Intermediate Microeconomics Spring 2025

Week 11a: Imperfect Competition

Yuanning Liang

Oligopoly

- □ A market with relatively few firms but more than one
- ☐ Possibility of strategic interaction among firms
- □ Difficult to predict exactly the possible outcomes for price and output

Pricing Under Homogeneous Oligopoly

- ☐ We will assume that the market is *perfectly* competitive on the demand side
 - there are many buyers, each of whom is a price taker
- □ We will assume that the good obeys the law of one price
 - this assumption will be relaxed when product differentiation is discussed

Pricing Under Homogeneous Oligopoly

- □ We will assume that there is a relatively small number of identical firms (n)
 - we will initially start with n fixed, but later allow n to vary through entry and exit in response to firms' profitability
- \square The output of each firm is q_i (i=1,...,n)
 - symmetry in costs across firms will usually require that these outputs are equal

Pricing Under Homogeneous Oligopoly

□ The inverse demand function for the good shows the price that buyers are willing to pay for any particular level of industry output

$$P = f(Q) = f(q_1+q_2+...+q_n)$$

□ Each firm's goal is to maximize profits

$$\pi_{i} = f(Q)q_{i} - C_{i}(q_{i})$$

$$\pi_{i} = f(q_{1} + q_{2} + ...q_{n})q_{i} - C_{i}$$

Oligopoly Pricing Models

- ☐ The <u>quasi-competitive model</u> assumes pricetaking behavior by all firms
 - P is treated as fixed
- ☐ The <u>cartel model</u> assumes that firms can collude perfectly in choosing industry output and *P*

Oligopoly Pricing Models

- ☐ The Cournot model assumes that firm *i* treats firm *j*'s output as fixed in its decisions
- □ The <u>conjectural variations model</u> assumes that firm j's output will respond to variations in firm i's output

Quasi-Competitive Model

- ☐ Each firm is assumed to be a price taker
- □ The first-order condition for profit-maximization is

$$\partial \pi_i / \partial q_i = P - (\partial C_i / \partial q_i) = 0$$

$$P = MC_i (q_i) \quad (i=1,...,n)$$

□ Along with market demand, these n supply equations will ensure that this market ends up at the short-run competitive solution

Quasi-Competitive Model

Bertrand Model

- □ Two identical firms
 - Producing *identical* products at a constant MC = c
 - Choose prices p_1 and p_2 **simultaneously**
 - ☐ Single period of competition
 - How Sales get split
 - ☐ <u>All sales go</u> to the firm with the <u>lowest</u> price
 - \square Sales are **split evenly** if $p_1 = p_2$

Bertrand Model: The Only Pure-strategy Nash equilibrium

- ☐ The Only Pure-strategy Nash equilibrium: $p_1^* = p_2^* = c$
 - Both firms are playing a best response to each other
 - Neither firm has an incentive to deviate to some other strategy
- □ A formal proof should verify that all other cases are not Nash equilibrium
 - Let's focus on cases where $p_1 \le p_2$
 - Three cases: $p_1^* < c$, $p_1^* > c$, $p_1^* = c$

Bertrand Model: The Only Pure-strategy Nash equilibrium

- $\blacksquare \text{ If } p_1 < c \pmod{p_1 \le p_2}$
 - Profit would be negative, should deviate to $p_1 = c$
- $\blacksquare \text{ If } p_1 > c \quad (and \ p_1 \le p_2)$
 - Firm 2 could gain by *undercutting* the price of firm 1 and captures all the market
- $\blacksquare \text{ If } p_1 = c \quad (and \ p_1 \le p_2)$
 - If $p_1 < p_2$, then firm 1 can raise price **slightly over** c but still lower than P_2 , and earn higher profit (because it still gets the whole market)
- ☐ The Only Pure-strategy Nash equilibrium: $p_1^* = p_2^* = c$

