensitivity
- Low spatial resolution
- No altitude information
- No ‘monitoring’ capability

Pre-Aura view of global volcanic SO₂ emissions

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D19, PAGES 25,251–25,261, OCTOBER 20, 1998

A time-averaged inventory of subaerial volcanic sulfur emissions

R.J. Andres and A.D. Kasgnoc

Institute of Northern Engineering, University of Alaska Fairbanks

Abstract. A time-averaged inventory of subaerial volcanic sulfur (S) emissions was compiled primarily for the use of global S and sulfate modelers. This inventory relies upon the 25-year history of S, primarily sulfur dioxide (SO₂), measurements at volcanoes. Subaerial volcanic SO₂ emissions indicate a 13 Tg/a SO₂ time-averaged flux, based upon an early 1970s to 1997 time frame. When considering other S species present in volcanic emissions, a time-averaged inventory of subaerial volcanic S fluxes is 10.4 Tg/a S. These time-averaged fluxes are conservative minimum fluxes since they rely upon actual measurements. The temporal, spatial, and chemical inhomogeneities inherent to this system gave higher S fluxes in specific years. Despite its relatively small proportion in the atmospheric S cycle, the temporal and spatial distribution of volcanic S emissions provide disproportionate effects at local, regional, and global scales. This work contributes to the Global Emissions Inventory Activity.

- Volcanic S emission inventories ‘static’ and used ground-based data

Motivation:

- Climate impact of volcanic emissions
- Global fluxes of other volatile species
- Field sites for volcanic gas studies

Sulfur emissions (~100 Tg/yr)

Sulfate burden

[Graf et al., 1997; Andres & Kasgnoc, 1998; Halmer et al., 2002; Smith et al., 2011]

OMI monitors SO₂ emissions in South America

- SO₂ emissions in Ecuador and Colombia from Tungurahua, Reventador, Galeras and Huila volcanoes
- Volcanic emissions from Ubinas volcano (Peru) drift over Ilo region in 2006-2007
- Upgraded sulfur capture technology at Ilo reduces SO₂ emissions
- Shut-down of La Oroya smelter in mid-2009; reduction expected

Carn, S.A., N.A. Krotkov, A.J. Krueger, K. Yang, P.F. Levelt, "Sulfur dioxide emissions from Peruvian copper smelters detected by the OMI", GRL, 2007.

Volcanic SO₂ emissions inventories are inaccurate

- OMI measurements indicate deficiencies in current 'bottom up' volcanic SO₂ emission inventories used in CTMs

REMOTE model simulation of annual mean SO₂ columns over Indonesia
[Pfeffer et al., ACP, 2006]

Identification of global volcanic SO₂ sources

- SO₂ index defined using OMI ozone algorithm residuals (sensitive to SO₂)
- Rank top 1000 values of SO₂ index on each day (lat 65°S – 80°N)
- Locate active volcanoes within 50 km radius of these OMI pixels (using modified Smithsonian Global Volcanism Program database)
- Record unique volcanic sources for each day
- Repeat for each day of OMI measurements (>3200 from Sep 2004 – Dec 2013)

Persistent volcanic SO₂ sources (2004-2013; ~3200 days)

Most persistent volcanic SO₂ sources in 2013

SO_2 emission rate estimation from satellite data

$$Q_{\text{meas}} = Q_{\text{init}} \tau t_c^{-1} [1 - \exp(-\tau^{-1} t_c)]$$

$$t_c = L v^{-1}$$

$$Q_{\text{meas}} = \left[\frac{v M}{L} \right]$$

$M = \text{SO}_2$ mass in pixel (kg)
 $v = \text{wind speed (m s}^{-1}\text{)}$
 $L = \text{length of plume (m)}$
 $Q = \text{SO}_2$ flux (kg s^{-1})

- Similar approach used to estimate smoke and NO_2 emissions from fires [*Ichoku and Kaufman, 2005; Mebust et al., 2011*]
- Note that asymmetry of OMI pixel affects plume detection
- Chemistry correction [*Mebust et al., 2011*] can be applied if SO_2 lifetime is known

[*Carn et al., Spec. Pub. Geol. Soc. Lon., 380, 2013*]

Estimated SO₂ fluxes (2004-2013; ~3200 days)

