Politecnico di Milano – Facoltà di Ingegneria Informatica Anno Accademico 2009/2010

Corso di Statistica (2L) per INF e TEL

Docente: Antonio Pievatolo; esercitazioni: Raffaele Argiento

Esercitazione del 16/04/10

Esercizio 1

Sia X_1,\dots,X_n un campione casuale estratto dalla popolazione di densità

$$f(x,\theta) = \frac{2\theta^2}{x^3} \mathbb{1}_{(\theta,+\infty)}(x) \quad \text{theta è nel dominio => so cazzi xke cosi il modello non è regolare. DOBBIAMO TRASFORMARE E TOGLIERE THETA DAL DOMINIO$$

con θ parametro positivo incognito.

- 1. Determinate gli stimatori di θ e di θ^2 usando il metodo di massima verosimiglianza.
- 2. Calcolate la funzione di ripartizione e la densità dello stimatore di massima verosimiglianza di θ
- 3. Lo stimatore di massima verosimiglianza di θ è non distorto? È asintoticamente non distorto? Giustificate le risposte.
- 4. Ricavate lo stimatore di θ col metodo dei momenti.
- 5. Confrontate gli errori quadratici medi degli stimatori per θ di massima verosimiglianza e dei momenti, ricavati ai punti precedenti. Quale dei due stimatori è preferibile e perché?

SOLUZIONE

1. Il supporto della densità $f(x,\theta)$ dipende dal parametro θ , il modello in esame non è regolare. La funzione di verosimiglianza del campione X_1, \ldots, X_n è

$$L(\theta; x_1, \dots, x_n) = \prod_{i=1}^n \frac{2\theta^2}{x_i^3} \mathbb{1}_{(\theta, +\infty)}(x_i) = \frac{2^n \theta^{2n}}{\prod_{i=1}^n x_i} \prod_{i=1}^n \mathbb{1}_{(0, x_i)}(\theta) = \frac{2^n \theta^{2n}}{\prod_{i=1}^n x_i} \mathbb{1}_{(0, x_{(i)})}(\theta)$$

dove $x_{(1)} = \min_{i=1,\dots,n}(x_i)$. La funzione di verosimiglianza è dunque crescente in θ su tutto l'intervallo $(0,x_{(1)})$. Essa ammette massimo sull'estremo superiore di tale intervallo.

$$\hat{\theta}_n = X_{(1)}$$
 $\hat{\theta}_n^2 = X_{(1)}^2$.

2. La funzione di ripartizione di $\hat{\theta}_n$ è $F_{X_{(1)}}(x) = 1 - \mathbb{P}(X_{(1)} > x) = 1 - \prod_{i=1}^n \mathbb{P}(X_i > x) = 1 - (1 - F_{X_1}(x))^n$, dove $F_{X_1}(x) = \int_{\theta}^x 2\theta^2/u^3 du = 1 - \theta^2/x^2$ se $x > \theta$. Dunque

$$F_{X_{(1)}}(x) = \left(1 - \frac{\theta^{2n}}{x^{2n}}\right)\mathbbm{1}_{(0,+\infty)}(x), \text{ da cui si ricava } f_{X_{(1)}}(x) = 2n\frac{\theta^{2n}}{x^{2n+1}}\mathbbm{1}_{(\theta,+\infty)}.$$

3. Si ricava $\mathbb{E}(X_{(1)}) = \int_{\theta}^{+\infty} x \frac{\theta^{2n}}{x^{2n+1}} dx = \frac{2n}{2n-1} \theta$. Dunque lo stimatore di massima verosimiglianza $\hat{\theta}_n$ è distorto, ma tuttavia

$$\lim_{n\to\infty}\mathbb{E}(\hat{\theta}_n)=\lim_{n\to\infty}\frac{2n}{2n-1}\theta=\theta, \forall \theta>0,$$

ovvero lo stimatore θ_n è asintoticamente non distorto.

4. Poiché $\mathbb{E}(X_1) = \mathbb{E}(X_{(1)})$ con n = 1, dal punto 3 si trova che $E(X_1) = 2\theta$. Dall'equazione $\bar{X}_n = \mathbb{E}(X_1)$ si ricava lo stimatore dei momenti

$$\tilde{\theta}_n = \frac{\bar{X}_n}{2}.$$

Si noti che $\tilde{\theta}_n$ è stimatore non distorto per θ .

