

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-227279

(43)Date of publication of application: 11.09.1989

(51)Int.CI.

G11B 21/20 B23K 26/00 B23K 26/06 F16F 1/18

(21)Application number: 63-054350

(71)Applicant: FUJITSU LTD

(22)Date of filing:

08.03.1988

(72)Inventor: MATSUSHITA NAOHISA

HARADA TADAAKI

(54) MAGNETIC HEAD FORMING PROCESSING METHOD

(57)Abstract:

PURPOSE: To obtain a stable spring pressure characteristic by radiating a laser beam pulse converged in the neighborhood of a prescribed bending position on the surface of the spring arm of a magnetic head by plural adjacent scanning line.

CONSTITUTION: A magnetic head moving part 15 is fixed in a prescribed position so that a tip part 1b of a magnetic head arm part 1 may not touch an inner surface contact part 16b of a contact shoe 16a of a load cell 16. The moving part 15 is moved in a Y direction, the tip part 1b is brought into contact with a contact part 16b, the moving part 15 is moved by the necessary deformation quantity of the tip part 1b and a clearance is formed. As moving a laser beam converging/radiating part 13 in an X direction by a laser beam driving part 14, a laser beam 11 is emitted and the surface of a spring arm 1a is scanned. Since the arm 1a is bent to an irradiation side on the scanning line of the beam 11, the above-mentioned clearance is narrowed. The irradiation

is repeated as moving the beam 11 in a Z direction until the clearance is lost, the tip part 1b touches the contact part 16b and the prescribed spring pressure is obtained, and the desired bending dimension and spring pressure are obtained. Thus, the magnetic head of stable characteristic can be easily supplied for a long period.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許出願公告番号

特公平7-77063

(24) (44)公告日 平成7年(1995) 8月16日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ	技術表示箇所
G11B	21/21	Z	8224-5D	•	
B 2 3 K	26/00	' G	_		
	26/06	E			
F 1 6 F	1/18		8917-3 J		

請求項の数1(全 6 頁)

質昭63-54350 1163年(1988) 3月8日 関平1-227279	(71)出願人 999999999999999999999999999999999999
• • • • • • • • • • • • • • • • • • • •	神奈川県川崎市中原区上小田中1015番地 (72)発明者 松下 直久
• • • • • • • • • • • • • • • • • • • •	(72)発明者 松下 直久
射平1 -227279	
用平1-227279	地本川周川越末市間屋も水田中1015季地
成1年(1989)9月11日	富士通株式会社内
	(72)発明者 原田 忠明
·	神奈川県川崎市中原区上小田中1015番地
	富士通株式会社内
	(74)代理人 弁理士 井桁 貞一
	審查官 萩原 義則
`	(56)参考文献 特開 昭63-303237 (JP, A)
	特開 昭58-88873 (JP, A)
	特開 昭60-147982 (JP, A)
	実開 昭61-189463 (JP, U)

(54) 【発明の名称】 スプリングアームの成形加工方法

1

【特許請求の範囲】

【請求項1】一端を自由端とするスプリングアームの所 定領域に曲げ成形加工を施して該自由端に所定の変位を 付与せしめるスプリングアームの成形加工方法であっ て、

スプリングアームの他端を固定する工程と、

該スプリングアームの自由端変位側の面を該スプリングアーム幅方向に走査し得る所定エネルギ密度の収束したレーザ光パルスを、該スプリングアームの所定領域内で上記所要の変移に対応する回数だけ該スプリングアーム 10の長さ方向に順次シフトさせながら照射するる工程、を含むことを特徴とするスプリングアームの成形加工方法。

【発明の詳細な説明】

〔概 要〕

2

磁気ヘッドのスプリングアームに所定のバネ圧を形成するスプリングアームの成形加工方法に関し、

容易且つ精密な加工による生産性の向上を目的とし、

一端を自由端とするスプリングアームの所定領域に曲げ成形加工を施して該自由端に所定の変位を付与せしめるスプリングアームの成形加工方法であって、スプリングアームの他端を固定する工程と、該スプリングアームの自由端変位側の面を該スプリングアーム幅方向に走査し得る所定エネルギ密度の収束したレーザ光バルスを、該スプリングアームの所定領域内で上記所要の変移に対応する回数だけ該スプリングアームの長さ方向に順次シフトさせながら照射する工程、を含んで構成する。

