Lezione 33 Geometria I

Federico De Sisti2024-05-30

Classificazione affine ed Euclidea 1

 $\ell \subset \mathbb{A}^2(\mathbb{K})$ conica

pongo $a_{10}=a_{01}, a_{20}=a_{02}, a_{21}=a_{12}$ dunque la matrice $A=(a_{ij})$ è simmetrica. Chiamo

$$\underline{\widetilde{X}} = \begin{pmatrix} 1 \\ x \\ y \end{pmatrix}$$
. Allora \circledast diventa.

$$\widetilde{X}^t A \widetilde{X}$$
.

Considera l'affinità $T_{M,C}(\underline{X}) = M\underline{X} + c$ ove $M \in GL(2, \mathbb{K}), \ b \in \mathbb{K}^2$ Abbiamo visto che c'è un omomorfismo iniettivo

$$Aff(\mathbb{A}^2_{\mathbb{K}}) \to GL(3,\mathbb{K}).$$

$$T_{M,C} \to \widetilde{M} = \begin{pmatrix} 1 & 0 & 0 \\ c & M \end{pmatrix}$$

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \quad c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Se effettuo il cambio di coordinate

$$\widetilde{X} = \widetilde{M}\widetilde{X}'.$$

l'equivalenza $\underline{\widetilde{X}}^t A \underline{\widetilde{X}} = 0$ diventa $(\widetilde{M} \underline{\widetilde{X}}')^t A \overline{M} \underline{\widetilde{X}}'$

$$\widetilde{X}^{\prime t} B \widetilde{X}^{\prime} = 0.$$

$$\mathrm{con}\ B=\widetilde{M}^tA\widetilde{M}$$

Questa equazione ci dice che il rango di A è una proprietà affine di ℓ . Chiameremo tale numero rango di ℓ (notazione $r(\ell)$

Diciamo che ℓ è

non degenere se $r(\ell) = 3$

semplicemente degenere se $r(\ell) = 2$

doppiamente degenere se $r(\ell) = 1$

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{01} & a_{11} & a_{12} \\ a_{02} & a_{12} & a_{22} \end{pmatrix}$$

 $A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{01} & a_{11} & a_{12} \\ a_{02} & a_{12} & a_{22} \end{pmatrix}$ In altri termini, A_0 è la matrice della forma quadratica associata ai termini quadratici del polinomio $a_{11}x^2+2a_{12}xy+a_{22}y^2$ (A_0 è il minore ottenuto togliendo prima riga e prima colonna)

$$\widetilde{\underline{X}} = \widetilde{M}\widetilde{\underline{X}}'$$

$$A \leftrightarrow B = \widetilde{M}^t A \widetilde{M}$$

$$A_0 \leftrightarrow B_0 = M^t A_0 M \circledast$$

Dunque anche rkA_0 è un invariante affine di ℓ

$$\det A_0 \begin{cases} \neq 0 & \ell \text{ conica a centro} \\ = 0 & \ell \text{ parabola} \end{cases}$$

 $\mathbb{K} = \mathbb{R}$ Da \circledast deduciamo che anche il segno di det A_0 è un invariante affine (infatti $\det B = (\det M)^2 \det A_0$)

$$\det B \begin{cases} > 0 & \ell \text{ ellisse} \\ < 0 & \ell \text{ iperbole} \end{cases}.$$

Teorema 1

Ogni conica di $\mathbb{A}^2(\mathbb{K})$ è affinemente equivalente a una delle seguenti:

$$x^2 + y^2 - 1 = 0$$
 conica a centro 1

$$x^2 + y^2 = 0$$
 conica a centro degenere 2

$$y^2 - x = 0$$
 parabola 3

$$y^2 - x = 0$$
 parabola 3
 $y^2 - 1 = 0$ parabola degenere 4

$$y^2 = 0$$
 conica doppiamente degenere 5

$$2) \mathbb{K} = \mathbb{R}$$

$$x^2 + y^2 - 1 = 0 \quad ellisse$$

$$x^2 + y^2 - 1 = 0$$
 ellisse 1
 $x^2 + y^2 + 1 = 0$ ellisse a punti non reali 2
 $x^2 + y^2 = 0$ ellisse degenere 3

