Feuille d'exercices n° 22 : applications linéaires

Exercice 1. Les applications suivantes sont elles des applications linéaires? Si oui, déterminer leur noyau et leur image.

1.
$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x+y,x-y)$

4.
$$f_4: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto XP'$$

2.
$$f_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (x + y, y - z)$

5.
$$f_5: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $P(X) \longmapsto P(X+1)$

3.
$$f_3: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 $(x,y,z) \longmapsto (x+1,y+1)$

5.
$$f_5$$
: $\mathbb{R}[X] \longrightarrow \mathbb{R}[X]$
 $P(X) \longmapsto P(X+1)$
6. f_6 : $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$
 $(x,y) \longmapsto (x+y,xy)$

Exercice 2. On note e_1, e_2, e_3 la base canonique de \mathbb{R}^3 . Soit u l'endomorphisme de \mathbb{R}^3 tel que les images de e_1, e_2 et e_3 soient respectivement : (1, -1, 2), (-3, 2, -1) et (-7, 4, 1).

- 1. Déterminer une expression explicite de u.
- 2. Déterminer les antécédents par u de (-1,1,8) et de (-2,1,1).
- 3. u est-il injectif? surjectif?

Exercice 3. On note $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et on considère $\phi \colon E \to E$. Dans quels cas ϕ est-elle linéaire :

1.
$$\phi(f) = g$$
 avec $g(x) = \int_0^x f(t) dt$

3.
$$\phi(f) = g \text{ avec } g(x) = \int_0^{x^2} f^2(t) dt$$

2.
$$\phi(f) = g \text{ avec } g(x) = \int_0^{x^2} f(t) dt$$

4.
$$\phi(f) = g \text{ avec } g(x) = f''(x)$$

Exercice 4. Les applications suivantes sont elles des applications linéaires? Si oui, déterminer leur noyau et leur image.

$$f_1 \colon \ \mathbb{R}_3[X] \to \mathbb{R}^4 \qquad \qquad f_2 \colon \ \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$$

$$P \mapsto (P(1), P(2), P(3), P(4)) \qquad \qquad M \mapsto AM - MA$$
où on a posé $A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$

Exercice 5. Soient E un espace vectoriel et $u \in \mathcal{L}(E)$ une application linéaire telle que $u^2 + 2u - id = 0$. Montrer que u est un automorphisme et déterminer u^{-1} en fonction de u.

Exercice 6. Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{K}_3[X] & \to & \mathbb{K}_3[X] \\ P & \mapsto & P-P' \end{array} \right.$$

Montrer que f est un automorphisme et déterminer f^{-1} .

Exercice 7. On pose $E = \mathbb{R}[X]$ et pour tout $P \in E$, f(P) = P - XP'.

- 1. Prouver que f est un endomorphisme de E.
- 2. Déterminer son noyau. L'application f est-elle injective?
- 3. f est-elle surjective?

Exercice 8.

- 1. Montrer qu'il existe une unique $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ telle que f(1,2) = (1,1,0) et f(2,1) = (0,0,1). Déterminer l'image. Donner la dimension puis le noyau de f.
- 2. Montrer qu'il existe une unique $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ telle que f(1,0,0) = (0,1), f(1,1,0) = (1,0) et f(1,1,1) = (1,1). Déterminer l'image de f. Donner la dimension puis le noyau de f.

Exercice 9. On se place dans $\mathbb{C}_3[X]$, et on note $A = X^4 - 1$ et $B = X^4 - X$. On désigne par f l'application qui, à un polynôme P, associe le reste de la division de AP par B.

- 1. Montrer que f est un endomorphisme de $\mathbb{C}_3[X]$.
- 2. Déterminer le noyau de f.
- 3. Quelle est la dimension de $\operatorname{Im}(f)$? Montrer que $\operatorname{Im}(f) = (X-1)\mathbb{C}_2[X]$.
- 4. Déterminer les quatre racines z_1 , z_2 , z_3 et z_4 de B.
- 5. Montrer qu'en posant $P_k = \frac{B}{X z_k}$, la famille (P_1, P_2, P_3, P_4) est une base de $\mathbb{C}_3[X]$.
- 6. Montrer que $f(P_k) = (z_k 1)P_k$.

