КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

фізичний факультет

	(назва факультету, інституту)	
Кафедра кванто	вої теорії поля та космомікрофізики	
РОБОЧА П	Застинік декана зна зна зна зна зна зна зна зна зна	нальної роботи на МОМОТ
	НОВА ФІЗИКА ВИСОКИХ ЕНЕРГІЙ	
	(повна назва навчальної дисципліни)	
	для студентів	
галузь знань спеціальність	10 Природничі науки (шифр і назва) 104 Фізика та астрономія (шифр і назва спеціальності)	
освітній рівень освітня програма	магістр (молодший бакалавр, бакалавр, магістр) квантова теорія поля, фізика високих енергій, ядерна енергетика (назва освітньої програми)	
Викладачі: Горб	Форма навчання Навчальний рік Семестр Кількість кредитів ЕСТЅ Мова викладання, навчання та оцінювання Форма заключного контролю	
Пролонгованс	о: на 20/20 н.р(

Розробник:

Горбар Едуард Володимирович, д.ф.-м.н., с. н. с., професор кафедри квантової теорії поля та космомікрофізики.

3ATE	ВЕРДЖЕНО				
Зав.		квантової	теорії	поля	та
космо	омікрофізиі	ки			
1	1/4	Станісла	в ВІЛЬЧ	инськ	ИЙ
1/1	(підпис)	(прізвиц	це та ініціали)	
Прот	окол № _17	_ від «_27_»	_травня	_2022 p	

Схвалено науково - методичною комісією фізичного факультету.

Протокол від «_10_»червня2022	року № 112	
Голова науково-методичної комісії _	(kinnuc)	_ Олег ОЛІХ (прізвище та ініціали)
« <u></u> »		

- **1. Мета дисципліни** ознайомлення з сучасним станом фізики елементарних частинок та високих енергій, її досягненнями, проблемами і перспективами їх вирішення, подальшими напрямками розвитку фізики високих енергій.
- 2. Попередні вимоги до опанування або вибору навчальної дисципліни (за наявності):
 - 1. Знати основи класичної та квантової механіки, електродинаміки, термодинаміки та статистичної фізики, спеціальної теорії відносності і фізики елементарних частинок.
 - 2. **Вміти** розв'язувати задачі з різних розділів загальної та теоретичної фізики, планувати власну роботу і оцінювати її результати і наслідки.
 - 3. **Володіти навичками** роботи з науковою літературою, підготовки доповідей, взаємодії з колегами під час навчання.
- **3. Анотація навчальної дисципліни**: у рамках курсу «Нова фізика високих енергій» розглядаються новітні досягнення фізики високих енергій, зокрема основні параметри сучасної прискорювальної техніки та засобів обробки інформації, найновіші відкриття в галузі фізики високих енергій, відкриті проблеми та можливі шляхи їх вирішення, обговорюються перспективи розвитку фізики високих енергій, зокрема проєкти нових прискорювачів елементарних частинок, а також телескопів для дослідження високоенергетичних процесів в астрофізичних об'єктах і в ранньому Всесвіті.
- **4.** Завдання (навчальні цілі): основними завданнями вивчення дисципліни «Нова фізика високих енергій» є засвоєння студентами теоретичних методів фізики елементарних часинок, астрофізики високих енергій, формування у студентів загальної картини про сучасний стан фізики високих енергій і перспектив її розвитку в майбутньому.

Згідно освітньо-наукової програми «<u>Квантова теорія поля</u>» дисципліна забезпечує набуття здобувачами освіти наступних *компетентностей*:

Інтегральної

Здатність розв'язувати складні задачі і проблеми дослідницького та/або інноваційного характеру у фізиці та астрономії.

загальних

3К03. Здатність до пошуку, оброблення та аналізу інформації з різних джерел. *фахових*:

СК02. Здатність формулювати, аналізувати та синтезувати рішення наукових проблем в області фізики та/або астрономії.

Згідно освітньо-наукової програми «<u>Фізика високих енергій</u>» дисципліна забезпечує набуття здобувачами освіти наступних *компетентностей*:

Інтегральної

Здатність розв'язувати складні задачі і проблеми дослідницького та/або інноваційного характеру у фізиці та астрономії.

загальних

ЗКО2.Знання та розуміння предметної області та розуміння професійної діяльності.

ЗКОЗ.Здатність до пошуку, оброблення та аналізу інформації з різних джерел.

ЗК06.Здатність виявляти, ставити та вирішувати проблеми.

фахових:

СКО4. Здатність комунікувати із колегами усно і письмово державною та англійською мовами щодо наукових досягнень та результатів досліджень в області фізики та астрономії.

