MATEMÁTICA DISCRETA Estructuras Algebraicas

Prof. Sergio Salinas

Facultad de Ingeniería Universidad Nacional de Cuyo

Segundo semestre 2024

Contenido

- 1 Introducción al álgebra abstracta
- 2 Ejercicios

Introducción al álgebra abstracta

Suma, resta, multiplicación y división son ejemplos de operaciones binarias sobre conjuntos de números.

Suma, resta, multiplicación y división son ejemplos de operaciones binarias sobre conjuntos de números.

Definición

Una operación binaria en un conjunto A es una función $f: A \times A \rightarrow A$ donde se cumplen las siguientes propiedades:

Suma, resta, multiplicación y división son ejemplos de operaciones binarias sobre conjuntos de números.

Definición

Una operación binaria en un conjunto A es una función $f: A \times A \rightarrow A$ donde se cumplen las siguientes propiedades:

i) f asigna un elemento f(a,b) de A a cada par ordenado (a,b) de elementos de A (cerrada),

Suma, resta, multiplicación y división son ejemplos de operaciones binarias sobre conjuntos de números.

Definición

Una operación binaria en un conjunto A es una función $f: A \times A \rightarrow A$ donde se cumplen las siguientes propiedades:

- i) f asigna un elemento f(a,b) de A a cada par ordenado (a,b) de elementos de A (cerrada),
- ii) sólo un elemento de A se asigna a cada par ordenado (a, b).

En cada caso determinar si se trata de una operación binaria:

1. Sea $A = \mathbb{Z}$ se define a * b como a + b.

En cada caso determinar si se trata de una operación binaria:

1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X
- 5. Sea $A = \mathbb{R}$ se define $a * b = m\acute{a}ximo(a, b)$.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X
- 5. Sea $A = \mathbb{R}$ se define a * b = máximo(a, b). \checkmark

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X
- 5. Sea $A = \mathbb{R}$ se define $a * b = m\acute{a}ximo(a, b)$. \checkmark
- 6. Sea A = P(S) para algún conjunto S donde para un par de subconjuntos V y W se define a * b como $V \cup W$.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X
- 5. Sea $A = \mathbb{R}$ se define a * b = máximo(a, b). \checkmark
- 6. Sea A = P(S) para algún conjunto S donde para un par de subconjuntos V y W se define a*b como $V \cup W$. \checkmark

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b. **X**
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X
- 5. Sea $A = \mathbb{R}$ se define $a * b = m\acute{a}ximo(a, b)$. \checkmark
- 6. Sea A = P(S) para algún conjunto S donde para un par de subconjuntos V y W se define a*b como $V \cup W$. \checkmark
- 7. Sea A = P(S) para algún conjunto S donde para un par de subconjuntos V y W se define a * b como $V \cap W$.

- 1. Sea $A = \mathbb{Z}$ se define a * b como a + b. \checkmark
- 2. Sea $A = \mathbb{R}$ se define a * b como $\frac{a}{b}$. **X**
- 3. Sea $A = \mathbb{Z}^+$ se define a * b como a b.
- 4. Sea $A = \mathbb{Z}$ se define a * b un número menor que a y b. X
- 5. Sea $A = \mathbb{R}$ se define $a * b = m\acute{a}ximo(a, b)$. \checkmark
- 6. Sea A = P(S) para algún conjunto S donde para un par de subconjuntos V y W se define a * b como $V \cup W$. \checkmark
- 7. Sea A = P(S) para algún conjunto S donde para un par de subconjuntos V y W se define a * b como $V \cap W$. \checkmark

Si $A = \{a_1, a_2, ..., a_n\}$ es un conjunto finito, se puede definir una operación binaria en A por medio de una tabla como se muestra a continuación:

Si $A = \{a_1, a_2, ..., a_n\}$ es un conjunto finito, se puede definir una operación binaria en A por medio de una tabla como se muestra a continuación:

*	a_1	a ₂	 aj	 a _n
a_1				
a ₂				
:				
aį			$a_i * a_j$	
:				
a _n				

Cuadro 1: Tabla de Cayley

Si $A = \{a_1, a_2, ..., a_n\}$ es un conjunto finito, se puede definir una operación binaria en A por medio de una tabla como se muestra a continuación:

*	a_1	a ₂	 aj	 a _n
a_1				
a ₂				
:				
aį			$a_i * a_j$	
:				
a _n				

Cuadro 1: Tabla de Cayley

¿Cuántas operaciones se pueden definir en el conjunto $A = \{a, b\}$?

