CRYPTOGRAPHY HANDOUT 03 SOLUTIONS

SUBSTITUTION CIPHER

SUBSTITUTION EXAMPLE

The following example is from Douglas Stinson's Cryptography: Theory and Practice.

Given the ciphertext (encrypted with a substitution cipher):
YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

The following steps will walk through how to do the cryptanalysis.

1. Do a frequency count for the text.

Letter	Count	Letter	Count
A	0	N	9
В	1	О	0
C	15	P	1
D	13	Q	4
E	7	R	10
F	11	S	3
G	1	Т	2
Н	4	U	5
I	5	V	5
J	11	W	8
K	1	X	6
L	0	Y	10
M	16	Z	20

2. Which letter occurs most? This letter likely corresponds with e, the most frequency-occurring English letter.

3. The next set of most-frequent letters aren't as easy to match up. Let's look at the **bigrams** or digrams instead (pairs of letters). Count the following bigrams:

Bigram	Count	Bigram	Count
DZ	4	ZW	4
NZ	3	ZU	3

4. You should find that DZ and ZW occur the most often, so what are some guesses (based on the English language) that the letters corresponding to D and W are what? Use the bigram frequency table for reference:

. 1 1 50	0 ==	0 10
th 1.52	en 0.55	ng 0.18
he 1.28	ed 0.53	of 0.16
in 0.94	to 0.52	al 0.09
er 0.94	it 0.50	de 0.09
an 0.82	ou 0.50	se 0.08
re 0.68	ea 0.47	le 0.08
nd 0.63	hi 0.46	sa 0.06
at 0.59	is 0.46	si 0.05
on 0.57	or 0.43	ar 0.04
nt 0.56	ti 0.34	ve 0.04
ha 0.56	as 0.33	ra 0.04
es 0.56	te 0.27	ld 0.02
st 0.55	et 0.19	ur 0.02

 $(From \ \texttt{https://en.wikipedia.org/wiki/Bigram\#Bigram_frequency_in_the_English_language.})$

Since Z corresponds to e, then we guess that D corresponds to h, r, t, d, s, v and W corresponds to r, s, n, d, a, t.

5. We have a choice here. Suppose W corresponds to the plaintext letter of d. Since ZRW and RZW both occur at the beginning, and since RW occurs again later on and nd is a common digram, let's try saying that R corresponds to n. At this point, we have 3 letters deciphered. What does your text look like so far?

YIFQFMendQFYVECFMDZPCVMnedNMDeVEJBTXCDDUMJ
NDIFEFMDeCDMQeKCEYFCJMYrNCdJCSenEXCHeUNMXe
NeUCDnJXYYSMRTMEYIFedDYVeVYFeUMneCndNeDeJJ
XedGCHSMnNMDHNCMFQCHeJMXJedIEJYUCFdDJNeDIn

6. We can keep looking at bigrams and frequently-occurring letters to slowly fill in the rest of the letters until we get to the following message. Can you fill in the final letters?

o-r-riend-ro--arise-a-inedhise--t---ass-it
hs-r-riseasi-e-a-orationhadta-en--ace-hi-e
he-asnt-oo-in-i-o-redso-e-ore-ineandhesett
-ed-ac-inhischair-aceti-ted--to-ardsthes-n

The text should say:

Our friend from Paris examined his empty glass with surprise, as if evaporation had taken place while he wasn't looking. I poured some more wine and he settled back in his chair, face tilted up towards the sun. (From P. Mayle's <u>A Year in Provence</u>.)