Физическая Химия 1 курс, второй модуль

Андрей Борисович Ярославцев

Содержание

1	Лег	кция 1. Основные понятия химической термодинами-	
	ки.	Первый закон термодинамики	1
	1.1	Основные понятия химической термодинамики	3
	1.2	Нулевой закон термодинамики	4
	1.3	Первый закон термодинамики	4
2	Термохимия. Закон Гесса		5
	2.1	Закон Гесса	6
	2.2	Энтальпия образования	6
	2.3	Энергия связи	6
	2.4	Фазовые переходы	7
	2.5	Закон Кирхгоффа	7
	2.6	Второй закон термодинамики	8
3	Энергия Гиббса и Гельмгольца		10
	3.1	Энегрия Гиббса G	10
	3.2	Энергия Гельмгольца F	10
	3.3	Химический потенциал	11
	3.4	Изотерма Вант-Гоффа	11
4	Фазовые диаграммы		11
	4.1	Конгруэнтно плавящиеся соединения	11
	4.2	Неконгруэнтно плавящееся соединение	12
	4.3	Неограниченная взаимная растворимость	12

1 Лекция 1. Основные понятия химической термодинамики. Первый закон термодинамики

Причина взаимодействий в химии - разность энергий связей. Например, $E_{H-H}+E_{Cl-Cl}<2E_{H-Cl},$ поэтому реакция

$$H_2 + Cl_2 \rightarrow 2HCl$$

идет. У фтора разность больше, реакция идет быстрее, у брома и иода меньше, реакция медленнее. Для всех этих рассуждений нам необходимо было понятие энергии связи.

Знания физхимии нужны для того, чтобы понимать закономерности, читать спец. литературу, понимать другие химические дисциплины.

Матаппарат:

- дифференциальное исчисление
- интегральное исчисление
- некоторые газовые законы

Этапы становления ФХ

- Адсорбция газов
- Гальванические элементы, электролиз
- Теплота реакции
- Катализ
- I и II закон термодинамики
- Термодинамические аспекты химического равновесия

В XX веке развивались исследования в области строения молекул, кристаллов, приборных методов анализа, химической кинетики, термодинамики неравновесных процессов, визуализация все более мелких - вплоть до атомов - частиц, нанотехнологий.

Физика - наука про энергию и ее превращения. Химия - наука о веществах и их превращениях. Физхимия - внятного определения нет.

Хорошо, когда вы понимаете быстро, но лучше когда вы понимаете правильно ©Какой-то там университет

Разделы курса:

- Химическая термодинамика
- Фазовые и химические равновесия
- Фазовые диаграммы
- Строение растворов и процессы в них
- Очистка химических веществ
- ..

Весь контроль - неблокирующий.

Книжки - 100500 вариантов, советуется книга за авторстовом А.Б.

1.1 Основные понятия химической термодинамики

Хим. термодинамика - изучает превращение химической энергии в теплоту и работу.

Объекты изучения - балансы химических процессов, фазовые и химические равновесия.

Под $T\!\mathcal{A}$ системой подразумевается некоторая часть пространства со всеми включенными в нее компонентами, являющаяся объектом рассмотрения.

Термодинамика рассматривает только макроскопические свойства системы. Если частиц в системе мало - её свойства предсказуемы, и **она не ТД система**. Вся термодинамика - это статистика.

Все положения ТД основаны на ряде постулатов, и рассматривают обобщенные случаи, пользуясь лишь основными законами природы. Благодаря этому, термодинамика очень консервативная наука, «устойчивая» к новым открытиям. Эйнштейн писал, что это единственная наука, результаты которой никогда не будут пересмотрены.

Всякая ТД система должна быть ограничена **поверхностью разде**ла - некоторой воображаемой или реальной границей. Через нее может осуществляться обмен различными формами энергии.

Окружающая среда - все, что вокруг нас, оно принято бесконечным, следовательно, никакие действия системы не могут на него повлиять. Типы ТД систем:

- Если обмен и веществом, и энергией разрешен система открытая. Пример чашка кофе, человек.
- Если обмен только энергией система замкнутая, или закрытая. Пример воздушный шарик, запаянная ампула,
- Если обмен только веществом система адиабатическая. Пример сосуд дьюара, калориметр.
- Если же запрещены все типы взаимодействия система изолированная. Пример термос, закрытый герметично и имеющий идеальную изоляцию.

ТД состояние системы - совокупность свойств этой системы. Любое изменение состояния - ТД процесс. Для полного описания системы достаточно лишь некоторого количесва свойств. Эти свойства - параметры состояния.

$$pV = \frac{m}{M}RT$$

Параметров два: третья зависит от двух. Это могут быть $(p,V),\,(P,T),\,(V,T).$

Параметры бывают интенсивные и экстенсивные. Экстенсивные - зависят от количества вещества. Аддитивны. Интенсивные параметры - не зависят от количества вещества. Например, давление, напряженность поля, сила. Измеряются только через связанные с ними экстенсивные параметры - например, температуру мы измеряем через длинну столбика ртути.

