Questions we want to answer:

- Where to start?
 - I.e. What's the easiest size ratio? (Basically, define an easy-to-hard curriculum through empirical evaluations)
 - We hypothesize that the easiest size is somewhere in the middle:
 - Small sizes will offer the most context, but lowest object resolution. May be overwhelmed by confuser objects in the foreground.
 - Large objects will have the highest object resolution, but will have minimal context and may only present part of the object.
 - A somewhat equal balance between object resolution and scene context may make for the easiest task and thus the optimal curricular starting point.
- Does curriculum learning work?
 - How will our size-based curriculum effect the performance of deep neural networks on visual recognition tasks?
 - Can we confirm the work of Bengio et al. that CL improves generalization and convergence?
 - Once we define a curriculum, we test whether it improves generalization and convergence
 - What about low-shot learning? Do the features learned from CL perform better for classifying a new object from only a few examples?
 - Perhaps we could incorporate SVM of kNN here.
 - Use the network as a feature extractor to embed examples
- How gradual of a curriculum?
 - What are the effects of varying the granularity of the curriculum?
- What can be done to improve the effects of CL? (Apply what we've learned)
 - Architecure choices
 - Spatial transformer layers transforms big/small objects into more canonical sizes
 - Dilated convolutions preserves weak signals (e.g. from low res objects)
 - Gradient methods
 - Larger learning rate when starting new curriculum?
 - Cost function
 - How can we constrain model complexity at the start, and decrease complexity constraints as curriculum progresses?
 - Incorporate a discussion about the bias-variance tradeoff and model complexity
 - L1 (LASSO) regularization
 - Decrease regularization as model progresses through curriculum?
- Models
 - LeNet (Low complexity designed for MNIST, maybe underkill)
 - AlexNet (High complexity designed for ImageNet, maybe overkill)
 - Something in between? (Can we design an architecture that rivals ImageNet accuracy with less parameters?

1

Experiments outline:

- 1. Define an easy-to-hard curriculum
 - Split train/val sets 'n' ways by size ratio
 - Train/eval LeNet on each split
 - Use validation accuracy for each split to define a curriculum
- 2. Study the effects of curriculum learning (baseline approaches)
 - Apply the following curricula for LeNet and AlexNet:
 - No curriculum
 - Random curriculum
 - Easy-to-hard
 - Hard-to-easy
 - Big-to-small
 - Small-to-big
 - Report for each:
 - Generalization
 - Convergence
 - Few-shot learning
 - incorporate SVM or kNN here.
 - Use the network as a feature extractor to embed examples
- 3. Improving the effects of CL (Apply what we've learned)
 - Curriculum choices
 - Vary the curriculum granularity
 - Architecure choices
 - Spatial transformer layers transforms big/small objects into more canonical sizes
 - Dilated convolutions preserves weak signals (e.g. from low res objects)
 - Gradient methods
 - Larger learning rate when starting new curriculum?
 - Cost function
 - How can we constrain model complexity at the start, and decrease complexity constraints as curriculum progresses?
 - Incorporate a discussion about the bias-variance tradeoff and model complexity
 - L1 (LASSO) regularization
 - Decrease regularization as model progresses through curriculum?
- Models
 - LeNet (Low complexity designed for MNIST, maybe underkill)
 - AlexNet (High complexity designed for ImageNet, maybe overkill)
 - Something in between? (Can we design an architecture that rivals ImageNet accuracy with less parameters?

XXX - x/x/x - Michael Laielli

TODO: Write some notes...