Chapter 6: Optimality Condition

Chao Wang

SUSTech

Outline

- Necessary Conditions
- Sufficient Conditions
- Conditions for Convex Problems
- 4 Lagrangian, Duality, & Complementary Slackness
- 5 Karush-Kuhn-Tucker (KKT) Conditions

Necessary Conditions

Optimization problem

• The general form of optimization:

$$\begin{array}{cc} \text{Min} & f(x) \\ \text{Subject to} & x \in \Omega \end{array}$$

- Suppose $x \in \mathbb{R}^n, \Omega$ is called the feasible set
- If $\Omega = \mathbb{R}^n$, then the problem is called unconstrained.
- Otherwise, the problem is called constrained.
- We can write any constrained problem in the unconstrained form

$$\min f(x) + \iota_{\Omega}(x),$$

where the indicator function

$$\iota_{\Omega}(x) = \left\{ \begin{array}{l} 0, x \in \Omega, \\ \infty, x \notin \Omega. \end{array} \right.$$

Feasible direction

- A vector $d \in \mathbb{R}^n$ is a feasible direction at $x \in \Omega$ if $d \neq 0$ and $x + \alpha d \in \Omega$ for some small $\alpha > 0$. (It is possible that d is an infeasible step, that is, $x + d \notin \Omega$. But if there is some room in Ω to move from x toward d, then d is a feasible direction.)
- If $\Omega = \mathbb{R}^n$ or x lies in the interior of Ω , then any $\underline{d \in \mathbb{R}^n \setminus \{0\}}$ is a feasible direction
- Feasible directions are introduced to establish optimality conditions, especially for points on the boundary of a constrained problem

 d_1 is feasible, d_2 is infeasible

First-order necessary condition

$$\phi(a+b) = \phi(a) + \phi'(a) h + \frac{\phi''(a)}{2} h^2 + \dots + \frac{\phi^{(n)}(a)}{m!} h^m + \sigma(h^m).$$

Theorem

(First-Order Necessary Condition (FONC)). Let Ω be a subset of \mathbb{R}^n and $f \in \mathcal{C}^1$ a real-value function on Ω . If x^* is a local minimizer of f over Ω , then for any feasible direction d at x^* , we have

$$d^{\mathsf{T}}\nabla f\left(x^{*}\right)\geq0$$

Proof: Let *d* by any feasible direction. First-order Taylor expansion:

$$f\left(x^* + \alpha d\right) = f\left(x^*\right) + \underline{\alpha d^T \nabla f\left(x^*\right)} + o(\alpha).$$
If $d^T \nabla f\left(x^*\right) < 0$, which does not depend on α , then $f\left(x^* + \alpha d\right) < f\left(x^*\right)$

If $d^T \nabla f(x^*) < 0$, which does not depend on α , then $f(x^* + \alpha d) < f(x)$ for all sufficiently small $\alpha > 0$ (that is, all $\alpha \in (0, \bar{\alpha})$ for some $\bar{\alpha} > 0$).

This is a contradiction since x^* is a local minimizer.

与从它成影准相违.

First-order necessary condition

Corollary

(Interior Case) Let Ω be a subset of \mathbb{R}^n and $f \in \mathcal{C}^1$ a real-value function on Ω . If x^* is a <u>local minimizer</u> of f over Ω and if x^* is an interior point, then $\nabla f(x^*) = 0$.

Proof: Since any $d \in \mathbb{R}^n \setminus \{0\}$ is a feasible direction, we can set d = direction $-\nabla f(x^*)$. We have $d^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 \geq 0$. Since $\|\nabla f(x^*)\|^2 \geq 0$, we have $\|\nabla f(x^*)\|^2 = 0$ and thus $\nabla f(x^*) = 0$.

Comment: This condition also reduces the problem

$$\min f(x)$$

to solving the equation

$$\nabla f(x^*) = 0$$

Second-order necessary condition

In FONC, there are two possibilities

- $d^T \nabla f(x^*) > 0$;
- $d^T \nabla f(x^*) = 0$.

