## $\underset{\text{Michael Spivak}}{\text{C\'ALCULO INFINITESIMAL}}$

Resolución de problemas por: FODE (Christian Limbert Paredes Aguilera)

## Índice general

| 1. | Fun  | ciones    |      |  |  |  |  |  |  |      |  |  |  |  |  |  |  |  |      |  |  |  | 3 |
|----|------|-----------|------|--|--|--|--|--|--|------|--|--|--|--|--|--|--|--|------|--|--|--|---|
|    | 1.1. | Problemas | <br> |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  | <br> |  |  |  | 4 |

1

## Limites

**Definición 1.1** La función f tiende hacia el límite l en a  $\left(\lim_{x\to a} f(x) = l\right)$  significa: para todo  $\epsilon > 0$  existe algún  $\delta > 0$  tal que, para todo x, si  $0 < |x-a| < \delta$ , entonces  $|f(x) - l| < \epsilon$ .

Existe algún  $\epsilon > 0$  tal que para todo  $\delta > 0$  existe algún x para el cual es  $0 < |x-a| < \delta$ , pero no  $|f(x)-l| < \epsilon$ .

**TEOREMA 1.1** Una función no puede tender hacia dos límites diferentes en a. En otros términos si f tiende hacia l en a, y f tiende hacia m en a, entonces l = m.

Demostración.- Puesto que f tiende hacia l en a, sabemos que para todo  $\epsilon > 0$  existe algún número  $\delta_1 > 0$  tal que, para todo x, si  $0 < |x - a| < \delta_1$ , entonces  $|f(x) - l| < \epsilon$ .

Sabemos también, puesto que f tiende hacia m en a, que existe algún  $\delta_2 > 0$  tal que, para todo x, si  $0 < |x - a| < \delta_2$ , entonces  $|f(x) - m| < \epsilon$ .

Hemos empleado dos números delta<sub>1</sub> y  $\delta_2$ , ya que no podemos asegurar que el  $\delta$  que va bien en una definición irá bien en la otra. Sin embargo, de hecho, es ahora fácil concluir que para todo  $\epsilon > 0$  existe algún  $\delta > 0$  tal que, para todo x,

$$si \ 0 < |x - a| < \delta = \min(\delta_1, \delta_2), \ entonces \ |f(x) - l| < \epsilon \ y \ |f(x) - m| < \epsilon$$

Para completar la demostración solamente nos queda tomar un  $\epsilon > 0$  particular para el cual las dos condiciones  $|f(x) - l| < \epsilon \ y \ |f(x) - m| < \epsilon$  no puedan cumplirse a la vez si  $l \neq m$ 

Si  $l \neq m$ , de modo que |m-l| > 0 podemos tomar como  $\epsilon$  a |l-m|/2. Se sigue que existe un  $\delta > 0$  tal que, para todo x,

$$si \ 0 < |x - a| < \delta, \ entonces \ |f(x) - l| < \frac{|l - m|}{2} \ y \ |f(x) - m| < \frac{|l - m|}{2}$$

Esto implica que para  $0 < |x - a| < \delta$  tenemos

$$|l-m| = |l-f(x)+f(x)-m| \le |l-f(x)| + |f(x)-m| < \frac{|l-m|}{2} + \frac{|l-m|}{2} = |l-m|$$

El cual es una contradicción.

**LEMA 1.1** Si x está cerca de  $x_0$  e y está cerca de  $y_0$ , entonces x + y estará cerca de  $x_0 + y_0$ , xy estará cerca de  $x_0 + y_0$ , y = 1/y estará cerca de  $1/y_0$ .

(1) 
$$|Si|(x-x_0)| < \frac{\epsilon}{2} |y|(y-y_0)| < \frac{\epsilon}{2} |entonces| |(x+y)-(x_0+y_0)| < \epsilon.$$

Demostración.-

$$|(x+y)-(x_0+y_0)| = |(x-x_0)+(y-y_0)| \le |x-x_0|+|y-y_0| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

(2) 
$$Si |x - x_0| < \min \left(1, \frac{\epsilon}{2(|y_0| + 1)}\right)$$
  $y |y - y_0| < \frac{\epsilon}{2(|x_0| + 1)}$  entonces  $|xy - x_0y_0| < \epsilon$ .

