This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES.
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

OLESO WHY E JEDY & SHALL

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07D 471/16, A61K 31/395, A61P 43/00,
C07D 498/16, 513/16 // (C07D 471/16,
223:00, 221:00, 209:00) (C07D 471/16,
223:00, 209:00, 209:00) (C07D 498/16,
265:00, 223:00, 209:00) (C07D 513/16,
279:00, 223:00, 209:00)

(11) International Publication Number:

WO 00/64899

(43) International Publication Date:

2 November 2000 (02.11.00)

(21) International Application Number:

PCT/US00/10600

A1

(22) International Filing Date:

20 April 2000 (20.04.00)

(30) Priority Data:

60/130,811

23 April 1999 (23.04.99)

US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

US Filed on 60/130,811 (CIP) 23 April 1999 (23.04.99)

(71) Applicant (for all designated States except US): PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US). (71)(72) Applicants and Inventors: HESTER, Jackson, B., Jr. [US/US]; 9219 East ML Avenue, Galesburg, MI 49053 (US). ROGERS, Bruce, N. [US/US]; 5860 Tradewind Drive, Portage, MI 49024 (US). JACOBSEN, E., Jon [US/US]; 74 South Lake Doster Drive, Plainwell, MI 49080 (US). ENNIS, Michael, Dalton [US/US]; 2416 Deep Forest Court, Portage, MI 49002 (US). ACKER, Brad, A. [US/US]; 1734 Tanager Lane, Kalamazoo, MI 49009 (US). VANDER VELDE, Susan, L. [US/US]; 6125 Fairgrove, Kalamazoo, MI 49009 (US).

(74) Agent: VIKSNINS, Ann, S.; Schwegman, Lundberg, Woessner & Kluth, P.O. Box 2938, Minneapolis, MN 55402 (US).

(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TETRACYCLIC AZEPINOINDOLE COMPOUNDS AS 5-HT RECEPTOR LIGANDS

(57) Abstract

The present invention provides compounds of formula (I), wherein R_2 is hydrogen, $C_{1-7}alkyl,\,C_{1-7}alkanoyl,\,$ arylcarbonyl, aryl, (aryl)C_{1-7}alkyl,\,C_{1-7}alkoxycarbonyl,\, arylcaycarbonyl, arylsulfonyl, or (aryl)C_{1-7}alkoxycarbonyl; X and Y together are 2, 3 or 4 membered saturated or partially unsaturated chain. These compounds are 5-HT ligands, and are useful for treating diseases wherein modulation of 5-HT activity is desired.

$$(R_i)_n = \bigvee_{X = Y}^{N} R_i$$

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia ·	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TETRACYCLIC AZEPINOINDOLE COMPOUNDS AS 5-HT RECEPTOR LIGANDS

5

10

25

30

PRIORITY OF INVENTION

This application claims priority from United States Provisional Application Number 60/130,881, filed 23 April 1999.

FIELD OF THE INVENTION

The present invention provides tetracyclic 1,2,3,4,5,6-hexahydroazepino-[4,5-b]indole derivatives having a ring connecting position 6 (N-6) and position 7 (C-7), and more specifically, provides compounds of formula (I) described hereinbelow. These compounds are 5-HT ligands, and are useful for treating diseases wherein modulation of 5-HT activity is desired.

BACKGROUND OF THE INVENTION

Serotonin has been implicated in a number of diseases and conditions which originate in the central nervous system. These include diseases and conditions related to sleeping, eating, perceiving pain, controlling body temperature, controlling blood pressure, depression, anxiety, schizophrenia, and other bodily states. R. W. Fuller, Biology of Serotonergic Transmission, 221 (1982); D. J. Boullin, Serotonin in Mental Abnormalities 1:316 (1978); J. Barchas, et al., Serotonin and Behavior, (1973). Serotonin also plays an important role in peripheral systems, such as the gastrointestinal system, where it has been found to mediate a variety of contractile, secretory, and electrophysiologic effects.

As a result of the broad distribution of serotonin within the body, there is a tremendous interest in drugs that affect serotonergic systems. In particular, receptor-specific agonists and antagonists are of interest for the treatment of a wide range of disorders, including anxiety, depression, hypertension, migraine, obesity, compulsive disorders, schizophrenia, autism, neurodegenerative disorders (e.g. Alzheimer's disease, Parkinsonism, and

Huntington's chorea), and chemotherapy-induced vomiting. M. D. Gershon, et al., The Peripheral Actions of 5-Hydroxytryptamine, 246 (1989); P. R. Saxena, et al., Journal of Cardiovascular Pharmacology, 15:Supplement 7 (1990).

The major classes of serotonin receptors (5-HT_{1.7}) contain

fourteen to eighteen separate receptors that have been formally classified. See
Glennon, et al., Neuroscience and Behavioral Reviews, 1990, 14, 35; and D.

Hoyer, et al. Pharmacol. Rev. 1994, 46, 157-203. Recently discovered information regarding subtype identity, distribution, structure, and function suggests that it is possible to identify novel, subtype specific agents, having improved therapeutic profiles (e.g. fewer side effects).

For example, the 5-HT₂ family of receptors is comprised of 5-HT_{2A}, 5-HT_{2B}, and 5-HT_{2C} subtypes, which have been grouped together on the basis of primary structure, secondary messenger system, and operational profile. All three subtypes are G-protein coupled, activate phospholipase C as a principal transduction mechanism, and contain a seven-transmembrane domain structure. There are distinct differences in the distribution of the three 5-HT₂ subtypes. The 5-HT_{2B} and 5-HT_{2A} receptors are widely distributed in the periphery, while the 5-HT_{2C} receptor has been found only in the central nervous system, being highly expressed in many regions of the human brain. See G. Baxter, et al. *Trends in Pharmacol. Sci.* 1995, 16, 105-110.

15

20

25

Subtype 5-HT_{2A} has been associated with effects including vasoconstriction, platelet aggregation, and bronchoconstriction, while subtype 5-HT_{2C} has been associated with diseases that include depression, anxiety, obsessive compulsive disorder, panic disorders, phobias, psychiatric syndromes, and obesity. Very little is known about the pharmacologic role of the 5-HT_{2B} receptor. See F. Jenck, et al., *Exp. Opin. Invest. Drugs*, 1998, 7, 1587-1599; M. Bos, et al., *J. Med. Chem.*, 1997, 40, 2762-2769; J.R. Martin, et al., *The Journal of Pharmacology and Experimental Therapeutics*, 1998, 286, 913-924; S.M. Bromidge, et al., *J. Med. Chem.*, 1998, 41, 1598-1612; G.A. Kennett, *Drugs*,

1998, 1, 4, 456-470; and A. Dekeyne, et al., Neuropharmacology, 1999, 38, 415-423.

United States Patent Number 3,676,558, issued July 11, 1972, discloses compositions comprising specific 6-alkyl-1,2,3,4,5,6-

be useful to suppress hunger in mammals. This patent also discloses a method for inducing anorexia in obese subjects to produce weight loss. The azepino[4,5-b]indole compounds disclosed in this patent lack the ring connecting the 6-position and the 7-position that is present in the compounds of the instant invention.

United States Patent Number 3,839,357, issued October 1, 1974, discloses specific 1,2,3,4,5,6-hexahydroazepino[4,5-b]indole compounds, which are reported to have sedative or tranquilizing action. The azepino[4,5-b]indole compounds disclosed in this patent also lack the ring connecting the 6-position and the 7-position that is present in the compounds of the instant invention.

There is currently a need for pharmaceutical agents that are useful to treat diseases and conditions that are associated with 5-HT receptors.

SUMMARY OF THE INVENTION

In accordance with the present invention, novel compounds which
demonstrate useful biological activity, and particularly activity as 5-HT receptor
ligands, are provided. Thus, the present invention provides a compound of
formula I:

$$(R_i)_n = \bigvee_{X = Y}^{N_i} \stackrel{R_2}{\bigvee}$$

(I)

wherein,

15

4

each R_1 is independently hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, aryl, heteroaryl, $-S(O)_mNR_aR_b$, NR_cR_d , $-S(O)_mR_e$, or $-C(=O)NR_aR_b$, wherein any $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, or $C_{1.7}$ alkanoyloxy of R_1 is optionally partially unsaturated and is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, $-S(O)_mR_e$, $-S(O)_mNR_aR_b$, NR_cR_d , or $-C(=O)NR_aR_b$;

R₂ is hydrogen, C₁₋₇alkyl, C₁₋₇alkanoyl, arylcarbonyl, aryl,

(aryl)C₁₋₇alkyl, C₁₋₇alkoxycarbonyl, aryloxycarbonyl, arylsulfonyl, or (aryl)C₁₋₇alkoxycarbonyl;

unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_qR_r, -S(O)_pR_s, or -OR_v or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁. ₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl; or wherein the chain is optionally substituted on a carbon with a 4, 5, or 6 membered spirocyclic carbon ring; or wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain (e.g. -CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂CH₂-) forming a ring that is fused to the ring comprising X and Y;

each m is independently 0, 1, or 2;

n is 0, 1, 2, or 3;

p is 0, 1, or 2;

15

20

25

30

each R_a and R_b is independently hydrogen, $C_{1.7}$ alkyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, or (heteroaryl) $C_{1.7}$ alkyl; or R_a and R_b together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

each R_c and R_d is independently hydrogen, $C_{1.7}$ alkyl, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, (heteroaryl) $C_{1.7}$ alkyl, arylcarbonyl, heteroarylcarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl; or R_c and R_d together with the nitrogen to which they are attached form a

5 pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

each R_e is independently hydrogen, C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} alkyl;

 R_f is hydrogen, C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, (heteroaryl) C_{1-7} alkyl, or is a bond to a 2, 3, or 4 membered alkylene chain that forms a ring that is fused to the ring comprising X and Y;

each R_q and R_r is independently hydrogen, C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} alkyl; or R_q and R_r together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

15 R, is C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} alkyl; and

 R_t is hydrogen, C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} alkyl;

wherein any aryl or heteroaryl ring of R₁, R₂, X, Y, R₄-R₆ or R₄-R₅
is optionally substituted with one or more (e.g. 1, 2, 3, or 4) substituents
independently selected from halo, hydroxy, cyano, nitro, trifluoromethyl,
trifluoromethoxy, C₁₋₇alkyl, C₁₋₇alkoxy, phenyl, sulfonyl, NR_jR_k, or C(=O)NR_jR_k; wherein each R_j and R_k is independently hydrogen, C₁₋₇alkyl,
C₁₋₇alkanoyl, C₁₋₇alkoxycarbonyl, aryl, (aryl)C₁₋₇alkyl, arylcarbonyl, or
aryloxycarbonyl; or R_j and R_k together with the nitrogen to which they are
attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

or a pharmaceutically acceptable salt thereof;
provided Y is not oxy, thio, sulfinyl, or NR_f; and
provided X and Y together are not a 2-membered unsaturated

30 chain; and

6

provided no carbon of X and Y is bonded to more than one oxy, thio, sulfinyl, or $NR_{\rm c}$

In another aspect, the present invention also provides:

a pharmaceutical composition comprising a compound of formula

I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient (the composition preferably comprises a therapeutically effective amount of the compound or salt),

a method for treating a disease or condition in a mammal (e.g. a human) wherein a 5-HT receptor is implicated and modulation of a 5-HT function is desired comprising administering a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof to the mammal.

a method for treating or preventing a disease or disorder of the central nervous system in a mammal comprising administering a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof to the mammal,

a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in medical diagnosis or therapy (e.g. the treatment or prevention of 5-HT related disease such as anxiety, obesity, depression, or a stress related disease),

the use of a compound of formula I, or a pharmaceutically acceptable salt thereof to prepare a medicament useful for treating or preventing a disease or disorder of the central nervous system in a mammal, and

a method for modulating 5-HT receptor function, comprising administering an effective modulatory amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.

The invention also provides novel intermediates and processes disclosed herein that are useful for preparing compounds of formula I.

15

20

25

7

DESCRIPTION OF THE FIGURES

Figures 1-6 illustrate synthetic processes and intermediates useful for preparing compounds of the invention.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

The compounds of the invention are useful for treating or preventing diseases or disorders of the central nervous system. Specific diseases or disorders of the central nervous system for which a compound of formula I may have activity include, but are not limited to: obesity, depression, schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, a stress related disease (e.g. general anxiety disorder), panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress syndrome, immune system depression, a stress induced problem with the urinary, gastrointestinal or cardiovascular system (e.g., stress incontinence), neurodegenerative disorders, autism, chemotherapy-induced vomiting, hypertension, migraine, headaches, cluster headaches, sexual dysfunction in a mammal (e.g. a human), addictive disorder and withdrawal syndrome, an adjustment disorder, an age-associated learning and mental disorder, anorexia nervosa, apathy, an attention-deficit disorder due to general medical conditions, attention-deficit hyperactivity disorder, behavioral disturbance (including agitation in conditions associated with diminished cognition (e.g., dementia, mental retardation or delirium)), bipolar disorder, bulimia nervosa, chronic fatigue syndrome, conduct disorder, cyclothymic disorder, dysthymic disorder, fibromyalgia and other somatoform disorders, generalized anxiety disorder, an inhalation disorder, an intoxication disorder, movement disorder (e.g., Huntington's disease or Tardive Dyskinesia), oppositional defiant disorder, peripheral neuropathy, post-traumatic stress disorder, premenstrual dysphoric disorder, a psychotic disorder (brief and long duration disorders, psychotic disorder due to medical condition, psychotic disorder NOS), mood disorder (major depressive or bipolar disorder with psychotic features) seasonal affective disorder, a sleep disorder, a specific

10

15

20

25

development disorder, agitation disorder, selective serotonin reuptake inhibition (SSRI) "poop out" syndrome or a Tic disorder (e.g., Tourette's syndrome).

The following definitions are used, unless otherwise described: halo is fluoro, chloro, bromo, or iodo. Alkyl, alkoxy, etc. denote both straight and branched groups; but reference to an individual radical such as "propyl" embraces only the straight chain radical, a branched chain isomer such as "isopropyl" being specifically referred to. When alkyl can be partially unsaturated, the alkyl chain may comprise one or more (e.g. 1, 2, 3, or 4) double or triple bonds in the chain.

Aryl denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic. Heteroaryl denotes a radical of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and 1, 2, 3, or 4 heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(X) wherein X is absent or is H, O, C₁₋₄alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.

It will be appreciated by those skilled in the art that compounds of the invention having a chiral center may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymorphic, tautomeric, or stereoisomeric form, or mixture thereof, of a compound of the invention, which possesses the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase) and how to determine 5-HT activity using the standard tests which are well known in the art.

The carbon atom content of various hydrocarbon-containing moieties is indicated by a prefix designating the minimum and maximum number of carbon atoms in the moiety, i.e., the prefix C _{i-j} indicates a moiety of the integer "i" to the integer "j" carbon atoms, inclusive. Thus, for example, C₁, ralkyl refers to alkyl of one to seven carbon atoms, inclusive.

5

10

15

20

25

30

The compounds of the present invention are generally named according to the IUPAC or CAS nomenclature system. Abbreviations which are well known to one of ordinary skill in the art may be used (e.g. "Ph" for phenyl, "Me" for methyl, "Et" for ethyl, "h" for hour or hours and "rt" for room temperature).

Specific and preferred values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents

Specifically, C_{1.7}alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, or heptyl; C_{1.7}alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, hexyloxy, 1-methylhexyloxy, or heptyloxy; C_{1.7}alkanoyl can be acetyl, propanoyl, butanoyl, pentanoyl, 4-methylpentanoyl, hexanoyl, or heptanoyl; C_{1.7}alkoxycarbonyl can be methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, hexyloxycarbonyl, or heptyloxycarbonyl; C_{1.7}alkanoyloxy can be acetoxy, propanoyloxy, butanoyloxy, isobutanoyloxy, pentanoyloxy, hexanoyloxy, or heptanoyloxy; aryl can be phenyl, indenyl, or naphthyl; and heteroaryl can be furyl, imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyrazolyl, pyrrolyl, pyrazinyl, tetrazolyl, pyridyl, (or its N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, isoquinolyl (or its N-oxide) or quinolyl (or its N-oxide).

A specific value for R₁ is hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, C₁₋₇alkyl, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇

20

₇alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, aryl, heteroaryl, $-S(O)_mNR_aR_b$, NR_cR_d , $-S(O)_mR_e$, or $-C(=O)NR_aR_b$, wherein any $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkoxy, $C_{1.7}$ alkoxycarbonyl, or $C_{1.7}$ alkanoyloxy of R_1 is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, $C_{1.7}$ alkoxy,

5 C_{1.7}alkanoyl, C_{1.7}alkoxycarbonyl, C_{1.7}alkanoyloxy, -S(O)_mR_e, -S(O)_mNR_aR_b,
NR_eR_d, or -C(=O)NR_aR_b.

A specific value for R₁ is hydroxy, nitro, halo, cyano,
trifluoromethyl, trifluoromethoxy, C₁₋₇alkyl, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇
alkoxycarbonyl, C₁₋₇alkanoyloxy, aryl, heteroaryl, -S(O)_mNR₄R₅, NR₆R₆,

-S(O)_mR₆, or -C(=O)NR₄R₅, wherein any C₁₋₇alkyl or C₁₋₇alkoxy of R₁ is
optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy,
nitro, halo, cyano, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇alkoxycarbonyl, C₁₋₇alkanoyloxy,
-S(O)_mR₆, -S(O)_mNR₄R₅, NR₆R₆, or -C(=O)NR₄R₅.

