Europäisches Patentamt

European Patent Office

Office européen des brevets

(1) Publication number: 0 450 965 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91302994.8

(51) Int. CI.5: G03C 7/392

2 Date of filing: 04.04.91

(30) Priority: 06.04.90 JP 92715/90

43 Date of publication of application: 09.10.91 Bulletin 91/41

Designated Contracting States:
 DE FR GB

Applicant: KONICA CORPORATION 26-2, Nishishinjuku 1-chome, Shinjuku-ku Tokyo 160 (JP) (72) Inventor: Nagaoka, Yoko, c/o KONICA CORPORATION
No. 1, Sakura-machi
Hino-shi, Tokyo 191 (JP)
Inventor: Hirabayashi, Shigeto, c/o KONICA CORPORATION
No. 1, Sakura-machi
Hino-shi, Tokyo 191 (JP)

(74) Representative: Ellis-Jones, Patrick George Armine et al J.A. KEMP & CO. 14 South Square Gray's Inn London WC1R 5LX (GB)

- (54) Silver halide color photographic materials.
- The improved silver halide color photographic material having as photographic constituent layers a blue-sensitive, a green-sensitive and a red-sensitive silver halide emulsion layer, as well as at least one non-light-sensitive hydrophilic colloidal layer on a support is characterized in that at least one of said photographic constituent layers contains at least one of the compounds reprecented by the following formula:

(where R_1 is a hydrogen atom or a monovaluent substituent; and R_2 is a group having a Hammett's value σ_p of at least 0.2). This color photographic material is satisfactorily protected against deterioration in photographic performance such as reduced color or gamma, color contamination or increased fog even if it is exposed to formaldehyde and other deleterious gases for a long time of storage before it is subjected to color development and subsequent photographic processing.

BACKGROUND OF THE INVENTION

This invention rerates to silver halide color photographic materials, more particularly to silver halide color photographic materials that are protected against deterioration in photographic performance during storage that would otherwise occur on account of deleterious substances such as formaldehyde.

With a view to prevention the deterioration of photographic performance due to the reaction between photographic additives such as couplers and formaldehyde, it has been proposed to use compounds that react with formaldehyde to render it hamless (these compounds are hereinafter sometimes referred to as "aldehyde scavengers"). Examples of such compounds are described in U.S. Patent Nos. 2,309,492, 2,895,827, JP-B-51-23908 (the term "JP-B" as used hereunder means an "examined Japanese patent publication"), JP-B-46-34675, JP-B-63-32378, JP-A-59-19945 (the term "JP-A" as used hereunder means an "unexamined published Japanese patent application"), JP-A-48-39029, JP-A-57-133450, JP-A-58-150950, U.S. Patent Nos. 4,411,987, 3,811,891, 4,003,748, 4,414,309, and Research Disclosure, Vol. 101, No. 10133. However, the ability of these compounds to trap aldehyde gases is insufficient to guarantee that the deterioration in photographic performance which plagues silver halide color light-sensitive materials in commercial use today can be prevented in a satisfactory way merely by adding those compounds.

Further, if aldehyde scavengers are used in large amounts, the film characteristics of light-sensitive materials will deteriorate as typically evidenced by photographic coatings becoming vulnenerable. Since excessive use of aldehyde scavengers also causeadverse effects on the photographic performance of light-sensitive materials, there has been as inherent limit on the amount in which they can be added.

In recent years, various magenta couplers that have low reactivity, and hence high resistance, to deleterious gases such as formaldehyde have been reported. Indeed, two-equivalent couplers of the types described in U.S. Patent Nos. 3,214,437, 3,253,924, 3,311,476, 3,419,391, 3,617,291, 3,926,631, 3,522,052, 3,227,554, and JP-A-56-126833 are far less sensitive to formaldehyde and other deleterious gases than four-equivalent couplers but they are by no means completely immune to the effects of those gases. Thus, even if couplers that are highly resistant to deleterious gases such as formaldehyde are used, a need still exists to use aldehyde scavengers.

SUMMARY OF THE INVENTION

15

20

25

30

35

40

45

55

The present invention has been achieved under these circumstances and has as an object providing a silver halide color photographic material that will not experience any deterioration in its photographic performance such as reduced color density or gamma, color contamination or increased fog even if it is exposed to formal-dehyde and other deleterious gases for a long time of storage before it is subjected to color development and subsequent photographic processing.

