

Implementieren eines Energiespeichersystems eMule 7.0

Studienarbeit T3_3100

Studiengang Elektrotechnik

Studienrichtung Fahrzeugelektronik

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Philipp Bellmann, Rafael Heuschkel

Abgabedatum: 5. Januar 2025

Bearbeitungszeitraum: 01.10.2024-5. Januar 2025

Matrikelnummern: 6889044, xxx

Kurs: TFE22-1

Betreuerin / Betreuer: Khamis Jakob

Erklärung

gemäß Ziffer 1.1.14 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 24.07.2023.

Ich versichere hiermit, dass ich meine Studienarbeit T3_3100 mit dem Thema:

Implementieren eines Energiespeichersystems eMule 7.0

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Musterstadt, den 5. Januar 2025

Philipp Bellmann, Rafael Heuschkel

Kurzfassung

Problemstellung

Ziel der Arbeit

Vorgehen und angewandte Methoden

Konkrete Ergebnisse der Arbeit, am besten mit quantitativen Angaben

Abstract

English translation of the "Kurzfassung".

Inhaltsverzeichnis

1	Prol	blemste	ellung, Ziel und Vorgehensweise der Arbeit	1	
2	Gru	ndlagei	n	5	
	2.1	Norme	en zur Zeichnung von Schaltzeichen	5	
	2.2	Autod	lesk Fusion 360	7	
		2.2.1	Installationsaleitung	8	
		2.2.2	Historie und Entwicklung	10	
		2.2.3	Grundfunktionen	11	
		2.2.4	Spezielle Funktionen zur Erstellung von Schaltplänen, Bestückungs	; –	
			plänen und Stromlaufplänen	11	
3	Vorg	gehenT	est	13	
4	Ums	setzung	g und Ergebnisse	15	
5	5 Zusammenfassung 29				
Li	teratı	urverze	eichnis	31	
Αŀ	bildı	ıngsvei	rzeichnis	33	
Ta	belle	nverze	ichnis	35	
Α	Nutz	ung vo	on Künstliche Intelligenz basierten Werkzeugen	37	
В	Ergä	nzunge	en	39	
	B.1	Detail	s zu bestimmten theoretischen Grundlagen	39	
			re Details, welche im Hauptteil den Lesefluss behindern		

In halts verzeichn is

C Deta	ils zu Laboraufbauten und Messergebnissen	41
C.1	Versuchsanordnung	41
C.2	Liste der verwendeten Messgeräte	41
C.3	Übersicht der Messergebnisse	41
C.4	Schaltplan und Bild der Prototypenplatine	41
D Zusa	tzinformationen zu verwendeter Software	43
D.1	Struktogramm des Programmentwurfs	43
D.2	Wichtige Teile des Quellcodes	43
E Date	nblätter	45
F Tips	und Beispiele zu LETEX-Befehlen	49
F.1	eq:Wichtige LATEX-Befehle	49
F.2	Vorlagen für LATEXUmgebungen	51
	F.2.1 Listen und Aufzählungen	51
	F.2.2 Bilder und Grafiken	52
	F.2.3 Tabellen	58
	F.2.4 Formeln	60
Sachwo	ortverzeichnis	63

1 Problemstellung, Ziel und Vorgehensweise der Arbeit

- Was waren die Probleme
 - Plänechaos
 - alles in versch Normen
 - keine Doku über aktualität
 - Noch nie sowas gemacht
 - Mac-Kompatiblität
- Was war das Ziel
 - vergemeinschaftung der vorhandenen Pläne nach DIn norm
 - erstellen neuer pläne(Schalt, bestückungs, stromlauf, usw.) nach DIN Norm
- Wie sind wir vorgegangen
 - geeignetes Program gesucht
 - eingearbeitet

- eigene Bibs erstellt
- alte pläne geordnet und brauchbare in din norm übersetzt
- neue Pläne gezeichnet

Folgende Stichworte können zum Aufbau der Einleitung herangezogen werden.

- Hinführung, Begründung, Zweck und Ziel der Aufgabenstellung
- Erläuterung der Problemstellung
- Konkretisierung der zu lösenden Aufgabe
- Gegebenenfalls Formulierung einer Leitfrage oder Forschungsfrage
- Ausgangslage, geplante Vorgehensweise, Methoden zur Bearbeitung und Zielsituation
- Zum Ende der Einleitung wird eine Kurzübersicht über die Inhalte der Kapitel gegeben: "Die Arbeit ist wie folgt gegliedert: …"

Die Einleitung wird üblicherweise auf ein bis zwei Seiten als fortlaufender Text geschrieben. Eine weitere Untergliederung in nummerierte Abschnitte ist nicht empfehlenswert, da dies erstens unüblich ist, zweitens die Lesbarkeit nicht begünstigt und drittens die Formulierung der Einleitung erschwert. Weitere Empfehlungen zum Aufbau der Einleitung und des gesamten Dokuments sind z. B. aus [Dua21] und [Lin22] zu entnehmen.

