EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa «antigo»

Duração da prova: 120 minutos

2.ª FASE

2001

VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui nove questões de escolha múltipla.
- O Grupo II inclui quatro questões de resposta aberta, subdivididas em alíneas, num total de dez.

Grupo I

- As nove questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos.
- 1. Para um certo valor de k, é contínua em \mathbb{R} a função f definida por

$$f(x) = \begin{cases} 0 & se \ x \leq 0 \\ \ln{(x+k)} & se \ x > 0 \end{cases}$$
 ($\ln{\text{designa logaritmo de base } e}$)

Qual é o valor de k?

- (A) -1
- **(B)** 0
- **(C)** 1
- **(D)** 2

2. Na figura está parte da representação gráfica de uma função g, polinomial do terceiro grau.

> A função g admite máximo relativo igual a 3para $x=-1\,$ e admite mínimo relativo igual a -2 para x=1.

> Qual é o conjunto dos valores de b para os quais a equação g(x) = b tem três soluções distintas?

- (A) $]-\infty,3[$ (B) $]-2,+\infty[$ (C) [-2,3] (D)]-2,3[

3. Seja f uma função tal que a sua derivada, no ponto 3, é igual a 4.

Indique o valor de $\lim_{x \to 3} \frac{f(x) - f(3)}{x^2 - 9}$

- (A) $\frac{2}{3}$
- **(B)** $\frac{3}{2}$
- (C) 4
- **(D)** 0
- **4.** Na figura estão representados, em referencial o.n. Oxyz:
 - uma circunferência de raio 1, centrada no ponto (0,1,1) e contida no plano yOz
 - o ponto A(0,2,1)
 - $\begin{tabular}{ll} \bullet & \mbox{o ponto} & B, \mbox{ pertencente ao semieixo} \\ \mbox{positivo} & Ox \\ \end{tabular}$

Considere que um ponto P, partindo de A, se desloca sobre essa circunferência, dando uma volta completa, no sentido indicado na figura.

Para cada posição do ponto P, seja θ a amplitude, em radianos, do arco AP $(\theta \in [0, 2\pi])$ e seja $d(\theta)$ a distância de P ao ponto B.

Qual dos gráficos seguintes pode ser o da função $\,d\,$?

(A)

(B)

(C)

(D)

5. Considere, num referencial o.n. Oxyz, um plano α , de equação x+2y-z=2. Seja β o plano que é paralelo a α e que contém o ponto (0,1,2).

Qual das condições seguintes é uma equação do plano $\, eta \, ? \,$

(A) x + 2y - z = 1

(B) x + z = 2

(C) -x-2y+z=0

- **(D)** x y + z = 1
- **6.** Na figura está representado, em referencial o.n. Oxyz, um paralelepípedo rectângulo.
 - O vértice O é a origem do referencial.
 - O vértice P pertence ao eixo Ox.
 - O vértice R pertence ao eixo Oy.
 - O vértice $\,S\,$ pertence ao eixo $\,Oz\,.$
 - O vértice U tem coordenadas (2,4,2).

Seja r a recta de equação $(x,y,z)=(2,0,2)+k\left(0,0,1\right),\ k\in\mathbb{R}$

- Qual é o ponto de intersecção da recta $\,r\,$ com o plano $\,OUV$?
- **(A)** O ponto P
- **(B)** O ponto T
- (C) O ponto ${\cal U}$
- **(D)** O ponto V

7. Na figura estão representadas, em referencial o.n. xOy, uma elipse, inscrita num rectângulo, e parte de uma hipérbole.

As assimptotas da hipérbole, representadas a tracejado, contêm as diagonais do rectângulo.

Os vértices da hipérbole coincidem com dois dos vértices da elipse.

Uma equação da elipse é $\frac{x^2}{4} + y^2 = 1$

Qual das condições seguintes é uma equação da hipérbole?

(A)
$$\frac{x^2}{4} - y^2 = 1$$

(B)
$$y^2 - \frac{x^2}{4} = 1$$

(C)
$$\frac{y^2}{4} - x^2 = 1$$

(D)
$$x^2 - \frac{y^2}{4} = 1$$

8. Num certo país existem três empresas operadoras de telecomunicações móveis: A, B e C. Independentemente do operador, os números de telemóvel têm nove algarismos. Os números do operador A começam por 51, os do B por 52 e os do C por 53.

