LAB 1 HOMEWORK 3

Gökce Sucu 246112

EXERCISE 1: GRADIENT DESCENT ON RF

In this pary we will use Rosenbrock function: $f(x, y) = (1 - x)^2 + 100(y - x^2)^2$

1. 3D PLOTTING

1. Importing The Libraries

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
```

2. Defining The Rosenbrock Function

```
In [2]: def rosenbrock_function(x,y,a,b):
    return (a-x)**2+b*(y-x**2)**2
```

3. Plotting

```
In [3]: rosenbrock plot = plt.figure()
        axis = rosenbrock_plot.gca(projection='3d')
        # tuples
        X = np.arange(-1, 1, 0.05)
        Y = np.arange(-1, 1.5, 0.05)
        X_{grid} = np.meshgrid(X,Y)[0]
        Y_grid = np.meshgrid(X,Y)[1]
        \#a=1 and b=100
        Z =rosenbrock_function(X_grid,Y_grid,1,100)
        #texts on plots
        plt.xlabel('X axis')
        plt.ylabel('Y axis')
        # Plot the surface
        surf = axis.plot_surface(X_grid, Y_grid, Z)
        plt.title('ROSENBRUCK FUNCTION 3D')
        plt.show()
```


2. PARTIAL DERIVATIVES

$$\nabla f(x, y, a, b) = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} -2a + 2x - 4bxy + 4bx^3 \\ 2by - 2bx^2 \end{bmatrix}$$
$$\nabla f(x, y, 1, 100) = \begin{bmatrix} -2 + 2x - 400xy + 400x^3 \\ 200y - 200x^2 \end{bmatrix}$$

```
In [4]: #defining the partial derivatives
def partial_f_x(x,y,a,b):
    return -2*a+2*x-4*b*x*y+4*b**3

def partial_f_y(x,y,a,b):
    return 2*b*y-2*b*x**2
```

3. GRADIENT OF FUNCTION

```
In [5]: #defining the rosenbruck function
def rosenbrock_function(x,y,a,b):
    return (a-x)**2+b*(y-x**2)**2

#defining the gradient of rosenbruck function
def gradient_rosenbruck(x,y,a,b):
    return np.array([4*b*(x**3)-4*b*x*y+2*x-2*a,2*b*y-2*b*(x**2)])
```

4. OPTIMIZATION BY GD

4.1 Creating a GD Algorithm

First, we should define gradient descent alogrithm.

```
In [6]: #defining a gradient descent function especially for rosenbruck function
def gradient_descent(x,y,a,b,alpha,k):
    xy_old = np.array([x,y])
    approach = []
    minimum_point =np.array([a,a**2])
    for i in range(0,k):
        xy_next = xy_old- alpha*gradient_rosenbruck(xy_old[0],xy_old[1],a,b)
        approach.append(xy_next)
        xy_old=xy_next
    print(f'error{minimum_point-approach[-1]}\n',approach[-1])
```

4.2 Finding The Best Hyperparameters

4.3 Best Performance

Best performance is for starting point at (2,2) when step size 0.0001 and 300000 iteration. Error is so small.

```
In [10]: #x=2, y=2, a=1, b=100, alpha=0.0001, k = 300000
gradient_descent(2,2,1,100,0.0001,300000)

error[-6.70883471e-06 -1.34445604e-05]
    [1.00000671 1.00001344]
```

5. VISUALIZE THE TRAJECTORY

5.1 Creating Path Of GD

To be able to plot the GD way, we have to define a new function which gives the each iteration of GD.

```
In [11]: def path_of_grad(x,y,a,b,alpha,k):
    xy_old = np.array([x,y])
    path = []
    for i in range(0,k):
        xy_next = xy_old- alpha*gradient_rosenbruck(xy_old[0],xy_old[1],a,b)
        path.append(xy_next)
        xy_old=xy_next
    return path
```

5.2 Choosing The Hyperparameters

array([-1.69630289e+101, 6.60189988e+066])]

```
In [13]: rosenbrock_plot = plt.figure(figsize=(12,12))
         axis = rosenbrock_plot.gca(projection='3d')
         # tuples
         X = np.arange(-1, 1, 0.05)
         Y = np.arange(-1, 1.5, 0.05)
         X_grid = np.meshgrid(X,Y)[0]
         Y_grid = np.meshgrid(X,Y)[1]
         #a=1 and b=100
         Z =rosenbrock_function(X_grid,Y_grid,1,100)
         #texts on plots
         plt.xlabel('X axis')
         plt.ylabel('Y axis')
         # Plot the surface
         surf = axis.plot_surface(X_grid, Y_grid, Z)
         plt.title('ROSENBRUCK FUNCTION 3D')
         plt.show()
```


EXERCISE 2:LR WITH GRADIENT DESCENT

PART A: DATASETS

1. AIRFARE ANC DEMAND DATASET

In [14]: #necessary libraries
import pandas as pd

A.1.1 Airfare and Demand: Reading The Dataset

First, we have to create headlines for this dataset. We would do this by using other dataset.

In [16]: airport_dataset

Out[16]:

	City 1	City 2	Average Fare 1	Distance	Average Weekly Passengers	Market Leading Airline	Market Share 1	Average 2	Low Price Airline	Market Share 2	Price
0	CAK	ATL	114.47	528	424.56	FL	70.19	111.03	FL	70.19	111.03
1	CAK	MCO	122.47	860	276.84	FL	75.10	123.09	DL	17.23	118.94
2	ALB	ATL	214.42	852	215.76	DL	78.89	223.98	CO	2.77	167.12
3	ALB	BWI	69.40	288	606.84	WN	96.97	68.86	WN	96.97	68.86
4	ALB	ORD	158.13	723	313.04	UA	39.79	161.36	WN	15.34	145.42
995	SYR	TPA	136.16	1104	184.34	US	33.37	135.82	DL	28.65	118.51
996	TLH	TPA	83.28	200	232.71	FL	99.57	82.55	FL	99.57	82.55
997	TPA	IAD	159.97	814	843.80	US	46.19	159.65	DL	13.89	159.02
998	TPA	PBI	73.57	174	214.45	WN	99.74	73.44	WN	99.74	73.44
999	IAD	PBI	126.67	859	475.65	US	56.28	129.92	DL	38.57	121.94

1000 rows × 11 columns

A.1.2 Airfare and Demand: Converting Any Non-Numeric Values

In [17]: #converting object values to numeric
airport_dataset_converted = pd.get_dummies(airport_dataset)

#displaying the new data which is converted to numerical values
airport_dataset_converted

Averes Merket

Out[17]:

	Average Fare 1	Distance	Average Weekly Passengers	Market Share 1	Average 2	Market Share 2	Price	City 1_ABQ	City 1_ACY	City 1_ALB	 Low Pric Airline_G
0	114.47	528	424.56	70.19	111.03	70.19	111.03	0	0	0	
1	122.47	860	276.84	75.10	123.09	17.23	118.94	0	0	0	
2	214.42	852	215.76	78.89	223.98	2.77	167.12	0	0	1	
3	69.40	288	606.84	96.97	68.86	96.97	68.86	0	0	1	
4	158.13	723	313.04	39.79	161.36	15.34	145.42	0	0	1	
995	136.16	1104	184.34	33.37	135.82	28.65	118.51	0	0	0	
996	83.28	200	232.71	99.57	82.55	99.57	82.55	0	0	0	
997	159.97	814	843.80	46.19	159.65	13.89	159.02	0	0	0	
998	73.57	174	214.45	99.74	73.44	99.74	73.44	0	0	0	
999	126.67	859	475.65	56.28	129.92	38.57	121.94	0	0	0	

Markat

1000 rows × 217 columns

Now, in our table there is no any text, there are just numerical values.

A.1.3 Airfare and Demand: Dropping NaN Values

In [18]: #checking if there is any column that consists NaN values.
airport_dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	City 1	1000 non-null	object
1	City 2	1000 non-null	object
2	Average Fare 1	1000 non-null	float64
3	Distance	1000 non-null	int64
4	Average Weekly Passengers	1000 non-null	float64
5	Market Leading Airline	1000 non-null	object
6	Market Share 1	1000 non-null	float64
7	Average 2	1000 non-null	float64
8	Low Price Airline	1000 non-null	object
9	Market Share 2	1000 non-null	float64
10	Price	1000 non-null	float64

dtypes: float64(6), int64(1), object(4)

memory usage: 86.1+ KB

So, there is no any NaN value.

A.1.4 Airfare and Demand : Splitting Into Train and Test Sets

