

Read 1.27/10 1, 3, 4, 5, 9, 14, 15 (HOMEWORK) a(b+c) = ab + ac distributive When I write F, I mean For C Subtraction a-b=a+(-b)division a = b = 6 is $a \cdot (6)$ Def. A vector space is a set V with a + Vx y 7 V and a 'scalar multiplication' 1) u+v=y+u communition+y (ab)v=a(bv) (ab)v=a(bv) (ab)v=a(bv) (ab)v=a(bv) (ab)v=a(bv) (ab)v=a(bv)P] = element O E V St O + V = V + V EV zero element 1V=V Y VEV 0__ YVEV 7 element WE V St V+W=0. 1 this is additive inverse -y distributive (a) a(y+w) = ay + aw, (a+b)y = ay + byVV, WEV, VabeF if FISIR we say V is a real vector space, or vector space over IR. If F is C we say V is a complex vector space; **Q**__ or vector space over c

Mmn = set of mxn matrices with entries in F $M_{m,n}(R) =$ " |R| $M_{m,n}(C) =$ " |C|Mn = Mn, n -, Mn(P) = Mn, n (1/2) • F° = {(X, X, X, X, ...): X, EF + K-1, 2, 3. P(F) = set of all polynomials a0+a1x+a2x2+a1x9 n∈1,2,3,... are 1=+K=1,2,3 P(R) would contain Hungs like 3-2x+x2

add (3-2x+x2)-(x3-2-2x+x2+x3 scalar multiplication 7(3-2x+x2) = 21-14x+7x2 Ex8) V= {f: S=F} functions from a set S to F add $(f+g)(x) = f(x) + g(x) + x \in S$ $\leq m \cdot (c f)(x) = c f(x) \cdot c \in F$ "Zero function" $O(x) = 0 + x \in S$

	* memorize every definition
10	Ex 9) {f: [0,1] -> IR continuous } or Ex 10) {f: (0,1) -> IR differentiable}
	w/ add & sc. multi as in Ex 8
	- Iram in Carle 1 for add
	"sitting inside Et 8"
	WE NOW PROVE EASY HINGS ABOUT ANY VECTOR SPACE V
	Prop 1: The zero element in a vector space
9	proof: Suppose O, and O2 are 2 zero elements
9	then $O_1 = O_1 + O_2 = O_2 \square$
	Propa: The additive inverse is unique
	proof: Suppose $V+W_1=0$ and $V+W_2=0$ Then $W_1=W_1+0=W_1+(V+W_2)=(W_1+V)+W_2=0$ $0+W_2-W_2=0$
10 40 40 0 Subject 0	Scolar vector
	Prop 3: $0 \cdot V = 0$ $\forall V \in V$ proof: Let $0 \cdot V = Z$ then $Z = (0+0)V = 0V + 0V = Z + Z$
Any to p	add $-z$ to both sides: $0 = z + -z = z + z + (-z) \stackrel{?}{=} z + 0 \stackrel{?}{=} z$
District angulation of the second section of the second	Prop 4: a.0=0 + a EF
	proof: Ex, almost identical to Prop3

	Prop 5: the additive inverse of $V \in V$ is (proof: $V + (-1)V \stackrel{d}{=} V + (-1)V \stackrel{d}{=} (1+-1)V = 0V$ So $W = (-1)(V)$ satisfies rule 5	
and other to part of the same	proof: V+(-1)V = 1V+(-1)V = (1+-1)V = 0V	(-1)V
The state of the s	So $W = (- YV)$ sotisfies rule 5	Prop 3
	so is the additive inverce	
	unique by prop 2 D	
The state of the s		
arterial designation of the second se		6
Jack		E
		6 2
7		
1		
-		

IR = real number has b + · a + ib C = complex plane = TR2 Addition me (a+ib) + (c tid) = (a+c) + i(b+d). Multiplication in Ci (a+ib) · (c+id) = (ac-bd) + i (ad+bc), assuming a,b,c,d & IR Motion $i^2 = (0 + 1i)(0 + 1i) = 0 - 1 + i(0 + 0) =$ - R Or C. for us is a member Both IR and I are fields: A field is a set F with a + and a multiplication s.t. - a+b = b+a } commutativity athte)=(athte | associativity. FOEFT OTA = A Y A CF FIREFT I.A = A Y A CF by the additive inverse of a written a'

