

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12P 21/04, 21/06, C12N 1/20, 9/02, 15/09, C07K 14/00, 16/00, C07H 21/04

A1

(11) International Publication Number:

WO 98/14605

(43) International Publication Date:

9 April 1998 (09.04.98)

(21) International Application Number:

PCT/US97/17162

(22) International Filing Date:

24 September 1997 (24.09.97)

(30) Priority Data:

60/027,657 4 October 19 08/771,850 23 December

4 October 1996 (04.10.96) US 23 December 1996 (23.12.96) US

US

(71) Applicant: LOMA LINDA UNIVERSITY [US/US]; Loma Linda, CA 92350 (US).

(72) Inventors: SZALAY, Aldar, A.; 7327 Fainwood, Highland,

CA 92346 (US). WANG, Gefu; 1460 West Orange Avenue #56, Redlands, CA 92373 (US). WANG, Yubao; 24929 Academy Street, Loma Linda, CA 92354 (US).

(74) Agents: FARAH, David, A. et al.; Sheldon & Mak, 9th floor, 225 South Lake Avenue, Pasadena, CA 91101 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: RENILLA LUCIFERASE AND GREEN FLUORESCENT PROTEIN FUSION GENES

(57) Abstract

A fusion gene is provided comprising the cDNA of Renilla luciferase and the cDNA of the "humanized" Aequorea green fluorescent protein. The fusion gene was used to produce a novel protein, the "Renilla-GFP fusion protein", which displayed both the luciferase activity of Renilla luciferase, and the green fluorescence of GFP. The Renilla-GFP fusion gene is useful as a double marker for monitoring gene expression quantitatively in UV light and by enzyme activity.

t:

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BC CF CG CH CI CM CN	Albania Armenia Austria Austria Austria Austria Azerbaijun Bosaia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China	ES FI PR GA GB GE GH GN GR HU IE IL IS IT JP KE KG	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea	LS LT LV MC MD MG MK ML MN MR MW NZ NE NO NZ PL	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland	SI SK SN SZ TD TG TJ TM TR UA UG US UZ VN YU ZW	Slovenia Slovakia Scnegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Vict Nam Yugoslavia Zimbabwe
CG CH CI CM	Congo Switzerland Côte d'Ivoire Cameroon	KE KG	Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Resakstan Saint Lucia Liectuenstein Sri Lanka	NE NL NO NZ	Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	VN YU	Uzbekistan Viet Nam Yugoslavia
	<u> </u>				Singapore		

RENILLA LUCIFERASE AND GREEN FLUORESCENT PROTEIN FUSION GENES CROSS-REFERENCE TO RELATED APPLICATIONS

The present Application is a International Application corresonding to United States Patent Application 08/771,850, filed December 23, 1996, entitled "The Construction and Expression of Renilla Luciferase and Green Fluorescent Protein Fusion Genes"; and is a Continuation-in-Part of United States Provisional Patent Application 60/027,657, filed October 4, 1996, entitled "The Construction and Expression of Renilla Luciferase and Green Fluorescent Fusion Genes in *E. coli* and Mammalian Cells," the contents of which are incorporated herein by reference in their entirety.

BACKGROUND

Green Fluorescent Protein (GFP) is a light emitting protein purified from the jellyfish Aequorea victoria. GFP can emit green light by accepting energy transfer from sources that include exogenous blue light and Renilla luciferase catalyzed reactions. The gene for GFP was cloned and its cDNA is a powerful reporter gene in a variety of living systems, including bacteria, fungi, and mammalian tissues. The UV light stimulated GFP fluorescence does not require cofactors and the gene product alone can be sufficient to allow detection of living cells under the light microscope.

By modifying the wild type GFP protein, red-shifted GFP variants with bright emission have also been produced. These variants include EGFP, GFPS65T and RSGF. Recently, GFP was expressed in a human cell line and *in vivo*. C. Kaether, H.H. Gerdes. Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS-Lett. 1995; 369:267-71. "Humanized" GFP was synthesized with nucleotide changes that did not change the amino acid sequences with one exception.

Renilla luciferase is an enzyme purified from Renilla reniformis. The enzyme catalyzes the oxidative decarboxylation of coelenterazine in the presence of oxygen to produce blue light with an emission wavelength maximum of 478 nm. In Renilla reniformis cells, however, this reaction is shifted toward the green with a wavelength maximum of 510 nm due to an energy transfer to a Green Fluorescent Protein.

The gene for Renilla luciferase (ruc) was cloned and its cDNA was shown to be useful as a reporter gene in various living systems. D.C. Prasher, V.K. Eckenrode, W.W. Ward, F.G. Prendergast, M.J. Cormier. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992; 111:229-33. By providing appropriate promoters to the

15

10

5

20

cDNA as gene cassettes, the gene was expressed in bacteria, transformed plant cells, and mammalian cells. The high efficiency of *Renilla* luciferase is a useful trait as a marker enzyme for gene expression studies.

5

10

15

20

25

30

Given the properties of GFP and Renilla luciferase, it would be useful to have a single protein combining the functions of both Renilla luciferase enzymes and GFP to monitor gene expression quantitatively by UV light excitation or qualitatively by enzyme activity measurements.

SUMMARY

According to one embodiment of the present invention, there are provided fusion gene constructs comprising the cDNA of Renilla luciferase and the cDNA of the "humanized" Aequorea green fluorescent protein. The fusion gene constructs were used to transform both prokaryotic and eukaryotic cells. One construct was expressed as a polypeptide having a molecular weight of about 65 kDa. This polypeptide, the "Renilla-GFP fusion protein," was bifunctional, displaying both the luciferase activity of Renilla luciferase and the green fluorescence of GFP. The Renilla-GFP fusion gene is useful as a double marker for monitoring gene expression in living cells and quantitatively by enzymatic activity.

The invention includes a protein comprising a polypeptide having both luciferase and GFP activities, or biologically active variants of a polypeptide having both luciferase and GFP, or a protein recognized by a monoclonal antibody having affinity to the polypeptide having both luciferase and GFP activities. The polypeptide can be made by recombinant DNA methods.

The invention further includes a high affinity monoclonal antibody that immunoreacts with the polypeptide. The antibody can have an Fc portion selected from the group consisting of the IgM class, the IgG class and the IgA class. The invention also includes a high affinity monoclonal antibody that immunoreacts with a polypeptide having both luciferase and GFP activities.

The invention further includes a polynucleotide sequence coding for a polypeptide having both luciferase and GFP activities, or its complementary strands, and a polynucleotide sequence that hybridizes to such a sequence and that codes on expression for a polypeptide having both luciferase and GFP activities, or its complementary strands.

The invention further includes a purified and isolated DNA molecule comprising a polynucleotide coding for a polypeptide having both luciferase and GFP

activities, or its complementary strands. The polynucleotide can comprise the sequence as set forth in SEQ ID NO:1.

The invention further includes a vector containing a DNA molecule coding for a polypeptide having both luciferase and GFP activities. The polynucleotide can comprise the sequence as set forth in SEQ ID NO:1. The vector can be used to stably transform or transiently transfect a host cell.