Hinweise:

- Auch in der Einleitung unbedingt zu wichtigen Hintergründen und Fakten Zitate aufführen. Zitate bitte in der Form [Tip+19] oder mit Seitenbezug [Zie17, S. 66] oder auch mehrere Zitate [Tip+19; Zie17] innerhalb einer eckigen Klammer angeben. Zur besseren Lesbarkeit bitte immer ein Leerzeichen vor dem Zitat einfügen.
- Bereits in der Einleitung können Abkürzungen erläutert werden. Grundsätzlich gilt, dass bei der ersten Verwendung einer Abkürzung diese auch erläutert wird. Zum Beispiel können das Antiblockiersystem (ABS) oder die Fahrdynamikregelung (Electronic Stability Control, ESC) als Abkürzungen eingeführt werden. In der Datei pages/abkuerzungen.tex sind alle verwendeten Abkürzungen einzufügen. Neben dem verpflichtenden Abkürzungsverzeichnis kann auch ein Glossar hinzugefügt werden. In dieser Vorlage können Glossareinträge in der Datei pages/glossar.tex eingefügt werden. Ein Glossar ist jedoch nicht verpflichtend.

2 Grundlagen

- Normen -> Din norm
- wenn man strecken muss: kawasaki mule+definition elektrofzg

2.1 Normen zur Zeichnung von Schaltzeichen

Entstehung und Bedeutung von Normen

Normen haben ihren Ursprung in der industriellen Revolution, als der Bedarf an standardisierten Verfahren und Produkten exponentiell anstieg. Unterschiedliche Maße, Zeichnungen oder Bezeichnungen führten zu Missverständnissen, Ineffizienzen und Fehlern in der Fertigung und Kommunikation. Um diesem Chaos entgegenzuwirken, wurden Normen geschaffen, die als verbindliche Regelwerke dienen.

Normen ermöglichen eine einheitliche Sprache zwischen Ingenieuren, Herstellern und Anwendern. Sie sichern die Kompatibilität von Bauteilen, verbessern die Qualität und fördern den internationalen Handel. Im Kontext technischer Zeichnungen – insbesondere von Schaltzeichen – gewährleisten Normen, dass technische Pläne weltweit eindeutig verstanden werden können, unabhängig von Sprache oder regionalen Besonderheiten.

Die bekanntesten Normen für Schaltzeichen

Drei der bekanntesten und am häufigsten verwendeten Normen für Schaltzeichen sind:

- DIN-Normen (Deutschland): Diese Normen, herausgegeben vom Deutschen Institut für Normung, sind insbesondere im deutschsprachigen Raum verbreitet. Sie umfassen eine breite Palette von Standards, darunter auch solche für elektrische, hydraulische und pneumatische Schaltzeichen.
- IEC-Normen (International): Die International Electrotechnical Commission (IEC) ist für die Entwicklung global gültiger Standards verantwortlich. Die IEC 60617-Serie beispielsweise definiert Symbole für elektrotechnische Anlagen und Komponenten.
- ANSI-Normen (USA): Das American National Standards Institute (ANSI) ist die dominierende Normierungsorganisation in den USA. ANSI-Zeichnungen sind häufig in nordamerikanischen Projekten anzutreffen.

Die Wahl der Norm hängt von der Region und dem Anwendungsfall ab. Während europäische Projekte häufig auf DIN- oder IEC-Normen basieren, dominieren ANSI-Normen in den USA.

Die DIN-Norm für Schaltzeichen im Detail

Die DIN-Normen sind in Deutschland der zentrale Standard für die Erstellung technischer Zeichnungen und Schaltpläne. Besonders relevant ist die Norm DIN EN 60617, die elektrische Schaltzeichen beschreibt. Diese Norm wurde in Zusammenarbeit mit der IEC entwickelt, was die internationale Anschlussfähigkeit erleichtert.

Die DIN EN 60617 regelt detailliert:

- Die Darstellung von Bauelementen: Elektronische Bauteile wie Widerstände, Kondensatoren oder Schalter haben klar definierte Symbole.
- Das Layout von Schaltplänen: Vorgaben für Linienführung, Anschlussstellen und Abstände zwischen Symbolen sorgen für Übersichtlichkeit.
- Verbindungsleitungen: Die Darstellung von Leitungen und Kreuzungen vermeidet Missverständnisse, beispielsweise durch eindeutige Markierungen bei Verbindungen.

Ein zentrales Ziel der DIN-Norm ist es, Komplexität zu reduzieren und eine intuitive Lesbarkeit zu fördern. Zusätzlich berücksichtigt die Norm auch neuere Technologien und Entwicklungen, wodurch sie immer wieder aktualisiert wird.

Durch die Einhaltung der DIN-Norm können Ingenieure sicherstellen, dass ihre Schaltpläne sowohl in der eigenen Organisation als auch international korrekt interpretiert werden. Normen sind daher nicht nur ein Werkzeug der Standardisierung, sondern auch ein Mittel zur Qualitätssteigerung und zur Vereinfachung technischer Prozesse.

