DIFFERENTIAL GEOMETRY HOMEWORK 1

AARON NISKIN PID: 3337729

1

a. Suppose that a particle in 3-space is moving under a central force F. That is equivalent to the following condition: there is a fixed point A such that the acceleration vector points in direction of A at all time. Prove that its trajectory lies in a fixed plane. Let r be a Frenet curve in \mathbb{R}^3 such that $\ddot{r} = \alpha (A - r)$ for some C^2 function, α that is non-zero on I and some fixed point A. We can define c := A - r so that T, N, B are the same for both curves (up to negation). Furthermore, $\ddot{c} = -\ddot{r} = -\alpha c$.

Claim: B is constant, and hence c must lie in the plane normal to B.

Proof. Firstly,

(1)
$$-\alpha c = \ddot{c} = \frac{d^2c}{dt^2} = \frac{d}{dt} \left(\frac{dc}{ds} \frac{ds}{dt} \right) = \frac{d}{dt} \left(c'\dot{s} \right) = c''\dot{s}^2 + c'\ddot{s}$$

$$(2) T = c'$$

(3)
$$N = \frac{c''}{\kappa} = -\frac{\alpha c + \ddot{s}c'}{\dot{s}^2 \kappa}$$

$$(4) B = T \times N$$

Then,

$$(5) T' = c'' = \kappa N$$

(6)
$$-\kappa T + \tau B = N' = \left(-\frac{\alpha c + \ddot{s}c'}{\dot{s}^2 \kappa}\right)'$$

$$(7) B' = -\tau N$$

Date: 21 JAN 2015.

By taking equation (6), simplifying and replacing every occurrence of c with $-\frac{\dot{s}^2c''+\ddot{s}c'}{\alpha} = -\frac{\dot{s}^2\kappa N + \ddot{s}T}{\alpha}$ from (1), we find,

$$-\kappa T + \tau B = \left(-\frac{\alpha c + \ddot{s}c'}{\dot{s}^2 \kappa}\right)'$$

$$= \frac{-(\alpha' c + c'\alpha + \ddot{s}c'')\dot{s}^2 \kappa + \dot{s}^2 \kappa'(\alpha c + \ddot{s}c')}{\dot{s}^4 \kappa^2}$$

$$= \frac{-\alpha'(\dot{s}^2 \kappa N + \ddot{s}T)\kappa/\alpha - \kappa \alpha T - \ddot{s}\kappa^2 N - \kappa'\dot{s}^2 \kappa N}{\dot{s}^2 \kappa^2}$$

$$= \left(\frac{-\alpha'\ddot{s} - \alpha^2}{\dot{s}^2 \kappa \alpha}\right) T - \left(\frac{\alpha'\dot{s}^2 \kappa + \ddot{s}\kappa\alpha + \kappa'\alpha\dot{s}^2}{\dot{s}^2 \kappa \alpha}\right) N$$

is a linear combination of T, N. Since T, N, B are orthonormal, we see that $\tau = 0$.

Furthermore,
$$\kappa^2 \dot{s}^2 \alpha = \alpha' \ddot{s} + \alpha^2$$
, and $\alpha' \dot{s}^2 \kappa + \ddot{s} \kappa \alpha + \kappa' \alpha \dot{s}^2 = 0$

$$0 = \alpha' \dot{s}^2 \ddot{s} \kappa + \ddot{s}^2 \kappa \alpha + \ddot{s} \kappa' \alpha \dot{s}^2$$

$$= (\kappa^2 \dot{s}^2 \alpha - \alpha^2) \dot{s}^2 \kappa + \ddot{s}^2 \kappa \alpha + \ddot{s} \kappa' \alpha \dot{s}^2$$

$$= (\kappa^2 \dot{s}^2 - \alpha) \dot{s}^2 \kappa + \ddot{s}^2 \kappa + \ddot{s} \kappa' \dot{s}^2$$

- b. Fix the plane to be the xy-plane and write the equation for the trajectory of A in polar coordinates. Let x be in the direction of $T(s_0)$, y in the direction of $N(s_0)$ and z in the direction of B. Then $r(s) = (||c(s)||, \theta, 0) + A$, where θ is the angle given by $\theta = \int_0^t \kappa(t) dt$.
- c. If the force F is given by $\mathbf{F} = \frac{cr}{||r||^3}$, show that the trajectory is part of an ellipse, hyperbola or parabola (second order or quadratic curve). If we assume that $\ddot{r} = F$, then $\ddot{r} = F = \frac{c}{||r||^2} \frac{r}{||r||}$, then $A = \vec{0}$, and we have h

2. A Frenet curve in \mathbb{R}^3 is called a Bertrand curve, if there is a second curve such that the principle normal vectors to these two curves (at corresponding points) are identical, viewed as lines in space. One speaks in the case of a Bertrand pair of curves. Show that non-planar Bertrand curves are characterized by the existence of a linear relation $a\kappa + b\tau = 1$ with constants a, b, where $a \neq 0$.

Let c_1, c_2 be a pair of Bertrand curves in \mathbb{R}^3 and let N_1, N_2 be their corresponding Principal Normal vectors at t. Then $\forall t \in I, \ N_1 = N_2$. Hence, $\forall t \in I, \ \dot{N}_1 = \dot{N}_2$ (so we can drop the subscripts on N and \dot{N}). Now, $\frac{\ddot{c}_1}{\kappa_1} = N = \frac{\ddot{c}_2}{\kappa_2}$. Since the N vectors are identical at every point, then $\frac{dN}{dt}$ must have the same property. Hence, if we let s_1, s_2 be the arc-length parameters then $(-\kappa_1 T_1 + \tau_1 B_1) \frac{ds_1}{dt} = (-\kappa_2 T_2 + \tau_2 B_2) \frac{ds_2}{dt}$

3. Suppose r=r(t) is a regular curve satisfying $r''=r'\times H$ for a constant vector H (according to one source this is the equation of an electron moving under a magnetic field force). Prove that τ and κ are constants.

Let s be the arc length parameter. Then,
$$T = \frac{dr}{ds} = \frac{dr}{dt}\frac{dt}{ds}$$
, and $\kappa N = \frac{d^2r}{ds^2} = \frac{d^2r}{dt^2}\left(\frac{dt}{ds}\right)^2 + \frac{dr}{dt}\frac{d^2t}{ds^2} = \left(\frac{dt}{ds}\right)^2r' \times H + \left(\frac{d^2t}{ds^2}\right)\left(\frac{ds}{dt}\right)T$

4. Let A_X and A_Y be the operators corresponding to the cross product with the vectors X and Y respectively. Show that $A_XA_Y-A_YA_X=A_{X\times Y}$

This is just a computation. There's definitely a theory way to go here (involving commutators, or lie groups or whatever), but I can't see that way right now, so I'll just do this computationally.

$$(A_X A_Y - A_Y A_X)(Z) = X \times (Y \times Z) - Y \times (X \times Z)$$
$$= X \times (Y \times Z) + Y \times (Z \times X)$$
$$= -Z \times (X \times Y)$$
$$= (X \times Y) \times Z = A_{X \times Y}(Z)$$