Centro de Educação Profissional Albano Franco

MEC PLAY
PLATAFORMA EDUCACIONAL PARA ALUNOS COM AUTISMO

SENA

Serviço Nacional de Aprendizagem Industrial
PELO FUTURO DO TRABALHO

Unidade de Ensino	Senai Colatina ES	
Instrutor(a) Orientador(a)	Yeverson Carlos Costa Dos Santos	
Coordenador(a) Pedagógico(a)	Vania Racanelli	
Analista Técnico	Mayara Morelato	
Nome da Equipe		
	Mecânico de	Aprendizagem
Amanda Karolayne Pereira	Manutenção de	Industrial Básica
dos Santos	Máquinas	
	Industriais	
	Mecânico de	Aprendizagem
Kamilly oliveira da Silva	Manutenção de	Industrial Básica
	Máquinas	
	Industriais	
	Mecânico de	Aprendizagem
Kauãn Rodrigues de Sá	Manutenção de	Industrial Básica
	Máquinas	
	Industriais	A
	Mecânico de	Aprendizagem
Mirielly de Souza da Costa	Manutenção de	Industrial Básica
	Máquinas Industriais	
		Anyondinonon
Renan Belz Silvestre	Mecânico de	Aprendizagem Industrial Básica
	Manutenção de Máquinas	IIIuustriai Dasica
	Industriais	
	เก็นนอนาสเอ	

SUMÁRIO

1. APRESENTAÇÃO	3
2. JUSTIFICATIVA DO PROJETO E POTENCIAL DE MERCADO	3
3. OBJETIVOS	5
3.1 Objetivos Específicos	6
4. METODOLOGIA	7
4.1 Normas Regulamentadoras	7
4.2 Problema da Indústria	
5. VIABILIDADE TÉCNICA	9
5.1 VIABILIDADE ECONÔMICA	
6. RESULTADOS E CONCLUSÃO	11
7. REFERÊNCIAS	12

1. APRESENTAÇÃO

A inclusão social e profissional de Pessoas com Deficiência (PCDs) é uma necessidade urgente e um direito garantido por lei. Este projeto visa desenvolver e implementar um aplicativo educativo e acessível que permita a inclusão efetiva de PCDs em cursos preparatórios oferecidos pelo SENAI, com foco especial na formação técnica profissional em áreas como mecânica e manutenção de máquinas industriais.

Nosso propósito é garantir igualdade de acesso ao conhecimento, promovendo a capacitação técnica com o uso de recursos acessíveis, didáticos e interativos, respeitando a diversidade e as particularidades de cada indivíduo.

2. JUSTIFICATIVA DO PROJETO E POTENCIAL DE MERCADO

A inclusão de pessoas com deficiência (PCDs) ainda representa um dos principais desafios sociais e estruturais da sociedade contemporânea, especialmente em países em desenvolvimento como o Brasil. Apesar dos avanços legais estabelecidos pelas Leis nº 13.146/2015 (Estatuto da Pessoa com Deficiência) e nº 12.764/2012 (Política Nacional de Proteção dos Direitos da Pessoa com Transtorno do Espectro Autista), a efetivação desses direitos encontra inúmeros entraves práticos, como a escassez de políticas públicas eficientes, a carência de infraestrutura acessível e a ausência de tecnologias adaptadas às reais necessidades desse público (BRASIL, 2012; BRASIL, 2015). Diante desse cenário, propõe-se o desenvolvimento de um projeto inovador que visa suprir parte dessa lacuna social por meio da criação de uma solução tecnológica acessível, funcional e adaptada, que contribua de forma direta para a promoção da inclusão, da autonomia e da cidadania das pessoas

com deficiência.

A relevância desse projeto se justifica pelo cenário quantitativo e qualitativo apresentado por pesquisas recentes. Segundo a Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua), aproximadamente 18,6 milhões de brasileiros declararam ter algum tipo de deficiência, o que representa cerca de 8,9% da população com dois anos ou mais (IBGE, 2023). Ainda que o Censo Demográfico de 2022 tenha apontado um número um pouco menor 14,4 milhões de pessoas com deficiência (7,3% da população), a diferença entre os dados pode ser explicada pelos diferentes critérios metodológicos utilizados, o que reforça a necessidade de soluções mais eficientes que possam atender à ampla e diversa demanda dessa parcela populacional (IBGE, 2022).

O projeto proposto está em conformidade com os princípios dos Objetivos de Desenvolvimento Sustentável (ODS) da Organização das Nações Unidas, especialmente o objetivo 4, que trata da educação de qualidade, e o objetivo 10, que visa à redução das desigualdades (ONU, 2023). Além disso, a proposta dialoga diretamente com o conceito de acessibilidade universal, que não se limita à eliminação de barreiras físicas, mas inclui também aspectos tecnológicos, comunicacionais e atitudinais. Nesse sentido, a iniciativa visa não apenas criar um produto ou serviço, mas contribuir para a construção de uma sociedade mais justa, diversa e inclusiva.

