20. El sólido acotado por el cilindro $y = x^2$ y los planos z = 0, z = 4 y y = 9.

21. El sólido encerrado por el cilindro $x^2 + y^2 = 9$ y los planos y + z = 5 y z = 1.

22. El sólido encerrado por el paraboloide $x = y^2 + z^2$ y el plano x = 16.

38. *E* está acotada por el cilindro parabólico $z = 1 - y^2$ y los planos x + z = 1, x = 0 y z = 0; $\rho(x, y, z) = 4$.

40. E es el tetraedro acotado por los planos x = 0, y = 0, z = 0, x + y + z = 1; $\rho(x, y, z) = y$

Centroide de:

34. La figura muestra la región de integración para la integral

$$\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx$$

Reescriba esta integral como una integral iterada equivalente en los otros cinco órdenes.

Calcule la superficie que está sobre el plano XY de los sólidos anteriores

38. *E* está acotada por el cilindro parabólico $z = 1 - y^2$ y los planos x + z = 1, x = 0 y z = 0; $\rho(x, y, z) = 4$.

40. E es el tetraedro acotado por los planos x = 0, y = 0, z = 0, x + y + z = 1; $\rho(x, y, z) = y$

34. La figura muestra la región de integración para la integral

$$\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx$$

Reescriba esta integral como una integral iterada equivalente en los otros cinco órdenes.

