organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tetraethylammonium 2-[bis(4-hydroxy-phenyl)methyl]benzoate

Xiaofei Li, a* Yan Tong and Ching Kheng Quahb

^aCollege of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arphylee@126.com

Received 30 September 2011; accepted 27 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.051; wR factor = 0.136; data-to-parameter ratio = 13.0.

In the title compound, $C_8H_{20}N^+ \cdot C_{20}H_{15}O_4^-$, the benzoate anions are connected by multiple intermolecular $O-H\cdots O$ hydrogen bonds, forming columns propagating along [1 $\overline{10}$]. The hydrogen bonding can be described by two rings with $R_2^2(22)$ and $R_4^2(28)$ motifs. In the crystal, the tetraethylammonium cations are situated between these columns and are linked to them $via\ C-H\cdots O$ interactions.

Related literature

Molecules possessing multiple donors or acceptors have long been used to construct different framework structures, which could interpenetrate and/or include guest molecules, see: Batten *et al.* (2000); Liu *et al.* (2001).

Experimental

Crystal data

$$C_8H_{20}N^+ \cdot C_{20}H_{15}O_4^ a = 9.559 (2) \text{ Å}$$

 $M_r = 449.57$ $b = 10.406 (2) \text{ Å}$
Triclinic, $P\overline{1}$ $c = 14.087 (3) \text{ Å}$

 $\begin{array}{lll} \alpha = 83.390 \ (3)^{\circ} & \text{Mo } K\alpha \ \text{radiation} \\ \beta = 78.711 \ (3)^{\circ} & \mu = 0.08 \ \text{mm}^{-1} \\ \gamma = 63.463 \ (3)^{\circ} & T = 298 \ \text{K} \\ V = 1228.7 \ (4) \ \mathring{\text{A}}^3 & 0.28 \times 0.16 \times 0.16 \ \text{mm} \\ Z = 2 \end{array}$

Data collection

Bruker APEXII diffractometer 5826 measured reflections $R_{\rm int} = 0.027$ 3869 independent reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.051 & 298 \ {\rm parameters} \\ WR(F^2) = 0.136 & {\rm H-atom\ parameters\ constrained} \\ S = 1.04 & \Delta\rho_{\rm max} = 0.22\ {\rm e\ \mathring{A}}^{-3} \\ 3869\ {\rm reflections} & \Delta\rho_{\rm min} = -0.22\ {\rm e\ \mathring{A}}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1-H1A···O3i	0.82	1.87	2.689 (2)	177
$O2-H2A\cdots O3^{ii}$	0.82	1.87	2.686 (2)	176
$C1-H1B\cdots O4$	0.98	2.23	3.005 (3)	135
$C21-H21A\cdots O2^{iii}$	0.97	2.56	3.467 (4)	156
$C21-H21B\cdots O4^{iv}$	0.97	2.39	3.350 (3)	171
C25−H25 <i>B</i> ···O4	0.97	2.42	3.382 (3)	172
$C27-H27B\cdots O1^{v}$	0.97	2.53	3.458 (4)	160

Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y-1, z; (iii) x-1, y+1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Henan University of Traditional Medicine for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2325).

References

doi:10.1107/S1600536811045016

Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (2000). Chem. Commun. pp. 1095–1096.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Liu, R., Mok, K. F. & Valiyaveettil, S. (2001). New J. Chem. 25, 890–892.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

03148 Li et al.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3148 [doi:10.1107/S1600536811045016]

Tetraethylammonium 2-[bis(4-hydroxyphenyl)methyl]benzoate

X. Li, Y. Tong and C. K. Quah

Comment

Functional groups containing both hydrogen bond donors and acceptors (OH, CO₂H) can be used to construct open framework structures, being connected via the various O—H···O hydrogen bonds (Batten *et al.*, 2000; Liu *et al.*, 2001).

In the title compound, the T-shaped 2-(bis(4-hydroxyphenyl)methyl)benzoate anions are connected by four intermolecular O-H···O hydrogen bonds, two hydroxyl groups act as donors, while the carboxyl groups act as acceptor, forming infinite columns propagating along [1 $\bar{1}$ 0], and two different rectangular grids with ring motifs A [$R_2^2(22)$] and B [$R_4^2(28)$], as shown in Fig. 2.

