

University of Stellenbosch Toegepaste Wiskunde 314 Semestertoets 1a 24 Maart 2004 om 19:30

Time: 90 min Full marks: 60

Vir kantoorgebruik / For official use

Vul asseblief in / Please complete:

Van (blokletters) / Surname (capitals)
MEMO
Volle Voorname / Full First Names
US-nommer / US Number

Vraag	Punte	Nasiener
Question	Marks	Marker
1	/10	H Botha
2	/25	H Botha
3	/11	JH van Vuuren
4	/14	JH van Vuuren
		-
Totaal		

Eksaminatore / Examiners: Prof JH van Vuuren & Dr PJP Grobler

Lees asseblief die volgende reëls en voorskrifte, en teken dan die onderstaande verklaring:

- Kommunikasie tussen kandidate word nie in die eksamenlokaal toegelaat nie.
- (2) Hulpmiddels (insluitende blankopapier, boeke, geskrifte en elektroniese apparaat) word nie in die eksamenlokaal toegelaat nie, tensy die gebruik van spesifieke items uitdruklik toegelaat of voorgeskryf is.
- (3) Geen dele van hierdie vraestel/antwoordstel mag verwyder word nie.
- (4) Ekstra tyd word nie toegestaan aan kandidate wat laat kom nie.
- (5) Kandidate word nie toegelaat om die eksamenlokaal binne die eerste 45 minute van die eksamensessie te verlaat nie.
- (6) Antwoorde moet in ink direk op hierdie vraestel/antwoordstel ingevul word.
- (7) Hierdie vraestel/antwoordstel moet aan 'n opsiener oorhandig word voordat u die eksamenlokaal verlaat.

Please read the following rules and instructions, and then sign the declaration below:

- (1) Communication between candidates is not allowed
- (2) Supporting material (including blank paper, books, notes and electronic equipment) is not allowed in the examination room, unless the use of particular items is expressly allowed or prescribed.
- (3) No parts of this question/answer paper may be removed.
- (4) Latecomers are not allowed extra time.
- (5) Candidates are not allowed to leave the examination room within the first 45 minutes of the examination session.
- (6) Answers must be supplied in ink directly on this question/answer paper.
- (7) Before leaving the examination room candidates must hand this question/answer paper to an invigilator.

VERKLARING / DECLARATION	HANDTEKENING / SIGNATURE
Hiermee verklaar ek dat ek die bogenoemde eksamenreëls sal gehoor-	
saam en dat die inligting op hierdie bladsy verstrek, korrek is. /	
I hereby declare that I will abide by the above examination rules and	
that the particulars supplied on this front cover are correct.	

(1) (a) Definieer volledig wat met die konsep van 'n groep (\mathcal{G}, \bullet) bedoel word. / Carefully define what is meant by the notion of a group (\mathcal{G}, \bullet) . [4]

n binere operane om næ-leë verameling ly vorm n groep indien

i) a · b ∈ y V a, b ∈ g

- iii) dar'n element Eegbestaan sodat a.E = E.a & a Eg
- iv) dan vir elhe aty in a'ty bestaan sodat $a \cdot a' = a' \cdot a = E$
- (b) Vorm $(\mathbb{Z}_m, +)$ 'n groep (waar '+' m-modulêre optelling aandui)? Motiveer. / Does $(\mathbb{Z}_m, +)$ form a group (where '+' denotes m-modular addition)? Motivate. [1]

Ja, dit voldren aan die voorwonarde in (a).

