

General Description:

CS630 A4H, the silicon N-channel Enhanced VDMOSFETs, is obtained by the self-aligned planar Technology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. The transistor can be used in various power switching circuit for system miniaturization and higher efficiency. The package form is TO-252, which accords with the RoHS standard.

	4			
Fe	ภา	111	•es	٠

- I Fast Switching
- I Low ON Resistance(Rdson≤0.28Ω)
- I Low Gate Charge (Typical Data:13nC)
- I Low Reverse transfer capacitances(Typical:10pF)
- 1 100% Single Pulse avalanche energy Test

Applications:

Automotive DC Motor Control and Class D Amplifier. **Absolute** (Tc= 25 °C unless otherwise specified):

$V_{ m DSS}$	200	V
I_D	9	A
$P_D(T_C=25^{\circ}C)$	83	W
$R_{DS(ON)Typ}$	0.23	Ω

Symbol	Parameter	Rating	Units
V_{DSS}	Drain-to-Source Voltage	200	V
т	Continuous Drain Current	9	A
I_{D}	Continuous Drain Current T _C = 100 °C	5.5	A
I_{DM}^{a1}	Pulsed Drain Current	36	A
V_{GS}	Gate-to-Source Voltage	±30	V
E_{AS}^{a2}	Single Pulse Avalanche Energy	460	mJ
E _{AR} a1	Avalanche Energy ,Repetitive	50	mJ
I _{AR} a1	Avalanche Current	3.2	A
dv/dt ^{a3}	Peak Diode Recovery dv/dt	5.0	V/ns
	Power Dissipation	83	W
$P_{\rm D}$	Derating Factor above 25°C	0.67	W/℃
T _J , T _{stg}	Operating Junction and Storage Temperature Range	150, -55 to 150	$^{\circ}\!\mathbb{C}$
$T_{\rm L}$	Maximum Temperature for Soldering	300	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (Tc= 25 °C unless otherwise specified):

OFF Characteristics						
Symbol	Parameter	Test Conditions		Rating		
Symbol	r ai anietei	Test Conditions	Min.	Тур.	Max.	Units
V_{DSS}	Drain to Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	200			V
$\Delta BV_{\rm DSS}/\Delta T_{\rm J}$	Bvdss Temperature Coefficient	ID=250uA,Reference25℃		0.21		V/°C
		$V_{DS} = 200 \text{V}, V_{GS} = 0 \text{V},$ $T_a = 25 ^{\circ}\text{C}$			1	
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = 160V, V_{GS} = 0V,$ $T_a = 125$ °C			100	μA
$I_{GSS(F)}$	Gate to Source Forward Leakage	V _{GS} =+30V			100	nA
$I_{GSS(R)}$	Gate to Source Reverse Leakage	V _{GS} =-30V			-100	nA

ON Characteristics							
Symbol	Parameter	Test Conditions Ratio		Rating		Units	
Symbol	rarameter	Test Conditions	Min.	Тур.	Max.	Units	
$R_{DS(ON)}$	Drain-to-Source On-Resistance	V _{GS} =10V,I _D =5.4A		0.23	0.28	Ω	
$V_{GS(TH)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ 2.0 4.0 V							
Pulse width tp≤300μs,δ≤2%							

Dynamic Characteristics						
Symbol	Parameter	Test Conditions		Rating		
Symbol	rarameter	Test Collutions	Min.	Тур.	Max.	Units
g_{fs}	Forward Trans conductance	V_{DS} =25V, I_{D} =5.4A		9.5		S
C _{iss}	Input Capacitance			600		
C_{oss}	Output Capacitance	$V_{GS} = 0V V_{DS} = 25V$ f = 1.0MHz		90		pF
C _{rss}	Reverse Transfer Capacitance			10		

Resistive Switching Characteristics						
Carrala a 1	Parameter	Test Conditions		Rating		
Symbol	1 Parameter Test Conditions		Min.	Тур.	Max.	Units
$t_{\rm d(ON)}$	Turn-on Delay Time			10		
tr	Rise Time	$I_{D} = 9A$ $V_{DD} = 100V$		21		nc
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{GS} = 10V$ $R_G = 12\Omega$		24		ns
t_{f}	Fall Time			17		
$Q_{\rm g}$	Total Gate Charge			13		
Q_{gs}	Gate to Source Charge	$I_D = 9A V_{DD} = 100V$ $V_{GS} = 10V$		4		nC
Q_{gd}	Gate to Drain ("Miller")Charge			4.5		

Source-Drain Diode Characteristics						
C11	Parameter	Test Conditions		Rating		TT
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I_S	Continuous Source Current (Body Diode)				9	A
I_{SM}	Maximum Pulsed Current (Body Diode)				36	A
V_{SD}	Diode Forward Voltage	I _S =9A,V _{GS} =0V			1.5	V
trr	Reverse Recovery Time	$I_S = 9A, T_j = 25^{\circ}C$		120		ns
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						nC
Pulse width tp $\leq 300 \mu s, \delta \leq 2\%$						

