Exercise 16.

1. Let $(\mathcal{M}_{\mathbf{u},\mathbf{v}}(\varphi))_{i,j} = \lambda_{i,j}$ where $\lambda_{i,j}$ is the unique element of R such that

$$\varphi(u_j) = \lambda_{1,j}v_1 + \dots + \lambda_{i,j}v_i + \dots + \lambda_{m,j}v_m.$$

It is immediate to check that $(\varphi(u_1), ..., \varphi(u_n)) = (v_1, ..., v_m) \mathcal{M}_{\mathbf{u}, \mathbf{v}}(\varphi)$. Suppose now that $\mathcal{M}' \neq \mathcal{M}_{\mathbf{u}, \mathbf{v}}(\varphi)$ and let $a_{i,j} = (\mathcal{M}')_{i,j} \neq (\mathcal{M}_{\mathbf{u}, \mathbf{v}}(\varphi))_{i,j}$ for some $i \in \{1, ..., m\}$ and $j \in \{1, ...n\}$. It follows that the j-th entry of $(v_1, ..., v_m) \mathcal{M}'$ is

$$z = \dots + a_{i,j}v_i + \dots$$

which can't be equal to $\varphi(u_j)$, since the *i*-th coordinate of $\varphi(u_j)$ w.r.t. the base \mathbf{v} is $(\mathcal{M}_{\mathbf{u},\mathbf{v}}(\varphi))_{i,j}$ and the coordinates are unique.

- 2. Follows immediately from the distributivity and scalar multiplication compatibility of the matrix multiplication (together with the trivial observation that $\theta_A(\mathbf{0}) = A\mathbf{0} = \mathbf{0}$).
- 3. The proof that $\kappa_{\mathbf{u}}$ is a morphism is immediate. The sujectivity follows trivially by the fact that \mathbf{u} is a basis and by definition of basis every element can be written as a sum of elements of the basis. The injectivity follows immediately from the fact that by definition of basis the elements of the basis are linearly independent.
- 4. Surjectivity: it's sufficient to define φ properly (immediate). Injectivity: immediate.

Morphism: for the addition it's immediate, for the composition it's boring (works thanks to definition of multiplication of matrices).

Exercise 17.

Proof.

- (\Longrightarrow) Suppose that M is free. Suppose towards a contradiction that $\operatorname{rk}(M) > 1$. Then let x_1, x_2 be two elements of a basis. Since by hypothesis M is a subset of the quotient field, $x_1 = ab^{-1}$ and $x_2 = cd^{-1}$ for some $a, b, c, d \in R$. Then $(bc)ab^{-1} + (-da)cd^{-1} = 0$, contradiction.
- (\iff) If $M = \langle x \rangle$ then $\{x\}$ is a base for M. In fact, obviously x generates all M. It is also linearly independent since $\lambda x = 0 \Rightarrow \lambda = 0$ for all $\lambda \in R$, because K is a field, and hence a domain (and the scalar operation is defined as the internal multiplication of K, restricted to the elements of R).

Exercise 18.

Proof.

1. Thanks to Exercise 17, it is sufficient to show that $M = \langle 2, 1 + \sqrt{-5} \rangle$ is not cyclic. Observe that M is also an ideal over R. It's trivial to see that if M is a cyclic R-module, then it must be a principal ideal of R as well. Our aim is therefore to show that M is not a principal ideal. Suppose towards a contradiction that M = (g), i.e. M is the principal ideal generated by some $g \in M$. Of course $2, 1 + \sqrt{-5} \in M$, therefore $2 = \lambda g$ and $1 + \sqrt{-5} = \mu g$ for some $\lambda, \mu \in \mathbb{Z}[\sqrt{-5}]$. Consider now the standard norm $N : \mathbb{Z}[\sqrt{-5}] \to \mathbb{N}$. We have that g|2 and $g|1 + \sqrt{-5}$, thus N(g)|4 and N(g)|6, and so N(g)|6 - 4 = 2. Write now g as $a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$. This means that $a^2 + 5b^2|2$, thus b = 0 and $a^2|2$, so $a = \pm 1$. Thus, $g = \pm 1$, and this means that M is the full $\mathbb{Z}\sqrt{-5}$ ring.

Therefore we can write 1 as a combination of 2 and $1 + \sqrt{-5}$, i.e.

$$1 = 2(c + d\sqrt{-5}) + (1 + \sqrt{-5})(e + f\sqrt{-5})$$

which by computations means 2c + e - 5f = 1 and 2d + e + f = 0, with $c, d, e, f \in \mathbb{Z}$. Taking classes modulo 2 we obtain [e] + [f] = 1 and [e] + [f] = 0, which is impossible.