5

10

15

20

25

30

The invention further includes a method of making a polypeptide having both luciferase and GFP activities. The method comprises the steps of, first, culturing a microorganism transformed with a polynucleotide vector containing a gene cassette coding for a polypeptide having both luciferase and GFP activities. Next, the polypeptide having both luciferase and GFP activities is recovered.

The invention further includes a method of quantifying promoter activations and GFP fluorescence based on luciferase activity measurements. The method comprises the step of providing the polypeptide according to the present invention.

The invention further includes a method of making a monoclonal antibody that immunoreacts with a polypeptide having both luciferase and GFP activities. The method comprises the steps of, first, administering to a host a polypeptide having both luciferase and GFP activities in an amount sufficient to induce the production of antibodies to the polypeptide from the host's antibody-producing cells. Next, the antibody-producing cells are recovered from the host. Then, cell hybrids are formed by fusing the antibody-producing cell to cells capable of substantially unlimited reproduction. Then, the hybrids are cultured. Next, the monoclonal antibodies are collected as a product of the hybrids.

The invention further includes a method of monitoring gene expression quantitatively and qualitatively in a cell using a gene fusion construct coding for a polypeptide having both luciferase and GFP activities. The method comprises the steps of, first, providing a gene fusion construct coding for a polypeptide having both Renilla luciferase and GFP activity. Next, the gene fusion construct is introduced into the cell. Then, the cell containing the gene fusion construct is maintained in a manner allowing the cell to express the polypeptide. Then, the cell is measured for luciferase and fluorescent activity. The construct can include a polynucleotide sequence as set forth in SEQ ID NO:1.

The invention further includes a method of monitoring gene expression quantitatively and qualitatively in a cell using a gene fusion construct coding for a polypeptide

having both luciferase and GFP activities. The method comprises the steps of, first, providing a gene fusion construct coding for a polypeptide having both luciferase and GFP activities. Next, the gene fusion construct is introduced into the cell. Then, the cell containing the gene fusion construct is maintained in a manner allowing the cell to express the polypeptide. Next, the cell is measured for luciferase and fluorescent activity.

FIGURES

These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying figures where:

Figure 1 is a schematic diagram showing the construction of a *Renilla* luciferase and "humanized" GFP fusion gene cassette according to the present invention for gene expression in *E. coli* where "RG," top, is the fusion gene cassette with the *Renilla* luciferase coding sequence (ruc) at the 5' terminus, and "GR," bottom, is the fusion gene cassette with the GFP coding sequence (gfp_h) at the 5' terminus;

Figure 2 is a schematic diagram showing the construction of *Renilla* luciferase and "humanized" GFP fusion gene cassette according to the present invention for gene expression in mammalian cells where "RG," top, is the fusion gene cassette with the *Renilla* luciferase coding sequence (ruc) at the 5' terminus, and "GR," bottom, is the fusion gene cassette with the GFP coding sequence (gfp_h) at the 5' terminus;

Figure 3 is a map of the plasmids used for cloning and expression of the RG gene construct in E. coli (top) and the GR gene construct in E. coli (bottom);

Figure 4 is a map of the plasmids used for cloning and expression of the RG gene construct in mammalian systems (top) and the GR gene construct in mammalian systems (bottom);

Figure 5 are photomicrographs of cells transformed by the fusion genes using fluorescence microscopy and fluorescence imaging to show GFP activity;

Figure 6 are bar graphs of luciferase activity of the fusion gene constructs in E. coli (top) and mammalian cells (bottom);

Figure 7 is a spectroscopic measurement of Renilla luciferase activity and GFP activity in E. coli;

Figure 8 is a Western blot showing the detection of fusion gene expression in E. coli using anti-Renilla luciferase antibody;

15

10

5

20

25

30

Figure 9 are photomicrographs of mouse embryonic stem cells using fluorescence image analysis demonstrating the expression of the RG fusion gene; and

5

10

15

20

25

30

Figure 10 are photomicrographs of mouse embryos using fluorescence image analysis demonstrating the expression of the RG fusion gene.

DESCRIPTION

According to one embodiment of the present invention, there is provided a fusion gene comprising the cDNA of Renilla luciferase and the cDNA of the "humanized" Aequorea green fluorescent protein. According to another embodiment of the present invention, there is provided a single polypeptide that exhibits both Renilla luciferase and GFP activities. This bifunctional polypeptide can facilitate the identification of transformed cells at the single cell level, in cell cultures, transformed tissues and organs based on fluorescence of the polypeptide. At the same time, the polypeptide can also be used to quantify promoter activations and GFP fluorescence based on luciferase activity measurements.

The cDNA of Renilla reniformis luciferase (ruc) has been cloned and used successfully as a marker gene in a variety of transgenic species. See, for example, Lorenz, W.W. McCann, R.O., Longiaru, M. and Cormier, M.J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 1991; 88:4438-4442; Mayerhofer, R., Langridge, W.H.R., Cormier, M.J., and Szalay, A.A. Expression of recombinant Renilla luciferase in transgenic plants results in high levels of light emission. The Plant Journal 1995; 7:1031-1038; and Lorenz, W.W., Cormier, M.J., O'Kane, D.J., Hua, D., Escher, A. A.Szalay, A.A. Expression of the Renilla reniformis luciferase gene in mammalian cells. J. Biolumin. Chemilumin. 1995; 11:31-37, incorporated herein by reference in their entirety. Similarly, the transfer and expression of Green-Fluorescent-Protein (GFP) cDNA from Aequorea victoria resulted in high levels of GFP in transformed cells that allowed convenient visualization of individual cells under the microscope. See, for example, Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 1994; 263:802-805, incorporated herein by reference in its entirety.

The present invention involves the production of fusion genes from the cDNA of Renilla (ruc) and the cDNA of the "humanized" Aequorea GFP (gfp_h). A description of "humanized" Aequorea GFP (gfp_h) can be found, for example, in Zolotukhin, S., Potter, M., and Huaswirth, W.W., Guy, J., and Muzyczka, N. A "humanized" green fluorescent protein

cDNA adapted for high-level expression in mammalian cells. J. Virology 1996: 70:4646-4654, incorporated herein by reference in its entirety.

The first fusion gene, designated the "RG fusion gene," SEQ ID NO:1 and shown at the top of Figures 1 and 2, contains the *Renilla* cDNA linked at the modified 3' end to a fifteen polynucleotide linker sequence encoding five amino acids, Ala-Ala-Ala-Ala-Thr, residues 312-316 of SEQ ID NO:1, followed by the 5' end of the intact GFP cDNA. The second fusion gene, designated the "GR fusion gene," SEQ ID NO:2 and shown at the bottom of Figures 1 and 2, contains the cDNA of GFP linked to a twenty-seven polynucleotide linker sequence encoding nine amino acids, Gly-Try-Gln-Ile-Glu-Phe-Ser-Leu-Lys, residues 239-247 of SEQ ID NO:2, followed by the 5' end of *Renilla* cDNA. Both genes were placed into prokaryotic pGEM-5zf(+) and eukaryotic pCEP4 expression vectors, and transformed into *E. coli*, and various mammalian cell lines, and microinjected into mouse embryos. PT₇ was the bacterial T7 promoter used for gene expression. P_{cmv} was the CMV promoter used for gene expression in mouse fibroblast cells, embryonic stem cells and mouse embryos.