taEF, 3 CEF 7 ac = 1, it the multiplicature involve, written a. a(btc) = ab + ac < distributive prof F=RDC. About Milie me Y a,b, c E.F. Subtraction a-b = a+(-b)DIVISITA atbount = a.(b) * Det: A vector space is a set V with a $+: V \times V \rightarrow V$ and a scalar multiplication $\cdot: F \times V \rightarrow V$ such that N + V = V + N 1 printer tunner was Associativity 2. Mt (VtW) = (N+V)+W 5/ab)V = a(bv) + ab E F. tero Elymints. I am element DEV > O+V=V × VEV 4. I. v = v + v ∈ V 5. + v ∈ V, 3 an element w ∈ V > v + w = 0; Thus in the additul inverse, whitten -v. Detributure 6. a(v+w) = av + aw, (a+b) v = av + bv YV, WEV, Y a, b E F. ef F=R, we say V vs a real vector space, or If F = C, we say I vir a complex vector spap, a

= Set of mxn matrices with entries unt Mmxn (R) = set of mxn matrices with entries in R. Mmxn (a) = set of mxn matrices with entries in C. Mn=Mnn>Mn(IR)=Mmn(R), etc. [312] E M_{2,3} (IR). ~ 2,2 entry of matrix F= = ?(x, x2, x3 m): Xh E F + k=1, 2,3. mf. Addition + Scalar Mult as in ec 2. P(F) = Stop all polynomials: $Q_0 + Q_1 \times + Q_2 \times + \dots + Q_n \times N = Q_1, Z, \dots,$ $Q_k \in F + K = Q_1, \dots + Q_n \times N = Q_1, \dots + Q_n \times Q_1, \dots + Q_$ Obrusur addition and schar muchiplicature f: S→F/, functions from ithin as in ex 8 and scal mult

	The now prove some lasy things about any vector space V
	The Ferro element in a vector space is unique
	Proof Suppose O, and O2 who two few delines is
	$0_1 = 0_1 + 0_2 = 0_2$.
	The additive unverse or unique
	Phoof Suppose V+ W, = O and V+Wz = O.
	$W_1 = W_1 + 0 = W_1 + (V + W_2)$
1	PAOR 3 = (W, +V) + W2 = 0+ W2,
	Brown O. V = O + VEV
17. 14.	$P_{0}(x) = 7 + 7 = 0 + 0 = 0 + 0 = 0 + 0 = 0 + 0 = 0 + 0 = 0 =$
Trying to	Nink) = $\overline{z} + \overline{z}$. Add $-\overline{z}$ to both SIdOs: $0 = \overline{z} + (-\overline{z}) = \overline{z} + \overline{z} + (-\overline{z}) \stackrel{5}{=} \overline{z} + 0 \stackrel{3}{=} \overline{z}$.
	11/00/
	Proof: Exalmost dentical to prop3.
	PNOPS
(The additive inverse of vEV is (-1) v.
	The additive proble of $v \in V$ by $(-1)V$. Proof $V+(-1)V = 0 = 1V + (-1)V = (1+(-1))V$ $= 0V = 0 = 0 = (-1)V = 0$ $= 0V = 0 = 0$ $= 0V = 0$

TO A COMMON PROPERTY OF THE PARTY OF THE PAR		
The second of the American control of the second of	Some notations from last class explained	
	7	
	s.t = such that	
	$N = \{1, 2, 3, \dots\}$ $N_0 = \{0, 1, 2, 3, \dots\}$	
A STATE OF STREET, S. C. COMPANIES STREET	6	
	$Z = \{ 1, 1, 3, -2, -1, 0, 1, 2, 3, \dots \}$	
	$+: V \times V \rightarrow V$	
	Means.~	
	·······································	
	(9 explained this)	
	(3 Kx planea UNIS)	
	yerfolly)	····
	(Adv. on)	

