

Introduction to Visualization and Computer Graphics DH2320

Prof. Dr. Tino Weinkauf

Geometric Modeling

Introduction

- There are many ways for creating graphical data.
- Classic way: Geometric Modeling

- There are many ways for creating graphical data.
- Other approaches:
 - 3D scanners
 - Photography for measuring optical properties
 - Simulations, e.g., for flow data

3D Scanning

- Geometric objects convey a part of the real or theoretical world; often, something tangible
- They are described by their geometric and topological properties:
 - Geometry describes the form and the position/orientation in a coordinate system.
 - Topology defines the fundamental structure that is invariant against continuous transformations.

Different geometry Same topology

Different geometry Different topology

- Geometric Modeling is the computer-aided design and manipulation of geometric objects. (CAD)
- It is the basis for:
 - computation of geometric properties
 - rendering of geometric objects
 - physics computations (if some physical attributes are given)

- 3D models are geometric representations of 3D objects with a certain level of abstraction.
- We distinguish between three types of models:
- Wire Frame Models
 - describe an object using boundary lines
- Surface Models
 - describe an object using boundary surfaces
- Solid Models
 - describe an object as a solid

Wire Frame Models

- Describe an object using boundary curves
- No relationship between these curves
 - Surfaces between them are not defined

Properties:

- simple, traditional
- non-sense objects possible
- visibility of curves cannot be decided
- solid object intersection cannot be computed
- surfaces between the curves cannot be computed automatically
- not useable for CAD/CAM

non-sense objects (Ernst, 1987)

ambiguity of wire frame models

Surface Models

- Defines surfaces between boundary curves
- Describes the hull, but not the interior of an object
- Often implemented using polygons, hull of a sphere or ellipsoid, freeform surfaces, ...
- No relationship between the surfaces
 - The interior between them is not defined
- Visibility computations: yes
 Solid intersection comp.: no
- Most often used type of model

parametric surface representation using 32 Bezier patches

Solid Models

- Describe the 3D object completely by covering the solid
- For every point in 3D, we can decide whether it is inside or outside of the solid.
- Visibility and intersection computations are fully supported
- Basis for creating solid objects using computer-aided manufacturing

solid model and a cut through it (Werkbild Strässle, from Ockert, 1993)

visibility computation for lines using a solid model

Chrome-cobalt disc with crowns for dental implants, manufactured using WorkNC CAM Sescoi CAD/CAM

 $http://www.flickr.com/photos/cadcamzone/4679188766/. \ Licensed \ under \ CC \ BY-SA \ 2.0 \ via \ Commons - \\ https://commons.wikimedia.org/wiki/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_workNC.jpg#/media/File:Disc_with_workNC.jpg#/media/File:Disc_with_workNC.jpg#/media/File:Disc_with_workNC.jpg#/media/File:Disc_with_workNC.jpg#/me$

Introduction to Visualization and Computer Graphics DH2320

Prof. Dr. Tino Weinkauf

Geometric Modeling

Bezier Curves and Splines de Casteljau Algorithm Bernstein Form Bezier Splines

Bezier Curves de Casteljau algorithm

- Paul de Casteljau (1959) @ Citroën
- Pierre Bezier (1963) @ Renault

Bezier curves

History:

- Bezier curves/splines developed by
 - Paul de Casteljau at Citroën (1959)
 - Pierre Bézier at Renault (1963)

for free-form parts in automotive design

- Today: Standard tool for 2D curve editing
- Cubic 2D Bezier curves are everywhere:
 - Postscript, PDF, Truetype (quadratic curves), Windows GDI...
 - Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, ...
- Widely used in 3D curve & surface modeling as well

All You See is Bezier Curves...

Bezier Splines

History:

- Bezier splines developed
 - by Paul de Casteljau at Citroë
 - Diarra Dáriar at Danault /106

Approximation setting:

Given: p₀, ..., p_n

Wanted: smooth, approximating curve

Linear interpolation

$$\mathbf{x}(t) = (1 - t) \cdot \mathbf{p}_0 + t \cdot \mathbf{p}_1$$

Parabolas

$$\mathbf{x}(t) = \mathbf{p}_0 + t \cdot \mathbf{p}_1 + t^2 \cdot \mathbf{p}_2$$

→ planar curve, even if defined in R³

Example:

Another parabola construction

given: 3 points b₀, b₁, b₂

$$\mathbf{b}_0^1 = (1 - t) \cdot \mathbf{b}_0 + t \cdot \mathbf{b}_1$$

$$\mathbf{b}_1^1 = (1 - t) \cdot \mathbf{b}_1 + t \cdot \mathbf{b}_2$$

$$\mathbf{b}_0^2 = (1 - t) \cdot \mathbf{b}_0^1 + t \cdot \mathbf{b}_1^1$$

$$\mathbf{parabola} \mathbf{x(t)}$$

$$\mathbf{x}(t) = (1-t)^2 \cdot \mathbf{b}_0 + 2 \cdot t \cdot (1-t) \cdot \mathbf{b}_1 + t^2 \cdot \mathbf{b}_2$$

