TEST - Scrivere il numero della risposta sopra alla corrispondente domanda.

Risposte	3	2	1	4	2	6	3	2	3	2	V
Domande	1	2	3	4	5	6	7	8	9	10	

- 1 La disequazione $x^2 x 2 < 0$ ha come soluzione $x_{12} = \frac{1 \pm \sqrt{1 \pm 8}}{2} = \frac{1 \pm 3}{2}$
 - [1] x < -1 oppure x > 2
 - [2] solo x < -1
 - [3] -1 < x < 2
 - [4] solo x > 2
- 2 La disequazione $\frac{x-3}{x+2} \ge 0$ ha come soluzione
 - [1] -2 < x < 3
 - [2] x < -2 oppure x > 3
 - [3] x < -2 oppure x > 3
 - |4| solo $x \geq 3$
- 3 Data una funzione $f:[0,1] \to \mathbb{R}$ iniettiva quali delle seguenti affermazioni è vera
 - [1] l'equazione f(x) = 0 al più una soluzione
 - [2] f(0) = 0
 - [3] la funzione è strettamente monotona
 - [4] l'equazione f(x) = 0 ha almeno una soluzione
- 4 Data una funzione $f:[0,1] \to \mathbb{R}$ continua tale che f(0)=-1 ed f(1)=2 quali delle seguenti affermazioni è vera
 - 1 la funzione è derivabile
 - [2] l'immagine di f è Imf = [-1, 2]
 - [3] la funzione strettamente monotona
 - [4] esiste $x_0 \in (0,1)$ tale che $f(x_0) = 0$
- 5 Tutte le soluzioni dell'equazione $e^{x^2-1}=1$ sono
 - [1] solo x=1
 - |2| x = -1 e x = 1
 - [3] solo x = 0
 - [4] non ammette soluzioni
- 6 Dire quali delle seguenti affermazioni è vera
 - [1] $\arctan(x) = \frac{\cos x}{\sin x}$ per ogni $x \neq \pi/2 + k\pi$
 - [2] $\arcsin(\sin x) = x \operatorname{per ogni} x \in \mathbb{R}$
 - [3] $e^{\ln x} = x$ per ogni $x \in \mathbb{R}$
 - [4] $e^{\ln x} = x$ per ogni x > 0
- 7 Dire quali delle seguenti affermazioni è vera
 - $[1] e^{x+y} = e^x + e^y$
 - $[2] \sin(x+y) = \sin(x) + \sin(y)$
 - $[3] e^{x+y} = e^x e^y$
 - $[4] \sin(x+y) = \sin(x)\sin(y)$
- 8 | Tutte le soluzioni dell'equazione $\sin(x) = 1/2$ sono
 - [1] solo $x = \pi/6$ e $x = 5/6\pi$
 - [2] $x = \pi/6 + 2k\pi e x = 5\pi/6 + 2k\pi \text{ dove } k \in \mathbb{Z}$
 - [3] solo $x = \pi/6$
 - [4] $x = \pi/6 + 2k\pi$ dove $k \in \mathbb{Z}$
- 9 L'equazione $-x^2 + 2x = 6$ ha come soluzioni
 - [1] x = 0 ed x = 2
 - [2] $x = 1 \sqrt{5}$ ed $x = 1 + \sqrt{5}$
 - [3] non ammette soluzioni reali
 - [4] $x = 1 \sqrt{7}$ ed $x = 1 + \sqrt{7}$
- |10| L'equazione $x^2 3x = -2$ ha come soluzioni
- [1] non ammette soluzioni reali
 - [2] x = 2 ed x = 1
 - [3] x = 0 ed x = 3
 - |4| x = 0 ed x = 1

x2-1= lu 1 seapar ps = (x11)(x-1)=0 >===1

ezesin (sin a) = 0 e non a! (définits su - ¿cac 3)

g(x) zero (monthouse l'asse)

3 ± V 3 - 8 = 31/2 112 = 2 / 2 / 2

1.1