

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES **2019**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
MATHÉMATIQUES II	C, D	Durée de l'épreuve :	165 minutes
MATTEMATIQUESTI	С, Б	Date de l'épreuve :	24/05/2019

Question théorique :

(4 points)

Démontrez le résultat suivant :

Si f est une fonction continue sur [a; b] et F est une primitive de f sur [a; b],

alors pour tout x de [a; b]: $\int_a^x f(t)dt = F(x) - F(a)$.

En particulier : $\int_a^b f(t)dt = F(b) - F(a)$, noté $[F(t)]_a^b$.

Exercice 1:

(4+4+3,5+1,5+3=16 points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = (x^2 - 2x) \cdot e^{\frac{x}{2}}$ et soit C_f sa courbe représentative.

Faites l'étude de la fonction f:

- a) limites aux bornes du domaine et comportement asymptotique,
- b) dérivée, tableau des variations et extrema,
- c) dérivée seconde, tableau de concavité et points d'inflexion,
- d) équation de la tangente t à C_f au point d'abscisse -2,
- e) représentation graphique de C_f et de t dans un repère orthonormé d'unité 1 cm.

Exercice 2:

(5 points)

Soit la fonction f définie sur $\mathbb{R} \setminus \{-2, 2\}$ par $f(x) = \frac{-5x^3 + x^2 - 4}{x^2 - 4}$ et C_f sa courbe représentative.

Déterminez la position de C_f par rapport à son asymptote oblique.

Exercice 3:

(3+5+4=12 points)

1) Calculez
$$\lim_{x\to 0} \left(1+\frac{3x}{4}\right)^{\frac{2}{x}-3}$$
.

2) Résolvez l'équation :
$$\log_{\frac{1}{2}} \left(\frac{e^{-x} + e^x}{e^x - 1} \right) = -1$$
.

3) Résolvez l'inéquation :
$$\log(x+2) - \log(x^2+9) + 1 < -\log(x-2)$$
.

Exercice 4:

$$((3+4)+3+4=14 \text{ points})$$

1) Calculez: a) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin(2x)}{\cos^4 x} dx$ b) $\int \frac{1-2x}{\sqrt{1-4x^2}} dx$

- 2) Soit f la fonction définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{2x^2 + 3x 1}{x^2}$. Déterminez la primitive F de f qui prend la valeur $3 \ln 2$ en x = -2.
- 3) Soit g la fonction définie sur $\mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ par $g(x) = \frac{x-2}{(2x-3)^2}$.

 Déterminez les réels a, b et c tels que $g(x) = \frac{a}{(2x-3)^2} + \frac{b}{2x-3}$ et déduisez-en les primitives de g.

Exercice 5:

(5+4=9 points)

N.B.: Dans cet exercice, vous pouvez vous servir des informations sur les figures.

- 1) Soit f la fonction définie sur $]2;+\infty[$ $par f(x) = \ln \frac{3}{x-2} \text{ et soit } t \in]2;5].$
 - a) Déterminez l'aire A(t) de la partie du plan délimitée par le graphe C_f , l'axe (Ox) et les droites d'équations x = t et x = 5.
 - b) Déterminez la limite de A(t), si t tend vers 2.

2) Calculez le volume *V* du solide engendré par la rotation autour de l'axe des abscisses de la partie du plan délimitée par les graphes des fonctions *f* et g définies par :

$$f(x) = -x^2 + 5$$
 et $g(x) = -x + 3$

