MORE PROJECTS

6.Temperature Sensor (LM35)

This program reads the temperature from an LM35 sensor and sends the data to the serial monitor.

```
const int tempPin = A0; // Pin connected to the LM35 sensor

void setup() {
   Serial.begin(9600); // Initialize serial communication
}

void loop() {
   int tempValue = analogRead(tempPin); // Read the analog value from the sensor
   float voltage = tempValue * (5.0 / 1023.0); // Convert to voltage (5V reference)
   float temperature = voltage * 100.0; // Convert voltage to temperature in °C
   Serial.print("Temperature: ");
   Serial.print(temperature);
   Serial.print(temperature);
   Serial.println(" °C");
   delay(1000); // Wait for 1 second
}
```



```
Serial Monitor

Temperauture :40.08 °C

Temperauture :40.08 °C
```

7.Controlling a Servo Motor

This program controls a servo motor to move it to different angles using the Servo library.

```
#include <Servo.h>
Servo myServo; // Create a Servo object
void setup() {
  myServo.attach(9); // Attach the servo to pin 9
}
void loop() {
  myServo.write(0); // Move the servo to 0 degrees
  delay(1000);
                   // Wait for 1 second
  myServo.write(90); // Move the servo to 90 degrees
  delay(1000);
                    // Wait for 1 second
  myServo.write(180); // Move the servo to 180 degrees
  delay(1000);
                     // Wait for 1 second
}
                                         \downarrow
```


8. Motion Detection using PIR Sensor

This program uses a Passive Infrared (PIR) sensor to detect motion and control an LED.

```
Copy code
const int pirPin = 2;  // Pin connected to the PIR sensor
const int ledPin = 13; // Pin connected to the LED
void setup() {
 pinMode(pirPin, INPUT); // Set the PIR pin as input
 pinMode(ledPin, OUTPUT); // Set the LED pin as output
}
void loop() {
  int motionState = digitalRead(pirPin); // Read the PIR sensor
  if (motionState == HIGH) { // If motion is detected
    digitalWrite(ledPin, HIGH); // Turn on the LED
    delay(5000);
                               // Keep the LED on for 5 seconds
    digitalWrite(ledPin, LOW); // Turn off the LED
  }
                                         \downarrow
}
```


9.Ultrasonic Sensor (HC-SR04) for Distance Measurement

This program measures the distance using an ultrasonic sensor and displays it on the serial monitor.

```
const int trigPin = 9;  // Pin connected to Trig pin of the sensor
const int echoPin = 10;  // Pin connected to Echo pin of the sensor

void setup() {
    pinMode(trigPin, OUTPUT);  // Set trigPin as output
    pinMode(echoPin, INPUT);  // Set echoPin as input
    Serial.begin(9600);  // Start the serial communication
}

void loop() {
    long duration, distance;

    // Send a pulse from the sensor
    digitalWrite(trigPin, LOW);
    delayMicroseconds(2);
    digitalWrite(trigPin, HIGH);
    delayMicroseconds(10);
```

```
digitalWrite(trigPin, LOW);

// Measure the response time
duration = pulseIn(echoPin, HIGH);

// Calculate distance in centimeters
distance = (duration / 2) / 29.1;

Serial.print("Distance: ");
Serial.print(distance);
Serial.println(" cm");
delay(500); // Wait for 500ms
}
```



```
Serial Monitor

DISCANCE: 126 CM

Distance: 126 CM
```

10. Displaying Text on 16x2 LCD

This program displays the text "Electronics" on the first row and "is the Future" on the second row of a 16x2 LCD.

```
void loop() {
   // The display is static, no loop action required
}
```


Note:- In Program -> 7 and 10 we have used header files which is most important part of Arduino Software we will Explain header files and some examples of header files in next part.

THANK YOU

HAVE A BRIGHT FUTURE