

Introdução à Filogenética

Dr. Melisa Olave

melisa_olave

molave@mendoza-conicet.gob.ar

I A D I Z A

Para que servem as árvores filogenéticas?

As árvores representam a diversificação das espécies ao longo do tempo

Eles desempenham um papel predominante na biologia moderna e são conhecimentos básicos não apenas em Sistemática, mas também para abordar questões em diversos campos.

- Biologia molecular
- Genética e epigenética
- Biologia do desenvolvimento e Evo-Devo
 - Ecologia
 - Epidemiologia e Medicina

Introdução à Filogenética

Árvores de espécies

Árvores genéticas

ATCAAAATTTGGCGGC
ATCAAAATTTGGCGGC
ATCAAAATTTGGCGGC
ATCAAAATTTGGCGGC
ATCAAAATTTGGCGGC

Locus 1

TTGCAAAGGGGCGCGGGCC TTGCAAAGGGGCGCGGGCC TTGCAAAGGGGCGCGGGCC TTGCAAAGGGGCGCGGGCC

Locus 2

CCTGCTCCCGGTCGTA
CCTGCTCCCGGTCGTA
CCTGCTCCCGGTCGTA
CCTGCTCCCGGTCGTA

Locus n

Introdução à Filogenética

Concatenação de loci independentes

ATCAAAATTTGGCGGC ATCAAAATTTGGCGGC ATCAAAATTTGGCGGC ATCAAAATTTGGCGGC TTGCAAAGGGGCGCGGGCC TTGCAAAGGGGCGCGGGCC TTGCAAAGGGGCGCGGGCC TTGCAAAGGGGCGCGGGCC

CCTGCTCCCGGTCGTA
CCTGCTCCCGGTCGTA
CCTGCTCCCGGTCGTA
CCTGCTCCCGGTCGTA

Locus 1 Locus 2 Locus n

Não faça isso!!!

Introdução à Filogenética

Métodos para reconstruções filogenéticas

- 1. Árvores genéticas: locus de comprimento necessário
 - Parcimônia
 - Maximum likelihood
 - Bayesiano
- 2. Árvores de espécies: baseadas em árvores genéticas (locus de comprimento) ou polimorfismos de nucleotídeo único (SNPs)

Maximum Parsimony

Assume que a homoplasia é estranha

Sua vez!!!

Sp1 AAATGCAAA

Sp2 AAAGGCAAA

Sp3 AAAGGCAAA

ancestral AAAT GCAAA

Cálculo Bootstrap

Bootstrap replicates

Cálculo Bootstrap

Cálculo Bootstrap

Cálculo Bootstrap

Felsenstein (1985)

Cálculo Bootstrap

Felsenstein (1985)

Maximum Parsimony

Programas para calcular árvores de parcimônia:

TNT (Goloboff 2008)

PAUP* (Swofford 2003)

Introdução à Filogenética

Métodos para reconstruções filogenéticas

- 1. Árvores genéticas: locus de comprimento necessário
 - Parcimônia
 - Maximum likelihood
 - Bayesiano
- 2. Árvores de espécies: baseadas em árvores genéticas (locus de comprimento) ou polimorfismos de nucleotídeo único (SNPs)

Maximum likelihood

Modelo probabilístico

Likelihood = P(D|M)

D = Data → Sequências de DNA
M = Modelo → topologia, comprimento do ramo,
modelo de substituição, frequências das base

Diferentes modelos de substituições moleculares

Jukes and Cantor (1969)
JC

	Т	С	Α	G
Т	1	μ/4	μ/4	μ/4
С	μ/4	1	μ/4	μ/4
Α	μ/4	μ/4	-	μ/4
G	μ/4	μ/4	μ/4	-

Pirimidinas

As frequências básicas não são idênticas ao longo dos cromossomos Ligações de hidrogênio

Frequências GC > TA

Different models of molecular substitutions

Hasegawa, Kishino and Yano (1985) HKY

	Т	С	Α	G
Т	1	$k\mu_c$	μ_{a}	$k\mu_{g}$
С	$k\mu_t$	1	μ_{a}	$\mu_{\sf g}$
Α	μ_{t}	μ_{c}	-	$\mu_{\sf g}$
G	μ_{t}	μ_{c}	kμ _a	-

k = parâmetro de transição

HKY modela diferenças em frequências e transversões/transições

Different models of molecular substitutions

Generalized time reversible (1986)GTR

$$\begin{pmatrix} \cdot & \alpha \pi_C & \beta \pi_G & \gamma \pi_T \\ \alpha \pi_A & \cdot & \delta \pi_G & \epsilon \pi_T \\ \beta \pi_A & \delta \pi_C & \cdot & \phi \pi_T \\ \gamma \pi_A & \epsilon \pi_C & \phi \pi_G & \cdot \end{pmatrix}$$

GTR é o modelo mais complexo disponível Cada mutação tem uma probabilidade particular

Maximum likelihood

Modelo probabilístico

Likelihood = P(D|M)

Very complex model !!!!

