Dispositivos Electrónicos I

1º Ingeniería de Telecomunicación

Examen: 1 de septiembre 2005

1 Cuestiones

- 1. Se hace incidir, sobre una muestra de silicio tipo N, luz que genera 10^{12} pares electrón-hueco por cm³ y por μ s.
 - (a) Plantear la ecuación diferencial que determina la evolución de las concentración de huecos (o de electrones). Expresarla en función del exceso de portadores (δp) . Realizar la aproximación de inyección débil. (0.6 puntos)
 - (b) Calcular las concentraciones de electrones y huecos en estado estacionario. (0.4 puntos) $Datos: N_D = 10^{15} \text{ cm}^{-3}; \tau_p = \frac{1}{\alpha_r n_0} = 3 \mu \text{s}; T = 300 \text{ K}; n_i(T = 300 \text{ K}) = 1.45 \cdot 10^{10} \text{ cm}^{-3}.$
- 2. Describir brevemente en qué consiste el efecto Early en un transistor NMOS, qué consencuencias tiene sobre la operación del transistor en continua y en pequeña señal y cómo se modela. (1 punto)
- 3. En el circuito de la figura un valor de β_F muy elevado puede hacer que el transistor esté saturado. Calcular el máximo valor de β_F que hace que el transistor se encuentre en activa. (1 punto)

Datos: $V_{EC}(sat) = 0.2 \text{ V}, V_{EB}(on) = 0.7 \text{ V}.$

2 Problemas

1. Dado el siguiente circuito:

- (a) Calcular y representar la tensión de salida V_o en función de la entrada V_i . Para el diodo D1, $V_{\gamma} = 0.65 \text{ V}$ y $R_D = 0\Omega$; para el diodo D2, $V_{\gamma} = 0.65 \text{ V}$ y $R_D = 0\Omega$ (conducción en directa) y $V_Z = 6 \text{ V}$, $R_Z = 0\Omega$ (conducción en inversa). (1.2 puntos)
- (b) Repita el apartado anterior, pero suponiendo ahora: $R_D = 50\Omega$ (para D1) y $R_D = 50\Omega$ y $R_Z = 0\Omega$ (para D2). Finalmente, describir qué ocurriría si además R_Z fuese distinta de cero. (0.8 puntos)
- 2. Sea el siguiente circuito:

Datos: $\beta = 300 \mu \text{A/V}^2$; $V_T = 2.5 \text{ V}$; $V_A \rightarrow \infty$.

(a) Diseñar el anterior circuito de polarización de forma que el transistor opere en saturación y que la tensión en el drenador sea $V_0 = 0$ V. (1 punto)

- (b) Manteniendo los valores de las resistencias dados en el apartado anterior, se decide cambiar el valor de la resistencia R_D ; Cuál es el rango de valores posibles para R_D de forma que el transistor siga operando en saturación? (0.75 puntos)
- (c) Considere de nuevo el caso en el que $R_D = 5 \text{ K}\Omega$. ¿Cuál es la ganancia de pequeña señal del circuito (v_0/v_i) ? Suponga para este apartado que $V_A = 60 \text{ V}$. (0.75 puntos)

3. Dado el circuito de la figura:

Datos: Despreciar efecto Early.

- (a) Demostrar que, cualesquiera que sean los valores de β_F y de las resistencias, el transistor bipolar npn nunca estará en saturación, siempre y cuando $V_{CC} > 0$ V. (0.7 puntos)
- (b) Suponiendo que $Vcc = 10 \text{ V y } \beta_F = 100$, determinar el valor de las resistencias para que el punto de polarización sea $V_{CE} = 5 \text{ V e } I_C = 2 \text{ mA}$. Usar un valor razonable para V_{BE} . (1 punto)
- (c) Con el transistor del apartado anterior y con los valores de las resistencias anteriormente calculados, calcule la ganancia en pequeña señal del circuito (v_0/v_i) . En este apartado puede despreciar la corriente que circula por la resistencia R_B (es decir, puede suponer $R_B \to \infty$). (0.8 puntos)