

Análise da Estrutura da Crosta na Região da Faixa Ribeira (entre as Províncias do Cráton São Francisco e da Bacia do Paraná) usando Métodos Sismológicos

Diogo Luiz de Oliveira Coelho

Dissertação para obter o grau de Mestre em **Geofísica**

Orientador **Stéphane Gerard Martial Drouet**

> Rio de Janeiro 2015

Análise da Estrutura da Crosta na Região da Faixa Ribeira (entre as Províncias do Cráton São Francisco e da Bacia do Paraná) usando Métodos Sismológicos

Diogo Luiz de Oliveira Coelho

Dissertação apresentada ao corpo docente do Programa de Pós-graduação em Geofísica do Observatório Nacional como parte dos requisitos necessários para a obtenção do grau de Mestre em Geofísica.

Lista de Figuras

1	Mapa das estações sismográficas instaladas (triângulos vermelhos). Os ou-	
	tros triângulos são estações da Rede Sismográfica Brasileira	4
2	Sismograma mostrandos as três componentes do deslocamento do terreno	5
3	Análise qualitativa do sinal atraves das Power Density Functions. McNa-	
	mara and Buland (2004)	7
4	Uma ilustração esquemática de como dois eventos sucessivos de fontes sís-	
	micas quase idênticas que podem ser explorados para revelar anomalias dos	
	tempo de chegada da onda P numa dada estação. (Gibbons, 2006)	8
5	Mapa dos eventos (estrelas) registrados na estação STA08. O limite de 95	
	graus está indicada em vermelho. Estrelas azuls mostram os eventos com	
	dados de qualidade que são usadas no calculo das Funçoes do Receptor	8

Lista de Tabelas

 $1 \qquad {\rm Tabela\ com\ as\ coordenadas(Lat\ Long)\ e\ altitude\ (m)\ das\ Estações.} \quad .\ .\ .\ .\ 13$

Sumário

Lista de Figuras	1
Lista de Tabelas	II
Sumário	III
Referências Bibliográficas	12

Dedicatória

Agradecimentos

Resumo

Abstract

Contexto Geológico

Metodologia

Função do Receptor

Aquisição de Dados

No âmbito do projeto SUBSAL, realizado conjuntamente entre o Observatório Nacional e a Petrobras, instalou-se 24 estações sismográficas temporárias banda larga (STS2 ou Reftek RT151-120s). A faixa de frequência registrada varia de 50 Hz até 100 segundos. As estações foram dispostas espacialmente em tres perfis em relação à costa, dois perpendiculares à costa, perfil 1 a oeste e perfil 2 a leste, e um paralelo, perfil 3, como observado na Figura 1. O perfil 1 estende-se da estação STA01, localizada próximo à costa, até a STA09. O perfil 2 vai da estação STA10, ao norte, até a STA16, próximo à costa. O perfil 3 é da estação STA17, oeste, até a STA24, leste. A distância entre as estações é aproximativamente de 20 km. As coordenadas das estações são dadas na Tabela 1.

Figura 1: Mapa das estações sismográficas instaladas (triângulos vermelhos). Os outros triângulos são estações da Rede Sismográfica Brasileira.

O período de operação das estações foi distinto para os perfis. Os dois perfis per-

pendiculares à costa foram instalados no meio do ano de 2012 e o perfil paralelo no final de 2012. As estações ficaram em fucionamento até o final do ano de 2013 registrando o movimento do terreno de maneira contínua.

O produto do deslocamento das partículas do meio registrado pelo sismógrafo, através de sensores verticais e horizontais em três componentes, pode ser visto na Figura 2. Esse registro da variação da amplitude em uma série temporal é chamado de sismograma.

Figura 2: Sismograma mostrandos as três componentes do deslocamento do terreno.

O sismograma é gerado pela perturbação do meio pelas ondas mecânicas que se propagam no interior da Terra. Essas ondas tem velocidades variando em função dos parâmetros elásticos do meio e da densidade. E estes variam pela mineralogia e condições de pressão e temperatura do meio atravessado. As ondas mecânicas são divididas em ondas de corpo e de superfície. As ondas de corpo estão categorizadas em dois tipos: as ondas P, longitudinal, e as ondas S, transversais. A onda P é mais rapida e que consegue se propagar em todos os meios, tem velocidade entre 4 e 7 km/s na crosta terrestre e em torno de 8 km/s no manto superior. As ondas S tem velocidade menor do que a onda P, em torno de 3 a 4 km/s na crosta.

Para produzir esta análise sobre a estrutura da região de estudo utilizou-se de um conjunto de dados com eventos sísmicos registrados. O número de eventos utilizados no processamento varia devido ao nível de sinal-ruído da forma da onda, pois há uma necessidade de visualização clara da chegada da onda P, como pode ser constatado na Figura 2 .

