Práctica 4

Fundamentos de Sistemas Paralelos

Daniel Fuentes Rodríguez Tomás García Barreiro

${\bf \acute{I}ndice}$

1 Introdución						
2	Obtención de información sobre as GPUs 2.1 Código					
3	Medida de rendemento dun código CUDA simple					
	3.1 Código					
	3.2 Resultados					
	3.2.1 Diferentes tamaños de vector					
	3.2.2 Diferentes valores de <i>threads</i> por bloque					
	3.2.3 Diferente número de repeticións do lazo					
	3.2.4 Modificación do código para medir por separado tempos					
	3.2.5 Modificación do código para usar memoria unificada					
4	Produto de matrices simple en CUDA					
	4.1 Código para matrices cadradas					
	4.2 Código para matrices rectangulares					
	4.3 Estudo do rendemento					

1 Introdución

Nesta práctica realizaremos 4 experimentos distintos usando CUDA. O primeiro é unha simple obtención de información sobre as GPUs, o segundo é a medida de rendemento dun código simple e a terceira e a cuarta implican realizar o produto de dúas matrices cadradas, a última usando a libraría cuBLAS.

2 Obtención de información sobre as GPUs

2.1 Código

Este primeiro código é sinxelo, o único que fai é obter o número de tarxetas GPUs dispoñibles e, para cada unha delas, imprime certa información, gardada na variable devProp.

Cabe destacar que a forma de obter o número total de CUDA cores non é directamente a través dos datos gardados en devProp, senón que temos que usar os valores da computer capability para discernir a súa arquitectura e, así, sacar o total de cores.

O fallo desta implementación é que hai que ter en conta tódalas diferentes opcións no código, e a información do número de *cores* por multiprocesador hai que sacala de internet (por exemplo, a documentación de Nvidia sobre CUDA). Isto implica que habería que adaptar o código para cada nova xeración de GPUs só para poder imprimir esta información.

Senón, outra opción é, se está dispoñible, usar o comando nvidia-settings -q CUDACores -t, que devolve xa directamente o total de *cores*, a través dalgunha chamada ó sistema como popen().

Polo demais, só é imprimir tal cal os datos gardados no cudaDeviceProp ou, como moito, facer un sinxelo cálculo:

```
printf(" Computer Capability:
                                    %d.%d\n", devProp.major, devProp.minor);
printf(" MultiProcessor Count:
                                    %d\n",devProp.multiProcessorCount);
printf(" Max threads per MultiPr.:
                                    %d\n",devProp.maxThreadsPerMultiProcessor);
printf(" Max Grid Size:
                                    %d\n",*devProp.maxGridSize);
printf(" Max Threads per Block:
                                    %d\n",devProp.maxThreadsPerBlock);
printf(" Max Size for each Dim:
                                    %d\n",*devProp.maxThreadsDim);
printf(" Num 32bits reg per SM:
                                    %d\n",devProp.regsPerMultiprocessor);
printf(" Num 32bits reg per block
                                    %d\n",devProp.regsPerBlock);
printf(" Shared Mem per MultiPr.:
                                    %ld\n",devProp.sharedMemPerMultiprocessor/1024);
printf(" Shared Mem per Block:
                                    %ld\n",devProp.sharedMemPerBlock/1024);
                                     %ld\n",devProp.totalGlobalMem/(1024*1024));
printf(" Global Mem:
                                    %lf\n",devProp.memoryClockRate/1000.0);
printf(" Peak Mem Clock Frec:
printf(" Mem Bus With:
                                    %d\n",devProp.memoryBusWidth);
printf(" BWPeak:
                                     %lf\n'',
       (devProp.memoryClockRate*1000*(devProp.memoryBusWidth/8.0)*2.0)/1000000000.0);
printf(" CUDA Cores:
                                     ");
switch (devProp.major) {
    case 7:
        printf("%d\n", 64 * devProp.multiProcessorCount);
    case 8:
        if (devProp.minor == 0) printf("%d\n", 64 * devProp.multiProcessorCount);
        else printf("%d\n", 128 * devProp.multiProcessorCount);
        break;
    default:
```

```
printf("NOT IMPLEMENTED\n");
```

No noso caso, ó traballar só cunha tarxeta T4 (*computer capability* 7.5), unha A100 (8.0) e unha RTX 3060 Mobile (8.6), non implementamos o resto de posibilidades.

Para executar o código, só temos que compilalo usando nvcc e movernos a un nodo GPU do CESGA no caso das T4 ou mandándo a executar no caso da tarxeta A100. No caso de facelo fóra do CESGA, síguese o procedemento normal para a execución de calquera outro programa.

