LAPORAN PRAKTIKUM ALGORITMA DAN STRUKTUR DATA

JOBSHEET 7

SHAFIQA NABILA MAHARANI KHOIRUNNISA 244107020221

7.2. Searching / Pencarian Menggunakan Agoritma Sequential Search

Masukkan Data Mahasiswa ke-4
NIM: 444
Nama: lia
Kelas: 2
IPK: 3.5

Masukkan Data Mahasiswa ke-5
NIM: 555
Nama: fia
Kelas: 2
IPK: 3.3

```
NIM: 111
Nama: adi
Kelas: 2
IPK: 3.6
NIM: 222
Nama: tio
Kelas: 2
IPK: 3.8
NIM: 333
Nama: ila
Kelas: 2
IPK: 3.0
NIM: 444
Nama: lia
Kelas: 2
IPK: 3.5
```

```
-----
NIM: 555
Nama: fia
Kelas: 2
IPK: 3.3
Pencarian data
Masukkan ipk mahasiswa yang dicari:
IPK:
3.5
menggunakan sequential searching
data mahasiswa dengan IPK :3.5 ditemukan pada indeks 3
nim
       : 444
       : lia
nama
       : 2
kelas
     : 3.5
ipk
PS C:\Users\fika\MATKUL SEMESTER 2\praktikum-ASD\Jobsheet 7>
```

JAWABAN PERTANYAAN:

1. Jelaskan perbedaan metod tampilDataSearch dan tampilPosisi pada class MahasiswaBerprestasi!

- tampilPosisi:
 - -Metode ini hanya menampilkan posisi indeks dari mahasiswa yang memiliki IPK tertentu.
 - -Jika data ditemukan (posisi tidak -1), maka akan mencetak informasi bahwa data mahasiswa dengan IPK tertentu ditemukan pada indeks yang sesuai, dan jika tidak ditemukan, akan mencetak pesan bahwa data dengan IPK tersebut tidak ditemukan.
- tampilDataSearch:
 - -Metode ini lebih rinci, karena menampilkan data lengkap mahasiswa yang memiliki IPK tertentu.
 - -Jika data ditemukan, akan mencetak NIM, Nama, Kelas, dan IPK mahasiswa tersebut, dan jika tidak ditemukan, akan mencetak pesan bahwa data dengan IPK tersebut tidak ditemukan.

2. Jelaskan fungsi break pada kode program dibawah ini!

```
if (listMhs[j].ipk==cari){
     posisi=j;
     break;
}
```

- sebuah loop (seperti for atau while) yang digunakan untuk mencari mahasiswa dengan IPK tertentu (cari), Saat menemukan mahasiswa pertama yang sesuai (listMhs[j].ipk == cari) variabel posisi diset ke nilai j (indeks mahasiswa yang ditemukan).
- Perintah break; menghentikan perulangan agar tidak perlu mencari lagi, tanpa break perulangan akan terus berjalan meskipun data sudah ditemukan, yang dapat membuang waktu dan sumber daya.

7.3. Searching / Pencarian Menggunakan Binary Search

```
Masukkan Data Mahasiswa ke-1
NIM: 111
Nama: adi
Kelas: 2
IPK: 3.1
------
Masukkan Data Mahasiswa ke-2
NIM: 222
Nama: ila
Kelas: 2
IPK: 3.2
------
Masukkan Data Mahasiswa ke-3
NIM: 333
Nama: lia
Kelas: 2
IPK: 3.3
```

```
Masukkan Data Mahasiswa ke-4
NIM: 444
Nama: susi
Kelas: 2
IPK: 3.5

Masukkan Data Mahasiswa ke-5
NIM: 555
Nama: anita
Kelas: 2
IPK: 3.7
```

```
Pencarian data

Masukkan ipk mahasiswa yang dicari:
IPK:
3.7
menggunakan binary search

data mahasiswa dengan IPK :3.7 ditemukan pada indeks 4
nim : 555
nama : anita
kelas : 2
ipk : 3.7
PS C:\Users\fika\MATKUL SEMESTER 2\praktikum-ASD\Jobsheet 7>
```

JAWABAN PERTANYAAN:

1. Tunjukkan pada kode program yang mana proses divide dijalankan!

```
- mid = (left + right) / 2;
```

2. Tunjukkan pada kode program yang mana proses conquer dijalankan!

```
else if (listMhs[mid].ipk > cari) {
    return findBinarySearch(cari, left, mid - 1);
} else {
    return findBinarySearch(cari, mid + 1, right);
}
```

- 3. Jika data IPK yang dimasukkan tidak urut. Apakah program masih dapat berjalan? Mengapa demikian!
 - Jika data IPK tidak terurut, program binary search tidak akan dapat menemukan nilai yang dicari dengan benar, dan hasilnya bisa salah atau tidak ditemukan sama sekali.