Pré-processamento

Para assegurar a confiabilidade do processamento é necessário um tratamento preliminar dos sinais brutos. Utilizou-se eventos catalogados na rede IRIS para uma identificação automática nestes sinais. Alguns pré-requisitos foram utilizados para a escolha dos eventos, como:

- 1. Distância Epicentral;
- 2. Magnitude;

Sismos próximos, com distância menor que 20 graus da estação estudada, geram ondas com incidência oblíqua e esse tipo de dado deve ser utilizado com cuidado. Em sismos com distâncias maiores que 95 graus as ondas P não chegam na estação devido a inversão

de velocidade no limite manto-núcleo, diminuição da velocidade da onda P entre o manto e o núcleo, e não é observada a onda P direta. Por isso a distância epicentral é tida como idel entre 20 e 95 graus. Devido grande parte dos sismos serem oriundos da Cordilheira dos Andes,como é visto na Figura 4, também utilizou-se dados como distância menor que 20 graus. A magnitude do sismo é importante para a propagação da onda, eventos com pequena magnitude não tem energia suficiente para gerar energia suficiente para gerar um sinal claro no sismograma.

Subsequentemente um janelamento do registro em 5 segundos antes e 10 segundos depois da chegada da onda P, esta é calculada pelo modelo de velocidade da Terra IASPEI91 (Kennet, 1991). Após a discriminação e o janelamento do sinal, examina-se visualmente cada registro para certificar que todos os eventos selecionados tem um nível de sinal-ruído bom, como na Figura 2.

Logo após removeu-se a média e tendência linear dos dados. Aplicou-se um filtro passa-alta com freqüência de corte de 0.1 Hz para eventos com distância entre 20 e 95 graus e de 2 Hz para eventos próximos (<20). Os dados originais com amostragens a cada 0,01 segundos (100 Hz) são interpolados para gerar dados com amostragens cada 0,025 segundas (40 Hz), porque a informação de alta freqüência não é relevante nesse tipo de análise.

Processamento

A caracterização prévia das informações contidas no sinal é imprescindível para o processamento. A avaliação da performance e da qualidade dos dados da estações sismográficas foram feitas no software livre PQLX. A metodologia do PQLX é baseada no trabalho de McNamara and Buland (2004). Esse procedimento é bastante usado para se obter a informação espectral sísmica.

No programa PQLX a série temporal é segmentada em intervalos de uma hora, com 50% de superposição do sinal. Cada janela de hora está separada em 13 intervalos com 75% de superposição para calcular a "Power Spectral Density". As médias obtidas para cada um dos 13 intervalos são usadas para estimar a "Probability Density Functions", calculados a partir das médias pelo número total de segmentos de hora em hora.

Essa metodologia de McNamara and Buland (2004) difere dos métodos habitualmente utilizados, porque não é necessário a visualização de todo conjunto de dados para uma estima qualitativa do sinal, observado na Figura 3.

A garantia da fiabilidade do tempo de chegada da onda P é fundamental para o processamento gerar resultados consistentes. Portanto testes com o tempo de chegada da onda P são feitos. Gibbons (2006) mostra que fazendo a correlação de dois eventos distantes em uma estação sismográfica consegue-se caracterizar esse tempo de chegada, como é visto na Figura 4. Gibbons (2006) assume que se não há alterações mensuráveis na velocidade da estrutura entre a fonte e os receptores, ondas sísmicas de dois eventos co-localizados terá a mesma duração de tempo para chegar a um determinado sensor. A função de correlação cruzada para um dado sinal a uma dada estação mede que a semelhança entre a porção posterior do sismograma é a do modelo de forma de onda. O tempo de separação entre o início do modelo e o valor máximo da função de correlação cruzada deve ser igual ao tempo que separa os dois tempos de origem dos eventos para todas as estações. Qualquer discrepância nos tempos de separação medido em duas estações diferentes, o que não é atribuível a diferença entre fontes ou uma SNR baixa, deve ser o resultado de uma anomalia em sincronismo um, ou ambos, dos instrumentos.

Nesste trabalho utilizamos uma metodologia semelhante a de Gibbons (2006). Utilizouse um sismo distante de um par de estações sismográficas próximas, com os sinais registrados faz-se a correlação. Como a fonte está distante das estações a correlação dos sinais

HLID BHZ PDF: # 18636 PSDs 10 Hz 0.01 0.10.29 0.28 0.27 0.26 0.25 0.22 0.22 0.21 0.19 0.15 0.15 0.12 0.09 0.09 mass re-centers calibrations HNM dropped packets noise body surface waves vaves NM0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 MAX MODE MEDIAN 90th% AVEMIN 1 0.1 10 100 Period (sec)

Figura 3: Análise qualitativa do sinal atraves das *Power Density Functions*. McNamara and Buland (2004)

deve ser próxima de zero.

