Paths of analysis*

Synthia

March 3, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

- 1. Max. molecular weight 1000 g/mol
- 2. Max. price 1000 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: {}

2 Paths

2 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 138.85

Figure 1: Outline of path 1

2.1.1 Suzuki coupling of arylboronic acids with aryl bromides

Substrates:

- 1. 5-Bromo-7-azaindole available at Sigma-Aldrich
- 2. (p-Fluorophenyl)boric acid available at Sigma-Aldrich

${\bf Products:}$

1. Fc1ccc(-c2cnc3[nH]ccc3c2)cc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Yield: good

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H and 10.1016/j.ejmech.2018.08.092 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 25150

2.1.2 N-Sulfonylation

Substrates:

1. 1-Propanesulfonyl chloride - available at Sigma-Aldrich

2. 3-Bromo-2,4-difluoroaniline - AstaTech

Products:

Typical conditions: THF.rt

Protections: none

Yield: good

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and <math>10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14718

2.1.3 Iodination of aromatic compounds

Substrates:

1. Fc1ccc(-c2cnc3[nH]ccc3c2)cc1

Products:

1. Fc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Yield: good

 $\textbf{Reference:} \quad \text{DOI:} \quad 10.1039/C5SC00964B \quad \text{and} \quad 10.1016/j.tetlet.2005.05.117 \quad \text{and} \quad$

10.1007/s11178-005-0256-1

Retrosynthesis ID: 10697

2.1.4 Pd-catalyzed conversion of aryl bromides to Weinreb amides

Substrates:

2. Carbon monoxide - available at Sigma-Aldrich

3. n-methoxymethylamine - ChemImpexInternational

Products:

1. CCCS(=O)(=O)Nc1ccc(F)c(C(=O)N(C)OC)c1F

Typical conditions: Pd(OAc)2.Xantphos.CO(1 atm).Na2CO3.toluene.80C

Protections: none
Yield: moderate

Reference: DOI: 10.1021/ol061902t

Retrosynthesis ID: 1688

2.1.5 Synthesis of ketones from Weinreb amides

Substrates:

1. CCCS(=O)(=O)Nc1ccc(F)c(C(=O)N(C)OC)c1F

2. Fc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

Products:

 $1. \ \ CCCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Yield: good

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.2 Path 2

Score: 162.57

Figure 2: Outline of path 2

2.2.1 Suzuki coupling with aryl chlorides

Substrates:

- 2. (p-Fluorophenyl)boric acid available at Sigma-Aldrich

Products:

 $1. \ \ CCCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$

Typical conditions: [Pd].catalyst.base.

Protections: none

Yield: good

Reference: 10.1002/anie.201108608 and 10.1002/anie.200801465 and 10.1055/s-0033-1338293 and 10.1039/c1cc10708a and 10.1055/s-0030-1260169 and 10.1016/j.tet.2005.05.071 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 26284