

Renderização de transparência com depth peeling

MATA65 - Computação Gráfica

- Gabriel Dahia
- Jonathan Queiroz

"Interactive Order-Independent Transparency" (Cass Everitt, 2001)

"Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

Motivação

 Renderização de cenas com transparência

Imagem do Wikimedia Commons

"Interactive Order-Independent Transparency" (Cass Everitt, 2001)

Motivação

- Renderização clássica de transparência
 - Assume objetos ordenados por profundidade
 - Calcula cor do fragmento considerando componente alpha

 $\underline{\text{Color} = \alpha \cdot \text{FrontColor} + (1 - \alpha) \cdot \text{BackColor}}$

- Renderização clássica de transparência
 - Lembra o Algoritmo do Pintor
 - Limitações
 - Objetos raramente estão ordenados

- Renderização clássica de transparência
 - Limitações
 - Pode inexistir ordenação válida

Imagem do Wikimedia Commons

Objetivo

- Renderização de cenas com transparência
 - Eficiente
 - Independente de ordem
- Soluções na etapa de rasterização

"Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

"Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

Depth peeling

"Interactive Order-Independent Transparency" (Cass Everitt, 2001)

Depth peeling

Figure 4. Depth peeling strips away depth layers with each successive pass. The frames above show the frontmost (leftmost) surfaces as bold black lines, hidden surfaces as thin black lines, and "peeled away" surfaces as light grey lines.

Dual-depth buffer depth peeling

Adaptada de "Interactive Order-Independent Transparency" (Cass Everitt, 2001)

Depth peeling

"Interactive Order-Independent Transparency" (Cass Everitt, 2001)

- Requer apenas dois passes
 - Primeiro passe: ordenação dos fragmentos
 - Segundo passe: cálculo de cor do pixel

Imagem adaptada do Wikimedia Commons

- Conceitos
 - Para cada pixel:
 - zNear
 - zFar
 - Divisão uniforme de [zNear, zFar] em 16 subintervalos
 - Intervalo pode ser calculado em tempo constante

$$k = \left\lfloor 16 \cdot \frac{d_f - zNear}{zFar - zNear} \right\rfloor$$

- Implementação
 - Para cada um dos 16 intervalos, são mantidos dois valores (buckets)
 - dmin_k
 - dmax_k
 - o Buffers MRT
 - MAX/MIN blending
 - Não sofre com RMW
 - \circ (dmin_k,dmax_k) sofre MAX-blending com (1 d_f , d_f)

dmin₁ dmax₁ dmin₂ dmax₂

dmin₃ dmax₃ dmin₄ dmax₄

- Consegue renderizar até 32 camadas
- Acurácia
 - Funciona bem para cenas uniformemente distribuídas
 - Poucas colisões
 - Gera artefatos para cenas mal distribuídas
 - Colisões frequentes
- Variação: multi-pass

Adaptive bucket depth peeling

"Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

"Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

"Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

Model	Dragon	Buddha	Powerplant	Lucy	Stpauls
Tri No.	871K	1,087K	12,748K	28,055K	14K
BDP	256fps	212fps	24.15fps	10.93fps	434fps
BDP2	128fps	106fps	12.79fps	5.71fps	256fps
ADP	106fps	91fps	12.31fps	5.37fps	212fps
K-buffer	206fps	183fps	23.98fps	10.49fps	468fps
[Liu 2006]	49fps	39fps	0.83fps	0.75fps	155fps
	5g	6g	27g	14g	22g
Dual DP	37fps	32fps	1.34fps	0.87fps	199fps
	8g	8g	16g	12g	14g
DP	24fps	20fps	0.76fps	0.54fps	242fps
	13g	13g	32g	21g	26g

[&]quot;Efficient Depth Peeling via Bucket Sort" (Fang Liu et al, 2009)

Perguntas?