A specific value for R_1 is hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, aryl, heteroaryl, $-S(O)_mNR_aR_b$, NR_cR_d , $-S(O)_mR_e$, or $-C(=O)NR_aR_b$, wherein any $C_{1.7}$ alkyl is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, $-S(O)_mR_e$, $-S(O)_mNR_aR_b$, NR_cR_d , or $-C(=O)NR_aR_b$.

A specific value for R_1 is hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, C_{1-7} alkyl, C_{1-7} alkoxy, C_{1-7} alkoxy, C_{1-7} alkoxycarbonyl, C_{1-7} alkoxycarbonyl, C_{1-7} alkanoyloxy, aryl, heteroaryl, $-S(O)_mNR_aR_b$, NR_aR_d , $-S(O)_mR_e$, or $-C(=O)NR_aR_b$.

25 A specific value for R_1 is independently $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, trifluoromethyl, or halo.

A specific value for R₂ is hydrogen.

A specific value for R₂ is C₁₋₄alkyl, C₁₋₄alkanoyl, arylcarbonyl, (aryl)C₁₋₂alkyl, C₁₋₄alkoxycarbonyl, aryloxycarbonyl, arylsulfonyl, or

(aryl)methoxycarbonyl, wherein any aryl is optionally substituted with 1, 2, or 3 substituents independently selected from $C_{1,4}$ alkyl and trifluoromethyl.

A specific value for R₂ is methyl, ethyl, propyl, isopropyl, acetyl, tert-butoxycarbonyl, benzyloxycarbonyl, benzyl, or p-toluenesulfonyl.

A specific value for n is 1, 2, or 3.

A specific value for n is 0.

5

10

15

20

25

30

A specific group of compounds are compounds of formula (I) wherein n is 0. It will be clear to one skilled in the art that when n is 0, the benz ring of the indole in formula (I) is substituted with hydrogens.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_qR_r, -S(O)_pR_s, or -OR_v or with one or two substituents independently selected from the group consisting of $C_{1.7}$ alkyl, ($C_{1.7}$ alkoxy) $C_{1.7}$ alkyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, (heteroaryl) $C_{1.7}$ alkyl, and (aryl)oxy $C_{1.7}$ alkyl.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_aR_r, -S(O)_aR_s, or -OR_t.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl ($S(O)_2$ -), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with one or two substituents independently selected from the group consisting of C_{1-7} alkyl,

10

15

20

25

30

 $(C_{1-7}alkoxy)C_{1-7}alkyl$, aryl, (aryl) $C_{1-7}alkyl$, heteroaryl, (heteroaryl) $C_{1-7}alkyl$, and (aryl) $oxyC_{1-7}alkyl$.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), hydroxy, or C₁₋₇alkoxy, or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl and (aryl)oxyC₁₋₇alkyl; and wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain forming a ring that is fused to the ring comprising X and Y.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_t in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), hydroxy, (aryl)oxy, heteroaryl(oxy), or C₁₋₇alkoxy, or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl; and wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain forming a ring that is fused to the ring comprising X and Y.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered carbon chain wherein the chain is optionally substituted on each carbon with oxo (=0), hydroxy, or $C_{1.7}$ alkoxy, or with one or two substituents independently selected from the group consisting of $C_{1.7}$ alkyl, $(C_{1.7}$ alkoxy) $C_{1.7}$ alkyl, aryl, $(aryl)C_{1.7}$ alkyl, heteroaryl, $(beteroaryl)C_{1.7}$ alkyl and $(aryl)oxyC_{1.7}$ alkyl.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2, 3, or 4 membered carbon chain wherein the

10

15

20

chain is optionally substituted on each carbon with oxo (=O), hydroxy, (aryl)oxy, heteroaryl(oxy) or C_{1-7} alkoxy, or with one or two substituents independently selected from the group consisting of C_{1-7} alkyl, $(C_{1-7}$ alkoxy) C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, (heteroaryl) C_{1-7} alkyl, and (aryl)oxy C_{1-7} alkyl.

A specific group of compounds are compounds of formula I wherein X and Y together are a 2 or 3 membered carbon chain optionally substituted on each carbon with oxo or hydroxy, or with one or two C_{1-7} alkyl.

A specific group of compounds are compounds of formula I wherein X is -O-, -S-, or -C(R_g)(R_h)-, wherein R_g and R_h are each independently hydrogen, $C_{1.7}$ alkyl, ($C_{1.7}$ alkoxy) $C_{1.7}$ alkyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, (heteroaryl) $C_{1.7}$ alkyl or (aryl)oxy $C_{1.7}$ alkyl, or R_g and R_h together are oxo.

A specific group of compounds are compounds of formula I wherein Y is $-C(R_g)(R_h)$ -, $-C(R_g)(R_h)C(R_g)(R_h)$ -, $-C(R_g)(R_h)C(R_g)(R_h)C(R_g)(R_h)$ -, $-C(R_g)(R_h)C(R_g)(R_h)C(R_g)(R_h)C(R_g)(R_h)$ -, or $-C(=O)C(R_g)(R_h)C(R_g)(R_h)$ -, and each R_g and R_h is independently hydrogen or $C_{1,7}$ alkyl.

A specific group of compounds are compounds wherein X is -O-, -S-, or -C(R_g)(R_h)-; and Y is -C(R_g)(R_h)C(=O)-, or -C(R_g)(R_h)C(R_g)(R_h)-, wherein each R_g and R_h is independently hydrogen or C_{1-7} alkyl.

A specific group of compounds are compounds wherein X is -O-or -S-; and Y is -C(R_g)(R_h)C(=O)-, -C(=O)C(R_g)(R_h)-, or -C(R_g)(R_h)-C(R_g)(R_h)-, wherein each R_g and R_h is independently hydrogen or $C_{1.7}$ alkyl.

A specific group of compounds are compounds wherein X and Y together are -CH(R_z)-CH(R_z)-, -CH(R_z)CH(R_z)-, -

- 25 $-CH(R_y)CH(R_y)CH(R_y)CH(R_y)$ -, $-C(R_y)=C(R_y)CH(R_y)$ -,
 - $-C(R_p)=C(R_p)CH(R_p)CH(R_p)-, -CH(R_p)C(R_p)=C(R_p)CH(R_p)-,$
 - $\hbox{-O-CH}(R_y)\hbox{CH}(R_y)\hbox{-, -O-CH}(R_y)\hbox{CH}(R_y)\hbox{CH}(R_y)\hbox{-, -S-CH}(R_y)\hbox{CH}(R_y)\hbox{-,}$
 - -S-CH(R_p)CH(R_p)CH(R_p)-, -S(O)-CH(R_p)CH(R_p)-,
 - $-S(O)-CH(R_y)CH(R_y)CH(R_y)-, -S(O)_2-CH(R_y)CH(R_y)-,\\$
- 30 -S(O), $-CH(R_{\bullet})CH(R_{\bullet})CH(R_{\bullet})$, $-NR_{\bullet}CH(R_{\bullet})CH(R_{\bullet})$,

25

-NR_f-CH(R_g)CH(R_g)CH(R_g)-, -CH(R_g)C(=O)-, -CH(R_g)CH(R_g)C(=O)-, -CH(R_g)CH(R_g)CH(R_g)C(=O)-, -CH(R_g)OC(=O)-, -CH(R_g)CH(R_g)OC(=O)-, -CH(R_g)CH(R_g)OC(=O)-, or -OCH(R_g)CH(R_g)C(=O)-; wherein each R_g is independently hydrogen, C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl or (aryl)oxyC₁₋₇alkyl.

A specific group of compounds are compounds wherein X and Y together are -CH(R_g)CH₂-, -CH(R_g)CH(R_g)CH₂-, -CH(R_g)CH(R_g)CH(R_g)CH₂-, -CH=CHCH₂-, -CH=CHCH(R_g)CH₂-, -CH(R_g)CH=CHCH₂-, -O-CH₂CH₂-, -S-CH₂CH₂-, -S-CH₂CH(R_g)CH₂-, -S(O)-CH₂CH₂-, -S(O)-CH₂CH₂-, -S(O)-CH₂CH(R_g)CH₂-, -S(O)₂-CH₂CH(R_g)CH₂-, -S(O)₂-CH₂CH(R_g)CH₂-, -S(O)₂-CH₂CH(R_g)CH₂-, -CH(R_g)CH₂-, -CH(R_g)CH₂-, -CH(R_g)CH₂-, -CH(R_g)CH₂C(=O)-, -CH(R_g)CH₂C(=O)-, -CH(R_g)CH₂C(=O)-, -CH(R_g)CH₂C(=O)-, -CH(R_g)CH₂C(=O)-, -CH₂C(=O)-, -CH(R_g)CH₂C(=O)-, -C

A specific group of compounds are compounds wherein X and Y together are $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, $-C(R_g)=C(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, -S(O)- $-CH(R_g)CH(R_g)$ -, -S(O)- $-CH(R_g)CH(R_g)$ -, -S(O)- $-CH(R_g)CH(R_g)$ -, -S(O)-, $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, $-CH(R_g)C(=O)$ -, wherein each R_g is independently hydrogen or C_{1-7} alkyl.

A specific group of compounds are compounds wherein X and Y together are $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, $-C(R_g)CH(R_g)$ -, or $-CH(R_g)CH(R_g)$ -, or $-CH(R_g)CH(R_g)$ -; wherein each R_g is independently hydrogen, C_{1-7} alkyl, or together with an R_g on an adjacent carbon atom forms a fused 4, 5, or 6, membered carbocyclic ring.

A specific group of compounds are compounds wherein X and Y together are $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)$ -, $-O-CH(R_g)CH(R_g)$ -, $-O-CH(R_g)CH(R_g)$ -, $-S-CH(R_g)CH(R_g)$ -; wherein each R_g is independently hydrogen, C_{1-7} alkyl, aryl, or (aryl) C_{1-7} alkyl.

A specific group of compounds are compounds wherein X and Y together are -CH2CH2CH2-, -CH2CH2C(CH3)H-, -CH2C(CH3)HCH2-, -C(CH₃)HCH₂CH₂-, -CH₂CH₂-, -CH₂C(CH₃)H-, -C(CH₃)HC(CH₃)H-, --CH(R₂)CH(R₂)-, -O-CH₂CH₂-, -O-C(CH₃)HCH₂-, or -S-CH₂CH₂-.

A specific group of compounds are compounds wherein X and Y together are -CH2CH2-, -CH2CH2CH2-, -CH=CHCH2-, -O-CH2CH2-, -S-CH₂CH₂-, -S(O)-CH₂CH₂-, -S(O)₂-CH₂CH₂-, -NR₄-CH₂CH₂-, -CH₂C(=O)-, -CH,CH,C(=O)-, -CH₂OC(=O)-, or -OCH₂C(=O)-.

5

25

30

A specific group of compounds are compounds of formula (I) wherein X and Y together are -CH(R₂)CH₂-, -CH(R₂)CH(R₂)CH₂-, or 10 -O-CH₂CH₂-, wherein each R_x is independently -NR₂R₂, -S(O)₂R₂, -OR₂, C₁₋₇alkyl, (C_{1.7}alkoxy)C_{1.7}alkyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl, (heteroaryl)C_{1.7}alkyl, or (aryl)oxyC₁₋₇alkyl.

A specific group of compounds are compounds of formula (I) wherein X and Y together are -C(=O)CH₂-, -CH₂C(=O)-, -C(=S)CH₂-, 15 $- \mathrm{CH_2C}(=S)-, \ -\mathrm{C}(=O)\mathrm{CH_2CH_2-}, \ -\mathrm{CH_2C}(=O)\mathrm{CH_2-}, \ -\mathrm{CH_2CH_2C}(=O)-, \\$ $-C(=S)CH_2CH_2$ -, $-CH_2C(=S)CH_2$ -, or $-CH_2CH_2C(=S)$ -.

A specific group of compounds are compounds wherein n is 1 and R_1 is C_{1-7} alkyl, C_{1-7} alkoxy, or halo.

A specific group of compounds are compounds wherein n is 1 and 20 R_1 is methyl, methoxy, chloro, or fluoro.

A specific group of compounds are compounds wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=0), hydroxy, or C_{1.7}alkoxy, or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl; or wherein the chain is optionally substituted on a carbon with a 4, 5, or 6 membered spirocyclic carbon

20

25

30

ring; or wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain (e.g. -CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂CH₂-) forming a ring that is fused to the ring comprising X and Y;

When X and Y together, or R₁, is a "partially unsaturated" group,

such group may comprise one or more (e.g. 1 or 2) carbon-carbon double or
triple bonds. For example, when R₁ is a partially unsaturated C_{1.7}alkyl, it can be
vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3butadienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2hexenyl, 3-hexenyl, 4-hexenyl, 2,4-hexadienyl, 5-hexenyl, ethynyl, 1-propynyl,

2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl,

4-pentynyl, 5-hexene-1-ynyl, 2-hexynyl, 3-hexynyl, 3-hexen-5-ynyl, 4-hexynyl,

or 5-hexynyl.

Specifically, the invention also provides a method for treating or preventing anxiety, obesity, depression, schizophrenia, a stress related disease (e.g. general anxiety disorder), panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress syndrome, immune system depression, a stress induced problem with the gastrointestinal or cardiovascular system, or sexual dysfunction in a mammal (e.g. a human) comprising administering a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof to the mammal.

Specifically, the invention also provides a method of treating or preventing anxiety, obesity, depression, or a stress related disease, comprising administering to a mammal (e.g. a human) in need of such treatment, a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

Specifically, the invention also provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof to prepare a medicament for treating or preventing anxiety, obesity, depression, schizophrenia, a stress related disease (e.g. general anxiety disorder), panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress

syndrome, immune system depression, a stress induced problem with the gastrointestinal or cardiovascular system, or sexual dysfunction in a mammal (e.g. a human),.

Specifically, the invention also provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof to prepare a medicament for treating or preventing anxiety, obesity, depression, or a stress related disease in a mammal (e.g. a human).

5

20

25

30

The invention also provides processes and intermediates useful for preparing compounds of formula (I). For example, an intermediate useful for preparing a compound of formula (I) wherein R₂ is hydrogen, is a corresponding compound of formula (I) wherein R₂ is a suitable protecting group. Thus the invention provides a compound of formula (I) wherein R₂ is a suitable protecting group, and wherein R₁, X, Y, and n have any of the values, specific values or prefered values defined herein. Suitable amine protecting groups, as well as methods for their preparation and removal are well known in the art, for example, see Greene, T.W.; Wutz, P.G.M. "Protecting Groups In Organic Synthesis" third edition, 1999, New York, John Wiley & sons, Inc. Prefered protecting groups include benzyloxycarbonyl (CBZ) and benzoyl.

The invention also provides intermediate compounds of formula 3, 9, 10, 11, 13, 15, and 17-20 as shown in Figures 1-6, wherein R_2 is a protecting group.

The invention also provides intermediate salts that are useful for preparing or purifying compounds of formula (I). Suitable methods for preparing salts are known in the art and are disclosed herein. For example, the preparation of an oxylate salt is shown in Example 41. As will be apparent to one skilled in the art, such salts can be converted to the corresponding free-base or to another salt using known methods.

For example, compounds of formula I wherein R_2 is $C_{1,4}$ alkyl, $C_{1,4}$ alkanoyl, arylcarbonyl, (aryl) $C_{1,2}$ alkyl, $C_{1,4}$ alkoxycarbonyl, aryloxycarbonyl, arylsulfonyl, or (aryl)methoxycarbonyl, wherein any aryl is optionally substituted

10

15

20

25

30

with 1, 2, or 3 substituents independently selected from C_{1-1} alkyl and trifluoromethyl, are particularly useful as intermediates for preparing corresponding compounds of formula I wherein R_2 is hydrogen. Preferred compounds of formula I that are useful for preparing compounds of formula I wherein R_2 is hydrogen are compounds wherein R_2 is methyl, ethyl, propyl, isopropyl, acetyl, *tert*-butoxycarbonyl, benzyloxycarbonyl, benzyl, or *p*-toluenesulfonyl.

The invention also provides a method for preparing a compound of formula (I) wherein R_2 is hydrogen comprising deprotecting a corresponding compound of formula (I) wherein R_2 is a suitable nitrogen protecting group.

Compounds of the invention can generally be prepared using the synthetic schemes illustrated in Figures 1-6. Starting materials can be prepared by procedures described in these schemes or by procedures that would be well known to one of ordinary skill in organic chemistry. The variables used in the Schemes are as defined below or as in the claims.

