Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute

Cancer Type/Site Classification using Deep-Learning

(Preliminary presentation slides)

S. Ravichandran, Ph.D BIDS, FNLCR

Acknowledgements

NCI-DOE Pilot-1 Team

BIDS

- Drs. George Zaki, Andrew Weissman, Mark Jensen and Eric Stahlberg
- Amar Khalsa, Dr. Deb Hope, Anney Che, Hue Readron, Dr. Yongmei Zhao
- Colleagues who reviewed the material

Feel free to follow-along

Github

• https://github.com/ravichas/ML-TC1

Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute

Introduction

This workshop is part of the NCI-DOE Pilot project knowledge/capability transfer efforts

Goal is to share tools/techniques/solutions for cancer related problems. We often take
a test-case and show how it works

- You would be able to take our test-case (code/scripts) and tune it to your needs
- We want to hear from you, please send us your feed-back

Motivation: Cancer Prediction vs Cancer Detection

- Cancer <u>Prediction</u> has been the major focus
 - Prognosis, Recurrence, Susceptibility

- Cancer <u>Detection</u> (classification of tumors/cancers) is lagging behind <u>Prediction</u> and we would like to share an application that might be useful
 - Detect/Identify cancer type at an early stage

Goal(s)/Questions

 Take genomic expression data from tumor/cancer samples and apply Deep-Learning to create cancer types/site(s) classifier models

Are the expression profiles unique?

- Can we use the model as early cancer type detection
 - Improving chance of early detection cure/survival?

Cancer Burden

- Cancer is a group of diseases with worldwide risk
- Acquired or somatic changes causes 90-95% of caner (all types)
 - Source TCGA
- ~ 200 forms of cancer
 - DOI: 10.5114/wo.2014.47136
- For 2020 in USA
 - ~1.8M new cancer cases are expected
 - ~600K deaths will occur
 - Source: American Cancer Society

Figure from Genomic Data Commons

Hallmarks of cancer: Integral Components of Most Forms of Cancer

Hanahan and Weinberg, 2011

Hallmarks of Cancer: The Next Generation src Oncogene mutations Sustaining proliferative signaling REVIEW | VOLUME 100, ISSUE 1, P57-70, JANUARY 07, 2000 Mutations in P53 tumor suppressor Mutation or missing CASP9 or P53 Evading growth Resisting cell death suppressors Open Archive • DOI: https://doi.org/10.1016/S0092-8674(00)81683-9 Mutations in cell-adhesion CDH1 New blood vessels via VEGF Activating invasion Inducing and metastasis angiogenesis Overview of **Genotype/phenotypes?** Enabling replicative Mutations in telomerase immortality

The Hallmarks of Cancer

Influence of genomic features on phenotypes: An overview

Lung-cancer

RNASeq profile

Phenotype(s)

Genes/Expression

Chromosomes

Genome

Cells

"The observable characteristics in an individual resulting from the expression of genes" from NCI

Promoters
Enhancers
Silencers

Epigenetic factors

DNA methylation Histone modifications

Variations

Diagnosis/treatment vs Prediction

Treatment vs Type-Prediction

Treatment

- Gene-centric (or a slice of pathway)
- Imatinib targeting BCR/KIT

Detecting Type

- "The architecture of <u>occurring genetic aberrations</u> such as somatic mutations, CNVs, changed gene expression profiles, and different epigenetic alterations, is <u>unique</u> for each <u>type of cancer</u>.", DOI: 10.5114/wo.2014.47136
- Complex & Multi-gene centric

Type-Prediction: Architecture of Genetic aberrations

The architecture of occurring genetic aberrations such as somatic mutations, CNV, changed gene expression profiles, and different epigenetic alterations, is unique for each type of cancer

DOI: 10.5114/wo.2014.47136

PERSPECTIVE

Understanding Genotype-Phenotype Effects in Cancer via Network Approaches

Yoo-Ah Kim, Dong-Yeon Cho, Teresa M. Przytycka*

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America

przytyck@ncbi.nlm.nih.gov

Author Summary

Cancer is now increasingly studied from the perspective of dysregulated pathways, rather than as a disease resulting from mutations of individual genes. A pathway-centric view acknowledges the heterogeneity between genomic profiles from different cancer patients while assuming that the mutated genes are likely to belong to the same pathway and cause similar disease phenotypes. Indeed, network-centric approaches have proven to be helpful for finding genotypic causes of diseases, classifying disease subtypes, and identifying drug targets. In this review, we discuss how networks can be used to help understand patient-to-patient variations and how one can leverage this variability to elucidate interactions between cancer drivers.