In the crystal the tetraethylammonium cations are situated between these columns, and are linked to the carbonyl O atoms of the anions via C-H···O interactions (Table 1).

Experimental

2-(bis(4-hydroxyphenyl)methyl)benzoic acid (0.25 mmol, 80.0 mg) was dissolved in a water-ethanol (1 ml / 2 ml v/v) mixture. Tetraethylammonium hydroxide (0.3 mmol, 189.4 mg) was then added. The mixture was set aside for several weeks after which colourless crystals were isolated.

Refinement

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), CH₃, CH₂ and CH(methine) H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}$ (parent C-atom), where k = 1.5 for CH₃ H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1. A view of the molecular streuture of the title compound, showng the numbering scheme and the displacement ellipsoids drawn at the 30% probability level.

Fig. 2. A view of the hydrogen bonded ladder-like column of 2-(bis(4-hydroxyphenyl)methyl)benzoate anions propagating along [1\overline{10}]. The O-H···O hydrogen bonds are shown as dashed lines; C-bound H atoms have been omitted for clarity.

Fig. 3. A view of the crystal packing of the title compound. The O-H···O hydrogen bonds are shown as dashed lines; C-bound H atoms have been omitted for clarity.

Tetraethylammonium 2-[bis(4-hydroxyphenyl)methyl]benzoate

Crystal data

Z = 2 $C_8H_{20}N^+ \cdot C_{20}H_{15}O_4^-$

 $M_r = 449.57$ F(000) = 484

 $D_{\rm x} = 1.215 \; {\rm Mg \; m}^{-3}$ Triclinic, $P\overline{1}$

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 1

a = 9.559 (2) Å Cell parameters from 5859 reflections

b = 10.406 (2) Å $\theta = 1.5 - 24.5^{\circ}$

c = 14.087 (3) Å $\mu = 0.08 \text{ mm}^{-1}$ $\alpha = 83.390 (3)^{\circ}$ T = 298 K

 $\beta = 78.711 (3)^{\circ}$ Block, colourless

 $\gamma = 63.463 (3)^{\circ}$ $0.28\times0.16\times0.16~mm$

 $V = 1228.7 (4) \text{ Å}^3$

Data collection

Bruker APEXII 2847 reflections with $I > 2\sigma(I)$ diffractometer

 $R_{\rm int} = 0.027$ Radiation source: fine-focus sealed tube

 $\theta_{\text{max}} = 24.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ graphite

ω scans $h = -11 \rightarrow 11$ $k = -12 \rightarrow 11$ 5826 measured reflections

3869 independent reflections $l = -11 \rightarrow 16$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.051$

sites

 $wR(F^2) = 0.136$ H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0673P)^2 + 0.0071P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ 3869 reflections