The present inventors conducted intensive studies in order to attain this object. As a result, it was found that said object could be achieved by a silver halide color photographic material comprising: a support and provided thereon a photographic constituent layer unit having a blue-sensitive silver halide emulsion layer, a green-sensitive silver halide emulsion layer, a red-sensitive silver halide emulsion layer, and a non-light-sensitive hydrophilic colloidal layer, wherein one of said layers contains a compound represented by the following formula (I):

$$\begin{array}{c|c}
 & R_2 \\
 & R_1
\end{array}$$

(where R_1 is a hydrogen atom or a monovalent substituent; and R_2 is a group having a Hammett's value σ_p of at least 0.2).

DETAILED DESCRIPTION OF THE INVENTION

Examples of the substituent represented by R_1 in the general formula (I) include an alkyl group, an aryl group, a cycloalkyl group, an acyl group, a carbamoyl group, a sulfamoyl group, and an alkoxycarbonyl group. These groups may gave substituents such as carboxyl, sulfo, hydroxyl and amino groups.

The substituent represented by R_2 has a Hammett's value σ_p of at least 0.2. The Hammett's value σ_p of

the substituent represented by R_2 is preferably 0.2 - 1.0, more preferably 0.3 - 0.7. If the Hammett's value σ_p of R_2 is lower than 0.2, the compound (I) will enter into a coupling reaction with quinonedimine which is the oxidation product of a color developing agent and the consumption of quinonedimine in the light-sensitive material will lead to a lower color density. At the same time, the dye produced as a result of coupling between the compound (I) and quinonedimine will remain in the light-sensitive material to cause color contamination or staining. Furthermore, if the dye dissolves out into the color developing solution, its accumulation can cause staining, particularly in a processing line that is adapted for low pollution by using reduced amounts of replenishers.

If, on the other hand, the Hammett's value σ_p of R_2 is extremely higher than 1.0, it is not highly reactive with quinonediimine and the color density is low enough to cause little effect on the photographic performance of the light-sensitive material. However, the reactivity of R_2 with deleterious substances substances such as formaldehyde is also low and is not capable of achieving the object of the present invention in an effective way.

It was quite surprising that 5-pyrazolone compounds that had low reactivity with quinonediimine and which yet possessed reactivity with formaldehyde and other deleterious substances could be obtained by adjusting the Hammett's value $\sigma_{\rm p}$ of the substituent in 3-position to a level not smaller than 0.2.

Examples of the substituent represented by R_2 which has a Hammett's value σ_p of at least 0.2 include cyano, carbamoyl, carboxyl, alkoxycarbonyl, acyl, haloalkyl, nitro, sulfamoyl and alkylsulfonyl groups.

The following are specific, but non-limiting, examples of the compound represented by the general formula (i):

(the remaining space is left to blank)

55

45

10

15

20

(9)

(10)

10 (11)

(12)

20 (13)

25

(14)

(15)

(16)

35 (17)

(18)

45 (19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

³⁵ (27)

25

30

(28)

(29)

(30)

(31)

(32)

-COOC2H5

(33)

(34)

SO2NH2

(35) 25

20

(36)

(37)

(38)

50

(39) (40) COCCI 3 5 10 (42) (41) 15 cOCH₂ 20 K€OŻ H_c02 (44) 25 (43) -COCH3 30 HcO2 SO₂H 35 (46) (45) COOH HO₂S HO₂S HeO2 45 (48) (47) 50 COOC2H5 SO2NH2 HO2S

`SO2H

He02

·COCH3

Ċ00H

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

15

20

25

35

50

55

Many of the compounds represented by the general formula (I) are commercially available and, if necessary, they can be easily synthesized in accordance with the methods described in JP-A-51-77327, 62-273527 and British Patent No. 585,780.

The aldehyde acavengers to be used in the present invention are preferably incorporated in a layer that contains a magenta coupler and/or in an overlying photographic constituent layer of the silver halide color photographic material. It is effective and most preferred for the scavengers to be incorporated in the layer that is the remotest from the support, for example, in a protective layer.

