DS-GA 1014 Optimization and Computational Linear Algebra Lab 5: Orthogonal Matrices & Eigenvalues

prepared by Ying Wang

Let $v_1, \ldots, v_m \in \mathbb{R}^n$ be linearly independent. Show there is an orthonormal basis for $\mathrm{Span}(v_1, \ldots, v_m)$.

Previous lab question from Brett Bernstein

What is the output of Gram-Schmidt if the input vectors v_1, \ldots, v_m are already orthonormal?

Previous lab question from Brett Bernstein

Let $V=R^3$ with the Euclidean inner product. We will apply the Gram-Schmidt algorithm to orthogonalize the basis $\{(1,-1,1),(1,0,1),(1,1,2)\}$.

Orthonormal basis

We can also use coordinatization for \mathbb{R}^n . If we have a basis $B = v_1, \ldots, v_n$ for \mathbb{R}^n then we can define the coordinatization (or change-of-basis) map $\Phi_B : \mathbb{R}^n \to \mathbb{R}^n$ by

$$\Phi_B(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha.$$

(a) Let B denote the basis (1,0), (-1,1) for \mathbb{R}^2 . Compute

$$\Phi_B\left(\begin{bmatrix}1\\0\end{bmatrix}\right), \quad \Phi_B\left(\begin{bmatrix}-1\\1\end{bmatrix}\right), \quad \text{and} \quad \Phi_B\left(\begin{bmatrix}0\\1\end{bmatrix}\right).$$

- (b) Suppose $B = v_1, \ldots, v_n$ is a basis for \mathbb{R}^n . Give the matrices corresponding to Φ_B and Φ_B^{-1} (possible since $\Phi_B : \mathbb{R}^n \to \mathbb{R}^n$ is linear and invertible).
- (c) For which bases B of \mathbb{R}^n does Φ_B preserve inner products? That is, for which bases B does

$$\langle \Phi_B(x), \Phi_B(y) \rangle = \langle x, y \rangle$$

for all $x, y \in \mathbb{R}^n$?

Orthonormal basis

Previous lab question from Brett Bernstein

Eigenvalues & Eigenvectors

Consider the matrix

$$A = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix}$$
 and vectors $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $w = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Which are eigenvectors? What are their eigenvalues?

Eigenvalues & Eigenvectors

Let

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \qquad \nu = \begin{pmatrix} -3 \\ 1 \end{pmatrix}.$$

Is ν an eigenvector of A? If so, what is its eigenvalue?