STR

結構規劃

質心偏移問題

Aa Name	E Centroid position (z)	■ Mass(g)	■ Remark
ADCS	-5	885	
Battery	40	208	•
PCB1	60.8	100	Estimate
PCB2	80.2	100	Estimate
РСВ3	93.8	100	Estimate
UHF Transceiver panel	107.4	30	Estimate
UHF Transceiver	115.2	90	
S-band Transmitter panel	128	30	Estimate
S-band Transmitter	136.3	132	
GNSS-Receiver panel	149.6	30	Estimate
GNSS-Receiver	155.9	31	
S-band antenna	115.2	50	
UHF antenna	161.5	30	
GNSS antenna	164	16	

目前皆僅考慮z軸質心偏移,且各元 件假設質量均勻,以元件高度中心點 為該元件z軸質心

以衛星幾何中心為z=0

PCBs參考其他衛星資訊先假設100g

元件固定的panel預設為30g

結果

• 在不計payload的狀況下,目前z軸質心位於+46.59mm

Payload 估算

Aa Mass(g)	≡ -50	≡ -60	≡ -70	■ -80	≡ -90	■ -100	≣ -110	≡ -120
400								
500								10.9
600						10.4	7.9	5.5
700					8.9	6.1	3.3	0.5
800				8.1	5.1	2.0	-1.0	-4.0
900			8.2	4.9	1.6	-1.7	-5.0	-8.3
1000			5.4	1.9	-1.6	-5.2	-8.7	
1100		9	2.8	-0.9	-4.7	-8.4		
1200	8.4	4.4	0.4	-3.5	-7.5			
1300	6.5	2.3	-1.8	-6				

1 61

太陽能板方案

• 方案一

優點:

- 1.對於Z軸是對稱的,展開後不會有太大的Z方向質心偏移
- 2.會有一面側邊版沒有太陽能板,較容易安排S-band antenna位置

缺點:

- 1. X軸在展開前後會有較明顯的質心偏移
- 2. 照相時須轉90度
- 3. 不確定電力是否充足

太陽能板方案

• 方案二

優點:

- 1.拍照時不需要轉90度
- 2. X、Y軸不會有質心偏移

缺點:

- 1. 可提供較多的電
- 2. S-band Antenna的位置要稍微往裡面縮,目前兩種擺放方法
 - a. S-band Antenna 稍微往下,會壓縮到PCB版的一些空間
 - b. S-band Antenna 擺放至ADCS下方,不會壓縮到PCB空間但是離S-band Transmitter比較遠