〔産業上の利用分野〕

本発明は磁気ヘッド等におけるスプリングアームの曲げ 加工方法に係り、特にレーザ光を用いて容易に且つ精密 3

に所要曲げを行って生産性の向上を図ったスプリングア ームの成形加工方法に関する。

〔従来の技術〕

第3図は従来の磁気ヘッド等におけるスプリングアーム 加工方法を示す図であり、(A)は曲げ加工方法を示す 斜視図、(B)はバネ圧力調整方法を略記した図であ る。

図(A)はスプリングアームを所要値の近傍まで曲げるための方法を示したもので、磁気ヘッドアーム部1のほぼ二等辺三角形で平坦な薄板バネよりなるスプリングア 10ーム1aをゴムシート2上に載置し、更にその上部からローラ3を矢示A方向に押圧しながらB方向に移動させて、上記スプリングアーム1aを円示する側面図の如くR曲げする状態を示している。

との状態では、スプリングアーム1aの先端に位置する磁気へッド1bの初期位置に対する変位量のバラツキは大きい。

また図(B)は、図(A)における磁気へッド1b部分の変位量を微調整する工程である。

図で、1は図(A)でスプリングアーム1aが所要値の近 20 傍までR曲げされた磁気ヘッドアーム部であり、5は所定位置にセットされているロードセル、6は該ロードセル5からの信号によって動作するパネ圧表示器である。 ここで磁気ヘッドアーム1を所定位置に設置すると、スプリングアーム1aの磁気ヘッド1bがロードセル5の接触子5aを押圧してそのときの接触圧力をパネ圧表示器6が表示する構成になっている。

従って、バネ圧表示器6の表示バネ圧力が規定値に満たない場合には図示C方向から加圧して機械的な変形を与え、一方バネ圧表示器6の表示バネ圧力が規定値を越え 30 る場合には図示D方向から加圧して機械的な変形を与えてバネ圧の調整を行うことで、磁気ヘッドのようにシビアな接触圧力許容範囲を満足させるようにしている。

〔発明が解決しようとする課題〕

従来のスプリングアームの成形加工方法では、熟練者によるバネ圧の微調整が必要であると共に工数が掛かると云う問題があり、また成形加工後の組立作業中または使用中に調整済みの成形加工部分が変形して長期間にわたって安定したバネ圧特性が得られないと云う問題があった。

(課題を解決するための手段)

上記問題点は、一端を自由端とするスプリングアームの所定領域に曲げ成形加工を施して該自由端に所定の変位を付与せしめるスプリングアームの成形加工方法であって、スプリングアームの他端を固定する工程と、該スプリングアームの自由端変位側の面を該スプリングアーム幅方向に走査し得る所定エネルギ密度の収束したレーザ光バルスを、該スプリングアームの所定領域内で上記所要の変移に対応する回数だけ該スプリングアームの長さ方向に順次シフトさせたがら解射するス工程。を含んで

構成したスプリングアームの成形加工方法 〔作 用〕

一般に弾性変形による成形加工の場合には正確な寸法が 出し難いと共にスプリングバック等によって時間ととも に寸法が変化し易い。

そこで本発明では、板状バネ材の所定位置近傍にレーザ 光を走査して該走査部分に瞬間的な加熱、冷却による塑 性変形を起こさせて曲げ成形加工を行っている。

ての場合、一回の走査によって発生する塑性変形量すなわち曲り角度はレーザ光のエネルギ密度によって変えるととができると共に近接して平行に複数回走査したときの全体の曲り角度は走査回数に比例することから、エネルギが制御できるレーザ光の走査位置および走査回数を予め設定することによって、曲げ角度ひいてはバネ圧を所要の値に正確に合致させることができる。

従ってバネ圧の微調整工程が不要で且つ長期に亙って安 定した正確な曲げ成形加工作業を短時間で行なうことが できる。

〔実施例〕

第1図は、レーザ光によるR曲げ加工方法を説明する図であり、第2図は磁気ヘッドのスプリングアーム成形加工方法の実施例を示す概略図である。

第1図(1)で、10は厚さ0.5mm程度の金属板であり、 該金属10の幅を横断する方向にレーザ光11を走査させた 状態を示している。

例えばレーザ光11を40回/secのバルスとして20mm/secの 速さでA方向に移動させると、各照射スポット間のビッ チは0.5mmとなる。

この場合、該金属板10はまず表面10aの該レーザ光11の 走査線上が急激に加熱されて熱膨張するために瞬間的に 裏面10b側に折れ曲がるが、その直後に温度が低下して 収縮し、結果的には図(2)に示す如く表面10a側に角 度αをもって曲がることになる。

