SÉRIES ET FAMILLES SOMMABLES

Nature de séries

Solution 1

• On suppose $0 < b \le 1$. Dans ce cas, $b^n = o\left(2^{\sqrt{n}}\right)$ puis $2^{\sqrt{n}} + b^n \sim 2^{\sqrt{n}}$. Finalement $u_n \sim a^n$. On en déduit que $\sum_{n \in \mathbb{N}} u_n$ converge pour 0 < a < 1 et diverge vers $+\infty$ sinon.

• On suppose b > 1. Dans ce cas, $2^{\sqrt{n}} = o(b^n)$ et donc $2^{\sqrt{n}} + b^n \sim b^n$. Finalement, $u_n \sim \left(\frac{a}{b}\right)^n 2^{\sqrt{n}}$. Posons $v_n = \left(\frac{a}{b}\right)^n 2^{\sqrt{n}}$. Alors

$$\frac{v_{n+1}}{v_n} = \frac{a}{b} 2^{\sqrt{n+1} - \sqrt{n}} = \frac{a}{b} 2^{\frac{1}{\sqrt{n+1} + \sqrt{n}}} \xrightarrow[n \to +\infty]{} \frac{a}{b}$$

D'après la règle de d'Alembert

- si a < b, $\sum_{n \in \mathbb{N}} u_n$ converge;

- si a > b, $\sum_{n \in \mathbb{N}} u_n$ diverge (grossièrement).

Enfin, si a = b, $u_n \sim 2^{\sqrt{n}}$ donc $\sum_{n \in \mathbb{N}} u_n$ diverge grossièrement.

Solution 2

Supposons que la série $\sum_{n\in\mathbb{N}}u_n$ converge. Alors (S_n) converge vers la somme S>0 de cette série. On a donc $\frac{u_n}{S_n}\sim \frac{u_n}{S}$. La série $\sum_{n\in\mathbb{N}}\frac{u_n}{S_n}$ converge donc.

Supposons que la série $\sum_{n\in\mathbb{N}}u_n$ diverge. Puisque cette série est à termes positifs, elle diverge donc vers $+\infty$. Si $\frac{u_n}{S_n}$ ne tend pas vers 0 lorsque n

tend vers $+\infty$, $\sum_{n\in\mathbb{N}}\frac{u_n}{S_n}$ diverge grossièrement. Sinon, $\ln\left(1-\frac{u_n}{S_n}\right)\sim -\frac{u_n}{S_n}$ donc les séries de terme général $\frac{u_n}{S_n}$ et $\ln\left(1-\frac{u_n}{S_n}\right)$ sont de même nature. Or

$$\begin{split} \sum_{n=1}^{N} \ln \left(1 - \frac{u_n}{S_n} \right) &= \sum_{n=1}^{N} \ln \frac{S_{n-1}}{S_n} \\ &= \sum_{n=1}^{N} \left(\ln S_{n-1} - \ln S_n \right) = \ln S_0 - \ln S_N \end{split}$$

Or $S_N \xrightarrow[N \to +\infty]{} + \infty$ puisque $\sum_{n \in \mathbb{N}} u_n$ diverge vers $+\infty$. Ainsi $\sum_{n \in \mathbb{N}^*} \ln\left(1 - \frac{u_n}{S_n}\right)$ diverge de même que $\sum_{n \in \mathbb{N}} \frac{u_n}{S_n}$. Les deux séries $\sum_{n \in \mathbb{N}} u_n$ et $\sum_{n \in \mathbb{N}} \frac{u_n}{S_n}$ sont donc toujours de même nature.

Solution 3

1. Soit $N \in \mathbb{N}$ tel que $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ pour $n \ge N$. Par télescopage, on obtient, $\frac{u_n}{u_N} \le \frac{v_n}{v_N}$ i.e. $u_n \le \frac{u_N}{v_N} v_n$ pour tout $n \ge N$. On a donc $u_n = \mathcal{O}(v_n)$.

1

2. a. Soit β tel que $1 < \beta < \alpha$ et posons $v_n = \frac{1}{n\beta}$ pour $n \in \mathbb{N}^*$. On a alors

$$\frac{v_{n+1}}{v_n} = \frac{n^{\beta}}{(n+1)^{\beta}}$$
$$= \left(1 + \frac{1}{n}\right)^{-\beta}$$
$$= 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$$

Ainsi $\frac{v_{n+1}}{v_n} - \frac{u_{n+1}}{u_n} \sim \frac{\alpha - \beta}{n}$. Puisque $\alpha - \beta > 0$, on a donc $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. D'après la première question, $u_n = \mathcal{O}(v_n)$. La série $\sum_{n \in \mathbb{N}} v_n$ converge car $\beta > 1$ et, comme elle est à termes positifs, sa convergence entraı̂ne celle de $\sum_{n \in \mathbb{N}} u_n$.

- **b.** Cette fois-ci, on se donne β tel que $\alpha < \beta < 1$ et on pose à nouveau $v_n = \frac{1}{n^{\beta}}$ pour $n \in \mathbb{N}^*$. On montre comme précédemment que $v_n = \mathcal{O}(u_n)$. La divergence de $\sum_{n \in \mathbb{N}} v_n$ entraîne la divergence de $\sum_{n \in \mathbb{N}} u_n$.
- c. Si on pose $u_n = \frac{1}{n}$ pour $n \in \mathbb{N}^*$, on a $\frac{u_{n+1}}{u_n} = 1 \frac{1}{n} + o\left(\frac{1}{n}\right)$ et $\sum_{n \in \mathbb{N}^*} u_n$ diverge. Si on pose maintenant $u_n = \frac{1}{n \ln^2 n}$ pour $n \ge 2$, on a à nouveau $u_n = 1 - \frac{1}{n} + o\left(\frac{1}{n}\right)$. Mais la fonction $x \mapsto \frac{1}{x \ln^2 x}$ étant décroissante, la série $\sum_{n \in \mathbb{N}} u_n$ et l'intégrale $\int_2^{+\infty} \frac{dt}{t \ln^2 t}$ sont de même nature. Or une primitive de $t \mapsto \frac{1}{t \ln^2 t}$ est $t \mapsto -\frac{1}{\ln t}$, ce qui prouve la convergence de l'intégrale précédente et par conséquent celle de la série $\sum_{n \in \mathbb{N}} u_n$.
- **3.** On a

$$\frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+3} = \frac{1+\frac{1}{n}}{1+\frac{3}{2n}}$$
$$= 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Autrement dit, $\alpha = \frac{1}{2} < 1$ avec les notations précédentes. La série de terme général u_n diverge.

Remarque. Le critère de Raabe-Duhamel permet de conclure (sauf si $\alpha=1$) dans les cas où le critère de d'Alembert ne le permet pas $(\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 1)$.

Solution 4

- 1. On sait que $\tan x = x + \mathcal{O}(x^2)$ donc $\tan \left(\frac{1}{n}\right) \frac{1}{n} = \mathcal{O}\left(\frac{1}{n^2}\right)$. Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ converge et est à termes positifs, il en est de même de la série $\sum_{n \in \mathbb{N}^*} \left(\tan \left(\frac{1}{n}\right) \frac{1}{n}\right)$.
- **2.** Puisque $e^x = 1 + x + o(x)$,

$$\sqrt[n]{3} = e^{\frac{\ln 3}{n}} = 1 + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right)$$

et

$$\sqrt[n]{2} = e^{\frac{\ln 2}{n}} = 1 + \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

On en déduit que

$$\sqrt[n]{3} - \sqrt[n]{2} \sim \frac{\ln\left(\frac{3}{2}\right)}{n}$$

Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge, il en est de même de la série $\sum_{n \in \mathbb{N}^*} {n \choose 3} - {n \choose 2}$.

3. Puisque
$$\cos x = 1 - \frac{x^2}{2} + o(x^2)$$

$$\cos\left(\frac{1}{\sqrt{n}}\right) = 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

De plus, $ln(1+u) \sim_{u\to 0} u$ donc

$$\ln\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right) \sim -\frac{1}{2n}$$

Puisque $\sum_{n\in\mathbb{N}^*} \frac{1}{n}$ diverge, il en est de même de la série $\sum_{n\in\mathbb{N}^*} \ln\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right)$.

4. Puisque ch
$$x = 1 + \frac{x^2}{2} + \mathcal{O}(x^4)$$

$$\operatorname{ch}\left(\frac{1}{\sqrt{3n}}\right) = 1 + \frac{1}{6n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisque sh $x = x + \frac{x^3}{6} + \mathcal{O}(x^5)$

$$\operatorname{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n} = 1 + \frac{1}{6n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Ainsi

$$\operatorname{ch}\left(\frac{1}{\sqrt{3n}}\right) - \operatorname{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n} = \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisque $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}$ converge et est à termes positifs, il en est de même de la série $\sum_{n\in\mathbb{N}^*}\left(\operatorname{ch}\left(\frac{1}{\sqrt{3n}}\right)-\operatorname{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n}\right)$.

Solution 5

Pour tout $n \in \mathbb{N}$, notons $u_n = \frac{1}{\binom{2n}{n}}$. On a

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{(2n+2)(2n+1)}$$

d'où

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{4} < 1$$

La série $\sum u_n$ est donc convergente d'après la règle de D'Alembert.

Solution 6

Puisque la suite (u_n) est à valeurs strictement positives, on peut écrire :

$$\ln(u_{n+1}) - \ln(u_n) = a\left[(n+1)^2 - n^2\right] + (n+1)^3 \ln\left(1 - \frac{a}{n+1}\right) - n^3 \ln\left(1 - \frac{a}{n}\right)$$

En utilisant le développement lmité de $u\mapsto \ln(1+u)$ à l'ordre 3 en 0, on trouve

$$(n+1)^3 \ln\left(1 - \frac{a}{n+1}\right) = -a(n+1)^2 - a^2(n+1) - a^3 + o(1)$$
$$n^3 \ln\left(1 - \frac{a}{n}\right) = -an^2 - a^2n - a^3 + o(1)$$

Finalement $\ln(u_{n+1}) - \ln(u_n) = -a^2 + o(1)$ et donc $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} e^{-a^2}$. Si $a \neq 0$, $e^{-a^2} < 1$ et le critère de d'Alembert permet de conclure à la convergence de la série de terme général u_n . Si a = 0, il suffit de voir que $u_n = 1$ pour tout $n \in \mathbb{N}^*$ pour conclure à la divergence de cette même série.

1. Si $\beta \geq 0$, alors $0 \leq u_n \leq \frac{1}{n^{\alpha}}$ pour $n \geq 3$. Or la série de Riemann $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$. On en déduit que $\sum_{n \geq 2} u_n$ converge. Si $\beta < 0$, donnons-nous $\gamma \in]1, \alpha[$. Alors $(\ln n)^{-\beta} = o(n^{\alpha - \gamma})$ par croissances comparées. Ceci signifie que $u_n = o(\frac{1}{n^{\gamma}})$. Or la série de Riemann $\sum_{n \geq 1} \frac{1}{n^{\gamma}}$ est à termes positifs et converge puisque $\gamma > 1$. On en déduit que $\sum_{n \geq 2} u_n$ converge.

- 2. Si $\beta \le 0$, alors $0 \le \frac{1}{n^{\alpha}} \le u_n$ pour $n \ge 3$. Or $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ diverge donc $\sum_{n \ge 2} u_n$ diverge. Si $\beta > 0$, donnons-nous $\gamma \in]\alpha, 1[$. Alors $(\ln n)^{\beta} = o(n^{\gamma - \alpha})$ par croissances comparées. Ceci signifie que $\frac{1}{n^{\gamma}} = o(u_n)$. Or la série $\sum_{n \ge 2} u_n$ est à termes positifs et la série de Riemann $\sum_{n \ge 1} \frac{1}{n^{\gamma}}$ diverge puisque $\gamma < 1$. On en déduit que $\sum_{n \ge 2} u_n$ diverge.
- 3. On a alors $0 \le \frac{1}{n} \le u_n$ pour $n \ge 3$. Or la série harmonique $\sum_{n \ge 1} \frac{1}{n}$ diverge. On en déduit que $\sum_{n \ge 2} u_n$ diverge.
- **4.** Posons $f(x) = \frac{1}{x(\ln x)^{\beta}}$ pour x > 1. f est décroissante sur]1, $+\infty$ [de sorte que

$$\int_{2}^{n+1} f(x) \, \mathrm{d}x \le \sum_{k=2}^{n} u_k \le \frac{1}{(\ln 2)^{\beta}} + \int_{2}^{n} f(x) \, \mathrm{d}x$$

Si $\beta \neq 1$, alors $x \mapsto \frac{(\ln x)^{1-\beta}}{1-\beta}$ est une primitive de f de sorte que

$$\frac{(\ln(n+1))^{1-\beta}}{1-\beta} - \frac{(\ln 2)^{1-\beta}}{1-\beta} \leq \sum_{k=2}^n u_k \leq \frac{1}{(\ln 2)^\beta} + \frac{(\ln n)^{1-\beta}}{1-\beta} - \frac{(\ln 2)^{1-\beta}}{1-\beta}$$

Le théorème de minoration nous permet d'affirmer que la série $\sum u_n$ diverge si $\beta < 1$. Par contre, si $\beta > 1$, la suite des sommes partielles de la série $\sum_{n \geq 2} u_n$ est croissante (puisque la série est à termes positifs) et majorée par une suite convergente donc elle converge en vertu du théorème de la limite monotone. On peut donc affirmer que $\sum_{n \geq 2} u_n$ converge.