2. Let $M' = \langle (2, 1+\sqrt{-5}), (1-\sqrt{-5}, 2) \rangle$. Suppose towards a contradiction that $(2, 1+\sqrt{-5}) = k(1-\sqrt{-5}, 2)$ for some $k \in \mathbb{Z}\sqrt{-5}$. Then

$$\begin{cases} 2 = k - k\sqrt{-5} \\ 1 + \sqrt{-5} = 2k \end{cases}$$

which means that $2 = [1 + \sqrt{-5} - (1 + \sqrt{-5})(\sqrt{-5})]/2$, i.e. 2 = 6/2 = 3, contradiction (note that we did the calculation in $\mathbb{Q}(\sqrt{-5})$, but if the vectors are independent in $\mathbb{Q}(\sqrt{-5})$, then they have to be independent in $\mathbb{Z}\sqrt{-5}$ as well).

First observe that, since $2, 1 + \sqrt{-5}, 1 - \sqrt{-5} \in M$, it follows immediately that $M' \subseteq M \times M$.

For the other inclusion, observe that $(1-\sqrt{-5})(2,1+\sqrt{-5})-2(1-\sqrt{-5},2)=(0,2)$. So $(0,2)\in M'$. By the same argument we obtain that $(2,0)\in M'$.

Then it's immediate to see that $(0, 1 + \sqrt{-5})$ and $(1 - \sqrt{-5}, 0)$ are also in I. So we proved that $(2, 0), (1 - \sqrt{-5}, 0), (0, 2), (0, 1 + \sqrt{-5}) \in M'$, which trivially implies $M \times M \subseteq M'$.

Hence $M \times M = M'$, i.e. it is the free *R*-module of rank 2 generated by $(2, 1 + \sqrt{-5})$ and $(1 - \sqrt{-5}, 2)$.

Exercise 19.

Proof.

1. Observe that $0 \to \ker \pi \to M \xrightarrow{\pi} F \to 0$ is an exact short sequence. Then $g: F \to M$,

$$\lambda_{i_1}\pi(x_{i_1}) + \dots + \lambda_{i_n}\pi(x_{i_n}) \mapsto \lambda_{i_1}x_{i_1} + \dots + \lambda_{i_n}x_{i_n}$$

is a morphism s.t. $\pi \circ g = \mathrm{id}_F$. Therefore, the sequence is a split short exact sequence, and thus $M \simeq \ker \pi \oplus F \simeq \ker \pi \oplus (\oplus_{i \in I} Rx_i)$.

If $\pi: M \to F$ is an R-module epimorphism onto a free module F, we can always find a family $(x_i)_{i\in I}$ in M whose image $\pi(x_i)_{i\in I}$ is a basis of F. In fact, if $(b_i)_{i\in I}$ is a basis of F (and the Axiom of Choice holds), it is sufficient to choose $(y_i)_{i\in I}$ s.t. $y_i = \pi^{-1}(b_i)$.

2. Let $(x_i)_{i\in I}$ be a basis of M/N. Let $\pi: M \to M/N$ the canonical projection. Then, thanks to the first point, we have

$$M = \ker \pi \oplus (\bigoplus_{i \in I} Rx_i).$$

Since $\ker \pi = N$, the $(x_i)_{i \in I}$ let us extend every basis of N to a basis of M.

Exercise 20.

Proof.

- 1. A module over a field is a vector space. So M is a finite-dimension vector space and N is a vector subspace of M. Thus N has a basis (and we don't need the Axiom of Choice).
- 2. If $(b_i)_{i\in I}$ is a basis of M, then the vector subspaces of M are precisely the ones generated by any subset of $\{b_i : i \in I\}$. So the conclusion follows immediately.
- 3. Every module morphism over a field is a linear map. Therefore the statement becomes the well-known linear algebra result (since the dimension of M is finite).
- 4. Same of above.

Suppose now that R is not a field.

- 1. Doesn't necessarily hold. In fact, let $I \triangleleft R$ be an ideal. Since $\forall a, b \ [ba+(-a)b=0]$, in order to be free (as a module), I must (at least) be generated by just one element, i.e. I must be principal. So if R is not a PID, then the statement doesn't hold for sure.
- 2. Doesn't necessarily hold. Let R be a domain and let $p \in R$ be a prime element. Then the ideal I = pR cannot be a direct summand of R. Indeed, if there was an R-module isomorphism $R \cong I \oplus M$ for some R-module M, then we would have an injection $R/I \cong M \hookrightarrow R$, which is impossible as the source is a non-zero torsion R-module, while R is not, since it is a domain by hypothesis.
- 3. Doesn't necessarily hold. Consider $\varphi : \mathbb{Z} \to \mathbb{Z}$, $n \mapsto 2n$.
- 4. Doesn't necessarily hold. Consider the ring $M = R = \mathbb{Z}_4$ and the morphism $f: x \mapsto 2x$. Then M is free and finitely generated, because $\{1\}$ is a basis, and $\ker f = \operatorname{ran} f = \{0, 2\}$ is not even free, since $2 \cdot 2 = 0$, thus it has no basis.