Згідно освітньо-наукової програми «<u>Ядерна енергетика</u>» дисципліна забезпечує набуття здобувачами освіти наступних *компетентностей*:

Інтегральної

Здатність розв'язувати складні задачі і проблеми дослідницького та/або інноваційного характеру у фізиці та астрономії.

Загальних

ЗКО1. Здатність застосовувати знання у практичних ситуаціях.

ЗК02. Знання та розуміння предметної області та розуміння професійної діяльності.

ЗКОЗ.Здатність до пошуку, оброблення та аналізу інформації з різних джерел.

ЗКО4. Здатність вчитися і оволодівати сучасними знаннями.

фахових:

СК01.Здатність використовувати закони та принципи фізики у поєднанні із потрібними математичними інструментами для опису природних явищ.

СК02. Здатність формулювати, аналізувати та синтезувати рішення наукових проблем в області фізики та астрономії.

СК06. Здатність розробляти наукові та прикладні проекти, керувати ними і оцінювати їх на основі фактів.

СК07.Здатність організовувати освітній процес та проводити практичні та лабораторні заняття з фізичних навчальних дисциплін в закладах вищої освіти.

СК10. Здатність проводити аналіз надійності та результатів неруйнівного контроля обладнання АЕС

5. Результати навчання за дисципліною:

	Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)	Форми (та/або методи і технології)	Методи оцінювання та пороговий критерій	Відсоток у підсумковій оцінці з
Код	Результат навчання	викладання і навчання	оцінювання (за необхідності)	дисципліни
		1. Знати		
1.1	склад Стандартної моделі фізики елементарних частинок, особливості кожного з 4 типів фундаментальних взаємодій між частинками	• Лекції • самостійна робота	• контрольні роботи • тематичний контроль самостійної роботи	8
1.2	принципи будови і роботи прискорювачів елементарних частинок, параметри існуючих прискорювачів		 підготовка усних доповідей екзаменаційна робота 	8
1.3	процеси і явища фізики високих енергій у ранньому Всесвіті та в астрофізичних об'єктах			8
1.4	сучасні проблеми фізики високих енергій та підходи до їх вирішення			8
1.5	перспективи розвитку прискорювальної техніки та засобів астрофізичних спостережень			8
			Загалом:	40
		2. Вміти		
2.1	визначати кінематику процесів взаємодії між елементарними частинками із	• Лекції	• контрольні роботи	8

	застосуванням методів спеціальної теорії відносності	• самостійна робота	• тематичний контроль	
2.2	обчислювати перерізи елементарних процесів у фізиці високих енергій за допомогою методів квантової теорії поля		самостійної роботи • підготовка усних доповідей • екзаменаційна	8
2.3	розв'язувати задачі, пов'язані з явищами і процесами фізики елементарних частинок у ранньому Всесвіті та астрофізичних об'єктах		робота	8
2.4	аналізувати дані експериментів у фізиці високих енергій, подані в графічному чи іншому вигляді			8
2.5	розв'язувати задачі, пов'язані з розрахунком параметрів прискорювачів і телескопів			8
			Загалом:	40
	3.	Комунікація		
3.1	здатність бути активним учасником обговорень	Лекціїсамостійна	• контрольні роботи • тематичний	3
3.2	презентувати результати самостійної роботи у форматі усних та/або письмових повідомлень із/без використання наочних засобів	робота	контроль самостійної роботи підготовка усних доповідей екзаменаційна	4
3.3	майстерність методологічного сумніву висловленої позиції колег та/або авторитетного джерела		робота	3
			Загалом:	10
	4. Автономн	ість та відповід	альність	
4.1	віднаходити необхідну інформацію з різних джерел	Лекціїсамостійна	• контрольні роботи • тематичний	4
1.2	застосовувати отримані знання в професійній діяльності	робота	контроль самостійної роботи • підготовка усних	3
4.3	демонструвати вміння працювати в колективі та самостійно		доповідей • екзаменаційна робота	3
		•	Загалом:	10

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін, які не входять до блоків спеціалізації)