298 parameters $\Delta \rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$

S = 1.04

0 restraints

$$\Delta \rho_{min} = -0.22 \text{ e Å}^{-3}$$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
O1	0.42741 (18)	0.45947 (17)	-0.14441 (11)	0.0574 (6)
O2	0.67184 (17)	-0.29161 (15)	0.38711 (11)	0.0530(5)
O3	-0.24103 (17)	0.47994 (15)	0.27934 (11)	0.0505 (5)
O4	-0.03207 (17)	0.36798 (16)	0.35336 (11)	0.0489 (5)
C1	0.2330 (2)	0.1947 (2)	0.19965 (15)	0.0363 (7)
C2	0.2886 (2)	0.2563 (2)	0.10391 (15)	0.0385 (7)
C3	0.1892 (2)	0.3242 (2)	0.03587 (15)	0.0414 (7)
C4	0.2324 (2)	0.3936 (2)	-0.04585 (16)	0.0432 (7)
C5	0.3781 (2)	0.3957 (2)	-0.06298 (16)	0.0435 (7)
C6	0.4786 (3)	0.3305 (3)	0.00415 (17)	0.0511 (8)
C7	0.4327 (3)	0.2632 (2)	0.08658 (17)	0.0490 (8)
C8	0.3606 (2)	0.0671 (2)	0.24511 (14)	0.0361 (7)
C9	0.4846 (2)	-0.0451 (2)	0.19308 (16)	0.0434 (7)
C10	0.5900(2)	-0.1630 (2)	0.23912 (16)	0.0436 (7)
C11	0.5743 (2)	-0.1733 (2)	0.33854 (16)	0.0390(7)
C12	0.4550(2)	-0.0610(2)	0.39170 (16)	0.0404 (7)
C13	0.3495 (2)	0.0567 (2)	0.34502 (15)	0.0391 (7)
C14	0.0965 (2)	0.1597 (2)	0.19114 (14)	0.0377 (7)
C15	0.1287 (3)	0.0446 (2)	0.13518 (16)	0.0484 (8)
C16	0.0113 (3)	0.0096 (3)	0.12106 (18)	0.0572 (9)
C17	-0.1424 (3)	0.0908 (3)	0.1623 (2)	0.0630 (10)
C18	-0.1783 (3)	0.2060(3)	0.21589 (19)	0.0537 (9)
C19	-0.0616 (2)	0.2432 (2)	0.23203 (15)	0.0387 (7)
C20	-0.1123 (2)	0.3721 (2)	0.29301 (15)	0.0381 (7)
N1	0.17485 (19)	0.65104 (18)	0.35963 (12)	0.0416 (6)
C21	0.0102(3)	0.7361 (3)	0.41381 (18)	0.0624 (9)
C22	-0.0585 (4)	0.8960(3)	0.3953 (2)	0.1051 (12)
C23	0.2909(3)	0.7004(3)	0.38232 (17)	0.0513 (8)
C24	0.3070(3)	0.6899 (3)	0.48754 (18)	0.0679 (11)
C25	0.2216 (3)	0.4949 (2)	0.39128 (18)	0.0556 (9)
C26	0.3855 (3)	0.3920(3)	0.3464 (2)	0.0769 (11)
C27	0.1787 (3)	0.6721 (3)	0.25098 (15)	0.0500(8)

C28	0.0662(3)	0.6351 (3)	0.21141 (19)	0.0690 (11)
H1A	0.36870	0.47640	-0.18420	0.0860*
