第七章习题(进阶)

潘子睿 2024310675

Q7.7

难度: 2。对n分奇偶讨论即可。

共有四种旋转方案,分别为恒等变换,顺时针旋转90度,逆时针旋转90度,顺时针旋转180度。

使用波利亚定理,对n分奇偶进行讨论。

1. *n*为偶数。

变换	数量		
恒等变化	1种	$(1)^{n^2}$	2^{n^2}
顺时针旋转90度	1种	$(4)^{rac{n^2}{4}}$	$2^{rac{n^2}{4}}$
逆时针旋转90度	1种	$(4)^{rac{n^2}{4}}$	$2^{rac{n^2}{4}}$
顺时针旋转180度	1种	$(2)^{rac{n^2}{2}}$	$2^{\frac{n^2}{2}}$

因此此时不等价的染色方案数为

$$C = \frac{2^{n^2} + 2^{\frac{n^2}{4}} + 2^{\frac{n^2}{4}} + 2^{\frac{n^2}{2}}}{4} = 2^{n^2 - 2} + 2^{\frac{n^2}{4} - 1} + 2^{\frac{n^2}{2} - 2}$$
(1)

2. n为奇数,则不管怎么旋转,中心块位置不变。

变换	数量		
恒等变化	1种	$(1)^{n^2}$	2^{n^2}
顺时针旋转90度	1种	$(4)^{rac{n^2-1}{4}}(1)$	$2^{\frac{n^2+3}{4}}$
逆时针旋转90度	1种	$(4)^{\frac{n^2-1}{4}}(1)$	$2^{rac{n^2+3}{4}}$
顺时针旋转180度	1种	$(2)^{rac{n^2-1}{2}}(1)$	$2^{rac{n^2+1}{2}}$

因此此时不等价的染色方案数为

$$C = \frac{2^{n^2} + 2^{\frac{n^2 + 3}{4}} + 2^{\frac{n^2 + 3}{4}} + 2^{\frac{n^2 + 3}{4}} + 2^{\frac{n^2 + 1}{2}}}{4} = 2^{n^2 - 2} + 2^{\frac{n^2 - 1}{4}} + 2^{\frac{n^2 - 3}{2}}$$
(2)

Q7.8

难度: 3。第二小题相对来说复杂一些,需要使用到母函数形式的波利亚定理。第一、三小题比较简单

(1)

- 1. 每切掉一个角,面数加一,因此面数为6+8=14
- 2. 每切掉一个角,顶点数减少1个再增加3个,而增加的每个顶点都恰好被两个切掉的角共用,因此顶点数为 $rac{8-8+3 imes8}{2}=12$ 。
- 3. 每切掉一个角,新增三条棱,且当所有角都被切掉后,原来的棱都消失。因此棱数为8 imes3=24。

综上,面数为14,顶点数为12,棱数为24。

(2)

该多面体中共有6个正四边形,8个正三角形。使用母函数形式的波利亚定理,对正四边形和正三角形分别考虑,用x,y,z分别表示染了红色、黄色和蓝色,用下标1表示涂在正三角形上,下标2表示涂在正四边形上:

变换	数量		
恒等变换	1种	$(1)^8 (1)^6$	$(x_1+y_1+z_1)^8(x_2+y_2+z_2)^6$
面面中心转士90度	3 imes2=6种	$(4)^2 (4)(1)^2$	$(x_1^4+y_1^4+z_1^4)^2(x_2^4+y_2^4+z_2^4)(x_2+y_2+z_2)^2$
面面中心转180度	3种	$(2)^4 (2)^2 (1)^2$	$(x_1^2+y_1^2+z_1^2)^4(x_2^2+y_2^2+z_2^2)^2(x_2+y_2+z_2)^2$
棱中对棱中旋转180度	6种	$(2)^4 (2)^3$	$(x_1^2+y_1^2+z_1^2)^4(x_2^2+y_2^2+z_2^2)^3$
对角线为轴旋转±120度	2 imes4=8种	$(1)^2(3)^2 (3)^2$	$(x_1+y_1+z_1)^2(x_1^3+y_1^3+z_1^3)^2(x_2^3+y_2^3+z_2^3)^2$

所以总的不等价染色方案数为

$$\frac{1}{24}[(x_1+y_1+z_1)^8(x_2+y_2+z_2)^6$$
 (3)

$$+6 \cdot (x_1^4 + y_1^4 + z_1^4)^2 (x_2^4 + y_2^4 + z_2^4)(x_2 + y_2 + z_2)^2$$
 (4)

$$+3\cdot(x_1^2+y_1^2+z_1^2)^4(x_2^2+y_2^2+z_2^2)^2(x_2+y_2+z_2)^2\tag{5}$$

$$+6 \cdot (x_1^2 + y_1^2 + z_1^2)^4 (x_2^2 + y_2^2 + z_2^2)^3$$
 (6)

$$+8 \cdot (x_1 + y_1 + z_1)^2 (x_1^3 + y_1^3 + z_1^3)^2 (x_2^3 + y_2^3 + z_2^3)^2$$
 (7)