2.2 Autodesk Fusion 360

Autodesk Fusion 360 ist eine integrierte Plattform für computergestütztes Design (CAD), Fertigung (CAM) und technische Analyse (CAE), die als Cloud-basierte Lösung entwickelt wurde. Sie erlaubt es, mechanische und elektronische Designprozesse zu vereinen, und bietet damit Ingenieuren, Designern und Entwicklern eine zentrale Plattform für die Produktentwicklung. Im Folgenden wird zunächst die Unternehmensgeschichte von Autodesk als Entwickler dieser Software beleuchtet, bevor die Kernfunktionen und speziellen Funktionen zur Erstellung elektronischer Schaltpläne detailliert werden.

2.2.1 Installationsaleitung

Anleitung zur Erstellung eines Studentenaccounts und zum Herunterladen von Fusion 360 Electronics

Erstellung eines Autodesk-Studentenaccounts Zur Nutzung von Fusion 360 Electronics ist die Erstellung eines Autodesk-Studentenaccounts erforderlich. Dies ermöglicht den kostenlosen Zugriff auf die Software.

Registrierung

- Zugriff auf die Registrierungsseite: Autodesk Registrierungsseite.
- Ausfüllen des Formulars mit den notwendigen Informationen:
 - Vor- und Nachname
 - Gültige E-Mail-Adresse
 - Passwort entsprechend den Sicherheitsrichtlinien

Bestätigung der E-Mail-Adresse

- Nach dem Absenden des Formulars wird eine E-Mail zur Bestätigung empfangen.
- Öffnen der E-Mail und Klicken auf den Bestätigungslink zur Verifizierung der Adresse.

Vervollständigung der Profilinformationen

- Anmeldung im Autodesk-Konto.
- Angabe weiterer Informationen wie Institution, Studienrichtung und Studienjahr zur Bestätigung des Studentenstatus.

Verifizierung des Studentenstatus

- Hochladen eines Dokuments, das die Immatrikulation belegt (z. B. eine Studienbescheinigung).
- Autodesk prüft die Dokumente innerhalb weniger Tage und sendet eine Bestätigung per E-Mail.

Herunterladen und Installieren von Fusion 360 Electronics

Zugriff auf den Download-Bereich

- Nach erfolgreicher Verifizierung des Accounts erfolgt die Anmeldung und Navigation zur Autodesk Education Community.
- Auswahl von Fusion 360 aus der Liste der verfügbaren Software.

Download und Installation

- Klicken auf "Jetzt herunterladen" und Befolgen der Anweisungen auf dem Bildschirm.
- Nach Abschluss des Downloads Öffnen der Installationsdatei und Befolgen der Installationsanweisungen.

Aktivierung der Education-Lizenz

- Beim ersten Start von Fusion 360 erfolgt die Eingabe der Anmeldeinformationen.
- Die Software erkennt automatisch den Studentenstatus und aktiviert die entsprechende Lizenz.

Windows

Mac

2.2.2 Historie und Entwicklung

Autodesk, Inc. wurde 1982 von John Walker und einer Gruppe von Programmierern gegründet und spezialisierte sich schnell auf Softwarelösungen für Architektur, Ingenieurwesen und digitale Medien. [Wik24b] Die Veröffentlichung von AutoCAD im Jahr 1982 setzte einen wichtigen Meilenstein für die computergestützte Konstruktion und wurde zur führenden CAD-Software für Architekten und Ingenieure weltweit. [Wik24a]

Mit dem Aufkommen neuer Anforderungen in der Fertigungsindustrie und der Integration von Elektronik in mechanische Systeme begann Autodesk, eine neue Art von Software zu entwickeln. Ziel war es, die Mechanik- und Elektronikentwicklung auf einer Plattform zu vereinen und kollaboratives, Cloud-basiertes Arbeiten zu ermöglichen. Dies führte zur Einführung von Fusion 360 im Jahr 2013. [con24] Durch die Integration traditioneller CAD/CAM/CAE-Funktionen und die cloudbasierte Zusammenarbeit wurde Fusion 360 zu einem beliebten Werkzeug in der Produktentwicklung und verhalf Autodesk zu einer neuen Marktposition im Bereich der digitalen Fertigung.

2.2.3 Grundfunktionen

2.2.4 Spezielle Funktionen zur Erstellung von Schaltplänen, Bestückungsplänen und Stromlaufplänen

Zielgerichtete theoretische Grundlagen, sowohl fachliche, wie auch methodische.

Zu den Grundlagen gehören z. B. auch Details zur Problemstellung, der Stand der Technik und weitere Grundlagen, welche zur Konzeptausarbeitung, Umsetzung und Verifikation erforderlich sind.

Grundlagen haben immer einen Bezug zu den nachfolgenden Kapiteln. Diesen Bezug sollte man gelegentlich explizit herstellen, damit bereits in diesem Kapitel klar ist, wo und für was die Grundlagen gebraucht und angewandt werden.

3 VorgehenTest

Je nach Art der Arbeit kann diese Kapitelüberschrift auch "Konzeptentwurf" lauten.

