Introduction To Model Theory

Will Johnson

April 28, 2022

Contents

1	Back-and-forth Equivalence I				
2	Back-and-forth Equivalence II				
3	Connections to Back-and-Forth Technique				
4	Compactness 4.1 Ultraproducts				
5	Quantifier elimination 1				
6	Saturated Models 2				
7	Prime models 7.1 Omitting types theorem				
8	Heirs and definable types 8.1 Definable types 8.2 Heirs and strong heirs 8.3 Heirs and definable types 8.4 Types in ACF 8.5 1-types in DLO	26 26 27 29 30 33			
9	Stable Theories9.1 Strong heirs from ultrapowers	33 33 34 37			

		9.3.1	The dichotomy property	37	
		9.3.2	φ -types	37	
		9.3.3	Proof of Theorem 9.18	38	
		9.3.4	Remarks on the proof	39	
		9.3.5	Consequences of Theorem 9.18	40	
	9.4		'S	41	
	9.5				
		9.5.1	Coheir independence	41	
		9.5.2	Existence	42	
		9.5.3	"u" for "ultrafilter"	43	
		9.5.4	Symmetry	44	
		9.5.5	Finitely satisfiable types commute with definable types	45	
		9.5.6	Types commute in stable theories	46	
		9.5.7	Morley products and \bigcup^u	46	
	9.6	Invaria	ant types	48	
	9.7	Morley	y sequence	50	
	9.8		Property	52	
	9.9	Ramse	y's theorem and indiscernible sequences	54	
	_		10.1	58	
LU	10 Fundamental Order and Forking				
			ndamental order	58	
			ndamental order in stable theory	60	
			S	61 62	
		4 Theorem of the bound			
	10.5	Non-ic	orking extensions	63	
			g formulas and Lascar invariance	64 65	
	10.7	The an	chotomy property and the fundamental order	63	
11	Alge	braic c	losure and imaginaries	65	
			sorted logic	65	
			First approximation: many-sorted structures	65	
			Many-sorted languages	65	
	11.2		ble closure	66	
			raic closure	68	
			naries	69	
			ation of imaginaries	71	
				73	
Δ	Met	ric Spac	COC	73	

81

C Problems want to ask

1 Back-and-forth Equivalence I

Convention: Relations and functions are sets of pairs (x, y)

Definition 1.1. A **binary relation** is a pair (E, R) where E is a set and $R \subseteq E^2$. We call E the **universe** of the relation. For $a, b \in E$, write aEb if $(a, b) \in R$

We abbreviate (E, R) as R or E, if E or R is clear

Example 1.1.
$$(\mathbb{R}, <)$$
, $(\mathbb{R}, =)$, (\mathbb{R}, \ge) , $(\mathbb{Z}, <)$

Definition 1.2. A binary relation R is said to be

- **reflexive** if $aRa \ (\forall a \in E)$
- symmetric if $aRb \Rightarrow bRa \ (\forall a, b \in E)$
- transitive if $aRb \wedge bRc \Rightarrow aRc \ (\forall a, b, c \in E)$
- antisymmetric if $aRb \wedge bRa \Rightarrow a = b \ (\forall a, b \in E)$
- total if $aRb \lor bRa \ (\forall a, b \in E)$
- an equivalence relation if it's reflexive, symmetric and transitive
- a partial order if it's reflexive, antisymmetric and transitive
- a linear order if it's a total partial order

Example 1.2. = is an equivalence relation

- \subseteq is a partial order
- \leq is a linear order

Definition 1.3. An **isomorphism** from (E,R) to (E',R') is a bijection $f:E\to E'$ s.t. for any $a,b\in E$, $aRb\Leftrightarrow f(a)R'f(b)$. Two binary relations (E,R) and (E',R') are **isomorphic** (\cong) if there is an isomorphism between them

Example 1.3. $f:(\mathbb{Z},<) \to (2\mathbb{Z},>)$ and f(x)=-2x is an isomorphism. $x< y \Leftrightarrow -2x>-2y$

 \cong is an equivalence relation

Definition 1.4. A **local isomorphism** from R to R' is an isomorphism from a finite restriction of R to a finite restriction of R'. The set of local isomorphisms from R to R' is denoted $S_0(R,R')$. For $f \in S_0(R,R')$, $\mathrm{dom}(f)$ and $\mathrm{im}(f)$ denote the domain and range of f

Example 1.4. $(\mathbb{Z}, <)$ is a restriction of $(\mathbb{R}, <)$

Example 1.5. Suppose $R=R'=(\mathbb{Z},<)$, there is $f\in S_0(R,R')$ given by $\mathrm{dom}(f)=\{1,2,3\}$ and $\mathrm{im}(f)=\{10,20,30\}$ and f(1)=10,f(2)=20, f(3)=30

Definition 1.5. Let f, g be local isomorphisms from R to R'. Then f is a **restriction** of g if $f \subseteq g$ and f is an **extension** of g if $f \supseteq g$.

Example 1.6. $g: \{0, 1, 2, 3\} \rightarrow \{5, 10, 20, 30\}$, g extends f in the previous example

Definition 1.6. Let R,R' be binary relations with universe E,E'. A **Karpian family** for (R,R') is a set $K\subseteq S_0(R,R')$ satisfying the following two conditions for any $f\in K$

- 1. (**forth**) if $a \in E$ then there is $g \in K$ with $g \supseteq f$ and $a \in dom(g)$
- 2. **(back)** if $b \in E'$ then there is $g \in K$ with $g \supseteq f$ and $b \in \text{im}(g)$

R and R' are $\infty\text{-equivalent},$ write $R\sim_\infty R',$ if there is a non-empty Karpian family

Proposition 1.7. *If* $f:(E,R) \to (E',R')$ *an isomorphism and* $K=\{g\subseteq f:g \text{ is finite}\}$, then K is Karpian and $R\sim_{\infty}R'$

Proof. Suppose $g \in K$

- (forth) Suppose $a \in E$, take b = f(a) and let $h = g \cup \{(a,b)\}$. Then $h \subseteq f$, so $h \in K$, $h \supseteq g$, $a \in \text{dom}(h)$
- (back) similarly

Proposition 1.8. If (E,R) and (E',R') are countable and $R\sim_{\infty}R'$, then $R\cong R'$

Proof. Let $K \subseteq S_0(R,R')$ be Karpian, $K \neq \emptyset$, $E = \{e_1,e_2,e_3,...\}$, $E' = \{e_1,e_2,e_3,...\}$ $\{e'_1, e'_2, e'_3, \dots\}$

Recursively build $f_1 \subseteq f_2 \subseteq \cdots$, $f_i \in K$

Let f_1 be anything in K as K is non-empty.

 f_{2i} some extension of f_{2i-1} with $e_i \in \text{dom}(f_{2i})$

 f_{2i+1} some extension of f_{2i} with $e_i' \in \operatorname{im}(f_{2i+1})$ Now let $g = \bigcup_{i=1}^{\infty} f_i$, then g is an isomorphism

Definition 1.9. A dense linear order without endpoints (DLO) is a linear order (C, \leq) satisfying

- 1. $C \neq \emptyset$
- 2. $\forall x, y \in C, x < y \Rightarrow \exists z \in C \ x < z < y$
- 3. $\forall x \in C, \exists y, z \in C \ y < x < z$

Example 1.7. (\mathbb{Q}, \leq) , (\mathbb{R}, \leq)

non-example: (\mathbb{Z}, \leq) , $([0, 1], \leq)$

Proposition 1.10. Let (C, \leq) and (C', \leq) be DLO's. Then $S_0(C, C')$ is Karpian. So $C \sim_{\infty} C'$

Proof. Let $f \in S_0(C,C')$, $dom(f) = \{a_1,\ldots,a_n\}$, $a_1 < \cdots < a_n$ and im(f) = $b_1, \dots, b_n, b_1 < \dots < b_n.$ Since f is a local isomorphism, $f(a_i) = b_i$

- (forth) Suppose $a \in C$. We want $b \in C'$ s.t. $f \cup \{(a,b)\} \in S_0(C,C')$.
 - if $a_i < a < a_{i+1}.$ We take $b \in C'$ s.t. $b_i < b < b_{i+1}$ since dense
 - if $a < a_1$. We take $b \in C'$ s.t. $b < b_1$ since no endpoints
 - if $a > a_n$, take $b \in C'$ s.t. $b > b_n$
 - if $a = a_i$, take $b = b_i$
- (back) similar

Proposition 1.11. *If* (C, \leq) *and* (C', \leq) *are countable DLOs, then* $C \sim_{\infty} C'$ *, so* $C\cong C'$

Hence

$$\begin{split} (\mathbb{Q}, \leq) &\cong (\mathbb{Q} \setminus \{0\}, \leq) \\ &\cong (\mathbb{Q} \cup \{\sqrt{2}\}, \leq) \\ &\cong (\mathbb{Q} \cap (0, 1), \leq) \end{split}$$

Definition 1.12. Let R, R' be binary relations with universe E, E'

- A **0-isomorphism** from R to R' is a local isomorphism from R to R'
- For p > 0, a p-isomorphism from R to R' is a local isomorphism f from R to R' satisfying the following two conditions
 - 1. **(forth)** For any $a \in E$, there is a (p-1)-isomorphism $g \supseteq f$ with $a \in \text{dom}(g)$
 - 2. **(back)** For any $b \in E'$, there is a (p-1)-isomorphism $g \supseteq f$ with $b \in \text{im}(g)$
- An ω -isomorphism from R to R' is a local isomorphism f from R to R' s.t. f is a p-isomorphism for all $p < \omega$

The set of *p*-isomorphisms from R to R' is denoted $S_p(R,R')$

Example 1.8. Suppose $R=R'=(\mathbb{Z},<), f:\{2,4\}\to\{1,2\}$ is a local isomorphism with f(2)=1 and f(4)=2. Then $f\notin S_1(\mathbb{Z},\mathbb{Z})$ (forth) fails. For a=3, there is no b s.t. 1< b<2

 $g: \{2,4\} \rightarrow \{1,5\}$ is a 1-isomorphism but not a 2-isomorphism

Proposition 1.13. If $f \in S_p(R,R')$ and $g \subseteq f$, then $g \in S_p(R,R')$

Proof. if p = 0 easy

if p>0 (forward), $\forall a\in E$, $\exists h\in S_{p-1}(R,R')$ has $a\in {\rm dom}(h)$ and $h\supseteq f\supseteq g$

Proposition 1.14. $S_p(R,R') \neq \emptyset$ iff $\emptyset \in S_p(R,R')$

Proof. \Leftarrow immediate

 \Rightarrow . Suppose $f \in S_p(R, R')$. Then $\emptyset \subseteq f$. Hence $\emptyset \in S_p(R, R')$.

Definition 1.15. R and R' are p-equivalent, written $R \sim_p R'$, if there is a p-isomorphism from $R \to R'$

R and R' are ω -equivalent or elementarily equivalent, written $R \sim_{\omega} R'$ or $R \equiv R'$, if there is an ω -isomorphism from R to R'

Note: $R \sim_{\omega} R'$ iff $S_{\omega}(R,R') \neq \emptyset$ iff $\emptyset \in S_{\omega}(R,R')$ iff $\forall p \ \emptyset \in S_p(R,R')$ iff $\forall p \ R \sim_p R'$

Definition 1.16. Let R,R' be binary relations with universe E,E'. The Ehfrenfeucht-Fraïssé game of length n, denoted $\mathrm{EF}_n(R,R')$ is played as follows

- There are two players, the Duplicator and Spoiler
- \bullet There are n rounds
- In the *i*th round, the Spoiler chooses either an $a_i \in E$ or a $b_i \in E'$
- The Duplicator responds with a $b_i \in E'$ or an $a_i \in E$ respectively
- At the ends of the game, the Duplicator wins

$$\{(a_i, b_i), \dots, (a_n, b_n)\}$$

is a local isomorphism from R to R'

• Otherwise, the Spoiler wins

Example 1.9. For $EF_3(\mathbb{Q}, \mathbb{R})$

$$\begin{tabular}{ll} \mathbb{Q} & \mathbb{R} \\ \hline $S:a_1=7$ & $D:b_1=7$ \\ $D:a_2=1.4$ & $S:b_2=\sqrt{2}$ \\ $D:a_3=-10$ & $S:b_3=1.41$ \\ \hline \end{tabular}$$

So D wins

Example 1.10. $EF_3(\mathbb{R}, \mathbb{Z})$

$$\begin{array}{ll} \mathbb{R} & \mathbb{Z} \\ \text{D:} a_1 = 1 & \text{S:} b_1 = 1 \\ \text{D:} a_2 = 1.1 & \text{S:} b_2 = 2 \\ \text{S:} a_3 = 1.01 \end{array}$$

D fails

Proposition 1.17. $EF_n(R,R')$ is a win for Duplicator iff $R \sim_n R'$

Proposition 1.18. In $EF_n(R,R')$ if moves so far are a_1,b_1,\ldots,a_i,b_i , p=n-1, $f=\{(a_1,b_1),\ldots,(a_i,b_i)\}$. Then Duplicator wins iff $f\in S_p(R,R')$

2 Back-and-forth Equivalence II

Definition 2.1. Let (M, R), (M', R') be binary relations.. The Ehfrenfeucht-Fraïssé game of length n, denoted $\mathrm{EF}_n(M, M')$ is played as follows

• There are two players, the Duplicator and Spoiler

- \bullet There are n rounds
- In the ith round, the Spoiler chooses either an $a_i \in M$ or a $b_i \in M'$
- The Duplicator responds with a $b_i \in M'$ or an $a_i \in M$ respectively
- At the ends of the game, the Duplicator wins

$$\{(a_i,b_i),\dots,(a_n,b_n)\}$$

is a local isomorphism from R to R'

• Otherwise, the Spoiler wins

Lemma 2.2. Suppose we are playing $EF_n(M,M')$ and there have been q rounds so far, with p=n-q rounds remaining. Suppose the moves so far are $(a_1,b_1),\ldots,(a_n,b_n)$. Let $f=\{(a_1,b_1),\ldots,(a_a,b_a)\}$. Then the following are equivalent

- Duplicator has a winning strategy
- *f is a p-isomorphism*

Proof. By induction on p.

if p=0, then the game is over, so Duplicator wins iff $f\in S_0(M,M')$ p>0. If f isn't a local isomorphism, then Duplicator will definitely lose, and f isn't a p-isomorphism. So we may assume $f\in S_0(M,M')$. Then the

- following are equivalentDuplicator wins
 - For any $a_{q+1} \in M$, there is a $b_{q+1} \in M'$ s.t. Duplicator wins in the position $(a_1,b_1,\ldots,a_{q+1},b_{q+1})$, AND for any $b_{q+1} \in M'$, there is a $a_{q+1} \in M$ s.t. Duplicator wins in the position $(a_1,b_1,\ldots,a_{q+1},b_{q+1})$,
 - \bullet For any $a_{q+1}\in M$ there is a $b_{q+1}\in M'$ s.t. $f\cup\{(a_{q+1},b_{q+1})\}\in S_{p-1}(M,M')$ (by induction) , AND ...
 - For any $a_{q+1} \in M$, there is $g \in S_{p-1}(M,M')$ s.t. $g \supseteq f$ and $a_{q+1} \in \text{dom}(g)$, AND

• $f \in S_p(M, M')$

Theorem 2.3. If M is p-equivalent to M', then $EF_p(M, M')$ is a win for the Duplicator. Otherwise it is a win for the Spoiler

Proof. We need to prove $\emptyset \in EF_n(M, M')$

Theorem 2.4. Every (p+1)-isomorphism is a p-isomorphism

Proof. By induction on p.

p = 0: every 1-isomorphism is a 0-isomorphism.

So $S_0(M,M')\supseteq S_1(M,M')\supseteq S_2(M,M')\supseteq \cdots$ In terms of the Ehfrenfeucht-Fraïssé game

Theorem 2.5. Suppose $s \in S_p(M, M')$ and $t \in S_p(M', M'')$ and dom(t) = im(s). Then $u := t \circ s \in S_p(M, M'')$

Corollary 2.6. If $M \sim_p M'$ and $M' \sim_p M''$, then $M \sim_p M''$

$$\textit{Proof. } \emptyset \in S_p(M,M') \text{ and } \emptyset \in S_p(M',M'') \text{, hence } \emptyset \in S_p(M,M'') \\ \qed$$

Theorem 2.7. Suppose $s \in S_p(M, M')$. Then $s^{-1} \in S_p(M, M')$

Proof. Since $s \in S_p(M, M')$, s is a local isomorphism from M onto M'. As s is an bijection, s^{-1} is also a bijection.

Corollary 2.8. If $M \sim_p M'$, then $M' \sim_p M$

 \sim_p is an equivalence relation

Theorem 2.9. Let K be a Karpian family for (M,R) and (M',R'). Then $K \subseteq S_p(M,M')$ for all p. (also for all α)

Corollary 2.10. If M, M' are DLOs, then $S_0(M, M') = S_p(M, M')$ for all p. $M \sim_{\omega} M'$

Corollary 2.11. $A\cong B\Longrightarrow A\sim_{\infty}B\Longrightarrow A\sim_{\omega}B\Rightarrow A\sim_{p}B$

Corollary 2.12. \sim_p and \sim_ω are equivalence relations

Theorem 2.13. Suppose $(\mathbb{Q}, \leq) \sim_{\omega} (C, R)$. Then (C, R) is a DLO

Proof. Suppose (C, R) is not a DLO and break into cases

- R is not reflexive. As $\emptyset \in S_1(\mathbb{Q},C)$. Spoiler chooses $b_1 \in C$ s.t. $(b_1,b_1) \notin R$. Then duplicator must choose $a_1 \in \mathbb{Q}$ s.t. $a_1 \nleq a_1$, impossible
- R is antisymmetric. $\emptyset \in S_2(\mathbb{Q},C)$. Let $b_1,b_2 \in C$ s.t. b_1Rb_2 and b_2Rb_1 . We want to show that $b_1=b_2$. Since $\emptyset \in S_2(\mathbb{Q},C)$, we have a local isomorphism $\{(a_1,b_1),(a_2,b_2)\} \in S_0(\mathbb{Q},C)$. Hence $a_1 \leq a_2$ and $a_2 \leq a_1$. As so $a_1=a_2$. As this is a bijection, $b_1=b_2$.

- R is total. $\square\square\square S_2(\mathbb{Q}, C)$.
- (C,R) has no maximum. $\forall b_1 \in C$
- (C, R) has no minimum
- (C,R) is dense. For any $b_1 \neq b_2 \in C$ s.t. b_1Rb_2 . $S_3(\mathbb{Q},C)$

Corollary 2.14. The class of DLOs is the \sim_{ω} -equivalence class of (\mathbb{Q}, \leq)

Definition 2.15. A linear order (C, \leq) is **discrete** without endpoints if $C \neq \emptyset$ and

$$\forall a \exists b : a \lhd b$$
$$\forall b \exists a : a \lhd b$$

where $a \triangleleft b$ means a < b and not $\exists c : a < c < b$

Example 2.1. (\mathbb{Z}, \leq) . So is (C, \leq) , where

$$\begin{split} C = & \{ \dots, -3, -2, -1 \} \cup \\ & \{ -1/2, -1/3, -1/4, -1/5, \dots \} \cup \\ & \{ \dots, 1/5, 1/4, 1/3, 1/2 \} \cup \\ & \{ 1, 2, 3, \dots \} \end{split}$$

Definition 2.16. Let (C,<) be discrete. If $a \leq b \in C$, then d(a,b) is the size of $[a,b)=\{x\in C: a\leq x< b\}$ or ∞ if infinite. If a>b, then d(a,b)=d(b,a) (definition)

$$d(a,b) = 0 \Leftrightarrow a = b$$

Lemma 2.17. Let (C, <) and (C', <) be discrete linear orders without endpoints. Suppose $a_1 < \cdots < a_n$ in C and $b_1 < \cdots < b_n$ in C'. Let f be the local isomorphism $f(a_i) = b_i$. Suppose that for every $1 \le i < n$, we have

$$d(a_i,a_{i+1}) = d(b_i,b_{i+1}) \ \text{or} \ d(a_i,a_{i+1}) \geq 2^p \leq d(b_i,b_{i+1})$$

Then f is a p-isomorphism

IDEA: a 0-isomorphism needs to respect the order. A 1-isomorphism needs to respect the order plus the relation d(x,y)=1 (to make sure we can find the point). A 2-isomorphism needs to respect the order plus the relation d(x,y)=i for i=1,2,3. A 3-isomorphism needs to respect the order plus the relations d(x,y)=i for $i=1,2,3,\ldots,7$

this is like binary search algorithm:D

Theorem 2.18. Let (C, \leq) and (C', \leq') be discrete linear orders without points. Then \emptyset is a p-equivalence from (C, \leq) to (C', \leq) for all p. Therefore $(C, \leq) \sim \omega(C', \leq)$.

Remark. If $(\mathbb{Z}, \leq) \sim_{\omega} (C, R)$, then (C, R) is a dense linear order

Definition 2.19. Let (M,R), (M',R') be binary relations.. The **infinite Ehfrenfeucht-Fraïssé game**, denoted $\mathrm{EF}_{\infty}(M,M')$ is played as follows

- There are two players, the Duplicator and Spoiler
- There are infinitely many rounds (indexed by ω)
- In the *i*th round, the Spoiler chooses either an $a_i \in M$ or a $b_i \in M'$
- The Duplicator responds with a $b_i \in M'$ or an $a_i \in M$ respectively
- \bullet if $\{(a_1,b_1),\dots,(a_n,b_n)\}$ is not a local isomorphism, then the Spoiler immediately wins
- The Duplicator wins if the Spoiler has not won by the end of the game

Theorem 2.20. TFAE

- 1. $R \sim_{\infty} R'$, i.e., there is a non-empty Karpian family K
- 2. Duplicator has a winning strategy for $\mathrm{EF}_\infty(M,M')$
- 3. Spoiler does not have a winning strategy for $EF_{\infty}(M, M')$

Proof. $1 \rightarrow 2$. Karpian family is the winning strategy

3 Connections to Back-and-Forth Technique

Theorem 3.1 (Fraïssé's Theorem). Let (M,R) and (N,S) be m-ary relations, let $\bar{a} \in M^n$ and $\bar{b} \in N^n$. Then \bar{a} and \bar{b} are p-equivalent iff

$$(M,R) \vDash f(\bar{a}) \iff (N,S) \vDash f(\bar{b})$$

for any formula $f(\bar{x})$ with quantifier rank at most p

Proof. \Rightarrow . Induction on p. If $\bar{a} \sim_0 \bar{b}$, then by definition, they satisfy the same atomic formulas. Therefore they satisfy the same quantifier-free formulas.

Suppose that $\bar{a} \sim_{p+1} \bar{b}$. The formula $f := (\exists y) g(\bar{x},y)$ has quantifier rank at most p+1. So $g(\bar{x},y)$ is a formula of quantifier rank at most p. $(M,R) \vDash f(\bar{a})$ iff there is a $c \in M$ s.t. $(M,R) \vDash g(\bar{a},c)$. Then there is a $d \in N$ s.t. $\bar{a}c \sim_p \bar{b}d$. By IH, $(N,S) \vDash g(\bar{b},d)$ and thus $(N,S) \vDash (\exists y)g(\bar{b},y)$. Another direction is similar

To prove the converse we need the following lemma

Lemma 3.2. *If the arity* m *of a relation, and the integers* n *and* p *are fixed, there is only finite number* C(n,p) *of* p-equivalence classes of n-tuples

 $(M,R_1,\bar{a}_1),\dots,(M,R_n,\bar{a}_n). \text{ For any } (M,R) \text{ and } \bar{a}\in M\text{, } \exists 1\leq i\leq n \text{ s.t. } \bar{a}\sim_p \bar{a}_i$

Proof. Induction on p. If p=0, then consider a set of symbols $X=\{x_1,\dots,x_n\}$. There are at most finitely many m-ary relations defined on X. Also there are at most finitely many ways to interpret the relation "=" on X. Let (M,R) and (N,S) be m-ary relations, $\bar{a}\in M^n$ and $\bar{b}\in N^n$. Let $A=\{a_1,\dots,a_n\}$ and $B=\{b_1,\dots,b_n\}$. Let $R_A=R\cap A^m$ and $S_B=S\cap B^m$. If p=0, $\bar{a}\sim_0 \bar{b}$ iff R_A is isomorphic to R_B via $a_i\mapsto b_i$, $i=1,\dots,n$. So there are at most finitely many 0-equivalence classes of n-tuples

By IH, there exists relations $\{(\bar{M}_k,R_k)\mid k\leq C(n+1,p)\}$ and $\{\bar{d}_k\in M_k^{n+1}\mid k\leq C(n+1,p)\}$ s.t. each n+1-tuple is p-equivalent to some \bar{d}_k . Now consider an arbitrary relation (M,R) and an n-tuple \bar{a} , we define $[\bar{a}]=\{k\mid \exists c\in M(\bar{a}c\sim_p\bar{d}_k)\}$. For any relation (N,S) and $\bar{b}\in N^n$, $\bar{a}\sim_{p+1}\bar{b}\Leftrightarrow [\bar{a}]=[\bar{b}]$

Proof (*continued*). We now show that if \bar{a} and \bar{b} satisfy the same formulas of QR at most p, then $\bar{a} \sim_p \bar{b}$.

Claim: For each p-equivalence class C, there is a formula f_C of QR p s.t. the tuples in C are exactly those satisfy f_C . $(M, R, \bar{a}) \in C \Leftrightarrow R \vDash f_C(\bar{a})$.

Induction on p. If p=0, given an n-tuple \bar{a} , there are finitely many atomic formulas with variables x_1,\ldots,x_n . n^2+n^m . $\{x_i=x_j\mid i,j\leq n\}$ and $\{r(x_{i_1},\ldots,x_{i_m})\mid i_j\leq n\}$.

Let f_C be the conjunction of those satisfied by \bar{a} and negation of the others. Then f_C characterizes the 0-equivalence class of \bar{a} . (characterizes $R|_{\{a_1,\dots,a_n\}}$)

Now prove p+1. Let \bar{a} be an n-tuple of (M,R). Let $f_1(\bar{x},y),\ldots,f_k(\bar{x},y)$ characterize all the p-equivalence classes C_1,\ldots,C_k on n+1-tuples. Let $\langle \bar{a} \rangle = \{i \leq k \mid (M,R) \vDash (\exists y)f_i(\bar{a},y)\}. \ \langle \bar{a} \rangle = [\bar{a}]$

Let
$$f_C(\bar{x}) = \bigwedge_{i \in \langle \bar{a} \rangle} (\exists y) f_i(\bar{x},y) \wedge \bigwedge_{i \notin \langle \bar{a} \rangle} \neg (\exists y) f_i(\bar{x},y). \ \bar{b} \sim_{p+1} \bar{a} \ \text{iff} \ [\bar{a}] = [\bar{b}] \ \text{iff} \ \langle \bar{a} \rangle = \langle \bar{b} \rangle \ \text{iff} \ f_C(\bar{b}) \ \text{holds}$$

bracket system

4 Compactness

4.1 Ultraproducts

If *I* is a nonempty set, a **filter** is a set *F* of subsets of *I* s.t.

- $I \in F$, $\emptyset \in F$
- if $X, Y \in F$, then $X \cap Y \in F$
- if $X \in F$ and $X \subset Y$, then $Y \in F$

A **filter prebase** B is a set of subsets of I contained in a filter; this means that the intersection of a finite number of elements of B is never empty. The filter F_B consisting of subsets of I containing a finite intersection of elements of B is the smallest filter containing B; we call it the filter **generated** by B. If, in addition, the intersection of two elements of B is always in B, we call B a **filter base**

Example 4.1. Let J be a set and I the set of finite subsets of J; for every $i \in I$, let $I_i = \{j : j \in I, j \supset i\}$, and let B be the set of all the I_i . Then $I_i \cap I_j = I_{i \cup J}$; B is closed under finite intersections and does contain \emptyset ; It is therefore a filter base.

