RGB-D Domain Adaptation with Cross-Modality Self-Supervision

Machine learning and Deep learning 2019/2020

Hadi Nejabat

Contents

Addressed problem

What is multi-modal domain adaptation and why is it important.

Proposed solutions

The implemented model and the experiments.

Results and considerations

Presentation of results and discussion of noteworthy topics.

1. Addressed problem

RGB-D Domain Adaptation with Cross-Modality Self-Supervision

Significance:

• Domain adaptation

Multi-modality

Synthetic

Real

2. Proposed solution

Goal:

Explore proposed solutions and compare results of variations

Datasets:

 $synROD \rightarrow Source dataset (Synthetic origin)$

ROD \rightarrow Target dataset (Real origin)

Images of each dataset are represented as RGB-D pairs.

Model:

Feature extractor

Main task

Pretext task

End-to-end experiments:

Source only (SO)

No DA performed, used as reference baseline score.

Domain adaptation (DA)

Re-implementation

DA implemented as relative rotation between RGB-D images.

Variation

DA implemented as Jigsaw puzzle assembly between RGB-D images.

Auxiliary tasks:

Jigsaw puzzle details:

Algorithm 2 Jigsaw Puzzle Transformer

Input:

Image data Assigned label from DataGenerator

Output:

Transformed Image Tensor

procedure Transforming

Resize Image to 224x224

Get grid size

Generate possible permutations grid tiles

Get Minimum allowed permutation subset

Generate tiles height and width

Assign initial position to tiles

for each Image do

Start from initial positions

Set x,y for each tile

Create crop elements based on grid size

Extract cropped element and store

Move to next tile by updating x,y

Shuffle extracted tiles list based on permutations label

Re-assemble Images tiles

Training details:

$$Loss = Lm + \lambda p * (\hat{L}ps + \hat{L}pt)$$

	SO	DA	VAR (relative task)
Source to	Cross	Cross Entropy	Cross Entropy
Main task	Entropy loss	loss	loss
Target to	N/A	Cross Entropy	Cross Entropy
Main task		loss	loss
Source & Target transformed to Pretext task	N/A	Cross Entropy loss	Cross Entropy loss

Algorithm 1 RGB-D Domain Adaptation

Input:

Labeled source data set $S = \{((x_i^{sc}, x_i^{sd}), y_i^s)\}_{i=1}^{Ns}$ Unlabeled target data set $T = \{((x_i^{tc}, x_i^{td})\}_{i=1}^{Nt}$

Output:

Object class prediction for the target data $\{\tilde{y}_i^t\}_{i=1}^{Nt}$

- 1: **procedure** Training(S,T)
- Get transformed set $\tilde{S} = \{((\tilde{x}_i^{sc}, \tilde{x}_i^{sd}), z_i^s)\}_{i=1}^{\tilde{N}s}$
- 3: Get transformed set $\tilde{T} = \{((\tilde{x}_i^{tc}, \tilde{x}_i^{td}), z_i^s)\}_{i=1}^{\tilde{N}t}$
- 4: **for each** epoch **do**
- 5: Load a batch from S
- 6: Compute loss L_m
- 7: Load a batch from \tilde{S} and \tilde{T}
- 8: Compute loss L_p
- 9: Update loss $L_p = *0.1 \leftarrow \text{Regularization DA}$
- 10: Update M weights with ∇L_m
- 11: Update P weights with ∇L_p
- 12: Update E weights with ∇L_m and $\nabla \hat{L}_t$
- 13: **procedure** TEST(T)
- 14: **for each** x_i^{tc} , x_i^{td} in T **do**
- 15: Compute $\tilde{y}_i^t = M(E(x_i^{tc}, x_i^{td}))$

M = Main task, P = Pretext task, E = Feature Extractor

Other Remarks:

Optimizer: Stochastic Gradient Descent (SGD) with Momentum.

