Markowitz-Optimal Portfolio Under Inflation in China

Yunpeng Zhang Zhiying Hu Xuanzhi Lin Zelong Han

University of Zurich

December 18, 2022

Presentation Overview

Introduction

Background Literature Review

2 Inflation Hedging Ability of Assets in China

Regression Model Data Empirical Results

3 Inflation Hedging Portfolio Model Construction

Portfolio Performance

- 4 Conclusion
- **5** References

Introduction

Background

- Global inflation has reached its highest level since 2008 in recent years due to the shock of covid-19, supply chain disruptions, and increasingly tense international conditions.
- Inflation implies a prolonged period of rising price levels, which leads to a contraction in the real value of assets.
- The erosion of the real return of a portfolio caused by inflation is one of the fundamental risks faced by investors in financial markets.

Introduction

Literature Review

- Relationship between asset returns and inflation, in general
 - real estate has a high inflation-hedging ability
 - stocks has a limited inflation-hedging ability
 - **gold** has a high inflation-hedging ability in the long term.
- Asset allocation strategy under inflation risk
 - Model: Markowitz's mean-variance model
 - Asset Categories
 - stocks or equities
 - bonds
 - commodities (metals, agricultural products, and energy)
 - derivatives (swaps, options, futures, and spots)
 - real estate
 - collectibles (art, wine and stamps)

divide nominal return rate into three parts

$$E(R_t|\Omega_{t-1}) = E(r_t|\Omega_{t-1}) + \beta E(\pi_t|\Omega_{t-1}) + \gamma [\pi_t - E(\pi_t|\Omega_{t-1})]$$
 (1)

- $E(R_t|\Omega_{t-1})$: expected nominal return rate
- $E(r_t|\Omega_{t-1})$: expected real return rate
- $E(\pi_t | \Omega_{t-1})$: expected inflation rate
- $[\pi_t E(\pi_t | \Omega_{t-1})]$: unexpected inflation rate

can be rewritten as

Model

$$R_t = \alpha + \beta E(\pi_t | \Omega_{t-1}) + \gamma \left[\pi_t - E(\pi_t | \Omega_{t-1}) \right] + \eta_t$$
 (2)

- R_t: nominal return rate
- α , β and γ : estimators
- η_t : the error term

Model - Estimators

Table: The meanings of the parameters

	hoto	gamma
	beta	gamma
<0	Negative hedging	Negative hedging
=0	No hedging effect	No hedging effect
(0,1)	Partially hedging	Partially hedging
=1	Completely hedging	Completely hedging
>1	Excess hedging	Excess hedging

Data

- Inflation (2010.01-2021.12)
 - real inflation rate: monthly year-on-year CPI in logarithmic form
 - expected inflation rate: one period lagged one-year national bond's yield to maturity
 - unexpected inflation rate: the difference between real and expected inflation rate
- Commodity Futures (2010.01-2021.12)
 - sixteen kinds from the Shanghai and Dalian futures exchange: Soybeans No. 1, soybeans No. 2, yellow corn, LLDPE, soybean meal, palm oil, soybean oil, PVC, cathode copper, aluminum, zinc, gold, natural rubber, fuel oil, rebar, and wire rod
 - settlement price at the end of each month to calculate returns

Data

- Spot Gold (2010.01-2021.12)
 - monthly closing price of gold T+D published by the Shanghai Gold Exchange.
- Industry Stocks (2010.01-2021.12)
 - monthly closing prices of the Hushen 300 industry index
 - energy, raw materials, industry, optional consumption, the main consumption, medicine and health care, finance and real estate, information technology, utility, and the telecommunication service
- real estate (2011.06-2021.12)
 - monthly data on residential prices
 - Tier 1, Tier 2, and Tier 3 cities

Empirical Results - Commodity Futures (1)

Table: The inflation hedging ability of commodity futures

	Dependent variable:				
	-	commodity futures			
	Soybeans No.1	Soybeans No.2	Yellow Corn	LLDPE	
expected_inflation	-5.983*** (2.063)	-8.515*** (2.253)	4.295* (2.480)	-1.201 (2.207)	
unexpected_inflation	0.280 (0.876)	1.704* (0.957)	0.928 (1.053)	-2.303** (0.937)	
Constant	0.205*** (0.057)	0.251*** (0.062)	-0.078 (0.068)	0.012 (0.061)	
Observations	144	144	144	144	
R ²	0.071	0.157	0.021	0.042	
Adjusted R ²	0.058	0.145	0.007	0.029	
Residual Std. Error F Statistic	0.138 5.366***	0.151 13.119***	0.166 1.530	0.148 3.103**	

