0.1 Sequences and Convergence

(X,d) a metric space.

A sequences X is a function $f: \mathbb{N} \to X$.

Usually we write a sequence as $(X_n)_{n=1}^{\infty}$, where $x_n = f(n)$

A subsequence of (X_n) is a sequence $(X_{n_i})_{i=1}^{\infty}$, where $(n_i)_{i=1}^{\infty}$

Definition 0.1 We say (X_n) converges to x if for any $\varepsilon > 0 \exists N$, s.t. $n > N \implies d(x, x_n) < \varepsilon$.

Write $X_n \to x$

Proposition 0.2 A sequence in a metric space can have at most one limit.

Proof: Suppose $X_n \to x$, $X_n \to y$.

Let
$$\varepsilon = \frac{1}{4}d(x,y) > 0$$

Then there exits a such that $n > N \implies d(x, x_n) < \epsilon$

$$\exists \tilde{N} \text{ s.t. } N\tilde{N} \implies d(y, x_n) < \epsilon$$

$$4\varepsilon \le d(x,y) \le (x,x_n) + d(x_n,y)$$

$$<\varepsilon+\varepsilon \text{ if } n>maxN, \tilde{N}$$

Contradiction.

 $\therefore x = y$

Definition 0.3 A sequence $(x_n)_{n=1}^{\infty}$ is bounded if the set $\{x_n\}_{n_1}^{\infty}$ is bounded in X.

E.g. $x_n = 1, \forall N$

$$(x_n) = 1, 1, 1, 1, 1$$

$$\{x_n\} = \{1\}$$

Proposition 0.4 A convergent sequence in a metric space (X, d) is bounded.

Proof: Suppose $x_n \to x$. $\exists N \text{ s.t. } n > N \implies d(x, x_n) < 1$.

Then at most $x_1, ..., x_n$ can lie outside $B_1(x)$

We can take a large enough radius, and it is bounded.

Definition 0.5 A sequence (x_n) in a metric space (X,d) converges to x if $\forall \varepsilon > 0$, $\exists Ns.t.n > N \implies d(x,x_n) < \varepsilon$

A sequence in (X,d) is Cauchy if $\forall \varepsilon > 0, \exists N \text{ s.t. } m, n > N \implies d(x_m, x_n) < \varepsilon$

Same proof shows that every Cauchy sequence is bounded.

Theorem 0.6 If $x_n \to x$, $y_n \to y$, then $d(x_n, y_n) \to d(x, y)$

Theorem 0.7 $d(x,y) \leq d(x,x_n) + d(x_n,y_n) + d(y_n,y)$ by \triangle ineq applied twice.

$$\implies d(x,y) - d(x_n,y_n) \le d(x,x_n) + d(y,y_n) \to 0$$
 as $n \to \infty$

$$d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n)$$

$$\implies d(x_n, y_n) - d(x, y) \le d(x_n, x) + d(y_n, y) \to 0 \text{ as } n \to 0$$

0.1.1 Sequences in \mathbb{R}

A sequence $(x_n) \subset \mathbb{R}$ is

increasing (non-decreasing) if $x_n \leq x_{n+1} \forall n$

decreasing (non-increasing) $x_n \ge x_{n+1} \forall n$

strictly increasing if $x_n < x_{n+1} \forall n$

strictly decreasing if $x_n > x_{n+1} \forall n$

A sequence in R is monotone if it is either increasing or decreasing.

Theorem 0.8 Every sequence in \mathbb{R} contains a monotone subsequence.

Proof: Let $S = \{k : x_k \ge x_n \forall n \ge k\}$

If S is infinite, the $S = (n_i)_{i=1}^{\infty}$ with

 $n_{i+1} > n_i \forall i$

and $x_{n_{i+1}} \geq x_{n_i} \forall I$

 $(x_{n_i})_{i=1}^{\infty}$ is an increasing sequence

 \therefore monotone.

Suppose S is finite, say largest element of S is N.

Choose $m_1 > N \implies x_{m_1}$

Choose $m_2 > m_1 \text{s.t.} x_{m_2} \ge x_{m_1}$ (Such m_2 exitsts, if not then $m_1 \in S_1$ not possible)

Choose $m_3 > m_2$ s.t. $x_{m_3} \ge x_{m_2}$

:

Then (x_{m_i}) is an increasing sequence and therefore monotone.

Theorem 0.9 Every bounded monotone sequence in \mathbb{R} has a limit.

Proof: See first year notes.

Theorem 0.10 (Bolzano-Weierstrauss theorem) Every bounded sequence of real numbers has a convergent subsequence.

Proof: Any such sequence has a monotone subsequence. Such a subsequence is also bounded, therefore convergent. \blacksquare