Московский Государственный Университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической физики

КУРСОВАЯ РАБОТА СТУДЕНТА 402 ГРУППЫ

Турганбаева Сатбека Амангельдыулы

Численное исследование одного метода восстановления волнового фронта

Научный руководитель: д.ф-м.н. профессор Разгулин А. В.

Содержание

Введение		2
1	Преобразование Хаара 1.1 Формулировки и определения 1.2 Одномерный сигнал 1.3 Дополнение нулями 1.4 Двумерное преобразование	4
2	1.5 Явные формулы для анализа Градиенты. Геометрия Хаджина и Фрайда 2.1 Геометрия Хаджина и Фрайда 2.2 Градиенты и преобразование Хаара	
3	Вывод формул прямого преобразования 3.1 Получение LH, HL квадрантов 3.2 Получение HH квадранта	7
4	Программная реализация 4.1 Программная реализация метода	8
5 3a	Результаты вычислительных экспериментов аключение	10 15

Введение

Системы адаптивной оптики используемые в современных телескопах используют гибкие зеркала, для коррекции аберраций, вызванных турбулентность атмосферы Земли. Одним из устройств для измерения волнового фронта является датчик Шака-Гартмана. Данный датчик измеряет градиент волнового фронта, вместо него самого. Получаются матрицы градиентов X и Y.

В [1] был предложен метод восстановления волнового фронта по его наклонам с использованием преобразования Хаара. Идея метода заключается в том, что наклоны волнового фронта могут быть представлены в виде суперпозиции сверток с фильтрами преобразования Хаара. Используя это соотношение возможно выполнить "замену переменной и получить разложение волнового фронта по вейвлетам Хаара. Затем, применив стандартный алгоритм обратного преобразования получить исходный волновой фронт. Стоит отметить, что в [1] кроме наклонов волнового фронта и его интенсивности также требовалась и интенсивность правого нижнего квадранта ${}^{M-1}_{HH}\Phi$, но в более новой статье [2] было предложено более простое решение, и ослаблены требования к начальным данным.

Целью работы является ознакомление с методом, его программная реализация, а также реализация средств для его дальнейшего исследования. В ходе работы были разобраны статьи [1]- [2], и на их основе написана первая часть работы, знакомящая с преобразованием Хаара и методом. При программной реализации был написан ряд модулей, реализующих как сам метод, так и средства для его исследования. В работе описан их функционал. Также приведены примеры работы метода на полиномах Цернике.

1 Преобразование Хаара

1.1 Формулировки и определения

Z-преобразованием дискретного сигнала $\{s_j\}_{j\in Z}$ называется полином Лорана $P_s(z)=\sum_{j\in Z}s_jz^{-j}$. $h=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}),\ g=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$ - низкочастотный и высокочастотный фильтры преобразования Хаара.

$$H_L(z) = \frac{1+z^{-1}}{\sqrt{2}}$$

$$H_H(z) = \frac{1 - z^{-1}}{\sqrt{2}}$$

 $H_L(z), H_H(z)$ - z - преобразования фильтров h и g соответственно.

Линейной сверткой двух дискретных сигналов a(n), n = 0...N-1 и b(n), n = 0...M-1 называется выражение:

$$h = a \otimes b$$
$$h(n) = \sum_{m=0}^{n} a(m)b(n-m)$$

В ввиду того, что сигналы конечномерные на границах возникает неопределенность из-за отсутствия соответствующих элементов. Проблема решается различными способами: дополнение одного из обоих сигналов 0-ми, константами, симметричное отражение и т.д.

Также одним из свойств z-преобразования является то, что z-преобразование свертки двух сигналов равно произведению z-преобразований этих сигналов.

 $\uparrow s$ - операция, добавляющая 0 после каждого элемента сигнала s.

 $\downarrow_k s$ - операция, удаляющая каждый k-ый элемент сигнала s.

Если s = (1, 2, 3, 4), то $\uparrow_2 s = (1, 0, 2, 0, 3, 0, 4, 0)$, а $\downarrow_2 s = (1, 3)$.