$$x^2 + y^2 = 0$$
 ellisse degenere 3

$$x^2 - y^2 - 1 = 0 \quad iperbole \ 4$$

$$x^2 - y^2 - 1 = 0$$
 iperbole 4
 $x^2 - y^2 = 0$ iperbole degenere 5

$$y^2 - x = 0 parabola 6$$

$$y^2 - 1 = 0$$
 parabola degenere 7

$$y^2 + 1 = 0$$
 parabola degenere 8

$$y^2 = 0$$
 conica doppiamente degenere 9

Le coniche di ognuno dei gruppi precedenti sono a due a due non affinemente equivalenti

Dimostrazione

Partiamo da XAX = 0 e tramite affinità vogliamo ridurci ad uno dei casi elencati

Passo 1:

eliminazione del termine in xy

Poichè A_0 è simmetrica, esiste $M \in GL(2, \mathbb{K})$ tale che M^tAM è diagonale. Quindi effetto la sostituzione $\underline{X} = M\underline{X}'$. L'equazione, nelle nuove coordinate \underline{X}' , che per comodità indichiamo ancora \underline{X} è

$$a_{11}x^2 + a_{22}y^2 + 2a_{01}x + 2a_{02}y + a_00 = 0.$$

Osserviamo che la conica è a centro se e solo se $a_{11}a_{22} \neq 0$

Passo 2

Eliminazione dei termini lineari e costanti

Supponiamo ℓ a centro

effettuiamo la traslazione
$$\begin{cases} x = x' - \frac{a_{01}}{a_{11}} \\ y = y' - \frac{a_{02}}{a_{22}} \end{cases}$$
 che cambia l'equazione in $a_1 1 x'^2 + a_1 x'^2 + a_2 x'^2 + a_2 x'^2 + a_3 x'^2 + a_4 x'^2 + a_4 x'^2 + a_5 x'^2 + a_$

 $Se\ \ell\ non\ \grave{e}\ a\ centro\ possiamo\ supporre,\ a\ meno\ di\ scambiare\ le\ variabili\ (ovvero$ effettuare l'affinità $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$) che risulti

$$a_1 1 = 0, a_{22} \neq 0.$$

$$a_{22}y^2 + 2a_{01}x + 2a_{02}y + a_{00} = 0$$

$$Tramite\ la\ traslazione\ \begin{cases} x = x' \\ y = y' - \frac{a_{02}}{a_{22}} \end{cases}$$

$$l'equazione\ diventa$$

 $l'equazione\ diventa$

$$a_2 2y^{2\prime} + 2a_{01}x' + d_{00} = 0.$$

Se
$$a_{01} \neq 0$$
 eseguo
$$\begin{cases} x' = x'' - \frac{d_{00}}{2a_{01}} \\ y' = y'' \end{cases}$$
ottenendo $a_{22}y''^2 + 2a_{01}x'' = 0$

 $se \ a_{01} = 0 \quad a_{22}y^{2} + d_{00} = 0$

Passo 3

Normalizzazione dei coefficienti

 $\mathbb{K} = \overline{\mathbb{K}}$. Sia ℓ a centro. Partiamo da

$$a_{11}x'^2 + a_{22}y'^2 + c_{00} = 0.$$

$$se \ c_{00} = 0 \begin{cases} x' = \frac{x}{\sqrt{a_{11}}} \\ y' = \frac{y}{\sqrt{a_{22}}} \end{cases} \longrightarrow x^2 + y^2 = 0 \quad (2)$$

$$Se \ c_{00} \neq 0$$

$$-\frac{a_{11}}{c_{00}}x^{2'} - \frac{a_{12}}{c_{00}}y^{2'} - 1 = 0.$$

$$\begin{cases} x' = \sqrt{-\frac{c_{00}}{a_{11}}}x \\ y' = \sqrt{-\frac{c_{00}}{a_{22}}}y \end{cases} \longrightarrow x^2 + y^2 - 1 = 0(1).$$