2.2 Resultados

}

Como indicamos anteriormente, executouse en tres GPUs diferentes.

	T4	A100	3060
Computer Capability	7.5	8.0	8.6
Número de multiprocesadores	40	108	30
Máximo núm. de fíos por MP	1024	2048	1536
Tamaño máx. de cada dim. dun bloque	2147483647	2147483647	2147483647
Máx. núm. de fíos por bloque	1024	1024	1024
Tam. máx. de cada dim. dun bloque	1024	1024	1024
Núm. rexistros de 32b por MP	65536	65536	65536
Núm. rexistros de 32b por bloque	65536	65536	65536
Tam. memoria compartida por MP (KiB)	64	164	100
Tam. memoria compartida por bloque (KiB)	48	48	48
Tam. memoria global (GiB)	14.6	39.4	5.8
Frecuencia pico da memoria (MHz)	5001	1215	7001
Ancho de bus da memoria	256	5120	192
Ancho de banda pico	320	1555	336

Se nos fixamos na descripción que dá Nvidia destas GPUs, vemos que a T4 está enfocada á IA, igual que a A100, mentres que a RTX 3060 está máis pensada para o gaming e o modelado.

Tamén sabemos, polo primeiro número da súa computer capability (ou major), que a T4 pertence á xeración Turin mentres que a A100 e a 3060 pertencen á xeración posterior, Ampere, polo que ten sentido que melloren as especificacións entre a T4 e a A100. O único dato onde a T4 é mellor que a A100 é na frecuncia pico da memoria, pero ó ter a A100 un ancho de bus moito maior, o ancho de banda é case 5 veces maior.

Se nos fixamos na 3060, observamos unha GPU moito máis modesta, con menor número de multiprocesadores, pero que ó pertencer a unha xeración superior e saír 3 anos despois, parece a simple vista que ten unhas especificacións á altura das da T4.

3 Medida de rendemento dun código CUDA simple

3.1 Código

Neste caso, non temos que engadir ou modificar nada no código (sen contar as medicións de tempo), só temos que executalo. Aínda así, comentaremos un pouco o que este realiza.

Tras a inicialización de certos parámetros (o tamaño dos vectores, o número de fíos por bloque e o número de repeticións da suma, entre outros), reservamos memoria e populamos no *host* os vectores. Despois, o *host* realiza a operación el só, e obtemos o tempo de execución desta acción.

Unha vez feito este cálculo no *host*, resérvase o espazo dos vectores na memoria global do dispositivo (usando cudaMalloc() en vez de malloc()). Cópianse en memoria os valores previamente xerados para os dous sumandos e realízase a súa suma cunha chamada a vectorAdd, a quen se lle pasa usando a semántica de chamadas de *kernels* de CUDA información dos bloques por *grid* e dos fíos por bloque.

Posteriormente, comprobamos se houbo erros no lanzamento do kernel ou na execución da suma. Se non hai, copiamos o vector resultante ó host, xuntando as partes calculadas por cada fío e imprimimos o tempo que tardou en realizarse a suma.

Por último, comprobamos que a suma é correcta e liberamos tódala memoria usada.

3.2 Resultados

Executaremos este código na A100 do CESGA, variando diferentes parámetros de cada vez.

3.2.1 Diferentes tamaños de vector

O primeiro que faremos será medir os tempos para diferentes tamaños de vector, para un total de 256 threads por bloque e 1 repetición do lazo.

Tamaño	Tempo host (ms)	Tempo device (ms)
10^{3}	0.003857	331.251591
10^{4}	0.044808	258.329953
10^{5}	0.493129	302.056540
10^{6}	4.450172	468.629360
10^{7}	40.317998	450.536023
10^{8}	401.874508	476.674974
10^{9}	4065.065481	2821.461726
10^{10}	6220.958801	4091.282362
10^{11*}	4943.596225	3163.310584
10^{12**}	ERRO	ERRO
4294967295***	ERRO	ERRO

 $^{\ ^*}$ O tamaño do vector foi de 1215752192 elementos

Podemos ver na táboa os resultados para diferentes tamaños do vector. Cabe destacar que, para valores moi pequenos (menores de 10^8), paralelizar a suma usando CUDA non paga a pena, xa que a reserva de memoria, a copia dos vectores e o lanzamento do kernel implican unha grande perda de tempo, aínda que é preciso dicir que o código só mide no host a suma en si mentres que no device mide tamén toda a inicialización previa xa comentada.

^{**} O tamaño do vector foi de 3567587328 elementos. A maiores, a suma non se realizou, xa que o tempo de execución do host foi moi pequeno e a execución no device devolveu un erro.