Compounds of formula I can be prepared by reactions outlined in Figure 1. Step 1 involves formation of intermediate N-nitroso compounds by treatment with isoamylnitrite or other standard acid catalyzed N-nitrosation conditions. The resulting N-nitroso compounds are directly reduced to their corresponding hydrazines (2) by treatment with lithium aluminum hydride in a suitable solvent such as tetrahydrofuran. In step 2, hydrazines (2) are condensed by acid catalysis with 1-benzoylhexahydroazepine, which is available by the process described in *J. Org. Chem.*, Vol. 33, pp 3187-95 (1968), or with benzyl 4-oxo-1-azepanecarboxylate, the synthesis of which is described in the experimental section. Fischer/Indole cyclization of the crude hydrazines provides the desired azepinoindoles (3). The Fischer/Indole cyclization can be effected with a variety of acids such as formic acid, acetic acid, trifluoroacetic acid, aqueous hydrochloric acid, aqueous sulfuric acid, or polyphosphoric acid. Step 3 is effected by either catalytic hydrogenolysis when R₂ is benzyl or benzyloxycarbonyl, or by base catalyzed hydrolysis in a suitable solvent such as

19

ethylene glycol when R_2 is benzoyl. Azepinoindoles 4 (wherein when R_2 is hydrogen) can conveniently be isolated as their hydrochloride salts.

It will be apparent to those skilled in the art that many of the requisite amines (1) are commercially available or known in the literature. The necessary 3,4-dihydro-1(2H)-quinolinylamines required for Examples 1-13 are known compounds. Indolines required for the synthesis of Examples 14-18 are either commercially available or readily prepared from known indoles following the procedure described in *Synthesis* pp. 859-60 (1977). For the benzmorpholines and benzthiomorpholines required for Examples 19-25, the synthetic route shown in Figure 2 was followed. Nitrophenols 5 were alkylated with ethyl bromoacetate derivatives to afford 6. The nitro moiety is then reduced with Pd/C in the presence of hydrogen in a suitable solvent such as ethanol. In situ cyclization gives amide 7, which is then reduced with borane to provide the required amines 8.

10

15

20

25

30

Compounds of formula I can also be prepared by the reactions outlined in Figure 3. Azapinoindoles 9 are known in the literature (*J Med Chem.*, 1968, 11, 101-106) and can participate in a Michael conjugate addition into ethyl acrylate, or a derivative thereof, in the presence of a suitable base such as cesium carbonate. Base-catalyzed hydrolysis of esters 10 gives crude acids which then undergo intramolecular Friedel-Crafts acylation in an acidic media (e.g. polyphosphoric acid or Eaton's reagent). When R₂ is benzoyl, azepinoindoles 12 can be obtained from base-catalyzed hydrolysis in tetrahydrofuran/methanol.

Aryl ketones 11 can be used as intermediates in the synthesis of additional compounds of formula I as shown in Figure 4. The ketone moiety is reduced with sodium borohydride to give alcohols 13. When R₂ is benzoyl, basecatalyzed hydrolysis of alcohols 13 gives azepinoindoles 14. Alternatively, alcohols 13 can also be used as intermediates in the synthesis of additional compounds of formula I as shown in Figure 5. Alcohols 13 can be alkylated with an alkyl halide in the presence of sodium hydride or with phenols via Mitsunobu reaction

10

15

20

25

conditions. The use of thiols or amines in the Mitsunobu reaction can give additional derivatives. Removal of R₂ gives azepinoindoles 16.

Azepinoindoles 9 can also be used to make compounds of formula I as shown in Figure 6. Alkylation of 9 with 2-bromomethyl-1,3-dioxolane, or a derivative thereof, gives compounds 17. Acid-catalyzed removal of the acetal group leads to an aldehyde that can be reacted with trimethylsulfoxonium iodide and sodium hydride to give epoxides 18. Use of a Lewis acid, such as boron trifluoride diethyl etherate, would lead to alcohols 19. These alcohols could be treated as above to give azepinoindoles 20 and 21.

In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate,

 α -ketoglutarate, and α -glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.

Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.

Compounds of the present invention can conveniently be administered in a pharmaceutical composition containing the compound in combination with a suitable excipient. Such pharmaceutical compositions can be prepared by methods and contain excipients which are well known in the art. A generally recognized compendium of such methods and ingredients is

21

Remington's Pharmaceutical Sciences by E.W. Martin (Mark Publ. Co., 15th Ed., 1975). The compounds and compositions of the present invention can be administered parenterally (for example, by intravenous, intraperitoneal or intramuscular injection), topically, orally, or rectally.

5

15

20

30

For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.

The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and 25 the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices.

The compounds or compositions can also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

5

10

15

20

25

30

Pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and

23

the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.

For topical administration, the present compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.

10

15

20

25

30

Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers. Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.

Useful dosages of the compounds of formula I can be determined by comparing their *in vitro* activity, and *in vivo* activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.

The compound is conveniently administered in unit dosage form; for example, containing about 0.05 mg to about 500 mg, conveniently about 0.1 mg to about 250 mg, most conveniently, about 1 mg to about 150 mg of active ingredient per unit dosage form. The desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-

24

dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations.

The compositions can conveniently be administered orally, sublingually, transdermally, or parenterally at dose levels of about 0.01 to about 150 mg/kg, preferably about 0.1 to about 50 mg/kg, and more preferably about 0.1 to about 10 mg/kg of mammal body weight.

For parenteral administration the compounds are presented in aqueous solution in a concentration of from about 0.1 to about 10%, more preferably about 0.1 to about 7%. The solution may contain other ingredients, such as emulsifiers, antioxidants or buffers.

The exact regimen for administration of the compounds and compositions disclosed herein will necessarily be dependent upon the needs of the individual subject being treated, the type of treatment and, of course, the judgment of the attending practitioner.

The ability of a compound of the invention to act as a 5-HT receptor agonist or antagonist can also be determined using *in vitro* and *in vivo* assays that are known in the art. The invention provides compounds of formula I that act as either agonists or as antagonists of one or more 5-HT receptor subtypes. The compounds Exemplified herein are 5-HT ligands, which typically displace >50% of a radiolabeled test ligand from one or more 5-HT receptor subtype at a concentration of 1 M. The procedures used for testing such displacement are well known and would be readily available to one skilled in the art.

DESCRIPTION OF PREFERRED EMBODIMENTS

PREPARATION 1.

5

10

15

20

25

30

Preparation of 1-benzyl 4-ethyl 5-oxo-1,4-azepanedicarboxylate

A dry 500 ml 3-neck flask was charged with benzyl 4-oxo-1-

piperidinecarboxylate (35.08 g, 150 mmol). It was dissolved in 130 ml Et₂O and cooled to -45°C. Ethyldiazoacetate (20.5 ml, 195 mmol) and boron trifluoride ethyl ether (19.4 ml, 158 mmol) were added simultaneously by syringe pump over 45 minutes. The temperature was kept below -25°C. The reaction was stirred for 30 minutes longer, and then quenched with sat. NaHCO₃. The ice bath was removed. The reaction was diluted with EtOAc (250 ml) and H₂O (150 ml). The layers were separated, and the organic phase was dried over MgSO₄. It was concentrated under reduced pressure to an orange oil. The product was purified by flash chromatography (silica gel, 40% EtOAc/hexane), yielding product as pale yellow oil (42.1 g, 88%). ¹H NMR (CDCl₃) δ 7.39-7.31, 5.15-5.12, 4.42-4.17, 3.96-3.83, 3.75-3.70, 3.65, 3.54-3.37, 2.08-2.03, 1.29-1.24; IR (liq.) 1743, 1702, 1476, 1455, 1443, 1425, 1371, 1318, 1295, 1238, 1213, 1178, 1098, 1068, 1028 cm ⁻¹.

Preparation of benzyl 4-oxo-1-azepanecarboxylate

15

20

25

5

10

A solution of potassium hydroxide (24.6 g, 375 mmol) in H₂O (400 ml) was added to a solution of 1-benzyl 4-ethyl 5-oxo-1,4-azepanedicarboxylate (40.0 g, 125 mmol) in ethanol (400 ml). The resulting mixture was heated at reflux for 2.5 hours. Reaction was then cooled to rt., the ethanol was removed under reduced pressure, and was diluted with 200 ml brine and 300 ml ethyl acetate. The layers were separated, and the aqueous phase was extracted with ethyl acetate (2x 100 ml). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated to an orange oil *in vacuo*. The product was isolated by flash chromatography (silica gel, 40%EtOAc/hexane) yielding a clear, colorless oil (22.6 g, 73%). ¹H NMR (CDCl₃) & 7.31-7.30, 5.12, 3.65-3.63, 2.68-2.60, 1.81-1.78; IR (liq.) 1698, 1475, 1454, 1442, 1423, 1331, 1320, 1295, 1270, 1241, 1191, 1165, 1091, 900, 699 cm ⁻¹.

EXAMPLE 1 Preparation of 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

5

Step 1. Preparation of 3,4-dihydro-1(2H)-quinolinylamine hydrochloride.

A neat reaction between 1,2,3,4-tetrahydroquinoline (3.71g, 27.9 mmol) and isoamylnitrite (8.72 g, 74.4 mmol) was allowed to stir for 1 hour. 10 The residual isoamylnitrite was removed under reduced pressure and the Nnitroso intermediate was taken up in tetrahydrofuran (20 ml). This solution was added dropwise to a refluxing solution of lithium aluminum hydride in tetrahydrofuran (55 ml, 1M, 55.0 mmol). One hour after the addition was complete, the reaction was cooled to 0 °C and quenched. The reaction was filtered, concentrated under reduced pressure, and extracted into ether. The 15 ethereal solution was washed with water, brine and dried over anhydrous potassium carbonate. The resulting brown oil (4.11 g) was trapped as the hydrochloride salt and recrystallized from methanol\ethyl acetate\hexanes to provide the title compound (mp 186-189 °C). ¹H NMR (CDCl₃) δ 10.55, 7.31, 20 7.10, 6.98, 6.87, 3.59, 2.74, 2.05; IR (drift) 3053, 2956, 2940, 2868, 2841, 2835, 2724, 2667, 1603, 1586, 1580, 1567, 1545, 1499, 747 cm⁻¹.

Step 2. Preparation of benzyl 5,6,8,9,11,12-hexahydro-4H,10H
25 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate.

A solution of 3,4-dihydro-1(2H)-quinolinylamine (2.97 g, 20.1 mmol), benzyl 4-oxo-1-azepanecarboxylate (4.96 g, 20.1 mmol), and glacial acetic acid (0.2 ml) in ethanol (200 ml) was allowed to reflux for 2.5 hours. The reaction was then cooled and evaporated in vacuo. The hydrazone product was purified by flash chromatography (90g SiO₂, 1% MeOH/CH₂Cl₂) providing benzyl 4-[3,4-dihydro-1(2H)-quinolinylimino]-1-azepanecarboxylate (7.55 g) as an oil. To a solution of benzyl 4-[3,4-dihydro-1(2H)-quinolinylimino]-1azepanecarboxylate (6.79g, 17.99 mmol) in ethanol (200 ml) was added trifluoroacetic acid (6.22 g, 53.96 mmol). The reaction was heated and allowed to stir at reflux for 2.5 hours, at which time it was cooled to rt., evaporated, and 10 extracted into dichloromethane. This extract was washed with water, brine, dried with anhydrous sodium sulfate, and evaporated under reduced pressure. Crystallization from ethyl acetate/hexanes provided 2.93 g of the title compound (mp 131-133 °C). ¹H NMR (CDCl₃) δ 7.38, 7.29, 7.00, 6.86, 5.19, 3.98, 3.78, 2.97, 2.24; 15 IR (drift) 2947, 1699, 1473, 1420, 1358, 1260, 1250, 1235, 1216, 1101, 997, 764, 757, 746, 703 cm⁻¹.

Step 3. Preparation of 5,6,9,10,11,12-hexahydro-4H,8H20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride.

A mixture of benzyl 5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate (2.42 g, 6.71 mmol) and 10 % Pd/C (0.15 g) in ethanol (110 ml) was hydrogenated under 40 psi for 1.5 hours. The mixture was filtered through celite, rinsed with methanol, dichloromethane and evaporated. Methanolic hydrochloric acid is added and evaporated. The resulting product is recrystallized from methanol/ethyl acetate to give 1.40 g (80%) of the title compound (mp 261-263 °C). ¹H NMR (CD₃OD) 8 7.25, 6.95, 6.84, 4.08, 3.48, 3.32, 3.28, 3.20, 2.95, 2.22; IR (drift) 2939, 2894,

2880, 2863, 2832, 2806, 2759, 2743, 2687, 2669, 2645, 2445, 1332, 1253, 743 cm⁻¹.

EXAMPLE 2

Preparation of 2-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 1, making non-critical variations but starting with 6-methyl-1,2,3,4-tetrahydroquinoline, the title compound was obtained (mp 268-270 °C). ¹H NMR (DMSO- d_6) δ 9.6, 6.99, 6.61, 3.98, 3.30, 3.16, 3.03, 2.81, 2.32, 2.08; IR (drift) 2965, 2949, 2934, 2902, 2880, 2850, 2823, 2791, 2769, 2695, 2659, 2438, 1458, 1251, 839 cm⁻¹.

15

EXAMPLE 3

Preparation of 1-methoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

20

Following the general procedure of Example 1, making non-critical variations but starting with 7-methoxy-1,2,3,4-tetrahydroquinoline, the title

compound was obtained (mp 277-279 °C). ¹H NMR (DMSO- d_6) δ 9.27, 6.65, 6.32, 3.96, 3.77, 3.29, 3.15, 2.78, 2.05; IR (drift) 2968, 2953, 2935, 2889, 2832, 2803, 2780, 2765, 2744, 2713, 1594, 1509, 1247, 1152, 781 cm⁻¹.

5 EXAMPLE 4 Preparation of 2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 1, making non-critical variations but starting with 6-fluoro-1,2,3,4-tetrahydroquinoline, the title compound was obtained (mp 273-276 °C). ¹H NMR (CD₃OD) δ 6.94, 6.64, 4.07, 3.50, 3.44, 3.32, 3.28, 3.15, 2.94, 2.22; IR (drift) 2957, 2926, 2894, 2843, 2814, 2799, 2742, 2708, 2665, 2561, 2545, 2440, 1496, 1419, 1129 cm⁻¹.

EXAMPLE 5 Preparation of 6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

20

15

Following the general procedure of Example 1, making non-critical variations but starting with 2-methyl-1,2,3,4-tetrahydroquinoline, the title compound is obtained (mp 214-217 °C). ¹H NMR (CDCl₃) δ 9.61, 7.25, 6.93, 6.84,

4.62, 3.32, 3.11, 2.87, 2.12, 2.01, 1.20; IR (drift) 2968, 2933, 2893, 2814, 2742, 2711, 2669, 2560, 2437, 1463, 1415, 1377, 1335, 1324, 742 cm⁻¹.

EXAMPLE 6 Preparation of 5-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 1, making non-critical variations but starting with 3-methyl-1,2,3,4-tetrahydroquinoline, the title compound was obtained (mp 273-274 °C). ¹H NMR (CDCl₃) δ 10.10, 7.27, 7.02, 6.88, 4.07, 3.51, 3.37, 3.31, 3.00, 2.65, 2.37, 1.20; IR (drift) 2956, 2923, 2899, 2867, 2831, 2800, 2766, 2686, 2670, 2562, 2448, 1454, 1428, 1257, 740 cm⁻¹.

Preparation of 4-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 1, making non-critical variations but starting with 4-methyl-1,2,3,4-tetrahydroquinoline, the title compound was obtained (mp 260-263 °C). ¹H NMR (DMSO- d_6) δ 9.79, 7.22, 6.92,

6.85, 4.10, 4.00, 3.28, 3.20, 3.08, 2.15, 1.80, 1.30; IR (drift) 2959, 2939, 2891, 2873, 2860, 2811, 2800, 2739, 2709, 2662, 2647, 2553, 2542, 2437, 734 cm⁻¹.

EXAMPLE 8

Preparation of (+)-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

10

15

20

Following the general procedure of Example 5 making non-critical variations, preparative chiral HPLC was performed after step two on an EM ST 140R closed loop recycling prep HPLC system (EM Separations Technology). The column used was a 5x50 cm Chiralpak AD column at 30 °C. The mobile phase was 5% isopropanol/95% heptane at a flow rate of 75 ml/min. Peak collection was monitored by UV detection at 285 nm. Following step three, the title compound was obtained (mp 196-199 °C).

EXAMPLE 9

Preparation of (-)-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 5 making non-critical variations, preparative chiral HPLC was performed after step two on an EM ST 140R closed loop recycling prep HPLC system (EM Separations Technology). The column used was a 5x50 cm Chiralpak AD column at 30 °C. The mobile phase was 5% isopropanol/95% heptane at a flow rate of 75 ml/min. Peak collection was monitored by UV detection at 285 nm. Following step three, the title compound was obtained (mp 196-199 °C); $[\alpha]_{D}^{25} = -27$ (c 0.88, DMSO).

10

5

EXAMPLE 10 Preparation of (+)-5-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

15

20

Following the general procedure of Example 6 making non-critical variations, preparative chiral HPLC was performed after step two on an EM ST 140R closed loop recycling prep HPLC system (EM Separations Technology). The

column used was a 5x50 cm Chiralpak AD column at 30 °C. The mobile phase was 5% isopropanol/95% heptane at a flow rate of 75 ml/min. Peak collection was monitored by UV detection at 285 nm. Following step three, the title compound was obtained (mp 259-262 °C); $[\alpha]_D^{25} = +20$ (c 0.28, DMSO).