满足题意的解为 $\{x_1^4y_1^4z_2^6, x_1^4z_1^4y_2^4z_2^2, y_1^4z_1^4x_2^4z_2^2\}$ 。其系数之和为

$$\frac{1}{24}[(C_8^4 + C_8^4 C_6^4 + C_8^4 C_6^4) \tag{8}$$

$$+6\cdot(C_2^1+C_2^1+C_2^1) \tag{9}$$

$$+3\cdot (C_4^2 + C_4^2(1+C_2^1) + C_4^2(1+C_2^1)) \tag{10}$$

$$+6 \cdot (C_4^2 + C_4^2 C_3^2 + C_4^2 C_3^2) \tag{11}$$

$$+8\cdot (C_2^1C_2^1 + C_2^1C_2^1\cdot 0 + C_2^1C_2^1\cdot 0)] \tag{12}$$

$$=109\tag{13}$$

因此满足题意的不等价染色方案数就是109。

(3)

视为对棱的二染色。根据波利亚定理,有

变换	数量		
恒等变换	1种	$(1)^{24}$	2^{24}
面面中心转士90度	3 imes2=6种	$(4)^6$	2^6
面面中心转180度	3种	$(2)^{12}$	2^{12}
棱中对棱中旋转180度	6种	$(2)^{12}$	2^{12}
对角线为轴旋转士120度	2 imes4=8种	$(3)^8$	2^8

所以不等价的方案数为

$$\frac{1}{24}(2^{24} + 6 \cdot 2^6 + 3 \cdot 2^{12} + 6 \cdot 2^{12} + 8 \cdot 2^8) = 700688 \tag{14}$$

Q7.9

难度: 2。这道题有点奇怪,我认为就是面的四染色问题。

按肖像画中人头的朝向对其进行分类,共有四种,即头朝上、朝左、朝下、朝右。因此,可视为对面的四染色。根据波利亚定理,有

变换	数量		
恒等变换	1种	$(1)^{24}$	4^{24}
面面中心转士90度	3 imes2=6种	$(4)^6$	4^6
面面中心转180度	3种	$(2)^{12}$	4^{12}
棱中对棱中旋转180度	6种	$(2)^{12}$	4^{12}
对角线为轴旋转士120度	2 imes4=8种	$(3)^{8}$	4^8

所以不等价的方案数为

$$\frac{1}{24}(4^{24} + 6 \times 4^6 + 3 \times 4^{12} + 6 \times 4^{12} + 8 \times 4^8) \tag{15}$$

Q7.10

难度: 3。这道题难度不高,但是比较复杂,仿照课上说的四个顶点的完全图的边染色问题去做即可。

即5个顶点的完全图的边的三着色问题。其顶点的所有置换对应着对称群S5的每个置换。首先,该完全图一共有5个顶点,10条边。 根据波利亚定理,有

顶点的变换	数量	边的变换	
$(1)^5$	1种	$(1)^{10}$	3^{10}
$(1)^3(2)$	$C_5^2=10$ 种	$(1)^4(2)^3$	3^7
$(1)^2(3)$	$C_5^3rac{A_3^3}{3}=20$ 种	$(1)(3)^3$	3^4
(1)(4)	$C_5^4\cdotrac{A_4^4}{4}=30$ 种	$(2)(4)^2$	3^3
$(1)(2)^2$	$C_5^1C_{4-1}^1=15$ 种	$(1)^2(2)^4$	3^6
(2)(3)	$C_5^2rac{A_3^3}{3}=20$ 种	(1)(3)(6)	3^3
(5)	$rac{A_5^5}{5}=24$ 种	$(5)^2$	3^2

所以不等价的染色方案数为

$$\frac{1}{120}(3^{10} + 10 \times 3^7 + 20 \times 3^4 + 30 \times 3^3 + 15 \times 3^6 + 20 \times 3^3 + 24 \times 3^2) = 792$$
 (16)

Q7.11

难度:5。这道题如果用波利亚定理来做,非常困难。主要难点是变换的个数比较难数,非常抽象。需要注意到几个事实,首先 1×1 的面和 1×2 的面的位置永远不会交换,其次 两个小正方体分别的侧面上的四个面的相对位置不会改变(但可能由顺时针变为逆时针)。但另一方面,如果不用波利亚定理,我们直接去数,按照某一侧小正方体上涂某种颜色的面的数量进行分类,是很好计数的。因为一种颜色要涂五个面,这五个面分散在两个小正方体上,只有三种可能,分别是(5,0),(4,1),(3,2),对应的种数为 $1,2 \times 2 = 4,3 \times 3 = 9$,因此总的方案数为14,这和波利亚定理计算出来的相同。

考虑该 $1 \times 1 \times 2$ 正方体表面二着色的问题。

首先,对于 1×2 的长方体,其空间旋转一共有4种,分别为:

1. 变换一: 恒等变换(不变)

2. 变换二: 1×1 面对应的面心为轴转 ± 90 、180度

3. 变换三:1 imes 2面对应的面心为轴转180度

4. 变换四: 长为2的对棱棱心为轴转180度

由于两个 1×1 的小正方体可以旋转,因此上述的第二种空间变换实际上可以通过小正方体的旋转来表示。而对于第三、四种变换,其本质上是将两个小正方体对调了位置,变换四可以通过变换三加小正方体的旋转来得到。因此下可以分为两个方面进行考虑,分别为变换一(不变)加小正方体的旋转,以及变换三加小正方体的旋转。对于后者,我们考虑两个小正方体旋转度数的差值(顺时针转动为正,逆时针转动为负)。若差值为0或360度,则循环长度为2;若差值为90度或270度,则循环长度为8;若差值为180度,则循环长度为4。

根据母函数形式的波利亚定理,有

	变换	种类		
不进行空间旋转(变换一)	两侧的1x1小正方体均不动	1种	$(1)^{10}$	$(x+y)^{10}$
	一侧的1x1小正方体不动,另一侧顺/逆时针转90度	2 imes2=4种	$(1)^6(4)$	$(x+y)^6(x^4+y^4)$
	一侧的1x1小正方体不动,另一侧转180度	2种	$(1)^6(2)^2$	$(x+y)^6(x^2+y^2)^2$
	一侧1x1小正方体顺/逆时针转90度,另一侧也顺/逆时针转90度	2 imes2=4种	$(1)^2(4)^2$	$(x+y)^2(x^4+y^4)^2$
	一侧1x1小正方体顺/逆时针转90度,另一侧转180度	2 imes2=4种	$(1)^2(2)^2(4)$	$(x+y)^2(x^2+y^2)^2(x^4+y^4)$
	两侧的 $1 imes1$ 小正方体均转 180 度	1种	$(1)^2(2)^4$	$(x+y)^2(x^2+y^2)^4$
进行空间旋转(变换三)	两个小正方体旋转度数的差值为0度或360度	4种	$(2)^5$	$(x^2+y^2)^5$
	两个小正方体旋转度数的差值为180度	4种	$(2)(4)^2$	$(x^2+y^2)(x^4+y^4)^2$
	两个小正方体旋转度数的差值为90度或270度	8种	(2)(8)	$(x^2+y^2)(x^8+y^8)$

所以总的旋转的数量为32种,总的不等价染色方案数为

$$\frac{1}{32}[(x+y)^{10} + 4 \times (x+y)^6(x^4+y^4) + 2 \times (x+y)^6(x^2+y^2)^2 + 4 \times (x+y)^2(x^4+y^4)^2$$
 (17)

$$+4 \times (x+y)^2 (x^2+y^2)^2 (x^4+y^4) + (x+y)^2 (x^2+y^2)^4 + 4 \times (x^2+y^2)^5$$
 (18)

$$+4 \times (x^2 + y^2)(x^4 + y^4)^2 + 8 \times (x^2 + y^2)(x^8 + y^8)$$
(19)

考虑其中 x^5y^5 的系数,为

$$\frac{1}{32}[C_{10}^5 + 4 \times 12 + 2 \times (6 + 2 \times C_6^3 + 6) + 4 \times 2 \times 2 + 4 \times (2 + 2) + 2 \times C_4^2] = 14 \qquad (20)$$

因此满足题意的每种颜色恰好染五个色块的方法数就是14。

Q7.12

难度: 3。比较简单,先转化为用6种颜色涂正方体的问题,课上介绍过是30种。然后考虑各个面数字的朝向即可。个人觉得可以在数字中加入一些中心对称的数字,例如1,8,或者加入一组6和9(6旋转180度后变成9)来增加题目的变化?

注意到,对于中心写有数字2,3,4,5,6,7的正方形贴纸,其绕贴纸中心旋转90度、180度、270度后均无法与原来的图案重合。 先不考虑这些中心写有数字的正方形贴纸朝向,根据母函数形式的波利亚定理,有:

变换	数量		
恒等变换	1种	$(1)^6$	$(x+y+z+u+v+w)^6$
面面中心转士90度	3 imes2=6种	$(1)^2(4)$	无不动点
面面中心转180度	3种	$(1)^2(2)^2$	无不动点
棱中对棱中旋转180度	6种	$(2)^3$	无不动点
对角线为轴旋转士120度	2 imes4=8种	$(3)^2$	无不动点

因此,此时所有不等价的方案数为

$$\frac{1}{24}(x+y+z+u+v+w)^6\tag{21}$$

进一步地,每一种贴纸恰好都只使用一个的不等价的方案数为

$$\frac{1}{24} \cdot 6! = 30$$
 (22)

最后,考虑到每一种贴纸都有四种可能的朝向,因此原题所要求的不等价的方案数为

$$30 \times 4^6 = 122880 \tag{23}$$