Data on Death Registrations Illustrates Issues with Ontario's Records Maintenance*

Chloe Thierstein

24 January 2023

First sentence. Second sentence. Third sentence. Fourth sentence. - The abstract should be three or four sentences. The abstract must tell the reader the top-level finding. What is the one thing that we learn about the world because of this paper?

Introduction

two or three paragraphs of content. and there should be an additional final paragraph that sets out the remainder of the paper

You can and should cross-reference sections and sub-sections. For instance, Section @ref(data). Quarto automatically makes the sections lower case and adds a dash to spaces to generate labels, for instance, Section @ref(first-discussion-point).

During the period of 2011 and 2020, it is estimated that on average just under 100 thousand people died each year in Ontario, Canada (Statistics Canada n.d.). The province of Ontario represents the location of a large portion of deaths in Canada as it takes on an estimated 37% of all deaths in Canada from 2011-2020 (Statistics Canada n.d.). From 2011 to 2020, the population in Ontario has grown from over 13 million to just under 15 million (Statistics Canada n.d.). Significantly, the city of Toronto makes up approximately 44% of the population of Ontario (Statistics Canada n.d.).

In this paper I will be analyzing death registry data from four civic centers in the greater Toronto area, Etobicoke, North York, and Scarborough. First, I will compare rates of death

^{*}Code and data are available at: https://github.com/cthierst/death_registry_analysis.git.

registration from these civic centers over the period of 2011-2020. Next, I will compare rates of death registration against place of death in order to discuss the rate of deaths inside and outside the Toronto city limits. Finally, I will discuss trends in death registrations from each civic center.

Data

data section should thoroughly and precisely discuss the source of the data and the bias this brings (ethical, statistical, and otherwise). comprehensively describe and summarize the data using text, graphs, and tables must be made iwth knitr or gt. graphs must show the actual data, or as close to it as possible, not summary statistics. (Graphs and tables should be cross-references in the text e.g., 'Table 1 shows...')

Analysis for this paper utilizes R the statistical programming language (R Core Team 2020), along with several packages. These packages are, tidyverse (Wickham et al. 2019), janitor (Firke 2021), and dplyr (Wickham et al. 2022). The data I am analyzing come from Open Data Toronto and it is imported using the opendatatoronto package (Gelfand 2022). All figures in this paper have been created using ggplot2 (Wickham 2016) and the tables have been created with knitr (Xie 2023) and kableExtra (Zhu 2021), packages. The color styles in my graph were created by using the RColorBrewer (Neuwirth 2022) package and any graph combinations were made using the Patchwork (Pedersen 2022) package.

The data I am analyzing comes from Registry Services staff located in three of the civic centers (Etobicoke, North York, Scarborough) and

"This dataset includes information relating to the registration of deaths documented by Registry Services staff located in four of the civic centres (Scarborough, North York, Toronto and Etobicoke). Registration of death data is entered into the Registry Services Tracking System (RSTS), from which aggregate statistical information is generated to create the dataset. The dataset resides in an Oracle database in the City's environment.

The data I am analyzing comes from death registrations which are entered into the Registry Services Tracking System (RSTS) by Registry Services staff located at three of the civic centres (Etobicoke, North York, Scarborough).

Open Data Toronto (2023)

The dataset is created in support of the Vital Statistics Act, which is a Provincial legislation. The dataset also supports the City's operational requirements and business functions." (Gelfand 2022)

"_id = unique row identifier for Open Data database civic_centre = civic centre code death licenses = number of deaths registered in the month place_of_death = place where death occurred

 $time_period = month\ death\ registered"\ (Gelfand\ 2022)$

(Figure 1)

Figure 1: Death Licenses Given Out by Month from 2016-2020 at Three Toronto Civic Centres

Figure 2: Death Licenses Given Out by All Civic Centres Yearly From 2016-2020

Figure 3: Death Licenses Given Out by Each Civic Centre Yearly and Monthly Over the Period of 2016-2020

Month	Average Number of Deaths						
	2016	2017	2018	2019	2020		
Jan	342	360	372	346	358		
Feb	264	276	275	259	250		
Mar	275	281	285	269	237		
Apr	236	209	211	237	273		
May	315	320	329	320	403		
Jun	236	238	235	253	196		
Jul	223	250	263	275	235		
Aug	241	239	211	230	210		
Sep	248	225	251	236	185		
Oct	281	275	275	278	226		
Nov	348	351	340	356	280		
Dec	229	209	233	228	217		
	Average Number of Deaths						
Month	2016	2017	2018	2019	2020		
Jan	350	366	376	371	359		
Feb	266	269	272	289	262		
Mar	275	281	273	284	244		
Apr	273	262	261	268	299		
3. r	202	200	400	000	416		

May

Jun

Jul

Aug

 $\overline{\mathrm{Sep}}$

Oct

Nov

Dec

	Average Number of Deaths					
Month	2016	2017	2018	2019	2020	
Jan	291	323	330	303	293	
Feb	210	214	236	222	193	
Mar	224	221	235	225	182	
Apr	184	164	155	180	189	
May	246	250	259	268	372	
Jun	194	193	199	179	180	
Jul	176	186	194	211	209	
Aug	199	195	165	172	186	
Sep	198	181	194	170	135	
Oct	183	192	205	176	160	
Nov	194	200	204	220	233	
Dec	165	139	151	184	189	

References

- Firke, Sam. 2021. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://CRAN.R-project.org/package=janitor.
- Gelfand, Sharla. 2022. Opendatatoronto: Access the City of Toronto Open Data Portal. https://CRAN.R-project.org/package=opendatatoronto.
- Neuwirth, Erich. 2022. RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer.
- Open Data Toronto. 2023. "Death Registry Statistics." City of Toronto Open Data Portal. https://open.toronto.ca/dataset/death-registry-statistics/.
- Pedersen, Thomas Lin. 2022. Patchwork: The Composer of Plots. https://CRAN.R-project.org/package=patchwork.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Statistics Canada. n.d. "Table 17-10-0008-01 Estimates of the Components of Demographic Growth, Annual." https://doi.org/10.25318/1710000801-eng.
- ——. n.d. "Table 17-10-0135-01 Population Estimates, July 1, by Census Metropolitan Area and Census Agglomeration, 2016 Boundaries." https://doi.org/10.25318/1710013501-eng.
- Wickham, Hadley. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.
- Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2022. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
- Xie, Yihui. 2023. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.org/knitr/.
- Zhu, Hao. 2021. kableExtra: Construct Complex Table with 'Kable' and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.