

Rob J Hyndman

Forecasting using

6. ETS models

OTexts.com/fpp/7/

Outline

- 1 Exponential smoothing methods so far
- 2 Holt-Winters' seasonal method
- 3 Taxonomy of exponential smoothing methods
- 4 Exponential smoothing state space models

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method.
 holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Damped exponential trend method. holt(x, damped=TRUE, exponential=TRUE)

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Damped exponential trend method. holt(x, damped=TRUE, exponential=TRUE)

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Damped exponential trend method. holt(x, damped=TRUE, exponential=TRUE)

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Damped exponential trend method. holt(x, damped=TRUE, exponential=TRUE)

- Simple exponential smoothing: no trend. ses(x)
- Holt's method: linear trend. holt(x)
- Exponential trend method. holt(x, exponential=TRUE)
- Damped trend method. holt(x, damped=TRUE)
- Damped exponential trend method. holt(x, damped=TRUE, exponential=TRUE)

Outline

- 1 Exponential smoothing methods so far
- 2 Holt-Winters' seasonal method
- 3 Taxonomy of exponential smoothing methods
- 4 Exponential smoothing state space models

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$

$$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

$$s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$

$$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

$$s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}
\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}
s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$$

- Holt and Winters extended Holt's method to capture seasonality.
- Three smoothing equations—one for the level, one for trend, and one for seasonality.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \\ h_m^+ &= \lfloor (h-1) \mod m \rfloor + 1 \end{split}$$

Holt-Winters multiplicative method

Holt-Winters multiplicative method

$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t-m+h_m^+}
\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}
s_t = \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1-\gamma)s_{t-m}$$

- Most textbooks use $s_t = \gamma(y_t/\ell_t) + (1-\gamma)s_{t-m}$
- We optimize for α , β^* , γ , ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{1-m} .

Holt-Winters multiplicative method

Holt-Winters multiplicative method

$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t-m+h_m^+}
\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}
s_t = \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1-\gamma)s_{t-m}$$

- Most textbooks use $s_t = \gamma(y_t/\ell_t) + (1-\gamma)s_{t-m}$
- We optimize for α , β^* , γ , ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{1-m} .

Damped Holt-Winters method

Damped Holt-Winters multiplicative method

$$\hat{y}_{t+h|t} = [\ell_t + (1 + \phi + \phi^2 + \dots + \phi^{h-1})b_t]s_{t-m+h_m^+}$$

$$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$$

$$s_t = \gamma[y_t/(\ell_{t-1} + \phi b_{t-1})] + (1 - \gamma)s_{t-m}$$

■ This is often the single most accurate forecasting method for seasonal data.

- All these methods can be confusing!
- How to choose between them?
- The ETS framework provides an automatic way of selecting the best method.
- It was developed to solve the problem of automatically forecasting pharmaceutical sales across thousands of products.

- All these methods can be confusing!
- How to choose between them?
- The ETS framework provides an automatic way of selecting the best method.
- It was developed to solve the problem of automatically forecasting pharmaceutical sales across thousands of products.

- All these methods can be confusing!
- How to choose between them?
- The ETS framework provides an automatic way of selecting the best method.
- It was developed to solve the problem of automatically forecasting pharmaceutical sales across thousands of products.

- All these methods can be confusing!
- How to choose between them?
- The ETS framework provides an automatic way of selecting the best method.
- It was developed to solve the problem of automatically forecasting pharmaceutical sales across thousands of products.

Outline

- 1 Exponential smoothing methods so far
- 2 Holt-Winters' seasonal method
- 3 Taxonomy of exponential smoothing methods
- 4 Exponential smoothing state space models

		S	Seasonal Component		
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
\mathbf{M}_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d,M	

		Seasonal Component		
	Trend		Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
\mathbf{M}_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

(N,N): Simple exponential smoothing

		S	Seasonal Component		
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

			Seasonal Component		
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A,A): Additive Holt-Winters' method

		S	Seasonal Component		
	Trend		Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_{d}	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

		S	Seasonal Component		
	Trend		Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_{d}	(Additive damped)	A _d ,N	A_d , A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

		S	Seasonal Component		
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_{d}	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
\mathbf{M}_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

There are 15 separate exponential smoothing methods.

R functions

- ses() implements method (N,N)
- holt() implements methods (A,N), (A_d,N), (M,N), (M_d,N)
- hw() implements methods (A,A), (A_d,A), (A,M), (A_d,M), (M,M), (M_d,M).