The aldehyde scavengers may be used either singly or in combination with themselves or with other aldehyde scavengers than the compounds (i).

The term "photographic constituent layer unit" as used herein includes not only light-sensitive silver halide emulsion layers that are optically or chemically sensitized but also other layers that comprise a light-sensitive material and that have no light sensitivity such as intermediate layers, uv absorbing layers, yellow filter layers, protective layers and any other auxiliary layers.

In order to add and incorporate the aldehyde scavengers, or compounds (I), in the photographic layers, they may be dissolved in respective coating solutions with the aid of suitable solvents such as water and methanol. The aldehyde scavengers may be added at any stage of the process of manufacture. The aldehyde scavengers are desirably added just before application of coating solutions if they are to be incorporated in silver halide emulsion layers.

The aldehyde scavengers are preferably added in amounts of 0.01 - 5.0 g per square meter of the color photographic material and the most preferred results can be attained by adding them in amounts of 0.1 - 2.0 g.

The silver halide emulsion to be used in the present invention may incorporate any types of silver halides such as silver bromide, silver iodobromide, silver iodochloride, silver chlorobromide and silver chloride that are commonly employed in silver halide emulsions.

The silver halide grains to be used in silver halide emulsions may have a homogeneous silver halide composition in their interior, or they may have a core/shell structure in which the interior of grains has a different silver halide composition than the surface layers. The silver halide grains may be of a type that forms a latent image predominantly on the surface or of a type that forms a latent image predominantly in the interior.

The silver halide emulsions may have any grain size distribution. Emulsions having a broad grain size distribution (called "polydispersed emulsions") may be used or, alternatively, emulsions having a narrow grain size distribution (named "monodispersed emulsions") may be used either singly or as admixtures. If desired, a polydispersed emulsion may be used in combination with a monodispersed emulsion.

Separately prepared two or more silver halide emulsions may be used as admixtures.

The emulsions may be chemically sensitized in the usual manner or they may be optically sensitized with spectral sensitizers to have sensitivity in a desired wavelength region.

Antifoggants, stabilizers and other additives may be added to silver halide emulsions. Gelatin is advantageously used as a binder for the emulsions.

Emulsion layers and other hydrophilic colloidal layers can be hardened. If desired, plasticizers or dispersions (latices) of water-insoluble or slightly water-soluble synthetic polymers may be incorporated in those layers.

Couplers are used in the emulsion layers of the color photographic material of the present invention. Further, competitive couplers that are capable of color correction, as well as compounds that couple with the oxidation product of developing agents to release photographically useful fragments such as a development accelerator, a bleach accelerator, a developing agent, a silver halide solvent, a toning agent, a hardener, a fog-

gant, an antifoggant, a chemical sensitizer, a spectral sensitizer and a desensitizer may be employed.

Known acylacetanilide compounds are preferably used as yellow-dye forming couplers and among them benzoylacetanilide and pivaloylacetanilide compounds are particularly advantageous.

Compounds that can be used as magenta-dye forming couplers include 5-pyrazolone, pyrazoloazole, pyrazolobenzimidazole, open-chain acylacetonitrile and indexole compounds. Particularly significant results are attained in the present invention by using four-equivalent 5-pyrazolone compounds.

Phenolic or naphtholic compounds are generally used as cyan-dye forming couplers.

The light-sensitive material of the present invention may be provided with auxiliary layers such as a filter layer, an anti-halo layer and an anti-irradiation layer. Dyes that dissolve out of the light-sensitive material during development or that are bleached may be incorporated in those auxiliary layers and/or emulsion layers.

The light-sensitive material of the present invention may also contain a matting agent, a lubricant, an image stabilizer, a uv absorber, an optical brightening agent, a surfactant, a development accelerator, a development retarder or a bleach accelerator.

Supports that can be used in the present invention include polyethylene-laminated paper, a polyethylene terephthalate film, baryta paper, triacetyl cellulose, etc

In order to produce dye image, the color photographic material of the present invention is first exposed imagewise and then subjected to known procedures of color photographic processing.

