TD nº 2 – Géométrie hyperbolique élémentaire (suite)

Encore un peu de plan hyperbolique

Exercice 1. Flot géodésique

On définit le *fibré tangent unitaire* au plan hyperbolique par

$$T^1 \mathbb{H}^2 = \{(z, w) : z \in \mathbb{H}^2, v \in T_z \mathbb{H}^2, \|z\|_v = 1\}.$$

Le flot géodésique est un groupe à un paramètre $a_t: T^1\mathbb{H}^2 \to T^1\mathbb{H}^2$, pour $t \in \mathbb{R}$, de sorte que pour tout $(z,v) \in T^1\mathbb{H}^2$,

$$a_t(z, v) = (\gamma(t), \gamma'(t))$$

soit l'unique géodésique paramétrée par la longueur d'arc telle que $\gamma(0)=z,\,\gamma'(0)=v.$

1. Montrer que $T^1\mathbb{H}^2 \simeq \mathrm{PSL}(2,\mathbb{R})$. On pourra utiliser la décomposition d'Iwasawa : toute matrice $q \in \mathrm{PSL}(2,\mathbb{R})$ peut s'écrire comme un produit de matrice

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y} & 0 \\ 0 & \frac{1}{\sqrt{y}} \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

avec $x \in \mathbb{R}$, $y \in (0, \infty)$, et $\theta \in [0, 2\pi)$, et le fait que pour tout $z \in \mathbb{H}^2$, il existe $g \in \mathrm{PSL}(2, \mathbb{R})$ tel que $g \cdot z = \mathrm{i}$.

2. Montrer que le flot géodésique est donné par l'action à droite du sous-groupe à un paramètre

$$\left\{ a_t = \begin{pmatrix} e^{t/2} \\ 0 & e^{-t/2} \end{pmatrix}, \ t \in \mathbb{R} \right\}.$$

Indice: on pourra commencer par étudier le cas de $(i, i) \in T^1 \mathbb{H}^2$.

Exercice 2. Formule de Gauss-Bonnet

FIGURE 1 – Un triangle hyperbolique

1. Soit T un triangle hyperbolique dont un des sommets est dans $\partial \mathbb{H}^2 = \mathbb{R} \cup \{\infty\}$ comme dans la figure 1 ci-dessus. En utilisant le fait que les angles euclidiens et les angles hyperboliques coïncident dans le demi-plan supérieur, montrer que l'aire de T est égale à $\pi - \alpha - \beta$.

- 2. Montrer que tout triangle hyperbolique peut s'écrire comme la différence entre deux tels triangles. En déduire la formule de Gauss-Bonnet : pour un triangle hyperbolique quelconque, son aire vérifie $\pi - \alpha - \beta - \gamma$.
- 3. En déduire la formule de l'aire d'un triangle idéal (c'est-à-dire dont les trois sommets sont dans $\partial \mathbb{H}^2$), ainsi que l'aire d'un polygone hyperbolique d'angles $\alpha_1, \ldots, \alpha_n$.

Surfaces hyperboliques compactes

Exercice 3. Domaines fondamentaux

Une surface hyperbolique est un quotient $M = \Gamma \backslash \mathbb{H}^2$, pour un sous-groupe discret $\Gamma \subset$ $PSL(2,\mathbb{R})$. Pour que M soit une variété, il faut que Γ ne contienne pas d'élément elliptique. Soit $M = \Gamma \backslash \mathbb{H}^2$ une telle surface. Un sous-ensemble $F \subset \mathbb{H}^2$ est un domaine fondamental pour l'action de Γ si