5

EXAMPLE 11 Preparation of (-)-5-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

10

15

Following the general procedure of Example 6 making non-critical variations, preparative chiral HPLC was performed after step two on an EM ST 140R closed loop recycling prep HPLC system (EM Separations Technology). The column used was a 5x50 cm Chiralpak AD column at 30 °C. The mobile phase is 5% isopropanol/95% heptane at a flow rate of 75 ml/min. Peak collection was monitored by UV detection at 285 nm. Following step three, the title compound was obtained (mp 259-262 °C); $[\alpha]_{D}^{25} = -21$ ° (c 0.43, DMSO).

20 EXAMPLE 12

Preparation of (+)-4-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 7 making non-critical variations, preparative chiral HPLC was performed after step two on an EM ST 140R closed loop recycling prep HPLC system (EM Separations Technology). The column used was a 5x50 cm Chiralpak AD column at 30 °C. The mobile phase was 5% isopropanol/95% heptane at a flow rate of 75 ml/min. Peak collection was monitored by UV detection at 285 nm. Following step three, the title compound was obtained (mp 261-263 °C); $[\alpha]_{D}^{25} = +39$ (c 0.41, chloroform).

10

15

5

EXAMPLE 13 Preparation of (-)-4-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline hydrochloride

Following the general procedure of Example 7 making non-critical variations, preparative chiral HPLC was performed after step two on an EM ST 140R closed loop recycling prep HPLC system (EM Separations Technology). The column used was a 5x50 cm Chiralpak AD column at 30 °C. The mobile phase was

(-)

5% isopropanol/95% heptane at a flow rate of 75 ml/min. Peak collection was monitored by UV detection at 285 nm. Following step three, the title compound is obtained (mp 261-263 °C); $[\alpha]^{25}_{D} = -39$ (c 0.51, chloroform).

5 EXAMPLE 14 Preparation of 4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole hydrochloride

Following the general procedure outlined in EXAMPLE 1, starting with indoline, and utilizing 1-benzoylhexahydoazepine as the ketone in step 4, 5,7,8,10,11-hexahydro-9H-azepino[4,5-b]pyrrolo[3,2,1-hi]indol-9-yl(phenyl)methanone was obtained (mp 130-133 °C). ¹H NMR (CDCl₃) δ 7.42, 7.08, 6.94, 6.85, 4.28, 4.00, 3.76, 3.63, 3.15, 2.88; MS (ESI+) for C₂₁H₂₀N₂O H m/z 240.1 (M+H)⁺.

Step 4 A mixture of 4,5,7,8,10,11-hexahydro-9H-azepino[4,5-b]pyrrolo[3,2,1-hi]indol-9-yl(phenyl)methanone (1.0 g, 3.2 mmol) and potassium hydroxide (0.89 g, 15.8 mmol) in ethylene glycol (10 ml) was heated under N₂ at 170 °C for 3 h. The reaction was cooled to rt, poured into water (50 ml) and extracted with methylene chloride (4 x 50 ml). The combine organics were washed with brine, dried over anhydrous potassium carbonate, and concentrated *in vacuo*. The residue was trapped as its HCl salt by treatment of a solution of the product in methanol with ethereal HCl. The resulting precipitate is recrystallized from methanol and ethyl acetate to give the desired product (0.4 g) (mp 249-250 °C). ¹H NMR (CDCl₃) 8 7.16, 6.93, 6.82, 4.38, 3.74, 3.08, 2.94; IR (drift) 2925, 2916, 2885, 2847, 2805, 1510, 1462, 1409, 1350, 1336, 1306, 1279, 767, 758, 746 cm⁻¹.

20

25

EXAMPLE 15

Preparation of 2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole hydrochloride

5

10

Following the general procedure outlined in EXAMPLE 14, and making non-critical variations but starting with 5-fluoro indoline, the title compound was obtained (mp 250-252 °C). ¹H NMR (CD₃OD) δ 6.68, 6.43, 4.15, 3.47, 2.88, 2.76; IR (drift) 2930, 2911, 1661, 1507, 1412, 1354, 1261, 1171, 1112, 938, 857, 848, 839, 708, 688 cm ⁻¹.

EXAMPLE 16

Preparation of 2-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole hydrochloride

15

20

Following the general procedure outlined in EXAMPLE 14, and making non-critical variations but starting with 5-methoxy indoline, the title compound was obtained (mp 269-271 °C). 1 H NMR (CD₃OD) δ 6.70, 6.57, 4.44, 3.80, 3.72, 3.45, 3.23, 3.16; IR (drift) 2974, 2948, 2908, 2891, 2841, 2817, 2805, 2769, 2718, 1509, 1421, 1255, 1244, 1233, 1142 cm $^{-1}$.

EXAMPLE 17

Preparation of 5-methyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole hydrochloride

Following the general procedure outlined in EXAMPLE 1, and making non-critical variations but starting with 2-methyl indoline, the title compound was obtained (mp 243-246 °C). ¹H NMR (CDCl₃) 8 7.13, 6.91, 7.80, 4.99-4.87, 3.93, 3.51-3.23, 3.17, 1.47; IR (drift) 2973, 2960, 2941, 2927, 2901, 2883, 2848, 2826, 2794, 2737, 2650, 2549, 2438, 1292, 751 cm ⁻¹.

EXAMPLE 18

10

15

20

Preparation of 4,5-dimethyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole hydrochloride

N HCI

Following the general procedure outlined in EXAMPLE 1, and making non-critical variations but starting with 2, 3-dimethyl indole, the title compound was obtained (mp 195-197 °C). ¹H NMR (CD₃OD) δ 7.16, 6.92, 6.81, 4.40, 3.64, 3.53-3.35, 3.16, 1.54, 1.43; IR (drift) 2960, 2938, 2925, 2866, 2847, 2821, 2727, 2657, 2635, 2533, 2427, 1465, 1372, 1287, 746 cm ⁻¹.

EXAMPLE 19

Preparation of 2,3,4,5,8b,9,10,11,12,12a-decahydro-1H-azepino[4',5':4,5]pyrrolo[3,2,1-jk]carbazole hydrochloride

WO 00/64899 PCT/US00/10600

38

Following the general procedure outlined in EXAMPLE 1, and making non-critical variations but starting with 1,2,3,4 tetramethyl carbazole, the title compound was obtained (mp 210-212 °C). 1 H NMR (CD₃OD) δ 7.16, 6.94, 6.82, 4.75, 4.14, 3.42, 3.25, 3.16, 2.12-1.96, 1.54, 1.41, 1.26, 1.08; IR (drift) 3046, 2936, 2929, 2846, 2810, 2744, 2633, 2541, 2519, 2429, 1460, 1328, 1290, 754, 744 cm $^{-1}$;

EXAMPLE 20 Preparation of 6-methyl-1,2,8,9,10,11-hexahydro-7H
azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

Step 5. Preparation of 6-methyl-2H-1,4-benzoxazin-3(4H)-one

15

20

25

To a solution of 4-methyl-2-nitrophenol (9.95 g, 65.0 mmol) in acetone (170 ml) was added, in one portion, potassium carbonate (10.8 g, 78.0 mmol) and ethyl bromoacetate (7.9 ml, 71.5 mmol). The resulting mixture was heated at reflux for 3.5 hours. The acetone was removed *in vacuo*, and the resulting material was partitioned between ethyl acetate and water. The layers were separated, and the aqueous phase was extracted twice with ethyl acetate. The ethyl acetate layer was washed with saturated sodium bicarbonate, brine, dried over magnesium sulfate, filtered, and evaporated to afford an orange oil. The intermediate nitro compound was taken up in ethanol (150 ml) and hydrogenated with Pd/C (0.33 g) at 51 psi for 90 minutes. The mixture was filtered through celite, and the filtrate evaporated. The product was recrystallized from methanol to yield

7.29 g of the title compound as an off-white solid (mp 204-205 °C). ¹H NMR (DMSO- d_6) δ 6.81-6.78, 6.70-6.67, 4.48, 2.18; MS [MH⁻] 162.1.

Step 6. Preparation of 6-methyl-3,4-dihydro-2H-1,4-benzoxazine

5

10

To a solution of 6-methyl-2H-1,4-benzoxazin-3(4H)-one (7.02 g, 43.0 mmol) in tetrahydrofuran (130 ml) was added borane dimethylsulfide complex (43 ml, 10M). This solution was stirred at rt for 2.5 hours, then quenched with 1 M hydrochloric acid. The solvent was evaporated, and the residue was partitioned between saturated sodium bicarbonate and dichloromethane. The layers were separated, and the aqueous phase was extracted twice with dichloromethane. The dichloromethane layer was washed with brine, dried over magnesium sulfate, and evaporated to yield 5.1 g of the title compound as a pale yellow oil. ¹H NMR (CDCl₃) δ 6.70-6.68, 6.49-6.46, 6.42, 4.24-4.21, 3.41-3.38, 2.22; MS [MH*] 150.2.

15

Following the remainder of the general procedure of Example 1 (steps 1-3) and making non-critical variations but starting with 6-methyl-3,4-dihydro-2H-1,4-benzoxazine, the title compound was obtained (mp 271-273 °C). 1 H NMR (CD₃OD) δ 6.59, 6.40, 4.44, 4.17, 3.52, 3.49, 3.27, 3.24, 2.57; IR (drift) 2979, 2957, 2934, 2872, 2855, 2828, 2792, 2760, 2746, 2683, 2652, 1511, 1265, 1243, 1223 cm $^{-1}$.

EXAMPLE 21

Preparation of 1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

25

20

Following the general procedure of Example 20 but starting with 2

H-1,4-Benzoxazine-3(4 H)-one, utilizing 1-benzoylhexahydoazepine as the ketone in the hydrazone formation of step two, and thus the deprotection sequence described in step 4 of example 14, the title compound was obtained (mp 217-219 °C). ¹H NMR (DMSO- d_6) δ 9.6, 7.01,6.85, 6.50, 4.46, 4.18, 3.28-3.08, 2.50; IR (drift) 2949, 2925, 2878, 2843, 2812, 2758, 2689, 2673, 1499, 1328, 1247, 1036, 872, 771, 729 cm ⁻¹.

EXAMPLE 22 Preparation of 6-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

10

15

Following the general procedure of Example 20 and making non-critical variations but starting with 2-amino-4-chlorophenol, the title compound was obtained (mp decompose >275°C). 1 H NMR (CD₃OD) δ 6.84, 6.50, 4.49-4.48, 4.22-4.20, 3.65-3.63, 3.53-3.48, 3.30-3.27; IR (free amine) (drift) 2932, 2897, 2882, 2823, 1495, 1466, 1379, 1355, 1323, 1277, 1269, 1236, 1217, 1199, 1014 cm $^{-1}$.

Preparation of 5-fluoro-1,2,8,9,10,11-hexahydro-7Hazepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

Following the general procedure of Example 20 and making non-critical variations but starting with 5-fluoro-2-nitrophenol, the title compound was obtained (mp decompose >250°C). ^{1}H NMR (CD₃OD) δ 6.76-6.72, 6.38-6.33, 4.52-4.49, 4.20-4.17, 3.51-3.43, 3.28-3.25, 3.18-3.14; IR (drift) 2950, 2855, 2805, 2767, 2757, 2710, 2675, 2651, 2565, 2449, 1645, 1591, 1500, 1333, 1109 cm $^{-1}$.

EXAMPLE 24 Preparation of 5-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

10

15

5

Following the general procedure of Example 20 but starting from 5-methyl-2-nitrophenol and using glacial acetic acid for the cyclization in step 3, the title compound was obtained (mp 274-275 °C). ¹H NMR (CD₃OD) δ 6.81, 6.37, 4.44, 4.12, 3.48-3.41, 3.22, 3.15, 2.36; IR (drift) 2983, 2965, 2940, 2880, 2856, 2822, 2809, 2758, 2731, 2667, 1590, 1503, 1331, 1031, 847 cm⁻¹.

Preparation of 6-fluoro-1,2,8,9,10,11-hexahydro-7H20 azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

Following the general procedure of Example 20 but starting from 4-

fluoro-2-nitrophenol and using p-toluene sulfonic acid for the cyclization in step 3, the title compound was obtained (mp 257-259°C). ¹H NMR (CD₃OD) δ 6.55-6.49, 6.43-6.40, 4.44, 4.17, 3.49-3.44, 3.38-3.33, 3.26-3.23; IR (drift) 2949, 2876, 2845, 2815, 2768, 2685, 2676, 2626, 1511, 1362, 1277, 1224, 1023, 881, 791 cm ⁻¹.

EXAMPLE 26 Preparation of 2-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

10

15

5

Following the general procedure of Example 20 and making non-critical variations but starting with 2-nitrophenol and ethyl-2-bromopropionate, the title compound was obtained (mp 255-257 °C). ¹H NMR (CD₃OD) δ 7.01, 6.88, 6.54, 4.40-4.35, 4.30, 3.68-3.63, 3.49-3.42, 3.25-3.17, 1.51; IR (drift) 2967, 2931, 2809, 2790, 2736, 2711, 2655, 2647, 2557, 2439, 1502, 1377, 1322, 1243, 794 cm ⁻¹.

Preparation of 1,2,8,9,10,11-hexahydro-7H-azepino [4,5-b][1,4]thiazino[2,3,4-hi]indole hydrochloride

Following the general procedure of Example 21 but starting from 2H-1,4-benzothiazin-3(4H)-one and using 10% sulfuric acid for the cyclization in step 3, the title compound was obtained (mp 263 °C). 1 H NMR (CD₃OD) δ 7.24, 6.94, 6.87, 3.36-3.24, 3.12-3.10; IR (drift) 2937, 2929, 2862, 2814, 2718, 2663, 2626, 2594, 2544, 2428, 1463, 1412, 1335, 782, 739 cm $^{-1}$.

EXAMPLE 28 Preparation of 2,2-dimethyl-1,2,8,9,10,11-hexahydro-7H-azepino [4,5-b] [1,4]oxazino[2,3,4-hi]indole hydrochloride

10

15

5

Following the general procedure of Example 20 but starting with 2-nitrophenol and ethyl-2-bromoisobutyrate, and using p-toluene sulfonic acid for the cyclization in step 3, the title compound was obtained (mp decompose >260°C). 1 H NMR (CD₃OD) δ 7.03, 6.92, 6.52, 3.96, 3.53-3.46, 3.26-3.20, 1.41; IR (drift) 2972, 2948, 2858, 2824, 2766, 2751, 1583, 1498, 1385, 1332, 1245, 1202 cm $^{-1}$.

EXAMPLE 29

Preparation of 4-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole maleic acid

20

Following the general procedure of Example 20 but starting with 2-fluoro-6-nitrophenol, using p-toluene sulfonic acid for the cyclization in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 176-

177°C). ¹H NMR (CD₃OD) & 6.95, 6.78, 6.24, 4.51, 4.19, 3.42-3.50, 3.23, 3.16; IR (drift) 3009, 2925, 2899, 2879, 2835, 2786, 2714, 1705, 1626, 1550, 1531, 1526, 1486, 1358 cm⁻¹.

5 EXAMPLE 30 Preparation of 4-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole maleic acid

Following the general procedure of Example 20 but starting with 6-chloro-2-nitrophenol, using p-toluene sulfonic acid for the cyclization in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 183-184 °C). ¹H NMR (CD₃OD) δ 6.99, 6.91, 6.24, 4.56, 4.20, 3.43-3.51, 3.23, 3.16; IR (drift) 1645, 1639, 1627, 1608, 1568, 1536, 1517, 1497, 1476, 1385, 1377, 1372, 1355, 1196 cm⁻¹.

Preparation of 5-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole maleic acid

Following the general procedure of Example 20 but starting with 5-chloro-2-nitrophenol, using TFA in EtOH for the cyclization in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 177-179 °C).

¹H NMR (CD₃OD) δ 7.05, 6.55, 6.24, 4.50, 4.18, 3.42-3.50, 3.23-3.25, 3.14-3.16;

5

20

IR (drift) 2892, 2867, 2779, 2745, 1627, 1569, 1536, 1491, 1466, 1451, 1369, 1329, 1024 cm⁻¹.

EXAMPLE 32 Preparation of 6-(trifluoromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

Following the general procedure of Example 20 but starting with 2-nitro-4-(trifluoro methyl)-phenol, using p-toluene sulfonic acid for the cyclization in step 3, the title compound was obtained (mp 248-250 °C). ¹H NMR (CD₃OD) δ 7.30, 6.61, 4.55, 4.26, 3.46-3.53; IR (drift) 2815, 2797, 2741, 2670, 2560, 1583, 1333, 1244, 1198, 1158, 1107, 1094, 1060, 1021 cm⁻¹.

Preparation of 5,6-difluoro-1,2,8,9,10,11-hexahydro-7Hazepino[4,5-b] [1,4]oxazino[2,3,4-hi]indole maleic acid

Following the general procedure of Example 20 but starting with 4,5-difluoro-2-nitrophenol, using 10% sulfuric acid in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 184-185 °C). ¹H NMR (CD₃OD) δ 6.45, 6.23, 4.46, 4.17, 3.45-3.50, 3.34-3.37, 3.220-3.24; IR (drift) 3070,

5

2879, 2780, 2728, 1601, 1575, 1518, 1482, 1457, 1373, 1353, 1171, 1042, 1000 cm⁻¹.

