OPTIMIZATION (SI 416) – LECTURE 4

Harsha Hutridurga

IIT Bombay

RECENT STORY

 $f: \mathbb{R}^n \to \mathbb{R}$ is said to be STRONGLY CONVEX if $\exists \lambda > 0$ such that $f(x) - \lambda ||x||^2$ is convex.

 $\begin{array}{ll} f \text{ is} & \text{for every } x \in \mathbb{R}^n, \\ \text{strongly convex} & \Longrightarrow & \left\langle \nabla^2 f(x) p, p \right\rangle \geq 2\lambda \|p\|^2 & \text{for all } p \in \mathbb{R}^n \end{array}$

$$\begin{array}{ll} f \text{ is} & \text{for every } x,y \in \mathbb{R}^n, \\ \text{strongly convex} & \Longrightarrow & f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \lambda \left\| y - x \right\|^2 \end{array}$$

 \clubsuit f is strongly implies \implies for all $x,y\in\mathbb{R}^n$ and $\alpha\in[0,1]$ we have

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y) - \lambda \alpha (1 - \alpha) \|x - y\|^2$$

f is f is f is strongly convex \implies strictly convex \implies convex

CONVEXITY AND CONTINUITY

Theorem

Every convex function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous on \mathbb{R}^n .

- Continuous functions on compact sets attain extremal values
- \clubsuit More precisely, for a continuous function f there exist points x_* and \hat{x} in K s.t.

$$f(x_*) = \min_{x \in K} f(x)$$
 and $f(\hat{x}) = \max_{x \in K} f(x)$

where K is a compact set in \mathbb{R}^n

STRONG CONVEXITY AND MINIMIZERS

- Recall that for a strongly convex function f, we have for $\alpha \in [0, 1]$, $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \lambda \alpha (1 \alpha) \|x y\|^2$
- \clubsuit By picking $x \gg 1$, y = 0 and $\alpha = \frac{1}{\|x\|}$ in the above inequality yields

$$f\left(\frac{x}{\|x\|}\right) \leq \frac{1}{\|x\|}f(x) + \left(1 - \frac{1}{\|x\|}\right)f(0) - \frac{\lambda}{\|x\|}\left(1 - \frac{1}{\|x\|}\right)\left\|x\right\|^2$$

Rearranging the above inequality yields

$$f(x) \ge ||x|| \left(f\left(\frac{x}{||x||}\right) - \left(1 - \frac{1}{||x||}\right) f(0) + \lambda(||x|| - 1) \right)$$

Observe that the following quantities take finite values, thanks to continuity:

$$f\left(\frac{x}{\|x\|}\right)$$
 and $f(0)$

STRONG CONVEXITY AND MINIMIZERS (CONTD.)

A Recall that we had

$$f(x) \ge ||x|| \left(f\left(\frac{x}{||x||}\right) - \left(1 - \frac{1}{||x||}\right) f(0) + \lambda(||x|| - 1) \right)$$

- \clubsuit Hence f(x) goes to infinity as ||x|| goes to infinity
- \clubsuit Therefore we can take a ball of large enough radius such that f attains its minimum in that ball
- \clubsuit Continuity of f tells us that there is at least a point in the closure of that ball where the minimum is attained
- As every strongly convex function is also strictly convex, there should be a unique point of minimum

Theorem

If $f: \mathbb{R}^n \to \mathbb{R}$ is a strongly convex function, then there exists a unique point $x_* \in \mathbb{R}^n$ such that

$$f(x_*) = \min_{x \in \mathbb{R}^n} f(x)$$

CONVEXITY AND MONOTONICITY OF GRADIENT

- \clubsuit Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex continuously differentiable function
- A This is equivalent to having

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle$$
 for all $x, y \in \mathbb{R}^n$

