How does Continual Learning affect FLAVA?

Presented by Jatin Karthik (313301)

Supervisor:

Dr. Benny Stein

27 July 2023

Supervisor:

Prof. Dr. Niels Landwehr

Dr. Ujjwal

Outline

- 1. Introduction and Background
- 2. FLAVA Architecture
- 3. Motivation and Problem Formulation
- 4. Related work and state-of-the-art
- 5. Proposed Approach
- 6. Data Foundation
- 7. Evaluation Metrics
- 8. Timeline and goals

Introduction

Foundation Models

- → Models trained on a broad set of unlabeled data that can be used for different tasks, with minimal fine-tuning are termed as foundation models [1].
- → Since they are trained on plethora of data, used for many applications.

Figure 1: Basic Layout of Foundational model (Source [1])

Continual Learning

One Task & Data available at the same time.

Multiple Tasks

- Data arrives incrementally
 - Goal: all tasks

- Multiple Tasks
- Data available at the same time
- Goal: all tasks

- Multiple Tasks
- Data arrives incrementally
- Goal: last task

Continual Learning Settings

Tas	sk 5
8	9
first class	second class

Task-IL	With task given, is it the 1 st or 2 nd class? (e.g., 0 or 1)					
Domain-IL	With task unknown, is it a 1 st or 2 nd class? (e.g., in [0, 2, 4, 6, 8] or in [1, 3, 5, 7, 9])					
Class-IL	With task unknown, which digit is it? (i.e., choice from 0 to 9)					

- Task-Incremental Learning (TIL): Tasks have disjoint data label spaces. Task identities are provided in both training and testing.
- Domain-Incremental Learning (DIL):
 Tasks have the same data label space but different input distributions. Task identities are not required.
- Class-Incremental Learning (CIL):
 Tasks have disjoint data label spaces.
 Task identities are only provided in training.

FLAVA Architecture

Figure 2: FLAVA Model Architecture

Foundational Model Comparison

Foundational Models	(Data size on image classification task)	No. of Parameters (all wrt image classification task)	Training Time	Inference Time
CLIP	400M	~ 3.6B	32 epochs on 400M data on ImageNet took 5600 GPU days	
Visual GPT-3		175B+	More than 7500 GPU days	
FLORENCE	900M	893M	10 days to train on 512 NVIDIA-A100 GPUs with 40GB memory per GPU	
FLIP	340M	2B - 12.8B	Similar setup as CLIP takes 2000 GPU days	
FLAVA	70M	350M	Less than CLIP and FLIP but exact time not mentioned	

Motivation

- Continual Learning helps deal with ever evolving data and tackle data drift and catastrophic forgetting.
- With the advent of foundation models, it is quintessential to check how these large models react to new data without forgetting; since retraining them is not feasible and fine tuning them is expensive. Motivation for the topic is to check how FLAVA responds to different CL methods.

Problem Formulation

- Consider FLAVA model architecture as F. Since FLAVA has two encoders i.e F(image) and F(text).
- Suppose we get a sequence of tasks $D=\{D_1, D_2, ..., D_T\} \in \text{Image classification task category data}$
- Then, supposing these tasks D_i are passed to F(image); then how does the task category accuracy or metrics change with and without CL?

Related Work and State-of-the-art work

Related Work and State-of-the-art work

CL with CLIP (Vision Language Model)

- Extensive study of various CL methods on CLIP model. [2]
- CLIP has been evaluated on Zero-shot evaluation. [4]

CL on other Pretrained Models

- Visual Question-Answering (VQA) has been extensively researched on ViLT, VAuLT,
 ALBEF and FLAVA models on mostly Replay based methods. [3]
- Comparative analysis on 4 LLM's like BERT,
 GPT2 etc. on 4 CL methods in 2 incremental
 settings has been studied in [5].

Related Work and State-of-the-art work

CL with CLIP (Vision Language Model)

- Extensive study of various CL methods on CLIP model. [2]
- CLIP has been evaluated on Zero-shot evaluation. [4]

CL on other Pretrained Models

 Visual Question-Answering (VQA) has been extensively researched on ViLT, VAuLT,
 ALBEF and FLAVA models on mostly Replay based methods. [3]

