

Block 3 RELATIONAL DESIGN

Debora Gil, Oriol Ramos, Carles Sanchez

Contents

- 1. Introduction
- 2. ER design to Relational Model

1. Introduction

Logical design

Conceptual Design (ER Model)

1. ER Design Relational Model

- 1.1 Relational Model
- 1.2 Tables Diagram from an ER Design
- 1.3 Examples

1.1 Relational Model

Definition

- Data high level description that guarantees its integrity.
- Is the unique theoretical model implementable with basic rules
- First defined in June 1970 by Edgar Codd, of IBM's San Jose Research Laboratory.
- Has become the predominant type of database, although another models exist.

Components

Data structure. Description by Relations / Tables.

Integrity rules. Rules to ensure the queries consistency

Entity (Table, PK)

Referential (relations between tables, FK)

Operators to access data by content: Relational algebra

Relational calculus

Relational components

Objects

Features

Related information

Relation (Table)

Domain (allowed values of attributes)

Relational database (set of referenced tables)

Database

Collection of related tables (referenced, linked) together

Database

Database Integrity

FK contains all the PK attributes of the PK referred (pointed to)
The arrow must always point to PK to ensure propagation changes

1.2 Tables diagram from an ER Design

Structures

ER design

Tables diagram

Table (header with the atributes, PK)

Foreign Key FK (references)

Attributes (Simple)

conversion

15

Conversions

Entities → Table

Strong: Entity PK Weak: Weak entity PK + FK with value strong PK

- Relationships
 - Binary 1-n: FK on n-side entity with PK value on 1-side entity
 Ex: Table A PK A
 Table B PK B + FK A
 - Binary 1-1: FK on 1-side entity with PK value on 1-side entity
 - + FK uniqueness constraint
 Ex: Table A PK A + FK B Table B PK B + FK A
 - Binary n-n: Table with PK union participating entities PK's +FK for each participating entity

Ex: Table A - PK A Table B - PK B Table C - PK(FK A + FK B)

- Ternari: Table with PK union n-side participating entities PK's +FK for each participating entity
- Attributes

Simple, composite → attributes

Multivalued: Table with attribute PK and entity PK + FK with value entity PK

Strong Entities

Example:

Weak Entities

Weak Entity

Attributes (simple) Discriminant

Table

Weak attributes

PK= Discriminant PK

U Strong entity PK

FK = Strong entity PK

Strong Entity

Attributes (simple) PK

Example

Relationships

They become a table or a relationship between interrelated entities depending on the cardinality:

Cardinality 1-n: Attributes are passing to n-side entity and the interrelationship is converted to relationship between tables (FK to the n-side entity)

Cardinality n-n: Relationship is converted to a new table with FK linking two related tables. The new table PK is the union of the related tables PK

Example. cardinality 1-n

Example. cardinality n-n

Attributes

Simple and composite attributes have direct translation into simple attributes with a certain domain.

Multivalued generate a table with FK:

<u>Aggregations</u>

Example

<u>Specializations</u>

Example

Specializations

Example

1.3 Examples

Example 2 player country) (Name) n team plays n dates n stadium Piece cost <u>code</u> position

