

Linux Support of NFS v4.1 and v4.2

Steve Dickson steved@redhat.com Mar Thu 23, 2017

Agenda

- NFS v4.0 issues
- NFS v4.1 Supported Features
- NFS v4.2 Supported Features
- V4.2 Not Suported Features
- V4.x Other Features

NFS v4.0 - Issues

- Performance issues
- Callback issues
- Delegation issues
- Locking Issues
- Mount negotiations start with v4.2

NFSv4.1 - Features

- Sessions
 - Exactly Once Semantics.
 - Callback problem fixed.
- pNFS
 - File layout
 - Netapp
 - SCSI Layout
 - Linux
 - Flex File layouts
 - Primary Data

NFS V4.2 - Feature

- Sparse File Support Sparse files are ones which have allocated or uninitialized blocks in the file. (1.4.3)
 - SEEK Find the Next Data or Hole
 - NFS: Implement SEEK (Sep 2014)
 - READ_PLUS READ Data or Holes from a File
 - No published upstream patches yet
 - Prototype patches improve performance with reading holes (See Anna's keynote graph).

NFS V4.2 - Feature

- Space Reservation Creating holes in files by transferring just the metadata over the network
 - ALLOCATE Reserve Space in A Region of a File
 - nfs: Add ALLOCATE support (Jul 2015)
 - DELLOCATE Unreserve Space in a Region of a File
 - nfs: Add DEALLOCATE support (Jul 2015)

NFS V4.2 - Feature

- Server-side copy Provides a mechanism for the NFS client to perform a file copy on the server without the data being transmitted back and forth over the network.
 - COPY Initiate a server-side copy
 - NFS: Add COPY nfs operation (Feb 2017)
 - Clone nfs42: add CLONE proc functions (Sep 26 2015)
 - Huge performance gain!

NFS v4.2 - Feature

- <u>Security labels</u> A file object attribute allows the server to store labels on files, which the client retrieves and uses to enforce data access. (1.4.6)
 - SECURITY_LABEL
 - NFS: Client implementation of Labeled-NFS (May 2013)

NFS v4.2 – Not Supported

- <u>IO Advise</u> Applications and clients want to advise the server as to expected I/O behavior. (1.4.2)
 - IO_ADVISE Application I/O access pattern hints
 - not implemented
- Application Data Block (ADB) Support Some applications treat a file as if it were a disk and as such want to initialize (or format) the file image. (1.4.5)
 - WRITE_SAME WRITE an ADB Multiple Times to a File
 - not implemented

NFSv4.x – Other features

LAYOUTSTATS

- Performance statistics from DS to MDS
- FlexFile use to load balance between DS(s)
- Session Trunking
 - The use of multiple connections between a client and server in order to increase the speed of data transfer.
 - pNFS File and Flexfile layout
- NFSoRDMA
 - NFS4.1 support
 - Kerberos Support

Questions

References

- RFC 5661 https://tools.ietf.org/html/rfc5661
- RFC 7862 https://tools.ietf.org/html/rfc7862
- Vault 2015 Talk http://events.linuxfoundation.org/sites/events/files/s lides/vault2015.pdf

NFSv4 Beyond v4.2

Part 2 of Road Map of the features in NFS v4.1, v4.2, and beyond

Dave Noveck
Netapp
Vault Conference
March 23, 2017

Contents

- A tiny bit about the NFSv4 Working group and the IETF process
- NFSv4 beyond v4.2 as approved
 - GSSRPCv3 (used by some v4.2 features but separate from them)
 - New Extension Model
 - Currently Pending Extensions
- Other working group work (mainly focused on NFS performance)
 - Revival of NFS/RDMA
 - Higher-performance pNFS options (allowing use of NVMe, RDMA)
 - Miscellaneous trunking issues

Working Group and IETF Process

- Front end (NFSv4 Working Group)
 - Cycles of drafting, review, update
 - No time limits. Process continues until everyone is ready to have Working Group Last Call for final working group review
 - Despite a seemingly unworkable process, things do get done.
- Back end (IETF superstructure)
 - Review by Area Director, IESG; RFC Editing process
 - Back end process can take a year or more
- Good news is that substantial change rarely happens in the back end
 - It is pretty safe to continue prototyping and do preliminary implementations based on final WG draft

GSSRPCv3

- Published as RFC7861 in Nov. 2016 (same day as NFSv4.2)
- Supports Mandatory Access Control for Labeled NFS
 - GSSv3 provides support for subject labels
 - Labeled NFS provides support for object labels
- Another motivation was inter-server case of server-side copy.
 - Allows target server to read file on behalf of user requesting copy.
 - No trust relationship required between source and target servers.

New Extension Model

- No V4.3, for a while at least
- However, optional extensions to V4.2 will be possible.
- Such extensions can define:
 - New attributes
 - New operations
 - New flags or switch cases in existing operations
- New extension model described in <u>draft-ietf-nfsv4-versioning-09</u>
 - Document ready for IETF superstructure to deal with
- Two extensions are ready for approval. (see <u>Next Slide</u>)
 - More can be developed since v4.2 will be extensible.