The following examples are provided for the purpose of further illustrating the present invention but are in no way to be taken as limiting. In these examples, the amounts of all components in the prepared samples of silver halide photographic material are in grams per square meter unless otherwise noted. The amounts of silver halide and colloidal silver are calculated for silver, and the amounts of spectral sensitizers are in moles per mole of silver.

Example 1

10

15

25

Layers having the compositions set forth below were coated onto a triacetyl cellulose film base, with the first layer being formed the closest to the base, whereby a sample of multi-layered color photographic material (Sample 1) was prepared.

30	First layer: Anti-halo layer (HC)	
	Black colloidal silver	0.15
35	UV absorber (UV-1)	0.20
	Colored cyan coupler (CC-1)	0.02
	High-boiling solvent (0il-1)	0.20
40	High-boiling solvent (011-2)	0.20
	Gelatin	1.6
45	Second layer: Intermediate layer (IL-2)	
	Gelatin	1.3

55

	Third layer: Less red-sensitive emulsion layer	er (R-	L)
	Silver iodobromide emulsion (Em-1)		0.4
5	Silver iodobromide emulsion (Em-2)		0.3
	Spectral sensitizer (S-1)	3.2 x	10-4
10	Spectral sensitizer (S-2)	3.2 X	10-4
	Spectral sensitizer (S-3)	0.2 x	10-4
15	Cyan coupler (C-1)		0.50
	Cyan coupler (C-2)		0.13
	Colored cyan coupler (CC-1)		0.07
20	Dir compound (D-1)		0.006
	DIR compound (D-2)		0.01
25	High-boiling solvent (011-1)		0.55
	Gelatin		1.0
	Fourth layer: Highly red-sensitive emulsion	layer	(R-H)
30	Fourth layer: Highly red-sensitive emulsion Silver iodobromide emulsion (Em-3)	layer	(R-H)
30			
<i>30</i>	Silver iodobromide emulsion (Em-3)	1.7	0.9
	Silver iodobromide emulsion (Em-3) . Spectral sensitizer (S-1)	1.7	'0.9 x 10 ⁻⁴
	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2)	1.7	'0.9 x 10 ⁻² x 10 ⁻²
35	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2) Spectral sensitizer (S-3)	1.7	'0.9 x 10 ⁻² x 10 ⁻²
35	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2) Spectral sensitizer (S-3) Cyan coupler (C-2)	1.7	'0.9 x 10 ⁻² x 10 ⁻² x 10 ⁻² 0.23
35	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2) Spectral sensitizer (S-3) Cyan coupler (C-2) Colored cyan coupler (CC-1)	1.7	x 10 ⁻² x 10 ⁻² x 10 ⁻² 0.23 0.03
35	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2) Spectral sensitizer (S-3) Cyan coupler (C-2) Colored cyan coupler (CC-1) DIR compound (D-2)	1.7	'0.9 x 10 ⁻² x 10 ⁻² x 10 ⁻² 0.23 0.03 0.02
35	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2) Spectral sensitizer (S-3) Cyan coupler (C-2) Colored cyan coupler (CC-1) DIR compound (D-2) High-boiling solvent (Oil-1) Gelatin	1.7	'0.9 x 10 ⁻² x 10 ⁻² x 10 ⁻² 0.23 0.03 0.02 0.25
35 40 45	Silver iodobromide emulsion (Em-3) Spectral sensitizer (S-1) Spectral sensitizer (S-2) Spectral sensitizer (S-3) Cyan coupler (C-2) Colored cyan coupler (CC-1) DIR compound (D-2) High-boiling solvent (Oil-1)	1.7	'0.9 x 10 ⁻² x 10 ⁻² x 10 ⁻² 0.23 0.03 0.02 0.25