H1B	0.18880	0.27200	0.24590	0.0440*
H2A	0.70070	-0.36350	0.35600	0.0790*
H3A	0.09070	0.32290	0.04550	0.0500*
H4A	0.16250	0.43930	-0.08970	0.0520*
H6A	0.57710	0.33180	-0.00590	0.0610*
H7A	0.50100	0.22120	0.13170	0.0590*
H9A	0.49710	-0.04080	0.12580	0.0520*
H10A	0.67250	-0.23640	0.20250	0.0520*
H12A	0.44540	-0.06420	0.45880	0.0480*
H13A	0.26870	0.13090	0.38190	0.0470*
H15A	0.23260	-0.01030	0.10650	0.0580*
H16A	0.03620	-0.06830	0.08390	0.0690*
H17A	-0.22220	0.06740	0.15370	0.0760*
H18A	-0.28330	0.26130	0.24240	0.0650*
H21A	-0.06030	0.70140	0.39680	0.0750*
H21B	0.01250	0.71680	0.48260	0.0750*
H22A	-0.16320	0.94040	0.43190	0.1570*
H22B	-0.06350	0.91700	0.32750	0.1570*
H22C	0.00740	0.93270	0.41450	0.1570*
H23A	0.39440	0.64380	0.34570	0.0620*
H23B	0.25880	0.79970	0.35990	0.0620*
H24A	0.38220	0.72430	0.49470	0.1020*
H24B	0.34310	0.59150	0.51020	0.1020*
H24C	0.20600	0.74720	0.52470	0.1020*
H25A	0.21470	0.48670	0.46120	0.0670*
H25B	0.14560	0.46620	0.37510	0.0670*
H26A	0.40620	0.29600	0.37030	0.1150*
H26B	0.46210	0.41780	0.36320	0.1150*
H26C	0.39280	0.39660	0.27730	0.1150*
H27A	0.15510	0.77180	0.23370	0.0600*
H27B	0.28560	0.61380	0.21930	0.0600*
H28A	0.07730	0.65210	0.14250	0.1040*
H28B	-0.04060	0.69410	0.24050	0.1040*
H28C	0.09030	0.53570	0.22600	0.1040*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0546 (10)	0.0724 (11)	0.0522 (10)	-0.0367 (9)	-0.0148 (8)	0.0210(8)
O2	0.0531 (9)	0.0440 (9)	0.0541 (10)	-0.0103 (7)	-0.0238 (8)	0.0070(7)
O3	0.0453 (9)	0.0406 (8)	0.0523 (10)	-0.0056 (7)	-0.0148 (7)	0.0048 (7)
O4	0.0418 (9)	0.0579 (10)	0.0421 (9)	-0.0154 (7)	-0.0106 (7)	-0.0033 (7)
C1	0.0343 (11)	0.0336 (11)	0.0370 (12)	-0.0107 (9)	-0.0068 (9)	-0.0021 (9)
C2	0.0330 (11)	0.0359 (11)	0.0377 (12)	-0.0066 (9)	-0.0075 (9)	-0.0005 (9)
C3	0.0300 (11)	0.0458 (12)	0.0437 (13)	-0.0125 (10)	-0.0079 (9)	0.0025 (10)
C4	0.0356 (12)	0.0465 (13)	0.0405 (13)	-0.0115 (10)	-0.0101 (10)	0.0043 (10)