 \clubsuit Interchanging the roles of x and y in the above inequality:

$$f(x) \ge f(y) + \langle \nabla f(y), (x - y) \rangle$$

Adding the above inequalities results in

$$0 \ge \langle \nabla f(x), (y - x) \rangle + \langle \nabla f(y), (x - y) \rangle$$

$$\implies \langle \Big(\nabla f(x) - \nabla f(y) \Big), (x - y) \Big\rangle \ge 0$$

$$\begin{array}{ll} f \text{ is} & \text{for every } x,y \in \mathbb{R}^n, \\ \text{convex} & \Longrightarrow & \left\langle \Big(\nabla f(x) - \nabla f(y)\Big), (x-y) \right\rangle \geq 0 \end{array}$$

CONVEXITY AND MONOTONICITY OF GRADIENT (CONTD.)

 \clubsuit Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable s.t.

$$\left\langle \Big(\nabla f(x) - \nabla f(y)\Big), (x - y)\right\rangle \ge 0$$
 for all $x, y \in \mathbb{R}^n$.

 \clubsuit Let x and y be arbitrarily fixed. Define $g:[0,\infty)\to\mathbb{R}$ as follows:

$$g(\alpha) := f(x + \alpha(y - x))$$
 for $\alpha \in [0, \infty)$

A Thanks to the above monotonicity property of the gradient,

$$\left\langle \left(\nabla f(x + \alpha(y - x)) - \nabla f(x)\right), \left(\alpha(y - x)\right)\right\rangle \ge 0$$

 $As \alpha \geq 0$, we deduce that

$$\langle \nabla f(x + \alpha(y - x)), (y - x) \rangle \ge \langle \nabla f(x), (y - x) \rangle \implies g'(\alpha) \ge g'(0)$$

 \clubsuit Note further that g(0) = f(x) and g(1) = f(y)

CONVEXITY AND MONOTONICITY OF GRADIENT (CONTD.)

& Employing fundamental theorem of calculus, we have

$$g(1) - g(0) = \int_0^1 g'(\alpha) d\alpha \ge g'(0)$$

where we have used the observation from earlier

 \clubsuit Writing the above inequality in terms of f, we obtain

$$f(y) - f(x) \ge \langle \nabla f(x), (y - x) \rangle$$

 \clubsuit As x and y were arbitrary, we get convexity of f

$$f$$
 is for every $x, y \in \mathbb{R}^n$, convex $\iff \left\langle \left(\nabla f(x) - \nabla f(y)\right), (x - y)\right\rangle \ge 0$

STRONG CONVEXITY AND MONOTONICITY OF GRADIENT

 \clubsuit Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is strongly convex, i.e.

$$g(x) := f(x) - \lambda ||x||^2$$
 is convex for some $\lambda > 0$

 \clubsuit Hence the gradient of g must be monotone, i.e.

$$\left\langle \left(\nabla g(x) - \nabla g(y)\right), (x - y)\right\rangle \ge 0$$
 for all $x, y \in \mathbb{R}^n$

 \clubsuit Writing the above inequality in terms of f, we obtain

$$\left\langle \left(\nabla f(x) - 2\lambda x - \nabla f(y) + 2\lambda y\right), (x - y)\right\rangle \ge 0$$

$$\implies \left\langle \left(\nabla f(x) - \nabla f(y)\right), (x - y)\right\rangle \ge 2\lambda \|x - y\|^2$$

$$f \text{ is} \qquad \qquad \text{for every } x,y \in \mathbb{R}^n,$$
 strongly convex $\iff \left\langle \left(\nabla f(x) - \nabla f(y)\right), (x-y)\right\rangle \geq 2\lambda \|x-y\|^2$

STRONG CONVEXITY AND PL CONDITION

- $ightharpoonup ext{Suppose } f: \mathbb{R}^n \to \mathbb{R} ext{ is strongly convex}$
- \clubsuit This is equivalent to having a constant $\lambda > 0$ s.t.

