Definition Data Warehouse

1 Antwort

Ein Data Warehouse dient dazu, Daten aus unterschiedlichen internen und externen Quellen zusammenzuführen und zu speichern, um anschließend mithilfe unterschiedlicher Abfrage-, Analyse- und Auswertungsprogrammen neue Informationen zu gewinnen.

Worin besteht der Unterschied zwischen operativen & analytischen Daten?

2 Antwort

Kriterien	Daten für operative Anwendungen	Daten für analytische Anwendungen	
Zweck	Unterstützung und Abwicklung operativer Geschäftsvorfälle	Informationen für das Management, Unterstützung von Entscheidungen, themenorientiert	
Inhalt	detaillierte, aktuelle Daten über Geschäftsvorfälle, zeitpunktorien- tiert	verdichtete und bereinigte Daten, historische und zum Teil zukünftige Daten, zeitraumorientiert	
Aktualität	hoch (Online, Realtime)	meist keine Tagesaktualität	
Modellierung	Altdatenbestand oft nicht model- liert	themenbezogen modelliert, standar- disiert, endbenutzertauglich	
Zustand	redundant, inkonsistent, i. d. R. normalisiert	konsistent modelliert, kontrollierte Redundanzen, denormalisiert	
Änderungen	laufend	automatische Fortschreibung, Beständigkeit des einmal übernom- menen Datenbestandes	
Abfragen	strukturiert, vordefiniert	Ad-hoc-Abfragen für komplexe, stän- dig wechselnde Fragestellungen, vor- definierte Standardauswertungen	

Ziele eines Data Warehouse?

3 Antwort

- Informationen für das Management
- Unterstützung von Entscheidungen
- zusammenführen unterschiedlicher Daten aus operativen Anwendungssystemen
- es werden (un-)strukturierte Daten übernommen
- Veränderung, Aggregation der Daten

 ${\bf Aufbau\ analytischer\ Informations systeme}$

4 Antwort

- Zentrales DWH enthält eine von den operativen Systemen isolierte Datenbank
- Data Mart ist ein subjektspezifisches oder abteilungsspezifisches DWH; entweder Datenbestände gleichzeitig an mehreren Orten schneller bereitzustellen oder einzelne Fachabteilungen spezifische Daten zu liefern

Unterschied Data Warehouse & Data Mart

5 Antwort

Merkmale	Data Mart	Data Warehouse	
Philosophie	anwendungsorientiert	anwendungsneutral	
Adressat der Datenbereitstellung	Abteilung	Unternehmen	
Vorherrschende Datenbanktechnologie	multidimensional	relational	
Granularität (Detaillierungs- grad der gespeicherten Daten)	niedrig	hoch	
Datenmenge	niedrig	hoch	
Menge historischer Daten	niedrig	hoch	
Optimierungsziel	Abfragegeschwindigkeit	Datenmenge	
Anzahl	mehrere	eins bzw. sehr wenige	
Datenmodell	je nach Data Mart verschieden	unternehmensweit	

Ablauf ETL?

6 Antwort

- Analyse und Dokumentation operativer und externer Datenquellen
- Extrahieren der ausgewählten Daten
- Transformation operativer Daten
- Bereinigung transformierter Daten
- periodisches Laden der Daten ins DWH

Extraktion

7 Antwort

Unter Extraktion versteht man die Selektion der Daten aus den (zumeist) operativen Datenquellen und ihre anschließende Speicherung in einen Arbeitsbereich des DWH (Staging Area). Hier werden die Daten zwischengespeichert und transformiert bzw. bereinigt und im Anschluss in das DWH übertragen.

Wann wird die Extraktion durchgeführt?

8 Antwort

- Periodisch
- Anfrage
- Ereignisgesteuert (wenn z.B. Werte unterschritten werden)
- Sofort (DWH hat die gleiche Aktualität wie die operativen Systeme)

Transformation

9 Antwort

Transformation findet in der s.g. Staging Area statt und bereinigt bzw. transformiert die Quelldaten in das gewünschte Zielformat.

Qualitätsmängel der Quelldaten

10 Antwort

- inkorrekte Daten (Eingabe-/Verarbeitungsfehler)
- logisch widersprüchliche Daten
- unvollständige, ungenaue, zu grobe Daten
- redundante Daten
- uneinheitliche Daten
- veraltete Daten
- irrelevante Daten
- unverständliche Daten (wegen qualitativ mangelhafter Metadaten)

Verfahren:

- Bereinigung
- Harmonisierung (betriebswirtschaftlich: Codierung, Schlüssel, Attribute)
- \bullet Verdichtung (für Analysezwecke aggregiert werden \to Regionalzahlen usw.)
- Anreicherung (Ergänzung um errechnete Kennzahlen)

Bereinigung - Was ist zu beachten?

11 Antwort

- Muss-Feld?
- Plausibilitätsprüfung bei der Eingabe?
- Wir das Feld gemäß der ursprünglichen Bestimmung genutzt?
- Wurde das Datenfeld nachträglich aufgenommen? (fehlt bei älteren Daten dann)
- Existieren konkrete Änderungspläne für die operativen Daten?