Si $\beta = 1$, alors $x \mapsto \ln(\ln x)$ est une primitive de f de sorte que

$$\ln(\ln(n+1)) - \ln(\ln 2) \le \sum_{k=2}^{n} u_k$$

On conclut à la divergence de $\sum_{n\geq 2}u_n$ via le théorème de minoration.

Solution 8

- 1. Soit $q \in]\ell$, 1[. Par définition de la limite, il existe $N \in \mathbb{N}$ tel que $0 \le \sqrt[n]{u_n} \le q$ pour $n \ge N$. Ainsi $0 \le u_n \le q^n$ pour $n \ge N$. Puisque la série $\sum q^n$ converge, il en est de même de la série $\sum u_n$.
- 2. Soit $q \in]1, \ell[$. Par définition de la limite, il existe $N \in \mathbb{N}$ tel que $0 \le q \le \sqrt[n]{u_n}$ pour $n \ge N$. Ainsi $0 \le q^n \le u_n$ pour $n \ge N$. Puisque la série $\sum q^n$ diverge, il en est de même de la série $\sum u_n$.
- 3. Posons $u_n = 1$ pour tout $n \in \mathbb{N}$. Alors $\lim_{n \to +\infty} \sqrt[n]{u_n} = 1$ et $\sum u_n$ diverge. Posons $u_n = \frac{1}{n^2}$. Alors $\sqrt[n]{u_n} = \exp\left(-\frac{2\ln n}{n}\right)$ d'où $\lim_{n \to +\infty} \sqrt[n]{u_n} = 1$ et $\sum u_n$ converge.

1. L'ingalité est clairement vraie pour n = 0. Supposons la vraie pour un certain $n \in \mathbb{N}$. Alors

$$|x_{n+2} - x_{n+1}| = |f(x_{n+1}) - f(x_n)| \le k|x_{n+1} - x_n| \le k^{n+1}|x_1 - x_0|$$

Par récurrence, l'inégalité est donc vraie pour tout $n \in \mathbb{N}$.

- 2. D'après la question précédente $x_{n+1} x_n = \mathcal{O}(k^n)$ avec $k \in [0, 1[$ donc la série $\sum_{n \in \mathbb{N}} x_{n+1} x_n$ converge (absolument). Ceci signifie que la suite (x_n) converge.
- 3. Notons ℓ la limite de (x_n) . Puisque f est continue (car lipschitzienne), $\ell = f(\ell)$ donc ℓ est un point fixe de f. Soit ℓ' un point fixe de f. Alors

$$|\ell - \ell'| = |f(\ell) - f(\ell')| \le k|\ell - \ell'$$

ou encore

$$(1-k)|\ell-\ell'| \le 0$$

Puisque 1 - k > 0, $|\ell - \ell'| = 0$ i.e. $\ell = \ell'$. f admet donc un unique point fixe.

Solution 10

Pour tout entier $n \geq 3$,

$$\begin{split} \frac{nu_n}{(n-1)u_{n-1}} &= \frac{n}{n-1} \left(2 - e^{\frac{1}{n}} \right) \\ &= \frac{1}{1 - \frac{1}{n}} \left(2 - e^{\frac{1}{n}} \right) \\ &= \sum_{n \to +\infty} \left(1 + \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \right) \left(1 - \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \right) \\ &= \sum_{n \to +\infty} 1 + \mathcal{O}\left(\frac{1}{n^2}\right) \end{split}$$

Ainsi $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$. Par conséquent $\sum v_n$ converge. Ensuite,

$$\ln\left(2 - e^{\frac{1}{k}}\right) = \ln\left(1 - \frac{1}{k} + \mathcal{O}\left(\frac{1}{k^2}\right)\right)$$
$$= -\frac{1}{k} + \mathcal{O}\left(\frac{1}{k^2}\right)$$

Or on montre $\sum \frac{1}{k^2}$ converge et on montre classiquement qu'il existe une constante γ telle que $\sum_{k=2}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$. Par conséquent, il existe une constante C telle que

$$\ln(u_n) = \sum_{k=2}^{n} \ln\left(2 - e^{\frac{1}{k}}\right) \underset{n \to +\infty}{=} -\ln(n) + C + o(1)$$

On en déduit que

$$u_n \sim \frac{e^C}{n}$$

Comme la série à termes positifs $\sum \frac{1}{n}$ diverge, il en est de même de la série $\sum u_n$.

Solution 11

1. La fonction $f: x \mapsto \int_x^1 \frac{e^t}{t} dt$ est strictement décroissante sur]0,1] (elle est dérivable et sa dérivée est $x \mapsto -\frac{e^x}{x}$). Comme $\frac{e^t}{t} \approx \frac{1}{t}$, $\int_0^1 \frac{e^t}{t}$ diverge. Puisque $t \mapsto \frac{e^t}{t}$ est positive, $\lim_{0^+} f = +\infty$. Par ailleurs, f(1) = 0. Enfin, f est continue sur [0,1] donc, d'après le théorème des valeurs intermédiaires, pour tout $n \in \mathbb{N}^*$, il existe un unique $u_n \in]0,1]$ tel que $f(u_n) = n$.

2. D'après la question précédente, f induit une bijection strictement décroissante de]0,1] sur $[0,+\infty[$. Sa bijection réciproque est donc également strictement décroissante. Comme $u_n=f^{-1}(n)$, (u_n) est strictement décroissante. de plus, $\lim_{0+} f=+\infty$ donc $\lim_{+\infty} f^{-1}=0$. Par conséquent, (u_n) converge vers 0.

3. Remarquons que

$$v_n = \int_{u_n}^1 \frac{e^t}{t} dt - \int_{u_n}^1 \frac{dt}{t} = \int_{u_n}^1 \frac{e^t - 1}{t} dt$$

Comme $\lim_{t\to 0} \frac{e^t - 1}{t} = 1$, l'intégrale $\int_0^1 \frac{e^t - 1}{t} dt$ converge. Comme (u_n) converge vers 0,

$$\lim_{n \to +\infty} v_n = \int_0^1 \frac{e^t - 1}{t} \, \mathrm{d}t$$

4. Posons $I = \int_0^1 \frac{e^t - 1}{t} dt$. Ainsi $\ln(u_n) = -n + C + o(1)$ puis $u_n \approx \frac{e^C}{n}$. On en déduit que $\sum u_n$ diverge.

Solution 12

On va raisonner par récurrence. Notons \mathcal{P}_n l'assertion

Pour tout $n \in [2^p, 2^{p+1} - 1]$, a_n est défini et $a_n = 2^{\lfloor \log_2(n) \rfloor} = 2^p$

 \mathcal{P}_0 est évidemment vraie. Supposons \mathcal{P}_p vraie pour un certain $p \in \mathbb{N}^*$. Soit alors $n \in [2^{p+1}, 2^{p+2} - 1]$. Alors $[n/2] \in [2^p, 2^{p+1} - 1]$ donc a_n est bien défini et

$$a_n = 2a_{\lfloor \frac{n}{2} \rfloor} = 2 \cdot 2^p = 2^{p+1} = 2^{\lfloor \log_2(n) \rfloor}$$

de sorte que \mathcal{P}_{p+1} est vraie.

Ainsi \mathcal{P}_p est vraie pour tout $p \in \mathbb{N}^*$.

Comme la série $\sum_{n \in \mathbb{N}^*} \frac{1}{a_n^2}$ est à termes positifs, elle converge ou diverge vers $+\infty$. Il suffit donc de considérer une suite extraite de la suite (S_n) de ses sommes partielles pour déterminer sa nature et sa somme éventuelle.

$$\forall p \in \mathbb{N}, \ S_{2^{p+1}-1} = \sum_{k=0}^{p} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{a_{j}^{2}} = \sum_{k=0}^{p} \sum_{k=0}^{p} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{(2^{k})^{2}} = \sum_{k=0}^{p} \frac{2^{k}}{(2^{k})^{2}} = \sum_{k=0}^{p} \frac{1}{2^{k}}$$

Ainsi $S_{2^{p+1}-1}$ est la somme partielle de rang p de la série géométrique $\sum_{k\in\mathbb{N}}\frac{1}{2^k}$. On en déduit que $\lim_{p\to+\infty}S_{2^{p+1}-1}=\frac{1}{1-\frac{1}{2}}=3$. On en déduit

que $\sum_{n=0}^{\infty} \frac{1}{a_n^2}$ converge et que sa somme est 2.

REMARQUE. On aurait aussi pu utiliser le théorème de sommation par paquets à la famille $(a_n)_{n\in\mathbb{N}^*}$ et à la partition $\mathbb{N}^* = \bigsqcup_{n\in\mathbb{N}} [2^p, 2^{p+1} - 1]$.

Calculs de sommes

Solution 13

 $\text{Considérons la fraction rationnelle } F = \frac{X}{X^4 + X^2 + 1}. \text{ Elle admet une décomposition en éléments simples sur } \mathbb{R} \text{ du type}$

$$F = \frac{aX + b}{X^2 - X + 1} + \frac{cX + d}{X^2 + X + 1}$$

L'imparité de F donne a=c et b=-d. En considérant la limite de xF(x) lorsque x tend vers $\pm \infty$, on trouve a+c=0 et donc a=c=0. On trouve alors facilement $b=\frac{1}{2}$ et $d=-\frac{1}{2}$ d'où

$$F = \frac{1}{2(X^2 - X + 1)} - \frac{1}{2(X^2 + X + 1)}$$

On remarque alors que $X^2 - X + 1 = X^2 - (X - 1)$ et que $X^2 + X + 1 = (X + 1)^2 - X$. Ainsi pour $p \in \mathbb{N}$

$$\sum_{n=0}^{p} \frac{n}{n^4 + n^2 + 1} = \frac{1}{2} \sum_{n=0}^{p} \frac{1}{n^2 - (n-1)} - \frac{1}{(n+1)^2 - n}$$

$$= \frac{1}{2} \left(1 - \frac{1}{(p+1)^2 - p} \right) \text{ par t\'elescopage}$$

$$\xrightarrow[p \to +\infty]{} \frac{1}{2}$$

Ainsi la série de l'énoncé converge bien et sa somme vaut $\frac{1}{2}$.

Solution 14

Pour tout $n \in \mathbb{N}$,

$$\begin{split} \frac{1}{\binom{n+p}{n}} &= \frac{p!}{(n+p)(n+p-1)\dots(n+1)} \\ &= \frac{p!}{p-1} \frac{(n+p)-(n+1)}{(n+p)(n+p-1)\dots(n+1)} \\ &= \frac{p!}{p-1} \left(\frac{1}{(n+p-1)\dots(n+1)} - \frac{1}{(n+p)\dots(n+2)} \right) \end{split}$$

Donc pour tout $N \in \mathbb{N}$, on a par télescopage

$$\begin{split} \sum_{n=0}^{N} \frac{1}{\binom{n+p}{n}} &= \frac{p!}{p-1} \sum_{n=0}^{N} \left(\frac{1}{(n+p-1)\dots(n+1)} - \frac{1}{(n+p)\dots(n+2)} \right) \\ &= \frac{p!}{p-1} \left(\frac{1}{(p-1)\dots 1} - \frac{1}{(N+p)\dots(N+2)} \right) \underset{N \to +\infty}{\longrightarrow} \frac{p!}{(p-1)(p-1)!} = \frac{p}{p-1} \end{split}$$

Ainsi la série $\sum_{n\in\mathbb{N}} \frac{1}{\binom{n+p}{n}}$ converge et sa somme vaut $\frac{p}{p-1}$.

Solution 15

1. On reconnaît le développement de Taylor en 0 de exp.

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. exp est de classe \mathcal{C}^{∞} sur \mathbb{R} donc, a fortiori, de classe \mathcal{C}^{n+1} sur le segment d'extrémités 0 et x. De plus, la dérivée d'ordre n+1 de exp est encore exp pour tout t compris entre 0 et x, $|e^t|=e^t \leq M$ avec $M=\max(e^x,1)$ (pour éviter de distinguer suivant le signe de x). En appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre n, on a

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{M|x|^{n+1}}{(n+1)!}$$

Remarquons que M est indépendant de n donc l'inégalité précédente est valable pour tout $n \in \mathbb{N}$. Par comparaison des suites de référence, $\lim_{n \to +\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ et donc $\lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!} = e^x$ par encadrement. La série $\sum_{n \ge 0} \frac{x^n}{n!}$ converge donc et sa somme est e^x .

