

Workshop

on

Intro to Deep Neural Networks

26th to 27th August 2016

Presented by:

Noorul Wahab

(PhD Student)

Supervised by:

Dr. Asifullah Khan DCIS, PIEAS

Pattern Recognition Lab

Department of Computer Science & Information Sciences

Pakistan Institute of Engineering & Applied Sciences

- Worked for Microsoft Research Asia (MSRA)
- Currently He is a Research
 Scientist at Facebook AI
 Research (FAIR).
- Ref [1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015)

Kaiming He

Xiangyu Zhang

Shaoqing Ren

Jian Sun

MSRA team

Abstract

- Deep features are important for visual recognition tasks, but deep nets suffer from vanishing/exploding gradients.
- Also adding more layers results in higher training error (as reported by the results of the experiments in this paper).
- The proposed ResNet: learn residual functions instead of unreferenced functions.

Pattern Recognition Lab

Single layer perceptron

A three-layer neural network

Working of multi-layer neural nets

Decision boundaries of three hidden neurons

Pattern Recognition Lab

Working of multi-layer neural nets

Decision boundary of the output neuron based on the decision boundaries of three hidden neurons

Demo

Challenges in training deep nets

 Sigmoid neurons stop learning when they saturate (i-e when their output is either 0 or 1)

Challenges in training deep nets

- ReLU reduces likelihood of vanishing gradients
- But stops learning entirely when the input to a rectified linear unit is negative.

Challenges in training deep nets

The point-wise derivative for ReLU is

$$rac{dy}{dx} = \left\{egin{array}{ll} 1 & x > \epsilon \ 0 & x \leq \epsilon \end{array}
ight.$$

 A Leaky ReLU can help fix the "dying ReLU" problem

$$rac{dy}{dx} = \left\{ egin{array}{ll} 1 & x > 0 \ 0.01 & x \leq 0 \end{array}
ight.$$

Why multi-layer hierarchy?

- Shallow architectures are inefficient at representing deep functions
- Deep net, deep (enriched) features

Params: 5x5+5=30 Para

Params: 5x3+6+2=23

Filters/kernels/features

Training deep nets

- Is learning better networks as easy as stacking more layers?
- An obstacle to answering this question was the notorious problem of vanishing/exploding gradients
- Normalized initialization, intermediate normalization layers and ReLU addresses this problem to some extent

Training deep nets

- Adding more layers to a suitably deep model leads to higher training error.
- Unexpectedly, the degradation problem in deeper networks is not caused by overfitting
- The degradation (of training accuracy) indicates that not all systems are similarly easy to optimize

Datasets

- CIFAR-10 dataset consists of 60000
 32x32 color images in 10 classes, with
 6000 images per class. There are 50000
 training images and 10000 test images.
- ImageNet 2012: The training data contain 1000 categories and 1.2 million images.100k test images. 482x415 pixels average resolution.

Training deep nets

Conjecture: deep plain nets may have exponentially low convergence rates. Not studied in this work.

Training deep nets

Solution by construction to the deeper model:

- Consider a shallower architecture and its deeper counterpart that adds more layers onto it.
- There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model.
- The existence of this constructed solution indicates that a deeper model should produce no higher training error than its shallower counterpart.

a shallower

model

(18 layers)

a deeper counterpart (34 layers)

- A deeper model should not have higher training error
- A solution *by construction*:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep residual learning for image recognition, Noorul Wahab, (26 Aug. 2016)

Training deep nets

- But experiments show that our current solvers on hand are unable to find solutions that are comparably good or better than the constructed solution.
- The degradation problem suggests that the solvers might have difficulties in approximating identity mappings by multiple nonlinear layers.

