Supplemental Material for "Loss-based Attention for Deep Multiple Instance Learning"

Xiaoshuang Shi¹, Fuyong Xing², Yuanpu Xie¹, Zizhao Zhang¹, Lei Cui³, Lin Yang¹

 University of Florida, Gainesville, FL, USA
 University of Colorado Denver, Denver, CO, USA
 Northwestern University, Xi'an, China {xsshi2015, shampool, zizhaozhang}@ufl.edu, fuyong.xing@ucdenver.edu, cuilei1989@163.com, lin.yang@bme.ufl.edu

Theorem 1. In one bag, when the weight of one instance is close to 1, e.g. $\alpha_{i,j} \to 1$, the probability of a bag being the k-th class is approximately equal to that of this instance belonging to the k-th class.

Proof. Based on Eq. (5), when $\alpha_{i,j} \to 1$, it is easy to obtain $\alpha_{i,t} \to 0$ ($1 \le t \le n_i$ and $t \ne j$) and $\mathbf{h}_{i,t}^{L-1} \to 0$. Hence, $\mathbf{h}_{i,j}^{L-1} \approx \mathbf{h}_{i,j}^{L-1}$, which determines the \mathbf{z}_i . Thus, the bag and instance prediction probabilities are approximate. Therefore, Theorem 1 is proved.

Theorem 2. Suppose that the *i*-th bag belongs to the *k*-th class and contains n_i instances, $q_{i,t,k} = \frac{\exp(z_{i,t,k})}{\sum_{c=0}^{K-1} \exp(z_{i,t,c})}$ denotes the estimated class probability of the *t*-th instance belonging to the *k*-th class. For the main objective function L_1 in Eq. (6), there exists:

$$L_1 \ge \frac{\sum_{c=0, c \ne k}^{K-1} \prod_{t=1}^{n_i} (\frac{q_{i,t,c}}{q_{i,t,k}})^{\alpha_{i,t}}}{1 + \sum_{c=0, c \ne k}^{K-1} \prod_{t=1}^{n_i} (\frac{q_{i,t,c}}{q_{i,t}})^{\alpha_{i,t}}}.$$
 (8)

Proof. Because Eq. (5) contains $\mathbf{h}_{i,j}^{L-1} \leftarrow \alpha_{i,j} \mathbf{h}_{i,j}^{L-1}$ and $\mathbf{h}_{i}^{L-1} = \sum_{t=1}^{n_i} \mathbf{h}_{i,t}^{L-1}$, combining these two terms, it has $\mathbf{h}_{i}^{L-1} = \sum_{t=1}^{n_i} \alpha_{i,t} \mathbf{h}_{i,t}^{L-1}$. Then in Eq. (6), a lower bound of the main objective can be obtained by:

main objective can be obtained by:
$$L_{1} = -log \frac{exp(z_{i,k})}{\sum_{\substack{c=0\\c=1}}^{K-1} exp(z_{i,c})}$$

$$= -log \frac{exp(\sum_{\substack{t=1\\c=1}}^{K-1} \alpha_{i,t}z_{i,t,k})}{\sum_{\substack{c=0\\c=1}}^{K-1} exp(\sum_{\substack{t=1\\c=1}}^{n} \alpha_{i,t}z_{i,t,k})}$$

$$= -log \frac{\prod_{\substack{t=1\\c=1}}^{n} exp(\alpha_{i,t}z_{i,t,k})}{\sum_{\substack{t=1\\c=1\\c=1}}^{K-1} \prod_{\substack{t=1\\c=1}}^{n} exp(\alpha_{i,t}z_{i,t,c})}$$

$$= -log \frac{\prod_{\substack{t=1\\c=1\\c=0}}^{K-1} \prod_{\substack{t=1\\c=1\\c=0}}^{n} exp(z_{i,t,c}))^{\alpha_{i,t}}}{\prod_{\substack{t=1\\c=0\\c=0}}^{K-1} \prod_{\substack{t=1\\c=1\\c=0}}^{n} exp(z_{i,t,c}))^{\alpha_{i,t}}}$$

$$= -log \frac{\prod_{\substack{t=1\\c=0}}^{K-1} \sum_{\substack{t=0\\c=0}}^{n} (exp(z_{i,t,c}))^{\alpha_{i,t}}}{\prod_{\substack{t=1\\c=0\\c=0}}^{K-1} \sum_{\substack{t=1\\c=0}}^{n} (exp(z_{i,t,c}))^{\alpha_{i,t}}}$$