2. On reconnaît les développements de Taylor en 0 de cos et sin.

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. cos et sin sont de classe \mathcal{C}^{∞} sur \mathbb{R} donc, a fortiori, de classe \mathcal{C}^{n+1} sur le segment d'extrémités 0 et x. Une récurrence évidente montre que $\cos^{(2n+1)} = (-1)^{n+1}$ sin et $\sin^{(2n+2)} = (-1)^{n+1}$ sin. Il est alors évident que $\cos^{(2n+1)}$ et $\sin^{(2n+2)}$ sont majorées en valeur absolue par 1 sur \mathbb{R} . En appliquant l'inégalité de Taylor-Lagrange à cos entre 0 et x à l'ordre 2n, on a

$$\left|\cos x - \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!}\right| \le \frac{|x|^{2n+1}}{(2n+1)!}$$

En appliquant l'inégalité de Taylor-Lagrange à sin entre 0 et x à l'ordre 2n + 1, on a

$$\left| \sin x - \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \right| \le \frac{|x|^{2n+2}}{(2n+2)!}$$

Par comparaison des suites de référence,

$$\lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = \lim_{n \to \infty} \frac{|x|^{2n+2}}{(2n+2)!} = 0$$

Ceci permet de conclure que les séries $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ convergent et ont respectivement pour sommes $\cos x$ et $\sin x$.

Remarque. On peut, en reprenant la preuve de la première question, montrer que la série $\sum_{n=0}^{+\infty} \frac{(ix)^n}{n!}$ converge et a pour somme e^{ix} .

On obtient la convergence et la somme des séries $\sum_{n\in\mathbb{N}}\frac{(-1)^nx^{2n}}{(2n)!}$ et $\sum_{n\in\mathbb{N}}\frac{(-1)^nx^{2n+1}}{(2n+1)!}$ en passant à la partie réelle et imaginaire.

3. On reconnaît le développement de Taylor en0 de $x \mapsto \ln(1+x)$. Soient $x \in [0,1]$ et $n \in \mathbb{N}^*$. $f: t \mapsto \ln(1+t)$ est de classe \mathcal{C}^{∞} sur]-1, $+\infty[$ donc, a fortiori, de classe \mathcal{C}^{n+1} sur [0,x]. Une récurrence évidente montre que $f^{(n+1)}(t) = \frac{(-1)^n n!}{(1+t)^{n+1}}$ pour tout $t \in]-1$, $+\infty[$. Ainsi pour tout $t \in [0,x]$,

$$|f^{(n+1)}(t)| \le n!$$

En appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre n, on a

$$\left| \ln(1+x) - \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} \right| \le \frac{x^{n+1} n!}{(n+1)!} = \frac{x^{n+1}}{n+1} \le \frac{1}{n+1}$$

 $\operatorname{car} x \in [0,1]$. Par encadrement, $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^{k+1} x^k}{k} = \ln(1+x)$. La série $\sum_{n \ge 1} \frac{(-1)^{n+1} x^n}{n}$ converge donc et sa somme vaut $\ln(1+x)$.

Solution 16

Soit $n \in \mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^n \frac{(-1)^{k-1}}{k} &= \sum_{k=1}^n (-1)^{k-1} \int_0^1 t^{k-1} \, \mathrm{d}t \\ &= \int_0^1 \sum_{k=0}^{n-1} (-t)^k \, \, \mathrm{d}t \\ &= \int_0^1 \frac{1 - (-t)^n}{1 + t} \, \, \mathrm{d}t \\ &= \int_0^1 \frac{dt}{1 + t} + (-1)^{n+1} \int_0^1 \frac{t^n}{1 + t} \, \, \mathrm{d}t \\ &= \ln(2) + (-1)^{n+1} \int_0^1 \frac{t^n}{1 + t} \, \, \mathrm{d}t \end{split}$$

On a pour tout $t \in [0, 1]$

$$0 \le \frac{t^n}{1+t} \le t^n$$

et par croissance de l'intégrale

$$0 \le \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t \le \frac{1}{n+1}$$

Ainsi $\lim_{n \to +\infty} \int_0^1 \frac{t^n}{1+t} dt = 0$ puis

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = \ln(2)$$

On en déduit que $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n}$ converge et que sa somme est ln(2).

Solution 17

On sait, du moins j'espère, que

$$u_n = \frac{1}{6}n(n+1)(2n+1)$$

Par une décomposition en éléments simples

$$\frac{1}{u_n} = 6\left(\frac{1}{n} + \frac{1}{n+1} - \frac{4}{2n+1}\right)$$

On pose $H_n = \sum_{k=1}^n \frac{1}{k}$. On montre classiquement qu'il existe $\gamma \in \mathbb{R}$ tel que

$$H_n = \ln(n) + \gamma + o(1)$$

Ainsi

$$\begin{split} \sum_{k=1}^{n} \frac{1}{u_k} &= 6 \left(\sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \frac{1}{k+1} - \sum_{k=1}^{n} \frac{4}{2k+1} \right) \\ &= 6 \left(H_n + H_{n+1} - 1 - 4 \left(\sum_{k=1}^{2n+1} \frac{1}{2k+1} - \sum_{k=1}^{n} \frac{1}{2k} \right) \right) \\ &= 6 \left(H_n + H_{n+1} - 1 - 4 \left(H_{2n+1} - 1 - \frac{1}{2} H_n \right) \right) \\ &= 6 \left(3 H_n + H_{n+1} - 4 H_{2n+1} + 3 \right) \\ &= 6 \left(3 \ln(n) + 3\gamma + \ln(n+1) + \gamma - 4 \ln(2n+1) - 4\gamma + 3 + o(1) \right) \\ &= 6 \left(\ln\left(\frac{n^3(n+1)}{(n+1/2)^4}\right) + 3 - 4 \ln(2) + o(1) \right) \\ &= 6 \left(3 - 4 \ln(2) \right) + o(1) \end{split}$$

car $\lim_{n\to+\infty} \frac{n^3(n+1)}{(n+1/2)^4} = 1$. On en déduit que $\sum \frac{1}{u_n}$ converge et que

$$\sum_{n=1}^{+\infty} \frac{1}{u_n} = 6(3 - 4\ln(2))$$

On peut vérifier avec Python.

```
>>> from math import log

>>> def somme(n):

... s=0

... for k in range(1,n+1):

... s += k**2

... s += 1/s

... return S

... return S

... return S
```

- 1. C'est du cours.
- 2. **a.** Supposons $\lambda \neq 0$. Si $\lambda \in \mathbb{R}^*$, $u_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n}$ et $\sum u_n$ diverge. Si $\lambda \in \{-\infty, +\infty\}$, $\frac{1}{n} = 0$ or $u_n = 0$ or $u_n = 0$ est de signe constant à partir d'un certain rang donc $\sum u_n$ diverge. Par l'absurde, $\lambda = 0$.

b. Remarquons que (u_n) est positive puisqu'elle est décroissante de limite nulle.

Notons $S_n = \sum_{k=0}^n u_k$. Par décroissance de (u_n) ,

$$0 \le 2nu_{2n} = 2\sum_{k=n+1}^{2n} u_{2n} \le 2\sum_{k=n+1}^{2n} u_k = 2(S_{2n} - S_n)$$

Comme $\sum u_n$ converge, $(S_{2n} - S_n)$ converge vers 0 puis $(2nu_{2n})$ également via le théorème des gendarmes. Par ailleurs,

$$0 \le (2n+1)u_{2n+1} \le (2n+1)u_{2n} = 2nu_{2n} + u_{2n}$$

A nouveau, $((2n+1)u_{2n+1})$ converge vers 0 par le théorème des gendarmes. On peut alors conclure que (nu_n) converge vers 0 puisque c'est le cas pour ses suites extraites $(2nu_{2n})$ et $((2n+1)u_{2n+1})$.

c. Remarquons que

$$n(u_n - u_{n+1}) = (nu_n - (n+1)u_{n+1}) + u_{n+1}$$

Puisque la suite (nu_n) converge, la série télescopique $\sum nu_n - (n+1)u_{n+1}$ converge. De plus, $\sum u_{n+1}$ converge par hypothèse. Ainsi, $\sum n(u_n - u_{n+1})$ converge comme somme de deux séries convergentes. On peut rajouter que

$$\sum_{n=0}^{+\infty} n(u_n - u_{n+1}) = \sum_{n=0}^{+\infty} (nu_n - (n+1)u_{n+1}) + \sum_{n=0}^{+\infty} u_{n+1} = \sum_{n=1}^{+\infty} u_n$$

Solution 19

Pour simplifier l'exercice, on remarquera que, via le changement de variable $u = \tan x$,

$$\forall n \in \mathbb{N}, \ \mathbf{I}_n = \int_0^1 \frac{u^n}{1 + u^2} \ \mathrm{d}u$$

1. Pour tout $u \in [0, 1], 0 \le \frac{u^n}{1 + u^2} \le u^n$ donc

$$0 \le I_n \le \int_0^1 u^n \, \mathrm{d}u = \frac{1}{n+1}$$

D'après le théorème des gendarmes, (I_n) converge vers 0.

2. Il est clair que

$$I_n + I_{n+2} = \int_0^1 u^n \, du = \frac{1}{n+1}$$

3. Remarquons que

$$(-1)^n I_{2n} + (-1)^n I_{2n+2} = \frac{(-1)^n}{2n+1}$$

donc en posant $v_n = (-1)^n I_{2n}$,

$$v_n - v_{n+1} = \frac{(-1)^n}{2n+1}$$

La série télescopique $\sum v_n - v_{n+1}$ converge puisque (v_n) converge vers 0. On en déduit que $\sum \frac{(-1)^n}{2n+1}$ converge et que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \sum_{n=0}^{+\infty} v_n - v_{n+1} = v_0 - \lim_{n \to +\infty} v_n = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

Remarque. On aurait aussi pu utiliser le critère spécial des séries alternées pour montrer que $\sum \frac{(-1)^n}{2n+1}$ converge.

4. Pour tout $u \in [0, 1]$,

$$\frac{u^n}{1+u^2} \le \frac{u^{n+1}}{1+u^2}$$

donc $I_{n+1} \le I_n$. La suite (I_n) converge vers 0 en décroissant donc la série $\sum (-1)^n I_n$ converge d'après le critère spécial des séries alternées.

Posons $S_n = \sum_{k=0}^n (-1)^k I_k$. Alors

$$\begin{split} \mathbf{S}_n &= \int_0^1 \frac{\sum_{k=0} (-1)^k u^k}{1+u^2} \; \mathrm{d}u \qquad \text{par linéarité de l'intégrale} \\ &= \int_0^1 \frac{1-(-1)^{n+1} u^{n+1}}{(1+u)(1+u^2)} \; \mathrm{d}u \qquad \text{somme des termes d'une suite géométrique} \\ &= \int_0^1 \frac{\mathrm{d}u}{(1+u)(1+u^2)} + (-1)^{n+1} \int_0^1 \frac{u^{n+1}}{(1+u)(1+u^2)} \; \mathrm{d}u \end{split}$$

On prouve comme précédemment que

$$0 \le \int_0^1 \frac{u^{n+1}}{(1+u)(1+u^2)} \, \mathrm{d}u \le \int_0^1 u^{n+1} \, \mathrm{d}u = \frac{1}{n+2}$$

donc

$$\lim_{n \to +\infty} \int_0^1 \frac{u^{n+1}}{(1+u)(1+u^2)} \, \mathrm{d}u = 0$$

On en déduit que

$$\sum_{n=0}^{+\infty} (-1)^n \mathbf{I}_n = \lim_{n \to +\infty} \mathbf{S}_n = \int_0^1 \frac{\mathrm{d}u}{(1+u)(1+u^2)}$$

Par une décomposition en éléments simples,

$$\frac{1}{(1+u)(1+u^2)} = \frac{1}{2} \left(\frac{1-u}{1+u^2} + \frac{1}{1+u} \right)$$

donc

$$\int_0^1 \frac{\mathrm{d}u}{(1+u)(1+u^2)} = \frac{1}{2} \left[\arctan u - \frac{1}{2} \ln(1+u^2) + \ln(1+u) \right]_0^1 = \frac{\pi}{8} + \frac{1}{4} \ln 2$$

Finalement

$$\sum_{n=0}^{+\infty} (-1)^n I_n = \frac{\pi}{8} + \frac{1}{4} \ln 2$$

On vérifie avec Python.

```
>>> from numpy import pi, log
>>> from scipy.integrate import quad
>>> I=lambda n:quad(lambda u:u**n/(1+u**2),0,1)[0]
>>> S=sum([(-1)**n*I(n) for n in range(1000)])
>>> S, pi/8+log(2)/4
(0.565735752089146, 0.5659858768387105)
```

Comparaison série/intégrale

Solution 20

On posera $S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ lorsque $\alpha > 1$.

Première méthode : comparaison à une intégrale.

Il faut prendre garde au sens de variation de $t \mapsto 1/t^{\alpha}$ pour encadrer.

