George B. Mertzios¹ Hendrik Molter² Viktor Zamaraev¹

¹Department of Computer Science, Durham University, Durham, UK

²Algorithmics and Computational Complexity, TU Berlin, Germany

Appeared at AAAI 2019

NeST Workshop, 12 June 2019 Department of Computer Science Liverpool University

Motivation

Main question:

■ What is the natural problem that extends graph coloring to the case where the graph changes over time?

Motivation

A motivating scenario:

 Mobile agents broadcast information

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

"Dynamic Channel Assignment Problem"

Time: 1 B

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

"Dynamic Channel Assignment Problem"

Time: 3

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Time: 4

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Time: 5

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

"Dynamic Channel Assignment Problem"

Modeling:

Vertices in a temporal graph

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

"Dynamic Channel Assignment Problem"

Modeling:

- Vertices in a temporal graph
- Time-edges

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

"Dynamic Channel Assignment Problem"

Modeling:

- Vertices in a temporal graph
- Time-edges
- Vertices need to be differently colored in order to exchange information

Motivation

A motivating scenario:

- Mobile agents broadcast information
- When agents meet they can exchange information
- Information can only be exchanged if agents broadcast on different channels
- Agents should be able to exchange information within reasonable time windows around their meetings (every Δ time)

"Dynamic Channel Assignment Problem"

Modeling:

- Vertices in a temporal graph
- Time-edges
- Vertices need to be differently colored in order to exchange information
- Each time-edge should be "properly colored" at least once in each Δ-window in which it exists

Temporal Graphs

Temporal Graph

Temporal Graphs

Temporal Graph

Temporal Graphs

Temporal Graph

Temporal Graphs

Temporal Graph

Temporal Graphs

Temporal Graph

Temporal Graphs

Temporal Graph

Temporal Graphs

Temporal Graph

Sliding Window Temporal Graph Coloring

Proper Sliding Δ -Window Temporal Coloring

A proper sliding Δ -window temporal coloring of (G, λ) is a coloring vector $\phi = (\phi_1, \phi_2, \dots, \phi_T)$ such that:

Sliding Window Temporal Graph Coloring

Proper Sliding Δ -Window Temporal Coloring

A proper sliding Δ -window temporal coloring of (G,λ) is a coloring vector $\phi = (\phi_1,\phi_2,\ldots,\phi_T)$ such that:

Sliding Window Temporal Graph Coloring

Proper Sliding Δ -Window Temporal Coloring

A proper sliding Δ -window temporal coloring of (G,λ) is a coloring vector $\phi = (\phi_1,\phi_2,\ldots,\phi_T)$ such that:

Sliding Window Temporal Graph Coloring

Proper Sliding Δ -Window Temporal Coloring

A proper sliding Δ -window temporal coloring of (G,λ) is a coloring vector $\phi = (\phi_1,\phi_2,\ldots,\phi_T)$ such that:

Sliding Window Temporal Graph Coloring

Proper Sliding Δ -Window Temporal Coloring

A proper sliding Δ -window temporal coloring of (G,λ) is a coloring vector $\phi = (\phi_1,\phi_2,\ldots,\phi_T)$ such that:

Sliding Window Temporal Graph Coloring

Proper Sliding Δ -Window Temporal Coloring

A proper sliding Δ -window temporal coloring of (G,λ) is a coloring vector $\phi = (\phi_1,\phi_2,\ldots,\phi_T)$ such that:

Main Results

Sliding Window Temporal Coloring (SWTC)

Input: A temporal graph (G,λ) , and two integers $k \in \mathbb{N}$ and $\Delta \leq T$. **Question:** Does there exist a proper sliding Δ -window temporal

coloring ϕ of (G, λ) using at most k colors?

Main Results

Sliding Window Temporal Coloring (SWTC)

Input: A temporal graph (G,λ) , and two integers $k \in \mathbb{N}$ and $\Delta \leq T$. **Question:** Does there exist a proper sliding Δ -window temporal coloring ϕ of (G,λ) using at most k colors?

Main Hardness Results:

SWTC is NP-hard, even if

■ k = 2, $\Delta = 2$, T = 3, G is 3-colorable, O(1) max. deg., every connected component in every snapshot has O(1) size.