Также стоит отметить, что:

$$\downarrow_2 H_L(z^{2^k}) = H_L(z^{2^{k-1}}), \ k \ge 2$$

$$\downarrow_2 H_H(z^{2^k}) = H_H(z^{2^{k-1}}), \ k \ge 2$$

$$\uparrow_2 H_L(z^{2^{k-1}}) = H_L(z^{2^k}), \ k \ge 2$$

$$\uparrow_2 H_H(z^{2^{k-1}}) = H_H(z^{2^k}), \ k \ge 2$$

В дальнейшем под сигналом будет пониматься его z-преобразование и наоборот.

1.2 Одномерный сигнал

Будем предполагать в дальнейшем, что размерность сигналов равна $2^m, m \geq 1$.

Свернем сигнал $h_m(z)$, $dim\ h_m=2^m$ с фильтрами $H_L(z)$, $H_H(z)$, а затем применим к получившемуся операцию \downarrow_2 .

Получим сигналы:

$$h_{L_{m-1}}(z) = \downarrow_2 \{h_m(z)H_L(z)\}\$$

 $h_{H_{m-1}}(z) = \downarrow_2 \{h_m(z)H_H(z)\}.$

Их размерности будут в два раза меньше,
размерности исходного сигнала h_m .

 $h_{L_{m-1}}(z)$ называется низкочастотной составляющей сигнала h_m , а $h_{H_{m-1}}(z)$ высокочастотной.

Восстановление исходного сигнала происходит так:

$$h_m(z) = \uparrow_2 \{h_{L_{m-1}}(z)\}H_L(z) + \uparrow_2 \{h_{H_{m-1}}(z)\}H_H(z)$$

Описанные выше преобразования выполняют один шаг прямого и обратного преобразования Хаара. Прямое преобразование называется анализом, обратное синтезом.

Если положить, что $h_m = h_{L_m}$, то алгоритм анализа выглядит так:

k называется разрешением разложения. Анализ будет происходить до тех пор, пока не останется один элемент.

Algorithm 2 Алгоритм синтеза

for
$$k=m\dots 1$$
 do
$$h_{L_{m-k+1}}(z)=\uparrow_2\{h_{L_{m-k}}(z)\}H_L(z^{-1})+\uparrow_2\{h_{H_{m-k}}(z)\}H_H(z^{-1})$$
 end for

Algorithm 1 Алгоритм анализа

```
for k = 1 ... m do

h_{L_{m-k}}(z) = \downarrow_2 \{h_{L_{m-k+1}}(z)H_L(z)\}

h_{H_{m-k}}(z) = \downarrow_2 \{h_{L_{m-k+1}}(z)H_H(z)\}.

end for
```

1.3 Дополнение нулями

В описываемом методе при анализе будем дополнять нулями справа, а при синтезе слева. Ниже приведены примеры анализа и синтеза сигнала (1,2,3,4). Для наглядности используется нестандартные пары фильтров, [1,1], [1,-1] и [0.5,0.5], [0.5,-0.5].

1.4 Двумерное преобразование

Пусть дана матрица ${}^M\Phi, {}^M\Phi \in \mathbb{R}^{2^M \times 2^M}$. Применим к каждой строке матрицы один шаг анализа. В результате получим матрицы ${}^{m-1}_L\Phi, {}^{m-1}_H\Phi$. К каждому столбцу обеих матриц также применим шаг анализа. В итоге получим четыре матрицы ${}^{m-1}_L\Phi, {}^{m-1}_L\Phi, {}^{m-1}_H\Phi, {}^{m-1}_H\Phi, {}^{m-1}_H\Phi, {}^{m-1}_L\Phi$ - является низкочастотной составляющей двумерного сигнала, остальные три матрицы содержат детализирующую информацию. Таким образом будет выполнен первый шаг

двумерного преобразования Хаара. Нужно проделать аналогичные операции с $^{m-1}_{LL}\Phi$ для следующего шага. Такми образом, шаг двумерного преобразования свелся к композиции одномерных преобразований.

Синтез происходит аналогичным образом: в обратном анализу порядке дополняется нулями соответствующая размерность и применяются фильтры Хаара, а затем результаты складываются.

