

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Patentschrift[®] DE 35 31 487 C 2

61 Int. Cl.⁶: C 07 D 235/28 A 61 K 31/415

DEUTSCHES PATENTAMT

(2) Aktenzeichen: P 35 31 487.7-44 (2) Anmeldetag: 30. 8. 85

Offenlegungstag: 13. 3.88
 Veröffentlichungstag

der Patenterteilung: 17. 8.95

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Unionspriorität: (2) (3) (3)

31.08.84 JP 59-182400 26.03.85 JP 60-61194 26.03.85 JP 60-61195

(3) Patentinhaber: Nippon Chemiphar Co. Ltd., Tokio/Tokyo, JP

(4) Vertreter: W. Kraus und Kollegen, 80539 München @ Erfinder:

Okabe, Susumu, Kyoto, JP; Satoh, Masaru, Koshigaya, Saitama, JP; Yamakawa, Tomio, Sohka, Saitama, JP; Nomura, Yutaka, Sohka, Saitama, JP; Hayashi, Masatoshi, Tokio/Tokyo, JP

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

EP 00 45 200 A1 E0 01 74 717 A1

(54) Benzimidazolderivate

DE 3531487 C

BEST AVAILABLE COPY

DE 35 31 487

Beschreibung

Es ist bekannt, daß die H++K+ATPase eine wichtige Rolle bei der Endsekretion der Magensäure von Magenzellen spielt (scand. J. Gastroenterol., 14, 131 - 135, 1979). Norinium-Bromid ist als Substanz bekannt, die eine H++K+ATPase hemmende Wirkung hat (Proceeding of the Society for Experimental Biology and Medicine, 172, 308-315, 1983).

Auf der anderen Seite ist 2-(2(3,5-Dimethyl-4-methoxy)-pyridylmethylsulfinyl)-(5-methoxy) benzimidazol(Omeprazol) als ein geschwulsthemmendes Mittel entwickelt worden, das eine H + + K + ATPase-Hemmung besitzt (Am. J. of Physiol, 245, G64-71, 1983).

Die EP 0 174 717 (mit Prioritätsschrift GB 84 17 272) betrifft Benzimidazole, Benzoxazole, Benzothiazole, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als Hemmstoffe der Magensaftsekretion. Die EP 0 045 200 betrifft substituierte Alkylsulfinylbenzimidazole zur Verwendung als Wirkstoff in Arzneimitteln zur Behandlung und Verhütung entzündlicher Erkrankungen des Magen-Darm-Trakts.

Der Erfindung liegt die Aufgabe zugrunde, neue Verbindungen zu schaffen, die eine verbesserte H++K+AT-Pase-Hemmung besitzen.

Diese Aufgabe wird erfindungsgemäß durch die folgenden Benzimidazolderivate gelöst:

- 2-(2-Aminobenzylsulfinyl)benzimidazol,
- 2-(2-Methylaminobenzylsulfinyl)benzimidazol,
- 2-(2-Dimethylaminobenzylsulfinyl)-5-methoxybenzimidazol,
- 2-(2-Dimethylaininobenzylsulfinyl)-5-methoxycarbonylbenzimidazol,
- 2-(2-Dimethylaininobenzylsulf inyl)-5-methylbenzimidazol,

 - 2-(2-Dimethylaininobenzylsulfinyl)-5-chlorbenzimidazol, 2-(2-Dimethylaininobenzylsulfinyl)-5-trifluormethylbenzimidazol,

 - 2-(2-Dimethylaininobenzylsulfinyl)-4-methylbenzimidazol,
- 2-(2-Dimethylamino-6-methylbenzylsulfinyl)benzimidazol,
 - 2-(2-Dimethylamino-4-chlorbenzylsulfinyl)benzimidazol,
 - 2-(2Dimethylamino-5-methoxybenzylsulfinyl)benzimidazol,
 - 2-(2-Dimethylamino-5-methylbenzylsulfinyl)benzimidazol,
- 2-(2-Piperidinobenzylsulfinyl)benzimidazol, 2-(2-Cyclohexylaminobenzylsulfinyl)benzimidazol,
 - 2-(2-Phenylaminobenzylsulfinyl)benzimidazol,
 - 2-(2-Phenylmethylaminobenzylsulfinyl)benzimidazol.
 - 2-(2-Benzylinethylaminobenzylsulfinyl)benzimidazol,
 - 2-(2-Isobutylmethylaminobenzylsulfinyl)benzimidazol.

Diese Verbindungen haben ausgezeichnete Eigenschaften hinsichtlich der Unterdrückung der Sekretion gastrischer Säure aufgrund ihrer spezifischen H++K+ATPase-Hemmung verbunden mit einer zytoprotektiven Wirkung. Die erfindungsgemäße Substanz kann also als geschwulsthemmendes Mittel verwandt werden.

Die Erfindung bezieht sich auch auf ein Verfahren zur Herstellung des erfindungsgemäßen Mittels und auf ein geschwulsthemmendes Mittel, das Benzimidazolderivate in wirksamer Konzentration enthält.

Die erfindungsgemäßen Benzimidazolderivate können beispielsweise hergestellt werden durch Reaktion eines 2-Mercaptobenzimidazols gemäß Formel (II) mit einer 2-Aminobenzyl-Verbindung gemäß Formel (III). Dabei entsteht eine Verbindung gemäß Formel (IV). Dann wird diese Verbindung (IV) oxidiert gemäß folgendem Reaktionsschema:

45 R₃
So N +
$$\times H_2C$$
 $\times H_2C$
 $\times H_$

60

$$\begin{array}{c}
R_{3} \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
R_{4} \\
R_{2}
\end{array}$$

$$\begin{array}{c}
R_3 \\
N \\
N \\
N \\
R_2
\end{array}$$

$$\begin{array}{c}
R_4 \\
N \\
R_2
\end{array}$$

wobei X eine reaktive Gruppe und R1 bis R4 einschließlich gemäß den vorstehenden Derivaten definiert sind.

Die Ausgangsverbindung (II) ist an sich bekannt. Die Verbindung (II) kann beispielsweise hergestellt werden wie in Org. Synth., 30, 56 beschrieben. Die reaktive Gruppe X in der anderen Ausgangsverbindung (III) kann ein Halogenatom, wie Chlor oder Brom, oder eine Sulfonyloxygruppe, wie Methylsufonyloxy oder Toluolsulfonyloxy, enthalten. Die Verbindung (III), bei der ein Chloratom als X eingebunden ist, kann beispielsweise hergestellt werden, wie in J. Chem. Soc., 98 – 102, 1942, beschrieben ist. Beide Ausgangsverbindungen können auch als Salze vorliegen.

Die Reaktion zwischen der Verbindung (II) und der Verbindung (III) oder zwischen deren Salzen kann dadurch erfolgen, daß man sie in ein inertes Lösungsmittel, z. B. Toluol, Benzol, Ethanol oder Azeton, bei einer Temperatur, die von Raumtemperatur bis zur Rückflußtemperatur reicht, in einer Zeit zwischen 30 Minuten und 24 Stunden umrührt. Unter solchen Umständen ist vorzugsweise eine Alkaliverbindung, wie NaOH, KOH, K₂CO₃ oder NaHCO₃, anwesend, so daß die resultierende Säure neutralisiert wird.