• Supposons $\alpha \le 0$. Par comparaison à une intégrale

$$\int_{0}^{n} \frac{dt}{t^{\alpha}} \le S_{n} \le \int_{1}^{n+1} \frac{dt}{t^{\alpha}}$$

ou encore

$$\frac{n^{1-\alpha}}{1-\alpha} \le S_n \le \frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

On en déduit $S_n \sim n^{1-\alpha} \frac{n^{1-\alpha}}{1-\alpha}$.

• Supposons $0 < \alpha \le 1$. Par comparaison à une intégrale

$$\int_{1}^{n+1} \frac{dt}{t^{\alpha}} \le S_n \le 1 + \int_{1}^{n} \frac{dt}{t^{\alpha}}$$

Si $0 < \alpha < 1$, on en déduit

$$\frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} \le \mathrm{S}_n \le 1 + \frac{n^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

On en déduit à nouveau $S_n \underset{n \to +\infty}{\sim} \frac{n^{1-\alpha}}{1-\alpha}$. Si $\alpha = 1$.

$$\ln(n+1) \le S_n \le 1 + \ln n$$

et donc $S_n \sim \ln n$.

• Supposons $\alpha > 1$. On compare à nouveau à une intégrale. Pour des entiers n et N tels que $1 \le n < N$

$$\int_{n+1}^{N+1} \frac{dt}{t^{\alpha}} \leq \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \leq \int_{n}^{N} \frac{dt}{t^{\alpha}}$$

ou encore

$$\frac{1}{\alpha - 1} \left(\frac{1}{(n+1)^{\alpha - 1}} - \frac{1}{(N+1)^{\alpha - 1}} \right) \le \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \le \frac{1}{\alpha - 1} \left(\frac{1}{n^{\alpha - 1}} - \frac{1}{N^{\alpha - 1}} \right)$$

En faisant tendre N vers $+\infty$, on obtient

$$\frac{1}{\alpha - 1} \frac{1}{(n+1)^{\alpha - 1}} \le R_n \le \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

On en déduit que $R_n \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$.

Deuxème méthode : utilisation de séries télescopiques.

Plaçons-nous dans le cas $\alpha \neq 1$. Comme $t \mapsto \frac{1}{t^{\alpha}}$ admet pour primitive $t \mapsto \frac{t^{1-\alpha}}{1-\alpha}$, on peut conjecturer que $S_n \sim \frac{n^{1-\alpha}}{1-\alpha}$ si $\alpha < 1$ et $R_n \sim \frac{n^{1-\alpha}}{n-1}$ dans le cas convergent.

$$n^{1-\alpha} - (n-1)^{1-\alpha} = n^{1-\alpha} \left(1 - \left(1 - \frac{1}{n}\right)^{1-\alpha} \right) \underset{n \to +\infty}{\sim} n^{1-\alpha} \cdot \frac{1-\alpha}{n} \underset{n \to +\infty}{\sim} \frac{1-\alpha}{n^{\alpha}}$$

• Si $\alpha < 1, \sum \frac{1}{n^{\alpha}}$ est une série à termes positifs divergente donc

$$\sum_{k=1}^{n} k^{1-\alpha} - (k-1)^{1-\alpha} \underset{n \to +\infty}{\sim} S_n$$

ou encore

$$S_n \sim \frac{n^{1-\alpha}}{1-\alpha}$$

• Si $\alpha > 1, \sum \frac{1}{n^{\alpha}}$ est une série à termes positifs convergente donc

$$\sum_{k=n}^{+\infty} k^{1-\alpha} - (k-1)^{1-\alpha} \underset{n \to +\infty}{\sim} S_n$$

ou encore

$$S_n \underset{n \to +\infty}{\sim} \frac{(n+1)^{1-\alpha}}{\alpha-1} \underset{n \to +\infty}{\sim} \frac{n^{1-\alpha}}{\alpha-1}$$

Reste le cas $\alpha = 1$. Cette fois, ln est une primitive de $t \mapsto 1/t$ donc on est amené à considérer l'équivalent suivant

$$\ln(n) - \ln(n-1) = -\ln\left(1 - \frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}$$

Comme $\sum \frac{1}{n}$ est une série à termes positifs divergente,

$$\sum_{k=2}^{n} \ln(k) - \ln(k-1) \underset{n \to +\infty}{\sim} \sum_{k=2}^{n} \frac{1}{k} = S_n - 1$$

ou encore, comme (S_n) diverge vers $+\infty$,

$$S_n \sim S_n - 1 \sim \ln(n)$$

Solution 21

1. Soit $n \in \mathbb{N}^*$. On a évidemment $u_n = \sum_{k=1}^n \ln k$. La fonction \ln étant croissante sur \mathbb{R}_+^* ,

$$\int_{1}^{n} \ln(t) dt \le u_n \le \int_{1}^{n+1} \ln(t) dt$$

ou encore

$$n \ln(n) - n + 1 \le u_n \le (n+1) \ln(n+1) - n$$

On a clairement $1 = o(n \ln n)$, $n = o(n \ln n)$ donc $n \ln n - n + 1 \sim n \ln n$.

De plus,

$$(n+1)\ln(n+1) - n = n\ln n + n\ln\left(1 + \frac{1}{n}\right) + \ln n + \ln\left(1 + \frac{1}{n}\right) - n$$

On a clairement $n = o(n \ln n)$ et $\ln n = o(n \ln n)$.

Par ailleurs, $\ln\left(1+\frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 0$ donc $\ln\left(1+\frac{1}{n}\right) = o(n \ln n)$.

On en déduit également que $n \ln \left(1 + \frac{1}{n}\right) = o(n)$ et a fortiori $n \ln \left(1 + \frac{1}{n}\right) = o(n \ln n)$.

Finalement, $(n + 1) \ln(n + 1) - n \sim n \ln n$.

Le théorème des gendarmes assure alors que $u_n \sim n \ln n$.

- 2. D'après la question précédente, $\frac{1}{u_n^2} \sim \frac{1}{n^2 (\ln n)^2}$. On en déduit par exemple que $\frac{1}{u_n^2} = \mathcal{O}\left(\frac{1}{n^2}\right)$, ce qui assure la convergence de la série $\sum_{n \geq 2} \frac{1}{u_n^2}$.
- 3. Soit $(x,y) \in]1, +\infty[$ tel que $x \le y$. Alors $0 \le \ln x \le \ln y$ donc $0 \frac{1}{\ln y} \le \frac{1}{\ln x}$. Puisque $0 < \frac{1}{y} \le \frac{1}{x}$, on en déduit que $0 \le f(y) \le f(x)$. Ainsi f est décroissante sur $]1, +\infty[$.
- **4.** Soit $n \ge 2$. Puisque la fonction f est décroissante sur $]1, +\infty[$

$$\int_{2}^{n+1} f(t) dt \le \sum_{k=2}^{n} f(k)$$

ou encore

$$\ln(\ln(n+1)) - \ln(\ln 2) \le \sum_{k=2}^{n} \frac{1}{u_k}$$

Par théorème de minoration, la série $\sum_{n\geq 2} \frac{1}{u_n}$ diverge (vers $+\infty$).

Séries alternées

Solution 22

1. Il suffit d'appliquer le critère spécial des séries alternées.

2. On sait que al suite (R_n) converge vers 0 et que R_n est du signe de $\frac{(-1)^{n+1}}{n+1}$ i.e. de $(-1)^{n+1}$. Il suffit donc de montrer que la suite $(|R_n|)$ est décroissante pour conclure à la convergence de la série $\sum_{n\in\mathbb{N}}R_n$ à nouveau grâce au critère spécial des séries alternées. Puisque R_n est du signe de $(-1)^{n+1}$,

$$|R_{n+1}| - |R_n| = (-1)^{n+2}R_{n+1} - (-1)^{n+1}R_n = (-1)^n(R_n + R_{n+1})$$

Or, par changement d'indice,

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{k=n+2}^{+\infty} \frac{(-1)^k}{k} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

Ainsi R_n+R_{n+1} est lui-même le reste de la série $\sum_{n\in\mathbb{N}^*}\frac{(-1)^n}{n(n+1)}$, qui vérifie encore le critère des séries alternées. On en déduit que R_n+R_{n+1} est du signe de $\frac{(-1)^{n+1}}{(n+1)(n+2)}$, c'est-à-dire de $(-1)^{n+1}$. Finalement, $|R_{n+1}|-|R_n|=(-1)^n(R_n+R_{n+1})$ est du signe de $(-1)^n(-1)^{n+1}=-1$, c'est-à-dire négatif. La suite $(|R_n|)$ est donc bien décroissante : on peut appliquer le critère spécial des séries alternées de sorte que la série $\sum_{n\in\mathbb{N}}R_n$ converge.

Solution 23

1. On a
$$b_{2n} = \sum_{k=1}^{n} \sqrt{2k} - \sqrt{2k-1}$$
. Or

$$\sqrt{2k} - \sqrt{2k-1} \underset{k \to +\infty}{\sim} = \frac{1}{2\sqrt{2}\sqrt{k}}$$

Or la série $\sum_{n\in\mathbb{N}^*} \frac{1}{\sqrt{n}}$ est une série à termes positifs divergente donc

$$b_{2n} \sim \frac{1}{2\sqrt{2}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

Mais on peut alors classiquement écrire que

$$\sqrt{k} - \sqrt{k-1} \underset{n \to +\infty}{\sim} \frac{1}{2\sqrt{k}}$$

donc, en utilisant le même théorème,

$$\sum_{k=1}^n \frac{1}{2\sqrt{k}} \underset{n \to +\infty}{\sim} \sum_{k=1}^n \sqrt{k} - \sqrt{k-1} = \sqrt{n}$$

On en déduit finalement que $b_{2n} \underset{n \to +\infty}{\sim} \sqrt{n/2}$.

On remarque ensuite que $b_{2n+1} = b_{2n} - \sqrt{2n+1}$. D'une part, $b_{2n} = \sqrt{n/2} + o(\sqrt{n})$ et, d'autre part, $\sqrt{2n+1} \sim \sqrt{2n}$ donc

$$\sqrt{2n+1} = \sqrt{2n} + o(\sqrt{n})$$
. Finalement, $b_{2n+1} = -\sqrt{n/2} + o(\sqrt{n})$ i.e. $b_{2n+1} \approx -\sqrt{n/2}$. Un équivalent de b_n est donc $\frac{(-1)^n}{2}\sqrt{n}$. En effet, les équivalents précédents permettent de montrer qu'en posant $u_n = \frac{b_n}{(-1)^n\sqrt{n}}$, les suites (u_{2n}) et (u_{2n+1}) convergent toutes deux vers $\frac{1}{2}$. Il en est donc de même de la suite (u_n) , ce qui fournit l'équivalent de (b_n) annoncée.

2. On voit que pour tout $n \in \mathbb{N}^*$:

$$b_n + b_{n+1} = \sum_{k=1}^n (-1)^k \sqrt{k} + \sum_{k=1}^{n+1} (-1)^k \sqrt{k}$$
$$= \sum_{k=1}^n (-1)^k \sqrt{k} + \sum_{k=0}^n (-1)^{k+1} \sqrt{k+1}$$
$$= -1 - \sum_{k=1}^n (-1)^k \left(\sqrt{k+1} - \sqrt{k} \right)$$

Notons $S_n = \sum_{k=1}^n (-1)^k \left(\sqrt{k+1} - \sqrt{k} \right)$. S_n est la somme partielle d'une série qui converge en vertu du critère des séries alternées puisque la suite de terme général $\sqrt{k+1} - \sqrt{k} = \frac{1}{\sqrt{k+1} + \sqrt{k}}$ est décroissante. Notons S la somme de cette série. Le premier terme de la somme définissant S est $1 - \sqrt{2} \le 0$. On en déduit donc que $1 - \sqrt{2} \le S \le 0$. Ainsi $(b_n + b_{n+1})$ converge vers -1 - S et $-1 - S \le \sqrt{2} - 2 < 0$.

3. Posons $u_n = \sum_{k=1}^n \frac{1}{b_k}$. On a donc

$$u_{2n} = \sum_{k=1}^{n} \frac{1}{b_{2k}} + \frac{1}{b_{2k-1}} = \sum_{k=1}^{n} \frac{b_{2k} + b_{2k-1}}{b_{2k} b_{2k-1}}$$

D'après la question précédente, $(b_{2n}+b_{2n-1})$ converge vers une certaine limite l<0 et, d'après la première question, $b_{2n}b_{2n-1}$ $\underset{n\to+\infty}{\sim}$ $-\frac{n}{4}$. Ainsi $\frac{b_{2n}+b_{2n-1}}{b_{2n}b_{2n-1}}$ $\underset{n\to+\infty}{\sim}$ $-\frac{4l}{n}$. Or la série de terme général $-\frac{4l}{n}$ diverge (série de Riemann) et donc celle de terme général $\frac{b_{2n}+b_{2n-1}}{b_{2n}b_{2n-1}}$ également (on peut appliquer les théorèmes de comparaison car ces séries sont à termes positifs à partir d'un certain rang). La somme partielle de cette série n'est autre que u_{2n} qui diverge par conséquent. Comme cette suite est extraite de (u_n) , la suite (u_n) diverge i.e. la série de terme général $\frac{1}{b_n}$ diverge.