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \lambda \|y - x\|^2 =: Q(x, y)$$
 for all $x, y \in \mathbb{R}^n$

- \clubsuit Recall that f has a unique global minimizer, say x_*
- \clubsuit Let us minimize the above inequality in the y variable:

$$\min_{y \in \mathbb{R}^n} f(y) \ge \min_{y \in \mathbb{R}^n} Q(x, y)$$

Note that
$$\min_{y \in \mathbb{R}^n} f(y) = f(x_*)$$

 \clubsuit Observe that Q(x,y) is a quadratic function in y variable:

$$Q(x,y) = f(x) + \langle \nabla f(x), y - x \rangle + \lambda \langle y - x, y - x \rangle$$

 \clubsuit Remark that Q(x,y) has a unique minimizer, say y_*

STRONG CONVEXITY AND PL CONDITION (CONTD.)

♣ The first order necessary condition says

$$\nabla_y Q(x, y_*) = 0 \implies \nabla f(x) + 2\lambda(y_* - x) = 0$$

 $\implies y_* = x - \frac{1}{2\lambda} \nabla f(x)$

Note that

$$Q(x, y_*) = f(x) - \frac{1}{2\lambda} \|\nabla f(x)\|^2 + \frac{1}{4\lambda} \|\nabla f(x)\|^2 = f(x) - \frac{1}{4\lambda} \|\nabla f(x)\|^2$$

Hence we obtain

$$f(x_*) \ge f(x) - \frac{1}{4\lambda} \|\nabla f(x)\|^2 \implies f(x) - f(x_*) \le \frac{1}{4\lambda} \|\nabla f(x)\|^2$$

- ♣ This is referred to as the PL condition
- \clubsuit It essentially says: f cannot grow too fast near its minimizer
- A It is named after Polyak and Lojasiewicz

β -SMOOTHNESS

Definition

Let $\beta > 0$. A continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be β -smooth if

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$$
 for all $x, y \in \mathbb{R}^n$

- \clubsuit The gradient ∇f is also said to be Lipschitz continuous
- \clubsuit Let x and y be arbitrarily fixed
- Note that we have

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + \alpha(y - x)), (y - x) \rangle d\alpha$$

♣ We rewrite the above equality as

$$f(y) - f(x) - \langle \nabla f(x), (y - x) \rangle = \int_0^1 \left(\nabla f(x + \alpha(y - x)) - \nabla f(x) \right) \cdot (y - x) \, d\alpha$$

β -SMOOTHNESS (CONTD.)

& Employing Cauchy-Schwarz inequality, we obtain

$$f(y) - f(x) - \nabla f(x) \cdot (y - x) = \int_0^1 \left(\nabla f(x + \alpha(y - x)) - \nabla f(x) \right) \cdot (y - x)$$

$$\leq \int_0^1 \|\nabla f(x + \alpha(y - x)) - \nabla f(x)\| \|y - x\| d\alpha$$

$$\leq \int_0^1 \beta \alpha \|y - x\|^2 d\alpha$$

where we have used the β -smoothness property.

♣ Hence we deduce

$$f(y) \le f(x) + \langle \nabla f(x), (y - x) \rangle + \frac{\beta}{2} ||y - x||^2$$

$$f$$
 is for every $x, y \in \mathbb{R}^n$,
 β -smooth \Longrightarrow $f(y) \leq f(x) + \langle \nabla f(x), (y-x) \rangle + \frac{\beta}{2} ||y-x||^2$

STRONGLY CONVEX AND β -SMOOTH

♣ For a function $f: \mathbb{R}^n \to \mathbb{R}$ which is both strongly convex and β -smooth, we have for all $x, y \in \mathbb{R}^n$,

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \lambda \left\| y - x \right\|^2 \\ & \leq f(y) \\ & \leq f(x) + \langle \nabla f(x), (y - x) \rangle + \frac{\beta}{2} \|y - x\|^2 \end{split}$$

4 i.e. it is sandwiched between two quadratic functions

MINIMIZING SEQUENCE

- \clubsuit Let $f: \mathbb{R}^n \to \mathbb{R}$ be β -smooth
- \clubsuit Pick a point $x^{(0)} \in \mathbb{R}^n$ and define a new point $x^{(1)}$ as follows

$$x^{(1)} := x^{(0)} - \delta \nabla f(x^{(0)})$$
 for some $\delta > 0$.