In the first case, $f(x^* + \alpha d) > f(x^*)$ for all sufficiently small $\alpha > 0$. In the second case, the vanishing $d^T \nabla f(x^*)$ allows us to check higher-order derivatives.

Second-order necessary condition

Theorem

(Second-Order Necessary Condition (SONC)) Let $\Omega \subset \mathbb{R}^n$, $f \in \mathcal{C}^2$ a function on Ω, x^* a local minimizer of f over Ω , and d a feasible direction at x^* . If $d \subset \mathbb{R}^n$ then

$$d^T F(x^*) d \ge 0$$

where F is the Hessian of f.

Dis.

Proof: Assume that \exists a feasible direction d with $d^T \nabla f(x^*) = 0$ and $d^T F(x^*) d < 0$. By 2 nd-order Taylor expansion (with a vanishing 1 st order term), we have

$$f(x^* + \alpha d) = f(x^*) + \frac{d^T F(x^*) d}{2} \alpha^2 + o(\alpha^2),$$

where by our assumption $d^T F(x^*) d < 0$. Hence, for all sufficiently small $\alpha > 0$, we have $f(x^* + \alpha d) < f(x^*)$, which contradicts that x^* is a local minimizer.

Second-order necessary condition

Corollary

(Interior Case) Let x^* be a interior point of $\Omega \subset \mathbb{R}^n$. If x^* is a local minimizer of $f: \Omega \to \mathbb{R}^n$, $f \in \mathcal{C}^2$, then

$$\nabla f\left(x^{\ast }\right) =0,$$

and $F(x^*)$ is positive semidefinite $(F(x^*) \ge 0)$; that is, for all $d \in \mathbb{R}^n$,

$$d^T F(x^*) d \ge 0.$$

The necessary conditions are not sufficient

Counter examples

$$f(x) = x^3$$
, $f'(x) = 3x^2$, $f''(x) = 6x$

$$f(x) = x_1^2 - x_2^2$$

0 is a saddle point: $\nabla f(0)=0$ but neither a local minimizer nor maximizer By SONC, 0 is not a local minimizer!

Sufficient Conditions

Second-order sufficient condition

Theorem

(Second-Order Sufficient Condition (SOSC), Interior point.) Let $f \in C^2$ be defined on a region in which x^* is an interior point. Suppose that

- 1. $\nabla f(x^*) = 0$;
- 2. $F(x^*) > 0$.

Then, x^* is a strict local minimizer of f.

Comments:

- part 2 states $F(x^*)$ is positive definite: $x^T F(x^*) x > 0$ for $x \neq 0$.
- the condition is not necessary for strict local minimizer.

Proof: For any $d \neq 0$ and ||d|| = 1, we have $d^T F(x^*) d \geq \lambda_{\min}(F(x^*)) > 0$. Use the 2nd order Taylor expansion

$$f\left(x^{*}+\alpha d\right)=f\left(x^{*}\right)+\frac{\alpha^{2}}{2}d^{T}F\left(x^{*}\right)d+o\left(\alpha^{2}\right)\geq f\left(x^{*}\right)+\frac{\alpha^{2}}{2}\lambda_{\min}\left(F\left(x^{*}\right)\right)+o\left(\alpha^{2}\right)$$

Then, $\exists \bar{\alpha} > 0$, regardless of d, such that $f(x^* + \alpha d) > f(x^*), \alpha \in (0, \bar{\alpha})$.

Conditions for Convex Problems

Optimality conditions for convex problem

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function, and let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set. Consider the problem

minimize
$$f(x)$$

subject to $x \in C$.

A vector x^* is optimal for this problem if and only if $x^* \in C$ and

$$\nabla f(x^*)^T(z-x^*) \geq 0$$
 for all $z \in C$.