No que diz respeito ao potencial de mercado, é importante destacar que a população com deficiência representa uma demanda significativa, historicamente negligenciada pelas empresas de tecnologia, educação e serviços. Este cenário, entretanto, tem se modificado gradualmente, impulsionado pela crescente consciência social, pelo aumento das exigências legais e pela evolução das práticas de responsabilidade corporativa. O mercado de soluções acessíveis se apresenta, portanto, como um campo em expansão e com grande potencial de retorno econômico e social, sobretudo considerando a escassez de produtos que sejam, ao mesmo tempo, tecnologicamente eficazes, financeiramente viáveis e verdadeiramente inclusivos.

Adicionalmente, observa-se uma crescente tendência global de valorização da diversidade e da inclusão, tanto no ambiente escolar quanto no corporativo, o que reforça o papel estratégico de projetos voltados a PCDs. Empresas que investem em soluções inclusivas não apenas fortalecem sua imagem institucional, mas também ampliam sua base de usuários, ao incluir um público que tradicionalmente tem sido deixado à margem do consumo e da inovação. Assim, o desenvolvimento de um produto acessível não representa apenas um ato de responsabilidade social, mas uma oportunidade concreta de inovação com impacto positivo e sustentável.

Dessa forma, o projeto não se limita à resolução de um problema pontual, mas propõe uma transformação estrutural no modo como a sociedade lida com a inclusão. Ao unir tecnologia, acessibilidade e propósito social, a iniciativa se alinha às demandas contemporâneas por equidade e inovação, consolidando-se como uma resposta pertinente, necessária e promissora diante de um dos desafios mais urgentes da atualidade.

3. OBJETIVOS

O objetivo geral do projeto *MEC PLAY* é desenvolver um aplicativo educacional inovador, voltado à promoção da segurança e da inclusão de pessoas com transtorno do espectro autista (TEA), visando sua preparação para o ingresso no mercado de trabalho. A iniciativa busca fornecer, de forma acessível e adaptada, conhecimentos básicos e técnicos necessários para o exercício de funções profissionais com segurança, autonomia e eficiência no ambiente corporativo.

3.1 Objetivos Específicos

Os objetivos específicos deste projeto consistem em desenvolver recursos pedagógicos digitais acessíveis, adaptar conteúdos técnicos de mecânica e manutenção de máquinas industriais às necessidades das pessoas com deficiência, criar módulos de capacitação alinhados ao mercado de trabalho, promover a autonomia dos usuários por meio da aprendizagem personalizada, testar o aplicativo em turmas do SENAI e ajustá-lo a partir do feedback recebido, além de assegurar a conformidade com normas nacionais e internacionais de acessibilidade digital, como a WCAG 2.1 e o eMAG.

4. METODOLOGIA

O projeto MEC PLAY seguirá uma metodologia participativa e iterativa, centrada nas necessidades reais de pessoas com Transtorno do Espectro Autista (TEA) no contexto da inclusão profissional.

A primeira etapa envolve o **levantamento de requisitos**, com entrevistas com pessoas com TEA, familiares, educadores e empresas, além de análise de referências sobre acessibilidade e neurodiversidade.

Na segunda etapa, será realizado o **co-design do aplicativo**, com oficinas colaborativas entre usuários autistas, especialistas em UX e profissionais de inclusão. Serão criados protótipos adaptados às particularidades cognitivas e sensoriais do público.

A terceira etapa foca no **desenvolvimento técnico**, utilizando metodologias ágeis e testes contínuos de usabilidade, priorizando a personalização da experiência de uso.

A quarta etapa será de **validação em campo**, com aplicação do aplicativo em escolas e empresas parceiras, para avaliar sua eficácia pedagógica e funcional em contextos reais de aprendizagem e trabalho.

Por fim, os dados coletados orientarão a etapa de **aprimoramento final**, garantindo que o produto atenda, de forma prática e acessível, à preparação profissional de pessoas com TEA.

4.1 Normas Regulamentadoras

A implementação do projeto observará legislações e normas de acessibilidade e inclusão, tais como a Lei nº 13.146/2015 (Estatuto da Pessoa com Deficiência), a Lei nº 8.213/1991 (Lei de Cotas) e a ABNT NBR 9050/2020. Também serão consideradas as Normas Regulamentadoras aplicáveis à saúde

e segurança no trabalho, especialmente a NR 17 (Ergonomia), a NR 1 (Disposições Gerais) e a NR 9 (Prevenção de Riscos). No âmbito digital, serão adotados os parâmetros internacionais da WCAG 2.1 e do eMAG, assegurando a plena acessibilidade da plataforma.