EXAMPLE 34 Preparation of 5-chloro-6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole maleic acid

Following the general procedure of Example 20 but starting with 5-chloro-4-fluoro-2-nitrophenol, using 10% sulfuric acid in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 194-195 °C). ¹H NMR (CD₃OD) δ 6.52, 6.24, 4.46, 4.18, 3.51-3.45, 3.29-3.37, 3.21-3.25; IR (drift) 1615, 1583, 1552, 1501, 1480, 1456, 1368, 1355, 1280, 1222, 1169 cm⁻¹.

Preparation of 5-fluoro-6-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole maleic acid

Following the general procedure of Example 20 but starting with 4-20 chloro-5-fluoro-2-nitrophenol, using 10% sulfuric acid in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 173-175 °C). ¹H NMR (CD₃OD) 8 6.50, 3.25, 4.50, 4.19, 3.56-3.59, 3.44-3.50, 3.22-3.25; IR (drift) 3062, 3028, 2971, 2897, 1626, 1608, 1585, 1498, 1463, 1372, 1365, 1352, 1153, 1036 cm

5 EXAMPLE 36 Preparation of 5,6-dichloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole maleic acid

Following the general procedure of Example 20 but starting with 4,5-dichloro-2-nitrophenol, using 10% sulfuric acid in step 3, and preparing the Maleic acid salt, the title compound was obtained (mp 180-181 °C). ¹H NMR (CD₃OD) δ 6.68 (s, 1 H), 6.23 (s, 2 H), 4.49 (t, J = 4.4 Hz, 2 H), 4.20 (t, J = 4.8 Hz, 2 H), 3.59-3.62 (t, J = 2 Hz, H), 3.45-3.51 (m, 4 H), 3.22-3.26 (m, 2 H); IR (drift) 2887, 2840, 1625, 1608, 1578, 1551, 1486, 1458, 1372, 1351, 1273, 1023 cm⁻¹.

Preparation of 4,6-dichloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole hydrochloride

Following the general procedure of Example 20 but starting with 3,5-dichloro-2-nitrophenol, and using 10% sulfuric acid in step 3, the title compound was obtained (decompose >255°C). ¹H NMR (CD₃OD) δ 6.89, 4.55, 4.21, 3.56-3.59, 3.44-3.51, 3.23-3.27; IR (drift) 2955, 2895, 2743, 2652, 2635,

2556, 2428, 1494, 1468, 1420, 1345, 1294, 1229 cm⁻¹.

EXAMPLE 38

Preparation of 1-chloro-2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole maleic acid

5

10

15

20

Following the general procedure outlined in EXAMPLE 14, and making non-critical variations but starting with 6-chloro-5-fluoro indoline, the title compound was obtained (amorphous solid). 1 H NMR (CD₃OD) 6.70, 6.23, 4.52, 3.69, 3.34-3.22, 3.08; IR (drift) 2420 (b), 1628, 1561, 1506 (s), 1449, 1421, 1378 (s), 1350, 1337, 1323, 1300, 1291, 1278, 1254, 1147 cm $^{-1}$; MS (ESI+) for $C_{14}H_{14}CIFN_2$ m/z 265.2 (M+H) $^{+}$.

EXAMPLE 39

Preparation of 2-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole maleic acid

Following the general procedure outlined in EXAMPLE 14, and making non-critical variations but starting with 5-chloro-indoline, the title compound was obtained (amorphous solid). ¹H NMR (CD₃OD) 7.16, 6.91, 6.81, 4.45, 3.74, 3.40, 3.24, 3.15; MS (ESI+) for C₁₄H₁₅ClN₂ m/z 247.2 (M+H)⁺.

EXAMPLE 40

Preparation of 1-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole maleic acid

WO 00/64899 PCT/US00/10600

49

Following the general procedure outlined in EXAMPLE 14, and making non-critical variations but starting with 6-chloro-indoline, the title compound was obtained (amorphous solid). ¹H NMR (CD₃OD) 6.91, 6.81, 6.77, 4.90, 3.69, 3.34, 3.21; MS (ESI+) for C₁₄H₁₅ClN₂ m/z 247.2 (M+H)⁺.

EXAMPLE 41 Preparation of 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one oxalate.

10

Step 7. Preparation of ethyl 3-(3-benzoyl-2,3,4,5-tetrahydroazepino[4,5-b]indol-6(1H)-yl)propanoate.

15

20

25

A mixture of 3-benzoyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole (5.00 g, 17.2 mmol), cesium carbonate (5.61 g, 17.2 mmol), and ethyl acrylate (1.90 mL, 17.5 mmol) in acetonitrile (250 mL) was heated under N₂ at 50 °C for 5 h (reaction can also be run in DMF at room temperature). Cooled to room temperature, diluted with H₂O, and extracted with EtOAc. The combined organic extracts were washed with saturated aqueous NaCl, dried over Na₂SO₄, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 4.82 g (72%) of the title compound as a yellow oil. ¹H NMR (CDCl₃) 8 7.57- 7.38, 7.32, 7.23-7.07, 4.49-4.33, 4.20-4.02, 3.77-3.66, 3.28-3.13, 2.94, 2.72, 1.24; IR (liq.) 2981, 1731, 1631, 1467, 1445, 1422, 1381, 1368, 1349, 1319, 1295, 1272,

1242, 1187, 742, 707 cm⁻¹; MS (ESI) 391.0 (M⁺+H).

Step 8. Preparation of 10-benzoyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4- one.

5

15

20

25

A solution of potassium hydroxide (0.80 g, 14.3 mmol) in H₂O (20 mL) was added to a solution of ethyl 3-(3-benzoyl-2,3,4,5tetrahydroazepino[4,5-b]indol-6(1H)-yl)propanoate (4.25 g, 10.9 mmol) in THF (30 mL). The reaction mixture was heated at 60 °C for 1 h, then cooled to room temperature, acidified with 10% aqueous HCl, and extracted with EtOAc. The combined organic extracts were washed with saturated aqueous NaCl, dried over Na₂SO₄, decanted, and concentrated under reduced pressure to give 3.73 g of crude acid. The crude acid (2.00 g, 5.52 mmol) was then added to neat PPA (18.6 g) stirring at 100 °C under N₂. After 1.5 h, the reaction was cooled to room temperature, quenched with ice and 10% aqueous NaOH, and then extracted with EtOAc. The combined organic extracts were washed with saturated aqueous NaCl, dried over Na₂SO₄, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (gradient 1:1 to 2:1) to give 0.81 g (43%) of the title compound as a yellow solid (mp 177.5-181 °C). ¹H NMR (d-DMSO) δ 7.75, 7.46, 7.09, 4.45-4.24, 3.93, 3.61, 3.34, 3.17, 3.11-2.80; IR (drift) 1676, 1628, 1587, 1493, 1483, 1466, 1428, 1357, 1324, 1295, 1276, 1266, 1191, 754, 706 cm⁻¹.

Step 9. Preparation of 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one oxalate.

A solution of 10-benzoyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5] pyrrolo[3,2,1-ij]quinolin-4- one (0.20 g, 0.58 mmol) in THF/MeOH/50% aqueous NaOH (3:2:1, 9 mL) was heated under N_2 at reflux for 4 d.

15

25

Cooled to room temperature, diluted with saturated aqueous NaCl, and extracted with CH₂Cl₂. The combined organic extracts were washed with saturated aqueous NaCl, dried over Na₂SO₄, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with CH₂Cl₂/MeOH/Et₂NH (gradient 95:5:0 to 95:4:1) to give 0.10 g (74%) of the free base of title compound as a dark yellow foam. The oxalate salt was prepared by treating a solution of the free base in methanol with a solution of oxalic acid in ether to give a precipitate that crystallized from methanol as small yellow needles of the title compound (mp 199-202 °C [dec.]). ¹H NMR (*d*-DMSO) δ 7.78, 7.46, 7.15, 4.39, 4.19, 3.39, 3.34, 3.24, 3.14, 3.02; IR (drift) 2965, 2890, 2841, 2799, 2732, 2516, 2484, 1720, 1673, 1626, 1607, 1591, 1492, 1460, 1206 cm⁻¹.

EXAMPLE 42 Preparation of 2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one maleate.

Following the general procedure of Example 41, making non-critical variations but starting with 3-benzoyl-9-fluoro-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole and using maleic acid for the salt formation, the title compound was obtained (mp 242-244 °C [dec.]). ¹H NMR (d-DMSO) δ 9.18, 7.67, 7.21, 4.40, 3.33, 3.25, 3.12, 3.04; IR (drift) 3358, 2970, 2959, 2830, 2792, 2785, 2752, 1681, 1593, 1490, 1464, 1383, 1330, 1216, 907 cm⁻¹.

EXAMPLE 43 Preparation of 2-chloro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one oxalate.

Following the general procedure of Example 41, making non-critical variations but starting with 3-benzoyl-9-chloro-1,2,3,4,5,6-hexahydroazepino[4,5-5] b]indole, the title compound was obtained (mp 236.5-238 °C [dec.]). ¹H NMR (*d*-DMSO) δ 7.89, 7.38, 4.41, 3.69, 3.38, 3.33, 3.23, 3.13, 3.04; IR (mull) 3440, 2644, 2514, 1915, 1686, 1491, 1420, 1327, 1318, 1251, 1138, 1094, 1030, 914, 720 cm⁻¹.

EXAMPLE 44 Preparation of 6-methyl-5,6,9,10,11,12-hexahydro-4H,8H
azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one oxalate.

Following the general procedure of Example 41, making noncritical variations but using ethyl crotonate in step 7, the title compound was obtained (mp 215-215.5 °C). ¹H NMR (*d*-DMSO) δ 7.79, 7.47, 4.97, 3.50-3.20, 3.15, 2.73, 1.16; IR (drift) 3020, 2984, 2969, 1727, 1684, 1609, 1589, 1471, 1327, 1217, 1194, 1178, 1100, 752, 706 cm⁻¹.

20 EXAMPLE 45 Preparation of 2-fluoro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one oxalate.

Following the general procedure of Example 41, making non-critical variations but starting with 3-benzoyl-9-fluoro-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole and using ethyl crotonate in step 7, the title compound was obtained (mp 209.5-211.5 °C). ¹H NMR (*d*-DMSO) δ 7.69, 7.22, 4.99, 3.44-3.22, 3.12, 2.78, 1.16; IR (drift) 2969, 1743, 1727, 1716, 1688, 1646, 1616, 1480, 1418, 1377, 1214, 1145, 1102, 858, 602 cm⁻¹.

EXAMPLE 46

Preparation of 2,3-dichloro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one mesylate.

15

20

25

10

Following the general procedure of Example 41, making non-critical variations but starting with 3-benzoyl-8,9-dichloro-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole, using ethyl crotonate in step 7, and using methanesulfonic acid for the salt formation, the title compound was obtained (mp 225-230 °C [dec.]). ¹H NMR (*d*-DMSO) δ 8.94, 8.12, 4.97, 3.48-3.20, 3.13, 2.77, 2.30, 1.20; IR (drift) 3029, 2979, 2849, 2792, 1683, 1481, 1410, 1312, 1214, 1196, 1184, 1161, 1145, 1040, 775 cm⁻¹.

EXAMPLE 47

Preparation of 6-propyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one hydrochloride.

10

Following the general procedure of Example 41, making non-critical variations but using ethyl *trans*-hexenoate in step 7 and using hydrochloric acid for the salt formation, the title compound was obtained (mp 193-194.5 °C). ¹H NMR (*d*-DMSO) δ 9.38, 7.79, 7.45, 7.14, 4.87, 3.54, 3.45-3.19, 3.16, 2.83, 1.47, 1.13, 0.78; IR (drift) 2957, 2926, 2870, 2853, 2741, 1683, 1588, 1471, 1416, 1354, 1325, 1279, 1191, 795, 751 cm⁻¹.

EXAMPLE 48 Preparation of 6-(trifluoromethyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one oxalate.

Following the general procedure of Example 41, making noncritical variations but using ethyl 4,4,4-trifluorocrotonate in step 7 and using hydrochloric acid for the salt formation, the title compound was obtained (mp 201.5-202.5 °C). ¹H NMR (*d*-DMSO) 8 7.86, 7.54, 7.24, 5.94, 3.73, 3.67, 3.43-3.19, 3.16, 3.00; IR (drift) 1726, 1694, 1645, 1639, 1592, 1469, 1416, 1336, 1272, 1253, 1204, 1195, 1177, 1127, 945 cm⁻¹.

EXAMPLE 49 Preparation of 5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol

25

20

Step 10 Preparation of 10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-

WO 00/64899 PCT/US00/10600

55

4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol.

A solution of 10-benzoyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino [4',5':4,5] pyrrolo[3,2,1-ij]quinolin-4- one (1.46 g, 4.24 mmol) in ethanol (40mL) was cooled to 0 °C under N₂. Added sodium borohydride (0.32 g, 8.46 mmol) and allowed to warm slowly to room temperature. Concentrated under reduced pressure to approximately 10 mL, diluted with H₂O, and extracted with CH₂Cl₂. The combined organic extracts were washed with saturated aqueous NaCl, dried over Na₂SO₄, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/heptanes (2:1) to give 1.24 g (84%) of the title compound as a yellow foam. ¹H NMR (CDCl₃) δ 7.42, 7.33, 7.12-7.02, 5.10, 4.13, 4.02, 3.68, 3.21, 2.92, 2.38, 2.23, 1.80; IR (drift) 1627, 1614, 1475, 1466, 1457, 1448, 1429, 1372, 1360, 1329, 1292, 1268, 785, 747, 706 cm⁻¹; MS (ESI) 369.1 (M⁺+Na).

15

10

The 10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5] pyrrolo[3,2,1-ij]quinolin-4-ol was then hydrolyzed following the procedure outlined in step 9 to give 5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol as a tan foam. 1 H NMR (CDCl₃) δ 7.43, 7.09, 5.11, 4.11, 3.16, 3.02, 2.38, 2.26; IR (drift) 3300, 3047, 2923, 2878, 2828, 2751, 1479, 1454, 1430, 1415, 1371, 1330, 1199, 1074, 746 cm⁻¹; HRMS (EI) calcd for $C_{15}H_{18}N_{2}O$ 242.1419, found 242.1422.

EXAMPLE 50

Preparation of 4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline

25

20

Step 11. Preparation of 10-benzoyl-4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyπolo[3,2,1-ij]quinoline.

NaH (60% dispersion in mineral oil, 0.50g, 1.2 mmol) was added 5 to a solution of 10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-4H,7aHazepino[4',5':4,5]pyrrolo [3,2,1-ij]quinolin-4-ol (0.20 g, 0.58 mmol) in DMF (5.0 mL) at 0 °C under N₂. After 30 min, iodomethane (0.040 mL, 0.64 mmol) was added. The reaction was quenched with saturated aqueous NH₂Cl after 1 h and then allowed to warm to room temperature prior to extracting with EtOAc. The combined organic extracts were washed with saturated aqueous NaCl, dried over 10 Na₂SO₄, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/heptanes (2:1) to give 0.16 g (79%) of the title compound as a beige foam. ¹H NMR (CDCl₃) δ 7.46-7.30, 6.94, 4.51, 4.22-4.03, 4.01-3.79, 3.65-3.41, 3.29, 3.12, 3.04, 2.90, 2.82, 2.34, 2.08; IR (drift) 1631, 1493, 1477, 1459, 1422, 1370, 1359, 1324, 1292, 15 1267, 1098, 1085, 786, 748, 706 cm⁻¹; HRMS (FAB) calcd for C₂₂H₂₄N₂O₂+H 361.1916, found 361.1913.

Following the general procedure of step 4, making non-critical variations but starting with 10-benzoyl-4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline, the title compound was obtained as a brown oil. ¹H NMR (CDCl₃) δ 7.45, 7.07, 4.56, 4.26, 4.09, 3.42, 3.27-3.13, 3.11-2.94, 2.49, 2.18; IR (liq.) 2926, 2905, 2882, 2820, 1492, 1479, 1453, 1415, 1370, 1332, 1200, 1098, 1083, 1066, 748 cm⁻¹, HRMS (FAB) calcd for C₁₆H₂₀N₂O+H 257.1654, found 257.1665.

EXAMPLE 51 Preparation of 4-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline

WO 00/64899 PCT/US00/10600

57

Step 12. Preparation of 10-benzoyl-4-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline

1,1'-Azobis(N,N-dimethylformamide) (0.34 g, 2.0 mmol) was 5 added to a solution of 10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-4H,7aHazepino[4',5':4,5]pyrrolo [3,2,1-ij]quinolin-4-ol (0.45 g, 1.3 mmol), phenol (0.18 g, 1.9 mmol), and tributylphosphine (0.49 mL, 2.0 mmol) in dry benzene (4.0 mL) at room temperature under N₂. The reaction mixture immediately congealed but resumed stirring upon heating to 60 °C. After 5 h, the reaction was cooled to 10 room temperature and filtered to remove white precipitate. The filtrate was concentrated under reduced pressure and purified by silica gel chromatography with heptanes/EtOAc (gradient 3:1 to 3:2) to give 0.26 g (47%) of the title compound as a beige foam. ¹H NMR (CDCl₃) δ 7.52-7.38, 7.32, 7.11-6.95, 5.68, 4.21-3.90, 3.69, 3.21, 2.91, 2.63, 2.34; IR (drift) 1630, 1596, 1492, 1458, 1421, 1359, 1327, 1291, 1267, 1226, 1192, 786, 750, 706, 694 cm⁻¹; MS (ESI) 423.3 15 (M^++H) .

