QUIZ -2

Theory of Computation

14/9/2017

- 1. [4 marks] Let $L_1, L_2 \subseteq \Sigma^*$. Are the following statements true/false. Argue why.
 - (a) If $L_1 \subseteq L_2$ then \equiv_{L_1} refines \equiv_{L_2}
 - (b) If $L_1 \subseteq L_2$ then \equiv_{L_2} refines \equiv_{L_1}
 - (c) If the minimal DFA for L_1 has fewer states than that of L_2 then \equiv_{L_1} refines \equiv_{L_2}
 - (d) If the minimal DFA for L_1 has fewer states than that of L_2 then \equiv_{L_2} refines \equiv_{L_1}
- 2. [2 marks] Let $L_1 = \{a^nb^n \mid n \geq 0\}$ and $L_2 = \{w \mid w \text{ has equal number of } a\text{'s and } b\text{'s }\}$. How does \equiv_{L_1} and \equiv_{L_2} compare with respect to the refinement relation.
- 3. [4 marks] Is the following language regular? If yes, provide the Nerode automaton, and a proof of non-regularity otherwise.
 - $L = \{w \mid w = uv = vu \text{ for some } u, v \in \Sigma^* \setminus \{\epsilon\}\}$