Introduction to

High Performance Computing (HPC) on Lewis and Clark clusters

Research Computing Support Services (RCSS) http://docs.rnet.missouri.edu

RCSS CIE team

Ashkan Mirzaee, Asif Magdoom Brian Marxkors, Christina Roberts Predrag Lazic

What is a cluster (supercomputer)?

wikimedia.org

- A supercomputer is a computer with a high level of performance as compared to a general-purpose computer
- Purpose: massive parallelization because life is too short!
- The world's fastest 500 supercomputers run Linux-based operating systems

Lewis and Clark

Lewis

- A large-scale cluster for requesting high amount of resources
- Great for parallel programing
- GPU resources
- No cost for MU members for general usage
- Investment option is available to receive more resource (more fairshare)

Clark

- Great for learning and teaching
- No need for registration and it is available to all MU members by MU username and PawPrint
- Usually less crowded receive resources very fast
- No cost for MU members

Partition Name | Time Limit | Nodes

Lewis and Clark Partitions

Cores (total) | Memory in GB (per nodes*)

Processors

Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz+ Intel(R) Xeon(R) CPU F5-2670 v3 @ 2 30GHz+

	S
О	
	_
	\sim
	⋖
	_
	-
	Л۱
	w
	_

Clark

	General	4.00.00	10/	24+	3030	1227	intella veolita ceo es-2070 vs @ 2.300Hz+
	BioCompute	2-00:00:00	37	56	2072	509	Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
	Lewis	2-00:00:00	90	24+	3564	122+	Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz+
	hpc3	2-00:00:00	22	24	1296	122+	Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
<u>ა</u>	hpc4	2-00:00:00	37	28	1260	251+	Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
ກຸ ≽	hpc4rc	2-00:00:00	34	28	1008	251	Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
ו ב	hpc6	2-00:00:00	61	48	2976	379+	Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz
	hpc5	2-00:00:00	35	40	1320	379	Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz
	Gpu	2:00:00	16	16+	372	122+	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz+
	gpu3	2-00:00:00	13	16+	284	122+	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
	gpu4	2-00:00:00	3	40+	124	379+	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
	Serial	2-00:00:00	1	64	64	1,025	AMD EPYC 7601 32-Core Processor
	Dtn	2-00:00:00	2	16+	36	66+	Intel(R) Xeon(R) CPU X5550 @ 2.67GHz+

Partition Name	Time Limit	Nodes	Cores (per node*)	Cores (total)	Memory in MB (per nodes*)	Processors
General	2:00:00	4	24	96	122	Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
hpc3	2-00:00:00	4	24	96	122	Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
r630-hpc3	2-00:00:00	4	24	96	122	Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz

^{*} plus sign (+) indicates a mixed environment. The number before the plus represents the minimum http://docs.rnet.missouri.edu/policy/partition-policy/

Cores (per node*)

SLURM

Slurm is a system for cluster management and job scheduling. All RCSS clusters use Slurm (https://slurm.schedmd.com).

- Slurm is a workload scheduler and has set of tools for submitting and monitoring jobs
- Slurm is a resource management system and has many tools to find available resources in the cluster
- All Slurm commands start with letter "s". In this course we will learn many of them
- Resource allocation depends on your fairshare i.e. priority in the queue

Login node

All users connect to Clark and Lewis clusters through the login nodes.

[user@lewis4-r630-login-node675 ~]\$
[user@clark-r630-login-node907 ~]\$

All jobs must be run using Slurm submitting tools to prevent running on the Lewis login node. Jobs that are found running on the login node will be immediately terminated followed up with a notification email to the user.