```
In [19]: #dataset informatio
    n=airport_dataset_converted.shape[0]
    k= int(n*80/100)

#train data %80
    airfare_demand_train = airport_dataset_converted.iloc[:k,:]

#test data %20
    airfare_demand_test = airport_dataset_converted.iloc[k:,:]
```

In [20]: | airfare_demand_train

Out[20]:

		Average Fare 1	Distance	Average Weekly Passengers	Market Share 1	Average 2	Market Share 2	Price	City 1_ABQ	City 1_ACY	City 1_ALB	 Low Pric Airline_G
	0	114.47	528	424.56	70.19	111.03	70.19	111.03	0	0	0	
	1	122.47	860	276.84	75.10	123.09	17.23	118.94	0	0	0	
	2	214.42	852	215.76	78.89	223.98	2.77	167.12	0	0	1	
	3	69.40	288	606.84	96.97	68.86	96.97	68.86	0	0	1	
	4	158.13	723	313.04	39.79	161.36	15.34	145.42	0	0	1	
79	95	124.05	616	568.26	66.67	121.22	66.67	121.22	0	0	0	
79	96	242.28	675	215.10	78.06	241.33	1.86	145.18	0	0	0	
79	97	172.95	1448	317.82	78.45	170.44	7.31	164.12	0	0	0	
79	98	133.87	907	227.06	75.34	133.59	10.14	130.38	0	0	0	
79	99	94.97	443	471.19	88.37	92.06	88.37	92.06	0	0	0	

800 rows × 217 columns

In [21]: airfare_demand_test

Out[21]:

			Average	Market		Market					
	Average Fare 1	Distance	Weekly Passengers	Share 1	Average 2	Share 2	Price	City 1_ABQ	City 1_ACY	City 1_ALB	 Low Pric
800	133.44	822	196.73	66.40	134.34	11.93	125.38	0	0	0	
801	162.00	1751	229.34	65.02	158.65	11.18	151.64	0	0	0	
802	166.19	1977	231.63	42.13	159.59	17.92	151.51	0	0	0	
803	128.97	612	442.17	83.70	125.31	83.70	125.31	0	0	0	
804	164.99	1183	1473.80	32.87	204.45	17.54	128.88	0	0	0	
995	136.16	1104	184.34	33.37	135.82	28.65	118.51	0	0	0	
996	83.28	200	232.71	99.57	82.55	99.57	82.55	0	0	0	
997	159.97	814	843.80	46.19	159.65	13.89	159.02	0	0	0	
998	73.57	174	214.45	99.74	73.44	99.74	73.44	0	0	0	
999	126.67	859	475.65	56.28	129.92	38.57	121.94	0	0	0	

200 rows × 217 columns

A.1.5 Airfare and Demand: Dimensions of Train and Test Sets

```
In [22]: print(airfare_demand_train.shape)
print(airfare_demand_test.shape)

(800, 217)
(200, 217)
```

A.2 WINE QUALITY

A.2.1 Wine Quality: Reading The Dataset

In [23]: wine_quality_dataset = pd.read_csv('winequality-red.csv', engine='python', sep=";", decir
In [24]: wine_quality_dataset

Out[24]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

A. 2.2 Wine Quality: Converting Any Non-Numerical Values

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
#
    Column
                         Non-Null Count Dtype
                         _____
    fixed acidity
                         1599 non-null
                                         float64
    volatile acidity
1
                        1599 non-null float64
   citric acid 1599 non-null float64 residual sugar 1599 non-null float64 float64
3
4
    free sulfur dioxide 1599 non-null float64
 5
    total sulfur dioxide 1599 non-null float64
7
                        1599 non-null float64
    density
                        1599 non-null float64
 8
    рΗ
9
    sulphates
                        1599 non-null float64
10 alcohol
                        1599 non-null float64
11 quality
                         1599 non-null
                                         int64
dtypes: float64(11), int64(1)
```

memory usage: 150.0 KB

In [25]: wine quality dataset.info()

According to information, every data is numerical. So, no need to convert.

A 2.3 Wine Quality: Dropping NaN Values

```
In [26]: wine_quality_dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1599 entries, 0 to 1598
         Data columns (total 12 columns):
          #
             Column
                                   Non-Null Count Dtype
          0
             fixed acidity
                                 1599 non-null float64
             volatile acidity
                                 1599 non-null float64
             citric acid 1599 non-null 1599 non-null 1599 non-null
                                 1599 non-null float64
          2
          3
                                                  float64
          4
                                 1599 non-null float64
             free sulfur dioxide 1599 non-null float64
             total sulfur dioxide 1599 non-null float64
          6
                                 1599 non-null float64
          7
             density
          8
                                  1599 non-null float64
             рΗ
          9
             sulphates
                                 1599 non-null float64
                                 1599 non-null float64
          10 alcohol
          11 quality
                                   1599 non-null
                                                  int64
         dtypes: float64(11), int64(1)
         memory usage: 150.0 KB
```

According to the information, there is no any NaN values. So no need to drop.