	Sixth layer: Less green-sensitive emulsion l	ayer (G-L)
	Silver iodobromide emulsion (Em-1)	0.6
5	Silver iodobromide emulsion (Em-2)	0.2
	Spectral sensitizer (S-4)	6.7×10^{-4}
10	Spectral sensitizer (S-5)	0.8×10^{-4}
	Magenta coupler (M-1)	0.60
15	Colored magenta coupler (CM-1)	0.10
	DIR compound (D-3)	0.02
	High-boiling solvent (011-2)	0.70
20	Gelatin	1.0
	Seventh layer: Highly green-sensitive emulsion	n layer (G-H)
25	Silver iodobromide emulsion (Em-3)	0.9
	Spectral sensitizer (S-6)	1.1 x 10 ⁻⁴
30	Spectral sensitizer (S-7)	2.0×10^{-4}
	Spectral sensitizer (S-8)	0.3×10^{-4}
35	Magenta coupler (M-1)	0.15
	Colored magenta coupler (CM-1)	0.04
	DIR compound (D-3)	0.004
40	High-boiling solvent (011-2)	0.35
	Gelatin	1.0
45	Eighth layer: Yellow filter layer (YC)	
	Yellow colloidal silver	0.1
50	Additive (SC-1)	0.12
	High-boiling solvent (011-2)	0.15
	Gelatin	1.0

	Ninth layer: Less blue-sensitive emulsion l	ayer (B-L)
	Silver iodobromide emulsion (Em-1)	0.25
5	Silver iodobromide emulsion (Em-2)	0.25
	Spectral sensitizer (S-9)	5.8×10^{-4}
10	Yellow coupler (Y-1)	0.60
	Yellow coupler (Y-2)	0.32
	DIR compound (D-1)	0.003
15	DIR compound (D-2)	0.006
	High-boiling solvent (0i1-2)	0.18
20	Gelatin	1.3
	March lane, Waller bland and dates and also	2 (D. II)
	Tenth layer: Highly blue-sensitive emulsion	
25	Silver iodobromide emulsion (Em-4)	0.5
	Spectral sensitizer (S-10)	3.0×10^{-4}
30	Spectral sensitizer (S-11)	1.2×10^{-4}
	Yellow coupler (Y-1)	0.18
	Yellow coupler (Y-2)	0.10
35	High-boiling solvent (0i1-2)	0.05
	Gelatin	1.0
40	Eleventh layer: First protective layer (PRO-	1)
	Silver iodobromide emulsion (Em-5)	0.3
45	UV absorber (UV-1)	0.07
70	UV absorber (UV-2)	0.1
	High-boiling solvent (011-1)	0.07
50	High-boiling solvent (0i1-3)	0.07
	Gelatin	0.8

	Twelf	th layer: Second prote	ective layer (PRO-2)	
	1	Alkali-soluble matting	agent (average parti-	
5		cle size, 2 µm)		0.13
	3	Polymethyl methacrylat	e (average particle	
40	1	size, 3 m)		0.02
10	(Gelatin		0.5
15	and dyes (A The em	I-1) and (AI-2) were added as approp	coating aid (SU-2), a dispersion aid (SU-1 oriate to the respective layers. Ilowing characteristics. Each of them wa	
20	Em-1:	average AgI content,	7.5 mol%	
		average grain size,	0.55 µm	
		grain shape,	octahedral	
25	Em-2:	average AgI content,	2.5 mol%	
		average grain size,	0.36 µm	
30		grain shape,	octahedral	
-	Em-3:	average AgI content.	8.0 mol%	
35		average grain size,	0.84 vm	
33		grain shape,	octahedral	
	Em-4:	average AgI content,	8.5 mol%	
40		average grain size,	1.02 µm	
			octahedral	
45	Em-5:	average AgI content,		
~		average grain size,		
		(The re	emaining space is left t	o blank)
50		•		

C-1

$$\begin{array}{c|c}
C_5H_{11}(1) & OH \\
OCHCONH & NHCONH \\
C_4H_9
\end{array}$$

C-2

M-1

$$\begin{array}{c|c}
C_5H_{11}(t) \\
C_7 & \text{NHCOCH}_20 \\
C_7 & \text{C}_7
\end{array}$$

Y-1

Y-2

$$C M-1$$

$$CH_{3}O \longrightarrow N=N \longrightarrow NHCO \longrightarrow NHCOCH_{2}O \longrightarrow C_{5}H_{11}(t)$$

$$CI \longrightarrow CI \longrightarrow CI$$

$$CI \longrightarrow CI$$

D-2

15 D-3

v∨-1

40 UV-2

50

S-1

5
$$C_2H_5$$
 C_2H_5 C_1 C_2H_5 C_2H_5 C_1 C_2H_5 C_1 C_2H_5 C_2H_5 C_1 C_2H_5 C_2H_5 C_1 C_2H_5 C_1 C_2H_5 C_2H_5 C_1 C_2H_5 C_2H_5 C_1 C_2 C_2 C_1 C_2 C_2 C_1 C_2 C_2 C_1 C_2 C_2 C_2 C_1 C_2 $C_$