Following the general procedure of step 4, making non-critical variations but starting with 10-benzoyl-4-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino [4',5':4,5]pyrrolo[3,2,1-ij]quinoline, the title compound was obtained. MS (ESI) 319.2 (M⁺+H).

20

EXAMPLE 52 Using synthetic procedures similar to those described herein, the following compounds of formula (I) wherein R_2 is hydrogen can also be prepared:

- 4-bromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (100);
- 5-bromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (101);
- 6-bromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (102);
 - 5,6-dibromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (103);
- 4,6-dibromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-10 hi]indole (104);
 - 4-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (105);
 - 5-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (106);
- 6-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (107);
 - 4-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (108);
 - 5-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]
- 20 oxazino[2,3,4-hi]indole (109);
 - 4-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (110);
 - 5-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (111);
- 25 6-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole (112);

- 4-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (113);
- 5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (114);
- 5 6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (115);
 - 4-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (116);
- 5-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-10 hi]indole (117);
 - 6-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (118);
 - 4,5-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (119);
- 15 5,6-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (120);
 - 4,6-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (121);
 - 4-chloro-5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]
- 20 thiazino[2,3,4-hi]indole (122);
 - 4-chloro-6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (123);
 - 5-chloro-6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (124);
- 25 6-chloro-5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (125);

- 4-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (126);
- 5-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (127);
- 6-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (128);
 - 4-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (129);
- 5-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-10 hi]indole (130);
 - 6-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole; (131)
 - 4-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (132);
- 15 5-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (133);
 - 6-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (134);
- 4-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-20 hi]indole (135);
 - 5-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (136);
 - 6-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole (137);
- 25 1-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (138);

- 3-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (139);
- 1-bromo-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (140);
- 5 2-bromo-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (141);
 - 3-bromo-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (142);
- 3-chloro-1-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole 10 (143);
 - 2-chloro-1-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1hi]indole (144);
 - 1-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (145);
- 15 3-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole (146);
 - 4-methyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2;1-hi]indole (147);
- 1-(trifluoromethyl)-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-20 hi]indole (148);
 - 2-(trifluoromethyl)-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1hi]indole (149);
 - 3-(trifluoromethyl)-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1hi]indole (150);
- 25 4-benzyloxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aHazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (151);

- 4-(3-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (152);
- 4-(2-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (153);
- 5 4-(4-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (154);
 - 4-(3-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (155);
 - 4-(2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-
- 10 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (156);
 - 4-(4-bromo-2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (157);
 - 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (158);
- N-phenyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (159);
 - N-(4-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (160);
 - N-(3-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (161);
 - N-(2-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (162);
 - N-(4-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (163);
- N-(3-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (164);

25

N-(2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (165); N-(4-bromo-2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine (166); 5 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-4thione (167); 4-(phenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (168); 4-(4-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-10 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (169); 4-(3-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (170); 4-(2-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (171); 15 4-(4-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (172); 4-(3-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (173); 4-(2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (174); 4-(4-bromo-2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (175); 5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1ij]quinolin-5-ol (176);

5-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (177);

- 5-benzyloxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (178);
 5-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (179);
- 5-(4-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (180); 5-(3-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (181);
 - 5-(2-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-
- 10 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (182);
 - 5-(4-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (183);
 - 5-(3-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (184);
- 5-(2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (185);
 - 5-(4-bromo-2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (186);
- 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-20 amine (187);
 - N-phenyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (188);
 - N-(4-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (189);
- N-(3-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (190);

N-(2-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (191); N-(4-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (192); N-(3-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (193); N-(2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (194); N-(4-bromo-2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine (195); 10 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-5thione (196); 5-(phenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (197); 15 5-(4-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (198); 5-(3-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (199); 5-(2-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (200); 5-(4-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (201); 5-(3-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (202); 25 5-(2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (203);

WO 00/64899 PCT/US00/10600

66

- 5-(4-bromo-2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (204);
- 4-(4-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (205);
- 5 1-[2-(4-fluorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (206);
 - 1-[2-(3-fluorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (207);
- 1-[2-(2-fluorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (208); 10
 - 1-[2-(4-chlorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (209);
 - 1-[2-(3-chlorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (210);
- 15 1-[2-(2-chlorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (211);
 - 1-[2-(4-bromophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (212);
- 1-[2-(3-bromophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (213);
 - 1-[2-(2-bromophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (214);
 - 1-[2-(4-methoxyphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (215);
- 25 1-[2-(3-methoxyphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (216);

- 1-[2-(2-methoxyphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (217);
- 1-[2-(4-methylphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (218);
- 5 1-[2-(3-methylphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (219);
 - 1-[2-(2-methylphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (220);
 - 1-[2-(1-naphthyloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-
- 10 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (221);
 - 1-[2-(2-naphthyloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (222);
 - 1-[2-([1,1'-biphenyl]-4-yloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (223);
 - 1-[2-([1,1'-biphenyl]-3-yloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (224);
 - 1-[2-([1,1'-biphenyl]-2-yloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (225);
 - 1-{2-[4-(trifluoromethoxy)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (226);
 - 1-{2-[3-(trifluoromethoxy)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (227);
 - 1-{2-[2-(trifluoromethoxy)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (228);
 - 25 1-{2-[4-(trifluoromethyl)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (229);

1-{2-[3-(trifluoromethyl)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (230); and

1-{2-[2-(trifluoromethyl)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline (231).

5

EXAMPLE 53 Using synthetic procedures similar to those described herein, the following compounds of formula (I) wherein R_2 is a protecting group can also be prepared:

benzyl 5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-

- 10 ij]quinoline-10-carboxylate;
 - benzyl 2-methyl-5,6,8,9,11,12-hexahydro-4H,10H
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
 - 10-benzoyl-1-methoxy-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinoline;
- 15 benzyl 2-fluoro-5,6,8,9,11,12-hexahydro-4H,10H
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
 - benzyl 6-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
 - benzyl 5-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
 - benzyl 4-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
 - (+)-benzyl 6-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
- 25 (-)-benzyl 6-methyl-5,6,8,9,11,12-hexahydro-4H,10H
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
 - (+)-benzyl 5-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;

- (-)-benzyl 5-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
- (+)-benzyl 4-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
- 5 (-)-benzyl 4-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; benzyl 2-methyl-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate; benzyl 2,2-dimethyl-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
- b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate; benzyl 4-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate; benzyl 4-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
- benzyl 5-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 benzyl 5-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 benzyl 5-methyl-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
- hi]indole-9-carboxylate; benzyl 6-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate; benzyl 6-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
- benzyl 6-methyl-1,2,6b,7,8,10,11,11a-octahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 benzyl 6-(trifluoromethyl)-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino [2,3,4-hi]indole-9-carboxylate;
 benzyl 5,6-difluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
- 30 b][1,4]oxazino[2,3,4-hi]indole-9-carboxylatebenzyl;

benzyl 5-chloro-6-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-

b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;

benzyl 5-fluoro-6-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-

b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;

- 5 benzyl 5,6-dichloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5
 - b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 4,6-dichloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
 - b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - 7-benzoyl 4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
- 7-benzoyl 2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 7-benzoyl 2-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - benzyl-5-methyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]-7-
- 15 carboxylate;
 - benzyl-4,5-dimethyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole-7-carboxylate;
 - benzyl-2,3,4,5,8b,9,10,11,12,12a-decahydro-1H-azepino[4',5':4,5]pyrrolo[3,2,1-ik]carbazole-7-carboxylate;
- benzyl-1-chloro-2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5
 - b]pyrrolo[3,2,1-hi]indole-7-carboxylate;
 - benzyl-2-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-
 - hi]indole-7-carboxylate;
 - benzyl-1-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-
- 25 hi]indole-7-carboxylate;
 - 10-benzoyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-
 - ij]quinolin-4- one;
 - 10-benzoyl-2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinolin-4-one;
- 30 10-benzoyl-2-chloro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo-

71

[3,2,1-ij]quinolin-4-one; 10-benzoyl-6-methyl-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinolin-4-one; 10-benzoyl-2-fluoro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]-pyrrolo[3,2,1-ij]quinolin-4-one; 5 10-benzoyl-2,3-dichloro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one; 10-benzoyl-6-propyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinolin-4-one; 10 10-benzoyl-6-(trifluoromethyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one; 10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-4H,7aHazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol; and 10-benzoyl-4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-15 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline.

All cited publications, patents, and patent documents are incorporated by reference herein, as though individually incorporated by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

72

CLAIMS

What is claimed is:

1. A compound of formula I:

5

$$(R_1)_n$$
 $X-Y$
 R_2

(I)

10

15

20

25

30

wherein,

each R_1 is independently hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkanoyloxy, aryl, heteroaryl, $-S(O)_mNR_aR_b$, NR_aR_d , $-S(O)_mR_e$, or $-C(=O)NR_aR_b$, wherein any $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, or $C_{1.7}$ alkanoyloxy of R_1 is optionally partially unsaturated and is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, $-S(O)_mR_e$, $-S(O)_mNR_aR_b$, $-S(O)_mNR_aR_b$, or $-C(=O)NR_aR_b$;

 R_2 is hydrogen, C_{1-7} alkyl, C_{1-7} alkanoyl, arylcarbonyl, aryl, (aryl) C_{1-7} alkyl, C_{1-7} alkoxycarbonyl, aryloxycarbonyl, arylsulfonyl, or (aryl) C_{1-7} alkoxycarbonyl;

X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_qR_r, -S(O)_pR_s, or -OR_t, or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl; or wherein the chain is optionally substituted on a carbon

5

15

25

with a 4, 5, or 6 membered spirocyclic carbon ring; or wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain (e.g. -CH₂CH₂-, -CH₂CH₂CH₂-, or -CH₂CH₂CH₂-) forming a ring that is fused to the ring comprising X and Y;

each m is independently 0, 1, or 2;

n is 0, 1, 2, or 3;

p is 0, 1, or 2;

each R_a and R_b is independently hydrogen, C₁₋₇alkyl, aryl,

(aryl)C₁₋₇alkyl, heteroaryl, or (heteroaryl)C₁₋₇alkyl; or R_a and R_b together with the

nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino,
or thiomorpholino ring;

each R_e and R_d is independently hydrogen, $C_{1.7}$ alkyl, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, (heteroaryl) $C_{1.7}$ alkyl, arylcarbonyl, heteroarylcarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl; or R_e and R_d together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

each R_e is independently hydrogen, C_{1.7}alkyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl, or (heteroaryl)C_{1.7}alkyl;

R_f is hydrogen, C_{1.7}alkyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl,

(heteroaryl)C_{1.7}alkyl, or is a bond to a 2, 3, or 4 membered alkylene chain that forms a ring that is fused to the ring comprising X and Y;

each R_q and R_r is independently hydrogen, $C_{1.7}$ alkyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, or (heteroaryl) $C_{1.7}$ alkyl; or R_q and R_r together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

 R_s is C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} alkyl; and

 $R_{1.7}$ is hydrogen, $C_{1.7}$ alkyl, aryl, (aryl) $C_{1.7}$ alkyl, heteroaryl, or (heteroaryl) $C_{1.7}$ alkyl;

wherein any aryl or heteroaryl ring of R_1 , R_2 , X, Y, R_a - R_p , or R_q - R_t is optionally substituted with one or more (e.g. 1, 2, 3, or 4) substituents independently selected from halo, hydroxy, cyano, nitro, trifluoromethyl, trifluoromethoxy, C_{1-7} alkyl, C_{1-7} alkoxy, phenyl, sulfonyl, NR_jR_k , or - $C(=O)NR_jR_k$; wherein each R_j and R_k is independently hydrogen, C_{1-7} alkyl, C_{1-7} alkoxycarbonyl, aryl, (aryl) C_{1-7} alkyl, arylcarbonyl, or aryloxycarbonyl; or R_j and R_k together with the nitrogen to which they are

attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

or a pharmaceutically acceptable salt thereof; provided Y is not oxy, thio, sulfinyl, or NR_f; and provided X and Y together are not a 2-membered unsaturated

provided no carbon of X and Y is bonded to more than one oxy, thio, sulfinyl, or NR_r.

15

10

chain; and

- 2. The compound of claim 1 wherein each R_1 is independently hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, C_{1-7} alkyl, C_{1-7} alkoxy, C_{1-7} alkoxy, C_{1-7} alkoxycarbonyl, C_{1-7} alkanoyloxy, aryl, heteroaryl, $S(O)_mNR_aR_b$, NR_cR_d , - $S(O)_mR_c$, or - $C(=O)NR_aR_b$, wherein any C_{1-7} alkyl,
- C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇alkoxycarbonyl, or C₁₋₇alkanoyloxy of R₁ is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇alkoxycarbonyl, C₁₋₇alkanoyloxy, -S(O)_mR_e, -S(O)_mNR_eR_b, NR_eR_d, or -C(=O)NR_eR_b.
- The compound of claim 1 wherein each R₁ is independently hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, C_{1.7}alkyl, C_{1.7}alkoxy, C_{1.7}alkanoyl, C_{1.7}alkoxycarbonyl, C_{1.7}alkanoyloxy, aryl, heteroaryl, -S(O)_mNR_xR_b, NR_xR_d, -S(O)_mR_e, or -C(=O)NR_xR_b, wherein any C_{1.7}alkyl or C_{1.7}alkoxy of R₁ is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, C_{1.7}alkoxy, C_{1.7}alkanoyl,

25

 $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, $-S(O)_m R_t$, $-S(O)_m N R_a R_b$, $N R_t R_d$, or $-C(=O)N R_a R_b$.

- 4. The compound of claim 1 wherein each R₁ is independently

 hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, C_{1.7}alkyl,

 C_{1.7}alkoxy, C_{1.7}alkanoyl, C_{1.7}alkoxycarbonyl, C_{1.7}alkanoyloxy, aryl, heteroaryl,
 S(O)_mNR_aR_b, NR_cR_d, -S(O)_mR_e, or -C(=O)NR_aR_b, wherein any C_{1.7}alkyl is

 optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy,

 nitro, halo, cyano, C_{1.7}alkoxy, C_{1.7}alkanoyl, C_{1.7}alkoxycarbonyl, C_{1.7}alkanoyloxy,

 -S(O)_mR_e, -S(O)_mNR_aR_b, NR_cR_d, or -C(=O)NR_aR_b.
- The compound of claim 1 wherein each R₁ is independently hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, C₁₋₇alkyl, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇alkoxycarbonyl, C₁₋₇alkanoyloxy, aryl, heteroaryl, S(O)_mNR_aR_b, NR_cR_d, -S(O)_mR_e, or -C(=O)NR_aR_b.
 - 6. The compound of claim 1 wherein each R_1 is independently C_{1-7} alkyl, C_{1-7} alkoxy, trifluoromethyl, or halo.
- 7. The compound of claim 1 wherein n is 1 and R_1 is $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, or halo.
 - 8. The compound of claim 1 wherein n is 1 and R_1 is methyl, methoxy, chloro, or fluoro.
 - 9. The compound of claim 1 wherein R₂ is hydrogen.
 - 10. The compound of claim 1 wherein n is 1, 2, or 3.
- 30 11. The compound of claim 1 wherein n is 0.

76

12. The compound of claim 1 wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (-S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_qR_r, -S(O)_pR_s, or -OR_p, or with one or two substituents independently selected from the group consisting of C_{1-7} alkyl, $(C_{1-7}$ alkoxy) C_{1-7} alkyl, aryl, $(aryl)C_{1-7}$ alkyl, heteroaryl, (heteroaryl) C_{1-7} alkyl, and (aryl)oxy C_{1-7} alkyl.

10

15

5

- 13. The compound of claim 1 wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_qR_r, -S(O)_pR_s, or -OR_t.
- 14. The compound of claim 1 wherein X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl.

25

30

15. The compound of claim 1 wherein X and Y together are a 2, 3, or 4 membered chain comprising one or more carbon atoms and optionally comprising one oxy, thio, sulfinyl, sulfonyl, or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), hydroxy, (aryl)oxy, heteroaryl(oxy) or $C_{1,7}$ alkoxy, or with one or two substituents independently

selected from the group consisting of $C_{1.7}$ alkyl, $(C_{1.7}$ alkoxy) $C_{1.7}$ alkyl, aryl, $(aryl)C_{1.7}$ alkyl, heteroaryl, (heteroaryl) $C_{1.7}$ alkyl, and (aryl)oxy $C_{1.7}$ alkyl; and wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain forming a ring that is fused to the ring comprising X and Y.