A .2.4 Wine Quality: Splitting Into Train and Test Sets

```
#need to translate non integer numbers to integers by math.ceil()
In [27]:
         import math
```

```
In [28]: nu = wine_quality_dataset.shape[0]
ku = math.ceil(nu*80/100)

#train sets %80
wine_quality_train = wine_quality_dataset.iloc[:ku,:]

#test sets %20
wine_quality_test= wine_quality_dataset.iloc[ku:,:]
```

In [29]: wine_quality_train

Out[29]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1275	8.0	0.715	0.22	2.3	0.075	13.0	81.0	0.99688	3.24	0.54	9.5	6
1276	8.5	0.400	0.40	6.3	0.050	3.0	10.0	0.99566	3.28	0.56	12.0	4
1277	7.0	0.690	0.00	1.9	0.114	3.0	10.0	0.99636	3.35	0.60	9.7	6
1278	8.0	0.715	0.22	2.3	0.075	13.0	81.0	0.99688	3.24	0.54	9.5	6
1279	9.8	0.300	0.39	1.7	0.062	3.0	9.0	0.99480	3.14	0.57	11.5	7
1279	9.8	0.300	0.39	1.7	0.062	3.0	9.0	0.99480	3.14	0.57	11.5	

1280 rows × 12 columns

In [30]: wine_quality_test

Out[30]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
1280	7.1	0.460	0.20	1.9	0.077	28.0	54.0	0.99560	3.37	0.64	10.4	6
1281	7.1	0.460	0.20	1.9	0.077	28.0	54.0	0.99560	3.37	0.64	10.4	6
1282	7.9	0.765	0.00	2.0	0.084	9.0	22.0	0.99619	3.33	0.68	10.9	6
1283	8.7	0.630	0.28	2.7	0.096	17.0	69.0	0.99734	3.26	0.63	10.2	6
1284	7.0	0.420	0.19	2.3	0.071	18.0	36.0	0.99476	3.39	0.56	10.9	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

319 rows × 12 columns

A. 2. 5. Wine Quality: Dimensions of Train and Test

A. 3. PARKINSONS DATASET

A.3.1 Parkinson: Reading The Dataset

In [33]: parkinson_dataset

Out[33]:

	Age	Sex	Test Time	Motor_UPDRS	Total_UPDRS	Jitter%	Jitter(Abs)	Jitter:RAP	Jitter:PPq5	Jitter:DDP
0	CAK	ATL	114.47	528	424.56	FL	70.19	111.03	FL	70.19
1	CAK	MCO	122.47	860	276.84	FL	75.10	123.09	DL	17.23
2	ALB	ATL	214.42	852	215.76	DL	78.89	223.98	CO	2.77
3	ALB	BWI	69.40	288	606.84	WN	96.97	68.86	WN	96.97
4	ALB	ORD	158.13	723	313.04	UA	39.79	161.36	WN	15.34
995	SYR	TPA	136.16	1104	184.34	US	33.37	135.82	DL	28.65
996	TLH	TPA	83.28	200	232.71	FL	99.57	82.55	FL	99.57
997	TPA	IAD	159.97	814	843.80	US	46.19	159.65	DL	13.89
998	TPA	PBI	73.57	174	214.45	WN	99.74	73.44	WN	99.74
999	IAD	PBI	126.67	859	475.65	US	56.28	129.92	DL	38.57
1000	rows	× 11 cc	olumns							

A.3.2 Parkinson: Converting Any Non Numerical Values

In [34]: | parkinson_dataset_converted= pd.get_dummies(parkinson_dataset) parkinson_dataset_converted

Out[34]:

	Test Time	Motor_UPDRS	Total_UPDRS	Jitter(Abs)	Jitter:RAP	Jitter:DDP	Shimmer	Age_ABQ	Age_ACY
0	114.47	528	424.56	70.19	111.03	70.19	111.03	0	0
1	122.47	860	276.84	75.10	123.09	17.23	118.94	0	0
2	214.42	852	215.76	78.89	223.98	2.77	167.12	0	0
3	69.40	288	606.84	96.97	68.86	96.97	68.86	0	0
4	158.13	723	313.04	39.79	161.36	15.34	145.42	0	0
995	136.16	1104	184.34	33.37	135.82	28.65	118.51	0	0
996	83.28	200	232.71	99.57	82.55	99.57	82.55	0	0
997	159.97	814	843.80	46.19	159.65	13.89	159.02	0	0
998	73.57	174	214.45	99.74	73.44	99.74	73.44	0	0
999	126.67	859	475.65	56.28	129.92	38.57	121.94	0	0

1000 rows × 217 columns

A.3.3 Parkinson: Dropping The NaN Values

In [35]: | parkinson_dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 11 columns):

	•	,	
#	Column	Non-Null Count	Dtype
0	Age	1000 non-null	object
1	Sex	1000 non-null	object
2	Test Time	1000 non-null	float64
3	Motor_UPDRS	1000 non-null	int64
4	Total_UPDRS	1000 non-null	float64
5	Jitter%	1000 non-null	object
6	Jitter(Abs)	1000 non-null	float64
7	Jitter:RAP	1000 non-null	float64
8	Jitter:PPq5	1000 non-null	object
9	Jitter:DDP	1000 non-null	float64
10	Shimmer	1000 non-null	float64
dtyp	es: float64(6), int64(1), obj	ect(4)

memory usage: 86.1+ KB

According to the info, there is no any NaN values, so no need to drop.

A.3.4 Parkinson: Splitting Into Train and Test Sets

```
In [36]: #number of data in the dataset
num = parkinson_dataset_converted.shape[0]
kum = math.ceil(num*80/100)

#train set %80
parkinson_train= parkinson_dataset_converted.iloc[:kum,:]

#test set 520
parkinson_test= parkinson_dataset_converted.iloc[kum:,:]
```

In [37]: parkinson_train

Out[37]:

	Test Time	Motor_UPDRS	Total_UPDRS	Jitter(Abs)	Jitter:RAP	Jitter:DDP	Shimmer	Age_ABQ	Age_ACY
0	114.47	528	424.56	70.19	111.03	70.19	111.03	0	0
1	122.47	860	276.84	75.10	123.09	17.23	118.94	0	0
2	214.42	852	215.76	78.89	223.98	2.77	167.12	0	0
3	69.40	288	606.84	96.97	68.86	96.97	68.86	0	0
4	158.13	723	313.04	39.79	161.36	15.34	145.42	0	0
795	124.05	616	568.26	66.67	121.22	66.67	121.22	0	0
796	242.28	675	215.10	78.06	241.33	1.86	145.18	0	0
797	172.95	1448	317.82	78.45	170.44	7.31	164.12	0	0
798	133.87	907	227.06	75.34	133.59	10.14	130.38	0	0
799	94.97	443	471.19	88.37	92.06	88.37	92.06	0	0

800 rows × 217 columns

In [38]: parkinson_test

Out[38]:

	Test Time	Motor_UPDRS	Total_UPDRS	Jitter(Abs)	Jitter:RAP	Jitter:DDP	Shimmer	Age_ABQ	Age_ACY
800	133.44	822	196.73	66.40	134.34	11.93	125.38	0	0
801	162.00	1751	229.34	65.02	158.65	11.18	151.64	0	0
802	166.19	1977	231.63	42.13	159.59	17.92	151.51	0	0
803	128.97	612	442.17	83.70	125.31	83.70	125.31	0	0
804	164.99	1183	1473.80	32.87	204.45	17.54	128.88	0	0
995	136.16	1104	184.34	33.37	135.82	28.65	118.51	0	0
996	83.28	200	232.71	99.57	82.55	99.57	82.55	0	0
997	159.97	814	843.80	46.19	159.65	13.89	159.02	0	0
998	73.57	174	214.45	99.74	73.44	99.74	73.44	0	0
999	126.67	859	475.65	56.28	129.92	38.57	121.94	0	0
200 rows × 217 columns									

A.3.5 Parkinson: Dimension of Train and Test Sets

```
In [39]: print(parkinson_train.shape)
print(parkinson_test.shape)

(800, 217)
(200, 217)
```

PART B: LINEAR REGRESSION WITH REAL DATA

B.1. CREATING ALL FUNCTIONS

First, we will create all necessary functions.