Bertrand Model

- \square For any number of firms $n \ge 2$
 - The same result
 - Nash equilibrium of the *n*-firm Bertrand game is p_1^* = $p_2^* = ... = p_n^* = c$
- ☐ The Bertrand paradox
 - The Nash equilibrium of the Bertrand model is the same as the perfectly competitive outcome even though there are only two firms
 - ☐ Price is set to marginal cost
 - ☐ Firms earn zero profit

Bertrand Model

- ☐ The Bertrand paradox
 - General: holds for any c and any downwardsloping demand curve
 - Not general: can be undone by changing assumptions:
 - ☐ Choosing quantity rather than price
 - ☐ Facing <u>capacity constraint</u>
 - □ Products slightly <u>differentiated</u> (not perfect substitute)
 - ☐ Repeated <u>interaction</u>

- □ The assumption of price-taking behavior may be inappropriate in oligopolistic industries
 - each firm can recognize that its output decision will affect price
- □ An alternative assumption would be that firms act as a group and coordinate their decisions so as to achieve monopoly profits

 \square In this case, the cartel acts as a multiplant monopoly and chooses q_i for each firm so as to maximize total industry profits

$$\pi = PQ - [C_1(q_1) + C_2(q_2) + ... + C_n(q_n)]$$

 \square If write everything in terms of q_i

$$\pi = f(q_1 + q_2 + ... + q_n)[q_1 + q_2 + ... + q_n] - \sum_{i=1}^{n} C_i(q_i)$$

□ The first-order conditions for a maximum are that

$$\frac{\partial}{\partial q_i} \left(\sum_{j=1}^n \pi_j \right) = P(Q) + P'(Q) \sum_{j=1}^n q_j + C'_i(q_i) = 0 \quad \text{for } i = 1, \dots, n$$

This implies that

$$MR(Q) = MC_i(q_i)$$

 At the profit-maximizing point, marginal revenue will be equal to each firm's marginal cost

- □ There are three problems with the cartel solution
 - these monopolistic decisions may be illegal
 - it requires that the directors of the cartel know the market demand function and each firm's marginal cost function
 - the solution may be unstable
 - \square each firm has an incentive to expand output because $P > MC_i$

Cournot Model

- \square Each firm recognizes that its own decisions about q_i affect price
 - \triangleright $\partial P/\partial q_i \neq 0$
- □ However, each firm believes that its decisions do not affect those of any other firm

Cournot Model

☐ Firm *i*'s profit = total revenue – total cost

$$\pi_i = P(Q)q_i - C_i(q_i)$$

☐ First-order conditions for profit maximization:

$$\frac{\partial \pi_i}{\partial q_i} = \underbrace{P(Q) + P'(Q)q_i}_{\mathsf{MR}} - \underbrace{C'_i(q_i)}_{\mathsf{MC}} = 0$$

- Maximize profit where $MR_i = Mc_i$
 - \Box the firm assumes that changes in q_i affect its total revenue only through their direct effect on market price

Bertrand vs. Cournot vs. Cartel

- In Cournot game, industry profits
 - Lower than in the cartel model (P_AAEP_C <P_MMDP_C)
- DWL
 - Smaller in the Cournot model (3) than in the cartel situation (1+2+3)

Varying the Number of Cournot Firms

- □ The Cournot model
 - Can represent the whole range of outcomes by varying the number of firms
 - \blacksquare $n = \infty \Rightarrow$ perfect competition
 - \blacksquare $n = 1 \Rightarrow$ perfect cartel / monopoly
- □ *n* identical firms
 - Same cost function $C(q_i)$
 - In equilibrium, each produces $q_i = Q/n$

Varying the Number of Cournot Firms

- □ Difference between price and marginal cost: P'(Q)Q/n
 - The wedge term disappears as *n* grows large; firms become infinitesimally small price takers
 - ☐ Price approaches marginal cost
 - □ Market outcome approaches the perfectly competitive one
 - As n decreases to 1: the Cournot outcome approaches that of a perfect cartel

Conjectural Variations Model

- ☐ In markets with only a few firms, we can expect there to be strategic interaction among firms
- One way to build strategic concerns into our model is to consider the assumptions that might be made by one firm about the other firm's behavior

