Uniwersytet Wrocławski, Instytut Matematyczny Kolokwium nr 1

ımıe ı nazwısko:	
unity i maziviono.	

Kolokwium składa się z 11 stron oraz 4 zadań. Na drugiej stronie znajduje się spis ważniejszych rozkładów. Dwie ostatnie strony stanowią brudnopis. Na rozwiązanie wszystkich zadań jest 100 minut. Zacznij od spokojnego (!) przeczytania treści wszystkich zadań i zacznij od najłatwiejszego. Powodzenia!

zadanie	1	2	3	4	Σ
punkty	10	10	10	10	40
wynik					

- 1. Załóżmy, że mamy n+1 ponumerowanych urn. W k-tej urnie znajduje się k kul białych oraz n-k kul czarnych ($k=0,1,\ldots,n$). Losujemy urnę (z jednakowym prawdopodobieństwem), a następnie z tej urny kolejno, bez zwracania, 2 kule. Niech B_1 oznacza zdarzenie losowe polegające na wyciągnięciu białej kuli w pierwszym losowaniu, B_2 zdarzenie polegające na wyciągnięciu białej kuli w drugim losowaniu, zaś A_k zdarzenie polegające na wylosowaniu urny o numerze k.
 - (a) (3 p.) Wykaż, że $\mathbb{P}[B_1] = \frac{1}{2}$. Wskazówka: $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

Rozwiązanie: Pierwszy etap doświadczenia polega na wylosowaniu urny. Urny są jednakowo prawdopodobne, więc $\mathbb{P}[A_k] = \frac{1}{n+1}$ dla k = 0, 1, ..., n. Następnie $\mathbb{P}[B_1|A_k] = \frac{k}{n}$. Korzystając ze wzoru na prawdopodobieństwo całkowite, otrzymujemy

$$\mathbb{P}[B_1] = \sum_{k=0}^n \mathbb{P}[B_1|A_k] \mathbb{P}[A_k] = \sum_{k=0}^n \frac{k}{n} \frac{1}{n+1} = \frac{1}{n(n+1)} \sum_{k=0}^n k = \frac{1}{2}.$$

(b) (2 p.) Wyznacz $\mathbb{P}[A_k|B_1]$.

Rozwiązanie: Mamy

$$\mathbb{P}[A_k|B_1] = \frac{\mathbb{P}[A_k \cap B_1]}{\mathbb{P}[B_1]} = \frac{\mathbb{P}[B_1|A_k]\mathbb{P}[A_k]}{\mathbb{P}[B_1]} = \frac{2k}{n(n+1)}$$

(c) (5 p.) Wyznacz $\mathbb{P}[B_2|B_1]$. Wskazówka: $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Rozwiązanie: Mamy $\mathbf{P}[(B_1 \cap B_2)|A_k] = \frac{k}{n} \frac{k-1}{n-1}$ oraz

$$\mathbb{P}[B_1 \cap B_2] = \sum_{k=0}^{n} \mathbb{P}[(B_1 \cap B_2)|A_k] \mathbb{P}[A_k] = \sum_{k=0}^{n} \frac{k}{n} \frac{k-1}{n-1} \frac{1}{n+1} \\
= \frac{1}{n(n-1)(n+1)} \left(\sum_{k=0}^{n} k^2 - \sum_{k=0}^{n} k \right) \\
= \frac{1}{n(n-1)(n+1)} \left(\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} \right) \\
= \frac{1}{n-1} \left(\frac{2n+1-3}{6} \right) = \frac{1}{3}.$$

Ostatecznie $\mathbb{P}[B_2|B_1] = \frac{\mathbb{P}[B_2 \cap B_1]}{\mathbb{P}[B_1]} = \frac{2}{3}$.

2. Z przedziału [-1,1] wybrano losowo punkty A i B. Niech funkcja $f\colon \mathbb{R} \to \mathbb{R}$ będzie zadana wzorem

$$f(x) = (A+1)x^2 + 2Bx + 1.$$

(a) (2 p.) Określ zbiór zdarzeń elementarnych i σ -ciało jego podzbiorów. Dobierz odpowiednie prawdopodobieństwo.

