Observadores por modos deslizantes y sus aplicaciones

Alejandra Ferreira de Loza

Instituto Politécnico Nacional México

9 de abril de 2019

Contenido

Introducción a los observadores por modos deslizantes

2 Conceptos avanzados de observabilidad

3 Observadores por modos deslizantes de orden superior

4 Aplicaciones

Bibliografía de apoyo

- V. Utkin, J. Guldner, and J. Shi, *Sliding Mode Control in Electromechanical Systems*. Boca Raton: CRC Press, 1999.
- **2** C. Edwards and S.K. Spurgeon, *Sliding mode control: Theory and Applications*. London: Taylon and Francis, 1998.
- **3** Y.Shtessel, C. Edwards, L. Fridman, and A. Levant, *Sliding Mode Control and Observation*. London: Birkhauser, 2014.
- 4 H. L. Trentelman, A. A. Stoorvogel and M. Hautus, *Control theory for linear systems*. London: Springer-Verlag, 2001.

Contenido

Observadores por modos deslizantes de primer orden

- 1 Motivación: sistemas con incertidumbres
- 2 Conceptos básicos de modos deslizantes
 - Control equivalente
 - Perturbaciones acopladas y no acopladas
- 3 Diferenciación por modos deslizantes
- 4 Observadores
 - Observador de Luenberger
 - Observador por modos deslizantes
- **6** Caso de estudio: Estimación del estado y detección de fallas en los actuadores
- 6 Discusión

Estructura de un mecanismo

Lazo de control

Sistemas lineales invariantes en el tiempo

$$\begin{cases} \dot{x} = Ax + Bu + Dw \\ y = Cx + Ew \end{cases}$$
$$x \in \Re^n, y \in \Re^p, \text{red}w \in \Re^q$$

Sistema de control

Lazo abierto

Sistema de control

Lazo cerrado

Sistema de control

Perturbado

Sistemas inciertos

Comentarios

• Siempre existen discrepancias enre el modelo matemático y la planta a controlar

 Dichas discrepancias vienen de perturbaciones externas, parámetros inciertos, dinámicas no modeladas, fallas en los sensores y/o actuadores, etc.

 Las técnicas de control y observación garantizan el desempeño deseado en lazo cerrado a pesar de la presencia de incertidumbres/perturbaciones/fallas.

Características

- Son una clase de sistemas donde la *ley de control* cambia deliveradamente durante el proceso de acuerdo a una regla predefinida que depende del estado.
- Combinación de subsistemas cada uno de los cuales tiene una ley de control fija válida para una región específica.
- El comportamiento del sistema total difiere significativamente del comportamiento de los subsistemas individuales.
- El sistema en *lazo cerrado* posee propiedades nuevas que no están presentes en los subsistemas individuales.
- En particular, para los modos deslizantes, dichas propiedades incluyen robustez a determinadas perturbaciones, incertidumbres y dinámicas no modeladas.

Sistema de estructura variable

Modos deslizantes

$$\ddot{y} = u$$

$$u = -ky$$

Diagrama de fase (\dot{y}, y)

$$\dot{y}^2 + ky^2 = c$$

Sistema de estructura variable

Modos deslizantes

Usando diferentes ganancias de control

$$u = -k_1 y$$

$$u = -k_2y$$

Modos deslizantes

Usando diferentes ganancias de control

 $u = -k_1 y$

Conmutando

Ley de control y regla de conmutación ...

$$u = \begin{cases} -k_1 y & \text{si } y\dot{y} < 0\\ -k_2 y & \text{si } y\dot{y} > 0 \end{cases}$$

 $con 0 < k_1 < 1 < k_2$

Conmutando

Ley de control y regla de conmutación ...

$$u = \begin{cases} -k_1 y & \text{si } y\dot{y} < 0\\ -k_2 y & \text{si } y\dot{y} > 0 \end{cases}$$

con $0 < k_1 < 1 < k_2$

Motivación: control en presencia de perturbaciones

Sea la dinámica de una masa unitaria

$$\begin{cases} \dot{x}_1 = x_2 & x_1(0) = x_{10} \\ \dot{x}_2 = u + f(x_1, x_2, t) & x_2(0) = x_{20} \end{cases}$$

 $|f(x_1, x_2, t)| < L$ perturbación acotada (fricción, fuerza externa, dinámica no modelada)

Objetivo

- Diseñar una ley de control $u(x_1, x_2)$
- Tal que lleve a la masa asintóticamente al origen, i.e., lim_{t→∞} = 0

Modos Deslizantes

Idea principal

Ejemplo

Dada una función $f(x_1, x_2, t) = \sin 2t$ y un control por realimentación de estados $u = -k_1x_1 - k_2x_2$, se tiene

Figura: Sistema nominal, convergencia asintótica

Figura: Sistema incierto, convergencia a un dominio

Sea la dinámica compensada deseada para el sistema perturbado

$$\dot{x}_1 + cx_1 = 0, \ c > 0$$

La solución general **no es afectada** por la perturbación y converge a cero asintóticamente, es decir

$$x_1 = x_1(0)exp(-ct), c > 0$$

 $x_2 = \dot{x}_1 = -cx_1(0)exp(-ct)$

Cómo lograrlo?

- **1** Proponer cómo superficie deslizante $\sigma(x_1, x_2)$ $\sigma = x_2 + cx_1$
- **2** Llevarla a cero en **tiempo finito** por medio de la señal de control $u(x_1, x_2)$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = u + f(x_1, x_2, t) \end{cases} \begin{cases} \dot{x}_1 = -cx_1 + \sigma \\ \dot{\sigma} = c(\sigma - cx_1) + f(x_1, x_2, t) + u \end{cases}$$

El diseño de *u* puede llevarse a cabo con técnicas de Lyapunov.

Estabilidad global y asintótica:

$$\dot{V} < 0$$

$$\lim_{|\sigma| \to \infty} V = \infty$$

Estabilidad global en tiempo finito:

$$\dot{V} \le -\alpha V^{1/2}, \ \alpha > 0$$

$$\lim_{|\sigma|\to\infty}V=\infty$$

Sea la candidata de Lyapunov $V = \frac{\sigma^2}{2}$ La ley de control

$$u = -cx_2 - \rho sign(\sigma), \quad \rho = L + \frac{\alpha}{\sqrt{2}}$$

El tiempo de alcance

$$t_r \le \frac{2V^{1/2}(0)}{\alpha}$$

Definición

La variable $\sigma = x_2 + cx_1$ se conoce como **variable deslizante**.

Definición

La ecuación $\sigma = x_2 + cx_1 = 0$ se le conoce como **superficie** deslizante.

Definición

El control $u = -cx_2 - \rho sign\sigma$ lleva a las trayectorias del estado a la superficie deslizante $\sigma = 0$ en tiempo finito t_r y las mantiene ahí a pesar de la presencia de perturbaciones. Se conoce como **control por modos deslizantes** y se dice que se ha establecico un **modo deslizante ideal** en el sistema para todo $t > t_r$.

Ejemplo

Resultados de la simulación para el sistema perturbado con $f(x_1, x_2, t) = \sin(t)$ cuando $u = -cx_2 - \rho sign\sigma$.

Convergencia en **tiempo finito** de la superficie deslizante.

Convergencia **asintótica** de los estados en el modo deslizante.

Ejemplo Señal de control discontinua $u = -cx_2 - \rho sign(\sigma)$ 3 0-1--2 86 865 87 88 Time (sec) Time (sec) Señal de control Señal de control (zoom)

Diagrama de fase genérico

Diagrama de fase

Zoom del movimiento en zigzag (chattering)

Control equivalente

Una vez que se alcanza la superficie deslizante $\sigma = \dot{\sigma} = 0$ para todo $t > t_r$, se tiene que

$$\dot{\sigma} = cx_2 + f(x_1, x_2, t) + u = 0, \quad \sigma(t_r) = 0$$

$$u_{eq} = -cx_2 - f(x_1, x_2, t)$$

Definición

La señal de control necesaria para mantener un movimiento deslizante ideal en σ se conoce como **control equivalente**.

Control equivalente (comentarios)

- El control equivalente NO es la señal de control que esta siendo aplicada a la planta. No puede implementarse ya que no se conoce la perturbación.
- Describe el efecto en promedio de la señal de control discontinua, la cual switchea a alta frecuencia.

$$u_{eq} = -cx_2 - f(x_1, x_2, t)$$

 El promedio puede ser obtenido mediante un filtro pasa bajas (FPB) aplicado al término de alta frecuencia de la señal de control

$$\hat{u}_{eq} = -cx_2 - \rho FPB(sign(\sigma))$$

Control equivalente (comentarios)

• Por lo tanto, senñal de perturbación puede ser estimada cómo

$$\hat{f}(x_1, x_2, t) = -\rho FPB(sign(\sigma)) = \frac{1}{\tau s + 1} \rho sign(\sigma)$$

au constante de tiempo del filtro, entonces

$$\lim_{\tau \to 0} \hat{f}(x_1, x_2, t) = f(x_1, x_2, t)$$

Control equivalente

Ejemplo

El control equivalente converge al estimado de la perturbación

Figura: Señal de control equivalente \hat{u}_{eq} , estimado de la perturbación

$$\hat{f}(x_1,x_2,t)$$

El control por modos deslizantes

- Es una clase particular de sistemas de estructura variable.
- Diseño en dos etapas:
 - Superficie deslizante.
 - 2 Control discontinuo que lleve a los estados a la superficie.
- Es insensible a los efectos de las perturbaciones acopladas en σ = 0.
- La alta frecuencia de la señal de control puede producir chattering.
- Es posible estimar la señal de perturbación (control equivalente).