Die Verbindung (IV) kann in ihre korrespondierende Oxoverbindung durch irgendeine bekannte Methode umgewandelt werden. Beispielsweise kann diese Umwandlung durch Oxydation der Verbindung (IV) mit einem Oxidierungsmittel, z. B. einer organischen Persäure (m-Chloroperbenzol-Säure, Wasserstoff-Peroxyd, Natrium-Hypochlorid oder Natrium-Metaperiodat), erfolgen. Die Reaktion kann in einem inerten Lösungsmittel, z. B. Chloroform, Dichlormethan, Methanol oder Äthyl-Azetat, bei Temperaturen zwischen -30° bis $+50^{\circ}$ C, vorzugsweise zwischen -15° und $+5^{\circ}$ C, erfolgen.

Bei einigen typischen Verbindungen gemäß der Erfindung wurden die pharmakologischen Wirkungen getestet. Die Testergebnisse werden nachfolgend wiedergegeben:

(1) H⁺ + K⁺ATPase-Hemmungseffekt:

(IV)

(I)

Gemäß der Methode von Forte et al (J. Applied Physiol., 32, 714–717, 1972) wurden Magensäure absondernde Zellen von Mucosa des Kaninchenmagens isoliert und Bläschen enthaltende H⁺ + K⁺ ATPase wurde präpariert, indem man die Zellen in Ficoll mit diskontinuierlichem Dichtegradienten zentrifugierte. Nachdem das Enzym bei Raumtemperatur 25 Minuten lang in einer 0,5 ml-Lösung, die 5 mM eines Imidazolpuffers (pH 6,0) und 2 × 10⁻⁴ M jeder Testverbindung enthielt, inkubiert war, wurde die Mischung auf 37°C erhitzt. Auf dieser Temperatur wurde sie 5 Minuten lang gehalten. Der Mischung wurden 0,5 ml einer Lösung zugesetzt, die 4 mM Magnesium-Chlorid, 80 mM eines Imidazolpuffers (pH 7,4), 20 mM Kalium-Chlorid und 4 mM ATP enthielt. Die sich daraus ergebende Mischung reagierte bei 37°C 15 Minuten lang. Dann wurde 1 ml einer 24% igen Lösung aus trichlorazetischer Säure zugesetzt, um die Reaktion zu beenden. Der frei gewordene anorganische Phosphor wurde quantitativ analysiert mittels eines Verfahrens, das von Taussky und Shorr vorgeschlagen wurde (J. Biol. Chem., 202, 675–685, 1953). Die K⁺-abhängige Aktivität der ATPase wurde bestimmt, indem man die Aktivität, die man erhielt, wenn kein Kalium-Chlorid enthalten war, subtrahierte. Die Ergebnisse sind in der Tabelle 1 zusammengefaßt, in der die erfindungsgemäßen Verbindungen 1 bis 18 Verbindungen sind, die man erhielt bei mehreren der Beispiele 1 bis 18. Die Vergleichsverbindung 1 ist die Verbindung, die man durch das Referenzbeispiel 1 erhielt. Alle diese Beispiele sind weiter unten erläutert.

10

10				H ⁺ + K ⁺ ATPsse Heimungs-Bffekt (1	0	88.2	100	νου	97.9	100	. η η τ	100
20 25			. ex	R 4	Ŧ	E	Ŧ	£	x	£	ж.	E
30 35	Tabelle 1	N 1 - S - CH ₂		. В.	¥	ĸ	ĸ	5-ОСН ₃	5-соосн ₃	5-CH ₃	s-c1	5-CF ₃
40 45				œ	Ж	NH ₂	инсн ₃	$N(CH_3)_2$	N(CH ₃) ₂	N(CII ₃) ₂	N(CH ₃ 1 ₂	N(Cii ₃) ₂
50 55				indung	Vergleichsverbindung l	Erfindungsgemäße Verbindung 1	Erfindungsgemäße Verbindung:2	Erfindungsgemäße Verbindung 3	Erfindungsgemäße Verbindung 4	Erfindungsgemäße Verbindung 5	Erfindungsgemäße Verbindung 6	Erfindungsgemäße Verbindung 1
60				Test-Verbindung	Vergleichs	Erfindungsgemä	Erfindungsgenä	Erfindungsgemä	Erfindungsgenä	Erfindungsgemä.	Erfindungsgenä	Erfindungsgemä

Test-Verbindung	æ	R ₃	æ	H ⁺ +K ⁺ ATPAsa Hennungs-Effekt	(%)
Erfindungsgemäße Verbindung 8	NICH3 >2	4-CH ₃		100	
Erfindungsgenäße Verbindung	9 N(CH ₃) ₂	#	6-CH ₃	100	
Erfindungsgemäße Verbindung 10		¥	4-C1	100	
Erfindungsgemäße Verbindung 1	11 N(CH ₃) ₂	Ŧ	5-0CH ₃	100	
Erfindungsgemäße Verbindung 1	12 N(CH ₃) ₂	X	5-CH ₃	100	
 Erfindungsgemäße Verbindung 1:3	3 -N)	н	æ	82.3	
Erfindungsgemäße Verbindung 1.4	4 -NH-(H)	н	H	100	
 Erfindungsgemäße Verbindung 1:5	S -NH-(O)	H	ĸ	100	
Erfindungsgemäße Verbindung 1.6	6 -N(©)	x	æ	66.7	
Erfindungsgemäße Verbindung 17	1	x	≖ .	8,77	
Erfindungsgemäße Verbindung 18	сн ₂ сн(сн ₃)	2 н	Ŧ	100	

(2) Hemmungseffekt gegenüber der Sekretion von Magensäure: Es wurden männliche Donryu-Ratten verwendet, die ein Körpergewicht vom 200 bis 250 g hatten. Diese mußten 24 Stunden gemäß der üblichen Methode (Shay, H. et al, Gastroenterology, 5, 43-61, 1945) fasten

(während sie freien Zugang zu Wasser hatten). Unter Ätheranästhesie wurde der Pylorus abgebunden, und jede Testverbindung wurde intraduodenal eingegeben. Vier Stunden später wurde jede Ratte getötet, und der Magen wurde entfernt und die gastrische Flüssigkeit gesammelt. Der Hemmungseffekt wurde bestimmt, indem man den Säureausstoß verglich, welcher erhalten wurde durch Titration auf pH 7,0 mit 0,1-N NaOH mit Hilfe eines automatischen Titrators, mit dem korrespondierenden Wert einer Vergleichsratte, die in der gleichen Weise präpariert worden war mit Ausnahme der Tatsache, daß ein Vehikel allein verabreicht worden ist. Die Resultate finden sich in der Tabelle 2.

