

UNIT V

CORE OF THE EMBEDDED SYSTEM

UNIT OUTCOME

At the end of this unit, student will be able to

Understand about the following concepts:

Microprocessors

Microcontrollers

GPP Vs ASIC

Basics of ARM PROCESSOR

INTRODUCTION TO EMBEDDED SYSTEMS

- •An Embedded system is an electronic /elctromechanical system designed to perform a specific function and is a combination of both Hardware and Software.
- •It is unique and the hardware and firmware are highly specialized to the application domain.
- •It may or maynot contain an operating system for functioning.

INTRODUCTION TO EMBEDDED SYSTEMS

Purpose of Embedded Systems

- Data Collection/ Storage/Representation
- Data Communication
- Data processing, Monitoring
- Control Application specific user interface.

Applications of Embedded Systems

- Consumer electronics
- Household appliances
- Home automation
- Banking and retail
- Measurement and Instrumentation
- Health care
- Automotive industry.

Characteristics of an Embedded Systems

- A system which is a combination of special purpose hardware and embedded OS for executing a specific set of applications.
- May or maynot contain an operating system for functioning.
- The firmware of an ES is pre-programmed and it is non alterable by the end user.
- Application specific requirements are the key deciding factors.
- Highly tailored to take advantage of the power saving modes supported by the hardware and the OS.
- Execution behavior is deterministic for certain types of ES like "Hard Real Time Systems".
- The response time requirement is crtical for some critical systems.

Classification of Embedded System

Multiple Classifications based on different criteria:

- Based on Generation
 - First Generation
 - Second Generation
 - Third Generation
 - Fourth Generation
- Based on complexity and Performance
 - Small Scale Embedded systems
 - Medium Scale Embedded systems
 - Large Scale Embedded systems
- Based on Deterministic Behaviour
 - Deterministic/Non Deterministic
 - Real time ES: Hard/ Soft

Core of the Embedded Systems

- Embedded Systems are built around a central Core
- General Purpose and Domain Specific Processors
 - Microprocessors
 - Microcontrollers
 - Digital Signal processors
- Application Specific Integrated Circuits (ASIC's)
- Programmable Logic Devices (PLD's
- Commercial Off the Shelf Components (COTS)

General Purpose and Domain Specific Processors contd....

- Endianess Operation
- Endianness specifies the order in which the data is stored in the memory by processor operations in a multi byte system.
 - Little Endian Operation
 - Big Endian Operation
- Load and Store Operation
- The memory access related operations are performed by the special instructions load and store.

UNIVERSITY essor General Purpose and Domain Specific

- Silicon chip representing a CPUpperforming aritmetic and logical operations according to a pre-defined set of instructions.
- CPU contains Arithmetic and Logic Unit(ALU), control units and working registers.
- It is independent unit requires different combination of hardwares for proper functiong.
- First microprocessor unit intel 4004 a 4 bit processor was introduced by intel in November 1971.
- Technical advances in the field of semiconductor industry leads to the improved performance of microprocessors in terms of clock speed, size, cost performance etc.

Architecture:

Harvard Architecture-Separate buses for program memory and data memory.

Von Neumann Architecture-Share a single system bus or program memory and data memory.

• Instruction Sets:

RISC (Reduced Instruction Set Computing) &

CISC (Complex Instruction Set Computing)

Microcontrollers

- Super set of Microprocessors
- Highly integrated chip consist of CPU, Scratch pad RAM, special and general purpose register arrays, on chip ROM/FLASH memory for program storage, timer and interrupt controller units and dedicated I/O ports.
- Independent of working, cheap, cost effective and readily available in market.
- Texas Instruments TMS 1000 is the world's first microcontroller.
- The most fruitful design of microcontroller is the 8 bit microcontroller 8051 family and its derivatives.
- Instruction set architecture of a microcontroller can be either RISC or CISC.

General Purpose and Domain Specific Processors contd...

