Моделирование предметной области

Г. Гарсия – Молина, Дж. Ульман, Дж. Уидом,

Системы баз данных, 2003г, Глава 1

Этапы разработки базы данных в информационной системе

- Проектирование базы данных
 - Логическое проектирование
 - Физическое проектирование
- Планирование базы данных
 - Аппаратных средств
 - Программных средств
- Реализация базы данных
- Сопровождение
- Реинжиниринг

Инфологическое проектирование

- Модель «Сущность Связь»,
 Entity Relationship Model (ERM),
 Питер Чен, 1976 г., США, профессор
- Реляционная модель данных
- Object Definition Language стандарт средств описания объектно-ориентированных баз данных
- UML. Диаграммы классов
- Полуструктурированные данные (XML)
- Семантические сети

Модель «Сущность-связь»

- Основные компоненты ER модели
 - Множество сущностей
 - Атрибуты сущностей
 - □ Связи
- Этапы проектирования ER модели
 - Выделение сущностей-объектов
 - Определение атрибутов сущностей
 - Выделение идентифицирующих атрибутовключей
 - Определение связей
 - Вид связи: 1:1, 1:m, n:m
 - Обязательность связей

Сущность

 Сущность – абстрактный объект определенного вида, моделирующий объекты приложения

Объект материального мира, явление, событие, и т.д.

Примеры: Студент, Форум, Накладная, Ведомость

- Сходство с понятием объект в ОМД
- Сущность статические объекты, определяет структуры данных
- Нет определения операций
- Множество сущностей (класс)

Атрибуты

• Атрибут является свойством сущности

```
сотрудник (таб_номер, фамилия, имя, отчество, код_должности, дата_приема, ...)
```

- Идентифицирующий атрибут ключ
- Именование атрибутов (наиболее точное соответствие смыслу свойства)

.

Связи

- Связи соединения (соотношения) между двумя или большим числом сущностей
- ER модель допускает наличие связей, включающей произвольное количество сущностей.
- Наиболее распространена бинарная связь между 2-мя множествами сущностей

ТИПЫ связей

■ Если каждый член множества Е₁ посредством связи R может быть соединен не более чем с одним членом Е₂, то R связь типа М:1

Сотрудник \rightarrow Отдел, (m:1)

■ Если связь R в обоих направлениях от E_1 к E_2 и от E_2 к E_1 относится к типу M:1, то R связь типа 1:1

Человек ←→ Паспорт, полис страхования Компания ←→ Президент, директор

Связи (2)

■ Если связь R ни в одном из направлений ни от E_1 к E_2 и ни от E_2 к E_1 не относится к типу M:1,

то R связь типа M:N

Студент \longleftrightarrow Преподаватель, (m:n)

Необязательные связи

Человек ←...→ Авиабилет

Многосторонние связи – роли.

«Контракт» – связь между персоной, предприятием, проектом

Обычно многосторонние связи преобразуют в совокупность бинарных, образуя новые сущности вместо атрибутов связи.

Сотрудники ___ Контракты ___ Проекты

Учреждения

Подклассы – специальные множества сущностей.
 Для соединения «полного» множества с его подклассами применяется связь «есть» (IS A)

Нотация

Сущности изображаются прямоугольниками

Свойства изображаются овалами

Связи изображаются ромбами

Имя сущности

- Индекс поставки,
- ◆ Индекс поставщика,
- Адрес поставщика
- Индекс товара
- Название товара
- Количество товара
- Цена единицы товара
- Шифр склада
- Дата поставки

- Пусть необходимо описать данные возникающие в процессе поставки материалов на склад.
- Данные берутся из документов, сопровождающих поставки накладных.
- Пусть из накладных мы выяснили, что в процессе поставки следует зафиксировать следующую информацию о поставках:

Первое представление

Индекс_ поставки Индекс_ поставщика Адрес_ поставщика Индекс_ товара Название_ товара

Кол-во_

товара

поставка

- Индекс поставки
- Индекс поставщика
- Адрес поставщика
- Индекс товара
- Название товара
- Количество товара
- Цена единицы товара
- Шифр склада
- Дата поставки