1. Linear Regression Model

```
In [40]: def lineer_regression_model(X,Y,beta):
    return np.matmul(X,beta)
```

2. Least Square Function

Now, we will define Least square function. $f(X, Y, B) = ||Y - XB|| = (Y - XB)^T (Y - XB)$

```
In [41]: def least_square(X,Y,B):
    rss = ((Y-(X@B)).T)@(Y-(X@B))
    return float(rss)
```

3. minimize_GD Algorithm

Now, we will define function which minimizes least square error. $arg_{min}||Y-XB||=(Y-XB)^T(Y-XB)$ so our gradient descent method would be $\beta_{i+1}=\beta_i+2\mu X^T(Y-X\beta_i)$

```
In [42]: def minimize_GD_algorithms(X,Y,beta_zero, mu, i_max):
    for i in range(0,i_max):
        beta_next=beta_zero+2*mu*np.matmul(np.transpose(X),Y-np.matmul(X,beta_zero))
        if least_square(X,Y,beta_next)>least_square(X,Y,beta_zero):
            return beta_next
        else:
            beta_zero = beta_next
        return beta_zero
```

4. Calculation of $|f(x_{i-1}) - f(x_i)|$ for Each Iteration

In this part, we would define a function that calculates $|f(x_{i-1}) - f(x_i)|$ and plot it against iteration number i.

```
In [43]:

def iteration(X,Y,beta_zero, mu, i_max):
    iteration=[]
    for i in range(0,i_max):
        beta_next=beta_zero+2*mu*np.matmul(np.transpose(X),Y-np.matmul(X,beta_zero))
        iteration.append(abs(least_square(X,Y,beta_next)-least_square(X,Y,beta_zero)))
        beta_zero = beta_next
    return iteration
```

4. RMSE

```
Now, we will define RMSE. \sqrt{\frac{\sum_{q=1}^T (y_{test}^q - \tilde{y}^q)^2}{T}}
```

In [44]: #to be able use math.square() function

```
import math

In [45]:

def rmse(X,Y,beta):
    rmse_error_matrix = Y - X@beta
    total_error_rmse = 0
    for i in range(0,Y.shape[0]):
        total_error_rmse = rmse_error_matrix[i]**2+total_error_rmse

    return math.sqrt(total_error_rmse/Y.shape[0])
```

5. Calculation of RMSE for Each Iteration

```
In [46]: def iteration_rmse(X_train,Y_train,beta_zero, mu, i_max, X_test, Y_test):
    iteration_rmse=[]
    for i in range(0,i_max):
        beta_next=beta_zero+2*mu*np.matmul(np.transpose(X_train),Y_train-np.matmul(X_train))
        iteration_rmse.append(rmse(X_test,Y_test,beta_next))
        beta_zero = beta_next
    return iteration_rmse
```

B.2 AIRFARE AND DEMAND DATASET

B.2.1 Airfare and Demand: Creating X For Trainset

```
In [47]: #deleting the Price column from table and converting table to matrix
    x_airfare_train_notbias = np.array(airfare_demand_train.drop(['Price'],axis=1))
    #adding a 1 vector as column for bias
    x_airfare_train = np.hstack((x_airfare_train_notbias,np.ones((800,1))))
    #checking the dimensions of X matrix
    airfare_demand_train.shape
Out[47]: (800, 217)
```

B.2.2 Airfare and Demand: Creating Y For Trainset

```
In [48]: #taking only price column and converting to vector matric
    y_airfare_train =np.array(airfare_demand_train['Price']).reshape((800,1))
    #checking the dimension of Y matrix
    y_airfare_train.shape
Out[48]: (800, 1)
```

B.2.3 Airfare and Demand: Creating X For Testset

B.2.4 Airfare and Demand: Creating Y For Testset

```
In [50]: #taking only price column and converting to vector matric
    y_airfare_test =np.array(airfare_demand_test['Price']).reshape((200,1))
    #checking the dimension of Y matrix
    y_airfare_test.shape
Out[50]: (200, 1)
```

B.2.5 Airfare and Demand: Minimize GD Algorithm

Example 1: stepsize= 10^{11} and 500 iteration

```
In [51]: | i_errors_1=iteration(x_airfare_train,y_airfare_train,np.ones((217,1)),0.00000000001,500)
         i errors 1
Out[51]: [236185601.50268936,
          221635020.62460184,
          207981397.07751656,
          195169429.47863913,
          183147226.1803522,
          171866095.0322957,
          161280346.1063714,
          151347106.5853982,
          142026147.06542158,
          133279718.5679574,
          125072399.60177064,
          117370952.65458274,
          110144189.53326106,
          103362845.00690627,
          96999458.24089384,
          91028261.541502,
          85425075.96034431,
          80167213.33567238,
          75233384.37363124,
           70000000
```

```
In [52]: plt.title('Airfare and Demand \nExample 1\n$500$ iteration and Stepsize $=10^{11}$')
    plt.plot(list(range(0,len(i_errors_1))),i_errors_1,linewidth=5)
    plt.xlabel('Iteration')
    plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
    plt.show()
```



```
In [53]:
         #we have to apply betas on test sets
         i_errors_1_rmse=iteration_rmse(x_airfare_train,y_airfare_train,np.ones((217,1)),0.0000000
         i_errors_1_rmse
Out[53]: [2314.861205349582,
          2241.639736039368,
           2170.7248141192226,
          2102.044431042809,
           2035.5288412379234,
           1971.1104914533698,
           1908.7239523245898,
          1848.3058520885777,
          1789.7948123807519,
          1733.1313860485518,
          1678.2579969185322,
          1625.1188814556945,
          1573.6600322556599,
          1523.8291433121244,
          1475.5755570037938,
          1428.8502127466854,
          1383.605597259346,
          1339.795696390091,
           1297.3759484569123,
```

```
In [54]: plt.title('Airfare and Demand \nExample 1\n$500$ iteration and Stepsize $=10^{11}$')
    plt.plot(list(range(0,len(i_errors_1_rmse))),i_errors_1_rmse,'r',linewidth=5)
    plt.xlabel('Iteration')
    plt.ylabel('$RMSE$')
    plt.show()
```


Example 2 : Stepsize = 10^{10} and 500 Iteration

```
i errors 2=iteration(x airfare train,y airfare train,np.ones((217,1)),0.00000000001,500)
         i_errors_2
Out[55]: [2023970739.5011024,
          955666627.2208867,
          451591719.987015,
          213689094.60754102,
          101361383.87401727,
          48285382.552323624,
          23173501.585682884,
          11264904.366633352,
          5594819.532621983,
          2876218.868001871,
          1557152.5387735479,
          904348.3397490103,
          570906.2401824873.
          392346.7132180631,
          290378.8366956152,
          227484.34509484097,
          185475.4041425176,
          155364.0173357036,
          132569.83179190196,
In [56]:
         plt.title('Airfare and Demand \nExample 2\n$500$ iteration and Stepsize $=10^{10}$')
         plt.plot(list(range(0,len(i_errors_2))),i_errors_2,linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('|f(x_{i-1})-f(x_i)|')
```



```
i errors 2 rmse=iteration rmse(x airfare train,y airfare train,np.ones((217,1)),0.0000000
         i_errors_2_rmse
Out[57]: [1635.2293188412818,
          1118.5414124668373,
          766.2794927861598,
          527.7683520168566,
          368.4603642246771,
          264.7807523952176,
          200.28855653901945,
          162.74912146782117,
          142.45287714569676,
          132.0221311438905,
          126.62784370210868,
          123.58635219466,
          121.58266673891364,
          120.02827500398102,
          118.67995835706141,
          117.44659182938067,
          116.29907384810612,
          115.23072163726354,
          114.24095775234024,
In [58]:
         plt.title('Airfare and Demand \nExample 2\n$500$ iteration and Stepsize $=10^{10}$')
         plt.plot(list(range(0,len(i_errors_2_rmse))),i_errors_2_rmse,'r',linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('$RMSE$')
         plt.show()
```


