The Bootstrap

The bootstrap is a computer-intensive method for estimating measures of uncertainty in problems for which no analytical solution is available.

There are technically two classes of bootstrap methods: parametric and nonparametric.

The nonparametric bootstrap uses two main ideas:

- The empirical CDF
- Monte Carlo integration

Monte Carlo integration is based on the following approximation:

$$E[h(Y)] = \int h(y)dF_Y(y)$$

$$\approx \frac{1}{B} \sum_{j=1}^{B} h(Y_j)$$

where $Y_1, \ldots, Y_B \stackrel{iid}{\sim} F_Y$. Note that if $E[|h(Y)|] < \infty$,

$$\frac{1}{B} \sum_{j=1}^{B} h(Y_j) \stackrel{as}{\to} E[h(Y)]$$

as $B \to \infty$. Typically we have control over B, so we can make the approximation arbitrarily good.

A simple example: Use Monte Carlo integration to approximate

$$\int_{-\infty}^{\infty} \sin^2(x) e^{-x^2} dx$$

Solution: We can write this as $\sqrt{2\pi} \int_{-\infty}^{\infty} \sin^2(x) f(x) dx$, where f(x) is the PDF of a N(0,1) r.v. Therefore, we can

- 1. Draw $Y_1, \ldots, Y_B \stackrel{iid}{\sim} N(0,1)$.
 - > B < -10000; y < -rnorm(B)
- 2. Approximate $\sqrt{2\pi} \int_{-\infty}^{\infty} \sin^2(x) f(x) dx \approx \frac{\sqrt{2\pi}}{B} \sum_{j=1}^{B} \sin^2(Y_j)$.
 - > sqrt(2*pi) * mean(sin(y)^2)
 [1] 1.074098

A more complicated example: Use Monte Carlo integration to approximate $V_{\lambda}[median(X_1,\ldots,X_n)]$ when $X_1,\ldots,X_n \stackrel{iid}{\sim} Exp(\lambda)$.

This is more complicated in two ways:

- 1. Unlike an analytical calculation, on the computer we need particular values of n and λ . To see how $V_{\lambda}[median(X_1,\ldots,X_n)]$ changes with n and λ , we need to use Monte Carlo integration many times for different combinations.
- 2. For each combination, we need to sample B times from the sampling distribution of $median(X_1,\ldots,X_n)$. That is, for each $j=1,\ldots,B$, we need to sample $X_1,\ldots,X_n\stackrel{iid}{\sim} Exp(\lambda)$ and calculate the median. Don't confuse n and B: n is the sample size, while B is the number of MC samples.

One combination: Let n=10 and $\lambda=5$. Then

• Draw $Y_1, \ldots, Y_B \stackrel{iid}{\sim} F_Y$, where F_Y is the CDF of $median(X_1, \ldots, X_n)$.

• Approximate $V_{\lambda}[median(X_1,\ldots,X_n)] \approx \frac{1}{B} \sum_{j=1}^{B} (Y_j - \bar{Y})^2$.

```
> var(y)
[1] 2.402400
```

Back to the bootstrap...

Suppose we have data X_1, \ldots, X_n and we compute statistic $T_n = g(X_1, \ldots, X_n)$.

It's not always possible to calculate $V_F[T_n]$ analytically, which is where the bootstrap comes in.

If we knew F, we could use MC integration to approximate $V_F[T_n]$. However, we don't in practice, so we make an initial approximation of F with the empirical CDF \hat{F}_n .

ECDF; MC integration; depends on
$$n$$
 depends on B $V_F[T_n] pprox V_{\hat{F}_n}(T_n) pprox \widehat{V}_{\hat{F}_n}(T_n)$

Sampling from \hat{F}_n is easy: just draw one observation at random from X_1, \ldots, X_n . Repeated sampling is "with replacement."

The algorithm:

- 1. Repeat the following B times to obtain $T_{n,1}^*, \ldots, T_{n,B}^*$, an iid sample from the sampling distribution for T_n implied by \hat{F}_n .
 - (a) Draw $X_1^*, \ldots, X_n^* \sim \hat{F}_n$.
 - (b) Compute $T_n^* = g(X_1^*, \dots, X_n^*)$.
- 2. Use this sample to approximate $V_{\hat{F}_n}(T_n)$ by MC integration. That is, let

$$v_{boot} = \hat{V}_{\hat{F}_n}(T_n) = \frac{1}{B} \sum_{j=1}^{B} \left(T_{n,j}^* - \frac{1}{B} \sum_{k=1}^{B} T_{n,k}^* \right)^2$$

Confidence intervals can also be constructed from the bootstrap samples.