Conjectural Variations Model

- □ For each firm i, we are concerned with the assumed value of $\partial q_i / \partial q_i$ for $i \neq j$
- because the value will be speculative, models based on various assumptions about its value are termed <u>conjectural variations models</u>
 - they are concerned with firm *i*'s conjectures about firm *j*'s output variations

Conjectural Variations Model

☐ The first-order condition for profit maximization becomes

$$\frac{\partial \pi_{i}}{\partial q_{i}} = P + q_{i} \left[\frac{\partial P}{\partial q_{i}} + \sum_{j \neq i} \frac{\partial P}{\partial q_{j}} \cdot \frac{\partial q_{j}}{\partial q_{i}} \right] - MC_{i}(q_{i}) = 0$$

The firm must consider how its output decisions will affect price in two ways

- directly
- indirectly through its effect on the output decisions of other firms

Practice example: Natural Springs Duopoly

- Assume that there are two owners of natural springs
 - each firm has no production costs
 - each firm has to decide how much water to supply to the market
- □ The demand for spring water is given by the linear demand function

$$Q = q_1 + q_2 = 120 - P$$

Natural Springs Duopoly

☐ In a Bertrand model, what are the market price and the quantity supplied?

Natural Springs Duopoly

□ In a Cartel model, what are the market price and the quantity supplied?

Cournot's Natural Springs Duopoly

☐ In a Cournot model, what are the market price and the quantity supplied?

EXAMPLE 15.2 Cournot Best-Response Diagrams

- Solve for the Nash equilibrium using graphical methods
 - Graph the intercepts of the best-response functions
 - Intersection between the best responses is the Nash equilibrium
- An isoprofit curve for firm 1
 - Is the locus of quantity pairs providing it with the same profit level

Best-Response Diagram for Cournot Duopoly

Demand: P(Q) = a-Q

Cost: $C_i(q_i) = cq_i$

 Solve for the Cournot firms' best response functions.

Best-Response Diagram for Cournot Duopoly

Best-Response Diagram for Cournot Duopoly

Demand: P(Q) = a-Q

Cost: $C_i(q_i) = cq_i$

- Firms' best responses are drawn as thick lines;
 - Their intersection (E) is the Nash equilibrium of the Cournot game.

$$q_1 = \frac{a - q_2 - c}{2}$$
 $q_2 = \frac{a - q_1 - c}{2}$

- An iso-profit curve for firm 1
 - Is the *locus* of quantity pairs providing it with the same profit level

Iso-profit curve: inverse U-shape

- As q_1 was close to 0 and q_1 increases, $100/q_1$ dominates, and q_1+100/q_1 decreases if $q_1<10$
 - So if q₁<10, q₂ must be increasing to keep profit constant at 100
- As q_1 increases further (>10), q_1 will begin to dominate, and q_1+100/q_1 increases
 - So q₂ must be decreasing to keep profit constant at 100

Iso-profit curve

 As profit increases from 100 to 200 to yet higher levels, the associated isoprofits shrink down to the monopoly point, which is the highest isoprofit on the diagram.

Question: Why does firm 1's individual isoprofit reach a peak on its best-response function?

Intuition: On firm 1's best-response function, for a given level of q2

- If firm 1 increases its output q1, profit will decrease.
- If firm 1 decreases its output q1, profit will also decrease.

Hence, the point on the best-response function is at the peak of the isoprofit curve.

Best-response diagrams
$$q_1 = \frac{a - q_2 - c}{2}$$
 $q_2 = \frac{a - q_1 - c}{2}$

$$q_1 = \frac{a - q_2 - c}{2}$$

$$q_2 = \frac{a - q_1 - c}{2}$$

- Panel (a) depicts an increase in both firms' marginal costs, c, shifting their best responses inward.
- If marginal costs are different as in Panel (b), output q_1 is lower, q_2 is higher.
- What about an increase in the preference parameter, α ?

