Fundamentals of Optimization Homework 3

Xiao Heng (s2032451)

November 5, 2021

(4.1)

 $\bar{x} \in R^n$ is the unique optimal solution of $(P) \to c^T \bar{d} > 0$ for all feasible directions $\bar{d} \in R^n$ at \bar{x} such that $\bar{d} \neq 0$:

 \bar{x} is the unique potimal solution, and it is a vertex. And we have the optimal value $\bar{z} = c^T \bar{x}$. As there is no any other optimal solution, we assume $x^* \neq \bar{x}$ as a feasible solution, and so that $z^* = c^T x^*$. z^* is just a normal feasible value but not optimal, so $z^* = c^T x^* > \bar{z} = c^T \bar{x}$. Let $\lambda \bar{d} = \lambda (x^* - \bar{x})$ as the feasible direction at \bar{x} (in which $\lambda > 0$). In this case, $\lambda c^T \bar{d} = \lambda (c^T x^* - c^T \bar{x}) = \lambda (z^* - \bar{z}) > 0$ for $\bar{d} = x^* - \bar{x} \neq 0$.

 $c^T \bar{d} > 0$ for all feasible directions $\bar{d} \in \mathbb{R}^n$ at \bar{x} such that $\bar{d} \neq 0 \to \bar{x} \in \mathbb{R}^n$ is the unique optimal solution of (P):

We consider an arbitrary feasible solution of (P), as x^* . Let the feasible direction at \bar{x} as $\lambda \bar{d} = \lambda(x^* - \bar{x}) \neq 0$ (in which $\lambda > 0$), which also implies that $x^* \neq \bar{x}$. Under the condition that for all feasible directions, $c^T \bar{d} > 0$, we find $\lambda c^T \bar{d} = \lambda (c^T x^* - c^T \bar{x}) > 0$. Let the z^* as the corresponding feasible objective function value for feasible solution x^* , we have $z^* - \bar{z} > 0$ for z^* as arbitrary feasible solution x^* 's value. In this case, we prove \bar{z} is the optimal value and \bar{x} is the only optimal feasible solution.

(4.2)

From 15.3.2, we know that, if $\bar{d} \in \mathbb{R}^n$ is a feasible direction at \hat{x} , then $A\bar{d} = A_B\bar{d}_B + A_N\bar{d}_N = 0$, $\hat{x}_B + \lambda^*\bar{d}_B \ge 0$, and $\bar{d}_N \ge 0$. When considering $-\bar{d}$, its $\bar{d}_N \leq 0$. In a contradiction, if $-\bar{d}$ is a feasible direction, its \bar{d}_N should also satisfy $\bar{d}_N \geq 0$. Since $\bar{d}_N \geq 0$ as well as $\bar{d}_N \leq 0$, we obtain $\bar{d}_N = 0$ if $-\bar{d}$ is a feasible direction. Futhermore, $A\bar{d} = A_B\bar{d}_B + A_N\bar{d}_N = A_B\bar{d}_B = 0$, we can obtain $\bar{d}_B = -(A_B)^{-1}A_N\bar{d}_N = 0$ due to $\bar{d} = 0$. As $\bar{d}_B = 0$ and $\bar{d}_N = 0$, which is conflict with $\bar{d} \neq 0$, so from this contradiction, we prove that $-\bar{d}$ could not be a feasible direction.

Following the similar method of Proposition 17.1, under the condition that there exists $\bar{c}_{j^*} = c_{j^*} - c_B^T (A_B)^{-1} A^j = 0$ for $j \in N$, we construct a feasible direction $d \in R^n$ at the nondegenerate optimal vertex x^* as follows: Set $d_{j^*} = 1$ and $d_j = 0$ for each $j \in N \setminus j^*$. $d_N \ge 0$. $d_B = -(A_B)^{-1} A_N d_N \in \mathbb{R}^m$ and $Ad = A_B d_B + A_N d_N = 0$. As d is a feasible direction at x^* , as long as there exists some real number $\lambda^* > 0$ such that $x^* + \lambda^* d \in P$, we can say for $\lambda \in [0, \lambda^*]$ there are infinite optimal

It it clear that $A(x^* + \lambda d) = Ax^* + \lambda Ad = b + 0 = b$ for any $\lambda \in R$, and $x_N^* + \lambda d_N = \lambda d_N \ge 0$ for any $\lambda \ge 0$. Now consider

Case 1: if d_B has at least one negative component, then define $\lambda^* = \min_{j \in B: d_j < 0} \frac{-x_j^*}{d_j}$. Since x^* is nondegenerate, we obtain $x_j^* > 0$ for each $j \in B$. Therefore, $\lambda^* > 0$ and it is finite. As $x_B^* + \lambda d_B \ge 0$ for each $\lambda \in [0, \lambda^*]$. In this case, $x^* + \lambda d \in P$ for each $\lambda \in [0, \lambda^*]$. For $\lambda \in [0, \lambda^*]$, we have $c^T(x^* + \lambda d) = c^T x^* + \lambda \sum_{j \in N} \bar{c}_j d_j$. Here, for $j \in N \setminus j^*$, $d_j = 0$, while for $j = j^*$, $\bar{c}_{j^*} = 0$. So $c^T x^* + \lambda \sum_{j \in N} \bar{c}_j d_j = c^T x^*$, that these feasible solutions have the same optimal value, and the LP problem has

Case 2: if $d_B \ge 0$, $x_B^* + \lambda d_B \ge 0$ for any $\lambda \ge 0$. Therefore, $x^* + \lambda d \in P$ for all $\lambda \ge 0$. $c^T(x^* + \lambda d) = c^T x^*$ (the same process like above, only λ 's value range changes). So in this case, we also prove that there would be infinite optimal solutions. Overall, we prove that if there exist $\bar{c}_i = 0, j \in N$ for nondegenerate optimal vertex x^* , then (P) has an infinite number of optimal solutions.

(5.2)

 x^* is the unique optimal solution of $(P) \to if$ the reduced costs of all nonbasic variables are strictly positive:

As x^* is the unique optimal solution, $\bar{c}_j \geq 0, j \in N$, or if there exists $\bar{c}_j < 0$, there would be better solution. As for the cases that $\bar{c}_j = 0, j \in N$, from (5.1), we know that there would be infinite optimal solution and x^* is no longer unique, so this condition is also not suitable. In this case, we prove that if x^* is the unique optimal solution, then for every $j \in N$, $\bar{c}_i > 0$.

if the reduced costs of all nonbasic variables are strictly positive to x^* is the unique optimal solution of (P): For contradiction, we set $\bar{x} \neq x^*$ and it is also an optimal solution, considering $d = \bar{x} - x^*$. By (5.1) of Exercise3, there exists index $k \in N$ that $\bar{x}_k > 0$, whereas $x_k^* = 0$. $d_k = \bar{x}_k = \bar{x}_k - x_k^* = \bar{x}_k > 0$. By (5.1) in this homework above, $c^T d = \sum_{n \in N} \bar{c}_n d_n$, in which $\bar{c}_k d_k > 0$, $0 = c^T > 0$, it is a contradiction.