Checking in an grample that V is a vector space required checking 10 things. P2(F) = the polynormals of degree 2 or less au + aix + azx, ao, a, a, EF. lots show it is a vital space with usual addition and scalar multiplication $\frac{1.(a_{0}+a_{1}x+a_{2}x^{2})+(b_{0}+b_{1}x+b_{2}x^{2})=}{(a_{0}+b_{0})+(a_{1}+b_{1})x+(a_{2}+b_{2})x^{2}\in P_{2}(A_{1}+b_{1})}$ 2. $((a_0 + a_1 \times + a_2 \times^2) = (a_0 + ca_1 \times + (a_2 \times^2 \in \mathbb{Z}))$ 3. $(a_0 + a_1 x + a_2 x^2) + (b_0 + b_1 x + b_2 x^2) =$ $(a_0 + b_0) + (a_1 + b_1) x_1 + (a_2 + b_2) x^2$ $(b_0 + b_1 x + b_2 x^2) + (a_0 + a_1 x + a_2 x^2)$ 4. $(a_0 + a_1 x + a_2 x^2) + (b_0 + b_1 x + b_2 x^2) + (c_0 + c_1 x + c_2 x^2)$ = $(a_0 + b_0) + (a_1 + b_1) \times + (a_2 + b_2) \times^2 + (cot c_1 \times + c_2 \times^2) (a_0 + b_0 + c_0) + (a_1 + b_1 + c_1) \times + (a_2 + b_2 + c_2) \times^2 =$ (Ao+ A, X + A2X2) + (bo+ Co) + (b, +(4) X + (b2+C2) X2 = (ao tax+ a2x2)+(bo+b1x+ b2x2)+(Co+Gx+C2x2)

5. $ab(a_0 + a_1 x + a_2 x^2) = aba_0 + aba_1 x + aba_2 x^2$ = $\Omega(ba_0 + ba_1 x + ba_2 x^2) = \Omega(b(a_0 + a_1 x + a_2 x^2))$ 6. $0 + (0_0 + 0_1 \times + 0_2 \times^2) = (0 + 0_0) + 0_1 \times + 0_2 \times^2 =$ $\Omega_0 + \Omega_1 X + \Omega_2 X^2$ 7. $(\Omega_0 + \Omega_1 X + \Omega_2 X^2) = \Omega_0 + \Omega_1 X + \Omega_2 X^2$ 8. ao + ax + a2x2 + (-a0 -ax - a2x2) = $0 + 0x + 0x^2 = 0$ 9. (a+b)(a0 + Q1 x + Q2 x2) = (a+b) a0 + (a+b) ax + (a+b) ax (here a, b & F). $= aa_0 + aa_{2}x + aa_{2}x^2 + ba_0 + ba_1x + ba_2x^2 =$ $a(a_0 + a_1 x + a_2 x^2) + b(a_0 + a_1 x + a_2 x^2)$ $\Omega(\Omega_0 + \Omega_1 X + \Omega_2 X^2 + b_0 + b_1 X + b_2 X^2) =$ $Q((a_0 + b_0) + (a_1 + b_1) x + (a_2 + b_2) x^2) =$ a(a0+b0)+ a(a,+b,)x+ a(a2+b2)x2 = a (a0 + a, +a, x2) + a (b0 + b, x + b2 x2)

a subspace (or linear subspace or vector subspace) of a vector space of a substance. 1, 0 E II where O is the Elso element 小少 2. UTVE W Whenever I and vare in II. 3. CHE II Whenever NE II and CEH. Any subspace of a vector space is a victor space is let It be a subspace of a vector space V (we have to check to through for II). Condition (2) in last definition ques the first of the 10. condition (3) in last definition gives the the third of the ten holds since the Similarly for the fourth, fifth, seventh

the sixth of the ten also holds in to since it holds in V. By Prop. 5. the additive muches of v in V is (1) v, which is in II it v & II by condition (3) in the last definition. N+ (-1) V = 0 Vand o are subspaces of any vector space V. $\frac{2(x,y,z)}{\text{subspace of } \mathbb{R}^3 \text{ (can be } \mathbb{C}^3; \text{ proof is same).}}$ Check: (1) 3 = [3] is in the set (2) 2x - y + 3z = 0 and 2a - b + 3c = 0 $\Rightarrow 2(x+a) - (y+b) + 3(z+c) =$ So (x,y,z) + (a,b,c) is in the Set (y) (x,y,z) and (a,b,c) are, (3) (x,y,z) in this SUt = 72x - y + 3z = 0 $\Rightarrow 2CX - Cy + 3CZ = 0 = C(X,y,z)$ in SUt, SIDEBAR: $2x - y + 3z^2 = 0$ (-1, 1, 1) 2(-1, 1, 1) = (-2, 2, 2) (-2, 2, 2) does not satisfy condition 80 condition (3) fails