¿Cuántas operaciones se pueden definir en el conjunto $A = \{a, b\}$? Definir algunos ejemplos de operaciones para el conjunto $B = \{V, F\}$.

¿Cuántas operaciones se pueden definir en el conjunto $A = \{a, b\}$? Definir algunos ejemplos de operaciones para el conjunto $B = \{V, F\}$.

X	Y	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
F	F	F	F	F	F	F	F	F	F	V	V	V	V	V	V	V	V
F	V	F	F	F	F	V	V	٧	V	F	F	F	F	V	V	V	V
V	F	F	F	V	V	F	F	٧	V	F	F	V	V	F	F	V	V
V	V	F	V	F	V	F	V	F	V	F	V	F	V	F	V	F	V

Disyunción lógica:

V	F	V
F	F	V
V	V	V

Conjunción lógica:

\wedge	V	F		
V	V	F		
F	F	F		

Propiedades de las operaciones binarias

Propiedades de las operaciones binarias

Sea a * b una operación binaria en un conjunto A entonces puede que se cumplan las siguientes propiedades:

1. Conmutativa: a * b = b * a

Propiedades de las operaciones binarias

- 1. Conmutativa: a * b = b * a
- 2. **Asociativa:** (a * b) * c = a * (b * c)

Propiedades de las operaciones binarias

- 1. Conmutativa: a * b = b * a
- 2. **Asociativa:** (a * b) * c = a * (b * c)
- 3. **Elemento Identidad:** e * a = a y a * e = a para cada elemento a de A.

Propiedades de las operaciones binarias

- 1. Conmutativa: a * b = b * a
- 2. **Asociativa:** (a * b) * c = a * (b * c)
- 3. **Elemento Identidad:** e * a = a y a * e = a para cada elemento a de A.
- 4. **Elemento Inverso:** $a*a^{-1} = e$ y $a^1*a = e$ para cada elemento a de A.

Propiedades de las operaciones binarias

- 1. Conmutativa: a * b = b * a
- 2. **Asociativa:** (a * b) * c = a * (b * c)
- 3. **Elemento Identidad:** e * a = a y a * e = a para cada elemento a de A.
- 4. **Elemento Inverso:** $a*a^{-1} = e$ y $a^1*a = e$ para cada elemento a de A.
- 5. **Distributiva:** $a * (b \oplus c) = a * b \oplus a * c$.

Sea a * b una operación binaria en un conjunto A entonces puede que se cumplan las siguientes propiedades:

- 1. Conmutativa: a * b = b * a
- 2. **Asociativa:** (a * b) * c = a * (b * c)
- 3. **Elemento Identidad:** e * a = a y a * e = a para cada elemento a de A.
- 4. **Elemento Inverso:** $a*a^{-1} = e$ y $a^1*a = e$ para cada elemento a de A.
- 5. **Distributiva:** $a * (b \oplus c) = a * b \oplus a * c$.

Observaciones: una operación binaria es conmutativa si su matriz es simétrica.

En cada caso determinar si la operación binaria es conmutativa y asociativa:

Operaciones binarias

En cada caso determinar si la operación binaria es conmutativa y asociativa:

1. Sea A = Z se define a * b = a + b + 2.

Operaciones binarias

En cada caso determinar si la operación binaria es conmutativa y asociativa:

- 1. Sea A = Z se define a * b = a + b + 2.
- 2. Sea A = R se define a * b = minimo(a, b).

Operaciones binarias

En cada caso determinar si la operación binaria es conmutativa y asociativa:

- 1. Sea A = Z se define a * b = a + b + 2.
- 2. Sea A = R se define a * b = minimo(a, b).
- 3. Sea $A = \{a, b, c, d\}$ se define a * b según la siguiente tabla.

*	a	b	С	d
а	а	С	b	d
b	d	а	b	С
С	С	d	а	а
d	d	b	а	С

Es
$$(a * b) * c = a * (b * c)$$
?

Definición

Un sistema que consiste de un conjunto no vacío y una o más operaciones n-arias sobre el conjunto recibe el nombre de **estructura algebraica**. Un sistema algebraico se denotará por medio de $< S, f_1, f_2, ..., f_n >$ cuando S es un conjunto no vacío y $f_1, f_2, ..., f_n$ son operaciones n-arias sobre S.

