实验 4 2 报告

2016K8009909006 刘杰

一、实验任务(10%)

为 myCPU 增加例外与中断支持,完成功能测试,并支持运行一定的应用程序。需要完成如下任务

- (1) 增加 BREAK 指令。
- (2) 增加 CP0 寄存器 COUNT、COMPARE、BADVADDR。
- (3) 增加 break 例外, 地址错, 整数溢出, 保留指令例外支持。
- (4) 增加时钟中断例外支持, 绑定在硬件中断 5 号上, CASUE 对应的 IP7。增加 6 个硬件中断和 2 个软件中断 支持, 绑定在 CAUSE 的 IP6-IP0。
 - (5) 完成所有的功能测试,运行电子表和记忆游戏。

二、实验设计(30%)

为优化例外处理的电路,所有例外在统一的流水级处理(定为写回级),即在例外发生后,先传递到写回级,在写回级提交例外,进行处理。在例外发生后的直到进入例外处理入口,所有进入流水线的指令将被设置为无效,即不改变 CPU 状态。实现方法为设置信号,该信号在例外发生时拉高,在例外传递过程保持不变,在例外提交时拉低,当该信号为高时,清空例外发生指令前的流水线,并将之后进入的指令设为无效。

在 lab4-1 的基础上,增加 3 个 CP0 寄存器 COUNT,COMPARE 和 BADVADDR。COUNT 寄存器每两个时钟周期自增 1,与 COMPARE 寄存器比较,如相等则触发时钟中断。此外,每次写 COMPARE 寄存器会将 CAUSE 寄存器 TI 位域置 1,在写 COMPARE 寄存器时清 0。BADVADDR 寄存器用于存储在触发地址错例外的指令地址。

为便于软硬件中断处理,将其固定的标在译码级,传递到写回级后报出。如果流水级上出现多个例外,先处理最先到达写回级的例外,之后的例外不做处理。

三、实验过程(60%)

(一) 实验流水账

2018.11.24

9:00-10:00 阅读讲义和指令手册,编写代码。

2018.11.24

13:00-13:40 仿真,整数溢出例外出现 bug,修复 bug。

14:00-14:30 修复 bug 后仿真, 在取指地址错例外发现 bug, 修复 bug。

16:00-17:00 修复 bug 后仿真,在时钟中断发现 bug,修复 bug。

18:00-18:30 修复 bug 后仿真, 在多个中断同时出现测试点发现 bug, 修复 bug 后测试通过。

2018.11.25

18:00-20:00 完成实验报告。

(二) 错误记录

1、错误1

(1) 错误现象

整数溢出例外发生之后, MFHI 指令报错。

(2) 分析定位过程

MFHI 指令执行过程没有问题,HI 寄存器的值有误,往回查找最近一条写 HI 寄存器的指令,发现是 divu 指令后的一条 MTHI 指令,在 MTHI 没有将除法结果写入 HI 寄存器时,HI 寄存器的结果符合 trace 的比对结果。

(3) 错误原因

除法指令是紧跟着发生溢出的 ADD 指令,ADD 指令之后的指令都不应该执行。但此时只清空流水线沿用 syscall 例外的处理方法,只清空了取指级的指令。而溢出例外发生时,译码级和取指级都有指令,取指级恰好为除法指令。

(4) 修正效果

修改例外发生时流水线的清空电路逻辑,将例外发生指令前的流水级都清空,再次仿真通过 break 测试点。

(5) 归纳总结(可选)

例外发生后,例外指令会'堵住'大门,让之后的指令都无法执行。

2、错误2

(1) 错误现象

取指地址错发生后,例外处理的第一条指令错误,即 PC=0xbfc00380的指令有误。

(2) 分析定位过程

取指地址错例外处理时,0xbfc00380处的指令执行有误,查看指令码发现为0x00000000,进一步发现PC=0xbfc00380时取指使能未拉高。

(3) 错误原因

取指地址错发生后,将取指使能拉低,直到进入例外处理时再拉高,但是因为拉高的判断逻辑为 PC 和 0xbfc00380 相等,故晚了一拍,所以 0xbfc00380 没有取出有效指令。

(4) 修正效果

把 syscall 指令后的指令相关控制信号都设置为无效,确保 syscall 指令后的指令都未执行。

3、错误3

(1) 错误现象

时钟中断标记指令 PC 值有误。

(2) 分析定位过程

时钟中断测试点,在没有重新设置 COMPARE 时,COMPARE 为 0。将 COUNT 置为 0 后,立即发生时钟中断,但此时是关中断的,所以这个时钟中断应不发生。

(3) 错误原因

没有关注 CP0_STATUS 寄存器开关中断的位域,修改控制通路,使得关中断时即使发生中断也不进行提交处理。

(4) 修正效果

软件写 CPO 寄存器相应位域可以实现开关中断。

4、错误4

(1) 错误现象

同时发生多个例外, 重复处理, 即 PC 值连续跳转到 0xbfc00380。

(2) 分析定位过程

PC 值停留在 0xbfc00380 多个周期, 查看例外提交信号也拉高多个周期, 有多个例外同时发生并连续提交, 每次提交后 PC 都会跳转到 0xbfc00380, 这就造成 PC 停留的假象。

(3) 错误原因

在进入某个例外的处理后,没有屏蔽其他例外,但又没有实现例外嵌套。所以,在进入一个例外处理后,屏 蔽其他例外的提交,使得不发生例外嵌套。

四、实验总结(可选)

这次写的例外处理的代码有点乱,可能要重构一下代码。