Coincide con la media.	
●C.	
Coincide con la mediana.	

La risposta corretta è: Il 5% dei dati minore o uguale a $q_{0.5}$.

Domanda 2

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

La percentuale di studenti promossi in una scuola \tilde{A} " del 90%. Qual \tilde{A} " la probabilit \tilde{A} che in una classe di 27 studenti ce ne siano 2 bocciati?

Domanda 2 Scegli un'alternativa:	\neg
\circ	
a.	
0.26.	
b.	
0.25.	
c.	
Nessuna delle precedenti.	

Feedback

La risposta corretta è: 0.25.

Domanda 3

Risposta errata
Punteggio ottenuto 0,00 su 1,00
Contrassegna domanda

Testo della domanda

Si consideri un dado lanciato 2 volte. Indicati con A="La somma dei due lanci è 8" e B="Al primo lancio esce 2", quale delle seguenti affermazioni è vera?

Domanda 3 Scegli un'alternativa: \bigcirc a. $P(B|A) < P(A|B) \ .$ \bigcirc b. $P(B|A) = P(A|B) \ .$ \bigcirc c. $P(B|A) > P(A|B) \ .$

Feedback

La risposta corretta è: P(B|A) > P(A|B) .

Domanda 4

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

Il grafico qqplot serve per:

Domanda 4 Scegli un'alternativa:

ledow

a.

verificare che i residui hanno distribuzione normale.

0

b.

nessuna delle precedenti.

 \bigcirc

C.

verificare che la retta è un buon modello.

Feedback

La risposta corretta è: verificare che i residui hanno distribuzione normale.

Domanda 5

Risposta corretta Punteggio ottenuto 1,00 su 1,00 Contrassegna domanda

Testo della domanda

Data una funzione $f(x,y)=\log y+e^{x}-xy$, con y>0, quanto vale \nabla f(0,1)?

Feedback

La risposta corretta è: (0,1)

Domanda 6

Risposta errata
Punteggio ottenuto 0,00 su 1,00

Contrassegna domanda

Testo della domanda

Dato il SRS(7) $\{100, 100, 100, 0, 100, 100, 100\}$, la mediana $\tilde{\mathbf{A}}$:

— Domanda 6. Scogli un'altornativa: ————————————————————————————————————
Domanda 6 Scegli un'alternativa:
0
a.
100
b.
0
C.
- C.
Nessuno dei precedenti.
14000uno doi prododonti.

La risposta corretta è: 100

Domanda 7

Risposta corretta Punteggio ottenuto 1,00 su 1,00 Contrassegna domanda

Testo della domanda

Si consideri il lancio di due dadi. Posto $\{$ \text{it A="escono due 4"}, quanto vale P(A)?

-Domanda 7 Scegli un'alternativa:

 \odot

a.

$$P(A) = \frac{1}{36} .$$

 \circ

b.

$$P(A) = \frac{2}{6}$$
.

 \bigcirc

C.

$$P(A) = \frac{1}{6}.$$

Feedback

La risposta corretta è: $P(A)=rac{1}{36}$.

Domanda 8

Risposta errata Punteggio ottenuto 0,00 su 1,00 Contrassegna domanda

Testo della domanda

Generare un campione casuale di 100 elementi da una distribuzione normale con parametri $\mu=1.5$ e $\sigma=1.5$, utilizzando come seme generatore 100. Stimare con il metodo MLE i valori di μ e σ .

{ N.B. Utilizzare come valori iniziale $\mu_0=1$, $\sigma_0=1$ e come metodo per l'ottimizzazione method="Nelder-Mead"}.

-Domanda 8 Scegli un'alternativa:

a.

$$\mu = 2$$
, $\sigma = 1.5$.

left

b.

$$\mu=1.45$$
 , $\sigma=1.10$.

0

C.

$$\mu = 1.34$$
 , $\sigma = 1.45$.

Feedback

La risposta corretta è: $\mu=1.34$, $\sigma=1.45$.

Domanda 9

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

In un test d'ipotesi sulla media, $H_0: \mu=\mu_0$, $H_a: \mu\neq\mu_0$ e p-value=0.3. Con quale dei seguenti valori del p-value rigetto l'ipotesi nulla?

-Domanda 9 Scegli un'alternativa:

 \bigcirc

a.

p - value = 0.1.

0

b.

Nessuno dei precedenti.

•

C.

p - value = 0.01.

Feedback

La risposta corretta è: p - value = 0.01.

Domanda 10

Risposta errata

Punteggio ottenuto 0,00 su 1,00 Contrassegna domanda

Testo della domanda

Il rumore di un segnale sonoro ha distribuzione normale con media $\,\mu=0\,$ e varianza $\,\sigma^2=0.25\,$. Qual $\,\tilde{\rm A}^{\cdot }$ la probabilit $\,\tilde{\rm A}\,$ che il rumore sia minore di 0.5?

Feedback

La risposta corretta è: 0.76

Domanda 11

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

Si consideri un SRS(50) estratto da una distribuzione normale con media $\,\mu=1.5\,$ e deviazione standard $\sigma^2=0.25\,$. Supponendo che la media campionaria calcolata sia $\,\overline{x}=4.5\,$, qual è l'intervallo di confidenza al 95% della media campionaria?

```
Domanda 11 Scegli un'alternativa:

○
a.

[1.41, 1.58].

○
b.

[1.38, 1.61].

●
c.
```

Nessuno dei precedenti.

Feedback

La risposta corretta è: Nessuno dei precedenti.

Domanda 12

Risposta errata Punteggio ottenuto 0,00 su 1,00 Contrassegna domanda

Testo della domanda

La media μ di una variabile aleatoria discreta X che assume i valori x_1,\dots,x_n , la cui PMF $\tilde{\mathsf{A}}^{\cdot\cdot}$ f_X , vale:

Domanda 12 Scegli un'alternativa:

 \circ

a.

$$\mu = \sum_{i=1}^n f_X(x_i)$$
 .

) b.

$$\mu = \sum_{i=1}^n x_i f_X(x_i)$$
 .

C.

$$\mu = \frac{1}{n} \sum_{i=1}^n x_i$$
 .

Feedback

La risposta corretta è: $\mu = \sum_{i=1}^n x_i f_X(x_i)$.

Domanda 13

Risposta errata Punteggio ottenuto 0,00 su 1,00 Contrassegna domanda

Testo della domanda

Quale delle seguenti affermazioni Ã" falsa?

-Domanda 13 Scegli un'alternativa:

a.

Negli algoritmi di ottimizzazione un criterio di arresto può essere dato da una tolleranza sul risultato fissata a priori.

0

b.

Negli algoritmi di ottimizzazione un criterio di arresto può essere dato dal numero massimo di iterazioni.

0

C.

Negli algoritmi di ottimizzazione non esiste un criterio di arresto.

Feedback

La risposta corretta è: Negli algoritmi di ottimizzazione non esiste un criterio di arresto.

Domanda 14

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

Data la funzione $f(x,y)=e^{x+y}-xy^2+x^2y$, quanto valgono le derivate $\partial_x f$ e $\partial_y f$?

-Domanda 14 Scegli un'alternativa:-

0

a.

$$\partial_x f = e^y - y^2 + 2xy$$
 e $\partial_y f = e^x - 2xy + x^2$.

b.

$$\partial_x f = e^{x+y} - y^2 + 2xy$$
 e $\partial_y f = e^{x+y} - 2xy + x^2$.

 \bigcirc

C.

$$\partial_x f = e^x - y^2 + 2xy$$
 e $\partial_y f = e^y - 2xy + x^2$.

Feedback

La risposta corretta è: $\partial_x f = e^{x+y} - y^2 + 2xy$ e $\partial_y f = e^{x+y} - 2xy + x^2$.

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Contrassegna domanda

Testo della domanda

Sia X_1,\ldots,X_n un campione di n elementi. Siano \overline{X} e S rispettivamente la media campionaria e la deviazione standard campionaria. Qual $\tilde{\mathsf{A}}$ la forma corretta della deviazione standard campionaria?

-Domanda 15 Scegli un'alternativa:

0

a.

$$S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X}^2 \right)}$$
.

0

b.

$$S=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$$
 .

c.

$$S = \sqrt{rac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2}$$
 .

Feedback

La risposta corretta è: $S = \sqrt{rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2}$.

Domanda 16

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

Si consideri il lancio di due monete. Qual è la cardinalità dell'evento A="Escono una testa e una croce"?