S-2

S-3

35 S-4·

$$\begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \\ C_{2}H_{5} \\ C_{3}H_{5} \\ C_{2}H_{5} \\ C_{3}H_{5} \\ C_{3}H_{5} \\ C_{4}H_{5} \\ C_{2}H_{5} \\ C_{3}H_{5} \\ C_{4}H_{5} \\ C_{2}H_{5} \\ C_{3}H_{5} \\ C_{4}H_{5} \\ C_{2}H_{5} \\ C_{3}H_{5} \\ C_{4}H_{5} \\ C_{5}H_{5} \\ C_{5}H_{5}$$

50 S - 5 C_2H_5 $C_$

$$S - 6$$

$$C_{2}H_{5}$$

$$(CH_{2})_{3}SO_{3}^{6}$$

$$(CH_{2})_{3}SO_{3}HN(C_{2}H_{5})_{3}$$

$$S - 7$$

$$C_{2}H_{5}$$

$$(CH_{2})_{3}SO_{3}^{6}$$

$$(CH_{2})_{3}SO_{3}HN(C_{2}H_{5})_{3}$$

$$S - 8$$

$$C_{2}H_{5}$$

$$(CH_{2})_{3}SO_{3}HN(C_{2}H_{5})_{3}$$

$$S - 8$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{7}$$

55

50

(CH₂)₃\$0₃HN(C₂H₅)₃

S-11

A I - 1

10

A I - 2

35 S U - 1

S U → 2

55

0 i l - 1

0 i l-2

0il-3

H-1

Additional samples 2 - 24 were prepared in the same manner as in sample 1 in Example 1 except that aldehyde scavengers (see Table 1 below) were added to the eleventh layer (PRO-1) each in an amount of 3 x 10⁻³ moles/m².

The samples thus prepared were exposed through an optical wedge in the usual manner and subjected to the following treatments.

Treatment 1

5

10

15

20

25

30

35

40

50

55

A 35% aqueous solution of glycerin (300 cc) was charge into a gas-tight container and each of the sample was held in air equilibrated with glycerin in the container at 30°C for 3 days.

Treatment 2

A 35% aqueous solution of glycerin (300 cc) containing 6 cc of a 35% aqueous formaldehyde solution was

charged into a gastight container and each of the samples was held in air equilibrated with glycerin + formal-dehyde in the container at 30°C for 3 days.

The samples subjected to treatment 1 or 2 were then processed for color photography in accordance with the scheme shown below.

Processing scheme (38°C)

5

	Color development	3 min and 15 sec
	Bleaching	4 min and 20 sec
10	Fixing	6 min and 30 sec
	Washing	3 min and 15 sec
	Stabilizing	1 min and 30 sec
	Davina	

The developing, bleaching, fixing and stabilizing solutions were prepared according to the following formulas.

Color developing solution

20	4-Amino-3-methyl-N-ethyl-N-(8-hydr	оху-		
	ethyl)aniline sulfate		4.75	g
	Anhydrous sodium sulfite		4.25	g
25	Hydroxylamine hemisulfate		2.0	g
	Anhydrous potassium carbonate		37.5	g
30	Potassium iodide		1.9	mg
	Sodium bromide		1.3	g
	Nitrilotriacetic acid trisodium sa	lt		
35	(monohydrate)		2.5	g
	Potassium hydroxide		1.0	g
40	Water	to make	1,000	ml
40	рН	adjusted	to 10.	02

45 Bleaching solution

	Ethylenediaminetetraacetic acid iron (III)		
	ammonium salt	100.0	g
50	Ethylenediaminetetraacetic acid diammonium		
	salt	10.0	g