$$= -log \frac{\prod_{\substack{t=1\\c=0\\c=0}}^{K-1} \prod_{\substack{t=1\\c=0}}^{K-1} (exp(z_{i,t,c}))^{\alpha_{i,t}}}{\prod_{\substack{t=1\\c=0\\c=0}}^{K-1} \prod_{\substack{t=1\\c=0}}^{K-1} (exp(z_{i,t,c}))^{\alpha_{i,t}}}$$

$$= -log (1 - \frac{\sum_{\substack{K-1\\c=0,c\neq k}}^{K-1} \prod_{\substack{t=1\\c=0,c\neq k}}^{n} \prod_{\substack{t=1\\c=0,c\neq k}}^{q} \prod_{\substack{t=1\\c=0\\q}i_{t,t,k}}^{q} \alpha_{i,t}}{\prod_{t=1}^{k} \sum_{\substack{t=1\\c=0,c\neq k}}^{q} \prod_{\substack{t=1\\c=0\\q}i_{t,t,k}}^{q} \alpha_{i,t}}}$$

$$\geq \frac{\sum_{\substack{c=0\\c=0,c\neq k}}^{K-1} \prod_{\substack{t=1\\c=0\\c\neq k}}^{n} \prod_{\substack{t=1\\c=0\\q}i_{t,t,k}}^{q} \alpha_{i,t,c}}{\prod_{t=1}^{n} (\frac{q}i_{t,t,c})^{\alpha_{i,t}}}{q} \alpha_{i,t}}}}$$

Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

where the sixth equality is derived from $q_{i,t,k}=\frac{exp(z_{i,t,k})}{\sum_{c=0}^{K-1}exp(z_{i,t,c})}$ and the eighth inequality is derived from $log(1+a) \leq a$ for all a>-1.

Therefore, Theorem 2 is proved. \Box

Theorem 3. Suppose that the *i*-th bag belongs to the *k*-th class and contains n_i instances, for the regularization term L_2 in Eq. (6), there exists:

$$L_2 \ge \lambda \frac{\sum_{t=1}^{n_i} \sum_{c=0, c \neq k}^{K-1} exp(z_{i,t,c})}{\sum_{t=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,t,c})}.$$
 (9)

Proof. For the regularization term L_2 , its lower bound can be calculated as follows:

$$L_{2} = -\lambda \sum_{t=1}^{n_{i}} \alpha_{i,t} log \frac{exp(z_{i,t,k})}{\sum_{c=0}^{K-1} exp(z_{i,t,c})}$$

$$= -\lambda \frac{\sum_{t=1}^{n_{i}} \sum_{c=0}^{K-1} exp(z_{i,t,c}) log(1 - \frac{\sum_{c=0,c\neq k}^{K-1} exp(z_{i,t,c})}{\sum_{c=0}^{K-1} exp(z_{i,t,c})})}{\sum_{j=1}^{n_{i}} \sum_{c=0}^{K-1} exp(z_{i,j,c})}$$

$$\geq \lambda \frac{\sum_{t=1}^{n_{i}} \sum_{c=0}^{K-1} exp(z_{i,t,c}) \frac{\sum_{c=0,c\neq k}^{K-1} exp(z_{i,t,c})}{\sum_{c=0}^{K-1} exp(z_{i,t,c})}}{\sum_{c=0}^{n_{i}} \sum_{c=0}^{K-1} exp(z_{i,j,c})}$$

$$= \lambda \frac{\sum_{t=1}^{n_{i}} \sum_{c=0}^{K-1} exp(z_{i,j,c})}{\sum_{t=1}^{n_{i}} \sum_{c=0}^{K-1} exp(z_{i,t,c})},$$
(6)

where the second equality is derived from $\alpha_{i,t} \stackrel{\sum_{c=0}^{K-1} exp(z_{i,t,c})}{\sum_{j=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,j,c})}$ and the third inequality is based on $log(1+a) \leq a$ for all a > -1. Therefore, Theorem 3 is proved.

Theorem 4. Suppose that $\alpha_{i,j}$ is the j-th instance weight in the i-th bag, which belongs to the k-th class, if $\alpha_{i,j} > \frac{2L_2}{\lambda}$, the j-th instance will be predicted to the k-th class.

