APRINDIZAJE NO SUPERVISADO

Javier Diaz Cely, PhD

AGENDA

Aprendizaje supervisado

Aprendizaje no supervisado

http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

Cervezas y pañales

- Mito o leyenda?
- 1992 USA cadena de supermercados. Wal-mart?
 No, OSCO
- Hombres jóvenes que compran pañales entre las 5 y las 6 de la tarde los viernes y sábados, también compran cerveza
- → Posicionar la cerveza cerca de los pañales implicó un crecimiento en su venta

TARGET sabe que estás embarazada

- Target Megastore
- Hábitos de compra arraigados
- Grandes cambios presentan una ventana de vulnerabilidad
- Hay que llegar primero

NETFLIX Prize, 2006 a 2011

- l millón de dólares
- Mejorar su sistema de recomendación (Cinematch), diseñado para predecir si una película le gustaría a un usuario, dados sus calificaciones de otras películas
- Proveen datos anónimos (no lo fueron tanto) con los ratings de las películas
- Objetivo: mejorar en 10% la predicción (accuracy) de Cinematch
- http://www.netflixprize.com/rules.html

- Un cliente es un activo. Se puede predecir su comportamiento de compra:
 - Preferencias, intereses, interacciones, socio-demográficos
 - Identificación: tarjetas de fidelidad, cédula, email, IP
 - Para maximizar ventas (perspectiva de ventas al detal)
 - Para mejorar la satisfacción propia (perspectiva del cliente)
- Datos: matriz de transacciones de clientes por ítems
 - Cada fila es un cliente, cada columna es un ítem (producto)
 - Almacenamiento de información unaria, binaria, cantidades, ratings
 - Matriz puede ser muy grande
 - Matriz puede ser muy dispersa
 - Captura explícita o implícita

Datos utilizados para la recomendación

- **Explícitos**: preguntar a los clientes qué opinan de cada producto. Diferentes tipos:
 - Ratings:
 - Escalas (1-5, -10 to +10)?
 - Discretos o continuos (e.g. media estrella)?
 - Escala unaria: ítems con corta vida útil (e.g. noticias)
 - Escala binaria: votos +/-. Controversia es posible
 - Escala binaria a partir de umbral: (e.g. >= 4 estrellas)

Datos utilizados para la recomendación

- Implícitos: inferidos a partir de las acciones de los clientes, de diferentes tipos:
 - Compras, accesos, lecturas, clicks, tiempo dedicado a un ítem
 - Análisis de sentimiento de los reviews
 - Omisión de acción (e.g. click en el 3er ítem presentado)
- Preferencias pueden cambiar con el tiempo
- Diferentes significados de las escalas para diferentes personas

NO PERSONALIZADOS

- Nada acerca del consumidor
- Agregación de opiniones
 - Promedio, mediana → pérdida de información
 - Distribución porcentual por rating
 - Rankings objetivos (e.g. taquilla)
- Problemas:
 - Información vieja
 - Sesgo de auto selección
 - Diversidad de opinión

Twin Room

We have 3 rooms left!

-23% COP 60.000 @ COP 46.000

Select your room

NO PERSONALIZADOS

- Basados en popularidad:
 - ¿Qué ítems se están consumiendo en este momento?
 - Los que compraron este ítem también compraron...
 - Considerando tus compras actuales, deberías comprar esto...
- Reglas de asociación:
 - Probabilidad condicional de comprar un ítem dados los productos ya comprados
 - Problema de reglas obvias (pan, arroz)
 - Problema de productos poco comprados (anchoas)
 - Posible no consideración de productos no comprados

Customers Who Bought This Item Also Bought

<

Python Machine Learning
Sebastian Raschka

Fundamentals of Machine Learning for Predictive Data Analytics:...

Algorithms of the Intelligent Web Douglas McIlwraith

Make Your Own Neural Network Tarig Rashid

- Sistemas no personalizados
 - Reglas de asociación
- Basados en contenido
 - TF/IDF
- Filtro colaborativo
 - Basado en usuarios
 - Basado en ítems