Main Results

Sliding Window Temporal Coloring (SWTC)

Input: A temporal graph (G,λ) , and two integers $k \in \mathbb{N}$ and $\Delta \leq T$. **Question:** Does there exist a proper sliding Δ -window temporal coloring ϕ of (G,λ) using at most k colors?

Main Hardness Results:

SWTC is NP-hard, even if

- k = 2, $\Delta = 2$, T = 3, G is 3-colorable, O(1) max. deg., every connected component in every snapshot has O(1) size.
- k = 2, $\Delta = 2$, vertex cover number of G is O(1).

Main Algorithmic Results:

Exp. time algorithm (asympt. optimal in n under ETH).

Main Results

Sliding Window Temporal Coloring (SWTC)

Input: A temporal graph (G,λ) , and two integers $k \in \mathbb{N}$ and $\Delta \leq T$. **Question:** Does there exist a proper sliding Δ -window temporal coloring ϕ of (G,λ) using at most k colors?

Main Hardness Results:

SWTC is NP-hard, even if

- k = 2, $\Delta = 2$, T = 3, G is 3-colorable, O(1) max. deg., every connected component in every snapshot has O(1) size.
- k = 2, $\Delta = 2$, vertex cover number of G is O(1).

Main Algorithmic Results:

- Exp. time algorithm (asympt. optimal in n under ETH).
- Extension for small number of agents (FPT algorithm for n).

Main Results

Sliding Window Temporal Coloring (SWTC)

Input: A temporal graph (G,λ) , and two integers $k \in \mathbb{N}$ and $\Delta \leq T$. **Question:** Does there exist a proper sliding Δ -window temporal coloring ϕ of (G,λ) using at most k colors?

Main Hardness Results:

SWTC is NP-hard, even if

- k = 2, $\Delta = 2$, T = 3, G is 3-colorable, O(1) max. deg., every connected component in every snapshot has O(1) size.
- k = 2, $\Delta = 2$, vertex cover number of G is O(1).

Main Algorithmic Results:

- Exp. time algorithm (asympt. optimal in n under ETH).
- Extension for small number of agents (FPT algorithm for n).
- FPT-approx. algorithm for parameter "vertex cover number of G" (additive error of one).

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm I

Observation

Let ϕ and ψ be two proper sliding Δ -window temporal colorings for two intervals of the snapshots of (G, λ) .

Main Exponential Time Algorithm II

Tor 2Δ -windows $W_i = [i\Delta + 1, (i+2)\Delta]$ for $i \in \{0, 1, \dots, T/\Delta - 2\}$, enumerate all partial sliding Δ -window temporal colorings ϕ_{W_i} , where each trivial snapshot is colored in some fixed (but arbitrary) way.

Main Exponential Time Algorithm II

- 1 For 2Δ -windows $W_i = [i\Delta + 1, (i+2)\Delta]$ for $i \in \{0, 1, \dots, T/\Delta 2\}$, enumerate all partial sliding Δ -window temporal colorings ϕ_{W_i} , where each trivial snapshot is colored in some fixed (but arbitrary) way.
- 2 Create a DAG with ϕ_{W_i} as vertices and connect ϕ_{W_i} to $\phi_{W_{i+1}}$ if the two colorings agree on the overlapping part.

Main Exponential Time Algorithm II

- 1 For 2Δ -windows $W_i = [i\Delta + 1, (i+2)\Delta]$ for $i \in \{0, 1, ..., T/\Delta 2\}$, enumerate all partial sliding Δ -window temporal colorings ϕ_{W_i} , where each trivial snapshot is colored in some fixed (but arbitrary) way.
- 2 Create a DAG with ϕ_{W_i} as vertices and connect ϕ_{W_i} to $\phi_{W_{i+1}}$ if the two colorings agree on the overlapping part.
- 3 Create a source vertex s and connect it to all ϕ_{W_1} and we create a sink vertex t and connect $\phi_{W_T/\Lambda-2}$ to it.

Main Exponential Time Algorithm II

- Tor 2Δ -windows $W_i = [i\Delta + 1, (i+2)\Delta]$ for $i \in \{0, 1, \dots, T/\Delta 2\}$, enumerate all partial sliding Δ -window temporal colorings ϕ_{W_i} , where each trivial snapshot is colored in some fixed (but arbitrary) way.
- 2 Create a DAG with ϕ_{W_i} as vertices and connect ϕ_{W_i} to $\phi_{W_{i+1}}$ if the two colorings agree on the overlapping part.
- 3 Create a source vertex s and connect it to all ϕ_{W_1} and we create a sink vertex t and connect $\phi_{W_T/\Lambda-2}$ to it.
- 4 If there is a path from s to t, answer YES, otherwise NO.

