IIIT BHUBANESWAR

Department Of Computer Secience & Engineering

MAJOR PROJECT PRESENTATION

Designing a Web Interface for Finding Human Body Pose Estimation

Project Members Name

Shrey Sahay B421047 Piyush Kumar Nayak B521044

Hemant Sah B421025

<u>INTRODUCTION</u>

Human Pose Estimation:

- Uses machine learning to estimate spatial locations of body joints (key points) from images or videos.
- It identifies key points like shoulders, elbows, knees, etc.
- Helps track the position and movement of body joints.

Project Aim: Demonstrate real-time pose estimation using Pose Net and webcam feed.

Technology Used: TensorFlow.js – A JavaScript library for training and deploying ML models in the browser.

CONSTRAINTS

Scope Boundaries

- Focus is limited to 2D Pose Estimation (X and Y coordinates of key points).
- 3D Pose Estimation is excluded for simplicity.
- We estimate both single and multi-person poses.
- Implementation runs in a web browser environment.
- No training of ML models is done manually.
- Uses JavaScript libraries with pre-trained ML capabilities.
- Access to models is done via simple import commands.

POSE ESTIMATION

Definition: Technique for detecting and tracking human body parts in real-time video or images

Explanation: Uses computer vision and machine learning to locate and determine orientation of body parts.

Use cases:

- Human action recognition
- Human-computer interaction
- Video surveillance
- Fitness & Health tracking
- Gesture recognition

TYPES OF POSE ESTIMATION

#17.06 of some linear.

STATES NAMED

PERSON SHIPMAN

80

Principous.

History & Printers of the

Altogot the

Service Of the

Personal Statement

SINGLE POSE & MULTI POSE ESTIMATION

Pose estimation can operate in two modes:

- Single Pose Estimation Detects the pose of only one people in an image/ video.
- Multi Pose Estimation Detects the poses of multiple people in an image/video.

HAND POSE ESTIMATIONS

POSE NET ARCHITECTURE

Key Terminologies:

- Pose
- Pose Confidence Score
- Keypoint
- Keypoint Confidence Score
- Keypoint Position

ALGORITHMS

Single-Pose Detection Algorithm keepsid Mateu pose estimation input image PoseNet model

Fig - 17 Pose Key points Returned By Posenet

Fig - Single person pose detector pipeline using PoseNet

ESTIMATING POSES FROM THE OUTPUTS OF THE MODEL

Key points Detection Steps:

- Sigmoid Activation applied to heatmap to obtain key point scores
- Argmax2D used to find (y, x) index with highest score for each key point
- Offset Vectors retrieved for each key point using corresponding heatmap indices
- Final Key point Positions computed using output stride and offset vectors
- Key point Confidence = score at heatmap position
- Pose Confidence = average of all key point confidence scores

ALGORITHMS

Fig - Processing Model Inputs: an Explanation of Output Strides

Fig - Model Outputs: Heatmaps and Offset Vectors

LIBRARIES/ FRAMEWORKS/ MODELS

Following are the technologies that we had used to implement the real time human pose estimation project in web browser.

TensorFlow Mediapipe Posenet

TENSORFLOW

Definition: A JavaScript library for training and deploying ML models in the browser and Node.js.

Overview of features:

- Supports high-level APIs and pre-trained models
- Enables browser-based model execution
- Facilitates interactive ML-powered applications

Official Links: https://www.tensorflow.org/

Datasets Used:

- <u>COCO</u>, <u>MPII</u> for pose estimation
- 300W-LP for face detection
- Hand Tracking 21-Keypoint for hand pose tracking

MEDIA-PIPE

Definition: Open-source ML framework by Google for real-time processing of video, images, and audio.

Key features:

- Supports cross-platform deployment: Web, Android, iOS, Desktop
- Optimized for low-latency inference on CPU & GPU
- Modular pipeline for efficient multi-task learning
- Ideal for AR, gaming, healthcare, and other AI applications

Official Link: Media-Pipe

POSENET

Definition:

- A real-time human pose estimation model by Google.
- Detects key points like nose, eyes, shoulders, elbows, etc., from images or videos.

Key features:

- Optimized for mobile and web apps
- Runs directly in browsers via TensorFlow.js
- Supports CPU, GPU, and WebGL acceleration
- Suitable for interactive and low-latency applications

Official Link: Posenet

FLOW OF THE PROJECT

S.No.	Flow
1	Data Collection And Data Preprocessing
2	Model Selection
3	Integration with Web Browser
4	User Input
5	Inference
6	Visualization
7	Optimization
8	Testing
9	Deployment

WEBSITE HOMEPAGE

Welcome To Human Pose Estimation

M-Pose Detection

H-Pose Detection

Explore More

The Human Pose Estimation is the task of using a machine learning model to estimate the approximate pose of a person from an image or a video by estimating the spatial locations of key body joints that is called keypoints.

- . There are total 17 keypoints that are used by algorithm to estimate the pose of human body.
- . This step is a crucial prerequisite to multiple tasks of computer vision which include human action recognition, human tracking, human-computer interaction and video surveillance.
- . It can be used to estimate either a single pose or multiple poses, meaning there is a version of the algorithm that can detect only one person in an image/video and one version that can detect multiple persons in an image/video.
- . The aim is to deliver the basic use cases of the Pose Net model for real-time human pose estimation using a webcam feed as the data. Now, the challenge is to create an advanced webcam filter that has detection functionalities like the Snapchat camera.

Download Document

Project Report

Project Presentation

Follow Us

8 0

Pose Estimation

About Us Terms Of the

Privacy Blueprint

Get Help

Peredback Contact Us

Help & Support

Address

HIT Bhubaoushway 751003 Gothapatna.

Odisha, India

[View Tearms Of Use & Privacy Blueprint]

[Homan Pose Estimation © 2025 All Right ®]

Links:

- Repository

USE CASES

FUTURE SCOPES

S.No.	Future Scopes
1	Real – Time Pose Estimation on Edge Devices
2	Privacy and Security Considerations
3	Real – Time Feedback and Coaching
4	Collaborative Pose Estimation
5	Supervised Learning
6	Virtual Try – On and Fashion
7	3D Pose Estimation

CONCLUSION

Demonstrated basic PoseNet use cases with real-time webcam input.

Real-Time human pose estimation uses CV + ML to track joint positions and orientation.

Widely applicable in:

- Virtual Reality
- Gaming
- Sports Analytics
- Health Monitoring

