WEEK 1: TASK (PREDICTING WHETHER THE URL IS PHISING OR NOT)

1 STEP: IMPORTING ALL THE LIBRARIES

```
# 1: Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sp
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, f1_score, confusion_matrix, classification_report

Python
```

All the basic library like pandas, numpy, matplotlib, seaborn are imported first.

Then other feature from sklearn are called like train_test_split, standardScaler, randomforest classifier, accuracy, precision, recall, fl score and confusion matrix. These are called for calculation, training and testing are used for prediction and know aout the dataset.

2 STEP: LOADING THE DATASET

```
# 2: Loading the dataset
df = pd.read_csv("dataset_phishing.csv")

0.0s
```

Name of dataset is been changed to dataset_phishing.csv. pandas is used to read the dataset. The 0: 'Legitimate', 1: 'Phishing' is directly done in csv file.

3 STEP: OVERVIEW OF THE DATASET

OUTPUT: (11430, 89)

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 11430 entries, 0 to 11429

Data columns (total 89 columns):

#	Column	Non-Null Count Dtype
0	url	11430 non-null object
1	length_url	11430 non-null int64
2	length_hostname	11430 non-null int64
3	ip	11430 non-null int64
4	nb_dots	11430 non-null int64
5	nb_hyphens	11430 non-null int64
6	nb_at	11430 non-null int64
7	nb_qm	11430 non-null int64
8	nb_and	11430 non-null int64
9	nb_or	11430 non-null int64

10	nb_eq	11430 non-null int64
11	nb_underscore	11430 non-null int64
12	nb_tilde	11430 non-null int64
13	nb_percent	11430 non-null int64
14	nb_slash	11430 non-null int64
15	nb_star	11430 non-null int64
16	nb_colon	11430 non-null int64
17	nb_comma	11430 non-null int64
18	nb_semicolumn	11430 non-null int64
19	nb_dollar	11430 non-null int64
20	nb_space	11430 non-null int64
21	nb_www	11430 non-null int64
22	nb_com	11430 non-null int64
23	nb_dslash	11430 non-null int64
24	http_in_path	11430 non-null int64
25	https_token	11430 non-null int64
26	ratio_digits_url	11430 non-null float64
27	ratio_digits_host	11430 non-null float64
28	punycode	11430 non-null int64
29	port	11430 non-null int64
30	tld_in_path	11430 non-null int64
31	tld_in_subdomain	11430 non-null int64
32	abnormal_subdoma	in 11430 non-null int64
33	nb_subdomains	11430 non-null int64
34	prefix_suffix	11430 non-null int64
35	random_domain	11430 non-null int64
36	shortening_service	11430 non-null int64
37	path_extension	11430 non-null int64
38	nb_redirection	11430 non-null int64
39	nb_external_redirec	etion 11430 non-null int64

40	length_words_raw	11430 non-null int64
41	char_repeat	11430 non-null int64
42	shortest_words_raw	11430 non-null int64
43	shortest_word_host	11430 non-null int64
44	shortest_word_path	11430 non-null int64
45	longest_words_raw	11430 non-null int64
46	longest_word_host	11430 non-null int64
47	longest_word_path	11430 non-null int64
48	avg_words_raw	11430 non-null float64
49	avg_word_host	11430 non-null float64
50	avg_word_path	11430 non-null float64
51	phish_hints	11430 non-null int64
52	domain_in_brand	11430 non-null int64
53	brand_in_subdomain	11430 non-null int64
54	brand_in_path	11430 non-null int64
55	suspecious_tld	11430 non-null int64
56	statistical_report	11430 non-null int64
57	nb_hyperlinks	11430 non-null int64
58	ratio_intHyperlinks	11430 non-null float64
59	ratio_extHyperlinks	11430 non-null float64
60	ratio_nullHyperlinks	11430 non-null int64
61	nb_extCSS	11430 non-null int64
62	ratio_intRedirection	11430 non-null int64
63	ratio_extRedirection	11430 non-null float64
64	ratio_intErrors	11430 non-null int64
65	ratio_extErrors	11430 non-null float64
66	login_form	11430 non-null int64
67	external_favicon	11430 non-null int64
68	links_in_tags	11430 non-null float64
69	submit_email	11430 non-null int64

```
70 ratio_intMedia 11430 non-null float64
```