Rozwiązanie: Przestrzenią zdarzeń elementarnych jest zbiór $\Omega = [-1,1]^2$, zatem $\mathcal{F} = \mathcal{B}or(\Omega)$, $\mathbb{P}[A] = \frac{1}{4}\lambda_2(a)$.

(b) (3 p.) Oblicz prawdopodobieństwo, że f(x) > A dla każdego $x \in \mathbb{R}$. Wskazówka: napisz warunek na wyróżnik pewnego trójmianu kwadratowego.

Rozwiązanie: Niech $A=\{(a,b)\in\Omega: \forall_{x\in\mathbb{R}}f(x)>a\}$. Wówczas f(x)>a dla każdego $x\in\mathbb{R}$, jeżeli a+1>0 oraz wyróżnik trójmianu $(a+1)x^2+2bx+1-a$ jest ujemny, zatem

$$A = \{(a,b) \in \Omega : a > -1 \land 4b^2 - 4(a+1)(1-a) < 0\}$$

= \{(a,b) \in \Omega : a > -1 \lambda a^2 + b^2 < 1\}.

Zbiór A jest więc wnętrzem koła jednostkowego, stąd $|A|=\pi$. Ostatecznie $\mathbb{P}(A)=\frac{\pi}{4}$.

(c) (2 p.) Niech zmienna losowa I będzie dana przez $I = \int_0^1 f(x) dx$. Oblicz $\mathbb{E}[I]$.

Rozwiązanie: Zauważmy, że $\mathbb{E}[A] = \mathbb{E}[B] = \frac{1}{2} \int_{-1}^{1} t \, dt = 0$, więc

$$\mathbb{E}\left[\int_0^1 f(x) \, \mathrm{d}x\right] = \mathbb{E}\left[\frac{A}{3} + \frac{1}{3} + B + 1\right] = \frac{4}{3}.$$

(d) (3 p.) Oblicz prawdopodobieństwo warunkowe, że suma rozwiązań równania f(x) = 0 jest dodatnia, pod warunkiem, że równanie to ma dwa różne rozwiązania. Wskazówka: zastosuj wzory Viète'a.

Rozwiązanie: Niech

$$B = \{(a,b) \in \Omega : \exists_{x_1 \neq x_2 \in \mathbb{R}} f(x_1) = f(x_2) = 0\}$$

oraz

$$C = \{(a,b) \in \Omega : \exists_{x_1,x_2 \in \mathbb{R}} (f(x_1) = f(x_2) = 0 \land x_1 + x_2 > 0)\}.$$

Należy wyznaczyć $\mathbb{P}[C|B]=\frac{\mathbb{P}[C\cap B]}{\mathbb{P}[B]}$. Równanie f(x)=0 ma dwa różne rozwiązania, jeśli wyróżnik trójmianu $(a+1)x^2+2bx+1$ jest dodatni, a więc

$$B = \{(a,b) \in \Omega : 4b^2 - 4(a+1) > 0\} = \{(a,b) \in \Omega : a < b^2 - 1\}.$$

Natomiast ze wzorów Viète'a, suma rozwiązań jest dodatnia, jeżeli $-\frac{2b}{a+1}>0$, tak więc $C=\{(a,b)\in\Omega:b<0\}$. Zdarzeniu $C\cap B$ odpowiada zatem połowa zbioru B, stąd $|C\cap B|=\frac{1}{2}|B|$ i ostatecznie $\mathbb{P}[C|B]=\frac{\mathbb{P}[C\cap B]}{\mathbb{P}[B]}=\frac{1}{2}$.

