JEE MAINS 28 Jun 2022 Shift-2

ee24btech11015 - Dhawal

11) Let the plane ax+by+cz = d pass through $\begin{pmatrix} 2\\3\\-5 \end{pmatrix}$ and is perpendicular to the planes 2x+

b) 20

a) 18

y-5z = 10 and 3x+5y-7z = 12. If a, b, c, d are integers d > 0 and gcd(|a|, |b|, |c|, d) = 1, then the value of a + 7b + c + 20d is equal to : (28/06/2022 - Shift - 2)

c) 24

d) 22

	•		on from the set $\{a, b, c, a\}$ s: $(28/06/2022 - Shift)$	
a) $\frac{1}{24}$	b) $\frac{1}{40}$	c) $\frac{1}{30}$	d) $\frac{1}{20}$	
13) The value of $\lim_{n\to\infty} 6 \tan \left\{ \sum_{r=1}^n \tan^{-1} \left\{ \frac{1}{r^2 + 3r + 3} \right\} \right\}$ is equal to :(28/06/2022 – S hift – 2)				
a) 1	b) 2	c) 3	d) 6	
14) a be a vector v $2\hat{i} - 13\hat{j} - 4\hat{k}, \text{ th}$	which is perpendicunen the projection of	that to the vector $3\hat{i}$ of the vector on the vector of	$+\frac{1}{2}\hat{j} + 2\hat{k}$. If $\mathbf{a} \times (2\hat{i} + 2\hat{j} + \hat{k})$ is: (28/06/2022 - Shift)	•
a) $\frac{1}{3}$	b) 1	c) $\frac{5}{3}$	d) $\frac{7}{3}$	
15) If $\cot \alpha = 1$ and $\sec \beta = -\frac{5}{3}$ where $\pi < \alpha < \frac{3\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$, then the value of $\tan (\alpha + \beta)$ and the quadrant in which $\alpha + \beta$ lies, respectively are: $(28/06/2022 - Shift - 2)$				
a) $\frac{-1}{7}$ and 4^{th} qu	ıadrant	c) -7 and 4^{th}	guadrant	
b) 7 and 1st quadrant		d) $\frac{1}{7}$ and 1^{st}	d) $\frac{1}{7}$ and 1^{st} quadrant	
B. Numericals				
	ides internally the l		$\frac{1}{2} = \frac{z-2}{3}$ be Q . Let $\mathbf{R} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ e ratio 1 : 3. Then the v $(28/06/2022 - Shift)$	alue
		_	s of these students in 20. A student fails in	

examination if he/she gets less than 50 marks, then in worst case, the number of students can fail is: (28/06/2022 - Shift - 2)

- 3) If one of the diameters of the circle $x^2 + y^2 2\sqrt{2}x 6\sqrt{2}y + 14 = 0$ is a chord of the circle $(x 2\sqrt{2})^2 + (y 2\sqrt{2})^2 = r^2$, then the value of r^2 is equal to: (28/06/2022 Shift 2)
- 4) If $\lim_{x\to 1} \frac{\sin(3x^2-4x+1)-x^2+1}{2x^3-7x^2+ax+b} = -2$, then the value of (a-b) is equal to: (28/06/2022 Shift 2)
- 5) Let for $n=1,2,\ldots,50$, S_n be the sum of the infinite geometric progression whose first term is n^2 and whose common ratio is $\frac{1}{(n+1)^2}$. Then the value of $\frac{1}{26} + \sum_{n=1}^{50} \left(S_n + \frac{2}{n+1} n 1 \right)$ is equal to: (28/06/2022 Shift 2)
- 6) If the system of linear equations $2x 3y = \gamma + 5$, $\alpha x + 5y = \beta + 1$, where $\alpha, \beta, \gamma \in R$ has infinitely many solutions, then the value of $|9\alpha + 3\beta + 5\gamma|$ is equal to: (28/06/2022 Shift 2)
- 7) Let $A = \begin{pmatrix} 1+\iota & 1 \\ -\iota & 0 \end{pmatrix}$ where $\iota = \sqrt{-1}$. Then, the number of elements in the set $\{n \in \{1, 2, \dots, 100\} : A_n = A\}$ is: (28/06/2022 Shift 2)
- 8) Sum of squares of modulus of all the complex numbers z satisfying $z = \iota z^2 + z^2 z$ is equal to: (28/06/2022 Shift 2)
- 9) Let $S = \{1, 2, 3, 4\}$. Then the number of elements in the set $\{f: S \times S \Longrightarrow S: f \text{ is onto and } f(a, b) = f(b, a) \ge a \ \forall (a, b) \in S \times S\}$ is: (28/06/2022 Shift 2)
- 10) The maximum number of compound propositions, out of $p \lor r \lor s$, $p \lor r \lor \sim s$, $p \lor \sim q \lor s$, $\sim p \lor \sim r \lor s$, $\sim p \lor \sim r \lor \sim s$, $\sim p \lor q \lor \sim s$, $q \lor r \lor \sim s$, $\sim p \lor \sim q \lor \sim s$ that can be made simultaneously true by an assignment of the truth values to p,q,r and s, is equal to: (28/06/2022 Shift 2)