Graphene: Efficient Interactive Set Reconciliation Applied to Blockchain Propagation

19210240055

袁和昕

Background

- P2p distributed systems
- End-points need to talk to each other

Background: Txns

- Transactions (txns) are transfers of money
- Unvalidated txns are broadcast

Background: Blocks

- Transactions (txns) are transfers of money
- Unvalidated txns are broadcast

Background: Blocks

- Transactions (txns) are transfers of money
- Unvalidated txns are broadcast
- Blocks are comprised of txns

Background: Mempool

- Blocks are comprised of txns
- Each peer in the network has a pool of unvalidated txns, called the mempool
- Peers clear out txns from their mempool

Motivation

 Many distributed systems require synchronization of records among processes

- Blockchains are just the latest example
 - Replicas in distributed databases
 - Distributed sensors
 - Security certifications
- Must solve set reconciliation

Setup

· Goal: Send as little data as possible over the wire

Problem Definition

Given a block of txns from Alice, and a set of txns at Bob, determine:

 The subset of Bob's txns that are in the block

The subset of txns that Bob is missing

Contributions

- A new protocol that solves which elements in a set M stored by a receiver are members of a subset $N \subseteq M$
- Extension of our protocol where some of the elements of N are missing
- Efficient search algorithm for parameterizing an IBLT
- Evaluation using open-source deployment in the real-world, mathematical analysis, and simulation

Bloom Filters

- Bloom filters represent a set of n items
- binary array T (initial value is 0), $\frac{-n\log_2 f}{\ln^2 2}$ bits
- k hash functions $h_1, ..., h_k$

•
$$\forall x \in S, 1 \le i \le k, T[h_i(x)] = 1, \forall x \in S, 1 \le i \le k$$

• $T[h_{i(X)}] == 1,1 \le i \le k$

Bloom Filters

- The False Positive Rate (FPR) is tunable
 - More bits will lower the FPR
- Number of FPs we will observe approximately follow a binomial distribution with two parameters:
 - n: number of items to test for membership
 - p: probability of failure

If **FPR** = $\frac{1}{m-n}$, then we expect

1 transaction from mempool to falsely appear to be in the m – n txs

- IBLTs are a generalization of Bloom Filters
 - Instead of a bit, cells include a count and actual content
- IBLTs I
 - jitems, $c = j\tau$ rows, k + 1 hash functions, k sub-tables of size c/k

row	count	keySum	value	checkSum
0	1	0x6170706c65	0b0011	100f7a
1	1	0x6170706c65	0b0011	100f7a

We can separate the key-value pairs through the table rows where the count is 1 and recalculate the insertion position to delete the key-value pairs from the table.
 By gradually deleting the table row where the count is 1, the original set S can be recovered from the IBLT table I.

row	count	keySum	Value	checkSum
0	1	0x6170706c65	0b0011	100f7a
1	1	0x6170706c65	0b0011	100f7a

- IBLTs support subtraction
 - IBLTs must be the same size for subtraction
 - Subtraction recovers symmetric difference, $(S_A S_B) \cup (S_B S_A)$
- If subtraction recovers the entire symmetric difference, then we say that the subtraction decoded

row	count	keySum	Value	checkSum
0	1	0x6170706c65	0b0011	100f7a
1	-1	0x4300754343	044326	100e1b

Graphene

- There is something to optimize!
- The figure shows that we don't need a low FPR for Bloom filter
 - The IBLT can help us recover from the mistakes made by the Boom filter

Graphene

- A occurs in X with probability at least β .
- Given a block of txns from Alice (blue)

 Protocol 1: The subset of Bob's txns that are in the block (purple)

Protocol 2: The subset of txns that Bob is missing (red)

Compact Blocks

inv: block headers

getdata: requests the block if needed

Alice's block: n txs
 Bob's mempool: m txs

The block is a subset of the mempool

Sender

The block is a subset of the mempool

Sender

The block is a subset of the mempool

Sender

block

Bloom Filter S

$$f_S = \frac{a}{m-n}$$

Figure 4: [Protocol 1] Passing m mempool transactions through S results in a FPs (in dark blue). A green outline illustrates $a^* > a$ with β -assurance, ensuring IBLT I decodes.