72 sfh 11430 non-null int64

73 iframe 11430 non-null int64

74 popup window 11430 non-null int64

75 safe anchor 11430 non-null float64

76 onmouseover 11430 non-null int64

77 right clic 11430 non-null int64

78 empty_title 11430 non-null int64

79 domain_in_title 11430 non-null int64

80 domain_with_copyright 11430 non-null int64

81 whois_registered_domain 11430 non-null int64

82 domain_registration_length 11430 non-null int64

83 domain age 11430 non-null int64

84 web traffic 11430 non-null int64

85 dns record 11430 non-null int64

86 google index 11430 non-null int64

87 page rank 11430 non-null int64

88 status 11430 non-null int64

dtypes: float64(13), int64(75), object(1)

memory usage: 7.8+ MB

None

length_url length_hostname		h_hostname	ip nb_dots \	
count	11430.000000	11430.00000	00 11430.000	0000 11430.000000
mean	61.126684	21.090289	0.150569	2.480752
std	55.297318	10.777171	0.357644	1.369686
min	12.000000	4.000000	0.000000	1.000000
25%	33.000000	15.000000	0.000000	2.000000
50%	47.000000	19.000000	0.000000	2.000000
75%	71.000000	24.000000	0.000000	3.000000

nb hyphens nb_at nb and nb or \ nb_qm count 11430.000000 11430.000000 11430.000000 11430.000000 11430.0 0.997550 0.022222 0.141207 0.162292 0.0 mean 2.087087 0.155500 0.364456 0.821337 0.0 std 0.000000 0.000000 0.000000 0.000000 0.0 min 25% 0.000000 0.0 0.000000 0.000000 0.00000050% 0.000000 0.000000 0.000000 0.0 0.000000 75% 1.000000 0.000000 0.0000000.0000000.0 43.000000 4.000000 3.000000 19.000000 0.0 max

nb eq ... domain in title domain with copyright \ count 11430.000000 ... 11430.000000 11430.000000 mean 0.293176 ... 0.775853 0.439545 std 0.998317 ... 0.417038 0.496353 0.000000 ... 0.000000 0.000000 min 25% 0.000000 ... 1.000000 0.000000 50% 0.000000 ... 1.000000 0.00000075% 0.000000 ... 1.000000 1.000000 19.000000 ... 1.000000 1.000000 max

whois registered domain domain registration length domain age \ 11430.000000 11430.000000 11430.000000 count 0.072878 492.532196 4062.543745 mean 814.769415 3107.784600 std 0.259948 0.000000-1.000000 -12.000000 min 25% 0.000000 84.000000 972.250000 50% 0.000000 242.000000 3993.000000 75% 0.000000 449.000000 7026.750000

web traffic dns record google index page rank status count 1.143000e+04 11430.000000 11430.000000 11430.000000 11430.000000 mean 8.567566e+05 0.020122 0.533946 3.185739 0.500000 1.995606e+06 0.140425 std 0.498868 2.536955 0.500022 0.000000e+00 0.000000 0.000000 0.000000 0.000000 min 25% 0.000000e+00 0.0000000.000000 1.000000 0.000000 50% 1.651000e+03 0.0000001.000000 3.000000 0.500000 75% 3.738455e+05 0.000000 1.000000 5.000000 1.000000 1.076799e+07 1.000000 1.000000 10.000000 1.000000 max

[8 rows x 88 columns]

0 5715

1 5715

Name: status, dtype: int64

['url', 'length url', 'length hostname', 'ip', 'nb dots', 'nb hyphens', 'nb at', 'nb qm', 'nb and', 'nb or', 'nb eq', 'nb underscore', 'nb tilde', 'nb percent', 'nb slash', 'nb star', 'nb colon', 'nb comma', 'nb semicolumn', 'nb dollar', 'nb space', 'nb www', 'nb com', 'nb dslash', 'http in path', 'https token', 'ratio digits url', 'ratio digits host', 'punycode', 'port', 'tld in path', 'tld in subdomain', 'abnormal subdomain', 'nb subdomains', 'prefix suffix', 'random domain', 'shortening service', 'path extension', 'nb redirection', 'nb external redirection', 'length words raw', 'char repeat', 'shortest words raw', 'shortest word host', 'shortest word path', 'longest words raw', 'longest word host', 'longest word path', 'avg words raw', 'avg word host', 'avg word path', 'phish hints', 'domain in brand', 'brand in subdomain', 'brand in path', 'suspecious tld', 'statistical report', 'nb hyperlinks', 'ratio intHyperlinks', 'ratio extHyperlinks', 'ratio nullHyperlinks', 'nb extCSS', 'ratio intRedirection', 'ratio extRedirection', 'ratio intErrors', 'ratio extErrors', 'login form', 'external favicon', 'links in tags', 'submit email', 'ratio intMedia', 'ratio extMedia', 'sfh', 'iframe', 'popup window', 'safe anchor', 'onmouseover', 'right clic', 'empty title', 'domain in title', 'domain with copyright', 'whois registered domain', 'domain registration length', 'domain age', 'web traffic', 'dns record', 'google index', 'page rank', 'status']

