Práctica Nº 5 - Interpretación y compilación

Aclaraciones:

Los ejercicios marcados con el símbolo \bigstar constituyen un subconjunto mínimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

Gramáticas a tener en cuenta:

■ Términos anotados

```
M ::= x \mid \lambda x \colon \sigma.M \mid M M \mid \mathsf{True} \mid \mathsf{False} \mid \mathsf{if} \ M \ \mathsf{then} \ M \ \mathsf{else} \ M \mid \mathsf{zero} \mid \mathsf{succ}(M) \mid \mathsf{pred}(M) \mid \mathsf{isZero}(M) \mid \mu x \colon \sigma.M
```

Donde la letra x representa un $nombre\ de\ variable$ arbitrario. Tales nombres se toman de un conjunto infinito dado $\mathfrak{X} = \{w, w_1, w_2, \dots, x, x_1, x_2, \dots, y, y_1, y_2, \dots, f, f_1, f_2, \dots\}$

■ Términos sin anotaciones

```
U := x \mid \lambda x.U \mid U \mid U \mid \mathsf{True} \mid \mathsf{False} \mid \mathsf{if} \mid U \mathsf{ then} \mid U \mathsf{ else} \mid U \mid \mathsf{zero} \mid \mathsf{succ}(U) \mid \mathsf{pred}(U) \mid \mathsf{isZero}(U) \mid \mu x.U \mid U \mid \mathsf{red}(U) \mid \mathsf{isZero}(U) \mid \mathsf{isZero}(
```

■ Tipos

```
	au ::= \mathsf{Bool} \mid \mathsf{Nat} \mid 	au 	o 	au \mid X_n
```

Donde n es un número natural, de tal modo que X_n representa una variable de tipos arbitraria tomada de un conjunto $\mathfrak{T} = \{X_1, X_2, X_3, \dots ?1, ?2, ?3, \dots\}$.

Nota: también podemos referirnos a las variables de tipos como incógnitas.

Interpretación

Ejercicio 1 ★

Evaluar en el intérprete CBN las siguientes expresiones.

- I. $(\lambda x.x)$ zero
- II. $(\lambda x.\lambda x.x)$ 2 3
- III. $(\lambda x.\lambda y.(\lambda x.if isZero(x) then y else x) x) \underline{5} \underline{4}$
- IV. $(\lambda x.(\lambda f.(\lambda y.f \underline{6})\underline{5}) (\lambda y.if isZero(y) then x else y)) \underline{4}$

Ejercicio 2 ★

- I. Extender el intérprete CBV para pares. ¿Sería sencillo incorporar pares al intérprete CBN?
- II. Extender los intérpretes CBN y CBV para suma y producto de naturales.

Ejercicio 3

Extender los intérpretes CBN y CBV para tipos suma.

Ejercicio 4 ★

Evaluar las siguientes expresiones en los intérpretes CBN y CBV con las extensiones del ejercicio 2.

- I. $(\lambda x.x + x)((\lambda y.y) \underline{3})$
- II. $(\lambda x.x + x)((\mu f.\lambda n.\text{if isZero}(n) \text{ then succ}(\text{zero}) \text{ else } n \times f(\text{pred}(n))) \underline{1})$
- III. $(\lambda x.xx)(\lambda x.xx)$

SEMÁNTICA

Ejercicio 5 ★

Dar la semántica denotacional de los siguientes términos.

I. $\lambda x : \mathsf{Nat.zero}$

III. Fact

II. $\lambda x : \mathsf{Nat}.(\lambda y : \mathsf{Nat}.y) \ \mathsf{succ}(x)$

IV. Fact 2

Donde $[\![M \times N]\!]_v = [\![M]\!]_v \times [\![N]\!]_v$ y Fact $= \mu f : \mathsf{Nat} \to \mathsf{Nat}.\lambda n : \mathsf{Nat}.\mathsf{if}$ is $\mathsf{Zero}(n)$ then $\mathsf{succ}(\mathsf{zero})$ else $n \times f$ $\mathsf{pred}(n)$.

Ejercicio 6

Si $[M]_v = T$, $[N]_v = T$ y $[P]_v = F$, ¿quién es $[M]_v = T$ then $[M]_v = T$ else $[M]_v = T$.

Ejercicio 7 ★

Dar la semántica operacional CBV a grandes pasos, a pequeños pasos y la denotacional a los siguientes términos:

- I. $\lambda x : \mathsf{Nat}.x$
- II. $\lambda x : \mathsf{Nat} \to \mathsf{Nat}.x$
- III. $\lambda x : \mathsf{Nat} \to \mathsf{Nat}.\lambda y : \mathsf{Nat}.x\ y$
- IV. $(\lambda x : \mathsf{Nat} \to \mathsf{Nat}.x \ \underline{3}) \ \lambda x : \mathsf{Nat.succ}(x)$
- V. $(\lambda f : \mathsf{Nat} \to \mathsf{Nat}.\mu x : \mathsf{Nat}.f \ \mathsf{succ}(x))(\lambda y : \mathsf{Nat}.y)$

Ejercicio 8

- I. Modificar la semántica denotacional incluyendo el elemento error en todo conjunto, con el fin de detectar la división por cero.
- II. Extender la semántica denotacional con error, para el Cálculo Lambda con pares (y naturales).
- III. Demostrar que para toda valuación v válida en $FV(M) \cup FV(N)$ se tiene $[M\{x:=N\}]_v = [M]_{v,x=[N]_v}$ (lema de sustitución).
- IV. Demostrar el teorema de corrección.

