Identifying Depression with Machine Learning

Ivan Lovrenčić

University of Zagreb, Faculty of Electrical Engineering and Computing

ivan.lovrencic@fer.hr

Identifying Depression on Twitter(2016)

Authors: M. Nadeem, M. Horn, G. Coppersmith, et al.

Overview

- Motivation
- 2 Background
- Machine Learning
- Dataset & Model
- Results
- 6 Conclusion

Motivation

- More people than ever being diagnosed with a mental disorder
- Increase of young people with MDD (major depressive disorder)
- Mental disorders (specifically, depression) detection has not changed for nearly 50 years
- Early depression detection through user's posts on Twitter

Ivan Lovrenčić (FER) Seminar

Background

- Rich bodies of work on depression have been performed within the psychiatry, psychology, medicine, and sociolinguistic fields
- Shallow ML algorithms + text features
- More recent approaches involve deep learning and topic modeling
- Goal: To detect and predict Major Depressive Disorder (MDD) and other mental illnesses

Decision tree

Pros

- Clarity and interpretable nature
- ② Don't demand a lot of data preparation
- Not computationally costly

Cons

- Easy to overfit
- Don't perform adequately on more complicated tasks

Figure: An example of simple decision tree

Logistic regression vs Linear regression

Logistic regression

- Generalized linear model
- Sigmoid function
- Probabilistic output
- Logistic loss
- Iterative optimization

Linear regression

- Generalized linear model
- Identity function
- No probabilistic output
- Quadratic loss
- Closed-form solution

Logistic regression vs Linear regression

Figure: Logistic regression (red line) vs Linear regression (green line)

Logistic regression vs Linear regression

Figure: Comparison of different loss functions

- Maximum margin hyperplane
- Generalization power
- Dual vs primary formulation
- Hard margin vs soft margin
- Hinge loss function

Figure: L3 model has maximum margin hyperplane

Dual vs primary formulation

$$h(x) = w^T x + w_0 = \text{primary formulation}$$

 $h(x) = \sum_{i=1}^{N} \alpha_i y^i \mathbf{x}^T \mathbf{x}^i + w_0 = \text{dual formulation}$

Ivan Lovrenčić (FER) Seminar 11/27

Figure: Difference between hard-margin (left) and soft-margin (right) model.

Ivan Lovrenčić (FER) Seminar 12 / 27

Figure: Hinge loss vs logistic loss function

Ivan Lovrenčić (FER) Seminar 13/27

Naive Bayes

- Generative probabilistic model
- Bayes theorem
- Probabilistic output
- Parameter estimation MLE or MAP

Figure: Discriminative vs Generative model

Naive Bayes

Theorem (Bayes theorem)

$$P(y|x) = \frac{p(x|y)*P(y)}{P(x)}$$

- P(y|x) the probability of label y for an example x (a posteriori)
- P(y) the probability of label y (a priori)
- P(x) the probability distribution of the examples
- P(x|y) the probability of example x if there is a label y (likelihood)

Ivan Lovrenčić (FER) Seminar 15 / 27

Naive Bayes

Figure: Binary classification with normal distributions for class likelihood

Ivan Lovrenčić (FER) Seminar 16/27

Dataset

CLPsych 2015 Twitter dataset				
Mental condition	Number of users Number of twee			
No condition	574	1,253,594		
Depression	426	742,560		
Total	1000	2,000,000		

Table: Distribution of the CLPsych 2015 dataset

Dataset

Reddit Self-Reported Depression Diagnosis (RSDD) dataset				
Data split	Number of users Number of pos			
Train	486	295,509		
Validation	206	118,937		
Test	200	117,899		
Total	892	532,345		

Table: Distribution of the RSDD dataset based on data split

Reddit Self-Reported Depression Diagnosis (RSDD) dataset				
Mental condition	Number of users Number of pos			
No condition	755	450864		
Depression	137	81761		
Total	892	532,345		

Table: Distribution of the RSDD dataset based on mental condition

Dataset

Figure: Most common words among depressive users in Twitter dataset

Figure: Most common words among depressive users in Reddit dataset

Model

- Five binary classifiers (shallow ML algorithm + bag-of-words/tf-idf)
- Sckit-learn libraries + Python3
- RSDD dataset

Ivan Lovrenčić (FER) Seminar 20 / 27

Results

The Johns Hopkins paper results				
Algorithm	Precision	Recall	F1-score	Accuracy
Decision Trees	0.67	0.68	0.75	0.67
LinearSVC	0.83	0.83	0.83	0.82
Naive Bayes	0.81	0.82	0.81	0.86
Logistic	0.86	0.82	0.84	0.82
Ridge Classifier	0.81	0.79	0.78	0.79

Table: The evaluation of the Johns Hopkins models

21 / 27

Ivan Lovrenčić (FER) Seminar

Results

The reimplementation results				
Algorithm	Precision	Recall	F1-score	Accuracy
Decision Trees	0.62	0.62	0.62	0.62
LinearSVC	0.60	0.59	0.58	0.59
Naive Bayes	0.69	0.68	0.68	0.68
Logistic	0.71	0.70	0.70	0.70
Ridge Classifier	0.67	0.67	0.67	0.67

Table: The evaluation of the reimplemented models

Conclusion

- Bag of words + shallow ML performs worse but still adequately on different text format and domain
- Add more task specific features
- Explore with deep learning

Ivan Lovrenčić (FER) Seminar 23 / 27

The End