- Endianess Operation
- Endianness specifies the order in which the data is stored in the memory by processor operations in a multi byte system.
 - Little Endian Operation
 - Big Endian Operation
- Load and Store Operation
- The memory access related operations are performed by the special instructions load and store.

Microprocessor Vs Microcontroller

Microprocessor

 A silicon chip representing CPU, performing ALU operations according to pre defined set of instructions.

- It is a dependent unit.
- General purpose design and operation.
- Doesn't contain a built in I/O port.
- Targeted for high end market where performance is important.
- Limited power saving options.

Microcontroller

- A highly integrated chip that contains Scratch pad RAM, special and general purpose register arrays, on chip ROM/FLASH memory for program storage, timer and interrupt controller units and dedicated I/O ports.
- It is independent unit.
- Application oriented or domain specific.
- Contains multiple built in I/O ports.
- Targeted for Embedded market.
- Includes lot of power saving features.

Digital Signal Processor

- Powerful special purpose 8/16/32 bit microprocessor designed specifically to meet the computational demands and power constraints of different application's.
- 2 to 3 times faster than GPP in signal processing application's.
- It implements algorithms in hardware which speeds up the execution.
- A typical DSP incorporates the following units:
 - Program Memory: storing program required by DSP.
 - Data Memory: Storing temporary variables and data /signal to be processed.
 - Computational Engine: Performs the signal processing accordance with the stored program memory.
 - I/O unit: Acts as an interface between the outside world and DSP(capturing signals and delivering processed signals).
- Ex: Audio video signal processing, telecommunication and Multimedia Application, real time calculations like FFT, DFT, SOP etc.,

Application Specific Instruction Set Processor

GPP

- Designed for general Computational Tasks.
 - Ex: laptop, Desktop
- It contains ALU and Control Unit.
- High volume of production / low cost per unit.

ASIP

- The processors contains architecture and instruction set optimised to specific domain/application requirements.
 - Ex: SoC, DSP's used in automotive, Telecom, media applications etc.,
- It incorporates a processor and on chip peripherals demanded by the application requirement, program and data memory.
- It fills the architectural spectrum between GPP and ASIC's.

Application Specific Integrated Circuits (ASIC's)

- It is a microchip deigned to perform a specific or unique application.
- Used as a replacement for conventional general purpose logic chips.
- It integrates several functions into a single chip and consumes very small area in the total system.
- It can be pre-fabricated for a special application or it can be custom fabricated by using the components from a re-usable building block library of components
- Non Recurring Engineering Charge (NRE): It is a non refundable initial investment for the fabrication of ASIC's and it is a one time investment.
- Application Specific Standard Product (ASSP): If the Non Recurring Engineering Charges is borne by a third party and the Application Specific Integrated Circuit (ASIC) is made openly available in the market, the ASIC is reffered as ASSP.

Ex: ADE7760 Energy Metre ASIC developed by Analog Devices for Energy Metreing applications.

Programmable Logic Devices (PLD's)

• PLD's can be re- configured to perform any number of functions at any time.

Features of PLD's

- It has a wide range of logic capacity, features, speed and voltage characteristics
- The designers uses inexpensive software tools to quickly develop, simulate and test their designs.
- There are no NRE cost and the final design is completed fastly.
- PLD's are based on re-writable memory technology.

Two major types of PLD's are

- **CPLD's**: offer smaller amount of logic up to about 10,000 gates, offer very predictable timing characteristics suitable for critical control applications. Ex: Xilinx Coolrunner.
- **FPGA's**: offer highest amount of logic density, the most features and the highest performance. Ex: Xilinx VirtexTM.

Commercial Off -the -Shelf Components (COTS)

- COTS provides easy integartion and interoperability with existing system components.
- It can be developed around GPP, Domain specific Processor, ASIC or PLDs

Advantage:

• Readily available in market, cheap and a developer can cut down his/her development time to a great extent.

Disadvantage:

• Due to rapid change in technology, if the COTS component is withdrawn by the manufacturer/ or discontinue the production, will adversely affect a commercial manufacturer of ES which make use of the specific COTS product.