Symbol	Parameter	Typ.	Units
$R_{ heta JC}$	Junction-to-Case	1.51	°C/W
$R_{\theta JA}$	Junction-to-Ambient	62.5	°C/W

 $[\]label{eq:continuous} \begin{array}{ll} ^{a1}\colon & \text{Repetitive rating; pulse width limited by maximum junction temperature} \\ ^{a2}\colon & L{=}10.0\text{mH}, \text{ }I_{D}{=}9.6\text{A}, \text{ Start } \text{ }T_{J}{=}25\,^{\circ}\text{C} \\ ^{a3}\colon & \text{ }I_{SD}{=}9\text{A}, \text{di/dt} \leq 100\text{A/us}, \text{V}_{DD}{\leq}B\text{V}_{DS}, \text{ Start } \text{ }T_{J}{=}25\,^{\circ}\text{C} \\ \end{array}$

Characteristics Curve:

Maximum Power Dissipation Figure 2. vs Case Temperature 100 P_D, Power Dissipation (W) 80 60 40 20 0 25 100 125 150 T_C, Case Temperature (°C)

Figure 4. Typical Output Characteristics

Figure 5. Typical Drain-to-Source ON Resistance vs Gate Voltage and Drain Current

Figure 6. Maximum Peak Current Capability

Figure 7. Typical Transfer Characteristics

Figure 8. Unclamped Inductive **Switching Capability**

Figure 9. Typical Drain-to-Source ON Resistance vs Drain Current

Figure 10. Typical Drain-to-Source ON Resistance vs Junction Temperature

Figure 11. Typical Breakdown Voltage vs Junction Temperature

Figure 12. Typical Threshold Voltage vs Junction Temperature

Figure 13. Maximum Forward Bias Safe **Operating Area**

Figure 14. Typical Capacitance vs Drain-to-Source Voltage

Figure 15. Typical Gate Charge vs Gate-to-Source Voltage

Figure 16. Typical Body Diode Transfer Characteristics

Test Circuit and Waveform

Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveform

Figure 19. Resistive Switching Test Circuit

Figure 20. Resistive Switching Waveforms

Figure 21. Diode Reverse Recovery Test Circuit

Figure 22. Diode Reverse Recovery Waveform

Figure 23. Unclamped Inductive Switching Test Circuit

Figure 24. Unclamped Inductive Switching Waveforms

Package Information:

Itoma	Values(mm)			
Items	MIN	MAX		
A	6.30	6.90		
A1	0	0.13		
В	5.70	6.30		
С	2.10	2.50		
D	0.30	0.60		
E1	0.60	0.90		
E2	0.70	1.00		
F	0.30	0.60		
G	0.70	1.00		
L1	9.60	10.30		
L2	2.70	3.10		
Н	0.60	1.00		
M	5.10	5.50		
N	2.09	2.49		
R	0	.3		
T	1.40	1.60		
Y	5.10	6.30		

TO-252 Package

The name and content of poisonous and harmful material in products

Part's Name		Hazardous Substance						
Tart 5 I varie	Pb	Hg	Cd	Cr(VI)	PBB	PBDE		
Limit	≤0.1%	≤0.1%	≤0.01%	⊴0.1%	≤0.1%	≤0.1%		
Lead Frame	0	0	0	0	0	0		
Molding Compound	0	0	0	0	0	0		
Chip	0	0	0	0	0	0		
Wire Bonding	0	0	0	0	0	0		
Solder	×	0	0	0	0	0		
	o: means the	e hazardous ma	nterial is under	the criterion of	SJ/T11363-20	006.		
Note	×: means the hazardous material exceeds the criterion of SJ/T11363-2006.							
Note	The plumbum element of solder exist in products presently, but within the allowed							
	range of Eurogroup's RoHS.							

Warnings

- 1. Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximum ratings of the device.
- 2. When installing the heatsink, please pay attention to the torsional moment and the smoothness of the heatsink.
- 3. VDMOSFETs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- This publication is made by Huajing Microelectronics and subject to regular change without notice.

WUXI CHINA RESOURCES HUAJING MICROELECTRONICS CO., LTD.

Add: No.14 Liangxi RD. Wuxi, Jiangsu, China Mail:214061 http://www.crhj.com.cn

Tel: +86 0510-85807228 Fax: +86- 0510-85800864

Marketing Part: Post: 214061 Tel: +86 0510-81805277/81805336

Fax: +86 0510-85800360/85803016

E-mail: sales@hj.crmicro.com

Application and Service: Post: 214061 Tel/Fax: +86-0510-81805243/81805110