Validation with ground-based SO₂ measurements

- Good agreement with long-term, ground-based datasets

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/20/2006 17:00-18:41 UT

Mass: 135.133 kt; Area: 202457 km²; SO₂ max: 146.85 DU at lon: -64.79 lat: 15.72

~0.2 Tg SO₂

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/21/2006 17:40-19:25 UT

Mass: 195.725 kt; Area: 1400753 km²; SO₂ max: 32.71 DU at lon: -74.40 lat: 11.42

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/22/2006 16:48-20:08 UT

Mass: 188.536 kt; Area: 1880299 km²; SO₂ max: 23.66 DU at lon: -81.33 lat: 14.47

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/23/2006 17:27-20:51 UT

Mass: 171.187 kt; Area: 2410030 km²; SO₂ max: 19.89 DU at lon: -93.38 lat: 13.66

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/24/2006 16:33-21:35 UT

Mass: 159.341 kt; Area: 2532097 km²; SO₂ max: 20.18 DU at lon: -107.02 lat: 12.14

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/25/2006 14:03-22:18 UT

Mass: 168.052 kt; Area: 3126612 km²; SO₂ max: 18.41 DU at lon: -114.18 lat: 13.47

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/26/2006 16:19-23:02 UT

Mass: 146.936 kt; Area: 3468046 km²; SO₂ max: 12.14 DU at lon: -121.13 lat: 13.78

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/27/2006 20:21-23:45 UT

Mass: 110.209 kt; Area: 2575001 km²; SO₂ max: 8.59 DU at lon: -128.96 lat: 14.21

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/28/2006 00:22-22:50 UT

Mass: 108.896 kt; Area: 2279174 km²; SO₂ max: 8.11 DU at lon: -135.54 lat: 13.82

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/29/2006 01:07-23:33 UT

Mass: 98.493 kt; Area: 1701411 km²; SO₂ max: 6.22 DU at lon: -145.52 lat: 12.46

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/30/2006 00:11-22:37 UT

Mass: 107.076 kt; Area: 2034725 km²; SO₂ max: 6.74 DU at lon: -146.34 lat: 13.83

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/31/2006 00:54-23:21 UT

Mass: 96.573 kt; Area: 2063998 km²; SO₂ max: 6.10 DU at lon: -156.59 lat: 11.76

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/02/2006 00:00-24:00 UT

Mass: 92.692 kt; Area: 2247222 km²; SO₂ max: 5.54 DU at lon: -165.01 lat: 9.94

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/03/2006 00:41-04:04 UT

Mass: 82.835 kt; Area: 2209377 km²; SO₂ max: 3.85 DU at lon: -175.63 lat: 9.17

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/04/2006 01:25-06:23 UT

Mass: 79.103 kt; Area: 2352265 km²; SO₂ max: 3.01 DU at lon: 155.20 lat: 11.69

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/05/2006 02:08-07:05 UT

Mass: 71.854 kt; Area: 2170677 km²; SO₂ max: 2.94 DU at lon: 151.98 lat: 8.57

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/06/2006 02:50-07:53 UT

Mass: 54.517 kt; Area: 19864.10 km²; SO₂ max: 2.67 DU at lon: 138.03 lat: 5.65

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

[Carn et al., 2007; Prata et al., 2007]

Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/07/2006 03:34-08:34 UT

Mass: 45.728 kt; Area: 1734106 km²; SO₂ max: 2.12 DU at lon: 126.13 lat: 4.70

Contact: Simon Carn (scarn@umbc.edu)

NASA/KNMI/NIVR/FMI

No volcanic SO₂ cloud of similar size tracked for more than 7 days by TOMS

New insights into volcanic SO₂ plume dispersion

20080812

Kasatochi eruption, Aug 2008

- New constraints on SO₂ lifetime in UTLS
- Improve sulfur chemistry scheme in CTMs

[Krotkov et al., JGR, 2010;
Wang et al., ACP, 2013]

CALIPSO first light – 7 June 2006

A-Train data for February 2014 Kelut eruption

A-Train data for February 2014 Kelut eruption

Kristiansen et al., GRL, in prep.

Direct retrieval of SO₂ altitude from UV radiances

- SO₂ altitude directly retrieved from hyperspectral UV radiances
- Validate with CALIPSO, MLS
- Critical for climate impact, aviation hazards and CTM source term

- SO₂ altitude retrievals for 2008 Kasatochi eruption

[Yang et al., JGR, 2010]

UV satellite volcanic SO₂ inventory (1978 – 2014)

333 eruptions; 94 Tg total SO₂; mean 0.28 Tg; $1\sigma = 1.3$ Tg

~6 eruptions/yr (1979-2004); ~19 eruptions/yr (2004-2014)

Aqua/AIRS
Suomi NPP/OMPS
Aura/OMI

Stratospheric AOD and the global warming ‘hiatus’