Memory

- Memory is required for holding data temporarily during certain operations.
- On chip memory: built in memory
- Off chip memory: external memory connected with the controller/processor for storing controller algorithm.
- Program Storage Memory
- Also called as code storage memory of an ES stores the program instructions.
- It retains its contents storage memory)

PES UNIVERSITY Program Storage Memory (ROM)-**Classification**

Depends on fabrication, erasing and programming technique, ROM is divided as follows:

A) Masked ROM (MROM)

- One time Programmable device
- Uses hardwired technology to store the data
- This is low cost for high volume of production.
- It is a good candidate for storing the embedded firmware for low cost embedded device.
- Limitation is that its inability to modify the device firmware against firmware upgrades.

B) Programmable Read Only memory (PROM/OTP)

- The end user is responsible for programming this memory
- This memory consists of polysilicon or nichrome wires functionally viewed as fuses
- Fuses which are not blowned /burned represents logic "1" whereas fuses which are blowned/burned represents logic "0"
- OTP is used in commercial production of ES

Program Storage Memory (ROM)-Classification (contd...)

C) Erasable Programmable Read Only Memory (EPROM)

- EPROM gives flexibility to re-program the same chip.
- It stores the bit information by charging the floating gate of an FET to a high voltage.
- It contains a quartz crystal window, which is exposed to UV rays rays for 20 to 30 minutes, the entire memory will be erased.
- Limitation is Erasing the memory using UV rays is tedious and time consuming process.

D) Electrically Erasable Programmable Read Only Memory (EEPROM)

- The information contained in this memory can be erased and re-programmed in-circuit using electrical signals at register/Byte level.
- It provides greater flexibility for system design.
- Limitation is its capacity (only a few kilobytes).

Program Storage Memory (ROM)-Classification (contd...)

E) FLASH

- Latest ROM technology which combines the re-progarmmability of EEPROM and high capacity of standard ROMs.
- It is organized as sectors /pages.
- It stores the information in array of floating gate of an MOSFET.
- Each sector is erased before re-programming and it is done at sector level /page level without affecting sector/page.
- The typical erasable capacity is 1000cycles.

Ex: W27C512 from WINDBOND (64 KB FLASH memory)

F) NVRAM (Non volatile RAM)

- It is a RAM with battery backup.
- The lifespan of NVRAM is around 10 years

Ex: DS1644 from Maxim/Dallas (32 KB NVRAM)

Read-Write Memory/Random Access Memory (RAM)

- RAM is the data or working memory of controller/ processor wher it can read from it and write to it.
- It is volatile in nature
- It is a direct access memory
- Categories:
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
 - Non-volatile RAM (NVRAM)

Read-Write Memory/Random Access Memory (RAM) - Classification

• A) Static RAM (SRAM)

- It is the fastest form of RAM available (Resistive networking and Switching capabilities).
- It is made up of flip-flops and stores data in the form of voltage.
- It is realised using six transitors (MOSFET) out of which four is for building the latch part of memory cell and two for controlling the access.
- The major limitation of SRAM are low capacity and high cost.

• B) Dynamic RAM

It stores the data in the form of charge

Advantage: high density and low cost

Disadvantage: Since it is stored as charge, it will get leaked off with time, so refreshing is needed.

• Special circuits called DRAM controllers are used for refreshing the operation.

Difference between SRAM and DRAM

SRAM

- Made up of 6 CMOS Transistors (MOSFET)
- Doesn't require refreshing
- Low capacity
- Fast in operation. Typical access time is 10ns

DRAM

- Made up of a MOSFET and a capacitor
- Require refreshing
- High Capacity
- Less expensive
- Slow in operation. Typical access time is 60ns
- Write Operation is faster tahn read operation

Read- Write Memory/ Random Access Memory (RAM)- Classification contd...