Expression data

NGS

NGS

Spliced to become mature mRNA mRNA is extracted

mRNA captured/fragmented/copied into stable ds-cDNA **Sequenced**

Reference Genome

Data source: The Cancer Genome Atlas (TCGA)

- NIH launched TCGA Pilot Project a public funded project
- Goal of creating a comprehensive "atlas" of cancer genomic profiles.
- Large cohorts of over <u>30 human tumors</u> through large-scale genome sequencing and integrated multi-dimensional analyses.
- Contains Microarray and NGS data
 - RNASeq
 - miRNA seq
 - SNP based platforms
 - **–**
- TCGA data is available via GDC

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

Data Harmonization: GDC (https://gdc.cancer.gov/)

 Data and metadata is submitted to the GDC in standard data types and file formats. Other data sources (Ex. TCGA) are also included

 Data are harmonized against a common reference genome (GRCh38)

 For this workshop, we will focus on TCGA Genomic expression data from GDC

Expression Data Quantification

- RC_g: Number of reads mapped to the gene
- RC_{g75}: The 75th percentile read count value for genes in the sample
- L: Length of the gene in base pairs;
 Calculated as the sum of all exons in a gene

$$FPKM-UQ = \frac{RC_g \times 10^9}{RC_{g75} \times L}$$

FASTQ Alignment to Ref Genome (SAM/BAM) **Quantification HTSeq** Gene Expression (FPKM-UQ)

Fragments Per Kilobase of transcript per Million mapped reads

Frederick National Laboratory for Cancer Research

How much data for modeling?

CODE	Cancer Site/Type
BRCA	Breast invasive carcinoma
UCEC	Uterine Corpus Endometrial Carcinoma
LUAD	Lung adenocarcinoma
LGG	Brain Lower Grade Glioma
HNSC	Head and Neck squamous cell carcinoma
LUHSC	Lung squamous cell carcinoma
KIRC	Kidney renal clear cell carcinoma
PRAD	Prostate adenocarcinoma
COAD	Colon adenocarcinoma
THCA	Thyroid carcinoma
BLCA	Bladder Urothelial Carcinoma
OV	Ovarian serous cystadenocarcinoma
STAD	Stomach adenocarcinoma
LIHC	Liver hepatocellular carcinoma
CEC	Cervical squamous cell carcinoma and endocervical adenocarcinoma

300 samples each

sponsored by the National Cancer Institute

Expression data from a sample

TCGA-BRCA

Gene: AC090241.2 ENSG00000270112

Description novel transcript, antisense to ST8SIAS

Location Chromosome 18: 46,756,487-46,802,449 forward strand.

GRCh38:CM000680.2

About this gene has 8 transcripts (splice variants)

Transcripts Hide transcript table

Gene: DNAH3 ENSG00000158486

Description dynein axonemal heavy chain 3 [Source:HGNC Symbol;Acc:HGNC:2949 &]

Gene Synonyms DKFZp434N074, DLP3, Dnahc3b, Hsadhc3

Location Chromosome 16: 20,933,111-21,159,441 reverse strand.

GRCh38:CM000678.2

About this gene This gene has 6 transcripts (splice variants), 371 orthologues, 14 paralogues and is a member of 1 Ensembl protein family.

Transcripts Hide transcript table

	Genes	Expression
	ENSG00000242268.2	1658.464179
_	ENSG00000270112.3	460.2343433
	ENSG00000167578.15	52440.10096
	ENSG00000273842.1	0
	ENSG00000078237.5	68165.45626
	ENSG00000146083.10	255959.2351
	ENSG00000225275.4	0
	ENSG00000158486.12	104.9473768
	ENSG00000198242.12	4968556.658
	ENSG00000259883.1	6108.999052
	ENSG00000231981.3	0
	ENSG00000269475.2	0
	ENSG00000201788.1	0
	ENSG00000134108.11	957330.2056
	ENSG00000263089.1	3484.027373
	ENSG00000172137.17	41485.9507
	ENSG00000167700.7	226717.4208
	ENSG00000234943.2	2082.245035
	ENSG00000240423.1	310.5246749
	ENSG00000060642.9	155863.9216
	ENSG00000271616.1	0
	ENSG00000234881.1	0
	ENSG00000236040.1	394.4755669
	ENSG00000231105.1	1583.312582
	ENSG00000243044.1	0
	ENSG00000182141.8	45538.60648
	ENSG00000269416.4	119.0847054
	ENSG00000264981.1	0