Figure 4: [Protocol 1] Passing m mempool transactions through S results in a FPs (in dark blue). A green outline illustrates $a^* > a$ with β -assurance, ensuring IBLT I decodes.

The block is a subset of the mempool

Sender

The block is a subset of the mempool

Sender

$$f_S = \frac{a}{m-n}, a^* = (1+\delta)a$$

$$T_I = r\tau(1+\delta)a, T_{BF} = \frac{-n\ln f_S}{8(\ln 2)^2}$$

$$T = T_{BF} + T_I = \frac{-n \ln(\frac{a}{m-n})}{8(\ln 2)^2} + r\tau(1+\delta)a$$

The block is a subset of the mempool

Sender

$$T(a) = T_{BF} + T_I = \frac{-n \ln(\frac{a}{m-n})}{8(\ln 2)^2} + r\tau(1+\delta)a$$

$$a = n/(8r\tau \ln^2 2), \delta = 0$$

accurate only for a > 100

THEOREM 1: Derivation of a*

Let m be the size of a mempool that contains all n transactions from a block. If a is the number of false positives that result from passing the mempool through Bloom filter S with FPR f_S , then $a^* \ge a$ with probability β when

$$a^* = (1 + \delta)a$$
,

where
$$\delta = \frac{1}{2}(s + \sqrt{s^2 + 8s})$$
 and $s = \frac{-\ln(1-\beta)}{a}$

THEOREM 1: Derivation of a*, PROOF

LEMMA 1: Let A be the sum of i independent Bernoulli trials A_1, \ldots, A_i , with mean $\mu = E[A]$. Then for $\delta > 0$

$$Pr[A \ge (1+\delta)\mu] \le Exp\left(-\frac{\delta^2}{2+\delta}\mu\right)$$

Starting from the well-known Chernoff bound

$$Pr[A \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$

$$= \operatorname{Exp}(\mu(\delta - (1+\delta)\ln(1+\delta)))$$

$$\le \operatorname{Exp}\left(\mu\left(\delta - (1+\delta)\left(\frac{2\delta}{2+\delta}\right)\right)\right)$$

$$= \operatorname{Exp}\left(\frac{-\delta^2}{2+\delta}\mu\right)$$

$$ln(1+x) \ge \frac{x}{1+x/2} = \frac{2x}{2+x}$$
 for $x > 0$

THEOREM 1: Derivation of a*, PROOF

There are m-n potential false positives that pass through S. They are a set A_1, \ldots, A_{m-n} of independent Bernoulli trials such that $Pr[A_i = 1] = f_S$. Let $\sum_{i=1}^{m-n} A_i = A$ and $\mu = E[A] = f_S(m-n) = a$. From Lemma 1, we have

$$Pr[A \ge (1+\delta)\mu] \le Exp\left(-\frac{\delta^2}{2+\delta}\mu\right)$$

$$\beta = 1 - \text{Exp}\left(-\frac{\delta^2}{2+\delta}a\right)$$

$$\delta = \frac{1}{2}(s + \sqrt{s^2 + 8s}), \text{ where } s = \frac{-\ln(1-\beta)}{a}$$

Figure 5: [Protocol 2] Passing m transactions through S results in z positives, obscuring a count of x TPs (purple) and y FPs (in dark blue). From z, we derive $x^* < x$ with β -assurance (in green).

Figure 6: [Protocol 2] From our bound $m - x^* > m - x$ with β -assurance (in yellow), we can derive a bound for the false positives from S as $y^* > y$ with β -assurance outlined in green.

Figure 5: [Protocol 2] Passing m transactions through S results in z positives, obscuring a count of x TPs (purple) and y FPs (in dark blue). From z, we derive $x^* < x$ with β -assurance (in green).

Figure 6: [Protocol 2] From our bound $m - x^* > m - x$ with β -assurance (in yellow), we can derive a bound for the false positives from S as $y^* > y$ with β -assurance outlined in green.

