

物体检测总结展望

内容回顾: 课程大纲

第1章:科研经验分享(1节课)

- •讲师自我介绍
- •科研经验分享
- •课程安排简介

第2章:物体检测概述 (1节课)

- •物体检测研究背景
- •物体检测发展脉络
- •物体检测常用数据集
- •物体检测评价指标

第3章:通用物体检测(5节课)

- •物体检测环境配置
- •通用物体检测概述
- •基于锚框的检测算法
- •无需锚框的检测算法
- •物体检测算法的对比总结
- •实用检测算法的研究思路

第4章:人脸检测(3节课)

- •人脸检测概述
- •传统人脸检测算法
- •深度学习早期人脸检测算法
- •深度学习后期人脸检测算法

第5章: 行人检测 (2节课)

- •行人检测概述
- •传统行人检测算法
- •深度学习早期行人检测算法
- •深度学习后期行人检测算法

第6章: 检测总结展望 (1节课)

- •物体检测发展总结
- •物体检测未来展望

内容回顾: 硬件软件

服务器

代码调试软件PyCharm

NVIDIA显卡

环境管理软件Anaconda

LINUX操作系统

物体检测平台Detectron2

内容回顾: 物体检测的派系

内容回顾: 物体检测常用数据集

通用物体检测数据集

- PASCAL VOC
- MS COCO
- OpenImages
- LVIS

人脸检测数据集

- AFW
- PASCAL FACE
- MALF
- MAFA
- FDDB
- WIDER FACE

行人检测数据集

- Caltech-USA
- CityPersons
- CrowdHuman
- WiderPerson
- EuroCityPersons

内容回顾: 物体检测评价指标

检测精度

召回率 (Recall Rate)

平均精度均值 (mAP)

平均对数漏检 率 (MR-2) 检测速度

前传耗时 (ms)

每秒帧数(FPS)

浮点运算量 (FLOPs)

基于锚框的单阶段法 (SSD/RetinaNet)

基于锚框的多阶段法 (Faster R-CNN)

级联地重复这个过程

无需锚框的关键点法 (CornerNet)

无需锚框的中心域法 (FCOS)

⇒ 内容回顾:通用物体检测

基于锚框		多阶段法	单阶段法
相同点	检测思想	铺设的锚框为检测起点, 对	付锚框的类别和位置进行矫正
	检测起点	铺设的锚框	
	检测结果	矫正的锚框	
不同点	难点问题之一	小尺度物体	正负样本的平衡
	锚框矫正次数	≥2次	1次
	检测精度	较高	较低
	检测速度	较慢	较快

无需锚框	关键点法	中心域法	
算法动机	移除掉锚框,减少超参数,增加灵活性		
算法思想	先检测关键点,再进行配对来框定物体	铺设锚点替代锚框来检测物体	
算法优点	全新的检测流程,为检测带来了新的思路	减少超参数,简化计算	
算法难点	不同关键点之间的配对问题	正负样本的划分问题	
计算速度	流程比较复杂,速度相对较慢	流程比较简单,速度相对较快	
检测精度	精度能达到甚至超过基于锚框的单阶段法		

- 对比不同类型的检测算法,探索两者之间的本质区别
- 取之长补己短的改进思路,提出面向实用的全新算法

- ① 二阶段的分类
- ② 二阶段的回归
- ③ 二阶段的特征
- **④特征校准**

RefineDet算法

- 对比不同类型的检测算法,探索两者之间的本质区别
- 取之长补己短的改进思路,提出面向实用的全新算法

- ① 正负样本定义
- ②回归起始状态
- ③每个位置样本数量

ATSS算法

内容回顾: 人脸检测

■ 传统人脸检测算法:利用手工特征+分类器,以<mark>滑窗方式</mark>在<mark>图像金字塔</mark>上遍历所有位置和大小,进行人脸检测。

内容回顾: 人脸检测

■ 深度学习早期人脸检测算法在传统算法的流程中,把**手工设计的特征和分类器**变成**深度学习中的特征和分类器**

内容回顾: 人脸检测

深度学习后期人脸检测算法:对通用物体检测算法进行相应改进,应用于人脸检测领域

高效率的人脸检测算法

- 基础网络为专门设计的轻量级的网络结构
- 在实际场景中, 检测大于30个像素的人脸, 有着满足需求的检测精度
- 能够在资源受限的前端设备(CPU、ARM、FPGA等)上实时的运行
- 追求检测速度和检测精度的平衡, 满足实用性