'+' is beslis assosiatief en \mathbb{Z}_m is geslote order m-modulère optelling. $\mathcal{E} = 0$ $a' = m - a \quad \forall \quad \alpha \in \mathbb{Z}_m, \quad \alpha \neq 0 \quad \text{en} \quad 0^{-1} = 0$

(c) Vorm (\mathbb{Z}_m, \times) 'n groep (waar ' \times ' m-modulêre vermenigvuldiging aandui) indien m priem is? Motiveer. / Does (\mathbb{Z}_m, \times) form a group (where ' \times ' denotes m-modular multiplication) if m is prime? Motivate. [1]

Nee, of Zm en 0-1 bestaan nie, al is m priem (d) Bevestig dat ({1,3,5,7}, ×) 'n groep vorm (waar '×' 8-modulêre vermenigvuldiging aandui), deur 'n vermenigvuldigingstabel op te stel. Skryf die inverse van elke groepelement direk vanuit die tabel neer. / Verify that ({1,3,5,7}, ×) forms a group (where '×' denotes 8-modular multiplication), by constructing a multiplication table. Write down the inverse of each group element directly from the table. [4]

'x' is bestis associatief

E=1

×	l	3	5	フ
1	ı	3	5	7
3 5	3	1	7	5
	5	7	l	3,
7	フ	5	3	1

Mit bostnande tabel volg dit dat $\{1,3,5,7\}$ geslole is onde 'X'. Elhe element in $\{1,3,5,7\}$ is self-invoterend.

(2) (a) Gee 'n nodige en voldoende voorwaarde vir die bestaan van 'n multiplikatiewe inverse van 'n element a in die ring $(\mathbb{Z}_m, \times, +)$. / Give a necessary and sufficient condition for the existence of a multiplicative inverse to an element A in the ring $(\mathbb{Z}_m, \times, +)$.

$$ggd(a,m)=1$$

(b) Gebruik die Gewysigde Euklidiese Algoritme om elk van die volgende modulêre inverses te bereken. Vul u antwoorde in die onderstaande tabelle in. / Use the Revised Euclidean Algorithm to calculate each of the following modular inverses. Fill in your answers in the tables below.

i. $4^{-1} \pmod{15}$

i	p_i	q_i	$oxed{r_i} oxed{s_i}$		x_i	y_i	
0	15	4	3	3	0	t	
1	4	3	1	1	1	-3	
2	3	1	0	3	-3	(4)	
3	(0					
4							
5							
6							

ii. $4^{-1} \pmod{60}$

i	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		r_i	s_i	x_i	y_i	
0							
1							
2							
3							
4							
5							
6							

(c) Bewys die volgende stelling: / Prove the following theorem:

[7]

Die lineêre kongruensie / The linear congruence

$$ax \equiv y \pmod{m}$$

besit oplossings $x \in \mathbb{Z}_m$ as en slegs as $d = \gcd(a, m)$ 'n deler is van y. As d wel 'n deler is van y, dan besit die kongruensie presies d oplossings, en hulle is: / possesses solutions $x \in \mathbb{Z}_m$ if and only if $d = \gcd(a, m)$ is a divisor of y. If d is indeed a divisor of y, then the congruence possesses exactly d solutions, and they are:

$$x = \left(\frac{a}{d}\right)^{-1} \left(\frac{y}{d}\right) + k \left(\frac{m}{d}\right), \quad 0 \le k \le d-1.$$

Sien bladsy 31 van die klasnotas

(d) Vind alle oplossings $x \in \mathbb{Z}_{60}$ tot die lineêre kongruensie / Find all solutions $x \in \mathbb{Z}_{60}$ to the linear congruence

 $16x \equiv 24 \pmod{60}$

Wys u werking volledig. / Show all your working.

[4]

ggd (16,60) = 4 wat in deler is van 24

Dus besit die kongruensie 4 verskillende
oplossings in Z60

Die oplossings is moet mod 15 beehen word - sien 2(b)(i)

 $x = (\frac{16}{4})^{-1}(\frac{24}{4}) + k(\frac{60}{4}), k = 0,1,2,3$

= 4x6+15k, k=0,1,2,3

= 24,39,54,69

= 9,24,39,54 (mod 60)