Unexpectedly, only cells transformed with the RG fusion gene gave strong fluorescence while the cells containing the GR fusion gene exhibited minimal response to UV light under the microscope. In contrast, luciferase measurements in homogenates of cells transformed with RG gene cassettes or with GR gene cassettes were indistinguishable from each other in both bacterial and mammalian cells. Further, spectrofluorimeter data indicated that there was energy transfer between *Renilla* luciferase and GFP in the RG fusion gene containing cells but did not indicate such energy transfer in cells containing the GR fusion gene. The protein expressed in the RG fusion gene containing cells was analyzed and found to be a 65 kDa polypeptide. A detailed description of the construction and expression of the fusion genes, and analyses of their protein products is given below.

Production of the Fusion Gene Constructs:

5

10

15

20

25

30

The vectors used for cloning and expression of the gene constructs in E. coli and mammalian systems were pGEM-5zf(+) (Promega) and pCEP4, respectively. Figure 3 is a map of the plasmids used for cloning and expression of the RG gene construct in E. coli, pGEM-5zf(+)-RG (top) and the map of the plasmids used for cloning and expression of the GR gene construct in E. coli, pGEM-5zf(+)-GR (bottom). Both were under the transcriptional control of T7 promoter. The E. coli strains which were transformed were DLT101 and DH5 α .

Similarly, Figure 4 is a map of the plasmids used for cloning and expression of the RG gene construct in mammalian systems, pCEP4-RG (top), and a map of the plasmids used for cloning and expression of the GR gene construct in mammalian systems, pCEP4-GR (bottom). Both were under the transcriptional control of CMV promoter. The mammalian cell line that was transformed was LM-TK embryonic stem cells and embryos.

Five primers were designed for cloning the RG and GR gene constructs. Single underlines indicate Shine-Dalgarno sequences. Double underlines indicate the restriction sites. The start codons are in bold. Sequences in bold italics indicate the removal of stop codons from both ruc and gfp_h genes.

10 Primer 1, SEQ ID NO:3:

5

30

RUC5: 5'CTGCAG (PstI)

AGGAGGAATTCAGCTTAAAGATG3'

Primer 2. SEQ ID NO:4:

RUC3: 5'GCGGCCGC (Not I) TTG TTCATTTTTGAGAAC3'

Primer 3. SEQ ID NO:5:

GFP5:5'GGGGTACC (KpnI)

CCATGAGCAAGGGCGAGGAACT3'

Primer 4, SEQ ID NO:6:

GFP3: 5'GGGGTACC (KpnI)

CCTTGTACAGCTCGTCCATGCCA3

Primer 5. SEQ ID NO:7:

GFP5a 5' CCCGGG (Smal)

AGGAGGTACCCCATGAGCAAG3'.

The Renilla luciferase-GFP fusion gene (RG gene cassette) and the GFP
Renilla luciferase fusion gene (GR gene cassette) were constructed by removing the stop codons, and by adding restriction sites and Shine-Dalgamo sequences to the 5' end of the cDNAs using PCR according to techniques known to those with skill in the art. The PCR products were cloned using the pGEM-T system (Promega Corporation, Madison, WI).

Primers were designed so that the downstream cDNA is in frame with the upstream cDNA.

The linker sequences are shown in Figures 1 and 2 and described above. After cloning, the RG and GR gene cassettes were under the transcriptional control of T7 in pGEM-5zf(+) vector and CMV in pCEP4 vector, which were used for expression in E. coli and mammalian cells, respectively.

Determination of activity of fusion genes and their corresponding protein products:

GFP activity in vivo was visualized as follows. E. coli strain DH5 α was transformed with the plasmids pGEM-5zf(+)-RG and pGEM-5zf(+)-GR. Positive colonies were identified and cultured in LB medium with 100 μ g/ml of ampicillin selection, according

to techniques known to those with skill in the art. Twelve hours later, one drop of E. coli culture was put on a slide and visualized by fluorescent microscopy at 1000 x magnification. LM-TK cells were transfected with plasmids pCEP4-RG and pCEP4-GR using calcium phosphate methods known to those with skill in the art. The culture dishes were monitored using an inverted fluorescent microscope 12 hours after the transfection.

5

10

15

20

25

30

Luciferase activity was assayed as follows. An aliquot of transformed E. coli was used for a luciferase assay in a Turner TD 20e luminometer (Turner Designs, Sunnyvale, CA), both before and after IPTG induction. The results were recorded as relative light units. Mammalian cells harvested 36 hrs after transfection were measured for luciferase activity.

Corrected emission spectra were detected spectrofluorimetrically using a SPEX fluorolog spectrofluorimeter operated in the ratio mode. Fluorescence emission was excited at 390 nm. Bioluminescence emission was recorded with the excitation beam blocked following the addition of $0.1 \mu g$ of coelenterazine in acidified methanol. Five spectra were averaged for each sample over a wavelength range from 400 to 600 nm.

The fusion proteins were isolated and immunoactivity detected as follows. 1 ml of E. coli (OD₆₀₀=1.0) was harvested. 400 μ l of cell suspension buffer (0.1M NaCl, 0.01 M Tris-HCl pH 7.6, 0.001 M EDTA, 100 μ g/ml PMSF) and 100 μ l of loading buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 5% 2-mercaptoethanol) were added. The samples were boiled for 4 min and loaded to a 7.5%-20% gradient SDS-polyacrylamide gel. Polyclonal anti-Renilla luciferase was used as the primary antibody for detection and goat

Referring now to Figure 5, there are shown photomicrographs of GFP activity in transformed E. coli cells (5A, left side) and LM-TK mouse fibroblast cells (5B, right side) by fluorescence microscopy and fluorescence imaging. As can be seen, individual E. coli cells and mammalian cells transformed with the RG fusion gene construct exhibited strong green fluorescence under oil immersion.

peroxidase anti-IgG (anti-rabbit) as the secondary antibody.

Referring now to Figure 6, there are shown bar graphs of luciferase activity of the gene constructs in *E. coli* (top) and mammalian cells (bottom). The white bars indicate activity before promoter induction. The black bars indicate activity after promoter induction. As can be seen, cells transformed with the RG fusion gene construct have significant luciferase activity, which is reduced 3-fold in the cells transformed with the GR fusion gene construct.

Referring now to Figure 7, there is shown a spectroscopic measurement of Renilla luciferase activity and GFP activity in E. coli transformed with various gene constructs. As can be seen, cells containing Renilla luciferase gene (short dashes) show only one emission peak at approximately 478 nm. Cells containing the GR gene fusion construct (light solid) also show one emission peak at approximately 478 nm, indicating Renilla luciferase activity only. By contrast, cells containing the RG gene fusion construct (heavy solid) show an emission peak at approximately 510 nm with excitation at 390 nm. Cells containing the RG gene fusion construct with the addition of coelanterizine (long dashes) show emission peaks at both approximately 478 nm and 510 nm indicating that the energy transfer between Renilla luciferase and GFP occurred in these cells. The lack of GFP activity in GR gene cassette transformed cell lines could be due to incorrect folding, due to the requirement for a free GFP C-terminus, or due to interference of the linker polypeptide with GFP activity in the fusion protein, among other possible explanations.

