Entangling atomic spins with a Rydberg-dressed spin-flip blockade

151020

G. W. Biedermann

- Sandia National Lab.
- 2007 Ph.D. @ Kasevich Group, Stanford
- Now Research Associate Professor @ CQuIC

|1>

|1>

Backgrounds

Level splitting

• Two conditions

1.
$$\Omega_{L}/2\pi = 4.4 \text{ MHz}, \Delta_{L}/2\pi = 4 \text{ MHz} => \text{small shift } (0.91|0\rangle + 0.41|r\rangle)$$

2.
$$\Omega_{L}/2\pi = 4.3 \text{ MHz}, \Delta_{L}/2\pi = 1.3 \text{ MHz} => \text{large shift} (0.8|0\rangle + 0.6|r\rangle)$$

Experimental Procedure

- Extract 2 atoms from MOT
- State preparation
 - Polarization gradient cooling to 20 uK
 - Optical pumping
- Translate the atoms
- Rydberg dressing and entanglement
- Translate the atoms again
- State detection

Translation of atoms

- Optical tweezer(Dipole trap)
 - Driving AOM with two different frequency, two angularseparated beams can be made.
 - Step: 18 nm per 2 us

State preparation

Polarization gradient cooling to 20 uK

• Optical pumping (Bias field 4.8 G) Two lasers(as figure)

• Global π pumping from $|0,0\rangle$ to $|1,1\rangle$

F=5

F=4

Preparation efficiency: 95%

$$|0\rangle = |F = 4, m_F = 0\rangle \rightarrow |F' = 5, m_J = 3/2\rangle$$

 $6^{2}S_{1/2}$

Experimental method Rydberg dressing

- Turn off the trap beam during dressing
- Dressing beam: 6S_{1/2} <-> 64P_{3/2}
 319 nm blue detuned
 Detuning is small compared to hyperfine splitting(~MHz)
- Sweeping beam($|0\rangle \rightarrow |1\rangle$): Stimulated Raman transition $6S_{1/2} <-> 6P_{3/2}$: 852 nm $\Delta_{mw} = -50$ GHz, $\Omega_{mw} \sim 160$ kHz
- Turn on the trap beam after sweeping the states

Bell state preparation

- $|\Psi_{+}\rangle = |0,1\rangle + |1,0\rangle$ state is generated by applying resonant light.
- $|\Phi_{+}\rangle = |1,1\rangle + |0,0\rangle$ state is generated by applying global $\frac{\pi}{2}$ pulse on the state $|\Psi_{+}\rangle$.
- Fidelity: 81(2)%, survival probability of atoms: 74%

State detection

- Using cycling transition to detect $|0\rangle = |F = 4, m_F = 0\rangle$ $|6S_{1/2}, F = 4\rangle \rightarrow |6P_{3/2}, F' = 5\rangle$
- If dark, then turn on the repump laser and cycling transition again in order to verify atom's presence.

π -polarized light

• F-F'=0, m_F =0 is forbidden

proof) Like getting CG coef., we start from
$$|F + 1, F + 1\rangle = |F, F\rangle|1,1\rangle$$
.

 $|F + 1, F\rangle = J_{-}|F, F\rangle|1,1\rangle = J_{1-}|F, F\rangle|1,1\rangle + |F, F\rangle J_{2-}|1,1\rangle$
 $|F, F\rangle = J_{1-}|F, F\rangle|1,1\rangle - |F, F\rangle J_{2-}|1,1\rangle$
 $\Rightarrow |F, 0\rangle = J_{-}^{F}(J_{1-}|F, F\rangle|1,1\rangle - |F, F\rangle J_{2-}|1,1\rangle)$
 $= \dots + J_{1-}^{F-1}J_{2-}[J_{1-}|F, F\rangle|1,1\rangle] - J_{1-}^{F}[|F, F\rangle J_{2-}|1,1\rangle] + \dots$
 $= \dots + 0[|F, 0\rangle|1,0\rangle] + \dots$

F=4

 $6^{2}P_{1/2}$

F=4

 $0 \Rightarrow |F = 4, m_{F} = 0\rangle$
 $6^{2}S_{1/2}$

F=4

 $0 \Rightarrow |F = 4, m_{F} = 0\rangle$
 $0 \Rightarrow |F = 4, m_{F} = 0\rangle$

