

Vorlesung Computational Intelligence

Teil 4: Evolutionäre und Memetische Algorithmen

4.2 Ausgewählte Grundlagen der Optimierung

Ralf Mikut, Wilfried Jakob, Markus Reischl

Institut für Automation und angewandte Informatik (IAI) / Campus Nord

4.2 Ausgewählte Grundlagen der Optimierung

Übersicht:

- Formale Definitionen
- Komplexität
- Mehrzieloptimierung
- Einige etablierte mathematische Verfahren
- Einige etablierte Metaheuristiken
- No-free-Lunch-Theoreme

Grundlagen der Optimierung – Formale Definitionen

Formale Definition eines Optimierungsproblems

Gegeben: *n*-dimensionale auf beliebige Mengen definierte Funktion:

$$F: M \subseteq M_1 \times M_2 \times ... \times M_n \rightarrow \mathbb{R}, M \neq \emptyset$$

Gesucht ist ein $x_{opt} \in M$ x heißt Vektor der *Entscheidungsvariablen*

für das gilt: $\forall x \in M$: $\left(F(x) \leq F(x_{opt})\right) = F_{opt}$ globales Optimum

Häufig sind die M_i die Mengen der reellen oder der ganzen Zahlen.

Man spricht von einem *lokalen Optimum* $F_{lopt} = F(x_{lopt})$, wenn gilt:

$$\exists \varepsilon > 0 \ \forall x \in M: ||x - x_{lopt}|| < \varepsilon \Rightarrow F(x_{lopt}) \geq F(x)$$

Wegen $max\{F(x)\} = -min\{-F(x)\}$ ist eine Minimumsuche immer in eine Maximumsuche überführbar.

Grundlagen der Optimierung – Formale Definitionen

Beschränkungen von $M: G_i(x) \geq 0$

Explizite Beschränkung: $G_i(x)$ hängt von einer Vektorkomponente x_i ab.

Obere/Untere Schranken von x_i

Implizite Beschränkung: $G_i(x)$ hängt von mehreren Vektorkomponenten ab.

Unzulässige Bereiche im oder

am Rand des Parameterraums

Reale Probleme sind in der Regel beschränkt.

Anzahl der Optima:

Ein globales Optimum Unimodal:

Multimodal: Mindestens ein lokales Optimum

Weitere Eigenschaften wie *Definitionslücken*, *Verrauschung*, fehlende *Stetigkeit*, Differenzierbarkeit oder Konvexität, usw. sind kein Hindernis für einen EA-Einsatz.

Polynomialzeit

Zeitobergrenze, die als Polynomfunktion n-ten Grades der Größe k eines Problems angegeben werden kann, mit der eine deterministische sequentielle Rechenmaschine das Problem löst.

$$\sum_{i=1}^{n} a_i \cdot k^i, \quad a_n \neq 0$$

Vereinfachende O-Notation:

Notation	Bedeutung	Beispiele für Laufzeiten
O(1)	beschränkte Komplexität	indizierter Zugriff
$O(\log x)$	logarithmisches Wachstum	Binäre Suche im geordneten Feld der Größe x
$O(\sqrt{x})$	Wachstum gemäß der Wurzelfunktion	naiver Primzahlentest $(Teiler \le \sqrt{x})$
O(x)	lineares Wachstum	lineare Suche im unsortierten Feld der Größe x
$O(x \log x)$	super-lineares Wachstum	fortgeschrittenere Sortieralgorithmen (Größe x)
$O(x^2)$	quadratisches Wachstum	z.B. Sortieralgorithmus <i>Bubblesort</i>
$O(2^x)$	exponentielles Wachstum	rekursive Berechnung der Fibonacci-Folge

O-Notation

- dient der Beschreibung der Zeit- oder Speicherkomplexität eines Algorithmus (auf einer sequentiellen Maschine)
- ist eine obere Schranke
- Vernachlässigung von Faktoren oder Polynomgliedern geringerer Potenz

Die Vorgehensweise bei der O-Notation erlaubt auch die Bildung von Komplexitätsklassen für Algorithmen.