Quantos números de telemóvel constituídos só por algarismos ímpares podem ser atribuídos nesse país?

- **(A)** 139 630
- **(B)** 143 620
- **(C)** 156 250
- **(D)** 165 340

- 9. Considere:
 - uma caixa com nove bolas, indistinguíveis ao tacto, numeradas de 1 a 9;
 - um dado equilibrado, com as faces numeradas de 1 a 6.

Lança-se o dado e tira-se, ao acaso, uma bola da caixa.

Qual é a probabilidade de os números saídos serem ambos menores que 4?

- (A) $\frac{1}{0}$
- (B) $\frac{1}{6}$ (C) $\frac{5}{27}$
- **(D)** $\frac{5}{54}$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Um petroleiro, que navegava no oceano Atlântico, encalhou numa rocha e sofreu um rombo no casco. Em consequência disso, começou a derramar crude. Admita que, às $\,t\,$ horas do dia a seguir ao do acidente, a área, em km^2 , de crude espalhado sobre o oceano é dada por

$$A(t) = 16 e^{0.1 t}$$
 , $t \in [0, 24]$

Verifique que, para qualquer valor de t, $\frac{A(t+1)}{A(t)}$ é constante. 1.1.

> Determine um valor aproximado dessa constante (arredondado às décimas) e interprete esse valor, no contexto da situação descrita.

1.2. Admita que a mancha de crude é circular, com centro no local onde o petroleiro encalhou. Sabendo que esse local se encontra a sete quilómetros da costa, determine a que horas, do dia a seguir ao do acidente, a mancha de crude atingirá

Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Considere a função f , de domínio $]-\pi$, π [, definida por $f(x)=\frac{\cos x}{1+\cos x}$ 2.

Sem recorrer à calculadora, resolva as três alíneas seguintes.

- 2.1. Estude a função quanto à existência de assimptotas do seu gráfico.
- 2.2. Mostre que a função f tem um máximo e determine-o.
- 2.3. Na figura está representada, em referencial o.n. xOy, uma parte do gráfico da função f.

Na mesma figura está também representado um trapézio $\ [OPQR].$

O ponto O é a origem do referencial, e os pontos P e R pertencem aos eixos Ox e Oy, respectivamente. Os pontos P e Q pertencem ao gráfico de f.

Sabendo que o ponto R tem ordenada $\frac{1}{3}$, determine a área do trapézio.

3. Uma turma do 12.º ano é constituída por vinte e cinco alunos (quinze raparigas e dez rapazes). Nessa turma, vai ser escolhida uma comissão para organizar uma viagem de finalistas.

A comissão será formada por três pessoas: um presidente, um tesoureiro e um responsável pelas relações públicas.

- 3.1. Se o delegado de turma tivesse obrigatoriamente de fazer parte da comissão, podendo ocupar qualquer um dos três cargos, quantas comissões distintas poderiam ser formadas?
- 3.2. Admita agora que o delegado de turma pode, ou não, fazer parte da comissão. Quantas comissões mistas distintas podem ser formadas?

Nota: Entenda-se por comissão mista uma comissão constituída por jovens que não são todos do mesmo sexo.

4. Na figura está representado, em referencial o.n. Oxyz, um octaedro [ABCDEF] .

Sabe-se que:

- o vértice B tem coordenadas (1,0,1)
- o vértice E tem coordenadas (0,1,1)
- o vértice F pertence ao plano xOy
- o vértice A tem coordenadas (1,1,2)

- **4.1.** Mostre que a recta definida pela condição $\ x=y=z$ é perpendicular ao plano ACD .
- **4.2.** Determine uma equação da superfície esférica que contém os seis vértices do octaedro.
- **4.3.** Seja α o plano definido pelo eixo Oz e pelo ponto A. A secção produzida no octaedro pelo plano α é um quadrilátero. Caracterize esse quadrilátero e determine o seu perímetro.

FIM

COTAÇÕES

	po I
- 3	Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada
	Nota: Um total negativo neste grupo vale 0 (zero) pontos.
1	po II
24	1.
37	2.
22	3.1
36	4. 12 4.2. 12 4.3. 12