Main Exponential Time Algorithm II

- 1 For 2Δ -windows $W_i = [i\Delta + 1, (i+2)\Delta]$ for $i \in \{0, 1, ..., T/\Delta 2\}$, enumerate all partial sliding Δ -window temporal colorings ϕ_{W_i} , where each trivial snapshot is colored in some fixed (but arbitrary) way.
- 2 Create a DAG with ϕ_{W_i} as vertices and connect ϕ_{W_i} to $\phi_{W_{i+1}}$ if the two colorings agree on the overlapping part.
- 3 Create a source vertex s and connect it to all ϕ_{W_1} and we create a sink vertex t and connect $\phi_{W_T/\Lambda-2}$ to it.

Theorem

SWTC can be solved in $O(k^{4\Delta \cdot n} \cdot T)$ time.

Main Exponential Time Algorithm II

- 1 For 2Δ-windows $W_i = [i\Delta + 1, (i+2)\Delta]$ for $i \in \{0, 1, ..., T/\Delta 2\}$, enumerate all partial sliding Δ-window temporal colorings ϕ_{W_i} , where each trivial snapshot is colored in some fixed (but arbitrary) way.
- 2 Create a DAG with ϕ_{W_i} as vertices and connect ϕ_{W_i} to $\phi_{W_{i+1}}$ if the two colorings agree on the overlapping part.
- 3 Create a source vertex s and connect it to all ϕ_{W_1} and we create a sink vertex t and connect $\phi_{W_T/\Lambda-2}$ to it.

Theorem

SWTC can be solved in $O(k^{4\Delta \cdot n} \cdot T)$ time.

ETH Lower Bound

SWTC does not admit a $2^{o(n) \cdot f(T+k)}$ -time algorithm for any computable function f unless ETH fails.

Fixed-Parameter Tractability I

How to exploit few vertices?

Fixed-Parameter Tractability II

Observation

If a snapshot appears n^2 times in a Δ -window, all its edges can be colored properly. [just properly color every edge of it once]

Fixed-Parameter Tractability II

Observation

If a snapshot appears n^2 times in a Δ -window, all its edges can be colored properly. [just properly color every edge of it once]

Idea: Replace additional copies with edgeless snapshots.

Fixed-Parameter Tractability II

Observation

If a snapshot appears n^2 times in a Δ -window, all its edges can be colored properly. [just properly color every edge of it once]

- Idea: Replace additional copies with edgeless snapshots.
- Problem: Replacing a snapshot should not reduce the number of its copies in other Δ -windows (which may contain less than n^2 copies).

Fixed-Parameter Tractability II

Observation

If a snapshot appears n^2 times in a Δ -window, all its edges can be colored properly. [just properly color every edge of it once]

- Idea: Replace additional copies with edgeless snapshots.
- Problem: Replacing a snapshot should not reduce the number of its copies in other Δ -windows (which may contain less than n^2 copies).

Reduction Rule

If a snapshot appears more than $2n^2$ times in a Δ -window, then replace of its "middle" copies with an edgeless snapshot.

Fixed-Parameter Tractability II

Observation

If a snapshot appears n^2 times in a Δ -window, all its edges can be colored properly. [just properly color every edge of it once]

- Idea: Replace additional copies with edgeless snapshots.
- Problem: Replacing a snapshot should not reduce the number of its copies in other Δ -windows (which may contain less than n^2 copies).

Reduction Rule

If a snapshot appears more than $2n^2$ times in a Δ -window, then replace of its "middle" copies with an edgeless snapshot.

Lemma

If the reduction rule is not applicable, each Δ -window contains at most $2n^2 \cdot 2^{n^2}$ (non-trivial) snapshots.

Fixed-Parameter Tractability III

Recall our first exponential-time algorithm:

Theorem

Sliding Window Temporal Coloring can be solved in $O(k^{4\Delta \cdot n} \cdot T)$ time.

