$U(x,q,k_0) = K_0^2 \int \Phi(x,y,k_0) \xi(y) u(y,q,k_0) dy = \Phi(x,q,k_0)$ $X \in \mathbb{R}$ $R = [0;1] \times [0;1] \times [0;1]$ $K_0 = \frac{\omega}{c_0}$

 $2cijk = ((L-1)h; (g-1)h; (x-1)h) \qquad L=1,..., N+1.$ 3pq2 = ((p-1)h; (g-1)h; (x-1)h)

 $OP(x, y, k_0) = \frac{e^{ik_0|x-y|}}{4\pi |x-y|}$

Mile = 4 (2008, 9, 40)

uijk - \(\sum_{pq2} \) \(\partial \text{(x,5,k, ypq2, ko)} \) \(\frac{\x}{\x} \) \(

aro J gra kangot racioner fire Jane

Clas Chod natpuya

Clas Line Jane

 $(Q_{10})_{\text{kem pq2}} \longrightarrow (Q_{10})_{\text{cc}} \leq S$ $\dot{L}\dot{L} = (N+1)^{2}(K-1) + (N+1)(l-1) + M$ $ff = (N+1)^{2}(p-1) + (N+1)(q-1) + 2$

fere gre
fer

 $K_{o}^{2}\int_{R}^{Q}(x,y,\kappa_{o})\xi(y)u(y,q,\kappa_{o})dy = u(x;q,\kappa_{o}) - P(x,q,\kappa_{o})$

XEY (getektopn) yER

3 abucum om uctoznaka.

ypq2 = ((p-1)h; (q-1)h; (2-1)h)

$$\sum_{pq2} K_0^2 P\left(\text{Screm}, \text{ypq2}, \text{Ko}\right) \frac{3}{3}pq2 Upq2} = f_{151} \frac{1}{3} 6 \text{ n pueumuno 6}$$

$$= f_{152} \frac{1}{3} \frac{1}{3$$

Oneparop

UM - none gne neplozo uctornuka u neploù zacsota.

u jou raciotus.

436 - none gna mectoro
uctornana a
Theren raccorn

1. Blegen &

$$u_{11} - a_{10} \cdot \xi \cdot u_{11} = f_{1R1}$$
 u_{12} u_{12} $u_{12} - a_{10} \cdot \xi \cdot u_{12} = f_{1R2}$ $u_{11} - u_{12}$ u_{12} $u_{16} - a_{10} \cdot \xi \cdot u_{16} = f_{1R6}$ $u_{17} - u_{16}$ $u_{21} - a_{20} \xi \cdot u_{24} = f_{2R1}$ u_{21}

3. Haugennue nous nogerabreen la Bropos ypabneme cucmenn

$$a_{11} \cdot \xi \cdot u_{11} = f_{151}$$
 $a_{12} \cdot \xi \cdot u_{12} = f_{152}$
 $a_{16} \cdot \xi \cdot u_{16} = f_{156}$
 $a_{21} \cdot \xi \cdot u_{21} = f_{251}$
 $a_{36} \cdot \xi \cdot u_{36} = f_{356}$

Tax rawruce nhabne racing gre bronnx ypabnemmi.

Ochobnas cucteurs. Oneparop F

411 - 910 { U11 911 411 412 - 910 \$ U12 912 \$ U12 U12

U13-910 \$ U13

Care & U16

uz1 - 920 3 420

436 - 930 \$ 436

9 KOSU	au	E,x													
JIO JIOI	Jiz	J12-2	J 13	J13-2	J.,, J	16 716-2	J ₂₁	J21-2	 J ₂₆	J ₂₆₋₂	J31	731-2	 J ₃₆	J ₃₆₋₂	
Jio Jioi	2,0	Jisa					1						1		
	10	102	710	J103			r		,)		1		
					J	10 Ji06	. \		(1		
				•			Jes	7201	·				1		
									 Jw	J206	7.] 2-1			
											753	301			
\n													730	7306	

$$J_{10} = -\alpha_{10} \cdot \xi + E \qquad J_{101} = \alpha_{11} \cdot \xi \qquad J_{201} = \alpha_{21} \cdot \xi$$

$$J_{20} = -\alpha_{20} \cdot \xi + E \qquad J_{102} = \alpha_{12} \cdot \xi \qquad J_{202} = \alpha_{22} \cdot \xi$$

$$J_{30} = -\alpha_{30} \cdot \xi + E \qquad J_{106} = \alpha_{16} \cdot \xi \qquad J_{206} = \alpha_{26} \cdot \xi$$

$$J_{11} = \alpha_{10} \cdot \alpha_{11} \qquad J_{21} = \alpha_{20} \cdot \alpha_{11} \qquad J_{31} = \alpha_{30} \cdot \alpha_{11}$$

$$J_{12} = \alpha_{10} \cdot \alpha_{12} \qquad J_{22} = \alpha_{20} \cdot \alpha_{12} \qquad J_{32} = \alpha_{30} \cdot \alpha_{12}$$

$$J_{16} = \alpha_{10} \cdot \alpha_{16} \qquad J_{26} = \alpha_{20} \cdot \alpha_{16} \qquad J_{36} = \alpha_{30} \cdot \alpha_{16}$$

$$J_{11-2} = a_{11} \cdot u_{11}$$

$$J_{21-2} = a_{21} \cdot u_{21}$$

$$J_{31-2} = a_{31} \cdot u_{32}$$

$$J_{12-2} = a_{12} \cdot u_{12}$$

$$J_{22-2} = a_{22} \cdot u_{22}$$

$$J_{23-2} = a_{32} \cdot u_{32}$$

$$J_{16-2} = a_{16} \cdot u_{16}$$

$$J_{26-2} = a_{26} \cdot u_{26}$$

$$J_{366} = a_{36} \cdot u_{36}$$

```
Ospathene zagaza.
```

1. Unuquanuzarine &=0; U11 = PIR1, U12 = PIR2,..., U36 = f3R6

2. Ochobnoù metog 20n+1 = xn - 8n [F1* (scn) (F(scn) - f) + dn (scn-3)]

Ochobnot onepatop zagazu

$$=$$
 $=$ $u_{36} - a_{30} \cdot \xi \cdot u_{36} - \epsilon_{3RG}$

Haxongenue neuzbechnx

$$\xi_{n+1} = \xi_n - \xi_n \left[J_{11} F_{11-1} + J_{11-2} F_{11-2} + ... + J_{364} F_{36-1} + J_{36-2} F_{36-2} \right]$$

$$U_{21} = U_{21} - 8 \left[\Im_{20} F_{21-1} + \Im_{201} \cdot F_{21-2} \right]$$