

Normalização para BD Relacionais

- Introdução
- Nível Básico
 - Dependências funcionais
 - 1.a Forma Normal (1FN)
 - 2.ª Forma Normal (2FN)
 - 3.ª Forma Normal (3FN)
 - Forma Normal de Boyce-Codd (FNBC)
- Estratégia
- Conclusão
- Nível Avançado
 - Dependências Multivalor
 - 4.a Forma Normal (4FN)
 - Junção Não Aditiva (JNA)
 - 5.a Forma Normal (5FN)

Normalização para BDR Nível básico

Introdução

- Objectivos
- Prioridades
 - 1. Armazenar todos os dados relevantes
 - 2. Eliminar dados redundantes
 - 3. Minimizar o n.º de relações
- Redundância de dados e anomalias de actualização
 - Anomalias de inserção
 - Anomalias de eliminação
 - Anomalias de alteração

Introdução

 Redundância de dados e anomalias de actualização

Nome	Sexo	Peso	Vacina Esgana	Vacina Raiva	Numero Cliente	Nome Cliente	Morada Cliente
Bobi	М	7,5			1000	José	Leiria
Laika	F	20,0	2-9-2002	1-8-2002	1000	José	Leiria
Snoopy	М	5,0	4-6-2002	4-6-2002	1500	Maria	Coimbra
Lulu	F	4,5	4-6-2002	4-6-2002	1500	Maria	Coimbra

Numero Cliente	Nome Cliente	Morada Cliente	NContribuinte Cliente	NBI Cliente
1000	José	Leiria	123 123 123	12345678
1500	Maria	Coimbra	971 971 971	9876543
1550	Luísa	Coimbra	323 123 212	9087654

Nome	Sexo	Peso	Vacina Esgana	Vacina Raiva	Numero Cliente
Bobi	М	7,5	NULL	NULL	1000
Laika	F	20,0	2-9-2002	1-8-2002	1000
Snoopy	М	5,0	4-6-2002	4-6-2002	1500
Lulu	F	4,5	4-6-2002	4-6-2002	1500

Normalização para BDR Nível básico

Dependências Funcionais

- Definição
 - considerando A e B atributos (ou 2 conjuntos de atributos) de uma relação
 - B é funcionalmente dependente de A, sse a cada valor de A estiver associado um e um só valor de B
- Representação
 A → B
- Determinante
 - considerando A e B atributos (ou 2 conjuntos de atributos) de uma relação
 - A é determinante de B, sse A → B e se B não for funcionalmente dependente de nenhum subconjunto de A

Dependências Funcionais

Exemplo1

Funcionário

N_func	Nome	Apelido	Depart
1021	Joana	Silva	100
1022	João	Reis	665
1023	Rui	Silva	767
1024	Maria	Teixeira	807

- O atributo Apelido é funcionalmente dependente de N_func?
- O atributo N func é funcionalmente dependente Apelido?

Exemplo2

Compras

Supermercado	Artigo	Preço
Miradouro	Couve galega, Kg	2.50
Continente	Esporão tinto, 86	6.35
Pingo Doce	Amendoins, Kg	1.80
Pingo Doce	Esporão tinto, 86	6.90
Loja do Bairro	Amendoins, Kg	2.00

- O atributo Preço é funcionalmente dependente de artigo?
- O atributo Preço é funcionalmente dependente Supermercado?

Normalização para BDR Nível básico

Dependências Funcionais

Exemplo3

Nome	Sexo	Peso	Vacina Esgana	Vacina Raiva	N_Cliente	Nome Cliente	Telefone	Morada
Bobi	М	7,5	NULL	NULL	1000	José	244546546	Leiria
Laika	F	20,0	2-9-2002	1-8-2002	1000	José	244546546	Leiria
Snoopy	М	5,0	4-6-2002	4-6-2002	1500	Maria	239765765	Coimbra
Lulu	F	4,5	4-6-2002	4-6-2002	1500	Maria	239765765	Coimbra
Bobi	М	10,0	5-7-2002	5-8-2002	1600	António	244123456	Leiria