Любая работа может быть представлена произведением ее интенсивного параметра на изменение интенсивного.

$$dA = pdV$$

Удельные значения экстенсивных параметров - удельный объем, концентрация, и т.д. - тоже интенсивные.

Равновесное состояние - такое состояние, при котором свойства системы не меняются от времени, и в ней нет потоков вещества и энергии. На самом деле, в равновесной системе в поле действия внешних сил интенсивные параметры могуут меняться в пространстве. Пример тому - атмосфера земли.

1.2 Нулевой закон термодинамики

Если на границе системы с окружающей средой поддерживаются постоянные значения интенсивных параметров, то эта система рано или поздно приходит в равновесное состояние.

Равновесен ли слиток олова - интуитивно да, а вот нет, равновесная форма - серое олово.

1.3 Первый закон термодинамики

Химические реакции сопровождаются выделением или поглощением энергии.

В качестве единицы энергии выбраны килокалории(ккал) или килоджоули(кДж). Удельный тепловой эффект - в них же на моль. Сейчас принята система СИ, так что калории - несистемная единица.

Уравнения с тепловым эффектом пишут или до минимальных целых коэффициентов, или до 1 моля того вещества, которое характеризуем.

$$2H_2 + O_2 \Rightarrow 2H_2O + 484kJ$$

$$H_2 + \frac{1}{2}O_2 \Rightarrow H_2O + 242kJ$$

Тепловой эффект - определяется энергией связи в реагентах и продуктах, а теплота и произведенная работа - зависят от пути процесса.

Внутренняя энергия - функция состояния. Это потенциальный запас энергии, состоящий из энергии взаимодействий атомов

Первый закон термодинамики: В ходе любого процесса приращение внутренней энергии равно разности между количеством сообщенной ей теплоты и совершенной работы.

$$\Delta U = Q - A$$

NB! Все в термодинамике пишется с точки зрения системы. Плюс - система приобрела энергию. Минус - отдала.

Для описания процессов при постоянном давлении используют *эн-* max nu w:

$$H = U + pV = U + \nu RT$$

Энтальпия - функция состояния, как и внутренняя энергия.

Если изменений объема нет, то $\Delta U = \Delta H$

Применение энтальнии логично, если совершается работа по расширению/сжатию против внешних сил.

$$\Delta U + \Delta(pV) = \Delta H$$

Отсюда ещё одна форма записи тд уравнения - обычное уравнение с подписью $\Delta H = \dots$

Работа при изотермическом расширении идеального газа равна

$$A = \int p dV = \nu RT \int \frac{dV}{V} = \nu RT ln \frac{V_2}{V_1} = \nu RT ln \frac{p1}{p2}$$

Так как состояние системы зависит от условий - давления и температуры, вводят понятие стандартных условий. Это 298K, 1 атм.

NВ! Температура в ТД - всегда в кельвинах.

2 Термохимия. Закон Гесса

$$P = const \Rightarrow Q = \Delta U$$

$$V = const \Rightarrow Q = \Delta H$$

Процессы с выделением тепла, то есть отрицательным ΔU или ΔH - экзотермические. Набоборот - эндотермические.

2.1 Закон Гесса

тепловой эффект химической реакции зависит только от природы и состояния исходных и конечных веществ, но не от путей протекания реакций и состояния промежуточных продуктов

Закон гесса позволяет определять теплоту некоторых реакций, например реакций образования CO или FeO. Например, запишем цикл:

$$C + O_2 \Rightarrow CO_2, \Delta H_1$$

$$C + 1/2O_2 \Rightarrow CO, \Delta H_2$$

$$CO + 1/2O_2 \Rightarrow CO_2 \Delta H_3$$

По закону Гесса, $\Delta H_1 = \Delta H_2 + \Delta H_3$, откуда несложно найти ΔH_2 , а найти ΔH_1 и ΔH_3 довольно легко экспериментально.

