HOMEWORK 14

THE QUBIT AND THE BLOCH SPHERE

- 1. A **qubit** is best described as
 - a) a quantum harmonic oscillator.
 - b) a quantum system with exactly two discrete eigenstates.
 - c) a classical system with two opposite states.
 - d) a quantum system with infinite eigenstates.
- 2. Qubit states are represented geometrically as
 - a) curves in the x-y plane.
 - b) surfaces in a 3D space.
 - c) vectors of varying magnitude.
 - d) vectors that point to the surface of a sphere.
- 3. True or False: every point on the Bloch Sphere represents a valid, normalized qubit state.
 - a) True
 - b) False
- 4. Which of the following operators is used to perform a **rotation about the y-axis** on a qubit state on the Bloch Sphere.
 - (a) σ_x
 - (b) σ_y
 - (c) σ_z
 - (d) Hadamard Gate

- 5. Which of the following operators is used to perform a **rotation about the z-axis** on a qubit state on the Bloch Sphere.
 - (a) σ_x
 - (b) σ_y
 - (c) σ_z
 - (d) Hadamard Gate

Questions 6-10 are in relation to the following quantum state:

$$|\phi\rangle = e^{i\frac{\pi}{3}} \left(\frac{1}{\sqrt{3}} |+\rangle + e^{i\frac{\pi}{6}} \sqrt{\frac{2}{3}} |-\rangle \right)$$

Answer Questions 6-10 by correctly identifying the various properties of the state $|\phi\rangle$.

- 6. What is/are the **basis state(s)**?
 - (a) $e^{i\frac{\pi}{3}}$
 - (b) $e^{i\frac{\pi}{6}}$
 - (c) $\frac{1}{\sqrt{3}}$ and $\sqrt{\frac{2}{3}}$
 - (d) $|+\rangle$ and $|-\rangle$
 - (e) None of the above
- 7. What is/are the **probability amplitude(s)**?
 - (a) $e^{i\frac{\pi}{3}}$
 - (b) $e^{i\frac{\pi}{6}}$
 - (c) $\frac{1}{\sqrt{3}}$ and $\sqrt{\frac{2}{3}}$
 - (d) $|+\rangle$ and $|-\rangle$
 - (e) None of the above
- 8. What is/are the **global phase(s)**?
 - (a) $e^{i\frac{\pi}{3}}$
 - (b) $e^{i\frac{\pi}{6}}$
 - (c) $\frac{1}{\sqrt{3}}$ and $\sqrt{\frac{2}{3}}$
 - (d) $|+\rangle$ and $|-\rangle$
 - (e) None of the above

- 9. What is/are the **relative phase(s)**?
 - (a) $e^{i\frac{\pi}{3}}$
 - (b) $e^{i\frac{\pi}{6}}$
 - (c) $\frac{1}{\sqrt{3}}$ and $\sqrt{\frac{2}{3}}$
 - (d) $|+\rangle$ and $|-\rangle$
 - (e) None of the above
- 10. What is/are the **eigenvalue(s)**?
 - (a) $e^{i\frac{\pi}{3}}$
 - (b) $e^{i\frac{\pi}{6}}$
 - (c) $\frac{1}{\sqrt{3}}$ and $\sqrt{\frac{2}{3}}$
 - (d) $|+\rangle$ and $|-\rangle$
 - (e) None of the above
- 11. Which of the following properties does **not** have any influence on the outcome of measurements of quantum states?
 - a) Relative Phase
 - b) Probability Amplitude
 - c) Global Phase
 - d) Eigenvalues of operators

In lecture we learned that the state of a qubit in a quantum computer is given by a two dimensional vector of the form

 $|\psi\rangle = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{pmatrix}$

 $\bf Questions~12\text{--}15$ relates to the following Bloch sphere with vectors that represent various qubit states.

Hint: remember that the angle θ is measured from the **positive z-axis**. Some vectors in the diagram may not be labeled in this way.

- 12. What is the qubit state represented by vector **A**?
 - a) $|0\rangle$
 - b) $\cos\left(\frac{\pi}{3}\right)|0\rangle + e^{-i\frac{3\pi}{4}}\sin\left(\frac{\pi}{3}\right)|1\rangle$
 - c) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
 - d) $\cos\left(\frac{3\pi}{8}\right)|0\rangle + e^{-i\frac{\pi}{4}}\sin\left(\frac{3\pi}{8}\right)|1\rangle$
- 13. What is the qubit state represented by vector **B**?
 - a) $|0\rangle$
 - b) $\cos\left(\frac{\pi}{3}\right)\left|0\right\rangle + e^{-i\frac{3\pi}{4}}\sin\left(\frac{\pi}{3}\right)\left|1\right\rangle$
 - c) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
 - d) $\cos(\frac{3\pi}{8})|0\rangle + e^{-i\frac{\pi}{4}}\sin(\frac{3\pi}{8})|1\rangle$
- 14. What is the qubit state represented by vector **C**?
 - a) $|0\rangle$
 - b) $\cos\left(\frac{\pi}{3}\right)\left|0\right\rangle + e^{-i\frac{3\pi}{4}}\sin\left(\frac{\pi}{3}\right)\left|1\right\rangle$
 - c) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
 - d) $\cos\left(\frac{3\pi}{8}\right)|0\rangle + e^{-i\frac{\pi}{4}}\sin\left(\frac{3\pi}{8}\right)|1\rangle$
- 15. What is the quantum state represented by vector **D**
 - a) $|0\rangle$
 - b) $\cos\left(\frac{\pi}{3}\right)|0\rangle + e^{-i\frac{3\pi}{4}}\sin\left(\frac{\pi}{3}\right)|1\rangle$
 - c) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
 - d) $\cos\left(\frac{3\pi}{8}\right)|0\rangle + e^{-i\frac{\pi}{4}}\sin\left(\frac{3\pi}{8}\right)|1\rangle$