Polinomi in racionalne funkcije

Bor Bregant

1 Polinomi

Polinom je funkcija $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, kjer je $a_n \neq 0$. n imenujemo stopnja polinoma, a_0 prosti člen, a_n vodilni koeficient, a_0, \ldots, a_n pa koeficienti polinoma p. p(x) = 0 imenujemo ničelni polinom.

Polinoma sta enaka, če imata enako stopnjo in enake koeficienti pri enakih potencah x.

Zgled. Zapiši stopnjo, koeficiente in vrednost pri x = 2 za $p(x) = 3x^4 - 2x^3 + 11x - 7$ Zapiši polinom druge stopnje, če veš, da je p(8) = 6, p(2) = 0 in p(0) = 4. Izračunajmo še njegovo vrednost za x=1.

Za kateri števili a in b je a(x+2) + b = 4x - 3.

Naloga 1. NALOGE 1, 2, 3, 8

Množenje polinoma s številom, seštevanje, odštevanje in množenje polinomov:

Zgled. Pomnožimo polinom $r(x)=2x^4+3x^2-8x+5$ s številom $\frac{3}{2}$. Seštejmo polinoma $p(x)=3x^4+7x^3-4x^2+6$ in $q(x)=7x^5+2x^3+7x^2+8x-5$. Za isti primer izračunajmo še q(x)-p(x).

Zmnožimo polinoma $p(x) = x^2 + 1$ in $q(x) = x^3 - 4x^2 + 6$.

Za množenje polinomov velja $st(p \cdot q) = st(p) + st(q)$, komutativnost in asociativnost.

Deljenje polinomov:

Za vsak polinom p stopnje n in polinom q stopnje m $(n \ge m)$ obstajata natanko določena polinoma k in r, da velja p(x) = k(x)q(x) + r(x). k imenujemo kvocient in je stopnje n - m, r pa ostanek in je nižje stopnje kot q.

Zgled. Delimo $(x^2 + x - 3) : (x + 3)$ Delimo polinom $p(x) = 3x^4 + 5x^3 - 4x^2 + 7$ s polinomom $q(x) = x^2 + 2x - 1$.

Zgled. Če polinom $p(x) = x^5 - 3x^3 - 5x$ delimo z neznanim polinomom q dobimo kvocient $k(x) = x^3 + x^2 - 3x - 4$ in ostanek r(x) = -6x + 4. Določimo q.

Naloga 2. NALOGA 16ab, 17a, 20a, 23, 27b,c,e,g, 28ac, 30, 36

Hornerjev algoritem - Postopek za deljenje polinoma z linearnim polinomom.

Velja tudi, da je ostanek pri deljenju polinoma p z linearnim polinomom x-c enak vrednosti p pri x=c.

Zgled. S Hornerjevim algoritmom delimo $3x^5 - 4x^4 - 7x^2 + 3x - 4$ z x - 2. Preverimo še, da je ostanek res enak vrednosti p(2).

Enaka naloga $(x^3 - 4x^2 + 6x - 7) : (x - 3), (2x^5 - 2x^4 - 13x^3 + 7x + 6) : (x + 1).$ Zapiši vrednost $p(x) = x^4 - 3x^3 + 2x^2 + 2x - 4$ v točki x = i.

S hornerjevim algoritmom pokažimo, da je polinom $p(x) = x^4 + 8x^3 + 6x^2 - 13x - 2$ deljiv s polinomom $q(x) = x^2 + x - 2$.

Naloga 3. NALOGE 45, 46, 48b

1.1 Ničle polinoma: p(x) = 0

Razstavimo, kjer si lahko pomagamo s hornerjem. Ko pridemo do kvadratne člena v vietovim pravilom ali kvadratno formulo. Rezultat je ničelna oblika $p(x) = a(x - x_1)^{k_1} \cdots (x - x_l)^{k_l}$ c je ničla polinoma p natanko tedaj, ko je p deljiv s polinomom x - c. Pri deljenju si pomagamo s Hornerjem!

Zgled. Preverimo, da je x=-2 ničla polinoma $p(x)=2x^4+3x^3-7x^2+x+22$. Razcepimo izraz x^3-7x+6 kot produkt linearnih faktorjev, če vemo da je eden od faktorjev x+3. Izračunajmo vse ničle $f(x)=x^4-x^2$. Razcepimo izraz $3x^3-20x^2+42x-20$, če vemo, da je ena faktor $x-\frac{2}{3}$.

Polinom stopnje n ima natanko n (kompleksnih) ničel štetih z večkratnostjo. Kompleksne ničle nastopajo v konjugiranih parih.

Zgled. (a) Zapišimo polinom tretje stopnje, ki ima prosti člen enak -2 in ima enkratno ničlo 1 in dvakratno ničlo $\frac{1}{2}$.

- (b) Poiščimo ničle polinoma $p(x) = x^4 4x^3 2x^2 + 12x + 9$, če vemo, da je (-1) dvakratna ničla.
- (c) Zapišimo polinom tretje stopnje, ki ima ničli 2+i in 1, pri x=0 pa vrednost $\frac{1}{2}$.

Kandidati za ničle: Kandidati za celoštevilske ničle polinoma so delitelji prostega člena. Kandidati za racionalne ničle polinoma so oblike $\frac{c}{d}$, kjer c deli prosti člen, d pa vodilni koeficient.