Tabelle 2

15	Test-Verbindung	Dosierung (mg/kg)	Unterdrückungswirkung gegen Sekretion von Magensäure
	Vergleichsverbin- dung_l	100 .	44
:0		100	80.3
	Cimetidin*)	30	59.1
25		10	25.3
30	Erfindungsgemäße	100	
15	Verbindung 6	100	77.5
	Erfindungsgemäße Verbindung 8	100	95.7
0	Erfindungsgemäße Verbindung 9	100	98.7
5	Erfindungsgemäße Verbindung 10	100	72.8
	Erfindungsgemäße Verbindung 12	100	97.9
)	Erfindungsgemäße	100	91.5
	Verbindung 14	30	· 71.7
,		10	48.8

^{*)}Vergleich

Ratten, die 24 Stunden lang vor den Experimenten gefastet hatten, wurden in einen die Bewegungen hemmenden Käfig gesperrt. Die Tiere wurden vertikal zu dem Niveau des Xiphoid in ein Wasserbad (21°C) 7 Stunden lang getaucht und dann getötet. Der Magen jeder Ratte wurde entfernt und durch Injektion von 10 ml 1% igem Formalin aufgeblasen, um die inneren und äußeren Schichten der Magenwände zu fixieren. Diese Formalin-Behandlung wurde bei allen folgenden Experimenten durchgeführt. Der Magen wurde anschließend längs einer größeren Kurve aufgeschnitten und im Hinblick auf irgendeine Erosion in dem Glandular-Abschnitt untersucht.

⁽³⁾ Hemmungeffekte in vier gastrischen Schädigungen:

Es wurden gastrische Schädigungen bei männlichen Donryu-Ratten (180 bis 240 g) erzeugt, die 24 bis 48 Stunden vor den Experimenten ohne Nahrung waren, aber Wasser trinken durften.

Jede Test-Verbindung oder ein Vehikel allein wurde 10 Minuten vor dem Stress oral eingegeben. Die Ergebnisse sind in Tabelle 3 zusammengefaßt.

Tabelle 3

Stress-induzierte Erosionen bei Eintauchen in Wasser

Test-Verbindung		mg/kg po	Hermung	(8)	10	
Erfindungsgemäße Verbidung	-3	30	27		15	
		100	95		20	
u,		30 .	39	٠	20	
•	9	100	91			
ei		30	41		25	
	11	100	· 74			
. 11	12	30	64		, 30	
		100	88			
Cimetidin*)		60	49		35	
		200	87			

*)Vergleich

_:

(4) Test bezüglich akuter Toxizität:

Männlichen Wistar-Ratten mit einem Körpergewicht von 80 bis 90 g wurden intraperitonal Suspensionen gewisser erfindungsgemäßer Verbindungen eingegeben, die in 0,2%iger CMC-physiologischer Salzlösung suspendiert waren. Die Ratten wurden 7 Tage lang beobachtet. Die Resultate ergeben sich aus Tabelle 4.

Tabelle 4

Erfindungsgemäße Verbindung	LD ₅₀	50
9	600 mg/kg oder mehr	
11	500-600 mg/kg	
12 -	600 mg/kg oder mehr	
17	300 mg/kg oder mehr	55
18	300 mg/kg oder mehr	

Die erfindungsgemäßen Verbindungen können oral und parenteral verabreicht werden. Die Präparationsformen für die orale Verabreichung kann beispielsweise durch Tabletten, Kapseln, Puder, Granulate, Sirup u. dgl. erfolgen. Die Präparationsformen für parenterale Verabreichung kann durch Injektionen u. dgl. erfolgen. Für beide Verabreichungen können Exzipienten, Lösungsvermittler, Binder, Gleitmittel, Pigmente, Verdünner u. dgl., wie sie allgemein üblich sind, verwendet werden. Die Exzipienten können Dextrose, Lactrose u. dgl. sein. Als Lösungsvermittler kommen in Frage Stärke, Karboxymethylcellulose u. dgl. Als Schmiermittel kommen in Frage Magnesium-Stearat, Talk u. dgl. Als Binder kommen in Frage Hydroxypropylcellulose, Gelatine, Polyvinylpyrrolidon u. dgl.

Die Dosen können in üblicher Weise ungefähr 1 mg/Tag bis 50 mg/Tag in den Fällen der injektiven Verabreichung und ungefähr 10 mg/Tag bis 500 mg/Tag in den Fällen der oralen Verabreichung sein, beide Verabrei-

5

chungen bezogen auf Erwachsene. Die Dosen können entweder vergrößert oder verringert werden in Abhängigkeit von dem Alter oder anderen Bedingungen.

Referenz-Beispiel 1

(1) 2-Benzylthiobenzimidazol:

Einer Lösung mit 1,47 g NaOH, gelöst in einem Lösungsmittel, bestehend aus 5 ml Wasser und 50 ml Ethanol, wurden 5 g 2-Mercaptobenzimidazol und 4,2 g Benzyl-Chlorid zugesetzt. Die resultierende Lösung wurde unter Reflux eine Stunde lang erhitzt. Die Reaktionsmischung ließ man in Eiswasser fließen und die sich niederschlagenden Kristalle wurden durch Filtration gesammelt, wodurch 7,7 g rohe Kristalle (96%) erhalten wurden. Die Kristalle wurden rekristallisiert von Ethanol, um 5,9 g 2-Benzylthiobenzimidazol in Form von farblosen Nadeln zu bekommen. Schmelzpunkt 184°C.

(2) 2-Benzylsulfinylbenzimidazol (Vergleichsverbindung 1):

In 30 ml Chloroform wurden 4,5 g 2-Benzylthiobenzimidazol gelöst. Danach folgte eine graduelle Hinzusetzung von 4,6 g m-chloroperbenzoischer Säure (Reinheit: 70%) bei einer Temperatur unter 0°C. Die Mischung wurde 20 Minuten lang gerührt und die sich ablagernden Kristalle wurden im Wege der Fütration gesammelt. Das Filtrat wurde sukzessive mit saturierter NaHCO₃-Lösung, Natrium-Thiosulfat und gesättigter Sole gewaschen und das auf diese Weise gewaschene Filtrat dann getrocknet mit anhydridischem Natrium-Sulfat. Die Lösung wurde destilliert bei reduziertem Druck, wobei 4,3 g rohe Kristalle entstanden. Die Kristalle wurden vom Ethanol rekristallisiert,und man erhielt 2,0 g 2-Benzylsulfinylbenzimidazol als farblose Kristalle. Schmelzpunkt 169 – 170°C.

Beispiel 1

(1) 2-(2-Aminobenzylthio) benzimidazol:

25

50

55

60

65

In 40 ml Ethanol wurden 1,8 g 2-Aminobenzyl-Chlorid-Hydrochlorid und 1,5 g 2-Mercaptobenzimidazol gelöst. Bei abgedecktem Licht wurde die resultierende Lösung bei Raumtemperatur 23 Stunden lang gerührt. Ein ausgefälltes Pulver wurde im Wege der Filtration gesammelt. Nachdem dieses mit Ethanol und Äther gewaschen wurde, wurde das Pulver von einer Lösung aus Methanol und Äther rekristallisiert, so daß man 1,8 g 2-(2-Aminobenzylthio)benzimidazol-Hydrochlorid als farblose granulierte Kristalle erhielt. Schmelzpunkt 207°C (Zersetzung).