2.2 Энтальпия образования

Представив, что продукты и реагенты образовались из простых веществ в стандартном состоянии, получим, что

$$k_1 R_1 + k_2 R_2 + \dots \Rightarrow n 1 P_1 + n_2 P_2 + \dots$$
$$\Delta_r H = \sum \Delta_f H_{prod} - \sum \Delta_f H_{reag} = \sum k_i \Delta_f H_i - \sum n_j \Delta_f H_j$$

Аналогично можно записать и для энтальпий сгорания, только будет вычитаться реагенты из продуктов. При этом учитывается сгорание до максимальной с.о.

$$\Delta_r H = \sum \Delta_b H_{reag} - \sum \Delta_b H_{prod}$$

2.3 Энергия связи

Через энергию связи считать может быть удобнее, но проблема в том, что кратность связи не дает ее энергию со стопроцентной точнстью, так как энергия связи CO, например в CO_2 и $C_xH_y-C(O)-C_xH_y$, сильно различается. А уж у какого-нибудь нитробензола, вообще, все C-H связи имеют разную энергию. Таким образом, считать таким образом можно, но это будет именно оценка, а не точный рассчет, в отличие от других вариантов.

$$C_T = \frac{dQ}{dT}$$

$$\Delta Q = \int C_T dT$$

$$C_{cp} = \frac{\Delta Q}{\Delta T}$$

$$C_V = \frac{dU}{dT_V}/n$$

$$C_p = \frac{dH}{dT_p}/n$$

У твердых тел и жидкотей, $C_P = C_V$

$$C_p = \frac{dH}{dT} = \frac{dU}{dT} + R = C_v + R$$

по молекулярно-кинетической теории,

$$E = 3/2kT$$

$$C_v = 3/2R, C_p = 5/2R$$

Это справедливо только для идеального (одноатомного) газа.

2.4 Фазовые переходы

Если график температуры от времени плавный, то фазовых переходов на нем нет. Если же на нем есть плато, то это говорит о наличии фазового перехода.

Фазовый переход I рода -превращение, при котором меняются его TД параметры, такие как энергия Γ иббса, энтальпия, теплоемкость.

Фазовый переход II рода - превращение, в ходе которого на кривой теплоемкости появляется разрыв, а на всех других - излом.

Все переходы II рода - это переходы порядок-беспорядок, но обратное неверно.

2.5 Закон Кирхгоффа

$$k_1R_1 + k_2R_2 + \ldots \Rightarrow n1P_1 + n_2P_2 + \ldots$$

$$\Delta H_{T_2} = \Delta H_{T_1} + \int_{T_1}^{T_2} \Delta C_p dT + \sum_{j} n_j \Delta H_{P_j} - \sum_{j} k_j (\Delta H_{R_j})$$

Если $\sum C_p$ и $\sum C_r$ пересекаются на графике - есть экстремум в $\Delta_r H$.

2.6 Второй закон термодинамики

Равновесный процесс - такой процесс, в любой фазе которого все части системы находятся в равновесии между собой и с окружпющей средой.

Обратимый процесс сопроождается постоянной величиной работы, изменения внутренней энергии, а соответственно и изменением теплоты.

Первый закон ТД говорит о тепловом эффекте, но не о возможности протекания.

Изменение энергии для системы плюс окр. среды равно нулю по ЗСЭ. Совокупная энергия сохраняется, все по I закону ТД. Чтобы разобраться в возможности самопроизвольного протекания процессов, вводят II закон ТД.

Существуют процессы, не противоречащие I закону ТД, которые самопроизвольно протекать не могут.

Другие формулировки:

Теплота не может самопроизвольно переходить от холодного тела к горячему.

Теплота более холодного из участвующих тел не может быть источником работы.

Но отрицательный процесс может протекать, если параллельно с ним протекает другой, не отрицательный. Пример - холодильник.

Для характеристики способности системы к самопроизвольному процессу, вводится энтропия. При обратимом процессе, протекающем через равновесные состояния, энтропия выражается так:

$$\Delta S = S_2 = S_1 = \frac{Q}{T}$$

Выбор обратимого процесса - логичен, так как в этом случае работа - функция состояния.

Для необратимого процесса $\Delta S > 0$.

В изолированной систме самопроизвольно могут протекать только процессы, у которых $\Delta S < 0$. Это еще одна формулировка II закона ТД.

Единица измерения энтропии - Джоуль на моль-кельвин $(\frac{J}{mol \cdot K})$.

Рассмотрим бильярдный шар, катящийся по столу. Его энергия движения в одну постепенно переходит в энергию движения частиц среды в разные стороны.

Введем понятие ТД вероятности, характеризующей, сколькими микросостояниями может быть реализовано то макросостояние, которое мы наблюдаем.

Любая система стремится к наиболее вероятному состоянию.

В связи с этим, логично связать энтропию с вероятностью:

$$S = k \ln W$$

где k - постоянная Больцмана

$$\Delta S = k \ln \frac{V_2}{V_1}^n = kN \ln \frac{V_2}{V_1}$$
$$\Delta S = \frac{Q}{T} = R \ln \frac{V_2}{V_1}$$

Из приведенного выше следует, что

$$R = kN \Rightarrow k = \frac{R}{N}$$

Вывод: энтропия - мера разупорядоченности в системе, а II закон ТД постулирует стремление системы к беспорядку.