Beschreibung der Ausgangssituation und des Themenumfelds. Ggf. wird darauf eingegangen, welche Randbedingungen und Einflüsse zu beachten sind.

Anforderungsanalyse und Anforderungsdefinition, nach Möglichkeit strukturiert, um zu einem späteren Zeitpunkt die Anforderungen nachvollziehbar verifizieren zu können.

Herleitung einer Lösung (einer Methodik, eines experimentellen Aufbaus oder von unterschiedlichen Konzepten), Lösungsbewertung und bewusste Wahl des gewählten Vorgehens. An dieser Stelle ist auch auf die Zuverlässigkeit einer Methodik oder auf die Genauigkeit von Untersuchungen einzugehen. Die Überlegungen sollen dazu helfen, mit der angestrebten Lösung die gestellten Anforderungen zu erfüllen, um schließlich die Ziele der Arbeit erreichen zu können.

Bei einer Gegenüberstellung von verschiedenen Lösungsansätzen kann z. B. eine Nutzwertanalyse helfen. Dabei sind nicht nur z. B. die Funktion, Leistungsfähigkeit, Umsetzbarkeit und Nutzbarkeit, sondern auch z. B. wirtschaftliche Aspekte, wie Stück-, Entwicklungskosten oder Ressourcenverbrauch zu berücksichtigen. Sehr bedeutend sind auch Aspekte der Nachhaltigkeit unter Betrachtung des gesamten Lebenszyklus einer erarbeiteten Lösung.

Sowohl bei der Anforderungsdefinition, als auch bei der Lösungsfindung gibt es eine große Anzahl an verschiedenen Methoden. Eine kleine Auswahl ist in der folgenden

Aufzählung zu finden.

- Anforderungsdefinition mithilfe des Requirements Engineering [PR21]
- Systems Engineering Ansatz [Sch23]
- Agile Entwicklungsmethodiken [Coh10; Mar20; WRM22]
- Klassische Bewertungsverfahren [BK97; Zan14]

Ziel dieses Kapitels ist, dass auf Basis von umfassend und genau formulierten Anforderungen (ggf. auch Nicht-Zielen) eine Lösungsvielfalt erarbeitet wird, welche anschließend strukturiert bewertet wird, um eine fundierte Begründung für die angestrebte Art der Umsetzung herzuleiten.

4 Umsetzung und Ergebnisse

Je nach Art der Arbeit kann diese Kapitelüberschrift auch "Ergebnisse" lauten, z. B. bei rein messtechnischen Aufgaben.

Beschreibung der Umsetzung des zuvor gewählten Vorgehens (theoretische Untersuchung, Erhebungen, Durchführung von Experimenten, Prototypenaufbau, Implementierung eines Prozesses, etc.).

Verifikation anhand der zuvor erarbeiteten Anforderungen und Validierung in Bezug auf das zuvor gestellte Ziel. Diskussion der Ergebnisse. Spätestens hier auch auf die Zuverlässigkeit der gewonnenen Erkenntnisse eingehen (z. B. anhand der Genauigkeit von Messergebnissen).

Schaltplan Batterie Circuit v5

Schaltplan Motor Controller v7

Schaltplan Onboard-Netz v14

Temperatursteuerung des Ladegeräts v7

5 Zusammenfassung

Auf zwei bis drei Seiten soll auf folgende Punkte eingegangen werden:

- Welches Ziel sollte erreicht werden
- Welches Vorgehen wurde gewählt
- Was wurde erreicht, zentrale Ergebnisse nennen, am besten quantitative Angaben machen
- Konnten die Ergebnisse nach kritischer Bewertung zum Erreichen des Ziels oder zur Problemlösung beitragen
- Ausblick

In der Zusammenfassung sind unbedingt klare Aussagen zum Ergebnis der Arbeit zu nennen. Üblicherweise können Ergebnisse nicht nur qualitativ, sondern auch quantitativ benannt werden, z. B. "...konnte eine Effizienzsteigerung von 12 % erreicht werden." oder "...konnte die Prüfdauer um 2 h verkürzt werden".

Die Ergebnisse in der Zusammenfassung sollten selbstverständlich einen Bezug zu den in der Einleitung aufgeführten Fragestellungen und Zielen haben.