Solution 24

- 1. Puisque cos est bornée, $v_n = O\left(\frac{1}{n}\right)$. En particulier, (v_n) converge vers 0. Par conséquent, $(\cos(v_{n-1}))$ converge vers 1 puis $v_n \sim \frac{1}{n}$. Puisque la série harmonique est une série à termes positifs divergente, la série $\sum v_n$ diverge également.
- 2. Il suffit de constater que cette série vérifie le critère des séries alternées.
- 3. Il nous faut un développement asymptotique de (v_n) . On remarque que $v_n \frac{1}{n} = \mathcal{O}\left(\frac{v_{n-1}^2}{n}\right)$. Or $v_{n-1} \sim \frac{1}{n \to +\infty} \frac{1}{n-1} \sim \frac{1}{n}$ donc $v_n \frac{1}{n} = \mathcal{O}\left(\frac{1}{n^3}\right)$. Par conséquent, $(-1)^n v_n = \frac{(-1)^n}{n} + \mathcal{O}\left(\frac{1}{n^3}\right)$. Puisque la série $\sum \frac{(-1)^n}{n}$ converge et que la série $\sum \frac{1}{n^3}$ est une série à termes positifs convergente, la série $\sum (-1)^n v_n$ converge également.

Solution 25

Pour $n \in \mathbb{N}^*$,

$$\ln\left(\frac{n}{n+1}\right) = -\ln\left(1 + \frac{1}{n}\right) = -\frac{1}{n} + \frac{1}{2n^2} - \frac{1}{3n^3} + \mathcal{O}\left(\frac{1}{n^4}\right)$$

Par conséquent

$$u_n = \cos\left(-n\pi + \frac{\pi}{2} - \frac{\pi}{3n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)$$
$$= \sum_{n \to +\infty} (-1)^n \sin\left(-\frac{\pi}{3n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)$$
$$= \frac{(-1)^{n+1}\pi}{3n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Or la série $\sum \frac{(-1)^{n+1}\pi}{3n}$ converge en vertu du critère spécial des séries alternées et la série de Riemann $\sum \frac{1}{n^2}$ converge donc $\sum u_n$ converge en tant que somme de deux séries convergentes.

Solution 26

Remarquons que

$$\sin\left(\pi\sqrt{n^2+1}\right) = \sin\left(n\pi\left(1+\frac{1}{n^2}\right)^{\frac{1}{2}}\right)$$

$$= \sin\left(n\pi\left(1+\frac{1}{2n^2}+\mathcal{O}\left(\frac{1}{n^4}\right)\right)\right)$$

$$= \sin\left(n\pi+\frac{\pi}{2n}+\mathcal{O}\left(\frac{1}{n^3}\right)\right)$$

$$= (-1)^n\sin\left(\frac{\pi}{2n}+\mathcal{O}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{(-1)^n\pi}{2n}+\mathcal{O}\left(\frac{1}{n^3}\right)$$

$$= \frac{(-1)^n\pi}{2n}+u_n$$

avec $u_n = O\left(\frac{1}{n^3}\right)$. La série $\sum \frac{(-1)^n \pi}{2n}$ converge en vertu du critère spécial des séries alternées et la série $\sum u_n$ converge par comparaison à une série de Riemann. La série $\sum_{n \in \mathbb{N}} \sin\left(\pi\sqrt{n^2+1}\right)$ converge donc comme somme de deux séries convergentes.

Solution 27

$$\frac{(-1)^n}{n+(-1)^n} = \frac{(-1)^n}{\sqrt{n}} \cdot \frac{1}{1+\frac{(-1)^n}{\sqrt{n}}}$$

$$= \sum_{n \to +\infty} \frac{(-1)^n}{\sqrt{n}} \left(1 - \frac{(-1)^n}{\sqrt{n}} + \mathcal{O}\left(\frac{1}{n}\right)\right)$$

$$= \sum_{n \to +\infty} \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

$$= \sum_{n \to +\infty} \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + u_n$$

avec $u_n = O\left(\frac{1}{n^{\frac{3}{2}}}\right)$. La série $\sum \frac{(-1)^n}{\sqrt{n}}$ converge en vertu du critère spécial des séries alternées, la série $\sum u_n$ converge par comparaison à une série de Riemann mais la série $\sum \frac{1}{n}$ diverge. Par conséquent, la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ diverge.

Remarque. Pourtant, $\frac{(-1)^n}{\sqrt{n} + (-1)^n} \sim \frac{(-1)^n}{\sqrt{n}}$. La condition de positivité est donc nécessaire pour le critère de convergence par équivalence.

Solution 28

1. Puisque (a_n) converge vers 0,

$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + \mathcal{O}(a_n)^3 = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

La série $\sum \frac{(-1)^n}{\sqrt{n}}$ vérifie le critère spécial des séries alternées donc converge. La série $\sum \frac{1}{n^3}$ converge. Enfin la série harmonique $\sum \frac{1}{n}$ diverge vers $+\infty$. On en déduit que la série $\sum \ln(1+a_n)$ diverge vers $-\infty$.

2. Par propriété du logarithme

$$\ln\left(\prod_{k=2}^{n}(1+a_k)\right) = \sum_{k=2}^{n}\ln(1+a_k) \xrightarrow[n\to+\infty]{} -\infty$$

Par passage à l'exponentielle,

$$\lim_{n \to +\infty} \left(\prod_{k=2}^{n} (1 + a_k) \right) = 0$$

Solution 29

- 1. Soit $n \in \mathbb{N}^*$. La fonction $f_n: x \mapsto x^n + x\sqrt{n} 1$ est continue et strictement croissante sur [0,1]. De plus, $f_n(0) = -1 > 0$ et $f_n(1) = \sqrt{n} > 0$ donc f_n s'annule une unique fois sur [0,1]. L'équation $x^n + x\sqrt{n} 1 = 0$ admet donc une unique solution u_n dans [0,1].
- 2. Remarquons que $u_n = \frac{1 u_n^n}{\sqrt{n}}$. Comme (u_n) est à valeurs dans [0,1], $0 \le u_n \le \frac{1}{\sqrt{n}}$ donc (u_n) converge vers 0 d'après le théorème des gendarmes.
- 3. Comme (u_n) converge vers 0, (u_n^n) également. Ainsi

$$u_n = \frac{1}{\sqrt{n}} - \frac{u_n^n}{\sqrt{n}} = \frac{1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$$

Par comparaison à une série de Riemann, $\sum u_n$ diverge.

4. Comme (u_n) converge vers $0, 0 \le u_n \le 1/2$ à partir d'un certain rang de sorte que $u_n = \mathcal{O}(1/2^n)$. Ainsi

$$(-1)^n u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{(-1)^n u_n^n}{\sqrt{n}}$$

$$= \frac{(-1)^n}{\sqrt{n}} + \mathcal{O}\left(\frac{1}{2^n \sqrt{n}}\right)$$

$$= \frac{(-1)^n}{\sqrt{n}} + \mathcal{O}\left(\frac{1}{2^n}\right)$$

$$= \frac{(-1)^n}{\sqrt{n}} + \mathcal{O}\left(\frac{1}{2^n}\right)$$

La série $\sum \frac{(-1)^n}{\sqrt{n}}$ converge d'après le critère des séries alternées et la série géométrique à termes positifs $\sum 1/2^n$ converge également. On en déduit la convergence de la série $\sum (-1)^n u_n$.

Sommation de relations de comparaison

1. Puisque $\ell \neq 0$, on peut affirmer que $u_n \sim n\ell$. Par ailleurs, la série $\sum_{n \in \mathbb{N}^*} \ell$ est une série divergente à termes de signe constant, donc on peut affirmer que

$$\sum_{k=1}^{n} u_k \sim \sum_{n \to +\infty}^{n} \sum_{k=1}^{n} \ell = n\ell$$

Ceci signifie que $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} u_k = \ell$.

2. A nouveau, puisque $\ell \neq 0$, on peut affirmer que $nu_n \sim n\ell$. La série $\sum_{n \in \mathbb{N}^*} n\ell$ est encore une série divergente à termes de signe constant donc

$$\sum_{k=1}^{n} k u_k \underset{n \to +\infty}{\sim} \sum_{k=1}^{n} n \ell = \frac{n(n+1)}{2} \cdot \ell \underset{n \to +\infty}{\sim} \frac{n^2 \ell}{2}$$

Autrement dit, $\lim_{n \to +\infty} \frac{1}{n^2} \sum_{k=1}^{n} k u_k = \frac{1}{2}$.

Solution 31

1. Avec les notations de l'énoncé, $\lim_{n\to +\infty} a_n S_n = 1$. La série $\sum_{n\in \mathbb{N}^*} a_n^2$ est à termes positifs donc la suite (S_n) converge ou diverge vers $+\infty$. Supposons qu'elle converge. Alors elle converge vers une limite ℓ strictement positive $(S_n \ge S_1 = a_1^2 > 0)$. Alors (a_n) converge vers $1/\ell$. La série $\sum_{n\in \mathbb{N}^*} a_n^2$ divergerait alors grossièrement, ce qui contredirait la convergence de la suite (S_n) .

Par conséquent, la série $\sum_{n\in\mathbb{N}^*}a_n^2$ diverge et la suite (S_n) converge vers $+\infty$. Puisque $a_n=\frac{a_nS_n}{S_n}$, (a_n) converge vers 0.

2. La suite (S_n) est clairement croissante. Soit $n \in \mathbb{N}^*$ et $t \in [S_{n-1}, S_n]$. Alors, par croissance de $t \mapsto t^2$ sur \mathbb{R}_+ ,

$$(S_n - S_{n-1})S_{n-1}^2 \le \int_{S_{n-1}}^{S_n} t^2 dt \le (S_n - S_{n-1})S_n^2$$

ou encore, en posant $u_n = \int_{S_{n-1}}^{S_n} t^2 dt$,

$$\alpha_n^2 S_{n-1}^2 \le u_n \le \alpha_n^2 S_n^2$$

On rappelle que $\lim_{n\to+\infty} a_n S_n = 1$ donc $\lim_{n\to+\infty} a_n^2 S_n^2 = 1$. De plus,

$$a_n^2 S_{n-1}^2 = a_n^2 (S_n - a_n)^2 = a_n^2 S_n^2 - 2S_n a_n^3 + a_n^4$$

Or $\lim_{n\to +\infty} a_n S_n = 1$ et $\lim_{n\to +\infty} a_n = 0$ donc $\lim_{n\to +\infty} a_n^2 S_{n-1}^2 = 1$. D'après le théorème des gendarmes, (u_n) converge vers 1.

3. Remarquons que

$$\sum_{k=1}^{n} u_k = \int_0^{S_n} t^2 dt = \frac{S_n^3}{3}$$

Par sommation de relation de comparaison pour les séries divergentes à termes positifs, $\sum_{k=1}^{n} u_n \sim n$. On en déduit que $S_n \sim \sqrt[3]{3n}$ et, comme $a_n \sim \frac{1}{N-1+\infty}, a_n \sim \frac{1}{N-1+\infty}$.

Solution 32

1. Par croissance de la fonction $\sin 1$ 'intervalle $\left[0, \frac{\pi}{2}\right]$ est stable par \sin . Ainsi la suite (u_n) est à valeurs dans cet intervalle. De plus, une étude de fonction montre que $x \mapsto \sin(x) - x$ est négative $\sup \left[0, \frac{\pi}{2}\right]$. On en déduit que (u_n) est décroissante. Comme elle est minorée, elle converge. Enfin, sin est continue donc (u_n) converge vers un point fixe de \sin . L'étude de $x \mapsto \sin(x) - x$ montre que 0 est l'unique point fixe de \sin . Ainsi (u_n) converge vers 0.

2. Remarquons que

$$\sin(x)^{\alpha} - x^{\alpha} \underset{x \to 0}{=} \left(x - \frac{x^3}{6} \right)^{\alpha} - x^{\alpha}$$

$$= \underset{x \to 0}{=} x^{\alpha} \left(1 - \frac{x^2}{6} + o(x^2) \right)^{\alpha} - x^{\alpha}$$

$$= \underset{x \to 0}{=} x^{\alpha} \left(1 - \frac{\alpha x^2}{6} + o(x^2) \right) - x^{\alpha}$$

$$= \underset{x \to 0}{=} -\frac{\alpha x^{\alpha+2}}{6} + o(x^{\alpha+2})$$

Notamment, en prenant $\alpha = -2$,

$$\lim_{x \to 0} \frac{1}{\sin^2 x} - \frac{1}{x^2} = \frac{1}{3}$$

Comme (u_n) converge vers 0,

$$\lim_{n \to +\infty} \frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} = \frac{1}{3}$$

3. La série $\sum \frac{1}{3}$ est une série à termes positifs divergente donc

$$\sum_{k=0}^{n-1} \frac{1}{u_{k+1}^2} - \frac{1}{u_k}^2 \sim \sum_{k=0}^{n-1} \frac{1}{3}$$

autrement dit

$$\frac{1}{u_n^2} - \frac{1}{u_0^2} \underset{n \to +\infty}{\sim} \frac{n}{3}$$

Comme $\lim_{n\to+\infty} \frac{n}{3} = +\infty$,

$$\frac{1}{u_n^2} \underset{n \to +\infty}{\sim} \frac{n}{3}$$

ou encore

$$u_n \sim \sqrt{\frac{3}{n}}$$

car (u_n) est positive d'après la première question.