- 3. Niech F będzie ciągłą, ściśle rosnącą dystrybuantą na \mathbb{R} . Przez Φ oznaczmy dystrybuantę standardowego rozkładu normalnego $\mathcal{N}(0,1)$.
 - (a) (3 p.) Niech X będzie zmienną losową o rozkładzie jednostajnym $\mathcal{U}[0,1]$. Udowodnij, że $Z=F^{-1}(X)$ ma rozkład o dystrybuancie F. Wskazówka: znajdź dystrybuantę F_Z .

Rozwiązanie: Mamy

$$\mathbb{P}[Z \le t] = \mathbb{P}[X \le F(t)] = F(t),$$

bo $\mathbb{P}[X \le s] = s \text{ dla } s \in [0, 1].$

(b) (3 p.) Niech Y będzie zmienną losową o ciągłej, ściśle rosnącej dystrybuancie F_Y . Pokaż, że zmienna losowa $S = F_Y(Y)$ ma rozkład jednostajny $\mathcal{U}[0,1]$. Wskazówka: znajdź dystrybuantę F_S .

Rozwiązanie:

$$\mathbb{P}[S \le t] = \mathbb{P}[Y \le F_Y^{-1}(t)] = F_Y(F_Y^{-1}(t)) = t.$$

(c) (4 p.) Oblicz $\int_0^1 \Phi^{-1}(x) \, \mathrm{d}x$ oraz $\int_{\mathbb{R}} \Phi(x) e^{-x^2/2} \, \mathrm{d}x$. Wskazówka: wyraź szukane całki jako wartości oczekiwane pewnych zmiennych losowych i skorzystaj z wiedzy z ćwiczeń.

Rozwiązanie: Mamy

$$\int_0^1 \Phi^{-1}(x) \, \mathrm{d}x = \mathbb{E}\left[\Phi^{-1}(U)\right],$$

gdzie U ma rozkład jednostajny $\mathcal{U}[0,1]$, z podpunktu (a) zmienna $\Phi^{-1}(U)$ ma standardowy rozkład normalny, więc

$$\int_0^1 \Phi^{-1}(x) \, \mathrm{d}x = \mathbb{E}\left[\Phi^{-1}(U)\right] = 0.$$

Podobnie

$$\int_{\mathbb{R}} \Phi(x) e^{-x^2/2} \, \mathrm{d}x = \sqrt{2\pi} \mathbb{E}[\Phi(N)],$$

gdzie N ma standardowy rozkład normalny, więc zmienna $\Phi(N)$ ma rozkład jednostajny $\mathcal{U}[0,1]$, zatem

$$\int_{\mathbb{R}} \Phi(x)e^{-x^2/2} \, \mathrm{d}x = \sqrt{2\pi} \mathbb{E}[\Phi(N)] = \frac{\sqrt{2\pi}}{2}.$$

- 4. Zmienna losowa X ma rozkład wykładniczy $\mathcal{E}xp(\lambda)$.
 - (a) (5 p.) Wykaż, że $Y=\sqrt{X}$ ma rozkład o gęstości $f_Y(t)=2\lambda t e^{-\lambda t^2}\mathbbm{1}_{[0,+\infty)}(t).$

Rozwiązanie: Mamy $\mathbb{P}[X > t] = e^{-\lambda t}$ i stąd

$$\mathbb{P}[Y > t] = \mathbb{P}[X > t^2] = e^{-\lambda t^2}.$$

Ostatecznie $F_Y(t) = \mathbb{P}[Y \le t] = 1 - e^{-\lambda t^2}$ oraz $f_Y(t) = 2\lambda t e^{-\lambda t^2}$ dla $t \ge 0$.

(b) (5 p.) Oblicz $\mathbb{P}[Y^2 - 7Y + 12 > 0]$.

Rozwiązanie: Mamy

$$\mathbb{P}\left[Y^2 - 7Y + 12 > 0\right] = \mathbb{P}[Y \notin [3,4]] = 1 - \mathbb{P}[Y \in [3,4]]$$
$$= 1 - (F_Y(4) - F_Y(3)) = 1 + e^{-16\lambda} - e^{-9\lambda}.$$