EPAISSISSEMENTS

Table des matières

1.	Definitions	1
2.	Propriété fondamentale	1
3.	Epaississements de fibrés	1
3.1.	Propriétés	2
3.2.	Classes d'extensions de fibrés	2
3.3.	Application à V_{-}	2
3.3.	1. À l'ordre 1	2
3.3.	2. À l'ordre 2	3
4.	Appendices	3

Epaississements de fibrés en suivant Buchdahl [?]

1. Definitions

Soit $L^{\infty}=(L,\mathcal{O})$ un espace analytique non-necessairement réduit. On note \mathcal{I} l'ideal des fonctions nilpotentes de \mathcal{O} .

Et on note $L^{(k)} := (L, \mathcal{O}/\mathcal{I}^{k+1}) = (L, \mathcal{O}^{(k)})$ avec l'abus suivant : L désigne à la fois l'espace topologique sous-jacent et $L^{(0)}$.

Soit E^{∞} un fibré vectoriel analytique sur L^{∞} . C'est-à-dire, par définition, le faisceau $\mathcal{O}(E^{\infty})$ des sections locales de E^{∞} est localement libre en tant que \mathcal{O} -module.

2. Propriété fondamentale

On a pour tout $n \geq 0$ la suite exacte suivante de \mathcal{O} -modules

(1)
$$0 \to \frac{\mathcal{I}^{n+1}}{\mathcal{I}^{n+2}} \to \mathcal{O}^{(n+1)} \to \mathcal{O}^{(n)} \to 0$$

De plus [?], on peut écrire

(2)
$$\frac{\mathcal{I}^{n+1}}{\mathcal{I}^{n+2}} = \mathcal{O}_L(\odot^{n+1}N^*)$$

en tant que faisceaux de \mathcal{O} -modules.

3. Epaississements de fibrés

On notera $E^{(n)}$ le fibré sur $L^{(n)}$ définit par

$$\mathcal{O}^{(n)}(E^{(n)}) = \mathcal{O}^{(n)} \otimes_{\mathcal{O}} \mathcal{O}(E^{\infty})$$

Il est clair qu'il est localement libre.

- 3.1. Propriétés. Les epaississements de fibrés satisfont plusieurs propriétés de "fonctorialité" (plutôt de naturalité)
 - $E^{(n)} \oplus F^{(n)} \simeq (E \oplus F)^{(n)}$ avec comme convention que $E \oplus F$ désigne le fibré $E^{\infty} \oplus F^{\infty}$.
 - $E^{(n)} \otimes F^{(n)} \simeq (E \otimes F)^{(n)}$ (idem)
 - $(E^{(n)})^* \simeq (E^*)^{(n)}$ (idem)

Enfin si k < n alors

(3)
$$\mathcal{O}^{(k)}(E^{(n)}) = \mathcal{O}^{(k)}(E^{(k)})$$

car en effet,

$$\mathcal{O}^{(k)}(E^{(n)}) = \mathcal{O}^{(k)} \otimes_{\mathcal{O}^{(n)}} \mathcal{O}^{(n)}(E^{(n)})$$
$$= \mathcal{O}^{(k)} \otimes_{\mathcal{O}^{(n)}} \mathcal{O}^{(n)} \otimes_{\mathcal{O}} \mathcal{O}(E^{\infty})$$
$$= \mathcal{O}^{(k)} \otimes_{\mathcal{O}} \mathcal{O}(E^{\infty})$$

3.2. Classes d'extensions de fibrés. Soit $E^{(n)}$ un fibré sur $L^{(n)}$ et soient $E^{(n+1)}$ et $F^{(n+1)}$ deux fibrés sur $L^{(n+1)}$ qui étendent $E^{(n)}$ au sens suivant

$$\mathcal{O}^{(n)}(E^{(n+1)}) = \mathcal{O}^{(n)}(F^{(n+1)}) = \mathcal{O}^{(n)}(E^{(n)})$$

Alors en tensorisant la suite exacte (1) par le fibré $\operatorname{Hom}(E^{(n+1)},F^{(n+1)})$ sur $L^{(n+1)}$, on trouve

$$0 \to \mathcal{O}_L(\operatorname{End}(E) \otimes \odot^{n+1} N^*) \to \mathcal{O}^{(n+1)}(\operatorname{Hom}(E^{(n+1)}, F^{(n+1)})) \to \mathcal{O}^{(n)}(\operatorname{End}(E^{(n)})) \to 0$$

Passons à la cohomologie et interprétons

$$0 \to H^{0}(L, \mathcal{O}_{L}(\operatorname{End}(E) \otimes \odot^{n+1}N^{*}))$$

$$\to H^{0}(L, \mathcal{O}^{(n+1)}(\operatorname{Hom}(E^{(n+1)}, F^{(n+1)})))$$

$$\to H^{0}(L, \mathcal{O}^{(n)}(\operatorname{End}(E^{(n)})))$$

$$\to H^{1}(L, \mathcal{O}_{L}(\operatorname{End}(E) \otimes \odot^{n+1}N^{*}))$$

L'image de $1 \in H^0(L, \mathcal{O}^{(n)}(\operatorname{End}(E^{(n)})))$ dans $H^1(L, \mathcal{O}_L(\operatorname{End}(E) \otimes \odot^{n+1}N^*))$ que l'on peux noter c est une obstruction à ce que 1 soit l'image d'un $\phi \in H^0(L, \mathcal{O}^{(n+1)}(\text{Hom}(E^{(n+1)}, F^{(n+1)})))$. Or un tel ϕ est un morphisme $\mathcal{O}^{(n+1)}$ -linéaire entre $E^{(n+1)}$ et $F^{(n+1)}$ qui se restreint en l'identité à l'ordre (n).

