## Q1: Main features of Genetic Algorithms

- Coding typically binary
- Reproduction
  - ♦ Selection of parents in the current generation
  - **♦** Crossover
  - **♦** Mutation
  - ♦ Fitness evaluation
  - ♦ Selection of off-springs for new generation
- Termination

**Q2:** (i) Assume that the maximum value is N. Pick n such that  $N \le 2^n - 1$ .



(ii) Assume the maximum values for colors, sizes, shapes and objects are C, SI, SH, O. Pick l, m, n, p, where

$$C \le 2^{l} - 1$$
,  $SI \le 2^{m} - 1$ ,  $SH \le 2^{n} - 1$  and  $O \le 2^{p} - 1$ .



**Q3:** 
$$f(x) = (a + b) - (c + d) + (e + f) - (g + h)$$

(a) **a b c d e f g h**  

$$x1 = 65413532$$
  $f(x1) = (6+5)-(4+1)+(3+5)-(3+2) = 9$   
 $x2 = 87126601$   $f(x2) = (8+7)-(1+2)+(6+6)-(0+1) = 23$   
 $x3 = 23921285$   $f(x3) = (2+3)-(9+2)+(1+2)-(8+5) = -16$   
 $x4 = 41852094$   $f(x4) = (4+1)-(8+5)+(2+0)-(9+4) = -19$ 

x2, x1, x3, x4

(b) **a b c d e f g h**  

$$x1 = 65413532$$
  $x1' = 65416601$   $f(x1') = 17$   
 $x2 = 87126601$   $x2' = 87123532$   $f(x2') = 15$   
 $x3 = 23921285$   $x3' = 25413585$   $f(x3') = -3$   
 $x1 = 65413532$   $x1' = 63921232$   $f(x1') = -4$ 

**Q4:**  $z = x^2 - 2y + 3$ , where  $0 \le x, y \le 7$ 

Chromosome



For instance: 011 110

x=3 y=6

We can set 
$$f(x,y) = \frac{1}{z+M} = \frac{1}{x^2 - 2y + 3 + M}$$

where M + z > 0, for instance, we can pick M very big.