Clasificación de las estructuras algebraicas con una operación binaria representada por < S, *>.

Clasificación de las estructuras algebraicas con una operación binaria representada por < S, * >.

1. Semigrupo √

Clasificación de las estructuras algebraicas con una operación binaria representada por < S, * >.

- 1. Semigrupo ✓
- 2. Monoide ✓

Clasificación de las estructuras algebraicas con una operación binaria representada por < S, * >.

- 1. Semigrupo ✓
- 2. Monoide ✓
- 3. Grupo √

Clasificación de las estructuras algebraicas con una operación binaria representada por < S, * >.

- 1. Semigrupo ✓
- 2. Monoide ✓
- 3. Grupo √

Semigrupo

Definición

Sea S un conjunto no vacío y sea * una operación binaria sobre S. Si se cumple que * es una operación asociativa, entonces la dupla < S, * > se denomina semigrupo donde:

$$(a*b)*c = a*(b*c)$$
, para todo $a, b, c \in S$.

<u>Definición</u>

Sea M un conjunto no vacío y sea * una operación binaria en M, entonces < M, * > es un monoide si es un semigrupo y tiene elemento identidad, es decir que:

- 1. (a*b)*c = a*(b*c), para todo $a, b, c \in M$.
- 2. Existe $e \in M$ tal que e * a = a = a * e.

Ejemplos:

• Números enteros positivos con la operación producto.

Ejemplos:

■ Números enteros positivos con la operación producto. ✓

- Números enteros positivos con la operación producto. √
- Números enteros positivos con la operación suma.

- Números enteros positivos con la operación producto. √
- Números enteros positivos con la operación suma. √

- Números enteros positivos con la operación producto. ✓
- Números enteros positivos con la operación suma. ✓
- Números racionales con la operación producto.

- Números enteros positivos con la operación producto. ✓
- Números enteros positivos con la operación suma. √
- Números racionales con la operación producto. √

- Números enteros positivos con la operación producto. ✓
- Números enteros positivos con la operación suma. √
- Números racionales con la operación producto. √

Definición

Sea G un conjunto no vacío y sea * una operación binaria en G. Si < G, * > es un monoide donde todo elemento tiene inverso, entonces < G, * > se denomina grupo, esto significa que:

- 1. (a*b)*c = a*(b*c), para todo $a, b, c \in M$.
- 2. Existe $e \in M$ tal que e * a = a = a * e.
- 3. Para todo $a \in G$ existe $a^{-1} \in G$ tal que $a*a^{-1} = e = a^{-1}*a$, para todo $a,b,c \in G$

Ejemplos

1. El conjunto de los números enteros positivos con la operación de suma.

Ejemplos

1. El conjunto de los números enteros positivos con la operación de suma. X

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- 2. El conjunto de los números enteros positivos con la operación de multiplicación.

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- 2. El conjunto de los números enteros positivos con la operación de multiplicación. X

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- 2. El conjunto de los números enteros positivos con la operación de multiplicación. **X**
- 3. El conjunto de los números racionales sin el cero con la operación producto.

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- El conjunto de los números enteros positivos con la operación de multiplicación. X
- El conjunto de los números racionales sin el cero con la operación producto.

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- El conjunto de los números enteros positivos con la operación de multiplicación. X
- El conjunto de los números racionales sin el cero con la operación producto.
- 4. El conjunto de matrices reales 2×2 inversibles con la operación producto.

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- El conjunto de los números enteros positivos con la operación de multiplicación. X
- 3. El conjunto de los números racionales sin el cero con la operación producto. \checkmark
- 4. El conjunto de matrices reales 2×2 inversibles con la operación producto. \checkmark

- 1. El conjunto de los números enteros positivos con la operación de suma. X
- El conjunto de los números enteros positivos con la operación de multiplicación. X
- 3. El conjunto de los números racionales sin el cero con la operación producto. \checkmark
- 4. El conjunto de matrices reales 2×2 inversibles con la operación producto. \checkmark

$$1.\ <\mathbb{Z},+>$$

$$1.\ <\mathbb{Z},+>\checkmark$$

1.
$$\langle \mathbb{Z}, + \rangle \checkmark$$

$$2.\ <\mathbb{Z},\times>$$

1.
$$\langle \mathbb{Z}, + \rangle \checkmark$$

$$2. < \mathbb{Z}, \times > X$$

1.
$$\langle \mathbb{Z}, + \rangle \checkmark$$

$$2. < \mathbb{Z}, \times > X$$

$$3. \ < \mathbb{Q}, \times >$$

1.
$$\langle \mathbb{Z}, + \rangle \checkmark$$

$$2. < \mathbb{Z}, \times > X$$

3.
$$<\mathbb{Q}, \times > X$$

En cada caso explicar si las siguientes estructuras algebraicas son grupos:

1.
$$\langle \mathbb{Z}, + \rangle \checkmark$$

$$2. < \mathbb{Z}, \times > X$$

3.
$$<\mathbb{Q}, \times > X$$

Ejemplo:

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Ejemplo:

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Si consideramos que a = 4 y b = -2 entonces:

$$4*(-2) = 4-2+2\cdot 4\cdot (-2)$$

= $4-2-16$
= $4-18$
= -14

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

$$(a*b)*c = (a+b+2ab)*c$$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

$$(a*b)*c = (a+b+2ab)*c$$

= $a+b+2ab+c+2(a+b+2ab)c$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$(a*b)*c = (a+b+2ab)*c$$

= $a+b+2ab+c+2(a+b+2ab)c$
= $a+b+2ab+c+(2a+2b+4ab)c$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$(a*b)*c = (a+b+2ab)*c$$

= $a+b+2ab+c+2(a+b+2ab)c$
= $a+b+2ab+c+(2a+2b+4ab)c$
= $a+b+2ab+c+2ac+2bc+4abc$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$(a*b)*c = (a+b+2ab)*c$$

$$= a+b+2ab+c+2(a+b+2ab)c$$

$$= a+b+2ab+c+(2a+2b+4ab)c$$

$$= a+b+2ab+c+2ac+2bc+4abc$$

$$= a+b+c+2bc+2ab+2ac+4abc$$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$(a*b)*c = (a+b+2ab)*c$$

$$= a+b+2ab+c+2(a+b+2ab)c$$

$$= a+b+2ab+c+(2a+2b+4ab)c$$

$$= a+b+2ab+c+2ac+2bc+4abc$$

$$= a+b+c+2bc+2ab+2ac+4abc$$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea
$$<\mathbb{R},*>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a*(b*c) = a*(b+c+2bc)$$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a*(b*c) = a*(b+c+2bc)$$

= $a+(b+c+2bc)+2a(b+c+2bc)$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a*(b*c) = a*(b+c+2bc)$$

= $a+(b+c+2bc)+2a(b+c+2bc)$
= $a+b+c+2bc+2ab+2ac+4abc$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a*(b*c) = a*(b+c+2bc)$$

= $a+(b+c+2bc)+2a(b+c+2bc)$
= $a+b+c+2bc+2ab+2ac+4abc$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a * b = a + b + 2 \cdot a \cdot b$$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a * b = a + b + 2 \cdot a \cdot b$$

$$b*a = b+a+2\cdot b\cdot a$$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a * b = a + b + 2 \cdot a \cdot b$$

$$b*a = b+a+2 \cdot b \cdot a$$

= $a+b+2 \cdot a \cdot b$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

$$a * b = a + b + 2 \cdot a \cdot b$$

$$b*a = b+a+2 \cdot b \cdot a$$

= $a+b+2 \cdot a \cdot b$

Sea $<\mathbb{R},*>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Ahora, hay que verificar si existe el elemento identidad en $<\mathbb{R},*>$.

Recordar que se debe cumplir que e*a=a=a*e para todo elemento a en $<\mathbb{R}, *>$.

$$a + e + 2ae = a \leftrightarrow +a - a + e + 2ae$$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Ahora, hay que verificar si existe el elemento identidad en $<\mathbb{R},*>$.

Recordar que se debe cumplir que e*a=a=a*e para todo elemento a en $<\mathbb{R}, *>$.

$$a+e+2ae=a \quad \leftrightarrow \quad +a-a+e+2ae \\ \leftrightarrow \quad e(1+2a)=0$$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Ahora, hay que verificar si existe el elemento identidad en $<\mathbb{R},*>$.