Die Klasse der P-Probleme:

Alle Probleme, die von einer deterministischen, sequentiellen Rechenmaschine (Turingmaschine) in Polynomialzeit lösbar sind.

Die Klasse der NP-Probleme:

Alle Probleme, die von einer nichtdeterministischen Turingmaschine in Polynomialzeit lösbar sind.

Nichtdeterministische Turingmaschine (NTM):

- theoretisches Maschinenmodell (Konzept der theoretischen Informatik)
- Der Folgezustand einer NTM lässt sich <u>nicht</u> aus dem aktuellen Zustand und den aktuellen Eingabezeichen ableiten.
- NTM wählen einen Nachfolgezustand aus mehreren möglichen aus:
 - → daher nichtdeterministisch
- Annahme, dass die Auswahl "gut" sei, auf jeden Fall besser als zufällig
- → Randomisierte Algorithmen sind <u>nicht</u> identisch mit nichtdeterministischen!

Es ist unbekannt, ob P = NP?

Ob also die NP-Probleme nicht doch auf einer deterministischen Maschine in Polynomialzeit lösbar sind.

NP-vollständige Probleme:

- Untermenge der NP-Probleme
- lassen sich vermutlich nicht effizient (d.h. in Polynomialzeit) lösen
 - →ab einer *problemabhängig kleinen* Datenmenge nicht in praktikabler Zeit lösbar

Einige Beispiele NP-vollständiger Probleme:

- Travelling Salesman Problem (TSP), Problem des Handlungsreisenden Ermittlung der kürzesten Städtetour
- Schedulingprobleme, meist mit einschränkenden Nebenbedingungen
- **Knapsack Problem (Rucksackproblem)** Auswahl von Objekten derart, dass der größte Nutzwert unter Einhaltung einer Gewichtsschranke erreicht wird

Mehrzieloptimierung (multikriterielle Optimierung)

- Bisher: eine zu optimierende Zielfunktion
- praktische Probleme haben i.d.R. mehrere zu optimierende Kriterien Beispiele:
 - große Nutzlast
 - große Geschwindigkeit
 - geringer Energieverbrauch

oder

- kurze Bearbeitungszeit
- geringe Maschinenkosten
- hohe Auslastung

→ sich widersprechende Kriterien!

Mehrzieloptimierung (multikriterielle Optimierung)

Pareto-Optimierung:

Bestimmung der Pareto-Menge:

Alle Lösungen, bei denen die Verbesserung eines Kriteriums nur auf Kosten eines anderen möglich ist.

Diese Lösungen liegen auf der Pareto-Fron

Menge aller optimalen Kompromisse

Pareto-Front

oder

Abbildung der zulässigen Parametermenge S

durch die Fitnessfunktion $f(x) = (f_1(x), ..., f_k(x))^T, x \in S$

in die zulässige

Kriterienmenge Z

mit Paretofront

Mehrzieloptimierung (multikriterielle Optimierung)

nichtkonvexer Frontabschnitt

Aufwand zur Approximation der Pareto-Front:

Wie viel Stützpunkte werden mindestens benötigt?

7 Stützpunkte können bei günstiger Lage und halbwegs regelmäßiger konvexer Front zur Approximation genügen.

Mehr sind aber besser:

Aufwand zur Approximation der Pareto-Front:

Bei s Stützpunkten pro zusätzlichem Kriterium werden für eine Approximation der Pareto-Front von k > 1 Kriterien $s^{(k-1)}$ Stützpunkte (Pareto-optimale Lösungen) in der (Hyper-)Fläche benötigt, die weit genug auseinander liegen.

Wie nennt man dieses Wachstum?