& Employ the earlier inequality for β -smooth functions with points $x^{(0)}$ and $x^{(1)}$:

$$f(x^{(1)}) \le f(x^{(0)}) + \left\langle \nabla f(x^{(0)}), (-\delta \nabla f(x^{(0)})) \right\rangle + \frac{\beta \delta^2}{2} \left\| \nabla f(x^{(0)}) \right\|^2$$
$$= f(x^{(0)}) - \delta \left\| \nabla f(x^{(0)}) \right\|^2 + \frac{\beta \delta^2}{2} \left\| \nabla f(x^{(0)}) \right\|^2$$

\$\ \\$\ Suppose that we take $\delta < \frac{1}{\beta}$. Then$

$$f(x^{(1)}) \le f(x^{(0)}) - \frac{\delta}{2} \left\| \nabla f(x^{(0)}) \right\|^2 \le f(x^{(0)})$$

A This hints at a recipe for building a minimizing sequence

MINIMIZING SEQUENCE (CONTD.)

- . Let $f: \mathbb{R}^n \to \mathbb{R}$ be β -smooth
- Λ Take $0 < \delta \le \frac{1}{\beta}$
- Arr Pick a point $x^{(0)} \in \mathbb{R}^n$
- \clubsuit Define a sequence of points $x^{(n)}$ iteratively as follows:

$$x^{(n+1)} := x^{(n)} - \delta \nabla f(x^{(n)})$$
 for $n = 0, 1, 2, ...$

- $x^{(n)}$ is referred to as the n^{th} iterate
- \clubsuit The above algorithm for generating $x^{(n)}$ is called gradient descent
- \clubsuit Exploiting the β -smoothness property, we deduce

$$f(x^{(n+1)}) \le f(x^{(n)}) - \frac{\delta}{2} \left\| \nabla f(x^{(n)}) \right\|^2 \le f(x^{(n)})$$
 for $n = 0, 1, 2, ...$

STRONG CONVEXITY AND β -SMOOTHNESS

- \clubsuit So far, we have used only β -smoothness of f
- \clubsuit Let us now assume that f is strongly convex as well
- ♣ We have from earlier that

$$f(x^{(n+1)}) \le f(x^{(n)}) - \frac{\delta}{2} \|\nabla f(x^{(n)})\|^2$$
 for $n = 0, 1, 2, ...$

 \clubsuit Recall: for a convex function f and for any $x, y \in \mathbb{R}^n$, we have

$$f(y) \ge f(x) + \langle \nabla f(x), (y - x) \rangle$$

- \clubsuit Strong convexity of f gives a unique minimizer x_* of f
- Applying the above inequality for $y = x_*$ and $x = x^{(n)}$ yields

$$f(x_*) \ge f(x^{(n)}) + \left\langle \nabla f(x^{(n)}), (x_* - x^{(n)}) \right\rangle$$

$$\implies f(x^{(n)}) \le f(x_*) - \left\langle \nabla f(x^{(n)}), (x_* - x^{(n)}) \right\rangle$$

STRONG CONVEXITY AND β -SMOOTHNESS (CONTD.)