Exercice 10. Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. On suppose que x_1 , x_2 et x_3 dans E sont non nuls et vérifient : $f(x_1) = x_1$, $f(x_2) = 3x_2$ et $f(x_3) = 10x_3$. Montrer que (x_1, x_2, x_3) est libre.
- 2. Proposer un énoncé qui généralise 1).

Exercice 11. Soient f et g sont deux endomorphismes de E.

- 1. Montrer que : $\operatorname{Im}(f+g) \subset \operatorname{Im} f + \operatorname{Im} g$ et $\operatorname{Ker}(f+g) \supset \operatorname{Ker} f \cap \operatorname{Ker} g$.
- 2. On suppose que $f \circ g = g \circ f$; montrer que $\operatorname{Im}(f \circ g) \subset \operatorname{Im} f \cap \operatorname{Im} g$ et $\operatorname{Ker}(f \circ g) \supset \operatorname{Ker} f + \operatorname{Ker} g$.

Exercice 12. Soit E un \mathbb{K} -espace vectoriel et $f, g \in \mathcal{L}(E)$.

- 1. Montrer que : $Ker(f) \subset Ker(g \circ f)$.
- 2. Montrer que : $\operatorname{Im}(f) \cap \operatorname{Ker}(g) = \{0\} \iff \operatorname{Ker}(f) = \operatorname{Ker}(g \circ f)$.
- 3. Montrer que : $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$.
- 4. Montrer que : $\operatorname{Im}(f) + \operatorname{Ker}(g) = E \iff \operatorname{Im}(g \circ f) = \operatorname{Im}(g)$.
- 5. Montrer que : $E = \operatorname{Im}(f) + \operatorname{Ker}(f) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2)$.
- 6. Montrer que : $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\} \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.
- 7. Montrer que : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2)$ et $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.

Exercice 13. Soit $f \in \mathcal{L}(\mathbb{R}^4)$ tel que $f^2 = -\mathrm{id}$.

- 1. Soit $u \in \mathbb{R}^4$ un vecteur non nul. Montrer que la famille (u, f(u)) est libre.
- 2. Pourquoi existe-t-il $w \in \mathbb{R}^4$ tel que la famille (u, f(u), w) est libre? Montrer alors que $\beta = (u, f(u), w, f(w))$ est une base de \mathbb{R}^4 .

3. Déterminer les coordonnées de f(v) dans la base β , si $v \in \mathbb{R}^4$ a pour coordonnées $X_v = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ dans la base β .

Exercice 14. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = \left(\frac{3}{7}(x-y), \frac{4}{7}(y-x)\right)$. Montrer que f est une projection dont on précisera la éléments caractériques.

Exercice 15.

- 1. Soit $g: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $g(x,y) = \left(-\frac{y}{2}, -2x\right)$. Montrer que g est une symétrie. Notation : g est la symétrie par rapport à F et parallèlement à G.
- 2. On note p tel que $g = 2p I_2$. Montrer que p est le projecteur sur F, parallèlement à G.
- 3. Déterminer F et G.

Exercice 16. On note $E = \mathbb{R}_2[X]$ et ϕ l'application définie par : $\forall P \in E, \quad \phi(P) = 2P - (X - 1)P'$.

- 1. Montrer que ϕ est un endomorphisme de E.
- 2. Donner une base de $Ker(\phi)$. L'endomorphisme ϕ est-il injectif?
- 3. Montrer que $\operatorname{Im}(\phi) = \operatorname{Vect}(1, X)$.
- 4. Montrer que $Ker(\phi) \oplus Im(\phi) = E$.
- 5. Soit p la projection vectorielle sur $Ker(\phi)$ de direction $Im(\phi)$. Que valent $\phi \circ p$ et $p \circ \phi$?

Exercice 17. Soient p et q deux projecteurs dans un même espace vectoriel E, vérifiant $p \circ q = q \circ p$.

- 1. Montrer que $p \circ q$ est aussi un projecteur.
- 2. Montrer que $\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- 3. Montrer que $Ker(p \circ q) = Ker(p) + Ker(q)$.