Sia ora ℓ non a centro, trasformata in

$$a_{22}y^{2\prime} + d_{00} = 0.$$

$$d_{00} = 0 y^{2\prime} = 0 \Rightarrow y^{2} = 0(5)$$

$$d_{00} \neq 0 -\frac{a_{22}}{d_{00}}y^{2\prime} - 1 = 0$$

$$\begin{cases} y' = \sqrt{-\frac{d_{00}}{a_{22}}}y \\ x' = x \end{cases} \rightsquigarrow y^2 - 1 = 0(4).$$

Resta da vedere il caso ℓ non a centro trasformata in

$$a_{22}y^{\prime 2} + 2a_{01}x^{\prime \prime} = 0.$$

$$\begin{cases} x'' = \frac{x}{-2a_{01}} \\ y'' = \frac{y}{\sqrt{a_{22}}} \end{cases} \rightsquigarrow y^2 - x = 0(3).$$

 $\mathbb{K} = \mathbb{R}$ ℓ a centro

$$a_{11}x^{2} + a_{22}y^{2} + c_{00} = 0.$$

Posso supporre $c_00 = 0$ o $c_00 = -1$

$$\begin{cases} x' = \frac{x}{\sqrt{|a_{11}|}} \\ y' = \frac{y}{\sqrt{|a_{22}|}} \end{cases} \rightsquigarrow (1) - (5).$$

 ℓ non a centro del tipo

$$a_{22}y'^2 + d_00 = 0.$$

Posso supporre $d_{00} = 0$ o $d_{00} = -1$

$$\begin{cases} x' = x \\ y' = \frac{y}{\sqrt{|a_{22}|}} \end{cases} \rightsquigarrow (7) - (9).$$

 ℓa centro del tipo

$$a_{22}y''^2 + 2a_{01}x'' = 0.$$

Osservazioni

1) Se ℓ è a centro, il sistema lineare

$$\begin{cases} a_{11}x + a_{12}y + a_{10} = 0 \\ a_{22}x + a_{22}y + a_{20} = 0 \end{cases}$$

Ha soluzione unica (poichè det $A_0 \neq 0$) (x_0, y_0)

Il punto con tali coordinate è il centro di simmetria, infatti la simmetria rispetto a tale punto

$$\begin{cases} x = 2x_0 - x' \\ y = 2y_0 - y' \end{cases}.$$

manda ℓ in ℓ

Le rette passanti per $c = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ si dicono diametri di ℓ

2) per calcolare i punti impropri di ℓ di equazione

$$\underline{\widetilde{X}}^t A \underline{\widetilde{X}} = 0.$$

bisogna risolvere l'equazione omogenea

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 = 0.$$

 $\left(x = \frac{x_1}{x_0}, \ y = \frac{x_2}{x_0}\right)$ che ha discriminante $-det A_0$. Quindi le soluzioni sono reali distinte ℓ iperbole reali coincidenti ℓ parabola complesse conugate ℓ ellisse

Teorema 2

Ogni conica di
$$\mathbb{E}^2$$
 è congruente a una delle seguenti
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad a \ge b > 0 \quad ellisse$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 \quad a \ge b > 0 \ ellisse \ a \ putni \ non \ reali$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0 \quad a \ge b > 0 \text{ ellisse degenere}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad a > 0, b > 0 \text{ iperbole}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 $a > 0, b > 0$ iperbole

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \quad a > 0, b > 0 \ iperbole \ degenere$$

$$y^2 - 2px = 0$$
 $p > 0$ parabola

$$y^2 - a^2 = 0$$
 $a \ge 0$ parabola degenere

$$y^2 + a^2 = 0$$
 $a > 0$ parabola degenere

 $y^2 = 0$ conica doppiamente degenere

le coniche elencate sono a due a due non equivalenti