

Coronavirus Optimization Algorithm A bioinspired metaheuristic based on the COVID-19 propagation model

F. Martínez-Alvarez
Departamento de Ingeniería Informática, Universidad de Sevilla

Miguel Ángel Dávila Romero

Introducción

El algoritmo surge en abril de 2020, en plena pandemia.

Se plantea basar un algoritmo en la propagación del virus.

Introduce al algoritmo tasas y probabilidades propias del virus, siendo los valores de los parámetros conocidos.

Parámetros (OMS)

- PROB MUERTE
- PROB SUPERCONTAGIOSO
- PROB CONTAGIOSO
- TASA CONTAGIO ORD
- TASA CONTAGIO SUPER
- PROB REINFECCION
- PROB CONFINAMIENTO
- PROB VIAJAR

- DURACION_PANDEMIA
- cepas (MA)

Estructuras

- infectados (Conjunto de individuos)
- nuevosInfectados (Conjunto de individuos)
- muertos (lista de Individuos)
- recuperados (lista de individuos)

Pasos

- 1. Generar Población Inicial (Paciente Cero: PZ)
- 2. Propagación del virus
- 3. Viajes
- 4. Actualizar:
 - a. Muertos
 - b. Nuevos infectados
 - c. Recuperados
- 5. Criterio de parada (DURACION_PANDEMIA o hasta que deje de propagarse)

CVOA (Función principal)

infectar

Intensificación

 Se consigue en la función replicar() cuando el individuo no es viajante (generamos soluciones vecinas)

Diversificación

- En replicar(), cuando es viajante, se generan individuos más distintos al original.
- En el enfoque MA, al tener varias cepas.

Enfoque MA

Podemos mantener varias poblaciones distintas, llamadas cepas, originándose cada una a partir de un PZ. La generación puede ser totalmente aleatoria o, para conseguir mayor exploración, generar PZs ortogonales o con altas distancias de Hamming.

Bibliografía

Al ser un paper tan reciente, la única bibliografía disponible es el propio paper:

https://arxiv.org/pdf/2003.13633.pdf