

Laboratório Digital I

Relatório da experiência 1 Primeiro circuito digital

Professor:

Paulo Sergio Cugnasca Edson Midorikawa

Integrantes da T3BB3:

Arthur Pires da Fonseca - 10773096 Lucas Lopes de Paula Junior - 9344880

Atividade 1 - Pesquisa de manuais de componentes

a) Componentes:

nome do sinal	entrada ou saída	descrição do sinal
CLK	entrada	sinal de <i>clock</i> do contador
CLR	entrada	sinal ativo em baixo para zerar a saída Q
Α	entrada	parte do sinal de dados (ABCD)
В	entrada	parte do sinal de dados (ABCD)
С	entrada	parte do sinal de dados (ABCD)
D	entrada	parte do sinal de dados (ABCD)
ENP	entrada	permite ou não a progressão da contagem feita
LOAD	entrada	permite ou não o carregamento de um valor inicial no contador
ENT	entrada	determina se o componente recebeu ou não overflow (habilitando ou não a contagem naquele bloco)
Qa	saída	parte do sinal de saída de dados (Q)
Qb	saída	parte do sinal de saída de dados (Q)
Qc	saída	parte do sinal de saída de dados (Q)
Qd	saída	parte do sinal de saída de dados (Q)
RCO	saída	determina se houve <i>overflow</i> no bloco de circuito em questão

b) Perguntas:

- Qual é o intervalo de valores possíveis da saída Q (QDQCQBQA)?
 O intervalo é de 0 a 15.
- 2. Explique se o sinal de CLEAR é síncrono ou assíncrono. O sinal de CLEAR é síncrono e *low level*.
- 3. Como um valor pode ser carregado no 74163? Mostre a sequência de sinais que devem ser ativados.

Os sinais LOAD e ENABLE devem ser ativados em alto.

4. Este componente é sensível a qual borda do sinal de clock (subida ou descida)?

Ele é sensível à borda de subida do sinal de *clock*.

5. Os sinais ENT e RCO devem ser usados para cascateamento de contadores. Explique como estes sinais devem ser interligados no cascateamento de 2 contadores.

O sinal RCO do circuito integrado que representa os bits menos significativos deve ser ligado ao ENT do dos bits mais significativos, para que o bloco mais significativo seja ativado assim que o menos significativo produza *overflow*.

6. Mostre em um diagrama esquemático como dois contadores devem ser cascateados para formar um contador de 8 bits.

Atividade 2 - Familiarização com o Circuito Integrado 74163

Os terminais do CI 74163 foram ligados conforme a tabela a seguir:

Sinal do CI	Pino	Ligação no painel tipo I	Ligação no painel tipo II
CLK	2	Botão B1 (/	Botão B1 (—
CLR	1	Chave C0	Chave CH1
LD	9	Chave C1	Chave CH2
ENP	7	Chave C2	Chave CH3
ENT	10	Chave C3	Chave CH4
Α	3	Chave C4	VCC ou GND (fio)
В	4	Chave C5	VCC ou GND (fio)
С	5	Chave C6	VCC ou GND (fio)
D	6	Chave C7	VCC ou GND (fio)
Q	11 a 14	Display D0	Display D0
RCO	15	Led L0	Led L1

O plano de testes seguido foi:

Função	Sequência de sinais	Resultado final	
zerar saída Q	~CLR (L), CLK	Amostra o número 0 no display	
contagem de 0 a 5	~CLR (H), ~LOAD (H), ENP (H), ENT (H),	O contador parte do 0 e incrementa 1 a cada subida de clock. Ao final de 5 clocks	
	CLK, CLK, CLK, CLK, CLK	Amostra o valor 5 no display	
carregar valor 11	D (H), C (L), B (H), A (H), ~CLR (H),	O circuito amostra o valor 11 em hexadecimal no display, ou seja, "b"	
	~LOAD (L), CLK		
contar mais 4 vezes	~LOAD (H), CLK, CLK, CLK, CLK	O circuito amostra o valor 15 em hexadecimal no display, ou seja, "F"	
desativar ENP e acionar CLOCK	ENP (L), CLK	Sem mudança. O circuito amostra o último estado.	
ativar ENP, desativar ENT e acionar CLOCK	ENP (H), ENT (L), CLK	Sem mudança. O circuito amostra o último estado.	
ativar ENT, acionar CLR e acionar CLOCK 2 vezes	ENT (H), ~CLR (L), CLK, CLK	O circuito amostra o valor 0 no display	
carregar 9 e contar até RC0=1	D (H), C (L), B (L), A (H), ~CLR (H),	O circuito amostra o valor 15 em hexadecimal no display, ou seja, "F"	
	~LOAD (L), CLK, ~LOAD (H), ENP (H),		
	ENT (H), CLK, CLK, CLK, CLK, CLK, CLK,		
	CLK		

Atividade 3 - Montagem do Circuito Contador de 8 bits

Testamos um dos contadores de 4 bits e conectamos os terminais do outro contador conforme o diagrama esquemático, presente neste mesmo relatório na atividade 1.

Conectamos tudo como planejado, mas o contador não funcionou como deveria. Verificamos posteriormente que o segundo circuito integrado que estávamos usando parecia estar com defeito, mas não tivemos a oportunidade de trocar por outro que funcionasse. A montagem foi esta:

Resultados alcançados

Conseguimos implementar perfeitamente o contador de 4 bits, o circuito se comportou como esperado.

O contador de 8 bits, no entanto, não apresentou bons resultados, embora os sinais de entrada do segundo circuito integrado estivessem corretos, como verificamos com o medidor de voltagem da bancada. Isso indica que as saídas do *chip* contador dos *bits* menos significativos estava correta, mas a acoplação com o outro bloco de circuito não deu certo.

Pontos positivos

- -Pudemos depurar o nosso primeiro circuito após bem poucas verificações de voltagem na placa, o que nos economizou tempo.
 - -O contador de 4 bits comportou-se como desejado.

Lições aprendidas

- -Muitos dos *jumpers* do laboratório não encaixam com muita facilidade nos pinos da placa de circuito integrado, o que é um fato a ser observado logo quando se tenta fazer o contato entre o fio e o pino (deve-se deixar de lado imediatamente fios defeituosos, senão eles irão se desconectar com muita facilidade ao decorrer da montagem).
- -É importante usar o medidor de voltagem nas várias partes do circuito onde pode haver falhas assim que um erro é detectado, para que este possa ser rapidamente sanado.
- -Usar cores iguais para fios que transmitem sinais relacionados entre si facilita a identificação visual dos fios, mas dificulta a diferenciação entre eles quando se procura a causa de um erro na montagem do circuito.