 $\{Nome, N_Cliente\} \rightarrow \{Peso\}$

 $\{Nome, N_Cliente\} \rightarrow \{Sexo\}$

{Nome, N_Cliente} → {Vacina_Esgana}

{Nome, N_Cliente} → {Vacina_Raiva}

 ${N_Cliente} \rightarrow {Nome_Cliente}$

 $\{N_Cliente\} \rightarrow \{Telefone\}$

 $\{N_Cliente\} \rightarrow \{Morada\}$

Dependências Funcionais

Exemplo3

Nome	Sexo	Peso	Vacina Esgana	Vacina Raiva	N_Cliente	Nome Cliente	Telefone	Morada
Bobi	М	7,5	NULL	NULL	1000	José	244546546	Leiria
Laika	F	20,0	2-9-2002	1-8-2002	1000	José	244546546	Leiria
Snoopy	М	5,0	4-6-2002	4-6-2002	1500	Maria	239765765	Coimbra
Lulu	F	4,5	4-6-2002	4-6-2002	1500	Maria	239765765	Coimbra
Bobi	М	10,0	5-7-2002	5-8-2002	1600	António	244123456	Leiria

• Diagrama de Dependências Funcionais (DDF)

Normalização para BDR Nível básico

Dependências Funcionais

- Regras de Inferência
 - permitem reduzir, ou alterar, um dado conj. de dependências funcionais (DFs) num outro conjunto de DFs equivalentes
 - Dependência funcional redundante
 - Cobertura mínima
 - Dependendo das regras aplicadas podem-se obter diferentes coberturas mínimas

Dependências Funcionais

- Regras de Inferência
 - Axiomas de Armstrong
 - Reflexividade

Se
$$A \supset B \Rightarrow A \rightarrow B$$

Transitividade

Se A
$$\rightarrow$$
 B e B \rightarrow C => A \rightarrow C é uma DF transitiva (válida, mas **redundante**)

Normalização para BDR Nível básico

Dependências Funcionais

- Regras de Inferência
 - Axiomas de Armstrong
 - Aumentatividade ou acrescento de atributos
 - 1. Se A \rightarrow B então {A, Z} \rightarrow B é uma DF válida, mas **redundante**

2. Se A \rightarrow B então {A, Z} \rightarrow {B, Z} é uma DF válida, mas **redundante**

Dependências Funcionais

- Regras de Inferência
 - Axiomas de Armstrong
 - União ou Junção

Se $A \rightarrow B$ e $A \rightarrow C$ então $A \rightarrow \{B, C\}$

Decomposição

Se
$$A \rightarrow \{B, C\}$$
 então $A \rightarrow B$ e $A \rightarrow C$

Normalização para BDR Nível básico

Dependências Funcionais

- Regras de Inferência
 - Axiomas de Armstrong
 - Pseudo-transitividade

Se
$$A \rightarrow B$$
 e $\{B, C\} \rightarrow D$
então $\{A, C\} \rightarrow D$ é uma DF pseudo-transitiva
(válida, mas **redundante**)

Dependências Funcionais

- Regras de Inferência
 - Exemplo1

DDF original

a) A → D é removida, por transitividade

b) A → C é removida, por transitividade

c) B → D é removida, por transitividade

Normalização para BDR Nível básico

Dependências Funcionais

- Regras de Inferência
 - Exemplo2

DDF original

a) $A \rightarrow C$ e $A \rightarrow F$ removidas por transitividade $\{B,E\} \rightarrow C$ removida por aumentatividade

b) {B,E} retirada a composição, por decomposição

c) A → E removida, por transitividade

1.a Forma Normal

- Requisitos
 - Domínio de todos os atributos contém apenas valores atómicos
 - Não há conjunto de atributos repetidos descrevendo a mesma característica
- Exemplos negativos
 - Exemplo1

R

Num Aluno	Nome Aluno	Cod Tutor	Tutor	Gabinete	Disciplinas	Notas
100	Ana Luísa	DEI_20	J. Silva	10	Física, Álgebra	12, 10
120	João Paulo	DEM_13	Antunes	55	Química, Álgebra	14, 16

• Exemplo2

R

Num Aluno	Nome Aluno	Cod Tutor	Tutor	Gabinete	Disciplina 1	Disciplina 2	Nota 1	Nota 2
100	Ana Luísa	DEI_20	J. Silva	10	Física	Álgebra	12	10
120	João Paulo	DEM_13	Antunes	55	Química	Álgebra	14	16

