16 - Mar 8 Lecture

- effects of row replacement, row interchange, and scaling on rectangle
- eigenvalues
- eigenvectors
- eigenspaces
- how to find eigenvalues of a matrix

Ex: Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(z) = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \overrightarrow{z}$.

What happens when we apply T on a vector that is not an eigenvector?

$$T(\vec{e}_1) = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$T(\vec{e}_2) = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

로 does not get scaled. 큰 has an unpredictable transformation in a random direction.

What happens when we apply T on an eigenvector? (From example on previous page)

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \overrightarrow{y}$$

$$\begin{bmatrix} -2 \\ 2 \end{bmatrix} = -2\overrightarrow{x}$$

$$\begin{bmatrix} 6 \\ 2 \end{bmatrix} = 2\overrightarrow{y}$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \overrightarrow{x}$$

로 gets scaled and stays along the same "line"

Ex. Given A and 3 of its eigenvectors, find the corresponding eigenvalues.

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 2 & -1 & 1 \end{bmatrix} \qquad \overrightarrow{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \overrightarrow{V}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \overrightarrow{V}_3 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$A\vec{v}_1 = \begin{bmatrix}
1 & 3 & -2 \\
3 & -2 & 1 \\
2 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} = 1 \cdot \vec{v}_1 \implies \lambda_1 = 1$$

$$\overrightarrow{A}\overrightarrow{v}_{2} = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = 2 \cdot \overrightarrow{v}_{2} \implies \overrightarrow{\lambda}_{2} = 2$$

$$A\vec{v}_3 = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ -3 \end{bmatrix} = -3 \cdot \vec{v}_3 \implies \lambda_3 = -3$$

Note: order doesn't matter, just specify which is which. i.e. $\lambda_1 = -3$, $\lambda_2 = 2$, $\lambda_3 = 1$ works as well

Ex: Identify the eigenvalues corresponding to \$\vec{e}_1\$, \$\vec{e}_2\$, and \$\vec{e}_3\$. $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{vmatrix} 2 & 0 & 0 & | & 1 & | & 2 \\ A\vec{e}_1 &= & 0 & -1 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \end{vmatrix} = 2\vec{e}_1 \implies \lambda_1 = 2 \text{ with corresponding eigenvector } \vec{e}_1$ Note: while an eigenvector cannot be a zero vector, an eigenvalue CAN be zero. If $\vec{v}_1, ..., \vec{v}_p$ are eigenvectors corresponding to distinct eigenvalues, then $\{\vec{v}_1, ..., \vec{v}_p\}$ is linearly independent. $A\vec{x} = \lambda \vec{x} \implies A\vec{x} = \lambda \vec{1}\vec{x} \implies A\vec{x} - (\lambda \vec{1}\vec{x}) = \vec{0} \implies (A - \lambda \vec{1})\vec{x} = \vec{0}$ Recall: if $B\vec{x} = \vec{0}$, B is not invertible $\mapsto \lambda$ is an eigenvalue of A if and only if $(A-\lambda I)$ is not invertible. $\mapsto \lambda$ is an eigenvalue of A if and only if $(A-\lambda I)\vec{x} = \vec{O}$. $\rightarrow \lambda$ is an eigenvalue of A if and only if $\text{Det}(A - \lambda I) = 0$. The eigenspace corresponding to λ is the null space of $A - \lambda I$. Eigenspaces are subspaces. \rightarrow this is why we had to add \overrightarrow{o} to eigenspace To find eigenvectors for a given eigenvalue, identify the null space of $A-\lambda I$. A is invertible if and only if 0 is not an eigenvalue

Finding eigenvalues - hard

Finding eigenvalues w/ eigenvectors -> easy (algorithm)

Ex. Find the null space of
$$A = \lambda I$$
.

(A from previous example)

 $\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_1 = -3$
 $\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_1 = -3$

8 8 F

$$\begin{bmatrix}
1 - 1 & 3 & -2 \\
3 & +2 & 1 & 1 \\
2 & -1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 3 & -2 \\
3 & +2 & 1 & 1 \\
2 & -1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 3 & -2 \\
3 & +2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 3 & -2 \\
3 & +2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 3 & -2 \\
3 & +2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 3 & -2 \\
3 & +2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 3 & -2 \\
3 & +2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}$$

"Evil" method for finding eigenvalues of a matrix :

- 1. Find det of A- \(\lambda \text{I}\)
- 2. Factor polynomial

Ex: For what values of
$$\lambda$$
 is A invertible? (aka when det $\neq 0$)

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 2 & -1 & 1 \end{bmatrix} \qquad A - \lambda I = \begin{bmatrix} 1 - \lambda & 3 & -2 \\ 3 & -2 - \lambda & 1 \\ 2 & -1 & 1 - \lambda \end{bmatrix}$$

Det
$$\begin{pmatrix} \begin{bmatrix} 1-\lambda & 3 & -2 \\ 3 & -2-\lambda & 1 \\ 2 & -1 & 1-\lambda \end{pmatrix}$$
 This is a "characteristic polynomial" $= -\lambda^3 + c_1 \lambda^2 + c_2 \lambda + c_3$

Eigenvalues: zeroes of the characteristic polynomial

Ex: Find the eigenvalues of matrix A.
$$A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} \quad A - \lambda I = \begin{bmatrix} 3 - \lambda & 5 \\ 1 & -1 - \lambda \end{bmatrix}$$

$$\operatorname{Det} \begin{bmatrix} 3-\lambda & 5 \\ 1 & -1-\lambda \end{bmatrix} = (3-\lambda)(-1-\lambda) - (5)(1) = -3-3\lambda + \lambda + \lambda^2 - 5 = \lambda^2 - 2\lambda - 8$$

Find roots using the quadratic formula.