D = Data → Sequências de DNA

M = Modelo → topologia, comprimento do ramo, modelo de substituição, frequências das base

# Taxa (N)	# Unrooted trees	
3	1	
4	3	
5	15	
6	105	
7	945	
8	10,935	
9	135,135	
10	2,027,025	
•		
30	Å3.58 x 10 ³⁶	

(2N - 5)!! = # unrooted trees for N taxa

Pesquisa heurística

Markov Chain Monte Carlo (MCMC)

Same bootstrap calculations!!!

Programas para calcular árvores de ML

Programas para calcular árvores de ML

- PAUP* (Swofford 2003)
- Garli (Zwickl 2006)
- PhyML (Guindon 2010)
- RAxML (Stamatakis 2014)

Métodos para reconstruções filogenéticas

- 1. Árvores genéticas: locus de comprimento necessário
 - Parcimônia
 - Maximum likelihood
 - Bayesiano
- 2. Árvores de espécies: baseadas em árvores genéticas (locus de comprimento) ou polimorfismos de nucleotídeo único (SNPs)

Abordagem Bayesiana

D = Data → Sequências de DNA
M = Modelo → topologia, comprimento do ramo,
modelo de substituição, frequências das base

Abordagem Bayesiana

D = Data → Sequências de DNA
M = Modelo → topologia, comprimento do ramo,
modelo de substituição, frequências das base

A probabilidade posterior é calculada durante a estimativa da topologia em árvore, portanto, análises extras com bootstrap não são necessárias

Pacheco et al. (2012)

Markov Chain Monte Carlo (MCMC)

Programs for computing for ML trees

Programas para computação para árvores bayesianas

MrBayes (Huelsenbeck and Ronquist 2001)

BEAST (Drummond et al. 2012)

Métodos para reconstruções filogenéticas

- 1. Árvores genéticas: locus de comprimento necessário
 - Parcimônia
 - Maximum likelihood
 - Bayesiano
- 2. Árvores de espécies: baseadas em árvores genéticas (locus de comprimento) ou polimorfismos de nucleotídeo único (SNPs)

Fig. de Leliaert et al. 2014

species A species B species C

Fig. de Leliaert et al. 2014

Fig. de Leliaert et al. 2014

Incomplete Lineage Sorting (ILS)

As árvores genéticas que discordam da tendência central não estão erradas; pelo contrário, fazem parte do padrão difuso que constitui a história genética.

Maddison 1997

Programas para estimar espécies de árvores

Sanger Sequences

- BEST (Liu 2008)
- *BEAST (Drummond & Rambaut 2007)
- BUCKy (Larget et al. 2010)
- MDC (Than & Nakhleh 2009)
- STEM (Kubatko et al. 2009)

Bayes

Parsimony

Likelihood

Programas para estimar espécies de árvores

Escala genômica

- ■starBEAST2 (Ogilvie et al. 2017)
- ■SNAPP (Bryant et al. 2012) [SNPs]
- ■MP-EST (Liu et al. 2010)
- ■ASTRAL (Mirab et al. 2015)
- ■SVDquartets (Chifman and Kubatko 2015) [SNPs]

Bayes

Likelihood

Programs for estimating species trees

Program	Type of data	loci	Species / individuals	time consumption
starBEAST2	long sequences	hundreds	few	slow
SNAPP	SNPs	hundreds	few	slow
MP-EST	gene trees	thousands	many	medium
ASTRAL	gene trees	thousands	many	fast
SVDquartets	SNPs	thousands	many	fast

Boa revisão de SNPs em filogenética por Leaché e Oak 2017 TREE

Muito obrigado!!!

Melisa_Olave

molave@mendoza-conicet.gob.ar

Maximum Parsimony

Sp1 AAATGCAAASp2 AAAGGCAAASp3 AAAGGCAAAancestral AAAT GCAAA

Maximum Parsimony

Sp1 AAATGCAAASp2 AAAGGCAAASp3 AAAGGCAAAancestral AAAT GCAAA