 $\begin{array}{lll} \textit{Proof.} \ \, \text{Because} \ \, L_2 & \geq \lambda \frac{\sum_{t=1}^{n_i} \sum_{c=0, \ c \neq k}^{K-1} exp(z_{i,t,c})}{\sum_{t=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,t,c})}, \ \, \text{it has} \\ \frac{L_2}{\lambda} & \geq \frac{\sum_{c=0, \ c \neq k}^{K-1} exp(z_{i,j,c})}{\sum_{t=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,t,c})} \\ \text{Additionally,} \quad \, \alpha_{i,j} & = \frac{\sum_{c=0}^{K-1} exp(z_{i,j,c})}{\sum_{t=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,j,c})} \\ \frac{\sum_{c=0, c \neq k}^{K-1} exp(z_{i,j,c})}{\sum_{t=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,t,c})} & = \frac{\sum_{c=0, c \neq k}^{K-1} exp(z_{i,t,c})}{\sum_{t=1}^{n_i} \sum_{c=0}^{K-1} exp(z_{i,t,c})} \\ \frac{2L_2}{\lambda}. \ \, \text{They suggest} \quad z_{i,j,k} & > \sum_{c=0, c \neq k}^{K-1} z_{i,j,c} \\ \frac{2L_2}{\lambda}. \ \, \text{They suggest} \quad z_{i,j,k}, \ \, \text{and thus the } j\text{-th instance will be} \end{array}$

predicted to the k-th class. Therefore, Theorem 4 is proved. \Box

MIL datasets classification

Table A1 shows the detailed information about features, instances and bags in each MIL dataset. In Tables A2 and A3, we list the architectures of the embedding-based and instance-based models for classical MIL datasets, respectively. These architectures are on the basis of the model in (Pappas and Popescu-Belis 2017). We utilize 'fc' to denote the fully-connected layer and adopt 'mil-max'/ 'mil-mean' to represent the max or mean pooling operator for multiple instance learning, and provide a number of output hidden units after a dash. The ReLU non-linearity is used in the networks. Table A4 provides the parameter λ , ramp-up function $\omega(m)$, the optimizer, hyperparameters and stopping criterion used in our experiments. Note that we utilize the same stopping criterion as the previous work (Pappas and Popescu-Belis 2017) (Ilse, Tomczak, and Welling 2018).

Table A1: Classic MIL datasets

Dataset	# of bags	# of instances	# of features			
MUSK1	92	476	166			
MUSK2	102	6598	166			
TIGER	200	1220	230			
FOX	200	1302	230			
ELEPHANT	200	1391	230			

Table A2: Classical MIL datasets: The embedding-based model architecture.

Layer	Туре
1	fc-256+ReLU
2	dropout
3	fc-128+ReLU
4	dropout
5	fc-64+ReLU
6	dropout
7	mil-max/mil-mean/mil-attention
8	fc-2 + softmax

Table A3: Classical MIL datasets: The instance-based model architecture.

Layer	Type
1	fc-256+ReLU
2	dropout
3	fc-128+ReLU
4	dropout
5	fc-64+ReLU
6	dropout
7	fc-2 + softmax
8	mil-max/mil-mean

MNIST-based MIL datasets classification

Table A8 shows the architecture of the used models for the MNIST-bags dataset. The architecture is based on (LeCun

et al. 1998). Table A9 provides the parameter λ , ramp-up function $\omega(m)$, the optimizer, hyperparameters and stopping criterion used in our binary and multi-class classification experiments.

Table A8: MNIST-based MIL datasets: The used model architecture.

Layer	Type
1	conv(5,1,0)-20+ReLU
2	maxpool(2,2)
3	conv(5,1,0)-50+ReLU
4	maxpool(2,2)
5	fc-500+ReLU
6	dropout
7	mil-attention
8	fc-2 + softmax

CIFAR-10-based MIL datasets classification

Table A10 shows the architecture of the used models for the CIFAR10-bags dataset. The architecture is on the basis of (LeCun et al. 1998). Table A11 provides the parameter λ , ramp-up function $\omega(m)$, the optimizer and hyperparameters used in our experiments. Here, $\omega(m)$ is a ramp-up Gaussian function $e^{-5\|\mathbf{1}-T_1\|_2^2}$, where T_1 linearly advances from 0 to 1 during the first 40 epochs and then keeps unchanged. We utilize the optimizer Adam (Kingma and Ba 2014) to update the network parameters, and initialize Adam momentum parameters $\beta_1 = 0.9$ and $\beta_2 = 0.99$. The learning rate using $\omega(m)$ ramps up to the maximum 0.001 during the first 40 epochs and keeps unchanged from 40 to 70 epochs, but gradually decreases to 0 using a Gaussian ramp-down function $e^{-7.5\|1-T_2\|^2}$, where T_2 linearly decreases from 1 to 0 during the last 30 epochs. β_1 keeps unchanged during the first 70 epochs but decreases to 0.5 using the Gaussian rampdown function during the last 30 epochs. β_2 becomes 0.999 after the first 40 epochs.