Para calcular a espessura crustal na região utilizou-se o método da Função do Receptor que foi desenvolvido por Langston (1977). Tal método faz uso do sinal de tele-sismos, geradores de ondas planas de incidência quase-vertical embaixo de uma dada estação. A onda P chega na discontinuidade de Moho e se decompõe em uma onda P transmitida e uma onda S convertida. A diferença do tempo de chegada das duas ondas, onda S tem velocidade inferior a onda P, e de outras reflexões permite inferir a profundidade de Moho, como observado na Figura 5.

No ínicio desse trabalho somente os dados de eventos incluídos no catálogo do IRIS (*Incorporated Research Institutions for Seismology*) com magnitude maior que 5,5 entre maio de 2011 e maio de 2012 foram utilizados. Porém agora utiliza-se dados coletados na rede Sismográfica, mostrada na 1, até o fim do segundo semestre de 2013. A Figura 5 mostra eventos registrados na estação STA08.

Para uma estimativa precisa das funções do Receptor é essencial que o tempo de chegada da onda P seja determinado com exatidão. Para isso os dados foram examinados visualmente para identificar e salvar o tempo de chegada da onda P direta.

O sismômetro registra pequenas variações horizontais e verticais de amplitude das partículas do terrona na escala microscópica ao longo das direções Vertical (Z), Norte-Sul (N) e Leste-Oeste (E), chamado sistema ZNE. No entanto, o sinal bruto nas direções ZNE não está alinhado aos eixos do sismo, logo a energia na forma de vários tipos serão encontrados em cada componente registrado. Então estas componentes horizontais são rotacionadas com a finalidade de isolar das onda nos

Figura 4: Uma ilustração esquemática de como dois eventos sucessivos de fontes sísmicas quase idênticas que podem ser explorados para revelar anomalias dos tempo de chegada da onda P numa dada estação. (Gibbons, 2006)

Figura 5: Mapa dos eventos (estrelas) registrados na estação STA08. O limite de 95 graus está indicada em vermelho. Estrelas azuls mostram os eventos com dados de qualidade que são usadas no calculo das Funçoes do Receptor

as componentes "radial" e "transversal".

$$\begin{bmatrix} R \\ T \\ Z \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} E \\ N \\ Z \end{bmatrix}$$

As Funções do Receptor são calculadas com uma deconvolução no dominio do tempo da componente radial pela componente vertical. Isso elimina partes similares dos sinais, a fonte e a propagação da fonte até Moho, então a Função Receptor é sensível na delimitação da estruturação superficial da crosta embaixo da estação. O programa SAC (Seismic Analysis Code) foi usado para fazer o processamento e o cálculo das Funções Receptores.

Dispersão de Ondas de Superfície

Dados Geofísicos

Fundamentos Teóricos

Resultados e Discussões

Conclusões

Referências Bibliográficas

Gibbons, S. J., 2006, On the identification and documentation of timing errors: An example at the KBS station, spitsbergen: **77**, 559–571.

Kennet, B. L. N., 1991, Iaspei 1991 seismological tables: 3, 122–122.

Langston, C. A., 1977, The effect of planar dipping structure on source and receiver responses for constant ray parameter: Bulletin of the Seismological Society of America, 67, 1029–1050.

McNamara, D. E., and R. Buland, 2004, Ambient noise levels in the continental united states: Bulletin of the Seismological Society of America, **94**, 1517–1527.

Anexo 1

Tabela 1: Tabela com as coordenadas (Lat Long) e altitude (m) das Estações.

Nome	Latitude	Longitude	\mid Elevaç $ ilde{ m a}{ m o}({ m m})\mid$
STA01	-23.049408	-45.016808	950
STA02	-22.977707	-45.072017	886
STA03	-22.840839	-45.194141	576
STA04	-22.673525	-45.323162	902
STA05	-22.5325	-45.432383	1100
STA06	-22.386261	-45.549086	931
STA07	-22.241667	-45.647361	988
STA08	-22.050056	-45.781374	884
STA09	-21.903929	-45.946331	1045
STA10	-21.98335	-46.29471	1135
STA11	-22.12999	-46.20536	1455
STA12	-22.32379	-46.01047	890
STA13	-22.52571	-45.86029	918
STA14	-22.67147	-45.77467	974
STA15	-23.10378	-45.39983	895
STA16	-23.2387	-45.25919	906
STA17	-23.0337	-46.62914	776
STA18	-22.84539	-46.52033	957
STA19	-22.71192	-46.27943	1413
STA20	-22.56621	-45.96951	908
STA21	-22.39548	-45.75364	957
STA22	-22.21361	-45.53215	1052
STA23	-22.06692	-45.33267	993
STA24	-21.83834	-44.89324	995