Biblioteca Timers para a Caixa Preta

Versão 1.0, 12/04/2020

Funções

void	timer1_config	void
void	timer2_config	void
byte	lcd_linha_alterou	(byte qual)
	ISR(TIMER1_COMPA_vect)	
	ISR(TIMER2_COMPA_vect)	

- void timer1_config (void)
 Configurar Timer 1 para FREQ_T1 (ver define). Coloca no Modo CTC com limite indicado por OCR1A.
- void timer2_config (void)
 Configurar Timer 2 para FREQ_T2 (ver define). Coloca no Modo CTC com limite indicado por OCR2A.
- byte lcd_linha_alterou (byte qual)
 Esta função habilita a interrupção do Timer 2 e informa qual (0,1,2,3) linha do LCD deve ser atualizada.
- ISR (TIMER1_COMPA_vect)
 Atender à interrupção do Timer 1: FREQ_T1 (100 Hz)
- ISR (TIMER2_COMPA_vect){
 Atender à interrupção do Timer 2: FREQ_T2 (1000 Hz)

O Arduino Mega tem 5 timers, usados da forma listada abaixo,

Timer1 → gerar interrupção a cada 100 Hz (10 mseg);

Timer2 → Atualizar linhas do LCD (1 kHz);

Timer3 → nada

Timer4 → nada

Timer5 → Cronômetro;

Timer 1 interrompe com taxa de 100 Hz (10 mseg).

Timer 1: Provocar interrupção numa dada freq (f_{OC1A})

CS12:0 = 011B \rightarrow Configurar prescaler = 64 \rightarrow 16 MHz / 64 = 250 kHz.

WGM13:0 = 0100B → Modo 4 CTC na coincidência com OCR1A;

$$\mathsf{FREQ_T1} \boldsymbol{\rightarrow} \ \mathit{OCR1A} = \frac{f_{\mathit{clk_IO}}}{\textcolor{red}{N \cdot freq}} - 1 = \frac{16 \times 10^6}{\textcolor{red}{64 \cdot freq}} = \frac{10^6}{freq} = \frac{25.000}{freq/10} \text{ (conta para facilitar ao programa calcular OCR1A)}$$

Se for 50 Hz (20 mseg)
$$\rightarrow OCR1A = \frac{f_{clk_IO}}{N \cdot freq} - 1 = \frac{16 \times 10^6}{64 \cdot 50} - 1 = \frac{10.000}{2} - 1 = 4.999$$

Se for 100 Hz (10 mseg)
$$\rightarrow OCR1A = \frac{f_{clk_IO}}{N \cdot freq} - 1 = \frac{16 \times 10^6}{64 \cdot 100} - 1 = \frac{10.000}{4} - 1 = 2.499$$

Gabarito para configurar os registradores do TC1

	7	6	5	4	3	2	1	0
TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM 1 1	WGM10
	0	0	0	0	0	0	0	0
TCCR1B	ICNC1	ICES1	-	WGM 1 3	WGM12	CS12	CS 1 1	CS10
	0	0	0	0	1	0	1	1
TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-
	0	0	0	0	0	0	0	0
TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1
	0	0	0	0	0	0	1	0
TIRF1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1
	0	0	0	0	0	0	0	0

----- Sobre o ADC -----

Gabaritos para configurar ADC (8 bits alinhado pela esquerda, ler apenas ADCH)

	7	6	5	4	3	2	1	0
ADMIN	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0
ADMUX	0,1,1	1,1,1	1	0	0	0	0,0,1	0,1,0
ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0
	1	0	1	0	0	0	1	1
ADCSRB	-	ACME	-	-	MUX5	ADST2	ADST1	ADST0
	-	0	-	-	0	1	0	1

Seleção do relógio do ADC → ADPS2:0 = 3 → 16 MHz/8 = 2 MHz

Tabela 13.5: Tempos de conversão do ADC (em ciclos do ADC_{CLK})

Condição	Tempo de conversão (em ciclos)
Primeira conversão	25
Conversão única, canal simples	13

Ao mudar de canal, conversão consome 25 ciclos \rightarrow 12,5 μ s (80 kHz) \rightarrow 200 instruções do AVR. Conversão com o mesmo canal 13 ciclos \rightarrow 6,5 μ s (154 kHz) \rightarrow 104 instruções do AVR.

Não precisamos de taxas de conversão tão altas e não queremos gastar tempo esperando o ADC converter. A solução é usar o Timer 1 para disparar o ADC numa interrupção e ler o resultado na interrupção seguinte. Porém, precisamos ler 3 entradas diferentes:

- Canal 0: ler o teclado,
- Canal 1: ler a tensão do carro (12 V) e
- Canal 2: ler a tensão do supercapacitor.