Пусть
$${}^{M}\Phi = {}^{M}_{LL}\Phi$$

Algorithm 3 Алгоритм 2D-анализа

```
for k = M \dots 1 do
                        \begin{array}{l} \kappa = M \dots 1 \text{ do} \\ k^{-1}\Phi = \downarrow_2 \left\{ \substack{k \\ LL} \Phi H_L(z_h) H_L(z_v) \right\} \\ k^{-1}\Phi = \downarrow_2 \left\{ \substack{k \\ LL} \Phi H_L(z_h) H_H(z_v) \right\} \\ k^{-1}\Phi = \downarrow_2 \left\{ \substack{k \\ LL} \Phi H_H(z_h) H_L(z_v) \right\} \\ k^{-1}H \Phi = \downarrow_2 \left\{ \substack{k \\ LL} \Phi H_H(z_h) H_H(z_v) \right\} \end{array}
```

Algorithm 4 Алгоритм 2D-синтеза

```
 \begin{array}{l} \overset{k-1}{\leftarrow} \overset{M}{\leftarrow} \overset{M}{\leftarrow} \overset{M}{\rightarrow} \overset{M}{\leftarrow} \overset{M}{\rightarrow} \overset{M}{\leftarrow} \overset{M}{\rightarrow} \overset{M}{\leftarrow} \overset{M}{\rightarrow} \overset{M}
```

Полученное 2-D разложение можно представить в виде диаграммы, где на каждом уровне LL, LH, HL и НН составляющим соответствуют определенные квадранты.

1.5Явные формулы для анализа

Из алгоритма анализа непосредственно выводятся формулы для LL, LH, HL и HH составляющих на каждом уровне.

$${}_{LL}^{M-m}\Phi = \downarrow_{2^m} \{ {}^M\Phi \prod_{k=0}^{m-1} H_L(z_h^{2^k}) \prod_{k=0}^{m-1} H_L(z_v^{2^k}) \}$$
 (1)

$${}_{HL}^{M-m}\Phi = \downarrow_{2^m} \{ {}^M\Phi H_H(z_h^{2^{m-1}}) \prod_{k=0}^{m-2} H_L(z_h^{2^k}) \prod_{k=0}^{m-1} H_L(z_v^{2^k}) \}$$
 (3)

$${}_{HH}^{M-m}\Phi = \downarrow_{2^m} \{ {}^{M}\Phi H_H(z_v^{2^{m-1}}) H_H(z_v^{2^{m-1}}) \prod_{k=0}^{m-2} H_L(z_h^{2^k}) \prod_{k=0}^{m-2} H_L(z_v^{2^k}) \}$$

$$(4)$$

2 Градиенты. Геометрия Хаджина и Фрайда

2.1 Геометрия Хаджина и Фрайда

В адаптивной оптике используются два различных способа представления наклонов волнового фронта. Согласно [3] это геометрии Хаджина и Фрайда. Геометрия Хаджина:

$$_{H}x_{i,j} = -\phi_{i,j} + \phi_{i,j+1}$$

$$H y_{i,j} = -\phi_{i,j} + \phi_{i+1,j}$$

Получившиеся матрицы ${}^M_HX, {}^M_HY$ имеют размерности $2^M \times (2^M-1)$ и $(2^M-1) \times 2^M$ соответственно. Геометрия Фрайда:

$$_{F}x_{i,j} = \frac{_{H}x_{i,j} +_{H}x_{i+1,j}}{2} = \frac{-\phi_{i,j} + \phi_{i,j+1} - \phi_{i+1,j} + \phi_{i+1,j+1}}{2}$$

$$_{F}y_{i,j} = \frac{_{H}y_{i,j} +_{H}y_{i,j+1}}{2} = \frac{-\phi_{i,j} - \phi_{i,j+1} + \phi_{i+1,j} + \phi_{i+1,j+1}}{2}$$

Получившиеся матрицы ${}^M_F X, {}^M_F Y$ имеют одинаковые размерности $2^M - 1 \times 2^M - 1$.