Solution 33

1. Supposons que $\lim_{n\to +\infty} u_n = \ell$. Puisque $u_n = \ell + o(1)$ et que la série $\sum 1$ est une série à termes positifs divergente,

$$\sum_{k=0}^{n-1} u_k = \sum_{n \to +\infty}^{n-1} \ell + o\left(\sum_{k=0}^{n-1} 1\right)$$

ou encore

$$\sum_{k=0}^{n-1} u_k = n\ell + o(n)$$

et enfini

$$\frac{1}{n}\sum_{k=0}^{n-1}u_k = \ell + o(1)$$

Ainsi

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} u_k = \ell$$

2. **a.** $f(x) - x \sim -\lambda x^{\alpha}$ donc $x \mapsto f(x) - x$ est de même signe que $x \mapsto -\lambda x^{\alpha}$ au voisinage de 0^+ . Ainsi il existe $\varepsilon > 0$ tel que $x \mapsto f(x) - x$ est négative sur $[0, \varepsilon]$ et ne s'annule qu'en 0.

b. Par hypothèse, f est positive sur $[0, \varepsilon]$. Comme 0 est le seul point fixe de f sur $[0, \varepsilon]$, $x \mapsto f(x) - x$ est de signe constant sur cet intervalle puisqu'elle y est continue. Or $f(x) - x \sim -\lambda x^{\alpha}$ donc $x \mapsto f(x) - x$ est négative sur $[0, \varepsilon]$. On en déduit que

$$\forall x \in [0, \varepsilon], \ 0 \le f(x) \le x \le \varepsilon$$

On en déduit alors aisément que (u_n) est à valeurs dans $[0, \varepsilon]$ et décroissante. Elle converge donc d'après le théorème de convergence monotone ar contnuité de f, (u_n) converge vers l'unique point fixe de f sur $[0, \varepsilon]$, à savoir 0.

c. Tout d'abord, $\alpha > 1$ donc $x^{\alpha-1} \xrightarrow[x \to 0]{} 0$. On peut alors utiliser le développement limité usuel de $(1+u)^{\beta}$ lorsque u tend vers 0:

$$f(x)^{1-\alpha} = x^{1-\alpha} \left(1 - \lambda x^{\alpha-1} + o(x^{\alpha-1})\right)^{1-\alpha} = x^{1-\alpha} \left(1 + (\alpha-1)\lambda x^{\alpha-1} + o(x^{\alpha-1})\right) = x^{1-\alpha} 1 + (\alpha-1)\lambda + o(1)$$

d. Comme (u_n) converge vers 0

$$\lim_{n \to +\infty} f(u_n)^{1-\alpha} - u_n^{1-\alpha} = (\alpha - 1)\lambda$$

ou encore

$$\lim_{n \to +\infty} u_{n+1}^{1-\alpha} - u_n^{1-\alpha} = (\alpha - 1)\lambda$$

D'après la première question

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} u_{k+1}^{1-\alpha} - u_k^{\alpha} = (\alpha - 1)\lambda$$

ou encore

$$u_n^{1-\alpha} - u_0^{1-\alpha} \sim_{n \to +\infty} (\alpha - 1) \lambda n$$

Or $\lim_{n \to +\infty} (\alpha - 1)\lambda n = +\infty$ de sorte que

$$u_n^{1-\alpha} \sim_{n\to+\infty} (\alpha-1)\lambda n$$

et enfin

$$u_n \underset{n \to +\infty}{\sim} ((\alpha - 1)\lambda n)^{\frac{1}{1-\alpha}}$$

e. Dans le cas de la fonction $x \mapsto \sin x$, on a $\lambda = \frac{1}{6}$, $\alpha = 3$ donc

$$u_n \sim \sqrt{\frac{3}{n}}$$

Dans le cas de la fonction $x \mapsto \ln(1+x)$, on a $\lambda = \frac{1}{2}$, $\alpha = 2$ donc

$$u_n \sim \frac{2}{n}$$

Solution 34

Remarquons que S_n est la somme partielle de rang n de la série $\sum_{n\geq 1}\frac{1}{n^2+\sqrt{n}}$. Puisque $\frac{1}{n^2+\sqrt{n}}\sim\frac{1}{n^2}$ et que $\sum_{n\geq 1}\frac{1}{n^2}$ est une série à termes positifs convergente, la série $\sum_{n\geq 1}\frac{1}{n^2+\sqrt{n}}$ converge vers un réel C. En notant R_n le reste de rang n de la série $\sum_{n\geq 1}\frac{1}{n^2+\sqrt{n}}$, on a $S_n=C-R_n$ pour tout $n\in\mathbb{N}^*$. Puisque $\frac{1}{k^2+\sqrt{k}}\sim\frac{1}{k^2}$, $R_n\sim\sum_{k=n+1}^{+\infty}\frac{1}{k^2}$. Une comparaison à une intégrale montre que $R_n\sim\frac{1}{n}$ d'où le résultat annoncé.

Solution 35

1. On propose deux méthodes.

Première méthode. Comme $x \mapsto \frac{1}{\sqrt{x}}$ est décroissante sur \mathbb{R}_+^* et à valeurs dans \mathbb{R}_+^* , la série $\sum \int_{n-1}^n \frac{\mathrm{d}t}{\sqrt{t}} - \frac{1}{\sqrt{n}}$ converge. Or

$$\sum_{k=2}^{n} \int_{k-1}^{k} \frac{\mathrm{d}t}{\sqrt{t}} - \frac{1}{\sqrt{k}} = \int_{1}^{n} \frac{\mathrm{d}t}{\sqrt{t}} - S_n + 1 = 2\sqrt{n} - S_n - 1$$

donc la suite $(S_n - 2\sqrt{n})$ converge. En notant C sa limite, on a le résultat voulu.

Deuxième méthode. On remarque que

$$\sqrt{n} - \sqrt{n-1} = \sqrt{n} \left(1 - \left(1 - \frac{1}{n} \right)^{\frac{1}{2}} \right) \underset{n \to +\infty}{=} \sqrt{n} \left(\frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^2} \right) \right)$$

ou encore

$$\frac{1}{\sqrt{n}} = 2\sqrt{n} - 2\sqrt{n-1} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Ainsi la série $\sum \frac{1}{\sqrt{n}} - 2\sqrt{n} + 2\sqrt{n-1}$ converge ce qui permet également de conclure.

2. D'après la question précédente

$$C = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} - 2\sqrt{n} + 2\sqrt{n-1}$$

donc

$$S_n - 2\sqrt{n} - C = -\sum_{k=n+1}^{+\infty} \frac{1}{\sqrt{k}} - 2\sqrt{k} + 2\sqrt{k-1} = \sum_{k=n+1}^{+\infty} 2(\sqrt{k} - \sqrt{k-1}) - \frac{1}{\sqrt{k}}$$

Or

$$\sqrt{n} - \sqrt{n-1} = \sqrt{n} \left(1 - \left(1 - \frac{1}{n} \right)^{\frac{1}{2}} \right) \underset{n \to +\infty}{=} \sqrt{n} \left(\frac{1}{2n} + \frac{1}{8n^2} + o\left(\frac{1}{n^2} \right) \right) \underset{n \to +\infty}{=} \frac{1}{2\sqrt{n}} + \frac{1}{8n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}} \right)$$

donc

$$2(\sqrt{n} - \sqrt{n-1}) - \frac{1}{\sqrt{n}} \underset{n \to +\infty}{\sim} \frac{1}{4n\sqrt{n}}$$

Or

$$\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}} \left(\left(1 - \frac{1}{n}\right)^{-\frac{1}{2}} - 1 \right) \underset{n \to +\infty}{\sim} \frac{1}{2n\sqrt{n}}$$

donc

$$2(\sqrt{n} - \sqrt{n-1}) - \frac{1}{\sqrt{n}} \underset{n \to +\infty}{\sim} \frac{1}{2} \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}} \right)$$

Par sommation de relation d'équivalence pour le reste de séries convergentes à termes positifs,

$$S_n - 2\sqrt{n} - C \sim \sum_{n \to +\infty}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{2} \left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}} \right) = \frac{1}{2\sqrt{n}}$$

Ainsi

$$S_n = 2\sqrt{n} + C + \frac{1}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

Produit de Cauchy

1. Posons $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n}{k}$ pour $n \in \mathbb{N}^*$. Alors

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k} \binom{n+1}{k} - \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n}{k}$$

$$= \frac{(-1)^n}{n+1} + \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n+1}{k} - \binom{n}{k}$$

$$= \frac{(-1)^n}{n+1} - \sum_{k=1}^n \frac{(-1)^k}{k} \binom{n}{k-1}$$

$$= \frac{(-1)^n}{n+1} - \sum_{k=1}^n \frac{(-1)^k}{n+1} \binom{n+1}{k}$$

$$= \frac{(-1)^n}{n+1} - \frac{1}{n+1} \left[\left(\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} \right) - 1 - (-1)^{n+1} \right]$$

$$= \frac{(-1)^n}{n+1} - \frac{1}{n+1} \left[(1-1)^{n+1} - 1 - (-1)^{n+1} \right]$$

$$= \frac{1}{n+1}$$

Puisque $S_1 = 1$, on en déduit alors que pour tout $n \in \mathbb{N}^*$,

$$S_n = S_1 + \sum_{k=2}^n S_k - S_{k-1} = 1 + \sum_{k=2}^n \frac{1}{k} = H_n$$

2. On remarque que $e = \sum_{n=0}^{+\infty} \frac{1}{n!}$. Puisque les séries $\sum_{n \in \mathbb{N}} \frac{1}{n!}$ et $\sum_{n \in \mathbb{N}} \frac{(-1)^{n-1}}{n \cdot n!}$ sont absolument convergentes, on peut affirmer via le théorème sur les produits de Cauchy que

Solution 37

On sait que les séries géométriques $\sum_{n\in\mathbb{N}}a^n$ et $\sum_{n\in\mathbb{N}}b^n$ convergent absolument et ont pour sommes respectives $\frac{1}{1-a}$ et $\frac{1}{1-b}$. On en déduit par produit de Cauchy que

 $\sum_{n=0}^{+\infty} c_n = \frac{1}{1-a} \cdot \frac{1}{1-b}$

où

$$c_n = \sum_{k=0}^n a^k b^{n-k} = \frac{a^{n+1} - b^{n+1}}{a - b}$$

Familles sommables

Solution 38

On rappelle que Q est dénombrable.

Supposons qu'il existe une telle application f. Alors $f(\mathbb{Q})$ est au plus dénombrable comme réunion dénombrable d'ensembles finis. En effet, $f(\mathbb{Q}) = \bigcup_{x \in \mathbb{Q}} \{f(x)\}$. Par ailleurs, $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$ donc $f(\mathbb{R} \setminus \mathbb{Q})$ est également au plus dénombrable. Enfin, $f(\mathbb{R}) = f(\mathbb{Q}) \cup f(\mathbb{R} \setminus \mathbb{Q})$ est au plus dénombrable comme réunion de deux tels ensembles.

On remarque maintenant que $f(\mathbb{R})$ est un intervalle de \mathbb{R} comme image de l'intervalle \mathbb{R} par une application continue. Mais les intervalles non réduits à un point ne sont pas finis ou dénombrables donc $f(\mathbb{R})$ est un point $\{a\}$. Mais alors $f(\mathbb{Q}) = f(\mathbb{R} \setminus \mathbb{Q}) = \{a\}$ et donc $\{a\} \subset \mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \emptyset$, ce qui est absurde.

Notons A l'ensembles des polynômes unitaires de $\mathbb{Z}[X]$ et A_d l'ensemble des polynômes unitaires de $\mathbb{Z}[X]$ de degré d. Remarquons que l'ensemble des entiers algébriques est

$$E = \bigcup_{P \in A} P^{-1}(\{0\}) = \bigcup_{d \in \mathbb{N}} \bigcup_{P \in A_d} P^{-1}(\{0\})$$

Pour tout $P \in A$, l'ensemble $P^{-1}(\{0\})$ est fini. De plus, l'ensemble A_d est dénombrable puisqu'il est en bijection avec \mathbb{Z}^d via l'application

$$\begin{cases}
\mathbb{Z}^d & \longrightarrow & \mathbf{A}_d \\
(a_0, \dots, a_{d-1}) & \longmapsto & \mathbf{X}^d + \sum_{k=0}^{d-1} a_k
\end{cases}$$

et que \mathbb{Z}^d est lui-même dénombrable comme produit cartésien fini d'ensembles dénombrables. Ainsi pour tout $d \in \mathbb{N}$, $\bigcup_{P \in A_d} P^{-1}(\{0\})$ est au plus

dénombrable comme union dénombrable d'ensembles finis. Finalement, E est également au plus dénombrable comme union dénombrable de tels ensembles. De plus, E n'est clairement pas fini puisque $\mathbb{Z} \subset \mathbb{E}$ (tout entier relatif n est racine du polynôme X-n) donc \mathbb{E} est dénombrable.