Recordar que se debe cumplir que e*a=a=a*e para todo elemento a en $<\mathbb{R}, *>$.

$$a+e+2ae=a \quad \leftrightarrow \quad +a-a+e+2ae \\ \leftrightarrow \quad e(1+2a)=0 \\ \leftrightarrow \quad e=\frac{0}{(1+2a)}, \ \text{donde} \ a\neq \frac{-1}{2}$$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Ahora, hay que verificar si existe el elemento identidad en $<\mathbb{R},*>$. Recordar que se debe cumplir que e*a=a=a*e para todo elemento a en

 $<\mathbb{R},*>$.

$$\begin{array}{lll} a+e+2ae=a & \leftrightarrow & +a-a+e+2ae \\ & \leftrightarrow & e(1+2a)=0 \\ & \leftrightarrow & e=\frac{0}{(1+2a)}, \ \text{donde} \ a\neq\frac{-1}{2} \\ & \leftrightarrow & e=0, \ \text{donde} \ a\neq\frac{-1}{2} \end{array}$$

Sea
$$< \mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Ahora, hay que verificar si existe el elemento identidad en $<\mathbb{R},*>$.

Recordar que se debe cumplir que e*a=a=a*e para todo elemento a en $<\mathbb{R}, *>$.

Por un lado a * e = a es decir que:

$$\begin{array}{lll} a+e+2ae=a & \leftrightarrow & +a-a+e+2ae \\ & \leftrightarrow & e(1+2a)=0 \\ & \leftrightarrow & e=\frac{0}{(1+2a)}, \ \text{donde} \ a\neq\frac{-1}{2} \\ & \leftrightarrow & e=0, \ \text{donde} \ a\neq\frac{-1}{2} \end{array}$$

Verificamos que:

$$a * e = a * 0 = a + 0 + 2 \cdot a \cdot 0 = a$$

Sea $<\mathbb{R},*>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Verificación de la existencia del elemento inverso a^{-1} en $<\mathbb{R},*>$. Recordar, el elemento inverso debe cumplir que $a*a^{-1}=e=a^{-1}*a$, es decir que:

$$a + a^{-1} + 2aa^{-1} = 0 \quad \leftrightarrow \quad a^{-1}(1+2a) = -a$$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Verificación de la existencia del elemento inverso a^{-1} en $<\mathbb{R},*>$. Recordar, el elemento inverso debe cumplir que $a*a^{-1}=e=a^{-1}*a$, es decir que:

$$a+a^{-1}+2aa^{-1}=0 \quad \leftrightarrow \quad a^{-1}(1+2a)=-a \ \leftrightarrow \quad a^{-1}=-rac{a}{1+2a}, ext{ donde } a
eq -rac{1}{2}$$

Sea
$$<\mathbb{R}, *>$$
 con la operación $*$ definida por $a*b=a+b+2\cdot a\cdot b$

Verificación de la existencia del elemento inverso a^{-1} en $<\mathbb{R},*>$. Recordar, el elemento inverso debe cumplir que $a*a^{-1}=e=a^{-1}*a$, es decir que:

$$a+a^{-1}+2aa^{-1}=0 \quad \leftrightarrow \quad a^{-1}(1+2a)=-a \ \leftrightarrow \quad a^{-1}=-rac{a}{1+2a}, ext{ donde } a
eq -rac{1}{2}$$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

El elemento inverso a^{-1} en $<\mathbb{R},*>$ es $a^{-1}=-\frac{a}{1+2a}$, donde $a\neq -\frac{1}{2}$. Entonces podemos comprobar que:

$$a*a^{-1} = a*\left(-\frac{a}{1+2a}\right)$$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

El elemento inverso a^{-1} en $<\mathbb{R},*>$ es $a^{-1}=-\frac{a}{1+2a}$, donde $a\neq -\frac{1}{2}$. Entonces podemos comprobar que:

$$a * a^{-1} = a * \left(-\frac{a}{1+2a}\right)$$
$$= a + \left(-\frac{a}{1+2a}\right) + 2a\left(-\frac{a}{1+2a}\right)$$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

