GQY 机器人接口文档

(试用版)

新世纪机器人有限公司

郑重声明

本手册内容若有变动,恕不另行通知。未得到新世纪机器人有限公司明确的书面许可,不得为任何目的、以任何形式或手段(电子的或机械的)复制或传播手册的任何部分。本文档可能涉及新世纪机器人有限公司的专利(或正在申请的专利)、商标、版权或其他知识产权,除非得到新世纪机器人有限公司的明确书面许可协议,本文档不授予使用这些专利(或正在申请的专利)、商标、版权或其他知识产权的任何许可协议。本手册提及的其它产品和公司名称均可能是各自所有者的商标。

版权所有©新世纪机器人有限公司

目录

GQY 机器人接口文档	1
版本信息	4
概述	4
目的	
范围	
GQY 机器人开放资源和开发接口	
GQY 机器人开放资源	
GQY 机器人开发接口	
导航 APP 功能介绍	16
定制知识库	17
定制广告	
定制 VIP 识别	19
附录	
 附录 1	19

版本信息

版本	日期	说明
V1. 0	2017-6-8	试用版

概述

GQY 机器人接口文档是介绍 GQY 机器人对客户开放的资源和接口,指导客户如何使用这些接口以及和二次开发配套的软件和文档说明。

目的

本手册目录目的是帮助客户了解和开发 GQY 机器人,方便地使用 GQY 机器人的开放的资源和开发接口。

范围

本手册描述 GQY 机器人开发资源和接口,不描述机器人结构和与开放资源及接口无关的机器人功能。

GQY 机器人开放资源和开发接口

GQY 机器人开放资源

开放资源	说明	开放额度
语音识别	客户程序可以请求语音	无限制
	识别的结果	
语义理解	客户程序可以请求语义	无限制
	理解的结果;客户可以	
	定制知识库	
语音合成	客户程序可以请求发声	无限制
导航控制及其结果的接	客户程序可以请求导航	无限制,导航 APP 的介

受	功能和获悉导航结果;	绍参考附录 1
	结合导航 APP 实现导航	
	到目的地	
表情控制	客户程序可以请求眼睛	眼睛表情(27 种静态
	和嘴部表情	+11 动态),嘴部表情
		(4 种静态+6 动态),
		表情图片具体参考表情
		表格
动作控制	客户程序可以请求单个	2个头部动作,4个手臂
	头部动作和单个手臂动	动作,
	作; 也可以请求整套动	13 套整体动作(卖萌、敬
	作	礼、飞吻等)
运动控制	客户程序可以请求运动	前进/后退、左转/右转
	控制	
超声波感知	机器人具有感知是否有	无限制
	人靠近和离开的能力,	
	客户程序可以请求该服	
	务	
人脸识别	客户程序可以请求人脸	VIP 号, 年龄, 性别, 表情
	识别的结果	和颜值属性
Windows 程序运行环境	在机器人核心服务不受	有限
	影响的情况下,允许客	
	户的 Windows 程序运行	
	在 GQY 机器人的	
	Windows10系统中。	
(选配) 外设访问	客户程序可以请求外设	外设驱动驱动动态库参
	访问如打印机,身份证	考附录1
	和银行卡读卡器	

资源表格

GQY 机器人开发接口

说明:使用该接口需要关闭 CBC 界面程序;中文编码为 utf8。

1. 获得语音识别和语音理解结果接口:

客户程序通过 socket 访问端口 7070, 具体流程图:

客户程序循环接受语音识别和语音理解结果的 json 格式:

```
c 语言例程:
const char *req="{\"from\":1,\"action\": 2}";
char buff[1024];

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, "ok",2,0)//接受确认
```

```
while(1) {
recv(client_socket, buff, 1024, 0);//获得语音识别结果
send(client_socket, "ok",2,0);//发送确认
recv(client_socket, buff, 1024, 0);//获得语义理解结果
send(client_socket, "ok",2,0);//发送确认

/*处理 buff 里面的语音识别结果和语音理解结果 2*/
}
```