Inferencia de tipos

Ejercicio 9

Determinar qué expresiones son sintácticamente válidas y, para las que lo sean, indicar a qué gramática pertenecen (tipos, términos anotados o términos sin anotaciones).

I. $\lambda x\colon \mathsf{Bool.succ}(x)$ V. X_1 II. $\lambda x.\mathsf{isZero}(x)$ VI. $X_1\to (\mathsf{Bool}\to X_2)$ VII. $X_1\to \sigma$ VII. $\lambda x\colon X_1\to X_2$. if zero then True else zero succ(True) IV. $\operatorname{\it erase}(f\ y)$ VIII. $\operatorname{\it erase}(\lambda f\colon \mathsf{Bool}\to \mathsf{s}.\lambda y\colon \mathsf{Bool}.f\ y)$

Ejercicio 10

Determinar el resultado de aplicar la sustitución S a las siguientes expresiones

$$S = \{X_1 := \mathsf{Nat}\}$$

$$S(\{x : X_1 \to \mathsf{Bool}\})$$

$$\text{II. } S = \{X_1 := X_2 \to X_3, \ X_4 := \mathsf{Bool}\} \quad S(\{x : X_4 \to \mathsf{Bool}\}) \vdash S(\lambda x \colon X_1 \to \mathsf{Bool}.x) \colon S(\mathsf{Nat} \to X_2)$$

Ejercicio 11

Unir con flechas los tipos que unifican entre sí (entre una fila y la otra). Para cada par unificable, exhibir el mgu ("most general unifier").

$$X_1 o X_2$$
 Nat $X_2 o \mathsf{Bool}$ $X_3 o X_4 o X_5$
$$X_1 \qquad \mathsf{Nat} o \mathsf{Bool} \quad (\mathsf{Nat} o X_2) o \mathsf{Bool} \quad \mathsf{Nat} o X_2 o \mathsf{Bool}$$

Ejercicio 12

Decidir, utilizando el método del árbol, cuáles de las siguientes expresiones son tipables. Mostrar qué reglas y sustituciones se aplican en cada paso y justificar por qué no son tipables aquéllas que fallan.

I. λz . if z then zero else $\mathrm{succ}(\mathsf{zero})$ V. if True then $(\lambda x.\mathsf{zero})\mathsf{zero}$ else $(\lambda x.\mathsf{zero})\mathsf{False}$ II. λy . $\mathrm{succ}((\lambda x.x)\ y)$ III. λx . if $\mathrm{isZero}(\mathsf{x})$ then x else (if x then x else x)
IV. $\lambda x.\lambda y$. if x then y else $\mathrm{succ}(\mathsf{zero})$ VII. $\lambda x.\lambda y.\lambda z$. if z then y else $\mathrm{succ}(x)$

Ejercicio 13 ★

Utilizando el árbol de inferencia, inferir el tipo de las siguientes expresiones o demostrar que no son tipables. En cada paso donde se realice una unificación, mostrar el conjunto de ecuaciones a unificar y la sustitución obtenida como resultado de la misma.

Ejercicio 14 (Numerales de Church)

Indicar tipos σ y τ apropiados de modo que los términos de la forma $\lambda y: \sigma.\lambda x: \tau.y^n(x)$ resulten tipables para todo n natural. El par (σ,τ) debe ser el mismo para todos los términos. Observar si tienen todos el mismo tipo. Notación: $M^0(N) = N, M^{n+1}(N) = M(M^n(N))$. Sugerencia: empezar haciendo inferencia para n=2 – es decir, calcular $\mathbb{W}(\lambda y.\lambda x.y(yx))$ – y generalizar el resultado.

Ejercicio 15

- I. Utilizar el algoritmo de inferencia sobre la siguiente expresión: $\lambda y.(x\ y)\ (\lambda z.x_2)$
- II. Una vez calculado, demostrar (utilizando chequeo de tipos) que el juicio encontrado es correcto.
- III. ¿Qué ocurriría si x_2 fuera x?

COMPILACIÓN

Ejercicio 16 ★

Escribir la secuencia de instrucciones resultantes de compilar los siguientes términos con el compilador de Cálculo Lambda a la máquina SECD visto en la teórica, y escribir la traza de ejecución para cada una de dichas secuencias.

- I. $(\lambda x.x)$ True
- II. $(\lambda x.\lambda x.x)$ False True
- III. $(\lambda x. \lambda y. (\lambda x. \text{if } x \text{ then } y \text{ else } x) x)$ False True
- IV. $(\lambda x.(\lambda f.(\lambda y.f \text{ True}) \text{ False}) (\lambda y.\text{if } y \text{ then } x \text{ else } y))$ False

Ejercicio 17

Extender el compilador de Cálculo Lambda a la máquina SECD visto en la teórica con pares.