Normalização para BDR Nível básico

1.a Forma Normal

Exemplo positivo

R

N_Aluno	Nome_Aluno	Cod_Tutor	Tutor	Gabinete	Disciplina	Nota
100	Ana Luísa	DEI_20	J. Silva	10	Física	12
100	Ana Luísa	DEI_20	J. Silva	10	Álgebra	10
120	João Paulo	DEM_13	Antunes	55	Química	14
120	João Paulo	DEM_13	Antunes	55	Álgebra	16

R(N aluno, Disciplina, Nome_aluno, Cod_tutor, Tutor, Gabinete, Nota)

Relação Universal

Relação na 1FN que contém todos os atributos de interesse para uma dada base de dados e onde podem ser armazenados todos os dados dessa base de dados

2.a Forma Normal

- Requisitos
 - Relação estar na 1.ª Forma Normal
 - atributos que n\u00e3o s\u00e3o chave prim\u00e1ria terem uma depend\u00e8ncia funcional total

Exemplo

R

N_Aluno	Nome_Aluno	Cod_Tutor	Tutor	Gabinete	Disciplina	Nota
100	Ana Luísa	DEI_20	J. Silva	10	Física	12
100	Ana Luísa	DEI_20	J. Silva	10	Álgebra	10
120	João Paulo	DEM_13	Antunes	55	Química	14
120	João Paulo	DEM_13	Antunes	55	Álgebra	16

• R está na 2FN?

Normalização para BDR Nível básico

2.a Forma Normal

- Exemplo
 - Normalizar R para a 2FN

R

N_Aluno	Nome_Aluno	Cod_Tutor	Tutor	Gabinete	Disciplina	Nota
100	Ana Luísa	DEI_20	J. Silva	10	Física	12
100	Ana Luísa	DEI_20	J. Silva	10	Álgebra	10
120	João Paulo	DEM_13	Antunes	55	Química	14
120	João Paulo	DEM_13	Antunes	55	Álgebra	16

R2

N_Aluno	N_Aluno Nome_Aluno		Tutor	Gabinete	
100	Ana Luísa	DEI_20	J. Silva	10	
110	110 Mariana		J. Silva	10	
120	120 João Paulo		Antunes	55	
130	130 Paulo Jorge		Antunes	55	

R1(N_aluno, Disciplina, Nota)

R2(N aluno, Nome_aluno, Cod_tutor, Tutor, Gabinete)

3.a Forma Normal

- Requisitos
 - Relação estar na 2.ª Forma Normal
 - Nenhum atributo que n\u00e3o perten\u00d3a à chave prim\u00e1ria pode depender de outro atributo que tamb\u00e9m n\u00e3o faz parte da(s) chave(s) candidata(s)
- Exemplo

R1

N_Aluno	Disciplina	Nota
100	Física	12
100	Álgebra	10
120	Química	14
120	Álgebra	16

• R1 está na 3FN?

Normalização para BDR Nível básico

3.a Forma Normal

Exemplo

R2

	N_Aluno	_Aluno Nome_Aluno		Tutor	Gabinete	
Ì	100	100 Ana Luísa		J. Silva	10	
	110	Mariana	DEI_20	J. Silva	10	
	120	João Paulo	DEM_13	Antunes	55	
	130	Paulo Jorge	DEM_13	Antunes	55	

• **R2** está na 3FN?

Normalizar R2 para a 3FN

R21

N_Aluno	Nome_Aluno	Cod_Tutor	
100	Ana Luísa	DEI_20	
110	Mariana	DEI_20	
120	João Paulo	DEM_13	
130	Paulo Jorge	DEM_13	

R22

Cod_Tutor	Tutor	Gabinete
DEI_20	J. Silva	10
DEI_30	M. Sousa	15
DEM_13	Antunes	55
DEM_25	C. Dias	55

R21(N aluno, Nome aluno, Cod tutor)

R22(Cod tutor, Tutor, Gabinete)

Forma Normal Boyce-Codd

- Normalização superior à 3FN
 - Toda a relação na FNBC está também na 3FN
 - O inverso n\u00e3o se verifica
- Requisitos
 - Ter uma relação universal
 - Todos os determinantes da relação são chaves candidatas
- Algoritmo

Normalização para BDR Nível básico

Forma Normal Boyce-Codd

- Decomposição da relação R, que não está na FNBC
 - Considerando a relação universal R(A, B, C, D, E, ...)
 - Procurar uma dependência funcional C→D responsável por R não se encontrar na FNBC
 - Criar duas relações

R1(<u>C</u>,D)

R2(A, B, C, E, ...)