60,483 transcripts

Data Preparation

Sample300 Sample1 Sample2 Sample3 Sample4 Sample297 Sample298 Sample299 **Breast Cancer**

60,484 transcripts

¥	Expression	¥
8.2	1658.464179	
2.3	460.2343433	
8.15	52440.10096	
12.1	0	
17.5	68165.45626	
3.10	255959.2351	
5.4	0	
6.12	104.9473768	
12.12	4968556.658	
3.1	6108.999052	
1.3	0	
5.2	0	
8.1	0	
8.11	957330.2056	
9.1	3484.027373	
17.17	41485.9507	
0.7	226717.4208	
13.2	2082.245035	
3.1	310.5246749	
12.9	155863.9216	
6.1	0	
1.1	0	
0.1	394.4755669	
15.1	1583.312582	
14.1	0	
11.8	45538.60648	
6.4	119.0847054	
1.1	0	

Genes	▼ Expression ▼
ENSG00000242268.2	1658.464179
ENSG00000270112.3	460.2343433
ENSG00000167578.15	52440.10096
ENSG00000273842.1	0
ENSG00000078237.5	68165.45626
ENSG00000146083.10	255959.2351
ENSG00000225275.4	0
ENSG00000158486.12	104.9473768
ENSG00000198242.12	4968556.658
ENSG00000259883.1	6108.999052
ENSG00000231981.3	0
ENSG00000269475.2	0
ENSG00000201788.1	0
ENSG00000134108.11	957330.2056
ENSG00000263089.1	3484.027373
ENSG00000172137.17	41485.9507
ENSG00000167700.7	226717.4208
ENSG00000234943.2	2082.245035
ENSG00000240423.1	310.5246749
ENSG00000060642.9	155863.9216
ENSG00000271616.1	0
ENSG00000234881.1	0
ENSG00000236040.1	394.4755669
ENSG00000231105.1	1583.312582
ENSG00000243044.1	0
ENSG00000182141.8	45538.60648
ENSG00000269416.4	119.0847054
ENSG00000264981.1	0

ENSG00000242268.2	1658.464179
ENSG00000270112.3	460.2343433
ENSG00000167578.15	52440.10096
ENSG00000273842.1	0
ENSG00000078237.5	68165.45626
ENSG00000146083.10	255959.2351
ENSG00000225275.4	0
ENSG00000158486.12	104.9473768
ENSG00000198242.12	4968556.658
ENSG00000259883.1	6108.999052
ENSG00000231981.3	0
ENSG00000269475.2	0
ENSG00000201788.1	0
ENSG00000134108.11	957330.2056
ENSG00000263089.1	3484.027373
ENSG00000172137.17	41485.9507
ENSG00000167700.7	226717.4208
ENSG00000234943.2	2082.245035
ENSG00000240423.1	310.5246749
ENSG00000060642.9	155863.9216
ENSG00000271616.1	0
ENSG00000234881.1	0
ENSG00000236040.1	394.4755669
ENSG00000231105.1	1583.312582
ENSG00000243044.1	0
ENSG00000182141.8	45538.60648
ENSG00000269416.4	119.0847054
ENSG00000264981.1	0

	 Expression
ENSG00000242268.2	1658.464179
ENSG00000270112.3	460.2343433
ENSG00000167578.15	52440.10096
ENSG00000273842.1	0
ENSG00000078237.5	68165.45626
ENSG00000146083.10	255959.2351
ENSG00000225275.4	0
ENSG00000158486.12	104.9473768
ENSG00000198242.12	4968556.658
ENSG00000259883.1	6108.999052
ENSG00000231981.3	0
ENSG00000269475.2	0
ENSG00000201788.1	0
ENSG00000134108.11	957330.2056
ENSG00000263089.1	3484.027373
ENSG00000172137.17	41485.9507
ENSG00000167700.7	226717.4208
ENSG00000234943.2	2082.245035
ENSG00000240423.1	310.5246749
ENSG00000060642.9	155863.9216
ENSG00000271616.1	0
ENSG00000234881.1	0
ENSG00000236040.1	394.4755669
ENSG00000231105.1	1583.312582
ENSG00000243044.1	0
ENSG00000182141.8	45538.60648
ENSG00000269416.4	119.0847054
ENSG00000264981.1	0

