In [1]: **import** pandas **as** pd

In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [4]: data.describe()

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [5]: data.head()

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700

_				_	_	•
11	ш	15	-	ш	h	
v	u	ш	u		u	

_		model	engine_power	age_in_days	km	previous_owners	price
	0	lounge	51	882	25000	1	8900
	1	pop	51	1186	32500	1	8800
	2	sport	74	4658	142228	1	4200
	3	lounge	51	2739	160000	1	6000
	4	pop	73	3074	106880	1	5700
	1533	sport	51	3712	115280	1	5200
	1534	lounge	74	3835	112000	1	4600
	1535	pop	51	2223	60457	1	7500
	1536	lounge	51	2557	80750	1	5990
	1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [7]: data=pd.get_dummies(data)
 data

_				-		
- ()	ш	15	-		/	
·	u	ш	u		/	

<u> </u>	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	. 2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	. 5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

```
In [8]: data.shape
```

Out[8]: (1538, 11)

In [9]: data2=pd.get_dummies(data1)

In [10]: data2

\sim		F 7	\sim 1
()	IIT.	1 1	(+) I
U	uL	L +	$^{\circ}$

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [11]: data2.shape
Out[11]: (1538, 8)
In [12]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [13]: y
Out[13]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [14]: from sklearn.model selection import train test split
          x_train, x_test, y_train, y_test =train_test_split(x,y, test_size=0.33,random_state=42)
In [15]: x_test.head(5)
Out[15]:
                engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                        51
                                 3197 120000
                                                         2
            481
                                                                     0
                                                                               1
                                                                                          0
                                  2101 103000
            76
                                                         1
                                                                     0
                        62
                                                                               1
                                                                                          0
           1502
                        51
                                  670
                                       32473
                                                         1
                                                                     1
                                                                               0
                                                                                          0
            669
                        51
                                  913
                                       29000
                                                         1
                                                                     1
                                                                                          0
           1409
                        51
                                  762
                                       18800
                                                         1
                                                                     1
                                                                               0
                                                                                          0
In [16]: x_train.shape
Out[16]: (1030, 7)
```

```
In [17]: y train
Out[17]: 527
                    9990
                    9500
          129
          602
                    7590
          331
                   8750
          323
                    9100
          1130
                  10990
          1294
                    9800
          860
                    5500
          1459
                    9990
          1126
                   8900
          Name: price, Length: 1030, dtype: int64
In [18]: y test.head()
Out[18]: 481
                  7900
          76
                  7900
          1502
                  9400
          669
                  8500
                  9700
          1409
          Name: price, dtype: int64
In [19]: y train.shape
Out[19]: (1030,)
In [20]: from sklearn.linear model import LinearRegression
          reg=LinearRegression() #creating object of LinearRegression
          reg.fit(x train,y train)#training and fitting LR object using training data
Out[20]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [21]: ypred=reg.predict(x test)
```

```
In [22]: ypred
Out[22]: array([ 5867.6503378 ,
                                  7133.70142341,
                                                  9866.35776216.
                                                                  9723.28874535.
                10039.59101162,
                                  9654.07582608,
                                                  9673.14563045, 10118.70728123,
                 9903.85952664,
                                  9351.55828437, 10434.34963575, 7732.26255693,
                 7698.67240131,
                                  6565.95240435,
                                                  9662.90103518, 10373.20344286,
                 9599.94844451,
                                  7699.34400418,
                                                  4941.33017994, 10455.2719478
                                                                  9952.37340054,
                10370.51555682, 10391.60424404,
                                                  7529.06622456,
                 7006.13845729,
                                  9000.1780961 ,
                                                  4798.36770637,
                                                                   6953.10376491,
                                 9623.80497535,
                 7810.39767825.
                                                  7333.52158317,
                                                                  5229.18705519,
                 5398.21541073,
                                  5157.65652129,
                                                  8948.63632836,
                                                                   5666.62365159,
                                                                  8457.38443276,
                 9822.1231461 ,
                                  8258.46551788,
                                                  6279.2040404 ,
                 9773.86444066,
                                 6767.04074749,
                                                  9182.99904787, 10210.05195479,
                 8694.90545226, 10328.43369248,
                                                  9069.05761443,
                                                                  8866.7826029 ,
                 7058.39787506,
                                  9073.33877162,
                                                  9412.68162121, 10293.69451263,
                10072.49011135,
                                  6748.5794244 ,
                                                  9785.95841801,
                                                                  9354.09969973,
                 9507.9444386 , 10443.01608254,
                                                  9795.31884316,
                                                                  7197.84932877,
                10108.31707235,
                                 7009.6597206 ,
                                                  9853.90699412,
                                                                  7146.87414965,
                 6417.69133992,
                                  9996.97382441,
                                                  9781.18795953,
                                                                   8515.83255277,
                 8456.30006203,
                                 6499.76668237,
                                                  7768.57829985,
                                                                  6832.86406122
                 8347.96113362, 10439.02404036,
                                                  7356.43463051,
                                                                   8562.56562053,
In [23]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[23]: 0.8415526986865394
In [24]: from sklearn.metrics import mean squared_error #calculating MSE
         mean squared error(ypred,y test)
Out[24]: 581887.727391353
In [25]: n=581887.727391353
         print(n**(1/2))
         762.8156575420782
```