Theorem 4.1. A filter F of subsets of I is an ultrafilter iff for every subset A of I, either A or its complement I - A is in F

Theorem 4.2. Let U be an ultrafilter of subsets of I. If I is covered by finitely many subsets A_1, \ldots, A_n , then one of the A_i is in U; moreover, if the A_i are pairwise disjoint, exactly one of the A_i is in U

Ultrafilter and Compactness

A topological space X is compact if and only if every ultrafilter in X is convergent

4.2 Applications of Compactness

Lemma 4.3. If M and N are elementarily equivalent structures, then M can be embedded into an ultraproduct of N

Proof. Let I be the set of injections from finite subset of M to N. If $f(\bar{a})$ is a formula with parameters \bar{a} in M, $M \vDash f(\bar{a})$, let $I_{f(\bar{a})}$ denote the set of such injections s whose universe contains \bar{a} and s.t. $N \vDash f(s(\bar{a}))$. The set $I_{f(\bar{a})}$ is never empty, as $M \vDash f(\bar{a})$, so $M \vDash \exists \bar{x}(f(\bar{x}) \land D(\bar{x}))$, where D is the conjunction of the formulas $x_i = x_j$ if $a_i = a_j$, and $x_i \ne x_j$ otherwise, and N also satisfies this formula. On the other hand, $I_{f(\bar{a})} \cap I_{g(\bar{b})} = I_{f(\bar{a}) \land g(\bar{b})}$, so the $I_{f(\bar{a})}$ form a filter base, which can be extended to an ultrafilter

Define a function S from M to N^U as follows: If $a \in M$, the ith coordinate of Sa is ia if i is defined at a, and any element of N otherwise (We are excluding the case of empty universes, which is trivial.) Note that $\{i:i \text{ is defined at }a\}=I_{a=a}$, and that changing the coordinates outside of $I_{a=a}$ will not change Sa modulo U, so S is well-defined. If a=b, then S(a)=S(b) iff $\{i:N\models i(a)=i(b)\}=I_{a=b}\in U$. If $a\neq b$, then $I_{a\neq b}\in U$, hence S is an injection.

$$N^U \vDash \phi(S(\bar{a})) \text{ iff } \{i: N \vDash \phi(i(\bar{a}))\} \in U. \text{ If } M \vDash \phi(\bar{a}), \text{ then } \{i: N \vDash \phi(i(\bar{a}))\} = I_{\phi(\bar{a})}. \qquad \Box$$

5 Quantifier elimination

Theorem 5.1. If two structures M and N are elementarily equivalent and ω -saturated, they are ∞ -equivalent: More precisely, two tuples of the same type (over \emptyset), one in M and the other in N, can be matched up by an infinite back-and-forth construction

If M is ω -saturated, then for every \bar{a} of M and every p of $S_n(\bar{a})$, p is realised in M

An ω -saturated model therefore realises all absolute n-types for all n. This condition, however, is not sufficient for a model to be ω -saturated. Example: let T be the theory of discrete order without endpoints; M is ω -saturated iff it has the form $\mathbb{Z} \times \mathbb{C}$ where \mathbb{C} is a dense chain without endpoints, while it realizes all pure n-types iff it has the form $\mathbb{Z} \times \mathbb{C}$ where \mathbb{C} is an infinite chain

If T is a complete theory and M is an ω -saturated model of T, then every denumerable model N of T can be elementarily embedded in M. In fact, if $N=\{a_0,a_1,\ldots,a_n,\ldots\}$, we can successively realize, in M, the type of a_0 , then the type of a_1 over a_0,\ldots , the type of a_{n+1} over $(a_0,\ldots,a_n),\ldots$

As two denumerable, elementarily equivalent, ω -saturated structures are isomorphic. Under what conditions does a complete theory T have a (unique) ω -saturated denumerable model? That happens iff for every n, $S_n(T)$ is (finite or) denumerable. (Here, we do not assume that T is denumerable)

In fact, this condition further implies that for every $\bar{a} \in M$, $S_1(\bar{a})$ is denumerable (because to say that b and c have the same type over \bar{a} is to say that $\bar{a}b$ and $\bar{a}c$ have the same type over \emptyset). It is clearly necessary, because a denumerable model can realize only denumerable many n-types. To see that it is sufficient: Let A_1 be a denumerable subset of M that realizes all 1-types over \emptyset ; then let A_2 be a denumerable subset of M that realises all 1-types over finite subsets of A_1 ; etc. Let $A = \bigcup A_n$. A satisfies Tarski's test so it is an elementary submodel of M

Theorem 5.2. Let T be a theory, not necessarily complete, and let F be a nonempty set of formulas $f(\bar{x})$ in the language L of T, having for free variables only $\bar{x} = (x_1, \ldots, x_n)$, s.t. two n-tuples from models of T have the same type whenever they satisfy the same formulas of F. Then for every formula $g(\bar{x})$ of L in these variables, there is some $f(\bar{x})$ that is a Boolean combination of elements of F s.t. $T \vDash \forall \bar{x}(f(\bar{x}) \leftrightarrow g(\bar{x}))$

Proof. Consider the clopen set $[g(\bar{x})]$ in $S_n(T)$. If $[g] = \emptyset$, then $[g] = [f \land \neg f]$, and if $[g] = S_n(T)$, then $[g] = [f \lor \neg f]$, where f is an arbitrary element of F, which is nonempty. Consider $p \in [g]$ and $q \notin [g]$. There is $f_{p,q} \in F$ s.t. $p \models f_{p,q}(\bar{x})$ and $q \models \neg f_{p,q}(\bar{x})$ If p and q are different, then they are realised by two tuples satisfying different formulas of F. Here we consider the model amalgamated by the model realising p and the model realising q. Thus such $f_{p,q}$ exists

Keeping p fixed and varying q, all the $[f_{p,q}]$ and $\neg[g]$ form a family of closed sets whose intersection is empty; $\bigcup [\neg f_{p,q}] \supset [\neg g]$. by compactness,

one of its finite subfamilies must have empty intersection, meaning that for some $h_p=f_{p,q}\wedge\cdots\wedge f_{p,q_n}\in[h_p]\subset[g]$

Now when we vary p, [g] is a compact set that is covered by the open sets $[h_p]$, so a finite number of them are enough to cover it; the disjunction of these h_p , module T, is equivalent to g

Note that if we want that every sentence be equivalent module T to a quantifier-free sentence; that requires, naturally, that the set of sentences without quantifiers be nonempty, meaning that the language **involves** constant symbols, or else nullary relation symbols.

A theory T is **model complete** if it has the following property: If $M, N \models T$ and if $N \subseteq M$, then $N \preceq M$

Two theories T_1 and T_2 in the same language L, are **companions** if every model of one can be embedded into a model of the other

Theorem 5.3. Two theories are companions of each other iff they have the same universal consequences (a sentence being called **universal** if it is of the form $\forall x_1, \dots, x_n \ f(x_1, \dots, x_n)$ with f quantifier-free)

Proof. A universal sentence f that is true in a structure is always true in its substructure; if $T_1 \vDash f$ and if there is a model of T_2 that doesn't satisfy f, it cannot be extended to a model of T_1

Conversely, suppose that T_1 and T_2 have the same universal consequences, and let $M_1 \vDash T_1$. We name each element of M_1 by a new constant, and let $D(M_1)$ be the set of all *quantifier-free* sentences in the new language that are true in M_1 . If $D(M_1) \vDash f(a_1, \ldots, a_n)$, then $M \vDash \exists \bar{x} \ f(\bar{x})$, so $\forall \bar{x} \neg f(\bar{x})$ is not a consequence of T_1 , and therefore not of T_2 . There is therefore some model $M_2 \vDash T_2$ with $\bar{b} \in M_2$ s.t. $M_2 \vDash f(\bar{b})$. By compactness, this means that $D(M_1) \cup T_2$ is consistent, in other words, that M_1 embeds into a model of T_2

A theory T therefore has a minimal companion, which we shall denote by T_{\forall} , which is axiomatized by the universal consequences of T.

A theory T^\prime is a **model companion** of T if it is a companion of T that is model complete

Theorem 5.4. *A theory has at most one model companion*

Proof. Let T_1 and T_2 be model companions of T. Therefore T_1 and T_2 are companions. Let $M_1 \models T_1$; it embeds into a $N_1 \models T_2$, which embeds into a $M_2 \models T_1$. We get a chain $M_1 \subset N_1 \subset M_2 \subset N_2 \subset \cdots \subset M_n \subset N_n \subset \cdots$, whose limit we call P. As T_1 is model complete, the chain of M_n is elementary,

and P is an elementary extension of M_1 ; similarly $N_1 \leq P$. Therefore M_1 is also a model of T_2 ; by symmetry T_1 and T_2 have the same models, meaning $T_1 = T_2$

We say that T' is a **model completion** of T if it is a model companion of T and also the following condition is satisfied: if $M \vDash T$, embeds into a model $M_1 \vDash T'$ and into a model $M_2 \vDash T'$, then a tuple \bar{a} of M satisfies the same formulas in M_1 and in M_2

Naturally a model complete theory is its own model completion, and it is clear that a theory that admits quantifier elimination is the model completion of every one of its companions. A theory is the model completion of every one of its companions iff it is the model completion of the weakest of them all, T_\forall

In the particular case where for every n>0 we can take for F the quantifier-free formulas, we say that the theory T eliminates quantifiers or admits quantifier elimination.

Theorem 5.5. *The model completion of a universal theory (i.e., one that is axiomatized by universal sentences) admits quantifier elimination*

Proof. Let \bar{a} and \bar{b} satisfying the same quantifier-free formulas, be in two models M_1 and M_2 of this theory T', and let $N_1 \subseteq M_1$, $N_2 \subseteq M_2$ generated by \bar{a} and \bar{b} respectively.

DLO has quantifier elimination

Facts. In DLO, any 0-isomorphism is an ω -isomorphism.

Suppose $qftp(\bar{a}) = qftp(\bar{b})$, want $tp(\bar{a}) = tp(\bar{b})$

 $\exists f: \langle \bar{a} \rangle_{\mathfrak{M}} \to \langle \bar{b} \rangle_{\mathfrak{N}}$ an isomorphism by Theorem 6, $f \in S_0(\mathfrak{M}, \mathfrak{N}) = S_{\omega}(\mathfrak{M}, \mathfrak{N})$. Then by Fraïssé's theorem, $\operatorname{tp}(\bar{a}) = \operatorname{tp}(\bar{b})$

$$M \equiv N \Leftrightarrow \langle \emptyset \rangle_M \cong \langle \emptyset \rangle_N \Leftrightarrow char(M) = char(N)$$

same characteristic determine same minimal subring

$$M^n/\operatorname{Aut}(M/A)\cong S_n(A)$$

Algebraically closed fields are axiomatized by the field axioms plus the axiom schema

$$\forall y_0, \dots, y_n \left(y_n \neq 0 \to \exists x \sum_{i=0}^n y_i x^i = 0 \right)$$

Lemma 5.6. *If* $K \models ACF$, then K is infinite

Proof. If $K = \{a_1, \dots, a_n\}$, then $P(x) = 1 + \prod_{i=1}^n (x - a_i)$ has no root in $K \square$

If $M \models \mathsf{ACF}$ and K is a subfield, then K^{alg} denotes the set of $a \in M$ algebraic over K

Lemma 5.7. Given uncountable $M, N \models \mathsf{ACF}$, suppose $\bar{a} \in M^n$ and $\bar{b} \in N^n$ and $\mathsf{qftp}^M(\bar{a}) = \mathsf{qftp}^N(\bar{b})$. Suppose $\alpha \in M$. Then there is $\beta \in N$ s.t. $\mathsf{qftp}^M(\bar{a}, \alpha) = \mathsf{qftp}^N(\bar{b}, \beta)$

Proof. Let $A=\langle \bar{a}\rangle_M$ and $B=\langle \bar{b}\rangle_N$. There is an isomorphism $f:A\to B$ and we can extend f to an isomorphism $f:\operatorname{Frac}(A)\to\operatorname{Frac}(B)$ (Note that A and B are subrings since they are only closed under multiplication and addition). Moving N by an isomorphism we may assume $\operatorname{Frac}(A)=\operatorname{Frac}(B)$ and $f=id_{\operatorname{Frac}(A)}$. (In particular, $\bar{a}=\bar{b}$). let $K=\operatorname{Frac}(A)$. Let $K=\operatorname{Frac}(A)$

Claim. There is $\beta \in N$ with $I(\alpha) = I(\beta)$ in K

Suppose α is algebraic over K with minimal polynomial P(x). Take $\beta \in N$ with $P(\beta) = 0$. Let Q(x) be the minimal polynomial over β over K. Then $P(x) \in Q(x) \cdot K[x]$. But P(x) is irreducible, so P(x) = Q(x). Then $I(\alpha) = I(\beta)$

suppose α is transcendental, since there are only countable many solutions, there is transcendental $\beta \in N$. Then $I(\alpha) = I(\beta) = 0$

Take such β , let $I = I(\alpha) = I(\beta)$

- If $P(x) \in K[x]$, $P(\alpha) = 0 \Leftrightarrow P(x) \in I \Leftrightarrow P(\beta) = 0$
- If $P(x), Q(x) \in K[x]$, then $P(\alpha) = Q(\alpha) \Leftrightarrow (P Q)(\alpha) = 0 \Leftrightarrow (P Q)(\beta) = 0 \Leftrightarrow P(\beta) = Q(\beta)$
- Hence if $\varphi(x)$ is an atomic $\mathcal{L}(K)$ -formula, then $M \vDash \varphi(\alpha) \Leftrightarrow N \vDash \varphi(\beta)$

• so is quantifier-free $\varphi(x) \in \mathcal{L}(K)$

Lemma 5.8. Lemma 5.7 holds if we replace "uncountable" with " ω -saturated"

Proof. Take uncountable $M' \geq M$ and $N' \geq N$, this is possible since models of ACF are infinite. By Lemma 5.7, there is $\beta_0 \in N'$ s.t. $\operatorname{qftp}(\bar{a},\alpha) = \operatorname{qftp}(\bar{b},\beta_0)$. By ω -saturation, we can find $\beta \in N$ s.t. $\operatorname{tp}(\beta/\bar{b}) = \operatorname{tp}(\beta_0/\bar{b})$. Then $\operatorname{tp}(\bar{b},\beta) = \operatorname{tp}(\bar{b},\beta_0)$

Theorem 5.9. *ACF has quantifier elimination*

Theorem 5.10. Suppose $M, N \models ACF$, then $M \equiv N \Leftrightarrow char(M) = char(N)$

Proof. TFAE

- $M \equiv N$
- for every sentence φ , $M \vDash \varphi \Leftrightarrow N \vDash \varphi$
- for every quantifier-free sentence φ , $M \vDash \varphi \Leftrightarrow N \vDash \varphi$
- for every atomic sentence φ , $M \vDash \varphi \Leftrightarrow N \vDash \varphi$
- for any terms $t_1, t_2, M \vDash t_1 = t_2 \Leftrightarrow N \vDash t_1 = t_2$
- for any term t, $M \models t = 0 \Leftrightarrow N \models t = 0$
- for any $n \in \mathbb{Z}$, $M \models n = 0 \Leftrightarrow N \models n = 0$
- $\{n \in \mathbb{Z} : n^M = 0\} = \{n \in \mathbb{Z} : n^N = 0\}$
- char(M) = char(N)

Corollary 5.11. ACF_p is complete for each p

Corollary 5.12. \mathbb{C} *is completely axiomatized by ACF*₀

Lemma 5.13. Let M be algebraically closed. Let K be a field. Let $\varphi(x)$ be an $\mathcal{L}(K)$ -formula in one variable. Let $D = \varphi(M)$. Then there is a finite subset $S \subseteq K^{alg}$ s.t. D = S or $D = M \setminus S$, that is, either $D \subseteq K^{alg}$ or $M \setminus K \subseteq K^{alg}$

Proof. By Q.E., we may assume φ is quantifier-free. Then φ is a boolean combination of atomic formulas

Let $\mathcal{F} = \{S: S \subseteq_f K^{\mathrm{alg}}\} \cup \{M \setminus S: S \subseteq_f K^{\mathrm{alg}}\}$. Note that \mathcal{F} is closed under boolean combinations. So we may assume φ is an atomic formula

Then
$$\varphi(x)$$
 is $(P(x)=0)$ for some $P(x)\in K[x]$. If $P(x)\equiv 0$, then $\varphi(M)=M\in \mathcal{F}$. Otherwise $\varphi(M)\subseteq_f K^{\mathrm{alg}}$, so $\varphi(M)\in \mathcal{F}$

Lemma 5.14. Suppose $M \leq N \vDash ACF$ and K is a subfield of M. Suppose $c \in N$ is algebraic over K. Then $c \in M$

Proof. Let P(x) be the minimal polynomial of c over K. Let b_1,\ldots,b_n be the roots of P(x) in M. Then

$$M \vDash \forall x \left(P(x) = 0 \to \bigvee_{i=1}^{n} x = b_i \right)$$

so the same holds in N. Then $P(c)=0\Rightarrow c\in\{b_1,\dots,b_n\}\subseteq M$ $\hfill\Box$

Theorem 5.15. If $M \models ACF$ and K is a subfield, then K^{alg} is a subfield of M and $(K^{alg})^{alg} = K^{alg}$

Proof. Suppose $a, b \in K^{\text{alg}}$. We claim $a + b \in K^{\text{alg}}$. Let P(x) and Q(y) be the minimal polynomials of a, b over K. Let $\varphi(z)$ be the $\mathcal{L}(K)$ -formula

$$\exists x, y (P(x) = 0 \land Q(y) = 0 \land x + y = z)$$

Then $M \vDash \varphi(a+b)$ and $\varphi(M)=\{x+y: P(x)=0=Q(y)\}$ is finite. Thus $a+b \in \varphi(M) \subseteq K^{\mathrm{alg}}$

A similar argument shows K^{alg} is closed under the field operations, so K^{alg} is a subfield of M

Theorem 5.16. *Suppose* $M \models ACF$ *and* K *is a subfield. TFAE*

- 1. $K = K^{alg}$
- 2. $K \models ACF$
- 3. $K \leq M$

Proof. $1 \to 2$: suppose $P(x) \in K[x]$ has degree > 0. Then there is $c \in M$ s.t. P(c) = 0. By definition, $c \in K^{\text{alg}} = K$

 $2 \rightarrow 3$: quantifier elimination

$$3 \rightarrow 1.5.14$$

Corollary 5.17. *If* $M \models ACF$ *and* K *is a subfield, then* $K^{alg} \models ACF$

 K^{alg} is called the **algebraic closure** of K. It is independent of M:

Theorem 5.18. Let M, N be two algebraically closed fields extending K. Let $(K^{alg})_M$ and $(K^{alg})_N$ be K^{alg} in M and N, respectively. Then $(K^{alg})_M \cong (K^{alg})_N$

6 Saturated Models

Lemma 6.1. Let $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_\alpha \subseteq \cdots$ be an increasing chain of sets indexed by $\alpha < \kappa$ for some regular cardinal κ . If $A \subseteq \bigcup_{\alpha < \kappa} S_\alpha$ and $|A| < \kappa$, then $A \subseteq S_\alpha$ for some $\alpha < \kappa$

 $\begin{array}{l} \textit{Proof. define } f:A \to \kappa \text{ by } f(x) = \min\{\alpha: x \in S_\alpha\}. \text{ Then } |f(A)| \leq |A| < \kappa, \\ \text{so } \alpha := \sup f(A) < \kappa. \text{ For any } x \in A, \text{ we have } f(x) \leq \alpha \text{ and so } x \in S_{f(x)} \subseteq S_\alpha \end{array}$

Theorem 6.2. *If* M *is a structure and* κ *is a cardinal, there is a* κ *-saturated* $N \succeq M$

Proof. Build an elementary chain

$$M_0 \leq M_1 \leq \cdots \leq M_{\alpha} \leq \cdots$$

of length κ^+ , where

- 1. $M_0 = M$
- 2. $M_{\alpha+1}$ is an elementary extension of M_{α} realizing every type in $S_1(M_{\alpha})$
- 3. If α is a limit ordinal, then $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$

Let
$$N=\bigcup_{\alpha<\kappa^+}M_\alpha.$$
 If $A\subseteq N$ and $|A|<\kappa$, then $A\subseteq M_\alpha$ for some $\alpha<\kappa^+$

Theorem 6.3. Suppose M is κ -saturated. If $A \subseteq M$ and $|A| < \kappa$, then every $p \in S_n(A)$ is realized in M

Proof. Take $N \succeq M$ containing a realization \bar{a} of p. We can extend the partial elementary map $\operatorname{toid}_A: A \to A$ to $f: A \cup \{a_1, \dots, a_n\} \to B$ where $B \subseteq M$. Then $\operatorname{tp}^M(f(\bar{a})/A) = \operatorname{tp}^N(\bar{a}/A) = p$, so $f(\bar{a})$ realizes p in M

Lemma 6.4. For any M there is an elementary extension $N \succeq M$ with the following properties:

- \bullet Every type over M is realized in N
- If $A, B \subseteq M$ and $f : A \to B$ is a partial elementary map, then there is $\sigma \in Aut(N)$ with $\sigma \supseteq f$

Proof. Build an elementary chain

$$M = M_0 \leq M_1 \leq \cdots$$

of length ω , where M_{i+1} is ${|M_i|}^+$ -saturated. Every $p \in S_n(M)$ is realized in M_1

For the second point, let $f:A\to B$ be given. Recursively build an increasing chain of partial elementary maps f_n with $\mathrm{dom}(f_n),\mathrm{im}(f_n)\subseteq M_n$ as follows:

- $f_0 = f$
- If n>0 is odd, then f_n is a partial elementary map extending f_{n-1} with $\mathrm{dom}(f_n)=M_{n-1}$ and $\mathrm{im}(f_n)\subseteq M_n$

• If n>0 is even, then f_n is a partial elementary map extending f_{n-1} with $\mathrm{dom}(f_n)\subseteq M_n$ and $\mathrm{im}(f_n)=M_{n-1}$

Theorem 6.5. *If* M *is a structure and* κ *is a cardinal, there is a strongly* κ *-homogeneous* κ *-saturated* $N \succeq M$

Proof. Build an elementary chain

$$M_0 \leq M_1 \leq \cdots \leq M_{\alpha} \leq \cdots$$

of length κ^+ .

Lemma 6.6. Let M be a κ -saturated L-structure. For $L_0 \subseteq L$, the reduct $M \upharpoonright L_0$ is κ -saturated

Lemma 6.7. Let M be an L-structure and κ be a cardinal. There is an L-structure $N \geq M$ s.t. for every $L_0 \subseteq L$, the reduct $N \upharpoonright L_0$ is κ -saturated and κ -strongly homogeneous

Definition 6.8. Let T be an L(R)-theory

- 1. R is **implicitly defined** in T if for every L-structure M, there is at most one $R \subseteq M^n$ s.t. $(M,R) \models T$
- 2. R is **explicitly defined** in T if there is an L-formula $\phi(x_1,\ldots,x_n)$ s.t. $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \phi(\overline{x}))$

Lemma 6.9. Suppose R is not explicitly defined in T. Then there are $M, N \models T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$ s.t.

- $\bullet \ \operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$
- $\bullet \ \ M \vDash R(\bar{a}) \ \textit{and} \ N \vDash \neg R(\bar{b})$

Proof. Suppose not. Let $S=\{\operatorname{tp}^L(\bar{a}): M\vDash T, \bar{a}\in M^n\}$. For $p\in S$, one of two things happends

- 1. Every realization of p satisfies R
- 2. Every realization of p satisfies $\neg R$

Otherwise we can find a realization \bar{a} satisfying R and a realization \bar{b} satisfying $\neg R$, as desired.

By compactness, for each $p\in S$ there is an L-formula $\phi_p(\bar x)\in p(\bar x)$ s.t. one of two things happens

- 1. $T \cup \{\phi_n(\bar{x})\} \vdash R(\bar{x})$
- 2. $T \cup \{\phi_p(\bar{x})\} \vdash \neg R(\bar{x})$

Let $\Sigma(\bar{x})=T\cup\{\neg\phi_p(\bar{x}):p\in S\}$. If $\Sigma(\bar{x})$ is consistent, there is $M\vDash T$ and $\bar{a}\in M^n$ satisfying $\Sigma(\bar{x})$. Let $p=\operatorname{tp}^L(\bar{a})$, so it satisfies ϕ_p but it also satisfies $\neg\phi_p$, a contradiction

Therefore $\Sigma(\bar x)$ is inconsistent. By compactness there are $p_1,\dots,p_n,q_1,\dots,q_m\in S$ s.t.

$$\begin{split} T \vdash \bigvee_{i=1}^n \phi_{p_i}(\bar{x}) \lor \bigvee_{i=1}^m \phi_{q_i}(\bar{x}) \\ T \cup \{\phi_{p_i}(\bar{x})\} \vdash R(\bar{x}) \quad \text{for } i = 1, \dots, n \\ T \cup \{\phi_{q_i}(\bar{x})\} \vdash \neg R(\bar{x}) \quad \text{for } i = 1, \dots, n \end{split}$$

Then $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \bigvee_{i=1}^n \phi_{p_i}(\overline{x}))$. The \leftarrow is by the choice of the ϕ_{p_i} . The \rightarrow is because if none of the ϕ_{p_i} hold, then one of the ϕ_{q_i} holds, and then $\neg R$ must hold.

Finally
$$\vee_{i=1}^n \phi_{p_i}(\bar{x})$$
 is an explicit definition of R If $m=0$, then $T \vdash R(\bar{x})$, if $n=0$, then $T \vdash \neg R(\bar{x})$

Theorem 6.10 (beth). *If* R *is implicitly defined in* T *, then* R *is explicitly defined in* T

Proof. **Case 1**: *T* is complete.

If R is not explicitly defined, we obtain $M,N \vDash T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$ with $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ but $M \vDash R(\bar{a})$ and $N \vDash \neg R(\bar{a})$. Since T is complete, we have $M \equiv N$. By elementary amalgamation, we may find elementary embeddings $M \to N'$, $N \to N'$. Replacing M and N by N' and N', we may choose M = N. By Lemma 6.7, we may replace M with an elementary extension and assume M and $M \upharpoonright L$ are \aleph_0 -saturated and \aleph_0 -strongly homogeneous. The fact that $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ implies that there is an automorphism $\sigma \in \operatorname{Aut}(M \upharpoonright L)$ with $\sigma(\bar{a}) = \bar{b}$. Let $R' = \sigma(R)$. Let $M' = (M \upharpoonright L, R')$. Then σ is an isomorphism from M to M', so $M' \vDash T$. But $M' \upharpoonright L = M \upharpoonright L$. Because R is implicitly defined, R = R'. But then

$$\bar{a} \in R \Leftrightarrow \sigma(\bar{a}) \in \sigma(R) \Leftrightarrow \bar{b} \in R' \Leftrightarrow \bar{b} \in R$$

contradicting the fact that $M \models R(\bar{a})$ and $M \models \neg R(\bar{b})$

Case 2: T is not complete. Any completion of T implicitly defines R. By Case 1, any completion of T explicitly defines R. So in any model $M \models T$, there is an L-formula ϕ_M s.t. $M \models \forall \overline{x}(R(\overline{x}) \leftrightarrow \phi_M(\overline{x}))$

Assume R is not explicitly defined, there are $M,N \vDash T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$, with $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ and $M \vDash R(\bar{a})$ and $N \vDash \neg R(\bar{a})$. Let T' be the L-theory obtained from T by replacing every R with ϕ_M . Then $M \vDash T'$. The type $\operatorname{tp}^L(\bar{a})$ contains the following

- \bullet $\phi_M(\bar{x})$
- sentences in T'

So $N \vDash \phi_M(\bar{b})$ and $N \vDash T'$.

