Private-Key Management and the Public-Key Revolution

Yu Zhang

HIT/CST/NIS

Cryptography, Autumn, 2014

Outline

1 Limitations of Private-Key Cryptography

2 The Public-Key Revolution

Content

1 Limitations of Private-Key Cryptography

2 The Public-Key Revolution

Limitations of Private-Key Cryptography

- The key-distribution need physically meeting.
- The number of keys for U users is $\Theta(U^2)$.
- Secure communication in open system:

Solutions that are based on private-key cryptography are not sufficient to deal with the problem of secure communication in open systems where parties cannot physically meet, or where parties have transient interactions.

Needham-Schroeder Protocol

- Key Distribution Center (KDC) as Trusted Third Party (TTP).
- $E_{Bob}(k)$ is a **ticket** to access Bob, k is **session key**.
- Used in MIT's Kerberos protocol (in Windows).

Strength:

- each one stores one key.
- no updates.

Weakness:

- all-or-nothing.
- single-point-of-failure.

Merkle Puzzles (Key Exchange W/O TTP)

Alice prepares 2^{32} puzzles Puzzle_i, and sends to Bob.

$$\mathsf{Puzzle}_i \leftarrow \mathsf{Enc}_{(0^{96} \parallel p_i)}(\mathsf{"Puzzle} \ \#"x_i \parallel k_i),$$

where Enc is 128-bit, $p_i \leftarrow \{0,1\}^{32}$ and $x_i, k_i \leftarrow \{0,1\}^{128}$.

Bob chooses Puzzle_j randomly, guesses p_j in 2^{32} time, obtains x_j, k_j and sends x_j to Alice.

Alice lookups puzzle with x_j , and uses k_j as secret key.

■ Adversary needs 2^{32+32} time.

Better Gap?

Quadratic gap is best possible if we treat cipher as a black box oracle.

Content

1 Limitations of Private-Key Cryptography

2 The Public-Key Revolution

Public-Key Revolution

- In 1976, Whitfield Diffie and Martin Hellman published "New Directions in Cryptography".
- Asymmetric or public-key encryption schemes:
 - Public key as the encryption key.
 - Private key as the decryption key.
- Public-key primitives:
 - Public-key encryption.
 - Digital signatures. (non-repudiation)
 - Interactive key exchange.
- Strength:
 - Key distribution over public channels.
 - Reduce the need to store many keys.
 - Enable security in open system.
- Weakness: slow, active attack on public key distribution.

Content

1 Limitations of Private-Key Cryptography

2 The Public-Key Revolution

The Setting and Definition of Security

The key-exchange experiment $KE_{\mathcal{A},\Pi}^{eav}(n)$:

- I Two parties holding 1^n execute protocol Π . Π results in a **transcript** trans containing all the messages sent by the parties, and a **key** k that is output by each of the parties.
- 2 A random bit $b \leftarrow \{0,1\}$ is chosen. If b=0 then choose $\hat{k} \leftarrow \{0,1\}^n$ u.a.r, and if b=1 then set $\hat{k}:=k$.
- **3** \mathcal{A} is given trans and \hat{k} , and outputs a bit b'.
- **4** $\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1$ if b' = b, and 0 otherwise.

Definition 1

A key-exchange protocol Π is secure in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] < \frac{1}{2} + \mathsf{negl}(n).$$

Diffie-Hellman Key-Exchange Protocol

$$k_A = k_B = k = g^{xy}.$$

 $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} \text{ denote an experiment where if } b = 0 \text{ the adversary is given } \hat{k} \leftarrow \mathbb{G}.$

Theorem 2

If DDH problem is hard relative to \mathcal{G} , then DH key-exchange protocol Π is secure in the presence of an eavesdropper (with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$).

Security

Insecurity against active adversaries (Man-In-The-Middle).

Triparties Key Exchange

DH-based KE in 2 rounds:

 $Key = q^{abc}$.

Joux's KE in 1 round:

 $\text{Key} = e(P, P)^{abc}$ in bilinear map.

Open Problem

How to exchange keys between 4 parties in one round?

Summary

- Merkle, Diffie, Hellman, Rivest, Shamir, Adleman and Rabin.
- Needham-Schroeder protocol, Diffie-Hellman key-exchange protocol.