From Covariance to Compression: Astrostats is Cool!!

Darshak Patel | PHYS 788

Outline

1.0 Covariance, χ^2 Distributions and Hartlap Factor

Assignment 1

2.0 Neural Network/Emulator & PCA

Assignment 2

3.0 MCMC + PCA + Covariance

Assignment 3

Assignment #1

- Given the true covariance matrix of a reference model, from which we generate two sets of 10,000 noisy Gaussian data vectors and calculate the chi2 values and plotted the distribution
 - Need to convince yourself that these were Chi-2 distributions = to do this we look at the mean and variance
- Generated four sets of numerical covariance matrices from one of the noisy data set
 - Compared the correlation matrices of the num cov matrices
 - Tested to see if the covariances were positive semi-definite
- Calculated the chi2 distribution once again
- Applied Hartlap factor and redid the chi2 distributions
- Chi2 against the same dataset that made the num cov

What's a covariance?

In the 2D case:

$$Cov(X,Y) = \begin{pmatrix} Var(X) & Var(Y,X) \\ Var(X,Y) & Var(Y) \end{pmatrix}$$
$$Var(X,Y) \approx \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

What power do covariance matrices have statistically?

- Obtain errors for your data and analysis
- Insight on underlying correlation between variables
 - Example of where knowing the correlation between variables is important?!

Covariance to χ^2 Distributions to Hartlap

Mean = k | Variance = 2k

Mean = 899.96 | Variance = 1795.49 🔽

$$h = \frac{n-1}{n-m-2}$$

Hartlap Factor

Covariance to χ^2 Distributions to Hartlap

Mean = k | Variance = 2k

Mean = 899.96 | Variance = 1795.49 🔽

$$h = \frac{n-1}{n-m-2}$$

Hartlap Factor

A1 - Key Takeaways

- 1. Check that your covariance matrices are invertible and positive semi-definite
- 2. Always apply the Hartlap factor when using numerical covariance matrices

Covariance to χ^2 Distributions

$$\chi^2 = D^T C^{-1} D$$

At high degrees of freedom (k) the χ^2 distribution tends to become Gaussian:

For noisy dataset #1:

| Mean = 899.96 | Variance = 1795.49 🔽

For noisy dataset #2:

Mean = 900.38 | Variance = 1800.64 🗸

Numerical Covariance Matrix from Simulations

- Numerical covariance matrices: 500, 1000, 5000, and 10,000
- Calculated the correlation matrix
- Checked if positive-semi definite = no negative eigenvalues

χ^2 Distribution: Something is off...

Mean: 3.74e15 Variance: 3.92e34

Mean: 988.54 Variance: 2372.37

The numerical covariance matrix itself is a random variable. We need to debias the inverse covariance matrix with the Hartlap factor!

χ^2 Distribution + Hartlap Factor

$$h = \frac{n-1}{n-m-2}$$

$$\tilde{C}^{-1} = \frac{C^{-1}}{h}$$

Mean: -3.02e16 Variance: 2.54e34 Mean: 899.52 Variance: 2192.16 Mean: 899.46 Variance: 1964.09

A1 - Key Takeaways

- 1. Check that your covariance matrices are invertible and positive semi-definite
- 2. Always apply the Hartlap factor when using numerical covariance matrices

Assignment #2

- Training Emulator
 - Normalizing the training features vs. not normalizing
 - Accuracy plots
 - What do the hyper parameters do? How did I choose them?
- Fisher Analysis to get max parameter constraints
- PCA data compression
 - How many PCA to get 10% and 1% max constraining power

Training a Neural Network Emulator

- Step #1 Split your data into a training and testing sample (70% | 30%)
- Step #2 Manipulate training features (Normalize? Rescale by σ ?)
- Step #3 Choose hyper parameters
 - Learning Rate, Batch Size, Max Epochs, Number of Neurons
- Step #4 Train Emulator and check accuracy
- Step #5 Repeat #3 and #4 till desired accuracy is achieved

My Best Trained Emulator

The Parameters:

- 5 layers
- LRs: 1e-2, 1e-3, 1e-4, 1e-5,
 1e-6
- Batch Size: 500
- Normalized Train features

Loss: 7.296e-5

A2 - Key Takeaways

- 1. Hyper parameter choices must be well-thought out
- 2. Normalizing training features improves emulator accuracy
- 3. PCA data compression is a powerful tool (extra slides)

Assignment #3

- Running MCMC
 - Hyperparameters and why I choose what I did
 - Like how I used lower params while working on it but then went to higher higher walkers and steps when I ran them overnight
 - What does a MCMC do? How does it work?
 - Example Posterior distribution from task 1
 - Example chi2 distribution
- Using Num Cov and how Hartlap effects the posterior distributions
- Effects of PCA analysis on the posterior distributions
- Noise-free model vs. Noisy-model on MCMC

Monte-Carlo Markov Chain (MCMC)

• MCMC via. Emcee to find parameter constraints for:

 $\Omega_{\rm m}$, $\Omega_{\rm b}$, As, w

- Hyper parameters:
 - Total steps
 - Burning steps
 - Number of walkers

Monte-Carlo Markov Chain (MCMC)

 Probabilistic based sampling technique useful for complex distributions, or high dimensionality

• MCMC via. Cosmopower to find parameter constraints for: Ω_m , Ω_h , As, w

- Hyper parameters:
 - Total steps
 - Burning steps
 - Number of walkers

MCMC: Numerical Covariance + Hartlap Factor

• MCMC posteriors and χ^2 distribution: 1.5k, 3k and 10k numerical covariance matrix