5

10

15

20

25

30

Referring now to Figure 8, there is shown a western blot used to detect fusion gene expression in E. coli using anti-Renilla luciferase antibody. Reading from left to right, the "C" lane shows the total protein extracted from non-transformed E. coli cells. The "R" lane shows the total protein extracted from E. coli cells transformed with the ruc gene alone. The "G" lane shows the total protein extracted from E. coli cells transformed with the gfp_h gene alone. The "RG" lane shows the total protein extracted from E. coli cells transformed with the RG fusion gene cassette. The "GR" lane shows the total protein extracted from E. coli cells transformed with the RG fusion gene cassette.

As can be seen, protein extracted from E. coli cells transformed with the ruc gene alone produced a band with a molecular weight of about 34 kDa. Protein extracted from E. coli cells transformed with the RG fusion gene cassette produced a band with a molecular weight of about 65 kDa. Protein extracted from E. coli cells transformed with the GR fusion gene cassette produced a band with a molecular weight of about 34 kDa. These data imply that cells transformed with the GR fusion gene cassette produced luciferase but did not produce fusion protein. Such a lack of fusion protein production by cells transformed with the GR fusion cassette would explain the lack of green fluorescent activity in these cells.

Referring now to Figure 9, there are shown photomicrographs using fluorescence image analysis demonstrating the expression of the RG fusion gene in mouse

embryonic stem cells transformed by electroporation procedures. Transformed colonies were selected based on GFP activity under fluorescence microscopy.

Referring now to Figure 10, there are shown photomicrographs using fluorescence image analysis demonstrating the expression of the RG fusion genes in mouse embryos. The embryos were injected with the linearized RG plasmid, and *in vitro* cultured. The expression of GFP activity was monitored daily by fluorescent microscope-and recorded by an imaging collection system.

5

10

15

Based on this data, we conclude that the RG fusion construct disclosed herein can be expressed in both prokaryotic and eukaryotic cells to produce a bifunctional polypeptide that exhibits both *Renilla* luciferase and GFP activity. This bifunctional polypeptide is a useful tool for identification of transformed cells at the single cell level based on fluorescence. It allows the simultaneous quantification of promoter activation in transformed tissues and transgenic organisms by measuring luciferase activity. The dual function of this protein allows the monitoring of bacterial cells in their living hosts and the differentiation of cells in the developing embryo and throughout the entire animal.

Although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of preferred embodiments contained herein.

PCT/US97/17162

SEQUENCE LISTING

4.1	/ GE	NE POA	T IN	EOKM	ATTO.	N:										
		(i)	APPL	I CAN	r:	Sz	alay	, Al	adar	A.						
								Ge£u								
						Wa	ng,	Yuba	0							
		(ii)	TIT	LE O	FIN	VENT	ION:	THE	CON	STRU	CTIO	NA N	D EX	PRES	SION OF	•
			REN.	LLLA	LUC	I FER	ASE A	AND (GREE	N FL	UORE	SCEN	T PR	OTEI	N FUSIC	N GENES
		(iii)	NO	JOEK	OF 3	SEQU	ENCE	S: /								OBINES
		(iv)		RESPO												
			(A)	ADI	DRES	SEE:	She.	ldon	& M	ak						
			(B)	STF	REET	: 22	5 S.	Lake	e Av	enue	, 9t	h Fl	oor		•	-
				CIT											-	
				STA			ifori	nia								
				ZII												
	ı	(V) (COMPL	TER	REAL	DABL	FOI	RM:								
			(A)	MEI	MUIC	TYPE	E: D:	isket	te,	3.50) in	ch,	1.44	Mb s	storage	
			(8)	CON	1201E	SR: J	LBM C	compa	itib.	l e						
			·(C)	OPE	RATI	ING S	SYSTE	M: W	lindo	ows 9	95		•			
			(D)	SOF	TWAF	RE: V	ordi	erfe	ect 1	for v	Vind	ows 1	vers	ion (6.1	
		(vi)	CUF	RENT	' APE	PLICA	4OIT/	I DAI	'A:	•						
			(A)	APP	LICE	OIT	אטא ו	BER:	to	be a	issi	gned				
			(B)	FIL	ING	DATE	∷ S∈	ptem	ber	24,	199	7				
			(C)	CLA	SSIE	CAT	NOI:	to	be a	ssig	ned					
	(V111	.) AT	TORN	EY/A	GENI	, INE	ORMA	OIT	1:						
			(A)	NAM	E: F	`arah	, Da	vid	A.							
			(B)	REG	ISTR	ATIC	טא אט	MBER	: 38	,134						
			(C)	REF	EREN	ICE/E	OCKE	T NU	MBER	: 11	785-	1PCI	•			
	(TX)	TELE	COMM	UNIC	ATIC	N IN	FORM	ATIC	и:						
			(A)	TEL	EPHO	NE:	626/	796-	4000							
(2)			(B)	TEL	EFAX	: 62	6/79	5-63	21							
(2)	INE	ORMA	TION	FOR	SEQ	ID	NO: 1	:								
	(11 5	EQUE	NCE	CHAR	ACTE	RIST	ICS:								
								se p	airs							
				TYP												
			(0)	STR	ANDE	DNES	5: s	ingl	e							
	,		(D)	TOP	OTOG	X: T	ınea	r	_							
	,	XI)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	1:				•	
ATG	лст	TCC	222			~~~					_					
Met	The	200	THE	GIT	TAT	GAT	CCA	GAA	CAA	AGG	AAA	CGG	ATG	ATA	ACT	48
1	1111	Ser	Lys	vai	Tyr	Asp	Pro	GIu			Lys	Arg	Met	Ile	Thr	
-				5					10					15		
CCT	ccc	CAC	TCC	mcc												
Glv	Pro	CAG	100	100	B.L.	AGA	TGT	AAA	CAA	ATG	AAT	GTT	CTT	GAT	TCA	9€
Cry	FIG	GIII	11b	Trp	ATA	Arg	Cys	Lys	Gin	Met	Asn	Val		Asp	Ser	
			20					25					30			
ጥ ጥ	חדת	דתת	T D T	T D TT	C D TD	mc n	CDD									
Phe	Tla	VVI	TAI	TAT	GAT	TCA	GAA	AAA	CAT	GCA	GAA	AAT	GCT	GTT	ATT	144
	116	35	TAL	Tyr	Asp	ser	GIU	Lys	His	Ala	Glu	Asn	Ala	Val	Ile	
		3,5					40					45				
TTT	тта	CDT	CCT	B B C	ccc		m.cm	m.cm								
Phe	Leu	Wie.	GGI	AAC	NI-	27.0	Com	TCT	TAT	TTA	TGG	CGA	CAT	GTT	GTG	192
• • • •	50	1113	Gry	ASII	MIG	Ala	ser	Ser	Tyr	Leu		Arg	His	Val	Val	
	50					55					60					
CCA	САТ	דידים	GNG	CCD	CTA	ccc		m.cm								
Pro	His	Tle	GAG	Dro	Val	NI -	7	Cur	ATT	ATA	CCA	GAT	CTT	ATT	GGT	240
65	•••	116	GIU	FIO	AGT	MIG	Arg	cys	тте		Pro	Asp	Leu	Ile	Gly	
					70					75					80	
ATG	GGC	מממ	ጥርክ	ccc	מממ	d.Ca	~~ <u>~</u>	ከኮሙ			m					
Met	G) v	Lve	Ser	Glu	AAA	TOT	GOT	MAT	GGT	TCT	TAT	AGG	TTA	CTT	GAT	288
	~_ y	nys	Ser	85	LyS	ser	GIÀ	ASI	GTÅ	ser	Tyr	Arg	Leu		Asp	
				33					90					95		