AGENDA

REGLAS DE ASCCIACIÓN APROCRIORIO

REGLAS DE ASOCIACIÓN

- Market basket analysis (Analisis del carro de mercado):
 - ¿Cuáles son los ítems mas propensos a ser comprados en conjunto? ...en los próximos 3 meses?
 - ¿Qué compran las personas con gustos similares?
 - Ofertas, amarres de productos, posición en el estante, venta cruzada
- Predicción de navegación Web:
 - Análisis de clickstream: ¿Cuál es el siguiente ítem más propenso a ser clickeado, o página a ser visitada?
- Multimedia:
 - Identificación de objetos en imágenes, videos o media social
 - Encontrar frases, entidades o atributos importantes en textos de gran volumen
- Biotecnología
 - Encontrar secuencias de proteínas repetidas en secuencias genómicas del DNA
- Social Networks
 - Encontrar comunidades escondidas

REGLAS DE ASOCIACIÓN

- Aprendizaje no supervisado para descubrir relaciones significativas escondidas en el dataset
- Transacción: lista de productos comprados en conjunto en una misma visita a la tienda
- Itemset: Conjunto de uno o más productos
- Itemset frecuente: itemset cuyos ítems son frecuentemente comprados juntos (con respecto a un nivel mínimo de soporte)
- Soporte: Fracción de las transacciones que contienen un itemset dado → absoluta (conteo) o relativa (porcentaje)
- Reglas: ítemset A → ítemset B
- Conocimiento de dominio: Algunas reglas descubiertas pueden resultar inútiles por su obviedad (Papel → Lápiz), otras pueden resultar inesperadas, por tanto útiles (Pañal → Cerveza)

```
DISFRUTAR LA VIDA TE ALIMENTA
                   TOTAL: $16.00
```


REGLAS DE ASOCIACIÓN — MEDIDAS

- Soporte($A \rightarrow B$) = P(A & B), simétrica
- Confianza $(A \rightarrow B) = P(B \mid A) = P(A \& B) / P(A)$, asimétrica
 - Probabilidad condicional
 - Indica qué tanto se puede confiar en la regla, pero no si se trata de una coincidencia
- Lift(A \rightarrow B) = Confianza(A \rightarrow B) / P(B) = P(A & B) / P(A)*P(B), simétrica
 - Cuántas veces más ocurren A y B juntas que lo que se esperaría si fueran independientes
 - =1: Regla inútil. A y B son **independientes** entre ellas (no hay relación significativa)
 - >1: La regla es útil. Entre mayor el lift mejor. Se trata de productos complementarios
 - <1: La regla es útil para identificar productos sustitutos</p>
- Leverage($A \rightarrow B$) = P(A & B) P(A)*P(B), simétrica
 - Medida análoga al lift, pero aditiva, y utilizando 0 como el límite de decisión

1-Itemset 4-Itemset

¿Cuál es el soporte del itemset {Café Sello Rojo}?

```
DISFRUTAR LA VIDA TE ALIMENTA
GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
CASHIER: 128
CUSTOMER
PURCHASE:
GTA. SALTINNOEL ROJO TC.X
GTA. MINICHIPS CHOCOLATE
GTA. TOSH CHOCOLATE BS.
JET WAFER VAINILLA 20PLEX $2.00
FIDEO COMARRICO CLASICA X $4.00
                  TOTAL: $16.00
PAYMENT METHOD: CREDIT CARD
TRANSACTION #1475024200 -001
DATE:21/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: YYY

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $3.00
SPAGHETTI DORIA CLASICA X $3.00
CHOCOL. DIANA 5006X16PAST $2.00
FIDEO COMARRICO CLASICA X $3.00
GTA. TOSH CHOCOLATE BS. $4.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024266 -001
DATE:11/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: ZZZ

PURCHASE:

GTA. TOSH MIEL BS. 9X3 $3.00
CAFE SELLO ROJO MEDIO 250 $2.00
SPHGHETTI DORIH CLHSICH X $4.00
GTA. SALTINNOEL ROJO TC.X $3.00
GTA. MINICHIPS CHOCOLATE $3.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475023934 -001
DATE:27/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: PPP

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $4.88
PASAB. LA ESPECIAL SAL 8P $2.88
GTA. DUCALES TC. X6 7286 $3.88
CHOCOL.CHOCOLYNE CLAS 6PL $5.80
JET WAFER VAINILLA 28PLEX $2.88
+X TAX: $8.88

TOTAL: $16.88

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475824073 -881
DATE:24/89/2816 5:81:29 PM
```

