Milestone Review Flysheet

Institution University of Cincinnati

Milestone	PDR
-----------	-----

Vehicle Properties		
Total Length (in)	84.4	
Diameter (in)	5.54	
Gross Lift Off Weigh (lb)	19	
Airframe Material	Cardboard	
Fin Material	G-10 plastic	
Drag	0.3 (Cd)	

Motor Properties		
Motor Manufacturer	Cesaroni	
Motor Designation	K570	
Max/Average Thrust (lb)	200.85 / 129.15	
Total Impulse (lbf-s)	465.4	
Mass Before/After Burn	58.98 oz / 22.82 oz	
Liftoff Thrust (lb)	200.85	

Stability Analysis			
Center of Pressure (in from nose)	57.99		
Center of Gravity (in from nose)	46.79 (before burnout) / 43.15 (after)		
Static Stability Margin	2.04 / 2.70		
Static Stability Margin (off launch rail)	2.04		
Thrust-to-Weight Ratio	6.77		
Rail Size and Length (in)	1.5" x 1.5" / 84 in		
Rail Exit Velocity	64.22 ft/s		

Ascent Analysis		
Maximum Velocity (ft/s)	659.24	
Maximum Mach Number	0.59	
Maximum Acceleration (ft/s^2)	311.7	
Target Apogee (From Simulations)	5280	
Stable Velocity (ft/s)	44	
Distance to Stable Velocity (ft)	3.3	

Recovery System Properties						
	Drogue Parachute					
Manufactu	ırer/Model		LOC			
Si	ze		7.1 ft^2			
Altitu	de at Deployme	nt (ft)	52	180		
Velocit	ty at Deploymer	nt (ft/s)	0.0	249		
Ter	minal Velocity (1	ft/s)	44	.97		
Recov	very Harness Ma	nterial	ny	lon		
Harne	ess Size/Thickne	ss (in)	1/	' 4"		
Recove	ery Harness Len	gth (ft)	5	.5		
Harness/Airfra	Harness/Airframe Interfaces Kingtis Engry Rocket		el eye hook / ey	e bolt		
of Each Section (Ft-Ibs)	370					
	Rec	overy Electro	onics			
Altimeter(s)/Timer(s) (Make/Model) PerfectFlite StratoLogger S		ger SL 100				
Redundancy Plan Multiple altimeter, backup ejection charges		•				
	Stay Time (Launch Configuration) 250 Hours					

Recovery System Properties					
	Main Parachute				
Manufactu	irer/Model		SkyAngle		
Si	ze		57 ft^2		
Altitu	de at Deployme	nt (ft)	nt (ft) 600		
Velocit	ty at Deploymer	nt (ft/s) 44.97		.97	
Ter	minal Velocity (1	ft/s)	t/s) 14.2		
Recov	very Harness Ma	aterial	ny	lon	
Harne	ess Size/Thickne	ss (in)	5/8	B" in	
Recove	ery Harness Len	gth (ft)	6	.6	
Harness/Airframe Interfaces		Swivel eye hook / eye bolt		e bolt	
Kinetic Energy	Rocket	Payload			
of Each Section (Ft-Ibs)	35.3	44.6			
	Rec	overy Electro	onics		
Rocket Locators	Rocket Locators (Make/Model) Custom GPS			5	
Transmitting Frequencies		902-928 MHz		Z	
Black Powder Mass Drogue Chute (grams) 1.5 g (2g		5 g (2g back	up)		
Black Powde Chute (1.5	5 g (2g back	up)	

Milestone Review Flysheet

Institution	University of Cincinnati	Milestone	PDR

	Autonomous Ground Support Equipment (MAV Teams Only)
	Overview
Capture Mechanism	
	Overview
Container Mechanism	
	Overview
Launch Rail Mechanism	***Include Description of rail locking mechanism***
	Overview
Igniter Installation Mechanism	

	Payload Payload Payload Payload
	Overview
Payload 1	The main task of the Payload is to record atmospheric measurements of earth's atmosphere from an altitude of 5,280 feet. The PIL is designed to record data including, but not limited to, Pressure, Temperature, Relative Humidity, UV Radiation and Solar irradiance. The PIL will also capture at least 2 images in the air, as well as 3 images on the ground. In order to accomplish all of these tasks, multiple sub-systems have been integrated into the PIL. Among these systems, includes a landing module for the PIL to remain upright for photos.
	Overview
Payload 2	The fairing shall also successfully deploy in-order for complete mission success. The fairing is designed to split in half with a powder charge ignited at apogee, with the 2 fairing sections attached to the PIL itself with shock cord.
	Test Plans, Status, and Results
Ejection Charge Tests	The team will conduct multiple ground ejection "pop" tests to see gauge the amount of black powder to use in our charges. We will be testing the fairing separation charge, the drogue charge and main charge individually. We will start with a small amount of black powder and gradually increase the amount from there if needed.
Sub-scale Test Flights	Our scale rocket will be constructed from the Iris rocket kit from LOC Precision. The outer diameter of the rocket is 3.10" and has a 38mm motor tube. This model is a 0.56 scale of our full scale launch vehicle. This rocket model was chosen as our scale rocket because it was the kit that most closely resembled our full scale vehicle and would minimize any customization needed. Our first scheduled subscale test will take place on November 21st of 2015. The subscale will be loaded with ballast as needed in order to most closely match mass placement of the full scale. We will also be using this subscale model in the wind tunnel in our university's Aerospace laboratory. The rocket will be loaded on a sting mount and connected to a force balance. The values obtained from our wind tunnel tests will help to give us a more accurate estimation for the coefficient of drag for our full scale vehicle.

Full-scale Test Flights Once the team has proven with the subscale model that our design works, we will do full scale testing of the launch vehicle using a simulated mass as our payload. Our full scale tests will also test our fairing separation system.

Milestone Review Flysheet	

Institution	University of Cincinnati	Milestone	PDR		
Additional Comments					