Результати навчання дисципліни			1					2				3			1	
Програмні	1	2	3	4	5	1	2	3	4	5	1	2	3	1	2	3
результати навчання	1		3	4	3	1		3	4	3	1		3	1		3
ПРН05 Здійснювати феноменологічний та теоретичний опис досліджуваних фізичних та/або астрономічних явищ, об'єктів і процесів.	+	+	+	+	+	+	+	+	+	+				+	+	+
ПРН02 Проводити експериментальні та теоретичні дослідження з фізики та астрономії, аналізувати отримані результати в контексті існуючих теорій, робити аргументовані висновки (включаючи оцінювання ступеня невизначеності) та пропозиції щодо подальших досліджень.						+	+	+	+	+	+	+	+	+	+	+
ПРН03 Застосовувати сучасні теорії наукового менеджменту та ділового адміністрування для організації наукових та прикладних досліджень в області фізики та астрономії.											+	+	+	+	+	+
ПРН06 Обирати ефективні математичні методи та інформаційні технології та застосовувати їх для здійснення досліджень та/або інновацій в області фізики та астрономії.	+	+	+	+	+	+	+	+	+	+				+	+	+
ПРН07 Оцінювати новизну та достовірність наукових результатів з обраного напряму фізики та астрономії, оприлюднених у формі публікацій чи усної доповіді.											+	+	+	+	+	+
ПРН09 Аналізувати та узагальнювати наукові результати з обраного напряму фізики та астрономії, відслідковувати найновіші досягнення в цьому напрямі, взаємокорисно спілкуючись із колегами.				+	+						+	+	+	+	+	+
ПРН20 Вміти використовувати віртуальний детектор для обчислення акцептанта реєстрації подій та ефективності реєстрації частинок, адронних струменів, та інших процесів.						+			+	+						
ПРН21 Вміти розраховувати поперечні перерізи різних типів процесів з використанням методу моделювання взаємодії і детектора методами Монте-Карло.	+		+			+	+	+	+							
ПРН23 Вміти встановлювати причинно- наслідковий зв'язок між статичними та динамічними характеристиками частинок	+					+		+	+							
РН07. Оцінювати новизну та достовірність наукових результатів з обраного напряму фізики та астрономії, оприлюднених у формі публікацій чи усної доповіді.											+	+	+	+	+	+
РН09 . Аналізувати та узагальнювати наукові результати з обраного напряму фізики та астрономії, відслідковувати найновіші		+		+	+				+				+	+	+	

досягнення в цьому напрямі, взаємокорисно спілкуючись із колегами.														
РН13. Створювати фізичні, математичні і комп'ютерні моделі природних об'єктів та явищ, перевіряти їх адекватність, досліджувати їх для отримання нових висновків та поглиблення розуміння природи, аналізувати обмеження.				+	+	+	+	+		+			+	+
РН14. Розробляти та викладати фізичні навчальні дисципліни у закладах вищої, фахової передвищої, професійної (професійнотехнічної), загальної середньої та позашкільної освіти, застосовувати сучасні освітні технології та методики, здійснювати необхідну консультативну та методичну підтримку здобувачів освіти.										+	+	+	+	+
РН16. Брати продуктивну участь у виконанні експериментальних та/або теоретичних досліджень в області фізики та астрономії				+	+	+	+	+	+	+	+	+	+	+
PH18. Володіти основами фізики реакторів, ядерної безпеки AEC, експлуатації ядерних енергоблоків	+	+	+										+	
PH19. Застосовувати фізичні моделі та прийоми аналізу достовірності фізичних моделей для розв'язання прикладних задач в області ядерної енергетики;							+				+		+	
PH23. Вміти використовувати методи розрахунку радіаційного захисту для медичних установок та іншого обладнання, яке використовує джерела іонізуючого випромінювання.				+	+			+					+	

7. Схема формування оцінки.

Контроль знань здійснюється за системою ECTS, яка передбачає дворівневе оцінювання засвоєного матеріалу, зокрема:

• оцінювання теоретичної підготовки

(результати навчання: знати 1.1–1.5), що складає 40% від загальної оцінки;

• оцінювання практичної підготовки

(результати навчання: **вміти** 2.1–2.5; **комунікація** 3.1–3.3; **автономність та відповідальність** 4.1–4.3), що складає 60% загальної оцінки.

7.1 Форми оцінювання студентів:

- **семестрове оцінювання** розмежоване між лекційними заняттями та самостійною роботою. Загалом форми викладання і навчання проводяться у форматі усних та письмових завдань, обов'язкову кількість яких оцінюють різною кількістю балів:
- min найменша кількість балів (їх отримання є свідченням, що студент приділив недостатньо уваги окремому завданню)

• max — висока кількість балів (їх отримання є свідченням, що студент приділив достатньо уваги та самоорганізації для опрацювання теми)

Форми викладання і	Форми контролю	Результати	Кількісті	ь балів
навчання		навчання	min	max
	Модульна	1.1 – 1.5		
Hovevišvi povarna	контрольна робота 1	2.1 - 2.5	10	20
Лекційні заняття	Модульна	3.1 - 3.3	18	30
	контрольна робота 2	4.1 - 4.3		
	Виконання домашніх	1.1 – 1.5	0	15
Cavacriiva nasara	завдань	2.1 - 2.5	9	15
Самостійна робота	Підготовка усних	3.1 - 3.3	0	1.5
	доповідей	4.1 - 4.3	9	15
	Загалом з	а роботу у семестрі	36	60