The symmetric metrics in Mm (IR) u U = {A \in Mn (IR): A = A \in is a substace of Mn Check (1). Zero matrix & IT (2) $A,B \in U \Rightarrow A+B$ = $A+B \in U$ (3) A & UT, C & R, (CA)T = CAT = CA, 80 CA & UT. The selfadjoint matrix in Mn(c) is $U = EA = [aij] \in Mn(c) : [aij] = [ajj]$ SIDEBAR: complex conjugate: a + ib = a - ib, a, b \ P look in H2 & : [08] is self adjoint, but i[00] = [00] is not self adjoint. So It is not a subspace, touling (3) Howard, It is a subspace if we consider $M_2(C)$ as a yester space over IR. How (1) and (2) of last definition is still-trule.

to (3), If [aij] = [aji] and if (ER, then [caij] = [caji] = [caji] 80 c[ay] & U. SIDEBAR! ZW = ZW SO if C is Med, (Z = CZ = CZ TREP(IR): p(3) = 0} is a subspace of P(IF For example for (3): p(3) = 0 => (cp)(3) = c(p(3)) = c.0 Ut S = [0,1], then lost time/HW, V = ₹f:[0,1] → IR} is a vector space. Ex 9 from last time $\{f:(0,1)\rightarrow\text{ continuous}\}$ is a subspace of V. Check (1): Zero function is continuous (2): Sum of two continuous functions is (3) of is continuous if CER, f cont (Call). Ut S = (0,1), $\nabla = \frac{2}{5}f:(0,1) \rightarrow \mathbb{R}^{\frac{3}{5}}$, $U = \frac{2}{5}f:(0,1) \rightarrow \mathbb{R}$ differentiable). Just as in last example, It is a subspace of V

A novementy subset IT of a vector space Vis a subspace iff cv+w & IT whenever c & F and v,w & IT Proof: (=>) If I is a subspace of V and if Y and w E II and c E FF, then CV E II by condition (3) in last def, and so cv + w E II by condition (2) Assume the "CV+W" conclition. Take V & II, let W=V, c=-1. Then CV+W=0 & II. SO (1)

IN last definition holds. Taking (=1, V, W & II and many says)

V+W & II which is (2) in last definition with its (2) in last definition.

Taking w=0, c & F arbitrary, v & II.

(mbitrary, quille CV+W=CV & II so

(3) holds.

any collection of subspaces us a collection of subspaces
U = 1. Ui Sma DE W. & i.e. I. OENMi = 11. If v, w & U and ci & IF then y well, v, 80 cv + w & II; & i, and 80 cv + w & II. 80 IV is a subspace by Prop. 7. otations used we counse norminusla, it in a (x, x, ..., x, ...). This would be a list of lingth n. Say x, is the first coordinate until in list, x, is the Order mattern so (3,5) + (5,3). Repetition is allowed: (4,4,4).

a linear combination of a list (V, V2, -, Vn)
by vectors in V is a vector of form

C, V, + C2V2 + in + Cn Vn, where Ck E IF

+ K=1, Z, ..., n The span of this list is the set of all linear combinations, written span (V, v, m, vn). or span (S) if S is the list (V, v, v, v, vn). We say that a list S is a spanning set for V, or spans V, or V is the spans Sig V = span (S). for any list (V, , Vz, , w, Vn) in V, span (V, Yz, , ,) PAGO : 0 = \$ 0. VR & SPAM (V1, m, Vn) A180, GV, + C2V2+mm + CnVn + d1V1+ d2V2+mdn =(citch) V, t(cstd2) V2t m + (cntdn) Vn E span (V1, V2, m, Vn). and k(4), t (2) 2+ m + (n) = (kC)V, + (kG)V, + m + kcn)Vn & span (V, V2, m, Vn) for Salars K, G, C2, m, Cn, d1, d2, m, dn, which ultitud (2) and (3) of the alfuntion of subspace

Subspaces: If II, II, II, IIm are Subspaces of V, we define II, + II, t in + Um to be the set of st With notation as above, II + II t - + 11 m cr also a subspace of V. subspace of (M, + W,) + (M2+ W'2) + 1 + (Um + Wm) E U, + W2+ m + Um whenever Uk, Uk & Uk, k= 1,2,3,... Sumparty (U, + U, + u, + Um) = (CU)+ (Uz) + - + (CUm) & T, + Uz + -+ U let 11, = ?(x,x,0); x E R), 1/2 = \(\frac{1}{2}(\times, -\times, 0) \cdot \times \(\frac{1}{2} = \frac{1}{2}(\times, \times, 0) \cdot \times \(\frac{1}{2} = \frac{1}{2}(\times, \times, \times) \cdot \times \(\frac{1}{2} = \frac{1}{2}(\times, \times, \times, \times) \cdot \times \(\times, \times, \times, \times, \times \tim (x, 0) =(a,a,0) + (b,-b,0) $x = a+b \iff x$ $y = a-b \iff x$ x-y = b