Increase in tropical stratospheric AOD since 2000

- Eruptions filtered using Volcanic Explosivity Index (VEI)
- VEI not a good proxy for climate impact (i.e., SO_2 emissions)
- VEI no longer needed -> use satellite observations

— Ulawun (UI)	— Tavurvur (Ta)	— Merapi (Me)
- - - Shiveluch (Sh)	— Jebel at Jair (Jb)	— Nabro (Na)
— Ruang (Ru)	- - - Chaitén (Ch)	— Observed SAOD
— Reventador (Ra)	- - - Okmok (Ok)	— CERES net clear-sky SW (raw)
— Anatahan (At)	- - - Kasatochi (Ka)	— CERES net clear-sky SW (filtered)
— Manam (Ma)	- - - Sarychev (Sa)	— RSS TLT (ENSO out)
— Sierra Negra (Si)	- - - Eyjafjallajökull (Ey)	— RSS TLT (ENSO out, filtered)
— Soufrière Hills (So)		

Volcanic SO₂ and stratospheric aerosol since 2002

OMI SO₂ validation - Okmok (Aleutian Is) eruption

Aura/OMI - 07/17/2008 00:00-24:00 UT

SO₂ mass: 67.350 kt; Area: 968738 km²; SO₂ max: 23.27 DU at lon: -143.54 lat: 40.71 ; 22:19UTC

Spinei et al., JGR [2010]

MFDOAS-OMI comparison

Extreme SO₂ columns in volcanic clouds

- SO₂ in fresh eruption clouds – highest trace gas columns measured
- Challenge to validate extreme SO₂ column amounts – UAVs, balloons?
- More volc. SO₂ validation needed in general
- Complex radiative transfer (ash, hydrometeors)

Current Bardabunga/Holuhraun eruption (Iceland)

Aura/OMI - 09/05/2014 13:11-13:16 UT - Orbit 53943

SO₂ mass: 19.60 kt; Area: 287562 km²; SO₂ max: 35.04 DU at lon: -13.15 lat: 59.12 ; 13:13UTC

Aura/OMI - 09/16/2014 12:55-12:57 UT - Orbit 54103

SO₂ mass: 0.24 kt; Area: 13502 km²; SO₂ max: 2.05 DU at lon: -14.81 lat: 65.57 ; 12:56UTC

Request from Icelandic Meteorological Office: '*We are getting very nice OMI images of the SO₂ rich eruption cloud from the Holuhraun eruption. Could you help us to set up a way of turning the OMI observations into daily SO₂ mass and daily SO₂ emission rates? It's possible this eruption will last weeks or months and so we need such a technique to be automated and fast.'*

OMI SO₂ data used in: U.S., Mexico, Guatemala, El Salvador, Costa Rica, Montserrat, Ecuador, Colombia, Peru, Chile, New Zealand, Vanuatu, Indonesia, Papua New Guinea, Philippines, DR Congo, Ethiopia, Russia, France

Summary

- Science contributions and applications of Aura/OMI SO₂
 - Identification of new volcanic and anthropogenic SO₂ sources
 - Updated volcanic SO₂ emissions inventory
 - Effect of small volcanic eruptions on climate
 - Radiative forcing of volcanic sulfate aerosol
 - Volcanic aerosol enhancement of lightning activity
 - Cloud seeding by volcanic aerosol downwind of volcanoes
 - Lifetime of SO₂ in upper troposphere and lower stratosphere
 - Sulfur gas scavenging in eruption columns
 - Improving sulfur chemistry in CTMs
 - Volcanic plume tracking for aviation hazard mitigation
 - Detection of eruptions in remote regions
- Future developments in satellite SO₂ observations
 - Improved spatial resolution (e.g., TROPOMI) -> better monitoring capability
 - Direct assimilation of volcanic SO₂ observations into CTMs

Thanks to:
the Aura Science and OMI SIPS Teams
NASA for support from the Aura Validation program, Aura Science Team,
ACMAP program, MEaSUREs program

Ambrym volcano (Vanuatu) – one of the strongest SO₂ sources on Earth

Aura (2004-)

OMI - SO₂, NO₂, BrO

TES - SO₂

MLS - strat. SO₂, HCl

CloudSat (2006-)

CPR (radar) –
precipitation,
hydrometeors

Aqua (2002-)

MODIS - SO₂, ash, sulfate

AIRS - UTLS SO₂, ash

2008

MLS
HCl

MLS
 SO_2

OMI
 SO_2

