Impact of 3D bookmarks on Navigation and Streaming in a Networked Virtual Environment

Thomas Forgione¹ thomas.forgione@irit.fr

Axel Carlier¹
axel.carlier@enseeiht.fr

Géraldine Morin¹ morin@enseeiht.fr

Wei Tsang Ooi² weitsang@nus.edu.sg

Vincent Charvillat¹ charvi@enseeiht.fr

¹Université de Toulouse - IRIT

²National University of Singapore

May 11, 2016

NVE

Networked Virtual Environment

- 3D environment Streaming
- Free flying camera 5 degrees of freedom $(x, y, z, \theta \text{ and } \phi)$

Figure: An NVE from Sketchfab

NVE

Networked Virtual Environment

- 3D environment Streaming
- Free flying camera 5 degrees of freedom $(x, y, z, \theta \text{ and } \phi)$

Figure: Spheric coordinate system

Outline

- Navigation in NVE
 - Controls
 - 3D Bookmarks
- Quality of Experience
 - Experimental setup
 - Results
- Impact on Quality of Service
 - Streaming policies
 - Comparison

Outline

- Navigation in NVE
 - Controls
 - 3D Bookmarks
- Quality of Experience
 - Experimental setup
 - Results
- Impact on Quality of Service
 - Streaming policies
 - Comparison

State of the art: difficulty of navigation

Ruddle et al. [2000]

- Some interactions can get the user lost in the 3D environment
- Hyperlinks as such are unusable

Jankowski and Hachet [2015]

- Difficult with a 2D screen
- Strongly task-dependent

Keyboard controls: difficulty of navigation

Figure: Keyboard controls

Figure: Spheric coordinate system

Difficulty of navigation

Arrow bookmarks

to the current position of the camera

Arrow curved according

Shows path to targeted bookmark

3D data from McGuire [2011]

Figure: Bookmarks as arrows

Fly-to transition

Figure: Smooth move from the current position to the bookmark

Viewport bookmarks

Computer vision style bookmark

- Optical center
- Image plane

Figure: Bookmarks as viewports

Outline

- Navigation in NVE
 - Controls
 - 3D Bookmarks
- Quality of Experience
 - Experimental setup
 - Results
- Impact on Quality of Service
 - Streaming policies
 - Comparison

Evaluating the impact of bookmarks with MicroWorkers

Crowdsourcing

- People were recruited on microworkers.com
- More than 100 started the experiment
- 51 of them completed it, and were paid
- Traces of all experiments were recorded in order to be replayed to simulate streaming

Problem: task design

Without task, people won't browse our 3D scenes

- They have nothing to do
- They are probably not interested in our data
- 3D browsing is difficult
 - ⇒ They will browse for a few seconds and leave
 - ⇒ We will not see the impact of bookmarks

Our solution

- Ask people to perform a task
- Find hidden objects in the scene

Figure: A coin hidden behind a curtain

Task design

One micro-job

- Initial questionnaire (age, gender, etc...), tutorial
- 3 random tasks
- Final questionnaire to evaluate QoE

One random task

- Select 1 3D scene out of 3 (loaded beforehand)
- Select 1 UI out of 3 (no bookmarks, 10 viewports, 10 arrows)
- Select 8 coins randomly out of 50 (positioned beforehand)
- No correlation between bookmarks and coin positions

Success

• At least 6 coins found among the 8 hidden coins in the scene

Stats on 51 users

BM type	#Exp	Mean # coins	# completed	Mean time
No bookmarks	51	7.08	18	4:16 min
Arrows	51	7.39	27	2:33 min
Viewports	51	7.51	30	2:16 min

Table: Analysis of the sessions length and users success by type of bookmarks

BM type	Total distance	Fly-to distance	Ratio
No bookmarks	610.80	N/A	N/A
Arrows	586.30	369.77	63%
Viewports	546.96	332.72	61 %

Table: Analysis of the length of the paths by type of bookmarks

Questionnaire

Questions	Answers
What was the difficulty level without bookmark?	3.04 / 5 ±0.31 (99%)
What was the difficulty level with bookmark?	2.15 / 5 ±0.30 (99%)
Did the bookmarks help you to find the coins?	42 Yes, 5 No
Did the bookmarks help you to browse the scene?	49 Yes, 2 No
Do you think bookmarks can be helpful?	49 Yes, 2 No
Which bookmark style do you prefer and why?	32 Arrows, 7 Viewports
Did you enjoy the experiment ?	36 Yes, 3 No

Table: List of questions in the questionnaire and summary of answers.

