Rishabh Singh

Ph: 352-215-7701 • Email: rish283@ufl.edu • Web: https://rish283.github.io • linkedin.com/in/rishabh270

EDUCATION

UNIVERSITY OF FLORIDA

Gainesville, USA Expected 2022

Doctor of Philosophy in Electrical and Computer Engineering (GPA: 3.71/4) Master of Science in Electrical and Computer Engineering (GPA: 3.71/4)

Aug 2016 - May 2018

Research Areas: Kernel Methods, Information Theory, Uncertainty Quantification, Machine Learning.

Coursework: Deep Learning, Big Data Ecosystems, Machine Learning in Time Series, Pattern Recognition, Noise in Linear Systems, Image Processing and Computer Vision, Quantum Information Science.

VELLORE INSTITUTE OF TECHNOLOGY

Vellore, India

Bachelor of Science in Electrical and Electronics Engineering (GPA: 8.46/10)

Aug 2010 - May 2014

RESEARCH EXPERIENCE

UNIVERSITY OF FLORIDA - COMPUTATIONAL NEUROENGINEERING LAB (CNEL)

Gainesville, USA

Research Assistant & PhD Candidate

- Aug 2017 Present
- Developing physics inspired RKHS based frameworks for **predictive uncertainty quantification** of deep learning models and functional signal processing with Prof. Jose C. Principe. Specific application domains:
 - (i) Predictive uncertainty quantification of benchmark image classification models under data distributional shifts.
 - (ii) Transfer learning applications and quantification of data transferability.
 - (iii) Optimal transport based time-series dependency quantification and domain adaptation techniques (in progress).
- Developed a Correntropy based hierarchical linear dynamical system (HLDS) for speech phoneme clustering.
- Implemented HLDS for video game action sequence segmentation (DARPA project) and for dynamic texture synthesis.

VELLORE INSTITUTE OF TECHNOLOGY

Vellore, India

Undergraduate Researcher

Jan 2013 - May 2014

- Performed a comparative analysis of induction motor dynamic braking schemes using MATLAB and Simulink.
- Collaborated with a team of 40 members to build an electric car for Formula Student (FS) competition, UK (July, 2013).

INDUSTRY EXPERIENCE

AVENTUSOFT LLC

Boca Raton, USA

Research Scientist Intern

May 2020 - Aug 2020

• Implemented deep learning architectures for analyzing Electrocardiography time series data.

TATA MOTORS LIMITED

Pune, India

Assistant Manager

Aug 2014 - May 2016

• Oversaw and improved vehicle assembly line automation systems with respect to safety, maintenance and productivity.

RELEVANT PUBLICATIONS

- Singh, R. & Principe, J.C. (2021). Quantifying Model Predictive Uncertainty with Perturbation Theory. under review. [arxiv link]
- Singh, R. & Principe, J.C. (2020). Toward a Kernel-based Uncertainty Decomposition Framework for Data and Models. Neural Computation 2021; 33 (5): 1164-1198. [arxiv link]
- Singh, R. & Principe, J.C. (2020). Time Series Analysis using a Kernel based Uncertainty Decomposition Framework. Conference on Uncertainty in Artificial Intelligence (UAI) 2020. [paper link]
- Singh, R., Yu, S., & Principe, J.C. (2020). Composite Dynamic Texture Synthesis using Hierarchical Linear Dynamical System. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. [paper link]
- Singh, R. & Principe, J.C. (2018). Correntropy Based Hierarchical Linear Dynamical System for Speech Recognition. In proceedings of 2018 International Joint Conference on Neural Networks (IJCNN).[paper link]
- Singh, R., Li, K., & Principe, J.C. (2018). Nearest-Instance-Centroid-Estimation Linear Discriminant Analysis. In proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing [paper link]

COURSE PROJECTS

• Implemented a deep CNN using tensorflow to construct photo-realistic versions of human face sketches (CELEB-A database).

COMPUTER SKILLS

• Programming: Python, MATLAB, LaTeX. Deep Learning Frameworks: Keras, TensorFlow.

AWARDS

• University of Florida College of Engineering Achievement Award for New Engineering Graduate Students, 2016.