```
In [26]: y test.head(5)
Out[26]: 481
                  7900
          76
                  7900
         1502
                  9400
          669
                  8500
          1409
                  9700
         Name: price, dtype: int64
In [27]:
         ypred
Out[27]: array([ 5867.6503378 ,
                                  7133.70142341,
                                                   9866.35776216,
                                                                    9723.28874535,
                 10039.59101162,
                                  9654.07582608,
                                                   9673.14563045, 10118.70728123,
                  9903.85952664,
                                  9351.55828437, 10434.34963575, 7732.26255693,
                  7698.67240131,
                                   6565.95240435,
                                                   9662.90103518, 10373.20344286,
                                                   4941.33017994, 10455.2719478 ,
                  9599.94844451,
                                  7699.34400418,
                                                                    9952.37340054,
                 10370.51555682, 10391.60424404,
                                                   7529.06622456,
                  7006.13845729,
                                  9000.1780961 ,
                                                   4798.36770637,
                                                                    6953.10376491,
                  7810.39767825,
                                   9623.80497535,
                                                   7333.52158317,
                                                                    5229.18705519,
                                                                    5666.62365159,
                  5398.21541073,
                                  5157.65652129,
                                                   8948.63632836,
                  9822.1231461 ,
                                  8258.46551788,
                                                   6279.2040404 ,
                                                                    8457.38443276,
                  9773.86444066,
                                  6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                   9069.05761443,
                                                                    8866.7826029 ,
                  7058.39787506,
                                                   9412.68162121, 10293.69451263,
                                  9073.33877162,
                 10072.49011135,
                                  6748.5794244 ,
                                                   9785.95841801,
                                                                    9354.09969973,
                  9507.9444386 ,
                                 10443.01608254,
                                                   9795.31884316,
                                                                    7197.84932877,
                 10108.31707235,
                                   7009.6597206 ,
                                                   9853.90699412,
                                                                    7146.87414965,
                  6417.69133992,
                                  9996.97382441,
                                                   9781.18795953,
                                                                    8515.83255277,
                                                                    6832.86406122,
                  8456.30006203,
                                   6499.76668237,
                                                   7768.57829985,
                  8347.96113362,
                                 10439.02404036,
                                                    7356.43463051,
                                                                    8562.56562053,
                  0020 70555100
                                  10025 02571520
                                                    7270 77100022
                                                                    0411 45004006
```

```
In [28]: Results=pd.DataFrame(columns=['Price', 'Predicted'])
    Results['Price']=y_test
    Results['Predicted']=ypred
    Results.head(15)
```

Out[28]:		Price	Predicted
	481	7900	5867.650338
	76	7900	7133.701423
	1502	9400	9866.357762

01423 9866.357762 669 8500 9723.288745 10039.591012 1409 9700 9900 1414 9654.075826 9900 1089 9673.145630 1507 9950 10118.707281 10700 9903.859527 970 1198 8999 9351.558284 1088 9890 10434.349636 7732.262557 7990 576 7380 7698.672401 965 1488 6800 6565.952404 1432 8900 9662.901035

```
In [29]: Results['diff']=Results.apply(lambda row: row.Price - row.Predicted,axis=1)
```

In [30]: Results

Out[30]:

	Price	Predicted	diff
481	7900	5867.650338	2032.349662
76	7900	7133.701423	766.298577
1502	9400	9866.357762	-466.357762
669	8500	9723.288745	-1223.288745
1409	9700	10039.591012	-339.591012
291	10900	10032.665135	867.334865
596	5699	6281.536277	-582.536277
1489	9500	9986.327508	-486.327508
1436	6990	8381.517020	-1391.517020
575	10900	10371.142553	528.857447

508 rows × 3 columns

In []: