New Tools for Improving Radiofrequency AF Ablation

Eric Lim, Consultant electrophysiologist, NHCS, August 2022

ericlim1975 eric.lim.t.s@singhealth.com.sg / erictslim@gmail.com

Non-exhaustive 15-minute discussion on:

- Contact force sensing catheters
- Indices of ablation lesion delivery and effectiveness
- High density mapping catheters

PV reconnection is a key reason for failure of AF ablation

Multiple factors needed to achieve durable PVI

Under operator control - includes

- Contact force
- Duration of contact
- Stability of contact
- Power delivery

Not under operator control – patient factors – includes

- Thickness and composition of tissue
- Local blood flow

Contact-force sensing catheters

Available technologies on the market:

- Thermocool Smart Touch, Biosense Webster Spring-based
- Tacticath, Abbott Medical Fiber-optic based
- Stablepoint, Boston Scientific Spring-based; also measures local impedance

Tacticath CF catheter

- Abbott Medical
- Ensite Precision, Ensite X
- Fabry-Perot interferometer: force on distal tip alters length of air cavity chamber, changing interference pattern of light
- Real time CF measurements
- Resolution < 1g</p>

Fiberoptic Sensor

Initial Studies of Spring-based and Fibre-optic based CF Ablation Catheters

	Type of AF	Follow Up	CF Goal	N	Success	P value	Comments
Fiberoptic Sensor							
Reddy 2015 ¹ (TOCCASTAR)	PAF	12 mos	None	146 134	67.8% 69.4%	N/A	Noninferiority study. Success rate 75.9% with CF>10g.
Wakili et al. 2014 ²	PAF+PERS AF	12 mos	10g	Ea	rly obs	ervatio	nal studies
Wutzler et al. 2014 ³	PAF+PERS AF	12 mos	Not	sugg	gest kr	nowled _g	ge of CF can:
Reddy et al. 2012 ⁴ (TOCCATA)	PAF	12 mos	Not	lmp	rove f	irst pas	s PV isolation
				rate	2S		
Spring-Based Sensor			_	DI			
Andrade et al. 2014 ⁵	PAF	12 mos		_	•		e times
Jourda et al. 2014 ⁶	PAF	12 mos		<u>/IM</u>	prove	clinical	outcomes
Natale et al. 2014 ⁷ (SMART-AF)	PAF	12 mos	None	160	72.5%	N/A	Success was 81% in those treated within selected working ranges
Providencia et al. 2014 ⁸	PAF	19 mos	>22g <22g	50 50	96% 80%	P=0.04	Success was 80% in those treated with <22g (p=0.04)
Marijon et al. 2013 ⁹	PAF	12 mos	10g	30 30	89%* 64%	P=0.04	Prospective, nonrandomized.

Summary of Randomized Controlled Trials in CF Ablation in AF

First Author, Year (Trial Name) (Ref. #)	Number of Patients/Groups	Type of AF, Ablation Methodology	Design	AF Outcomes	Other Outcomes
Kimura et al., 2014 (12)	CF+, n = 38; CF-, n = 38	74% PAF PVI + check for dormant conduction with ATP + isoprenaline	Single center Physicians had performed minimum of 5 CF ablation procedures prior to trial THERMOCOOL SMART-TOUCH both arms CF+ target 10-20 g vs. CF- no display	No difference in freedom from AA >30 s after single procedure (± AAD): CF+ 95%, CF-84%	CF+ vs. CF- had: Higher mean CF Shorter procedure time Shorter fluoroscopy time Fewer residual conduction gaps on completion of anatomic ring
Reddy et al., 2015 (TOCCASTAR) (15)	CF catheter, n = 150; non-CF catheter, n = 150	 PAF PVI, 30-min wait, elimination of isoprenaline-induced triggers 	Multicenter No prior experience with CF needed CF with TactiCath system (Abbott) No CF target given Non-CF with CARTO (Biosense Webster)	No difference in freedom from AA, single procedure, off AADs CF+ 68%, CF- 69%	 When CF was optimal (≥90% ablations with ≥10 g), freedom from AF/AT or flutter was higher in CF vs. non-CF group (75.9% vs. 58.1%, p = 0.02) Choice of mapping system likely influenced results: operators with far below-average experience with the EnSite system had significantly lower success than those with average or above-average experience
Nakamura et al., 2015 (13)	CF+, n = 60; CF-, n = 60	• 67% PAF • PVI + CTI ± SVC isolation	Single center Physicians with variable experience with CF THERMOCOOL SMART-TOUCH both arms CF+ target 20 g vs. CF-no display	No difference in 12- month freedom from AA >30 s after single procedure (± AAD): CF+ 90%, CF- 88%	CF+ vs. CF- had: Fewer acute PVRs Shorter procedure time Higher mean CF
Conti et al., 2017 (TOUCH-AF Trial) (11)	CF+, n = 62 vs. CF-, n = 62	PeAFPVI + roof line	Single center All physicians had prior experience with CF; THERMOCOOL SMART-TOUCH both arms CF+ target 10-40 g vs. CF- no display	No difference in 12- month freedom from AA >30 s after single procedure off AADs (CF+ 60%; CF- 63%)	CF+ vs. CF- had: No difference in median CF Less time spent in CF range 5-1 more time in 10-20 g Acute reconnection less comonly in LIPV Gaps associated with less CF, FTI vs gaps No difference in RF time
Pedrote et al., 2016 (119)	CF+, n = 25; CF-, n = 25	 PAF PVI with Visitag both groups 30-min wait + ATP 	• Single center • THERMOCOOL SMART-TOUCH both arms • CF+ targets were CF >10 g 75% of the time, stability 1.5 mm for ≥10 s • CF-targets: no CF displayed but stability 1.5 mm for ≥10 s	No difference in 12- month freedom from AAs after single procedure, off AADs (CF+ 84%, CF- 75%)	CF+ vs. CF- had: • Higher CF in left but not right PVs • Shorter procedural and fluorost time • Higher acute PVI at anatomic completion of ring
Ullah et al., 2016 (16)	CF+, $n = 59$; $CF-$, $n = 58$	PAF PVI 60-min wait ± adenosine	Multicenter THERMOCOL SMART-TOUCH both arms CF+ target 5-40 g vs. CF- no display Each RF to be ≥20 s at each site with each ablation showing bipolar EGM amplitude >80%, or until amplitude <0.1 mV	No difference in 12- month freedom from AA after single procedure, off AADs (CF+ 49%, CF- 52%)	CF+ vs. CF- had: Greater proportion within CF range 5-40 g Lower rate of acute PVR No difference in procedure, fluoroscopy, or ablation time
Borregaard et al., 2017 (83)	CF+, n = 25; CF-, n = 25	PAF or short- lasting PeAF 20-min wait ± adenosine	Single center THERMOCOOL SMART-TOUCH both arms CF+ target 10-40 g vs. CF- no display	No difference in 12- month freedom from AF after single procedure (± AAD): CF+ 48%, CF- 64%	CF+ vs. CF- had: No difference in mean CF, ablation, fluoroscopy, procedure time, or acute pVR Patients without recurrent AF had lower proportion of ablation time with CF <10 g than recurrent AF patients