(e) Bewys, vanuit eerste beginsels, dat / Prove, from first principles, that

$$|\mathbb{Z}_m^*| = \prod_{i=1}^k \left(p_i^{e_i} - p_i^{e_i-1} \right)$$

indien m se priemfaktorisering gegee word deur / if the prime factorisation of m is given by

$$m = \prod_{i=1}^{k} p_i^{e_i}, \quad e_i > 0, \ i = 1, \dots, k.$$

U mag, sonder bewys aanvaar dat $\phi(ab) = \phi(a)\phi(b)$ indien a en b relatief priem is (waar ϕ die beroemde Euler-funksie is), maar alle ander resultate wat u gebruik, moet ook bewys word. / You may use, without proof, the result that $\phi(ab) = \phi(a)\phi(b)$ if a and b are relatively prime (where ϕ is the famous Euler function), but all other results that you use, must also be proved. [5]

Lemma: $\phi(p_i^{ei}) = p_i^{ei} - p_i^{ei-1}$ vir enight priem p_i Bewys: Omdat p_i priem io, io die enighte getable in die interval $[1, ..., p_i^{ei}]$ wat \underline{nie} relatief priem t.o.v. p_i^{ei} io nie, die veelvoude van p_i $f(p_i^{ei}) = p_i^{ei} - |\{m, 2m, 3m, ..., p_i^{ei-1}p_i\}|$ $f(p_i^{ei}) = p_i^{ei} - p_i^{ei-1}$

Now is
$$|\mathbb{Z}_{m}^{*}| = \phi(m)$$

$$= \phi(\inf_{i=1}^{k} p_{i}e_{i})$$

$$= \prod_{i=1}^{k} \phi(p_{i}e_{i}) \quad [\text{want } p_{i}e_{i}, p_{j}e_{j} \text{ is relative } p_{i}e_{m} \text{ wit } i \neq j]$$

$$= \prod_{i=1}^{k} (p_{i}e_{i} - p_{i}e_{i}-1) \quad [\text{mit die Lemma}]$$

(f) Bereken
$$\phi(120)$$
. / Compute $\phi(120)$.

 $|20 = 2^3 \times 3^1 \times 5^1|$
 $\Rightarrow \phi(120) = (2^3 - 2^3)(3^1 - 3^0)(5^1 - 5^0)$
 $= (8 - 4)(3 - 1)(5 - 1)$

(3) (a) Laat \mathcal{Z}_m^n die versameling van alle $n \times n$ matrikse wees met inskrywings in \mathbb{Z}_m . Gee 'n nodige en voldoende voorwaarde vir die bestaan van 'n inverse tot 'n matriks $\mathbf{X} \in \mathcal{Z}_m^n$, wat self weer 'n element van \mathcal{Z}_m^n is. / Let \mathcal{Z}_m^n be the set of all $n \times n$ matrices with entries in the set \mathbb{Z}_m . Give a necessary and sufficient condition for the existence of a multiplicative inverse to a matrix $\mathbf{X} \in \mathcal{Z}_m^n$, which is itself again an element of \mathcal{Z}_m^n . [2]

ggd(|X|, m) = 1

(b) Laat $\mathcal{Z}_m^{n,*}$ die versameling van alle $n \times n$ matrikse met inskrywings in \mathbb{Z}_m wees, wat multiplikatiewe inverses in dieselfde versameling besit. Vorm $(\mathcal{Z}_m^{n,*}, \times, +)$ 'n ring? Motiveer. / Let $\mathcal{Z}_m^{n,*}$ be the set of all $n \times n$ matrices with entries in \mathbb{Z}_m that have multiplicative inverses in the same set. Does $(\mathcal{Z}_m^{n,*}, \times, +)$ form a ring? Motivate. [3]

Nee, die versameling Z''," is nie geslote onder '+' nie (wel onder 'x').

(c) Bereken die 26-modulêre inverse van die matriks / Compute the 26-modular inverse of the matrix

$$X = \left[\begin{array}{ccc} 8 & 13 & 8 \\ 18 & 8 & 13 \\ 25 & 20 & 17 \end{array} \right].$$

Wys u werking volledig. / Show all your working.