Incertidumbres acopladas vs no acoplaas

Sea el sistema en la forma regular z = Tx, $TB = \begin{bmatrix} 0 & I_m \end{bmatrix}^T$

$$\begin{cases} \dot{z}_1 &= z_1 + f_u(z_1, z_2, t) & z_1(0) = z_{10} & |f_u(z_1, z_2, t)| \leq L_u \\ \dot{z}_2 &= u + f_m(z_1, z_2, t) & z_2(0) = z_{20} & |f_m(z_1, z_2, t)| \leq L_m \end{cases}$$

- $f_m(z_1, z_2, t)$ es un vector de perturbaciones acopladas.
- $f_u(z_1, z_2, t)$ es un vector de perturbaciones desacopladas.

$$\begin{cases} \dot{z}_1 = -Kz_1 + f_u(z_1, -Kz_1, t) & z_1(t_r) = z_{1r} \\ z_2 = -Kz_1 \end{cases}$$

Diferenciador/observador por modos deslizantes

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = u + f(x_1, x_2, t) \\ y = x_1 \end{cases}$$

Se propone el siguiente algoritmo de observación

$$\dot{\hat{x}}_1 = \nu$$

 ν es un término de corrección que se diseña tal que $\hat{x}_1, \hat{x}_2 \to x_1, x_2$. Sea el error de observación (variable deslizante)

$$e_1 = \hat{x}_1 - x_1$$

la dinámica del error

$$\dot{e}_1 = -x_2 + \nu$$

Diferenciador/observador por modos deslizantes

El *término de corrección* ν lleva el error de estimación e_1 a cero en tiempo finito

$$\nu = -\rho sign(e_1), \quad \rho > |x_2| + \beta, \beta > 0$$

 ν se diseña tal que $\hat{x}_1, \hat{x}_2 \rightarrow x_1, x_2$.

Diferenciador/observador por modos deslizantes

Sea el error de observación (variable deslizante)

$$e_1 = \hat{x}_1 - x$$

la dinámica del error

$$\dot{e}_1 = -x_2 + v$$

De este modo, en el modo deslizante, $e_1 = \dot{e}_1 = 0$ se tiene

$$\dot{e}_1 = -x_2 + \frac{v_{eq}}{v_{eq}} = 0 \rightarrow x_2 = -v_{eq}$$

El término de injección equivalente puede ser estimado mediante un proceso de filtrado

$$\tau \dot{\hat{\nu}}_{eq} = -\hat{\nu}_{eq} - \rho sign(e_1) \rightarrow x_2 \approx \hat{x}_2 = \hat{\nu}_{eq}, \ t \ge t_r$$

Diferenciador

Diferenciador/observador por modos deslizantes

Ejemplo

Simulación del sistema con el controlador por modos deslizantes. Se mide x_1 mientras que x_2 se estima con el diferenciador.

Diferenciador

Diferenciador/observador por modos deslizantes

- El error de observación converge a cero en tiempo finito, i.e., $\hat{x}_1 = x_1$ a pesar de la presencia de incertidumbres.
- La estimación de x_2 ocurre asintóticamente, i.e., $\hat{x}_2 \rightarrow x_2$ (filtrado).

Ventajas sobre los controladores

- La posibilidad de generar un movimiento deslizante en el error (salida de la planta vs observador).
- Se genera un conjunto de estados estimados que convergen, en tiempo finito, al valor exacto de la salida actual.
- El valor promedio del término de corrección, la llamada señal equivalente, contiene información útil (discrepancias entre el observador y la planta, fallas, etc.)
- Los efectos dañinos del *chattering* no son problemáticos en el marco de observadores (software).

Observadores

Propósito de un observador

- En diversas situaciones prácticas el estado no esta disponible para su realimentación en el control.
- Las variables no tienen significado físico.
- No existe la tecnología o no es posible medir en linea.
- El costo de algún sensor es prohibitivo.

Observador: idea básica

Observadores

Observador: idea básica

Observador de Luenberger

Sistema SIN perturbaciones:

Observador:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \\ \hat{y} = C\hat{x} \end{cases}$$

$$e := x - \hat{x}$$
$$\dot{e} = (A - LC)e$$

Observadores

Observabilidad

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

Definición

Observabilidad. La ecuación de estado se dice que es **observable** si para cualquier estado inicial x(0) existe un tiempo finito $t_1 > 0$ tal que el conocimiento de la entrada u(t) y la salida y(t) sobre $[0, t_1]$ baste para determinar el estado único x(0). De lo contrario se dice que el sistema es **no observable**.

Observadores

Observabilidad

Ejemplo

Puede estimarse la variable x a partir de la entrada u y la salida y?

Observabilidad

Ejemplo

Puede estimarse la variable x_1 a partir de la entrada u y la salida $y = x_2$?

Sistemas con entradas desconocidas

Sistema:

Observador Luenberger:

$$\begin{cases} \dot{x} = Ax + Bu + Dw \\ y = Cx \end{cases} \begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \\ \hat{y} = C\hat{x} \end{cases}$$
Error de observación:

$$e := x - \hat{x}$$

Si
$$||w|| \le w^+$$
, existen algunas constantes $\varphi, \xi > 0$ tales que

$$||e|| \le \varphi exp(-\xi t) ||e(0)|| + ||D|| w^+$$

Observadores

Comentarios sobre el observador de Luenberger

- El error entre la salida medida y la salida del observador es realimentado *linealmente* al observador.
- En presencia de entradas desconocidas/incertidumbres no es capaz de llevar el error de estimación a cero.
- Consecuentemente, los estados estimados no convergen a los estados del sistema.

Sistema con fallas en actuadores y sensores

$$\begin{cases} \dot{x} = Ax + Bu + Df_1(t) \\ y = Cx + f_2(t) \end{cases}$$

$$x \in \Re^n, \ y \in \Re^p, \ f_1(t) \in \Re^p, \ f_2(t) \in \Re^p, \ ||f_1(t)|| \le \bar{f}_1, \ ||f_2(t)|| \le \bar{f}_2$$

Objetivo:

Estimar asintóticamente el vector de estado x, y las señales $f_1(t)$, $f_2(t)$.

Sistema:

$$\begin{cases} \dot{x} = Ax + Bu + Df_1(t) \\ y = Cx \end{cases}$$
$$x \in \Re^n, \ y \in \Re^p, \ f_1(t) \in \Re^q, \ \|f_1(t)\| \le \bar{f}_1$$

Observador:

$$\begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + G_{\ell}e_{y} + G_{d}\nu \\ \hat{y} = C\hat{x} \end{cases}$$

- $\bullet \ e_{y} = \hat{y} y,$
- $G_{\ell}e_{y}$ compensador lineal, $G_{d}\nu$ compensador discontinuo.

Forma canónica

Transformando las coordenadas tal que las salidas y aparezcan como componentes del vector de estados, i.e.,

$$\bar{x} = Tx = \begin{bmatrix} x_1 \\ y \end{bmatrix}, \quad T = \begin{bmatrix} Null(C)^T \\ C \end{bmatrix}$$

$$\begin{cases} \dot{x}_1 = A_{11}x_1 + A_{12}y + B_1u \\ \dot{y} = A_{21}x_1 + A_{22}y + B_2u + D_2f_1(t) \\ y = \begin{bmatrix} 0 & I_p \end{bmatrix} \bar{x} \end{cases}$$

Suposiciones

- rango(CD) = q
- A_{11} es Hurwitz, (i.e., (A, C, D) es de fase mínima)

Forma canónica

Sistema:

$$\begin{cases} \dot{x}_1 = A_{11}x_1 + A_{12}y + B_1u \\ \dot{y} = A_{21}x_1 + A_{22}y + B_2u + D_2f_1(t) \end{cases}$$

Observador:

$$\begin{cases} \dot{\hat{x}}_1 &= A_{11}\hat{x}_1 + A_{12}\hat{y} + B_1u + G_{\ell 1}e_y \\ \dot{\hat{y}} &= A_{21}\hat{x}_1 + A_{22}\hat{y} + B_2u + G_{\ell 2}e_y + \nu \end{cases}$$

$$\nu = \begin{cases} -\rho(t, y, u) \frac{e_y}{\|e_y\|} & e_y \neq 0 \\ 0 & otro\ caso \end{cases}$$

Observador MDC

Sean los errores
$$e_1=\hat{x}_1-x_1$$
, $e_y=\hat{y}-y$, y las ganancias $G_{\ell 1}=-A_{12}$, $G_{\ell 2}=-A_{22}$ se tiene

Dinámica del error:

$$\begin{cases} \dot{e}_1 = A_{11}e_1 \\ \dot{e}_y = A_{21}e_1 - D_2f_1(t) + \nu \end{cases}$$

Se propone

$$V = 0.5e_y^T e_y$$

Observador MDC

Se tiene

$$\dot{V} = e^{T} \left(A_{21} e_{1} - D_{2} f_{1}(t) - \rho \frac{e_{y}}{\|e_{y}\|} \right)
\leq \|e_{y}\| \left(\|A_{21} e_{1} - D_{2} f_{1}(t)\| - \rho \right)$$

Entonces,

$$\rho > ||A_{21}e_1 - D_2f_1(t)|| + \gamma, \quad \gamma > 0$$

$$\dot{V} \leq -\gamma ||e_y||$$

Consecuentemente, $\dot{e}_y = e_y = 0$, $\forall t > t_r$ La dinámica reducida, para todo $t > t_r$ queda

$$\left\{ \begin{array}{ll} \dot{e}_1 & = & A_{11}e_1 & e_1 \to 0, t \to \infty \\ \dot{e}_y & = & 0 \end{array} \right.$$

Estimación del estado e identificación de $f_1(t)$

Observador MDC

Se tiene entonces que $e_v = 0$, $e_1 \rightarrow 0$, en consecuencia

$$\hat{\mathbf{v}} = \mathbf{v}, \quad \hat{x}_1 \to x_1$$

Dado que $e_1 \rightarrow 0$, el control equivalente

$$\nu_{eq} = D_2 f_1(t)$$

con $\hat{\nu}_{eq} = FPB(\nu)$, se tiene

$$\hat{f}_1(t) = \frac{\|D_2\|^{-1}}{\tau s + 1} \rho \frac{e_y}{\|e_y\|}$$

i.e., $\hat{f}_1 \rightarrow f_1(t)$.

Comentario. Noté que no es un resultado global. Para una ρ dada pueden existir condiciones iniciales para las que no se satisfaga la condición $\rho \ge ||A_{21}e_1 - D_2f_1(t)|| + \gamma$.