Image classification and localization

Table A12 shows the architecture of the used models for image classification and localization on CIFAR-10 and tiny ImageNet databases. The architecture is based on ResNet18 (He et al. 2016). Table A13 provides the parameter λ , rampup function $\omega(m)$, the optimizer and hyperparameters used in our experiments. Similar to (Laine and Aila 2016), $\omega(m)$ is a ramp-up Gaussian function $500*e^{-5\|1-T_1\|_2^2}$, where T_1 linearly advances from 0 to 1 during the first 80 epochs and then keeps unchanged. We utilize the optimizer Adam (Kingma and Ba 2014) to update the network parameters, and initialize Adam momentum parameters $\beta_1 = 0.9$ and $\beta_2 = 0.99$. The learning rate using $\omega(m)$ ramps up to the maximum 0.003 during the first 80 epochs and keeps unchanged from 80 to 150 epochs, but gradually decreases to 0 using a Gaussian ramp-down function $e^{-12.5\|1-T_2\|^2}$, where T_2 linearly decreases from 1 to 0 during the last 50 epochs. β_1 keeps unchanged during the first 80 epochs but decreases

Table A4: Classical MIL datasets: The optimization procedure details.

Experiment	λ	$\omega(m)$	Optimizer	Learning rate	β_1, β_2	Weight decay	Epochs	Stopping criteria
All	0.1	0	Adam	0.0001	(0.9, 0.999)	0.0005	100	lowest validation error and loss

Table A9: MNIST-based MIL datasets: The optimization procedure details.

Experiment	λ	$\omega(m)$	Optimizer	Learning rate	β_1, β_2	Weight decay	Epochs	Stopping criteria
Binary	2.0	0	Adam	0.0005	(0.9, 0.999)	0.0001	30	lowest validation error and loss
Multi-class	2.0	0	Adam	0.0005	(0.9, 0.999)	0.0001	50	lowest validation error and loss

Table A11: CIFAR-10-based MIL datasets: The optimization procedure details.

λ	$\omega(m)$	Optimizer	Learning rate	β_1, β_2	Epochs
0.01	$e^{-5\ 1-T\ _2^2}$	Adam	0.001	(0.9, 0.99)	100

Table A13: Image classification and localization: The optimization procedure details.

λ	$\omega(m)$	Optimizer	Learning rate	β_1, β_2	Epochs
1	$400 * e^{-5\ 1-T\ _2^2}$	Adam	0.003	(0.9, 0.99)	200

Table A10: CIFAR-10-based MIL datasets: The used model architecture.

Layer	Type
1	conv(5,1,0)-20+ReLU
2	maxpool(2,2)
3	conv(5,1,0)-50+ReLU
4	maxpool(2,2)
5	fc-500+ReLU
6	dropout
7	fc-500 + tanh
8	mil-attention
9	fc-2 + softmax

to 0.5 using the Gaussian ramp-down function during the last 50 epochs. β_2 becomes 0.999 after the first 80 epochs.

References

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In *CVPR*, 770–778.

Ilse, M.; Tomczak, J. M.; and Welling, M. 2018. Attention-based deep multiple instance learning. In *ICML*, 1884–1890.

Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Laine, S., and Aila, T. 2016. Temporal ensembling for semi-supervised learning. *arXiv preprint arXiv:1610.02242*.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. *Proceedings of the IEEE* 86(11):2278–2324.

Pappas, N., and Popescu-Belis, A. 2017. Explicit document modeling through weighted multiple-instance learning. *Journal of Artificial Intelligence Research* 58:591–626.

Table A12: Image classification and localization: The used model architecture.

ecture.	
Layer	Type
1	conv(3, 1, 1)-64+ReLU
2	maxpool(3, 2)
3	conv(3, 1, 1)-64+ReLU
4	conv(3, 1, 1)-64+ReLU
5	conv(3, 1, 1)-64+ReLU
6	conv(3, 1, 1)-64+ReLU
7	conv(3, 2, 1)-128+ReLU
8	conv(3, 1, 1)-128+ReLU
9	conv(3, 1, 1)-128+ReLU
10	conv(3, 1, 1)-128+ReLU
11	conv(3, 2, 1)-256+ReLU
12	conv(3, 1, 1)-256+ReLU
13	conv(3, 1, 1)-256+ReLU
14	conv(3, 1, 1)-256+ReLU
15	conv(3, 2, 1)-512+ReLU
16	conv(3, 1, 1)-512+ReLU
17	conv(3, 1, 1)-512+ReLU
18	conv(3, 1, 1)-512+ReLU
19	mil-attention
20	fc-m+softmax