C) NVRAM (Non volatile RAM)

- It is a RAM with battery backup.
- It contains static RAM based memory
- The lifespan of NVRAM is around 10 years
- Ex: DS1744 from Maxim/Dallas (32 KB NVRAM)

D) Memory according to the Type of Interface

- Parallel Interface: Parallel data lines for an 8 bit processor/controller will be connected to the memory (memory size is in terms of kilobytes).
- Serial Interface: I2C: 2 line serial interface (used for data storage memory like EEPROM, memory size is in terms of kilobits).
- Ex: Atmel Corporations AT24C512 (512 K bits/ 2 wire interface).
- Serial Peripheral Interface (SPI): 2+n line interface where n stands for the total number of SPI bus devices in the system.
- Single wire interconnection.

Sensors and Actuators

Sensors

• A sensor is a transducer device that converts energy from one form to another for any measurement or control purpose.

Actuators

• An actuator is a form of transducer device (mechanical or electrical) which converts signals to corresponding physical motion. It is an output device.

I/O Subsystem

- The I/O subsystem of the embedded system facilitates the interaction of the embedded system with the external world.
 - Light Emitting Diode (LED)
 - 7 Segment LED display
 - Optocoupler
 - Stepper Motor
 - Relay
 - Piezo Buzzer
 - Push Button Switch
 - Keyboard
 - Programmable Peripheral Interface (PPI)

Communication Interface

- Device/ Board level communication Interface (Onboard Communication Interface)
 - The communication channel which interconnects the various components within an embedded product

Ex: Serial Interface like I2C, Spi, UART, 1-Wire & parallel bus interface

- Product level Communication Interface (External Communication Interface)
 - Responsible for data transfer between the embedded system and other devices or modules.
 - It can be wired media, wireless media, serial or parallel interface Ex: IR, Bluetooth, Wi- Fi, RS232c, USB, Ethernet etc

Onboard communication Interfaces

- Inter Integrated Circuit (I2C)
 - It is a synchronous bi-directional half duplex two wire serial interface bus.
 - It provides an easy way of connection between a microprocessor/microcontroller system and the peripheral chips in television sets.
 - It comprise of two bus lines:
 - » Serial Clock- SCL: Responsible for generating synchronisation clock pulses
 - » Serial Data SDA: Responsible for transmitting the serial data across devices.
 - It supports multimasters on the same bus
 - It supports three different data rates
 - » Standard Mode: (Data rate upto 100Kbps)
 - » Fast Mode: (Data rate upto 400Kbps)
 - » High Speed Mode: (Data rate upto 3.4Mbps)

Onboard communication Interfaces contd...

- It is a shared bus system. The devices connected to it can act as Master or Slave.
- Master: Responsible for controlling the communication by initiating/terminating data transfer, sending data and generating synchronisation clock pulses.
- Slave: waits for the commands from the master and respond upon the receiving commands.
- Master and slave device can act as either transmitter or receiver.
- The synchronisation clock signal is generated by the Master device, regardless the master is acting as transmitter or receiver.

ARM PROCESSOR FUNDAMENTALS

Data flow model

- Data enters the processor core through data bus
- Instruction decoder translates instructions before they are executed.
- Data items are placed in register file-storage bank made of 32- bit registers
- Sign extend converts signed 8-bit and 16-bit numbers to 32 bit values
- Two source registers-Rn and Rm Single destination register Rd
- Source operands are read from register file using internal buses A and B
- ALU takes the register values Rn and Rm and computes the result
- Barrel shifter computes the result for any number of shifts within a clock cycle.
- This is achieved as it is combinational logic (not sequential)
- ex:ADD R3,R2,LSL#4
- Multiply-Accumulate Circuit is used to perform both multiply and add
- Ex: Matrix addition and multiplication
- Load and store instructions use the ALU to generate an address to be held in the address register and broadcast on the Address bus