Example 3: Sepsize=0.1 and 100 Iteration

```
In [59]: i_errors_3=iteration(x_airfare_train,y_airfare_train,np.zeros((217,1)),0.000000001,500)
i_errors_3
```

```
<ipython-input-41-91d310f79016>:2: RuntimeWarning: overflow encountered in matmul rss = ((Y-(X@B)).T)@(Y-(X@B))
```

```
In [60]: plt.title('Example 3\n$500$ iteration and Stepsize $=10^9$')
plt.plot(list(range(0,len(i_errors_3))),i_errors_3,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```



```
In [61]:
         i errors 3 rmse=iteration rmse(x airfare train,y airfare train,np.zeros((217,1)),0.000000
         i_errors_3_rmse
         <ipython-input-45-effc3433c9bd>:5: RuntimeWarning: overflow encountered in add
           total_error_rmse = rmse_error_matrix[i]**2+total_error_rmse
         <ipython-input-45-effc3433c9bd>:5: RuntimeWarning: overflow encountered in square
           total_error_rmse = rmse_error_matrix[i]**2+total_error_rmse
         <ipython-input-46-e6ba670cf7a1>:4: RuntimeWarning: overflow encountered in matmul
           beta_next=beta_zero+2*mu*np.matmul(np.transpose(X_train),Y_train-np.matmul(X_train,
         beta zero))
         <ipython-input-46-e6ba670cf7a1>:4: RuntimeWarning: invalid value encountered in matmu
           beta_next=beta_zero+2*mu*np.matmul(np.transpose(X_train),Y_train-np.matmul(X_train,
         beta zero))
         <ipython-input-46-e6ba670cf7a1>:4: RuntimeWarning: invalid value encountered in add
           beta next=beta zero+2*mu*np.matmul(np.transpose(X train),Y train-np.matmul(X train,
         beta zero))
```

```
In [62]: plt.title('Example 3\n$500$ iteration and Stepsize $=10^9$')
   plt.plot(list(range(0,len(i_errors_3_rmse))),i_errors_3_rmse,'r',linewidth=5)
   plt.xlabel('Iteration')
   plt.ylabel('$RMSE$')
   plt.show()
```


B.3. WINE QUALITY DATASET

B.3.1 Wine Quality: Creating X For Trainset

```
In [63]: x_wine_without_bias=np.array(wine_quality_train.drop(['quality'],axis=1))
#adding a 1 vector as column for bias
x_wine_train = np.hstack((x_wine_without_bias,np.ones((1280,1))))
#checking the dimension
print(x_wine_train.shape)
```

B.3.2 Wine Quality: Creating Y For Trainset

```
In [64]: y_wine_train = np.array(wine_quality_train['quality']).reshape((1280,1))
#checking the dimension
y_wine_train.shape
Out[64]: (1280, 1)
```

B.3.3 Wine Quality: Creating X For Testset

```
In [65]: x_wine_without_bias_test=np.array(wine_quality_test.drop(['quality'],axis=1))

#adding a 1 vector as column for bias
x_wine_test = np.hstack((x_wine_without_bias_test,np.ones((319,1))))

#checking the dimension
print(x_wine_test.shape)

(319, 12)
```

B.3.4 Wine Quality: Creating Y For Testset

```
In [66]: y_wine_test = np.array(wine_quality_test['quality']).reshape((319,1))
#checking the dimension
y_wine_test.shape
Out[66]: (319, 1)
```

B.3.5 Wine Quality: Minimize GD Algorithm

Example 1: Stepsize = 10^{10} amd 800 iterations

```
In [67]: j_errors_1=iteration(x_wine_train,y_wine_train,np.ones((12,1)),0.0000000001,800)
         j_errors_1
Out[67]: [21383.891377203166,
          21343.050162516534,
          21302.28698765859,
          21261.601703491062,
          21220.994161177427,
          21180.464212171733,
          21140.011708213016,
          21099.63650130853,
          21059.33844375424,
          21019.117388144135,
          20978.973187319934,
          20938.905694447458,
          20898.914762925357,
           20859.000246483833,
          20819.161999091506,
          20779.399875013158,
          20739.713728787377,
          20700.103415243328,
          20660.568789467216,
```

```
In [68]: plt.title('Wine Quality \nExample 1\n$800$ iteration and Stepsize $=10^{10}$')
plt.plot(list(range(0,len(j_errors_1))),j_errors_1,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```



```
100
                                   300
                                         400
                                                              800
                    Ó
                              200
                                              500
                                                   600
                                                        700
                                       Iteration
In [69]:
          # we have to apply betas on test sets
          j_errors_1_rmse=iteration_rmse(x_wine_train,y_wine_train,np.ones((12,1)),0.0000000001,800
          j errors 1 rmse
Out[69]: [92.56928320557803,
           92.48464315264029,
           92.40008529236307,
           92.31560954723894,
           92.23121583983524,
           92.14690409279407,
           92.06267422883168,
           91.97852617073923,
           91.8944598413821,
           91.81047516370009,
           91.7265720607072,
           91.6427504554917,
           91.55901027121595,
           91.4753514311165,
           91.39177385850356,
           91.30827747676165,
           91.22486220934888,
           91.14152797979735,
           91.05827471171261,
```

```
In [70]: plt.title('Wine Quality \nExample 1\n$800$ iteration and Stepsize $=10^{10}$')
    plt.plot(list(range(0,len(j_errors_1_rmse))),j_errors_1_rmse,'r',linewidth=5)
    plt.xlabel('Iteration')
    plt.ylabel('$RMSE$')
    plt.show()
```