El elemento inverso a^{-1} en $<\mathbb{R},*>$ es $a^{-1}=-\frac{a}{1+2a}$, donde $a\neq -\frac{1}{2}$. Entonces podemos comprobar que:

$$a * a^{-1} = a * \left(-\frac{a}{1+2a}\right)$$

$$= a + \left(-\frac{a}{1+2a}\right) + 2a\left(-\frac{a}{1+2a}\right)$$

$$= \frac{a(1+2a)}{1+2a} - \frac{a}{1+2a} - \frac{2a^2}{1+2a}$$

Sea $<\mathbb{R}, *>$ con la operación * definida por $a*b=a+b+2\cdot a\cdot b$

El elemento inverso a^{-1} en $<\mathbb{R},*>$ es $a^{-1}=-\frac{a}{1+2a}$, donde $a\neq -\frac{1}{2}$. Entonces podemos comprobar que:

$$a * a^{-1} = a * \left(-\frac{a}{1+2a}\right)$$

$$= a + \left(-\frac{a}{1+2a}\right) + 2a\left(-\frac{a}{1+2a}\right)$$

$$= \frac{a(1+2a)}{1+2a} - \frac{a}{1+2a} - \frac{2a^2}{1+2a}$$

$$= \frac{a+2a^2 - a - 2a^2}{1+2a} = 0$$

Si consideramos $<\mathbb{R}, *>$ entonces no es un grupo ya que $-\frac{1}{2}$ no tiene inverso.

Si consideramos $<\mathbb{R},*>$ entonces no es un grupo ya que $-\frac{1}{2}$ no tiene inverso.

Si consideramos $<\mathbb{R}-\frac{1}{2}, *>$ entonces si es un grupo ya que todo elemento tiene inverso.

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

$$\mathbb{Z}_2 = [0], [1]$$

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

$$\mathbb{Z}_2 = [0], [1]$$

$$\mathbb{Z}_3 = [0], [1], [2]$$

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

$$\mathbb{Z}_2 = [0], [1]$$

$$\mathbb{Z}_3 = [0], [1], [2]$$

$$\mathbb{Z}_4 = [0], [1], [2], [3]$$

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

$$\mathbb{Z}_2 = [0], [1]$$

$$\mathbb{Z}_3 = [0], [1], [2]$$

$$\mathbb{Z}_4 = [0], [1], [2], [3]$$

$$\mathbb{Z}_5 = [0], [1], [2], [3], [4]$$

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

$$\mathbb{Z}_2 = [0], [1]$$

$$\mathbb{Z}_3 = [0], [1], [2]$$

$$\mathbb{Z}_4 = [0], [1], [2], [3]$$

$$\mathbb{Z}_5 = [0], [1], [2], [3], [4]$$

$$\mathbb{Z}_6 = [0], [1], [2], [3], [4], [5]$$

Definición

Sea \mathbb{Z}_n el conjunto de enteros módulo n que en forma general está dado por:

$$\mathbb{Z}_n = [0], [1], \cdots, [n-2], [n-1].$$

Ejemplos:

$$\mathbb{Z}_2 = [0], [1]$$

$$\mathbb{Z}_3 = [0], [1], [2]$$

$$\mathbb{Z}_4 = [0], [1], [2], [3]$$

$$\mathbb{Z}_5 = [0], [1], [2], [3], [4]$$

$$\mathbb{Z}_6 = [0], [1], [2], [3], [4], [5]$$

Es posible definir las operaciones de suma y producto en \mathbb{Z}_n .

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]				
[3]	[0]	[3]				
[4]	[0]	[4]				
[5]	[0]	[5]				

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[6]	[8]	[10]
[3]	[0]	[3]	[6]			
[4]	[0]	[4]	[8]			
[5]	[0]	[5]	[10]			

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]			
[4]	[0]	[4]	[2]			
[5]	[0]	[5]	[4]			

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Podemos definir el producto en \mathbb{Z}_n utilizando las tablas de Cayley:

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Es posible demostrar que \times es asociativa en \mathbb{Z}_6 , por lo tanto $<\mathbb{Z}_6, \times>$ es un semigrupo.

Podemos definir el producto en \mathbb{Z}_n utilizando las tablas de Cayley:

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Es posible demostrar que \times es asociativa en \mathbb{Z}_6 , por lo tanto $<\mathbb{Z}_6, \times>$ es un semigrupo.

 $<\mathbb{Z}_{6},\times>$ no es un grupo ya que por ejemplo [2] no tiene inverso.

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]					
[2]	[2]					
[3]	[3]					
[4]	[4]					
[5]	[5]					

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[5]
[2]	[2]	[3]			
[3]	[3]	[4]			
[4]	[4]	[5]			

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]			
[3]	[3]	[4]			
[4]	[4]	[0]			

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[5]	[6]
[3]	[3]	[4]	[5]		
[4]	[4]	[0]	[6]		

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]		
[4]	[4]	[0]	[1]		

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible demostrar que + es asociativa en \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un semigrupo.