4.2 Problema da Indústria

A indústria da educação técnica enfrenta um desafio significativo relacionado à acessibilidade para pessoas com deficiência (PCDs). Segundo o Instituto Brasileiro de Geografia e Estatística (IBGE, 2019), cerca de 24% da população brasileira possui algum tipo de deficiência, e essa parcela da população encontra muitas barreiras no acesso a oportunidades educacionais e profissionais. O cenário é agravado pela falta de adaptações tecnológicas adequadas nas instituições de ensino, que limita a inclusão efetiva desses estudantes.

Além disso, a indústria educacional tradicional tem apresentado lentidão na adoção de recursos tecnológicos inclusivos. De acordo com Silva et al. (2021), a implementação de tecnologias assistivas ainda é incipiente, especialmente em ambientes técnicos e profissionalizantes, onde o foco tem sido mais voltado para métodos convencionais de ensino. A ausência de ferramentas que ofereçam acessibilidade real compromete a formação e a autonomia de PCDs, reduzindo sua competitividade no mercado de trabalho.

A realidade virtual (RV) surge como uma solução promissora para superar essas barreiras. Conforme pesquisa de Santos e Lima (2020), o uso da RV em educação proporciona um ambiente imersivo e adaptável que pode ser customizado para necessidades específicas, como audiodescrição, tradução em Libras e comandos de voz, facilitando o aprendizado de estudantes com diferentes tipos de deficiência. Contudo, sua aplicação ainda é limitada pela falta de investimentos e pela baixa incorporação em programas públicos de educação técnica.

Portanto, a indústria educacional encontra-se diante de uma demanda urgente por soluções inovadoras que promovam a inclusão de PCDs, garantindo igualdade de oportunidades e preparando profissionais qualificados para o mercado. O MEC Play, ao aliar realidade virtual e recursos acessíveis, busca atender essa lacuna e contribuir para uma educação técnica mais justa e inclusiva.

5. VIABILIDADE TÉCNICA

A levantadora de manilha manual é um dispositivo que eleva e transporta manilhas usando uma estrutura de suporte, sistema de alavanca ou polia, e ganchos para fixação.

Levantadora de Manilha		
VANTAGENS	DESVANTAGENS	
Eficiência no Manuseio	Esforço Físico	
Segurança	Dependência de Operadores	
Simplicidade de Operação	Tempo de Montagem	
Custo-Benefício	Durabilidade Limitada	
Facilidade de Transporte	Limitação de Carga	
Versatilidade	Manutenção Regular Necessária	
PONTOS FRACOS	PONTOS FORTES	
Limitação de Capacidade de Carga	Eficiência no Manuseio	
Esforço Físico Sustentado	Segurança Aumentada	
Dificuldade em Espaços Restritos	Custo-Benefício	
Dependência de Treinamento	Portabilidade e Facilidade de Uso	

Tabela 01: Vantagens e Desvantagens do Produtos

A viabilidade técnica da levantadora de manilha depende de um projeto robusto que suporte as cargas, uso de materiais resistentes e conformidade com normas de segurança. É essencial treinar operadores, implementar manutenção preventiva e realizar uma análise de custo-benefício para garantir eficiência e segurança nas operações de içamento.

Os técnicos que se beneficiam do uso de levantadoras de manilhas incluem engenheiros civis, que utilizam os equipamentos para otimizar a instalação de manilhas em obras de infraestrutura. Técnicos em saneamento também se beneficiam, pois as levantadoras são essenciais para a instalação e manutenção de redes de esgoto.

Os técnicos de manutenção aproveitam as levantadoras para realizar reparos e substituições com mais agilidade e segurança. Além disso, operadores de máquinas se beneficiam da ergonomia melhorada e da redução do esforço físico. Por fim, profissionais de logística que gerenciam a movimentação de materiais em canteiros de obras também são impactados positivamente, já que a eficiência na movimentação das manilhas pode otimizar a operação e reduzir custos. Assim, as levantadoras de manilhas têm um impacto positivo em diversas funções dentro da construção e saneamento.

5.1 VIABILIDADE ECONÔMICA

Para operar eficientemente, a empresa requer materiais de qualidade, como aço e componentes mecânicos, além de ferramentas adequadas e mão de obra especializada em design e montagem. Os custos operacionais incluem investimentos no desenvolvimento e na comercialização dos produtos, que são essenciais para a promoção e venda. A margem de lucro é definida com base nos custos totais, garantindo um preço de venda competitivo. As receitas geradas pelas vendas são fundamentais para a sustentabilidade do negócio, e a margem de contribuição ajuda a avaliar a viabilidade financeira de cada unidade vendida.