The block is not a subset of the mempool

Parameterizing b

We show below that $y^* = (1 + \delta)y$. Thus, for protocol 2 the total size is

$$T(b) = \frac{z \ln(\frac{b}{n-x^*})}{8 \ln^2 2} + r\tau(1+\delta)b$$

$$b = z/(8r\tau \ln^2 2)$$

Using z to parameterize R and J

Figure 5: [Protocol 2] Passing m transactions through S results in z positives, obscuring a count of x TPs (purple) and y FPs (in dark blue). From z, we derive $x^* < x$ with β -assurance (in green).

Figure 6: [Protocol 2] From our bound $m - x^* > m - x$ with β -assurance (in yellow), we can derive a bound for the false positives from S as $y^* > y$ with β -assurance outlined in green.

· THEOREM 2:

Let m be the size of a mempool containing $0 \le x \le n$ transactions from a block. Let z = x + y be the count of mempool transactions that pass through S with FPR f_S , with true positive count x and false positive count y. Then $x^* \le x$ with probability β when

$$x^* = \underset{x^*}{\arg\min} \ Pr[x \le x^*; z, m, f_S] \le 1 - \beta.$$

where
$$Pr[x \le k; z, m, f_S] \le \sum_{i=0}^k \left(\frac{e^{\delta_k}}{(1+\delta_k)^{1+\delta_k}}\right)^{(m-k)f_S}$$

and
$$\delta_k = \frac{z-k}{(m-k)f_S} - 1$$
.

• THEOREM 2 PROOF:

Let Y_1, \ldots, Y_{m-x} be independent Bernoulli trials representing transactions not in the block that might be false positives such that $\Pr[Yi = 1] = f_S$. Let $\sum_{i=1}^{m-n} Y_i = Y$ and y = E[Y].

For a given value x, we can compute Pr[Y ≥ y], the probability of at least y false positives passing through the sender's Bloom filter. We apply a Chernoff bound:

$$Pr[y; z, x, m] = Pr[Y \ge (1 + \delta)\mu] \le \left(\frac{e^{\delta}}{(1 + \delta)^{1+\delta}}\right)^{\mu}$$

• THEOREM 2 PROOF:

where $\delta > 0$, and $\mu = E[Y] = (m-x)f_S$. By setting $(1+\delta)\mu = z-x$ and solving for δ , we have

$$(1+\delta)(m-x)f_S = z - x$$

$$\delta = \frac{z - x}{(m-x)f_S} - 1.$$

• THEOREM 2 PROOF:

$$y = z - x$$

$$Pr[x \le k; z, m, f_S] = \sum_{i=0}^{k} Pr[y; z, k, m]$$

$$\le \sum_{i=0}^{k} \left(\frac{e^{\delta_k}}{(1+\delta_k)^{1+\delta_k}}\right)^{(m-k)f_S} \quad \text{where } \delta_k = \frac{z-k}{(m-k)f_S} - 1$$

where
$$\delta_k = \frac{z-k}{(m-k)f_S} - 1$$

$$\underset{x^*}{\arg\min} Pr[x \le x^*; z, m, f_S] \le 1 - \beta$$

· THEOREM 3:

Let m be the size of a mempool containing $0 \le x \le n$ transactions from a block. Let z = x + y be the count of mempool transactions that pass through S with FPR f_S , with true positive count x and false positive count y. Then $y^* \ge y$ with probability β when

$$y^* = (1 + \delta)(m - x^*)f_S,$$
where $\delta = \frac{1}{2}(s + \sqrt{s^2 + 8s})$ and $s = \frac{-\ln(1 - \beta)}{(m - x^*)f_S}$

THEOREM 3 PROOF:

We find $y^* = z - x^* \ge y$ by applying Lemma 1 to $\sum_{i=1}^{m-x} Y_i = Y$, the sum of $m - x^*$ independent Bernoulli such that might be false positives such that $\Pr[Yi = 1] = f_S$ trials and $\mu = (m - x^*)fS$

$$Pr[Y \ge (1+\delta)\mu] \le \operatorname{Exp}\left(-\frac{\delta^2}{2+\delta}\mu\right)$$

$$\beta = 1 - \operatorname{Exp}\left(-\frac{\delta^2}{2+\delta}(m-x^*)f_S\right)$$

$$\delta = \frac{1}{2}(s+\sqrt{s^2+8s}), \text{ where } s = \frac{-\ln(1-\beta)}{(m-x^*)f_S}.$$

THEOREM 3 PROOF:

$$y^* = (1 + \delta)(m - x^*)f_S$$

Figure 20: [Simulation, Protocol 2] The fraction of Monte Carlo experiments where $y^* > y$ via Theorem 3 compared to a desired bound of $\beta = 239/240$ (shown as a red dotted line).