Demostración.- Puesto que  $|x - x_0| < 1$  se tiene

$$|x| - |x_0| \le |x - x_0| < 1,$$

de modo que

$$|x| < 1 + |x_0|$$

así pues

$$|xy - x_0 y_0| = |x(y - y_0) + y_0(x - x_0)|$$

$$\leq |x| \cdot |y - y_0| + |y_0| \cdot |x - x_0|$$

$$< (1 + |x_0|) \cdot \frac{\epsilon}{2(|x_0| + 1)} + |y_0| \cdot \frac{\epsilon}{2(|y_0| + 1)}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

 $Notemos \ que \ \frac{|y_0|}{|y_0|-1} < 1, \ por \ lo \ tanto \ \frac{|y_0|}{|y_0|-1} \cdot \frac{\epsilon}{2} < \frac{\epsilon}{2}.$ 

(3) Si 
$$y_0 \neq 0$$
  $y |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\epsilon |y_0|^2}{2}\right)$  entonces  $y \neq 0$   $y \left|\frac{1}{y} - \frac{1}{y_0}\right| < \epsilon$ .

Demostración.- Se tiene

$$|y_0| - |y| < |y - y_0| < \frac{|y_0|}{2},$$

de modo que  $-|y|<-\frac{|y_0|}{2} \Longrightarrow |y|>|y_0|/2$ . En particular.  $y\neq 0,\ y$ 

$$\frac{1}{|y|} < \frac{2}{|y_0|}$$

Así pues

$$\left|\frac{1}{y} - \frac{1}{y_0}\right| = \frac{|y_0 - y|}{|y| \cdot |y_0|} = \frac{1}{|y|} \cdot \frac{|y_0 - y|}{|y_0|} < \frac{2}{|y_0|} \cdot \frac{1}{|y_0|} \cdot \frac{\epsilon |y_0|^2}{2} = \epsilon$$

**TEOREMA 1.2** Si  $\lim_{x\to a} f(x) = l \ y \lim_{x\to a} g(x) = m$ , entonces

(1) 
$$\lim_{x \to a} (f+g)(x) = l+m$$

(2) 
$$\lim_{x \to a} (f \cdot g)(x) = l \cdot m$$

Además, si  $m \neq 0$ , entonces

(3) 
$$\lim_{x\to a} (\frac{1}{g})(x) = \frac{1}{m}$$

Demostración.- La hipótesis significa que para todo  $\epsilon > 0$  existen  $\delta_1, \delta_2 > 0$  tales que, para todo x,

$$si \ 0 < |x-a| < \delta_1, \ entonces \ |f(x)-l| < \epsilon$$

$$y \quad si \ 0 < |x-a| < \delta_2, \ entonces \ |g(x) - m < \epsilon|$$

Esto significa ( ya que después de todo,  $\epsilon/2$  es también un número positivo) que existen  $\delta_1, \delta_2 > 0$  tales que, para todo x,

$$si \ 0 < |x - a| < \delta_1, \ entonces \ |f(x) - l| < \frac{\epsilon}{2}$$

$$y$$
 si  $0 < |x - a| < \delta_2$ , entonces  $|g(x) - m| < \frac{\epsilon}{2}$ 

Sea ahora  $\delta = \min(\delta_1, \delta_2)$ . Si  $0 < |x - a| < \delta$ , entonces  $0 < |x - a| < \delta_1$  y  $0 < |x - a| < \delta_2$  se cumplen las dos, de modo que es a la vez

$$|f(x) - l| < \frac{\epsilon}{2}$$
  $y$   $|g(x) - m| < \frac{\epsilon}{2}$ 

pero según la parte (1) del lema anterior esto implica que  $|(f+g)(x)-(l+m)|<\epsilon$ .