(2) 2-(2-Aminobenzylsulfinyl) benzimidazol (erfindungsgemäße Verbindung 1):

Ein Gramm 2-(2-Aminobenzylthio)benzimidazol-Hydrochlorid wurde in Eiswasser gelöst. Die Lösung wurde mit 512 mg Natrium-Bikarbonat neutralisiert. Dann folgte eine Extraktion mit Chloroform. Die resultierende Chloroform-Lösung wurde mit gesättigter Sole gewaschen. Nach dem Trocknen der Chloroform-Lösung mit anhydridischem Natrium-Sulfat wurde das Lösungsmittel unter reduziertem Druck bei Raumtemperatur herausdestilliert. Die 0,5 g 2-(2-Aminobenzylthio) benzimidazol, die man auf diese Weise erhielt, wurden in einem Lösungsmittel, bestehend aus 30 ml Chloroform und 3 ml Methanol, gelöst. Die resultierende Lösung wurde auf – 10°C gekühlt, und es wurde in kleinen Portionen 0,4 g m-chlorbenzoischer Säure (Reinheit: 70%) zugesetzt. Die Mischung wurde dann bei derselben Temperatur 10 Minuten lang gerührt. Ein hellgelbes Pulver, das sich niederschlug, wurde im Wege der Filtration gesammelt. Nach dem Waschen mit Äther wurde das Pulver von einer Lösung aus Methanol und Äther rekristallisiert, und man erhielt 0,33 g 2-(2-Aminobenzylsulfinyl)benzimidazol als weißes kristallines Pulver. Schmelzpunkt 150°C (Zersetzung).

IR
$$v_{\text{max}}^{\text{KBr}}$$
 cm⁻¹: 3200, 1440, 1400, 1260, 1035

$$\uparrow$$
-SCH₂-), 6,24-7,80 (m, 8H, aromatische Protonen)

Beispiel 2

(1)2-(2-Methylaminobenzylthio)benzimidazol:

2-Mercaptobenzimidazol (1,8 g) und 2-Methylaminobenzyl-Chlorid-Hydrochlorid (2,5 g) wurden in 10 ml Ethanol bei Raumtemperatur 30 Minuten lang gerührt. Dann wurden 10 ml Ethanol zugesetzt und die ausgefäll-

ten Kristalle wurden im Wege der Filtration gesammelt. Die Kristalle wurden mit Äther gewaschen, und es entstanden 3,5 g 2-(2-Methylaminobenzylthio) benzimidazol-Hydrochlorid (85%). Die Kristalle wurden in Äthyl-Azetat suspendiert und dann durch Zugabe von gesättigter NaHCO₂-Lösung neutralisiert. Nach dem Waschen mit Sole wurde die organische Schicht mit anhydridischem Natrium-Sulfat getrocknet. Nach Abdestillierung des Lösungsmittels unter reduziertem Druck wurde der Rückstand von Azetonitril rekristallisiert, so daß man 1,87 g 2-(2-Methylaminobenzylthio) benzimidazol als farblose Kristalle erhielt. Schmelzpunkt 107° – 108°C.

(2) 2-(2-Methylaminobenzylsuifinyl)benzimidazol (erfindungsgemäße Verbindung 2):

2-(2-Methylaminobenzylthio)benzimidazol (1,0 g) wurde in 20 ml Chloroform gelöst. Nach Kühlung der Lösung auf – 10°C wurde 0,87 g m-chloroperbenzoischer Säure (Reinheit: 70%) tröpfchenweise zugesetzt. Nach Rühren bei derselben Temperatur 10 Minuten lang wurde die Mischung sukzessive mit saturierter NaHCO3-Lösung und saturierter Sole gewaschen und dann mit anhydridischem Natrium-Sulfat getrocknet. Das Lösungsmittel wurde bei reduziertem Druck destilliert, und der Rückstand wurde von Azetonitril rekristallisiert, so daß man 0,43 g 2-(2-Methylaminobenzylsulfinyl) benzimidazol erhielt, dies in Form eines weißen kristallinen Pulvers. Schmelzpunkt 122,5—124°C.

IR
$$v_{\text{max}}^{\text{KBr}}$$
 cm⁻¹: 3220, 1600, 1500, 1435, 1400, 1305, 1265, 1045

 1 H-NMR (CDCl₃) &: 2,52 (s, 3H, -NC<u>H</u>₃), 4,36 und 4,60 (jedes d, 2H J=16Hz,

Beispiel 3

(1) 2-(2-Dimethylaminobenzylthio)-5-methoxybenzimidazol:

2-Mercapto-5-methoxybenzimidazol (2,70 g) wurden in 60 ml Ethanol gelöst. Dann wurden 3,09 g 2-Dimethylaminobenzyl-Chlorid-Hydrochlorid zugesetzt. Die sich daraus ergebende Mischung wurde bei Raumtemperatur 30 Minuten lang gerührt. Ausgefallene Kristalle wurden im Wege der Filtration gesammelt. Dann wurde eine gesättigte NaHCO3-Lösung den Kristallen zugegeben, und dann wurde mit Chloroform extrahiert. Die Chloroform-Lösung wurde mit gesättigter Sole gewaschen und dann mit anhydridischem Natrium-Sulfat getrocknet. Das Chloroform wurde bei reduziertem Druck abdestilliert, und man erhielt 3,85 g 2-(2-Dimethylaminobenzylthio)-5-methoxybenzimidazol in Form einer farblosen öligen Masse.

(2) 2-(2-Dimethylaminobenzylthio)-5-methoxybenzimidazol (2,43 g) wurde in einer Lösung, bestehend aus 25 ml Chloroform und 2 ml Methanol gelöst. Nach Kühlung der Lösung auf 0°C wurden 3,86 g m-chloroperbenzoischer Säure (Reinheit: 70%) tröpfchenweise zugesetzt. 10 Minuten später wurde eine gesättigte NaH-CO₃-Lösung zugefügt, und dann wurde mit Chloroform extrahiert. Die Chloroform-Lösung wurde mit gesättigter Sole gewaschen und dann mit anhydridischem Natrium-Sulfat getrocknet. Schließlich wurde das Chloroform im Wege der Destillation bei reduziertem Druck entfernt. Der Rückstand wurde im Wege der Silikagel-Säulen-Chromatographie (Chloroform/Methanol: 50/1) gereinigt. Dann wurde von einem Lösungsmittelgemisch aus Äther und Hexan rekristallisiert, und man erhielt 1,50 g 2-(2-Dimethylaminobenzylsulfinyl)-5-methoxybenzimidazol in Form von hellgelben Kristallen. Schmelzpunkt 105°C (Zersetzung).