	Ammonium bromide	150.0 g
	Glacial acetic acid	10.0 g
5	Water	to make 1,000 ml
	pH adjusted to 6.0	with aqueous ammonia
10	Fixing solution	
	Ammonium thiosulfate	175.0 g
15	Anhydrous sodium saulfite	8.6 g
	Sodium metasulfite	2.3 g
	water	to make 1,000 ml
20	pH adjusted to	6.0 with acetic acid
	Stabilizing solution	
25	Formaldehyde (37% aq. sol.)	1.5 ml
	Konidax (Konica Corp.)	7.5 ml
30	Water	to make 1,000 ml

After the processing for color photography, all samples were measured for a maximum density of magenta color with an optical densitometer PDA-65 (Konica Corp.) using green light, and the change in the maximum density area of magenta color due to exposure to formaldehyde gas was determined on the basis of the results with treatments 1 and 2. The maximum density of magenta color was calculated by subtracting the green density of the unexposed area from the maximum density of green image. The results of measurements and the σ_p values of R_2 in the compounds used are shown in Table 1 below.

Table 1

5	Sam	Aldehyde	scavenger	Maximum	density	Percent	Remarks
	ple			of mage	nta color	change	
10	No.	Compound	u u	Treat-	Treat-		
70				ment 1	ment 2		
	1			2.40	0.89	37	Compa-
15	2	HS-1		2.42	1.45	60	rison
	3	HS-2	-0.84	2.13	1.92	90	
	4	HS-3	-0.20	2.22	1.87	84	
20	5	(1)	0.54	2.42	2.27	94	
	6	(3)	0.50	2.41	2.24	93	
25	7	(4)	0.41	2.40	2.21	92	
	8	(5)	0.36	2.38	2.17	91	
	9	(7)	0.66	2.40	2.16	. 90	Inven-
30	10	(8)	0.45	2.42	2.27	94	tion
	11	(12)	0.93	2.40	2.04	85	
	12	(15)	0.36	2.35	2.16	92	
35	13	(18)	0.50	2.41	2.22	92	
	14	(19)	0.45	2.42	2.20	91	

Table 1 (Cont.)

5	Sam	Aldehyde	scavenger	Maximum	density	Percent	Remarks
	ple			of mage	nta color	change	
	No.	Compound	Q p	Treat-	Treat-		
10				ment 1	ment 2		
	15	(22)	0.54	2.43	2.24	92	
	16	(23)	0.45	2.42	2.23	92	
15	17	(25)	0.54	2.42	2.20	91	
	18	(29)	0.36	2.39	2.15	90	
20	19	(33)	0.68	2.39	2.10	88	Inven-
	20	(34)	0.62	2.40	2.16	90	tion
	21	(48)	0.45	2.42	2.23	92	
25	22	(49)	0.50	2.41	2.22	92	
	23	(54)	0.36	2.37	2.13	90	
	24	(55)	0.54	2.41	2.22	92	
30		•	<u> </u>	·	<u> </u>		

HS-1 (Comparative aldehyde scavenger):

35

HS-2 (Comparative aldehyde scavenger):

45

50

HS-3 (Comparative aidehyde scavenger):

As is clear from Table 1, sample 2 which used HS-1 as a comparative aldehyde scavenger experienced a marked drop in the maximum density of magenta color as a result of treatment 2. Further, samples 3 and 4 which used HS-2 and HS-3 in which the substituents R_2 had Hammett's values σ_p of less than 0.2 already exhibited low maximum densities of magenta color in treatment 1, indicating the adverse effects of HS-2 and HS-3 on color formation. In contrast, the compounds of the present invention used in samples 5 - 24 were in no way deleterious to color formation and these samples experienced only a small decrease in the maximum density of magenta color as a result of treatment 2. It should also be mentioned that samples 5 - 24 the present invention experienced no deterioration in photographic performance such as lower gamma, color contamination or increased fog.

Example 2

20

5

10

25

30

Additional samples were prepared as in Example 1 except that magenta coupler M-1 used in the sixth and seventh layers was replaced by M-2 or M-3 identified below. When those samples were subjected to the same tests as in Example 1, the effectiveness of the present invention was verified.

The silver halide color photographic material of the present invention will not experience any deterioration in its photographic performance such as reduced color density or gamma, color contamination or increased fog even if it is exposed to formaldehyde and other deleterious gases for a long time of storage before it is subjected to color development and subsequent photographic processing.