Method 1: Normal-based interval

$$C_n = T_n \pm z_{\alpha/2} \hat{se}_{boot}$$

where $\widehat{se}_{boot} = \sqrt{v_{boot}}$; this only works well if the distribution of T_n is close to Normal. Note that asymptotic normality of T_n is a property involving n, not B.

Method 2: Quantile intervals

$$C_n = \left(T_{\alpha/2}^*, T_{1-\alpha/2}^*\right)$$

where T_{β}^* is the β quantile of the bootstrap sample $T_{n,1}^*, \ldots, T_{n,B}^*$.

Method 3: Pivotal intervals

In parametric statistics, a pivot is a function $R(X_1, \ldots, X_n, \theta)$ whose distribution doesn't depend on θ . This is useful because we can construct a confidence interval for $R_n = R(X_1, \ldots, X_n, \theta)$ without knowing θ and then manipulate it to construct a confidence interval for θ .

In nonparametric statistics, we typically can't find a quantity that is exactly pivotal, i.e., whose distribution doesn't depend on the unknown F.

If $\theta = T(F)$ is a location parameter, then $R_n = \hat{\theta}_n - \theta$ is approximately pivotal. If we knew the CDF H of R_n , we could construct an exact $1 - \alpha$ confidence interval for θ of (a,b), where

$$a = \hat{\theta}_n - H^{-1} (1 - \alpha/2)$$
$$b = \hat{\theta}_n - H^{-1} (\alpha/2)$$

Since we don't know H, we estimate it using the bootstrap samples.

$$\hat{H}(r) = \frac{1}{B} \sum_{j=1}^{B} I(R_{n,j}^* \le r)$$

where $R_{n,j}^* = \hat{\theta}_{n,j}^* - \hat{\theta}_n$. In other words, we form the empirical CDF of H using the bootstrap samples of the pivot. Therefore, the plug-in estimates of $H^{-1}(1-\alpha/2)$ and $H^{-1}(\alpha/2)$ are just the $1-\alpha/2$ and $\alpha/2$ sample quantiles of these samples.

This gives a $1-\alpha$ bootstrap pivotal interval of

$$C_n = \left(2\hat{\theta}_n - \hat{\theta}_{1-\alpha/2}^*, 2\hat{\theta}_n - \hat{\theta}_{\alpha/2}^*\right)$$

Parametric Inference

A parametric model has the form

$$\mathcal{F} = \{ F(x; \theta) : \theta \in \Theta \}$$

where $\Theta \subseteq \mathbb{R}^k$ is the parameter space.

We typically choose a class \mathcal{F} based on knowledge about the particular problem. We might say we're making certain assumptions about the data generating mechanism. It's good practice when using a parametric model to look for violations of these assumptions.

We'll begin with two methods for constructing estimators of θ : the method of moments and maximum likelihood estimation.

Suppose $\theta = (\theta_1, \dots, \theta_k)$. For $j = 1, \dots, k$, define the j^{th} moment

$$\alpha_j \equiv \alpha_j(\theta) = E_{\theta}[X^j] = \int x^j dF_{\theta}(x)$$

and the j^{th} sample moment $\hat{\alpha}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$.

The method of moments estimator $\hat{\theta}_n$ is defined to be the value of θ s.t.

$$\alpha_1(\hat{\theta}_n) = \hat{\alpha}_1$$

$$\alpha_2(\hat{\theta}_n) = \hat{\alpha}_2$$

$$\vdots : \vdots$$

$$\alpha_k(\hat{\theta}_n) = \hat{\alpha}_k$$

The maximum likelihood estimator (MLE) is obtained by maximizing the likelihood function

$$\mathcal{L}_n(\theta) = f(X_1, \dots, X_n; \theta)$$

$$= \prod_{i=1}^n f(X_i; \theta) \text{ if the data are independent}$$

That is, the likelihood is just the joint density of the data, but viewed as a function of θ .

It's often easier to work with the log-likelihood function

$$\ell_n(\theta) = \log \mathcal{L}_n(\theta) = \sum_{i=1}^n \log f(X_i; \theta)$$

If the log-likelihood is differentiable with respect to θ , possible candidates for the MLE are those in the interior of Θ that solve

$$\frac{\partial}{\partial \theta_j} \ell_n(\theta) = 0, \quad j = 1, \dots, k$$

We still need to check that we've found the global maximum. Also note that if the maximum occurs on the boundary of Θ , the first derivative may not be zero.

It's not always possible to maximize the likelihood analytically, and in these cases we turn to numerical maximization methods.

Examples:

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\theta, 1)$. Find the MLE for θ .
- Now solve the same problem, but with the restriction $\Theta = [0, \infty)$.
- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Unif(0, \theta)$. Find the MLE for θ .