Exemplo1

N_Aluno	Nome_Aluno	Cod_Tutor	Tutor	Gabinete	Disciplina	Nota
100	Ana Luísa	DEI_20	J. Silva	10	Física	12
100	Ana Luísa	DEI_20	J. Silva	10	Álgebra	10
120	João Paulo	DEM_13	Antunes	55	Química	14
120	João Paulo	DEM_13	Antunes	55	Álgebra	16

R(N aluno, Disciplina, Nome_aluno, Cod_tutor, Tutor, Gabinete, Nota)

Normalização para BDR Nível básico

Exemplo1

N_Aluno	Nome_Aluno	Cod_Tutor	Tutor	Gabinete	Disciplina	Nota
100	Ana Luísa	DEI_20	J. Silva	10	Física	12
100	Ana Luísa	DEI_20	J. Silva	10	Álgebra	10
120	João Paulo	DEM_13	Antunes	55	Química	14
120	João Paulo	DEM_13	Antunes	55	Álgebra	16

R(N aluno, Disciplina, Nome_aluno, Cod_tutor, Tutor, Gabinete, Nota)

R está na FNBC?

Chaves candidatas {N_aluno, Disciplina}Determinantes {N_aluno, Disciplina}

{N_aluno} {Cod_Tutor}

Colocar R na FNBC

R1(<u>Cod_tutor</u>, Tutor, Gabinete)

R2(N aluno, Disciplina, Nome_aluno, Cod_tutor, Nota)

• **R2** está na FNBC?

Forma Normal Boyce-Codd

- Exemplo1
 - **R2** está na FNBC?

Chaves candidatas

{N_aluno, Disciplina}

Determinantes

{N_aluno, Disciplina}

{N_aluno}

Colocar R2 na FNBC

R21(N aluno, Nome_aluno, Cod_tutor)

R22(N aluno, Disciplina, Nota)

• R na FNBC

R1(Cod_tutor, Tutor, Gabinete)

R21(N aluno, Nome_aluno, Cod_tutor)

R22(N aluno, Disciplina, Nota)

Normalização para BDR Nível básico

Forma Normal Boyce-Codd

Exemplo2

Um hospital está funcionalmente dividido em serviços correspondentes às especialidades médicas (cirurgia, cardiologia, etc.). Em cada serviço existem vários médicos especialistas naquela área, atendendo os pacientes que se apresentam para consulta. No sentido de prestar um melhor atendimento aos seus pacientes, neste hospital existe uma regra de funcionamento em que cada paciente num dado servico é sempre atendido pelo mesmo médico.

Determinar a relação universal e dependências funcionais

R(Paciente, Serviço, Médico)

R na 3FN

R(Paciente, Serviço, Médico)

• R na FNBC

Chaves candidatas

{Paciente, Serviço} {Paciente, Serviço} {Médico}

Determinantes

2)

R1(<u>Paciente, Serviço,</u> Médico)

R2(<u>Médico</u>, Serviço)

Estratégia

- Utilização
 - Sobre um conj. de dados em bruto
 - Sobre estruturas resultantes de outra técnica de modelação

Metodologia

- Desenvolver a relação universal R
- Determinar todas as dependências funcionais de R
- Obter cobertura mínima
- Decompor a relação segundo as regras das formas normais

Normalização para BDR Nível Avançado

Conclusão

- A normalização de uma BD é necessária para eliminar a redundância e manter a coerência da informação armazenada
- O desempenho da BD pode ser prejudicado por excesso de normalização
- Metodologia mais usada
 - Projectar a BD através do Modelo Entidade-Relacionamento
 - Verificar o resultado usando a Teoria da Normalização
 - Relações Resultantes na FNBC ou superior
 - Respeitar as seguintes propriedades:
 - Preservação de atributos
 - Preservação de dependências (DF e DM)
 - Junção Não Aditiva se Normalização for superior à FNBC (ver Nível Avançado)