80 any
$$(X, Y, 0) = (X+Y \times + 4 \times 0) + (X+Y - (X-Y) = 0) \in M_1, M_2$$

(Internal) direct silm: If IT, ITz, ..., ITn are subspaces of V, then we say to is the (internal) direct sum of IT, ITz, ... ITm and write V = IT, DIZD ... Itm, it way be written as v= 1,+11z+...+11m in a wrighte (one and only one) way where u, E IT, 11z E ITz, ..., u, E ITm.

Remark: This implies, but is not usually, the

MORIL If II, W one subspaces of V, then V= II + W and II \ W = (0).

Proof: (=>) By the number above, if $V = II \oplus W$, then V = II + W.

(more atau: II + W = V since if $u \in II$, $w \in W$ then $u, w \in V$ so $u + w \in V$. V = II + W : By definition, v = u, + u, with $u, \in II$, $u, \in II$, $u, \in II$, so $v \in II + W$),

Suppose x E II n W. Men &= x+0 = 0+>
T T T T V V V V V
By the uniqueness in definition $x=0$. So $U\cap W \leq (0)$, and $(0) \leq U\cap W$ is obvious.
() Assume V= 1/1 t W and U/W=0. Then any v m V can be written as v= n+w, u ∈ 1/2, w ∈ W. We need to Show if v= u'+w', u' ∈ 1/2, w' ∈ W, then u=u', w=w'
But $V = U + W = U + W \Rightarrow V = U + W - W \Rightarrow V = U + W = V = U + W = V = U = U = U = U = U = U = U = U = U$
So $u-u'=0$ and $w'-w=0$ so $u=u'$ and $w=w'$. $\mathbb{R}^2 - \frac{5}{2}(x,x) : x \in \mathbb{R}^2 \oplus \frac{7}{2}(x,-x) : x \in \mathbb{R}^2$
By Prop II, since the intersection of the two subspecies is origin (see picture) (0) and their sum $\frac{2}{5}(x,x)$: $x \in \mathbb{R}_3^2 + \frac{2}{5}(x-x)$: $x \in \mathbb{R}_3^2$ by slight Change to previous exercise.

R= E(x,0): x ∈ R} (D { (0,x): x ∈ R}
Timelandy $R^3 = \{(x,0,0) : x \in R\} \oplus \{(0,x,0) : x \in R\} \oplus \{(0,0,x) : x \in R\}$. Proof in same as $ex = 1$ but laster with 0 .
 P(R) = IN + W where IT consists of even polynomials (a0 + a2x2+ in a2nx2n) and W is odd polynomials (a1x+ a3x+ in a2nx)
 Proof: By Prop 11, thus ancented to showing (1) any polynomial = (even polynomial) + (orth polynomial)
 (2) the only polynomial that is both even and odd is O.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Differentiate again and set- $x = 0$: $2a_2 + 12a_4x^2 + \dots = 6b_3x + \dots = 7a_2 = 0$
Keep going, all the ak, bk = 0, so polynomial is 0.

CHAPTER 2 FINITE DIMENSIONAL VECTOR timite duriensional has a spanning list (V1, V2, m Vn). If it W infinite almensis , with spanning list he matrix whose controls are except for a 1 in the is entry

Prove that PCR) is infinite dimensional (proof by contradiction). suppose it was f.d with spanning list (p., p2, m, pn). Suppose that the hymost power of x m any of thuse polynomials is x say. Since it is a spanning list, xkt = C.p. + C.p. + ... + C.p. But RHS
has highest power of x k or less.
This is a contradiction so that
proves that PCIR) is infinite dimensional a list (v, vz, m, vn) in V is through independent (l.i) if the only way & Ck vk = 0 is it Ci = Cz = m = Cn = 0. (This is equivalent to (prove as exercise) no one of the Vk's can be written as a linear combination of the OHMM In R3, (T, 7, R) vs Li.

Ex 6,7 are infunite dimensional.

