# Single-conflict colorings of degenerate graphs

Peter Bradshaw\*, Tomáš Masařík

## Scheduling problems



## Job assignments



## Adapted graph coloring: definition

- A coloring of E(G) with  $\{1, ..., k\}$  is given.
- Goal is to color V(G) using  $\{1, ..., k\}$  without monochromatic edges.





(Hell, Zhu 2008)

## Adaptable chromatic number $(\chi_{ad})$

 Does G always have an adapted coloring when using k colors?





• Sometimes 2 colors are not enough for  $K_4$ .

# Adaptable chromatic number $(\chi_{ad})$

• If *G* always has an adapted coloring using  $\{1, \ldots, k\}$ , then  $\chi_{ad}(G) \leq k$ .



•  $\chi_{ad}(K_4) \geq 3$ .

## Bounds on $\chi_{ad}$

- To show  $\chi_{ad}(G) \leq k$ , we must show that G has an adapted coloring for *every* edge-coloring using  $\{1, \ldots, k\}$ .
- $\chi_{ad}(G) \leq \chi(G)$ .
- ???

## Bounds on $\chi_{ad}$

- To show  $\chi_{ad}(G) \leq k$ , we must show that G has an adapted coloring for *every* edge-coloring using  $\{1, \ldots, k\}$ .
- $\chi_{ad}(G) \leq \chi(G)$ .
- Bounds using the probabilistic method: We randomly color G, and we show that if we are lucky, then we get an adapted coloring.

#### Bad events

- Coloring of E(G) with  $\{1, ..., k\}$  is given.
- We randomly color V(G) with  $\{1, \ldots, k\}$ .

#### Bad event:



- A bad event happens with probability  $\frac{1}{k^2}$ .
- If no bad event occurs, then we get an adapted coloring.

#### Dependent bad events

 Two bad events are dependent if and only if they share a vertex.



 A bad event at e is dependent with deg(e) other bad events.

#### Lovász Local Lemma

- A set of bad events is given.
- Each bad event dependent with < D other bad events.
- Each bad event has probability  $\leq p$ .

lf

$$epD \leq 1$$
,

then with positive probability, no bad event occurs.

#### Bounds on $\chi_{ad}$

• Consider G of max deg  $\Delta$  edge-colored with  $\{1, \ldots, k\}$ .



- $\chi_{ad}(G) \leq \left\lceil \sqrt{2e\Delta} \right\rceil$ .

## $\chi$ and $\chi_{\it ad}$

- $\chi_{ad}(G) \ge (1 + o(1))\sqrt{\chi(G)}$ . (Molloy, 2017)
- Often  $\sqrt{\chi(G)}$  and  $\chi_{ad}(G)$  are  $\Theta(\sqrt{\Delta})$ .
- For girth 5,  $\sqrt{\chi(G)}$  and  $\chi_{ad}(G)$  are  $\Theta\left(\sqrt{\frac{\Delta}{\log \Delta}}\right)$  (Aliaj, Molloy 2021)

#### Question

When else does  $\chi_{ad}(G) \approx \sqrt{\chi(G)}$  hold?

## Single-conflict colorings

- A *conflict* from  $\{1, ..., k\}^2$  is given to each edge.
- Goal is to color *G* while avoiding conflicts.



# Single-conflict chromatic number $(\chi_{\leftrightarrow})$

- If G always has an single-conflict coloring using  $\{1, \ldots, k\}$ , then  $\chi_{\leftrightarrow}(G) \leq k$ .
- $\chi_{\leftrightarrow}(G) \leq \Delta + 1$
- $\chi_{\leftrightarrow}(G) \leq \operatorname{degeneracy}(G) + 1$

#### Bad events

- Conflicts on E(G) using  $\{1, ..., k\}$  are given.
- We randomly color V(G) with  $\{1, \ldots, k\}$ .

#### Bad event:



- A bad event happens with probability  $\frac{1}{k^2}$ .
- If no bad event occurs, then we get a single-conflict coloring.

