ANSWERS TO TOPIC B PROBLEMS

- 1) a)0.188 mol/L (0.188 M)
 - b) 12.0 g CaCl₂
 - c) 0.671 L (671 mL)
- 2) a) **0.055** M
 - b) 800 mL of water
 - c) 0.300 L of the 2.00 M NaOH, 1.20 L of water.
- 3) Strong electrolytes: NaCl, Mg(NO₃)₂, MgCrO₄, AgF, H₂SO₄, and NH₄Br. Weak electrolytes: HClO₂, H₃PO₄, and HC₃H₅O₃.

Nonelectrolytes: C₂H₅OH, CH₃CN, and (CH₃)₂CO.

- 4) a) **0.1 M Na**⁺ and **0.1 M Br**⁻
 - b) **0.04** M K⁺ and **0.04** M NO₃⁻
 - c) **0.2** M Fe³⁺ and **0.6** M Cl⁻
 - d) 3.0 M NH₄⁺ and 1.5 M SO₄²⁻
- 5) $0.0515 \text{ mol Fe}^{3+}$ $0.0772 \text{ mol SO}_4^{2-}$
- 6) Only **choice c** is correct.
- 7) **267** mL of water.
- 8) 4.918 g Al(NO₃)₃
- 9) 0.750 M
- 10) a) **0.0600 M**
 - b) 3.13 g SnCl₄
- 11) a) $0.2x \text{ mol Al}^{3+}$
 - b) 0.6x mol Br
 - c) you must add 9x liters of water.
- 12) The only insoluble compounds in this list are FeS and Ba₃(PO₄)₂.
- 13)
- a) $3 \text{ Mg}^{2+}(aq) + 2 \text{ PO}_4^{3-}(aq) \rightarrow \text{Mg}_3(\text{PO}_4)_2(s)$
- b) $H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$
- c) $Fe^{3+}(aq) + 3 OH^{-}(aq) \rightarrow Fe(OH)_3(s)$
- d) None of the possible products is insoluble, so there is no reaction.
- e) $H^{+}(aq) + HCO_{3}^{-}(aq) \rightarrow H_{2}O(1) + CO_{2}(g)$

f)
$$2 \text{ Ag}^+(\text{aq}) + \text{CO}_3^{2-} \rightarrow \text{Ag}_2\text{CO}_3(\text{s})$$

g)
$$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$$

h)
$$HC_2H_3O_2(aq) + OH^-(aq) \rightarrow H_2O(1) + C_2H_3O_2^-(aq)$$

i)
$$HC_6H_5O(aq) + OH^-(aq) \rightarrow H_2O(1) + C_6H_5O^-(aq)$$

j) Reaction 1:
$$H_2C_4H_4O_4(aq) + OH^-(aq) \rightarrow H_2O(1) + HC_4H_4O_4^-(aq)$$

Reaction 2: $HC_4H_4O_4^-(aq) + OH^-(aq) \rightarrow H_2O(1) + C_4H_4O_4^{2-}(aq)$

14) a)
$$Ba^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow BaCrO_4(s)$$

b) $Ca^{2+}(aq) + 2 C_{12}H_{22}O_2^{-}(aq) \rightarrow Ca(C_{12}H_{22}O_2)_2(s)$

15) See the handout for information about this type of reaction. The net ionic equations are:

a)
$$Mg(OH)_2(s) + 2 H^+(aq) \rightarrow Mg^{2+}(aq) + 2 H_2O(1)$$

b)
$$CuO(s) + 2 H^{+}(aq) \rightarrow Cu^{2+}(aq) + H_2O(1)$$

c) Al(OH)₃(s) + 3 H⁺(aq)
$$\rightarrow$$
 Al³⁺(aq) + 3 H₂O(l)

d)
$$Cr_2O_3(s) + 6 H^+(aq) \rightarrow 2 Cr^{3+}(aq) + 3 H_2O(1)$$

16) a)
$$CaCO_3(s) + H^+(aq) \rightarrow Ca^{2+}(aq) + HCO_3^-(aq)$$

b) $HCO_3^-(aq) + H^+(aq) \rightarrow CO_2(g) + H_2O(l)$

17) The reactions are:

$$MgO(s) + 2 H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_2O(1)$$

PbO (s) + H⁺(aq) + HSO₄⁻(aq) \rightarrow PbSO₄(s) + H₂O(1)

18) The answer is...

The solution definitely contains I^- .

The solution definitely does not contain PO_4^{3-} .

You cannot determine whether the solution contains NO₃-.

19)
$$3 \text{ Ca}^{2+} + 2 \text{ PO}_4^{3-} \rightarrow \text{ Ca}_3(\text{PO}_4)_2$$

Initial moles: 0.0685 0.0505 0
Change: -0.0685 -0.0457 +0.0228
Ending moles: 0 0.0048 0.0228

20) 3
$$Ca^{2+}$$
 + 2 PO_4^{3-} \rightarrow $Ca_3(PO_4)_2$ Initial moles: x y 0 Change: $-x$ -0.6667 x +0.3333 x Ending moles: 0 y - 0.6667 x 0.3333 x

21)
$$3 \operatorname{Ca}^{2+} + 2 \operatorname{PO}_{4}^{3-} \rightarrow \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2}$$
Initial moles: $x \quad y \quad 0$
Change: $-1.5y \quad -y \quad +0.5y$
Ending moles: $x - 1.5y \quad 0 \quad 0.5y$

- 22) a) $Cu^{2+}(aq) + 2 OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$
 - b) K⁺ and Cl⁻.
 - c) The limiting reactant is **OH**⁻
 - Cu^{2+} + d) Cu(OH)₂ 2 OH⁻ **Initial moles:** 0.0200 0.0300 0 +0.0150 Change: -0.0150 -0.0300 **Ending moles:** 0.0050 0 0.0150
- 23) a) $Pb^{2+}(aq) + 2 I^{-}(aq) \rightarrow PbI_{2}(s)$
 - Pb^{2+} PbI_2 b) 2 I **Initial moles:** 0.0008000.00120 0 Change: +0.000600 -0.00120 -0.000600 **Ending moles:** 0.000200 0 0.000600
 - c) 0.277 g of PbI₂.
 - d) 0.0222 M
 - e) **0.178 M**
- 24) a) **2.19 g of AgBr**.
 - b) 1.53 M.
- 25) **35.1 mL**
- 26) **0.188 M**
- 27) **0.159 M**