

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 28: Autoencoder

CONCEPTS COVERED

- **Concepts Covered:**
- ☐ Back Propagation Learning in MLP
- Autoencoder
 - ☐ Undercomplete Autoencoder
 - ☐ Autoencoder vs. PCA
 - ☐ Sparse Autoencoder
 - ☐ Denoising Autoencoder
 - ☐ Contractive Autoencoder
 - ☐ Convolution Autoencoder

- Unsupervised Learning where Neural Networks are subject to the task of representation learning.
- Impose a bottleneck in the network
- The bottleneck forces a compressed knowledge representation of the input.

Assumption:

- ➤ High degree of correlation/structure exists in the data.
- For uncorrelated data (input features are independent), then compression and subsequent reconstruction would be difficult.

Expectation

- ☐ Sensitive enough to input for accurate reconstruction
- ☐ Insensitive enough that it does not memorize or overfit the training data

Loss Function $\Rightarrow L(X, \hat{X}) + \text{Regularizer}$

Undercomplete Autoencoder

$$L(X, \hat{X}) = \frac{1}{2} \sum_{N} ||X - \hat{X}||^{2}$$

 \hat{X}

$$L(X, \hat{X}) = \frac{1}{2} \sum_{N} ||X - \hat{X}||^{2}$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you