No difference in clinical outcomes associated with CF?

PRAISE STUDY

Hussein et al. Circ AE 2018

Durable PVI in 93% PVs with Ablation Index guided ablation

12-month follow up

80% Freedom from arrhythmia at 12-months with PVI-alone

PVI using AI vs. CLOSE protocol with a surround flow ablation catheter Berte B et al. Europace 2020

Single center non-randomized prospective study

- N = 215 consecutive patients [AI: 121 (paroxysmal: n = 97), CLOSE: n=94 (paroxysmal: n=74)]
- PVI duration similar but first pass isolation was higher in CLOSE vs. AI [left veins: 90% vs. 80%; P < 0.05 and right veins: 84% vs. 73%; P < 0.05].
- Twelve-month off-AAD freedom of AF/AT was higher in CLOSE vs. AI [79% (paroxysmal: 85%) vs. 64% (paroxysmal: 68%); P<0.05].
- Major complications were similar (CLOSE: 2.1% vs. AI: 2.5%; P = 0.87).

LSI Workflow Study Venkatesh et al. Heart Rhythm O² 2022

Prospective single arm observation study

- 143 PAF from US, Japan, Europe
- De-novo PVI with RF ablation
- Mean LSI achieved for all lesions analyzed
- Follow-up 3-6 months, 12 months

Results

- Mean achieved LSI 4.9
- First-pass success 76%
- LSI ≥ 5 resulted in shorter procedure, RF and fluoro times compared to low LSI (<5)
- At 12 months, 99.3% were free from procedure- or device-related SAE
- 95.7% (35% on anti-arrhythmic drugs) were free from recurrence and/or repeat ablation

My Conclusions

CF is here to stay

But availability of contact force sensing alone does not improve outcomes

It has to be correctly and diligently used by the operator, incorporated into indices of RF lesion formation

Force time integral

<6mm distance

Factors affecting RF lesion formation include:

- Contact force
- Duration of contact
- Stability of contact
- Power delivery
- Inter-lesion distance-
- Local impedance fall

Lesion size index (Ensite)

Ablation index (CARTO)

CLOSE protocol

High density mapping catheters in AF ablation

Traditional option is the circular mapping catheter (Lasso)

New catheter designs incorporating more and smaller, closely-spaced electrodes <u>may</u> have advantages

- Pentaray, Optrell (Biosense Webster) CARTO 3
- HD Grid (Abbott Medical) Ensite Precision, X
- Orion (Boston Scientific) Rhythmia HDx

Qualities of the HD Grid

- 1. Records high quality electrograms
- 2. Partially corrects for wavefront directionality (unique feature)
- 3. Easy to maneuver and safe
 - Easy to obtain good contact and to know when you have good contact
- 4. Gives good distribution of points

Different bipolar configurations for HD Grid Catheter

Directionality matters: Assessment of CTI line

Sinus rhythm maps

Assessing Pulmonary Vein Reconnection

Summary

RF ablation remains an important ablation technology for pAF and the main technology for persAF

Contemporary RF workflows incorporate:

- Contact force sensing coupled with automatic lesion annotation based on contact force, duration, stability, power ...
- High density mapping catheters these are quickly supplanting traditional CMC

Incorporation of these techniques is likely to result in lower procedure times, lower fluoroscopy times, improved PV isolation durability and may result in improved clinical outcomes

APHRS 2022 Singapore

Save the date! November 18-20, 2022

See you soon!