Soporte de {Café Sello Rojo} = 3/4= 75%

¿Cuál es el soporte del itemset {Spaghetti Doria Clásica}?

```
DISFRUTAR LA VIDA TE ALIMENTA
GRUPO NUTRESA
CARRERA 52 NO. 28 - 124
MEDELLIN
ANTIOQUIA
CASHIER: 128
PURCHASE:
GTA. SALTINNOEL ROJO TC.X
GTA. MINICHIPS CHOCOLATE
GTA. TOSH CHOCOLATE BS.
JET WAFER VAINILLA 20PLEX
FIDEO COMARRICO CLASICA X $4.00
                   TOTAL: $16.00
PAYMENT METHOD: CREDIT CARD
TRANSACTION #1475024200 -001
DATE:21/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: YYY

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $3.00
GPAGHETTI DORIA CLASICA X $3.00
CHOCOL. DIANA 5005X16PAST $2.00
FIDEO COMARRICO CLASICA X $3.00
GTA. TOSH CHOCOLATE BS. $4.00
+% TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024266 -001
DATE:11/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIQUIA
+57

CASHIER: 128
CUSTOMER: ZZZ

PURCHASE:

GTA. TOSH MIEL BS. 9X3 $3.00
CAFE SELLO ROJO MEDIO 250 $2.00
SPAGHETTI DORIA CLASICA X $4.00
GTA. SHLTIMNOEL ROJO TC.X $8.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475023934 -001
DATE:27/09/2016 5:01:29 PM
```

```
GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: PPP

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $4.00
PASAB. LA ESPECIAL SAL BP $2.00
GTA. DUCALES TC. X6 7286 $3.00
CHOCOL.CHOCOLYNE CLAS 6PL $5.00
JET WAFER VAINILLA 20PLEX $2.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024073 -001
DATE:24/09/2016 5:01:29 PM
```

Soporte de {Café Sello Rojo} = 3/4= 75%

Soporte de {Spaghetti Doria Clásica} = 2/4 = 50%

¿Cuál es el soporte del itemset {Café Sello Rojo, Spaghetti Doria Clásica}?

```
DISFRUTAR LA VIDA TE ALIMENTA
GRUPO NUTRESA
CARRERA 52 NO. 28 - 124
MEDELLIN
ANTIOQUIA
CASHIER: 128
PURCHASE:
GTA. SALTINNOEL ROJO TC.X
GTA. MINICHIPS CHOCOLATE
GTA. TOSH CHOCOLATE BS.
JET WAFER VAINILLA 20PLEX
FIDEO COMARRICO CLASICA X
                   TOTAL: $16.00
PAYMENT METHOD: CREDIT CARD
TRANSACTION #1475024200 -001
DATE:21/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: YYY

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $3.00
SPAGHETTI DORIA CLASICA X $3.00
CHOCOL. DIANA 500GX16PAST $2.00
FIDEO COMARRICO CLASICA X $3.00
GTA. TOSH CHOCOLATE BS. $4.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024266 -001
DATE:11/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128
CUSTOMER: ZZZ

PURCHASE:

GTA. TOSH MIEL BS. 9X8 $3.08
CAFE SELLO ROJO MEDIO 250 $2.08
SPAGHETTI DORIA CLASICA X $4.00
GTA. SALTINNOEL ROJO TC.X $3.00
GTA. MINICHIPS CHOCOLATE $3.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION #1475023934 -001
DATE:27/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 123 PPP

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $4.00
PASAB. LA ESPECIAL SAL 8P $2.00
GTA. DUCALES TC. X6 7286 $3.00
CHOCOL.CHOCOLYNE CLAS 6PL $5.00
JET WAFER VAINILLA 20PLEX $2.00
+X TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024073 -001
DATE:24/09/2016 5:01:29 PM
```

Soporte de {Café Sello Rojo} = 3/4= 75% Soporte de {Spaghetti Doria Clásica} = 2/4= 50% Soporte de {Café Sello Rojo, Spaghetti Doria Clásica} = 2/4= 50%