Reguralizer: Weight decay = 0.05

Drop-out: assigned with 0.5

Early-stop: assigned with patience threshold

3. Experiments and Results

Hyperparamers:

Experiment	Param. Set	Batch size	LR	Weight loss Pretext task	Weight loss Entropy	weight_decay	dropout	Max. Validation Accuracy (%)	Diagnostics
	S1	64	0.01	N/A	N/A	N/A	N/A	48.89 @Epoch 4	Overfitting
Ι Γ	S4	64	0.001	N/A	N/A	N/A	N/A	46.77 @Epoch 4	Overfitting
Source only Baseline	S2	32	0.0001	N/A	N/A	0.005	N/A	41.2 @Epoch 18	Distrubtion due to unrepresentative classes
	S5	64	0.00001	N/A	N/A	0.05	N/A	44.36 @Epoch 19	Reuqire smoother learning
	S3	32	0.0001	N/A	N/A	0.05	0.5	47.78 @Epoch 20	Acceptable for Baseline
	S7	32	0.0001	1	0.1	0.05	0.5	61.12 @Epoch 6	Original papers inputs
	S10	32	0.00001	1	0.1	0.05	0.5	60.06 @Epoch 9	Lower LR
DA - Rotation	S6	32	0.0001	0.8	0.1	0.05	0.5	59.61 @Epoch 7	Lower wieght to tune objective func.
	S9	32	0.0001	1	0.1	0	0.5	59.99 @Epoch 6	No reguraizer for main task
	S8	32	0.0001	1	0.2	0.05	0.5	58.63 @Epoch 5	Not acceptable generalization
	S11	32	0.0001	1	0.1	0.05	0.5	62.92 @Epoch 3	Inputs from previous best result
	S12	32	0.0001	1	0.1	0	0.5	60.52 @Epoch 4	No reguraizer for main task
DA - Jigsaw Puzzle	S13	32	0.0001	0.8	0.1	0.05	0.5	61.78 @Epoch 3	Lower wieght to tune objective func.
	S14	32	0.0001	0.9	0.2	0.05	0.5	62.8 @Epoch 3	Lower wieght to tune objective func.
	S15	32	0.0001	1.5	0.1	0.05	0.5	60.4 @Epoch 3	higher wieght to tune objective func.

Source only Baseline:

Param. Set	Batch size	LR	Weight loss Pretext task	Weight loss Entropy	weight_decay	dropout	Max. Validation Accuracy (%)
S1	64	0.01	N/A	N/A	N/A	N/A	48.89 @Epoch 4
S4	64	0.001	N/A	N/A	N/A	N/A	46.77 @Epoch 4
S2	32	0.0001	N/A	N/A	0.005	N/A	41.2 @Epoch 18
S5	64	0.00001	N/A	N/A	0.05	N/A	44.36 @Epoch 19
S3	32	0.0001	N/A	N/A	0.05	0.5	47.78 @Epoch 20

DA – Relative Rotation:

Param. Set	Batch size	LR	Weight loss Pretext task	Weight loss Entropy	weight_decay	dropout	Max. Validation Accuracy (%)
S7	32	0.0001	1	0.1	0.05	0.5	61.12 @Epoch 6
S10	32	0.00001	1	0.1	0.05	0.5	60.06 @Epoch 9
S6	32	0.0001	0.8	0.1	0.05	0.5	59.61 @Epoch 7
S9	32	0.0001	1	0.1	0	0.5	59.99 @Epoch 6
S8	32	0.0001	1	0.2	0.05	0.5	58.63 @Epoch 5

DA – Jigsaw Puzzle:

Param. Set	Batch size	LR	Weight loss Pretext task	Weight loss Entropy	weight_decay	dropout	Max. Validation Accuracy (%)
S11	32	0.0001	1	0.1	0.05	0.5	62.92 @Epoch 3
S12	32	0.0001	1	0.1	0	0.5	60.52 @Epoch 4
S13	32	0.0001	0.8	0.1	0.05	0.5	61.78 @Epoch 3
S14	32	0.0001	0.9	0.2	0.05	0.5	62.8 @Epoch 3
S15	32	0.0001	1.5	0.1	0.05	0.5	60.4 @Epoch 3

Results Comparison:

Results Comments:

Technical Difficulties

- Long time required to complete a run
- 16 GB RAM + 8 GB CUDA Memory
- CUDA toolkit versioning issues

Scores & Conclusion:

Accuracies

Experiment	Our results	Ref. results*
Source only Baseline	47.78%	47.33%
DA - Relative Rotation	61.12%	66.68%
DA - Jigsaw Puzzle	62.92%	N/A

Main experiments → overall successful:

Comparable baseline

DA improved the baseline score

Variations → overall successful, need further investigation:

Acceptable scores

Must Continue experiments

Further required investigations:

- Repeat all experiments entirely multiple times
- More fundamental approach for improving overfitting
- Perform the Jigsaw Puzzle task with 3x3(or possibly 4x4) grid

Thank you for your attention!