A solução foi usando um contador timer1_cont, contando de 0 até 31. Ele é incrementado a cada interrupção, assim, o Timer 1 sabe o que deve fazer a cada instante. Toda leitura do ADC é fruto da média de duas conversões espaçadas de 10 ms.

- Atualiza tensão do carro (vcar val), na taxa de 100/32 Hz (~3Hz).
- Atualiza tensão do super cap (vcap_val), na taxa de 100/32 Hz (~3Hz).
- Leitura das teclas na taxa de 100*(12/32) = 37,5 Hz, uma leitura a cada 27 ms.

Funcionou bem: timer1_cont = 0, 1, ..., 31, 0, 1, ..., interrupção em 100 Hz

0-ADC Start	8) +Ler, ADC start*	16-ADC Start	24) +Ler, ADC start*
1) Ler, ADC start	9) Ler, ADC start	17) Ler, ADC start	25) Ler, ADC start
2) +Ler, ADC start*	10) +Ler, ADC start*	18) +Ler, ADC start*	26) +Ler, ADC start*
3) Ler, ADC start	11) Ler, ADC start	19) Ler, ADC start	27) Ler, ADC start
4) +Ler, ADC start*	12) +Ler, Canal1(VCAR)*	20) +Ler, ADC start*	28) +Ler, Canal 2(VCAP)*
5) Ler, ADC start	13) ADC Start	21) Ler, ADC start	29) ADC Start
6) +Ler, ADC start*	14) Ler, ADC start	22) +Ler, ADC start*	30) Ler, ADC start
7) Ler, ADC start	15) +Ler, Canal 0	23) Ler, ADC start	31) +Ler, Canal 0

* indica a fase para tirar a média na leitura do teclado.

sw_val = última leitura do teclado

vcar_val = última leitura da tensão (12 V) gerada pelo carro e

vcap_val = última leitura da tensão sobre o supercapacitor.

----- TIMER 2 -----

É responsável por atualizar o LCD. E envia um nibble para o LCD a cada interrupção. No teste com LCD funcionou com frequência de interrupção de até 25.000 Hz. Acima disso começou a dar problemas. São 42 interrupções para cada linha

Freq Timer 2	Atualizar uma linha (42 int)	Instr do AVR		
1.000 Hz	42 ms	16.000		
5.000 Hz	8,4 ms	3.200		
10.000 Hz	4,2 ms	1.600		

Por enquanto, está sendo usado 1.000 Hz.

Podemos tentar com a freq. = 5.000 Hz. Isto significa que se consegue atualizar o LCD entre duas interrupções do Timer 1, que é de 100 Hz (10 ms). Entretanto, gera uma grande quantidade de interrupções próximas. Pesar esse ponto em consideração.

Timer 2: Provocar interrupção numa dada freq (f_{OC2A})

CS22:0 = 100B \rightarrow Configurar prescaler = 64 \rightarrow 16 MHz / 64 = 250 kHz.

WGM12:0 = 010B → Modo 2 CTC na coincidência com OCR1A;

Se for 1000 Hz (10 mseg)
$$\Rightarrow OCR1A = \frac{f_{clk_IO}}{N \cdot freq} - 1 = \frac{16 \times 10^6}{64 \cdot 1000} - 1 = \frac{1.000}{4} - 1 = 249$$

Se for 10.000 Hz (10 mseg) $\Rightarrow OCR1A = \frac{f_{clk_IO}}{N \cdot freq} - 1 = \frac{16 \times 10^6}{64 \cdot 10.000} - 1 = \frac{100}{4} - 1 = 24$
Se for 20.000 Hz (10 mseg) $\Rightarrow OCR1A = \frac{f_{clk_IO}}{N \cdot freq} - 1 = \frac{16 \times 10^6}{64 \cdot 20.000} - 1 = \frac{50}{4} - 1 = 11$

#define FREQ_T2 1000 //Freq de interrupção do timer 2
...

OCR2A = (25000/(FREQ_T2/10))-1;

Gabarito para configurar os registradores do TC2

	7	6	5	4	3	2	1	0
TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20
	0	0	0	0			1	0
TOOPOD	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20
TCCR2B	0	0			0	1	0	0
TIMSK2	1	1	1	1	1	OCIE2B	OCIE2A	TOIE2
						0	1/0	0
TIFR2	1	1	1	1	1	OCF2B	OCF2A	TOV2
						0	0	0
ASSR	1	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB
		0	0	0	0	0	0	0
GTCCR	TMS	-	-	-	-	-	PSRASY	PSRSYNC
	0						0	0