NIDUC 2

${\bf INEK00025P}\\ {\bf Projekt}$

Wydział Informatyki i Telekomunikacji	Kierunek: Informatyka Techniczna	
Grupa zajęciowa: ŚR TN 9:15	Semestr: 2022/23 LATO	
Nazwisko i imię: Jakub Chuchla	Nr indeksu: 264472	
Nazwisko i imię: Tomasz Musz	Nr indeksu: 264474	
Nazwisko i imię: Marcin Gnap	Nr indeksu: 258953	
Prowadzący: Dr hab. inż. Henryk Maciejewski		

TEMAT:

Transmisja w systemie FEC (Forward Error Correctioin)

OCENA: PUNKTY:

Spis treści

1	Założenia projektowe Kody Kanały Stack technologiczny				
2					
3					
4					
5 Wyniki i spostrzeżenia					
	5.1	Spostr	zeżenia	4	
5.2 Wyniki				4	
		-	12 bit, 10000 powtórzeń	4	
		5.2.2	32 bit, 10000 powtórzeń	4	
			100 bit, 10000 powtórzeń	4	
		5.2.4	512 bit, 5000 powtórzeń	5	
		5.2.5	1024 bit, 1000 powtórzeń	5	
		5.2.6	16 384 bit, 100 powtórzeń	5	

1 Założenia projektowe

- Matplotlib biblioteka do tworzenia wykresów dla języka programowania Python i jego rozszerzenia numerycznego NumPy. Zawiera ona API "pylab" zaprojektowane tak aby było jak najbardziej podobne do MATLABa.
- NumPy otwartoźródłowa biblioteka programistyczna dla języka Python, dodająca obsługę dużych, wielowymiarowych tabel i macierzy.
- Komm otwartoźródłowa biblioteka programistyczna dla języka Python, dodająca narzędzia do analizy i symulacji analogowych i cyfrowych systemów komunikacyjnych.
- Pandas biblioteka oprogramowania napisana dla języka programowania Python do manipulacji i analizy danych. W szczególności oferuje struktury danych i operacje służące do manipulowania tabelami liczbowymi i szeregami czasowymi.

2 Kody

- Hamminga
- Potrojeniowy
- BCH (Bose-Chaudhuri-Hocquenghem)

3 Kanaly

- Binary symetric
- Modele Gilberta-Elliota

4 Stack technologiczny

• Visual Studio Code

5 Wyniki i spostrzeżenia

5.1 Spostrzeżenia

- Najwolniejszy kod BCH
- Najszybszy kod Hamminga
- Dla dłuższych ciągów bitów BCH staje się nieporównywalnie wolniejszy od pozostałych kodów
- Kod Hamming'a daje najmniej wiarygodne wyniki
- BSC daje mniej miarodajne wyniki niż kanał Gilbert'a-Eliot'a

5.2 Wyniki

5.2.1 12 bit, 10000 powtórzeń

- Potrojeniowy, BSC 0.0230 %
- Potrojeniowy, Gilbert-Eliot 0,0111 %
- Hamming, BSC 0,0895 %
- Hamming, Gilbert-Eliot 0,0276 %
- BCH, BSC 0,0552 %
- \bullet BCH, Gilbert-Eliot 0,0204 %

5.2.2 32 bit, 10000 powtórzeń

- Potrojeniowy, BSC 0.0228 %
- Potrojeniowy, Gilbert-Eliot 0,0115 %
- Hamming, BSC 0,1007 %
- Hamming, Gilbert-Eliot 0,0463 %
- BCH, BSC 0,0564 %
- BCH, Gilbert-Eliot 0,0249 %

5.2.3 100 bit, 10000 powtórzeń

- Potrojeniowy, BSC 0,0229 %
- Potrojeniowy, Gilbert-Eliot 0,0119 %
- Hamming, BSC 0,0963 %
- Hamming, Gilbert-Eliot 0,0552 %
- BCH, BSC 0,0560 %
- BCH, Gilbert-Eliot 0,0268 %

5.2.4 512 bit, 5000 powtórzeń

- \bullet Potrojeniowy, BSC 0,0229 %
- \bullet Potrojeniowy, Gilbert-Eliot 0,0113 %
- Hamming, BSC 0,0911 %
- \bullet Hamming, Gilbert-Eliot 0,0508 %
- BCH, BSC 0,0560 %
- \bullet BCH, Gilbert-Eliot 0,0274 %

5.2.5 1024 bit, 1000 powtórzeń

- Potrojeniowy, BSC 0.0229 %
- Potrojeniowy, Gilbert-Eliot 0,0121 %
- Hamming, BSC 0,0907 %
- Hamming, Gilbert-Eliot 0.0507 %
- BCH, BSC 0,0561 %
- \bullet BCH, Gilbert-Eliot 0,0271 %

5.2.6 16 384 bit, 100 powtórzeń

- Potrojeniowy, BSC 0.0228 %
- Potrojeniowy, Gilbert-Eliot 0,0122 %
- Hamming, BSC 0,0900 %
- \bullet Hamming, Gilbert-Eliot 0,0497 %
- BCH, BSC 0,0560 %
- \bullet BCH, Gilbert-Eliot 0,0277 %