Review

Unix commands

man manual	hostname host name	Cat concatenate files and print output
cd change directory	nproc number of processers	top information about processes
pwd print working directory	lscpu list CPU architecture	Tab tab completion
ls -la long list of all files	free -h free memories	clear or Ctrl + l clear
mkdir make directory	df disk free	exit or Ctrl + d exit
ср сору	echo \$USER echo user id	history history

Text editors

emacs -nw	nano -z	vim
Ctrl-k kill (cut)	Ctrl-k cut	i insert
Ctrl-y yank (paste)	Ctrl-u uncut (paste)	Esc dd delete line
Alt-w copy	Alt-6 copy	Esc yy yank (paste)
Shift-arrow keys select	Alt-m + alt-a Select	Esc u undo Esc p paste
Ctrl-z suspend fg return	Ctrl-z suspend fg return	Esc Ctrl + z suspend fg ret.
Ctrl-x + Ctrl-s save	Ctrl-o write out	Esc + :w write
Ctrl-x + Ctrl-c close	Ctrl-x exit	Esc + :q quit :q! no change

Files

```
ssh username@lewis.rnet.missouri.edu connect to lewis by ssh cp -r /storage/hpc/data/plmx7/EXES_FOR_USERS/training ~ copy training files to the home directory
```

Cluster info

PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST

r630-hpc3 up 2-00:00:00 0/4/0/4 clark-r630-hpc3-node[908-911] hpc3 up 2-00:00:00 0/4/0/4 clark-r630-hpc3-node[908-911]

General* up 2:00:00 0/4/0/4 clark-r630-hpc3-node[908-911]

[amtwc@clark-r630-login-node907 ~]\$ sjstat -c

Scheduling pool data:

Pool	Memory	Cpus	Total U	sable	Free	Other Tr	aits
r630-hpc3 hpc3 General*	122534Mb	24	4 4 4	4 4 4	4 4 4		

CPUS/NODES(A/I/O/T) count of CPUs/nodes in the form "available/idle/other/total"

S:C:T counts number of "sockets, cores, threads"

The Scheduling data contains information pertaining to the:

Pool a set of nodes	
Memory the amount of memory on each node	Э
Cpus the number of cpus on each node	
Total the total number of nodes in the	pool
Usable total usaable nodes in the pool	
Free total nodes that are currently for	ree

Users info

```
sshare - sacctmgr - df - lfs quota

sshare -U show your fairshare and accounts -U --Users

sacctmgr show assoc user=$USER format=acc,user,share,qos,maxj your QOS

groups show your groups

df -h /home/$USER home storage quota -h --human-readable

lfs quota -hg $USER /storage/hpc data/scratch storage quota

-g user/group

lfs quota -hg <group-name> /storage/hpc data/scratch storage quota

./userq.py show user's fairshare, accounts, groups and QOS
```

- Resource allocation depends on your fairshare. If your fairshare is 0.000000 you have used the cluster more than your fair share and will be de-prioritized by the queuing software
- Users have 5GB at their home directory /home/\$USER and 100GB at /storage/hpc/data/\$USER
- Do not use home directory for running jobs, storing data or virtual environments
- Clark users have 100G on their home storage. The above methods does not apply for Clark
- The RCSS team reserves the right to delete anything in /scratch and /local/scratch at any time for any reason
- There are no backups of any storage. The RCSS team is not responsible for data integrity and data loss. You are responsible for your own data and data backup
- Review our storage policy at http://docs.rnet.missouri.edu/policy/storage-policy/

Note: \$USER is a default environmental variable that returns your user id, try echo \$USER

Job submission

All jobs must be run using srun or sbatch to prevent running on the Lewis login node.

sbatch: submitting jobs

Batch file is a shell script (#!/bin/bash) including Slurm options (#SBATCH) and computational tasks sbatch <batch-file> submitting a batch file

After job completion we will receive outputs (slurm-jobid.out)

