HIP 6

A cylindrical beam of protons is aimed at a cancerous tumor. The beam current is non-uniform in both space and time and can be described by the current density function:

$$J(r,t)=a(r^2-b)t^3$$

One pulse of protons lasts for about 3.0ms, b = $2.34 \cdot 10^{-6}$, a = $5.67 \cdot 10^{17}$, and the beam has a radius of 1.73mm. The drift speed (v_d) of the protons is $1.00 \cdot 10^8$ m/s.

- a. What units should the variables a and b have in the above equation in order for the units to work out in SI units?
 - J is in units of $C/(s^*m^2)$. The value for b must be in m^2 and the value of a must be in $C/(s^{4*}m^4)$
- b. What is the current in the beam at t=3ms?

J = I/A \rightarrow I = J*A \rightarrow since J varies over radius and time we must take the integral \rightarrow I(t) = int((a(r²-b)t³)rdrd θ) \rightarrow I(t)=int((ar³-abr)t³drd θ) \rightarrow I(t)=2 π ((ar⁴)/4 - (abr²)/2)t³

c. How many protons are delivered to the tumor after 3ms?

To find how many protons that are delivered to the tumor we must find the amount of charge delivered over that time period and then divide that by the charge of a proton to find the number of protons.

$$I(t) = I(t) =$$

$$Q = \operatorname{abs} \left(2 \cdot \pi \left(\left(\frac{(a \cdot r^4)}{4} - \left(\frac{a \cdot b \cdot r^2}{2} \right) \right) \cdot \frac{r^4}{4} \right) \right)$$

$$Q = 0.0000910669927049$$

$$a = 5.67 \cdot 10^{17}$$

$$a = 5.67 \times 10^{17}$$

$$r = 1.73 \cdot 10^{-3}$$

$$0 \leq \theta \leq 12\pi$$

$$b = 2.34 \cdot 10^{-6}$$

$$b = 0.00000234$$

$$t = 3 \cdot 10^{-3}$$

$$t = 0.003$$

$$N = \frac{Q}{\left(1.6 \cdot 10^{-19} \right)}$$

$$N = 5.6916870441 \times 10^{14}$$

The number of protons delivered in this time period is estimated to be $\frac{5.69 \times 10^{14}}{\text{protons}}$.

The reasonableness can be checked by comparing this value to that of a mole. A mole is 6.02*10²³ units which is 9 orders of magnitude greater than the amount of protons delivered. This would be a reasonable amount in light of this comparison.

d. Neglecting relativity, how much energy is delivered to the tumor in those 3ms. The protons have a mass of 1.67*10⁻²⁷ kg and they are travelling at 1*10⁸ m/s. With this information we can find the total kinetic energy delivered.

$$K = \frac{1}{2} \text{m}^2 \text{v}^2 \rightarrow K = \frac{1}{2} \text{ (1.67*10}^{-27*} \text{5.69*10}^{14})^* (1*10^8)^2 \rightarrow \frac{K = 4751 \text{ J}}{2}$$

GORY	PLARY (1.5)	MPLISHED (1)	LOPING (0.5)	GENT (0)
Statement and tion	saming tool for our class is written	olem is clearly presented for reader in h words.	plem is directly copied or is hard	p into some calculation
	atch could be dropped into a novel as it stands.	a clear sketch, larger than a credit the problem set up with important and data noted	some sketch of the problem	etch?
s Tools	ate physics tools are correlated sercise in textbook quality and	ate physics tools are correlated to the . Appropriate tools include: pictures, onservational laws utilized, etc	hysics tools are correlated to the	e a few equations written.
n Solution tation	is very clearly presented with g asides or annotations	is complete and clearly presented no significant intuitive demands on the	solution I have to read between	es version of solution with only nts present
		is larger than a credit card, tion is fluid, notation used is clear.	gure the path of your solution with	read it.
		correctly given	ions & quantities are presented s	nits at the results
n			close	ot reasonable
ant Figures		Sig Figs	ffort to use correct significant	he number from the calculator
nableness	more than one type of ableness check.	ne clear rationale for appropriateness of tion in the setting	that the answer is reasonable but sn't given any evidence	ission
Graded			0	ut your self-assessment is from mine by at least two steps.