Genes	▼ Expression	F
G00000242268.2	1658.464179	_
G00000270112.3	460.2343433	
G00000167578.15	52440.10096	
G00000273842.1	0	
G00000078237.5	68165.45626	
G00000146083.10	255959.2351	
G00000225275.4	0	
G00000158486.12	104.9473768	
G00000198242.12	4968556.658	
G00000259883.1	6108.999052	
G00000231981.3	0	
G00000269475.2	0	
G00000201788.1	0	
G00000134108.11	957330.2056	
G00000263089.1	3484.027373	
G00000172137.17	41485.9507	
G00000167700.7	226717.4208	
G00000234943.2	2082.245035	
G00000240423.1	310.5246749	
G00000060642.9	155863.9216	
G00000271616.1	0	
G00000234881.1	0	
G00000236040.1	394.4755669	
G00000231105.1	1583.312582	
G00000243044.1	0	
G00000182141.8	45538.60648	
G00000269416.4	119.0847054	
G00000264981.1	0	
G00000264981.1	0	

Data Preparation

	Sample1	Sample2	Sample3	Sample4	Sample297	Sample298	Sample299	Sample300
Breast Cancer				Comparison Com		Commission Co	Decision Decision	
Lung Cancer		1		1	1	Telegrams	1	1
	Genes □ Expression □	Genes Expression	Genes ■ Expression ■	Genus Depression D	Genes T Expression T Expression T ENSCO0000701123 460,2343433	Genes Expression E BNSG0000004258.2 1658.464179 BNSG0000001011.3 460.234433	Genes T Expression T Expression T ENGCOROO022882 1658 464179 ENGCOROO027112.3 4 60.236433	Genés T Expression T ENSCO00000422882 E1588.464179 ENSCO0000012113 460 234443
Kidney Cancer	\$150,000,000,000,000,000,000,000,000,000,	INSTRUCTIONS 1	INCOGNOSCI-STARE 1	THE CONTROL STATE 1	### 05000000179.78.15	INCORDINATION INCORDINATIO	RESIGNOMENTER 15 12-940 (2006)	MR-000000569793.53 SAME 0006

Merged Sample Expression Data

Genes

		0	1	2	3	4	5	6	7	8	9	 60474	60475	60476	60477	60478	60479	60480	60481	60482	submitter_id
	0	574548	2263.14	983212	69718	54834.9	19718.1	175853	735123	38662.4	233190	 0	0	0	0	0	0	0	0	0	TCGA-04-1331-01A-01R-1569-13
	1	352295	4592.37	663107	39745.4	36553.5	41147.1	241313	396423	37567	128693	 0	0	0	0	0	0	0	0	0	TCGA-04-1332-01A-01R-1564-13
Щ	2	295162	649.026	1.21115e+06	57385.5	33097.4	58051.8	228615	346066	105567	408267	 0	0	0	0	0	0	0	0	0	TCGA-04-1338-01A-01R-1564-13
7	3	329580	1835.59	1.08437e+06	33812.3	24516.1	22330.6	42134.4	895558	56178	83847.3	 0	0	0	0	0	0	0	0	0	TCGA-04-1341-01A-01R-1564-13
SAMP	4	289269	40061.7	2.44837e+06	26399.5	18248	49610	74761.1	571992	71951.9	98726.4	 0	0	0	0	0	0	0	0	0	TCGA-04-1343-01A-01R-1564-13
3												 									***
Z	4495	1.18093e+06	0	1.01139e+06	67877.2	15005.7	50527.3	6.21536e+06	1.47373e+06	459656	167488	 0	0	0	0	0	0	0	0	0	TCGA-ZS-A9CD-01A-11R-A37K-07
	4496	929228	0	869800	95607.5	17188.6	9352.12	7.61121e+06	196838	354465	138074	 0	0	0	0	0	0	0	0	0	TCGA-ZS-A9CE-01A-11R-A37K-07
	4497	469276	476.683	516938	110051	34469.4	37334.7	5.95811e+06	427832	323833	154861	 0	0	0	0	0	0	0	0	0	TCGA-ZS-A9CF-01A-11R-A38B-07
	4498	2.44119e+06	18282.7	853547	79288.7	106926	42593.9	4.80111e+06	955338	331924	177020	 0	0	0	0	0	0	0	0	0	TCGA-ZS-A9CG-01A-11R-A37K-07
	4499	259853	505.488	591328	74253.7	42553.5	118772	148978	508465	153862	170412	 0	0	0	0	0	0	0	0	0	TCGA-ZX-AA5X-01A-11R-A42T-07