Para demostrar (2) procedemos de la misma manera, después de consultar la parte (2) del lema. Si  $\epsilon > 0$  existen  $\delta_1, \delta_2 > 0$  tales que, para todo x

$$si\ 0 < |x-a| < \delta_1, \ entonces\ |f(x)-l| < \min\left(1, \frac{\epsilon}{2(|m|+1)}\right),$$

$$y \ si \ 0 < |x - a| < \delta_2, \ entonces \ |g(x) - m| < \frac{\epsilon}{2(|l|) + 1}$$

Pongamos de nuevo  $\delta = \min(\delta_1, \delta_2)$ . Si  $0 < |x - a| < \delta$ , entonces

$$|f(x) - l| < \min\left(1, \frac{\epsilon}{2(|m|+1)}\right)$$
  $y \qquad |g(x) - m| < \frac{\delta}{2(|l|+1)}$ 

Así pues, según el lema,  $|(f \cdot g)(x) - l \cdot m| < \epsilon$ , y esto demuestra (2).

Finalmente, si  $\epsilon > 0$  existe un  $\delta > 0$  tal que, para todo x,

$$si \ 0 < |x - a| < \delta, \ entonces \ |g(x) - m| < \min\left(\frac{|m|}{2}, \frac{\epsilon |m|^2}{2}\right)$$

Pero según la parte (3) del lema, esto significa, en primer lugar que  $g(x) \neq 0$ , de modo que (1/g)(x) tiene sentido, y en segundo lugar que

$$\left| \left( \frac{1}{g} \right) (x) - \frac{1}{m} \right| < \epsilon$$

Esto demuestra (3).

**Definición 1.2**  $\lim_{x\to a^+} f(x) = l$  significa que para todo  $\epsilon > 0$ , existe un  $\delta > 0$  tal que, para todo x,

$$si \ 0 < x - a < \delta, \ entonces \ |f(x) - l| < \epsilon$$

La condición  $0 < x - a < \delta$  es equivalente a  $0 < |x - a| < \delta$  y x > a

**Definición 1.3**  $\lim_{x\to a^-} f(x) = l$  significa que para todo  $\epsilon > 0$ , existe un  $\delta > 0$  tal que, para todo x,

$$si\ 0 < a - x < \delta, \ entonces\ |f(x) - l| < \epsilon$$

**Definición 1.4**  $\lim_{x\to\infty} f(x) = l$  significa que para todo  $\epsilon > 0$ , existe un número N grande, que, para todo x,

$$si \ x > N, \ entonces \ |f(x) - l| < \epsilon$$

## 1.1. Problemas

1. Hallar los siguientes limites (Estos limites se obtienen todos, después de algunos cálculos, de las distintas partes del teorema 2; téngase cuidado en averiguar cuáles son las partes que se aplican, pero sin preocuparse de escribirlas.)

(i) 
$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \frac{1^2 - 1}{1 + 1} = \frac{0}{2} = 0$$

(ii) 
$$\lim_{x \to 2} \frac{x^2 - 8}{x - 2} = \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = 2^2 + 4 + 4 = 12$$

(iii) 
$$\lim_{x \to 3} \frac{x^3 - 8}{x - 2} = \frac{3^3 - 8}{3 - 2} = 19$$

(iv) 
$$\lim_{x \to y} \frac{x^n - y^n}{x - y} = \frac{(x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})}{x - y} = x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1} = x^{n-1}$$

(v) 
$$\lim_{y \to x} \frac{x^n - y^n}{x - y} = x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1} = nx^{n-1}$$

(vi) 
$$\lim_{h \to 0} = \frac{\sqrt{a+h} - \sqrt{a}}{h} = \frac{\sqrt{a+h} + \sqrt{a}}{h} \cdot \frac{\sqrt{a+h} + \sqrt{a}}{\sqrt{a+h} + \sqrt{a}} = \frac{(\sqrt{a+h})^2 - (\sqrt{a})^2}{h(\sqrt{a+h} + \sqrt{a})} = \frac{1}{\sqrt{a+h} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