REGISTERS

- Stack Pointer- stores the head of the stack in the current processor mode
- Link register- core puts the return address when it calls a subroutine
- **Program counter-** contains the address o the next instruction to be fetched by the processor
- In ARM state the registers R0 R15 are orthogonal.
- Any instruction that you can apply to R0 can equally well apply to other registers

Current Program Status Register (CPSR)

- 32-bit register
- contains the present status of an internal operation
- ARM uses CPSR to monitor and control internal operations.
- CPSR is a dedicated 32-bit register and resides in the register file.
- A generic program status register

Flags				Status	Extensions		Control			
31	30	29	28			7	6	5	4 0	
N	Z	C	v		_ 1	I	F	T	Mode	
Co	nditi	on fl	ags			Inter- rupt Mask s			Processor mode	

Current Program Status Register (CPSR) contd...

PROCESSOR MODES

• The processor mode determines which registers are active and the access rights to the CPSR bregister itself.

Privileged mode-allows full read write access to CPSR

- Abort
- fast interrupt request
- Interrupt request
- Supervisor
- System
- Undefined

Non -Privileged mode

- read access to control field to CRSP
- read-write access to conditional flags
- User

Current Program Status Register (CPSR) contd...

PROCESSOR MODES

The ARM has seven operating modes:

- User (unprivileged mode under which most tasks run).
- FIQ (entered when a high priority (fast) interrupt is raised).
- IRQ (entered when a low priority (normal) interrupt is raised).
- Supervisor (entered on reset and when a Software Interrupt instruction is executed).
- Abort (used to handle memory access violation.
- Undefined (used to handle undefined instructions).
- System (privileged mode using the same registers as user mode).

Banked Registers

- ARM has 37 registers in total, all of which are 32-bits long.
- 1 dedicated program counter
- 1 dedicated current program status register
- 5 dedicated saved program status registers
- 30 general purpose registers
- 20 registers are hidden from a program at different times. These registers are called banked registers
- They are available only when the processor is in a particular mode.

Register Organization

General registers and Program Counter

32 / System	FIQ32	Supervisor32	Abort32	IRQ32	Undefined32
r0	π0	r0	rt)	10	(h
ri	r1	rl	rt	rl	rl
r2	.r2	r2	r2	r2	r2
r3	r3	r3	13	rJ	r3
r4	т4	74	r.4	т4	r4
15	15	15	ř	r5	r5
16	16	16	Tó	16	16
r7	17	tî	tΠ	τĪ	17
r8	r8_fiq	r8	18	18	r8
r9	r9_fiq	r9	r9	r9	19
rt0	r10_fiq	r10	r10	r10	т10
rit	rt1_fiq	rH	ř11	r11	ri1
r12	r12_fig	r12	rJ2	r12	r12
r13 (sp)	r13_fiq	f13_svc	rt3_abt	r13_irq	#13_undef
r14 (lr)	n14_ffq	ti4_svc	rt.4_abt	r14_irq	#14_undef
r15 (pc)	r15 (pc)	r15 (pc)	r15 (pc)	r15 (pc)	r15 (pc)

Program Status Registers

Current Program Status Register (CPSR) contd..

State and instruction sets

• The state of the core determines which instruction set is being executed. Three instruction sets

ARM-Arm state

Thumb-Thumb state

Jazelle- Jazelle state

Interrupt Masks

- Interrupt masks are used to stop specific interrupt requests from interrupting the processor.
- Two interrupt request levels- IRQ, FIQ

CPSR has two interrupt mask bits

7(I bit)-IRQ

8 (F bit)-FIQ

These interrupt requests are masked when set.

Conditional Flags/Conditional Execution

Conditional Flags

- Updated by comparisons
- Results of ALU operations that specify S instruction suffix.

Eg: SUBS

Conditional execution

- Conditional execution controls whether or not the core will execute an instruction.
- Condition attribute is post fixed to the instruction mnemonic, which is encoded into the instruction.
- Prior to execution, the processor compares the condition attribute with the conditional flags in the CPSR.
- If they match then the condition is executed.
- When a condition mnemonic is not present, it always AL