[6]

$$|X| = 535 \equiv 15 \pmod{26}, \text{ sodat } X^{-1} \pmod{26} \text{ bestaan.}$$

$$|X| = 535 \equiv 15 \pmod{26}, \text{ sodat } X^{-1} \pmod{26} \text{ bestaan.}$$

$$|X| = \frac{8}{3} = \frac{13}{20} = \frac{13}{20} = \frac{8}{13} = \frac{13}{8} = \frac{8}{13} = \frac{13}{13} = \frac$$

$$= \begin{bmatrix} -124 & -61 & 105 \\ 19 & -64 & 40 \\ 160 & 165 & -170 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 17 & 1 \\ 19 & 14 & 14 \\ 4 & 9 & 12 \end{bmatrix} \pmod{26}$$

$$\mathcal{D}_{VO} \approx X^{-1} = (15)^{-1} \begin{bmatrix} 6 & 17 & 1 \\ 19 & 14 & 14 \\ 4 & 9 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 42 & 119 & 7 \\ 133 & 98 & 98 \\ 28 & 63 & 84 \end{bmatrix} \equiv \begin{bmatrix} 16 & 15 & 7 \\ 3 & 20 & 20 \\ 2 & 11 & 6 \end{bmatrix} \pmod{26}$$

(4) (a) Bereken die inverse van die permutasie $\pi^* = [4, 1, 5, 3, 2, 6]$. / Compute the inverse of the permutation $\pi^* = [4, 1, 5, 3, 2, 6]$. [2]

$$(\pi^*)^{-1} = [2,5,4,1,3,6]$$

(b) Die kriptoteks NWSEHHWAELLTEHMEREGEAATI is met behulp van die kolomtransposisie stelsel $\mathcal{C}_{26}^{6,\pi^*}$ gevorm. Wat is die ooreenstemmende skoonteks? / The ciphertext NWSEHHWAELLTEHMEREGEAATI was formed by means of the columnar transposition $\mathcal{C}_{26}^{6,\pi^*}$. What is the corresponding plaintext? [3]

1	2	3	4	5	6		2	5	4	1	3	6
N	A H	5	E	Н	Н	\Rightarrow	w a	h	e	n	5	h
W	Α	Ε	L	L	T		a	l	l	w	e	t
E	Н	Μ	E	R	E			٢				
G	E	A	Α	T	I			t				

Skoontehs is dus "whenshallwethreemeetagai" oftenel "when shall we three meet agai(n)".

(c) Definieer wat bedoel word met 'n permutasiematriks. / Define what is meant by a permutation matrix. [1]

n Matrihs met presies een 1 in elke ry en in elhe bolom; die ander inskrywings is almal o

(d) Skryf neer die permutasiematriks wat met die permutasie π^* in (a) ooreenstem. / Write down the permutation matrix corresponding to the permutation π^* in (a). [1]

(e) Bewys dat die inverse \mathbf{P}^{-1} van elke permutasiematriks \mathbf{P} weer 'n permutasiematriks is. [Wenk: Ondersoek die transponent \mathbf{P}^T .] / Prove that the inverse \mathbf{P}^{-1} of any permutation matrix P is again a permutation matrix. [Hint: Investigate the transposed

Laat P=[pzi] in nxn permutasiematrikes wees pi,ki=1 die nie-nul element in ry i. Dan is die (enigste) nie-nul element in die i-te kolom van PT die element pki, i = pi, ki = 1. Dus word die (i,j)-te miskywing van PPT gegee dew

 $\sum_{n=1}^{N} \rho_{i,l} \rho_{k,j}^{T} = \sum_{\ell=1}^{N} \rho_{i,\ell} \rho_{j,\ell}^{T} = \rho_{i,k_i} \rho_{j,k_i}^{T}$

(aangesien Pisl = 0, tensy l=ki). Maar nou is pj.ki=0, tensy j=i, sodat die (ij)-te inskrywing van PPT gegee word dew

 $\begin{cases} 1, & \text{as } j=i \\ 0, & \text{as } j\neq i \end{cases}$

wat impliseer dat PPT = I. Dit volg Soort gelyk dat PTP = I, sodat PT = P-1.