30

35

55

60

IR $\stackrel{\text{KBr}}{\text{max}}$ cm⁻¹: 3270, 1625, 1485, 1390, 1205, 1175, 1030

¹H-NMR (CDCl₃) &: 2,63 (s, 6H, $-N(C\underline{H}_3)_2$), 3,81 (s, 3H, $-OC\underline{H}_3$), 4,48 und 4,85 (jedes d, 2H, J=15Hz, 0 + $-SC\underline{H}_2$ -), 6,60-7,80 (m, 7H, aromatische Protonen), 12,16 (br., 1H,> N<u>H</u>)

Beispiel 4

(1) 2-(2-Dimethylaminobenzylthio)-4-methylbenzimidazol:

2-Dimethylaminobenzyl-Chlorid-Hydrochlorid (1,26 g) wurden einer Suspension aus 1,0 g 2-Mercapto-4-Methylbenzimidazol in 10 ml Ethanol zugesetzt. Die resultierende Mischung wurde bei Raumtemperatur zwei Stunden lang gerührt. Ausgefällte Kristalle wurden im Wege der Filtration gesammelt. Nachdem das Ganze sukzessive mit Methanol und Äther gewaschen worden ist, wurden die Kristalle in Chloroform gelöst. Die Chloroform-Lösung wurde mit einer gesättigten NaHCO₃-Lösung neutralisiert, mit gesättigter Sole gewaschen und dann mit anhydridischem Sodium-Sulfat getrocknet. Das Lösungsmittel wurde bei reduziertem Druck abdestilliert, und dem Rückstand wurde Äther zugesetzt. Die ausgefällten Kristalle wurden im Wege der Filtration gesammelt. Man erhielt 13,8 g 2-(2-Dimethylaminobenzylthio)-4-methylbenzimidazol in Form eines weißen kristallinen Pulvers.

¹H-NMR (CDCl₃): 8 35 2,52 (s, 3H), 2,84 (s, 6H), 4,36 (s, 2H), 6,8 – 7,6 (in, 7H).

10

15

20

(2) 2-(2-Dimethylaminobenzylsulfinyl)-4-methylbenzimidazol (erfindungsgemäße Verbindung 8):

2-(2-Dimethylaminobenzylthio)-4-methylbenzimidazol (1,1 g) wurden in 15 ml Chloroform gelöst. Dann folgte eine graduelle Zufügung von 0,8 g (Reinheit: 80%) von m-CPBA bei Eiskühlung. Nach Rühren bei Zimmertemperatur 10 Minuten lang wurde das resultierende Gemisch sukzessive mit einer gesättigten NaHCO₃-Lösung und gesättigter Sole gewaschen und dann mit anhydridischem Natrium-Sulfat getrocknet. Das Lösungsmittel wurde bei reduziertem Druck abdestilliert. Der Rückstand wurde von Azetonitril rekristallisiert, so daß man 0,81 g 2-(2-Dimethylaminobenzylsulfinyl)-4-methylbenzimidazol in Form von gelben Kristallen erhielt. Schmelzpunkt 112—114° C (Zersetzung).

IRv km cm⁻¹: 3200, 1480, 1440, 1420, 1290, 1040, 750 ¹H-NMR (CDCl₃) δ: 2,2-2,8 (br. 3H), 2,60 (s, 6H), 4,52 und 4,84 (jedes d, J = 13Hz, 2H), 6,7-7,6 (m, 7H)

Beispiel 5

(1) 2-(2-Dimethylamino-6-Methylbenzylthio)benzimidazol:

2-Dimethylamino-6-methylbenzyl-Chlorid-Hydrochlorid (4,41 g) wurden in 40 ml Azeton gelöst. Dann wurden 3,64 g 2-Mercaptobenzimidazol, 10 g K₂CO₃ und 4 ml Wasser zugefügt. Die resultierende Mischung wurde bei Raumtemperatur eine Stunde lang gerührt. Dann wurde Chloroform und Wasser zugesetzt, und die Chloroform-Schicht wurde getrennt und mit gesättigter Sole gewaschen. Nach dem Trocknen der Chloroform-Schicht mit anhydridischem Natriumsultat wurden das Lösungsmittel bei reduziertem Druck abdestilliert. Der Rückstand wurde aus einer Mischung aus Ethanol und Hexan kristallisiert, und die Kristalle wurden im Wege der Filtration gesammelt, so daß man 4,68 g 2-(2-Dimethylamino-6-methylbenzylthio)benzimidazol in Form eines hellbraunen Puders erhielt.

¹H-NMR (CDCl₃): δ 2,42 (s, 3H), 2,84 (s, 6H), 4,42 (s, 2H), 6,8 – 7,6 (m, 7H)

(2) 2-(2-Dimethylamino-6-Methylbenzylsulfinyl)benzimidazol (erfindungsgemäße Verbindung 9): 2-(2-Dimethylamino-6-methylbenzylthio)benzimidazol (2,97 g) wurden in einer Mischung aus 30 ml Chloroform und 3 ml Methanol gelöst. Bei Eiskühlung wurden 2,18 g m-CPBA (Reinhelt: 80%) tröpfchenweise zugesetzt. Die resultierende Mischung wurde bei derselben Temperatur 10 Minuten gerührt.

Dann folgte ein Waschprozeß zunächst mit gesättigter NaHCO-Lösung und dann mit gesättigter Sole. Dann wurde mit anhydridischem Natrium-Sulfat getrocknet. Dann folgte die Entfernung des Lösungsmittels im Wege der Destillation bei reduziertem Druck. Der Rückstand wurde rekristallisiert aus einer Mischung aus Chloroform und Ethanol, und man erhielt 0,75 g 2-(2-Dimethylamino-6-Methylbenzylsulfinyl)benzimidazol in Form eines weißen kristallinen Pulvers. Schmelzpunkt 141 – 142°C (Zersetzung).

IRv the cm⁻¹: 3230, 1435, 1400, 1270, 1040, 740
¹H-NMR (CDCl₃) δ: 2,31 (s, 3H), 2,61 (s, 6H), 4,68 und 4,92 (jedes d, J = 13Hz, 2H), 6,8 — 7,8 (m, 7H)

Beispiele 6-19

In der gleichen Weise wie bei den Beispielen 4 oder 5 wurden sieben Verbindungen hergestellt, wobei sich die Einzelheiten aus der Tabelle 5 ergeben.