Referenced learning

- E.g.: classifying samples into k classes
- Unreferenced way: train a multi-class classifier based on samples' features
- Referenced way: k-mean clustering
- The k-means are the reference points w.r.t which the sample are classified

Referenced learning

- In image recognition, Vector of Locally Aggregated Descriptors (VLAD) is a representation that encodes by the residual vectors with respect to a dictionary
- It is a powerful shallow representations for image retrieval and classification

Pattern Recognition Lab

Residual learning

- Hypothesis: It is easier to optimize the residual mapping than to optimize the original, unreferenced mapping.
- Let us consider H(x) as an underlying mapping to be fit
- Let a residual function F(x) := H(x) x
- The original function thus becomes F(x)+x

Residual learning

Residual learning: a building block

Pattern Recognition Lab

Residual learning

Plaint net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)

Pattern Recognition Lab

Residual learning

Residual net

H(x) is any desired mapping, Hope the two weight layers fit H(x)

Hope the two weight layers fit F(x)

Let
$$H(x) = F(x) + x$$

Residual function:

$$F(x) = H(x) - x$$

$$H(x) = F(x) + x$$

Pattern Recognition Lab

Residual learning

- Each subsequent layer is only responsible for, in effect, fine tuning the output from a previous layer by just adding a learned "residual" to the input.
- This differs from a more traditional approach where each layer has to generate the whole desired output

Ref: [2]

Preconditioning

- With the residual learning reformulation, if identity mappings are optimal, the solvers may simply drive the weights of the multiple nonlinear layers toward zero to approach identity mappings.
- In real cases, it is unlikely that identity mappings are optimal, but the reformulation may help to precondition the problem.

Preconditioning

If the optimal function is closer to an identity mapping than to a zero mapping, it should be easier for the solver to find the perturbations with reference to an identity mapping, than to learn the function as a new one.

Pattern Recognition Lab

Preconditioning

Standard deviations (std) of layer responses on CIFAR-10.

The responses are the outputs of each 3x3 layer.

Top: the layers are shown in their original order.

Bottom: the responses are ranked in descending order.

MSRA @ ILSVRC & COCO 2015 Competition

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" 152layer
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC: Imagenet Large Scale Visual Recognition Challenge

Revolution of Depth

28.2

ImageNet Classification top-5 error (%)

Revolution of Depth

(ILSVRC 2012)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

ResNet, 152 layers

(ILSVRC 2015)

ImageNet classification

- Model is evaluated on the ImageNet 2012 classification dataset that consists of 1000 classes.
- The models are trained on the 1.28 million training images, and evaluated on the 50k validation images.
- Obtain a final result on the 100k test images, reported by the test server.
- Evaluate both top-1 and top-5 error rates

Plain vs Res nets

- The baseline architectures are the same as the above plain nets, expect that a shortcut connection is added to each pair of 3X3 filters
- When the net is "not overly deep" (18 layers here), the current SGD solver is still able to find good solutions to the plain net.
- In this case, the ResNet eases the optimization by providing faster convergence at the early stage

	plain	ResNet 27.88	
18 layers	27.94		
34 layers	28.54	25.03	

Top-1 error (%) on ImageNet validation

ImageNet classification

Thin curves denote training error, and bold curves denote validation error

Pattern Recognition Lab

ImageNet classification

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Error rates (%) of single-model results on the ImageNet validation set (except the 1st, reported on the test set).

Experiments ImageNet classification

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Error rates (%) of ensembles. The top-5 error is on the test set of ImageNet and reported by the test server.

ImageNet Classification top-5 error (%)

CIFAR-10

Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error

CIFAR-10

■ But there are still open problems on such aggressively deep models. ResN-1202 have shown effects of overfitting due to overkill.

Experiments CIFAR-10

me	error (%)		
Maxout [10]			9.38
NIN [25]			8.81
DSN [24]			8.22
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Classification error on the CIFAR-10 test set

References

- [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition".
- [2] https://www.quora.com/How-does-deepresidual-learning-work

Questions?

Thank you!

- Thank you all for coming.
- Thanks also goes to Mr. Sajjad Jamil (MPhil student) for helping in slides preparation.

