Introduction

- Overview. What is the Internet? What is a protocol?
- Network edge
- Network core
- Performance: loss, delay, throughput
- Protocol layers, service models
- Security
- History

COMPSCI 453 Computer Networks

Professor Jim Kurose
College of Information and Computer

University of Massach

Class textbook:

Computer Networking: A TopDown Approach (8th ed.)

J.F. Kurose, K.W. Ross
Pearson, 2020
http://gaia.cs.umass.edu/kurose_ross

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

Access networks: cable-based access

frequency division multiplexing (FDM): different channels transmitted in different frequency bands

Access networks: cable-based access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbs downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend

Access networks: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

Access networks: home networks

Wireless access networks

Shared wireless access network connects end system to router

via base station aka "access point"

Wireless local area networks (WLANS)

- typically within or around building (~100 ft)
- 802.11b/g/n (WiFi): 11, 54,
 450 Mbps transmission rate

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's Mbps
- 4G cellular networks (5G coming)

Access networks: enterprise networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps

Access networks: data center networks

high-bandwidth links (10s to 100s Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth packet time nee

```
bandwidth packet time needed to transmission = transmit L-bit = R delay packet into link
```


$$\frac{L}{R}$$
 (bits/sec)

Links: physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet

• Category 6: 10Gbps Ethernet

Links: physical media

Coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (10's-100's Gbps)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic

Links: physical media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 4G cellular)
 - 10's Mbps over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to 45 Mbps per channel
 - 270 msec end-end delay

Introduction

- Overview. What is the Internet? What is a protocol?
- Network edge
- Network core
- Performance: loss, delay, throughput
- Protocol layers, service models
- Security
- History

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer

University of Massachus

Class textbook:

Computer Networking: A TopDown Approach (8th ed.)

J.F. Kurose, K.W. Ross
Pearson, 2020
http://gaia.cs.umass.edu/kurose_ross

Vid©o: 2020, J.F. Kurose, All Rights Reserved Powei©oint: 1996-2020, J.F. Kurose, K.W. Ross, All Rights Reserved