2.2 Градиенты и преобразование Хаара

Справедливы следующие соотношения.

$$_{H}^{M}X = ^{M}\Phi\sqrt{2}H_{H}(z_{h}) \tag{5}$$

$$_{H}^{M}Y = ^{M}\Phi\sqrt{2}H_{H}(z_{v}) \tag{6}$$

$${}_{F}^{M}X = \frac{{}_{H}^{M}XH_{L}(z_{v})}{\sqrt{2}} = {}^{M}\Phi H_{H}(z_{h})H_{L}(z_{v})$$
(7)

$${}_{F}^{M}Y = \frac{{}_{H}^{M}YH_{L}(z_{h})}{\sqrt{2}} = {}^{M}\Phi H_{L}(z_{h})H_{H}(z_{v})$$
(8)

3 Вывод формул прямого преобразования

Рассмотрим случай, когда известны вертикальные и горизонтальные наклоны, а также интенсивность волнового фронта. Иначе говоря имеются: ${}^M_F X$, ${}^M_F Y$, ${}^M_H X$, ${}^M_H Y$, ${}^L_0 \Phi$.

Необходимо получить из имеющихся данных получить 2D-разложение волнового фронта, а затем восстановить сам волновой фронт, применив к полученному разложению стандартный алгоритм синтеза.[1] Диаграмма разложения которое необходимо получить будем аналогична диаграмме стандартного разложения:

Отличаться будут лишь формулы (1)-(4). "Идейно" метод заключается в замене переменной. Используя соотношения (5)-(8), получим аналоги (1)-(4).

3.1 Получение LH, HL квадрантов

Из соотношений (5), (6) и (3), (2) соответственно, непосредственно вытекает, что:

$$^{M-1}_{HL} \Phi = \downarrow_2 \mathop{F}_F X$$

$$^{M-1}_{LH} \Phi = \downarrow_2 \mathop{F}_F Y$$

Докажем справедливость выражения $H_H(z^{2^{m-1}}) = \sqrt{2}^{m-1} H_H(z) \prod_{k=0}^{m-2} H_L(z^{2^k})$

Доказательство. Запишем $H_H(z^{2^{m-1}})$ в виде полинома

$$H_H(z^{2^{m-1}}) = \frac{1 - z^{2^{m-1}}}{\sqrt{2}}$$

$$\frac{1 - z^{2^{m-1}}}{\sqrt{2}} = \frac{(1 - z^{2^{m-2}})(1 + z^{2^{m-2}})}{\sqrt{2}} = \dots = \frac{(1 - z)(1 + z)(1 + z^2)\dots(1 + z^{2^{m-2}})}{\sqrt{2}}$$

$$H_H(z^{2^{m-1}}) = \sqrt{2}^{m-1}H_H(z) \prod_{k=0}^{m-2} H_L(z^{2^k})$$

LH, m > 1:

$$\begin{split} & \stackrel{M-m}{\longrightarrow} \Phi = \downarrow_{2^m} \{^M \Phi[H_H(z_v^{2^{m-1}})][\prod_{k=0}^{m-1} H_L(z_h^{2^k})] \prod_{k=0}^{m-2} H_L(z_v^{2^k})\} = \\ = & \downarrow_{2^m} \{^M \Phi[\sqrt{2}^{m-1} H_H(z_v) \prod_{k=0}^{m-2} H_L(z_v^{2^k})][H_L(z_h) \prod_{k=1}^{m-1} H_L(z_h^{2^k})] \prod_{k=0}^{m-2} H_L(z_v^{2^k})\} \\ = & \sqrt{2}^{m-1} \downarrow_{2^m} \{^M \Phi H_L(z_h) H_H(z_v) \prod_{k=1}^{m-1} H_L(z_h^{2^k}) \prod_{k=0}^{m-2} H_L^2(z_v^{2^k}) \end{split}$$

$$= \sqrt{2}^{m-1} \downarrow_{2^m} \{_F^M Y \prod_{k=1}^{m-1} H_L(z_h^{2^k}) \prod_{k=0}^{m-2} H_L^2(z_v^{2^k}) \}$$

HL, m > 1:

Выводится аналогично, LH

$${}_{HL}^{M-m}\Phi = \sqrt{2}^{m-1} \downarrow_{2^m} \{ {}_F^M Y \prod_{k=0}^{m-2} H_L^2(z_h^{2^k}) \prod_{k=1}^{m-1} H_L(z_v^{2^k}) \}$$

