数电实验 11

18308045 谷正阳

June 3, 2021

Contents

1	仿真	实验																		2
	1.1	显示学	2号		 		 							 						2
		1.1.1	电路	图.	 		 							 						2
		1.1.2	结果	Ŀ	 		 							 						4
	1.2	学号双	双向计	数器	 		 													5
		1.2.1	电路	图.	 		 													5
		1.2.2	结果	<u>.</u>	 		 							 						8
	- Δ	箱实验																		9
2	头短	相头短																		9
	9.1	思示学	5 早																	O

1 仿真实验

1.1 显示学号

1.1.1 电路图

用 $2 \land D$ 触发器, $2 \land JK$ 触发器实现 $1 \land 4$ 位移位寄存器。再用 $1 \land D$ 不现成的移位寄存器构成 8 位移位寄存器。8 位移位寄存器初始化为 011111111,最后用一个 JK 触发器,判断到最右端输出 0 时置初值,实现 ring counter,且无需手动置初值。

4 位移位寄存器和 D 触发器都有置位和清零可以直接置需要的初值。JK 触发器只有清零端,但是若把 \overline{Q} 视作 Q,即可认为清零是置位,此时还需把 J 视作 K,把 K 视作 J。

Ring counter 扫描 LED 的位置码,不同位置码使用组合逻辑电路产生所需 BCD 码,真值表如下:

Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	N	A	В	C	D
0	1	1	1	1	1	1	1	1	1	0	0	0
1	0	1	1	1	1	1	1	8	0	0	0	1
1	1	0	1	1	1	1	1	3	1	1	0	0
1	1	1	0	1	1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1	8	0	0	0	1
1	1	1	1	1	0	1	1	0	0	0	0	0
1	1	1	1	1	1	0	1	4	0	0	1	0
1	1	1	1	1	1	1	0	5	1	0	1	0

在某几个Q为0时,输出1,否则输出0,是与非的关系。

1.1.2 结果

1.2 学号双向计数器

1.2.1 电路图

右边使能端高电平有效,左边控制端低电平正向计数 13045,高电平反向计数 54021。

Q(t)	Q(t+1)	$Q(t)_2$	$Q(t)_1$	$Q(t)_0$	$Q(t+1)_2$	$Q(t+1)_1$	$Q(t+1)_0$	S
1	3	0	0	1	0	1	1	0
3	0	0	1	1	0	0	0	0
0	4	0	0	0	1	0	0	0
4	5	1	0	0	1	0	1	0
5	1	1	0	1	0	0	1	0
5	4	1	0	1	1	0	0	1
4	0	1	0	0	0	0	0	1
0	3	0	0	0	0	1	1	1
3	1	0	1	1	0	0	1	1
1	5	0	0	1	1	0	1	1

绘制 $Q(t+1)_0$ 卡诺图

Q_0S Q_2Q_1	00	01	11	10
00	0	1	1	1
01	X	X	1	0
11	X	X	X	X
10	1	0	0	1

$$\begin{cases}
Q(t+1)_{0} \\
= Q(t)_{2} \cdot S' + Q(t)'_{2} \cdot S + Q(t)'_{1} \cdot Q(t)_{0} \cdot S' \\
= Q(t)_{2} \oplus S \cdot (Q(t)'_{0} + Q(t)_{0}) + Q(t)'_{1} \cdot Q(t)_{0} \cdot S' \\
= (Q(t)_{2} \oplus S) \cdot Q(t)'_{0} + (Q(t)_{2} \oplus S + Q(t)'_{1} \cdot S') \cdot Q(t)_{0} \\
Q(t+1)_{0} \\
= J_{0} \cdot Q(t)'_{0} + K'_{0} \cdot Q(t)_{0}
\end{cases}$$

$$\begin{cases}
J_{0} \\
= Q(t)_{2} \oplus S \\
K'_{0} \\
= Q(t)_{2} \oplus S + Q(t)'_{1} \cdot S' \\
= J_{0} + Q(t)'_{1} \cdot S' \\
= (J'_{0} \cdot (Q(t)_{1} + S))'
\end{cases}$$

$$\therefore \begin{cases}
J_{0} = Q(t)_{2} \oplus S \\
K_{0} = J'_{0} \cdot (Q(t)_{1} + S)
\end{cases}$$

 J_0 可以复用。

绘制 $Q(t+1)_1$ 卡诺图

Q_0S Q_2Q_1	00	01	11	10
00	0	1	0	1
01	X	X	0	0
11	X	X	X	X
10	0	0	0	0

$$\begin{cases}
Q(t+1)_{1} \\
= Q(t)'_{2} \cdot Q(t)'_{0} \cdot S + Q(t)'_{2} \cdot Q(t)'_{1} \cdot Q(t)_{0} \cdot S' \\
= Q(t)'_{2} \cdot Q(t)'_{0} \cdot S \cdot (Q(t)'_{1} + Q(t)_{1}) + Q(t)'_{2} \cdot Q(t)'_{1} \cdot Q(t)_{0} \cdot S' \\
= (Q(t)'_{2} \cdot Q(t)'_{0} \cdot S + Q(t)'_{2} \cdot Q(t)_{0} \cdot S') \cdot Q(t)'_{1} + Q(t)'_{2} \cdot Q(t)'_{0} \cdot S \cdot Q(t)_{1} \\
Q(t+1)_{1} \\
= J_{1} \cdot Q(t)'_{1} + K'_{1} \cdot Q(t)_{1} \\
\begin{cases}
J_{1} \\
= Q(t)'_{2} \cdot Q(t)'_{0} \cdot S + Q(t)'_{2} \cdot Q(t)_{0} \cdot S' \\
= Q(t)'_{2} \cdot (Q(t)_{0} \oplus S) \\
K'_{1} \\
= Q(t)'_{2} \cdot Q(t)'_{0} \cdot S \\
= 0(\because Q_{2}, Q_{0} \quad 0
\end{cases}$$

$$\therefore \begin{cases}
J_{1} = Q(t)'_{2} \cdot (Q(t)_{0} \oplus S) \\
K_{1} = 1
\end{cases}$$

绘制 $Q(t+1)_2$ 卡诺图

Q_0S Q_2Q_1	00	01	11	10
00	1	0	1	0
01	X	X	0	0
11	X	X	X	X
10	1	0	1	0

$$\begin{cases} Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S \\ = (Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S) \cdot (Q(t)'_2 + Q(t)_2) \\ = (Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S) \cdot Q(t)'_2 + (Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S) \cdot Q(t)_2 \\ Q(t+1)_2 \\ = J_2 \cdot Q(t)'_2 + K'_2 \cdot Q(t)_2 \\ \begin{cases} J_2 \\ = Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S \\ = ((Q(t)'_0 \cdot S')' \cdot (Q(t)'_1 \cdot Qt(0) \cdot S)')' \\ K'_2 \\ = Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S)')' \\ K'_2 \\ = Q(t)'_0 \cdot S' + Q(t)'_1 \cdot Qt(0) \cdot S \\ = J_2 \end{cases}$$

$$\therefore \begin{cases} J_2 = ((Q(t)_0 + S) \cdot (Q(t)'_1 \cdot Qt(0) \cdot S)')' \\ K_2 = J'_2 \end{cases}$$

 J_2 可以复用。

1.2.2 结果

点击查看演示视频 1.mp4

2 实验箱实验

2.1 显示学号

