

K. 2082 CIP
1/3

Fig.1

Fig.2

Fig.3

$$C_1: \left(x - \frac{n^2 + n_0^2}{2n_0^2} \right)^2 + y^2 = 1 \cdot 1 \left(\frac{n^2 - n_0^2}{2n_0} \right)^2$$

$$C_2: \left(x - \frac{n^2 + n_0^2}{2n_0^2} \right)^2 + y^2 = \left(\frac{n^2 - n_0^2}{2n_0} \right)^2$$

$$C_3: \left(x - \frac{n^2 + n_0^2}{2n_0^2} \right)^2 + y^2 = 0 \cdot 9 \left(\frac{n^2 - n_0^2}{2n_0} \right)^2$$