Universidad Simón Bolívar

Departamento de Matemáticas

Puras y Aplicadas

MA1116. Matemáticas III.

GUIA 10: Producto interno. Cojunto ortogonal

- 1. Decir cuáles de las siguientes funciones reales son producto escalar:
 - (a) En \mathbb{R}^2 , $\langle (x_1, x_2); (y_1, y_2) \rangle = x_1 y_2 + x_2 y_1$.
 - (b) EN \mathbb{R}^3 , $\langle (x_1, x_2, x_3); (y_1, y_2, y_3) \rangle = x_1 y_1 + 2x_2 y_2 + x_3 y_3$.
 - (c) En P_2 , $\langle p(x), q(x) \rangle = p'(0)q(0)$.
 - (d) En \mathbb{R}^2 , $\langle (x_1, x_2); (y_1, y_2) \rangle = 2x_1y_1 + x_2y_2 x_1y_2 x_2y_1$.
 - (e) En \mathbb{R}^2 , $\langle (x_1, x_2); (y_1, y_2) \rangle = 2x_1y_1 + 3x_2y_2 2x_1y_2 x_2y_1$.
 - (f) En \mathbb{R}^2 , $\langle (x_1, x_2); (y_1, y_2) \rangle = 2x_1y_1 + 3x_2y_2 2x_1y_2 2x_2y_1$.
 - (g) En \mathbb{R}^2 , $\langle (x_1, x_2); (y_1, y_2) \rangle = x_1^2 y_1 + 2x_2 y_2^2 x_1 y_2 x_2 y_1$.
 - (h) En \mathbb{R}^3 , $\langle \mathbf{x}, \mathbf{y} \rangle = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 4 & 0 & -2 \\ 0 & 2 & 1 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$
 - (i) En el espacio de las matrices $\mathcal{M}_{2\times 2}$, $\langle A, B \rangle = \operatorname{tr}(AB)^T$.
- 2. Sea $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ una base del espacio \mathbb{R}^n . Demostrar que si $\langle \mathbf{x}, \mathbf{b}_i \rangle = 0$ para $i = 1, 2, \dots, n$, entonces $\mathbf{x} = 0$.
- 3. Sea $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ una base del espacio \mathbb{R}^n . Demostrar que si $\langle \mathbf{v}, \mathbf{b}_i \rangle = \langle \mathbf{w}, \mathbf{b}_i \rangle$ para $i = 1, 2, \dots, n$, entonces $\mathbf{v} = \mathbf{w}$.
- 4. Encuentre la proyección ortogonal de **u** sobre **a**.
 - (a) $\mathbf{u} = (6, 2), \mathbf{a} = (3, -9)$

- (c) $\mathbf{u} = (3, 1, -7), \mathbf{a} = (1, 0, 5)$
- (b) $\mathbf{u} = (-1, -2), \mathbf{a} = (-2, 3)$
- (d) $\mathbf{u} = (1, 0, 0), \mathbf{a} = (4, 3, 8).$
- 5. En \mathbf{P}_3 se considera el producto escalar

$$\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx.$$

Calcular la norma de los siguientes polinomios:

(a) 1.

- (b) x.
- (c) $x^2 1$.
- (d) $\frac{1}{3}(3x^2 1)$.
- 6. Comprobar, en cada caso, si los siguientes conjuntos de vectores son ortogonales:
 - (a) $\{(1,1,0),(2,-2,1),(-1,1,4)\}\$ de \mathbb{R}^3 , con el producto escalar canónico.
 - (b) $\{(1,-2,1),(3,1,-1),(-2,3,2)\}$ de \mathbb{R}^3 , con el producto escalar $\langle \mathbf{x},\mathbf{y}\rangle=\mathbf{x}^TA\mathbf{y}$,

siendo
$$A = \begin{pmatrix} 6 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
.

- (c) $\{(1, .1, 2.0), (1, 1, 0, -1), (2, 2, 0, 4)\}\$ de \mathbb{R}^4 , con el producto canónico.
- 7. En el espacio vectorial P_3 se define los productos escalares:

(a)
$$\int_{-1}^{1} p(x)q(x)dx, \qquad \qquad \int_{-1}^{1} \frac{p(x)q(x)}{\sqrt{1-x^2}}dx$$

Estudiar con los dos productos anteriores si son ortogonales los conjuntos siguientes:

(a)
$$\left\{1, \frac{1}{3}(3x^2 - 1), x^3\right\}$$
, (b) $\left\{x, x^2, 4x^3 - 3x\right\}$.

- 8. Encuentre el complemento ortogonal de los siguientes subespacios vectoriales de \mathbb{R}^4 , donde se considera el producto escalar canónico:
 - (a) $H = gen\{(1, 2, 0, -1), (2, -1, -3, 2)\}$
 - (b) $W = \text{gen} \{(1, 1, 0, 0), (-1, 2, 1, 2), (0, 1, 0, -1)\}.$
 - (c) $H = \{(x_1, x_2, x_3, x_4) : x_1 2x_3 + x_4 = 0\}$.
- 9. Sea \mathbf{P}_3 , con el producto escalar

$$\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx.$$

Obtener el complemento ortogonal de cada uno de los siguientes subespacios.

(a)
$$H = \text{gen}\{1, x^2 + 1\}$$
. (b) $W = \text{gen}\{x^3 - 2\}$

- 10. Se considera el producto escalar canónico en \mathbb{R}^4 .
 - (a) Aplicando el método de Gram-Schmidt, hallar una base ortogonal del subespacio vectorial de \mathbb{R}^4 generado por los vectores $\mathbf{v}1 = (1,0,1,0), \mathbf{v}2 = (1,1,1,0), \mathbf{v}3 = (1,1,0,0).$
 - (b) Hallar la proyección del vector $\mathbf{z} = (2, 0, -1, 3)$ sobre gen $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- 11. Sea $\mathbf{z} = (1, -1, 2, -2)$ un vector de \mathbb{R}^4 . Hallar su proyección sobre el subespacio gen $\{(1,0,1,0), (1,-1,1,-1), (2,-1,2,-1), (1,1,1,1)\}$. Se considera el producto escalar canónico.
- 12. En \mathbb{R}^2 con el producto escalar Euclídeo. Use Gram-Schmidt para transformar la base $\{\mathbf{u}_1,\mathbf{u}_2\}$ en una base ortonormal.
 - (a) $\mathbf{u}_1 = (1, -3), \mathbf{u}_2 = (2, 2)$
 - (b) $\mathbf{u}_1 = (1,0), \ \mathbf{u}_2 = (3,-5).$
- 13. En \mathbb{R}^3 con el producto $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2 + 3u_3 v_3$. Use Gram-Schmidt para transformar $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ en una base ortonormal.