Let $R'=\{\bar{c}\in N^n: N\vDash\phi_M(\bar{c})\}$. Then $(N\upharpoonright L,R')\vDash T$ because $N\vDash T'$. Therefore R'=R because R is implicitly defined. But $N\vDash\phi_M(\bar{b})$ and $N\vDash\neg R(\bar{b})$, a contradiction

Theorem 6.11. Let T be a complete theory. Then T has a countable ω -saturated model iff T is small

Proof. \Rightarrow : trivial

 $\Leftarrow: \text{Suppose } S_n(T) \text{ is countable for any } n. \text{ Take some } \omega\text{-saturated model } M^+. \text{ For each finite set } A\subseteq M^+ \text{ and type } p\in S_1(A)\text{, take some element } c_{A,p}\in M \text{ realizing } p. \text{ Define an increasing chain of countable subsets } A_0\subseteq A_1\subseteq\cdots M^+ \text{ as follows}$

- $\bullet \ A_0 = \emptyset$
- $\bullet \ A_{i+1} = A_i \cup \{c_{A,p}: A \subseteq_f A_i, p \in S_1(A)\}$

each A_i is countable, and define $M=\bigcup_{i=0}^\infty A_i$, which is countable Now we only need to prove that M is ω -saturated and $M \leq M^+$

7 Prime models

7.1 Omitting types theorem

Theorem 7.1 (Baire Category Theorem for $S_n(A)$). Let $U_1, U_2, ...$ be dense open sets. Then $\bigcap_{i=1}^{\infty} U_i$ is dense

Lemma 7.2. $S_n(A)$ is finite iff all types in $S_n(A)$ are isolated

Proof. If each $p \in S_n(A)$ is isolated. The family $\{\{p\} : p \in S_n(A)\}$ covers $S_n(A)$, so there is a finite cover. This is impossible unless $S_n(A)$ is finite \square

Definition 7.3. A set $X \subseteq S_n(A)$ is **comeager** if $X \supseteq \bigcap_{i=1}^{\infty} U_i$ for some dense open sets U_i

Work in $S_{\omega}(T)$.

Lemma 7.4. If $X_1, X_2, ...$ are comeager, then $\bigcap_{i=1}^{\infty} X_i$ is comeager

Lemma 7.5. For any formula $\phi(x_0,\ldots,x_n,y)$, there is a dense open set Z_ϕ s.t. if $M \vDash T$, $\bar{c} \in M^\omega$, $\operatorname{tp}^M(\bar{c}) \in Z_\phi$ and $M \vDash \exists y \phi(c_0,\ldots,c_n,y)$, then there is $i < \omega$ s.t. $M \vDash \phi(c_0,\ldots,c_n,c_i)$

Proof. Take $A = [\neg \exists y \phi(x_0, \dots, x_n, y)]$ and $B_i = [\phi(x_0, \dots, x_n, x_i)]$ for $i < \omega$. Let $Z_\phi = A \cup \bigcup_{i=0}^\infty B_i$, which is open. If $p = \operatorname{tp}^M(\bar{c}) \in Z_\phi$ and $M \models \exists y \phi(c_0, \dots, c_n, y)$ then $p \notin A$, so there is $i < \omega$ s.t. $p \in B_i$ meaning $M \models \phi(c_0, \dots, c_n, c_i)$

It remains to show that Z_{ϕ} is dense. Take non-empty $[\psi] \subseteq S_{\omega}(T)$; we claim $Z_{\phi} \cap [\psi] \neq \emptyset$. Take $p = \operatorname{tp}^M(\bar{e}) \in [\psi]$. We may assume $p \notin Z_{\phi}$, or we are done. Then $p \notin A$, so $M \vDash \exists y \phi(e_0, \dots, e_n, y)$. Take $b \in M$ s.t. $M \vDash \phi(e_0, \dots, e_n, b)$. Take i > n large enough that x_i doesn't appear in ϕ . Let $\bar{c} = (e_0, \dots, e_{i-1}, b, e_{i+1}, e_{i+2}, \dots)$. We have $M \vDash \psi(\bar{e})$ because $\operatorname{tp}(\bar{e}) \in [\psi]$ and therefore $M \vDash \psi(\bar{c})$, so $\operatorname{tp}(\bar{c}) \in [\psi]$. Also $M \vDash \phi(c_0, \dots, c_n, c_i)$

Proposition 7.6. There is a comeager set $W \subseteq S_{\omega}(T)$ s.t. if $\operatorname{tp}^M(\bar{c}) \in W$, then $\{c_i : i < \omega\} \leq M$

Proof. Let $W = \bigcap_{\phi} Z_{\phi}$. Suppose $\operatorname{tp}^{M}(\bar{c}) \in M$. Then for any $\phi(x_{0}, \ldots, x_{n}, y)$, if $M \models \exists y \phi(c_{0}, \ldots, c_{n}, y)$, then there is $i < \omega$ s.t. $M \models \phi(c_{0}, \ldots, c_{n}, c_{i})$. By Tarski-Vaught, $\{c_{i} : i < \omega\} \leq M$.

Lemma 7.7. Let $p \in S_n(T)$ be non-isolated. For any $(j_1,\ldots,j_n) \in \mathbb{N}^n$, there is a dense open set $V_{p,\bar{j}} \subseteq S_\omega(T)$ s.t. $\operatorname{tp}^M(\bar{c}) \in V_{p,\bar{j}} \Leftrightarrow \operatorname{tp}^M(c_{j_1},\ldots,c_{j_n}) \neq p$

Proof. Let $V_{p,\bar{j}}=V=\bigcup_{\phi\in p}[\neg\phi(x_{j_1},\ldots,x_{j_n})].$ If $\operatorname{tp}^M(\bar{c})\in V$, then there is some $\phi\in p$ s.t. $M\vDash \neg\phi(c_{j_1},\ldots,c_{j_n})$, and so $\operatorname{tp}^M(c_{j_1},\ldots,c_{j_n})\neq p.$ Conversely, if $\operatorname{tp}^M(c_{j_1},\ldots,c_{j_n})\neq p$, there is $\phi\in p$ s.t. $M\vDash \neg\phi(c_{j_1},\ldots,c_{j_n})$, and then $\operatorname{tp}^M(\bar{c})\in V$

It remains to show that V is dense. Suppose $[\psi]\subseteq S_{\omega}(T)$ is non-empty. Take $q=\operatorname{tp}^M(\bar{e})\in [\psi]$. We may assume $q\notin V$. By choice of V, $\operatorname{tp}^M(e_{j_1},\dots,e_{j_n})=p$. Take m large enough so that $m\geq \max(j_1,\dots,j_n)$ and ψ is a formula in x_0,\dots,x_m . Let $\phi(y_1,\dots,y_n)$ be

$$\exists x_0, \dots, x_m \ \psi(x_0, \dots, x_m) \land \bigwedge_{i=1}^n (y_i = x_{j_i})$$

Then (e_{j_1},\dots,e_{j_n}) satisfies ϕ , and so $\phi\in p$. As p is non isolated, there is $N\models\phi(d_1,\dots,d_n)$ with $\operatorname{tp}^N(d_1,\dots,d_n)\neq p$. By definition of ϕ there are $c_0,\dots,c_m\in N$ with $N\models\psi(c_0,\dots,c_m)$ and $(d_1,\dots,d_n)=(c_{j_1},\dots,c_{j_n})$. Choose $c_{m+1},c_{m+2},\dots\in N$ arbitrarily. Then $\bar{c}=(c_i:i<\omega)\in N^\omega$ and $\operatorname{tp}(\bar{c})\in[\psi]$, and $\operatorname{tp}(c_{j_1},\dots,c_{j_n})=\operatorname{tp}(d_1,\dots,d_n)\neq p$, so $\operatorname{tp}(\bar{c})\in V$, showing $V\cap[\psi]\neq\emptyset$

Proposition 7.8. Let $p \in S_n(T)$ be non-isolated. There is a comeager set $V_p \subseteq S_\omega(T)$ s.t. if $\operatorname{tp}^M(\bar{c}) \in V_p$, then p is not realized by a tuple in $\{c_i : i < \omega\}$

Proof. Let $V_p=\bigcap_{\bar{j}\in\mathbb{N}^n}V_{p,\bar{j}}.$ If $\operatorname{tp}^M(\bar{c})\in V_p,$ then for any $j_1,\dots,j_n\in\mathbb{N}$

$$\mathsf{tp}^M(c_{j_1},\ldots,c_{j_n}) \neq p$$

Theorem 7.9 (Omitting types theorem). Let Π be a countable set of pairs (p,n), where $n<\omega$ and p is a non-isolated type in $S_n(T)$. There is a countable model $M \vDash T$ omitting p for every $(p,n) \in \Pi$

Proof. The set $Q=W\cap\bigcap_{(p,n)\in\Pi}V_p$ is comeager, hence non-empty. Take $\operatorname{tp}^N(\bar{c})\in Q$. Then $M:=\{c_i:i<\omega\}\preceq N$ because $\operatorname{tp}^N(\bar{c})\in W$. For $(p,n)\in\Pi,M$ omits p because $\operatorname{tp}(\bar{c})\in V_p$

Theorem 7.10 (Ryll-Nardzewski). Let T be a complete theory in a countable language. Then T is ω -categorical iff $S_n(T)$ is finite for every $n < \omega$

Proof. Suppose $S_n(T)$ is infinite for some n. By 7.2 there is a non-isolated $p \in S_n(T)$. By 7.9 there is a countable model $M_0 \models T$ omitting p. Take an elementary extension $M_1 \succeq M_0$ where p is realized by $\bar{a} \in M_1^n$. By Löwenheim–Skolem Theorem we may assume M_1 is countable. Then $M_1 \ncong M_0$

8 Heirs and definable types

8.1 Definable types

Definition 8.1. $p(\bar{x})$ is a **definable type** if for every formula $\varphi(\bar{x}; \bar{y})$ the set

$$\{\bar{b} \in M : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}\$$

is definable, defined by some L(M)-formula $d\varphi(\bar{y})$

Proposition 8.2. *If* T *is strongly minimal and* $M \models T$ *, there is a* 1-type $p(x) \in S_1(M)$ *s.t.*

$$\varphi(x,\bar{b}) \in p(x) \Leftrightarrow \exists^{\infty} a \in M : M \vDash \varphi(a,\bar{b})$$

Moreover, $p = \operatorname{tp}(c/M)$ *for any* $N \geq M$ *and* $c \in N \setminus M$

Proof. Take N > M and $c \in N \setminus M$; let $p(x) = \operatorname{tp}(c/M)$. We must show that

$$N\vDash\varphi(c,\bar{b})\Leftrightarrow \exists^{\infty}a\in M: M\vDash\varphi(a,\bar{b})$$

 \Rightarrow : if not, $N \vDash \varphi(c, \bar{b})$ but $\varphi(M, \bar{b})$ is finite, then $c \in M$ \Leftarrow : if $N \vDash \neg \varphi(c, \bar{b})$, then $\neg \varphi(M, \bar{b})$ is infinite and so $\varphi(M, \bar{b})$ is finite

p(x) is called the **transcendental 1-type**

Proposition 8.3. *If T is strongly minimal*

- 1. T eliminates the \exists^{∞} quantifier
- 2. If $M \models T$, the transcendental 1-type $p \in S_1(M)$ is definable

Proof. 1. For any $\varphi(x,y)$, there is $n_{\varphi} < \omega$ s.t. for every $M \models T$ and $\bar{b} \in M$

$$|\varphi(M,\bar{b})| < n_{\omega} \text{ or } |\neg \varphi(M,\bar{b})| < n_{\omega}$$

2. For each $\varphi(x,\bar{y})$, $d\varphi(\bar{y})$ is the formula $\exists^{\infty}x\ \varphi(x,\bar{y})$

Corollary 8.4. *If* $p \in S_1(M)$ *and* M *is strongly minimal, then* p *is definable*

Definition 8.5. A theory *T* is **stable** if all *n*-types over models are definable

8.2 Heirs and strong heirs

Suppose $M \leq N$ and $p \in S_n(M)$. An **extension** or **son** of p is $q \in S_n(N)$ with $q \supseteq p$, i.e., $p = q \upharpoonright M$

Definition 8.6 (Heirs). $q \in S_n(N)$ is an **heir** of p, written $p \sqsubseteq q$, if for any $\varphi(\bar{x}, \bar{b}, \bar{c}) \in q(\bar{x})$ with $\bar{b} \in M$ and $\bar{c} \in N$, there is $\bar{c}' \in M$ with $\varphi(\bar{x}, \bar{b}, \bar{c}) \in p(\bar{x})$

Lemma 8.7. Suppose $M_1 \leq M_2 \leq M_3$ and $p_i \in S_n(M_i)$ for i=1,2,3, with $p_1 \subseteq p_2 \subseteq p_3$

- 1. If $p_1 \sqsubseteq p_2 \sqsubseteq p_3$, then $p_1 \sqsubseteq p_3$
- 2. If $p_1 \sqsubseteq p_3$, then $p_1 \sqsubseteq p_2$

Definition 8.8. If $p \in S_n(M)$, then (M, dp) is the expansion of M be relation symbols $d\varphi(\bar{y})$ for each $\varphi(\bar{x}, \bar{y})$, interpreted as follows:

$$(M, dp) \vDash d\varphi(\bar{b}) \Leftrightarrow \varphi(\bar{x}, \bar{b}) \in p(\bar{x})$$

Remark. p is definable iff the new relations in (M,dp) are definable in the old structure M

Remark. The class of structures of the form (M, dp) with $M \models T$ and $p \in S_n(M)$ is an elementary class, axiomatized by T plus the following:

$$\begin{split} \forall \bar{y}_1 \dots \bar{y}_m \left(\bigwedge_{i=1}^m d\varphi_i(\bar{y}) \to \exists \bar{x} \bigwedge_{i=1}^m \varphi_i(\bar{x}, \bar{y}_i) \right) \text{ for formulas } \varphi_1(\bar{x}, \bar{y}_1), \dots, \varphi_n(\bar{x}, \bar{y}_n) \\ \forall \bar{y} (d\varphi(\bar{y}) \vee d\neg \varphi(\bar{y})) \text{ for each formula } \varphi(\bar{x}, \bar{y}) \end{split}$$

Any model of such theory has an underlying p

Lemma 8.9. If $(M, dp) \leq (N, dq)$, then $M \leq N$ and $p \sqsubseteq q$

Proof. $(N, dq) \geq (M, dp)$ implies $N \geq M$. Then:

- $q\supseteq p$: if $\varphi(\bar{x},\bar{b})\in p(\bar{x})$ (with $\bar{b}\in M$), then $(M,dp)\vDash d\varphi(\bar{b})$, so $(N,dq)\vDash d\varphi(\bar{b})$, and $\varphi(\bar{x},\bar{b})\in q(\bar{x})$
- $q \supseteq p$: suppose $\varphi(\bar{x}, \bar{b}, \bar{c}) \in q(\bar{x})$, with $\bar{b} \in M$ and $\bar{c} \in N$. Then $(N, dq) \vDash d\varphi(\bar{b}, \bar{c})$, and $(N, dq) \vDash \exists \bar{z} \ d\varphi(\bar{b}, \bar{z})$. Then $(M, dp) \vDash \exists \bar{z} \ d\varphi(\bar{b}, \bar{z})$

Corollary 8.10. If $p \in S_n(M)$, then there is $M_0 \leq M$ with $|M_0| \leq |T|$, s.t. $p \supseteq (p \upharpoonright M_0)$

Proof. Apply downward Löwenheim–Skolem theorem to (M,dp) to find $(M_0,dq) \leq (M,dp)$ with $|M_0| \leq |T|$. Then $q=p \upharpoonright M_0$ and $p \supseteq q$

Definition 8.11. If $M \leq N$ and $p \in S_n(M)$ and $q \in S_n(N)$, then q is a **strong** heir of p if $(N,dq) \succeq (M,dp)$

Proposition 8.12 (Types have heirs). Suppose $M \leq N$ and $p \in S_n(M)$

- 1. There is $N' \geq N$ and $q' \in S_n(N')$ a strong heir of p
- 2. There is $q \in S_n(N)$ an heir of p

- *Proof.* 1. Let \bar{c} be an infinite tuple enumerating N. Then $\operatorname{tp}^L(\bar{c}/M)$ is finitely satisfiable in M, hence finitely satisfiable in the expansion (M,dp). Therefore it is satisfied in some $(N',dq) \succeq (M,dp)$. So there is \bar{e} in N' with $\operatorname{tp}^L(\bar{e}/M) = \operatorname{tp}^L(\bar{c}/M)$. Then the map $f(c_i) = e_i$ is an L-elementary embeddings of N into N extending $\operatorname{id}_M: M \to M$. Moving N' by an isomorphism, we may assume $N' \succeq N$
 - 2. Take $N' \succeq N$ and $q' \in S_n(N')$ a strong heir of p. Let $q = q' \upharpoonright N$. Then $q' \supseteq q \supseteq p$ and $q' \supseteq p$, so $q \supseteq p$.

8.3 Heirs and definable types

Proposition 8.13. Let $p \in S_n(M)$ be definable and $N \succeq M$

- 1. p has a unique heir $q \in S_n(N)$
- 2. For $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in N$

$$\varphi(\bar{x}, \bar{b}) \in q(\bar{x}) \Leftrightarrow N \vDash d_p \varphi(\bar{b})$$
 (*)

3. In particular, q is definable with $d_q \varphi = d_p \varphi$ for all φ

Proof. Claim. If $q \in S_n(N)$ and $q \supseteq p$, then q satisfies (*) Take $\bar{a} \in N' \succeq N$ realizing q. If (*) fails then

$$\begin{split} (\varphi(\bar{x},\bar{b})) &\in q(\bar{x}) \not\Leftrightarrow N \vDash d_p \varphi(\bar{b}) \\ N' &\vDash \neg (\varphi(\bar{a},\bar{b}) \leftrightarrow d_p \varphi(\bar{b})) \\ \neg (\varphi(\bar{x},\bar{b}) \leftrightarrow d_p \varphi(\bar{b})) \in q(\bar{x}) \end{split}$$

As $q \supseteq p$, there is $b' \in M$ s.t.

$$\begin{split} \neg(\varphi(\bar{x},\bar{b}') &\leftrightarrow d_p \varphi(\bar{b}')) \in p(\bar{x}) \\ N' &\vDash \neg(\varphi(\bar{a},\bar{b}') \leftrightarrow d_p \varphi(\bar{b}')) \\ \varphi(\bar{x},\bar{b}') &\in p(\bar{x}) \not\Leftrightarrow M \vDash d_p \varphi(\bar{b}') \end{split}$$

a contradiction

There is at least one heir, and at most one heir satisfying (*)

Example 8.1. Suppose T is strongly minimal and $M \leq N$ are models of T. Let p and q be the transcendental 1-types over M and N. For any $\varphi(x, \bar{y})$

$$d_p\varphi(\bar{y})\equiv (\exists^\infty x\;\varphi(x,\bar{y}))\equiv d_q\varphi(\bar{y})$$

so q is the unique heir of p

Proposition 8.14. TFAE for $p \in S_n(M)$

- 1. p is definable
- 2. For every $N \geq M$, p has a unique heir over N

Proof. Suppose p has unique heirs. Then for any $N \geq M$, p has at most one strong heir over N. Therefore there is at most one way to expand N to an elementary extension of (M,dp). Then the elementary diagram (M,dp) implicitly defines the relations $d\varphi$. By Beth's implicit definability theorem, (M,dp) is a expansion of M by definable relations, meaning p is definable

Proposition 8.15. Suppose $M_1 \leq M_2 \leq M_3$ and $p_i \in S_n(M_i)$ for i=1,2,3 with $p_1 \subseteq p_2 \subseteq p_3$. Suppose p_1 is definable. Then $p_1 \sqsubseteq p_2 \sqsubseteq p_3$ iff $p_1 \sqsubseteq p_3$

Proof. We only need to show the implication $p_1 \sqsubseteq p_3 \Rightarrow p_2 \sqsubseteq p_3$. Suppose $p_1 \sqsubseteq p_3$. Take $p_2' \supseteq p_1$ and $p_3' \supseteq p_2'$. By the uniqueness of heirs of definable types, $p_2' = p_2$ and p_2 is definable. Then $p_3' = p_3$

8.4 Types in ACF

A **positive quantifier free formula** is a quantifier-free formula that doesn't use \neg

Fix a model $M \models ACF$

Definition 8.16. A set $V \subseteq M^n$ is an **algebraic set** if

$$V = \varphi(M^n; \bar{b}) = \{ \bar{a} \in M^n : M \vDash \varphi(\bar{a}, \bar{b}) \}$$

where φ is positive quantifier free.

Remark. V is an algebraic set iff V is defined by finitely many polynomial equations

$$V=\{\bar{a}\in M^n: P_1(\bar{a})=\cdots=P_m(\bar{a})=0\}$$

Lemma 8.17. 1. M^n and \emptyset are algebraic sets

- 2. If $V, W \subseteq M^n$ are algebraic sets, then $V \cap W$ and $V \cup W$ are algebraic sets
- 3. Any finite subset of M^n is an algebraic set

Fact 8.18 (Quantifier elimination). Every definable set $D \subseteq M^n$ is a finite boolean combination of algebraic sets

Fact 8.19 (Consequence of Hilbert's basis theorem). The class of algebraic sets has the descending chain condition (DCC): there is no infinite chain of algebraic sets $V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots$

Corollary 8.20. *If* S *is a non-empty collection of algebraic sets, then* S *contains at least one minimal element*

Corollary 8.21. An infinite intersection $\bigcap_{i \in I} V_i$ of algebraic sets is an algebraic set

Corollary 8.22. If $S \subseteq K[\bar{x}]$ is any set of polynomials, possibly infinite, then the subset of M^n defined by S is an algebraic set. All algebraic sets arise this way

Corollary 8.23 (Noetherian induction). *Let* S *be a class of algebraic sets. Suppose the following holds*

If X *is an algebraic set, and every algebraic set* $Y \subseteq X$ *is in* S*, then* $X \in S$

Then every algebraic set is in S

Definition 8.24. An algebraic set V is **reducible** if $V = W_1 \cup W_2$ for algebraic sets $W_1, W_2 \subseteq V$. A **variety** is a non-empty irreducible algebraic set

Remark. If V is an algebraic variety, then the set of algebraic proper subsets of V is closed under finite unions

Proposition 8.25. If V is an algebraic set, then V is a finite union of varieties

Proof. • $V = \emptyset$: V is a union of zero varieties

- ullet V is irreducible: V is a union of one variety
- V is reducible: $V = X \cup Y$ where $X, Y \subsetneq V$. By Noetherian induction!

Definition 8.26. The **generic type** of *V* is the type generated by the following formulas

- 1. $x \in V$
- 2. $x \notin W$ for each algebraic proper subset $W \subsetneq V$

We will write this type as $p_V(\bar{x})$

Note that $x \in V$ and $x \notin W$ is all definable

Proposition 8.27. *Let V be a variety*

- 1. $p_V(\bar{x})$ is a consistent complete type
- 2. If W is an algebraic set, then $p_V(\bar{x}) \vdash \bar{x} \in W \Leftrightarrow W \supseteq V$

Proof. Finite satisfiability: given finitely many proper algebraic subsets $W_1, \dots, W_m \subsetneq V$, we have $V \supsetneq \bigcup_{i=1}^m W_i$, so there is $\bar{a} \in V$ and $\bar{a} \notin W_i$ for $1 \leq i \leq m$

1. If $W\supseteq V$, then $p_V(\bar{x})\vdash \bar{x}\in V\vdash \bar{x}\in W$. If $W\not\supseteq V$, then $(W\cap V)\subsetneq V$, so $p_V(\bar{x})\vdash \bar{x}\notin W\cap V$. But $p_V(\bar{x})\vdash \bar{x}\in V$ so $p_V(\bar{x})\vdash \bar{x}\notin W$

Completeness: by 2, for any positive quantifier-free formula $\varphi(\bar{x})$

$$p_V(\bar{x}) \vdash \varphi(\bar{x}) \text{ or } p_V(\bar{x}) \vdash \neg \varphi(\bar{x})$$

Theorem 8.28. The map $V \mapsto p_V$ is a bijection from the set of varieties $V \subseteq M^n$ to $S_n(M)$

Proof. Injectivity: suppose V,W are varieties and $V\neq W$. WLOG, $V\nsubseteq W$. Then $p_W(\bar{x})\vdash \bar{x}\in W$ but $p_V(\bar{x})\nvdash \bar{x}\in W$, so $p_V\neq p_W$

Surjectivity: fix $p \in S_n(M)$. Take V a minimal algebraic set s.t. $p(\bar{x}) \vdash \bar{x} \in V$. (There is at least one such V, namely M^n). V is non-empty because p is consistent. If V is reducible as $V = X \cup Y$ for smaller algebraic sets X,Y, then $p(\bar{x}) \vdash \bar{x} \in X$ or $p(\bar{x}) \vdash \bar{x} \in Y$ by completeness, contradicting the choice of V. Thus V is a variety. By choice of $V, p(\bar{x}) \vdash \bar{x} \in V$. \square

Proposition 8.29. $N \succeq M$, let $V \subseteq M^n$ be a variety, defined by a formula φ

- 1. φ defines a variety $V_N \subseteq N^n$
- 2. V_N depends only on V, not on the choice of φ

Proof. Take ψ a positive quantifier-free formula defining V. Then $\forall \bar{x}(\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}))$ is satisfied by M, and therefore by N. Let $V_N = \psi(N)$. As ψ is positive quantifier free, V_N is an algebraic set. As $M \vDash \exists \bar{x}\psi(\bar{x}), V_N$ is non-empty. If $V_N = W_1 \cup W_2$ where W_1, W_2 are algebraic proper subsets of V_N defined by $\theta_i(\bar{x},\bar{b}_i)$ for some positive quantifier-free L-formula θ_i and tuple of parameters $\bar{b}_i \in N$. Then

$$N \vDash \exists \bar{y}_1 \bar{y}_2 \left(\forall \bar{x} \left(\psi(\bar{x}) \leftrightarrow \bigvee_{i=1}^2 \theta_i(\bar{x}, \bar{y}_i) \right) \land \bigwedge_{i=1}^2 \exists \bar{x} (\psi(\bar{x}) \land \neg \theta_i(\bar{x}, \bar{y}_i)) \right)$$

which implies V is reducible

Theorem 8.30. Let $M \leq N$ be models of ACF. Let $V \subseteq M^n$ be a variety, and let $V_N \subseteq N^n$ be its extension. Then $p_{V_N} \in S_n(N)$ is the unique heir of $p_V \in S_n(M)$

Proof. Let $q \in S_n(N)$ be an heir of p_V . Let φ be an L(M)-formula defining V and V_N . Then $\varphi(\bar{x}) \in p_V(\bar{x}) \subseteq q(\bar{x})$, so $q(\bar{x}) \vdash \bar{x} \in V_N$. Suppose $q(\bar{x}) \not\vdash \bar{x} \notin W$ for some algebraic $W \subsetneq V_N$, $q(\bar{x}) \vdash \bar{x} \in W$. Let $\psi(\bar{x}, \bar{b})$ be a positive quantifier-free formula defining W. Let $\theta(\bar{b})$ be the L(M)-formula

$$\forall \bar{x}(\psi(\bar{x}, \bar{b}) \to \varphi(\bar{x})) \land \exists \bar{x}(\varphi(\bar{x}) \land \neg \psi(\bar{x}, \bar{b}))$$

which says $\psi(M^n, \bar{b}) \subsetneq \varphi(M^n)$. $N \models \theta(\bar{b})$ since $W \subsetneq V$. Then $q(\bar{x}) \vdash \psi(\bar{x}, \bar{b}) \land \theta(\bar{b})$. Because $q \supseteq p_V$, there is $\bar{b}' \in M$ s.t.

$$p_V(\bar{x}) \vdash \psi(\bar{x}, \bar{b}') \land \theta(\bar{b}')$$

Thus we find an algebraic proper subset of V

General fact: If $q \supseteq p$, suppose $\forall \bar{b}(\varphi(\bar{b}) \Rightarrow \psi(\bar{x}, \bar{b}) \in p(\bar{x}))$, then $\forall \bar{b} \in N$, $\varphi(\bar{b}) \Rightarrow \psi(\bar{x}, \bar{b}) \in q(\bar{x})$

8.5 1-types in DLO

9 Stable Theories

9.1 Strong heirs from ultrapowers

Definition 9.1. If $p \in S_n(M)$, I set, $\mathcal U$ ultrafilter on I, $M^{\mathcal U} = M^I/\mathcal U$. The **ultrapower type** $p^{\mathcal U} \in S_n(M^{\mathcal U})$ is the strong heir of p s.t. $(M^{\mathcal U}, dp^{\mathcal U}) = (M, dp)^{\mathcal U}$

 $p^{\mathcal{U}} \text{ is a strong heir of } p \\ \text{If } \varphi(\bar{x},\bar{y}) \in L, \bar{b} \in M^{\mathcal{U}} \text{ represented by } (\bar{b}:i\in I) \in M^{I}, \\ \varphi(\bar{x},\bar{b}) \in p^{\mathcal{U}} \Leftrightarrow (M,dp)^{\mathcal{U}} \vDash d\varphi(\bar{b}) \Leftrightarrow \{i\in I \mid (M,dp) \vDash d\varphi(\bar{b}_i)\} \in \mathcal{U} \Leftrightarrow \{i\in I \mid \varphi(x,\bar{b}_i) \in p(x)\} \in \mathcal{U}$

Proposition 9.2. Suppose $M \leq N$, $p \in S_n(M)$, $q \in S_n(N)$, $q \supseteq p$. Then there is I, ultrafilter \mathcal{U} on I s.t. (for some copy of $M^{\mathcal{U}}$, moved by isomorphism), $M \leq N \leq M^{\mathcal{U}}$, $p \subseteq q \subseteq p^{\mathcal{U}}$

Proof. Let $I = \{f : N \to M \mid f \supseteq \mathrm{id}_M\}$.

