1. Some categorical remarks

1.1. (Co)Limits. We recall some general notions in ordinary category theory. For a textbook reference see [?].

Let \mathcal{C} and \mathcal{I} be categories. For each object $X \in \mathcal{C}$ let $\underline{X} : \mathcal{I} \to \mathcal{C}$ be the functor that sends every object of \mathcal{I} to $X \in \mathcal{C}$ and every morphism to the identity. This construction extends to a functor

$$(-): \mathcal{C} \to \mathsf{Fun}(\mathfrak{I}, \mathcal{C}).$$

Definition 1.1. Suppose \mathcal{I} is a small category and let $F: \mathcal{I} \to \mathcal{C}$ be a functor. A **colimit** of F is an object $X \in \mathcal{C}$ together with a natural transformation

$$t: F \to X$$

such that for every $Y \in \mathcal{C}$ and every natural transformation $s: F \to \underline{Y}$ there exists a unique map $s': X \to Y$ making $\underline{s'}t = s$.

Any two colimits are naturally isomorphic. If the colimit of a functor $F: \mathcal{I} \to \mathcal{C}$ exists, we will write it as $\operatorname{colim}_{\mathcal{I}} F \in \mathcal{C}$.

Many familiar categories posses the property that *all* colimits exist. These include Set, Top, and $Vect_k$. Moreover, colimits are functorial in the natural way.

Definition 1.2. A category \mathcal{I} is called **filtered** if, for any finite category \mathcal{J} and functor $J:\mathcal{J}\to\mathcal{I}$, there exists an object $i\in\mathcal{I}$ and a natural transformation $F\to\underline{i}$.

If $F: \mathcal{I} \to \mathcal{C}$ is a functor, \mathcal{I} is filtered, and $\operatorname{colim}_{\mathcal{I}} F$ exists, then the colimit is called a filtered colimit. A natural example of a filtered category is the poset

$$\mathfrak{I} = \mathbb{Z}_+ = \{0 \to 1 \to 2 \to \cdots\}.$$

Resulting colimits are special types of filtered colimits called *sequential colimits*.

1.1.1. The notion of a limit is defined in a dual way. The aforementioned categories also admit all limits.

2. The idea of a model category

Roughly, the theory of model categories was developed to better handle the notion of a "homotopy equivalence". For us, the fundamental example of a homotopy equivalence is a quasi-isomorphism of dg vector spaces.

The first, and perhaps most obvious, attempt to encode homotopy, or *weak*, equivalences in a category is to prescribe some class of morphisms that ware well-behaved with respect to composition. The definition is the following.

Definition 2.1. A **category with weak equivalences** is a category \mathcal{C} together with a set

$$\mathcal{W} \subset \operatorname{Mor}(\mathcal{C})$$

such that

- (1) If f is an isomorphism, then $f \in \mathcal{W}$;
- (2) if f, g are morphisms such that $f \circ g$ exists then: if two of $f, g, f \circ g$ are in W then the third is as well ('two out of three').

2.1. Model categories.

Definition 2.2. Let \mathcal{C} be a category and $K \subset \text{Mor}(\mathcal{C})$ be a subset of morphisms. A map $f: X \to Y$ has the **left lifting property** (LLP) with respect to K if for any morphism $g: W \to Z$ in K and solid line diagram

$$X \longrightarrow W$$

$$\downarrow f \qquad \exists h \qquad \downarrow g$$

$$Y \longrightarrow Z$$

there exists a dotted map $h: Y \to W$ making the total diagram commute. Dually, we say $f: X \to Y$ as the **right lifting property** (RLP) with respect to K if for any morphism $g: W \to Z$ in K and solid line diagram

$$\begin{array}{ccc} W & \longrightarrow & X \\ \downarrow g & & \downarrow f \\ Z & \longrightarrow & Y \end{array}$$

there exists a dotted map $h: Z \to X$ making the total diagram commute.

- 3. Localization
- 4. Adjoints and extensions
 - 5. Examples
- 6. DGVECT, DGLIE, ETC. TOP.