5

- 16. The compound of claim 1 wherein X and Y together are a 2, 3, or 4 membered carbon chain wherein the chain is optionally substituted on each carbon with oxo, hydroxy, (aryl)oxy, heteroaryl(oxy) or C₁₋₇alkoxy, or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl.
- 17. The compound of claim 1 wherein X and Y together are a 2 or 3
 15 membered carbon chain optionally substituted on each carbon with oxo or hydroxy, or with one or two C_{1.7}alkyl.
- The compound of claim 1 wherein X is -O-, -S-, or -C(R_g)(R_h)-, wherein R_g and R_h are each independently hydrogen, C₁₋₇alkyl, (C₁₋₇alkoxy)C₁.
 7alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl or (aryl)oxyC₁₋₇alkyl, or R_g and R_h together are oxo.
- The compound of claim 1 wherein Y is -C(R_g)(R_h)-,
 -C(R_g)(R_h)C(R_g)(R_h)-, -C(R_g)(R_h)C(R_g)(R_h)C(R_g)(R_h)-, -C(R_g)(R_h)C(=O)-,
 -C(R_g)(R_h)C(R_g)(R_h)C(=O)-, -C(=O)C(R_g)(R_h)-, or -C(=O)C(R_g)(R_h)C(R_g)(R_h)-,
 and each R_g and R_h is independently hydrogen or C_{1.7}alkyl.
- 20. The compound of claim 1 wherein X is -O-, -S-, or - $C(R_g)(R_h)$ -; and Y is - $C(R_g)(R_h)C(=0)$ -, or - $C(R_g)(R_h)C(R_g)(R_h)$ -, wherein each R_g and R_h is independently hydrogen or C_{1-7} alkyl.

21. The compound of claim 1 wherein X is -O- or -S-; and Y is -C(R_g)(R_h)C(=O)-, -C(=O)C(R_g)(R_h)-, or -C(R_g)(R_h)C(R_g)(R_h)-, wherein each R_g and R_h is independently hydrogen or C_{1-7} alkyl.

5

- 22. The compound of claim 1 wherein X and Y together are -
- $-\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}_2\text{--}, -\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}_2\text{--}, -\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}_2\text{--},$
- $-C(R_p)=C(R_p)CH_2-$, $-CH=CHCH(R_p)CH_2-$, $-CH(R_p)CH=CHCH_2-$,
- -O-CH₂CH₂-, -O-CH₂CH(R₂)CH₂-, -S-CH₂CH₂-, -S-CH₂CH(R₂)CH₂-,
- 10 -S(O)-CH₂CH₂-, -S(O)-CH₂CH(R₂)CH₂-, -S(O)₂-CH₂CH₂-,
 - -S(O)₂-CH₂CH(R₂)CH₂-, -NR_f-CH₂CH₂-, -NR_f-CH₂CH(R₂)CH₂-, -CH₂C(=O)-,
 - -CH(R_x)CH₂C(=O)-, -CH(R_x)CH(R_x)CH₂C(=O)-, -CH₂OC(=O)-, -
 - CH(R_g)CH₂OC(=O)-, -OCH₂C(=O)-, or -OCH₂CH₂C(=O)-; wherein each R_g is independently -NR_gR_r, -S(O)_gR_s, or -OR_r.

- 23. The compound of claim 1 wherein X and Y together are -
- $-\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})-,\ -\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})-,\ -\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})\mathrm{CH}(R_{\mathfrak{p}})-,$
- -CH=CHCH(R_p)-, -C(R_p)=C(R_p)CH(R_p)CH(R_p)-, -CH(R_p)C(R_p)=C(R_p)CH(R_p)-, -
- -O-CH(R_y)CH(R_y)-, -O-CH(R_y)CH(R_y)CH(R_y)-, -S-CH(R_y)CH(R_y)-,
- 20 -S-CH(R_p)CH(R_p)CH(R_p)-, -S(O)-CH(R_p)CH(R_p)-,
 - $-S(O)-CH(R_g)CH(R_g)CH(R_g)-, -S(O)_2-CH(R_g)CH(R_g)-,$
 - $-S(O)_2\text{-CH}(R_g)\text{CH}(R_g)\text{CH}(R_g)-, -NR_f\text{-CH}(R_g)\text{CH}(R_g)-, \\$
 - $-NR_{r}CH(R_{g})CH(R_{g})-,-CH(R_{g})C(=O)-,-CH(R_{g})CH(R_{g})C(=O)-,$
 - $-\mathrm{CH}(R_{g})\mathrm{CH}(R_{g})\mathrm{CH}(R_{g})\mathrm{C}(=\mathrm{O})-, -\mathrm{CH}(R_{g})\mathrm{OC}(=\mathrm{O})-, -\mathrm{CH}(R_{g})\mathrm{CH}(R_{g})\mathrm{OC}(=\mathrm{O})-,$
- -OCH(R_g)C(=O)-, or -OCH(R_g)CH(R_g)C(=O)-; wherein each R_g is independently hydrogen, C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, (aryl)oxy, heteroaryl(oxy), or (aryl)oxyC₁₋₇alkyl.
 - 24. The compound of claim1 wherein X and Y together are -
- 30 $-CH(R_g)CH(R_g)$ -, $-CH(R_g)CH(R_g)CH(R_g)$ -, $-C(R_g)=C(R_g)CH(R_g)$ -,

79

-O-CH(R_g)CH(R_g)-, -S-CH(R_g)CH(R_g)-, -S(O)-CH(R_g)CH(R_g)-, -S(O)₂-CH(R_g)CH(R_g)-, -NR_f-CH(R_g)CH(R_g)-, -CH(R_g)C(=O)-, -CH(R_g)C(=O)-, -OCH(R_g)C(=O)-; wherein each R_g is independently hydrogen or C₁₋₇alkyl.

5

25. The compound of claim 1 wherein X and Y together are - $-CH(R_g)CH_{2^-}$, $-CH(R_g)CH(R_g)CH_{2^-}$, or $-O-CH_2CH_{2^-}$, wherein each R_g is independently $-NR_qR_r$, $-S(O)_pR_s$, $-OR_r$, $C_{1.7}$ alkyl, $(C_{1.7}$ alkyl, $C_{1.7}$ alkyl, aryl, $(aryl)C_{1.7}$ alkyl, heteroaryl, (heteroaryl) $C_{1.7}$ alkyl, and $(aryl)oxyC_{1.7}$ alkyl.

10

26. The compound of claim 1 wherein X and Y together are -C(=O)CH₂-, -CH₂C(=O)-, -C(=S)CH₂-, -CH₂C(=S)-, -C(=O)CH₂CH₂-, -CH₂C(=O)CH₂-, -CH₂C(=O)-, -C(=S)CH₂CH₂-, -CH₂C(=S)CH₂-, or -CH₂CH₂C(=S)-.

- 27. The compound of claim 1 wherein X and Y together are -CH(R_g)CH(R_g)-, -CH(R_g)CH(R_g)-, -C(R_g)=C(R_g)CH(R_g)-,
 -O-CH(R_g)CH(R_g)-, -S-CH(R_g)CH(R_g)-, -S(O)-CH(R_g)CH(R_g)-,
 -S(O)₂-CH(R_g)CH(R_g)-, -NR_f-CH(R_g)CH(R_g)-, or -CH(R_g)CH(R_g)C(=O)-;
 wherein each R_g is independently hydrogen, C₁₋₇alkyl, or together with an R_g on an adjacent carbon atom forms a fused 4, 5, or 6, membered carbocyclic ring.
- The compound of claim 1 wherein X and Y together are --CH(R_g)CH(R_g)-, -CH(R_g)CH(R_g)-, -O-CH(R_g)CH(R_g)-,
 -S-CH(R_g)CH(R_g)-; wherein each R_g is independently hydrogen, C₁₋₇alkyl, aryl, or (aryl)C₁₋₇alkyl.
 - 29. The compound of claim 1 wherein X and Y together are --CH₂CH₂CH₂-, -CH₂C(CH₃)H-, -CH₂C(CH₃)HCH₂-, -C(CH₃)HCH₂CH₂-, -

- -CH₂CH₂-, -CH₂C(CH₃)H-, -C(CH₃)HC(CH₃)H-, -CH(R_g)CH(R_g)-, -O-CH₂CH₂-, -O-C(CH₃)HCH₂-, or -S-CH₂CH₂-.
- 10 31. The compound of any one of claims 1 to 30 wherein R_2 is hydrogen
 - 32. The compound of claim 1 which is: 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-
- 15 ij]quinoline;

2-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

1-methoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

5-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-

25 ij]quinoline;

4-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

(+)-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

- (-)-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - (+)-5-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5 (-)-5-methyl-5,6,9,10,11,12-hexahydro-4H,8H
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - (+)-4-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - (-)-4-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 2-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-
 - hi]indole;
- 5-methyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 4,5-dimethyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 2,3,4,5,8b,9,10,11,12,12a-decahydro-1H-azepino[4',5':4,5]pyrrolo[3,2,1-jk]carbazole;
- 20 6-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;
 - 1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;
 - 6-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;
- 25 5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;
 - 5-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;
- 6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-
- 30 hi]indole;

82

2-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;

1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]thiazino[2,3,4-hi]indole;

2,2-dimethyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b] [1,4]oxazino[2,3,4-

5 hi]indole;

4-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;

4-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;

10 5-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;

6-(trifluoromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino [4,5-

b][1,4]oxazino[2,3,4-hi]indole;

5,6-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b] [1,4]oxazino[2,3,4-

15 hi]indole;

5-chloro-6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-

b][1,4]oxazino[2,3,4-hi]indole;

6-chloro-5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-

b][1,4]oxazino[2,3,4-hi]indole;

20 5,6-dichloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;

4,6-dichloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole;

1-chloro-2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-

25 hi]indole;

1-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole; 2-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole; 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

- 2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
- 2-chloro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
- 6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
 - 2-fluoro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
 - 2,3-dichloro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
- 10 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
 - 6-propyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
 - 6-(trifluoromethyl)-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
- 15 5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol;
 - 4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 10-benzoyl-4-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; or
 - 4-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - or a pharmaceutically acceptable salt thereof.
- 25 33. The compound 1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole; or a pharmaceutically acceptable salt thereof.
 - The compound of claim 1 which is:4-bromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-
- 30 hi]indole;

- 5-bromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
- 6-bromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
- 5 5,6-dibromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
 - 4,6-dibromo-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
 - 4-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-
- 10 hi]indole;
 - 5-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
 - 6-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
- 15 4-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
 - 5-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
 - 4-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-
- 20 hi]indole;
 - 5-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
 - 6-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] oxazino[2,3,4-hi]indole;
- 25 4-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-
- 30 hi]indole;

- 4-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 5-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 6-chloro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 4,5-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 5,6-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-
- 10 hi]indole;
 - 4,6-difluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 4-chloro-5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 15 4-chloro-6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 5-chloro-6-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 6-chloro-5-fluoro-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4]
- 20 thiazino[2,3,4-hi]indole;
 - 4-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 5-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 25 6-methyl-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 4-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 5-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-
- 30 hi]indole;

- 6-methoxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 4-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 5 5-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 6-(triflouromethyl)-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 4-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-
- 10 hi]indole;
 - 5-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
 - 6-benzyloxy-1,2,8,9,10,11-hexahydro-7H-azepino[4,5-b][1,4] thiazino[2,3,4-hi]indole;
- 15 1-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 3-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 1-bromo-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 2-bromo-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 3-bromo-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
- 20 3-chloro-1-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 2-chloro-1-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 1-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole; 3-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
- 25 4-methyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 1-(trifluoromethyl)-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
 - 2-(trifluoromethyl)-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;

- 3-(trifluoromethyl)-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;
- 4-benzyloxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5 4-(3-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; 4-(2-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

- 4-(4-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 4-(3-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 4-(4-bromo-2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine;
 - N-phenyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-
- 20 ij]quinolin-4-amine;
 - N-(4-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine; N-(3-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine;
- 25 N-(2-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine;
 N-(4-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine;
 N-(3-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- 30 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine;

- N-(2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine; N-(4-bromo-2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-amine;
- 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-4-thione;
 - 4-(phenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(4-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(3-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(2-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 4-(4-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(3-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 4-(4-bromo-2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-
 - ij]quinolin-5-ol;
- 25 5-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 5-benzyloxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-
 - azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 5-phenoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-
- 30 ij]quinoline;

- 5-(4-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; 5-(3-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5 (2-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; 5-(4-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; 5-(3-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(4-bromo-2-methoxyphenoxy)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine;
 - N-phenyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine;
 - N-(4-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine; N-(3-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine; N-(2-chlorophenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine;
- N-(4-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine;
 N-(3-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine;
 N-(2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- 30 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine;

- N-(4-bromo-2-methoxyphenyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-5-amine; 5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-5-thione;
- 5 5-(phenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(4-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(3-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(2-chlorophenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(4-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5-(3-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 5-(4-bromo-2-methoxyphenylsulfonyl)-5,6,9,10,11,12-hexahydro-4H,8H-
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 4-(4-chlorophenoxy)-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 1-[2-(4-fluorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 1-[2-(3-fluorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 1-[2-(2-fluorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 1-[2-(4-chlorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

- 1-[2-(3-chlorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 1-[2-(2-chlorophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5 1-[2-(4-bromophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(3-bromophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(2-bromophenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(4-methoxyphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(3-methoxyphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 15 1-[2-(2-methoxyphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(4-methylphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - $1\hbox{-}[2\hbox{-}(3\hbox{-methylphenoxy})\hbox{ethoxy}]\hbox{-}5,6,9,10,11,12\hbox{-hexahydro-}4H,8H\hbox{-}10,11,12\hbox{-hexahydro-}4H,8H,9]$
- 20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(2-methylphenoxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-(1-naphthyloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 25 1-[2-(2-naphthyloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-([1,1'-biphenyl]-4-yloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-[2-([1,1'-biphenyl]-3-yloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-
- 30 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;

- 1-[2-([1,1'-biphenyl]-2-yloxy)ethoxy]-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 1-{2-[4-(trifluoromethoxy)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
- 5 1-{2-[3-(trifluoromethoxy)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-{2-[2-(trifluoromethoxy)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - $1\hbox{-}\{2\hbox{-}[4\hbox{-}(trifluoromethyl)phenoxy}] ethoxy\}\hbox{-}5,6,9,10,11,12\hbox{-}hexahydro\hbox{-}4H,8H-$
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline;
 - 1-{2-[3-(trifluoromethyl)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; or
 - 1-{2-[2-(trifluoromethyl)phenoxy]ethoxy}-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline; or a pharmaceutically acceptable salt
- 15 thereof.
 - 35. A pharmaceutical composition comprising a compound of any one of claims 31 to 34 and a pharmaceutically acceptable excipient.
- 20 36. A compound of any one of claims 31 to 34 for use in medical diagnosis or therapy.
 - 37. The compound of claim 36 wherein the therapy is the treatment of a disease or disorder of the central nervous system.

25

38. The compound of claim 37 wherein the disease or disorder of the central nervous system is obesity, depression, schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, a stress related disease, panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress

93

syndrome, immune system depression, a stress induced problem with the urinary, gastrointestinal or cardiovascular system, neurodegenerative disorders, autism, chemotherapy-induced vomiting, hypertension, migraine, headaches, cluster headaches, sexual dysfunction, addictive disorder and withdrawal syndrome, an adjustment disorder, an age-associated learning and mental 5 disorder, anorexia nervosa, apathy, an attention-deficit disorder due to general medical conditions, attention-deficit hyperactivity disorder, behavioral disturbance, bipolar disorder, bulimia nervosa, chronic fatigue syndrome, conduct disorder, cyclothymic disorder, dysthymic disorder, fibromyalgia and 10 other somatoform disorders, generalized anxiety disorder, an inhalation disorder, an intoxication disorder, movement disorder, oppositional defiant disorder, peripheral neuropathy, post-traumatic stress disorder, premenstrual dysphoric disorder, a psychotic disorder, mood disorder, seasonal affective disorder, a sleep disorder, a specific development disorder, agitation disorder, selective serotonin reuptake inhibition syndrome, or a Tic disorder. 15

- 39. The compound of claim 36 wherein the therapy is the treatment of anxiety, obesity, depression, or a stress related disease.
- 20 40. The use of a compound of any one of claims 31 to 34 to prepare a medicament for treating or preventing a disease or disorder of the central nervous system.
- 41. The use of claim 40 wherein the disease or disorder of the central nervous system is obesity, depression, schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, a stress related disease, panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress syndrome, immune system depression, a stress induced problem with the urinary, gastrointestinal or cardiovascular system, neurodegenerative disorders, autism, chemotherapy-induced vomiting, hypertension, migraine, headaches,

94

cluster headaches, sexual dysfunction, addictive disorder and withdrawal syndrome, an adjustment disorder, an age-associated learning and mental disorder, anorexia nervosa, apathy, an attention-deficit disorder due to general medical conditions, attention-deficit hyperactivity disorder, behavioral disturbance, bipolar disorder, bulimia nervosa, chronic fatigue syndrome, conduct disorder, cyclothymic disorder, dysthymic disorder, fibromyalgia and other somatoform disorders, generalized anxiety disorder, an inhalation disorder, an intoxication disorder, movement disorder, oppositional defiant disorder, peripheral neuropathy, post-traumatic stress disorder, premenstrual dysphoric disorder, a psychotic disorder, mood disorder, seasonal affective disorder, a sleep disorder, a specific development disorder, agitation disorder, selective serotonin reuptake inhibition syndrome, or a Tic disorder.