Note that if $\phi(\bar{x}, \bar{b}) \in q(\bar{x})$, $\bar{b} \in N$, there is $f \in I$, $\phi(\bar{x}, f(\bar{b})) \in p(\bar{x})$. (has some duplicate variable problem, if $b_1 = b_2$, but $c_1 \neq c_2$, but maybe we could take some equivalent formulas)

For each $\phi(\bar{x},\bar{b})$, $\bar{b}\in N$, let $S_{\varphi,\bar{b}}=\{f\in I\mid \phi(\bar{x},f(\bar{b}))\in p(\bar{x})\}$. Let $\mathcal{F}=\{S_{\phi,\bar{b}}\mid \phi(\bar{x},\bar{b})\in q(\bar{x})\}$

Claim \mathcal{F} has F.I.P

Suppose $\phi_i(\bar{x},\bar{b}_i)\in q(\bar{x})$, $1\leq i\leq m$. So $\bigwedge_{i=1}^m\phi_i(\bar{x},\bar{b}_i)\in q(\bar{x})$, then there is $f\in I$ s.t. $\bigwedge_{i=1}^m\phi_i(\bar{x},f(\bar{b}_i)\in p(\bar{x}))$. Then $f\in S_{\varphi_i,\bar{b}_i}$, so $\bigcap_{i=1}^nS_{\phi_i,b_i}\neq\emptyset$

Thus there is $\mathcal{U} \supseteq \mathcal{F}$. Form $M^{\mathcal{U}}$, $p^{\mathcal{U}}$. Let $g: N \to M^{\mathcal{U}}$ as follows. If $c \in N$, $g(c) = [(f(c): f \in I)]$. Note if $c \in M$, then f(c) = c for all f, and so $g \mid M = \mathrm{id}_M$

For any $\phi(\bar{x}, \bar{y})$, $\bar{b} \in N$, $\phi(\bar{x}, \bar{b}) \in q(\bar{x}) \Rightarrow S_{\phi, \bar{b}} \in \mathcal{F} \Rightarrow S_{\phi, \bar{b}} \in \mathcal{U} \Rightarrow \{f \in I \mid \phi(\bar{x}, f(\bar{b})) \in p(\bar{x})\} \in \mathcal{U} \Leftrightarrow \phi(\bar{x}, g(\bar{b})) \in p^{\mathcal{U}}$

So $g: N \to M^{\mathcal{U}}$, $\phi(\bar{x}, \bar{b}) \in q(\bar{x}) \Rightarrow \phi(\bar{x}, g(\bar{b})) \in p^{\mathcal{U}}$. $N \vDash \phi(\bar{b}) \Rightarrow M^{\mathcal{U}} \vDash \phi(g(\bar{b}))$. WLOG, $N \preceq M^{\mathcal{U}}$ and $g \supseteq \mathrm{id}_N$. $\phi(\bar{x}, \bar{b}) \in q(\bar{x}) \Rightarrow \phi(\bar{x}, \bar{b}) \in p^{\mathcal{U}}$. \square

Since we can prove compactness by ultrapower. Everything we get from compactness can be got by some ultrapower

Corollary 9.3. Every heir of p extends to a strong heir of p

9.2 Stability

Definition 9.4. If α is an ordinal, then $2^{\alpha} = \text{strings of length } \alpha$ in alphabet $\{0,1\}$

Definition 9.5. $\varphi(\bar{x},\bar{y})$ be a formula. For α an ordinal, take variables \bar{x}_{σ} for $\sigma \in 2^{\alpha}$, \bar{y}_{τ} for $\tau \in 2^{<\alpha}$.

$$D_{\alpha} = \{\varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \text{ extends } \tau 0\} \cup \{\neg \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \text{ extends } \tau 1\}$$

$$\varphi(\bar{x}, \bar{y}) \text{ has the } \mathbf{dichotomy property if}$$

- 1. D_{ω} is consistent
- 2. D_n is consistent for all $n \in \omega$
- 3. D_{α} is consistent for all α

1-3 are equivalent

Example 9.1. D_2 is $\varphi(x_{00}, y)$, $\varphi(x_{00}, y_0)$, $\varphi(x_{01}, y)$, $\neg \varphi(x_{01}, y_0)$ and so on $y / y_0 y_1 / y_0 x_{01} x_{10} x_{11}$

Proposition 9.6. Fix T, \mathbb{M} , and an integer $n < \omega$. Suppose there is a small model $M \leq \mathbb{M}$ and a type $p \in S_n(M)$ that is not definable, then some formula $\varphi(x_1, \dots, x_n, \bar{y})$ has the dichotomy property

Proof. Because p is not definable, there is an $N \succeq M$, $q_1, q_2 \in S_n(N)$, $q_1, q_2 \supseteq p$ and $q_1 \neq q_2$. There is $\varphi(\bar{x}, \bar{b}) \in q_1(\bar{x}) \setminus q_2(\bar{x})$, $\bar{b} \in N$.

Claim If $M' \geq N$, $p' \in S_n(M')$, $p' \supseteq p$, then there is some $N' \geq M'$, $q_1', q_2' \in S_n(N')$, $q_1', q_2' \supseteq p'$, $q_1', q_2' \supseteq p$. and there is $\bar{b}' \in N'$, $\varphi(\bar{x}, \bar{b}') \in q_1'$, $\neg \varphi(\bar{x}, \bar{b}') \in q_2$

There is $M^{\mathcal{U}}$ s.t. $M \leq M' \leq M^{\mathcal{U}}$, $p \subseteq p' \subseteq p^{\mathcal{U}}$. Then $M' \leq M^{\mathcal{U}} \leq N^{\mathcal{U}}$ and $p \sqsubseteq p^{\mathcal{U}} \sqsubseteq q_i^{\mathcal{U}}$ for i=1,2. Take $N'=N^{\mathcal{U}}$, $q_i'=q_i^{\mathcal{U}}$, and \bar{b}' to be the image of \bar{b} under the elementary embedding $N \to N^{\mathcal{U}}$

Recursively build a tree of (M,p) / (M0,p0) (M1,p1)

build $(M_\tau,p_\tau,\varphi(x,b_\tau))$ for $\tau\in 2^{<\omega}$

Then φ has dichotomy

working in M

Proposition 9.7. *If some* $\varphi(x_1, \dots, x_n, \bar{y})$ *has dichotomy property, then for every cardinal* $\lambda \geq \aleph_0$ *, there is* $A \subseteq \mathbb{M}$ *,* $|A| \leq \lambda$ *,* $|S_n(A)| > \lambda$

Proof. take smallest cardinal μ s.t. $2^{\mu} > \lambda$, $\mu \leq \lambda$. note that $|2^{<\mu}| = \left|\bigcup_{\alpha < \mu} 2^{\alpha}\right| \leq \lambda$.

arphi has dichotomy proposition, so D_μ is consistent. In the monster, there are $ar{a}_\sigma$ for $\sigma \in 2^\mu$, $ar{b}_\tau$ for $\tau \in 2^{<\mu}$ s.t. if σ extends $\tau 0$ then $\mathbb{M} \vDash \varphi(\bar{a}_\sigma, \bar{b}_\tau)$ and if σ extends $\tau 1$ then $\mathbb{M} \vDash \neg \varphi(\bar{a}_\sigma, \bar{b}_\tau)$. Let $A = \{\bar{b}_\tau : \tau \in 2^{<\mu}\}$. Then $|A| \le \lambda$ but $\operatorname{tp}(a_{\sigma}/A) \ne \operatorname{tp}(a_{\sigma'}/A)$ for $\sigma \ne \sigma'$. Thus $|S_n(A)| \ge 2^\mu > \lambda$.

Lemma 9.8. *for* λ *infinite, TFAE*

- 1. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $\forall n, |S_n(A)| \leq \lambda$
- 2. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $|S_1(A)| \leq \lambda$

Proof. $2 \to 1$: By induction on n, $|S_{n-1}(A)| \le \lambda$. Then we can find $\bar{b}_{\alpha} \in \mathbb{M}^{n-1}$ for $\alpha < \lambda$ s.t.

$$S_{n-1}(A) = \{\operatorname{tp}(\bar{b}_\alpha/A) : \alpha < \lambda\}$$

For each α , $\left|A\bar{b}_{\alpha}\right| \leq \lambda \Rightarrow \left|S_{1}(A\bar{b}_{\alpha})\right| \leq \lambda$. So we can find $c_{\alpha,\beta} \in \mathbb{M}$ for $\beta < \lambda$ s.t.

$$S_1(A\bar{b}_\alpha) = \{\operatorname{tp}(c_{\alpha,\beta}/A\bar{b}_\alpha): \beta < \lambda\}(\operatorname{for}\,\alpha < \lambda)$$

 ${\bf Claim} \hbox{: if } p \in S_n(A) \hbox{ then } p = {\rm tp}(\bar{b}_\alpha c_{\alpha,\beta}/A) \hbox{ for some } \alpha,\beta < \lambda$

Take $(\bar{b}',c') \in \mathbb{M}^n$ realizing p. Then $\operatorname{tp}(\bar{b}'/A) = \operatorname{tp}(\bar{b}_{\alpha}/A)$ for some $\alpha < \lambda$. Moving (\bar{b}',c') by an automorphism in $\operatorname{Aut}(\mathbb{M}/A)$, we may assume $\bar{b}' =$

 $ar{b}_{lpha}.$ Then $\operatorname{tp}(c/Aar{b}_{lpha})=\operatorname{tp}(c_{lpha,eta}/Aar{b}_{lpha})$ for some $eta<\lambda.$ Moving c' by an automorphism in $\operatorname{Aut}(\mathbb{M}/Aar{b}_{lpha})$, we may assume $c'=c_{lpha,eta}$ By the claim, $|S_n(A)|\leq \lambda^2=\lambda$

Definition 9.9. *T* is λ -stable if $|A| \leq \lambda \Rightarrow |S_1(A) \leq \lambda|$

Proposition 9.10. *If* $\lambda \geq |L|$ *, TFAE*

- 1. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $\forall n, |S_n(A)| \leq \lambda$
- 2. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $|S_1(A)| \leq \lambda$
- 3. If $M \leq M$, $|M| \leq \lambda \Rightarrow |S_1(M)| \leq \lambda$
- 4. If $M \leq M$, $|M| \leq \lambda \Rightarrow |S_n(M)| \leq \lambda$

Proof. $3\to 1$: Let $A\subseteq \mathbb{M}$, $|A|\le \lambda$, using downward Löwenheim–Skolem Theorem to get a model $A\subseteq M\preceq \mathbb{M}$ and |A|+|L|=|M|

 $4 \rightarrow 2$: similar

Example 9.2. strongly minimal theory is λ -stable for $\lambda \geq |L|$

Given $A\subseteq \mathbb{M}$, $\exists M \leq \mathbb{M}$, $|M|\leq \lambda$. $S_1(M)=$ const types + transcendental types, so $|S_1(M)|=|M|+1$

 λ -stable \Rightarrow no φ has D.P \Rightarrow all types are definable

Lemma 9.11. Suppose $\forall M \leq \mathbb{M}$, $\forall p \in S_1(M)$ is definable. Then T is λ -stable for some λ

 $\begin{array}{l} \textit{Proof.} \ \, \text{Take} \,\, \lambda = 2^{|L|} > |L|. \,\, \text{Suppose} \,\, M \, \preceq \, \mathbb{M} \,\, \text{and} \,\, |M| \leq \lambda. \,\, p \in S_1(M) \,\, \text{is} \\ \text{determined by} \,\, \varphi \in L \mapsto d_p \varphi \in L(M), |S_1(M)| \leq |L(M)|^{|L|} \leq \lambda^{|L|} = 2^{|L|} \quad \Box \end{array}$

Theorem 9.12. *TFAE*

- 1. T is λ -stable for some λ
- 2. no formula $\varphi(\bar{x}, \bar{y})$ has D.P.
- 3. no $\varphi(x, \bar{y})$ has D.P.
- 4. $M \models T$, $p \in S_1(M) \Rightarrow p$ is definable
- 5. $M \models T$, $p \in S_n(M) \Rightarrow p$ is definable

Proof. 5 → 1: Let λ = $2^{|L|}$. Note that $λ^{|L|} = (2^{|L|})^{|L|} = 2^{|L|} = λ$. Take $A \subseteq \mathbb{M}$ with $|A| \le λ$. By downward Löwenheim–Skolem Theorem, there is a small model $M \le \mathbb{M}$ with $A \subseteq M$ and $|M| \le λ$. Every n-type over A extends to an n-type over M, so $|S_n(A)| \le |S_n(M)|$. It remains to show $|M| \le λ \Rightarrow |S_n(M)| \le λ$. (That is, we may assume A is a small model M). By (5), every n-type over M is definable. A definable type is determined by the map $φ \mapsto dφ$, which is a function from L-formulas to L(M)-formulas. So the number of (definable) types over M is at most $|L(M)|^{|L|} \le λ^{|L|} = λ$. □

9.3 The dichotomy property and definability of types

We will prove

If no formula has the dichotomy property, then all types over *arbitrary sets* are definable

9.3.1 The dichotomy property

Fix a complete theory T and monster model \mathbb{M} . Fix a formula $\varphi(\bar{x}; \bar{y})$

Definition 9.13. " D_{α} is consistent" if there are $(\bar{a}_{\sigma}: \sigma \in 2^{\alpha})$ and $(\bar{b}_{\tau}: \tau \in 2^{<\alpha})$ s.t.

$$\begin{split} \sigma & \sqsupseteq \tau 0 \Rightarrow \mathbb{M} \vDash \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau}) \\ \sigma & \sqsupset \tau 1 \Rightarrow \mathbb{M} \vDash \lnot \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau}) \end{split}$$

Remark. " D_{α} " is the name for the set of formulas $\{\varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \supseteq \tau 0\} \cup \{\neg \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \supseteq \tau 1\}$

Lemma 9.14. If D_n is consistent for all $n < \omega$, then D_{ω} is consistent

Proof. Let F be a finite fragment of D_{ω} . By compactness, it suffices to show that F is consistent. Take n bigger than the length of τ for any \bar{y}_{τ} appearing in F. Because D_n is consistent, there are $(\bar{a}^0\sigma:\sigma\in 2^n)$ and $(\bar{b}^0_{\tau}:\tau\in 2^{< n})$. Define

9.3.2 φ -types

Continue to fix T, \mathbb{M} , $\varphi(\bar{x}; \bar{y})$. Let n be the length of the variable tuple \bar{x}

Definition 9.15. If $B \subseteq \mathbb{M}$ is a set and $\bar{a} \in \mathbb{M}^n$, then $\operatorname{tp}^{\varphi}(\bar{a}/B)$ is the partial type

$$\{\varphi(\bar{x};\bar{b}):\bar{b}\in B, \mathbb{M}\vDash\varphi(\bar{a},\bar{b})\}\cup\{\neg\varphi(\bar{x};\bar{b}):\bar{b}\in B, \mathbb{M}\vDash\neg\varphi(\bar{a},\bar{b})\}$$

Definition 9.16. $S_{\varphi}(B) = \{\operatorname{tp}^{\varphi}(\bar{a}/B) : \bar{a} \in \mathbb{M}^n\}$

Definition 9.17. A φ -type $p\in S_{\varphi}(B)$ is **definable** if there is an L(B)-formula $\psi(\bar{y})$ s.t.

$$\forall \bar{b} \in B, \quad \varphi(\bar{x}, \bar{b}) \in p(\bar{x}) \Leftrightarrow \mathbb{M} \vDash \psi(\bar{b})$$

Theorem 9.18. Suppose φ does not have the dichotomy property. Then every φ -type over any set is definable

9.3.3 Proof of Theorem 9.18

Definition 9.19. Let $\Sigma(\bar{x})$ be a small set of $L(\mathbb{M})$ -formulas. Define " $R_{\varphi,2}(\Sigma(\bar{x})) \ge n$ " by recursion on n:

- $R_{\varphi,2}(\Sigma(\bar{x})) \geq 0$ iff $\Sigma(\bar{x})$ is consistent
- $R_{\omega,2}(\Sigma(\bar{x})) \geq n+1$ iff there is $\bar{b} \in \mathbb{M}$ s.t.

$$\begin{split} R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) &\geq n \\ R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg\varphi(\bar{x},\bar{b})\}) &\geq n \end{split}$$

Lemma 9.20. $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$ iff there are $(\bar{a}_{\sigma}: \sigma \in 2^n)$ and $(\bar{b}_{\tau}: \tau \in 2^{< n})$ s.t.

- If σ extends $\tau 0$, then $\varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds
- If σ extends $\tau 1$, then $\neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds
- Each \bar{a}_{σ} satisfies $\Sigma(\bar{x})$

Definition 9.21. $R_{\varphi,2}(\Sigma(\bar{x}))$ is the largest n s.t. $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$, or $-\infty$ if there is no such n, or $+\infty$ if $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$ for all n

$$R_{\varphi,2}(\Sigma(\overline{x}))$$
 is called the " $\varphi\text{-2-rank}$ " or " $R_{\varphi,2}\text{-rank}$ " of Σ

 $\textit{Remark} \,\, (\text{Monotonicity}). \,\, \text{If} \,\, \Sigma(x) \vdash \Sigma'(x) \text{, then} \,\, R_{\varphi,2}(\Sigma(\bar{x})) \leq R_{\varphi,2}(\Sigma'(\bar{x}))$

Remark. From Lemma 9.20 we see that $R_{\varphi,2}(\{\bar x=\bar x\})\geq n$ iff " D_n " is consistent. By Lemma 9.14,

$$R_{\varphi,2}(\{\bar{x}=\bar{x}\})=+\infty$$
 iff φ has the dichotomy property

In particular, if φ does not have the dichotomy property, then $R_{\varphi,2}(\{\bar{x}=\bar{x}\})$ is finite. By Monotonicity, $R_{\varphi,2}(\Sigma(\bar{x}))$ is finite for any $\Sigma(\bar{x})$

Remark (Definability). Suppose $\Sigma(\bar{x})$ is a <u>finite</u> partial type over $A \subseteq \mathbb{M}$ and suppose $n < \omega$. Then the set

$$\{\bar{b} \in \mathbb{M} : R_{\omega,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \ge n\}$$

is A-definable

Now we can prove Theorem 9.18. Suppose $p\in S_{\varphi}(B)$. Take a finite subtype $\Sigma(\bar{x})\subseteq_f p(\bar{x})$ minimizing $R_{\varphi,2}(\Sigma(\bar{x}))$. Then $\Sigma(\bar{x})$ is a partial type over B. Let $k=R_{\varphi,2}(\Sigma(\bar{x}))$

Claim. If $\varphi(\bar{x}, \bar{b}) \in p(\bar{x})$, then

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) = k$$

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg\varphi(\bar{x},\bar{b})\}) < k$$

Proof. Monotonicity gives

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \le k$$
$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg\varphi(\bar{x},\bar{b})\}) \le k$$

If the first inequality is sharp, then it contradicts the minimality of $\Sigma(\bar{x})$. If the second inequality is not sharp ,then

$$R_{\varphi,2}(\Sigma(\bar{x})) \ge k+1$$

Claim. If $\neg \varphi(\bar{x}, \bar{b}) \in p(\bar{x})$, then

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x}, \bar{b})\}) < k$$

$$R_{\omega,2}(\Sigma(\bar{x}) \cup \{\neg \varphi(\bar{x}, \bar{b})\}) = k$$

Combining the two claims, we see that the set

$$\{\bar{b}\in B: \varphi(\bar{x},\bar{b})\in p(\bar{x})\}$$

is exactly

$$\{\bar{b} \in B : R_{\omega,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \ge k\}$$

By Definability, there is an L(B)-formula $\psi(\bar{x})$ s.t.

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \geq k \Leftrightarrow \mathbb{M} \vDash \psi(\bar{b})$$

Therefore p is a definable φ -type

9.3.4 Remarks on the proof

1. In the proof of theorem 9.18, the finite subtype $\Sigma(\bar{x})\subseteq p(\bar{x})$ chosen to minimize $R_{\varphi,2}(\Sigma(\bar{x}))$ actually has

$$R_{\varphi,2}(\Sigma(\bar{x})) = R_{\varphi,2}(p(\bar{x}))$$

This comes from the following

- **Fact 9.22.** (a) If $n < \omega$ and if $R_{\varphi,2}(\Sigma_0(\bar{x})) \ge n$ for every finite subtype $\Sigma_0(\bar{x})$, then $R_{\varphi,2}(\Sigma(\bar{x})) \ge n$
- (b) $R_{\varphi,2}(\Sigma(\bar{x}))$ is the minimum of $R_{\varphi,2}(\Sigma_0(\bar{x}))$ as Σ_0 ranges over finite subtypes of Σ .
- 2. We have discussed $R_{\varphi,2}$ for partial types, but we can also define it for definable sets. If D is a definable set, defined by a finite type $\Sigma(\bar{x})$, then $R_{\varphi,2}(D):=R_{\varphi,2}(\Sigma(\bar{x}))$. The

9.3.5 Consequences of Theorem 9.18

Theorem 9.23. Suppose that no formula $\varphi(x_1, ..., x_n; \bar{y})$ has the dichotomy property. For any model $M \models T$ and any $p \in S_n(M)$, p is definable

Proof. Take $\bar{a} \in \mathbb{M}$ realizing p. Let $\varphi(\bar{x}; \bar{y})$ be a formula. By Theorem 9.18, $\operatorname{tp}^{\varphi}(\bar{a}/M)$ is definable, therefore p is definable

Remark. When $A\subseteq \mathbb{M}$ is arbitrary, one says that $p\in S_n(A)$ is **definable** if for any $\varphi(\bar{x};\bar{y})$ there is an L(A)-formula $\psi(\bar{y})$ s.t. for $\bar{b}\in A$

$$\varphi(\bar{x}; \bar{b}) \in p(\bar{x}) \Leftrightarrow \mathbb{M} \vDash \psi(\bar{b})$$

The proof of Theorem 9.23 shows more generally that

If no formula has the dichotomy property, then any $p \in S_n(A)$ is definable for any A

Therefore in a stable theory, any type over *any* set is definable

Warning 9.24. Definable types over arbitrary sets are not as well-behaved as definable types over models. For example

1. A definable type over $A \subseteq \mathbb{M}$ can have more than one A-definable extension to \mathbb{M} : In DLO, there is only one 1-type over \emptyset . It has two different \emptyset -definable extensions to \mathbb{M} : the types at $+\infty$ and $-\infty$

2. A definable type over $A \subseteq \mathbb{M}$ can have no A-definable extensions to \mathbb{M} : In ACF, $\operatorname{tp}(\sqrt{2}/\mathbb{Q})$ is definable (because ACF is stable), but there is no \mathbb{Q} -definable extension to the monster model \mathbb{M} . Indeed, there are exactly two extensions to \mathbb{M} , namely $\operatorname{tp}(\sqrt{2}/\mathbb{M})$ and $\operatorname{tp}(-\sqrt{2}/\mathbb{M})$. These are exchanged by some automorphisms in $\operatorname{Aut}(\mathbb{M}/\mathbb{Q})$ so neither one can be \mathbb{Q} -definable

Theorem 9.25. Assume T is stable and $M \models T$. Let $D \subseteq M^n$ be \emptyset -definable. If $X \subseteq D$ is definable (with parameters from M), then X is definable over parameters from D

Proof. Let $\psi(\bar{y})$ be a formula defining D and let $\varphi(\bar{a}; \bar{y})$ be a formula defining X. Then $\operatorname{tp}^{\varphi}(\bar{a}/D)$ is definable by Theorem 9.18. Therefore there is a formula $\theta(\bar{y})$ with parameters from D s.t. if $\bar{b} \in D$, then

$$(M \vDash \varphi(\bar{a}; \bar{b})) \Leftrightarrow \varphi(\bar{x}; \bar{b}) \in \mathsf{tp}^{\varphi}(\bar{a}/D) \Leftrightarrow (M \vDash \theta(\bar{b}))$$

In other words, if $\psi(\bar{y})$ holds, then $\varphi(\bar{a}; \bar{y})$ is equivalent to $\theta(\bar{y})$. Therefore X is defined by $\psi(\bar{y}) \wedge \theta(\bar{y})$, a formula with parameters from D

Fact 9.26. Let M be a stable structure and $D \subseteq M^n$ be A-definable. Let N be the structure whose domain is D, with an m-ary relation symbol for each A-definable $X \subseteq D^m$. Then the definable subsets of D^m in M agree with the definable subsets of D^m in N

9.4 Coheirs

Definition 9.27. If $M \leq N$, if $p \in S_n(M)$, if $q \in S_n(N)$, then q is a **coheir** of p if $q \supseteq p$ and q is finitely satisfiable in M (for any $\phi(x) \in q(x)$, there is $a \in M$ s..t $N \vDash \phi(a)$)

Example 9.3. $\mathbb{Q}^{\text{alg}} \leq \mathbb{C}$, $q = \operatorname{tp}(\pi/\mathbb{C})$, $p = \operatorname{tp}(\pi/\mathbb{Q}^{\text{alg}})$. $q \supseteq p$, but q isn't a coheir since $x = \pi \in q(x)$