- 4. Jika IPK yang dimasukkan dari IPK terbesar ke terkecil (missal: 3.8, 3.7, 3.5, 3.4, 3.2) dan elemen yang dicari adalah 3.2. Bagaimana hasil dari binary search? Apakah sesuai? Jika tidak sesuai maka ubahlah kode program binary seach agar hasilnya sesuai.
 - Tidak sesuai
 - Modifikasi

```
// MODIFIKASI PERTANYAAN NO.4
int findBinarySearch(double cari, int left, int right) {
   int mid;
   if (right >= left) {
      mid = (left + right) / 2;
      if (cari == listMhs[mid].ipk) {
            return mid;
      } else if (listMhs[mid].ipk < cari) {
            return findBinarySearch(cari, left, mid - 1);
      } else {
            return findBinarySearch(cari, mid + 1, right);
      }
    }
    return -1;
}</pre>
```

5. Modifikasilah program diatas yang mana jumlah mahasiswa yang di inputkan sesuai dengan masukan dari keyboard.

```
System.out.println(x:"Masukkan jumlah mahasiswa: "); Replace this use of System.out by a logger.
int jumMhs = sc.nextInt();
sc.nextLine();

MahasiswaBerprestasi20 list = new MahasiswaBerprestasi20(jumMhs);
```

```
Masukkan jumlah mahasiswa:
Masukkan Data Mahasiswa ke-1
NIM: 111
Nama: fika
Kelas: 1
IPK: 3.5
Masukkan Data Mahasiswa ke-2
NIM: 222
Nama: abid
Kelas: 1
IPK: 3.9
Masukkan Data Mahasiswa ke-3
NIM: 333
Nama: kanari
Kelas: 1
IPK: 3.4
Pencarian data
Masukkan ipk mahasiswa yang dicari:
IPK:
3.9
menggunakan binary search
data mahasiswa dengan IPK :3.9 ditemukan pada indeks 1
nim
       : 222
       : abid
nama
kelas : 1
```

ipk : 3.9

LATIHAN PRAKTIKUM:

A. ...

B. ...

```
void PencarianDataBinary20(){
                                Rename this method name to match the regular expression '^[a-z][a-zA-Z0-9]*$'.
   Scanner input = new Scanner();
   System.out.println(x:"Masukkan nama dosen yang ingin dicari: ");
   Stirng nama = input.nextLine();
   int mid = (idx -1) / 2;
   int left = 0;
   int right = idx - 1;
   while (left <= right) {
       if (dataDosen[mid].nama == nama){
           count++;
           System.out.println(x:"Dosen ditemukan!");
           System.out.println("Kode: " + dataDosen[i].kode);
           System.out.println("Nama: " + dataDosen[i].nama);
           System.out.println("Jenis Kelamin: " + dataDosen[i].jenisKelamin);
           System.out.println("Usia: " + dataDosen[i].usia);
```

C. ...

```
int leftIndex = mid - 1;
   while (leftIndex >= left && dataDosen[leftIndex].nama.equals(nama)) {
       count++;
       System.out.println(x:"Dosen ditemukan!");
       System.out.println("Kode: " + dataDosen[leftIndex].kode);
       System.out.println("Nama: " + dataDosen[lof+Indoxl nama):
       System.out.println("Jenis Kelamin: " + d int leftIndex - DataDosen20.PencarianDataBinary20()
       System.out.println("Usia: " + dataDosen[leftIndex].usia);
       System.out.println(x:"-----");
       leftIndex--;
int rightIndex = mid + 1;
   while (rightIndex <= right && dataDosen[rightIndex].nama.equals(nama)) {</pre>
       count++;
       System.out.println(x:"Dosen ditemukan!");
       System.out.println("Kode: " + dataDosen[rightIndex].kode);
       System.out.println("Nama: " + dataDosen[rightIndex].nama);
       System.out.println("Jenis Kelamin: " + dataDosen[rightIndex].jenisKelamin);
       System.out.println("Usia: " + dataDosen[rightIndex].usia);
       System.out.println(x:"----");
       rightIndex++;
```