Let H = (V, X, k) be a k-partite, k-uniform hypergraph, composed of a set of c vertices. Let $V = V_1 \cup \cdots \cup V_k$, where each V_i is a subset of c/k vertices (we enforce that c is divisible by k). X is a set of j hyperedges, each connecting k vertices, one from each of the Vi.

IBLT

	row	count	value
Hash 1	1	2	j1⊗j2
	2	2	j3⊗j4
	3	1	j5
Hash 2	4	2	j1⊗j2
	5	2	j3⊗j5
	6	1	j4
Hash 3	7	2	j1⊗j2
	8	2	j4⊗j5
	9	1	j3

Hypergraph equivalent

edge	connected vertices		
j1	v1,v4,v7	} 2-core	
j2	v1,v4,v7	S 2-core	
ј3	v2,v5,v9	V =V1UV2UV3	
j4	v2,v6,v8	V1={v1,v2,v3} V2={v4,v5,v6}	
j5	v3,v5,v8	$V3=\{v4,v8,v8\}$	

- -j items and hyper-edges
- -c cells and vertices
- k hash functions and vertices connecting each edge

$$H_{j,p} = \{(V,X,k) \mid E[decode((V,X,k))] \ge p, |X| = j\}$$

$$\underset{(V,X,k)\in\mathcal{H}_{j,p}}{\operatorname{arg\,min}} |V|$$

ALGORITHM 1: IBLT-Param-Search

```
01 SEARCH(j, k, p):
02 c_l = 1
c_h = c_{max}
04 trials = 0
05 \quad success = 0
06 L = (1 - p)/5
07 WHILE c_l \neq c_h:
    trials += 1
08
   c = (c_l + c_h)/2
    IF decode(j, k, c):
10
11
         success += 1
    conf=conf_int(success, trials)
12
     r = success/trials
13
      IF r - conf \ge p:
14
15
         c_h = c
      IF (r + conf \leq p):
16
17
         c_l = c
      IF (r - conf > p - L) and (r + conf :
18
19
         c_1 = c
   RETURN c_h
```


- Larger but computation is faster
- Create a universal lookup table

Figure 10: Size of optimal IBLTs (using Alg. 1) given a desired decode rate; with a statically parameterized IBLT ($k=4, \tau=1.5$) in black. For clarity, the plot is split on the x-axis. Decode rates are shown in Fig. 7.

Figure 7: Parameterizing an IBLT statically results in poor decode rates. The black points show the decode failure rate for IBLTs when k=4 and $\tau=1.5$. The blue, green and yellow points show decode failure rates of optimal IBLTs, which always meet a desired failure rate on each facet (in magenta). Size shown in Fig. 10.

Ping-Pong Decoding

Figure 11: Decode rate of a single IBLT (parameterized for a 1/240 failure rate) versus the improved *ping-pong decode* rate from using a second, smaller IBLT with the same items.

Open-Source Deployment

- Deployed on Bitcoin Cash network via the Bitcoin Unlimited client
 - 1,431 nodes
- Fraction of the size of previous work
- Deploying a protocol requires real engagement with the community
- Adversarial thinking is critical
- Mempools are in-sync less often than expected

Evaluation

- Three block sizes in terms of number of txns
- The receiver's mempool contains
 - All transactions in the block
 - Additional txns as a multiple of the block size
- Improvement with block size

Summary

Thank you!

- SYSTEMS ISSUES
 - Security Considerations
 - Transaction Ordering Costs
 - Reducing Processing Time
- Limitations
- CONCLUSION