Ejemplo

Sea el sistema péndulo invertido

$$\ddot{\theta}(t) = -\frac{1}{g}sin(\theta) + \frac{1}{M\ell^2}u(t)$$

Observadores

Observacion de estados e identificación de fallas

Ejemplo

Con la normalización apropiada

$$\ddot{x}(t) = -a_1 sin(x) + u(t)$$

Ejemplo

Definiendo el estado $x_1 = x$, $x_2 = \dot{x}$, usando $a_1 = 1$, u = 0, $x_{10} = \frac{pi}{4}$, $x_{20} = 0$, se tiene

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\sin(x_1) \\ y = x_1 + x_2 \end{cases}$$

Ejemplo

Se tiene

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad C = 1 \quad 1 \quad f_1 = -\sin(x_1)$$

Ejemplo

Sea la transformación

$$T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

se obtiene

$$TAT^{-1} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \quad TD = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad TB = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad CT^{-1} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Por consiguiente, las ganancias del observador

$$G_{\ell} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \ G_{d} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \ \rho = -10$$

Observadores

Observacion de estados e identificación de fallas

Ejemplo

Estimación asintótica del estado $\hat{x}_1 \rightarrow x_1, \hat{x}_2 \rightarrow x_2$

Observadores

Observacion de estados e identificación de fallas

Ejemplo

Superficie deslizante $e_y = 0$, $t > t_r$, estimación de la falla $\hat{f}_1 \to f_1$,

Observadores

Conclusiones

- En el caso de los observadores por modos deslizantes el *chattering* no representa un problema.
- La estimación los estados no medibles se alcanza asintóticamente.
- El control equivalente nos permite estimar asintóticamente las incertidumbres, perturbaciones, dinámicas no modeladas, etc.
- Los observadores presentados requieren que el *grado relativo de las señales desconocidas* sea uno con respecto a la salida.
- Una gran cantidad de sistemas no satisface restricción, por ejemplo los sistemas mecánicos presentan grado relativo dos.

Observadores

Discusión

Sería posible estimar el estado e identificar la perturbación en tiempo finito?

Observadores

Discusión

Sería posible estimar el estado e identificar la perturbación en tiempo finito, teóricamente?

SEGUNDA PARTE

Contenido Segunda Parte

• Introducción a los observadores por modos deslizantes

2 Conceptos avanzados de observabilidad

3 Observadores por modos deslizantes de orden superior

4 Aplicaciones

Contenido

Conceptos de observabilidad

- Observador por modos deslizantes de segundo orden para sistemas mecánicos
- 2 Sistemas LIT
 - Observabilidad
 - Detectabilidad
- 3 Sistemas LIT con entradas desconocidas
 - Observabilidad fuerte
 - Detectabilidad fuerte
- 4 Observación estado e identificación de entradas desconocidas
- 6 Discusión
- 6 Aplicaciones: detección de fallas

Punto de partida

- La sesión anterior se presentaron observadores basados en modos deslizantes de primer orden
- Dichos observadores requieren que el grado relativo de las perturbaciones con respecto a la salida medible sea uno.
- Esa limitante excluye a los sistemas mecánicos en los que normalmente el grado relativo de las perturbaciones (fuerzas externas) con respecto a la salida medible (posición) es dos.
- Además la convergencia del valor estimado del estado al estado del sistema es asintótica.
- Para superar esta deficiencia, se utiliza un observador basado en el algoritmo de modos deslizantes de segundo orden conocido como super-twisting.

Observador basado en Super-Twisting

Sistema mecánico:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = f(t, x_1, x_2) + \xi(t, x_1, x_2, u) \\ y = x_1 \end{cases}$$

- $f(t, x_i, x_2)$ representa el modelo conocido, i.e., nominal del sistema mecánico.
- $\xi(t, x_1, x_2, u)$ representa las incertidumbres.

Observador para sistemas mecánicos

Modos deslizantes de segundo orden

Observador basado en Super-Twisting

Observador:

$$\begin{cases} \dot{\hat{x}}_1 &= \hat{x}_2 + z_1 \\ \dot{\hat{x}}_2 &= f(t, x_1, \hat{x}_2, u) + z_2 \end{cases}$$

Términos de corrección:

$$z_1 = \lambda |x_1 - \hat{x}_1|^{1/2} sign(x_1 - \hat{x}_1)$$

$$z_2 = \alpha sign(x_1 - \hat{x}_1)$$

Observador para sistemas mecánicos

Modos deslizantes de segundo orden

Observador basado en Super-Twisting

$$e_1 = x_1 - \hat{x}_1, \ e_2 = x_2 - \hat{x}_2$$

Dinámica del error:

$$\begin{cases} \dot{e}_1 = e_2 - \lambda |e_1|^{1/2} \operatorname{sign}(e_1) \\ \dot{e}_2 = F(t, x_1, \hat{x}_2, u) - \alpha \operatorname{sign}(e_1) \end{cases}$$

$$F(t, x_1, \hat{x}_2) = f(t, x_1, x_2, u) - f(t, x_1, \hat{x}_2, u) + \xi(t, x_1, x_2, u)$$

Suponiendo que los estados están acotados, entonces se garantiza la existencia de una constante f^+ , tal que la siguiente desigualdad se cumple

$$|F(t, x_1, \hat{x}_2)| < f^+$$

para todo t, x_1 , x_2 y $|\hat{x}_2| \le 2sup|x_2|$.

Los parámetros
$$\alpha = 1.1f^+$$
 y $\lambda = 1.5(f^+)^{1/2}$

Análisis de la inyección de control equivalente

Después de un $t > t_r$, i.e., una vez el observador converge, se tiene que $e_1 \equiv 0$ $e_2 \equiv 0$, consecuentemente, $\hat{x}_1 \equiv x_1$, $\hat{x}_2 \equiv x_2$. Además, se tiene que

$$0 \equiv \dot{e}_2 \equiv F(t, x_1, \hat{x}_2) - (\alpha sign(e_1))_{eq}$$

Nótese que $f(t, x_1, x_2, u) - f(t, x_1, \hat{x}_2, u) = 0$ dado que $\hat{x}_2 = x_2$. Entonces, la inyección de salida equivalente z_{eq} está dada por

$$z_{2_{eq}}(t) \equiv (\alpha sign(e_1))_{eq} \equiv \xi(t, x_1, x_2, u)$$

Observador para sistemas mecánicos

Modos deslizantes de segundo orden

Estimación del estado e identificación de la perturbación

En síntesis se tiene que

$$\hat{x}_1 \equiv x_1, \ \hat{x}_2 \equiv x_2, \ \hat{\xi}(\cdot) \rightarrow \xi(\cdot)$$

Los estimados del estado convergen en tiempo finito al valor exacto del estado, la señal identificada de la perturbación converge asintóticamente.

Observador para sistemas mecánicos

Modos deslizantes de segundo orden

Exactitud del diferenciador

En ausencia de ruido, asumiendo que f es uniformemente acotada, se tiene que los errores de estimación convergen a un dominio dado por:

$$|e_1| \leq \gamma_1 \delta^2$$

$$|e_2| \leq \gamma_2 \delta$$

donde $\gamma_1,\ \gamma_2$ son unas constantes dependientes de los parámetros del observador y δ es el tiempo de muestreo.

Observador para sistemas mecánicos

Modos deslizantes de segundo orden

Observador basado en Super-Twisting

Ejemplo

Del ejemplo del péndulo invertido normalizado, se tiene

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\sin(x_1) \\ y = x_1 \end{cases}$$

Se desea estimar el estado e identificar la perturbación

Sistema LIT

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

 $x \in \mathcal{X} \subseteq R^n, y \in \mathcal{Y} \subseteq R^p, u \in \mathcal{U} \subseteq R^{m_o}$ La solución de la ecuación diferencial para un estado inicial x_0 y una entrada de control u

$$x_u(t,x_0) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$y_u(t, x_0) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Definición

Dos estados x_0, x_1 se dicen indistinguibles en el intervalo [0, T] si para cualquier entrada u se tiene que $y_u(t, x_0) = y_u(t, x_1)$ para $0 \le t \le T$.

es decir,

$$Ce^{At}x_0 + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau$$

= $Ce^{At}x_1 + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

para todo $0 \le t \le T$ y para cualquier u.

La entrada *u* es irrelevante para el estudio de la indistinguibilidad, entonces

$$Ce^{At}x_0 = Ce^{At}x_1, \quad (0 \le t \le T)$$

Definiendo $\nu := x_0 - x_1$, se tiene

$$Ce^{At}\nu = 0, \quad (0 \le t \le T)$$

 ν es una variable de estado.

Expandiendo e^{At} se tiene

$$Ce^{At}\nu = C\left(\sum_{i=0}^{\infty} \frac{(tA)^i}{i!}\right)\nu = \nu, \quad (0 \le t \le T)$$

$$Ce^{At}\nu = \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \dots \end{bmatrix} \begin{bmatrix} C & CA \\ CA^2 & CA^2 \end{bmatrix} \nu = 0$$

Dos estados son indistinguibles si y solo si

$$\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \end{bmatrix} \nu = 0$$

tiene solución para alguna $\nu \neq 0$.

Subespacio inobservable

Por el teorema de Caley-Hamilton, podemos considerar solo los primeros n términos

$$\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} \nu = 0$$

tiene solución para alguna $\nu \neq 0$.

Subespacio inobservable

En otras palabras

$$rango\left(\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}^T\right) < n.$$

Los vectores ν que satisfacen la condicion anterior están contenidos en el subespacio vectorial denotado como

$$< ker(C|A) > = \bigcap_{k=0}^{n-1} ker(CA^k)$$

conocido como el Subespacio inobservable del sistema (A, B, C).

Observabilidad de sistemas LIT

Reconstrucción del estado

Subespacio inobservable

En términos de la relación entrada salida se tiene que, para $\nu \in < ker(C|A) > {
m si}$ y solo si

$$y_0(t,\nu) \equiv 0$$

el subíndice 0 denota que la entrada es igual a cero.

Observabilidad

Teorema

Las siguientes afirmaciones son equivalentes:

- (i) el sistema (A, C) es observable,
- (ii) todo estado es distinguible del origen,

$$(iii) < ker(C|A) >= 0,$$

(iv)
$$Ce^{At}\nu = 0 \rightarrow \nu = 0$$

$$(v) \ rango \left(\begin{bmatrix} C \\ CA \\ CA^2 \\ \dots \\ CA^{n-1} \end{bmatrix} \right) = n$$

Observabilidad de sistemas LIT

Reconstrucción del estado

Observabilidad

En términos de la relación estados salidas, se define de la siguiente manera:

Definición

El sistema (A, B, C) es observable si para cualquier condición inicial x_0 , la condición y(t)=0 para todo $t\geq 0$ implica que $x(t)\equiv 0$ para todo $t\geq 0$ con u=0.