Practice example:

- Let c_i be the constant marginal and average cost for firm i (so that firms may have different marginal costs). Suppose demand is given by P=1-Q.
- □ 1. Calculate the Nash equilibrium quantities assuming there are two firms in a Cournot market. Also compute market output, market price, firm profits, industry profits, consumer surplus, and total welfare.
- □ 2. Represent the Nash equilibrium on a best-response function diagram. Show how a reduction in firm 1's cost would change the equilibrium. Draw a representative isoprofit for firm 1.

Prices or Quantities?

- □ Bertrand model price competition
 - Discontinuous jump from monopoly to perfect competition if just two firms enter
 - Additional entry beyond two has no additional effect on the market outcome
- Cournot model quantity competition
 - Industry grows more competitive as the number n of firms entering the market increases

Capacity Constraints

- ☐ For the Bertrand model to generate the Bertrand paradox
 - Firms must have unlimited capacity
 - More realistically, firms may not have an unlimited ability to meet all demand
- ☐ Starting from equal prices, if a firm lowers its price the slightest amount, then its demand essentially doubles. The firm can satisfy this increased demand because it has no capacity constraints.
- ☐ If the undercutting firm could not serve all the demand because of capacity constraints, that would leave some residual demand for the higher-priced firm and would decrease the incentive to undercut.

Capacity Constraints

- □ Two-stage game
 - Firms build capacity in the first stage
 - Firms choose prices p_1 and p_2 in the second stage
 - Sales of firms cannot exceed the capacity chosen in the first stage
 - If the cost of building capacity is sufficiently high
 - □ Equilibrium the same as the Nash equilibrium of the Cournot model
 - ☐ As if firms choose quantities rather than price.

假设市场上有两家企业A和B,生产同质化产品,边际成本均为c。在没有产能约束的情况下,按照Bertrand模型,两家企业会不断降价,最终价格都降至c,利润为零。但如果引入产能约束,假设每家企业的最大产能为q,市场总需求为 D(p)。在选择价格时,企业A和B都需要考虑自己的产能限制。如果企业A设定价格p₁,企业B设定价格p₂,消费者会购买价格较低的产品,但如果价格相同,则按比例分配。由于产能有限,即使某家企业价格略低,它也无法满足所有需求,因此企业不会无限制地降价,而是会在产能约束下选择一个最优价格,使得自己的产量和价格组合能够最大化利润,这类似于Cournot模型中企业选择产量的过程,最终的市场结果也会更接近Cournot模型的均衡结果

Product Differentiation

- □ To avoid the Bertrand paradox
 - Assume that firms produce differentiated products
- Market
 - A group of closely related products
 - ☐ That are more substitutable among each other
 - As measured by cross-price elasticities
 - ☐ Than with goods outside the group

Bertrand competition with differentiated products

- ☐ There are *n* firms competing in a particular market
 - Each product has its own attributes, a_i
- □ The product's attributes affect its demand

$$q_i(p_i, P_{-i}, a_i, A_{-i})$$

- Where P_{-i} is a list of all other firms' prices
- \blacksquare And A_{-i} is a list of the attributes of other firms' products

Bertrand competition with differentiated products

- ☐ Firm *i*'s
 - Total cost: $C_i(q_i, a_i)$
 - Profit: $\pi_i = p_i q_i C_i(q_i, a_i)$
- ☐ First-order conditions for a maximum:

$$\frac{\partial \pi_i}{\partial p_i} = q_i + p_i \frac{\partial q_i}{\partial p_i} - \frac{\partial C_i}{\partial q_i} \cdot \frac{\partial q_i}{\partial p_i} = 0$$

$$\frac{\partial \pi_i}{\partial a_i} = p_i \frac{\partial q_i}{\partial a_i} - \frac{\partial C_i}{\partial a_i} - \frac{\partial C_i}{\partial q_i} \cdot \frac{\partial q_i}{\partial a_i} = 0$$

Bertrand competition with differentiated products

☐ First-order conditions for a maximum:

$$\frac{\partial \pi_i}{\partial p_i} = q_i + p_i \frac{\partial q_i}{\partial p_i} - \frac{\partial C_i}{\partial q_i} \cdot \frac{\partial q_i}{\partial p_i} = 0$$

Blue box: marginal revenue from an increase in price.

