

INGENIERÍA DE CALOR

INGENIERÍAS.

Dr. Omar Martínez Alvarez.

Fluido???? (Aire, agua, gas)

- Cambia su geometría dependiendo de su contenedor.
- No soporta esfuerzos cortantes (τ) por lo que se deforma de manera continua bajo la acción de un esfuerzo cortante por pequeño que este sea.

Fluidos newtonianos y no newtonianos

Velocidad de deformación du/dy

Tensión superficial (σ)

Presión de vapor

La viscosidad de los newtonianos se mantiene constante siempre, y en los newtonianos su viscosidad es variable

Densidad (δ)

La densidad de un fluido, se define como la masa por unidad de volumen:

 δ =masa/volumen [Kg/m³]

$\delta_{\scriptscriptstyle{\mathsf{H2O}}}$

- 1g/cm³,
- 1000 kg/m³,
- 1.94 slugs/pie³

Volumen específico (v)

El volumen específico de un fluido, es el volumen por unidad de masa:

$$v=1/\delta$$
 [m³/Kg]

Peso específico (γ)

Se define como su peso por unidad de volumen.

$$\gamma = \delta * g$$
 [N/m³]

$$\gamma_{\text{agua}}$$
 a 4°C= 9.8 kN/m³

Compresibilidad

• Se d que io de volumenta de la com restricio de la com restricio

$$K = \frac{incremento \ de \quad presi\'on}{deformaci\'on \ volum\'etrica} = \frac{dp}{-\frac{dV}{V}} = -V \frac{dp}{dV}$$

El módulo de elasticidad tiene unidades de presión (lb/ pulg ², N/m²=Pa)
El signo negativo es debido a que por un aumento de presión produce una disminución de volumen

Definiciones

Fluido ideal Fluido real Flujo laminar Flujo turbulento Flujo permanente Flujo no permanente Flujo uniforme Flujo no uniforme Línea de corriente Tubo de corriente Capa límite

TRANSFERENCIA DE CALOR

Viscosidad

No es posible avanzar demasiado en el estudio de convección y flujo de fluidos, sin definir una propiedad que tiene importantes conexiones con ambas.

Para evaluar esta propiedad mediante la dinámica de los fluidos, es necesario hacer dos suposiciones:

- (1) donde existe una interfase sólidolíquido, no hay corrimiento entre el sólido y el líquido, y
- (2) la regla de Newton: el esfuerzo de corte es proporcional al esfuerzo en dirección perpendicular al movimiento.

La razón del corte es proporcional al gradiente de velocidad du/dy. Aplicando la regla de Newton, si τ es el esfuerzo de corte

$$\tau = \mu \, \frac{du}{dy}$$

Número de Nusselt

$$Nu = \frac{hL_c}{k}$$

La transferencia de calor a través de la capa de fluido será por convección cuando esta última tenga algún movimiento y por conducción cuando esté inmóvil.

$$\dot{q}_{\rm conv} = h\Delta T$$

$$\dot{q}_{\rm cond} = k \frac{\Delta T}{L}$$

$$\frac{\dot{q}_{\text{conv}}}{\dot{q}_{\text{cond}}} = \frac{h\Delta T}{k\Delta T/L} = \frac{hL}{k} = \text{Nu}$$

Flujo viscoso y no viscoso

Flujo de fluido de una corriente originalmente uniforme sobre una placa plana y las regiones de flujo viscoso (próximas a la placa en ambos lados), así como no viscoso (lejos de la placa).

Flujo interno y externo

Flujo externo sobre una pelota de tenis y la región de la estela turbulenta detrás.

Flujo laminar y turbulento

De transición

Flujo natural o forzado

Desarrollo del perfil de velocidad en un tubo circular. V V(r, z), de donde el flujo es bidimensional en la región de entrada y se vuelve unidimensional corriente abajo, cuando el perfil de velocidad se desarrolla por completo y permanece inalterado en la dirección del flujo, V V(r).

Capa límite de velocidad

Esfuerzo cortante superficial

$$\tau = \mu \, \frac{du}{dy}$$

Los estudios experimentales indican que, para la mayor parte de los fluidos, el esfuerzo cortante es proporcional al gradiente de velocidad, y el esfuerzo cortante en la superficie de la pared es expresada como

$$\tau_w = \mu \frac{\partial u}{\partial y}\Big|_{y=0}$$
 (N/m²) requiere conocimiento del perfil de velocidades del

Velocidad de corriente superficial

$$\tau_{\rm w} = C_f \frac{\rho V^2}{2} \qquad (\rm N/m^2)$$

Fuerza de fricción superficial

$$F_f = C_f A_s \frac{\rho V^2}{2} \qquad (N)$$

Viscosidad cinemática

$$\nu = \mu/\rho$$

La viscosidad de los líquidos decrece y la de los gases aumenta con la temperatura.

Capa límite térmica

Capa límite térmica sobre una placa plana (el fluido está más caliente que la superficie de la placa).

Número de Prandtl

$$Pr = \frac{Difusividad \text{ molecular de la cantidad de movimento}}{Difusividad \text{ molecular del calor}} = \frac{v}{\alpha} = \frac{\mu c_p}{k}$$

Rangos típicos de los números de Prandtl para fluidos comunes

Fluido	Pr
Metales líquidos	0.004-0.030
Gases	0.7-1.0
Agua	1.7-13.7
Fluidos orgánicos	
ligeros	5-50
Aceites	50-100 000
Glicerina	2 000-100 000

Los números de Prandtl para los gases son de alrededor de 1, lo cual indica que tanto la cantidad de movimiento como el calor se disipan a través del fluido a más o menos la misma velocidad. El calor se difunde con mucha rapidez en los metales líquidos (Pr < 1) y con mucha lentitud en los aceites (Pr > 1) en relación con la cantidad de movimiento. Como consecuencia, la capa límite térmica es mucho más gruesa para los metales líquidos y mucho más delgada para los aceites, en relación con la capa límite de la velocidad.

Número de Reynolds

La transición de flujo laminar a turbulento depende de la configuración geométrica de la superficie, de la aspereza superficial, de la velocidad del flujo, de la temperatura de la superficie y del tipo de fluido, entre otras cosas.

El número de Reynolds se puede concebir como la razón entre las fuerzas de inercia y las fuerzas viscosas que actúan sobre el elemento de un fluido.