高精度的人脸检测算法

- 基础网络为重量级的VGG16或ResNet-50/101/152等
- 在复杂场景下, 有着非常高的检测精度, 非常小的人脸也能检测
- 可以在高性能的GPU设备上实时的运行
- 追求极致的检测精度, 检测速度可以不考虑

S3FD & SFDet

- 尺度上公平的检测框架
- 尺度补偿的锚框匹配策略
- 背景标签输出最大化操作

SRN & RefineFace

- 选择性二阶段分类
- 选择性二阶段回归
- 感受野增强模块
- ④ 尺度敏感的margin损失函数
- ⑤ 特征监督模块

内容回顾: 行人检测

■ 传统行人检测算法:利用手工特征+分类器,以<mark>滑窗方式在图像金字塔</mark>上遍历所有位置和大小,进行行人检测

内容回顾: 行人检测

■ 深度学习早期行人检测算法: 传统检测算法与深度学习相结合

- **问题**:小尺度的人可利用的特征太少,不 利于后续的分类和回归
- **方案**: 从更浅的、分辨率更高的特征层上来进行特征扣取,从不同分辨率的特征层上扣取特征并进行融合,去掉下采样 + 空洞卷积,来增加特征层的分辨率
- 问题: 行人检测中,分类错误主要是难负样本的混淆,即 把背景分为行人,而Faster R-CNN中第二阶段的Fast R-CNN不能很好的处理这些难负样本
- 方案: 采用级联的Boosted Forest (BF) 来替换Fast R-CNN,级联BF输入RolPooling后的特征,并挖掘困难负样本,CNN特征比手工特征更加高效,更具表现力

内容回顾: 行人检测

■ 深度学习后期行人检测算法:基于**通用物体检测算法Faster R-CNN,针对<u>遮挡问题</u>进行相应改进**

- 物体检测发展总结
- 物体检测未来展望

- 物体检测发展总结
- 物体检测未来展望

数据增广

- Random Erase
- CutOut
- MixUp
- CutMix
- AutoAug

训练策略

- ATSS
- RefineDet
- DSOD
- ScratchDet

基础网络 (Backbone)

增强网络 (Neck)

预测网络 (Head)

损失函数 (Loss)

输出 (Output)

数据增广

- Random Erase
- CutOut
- MixUp
- CutMix
- AutoAug

训练策略

- ATSS
- RefineDet
- DSOD
- ScratchDet

- VGG
- ResNet
- ResNeXt
- DenseNet
- SqueezeNet
- Darknet
- MobileNet
- ShuffleNet
- DetNet
- DetNAS
- SpineNet
- EfficientNet

基础网络 (Backbone)

预测网络 (Head)

损失函数 (Loss)

输出 (Output)

数据增广

- Random Erase
- CutOut
- Cutout
- MixUp
- CutMix
- AutoAug

<u>训练策略</u>

- ATSS
- RefineDet
- DSOD
- ScratchDet

- VGG
- ResNet
- ResNeXt
- DenseNet
- SqueezeNet
- Darknet
- MobileNet
- ShuffleNet
- DetNet
- DetNAS
- SpineNet
- EfficientNet

- FPN
- SPP
- ASPP
- RFB
- SAM
- PAN
- NAS-FPN
- FC-FPN
- BiFPN
- ASFF
- SFAM
- NAS-FPN

基础网络 (Backbone)

增强网络 (Neck)

预测网络 (Head)

损失函数 (Loss)

输出 (Output)

数据增广

- Random
 Erase
- CutOut
- MixUp
- CutMix
- AutoAug

训练策略

- ATSS
- RefineDet
- DSOD
- ScratchDet

- VGG
- ResNet
- ResNeXt
- DenseNet
- SqueezeNet
- Darknet
- MobileNet
- ShuffleNet
- DetNet
- DetNAS
- SpineNet
- EfficientNet

- FPN
- SPP
- ASPP
- RFB
- SAM
- PAN
- NAS-FPN
- FC-FPN
- BiFPN
- ASFF
- SFAM
- NAS-FPN

- RPN
- FR-CNN
- R-FCN
- Mask RCNN
- SSD
- YOLO
- RetinaNet
- CornerNet
- CenterNet
- MatrixNet
- FCOS
- RepPoints

