숙박업소 데이터 수집 분석 및 관련 시각화 대시보드 구축

CANOAGA.

Team6 육아일기

김도영 김동희 김신웅 김학성 최범준 현승현

CONTENTS

- 01 프로젝트 개요
- 92 활용기술 및 프로젝트 아키텍처
- 프로젝트 절차
- O4 프로젝트 주요 결과
- 회고 및 개선점

프로젝트 개요

프로젝트 개요

• 지역별, 유형별, 날짜별로 분류된 숙박업소 데이터를 수집, 저장, 분석 및 시각화를 통해 전체적인 파이프라인 및 대시보드를 구축하고자 함.

주제 선정 이유

- 2 03
- 소비자들이 특정 지역, 날짜, 유형에 대한 숙박 트렌드 변화를 사전에 파악하며 소비자들에게 분석된 정보를 제공하여 전략적 대응에 도움을 줄 수 있음.
- 많은 국내 사용자들에게 친숙한 '여기어때' 앱을 활용하여 데이터를 분석하는 것은 국내 숙박업계 트렌드를 효과적으로 파악할 수 있음.

활용기술 및 프로젝트 아키텍처

Language

Python, SQL

Crawling

EventBridge, Lambda, Selenium

Data Pipeline

Boto3, Parquet, S3, Snowflake

BI

Preset

Collaboration

Github, Slack, ZEP, Notion

활용기술 및 프로젝트 아키텍처

데이터 수집(Extract)

Selenium 등을 이용한 웹 스크래핑을 통해 다양한 종류의 숙박업소 데이터를 수집

데이터 적재(Load)

변환한 데이터들을 AWS S3 Data Lake에 적재

데이터 변환(Transform)

저장 및 분석이 용이한 Parquet 파일로 변환하여 데이터의 품질 향상

데이터 분석 및 시각화

Snowflake으로 데이터 로드 후 분석 분석 결과를 Preset으로 시각화

- 데이터 소스에서 Raw data를 수집하며, AWS EventBridge를 활용한 자동화된 이벤트 기반 주기로 AWS Lambda가 크롤링 작업을 수행
- Selenium으로 동적 컨텐츠를 로드하여, 특정 HTML 요소의 데이터를 추출하여 리스트로 저장

- 변환된 데이터는 Boto3를 활용해 AWS S3에 업로드
- 변환된 Parquet 파일은 S3에 업로드하여 효율적인 쿼리 및 분석을 준비

<u>2024-11-04_Tables/</u>	
<u>2024-11-06_tables/</u>	
accommodation_Facilities_table.parquet	parquet
accommodation_Location_table.parquet	parquet
accommodation_Price_table.parquet	parquet
accommodation_Review_table.parquet	parquet
accommodation_table.parquet	parquet

- S3로부터 분석에 필요한 parquet 데이터를 Snowflake에 연동 및 업로드 수행
- Snowflake 분석 및 시각화 작업을 위한 데이터 웨어하우스로 활용

```
PROJECT2
  > 🗟 ANALYTICS_TABLE
     □ INFORMATION_SCHEMA
                                          table.loc_type_counts AS
                                           = 'Motel' THEN 1 ELSE 0 END) AS "모텔",
     □ PUBLIC
                                           = 'Hotel/Resort' THEN 1 ELSE 0 END) AS "호텔/리조트",
                                           = 'Camping' THEN 1 ELSE 0 END) AS "캠핑"
  > 🗟 RAW_DATA
    SELECT DISTINCT
       accommodation_id,
       accommodation_location_middle,
       CASE
           WHEN accommodation_location_major IN ('전북', '전북특별자치도') THEN '전북'
           WHEN accommodation_location_major IN ('강원', '강원특별자치도', '강원도') THEN '강원'
           WHEN accommodation_location_major IN ('제주도', '제주특별자치도') THEN '제주도'
           WHEN accommodation_location_major IN ('세종', '세종특별자치시') THEN '세종'
           WHEN accommodation_location_major IN ('경상북도', '경북') THEN '경북'
           ELSE accommodation_location_major
       END AS accommodation_location_major
    FROM project2.raw_data.accommodation_location
) l ON a.accommodation_id = l.accommodation_id
GROUP BY
   l.accommodation_location_major
ORDER BY
   l.accommodation_location_major;
```


- 데이터를 분석하고 결과를 시각적으로 표현
- Preset을 활용하여 데이터 시각화 대시보드 및 차트 생성

지역별 분석

[모텔 - 경기, 호텔/리조트 - 제주/서울/부산, 캠핑 - 경기] 지역에 가장 많음

지역별 분석

전체적으로 금연, 무선인터넷, 에어컨, 냉장고의 비율이 높음 경기, 강원, 제주, 부산, 서울의 부대시설이 가장 많음

지역별 분석

동남부 지방(부산, 경남, 경북)의 리뷰 평점이 높음 리뷰의 개수는 경기, 서울, 부산, 경남, 강원 등 순으로 많음

지역별 분석

평점이 좋은 숙소는 카테고리에 따라 모텔 - 경남/부산/울산, 호텔/리조트 - 세종/울산, 캠핑장 - 대전.울산임을 알 수 있음

메인 카테고리별 분석

캠핑의 경우 주말/주중 간의 가격 편차가 가장 큼 모텔의 경우는 주중이 주말보다 평균 가격이 더 비쌈

리뷰수의 경우, '경기도 - 모텔'이 가장 많음

메인 카테고리별 분석

평점은 대부분 9점에 가깝게 분포되어 있으나, '제주도'의 경우에는 어느 카테고리에서도 9점 이하의 평점을 보임

| 주중/주말별 분석

17개 지역 전반적으로 주중보다 주말에 예약 가능함을 알 수 있음

회고 및 개선점

회고

- 1차 프로젝트에서 진행했던 데이터 스크래핑에서 자동화할 수 있는 EventBridge와 Lambda를 추가 활용하며 스크래핑을 자동화할 수 있었고, 추후에 실시간으로 변하는 데이터 수집에 활용할 수 있는 기술 또한 적용해보고 싶다.
- 분석 목적에 맞는 데이터 수집과, 이를 활용할 수 있는 데이터 정제 과정이 중요하다는 것을 깨달았다. Preset 대시보드를 구축하는 과정을 통해 다양한 분석 결과를 직관적으로 확인할 수 있었다.
- 현업에서 사용하는 AWS의 다양한 기술들과 Snowflake, Preset 등을 다뤄볼 수 있는 시간이어서 좋았다.

개선점

- 웹 사이트의 구조가 변경되거나 보안 기능이 강화될 경우 스크래핑 방식에 대한 조정이 필요할 수 있다.
- 스크래핑한 데이터 중에서 간혹 누락된 정보로 인해 품질 유지가 어려울 가능성이 있어, 데이터의 신뢰성 확보를 위한 기술의 도입이 필요할 수 있다.
- 오픈소스인 Apache Airflow 등을 사용한다면 비용 부담이 적으며 더 유연하고 복잡한 워크플로우를 관리할 수 있다.
- EventBridge와 Lambda를 활용한 주기적인 업데이트를 통해 최신성을 확보하였으나, 예상치 못한 숙소 변동이 있을 수 있기에 Apache Kafka와 같은 실시간성을 유지할 수 있는 기술을 도입할 수 있다.

감사합니다

Team6 육아일기