Slurm options

Environmental Variables

\$SLURM_JOB_ID
\$SLURM_JOB_NAME
\$SLURM_JOB_NODELIST
\$SLURM_CPUS_ON_NODE
\$SLURM_SUBMIT_HOST
\$SLURM_SUBMIT_DIR

Example

#!/usr/bin/python3 import os os.system(""" echo hostname: \$(hostname) echo number of processors: \$(nproc) echo data: \$(date) echo job id: \$SLURM_JOB_ID echo submit dir: \$SLURM_SUBMIT_DIR """) print("Hello world")

jobpy.sh

```
#!/bin/bash

#SBATCH -p Interactive
#SBATCH -n 4
#SBATCH --mem 8G

python3 test.py
```

sbatch

sbatch jobpy.sh

srun

```
srun -p Interactive -n 4 --mem 8G --pty bash
python3 test.py
```

Output

hostname: lewis4-lenovo-hpc2-node282

number of processors: 4 data: Sun Jun 28 13:27:39 CDT 2020

job id: 21437062

submit dir: /home/user/training

Hello world

Monitor jobs

[amtwc@lewis4-r630-login-node675 alias]\$./jobstat.py

Completed jobs for the last week:

JobID	User Account	State Partition	QOS	NCPUS	NNode	ReqMe	Submit	Reserved	Start	Elapsed	End	NodeList	JobName
21541075 21544202 21544203 21544558	amtwc general amtwc general amtwc general amtwc general	COMPLETED Interact- COMPLETED Interact- CANCELLED+ General COMPLETED Lewis COMPLETED Interact- CANCELLED+ Lewis	normal normal normal normal normal	1 1 1	1 1 1	24Gn 1Gc 1Gc 8Gn	2020-07-08T10:09:53 2020-07-08T10:10:10 2020-07-08T15:00:07	00:00:00 00:00:06 00:00:00 00:00:00	2020-07-07T12:41:21 2020-07-08T10:09:59 2020-07-08T10:10:10 2020-07-08T15:00:07	00:16:13 00:00:00 00:15:02 00:26:03	2020-07-07T12:41:15 2020-07-07T12:57:34 2020-07-08T10:09:59 2020-07-08T10:25:12 2020-07-08T15:26:10 2020-07-11T11:19:22	lewis4-lenovo-hpc2-node282 lewis4-lenovo-hpc2-node282 None assigned lewis4-r630-hpc4-node674 lewis4-lenovo-hpc2-node282 None assigned	bash bash bash bash bash bash

Monitor CPU and Memory

Compeleted jobs

sacct - seff

sacct -j <jobid> -o User,Acc,AllocCPUS,Elaps,CPUTime,TotalCPU,AveDiskRead,AveDiskWrite,ReqMem,MaxRSS
info about CPU and virtual memory for compeleted jobs

-j --jobs -o --format

seff <jobid> show jobs CPU and memory efficiency

[amtwc@lewis4-r630-login-node675 ~]\$ sacct -j 20785018 -o User,Acc,AllocCPUS,Elaps,CPUTime,TotalCPU,AveDiskRead,AveDiskWrite,ReqMem,MaxRSS

User	Account	AllocCPUS	Elapsed	CPUTime	TotalCPU	AveDiskRead	AveDiskWrite	ReqMem	MaxRSS
amtwc	general	16	00:48:39	12:58:24	01:49.774	66.58M	44.75M	64Gn	216K

[amtwc@lewis4-r630-login-node675 ~]\$ seff 20785018

Job ID: 20785018 Cluster: lewis4

User/Group: amtwc/amtwc

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 16 CPU Utilized: 00:01:50

CPU Efficiency: 0.24% of 12:58:24 core-walltime Memory Utilized: 3.38 MB (estimated maximum)

Memory Efficiency: 0.01% of 64.00 GB (64.00 GB/node

CPU Efficiency = CPU Utilization / Core-walltime Core-walltime = Core per node * Elapsed time

Running jobs:

sstat - srun

sstat <jobid> -o AveCPU, AveDiskRead, AveDiskWrite, MaxRSS info about CPU and memory for runing jobs (srun only)

srun --jobid <jobid> --pty /bin/bash attach to a srun/sbatch session and run `top` command to see information about processes