Example

$$\mathbf{b}_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} , \quad \mathbf{b}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} , \quad \mathbf{b}_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$

De Casteljau Algorithm: Computes x(t) for given t

- Bisect control polygon in ratio t:(1-t)
- Connect the new dots with lines (adjacent segments)
- Interpolate again with the same ratio
- Iterate, until only one point is left

Description of the de Casteljau algorithm

- given: points $\mathbf{b}_0, \mathbf{b}_1, ..., \mathbf{b}_n \in \mathbb{R}^3$
- wanted: curve $\mathbf{x}(t), t \in [0, 1]$

geometric construction of the point x(t) for given t:

$$\begin{aligned} \mathbf{b}_{i}^{0}(t) &= \mathbf{b}_{i} & \text{für } i = 0, ..., n \\ \mathbf{b}_{i}^{r}(t) &= (1 - t) \cdot \mathbf{b}_{i}^{r-1}(t) \ + \ t \cdot \mathbf{b}_{i+1}^{r-1}(t) \\ & \text{für } r = 1, ..., n \ ; \ i = 0, ..., n - r. \end{aligned}$$

• Then, $\mathbf{b}_0^n(t)$ is the searched curve point $\mathbf{x}(t)$ at the parameter value t

repeated convex combination of control points

$$\mathbf{b}_{i}^{(r)} = (1-t) \cdot \mathbf{b}_{i}^{(r-1)} + t \cdot \mathbf{b}_{i+1}^{(r-1)}$$

repeated convex combination of control points

$$\mathbf{b}_{i}^{(r)} = (1-t) \cdot \mathbf{b}_{i}^{(r-1)} + t \cdot \mathbf{b}_{i+1}^{(r-1)}$$

repeated convex combination of control points

$$\mathbf{b}_{i}^{(r)} = (1-t) \cdot \mathbf{b}_{i}^{(r-1)} + t \cdot \mathbf{b}_{i+1}^{(r-1)}$$

repeated convex combination of control points

$$\mathbf{b}_{i}^{(r)} = (1-t) \cdot \mathbf{b}_{i}^{(r-1)} + t \cdot \mathbf{b}_{i+1}^{(r-1)}$$

 $b_2^{(0)}$

b₂⁽¹⁾

de Casteljau scheme

The intermediate coefficients b_i^r(t) can be written in a triangular matrix: the de Casteljau scheme:

Algorithm:

return **b**₀ (n)

```
for r = 1..n do
     for i = 0 \dots n-r do
           \mathbf{b}_{i}^{(r)} = (1-t) \cdot \mathbf{b}_{i}^{(r-1)} + t \cdot \mathbf{b}_{i+1}^{(r-1)}
     end for
end for
```

The whole algorithm consists only of repeated linear interpolations.

The polygon consisting of the points b_0 , ..., b_n is called Bezier polygon. The points b_i are called Bezier points.

The curve defined by the Bezier points b_0 , ..., b_n and the de Casteljau algorithm is called Bezier curve.

The de Casteljau algorithm is numerically stable, since only convex combinations are applied.

Complexity of the de Casteljau algorithm

- O(n²) time
- O(n) memory
- with n being the number of Bezier points

Properties of Bezier curves:

- given: Bezier points $\mathbf{b}_0, ..., \mathbf{b}_n$ Bezier curve $\mathbf{x}(t)$
- Bezier curve is polynomial curve of degree n.
- End point interpolation: $\mathbf{x}(0) = \mathbf{b}_0$, $\mathbf{x}(1) = \mathbf{b}_n$. The remaining Bezier points are only generally approximated.
- Convex hull property:
 - Bezier curve is completely inside the convex hull of its Bezier polygon.

- Variation diminishing
 no line intersects the Bezier curve more often than its Bezier
 polygon.
- Influence of Bezier points: global, but pseudo-local
 - global: moving a Bezier point changes the whole curve progression
 - pseudo-local: \mathbf{b}_i has its maximal influence on $\mathbf{x}(t)$ at t = i/n.
- Affine invariance:
 - Bezier curve and Bezier polygon are invariant under affine transformations
- Invariance under affine parameter transformations

Symmetry:

The following two Bezier curves coincide, they are only traversed in opposite directions:

$$\mathbf{x}(t) = [\mathbf{b}_0, \dots, \mathbf{b}_n] \quad \mathbf{x}'(t) = [\mathbf{b}_n, \dots, \mathbf{b}_0]$$

Linear precision:

Bezier curve is line segment, if $\mathbf{b}_0, \dots, \mathbf{b}_n$ are collinear

Invariant under barycentric combinations

First derivative of a Bezier curve

• Endpoints:
$$\dot{\mathbf{x}}(0) = n \cdot (\mathbf{b}_1 - \mathbf{b}_0)$$

 $\dot{\mathbf{x}}(1) = n \cdot (\mathbf{b}_n - \mathbf{b}_{n-1})$ $t = 0, t = 1$:

de Casteljau scheme

Second derivative of a Bezier curve

de Casteljau scheme

Bezier Curves

Bernstein form

Bernstein Basis

Bezier curves are algebraically defined using the Bernstein basis:

• Bernstein basis of degree n: $B = \{B_0^{(n)}, B_1^{(n)}, \dots, B_n^{(n)}\}$

$$B_i^{(n)}(t) := \binom{n}{i} t^i (1-t)^{n-i}$$

Bernstein Basis

Examples

The first three Bernstein bases:

$$B_0^{(0)} := 1$$

$$B_0^{(1)} := (1-t)$$
 $B_1^{(1)} := t$

$$B_0^{(2)} := (1-t)^2$$
 $B_1^{(2)} := 2t(1-t)$ $B_2^{(2)} := t^2$

$$B_0^{(3)} := (1-t)^3$$
 $B_1^{(3)} := 3t(1-t)^2$
 $B_2^{(3)} := 3t^2(1-t)$ $B_3^{(3)} := t^3$

$$B_2^{(3)} := 3t^2(1-t)$$
 $B_3^{(3)} := t^3$

$$B_i^{(n)}(t) := \binom{n}{i} t^i (1-t)^{n-i}$$

Bezier Curves in Bernstein form

Bezier Curves:

Summary for Bezier Curves

Bezier curves and curve design:

- The rough form is specified by the position of the control points
- Result: smooth curve approximating the control points
- Computation / Representation:
 - de Casteljau algorithm
 - Bernstein form

• Problems:

- high polynomial degree
- moving a control point can change the whole curve
- interpolation of points
- → Bezier splines

Towards Bezier Splines

Towards Bezier Splines

Interpolation problem:

• given:

$$\mathbf{k}_0,...,\mathbf{k}_n \in \mathbb{R}^3$$
 control points $t_0,...,t_n \in \mathbb{R}$ knot sequence $t_i < t_{i+1}$ für $i=0,...,n-1$

wanted:

interpolating curve $\mathbf{x}(t)$, i.e., $\mathbf{x}(t_i) = \mathbf{k}_i$ for i = 0, ..., n

Approach:

"Joining" of n Bezier curves with certain intersection conditions

Towards Bezier Splines

The following issues arise when stitching together Bezier curves:

- Continuity
- Degree
- (Parameterization)

Bezier Splines

Parametric and Geometric Continuity

Joining of curves - continuity

• given: 2 curves

$${\bf x}_1(t)$$
 over $[t_0, t_1]$

$$\mathbf{x}_{2}(t)$$
 over $[t_{1}, t_{2}]$

• \mathbf{x}_1 and \mathbf{x}_2 are C^r continuous in t_1 , if they coincide in $O^{th} - r^{th}$ derivative vector in t_1 .

Parametric Continuity C^r:

- C⁰, C¹, C²... continuity.
- Does a particle moving on this curve have a smooth trajectory (position, velocity, acceleration,...)?
- Useful for animation (object movement, camera paths)
- Depends on parameterization

Geometric Continuity G^r:

- Independent of parameterization
- Is the curve itself smooth?
- More relevant for modeling (curve design)

Bezier Splines

Local control: Bezier splines

- Concatenate several curve segments
- Question: Which constraints to place upon the control points in order to get C⁻¹, C⁰, C¹, C² continuity?

Bezier Spline Continuity

Rules for Bezier spline continuity:

- C⁰ continuity:
 - Each spline segment interpolates the first and last control point
 - Therefore: Points of neighboring segments have to coincide for C⁰ continuity.

Bezier Spline Continuity

Rules for Bezier spline continuity:

- Additional requirement for C¹ continuity:
 - Tangent vectors are proportional to differences $\mathbf{p}_1 \mathbf{p}_0$, $\mathbf{p}_n \mathbf{p}_{n-1}$
 - Therefore: These vectors must be identical for C¹ continuity

Bezier Spline Continuity

Rules for Bezier spline continuity:

- Additional requirement for C² continuity:
 - $d^- = d^+$

Bezier SplinesChoosing the degree

Choosing the Degree...

Candidates:

• d = 0 (piecewise constant): not smooth

• d = 1 (piecewise linear): not smooth enough

 d = 2 (piecewise quadratic): constant 2nd derivative, still too inflexible

 d = 3 (piecewise cubic): degree of choice for computer graphics applications

Cubic Splines

Cubic piecewise polynomials:

- We can attain C² continuity without fixing the second derivative throughout the curve
- C² continuity is perceptually important
 - We can see second order shading discontinuities (esp.: reflective objects)
 - Motion: continuous position, velocity & acceleration
 Discontinuous acceleration noticeable (object/camera motion)
- One more argument for cubics:
 - Among all C² curves that interpolate a set of points (and obey to the same end conditions), a piecewise cubic curve has the least integral acceleration ("smoothest curve you can get").
 - See Additional Material / Cubics Minimize Acceleration.pdf

Summary

- Bezier Curves
 - de Casteljau algorithm
 - Bernstein form
- Bezier Splines

Spline Surfaces *next time*

Spline Surfaces

Two different approaches

- Tensor product surfaces
 - Simple construction
 - Everything carries over from curve case
 - Quad patches
 - Degree anisotropy
- Total degree surfaces
 - Not as straightforward
 - Isotropic degree
 - Triangle patches
 - "Natural" generalization of curves