- $\begin{array}{ll} -- \bigcup_{\gamma \in \Gamma} \gamma \cdot F = \mathbb{H}^2, \\ -- \text{ Pour tout } \gamma \neq \gamma' \in \Gamma, \, \gamma \cdot F \cap \gamma' \cdot F = \varnothing. \end{array}$
- 1. Montrer que si F_1 et F_2 sont deux domaines fondamentaux pour Γ et si F_1 est d'aire finie, alors $Aire(F_1) = Aire(F_2)$. On dit que Γ est un réseau s'il possède un domaine fondamental d'aire finie.
- 2. Montrer que tout sous-groupe discret Γ de $SL(2,\mathbb{R})$ agit proprement discontinument, c'est-à-dire que pour tout $\gamma \in \Gamma$, tout $z \in \mathbb{H}^2$ et tout compact $K \subset \mathbb{H}^2$, $\{q \in \Gamma : qz \in K\}$ est fini.
- 3. Étant donné un sous-groupe discret Γ et $p \in \mathbb{H}^2$ qui n'est pas un point fixe de $\gamma \in \Gamma \setminus \{e\}$, on définit le domaine fondamental de Dirichlet par

$$D = D_p(\Gamma) = \{ z \in \mathbb{H}^2 : d(z, p) < d(z, \gamma p), \ \forall \gamma \in \Gamma \setminus \{e\} \}.$$

Montrer que D est bien un domaine fondamental.

Exercice 4. Formule de Gauss-Bonnet, le retour

Soit M une surface hyperbolique compacte orientable de genre q. On se donne une triangulation de M, c'est-à-dire que l'on recouvre M par des triangles dont les intérieurs sont disjoints deux à deux. On admet qu'une triangulation peut toujours être choisie de sorte que les côtés des triangles soient géodésiques. En utilisant l'exercice 2, démontrer la formule générale de Gauss-Bonnet:

$$Aire(M) = 4\pi(g-1). \tag{1}$$

On pourra utiliser a formule d'Euler suivante : si G = (V, E, F) est un graphe plongé dans M de sorte que ses faces soient simplement connexes et que ses arêtes ne se rencontrent qu'à leurs extrémités, alors

$$|V| - |E| + |F| = \chi(M) = 2 - 2g.$$

Exercice 5. Théorème de Budzinski-Curien-Petri

Pour $g \geq 2$, on pose

 $D_q = \min\{\operatorname{Diam}(X) : X \text{ surface fermée orientable hyperbolique de genre } g\}.$

L'objectif est de démontrer le théorème de Budzinski-Curien-Petri :

$$\lim_{g \to \infty} \frac{D_g}{\log g} = 1. \tag{2}$$

Pour ce faire, on se donne pour tout a une surface T_a construite par recollement d'une infinité dénombrable de pantalons (sphères à trois trous) P_a dont les bords sont tous de longueur a,

FIGURE 2 – La surface T_a

comme dans la figure 2 ci-dessous. On fixe un point de base $p_0 \in P_a$, et on crée un graphe en reliant toutes les copies de p_0 des pantalons adjacents (cf. fig. 2). Le point p_0 et ses copies forment ce que l'on appelle des *points médians*.

On définit

 $N_a(R)=\#\{ {
m points\ m\'edians\ \`a\ distance\ inférieure\ ou\ \'egale\ \`a\ }R\ {
m d'un\ point\ de\ base\ }O\in T_a\ {
m fix\'e}\}.$

Étant donné un graphe 3-régulier \mathcal{G}_n à 2n sommets, on associe à chaque sommet de \mathcal{G}_n une copie de P_a , et on recolle entre elles les copies associées à des sommets adjacents, comme dans la figure 3.

FIGURE 3 – Construction de la surface $S_{a,n}$

On admet les deux résultats suivants.

— pour tout $a \in (0, \infty)$, il existe des constantes C_a et δ_a dans (0, 1) telles que

$$N_a(R) \sim C_a e^{\delta_a R}, \quad R \to \infty.$$

— pour tout $\varepsilon > 0$, avec grande probabilité quand $n \to \infty$, on a

$$\operatorname{Diam}(S_{a,n}) \le \left(\frac{1}{\delta_a} + \varepsilon\right) \log n.$$

À partir de ces résultats, démontrer le théorème. Indice : on pourra utiliser la "borne triviale" du cours, $\text{Diam}(S_{a,n}) \geq \log \text{Aire}(S_{a,n}) + O(1)$, vraie pour toute surface hyperbolique.