CA1 His	TAC	Lys	TAT Ty:	. Let	T ACT	GCA Ala	TGG Trp	TT:	e Glu	CT?	CT' Le	T AA' La Asi	T TT. n Le	u Pr	A AAG o Lys		336
AAG Lys	ATC Ile	11e	Pile	GTC Val	GGC Gly	CAT	GAT Asp 120	Trp	G GGT	GCT Ala	TG:	TTC Let 125	a Ala	A TT'	T CAT ≘ His		384
TAT Tyr	AGC Ser 130	- 7 -	GAG Glu	CAT His	CAA Gln	GAT Asp 135	AAG Lys	ATO	AAA Lys	GCA Ala	ATA 116	· Val	CAC His	GCT Ala	r GAA a Glu		432
AGT Ser 145		GTA Val	GAT Asp	GTG Val	ATT Ile 150	GAA Glu	TCA Ser	TGG Trp	GAT Asp	GAA Glu 155	Trp	CCI Pro	GAT Asp	TATT	GAA Glu 160	•-	480
GAA Glu	GAT Asp	ATT Ile	GCG Ala	TTG Leu 165	ATC Ile	AAA Lys	TCT Ser	GAA Glu	GAA Glu 170	GGA Gly	GAA Glu	AAA Lys	ATG Met	GT1 Val 175	TTG Leu		528
GAG Glu	AAT Asn	AAC Asn	TTC Phe 180	TTC Phe	GTG Val	GAA Glu	ACC Thr	ATG Met 185	TTG Leu	CCA Pro	TCA Ser	AAA Lys	ATC Ile 190	ATG Met	AGA Arg		576
AAG Lys	TTA Leu	GAA Glu 195	CCA Pro	GAA Glu	GAA Glu	TTT Phe	GCA Ala 200	GCA Ala	TAT Tyr	CTT Leu	GAA Glu	CCA Pro 205	TTC Phe	AAA Lys	GAG Glu		624
AAA Lys	GGT Gly 210	GAA Glu	GTT Val	CGT Arg	CGT Arg	CCA Pro 215	ACA Thr	TTA Leu	TCA Ser	TGG Trp	CCT Pro 220	CGT Arg	GAA Glu	ATC Ile	CCG Pro		672
TTA Leu 225	GTA Val	AAA Lys	GGT Gly	GGT Gly	AAA Lys 230	CCT Pro	GAC Asp	GTT Val	GTA Val	CAA Gln 235	ATT Ile	GTT Val	AGG Arg	AAT Asn	TAT Tyr 240		720
AAT Asn	GCT Ala	TAT Tyr	CTA Leu	CGT, Arg 245	GCA Ala	AGT Ser	GAT Asp	GAT Asp	TTA Leu 250	CCA Pro	AAA Lys	ATG Met	TTT Phe	ATT Ile 255	GAA Glu		768
TCG Ser	GAT Asp	CCA Pro	GGA Gly 260	TTC Phe	TTT Phe	T CC Ser	Asn	GCT Ala 265	ATT Ile	GTT Val	GAA Glu	GGC Gly	GCC Ala 270	AAG Lys	AAG Lys	1	816
TTT Phe	CCT Pro	AAT Asn 275	ACT Thr	GAA Glu	TTT Phe	vaı	AAA Lys 280	GTA Val	AAA Lys	GGT Gly	CTT Leu	CAT His 285	TTT Phe	TCG Ser	CAA Gln	1	B64
GAA Glu	GAT Asp 290	GCA Ala	CCT Pro	GAT Asp	GAA Glu	ATG Met 295	GGA / Gly	AAA Lys	TAT Tyr	ATC Ile	AAA Lys 300	T CG Ser	TTC Phe	GTT Val	GAG Glu	Ś	912
CGA Arg 305	GTT Val	CTC Leu	AAA Lys	ASII	GAA Glu 310	CAA Gln	GCG (Ala i	GCC Ala	Ala .	GCC Ala 315	ACC Thr	ATG Met	AGC Ser	AAG Lys	GGC Gly 320	ġ	960
GAG Glu	GAA Glu	CTG Leu	File	ACT Thr 325	GJ y	GTG (Val	GTC (Pro	ATT Ile 330	CTC Leu	GTG Val	GAA Glu	CT G Leu	GAT Asp 335	GGC Gly	10	800
GAT Asp	GTG . Val .	MSII	GGG Gly 340	CAC . His	AAA ' Lys	TTT 'Phe	ser v	GTC : Val : 345	AGC (Ser (GGA (GAG Glu	Gly	GAA Glu 350	GGT Gly	GAT Asp	10	56

GCC Ala	ACA Thr	TAC Tyr 355	Gly	AAG Lys	CTC Leu	ACC	CTG Leu 360	Lys	TTC Phe	ATC	TGC Cys	ACC Thr	Thr	GGF Gly	A AAG / Lys		1104
CTC Leu	CCT Pro 370	Val	CCA Pro	TGG Trp	CCA Pro	ACA Thr 375	CTG Leu	GTC Val	ACT Thr	ACC Thr	Phe 380	Thr	TAT	Gly	GTG Val		1152
385	Cys	Phe	Ser	Arg	Туг 390	Pro	Asp	His	Met	Lys 395	Gln	His	Asp	Phe	TTC Phe 400		1200
rys	ser	Ala	ATG Met	Pro 405	Glu	Gly	Tyr	Val	Gln 410	Glu	Arg	Thr	Ile	Phe 415	Phe	•	1248
Lys	Asp	Asp	GGG Gly 420	Asn	Tyr	Lys	Thr	Arg 425	Ala	Glu	Val	Lys	Phe 430	Glu	Gly		1296
ASP	Tnr	135	GTG Val	Asn	Arg	Ile	Glu 440	Leu	Lys	Gly	Ile	Asp 445	Phe	Lys	Glu		1344
Asp	450	Asn	ATT Ile	Leu	Gly	His 455	Lys	Leu	Glu	Tyr	Asn 460	Tyr	Asn	Ser	His		1392
465	Val	Tyr	ATC Ile	Met	Ala 470	Asp	Lys	Gln	Lys	Asn 475	Gly	Ile	Lys	Val	Asn 480		1440
Pne	Lys	IIe	AGA Arg	H15 485	Asn	Ile	Glu	Asp	Gly 490	Ser	Val	Gln	Leu	Ala 495	Asp		1488
HIS	Tyr	GIN	CAG Gln 500	Asn	Thr	Pro	Ile	Gly 505	Asp	Gly	Pro	Val	Leu 510	Leu	Pro		1536
Asp	ASN	H15	TAC Tyr	Leu	Ser	Thr	Gln 520	Ser	Ala	Leu	Ser	Lys 525	Asp	Pro	Asn		1584
GIU	530	Arg	GAC Asp	HIS	Met	Va1 535	Leu	Leu	Glu	Phe	GTG Val 540	ACC Thr	GCT Ala	GCT Ala	GGG Gly	÷	1632
ATC Ile 545	ACA Thr	CAT His	GGC Gly	ATG Met	GAC Asp 550	GAG Glu	CTG Leu	TAC Tyr	AAG Lys	TGA							1665

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1677 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATG AGC AAG GGC GAG GAA CTG TTC ACT GGC GTG GTC CCA ATT CTC GTG
Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val

1 5 10 15 .