Observabilidad

En términos de la relación estados salidas, se define de la siguiente manera:

A partir del enunciado (v) y con u = 0 se tiene que

$$\begin{bmatrix} y \\ \dot{y} \\ \ddot{y} \\ \vdots \\ y^{(n-1)} \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{(n-1)} \end{bmatrix} x$$

la ecuación anterior define un mapeo biyectivo (i.e. uno a uno) entre los estados y el conjunto de las salidas y sus respectivas derivadas, por lo anterior, $y \equiv 0 \Leftrightarrow x \equiv 0$.

Si el sistema (A, B, C) no es observable (considere u = 0), i.e., (A, C) entonces

$$rango(\begin{bmatrix} C^T & (CA)^T & (CA^2)^T & \cdots & (CA^{(n-1)})^T \end{bmatrix}^T = n_1 < n$$

Entonces, existe un conjunto de vectores \mathcal{N} , tal que todos los vectores $\nu_i \in \mathcal{N}$ no producen ningún efecto en la salida el sistema, es decir,

$$Ce^{At}\nu_i = 0$$

 $\nu_i \neq 0$.

Observabilidad de sistemas LIT

Reconstrucción del estado

Subespacio inobservable

El conjunto $\mathcal N$ se conoce como el subespacio inobservable del sistema (A,B,C) ((A,C)) y se representa como

$$\mathcal{N} = \langle kerC|A \rangle = \bigcap_{k=0}^{n-1} kerCA^k$$

Observabilidad de sistemas LIT

Reconstrucción del estado

Subespacio inobservable

Comentarios.

Se tienen las siguientes propiedades $A\mathcal{N} \in \mathcal{N}$, $C\mathcal{N} = 0$, i.e., el subespacio N es un subespacio A – *invariante*.

Los estados pertenecientes a $\mathcal N$ son indistinguibles del origen, por lo que son inobservables.

Definición

Se dice que el sistema (A,C) es detectable si para cualquier condición inicial x_0 , la condición $y\equiv 0$ para todo $t\geq 0$ implica que $x\to 0$ para $t\to \infty$.

Comentario. De lo anterior se desprende que para determinar si un sistema parcialmente observable es detectable, será necesario determinar la estabilidad de los estados que pertenecen al subespacio \mathcal{N} (con u=0), es decir, que toda trayectoria que inicie en $v_i \in \mathcal{N}, i=1,\ldots,n-n_1$ tienda a cero cuando $t\to\infty$.

Observabilidad de sistemas LIT

Reconstrucción del estado

Detectabilidad

Para determinar la estabilidad de los estados pertenecientes a \mathcal{N} , se transforma al sistema.

La transformación queda determinada de la siguiente manera:

- Se eligen $n-n_1$ vectores linealmente independientes $\nu_i \in \mathcal{N}$ que formen una base de \mathcal{N} .
- Se toman n_1 vectores linealmente independientes que pertenezcan al subespacio complemento de \mathcal{N} , i.e., $s_i \in \bar{\mathcal{N}}$ tal que conformen una base de $\bar{\mathcal{N}}$.

Se forma entonces la transformación

$$T = \begin{bmatrix} s_1 & \dots & s_{n_1} & \nu_1 & \dots & \nu_{n-n_1} \end{bmatrix}^T$$

$$\begin{bmatrix} \dot{x}_o \\ \dot{x}_{\bar{o}} \end{bmatrix} = \begin{bmatrix} A_o & 0 \\ A_{21} & A_{\bar{o}} \end{bmatrix} \begin{bmatrix} x_o \\ x_{\bar{o}} \end{bmatrix}^T$$

$$y = \begin{bmatrix} C_o & 0 \end{bmatrix}$$

Comentarios.

- El par (A_o, C_o) es observable.
- Los estados pertenecientes al subespacio $\mathcal N$ son proyectados en el vector $x_{\bar o}$.
- La matriz $A_{\bar{o}}$ se denomina la **restricción** de A en el subespacio \mathcal{N} , se denota como $A|\mathcal{N}$.

Se forma entonces la transformación

$$T = \begin{bmatrix} s_1 & \dots & s_{n_1} & \nu_1 & \dots & \nu_{n-n_1} \end{bmatrix}^T$$

$$\begin{bmatrix} \dot{x}_o \\ \dot{x}_{\bar{o}} \end{bmatrix} = \begin{bmatrix} A_o & 0 \\ A_{21} & A_{\bar{o}} \end{bmatrix} \begin{bmatrix} x_o \\ x_{\bar{o}} \end{bmatrix}^T$$

$$y = \begin{bmatrix} C_o & 0 \end{bmatrix}$$

Comentarios.

- Los valores propios de $A_{\bar{o}}$ rigen el comportamiento de los estados pertenecientes al subespacio \mathcal{N} .
- Si $A_{\bar{o}}$ es estable, el sistema (A, C) es detectable.

Ejemplo

Es posible realizar un observador para el siguiente sistema?

$$\dot{x} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u
y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} x$$

Observabilidad y detectabilidad fuertes

Sistema con entradas desconocidas

$$\begin{cases} \dot{x} = Ax + Dw \\ y = Cx + Fw \end{cases}$$

Dado que u es conocida es irrelevante para el análisis. Se asume que

$$rango\left[\begin{array}{c} D \\ F \end{array}\right] = m$$

El sistema Σ está definido por la cuádrupla (A, C, D, F).

Observabilidad y detectabilidad fuertes

Matriz de Rosenbrock

Transformando al dominio de la frecuencia

$$(sI - A)X(s) - DW(s) = x_0$$

$$CX(s) + FW(s) = Y(s)$$

Reagrupando

$$\underbrace{\begin{pmatrix} sI - A & -D \\ C & F \end{pmatrix}}_{R(s)} \begin{pmatrix} X(s) \\ W(s) \end{pmatrix} = \begin{pmatrix} x_0 \\ Y(S) \end{pmatrix}$$

Definición

Las frecuencias s_0 tales que el rango de la matriz de Rosenbrock rango(R(s)) < n + m se conocen como ceros invariantes.

Observabilidad y detectabilidad fuertes

Matriz de Rosenbrock

Para una $w(t) = w_0 e^{s_0 t}$ que produce $x(t) = x_0 e^{s_0 t}$, tal que la salida $y(t) \equiv 0 \ \forall t$, entonces

$$R(s_0) \left[\begin{array}{c} x_0 \\ w_0 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

existe un conjunto de s_0 denominados *ceros invariantes*. Si R(s) es cuadrada, entonces $|R(s_0)| = 0$.

Comentarios.

- R(s) es invertible por la izquierda.
- Los ceros invariantes no son afectados por transformaciones no singulares sobre las matrices del sistema. Los ceros invariantes no cambian cuando la salida del sistema es realimentada.

Observabilidad y detectabilidad fuertes

Subespacio débilmente inobservable

Definición

Un estado $x \in \mathcal{X}$ se conoce como *débilmente inobservable* si existe una entrada desconocida w(t) tal que la salida correspondiente $y_w(t,x_0)=0 \ \forall t \geq 0$. Al conjunto de todos los estados débilmente inobservables del sistema Σ , i.e. (A,C,D,F), se le denota como $\mathcal{V}^*(\Sigma)$ y se le llama espacio de inobservabilidad débil de Σ .

Observabilidad y detectabilidad fuertes

Observabilidad fuerte

De manera equivalente a la observabilidad del par (A, C) (cuando la entrada desconocida w=0), se define la propiedad de observabilidad fuerte para el sistema afectado por entradas desconocidas.

Definición

El sistema (A, C, D, F) es *fuertemente observable* si para cada condición inicial x_0 y para cada entrada w(t), la condición $y = 0, \forall t \geq 0$ implica que $x = 0, \forall t \geq 0$.

Observabilidad y detectabilidad fuertes

Observabilidad fuerte

Teorema

Las siguientes afirmaciones son equivalentes

- (i) El sistema Σ_w es fuertemente observable,
- (ii) La cuádrupla (A, C, D, F) no tiene ceros invariantes,
- (iii) El subespacio de inobservabilidad débil sólo contiene al vector cero, i.e., $V^* = 0$.

Observabilidad y detectabilidad fuertes

Ejemplo

Sea el siguiente sistema lineal invariante en el tiempo afectado por entradas desconocidas. Puede recuperarse el estado a partir de la salida?

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} w(t)$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Observabilidad y detectabilidad fuertes

Detectabilidad Fuerte

Definición

El sistema (A, C, D, F) es *fuertemente detectable* si para toda w(t) y x_0 se tiene que si $y(t) = 0, \forall t \ge 0$ implica $x \to 0$ para $t \to \infty$.

Comentarios. La propiedad de detectabilidad fuerta está relacionada con la convergencia a cero de las trayectorias de los estados pertenecientes a \mathcal{V}^* . (Similar al caso detectable.)

Observabilidad y detectabilidad fuertes

Detectabilidad Fuerte

Definición

El sistema (A, C, D, F) es *fuertemente detectable* si para toda w(t) y x_0 se tiene que si y(t) = 0, $\forall t \ge 0$ implica $x \to 0$ para $t \to \infty$.

Teorema

Las siguientes afirmaciones son equivalentes

- (i) El sistema Σ es fuertemente detectable,
- (ii) La cuádrupla (A, C, D, F) es de fase mínima, i.e., Re(s) < 0,
- (iii) Las trajectorias que pertenecen a \mathcal{V}^* convergen a cero asimptóticamente.

Observabilidad y detectabilidad fuertes

Observabilidad fuerte: caso SISO

$$\dot{x} = Ax + Dw$$

$$y = Cx$$

$$x \in \mathbb{R}^n, y \in \mathbb{R}, w \in \mathbb{R}$$

Teorema

El sistema (A, C, D) es fuertemente observable si y solo si, la salida y tiene grado relativo n con respecto a la entrada desconocida w(t), i.e., no tiene ceros invariantes.