Domanda 16 Scegli un'alternativa:

0

a.

4.

0

b.

3.	
C.	
2.	

La risposta corretta è: 2.

Domanda 17

Risposta errata
Punteggio ottenuto 0,00 su 1,00
Contrassegna domanda

Testo della domanda

Sia $I_{0.05}$ l'intervallo di confidenza della media campionaria, ottenuto da un campione di 40 elementi. Quale delle seguenti affermazioni è vera?

Domanda 17 Scegli un'alternativa: \bigcirc a. La probabilità che la media esatta sia contenuta in $I_{0.05}$ è del $\frac{95}{40}\%$. \bigcirc b. La probabilità che la media esatta sia contenuta in $I_{0.05}$ è del 95%. \bigcirc c. La probabilità che la media esatta sia contenuta in $I_{0.05}$ è del 95%. \bigcirc c. La probabilità che la media esatta sia contenuta in $I_{0.05}$ è del 5%.

Feedback

La risposta corretta è: La probabilità che la media esatta sia contenuta in $I_{0.05}$ è del 95%.

Domanda 18

Risposta errata Punteggio ottenuto 0,00 su 1,00 Contrassegna domanda

Testo della domanda

La concentrazione di zuccheri in una bevanda non deve superare il 10%. Quale delle seguenti

istruzioni Ã" corretta per effettuare un test d'ipotesi?

Feedback

La risposta corretta è: Nessuna delle precedenti.

Domanda 19

Risposta corretta Punteggio ottenuto 1,00 su 1,00 Contrassegna domanda

Testo della domanda

I residui di un modello di regressione lineare definito da:

$$y_i = eta_0 + eta_1 x_i$$

sono definiti come:

Domanda 19 Scegli un'alternativa:	
a.	
$\Big \hspace{.1in} y_i - x_i .$	
b.	
$y_i - (eta_0 + eta_1 x_i)$.	
C.	
0.	
$igg eta_0 + eta_1 x_i$.	

La risposta corretta è: $y_i - (\beta_0 + \beta_1 x_i)$.

Domanda 20

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

Data una funzione $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sufficientemente regolare, quale delle seguenti affermazioni è falsa?

{N.B. Se $A\Rightarrow B$, A è condizione sufficiente affinchè valga B e B è condizione necessaria affinchè valga A.}

Domanda 20 Scegli un'alternativa:

 \bigcirc

a.

 x^* è un punto stazionario per f è una condizione necessaria affinchè x^* sia un punto di minimo per f.

 \odot

b.

 $\nabla f(x^*) = 0$ è una condizione sufficiente affinchè x^* sia un punto di minimo per f.

0

C.

 $abla f(x^*) = 0$ è una condizione necessaria affinchè x^* sia un punto di minimo per f.

Feedback

La risposta corretta è: $\nabla f(x^*)=0$ è una condizione sufficiente affinchè x^* sia un punto di minimo per f.

Domanda 21

Risposta errata
Punteggio ottenuto 0,00 su 1,00
Contrassegna domanda

Testo della domanda

Sia X una variabile aleatoria continua con supporto $\mathcal{S}_X=[a,b]$, come deviazione standard σ^2 e funzione di densità f_X . Quale delle seguenti affermazioni NON è corretta?

-Domanda 21 Scegli un'alternativa:

a.

$$\sigma^2 = \int_a^b f_X(x)(x-\mu^2) dx$$
 .

 \bigcirc

b.

Nessuna delle precedenti.

0

C.

$$\sigma^2 = \int_a^b f_X(x) (x-\mu)^2 dx$$
 .

Feedback

La risposta corretta è: $\sigma^2 = \int_a^b f_X(x) (x-\mu)^2 dx$.

Domanda 22

Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Contrassegna domanda

Testo della domanda

Lo stimatore non distorto della varianza di una distribuzione dato un SRS\(\square \) X_1, \ldots, X_n , la cui media stimata $\tilde{\mathsf{A}}$ ".

Domanda 22 Scegli un'alternativa:

a.

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})$$
 .

0

b.

$$\sigma^2 = rac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}^2
ight)$$
 .

0

C

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}).$$

Feedback

La risposta corretta è: $\sigma^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})$.