⇒ Quality of experience is better with bookmarks

From users' paths to system queries

Figure: Percentage of polygons queried after a certain period of time

- Higher demand to the server with bookmarks
- Potential impact on QoS

Impact of bookmarks on navigation

- Faster navigation
- Better performance w.r.t. the task
- Good QoE, task perceived as simpler
- Higher demand to the server

Outline

- Navigation in NVE
 - Controls
 - 3D Bookmarks
- Quality of Experience
 - Experimental setup
 - Results
- Impact on Quality of Service
 - Streaming policies
 - Comparison

Figure: Streaming model

Client info :

- Camera position
- · Frustum of the camera
- · Bookmark clicked if any

Figure: Streaming model

Client info :

- Camera position
- Frustum of the camera
- Bookmark clicked if any

Figure: Streaming model

Client info :

- Camera position
- Frustum of the camera
- Bookmark clicked if any

Figure: Streaming model

Figure: Streaming model

Client Server Client info: Client info Camera position Frustum of the camera Bookmark clicked if any Compute faces to send according to a streaming policy Polygons Update camera (Evaluate rendering) Client info

Figure: Streaming model

Rendering evaluation

- One 3D model is fully loaded at the beginning
- One 3D model is loading progressively
- We compute the rendering on the fully loaded model

•
$$R = \frac{Pixels_{already loaded face}}{Pixels_{all faces}}$$

Figure: A loading 3D scene with R = 0.9

A naive streaming policy

C: Frustum culling / Backface culling

- Send only polygons that may intersect the frustum of the camera
- Send only polygons that are oriented towards the camera
- Sort polygons by distance to the camera

C: Frustum culling / Backface culling

Figure: Frustum culling

Two fold issue

Figure: Evaluation of the naive streaming policy

Two fold issue

Figure: Evaluation of the naive streaming policy

Server-side rendering

- Find visible triangles
- Sort them by projected area

Figure: Server-side rendering

Impact of server-side rendering

- Great impact on QoS
- Not scalable: the server cannot do rendering for everyone
- But we can do it on bookmarks ⇒ Precomputation

Impact of server-side rendering

- Great impact on QoS
- Not scalable: the server cannot do rendering for everyone
- But we can do it on bookmarks ⇒ Precomputation

A short review on prefetching

Park et al. [2001]

- Predict the user's interest in an object
- Sort objects by interest and prefetch

Hung and Liu [2006]

- Cluster the navigation path of users
- Predict future navigation path
- Prefetch objects near predicted path

Zhou et al. [2015]

- Learn object access patterns
- Predict objects that are likely to be accessed and prefetch

C: Frustum culling / Backface culling

- Send only polygons that may intersect the frustum of the camera
- Send only polygons that are oriented towards the camera

FD: Fetch destination

Send the triangles that are seen by the bookmark clicked

PP: Prefetch predicted

Send the triangles that are seen by the bookmarks that might be clicked

C: Frustum culling / Backface culling

- Send only polygons that may intersect the frustum of the camera
- Send only polygons that are oriented towards the camera

FD: Fetch destination

Send the triangles that are seen by the bookmark clicked

PP: Prefetch predicted

Send the triangles that are seen by the bookmarks that might be clicked

PP: Prefetch Predicted

Try to guess the next bookmark clicked knowing the previous one

Figure: Patterns of access for a specific scene

PP: Prefetch Predicted

Try to guess the next bookmark clicked knowing the previous one

Figure: Patterns of access for a specific scene

Figure: Prefetching packet

Figure: Comparison of streaming policies

Figure: Comparison of streaming policies

Improvement with prediction is not significant

Conclusion on policies

- Frustum culling is not satisfying
- Prefetching is better than frustum culling but not significantly (due to low predictability in 3D)
- Fetch destination is really efficient
- Fetch destination + Prefetching is barely better

Conclusion

Bookmarks' impact on NVE

- Good for QoE
- Drawback on QoS
- Prerendering the bookmarks can limit this drawback

Future work

- Optimize chunk size allocated for prefetching
- Adapt fly-to transition to bandwidth
- Study the influence of the bookmarks' positioning on user browsing pattern

Impact of 3D bookmarks on Navigation and Streaming in a Networked Virtual Environment

Questions?

- Shao-Shin Hung and Damon Shing-Min Liu. Using prefetching to improve walkthrough latency: Research articles. *Comput. Animat. Virtual Worlds*, 17(3-4):469–478, July 2006. ISSN 1546-4261. doi: 10.1002/cav.v17:3/4. URL http://dx.doi.org/10.1002/cav.v17:3/4.
- Jacek Jankowski and Martin Hachet. Advances in interaction with 3d environments. *Computer Graphics Forum*, 34(1):152–190, 2015.
- Morgan McGuire. Computer graphics archive, August 2011. URL http://graphics.cs.williams.edu/data.
- Sungju Park, Dongman Lee, Mingyu Lim, and Chansu Yu. Scalable data management using user-based caching and prefetching in distributed virtual environments. In *Proceedings of the ACM Symposium on Virtual Reality Software and Technology*, pages 121–126, Banff, Canada, 11 2001.
- Roy A Ruddle, Andrew Howes, Stephen J Payne, and Dylan M Jones. The effects of hyperlinks on navigation in virtual