Mehrzieloptimierung (multikriterielle Optimierung)

Pareto-Optimierung:

Vorteile:

- Bestimmung vieler gleichwertiger Lösungsalternativen (Kompromisse)
- Abschätzung von erreichbaren Wertebereichen der Kriterien
- Reduktion einer subjektiven Auswahl auf optimale Kompromisse

Nachteile:

- keine direkte quantitative Vergleichbarkeit aller Lösungsalternativen
- Exponentielle Steigerung des Aufwands bei steigender Kriterienanzahl
- bei mehr als 4 Kriterien kaum noch darstellbar (→ Aggregation eines Teils der Kriterien)

Multi- und Many-Objective Evolutionary Algorithms (MOEAs):

- NSGA-II und NSGA-III (Non-dominated Sorting Genetic Algorithm) [Deb02, Deb14, Jain14] Komplexität der Suche: $O(m \cdot n^2)$ bei m Kriterien und einer Population der Größe n
- SPEA2 (Strength Pareto Evolutionary Algorithm) [Zit01]
- Bewertungsverfahren für Evolutionäre Algorithmen zur Bestimmung einer möglichst divergenten Pareto-Menge [Beu06]

Mehrzieloptimierung (multikriterielle Optimierung)

Aggregierung der Kriterien, z.B. gewichtete Summe:

Wie soll das bei unterschiedlichen Dimensionen (z.B. Zeit und Kosten) und Skalen funktionieren?

Mehrzieloptimierung (multikriterielle Optimierung)

Aggregierung der Kriterien, z.B. gewichtete Summe:

- Getrennte Normierung der Kriterien auf ein einheitliches Maß
- (subjektive) Gewichtung der Kriterien (eventuell ohne Vorwissen!)
- Bildung der Summe → ein Qualitätswert (Zielfunktion)
- Leichte Integration von Straffunktionen in Form von Straffaktoren $\in [0, 1]$
- Abbildung auf Kosten entspricht einer Form der gewichteten Summe!

Vorteile:

- quantitative Vergleichbarkeit aller Lösungsalternativen
- keine Begrenzung der Kriterienanzahl
- leichte Berechenbarkeit

Nachteil:

- Bei nichtkonvexen Lösungsmengen werden Lösungen unerreichbar!
- nur für Experten nachvollziehbar
- subjektive Gewichtung

Die Nichtkonvexen hingegen nicht!

Durch geeignete Gewichtung sind die konvexen Teile der Paretofront erreichbar.

Dr. Wilfried Jakob

Alternative: Kaskadierte gewichtete Summe [Jak14]

Einige etablierte mathematische Verfahren (lokale Suchverfahren, LSV)

Zwei Arten:

- > indirekte Verfahren benötigen neben dem Funktionswert Ableitungen
- direkte Verfahren arbeiten nur mit dem Funktionswert

Einige Eigenschaften:

- startpunktabhängig, daher meist mehrfache Anwendung erforderlich
- meist vergleichsweise schnelle Konvergenz

Was bedeutet das?

- in der Regel deterministisch
- Anwendungsgebiet: numerische Probleme
- Komplexität: $O(n^2) \dots O(n^3)$

Indirekte Verfahren:

- Gradientenverfahren, konjugierte Gradientenverfahren Ermitteln die Richtung des stärksten Anstiegs
- Quasi-Newton-Verfahren verwenden ein quadratisches Modell der Zielfunktion durch Taylor-Reihenansatz und deren Ableitung Fülle von Varianten, z.B. DFP-Verfahren mit und ohne Ableitungen

- - -

Einige Eigenschaften:

- Beschränkungen werden nicht berücksichtigt
- konvergieren schnell
- Aufwand: nicht unter O(n³)

Direkte Verfahren:

- ableitungsfrei
- Suchrichtung und Schrittweite werden heuristisch bestimmt.
- keine Berücksichtigung von Beschränkungen
- Konvergenzprobleme möglich
- Gauß-Seidel-Verfahren

Iterative Suche mit fester Schrittweite entlang den Achsen bis Verbesserung ausbleibt.