Каждому телу, веществу и материалу можно приписать определенную энтропию; наличие в веществе примесей увеличивает энтропию.

Постулат Планка

В идеальном кристалле при 0K энтропия равна нулю, а ТД вероятность - единице.

У энтальпии, в отличие от энтропии, нуля отсчета нет, в связи с этим втыкаются костыли типа "энтальпия простых в-в равна нулю"

Существуют эмпирические правила:

• Правило Труттона: для слабо ассоциированных жидкостей энтропия испарения при температуре кипения примерно равна 90 Дж/моль К. Исключения: уксусная к-та в газе - димер, т.о. изменение энтропии падает($\Delta S = 63$ Дж/моль К); вода, напротив, ассоциирована в жидкости, ее изменение энтропии сильно выше - 119 Дж/моль К.

Изменение энтропии для неравновесного процесса, с одной стороны, не имеет смысла, с другой, его можно представить как обратимый с тем же исходным и конечным состоянием, т.о. можно посчитать его энтропию.

3 Энергия Гиббса и Гельмгольца

$$\Delta S_{isol} = \Delta S - \frac{\Delta H}{T}$$

Энтальпия системы связана с энтропией среды. Изменение энтальпии это изменение энтропии среды. На самом деле, условие самопроизвольности таково:

$$\Delta S - \frac{\Delta H}{T} > 0$$

При малых ΔH и высокой температуре - доминирует энтропия, при больших ΔH и малой температуре - доминирует энтальпия.

3.1 Энегрия Гиббса G

Рассмотрим систему, где происходит работа расширения и работа хим. процесса.

$$\Delta U = Q - p\Delta V - A_{chem}$$
$$-A_{chem} = \Delta U - T\Delta S + p\Delta V =$$

 $\Delta G = -A_{chem}$ - энергия Гиббса

$$\Delta G = \Delta H - T\Delta S$$

3.2 Энергия Гельмгольца F

- то же что и G, но для постоянного объема.

$$F = U - TS$$

Процессы всегда протекают в сторону уменьшения энергии Гиббса. Если $\frac{dG}{d\chi}=0$, то любое изменение состава станет термодинамически невыгодным, то есть у реакции есть положение равновесия, отклонение от которого невыгодно.

Энергия Гемгольца по сравнению с энергией Гиббса бесполезна.

3.3 Химический потенциал

Любую работу можно записать через 2 параметра - интенсивный и экстенсиный. Химический потенциал μ - характеризует скорость изменения энергии Гиббса при изменении ко-ва вещества:

$$\mu = \frac{dG}{dn_i}$$

$$\frac{dG}{dT} = V$$

$$G(p_2) = G(p_1) + \int V dp = G(p_1) + nRT \ln \frac{p_1}{p_2}$$

Для реальных газов используют не давление, а летучесть f. Можно перейти и концентрации, что удобно для растворов:

$$\mu = \mu^0 + RT \ln C$$

Для реальных растворов:

$$\mu = \mu^0 + RT \ln a = \mu^0 + RT \ln(\gamma C)$$

,где a - активность, а γ - коэффициент активности.

3.4 Изотерма Вант-Гоффа

Для реакции

$$c_1 R_1 + c_2 R_2 + \dots = c_1 P_1 + c_2 P_2 + \dots$$
$$\Delta G = \Delta G^0 + RT \ln \frac{\sum P_i^{c_i}}{\sum R_i^{c_j}} = \Delta G^0 + RT \ln K$$

4 Фазовые диаграммы

...Сорри, часть материала успешно продолбана...

4.1 Конгруэнтно плавящиеся соединения.

Если соединение при плавлении не разлагается, то говорят, что оно плавится конгруэнтно, иначе - неконгруэнтно.

В системе, например, $CuCl \cdot FeCl_3$, уже не простая эвтектика, а по сути, две таких эвтектики: $FeCl_3/CuCl \cdot FeCl_3$ и $CuCl/CuCl \cdot FeCl_3$. В

итоге имеем экстремум в середине диаграммы и можем «разрезать» ее пополам на две простых эвтектики.

Многие соединения имеют *область гомогенности* - место, где в соединении растворяется один из его компонентов. Пример:

$$Fe/FeO/O_2$$

. В реальной жизни, состав FeO вовсе даже $Fe_{0.95}O$, что обусловлено переходом малой части Fe^{2+} в Fe^{3+}

4.2 Неконгруэнтно плавящееся соединение

Возникает дополнительный ФП, в остальном все так же как и раньше

4.3 Неограниченная взаимная растворимость

Пример - Ag/Au. Диаграмма состояния - "лепесток"; внутри лепестка - 1 степень свободы, на границе - одна, снаружи - две.