Pour s'entrainer

Exercice 18. On considère f((x,y)) = (x, 2x + y, y) et g((x,y,z)) = (x + z, 5x - 2y + z).

- 1. Vérifier que f, g, $f \circ g$ et $g \circ f$ sont des applications linéaires.
- 2. Donner une base et la dimension de leur novau puis de leur image.
- 3. Lesquels sont des isomorphismes.

Exercise 19. Soit f((x, y, z)) = (2x + y + z, x + 2y + z, x + y + 2z). On pose F = Ker(f - id) et G = Ker(f - 4id).

- 1. Donner une base de F et de G.
- 2. Montrer que F et G sont supplémentaires.

Exercice 20. Soit $n \in \mathbb{N}$. Montrer que l'application $f: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ est un isomorphisme, où

$$f(P) = (P(0), P'(0), \dots, P^{(n)}(0)).$$

Exercice 21. Soit f définie pour $P \in \mathbb{R}_3[X]$ par f(P) = X(P' - P'(0)).

- 1. Montrer que $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ puis que f est linéaire.
- 2. Déterminer le rang de f.
- 3. Quelle est la dimension du noyau? En déduire une base du noyau.

Exercice 22. Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ telle que $f^2 - 3f + 2\mathrm{Id} = 0_{\mathcal{L}(E)}$.

- 1. Montrer que f est un isomorphisme en déterminant $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- 2. Montrer que f est un isomorphisme en déterminant directement f^{-1} .
- 3. Dans cette question, E est supposé de dimension finie.
 - a) Montrer que Ker(f Id) et Ker(f 2Id) sont en somme directe.
 - b) Montrer que $\operatorname{Im}(f Id) \subset \operatorname{Ker}(f 2Id)$.
 - c) En déduire que : $\dim(E) \leq \dim(\operatorname{Ker}(f-2Id)) + \dim(\operatorname{Ker}(f-Id)) \leq \dim(E)$. Indication : utiliser la formule de Grassman et le théorème du rang.
 - d) Montrer que : $Ker(f Id) \oplus Ker(f 2Id) = E$.
- 4. Plus généralement, établir que : $Ker(f Id) \oplus Ker(f 2Id) = E$ avec E de dimension quelconque.

Exercice 23. Soit E un espace vectoriel et $u \in \mathcal{L}(E)$ telle que $u^3 = Id$.

- 1. Montrer que u est un automorphisme en déterminant u^{-1} .
- 2. Montrer que la somme Ker(u Id) et $Ker(u^2 + u + Id)$ est directe.
- 3. Décomposer $\frac{1}{X^3-1}$ en éléments simples.
- 4. En déduire deux polynômes P et Q tels que : $1 = (X 1)P(X) + (X^2 + X + 1)Q(X)$.
- 5. En utilisant la dernière relation en remplaçant X par u, en déduire que Ker(u-Id) et $\text{Ker}(u^2+u+Id)$ sont supplémentaires dans E.

Exercice 24. On pose $E = \mathbb{R}[X]$ et pour tout $P \in E$, f(P) = P - XP'.

- 1. Résoudre l'équation différentielle y xy' = x. Possède-t-elle des solutions sur \mathbb{R} ?
- 2. Prouver que f est un endomorphisme de E.
- 3. Déterminer son noyau. L'application f est-elle injective?
- 4. f est-elle surjective?

Exercice 25. Pour tout polynôme P de $\mathbb{R}[X]$, on pose $\psi(P) = (X-1)P' - P$.

- 1. Montrer que ψ permet de définir un endomorphisme de $\mathbb{R}_3[X]$.
- 2. Écrire la matrice de ψ dans la base canonique de $\mathbb{R}_3[X]$.
- 3. Déterminer le rang de ψ , la dimension et une base de Ker ψ puis la dimension, une base et l'équation de $\text{Im}\psi$.
- 4. À quelle condition l'équation différentielle $(x-1)y'-y=x^3+x^2+ax+b$ admet-elle une solution polynômiale de degré 3 (au plus)?