Observabilidad fuerte: caso SISO

Esto puede verificarse al revisar las derivadas consecutivas de la salida, es decir

$$\begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \\ y^n \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{(n-1)} \\ CA^{(n)} \end{bmatrix} x + \begin{bmatrix} 0 \\ CD = 0 \\ \vdots \\ CA^{(n-2)}D = 0 \\ CA^{(n-1)}D \neq 0 \end{bmatrix} w$$

dado que w se presenta hasta la n- ésima derivada de y, esto es $CA^{(n-1)} \neq 0$, entonces (A,C,D) es fuertemente observable.

Observabilidad fuerte: caso SISO

Ejemplo

Sea el sistema

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 6 & 5 & -5 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x$$

Observabilidad y detectabilidad fuertes

Observabilidad fuerte: caso MIMO

$$\dot{x} = Ax + Dw$$

$$y = Cx$$

$$x \in \mathbb{R}^n, \ y \in \mathbb{R}^p, \ w \in \mathbb{R}^q$$

• (A, C, D) fuertemente observable (i.e. $\mathcal{V}^* = 0$)

Observabilidad y detectabilidad fuertes

Desacoplamiento de entradas desconocidas

Paso 1

•
$$y(t) = \underbrace{C}_{M_1} x(t)$$

Paso 2

• $\frac{a}{dt}\left[(M_1D)^{\perp}y(t)\right] = (M_1D)^{\perp}M_1Ax(t)$

Observabilidad y detectabilidad fuertes

Desacoplamiento de entradas desconocidas

Paso 1

•
$$y(t) = \underbrace{C}_{M_1} x(t)$$

Paso 2

•
$$\dot{y}(t) = M_1 Ax(t) + M_1 Dw(t)$$

$$\bullet \underbrace{\left[\begin{array}{cc} \left(\frac{d}{dt} M_1 D \right)^{\perp} M_1 A \\ M_1 \end{array} \right]}_{X} x(t) = \frac{d}{dt} \left[\begin{array}{cc} \left(M_1 D \right)^{\perp} & 0 \\ 0 & I_p \end{array} \right] \left[\begin{array}{c} y \\ \int y dt \end{array} \right]$$

Observabilidad y detectabilidad fuertes

Desacoplamiento de entradas desconocidas

Paso 1

•
$$y(t) = \underbrace{C}_{M_1} x(t)$$

Paso 2

•
$$\frac{d}{dt}\left[\left(M_{1}D\right)^{\perp}y\left(t\right)\right] = \left(M_{1}D\right)^{\perp}M_{1}Ax\left(t\right)$$

$$\bullet \underbrace{\left[\begin{array}{cc} \left(\frac{d}{dt}M_1D\right)^{\perp}M_1A \\ M_1 \end{array}\right]}_{I}x(t) = \frac{d}{dt} \left[\begin{array}{cc} \left(M_1D\right)^{\perp} & 0 \\ 0 & I_p \end{array}\right] \left[\begin{array}{cc} y \\ \int y dt \end{array}\right]$$

Observabilidad y detectabilidad fuertes

Desacoplamiento de entradas desconocidas

Paso 1

•
$$y(t) = \underbrace{C}_{M_1} x(t)$$

Paso 2

•
$$\frac{d}{dt}\left[\left(M_1D\right)^{\perp}y(t)\right] = \left(M_1D\right)^{\perp}M_1Ax(t)$$

$$\bullet \underbrace{\left[\begin{array}{cc} \left(\frac{d}{dt}M_1D\right)^{\perp}M_1A \\ M_1 \end{array}\right]}_{M_2}x(t) = \frac{d}{dt} \left[\begin{array}{cc} \left(M_1D\right)^{\perp} & 0 \\ 0 & I_p \end{array}\right] \left[\begin{array}{cc} y \\ \int y dt \end{array}\right]$$

Observabilidad y detectabilidad fuertes

Desacoplamiento de entradas desconocidas

Paso 1

•
$$y(t) = \underbrace{C}_{M_1} x(t)$$

Paso 2

•
$$\frac{d}{dt}\left[\left(M_1D\right)^{\perp}y\left(t\right)\right] = \left(M_1D\right)^{\perp}M_1Ax\left(t\right)$$

$$\bullet \underbrace{\left[\begin{array}{c} \left(\frac{d}{dt}M_1D\right)^{\perp}M_1A \\ M_1 \end{array}\right]}_{M_2}x(t) = \frac{d}{dt} \begin{bmatrix} \left(M_1D\right)^{\perp} & 0 \\ 0 & I_p \end{bmatrix} \begin{bmatrix} y \\ \int ydt \end{bmatrix}$$

Existe $k \le n$ tal que $rank(M_k) = n$, (Molinari, 1976)

Desacoplamiento de entradas desconocidas

Step k

$$\underbrace{\begin{bmatrix} \frac{d}{dt} (M_{k-1}D)^{\perp} M_{k-1}A \\ C \end{bmatrix}}_{M_k} x(t) = \underbrace{\frac{d^{k-1}}{dt^{k-1}}}_{T} \begin{bmatrix} J_{k-1} & 0 \\ 0 & I_p \end{bmatrix} \underbrace{\begin{bmatrix} y \\ \int y \\ \int \dots \int y d\tau dt \end{bmatrix}}_{Y^{[k-1]}}$$

► Recuperación del estado:

$$x(t) = \frac{d^{k-1}}{dt^{k-1}} \underbrace{M_k^+ \begin{bmatrix} J_{k-1} & 0 \\ 0 & I_p \end{bmatrix} Y^{[k-1]}}_{\Theta(t)}$$

Observabilidad y detectabilidad fuertes

Discusión

• y cómo obtener las derivadas consecutivas?

Diferenciador por modos deslizantes de orden superior

Diferenciador MDOS (Levant, 2003)

$$\dot{z}_{0} = \lambda_{0} \Gamma^{\frac{1}{i+1}} \|z_{0} - \Theta(t)\|^{\frac{i}{i+1}} \operatorname{sgn} (z_{0} - \Theta(t)) + z_{1}
\dot{z}_{1} = \lambda_{1} \Gamma^{\frac{1}{i}} \|z_{1} - \dot{z}_{0}\|^{\frac{i-1}{i-2}} \operatorname{sgn} (z_{1} - \dot{z}_{0}) + z_{2}
\vdots
\dot{z}_{i-1} = \lambda_{i-1} \Gamma^{\frac{1}{2}} \|z_{i-1} - \dot{z}_{i-2}\|^{\frac{1}{2}} \operatorname{sgn} (z_{i-1} - \dot{z}_{i-2}) + z_{i}
\dot{z}_{i} = \lambda_{i} \Gamma \operatorname{sgn} (z_{i} - \dot{z}_{i-1})$$

donde i orden del diferenciador, $\Theta(t)$ es la señal a diferenciar, Γ es la constante de Lipschitz de $\Theta(t)$, i.e., $\|\Theta^{(i+1)}(t)\| < \Gamma$

$$\frac{d^i\Theta(t)}{dt^i} = z_i \quad \forall t \ge t_r$$

Diferenciador por modos deslizantes de orden superior

Diferenciador de segundo orden

Ejemplo

Sea $y = \sin(t) + 1\cos(3t)$ el diferenciador de segundo orden dado por la expresión

$$\dot{z}_{0} = -3\Gamma^{\frac{1}{3}} \|z_{0} - y(t)\|^{\frac{2}{3}} \operatorname{sgn} (z_{0} - y(t)(t)) + z_{1}
\dot{z}_{1} = -1.5\Gamma^{\frac{1}{2}} \|z_{1} - \dot{z}_{0}\|^{\frac{1}{3}} \operatorname{sgn} (z_{1} - \dot{z}_{0}) + z_{2}
\dot{z}_{2} = -1.1\Gamma \operatorname{sgn} (z_{2} - \dot{z}_{1})$$

donde $\Gamma \geq |y^{(3)}|$.

Diseño de un observador para estimar el estado y las entradas desconocidas

$$\dot{x}(t) = Ax(t) + Bu(t) + Dw(t),$$

$$y(t) = Cx(t)$$

$$x(t) \in \Re^{n}, \ u(t) \in \Re^{m}, \ y(t) \in \Re^{p}, \ w(t) \in \Re^{q}$$

- A1. (A, C, D) fuertemente observable
- A2. Existe una constante w^+ tal que $||w(t)|| \le w^+$ for all $t \ge 0$
- A3. w(t) satisface $||w^{(i)}(t)|| \le w^+$ for $i = 1, ..., \alpha \ \forall t \ge 0$.

Acotamiento del error

• Se propone un observador de Luenberger para acotar el error

$$\begin{split} \dot{\tilde{x}}(t) &= A\tilde{x}(t) + Bu(t) + L\left(y\left(t\right) - \tilde{y}\left(t\right)\right), \\ \tilde{y}\left(t\right) &= C\tilde{x} \\ \tilde{x} &\in \Re^n, \tilde{A} := (A - LC) \text{ Hurwitz} \end{split}$$

• $e(t) := x(t) - \tilde{x}(t)$. La dinámica del error

$$\dot{e}(t) = \tilde{A}e(t) + Dw(t)$$

$$y_e = Ce$$

$$||e(t)|| \le e^+ \quad \forall t > T_e$$

Desacoplamiento de las entradas desconocidas

Step 1

Step 2

$$\geq \frac{d}{dt} \left[(M_1 D)^{\perp} y_e(t) \right] = (M_1 D)^{\perp} M_1 \tilde{A} e(t)$$

 $\frac{\partial}{\partial t} (M_2 D)^{\perp} M_2 e(t) = (M_2 D)^{\perp} M_2 \tilde{A} e(t)$

Desacoplamiento de las entradas desconocidas

Step 1

Step 2

$$\qquad \qquad \dot{y}_{\mathrm{e}}\left(t\right) = M_{1}\tilde{A}e\left(t\right) + M_{1}Dw\left(t\right)$$

$$\boxed{ \underbrace{ \left[\begin{array}{c} \left(\frac{d}{dt} M_1 D \right)^{\perp} M_1 \tilde{A} \\ C \end{array} \right]}_{M_2} e(t) = \frac{d}{dt} \left[\begin{array}{c} \left(M_1 D \right)^{\perp} & 0 \\ 0 & I_p \end{array} \right] \left[\begin{array}{c} y_e \\ \int y_e dt \end{array} \right]}$$