Example 2 Stepsize = 10^8 and 800 iterations

```
In [71]:
         j_errors_2=iteration(x_wine_train,y_wine_train,np.ones((12,1)),0.00000001,800)
         j_errors_2
Out[71]: [2037210.4416177794,
          1666549.7481258418,
          1363362.4115338828,
          1115365.7419149112,
          912512.9617945272,
          746586.1858186652,
          610863.4934614212,
          499846.60704721464,
          409038.1426360635,
           334759.40964261466,
          274001.3777911649,
          224302.77370155836,
          183650.36849069363,
          150397.4167884572,
          123196.94292659068,
          100947.17155546218,
          82746.89194516605,
          67858.94766603195,
           55680.37252326199,
           45747 0020700707
```

```
In [72]: plt.title('Wine Quality \nExample 2\n$800$ iteration and Stepsize $=10^{8}$')
    plt.plot(list(range(0,len(j_errors_2))),j_errors_2,linewidth=5)
    plt.xlabel('Iteration')
    plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
    plt.show()
```



```
In [73]:
         # we have to apply betas on test sets
         j_errors_2_rmse=iteration_rmse(x_wine_train,y_wine_train,np.ones((12,1)),0.00000001,800,
         j_errors_2_rmse
Out[73]: [84.18929255910629,
          76.54850644644527,
          69.65416892104872,
          63.43627162370663,
          57.83155393797647,
          52.782846234426906,
          48.238471635376456,
          44.15170011190655,
          40.48024944413772,
          37.185828337940514,
          34.233717817731154,
          31.59238791336663,
          29.233147612873434,
          27.129827010539834,
          25.258491449106128,
          23.597188104714945,
          22.125725744631428,
          20.825488170369564,
          19.67928108227814,
           40 (74)400))))
```

```
In [74]: plt.title('Wine Quality \nExample 2\n$800$ iteration and Stepsize $=10^{8}$')
   plt.plot(list(range(0,len(j_errors_2_rmse))),j_errors_2_rmse,'r',linewidth=5)
   plt.xlabel('Iteration')
   plt.ylabel('$RMSE$')
   plt.show()
```


Example 3 Stepsize = 10^7 and 800 iterations

```
j errors 3=iteration(x wine train,y wine train,np.ones((12,1)),0.0000001,800)
         j_errors_3
Out[75]: [11174041.134120356,
          31768.870883507247,
          9621.342041634547,
          9147.183392298612,
          8734.7541205569,
          8341.085775971209,
          7965.248353591654,
          7606.432173089037,
          7263.864507131511,
          6936.807749236003,
          6624.5578163449245,
          6326.442624361982,
          6041.8206330302055,
          5770.079456999883,
          5510.634540072191,
          5262.92788974804,
          5026.4268693353515,
          4800.6230449987925,
          4585.0310852511175,
In [76]:
         plt.title('Wine Quality \nExample 3\n$800$ iteration and Stepsize $=10^{7}$')
         plt.plot(list(range(0,len(j_errors_3))),j_errors_3,linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('|f(x_{i-1})-f(x_i)|')
         plt.show()
```



```
# we have to apply betas on test sets
         j_errors_3_rmse=iteration_rmse(x_wine_train,y_wine_train,np.ones((12,1)),0.0000001,800,x
         j_errors_3_rmse
Out[77]: [13.808207744998537,
          12.253581025487737,
          11.94367892540877,
          11.671724480446514,
          11.407504567058377,
          11.149600324175852,
          10.897812959123751,
          10.652000422589587,
          10.412026272898236,
          10.177757355772686,
          9.94906363221713,
          9.725818102427116,
          9.50789673544986,
          9.295178400586476,
          9.087544800322048,
          8.88488040473685,
          8.687072387360315,
          8.494010562430228,
          8.305587323520399,
In [78]:
         plt.title('Wine Quality \nExample 3\n$800$ iteration and Stepsize $=10^{7}$')
         plt.plot(list(range(0,len(j_errors_2_rmse))),j_errors_3_rmse,'r',linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('$RMSE$')
         plt.show()
```


B.4 PARKINSON

B.4.1 Parkinson: Creating X For Trainset

```
In [79]: x_parkinson_without_bias=np.array(parkinson_train.drop(['Total_UPDRS'],axis=1))

#adding a 1 vector as column for bias
x_parkinson_train = np.hstack((x_parkinson_without_bias,np.ones((800,1))))

#checking the dimension
print(x_parkinson_train.shape)

(800, 217)
```

B.4.2 Parkinson: Creating Y For Trainset

```
In [80]: y_parkinson_train = np.array(parkinson_train['Total_UPDRS']).reshape((800,1))
#checking the dimension
y_parkinson_train.shape
Out[80]: (800, 1)
```

B.4.3 Parkinson: Creating X For Testset

```
In [81]: x_parkinson_without_bias_test=np.array(parkinson_test.drop(['Total_UPDRS'],axis=1))
    #adding a 1 vector as column for bias
    x_parkinson_test = np.hstack((x_parkinson_without_bias_test,np.ones((200,1))))
    #checking the dimension
    print(x_parkinson_test.shape)
    (200, 217)

In [82]: x_parkinson_test.shape
Out[82]: (200, 217)
```

B.4.4 Parkinson: Creating Y For Testset

```
In [83]: y_parkinson_test = np.array(parkinson_test['Total_UPDRS']).reshape((200,1))
#checking the dimension
y_parkinson_test.shape
Out[83]: (200, 1)
```

B.4.5 Parkinson: Minimize GD Algorithm

Example 1: Stepsize = 10^{10} amd 800 iterations

```
k errors 1=iteration(x parkinson train,y parkinson train,np.ones((217,1)),0.0000000001,80
         k_errors_1
Out[84]: [477580376.4599302,
          274899979.7459488,
          158237313.3750422,
          91086374.87111378,
          52434342.21907973,
          30186254.067540884,
          17380261.59915811,
          10009130.929594934,
          5766301.858245552,
          3324120.419034004,
          1918390.1893042326,
          1109240.3988918662,
          643481.8299343586,
          375378.99727225304,
          221046.68712508678,
          132200.64599180222,
          81048.50091826916,
          51592.98686403036,
          34626.09224104881,
In [85]:
         plt.title('Parkinson \nExample 1\n$800$ iteration and Stepsize $=10^{10}$')
         plt.plot(list(range(0,len(k_errors_1))),k_errors_1,linewidth=5)
         plt.xlabel('Iteration')
```



```
In [86]:
         # we have to apply betas on test sets
         k_errors_1_rmse=iteration_rmse(x_parkinson_train,y_parkinson_train,np.ones((217,1)),0.00@
         k_errors_1_rmse
Out[86]: [1351.0743858011251,
          1168.756288739012,
          1048.8476337244695,
          972.5757252694862,
          925.3680921703916,
          896.7071302669666,
          879.5042449215197,
          869.2290720929811,
          863.0897897907334,
          859.4047580233109,
          857.1742100651478,
          855.807599094727,
          854.9567880401103,
          854.4162905926753,
          854.0643619634385,
          853.828439084158,
          853.6649205900042,
          853.5473382094776,
          853.4594246741215,
         plt.title('Parkinson\nExample 1\n$800$ iteration and Stepsize $=10^{10}$')
In [87]:
         plt.plot(list(range(0,len(k_errors_1_rmse))),k_errors_1_rmse,'r',linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('$RMSE$')
         plt.show()
```