2. Hallar los límites siguientes:

(i) 
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} = \lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} \cdot \frac{1 + \sqrt{x}}{1 + \sqrt{x}} = \lim_{x \to 1} \frac{1^2 - (\sqrt{x})^2}{(1 - x)(1 + \sqrt{x})} = \lim_{x \to 1} \frac{1}{1 + \sqrt{x}} = \frac{1}{2}$$

$$\text{(ii)} \ \lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x} = \lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x} \cdot \frac{1+\sqrt{1-x^2}}{1+\sqrt{1-x^2}} = \lim_{x\to 0} \frac{x}{1+\sqrt{1-x^2}} = 0$$

$$\text{(iii)} \ \lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} \cdot \frac{1 + \sqrt{1 - x^2}}{1 + \sqrt{1 - x^2}} = \lim_{x \to 0} \frac{1}{1 + \sqrt{1 + x^2}} = \frac{1}{2}$$

**3.** En cada uno de los siguientes casos, encontrar un  $\delta$  tal que,  $|f(x)-l|<\epsilon$  para todo x que satisface  $0<|x-a|<\delta$ 

(i) 
$$f(x) = x^4$$
;  $l = a^4$ 

Respuesta.- Por la parte (2) del lema anterior se tiene

$$|x^2 - a^2| < \min\left(1, \frac{\epsilon}{2(|a|^2 + 1)}\right).$$

Si aplicamos una vez mas la parte (2) del lema obtenemos

$$|x-a|<\min\left(1,\frac{\min\left(1,\frac{\epsilon}{2(|a|^2+1)}\right)}{2(|a|+1)}\right)=\min\left(1,\frac{\epsilon}{4(|a|^2+1)(|a|+1)}\right)=\delta$$

(ii) 
$$f(x) = \frac{1}{x}$$
;  $a = 1$ ,  $l = 1$ 

Respuesta.- Por la parte (3) del lema se tiene  $\left|\frac{1}{x}-1\right|<\epsilon$  por lo tanto  $|y-1|<\min\left(\frac{1}{2},\frac{\epsilon}{2}\right)$ 

(iii) 
$$f(x) = x^4 + \frac{1}{x}$$
;  $a = 1$ ,  $l = 2$ 

Respuesta.- Por la primera parte del lema se tiene  $\left|\left(x^4 + \frac{1}{x}\right) - (1+1)\right| < \epsilon$  de donde

$$|x^4 - 1| < \frac{\epsilon}{2}$$
  $y$   $\left| \frac{1}{x} - 1 \right| < \frac{\epsilon}{2}$ 

Luego por el inciso (i) y (ii)

$$|x-1|<\min\left(\frac{1}{2},\frac{\frac{\epsilon}{2}}{2}\right) \quad y \quad |x-1|<\min\left(\frac{1,\min\left(\frac{\frac{\epsilon}{2}}{2(1+1)}\right)}{1,\frac{2(1+1)}{2(1+1)}}\right) \implies |x-1|<\min\left(\frac{1}{2},\frac{\epsilon}{4},1,\frac{\epsilon}{32}\right)$$

y por lo tanto

$$|x-1| < \min\left(\frac{1}{2}, \frac{\epsilon}{32}\right) = \delta$$

(iv) 
$$f(x) = \frac{x}{1 + \sin^2 x}$$
;  $a = 0$ ,  $l = 0$   
Respuesta.- Sea  $\left| \frac{x}{1 + \sin^2 x} \right| < \epsilon$   $y$   $|x| < \delta$  pero  $\left| \frac{x}{1 + \sin^2 x} \right| \le |x|$  por lo tanto  $\left| \frac{x}{1 + \sin^2 x} \right| \le |x| < \delta = \epsilon$ 

(v) 
$$f(x) = \sqrt{|x|}$$
;  $a = 0$ ,  $l = 0$ 

Respuesta.-

(vi) 
$$f(x) = \sqrt{x}$$
;  $a = 1$ ,  $l = 1$ 

Respuesta.-