Introduction to SQL

- What is a Database?
- What is SQL?
- What is MySQL?
- SQL Commands

Database

What is Data?

Data is a collection of a distinct small unit of information. It can be used in a variety of forms like text, numbers, media, bytes, etc. it can be stored in pieces of paper or electronic memory, etc.

Word 'Data' is originated from the word 'datum' that means 'single piece of information.' It is plural of the word datum.

In computing, Data is information that can be translated into a form for efficient movement and processing. Data is interchangeable.

What is Database?

A **database** is an organized collection of data, so that it can be easily accessed and managed.

You can organize data into tables, rows, columns, and index it to make it easier to find relevant information.

Database handlers create a database in such a way that only one set of software program provides access of data to all the users.

The **main purpose** of the database is to operate a large amount of information by storing, retrieving, and managing data.

There are many **dynamic websites** on the World Wide Web nowadays which are handled through databases. For example, a model that checks the availability of rooms in a hotel. It is an example of a dynamic website that uses a database.

There are many **databases available** like MySQL, Sybase, Oracle, MongoDB, Informix, PostgreSQL, SQL Server, etc.

Modern databases are managed by the database management system (DBMS).

SQL or Structured Query Language is used to operate on the data stored in a database. SQL depends on relational algebra and tuple relational calculus.

A cylindrical structure is used to display the image of a database.

Evolution of Databases

The database has completed more than 50 years of journey of its evolution from flat-file system to relational and objects relational systems. It has gone through several generations.

The Evolution

File-Based

1968 was the year when File-Based database were introduced. In file-based databases, data was maintained in a flat file. Though files have many advantages, there are several limitations.

One of the major advantages is that the file system has various access methods, e.g., sequential, indexed, and random.

It requires extensive programming in a third-generation language such as COBOL, BASIC.

Hierarchical Data Model

1968-1980 was the era of the Hierarchical Database. Prominent hierarchical database model was IBM's first DBMS. It was called IMS (Information Management System).

In this model, files are related in a parent/child manner.

Below diagram represents Hierarchical Data Model. Small circle represents objects.

Like file system, this model also had some limitations like complex implementation, lack structural independence, can't easily handle a many-many relationship, etc.

Network data model

Charles Bachman developed the first DBMS at Honeywell called Integrated Data Store (IDS). It was developed in the early 1960s, but it

was standardized in 1971 by the CODASYL group (Conference on Data Systems Languages).

In this model, files are related as owners and members, like to the common network model.

Network data model identified the following components:

- Network schema (Database organization)
- Sub-schema (views of database per user)
- Data management language (procedural)

This model also had some limitations like system complexity and difficult to design and maintain.

Relational Database

1970 - Present: It is the era of Relational Database and Database Management. In 1970, the relational model was proposed by **E.F. Codd**.

Relational database model has two main terminologies called instance and schema.

The instance is a table with rows or columns

Schema specifies the structure like name of the relation, type of each column and name.

This model uses some mathematical concept like set theory and predicate logic.

The first internet database application had been created in 1995.

During the era of the relational database, many more models had introduced like object-oriented model, object-relational model, etc.

Cloud database

Cloud database facilitates you to store, manage, and retrieve their structured, unstructured data via a cloud platform. This data is accessible

over the Internet. Cloud databases are also called a database as service (DBaaS) because they are offered as a managed service.

Some best cloud options are:

- AWS (Amazon Web Services)
- Snowflake Computing
- Oracle Database Cloud Services
- Microsoft SQL server
- Google cloud spanner

Advantages of cloud database

Lower costs

Generally, company provider does not have to invest in databases. It can maintain and support one or more data centers.

Automated

Cloud databases are enriched with a variety of automated processes such as recovery, failover, and auto-scaling.

Increased accessibility

You can access your cloud-based database from any location, anytime. All you need is just an internet connection.

NoSQL Database

A **NoSQL** database is an approach to design such databases that can accommodate a wide variety of data models. NoSQL stands for "not only SQL." It is an alternative to traditional relational databases in which data is placed in tables, and data schema is perfectly designed before the database is built.

NoSQL databases are useful for a large set of distributed data.

Some examples of NoSQL database system with their category are:

- MongoDB, CouchDB, Cloudant (Document-based)
- Memcached, Redis, Coherence (key-value store)
- HBase, Big Table, Accumulo (Tabular)

Advantage of NoSQL

High Scalability

NoSQL can handle an extensive amount of data because of scalability. If the data grows, NoSQL database scale it to handle that data in an efficient manner.

High Availability

NoSQL supports auto replication. Auto replication makes it highly available because, in case of any failure, data replicates itself to the previous consistent state.

DBMS (Data Base Management System)

Database management System is software which is used to store and retrieve the database. For example, Oracle, MySQL, etc.; these are some popular DBMS tools.

- DBMS provides the interface to perform the various operations like creation, deletion, modification, etc.
- DBMS allows the user to create their databases as per their requirement.
- DBMS accepts the request from the application and provides specific data through the operating system.
- DBMS contains the group of programs which acts according to the user instruction.
- It provides security to the database.

Advantage of DBMS

Controls redundancy

It stores all the data in a single database file, so it can control data redundancy.

Data sharing

An authorized user can share the data among multiple users.