R functions

- ses() implements method (N,N)
- holt() implements methods (A,N), (A_d,N), (M,N), (M_d,N)
- hw() implements methods (A,A), (A_d,A), (A,M), (A_d,M), (M,M), (M_d,M).

R functions

- ses() implements method (N,N)
- holt() implements methods (A,N), (A_d,N), (M,N), (M_d,N)
- hw() implements methods (A,A), (A_d,A), (A,M), (A_d,M), (M,M), (M_d,M).

Outline

- 1 Exponential smoothing methods so far
- 2 Holt-Winters' seasonal method
- 3 Taxonomy of exponential smoothing methods
- 4 Exponential smoothing state space models

Exponential smoothing

- Until recently, there has been no stochastic modelling framework incorporating likelihood calculation, prediction intervals, etc.
- Ord, Koehler & Snyder (JASA, 1997) and Hyndman, Koehler, Snyder and Grose (IJF, 2002) showed that all ES methods (including non-linear methods) are optimal forecasts from innovations state space models.
- Hyndman et al. (2008) provides a comprehensive and up-to-date survey of area.

Exponential smoothing

- Until recently, there has been no stochastic modelling framework incorporating likelihood calculation, prediction intervals, etc.
- Ord, Koehler & Snyder (JASA, 1997) and Hyndman, Koehler, Snyder and Grose (IJF, 2002) showed that all ES methods (including non-linear methods) are optimal forecasts from innovations state space models.
- Hyndman et al. (2008) provides a comprehensive and up-to-date survey of area.
 - The forecast package implements the state space framework.

Exponential smoothing

- Until recently, there has been no stochastic modelling framework incorporating likelihood calculation, prediction intervals, etc.
- Ord, Koehler & Snyder (JASA, 1997) and Hyndman, Koehler, Snyder and Grose (IJF, 2002) showed that all ES methods (including non-linear methods) are optimal forecasts from innovations state space models.
- Hyndman et al. (2008) provides a comprehensive and up-to-date survey of area.

- Until recently, there has b modelling framework inco calculation, prediction inte
- Ord, Koehler & Snyder (JAS Hyndman, Koehler, Snyder 2002) showed that all ES r non-linear methods) are of innovations state space m
- Hyndman et al. (2008) pro comprehensive and up-to-
- The forecast package im space framework.

Springer Series in Statistics

Rob J. Hyndman · Anne B. Koehler J. Keith Ord · Ralph D. Snyder

Forecasting with Exponential Smoothing

The State Space Approach

- Until recently, there has been no stochastic modelling framework incorporating likelihood calculation, prediction intervals, etc.
- Ord, Koehler & Snyder (JASA, 1997) and Hyndman, Koehler, Snyder and Grose (IJF, 2002) showed that all ES methods (including non-linear methods) are optimal forecasts from innovations state space models.
- Hyndman et al. (2008) provides a comprehensive and up-to-date survey of area.
- The **forecast** package implements the state space framework.

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

General notation ETS(Error, Trend, Seasonal)

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d,M

General notation ETS(*Error*, *Trend*, *Seasonal*)

		Seasonal Component		
Trend		N	Α	М
Component		(None)	(Additive)	(Multiplicative)
Ν	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d,M

General notation ETS(*Error,Trend,Seasonal*) **ExponenTial Smoothing**

		Seasonal Component			
	Trend		Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
\mathbf{M}_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

ETS(A,N,N): Simple exponential smoothing with additive errors

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
\mathbf{M}_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d, M

General notation ETS(*Error,Trend,Seasonal*) **ExponenTial Smoothing**

ETS(A,A,N): Holt's linear method with additive errors

		Seasonal Component			
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

General notation ETS(*Error,Trend,Seasonal*) **ExponenTial Smoothing**

ETS(A,A,A): Additive Holt-Winters' method with additive errors

		Seasonal Component			
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_{d}	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

General notation ETS(*Error,Trend,Seasonal*) **ExponenTial Smoothing**

ETS(M,A,M): Multiplicative Holt-Winters' method with multiplicative errors

		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

General notation ETS(*Error,Trend,Seasonal*) **ExponenTial Smoothing**

ETS(A,A_d,N): Damped trend method with additive errors

		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M_{d}	(Multiplicative damped)	M _d ,N	M_d ,A	M_d,M

