边值问题的有限差分法求解实验报告

刘行 PB22000150

2025年5月19日

1 实验目的

本实验旨在通过有限差分法 (Finite Difference Method, FDM) 数值求解两类二阶常微分方程边值问题 (Boundary Value Problem, BVP), 并验证方法的数值精度与收敛阶. 通过构造具有解析解的问题, 评估所实现算法的有效性和收敛性.

2 问题模型

考虑一般形式的线性二阶边值问题:

$$x''(t) = u(t) + v(t)x(t) + w(t)x'(t), \quad t \in [a, b],$$

配以边界条件:

$$x(a) = \alpha, \quad x(b) = \beta.$$

3 实验方法

3.1 有限差分法求解边值问题

- 算法步骤
 - 1. **离散化**: 将区间 [a,b] 划分为 n 个小区间, 网格步长为 $h = \frac{b-a}{n}$, 得到节点 $t_i = a+i\cdot h$, $i = 0,1,2,\ldots,n$. 然后对方程中的二阶导数进行中心差分处理, 得到离散化方程.
 - 2. **差分格式**: 对于每一个网格节点 t_i , 将 x''(t) 和 x'(t) 使用差分格式表示. 具体来说, 我们有:

$$\frac{x_{i+1} - 2x_i + x_{i-1}}{h^2} = u(t_i) + v(t_i)x_i + w(t_i)\frac{x_{i+1} - x_{i-1}}{2h}.$$

这会形成一个线性方程组, 要求解 $\{x_i\}_{i=1}^{n-1}$, 其中 $x_0 = \alpha$ 和 $x_n = \beta$ 分别为边界条件.

- 3. **构造系数矩阵与右侧向量**: 根据差分公式, 可以构造系数矩阵 A 和右侧向量 F, 其中系数矩阵的大小为 $(n-1) \times (n-1)$, 右侧向量的大小为 $(n-1) \times 1$.
- 4. **求解线性方程组**: 通过求解线性方程组 $A \cdot x = F$ 来获得 $x_1, x_2, \ldots, x_{n-1}$. 然后将边界值 α 和 β 添加到解向量的两端, 得到完整的解向量 x.

- 5. 结果可视化: 通过绘图展示数值解与实际解的比较, 便于分析误差和收敛性.
- 主要思路和细节
 - 1. **网格生成与步长计算**: 在函数中, 首先通过 linspace(a, b, n+1) 生成 n+1 个节点, 步长 h 为区间长度除以 n. 这些节点用于离散化方程.
 - 2. **系数矩阵的构造**:根据中心差分格式和边值条件,循环计算矩阵 A 的每一行,最后通过矩阵 A 和向量 F 来求解内部节点的解.
 - 3. **解的计算与返回**: 通过 MATLAB 内建的 \ 运算符求解线性方程组 $A \cdot x = F$, 得到内部节点的解 $\mathbf{x}_{\mathtt{inner}}$, 并将边界值 α 和 β 组合成最终的解向量.
 - 4. **图形显示**: 若 show 参数为 true, 则通过 plot 函数绘制解的图像, 帮助可视化解的行为.

3.2 数值结果分析

在本实验中,分别对两个不同的边值问题进行了求解,并计算了每种情况下的误差与收敛 阶. 通过图形展示数值解的精度,并比较了不同网格划分下的误差变化,分析了算法的收敛性.

4 实验设置

- 4.1 问题 1: 齐次常系数问题
 - 区间: $[0, \frac{\pi}{2}]$
 - 边值条件: x(0) = 3, $x(\frac{\pi}{2}) = 7$
 - 微分方程:

$$x''(t) = -x(t) \implies u(t) = 0, \quad v(t) = -1, \quad w(t) = 0$$

4.2 问题 2: 非齐次问题

- 区间: [0,1]
- 边值条件: x(0) = 2, $x(1) = e + \cos(1)$
- 微分方程:

$$x''(t) = 2e^t - x'(t) \implies u(t) = 2e^t, v(t) = 0, w(t) = -1$$

4.3 离散参数

令 N = [10, 20, 40, 80, 160] 为网格数, 对每组 N 进行误差估计与收敛阶计算:

error =
$$\max_{i} |x_i^{\text{exact}} - x_i^{\text{num}}|$$
, order = $\frac{\log(e_{k-1}/e_k)}{\log(N_k/N_{k-1})}$

5 实验结果

5.1 N = 160 时的数值解图像

图 1: 问题 1 和问题 2 的数值解图像

5.2 误差和收敛阶

N	最大误差	收敛阶	\overline{N}	最大误差	收
10	5.7324e - 03		10	2.9584e - 04	
20	$1.4288e{-03}$	2.0043	20	7.3917e - 05	2
40	3.5749e - 04	1.9988	40	$1.8496e{-05}$	1
80	$8.9356e{-05}$	2.0003	80	$4.6244e{-06}$	1
160	$2.2341e{-05}$	1.9999	160	$1.1562e{-06}$	1

图 2: 问题 1 和问题 2 的误差与收敛阶对比

结果表明差分格式在这两个问题中都具有良好的二阶收敛性, 与理论分析一致.

6 结论

本实验验证了有限差分法在求解边值问题时的有效性, 数值误差与收敛阶表明算法达到了 预期的二阶精度.

未来可考虑推广至变系数问题或非线性边值问题,进一步验证算法的通用性与稳定性.