Literaturverzeichnis

- [BK97] A. Breiing und R. Knosala. Bewerten technischer Systeme: Theoretische und methodische Grundlagen bewertungstechnischer Entscheidungshilfen. Springer eBook Collection Computer Science and Engineering. Springer Berlin Heidelberg, 1997. ISBN: 9783642592294. DOI: 10.1007/978-3-642-59229-4.
- [Coh10] Mike Cohn. User stories: für die agile Software-Entwicklung mit Scrum, XP u.a. 1. Aufl. mitp, 2010. ISBN: 9783826658983.
- [con24] Wikipedia contributors. Autodesk Wikipedia, Die freie Enzyklopädie. [Online; abgerufen am 13. November 2024]. 2024. URL: https://de.wikipedia.org/wiki/Autodesk.
- [Dua21] Duale Hochschule Baden-Württemberg, Fachkommission Technik. Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt
 I bis III, Studienarbeit I / II, Bachelorarbeit. Okt. 2021. URL: https:
 //www.ravensburg.dhbw.de/fileadmin/user_upload/Dokumente/
 Dokumente_fuer_Studierende/191212_Leitlinien_Praxismodule_
 Studien_Bachelorarbeiten.pdf.
- [Lin22] Frank Lindenlauf. Wissenschaftliche Arbeiten in den Ingenieur- und Naturwissenschaften: Ein praxisorientierter Leitfaden für Semester- und Abschlussarbeiten. 1st ed. 2022. Springer Fachmedien Wiesbaden und Imprint Springer Spektrum, 2022. ISBN: 9783658367367. DOI: 10.1007/978-3-658-36736-7.
- [Mar20] Robert Martin. Clean Agile Die Essenz der agilen Softwareentwicklung. 1st edition. mitp-Verlag und Safari, 2020. URL: https://learning.oreilly.com/library/view/-/9783747501139/?ar.

- [PR21] Klaus Pohl und Chris Rupp. Basiswissen Requirements Engineering: Ausund Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level. 5., überarbeitete und aktualisierte Auflage. dpunkt Verlag, 2021. ISBN: 9783864908149.
- [Sch23] Nadine Schlüter. Generic Systems Engineering: Ein methodischer Ansatz zur Komplexitätsbewältigung. 3. Auflage 2023. Springer Berlin Heidelberg, 2023. ISBN: 9783662667897. DOI: 10.1007/978-3-662-66789-7.
- [Tip+19] Paul Allen Tipler u. a., Hrsg. *Physik: Für Studierende der Naturwissen-schaften und Technik.* 8., korrigierte und erweiterte Auflage. Lehrbuch. Berlin: Springer Spektrum, 2019. ISBN: 9783662582800.
- [Wik24a] Wikipedia contributors. AutoCAD version history Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2024]. 2024. URL: https://en.wikipedia.org/wiki/AutoCAD_version_history.
- [Wik24b] Wikipedia contributors. Autodesk Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2024]. 2024. URL: https://en.wikipedia.org/wiki/Autodesk.
- [WRM22] Ralf Wirdemann, Astrid Ritscher und Johannes Mainusch. Scrum mit User Stories. 4., überarbeitete und erweiterte Auflage. Hanser eLibrary. Hanser, 2022. ISBN: 9783446474383. DOI: 10.3139/9783446474383. URL: https://www.hanser-elibrary.com/doi/book/10.3139/9783446474383.
- [Zan14] Christof Zangemeister. Nutzwertanalyse in der Systemtechnik: Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen. 5. Auflage 2014 (erweitert). Zangemeister & Partner, 2014. ISBN: 9783923264001.
- [Zie17] Julius Ziegler. "Optimale Trajektorienplanung für Automobile". Dissertation. Karlsruhe: KIT Scientific Publishing und Karlsruher Institut für Technologie, 2017. URL: http://dx.doi.org/10.5445/KSP/1000056530.

Abbildungsverzeichnis

F.1	Beispiel für die Einbindung eines Bildes	52
F.2	Mit Tikz programmierte Grafik	53
F.3	Mit Tikz programmierte Grafik, welche bereits vorgefertigte Bibliothe-	
	ken für Symbole aus der Digitaltechnik nutzt	54
F.4	Diagramm, erstellt mit dem pgfplot-Befehlssatz	55
F.5	Diagramm mit zwei unterschiedlichen y-Achsen	57

Tabellenverzeichnis

A.1	Liste der	verwendeten	Künstliche	Intelligenz	basierten	Werkzeuge	•	 3'
F.1	Liste der	verwendeten	Messgeräte					 . 58

A Nutzung von Künstliche Intelligenz basierten Werkzeugen

Im Rahmen dieser Arbeit wurden Künstliche Intelligenz (KI) basierte Werkzeuge benutzt. Tabelle A.1 gibt eine Übersicht über die verwendeten Werkzeuge und den jeweiligen Einsatzzweck.

Tabelle A.1: Liste der verwendeten KI basierten Werkzeuge

Werkzeug	Beschreibung der Nutzung
ChatGPT	 Grundlagenrecherche zu bekannten Prinzipien optischer Sensorik zur Abstandsmessung (siehe Abschnitt) Suche nach Herstellern von Lidar-Sensoren (siehe Abschnitt)
ChatPDF	 Recherche und Zusammenfassung von wissenschaftlichen Studien im Themenfeld
DeepL	• Übersetzung des Papers von []
Tabnine AI coding assistant	Aktiviertes Plugin in MS Visual Studio zum Programmieren des
	•

B Ergänzungen

- B.1 Details zu bestimmten theoretischen Grundlagen
- B.2 Weitere Details, welche im Hauptteil den Lesefluss behindern

C Details zu Laboraufbauten und Messergebnissen

- C.1 Versuchsanordnung
- C.2 Liste der verwendeten Messgeräte
- C.3 Übersicht der Messergebnisse
- C.4 Schaltplan und Bild der Prototypenplatine