- Konvergenzgeschwindigkeit stark suchraumabhängig
- Fülle von Varianten zur Verbesserung der Konvergenzgeschwindigkeit
- Pattern-Strategien

Anpassung der Suchrichtung entsprechend der Zielfunktion

- Verfahren von Hooke und Jeeves
- Verfahren von Powell (konjugierte Richtungen)

Verhalten von lokalen Suchverfahren:

LSVs suchen in der Regel in die Richtung des stärksten Anstiegs.

Zwei ausgewählte lokale Suchverfahren:

Rosenbrock-Verfahren

Suche entlang eines im Raum rotierenden Koordinatensystems, das in die Richtung zeigt, die den größten Fortschritt verspricht.

- Anpassung der Schrittweiten
- Berücksichtigung von Beschränkungen durch interne Straffunktion
- Benötigt gültigen Startpunkt

Gilt als robustes, ableitungsfreies lokales Suchverfahren. Aufwand: $O(n^3)$ [Ros60]

Complex-Verfahren von Box

Arbeiten mit mehreren Punkten (n+1), die einen Polyeder bilden.

- Veränderung durch Kontraktion, Expansion und Reflexion des Polyeders
 - Reflexion des schlechtesten Punktes am Flächenschwerpunkt
 - Bei Verbesserung Versuch einer Expansion
 - Bei Verschlechterung erfolgt eine Kontraktion
- > Abbruch bei zu großer Annäherung der Punkte an den Mittelpunkt

[Box60]

Complex-Verfahren von Box (2)

Weitere Eigenschaften:

- mindestens ein Startpunkt, der Rest wird ausgewürfelt (stochastische Initialisierung)
- Abbruch, wenn fünf mal hintereinander keine Verbesserung eintritt.
- Berücksichtigung von Beschränkungen
- Bewegung eines Polyeders im Raum, wobei kleinere lokale Minima übersprungen werden können.
- Gilt bei wenigen Parametern (bis zu 10) als robust. Aufwand: $O(n^2)$, Anzahl der Funktionsaufrufe bei $n \le 10$: $O(n^{2.11})$

Dr. Wilfried Jakob

Grundlagen der Optimierung – Metaheuristiken

Einige etablierte Metaheuristiken

Meist allgemein anwendbare, global suchende und stochastische Verfahren

- Ameisen-Algorithmen (Ant Colony Optimisation)
 - Idee: Kürzere Wege zu einem Futterplatz werden öfter von Ameisen frequentiert als längere.
 - → höhere Pheromonkonzentration, Entstehung einer "Ameisenstraße" Sehr gut für kombinatorische Probleme geeignet
- Partikelschwarm-Optimierung

Idee: Nachbildung des Schwarmverhaltens von Tieren zur Auffindung attraktiver Plätze Für kontinuierliche und diskrete Aufgabenstellungen konzipiert

Evolutionäre Algorithmen:

Idee: Nutzung der Mechanismen der biol. Evolution zur Verbesserung von Lösungen Sehr gut für kontinuierliche, diskrete und kombinatorische Probleme geeignet

Gemeinsame Eigenschaften:

- Jeder Optimierungslauf kann andere Ergebnisse liefern (stochastische Verfahren)
- Keine Optimalitätsgarantie
- Wenig Vorwissen erforderlich
- Existierende (Teil-)Lösungen oder Lösungen eines ähnlichen Problems leicht integrierbar
- Mehr Rechenleistung bringt bessere Ergebnisse! Gut parallelisierbar

Grundlagen der Optimierung – No-free-Lunch-Theoreme

No-free-Lunch-Theoreme:

(Nichts ist umsonst)

Bezogen auf die Menge aller mathematisch möglichen Probleme sind alle Suchalgorithmen im Durchschnitt gleich gut (oder gleich schlecht). [Wol95, Wol97]

- → Metaheuristik mit möglichst viel Anwendungswissen anpassen:
 - an das Problem oder besser
 - an die Problemklasse

Umkehrschluss:

Es gibt keinen Universalalgorithmus, der alle Aufgaben am effizientesten löst!

