SEMAINE DU 23/09

1 Cours

Intégrales impropres

Convergence/divergence Fonctions continues par morceaux. Nature d'une intégrale impropre. Propriétés générales : linéarité, positivité, relation de Chasles, l'intégrale d'une fonction continue et positive n'est nulle que si cette fonction est nulle.

Intégrabilité Définition. La convergence absolue implique la convergence. Inégalité triangulaire. Les fonctions intégrables sur un intervalle forment un espace vectoriel. Intégrabilité des fonctions $x \mapsto 1/x^{\alpha}$ sur $[a, +\infty[, x \mapsto 1/(x-a)^{\alpha} \text{ sur }]a, b], x \mapsto 1/(b-x)^{\alpha}$ sur [a, b] et $x \mapsto e^{\alpha x}$ sur $[a, +\infty[$. Intégrabilité par comparaison (majoration, domination, négligeabilité, équivalence).

Techniques de calcul Changement de variable. Intégration par parties.

Intégration des relations de comparaison La fonction de référence doit être de signe constant au voisinage du point considéré.

2 Méthodes à maîtriser

- Pour déterminer la nature d'une intégrale impropre, on peut :
 - utiliser une primitive de l'intégrande et utiliser sa limite;
 - comparer l'intégrande à une fonction du type $x \mapsto \frac{1}{x^{\alpha}}$ au moyen de \leq , o, o, \sim ;
 - utiliser un changement de variable ou une intégration par parties (en plus de la «formule», ces deux résultats peuvent renseigner sur la **nature** d'une intégrale).
- Pour calculer la valeur d'une intégrale impropre (sous réserve de convergence), on peut :
 - utiliser une primitive de l'intégrande;
 - utiliser un changement de variable;
 - utiliser une intégration par parties.
- Pour déterminer des relations de récurrence sur des suites d'intégrale, on utilise bien souvent une intégration par parties.
- Pour l'intégration de relations de comparaison :
 - dans le cas de convergence, on a des résultats sur le «reste»;
 - dans le cas de divergence, on a des résultats sur la «somme partielle».

De plus,

- le «reste» s'écrit en conservant la borne «problématique» et en faisant varier l'autre borne ;
- la «somme partielle» s'écrit en conservant la borne **non** «problématique» et en faisant varier l'autre borne.

3 Questions de cours

Fonction Γ d'Euler

- 1. Montrer que $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est définie sur \mathbb{R}_+^* .
- 2. Justifier que pour tout $x \in D$, $\Gamma(x+1) = x\Gamma(x)$.
- 3. Déterminer la valeur de $\Gamma(n)$ pour tout $n \in \mathbb{N}^*$.

Fonction B d'Euler

- 1. Montrer que B: $(x,y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1} dt$ est définie sur $(\mathbb{R}_+^*)^2$.
- 2. Justifier que pour $(x, y) \in (\mathbb{R}_+^*)^2$, B(x, y) = B(y, x).
- 3. Justifier que pour $(x, y) \in (\mathbb{R}_+^*)^2$, $B(x + 1, y) = \frac{x}{x + y}B(x, y)$.
- 4. Déterminer la valeur de B(n, p) pour $(n, p) \in \mathbb{N}^*$.

Convergence de l'intégrale de Dirichlet A l'aide d'une intégration par parties, montrer que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.

Non convergence absolue de l'intégrale de Dirichlet Montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt$ ne converge pas absolument i.e. que $t \mapsto \frac{\sin t}{t}$ n'est pas intégrable sur \mathbb{R}_+^* .