The Formal Semantics of Programming Languages / Chapter1-3

Wataru Yachi

JAIST

May 25, 2023

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

- $X = \{1, 2, 3\}$

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

- $X = \{1, 2, 3\}$

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

- $X = \{1, 2, 3\}$

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

- $X = \{1, 2, 3\}$

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

- $X = \{1, 2, 3\}$
- $\blacksquare \ \mathcal{P}ow(X) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Example

- $X = \{1, 2, 3\}$
- $\blacksquare \ \mathcal{P}ow(X) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

but, if X is infinite

- $X = \{1, 2, 3, 4, \cdots\}$
- $Pow(X) = \{\phi, \{1\}, \{2\}, \{3\}, \cdots \}$

dose claim still hold?

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Example

- $X = \{1, 2, 3\}$
- $\blacksquare \ \mathcal{P}ow(X) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

but, if X is infinite

- $X = \{1, 2, 3, 4, \cdots\}$
- $Pow(X) = \{\phi, \{1\}, \{2\}, \{3\}, \cdots \}$

dose claim still hold? answer is YES

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$.

Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

■ If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

- If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.
- If $y \notin Y$ then $y \in \theta(y)$, so $y \in Y$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. So $\theta(y) = Y$. Thus either $y \in Y$ or $y \notin Y$.

- If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.
- If $y \notin Y$ then $y \in \theta(y)$, so $y \in Y$.

In either case, we have contradiction.

Why it's Called "Diagonal" Arugument

consider following table where ith row and jth column is placed 1 if $x_i \in \theta(x_j)$ and 0 otherwise

	$\theta(x_0)$	$\theta(x_1)$	$\theta(x_2)$	• • •	$\theta(x_j)$	• • •
x_0	0	1	1		1	
x_1	1	1	0		0	
x_2	0	0	1		1	
÷	:	÷	÷		÷	
x_i	0	1	0	• • •	1	• • •
:	:	:	:		:	

Why it's Called "Diagonal" Arugument

consider following table where ith row and jth column is placed 1 if $x_i \in \theta(x_j)$ and 0 otherwise

	$\theta(x_0)$	$\theta(x_1)$	$\theta(x_2)$	 $\theta(x_j)$	
$\overline{x_0}$	0	1	1	 1	
x_1	1	1	0	 0	
x_2	0	0	1	 1	
:	:	:	÷	÷	
x_i	0	1	0	 1	
÷	:	÷	:	:	

in above table, we can define Y by pick up x_n which corresponding cell along diagonal is $\mathbf{0}$

Why it's Called "Diagonal" Arugument

consider following table where ith row and jth column is placed 1 if $x_i \in \theta(x_j)$ and 0 otherwise

	$\theta(x_0)$	$\theta(x_1)$	$\theta(x_2)$	 $\theta(x_j)$	
x_0	0	1	1	 1	
x_1	1	1	0	 0	
x_2	0	0	1	 1	
÷	:	:	:	:	
x_i	0	1	0	 1	
:	:	÷	÷	÷	

in above table, we can define Y by pick up x_n which corresponding cell along diagonal is $\mathbf{0}$

$$Y = \{x_0\}$$

Direct and Inverse Image of Relation

Definition (direct and inverse image)

Let be $R: X \times Y$ is a relation, A is a subset of X and B is a subset of Y, a set RA and $R^{-1}B$ are defined as follows;

- $\blacksquare RA = \{ y \in Y \mid \exists x \in A((x,y) \in R) \},\$
- $\blacksquare R^{-1}B = \{x \in X \mid \exists y \in B((x,y) \in R)\}.$

The set RA is called direct image of A under R, and the set $R^{-1}B$ is called inverse image of B under R.

- $X = \{0, 1, 2, 3, 4\}, Y = \{5, 6, 7, 8, 9\}, R = \{(0, 9), (1, 5), (2, 6), (3, 6)\}, A = \{1, 3, 4\}, B = \{5, 7, 9\}$
- $\blacksquare RA = \{5, 6\}, R^{-1}B = \{0, 1\}$

Equivalence Relation

Definition (equivalence relation and equivalence class)

An equivalence relation is a relation $R \subseteq X \times X$ on a set X which is

- \blacksquare reflexive: $\forall x \in X(xRx)$,
- \blacksquare symmetric: $\forall x,y \in X(xRy \rightarrow yRx)$ and
- transitive: $\forall x, y, z \in X((xRy \land yRz) \rightarrow xRz)$.

- \blacksquare $R = \{(x, y) \in B \times B \mid x \in A \land y \in A\}$ where $A \subseteq B$
- congruence of figures
- congruence of integers

Equivalence Class

Definition (equivalence class)

If R is an equivalence relation on a set X then (R-) equivalence class $\{x\}_R$ of an element $x \in X$ is defined as follows;

$$\{x\}_R = \{y \in X \mid yRx\}.$$

- $\blacksquare \ R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \equiv y \pmod{3}\}\$