- **відпрацювання пропусків** лекцій, всі пропуски студентом без поважної причини повинні бути відпрацьовані.
- допуском студента до підсумкового оцінювання ϵ виконання обов'язкових самостійних завдань, відпрацювання пропусків лекцій та набирання мінімальної кількості (36) балів.
- підсумкове оцінювання у формі екзамену здійснюється у формі письмового екзамену. Екзаменаційний білет включає два теоретичних питання і одне практичне. Загальна кількість балів за екзаменаційну роботу складає 40 балів (15+15+10).

Оцінка за екзаменаційну роботу вноситься у екзаменаційну відомість тільки якщо вона рівна або більша 24 балам (тобто від 24 до 40). Якщо загальна оцінка за екзаменаційну роботу буде меншою 24 балів, тоді у екзаменаційну відомість вноситься 0 балів і іспит ε нескладеним і загальна оцінка за навчальну дисципліну ε «незадовільно».

7.2 Організація оцінювання:

Форма	Форми .	45	Графік оцінн	овання		
оцінюва ння	викладання і навчання	Форми контролю	конкретизований	Загальний		
	Лекційні	Модульна контрольна робота 1	Після теми 5			
Семестро	заняття	Модульна контрольна робота 2	Після теми 8	Впродовж теоретичного навчання у семестрі		
	Самостійна	Виконання домашніх завдань	В рамках теоретичного			
	робота	Підготовка усних доповідей	навчання, до початку семестрового контролю			
Підсумк ова	Письмова робота	Екзаменаційна робота	Залежно від графіку навчання	Впродовж семестрового контролю		

7.3 Шкала відповідності оцінок

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59
Зараховано / Passed	60-100
He зараховано / Fail	0-59

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ

		Кілі	ькість годин							
№ п/п	Назва лекції	лекції	c/p							
	Змістовий модуль 1									
1	Вступ. Стандартна модель фізики елементарних частинок, види фундаментальних взаємодій	2		4						
2	Прискорювачі елементарних частинок. Розвиток прискорювальної техніки	4		8						
3	Великий адронний колайдер (LHC), його параметри. Експерименти на LHC, їх цілі і результати.	4		8						
4	Проєкти майбутніх прискорювачів і експериментів	4		8						
5	Сучасні проблеми фізики елементарних частинок: природа маси нейтрино, пояснення аномального магнітного моменту мюона, порушення лептонної універсальності	4		6						
	Модульна контрольна робота 1			2						
	Змістовий модуль 2									
6	Етапи еволюції Всесвіту. Явища і процеси фізики елементарних частинок у ранньому Всесвіті	4		8						
7	Фотони, нейтрино і космічні промені високих енергій, їх джерела, механізми генерації, поширення в міжзоряному і міжгалактичному середовищі, принципи детектування	4		8						
8	Сучасні обсерваторії, які дозволяють реєструвати частинки високих енергій космічного походження. Розвиток спостережувальної техніки	4		6						
	Модульна контрольна робота 2			2						
	ВСЬОГО	30		60						

Загальний обсяг 90 год., в тому числі: Лекцій – 30 год. Самостійна робота - 60 год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна:

- 1. Langacker P. The Standard Model and Beyond. New York: CRC Press, 2000. 664 p.
- 2. Емельянов В.М. Стандартная модель и ее расширения. М.: Физматлит, 2007. 584 с.
- 3. Perkins D.H. Particle Astrophysics. Oxford: Oxford University Press, 2009. 340 p.
- 4. Perkins D.H. Introduction to High Energy Physics. Cambridge: Cambridge University Press, 1999. 442 p.
- 5. Grupen C. Astroparticle Physics. Berlin: Springer-Verlag, 2005. 442 p.

Додаткова:

- 6. Close F. Particle Physics: A Very Short Introduction. Oxford: Oxford University Press, 2004. 160 p.
- 7. Wiedemann H. Particle Accelerator Physics. Berlin: Springer-Verlag, 2009. 948 p.
- 8. Lee S.Y. Accelerator Physics. Singapore: World Scientific Publishing Co., 2004. 576 p.
- 9. Горбунов Д.С., Рубаков В.А. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва. М.: Издательство ЛКИ, 2008. 552 с.
- 10. Kane G.L. Modem Elementary Particle Physics: the Fundamental Particles and Forces. New York: Addison-Wesley Publishing Company, 1994. 352 p.
- 11. Лонгейр М. Астрофизика высоких энергий. М.: Мир, 1983. 400 с.