Desacoplamiento de las entradas desconocidas

Step 1

Step 2

$$\underbrace{\begin{bmatrix} \left(\frac{d}{dt}M_1D\right)^{\perp}M_1\tilde{A} \\ C \end{bmatrix}}_{M_2}e(t) = \underbrace{\frac{d}{dt}}_{I_p}\begin{bmatrix} \left(M_1D\right)^{\perp} & 0 \\ 0 & I_p \end{bmatrix}\begin{bmatrix} y_e \\ \int y_e dt \end{bmatrix}$$

Desacoplamiento de las entradas desconocidas

Step 2

$$\underbrace{\left[\begin{array}{c} \left(\frac{d}{dt}M_{1}D\right)^{\perp}M_{1}\tilde{A} \\ C \end{array}\right]}_{M_{2}}e(t) = \frac{d}{dt} \left[\begin{array}{cc} \left(M_{1}D\right)^{\perp} & 0 \\ 0 & I_{p} \end{array}\right] \left[\begin{array}{c} y_{e} \\ \int y_{e}dt \end{array}\right]$$

$$\left[\frac{d}{dt} \frac{(M_2 D)^{\perp} M_2 \tilde{A}}{C} \right] e(t) = \frac{d^2}{dt^2} \begin{bmatrix} J_2 & 0 \\ 0 & I_p \end{bmatrix} \begin{bmatrix} y_e \\ \int y_e dt \\ \int \int y_e d\tau dt \end{bmatrix}$$

Desacoplamiento de las entradas desconocidas

Step 2

$$\bullet \underbrace{\left[\begin{array}{c} \left(\frac{d}{dt}M_{1}D\right)^{\perp}M_{1}\tilde{A} \\ C \end{array}\right]}_{M_{2}}e(t) = \frac{d}{dt} \begin{bmatrix} \left(M_{1}D\right)^{\perp} & 0 \\ 0 & I_{p} \end{bmatrix} \begin{bmatrix} y_{e} \\ \int y_{e}dt \end{bmatrix}$$

$$\begin{bmatrix}
\frac{d}{dt} \left(M_2 D \right)^{\perp} M_2 \tilde{A} \\
C
\end{bmatrix} e(t) = \frac{d^2}{dt^2} \begin{bmatrix} J_2 & 0 \\ 0 & I_p \end{bmatrix} \begin{bmatrix} y_e \\ \int y_e dt \\ \int \int y_e d\tau dt \end{bmatrix}$$

Desacoplamiento de las entradas desconocidas

Step 2

$$\bullet \underbrace{\left[\begin{array}{c} \left(\frac{d}{dt}M_1D\right)^{\perp}M_1\tilde{A} \\ C \end{array}\right]}_{M_2}e(t) = \frac{d}{dt} \begin{bmatrix} \left(M_1D\right)^{\perp} & 0 \\ 0 & I_p \end{bmatrix} \begin{bmatrix} y_e \\ \int y_e dt \end{bmatrix}$$

Desacoplamiento de las entradas desconocidas

Step 2

$$\bullet \underbrace{\left[\begin{array}{cc} \left(\frac{d}{dt}M_{1}D\right)^{\perp}M_{1}\tilde{A} \\ C \end{array}\right]}_{C}e(t) = \frac{d}{dt} \left[\begin{array}{cc} \left(M_{1}D\right)^{\perp} & 0 \\ 0 & I_{p} \end{array}\right] \left[\begin{array}{cc} y_{e} \\ \int y_{e}dt \end{array}\right]$$

Step 3

 M_2

$$\bullet \left[\frac{\frac{d}{dt} (M_2 D)^{\perp} M_2 \tilde{A}}{C} \right] e(t) = \frac{d^2}{dt^2} \left[\begin{array}{c} J_2 & 0 \\ 0 & I_p \end{array} \right] \left[\begin{array}{c} y_e \\ \int y_e dt \\ \int \int y_e d\tau dt$$

Dado que (A, C, D) es fuertemente observable, existe $k \le n$ tal que $rank(M_k) = n$, (Molinari, 1976)

$$\underbrace{\begin{bmatrix} \frac{d}{dt} (M_{k-1}D)^{\perp} M_{k-1}\tilde{A} \\ C \end{bmatrix}}_{M_k} e(t) = \underbrace{\begin{bmatrix} \frac{d}{dt} (M_{k-1}D)^{\perp} M_{k-1}\tilde{A} \\ C \end{bmatrix}}_{M_k} e(t) = \underbrace{\begin{bmatrix} \frac{d}{dt} (M_{k-1}D)^{\perp} M_{k-1}\tilde{A} \\ C \end{bmatrix}}_{M_k} \underbrace{\begin{bmatrix} y_e \\ \int y_e \\ \int \dots \int y_e d\tau dt \end{bmatrix}}_{[k-1]}$$

Entonces,

$$e(t) = M_k^{+} \frac{d^{k-1}}{dt^{k-1}} \left[\begin{array}{cc} J_{k-1} & 0 \\ 0 & I_p \end{array} \right] Y^{[k-1]}$$

(*Levant*, 2003)

$$\dot{z}_{0} = \lambda_{0} \Lambda^{\frac{1}{i+1}} \| z_{0} - \Theta(t) \|^{\frac{i}{i+1}} \operatorname{sgn}(z_{0} - \Theta(t)) + z_{1}
\dot{z}_{1} = \lambda_{1} \Lambda^{\frac{1}{i}} \| z_{1} - \dot{z}_{0} \|^{\frac{i-1}{i-2}} \operatorname{sgn}(z_{1} - \dot{z}_{0}) + z_{2}
\vdots
\dot{z}_{i-1} = \lambda_{i-1} \Lambda^{\frac{1}{2}} \| z_{i-1} - \dot{z}_{i-2} \|^{\frac{1}{2}} \operatorname{sgn}(z_{i-1} - \dot{z}_{i-2}) + z_{i}
\dot{z}_{i} = \lambda_{i} \Lambda \operatorname{sgn}(z_{i} - \dot{z}_{i-1})$$

donde i es el orden de diferenciación, y $\left\|\Theta^{(i+1)}\left(t\right)\right\|<\Lambda$

$$\frac{d^i\Theta(t)}{dt^i} = z_i \quad \forall t \ge T$$

Estimación del estado e identificación de las entradas desconocidas

• Estimación del estado $\forall t \geq T$

$$\hat{x}(t) = \tilde{x}(t) + M_k^{\dagger} z_{(k-1)}$$

• Identificación de las entradas desconocidas $\forall t \geq T, z_k(t) = \dot{e}(t)$ and $z_{k-1}(t) = e(t)$

$$\underbrace{\dot{e}\left(t\right)}_{z_{k}} = \widetilde{A}\underbrace{e\left(t\right)}_{z_{k-1}} + Dw\left(t\right)$$

$$\hat{w}(t) = -D^{+}((A - LC)z_{k-1}(t) - z_{k})$$

Precisión de la estimación del estado y la identificación de la perturbación

$$\tilde{\Theta}(t) = \Theta(t) + n(t)$$

- Θ senãl medible
- n(t) ruido determinístico $||n(t)|| \le \eta$
- $\delta \le k_{\delta}\Delta$, and $\eta \le k_{\eta}\Gamma\Delta^{i+1}$ with $k_{\delta}, k_{\eta}, \Delta > 0$ (Angulo-Levant, 2009)

Error	Paso de muestreo	Ruido acotado	Efecto total
	δ	η	Δ
Observation	$O\left(\delta^{lpha+1} ight)$	$O\left(\eta^{rac{lpha+1}{lpha+k}} ight)$	$O\left(\Delta^{\alpha+1}\right)$
Identification	$O\left(\delta^{lpha} ight)$	$O\left(\eta^{rac{lpha}{lpha+k}} ight)$	$O\left(\Delta^{lpha} ight)$
HOSM differentiator	$O\left(\delta ight)$	$O\left(\eta^{rac{1}{lpha+k}} ight)$	$O\left(\Delta ight)$

Ejemplo

Disen e un observador para estimar el estado e identificar la perturbación para sistema del péndulo invertido. Verifique que el sistema sea fuertemente observable.

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -sin(x_1) \\ y = x_1 \end{cases}$$

Observabilidad y detectabilidad fuertes

Discusión

- Se presentó un observador basado en modos deslizantes de segundo orden.
- El observador estima el estado en tiempo finito.
- La identificación de la entrada desconocida se lleva a cabo mediante el control equivalente, i.e., converge asintóticamente.
- Se discutieron los conceptos de observabilidad y detectabilidad para sistemas LIT, y los correspondientes a los sistemas LTI afectado por entradas desconocidas, i.e., observabilidad fuerte y detectabilidad fuerte.

Observabilidad y detectabilidad fuertes

Discusión

- Mediante la salida y sus derivadas consecutivas es posible estimar el estado, (observador algebraico).
- Para realizar un observador algebraico es menester utilizar un diferenciador, por ejemplo eldiferenciador por modos deslizantes de orden superior.
- Se presentó un observador por modos deslizantes de orden superior que converge, teóricamente en tiempo finito, al valor exacto del estado. Además permite identificar la entrada desconocida en tiempo finito.

Referencias

- C. Edwards, S.K. Spurgeon, *Sliding Mode Control*. Taylor and Francis: London, 1998.
- J. Davila and L. Fridman and A. Levant, <u>Second-Order Sliding-Mode Observer for Mechanical Systems</u>, *IEEE Transactions on Automatic Control* Vol. 50, No. 11, pp. 1785-1789, 2005.
- F. J. Bejarano and L. Fridman, <u>High order sliding mode observer</u> for linear systems with unbounded unknown inputs, *International Journal of Control* Vol. 83, No. 9, pp. 1920-1929, 2010.

TERCERA PARTE

Contenido Tercera Parte

Identificación y rechazo de perturbaciones

- Sistemas LIT con perturbaciones acopladas: control robusto con o sin chattering?
- 2 Sistemas LIT con perturbaciones desacopladas.

Punto de partida

- Una vez que se cuenta con el estado y la señal identificada de la entrada desconocida es posible disenãr controladores basados en dicha información
- Los controladores garantizan la insensibilidad a las perturbaciones pero sin presentar los efectos indeseables del chattering.

