Branch Lengths and Diversification

Lecture 3 March 24, 2009

Outline

- How do lineages accumulate under the birth-death model?
- Estimating speciation and extinction rates from trees
- Testing hypotheses about diversification

Outline

- How do lineages accumulate under the birth-death model?
- Estimating speciation and extinction rates from trees
- Testing hypotheses about diversification

Diversification Model

- Model: birth-death
- Every lineage has constant probability of:
 - -speciation (λ)

Waiting times

Waiting times

 Under a birth-death model, the time intervals between successive events are always drawn from exponential distributions

Expected species diversity under a birth-death model:

$$E[N_t] = N_o e^{(b-d)t}$$

 N_t = species diversity after time t

 N_o = starting species diversity

b = birth rate

d = death rate

t = time

Species Accumulation

• Expected number of species increases exponentially with $\lambda\text{-}\mu$

Diversification Model

• Expected number of species increases exponentially with $\lambda\text{-}\mu$

What if we just have the phylogeny?

Time

Lineage-through-time plots

- Plot cumulative number of lineages through time
- Compare to expectations under null model
- Related to Van Valen's taxonomic survivorship curves

Extinction

- Can leave an imprint on present-day phylogenies
- Older lineages are more likely to have gone extinct than younger ones

Outline

- How do lineages accumulate under the birth-death model?
- Estimating speciation and extinction rates from trees
- Testing hypotheses about diversification

Pure Birth

- Can use maximum likelihood to estimate parameters
- L = $Pr[tree | \lambda]$

 t_1 = First waiting time

Drawn from exponential distribution with parameter 2λ

$$Pr[t_1 = x] = 2\lambda e^{-2\lambda x}$$

t₂ = Second waiting time

Drawn from exponential distribution with parameter 3λ

$$Pr[t_2 = x] = 3\lambda e^{-3\lambda x}$$

t₄ = Fourth waiting time (but no speciation!)

What is the probability of NO speciation event in time t4?

Consider exponential distribution with parameter 5λ

Cumulative distribution function

Pr[no event | t=x] =

1 - CDF =

 $1 - (1 - e^{-\lambda x}) =$

 $e^{-\lambda x}$

t₄ = Fourth waiting time (but no speciation!)

What is the probability of NO speciation event in time t4?

Consider exponential distribution with parameter 5λ

$$Pr[t_4 = x] = e^{-5\lambda x}$$

$$Pr[t_1 = x] = 2\lambda e^{-2\lambda x}$$

$$Pr[t_2 = x] = 3\lambda e^{-3\lambda x}$$

$$Pr[t_3 = x] = 4\lambda e^{-4\lambda x}$$

$$Pr[t_4 = x] = e^{-5\lambda x}$$

likelihood = P[tree |
$$\lambda$$
] = $2\lambda e^{-2\lambda t1}$ $3\lambda e^{-3\lambda t2}$ $4\lambda e^{-4\lambda t3}$ $e^{-5\lambda t4}$

In general,

likelihood = P[tree |
$$\lambda$$
] = $e^{-n\lambda x_n} \prod_{i=2}^{n-1} i\lambda e^{-i\lambda x_i} = (n-1)! \lambda^{n-2} e^{-\lambda s}$

$$s = \sum_{i=2}^{n-1} ix_i$$

Likelihood for a tree under a Pure-birth model

L = Pr[tree |
$$\lambda$$
] = (n-1)! $\lambda^{n-2}e^{-\lambda s}$

n = number of taxa

 λ = speciation rate s = sum of all branch lengths in the tree

L = Pr[tree | λ] = (n-1)! λ ⁿ⁻²e^{- λ s}

For $\lambda = 1$,

 $L = (5-1)!1^{3}e^{-19.5}$

 $L = 8.16 \times 10^{-8}$

Analytic solution

$$\hat{\lambda} = \frac{n-2}{s}$$

$$SE_{\hat{\lambda}} = \frac{\hat{\lambda}^2}{n-2}$$

Maximum likelihood estimate of λ under PB model

$$\hat{\lambda} = \frac{n-2}{s} = 0.154$$

0.154 ± 0.0079

$$SE_{\hat{\lambda}} = \frac{\hat{\lambda}^2}{n-2} = 0.0079$$

Birth-death models

- Can use maximum likelihood to estimate parameters of a birth-death process
- \dot{L} = Pr[tree | λ , μ]
- \bullet Can be difficult to estimate λ and μ
- Easier to estimate composite parameters

$$r = \lambda - \mu$$
 $\epsilon = \mu/\lambda$

PB vs. BD

- Two simple ways to test for extinction in a tree
- Likelihood Ratio Test

$$\Delta = 2(lnL_2-lnL_1)$$

Under model 1, Δ should follow a χ^2 distribution with df equal to the difference in parameters

PB vs. BD

- Two simple ways to test for extinction in a tree
- Akaike Information Criterion (AIC)

AIC = 2 k - 2 ln L
$$AICc = AIC + \frac{2k(k+1)}{n-k-1}$$
.

Choose the model with the lowest AIC score

Can also gauge support by the difference in AIC scores

Δ_{AIC}	Interpretation
0-3	no support
3-7	weak
7-10	intermediate
>10	strong