Daten-Mängel

12 Antwort

Es werden syntaktische und semantische Mängel unterschieden.

Bereinigung	Klasse: Automatische Erken- nung und Korrektur	2. Klasse: Automatische Erken- nung und manuelle Korrektur	3. Klasse: Manuelle Erkennung und manuelle Korrek- tur
Syntaktische Mängel	Formatanpassungen	Erkennbare Format- inkompatibilitäten	_
Semantische Mängel	Fehlende Datenwerte	Ausreißerwerte, unstimmige Werte	Unerkannte semanti- sche Fehler in operati- ven Datenquellen

Harmonisierung - Was wird getan?

13 Antwort

- $\bullet\,$ Vereinheitlichung unterschiedlicher Codierungen (z.B. männlich, m, 1, weiblich, w, 0)
- Synonyme und Homonymen (unterschiedliche Attributnamen mit gleicher Bedeutung z.B. vorname, vname, firstname)
- Harmonisierung von Schlüsseln und Kennzahlen

Verdichtung

14 Antwort

Es werden Daten im DWH (Staging Area) auf verschiedenen Stufen aufsummiert.

Anreicherung

15 Antwort

Es werden Berechnungen durchgeführt, die zusammen mit den übrigen analytischen Daten gespeichert werden, d.h. es werden konkrete Kennzahlen ermittelt basierend auf einem gegeben Kennzahlensystem (z.B. DuPont-Schema \rightarrow ROI)

Vorteile der Anreicherung sind:

- kürzere Antwortzeiten bei späteren Anfragen da es sich um vorberechnete Werte handelt
- hohe Datenkonsistenz, da sie nach einem einheitlichen Algorithmus berechnet werden

Laden

16 Antwort

Es wird unterschieden zwischen:

- Initialem Füllen aus den operativen Datenbanken
- Zyklischer Aktualisierung, neue Werte werden ergänzt, alte archiviert

Wenn die Daten zyklisch übernommen werden kann dies als:

- Kompletter Abzug (einfach aber zeitaufwendig)
- jeweilige Änderungen (geringe Datenmenge, aufwendig das Delta zu ermitteln, nur der letzte Stand wird ermittelt)
- Auswahl protokollierter Datenbanktransaktionen (auch Änderungen innerhalb des Deltas erfasst werden)

geschehen.

Metadaten

17 Antwort

Metadaten sind Daten über Daten und enthalten Hintergrundinformationen über die im DWH gespeicherten Werte. Sie geben Aufschluss über:

- Umfang der verfügbaren Daten
- Datenstruktur und Beziehungen (Relationen)
- Herkunft der operativen Daten
- Speicherort im DWH
- Formate
- Zugriffsberechtigungen

In der Metadatenbank wird festgehalten:

- Welche Daten woher kommen
- Wie sie aufbereitet und verdichtet werden
- Wo sie gespeichert werden
- Welcher Anwender auf welche Daten Zugriff erhält

Archivierung

18 Antwort

Es wird zwischen der:

- Datenarchivierung (auslagern auf Offlinedatenträger nach Zeit)
- Datensicherung (Dienen zur Wiederherstellung des DWH) unterschieden.

OLAP

19 Antwort

Der Begriff steht für Online Analytical Processing und umfasst alle Formen der *mehrdimensionalen Datenanalyse*. Im Focus stehen betriebswirtschaftliche Kennzahlen. Die Mehrdimensionalität wir durch s.g. *Datenwürfel* veranschaulicht.

Unterschied OLAP/TLTP

20 Antwort

Merkmal	OLTP Operative IT-Systeme	OLAP Data Warehouse
Typische Datenstruktur	flache Tabellen	multidimensionale Strukturen
Datenmanipulation	 Erfassung einzelner Daten- sätze Update/Einfügen von Datensätzen zulässig 	 spezifische Analyse großer Datenmengen nur lesender Zugriff mög- lich
Aktualisierung durch	Transaktionen	Batch-Läufe
Datenquelle	intern	intern und extern
Datenmenge pro Transaktion	klein	sehr umfangreich
Typische Betrachtungsebene	detailliert	aggregiert
Systemlast	vorhersehbar	ad hoc
geforderte Antwortzeit	2–3 Sekunden	mehrere Sekunden bis Minuten

Anforderungen an OLAP

- Mehrdimensionale konzeptionelle Sicht auf die Daten (Zeit, Produktgruppe, Region, Person, usw.)
- Transparenz (Anwender müssen keine technischen Details kennen)
- Zugriffsmöglichkeiten (auf möglichst viele heterogene und interne/externe Datenquellen)
- Stabile Antwortzeiten (möglichst schnell und vor allem gleichbleibend)
- Client-/Server-Architektur
- Gleichrangige Dimensionen
- Dynamische Handhabung dünn besetzter Matrizen (effiziente Speicherung trotz Lücken)
- Mehrbenutzerfähigkeit
- Unbeschränkt dimensionsübergreifende Operationen
- Intuitive Datenanalyse
- Flexibles Berichtswesen (Dokumentation in FOrm von Berichten und Grafiken)
- Unbegrenzte Anzahl von Dimensionen/Aggregationsstufen

Achtung: Rückseite von # 21 ist zu voll.