^{***} O valor máximo dun unsigned int.

Outra cousa a destacar é que o programa garda o tamaño do vector nun unsigned int, polo que o valor máximo que pode acadar é 4294967295, por iso para 10^{11} e 10^{12} o tamaño final non é o pasado ó programa.

Tamén, no caso do máximo valor de unsigned int, houbo que modificar o *script* de Bash para a execución, xa que tardaba máis que o tempo máximo indicado orixinalmente.

Aínda así, a execución para este valor tampouco foi correcta. Isto é debido a que, se ben o valor do tamaño do vector é gardado como un unsigned int, pásase á función da suma de vectores (h_vectorAdd() para o host e vectorAdd() para o device, que podemos ver xusto debaixo) como un int, polo que o bit máis significativo pasa de indicar 2^x a indicar que o número é negativo.

```
__host__ void
h_vectorAdd(const basetype *A, const basetype *B, basetype *C, int numElements) {
    for (int i = 0; i < numElements; ++i) {
        C[i] = A[i] + B[i];
    }
}

__global__ void
vectorAdd(const basetype *A, const basetype *B, basetype *C, int numElements) {
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < numElements) {
        C[i] = A[i] + B[i];
    }
}</pre>
```

E, ó ser agora o número de elementos negativo, o *host* non vai entrar no *for* nin o *device* vai entrar no *if*. Agora ben, se probamos con 2147483647, que é o máximo valor positivo que pode gardar un int, vemos que si que executa correctamente, obtendo os seguintes valores:

Tamaño	Tempo host (ms)	Tempo device (ms)
2147483647	8665.287236	3920.213778

E, se modificamos o código nesas poucas instancias onde hai un int no lugar dun unsigned int, atopamos os seguintes resultados (tamén se podería modificar aínda máis o código para gardar o tamaño do vector coma un unsigned long ou unsigned long long, pero decidimos modificar o código o mínimo e necesario, xa que neste caso estaba claro que era máis un erro que unha decisión consciente):

Tamaño	Tempo host (ms)	Tempo device (ms)	
4294967295	17205.964521	ERRO	

Agora, se ben fai o cálculo de forma correcta no *host*, ó executalo de forma paralela volve dar un erro, neste caso ó realizar o cudaMalloc(). Non sabemos cal é o motivo, pero supoñemos que non é de memoria, xa que mandamos a executalo coa máxima cantidade que permite o CESGA (247GB), e un array de float con ese número de elementos ocuparía uns 16GB.

Polo tanto, consideramos para as seguintes seccións o tamaño máximo do vector como 2147483647.

3.2.2 Diferentes valores de threads por bloque

Nesta seguinte sección, visualizaremos os cambios temporais que ocurren ó modificar o número de *threads* por bloque cun tamaño de vector de 2147483647. Ata agora, a cantidade de *threads* por bloque utilizada foi a por defecto, de 1024, que é o máximo que soporta a A100, como vimos na sección 2.2.

Escolleremos valores múltiplos de 32, que é o tamaño do warp da A100.

Núm. threads	Núm. bloques	Tempo host (ms)	Tempo device (ms)
32	67108864	8206.040677	4897.503498
64	33554432	8192.542434	4800.365083
128	16777216	8180.001850	4781.550056
256	8388608	8182.845302	4834.887684
512	4194304	8186.443082	4835.814052
1024	2097152	8246.838962	3723.304673

Podemos observar dúas cousas. A primeira, que o número de bloques aumenta conforme o número de threads diminúe e a segunda, que os mellores resultados acádanse con 1024 fíos, como se pode observar de mellor forma na gráfica inferior.

Número de threads por bloque

Consideramos que o mellor resultado é o de 1024 fíos, e é o que usaremos nos seguintes apartados, xa que ata chegar a el os tempos de execución mantense bastante constantes. Aínda así, o tempo de cómputo varía moito entre execucións. Se nos fixamos na táboa do apartado anterior para o tamaño de vector que usado aquí, vemos como hai case 200ms de diferencia entre un valor e outro.

3.2.3 Diferente número de repeticións do lazo

Agora, modificaremos o número de repeticións da suma que realizamos, usando como número de threads por bloque o mellor valor acadado na sección anterior. Ata agora, só se executaba a suma unha vez e, igual que nos apartados previos, os valores escollidos serán logarítmicos.

Núm. repeticións	Tempo host (ms)	Tempo device (ms)	
1	8207.947832	3797.599765	
10	74208.212523	4196.888845	
10^{2}	734703.949378	5632.132094	
10^{3}	7340602.372579	23058.602886	

Se nos fixamos nos valores conseguidos, podemos ver que o tempo de suma no *host* crece de forma logarítmica, mentres que na GPU este é máis estable.

