2A: TUTORIAL 5

School of Mathematics and Statistics

Dr. Ana Lecuona and Dr. Daniele Valeri

Semester 1 2020-21

Instructions

Access your tutorial lecture

TU01,TU02,TU03,TU04,TU05: October 26th, 09:00-10:00

TU06,TU07,TU08,TU09,TU10: October 26th, 15:00-16:00

using the Zoom plug-in in the Moodle page of the course.

Please mute yourself when you are in the main room of the meeting.

Be ready to work in groups. Having a method of writing on screen, as mouse, tablet or similar is useful. Screen sharing is allowed!

EX SHEET 5, T3(A)

For the following integral, describe the region of integration in polar coordinates.

$$\int_0^1 dy \int_y^{\sqrt{2-y^2}} 3(x+y) dx.$$

(A)
$$0 \le r \le \sqrt{2}, \ 0 \le \theta \le \frac{\pi}{2}$$
 (B) $0 \le r \le \sqrt{2}, \ 0 \le \theta \le \frac{\pi}{4}$

(C)
$$0 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}$$
 (D) $0 \le r \le 2, 0 \le \theta \le \frac{\pi}{4}$

EX SHEET 5, T3(A)

For the following integral, describe the region of integration in polar coordinates.

$$\int_0^1 dy \int_y^{\sqrt{2-y^2}} 3(x+y) dx.$$

(A)
$$0 \le r \le \sqrt{2}, 0 \le \theta \le \frac{\pi}{2}$$

(B)
$$0 \le r \le \sqrt{2}, 0 \le \theta \le \frac{\pi}{4}$$

(C)
$$0 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}$$

(D)
$$0 \le r \le 2, 0 \le \theta \le \frac{\pi}{4}$$

ANSWER: **(B)** The figure shows the domain. The left boundary is x = y, the right boundary is $x = \sqrt{2 - y^2}$.

EX SHEET 5, T3(A)

For the following integral, describe the region of integration in polar coordinates.

$$\int_0^1 dy \int_y^{\sqrt{2-y^2}} 3(x+y) dx.$$

(A)
$$0 \le r \le \sqrt{2}, \ 0 \le \theta \le \frac{\pi}{2}$$
 (B) $0 \le r \le \sqrt{2}, \ 0 \le \theta \le \frac{\pi}{4}$

(B)
$$0 \le r \le \sqrt{2}, 0 \le \theta \le \frac{\pi}{4}$$

(C)
$$0 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}$$

(D)
$$0 \le r \le 2, 0 \le \theta \le \frac{\pi}{4}$$

ANSWER: **(B)** x = y is the line $\theta = \pi/4$ and $x = \sqrt{2 - y^2}$ is the curve $r = \sqrt{2}$. The x-axis is $\theta = 0$.

UNSEEN EXAMPLE

The red region lies between the lines y = 0 and x = 1 and the curve $y = \sqrt{x}$. Describe the region as a type-II region.

(A)
$$0 \le x \le y^2, 0 \le y \le 1$$

(B)
$$y^2 \le x \le 1, 0 \le y \le 1$$

(C)
$$0 \le x \le 1, 0 \le y \le x^2$$

(D)
$$0 \le x \le 1, \ 0 \le y \le \sqrt{x}$$

UNSEEN EXAMPLE

The red region lies between the lines y = 0 and x = 1 and the curve $y = \sqrt{x}$. Describe the region as a type-II region.

- (A) $0 \le x \le y^2, 0 \le y \le 1$ (B) $y^2 \le x \le 1, 0 \le y \le 1$

- (C) $0 < x < 1, 0 < y < x^2$
- **(D)** $0 \le x \le 1, 0 \le y \le \sqrt{x}$

ANSWER: (B)

EX SHEET 4, T13(A)

By changing the order of integration, evaluate

$$I = \int_0^1 dy \int_y^1 \sinh(x^2) dx.$$

EX SHEET 5, T8

Evaluate

$$I = \iint_D x \sqrt{x^2 + y^2} \, dx \, dy$$

over the finite region *D* in the first quadrant enclosed by the *x*-axis, the line $y = \sqrt{3}x$ and the circle $x^2 + y^2 = a^2$, where a > 0.

