MATH 425a ASSIGNMENT 2 FALL 2015 Prof. Alexander Due Wednesday September 16.

Rudin Chapter 1 #12, 13, 17, Chapter 2 #3, 4 plus the problems (A) - (D) below:

- (A) Let $A \subset \mathbb{C}$ and $\alpha = \sup\{|z| : z \in A\}$. Show that $\sup\{|z+1| : z \in A\} \le \alpha + 1$.
- (B) Let

$$A_3 = \{(a, b, c) : a, b, c \in \mathbb{Z}\}$$

$$B_3 = \{(a, b, c) \in A_3 : a \neq b \neq c\}$$

$$C_3 = \{\text{all 3-element subsets of } \mathbb{Z}\}.$$

Define $f: B_3 \to C_3$ by $f((a, b, c)) = \{a, b, c\}.$

- (a) Why is B_3 countable?
- (b) Is f 1-to-1? Onto? Explain.
- (c) Show C_3 is countable.
- (d) Show that $C = \{$ all finite subsets of $\mathbb{Z} \}$ is countable.
- (C) Is the intersection of two uncountable sets necessarily uncountable? How about their union? (Prove, or disprove by giving an example. This is short!)
- (D) Let us say that a sequence $\{z_n\}$ of integers terminates if for some $N, z_n = 0$ for all $n \geq N$. Thus for example (1, 3, 0, 3, 0, 0, 0, ...) and (1, 2, 1, 3, 1, 2, 0, 0, 0, ...) both terminate.
 - (a) Show that $A = \{$ all terminating sequences of 0's, 1's, 2's, and 3's $\}$ is countable.
 - (b) Show that $B = \{$ all terminating sequences of integers $\}$ is countable.

HINTS:

- (Ch. 2 problems) Remember two useful facts from lecture (of course that's redundant, ALL facts from lecture are useful): (i) To show $|a| \le b$, show $a \le b$ and $-a \le b$. (ii) To prove inequalities with norms, it is sometimes useful to square both sides, and use $|x|^2 = x \cdot x$.
- (3,4) You may assume problem 2 to do these. Then all you need is that (from lecture and problem 2) the rationals and algebraic numbers are countable, but the reals are not.
- (D)(a) What happens if you fix the termination time? By this I mean the index of the last non-zero entry. For the two examples given in the problem, the termination times are 4 and 6.