¿Confianza, lift y leverage de {Café Sello Rojo -> Spaghetti Doria Clásica}?

```
DISFRUTAR LA VIDA TE ALIMENTA
GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
CASHIER: 128
PURCHASE:
GTA. SALTINNOEL ROJO TC.X
GTA. MINICHIPS CHOCOLATE
GTA. TOSH CHOCOLATE BS.
JET WAFER VAINILLA 20PLEX
FIDEO COMARRICO CLASICA X $4.00
                   TOTAL: $16.00
PAYMENT METHOD: CREDIT CARD
TRANSACTION #1475024200 -001
DATE:21/09/2016 5:01:29 PM
```

```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIQUIA
+57

CASHIER: 128
CUSTOMER: YYY

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $3.00
SPAGHETTI DORIA CLASICA X $3.00
CHOCOL. DIANA 500GX16PAST $2.00
FIDEO COMARRICO CLASICA X $3.00
GTA. TOSH CHOCOLATE BS. $4.00
+% TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024266 -001
DATE:11/09/2016 5:01:29 PM
```



```
DISFRUTAR LA VIDA TE ALIMENTA

GRUPO NUTRESA
CARRERA 52 NO. 20 - 124
MEDELLIN
ANTIOQUIA
+57

CASHIER: 128 PPP

PURCHASE:

CAFE SELLO ROJO MEDIO 250 $4.00
PASAB. LA ESPECIAL SAL 8P $2.00
GTA. DUCALES TC. X6 7286 $3.00
CHOCOL.CHOCOLYNE CLAS 6PL $5.00
JET WAFER VAINILLA 20PLEX $2.00
+% TAX: $0.00

PAYMENT METHOD: CREDIT CARD
TRANSACTION $1475024073 -001
DATE:24/09/2016 5:01:29 PM
```

Soporte de {Café Sello Rojo} = 3/4= 75%

Soporte de {Spaghetti Doria Clásica} = 2/4= 50%

Soporte de {Café Sello Rojo, Spaghetti Doria Clásica} = 2/4= 50%

Confianza de {Café Sello Rojo \rightarrow Spaghetti Doria Clásica} = (2/4)/(3/4)= 66,6% Lift de {Café Sello Rojo \rightarrow Spaghetti Doria Clásica} = (2/4)/((3/4)*(2/4))= 4/3 =1,33 Leverage de {Café Sello Rojo \rightarrow Spaghetti Doria Clásica} = (2/4)/((3/4)*(2/4))= 4/3 =0,125

APRIORI

- Encontrar los itemsets frecuentes es un problema Np-Hard.
- El algoritmo Apriori poda el espacio de búsqueda, para luego definir las reglas resultantes
- Búsqueda bottom-up de los itemsets frecuentes:
 - se debe especificar un umbral de soporte mínimo
- Las reglas son extraídas de los itemsets frecuentes encontrados:
 - se pueden especificar condiciones adicionales para las reglas encontradas con respecto a métricas de confianza, lift y/o leverage.
 - Itemset antecedente → Itemset consecuente

Espacio de búsqueda de 4 ítems

APRIORI - ALGORITMO

Encontrar los itemsets candidatos (para un soporte definido):

• Retener los 1-itemsets frecuentes como candidatos.

Descartar los 1-itemsets no frecuentes

 Para (n en 2:N): Encontrar los (n)-itemset frecuentes combinando los (n-1)-itemsets candidatos.
 Guardarlos como candidatos

 Repetir hasta el final, hasta que los itemsets se queden por debajo del soporte, o hasta llegar a un máximo de cardinalidad especificada

 Combinar los miembros de los itemsets candidatos, encontrando las reglas que satisfacen un mínimo de otra medida definida (confidence, lift, leverage)

Ejemplo de resultados encontrados

http://www.paulallen.ca/apriori-algorithm-rule-generation/

APRIORI - VALIDACIÓN

Las reglas encontradas por Apriori deben ser evaluadas

- Utilizar soporte, confianza, lift y leverage para definir interés y significancia de las reglas
 - La especificación de umbrales para las medidas es un proceso iterativo
- Basarse en argumentos subjetivos derivados de conocimiento del dominio de aplicación. Eliminar reglas obvias.
 - Carne de hamburguesa → kétchup
 - El 90% de las personas compran azúcar, eliminar reglas con consecuente azúcar
 - La sal no nos aporta nada en cuanto a utilidades, eliminar reglas con consecuente sal

APRIORI

Consideraciones:

- La búsqueda en anchura genera una complejidad computacional temporal y espacial alta: cuando el número de productos y/o transacciones es muy grande, es necesario adoptar estrategias adicionales para reducir el espacio de búsqueda
- En grandes datasets, la mayoría de los eventos van a ser raros (soportes y confianzas bajas)
- La minería de reglas de asociación debe hacerse iterativamente, teniendo en cuenta la opinión de expertos del dominio en el equipo de analítica
- Las reglas obtenidas pueden de 3 tipos: triviales, inexplicables (aleatorias) y accionables

Alternativas

- Eclat: algoritmo de búsqueda en profundidad
- FP Growth

TALLER: APRIORI (A MANO)

Taller:

• Determinar los itemsets **frecuentes** de las transacciones siguientes, dado un umbral de soporte mínimo de 50%:

```
1: A,B,C,E
4: A,C,D,E
5: C,D,E
3: B,C,E
6: A,D,E
```

■ Determinar las reglas X \rightarrow Y, no filtradas por el umbral del 50%, que tengan al menos una confianza del 66% y que detecten productos complementarios que no lo sean por coincidencia.