EX SHEET 4, T13(A)

By changing the order of integration, evaluate

$$I = \int_0^1 dy \int_y^1 \sinh(x^2) dx.$$

The first step is to express the region of integration as a type-I or type-II region. In this case the integral is type-II and so the type-II description is $y \le x \le 1$ and $0 \le y \le 1$.

The next step is to express the region as the other type. In our case we must express as a type-I region: $0 \le y \le x$ and $0 \le x \le 1$. Then reformulate the integral

$$I = \int_0^1 \left(\int_0^x \sinh(x^2) \, dy \right) \, dx$$

$$= \int_0^1 \left[y \sinh(x^2) \right]_{y=0}^{y=x} \, dx$$

$$= \int_0^1 x \sinh(x^2) \, dx = \left[\frac{1}{2} \cosh(x^2) \right]_0^1 = \frac{1}{2} \left(\cosh 1 - 1 \right).$$

EX SHEET 5, T8

Evaluate

$$I = \iint_D x \sqrt{x^2 + y^2} \, dx \, dy$$

over the finite region D in the first quadrant enclosed by the x-axis, the line $y = \sqrt{3}x$ and the circle $x^2 + y^2 = a^2$, where a > 0.

The domain is

The straight line $y=\sqrt{3}x$ becomes $\theta=\tan^{-1}\sqrt{3}=\pi/3$ and the circle radius is r=a. Hence, in polar coordinates the region is described as $D'=\{0\leq r\leq a0\leq \theta\leq \pi/3\}$.

Therefore the integral becomes

$$I = \iint_{D'} r \cos \theta \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} r \, dr d\theta$$
$$= \iint_{D'} r^3 \cos \theta \, dr d\theta.$$

The integrand is separable and the region of integration rectangular so

$$I = \left(\int_0^a r^3 \, dr\right) \left(\int_0^{\pi/3} \cos\theta \, d\theta\right) = \left[\frac{1}{4}r^4\right]_0^a [\sin\theta]_0^{\pi/3} = \frac{a^4\sqrt{3}}{8}.$$

EX SHEET 5, T13

By making a suitable change of variables, evaluate

$$I = \iint_D xy \, dx \, dy$$

where *D* is the region enclosed by the two hyperbolas xy = 1 and xy = 7 and the two parabolas $y = 2x^2$ and $y = 4x^2$.

EX SHEET 5, T13

By making a suitable change of variables, evaluate

$$I = \iint_D xy \ dx \ dy$$

where *D* is the region enclosed by the two hyperbolas xy = 1 and xy = 7 and the two parabolas $y = 2x^2$ and $y = 4x^2$.

The region of integration suggests the change of variable u = xy and $v = y/x^2$. The relevant partial derivatives are

$$\frac{\partial u}{\partial x} = y \qquad \qquad \frac{\partial v}{\partial x} = -\frac{2y}{x^3}$$

$$\frac{\partial u}{\partial y} = x \qquad \qquad \frac{\partial v}{\partial y} = \frac{1}{x^2}$$

So that $\partial(u, v)/\partial(x, y) = u_x v_y - u_y v_x = 3y/x^2$.

Then

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{x^2}{3y} = \frac{1}{3v}$$

and the integrand becomes *u*.

With this change of variable, the region D is changed into the region $D' = \{1 \le u \le 7, 2 \le v \le 4\}$ (a rectangular region).

Note that you could also have inverted the change of variables, in this case $y = (u^2 v)^{1/3}$ and $x = (u/v)^{1/3}$, to get $\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{3v}$.

The integrand is separable and the region D' is rectangular so

$$I = \iint_{D'} \frac{u}{3v} \, du dv = \left(\int_1^7 u \, du \right) \left(\int_2^4 \frac{1}{3v} \, dv \right)$$
$$= \left[\frac{1}{2} u^2 \right]_1^7 \left[\frac{1}{3} \log v \right]_2^4 = 8 \log 2.$$