EXII P2(IR) us f.d. with spanning list =

8449 (0,0,0),(0,1,0),(0,0,1),(0,0,0)}. Not lic. X=0

	$ \varphi > \nabla \varphi $
·	Propi
	nonember subset of 3 vin Val.
1	WWW
	(linear dependence lemma):
	If $(v_1, v_2, -v_m)$ is linearly dependent, and if $v_1 \neq 0$, then $\exists j \in \{2, 3,, m\} \neq 0$
· . ·	
	a) Vj E Span (V, , V2, m Vj-1). b) Span (V1, V2, m, Vm) = span (V1, m, V2-1, V4+1, m Vn)
!	D 100%;
•	Since (v,, m, vm) is multiplif dependent, I salars Ck with & Ck Vk = Oand not all the salars Ck are zero.
	This unput that not all of
	C. C. C. AM. FRO WOULDE IT
	they who then $GV_1 = 0 \Rightarrow G = 0$, so all G_k 's one zero, a contraction
	let j= max {i: Ci + O}. Then \(\frac{1}{2}, \CkV_k = 0\). 80 CiVi = -\(\frac{1}{2}, \CkV_k = \right)
	80 Cjvj = - Z, CkVk =>
	$V_{ij} = \frac{1}{k!} \left(\frac{-C_k}{G} \right) V_k \in Span \left(V_1, V_2, \dots, V_{j+1} \right),$
f.	proving a.
14	,

To prove (b) we need to show if U & Span (V, V, V, V) then U & Span (V, m V;-1, V,+1,... N. B. A. (V,) m Vj-1, Vj+1, m Vm). = ECKUR = ECKUK + CJVj + $C_{R}V_{R} = \sum_{k=1}^{q-1} C_{k}V_{R} - \sum_{k=1}^{q} C_{k}V_{R} + \sum_{k=1}^{q} C_{k}V_{R}$ et 8 be a spanning list for be a l.i list. Then length of b < length of Proof's Suppose $S = (w_1, w_2, \dots, w_n)$, $B = (u_1, \dots, u_m)$, we need to show $m \leq n$. Mutistep process. At each step, remove one wand add one is. (U, W, m, Wn) is hnearly dependent, So by lemma 16) 7 j 7 it we remove Wj from (u,, w,, m wn) the remaining list, (all it B, still spans V.

Step k:

the list B at the end of step k-1 spans V so if we adjoin lik to it (after u, uz, m, lk-1 in the list) it is unearly dependent.

By lemma 1(a), one of these vectors in this new list is a limear combination of the vectors appearing before it in the list. This vector cannot be a u since B is L.i. so it is a w. Remove this w then by lemma 1(b), the remaining list, which we still call B, spans V(as in step 1). Of the me steps, we have added all the process stops, since at each step we removed one w and added one u, there must have been at last m wish so a so a some

Prop2

Every subspace of a f.d. v.s. Vis f.d.

Proof: let V be f.d., It a subspace. We use a multistop argument.

If M=(0), then proposition is true. If M+(0), choose woners vector V, E 11. If II = span (V, V, V, Vj-1) then we've done. If not choose a vector Vj & II which is not in last span. Keep down these steps, and notice that {(1, 1, 2, ..., 1, 3)} is I.i. by limma I (a). be cause if (v, , , v) linearly dependent, lumma I (a) says one of the v's is in span of privious v's which is unpossible by the way we constructed ency If S is a spanning list for V of length them the process above must stop in r steps or fewer, since by Jhm 1, vi) \le r. 80 some step MIN. above is the last, which means 1 = span (V1, mVx), 80 11 18 for Viv a spanning

:	$\begin{cases} \{\xi_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\} \text{ is a basis for } M_{m \times n}. \\ \{bi. \text{ in } M_{2}: \alpha \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{cases}$
·	$\begin{bmatrix} a b \\ (d \end{bmatrix} = 7 a = b = (= d = 0.)$
	$(1, \times, \times^2)$ is a basis for $P_2(\mathbb{R})$.
	Ext class we should that this is Lie and spanning.
o and the second se	Exag(1,1), (1,-1) is a basis for R2 (typical 2331, test quistion).
	Proposition of the written in one and unity one way (uniquely) as
	V=£, CKVK With CKE FT.
	Proof: (=) Suppose (vi, m Vn) is a basis. There it is spanning, so $v = \sum_{k=1}^{\infty} C_k V_k$, $C_k \in H$.
	Suppose also V= ZidkVk, dk EFT.
	Jhun subtracting & CxVx - & dxVx = 0 =
	E. [G-dx) Vx. So G-dx = 0 + k,
	Smu (Vx) lii) Su G=d,, G=d2, m Cn=dn.
	The second secon

