			Aim: Study & implementation of priority scheduling Algorithm. Objective: To understand & implement the priority scheduling in an Os	Experiment No. 4
Types of Priority Scheduling: The CPU executes a process until it finishes wen it a higher priority scheduling. If a new process ii) Retemptive Priority scheduling. If a new process with a higher priority arrives it preempts the ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR-441 108 lumons stewling process.	Preemptive & non-preemptive algorithm where each preemptive is assigned by a priarity & the priarity of the priarity with hyest priarity wheelding is done using FCFs method	scheduling in 03: scheduling is as that decides the are executed by to whike (R)	Aim: Study & implementation of Princity Scheduling Algorithm Algorithm Objective: To underestand & implement the Brookly scheduling olyanithm far process scheduling in an OS	Experiment No.: 4

Key Parameters: i> AT: The time when a process arrives in
ii) BT: The time required by a proven to
execute completely iii) Priority (P): A numerical value assigned to a process, Magnitude represents urgerry
spends mailing in the raidy queue before
v>Turn around Time (TAT): The total time-taken
by a process from arrival to completion.
Formulas Used: i> TAT = CT - AT
Code: #Include (bits/stdc++.h) using numespace std;
Strict process ?
int bt; int priority;
];

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR - 441 108

boul comparison (Process of Process b)
return (9. privrity > b. privrity);
void find Waiting Time (Process front I), int n, int wt []
Z W+ LD
urt [0] = 0;
for (int i = 1 ; i < n ; i++)
ut [i] = proc [i-1] bt + wt [i-1]
void And Time Process proc [], int grint
wt [] int tat []
for Cintaleo ; i < n ; i+i+) }
tat [i] = pror [i] bt + wt [i];
void FindAvgTime (Process proc [], int n) ?
int wt [n] total_wt =0,
total_tat=0:
find Walting Time (proc , n, wt);

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR - 441 108

Find Turn Amund Time (prac, n, ut, tat);
Cout << "In Processes"
CC "C "
<< "Burnet time"
< "Waiting time"
CTurnaround time In ";
for (int i=0: i < n: i++) {
total net = total net + net [i]:
total_tat = total_tat t tat [i]:
cout << " < pro[i].pd << " + +" <<
portilibt
'H " < w+[i] << "H +" <<</td
tot [i]
C and :
cout << " In Average waiting time = "
(Float) total wit /(Float) n:
cout « In Arriage turn around time = "
(float) total tat / (float) n;
unid privarity Scheduling (Protess proc [] int-n)
1
Sort [proc proc +n companison);
cout << "Order in which processes got
exempted In":
Coulting II.

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR - 441 108

Fac (Int i = 0; i < n; i+t)	Conclusion: The priority scheduling algo. efficiently processes based on their priority levels. The Aug. WT & TAT meyer computed to analyze performance. Thus implementation was successfull		
	Ision: The based were imple	D D (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	eduling Algo. efficiently schedules protesses private keels. The Avg. wT8-TAT.— to analyze performance Thus uns successful. FENGINEERING & TECHNOLOGY, NAGPUR-441 108	\$ 13 5 16 10 15 16 16 16 16 16 16 16	(1)