MT251P - Lecture 10

Fiacre Ó Cairbre

Example 7.

Suppose $\underline{x} = (3, -2, 4, 6, 0)$ and y = (0, 1, 0, -2, 5) in \mathbb{R}^5 .

(a)
$$\underline{x} + y = (3, -1, 4, 4, 5)$$

(b)
$$||\underline{x}|| = \sqrt{9+4+16+36} = \sqrt{65}$$

(c)
$$\underline{x}.\underline{y} = -14$$

Theorem 4.

Suppose $\underline{x} = (x_1, x_2, \dots, x_n), \ \underline{y} = (y_1, y_2, \dots, y_n), \ \underline{u} = (u_1, u_2, \dots, u_n)$ and $\underline{w} = (w_1, w_2, \dots, w_n) \in \mathbb{R}^n$. Then

- (a) $\underline{y} \underline{x}$ is the vector from (x_1, x_2, \dots, x_n) to (y_1, y_2, \dots, y_n) . Also, the vector from (x_1, x_2, \dots, x_n) to (y_1, y_2, \dots, y_n) is parallel to the vector from (u_1, u_2, \dots, u_n) to $(w_1, w_2, \dots, w_n) \leftarrow \underline{y} \underline{x} = t(\underline{w} \underline{u})$, for some $t \in \mathbb{R}$.
- (b) The line L passing through (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) is given by

$$L = \{(x_1, x_2, \dots, x_n) + t(y_1 - x_1, y_2 - x_2, \dots, y_n - x_n) : t \in \mathbb{R}\}\$$

L is also the line passing through (x_1, x_2, \ldots, x_n) parallel to the vector $\underline{y} - \underline{x}$ and is called the parametric equation of L.

Furthermore the line M passing through (x_1, x_2, \ldots, x_n) and parallel to the vector (u_1, u_2, \ldots, u_n) is given by

$$M = \{(x_1, x_2, \dots, x_n) + t(u_1, u_2, \dots, u_n) : t \in \mathbb{R}\}\$$

Example 8.

- (a) Find the parametric equation of the line L passing through (1, 2, -1) and (2, 0, 2).
- (b) Is (3, -2, 5) on L? Is (3, 0, 1) on L?

Solution.

- (a) $L = \{(1, 2, -1) + t(1, -2, 3) : t \in \mathbb{R}\}$
- (b) (3, -2, 5) is on L because it corresponds to t = 2 in (a). (3, 0, 1) is not on L because there is no $t \in \mathbb{R}$ satisfying

$$1+t=3$$
, $2-2t=0$, $-1+3t=1$ (*)

Definition 5.

The non–zero vectors $\underline{x}, \underline{y} \in \mathbb{R}^n$ are said to be perpendicular if the angle between them is $\frac{\pi}{2}$.

We also define the zero vector to be perpendicular to any vector.

Theorem 5.

Suppose $\underline{x}, y \in \mathbb{R}^n$. Then

(a) $\underline{x}.y = 0 \iff \underline{x}$ and y are perpendicular

Theorem 6 - Cauchy-Schwartz Inequality.

$$|\underline{x}.y| \le ||\underline{x}|| ||y||$$
, for all $\underline{x}, y \in \mathbb{R}^n$ (i)

Also, equality holds in (i) above $\iff \underline{x} = ty$, for some $t \in \mathbb{R}$ (ii)

Proof.

First we note that

$$(\underline{x} + sy).(\underline{x} + sy) \ge 0$$
, for all $s \in \mathbb{R}$

and so

$$\underline{x}.\underline{x} + s\underline{y}.\underline{x} + s\underline{x}.\underline{y} + s^2\underline{y}.\underline{y} \ge 0$$
, for all $s \in \mathbb{R}$
 $\Rightarrow ||x||^2 + 2sx.y + s^2||y||^2 \ge 0$, for all $s \in \mathbb{R}$ (*)

This means that the left hand side of (*) (as a quadratic equation in s) has at most one real root. So, by the quadratic formula we get

$$4(\underline{x}.\underline{y})^2 - 4||\underline{y}||^2||\underline{x}||^2 \le 0$$

$$\Rightarrow (\underline{x}.\underline{y})^2 \le ||\underline{x}||^2||\underline{y}||^2$$

$$\Rightarrow |\underline{x}.y| \le ||\underline{x}||||y|| \qquad (**)$$

and so we have proved (i).

Now equality holds in (**)

 \iff the quadratic in s in (*) has exactly one real root

$$\iff (\underline{x} + qy).(\underline{x} + qy) = 0$$
, for exactly one $q \in \mathbb{R}$

$$\iff \underline{x} = -qy$$

and so we have proved (ii) and we are done.

Remark 10.

The Cauchy–Schwartz inequality implies that for all non–zero $\underline{x},\underline{y}\in\mathbb{R}^n,$ we have

$$-1 \le \frac{\underline{x}.\underline{y}}{||\underline{x}||||\underline{y}||} \le 1$$

Hence, there is a unique θ such that

$$\cos \theta = \frac{\underline{x} \cdot \underline{y}}{||\underline{x}|| ||\underline{y}||} \text{ and } 0 \le \theta \le \pi$$
 (a)