UNBOUNDED LP

For a <u>max problem</u>, an unbounded LP occurs if it is possible to find points in the feasible region with arbitrarily large z values corresponding to a decision maker earning arbitrarily large revenues or profits.

This would indicate that an unbounded optimal solution should not occur in a correctly formulated LP.

For a min problem an LP is unbounded if there are points in a feasible region with arbitrarily small z values.

Example (UNBOUNDED LP)

Max
$$Z = x_1 + 2 x_2$$

s.t
 $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 1$

Standard Form

$$Z - x_1 - 2 x_2 = 0$$

$$x_1 - x_2 + x_3 = 4$$

- $x_1 + x_2 + x_4 = 1$

Initial Simplex Tableau

BASIS	\mathbf{x}_1	\mathbf{X}_2	X ₃	\mathbf{x}_4	RHS	RATIO
X ₃	1	-1	1	0	4	
X 4	-1	1<<	0	1	1	1<
Z	-1	-2<	0	0	0	

Entering Variable: x_2

Leaving Variable: x_4

The First Improved Simplex Tableau

BASIS	X ₁	\mathbf{X}_2	X ₃	X ₄	RHS	RATIO
X ₃	0	0	1	1	5	NONE
\mathbf{X}_2	-1	1	0	1	1	
Z	-3	0	0	2	2	

Unbounded (Pivot element not available)

UNBOUNDED SIMPLEX TABLEAU

BASIS	X ₁	\mathbf{x}_2	X 3	X ₄	RHS	RATIO
X ₃	1	-1	1	0	4	
X 4	-1	1<<	0	1	1	1<
Z	-1	-2<	0	0	0	
X ₃	0	0	1	1	5	NONE
\mathbf{x}_2	-1	1	0	1	1	
Z	-3	0	0	2	2	

An unbounded LP occurs when a variable with a negative coefficient in row Z has a non-positive coefficient in each constraint (row).

Example (UNBOUNDED LP)

Max Z =
$$36 x_1 + 30 x_2 - 3 x_3 - 4 x_4$$

s.t

$$x_1 + x_2 - x_3 \le 5$$

$$6 x_1 + 5 x_2 - x_4 \le 10$$

$$x_i \ge 0$$

$$Z - 36 x_1 - 30 x_2 + 3 x_3 + 4 x_4 = 0$$

$$x_1 + x_2 - x_3 + x_5 = 5$$

$$6 x_1 + 5 x_2 - x_4 + x_6 = 10$$

$$BV=(x_5,x_6)=5,10$$
 $NBV=(x_1,x_2,x_3,x_4)=0$

Initial Tableau

BASIS	\mathbf{x}_1	\mathbf{X}_2	X ₃	X ₄	X ₅	X ₆	RHS	RATIO
X 5	1	1	-1	0	1	0	5	5.0
X ₆	6<<	5	0	-1	0	1	10	1.666<
Z	-36<	-30	3	4	0	0	0	

Entering Variable : x_1 Leaving Variable : x_6

The first tableau

BASIS	X ₁	\mathbf{X}_2	X ₃	X 4	X 5	X ₆	RHS	RATIO
X ₅	0	1/6	-1	1/6	1	-1/6	10/3	20.0<<
\mathbf{x}_1	1	5/6	0	-1/6	0	1/6	5/3	
Z	0	0	3	-2<	0	6	60	

Entering Variable : x₄ Leaving Variable : x₅

The second tableau

BASIS	X ₁	\mathbf{X}_2	X ₃	\mathbf{X}_4	X 5	X ₆	RHS	RATIO
$\mathbf{X_4}$	0	1	-6	1	6	-1	20	NONE
$\mathbf{x_1}$	1	1	-1	0	1	0	20	
Z	0	2	-9	0	12	4	100	

UNBOUNDED

UNBOUNDED SIMPLEX TABLEAU

BASIS	X ₁	X ₂	X ₃	X 4	X 5	X ₆	RHS	RATIO
X 5	1	1	-1	0	1	0	5	5.0
X ₆	6<<	5	0	-1	0	1	10	1.666<
Z	-36<	-30<	3	4	0	0	0	
X 5	0	1/6	-1	1/6	1	-1/6	10/3	20.0<
$\mathbf{x_1}$	1	5/6	0	-1/6	0	1/6	5/3	
Z	0	0	3	-2	0	6	60	
X ₄	0	1	-6	1	6	-1	20	NONE
$\mathbf{x_1}$	1	1	-1	0	1	0	20	
\mathbf{Z}	0	2	-9	0	12	4	100	