Hence we obtain

$$f(x^{(n+1)}) \le f(x_*) - \left\langle \nabla f(x^{(n)}), (x_* - x^{(n)}) \right\rangle - \frac{\delta}{2} \left\| \nabla f(x^{(n)}) \right\|^2$$

♣ Observe that

$$-\left\langle \nabla f(x^{(n)}), (x_* - x^{(n)}) \right\rangle - \frac{\delta}{2} \left\| \nabla f(x^{(n)}) \right\|^2$$
$$= \frac{1}{2\delta} \left(\left\| x^{(n)} - x_* \right\|^2 - \left\| x^{(n)} - x_* - \delta \nabla f(x^{(n)}) \right\|^2 \right)$$

Hence we deduce that

$$f(x^{(n+1)}) \le f(x_*) + \frac{1}{2\delta} \left(\left\| x^{(n)} - x_* \right\|^2 - \left\| x^{(n+1)} - x_* \right\|^2 \right)$$

♣ We can rewrite the above inequality as

$$f(x^{(n+1)}) - f(x_*) \le \frac{1}{2\delta} \left(\left\| x^{(n)} - x_* \right\|^2 - \left\| x^{(n+1)} - x_* \right\|^2 \right)$$

APPROACHING THE MINIMIZER

A Recall: for a strongly convex function f and for any $x, y \in \mathbb{R}^n$, $f(y) \ge f(x) + \nabla f(x) \cdot (y - x) + \lambda \|y - x\|^2$

Applying the above inequality for $y = x^{(n+1)}$ and $x = x_*$ yields

$$f(x^{(n+1)}) \ge f(x_*) + \nabla f(x_*) \cdot (x^{(n+1)} - x_*) + \lambda \left\| x^{(n+1)} - x_* \right\|^2$$
$$= f(x_*) + \lambda \left\| x^{(n+1)} - x_* \right\|^2$$

where we have used the fact that $\nabla f(x_*) = 0$

Hence we deduce that

$$\lambda \|x^{(n+1)} - x_*\|^2 \le \frac{1}{2\delta} (\|x^{(n)} - x_*\|^2 - \|x^{(n+1)} - x_*\|^2)$$

♣ We can rewrite the above inequality as

$$(1+2\delta\lambda) \|x^{(n+1)} - x_*\|^2 \le \|x^{(n)} - x_*\|^2$$
 for $n = 0, 1, ...$

APPROACHING THE MINIMIZER (CONTD.)

A Recall that we have

$$\left\| x^{(n+1)} - x_* \right\|^2 \le \frac{1}{1 + 2\delta\lambda} \left\| x^{(n)} - x_* \right\|^2$$
 for $n = 0, 1, \dots$

♣ This translates to

$$\|x^{(n)} - x_*\|^2 \le \left(\frac{1}{1 + 2\delta\lambda}\right)^n \|x^{(0)} - x_*\|^2$$
 for $n = 0, 1, ...$

 \clubsuit Let us denote the error committed at the n^{th} iteration as e_n , i.e.

$$e_n := \|x^{(n)} - x_*\|^2$$
 for $n = 0, 1, 2, \dots$

♣ Note that we have

$$e_n \le \left(\frac{1}{1+2\delta\lambda}\right)^n e_0 \quad \text{for } n = 0, 1, 2, \dots$$

APPROACHING THE MINIMIZER (CONTD.)

\$\ \sim \ \ Suppose we have a tolerance of $\varepsilon > 0$, i.e we are looking for $x^{(n)}$ such that the error falls below ε , i.e.

$$e_n \le \varepsilon$$

 \clubsuit Note that this can be ensured by taking n such that

$$\left(\frac{1}{1+2\delta\lambda}\right)^n e_0 \le \varepsilon$$

A This is the same as having

$$n \ln \left(\frac{1}{1 + 2\delta \lambda} \right) \le \ln \left(\frac{\varepsilon}{e_0} \right) \implies n \ge \frac{1}{\ln(1 + 2\delta \lambda)} \ln \left(\frac{e_0}{\varepsilon} \right)$$

A This suggests that we should take the number of iterations

$$n = \mathcal{O}(\ln(\varepsilon^{-1}))$$

END OF LECTURE 4 THANK YOU FOR YOUR ATTENTION