2. 访问语音合成接口:

客户程序通过 socket 访问端口 7070, 具体流程图:

客户程序发送语音合成内容的编码为 utf8,格式为: {"content":xxx}

```
c 语言例程:
const char *req="{\"from\":1,\"action\": 1}";
char buff[1024];

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
```

send(client_socket, req,strlen(req), 0);
recv(client_socket,buff,1024,0)//接受确认
const char *ttsB="{\"content\": xxx}" //xxx 是发声的 utf8
send(client_socket, ttsB,strlen(ttsB), 0);
recv(client_socket, buff, 1024, 0);//接受确认。

3. 导航控制接口

客户程序通过 socket 访问端口 7050, 具体流程:

导航命令: {"from": 1,"cmd":73,"subcmd":<导航目标点>}; <导航目标点>为导航点 ID,取值为 0-20,使用导航 APP 设置导航点。

导航命令处理结果格式:

{"from": 3,"cmd":73,"subcmd":<导航目标点>},"resp":<接受否>}, <接受否>取值1表示接受,2表示拒绝。

```
c 语言例程:
const char *req="{\"from\":1,\"action\": 1}";
char buff[1024];

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
```

```
serAddrsound.sin_port = htons(7050);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, buff,1024,0);//接受确认
const char *n1="{\"from\": 1,\"cmd\":73,\"subcmd\":1};//导航到一号地点
send(client_socket, n1,strlen(n1), 0);
recv(client_socket, buff, 1024, 0);//接受导航命令处理结果,查看 resp 键值是接受还是拒绝
```

4. 导航结果接受接口

客户程序通过 socket 访问端口 7050, 具体流程:

导航结果格式:

{"from": 3,"cmd":73,"subcmd":<导航目标点>},"resp":<导航结果>}, <导航结果>取值 1 表示正在进行,2 表示导航失败,3 表示导航成功。

```
c 语言例程:
const char *req="{\"from\":1,\"action\": 2}";
char buff[1024];

SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
```

```
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client_socket, buff,1024,0);//接受确认
recv(client_socket, buff, 1024, 0);//接受导航结果,查看
send(client_socket, n1,strlen(n1), 0);
```

5. 表情控制接口

客户程序通过 socket 访问端口 7050, 具体流程:

表情控制命令格式: {"from": 1,"cmd":102,"subcmd":<表情或者动作 ID>}

<表情或者动作 ID>的取值格式为三个字节组成的整数:

*	-1-	lec.
尚	中	10、

每个字节的取值范围:

低字节: 1-12,可以调用 GQY 定制好的整套表情和动作;和其他字节是互斥,如果该字节为非 0,其他字节必须为 0。

低字节值₽	动作意义↩	4
1€	指示平板↩	₽
2₽	解答问题₽	₽
3₽	卖萌 1↩	₽
4₽	卖萌 2↩	₽
5₽	迎宾₽	4
6€	大屏介绍↩	₽
7₽	请↩	₽
8₽	舞蹈 1₽	₽
9₽	握手↩	4-
10₽	敬礼↩	₽
11₽	摆 pose↩	4-7
12₽	舞蹈 2↩	4

中字节: 1-46,可以调用眼睛表情;该字节可以和高字节做或运算,实现眼睛和嘴巴动作组合。

中字节值	表达意思	眼睛形状
1	welcome	WEL COME
2	桃心	

3	三角	
4	微笑	
5	失落	
6	眼睫毛	
7	圆圈	00
8	横线	
9	Hi	Hi Hi
10	Z	$\left \overline{\mathbf{Z}} \right $
11	波浪	
12	叉	XX
13	电池没电	
14	哭泣	
15	嚎啕大哭	

16	 闪电 	(
17	问号	? ?
18	向右看	
19	向左看	
20	眩晕	
21	音乐1	
22	音乐 2	
23	感叹号	
24	充电	
25	心电图	
26	警示符	
27	byebye	Bye Bye
28	Hi 动画	
29	音乐条动画	
30	心电图动画	
31	波浪线动画	
32	哭泣动画	
33	向左看动画	
34	向右看动画	

35	 桃心动画	
36	byebye 动画	
37	睡觉动画	
38	思考动画	
39	程序更新动画	
40	眨眼睛一次动画	
41	眨眼睛两次动画	
42	眨眼睛两次后熄灭动画	
43	清屏	
44	故障	% %
45	电量不足动画	
46	充电动画	

表情表格

高字节: 1-14, 可以调用嘴巴表情;

高字节值	表达意思	嘴巴形状
1	微笑	
2	失落	
3	口型	
4	横线	
5	清屏	
6	嘴部说话1	
7	嘴部说话 2	
8	嘴部说话3	
9	嘴部说话4	
10	嘴部说话 5	
11	嘴部说话6	
12	嘴部说话7	

表情控制命令结果格式: {"from": 1,"cmd":102,"subcmd":<表情或者动作 ID>,"resp":<接受否>}, <接受否>取值 1 表示接受, 2 表示拒绝。

表情停止命令格式: {"from": 1,"cmd":65,"subcmd":}

表情停止命令结果格式: {"from": 1,"cmd":65,"subcmd":,"resp":<接受否>},

<接受否>取值

1表示接受,2表示拒绝。

C语言例程:

```
让眼睛显示圈圈:
const char *req="{\"from\":1,\"action\": 1}";
char buff[1024];
SOCKET client socket = socket(AF INET, SOCK STREAM, IPPROTO TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin family = AF INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin addr.S un.S addr = inet addr("127.0.0.1")//填写机器人平板 IP
client socket = socket(AF INET, SOCK STREAM, IPPROTO TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
send(client_socket, req,strlen(req), 0);
recv(client socket, "ok", 2,0)//接受确认
send(client_socket, req,strlen(req), 0);
recv(client socket, buff, 1024, 0);//接受确认
const char *n1="{\"from\": 1,\"cmd\":102,\"subcmd\":1792}; //1792 的 16 进制为 0x700
send(client_socket, n1,strlen(n1), 0); //动作控制命令
recv(client_socket, buff, 1024, 0);//接受表情控制命令结果, 查看 resp 键值是接受还是拒绝
const char *n2="{\"from\": 1,\"cmd\":65,\"subcmd\":}; //停止动作命令
send(client_socket, n2,strlen(n2), 0);
recv(client socket, buff, 1024, 0); //停止动作命令结果
```

6. 人脸识别接口

客户程序通过 socket 访问端口 7090,可以获得人脸识别的结果。具体流程:


```
c 语言例程:
char buff[1024];
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in serAddrsound;
serAddrsound.sin_family = AF_INET;
serAddrsound.sin_port = htons(7070);
serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound));
while(1)
{
    recv(client_socket,buff,1024,0);//接受人脸识别结果
    send(client_socket, "ok",2,0);//发送确认
 //处理人脸识别结果
人脸识别结果格式: {"id": xxxxxx, "gender":<性别>, "emotion":<表情>
,"age":<年龄>,"attr":<颜值>
xxxxxx 表示 VIP 号, 整数型
```

<性别>取值: 0表示女,1表示男,2表示不确定

<表情>取值:

表情值	表情意义
0	愤怒
1	平静
2	困惑

3	厌恶
4	高兴
5	悲伤
6	惊恐
7	诧异
8	斜视
9	尖叫

<年龄>取值: 0-100 岁

<颜值>取值:0-100,0 最低分,100 最高分

7. 超声波感知接口

客户程序通过 socket 访问端口 7050, 感知机器人前面有人进入或者离开。 具体流程:

超声波感知结果格式: {"from":3, "cmd":78, "subcmd":<感知状态>, "resp":1} <感知状态>取值: 1表示有人进入, 0表示人离开

c 语言例程: char buff[1024]; const char *req="{\"from\":1,\"action\": 2}";

```
SOCKET client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); struct sockaddr_in serAddrsound; serAddrsound.sin_family = AF_INET; serAddrsound.sin_port = htons(7070); serAddrsound.sin_addr.S_un.S_addr = inet_addr("127.0.0.1")//填写机器人平板 IP client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); connect(client_socket, (struct sockaddr *)&serAddrsound, sizeof(serAddrsound)); send(client_socket, req,strlen(req), 0); recv(client_socket, "ok",2,0)//接受确认 recv(client_socket, buff,1024,0);//接受超声波感知结果 send(client_socket, "ok",2, 0);//发送确认 //处理超声波感知结果
```

导航 APP 功能介绍

GQY 提供了手机 app 实现建图和导航点设置。结合导航接口,客户可以全方位控制导航。本手册只介绍和导航点设置相关功能,其它建图功能参考附录 1 进入建图模式,建图后标注导航点

1输入初始导航点的名字,机器人上电点和充电点

2 反复输入其它导航点

3 确认后保存地图和导航点

定制知识库

GQY 机器人提供了便捷的定制语义理解知识库方法,具体步骤如下:

- 1. 在 U 盘中,建立目录:新知识库
- 2. 在客户知识库目录下创建 exec 表格文件,文件名如: 1.xls,文件夹中可以多个 exec 表格文件。
- 3. 每个 exec 文件有两列:问题和答案,表必须保留前两行表头内容,从第三行 开始填入自己定义的问题和答案。
- 4. 在 name 列填写自定义问题,在对应的 content 列填写自定义答案,多个问题或答案可用"|"分隔,例如 name 填"今天天气|天气怎么样|天气",对应 content 填"天气晴|晴空万里|好天气",每一句句首句尾均不加标点;

完整示例如下表:

问题	答案
Name	content
这里有洗手间吗	有,前面往左转
起诉需要什么流程	如果你带了身份证,请在这里填单 子
办卡 我要办卡	请带上身份证到柜台填写单子

- 5. 参考附录 1 中的客户知识库目录。
- 6. 插入 U 盘到机器人充电座后盖的 USB 接口,如下图红圈标示处:

7. 重起 Surface 平板,完成客户知识库的定制

定制广告

GQY 机器人提供了便捷的定制客户广告方法,具体步骤如下:

- 1. 在 U 盘中,建立目录:客户广告\图片,客户广告\视频
- 2. 客户广告\图片目录下保存客户的广告图片,格式为 png
- 3. 客户广告\视频目录下保存客户的广告视频,格式为 mp4
- 4. 如下图:

5. 插入 U 盘到机器人充电座后盖的 USB 接口,如下图红圈标示处:

7. 重起 Surface 平板,完成客户广告的定制。

定制 VIP 识别

GQY 机器人提供了便捷的定制客户 VIP 识别,具体步骤如下:

更换主题和增加 VIP 数据的方法。具体的使用方法如下:

- 1. 在 U 盘中,建立目录: VIP 客户资料
- 2. 在目录中保存 VIP 图片,格式为 jpg,分辨率为 1280*960 左右,大小为 500K 左右,单个人脸的正面照。文件名为该 VIP 的称呼
- 3. 文件组织如下:

銀▼ (2含到库中 ▼ 共享 ▼	新建文件夹		
称	修改日期	类型	大小	
李总	2017-5-5 10:22	JPG 文件	17 KB	
王勃	2017-5-5 10:22	JPG 文件	17 KB	
王总	2017-5-5 10:22	JPG 文件	17 KB	
■ 周杰伦	2017-5-5 10:22	JPG 文件	17 KB	
集菌	2017-5-5 10:22	JPG 文件	17 KB	

4. 插入 U 盘到机器人充电座后盖的 USB 接口,如下图红圈标示处:

7.打开 VIP 录入程序,完成 VIP 识别定制。

附录

附录1

该附录包括目录和文件:

1. 外设:包括了外设的帮助文档和头文件

2. 客户知识库:包括了 execl 文件,展示如何编写知识库

3. 导航 APP 说明:介绍导航 APP 功能和使用方法

下载地址: https://github.com/43970117/GQY