O que podemos sacar desta gráfica é que, na medida do tempo no *device*, a parte que máis tempo consume é a reserva de memoria e a copia dos vectores dende o *host* e, se se medise o tempo só da suma en si, veriamos unha gráfica similar á da CPU pero con valores moito máis pequenos.

3.2.4 Modificación do código para medir por separado tempos

Usando, igual que nas seccións anteriores, un vector de tamaño 2147483647 elementos, discretizaremos agora as medidas do tempo do device en 4 partes: o tempo de reserva da memoria na GPU, o tempo de envío dos vectores do host á GPU, o tempo de execución do kernel e o tempo de envío do vector resultado dende a GPU ó host.

Executamos a suma 10 veces, para 256 fios e 1 repetición, sendo os resultados conseguidos os que se poden ver na táboa inferior.

Tempo host (ms)	8194.535806
T. reserva memoria (ms)	316.676328
T. envío vectores (ms)	1574.292601
T. execución (ms)	18.793876
T. envío vector resultado (ms)	3515.518806

Podemos observar como, de entre tódalas partes da execución na GPU, o máis custoso temporalmente é o envío dos vectores, tanto do host ó device como viceversa, sendo o tempo de execución da suma nin un 1% do total.

En canto á diferenza de tempo entre a copia dos vectores da CPU á GPU e a copia do vector resultado no outro sentido, supoñemos que é un erro, xa que nos dous sentidos a velocidade de copia debería ser similar. Nos foros de Nvidia ofrecen esta resposta, pero nós en principio temos ben situadas as chamadas, como se pode ver no código inferior:

```
TSET( tstart );
checkError( cudaMalloc((void **) &d_A, size) );
checkError( cudaMalloc((void **) &d B, size) );
checkError( cudaMalloc((void **) &d C, size) );
TSET( tend );
tint = TINT(tstart, tend);
printf("DEVICE: Tempo para facer reserva de memoria de tamaño %u: %lf ms\n",
        numElements, tint);
TSET( tstart );
checkError( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) );
checkError( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );
TSET( tend );
tint = TINT(tstart, tend);
printf("DEVICE: Tempo para facer copia de vectores de tamaño %u: %lf ms\n",
        numElements, tint);
TSET( tstart );
for(unsigned int r = 0; r < nreps; ++r) {</pre>
    vectorAdd<<<blooksPerGrid, threadsPerBlock>>>(d A, d B, d C, numElements);
    checkError( cudaPeekAtLastError() );
    checkError( cudaDeviceSynchronize() );
TSET( tend );
tint = TINT(tstart, tend);
printf("DEVICE: Tempo para facer %u sumas de vectores de tamaño %u: %lf ms\n",
        nreps, numElements, tint);
TSET( tstart );
checkError( cudaMemcpy(h_C2, d_C, size, cudaMemcpyDeviceToHost) );
TSET( tend );
tint = TINT(tstart, tend);
printf("DEVICE: Tiempo para hacer copia de vector a host de tamaño %u: %lf ms\n",
        numElements, tint);
```

3.2.5 Modificación do código para usar memoria unificada

Por último, modificouse o código para usar memoria unificada. Isto implica cambiar a forma en que reservamos a memoria para os vectores, resultando no código inferior (simplificado):

```
checkError( cudaMallocManaged((void **) &A, size) );
checkError( cudaMallocManaged((void **) &B, size) );
checkError( cudaMallocManaged((void **) &C2, size) );
C = (basetype *) malloc(size);
```

Se desglosamos o tempo de execución, similar á sección anterior, observamos o seguinte:

Tempo reserva memoria (ms)	214.162569
T. inicialización vectores (ms)	90125.362661
T. suma $host$ (ms)	8555.424670
T. suma device (ms)	2314.206932

Se ben o tempo de reserva dos 3 vectores en memoria unificada é similar ó tempo acadado anteriormente, podemos ver un gran incremento no tempo da súa inicialización e da suma na GPU. Se vemos a documentación de CUDA, esta di "[...] a program's run time typically does not decrease; Unified Memory instead enables the writing of simpler and more maintainable code" e, se ben a segunda parte desta frase si que é certa no código (desaparecen as chamadas a cudaMemcpy() e cudaMalloc(), ó non seren necesarias), a primeira non semella cumplirse.

Esta diferenza no tempo total supoñemos que é debida a que a inicialización dos vectores usando memoria unificada non está ben optimizada, xa que o tempo de suma na GPU é similar ó tempo de envío dos vectores máis a súa execución visto no apartado previo e, como agora non temos que devolver o vector resultado, o que é a suma en si tarda menos que o conxunto medido anteriormente.

