Задача 1

M = N	Количество потоков														
	2			4		7		8		16		20		40	
	T ₁	T_2	S_2	T_4	S_4	T_7	S_7	T_8	S_8	T ₁₆	S_{16}	T ₂₀	S_{20}	T_{40}	S ₄₀
20000 (~3 GiB)	0.65	0.31	2.10	0.15	4.33	0.09	7.22	0.08	8.12	0.04	16.25	0.03	21.6	0.02	32.5
40000 (~ 12 GiB)	2.39	1.36	1,76	0.62	3.85	0.40	5.97	0.35	6.83	0.16	14.94	0.13	18.39	0.07	34.14

До 20 потоков: ускорение близко к линейному, значительный прирост.

От 20 до 40 потоков: ускорение замедляется.

Вывод: Программа хорошо масштабируется до 16–20 потоков.

Задача 2

Nsteps		Количество потоков														
a = -4.0 b = 4.0	2			4		7		8		16		20		40		
	T_1	T ₂	S_2	T_4	S_4	T_7	S_7	T ₈	S_8	T ₁₆	S ₁₆	T ₂₀	S_{20}	T_{40}	S ₄₀	
40 000 000	0.30	0.22	1.37	0.12	2.51	0.07	4.12	0.06	4.60	0.04	7.88	0.03	8.89	0.02	12.27	

До 8 потоков: ускорение относительно близко к линейному, достигая S₈≈4.6

От 8 до 40 потоков: ускорение замедляется, на 40 потоках достигает всего $S_{40} \approx 12.27$, что значительно ниже теоретического значения.

Вывод: Эффективность использования потоков снижается после 8–16 потоков.

Задача 3

M = N = 1998	Количество потоков																
Solved for 18301 iterations tau = 0.001	2			4		7		8		16		20		40		80	
tau - 0.001	T ₁	T ₂	S_2	T ₄	S ₄	T ₇	S_7	T ₈	S_8	T ₁₆	S ₁₆	T ₂₀	S ₂₀	T ₄₀	S ₄₀	T ₈₀	S_{80}
(#pragma omp parallel for)	89.94	45.36	1.98	22.64	3.97	12.84	7.00	11.00	8.18	5.93	15.17	5.22	17.23	3.82	23.54	9.14	9.84
(#pragma omp parallel)	89.94	43.04	2.09	22.29	4.03	12.83	7.01	11.23	8.01	6.72	13.38	5.47	16.44	5.28	17.03	7.81	11.52

schedule (static, 20)	89.94	43.50	2.06	22.56	3.99	13.58	6.62	11.60	7.75	6.91	13.01	5.29	17.00	4.41	20.39	5.84	15.40
schedule (dynamic, 20)	89.94	45.43	1.98	22.87	3.93	13.57	6.63	12.25	7.34	7.26	12.39	6.01	14.97	4.86	18.51	5.80	15.51
schedule (guided, 20)	89.94	45.32	1.98	22.90	3.93	13.25	6.79	11.97	7.51	7.09	12.69	6.14	14.65	5.63	15.98	6.89	13.05

Общая масштабируемость: при увеличении числа потоков ускорение сначала растёт, но после 40 потоков начинает снижаться.

Dynamic показал наилучшие результаты в среднем, особенно на 40 и 80 потоках, где он дал максимальное ускорение (≈15.51).

Pragma parallel и **pragma for** показали схожие результаты, но **pragma parallel** чуть лучше масштабируется и демонстрирует лучшее ускорение на высоких потоках (например, 80 потоков: 11.52 vs. 9.84).

Вывод: **Dynamic или pragma parallel** — лучший вариант для масштабируемости на больших потоках. **Pragma for** - лучший вариант до 40 потоков

Информация о сервере

Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit

Address sizes: 46 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 80
On-line CPU(s) list: 0-79

Vendor ID: GenuineIntel

Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz

CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
Stepping: 7
Caches (sum of all):

L1d: 1.3 MiB (40 instances)
L1i: 1.3 MiB (40 instances)
L2: 40 MiB (40 instances)
L3: 55 MiB (2 instances)

CPU max MHz: 3900.0000 CPU min MHz: 1000.0000

Server name: ProLiant XL270d Gen10

available: 2 nodes (0-1) node 0 size: 385636 MB node 1 size: 387008 MB

PRETTY_NAME="Ubuntu 22.04.5 LTS"

NAME="Ubuntu"

VERSION_ID="22.04"