Claims

55

1. A silver halide color photographic material comprising: a support and provided thereon a photographic constituent layer unit having a blue-sensitive silver halide emulsion layer, a green-sensitive silver halide emulsion layer, and a non-light-sensitive hydrophilic colloidal layer, wherein one of said layers contains a compound represented by the following formula (I):

$$\begin{array}{c|c}
 & R_2 \\
 & N \\
 & R_1
\end{array}$$

5

15

35

40

45

55

(where R_1 is a hydrogen atom or a monovalent substituent; and R_2 is a group having a Hammett's value σ_D of at least 0.2).

- 2. The photographic material of claim 1 wherein R2 is a group having a Hammett's value of 0.2 1.0.
- 3. The photographic material of claim 1 wherein R_2 is a group having a Hammett's value σ_p of 0.3 0.7.
- 4. The photographic material of claim 1 wherein R₂ is at least one member selected from among a cyano group, a carbamoyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a haloalkyl group, a nitro group, a sulfamoyl group and an alkylsulfonyl group.
- 5. The photographic material of claim 1 wherein said compound represented by the general formula (I) is incorporated in one of said layers containing a magenta coupler and/or in an overlying photographic constituent layer to said magenta coupler containing layer with respect to said support.
- 6. The photographic material of claim 1 wherein said compound represented by the general formula (i) is incorporated in the layer which is the remotest from the support.
 - 7. The photographic material of claim 1 wherein said compound represented by the general formula (I) is contained in an amount of 0.01 5.0 g per square meter of the photographic material.
- 30 8. The photographic material of claim 1 wherein said compound represented by the general formula (i) is contained in an amount of 0.1 2.0 g per square meter of the photographic material.
 - 9. The photographic material of claim 1 which contains a benzoylacetanilide or pivaloylacetanilide compound as a yellow dye forming coupler.
 - 10. The photographic material of claim 1 which contains a four equivalent 5-pyrazolone compound as a magenta dye forming coupler.

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 2994

		DERED TO BE RELEVAN		
Category	Citation of document with in of relevant pas		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL5)
r,ū	G8-A-2110832 (AGFA-GEVA	RT)		9 03C7/392
	* page 1, 11ne 61 - page	2, 1ine 45 *	,	
1	* page 5, lines 22 - 23			
	* page 5, lines 34 - 41		1	
	* page 6, lines 26 - 55		1-10	1
		<u> </u>	1	
',D	US-A-2459226 (KENDALL E	T AL.)]	
	* column 4, Tines 15 -	20 *		
	* column 4, line 69 - c	olumn 5, line 9 *	1-10	
,	PATENT ABSTRACTS OF JAPA	AN .	1-10	
	vol. 12, no. 102 (P-684		1 10	į
		(IPOKU) 16 October 1987,	1	1
		Trund) 16 October 1987,		1
	* the whole document *		1	1
			1	
			[
				1
			1	
				TECTORCAL EIELDS
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)
				GD3C
-				
	}		- }	
			İ	1
			1	<u> </u>
				1
	Ī		1	
]			ł
	1			
	1			
	1			
	1		1	
)		ľ	
	1		1	1
	1			
	<u> </u>		_	
	The present search report has h	een drawn up for all claims		
		Date of completion of the search		Exeminer
	Place of search			
	Place of search THE HAGUE	19 JUNE 1991	MA	BRIZOS S.
		NTS T: theory or prin	ciple underlying th	ne invention
	THE HAGUE CATEGORY OF CITED DOCUME	NTS T: theory or prin E: earlier patent	ciple underlying the document, but pu	ne invention
Y: p2	THE HAGUE CATEGORY OF CITED DOCUME. Indicately relevant if taken alone uniquely relevant if combined with an	NTS T: theory or print E: earlier patent after the fills other D: document cit	ciple underlying the document, but put gate ed in the application	ne invention blished on, or
Y:pa	THE HAGUE CATEGORY OF CITED DOCUME urdicularly relevant if taken alone	NTS T: theory or print E: earlier palent after the fills other D: document cite 1: document cite	ciple underlying the document, but puring date and in the application for other reason	ne invention blished on, or

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