4 Produto de matrices simple en CUDA

Nesta última sección, completaremos un código que realiza a multiplicación de dúas matrices cadradas, despois adaptarémolo a matrices rectangulares e, por último, estudaremos o seu rendemento na A100.

4.1 Código para matrices cadradas

Neste caso, só tivemos que encher as liñas marcadas cun TODO da forma que vemos a continuación:

```
// TODO: Calcula el indice de la fila de C y A
int i = blockDim.x * blockIdx.x + threadIdx.x;
// TODO Calcula el indice de la columna de C y B
int j = blockDim.y * blockIdx.y + threadIdx.y;

// TODO: Calcula el número de bloques en el Grid (bidimensional)
dim3 blocksPerGrid(matrizDim / threadsPerBlock.x, matrizDim / threadsPerBlock.y, 1);

// TODO: Lanza el kernel CUDA
matrizMul<<<br/>blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, matrizDim);
```

Se executamos o código, vemos que devolve que o resultado do producto no *host* e na GPU é idéntico, polo que está ben implementado.

Aínda así, non faremos agora as medicións de rendemento, senón que agardaremos a ter implementado o código para as matrices rectangulares.

4.2 Código para matrices rectangulares

Neste caso, modificamos máis partes do código que as 4 liñas da sección anterior, polo que adxuntamos o programa resultante xunto con este documento PDF.

Cabe destacar que no código úsase unha variable para o número de columnas de A e outra para o número de filas de B. Isto non é necesario, xa que os seus valores teñen que ser idénticos, pero está posto así por claridade.

4.3 Estudo do rendemento

Para o estudo do rendemento, probamos con diversos tamaños de matrices e cantidade de fíos por bloque. Ademais, buscamos que o número de bloques residentes se adecúe ó máximo permitido. Segundo a sección 1.4.1 da documentación das Nvidia Ampere o número máximo de bloques por SM é de 32 e, tendo a A100 108 SMs, significa que o máximo total é de 3456 bloques.

O problema é que, tal e como calculamos o número de bloques en relación ó tamaño das matrices e o número de fíos especificado (visible no código inferior), pouco teñen que crecer as dimensións das matrices para superar o máximo de bloques residentes, xa que non podemos aumentar o número de fíos para contrarrestalo, ó ser o número máximo de fíos por bloque de 1024 (32×32).

```
\label{lim3} \begin{tabular}{ll} $$\dim 3$ threadsPerBlock( tpbdimx, tpbdimy, 1); \\ $\dim 3$ blocksPerGrid( (A_x+tpbdimx) / threadsPerBlock.x, \\ $(B_y+tpbdimy) / threadsPerBlock.y, 1); \\ \end{tabular}
```

Cabe destacar que a forma na que creamos o número de bloques resulta en máis dos estrictamente necesarios.

Ax	Ay/Bx	By	Bloques	threads	Tempo $host$ (ms)	Tempo device (ms)
10^{3}	10^{3}	10^{3}	(32,32)	(32,32)	3373.827123	202.349844
2000	3000	4000	(63,126)	(32,32)	85844.428895	320.766210
4000	3000	4000	(126, 126)	(32,32)	171870.613203	430.340655
5000	5000	1000	(157, 32)	(32,32)	82752.655373	311.732771
5000	5000	1000	(313,63)	(16,16)	83063.790491	274.403004
5000	5000	5000	(157,157)	(32,32)	496509.663427	643.848046
5000	5000	5000	(313,313)	(16,16)	499212.680472	547.448208
5000	5000	5000	(626,626)	(8,8)	498039.980314	434.454810
5000	5000	5000	(1251, 1251)	(4,4)	493697.268409	556.327524
5000	5000	5000	(2501, 2501)	(2,2)	491184.255205	1294.805963
5000	5000	5000	(5001,5001)	(1,1)	491294.250847	738.772121
10^{4}	10^{4}	10^{4}	(313,313)	(32,32)	4366676.319740	4121.029101

Podemos observar, nestes resultados, que a multiplicación de matrices na GPU é varios ordes de magnitude máis rápida que na CPU.

Tamén é posible ver, tanto para a multiplicación dunha matriz 5000×5000 por outra de 5000×1000 como para a multiplicación de dúas matrices 5000×5000 , que o tempo de execución diminúe con menos fíos por bloque que o máximo, pero ata certo punto, xa que se pode ver (de forma máis cómoda na gráfica inferior) que o tempo empeza a subir de novo cando hai moi poucos threads nun bloque.

Tempos de execución no device para matrices 5000×5000