TD - Gradient descent : solution

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function whose gradient is L-Lipschitz continuous i.e. $\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$ for all x, y.

- 1. Prove that for all $x, y, \langle \nabla f(y) \nabla f(x), y x \rangle \leq L ||y x||^2$.
 - ▶ We are using Cauchy-Schwartz inequality:

$$\begin{split} \langle \nabla f(y) - \nabla f(x), y - x \rangle &\leq |\langle \nabla f(y) - \nabla f(x), y - x \rangle| \leq \|\nabla f(y) - \nabla f(x)\| \cdot \|y - x\| \\ &\leq L \|y - x\|^2 \end{split}$$

2. Set $\varphi(t) = f(x + t(y - x))$ for all $t \in [0, 1]$. Prove that

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \varphi(1) - \varphi(0) - \varphi'(0).$$

▶ It is clear that $\varphi(0) = f(x)$ and $\varphi(1) = f(y)$. Note that $\varphi(t) = f(g(t))$ where g(t) = x + t(y - x). By the theorem of derivation of composite functions,

$$\varphi'(t) = \langle \nabla f(g(t)), g'(t) \rangle = \langle \nabla f(x + t(y - x)), y - x \rangle \tag{1}$$

So $\varphi'(0) = \langle \nabla f(x), y - x \rangle$. Combining the three equalities yields

$$\varphi(1) - \varphi(0) - \varphi'(0) = f(y) - f(x) - \langle \nabla f(x), y - x \rangle.$$

3. Deduce that

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt$$

 \blacktriangleright As φ is a primitive of φ' ,

$$\varphi(1) = \varphi(0) + \int_0^1 \varphi'(t)dt.$$

Hence, using (1)

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \varphi(1) - \varphi(0) - \varphi'(0) = \int_0^1 \varphi'(t)dt - \varphi'(0)$$

$$= \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt - \int_0^1 \langle \nabla f(x), y - x \rangle dt$$

$$= \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt$$

4. Using the first question, conclude that

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

▶ We know that for all x, z, $\langle \nabla f(z) - \nabla f(x), z - x \rangle \leq L \|z - x\|^2$. We use this inequality with $z = x + t(y - x) : \langle \nabla f(x + t(y - x)) - \nabla f(x), t(y - x) \rangle \leq L \|t(y - x)\|^2$. Dividing by t and integrating between 0 and 1, we get

$$\int_{0}^{1} \langle \nabla f(x+t(y-x)) - \nabla f(x), y - x \rangle dt \le \int_{0}^{1} tL \|y - x\|^{2} dt = \left[\frac{t^{2}}{2}\right]_{0}^{1} L \|y - x\|^{2} = \frac{L}{2} \|y - x\|^{2}$$

We conclude using Question 3.

Consider the gradient algorithm i.e., the sequence (x_k) defined by $x_{k+1} = x_k - \gamma \nabla f(x_k)$ where $\gamma > 0$ is a constant step size.

5. Show that

$$f(x_{k+1}) \le f(x_k) - \gamma (1 - \frac{\gamma L}{2}) \|\nabla f(x_k)\|^2$$
. (2)

 \blacktriangleright We use the result of Question 4:

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

But $x_{k+1} = x_k - \gamma \nabla f(x_k)$ so

$$f(x_{k+1}) \le f(x_k) - \gamma \langle \nabla f(x_k), \nabla f(x_k) \rangle + \frac{L}{2} \|\gamma \nabla f(x_k)\|^2 = f(x_k) - \gamma (1 - \frac{\gamma L}{2}) \|\nabla f(x_k)\|^2$$

- 6. Provide a condition on γ which ensures that $f(x_{k+1}) \leq f(x_k)$.
 - ► If $\gamma(1 \frac{\gamma L}{2}) \|\nabla f(x_k)\|^2 \ge 0$, then $f(x_{k+1}) \le f(x_k) \gamma(1 \frac{\gamma L}{2}) \|\nabla f(x_k)\|^2 \le f(x_k)$. Now $\gamma(1 - \frac{\gamma L}{2}) \|\nabla f(x_k)\|^2 \ge 0 \Leftrightarrow \gamma(1 - \frac{\gamma L}{2}) \ge 0 \Leftrightarrow \gamma \le \frac{2}{L}$ since $\gamma > 0$.
- 7. Based on Eq. (2), what value of γ would you suggest to choose?
 - ▶ There are two possible answers for this question.
 - First answer: we may want to choose γ the largest possible that ensures a strict decrease of the objective value. Hence, we will take $\gamma = \frac{2}{L} \epsilon$ where $\epsilon > 0$ is small. Taking long stepsizes helps obtaining an algorithm that goes faster to the minimum.
 - Second answer: we may want to choose γ such that the bound we found is the smallest possible. Hence, we will take $\gamma = \frac{1}{L}$. Minimizing the bound helps guaranteeing a better decrease in the objective function.

