COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

Step 7: Block diagram of controller:

- will have 5 I/Ps and 10 O/Ps.
- RESET i/p is used to reset the controller so a new computation can begin.
- CLK is used to synchronize the controller action for trailing edge of clock pulse.

Step 8: The state diagram of Booth's multiplier controller

Co:	A ← 0
C ₁ :	M Inbus
C2:	L ← 4
C ₃ :	$Q[4:1] \leftarrow Inbus$
	$Q[0] \leftarrow 0$
C ₄ :	F = 1 + r
C ₄ :	F ≖ l ~ r
C ₅ :	A ← F
Ca:	ASR (A \$ Q)
C ₇ :	L ← L - 1
Ca:	Outbus - A
C.:	Outbus = Q[4:1]

Step 9: The controller includes a mod -16 counter, a 4: 16 decoder, a sequence controller (SC).

 SC HW, which sequences the controller according to state diagram.

 Hence Truth Table for SC must be derived from the controller's state

C I	L X	E X	Clock	Action Clear
0	1	x	- 1	Load external data
0	0	ı	ţ	Count up
0	0	0	1	No operation

Step 10: Logic Diagram of the Booth's multiplier controller

Figure 4.23 Logic Diagram of the Booth's Multiplier Controller

Step 10: Truth Table for SC Design

								E	External-data			
Z	Q [1]	Q [0]	T_2	T_3	т,	T_8	L	d3	d2	di	d0	
X	0	0	1	X	X	X	1	0	1	0	1	
Х	1	1	1	X	X	X	1	0	1	0	1	
х	1	0	1	X	X	X	1	0	1	0	0	
X-	X	X	X	1	X	X	1	0	1	0	1	
0	X	X	X	X	1	X	1	0	0	1	0	
Х	X	X	X	X	X	1	1	1	0	0	0	

Step 10: PLA Design

Z	Q [1]	Q [0]	T_2	T,	T,	$T_{\mathfrak{g}}$	L	d3	d2	di	d0
Х	0	0	1	X	X	X	1	0	1	0	1
X	1	1	1	X	X	X	1	0	1	0	1
X	1	0	1	X	X	X	1	0	1	0	0
X.	X	X	X	1	X	X	1	0	1	0	1
0	X	x	X	X	1	X	1	0	0	1	0
Y	×	v	X	X	X	1	1	1	0	0	0

External-data

Step 10: PLA Design

Implementing SC using PLA:

$$P_0 = Q [1]^1 Q [0]^1 T_2$$

 $P_1 = Q [1] Q [0] T_2$
 $P_2 = Q [1] Q [0]^1 T_2$
 $P_3 = T_3$
 $P_4 = Z'T_5$
 $P_5 = T_8$

- The PLA o/ps are summarized as
- L = P0 + P1 + P2 + P3 + P4 + P5
- d3 = P5
- d2 = P0 + P1 + P2 + P3
- \bullet dl = P4
- \bullet d0 = P0 + P1 + P3

 The controller design is completed by relating the control (T0-T8) with control i/ps C0-C9 as below:

•
$$C0 = C1 = C2 = T0$$

- C3 = T1
- C4 = T3
- C5 = T3 + T4
- C6 = C7 = T5
- C8 =T6
- C9 = T7

TOPICS COVERED FROM

- Textbook 3:
 - Chapter 4: 4.3