

DFS Application: Topological Sort & Strongly Connected Components

Week-10, Lecture-02

Course Code: CSE221

Course Title: Algorithms

Program: B.Sc. in CSE

Course Teacher: Tanzina Afroz Rimi

Designation: Lecturer

Email: tanzinaafroz.cse@diu.edu.bd

Topological Sort

Topological Sort

- Topological sort of a DAG:
 - Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \subseteq G$
- Real-world example: getting dressed

Getting Dressed

Getting Dressed

Topological Sort Algorithm

```
Topological-Sort()
   Run DFS
   When a vertex is finished, output it
   Vertices are output in reverse topological order
Time: O(V+E)

    Correctness: Want to prove that

   (u,v) \in G \Rightarrow u \rightarrow f > v \rightarrow f
```

Strongly Connected Component (SCC)

Connectivity

- Connected Graph
 - In an <u>undirected graph</u> G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected.
 - A <u>directed graph</u> is called connected if every pair of distinct vertices in the graph is connected.
- Connected Components
 - A connected component is a maximal connected subgraph of G. Each vertex belongs to exactly one connected component, as does each edge.

Connectivity (cont.)

Connected Undirected Graph

Connected Directed Graph

Connectivity (cont.)

Weakly Connected Graph

• A <u>directed graph</u> is called **weakly connected** if replacing all of its directed edges with undirected edges produces a connected (undirected) graph.

Strongly Connected Graph

 It is strongly connected or strong if it contains a directed path from u to v for every pair of vertices u, v. The strong components are the maximal strongly connected subgraphs

Connected Components

- Strongly connected graph
 - A directed graph is called strongly connected if for every pair of vertices u and v there is a path from u to v and a path from v to u.
- Strongly Connected Components (SCC)
 - The **strongly connected components** (**SCC**) of a directed graph are its maximal strongly connected sub-graphs.
- Here, we work with
 - Directed unweighted graph

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both u = v and v = u exist.

Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC}).$
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in *G*.
- G^{SCC} for the example considered:

The **transpose** M^T of an NxN matrix M is the matrix obtained when the rows become columns and the column become rows:

Transpose of a Directed Graph

- G^{T} = transpose of directed G.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}.$
 - G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

Algorithm to determine SCCs

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

Example

DFS on the initial graph G

b e a c d g h f 16 15 14 10 9 7 6 4

DFS on G^{T:}

• start at b: visit a, e

• start at c: visit d

• start at g: visit f

• start at h

Strongly connected components: $C_1 = \{a, b, e\}, C_2 = \{c, d\}, C_3 = \{f, g\}, C_4 = \{h\}$

Component Graph

- The component graph $G^{SCC} = (V^{SCC}, E^{SCC})$:
 - $V^{SCC} = \{v_1, v_2, ..., v_k\}$, where v_i corresponds to each strongly connected component C_i
 - There is an edge $(v_i, v_j) \in E^{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and $y \in C_j$
- The component graph is a DAG

Textbooks & Web References

- Text Book (Chapter 22)
- www.geeksforgeeks.org

Thank you & Any question?