General notation ETS(*Error*,*Trend*,*Seasonal*) **ExponenT**ial **S**moothing

There are 30 separate models in the ETS framework

SES

$$\hat{y}_{t+1|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

SES

$$\hat{y}_{t+1|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

If
$$\varepsilon_t = y_t - \hat{y}_{t-1|t}$$

 $\sim \text{NID}(0, \sigma^2)$, then

ETS(A,N,N)

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$= \ell_{t-1} + \alpha \varepsilon_t$$

SES

$$\hat{y}_{t+1|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

If
$$\varepsilon_t = y_t - \hat{y}_{t-1|t}$$

 $\sim \mathsf{NID}(0, \sigma^2)$, then

ETS(A,N,N)

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$= \ell_{t-1} + \alpha \varepsilon_t$$

If
$$\varepsilon_t = (y_t - \hat{y}_{t-1|t})/\hat{y}_{t-1|t}$$

 $\sim \mathsf{NID}(0, \sigma^2)$, then

ETS(M,N,N)

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$= \ell_{t-1}(1 + \alpha \varepsilon_t)$$

SES

$$\hat{y}_{t+1|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

If
$$\varepsilon_t = y_t - \hat{y}_{t-1|t}$$

 $\sim \mathsf{NID}(0, \sigma^2)$, then

ETS(A,N,N)

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$= \ell_{t-1} + \alpha \varepsilon_t$$

If
$$\varepsilon_t = (y_t - \hat{y}_{t-1|t})/\hat{y}_{t-1|t}$$

 $\sim \mathsf{NID}(0, \sigma^2)$, then

ETS(M,N,N)

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$= \ell_{t-1}(1 + \alpha \varepsilon_t)$$

All exponential smoothing methods can be written using analogous state space equations.

- All the methods can be written in this state space form.
- Prediction intervals can be obtained by simulating many future sample paths.
- For many models, the prediction intervals can be obtained analytically as well.
- Additive and multiplicative versions give the same point forecasts.
- Estimation is handled via maximizing the likelihood of the data given the model.

Example: Holt-Winters' multiplicative seasonal method

ETS(M,A,M)

$$y_{t} = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_{t})$$

$$\ell_{t} = (\ell_{t-1} + b_{t-1})(1 + \alpha\varepsilon_{t})$$

$$b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_{t}$$

$$s_{t} = s_{t-m}(1 + \gamma\varepsilon_{t})$$

where $\beta = \alpha \beta^*$.

- All the methods can be written in this state space form.
- Prediction intervals can be obtained by simulating many future sample paths.
- For many models, the prediction intervals can be obtained analytically as well.
- Additive and multiplicative versions give the same point forecasts.
- Estimation is handled via maximizing the likelihood of the data given the model.

- All the methods can be written in this state space form.
- Prediction intervals can be obtained by simulating many future sample paths.
- For many models, the prediction intervals can be obtained analytically as well.
- Additive and multiplicative versions give the same point forecasts.
- Estimation is handled via maximizing the likelihood of the data given the model.

- All the methods can be written in this state space form.
- Prediction intervals can be obtained by simulating many future sample paths.
- For many models, the prediction intervals can be obtained analytically as well.
- Additive and multiplicative versions give the same point forecasts.
- Estimation is handled via maximizing the likelihood of the data given the model.

- All the methods can be written in this state space form.
- Prediction intervals can be obtained by simulating many future sample paths.
- For many models, the prediction intervals can be obtained analytically as well.
- Additive and multiplicative versions give the same point forecasts.
- Estimation is handled via maximizing the likelihood of the data given the model.

$$AIC = -2 \log(Likelihood) + 2p$$

where p is the number of estimated parameters in the model.

Minimizing the AIC gives the best model for prediction.

AIC corrected (for small sample bias)

$$AIC_C = AIC + \frac{2(p+1)(p+2)}{n-p}$$

$$AIC = -2 \log(Likelihood) + 2p$$

where p is the number of estimated parameters in the model.

Minimizing the AIC gives the best model for prediction.

AIC corrected (for small sample bias)

$$AIC_C = AIC + \frac{2(p+1)(p+2)}{n-p}$$

$$BIC = AIC + p(\log(n) - 2)$$

$$AIC = -2 \log(Likelihood) + 2p$$

where p is the number of estimated parameters in the model.