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)}$$

$$= \frac{2 \pm \sqrt{4 + 32}}{2}$$

$$= \frac{2 \pm \sqrt{36}}{2}$$

$$= \frac{2 \pm 6}{2}$$

$$= 1 \pm 3 \quad \stackrel{-}{\Longrightarrow} \quad \lambda_1 = 1 - 3 = \frac{-2}{4}$$

$$\stackrel{+}{\Longrightarrow} \quad \lambda_2 = 1 + 3 = \frac{4}{4}$$

	ר זר ז ר. ג'ז
Corr. to last lec. Add. to last lec.	[a][o] [a o] [o d]
Row replacement	
R'= R1 + R2	
Row Interchange	
$R_1 \leftrightarrow R_2$	(no change)
K1 ← K2	
Scaling	
R ₁ = 2 R ₁	
	"V that when multiplied by A, get scaled."
Exs:	
2	A = , _ , <u>x</u> = , <u>y</u> = ,
\mathcal{I}	A $\vec{x} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} = -2\vec{x}$ eigenvector corresponding to -2 like a line \vec{x}
/ .	1 2 Teigenvalue : - 2
	trans. on x
6	eigenvector corresponding to 2
CM ab	$A \vec{y} = \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \underbrace{2} \vec{y} \leftarrow \text{ eigenvector corresponding to 2}$ $\stackrel{\text{deigenvalue}}{\leftarrow} 2$
3444	lamda
$\rho_{\Lambda_{\Omega_0}}$	An eigenvalue of A is a scalar λ such that $A\bar{x} = \lambda \bar{x}$ has a non-trivial (not $\bar{0}$) solution \bar{x} .
	Such an x is called an eigenvector corresponding to 2".
	(including)
	The set of all eigenvectors of A corresponding to λ union the zero vector is known as the
	eigenspace of A corresponding to λ .
	Eigen values / vectors only appear for <u>square</u> matrices.
Ex:	Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\vec{z}) = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \vec{z}$ $\vec{z} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} T(\vec{z}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	T (P.)
standard	T (e)? Ton (Non-eigenvectors)
standari basis vectors	
	, , , , , , , , , , , , , , , , , , ,
	T on
	-2ẋ , (eigenvectors)
	$\xrightarrow{\qquad} \xrightarrow{\qquad} \xrightarrow{2\overline{y}} \qquad \mapsto \text{stay along same line}$
	•

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 2 & -1 & 1 \end{bmatrix} \qquad \overrightarrow{V}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \overrightarrow{V}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \overrightarrow{V}_3 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$A \overrightarrow{V}_1 = \underline{1} \cdot \overrightarrow{V}_1 \qquad A \overrightarrow{V}_2 = \underline{2} \overrightarrow{V}_2 \qquad A \overrightarrow{V}_3 = -\underline{3} \overrightarrow{V}_3 \qquad \text{Order does not matter, just}$$

$$\lambda_1 = 1 \qquad \lambda_2 = 2 \qquad \lambda_3 = -3 \qquad \lambda_3 = -3, \quad \lambda_2 = 2, \quad \lambda_3 = 1 \text{ is fine too}$$

Ex. Find the

A =
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 A $\overrightarrow{e}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = 2\overrightarrow{e}_1 \Rightarrow \lambda_1 = 2$ with corresponding eigenvector \overrightarrow{e}_1

A $\overrightarrow{e}_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} = -1\overrightarrow{e}_2 \Rightarrow \lambda_2 = -1$ with corresponding eigenvector \overrightarrow{e}_2

be zero vector, be zero $A\overrightarrow{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \overrightarrow{e}_3 \Rightarrow \lambda_3 = 0$ with corresponding eigenvector \overrightarrow{e}_3 but λ can be zero $A\overrightarrow{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Generalization | If $\vec{v_1}, \dots, \vec{v_p}$ are eigenvectors corresponding to distinct eigenvalues, then $\{\overrightarrow{v_1}, \dots, \overrightarrow{v_p}\}$ is linearly independent.

(i.e. different)

$$\frac{B\vec{x} = \vec{0} \implies B \text{ not invertible}}{A\vec{x} = \lambda \vec{x} \implies A\vec{x} = \lambda \vec{1} \vec{x} \implies A\vec{x} - (\lambda \vec{1})\vec{x} = \vec{0} \implies (\underline{A - \lambda \vec{1}})\vec{x} = \vec{0}$$

 $\rightarrow \lambda$ is an eigenvalue of A iff (A- λ I) is <u>not invertible</u>.