Motivación: control de sistemas inciertos

Motivación: control de sistemas inciertos

Control por compensación teóricamente exacto

Control por modos deslizantes

- Ventajas:
 - Robustez (insensibilidad) con respecto a las perturbaciones/incertidumbres acopladas.
 - Alcance de la superficie en tiempo finito.
 - Reducción de la dinámica del sistema en la superficie deslizante
- Desventajas:
 - No son robustos a perturbaciones/incertidumbres no acopladas.
 - Chattering !!

Preguntas:

• ¿Sería posible preservar la insensibilidad contra las perturbaciones/incertidumbres acopladas sin los efectos dañinos del *chattering*?

Punto de partida . . .

Observadores por modos deslizantes de orden superior: una herramienta poderosa

HOSM observers ([Davila et al. 2006], [Fridman et al. 2007], [Bejarano-Fridman 2010]...)

- Garantizan robustez en presencia de perturbaciones e incertidumbres (entradas desconocidas)
- Proveen la estimación, teóricamente exacta, de los estadosa y la identificación de las perturbaciones/incertidumbres
- Ofrecen convergencia en tiempo finito
- Bejarano, F., Fridman, L., and Poznyak, A., "Exact State Estimation for Linear Systems with Unknown Inputs Based on Hierarchical Super-twisting Algorithm "International Journal of Robust and Nonlinear Control, 17, 1734 — 1753.
- J. Dávila, L. Fridman and A. Levant, "Second order sliding mode observer for mechanical systems", IEEE Transactions on Automatic Control, 2006.
- F. Bejarano, L. Fridman, "High order sliding mode observer for linear systems with unbounded unknown inputs," IJC 2010

Punto de partida . . .

Observadores por modos deslizantes de orden superior: una herramienta poderosa

HOSM observers ([Davila et al. 2006], [Fridman et al. 2007], [Bejarano-Fridman 2010]...)

- Garantizan robustez en presencia de perturbaciones e incertidumbres (entradas desconocidas)
- Proveen la estimación, teóricamente exacta, de los estadosa y la identificación de las perturbaciones/incertidumbres
- Ofrecen convergencia en tiempo finito
- Bejarano, F., Fridman, L., and Poznyak, A., "Exact State Estimation for Linear Systems with Unknown Inputs Based on Hierarchical Super-twisting Algorithm "International Journal of Robust and Nonlinear Control, 17, 1734 — 1753.
- J. Dávila, L. Fridman and A. Levant, "Second order sliding mode observer for mechanical systems", IEEE Transactions on Automatic Control, 2006.
- F. Bejarano, L. Fridman, "High order sliding mode observer for linear systems with unbounded unknown inputs," IJC 2010

Control por realimentación de salida de sistemas con incertidumbres/perturbaciones

Esquemas de control basados en observadores por MDOS para lidiar con pertubaciones acopladas y no acopladas

Compensación exacta de perturbaciones acopladas

¿Con o sin chattering?

$$\dot{x} = Ax + B[u + w], \quad y = Cx.$$

Formulación del problema

Diseñar un control

$$u(t)=u_n+u_c$$

- $u_n(t)$ control nominal $(i.e., \forall w = 0)$
- $u_c(t)$ compensador

Pregunta:

Cómo diseñar el compensador u_c ?

¿Con o sin chattering?

Two exact compensation approaches [Ferreira et al. 2011]

- Control por identificación y compensación basado en OMDOS *(continuo)*
- Control por realimentaci
 ó de salida via modos deslizantes integrales (discontinuo)

¿Con o sin chattering?

$$\dot{x} = Ax + B[u + w], \quad y = Cx.$$

$$x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m, \ y(t) \in \mathbb{R}^p, \ w(t) \in \mathbb{R}^q$$

Suposiciones

- A1. (A, C, D) fuertemente observable
- A2. w(t) acotado por una constante w^+ tal que $||w(t)|| \le w^+ \ \forall t \ge 0$
- A3. w(t) satisface $||w^{(i)}(t)|| \le w^+$ para $i = 1, ..., \alpha \ \forall t \ge 0$.

Precisión de la estimación y la identificación

Salida medible

$$\Theta\left(t\right) = \Theta_0\left(t\right) + \eta\left(t\right)$$

- η Señal de ruido determinístico $||n(t)|| \leq \eta$
- δ Paso de muestreo
- Δ Efecto combinado del ruido y el tiempo de muestreo

Precisión del diferenciador [Angulo et al.: 2011]

Error	δ	
Observación	$O\left(\delta^{\alpha+1}\right)$	
Identificación	$O\left(\delta^{lpha} ight)$	
Diferenciador	$O\left(\delta ight)$	

Precisión de la estimación y la identificación

Salida medible

$$\Theta\left(t\right) = \Theta_0\left(t\right) + \eta\left(t\right)$$

- η Señal de ruido determinístico $||n(t)|| \leq \eta$
- δ Paso de muestreo
- Δ Efecto combinado del ruido y el tiempo de muestreo

Precisión del diferenciador [Angulo et al.: 2011]

$$\begin{array}{c|cccc} \text{Error} & \delta & \eta & \Delta \\ \text{Observación} & O\left(\delta^{\alpha+1}\right) & O\left(\nu^{\frac{\alpha+1}{\alpha+k}}\right) & O\left(\Delta^{\alpha+1}\right) \\ \text{Identificación} & O\left(\delta^{\alpha}\right) & O\left(\nu^{\frac{\alpha}{\alpha+k}}\right) & O\left(\Delta^{\alpha}\right) \\ \text{Diferenciador} & O\left(\delta\right) & O\left(\nu^{\frac{1}{\alpha+k}}\right) & O\left(\Delta\right) \end{array}$$

Precisión de la estimación y la identificación

Salida medible

$$\Theta\left(t\right) = \Theta_0\left(t\right) + \eta\left(t\right)$$

- η Señal de ruido determinístico $||n(t)|| \leq \eta$
- δ Paso de muestreo
- Δ Efecto combinado del ruido y el tiempo de muestreo

Precisión del diferenciador [Angulo et al.: 2011]

Error	δ	η	Δ
Observación	$O\left(\delta^{\alpha+1}\right)$	$O\left(u^{rac{lpha+1}{lpha+k}} ight)$	$O\left(\Delta^{\alpha+1} ight)$
Identificación	$O\left(\delta^{lpha} ight)$	$O\left(\nu^{\frac{\alpha}{\alpha+k}}\right)$	$O\left(\Delta^{lpha} ight)$
Diferenciador	$O\left(\delta ight)$	$O\left(\nu^{\frac{1}{\alpha+k}}\right)$	$O\left(\Delta\right)$

$$\dot{x} = Ax + B[u + w], \quad y = Cx$$

Control por compensación basado en OMDOS continuo

$$u(t) = -K\hat{x} - \hat{w}$$

Control por salida basado en modos deslizantes integrales (discontinuo)

$$u(t) = -K\hat{x}(t) - \rho \frac{s(\hat{x}, t)}{\|s(\hat{x}, t)\|}$$

$$s(\hat{x}, t) = B^{+} \left[\hat{x}(t) - x(T) - \int_{T}^{t} \left[A\hat{x}(\tau) + Bu_{n}(\tau)\right] d\tau\right] \quad \rho > w^{+}$$

Con o sin chattering?

Con o sin chattering?

Discusión

¿Cuál estrategia usar continua/discontinua?

Precisión del sistema en lazo cerrado ϵ

Control basado en compensación via OMDOS

$$\epsilon = \underbrace{O\left(\Delta^{\alpha+1}\right)}_{Observation} + \underbrace{O\left(\Delta^{\alpha}\right)}_{Identification} + \underbrace{O\left(\mu\right)}_{Execution}$$

Control por salida basado en modos deslizantes integrales

$$\epsilon = \underbrace{O\left(\Delta^{\alpha+1}\right)}_{Observation} + \underbrace{O\left(\mu\right)}_{Execution}$$

Donde h es la constante de tiempo del actuador, con un error de ejecución de O(h) [Fridman: 02].

Con o sin chattering?

Selección de la estrategia de control

$$\underbrace{O\left(\Delta^{\alpha}\right)}_{Identificación} << \underbrace{O\left(h\right)}_{Ejecución}$$
 Control por compensación
$$\underbrace{O\left(\Delta^{\alpha+1}\right)}_{Observación} << \underbrace{O\left(h\right)}_{Ejecución} << \underbrace{O\left(\Delta^{\alpha}\right)}_{Identificación}$$
 Control MDI
$$\underbrace{O\left(h\right)}_{Observación} << \underbrace{O\left(\Delta^{\alpha+1}\right)}_{Observación}$$
 Control por compensación
$$\underbrace{O\left(h\right)}_{Ejecución} << \underbrace{O\left(\Delta^{\alpha+1}\right)}_{Observación}$$

¿Cuándo usar CMD?[Ferreira et al. 2011]

- error de identificación ≪ error de ejecución: atajar la perturbación usando compensación;
- error de ejecución ≪ error de identificación: usar MD directamente;

Experimentos

$$x = \left[\theta, \alpha, \dot{\theta}, \dot{\alpha}\right]^T$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 82,4 & 1,31 & 0 \\ 0 & 56,81 & 0,37 & 0 \end{bmatrix},$$

$$B = \begin{bmatrix} 0 \\ 0 \\ 46,75 \\ 13,20 \end{bmatrix}, D = \begin{bmatrix} 0 \\ 0 \\ 46,75 \\ 13,20 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$w(t) = 0.4 \operatorname{sen}(2.5t) + 0.5.$$

Experimentos . . .

Observaciones

- error de identificación error de ejecución: atajar perturbación usando identificación y compensación (a);
- error de ejecución ≪ error de identificación: usar MDI (b);

Sistema LIT con perturbaciones no acopladas

$$\dot{x} = Ax + Bu + Dw,
y = Cx$$

$$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p (1 \le p < n), \operatorname{span}\{D\} \subset \operatorname{span}\{B^{\perp}\}$$

Estrategia basada en identificación y compensación [Ferreira et al. 2013]

- Dado (A, C, D) fuertemente observable, usar un OMDOS oara estimar x e identificar w.
- Compensar las perturbaciones desacopladas a través de la superficie deslizante.

$$\dot{x} = Ax + Bu + Dw, \quad y = Cx$$

Transformación de coordenadas $\begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \mapsto T_r x$

$$T_r = \left[egin{array}{c} B^\perp \ B^+ \end{array}
ight]$$

donde $B^{\perp}B = 0$, $B^{+} = (B^{T}B)^{-1}B^{T}$.