5. Per quanto riguarda lo stimatore $\tilde{\theta}_n$ del metodo dei momenti, poiché esso è non distorto, $\mathrm{MSE}(\tilde{\theta}_n) = \mathrm{Var}(\tilde{\theta}_n) = \mathrm{Var}(\bar{X}_n^2) = \frac{\mathrm{Var}(X_1)}{4n} = +\infty$, perché $E(X_1^2) = \int_{\theta}^{\infty} x^2 \frac{\theta^2}{x^3} dx = +\infty$. Per quanto riguarda $\hat{\theta}_n$, invece, vale

$$MSE(\hat{\theta}_n) = Var(\hat{\theta}_n) + \left(\mathbb{E}(\hat{\theta}_n) - \theta\right)^2 = Var(X_{(1)}) + \left(\frac{\theta}{2n-1}\right)^2;$$

d'altro canto $E(X_{(1)}^2)=\int_{\theta}^{\infty}x^22n\frac{\theta^{2n}}{x^{2n+1}}dx=\frac{n}{n-1}\theta^2$ se $n\geq 2$. Pertanto

$$MSE(\hat{\theta}_n) = \frac{n}{(n-1)(2n-1)^2}\theta^2 + \frac{1}{(2n-1)^2}\theta^2 = \frac{\theta^2}{(n-1)(2n-1)}, \text{ se } n \ge 2.$$

In conclusione, se si sceglie lo stimatore in base all'errore quadratico medio, è preferibile $\hat{\theta}_n$ a $\tilde{\theta}_n$, con un campione di ampiezza maggiore di 1.

Esercizio 2

Sia X_1, \ldots, X_n un campione dalla densità:

$$f(x;\theta) = 2\theta x e^{-\theta x^2} \mathbb{1}_{(0,+\infty)}(x), \quad \theta > 0$$

- 1. Esiste uno stimatore efficiente per θ ?
- 2. Determinare lo stimatore di massima verosimiglianza per θ .

SOLUZIONE

1. La distribuzione $f(x;\theta)$ appartiene alla famiglia esponenziale, infatti essa puo essere scritta nella forma

$$f(x, \theta) = C(x)e^{A(\theta)g(x) + B(\theta)}$$
.

Da

$$f(x,\theta) = 2\mathbb{1}_{(0,+\infty)}(x)e^{-\theta x^2 + \log(\theta)}$$

si ha che $C(x) = 2\mathbb{1}_{(0,+\infty)}(x)$, $A(\theta) = -\theta$, $B(\theta) = \log(\theta)$, e $g(x) = x^2$. Tutte e solo le caratteristiche le caratterisiche che si possono stimare in modo efficiente sono quelle che sono funzioni lineari di:

$$k(\theta) = -\frac{B'(\theta)}{A'(\theta)} = \frac{1}{\theta}.$$

Nel nostro caso θ non è funzione lineare di $\frac{1}{\theta}$ dunque non esiste per questa caratteristica una stima efficiente

2. Si osservi che lo stimatore efficiente per $k(\theta) = \frac{1}{\theta}$ è dato da

$$\hat{k} = \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

Dato che \hat{k} è efficiente esso è l'unico stimatore di massima verosimiglianza per $k(\theta)$. Per la proprietà di invarianza dello stimatore ML

$$\hat{\theta} = \frac{1}{\hat{k}} = \frac{n}{\sum_{i=1}^{n} x_i^2}$$

In modo alternativo, si osservi che la funzione di verosimiglianza è:

$$L(\theta; \underline{x}) = \prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} \left(2\theta x_i e^{-\theta x_i^2} \right) = 2^n \theta^n \prod_{i=1}^{n} (x_i) e^{-\theta \sum_{i=1}^{n} x_i^2}.$$

Con qualche passaggio analitico si ottiene

$$\frac{\partial}{\partial \theta} \log L(\theta; \underline{x}) = n \left(\frac{1}{\theta} - \frac{1}{n} \sum_{i=1}^{n} x_i^2 \right)$$

Da quest'ultima formula si ricava che tutte e solo le caratteristiche stimabili in modo efficiente sono quelle che sono funzione lineare di $\frac{1}{\theta}$. Dalla stessa formula si ricava lo stimatore ML per θ .