D Zusatzinformationen zu verwendeter Software

- D.1 Struktogramm des Programmentwurfs
- D.2 Wichtige Teile des Quellcodes

E Datenblätter

Auf den folgenden Seiten wird eine Möglichkeit gezeigt, wie aus einem anderen PDF-Dokument komplette Seiten übernommen werden können, z. B. zum Einbindungen von Datenblättern. Der Nachteil dieser Methode besteht darin, dass sämtliche Formateinstellungen (Kopfzeilen, Seitenzahlen, Ränder, etc.) auf diesen Seiten nicht angezeigt werden. Die Methode wird deshalb eher selten gewählt. Immerhin sorgt das Package "pdfpages" für eine korrekte Seitenzahleinstellung auf den im Anschluss folgenden "nativen" LATEX-Seiten.

Eine bessere Alternative ist, einzelne Seiten mit "\includegraphics" einzubinden.

F Tips und Beispiele zu LATEX-Befehlen

Dieses Kapitel können Sie einfach löschen, indem Sie in der Präambel am Anfang der Zeile " $\inv include \{chapter/anhang_vorlagen\}$ " das Symbol % zum Auskommentieren einfügen.

F.1 Wichtige LATEX-Befehle

$\setminus label\{\}$	Definition eines Labels, auf welches referenziert
	werden kann, z. B.: $\label{fig:MyImage}$
$\backslash \mathit{ref}\left\{ ight\}$	Setzen einer Referenz zu einem Label
	z. B.: siehe Tabelle $\sim ref\{\text{tab:messdaten}\}$.
$\setminus pageref\{\}$	Gibt die Seitenzahl zu einer Referenz zurück
$\setminus autocite\{\}$	Literaturreferenz einfügen
$\setminus autocite[7]\{\}$	Literaturreferenz einfügen, hier mit zus. Referenz
	auf Seite 7
$\adjustable autocites {Abc15, Def16}$	Mehrere Literaturreferenzen, hier Abc15 und
	Def16, einfügen
$\setminus footnote\{\}$	Fußnote einfügen
~	Einfügen eines geschützten Leerzeichens
Formel \$	Eingabe einer Formel im Text
$l=SI\{10\}\{meter\}$	Korrekte Ausgabe Maßzahl und Einheit in
	Formeln, hier $l = 10 \text{ m}$
$\setminus index\{Kraft\}$	Aufnahme des Begriffs "Kraft" in das Sachwort-

	verzeichnis
$\\ \\ index \\ \{ Induktion! Vollst \\ \\ \ddot{a}ndige \}$	Aufnahme des Begriffs "Vollständige" in das Sach-
	wortverzeichnis unter "Induktion".
\nonnemers \no	Aufnahme der Abkürzung "etc." für "et cetera" in
	das Abkürzungsverzeichnis. Die Angabe [etc] dient
	als Sortierschlüssel
ackslash clear page	Ausgabe aller Gleitobjekte und Umbruch auf eine
	neue Seite

F.2 Vorlagen für LATEXUmgebungen

F.2.1 Listen und Aufzählungen

Es gibt folgende Listentypen. Die wichtigsten:

\bullet Einfache Liste mit $itemize\text{-}\mathrm{Umgebung}$
•
1. Nummerierte Liste mit <i>enumerate</i> -Umgebung
2
a. wobei man bei der $enumerate$ -Umgebung leicht die Art der Nummerierung ändern kann,
b
und durch verschachtelte Umgebungen verschiedene Aufzählungsebenen darsteller
kann:

a) Erster Aufzählungspunkt der ersten Ebene

- b) ...
- Erster Punkt der zweiten Ebene
- Zweiter Punkt der zweiten Ebene
- c) Das sollte an Beispielen zunächst einmal genügen.

F.2.2 Bilder und Grafiken

Bilder können als PDF-, JPG-, und PNG-Bilder in LATEXeingebunden werden. Damit eine Grafik in hoher Qualität dargestellt wird, sollte das Dateiformat der Grafik vektorbasiert sein, d.h. als PDF-Datei vorliegen. Viele Zeichenprogramme unterstützen einen PDF-Export (z. B. GIMP, Adobe Illustrator, etc.). Für Grafiken aus PowerPoint sei folgende Vorgehensweise beim Export empfohlen:

- 1. Die gewünschte Grafik in PowerPoint zeichnen.
- 2. Gewünschten Bildbereich markieren, rechte Maustaste klicken und "Als Grafik speichern …" wählen.
- 3. Grafik im Format EMF abspeichern. Das EMF-Format ist vektorbasiert.¹
- 4. Mit dem Programm XnView die Grafik im EMF-Format in PDF wandeln und abspeichern.
- 5. Die so erzeugte PDF-Datei enthält eine vektorbasierte Grafik und kann in IATEX eingebunden werden.

Abbildung F.1 zeigt ein Beispielbild einer Grafik, welche aus PowerPoint exportiert wurde.

Abbildung F.1: Beispiel für die Einbindung eines Bildes (PDF-, JPG-, und PNG-Bilder können eingebunden werden).

