Universidad Nacional Autónoma de Honduras Topología Ejercicios de Repaso para el Parcial I

Profesor: Dr. Fredy Vides

1 Dado un conjunto $X \neq \emptyset$. Probar que la función $d: X \times X \to \mathbb{R}$ definida por

$$d(x,y) = \begin{cases} 1, & x \neq y, \\ 0, & x = y. \end{cases}$$

Define una métrica en X. Probar que cada subconjunto del EM (X,d) resultante es abierto y cerrado a la vez.

2 Probar que la función $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definida por

$$d(\mathbf{x}, \mathbf{y}) = \max_{1 \le k \le n} |x_k - y_k|.$$

Define una métrica en \mathbb{R}^n . En el caso particular n=2, dibuje una representación gráfica de la bola B((0,0),1) en \mathbb{R}^2 y del conjunto $\overline{B((0,0),1)}$.

- 3 Para los siguientes ejercicios asumir que (X,d) es un espacio métrico.
 - a Probar que si $Y \subset X$, Int(Y) coincide con la unión de todos los subconjuntos abiertos de X que están contenidos en Y.
 - b Probar que si $Y\subset X,\ \overline{Y}$ coincide con la intersección de todos los subconjuntos cerrados de X que contienen a Y.
 - c Un conjunto de la forma $\hat{B}(x;r) := \{y \in Y | d(x,y) \le r\}$ es llamado una bola cerrada. Probar que una bola cerrada es un conjunto cerrado. Es $\hat{B}(x;r)$ siempre igual a $\overline{B}(x;r)$? Es cierto lo anterior para $X = \mathbb{R}^n$? Probar sus respuestas.
 - d Un punto $x \in X$ es un punto límite de un subconjunto S de X si toda bola B(x;r) contiene infinitos puntos de S. Probar que x es un punto límite de S ssi existe una sucesión $\{x_n\}$ en S tal que $x_n \to x$ y $x_n \neq x$ para cada n. Probar que el conjunto de puntos límite de S es cerrado.
 - e Un punto $x \in S$ es un punto aislado de S si existe r > 0 tal que $B(x;r) \cap S = \{x\}$. Probar que la clausura de un subconjunto S de X es la unión disjunta de los puntos límite y los puntos aislados de S.
 - f Tenemos que dos métricas d y ρ son equivalentes ssi las sucesiones convergetes en (X,d) son las mismas sucesiones convergentes en (X,ρ) . Dada la función ρ en $X\times X$ definida por

$$\rho(x,y) := \min\{1, d(x,y)\}, x, y \in X.$$

Probar que ρ es una métrica y que es equivalente d.

4 Una sucesión $\{x_k\}_{k=1}^{\infty}$ en un EM (X,d) es una sucesión rápida de Cauchy is

$$\sum_{k=1}^{\infty} d(x_k, x_{k+1}) < \infty.$$

Probar que una sucesión rápida de Cauchy es una sucesión de Cauchy.

- 5 Probar que toda sucesión de Cauchy tiene un subsucesión que es una sucesión rápida de Cauchy.
- 6 Probar que el conjunto de puntos aislados de un EM completo contable (X, d) forma un subconjunto denso de X.
- 7 Sea $S \neq \emptyset$, sea (X, d) un EM, y sea \mathcal{F} el conjunto de funciones de S a X. Para $f, g \in \mathcal{F}$, definir

$$\rho(f,g) = \sup_{s \in S} \min\{1, d(f(s),g(s))\}.$$

Probar que ρ es una métrica en \mathcal{F} . Probar que una sucesión $\{f_n\}$ converge a f en el EM (\mathcal{F}, ρ) ssi $\{f_n\}$ converge uniformemente a f en X. Probar que (\mathcal{F}, ρ) es completo ssi (X, d) es competo.

- 8 Probar que el conjunto de números irracionales es denso en \mathbb{R} .
- 9 Si consideramos a los números racionales \mathbb{R}_0 como un subespacio de \mathbb{R} . Existen puntos aislados en el EM (\mathbb{R}_0 , d)? Cuál es la razón por la que no se contradice lo establecido en el ejercicio 6?
- 10 Proveer un ejemplo de un EM totalmente acotado que no es compacto.
- 11 Proveer un ejemplo de un EM completo que no es compacto.
- 12 Probar directamente que un espacio métrico compacto es totalmente acotado.
- 13 Probar que si (X, d) es un EM, entonces d es una función contínua de $X \times X$ a \mathbb{R} . Probar que para cada $x_0 \in X$, la función $X \to \mathbb{R}, x \mapsto d(x_0, x)$ es una función uniformemente contínua de X a \mathbb{R} .
- 14 Probar que dos métricas d y ρ para X son equivalentes ssi el mapa identidad id : $(X, d) \rightarrow (X, \rho), x \mapsto x$ es bicontínuo (es decir, el mapa y su inverso son contínuos).