Example 2 Stepsize = 10^8 and 800 iterations

```
In [88]: k_errors_2=iteration(x_parkinson_train,y_parkinson_train,np.ones((217,1)),0.00000001,800)
k_errors_2

<ipython-input-41-91d310f79016>:2: RuntimeWarning: overflow encountered in matmul
    rss = ((Y-(X@B)).T)@(Y-(X@B))
    <ipython-input-43-aed54ee7d680>:4: RuntimeWarning: overflow encountered in matmul
    beta_next=beta_zero+2*mu*np.matmul(np.transpose(X),Y-np.matmul(X,beta_zero))
    <ipython-input-43-aed54ee7d680>:4: RuntimeWarning: invalid value encountered in matmul
    beta_next=beta_zero+2*mu*np.matmul(np.transpose(X),Y-np.matmul(X,beta_zero))
    <ipython-input-43-aed54ee7d680>:4: RuntimeWarning: invalid value encountered in add
    beta_next=beta_zero+2*mu*np.matmul(np.transpose(X),Y-np.matmul(X,beta_zero))
```

```
In [89]: plt.title('Parkinson \nExample 2\n$800$ iteration and Stepsize $=10^{8}$')
   plt.plot(list(range(0,len(k_errors_2))),k_errors_2,linewidth=5)
   plt.xlabel('Iteration')
   plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
   plt.show()
```



```
In [91]: plt.title('Parkinson\nExample 1\n$800$ iteration and Stepsize $=10^{8}$')
   plt.plot(list(range(0,len(k_errors_2_rmse))),k_errors_2_rmse,'r',linewidth=5)
   plt.xlabel('Iteration')
   plt.ylabel('$RMSE$')
   plt.show()
```


Example 3 Stepsize = 10^7 and 800 iterations

```
In [92]:
         k errors 3=iteration(x parkinson train,y parkinson train,np.ones((217,1)),0.000000000001,
         k_errors_3
          1103.1804255247116,
          1102.9127341508865,
          1102.6454337239265,
          1102.3785117864609,
          1102.1119558811188,
          1101.8457538485527,
          1101.5798952579498,
          1101.3143690228462,
          1101.0491651296616,
          1100.7842742204666,
          1100.5196867585182,
          1100.2553942203522,
          1099.9913884997368,
          1099.7276610732079,
          1099.4642048478127,
          1099.2010125517845,
          1098.9380772709846,
          1098.6753923892975,
          1098.4129519462585,
          1098.1507499217987,
In [93]:
         k_errors_3=iteration(x_parkinson_train,y_parkinson_train,np.ones((217,1)),0.00000000001,{
         k errors 3
         plt.title('Parkinson \nExample 3\n$800$ iteration and Stepsize $=10^{11}$')
         plt.plot(list(range(0,len(k_errors_3))),k_errors_3,linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('f(x_{i-1})-f(x_i)')
         plt.show()
```



```
In [94]: ive to apply betas on test sets
         s_3_rmse=iteration_rmse(x_parkinson_train,y_parkinson_train,np.ones((217,1)),0.0000000000
         rs 3 rmse
Out[94]: [1590.915664892526,
          1563.9936836649933,
          1537.9094057425746,
          1512.6429162733084,
          1488.1746382936972,
          1464.4853217308948,
          1441.5560331102222,
          1419.3681459787294,
          1397.9033320525893,
          1377.1435530927174,
          1357.0710535094681,
          1337.668353693332,
          1318.9182440645222,
          1300.8037798300925,
          1283.308276432953,
          1266.4153056727698,
          1250.108692474505,
          1234.3725122761198
          1219.1910890030379,
In [95]:
         plt.title('Parkinson\nExample 3\n$800$ iteration and Stepsize $=10^{11}$')
         plt.plot(list(range(0,len(k_errors_3_rmse))),k_errors_3_rmse,'r',linewidth=5)
         plt.xlabel('Iteration')
         plt.ylabel('$RMSE$')
         plt.show()
```


EXERCISE 3: STEPLENGTH CONRTOL

3.1. Defining the Functions

3.1.1. Least Square

```
In [96]: def least_square(X,Y,B):
    rss = ((Y-(X@B)).T)@(Y-(X@B))
    return float(rss)
```

3.1.2 Gradient Of Least Square

```
In [97]: def grad_least_square(X,Y,B):
    return (-2*X.T)@(Y-X@B)
```

3.1.3. Backtracking Line Search

```
In [98]: def stepsize_backtracking(X,Y,B,a,b):
    mu =1
    k = B- mu*grad_least_square(X,Y,B)
    if least_square(X,Y,k)>least_square(X,Y,B)-a*mu*grad_least_square(X,Y,B).T@grad_least
        return b*mu
    else:
        return 1
```

3.1.4 GD with Backtracking Line

```
In [99]: def gd_stepsize(X,Y,B,i_max,a,b):
    error_list=[]
    mu=1
    for i in range(0,i_max):
        B_next= B - (a*mu)*grad_least_square(X,Y,B)
        error_list.append(abs(least_square(X,Y,B_next)-least_square(X,Y,B)))
        mu = stepsize_backtracking(X,Y,B_next,a,b)
        B = B_next
    return error_list
```

3.1.4 GD with Backtracking Line RMSE

```
In [100]: def gd_stepsize_rmse(X,Y,B,i_max,a,b):
    error_list=[]
    mu=1
    for i in range(0,i_max):
        B_next= B - (a*mu)*grad_least_square(X,Y,B)
        error_list.append(rmse(X,Y,B_next))
        mu = stepsize_backtracking(X,Y,B_next,a,b)
        B = B_next
    return error_list
```

3.1.5 Bold Driver Step Size

```
In [101]: def bold_driver(X,Y,B,mu,mu_plus,mu_negative):
    if least_square(X,Y,B)<=least_square(X,Y,B):
        mu = mu*mu_negative
    else:
        mu = mu*mu_plus
    return mu</pre>
```

3.1.6 GD with BOld Dirver Stepsize

```
In [102]: def gd_bold_driver(X,Y,B,i_max,mu_old,mu_plus,mu_minus):
    l = []
    mu = mu_old

    for i in range(0,i_max):
        B_next = B - mu* grad_least_square(X,Y,B)
        l.append(least_square(X,Y,B_next))
        B=B_next
        if least_square(X,Y,B)<=least_square(X,Y,B_next):
            mu = mu*mu_minus
        else:
            mu = mu*mu_plus
        return l</pre>
```

3.16 GD with Bold Driver Stepsize (RMSE)

```
In [103]: def gd_bold_driver_rmse(X,Y,B,i_max,mu_old,mu_plus,mu_minus):
    l = []
    mu = mu_old

for i in range(0,i_max):
    B_next = B - mu* grad_least_square(X,Y,B)
    l.append(rmse(X,Y,B_next))
    B=B_next
    if least_square(X,Y,B)<=least_square(X,Y,B_next):
        mu = mu*mu_minus
    else:
        mu = mu*mu_plus
    return l</pre>
```

4. AIRFARE AND DEMAND

Example 1: stepsize= 10^{11} and 500 iteration Backtracking Line

```
In [104]:
          ss_errors_1=gd_stepsize(x_airfare_train,y_airfare_train,np.ones((217,1)),500,0.0000000000
           ss_errors_1
Out[104]: [236185601.50268936,
           44890660.18761253,
           44330528.458440304,
           43777390.33042765,
           43231158.46886635,
           42691746.62971449,
           42159069.64598179,
           41633043.414280415,
           41113584.88153267,
           40600612.03186607,
           40094043.87365723,
            39593800.426730156,
           39099802.709739685,
            38611972.727684975,
           38130233.459599495,
           37654508.84638643,
           37184723.77879906,
            36720804.0855875,
            36262676.52177858,
```

```
In [105]: plt.title('Airfare and Demand (Backtracking)\nExample 1\n$500$ iteration and Stepsize $=1
plt.plot(list(range(0,len(ss_errors_1))),ss_errors_1,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```


Example 2 stepsize= 10^{11} and 500 iteration Backtracking Line With RMSE