4500 rows × 60484 columns

Genes	×	Expression	Ψ.
00000242268.2		1658.464179	
00000270112.3		460.2343433	
00000167578.15		52440.10096	
00000273842.1		0	
00000078237.5		68165.45626	
00000146083.10		255959.2351	
00000225275.4		0	
00000158486.12		104.9473768	
00000198242.12		4968556.658	
00000259883.1		6108.999052	
00000231981.3		0	
00000269475.2		0	
00000201788.1		0	
00000134108.11		957330.2056	
00000263089.1		3484.027373	
00000172137.17		41485.9507	
00000167700.7		226717.4208	
00000234943.2		2082.245035	
00000240423.1		310.5246749	
00000060642.9		155863.9216	
00000271616.1		0	
00000234881.1		0	
00000236040.1		394.4755669	
00000231105.1		1583.312582	
00000243044.1		0	
00000182141.8		45538.60648	
00000269416.4		119.0847054	
00000264981.1		0	

Frederick National Laboratory for Cancer Research sponsoved by the

Quantifying mRNA abundance and Scaling

- GDC harmonization data is provided in FPKM-UQ
- In our code, FPKM-UQ is rescaled to TPM using the following formula.

$$\mathsf{TPM}_i = \left(\frac{\mathsf{FPKM}_i}{\Sigma_j \mathsf{FPKM}_j}\right) \cdot 10^6$$

TPM has nice mathematical properties and a stable entity

https://docs.gdc.cancer.gov/Encyclopedia/pages/HTSeq-FPKM-UQ/

Mapping and quantifying mammalian transcriptomes by RNA-Seq

One-hot encoding to convert Cancer types to numbers

- Convenient to transform categorical variables into a numerical quantity for computations
 - BRCA to 0 ; LUAD to 1 etc.
 - 0, 1, 2, 3, ..., 13, 14, 14

TCGA-CESC TCGA-LIHC TCGA-STAD TCGA-OV TCGA-BLCA TCGA-THCA TCGA-PRAD TCGA-COAD TCGA-COAD TCGA-LUSC TCGA-LUSC TCGA-LUSC TCGA-LUSC TCGA-LUAD TCGA-LUAD TCGA-LUAD TCGA-LUAD TCGA-UCEC

```
>>> encoded
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
  [0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
  [0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]
  [0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.]
  dtype=float32)
```

Frederick National Laboratory for Cancer Research

Data preparation steps summary

Before we break for hands-on

 Python as the programming language for this workshop, but similar libraries are available in R or other languages

- Will use Jupyter Notebook for sharing the code
 - With little effort one can convert the Python code into R and still use Jupyter Notebook

To be continued after hands-on

https://github.com/ravichas/ML-TC1

Before we begin the modeling section ...

Due to lack of time, I wont be covering the basics of Neural Network

These are good books for beginners and up

Keras is a high-level NN package that is built on top of popular high-level libraries (TF, Theano). Works well with CPU/GPU

Figure from Deep Learning with Python

Supervised Learning

- Goal
 - Construct a model that takes in input features/target pair to return a prediction for target/outcome
- Train a machine learning
 - Model refers to learning its parameters, which typically involves minimizing a loss function on training data with the aim of making accurate predictions on unseen (test) data

Supervised Learning:

Data: (x,y); where x is the genomic expression profile; y is the cancer classes

Goal? Learn the function that maps $x \rightarrow y$

Terminology

	0	1	2	3	4	5	6	7	8	9		60474	60475	60476	60477	60478	60479	60480	60481	60482	submitter_id
0	574548	2263.14	983212	69718	54834.9	19718.1	175853	735123	38662.4	233190		0	0	0	0	0	0	0	0	0	TCGA-04-1331-01A-01R-1569-13
1	352295	4592.37	663107	39745.4	36553.5	41147.1	241313	396423	37567	128693		0	0	0	0	0	0	0	0	0	TCGA-04-1332-01A-01R-1564-13
2	295162	649.026	1.21115e+06	57385.5	33097.4	58051.8	228615	346066	105567	408267	***	0	0	0	0	0	0	0	0	0	TCGA-04-1338-01A-01R-1564-13
3	329580	1835.59	1.08437e+06	33812.3	24516.1	22330.6	42134.4	895558	56178	83847.3		0	0	0	0	0	0	0	0	0	TCGA-04-1341-01A-01R-1564-13
4	289269	40061.7	2.44837e+06	26399.5	18248	49610	74761.1	571992	71951.9	98726.4		0	0	0	0	0	0	0	0	0	TCGA-04-1343-01A-01R-1564-13

Columns

input variables or features or attributes

Outcome column

Outcome variables or targets

Rows

- Training example or instance
- Whole table Training data set

What is different about Neural Network?

If you know the equation (algorithm), then you feed in the input and you get the output.
 You can code the function yourself

```
def function(x):

y = 2.0 + 5.0 * x

return(y)
```

You can choose to use linear modeling and use the data to figure the relationship

Model
$$\leftarrow$$
 Im(y \sim x)

Neural Network using the data learn the algorithm.

INPUT

ALGORITHM

OUTPUT

A Simple Network

Input: Mass or M (kg)
Output: Length or L (m)

M

Input	Output
0.125	0.39
0.25	0.40
0.5	0.43
1	0.48
2	0.58
3	???

This Photo by Unknown Author is licensed under CC BY-SA

A Simple Network

M	L
0.125	0.39
0.25	0.40
0.5	0.43
1	0.48
2	0.58
3	0.68

$$L = 0.1 * Mass + 0.38$$

This Photo by Unknown Author is licensed under CC BY-SA

Frederick National Laboratory for Cancer Research

A Simple Network

M	L
0.125	0.39
0.25	0.40
0.5	0.43
1	0.48
2	0.58
3	0.68

These are the model variables: [array([[0.10058284]], dtype=float32), array([0.37793916], dtype=float32)]

Based on Mary Attenporougn, in Mathematics for Electrical Engineering and Computing, 2003

Error minimization

- Goal is to choose Ws such that predictions of the network should be close to y
- Error function or cost function a measure how good our predictions are
- Eventually, we want to pick a set of w that minimizes the error function

Deep Learning Procedure

Taken from Deep Learning with Keras book

Vanilla network

Each neuron receives input from all the neurons in the previous layer (densely connected)

This Photo by Unknown Author is licensed under CC BY-NC

Convolutional Neural Network

- We are going to take a vector of genomic expression values and feed them into a network with a series of operations to create a model
- Model is what we call convolutional-1D network

Components of conv1D

- 1. Act: Activation
- 2. Conv: Convolution
- 3. Max_pool: Maxpooling
- 4. Flatten
- 5. Dense
- 6. Dropout

Topology of a network defines a "hypothesis space"

Choosing a specific topology is usually not straightforward and comes with practice.

1. Activation function

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(L)})$$

$$a_0^{(1)} = \sigma(W_{00}a_0^{(0)} + W_{0,1}a_1^{(0)} + \dots W_{0,n}a_n^{(0)} - b_0)$$

1. Activation Function

Activation functions are included to create non-linearity

- Sigmoid
- ReLU
- Leaky ReLU
- ELU
- Maxout
- Tanh

Process of applying filter (<u>kernel</u>) to the data for the purpose of subsampling. Kernel is a matrix that has a smaller dimension than the input data creates chunks

Reduces the number of parameters and allow creation of deeper networks

Process of applying filter (<u>kernel</u>) to the data for the purpose of subsampling. Kernel is a matrix that has a smaller dimension than the input data creates chunks

Reduces the number of parameters and allow creation of deeper networks

Dot Product

Process of applying filter (<u>kernel</u>) to the data for the purpose of subsampling. Kernel is a matrix that has a smaller dimension than the input data creates chunks