3.2 Получение НН квадранта

HH, m = 1:[2]

Докажем, что $_{HH}^{M-1}\Phi\downarrow_{2}\{\frac{\sqrt{2}}{4}[_{H}^{M}XH_{H}(z_{v})+_{H}^{M}YH_{H}(z_{h})]\}$

Доказательство. Известно, что $_{HH}^{M-1}\Phi=\downarrow_2[^M\Phi H_H(z_h)H_H(z_v)].$

Распишем $_{HH}^{M-1}\Phi=\downarrow_{2}\{\frac{\sqrt{2}}{2}\sqrt{2}^{M}\Phi H_{H}(z_{h})H_{H}(z_{v})\}$, выделив из (7) $_{H}^{M}X$ получим:

$${}_{HH}^{M-1}\Phi=\downarrow_{2}\{\frac{\sqrt{2}}{2}~{}_{H}^{M}XH_{H}(z_{v})\}=\downarrow_{2}\{\frac{\sqrt{2}}{4}2~{}_{H}^{M}XH_{H}(z_{v})\}$$

Разделив (7) на (8) получим:

$$_H^M X H_H(z_v) =_H^M Y H_H(z_h)$$

Отсюда получим:

$$_{HH}^{M-1}\Phi\downarrow_{2}\{\frac{\sqrt{2}}{4}[_{H}^{M}XH_{H}(z_{v})+_{H}^{M}YH_{H}(z_{h})]$$

HH, m > 1:

$$\begin{split} & \stackrel{M^{-m}}{HH} \Phi = \downarrow_{2^m} \{^M \Phi H_H(z_v^{2^{m-1}}) H_H(z_v^{2^{m-1}}) \prod_{k=0}^{m-2} H_L(z_h^{2^k}) \prod_{k=0}^{m-2} H_L(z_v^{2^k}) \} = \\ = \downarrow_{2^m} \{^M \Phi \sqrt{2}^{m-1} H_H(z_h) \prod_{k=0}^{m-2} H_L(z_h^{2^k}) \prod_{k=0}^{m-2} H_L(z_h^{2^k}) H_H(z_v^{2^{m-1}}) H_L(z_v) \prod_{k=1}^{m-2} H_L(z_v^{2^k}) = \} \\ = \sqrt{2}^{m-1} \downarrow_{2^m} \{ \stackrel{M}{F} X \prod_{k=0}^{m-2} H_L^2(z_h^{2^k}) H_H(z_v^{2^{m-1}}) \prod_{k=0}^{m-2} H_L(z_v^{2^k}) \} \end{split}$$

4 Программная реализация

Программная реализация представляет из себя две группы модулей на языке Python 3.6.

Первая группа реализует сам метод и предоставляет функции *analyze* и *syntesis*. Вторая группа отвечает за реализацию интерфейса для дальнейшего изучения метода.

Рассмотрим подробнее структуру первой группы модулей.

4.1 Программная реализация метода

Список группы модулей, реализующих сам метод:

- data.py
- gradients.py
- measurements.py
- util.py
- decomposition.py

 ${f data.py}$ - модуль отвечает за задание начальных данных. Предоставляет функцию ${\it get_plane}$, которая задает сетку размера $2^M \times 2^M$ для дальнейших вычислений.

gradients.py - модуль предоставляет функции для нахождения градиента от заранее известной матрицы. В модуле находятся функции: $Fried_gradient_model$ и $Hudgin_gradien_model$, которые возвращают градиенты по геометриям Фрайда и Хаджина.

measurements.py - модуль предоставляет функции для нахождения метрик схожести изображений. Модуль включает функцию *mse*, которая находит средне квадратичное отклонение двух изображений.

util.py - служебный модуль, используемый другими. Предоставляет функции для свертки сигналов, работы с *z*-преобразованиями. Включает в себя функции:

- ullet downsample реализует операцию \downarrow_k с одномерными и двумерными массивами
- convolve 2d осуществляет свертку двумерного массива с фильтром либо по строкам, либо по столбцам;
- GetH h возвращает вектор, соответствующий z-преобразованию $H_H(z^k)$, для $k \ge 1$.
- GetH l возвращает вектор, соответствующий z-преобразованию $H_L(z^k)$, для $k \geq 1$.