Der Quellcode des Beispielbildes aus Abbildung F.1 ist in Listing F.1 zu sehen.

¹Mit dem Mac kann in PowerPoint die Grafik direkt im PDF-Format exportiert werden. Die weiteren Schritte entfallen daher.

Listing F.1: Quellcode der Abbildung F.1.

Jedes Bild aus fremder Quelle ist mit einem Zitat in der Abbildungsunterschrift zu kennzeichnen. Nur eigene Bilder benötigen keine entsprechende Kennzeichnung. Bilder aus fremder Quelle mit eigenen Ergänzungen oder Änderungen sind mit Zitat und einer entsprechenden Bemerkung (z. B. "auf Basis [Quelle] mit eigenen Ergänzungen" oder "eigene Darstellung auf Basis [Quelle]") zu versehen. Der besseren Lesbarkeit halber sind im Abbildungsverzeichnis keine Zitate anzugeben. Hierfür kann im Befehl \caption[]{{}} innerhalb der eckigen Klammer eine modifizierte Abbildungsunterschrift eingegeben werden, welche in das Abbildungsverzeichnis übernommen wird. Der Text innerhalb der geschweiften Klammer wird direkt unter die Abbildung gedruckt und kann dagegen ausführlich mit Angabe eines Zitats sein. Sollte die Arbeit veröffentlicht werden, ist unbedingt darauf zu achten, dass nur dann Bilder von fremder Quelle übernommen werden dürfen, wenn hierfür das explizite Einverständnis des Urhebers vorliegt. Dieses Einverständnis ist persönlich einzuholen und separat zu dokumentieren.

Grafiken können auch mithilfe des Packages Tikz gezeichnet, bzw. programmiert werden. Grafiken mit Tikz werden mit dem *input*-Befehl in die *figure*-Umgebung geladen, wie nachfolgendes Beispiel in Abbildung F.2 zeigt:

Abbildung F.2: Mit Tikz programmierte Grafik.

Ein etwas umfangreicheres Beispiel zur Digitaltechnik ist in Abbildung F.3 dargestellt:

Abbildung F.3: Mit Tikz programmierte Grafik, welche bereits vorgefertigte Bibliotheken für Symbole aus der Digitaltechnik nutzt.

In der Tikz-Umgebung können auch Diagramme mit dem *pgfplot*-Befehlssatz erzeugt werden. In Abbildung F.4 sehen Sie ein Beispiel.

Abbildung F.4: Ein Diagramm, erstellt in der *tikzpicture*-Umgebung mit dem *pgfplot*-Befehlssatz. Das Diagramm stellt Messdaten, deren Fehlerbalken und eine Regressionskurve dar. Die Messdaten werden von einer separaten Datei eingelesen und die Regressionskurve wurde mit *pgfplot* berechnet und erstellt.

Auch hierzu der Quellcode in Listing F.2.

Listing F.2: Quellcode der Abbildung F.4.

```
begin{figure}[hbt]
centering
input{pgfplot/mess_fehlerbalken.tex}

caption[Diagramm, erstellt mit dem \textit{pgfplot}-Befehlssatz.]{Ein
Diagramm, erstellt in der \textit{tikzpicture}-Umgebung mit dem \
textit{pgfplot}-Befehlssatz. Das Diagramm stellt Messdaten, deren
Fehlerbalken und eine Regressionskurve dar. Die Messdaten werden von
einer separaten Datei eingelesen und die Regressionskurve wurde mit \
textit{pgfplot} berechnet und erstellt.}

chalel{fig:pgfplot}
chalel{fig:pgfplot}
```

In Listing F.3 ist der Quellcode der Datei mess fehlerbalken.tex dargestellt.

Listing F.3: Quellcode der Datei mess_fehlerbalken.tex.

```
1 \begin { tikzpicture }
_{2} \setminus begin\{axis\}[scale=1.3, legend entries=\{Messwerte mit Fehlerbalken, 
4 \pgfmathprintnumber[print sign]{\pgfplotstableregressionb}$}, legend
     style = \{draw = none\}, legend style = \{at = \{(0.01, 0.98)\}, anchor = north west\},
     xlabel=Stromstärke $I \; \mathrm{\lbrack mA \rbrack}$, ylabel=
     Spannung $U \; \mathrm{ \lbrack V \rbrack}$]
5 \addlegendimage{mark=*,blue}
6 \addlegendimage {no markers, red}
7 \addplot+[error bars/.cd, y dir=both,y explicit]
8 table [x=x,y=y,y error=errory]
9 { pgfplot/messdaten mitfehler.dat };
10 \addplot table [mark=none, y={create col/linear regression={y=y}}]
11 {pgfplot/messdaten_mitfehler.dat};
12 \end{axis}
13 \end{tikzpicture}
```

In Abbildung F.5 wird ein weiters Beispiel für ein Diagramm gezeigt. Oftmals wird eine zweite y-Achse verwendet, um verschiedene Skalen darstellen zu können.

Abbildung F.5: Diagramm mit zwei unterschiedlichen y-Achsen.

