Deret Pangkat

Deret Pangkat

Deret pangkat dalam *x* adalah

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

Dua pertanyaan:

- 1. Untuk nilai *x* berapa saja suatu deret pangkat konvergen?
- 2. Jika suatu deret pangkat konvergen, berapa jumlahannya?

Contoh.

$$a + ax + ax^2 + ax^3 + \cdots$$

yang merupakan deret geometri dengan pengali x.

Diketahui bahwa

$$a + ax + ax^2 + ax^3 + \dots = \frac{a}{1 - x} \Leftrightarrow |x| < 1$$

Himpunan Kekonvergenan

Himpunan kekonvergenan adalah himpunan semua nilai x yang mengakibatkan suatu deret pangkat konvergen.

Contoh. Tentukan himpunan kekonvergenan dari deret berikut.

$$1. \quad \sum_{n=0}^{\infty} \frac{x^n}{(n+1)2^n}$$

$$2. \quad \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

3.
$$\sum_{n=0}^{\infty} n! x^n$$

Himpunan kekonvergenan deret pangkat merupakan salah satu dari:

- $1. \quad \{0\}$ (jari-jari kekonvergenan 0).
- 2. Selang (-R, R) yang dapat ditambah dengan salah satu atau kedua titik ujungnya (jari-jari kekonvergenan R).
- 3. Himpunan bilangan real (jari-jari kekonvergenan ∞).

Deret Pangkat dalam (x - a)

Deret pangkat dalam (x - a) adalah

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + a_3 (x-a)^3 + \cdots$$

Contoh. Tentukan himpunan dan jari-jari kekonvergenan dari deret berikut.

$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{(n+1)^2}$$

9.7 Operasi pada Deret Pangkat

Turunan dan Integral

Misalkan $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots = S(x)$ untuk x di dalam suatu selang I.

Maka, untuk x di dalam selang I berlaku:

i.
$$\sum_{n=0}^{\infty} D_x(a_n x^n) = \sum_{n=0}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots = S'(x)$$

ii.
$$\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} = a_{0}x + \frac{a_{1}}{2}x^{2} + \frac{a_{2}}{3}x^{3} + \dots = \int_{0}^{x} S(t) dt$$

Contoh

1. Turunkan dan integralkan deret pangkat $1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}, \text{ untuk} - 1 < x < 1,$

untuk memperoleh dua deret pangkat baru.

- 2. Lakukan substitusi $x = -t^2$ pada deret pangkat dari $\frac{1}{1-x}$, kemudian integralkan untuk memperoleh deret pangkat untuk tan ^{-1}x .
- 3. Pandang deret pangkat $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = S(x)$ untuk $x \in \mathbb{R}$. Turunkan untuk memperoleh S(x).

Operasi Aljabar

Dua deret pangkat yang konvergen dapat dijumlahkan dan dikurangkan suku per suku.

Dua deret pangkat yang konvergen dapat dikalikan dan dibagi, seperti pada perkalian dan pembagian polinom.

Deret Taylor & Maclaurin

Deret Taylor & Maclaurin

Diberikan fungsi f dan bilangan real a. Akan dicari c_0, c_1, c_2, \cdots sehingga: $f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + c_2(x - a)^2 + \cdots$

Teorema Ketunggalan Taylor

Misalkan fungsi f dapat diturunkan secara terus-menerus, maka fungsi tersebut dapat dinyatakan secara tunggal dalam deret pangkat

$$f(a) + f'(a)(x-1) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \cdots$$

Deret pangkat tersebut dinamakan Deret Taylor dari f di sekitar x = a. Dalam hal a = 0 deret dinamakan Deret MacLaurin.

Teorema Taylor

Misalkan f dapat diturunkan terus-menerus pada selang (a - r, a + r). Deret Taylor

$$f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

merepresentasikan f(x) pada selang tersebut tersebut jika dan hanya jika $\lim_{n\to\infty} R_n(x) = 0$, dengan $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$, untuk $c \in (a-r,a+r)$.

Contoh.

- 1. Tentukan deret Maclaurin dari $f(x) = \sin(x)$ dan tunjukkan hasilnya berlaku untuk semua $x \in R$.
- 2. Carilah deret Maclaurin untuk $\ln(x + 1)$, kemudian gunakan 5 suku pertama deret untuk mengaproksimasi $\int_0^1 \ln(x + 1) dx$.

Beberapa Deret Maclaurin

1.
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

$$-1 < x < 1$$

2.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$-1 < x < 1$$

3.
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$-1 < x < 1$$

4.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

5.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

6.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

7.
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$

8.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$

9.
$$(1+x)^p = 1 + \binom{p}{1}x + \binom{p}{2}x^2 + \binom{p}{3}x^3 + \cdots -1 < x < 1$$

$$\operatorname{dengan} \binom{p}{k} = \frac{p \cdot (p-1) \cdot \cdots \cdot (p-k+1)}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot k}$$

Aproksimasi Taylor

Aproksimasi Taylor

Aproksimasi linear untuk f di sekitar a adalah P(x) = f(a) + f'(a)(x - a)

Untuk memperoleh aproksimasi yang lebih baik, digunakan polinom dengan derajat yang lebih tinggi. Aproksimasi ini dinamakan polinom Taylor derajat *n* di sekitar *a*.

$$p_n(x) = f(a) + f'(a)(x - 1) + f''(a) + f''(a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Rumus Sisa Taylor

Misalkan f dapat diturunkan sampai n+1 kali di sekitar a. Maka

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

$$\operatorname{dengan} R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - a)^{n+1}, \text{ untuk } c \text{ di antara } x \text{ dan } a.$$

Contoh.

- 1. Hampiri nilai ln(0, 9) dengan polinom Taylor derajat empat dan taksirlah batas galatnya.
- 2. Tuliskan polinom Maclaurin derajat n dari $f(x) = e^x$. Lalu hampiri $e^{0.8}$ dengan galat tidak melebihi 0,001.
- 3. Galat suatu hasil perhitungan numerik adalah $E = \frac{|c^2 \sin c|}{c}$ dengan $2 \le c \le 4$. Tentukan maksimum galat tersebut.