Minimizing the AIC gives the best model for prediction.

AIC corrected (for small sample bias)

$$AIC_C = AIC + \frac{2(p+1)(p+2)}{n-p}$$

$$BIC = AIC + p(\log(n) - 2)$$

$$AIC = -2 \log(Likelihood) + 2p$$

where p is the number of estimated parameters in the model.

Minimizing the AIC gives the best model for prediction.

AIC corrected (for small sample bias)

$$\mathsf{AIC}_\mathsf{C} = \mathsf{AIC} + \frac{2(p+1)(p+2)}{n-p}$$

$$BIC = AIC + p(\log(n) - 2)$$

$$AIC = -2 \log(Likelihood) + 2p$$

where p is the number of estimated parameters in the model.

Minimizing the AIC gives the best model for prediction.

AIC corrected (for small sample bias)

$$\mathsf{AIC}_\mathsf{C} = \mathsf{AIC} + \frac{2(p+1)(p+2)}{n-p}$$

$$BIC = AIC + p(\log(n) - 2)$$

- Value of AIC/AICc/BIC given in the R output.
- AIC does not have much meaning by itself. Only useful in comparison to AIC value for another model fitted to same data set.
- Consider several models with AIC values close to the minimum.
- A difference in AIC values of 2 or less is not regarded as substantial and you may choose the simpler but non-optimal model.
- AIC can be negative.

- Value of AIC/AICc/BIC given in the R output.
- AIC does not have much meaning by itself. Only useful in comparison to AIC value for another model fitted to same data set.
- Consider several models with AIC values close to the minimum.
- A difference in AIC values of 2 or less is not regarded as substantial and you may choose the simpler but non-optimal model.
- AIC can be negative.

- Value of AIC/AICc/BIC given in the R output.
- AIC does not have much meaning by itself. Only useful in comparison to AIC value for another model fitted to same data set.
- Consider several models with AIC values close to the minimum.
- A difference in AIC values of 2 or less is not regarded as substantial and you may choose the simpler but non-optimal model.
- AIC can be negative.

- Value of AIC/AICc/BIC given in the R output.
- AIC does not have much meaning by itself. Only useful in comparison to AIC value for another model fitted to same data set.
- Consider several models with AIC values close to the minimum.
- A difference in AIC values of 2 or less is not regarded as substantial and you may choose the simpler but non-optimal model.
- AIC can be negative.

- Value of AIC/AICc/BIC given in the R output.
- AIC does not have much meaning by itself. Only useful in comparison to AIC value for another model fitted to same data set.
- Consider several models with AIC values close to the minimum.
- A difference in AIC values of 2 or less is not regarded as substantial and you may choose the simpler but non-optimal model.
- AIC can be negative.

From Hyndman et al. (2008):

- Apply each of 30 methods that are appropriate to the data. Estimate parameters and initial values using MLE.
- Select best method using AIC.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition.

From Hyndman et al. (2008):

- Apply each of 30 methods that are appropriate to the data. Estimate parameters and initial values using MLE.
- Select best method using AIC.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition

From Hyndman et al. (2008):

- Apply each of 30 methods that are appropriate to the data. Estimate parameters and initial values using MLE.
- Select best method using AIC.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition.

From Hyndman et al. (2008):

- Apply each of 30 methods that are appropriate to the data. Estimate parameters and initial values using MLE.
- Select best method using AIC.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition

From Hyndman et al. (2008):

- Apply each of 30 methods that are appropriate to the data. Estimate parameters and initial values using MLE.
- Select best method using AIC.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition

From Hyndman et al. (2008):