- Por construcción $\det(T_r) \neq 0$.
- Aplicando la transformación de coordenadas se tiene que

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + D_1w
\dot{x}_2 = A_{21}x_1 + A_{22}x_2 + D_2w + u$$

donde $x_1 \in \mathbb{R}^{n-m}$ y $x_2 \in \mathbb{R}^m$.

El sistema regularizado

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + D_1w
\dot{x}_2 = A_{21}x_1 + A_{22}x_2 + D_2w + u
y = CT_rx
x_1 \in \mathbb{R}^{n-m}, x_2 \in \mathbb{R}^m, u \in \mathbb{R}^m, w \in \mathbb{R}^q.$$

Suposiciones [Ferreira et al.: 13]

- A1. (A, B) controlable.
- A2. (A, C, D) fuertemente observable.
- A3. w(t) y sus derivadas consecutivas hasta $\alpha + 1$ son acotadas por una constante w^+ , i.e. $||w^{(\alpha+1)}|| < w^+ \text{ con } \alpha \ge 0$.
- A4. span $\{D_1\} \subset \text{span}\{A_{12}\}.$

El sistema regularizado

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + D_1w
\dot{x}_2 = A_{21}x_1 + A_{22}x_2 + D_2w + u
y = CT_rx
x_1 \in \mathbb{R}^{n-m}, x_2 \in \mathbb{R}^m, u \in \mathbb{R}^m, w \in \mathbb{R}^q.$$

Formulación del problema

- Usar un OMDOS para estimar el estado x e identificar las perturbaciones w.
- Compensar las perturbaciones desacopladas a través de la superficie deslizante (usando x₂ como un pseudo-control para estabilizar x₁).
- Mantener las trayectorias restantes acotadas.

Diseño de la superficie deslizante

$$s = K\hat{x}_1 + \hat{x}_2 + G\hat{w}$$

- $K \in \mathbb{R}^{m \times (n-m)}$ dicta el comportamiento de la dinámica reducida.
- $G\hat{w}$ compensa las perturbaciones desacopladas, $G = A_{12}^+ D_1$.

Ley de control

$$u = u_n - \rho(x) \frac{s(t)}{\|s(t)\|}$$

- *u_n* controlador nominal
- $-\rho(x)\frac{s(t)}{\|s(t)\|}$ with $\rho(x) \in \mathbb{R}$, lleva las trayectorias del estado a la superficie deslizante a pesar de las perturbaciones w.

Primero, diseñar u tal que $s = \dot{s} = 0$

• Dinámica de la superficie deslizante

$$\dot{s} = \Phi x + (KD_1 + D_2)w + G\dot{w} + u$$

donde $\Phi \in \mathbb{R}^{m \times n}$ es una matriz conocida.

• Se propone

$$u = -\Phi x - \rho \frac{s}{\|s\|}, \quad \rho > (\|KD_1 + D_2\| + \|G\|)w^+\gamma$$

 $con \gamma > 0$.

• Usando $V = 0.5s^Ts$ resulta en $\dot{V} \le -\gamma V^{1/2}$. Por tanto, un modo deslizante se establece en $t > t_r$.

Sobre la superficie deslizante $s \equiv 0$

$$\hat{x}_2 = -K\hat{x}_1 - G\hat{w}$$

La dinámica de orden reducido resulta en

$$\dot{x}_1 = (A_{11} - A_{22}K)x_1 + D_1w - A_{12}G\hat{w}$$

Debido a A4, G puede ser diseñada como $G = A_{12}^+D_1$, lo cual conduce a

$$\dot{x}_1 = (A_{11} - A_{22}K) x_1 \quad \lambda(A_{11} - A_{22}K) < 0$$

Dinámica compensada

$$||x_1(t)|| \le \alpha ||x_1(0)|| e^{-\beta t}$$
 $\alpha, \beta > 0$
 $||x_2(t)|| \le ||K|| ||x_1(t)|| + ||G|| w^+$

Dinámica compensada

$$||x_1(t)|| \le \alpha ||x_1(0)|| e^{-\beta t} \qquad \alpha, \beta > 0$$

 $||x_2(t)|| \le ||K|| ||x_1(t)|| + ||G|| w^+$

En resumen

- Usar un OMDOS para estimar el estado *x* e identificar *w*.
- Compensar las perturbaciones desacopladas a través de la superficie deslizante.
- El sistema debe satisfacer cierta estructura, i.e, las perturbaciones desacopladas deben estar acopladas al pseudo-control x₂, i.e., span{D₁} ⊂ span{A₁₂}.

Dinámica compensada

$$||x_1(t)|| \le \alpha ||x_1(0)|| e^{-\beta t}$$
 $\alpha, \beta > 0$
 $||x_2(t)|| \le ||K|| ||x_1(t)|| + ||G|| w^+$

Pregunta

¿Cómo atajar el caso cuando span $\{D_1\} \not\subset \text{span}\{A_{12}\}$?

$$\dot{x} = Ax + Bu + Dw, \quad y = Cx$$

$$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, \text{ and } y(t) \in \mathbb{R}^p \ (1 \le p < n)$$

Suposiciones [Ferreira et al. 2015]

- A1. (A, C, D) fuertemente observable.
- A2. w(t) y sus derivadas hasta el orden r están acotadas por una constante w^+ , i.e. $||w^{(r)}|| < w^+ \operatorname{con} r > 0$.
- A3. span $\{D\} \subset \text{span}\{B^{\perp}\}.$

Formulación del problema

Diseñar un control por realimentación de salida u que produzca que x_1 (i.e., la salida a controlar) siga una referencia suave x_{1d} a pesar de las perturbaciones del sistema w.

$$\dot{x} = Ax + Bu + Dw, \quad y = Cx$$

$$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, \text{ and } y(t) \in \mathbb{R}^p \ (1 \le p < n)$$

Forma estricta de control [Loukianov 1993]

$$\dot{x}_{1} = A_{1}x_{1} + B_{1}(x_{2} + \Gamma_{1}w)
\dot{x}_{i} = A_{i}\bar{x}_{i} + B_{i}(x_{i+1} + \Gamma_{i}w)
\dot{x}_{r} = A_{r}\bar{x}_{r} + B_{r}(u + \Gamma_{r}w)
i = \overline{2, r - 1}, \bar{x}_{i} = [x_{1}^{T} \dots x_{i}^{T}]^{T}, x_{i} \in \mathbb{R}^{n_{i}}, n_{i} = rank(B_{i}),
\sum_{i=1}^{r} n_{i} = n$$

- Los subsistemas $i = \overline{1, r-1}$ representan la dinámica subactuada.
- i = r corresponde a la dinámica actuada, $x_r \in \mathbb{R}^m$.

Estrategia basada en identificación y compensación

- Utilizar un OMDOS para estimar el estado x e identificar la perturbación y sus derivadas consecutivas hasta el r-2-ésimo orden.
- Construir una superficie de deslizamiento dinámica en r – 1-pasos.
- Proponer un control por modos deslizantes en el r-ésimo paso. (reducción de orden)

Dynamic sliding surface design

• Step 1) Usar x_2 como un pseudo-control para x_1 ,

$$\dot{x}_1 = A_1 x_1 + B_1 (x_2 + \Gamma_1 w)$$

$$\phi_1 = -\Gamma_1 \hat{w} - B_1^{\dagger} (A_1 x_1 - \hat{A}_1 (x_1 - x_d) - \dot{x}_d)$$

Dynamic sliding surface design

• *Step i*) Usar x_{i+1} como un pseudo-control para x_i , it is $x_{i+1} := \phi_i$

$$\dot{x}_1 = A_1 x_1 + B_1 (x_2 + \Gamma_1 w)$$

 $\dot{x}_i = A_i \bar{x}_i + B_i (x_{i+1} + \Gamma_i w)$

$$\phi_i = -\Gamma_i \hat{w} - B_i^{\dagger} (A_i \bar{x}_i - \hat{A}_i (x_i - \phi_{i-1}) + X_{i-1} (x_{i-1} - \phi_{i-2}) - \dot{\phi}_{i-1})$$

Dynamic sliding surface design

• Step r-1) Finalmente, la superficie deslizante resulta en

$$s = x_r - \phi_{r-1}$$

$$\phi_{r-1} = - \Gamma_{r-1}\hat{w} - B_{r-1}^{\dagger}(A_{r-1}\bar{x}_{r-1} - \hat{A}_{r-1}(x_{r-1} - \phi_{r-2}) + X_{r-2}(x_{r-2} - \phi_{r-3}) - \dot{\phi}_{r-2})$$

La ley de control resulta en

$$u = -\underbrace{-\Gamma_r \hat{w} - B_r^{\dagger} (A_r \bar{x}_r - \dot{\bar{\phi}}_r + \dots)}_{u_n} - \underbrace{B_r^{\dagger} \nu}_{u_c}$$

donde $\nu \in \mathbb{R}^m$ es un control por modos deslizantes, por ejemplo el super-twisting (continuo)

$$\nu = K_1 \frac{s}{\|s\|^{1/2}} + K_2 \int_{t_f}^t \frac{s}{\|s\|}.$$

Observaciones

- Control de seguimiento para sistemas MIMO sujetos a perturbaciones acopladas y desacopladas via OMDOS.
- Compensación exacta de las perturbaciones a través del diseño dinámico de la superficie deslizante.

Example: 3DOF Helicopter

Figura: Helicóptero 3-DOF.

Linealizando alrededor de $\epsilon_2^*=0$

$$\ddot{e}_1 = 0.45 ((u_1 + f_1) + (u_2 + f_2))
\ddot{e}_2 = 3.05 ((u_1 + f_1) - (u_2 + f_2))
\ddot{e}_3 = -0.49 \epsilon_2 + \nu$$

Example: 3DOF Helicopter

Sliding Mode Compensation vs H_{∞}

Desempeño del seguimiento al rededor del pivote (travel): (A) Control por compensación exacta vs control (B) H_{∞} .