Zgled. Izračunajmo vse ničle polinoma $p(x) = 12x^4 - 20x^3 + 7x^2 + 2x - 1$.

Zgled. Zapiši rešitve enačbe $x^3 - 6x^2 = -11x + 6$ in $x^3 + x^2 = 5x + 2$.

1.2 Graf polinoma

Začetna vrednost p(0).

Če je ničla lihe stopnje (enkratna, trikratna, ...) polinom v ničli spremeni predznak. Če je ničla sode stopnje se predznak ne spremeni.

Slika 1: Grafa funkcij z ničlo lihe in sode stopnje.

Obnašanje grafa v $\pm\infty$:

Če $a_n > 0$, gre graf proti ∞ v $+\infty$. Če $a_n < 0$, gre graf proti ∞ v $-\infty$. Če je n sod, se graf obnaša "podobno" v ∞ in $-\infty$. Če n lih se obnaša "obratno".

Zgled. Narišimo graf polinoma $p(x) = x^3 - 3x + 2$ in grafe |p(x)|, p(|x|), 2p(x), p(2x), p(x-2), p(x) - 2. Resimo se neenačbo $p(x) \ge 0$. Nariši še grafe $p(x) = x^4 - 4x^2$, $p(x) = x^3 + x^2 - 5x + 3$, $p(x) = -(x+1)(x-1)^2$

Narisi se grafe $p(x) = x^2 - 4x^2$, $p(x) = x^3 + x^2 - 5x + 5$, p(x) = -(x + 1)(x - 1)Zapiši predpis za narisan graf - Enojna ničla -2, dvojna 1, zacetna vrednost 3

Naloga 5. NALOGE 116ab, 119, 120, 124, 127, 130, 144a,č, 154a

1.3 Bisekcija

Metoda za iskanje ničel. Če je f realna zvezna funkcija na [a,b] in je v a in b različno predznačena obstaja $c \in (a,b)$, da f(c) = 0. V vsakem koraku zamenjamo eno točko intervala z razpoloviščem le tega, torej se v

vsakem koraku napaka razpolovi.

Zgled. Približno poiščimo iracionalno ničlo za $p(x) = x^5 + 2x - 1$ na [0,1].

2 Racionalne funkcije

 $f(x) = \frac{p(x)}{q(x)}$, kjer sta p in q polinoma. Ničle f = ničle p, $D_f = \mathbb{R} \setminus \{x | q(x) = 0\}$. Ničle imenovalca imenujemo

Zgled. Določimo $D_f, D_g, g+f, g\cdot f$, ničle in pole f in g za $f(x)=\frac{3x-2}{x^2-4}$ in $g(x)=\frac{3}{x}$

Naloga 1. NALOGE 168a,b,c, 170a

2.1 Graf racionalne funkcije

Ničle podobno kot pri polinomih.

V polih ima graf navpično asimptoto. Če je pol lihe stopnje graf spremeni predznak. Če je pol sode stopnje graf ne spremeni predznaka.

Lahko si pomagamo z vmesnimi točkami npr. začetno vrednostjo

Obnašanje grafa v $\pm \infty$:

$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \ldots + a_0}{b_m x^m + \ldots + b_0} \xrightarrow{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

- n < m: Vodoravna asimptota y = 0.
- n = m: Vodoravna asimptota $y = \frac{a_n}{b_n}$.
- n > m: Delimo p:q. Celi del rešitve je funkcija kateri se približujemo. V točkah, kjer je ostanek enak 0, pa to (krivuljno) asimptoto sekamo (tudi za n = m).

4

Zgled. Narišimo grafe
$$(a) \ f(x) = \frac{x+3}{x^2-4x+4} \qquad (b) \ f(x) = \frac{2x+6}{3x-3} \qquad (c) \ f(x) = \frac{x^2+4x+4}{x+3}$$
 Zapiši predpis racionalne funkcije, ki ustreza grafu ...

Naloga 2. 175a,b, 183 vse, 189a,b, 193a,b

2.2 Racionalne enačbe in neenačbe

Vse damo na eno stran (pri neenačbi to storimo z odštevanjem ne množenjem!). V enačbi so rešitve ničle novega grafa, v neenačbi pa x, kjer je graf nad oz. pod x osjo.

Zgled. Reši enačbi $\frac{x+1}{x-4} = 6$ in $\frac{2x}{x-1} + \frac{1}{x-3} = \frac{2}{x^2-4x+3}$.

Zgled. V kateri točki se sekata grafa funkcij $f(x) = \frac{x-3}{x+2}$ in $g(x) = \frac{x+1}{x+3}$.

Zgled. Vsota števila in dvakratnika njegovega obratnega števila je $\frac{9}{2}$. Katero število je to?

Zgled. Rešimo neenačbo $\frac{x+2}{2x+2} \ge \frac{x-2}{x+1}$.

Zgled. Na katerem intervalu je $f(x) = \log(\frac{x}{x+2} - \frac{1}{x})$ pozitivna?

Zgled. Zapiši ničle, pole, nariši graf za $f(x) = \frac{3x^2 + 10x + 3}{x^3 + 2x^2 - 7x + 4}$. Kje f zavzame vrednosti $-\frac{1}{3}$.

Naloga 3. NALOGE 195a,b, 200a, 201a,d, 206, 207