CONCOURS 2000

DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES

Epreuve de Mathématiques (toutes filières)

Instructions générales:

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

Analyse

Partie I: Etude de la fonction réciproque de la fonction tanh.

On notera respectivement cosh, sinh et tanh les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique définies par :

$$\forall x \in \mathbb{R}$$
, $\cosh(x) = \frac{e^x + e^{-x}}{2}$, $\sinh(x) = \frac{e^x - e^{-x}}{2}$ et $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- 1. Montrer, en étudiant ses variations, que tanh est une bijection de $\mathbb R$ sur un intervalle I de $\mathbb R$ à préciser.
 - On note artanh " argument tangente hyperbolique " sa réciproque.
- 2. Exprimer la dérivée de tanh en fonction de tanh.
- 3. Démontrer que artanh est impaire.
- 4. Démontrer que artanh est dérivable sur l et calculer sa dérivée.
- 5. Exprimer artanh à l'aide de fonctions usuelles.
- 6. Déterminer un développement limité à l'ordre 5 de artanh en 0.

Partie II: Etude d'une équation différentielle

Soit l'équation différentielle (E) : $xy' + 3y = \frac{1}{1 - x^2}$.

7. Résoudre (E) sur l'intervalle J = [0, 1[.

Partie III: Etude d'une équation fonctionnelle

Le but de cette partie est de résoudre le problème suivant : déterminer les fonctions f définies sur \mathbb{R} , à valeurs réelles et dérivables en 0 qui vérifient :

$$\forall x \in \mathbb{R}, \quad f(2x) = \frac{2f(x)}{1 + (f(x))^2}$$

- 8. Déterminer les fonctions constantes solutions du problème posé.
- 9. Déterminer les valeurs possibles de f(0) si f est solution.
- 10. Montrer que, si f est solution, on a $\forall x \in \mathbb{R}$, $-1 \leqslant f(x) \leqslant 1$. (on pourra exprimer f(x) en fonction de $f\left(\frac{x}{2}\right)$.)

- 11. Montrer que si f est solution, -f est aussi solution.
- 12. Montrer que tanh est solution du problème posé.

Dans les questions 13. à 17., on suppose que f est une solution du problème posé, que f(0) = 1 et que f n'est pas constante.

On considère $x_0 \in \mathbb{R}$, tel que $f(x_0) \neq f(0)$ et l'on définit la suite (u_n) par : $\forall n \in \mathbb{N}$, $u_n = f\left(\frac{x_0}{2^n}\right)$.

- 13. Montrer que la suite (u_n) est convergente et préciser sa limite.
- 14. Etablir une relation entre u_n et u_{n+1} ; en déduire que la suite (u_n) garde un signe constant, puis étudier sa monotonie suivant le signe de u_0 .
- 15. En utilisant les résultats des questions 13. et 14., aboutir à une contradiction.
- 16. Que peut-on dire si l'hypothèse "f(0) = 1" est remplacée par l'hypothèse "f(0) = -1"?
- 17. Conclusion?

Dans les questions 18. à 22., on suppose que f est une solution du problème posé et que f(0) = 0.

18. En raisonnant par l'absurde et en considérant une suite du même type que celle des questions 13. à 17., montrer que :

$$\forall x \in \mathbb{R}$$
, $f(x) \neq -1$ et $f(x) \neq -1$.

On définit alors la fonction g par : $\forall x \in \mathbb{R}$, $g(x) = \operatorname{artanh}(f(x))$.

- 19. Montrer que : $\forall x \in \mathbb{R}$, g(2x) = 2g(x).
- 20. Montrer que g est dérivable en zéro.
- 21. Soit $x \in \mathbb{R}^{\times}$; on définit la suite (v_n) par : $\forall n \in \mathbb{N}$, $v_n = \frac{f\left(\frac{x}{2^n}\right)}{\frac{x}{2n}}$.

Montrer que (v_n) est convergente et déterminer sa limite.

- 22. En déduire que g est linéaire.
- 23. Déterminer toutes les fonctions solutions du problème posé.

Algèbre

Les parties I et II sont, dans une large mesure, indépendantes.

Soit *n* un entier naturel non nul.

Partie I

On pose : $A = (X + 1)^{2n} - 1$, polynôme de $\mathbb{R}[X]$.

- 1. Montrer que l'on peut écrire A = XB où B est un polynôme de $\mathbb{R}[X]$ dont on précisera le degré, le coefficient dominant et le terme constant noté b_0 .
- 2. Déterminer les racines de A dans \mathbb{C} . On posera $z_0 = 0$ et les autres racines $z_1, z_2, ..., z_{2n-1}$ seront mises sous forme trigonométrique.

On pose
$$P_n = \prod_{k=1}^{n-1} \sin \frac{k\pi}{2n}$$
.

- 3. Montrer, à l'aide d'un changement d'indice, que $P_n = \prod_{k=n+1}^{2n-1} \sin \frac{k\pi}{2n}$. En déduire que, si $Q_n = \prod_{k=1}^{2n-1} \sin \frac{k\pi}{2n}$, alors $P_n = \sqrt{Q_n}$.
- 4. Calculer de deux façons : $\prod_{k=1}^{2n-1} z_k$. Puis, en déduire Q_n et enfin, P_n .
- 5. On pose $F = \frac{1}{A}$. Déterminer la décomposition de F en éléments simples sur \mathbb{C} .

Partie II:

On travaille dans un \mathbb{C} -espace vectoriel E supposé non réduit au vecteur nul. $\mathcal{L}(E)$ désigne l'ensemble des endomorphismes de E, I_E est l'application identité de E et θ désigne l'application nulle. Par convention : $\forall f \in \mathcal{L}(E)$, $f^0 = I_E$.

On étudie sur quelques cas particuliers, l'équation : $(f + I_E)^{2n} - I_E = \theta$ où $f \in \mathcal{L}(E)$ est l'inconnue.

- 6. Déterminer les homothéties vectorielles qui sont solutions de l'équation proposée.
- 7. En développant $(1+1)^{2n}$ et $(1-1)^{2n}$ déterminer les sommes $S = \sum_{k=0}^{n} {2n \choose 2k}$ et $S' = \sum_{k=0}^{n-1} {2n \choose 2k+1}$ (la notation ${n \choose k}$ désigne le coefficient binomial : $\frac{n!}{k!(n-k)!}$.)
- 8. Si s est une symétrie de E, exprimer $(s + I_E)^{2n} I_E$ en fonction de s et I_E . En déduire les symétries de E solutions de l'équation proposée.