48

GA G1	A CT u Le	'G GA u As	T GG p Gl 2	у Аз	T GT p Va	G AA l As:	T GGO	G CA 7 Hi: 2	s Ly	A TT s Ph	T TC e Se	T GT r Va	C AG 1 Se 3	r Gl	A GAG y Glu	96
GG G1	T GA y Gl		T GA y As	T GC p Al	C AC	A TAC	C GGA C Gly 40	Ly:	G CTO	C AC	C CT r Le	G AA u Ly 4	s Ph	C AT e Il	C TGC e Cys	144
AC Th	C AC Th 5		A AAG y Ly:	G CT	C CCT	T GT(> Val	Pro	TGC	G CCA	A ACI	A CTO	u Va	C AC	r Ac	C TTC r Phe	192
ACC Thi	TA' Ty:	r GG	C GT(y Val	G CAG	TGC Cys	Pile	TCC Ser	AGA Arg	TAC	CCF Pro	Asp	C CAT	r Ato	AA(G CAG Gln 80	240
CA1 His	GA(TT'	T TTO	AAC Lys	267	GCC Ala	ATG Met	CCC	GAG Glu	GLY	TAT Tyr	GTG Val	G CAG	GAC Glu	AGA Arg	288
ACC Thr	ATC Ile	TTT Phe	TTC Phe	. шуз	GAT Asp	GAC Asp	GGG Gly	AAC Asn 105	Tyr	AAG Lys	ACC	CGC Arg	GCT Ala 110	Glu	GTC Val	336
AAG Lys	TTC Phe	GAZ Glu		GAC Asp	ACC Thr	CTG Leu	GTG Val 120	AAT Asn	AGA Arg	ATC Ile	GAG Glu	CTG Leu 125	Lys	GGC G1 y	ATT Ile	384
GAC Asp	TTT Phe 130	-,-	GAG Glu	GAT Asp	GGA Gly	AAC Asn 135	ATT	CTC Leu	GGC Gly	CAC His	AAG Lys 140	CTG Leu	GAA Glu	TAC Tyr	AAC Asn	432
TAT Tyr 145	AAC Asn	TCC	CAC His	AAT Asn	GTG Val 150	TAC Tyr	ATC Ile	ATG Met	GCC Ala	GAC Asp 155	AAG Lys	CAA Gln	AAG Lys	AAT Asn	GGC Gly 160	480
ATC Ile	AAG Lys	GTC Val	AAC Asn	TTC Phe 165	AAG Lys	ATC Ile	AGA Arg	CAC His	AAC Asn 170	ATT Ile	GAG Glu	GAT Asp	GGA Gly	TCC Ser 175	_	528
CAG Gln	CTG Leu	GCC Ala	GAC Asp 180	CAT His	TAT Tyr	CAA Gln	CAG Gln	AAC Asn 185	ACT Thr	CCA Pro	ATC Ile	GGC Gly	GAC Asp 190		CCT Pro	576
GTG Val	CTC Leu	CTC Leu 195	CCA Pro	GAC Asp	AAC Asn	CAT His	TAC Tyr 200	CTG Leu	TCC Ser	ACC Thr	CAG Gln	TCT Ser 205	GCC Ala	CTG Leu	TCT Ser	624
AAA Lys	GAT Asp 210	CCC Pro	AAC Asn	GAA Glu	AAG Lys	AGA Arg 215	GAC (CAC His	ATG Met	Val	CTG Leu 220	CTG Leu	GAG Glu	TTT Phe	GTG Val	672
ACC Thr 225	GCT Ala	GCT Ala	GGG Gly	ATC Ile	ACA Thr 230	CAT His	GGC 1	ATG Met	Asp	GAG Glu 235	CTG Leu	TAC Tyr	AAG Lys	Gly	TAC Tyr 240	720
CAG Gln	ATC Ile	GAA Glu	TTC Phe	AGC Ser 245	TTA Leu	AAG Lys	ATG A Met 1	inr :	TCG : Ser : 250	AAA Lys	GTT Val	TAT Tyr	Asp			768
CAA Gln	AGG Arg	AAA Lys	CGG Arg 260	ATG Met	ATA Ile	ACT Thr	GGT C	CCG (Pro (265	CAG 1	rgg :	rgg Frp	Ala .	_		AAA Lys	816
CAA Gln	ATG Met	AAT Asn	GTT Val	CTT Leu	GAT Asp	TCA Ser	TTT F Phe I	TT ;	AAT 1	TAT :	TAT (GAT Asp	TCA (GAA . Glu	AAA Lys	. 864