TALLER: REGLAS DE ASOCIACIÓN

- 1. Cargar el dataset "supermarket.arff" en Weka; explorarlo.
- 2. En la pestaña "Associate" escoger el algoritmo "Apriori".
 - a) Se define una métrica de evaluación de las reglas (metricType, e.g. "Confidence" por defecto) con un umbral mínimo a superar (minMetric=0,9), y el número de reglas que se quiere (numRules=10)
 - b) La implementación de Weka es iterativa haciendo intentos con diferentes niveles de soporte de los itemsets de base para la producción de reglas. Empieza con un nivel de soporte (upperBoundMinSupport=1), y trata de encontrar las reglas especificadas. Si no alcanza, disminuye el nivel de soporte (delta=0,05) y vuelve a intentar.
- 3. Lanzar el algoritmo. Weka reduce el soporte mínimo hasta 0,15 para encontrar las 10 reglas con confianza superior a 0,9.
- 4. Analizar las reglas

AGENDA

Aprendizaje supervisado

Sistemas de

recomendación

Aprendizaje no supervisado

Itemset

Basados en contenido

Apriori

BASADOS EN CONTENIDO

Recommendations for you in Music

BASADOS EN CONTENIDO

Sistemas basados en casos y en conocimiento

- Subtipos de sistemas de recomendación
- Sistemas basados en queries
- Entrada de preferencias a través de entrevistas o scripts
- Preferencias de corta vida (noticias, hoteles, vuelos), modelos de usuarios sin persistencia

Sistemas de recomendación basados en contenido

- Modelos de usuario con las preferencias con persistencia
- Proveen un buen mecanismo para encontrar productos sustitutos, pero no complementarios
- Preferencias de larga vida
- Fáciles de explicar a los usuarios
- Proveen una buena base para organizar la navegación de la base de ítems antes de la compra
- No tienen problema de arranque en seco (cold start)

BASADOS EN CONTENIDO

- **Supuesto**: las preferencias de los usuarios son estables en el tiempo
- Un vector de atributos describe tanto los ítems como los usuarios (palabras clave, categorías, etiquetas, gustos)
- No se utiliza información de otros usuarios
- Modelo de usuario tiene en cuenta:
 - Modificaciones directas de usuario sobre su propio modelo
 - Interacciones explicitas (ratings, likes)
 - Interacciones implícitas (lecturas, clicks, compras)
- Descriptores de atributos en el vector:
 - Binarios
 - Conteos
 - TF/IDF

- TFIDF (Term Frequency Inverse Document Frequency): Esquema de pesos usado para describir un ítem (documento) a partir de un vector de etiquetas (término)
 - Filtraje de documentos, motores de búsqueda, information retrieval
 - TFIDF = TF * IDF
- **TF**: Term Frequency
 - TF= #ocurrencias de un término en un documento
 - Se utilizar la transformación log (TF +1), en caso de distribuciones alargadas
 - Para documentos de tamaños diferentes se pude adicionalmente normalizar con respecto al número de términos totales: log (TF +1)/n
- IDF: Inverse Document Frequency
 - IDF= log(#documentos / #documentos con el término)
 - Entre más raro es un término, mayor su IDF

http://trimc-nlp.blogspot.com.co/2013/04/tfidf-with-google-n-grams-and-pos-tags.html

