偏微分方程数值解 + 第二次上机作业

2100012131 蒋鹏

2025年10月24日

目录

I		1
2	算法设计	1
	2.1 网格离散	
	2.2 算子离散及边界条件处理	
	2.3 数值算法	3
	数值结果	3
	3.1 数值算例	
	3.2 数值实验及结果	
	3.3 简要分析	4
4	后续改进	4

1 问题描述

在指定区域上 Ω 求解 Robin 边值问题的 Laplace 方程

$$\begin{cases}
-\Delta u = f, & x \in \Omega \\
\alpha u + \beta \frac{\partial u}{\partial \vec{n}} = g, & x \in \partial \Omega
\end{cases}$$
(1)

其中区域 Ω 如图1所示。当 $\alpha=0$ 得到 Neumann 边值问题,当 $\beta=0$ 得到 Dirichlet 边值问题,所以我们设计该方程的对应有限差分格式,同时满足三类问题的求解。

2 算法设计

2.1 网格离散

在 x 和 y 方向以相同尺度 h 进行均匀剖分。令 n=1/h,自下而上,从左至右,对 Domain 内的点及边界点进行编号, $0 \le i \le 4n$, $0 \le j \le j_num[i]$ 。所有点可分为三类:内点,边界点及临边界点,角点。

图 1: Domain

边界条件	参数取值	h	GMRES 迭代次数	$\ e_h\ _{\infty}$
Dirichlet	alpha=1,beta=0	0.125	16	3.1e-3
		0.0625	48	1.6e-3
		0.03125	172	8.0e-4
		0.015625	619	4.0e-4
		0.0078125	2367	2.0e-4
Neumann	alpha=0,beta=1	0.125	101	3.7e-2
		0.0625	502	1.9e-2
		0.03125	1169	9.7e-3
		0.015625	5983	5.0e-3
		0.0078125	31606	2.6e-3
Robin	alpha=1,beta=1	0.125	42	1.7e-2
		0.0625	104	8.1e-3
		0.03125	321	4.0e-3
		0.015625	1831	2.0e-3
		0.0078125	8553	1.0e-3

表 1: 数值结果展示

2.2 算子离散及边界条件处理

对于不同点进行不同格式离散:

对于内点,采取五点差分格式离散 Laplace 算子。

对于边界点,采取前向或者后向差商格式离散梯度,进而离散方向导数。

对于临边界点,即该点 (x,y) 非内点且不位于边界,则在边界上最近点为 (x^*,y^*) ,以点 (x,y) 的 差商近似 (x^*,y^*) 的梯度,进而离散方向导数。

对于角点,赋予 Dirichlet 边界条件,即规定角点处取值为真实解。

2.3 数值算法

此线性方程组较为复杂,我们采取 GMRES(m) 迭代法进行求解。为了保证收敛性,先进行 Gauss-Seidel 迭代约 100 步,找到较为理想的初值,随后进行 GMRES 求解。

3 数值结果

3.1 数值算例

采取给定的数值算例,真实解 $u(x,y)=\frac{\sin(\pi x)\cos(2\pi y)}{5\pi^2}$,进而源项 $f(x,y)=\sin(\pi x)\cos(2\pi y)$ 。

3.2 数值实验及结果

对 Dirichlet、Neumann、Robin 三类边界条件均进行数值实验,所得结果位于文档 ouput.txt,列表如1所示。

3.3 简要分析

- 求解耗时、迭代次数: Dirichlet < Robin < Neumann. 原因是不同边值条件导致离散矩阵的条件数差异较大。
- 从表中可以清晰看出误差的下降趋势,且该数值格式具有一阶精度,即

$$||e_h||_{\infty} = \mathcal{O}(h) \tag{2}$$

• 修改单次迭代上限 m,可以减少 GMRES 迭代次数,但单次迭代耗时增加,总 CPU 时间应 当基本不变。

4 后续改进

为了加速求解速率,改进版将增加不完全 LU 分解 ILU 做预条件子,实现 ILU-GMRES(m) 求解器。