decomposition.py - реализуется разложение двумерного сигнала по вейвлетам Хаара. Основными функциями являются analyze и syntesis - именно они реализуют прямое и обратное преобразования Хаара. Ввиду того, что уже существует крупная библиотека, реализующая вейвлет преобразования **pywt** (**PyWawelets**), результат функции analyze не конфликтует с результатом библиотечной функции pywt.dwt2, реализующей прямые вейвлет преобразования двумерных сигналов. В виду того, что в методе используется стандартный алгоритм обратного преобразования Хаара функция syntesis, реализующая его является оберткой над библиотечной функций pywt.idwt2.

4.2 Программная реализация интерфейса для исследования метода

Интерфейс для исследования метода реализуется двумя модулями research.py и view.py.

 ${\bf research.py}$ используя модули из другой группы, предоставляет функции, которые возвращают информацию необходимую для исследования метода. Модуль предоставляет функцию ${\it get}~{\it all}.$

```
get all(func, grad x, grad y, x s, x e, y s, y e, M)
```

Функция принимает в качестве параметров три функции: исходную функцию и два её градиента в явном виде, затем функция принимает параметры для задания сетки , на которой будут заданы функция и ее градиенты, значение LL[0]. Функция вычисляет следующий набор данных:

- исходную функцию
- исходные градиенты
- ${}^{M}_{H}X, {}^{M}_{H}Y$ составляющие от градиента
- ${}^{M}_{F}X$, ${}^{M}_{F}Y$ составляющие от градиента
- LL, LH, HL, HH квадранты разложения
- ullet среднеквадратичное отклонение исходной функции от восстановленной (LL[M])
- размерность матрицы, М

view.py отвечает за визуализацию и детализацию информации полученной из research.py. Предоставляет функцию show~all.

```
show all(func, grad x, grad y, x s, x e, y s, y e, M)
```

Принимает те же параметры, что и get_all ,вызывая ее внутри себя. Выводит изображения исходного и восстановленного сигналов. А также печатает следующие данные:

- *mse* от градиентов Хаджина и Фрайда с настоящим градиентом
- LL[0] исходного изображения
- LL[0] восстановленного изображения
- Максимум исходного изображения
- Максимум восстановленного изображения
- Минимум исходного изображения

- Минимум восстановленного изображения
- размерность изображения

Под *mse* и среднеквадратичным отклонением подразумевается:

$$\sqrt{\frac{\sum\limits_{k=1}^{n}(X_k-Y_k)^2}{n\ S}}$$

S - "площадь" матрицы X или Y, произведение количества строк на количество столбцов.

5 Результаты вычислительных экспериментов

Проверка работоспособности метода осуществляется с помощью разработанного интерфейса, функции $view.show\ all\$ на полиномах Цернике.

Рис. 1: Полином $R_2^2(x,y) = x^2 + y^2$

```
res4 = view.show\_all(lambda \ x,y:np.sqrt(x**2 + y**2),lambda \ x,y: \ x/(np.sqrt(x**2 + y**2)), \\ lambda \ x,y: \ y/(np.sqrt(x**2 + y**2)), \ -1,1,-1,1,8 \ ,1)
MSE = 0.141349800341
M = 8
П= 0
Погрешность X_H= 0.00274277930801
Погрешность Y_H= 0.00274277930801
Погрешность X_F= 0.00275122153648
Погрешность Y_F= 0.00275122153648
LL[0] исходного изображения [[ 196.65714983]]
LL[0] восстновленного изображения 1.0
Максимум исходного изображения 1.41421356237
Максимум восстновленного изображения 83.077240418
Минимум исходного изображения 0.00554593553872
Минимум восстновленного изображения -97.9615391337
                                            восстановленное
                                                                                                                                                                       исходное
    50
                                                                                                                         50
  100
                                                                                                                        100
  150
                                                                                                                        150
   200
                                                                                                                        200
   250
                                                                                                                        250
```