F.2.3 Tabellen

Tabelle F.1: Liste der verwendeten Messgeräte. Die Genauigkeitsangaben beziehen sich auf die Standardabweichung $1 \cdot \sigma$.

Messgerät	Hersteller	Typ	Verwendung	Genauigkeit
Spannungs- versorgung	Voltmaker	HV2000	Spannungs- versorgung der Platine	$\Delta U = \pm 5 \text{ mV}$
Strommessgerät	Currentcount	Hotamp 16	Strommessung am Versorgungspin des µC	$\Delta I = \pm 0.1 \text{ A}$

Der Quellcode der Beispieltabelle F.1 ist in Listing F.4 zu sehen.

Listing F.4: Quellcode der Tabelle F.1.

```
1 \begin { table } [hbt ]
  2 \centering
  3 \renewcommand{\arraystretch}{1.5} % Skaliert die Zeilenhöhe der Tabelle
  4 \captionabove [Liste der verwendeten Messgeräte] { Liste der verwendeten
                   Messgeräte. Die Genauigkeitsangaben beziehen sich auf die
                   Standardabweichung $1\cdot \sigma$.}
  5 \label{tab:bsp}
  6 \begin { tabular } { ccccc }
  7 \textbf{Messgerät} & \textbf{Hersteller} & \textbf{Typ} & \textbf{
                   Verwendung \& \textbf{Genauigkeit}\\
  8 \hline
  9 \hline
\label{linewidth} $$ \operatorname{parbox}[t]_{0.2\leq the width}_{\sim th
                     & HV2000 & \parbox[t]{0.2\linewidth}{\centering Spannungs-\}
                   versorgung der \ Platine \ & \ Delta U = \pm 5 \ mV \ \ % Der parbox-
                   Befehl ist erforderlich, damit ein Zeilenumbruch erzeugt werden kann.
                      c-Spalten (zentriert) erlauben nicht automatisch einen Zeilenumpruch
                   . Linksbündig gesetzte p-Spalten erlauben automatisch den
                   Zeilenumbruch.
11 Strommessgerät & Currentcount & Hotamp 16 & \parbox[t]{0.2\linewidth}{ \linewidth}
                   centering Strommessung \\ am Versorgungspin \\ des \textmu C} & $\Delta
                      I = \mathbf{pm} \ 0.1\$^A \setminus
12 \hline
```

```
\begin{array}{c} {}_{13} \setminus end\{tabular\} \\ {}_{14} \setminus end\{table\} \end{array}
```

F.2.4 Formeln

Formeln lassen sich in LATEX ganz einfach schreiben. Es gibt unterschiedliche Umgebungen zum Schreiben von Formeln. Z. B. direkt im Text v = s/t oder abgesetzt

$$F = m \cdot a$$

oder auch, wie in wissenschaftlichen Dokumenten üblich, nummeriert

$$P = \frac{U^2}{R} \quad . \tag{F.1}$$

Mit einem Label in Formel F.1 lassen sich natürlich auch Formeln im Text referenzieren. LaTEX verwendet im Formelmodus einen eigenen Schriftsatz, welcher entsprechend der gängigen Konventionen kursive Zeichen verwendet. Sollen im Formelmodus Einheiten in normaler Schriftart eingefügt werden, dann kann dies über den Befehl $\{mathrm\}$ erwirkt werden, wie im Quellcode von Formel F.2 zu sehen ist.

$$P = \frac{U^2}{R} = \frac{(100 \text{ V})^2}{100 \Omega} = 100 \text{ W}$$
 (F.2)

Zum direkten Vergleich sind die Einheiten in Formel F.3 falsch dargestellt:

$$P = \frac{U^2}{R} = \frac{(100 \ V)^2}{100 \ \Omega} = 100 \ W \tag{F.3}$$

Zur einfachen Eingabe von Einheiten kann auch das Package $\$ siunitx verwendet werden:

$$P = 100 \text{ W} = 100 \text{ J s}^{-1}$$
 (F.4)

Das sind nur ein paar wenige Beispiele und es gibt sehr viele Packages, um Besonderheiten in Formeln realisieren zu können, z. B. mehrzeilige Formeln mit vertikaler Ausrichtung. Nennen Sie Formeln nur, wenn diese zum besseren Verständnis auch

wirklich nützlich sind.

Folgende Befehle sind innerhalb von Formel-Umgebungen nützlich:

\text{} oder \mathrm{}Damit kann in Formel-Umgebung Text geschrieben werden.
\, \: \; \quad \qquad \quad \qquad \quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqquad \qqqq \qqq \qqq

Hier noch ein kleines Beispiel aus der Mathematik:

$$\sum_{n=1}^{\infty} f(x_n) \cdot \Delta x = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\mathrm{d}f}{\mathrm{d}x} = \dot{f}(x)$$
 (F.5)

Und abschließend ein Beispiel aus der Physik zum Induktionsgesetz:

$$\oint_{\partial \mathcal{A}(t)} \vec{E} \cdot d\vec{s} = -\int_{\mathcal{A}(t)} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$
 (F.6)