

Introduction to source coding

Dr. Yoann Altmann

B39AX – Fall 2023 Heriot-Watt University

Plan

- Types of compression
- Lossless compression
 - Expected code length
 - Prefix codes
 - Optimal codes
 - Shannon source coding theorem (symbol code)
 - Huffman code
- Based on the book:
 "Information Theory,. Inference, and Learning Algorithms". David J.C. MacKay (Chap. 4-5)

Expected length of encoded symbol

$$L(X,C) = \sum_{x \in \mathcal{A}} p(x)l(x) = \sum_{i=1}^{l} p_i l_i$$

- $I = |\mathcal{A}|$
- $l_i = l(a_i)$
- $p_i = p(x = a_i)$
- To achieve optimal compression using a uniquely decodable code, we want to minimize L(X, C) (shortest expected length)

Examples

•
$$H(X) = 1.75$$

•
$$L(X, C_1) = 2 > H(X)$$

- Uniquely decodable
- $L(X, C_2) = 1.25 < H(X)$

But not uniquely decodable

• $L(X, C_3) = 1.75 = H(X)$

Uniquely decodable

a_i	p_i	$c(a_i)$	l_i
а	1/2	00	2
b	1/4	01	2
С	1/8	10	2
d	1/8	11	2

a_i	p_i	$c(a_i)$	l_i
а	1/2	0	1
b	1/4	1	1
С	1/8	00	2
d	1/8	11	2

a_i	p_i	$c(a_i)$	l_i
а	1/2	0	1
b	1/4	01	2
С	1/8	011	3
d	1/8	111	3

 C_3

 C_2

Low bound for the expected length

 L(X, C) for a uniquely decodable code is bounded below by H(X)

$$H(x) \leq L(X,C)$$

If the codelengths are equal to the Shannon information contents

$$l_i = -\log_2 p_i$$
, $\forall i$,

the code is optimal.

More generally, an optimal code minimizes L(X, C)

Examples

• C_1 and C_3 are uniquely decodable

a_i	p_i	$c(a_i)$	$-log_2(p$	l_i
а	1/2	00	1	2
b	1/4	01	2	2
С	1/8	10	3	2
d	1/8	11	3	2

Are they optimal?

- C_1 is not optimal
- C_3 is optimal

 C_2

Kraft inequality

 If a code is uniquely decodable, its lengths satisfy the following Kraft inequality

$$\sum_{i=1}^{l} 2^{-l_i} \le 1$$

- · This becomes an equality for an optimal code
- If a code does not satisfy this inequality, it is not uniquely decodable

Example

• H(X) = 1.75

 C_2

•	$\sum_{i=1}^{I}$	2^{-l_i}	=	$\frac{1}{2}$	+	$\frac{1}{2}$	+	$\frac{1}{4}$	+	$\frac{1}{4}$	=	1.5	5
---	------------------	------------	---	---------------	---	---------------	---	---------------	---	---------------	---	-----	---

a_i	p_i	$c(a_i)$	l_i
а	1/2	0	1
b	1/4	1	1
С	1/8	00	2
d	1/8	11	2

This code is not uniquely decodable

Source coding theorem for symbol codes

 For a RV X, there exists a prefix code C whose expected length satisfies

$$H(x) \le L(X,C) < H(x) + 1$$

The expected length is bounded above by the entropy

Construction of an optimal code

- So far, we have proved the existence of "good" prefix codes
- We can assess if a code is uniquely decodable
- How can we construct an optimal code?
 - Huffman code