図(2)は図(1)の走査線をs(例えば0.1m程度) だけずらしてレーザ光11を走査した図である。との場合 には図(3)に示す如く更に角度 α が曲げられるために 全体の曲りは 2α となる。

図(3)は図(2)から更に s だけ走査線をずらしてレーザ光11を照射した図であり、この場合には図(4)の40 如く全体の曲げ角度は 3α となる。

なお上記の曲り角度αは、レーザ光11のエネルギによって変えることができる。

との場合、上記曲げ角度3αによって形成される変形量は図(4)でd寸法として示している。

以下同様の作業を繰り返えして所要の曲げ角度を正確に確保している。

なお図(2)以降の工程におけるレーザ光11の移動方向は、A,B何れの方向でも同様の効果が得られることを確認している。

方向に順次シフトさせながら照射するる工程、を含んで 50 第2図で、1は磁気ヘッドアーム部,11はレーザ光,12は

図示されていないレーザ発振器からのレーザ光を該装置に導入する光ファイバ,13はレーザ光を収束し照射するレーザ光収束・照射部,14は該レーザ光収束・照射部13を上下(Z)、左右(X)方向に駆動するレーザ光駆動部,15は固定された磁気ヘッドアーム部1を前後(Y)方向に移動させるための磁気ヘッド移動部,16は上記磁気ヘッドアーム部1のスプリングアーム1aの先端に位置する磁気ヘッド1bを挟むコの字形の接触器16aを備えたロードセルである。

工程的には、まず磁気ヘッドアーム部1を磁気ヘッド移 10 動部15の所定位置に固定するが、この際該磁気ヘッドア ーム部1の磁気ヘッド1bはロードセル16の接触子16aの 内面接触部16bとは接触しないように固定する。

次いで磁気ヘッド移動部15を図示Y方向に移動させて上記磁気ヘッド1bと接触部16bとを接触させた後、上記磁気ヘッド1bの必要とする変位量すなわち第1図(4)におけるd寸法分だけ該磁気ヘッド移動部15を移動させて上記磁気ヘッド1bと接触部16b間にd寸法の間隙を形成する。

Cとでレーザ光駆動部14で所定位置にセットされたレーザ光収束・照射部13をX方向に動かしながら、レーザ光11を射出してスプリングアーム1aの表面をX方向に走査する。

この場合第1図で説明した如くスプリングアーム1aはレーザ光11の走査線上で照射側に曲げられるため、上記間隙dが狭められる。

そこで該間隙dがなくなって上記磁気ヘッド1bと接触部

16bが接触し、さらに所定のバネ圧が得られるまでレーザ光11を Z 方向に動かしながらその照射を繰り返して所要の曲げ寸法およびバネ圧を確保している。

[発明の効果]

上述の如く本発明により、例えば磁気へッドのようにシ ビアな接触圧力許容範囲を満足し得るような変位が容易 に実現できるスプリングアームの成形加工方法を提供す ることができる。

【図面の簡単な説明】

第1図は、レーザ光によるR曲げ加工方法を説明する図

第2図はスプリングアームの成形加工方法の実施例を示す概略図、

第3図は従来の磁気ヘッドのスプリングアーム加工方法 を示す図

である。図において、

1は磁気ヘッドアーム部、

1aはスプリングアーム、1bは磁気ヘッド、

10は金属板、10aは表面、

0 10bは裏面、

11はレーザ光、12は光ファイバ、

13はレーザ光収束・照射部、

14はレーザ光駆動部、

15は磁気ヘッド移動部、

16はロードセル、16aは接触子、

16bは接触部、

をそれぞれ表わす。

【第1図】

レーザ光によるR曲げかエオ法を説明する図

【第2図】

磁気へ、小成形加工方法を説明する図

【第3図】

従来の磁気へ、ドのスプリングアームのロエア法を示す図