- Cada usuario y cada ítem se representan como vectores multidimensionales en un espacio dado por los atributos de descripción de contenido
- Se debe **normalizar** (vectores de largo 1)? Perdida de información vs. ítems con importancias diferentes

$$\|\mathbf{q}\| = \sqrt{\sum_{i=1}^n q_i^2}$$

- Cada usuario y cada ítem se representan como vectores multidimensionales en un espacio dado por los atributos de descripción de contenido
- Se debe **normalizar** (vectores de largo 1)? Perdida de información vs. ítems con importancias diferentes
- **Evidencia** de una preferencia puede ser recolectada explícitamente o implícitamente
- Modelos de usuario: Construidos desde cero o actualizados después de consideración de cada nueva evidencia (positive o negativa), después de cada interacción del usuario
- Predicción de preferencia: similitud entre un usuario y un ítem

$$\|\mathbf{q}\| = \sqrt{\sum_{i=1}^n q_i^2}$$

- Medidas de similitud a considerar
 - Producto interno:

$$Inner(x,y) = \sum_i x_i y_i = \langle x,y
angle$$

- Sin límites
- Sensible a la magnitud de cada vector
- Coseno:

$$CosSim(x,y) = rac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

- Límites [-1; +1]
- Normalización según las magnitudes
- No es invariante a translaciones (posición)

• Correlación de Pearson
$$Corr(x,y) = \frac{\sum_i (x_i - x)(y_i - y)}{\sqrt{\sum (x_i - x)^2} \sqrt{\sum (y_i - y)^2}}$$

- Equivalente al coseno entre versiones centradas de los vectores comparados
- Invariante en cuanto a escala y posición

$$\|\mathbf{q}\| = \sqrt{\sum_{i=1}^n q_i^2}$$

TF/IDF

- PRO: Modelo para todo tipo de sistemas de recomendación basados en contenido
- CONTRA:
 - Número de dimensiones puede convertirse en un problema
 - No considerar los "stop words"
 - Utilizar agrupamientos de términos en categorías (persecución, pistolas, policíacas, guerra → acción)
 - Reducción de dimensionalidad
 - PCA
 - Análisis de semántica latente
 - Problemas con eufemismos (e.g. contratos)
 - No consideración de frases o n-gramas
 - No consideración de adyacencia ni orden (bag of words)
 - No consideración de la interdependencia (Me gustan las películas serias de R.De Niro pero no sus comedias, me gustan las comedias de Woody Allen pero no sus películas serias)
 - No consideración de la importancia contextual de los términos (títulos, descripción, cuerpo)
 - No consideración de contenidos implícitos
 - No consideración de los cambios de gustos → se puede solventar con pesos

TALLER: BASADO EN CONTENIDO (EXCEL)

Descargar:

- El enunciado del taller de sistemas de recomendación basado en contenido en Excel,
- Hoja de Excel con los datos de trabajo.

Desarrollar el taller.

AGENDA

Aprendizaje supervisado

Aprendizaje no supervisado

FILTRO COLABORATIVO

Suposiciones:

- El comportamiento pasado permite predecir el comportamiento futuro
- Los gustos son estables o se mueven de manera sincronizada para todos los usuarios
- Hay acuerdo en el contexto del dominio de los ítems que se han notado y que se recomendarán (usuarios pueden estar de acuerdo en películas, pero no necesariamente en política, humor, hoteles y restaurantes)

FILTRO COLABORATIVO — BASADO EN ÍTEMS

FILTRO COLABORATIVO

- Matriz Usuario X Ítem
- Significados de ratings diferentes
 - Distribución
 - Normalización
 - Por usuario? Por ítem?
- Distancias & similitudes
- Filtro colaborativo basado en usuarios
 - Juan Pablo vs. Daniel
- Filtro Colaborativo basado en ítems
 - Drive vs. Inception

- Algoritmo Usuario-Usuario
 - Calcular la matriz de similitud entre usuarios
 - Para un usuario dado, definir su "barrio" de usuarios parecidos (K-NN)
 - Calcular una medida de recomendación para los ítems relacionados (promedio, promedio ponderado, regresión linear múltiple)

Características:

- No depende del contenido (descripción de los ítems), fuente de errores
- Puede aplicarse a todo tipo de dominios (no es el caso del basado en contenido)
- Recomendaciones casuales (serendipia)
- Varias consideraciones a tener en cuenta

- Selección del conjunto próximo de usuarios:
 - Todos los usuarios
 - Al azar
 - Utilizar un umbral de similitud/distancia
 - Top-N usuarios según similitud/distancia
 - Top-N usuarios según similitud/distancia con respecto al ítem en consideración
 - Puede haber demasiados usuarios en la proximidad definida
 - Puede no haber ningún usuario en la proximidad definida
- Cobertura de recomendación

- Normalización
 - Hay usuarios que les gusta todo, otros a los que no les gusta nada
 - Hay usuario que utilizan una escala de notación más amplia que otros
 - Promediar ignora estas diferencias
 - La normalización las tiene en cuenta