Esercizio 3

State giocando con un dado e sospettate che questo sia truccato in modo tale da dare più probabilità ai numeri pari. Decidete di modellare il risultato di un lancio di dado con la variabile aleatoria X la cui funzione di probabilità è

$$f(x;\theta) = \begin{cases} \frac{1-\theta}{6} & \text{se x è pari} \\ \frac{1+\theta}{6} & \text{se x è dipari} \end{cases}$$

Dove $-1 \le \theta \le 1$. Dopo qualche giocata raccogliete un campione X_1, \ldots, X_n da $f(x; \theta)$.

- 1. Riuscite a stimare in modo efficiente la caratteristica $k(\theta) = \mathbb{P}(X \text{ è pari})$? E il parametro θ ?
- 2. Se in tutti gli n lanci osservate sempre un numero pari, qual è la stima di massima verosimiglianza per θ ?

SOLUZIONE

1. Verifichiamo se il modello in esame appartiene alla famiglia esponenziale. Consideriamo i due insiemi $A = \{2, 4, 6\}$ e $B = \{1, 2, 3, 4, 5, 6\}$, e osserviamo che si può scrivere

$$f(x;\theta) = \mathbb{1}_B(x) \exp\left\{\log(\frac{1-\theta}{1+\theta})\mathbb{1}_A(x) + \log(\frac{1+\theta}{6})\right\}$$
(1)

Confrontando l'ultima formula con la solita notazione che abbiamo utilizzato per la famiglia esponenziale si ha che: $C(x) = \mathbbm{1}_B(x)$, $A(\theta) = \log(\frac{1-\theta}{1+\theta})$, $B(\theta) = \log(\frac{1+\theta}{6})$, $g(x) = \mathbbm{1}_B(x)$. Osserviamo inoltre come la rappresentazione di $f(x,\theta)$ nella formula (1) vale solo per $\theta \neq -1,1$. Ricordiamo inoltre che fra le condizioni di regolarità del teorema di Frachét-Cramer-Rao si richiede che lo spazio dei parametri Θ della famiglia di distribuzione in esame sia un intervallo aperto di \mathbb{R} . Per tali motivi concludiamo che ha senso parlare di stima efficiente per la famiglia $f(x,\theta)$ solo per $\theta \in (-1,+1)$. Con tale restrizione dello spazio dei parametri, tutte e sole le caratteristiche stimabili in modo efficiente sono funzione lineare di

$$k(\theta) = -\frac{B'(\theta)}{A'(\theta)} = \frac{1-\theta}{2} = \mathbb{P}(X \in A)$$

La caratteristica $\mathbb{P}(X \in A)$ è stimabile in modo efficiente mediante lo stimatore

$$\hat{k} = \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_A(x_i).$$

Inoltre dato che $\theta = 1 - k(\theta)$ è funzione lineare di k, $\hat{\theta} = 1 - 2\hat{k}$ è stimatore efficiente di θ . Gli stimatori \hat{k} e $\hat{\theta}$ essendo efficienti sono anche gli unici stimatori ML per $k(\theta)$ e θ .

2. Sia ora $\underline{x} = (x_1, \dots, x_n)$ una realizzazione campinaria composta di soli numeri pari. Lo stimatore ML $\hat{\theta}$ trovato al punto precedente fornisce la stima $\hat{\theta} = -1$. Abbiamo osservato tuttavia che per $\theta = -1$ o +1 non possiamo parlare di stima efficiente, non possiamo dunque concludere che per tale campione $\hat{\theta} = -1$ sia la stima ML. In questo caso dunque, per ottenere lo stimatore ML, studiamo la funzione di verosimiglianza:

$$L(\theta, \underline{x}) = \prod_{i=1}^{n} f(x_i; \theta) = \left(\frac{1-\theta}{6}\right)^n$$

Sia $l(\theta, \underline{x}) = \log(L(\theta, \underline{x})$, si ha che

$$\frac{\partial}{\partial \theta} l(\theta, \underline{x}) = -\frac{n}{1 - \theta}$$

Tale derivata non è mai nulla ed è sempre minore di 0 per $\theta < 1$. Se ne evince che la stima di massima verosimiglianza è $\hat{\theta} = -1$.