Example 9.4. If $M \leq N$ strongly minimal, $q(x) \in S_1(N)$, $p(x) \in S_1(M)$ is the transcendental 1-type, $p \subseteq q$, then q is a coheir of p,

If $\varphi(x) \in q(x)$, then $\varphi(N)$ is cofinite and M is infinite, so $\varphi(N) \cap M \neq \emptyset$

Lemma 9.28. If $M \leq N$, $\Sigma(\bar{x})$ partial type over N, $\Sigma(\bar{x})$ is f.sat. in M, then $\exists q(\bar{x}) \in S_n(N)$, $q(\bar{x})$ is fsat. in M

Proof. Let $\Psi(\bar{x}) = \{ \psi(\bar{x}) \in L(N) : \forall \bar{a} \in M, N \vDash \psi(\bar{a}) \}$ If $\bar{a} \in M$, then \bar{a} satisfies Ψ

Claim $\Sigma(\bar{x})$ fsat in $M\Rightarrow \Sigma\cup\Psi$ is fsat $\Rightarrow q\in S_n(N), q\supseteq \Sigma\cup\Psi$ If q isn't fast. in M then $\varphi(\bar{x})\in q(\bar{x}), \varphi(\bar{x})$ not sat. in M

Theorem 9.29. If $p \in S_n(M)$, $N \succeq M$, then $\exists q \in S_n(N)$, q is a coheir of p

Theorem 9.30. Suppose $M_1 \leq M_2 \leq M_3$, $p_1 \in S_n(M_1)$, $p_2 \in S_n(M_2)$, p_2 is a coheir of p_1 . Then $\exists p_3 \in S_n(M_3)$, p_3 is a coheir of p_1 and p_2

9.5 Coheir Independence

9.5.1 Coheir independence

Definition 9.31. Let M be a small model, \bar{a}, \bar{b} small tuples (possibly infinite). Then \bar{a} is **coheir independent** from \bar{b} over M, written

$$\bar{a} \bigcup_{M}^{u} \bar{b}$$

if $\operatorname{tp}(\bar{a}/M\bar{b})$ is finitely satisfiable in M

Remark. The relation $A \bigcup_{M}^{u} B$ is finitary w.r.t. the arguments A and B, in the following sense. $A \bigcup_{M}^{u} B$ holds iff the following does:

For any finite tuple $\bar{a} \in A$ and any finite tuple $\bar{b} \in B$, we have $\bar{a} \bigcup_M^u \bar{b}$ Since a formula $\varphi(\bar{x}, \bar{y})$ can only refer to finitely many variables

Remark. The relation \bigcup^u can be used to define heirs and coheirs, as follows. Suppose M,N are small models with $M \leq N$. Suppose $p \in S_n(M)$ and $q \in S_n(N)$ with $q \supseteq p$. Take $\bar{a} \in \mathbb{M}^n$ realizing q

- 1. $q = \operatorname{tp}(\bar{a}/N)$ is a coheir of $p = \operatorname{tp}(\bar{a}/M)$ iff $\bar{a} \downarrow_M^u N$
- 2. $q=\operatorname{tp}(\bar{a}/N)$ is an heir of $p=\operatorname{tp}(\bar{a}/M)$ iff $N \bigcup_M^u \bar{a}$

9.5.2 Existence

Lemma 9.32. Let M be a small model and \bar{a}, \bar{b} be tuples, possibly infinite

- 1. There is $\sigma \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\sigma(\bar{a}) \bigcup_{M}^{u} \bar{b}$
- 2. There is $\sigma \in Aut(\mathbb{M}/M)$ s.t. $\bar{a} \bigcup_{M}^{u} \sigma(\bar{b})$

Proof. 1. Let α be the length of \bar{a} and \bar{x} be an α -tuple of variables. Let

$$\Psi(\bar{x}) = \{ \psi(\bar{x}) \in L(M\bar{b}) : \psi(\bar{x}) \text{ is satisfied by every } \bar{a}' \in M^{\alpha} \}$$

If $\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/M)$, then there is $\bar{a}' \in M^{\alpha}$ satisfying $\varphi(\bar{x})$ because $\operatorname{tp}(\bar{a}/M)$ is finitely satisfiable in M. Then \bar{a}' satisfies $\{\varphi(\bar{x})\} \cup \Psi(\bar{x})$.

This shows $\operatorname{tp}(\bar{a}/M) \cup \Psi(\bar{x})$ is finitely satisfiable, hence realized by some $\bar{a}' \in \mathbb{M}^{\alpha}$

Then \bar{a}' realizes $\operatorname{tp}(\bar{a}/M)$, so $\operatorname{tp}(\bar{a}'/M) = \operatorname{tp}(\bar{a}/M)$, and there is $\sigma \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\sigma(\bar{a}) = \bar{a}'$. Finally $\bar{a}' \downarrow_M^u \bar{b}$ by choice of $\Psi(\bar{x})$: if $\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}'/M\bar{b})$ and $\varphi(\bar{x})$ isn't satisfiable in M, then $M \models \neg \exists \bar{x} \varphi(\bar{x})$ and $M \models \forall \bar{x} \neg \varphi(\bar{x})$, hence $\neg \varphi(\bar{x}) \in \Psi(\bar{x})$ and \bar{a} doesn't satisfy $\varphi(\bar{x})$, a contradiction

2. By 1, there is $\tau \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\tau(\bar{a}) \bigcup_M^u \bar{b}$. Let $\sigma = \tau^{-1}$. Then $\sigma(\tau(\bar{a})) \bigcup_{\sigma(M)}^u \sigma(\bar{b})$, or equivalently, $\bar{a} \bigcup_M^u \sigma(\bar{b})$

Corollary 9.33. Suppose $p \in S_n(M)$ and $N \succeq M$

- 1. There is $q \in S_n(M)$ s.t. q is a coheir of p
- 2. There is $q \in S_n(M)$ s.t. q is an heir of p
- *Proof.* 1. Take $\bar{a} \in \mathbb{M}^n$ realizing p. Let \bar{b} enumerate N. By Lemma, there is $\sigma \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\sigma(\bar{a}) \downarrow_M^u \bar{b}$, i.e., $\sigma(\bar{a}) \downarrow_M^u N$. Thus $\operatorname{tp}(\sigma(\bar{a})/N)$ is a coheir of $\operatorname{tp}(\sigma(\bar{a})/M) = \operatorname{tp}(\bar{a}/M) = p$
 - 2. Similarly we have $N \perp_M^u \sigma(\bar{a})$, and thus $\operatorname{tp}(\sigma(\bar{a})/N)$ is an heir of $\operatorname{tp}(\sigma(\bar{a})/M) = \operatorname{tp}(\bar{a}/M)$

9.5.3 "u" for "ultrafilter"

Proposition 9.34. *Let* \bar{a} *be an* α *-tuple in* \mathbb{M} *. Let* M *be a small model and* B *a small set. TFAE*

- 1. $\bar{a} \bigcup_{M}^{u} B$
- 2. There is an ultrafilter $\mathcal U$ on the set M^{α} s.t. for any L(MB)-formula $\varphi(\bar x)$

$$\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB) \Leftrightarrow \{\bar{a}' \in M^\alpha : \mathbb{M} \vDash \varphi(\bar{a}')\} \in \mathcal{U}$$

Proof. \Rightarrow : For $\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB)$, let $I = M^{\alpha}$ and $\mathcal{F} = \{\varphi(M^{\alpha}) : \varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB)\}$. We claim that \mathcal{F} has FIP. Let \mathcal{U} be an ultrafilter on M^{α} extending \mathcal{F} . Then for any L(MB)-formula

$$\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB) \Rightarrow \varphi(M^\alpha) \in \mathcal{F} \Rightarrow \varphi(M^\alpha) \in \mathcal{U} \Leftrightarrow \{\bar{a}' \in M : \mathbb{M} \vDash \varphi(\bar{a}')\} \in \mathcal{U}$$

Then

⇐:

$$\varphi(\bar{x})\notin\operatorname{tp}(\bar{a}/MB)\Rightarrow\neg\varphi(\bar{x})\in\operatorname{tp}(\bar{a}/MB)\Rightarrow\varphi(M^{\alpha})\notin\mathcal{U}$$

Proposition 9.35. *Suppose* $p \in S_n(M)$ *and* $N \succeq M$

1. If $q \in S_n(N)$ is a coheir of p, then there is an ultrafilter $\mathcal U$ on M^n s.t.

$$q(\bar{x}) = \{ \varphi(\bar{x}) \in L(N) : \varphi(M^n) \in \mathcal{U} \} \tag{\star}$$

2. Conversely, if \mathcal{U} is an ultrafilter on M^n and we define $q(\bar{x})$ according to (\star) , then $q(\bar{x}) \in S_n(N)$ and q is a coheir of p

Proof. 1. Take \bar{a} realizing q and p, then $\bar{a} \bigcup_{M}^{u} N$. Apply proposition 9.34

2. It suffices to show that q is finitely satisfiable in M and complete

Corollary 9.36 (Coheirs extend). Suppose $M \leq N \leq N'$ and $p \in S_n(M)$ and $q \in S_n(N)$ is a coheir of p, then is $q' \in S_n(N')$ with $q' \supseteq q$ and q' is a coheir of p *Proof.* By proposition 9.35 there is an ultrafilter $\mathcal U$ on M^n s.t.

$$q(\bar{x})=\{\varphi(\bar{x})\in L(N):\varphi(M^n)\in\mathcal{U}\}$$
 Take $q'(\bar{x})=\{\varphi(\bar{x})\in L(N'):\varphi(M^n)\in\mathcal{U}\}$

Remark. Suppose $q \in S_n(N)$ is an heir of $p \in S_n(M)$. Then $N \bigcup_M^u \bar{a}$ for a realization \bar{a} . Proposition 9.34 gives an ultrafilter $\mathcal U$ and tells us something., ultimate conclusion is

There is an ultrapower $M^{\mathcal{U}} \succeq N$ s.t. $p^{\mathcal{U}} \supseteq q$

9.5.4 Symmetry

Suppose $q \in S_n(N)$ is an extension of $p \in S_n(M)$.

In stable theory, coheir and heir are the same thing, so for any $q \in S_n(N)$ and $p \in S_n(M)$, $M \leq N$

$$\bar{a} \overset{u}{\underset{M}{\bigcup}} N \Leftrightarrow N \overset{u}{\underset{M}{\bigcup}} \bar{a}$$

Theorem 9.37. *If T is stable, then*

$$\bar{a} \underbrace{\bigcup_{M}^{u} \bar{b}}_{M} \Leftrightarrow \bar{b} \underbrace{\bigcup_{M}^{u}}_{M} \bar{a}$$

Proof. It suffices to prove \Rightarrow . Let α be the length of \bar{a} . Take a small model N containing M and \bar{b} . By the method of 9.36, one can find a type $q \in S_{\alpha}(N)$ extending $\operatorname{tp}(\bar{a}/M\bar{b})$ finitely satisfiable in M. Take \bar{a}' realizing q. Then $\bar{a}' \downarrow_M^u N$. Also $\operatorname{tp}(\bar{a}'/M\bar{b}) = q \upharpoonright (M\bar{b}) = \operatorname{tp}(\bar{a}/M\bar{b})$, so there is $\sigma \in \operatorname{Aut}(\mathbb{M}/M\bar{b})$ s.t. $\sigma(\bar{a}') = \bar{a}$. Then

$$\bar{a}' \mathop{\downarrow}\limits_{M}^{u} N \Rightarrow \sigma(\bar{a}') \mathop{\downarrow}\limits_{\sigma(M)}^{u} \sigma(N) \Leftrightarrow \bar{a} \mathop{\downarrow}\limits_{M}^{u} \sigma(N)$$

Replacing N with $\sigma(N)$, we may assume $\bar{a} \mathrel{\bigcup}_M^u N$. Therefore we have $N \mathrel{\bigcup}_M^u \bar{a}$. As $\bar{b} \in N$, this implies $\bar{b} \mathrel{\bigcup}_M^u \bar{a}$

9.5.5 Finitely satisfiable types commute with definable types

Recall that if $M \leq N \leq M$, then

$$N \underset{M}{\overset{u}{\downarrow}} \bar{a} \Leftrightarrow \operatorname{tp}(\bar{a}/N) \supseteq \operatorname{tp}(\bar{a}/M)$$

Therefore the following lemma generalizes the fact that definable types have unique types

Lemma 9.38. Let M be a small model. Suppose $\operatorname{tp}(\bar{a}/M)$ is definable and $\bar{b} \bigcup_{M}^{u} \bar{a}$. Then $\operatorname{tp}(\bar{a}/M\bar{b})$ is $p \upharpoonright M\bar{b}$, where p is the M-definable global type extending $\operatorname{tp}(\bar{a}/M)$

Proof. We must show that for any *L*-formula $\varphi(\bar{x}, \bar{y}, \bar{z})$ and any $\bar{c} \in M$,

$$\varphi(\bar{x},\bar{b},\bar{c}) \in \operatorname{tp}(\bar{a}/M\bar{b}) \Leftrightarrow \mathbb{M} \vDash (d_{v}\bar{x})\varphi(\bar{x},\bar{b},\bar{c})$$

Otherwise, these things are true

$$\begin{split} \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}, \bar{c}) \not\Leftrightarrow \mathbb{M} \vDash (d_p(\bar{x})\varphi(\bar{x}, \bar{b}, \bar{c}) \\ \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}, \bar{c}) \not\leftrightarrow (d_p\bar{x})\varphi(\bar{x}, \bar{b}, \bar{c}) \\ (\varphi(\bar{a}, \bar{y}, \bar{c}) \not\leftrightarrow (d_p\bar{x})\varphi(\bar{x}, \bar{y}, \bar{c})) &\in \mathsf{tp}(\bar{b}/M\bar{a}) \end{split}$$

As $\bar{b} \bigcup_{M'}^{u}$ there is $\bar{b}' \in M$ s.t.

$$\begin{split} \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}', \bar{c}) \not\leftrightarrow (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \\ \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}', \bar{c}) \not\Leftrightarrow \mathbb{M} \vDash (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \\ \varphi(\bar{x}, \bar{b}', \bar{c}) &\in \mathsf{tp}(\bar{a}/M) \not\Leftrightarrow \mathbb{M} \vDash (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \end{split}$$

A contradiction

Lemma 9.39. Let $p \in S_n(\mathbb{M})$ be finitely satisfiable in a small model M. If $\bar{a} \models p \upharpoonright$ $M\bar{b}$, then $\bar{a} \bigcup_{M}^{u} \bar{b}$

Theorem 9.40. Let p, q be global types. Suppose p is definable over some small set A. (p is A-invariant) Suppose q is finitely satisfiable in some small set B (q is *B-invariant by* 9.49). *Then* p *and* q *commute*

Proof. Otherwise, there is an $L(\mathbb{M})$ -formula $\varphi(\bar{x}, \bar{y})$ s.t.

$$(p \otimes q)(\bar{x}, \bar{y}) \vdash \varphi(\bar{x}, \bar{y})$$
$$(q \otimes p)(\bar{y}, \bar{x}) \vdash \neg \varphi(\bar{x}, \bar{y})$$

The formula φ uses only finitely many parameters \bar{c} from \mathbb{M} . By Löwenheim– Skolem Theorem there is a small model M containing $AB\bar{c}$. Then $\varphi(\bar{x},\bar{y})$ is an L(M)-formula. Also, p is M-definable and q is finitely satisfiable in M. Note that p, q and $p \otimes q$, $q \otimes p$ are M-invariant types. Take $(\bar{a}, b) \models (p \otimes q) \upharpoonright M$ and $\bar{a} \vDash p \upharpoonright M$, $\bar{b} \vDash q \upharpoonright M\bar{a}$. By Lemma 9.39, $\bar{b} \mathrel{\dot{\bigcup}}_M^u \bar{a}$ Now $\operatorname{tp}(\bar{a}/M)$ is the definable type $p \upharpoonright M$, so by Lemma 9.39

$$\bar{a} \vDash p \upharpoonright M\bar{b}$$

Thus $(\bar{b}, \bar{a}) \vDash (q \otimes p) \upharpoonright M$

It follows that $(q \otimes p)(\bar{y}, \bar{x})$ and $(p \otimes q)(\bar{x}, \bar{y})$ have the same restriction to M. Then φ leads to a contradiction

Types commute in stable theories

Assume the theory *T* is stable

Proposition 9.41 (Assuming stability). Let $p \in S_n(\mathbb{M})$ be a global type and Mbe a small model. TFAE

- 1. p is finitely satisfiable in M
- 2. p is M-invariant
- 3. p is M-definable

Proof.
$$1 \rightarrow 2$$
: 9.49 $2 \rightarrow 3$: 9.51 \square

Theorem 9.42 (Assuming stability). Let $p(\bar{x})$, $q(\bar{y})$ be two invariant global types. Then p and q commute

Proof. The types p and q are invariant over small sets A and B respectively. Take a small model M containing $A \cup B$. Then p and q are M-invariant. By Proposition 9.41, p is M-definable and p is finitely satisfiable in M. Therefore p and q commute by Theorem 9.40

9.5.7 Morley products and \bigcup^u

Let M be a small model. If p and q are M-definable types, then the Morley product $p \otimes q$ is also M-definable by 9.63. Since M-definable global types corresponds to (M-)definable types over M (Proposition 9.48), we can regard \otimes as an operation on definable types over M

If T is stable, then all types over M are definable, and we get an operation

$$S_n(M)\times S_n(M)\to S_{m+n}(M)$$

$$(p,q)\mapsto p\otimes q$$

The following theorem shows that, at least in stable theories, there is a very close connection between the Morley product $p\otimes q$ and the coheir independence relation $\bar a \bigcup_M^u \bar b$

Theorem 9.43. Assume T is stable. Let $M \leq \mathbb{M}$ be a small model and \bar{a}, \bar{b} be tuples in \mathbb{M} . Then

$$\bar{a} \bigcup_{M}^{u} \bar{b} \Leftrightarrow \operatorname{tp}(\bar{b}, \bar{a}/M) = \operatorname{tp}(\bar{b}/M) \otimes \operatorname{tp}(\bar{a}/M)$$

Proof. First suppose $\bar{a} \downarrow_M^u \bar{b}$. Then $\operatorname{tp}(\bar{a}/M\bar{b})$ is finitely satisfiable in M. By Lemma 9.28, there is a global type p which is finitely satisfiable in M and extends $\operatorname{tp}(\bar{a}/M\bar{b})$. By Proposition 9.41, p is M-definable. Then p is the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{a}/M)$. Let q be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{b}/M)$. Then

$$\bar{b} \vDash q \upharpoonright M$$
 and $\bar{a} \vDash p \upharpoonright M\bar{b}$

because p extends tp($\bar{a}/M\bar{b}$). Therefore

$$(\bar{b}, \bar{a}) \vDash (q \otimes p) \upharpoonright M$$

or equivalently, $\operatorname{tp}(\bar{b}, \bar{a}/M) = (q \otimes p) \upharpoonright M$.

Conversely, suppose $\operatorname{tp}(\bar{b},\bar{a}/M)=\operatorname{tp}(\bar{b}/M)\otimes\operatorname{tp}(\bar{a}/M)$. Let q be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{b}/M)$ and let p be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{a}/M)$ by 9.48. Then

$$(\bar{b},\bar{a})\vDash (q\otimes p)\upharpoonright M$$

or equivalently

$$\bar{b} \vDash q \upharpoonright M$$
 and $\bar{a} \vDash p \upharpoonright M\bar{b}$

By Proposition 9.41 p is finitely satisfiable in M, and so

$$\bar{a} \vDash p \upharpoonright M\bar{b} \Rightarrow \bar{a} \overset{u}{\underset{M}{\bigcup}} \bar{b}$$

by Lemma 9.39

9.6 Invariant types

Lemma 9.44. *If* $X \subseteq \mathbb{M}^n$ *,* TFAE

- 1. $\sigma(X) = X \text{ if } \sigma \in Aut(\mathbb{M}/A)$
- 2. If $\bar{a}, \bar{b} \in \mathbb{M}^n$, $\bar{a} \equiv_{A} \bar{b} \Rightarrow (\bar{a} \in X \Leftrightarrow \bar{b} \in X)$
- 3. There is $f: S_n(A) \to \{0,1\}$ s.t. $\bar{a} \in X \Leftrightarrow f(\mathsf{tp}(\bar{a}/A)) = 1$

Proof. rewrite (2) as

- If $\bar{a}, \bar{b} \in \mathbb{M}^n$, $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, $\sigma(\bar{a}) = \sigma(\bar{b})$, then $\bar{a} \in X \Leftrightarrow \bar{b} \in X$
- $\bullet \ \ \text{If} \ \bar{a} \in M \text{, } \sigma \in \operatorname{Aut}(\mathbb{M}/A) \text{, } \bar{a} \in X \Leftrightarrow \sigma(\bar{a}) \in X$

Definition 9.45. $X \subseteq \mathbb{M}^n$ is A-invariant if $\forall \sigma \in \operatorname{Aut}(\mathbb{M}/A), \sigma(X) = X$

Example 9.5. If *X* is *A*-definable, then *X* is *A*-invariant

Lemma 9.46. If $D \subseteq \mathbb{M}^n$ is definable and A-invariant, then D is A-definable

Proof. Step 1: If $\bar{b} \in D$ then $\operatorname{tp}(\bar{b}/A) \vdash \bar{x} \in D$, by compactness, there is $\varphi(\bar{x}) \in \operatorname{tp}(\bar{b}/A)$ s.t. $\varphi(\bar{x}) \vdash \bar{x} \in D$, $\varphi(\mathbb{M}^n) \subseteq D$

Step 2: So then D is covered by A-definable subsets of D. By compactness, D is covered by finitely many of them, which implies D is A-definable Suppose $D = \psi$, then $[\psi] = \bigcup [\varphi_i]$

Definition 9.47. p is A-definable if $\forall \varphi$, $\{\bar{b} \in \mathbb{M}: \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}$ is A-definable

Remark. 1. p is A-definable $\Rightarrow p$ is A-invariant

2. If p is definable, then p is A-invariant $\Leftrightarrow p$ is A-definable

3. If p is definable thne p is A-definable for some small A Each $d_p \varphi$ uses only finitely many parameters

Proposition 9.48. *Suppose* $M \leq M$ *, small*

- 1. If $p\in S_n(M)$ definable and $p^{\mathbb{M}}$ is its heir over \mathbb{M} , then $p^{\mathbb{M}}\in S_n(\mathbb{M})$ is M-definable
- 2. $p \mapsto p^{\mathbb{M}}$ is a bijection from definable types over M to M-definable types over \mathbb{M}

Proof. 1. $p^{\mathbb{N}}$ has the same definition as p, so it's M-definable

2. $q \mapsto q \upharpoonright M$ is an inverse to $p \mapsto p^{\mathbb{M}}$

Warning: an M-invariant type p is not determined by $p \upharpoonright M$. If $A \subseteq \mathbb{M}$, A-definable type p is not determined by $p \upharpoonright A$. Only works for models CHECK

Theorem 9.49. Suppose $M \leq \mathbb{M}$ and $p \in S_n(M)$

- 1. If $q \in S_n(\mathbb{M})$ and q is a coheir of p, then q is M-invariant
- 2. $\exists q \in S_n(\mathbb{M}), p \subseteq q \text{ is } M\text{-invariant}$

Proof. If q is a coheir of p, but q is not M-invariant, then $\exists \bar{b}, \bar{c}, \ \bar{b} \equiv_M \bar{c}, \ \varphi(\bar{x}, \bar{b}) \in q, \varphi(\bar{x}, \bar{c}) \notin q$. Then $\varphi(\bar{x}, \bar{b}) \land \neg \varphi(\bar{x}, \bar{c}) \in q(\bar{x})$. Because q is fsat. in M, $\exists \bar{a} \in M$, $M \vDash \varphi(\bar{a}, \bar{b}) \land \neg \varphi(\bar{a}, \bar{c})$, so $\bar{b} \not\equiv_M \bar{c}$

In stable theories:

Lemma 9.50. If T is stable and p is A-invariant, then p is A-definable

Theorem 9.51. Suppose T stable, $M \leq \mathbb{M}$ small, $p \in S_n(M)$. Let $p^{\mathbb{M}}$ the global heir.