基础网络 (Backbone)

增强网络 (Neck)

预测网络 (Head)

损失函数 (Loss)

输出 (Output)

数据增广

- Random
 Erase
- CutOut
- MixUp
- CutMix
- AutoAug

训练策略

- ATSS
- RefineDet
- DSOD
- ScratchDet

- VGG
- ResNet
- ResNeXt
- DenseNet
- SqueezeNet
- Darknet
- MobileNet
- ShuffleNet
- DetNet
- DetNAS
- SpineNet
- EfficientNet

- FPN
- SPP
- ASPP
- RFB
- SAM
- PAN
- NAS-FPN
- FC-FPN
- BiFPN
- ASFF
- SFAM
- NAS-FPN

- RPN
- FR-CNN
- R-FCN
- Mask RCNN
- SSD
- YOLO
- RetinaNet
- CornerNet
- CenterNet
- MatrixNet
- FCOS
- RepPoints

- RepLoss
- AggLoss
- GHM Loss
- Balanced
 - L1 Loss
- IoU Loss
- GloU Loss
- CloU Loss
- DIoU Loss
- DR Loss
- AP Loss
- Focal Loss

基础网络 (Backbone)

增强网络 (Neck)

预测网络 (Head)

损失函数 (Loss)

输出 (Output)

数据增广

- Random Frase
- CutOut
- MixUp
- CutMix
- AutoAug

训练策略

- ATSS
- RefineDet
- DSOD
- ScratchDet

• VGG

- ResNet
- ResNeXt
- DenseNet
- SqueezeNet
- Darknet
- MobileNet
- ShuffleNet
- DetNet
- DetNAS
- SpineNet
- EfficientNet

• FPN

- SPP
- ASPP
- RFB
- SAM
- PAN
- NAS-FPN
- FC-FPN
- BiFPN
- ASFF
- SFAM
- NAS-FPN

RPN

- FR-CNN
- R-FCN
- Mask RCNN
- SSD
- YOLO
- RetinaNet
- CornerNet
- CenterNet
- MatrixNet
- FCOS
- RepPoints

RepLoss

- AggLoss
- GHM Loss
- Balanced
- L1 Loss
- IoU Loss
- GloU Loss
- CloU Loss
- DIoU Loss
- DR Loss
- AP Loss
- Focal Loss

<u>NMS改进</u>

- Soft-NMS
- Softer-NMS
- IoUGuideNMS
- ConvNMS
- LearningNMS
- AdaptiveNMS

样本挖掘

- OHEM
- S-OHEM
- GHM
- PISA

- 物体检测发展总结
- 物体检测未来展望

■ 更快的速度

• 满足嵌入式设备等的速度,利用知识蒸馏、剪枝、量化等技术加速

■ 更快的速度

• 满足嵌入式设备等的速度,利用知识蒸馏、剪枝、量化等技术加速

■ 更高的精度

• 解决特定的错误,如小尺度、遮挡

■ 更快的速度

• 满足嵌入式设备等的速度,利用知识蒸馏、剪枝、量化等技术加速

■ 更高的精度

• 解决特定的错误,如小尺度、遮挡

■ 视频物体检测

- 利用帧间信息的冗余性来加速
- 利用帧间信息的连续性来提升精度

■ 更快的速度

• 满足嵌入式设备等的速度,利用知识蒸馏、剪枝、量化等技术加速

■ 更高的精度

• 解决特定的错误,如小尺度、遮挡

■ 视频物体检测

- 利用帧间信息的冗余性来加速
- 利用帧间信息的连续性来提升精度

■ 物体检测+其他任务

- 检测 + 分割:实例分割、全景分割
- 检测 + 无监督/半监督/自监督/迁移学习等新问题

■ 更快的速度

• 满足嵌入式设备等的速度,利用知识蒸馏、剪枝、量化等技术加速

■ 更高的精度

• 解决特定的错误,如小尺度、遮挡

■ 视频物体检测

- 利用帧间信息的冗余性来加速
- 利用帧间信息的连续性来提升精度

■ 物体检测+其他任务

- 检测 + 分割:实例分割、全景分割
- 检测 + 无监督/半监督/自监督/迁移学习等新问题

■ 物体检测AutoML

- 算法层面:网络结构、锚框设计、NMS
- 数据层面:数据增广、样本挖掘、数据筛选等

感谢各位聆听

Thanks for Listening