ESTRUTURA DE CUSTOS			
PRODUTO	VALOR		
Desenvolvimento	R\$ 11.000,00		
(materiais, mão de obra, ferramentas,			
testes)			
Comercialização	R\$ 4.000,00		

(marketing, logística, suporte)	
TOTAL	R\$ 15.000,00

Tabela 02: Estrutura de Custos do Gerenciador de desempenho

O projeto da levantadora de manilhas envolve custos operacionais detalhados, com um custo de desenvolvimento estimado em R\$11.000,00. Esse valor inclui os gastos com materiais, mão de obra, ferramentas e testes necessários para a criação do produto. Além disso, os custos de comercialização são de R\$4.000,00, que cobrem marketing, logística e suporte ao cliente. Assim, o custo total do projeto é de R\$15.000,00.

Em relação à margem de lucro e ao preço de venda, o projeto contempla uma margem de lucro de R\$4.500,00, representando 30% do custo total. O preço de venda por unidade é definido em R\$1.950,00, considerando a produção de 10 unidades. Isso gera uma receita total de R\$19.500,00 com a venda das 10 unidades.

Quanto ao lucro, o projeto prevê um retorno de R\$4.500,00, com uma margem de contribuição de R\$450,00 por unidade, o que corresponde a 23% do preço de venda. Este modelo financeiro permite que o projeto se mostre rentável e com um bom potencial de lucro.

6. RESULTADOS E CONCLUSÃO

O projeto MEC Play pretende disponibilizar um aplicativo educacional acessível e inclusivo, capaz de reduzir barreiras no acesso à educação técnica e ampliar as oportunidades de inserção profissional de pessoas com deficiência. Espera-se também promover práticas pedagógicas mais inclusivas nas instituições de ensino e fortalecer a responsabilidade social corporativa,

consolidando-se como referência em acessibilidade digital aplicada à formação técnica. Nesse sentido, o MEC Play configura-se como uma solução inovadora que integra tecnologia e acessibilidade para promover inclusão educacional e profissional, representando não apenas um recurso tecnológico, mas uma iniciativa estratégica alinhada à legislação vigente e aos Objetivos de Desenvolvimento Sustentável, com potencial de gerar impactos positivos, sustentáveis e duradouros na construção de uma sociedade mais justa e inclusiva.

7. REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 9050: Acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos**. Rio de Janeiro: ABNT, 2020.

BRASIL. **Lei nº 8.213, de 24 de julho de 1991**. Dispõe sobre os Planos de Benefícios da Previdência Social e dá outras providências. Diário Oficial da União: Brasília, DF, 25 jul. 1991.

BRASIL. **Lei nº 12.764, de 27 de dezembro de 2012**. Institui a Política Nacional de Proteção dos Direitos da Pessoa com Transtorno do Espectro Autista. Diário Oficial da União: Brasília, DF, 28 dez. 2012.

BRASIL. **Lei nº 13.146, de 6 de julho de 2015**. Institui a Lei Brasileira de Inclusão da Pessoa com Deficiência (Estatuto da Pessoa com Deficiência). Diário Oficial da União: Brasília, DF, 7 jul. 2015.

BRASIL. Ministério da Economia. Secretaria de Trabalho. **Norma Regulamentadora nº 1 – Disposições Gerais e Gerenciamento de Riscos Ocupacionais**. Brasília, DF, 2020.

BRASIL. Ministério da Economia. Secretaria de Trabalho. **Norma Regulamentadora nº 9 – Programa de Prevenção de Riscos Ambientais (PPRA)**. Brasília, DF, 2020.

BRASIL. Ministério da Economia. Secretaria de Trabalho. **Norma Regulamentadora nº 17 – Ergonomia**. Brasília, DF, 2020.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Censo Demográfico 2022: características da população com deficiência**. Rio de Janeiro: IBGE, 2022.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Pesquisa Nacional por Amostra de Domicílios Contínua – PNAD Contínua 2023**. Rio de Janeiro: IBGE, 2023.

NAÇÕES UNIDAS (ONU). **Objetivos de Desenvolvimento Sustentável (ODS): Relatório 2023**. Nova lorque: ONU, 2023.

W3C BRASIL. Cartilha de Acessibilidade na Web: Diretrizes de Acessibilidade para Conteúdo Web (WCAG 2.1) e Modelo de Acessibilidade em Governo Eletrônico (eMAG). São Paulo: Comitê Gestor da Internet no Brasil, 2020.

ANEXOS A- CANVAS DE MODELO DE NEGÓCIOS

ANEXO B - Link do Elevator Pitch, publicado (como não listado) no site www.youtube.com:

ANEXO C - IMAGENS DO PROTÓTIPO DE ALTA FIDELIDADE