```
In [106]:
          ss errors 2=gd stepsize rmse(x airfare train,y airfare train,np.ones((217,1)),500,0.00000
           ss_errors_2
Out[106]:
          [2126.0309019143538,
            2112.7929549911523,
            2099.6382807729524,
            2086.5663593986574,
            2073.5766742727606,
            2060.6687120449365,
            2047.841962589754,
            2035.0959189865255,
            2022.430077499268,
            2009.8439375568105,
            1997.3370017330055,
            1984.9087757270793,
            1972.5587683441008,
            1960.2864914755687,
            1948.0914600801204,
            1935.9731921643745,
            1923.9312087638712,
            1911.9650339241628,
            1900.0741946819883,
```

```
In [107]: plt.title('Airfare and Demand (Backtracking)\nExample 2\n$500$ iteration and Stepsize $=1
plt.plot(list(range(0,len(ss_errors_1))),ss_errors_1,'r',linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('RMSE')
plt.show()
```


Example 3 stepsize= 10^{11} and 500 iteration Bolddrive

```
In [108]:
          bd_errors_1=gd_bold_driver(x_airfare_train,y_airfare_train,np.ones((217,1)),500,0.0000000
           bd_errors_1
Out[108]:
          [3616005916.715811,
            3571115256.5281982,
            3562226886.0984964,
            3560452771.024638,
            3560098090.1207666,
            3560027159.6224346,
            3560012973.7500505,
            3560010136.5846643,
            3560009569.1519513,
            3560009455.6654224,
            3560009432.968117,
            3560009428.428656,
            3560009427.5207634,
            3560009427.3391857,
            3560009427.3028703,
            3560009427.2956066,
            3560009427.294154,
            3560009427.2938643,
            3560009427.293806,
```

```
In [109]: plt.title('Airfare and Demand (Bolddriver)\nExample 3\n$500$ iteration and Stepsize $=10/
plt.plot(list(range(0,len(bd_errors_1))),bd_errors_1,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```


Example 4 stepsize=10¹¹ and 500 iteration Bolddrive (RMSE)

```
In [110]:
          bd_errors_2=gd_bold_driver_rmse(x_airfare_train,y_airfare_train,np.ones((217,1)),500,0.00
          bd_errors_2
Out[110]: [2126.0309019143538,
           2112.7929549911523,
            2110.161986109863,
            2109.636452989187,
           2109.5313727581665,
           2109.5103577674226,
            2109.506154811491,
            2109.5053142219926,
           2109.505146104162,
           2109.5051124805973,
           2109.5051057558844,
           2109.505104410943,
           2109.5051041419533,
           2109.505104088157,
           2109.505104077396,
           2109.5051040752455,
           2109.5051040748144,
           2109.50510407473,
            2109.505104074711,
```

```
In [111]: plt.title('Airfare and Demand (Bolddrive)\nExample 4\n$500$ iteration and Stepsize $=10^{
    plt.plot(list(range(0,len(bd_errors_2))),bd_errors_2,'r',linewidth=5)
    plt.xlabel('Iteration')
    plt.ylabel('RMSE')
    plt.show()
```


5. WINE QUALITY

Example 1: 800 iteration and Stepsize = 10^{10} (Backtracking)

```
In [112]: jss_errors_1=gd_stepsize(x_wine_train,y_wine_train,np.ones((12,1)),800,0.0000000001,0.2)
jss_errors_1

plt.title('Wine Quality (Backtracking)\nExample 1\n$800$ iteration and Stepsize $=10^{10}
plt.plot(list(range(0,len(jss_errors_1))),jss_errors_1,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```


Example 2 800 iteration and Stepsize = 10^{10} (Backtracking with RMSE)

```
In [120]: jss_errors_2=gd_stepsize_rmse(x_wine_train,y_wine_train,np.ones((12,1)),800,0.0000000001]
    jss_errors_2

plt.title('Wine Quality (Backtracking with RMSE)\nExample 2\n$800$ iteration and Stepsize
    plt.plot(list(range(0,len(jss_errors_2))),jss_errors_2,'r',linewidth=5)
    plt.xlabel('Iteration')
    plt.ylabel('RMSE|')
    plt.show()
```


Example 3 800 iteration and Stepsize = 10^{10} Bolddriver

```
In [114]: jss_errors_3=gd_bold_driver(x_wine_train,y_wine_train,np.ones((12,1)),800,0.0000000001,1
jss_errors_3

plt.title('Wine Quality (Bolddriver)\nExample 3\n$800$ iteration and Stepsize $=10^{10}$
plt.plot(list(range(0,len(jss_errors_3))),jss_errors_3,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```


Example 3 800 iteration and Stepsize = 10^{10} Bolddriver with RMSE

```
In [115]: jss_errors_4=gd_bold_driver_rmse(x_wine_train,y_wine_train,np.ones((12,1)),800,0.000000000
jss_errors_4

plt.title('Wine Quality (Bolddriver with RMSE)\nExample 4\n$800$ iteration and Stepsize $
plt.plot(list(range(0,len(jss_errors_4))),jss_errors_4,'r',linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$|f(x_{i-1})-f(x_i)|$')
plt.show()
```


3. PARKINSON

Example 1

Example 2

```
In [117]: kss_errors_2=gd_stepsize_rmse(x_parkinson_train,y_parkinson_train,np.ones((217,1)),800,0
kss_errors_2

plt.title('Parkinson(Backtrackingwith RMSE) \nExample 2\n$800$ iteration and Stepsize $=1
plt.plot(list(range(0,len(kss_errors_2))),kss_errors_2,'r',linewidth=5)
plt.xlabel('Iteration')
plt.ylabel('$RMSE$')
plt.show()
```


Example 3

```
In [118]: kss_errors_3=gd_bold_driver(x_parkinson_train,y_parkinson_train,np.ones((217,1)),800,0.00
kss_errors_3

plt.title('Parkinson(Bolddriver ) \nExample 3\n$800$ iteration and Stepsize $=10^{11}$')
plt.plot(list(range(0,len(kss_errors_3))),kss_errors_3,linewidth=5)
plt.xlabel('Iteration')
plt.ylabel(' $|f(x_{i-1})-f(x_i)|$')
plt.show()
```


Example 4

```
In [119]: kss_errors_4=gd_bold_driver_rmse(x_parkinson_train,y_parkinson_train,np.ones((217,1)),800
kss_errors_4

plt.title('Parkinson(Bolddriver with RMSE ) \nExample 4\n$800$ iteration and Stepsize $=1
plt.plot(list(range(0,len(kss_errors_4))),kss_errors_4,'r',linewidth=5)
plt.xlabel('Iteration')
plt.ylabel(' RMSE')
plt.show()
```


CONCLUSION

The learning and RMSE of Backtracking step length more drastic than Bold-driver step-length function (line

is moreprendecular) RMSE for both of step-length functions are smoother than learning since it take into account square root of error

The logic for learning and RMSE of constant step-length is totally valid for backtrackingline and bold-driver step-lengths.

Gradient descent algorithm with backtrackingline and bold-driver methods learns quickly the dataa

Tn []·	
T	