For the rest of the exercise, we will take $\gamma = \frac{1}{L}$ because the expressions are easier to manipulate.

From now on, we set γ equal to the value suggested above. Consider an arbitrary $y \in \mathbb{R}^n$.

8. Prove that

$$\langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} ||x_k - y||^2 - \frac{L}{2} ||x_{k+1} - y||^2 = -\frac{1}{2L} ||\nabla f(x_k)||^2.$$

$$\frac{L}{2} \|x_{k+1} - y\|^2 = \frac{L}{2} \|x_k - \gamma \nabla f(x_k) - y\|^2$$

$$= \frac{L}{2} \|x_k - y\|^2 - L\gamma \langle x_k - y, \nabla f(x_k) \rangle + \frac{L}{2} \gamma^2 \|\nabla f(x_k)\|^2$$

Rearranging and simplifying $\gamma L = 1$, we get the expected result.

9. Deduce that

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} ||x_k - y||^2 - \frac{L}{2} ||x_{k+1} - y||^2.$$
 (3)

►
$$f(x_{k+1}) \le f(x_k) - \gamma(1 - \frac{\gamma L}{2}) \|\nabla f(x_k)\|^2 = f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2$$

= $f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} \|x_k - y\|^2 - \frac{L}{2} \|x_{k+1} - y\|^2$

We assume from now on that f is convex and admits (at least) one minimizer x^* .

10. Show that

$$f(x_{k+1}) \le f(x^*) + \frac{L}{2} ||x_k - x^*||^2 - \frac{L}{2} ||x_{k+1} - x^*||^2.$$

▶ As f is convex, $f(x^*) \ge f(x_k) + \langle \nabla f(x_k), x^* - x_k \rangle$. Combining this inequality with (3) applied with $y = x^*$, we get :

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x^* - x_k \rangle + \frac{L}{2} \|x_k - x^*\|^2 - \frac{L}{2} \|x_{k+1} - x^*\|^2$$

$$\le f(x^*) + \frac{L}{2} \|x_k - x^*\|^2 - \frac{L}{2} \|x_{k+1} - x^*\|^2$$

11. Deduce that for all $k \geq 1$,

$$\sum_{i=1}^{k} f(x_i) \le k f(x^*) + \frac{L}{2} ||x_0 - x^*||^2.$$

 \blacktriangleright We sum the inequality in Question 10 for i between 0 and k-1:

$$\sum_{i=0}^{k-1} f(x_{i+1}) \le k f(x^*) + \sum_{i=0}^{k-1} \left(\frac{L}{2} \|x_i - x^*\|^2 - \frac{L}{2} \|x_{i+1} - x^*\|^2 \right)$$

We recognise a telescoping sum. We also make a change of variable $i \leftarrow i + 1$ in the first sum.

$$\sum_{i=1}^{k} f(x_i) \le k f(x^*) + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \|x_k - x^*\|^2 \le k f(x^*) + \frac{L}{2} \|x_0 - x^*\|^2$$

12. Show that

$$f(x_k) - f(x^*) \le \frac{L||x_0 - x^*||^2}{2k}$$
.

▶ Recall that $f(x_k) \leq f(x_{k-1})$ for all k. So

$$f(x_k) - f(x^*) \le \sum_{i=1}^k \frac{1}{k} (f(x_i) - f(x^*)) \le \frac{L \|x_0 - x^*\|^2}{2k}$$

We assume from now on that f is μ -strongly convex. Recall that a function f is said μ -strongly convex if $f - \frac{\mu}{2} \| \cdot \|^2$ is convex.

13. Prove that for any x, y,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2.$$

▶ The function $g = f - \frac{\mu}{2} \| . \|^2$ is convex so for all x, y, y

$$g(y) \ge g(x) + \langle \nabla g(x), y - x \rangle$$

 $f(y) - \frac{\mu}{2} ||y||^2 \ge f(x) - \frac{\mu}{2} ||x||^2 + \langle \nabla f(x) - \mu x, y - x \rangle$

We get the result since $-\|x\|^2 - 2\langle x, y - x \rangle + \|y\|^2 = \|x\|^2 - 2\langle x, y \rangle + \|y\|^2 = \|y - x\|^2$.