		275	ı				280)				285	5				
CAT His	GCA Ala 290	Glu	AAT Asn	GCT Ala	GTT Val	ATT Ile 295	TTT Phe	TTA Leu	CAT His	GGT Gly	AAC Asn 300	Ala	G GCC	TCI Ser	TCT Ser	91	2
TAT Tyr 305	Leu	TGG Trp	CGA Arg	CAT His	GTT Val 310	Val	CCA Pro	CAT His	ATI	GAG Glu 315	Pro	GTA Val	GCG Ala	CGG Arg	TGT Cys 320	96	0
ATT Ile	ATA Ile	CCA Pro	GAT Asp	CTT Leu 325	Ile	GGT Gly	ATG Met	GGC G1 y	Lys 330	Ser	GGC Gly	AAA Lys	TCT	GGT Gly 335	AAT Asn	1008	3
GGT Gly	TCT Ser	TAT	AGG Arg 340	TTA Leu	CTT Leu	GAT Asp	CAT His	TAC Tyr 345	AAA Lys	TAT	CTT Leu	ACT Thr	GCA Ala 350	TGG Trp	TTT Phe	1056	5
GAA Glu	CTT Leu	CTT Leu 355	AAT Asn	TTA Leu	CCA Pro	AAG Lys	AAG Lys 360	ATC Ile	ATT	TTT Phe	GTC Val	GGC Gly 365	CAT His	GAT Asp	TGG Trp	1104	1
GGT Gly	GCT Ala 370	TGT Cys	TTG Leu	GCA Ala	TTT Phe	CAT His 375	TAT Tyr	AGC Ser	TAT Tyr	GAG Glu	CAT His 380	CAA Gln	GAT Asp	AAG Lys	ATC Ile	1152	!
AAA Lys 385	GCA Ala	ATA Ile	GTT Val	CAC	GCT Ala 390	GAA Glu	AGT Ser	GTA Val	GTA Val	GAT Asp 39	GTG Val 5	ATT Ile	GAA Glu	TCA Ser	TGG Trp 400	1200)
GAT Asp	GAA Glu	TGG Trp	CCT Pro	GAT Asp 405	ATT Ile	GAA Glu	GAA Glu	GAT Asp	ATT Ile 410	G CG Al a	TTG Leu	ATC Ile	AAA Lys	TCT Ser 415	GAA Glu	1248	
GAA Glu	GGA Gly	GAA Glu	AAA Lys 420	ATG Met	GTT Val	TTG Leu	GAG Glu	AAT Asn 425	AAC Asn	TTC Phe	TTC Phe	GTG Val	GAA Glu 430	ACC Thr	ATG Met	1296	1
TTG Leu	CCA Pro	TCA Ser 435	AAA Lys	ATC Ile	ATG Met	AGA Arg	AAG Lys 440	TTA Leu	GAA Glu	CCA Pro	GAA Glu	GAA Glu 445	TTT Phe	GCA Ala	GCA Ala	1344	
TAT Tyr	CTT Leu 450	GAA Glu	Pro	Phe	Lys	GAG Glu 455	Lys	GGT Gly	Glu	GTT Val	CGT Arg 460	CGT Arg	CCA Pro	ACA Thr	TTA Leu	1392	
5er 465	Trp	Pro	Arg	Glu	11e 470	Pro	Leu	Val	Lys	Gly 475	GGT Gly	Lys	Pro	Asp	Val 480	1440	
Val	Gln	Ile	Val	Arg 485	Asn	Tyr	Asn	Ala	Tyr 490	Leu	CGT Arg	Ala	Ser	Asp 495	Asp	1488	
Leu	Pro	Lys	Met 500	Phe	Ile	Glu	Ser	Asp 505	Pro	Gly	TTG Phe	Phe	Ser 510'	Asn	Ala	1536	
Ile	Val	Glu 515	Gly	Ala	Lys	Lys	Phe 520	Pro	Asn	Thr		Phe 525	Val	Lys	Val	1584	
AAA Lys	GGT Gly 530	CTT Leu	CAT His	TTT Phe	TCG Ser	CAA Gln 535	GAA Glu	GAT Asp	GCA Ala	CCT Pro	GAT Asp 540	GAA Glu	ATG Met	GGA Gly	AAA Lys	1 63 2	

PCT/US97/17162

TYR I Lys Ser Phe Val Glu Arg Val Leu Lys Asn Glu Gln *** 545 550 555	1677
(3) INFORMATION FOR SEQ ID NO:3: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CTGCAGAGGA GGAATTCAGC TTAAAGATG	29
(4) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION:SEQ ID NO:4:	
GCGGCCGCTT GTTCATTTTT GAGAAC	26
(5) INFORMATION FOR SEQ ID NO:5: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GGGGTACCCC ATGAGCAAGG GCGAGGAACT	
(6) INFORMATION FOR SEQ ID NO:6: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION:SEQ ID NO:6:	30
GGGGTACCCC TTGTACAGCT CGTCCATGCC A	31
(7) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION:SEQ ID NO:7:	J.
CCCGGGAGGA GGTACCCCAT GAGCAAG	27

WE CLAIM:

5

10

15

20

25

30

1. A protein comprising a polypeptide having both luciferase and GFP activities or biologically active variants thereof.

- 2. A recombinant protein according to claim 1.
- 3. A protein according to claim 1, having an amino acid sequence as set forth in SEQ ID NO:1.
 - 4. A high affinity monoclonal antibody which immunoreacts with the polypeptide of claim 1.
 - 5. The antibody of claim 4 having an Fc portion selected from the group consisting of the IgM class, the IgG class and the IgA class.
 - 6. A protein recognized by a monoclonal antibody having affinity to the polypeptide of claim 1.
 - 7. The protein of claim 1 in purified and isolated form.
 - 8. A DNA sequence coding for a protein according to claim 1, or its complementary strands.
 - 9. A DNA sequence which hybridizes to a DNA sequence according to claim 8 and which codes on expression for a polypeptide having both luciferase and GFP activities, or its complementary strands.
 - 10. A high affinity monoclonal antibody which immunoreacts with a polypeptide having both luciferase and GFP activities.
 - 11. A purified and isolated DNA molecule comprising a polynucleotide coding for a polypeptide having both luciferase and GFP activities, or its complementary strands.
 - 12. The DNA of claim 11, wherein the polynucleotide comprises the sequence as set forth in SEQ ID NO:1.
- 13. A vector containing a DNA molecule coding for a polypeptide having both luciferase and GFP activities.
- 14. The vector of claim 13, wherein the polynucleotide comprises the sequence as set forth in SEQ ID NO:1.
- 15. A prokaryotic or eukaryotic host cell stably transformed or transfected by the vector of claim 13.
- 16. A method of making a polypeptide having both luciferase and GFP activities, the method comprising the steps of:

(a) culturing a microorganism transformed with a polynucleotide coding for a polypeptide having both luciferase and GFP activities; and

- (b) recovering the polypeptide having both luciferase and GFP activities.
- 17. A method of quantifying promoter activations and GFP fluorescence based on luciferase activity measurements, the method comprising the step of providing the polypeptide according to claim 1.
- 18. A method of making a monoclonal antibody which immunoreacts with a polypeptide having both luciferase and GFP activities, the method comprising the steps of:
 - (a) administering to a host a polypeptide having both luciferase and GFP activities in an amount sufficient to induce the production of antibodies to the polypeptide;
 - (b) recovering the antibody-producing cells from the host;
 - (c) forming cell hybrids by fusing the antibody-producing cell to cells capable of substantially unlimited reproduction;
 - (d) culturing the hybrids; and

5

10

15

20

25

30

- (e) collecting the monoclonal antibodies as a product of the hybrids.
- 19. A method of monitoring gene expression quantitatively and qualitatively in a cell using a gene fusion construct coding for a polypeptide having both luciferase and GFP activities, the method comprising the steps of:
 - (a) providing a gene fusion construct coding for a polypeptide having both Renilla luciferase and GFP activity;
 - (b) introducing the gene fusion construct into the cell;
 - (c) maintaining the cell containing the gene fusion construct in a manner allowing the cell to express the polypeptide; and
 - (d) measuring the cell for luciferase and fluorescent activity.
- 20. The method of claim 19, where the step of providing comprises providing a construct including a polynucleotide sequence as set forth in SEQ ID NO:1.
- 21. A method of monitoring gene expression quantitatively and qualitatively in a cell using a gene fusion construct coding for a polypeptide having both luciferase and GFP activities, the method comprising the steps of:
 - (a) providing a gene fusion construct comprising the protein of claim 1;

and the second section of the second

(b) introducing the gene fusion construct into the cell;

(c) maintaining the cell containing the gene fusion construct in a manner allowing the cell to express the polypeptide; and

(d) measuring the cell for luciferase and fluorescent activity.

FIG. 1

Fusion Gene Cassettes for E. coli

FIG. 2

Fusion Gene Cassettes for Mammalian cells

SUBSTITUTE SHEET (RULE 26)

-1- The State of t

FIG. 5A

FIG. 58

BULL Pho.