The condition on the right of the "iff" centainly implies (v.,..., v.) is spanning. f & CkVk = 0, then since 0 = E, OVk by the "only one" above, so G= 0 x k So (v,, ,, v,) is linearly independent. 2man Every spanning ust to Vicontous a basis Proof: let(V), N, Vn) be a spanning list, call it B.
Multistep process. If V=0, delete it from B, otherwise have B unchanged. KAN A Stop j: If y e span (v, m, y) delete it from B, otherwise lawe B unchanged Stop after 11 stops, after which B Still spans Verscause it VE V is written as E. Crvr, original Vx AMMINI. Vy say was through away and so we do not med if to span V.

Now B is also I.i. by liming I (since if it were Ilwanly dependent. Ithen by liming I (a), one of the members of B. Vr sait is a limear combination of previous Ministry Vr., which contradicts the step construction. So I is a passe. Do the stept to B=((1,2), (3,6), (4,7), (5,9)) in IR2. Solu: Stop 1: -> B=((1,2),(3,6),(4,7),(5,9)). Step 2: $\rightarrow B = ((1,2), -, (4,4), (5,9)).$ Stop 3: $\rightarrow B = ((1,2), -, (4,7), (5,9)). (1,2)+(1,7)$ Step 4: -> B=((1,2), -, (4,7), -), a basis. Every/f.d. v.s. has a basis Proof: V has a spanning list, which contains a basis, by Jhin 2.

Step 4:>B = ((1,2), -, (4,7), -)) This is a leasis. nonlacial Corollary: Every I f. d. V.s. has a clasis.

proof: I has a spanning list, which contains a clasic by Theorem 2. Theorem 3: Every L.I. set in a.f.d. V.s. V is a subset of a hasis for B. proof: Suppose (Vii....iVm) is L.I. in f.d. V.s. V. Suppose (w₁,..., w_n) is a spanning list step 1: If we span (Virami, Vm) let is B= (Vi mi, Vm) If with the let is B = (Virginia Vini, Wi) step 2: If wi & span (B) leave B unchanged, otherwise add Wi to B to end of list. Ofter ea. step, B is still L.I. (since, if it was L.D. Allen lux lemma 1, one member in B is a linear combination of earlier terms in the list B, which is impossible by construction) Ofter a steps we've added all the w's . That is with span (B) tj. So. Span (B) Zu span (W, , m, wn) = V, so B spans N. Thus B is a leasism Friday Dune 6 Proposition 4: If U is a sullspace of f.d. V.S. V, then I esulispace W of V with M = V. proof: Let (u, uz, ..., un) le a lasis for U. By Thm, 3, J. Un+1, Who ,, um & V. is.t. (u, uz, uz, uz, un, un, un) is a basis for V. Let W=span (un+1, ..., um); any NEV can the written V = & CKUK + & CKUK & U+W

By prop. 11; we only need to show UNW = (0),

lust if v∈ U∩W then v = E CKUK since its in its and v = E CKUK since its in its and v = E CKUK since its in its

so V = U+W.

0 = 2 CKUK - 2 CKUK 1 80 CK = 0 VK 80 V = 0.

Theorem 4: any two hases of a f.d. V.S. V have the same oracl:

Let B_1 , B_2 be two hases, then B_1 is spanning and B_2 is spanning. B_2 is $\mathcal{L}.I.$ so length $(B_1) \geq \text{length } (B_2)$ by Theorem 1. Similarly, B_2 is spanning, B_1 is $\lambda.I.$ so the length $(B_2) \geq \text{length } (B_1)$.

Definition: Dimension dim(V) of a find v.s. V is the length of any hasis

examples: $\dim(F^n) = n$ $\dim(M_{m,n}) = \min$ $\dim(P_n(R)) = 3$ $\dim(P_n(R)) = n+1$

Proposition 5: Us a subspace of f.d. V, then dim (U) = dim: (V)

proof: Redo the 1st line or so of Prop. 4, in the notation of that iproof dim $(U) = n \le m = dim(V)$.

Proposition 10: 1/2 dim(V) = n, then any speaning dist of length n is a leasis.

proof: If S is a spanning list of length n, then by Thm. 2.

I subset: $S \subseteq S$ which is a basis: Since dim(V) = n length (S') = n. So S = S' and this is a basis.

