the Hirt: Output 1= 31

Example: Design a finite state machine for a keypard lock of an office door.

The door unclocks if The input is:

First: 3 pressed 7 -> Door whocks.

The output is Unlock.

once the door wlocks, it locks back again. key=3 LOCKED LOCKED / unlocked 3 pressed output=0 output = output = 0 key pad: moore machine. 0:00 1.01 2:10 input 3:11 current state 00 0

WOCKED WILED WOCKED WILED WOCKED WOCK

		Assi	Assignment	
State Name	Simplest Q1-Q3	Decomposed Q1–Q3	One-Hot Q1-Q5	Almost One-Hot Q1-Q4
TINI	000	000	10000	0000 .
AO	001	100	01000	0001
A1	010	101	00100	0010
OK0	110	110	01000	0100
<u> 옷</u>	100	11	10000	1000

Possible state assignments for the state machine in Table 7-5.

Table 7-6

state assignments:

Assign binary combination to each named state.

Total number of states in a machine with n flip-flops is 2

in our example we have 3 states $\log_2 3 \approx 2$ füp-flops

 \Rightarrow 2 = 4 states

need 3 states

1 state unused.

Simplest state assignment! Use first

3 binary integers in binary wunting order.

Simplest assignment does not always lead to the simplest excitation equations, output equations and resulting logic circuit.

Practical guidelines for reasonable state assignments:

- Choose initial world state which machine can easily be forced at reset (0...0, 1...1)
- Minimize number of state variables that change on each transition.
- Take into account symmetries. If one state means almost the same thing as another of similar assignments differing only one bit.
- If there unused states =) but limit choice to first s n-bit integers.
- use more than minimum # of state variables

(example): 3 states =) use binary counting order for state assignments!

LOCKED = 00 LOCKED = 0

	current state		What	(A I AO)		output
_	9190	00	01	10		
	, 00	(00	<u> </u>	<u>(Ó)</u>		P
	0	00	1)0	<u>(0)</u>	00	O
	10	00	0(0)	00	୯୦	
	91* 90*					
unusied State	11 (minimal)	00	00	00	00	0
	11 (minimal)	XX	χХ	ХX	XX	0

unused states:

- i) Minimal risk: for any input condition the unused state goes to initial/ idle/safe state.
- 2) Minimal cost: assume no entry to the unused states => mark them as don't coves.

Form k-maps to find the tensition equ. Q1 * : 11 00 01 ;X Χ mused X 10 For minimal risk = 91X = 91 90 A1 A0/ For minimal cost: 91x = A1 A0 90 90x= 91 30 AIAO Excitation egns! $PI = QI \star$, $DO = QO \star$ output egn: UN LOCKED = 91.90

