TRIGONOMETRY

ADVISORY

Del gráfico, efectúe A = DH - DV.

Sean los puntos $A(x_1, y_1)$ y $B(x_2, y_2)$

Además: $x_1 > x_2$ y $y_1 > y_2$

se cumple: $DH = x_1 - x_2$ $DV = y_1 - y_2$

$$DV = y_1 - y_2$$

RESOLUCIÓN:

Calculando distancia horizontal (DH):

$$DH = (2) - (-3)$$
 $DH = 5$

Calculando distancia vertical (DV):

$$DV = (4) - (-3)$$

Nos piden:

$$A = DH + DV$$

$$\rightarrow$$
 A = 5 – 7

$$\therefore A = -2$$

Del gráfico, calcule tanß. **(4; 6)** DV (-5; -2)DH Recordar Sean los puntos $A(x_1, y_1)$ y $B(x_2, y_2)$ Además: $x_1 > x_2$ y y_1

se cumple: $DH = x_1 - x_2$ $DV = y_1 - y_2$

RESOLUCIÓN:

• Calculando distancia vertical (Py); = (6) – (–2)

• Calculando distancia horizontal (DH):

$$DH = (4) - (-5)$$

Nos
piden:
$$tan\beta \frac{DV}{DH} = \frac{8}{9}$$
 $tan\beta \frac{8}{9}$

Del gráfico, calcule la longitud de AB

d (
$$\overline{PQ}$$
) = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

RESOLUCIÓN:

Calculando distancia entre los puntos A y B:

d
$$(\overline{AB}) = \sqrt{[(-5) - (7)]^2 + [(4) - (-5)]^2}$$

d
$$(\overline{AB}) = \sqrt{[(-12)]^2 + [(9)]^2}$$

$$d(\overline{AB}) = \sqrt{144 + 81}$$

$$d(\overline{AB}) = \sqrt{225}$$

$$\therefore d(\overline{AB}) = 15u$$

Del gráfico, calcule la longitud del radio vector (r)

Recordar:

Sea el punto A(x; y) y O el origen de coordenadas

se cumple:

$$r = \sqrt{(x)^2 + (y)^2}$$

RESOLUCIÓ

culando el radio vector del punto P:

$$r = \sqrt{\left(-\sqrt{13}\right)^2 + \left(-\sqrt{12}\right)^2}$$

$$r = \sqrt{13 + 12}$$

$$r = \sqrt{25}$$

$$\therefore r = 5$$

Del gráfico, efectúe K = (x)(y)

• B(5; 18)

M(x; y)

$$A(-11;-4)$$

Recordar:

Siendo M(x,y) punto medio del segmento AB

$$x = \frac{x_1 + x_2}{2}$$
 $y = \frac{y_1 + y_2}{2}$

RESOLUCIÓN:

Calculando las coordenadas del punto M:

Así:
$$x = \frac{-11+5}{2} \implies x = -3$$
$$y = \frac{-4+18}{2} \implies y = 7$$

Piden:
$$K = (x)(y)$$

 $\rightarrow K = (-3)(7)$

Del gráfico, efectúe R = x-y (M es punto medio de CD).

Siendo M(x,y) punto medio del segmento AB

Se cumple:

$$\mathbf{x} = \frac{x_1 + x_2}{2}$$
 $\mathbf{y} = \frac{y_1 + y_2}{2}$

RESOLUCIÓN:

Calculando las coordenadas del punto B:

Así:
$$\begin{cases} 8 = \frac{2+x}{2} & \longrightarrow x = 14 \\ 4 = \frac{5+y}{2} & \longrightarrow y = 3 \end{cases}$$

Piden: R = x - y

$$\rightarrow R = (14) - (3)$$

$$R = 11$$

Del gráfico, efectúe

$$E = \underset{(-15)}{\text{sepa}} + \underset{(-15)}{\text{cosa}}$$

$$8)$$

$$r = 17$$

Recordar:

$$sen \alpha = \frac{y}{r}$$
 $cos \alpha = \frac{x}{r}$

RESOLUCIÓN:

· Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-15)^2 + 8^2}$$

$$r = \sqrt{225 + 64}$$

$$r = \sqrt{289} \qquad \Rightarrow r = 17$$

$$r = 17$$

$$x = -15$$
 $y = 8$ $r = 17$

Piden: $E = sen\alpha + cos\alpha$

⇒
$$E = \frac{8}{17} + \frac{-15}{17}$$
 ∴ $E = -\frac{7}{17}$

$$\therefore E = -\frac{7}{17}$$

Del gráfico, efectúe $M = tan\beta.cos\beta$

Recordar:

$$\tan \beta = \frac{y}{x}$$

$$\cos \beta = \frac{x}{r}$$

<u>RESOLUCIÓN:</u>

Calculando el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(\sqrt{15})^2 + (-1)^2}$$

$$r = \sqrt{15 + 1} = \sqrt{16} \implies r = 4$$

$$x = \sqrt{15}$$
 $y = -1$ $r = 4$

Piden: $M = tan\beta.cos\beta$

$$M = \left(\frac{-1}{\sqrt{15}}\right)\left(\frac{\sqrt{15}}{4}\right) \quad \therefore M =$$

Del gráfico, si tan $\alpha \frac{1}{3}$

hale el valor de n. (5n-1;

Recordar:

RESOLUCIÓN

: Del

$$9tantieon+1 5n-1$$

. Del dato:

$$\tan\alpha = \frac{1}{3}$$
(II)

De (I) y

$$\frac{\binom{n+1}{1}}{5n-1} = \frac{1}{3} \implies 3n+3 = 5n-1$$

$$4 = 2n$$

$$\therefore$$
 n = 2

Para saber cuál fue la nota de Gerald en su examen de trigonometría, deberás resolver lo siguiente:

A =
$$\sqrt{34}$$
(sen α + cos α).

Sabiendo que le falta A puntos para llegar a la nota 20, ¿cuál fue la nota de Gerald?

RESOLUCIÓN:

· Hallando las coordenadas de

$$M \begin{cases} x = \frac{-4-2}{2} = -3 \\ y = \frac{4+6}{2} = 5 \end{cases} \Rightarrow M = (-3;5)$$

Calculando radio vector de

$$r = \sqrt{(x)^2 + (y)^2} \qquad r = \sqrt{(-3)^2 + 5^2}$$

$$r = \sqrt{34}$$

$$A = \sqrt{34} \left(\frac{5}{\sqrt{34}} + \left(\frac{\sqrt{34}}{\sqrt{34}} \right) \right) A = 2$$

Gerald tuvo 18 de nota