	1					
5			(X=30)	M. P. 147-1489C (Zersetzung)(Azetonitril) IA v Kbr cui 1 3175, 1725, 1490, 1425, 1290, 180, 1040 NNR (CDCl ₃) 6 ppu: 2.62 (8, 6H) 1.94 (8, 1H) 4.40 und 4.80 (jedes d, Jallir, 6.8-8.0 (m, 7H)	(Zersetzung)(Azetomitril) 3200, 1400, 1400, 1065, 1040, 935, 750 2.46 (s, 3H) 2.60 (s, 6H) 4.45 und 4.84 (jedes 4, J-13Hz 211) 6.7-7.6 (m, 7H).	In.p. 1100.5-111.50C (Zersetzung) ' (Ethanol-Hexan) IR v KBr cur 1: 1200, 1490, 1400, 1045, 1040, 760 NMM (CDC1 ₃) 6 ppur: 2.66 (s, 6H) 4.49 wmd 4.83(jedes d, 1=13Hz, 2H) 6.7-7.8 (m, 7H)
10	!		Ę	ung) (Aze 25, 1490 10 6H) 3H) 4.00 (je	ng) (Azel 10, 1440 3H) 6H) 4.84 (je 2	setzung 10, 1400 6H) 4.83(jed 2
15			le Verbindu	oc (Zersetzung) (A: 1375, 1725, 149 1080, 1040 6 ppus: 2.62 (8, 6H) 3.94 (8, 3H) 4.40 und 4.80 (; 6.8-8.0 (m, 7H)	(Zersetzu 1200, 140 915, 750 ppu: 2.46 (a, 2.60 (a, 4.45 und 4.45 und	11.50C (Zersetzum Hexan) : 1200, 1490, 140 760 \$ PPW: 2.66 (8, 6H) 4.49 wnd 4.83(j
20			Erfindungsgemäße Verbindung	ш.р. 147-148°C (Zersetzung)(Azetonitril) IR v War cul 1, 3175, 1725, 1490, 1425, 1 1080, 1040 NNR (CDCl ₃) 6 ppu: 2.62 (8, 6H) 3.94 (8, 3H) 4.40 und 4.00 (jedes d, 3-68-8.0 (m, 7H)	m.p. 94-950C JR V KBr cin : ими (CDCl ₃) 6	In. p. 1130.5-131.5oc (Zersetzung) (Ethanol-Hexan) IR V
25			Eff	5 H Z	g m ž	9 H Z
30	Tabelle 5	N11112	Zwischenverbindung (X=S).	NANK (CDCl _J). 6 ppm: 2.88 (s, 6H) 3.80 (s, 3H) 4.36 (s, 2H) 6.9-0.1 (m, 7H)	NMM (CDC1 ₃) 6 ppum: 2.30 (s, 3H) 2.80 (s, 6H) 4.34 (s, 2H) 6.7-7.5 (u, 7H)	NMR (CDC1 ₃) 6 ppus: 2.88 (8, 6H) 4.36 (8, 2H) 6.9-7.5 (m, 7H)
35	Tab	N S =	Zwische (X=S).	NMI (CDC 2.88 3.80 4.36 6.9-8	NMR (CDC) 2.30 2.80 4.34 6.7-7	NMR (C 2.8 2.9 6.9
40		2	n _a	· · · · · · · · · · · · · · · · · · ·	×	Ŧ
45			R ₃	5-сосн	5-CH _J	10-5
50			۾. 2	. £	₹	5
			n,	ฮ์ .	Э	CH ₃
55			Beispiel Nr,	6 (Erfindungs- gemäße Ver- bindung 4:)	7 (Erfindungs- geräle Ver- bindung 5)	8 (Exfindungs- genäle Ver- birdurg 6)
60			Bei Nr.	된 (B)	역) 문 대:d	ं ख्रु क्रियां Mid

Beispiel Nr.	, R	, s	, R _J	R.	Zwischenverbindung (X=S)	Erfindungsgemäße Verbindung	(x=so)
9 (Erfindungs- gemäde Ver- bindung 7)	СНЭ	CH ₃	8CP3	x ·	NHIR (CDC)3) 6 PPIIII: 2.92 (8, 6H) 4.30 (9, 2H) 7.0-7.7 (fit, 7H)	m.p. 148°C (Zexsel NMM (CDC)) & ppul 2.66 4.50	(Zersetzung)(Azetonitril) 4 .64 (s. 6H) 4 .50 und 4 .80 (jedes d, J-l)Hz, 6 .8-0.1 (H, 7H)
10 (Exfindungs- gemäße Ver- bindung 10)	GH ₃	CH _J	I	4-61	NMR (CDC1 ₃) & Ppm; 2.80 (s, 6H) 4.40 (s, 2H) 6.8-7.6 (m, 7H)	m.p. 139-1400C (Zexe III v KDr cm 1 1585, NMR (CDCl ₃) 6 pput 2.58 4.42	139-1400C (Zersetzung) (Azetonitril) KDr cu
11 (Erfindungs- gemäße Ver- bindung 11)	ธ์	G H3	. ж	\$~ocH ₃	MNN (CDC1 ₃) & ppm: 2.84 (B, 6H) 3.72 (B, 3H) 4.32 (B, 2H) 6.6-7.6 (M, 7H)	In.p. 115-116.5°C (Zea IR Vide cul 1200, 1150, NMR (CDCL ₃) 6 ppm: 2.60 (3.50 (4.47 un	In.p. 115-116.5°C (Zersetzung)(Athyl-Azetat) IR viec u. 1, 3200, 1495, 1400, 1200, 1245, 1150, 1020 NMR (CDCl ₃) 6 ppm: 2.60 (8, 6H) 1.50 (8, 1H) 4.47 und 4.87 (jedes d, 3-13Hz, 2H) 6.6-7.8 (m, 7H)
12. (Erfindungs- gemäße Ver- bindung 12)	ਰ .	8°	z	. Ме	NMR (CDC1 ₃) 6 ppui: 2.24 (s, 3H) 2.82 (s, 6H) 4.30 (s, 2H); 6.8-7.5 (is, 7II)	in.p. 141.5-142.50C (Zex IR.v Kür cm 1, 3220, 15 B20, 740 NMM (CDCl ₃) 6 ppm: 2.09 (s, 2.62 (s, 4.45 und 4.45 und 6.9-7.8	In.p. 141.5-142.50C (Zexsetzung)(Ethanol-Hexan) In v KUr cm ⁻¹ , 1220, 1500, 1410, 1270, 1045, B20, 740 NNM (CDCl ₃) 6 ppm; 2.09 (a, 3H) 2.62 (a, 6H) 4.45 und 4.84 jedes d, Jallik, 6.9-7.8 (m, 7H)
55 60		50	45	40	30	20	10

Beispiel 13

65

(1) 2-(2-Piperidinobenzylthio)benzimidazol: Einer Lösung aus 1,42 g 2-Piperidinbenzyl-Chlorid-Hydrochlorid in 35 ml Ethanol wurden versetzt mit 0,87 g

2-Mercaptobenzimidazol und 0,5 g NaOH. Die Mischung wurde bei Raumtemperatur 5 Stunden lang gerührt. Das Lösungsmittel wurde bei reduziertem Druck abdestilliert. Dann wurde dem Rückstand Wasser zugesetzt, und schließlich wurde mit Äthyl-Azetat extrahiert. Die Äthyl-Azetat-Lösung wurde sukzessive mit einer 10%-igen NaOH-Lösung und gesättigter Sole gewaschen. Nach einem Trocknungsvorgang mit anhydridischem Sodium-Sulfat wurde das Lösungsmittel unter reduziertem Druck abdestilliert. Der Rückstand wurde mit Äther gewaschen, und man erhielt 1,0 g 2-(2-Piperidinobenzylthio)benzimidazol in Form eines gelben Pulvers. Schmelzpunkt 165°C.

NMR (CDCl₃) δ: 1,4 – 2,1 (m, 6H), 2,8-3,1 (m, 4H), 4,34 (s, 2H), 6,9 – 7,6 (m, 8H)

25

30

35

40

45

50

55

(2) 2-(2-Piperidinobenzylsulfinyl) benzimidazol (erfindungsgemäße Verbindung 13):

2-(2-Piperidinobenzylthio)benzimidazol (0,70 g) wurden in einer Mischung aus 50 ml Chloroform und 2 ml Methanol gelöst. Dann wurden graduell 1,3 g m-CPBA (Reinheit: 80%) bei Eiskühlung zugesetzt. Die resultierende Mischung wurde bei derselben Temperatur 10 Minuten lang gerührt. Anschließend wurde die Mischung sukzessive mit einer gesättigten NaHCO₃-Lösung und gesättigter Sole gewaschen und dann mit anhydridischem Natrium-Sulfat getrocknet. Die Lösungsmittel wurden bei reduziertem Druck abdestilliert, und der Rückstand wurde aus Äther rekristallisiert, so daß man 0,45 g 2-(2-Piperidinobenzylsulfinyl)benzimidazol in Form eines weißen Pulvers erhielt. Schmelzpunkt 158°C (Zersetzung).