Reduces the number of parameters and allow creation of deeper networks

Dot Product

Process of applying filter (<u>kernel</u>) to the data for the purpose of subsampling. Kernel is a matrix that has a smaller dimension than the input data creates chunks

Reduces the number of parameters and allow creation of deeper networks

(N-F)/stride+1 will be the size after filtering

$$(7-3)/1+1=5$$
;
zero padding on the border

Convolution Layer

- Hyperparameters
 - Number of filters
 - Spatial extent
 - Stride
 - Amount of zero padding

3. Pooling

- Pooling makes the representations smaller/manageable (downsampling) by retaining only important features; creates smaller clusters of manageable size
- Each activation map will be pooled separately.
- Common approach is Max Pooling

Max-pooling with filter size of 2x1 and stride of 2

Max Pooling Intuition:

Enhancing the signals by looking at a region and pick the maximum activation value

Each of these are activation and we are looking for

Research shows that zero-padding is not followed.

Because we are interested in down-sampling

Common setting for filter 2 or 3

4. Flatten

Procedure to transform a 2D matrix (features) to a 1D vector which in turn can be fed into a fully-connected layer (dense)

5. Dense

Each neuron receives input from all the neurons in the previous layer (densely connected)

This Photo by Unknown Author is licensed under CC BY-NC

Frederick National Laboratory for Cancer Research

6. Dropout

// Input nodes

Active hidden nodes

()Inactive hidden nodes

Imbalance in the weights among the nodes can lead to some node weights not contributing to the learning

One solution:

Remove a random proportion of selection of neurons in a neural network during training

Can help weak learners become strong learners

This Photo by Unknown Author is licensed under CC BY

48

sponsored by the National Cancer Institute

6. Dropout

This Photo by Unknown Author is licensed under CC BY-NC

Model Summary

1.0 128 10 1 Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
convld_1 (ConvlD)	(None,	60464, 128)	2688
activation_1 (Activation)	(None,	60464, 128)	0
max_pooling1d_1 (MaxPooling1	(None,	60464, 128)	0
conv1d_2 (Conv1D)	(None,	60455, 128)	163968
activation_2 (Activation)	(None,	60455, 128)	0
max_pooling1d_2 (MaxPooling1	(None,	6045, 128)	0
flatten_1 (Flatten)	(None,	773760)	0
dense_1 (Dense)	(None,	200)	154752200
activation_3 (Activation)	(None,	200)	0
dropout_1 (Dropout)	(None,	200)	0
dense_2 (Dense)	(None,	20)	4020
activation_4 (Activation)	(None,	20)	0
dropout_2 (Dropout)	(None,	20)	0
dense_3 (Dense)	(None,	15)	315
activation_5 (Activation)	(None,	15)	0
Total params: 154,923,191 Trainable params: 154,923,191 Non-trainable params: 0	L		

INPUT Conv Act Max_pool Conv Act Max_pool Act Max_pool Flatten Dense Act Dropout Dense Act Dropout Dense OUTPUT

~ 154 M parameters

Code execution and progress

```
Epoch 00001: val loss improved from inf to 2.56791, saving model to Pilotl.h5
Epoch 2/400
Epoch 00002: val loss improved from 2.56791 to 1.84441, saving model to Pmodel.h5
Epoch 3/400
Epoch 00003: val loss improved from 1.84441 to 0.95540, saving model to Pmodel.h5
Epoch 4/400
Epoch 00004: val loss improved from 0.95540 to 0.48347, saving model to Pmodel.h5
Epoch 5/400
Epoch 00005: val loss improved from 0.48347 to 0.40829, saving model to Pmodel.h5
Epoch 6/400
Epoch 00006: val loss improved from 0.40829 to 0.32363, saving model to Pmodel.h5
Epoch 7/400
Epoch 00007: val loss improved from 0.32363 to 0.19439, saving model to Pmodel.h5
Epoch 8/400
Epoch 00008: val loss improved from 0.19439 to 0.17536, saving model to Pmodel.h5
Epoch 9/400
Epoch 00009: val loss did not improve from 0.17536
Epoch 10/400
Epoch 00010: val loss improved from 0.17536 to 0.16323, saving model to Pmodel.h5
```

Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute

Model Performance

Thank you. This Photo by Unknown Author is licensed under CC BY-SA-NC

Questions/Comments

S. Ravichandran ravichandrans@mail.nih.gov