Solution 40

Supposons (i) et montrons (ii). On sait qu'il existe une bijection de A sur \mathbb{N} . Cette bijection est a fortiori une injection de A dans l'ensemble dénombrable \mathbb{N} .

Supposons (ii) et montrons (i). Il existe une injection f de A sur un ensemble dénombrable B. Par définition, il existe une bijection g de B sur \mathbb{N} . Alors $g \circ f$ est une injection de A sur \mathbb{N} donc une bijection de A sur $g \circ f(A)$, qui est une partie de \mathbb{N} . Ainsi A est dénombrable.

Supposons (i) et montrons (iii). On sait qu'il existe une bijection de \mathbb{N} sur A. Cette bijection est a fortiori une surjection de l'ensemble dénombrable \mathbb{N} sur A.

Supposons (iii) et montrons (i). Il existe une surjection g d'un ensemble dénombrable B sur A. Par définition, il existe une bijection f de $\mathbb N$ sur B. Alors $f \circ g$ est une surjection de $\mathbb N$ sur A. Considérons une application qui à tout élément de A associe l'un de ses antécédents par $f \circ g$ (il en existe toujours au moins un par surjectivité de $f \circ g$). Par construction, cette application est une bijection de A sur une partie de $\mathbb N$ (l'ensemble des antécédents choisis) de sorte que A est dénombrable.

Solution 41

Considérons $I_n = \left\{ \frac{k+1}{k}, \ k \in [\![1,n]\!] \right\}$ pour $n \in \mathbb{N}^*$. Alors $I_n \subset \mathbb{Q} \cap [\![1,+\infty[\!]]$ et

$$\sum_{x \in I_n} \frac{1}{x^2} = \sum_{k=1}^n \frac{k^2}{(k+1)^2} \xrightarrow[n \to +\infty]{} + \infty$$

car la série à termes positifs $\sum_{n\in\mathbb{N}^*} \frac{n^2}{(n+1)^2}$ diverge grossièrement vers $+\infty$. La famille $\left(\frac{1}{x^2}\right)_{x\in\mathbb{Q}\cap[1,+\infty[}$ n'est donc pas sommable.

Solution 42

1. Soit un entier $n \ge 2$. Tout d'abord,

$$nv_n = (n-1)v_{n-1} + u_n$$

donc

$$\upsilon_{n-1} = \frac{n}{n-1}\upsilon_n - \frac{1}{n-1}u_n$$

Par conséquent,

$$(n+1)v_n^2 - (n-1)v_{n-1}^2 = 2u_nv_n - \frac{1}{n}(u_n^2 + v_n^2) \le 2u_nv_n$$

2. a. Posons $S_n = \sum_{k=1}^n u_k^2$ et $T_n = \sum_{k=1}^n v_k^2$. En convenant que $v_0 = 0$, l'inégalité de la question précédente est encore valide pour n = 1.

$$\sum_{k=1}^{n} (k+1)v_k^2 - (k-1)v_{k-1}^2 \le 2\sum_{k=1}^{n} u_k v_k$$

ou encore que

$$\sum_{k=1}^{n} v_k^2 + \sum_{k=1}^{n} k v_k^2 - (k-1) v_{k-1}^2 \le 2 \sum_{k=1}^{n} u_k v_k$$

Par télescopage

$$\sum_{k=1}^{n} k v_k^2 - (k-1)v_{k-1}^2 = n v_n^2$$

et par inégalité de Cauchy-Schwarz,

$$\sum_{k=1}^{n} u_k v_k \le \left(\sum_{k=1}^{n} u_k^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} v_k^2\right)^{\frac{1}{2}}$$

Finalement,

$$\sum_{k=1}^{n} v_k^2 + n v_n^2 \le 2 \left(\sum_{k=1}^{n} u_k^2 \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} v_k^2 \right)^{\frac{1}{2}}$$

ou encore

$$T_n + nv_n^2 \le 2\sqrt{S_n}\sqrt{T_n}$$

A fortiori

$$T_n \le 2\sqrt{S_n}\sqrt{T_n}$$

puis

$$T_n \le 4S_n \le 4\sum_{n=1}^{+\infty} u_n^2$$

La suite (T_n) est croissante et majorée donc elle converge i.e. la série $\sum v_n^2$ converge. En passant à la limite dans ce qui précède,

$$\sum_{n=1}^{+\infty} v_n^2 \le 4 \sum_{n=1}^{+\infty} u_n^2$$

b. On va d'abord montrer que la famille $\left(\frac{u_m u_n}{m+n}\right)_{1 \le m \le n}$ est sommable. Pour tout $n \in \mathbb{N}$,

$$\sum_{m=1}^{n-1} \frac{|u_m u_n|}{m+n} = |u_n| \sum_{m=1}^{n-1} \frac{|u_m|}{m+n} \le |u_n| \sum_{m=1}^{n} \frac{|u_m|}{n} = |u_n v_n|$$

Puisque $|u_n v_n| \le \frac{1}{2} (u_n^2 + v_n^2),$

$$\sum_{n=1}^{+\infty} \sum_{m=1}^{n-1} \frac{|u_m u_n|}{m+n} < \frac{1}{2} \sum_{n=1}^{+\infty} u_n^2 + v_n^2 < +\infty$$

Par symétrie, on a également

$$\sum_{m=1}^{+\infty} \sum_{n=1}^{m-1} \frac{|u_m u_n|}{m+n} < +\infty$$

Enfin la série $\sum \frac{u_p^2}{2p}$ converge puisque $\frac{u_p^2}{2p} \le u_p^2$.

Puisque

$$(\mathbb{N}^*)^2 = \{(m, n) \in (\mathbb{N}^*)^2, \ 1 \le m < n\} \sqcup \{(m, n) \in (\mathbb{N}^*)^2, \ 1 \le n < m\} \sqcup \{(p, p), \ p \in \mathbb{N}^*\}$$

Le théorème de sommation par paquets permet d'affirmer que

$$\sum_{(m,n)\in(\mathbb{N}^*)^2}\frac{|u_mu_n|}{m+n}=\sum_{n=1}^{+\infty}\sum_{m=1}^{n-1}\frac{|u_mu_n|}{m+n}+\sum_{m=1}^{+\infty}\sum_{n=1}^{m-1}\frac{|u_mu_n|}{m+n}+\sum_{p=1}^{+\infty}\frac{u_p^2}{2p}<+\infty$$

La famille $\left(\frac{u_m u_n}{m+n}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est donc sommable.

Solution 43

1. Notons J_n l'intégrale à calculer. Tout d'abord, $J_0=2\pi^2$ et, si $n\neq 0$, on intégre par parties

$$\int_0^{2\pi} t e^{-int} \ \mathrm{d}t = -\frac{1}{in} \left[t e^{-int} \right]_0^{2\pi} + \frac{1}{in} \int_0^{2\pi} e^{-int} \ \mathrm{d}t = \frac{2i\pi}{n}$$

2. D'après la question précédente,

$$\begin{split} \sum_{(n,m)\in \mathbb{I}^2} \frac{a_n b_m}{n+m} &= \frac{1}{2i\pi} \sum_{(n,m)\in \mathbb{I}^2} a_n b_m \int_0^{2\pi} t e^{-i(n+m)t} \, \mathrm{d}t \\ &= \frac{1}{2i\pi} \int_0^{2\pi} t \sum_{(n,m)\in \mathbb{I}^2} a_n b_m e^{-int} e^{-imt} \, \mathrm{d}t \\ &= \frac{1}{2i\pi} \int_0^{2\pi} t \left(\sum_{n\in \mathbb{I}} a_n e^{-int} \right) \left(\sum_{m\in \mathbb{I}} b_m e^{-imt} \right) \, \mathrm{d}t \end{split}$$

Posons $f(t) = \sum_{n \in I} a_n e^{-int}$ et $g(t) = \sum_{m \in I} b_m e^{-imt}$. Par inégalité, triangulaire,

$$\sum_{(n,m)\in \mathbb{I}^2} \frac{a_n b_m}{n+m} = \left| \sum_{(n,m)\in \mathbb{I}^2} \frac{a_n b_m}{n+m} \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left(\sqrt{t} |f(t)| \right) \left(\sqrt{t} |g(t)| \right) dt$$

puis, par inégalité de Cauchy-Schwarz,

$$\sum_{(n,m)\in \mathbb{T}^2} \frac{a_n b_m}{n+m} \le \frac{1}{2\pi} \sqrt{\int_0^{2\pi} t |f(t)|^2 dt} \int_0^{2\pi} t |g(t)|^2 dt$$

Calculons ensuite

$$\int_{0}^{2\pi} t |f(t)|^{2} dt = \int_{0}^{2\pi} t f(t) \overline{f(t)} dt$$

$$= \int_{0}^{2\pi} t \left(\sum_{n \in I} a_{n} e^{-int} \right) \left(\sum_{m \in I} a_{m} e^{imt} \right) dt$$

$$= \sum_{(n,m) \in I^{2}} a_{n} a_{m} \int_{0}^{2\pi} t e^{-i(n-m)t} dt$$

$$= \sum_{(n,m) \in I^{2}} a_{n} a_{m} J_{n-m}$$

Or pour $n \neq m$, J_{n-m} est imaginaire pur et l'intégrale qu'on calcule est réelle de sorte que

$$\int_0^{2\pi} t |f(t)|^2 dt = \sum_{n \in \mathbb{I}} a_n^2 J_0 = 2\pi^2 \sum_{n \in \mathbb{I}} a_n^2$$

De la même manière,

$$\int_0^{2\pi} t |g(t)|^2 dt = 2\pi^2 \sum_{n \in \mathbb{I}} b_m^2$$

On en déduit le résultat demandé.

3. Soit K une partie finie de $(\mathbb{N}^*)^2$. Il existe une partie finie I de \mathbb{N}^* telle que K \subset I². Alors

$$\sum_{(n,m) \in \mathbb{K}} \frac{|a_n b_m|}{n+m} \leq \sum_{(n,m) \in (\mathbb{N}^*)^2} \frac{|a_n b_m|}{n+m} \leq \pi \sqrt{\sum_{n \in \mathbb{I}} a_n^2 \sum_{n \in \mathbb{I}} b_n^2} \leq \pi \sqrt{\sum_{n \in \mathbb{N}^*} a_n^2 \sum_{n \in \mathbb{N}^*} b_n^2}$$

Ceci étant valide pour toute partie finie K de $(\mathbb{N}^*)^2$,

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} \frac{|a_n b_m|}{n+m} \le \pi \sqrt{\sum_{n\in\mathbb{N}^*} a_n^2 \sum_{n\in\mathbb{N}^*} b_n^2} < +\infty$$

La famille $\left(\frac{a_n b_m}{n+m}\right)_{(n,m)\in(\mathbb{N}^*)^2}$ est donc sommable et

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} \frac{a_n b_m}{n+m} \le \sum_{(n,m)\in\mathcal{K}} \frac{|a_n b_m|}{n+m} \le \pi \sqrt{\sum_{n\in\mathbb{N}^*} a_n^2 \sum_{n\in\mathbb{N}^*} b_n^2}$$

Solution 44

Comme la famille est une famille de réels positifs, on peut appliquer le théorème de Fubini positif :

$$\sum_{(m,n)\in(\mathbb{N}^*)^2} = \sum_{n=1}^{+\infty} S_m$$

avec $S_m = \sum_{n=1}^{\infty} \frac{1}{mn(m+n+2)}$. A l'aide d'une décomposition en éléments simples :

$$S_{m} = \sum_{n=1}^{+\infty} \frac{1}{mn(m+n+2)}$$

$$= \frac{1}{m(m+2)} \sum_{n=1}^{+\infty} \frac{(m+n+2)-n}{n(m+n+2)}$$

$$= \frac{1}{m(m+2)} \sum_{n=1}^{+\infty} \frac{1}{n} - \frac{1}{m+n+2}$$

$$= \frac{1}{m(m+2)} \sum_{n=1}^{m+2} \frac{1}{n}$$

Notons alors $H_n = \sum_{k=1}^n \frac{1}{k}$ de sorte que $S_m = \frac{1}{m(m+2)} H_{m+2}$. Alors

$$\begin{split} \sum_{m=1}^{+\infty} \mathbf{S}_m &= \sum_{m=1}^{+\infty} \frac{\mathbf{H}_{m+2}}{m(m+2)} \\ &= \frac{1}{2} \sum_{m=1}^{+\infty} \mathbf{H}_{m+2} \left(\frac{1}{m} - \frac{1}{m+2} \right) \\ &= \frac{1}{2} \sum_{m=1}^{+\infty} \frac{\mathbf{H}_m}{m} - \frac{\mathbf{H}_{m+2}}{m+2} + \frac{1}{m(m+1)} + \frac{1}{m(m+2)} \\ &= \frac{1}{2} \sum_{m=1}^{+\infty} \frac{\mathbf{H}_m}{m} - \frac{\mathbf{H}_{m+2}}{m+2} + \frac{1}{2} \sum_{m=1}^{+\infty} \frac{1}{m(m+1)} + \frac{1}{2} \sum_{m=1}^{+\infty} \frac{1}{m(m+2)} \\ &= \frac{1}{2} \left(\mathbf{H}_1 + \frac{\mathbf{H}_2}{2} \right) + \frac{1}{2} \sum_{m=1}^{+\infty} \frac{1}{m} - \frac{1}{m+1} + \frac{1}{4} \sum_{m=1}^{+\infty} \frac{1}{m} - \frac{1}{m+2} \\ &= \frac{1}{2} \left(1 + \frac{3}{4} \right) + \frac{1}{2} + \frac{1}{4} \left(1 + \frac{1}{2} \right) \\ &= \frac{7}{4} \end{split}$$

La famille $\left(\frac{1}{mn(m+n+2)}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est donc sommable et sa somme vaut $\frac{7}{4}$.

