CLAIMS

1	1-14. (canceled)
1	15. (new) A fuse apparatus for igniting an explosive charge of an ordnance, the fuse
2	apparatus comprising:
3	a laser adapted to generate a laser optical signal for igniting the explosive charge;
4	an electrically controlled mechanical switch comprising a base, an actuator connected to the
5	base, and an actively controlled movable element adapted to move relative to the base as a function of an
6	electrical control signal applied to the actuator, wherein the mechanical switch is adapted to be
7	configured in:
8	a first switch configuration in which at least one of position and orientation of the
9	movable element is controlled by the actuator to directly prevent the laser optical signal from impinging
10	on the explosive charge; and
11	a second switch configuration in which at least one of the position and the orientation of
12	the movable element is controlled by the actuator to directly enable the laser optical signal to impinge on
13	the explosive charge; and
14	a control unit adapted to generate and transmit the electrical control signal to the actuator to
15	change the configuration of the mechanical switch from the first switch configuration to the second
16	switch configuration.
1	16. (new) The fuse apparatus of claim 15, wherein:
2	the movable element of the mechanical switch is a shutter adapted to (1) block the laser optical
3	signal to prevent the laser optical signal from impinging on the explosive charge in the first switch
4	configuration and (2) unblock the laser optical signal to enable the laser optical signal to impinge on the
5	explosive charge in the second switch configuration; and
6	the actuator is adapted to change the position of the shutter from the first switch configuration to
7	the second configuration based on the electrical control signal from the control unit.
1	17. (new) The fuse apparatus of claim 15, wherein:
2	the laser has a controllable optical power level; and
3	the control unit is further adapted to control the optical power level of the laser to generate either
4	a low-power laser optical signal or a high-power laser optical signal, wherein:
5	the low-power laser optical signal is insufficient to ignite the explosive charge; and

6

the high-power laser optical signal is sufficient to ignite the explosive charge.

7	
1	18. (new) The fuse apparatus of claim 17, further comprising an optical detector positioned
2	such that:
3	the optical detector receives at least a portion of the laser optical signal reflected from the
4	movable element of the mechanical switch, if the mechanical switch is in the first switch configuration;
5	and
6	the detector receives substantially no reflected laser optical signal from the movable element of
7	the mechanical switch, if the mechanical switch is in the second switch configuration, wherein the
8	optical detector is adapted to generate a detector signal for the control unit indicative of receipt of
9	reflected laser optical signal.
10	19. (new) The fuse apparatus of claim 18, wherein the control unit is further adapted to
11	control the laser to generate:
12	the low-power laser optical signal if the detector signal indicates receipt of the reflected laser
13	optical signal; and

14

15

3

4

1

2

1

2

1

2

al indicates receipt of the reflected laser optical signal; and

the high-power laser optical signal if the detector signal indicates non-receipt of the reflected laser optical signal.

- 20. (new) The fuse apparatus of claim 15, wherein the control unit is adapted to: 1 detect firing of the ordnance; and 2
 - control the configuration of the mechanical switch to change from the first configuration to the second configuration after detecting the firing of the ordnance.
 - (new) The fuse apparatus of claim 20, further comprising an accelerometer adapted to 21. generate an acceleration signal for the control unit indicative of the firing of the ordnance.
 - (new) The fuse apparatus of claim 20, further comprising a spin sensor adapted to 22. generate a spin signal for the control unit indicative of the firing of the ordnance.
- (new) The fuse apparatus of claim 15, wherein the mechanical switch is a MEMS 1 23. 2 device.
 - (new) The fuse apparatus of claim 23, wherein the laser and the MEMS device are 24. implemented as part of a single integrated device.

1	25. (new) The fuse apparatus of claim 24, wherein the single integrated device further
2	comprises a lens adapted to focus the laser optical signal from the laser onto the explosive charge in the
3	second switch configuration.
1	26. (new) The fuse apparatus of claim 15, wherein:
2	the movable element of the mechanical switch is a shutter adapted to (1) block the laser optical
3	signal to prevent the laser optical signal from impinging on the explosive charge in the first switch
4	configuration and (2) unblock the laser optical signal to enable the laser optical signal to impinge on the
5	explosive charge in the second switch configuration;
6	the actuator is adapted to change the position of the shutter from the first switch configuration to
7	the second configuration based on the electrical control signal from the control unit;
8	the laser has a controllable optical power level;
9	the control unit is further adapted to control the optical power level of the laser to generate either
10	a low-power laser optical signal or a high-power laser optical signal, wherein:
11	the low-power laser optical signal is insufficient to ignite the explosive charge; and
12	the high-power laser optical signal is sufficient to ignite the explosive charge;
13	further comprising an optical detector positioned such that:
14	the optical detector receives at least a portion of the laser optical signal reflected from
15	the movable element of the mechanical switch, if the mechanical switch is in the first switch
16	configuration; and
17	the detector receives substantially no reflected laser optical signal from the movable
18	element of the mechanical switch, if the mechanical switch is in the second switch configuration,
19	wherein the optical detector is adapted to generate a detector signal for the control unit indicative of
20	receipt of reflected laser optical signal;
21	the control unit is further adapted to control the laser to generate:
22	the low-power laser optical signal if the detector signal indicates receipt of the reflected
23	laser optical signal; and
24	the high-power laser optical signal if the detector signal indicates non-receipt of the
25	reflected laser optical signal.
26	the control unit is adapted to:
27	detect firing of the ordnance; and
28	control the configuration of the mechanical switch to change from the first configuration
29	to the second configuration after detecting the firing of the ordnance;

further comprising at least one of (i) an accelerometer adapted to generate an acceleration signal
for the control unit indicative of the firing of the ordnance and (ii) a spin sensor adapted to generate a
spin signal for the control unit indicative of the firing of the ordnance;
the mechanical switch is a MEMS device;
the laser and the MEMS device are implemented as part of a single integrated device; and
the single integrated device further comprises a lens adapted to focus the laser optical signal
from the laser onto the explosive charge in the second switch configuration.

Serial No. 10/766,449 -9- Bishop 56-3-2 (990.0588)