Kritik: Die unscharfe Trennung zwischen fachlich-konzeptionellen Anforderungen und technischer Realisierung.

Alternativ **FASMI**:

- Fast (Antwortzeit max. 20s)
- Analysis (Anwender ohne technisches Wissen müssen auswerten können)
- Shared (Mehrbenutzer)
- Multidimensional
- Information (sämtliche benötigten Informationen können geliefert werden)

Mehrdimensionalität

22 Antwort

Die Anzahl der Dimensionen lässt sich mit der Fakultät der Dimensionen berechnen:

- $2 \text{ Dim} = 1 \times 2 = 2 \text{ Sichten}$
- $3 \text{ Dim} = 1 \times 2 \times 3 = 6 \text{ Sichten}$
- $4 \text{ Dim} = 1 \times 2 \times 3 \times 4 = 24 \text{ Sichten}$

Die verschiedenen Betrachtungsmöglichkeiten werden auch als **Slice and Dice** bezeichnet. *Slice* bedeutet das Herausschneiden von Scheiben aus dem Würfel. *Dice* bedeutet die Bildung von kleinen Würfeln aus dem Gesamtwürfel zur Einschränkung auf einen Wert bzw. Wertebereich.

Mittels **Drill down** ist es möglich von einer bestehenden Verdichtungsebene auf eine detaillierte Ebene zu wechseln. **Drill up** wechselt von einer Ebene auf eine verdichtertere Ebene. **Drill across** ermöglicht zu einem anderen Wert auf der selben Ebene zu wechseln.

Wie können Daten verdichtet werden?

23 Antwort

Wie die Daten verdichtet werden können hängt unmittelbar vom Typ ab.

- Additive Daten lassen sich beliebig aufsummieren (Umsatz in Kombination mit Produkten und Regionen)
- Semiadditive Daten lassen sich nicht über alle Dimensionen aufaddieren (z.B. bei Zeiträumen und Lagerbeständen)
- Nichtadditive Daten lassten keine sinnvolle Aufsummierung zu (Anteilswerte)

Modellierung

24 Antwort

Die multidimensionale Modellierung ist in der Lage die konzeptionellen Datenstrukturen in physische Datenbank-/Speicherstrukturen umzusetzen. Im Falle eine dünn besetzen Matrix wird Speicherplatz vergeudet, da für nicht existente Werte gleich viel Speicher verbraucht wird, als wenn der Wert existiert.

Die **relationale Modellierung** setzt die mehrdimensionale Datenstruktur in einer relationalen Datenbankstruktur ab. Es wird dabei zwischen:

- Fakten (quantitative Kerndaten)
- Dimension (beschreibende Daten, kann beliebig viele Ausprägungen haben) unterschieden.

Star-Schema

Für jede Dimension wird eine Tabelle eingerichtet. Die Dimensionstabellen sind nicht miteinander verknüpft, sondern stehen nur über die Faktentabelle miteinander in Beziehung. Der Primärschlüssel in der Faktentabelle setzt sich zusammen aus den Primärschlüsseln aller Dimensionstabellen.

Vorteil:

• einfaches, intuitive Datenmodell

- benötigt nur wenige Join-Operationen
- wenige Tabellen benötigt

Nachteil:

• durch die große Anzahl der Verknüpfungsmöglichkeiten kann es zu Performanceproblemen kommen

Achtung: Rückseite von # 25 ist zu voll.

Snowflake-Schema

Dieses Schema ist einer Erweiterung des Star-Schemas und wird durch die Normalisierung entwickelt.

Vorteile:

• erleichtert die Aggregation

• keine Redundanzen

Nachteile

- höhere Anzahl JOINS
- höhere Anzahl Tabellen
- komplexere SQL-Abfragen

Achtung: Rückseite von # 26 ist zu voll.

Was ist Data-Mining?

27 Antwort

Kartenübersicht ANS08

#	Karte	Notizen
1	Definition Data Warehouse	
2	Worin besteht der Unterschied zwischen operativen & analytischen Daten?	
3	Ziele eines Data Warehouse?	
4	Aufbau analytischer Informationssysteme	
5	Unterschied Data Warehouse & Data Mart	
6	Ablauf ETL?	
7	Extraktion	
8	Wann wird die Extraktion durchgeführt?	
9	Transformation	
10	Qualitätsmängel der Quelldaten	
11	Bereinigung - Was ist zu beachten?	
12	Daten-Mängel	
13	Harmonisierung - Was wird getan?	
14	Verdichtung	
15	Anreicherung	
16	Laden	
17	Metadaten	
18	Archivierung	
19	OLAP	
20	Unterschied OLAP/TLTP	
21	Anforderungen an OLAP	
22	Mehrdimensionalität	
23	Wie können Daten verdichtet werden?	
24	Modellierung	
25	Star-Schema	
26	Snowflake-Schema	
27	Was ist Data-Mining?	