C5	0.0424 (13)	0.0421 (12)	0.0430 (13)	-0.0172 (10)	-0.0068 (10)	0.0051 (10)
C6	0.0406 (13)	0.0623 (15)	0.0574 (15)	-0.0287 (12)	-0.0167 (11)	0.0135 (12)
C7	0.0442 (13)	0.0556 (14)	0.0476 (14)	-0.0198 (11)	-0.0198 (11)	0.0102 (11)
C8	0.0330 (11)	0.0371 (11)	0.0350 (12)	-0.0119 (9)	-0.0070(9)	-0.0006(9)
C9	0.0434 (12)	0.0471 (13)	0.0335 (12)	-0.0139 (11)	-0.0069 (10)	-0.0019 (10)
C10	0.0363 (12)	0.0415 (12)	0.0440 (14)	-0.0089 (10)	-0.0050 (10)	-0.0041 (10)
C11	0.0340 (11)	0.0385 (12)	0.0471 (14)	-0.0158 (10)	-0.0161 (10)	0.0053 (10)
C12	0.0487 (13)	0.0422 (12)	0.0342 (12)	-0.0216 (10)	-0.0112 (10)	-0.0002(9)
C13	0.0391 (12)	0.0369 (11)	0.0371 (13)	-0.0126 (10)	-0.0048 (9)	-0.0043 (9)
C14	0.0408 (12)	0.0356 (11)	0.0351 (12)	-0.0147 (9)	-0.0124 (9)	0.0074 (9)
C15	0.0487 (14)	0.0416 (13)	0.0503 (14)	-0.0130 (11)	-0.0142 (11)	-0.0020 (11)
C16	0.0728 (18)	0.0464 (14)	0.0590 (16)	-0.0242 (14)	-0.0330 (14)	0.0044 (12)
C17	0.0617 (17)	0.0517 (15)	0.092 (2)	-0.0315 (14)	-0.0395 (15)	0.0111 (14)
C18	0.0401 (13)	0.0477 (14)	0.0757 (18)	-0.0191 (11)	-0.0198 (12)	0.0072 (13)
C19	0.0393 (12)	0.0364 (11)	0.0390 (12)	-0.0153 (10)	-0.0130 (9)	0.0102 (9)
C20	0.0336 (11)	0.0407 (12)	0.0334 (12)	-0.0138 (10)	-0.0029 (9)	0.0094 (9)
N1	0.0383 (10)	0.0495 (11)	0.0395 (11)	-0.0231 (9)	-0.0074 (8)	0.0076 (8)
C21	0.0437 (14)	0.091 (2)	0.0435 (14)	-0.0243 (13)	-0.0033 (11)	0.0037 (13)
C22	0.094 (2)	0.086 (2)	0.074 (2)	0.0121 (19)	-0.0028 (18)	-0.0091 (18)
C23	0.0548 (14)	0.0603 (15)	0.0504 (15)	-0.0364 (12)	-0.0098 (11)	0.0056 (11)
C24	0.0784 (19)	0.0003 (13)	0.0543 (17)	-0.0523 (17)	-0.0235 (14)	0.0101 (14)
C25	0.0663 (16)	0.0576 (15)	0.0610 (16)	-0.0412 (13)	-0.0272 (13)	0.0101 (14)
C26	0.085 (2)	0.0370 (13)	0.0010 (10)	-0.0190 (15)	-0.0402 (18)	0.0133 (12)
C20 C27		0.0561 (14)				
C27	0.0532 (14) 0.088 (2)	0.0361 (14)	0.0375 (13) 0.0538 (16)	-0.0234 (12) -0.0460 (17)	-0.0059 (11) -0.0268 (15)	0.0061 (11) 0.0088 (14)
C26	0.088 (2)	0.0799 (19)	0.0338 (10)	0.0400 (17)	0.0208 (13)	0.0088 (14)
Geometric par	rameters (Å °)					
_	uniciers (11,)	1.2(0.(2)	06	TT ()	0.00	0.0
O1—C5		1.368 (3)	C6—]		0.930	
O2—C11		1.372 (3)	C7—I		0.930	
O3—C20		1.273 (3)	C9—]		0.930	
O4—C20		1.237 (3)		-H10A	0.930	
O1—H1A		0.8200		-H12A	0.930	
O2—H2A		0.8200		-H13A	0.930	
N1—C27		1.517 (3)		-H15A	0.930	
N1—C21		1.511 (3)		-H16A	0.930	
N1—C23		1.511 (4)	C17—	-H17A	0.930	
N1—C25		1.517 (3)	C18—	-H18A	0.930	00
C1—C2		1.529 (3)	C21—	-C22	1.503	3 (4)
C1—C14		1.532 (3)	C23—	-C24	1.50	7 (4)
C1—C8		1.524 (3)	C25—	-C26	1.50	7 (4)
C2—C7		1.384 (4)	C27—	-C28	1.507 (4)	
C2—C3		1.386 (3)	C21—	-H21A	0.970	00
C3—C4		1.381 (3)	C21—	-H21B	0.970	00
C4—C5		1.376 (3)	C22—	-H22A	0.960	00
C5—C6		1.380 (4)	C22—	-H22B	0.960	00
C6—C7		1.385 (4)	C22—	-H22C	0.960	00
C8—C13		1.386 (3)	C23—	-H23A	0.970	00
C8—C9		1.388 (3)	C23—	-H23B	0.970	00