- Apply each of 30 methods that are appropriate to the data. Estimate parameters and initial values using MLE.
- Select best method using AIC.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition.

```
fit <- ets(ausbeer)</pre>
fit2 <- ets(ausbeer,model="AAA",damped=FALSE)</pre>
fcast1 <- forecast(fit, h=20)</pre>
fcast2 <- forecast(fit2, h=20)</pre>
```

```
fit <- ets(ausbeer)</pre>
 fit2 <- ets(ausbeer,model="AAA",damped=FALSE)</pre>
 fcast1 <- forecast(fit, h=20)</pre>
 fcast2 <- forecast(fit2, h=20)</pre>
ets(y, model="ZZZ", damped=NULL, alpha=NULL,
    beta=NULL, gamma=NULL, phi=NULL,
    additive.only=FALSE,
    lower=c(rep(0.0001,3),0.80),
    upper=c(rep(0.9999,3),0.98),
    opt.crit=c("lik","amse","mse","sigma"), nmse=3,
    bounds=c("both", "usual", "admissible"),
    ic=c("aic", "aicc", "bic"), restrict=TRUE)
```

```
> fit
ETS (M, Md, M)
  Smoothing parameters:
    alpha = 0.1776
    beta = 0.0454
    gamma = 0.1947
    phi = 0.9549
  Initial states:
    1 = 263.8531
    b = 0.9997
    s = 1.1856 \ 0.9109 \ 0.8612 \ 1.0423
  sigma: 0.0356
     AIC
        AICc BIC
2272.549 2273.444 2302.715
```

```
> fit2
ETS(A,A,A)
 Smoothing parameters:
    alpha = 0.2079
    beta = 0.0304
    qamma = 0.2483
 Initial states:
    1 = 255.6559
    b = 0.5687
    s = 52.3841 - 27.1061 - 37.6758 12.3978
 sigma: 15.9053
    ATC
        AICc BIC
2312.768 2313.481 2339.583
```

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class ets.

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class ets.

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class ets.

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class ets.

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class ets.

ets objects

- Methods: coef(), plot(), summary(), residuals(), fitted(), simulate() and forecast()
- plot() function shows time plots of the original time series along with the extracted components (level, growth and seasonal).

ets objects

- Methods: coef(), plot(), summary(),
 residuals(), fitted(), simulate()
 and forecast()
- plot() function shows time plots of the original time series along with the extracted components (level, growth and seasonal).

plot(fit)
Decomposition by ETS(M,Md,M) method

Goodness-of-fit

```
> accuracy(fit)
    ME    RMSE    MAE    MPE    MAPE    MASE
0.17847 15.48781 11.77800 0.07204 2.81921 0.20705
> accuracy(fit2)
    ME    RMSE    MAE    MPE    MAPE    MASE
-0.11711 15.90526 12.18930 -0.03765 2.91255 0.21428
```

Forecast intervals

Forecast intervals

ets() function also allows refitting model to new data set.

```
> usfit <- ets(usnetelec[1:45])
> test <- ets(usnetelec[46:55], model = usfit)

> accuracy(test)
    ME    RMSE    MAE    MPE    MAPE    MASE
-3.35419 58.02763 43.85545 -0.07624 1.18483 0.52452

> accuracy(forecast(usfit,10), usnetelec[46:55])
    ME    RMSE    MAE    MPE    MAPE    MASE
    40.7034 61.2075 46.3246 1.0980 1.2620 0.6776
```

Unstable models

- ETS(M,M,A)
- ETS(M,M_d,A)
- ETS(A,N,M)
- ETS(A,A,M)
- \blacksquare ETS(A,A_d,M)
- ETS(A,M,N)
- ETS(A,M,A)
- ETS(A,M,M)
- \blacksquare ETS(A,M_d,N)
- ETS(A,M_d,A)
- \blacksquare ETS(A,M_d,M)

Unstable models

- ETS(M,M,A)
- ETS(M,M_d,A)
- ETS(A,N,M)
- ETS(A,A,M)
- ETS(A,A_d,M)
- ETS(A,M,N)
- ETS(A,M,A)
- ETS(A,M,M)
- ETS(A,M_d,N)
- ETS(A,M_d,A)
- ETS(A,M_d,M)

In practice, the models work fine for short- to medium-term forecasts provided the data are strictly positive.

Forecastability conditions

```
ets(y, model="ZZZ", damped=NULL, alpha=NULL,
    beta=NULL, gamma=NULL, phi=NULL,
    additive.only=FALSE,
    lower=c(rep(0.0001,3),0.80),
    upper=c(rep(0.9999,3),0.98),
    opt.crit=c("lik","amse","mse","sigma"),
    nmse=3,
    bounds=c("both", "usual", "admissible"),
    ic=c("aic","aicc","bic"), restrict=TRUE)
```

The magic forecast() function

- forecast returns forecasts when applied to an ets object (or the output from many other time series models).
- If you use forecast directly on data, it will select an ETS model automatically and then return forecasts.

The magic forecast() function

- forecast returns forecasts when applied to an ets object (or the output from many other time series models).
- If you use forecast directly on data, it will select an ETS model automatically and then return forecasts.