Theoretische Informatik

Zusammenfassung

24.07.2024

Inhaltsverzeichnis

1	Allgemein	2
	1.1 Alphabete und Wörter	2
	1.2 Grammatiken	2
2	Chomsky-Hierarchie	3
	2.1 Typ 0 (\mathcal{L} 0) - Phrasenstrukturgrammatiken	3
	2.2 Typ 1 (\mathcal{L} 1) - Kontextsensitive Grammatiken	3
	2.3 Typ 2 ($\mathcal{L}2$) - Kontextfreie Grammatiken	3
	2.4 Typ 3 ($\mathcal{L}3$) - Reguläre Grammatik	3
3	Deterministischer Endlicher Automat (DEA)	4
4	Nicht-deterministischer Endlicher Automat (NEA)	5
5	Äquivalenz von DEA und NEA	6
	5.0.1 Satz von Rabin und Scott	6
	5.0.2 Potenzmengenkonstruktion	6
6	Regex	7
	6.0.1 Satz von Kleene	7
7	Pumping Lemma	8
8	Satz von Myhill und Nerode	9
9	Minimalautomaten	10
	9.1 Table-Filling-Algorithmus	10
10	Kontextfreie Sprachen ($\mathcal{L}2$)	11

1 Allgemein

1.1 Alphabete und Wörter

- \bullet Ein Alphabet Σ ist eine endliche Menge unterscheidbarer Symbole
- Element $\sigma \in \Sigma$ ist ein Zeichen des Alphabets Σ
- Jedes Element $\omega \in \Sigma^*$ ist ein Wort über Σ
- ε = Leeres Wort
- Σ^* : Menge aller Wörter über Σ
- Σ^+ : Menge aller Wörter über Σ mit mind. 1 Element
- $|\omega|$: Länge eines Wortes ($|\varepsilon|=0$)

1.2 Grammatiken

Eine Grammatik G ist ein 4-Tupel (V, Σ , P, S):

- V: endliche Menge an Nicht-Terminal-Symbolen
- Σ : endliche Menge an Terminal-Symbolen ($V \cap \Sigma = \emptyset$)
- P: endliche Menge an Produktionsregeln
- S: Startsymbol ($S \in V$)

2 Chomsky-Hierarchie

2.1 Typ 0 ($\mathcal{L}0$) - Phrasenstrukturgrammatiken

• Beliebige Kombination aus T- und NT-Symbolen

2.2 Typ 1 ($\mathcal{L}1$) - Kontextsensitive Grammatiken

- $|l| \leq |r|$
- Länge des Wortes steigt
- $S \to \varepsilon$ erlaubt, wenn S auf **keiner** rechten Seite einer Regel steht!

Beispiel:

```
\begin{array}{l} S \rightarrow S' \mid \varepsilon \\ S' \rightarrow aS'Bc \mid abc \\ cB \rightarrow Bc \\ bB \rightarrow bb \end{array}
```

Das Nichtterminal S' braucht man nur, damit die Bedingung der Sonderregel erfüllt ist. Das Nichtterminal B wird mal zur Satzform Bc und mal zu bb, je nachdem ob B im **Kontext** c oder b steht.

2.3 Typ 2 ($\mathcal{L}2$) - Kontextfreie Grammatiken

Beim Ableiten in Typ-1-Grammatiken muss man immer aufpassen, dass das Nichtterminal auch im richtigen Kontext steht. Das Erzeugen von Sätzen ist viel leichter, wenn die Grammatik kontextfrei ist.

Eine Grammatik G ist vom Typ 2, wenn sie vom Typ 1 ist und zusätzlich auf der linken Seite jeder Regel genau **ein** Nichtterminal steht!

- $l \in V$
- $X \to \varepsilon$ immer erlaubt

2.4 Typ 3 ($\mathcal{L}3$) - Reguläre Grammatik

Eine Grammatik G ist vom Typ 3, wenn sie vom Typ 2 ist und zusätzlich folgende Regeln hat:

- \bullet $A \rightarrow b$
- $A \rightarrow bC$
- $A \to \varepsilon$

3 Deterministischer Endlicher Automat (DEA)

Eine DEA M ist ein 5-Tupel (Q, Σ , δ , q_0 , F):

- Q: endliche Zustandsmenge
- Σ : endliches Alphabet
- $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktionen
- q_0 : Startzustand
- F: Menge der akzeptierten Endzustände

Beispiel:

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{0, 1\}$
- $\bullet \ q_0 = q_0$
- $F = q_2$
- δ:

$$\delta(q_0,0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1,0) = q_2$$

$$\delta(q_1, 1) = q_1$$

$$\delta(q_2, 0) = q_1$$

$$\delta(q_2, 1) = q_1$$

4 Nicht-deterministischer Endlicher Automat (NEA)

Eine NEA M ist ein 5-Tupel (Q, Σ , δ , q_0 , F):

- Q: endliche Zustandsmenge
- Σ : endliches Alphabet
- $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktionen
- $\bullet \ q_0$: Menge der Startzustände
- F: Menge der akzeptierten Endzustände

Beispiel:

$$S \rightarrow aS \mid \text{bS} \mid \text{cS} \mid \text{aA}$$

$$A \rightarrow bB \mid \text{cC}$$

$$B \rightarrow aB \mid \text{bB} \mid \text{cB} \mid \varepsilon$$

$$c \rightarrow aB$$

5 Äquivalenz von DEA und NEA

5.0.1 Satz von Rabin und Scott

Jede von einem NEA akzeptierte Sprache L ist auch von einem DEA akzeptierbar.

5.0.2 Potenzmengenkonstruktion

!!!TODO!!!

6 Regex

!!!TODO!!!

6.0.1 Satz von Kleene

Die Menge der durch reguläre Ausdrücke (Regex) beschreibbaren Sprachen ist genau die Menge der regulären Sprachen.

 \rightarrow Alle endlichen Sprachen sind durch reguläre Ausdrücke beschreibbar

7 Pumping Lemma

Das Pumping-Lemma wird verwendet, um zu beweisen, dass eine Sprache sicher nicht regulär ist.

!!!TODO!!!

8 Satz von Myhill und Nerode

Eine Sprache L ist genau dann regulär, wenn der Index ${\cal R}_L$ endlich ist!

9 Minimalautomaten

!!!TODO!!!

9.1 Table-Filling-Algorithmus

10 Kontextfreie Sprachen ($\mathcal{L}2$)