 $\rightarrow \lambda$ is an eigenvalue of A iff Det(A- λ I) = 0.

The eigenspace corresponding to λ is the null space of A- λ I. Eigenspaces are subspaces. (which is why we had to add back o)

To find eigenvectors for a given eigenvalue, identify the null space of A- λI . A is invertible iff 0 is not an eigenvalue.

finding eigenvalues wl eigen vectors? -> easy (algo)

want	to find null space of A-XI
A from above	[1 3 -2]
	$\begin{bmatrix} 1 & 3 & -2 \\ A = \begin{bmatrix} 3 & -2 & 1 \\ 3 & -1 & 1 \end{bmatrix} \lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = -3$
	[2 - 1 1]
	₹ RREF
	$\begin{bmatrix} 0 & 3 & -2 & 0 \\ 3 & -3 & 1 & 0 \\ 2 & -1 & 0 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & -1/3 & 0 \\ 0 & 1 & -2/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $ Eigenspace is $\begin{bmatrix} 1/3 \\ 2/3 \\ 1 \end{bmatrix} $ $\Rightarrow \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is an eigen \overline{V} corresponding to λ_1
	3 =3 1 0 $\sim \sim 0$ 1 -2/3 0 = Null space Span $\left\langle \begin{array}{c} 2/3 \\ \end{array} \right\rangle \Rightarrow 2$ corresponding
	$\begin{bmatrix} 2 & -1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 & \lambda_1 & 0 \end{bmatrix}$
	$A - \lambda_1 I$ B B F Let $x_3 = t$
	-1 on main diagona/ $x_1 = \frac{1}{3}t$ $\begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} y_3 \end{bmatrix}$
	-1 on main diagona/ $x_1 = \frac{1}{3}t \qquad x_1 \qquad x_2 = \frac{2}{3}t \rightarrow x_2 = t \qquad x_1 \qquad x_2 = t \qquad x_3$
	$0 = 0$ $\begin{bmatrix} x_3 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$
_	
	[4 3 -2 0] [101 0] Eigenspace is: ([-t]) [[-17]
	$3 \mid 1 \mid 0 \mid \sim \sim \mid 0 \mid -2 \mid 0 \mid$ $\left\{ 2t \mid \text{for all } t \in \mathbb{R} \right\} = \text{Span} \left\{ 2 \right\}$
1 resultang	$\begin{bmatrix} 4 & 3 & -2 & 0 \\ 3 & 1 & 1 & 0 \\ 2 & -1 & 4 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad Eigenspace is: \begin{cases} -t \\ 2t \\ t \end{cases} \text{ for all } t \in \mathbb{R} \end{cases} = Span \begin{cases} -1 \\ 2 \\ 1 \end{bmatrix}$
Micra VIOO MADO ?	$A - \lambda_3 I$ $\lambda_3 = t$ $\lambda_1 $ $\lambda_3 = t$ $\lambda_1 $
wierd result PR Algo wrong PR Algo eigen -?	A- λ_3 I $X_3=t$ X_1 $X_2=t$ X_1 add 3 to main diagonal $X_1=-t$ $X_2=t$ $X_3=t$ $X_4=t$ $X_5=t$
<u>.</u>	since $\lambda_3 = -3$ $\lambda_2 = 2t$ λ_3
\rightarrow A	[27
/ 💥	2 -4 is another
•	invertible for what values of λ ? and when det $\neq 0$
	[1-λ 3 -2]
	$A - \lambda I = \begin{bmatrix} 1 - \lambda & 3 & -2 \\ 3 & -2 - \lambda & 1 \\ 2 & -1 & 1 - \lambda \end{bmatrix}$
evil method .X	2 -1 1-λ
→ find det	$ \begin{bmatrix} 1-\lambda & 3 & -2 \\ 3 & -2-\lambda & 1 \\ 2 & -1 & 1-\lambda \end{bmatrix} $ General method for finding $\underline{}$? \longrightarrow Find det (not good wethod) $= -\lambda^3 + c_1 \lambda^2 + C_2 \lambda + c_3$ "characteristic polynomial"
→ factor polynomial	Det $3^{-2-\lambda}$ $= -\lambda^3 + c_1 \lambda^2 + C_2 \lambda + c_3$
	【2 -1 1-λ】 "characteristic polynomial"
	What are the eigenvalues?
	→ Zeroes of the characteristic polynomial ;

Ex: Find eigenvalues of matrix Find det
$$A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} A - \lambda I = \begin{bmatrix} 3 - \lambda & 5 \\ 1 & -1 - \lambda \end{bmatrix} Det \left(\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} \right) = (3 - \lambda)(-1 - \lambda) - (5)(1) = \lambda^2 - 2\lambda - 8$$

Find voots (quadratic formula)

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} =$$