Question 5

Use the definition of θ in order to show the following:

a)
$$5n^3 + 2n^2 + 3n = \theta(n^3)$$

Definition of θ : $f(n) = \theta(g(n))$, where f(n) and g(n) are two functions mapping Z^+ to R^+ if there exist positive real constants c_1 and c_2 , and positive integer constant n_0 , such that $c_2g(n) \leq f(n) \leq c_1g(n)$, for all $n \geq n_0$.

(We can also define θ using definitions of lower bound* and upper bound**: $f(n) = \theta(g(n))$ if $f(n) = \Omega(g(n))$ and f(n) = O(g(n)))

(*We can say that $f(n) = \Omega(g(n))$ if there exists positive real constant c_2 and positive integer constant n_0 , such that $c_2g(n) \leq f(n)$ for all $n \geq n_0$.)

(**We can say that f(n) = O(g(n)) if there exists positive real constant c_1 and positive integer constant n_0 , such that $f(n) \le c_1 g(n)$ for all $n \ge n_0$.)

Assumption:

$$f(n) = 5n^3 + 2n^2 + 3n$$
$$g(n) = n^3$$

Proof:

1. First, let's analyse the lower bound Ω .

Let $c_2 = 5$ (we obtained that by dropping lower order terms in $5n^3 + 2n^2 + 3n$; as a result, we obtain $5n^3$, which can be expressed as 5g(n), hence $c_2 = 5$). The inequality $c_2g(n) \leq f(n)$, can then be expressed as

$$5n^3 < 5n^3 + 2n^2 + 3n$$

Let's solve the inequality:

$$5n^3 \le 5n^3 + 2n^2 + 3n$$

$$0 \le 2n^2 + 3n$$

$$0 \le n(2n+3)$$

$$n \in (-\infty, -\frac{3}{2}] \cup [0, \infty)$$

However, since our two functions are mapping Z^+ to R^+ , the solution will be $n \ge 1$.

Therefore, we have proved that $5n^3 + 2n^2 + 3n = \Omega(n^3)$, since there exists positive real constant $c_2 = 5$ and positive integer constant $n_0 = 1$, such that $c_2n^3 \le 5n^3 + 2n^2 + 3n$ for all $n \ge n_0$.

2. Let's analyse the upper bound O.

Let $c_1 = 10$ (we obtain that by bringing every term in $5n^3 + 2n^2 + 3n$ to the power of 3; as a result, we obtain $5n^3 + 2n^3 + 3n^3 = 10n^3$, which can be expressed as 10g(n), hence $c_1 = 10$). The inequality $f(n) \le c_1g(n)$, can then be expressed as $5n^3 + 2n^2 + 3n \le 10n^3$

Let's solve the inequality:

$$5n^{3} + 2n^{2} + 3n \le 10n^{3}$$
$$-5n^{3} + 2n^{2} + 3n \le 0$$
$$n(-5n^{2} + 2n + 3) \le 0$$
$$n(5n + 3)(n - 1) \le 0$$
$$n \in [-\frac{3}{5}, 0] \cup [1, \infty)$$

However, since our two functions are mapping Z^+ to R^+ , the solution will be $n \ge 1$.

Therefore, we have proved that $5n^3 + 2n^2 + 3n = O(n^3)$, since there exists positive real constant $c_1 = 10$ and positive integer constant $n_0 = 1$, such that $5n^3 + 2n^2 + 3n \le c_1n^3$ for all $n \ge n_0$.

Since there exist real constants $c_1 = 10$ and $c_2 = 5$, and positive integer constant $n_0 = 1$, such that $c_2 n^3 \le 5n^3 + 2n^2 + 3n \le c_1 n^3$, for all $n \ge n_0$, then it is true that $5n^3 + 2n^2 + 3n = \theta(n^3)$.

b)
$$\sqrt{7n^2 + 2n - 8} = \theta(n)$$

Assumption:

$$f(n) = \sqrt{7n^2 + 2n - 8}$$

$$g(n) = n$$

Proof:

1. First, let's analyse the lower bound Ω .

Let $c_2 = \sqrt{7}$ (we obtained that by dropping lower order terms in $\sqrt{7n^2 + 2n - 8}$; as a result, we obtain $\sqrt{7n^2}$, which can be expressed as $\sqrt{7}g(n)$, hence $c_2 = \sqrt{7}$). The inequality $c_2g(n) \leq f(n)$, can then be expressed as

2

$$\sqrt{7}n < \sqrt{7n^2 + 2n - 8}$$

Let's solve the inequality:

$$\sqrt{7n} \le \sqrt{7n^2 + 2n - 8}$$

$$\sqrt{7n^2} \le \sqrt{7n^2 + 2n - 8}$$

$$7n^2 \le 7n^2 + 2n - 8$$

$$0 \le 2n - 8$$

$$8 \le 2n$$

$$n \ge 4$$

Therefore, we have proved that $\sqrt{7n^2 + 2n - 8} = \Omega(n)$, since there exists positive real constant $c_2 = \sqrt{7}$ and positive integer constant $n_0 = 4$, such that $c_2 n \le \sqrt{7n^2 + 2n - 8}$ for all $n \ge n_0$.

2. Let's analyse the upper bound O.

Let $c_1 = 3$ (we obtain that by bringing every term which includes n in $\sqrt{7n^2 + 2n - 8}$ to the power of 2; as a result, we obtain $\sqrt{7n^2 + 2n^2} = \sqrt{9n^2} = 3n$, which can be expressed as 3g(n), hence $c_1 = 3$). The inequality $f(n) \le c_1g(n)$, can then be expressed as

$$\sqrt{7n^2 + 2n - 8} \le 3n$$

Let's solve the inequality:

$$\sqrt{7n^2 + 2n - 8} \le 3n$$

$$\sqrt{7n^2 + 2n - 8} \le \sqrt{9n^2}$$

$$7n^2 + 2n - 8 \le 9n^2$$

$$-2n^2 + 2n - 8 \le 0$$

$$-n^2 + n - 4 \le 0$$

$$n \in R$$

However, since our two functions are mapping Z^+ to R^+ , the solution will be n > 1.

Additionally, since $n \ge 1$, our inequality will be also true for every $n \ge 4$, which is the solution of inequality $(c_2g(n) \le f(n))$. Hence, we can also say that $n_0 = 4$

Therefore, we have proved that $\sqrt{7n^2 + 2n - 8} = O(n)$, since there exists positive real constant $c_1 = 3$ and positive integer constant $n_0 = 4$, such that $\sqrt{7n^2 + 2n - 8} \le c_1 n$ for all $n \ge n_0$.

Since there exist real constants $c_1 = 3$ and $c_2 = \sqrt{7}$, and positive integer constant $n_0 = 4$, such that $c_2 n \leq \sqrt{7n^2 + 2n - 8} \leq c_1 n$, for all $n \geq n_0$, then it is true that $\sqrt{7n^2 + 2n - 8} = \theta(n)$.