- 1. $p^{\mathbb{M}}$ is the only M-invariant global type extending p
- 2. $p^{\mathbb{M}}$ is the only global coheir of p
- 3. If $M \leq N \leq \mathbb{M}$ and q is the heir of p over N, then q is the unique coheir of p over N

Proof. 1. M-invariant $\Leftrightarrow M$ -definable

2. there is some coheir of p. Any coheir is M-invariant, so $p^{\mathbb{M}}$ is the only coheir

Corollary 9.52. *In a stable theory, coheirs are unique and coheir=heir*

Corollary 9.53. *In a stable theory, "coheir" is transitive*

9.7 Morley sequence

Lemma 9.54. If p, q are A-invariant global types, $p \in S_n(\mathbb{M})$, $q \in S_m(\mathbb{M})$, then there is $r \in S_{n+m}(A)$ s.t. $(\bar{b}, \bar{c}) \models r$ iff

$$\bar{b} \vDash p \upharpoonright A \quad and \quad c \vDash q \upharpoonright (A\bar{b}) \tag{*}$$

Proof. Let $X=\{(\bar{b},\bar{c}):\bar{b}\vDash p\upharpoonright A \text{ and }\bar{c}\vDash q\upharpoonright A\bar{b}\}$. If $(\bar{b},\bar{c})\in X$ and $\sigma\in \operatorname{Aut}(\mathbb{M}/A)$, then $\sigma(\bar{b})\vDash \sigma(p\upharpoonright A)=p\upharpoonright A$ and $\sigma(\bar{c})\vDash q\upharpoonright A\sigma(\bar{b})$. So $\sigma(\bar{b},\bar{c})\in X$, X is A-invariant

Fix $\bar{b}_0 \vDash p \upharpoonright A$, $\bar{c}_0 \vDash q \upharpoonright A\bar{b}_0$, so $(\bar{b}_0, \bar{c}_0) \in X$. Let $r = \operatorname{tp}(\bar{b}_0, \bar{c}_0/A)$. If $(\bar{b}, \bar{c}) \vDash r$, then $(\bar{b}, \bar{c}) \in X$

Conversely, if $(\bar{b}, \bar{c}) \in X$, want $(\bar{b}, \bar{c}) \models r$, i.e., $(\bar{b}, \bar{c}) \equiv_A (\bar{b}_0, \bar{c}_0)$

 $\bar{b} \vDash p \upharpoonright A = \operatorname{tp}(\bar{b}_0/A) \text{ so } \bar{b} \equiv_A \bar{b}_0, \exists \sigma \in \operatorname{Aut}(A), \sigma(\bar{b}) = \bar{b}_0. \text{ Replace } (\bar{b}, \bar{c}) \text{ with } (\sigma(\bar{b}), \sigma(\bar{c})) = (\bar{b}_0, \sigma(\bar{c})).$

WMA $\bar{b}=\bar{b}_0$. Then \bar{c} and \bar{c}_0 both satisfy $q \upharpoonright A\bar{b}_0$. Move \bar{c} by $\tau \in \operatorname{Aut}(\mathbb{M}/A\bar{b}_0)$, we may assume $\bar{c}=\bar{c}_0$. Then $\bar{c}\equiv_{A\bar{b}_0}\bar{c}_0\Rightarrow \bar{b}\bar{c}\equiv_A\bar{b}_0\bar{c}_0$

Proposition 9.55. If $p \in S_n(\mathbb{M})$, $q \in S_m(\mathbb{M})$ and both are A-invariant, then there is A-invariant $p \otimes q \in S_{n+m}(\mathbb{M})$ s.t. for any small $A' \supseteq A$,

$$(\bar{b},\bar{c})\vDash(p\otimes q)\upharpoonright A'\Leftrightarrow b\vDash p\upharpoonright A' \text{ and } \bar{c}\vDash q\upharpoonright A'\bar{b}$$

Proof. Note p,q are A'-invariant for any A'-invariant, so lemma gives $r_{A'} \in S_{n+m}(A')$ for each $A' \supseteq A$ s.t. $(\bar{b},\bar{c}) \vDash r_{A'} \Leftrightarrow$ the condition

$$\begin{array}{l} \text{If } A'' \supseteq A' \supseteq A \text{, if } (\bar{b},\bar{c}) \vDash r_{A''} \text{ then } (\bar{b},\bar{c}) \vDash r_{A'} \text{ so } r_{A'} \vDash r_{A'} \upharpoonright A'. \\ \text{Let } p \otimes q = \bigcup_{A'} r_{A'} \text{, then } p \otimes q \in S_{n+m}(\mathbb{M}) \text{ and } r_{A'} = p \otimes q \upharpoonright A' \end{array} \quad \Box$$

If $\sigma\in {\rm Aut}(\mathbb{M}/A)$, then $\sigma(p\otimes q)=\sigma(p)\otimes\sigma(q)=p\otimes q$, so $p\otimes q$ is A-invariant

Fact 9.56. If $p \in S_n(M)$ A-invariant where M is $|A|^+$ -saturated and $N \succeq M$, then p has a unique A-invariant extension over N

Fact 9.57. If $p,q\in S_{n+m}(\mathbb{M})$ A-invariant, take $\bar{b}\vDash p$, $\bar{b}\in\mathbb{M}_1\succeq\mathbb{M}$, take $\bar{c}\vDash q\upharpoonright\mathbb{M}_1$ then $\operatorname{tp}(\bar{b},\bar{c}/\mathbb{M})=p\otimes q$

Definition 9.58. The (Morley) product of invariant types p, q is $p \otimes q$

If p, q are A-invariant, then $(\bar{b}, \bar{c}) \vDash (p \otimes q) \upharpoonright A \Leftrightarrow \bar{b} \vDash p \upharpoonright A$ and $\bar{c} \vDash q \upharpoonright A\bar{b}$

Definition 9.59. $\operatorname{acl}(A) = \bigcup \{ \varphi(\mathbb{M}) : \varphi(x) \in L(A), |\varphi(\mathbb{M})| < \infty \}$

Fact 9.60. *In ACF, if* K *a subfield of* \mathbb{M} *, then* $\operatorname{acl}(K)$ *is* K^{alg}

Fact 9.61. *In any theory* T*,* acl(-) *is a finitary closure operation*

Example 9.6. If T is strongly minimal and $p \in S_1(\mathbb{M})$ transcendental 1-type, what is $p \otimes p$

 $b \vDash p \upharpoonright A \Leftrightarrow b \notin \operatorname{acl}(A)$

Therefore $(b,c) \vDash (p \otimes p) \upharpoonright A$ iff $b \vDash p \upharpoonright A$ and $c \vDash p \upharpoonright Ab$ iff $b \notin \operatorname{acl}(A)$ and $c \notin \operatorname{acl}(Ab)$

idea: b, c are algebraically independent over A

In stable theories, $(p \otimes q)(x, y)$ is the "most free" completion of $p(\bar{x}) \cup q(\bar{y})$

Example 9.7. Suppose $\mathbb{M} \models \mathsf{ACF}$. let p_V denote generic type of a variety $V \subseteq \mathbb{M}$ $\{x \in V\} \cup \{x \notin W : W \subsetneq V, W \text{ algebraic}\}$

If $V\subseteq \mathbb{M}^n$, $W\subseteq \mathbb{M}^m$ varieties, then $V\times W$ is a variety, and $p_V\otimes p_W=p_{V\times W}$

Proof. $p_V \otimes p_W = p_Z$ for some variety $Z \subseteq \mathbb{M}^{n+m}$. Take small $M \leq \mathbb{M}$ s.t. V, W, Z are M-definable. Take $\bar{a} \vDash p_V \upharpoonright M$, take small $N \leq \mathbb{M}$, $N \supseteq M\bar{a}$. Take $\bar{b} \vDash p_W \upharpoonright N$, so $(\bar{a}, \bar{b}) \vDash p_V \otimes p_W \upharpoonright M = p_Z \upharpoonright M$.

" $x \in V \in p_V \upharpoonright M$ ", $\bar{a} \in V$, $\bar{b} \in W$, so $(\bar{a}, \bar{b}) \in V \times W$.

Fact: $p_Z(\bar{x}) \vdash \bar{x} \in U \Leftrightarrow Z \subseteq U$ for U algebraic

So $(\bar{a}, \bar{b}) \in V \otimes W \Leftrightarrow Z \subseteq V \times W$

Suppose $Z \subsetneq V \times W$. Take $(\bar{a}_0, \bar{b}_0) \in V \times W \setminus Z$. Let $Z_{\bar{a}} = \{\bar{y} \in M : (\bar{a}, \bar{y}) \in Z\}$, then $Z_{\bar{a}}$ is an algebraic set over $N \supseteq M_{\bar{a}}$ L

Definition 9.62. invariant types p, q "commute" if $p \otimes q(\bar{x}, \bar{y}) = q \otimes p(\bar{y}, \bar{x})$

Example 9.8. In ACF, any two types commutes

$$p_V \otimes p_W = p_{V \times W} = p_W \otimes p_V$$

If p is a definable type and $\varphi(\bar{x},\bar{y})$ is a formula, then $(d_p\bar{x})\varphi(\bar{x},\bar{y})$ means $d\varphi(\bar{y})$, the formula defining $\{\bar{b}\in\mathbb{M}:\varphi(\bar{x},\bar{b})\in p(\bar{x})\}$

 $d_n \bar{x}$ works like quantifier, free variables in $(d_n \bar{x}) \varphi(\bar{x}, \bar{y})$ are \bar{y}

Example 9.9. Suppose $\mathbb{M} \models T$ strongly minimal, let p = transcendental 1-type, $\varphi()$

Proposition 9.63. If p,q are A-definable global types, then $p\otimes q$ is A-definable and $(d_{p\otimes q}(\bar x,\bar y))\varphi(\bar x,\bar y,\bar z)\equiv (d_p\bar x)(d_q\bar y)\varphi(\bar x,\bar y,\bar z)$

Proof. Fix $\bar{c} \in \mathbb{M}$, take $M \leq \mathbb{M}$ s.t. $\bar{c} \in M$ and $M \supseteq A$, so p,q are M-definable. Take $\bar{a} \models p \upharpoonright M$ and $\bar{b} \models q \upharpoonright M\bar{a}$, so $(\bar{a},\bar{b}) \models (p \otimes q) \upharpoonright M$. So

$$\begin{split} \varphi(\bar{x},\bar{y},\bar{c}) \in p \otimes q &\Leftrightarrow \varphi(\bar{x},\bar{y},\bar{c}) \in p \otimes q \upharpoonright M \\ &\Leftrightarrow \mathbb{M} \vDash \varphi(\bar{a},\bar{b},\bar{c}) \\ &\Leftrightarrow \varphi(\bar{a},\bar{y},\bar{c}) \in q(\bar{y}) \upharpoonright M\bar{a} \\ &\Leftrightarrow \varphi(\bar{a},\bar{y},\bar{c}) \in q(\bar{y}) \\ &\Leftrightarrow \mathbb{M} \vDash (d_q\bar{y})\varphi(\bar{a},\bar{y},\bar{c}) \\ &\Leftrightarrow (d_q\bar{y})\varphi(\bar{x},\bar{y},\bar{c}) \in p(\bar{x}) \\ &\Leftrightarrow (d_p\bar{x})(d_q\bar{y})\varphi(\bar{x},\bar{y},\bar{c}) \end{split}$$

Example 9.10. in a strongly minimal theory, if $p \in S_1(\mathbb{M})$ is transcendental and $q = p \otimes p$ then $(d_q(x,y))\varphi(x,y,\bar{z})$ is $\exists^\infty x \exists^\infty y \varphi(x,y,\bar{z})$

Two definable types p,q commute iff $(d_p \bar{x})(d_q \bar{y}) \varphi(\bar{x},\bar{y},\bar{z}) \equiv (d_q \bar{y})(d_p \bar{x}) \varphi(\bar{x},\bar{y},\bar{z})$ Let A-invariant $p \in S_n(\mathbb{M})$

Definition 9.64. A Morley sequence of p over A is a sequence $\bar{b}_1, \bar{b}_2, \bar{b}_3, \dots \in \mathbb{M}^n$ s.t.

$$\bar{b}_1 \vDash p \upharpoonright A, \bar{b}_2 \vDash p \upharpoonright A\bar{b}_1, \ldots, \bar{b}_i \vDash p \upharpoonright A\bar{b}_1 \ldots \bar{b}_{i-1} \ldots$$
 So $(\bar{b}_1, \ldots, \bar{b}_n) \vDash \underbrace{p \otimes \cdots \otimes p}_{n \text{ times}}$

Example 9.11. If T is strongly minimal, p is transcendental 1-type, a Morley sequence over A is $b_1, b_2, ...$ s.t. $b_1 \notin \operatorname{acl}(A), b_2 \notin \operatorname{acl}(Ab_1),...$

Example 9.12. In DLO, in (\mathbb{R}, \leq) , 1, 2, 3, 4, ... is indiscernible An increasing sequence is indiscernible in DLO

Theorem 9.65. If $p \in S_n(\mathbb{M})$ A-invariant and $(\bar{b}_i : i < \omega)$ is a Morley sequence of p over A, then it is A-indiscernible

9.8 Order Property

Remark. If φ has O.P., then $\neg \varphi$

Lemma 9.66. For any infinite $\lambda \geq \aleph_0$ there is a linear order (I, \leq) and $S \subseteq I$ s.t. $|I| > \lambda$, $|S| \leq \lambda$, S is dense in I

Proof. there is
$$\mu$$
 s.t. $|2^{\mu}| > \lambda$ and $|2^{<\mu}| \le \lambda$.
Let $I = 2^{\mu} \cup 2^{<\mu}$ and $S = 2^{<\mu}$

Theorem 9.67. *If* $\varphi(\bar{x}, \bar{y})$ *has O.P., then* T *is not* λ *-stable for any* λ

Proof. Take $I \supseteq S$ s.t. S dense in I, $|S| \le \lambda$, $|I| > \lambda$

 $ar{a}_i, ar{b}_j, i, j \in \mathbb{Z}$, $arphi(ar{a}_i, ar{b}_j) \Leftrightarrow i < j$. By compactness, we can take any linear order. There is $ar{a}_i, ar{b}_j$ for $i, j \in I$ s.t. $\mathbb{M} \vDash arphi(ar{a}_i, ar{b}_j) \Leftrightarrow i < j$

Let
$$C = \{\bar{b}_j : j \in S\}, |C| \le \lambda$$
.

Claim $I \smallsetminus S \to S_n(C)$, $i \mapsto \operatorname{tp}(\bar{a}_i/C)$ is an injection

If $i_1 < i_2$, then there is $j \in S$, $i_1 < j < i_2$ then $\varphi(\bar{a}_i, \bar{b}_j) \land \neg \varphi(\bar{a}_{i_2}, \bar{b}_j)$, $\bar{b}_j \in C$, so $\bar{a}_{i_1} \not\equiv_C \bar{a}_{i_2} \mid S_n(C) \mid \geq |I \smallsetminus S| > \lambda$

Lemma 9.68. Suppose $\varphi(\bar{x}, \bar{y})$ doesn't have O.P. Let n_{φ} be from Lemma 9. Let $\bar{b}_1, \bar{b}_2, \ldots$ be indiscernible (over \emptyset). Then there is no \bar{a} s.t. $\mathbb{M} \vDash \varphi(\bar{a}, \bar{b}_i)$ for $0 \le i < n_{\varphi}$ s.t.

Proof.
$$n = n_{\varphi}$$
. Suppose \bar{a} exists, for $0 \leq$

Lemma 9.69. Suppose $\varphi(x_1, ..., x_n; \bar{y})$ doesn't have O.P.. Take $N > \max(n_{\varphi}, n_{\neg \varphi})$. let p be an A-invariant type over \mathbb{M} . Let $a_1, a_2, ...$ be a Morley sequence of p over A

- 1. If $\varphi(\bar{x}, \bar{b}) \in p(\bar{x})$, then $\mathbb{M} \models \varphi(\bar{a}_i, \bar{b})$ for most of i < 2N
- 2. If $\varphi(\bar{x}, \bar{b}) \notin p(\bar{x})$, then $\mathbb{M} \vDash \neg \varphi(\bar{a}_i, \bar{b})$ for most of i < 2N

Example 9.13. If T is strongly minimal then T is stable if $\varphi(x,\bar{y})$ has the O.P., then there is $a_i,\bar{b}_i\in\mathbb{M}\;\mathbb{M}\vDash\varphi(a_i,\bar{b}_j)\Leftrightarrow i< j \text{ for } i,j\in\mathbb{Z}$

So $\varphi(\mathbb{M}, \bar{b}_0)$ is neither finite or cofinite

Theorem 9.70. If T is stable and p and q are global types (all types are definable and hence invariant for some A), then $(p \otimes q)(\bar{x}, \bar{y}) = (q \otimes p)(\bar{y}, \bar{x})$

Proof. Suppose not. Take $\varphi(\bar{x}, \bar{y}) \in L(\mathbb{M})$. $\varphi(\bar{x}, \bar{y}) \in (p \otimes q)(\bar{x}, \bar{y})$, $\varphi(\bar{x}, \bar{y}) \notin (q \otimes p)(\bar{y}, \bar{x})$.

Take A s.t. p, q are A-definable and $\varphi(\bar{x}, \bar{y}) \in L(A)$

Take $p \otimes q \otimes p \otimes q \otimes \cdots$

 $((b_i,c_i):i\in\omega)$ a Morley sequence of $p\otimes q$ over A

If
$$i \leq j$$
, $(b_i, c_j) \vDash p \otimes q \upharpoonright A$, $\mathbb{M} \vDash \varphi(b_i, c_j)$

If
$$i > j$$
, $(c_i, b_i) \models q \otimes p \upharpoonright A \bowtie \models \neg \varphi(b_i, c_i)$

9.9 Ramsey's theorem and indiscernible sequences

Definition 9.71. X set, C a set of "colors", then $f:[X]^{\kappa} \to C$ is a coloring of κ -elements subsets of X

Definition 9.72. $Y \subseteq X$ is **homogeneous** if $f \upharpoonright [Y]^{\kappa}$ is constant

Definition 9.73. If N, m, n, k are cardinals, $N \to (m)_k^n$ means that if |X| = N, |C| = k, $f: [X]^n \to C$, then there is $Y \subseteq X$, Y is homogeneous and has size m

Fact 9.74 (Friends and strangers theorem). |X| = 6, |C| = 2 and $f : [X]^2 \to C$, then there is $Y \subseteq X$ homogeneous and size 3

Theorem 9.75 (Finite Ramsey's theorem). If $n, m, k \in \omega$ then there is $N < \omega$ s.t. $N \to (m)_k^n$

Proof. Let $L = \{R_1, \dots, R_k\}$, R_i is an n-ary predicate (relation) symbol. T is the L-theory that says:

- If $R_i(\bar{x})$ then \bar{x} is distinct
- If \bar{x} is distinct then $R_i(\bar{x})$ holds for exactly one i
- If \bar{y} is a permutation of \bar{x} , $R_i(\bar{x}) \leftrightarrow R_i(\bar{y})$

A model of T is a set M and a coloring of $[M]^n$

Let φ be the formula s.t. $M \models \varphi \Leftrightarrow$ there is a homogeneous $Y \subseteq M$, |Y| = m

$$\exists y_1, \dots, y_m \bigwedge_{1 \leq i_1 < \dots < i_n \leq m} \bigwedge_{1 \leq j_1 < \dots < j_n \leq m} \text{same color}$$

Suppose $N \not\rightarrow (m)_k^n$, then $\exists M \vDash T \mid M \mid = N$ and $M \nvDash \varphi$. Suppose $N \not\rightarrow (m)_k^n$ for any $N < \omega$, then by compactness, $T \cup \{\neg \varphi\}$ has infinite models. By theorem 17 last week, there is $M \vDash T \cup \{\neg \varphi\}$, indiscernible sequence $a_1, a_2, \dots \in M$ not constant, but indiscernibility $\Rightarrow \{a_1, a_2, \dots \}$ is homogeneous. $\{a_1, \dots, a_m\}$ is homogeneous

Fact 9.76 (Infinite Ramsey's theorem). $\aleph_0 \to (\aleph_0)^n_k$ for $n,k \in \omega$

extracting indiscernibles

Working $\mathbb{M} \vDash T$. If (I, \leq) is a linear order and $(\bar{a}_i : i \in I)$ is a sequence in \mathbb{M} and if $B \subseteq \mathbb{M}$

Definition 9.77. $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B) = \{ \varphi(\bar{x}_1, \dots, \bar{x}_n) \in L(B) : \forall i_1 < \dots < i_n \in I, \mathbb{M} \vDash \varphi(\bar{a}_{i_1}, \dots, \bar{a}_{i_n}) \}$, the Ehrenfeucht-Mostowski type over B

Remark. tp^{EM} is really a sequence of partial types over $B, \Sigma_1, \Sigma_2, ...$

$$\begin{array}{l} \textbf{Example 9.14. } \ln \ (\mathbb{R}, \leq) \text{, 1,1,2,2,3,3,4,4,...} \\ (x_1 \leq x_2) \in \operatorname{tp}^{\operatorname{EM}} (\dots) \\ x_1 < x_2 \notin \operatorname{tp}^{\operatorname{EM}} \end{array}$$

 $\textit{Remark.} \ \, \text{If} \, \, (\bar{a}_i:i\in I) \text{ is a sequence, } I_0\subseteq I \text{, then tp}^{\text{EM}}((\bar{a}_i:i\in I)/B)\subseteq I \text{ and } I \text{ is a sequence, } I \text{ is a seq$ $\operatorname{tp}^{\mathrm{EM}}((\bar{a}_i:i\in I_0)/B)$

Definition 9.78. If $\varphi(\bar{x}_1,\dots,\bar{x}_n)\in L(B)$, $(\bar{a}_i:i\in I)$ is " φ -indiscernible" if $\forall i_1 < \dots < i_n, \forall j_1 < \dots < j_n,$

$$\mathbb{M} \vDash \varphi(\bar{a}_{i_1}, \dots, \bar{a}_{i_n}) \leftrightarrow \varphi(\bar{a}_{j_1}, \dots, \bar{a}_{j_n})$$

Remark. $(\bar{a}_i : i \in I)$ is B-indiscernible iff it is φ -indiscernible for all $\varphi \in L(B)$

Definition 9.79. If Δ is a set of formulas, \bar{a} is Δ -indiscernible if it is φ indiscernible for all $\varphi \in \Delta$

Lemma 9.80. *Let* $(\bar{a}_i : i \in I)$ *be infinite*

- 1. If $m < \omega$, Δ is a finite set of L-formulas, then there is Δ -indiscernible subsequence of length m
- 2. If (J, \leq) is a linear order, Δ a set of formulas, then there is $(\bar{b}_j : j \in J) \in \mathbb{M}$ s.t. \bar{b} is Δ -indiscernible and $\operatorname{tp}^{\operatorname{EM}}(\bar{b}) \supset \operatorname{tp}^{\operatorname{EM}}(\bar{a})$

1. By induction on $|\Delta|$. Proof.

 $|\Delta| = 0$, take any subsequence of length m

 $|\Delta| > 0$, $\Delta = \Delta_0 \cup \{\varphi\}$, $\varphi(x_1, \dots, x_n)$. Ramsey: there is $N \to (m)_2^n$, by induction there is subsequence $(\bar{b}_i : i < N) \Delta_0$ -indiscernible. Define $f: [N]^n \to \{0, 1\}$ by

$$f(\{i_1,\dots,i_n\}) = \begin{cases} 1 & \mathbb{M} \vDash \varphi(b_{i_1},\dots,b_{i_n}) \\ 0 & \text{otherwise} \end{cases}$$

there is subsequence $(\bar{c}_i : i < m)$ that is homogeneous, φ -indiscernible

2. By compactness, we may assume J is finite, Δ is finite. By part 1

Theorem 9.81. If $(\bar{a}_i : i \in I)$ an infinite sequence, B is a set of parameters, (J,\leq) infinite linear order, then there is B-indiscernible sequence $(\bar{b}_j:j\in J)$ with $tp^{EM}(\bar{b}/B) \supseteq tp^{EM}(\bar{a}/B)$

Proof. Apply Lemma 9.80 with $\Delta = \{\text{all the } L(B)\text{-formulas}\}$

"Extracting indiscernible sequences"

Example 9.15 (=Theorem 17 last week). If $|\mathbb{M}| = \infty$, take distinct $a_0, a_1, a_2, \dots \in \mathbb{M}$, $x_1 \neq x_2 \in \operatorname{tp}^{\operatorname{EM}}(\bar{a})$. Take b_0, b_1, \dots indiscernible, extracted from \bar{a} , then $(x_1 \neq x_2) \in \operatorname{tp}^{\operatorname{EM}}(\bar{a}) \subseteq \operatorname{tp}^{\operatorname{EM}}(\bar{b})$, so $b_i \neq b_j$ for i < j. So \bar{b} is a non-constant indiscernible sequence

Example 9.16. Suppose $\mathbb{M} \succeq (\mathbb{R}, +, \cdot, \leq, 0, 1, -)$. Suppose $b_1, b_2, b_3, ...$ is indiscernible, extracted from 1, 2, 3, ...

$$\begin{array}{l} x_1 > 0 \in \mathsf{tp}^{\mathsf{EM}}(\bar{a}) \subseteq \mathsf{tp}^{\mathsf{EM}}(\bar{b}) \\ x_2 - x_1 \geq 1 \in \mathsf{tp}^{\mathsf{EM}}(\bar{b}) \end{array}$$

 $\begin{array}{l} \textit{Remark.} \ (\bar{a}_i:i\in I) \ \text{is B-indiscernible iff tp}^{\rm EM}(\bar{a}/B) \ \text{is "complete", i.e.,} \\ \forall \varphi(x_1,\ldots,x_n)\in L(B) \text{, } \varphi\in \operatorname{tp}^{\rm EM} \ \text{or } \neg\varphi\in \operatorname{tp}^{\rm EM} \end{array}$

Theorem 9.82. If $(\bar{a}_i: i \in I)$ is B-indiscernible, if (J, \leq) is a linear order, then there is B-indiscernible $(\bar{b}_j: j \in J)$ with $\operatorname{tp}^{\operatorname{EM}}(\bar{b}/B) = \operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$

Remark. If $(\bar{a}_i:i\in I)$ is *B*-indiscernible, then $\operatorname{tp}(\bar{a}/B)$ is determined by $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$ and (I,\leq)

$$\mathbb{M}\vDash\varphi(a_{i_1},\ldots,a_{i_n})\Leftrightarrow\varphi\in\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$$

So if $(\bar{a}_i:i\in I)$, $\bar{b}_i:i\in I$ both B-indiscernible and $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)=\operatorname{tp}^{\operatorname{EM}}(\bar{b}/B)$, then $\operatorname{tp}(\bar{a}/B)=\operatorname{tp}(\bar{b}/B)$

Theorem 9.83 (extending indiscernibles). *If* $(\bar{a}_i : i \in I)$ *is B-indiscernible, if* (J, \leq) *extends* (I, \leq) *, then* $\exists \bar{a}_j$ *for* $j \in J \setminus I$ *s.t.* $(\bar{a}_j : j \in J)$ *is B-indiscernible*

Proof. extract B-indiscernible $(\bar{c}_j:j\in J)$ from $(\bar{a}_i:i\in I)$, $\operatorname{tp}^{\operatorname{EM}}(\bar{c}/B)=\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$

the subsequence $(\bar{c}_i:i\in I)$ has same EM-type as

there is $\sigma\in \operatorname{Aut}(\mathbb{M}/B)$ s.t. $\sigma(\bar{c}_i)=\bar{a}_i$ for $i\in I.$ Define $\bar{a}_j:=\sigma(\bar{c}_j)$ for $j\in J\smallsetminus I$

Theorem 9.84. *If* $\varphi(\bar{x}, \bar{y}) \in L$, *TFAE*

- $1. \ \varphi \ \textit{has O.P.,} \ \bar{a}_i, \bar{b}_i, i \in \mathbb{Z}, \, \mathbb{M} \vDash \varphi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i < j$
- 2. same as (1) but $(\bar{a}_i\bar{b}_i:i\in\mathbb{Z})$ is indiscernible
- 3. There is an indiscernible $(\bar{a}_i : i \in \mathbb{Z})$ some \bar{b} s.t. $\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}) \Leftrightarrow i < 0$

Proof. $1 \rightarrow 2$: extract an indiscernible sequence from

$$2 \rightarrow 3$$
: take $\bar{b} = \bar{b}_0$

$$\begin{array}{l} 3 \rightarrow 1 \text{: For any } j \in \mathbb{Z} \text{, } (\bar{a}_i : i \in \mathbb{Z}) \equiv_B (\bar{a}_{i+j} : i \in \mathbb{Z}) \text{, there is } \sigma_j \in \operatorname{Aut}(\mathbb{M}) \text{,} \\ \sigma_j(\bar{a}_i) = \bar{a}_{i+j} \text{. Let } \bar{b}_j = \sigma_j(\bar{b}) \text{. Then } \bar{a}_i \bar{b}_j = \sigma(\bar{a}_{i-j} \bar{b}) \\ \mathbb{M} \vDash \varphi(\bar{a}_i, \bar{b}_i) \Leftrightarrow \mathbb{M} \vDash \varphi(\bar{a}_{i-j}, \bar{b}) \Leftrightarrow i-j < 0 \Leftrightarrow i < j \end{array} \qquad \Box$$

Corollary 9.85. T is unstable \Leftrightarrow there is $\varphi(\bar{x}, \bar{y})$ with O.P. $\Leftrightarrow (\bar{a}_i : i \in \mathbb{Z})$, $\varphi(\bar{x}, \bar{y})$, \bar{b} s.t. $\varphi(\bar{a}_i, \bar{b}) \Leftrightarrow i < 0$

Total indiscernibility

Example 9.17. In DLO, 1,2,3,4,... is indiscernible but not totally indiscernible In a totally

Proposition 9.86. *If* T *is unstable, then* \exists *indiscernible sequence that isn't totally indiscernible*

Proof. Take
$$\varphi$$
 with O.P., take $(\bar{a}_i\bar{b}_i:i\in\mathbb{Z})$ witnessing O.P., then $\varphi(a_1,b_2)\wedge\neg\varphi(a_2,b_1)$, so $(\bar{a}_i\bar{b}_i:i\in\mathbb{Z})$ isn't totally indiscernible

Definition 9.87. $\operatorname{tp}(a_1,\ldots,a_n/B)$ is **symmetric** if \forall permutation $\sigma \in S(n)$ $\bar{a}_1,\ldots,\bar{a}_n \equiv_B \bar{a}_{\sigma(1)},\ldots,\bar{a}_{\sigma(n)}$

Remark. Let σ_i be the permutation swapping i and i+1 and fixing everything else.

