The untyped lambda calculus

CIS 6700, Spring 2023

June 28, 2023

1 Untyped lambda calculus

This document describes the untyped lambda-calculus, with the following grammar. References are to definitions in Barendregt, "The Lambda Calculus: Its Syntax and Semantics".

In β -reduction, the argument of an application is substituted for the bound variable in an abstraction. We use the $t[x \rightsquigarrow u]$ notation for substituting the term u for the variable x in the term t.

$$\begin{array}{c|c} \hline t \ \beta\text{-reduces to} \ u \\ \hline \\ \hline \\ \hline \\ (\lambda x.t) \ u \ \beta\text{-reduces to} \ t[x \leadsto u] \\ \end{array}$$

We can define a deterministic, small-step evaluation relation by reducing in the heads of applications. This is a *call-by-name* semantics and performs head-reduction.

We can also define a nondeterministic single-step full-reduction by performing β -reduction in any subterm. Iterating this reduction will convert a term into its β -normal form.

We can define when two terms are equivalent up to β .

Finally, the Church-Rosser Theorem relies on the definition of parallel reduction. This is a version of reduction that is confluent.

$$\begin{array}{c|c} \hline t \Longrightarrow_{\beta} u \\ \hline \\ P\text{-BETA} \\ t \Longrightarrow_{\beta} \lambda x.t' \\ \underline{u \Longrightarrow_{\beta} v \quad \text{value } v} \\ t u \Longrightarrow_{\beta} t'[x \leadsto v] \end{array} \quad \begin{array}{c} P\text{-ABS} \\ \hline \\ x \Longrightarrow_{\beta} x \end{array} \quad \begin{array}{c} P\text{-APP} \\ \hline \\ \lambda x.t \Longrightarrow_{\beta} \lambda x.t' \end{array} \quad \begin{array}{c} P\text{-APP} \\ \hline \\ t \Longrightarrow_{\beta} t' \\ \hline \\ \lambda x.t \Longrightarrow_{\beta} \lambda x.t' \end{array} \quad \begin{array}{c} P\text{-APP} \\ \hline \\ t \Longrightarrow_{\beta} t' \\ \hline \\ t u \Longrightarrow_{\beta} t' u' \end{array}$$

2 Relation operations

Many of the operations above can be generated by applying the following closure operations to the β reduction relation. These operations are parameterized by an arbitrary relation R.

Note that $t \to_R u$ with R equal to β is the same relation as $t \longrightarrow_{\beta} u$. And, the compatible, reflexive, symmetric and transitive closure of β is the same relation as $t \equiv_{\beta} u$.

3 Eta-reduction

By changing the definition of the underlying primitive reduction, we can also reason about η -reduction and $\beta\eta$ -equivalence. Note that the rule for η -reduction has been stated in a way that generates the appropriate output for the locally-nameless representation in Coq. In this output, the fact that $x \notin \mathsf{fv}t$ is implicit and does not need to be added as a precondition to the rule.