Consideraciones:

Formulación de predicciones:

• Sin personalización:
$$P_{a,i} = \frac{\sum_{u=1}^{n} r_{u,i}}{n}$$

• Grado de similitud de usuarios:
$$P_{a,i} = \frac{\sum_{u=1}^{n} r_{u,i} * w_{a,u}}{\sum_{u=1}^{n} w_{a,u}},$$

 $w_{a,u}$ puede ser una medida de similitud o de pertenencia al conjunto de usuarios próximos

• Normalización de ratings:
$$P_{a,i} = \overline{r_a} + \frac{\sum_{u=1}^n (r_{u,i} - \overline{r_u}) * w_{a,u}}{\sum_{u=1}^n w_{a,u}}$$

• Estandarización:
$$P_{a,i} = \overline{r_a} + \frac{\sum_{u=1}^n z_{u,i} * w_{a,u}}{\sum_{u=1}^n w_{a,u}} * \sigma_a$$

Pero, ratings predichos pueden salirse del rango > floor/ceiling

- Medida de acuerdo entre usuarios
 - Solo se consideran los ratings de los ítems que ambos usuarios han notado
 - Correlación de Pearson : $w_{a,u} = \frac{\sum_{i=1}^{m} (r_{a,i} \overline{r_a}) * (r_{u,i} \overline{r_u})}{\sigma_u * \sigma_a}$
 - Impráctica con datos unarios,
 - Impráctica para un número pequeño de ítems mutuamente anotados
 - Coseno: $w_{a,u} = \frac{\sum_{i=1}^{m} (r_{a,i} * r_{u,i})}{\|r_a\| * \|r_u\|}$
 - Cada usuario representado por un vector de sus ratings
 - Usada para datos binarios
 - Si normalizamos los ratings por usuario, se convierte en la correlación de Pearson
 - No considerar usuarios con muy pocos ratings en común (sesgo)

- Información insuficiente:
 - Regularización (agregar K al denominador de la medida de similitud)
- Dimensionalidad (millones de usuarios (m), millones de ítems (n))
 - Creación matriz de similitud es O(m² * n)
 - Recomendación es O(m*n)
- Problema de arranque en frio ("Cold start")
 - No hay datos para generar predicciones o recomendaciones
- Particionamiento de usuarios en clusters (bajos resultados)
- Pre-calcular vs. cambios en preferencias

FILTRO COLABORATIVO — BASADO EN ÍTEMS

- Proceso análogo al del filtro colaborativo basado en usuarios
 - El proceso no se hace fila por fila sino columna por columna en la matriz de usuarios (filas) por ítems (columnas)
- Algoritmo Ítem-Ítem
 - Calcular la matriz de similitud entre ítems
 - Para un ítem dado, definir su "barrio" de ítems parecidos (K-NN)
 - Calcular una medida de recomendación para los ítems relacionados

FILTRO COLABORATIVO — BASADO EN ÍTEMS

- Por qué?:
 - Complejidad de computación:
 - Consumo de recursos (CPU, memoria)
 - Las matrices no pueden ser pre calculadas
 - Cambios constantes
 - Si Usuarios >> ítems
 - Relaciones entre ítems es estable,
 - Muchos ratings por ítem (menos dispersos, facilidad de cálculo de similitudes)
 - Ítems son mas estables que usuarios
 - Pero
 - Complejidad de los usuarios no puede ser detectada por Ítem vs Ítem

TALLER: FILTRO COLABORATIVO BASADO EN USUARIOS EN EXCEL

Descargar el taller de sistemas de recomendación por filtro colaborativo y desarrollarlo.

REFERENCIAS

- Introduction to recommender Systems, Joseph Konstan, 2015
- EMC2, "Data science and big data analytics", 2015, John Wiley & Sons
- Data Science for Business, Foster Provost & Tom Fawcett, O'Reilly, 2013
- Practical Data Science with R, Nina Zumel & John Mount, 2014
- Mining association rules between sets of items in large databases, R. Agrawal, T. Imielinski, and A. Swami, en Proc. of SIGMOD'93, 2013
- Discovering frequent closed itemsets for association rules, N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, en Proc. of ICDT'99, 1999
- http://www.nytimes.com/2012/02/19/magazine/shoppinghabits.html?pagewanted=1& r=1&hp