Solution 45

Comme la famille est à termes positifs, on peut appliquer le théorème de Fubini positif :

$$\sum_{(p,q)\in\mathbb{N}\times\mathbb{N}^*} \frac{1}{(p+q^2)(p+q^2+1)} = \sum_{q=1}^{+\infty} \sum_{p=0}^{+\infty} \frac{1}{(p+q^2)(p+q^2+1)}$$

$$= \sum_{q=1}^{+\infty} \sum_{p=0}^{+\infty} \frac{1}{p+q^2} - \frac{1}{p+q^2+1}$$

$$= \sum_{q=1}^{+\infty} \frac{1}{q^2} \quad \text{par t\'elescopage}$$

$$= \frac{\pi^2}{6}$$

La famille $\left(\frac{1}{(p+q^2)(p+q^2+1)}\right)_{(p,q)\in\mathbb{N}\times\mathbb{N}^*}$ est donc sommable et a pour somme $\frac{\pi^2}{6}$.

Solution 46

En utilisant la partition suivante

$$\{(p,k) \in \mathbb{N}^2, \ q < p\} = \bigsqcup_{p \in \mathbb{N}^*} \{p\} \times [[0, p-1]]$$

le théorème de sommation par paquets montre que

$$\sum_{0 \le q < p} \frac{1}{p^{\alpha}} = \sum_{p=1}^{+\infty} \sum_{q=0}^{p-1} \frac{1}{p^{\alpha}} = \sum_{p=1}^{+\infty} \frac{1}{p^{\alpha-1}}$$

En considérant la partition suivante

$$\left\{(p,q) \in \mathbb{N}^2, \; q < p\right\} = \bigsqcup_{q \in \mathbb{N}} \llbracket q+1, +\infty \llbracket \times \{q\} \right\}$$

ce même théorème permet d'affirmer que

$$\sum_{0 \le q < p} \frac{1}{p^{\alpha}} = \sum_{q=0}^{+\infty} \sum_{p=q+1}^{+\infty} \frac{1}{p^{\alpha}}$$

On en déduit l'égalité demandée. Cette somme est finie dès lors que $\sum_{p \in \mathbb{N}^*} \frac{1}{p^{\alpha - 1}}$ converge i.e. $\alpha > 2$.

Solution 47

Soit $z \in \mathbb{C}$ tel que |z| < 1. Remarquons que pour tout $n \in \mathbb{N}^*$,

$$\frac{z^n}{1 - z^n} = z^n \sum_{p=0}^{+\infty} z^{np} = \sum_{p=1}^{+\infty} z^{np}$$

On travailel maintenant sous réserve de sommabilité. D'après le théorème de Fubini :

$$\sum_{n=1}^{+\infty} \frac{z^n}{1-z^n} = \sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} z^{np} = \sum_{(n,p) \in (\mathbb{N}^*)^2} z^{np}$$

Posons maintenant $I_k = \{(n, p) \in (\mathbb{N}^*)^2, np = k\}$ pour $k \in \mathbb{N}^*$. Les ensembles I_k sont clairement disjoints et pour tout $(n, p) \in (\mathbb{N}^*)^2$, $(n, p) \in I_{np}$. Autrement dit, $(\mathbb{N}^*)^2 = \coprod_{k \in \mathbb{N}^*} I_k$. Le théorème de sommation par paquets permet d'affirmer que

$$\sum_{(n,p)\in(\mathbb{N}^*)^2} z^{np} = \sum_{k=1}^{+\infty} \sum_{(n,p)\in I_k} z^{np} = \sum_{k=1}^{+\infty} \sum_{(n,p)\in I_k} z^k = \sum_{k\in\mathbb{N}^*} \operatorname{card}(I_k) z^k$$

Notons \mathcal{D}_k l'ensemble des diviseurs positifs de k, ainsi que ϕ : $\begin{cases} \mathbf{I}_k & \longrightarrow \mathcal{D}_k \\ (m,n) & \longmapsto m \end{cases} \text{ et } \psi : \begin{cases} \mathcal{D}_k & \longrightarrow \mathbf{I}_k \\ d & \longmapsto (d,k/d) \end{cases} \text{. On vérifie que } \phi \text{ et } \psi \text{ sont bien définies et que } \phi \circ \psi = \mathrm{Id}_{\mathbb{C}_k} \text{ et } \psi \circ \phi = \mathrm{Id}_{\mathbb{I}_k}. \text{ Ainsi } \psi \text{ et } \phi \text{ sont bijectives et } \mathrm{card}(\mathbf{I}_k) = \mathrm{card}(\mathcal{D}_k) = \tau(k). \text{ Finalement,}$

$$\sum_{n=1}^{+\infty} \frac{z^n}{1 - z^n} = \sum_{k=1}^{+\infty} \tau(k) z^k$$

Reste à vérifier la sommabilité. On peut prouver au choix que les série s $\sum_{n\in\mathbb{N}^*}\frac{z^n}{1-z^n}$ ou $\sum_{k\in\mathbb{N}^*}\tau(k)z^k$ convergent absolument. Dans le premier cas, on applique la règle de d'Alembert (si $z\neq 0$) :

 $\frac{|z^{n+1}/(1-z^{n+1})|}{|z^n/(1-z^n)|} = |z| \cdot \frac{|1-z^n|}{|1-z^{n+1}|} \underset{n \to +\infty}{\longrightarrow} |z| < 1$

Dans le second cas, on remarque que $0 \le \tau(k) \le k$ donc $|\tau(k)z^k| \le k|z|^k$. On vérifie aisément à l'aide de la règle de d'Alembert que $\sum_{k \in \mathbb{N}^*} k|z|^k$ converge donc $\sum_{k \in \mathbb{N}^*} |\tau(k)z^k|$ converge par majoration.

Solution 48

Fixons $n \in \mathbb{N}$. En faisant intervenir une série géométrique,

$$\frac{z^{2^n}}{1 - z^{2^{n+1}}} = z^{2^n} \sum_{k=0}^{+\infty} z^{2^{n+1}k} = \sum_{k=0}^{+\infty} z^{2^n(2k+1)}$$

Pour $n \in \mathbb{N}$, on pose alors $J_n = \{2^n(2k+1), k \in \mathbb{N}\}$. En partitionnant \mathbb{N}^* suivant la valuation 2-adique, on montre que $(J_n)_{n \in \mathbb{N}}$ est une partition de \mathbb{N}^* . Comme la série $\sum_{j \in \mathbb{N}^*} z^j$ converge absolument, la famille $(z^j)_{j \in \mathbb{N}^*}$ est sommable et le théorème de sommation par paquets permet alors d'affirmer que

$$\sum_{n=1}^{+\infty} \sum_{k=0}^{+\infty} z^{2^n(2k+1)} = \sum_{j=1}^{+\infty} z^j$$

Ce qui peut encore s'écrire d'après ce qui précède et en reconnaissant dans le second membre la somme d'une série géométrique :

$$\sum_{n=1}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z}$$

Solution 49

Posons $I_p = \{(m, n) \in (\mathbb{N}^*)^2, m + n = p\}$ et

$$S_p = \sum_{(m,n)\in I_n} \frac{1}{(m+n)^{\alpha}} = \frac{\operatorname{card}(I_p)}{p^{\alpha}} = \frac{p-1}{p^{\alpha}}$$

D'après le théorème de sommation par paquets, la famille $\left(\frac{1}{(m+n)^{\alpha}}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable si et seulement si la série $\sum S_p$ converge.

Puisque $\frac{p-1}{p^{\alpha}} \sim \frac{1}{p^{\alpha-1}}$, la famille $\left(\frac{1}{(m+n)^{\alpha}}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable si et seulement si $\alpha-1>1$ i.e. $\alpha>2$ (comparaison à une série de Riemann).

Solution 50

Première méthode

D'après le théorème de sommation par paquets employé avec les partitions

$$\{(n,k)\in\mathbb{N}\times\mathbb{N}^*,\ n< k\}=\bigsqcup_{n\in\mathbb{N}}\{n\}\times[n+1,+\infty[=\bigsqcup_{k\in\mathbb{N}^*}[0,k-1]]\times\{k\}$$

On obtient

$$S = \sum_{0 \le n < k} \frac{1}{k!} = \sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k!} = \sum_{k=1}^{+\infty} \sum_{n=0}^{k-1} \frac{1}{k!} = \sum_{k=1}^{+\infty} \frac{k}{k!} = \sum_{k=0}^{+\infty} \frac{1}{k!} = e$$

Deuxième méthode

Posons $u_{n,k} = \frac{1}{k!}$ si n < k et $u_{n,k} = 0$ sinon. D'après le théorème de Fubini positif

$$\sum_{(n,k)\in\mathbb{N}^2} u_{n,k} = \sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} u_{n,k} = \sum_{k=0}^{+\infty} u_{n,k}$$

Mais sachant que $u_{n,k} = 0$ lorsque $n \ge k$ et $u_{n,k} = \frac{1}{k!}$ sinon, on obtient

$$\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k!} = \sum_{k=0}^{+\infty} \sum_{n=0}^{k-1} \frac{1}{k!}$$

d'où

$$S = \sum_{k=0}^{+\infty} \frac{k}{k!} = \sum_{k=1}^{+\infty} \frac{1}{k!} = e$$

Séries à valeurs dans un espace vectoriel normé

Solution 51

On prouve aisément par récurrence que $\|u_{n+1}-u_n\| \le k^n\|u_1-u_0\|$ et donc que $u_{n+1}-u_n=\mathcal{O}(k^n)$. Puisque $k\in[0,1[$, la série télescopique $\sum_{n\in\mathbb{N}}u_{n+1}-u_n$ converge abolument donc converge i.e. la suite u converge.

Solution 52

1. Comme les séries $\sum u_n$ et $\sum \frac{1}{2^n}$ sont absolument convergentes, leur produit de Cauchy à savoir $\sum v_n$ est convergente. De plus,

$$\sum_{n=0}^{+\infty} \upsilon_n = \left(\sum_{n=0}^{+\infty} \upsilon_n\right) \left(\sum_{n=0}^{+\infty} \frac{1}{2^n}\right) = 2\sum_{n=0}^{+\infty} u_n$$

2. Soit (e_1, \dots, e_d) une base de cet espace vectoriel E. Comme $\sum u_n$ converge absolument, on en déduit que les séries $\sum e_k^*(u_n)$ convergent également absolument $(k \in [\![1,d]\!])$. En effet, puisque toutes les normes sont équivalentes, on peut par exemple munir E de la norme définie par $\|x\| = \sum_{k=1}^d |e_k^*(x)|$ de sorte que $|e_k^*(x)| \le \|x\|$ pour $k \in [\![1,d]\!]$. En appliquant ce qui précéde aux séries absolument convergentes $\sum e_k^*(u_n)$, on en déduit que les séries $\sum e_k^*(v_n)$ converge et que $\sum_{n=0}^{+\infty} e_k^*(v_n) = 2\sum_{n=0}^{+\infty} e_k^*(u_n)$. On en déduit alors que la série $\sum v_n$ converge et que $\sum_{n=0}^{+\infty} v_n = 2\sum_{n=0}^{+\infty} u_n$.

Solution 53

Il est clair que D^k est nul pour k > n donc

$$\exp(D) = \sum_{k=0}^{n} \frac{D^{(k)}}{k!}$$

Soit $p \in [0, n]$. Alors

$$D^{(k)}(X^p) = (X^p)^{(k)} = \begin{cases} 0 & \text{si } k > p \\ \frac{p!}{(p-k)!} X^{p-k} & \text{si } k \le p \end{cases}$$

Ainsi, d'après la formule du binôme

$$\exp(D)(X^p) = \sum_{k=0}^{p} {k \choose p} X^{p-k} = (X+1)^p = T(X^p)$$

Les endomorphismes $\exp(D)$ et T coïncident sur la base canonique de $\mathbb{K}_n[X]$: ils sont donc égaux.