Proposition 7: If dim (V) = n, then any L.I. list of length n is a hasis.

proof: If Si is a L.I. list of length n, then by Thm. 3, I have

 $S' \ge S$. Since dim(V) = n, length (S') = n, so S' = S is a hasis.

Theorem 5: If U, and U2 are sulespaces of f.d. V then

dim (U,+U2) = dim U, + dim U2 - dim (U, 1 U2)

proof: Let (u, u2, ..., um) he a hasis for U, 1 U2. By Thm. 3

\(\text{U1, V2, ..., Vr} \) s.t. (u, ..., um, V, ..., Vr) is a hasis

for U, similarly by Thm 3, \(\text{U1, w2, ..., w5} \) s.t.

(u1, ..., um, w1, ..., w8) is a hasis for U2...

Claim 1: (u1, ..., um, V, ..., Vr, w1, ..., w8) spans U, + U2. To see

this note a typical element in U, + U2 is x, + x2 where

\(\text{X}_1 \in \text{U1, } \text{X}_2 \in \text{U}_4 \text{U2, and } \text{X}_1 = \text{E} \cdots \choose \choos

Claim 2: $(u_1, w_1, u_m, v_1, \dots, v_r, w_1, \dots, w_s)$ is $\lambda.T.$ To see this, suppose $\underbrace{\exists}_{k=1} c_k u_k + \underbrace{\exists}_{k=1} d_k v_k + \underbrace{\exists}_{k=1} b_k w_k = 0$. Then

& $b_{R} W_{R} = -\frac{\xi_{CR} u_{R} - \xi_{cd} v_{R} + U_{i}}{k_{i}}$ and also is in U_{2} , some $u_{R} \in U_{2}$, So $\xi_{R} b_{R} w_{R} \in U_{i} \cap U_{2}$, so we can write

VK since the w's and w's form a hasis for U_2 . So $E C_K U_K + E d_K V_K = 0$, so $C_K = 0 = d_K$ VK since the w's and w's form a hasis for U_1 . This proves Claim 2, By Claim I + Claim 2, $(u_1, ..., u_m, V_1, ..., V_r, w_1, ..., w_s)$ is a hasis for $U_1 + U_2$. So dim $(U_1 + U_2) = m + r + s = (m+r) + (m+s) - m = dim U_1 + dim U_2 - dim (U_1 \cap U_2)$

Proposition 8: If $U_1, U_2, ..., U_m$ are subspaces of f.d. V within $V = U_1 \oplus U_2 \oplus ... \oplus U_m$

if and only if I dina V = E dim (Uk)

proof: (\Longrightarrow) Homework Hint: Starts out the same way as below. (\Leftarrow) Assume m=2, the general case is more complicated. Let B_k be a leasts for U_k , for $k=1,\ldots,n$, and let $B=\bigcup_{k=1}^{m}B_k$. This B spans V (since any $v\in V$ is a sum.

of $u_{\kappa} \in U_{\kappa}$, and each u_{κ} is a linear combination of elements in B_{κ} and thence in B so B is an element of B) also B has length $= \frac{1}{12} \cdot \frac{1}{12} \cdot$

intependent. We need to slow that if $\sum_{k=1}^{m} u_k = \sum_{k=1}^{m} u_k$ with u_k $u_k \in U_k$ $v_k = 1 - n$ then $u_k = u_k$ $v_k = 1 - n$. To prove this let $v_k = 1 - n$ which $v_k = 1 - n$ then $v_k = 1 - n$. To prove this let $v_k = 1 - n$ then $v_k = 1 - n$. To prove this let $v_k = 1 - n$ which $v_k = 1 - n$ which $v_k = 1 - n$ and $v_k = 1 - n$ and $v_k = 1 - n$ which $v_k = 1 - n$ with $v_k = 1 - n$ which $v_k =$

Ch. 3

Def. A: In this chapter V, W are vector spaces. A function T: V -> W is linear if

(1) $T(v_1+v_2) = T(v_1)+T(v_2) \quad \forall v_1, v_2 \in V$ (2) $T(cv) = cT(v) \quad \forall v \in V \quad c \in F$

Such T are also called linear transformations, linear operators, or linear maps. Note (1) \Longrightarrow T(0) = 0 [T(0) = T(0) = T(0) + T(0)] \Longrightarrow T(0) = 0]

Write L(V, W) for set of all linear maps from V to W" L(V) = L(V, V)

Example: The zero map $V \rightarrow W$ maps everything in V to W. We write this map as $O \in \mathcal{L}(V,W)$