

Attribute selection Measures in CART: II

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Attribute selection measures:
 - Gain Value
 - Gain ratio
 - Gini Index

Gain Ratio

- The information gain measure is biased toward tests with many outcomes
- That is, it prefers to select attributes having a large number of values
- For example, consider an attribute that acts as a unique identifier, such as product ID.
- A split on product ID would result in a large number of partitions (as many as there are values), each one containing just one tuple

Gain Ratio

- Because each partition is pure, the information required to classify dataset D based on this partitioning would be Info $_{product\ ID}(D) = 0$
- Information Gain = Info D- $(Info_{product ID}(D)) = maximum$
- Therefore, the information gained by partitioning on this attribute is maximal
- Clearly, such a partitioning is useless for classification
- Gain ratio is an extension to information gain which attempts to overcome this bias

Split information

• It applies a kind of normalization to information gain using a "split information" value defined analogously with Info(D) as:

$$SplitInfo_{\underline{A}}(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|}\right).$$

- D_i= single partion
- D = Data set
- This value represents the potential information generated by splitting the training data set, D, into v partitions, corresponding to the v outcomes of a test on attribute A

Gain ratio

- Gain ratio differs from information gain, which measures the information with respect to classification that is acquired based on the same partitioning
- The gain ratio is defined as

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio example

- Consider the previous example for computation of gain ratio for the attribute income
- A test on income splits the data of the following Table into three partitions, namely low, medium, and high, containing four, six, and four tuples, respectively

Han, J., Pei, J. and Kamber, M., 2011. *Data mining: concepts and techniques*. Elsevier.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for high

• High:

• Calculate Entropy for high:

$$= -(2/4)\log_2(2/4) - (2/4)\log_2(2/4)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for 'medium'

Medium:

Medium	Class: buys computer
Yes	4
No	2

Calculate Entropy for Medium:

$$= -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for 'low'

• Low:

Low	Class: buys computer
Yes	3
No	1

- Calculate Entropy for Low:
 - $= (3/4)\log_2(3/4) (1/4)\log_2(1/4)$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for buying class D

- Calculate information:
- $= -p_v \log_2(p_v) p_n \log_2(p_n)$
- Where p_v is probability of yes and p_n is probability of no

$$Info(D) = -\frac{9!}{14}\log_2\left(\frac{9}{14}\right) - \frac{5!}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$

Gain of income

 The expected information needed to classify a tuple in D if the tuples are partitioned according to income is:

• Info
$$_{income}$$
 (D) = $(4/14)$ ($-(2/4)log_2(2/4)$ - $(2/4)log_2(2/4)$) + $(6/14)$ ($-(4/6)log_2(4/6)$ - $(2/6)log_2(2/6)$) + $(4/14)$ (- $(1/4)log_2(1/4)$ - $(3/4)log_2(3/4)$) = 0.911 bits

Gain of income : Info(D) - Info $_{income}$ (D) = 0.94 - 0.911 = 0.029

Gain-Ratio(income)

Calculation of split ratio:

$$SplitInfo_{A}(D) = -\frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_{2}\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) = 0.926.$$

• Therefore, Gain-Ratio(income) = 0.029/0.926 = 0.031

Interpretation

- Further we calculate the same for the rest 3 criteria (age, student, credit rating)
- The one with <u>maximum Gain ratio value will</u> results in the maximum reduction in impurity of the tuples in D and is returned as the splitting criterion

Decision tree using Gini index

- Let's take the Introduction of a decision tree using Gini index
- Let D be the training data of the following table

Han, J., Pei, J. and Kamber, M., 2011. *Data mining: concepts and techniques*. Elsevier.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Example

- In this example, each attribute is discrete-valued
- Continuous-valued attributes have been generalized
- The class label attribute, buys computer, has two distinct values (namely, {yes, no}); therefore, there are two distinct classes (that is, m = 2)
- Let class C₁ correspond to 'yes' and class C₂ correspond to 'no'.
- There are nine tuples of class 'yes' and five tuples of class 'no'.
- A (root) node N is created for the tuples in D

Calculation of Gini(D)

We first use the following Equation for Gini index to compute the impurity

of D:

$$\underline{Gini(D)} = 1 - \sum_{i=1}^{m} p_i^2,$$

$$= Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- Lets calculate Gini index for income attribute
- To find the splitting criterion for the tuples in D, we need to compute the Gini index for each attribute
- Let's start with the attribute income and consider each of the possible splitting subsets
- Income has three possible values, namely {low, medium, high}, then the
 possible subsets are {low, medium, high}, {low, medium}, {low, high},
 {medium, high}, {low}, {medium}, {high}, and {}
- Power set and empty set will not be used for splitting

- Consider the subset{low, medium}
- This would result in 10 tuples in partition D1 satisfying the condition "income ∈{low, medium}"
- The remaining four tuples of D (high) would be assigned to partition D2

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D1

Low + Medium:

Medium + Low	Class: buys computer
Yes	3+4 =7
No	1+ 2 = 3

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D2

• High : \(\mathcal{D}\)

High	Class: buys computer
Yes	2
No	2

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	_high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

The Gini index value computed based on this partitioning is

$$Gini_{income} \in \{low, medium\} (D)$$

$$= \frac{10}{14}Gini(D_1) + \frac{4}{14}Gini(D_2)$$

$$= (10/14) (1 - (7/10)^2 - (3/10)^2) + (4/14) (1 - (2/4)^2 - (2/4)^2)$$

$$= 0.443 = Gini_{income} \in \{high\}$$

- Consider the subset{high, medium}
- This would result in <u>10</u> tuples in partition D1 satisfying the condition "income ∈{high, medium}"
- The remaining four tuples of D (low) would be assigned to partition D₂

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D1

• High + Medium:

Medium + high	Class: buys computer
Yes	2+4
No	2 + 2

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D2

• Low:

Low	Class: buys computer
No	1
Yes	3

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

The Gini index value computed based on this partitioning is

Gini income ∈{high, medium}

$$= \frac{10}{14}Gini(D_1) + \frac{4}{14}Gini(D_2)$$

$$= (10/14) (1 - (6/10)^2 - (4/10)^2) + (4/14) (1 - (1/4)^2 - (3/4)^2)$$

$$= 0.45 = Gini_{income \in \{low\}}$$

- Consider the subset{high, low}
- This would result in 8 tuples in partition D1 satisfying the condition "income ∈{high, low}"
- The remaining six tuples of D (medium) would be assigned to partition D₂

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D1

• High + low:

high + low	Class: buys computer
Yes	2+3
No	2 + 1

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuples in partition D2

Medium:

Low	Class: buys computer
No	2
Yes	4

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

 The Gini index value computed based on this partitioning is Gini income ∈{high, low}

=
$$(8/14) (1-(5/8)^2 - (3/8)^2) +$$

 $(6/14) (1-(2/6)^2 - (4/6)^2)$
= 0.458 = Gini income $\in \{\text{medium}\}$

Gini Index values

	Gini Index values
Gini _{income} ∈{high, low}	0.458
Gini income ∈{high, medium}	0.45
Gini income ∈{medium, low}	0.443

Interpretation

- The best binary split for attribute income is on {medium, low} (or {high})
 because it minimizes the Gini index
- The splitting subset {medium,low} therefore give the minimum Gini index for attribute income
- Reduction in impurity = 0.459 0.443 = 0.016
- Further we calculate the same for the rest 3 criteria (age, student, credit rating)
- The one with minimum Gini index value will results in the maximum reduction in impurity of the tuples in D and is returned as the splitting criterion

Thank You

