Obtención de la Ecuación de la orbita mediante las leyes de Newton

Lucas Pérez Romero

Marzo 2025

Para obtener la ecuación que define la forma de una órbita hay que partir de la $2^{\underline{a}}$ ley de Newton y la ley de gravitación.

$$\vec{a} = -\frac{GM}{r^2}\vec{u}_r\tag{1}$$

Primero definiremos la aceleración en coordenadas polares como la segunda derivada de \vec{r} , la posición, respecto al tiempo.

$$\vec{r} = r(\cos\theta \vec{e_1} + \sin\theta \vec{e_2}) = r\vec{u}_r \tag{2}$$

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = (\ddot{r} - r\dot{\theta}^2)\vec{u}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{u}_\theta \tag{3}$$

Si igualamos esta nueva expresión de la aceleración con la ley de gravitación, veremos que la parte angular tiene que ser nula:

$$2\dot{r}\dot{\theta} + r\ddot{\theta} = 0\tag{4}$$

Hacemos el cambio de variable $\dot{\theta}=\omega$ para convertirla en una EDO de primer orden:

$$2\frac{dr}{dt}\omega + r\frac{d\omega}{dt} = 0\tag{5}$$

Resolvemos por separación de variables y deshaciéndonos de los dt. Obtendremos la siguiente ecuación:

$$2\log r = -\log \omega + C \tag{6}$$

$$\log \omega r^2 = C \tag{7}$$

Donde C es una constante y log es el logaritmo natural. Si aplicamos exponenciales encontraremos una magnitud conservada, l:

$$l = \omega r^2 \tag{8}$$

Por otra parte, la ecuación radial es una ecuación diferencial de segundo orden con dos variables complicada de resolver:

$$\ddot{r} - r\dot{\theta}^2 = -\frac{GM}{r^2} \tag{9}$$

Con tal de simplificarla realizaremos el cambio de variable $r = \frac{1}{u}$ y calcularemos las derivadas de r en base a esta función u:

$$\dot{r} = \frac{-1}{u^2} \frac{du}{dt} = -r^2 \frac{du}{dt} = -\frac{l}{\omega} \frac{du}{dt} = -l \frac{dt}{d\theta} \frac{du}{dt} = -l \frac{du}{d\theta}$$
 (10)

$$\ddot{r} = -l\frac{d^2u}{d\theta^2}\dot{\theta} = -l\omega\frac{d^2u}{d\theta^2} \tag{11}$$

Donde se ha aplicado la ley de conservación deducida al principio para sustituir r^2 y se ha aplicado la regla de la cadena para obtener la segunda derivada de u. Sustituyendo ahora en (9) obtendremos una EDO lineal de segundo orden:

$$-l\omega \frac{d^2u}{d\theta^2} - r\omega^2 = -\frac{GM}{r^2} \tag{12}$$

$$\frac{d^2u}{d\theta^2} + \frac{r\omega^2}{l\omega} = \frac{d^2u}{d\theta^2} + \frac{r\omega^2}{r^2\omega^2} = \frac{GM}{\omega r^2 l}$$
 (13)

$$\frac{d^2u}{d\theta^2} + \frac{1}{r} = \frac{GM}{l^2} \tag{14}$$

$$\frac{d^2u}{d\theta^2} + u = \frac{GM}{l^2} \tag{15}$$

La estructura de solución de esta EDO es $u=u_h+u_p$, donde u_h es la solución homogénea y u_p es la parcial. Para obtener la homogénea hay que trabajar con la EDO homogénea:

$$\frac{d^2u}{d\theta^2} + u = 0\tag{16}$$

Para resolverla se propone la solución $u_h = Ae^{\lambda\theta}$ cuya segunda derivada es $u_h'' = \lambda^2 A e^{\lambda\theta}$. Sustituyendo encontramos que lambda tiene dos soluciones:

$$\lambda^2 = -1\lambda = \pm i \tag{17}$$

Sustituyendo en la exponencial y desarrollando la solución homogénea resulta en :

$$u_h = Ae^{i\theta} + Be^{-i\theta} = (A+B)\cos\theta + (A-B)i\sin\theta = C_1\cos\theta + C_2\sin\theta$$
 (18)

Para simplificarlo en un solo coseno, diremos que $C_1 = A\cos\alpha$ y $C_2 = A\sin\alpha$ y aplicaremos la relación trigonométrica del coseno de la resta:

$$\cos(\theta - \alpha) = A(\cos\alpha\cos\theta + \sin\alpha\sin\theta) \tag{19}$$

$$u_h = A\cos\left(\theta - \alpha\right) \tag{20}$$

Ahora para resolver la EDO parcial habrá que suponer que la solución es una constante, $u_p = k$:

$$k = \frac{GM}{l^2} \tag{21}$$

Teniendo ambas soluciones, solo resta sumar ambas soluciones y obtendremos la función $u(\theta)$:

$$u(\theta) = k + A\cos(\theta - \alpha) \tag{22}$$

Deshacemos el cambio de variable $r=\frac{1}{u}$ y reordenamos un poco:

$$r(\theta) = \frac{1}{k + A\cos(\theta - \alpha)} = \frac{1}{k} \frac{1}{1 + \frac{k}{A}\cos(\theta - \alpha)}$$
 (23)

Finalmente, si sustituimos k y renombramos $\epsilon=\frac{k}{A}$ obtenemos la ecuación de las órbitas. Nótese que $\frac{l^2}{GM}=\rho$, lo que en astronomía se llama semilatus rectum.

$$r(\theta) = \frac{l^2}{GM} \frac{1}{1 + \epsilon \cos(\theta - \alpha)} = \frac{\rho}{1 + \epsilon \cos(\theta - \alpha)}$$
(24)