C9—C10	1.382 (3)	C24—H24A	0.9600
C10—C11	1.376 (3)	C24—H24B	0.9600
C11—C12	1.380 (3)	C24—H24C	0.9600
C12—C13	1.386 (3)	C25—H25A	0.9700
C14—C15	1.394 (3)	C25—H25B	0.9700
C14—C19	1.404 (3)	C26—H26A	0.9600
C15—C16	1.379 (4)	C26—H26B	0.9600
C16—C17	1.371 (4)	C26—H26C	0.9600
C17—C18	1.365 (4)	C27—H27A	0.9700
C18—C19	1.397 (4)	C27—H27B	0.9700
C19—C20	1.514 (3)	C28—H28A	0.9600
C1—H1B	0.9800	C28—H28B	0.9600
С3—Н3А	0.9300	C28—H28C	0.9600
C4—H4A	0.9300		
C5—O1—H1A	109.00	C11—C12—H12A	120.00
C11—O2—H2A	109.00	C8—C13—H13A	119.00
C23—N1—C27	105.99 (19)	C12—C13—H13A	119.00
C25—N1—C27	111.37 (18)	C12—C15—H15A C14—C15—H15A	119.00
C21—N1—C27	111.27 (19)	C16—C15—H15A	119.00
C21—N1—C23	111.18 (19)	C17—C16—H16A	120.00
C21—N1—C25	106.47 (19)	C15—C16—H16A	120.00
C23—N1—C25	110.64 (19)	C16—C17—H17A	120.00
C2—C1—C14	111.18 (17)	C18—C17—H17A	120.00
C8—C1—C14	110.30 (16)	C19—C18—H18A	119.00
C2—C1—C8	116.36 (17)	C17—C18—H18A	119.00
C1—C2—C3	121.49 (19)	N1—C21—C22	115.6 (2)
C1—C2—C7	121.35 (19)	N1—C23—C24	115.6 (2)
C3—C2—C7	116.66 (19)	N1—C25—C26	114.6 (2)
C2—C3—C4	121.8 (2)	N1—C27—C28	115.7 (2)
C3—C4—C5	120.6 (2)	N1—C21—H21A	108.00
C4—C5—C6	118.9 (2)	N1—C21—H21B	108.00
01—C5—C6	118.7 (2)	C22—C21—H21A	108.00
O1—C5—C4	122.4 (2)	C22—C21—H21B	108.00
C5—C6—C7	120.0 (3)	H21A—C21—H21B	107.00
C2—C7—C6	122.1 (2)	C21—C22—H22A	110.00
C1—C8—C13	118.85 (17)	C21—C22—H22B	109.00
C9—C8—C13	116.94 (18)	C21—C22—H22C	109.00
C1—C8—C9	124.13 (18)	H22A—C22—H22B	109.00
C8—C9—C10	121.4 (2)	H22A—C22—H22C	110.00
C9—C10—C11	120.82 (19)	H22B—C22—H22C	109.00
O2—C11—C10	122.58 (18)	N1—C23—H23A	108.00
C10—C11—C12	118.84 (19)	N1—C23—H23B	108.00
O2—C11—C12	118.58 (19)	C24—C23—H23A	108.00
C11—C12—C13	120.0 (2)	C24—C23—H23B	108.00
C8—C13—C12	122.01 (19)	H23A—C23—H23B	107.00
C15—C14—C19	118.1 (2)	C23—C24—H24A	109.00
C1—C14—C19	123.21 (17)	C23—C24—H24B	109.00
C1—C14—C15	118.6 (2)	C23—C24—H24C	109.00
C14—C15—C16	122.0 (2)	H24A—C24—H24B	109.00