Red box: cost savings associated with the reduced sales that accompany an increased price.

Regarding the choice of a_i is more complex, let's take a look at the next two examples.

- Two firms produce toothpaste
 - One a green gel and the other a white paste
 - Suppose that production is costless
- Demand for product i, $q_i = a_i p_i + p_i/2$
 - The goods are gross substitutes (positive coefficient on p_i)
 - Suppose that attribute a_i is an endowment rather than a choice variable for the firm.

- Two firms produce toothpaste
 - One a green gel and the other a white paste
 - Suppose that production is costless
- Demand for product i, $q_i = a_i p_i + p_i/2$
- Firm i's profit: $\pi_i = p_i q_i C_i(q_i) = p_i(a_i p_i + p_i/2)$
 - Where $C_i(q_i) = 0$ for simplicity
 - First-order condition for profit maximization

$$\frac{\partial \pi_i}{\partial p_i} = a_i - 2p_i + p_j/2 = 0$$

Best-response functions

$$p_1 = \frac{1}{2} \left(a_1 + \frac{p_2}{2} \right), \quad p_2 = \frac{1}{2} \left(a_2 + \frac{p_1}{2} \right)$$

Nash equilibrium prices

$$p_i^* = \frac{8}{15}a_i + \frac{2}{15}a_j$$

- Firm i's equilibrium price is not only increasing in its own attribute, a_i , but also in the other product's attribute, a_i .
- An increase in a_j causes firm j to increase its price, which increases firm i 's demand and thus the price firm i charges.

Best-response functions

$$p_1 = \frac{1}{2} \left(a_1 + \frac{p_2}{2} \right), \quad p_2 = \frac{1}{2} \left(a_2 + \frac{p_1}{2} \right)$$

Nash equilibrium prices

$$p_i^* = \frac{8}{15}a_i + \frac{2}{15}a_j$$

Profits

$$\pi_i^* = \left(\frac{8}{15}a_i + \frac{2}{15}a_j\right)^2$$

FIGURE 15.4 Best Responses for Bertrand Model with Differentiated Products

Firm' best responses are drawn as thick lines; their intersection (E) is the Nash equilibrium.

- Ice cream stands located on a beach
 - We will take the locations of the ice cream stands as given.
 - Demanders are located uniformly along the beach
 - One at each unit of beach
 - Ice cream cones are costless to produce
 - But carrying them back to one's place on the beach results in a cost of td²
 - *t* = temperature
 - d = distance

FIGURE 15.5 Hotelling's Beach

Ice cream stands A and B are located at points a and b along a beach of length L. The consumer who is indifferent between buying from the two stands is located at x. Consumers to the left of x buy from A and to the right buy from B.

 A person located at point x will be indifferent between stands A and B if

$$p_A + t(x - a)^2 = p_B + t(b - x)^2$$

- Where p_A and p_B are the prices charged by each stand, and $t(x-a)^2$ is the transportation cost.
- Solving for x we get

$$x = \frac{b+a}{2} + \frac{p_B - p_A}{2t(b-a)}$$

 If the two stands charge an equal price, the indifferent consumer is located midway between a and b

Consumers 0 to x buy from A;

$$q_A(p_B, p_A, a, b) = x = \frac{b+a}{2} + \frac{p_B - p_A}{2t(b-a)}$$

the remaining L-x consumers buy from B.

$$q_B(p_B, p_A, b, a) = L - x = L - \frac{b+a}{2} + \frac{p_A - p_B}{2t(b-a)}$$

 Solve for Nash Equilibrium price and profits for the two firms.

The Nash equilibrium prices:

$$p_{A}^{*} = \frac{t}{3}(b-a)(2L+a+b)$$
$$p_{B}^{*} = \frac{t}{3}(b-a)(4L-a-b)$$

Profits for the two firms:

$$\pi_A^* = \frac{t}{18} (b-a) (2L+a+b)^2$$

$$\pi_B^* = \frac{t}{18} (b-a) (4L-a+b)^2$$