City University of Hong Kong Department of Economics and Finance Course EF5213 Assignment #2

(due March 4, 2018)

1. Use VBA as programming tool, implement the implicit finite difference method under the Crank-Nicholson scheme to price an accumulator contract written on a stock with Cox-Ingersoll-Ross volatility structure as $\sigma(S_t, t) = \sigma \sqrt{S_t}$, where S_t is the underlying stock price at time t. Consider the following input parameters in your implementation:

On option: r –Risk free interest rate

 σ – Volatility factor of the underlying stock

Q – Contract size

 $\{T_1, T_2, ..., T_n\}$ – Settlement dates of the contract

K – Strike price of the contract

L – Knock-out price of the contract

On precision: i_{max} – Number of steps to maturity

 j_{max} – Size parameter of the tridiagonal matrix

Assignment Project Exam Help

To improve efficiency, use the enclosed *SolveAxb* routine from *Numerical Recipies* in solving the matrix equation $A_{n\times n} x_{n\times 1} = b_{n\times 1}$ based on singular value decomposition.

Note: With accumulation agree and we control of the control of a stock at a fixed price K and at every settlement dates $\{T_1, T_2, \dots, T_n\}$ over a period of time. There is a knock-out price (L > K) that terminates the contract.

- Define time steps of the imax Le Chat powcoder
- Perform a backward iteration that starts off from T_n with payoff $F(S_i, T_n) = Q \times (S_i K)$.
- If t_i corresponds to a settlement date, (i.e. $t_i \frac{1}{2}\Delta t < T_k \le t_i + \frac{1}{2}\Delta t$ for some T_k)

$$F(S_j < L, t_i) = F_{itr}(S_j < L, t_i) + Q \times (S_j - K)$$

 $F(S_i \ge L, t_i) = Q \times (S_i - K)$

where $F_{itr}()$ is the option vector immediately after the backward iteration

• If t_i is not a settlement date, $F(S_j < L, t_i) = F_{itr}(S_j < L, t_i)$ $F(S_i \ge L, t_i) = 0$

Referring to the transition at boundaries $F(S_0, t_{i+1}) = b_0 F(S_0, t_i)$ and $F(S_{jmax}, t_{i+1}) = b_{jmax} F(S_{jmax}, t_i)$. It is always true that $b_{jmax} = 1$ for $S_{jmax} \to \infty$. Also, we must have $b_0 = 1$ whenever the option can be exercised. Otherwise, it is generally true that $b_0 = e^{r\Delta t}$.

(50 points)