IRv $_{max}^{max}$ = 1:3160, 1435, 1325, 1215, 1030, 920, 740
¹H-NMR (DMSO-d₆) δ :
1,3-1,8 (m, 6H), 2,6-2,8 (m, 4H), 4,41-4,74 (jedes d, J=12Hz, 2H), 6,8-7,8 (m, 8H)

Beispiele 14-18

In gleicher Weise wie das Beispiel 13 wurden fünf weitere Verbindungen hergestellt. Die Einzelheiten ergeben sich aus der Tabelle 6.

	¥*	Erfindungsgemäße (x=so) Verbindung	In.p. 69-92°C (Zersetzung)(Azetonitril) IR VKBr cun 1, 2940, 1605, 1510, 1410, 1310, 1270, 1050, 750 NMR (CDCl ₃) 6 ppus 0.7-2.1 (m, 10H) 2.9-3.3 (m, 10H) 4.15 und 4.64 (jedes d, J-14Hz, 2.1-7.9 (m, 0H)	m.p. 89-92°C (Zersetzung)(Chlorofoxm-Äthex) IR VKBr cm 1 3360, 1600, 1495, 1410, 1305, MMR (CDCl ₃) 6 ppm: A.17 und 4.78(jedes d, 3=1411z, 2H) 6.5-8.0 (m, 13H)	m.p. 168-1690c (Zersetzung) (Chloroform-Azetonitril) IR V ^{KBr} cm ⁻¹ , 3050, 1590, 1485, 1400, 1260, MAR (CDCl ₃) & Ppm: 3.18 (s, 3H) 4.32 und 4.62(jedes d, 3-13Hz, 2N) 6.3-7.8 (m, 13H)	15
Tabelle 6	$\left\langle \begin{array}{c} N \\ N \\ H \end{array} \right\rangle \times CH_2 \longrightarrow \left\langle \begin{array}{c} N \\ N \\ N \\ R_2 \end{array} \right\rangle$	Zwischen- verbindung (x=s)	NMR (CDCl ₃) 6 ppw: 0.8-2.1 (w. 70H) 3.0-3.4 (br, 1H) 4.46 (B, 2H) 6.4-7.6 (m, BH)	NMA (CDCL ₃) 6 ppm: 4.48 (8, 211) 6.6-7.5 (m, 1311)	NMR (CDCl ₃) 6 ppm: 3.18 (8, 3H) 4.40 (8, 2H) 6.4-7.6 (m, 13H)	30 35
	R ₃ - O	n a	z	ž ×	ž x .	40
	ας	R _J	=	x	x	45
		R2	z.	×	. GH	
		R	(ii)	· •	©	50 55
		Beispiel Nr.	14 (Erfindungs- gemäle Ver- bindung 14)	15 (Erfindungs- gemäße Ver- bindung 15)	16 (Erfindungs- gemäße Ver- bindung 16)	60

60	50 55	10	45	•••	35	30	25	20	15	10	5
Beispiel Nr.	ซ์	R ₂	, a		R Zwischen- verbindung (X=S)	K=S)	Erfindungsgenäße Verbindung	genäße		(X~SO)	
17 (Erfindungs- gemäße Ver- bindung 17)	-сн ₂ -О	GH ₃	E	×	NMR (CI)Cl ₃) 6 ppm: 2.66 (8, 3H) 4.04 (8, 2H) 4.56 (8, 2H) 6.9-7.5 (m, 1)H)	ρρια: (1) (1) (1) (1) (1)	im.p. 1370C (Zersetzung) (Azetonitril) IN VNA cull, 3170, 1440, 1400, 1260, NMM (CDCl ₃) & plan 2.52 (a, 3H) 4.00 (s, 2H) 4.52 und 4.92 (jedes d, 6.7-7.9 (m, 13H)	(Zersetzung) (A 1, 1170, 1440, 1 740 6 plun 2.52 (a, 1H) 4.00 (a, 2H) 4.52 und 4.9 6.7-7.9 (m,	ng) (Az 1440, 14 1440, 14 1440, 14 1440, 14 1440, 14 1440, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400,	im.p. 1370c (Zersetzung) (Azetonitril) IN VERT — 1, 3170, 1440,1400, 1260, 1025, 940, 740 NHM (CDCl ₃) & pun 1, 2.52 (a, 3H) 4.00 (a, 2H) 4.00 (a, 2H) 6.70 (a, 2H) 6.70 (a, 3H)	025, 940,
1:8 (Erfindungs- gemäße Ver- bindung 18)	-сіі ₂ ск (см ₃) ₂	c _{ii}	E.	x	NNIR (CDCl ₃) & PPHII 0.6-2.0 (m, 11H) 2.7-3.1 (ii, 2H) 2.80 (s, 3H) 4:42 (s, 2H) 6.0-7.7 (m, 8H)	PPIIII 11H) 2H) 1) 1) 11	m.p. 90-92.50C (Zeanum.p. 90-92.50C (Zeanum.p. 90.7-1.7 (in, 11M 2.64 (s, 311) 2.7-3.0 (in, 2H) 4.46 und 4.89(jeanum.p. 21) 6.7-8.0 (in, 011)	(CDC1 ₃) & PPW: (CDC1 ₃) & PPW: 0.7-1.7 (m, 11H) 2.64 (s, 3H) 2.7-3.0 (m, 2H) 4.48 wnd 4.09(jed6 6.7-8.0 (m, 0H)	etzung)	m.p. 90-92.5°C (Zersetzung)(Chloroform-Hexan) NMN (CDC1 ₃) & ppw: 0.7-1.7 (m, 11H) 2.64 (s, 3N) 2.7-3.0 (m, 2H) 4.48 und 4.09(jedes d, 3-12Hz, 2N) 6.7-8.0 (m, UN)	Hexan)

B. Arneimittelformulierungen

Beispiel 19

		Tabletten	5					
Jede Tablette (220 mg) enthi	elt die folgenden K	omponenten:						
Effektive Komponente Lactose Stärke Magnesium-Stearat Hydroxypropylcellulose	50 mg 103 mg 50 mg 2 mg 15 mg		10					
• • • • • • • • • • • • • • • • • • • •		Beispiel 20	15					
		Kapseln						
Jede Kapsel aus harter Gela	tine (350 mg) enthic	elt die folgenden Komponenten:	20					
Effektive Komponente Lactose Stärke Polyvinylpyrrolidon Kristalline Zellulose	40 mg 200 mg 70 mg 5 mg 35 mg		25					
		Beispiel 21						
		(Granulat)	30					
Jedes Korn (1 g) enthielt die	folgenden Kompon	enten:						
Effektive Komponente Lactose Korn-Stärke Hydroxypropylcellulose	200 mg 450 mg 300 mg 50 mg		35					
		Beispiel 22	40					
Darmbeschichtete Tabletten								
Jede darmbeschichtete Table	ette enthielt die Ko	mponenten des Beispiels 19.						
	C	Versuchsbericht	45					
	Test I au	f thermische Stabilität						
gen, aber lichtgeschützt, bei Verhältnisses der Menge an ver den Verhindung wurde mittels	60°C gehalten und erbleibender Verbii HPI C (Hochleistu	enen drei Verbindungen wurde unter atmosphären Bedingund nach 14 Tagen, 21 Tagen und 33 Tagen hinsichtlich des ndung untersucht. Die Prüfung auf die Menge der verbleibenngs-Flüssigkeitschromatographie) durchgeführt. Die quantita-V-Strahlen (Wellenlänge 284 nm) durchgeführt.	50					
			55					
		·						
			60					

	14	Tage	21 Tagé	33 Tage
erbindung 5 N SCH2 N(CH3)2	3	100 1	100 %	100 \$
derpinding 3 oc. No. oc. No	н ₃	100 1	100 %	100 %
SON2 SON2 SON3 SON3 SON		91 1	Q &	••

30

Bemerkung: Die Daten sind innerhalb eines Fehlers von ± 3%.