- 42. The use of claim 40 wherein the disease or disorder of the central nervous system is anxiety, obesity, depression, or a stress related disease.
 - 43. A method for treating a disease or condition in a mammal wherein the 5-HT receptor is implicated and modulation of 5-HT function is desired comprising administering a therapeutically effective amount of a compound of any one of claims 31 to 35 to the mammal.
 - 44. The method of claim 43 wherein the disease or condition is anxiety, obesity, depression, schizophrenia, a stress related disease, panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress syndrome, immune system depression, a stress induced problem with the gastrointestinal or cardiovascular system, or sexual dysfunction.
 - 45. The method of claim 44 wherein the disease is anxiety, obesity, depression, or a stress related disease.

25

- A method for treating or preventing a disease or disorder of the central nervous system in a mammal comprising administering a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof to the mammal.
- The method of claim 46 wherein the disease or disorder of the 5 47. central nervous system is obesity, depression, schizophrenia, schizophreniform disorder, schizoaffective disorder, delusional disorder, a stress related disease, panic disorder, a phobia, obsessive compulsive disorder, post-traumatic-stress syndrome, immune system depression, a stress induced problem with the urinary, gastrointestinal or cardiovascular system, neurodegenerative disorders, 10 autism, chemotherapy-induced vomiting, hypertension, migraine, headaches, cluster headaches, sexual dysfunction, addictive disorder and withdrawal syndrome, an adjustment disorder, an age-associated learning and mental disorder, anorexia nervosa, apathy, an attention-deficit disorder due to general medical conditions, attention-deficit hyperactivity disorder, behavioral 15 disturbance, bipolar disorder, bulimia nervosa, chronic fatigue syndrome, conduct disorder, cyclothymic disorder, dysthymic disorder, fibromyalgia and other somatoform disorders, generalized anxiety disorder, an inhalation disorder, an intoxication disorder, movement disorder, oppositional defiant disorder, peripheral neuropathy, post-traumatic stress disorder, premenstrual dysphoric 20 disorder, a psychotic disorder, mood disorder, seasonal affective disorder, a sleep disorder, a specific development disorder, agitation disorder, selective serotonin reuptake inhibition syndrome, or a Tic disorder.

25 48. A compound of formula I:

$$(R_i)_n$$

5

10

15

20

30

96

(I)

wherein,

each R_1 is independently hydroxy, nitro, halo, cyano, trifluoromethyl, trifluoromethoxy, $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, aryl, heteroaryl, $-S(O)_mNR_aR_b$, NR_cR_d , $-S(O)_mR_e$, or $-C(=O)NR_aR_b$, wherein any $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, or $C_{1.7}$ alkanoyloxy of R_1 is optionally partially unsaturated and is optionally substituted with aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, nitro, halo, cyano, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkoxycarbonyl, $C_{1.7}$ alkanoyloxy, $-S(O)_mR_e$, $-S(O)_mNR_aR_b$, NR_cR_d , or $-C(=O)NR_aR_b$;

R₂ is a suitable protecting group;

X and Y together are a 2, 3, or 4 membered saturated or partially unsaturated chain comprising one or more carbon atoms and optionally comprising one oxy (-O-), thio (-S-), sulfinyl (-SO-), sulfonyl (S(O)₂-), or NR_f in the chain; wherein the chain is optionally substituted on each carbon with oxo (=O), thioxo (=S), -NR_qR_r, -S(O)_pR_s, or -OR_r, or with one or two substituents independently selected from the group consisting of C₁₋₇alkyl, (C₁₋₇alkoxy)C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, (heteroaryl)C₁₋₇alkyl, and (aryl)oxyC₁₋₇alkyl; or wherein the chain is optionally substituted on a carbon with a 4, 5, or 6 membered spirocyclic carbon ring; or wherein the chain is optionally substituted on two adjacent atoms with a 2, 3, or 4 membered alkylene chain (e.g. -CH₂CH₂-, -CH₂CH₂-CH₂-, or -CH₂CH₂CH₂-) forming a ring that is fused to the ring comprising X and Y;

each m is independently 0, 1, or 2;

25 n is 0, 1, 2, or 3; p is 0, 1, or 2;

each R_a and R_b is independently hydrogen, C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} alkyl; or R_a and R_b together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

each R_a and R_d is independently hydrogen, C₁₋₇alkyl, C₁₋₇alkanoyl, C_{1.7}alkoxycarbonyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl, (heteroaryl)C_{1.7}alkyl, arylcarbonyl, heteroarylcarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl; or R_c and R_d together with the nitrogen to which they are attached form a

5 pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

each R, is independently hydrogen, C_{1.7}alkyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl, or (heteroaryl)C_{1.7}alkyl;

R. is hydrogen, C_{1.7}alkyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl, (heteroaryl)C_{1,7}alkyl, or is a bond to a 2, 3, or 4 membered alkylene chain that forms a ring that is fused to the ring comprising X and Y;

each R_n and R_r is independently hydrogen, C₁₋₇alkyl, aryl, (aryl)C_{1.7}alkyl, heteroaryl, or (heteroaryl)C_{1.7}alkyl; or R_n and R_r together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

R, is C_{1-7} alkyl, aryl, (aryl) C_{1-7} alkyl, heteroaryl, or (heteroaryl) C_{1-7} 15 alkyl; and

R, is hydrogen, C₁₋₇alkyl, aryl, (aryl)C₁₋₇alkyl, heteroaryl, or (heteroaryl)C_{1.7}alkyl;

wherein any aryl or heteroaryl ring of R₁, R₂, X, Y, R₃-R₆, or R₄-R₅ 20 is optionally substituted with one or more (e.g. 1, 2, 3, or 4) substituents independently selected from halo, hydroxy, cyano, nitro, trifluoromethyl, trifluoromethoxy, C_{1.7}alkyl, C_{1.7}alkoxy, phenyl, sulfonyl, NR_iR_t, or -C(=O)NR_iR_k; wherein each R_i and R_k is independently hydrogen, C₁₋₇alkyl, C₁₋₇alkanoyl, C₁₋₇alkoxycarbonyl, aryl, (aryl)C₁₋₇alkyl, arylcarbonyl, or 25 aryloxycarbonyl; or R; and R, together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, or thiomorpholino ring;

> or a pharmaceutically acceptable salt thereof; provided Y is not oxy, thio, sulfinyl, or NR; and provided X and Y together are not a 2-membered unsaturated

30 chain; and

provided no carbon of X and Y is bonded to more than one oxy, thio, sulfinyl, or NR_c.

- 49. The compound of claim 1 wherein R₂ is C₁₄alkyl, C₁₄alkanoyl, arylcarbonyl, (aryl)C₁₂alkyl, C₁₄alkoxycarbonyl, aryloxycarbonyl, arylsulfonyl, or (aryl)methoxycarbonyl, wherein any aryl is optionally substituted with 1, 2, or 3 substituents independently selected from C₁₄alkyl and trifluoromethyl.
- 50. The compound of claim 1 wherein R₂ is methyl, ethyl, propyl,
 isopropyl, acetyl, tert-butoxycarbonyl, benzyloxycarbonyl, benzyl, or p-toluenesulfonyl.
 - The compound of claim 1 which is: 10-benzoyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4- one;
- 15 10-benzoyl-2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4- one;

10-benzoyl-2-chloro-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4- one;

10-benzoyl-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-

20 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

10-benzoyl-2-fluoro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

10-benzoyl-2,3-dichloro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

25 10-benzoyl-6-propyl-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

10-benzoyl-6-(trifluoromethyl)-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-

30 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol; or

WO 00/64899

99

PCT/US00/10600

10-benzoyl-4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline.

- 52. The compound of claim 1 which is: benzyl 5,6,8,9,11,12-
- hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; benzyl 2-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; 10-benzoyl-1-methoxy-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinoline;
- benzyl 2-fluoro-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; benzyl 6-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; benzyl 5-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
- azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; benzyl 4-methyl-5,6,8,9,11,12-hexahydro-4H,10Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; (+)-benzyl 6-methyl-5,6,8,9,11,12-hexahydro-4H,10Hazepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;
- 20 (-)-benzyl 6-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; (+)-benzyl 5-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; (-)-benzyl 5-methyl-5,6,8,9,11,12-hexahydro-4H,10H-
- 25 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; (+)-benzyl 4-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate; (-)-benzyl 4-methyl-5,6,8,9,11,12-hexahydro-4H,10H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline-10-carboxylate;

- benzyl 2-methyl-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
- benzyl 2,2-dimethyl-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
- b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
- benzyl 4-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 4-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 5-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-
- 10 hi]indole-9-carboxylate;
 - benzyl 5-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 5-methyl-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
- benzyl 6-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 6-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 6-methyl-1,2,6b,7,8,10,11,11a-octahydro-9H-azepino[4,5-
- b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 6-(trifluoromethyl)-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
 - b][1,4]oxazino [2,3,4-hi]indole-9-carboxylate;
 - benzyl 5,6-difluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
 - b][1,4]oxazino[2,3,4-hi]indole-9-carboxylatebenzyl;
- benzyl 5-chloro-6-fluoro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5
 - b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 5-fluoro-6-chloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
 - b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;
 - benzyl 5,6-dichloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-
- 30 b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;

101

benzyl 4,6-dichloro-1,2,7,8,10,11-hexahydro-9H-azepino[4,5-

b][1,4]oxazino[2,3,4-hi]indole-9-carboxylate;

7-benzoyl 4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]indole;

7-benzoyl 2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-

- hilindole; 5
 - 7-benzoyl 2-methoxy-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1hilindole;
 - benzyl-5-methyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-hi]-7carboxylate;
- benzyl-4,5-dimethyl-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1-10 hi]indole-7-carboxylate;
 - benzyl-2,3,4,5,8b,9,10,11,12,12a-decahydro-1H-azepino[4',5':4,5]pyrrolo[3,2,1jk|carbazole-7-carboxylate;
 - benzyl-1-chloro-2-fluoro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-
- b]pyrrolo[3,2,1-hi]indole-7-carboxylate; 15
 - benzyl-2-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1hi]indole-7-carboxylate;
 - benzyl-1-chloro-4,5,8,9,10,11-hexahydro-7H-azepino[4,5-b]pyrrolo[3,2,1hilindole-7-carboxylate;
- 20 10-benzoyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1ij]quinolin-4-one;
 - 10-benzoyl-2-fluoro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinolin-4-one;
 - 10-benzoyl-2-chloro-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo-
- 25 [3,2,1-ij]quinolin-4-one;
 - 10-benzoyl-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]pyrrolo-[3,2,1-ij]quinolin-4-one;
 - 10-benzoyl-2-fluoro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-
 - azepino[4',5':4,5]-pyrrolo[3,2,1-ij]quinolin-4-one;
- 30 10-benzoyl-2,3-dichloro-6-methyl-5,6,9,10,11,12-hexahydro-4H,8H-

azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;
10-benzoyl-6-propyl-5,6,9,10,11,12-hexahydro-4H,8H-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one;

10-benzoyl-6-(trifluoromethyl)-5,6,9,10,11,12-hexahydro-4H,8H-

5 azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-one; 10-benzoyl-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinolin-4-ol; and 10-benzoyl-4-methoxy-5,6,8,9,10,11,12,12a-octahydro-4H,7aH-azepino[4',5':4,5]pyrrolo[3,2,1-ij]quinoline.

- 53. A method for preparing a compound of formula (I) wherein R_2 is hydrogen comprising deprotecting a corresponding compound of formula (I) wherein R_2 is a protecting group.
- 15 54. The method of claim 53 wherein the protecting group is benzyloxycarbonyl, or benzoyl.

Figure 1

Figure 2

$$(R_1)_n \longrightarrow OH \qquad (5)$$

$$(R_1)_n \longrightarrow OH \qquad (6)$$

$$(R_1)_n \longrightarrow OH \qquad (7)$$

$$R_2 \longrightarrow R_3 \qquad (7)$$

$$R_3 \longrightarrow H \qquad (8)$$

$$R_4 \longrightarrow OH \qquad (8)$$

$$R_4 \longrightarrow OH \qquad (8)$$

Figure 3

$$(R_1)_n \xrightarrow{N} (10)$$

$$(R_1)_n \xrightarrow{N} (10)$$

$$(R_1)_n \xrightarrow{N} (11)$$

$$(R_1)_n \xrightarrow{N} (12)$$

Figure 4

$$(R_1)_n$$
 $(R_1)_n$
 $(R_2)_n$
 $(R_3)_n$
 $(R_4)_n$
 $(R_4$

Figure 5

$$(R_1)_n$$
 R_2
 $(R_1)_n$
 R_2
 $(R_1)_n$
 R_2
 $(R_2)_n$
 R_3
 $(R_4)_n$
 R_4
 $(R_5)_n$
 $(R_6)_n$
 $(R_7)_n$
 $(R_7$

$$(R_1)_n$$

$$(R_1)_n$$

$$(R_1)_n$$

$$(R_1)_n$$

$$(R_1)_n$$

$$(R_1)_n$$

$$(R_1)_n$$

$$(R_2)_n$$

$$(R_3)_n$$

$$(R_4)_n$$

$$(R_5)_n$$

$$(R_5)_n$$

$$(R_5)_n$$

$$(R_7)_n$$

$$(R_8)_n$$

$$(R_8$$

INTERNATIONAL SEARCH REPORT

Interna al Application No PCT/US 00/10600

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C070471/16 A61 C07D513/16 A61K31/395 A61P43/00 C07D498/16 //(C07D471/16,223:00,221:00,209:00),(C07D471/16,223:00,209:00, 209:00),(C07D498/16,265:00,223:00,209:00),(C07D513/16,279:00, According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with Indication, where appropriate, of the relevant passages 1,35-37 EP 0 377 238 A (DUPHAR INTERNATIONAL Α RESEARCH B.V.) 11 July 1990 (1990-07-11) page 3, line 22 - line 33; claim 1 1,35,36 US 3 839 357 A (JACKSON B. HESTER ET AL.) A 1 October 1974 (1974-10-01) cited in the application column 1 -column 2 1,35,36 US 3 676 558 A (JACKSON B. HESTER) Α 11 July 1972 (1972-07-11) cited in the application column 1 -column 2 Patent family members are listed in annex. Further documents are listed in the continuation of box C. X T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance Invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 04/10/2000 12 September 2000 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Van Bijlen, H Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Interns. at Application No PCT/US 00/10600

A. CLASSIF	ication of subject matter 223:00,209:00)			
156 /	223:00,209.00)			
According to	International Patent Classification (IPC) or to both national classific	ation and IPC		
B. FIELDS	SEARCHED			
Minimum doo	cumentation searched (classification system followed by classificati	on symbols)		
Decementati	ion searched other than minimum documentation to the extent that	such documents are included in the fields sea	arched	
Docamenta				
Electroic di	ata base consulted during the international search (name of data ba	ase and, where practical, search terms used)		
Election ac de	and below out to the state of t			
C DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.	
			····	
1				
	·			
Fu	rther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.	
Special of	categories of cited documents:	"T" later document published after the in	emational filing date	
"A" docum	nent defining the general state of the art which is not	or priority date and not in commer with cited to understand the principle or t	TIME ADDICATOR DOL	
considered to be of particular relevance "E" earlier document but published on or after the international		"X" document of particular relevance; the	claimed invention	
filing date		cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
whice	th is cited to establish the publication date of another ion or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an i	nventive sted when the	
"O" docur	ment referring to an oral disclosure, use, exhibition or or means	document is combined with one or n ments, such combination being obvi	ous to a person skilled	
"P" docu	ment published prior to the international filing date but r than the priority date claimed	in the art. "8." document member of the same patent family		
1	e actual completion of the international search	Date of mailing of the international s	earch report	
	12 September 2000			
Name an	d mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer		
	European Patern Cince, P.B. 5616 Paternaan 2 NL – 2280 HV Rijswijk Tel. (431-70) 340–2040, Tx. 31 651 epo nl,	Van Piilan H		
1	18t. (+31-70) 340-2040, 1% 31 031 000111,	Van Bijlen, H		

INTERNATIONAL SEARCH REPORT

Interna al Application No PCT/US 00/10600

Patent document cited in search report		Publication		tent family	Publication
		date	member(s)		date
EP 377238	A	11-07-1990	AU	615818 B	10-10-1991
El 3//230	,,		AU	4716589 A	28-06-1990
			CA	2005974 A	22-06-1990
			DK	647389 A	23-06-1990
			JP	2258785 A	19-10-1990
			NZ	231870 A	25-02-1992
			US	5223625 A	29-06-1993
			ZA	8909744 A	26-09-1990
US 3839357	Α	01-10-1974	BE	698268 A	10-11-1967
03 3033331	••	•••••	CH	506543 A	30-04-1971
			DE	1695943 A	13-05-1971
			ES	340258 A	01-06-1968
			FR	6699 M	10-02-1969
			FR	1524495 A	02-09-1968
			GB	1180615 A	04-02-1970
			GB	1180616 A	04-02-1970
			IL	27776 A	29-11-1971
			IL	36801 A	29-11-1971
			NL	6706513 A	13-11-1967
US 3676558	Α	11-07-1972	NONE		

THIS PAGE BLANK (USPTO)