Class5

Courtney Cameron PID: A69028599

Graphic systems in R

Base R graph

plot(cars)

ggplot2 graph

library(ggplot2)

Warning: package 'ggplot2' was built under R version 4.2.3

each graph needs 3 layers:

- data
- aes
- geoms

```
ggplot(cars, aes(x=speed, y=dist)) +
  geom_point()
```



```
ggplot(cars, aes(x=speed, y=dist)) +
  geom_point() +
  geom_smooth() +
  labs(title = 'Stopping Distance of Old Cars') +
  theme_bw()
```

 $geom_smooth()$ using method = 'loess' and formula = 'y ~ x'

Stopping Distance of Old Cars


```
p <- ggplot(cars, aes(x=speed, y=dist)) +
    geom_point()

p + geom_smooth(method = 'lm', se = FALSE)</pre>
```

[`]geom_smooth()` using formula = 'y ~ x'

library(patchwork)

Warning: package 'patchwork' was built under R version 4.2.3

 $p \mid p$

 $\# Adding \ more \ plot \ aestethics \ through \ aes()$

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

```
[1] "Gene"
                 "Condition1" "Condition2" "State"
  ncol(genes)
[1] 4
  table(genes$State)
      down unchanging
                              up
        72
                 4997
                              127
  round(table(genes$State)/nrow(genes)*100,2)
      down unchanging
      1.39
                96.17
                            2.44
  p2<- ggplot(genes, aes(x=Condition1, y=Condition2, col = State)) +</pre>
    geom_point()
  p2
```


p2 + scale_color_manual(values = c('red','grey','blue'))


```
p2 + scale_color_manual(values=c('red','grey','blue')) +
   labs(title= 'Gene Expression Changes Upon Drug Treatment', x= 'Control (no drug)', y='Dr
```

Gene Expression Changes Upon Drug Treatment

#Using plotly to generate annotated graphs

```
library(plotly)
```

Warning: package 'plotly' was built under R version 4.2.3

```
p3 <- ggplot(genes, aes(x=Condition1, y=Condition2, col = State, name = Gene)) + geom_point scale_color_manual(values=c('red','grey','blue')) + labs(title= 'Gene Expression Changes Upon Drug Treatment', x= 'Control (no drug)', y='Drug Treatment', x='Drug Treatment', x='Drug
```

#Going Further

#ggplotly(p3)

```
# File location online
  url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
  gapminder <- read.delim(url)</pre>
  head(gapminder)
      country continent year lifeExp
                                         pop gdpPercap
                 Asia 1952 28.801 8425333 779.4453
1 Afghanistan
2 Afghanistan Asia 1957 30.332 9240934 820.8530
3 Afghanistan Asia 1962 31.997 10267083 853.1007
                  Asia 1967 34.020 11537966 836.1971
4 Afghanistan
                  Asia 1972 36.088 13079460 739.9811
5 Afghanistan
              Asia 1977 38.438 14880372 786.1134
6 Afghanistan
  library(dplyr)
Warning: package 'dplyr' was built under R version 4.2.3
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  gapmainder_2007 <- gapminder %>% filter(year==2007)
  ggplot(gapmainder_2007, aes(x=gdpPercap, y=lifeExp)) +
    geom_point(alpha=0.4)
```


ggplot(gapmainder_2007, aes(x=gdpPercap, y=lifeExp, col=continent, size=pop)) +
 geom_point(alpha = 0.5)


```
ggplot(gapmainder_2007, aes(x=gdpPercap, y=lifeExp, col=pop)) +
  geom_point(alpha = 0.8)
```



```
ggplot(gapmainder_2007, aes(x=gdpPercap, y=lifeExp,size=pop)) +
geom_point(alpha = 0.5)
```



```
ggplot(gapmainder_2007, aes(x=gdpPercap, y=lifeExp,size=pop)) +
  geom_point(alpha = 0.5) +
  scale_size_area(max_size = 10)
```


#gapmider 1957 data

```
gapminder_1957 <- gapminder %>% filter(year==1957)

ggplot(gapminder_1957, aes(x=gdpPercap, y=lifeExp, col=continent,size=pop)) +
  geom_point(alpha=0.7) +
  scale_size_area(max_size = 10) +
  labs(title='1957')
```


#Using Facet_wrap to combine graphs of the same data set

```
gapminder_1957_2007 <- gapminder %>% filter(year==1957|year==2007)

ggplot(gapminder_1957_2007, aes(x=gdpPercap, y=lifeExp, col=continent,size=pop)) +
geom_point(alpha=0.7) +
scale_size_area(max_size = 10) +
facet_wrap(~year)
```


#Bar charts

Sort to have the top 5 based on population

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                              pop gdpPercap
1
          China
                     Asia 2007 72.961 1318683096
                                                   4959.115
2
          India
                                64.698 1110396331
                     Asia 2007
                                                   2452.210
3 United States Americas 2007
                                78.242
                                        301139947 42951.653
4
                                70.650
      Indonesia
                     Asia 2007
                                        223547000
                                                    3540.652
5
         Brazil Americas 2007
                                72.390
                                        190010647
                                                   9065.801
```

```
ggplot(gapminder_top5, aes(x=country, y=pop)) +
  geom_col()
```


ggplot(gapminder_top5, aes(x=country, y=lifeExp)) +
geom_col()


```
ggplot(gapminder_top5, aes(x=country, y=lifeExp, fill=continent)) +
geom_col()
```


ggplot(gapminder_top5, aes(x=country, y=lifeExp, fill=lifeExp)) +
geom_col()

ggplot(gapminder_top5, aes(x=country, y=pop, fill = gdpPercap)) +
 geom_col()


```
ggplot(gapminder_top5, aes(x=reorder(country, -pop), y=pop, fill = gdpPercap)) +
  geom_col()
```



```
ggplot(gapminder_top5, aes(x=reorder(country, -pop), y=pop, fill=country))+
  geom_col(col='grey30') +
  guides(fill='none')
```


#Flipping bar charts

head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames((USArrests))

ggplot(USArrests, aes(x=reorder(State,Murder), y=Murder)) +
   geom_col() +
   coord_flip()</pre>
```



```
ggplot(USArrests, aes(x=reorder(State,Murder), y=Murder)) +
  geom_point() +
  coord_flip()+
  geom_segment(aes(x=State, xend=State, y=0, yend=Murder,),col='blue')
```


#Extensions: Animations graph is commented out for pdf format

```
library(gapminder)
```

Warning: package 'gapminder' was built under R version 4.2.3

Attaching package: 'gapminder'

The following object is masked _by_ '.GlobalEnv': gapminder

library(gganimate)

Warning: package 'gganimate' was built under R version 4.2.3

```
#ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = continent)) +
# geom_point(alpha = 0.7, show.legend = FALSE) +
# scale_colour_manual(values = country_colors) +
# scale_size(range = c(2, 12)) +
# scale_x_log10() +
# facet_wrap(~continent) +
# labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
# transition_time(year) +
# shadow_wake(wake_length = 0.1, alpha = FALSE)

# combining plots

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))</pre>
```

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

p4 <- ggplot(mtcars) + geom_bar(aes(carb))</pre>

(p1|p2|p3)/p4