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible demostrar que + es asociativa en $\mathbb{Z}_5,$ por lo tanto $<\mathbb{Z}_5,+>$ es un semigrupo.

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible demostrar que + es asociativa en \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un semigrupo.

Es posible observar que [0] es el elemento identidad \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un monoide.

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible demostrar que + es asociativa en $\mathbb{Z}_5,$ por lo tanto $<\mathbb{Z}_5,+>$ es un semigrupo.

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible demostrar que + es asociativa en \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un semigrupo.

Es posible observar que [0] es el elemento identidad \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un monoide.

Podemos definir la suma en \mathbb{Z}_5 utilizando la tabla de Cayley:

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Es posible demostrar que + es asociativa en \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un semigrupo.

Es posible observar que [0] es el elemento identidad \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un monoide.

Existe un inverso para cada elemento de \mathbb{Z}_5 , por lo tanto $<\mathbb{Z}_5,+>$ es un grupo. ¿Cuáles son los inversos?

Sea $< G, \times >$ un grupo, en donde la operación \times es identificada como un producto, y sea e el elemento neutro de G. Entonces escribimos $a^0 := e$ para todo $a \in G$.

Sea $< G, \times >$ un grupo, en donde la operación \times es identificada como un producto, y sea e el elemento neutro de G. Entonces, si $n=1,2,3,\cdots$ escribimos $a^n:=a\times a\times a \cdots \times a$ (n veces) para todo $a\in G$.

Sea $< G, \times >$ un grupo, en donde la operación \times es identificada como un producto, y sea e el elemento neutro de G. Entonces, si $n=1,2,3,\cdots$ escribimos $a^{-n}:=a^{-1}\times a^{-1}\times a^{-1}\cdots \times a^{-1}$ (n veces) para todo $a\in G$.

Sea < G, +> un grupo, en donde la operación + es identificada como una suma, y sea e el elemento neutro de G. Entonces escribimos $0 \cdot a = e$ para todo $a \in G$.

Sea < G, +> un grupo, en donde la operación + es identificada como una suma, y sea e el elemento neutro de G. Entonces si $n=1,2,3,\cdots$, escribimos $n\cdot a=a+a+\cdots+a$ (n veces), para todo $a\in G$.

Sea < G, +> un grupo, en donde la operación + es identificada como una suma, y sea e el elemento neutro de G. Entonces si $n=1,2,3,\cdots$, escribimos $(-n)\cdot a=(-a)+(-a)+\cdots+(-a)$ (n veces), para todo $a\in G$. Observar que -a representa el elemento inverso aditivo u opuesto.

Definici<u>ón</u>

Sea < G, *> un grupo, entonces el **orden del grupo** G, denotado por O(G), es el cardinal del conjunto G, es decir, la cantidad de elementos del conjunto G.

Definición

Se dice que un **semigrupo**, un **monoide** o un **grupo** es **conmutativo** o **abeliano** si se cumple que:

Definición

Se dice que un **semigrupo**, un **monoide** o un **grupo** es **conmutativo** o **abeliano** si se cumple que:

$$a * b = b * a$$

para todo a, b en la estructura algebraica correspondiente.

Resumen clasificación estructuras algebraicas con una operación

	Asociativa	Identidad	Inverso	Conmutativa
Semigrupo	✓			
Monoide	✓	✓		
Grupo	✓	✓	✓	
Grupo Abeliano	✓	✓	✓	✓

Propiedades de grupos

Theorem

Sea < G, * > un grupo, entonces se cumplen las siguientes propiedades:

Propiedades de grupos

Theorem

Sea < G, * > un grupo, entonces se cumplen las siguientes propiedades:

1. El elemento identidad de < G, * > es único.

Propiedades de grupos

Theorem

Sea < G, * > un grupo, entonces se cumplen las siguientes propiedades:

- 1. El elemento identidad de < G, * > es único.
- 2. El elemento inverso de cada elemento de < G, * > es único.

Propiedades de grupos

Theorem

Sea < G, * > un grupo, entonces se cumplen las siguientes propiedades:

- 1. El elemento identidad de < G, * > es único.
- 2. El elemento inverso de cada elemento de < G, * > es único.
- 3. Las leyes de cancelación son verdaderas en un grupo, es decir, para todo $a,b,c\in G$.