 $\operatorname{tp}(\bar{a}_1,\dots,\bar{b}_n/B)$ is symmetric iff it holds for each σ_i

Remark. Let $(\bar{a}_i: i \in I)$ be B-indiscernible. Let $p_n = \operatorname{tp}(\bar{a}_{i_1}, \dots, \bar{a}_{i_n}/B)$ for any $i_1 < \dots < i_n$. Then $(\bar{a}_i: i \in I)$ is totally B-indiscernible iff each p_n is symmetric

Remark. If $(\bar{a}_i:i\in I)$ is B-indiscernible, then $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$ determines whether \bar{a} is totally B-indiscernible

$$\mathsf{tp}^{\mathsf{EM}} \ \mathsf{is} \ p_1, p_2, \dots$$

Lemma 9.88. Let $(\bar{a}_i: i \in \mathbb{Z})$ be B-indiscernible. Let $C = \{\bar{a}_i: i \notin \{0,1\}\}$. If $\bar{a}_0\bar{a}_1 \equiv_{BC} \bar{a}_1\bar{a}_0$. Then $(\bar{a}_i: i \in \mathbb{Z})$ is totally B-indiscernible

Proof. there is $\sigma_0 \in \operatorname{Aut}(\mathbb{M}/BC)$, $\sigma_0(\bar{a}_0) = \bar{a}_1$, $\sigma(\bar{a}_1) = \bar{b}_0$

By indiscernibility, there is $\alpha_i \in \operatorname{Aut}(\mathbb{M}/B)$ s.t. α_i swaps \bar{a}_i , \bar{a}_{i+1} fixes \bar{a}_j for $j \notin \{i, i+1\}$. This means $\bar{a}_1 \dots \bar{a}_n \equiv_B \bar{a}_{\sigma_i(1)} \dots \bar{a}_{\sigma_i(n)}$ so $\operatorname{tp}(\bar{a}_1, \dots, \bar{a}_n/B)$ is symmetric \square

Proposition 9.89. *If* \mathbb{M} *is stable and* $A \subseteq \mathbb{M}$ *small, then* \mathbb{M} *is stable as an* L(A)*-structure*

Proof. Otherwise, there is L(A)-formula $\varphi(\bar{x}, \bar{y})$ with the O.P. $\varphi(\bar{x}, \bar{y}, \bar{c})$ for some $\bar{c} \in A$, $\bar{b}_i \bar{c}$ is the new \bar{b}

Theorem 9.90. TFAE

- 1. *T* is stable
- 2. every indiscernible sequence is totally indiscernible
- 3. B-indiscernible \Rightarrow totally B-indiscernible

Proof. $3 \rightarrow 2$: trivial

 $1 \to 3$: Suppose T stable but $(\bar{a}_i: i \in I)$ B-indiscernible not totally B-indiscernible

Extract
$$(\bar{a}'_i : i \in I)$$
 from $(\bar{a}_i : i \in I)$ some

Corollary 9.91. If T is stable, if $(\bar{a}_i : i \in I)$ is indiscernible, if D is definable, $\{i \in I : \bar{a}_i \in D\}$ is finite or cofinite in I

Proof. Suppose not. Take
$$i_1,i_2,\dots\in I$$
 s.t. $a_{i_1},a_{i_2},\dots\notin D$,

10 Fundamental Order and Forking

10.1 The fundamental order

Fix $n < \omega$

Definition 10.1. If $M \leq \mathbb{M}$, $p \in S_n(M)$, $\varphi(x_1, \dots, x_n; \bar{y})$. p represents φ if $\exists \bar{b} \in M \ \varphi(\bar{x}, \bar{b}) \in p(\bar{x})$. p omits φ otherwise

The class of p is $[p] = \{\varphi : p \text{ represents } \varphi\}$ $[p] \le [q]$ if $[p] \supseteq [q]$

The **fundamental order** is $\{[p]: M \leq \mathbb{M}, p \in S_n(M)\}$, with \leq (depends on n). $p \leq q$ means $[p] \leq [q]$

Remark. \leq is a partial order on the fundamental order but a preorder on the class $\{p:M \vDash T, p \in S_n(M)\}$

[p] is not a standard notation

Example 10.1. $n=1, \varphi(x,y):=x=y.$ $p\in S_1(M)$ represents p iff $\exists b\in M$, $x=b\in p(x)$ iff p is a constant type

Example 10.2. n = 1, T = DLO, there are four classes:

1. constant types

- 2. types at $+\infty$
- 3. types at $-\infty$
- 4. others

x = y is represented in 1

x < y is represented in 1,3,4 tp $(2/\mathbb{R})$ has x < 3, tp $(-\infty/\mathbb{R})$ has x < 0, tp $(\sqrt{2}/\mathbb{Q})$ has x < 2, tp $(+\infty/R)$ doesn't have x < b

x > y is represented in 1,2,4

 $\operatorname{tp}(\sqrt{2}/\mathbb{Q})$ and $\operatorname{tp}(0^+/\mathbb{R})$ have the same class

Goal: in a stable theory: if q is an extension of p, then if $q \supseteq p$, then [q] = [p], if $q \supseteq p$, then [q] < [p]

Proposition 10.2. Suppose $M \leq N$, $p \in S_n(M)$, $q \in S_n(N)$, $p \subseteq q$

- 1. $[q] \leq [p]$
- 2. [q]=[p] iff for any L-formula $\varphi(\bar x,\bar y)$, if $\bar b\in N$ and $\varphi(\bar x,\bar b)\in q(\bar x)$, then $\exists \bar b'\in M\ \varphi(\bar x,\bar b')\in p$
- 3. if $q \supseteq p$, then [q] = [p]

Proof. 1. every formula φ represented by p is represented by q

- 2. $[q] = [p] \Leftrightarrow [q] \ge [p] \Leftrightarrow [q] \subseteq [p] \Leftrightarrow$ this condition
- 3.

Remark. Suppose $M \leq N$, $p \in S_n(M)$, $q \in S_n(N)$, $p \subseteq q$

1. [q]=[p] means that $\forall \varphi(\bar{x},\bar{y})\in L$, $\exists \bar{b}\in N$, $\varphi(\bar{x},\bar{b})\in q(\bar{x})\Rightarrow \exists \bar{b}\in M\varphi(\bar{x},\bar{b})\in p(\bar{x})$

2. but $q \supseteq p$ considers L(M)-formulas

$$q \supseteq p \text{ iff } [q] = [p] \text{ in } L(M)$$

Proposition 10.3. $M, N \leq \mathbb{M}$, $p \in S_n(M)$, $q \in S_n(N)$, then $[p] \geq [q]$ iff \exists ultrafilter \mathcal{U} and elementary embedding $M \to N^{\mathcal{U}}$ making $q^{\mathcal{U}} \supseteq p$

Proof. ⇒ similar to 9.2

$$\Leftarrow: [q^{\mathcal{U}}] = [q]$$
 because $q^{\mathcal{U}} \supseteq q$, $[q^{\mathcal{U}}] \leq [p]$ because $q^{\mathcal{U}} \supseteq p$

10.2 The fundamental order in stable theory

Assume *T* is stable

Lemma 10.4. Suppose $M \leq N \leq M$, $p \in S_n(M)$, $q_1, q_2 \in S_n(N)$, $q_1, q_2 \supseteq p$ and $[q_1] = [p] = [q_2]$. Then $q_1 = q_2$.

In other words, there is at most one extension of p *to* N *with the same class as* p

Proof. similar to 9.6

Suppose
$$q_1 \neq q_2$$
, $\exists \varphi(\bar{x}, \bar{b})$ s.t. $\varphi \in q_1, \neg \varphi \in q_2$
Let $\beta = [p]$

Claim: If $M' \leq \mathbb{M}$, $p' \in S_n(M')$, $[p'] = \beta$, then $\exists N' \geq M'$, $\exists q'_1, q'_2 \in S_n(N')$, $q'_1, q'_2 \supseteq p'$, $[q'_1] = [q'_2] = \beta$ and $\exists \bar{b}' \in N'$, $\varphi(\bar{x}, \bar{b}') \in q'_1$ and $\neg \varphi \in q'_2$ $[p'] \geq [p]$, so there \mathcal{U} , elementary embedding $M' \to M^{\mathcal{U}}$ s.t. $p^{\mathcal{U}} \supseteq p'$. Then we have $M' \to M^{\mathcal{U}} \to N^{\mathcal{U}}$

$$[q_1^{\mathcal{U}}]=[q_1]=\beta=[q_2]=[q_2^{\mathcal{U}}].$$
 Let $q_i'=q_i^{\mathcal{U}}$, $N'=N^{\mathcal{U}}$

Using the claim, we can build a tree of types

where $p_{\sigma 0}$ and $p_{\sigma 1}$ are extensions of p_{σ} differing by a formula $\varphi(\bar{x}, \bar{b}_{\sigma})$. Then φ has the dichotomy property

 $\textbf{Proposition 10.5.} \ \textit{If} \ M \leq N, p \in S_n(M), q \in S_n(N), q \supseteq p$

1.
$$q \supseteq p \Leftrightarrow [q] = [p]$$

$$2. \ q \not \supseteq p \Leftrightarrow [q] < [p]$$

 $\textit{Proof.} \ \ \text{Let} \ q' \ \text{be the heir of} \ p, q' \in S_n(N)$

If
$$q \supseteq p$$
, then $q = q'$

If
$$[q] = [p]$$
, then $[q] = [q'] = [p]$ so Lemma 10.4 shows $q = q'$

10.3 bounds

T is stable

Fix $A \subseteq \mathbb{M}$, $p \in S_n(A)$

Definition 10.6. If $M \leq \mathbb{M}$, $M \supseteq A$, then $\operatorname{Ex}_M(p) = \{[q] : q \in S_n(M), q \supseteq p\}$

Lemma 10.7. Every chain in $Ex_M(p)$ has an upper bound

Proof. Let $F=\{q\in S_n(M): q\supseteq p\}$. Suppose $\{[q_i]: i\in I\}$ is a chain, $q_i\in F$, (I,\leq) a linear order, $[q_i]\leq [q_i]$ for $i\leq j$

If $i \leq j$, q_i omits φ , then q_i omits φ

Let $\Sigma(\bar{x}) = \{ \neg \varphi(\bar{x}, \bar{b}) : \varphi(\bar{x}, \bar{y}) \text{ omitted by some } q, \bar{b} \in M \}$

Claim: $p(\bar{x}) \cup \Sigma(\bar{x})$ is consistent

suppose $\varphi_1,\ldots,\varphi_m$, φ_j is omitted by q_{i_j} , $i_j\in I$, $\bar{b}_1,\ldots,\bar{b}_m\in M$. Want $p\cup\{\neg\varphi_j(\bar{x},\bar{b}_j):1\leq j\leq m\}$ consistent

Take $q(\bar x)\in S_n(M)$ a completion of $p(\bar x)\cup \Sigma(\bar x).$ Then $q\in F$, so $[q]\in {\rm Ex}_M(p).$

Definition 10.8. $\operatorname{Bd}_M(p) = \{ \operatorname{maximal} \beta \in \operatorname{Ex}_M(p) \}$

Elements of $Bd_M(p)$ are called **bounds** of p

Corollary 10.9. $\forall \beta \in \operatorname{Ex}_M(p), \exists \beta' \in \operatorname{Bd}_M(p), \beta' \geq \beta, \text{ and } \operatorname{Bd}_M(p) \text{ is not } empty$

Example 10.3. Suppose $A \leq \mathbb{M}$, $p \in S_n(A)$, A is a model

 $\textbf{Claim:}\ [p] = \max \mathrm{Ex}_M(p) \text{, so } \mathrm{Bd}_M(p) = \{[p]\}$

Take $q \in S_n(M)$, $q \supseteq p$, then [q] = [p], $[q] \in \operatorname{Ex}_M(p)$. If $r \in S_n(M)$, $r \supseteq p$, then $[r] \leq [p]$, so if $p \in \operatorname{Ex}_M(p)$ then $\beta \leq [p]$

Lemma 10.10. Suppose $M, N \leq M, M, N \supseteq A, p \in S_n(A)$

- 1. $\forall \beta \in Ex_M(p)$, $\exists \beta' \in Ex_N(p)$, $\beta' \geq \beta$
- $2. \ \operatorname{Bd}_M(p) = \operatorname{Bd}_N(p)$

Proof. 1. Take $M' \leq \mathbb{M}$, $M' \supseteq M \cup N$, $\beta \in \operatorname{Ex}_M(p)$ means $\exists q \in S_n(M)$, $q \supseteq p$, $[q] = \beta$

Let $q' \in S_n(M')$ be $q' \supseteq q$

Let $r = q' \upharpoonright N$. Then $r \supseteq p$, so $[r] \in \operatorname{Ex}_N(p)$. $[r] \ge [q'] = [q] = \beta$

- 2. suppose $\beta \in \operatorname{Bd}_M(p)$
 - by 1, there is $\beta' \in \operatorname{Ex}_N(p)$ with $\beta \leq \beta'$

- by Corollary 10.9, there is $\beta'' \in \operatorname{Bd}_N(p)$ with $\beta' \leq \beta''$
- By 1, there is $\beta''' \in \operatorname{Ex}_M(p)$ with $\beta'' \leq \beta'''$

Then $\beta \leq \beta' \leq \beta'' \leq \beta''' \in \operatorname{Ex}_M(p)$. Therefore

$$\beta = \beta' = \beta'' = \beta'''$$

This shows $\operatorname{Bd}_M(p) \subseteq \operatorname{Bd}_N(p)$

Since $Bd_M(p)$ doesn't depend on M, we write it as Bd(p)

10.4 Theorem of the bound

T is stable

Definition 10.11. $p \in S_n(\mathbb{M})$ is Lascar A-invariant if p is M-invariant for every $A \subseteq M \leq \mathbb{M}$

weaker than being A-invariant in stable theory

Lemma 10.12. If $A \subseteq M \leq M$, $p \in S_n(A)$, $q \in S_n(M)$, $q \supseteq p$, $[q] \in Bd(p)$. Let $q^{\mathbb{M}}$ be the global heir of q. Then $q^{\mathbb{M}}$ is Lascar A-invariant

Proof. By 10.2, $[q^{\mathbb{M}}] = [q] \in \operatorname{Bd}(p)$. If $q^{\mathbb{M}}$ isn't Lascar A-invariant, there is small $N \supseteq A$ $q^{\mathbb{M}}$ isn't N-invariant, not N-definable. Then $q^{\mathbb{M}} \not\supseteq q^{\mathbb{M}} \upharpoonright N$ (or else $q^{\mathbb{M}}$ would be N-definable 9.48). By Proposition 10.5, $[q^{\mathbb{M}} \upharpoonright N] > [q^{\mathbb{M}}] = [q]$

Let $r=q^{\mathbb{M}}\upharpoonright N$, $r\supseteq p$, so $[r]\in \operatorname{Ex}_N(p)$, $[q]\in \operatorname{Bd}(p)=\operatorname{Bd}_N(p)$ is maximal in $\operatorname{Ex}_N(p)$, but [r]>[q], $[r]\in \operatorname{Ex}_N(p)$

Lemma 10.13. Fix \bar{b} and A, then $\exists M \supseteq A$, $M \preceq \mathbb{M}$, the global heir of $\operatorname{tp}(\bar{b}/M)$ is Lascar A-invariant. Also given $\beta \in \operatorname{Bd}(\operatorname{tp}(\bar{b}/A))$, can make $\operatorname{tp}(\bar{b}/M)$ and it's heir have class β

Proof. Take $\beta \in \operatorname{Bd}(p)$, $p = \operatorname{tp}(\bar{b}/A)$. Take $M \supseteq A \ M \preceq \mathbb{M}$. Take $q \in S_n(M)$, $[q] = \beta$. Take $\bar{b}_0 \vDash q$, $\operatorname{tp}(\bar{b}_0/A) = \operatorname{tp}(\bar{b}/A)$. There is $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, $\sigma(\bar{b}_0) = \bar{b}$. Move M, q, b_0 by σ , We may assume $\bar{b}_0 = \bar{b}$, so $\operatorname{tp}(\bar{b}/M) = q$, $[q] = \beta$. By 10.12, $q^{\mathbb{M}}$ is Lascar A-invariant

Lemma 10.14. Fix \bar{b} , A. Suppose $M_1, M_2 \leq \mathbb{M}$, $M_1, M_2 \supseteq A$. Let $p_i \in S_n(\mathbb{M})$ be the heir of $\operatorname{tp}(\bar{b}/M_i)$. Suppose p_1, p_2 are Lascar A-invariant, then $p_1 = p_2$

Proof. Suppose $p_1 \neq p_2$. Take $\varphi(\bar{x}, \bar{c}) \in p_1(\bar{x}), \neg \varphi(\bar{x}, \bar{c}) \in p_2$.

Lemma 10.13 shows there is $M_3 \leq \mathbb{M}$, $M_3 \supseteq A$ s.t. $\operatorname{tp}(\bar{c}/M_3) \sqsubseteq r \in S_n(\mathbb{M})$ and r is Lascar A-invariant.

Take $\bar{e} \vDash r \upharpoonright M_1 M_2 M_3 \bar{b}$. Note $\bar{b} \vDash p_1 \upharpoonright M_1$ and $\bar{e} \vDash r \upharpoonright M_1 \bar{b}$. Then $(\bar{b}, \bar{e}) \vDash (p_1 \otimes r) \upharpoonright M_1$ since p_1, r are M_1 -invariant. In stable theory, product commutes. Therefore $(\bar{e}, \bar{b}) \vDash (r \otimes p_1) \upharpoonright M_1$. Then $\bar{b} \vDash p_1 \upharpoonright M_1 e$.

 $ar e dash r \upharpoonright M_3 = \operatorname{tp}(ar c/M_3)$, $ar e \equiv_{M_3} ar c$, p_1 is M_3 -invariant. Hence $arphi(ar x, ar e) \in p_1$. So $\mathbb M \vDash arphi(ar c, ar e)$

Same argument with p_2 , get $\mathbb{M} \models \neg \varphi(\bar{c}, \bar{e})$, a contradiction

Theorem 10.15. *If* $p \in S_n(A)$, |Bd(p)| = 1

 $\begin{array}{l} \textit{Proof.} \ \ \text{Take} \ \bar{b} \vDash p, \, \beta_1, \beta_2 \in \operatorname{Bd}(p). \ \ \text{Lemma 10.13, there is} \ A \subseteq M_1, M_2 \preceq \mathbb{M} \\ \text{s.t.} \ \ [\operatorname{tp}(\bar{b}/M_i)] = \beta \ \text{if} \ p_i = \operatorname{tp}(\bar{b}/M_i), \, p_i^{\mathbb{M}} \ \text{is} \ \text{Lascar} \ A\text{-invariant.} \\ \text{Lemma 10.14} \ p_1^{\mathbb{M}} = p_2^{\mathbb{M}} \end{array} \qquad \square$

Definition 10.16. bd(p) =the bound of p

example

10.5 Non-forking extensions

Assume stability

Proposition 10.17. *If* $A \subseteq B$, $p \in S_n(A)$, $q \in S_n(B)$, $p \subseteq q$, then $\mathrm{bd}(q) \leq \mathrm{bd}(p)$

Proof. Take $M \supseteq B$, $M \preceq \mathbb{M}$, $r \in S_n(M)$ extending q with $[r] = \mathrm{bd}(q)$. Then r extends p, so $[r] \in \mathrm{Ex}_M(p)$. As $\mathrm{bd}(p)$ is the maximum of $\mathrm{Ex}_M(p)$ we must have $[r] \leq \mathrm{bd}(p)$

Definition 10.18. If $A\subseteq B$, $p\in S_n(A)$, $q\in S_n(B)$, $q\supseteq p$, q is a nonforking extension of p iff $\mathrm{bd}(q)=\mathrm{bd}(p)$

Proposition 10.19. If $M \leq N$ and $q \in S_n(N)$ extends $p \in S_n(M)$, then q is a non-forking extension of p iff q is an heir of p

Proposition 10.19 ensures the notation $q \supseteq p$ is unambiguous

Proof.
$$bd(p) = [p]$$
 and $bd(q) = [q]$

Proposition 10.20 (Full transitivity). Suppose $A_1 \subseteq A_2 \subseteq A_3$ and $p_i \in S_n(A_i)$ for i = 1, 2, 3 with $p_1 \subseteq p_2 \subseteq p_3$. Then $p_1 \sqsubseteq p_3$ iff $p_1 \sqsubseteq p_2$ and $p_2 \sqsubseteq p_3$

Proposition 10.21 (Extension). *If* $p \in S_n(A)$ *and* $B \supseteq A$, *then there is at least one* $q \in S_n(B)$ *with* $q \supseteq p$

Proof. Take a small model $M\supseteq B$. Then $\mathrm{bd}(p)\in\mathrm{Bd}(p)\subseteq\mathrm{Ex}_M(p)$, so there is $r\in S_n(M)$ extending p with $[r]=\mathrm{bd}(p)$. Let $q=r\upharpoonright B$. Then $\mathrm{bd}(r)=\mathrm{bd}(p)$, so $r\supseteq p$. By full transitivity, $q\supseteq p$

10.6 Forking formulas and Lascar invariance

Lemma 10.22. If $A \subseteq M \leq M$ and if the global heir of $\operatorname{tp}(\bar{b}/M)$ is Lascar A-invariant, then $\operatorname{tp}(\bar{b}/M) \supseteq \operatorname{tp}(\bar{b}/A)$

Proof. Let β be the bound of $\operatorname{tp}(\bar{b}/A)$. By Lemma 10.13 there is a small model $M'\supseteq A$ s.t. the global heir of $\operatorname{tp}(\bar{b}/M')$ is Lascar A-invariant and has class β . By Lemma 10.14 $\operatorname{tp}(\bar{b}/M')$ and $\operatorname{tp}(\bar{b}/M)$ have the same global heir. By Proposition 10.2 they have the same class. Then the class of $\operatorname{tp}(\bar{b}/M)$ is $\beta=\operatorname{bd}(\operatorname{tp}(\bar{b}/A))$, implying $\operatorname{tp}(\bar{b}/M)\supseteq\operatorname{tp}(\bar{b}/A)$

Proposition 10.23 (Forking and Lascar *A*-invariance). *If* p *is a global type and* $A \subseteq \mathbb{M}$, *then* $p \supseteq (p \upharpoonright A)$ *iff* p *is Lascar* A-invariant

Proof. First suppose $p \supseteq (p \upharpoonright A)$. For any small model $M \supseteq A$, we have $p \supseteq (p \upharpoonright M)$ by Full transitivity, which then means p is the heir of $p \upharpoonright M$ by Proposition 10.19. Then p is M-definable, so p is Lascar A-invariant

Conversely, suppose p is Lascar A-invariant. Take a small model $M \supseteq A$ and take $\bar{b} \vDash p \upharpoonright M$. Then p is M-definable, so p is the global heir of $p \upharpoonright M = \operatorname{tp}(\bar{b}/M)$. By Lemma 10.22, $\operatorname{tp}(\bar{b}/M) \supseteq \operatorname{tp}(\bar{b}/A) = p \upharpoonright A$. But p is the heir of $\operatorname{tp}(\bar{b}/M)$, so $p \supseteq \operatorname{tp}(\bar{b}/M) \supseteq p \upharpoonright A$. By transitivity we have $p \supseteq (p \upharpoonright A)$

Corollary 10.24. If $A \subseteq B$ and $q \in S_n(B)$ extends $p \in S_n(A)$, then $q \supseteq p$ iff some global extension of q is Lascar A-invariant

Definition 10.25. An $L(\mathbb{M})$ -formula $\varphi(\overline{x})$ forks over A if every global type containing it fails to be Lascar A-invariant

Proposition 10.26 (Finite Character). If $A \subseteq B$ and $q \in S_n(B)$ extends $p \in S_n(A)$, then $q \not\supseteq p$ (q is a forking extension of p) iff some formula in q forks over A

Proof. For any model M, let $\Sigma_M(\bar{x})$ be the global partial type

$$\{\varphi(\bar x;\bar b) \leftrightarrow \varphi(\bar x;\bar c): \varphi \in L, \bar b \equiv_M \bar c\}$$

A global type $p\in S_n(\mathbb{M})$ extends Σ_M iff it is M-invariant, iff it is M-definable. Define $\Sigma_A(\bar{x})$ to be the union of $\Sigma_M(\bar{x})$ for M ranging over small models

containing A. Then $p \in S_n(\mathbb{M})$ extends $\Sigma_A(\bar{x})$ iff it is Lascar A-invariant. Therefore an $L(\mathbb{M})$ -formula $\psi(\bar{x})$ forks over A iff $\Sigma_A(\bar{x}) \cup \{\psi(\bar{x})\}$ is inconsistent. By Corollary 10.24, $q \not \equiv p$ iff $\Sigma_A(\bar{x}) \cup q(\bar{x})$ is inconsistent. Then the result follows by compactness

Intuition if φ forks over A, then $\varphi(\mathbb{M})$ is "small", and $\{\varphi(\mathbb{M}): \varphi \text{ forks over } A\}$ is an ideal

10.7 The dichotomy property and the fundamental order

Lemma 10.27. Assume stability. Suppose $M \leq N \leq \mathbb{M}$, $p \in S_n(M)$, and $q_1, q_2 \in S_n(N)$ are exteqqeQ

11 Algebraic closure and imaginaries

11.1 Many-sorted logic

11.1.1 First approximation: many-sorted structures

Definition 11.1. A (single sorted) structure consists of a set M and a collection of functions, relations and constants. Each function is a function $f:M^{n_f}\to M$ for some number n_f called the **arity** of f. Each relation is a relation $R\subseteq M^{n_R}$ for some n_R called the **arity** of R. Each constant is an element of M

Definition 11.2. A many-sorted structure consists of a collection of sorts, functions, relations and constants. Each sort is a set. Each function is a function $f: X_1 \times X_2 \times \dots \times X_n \to Y$ where X_1, X_2, \dots, X_n, Y are sorts. Each relation is a relation $R \subseteq X_1 \times \dots \times X_n$ where X_1, \dots, X_n are sorts. Each constant is an element of a sort

This approach works if we only need to consider definable sets and formulas within a fixed structure. If we want to talk about theories or elementary equivalence, we need to define many-sorted languages before we can properly define many-sorted structures.