Test II auf thermische Stabilität

Jede der zwei in der folgenden Tabelle dargestellten Verbindungen wurde bei 40°C, 75% RH lichtgeschützt gehalten und wurde nach 1 Monat, 2 Monaten, 3 Monaten und 4 Monaten hinsichtlich des Verhältnisses der Menge der verbleibenden Verbindung untersucht. Die Untersuchung der Menge der verbleibenden Verbindung wurde wie vorstehend durchgeführt.

40		Verhältni	s der Menge	der verbleib	enden Verbindung
		1 Monat	2 Monate	3 Monate	
45	Verbindung 5 N SCH N (CH3) N (CH3) N (CH3)	100 %	99 (42 %	0 %
50	Verbindung 18	100 %	100 %	98 1	100 %
55	н д=8-сч	н ₃			

Bemerkung: Die Daten sind innerhalb eines Fehlers von ± 3%.

Test auf akute Toxizität

Jede der zwei in der folgenden Tabelle dargestellten Verbindungen wurde in einer 1% igen wäßrigen Methylcelluloselösung dispergiert, und die so erhaltene Dispersion wurde oral Ratten (Stamm SD, Gewicht 120 bis 160 g, männlich und weiblich) verabreicht. Die Ratten wurden dann 14 Tage lang beobachtet, um die akute Toxizität der verabreichten Verbindung zu bewerten. Die Ergebnisse sind in der folgenden Tabelle dargestellt.

		LD ₅₀ (mg/kg)	
		Männlich	Weiblich
erbindung 3	N(CH ₃) ₂	mehr al	ls 5000 corbene Ratte worde bei einer 5000 mg/kg gefunden)
S S S S S S S S S S S S S S S S S S S	н ² -{О	1 292	1 104
Vergleich .			
	Schädigende	e Wirkung auf die Ha	rnblase
ne Testverbindung v	wurde täglich oral ein	em Beagle-Hund in	einer Dosis von 135 mg/kg täglich für 14
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.	e verabreicht, und die der folgenden Tabelle d	schädigende Wirku	g auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet.		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet. e Ergebnisse sind in c		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
achtet. e Ergebnisse sind in c		schädigende Wirku	ng auf die Harnblase wurde an dem Hund
e Ergebnisse sind in c		schädigende Wirku	ng auf die Harnblase wurde an dem Hund

		Schädigende Wirkung auf die Harnblase
5	Vanhindung E	(histo-pathologischer Befund)
10	Verbindung 5 N SCH2 CH3 H (CH3)2	keine Wirkung
15	Verbindung 3 N SCH2 N(CH3)2	keine Wirkung
20 25	Verbindung 18 N SCH2 N-CH3 118-C4H9	keine Wirkung
30	(C)*) N SCH2 N (CH3)2	Läsion (++)
35 40	CH ₃ O N SCH ₂ O OCH ₃	Läsion (+)
45	Verbindung 2 N SCH N SC	keine Wirkung
55		edeutet eine beachtliche Ver- bedeutet eine leichte Ver-
60	1. Benzimidazolderivat, nämlich	itentansprüche
65	2-(2-Aminobenzylsulfinyl)benzimidazol, 2-(2-Methylaminobenzylsulfinyl)benzimidazo 2-(2-Dimethylaminobenzylsulfinyl)-5-methox 2 Benzimidazolderivat, nämlich 2-(2-Dimethylaminobenzylsulfinyl)-5-methox 2-(2-Dimethylaminobenzylsulfinyl)-5-methylb	ybenzimidazol. ycarbonylbenzimidazol,

DE 35 31 487

- 2-(2-Dimethylaminobenzylsulfinyl)-5-chlorbenzimidazol,
- 2-(2-Dimethylaminobenzylsulfinyl)-5-trifluormethylbenzimidazol,
- 2-(2-Dimethylaminobenzylsulfinyl)-4-methylbenzimidazol,
- 2-(2-Dimethylamino-6-methylbenzylsulfinyl)benzimidazol, 2-(2-Dimethylamino-4-chlorbenzylsulfinyl)benzimidazol,
- 2-(2-Dimethylamino-5-methoxybenzylsulfinyl)benzimidazol oder 2-(2-Dimethylamino-5-methylbenzylsulfinyl)benzimidazol.
- 3. Benzimidazolderivat, nämlich
- 2-(2-Piperidinobenzylsulfinyl)benzimidazol,
- $\hbox{$2$-(2-Cyclohexylaminobenzylsulfinyl)} benzimidazol,$
- 2-(2-Phenylaminobenzylsulfinyl)benzimidazol,
- 2-(2-Phenylmethylaminobenzylsulfinyl)benzimidazol oder
- 2-(2-Benzylmethylaminobenzylsulfinyl)benzimidazoL
- 4.2-(2-Isobutylmethylaminobenzylsulfinyl)benzimidazol.
- 5. Verfahren zur Herstellung eines Benzimidazolderivates gemäß allgemeiner Formel (I)

$$\begin{array}{c|c}
R_3 & O \\
N & \overline{1} \\
N & S-CH_2
\end{array}$$

$$\begin{array}{c}
R_4 \\
N & R_1 \\
R_2
\end{array}$$
20

wobei R1, R2 R3 und R4 in ihren Bedeutungen und in ihren Kombinationen so gewählt sind, daß sich die Verbindungen gemäß Ansprüchen 1 bis 4 ergeben, dadurch gekennzeichnet, daß 2-Mercaptobenzimidazol gemäß Formel (II)

mit einer 2-Aminobenzylverbindung gemäß Formel (III)

$$XH_{2}C \xrightarrow{R_{1}} R_{4}$$

$$N \left\langle \frac{R_{1}}{R_{2}} \right\rangle$$
50

reagiert und X eine reaktive Gruppe ist, wobei eine Verbindung gemäß Formel (IV)

$$\begin{array}{c}
R_{3} \\
N \\
N \\
R_{2}
\end{array}$$

$$\begin{array}{c}
R_{4} \\
R_{7}
\end{array}$$

gebildet und dann die Verbindung gemäß Formel (IV) oxidiert wird. 6. Antiulkusagens, enthaltend ein Benzimidazolderivat gemäß Ansprüchen 1 bis 4, sowie übliche Hilfs- und Trägerstoffe.

to

15

30