Reverse-Engineering Stochastic Models

Mufaro Machaya and Ian Matsunaga

June 22, 2025

Stochastic

Coins: Heads, Tails, Tails, Heads, Tails, ...

Dice: 0 0 1 0 3 2 5 7 2 5 3 6 7 ...

 Conventional modeling techniques are ineffective with stochastic (random) patterns

Weather vs. Time

How could we model this?

Markov Models

Source: https://www.statology.org/markov-chains-demystified-from-weather-predictions-to-googles-pagerank/.

Core Question and Purpose

How complicated can we make a Markov model before we cannot accurately reverse-engineer it/predict its future behavior?

- Many heavily researched strategies of reverse engineering stochastic models
- ► Not as much insight into how memory relates the effectiveness of reverse-engineering

Markov Model/Coin Systems

Complexity and Variance

Complexity

$$c = n v m^2 \tag{1}$$

Variance (v)

$$v = \sum_{i=1}^{n} \sum_{j=1}^{n} |p_{i,j} - \mu|, \mu = \frac{1}{n}$$
 (2)

Error

Error

$$E(I,O) = \sum_{i=1}^{n} \sum_{j=1}^{n} |P_{I_{i,j}} - P_{O_{i,j}}|,$$
(3)

► The sum of the absolute differences for all probabilities across the distributions for all states on both systems.

Core Pipeline

Interpreter: pre-informed of the transition rules and iterates over the data to calculate probability distributions for each state by building a histogram.

Results

Results

Results (Memory 1)

Slope at m = 1 is about 3, slope at m = 4 is about 1.2

Uncertainties

- ► Error measurements have inherent uncertainty, but should have limited influence due to the quantity of data
- Auto-generated data, and arbitrary quantities raise doubts over validity of results, these questions could be answered by researching with 'real' datasets
- ► Further tests over larger ranges of complexity are necessary to further validate our findings

Conclusion

- As expected, there is a positive/direct relationship between complexity and error.
- Model relationship cannot be determined due to our arbitrary quantities
- Memory influences the range of error for a given range of complexity

Questions!

Example Complexity and Variance

$$P = \begin{bmatrix} P_A \\ P_B \end{bmatrix} = \begin{bmatrix} 0.2 & 0.8 \\ 0.7 & 0.3 \end{bmatrix} \qquad T = \begin{bmatrix} Sequence & T_A & T_B \\ (0,0) & A & B \\ (0,1) & A & A \\ (1,0) & B & A \\ (1,1) & B & B \end{bmatrix}$$

- ▶ n = 2 (width/height of P) and m = 2 (length of all sequences).
- As n = 2, $\mu = \frac{1}{2} = 0.5$.

$$\nu = |0.2 - 0.5| + |0.8 - 0.5| + |0.7 - 0.5| + |0.3 - 0.5| = 1.0$$

$$ightharpoonup c = nvm^2 = (2)(1)(2)^2 = 8$$

Error Example

$$P_1 = \begin{bmatrix} 0.2 & 0.8 \\ 0.7 & 0.3 \end{bmatrix} \qquad \qquad P_2 = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$|P_1 - P_2| = \begin{bmatrix} |0.2 - 0.5| & |0.8 - 0.5| \\ |0.7 - 0.5| & |0.3 - 0.5| \end{bmatrix} = \begin{bmatrix} 0.3 & 0.3 \\ 0.2 & 0.2 \end{bmatrix}$$

$$\sum |P_1 - P_2| = 0.3 + 0.3 + 0.2 + 0.2 = 1.0$$

Interpreter

$$n = 2, m = 2$$

Dataset: 0,1,0,0,1,0,1,1,0,0

	_		_		_		_			
0 1	1	0	0	0	1	0	1	1	0	0

G					
Sequence	Count				
(0,1)	2				
(1,0)	2				
(0,0)	2				
(1,1)	1				

Histogram

Probability Distribution

Sequence	Probability				
(0,1)	$2/7 \approx 0.286$				
(1,0)	$2/7 \approx 0.286$				
(0,0)	$2/7 \approx 0.286$				
(1,1)	$1/7 \approx 0.143$				