#### Dependent bad events

• Two bad events are *dependent* if and only if they share a vertex.



 A bad event at e is dependent with deg(e) other bad events.

#### Lovász Local Lemma

- A set of bad events is given.
- Each bad event dependent with < D other bad events.
- Each bad event has probability  $\leq p$ .

lf

$$epD \leq 1$$
,

then with positive probability, no bad event occurs.

# Single-conflict chromatic number $(\chi_{\leftrightarrow})$

• Consider G of max deg  $\Delta$  with conflicts from  $\{1, \ldots, k\}$ .



- $p=\frac{1}{k^2}$ ,  $D=2\Delta$
- $\chi_{\leftrightarrow}(G) \leq \left\lceil \sqrt{2e\Delta} \right\rceil$ .

## $\chi$ and $\chi_{\leftrightarrow}$

- $\chi_{\leftrightarrow}(G) \geq \chi_{ad}(G) \geq (1+o(1))\sqrt{\chi(G)}$ . (Molloy, 2017)
- Often  $\sqrt{\chi(G)}$  and  $\chi_{\leftrightarrow}(G)$  are  $\Theta(\sqrt{\Delta})$ .
- For girth 5,  $\sqrt{\chi(G)}$  and  $\chi_{\leftrightarrow}(G)$  are  $\Theta\left(\sqrt{\frac{\Delta}{\log \Delta}}\right)$  (Aliaj, Molloy 2021)

#### Question

When else does  $\chi_{\leftrightarrow}(G) \approx \sqrt{\chi(G)}$  hold?

## Graph degeneracy

$$\chi(G) \leq \mathsf{degeneracy}(G) + 1$$
  
 $\chi_{\leftrightarrow}(G) \leq \mathsf{degeneracy}(G) + 1$ 



When is  $\chi_{\leftrightarrow}(G) \approx \sqrt{\operatorname{degeneracy}(G)}$ ?

## Random color inventory

- Conflicts on E(G) using  $\{1, \ldots, k\}$  are given.
- We give each vertex a random inventory of colors.



Aharoni, Berger, Chudnovsky, Havet, Jiang 2018

#### Random color inventory

If  $c \in S_v$  is involved in a potential conflict with a color in a back-neighbor's inventory, then delete c from  $S_v$ .



#### Bad events

Bad event: all colors in  $S_{\nu}$  are deleted



• If no bad event occurs, then we can find a single-conflict coloring.

#### Lovász Local Lemma

- A set of bad events is given.
- Each bad event dependent with < D other bad events.
- Each bad event has probability  $\leq p$ .

lf

$$epD \leq 1$$
,

then with positive probability, no bad event occurs.

#### $\chi_{\leftrightarrow}$ of degenerate graphs

• Consider G of max deg  $\Delta$  and degeneracy d.



•  $p < \exp\left(-\frac{k^2}{4d}\right)$ ,  $D = (d+1)\Delta$ 

•  $\chi_{\leftrightarrow}(G) = O(\sqrt{d\log(d\Delta)}).$ 

## Summary of results

#### Question (Dvořák, Esperet, Kang, Ozeki 2018)

Is 
$$\chi_{\leftrightarrow}(G) = O(\sqrt{d} \log n)$$
?

#### **Theorem**

If G is simple, then  $\chi_{\leftrightarrow}(G) = O(\sqrt{d\log(d\Delta)})$ .

#### **Theorem**

If G has edge-multiplicity  $\mu$ , then  $\chi_{\leftrightarrow}(G) = O(\sqrt{2^{\mu}\mu d \log(d\Delta)})$ .

The answer is *yes*, if  $\mu \leq \log \log n$ .



Bradshaw, Masařík

#### Conclusion

Question (Dvořák, Esperet, Kang, Ozeki 2018)

Is 
$$\chi_{\leftrightarrow}(G) = O(\sqrt{d} \log n)$$
 when  $\mu$  is large?

#### Question

When else is  $\chi_{\leftrightarrow}(G) \approx \sqrt{\chi(G)}$ ?

Thank you!