

Portable High Energy Experiment (PHEE) DAQ

Team Members: Ethan Barnes

John Sabra

Sang Hoon Chung

Sponsor: Michelle Chatter

Sandia National Laboratories

TA: Logan Smith

Project Summary

Problem statement:

- The United States military possesses about 5500 nuclear weapons in its stockpile
- The security of these weapons and equipment is paramount when they are transported for storage and testing
- Sandia is interested in detecting explosive-type events in sensitive areas
 - Exact application for DAQ system may not be disclosed

The Portable High Energy DAQ System will:

- Protect government equipment by detecting and identifying explosives within a 100 ft range
 - Utilizes accelerometer and pressure sensor to classify if an explosive event occurred
- Write output to removable storage device
 - User will be able to refer to and perform analysis on past data

Project/Subsystem Overview

PCB design complete

Zero design violations in

Change Framework to

Check the application

shows whole sensors data

signals on GUI

PyQt and Design multiple

Altium

Ethan

Sang

Hoon

Team: PHEE DAQ (Sandia)

Zero design violations in

Finalizing the program

and adopting the software

Check the software works

when we download the

software itself as .exe file

Altium

Can be powered with 3.3V

source and can read from

sensors and write to SD card at more than 2 kHz

supply regulating battery voltage to 3.3 and 5V

Integrated PCB is

Validate and test

subsystems

communication between

Application can read data from SD card in desired

format (time, explosion,

pressure, acceleration)

under load

portable with power

No TEXAS AGM UNIVERSITY						
	9/10	9/24	10/8	10/22	11/5	
Johnny	PCB Ordered	Power supply PCB validated	Charging feature validated	Integrated PCB design complete	Integrated PCB is functional	
	Zero design violations in Altium	Regulates 3.3 V under 40mA load and 5 V under 120 mA load (estimated	Can charge a 3-cell lipo battery at 1C rate			

PCB is functional

Powered with 3.3 V

card at ~2 kHz

pending

friendly

of GUI

source, can write to SD

Pressure sensors test

Make GUI more user-

Ask opinions to other

people about the design

load current of MCU)

MCU runs independently

Program will start and

Add more metrics to

Add more metrics and

check availability of the

Display via the application

display for data

at next column

result

debug mode

stop from GPIO outside of

Execution

Portable Power Supply

Johnny Sabra

Accomplishments since the last presentation <10> hrs	Ongoing progress/problems and plans until the next presentation	
 Removed all design violations from PCB designs PCB components have arrived and are in hand PCB layout ordered with expected arrival this week 	 Solder components onto to PCB Begin layout and routing for integrated PCB design between power supply and MCU 	

	Total 0
Height Constraint (Min=0mil) (Max=1000mil) (Prefered=500mil) (All)	0
Net Antennae (Tolerance=0mil) (All)	0
Silk to Silk (Clearance=10mil) (All),(All)	0

Integrated PCB

- Schematic for power supply and micro SD card reader
- Schematic symbols include footprints for PCB layout

Microcontroller PCB

Ethan Barnes

Accomplishments since the last presentation <20> hrs	Ongoing progress/problems and plans until the next presentation	
microSD reader, power, and	MCU GPIO schematic in	
sensor input schematics are	progress and then PCB layout	
complete	will begin	

Application

Sang Hoon Chung

Accomplishments since the last presentation <20> hrs	Ongoing progress/problems and plans until the next presentation	
Change the Framework from	 Link to Google Drive with using	
Kivy to PyQt which can be used	Google API Read multiple signals from	
to create desktop applications.	sensors	

When we run the app, a small window will appear. When you select the file you want to view and open it, a graph will appear in a pop-up window.

Thank you!

Questions?