	ViLT		VAuLT		FLAVA			ALBEF				
Model	Acc	BWT	FWT	Acc	BWT	FWT	Acc	BWT	FWT	Acc	BWT	FWT
Sequential	26.82±2.29	-42.49 ± 3.41	-0.05±0.06	26.21±4.79	-42.58 ± 5.64	-0.14±0.24	26.61±2.78	-34.31±2.36	-0.02 ± 0.40	45.71±3.43	-27.13±3.69	9.77±2.83
ER	54.15±1.36	-12.38 ± 1.82	0.03 ± 0.06	51.51±0.91	-12.67 ± 1.07	0.08 ± 0.12	44.52±0.80	-10.53±1.14	-0.11 ± 0.18	60.79±0.54	-9.77 ± 1.02	11.90 ± 2.39
DER	51.42±1.71	-12.56 ± 1.58	-0.15 ± 0.38	49.35±1.29	-14.86 ± 1.63	-0.15 ± 0.41	44.82±1.09	-10.91 ± 2.75	-0.07 ± 0.16	51.49±2.08	-21.18 ± 2.29	12.48 ± 1.26
DERPP	54.21±1.31	-12.34 ± 1.70	0.00 ± 0.28	51.30±1.03	-13.08 ± 1.12	0.23 ± 0.31	44.52±1.57	-11.30 ± 2.64	-0.06 ± 0.33	59.84±0.97	-10.89 ± 1.27	11.91 ± 3.14
EWC	26.94±2.75	-42.86 ± 3.96	0.03 ± 0.06	25.43±3.79	-43.64 ± 4.02	-0.03±0.60	25.83±4.89	-34.09 ± 5.87	-0.01 ± 0.18	46.57±5.82	-27.67 ± 7.07	9.62 ± 3.53

Figure 4: Table shows comparison of different VLMs on several CL methods showing scope of experimentation (Source[3])

Proposed Approach

Figure 4: Proposed Approach

Proposed Approach

Data Foundation

Datasets that I intend to use are splitMNIST, splitCIFAR10, splitCIFAR100 and CUB200.

splitCIFAR10-: the suggested train and test split, where each category has 500 training and 100 test data.

CUB200: CUB200 contains 5594 training (~30 per category) and 6194 test images for 200 different bird species.

Reasons:

- Most of CL literature use these datasets for comparison and they are open source.
- This would help create a level ground while evaluating results. Therefore, we can compare FLAVA on these datasets against FLAVA with CL.

- 1. UT- Accuracy: Updated model accuracy via CL method's accuracy.
- 2. Forgetting measure: Here, $a_{j,i}$ is the performance of task t_i after training on task t_j .

$$F_{\mathcal{T}} = \frac{1}{\mathcal{T} - 1} \sum_{i=1}^{\mathcal{T} - 1} f_i^{\mathcal{T}}, \qquad f_i^{\mathcal{T}} = \max_{k \in \{1, \dots, j-1\}} a_{k,i} - a_{j,i} \quad \forall i < j$$

3. Forward Transfer: where b_i = test accuracy for task i at random initialization

$$FT_{\mathcal{T}} = \frac{1}{\mathcal{T} - 1} \sum_{i=2}^{J} a_{i-1,i} - b_i$$

Timeline

Goals

• Compare non-memory based CL methods against memory based ones (on Image Classification Task category only; on different incremental settings).

 Analyzing and comparing these two main categories of CL methods on FLAVA will help us decide upon whether a single frozen component like Image encoder of FLAVA is better performing with or without CL on zero shot evaluation.

• Identify the bottlenecks of CL in VLM's (Vision Language Models) and specify the reasons of failure or success depending on the experiments.

References

- 1. Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.
- 2. Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don't stop learning: Towards continual learning for the clip model. arXiv preprint arXiv:2207.09248, 2022.
- 3. Yao Zhang, Haokun Chen, Ahmed Frikha, Yezi Yang, Denis Krompass, Gengyuan Zhang, Jindong Gu, and Volker Tresp. Cl-crossvqa: A continual learning benchmark for cross-domain visual question answering. arXiv preprint arXiv:2211.10567, 2022.
- 4. Thengane, Vishal, Salman Khan, Munawar Hayat, and Fahad Khan. "Clip model is an efficient continual learner." *arXiv* preprint arXiv:2210.03114 (2022).
- 5. Wu, Tongtong, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari. "Pretrained language model in continual learning: A comparative study." In *International Conference on Learning Representations*. 2021.

Thank You

Appendix slides

Online Learning

- One task
- Data arrives incrementally

More Details about CL methods:

- Regularization based approach: Also known as prior-based approaches, these
 methods prevent significant updates by adding a penalty to encourage the model to
 stay close to its previous version.
 - a. Parameter regularization: parameters important for past tasks are encouraged not to change too much when learning a new task.
 - b. Functional regularization: The input-output mapping learnt previously is encouraged not to change too much at a particular set of inputs (anchor points) aka knowledge distillation.
- Replay based approach: Current training data is complemented with data representative of past observations. The replayed data is sampled usually from a memory buffer or a generative model.

More Details about CL methods:

3. Architecture/ Context based approach: Also known as parameter-isolation methods, this family of algorithm alleviates forgetting by using different subset of parameters for fitting different tasks. A template is learnt for each class, and classification is performed based on which template is most suitable for sample to be classified.