Test

emacs -nw test.py
emacs -nw jobpy.sh
Ctrl+x+s to save and Ctrl+x+c to exit
sbatch jobpy.sh
sstat <jobid>
srun --jobid <jobid> --pty bash
top -u \$USER press q to exit

PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%МЕМ	TIME+ COMMAND
13635	amtwc	20	0	160928	2916	1552 R	1.0	0.0	0:00.41 top
13435	amtwc	20	0	113284	1188	1020 S	0.0	0.0	0:00.00 slurm_script
13436	amtwc	20	0	233232	4752	1812 S	0.0	0.0	0:00.05 srun
13437	amtwc	20	0	28480	740	12 S	0.0	0.0	0:00.00 srun
13449	amtwc	20	0	124924	5612	2600 S	0.0	0.0	0:00.04 python3
13450	amtwc	20	0	124924	5612	2600 S	0.0	0.0	0:00.03 python3
13451	amtwc	20	0	124924	5612	2600 S	0.0	0.0	0:00.03 python3
13452	amtwc	20	0	124924	5612	2600 S	0.0	0.0	0:00.03 python3
13456	amtwc	20	0	108056	348	280 S	0.0	0.0	0:00.00 sleep
13457	amtwc	20	0	108056	348	280 S	0.0	0.0	0:00.00 sleep
13458	amtwc	20	0	108056	348	280 S	0.0	0.0	0:00.00 sleep
13464	amtwc	20	0	108056	348	280 S	0.0	0.0	0:00.00 sleep
13534	amtwc	20	а	115/8/	3868	16/40 €	a a	a a	0.00 08 hach

#SBATCH -n 4
#SBATCH --mem 8G

We are using 0% CPU and less than 6MB memory

resident set size (RES) = memory KB

Modules

```
module avail/load/unload/list/show/purge
module avail available modules
module show show modules info
module list list loaded modules
module purge unload all loaded modules
```

For example let's run R and MATLAB interactively:

```
R
srun -p Interactive --mem 4G --pty /bin/bash
module load R
module list
module list
1) R/R-3.3.3
R

MATLAB
srun -p Interactive --mem 4G -L matlab --pty /bin/bash
module load matlab
module list
1) matlab/matlab-R2020a
matlab -nodisplay
```

Never load modules in the login node. It makes login node slow for all users. Many modules don't work in the login node. We can load modules in batch files, for example:

```
test.R

#!/usr/bin/R

for (i in 1:3) {
    cat("Hello world", i,"\n")
}

#SBATCH -- mem 4G

module load R
Rscript test.R
sbatch

Output

Hello world 1
Hello world 2
Hello world 3
```

What is next:

Version control

Git https://git-scm.com/book/en/v2

Job dependencies

- Slurm dependency option (--dependency) https://slurm.schedmd.com/sbatch.html
- Snakemake https://snakemake.readthedocs.io/

Virtual Environments

Anaconda https://conda.io/en/latest/

Software Installation

• Spack https://spack.readthedocs.io/en/latest

Parallel programming

- Scientific languages C/Fortran
 - OpenMP
 - OpenACC for GPU parallelization
 - MPI for massive parallelization
- Python
 - NumPy
 - Numba
 - mpi4py

RCSS Documentation

http://docs.rnet.missouri.edu

XSEDE

https://www.xsede.org/for-users/training

Software Carpentry

https://software-carpentry.org/lessons/

HPC Carpentry

https://hpc-carpentry.github.io

Data Carpentry

https://datacarpentry.org/lessons/

Cornell Virtual Workshop

https://cvw.cac.cornell.edu/topics

Pittsburgh Supercomputing Center (PSC)

https://www.psc.edu/resources-for-users/training/

TACC Learning Portal

https://learn.tacc.utexas.edu/course/

Feedback and Questions

mudoitrcss@missouri.edu