SUBSTITUTE SHEET (RULE 26)

FIG. 6B

Relative Light
Units/
IO⁷ LM-TK Cells

SUBSTITUTE SHEET (RULE 26)

FIG. 7

FIG. 8

C R G RG GR

55

34

FIG. 9A

FIG. 90

FIG. 90

FIG. 9E

FIG. 9F

SUBSTITUTE SHEET (RULE 26)

· Mindelphila

FIG. IOB

SUBSTITUTE SHEET (RULE 26)

INTERNATION SEARCH REPORT

International application No. PCT/US97/17162

		•
A. CLA	ASSIFICATION OF SUBJECT MATTER	
US CL	:Please See Extra Sheet. :Please See Extra Sheet.	
According	to International Patent Classification (IPC) or to both national classification and IPC	
	LDS SEARCHED	
Minimum o	documentation searched (classification system followed by classification symbols)	
U.S. :	435/69.1, 69.7, 189, 252.3, 320.1; 530/350, 388.1; 536/23.2, 23.4, 23.5	
Documenta	tion searched other than minimum documentation to the extent that such documents are include	d in the fields searched
	· · · · · · · · · · · · · · · · · · ·	
Flectmaic	late have consulted during at a first	
APS/IISB	data base consulted during the international search (name of data base and, where practicable	c, search terms used)
scarch ter	AT, EPOABS, JPOABS), STN (CAPLUS, BIOSIS) ms: luciferase, groen fluorescent protein, renilla, acquorea, DNA, fusion, gene, antibody, mo	
	Bene, andbody, mo	noclosel
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	T
		Relevant to claim No.
Y	US 5,491,084 (CHALFIE et al) 13 February 1996, entire patent,	1,2, 6-9, 11, 13,
_	especially column 1, lines 16-25 and claims	15-17, 19-21
A		<u></u>
}		3, 12, 14, 20
Y	US 5,292,658 (CORMIER et al) 08 MARCH 1994, entire patent,	1 0 00 11 15
	especially claims.	1, 2, 6-9, 11, 13,
		15-17, 19-21
,		3, 12, 14, 20
1		5, 12, 14, 20
1		
.	·	
1		
1		
X Further	r documents are listed in the continuation of Box C. See patent family annex	
* doou	ment defining the control state of the control is in a set of the control of the	
	of particular relevance the international filing date "X" document of particular relevance; the	er ea troa
· door	most which was those dealer as selected by the considered novel or cannot be considered	d to involve an inventive step
4	of personal of personal and or enjoyeer estation or other decomment of personal relevance; the	elaimed invention cannot be
doeus messe	next referring to an oral disclosure, use, exhibition or other desabated with one or more other state.	tep when the document is
doma	neart published prior to the international filing data but later than "A" document member of the seme petent f	ert
	D to O O LAN	h report
1 DECEME	BER 1997	330
me and mai	ling address of the ISA/US of Petests and Trademarks Authorized of load	///
lox PCT Vashington, E		10
		AF 1.4.
simile No.	(703) 305-3230 Typhio 10 (703) 308-0196	12Em /

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/17162

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevar	nt to claim No.
X Y	SANDALOVA, T. Some Notions about Structure of Bacterial Luciferase, Obtained from Analysis of Amino Acid Sequence, and Study of Monoclonal Antibody Binding. In: Biological Luminiscence, Proceedings of International School, 1st (1990), Meeting Date 1989, 330-340. Edittors: Jezowska-Trzebiatowska et al.World Science, Singapore, Singapore (Abstract)	4, 10 5, 18	
•			
	n de la companya de l		

International application No. PCT/US97/17162

Hox I Observation	s where certain claims were found unsearchab	ole (Continuation of item 1 of first sheet)
This international repo	rt has not been established in respect of cortain claim	as under Article 17(2)(a) for the following masons:
1. Claims Nos		and removis:
	sy relate to subject matter not required to be search	ativate and a second
	and todation to be source	caed by this Authority, namely:
i		
2. Claims Nos		_
	ii V Talaic to page of the intermedianation of the six	_
en extent th	at no meaningful international search can be carri	t do not comply with the prescribed requirements to sucl
•	o date	out, specifically:
		•
3. Claims Nos		
	: 	•
оссияс шсу	are dependent claims and are not drafted in accordan	nce with the second and third sentences of Rule 6.4(a).
Box II Observations	Where unity of Inventor I. I. I.	
	where unity of invention is lacking (Continual	tion of item 2 of first sheet)
this international Sean	ching Authority found multiple inventions in this i	international application, as follows:
Picase See Extra		11 - 15 15 16 Wa.
•		
		`
,		
	•	
X As all required	additional search foes were timely said by the	diama at the time
claims.	more amony pare by the app.	olicant, this international search report covers all search
Of any addition	No claims could be searched without effort justifying	ng an additional fee, this Authority did not invite paym
As only some o	of the required additional search fees were timely pe	aid by the applicant, this international search report cov
only those clai	ms for which foce were paid, specifically claims)	Nos.;
No required add	ditional scarch foor worm simply and but at a	
restricted to the	invention first mentioned in the claims; it is cover	licant. Consequently, this international search report
		and of evertual MOS".
tark on Protest	The additional seamh fore	_ • • • •
tark on Protest	The additional search fees were accomped No protest accompanied the payment of	anied by the applicant's protest.

. Our grand har sharest the second of the second

AND REPORTED A

and the second s

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/17162

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12P 21/04, 21/06; C12N 1/20, 9/02, 15/09; C07K 14/00, 16/00; C07H 21/04

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

435/69.1, 69.7, 189, 252.3, 320.1; 530/350, 388.1; 536/23.2, 23.4, 23.5

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-3, 6 and 7, drawn to a fusion protein having both luciferase and GFP activities.

Group II, claim(s) 4, 5 and 10, drawn to a monoclonal antibody against said fusion protein.

Group III, claim(s) 8, 9 and 11-17, drawn to a DNA encoding said fusion protein, a vector containing said DNA, a cell transformed with the same, a method of producing said fusion protein using a transformed cell and 1st method of use of said DNA.

Group IV, claim 18, drawn to a method of making a monoclonal antibody.

Group V, claim(s) 19-21, drawn to 2nd method of use of DNA encoding fusion protein.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: a fusion protein of Group I, an antibody of Group II and a DNA of Group III are different compounds with different structures, functions and utilities. Luciforase and GFP as well DNAs encoding them and gene fusion constructs based on each of them are known in the prior art. An antibody against both proteins are known. Therefore, a fusion protein containing either luciforase or GFP lacks a special technical feature with a DNA encoding thereof and an antibody against it.

Inventions of Groups IV and V are drawn to materially different methods. Method of Group IV employs immunization of an animal with a fusion protein and a hybridoma production, whereas a method of Group V employs a DNA construct encoding a fusion protein.

PCT Rule 1.475(d) does not provide for multiple products or methods within a single application and therefore, unity of invention is lacking with regard to Groups I-V.

กลางเกาะเล้าสารส์ชียาสาร

art short file a think in a

والمنطقة في المنافظة والمنافظة والمنافظة المنافظة المنافظ

on and wide light and and on the