Proof. For the sake of simplicity, we prove the result assuming that f is continuously differentiable. Let x^* be optimal. Suppose that for some $\hat{z} \in C$ we have

$$\nabla f(x^*)^T (\hat{z} - x^*) < 0.$$

Optimality conditions for convex problem

Since f is continuously differentiable, by the first-order Taylor expansion, we have for all sufficiently small $\alpha > 0$,

$$f(x^* + \alpha(\hat{z} - x^*)) = f(x^*) + \alpha \nabla f(x^*)^T (\hat{z} - x^*) + o(\alpha) < f(x^*),$$

with $x^* \in C$ and $\hat{z} \in C$. By the convexity of C, we have $x^* + \alpha \left(\hat{z} - x^*\right) \in C$. Thus, this vector is feasible and has a smaller objective value than the optimal point x^* , which is a contradiction. Hence, we must have $\nabla f \left(x^*\right)^T \left(z - x^*\right) \geq 0$ for all $z \in C$. Suppose now that $x^* \in C$ and

$$\nabla f(x^*)^T(z-x^*) \geq 0$$
 for all $z \in C$.

By convexity of f, we have

$$f(x^*) + \nabla f(x^*)^T (z - x^*) \le f(z)$$
 for all $z \in C$,

implying that

$$\nabla f(x^*)^T(z-x^*) \leq f(z) - f(x^*).$$

This and Eq. (2.10) further imply that

$$0 \le f(z) - f(x^*)$$
 for all $z \in C$.

Since $x^* \in C$, it follows that x^* is optimal.

Optimality conditions for convex problem

• We next discuss several implications of the theorem, by considering some special choices for the set C. Let C be the entire space, i.e., $C = \mathbb{R}^n$. The condition

$$\nabla f(x^*)^T(z-x^*) \ge 0$$
 for all $z \in C$

reduces to

$$\nabla f(x^*)^T d \geq 0$$
 for all $d \in \mathbb{R}^n$

• this is equivalent to

$$\nabla f\left(x^{\ast }\right) =0.$$

Thus, a vector x^* is a minimum of f over \mathbb{R}^n if and only if $\nabla f(x^*) = 0$.

Lagrangian, Duality, & Complementary Slackness

Lagrangian

Standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

• Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with dom $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, v) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} v_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- v_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrangian dual function

• Lagrange dual function: $g: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$,

$$g(\lambda, v) = \inf_{x \in \mathcal{D}} L(x, \lambda, v)$$

=
$$\inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p v_i h_i(x) \right)$$

- a concave function of λ , ν
- can be $-\infty$ for some λ, ν ; this defines the domain of g
- Lower bound property: if $\lambda \geq 0$, then $g(\lambda, v) \leq p^*$ proof: if x is feasible and $\lambda \geq 0$, then

$$f_0(x) \ge L(x, \lambda, v) \ge \inf_{\tilde{x} \in \mathcal{D}} L(\tilde{x}, \lambda, v) = g(\lambda, v)$$

minimizing over all feasible x gives $p^* \geq g(\lambda, v)$

Connect the dual function in LP

• LP problem:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

• its Lagrangian is

$$L(x, \lambda, v) = c^{T}x + v^{T}(Ax - b) - \lambda^{T}x$$
$$= -b^{T}v + (c + A^{T}v - \lambda)^{T}x$$

• L is affine in x, hence

$$g(\lambda, v) = \inf_{x} L(x, \lambda, v) = \begin{cases} -b^{T}v & A^{T}v - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

- g is linear on affine domain dom $g = \{(\lambda, v)|A^Tv \lambda + c = 0\}$, hence concave
- Lower bound property: $p^* \ge -b^T v$ if $A^T v + c \ge 0$

Other example

Least norm solution of linear equations:

minimize
$$x^T x$$

subject to $Ax = b$

Lagrangian is

$$L(x, v) = x^{T}x + v^{T}(Ax - b)$$

• to minimize L over x, set gradient equal to zero:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \mathbf{v}) = 2\mathbf{x} + \mathbf{A}^T \mathbf{v} = 0 \Longrightarrow \mathbf{x} = -\frac{1}{2} \mathbf{A}^T \mathbf{v}$$

plug in in L to obtain g :

$$g(v) = L\left(-\frac{1}{2}A^Tv, v\right) = -\frac{1}{4}v^TAA^Tv - b^Tv$$

a concave function of v

• Lower bound property: $p^* \ge -\frac{1}{4}v^T A A^T v - b^T v$ for all v

Other example

equality constrained norm minimization:

minimize
$$||x||$$
 subject to $Ax = b$

• || ⋅ || is any norm; dual norm is defined as

$$\|v\|_* = \sup_{\|u\| \le 1} u^T v$$

- define Lagrangian $L(x, v) = ||x|| + v^{T}(b Ax)$
- dual function (tutorial):

$$g(v) = \inf_{x} \left(\|x\| - v^{T} A x + b^{T} v \right)$$
$$= \begin{cases} b^{T} v & \|A^{T} v\|_{*} \leq 1\\ -\infty & \text{otherwise} \end{cases}$$

• Lower bound property: $p^* \ge b^T v$ if $||A^T v||_* \le 1$

min
$$||x|| - y^{T}x = \begin{cases} 0 & ||y||_{x} \leqslant ||y||_{x} \leqslant ||y||_{x} = \sup_{x \to \infty} ||x|| \le ||y||_{x} \leqslant ||y||_{$$

7.f. :

Ca58 1 : 11 y 11 + ≤ 1.

HXII -4TX = t(1911 -1911x)

Lagrange dual and conjugate function

- Conjugate function of f: $f^*(y) = \sup_x (y^T x f(x))$
- consider

minimize
$$f_0(x)$$

subject to $Ax \le b$
 $Cx = d$

Its dual function is

$$g(\lambda, v) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + \left(A^T \lambda + C^T v \right)^T x - b^T \lambda - d^T v \right)$$
$$= -f_0^* \left(-A^T \lambda - C^T v \right) - b^T \lambda - d^T v$$

ullet simplifies derivation of dual if conjugate of f_0 is known

Example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, v)$$
 subject to $\lambda \geq 0$

- finds best lower bound on p^* , obtained from Lagrange dual function
- ullet a convex optimization problem; optimal value denoted by d^\star
- ullet often simplified by making implicit constraint $(\lambda, v) \in \operatorname{dom} g$ explicit
- λ , ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$
- $d^\star = -\infty$ if problem is infeasible; $d^\star = +\infty$ if unbounded above

Example: standard form LP and its dual minimize c^Tx maximize $-b^Tv$ subject to Ax = b subject to $A^Tv + c \ge 0$ $x \ge 0$

Weak and strong duality

- Weak duality: $d^* \leq p^*$
 - always holds (for convex and nonconvex problems)
 - can be used to find nontrivial lower bounds for difficult problems
- Strong duality: $d^* = p^*$
 - does not hold in general
 - (usually) holds for convex problems
 - sufficient conditions that guarantee strong duality in convex problems are called constraint qualifications

Inequality from LP

Primal problem

minimize
$$c^T x$$

subject to $Ax \le b$

Dual function

$$g(\lambda) = \inf_{x} \left(\left(c + A^{T} \lambda \right)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & A^{T} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$
Dual problem

Quadratic program

• Primal problem (assume $P \in \mathbf{S}_{++}^n$)

minimize
$$x^T P x$$

subject to $Ax \le b$

Dual function

al function
$$2P^{TX} + \lambda^{T}A = 0$$

$$2P^{TX} = -\lambda^{T}A$$

$$g(\lambda) = \inf_{X} \left(x^{T}PX + \lambda^{T}(AX - b) \right) = -\frac{1}{4}\lambda^{T}AP^{-1}A^{T}\lambda - b^{T}\lambda$$
al problem
$$2P^{TX} + \lambda^{T}A = 0$$

$$2X = -\lambda^{T}P^{T}A + \frac{1}{4}\lambda^{T}AP^{-1}A^{T}\lambda - \frac{1}{2}\lambda^{T}P^{T}A$$

Dual problem

maximize
$$-\frac{1}{4}\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \ge 0$

• in fact, $p^* = d^*$ always

Complementary slackness

assume x satisfies the primal constraints and $\lambda \geq 0$

$$g(\lambda, v) = \inf_{\tilde{x} \in \mathcal{D}} \left(f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p v_i^* h_i(\tilde{x}) \right)$$

$$\leq f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \left(\sum_{i=1}^p v_i h_i(x)\right)$$

$$(=) \leq f_0(x)$$

equality $f_0(x) = g(\lambda, v)$ holds if and only if the two inequalities hold with equality:

- first inequality: x minimizes $L(\tilde{x}, \lambda, v)$ over $\tilde{x} \in \mathcal{D}$
- 2nd inequality: $\lambda_i f_i(x) = 0$ for i = 1, ..., m, i.e.,

$$\lambda_i > 0 \Longrightarrow f_i(x) = 0, f_i(x) < 0 \Longrightarrow \lambda_i = 0$$

this is known as complementary slackness

Karush-Kuhn-Tucker (KKT) Conditions

Optimality conditions

- if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:
 - strong quanty ... ptimal if:

 (primal feasibility) $f_i(x) \le 0$ for i = 1, ..., m and $h_i(x) = 0$ for primal

 - $\lambda_i f_i(x) = 0 \text{ for } i = 1, \dots, m$
 - \mathcal{A} x is a minimizer of $L(\cdot, \lambda, \nu)$

conversely, these four conditions imply optimality of x, (λ, v) , and strong duality if problem is convex and the functions f_i , h_i are differentiable, 4 can written as

ullet 4' (stationarity). the gradient of the Lagrangian with respect to xvanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p v_i \nabla h_i(x) = 0$$

 conditions 1, 2, 3, 4' are known as Karush-Kuhn-Tucker (KKT) conditions

Convex problem

- strong duality: $p^* = d^*$
- \bullet if optimal value is finite, dual optimum is attained: there exist dual optimal λ, v

hence, if problem is convex

- ullet x is optimal if and only if there exist λ, v such that 1-4 are satisfied
- if functions are differentiable, condition 4 can be replaced with 4' (KKT conditions: 1-3,4')

Example: water-filling

minimize
$$-\sum_{i=1}^{n} \log (x_i + \alpha_i)$$
 subject to
$$x \ge 0$$

$$\mathbf{1}^{T} x = 1$$

- we assume that $\alpha_i > 0$
- Lagrangian is

$$L(\tilde{x}, \lambda, v) = -\sum_{i} \log (\tilde{x}_{i} + \alpha_{i}) - \lambda^{T} \tilde{x} + v \left(\mathbf{1}^{T} \tilde{x} - 1\right)$$

Optimality conditions: x is optimal iff there exist $\lambda \in \mathbb{R}^n$, $v \in \mathbb{R}$ such that

- $x \ge 0, 1^T x = 1$
- $\lambda \geq 0$
- $\lambda_i x_i = 0 \text{ for } i = 1, \dots, n$
- **1** x minimizes Lagrangian: $\frac{1}{x_i + \alpha_i} + \lambda_i = v$, i = 1, ..., n

(b).
$$f(x) = 0$$
 $\forall x \text{ let } x = (0,0)$ $f(x) = 0$ $f(x) = 0$.

2. f(x)= 1-1/x

(d). Yes (x11x2) \$ (0.0), f(x) >0.

(0) |f"(0)|=0 N.

Example: water-filling

Solution

- if $v \le 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/v \alpha_i$
- if $v \ge 1/\alpha_i : x_i = 0$ and $\lambda_i = v 1/\alpha_i$
- two cases may be combined as

$$x_i = \max\left\{0, \frac{1}{v} - \alpha_i\right\}, \lambda_i = \max\left\{0, v - \frac{1}{\alpha_i}\right\}$$

• determine v from condition $\mathbf{1}^T x = 1$:

$$\sum_{i=1}^{n} \max \left\{ 0, \frac{1}{v} - \alpha_i \right\} = 1$$

Interpretation

- *n* patches; level of patch *i* is at height α_i
- flood area with unit amount of water
- resulting level is $1/v^*$

Extra reading materials

More notes on KKT and duality:

- www.cs.cmu.edu/~./ggordon/10725-F12/scribes/10725_ Lecture16.pdf
- www.ifp.illinois.edu/~angelia/L9_kktconditions.pdf
- www.stat.cmu.edu/~ryantibs/convexopt/lectures/kkt.pdf