14. Using Eq. (3), prove that

$$f(x_{k+1}) \le f(x^*) + \frac{L-\mu}{2} ||x_k - x^*||^2 - \frac{L}{2} ||x_{k+1} - x^*||^2.$$

As f is μ -strongly convex, $f(x^*) \geq f(x_k) + \langle \nabla f(x_k), x^* - x_k \rangle + \frac{\mu}{2} \|x^* - x\|^2$. Combining this inequality with (3) applied with $y = x^*$, we get:

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x^* - x_k \rangle + \frac{L}{2} ||x_k - x^*||^2 - \frac{L}{2} ||x_{k+1} - x^*||^2$$

$$\le f(x^*) + \frac{L - \mu}{2} ||x_k - x^*||^2 - \frac{L}{2} ||x_{k+1} - x^*||^2$$

15. Define $\Delta_{k+1} = f(x_{k+1}) - f(x^*) + \frac{L}{2} ||x_{k+1} - x^*||^2$. Show that

$$\Delta_{k+1} \le \left(1 - \frac{\mu}{L}\right) \Delta_k.$$

▶ Using Question 14 and the fact that $f(x_k) \ge f(x^*)$, we get

$$\Delta_{k+1} = f(x_{k+1}) - f(x^*) + \frac{L}{2} \|x_{k+1} - x^*\|^2 \le \frac{L - \mu}{2} \|x_k - x^*\|^2$$

$$\le \frac{L - \mu}{L} \left(f(x_k) - f(x^*) + \frac{L}{2} \|x_k - x^*\|^2 \right) = \left(1 - \frac{\mu}{L} \right) \Delta_k$$

16. Conclude that

$$f(x_k) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^k \Delta_0$$
$$\|x_k - x^*\|^2 \le \left(1 - \frac{\mu}{L}\right)^k \frac{2\Delta_0}{L}.$$

- ▶ Iterating the relation $\Delta_k \leq (1 \frac{\mu}{L})\Delta_{k-1}$, we get that $\Delta_k \leq (1 \frac{\mu}{L})^k \Delta_0$. As Δ_k is the sum of two nonnegative quantities, this means that $f(x_k) f(x^*) \leq (1 \frac{\mu}{L})^k \Delta_0$ and $\frac{2}{L} \|x_k x^*\|^2 \leq (1 \frac{\mu}{L})^k \Delta_0$.
- 17. The ratio $Q = L/\mu$ is called the condition number of f. Discuss the influence of Q on the convergence rate.
 - ▶ The smaller the condition number the faster the convergence. If the problem is ill-conditioned, there will be a slow convergence.

Application: From now on, we define $f(x) = \frac{1}{2}x^T H x + c^T x$ where H is positive semidefinite $n \times n$ matrix. We denote by λ_{max} and λ_{min} the largest and smallest eigenvalues of H respectively.

- 18. What is the Hessian matrix of f? Deduce that f is convex.
 - \blacktriangleright The Hessian matrix at x of f is H for all x. As it is positive semi-definite, f is convex.
- 19. Justify briefly that ∇f is λ_{max} -Lipschitz continuous.
 - $||\nabla f(x) \nabla f(y)|| = ||Hx Hy|| \le ||H|| \, ||x y|| = \lambda_{\max} \, ||y x||.$
- 20. Prove that f is λ_{min} -strongly convex.
 - ▶ The Hessian matrix of $f \frac{\lambda_{\min}}{2} \|\cdot\|^2$ is equal to $H \lambda_{\min}I$, which is positive semi-definite by definition of λ_{\min} . Note that if $\lambda_{\min} = 0$, then f is not strongly convex.
- 21. Write the condition number Q of f. What kind of matrix H yields the smallest condition number?
 - ▶ $Q = \lambda_{\text{max}}/\lambda_{\text{min}}$. The smallest condition number is for $H = \alpha I$, $\alpha > 0$. In this case Q = 1.
- 22. Characterize the set of minimizers of f.
 - ▶ As f is convex and differentiable, x is a minimizer of f if and only if $\nabla f(x) = 0$. This means Hx = -c and so we have three cases.
 - If H is invertible, then $x = H^{-1}c$ is the unique solution.
 - If H is not invertible and $-c \in \text{Range}(H)$, then the set of solution is $H^{-1}(\{-c\})$, the pre-image of $\{-c\}$ by H. It is a linear subspace of \mathbb{R}^m .
 - If H is not invertible and $-c \notin \text{Range}(H)$, then there is no solution.