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Empirical Results - Commodity Futures (2)

Table: The inflation hedging ability of commodity futures

	Dependent variable: commodity futures			
	Soybean Meal	Palm Oil	Soybean Oil	PVC
expected_inflation	-2.744 (2.186)	-9.813*** (2.878)	-10.418*** (2.420)	-5.093** (2.575)
unexpected_inflation	0.616 (0.928)	2.774** (1.222)	2.056** (1.028)	-2.176** (1.042)
Constant	0.094 (0.060)	0.302*** (0.079)	0.311*** (0.067)	0.152** (0.072)
Observations	144	144	144	140
R^2	0.021	0.157	0.193	0.043
Adjusted R ²	0.007	0.145	0.182	0.029
Residual Std. Error F Statistic	0.146 1.540	0.193 13.171***	0.162 16.912***	0.164 3.049*

Note:

*p<0.1; **p<0.05; ***p<0.01

Empirical Results - Commodity Futures (3)

Table: The inflation hedging ability of commodity futures

	Dependent variable:				
	commodity futures				
	Cathode Copper	Aluminum	Zinc	Gold	
expected_inflation	-7.728** (3.181)	-4.968** (2.188)	-4.505 (2.936)	-7.502*** (1.733)	
unexpected_inflation	-1.291 (1.351)	-1.685* (0.929)	-5.235*** (1.247)	5.103*** (0.736)	
Constant	0.251*** (0.087)	0.157*** (0.060)	0.145* (0.081)	0.269*** (0.048)	
Observations	144	144	144	144	
R ²	0.040	0.042	0.111	0.425	
Adjusted R ² Residual Std. Error F Statistic	0.027 0.213 2.952*	0.029 0.146 3.113**	0.098 0.196 8.806***	0.417 0.116 52.096***	

Note:

*p<0.1; **p<0.05; ***p<0.01

Empirical Results - Commodity Futures (4)

Table: The inflation hedging ability of commodity futures

	Dependent variable:			
	commodity futures			
	Natural Rubber	Fuel Oil	Rebar	Wire Rod
expected_inflation	-14.338*** (3.966)	-4.748 (4.215)	-2.444 (3.704)	0.377 (3.346)
unexpected_inflation	3.739** (1.685)	-1.961 (1.790)	-1.508 (1.535)	-0.351 (1.387)
Constant	0.392*** (0.109)	0.095 (0.116)	0.080 (0.102)	0.015 (0.093)
Observations	144	144	142	140
R ²	0.166	0.013	0.008	0.001
Adjusted R ²	0.154	-0.001	-0.007	-0.014
Residual Std. Error F Statistic	0.265 14.007***	0.282 0.897	0.241 0.533	0.218 0.057

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Empirical Results - Spot Gold

Table: The inflation hedging effect of spot gold

	Dependent variable:
	Spot Gold
expected_inflation	-7.454***
	(1.714)
unexpected_inflation	5.128***
•	(0.728)
Constant	0.267***
	(0.047)
Observations	144
R^2	0.431
Adjusted R ²	0.423
Residual Std. Error	0.115
F Statistic	53.374***
Note:	*p<0.1; **p<0.05; ***p<0.01

Empirical Results - Industry Stocks (1)

Table: The inflation hedging ability of industry stocks

	Dependent variable:				
	industry stocks				
	Energy	Material	Industry	Optional	Main
expected_inflation	-2.188 (3.515)	-9.063** (4.328)	-7.416 (4.488)	-3.864 (3.589)	-4.955 (3.551)
unexpected_inflation	-2.023 (1.493)	-6.328*** (1.838)	-6.728*** (1.907)	-5.326*** (1.525)	-1.565 (1.509)
Constant	-0.017 (0.097)	0.250** (0.119)	0.206* (0.123)	0.169* (0.099)	0.300*** (0.098)
Observations	144	144	144	144	144
R ²	0.013	0.082	0.082	0.080	0.016
Adjusted R ²	-0.001	0.069	0.069	0.067	0.002
Residual Std. Error F Statistic	0.235 0.925	0.290 6.296***	0.300 6.287***	0.240 6.134***	0.238 1.126

Note:

^{*}p<0.1; **p<0.05; *** p<0.01

Empirical Results - Industry Stocks (2)