Nécessairement un tel ϕ est un isomorphisme et alors l'ensemble de ces isomorphismes est un espace homogène sous l'action de $H^0(L, \mathcal{O}_L(\operatorname{End}(E) \otimes \odot^{n+1}N^*))$. On peut donc à deux extensions $E^{(n+1)}$ et $F^{(n+1)}$ de $E^{(n)}$ associer un $c \in H^1(L, \mathcal{O}_L(\operatorname{End}(E) \otimes I))$

 $\odot^{n+1} \hat{N}^*$) canonique que l'on notera [F-E] quand le contexte le permettra.

- 3.3. Application à V_{-} . On prend $L \subseteq Z$ une droite twistorielle dans Z et $\mathcal{O} = \mathcal{O}_{Z|L}$. Soit $E^{\infty} = T_f(-1)$. Sa restriction (analytique) à L est triviale au moins à l'ordre 0. Qu'en est-il à l'ordre supérieur?
- 3.3.1. À l'ordre 1. On peut vérifier que pour n=0, on a $\mathcal{O}_L(\operatorname{End}(E)\otimes \odot^{n+1}N^*)$ qui s'écrit comme une somme de $\mathcal{O}(-1)$. Donc il n'a ni H^1 ni H^0 . En conséquence il existe une unique extension à unique isomorphisme près!

Il est définit en tant qu'espace comme $E \oplus N^* \otimes E$ au dessus de L et la structure de $\mathcal{O}^{(1)}$ module est la suivante $\hat{f} = f + \beta$ et soit $\hat{e} = e + \alpha \otimes e'$ une section locale de $E \oplus N^* \otimes E$, alors

$$\hat{f}\hat{e} = fe + f\alpha \otimes e' + \beta \otimes e$$

C'est également l'extension triviale de la suite (1) tensorisée par $E^{(1)}$.

$$0 \to \mathcal{O}_L(N^* \otimes E) \to \mathcal{O}^{(1)}(E^{(1)}) \to \mathcal{O}_L(E) \to 0$$

en tant que suite de $\mathcal{O}^{(1)}$ -modules.

3.3.2. À l'ordre 2. Or on a deux extensions canoniques de $E^{(1)}$:

- la première est simplement $E^{(2)}$ qui est la restriction de $E \to Z$ à $L^{(2)}$.
- la seconde est le prolongement trivial que l'on notera $E_N^{(2)}$.

C'est l'extension triviale de la suite (1) tensorisée par $E^{(2)}$.

$$0 \to \mathcal{O}_L(N^* \otimes E) \to \mathcal{O}^{(1)}(E^{(1)}) \to \mathcal{O}_L(E) \to 0$$

en tant que suite de $\mathcal{O}^{(2)}$ -modules. Il s'identifie à

$$E \otimes (\mathbb{C} \oplus N^* \oplus \odot^2 N^*)$$

avec la stucture de $\mathcal{O}^{(2)}$ -modules intuitive.

On a donc une classe $[E_Z - E_N]$ dans $H^1(L, \mathcal{O}_L(\operatorname{End}(E) \otimes \odot^2 N^*))$.

À nouveau le H^0 est trivial et donc il ne peut y avoir qu'un unique isomorphisme entre deux extensions.

• Cocycles

Essayon d'écrire cette classe avec la cohomologie de Cech. On se donne un recouvrement classique U_0, U_∞ de L, d'intersection $U_{0\infty} \simeq \mathbb{C}^*$.

Le cocycle correspondant à $[E_Z - E_N]$ est donc représenté par section $f_{0\infty} = f$ sur \mathbb{C}^* du fibré $\operatorname{End}(E) \otimes \odot^2 N^*$.

En prennant une base de E, et une base de N qui induit des coordonnées x_0, \dots, x_{2n} sur N, on peut écrire f comme une série

$$f(z) = \sum_{k \in \mathbb{Z}} a_k z^k$$

où chaque a_k est une matrice de taille $2n = \dim E$ à coefficients dans les polynômes homogènes de degré 2 en les x_i .

L'image de $1 \in H^0(L, \mathcal{O}^{(2)}(\operatorname{End}(E^{(2)})))$ par l'application de cobord se comprend ainsi $\tilde{}$:

- ▶ Sur chaque ouvert U_{α} , on construit un morphisme (isomorphisme) entre $E_N^{(2)}$ et $E_Z^{(2)}$ qui se restreint à l'ordre 1 en l'identité de $E^{(1)}$.
- ▶ La différence sur $U_{0\infty}$ entre ces deux morphismes φ_0 et $varphi_1$ a son image nulle dans $\operatorname{End}(E^{(1)})$ donc provient du cocycle f dans $\operatorname{End}(E) \otimes \odot^2 N^*$.

4. Appendices