C15—C16—C17	119.4 (2)	H24A—C24—H24C	109.00
C16—C17—C18	120.0 (3)	H24B—C24—H24C	110.00
C17—C18—C19	121.8 (3)	N1—C25—H25A	109.00
C14—C19—C18	118.6 (2)	N1—C25—H25B	109.00
C14—C19—C20	123.22 (19)	C26—C25—H25A	109.00
C18—C19—C20	118.2 (2)	C26—C25—H25B	109.00
O4—C20—C19	120.31 (18)	H25A—C25—H25B	107.00
O3—C20—O4	123.56 (18)	C25—C26—H26A	109.00
O3—C20—C19	116.11 (18)	C25—C26—H26B	109.00
C8—C1—H1B	106.00	C25—C26—H26C	110.00
C14—C1—H1B	106.00	H26A—C26—H26B	109.00
C2—C1—H1B	106.00	H26A—C26—H26C	110.00
C4—C3—H3A	119.00	H26B—C26—H26C	109.00
C2—C3—H3A	119.00	N1—C27—H27A	108.00
C3—C4—H4A	120.00	N1—C27—H27B	108.00
C5—C4—H4A	120.00	C28—C27—H27A	108.00
C5—C6—H6A	120.00	C28—C27—H27B	108.00
C7—C6—H6A	120.00	H27A—C27—H27B	107.00
C6—C7—H7A	119.00	C27—C28—H28A	109.00
C2—C7—H7A	119.00	C27—C28—H28B	109.00
C8—C9—H9A	119.00	C27—C28—H28C	109.00
C10—C9—H9A	119.00	H28A—C28—H28B	109.00
C9—C10—H10A	120.00	H28A—C28—H28C	110.00
C11—C10—H10A	120.00	H28B—C28—H28C	110.00
C13—C12—H12A	120.00		
C21—N1—C25—C26	-178.7 (2)	C3—C4—C5—O1	178.00 (18)
C23—N1—C21—C22	57.8 (3)	O1—C5—C6—C7	-179.0 (2)
C25—N1—C21—C22	178.4 (2)	C4—C5—C6—C7	0.7 (3)
C27—N1—C21—C22	-60.1 (3)	C5—C6—C7—C2	1.2 (4)
C21—N1—C23—C24	58.7 (3)	C1—C8—C9—C10	-175.2 (2)
C25—N1—C23—C24	-59.4 (3)	C9—C8—C13—C12	-1.1 (3)
C27—N1—C23—C24	179.8 (2)	C13—C8—C9—C10	1.3 (3)
C21—N1—C27—C28	-56.7 (3)	C1—C8—C13—C12	175.57 (19)
C23—N1—C25—C26	-57.8 (3)	C8—C9—C10—C11	0.5 (3)
C27—N1—C25—C26	59.8 (3)	C9—C10—C11—O2	176.8 (2)
C23—N1—C27—C28	-177.7 (2)	C9—C10—C11—C12	-2.6 (3)
C25—N1—C27—C28	61.9 (3)	C10—C11—C12—C13	2.7 (3)
C8—C1—C2—C3	151.70 (19)	O2—C11—C12—C13	-176.68 (19)
C2—C1—C8—C13	143.2 (2)	C11—C12—C13—C8	-0.9 (3)
C14—C1—C8—C9	87.4 (2)	C15—C14—C19—C18	0.9 (3)
C14—C1—C8—C13	-89.0 (2)	C15—C14—C19—C20	-179.14 (19)
C8—C1—C2—C7	-36.7 (3)	C1—C14—C19—C18	176.8 (2)
C14—C1—C2—C3	24.3 (2)	C1—C14—C15—C16	-177.6 (2)
C14—C1—C2—C7	-164.05 (18)	C19—C14—C15—C16	-1.4 (3)
C2—C1—C8—C9	-40.4 (3)	C1—C14—C19—C20	-3.2 (3)
C2—C1—C14—C15	70.1 (2)	C14—C15—C16—C17	0.7 (4)
C2—C1—C14—C19	-105.9 (2)	C15—C16—C17—C18	0.7 (4)
C8—C1—C14—C15	103.7 (4)	C13 C10 C1/—C10	U./ (T)
C8—C1—C14—C19	-60.6 (2) 123.5 (2)	C16—C17—C18—C19 C17—C18—C19—C14	-1.2 (4) 0.4 (4)

C1—C2—C7—C6	-173.9 (2)	C17—C18—C19—C20	-179.6 (2)
C3—C2—C7—C6	-1.9 (3)	C18—C19—C20—O3	-39.8(3)
C7—C2—C3—C4	0.9 (3)	C18—C19—C20—O4	138.7 (2)
C1—C2—C3—C4	172.88 (18)	C14—C19—C20—O4	-41.3 (3)
C2—C3—C4—C5	0.9 (3)	C14—C19—C20—O3	140.2 (2)
C3—C4—C5—C6	-1.7 (3)		

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H1A···O3 ⁱ	0.82	1.87	2.689 (2)	177
O2—H2A···O3 ⁱⁱ	0.82	1.87	2.686 (2)	176
C1—H1B···O4	0.98	2.23	3.005 (3)	135
C21—H21A···O2 ⁱⁱⁱ	0.97	2.56	3.467 (4)	156
C21—H21B···O4 ^{iv}	0.97	2.39	3.350(3)	171
C25—H25B···O4	0.97	2.42	3.382 (3)	172
C27—H27B···O1 ^v	0.97	2.53	3.458 (4)	160

Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y-1, z; (iii) x-1, y+1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z.

Fig. 1

Fig. 2

Fig. 3