Table: The inflation hedging ability of industry stocks

		Dep	endent variable	:	
	industry stocks				
	Medicine	Finance	Info	Tele	Utility
expected_inflation	-11.363*** (3.302)	-2.650 (3.117)	-6.993* (4.168)	4.802 (4.398)	-4.069 (3.401)
unexpected_inflation	-4.228*** (1.403)	-5.384*** (1.324)	-2.201 (1.770)	-1.412 (1.868)	-7.689*** (1.445)
Constant	0.416*** (0.091)	0.090 (0.086)	0.253** (0.115)	-0.135 (0.121)	0.085 (0.094)
Observations	144	144	144	144	144
R ²	0.098	0.108	0.023	0.019	0.171
Adjusted R ² Residual Std. Error F Statistic	0.085 0.221 7.641***	0.095 0.208 8.541***	0.009 0.279 1.625	0.005 0.294 1.390	0.159 0.228 14.542***

Note:

*p<0.1; **p<0.05; ***p<0.01

Empirical Results - real estate

Table: The inflation hedging ability of real estate

	Dependent variab	le:
	real estate	
first-tier	second-tier	third-tier
0.720 (1.294)	2.110** (0.850)	2.589*** (0.835)
-0.172 (0.568)	0.449 (0.373)	0.704* (0.367)
0.046 (0.036)	-0.010 (0.024)	-0.030 (0.023)
127	127	127
0.004	0.049	0.079
-0.012	0.034	0.064
0.077 0.277	0.051 3.189**	0.050 5.338***
	first-tier 0.720 (1.294) -0.172 (0.568) 0.046 (0.036) 127 0.004 -0.012 0.077	first-tier second-tier 0.720 2.110** (1.294) (0.850) -0.172 0.449 (0.568) (0.373) 0.046 -0.010 (0.036) (0.024) 127 127 0.004 0.049 -0.012 0.034 0.077 0.051

Note:

*p<0.1; **p<0.05; ***p<0.01

Inflation Hedging Portfolio

Model Construction

The optimal **Mean-Variance** portfolio

- minimize the portfolio's volatility at the given expected return

min
$$\sigma_p^2 = \sum_{i=1}^n x_i^2 \sigma_i^2 + \sum_{j=1, j \neq i}^n x_i x_j \sigma_{ij}$$

s.t.
$$E(R_p) = \sum_{i=1}^n E(R_i) = X^T \cdot R$$

 $\sum_{i=1}^n x_i = 1$

Exclude 8 assets that do **not** have obvious inflation-hedging effects and use the remaining 22 assets to construct the optimal portfolio under the inflation factor.

Portfolio Performance

Feasible Portfolio

Figure: Feasible Portfolio

Portfolio Performance

Efficient Frontier

Figure: Efficient Frontier

Conclusion

Conclusion 1

Among the 30 kinds of assets, 8 assets do not have inflation-hedging effects, including **four commodity futures**, Soybean Meal, Fuel Oil, Rebar, Wire Rod, **three industry stocks**, Energy, Main Consumption, and Telecommunication services, and **first-tier real estate**. The remaining 22 assets are chosen to construct the portfolio.

Conclusion

Conclusion 2

The **minimum-variance** portfolio and the **tangency** portfolio are calculated without short-selling restrictions.

Investment in **real estate** plays a pivotal role in hedging inflation risks. Investors are recommended to short real estate in third-tier cities and long real estate in second-tier cities in China if there are no short-selling restrictions.

References

- [1] Attié, Alexander P and Shaun K Roache (2009) Inflation hedging for long-term investors IMF Working Papers 2009, 90.
- [2] Di, JP (2012)
 Can real estate provide a hedge against inflation evidence from Chinese mainland
 Chinese Real Estate 2, 10–17.
- [3] Engsted, Tom and Carsten Tanggaard (2002)
 The relation between asset returns and inflation at short and long horizons
 Journal of International Financial Markets, Institutions and Money 12(2),
 101–118.
- [4] Fama, Eugene F. and G.William Schwert (1977) Asset returns and inflation Journal of Financial Economics 5(2), 115–146.

References

- [5] Levin, Eric J, A Montagnoli, and RE Wright (2006) Short-run and long-run determinants of the price of gold World Gold Council
- [6] Qin, S, CY Qin, and RX Chen (2004)
 The optimal portfolios model with inflation rate
 Systems Engineering Theory Methodology Application 13(4), 316–319.
- [7] Rapach, David E (2002)
 The long-run relationship between inflation and real stock prices

 Journal of Macroeconomics 24(3), 331–351.
- [8] Yu, Mei et al. (2015) A Study on the Optimal Portfolio Strategies Under Inflation Journal of Systems Science and Information 3(2), 111–132.

Thanks for your time

Q&A