MCMC: Numerical Covariance + Hartlap Factor

• MCMC posteriors and χ^2 distribution: 1.5k, 3k and 10k numerical covariance matrix

MCMC: PCA + Analytical/Numerical Cov

A3 - Key Takeaways

- 1. MCMC's are a (for the most part) very efficient way of exploring a larger parameter space and determine parameters of best-fit
- 2. Hartlap factor corrections and PCA data compression together have opposing effects
- 3. Noise within models play a significant role in the accuracy of MCMCs (extra)

Application to my Research:

 Covariance matrices from Jackknife

 Training an Emulator for dsigma

 MCMC to find parameters of best fit for HOD model

Thank you

Backup Slides

All Key Takeaways:

Assignment #1:

- Check that your covariance matrices are invertible and positive semi-definite
- Always apply the Hartlap factor when using numerical covariance matrices
- Do not measure the Chi2-distribution on the data you used to make the numerical covariance matrices

Assignment #2:

- Hyper parameter choices must be well-thought out
- Normalizing training features improves emulator accuracy
- PCA data compression is a powerful tool

Assignment #3:

- MCMC's are a (for the most part) very efficient way of exploring a larger parameter space and determine parameters of best-fit
- Hartlap factor corrections and PCA data compression together have opposing effects
- Noise within models play a significant role in the accuracy of MCMCs

Measuring χ^2 against the same dataset as the Numerical Covariance

- The lower peak contains the data vectors used to make the numerical covariance
- If n is VERY high then we can get more reasonable means/variances (80k, 100k etc.)

The Hyper Parameters

Learning Rate:

- Determines how big of "jumps" the NN takes during each step
- Impacts the loss significantly

Batch Size:

- How many elements of the training set is thrown into the NN at once
- How many models you average over so too many and you wash out information, too few and you're too sensitive
- Impacts the speed and loss

Max Epochs:

- Max number of epochs before NN moves to next learning rate
- Impacts the speed

Number of Neurons:

- Main parameter which dictates the performance of the emulator
- Problem of overfitting or underfitting usually originates here!

A2: Principal Component Analysis (PCA)

• Form of data compression - decreasing the dimensionality of the original data, but preserving the same information/features

Parameter Covariance via. Fisher Matrix

$$F_{ij} = \left(\frac{\partial m(\Theta)}{\partial \Theta_i}\right)^T C^{-1} \left(\frac{\partial m(\Theta)}{\partial \Theta_i}\right)$$

$$rac{\partial m(\Theta)}{\partial \Theta_i} pprox rac{-m(\Theta_i + 2 \ \Delta \Theta_i) + 8 \ m(\Theta_i + \Delta \Theta_i) - 8 \ m(\Theta_i - \Delta \Theta_i) + m(\Theta_i - 2 \ \Delta \Theta_i)}{12 \ \Delta \Theta_i}$$

- Parameter covariance = inverse of Fisher matrix
- Max constraints is the square-root of the diagonal terms of the parameter covariance matrix

MCMC: PCA + Analytical/Numerical Cov

MCMC: Noise-Free vs. Noisy Model + PCA

MCMC: Noise-Free vs. Noisy Model + PCA

MCMC: Noise-Free + PCA + Analytic/Num Cov

MCMC: Noise-Free + PCA + Analytic/Num Cov

A3: Marginalized Constraints on $\Omega_{\rm m}$ and As

Hard to tell but the constraints slightly increasing after hitting a minimum ~550-600. This minimum is the "sweet spot" where Hartlap and PCA balance out.

Why should we normalize?

Flattens out the data so that all features are equally learnt by the emulator

Let me draw you a picture!

Data Compression Alternatives:

Method:	Pros:	Cons:
Principal Component Analysis	 Deals with multicollinearity Easier to implement Easier to interpret 	 Struggles to capture/preserve nonlinear relationships Sensitive to outliers
Massively Optimised Parameter Estimation and Data compression (MOPED)	Handles non-linearity betterSignificantly less data loss	More computationally expensiveMore complicated to implement

MCMC Alternatives:

Running the MCMC: Emcee vs. Tensorflow vs. OTHER!

Algorithms:

- Metropolis-Hastings
 - o Emcee using a modified version of this
- Gibbs Sampling
- Hamiltonian
- etc...

Assignment #1:

Numerical Stability of the Covariance Matrix

- Why use/care about covariance matrices?
- What power do they have statistically?
- Equation for getting covariance from a data set of 2

Chi2 Distributions + Hartlap Factor

- Quick sentence on what chi2 values and its distribution tells us
- Equation for Hartlap Factor
- Example plots of Chi2 distribution with and with Hartlap Factor
 - What does the Hartlap Factor do

Assignment #2:

Training a Neural Network emulator

- Show the effects of normalizing vs. not normalizing the training features
- PCA data compression
- What exactly it does? And Why we should care?
- Show how the data compressed cov matrices look
 - Show 10% and 1% constraint plots as proof

Assignment #3:

- What is a MCMC and how does it work?
- Result from task 1 of assignment
- Effect of Hartlap factor on posterior distribution
- PCA analysis with MCMC
- Noise-free vs. Noisy model with MCMC

Backup Slides:

- Computations of Covariance Matrices
 - Numerical Cov Pros and Cons
 - Singular Value Decomposition
- Test for Gaussianity
- Types of Monte Carlo Sampling: Importance, Rejection
- Gelman-Rubin Statistic
- Types of Priors: Conjugat, Imprope, Jeffreys