Therefore, since every Δ -window has at most $2n^2 \cdot 2^{n^2}$ snapshots (and since $k \le n$):

Theorem

SWTC is linear-time fixed-parameter tractable (FPT) with respect to n (i.e. in $O(f(n) \cdot T)$ time).

Fixed-Parameter Tractability III

Recall our first exponential-time algorithm:

Theorem

Sliding Window Temporal Coloring can be solved in $O(k^{4\Delta \cdot n} \cdot T)$ time.

Therefore, since every Δ -window has at most $2n^2 \cdot 2^{n^2}$ snapshots (and since $k \le n$):

Theorem

SWTC is linear-time fixed-parameter tractable (FPT) with respect to n (i.e. in $O(f(n) \cdot T)$ time).

Fixed-Parameter Tractability III

One of our hardness results:

Theorem

SWTC is NP-hard, even if the vertex cover number of the underlying graph G is at most 2k + 13 (where k = number of colors).

Thus we cannot hope for an (exact) FPT algorithm with respect to the parameter "vertex cover number of the underlying graph".

Fixed-Parameter Tractability III

However:

Theorem

SWTC admits a linear-time FPT-approximation algorithm for parameter "vertex cover number of *G*" with an additive error one. (Objective: Minimize number of colors.)

Fixed-Parameter Tractability III

However:

Theorem

SWTC admits a linear-time FPT-approximation algorithm for parameter "vertex cover number of *G*" with an additive error one. (Objective: Minimize number of colors.)

Idea:

- Compute in linear FPT-time a minimum vertex cover of G (the rest is independent set in every slot!)
- Use our exponential algorithm to optimally solve SWTC in the temporal graph induced by the vertex cover vertices
- This is a lower bound on the number of colors needed for (G, λ)
- Color all other vertices in all slots with a fresh color

Constant Underlying VC Reduction - Main Ideas I

Reduction from **Monotone Exactly 1-in-3 SAT**.

Constant Underlying VC Reduction - Main Ideas I

Reduction from **Monotone Exactly 1-in-3 SAT**.

Main Idea: Encode variables with vertices, clauses with snapshots.

Constant Underlying VC Reduction - Main Ideas I

Reduction from **Monotone Exactly 1-in-3 SAT**.

Main Idea: Encode variables with vertices, clauses with snapshots.

Variable Gadget:

Constant Underlying VC Reduction - Main Ideas II

Reduction from **Monotone Exactly 1-in-3 SAT**.

Main Idea: Encode variables with vertices, clauses with snapshots.

Type 1 snapshot.

Type 2 snapshot.

Type 3 snapshot.

Type 4 snapshot.

Constant Underlying VC Reduction - Main Ideas II

Reduction from **Monotone Exactly 1-in-3 SAT**.

Main Idea: Encode variables with vertices, clauses with snapshots.

Constant Underlying VC Reduction - Main Ideas II

Reduction from **Monotone Exactly 1-in-3 SAT**.

Main Idea: Encode variables with vertices, clauses with snapshots.

and Future Work

Further Results:

■ NP-hard for constant k, Δ , and T even if each snapshot is a cluster graph.

and Future Work

Further Results:

- NP-hard for constant k, Δ , and T even if each snapshot is a cluster graph.
- No poly kernel wrt. n.

and Future Work

Further Results:

- NP-hard for constant k, Δ , and T even if each snapshot is a cluster graph.
- No poly kernel wrt. n.

Future Work:

Restrict input graphs to only change slowly over time.

and Future Work

Further Results:

- NP-hard for constant k, Δ , and T even if each snapshot is a cluster graph.
- No poly kernel wrt. n.

Future Work:

- Restrict input graphs to only change slowly over time.
- Bound number of vertices that can change color each time step.

and Future Work

Further Results:

- NP-hard for constant k, Δ , and T even if each snapshot is a cluster graph.
- No poly kernel wrt. n.

Future Work:

- Restrict input graphs to only change slowly over time.
- Bound number of vertices that can change color each time step.
- Bound number of times a vertex can change color.

and Future Work

Further Results:

- NP-hard for constant k, Δ , and T even if each snapshot is a cluster graph.
- No poly kernel wrt. n.

Future Work:

- Restrict input graphs to only change slowly over time.
- Bound number of vertices that can change color each time step.
- Bound number of times a vertex can change color.

Thank you!

https://arxiv.org/ pdf/1811.04753.pdf Link to arXiv.