Big Data et Infrastructures

Hadoop - Option cheap

Serveurs réformés

Bien:

- Virtuellement gratuit

Pas bien:

- Administration lourde

Hadoop - Option virtuelle

Dans un cloud (AWS, GCE, Azure, OVH...)

Bien:

- Baaaah, c'est du cloud
- Services très aboutis

Pas bien:

Performance tuning

Hadoop - Option **Metal**

Bien:

- Maitrise de bout en bout du cluster
- Optimal niveau performance

Pas bien:

- Lourd à installer
- Lourd
- Problématiques datacenter

Topologie générale

Masters

- Impairs !!
- Rapides
- Protégés

Slaves

- Chargés
- Nombreux

Exemples de service master

- Zookeeper Servers
- HDFS Namenode
- HDFS Secondary Namenode
- Mesos Master
- Yarn Resource Manager
- Yarn History Server
- Hive Metastore Server
- Spark History Server

Disques - données

Pour Hadoop, un ratio conseillé est d'un disque par coeur

Pour Spark, on peut baisser à 0.5 par coeur.

SAS 10K >> SSD

Disques système

Option joueur

SAS, RAID, SSD, 15k ...

(Attention aux partitions, pas de NFS ici)

Disques - système

Option prod

Pas de disques.

OS en RAM.

RAM

Hadoop MapReduce: 4 Go /core

Hadoop + HBase : 8Go / core

Spark: 8Go / core

Ici, on donne des indications minimales de mémoire à prévoir par serveur pour le fonctionnement des frameworks

CPU

C'est pas du HPC

Densité importante

Rapidité en fonction du budget

Réseau

Pas de besoin de latence

Besoin de bande passante

Minimum 10Gbps, si saturation, monter à 20 en bindant (permet aussi d'ajouter de la redondance)

Minimums

- 10 machines
- 8 core par machine
- 4 disques par machine
- 8Go de RAM dédié à Spark

Maximum

200Go de RAM

1:8:1

Bon ratio

Questions?

Hadoop & the Gang

Attention, famille nombreuse.

Ecosystème : les outils open-source (apache)

- Apache HBase et Cassandra : bases de données noSQL
- Apache Pig et Apache Hive : languages pseudo code permettant l'exploration rapide et simplifiée des données
- Apache Storm : traitement évenementiel (temps réel)
- Apache Slider : plugin de YARN permettant plus de diversité
- Apache Ambari : gestionnaire de configuration
- Apache Crunch : librairie permettant de développer des jobs MR en java

Les scripts : Pig

Créé par Yahoo lines = LOAD '/user/hadoop/HDFS_File.txt' AS (line:chararray);

words = FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word;

grouped = GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

DUMP wordcount;

Simple

Pipeline de traitement

Extension par UDF

Beaucoup de librairies

Execution sur Spark
-> Spork

Les scrips : Hive

Au départ Pig en SQL

Au final véritable warehouse

Différents moteurs d'execution

- MapReduce (deprecated)
- Tez
- Spark

Les manager : Mesos

Cluster manager issu de Berkeley

Tout terrain

Moins monolithique que Yarn

Plus scalable

Les manager : Slider

Apporte de la souplesse à Yarn

Toujours en incubation...

Ecosystème : les outils open-source (non-apache)

- Cascading
- Scalding (twitter)
- Algebird, Summingbird (twitter)
- Kafka (LinkedIn, puis apache)
- Voldemort (LinkedIn, key-value store fait maison)
- Atlas (Netflix, monitoring)

Ecosystème : les entreprises

Trois principaux vendeurs:

Cloudera (stabilité)

Hortonworks (réactivité)

MapR (rapidité)

Ils attendent d'etre sur de la stabilité des composants avant de les mettre à jour dans leur distribution. Ils ont quelques produits propre non existant dans la suite apache.

Ils mettent à jour leur distribution tous les 6 mois avec les outils les plus récents. C'est les plus proche de la distribution apache.

Implémentation C des composants Hadoop. Plus rapide mais moins de doc et moins de compatibilité.

Ecosystème BDAS

- BlinkDB

Queries with Bounded Errors and Bounded Response Times on Very Large Data

- Tachyon

Accelerateur d'accès à la donnée

Ecosystème : Spark