11.1.2 Many-sorted languages

Definition 11.3. A many-sorted language consists of the following data:

1. A set S of **sorts**

- 2. A set \mathcal{F} of **function symbols**: for each $f \in \mathcal{F}$, a finite non-empty list of sorts (X_1, \dots, X_n, Y) , called the **signature** of f
- 3. A set \mathcal{R} of **relation symbols**: for each $R \in \mathcal{R}$, a finite list of sorts (X_1, \dots, X_n) , called the **signature** of R
- 4. A set $\mathcal C$ of **constant symbols**: for each $c \in \mathcal C$, a sort X, called the **signature** of c

11.2 Definable closure

Work in a monster model M

Fact 11.4. If \mathcal{F} is a small family of definable $D \subseteq \mathbb{M}^n$, suppose $X \subseteq \mathbb{M}^n$ definable. Suppose X is "infinite boolean combination" of \mathcal{F} , i.e., if $\bar{a}, \bar{a} \in \mathbb{M}^n$ and $\forall D \in \mathcal{F}$, $\bar{a} \in D \Leftrightarrow \bar{b} \in D$, then $\bar{a} \in X \Leftrightarrow \bar{b} \in X$. Then X is a (finite) boolean combination of sets in \mathcal{F}

Proof. WLOG, \mathcal{F} is closed under finite boolean combination

- If $\bar{a} \in X$, $\exists D \in \mathcal{F}$, $\bar{a} \in D$
- X is a finite union of things in \mathcal{F}

Fact 11.5 (9.46). If $D \subseteq \mathbb{M}^n$ definable, $A \subseteq \mathbb{M}$ small, then D is A-definable iff D is A-invariant

Definition 11.6. If D_1,\dots,D_{n+1} are A-definable, and $f:D_1\times\dots\times D_n\to D_{n+1}$, then f is A-definable if $\Gamma(f)=\{(\bar a,b):b=f(\bar a)\}$ is definable

Definition 11.7. If $A \subseteq \mathbb{M}$, $dcl(A) = \{b \in \mathbb{M} : \{b\} \text{ is } A\text{-definable}\}$

Example 11.1. In a field, $a\div b\in \operatorname{dcl}(\{a,b\})$ because $\{a\div b\}$ is $\varphi(\mathbb{M})$, $\varphi(x):=bx=a$

Note: if $\bar{b} \in \mathbb{M}^n$, $\bar{b} \in \operatorname{dcl}(A)^n \Leftrightarrow \{\bar{b}\} \subseteq \mathbb{M}^n$ is A-definable

Proposition 11.8. *If* $\bar{b} \in \mathbb{M}^n$, $A \subseteq \mathbb{M}$, *TFAE*

- 1. $\bar{b} \in dcl(A)$, i.e., $\{\bar{b}\}$ is A-definable
- 2. $\forall \sigma \in Aut(\mathbb{M}/A), \ \sigma(\bar{b}) = \bar{b}, \ i.e. \ \{\bar{b}\} \ is \ A-invariant$

3. \bar{b} is the only realization of $tp(\bar{b}/A)$

$$\begin{array}{l} \textit{Proof.} \ \ 1 \Leftrightarrow 2 \ \text{by fact since} \ \{\bar{b}\} \ \text{is definable} \\ 2 \Leftrightarrow 3 \colon \text{let} \ S = \{\bar{c} \in \mathbb{M}^n : \bar{c} \equiv_A \bar{b}\} = \{\sigma(\bar{b}) : \sigma \in \text{Aut}(\mathbb{M}/A)\}. \end{array} \qquad \square$$

Proposition 11.9. 1. $A \subseteq \operatorname{dcl}(A)$

- 2. $A \subseteq B \Rightarrow \operatorname{dcl}(A) \subseteq \operatorname{dcl}(B)$
- 3. dcl(dcl(A)) = dcl(A)
- 4. D is A-definable $\Leftrightarrow D$ is dcl(A)-definable Conditions 1-3 say that dcl(-) is an abstract "closure operator"

Proof. 4. If *D* is dcl(A)-definable, $\sigma \in Aut(M/A)$, $b \in dcl(A)$, $\sigma(b) = b$ by Proposition 11.8, $\sigma \in \operatorname{Aut}(\mathbb{M}/\operatorname{dcl}(A))$, $\sigma(D) = D$, so D is A-invariant

3. take $b \in dcl(dcl(A))$, $\{b\}$ is dcl(A)-definable, $\{b\}$ is A-definable, $b \in dcl(dcl(A))$ dcl(A)

Definition 11.10. *A* is **definably closed** if dcl(A) = A

Proposition 11.11. dcl(A) is the smallest definably closed set containing A

Proof. dcl(A) is definably closed

$$dcl(A) \supseteq A$$

Now suppose $B = \operatorname{dcl}(B)$ and $B \supseteq A$, by "monotonicity", $\operatorname{dcl}(B) \supseteq$ dcl(A), so $B \supseteq dcl(A)$

Fact 11.12. if $M \models ACF_0$, if $A \subseteq M$, then $A = dcl(A) \Leftrightarrow A$ is a subfield of M \Rightarrow : easy \Leftarrow : harder

It fails in ACF_p , in ACF_p , p > 0, $K \subseteq M$ is definably closed $\Leftrightarrow \forall x \in K$, $\sqrt[p]{x} \in K$

Definition 11.13. \bar{a} , \bar{b} are interdefinable iff $dcl(\bar{a}) = dcl(\bar{b})$ iff $\bar{a} \in dcl(\bar{b})$ and $b \in \operatorname{dcl}(\bar{a})$

Lemma 11.14. $dcl(\bar{a}) = dcl(\bar{b}) \Leftrightarrow Aut(\mathbb{M}/\bar{a}) = Aut(\mathbb{M}/\bar{b})$

Proof. By Proposition 11.8, $dcl(\bar{a}) \subseteq dcl(\bar{b}) \Leftrightarrow \bar{a} \in dcl(\bar{b}) \Leftrightarrow Aut(\mathbb{M}/\bar{b}) \subseteq$ $\operatorname{Aut}(\mathbb{M}/\bar{a})$

Lemma 11.15. If $dcl(\bar{a}) = dcl(\bar{b})$, then $\exists \emptyset$ -definable bijection $f: X \to Y$ s.t. $f(\bar{a}) = \bar{b}$

Proof. $\bar{a}\in\operatorname{dcl}(\bar{b})$, so there is L-formula $\varphi_1(\bar{x},\bar{y})$ s.t. $\{\bar{a}\}=\varphi_1(\mathbb{M},\bar{b})$, also there is $\{\bar{b}\}=\varphi_2(\bar{a},\mathbb{M})$

Let $\varphi = \varphi_1 \wedge \varphi_2$, can replace φ_1, φ_2 with φ .

Let $\psi(\bar{x},\bar{y})$ be $\varphi(\bar{x},\bar{y}) \wedge \exists ! \bar{w} \ \varphi(\bar{w},\bar{y}) \wedge \exists ! \bar{z} \ \varphi(\bar{x},\bar{z})$. Then $\psi(\bar{x},\bar{y})$ defines a bijection and $f(\bar{a}) = \bar{b}$

We can extract the definition of $f(\bar{a}) = \bar{b}$ and fill f with garbage

11.3 Algebraic closure

Definition 11.16. $\operatorname{acl}(A) = \bigcup \{D \subseteq \mathbb{M}^1 : D \text{ is } A\text{-definable}, |D| < \infty \}$

Example 11.2. In fields, $\sqrt{a} \in \operatorname{acl}(a)$ because $\{\sqrt{a}, -\sqrt{a}\}$ is $\{a\}$ -definable

Note: $\bar{b} \in \operatorname{acl}(A) \Leftrightarrow \operatorname{there} \operatorname{is} A\operatorname{-definable} D \subseteq \mathbb{M}^n, \bar{b} \in D, |D| < \infty$ If $\bar{b} \in D \subseteq \mathbb{M}^n$, then let $D_i = \pi_i(D), \pi_i(\bar{x}) = x$,

Proposition 11.17. If $\bar{b} \in \mathbb{M}^n$, $A \subseteq \mathbb{M}$ small, let $S = \{\bar{c} \in \mathbb{M}^n : \bar{c} \equiv_A \bar{b}\} = \{\sigma(\bar{b}) : \sigma \in Aut(\mathbb{M}/A)\}$

- 1. If $\bar{b} \in \operatorname{acl}(A)$, then S is finite and A-definable
- 2. If $\bar{b} \notin \operatorname{acl}(A)$, then S is large (S is not small)

Proof. 1. $\bar{b} \in \operatorname{acl}(A)$, there is D finite, A-definable, $\bar{b} \in D$. $\sigma(\bar{b}) \in \sigma(D) = D$ for $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, so $S \subseteq D$, S is finite, then S is definable. Also S is A-invariant

for each $a\in D\smallsetminus S$, we have a L(A)-formula φ_a s.t. $\mathbb{M}\vDash \neg\varphi_a(a)\wedge\varphi_a(b)$. Then $\bigwedge_{a\in D\smallsetminus S}\varphi_a$ extract S from D

2. If $\bar{b} \notin \operatorname{acl}(A)$ but S is small. Let $\Sigma(\bar{x}) = \operatorname{tp}(\bar{b}/A) \cup \{\bar{x} \neq \bar{c} : \bar{c} \in S\}$. $\Sigma(\bar{x})$ is inconsistent. By Compactness, there is $\psi(\bar{x}) \in \operatorname{tp}(\bar{b}/A)$, $\bar{c}_1,\ldots,\bar{c}_m \in S$, $\{\psi(\bar{x}),x \neq \bar{c}_1,\ldots,x \neq \bar{c}_n\}$ is inconsistent. Thus $D = \psi(\mathbb{M}) \subseteq \{\bar{c}_1,\ldots,\bar{c}_m\}$. D is A-definable, $\bar{b} \in D$, D is finite, so $\bar{b} \in \operatorname{acl}(A)$

Proposition 11.18. 1. $A \subseteq acl(A)$

- 2. $A \subseteq B \Rightarrow \operatorname{acl}(A) \subseteq \operatorname{acl}(B)$
- 3. acl(acl(A)) = acl(A)

Proof. 3. Take $b \in \operatorname{acl}(\operatorname{acl}(A))$, then $b \in \varphi(\mathbb{M}, \bar{c}) = D$, D is finite, D is $\operatorname{acl}(A)$ -definable, $\bar{c} \in \operatorname{acl}(A)$

 $\mathcal{F} = \{\sigma(D): \sigma \in \operatorname{Aut}(\mathbb{M}/A)\} = \{\varphi(\mathbb{M}, \sigma(\bar{c})): \sigma \in \operatorname{Aut}(\mathbb{M}/A)\} \text{ is finite by Proposition 11.17, } \sigma(D) \text{ is finite as } D \text{ is finite. Therefore } D' = \bigcup \mathcal{F} \text{ is finite, } A\text{-invariant, } b \in D' \text{ as } b \in D \in \mathcal{F}. \text{ Therefore } b \in \operatorname{acl}(A)$

Definition 11.19. A is algebraically closed if A = acl(A)

Proposition 11.20. acl(A) is the smallest algebraically closed set containing A

Proposition 11.21. *If* $M \leq M$, then acl(M) = M

Proof. Otherwise, $\operatorname{acl}(M) \supseteq M$, take $b \in \operatorname{acl}(M) \setminus M$. $S = \{\sigma(b) : \sigma \in \operatorname{Aut}(\mathbb{M}/M)\}$. By Proposition 11.17, S is finite, M-definable. M is M-invariant so $S \cap M = \emptyset$, contradicting to Tarski-Vaught criterion

Proposition 11.22. *If* $M \models ACF$ *and* K *is a subfield. TFAE*

- 1. $K = \operatorname{acl}(K)$
- 2. $K \models ACF$
- 3. $K \leq M$

Idea: in ACF, field theoretic algebraic closure = model theoretic algebraic closure

 $\begin{array}{l} \textit{Proof.} \ 1 \rightarrow 2 \text{: Take } P(x), P \not\equiv 0, M \vDash \mathsf{ACF}, P(x) = c \cdot (x - r_1) \dots (x - r_n), \\ c \in K, r_1, \dots, r_n \in M. \ D = \{r_1, \dots, r_n\} \text{ is } K\text{-definable. } K = \mathsf{acl}(K) \text{ implies } D \subseteq \mathsf{acl}(K) = K \end{array}$

 $2 \rightarrow 3$: q.e. \square

Fact 11.23. *If* T *is strongly minimal,* $A \subseteq M \models T$

$$A \leq M \Leftrightarrow |A| = \infty \text{ and } A = \operatorname{acl}(A)$$

11.4 Imaginaries

Definition 11.24. An *A*-interpretable set is X/E where X is *A*-definable and $E \subseteq X^2$ is *A*-definable equivalence relation on X

Interpretable = \mathbb{M} -interpretable. 0-interpretable = \emptyset -interpretable

Definition 11.25. If M is a structure, M^{eq} is the expansion of M by

- A new sort for every 0-interpretable D/E
- Relation symbols for $D \to D/E$ (i.e., if $D \subseteq M^n$, add $R \subseteq M^n \times (D/E)$ where $R(a_1,\ldots,a_n,b) \Leftrightarrow \bar{a} \in D, [a]_E = b)$ If $D \subsetneq M^n$ can't add a function symbol

M is called the **home sort** (when *M* is one-sorted)

 $M^{\rm eq}$ is the expansion of M obtained by adding each 0-interpretable set as a new sort, with enough data to connect the new sorts to the old sorts

If $\mathbb M$ is a monster model, then $\mathbb M^{eq}$ is a monster model (7) with the "same" automorphism group (6) and the "same" small models (5). If we restrict our attention to the original sorts from M, then $\mathbb M^{eq}$ and $\mathbb M$ have the same definable sets (1)–(4) and the same partial elementary maps (2). However, $\mathbb M^{eq}$ have some new elements, and the definable sets in $\mathbb M^{eq}$ correspond exactly to the interpretable sets in the original structure $\mathbb M$ (8)(9). On the other hand, the new elements of $\mathbb M^{eq}$ are definable from the old elements (3). So $\mathbb M^{eq}$ is a way of coverting interdefinable sets into definable sets while preserving most other things

- **Fact 11.26.** 1. If $X \subseteq M^n$, X is 0-definable in $M \Leftrightarrow X$ is 0-definable in M^{eq} . In other words, M^{eq} doesn't define any new sets on the original sorts of M
 - 2. If $A, B \subset M$, $f: A \to B$ bijection, then f is a partial elementary map in $M \Leftrightarrow f$ is a partial elementary map in M^{eq}
 - 3. In M^{eq} , $dcl(M) = M^{eq}$
 - 4. Consequently, any M^{eq} -definable set $X \subseteq M^n$ is M-definable in M^{eq} , and therefore M-definable in M
 - 5. If $N \leq M$ then $N^{\rm eq} \leq M^{\rm eq}$ (more precisely, $N^{\rm eq} \cong \operatorname{dcl}_{M^{\rm eq}}(N) \leq M^{\rm eq}$) This gives an \leq -preserving bijection.
 - Moreover, all elementary substructures of M arise this way. This yields an order-preserving bijection between the elementary substructures of M and the elementary substructures of $M^{\rm eq}$. In particular, all elementary substructures of $M^{\rm eq}$ arise this way
 - 6. If $\sigma \in Aut(M)$, σ acts on M^{eq} in a natural way. σ induces $\hat{\sigma} \in Aut(M^{eq})$. This gives an isomorphism $Aut(M) \cong Aut(M^{eq})$ 5 and 6 come from equivalence of categories $Mod T \to Mod T^{eq}$
 - 7. M is κ -saturated and strongly κ -homogeneous $\Leftrightarrow M^{eq}$ is κ -saturated and strongly κ -homogeneous

- 8. If D/E is 0-interpretable in M, then D/E is 0-definable in M^{eq}
- 9. If X is 0-definable in M^{eq} , then there is 0-interpretable D/E in M and a 0-definable bijection $f: X \to D/E$ in M^{eq}

Ideas (8-9): interpretable in $M \Leftrightarrow$ definable in M^{eq}

Proof. Only some remarks

- 1. More generally, one can show that $X\subseteq M^n\times\prod_{j=1}^m(D_j/E_j)$ is 0-definable in $M^{\rm eq}$ iff $\tilde{X}\subseteq M^n\times\prod_{j=1}^mD_j$ is 0-definable in M where $\tilde{X}=\{(a_1,\ldots,a_n,b_1,\ldots,b_m):(a_1,\ldots,a_n,[b_1]_E,\ldots,[b_M]_{E_M})\in X\}.$
- 3. using the definable functions $D \rightarrow D/E$
- 4. Note (1) means that if \bar{x} is a tuple of variables in the old sorts of M, then any L^{eq} -formula $\phi(x)$ is equivalent to an L-formula
- 5. Behind the scenes, there is a theory $T^{\rm eq}$ and $M \models T \Rightarrow M^{\rm eq} \models T^{\rm eq}$. Moreover, all models of $T^{\rm eq}$ have the form $M^{\rm eq}$ up to isomorphism. Finally, elementary embeddings $M \to N$ correspond bijectively to elementary embeddings $M^{\rm eq} \to N^{\rm eq}$
- 7. \Leftarrow is easier by (2). If you just want a monster model \mathbb{M} s.t. \mathbb{M}^{eq} is a monster model, you can do the following: take $M \vDash T$, construct M^{eq} , take some monster elementary extension $U \succeq M^{eq}$, then check that U is \mathbb{M}^{eq} for some $\mathbb{M} \succeq M$
 - If M is κ -saturated and strongly κ -homogeneous. κ -saturation is not hard in terms of a compactness-like property: if $|A|<\kappa$ and a collection of A-definable sets has FIP, then it has non-empty intersection. To transfer this from M to $M^{\rm eq}$, one takes the A-definable sets in $M^{\rm eq}$ and lifts them to A-definable sets in M using the maps $D\to D/E$
- 9. This comes down to the following things. First, if D/E and D'/E' are two interpretable sets, then $(D/E) \times (D'/E')$ "is" an interpretable set, namely $(D \times D')/E''$ where $(a,b)E''(c,d) \Leftrightarrow aEc \wedge bE'd$. Secondly if X is a definable subset of D/E, then X "is" an interpretable set D'/E', where $D' = \{a \in D : [a]_E \in X\}$ and E' is the restriction of E to D'

From now on, we use the word "interpretable" to mean "definable in \mathbb{M}^{eq} " and "definable" to mean "definable" in \mathbb{M}

An **imaginary** is an element of \mathbb{M}^{eq}

11.5 Elimination of imaginaries

Definition 11.27. T has elimination of imaginaries (EI) if $\forall a \in \mathbb{M}^{eq}$, $\exists \bar{b} \in \mathbb{M}$, $dcl(a) = dcl(\bar{b})$

Definition 11.28. *T* has **uniform EI** if

- 1. If D/E is 0-interpretable, then there is 0-definable Y, there is bijection $f:D/E\to Y$, 0-interpretable (= 0-definable in $M^{\rm eq}$)
- 2. If D/E is 0-interpretable, then there is Y 0-definable, 0-definable surjection $g: D \to Y$ s.t. g(x) = g(y) iff E(x, y)

 $1 \Leftrightarrow 2$

Note: uniform EI implies EI

If $e\in D/E$, there is Y 0-definable, bijection $f:D/E\to Y$, e interpretable with $f(e)\in \mathbb{M}^n$

Lemma 11.29. If T has EI, if D/E is 0-interpretable, then there is 0-interpretable $X_i \subseteq D/E$, $X_i \cap X_j = \emptyset$, $D/E = \bigcup_{i=1}^n X_i$, each X_i has 0-interpretable bijection to a 0-definable set $f_i: X_i \to Y_i$

Proof. Say 0-interpretable $X \subseteq D/E$ is "good" if there is 0-definable Y, 0-interpretable bijection $f: X \to Y$.

If $X' \subseteq X$, X is "good", X' is 0-interpretable, then X' is good **Claim** D/E is covered by good sets

If $e \in D/E$, E.I. implies there is $\bar{b} \in \mathbb{M}^m$, $\operatorname{dcl}^{\operatorname{eq}}(e) = \operatorname{dcl}^{\operatorname{eq}}(\bar{b})$. Lemma ?? implies there is 0-interpretable bijection $f: X \to Y$, $f(e) = \bar{b}$, X is good

There are at most |L|-many good sets. By saturation, $D/E = \bigcup_{i=1}^{n} X_i$ (class of good sets is small)

Replace X_i with $X_i \smallsetminus (X_1 \cup \dots \cup X_{i-1})$, we may assume the X_I are pairwise disjoint

Theorem 11.30. Suppose T has one-sort and $|\operatorname{dcl}(\emptyset)| \geq 2$, then T has $E.I. \Leftrightarrow T$ has uniform E.I.

Proof. ⇒: Take D/E 0-interpretable. Lemma 11.29 gives $D/E = \coprod_{i=1}^n X_i$, $f_i: X_i \to Y_i$, Y_i 0-definable Fix $a,b \in \operatorname{dcl}(\emptyset)$

By replacing y_i with $y_i \times \{(a,a,\dots,a)\}$. WMA there is m s.t. $Y_i \subseteq \mathbb{M}^m$ $\forall i$. Take $N \gg 0$, $2^N > n$, take distinct $\bar{c}_1,\dots,\bar{c}_n \in \{a,b\}^N$

Replacing Y_i with $Y_i \times \{\bar{c}_i\}$, now Y_i s are disjoint

Example 11.3. DLO has E.I., doesnt have uniform E.I.

$$D = M^2$$
, E two class $\{(x, y) : x = y\}$ and $\{(x, y) : x \neq y\}$

uniform E.I. would imply $D/E \leftrightarrow Y$, Y is 0-definable. But there is no 0-definable Y with two elements

Remark. M^{eq} has uniform E.I.

If D/E is 0-interpretable and $E'\subseteq (D/E)\times (D/E)$ is a 0-interpretable equivalence relation on D/E, then (D/E)/E' is also 0-interpretable. In fact, it's D/E'' where

$$E''(\bar{a}, \bar{b}) \Leftrightarrow E'([\bar{a}]_E, [\bar{b}]_E)$$

Therefore $\mathbb{M}^{eq} \approx (\mathbb{M}^{eq})^{eq}$

Example 11.4. DLO is an example of a theory with elimination of imaginaries but not uniform elimination of imaginaries

Let E be the equivalence relation on \mathbb{M}^2 with two classes, one of which is the line y=x and the other is its complement. If there was a 0-interpretable bijection from \mathbb{M}^2/E to $Y\subseteq \mathbb{M}^n$, then Y would contain two elements, both of which are in $\operatorname{dcl}(\emptyset)$. But $\operatorname{dcl}(\emptyset)=\emptyset$, so Y cannot have any elements unless n=0 and when n=0 the set Y can only have one element.

11.6 Codes

Definition 11.31. A real tuple or imaginary eis a **code** for D (e **codes** D) if $\{\sigma \in \operatorname{Aut}(\mathbb{M}) : \sigma(D) = D\} = \operatorname{Aut}(\mathbb{M}^{eq}/e) = \operatorname{Aut}(\mathbb{M}/e)$

Remark. If e, e' code D, then $\operatorname{Aut}(\mathbb{M}/e) = \operatorname{Aut}(\mathbb{M}/e')$, so $\operatorname{dcl}^{\operatorname{eq}}(e) = \operatorname{dcl}^{\operatorname{eq}}(e')$ by Lemma 11.14

Remark. If e codes D, then D is A-definable $\Leftrightarrow e \in \operatorname{dcl}^{\operatorname{eq}}(A)$

Proof. TFAE

- *D* is *A*-definable
- *D* is *A*-invariant
- $\forall \sigma \in \operatorname{Aut}(\mathbb{M}/A), \sigma(D) = D$
- $\forall \sigma \in \operatorname{Aut}(\mathbb{M}/A), \sigma(e) = e$
- $e \in \operatorname{dcl}^{\operatorname{eq}}(A)$

Example 11.5. Suppose $T=\mathsf{ACF}$ and $S=\{r_1,\ldots,r_n\}\subseteq \mathbb{M}.$ Let $P(x)=\prod_{i=1}^n(x-r_i).$ Write P(x) as $x^n+c_{n-1}x^{n-1}+\cdots+c_1x+c_0.$ Then (c_0,\ldots,c_{n-1}) is a code for S. Indeed

$$\begin{split} \sigma(\bar{c}) &= \bar{c} \Leftrightarrow \sigma(P(x)) \equiv P(x) \\ &\Leftrightarrow \prod_{i=1}^n (x - \sigma(r_i)) \equiv \prod_{i=1}^n (x - r_i) \\ &\Leftrightarrow \{\sigma(r_1), \dots, \sigma(r_n)\} = \{r_1, \dots, r_n\} \\ &\Leftrightarrow \sigma(S) = S \end{split}$$

Example 11.6. If D/E is 0-interpretable and $e \in D/E$, then e is an E-equivalence class $X = E(\mathbb{M}, \bar{a})$, and $\sigma(e) = \sigma(X)$ for all σ . Therefore σ codes X

Lemma 11.32. Let $\varphi(\bar{x}, \bar{y})$ be a formula. Let $f(\bar{y})$ be a 0-definable function s.t.

$$\varphi(\mathbb{M},\bar{b})=\varphi(\mathbb{M},\bar{c}) \Leftrightarrow f(\bar{b})=f(\bar{c})$$

Then $f(\bar{b})$ *is a code for* $\varphi(\mathbb{M}, \bar{b})$ *, for each* \bar{b}

Proposition 11.33. *TFAE*

- 1. T has uniform elimination of imaginaries
- 2. For any formula $\varphi(\bar x;\bar y)$, there is a 0-definable function $f_\varphi(\bar y)$ s.t.

$$\varphi(\mathbb{M},\bar{b})=\varphi(\mathbb{M},\bar{c}) \Leftrightarrow f_{\varphi}(\bar{b})=f_{\varphi}(\bar{c})$$

Proof. $1 \to 2$: apply uniform E.I. to \mathbb{M}^n/E , where $E(\bar{b},\bar{c}) \Leftrightarrow (\varphi(\mathbb{M},\bar{b}) = \varphi(\mathbb{M},\bar{c}))$

 $2 \rightarrow 1$: given a 0-interpretable set D/E,

$$E(\bar{b},\bar{c}) \Leftrightarrow E(\mathbb{M},\bar{b}) = E(\mathbb{M},\bar{c}) \Leftrightarrow f_E(\bar{b}) = f_E(\bar{c})$$

for $\bar{b}, \bar{c} \in D$. So we have a 0-definable function on D satisfying condition 2 of Definition

Corollary 11.34. *If* T *has uniform elimination of imaginaries, then every definable set has a code in* \mathbb{M}

Corollary 11.35. *Every definable set has a code in* \mathbb{M}^{eq}

Proposition 11.36. *TFAE*

- 1. T has elimination of imaginaries
- 2. Every definable $D \subseteq \mathbb{M}^n$ has a code in \mathbb{M}

Proof. $1 \to 2$: given D take a code $e \in \mathbb{M}^{eq}$, then take $\bar{b} \in \mathbb{M}^m$ interdefinable with e. Then

$$\operatorname{Aut}(\mathbb{M}/\bar{b}) = \operatorname{Aut}(\mathbb{M}/e) = \{ \sigma \in \operatorname{Aut}(\mathbb{M}) : \sigma(D) = D \}$$

so \bar{b} is a code for D

$$2 \to 1$$
: if $e \in D/E \subseteq \mathbb{M}^{eq}$, then e codes a definable set X

Corollary 11.37. $dcl^{eq}(e)$ is the smallest definably closed set defining D

11.7 Elimination of imaginaries and naming parameters

Proposition 11.38. *Uniform elimination of imaginaries is preserved by naming parameters*

Proof. Fix
$$D/E$$
, $D \subseteq \mathbb{M}^n$

12 Forking and stability spectra

12.1 EI in PA and ACF

 \mathbb{Q} is 0-definable

Theorem 12.1. *If complete* $T \supseteq PA$ (e.g., $T = Th(\mathbb{N})$), then T has uniform E.I.

Proof. Fix interpretable D/E. Want $D/E \to Y$ definable bijection, or $D/E \to \mathbb{M}^n$ definable injection

Take $f:D/E\to \mathbb{M}^n$, $f(X)=\min(X)$, min is w.r.t. lexicographic order on \mathbb{M}^n . PA $\Rightarrow \mathbb{M}$, \mathbb{M}^n are definably well-ordered

Consider $T = ACF_0$

Fact 12.2. *If* $S \subseteq_f \mathbb{M}^n$, then $\exists \ulcorner S \urcorner \in \mathbb{M}$

Proof.
$$n=1$$
, if $S=\{r_1,\ldots,r_n\}\subseteq\mathbb{M}$ form $P(x)=\prod_{i=1}^m(x-r_i)$. Then $P(x)=x^m+c_{m-1}x^{m-1}+\cdots+c_1x+c_0$, \bar{c} is a code for S $n=2$, for $q\in\mathbb{Q}$, let $\pi_q:\mathbb{M}^2\to\mathbb{M}$, $(x,y)\mapsto y-qx$. Let $A=\{\lceil\pi_q(S)\rceil:q\in\mathbb{Q}\}\subseteq\mathbb{M}$

Claim: If $\sigma \in \operatorname{Aut}(\mathbb{M})$, $\sigma(S) = S \Leftrightarrow \sigma \in \operatorname{Aut}(\mathbb{M}/A)$