Backup

It provides Backup and recovery subsystem. This recovery system creates automatic data from system failure and restores data if required.

Multiple user interfaces

It provides a different type of user interfaces like GUI, application interfaces.

Disadvantage of DBMS

Size

It occupies large disk space and large memory to run efficiently.

Cost

DBMS requires a high-speed data processor and larger memory to run DBMS software, so it is costly.

Complexity

DBMS creates additional complexity and requirements.

RDBMS (Relational Database Management System)

The word RDBMS is termed as 'Relational Database Management System.' It is represented as a table that contains rows and column.

RDBMS is based on the Relational model; it was introduced by E. F. Codd.

A relational database contains the following components:

- Table
- Record/ Tuple
- Field/Column name /Attribute
- Instance
- Schema
- Keys

An **RDBMS** is a tabular DBMS that maintains the security, integrity, accuracy, and consistency of the data.

What is SQL?

SQL is a short-form of the structured query language, and it is pronounced as S-Q-L or sometimes as See-Quell.

This database language is mainly designed for maintaining the data in relational database management systems. It is a special tool used by data professionals for handling structured data (data which is stored in the form of tables). It is also designed for stream processing in RDSMS.

You can easily create and manipulate the database, access and modify the table rows and columns, etc. This query language became the standard of ANSI in the year of 1986 and ISO in the year of 1987.

If you want to get a job in the field of data science, then it is the most important query language to learn. Big enterprises like Facebook, Instagram, and LinkedIn, use SQL for storing the data in the back-end.

Why SQL?

Nowadays, SQL is widely used in data science and analytics. Following are the reasons which explain why it is widely used:

- The basic use of SQL for data professionals and SQL users is to insert, update, and delete the data from the relational database.
- SQL allows the data professionals and users to retrieve the data from the relational database management systems.
- It also helps them to describe the structured data.

- It allows SQL users to create, drop, and manipulate the database and its tables.
- It also helps in creating the view, stored procedure, and functions in the relational database.
- It allows you to define the data and modify that stored data in the relational database.
- It also allows SQL users to set the permissions or constraints on table columns, views, and stored procedures.

History of SQL

"A Relational Model of Data for Large Shared Data Banks" was a paper which was published by the great computer scientist "E.F. Codd" in 1970.

The IBM researchers Raymond Boyce and Donald Chamberlin originally developed the SEQUEL (Structured English Query Language) after learning from the paper given by E.F. Codd. They both developed the SQL at the San Jose Research laboratory of IBM Corporation in 1970.

At the end of the 1970s, relational software Inc. developed their own first SQL using the concepts of E.F. Codd, Raymond Boyce, and Donald Chamberlin. This SQL was totally based on RDBMS. Relational Software Inc., which is now known as Oracle Corporation, introduced the Oracle V2 in June 1979, which is the first implementation of SQL language. This Oracle V2 version operates on VAX computers.

Process of SQL

When we are executing the command of SQL on any Relational database management system, then the system automatically finds the best routine to carry out our request, and the SQL engine determines how to interpret that particular command.

Structured Query Language contains the following four components in its process:

Query Dispatcher

- Optimization Engines
- Classic Query Engine
- SQL Query Engine, etc.

A classic query engine allows data professionals and users to maintain non-SQL queries. The architecture of SQL is shown in the following diagram:

Some SQL Commands

The SQL commands help in creating and managing the database. The most common SQL commands which are highly used are mentioned below:

- 1. CREATE command
- 2. UPDATE command
- 3. DELETE command
- 4. SELECT command
- 5. DROP command
- 6. INSERT command

CREATE Command

This command helps in creating the new database, new table, table view, and other objects of the database.

UPDATE Command

This command helps in updating or changing the stored data in the database.

DELETE Command

This command helps in removing or erasing the saved records from the database tables. It erases single or multiple tuples from the tables of the database.

SELECT Command

This command helps in accessing the single or multiple rows from one or multiple tables of the database. We can also use this command with the WHERE clause.

DROP Command

This command helps in deleting the entire table, table view, and other objects from the database.

INSERT Command

This command helps in inserting the data or records into the database tables. We can easily insert the records in single as well as multiple rows of the table.

Advantages of SQL

SQL provides various advantages which make it more popular in the field of data science. It is a perfect query language which allows data professionals and users to communicate with the database. Following are the best advantages or benefits of Structured Query Language:

1. No programming needed

SQL does not require a large number of coding lines for managing the database systems. We can easily access and maintain the database by using simple SQL syntactical rules. These simple rules make the SQL user-friendly.

2. High-Speed Query Processing

A large amount of data is accessed quickly and efficiently from the database by using SQL queries. Insertion, deletion, and updation operations on data are also performed in less time.

3. Standardized Language

SQL follows the long-established standards of ISO and ANSI, which offer a uniform platform across the globe to all its users.

4. Portability

The structured query language can be easily used in desktop computers, laptops, tablets, and even smartphones. It can also be used with other applications according to the user's requirements.

5. Interactive language

We can easily learn and understand the SQL language. We can also use this language for communicating with the database because it is a simple query language. This language is also used for receiving the answers to complex queries in a few seconds.

6. More than one Data View

The SQL language also helps in making the multiple views of the database structure for the different database users.