Theorem

Sea < G, * > un grupo, entonces se cumplen las siguientes propiedades:

- 1. El elemento identidad de < G, * > es único.
- 2. El elemento inverso de cada elemento de < G, * > es único.
- 3. Las leyes de cancelación son verdaderas en un grupo, es decir, para todo $a,b,c\in G$.

$$a*b = a*c \rightarrow b = c$$

 $b*a = c*a \rightarrow b = c$

4. Si $a, b \in G$ la ecuación a * x = b tiene solución única $x = a^{-1} * b$. Similarmente, la ecuación y * a = b tiene solución única $y = b * a^{-1}$.

Theorem

Sea < G, * > un grupo, entonces se cumplen las siguientes propiedades:

- 1. El elemento identidad de < G, * > es único.
- 2. El elemento inverso de cada elemento de < G, * > es único.
- 3. Las leyes de cancelación son verdaderas en un grupo, es decir, para todo $a,b,c\in G$.

$$a*b = a*c \rightarrow b = c$$

 $b*a = c*a \rightarrow b = c$

- 4. Si $a, b \in G$ la ecuación a * x = b tiene solución única $x = a^{-1} * b$. Similarmente, la ecuación y * a = b tiene solución única $y = b * a^{-1}$.
- 5. El único elemento **idempotencia** $de < G, * > es el elemento identidad e, es decir: <math>a * a = a \rightarrow a = e$.

Ejercicios

Operaciones binarias

Considere los siguientes incisos, y para cada uno indique si la operación es cerrada en el dominio:

- 1. La suma (+) en el conjunto de los números enteros (\mathbb{Z}) .
- 2. La suma (+) en el conjunto de los números enteros pares.
- 3. La suma (+) en el conjunto de los números enteros impares.
- 4. La disyunción (\lor) en el conjunto de los valores lógicos ({Verdadero,Falso}).
- 5. La resta (-) en el conjunto de los números enteros (\mathbb{Z}).
- 6. La resta (-) en el conjunto de los números naturales (\mathbb{N}) .
- 7. El condicional (\rightarrow) en el conjunto de los valores lógicos ($\{Verdadero,Falso\}$).
- 8. La multiplicación (.) en el conjunto de los números reales (\mathbb{R}) .
- 9. La división (/) en el conjunto de los números enteros (\mathbb{Z}) .

Operaciones binarias

En caso de no estar bien denida la operación, proporcionar las condiciones necesarias para que su denifición sea adecuada.

- 1. \mathbb{Z} con a*b=a+b
- 2. \mathbb{R} con $a \triangle b = \frac{a}{b}$
- 3. \mathbb{Z} con $a \otimes b = \frac{a}{b}$
- 4. \mathbb{Z}^+ con $a \star b = a b$
- 5. \mathbb{Z} con $a \oplus b = menor(a,b)$
- 6. P(S) con $a:b=W\cup V$, suponiendo que la operación binaria es asociativa.

Clasificación Estructuras Algebraicas

Determinar, en cada caso, si los conjuntos con las operaciones dadas son semigrupos, monoides o grupos. Indicar si son abelianos.

- 1. El conjunto \mathbb{Z} con la operación de adición.
- 2. \mathbb{Q} donde $(a \triangle b) = a + b$.
- 3. \mathbb{Q} con el producto usual.
- 4. \mathbb{R} donde $(a \oslash b) = a + b + 2$
- 5. $G = \{x | x \in \mathbb{R} \land x \neq -1\}$ donde $(a \otimes b) = a + b + ab$

Clasificación Estructuras Algebraicas

Determinar, en cada caso, si los conjuntos con las operaciones dadas son semigrupos, monoides o grupos. Indicar si son abelianos.

- 6. La operación binaria sobre el conjunto $\mathbb R$ de números reales definida por (a*b)=a+b+2ab
- 7. El conjunto de los números racionales $G = \{\mathbb{Q} \{0\} \times \mathbb{Q}\}$ con la operación (a,b)*(c,d) = (ac,bc+d) donde las operaciones son la suma y productos habituales de \mathbb{Q} . Determinar si < G, *> es un monoide, un semigrupo y/o un grupo, es abeliano?

Fin