Рис. 2: Полином $R_1^1(x,y) = \sqrt{x^2 + y^2}$

```
res5 = view.show_all(lambda x,y:2*(x**2 + y**2) - 1,lambda x,y: 4*x, lambda x,y: 4*y, -1,1,-1,1,8,88 )
MSE = 0.420003376637
M = 8
Погрешность X_H= 0.0089680179661
Погрешность Y_H= 0.0089680179661
Погрешность X_F= 0.00898558510922
Погрешность Y_F= 0.00898558510922
LL[0] исходного изображения [[ 88.01045752]]
LL[0] восстновленного изображения 88.0
Максимум исходного изображения 3.0
Максимум восстновленного изображения 343.010416667
Минимум исходного изображения -0.999938485198
Минимум восстновленного изображения -170.997426471
                                 восстановленное
                                                                                                                                исходное
   50
                                                                                             50
  100
                                                                                            100
  150
                                                                                            150
  250
                                                                                            250
                                                 150
```

Рис. 3: Полином $R_2^0(x,y) = 2(x^2 + y^2) - 1$

```
res6 = view.show_all(lambda x,y:(x**2 + y**2)*np.sqrt(x**2 + y**2),
lambda x,y: 2*x*np.sqrt(x**2 + y**2) + x**3/(np.sqrt(x**2 + y**2)) + x*y**2/np.sqrt(x**2 + y**2),
lambda x,y:2*y*np.sqrt(x**2 + y**2) + y**3/(np.sqrt(x**2 + y**2)) + y*x**2/np.sqrt(x**2 + y**2),
                               -1,1,-1,1,8)
MSE = 0.270378428597
M = 8
Погрешность X_H= 0.00650719267634
Погрешность Y_H= 0.00650719267634
Погрешность X_F= 0.00651086342343
Погрешность Y_F= 0.00651086342343
LL[0] исходного изображения [[ 162.45008259]]
LL[0] восстновленного изображения 1.0
Максимум исходного изображения 2.82842712475
Максимум восстновленного изображения 283.970569152
Минимум исходного изображения 1.70578563282e-07
Минимум восстновленного изображения -80.9072843798
                                 восстановленное
                                                                                                                                  исходное
    0
                                                                                               0
   50
                                                                                              50
 100
                                                                                             100
 150
                                                                                             150
  200
                                                                                             200
  250
                                                                                             250
                                  100
                                                                                                                              100
                    50
                                                 150
                                                                200
                                                                                                                50
                                                                                                                                             150
                                                                                                                                                           200
                                                                               250
                                                                                                                                                                          250
```

Рис. 4: Полином $R_3^3(x,y)=(x^2+y^2)\sqrt{x^2+y^2}$

Рис. 5: $x^2 - y^2$

Заключение

В ходе работы удалось реализовать метод и проверить его работоспособность. Однако, реализовать именно тот алгоритм, который был предложен в [1] и [2] не удалось. Был использован менее эффективный по производительности алгоритм на основе формул для прямого преобразования. Были написаны модули для работы и исследования метода, с обособленной логикой, что позволит упростить дальнейшую разработку. Удалось инкапсулировать неоднозначную работу со сверткой сигналов и z-преобразованиями, и избежать конфликтов с модулем руwt, что может может в дальнейшем при тестировании.

Из полученных программой результатов можно сделать вывод, что точность восстановления зависит от точности аппроксимации производной моделями Хаджина и Фрайда. Однако это требует дополнительных исследований.

Стоит отметить, что метод обладает ресурсом параллелизма.

Список литературы

- [1] IEEE Pan Agathoklis Senior Member IEEE Peter J. Hampton, Student Member and Colin Bradley. A new wave-front reconstruction method for adaptive optics systems using wavelets. *IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING*, 2(5):781–792, 10 2008.
- [2] Panajotis Agathoklis Ioana S. Sevcenco, Peter J. Hampton. A wavelet based method for image reconstruction from gradient data with applications. *Springer Science+Business Media New York*, pages 717–737, 9 2013.
- [3] D. T. Gavel L. A. Poyneer and J. M. Brase. Fast wavefront recon-struction in large adaptive optics systems with the fourier transform. *J. Opt. Soc. Amer. A*, 2002.