Pending Extensions Slide One of Two

- Extended Attributes
 - OTW support for size-limited extended attributes (such as Linux xattrs)
 - Without this, copying a file with xattrs using NFS loses data
 - Separate from named attributes:
 - Those are based on multi-stream files in Windows and Solaris
 - Document ready to be considered by IETF superstructure
 - Upstream client-side patches exist for this
 - No upstream server-side patches for kernel-based NFS server
 - There are Ganesha patches for server

Pending Extensions Slide Two of Two

- Umask attribute
 - Allowing inheritable NFSv4 ACLs to override the umask.
 - Passes umask separately from mask attribute on file creation
 - Without this, permission inheritance over NFSv4 is broken,
 - Document ready to be considered by IETF superstructure
 - There are upstream patches for both client and server parts of this.
- These two extensions and versioning document will go forward into the back-end process together.

Revival of NFS/RDMA Background

- NFS got an early start on RDMA
 - Working group finished with docs in 2007; published in 2010
- Unfortunately,
 - Netapp changed its priorities and lost interest in RDMA
 - Tom Talpey, the driving force behind NFS/RDMA, was laid off
 - Documents were finished off in a rush and implementation lagged
 - Tom went to Microsoft and created SMB Direct
- As a result,
 - Documents were not clear enough to base new implementations on.
 - The protocol had performance problems that SMB Direct did not have
- Working group decided to revive NFS/RDMA

Revival of NFS/RDMA Getting a Working Transport (Slide One of Two)

- Goal was to revive existing (Version One) transport.
 - Existing XDR was to be used
 - Performance issues were to be left for later
 - Also, error reporting could not be fixed due to ban on XDR changes
 - Two existing documents needed to revived/cleaned-up and one new one written.
- Rfc5666bis
 - Extensive cleanup of RFC5666
 - Clarify requirement for Upper Layer Bindings for individual protocols
 - Got rid of obsolete, never-implemented features
 - Document has just been approved by IESG.
 - After that, RFC editing

Revival of NFS/RDMA Getting a Working Transport (Slide Two of Two)

- Draft-ietf-nfsv4-rpcrdma-bidirection
 - Needed new feature
 - Allows callbacks over RDMA, to support NFSv4.1
 - Document just approved by IESG.
 - Being worked on by RFC Editor
- Rfc5667bis
 - Also needed a major cleanup
 - Needed to be updated to meet requirements for Upper Layer Bindings
 - Document finishing up working group process

Revival of NFS/RDMAAddressing Performance Gap vs. SMB Direct

- Performance gaps of concern
 - Need for better trunking support (see <u>Trunking Slides</u>)
 - Remote Invalidation (supported in <u>Version Two</u>)
 - Message Continuation (supported in an extension to <u>Version Two</u>)
- Near-term approach for performance gaps
 - Experimental draft in process of becoming working group document
 - Characteristic negotiation using CM private data
 - Upstream patches for client and server
 - Allows a simple form of remote invalidation
 - No message continuation but need for it is lessened by ability to negotiate larger receive buffers

Revival of NFS/RDMA Advancing beyond Version One

- Everything on this slide not yet an official working group document
- Base Version Two
 - Provides support for remote invalidation
 - Larger default buffer size (1K → 4K)
 - Ability to negotiate a larger value.
 - Version designed to be extensible
 - Defined in an individual submission; should be ready for promotion soon.
- Version Two Extensions
 - Message Continuation
 - Send-based Data Placement
 - Eliminates one inter-node round trip on an NFS WRITE.
 - Also a big help where remote invalidation not available (e.g. User-mode server)
 - Defined in an individual submission; discussion not far along

pNFS Mapping Types for Higher Performance

- SCSI mapping type (Green MT in <u>Diagram</u> Slide)
 - Basically, a restatement of existing block mapping type, but ...
 - It has a new code and so is distinct
 - Scsi-to-NVMe mapping can be use to enable use with NVMe and NVMe/f ©
 - Document has been with IETF superstructure for over a year
 - Should be published any month now.
 - Can be realized by FC, NVMe Devices, or Ethernet (via FCOE)
 - Can also be realized as RDMA fabric by Ethernet or Infiniband using NVMe/F
- RDMA-based mapping type (Blue MT in <u>Diagram</u> Slide)
 - Layouts could designate area in a remote memory.
 - Could access /modify data using RDMA Read and Write
 - Right now it is just a notion
 - Will take work to make it into an idea and then a submittable draft.
 - Can be realized by Ethernet (via iWarp or ROCE) or Infiniband

High-performance pNFS Possibilities

Trunking to Enable Higher Performance Slide One of Two

- Types of trunking in NFSv4.1
 - Session Trunking
 - Multiple connections (potentially to different addresses) as part of same session.
 - Clientid Trunking
 - Multiple sessions supporting a single client; intended for clustered servers
- Reasons for Trunking
 - To get benefit of multiple wires/adaptors
 - With clustered servers, get benefit of multiple server nodes working
 - This is more suitable to client-id trunking than to session trunking used in Linux client
 - For data access, pNFS can fill the gap
 - High-intensity metadata access might need future work.
 - Get hw parallelism within adapter by using multiple queue-pairs/connections.

Trunking to Enable Higher Performance Slide Two of Two

- Current Linux client issues with trunking
 - No trunking in the non-DS case (MDS and no PNFS use)
 - Lack of address list to drive trunking decisions
 - No support for clientid trunking
 - Limited trunking of multiple connection to same address
 - Depends on duplicates within an address-list
- Path discovery for trunking
 - Could substitute for the missing multipath_list4 in the non-DS case
 - Unclear whether relying on DNS is adequate
 - There is an individual submission under discussion
 - Not clear how this will be resolved