Цена_ед _товара

Шифр_ склада

Дата_ поставки

Модификация исходного представления

Этапы разработки ER модели

- Разработка локальных представлений (частей информационной системы)
 - Формулирование сущностей (имена, содержание)
 - Выбор идентифицирующего атрибута
 - Спецификация связей (имена, типы)
 - Добавление описательных атрибутов
- Объединение представлений пользователей
 - Идентичность
 - Агрегация
 - Обобщение

Схема процесса объединения ЛП

Идентичность

- Два или более элементов являются идентичными, если они имеют одинаковое семантическое значение
- В силу абстрагирования при выявлении сущностей идентичность элементов устанавливается экспертом
- Идентичность и подобие
- Персона, Служащий, Сотрудник, Работник, Персонал

Агрегация

- Агрегация декартово произведение сущностей
- Новая сущность формируется на основе данных о частях объектах
 - Имя, Должность, Ном_отдела = Сотрудник
 - Имя, Паспорт, Дата приема = Сотрудник
 - Имя, Номер-страхового полиса, Адрес = Сотрудник

Имя, Номер-страхового полиса, Паспорт, Должность, Ном_отдела, Дата приема, Адрес = СОТРУДНИК

Обобщение

- Обобщение это абстракция данных, позволяющая трактовать класс объектов как
 ОДИН объект
- При агрегации части соединяются в целое
- Обобщение фиксирует РОДО-ВИДОВЫЕ отношения
- ВИД есть РОД в совокупности с видовым отличием
- Ваз 2109, Ваз 2101, Ваз 2107 = Автомобили марки ВАЗ
- Автомобили марки ВАЗ, автомобили марки Хонда, ... = Автомобили
- Автомобиль, велосипед, мотоцикл, трактор = Колесное средство передвижения

Итоговая схема

Принципы проектирования

- Достоверность
 - Привлечение экспертов
 - Детальное изучение предметной области
- Отсутствие избыточности
- Простота
 - Включайте в проект только те структурные элементы, без которых нельзя обойтись
- Выбор подходящих связей
 - Множества сущностей можно соединить разными связями. Если брать любые – возможна избыточность.
- Использование элементов адекватных типов

Компоненты СУБД

- Компилятор запросов. Транслирует запрос во внутренний формат системы план запроса. Часто инструкции плана запроса представляют собой реализацию операций «реляционной алгебры»
 - Лексический анализатор. Преобразует запрос во внутреннюю древовидную структуру.
 - Препроцессор запросов: семантический анализ, функции преобразования дерева, построенного ЛА, в дерево алгебраических операций
 - Оптимизатор запросов. Преобразует запрос в наиболее эффективную последовательность фактических операций над данными
- Исполняющая машина. Выполняет операции запроса. Взаимодействует с большинством других компонентов. Интерпретатор.

Компоненты СУБД

- Менеджер транзакций (МТ).
- Запросы и другие команды группируются в транзакции
- МТ реализует выполнение транзакций так, чтобы они выполнялись
 - атомарным образом
 - изолировано.
 - сохраняя целостность БД
 - обладая свойством устойчивости.
- МТ состоит из:
 - Планировщика заданий: управление параллельными заданиями
 - Менеджера протоколирования: протоколирование действий транзакций и восстановление после сбоев
- МТ разрешает проблемы взаимных блокировок

Компоненты СУБД

- Менеджер буферов ответственен за разбиение ОП на буферы – участки-страницы, куда помещается содержимое дисковых блоков
- Все компоненты СУБД, обращаются к данными через буфера и менеджера буферов или через исполняющую машину
- Данные могут быть следующих категорий:
 - ❖ Собственно данные содержимое БД
 - ◆ Метаданные описание логической структуры БД (схема БД)
 - ❖ Статистика информация о свойствах данных (размер отношения, сведения о значениях в колонках и т.д.)
 - ❖ Индексы структуры, повышающие скорость доступа к данным