Introduction to Databases I

Overview

- Why use a Database?
- The file-based approach
- Disadvantages of the file-based approach
- The database approach
- Comparison

Why use a database? I

- What is a database
 - computerized record-keeping system
- What can you do with a database
 - store data
 - retrieve data
 - add data
 - delete data
 - update data
 - etc. etc.

Why use a database? II

- What are the key features of a database
 - Storing?
 - Retrieval?
 - Access to data?

Why use a database? III

- Why not writing file-based solution?
 - Databases are expensive
 - Easy integration into applications
 - Serialization of objects is easy
 - e.g. a hash table
 - Faster
 - No need for learning about databases

File-Based Approach I

- File-based system
 - A collection of application programs that perform services for the end-users such as the production of reports. Each program *defines* and *manages* its own data.

File-Based Approach II

- Decentralized Approach
- Can grow incrementally
- Easy
- Fast
- Enables simple operations
- Problems?

Disadvantages of the File-based approach

- Separation and isolation of data
 - Hard to link data in several files
- Duplication of data
 - Waste & inconsistency
- Data dependence
 - Closely linked to files & serialization
- Incompatible file formats
 - Different language different files
- No standards for queries
 - Define your own queries
- Data processing is more that get and put
 - How to link multiple files?

Summarize disadvantages

- The definition of data is embedded in the application
- No control over access and manipulation of data

Need a Database Management System!

The database approach I

- Database
 - A shared collection of *logically related* data (and a *description* of the data), designed to meet the information needs of an organization.
- Data + Metadata (Catalog)

The database approach II

- Data
- Data about data
- Data independence
 - Program
 - Storage
 - Etc.

Database Management System

• DBMS

- A software that enables the users to define, create and maintain the database and provides controlled access to this database.
- Data definition language (DDL)
- Data manipulation language (DML)

Database management system (DBMS)

Components of a DBMS

- Data
- Hardware & software
- People

Data

- Meta Data
 - data about data
 - types
 - organization
- Data
 - the content
- The DBMS keeps total control over storage and access
- Only queries

Hardware & Software

- Hardware
 - secondary storage volumes
 - processor
 - memory
- Software
 - database manager (DB) / DBMS
 - between files and user/application
 - protecting from storage details
 - utilities
 - application development tools
 - design aids, report writers etc...

People I

- Application programmers
 - write programs that use the DB
 - communication with the DB

People II

- End-User
 - communication via query language e.g. SQL
 - special build-in tools
 - customizable via scripting language
- Database Administrator
 - design of database
 - maintenance of database

Advantages of the database approach

- Control of redundancy
- Data consistency
- More information
- Sharing data
- Data integrity
- Security
- Standards
- Scalability
- Maintenance
- Backup and recovery

Disadvantages of the database approach

- Complexity
- Size
- Costs
- Performance
- Higher impact of failure

ANSI-SPARC Architecture

- Standards for database systems
 - 1971 DBTG
 - 2 levels
 - System view (schema)
 - User view (user schema)
 - ANSI (1975)
 - 3 levels
 - External, Conceptual, Internal

Three-Level Architecture

3 Levels

- External level
 - User-view what should a user see/access
- Conceptual Level
 - Community-view what data is stored & relationships between data
- Internal Level
 - Physical view how is the data stored

Mapping & Independence

- Data independence
 - Logical
 - Physical
- Links between the levels
 - 2 mappings
 - External/conceptual mapping
 - Conceptual/internal mapping

Mapping

Languages

- DDL & DML
 - Data sub languages
 - Embedding into host language
 - Variety of approaches

Data Model

- SQL vs. NoSQL
- Object-based Data Models
- Graph
- Document
- Record-Based Data Models
 - Relational data model
 - Network data model
 - Hierarchical data model

Functions of a DBMS

- Data storage, retrieval, and update
- A user-accessible catalog
- Transaction support
- Concurrency control services
- Recovery services
- Authorizations services
- Support for data communication
- Integrity services
- Services to promote data independence
- Utility services