4 STEP: Ploting the correlation map for better knowledge about the dataset

```
# 4: ploting the correlation map for better knowledge about the dataset
corr = df.corr()
high_corr = corr[(corr > 0.8) | (corr < -0.8)]

plt.figure(figsize=(16, 12))
sns.heatmap(high_corr, cmap='coolwarm', annot=False)
plt.title("High Correlation Heatmap", fontsize=16)
plt.xlabel("Column header")
plt.ylabel("Column header")
plt.ylabel("Column header")
plt.yticks(rotation=90)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()</pre>
```



```
# 5: Preparing the x & y cloumn
X = df.drop(['url', 'status'], axis=1)
y = df['status']
```

6 STEP: Spliting dataset into two parts one for training and other for testing

```
# 6: Spliting the dataset (80:20)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
/ 0.0s
```

7 STEP: StandardScaler is used for scaling the dataset and perform feature selection

```
# 7: Feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

</pre
```

8 STEP: Training the dataset with random forest.

```
# 8: Training the model with random forest as it is one of the best model used for regression model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test)

✓ 1.2s
```

9 STEP: Calculation part (confusion matrix, accuracy, etc) help us to know about the dataset. So, that we can perform any modification if needed.

```
# 9: calculating the accuracy, precision, recall, f1 score and confusion matrix print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}") print(f"Precision: {precision_score(y_test, y_pred, pos_label=1):.2f}") print(f"Recall: {recall_score(y_test, y_pred, pos_label=1):.2f}") print(f"F1 Score: {f1_score(y_test, y_pred, pos_label=1):.2f}") print("\nConfusion Matrix: ", confusion_matrix(y_test, y_pred)) print("\nClassification Report: ", classification_report(y_test, y_pred)) ✓ 0.0s
```

```
Accuracy: 0.97
Precision: 0.98
Recall: 0.96
F1 Score: 0.97
Confusion Matrix: [[1130
                            27]
 [ 43 1086]]
Classification Report:
                                       precision
                                                    recall f1-score
                                                                        support
                                        0.97
                                                  1157
           0
                   0.96
                              0.98
                   0.98
                              0.96
                                        0.97
                                                  1129
                                        0.97
                                                  2286
    accuracy
                   0.97
                              0.97
                                        0.97
                                                  2286
   macro avg
weighted avg
                   0.97
                              0.97
                                        0.97
                                                  2286
```

10 STEP:

```
y_pred = model.predict_proba(X_test)[:, 1]

# ROC-AUC
roc_auc = roc_auc_score(y_test, y_pred)
print("ROC AUC Score:", roc_auc)

# Plot ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, label=f"ROC Curve (AUC = {roc_auc:.2f})", color="blue")
plt.plot([0, 1], [0, 1], "k--")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.legend()
plt.grid(True)
plt.show()
```


11 STEP: Predicting the value with 5 random rows data

```
# 10: predicting from random rows between actual and predicted

# 5 random rows
sample_indices = np.random.choice(len(X_test), size=5, replace=False)

print("Random sample indices from test set (position within X_test):", sample_indices)

(variable) y_sample_actual: Any

y_sample_actual = y_test.iloc[sample_indices]
y_sample_pred = model.predict(X_sample)

label_map = {0: 'Legitimate', 1: 'Phishing'}

for i, idx in enumerate(sample_indices):
    print(f"Sample {i+1} (Test set position: {idx}):")
    print(f" Actual: {label_map[y_sample_actual.iloc[i]]}")
    print(f" Predicted:{label_map[y_sample_pred[i]]}")

print()
```

```
Random sample indices from test set (position within X test): [1913 475 1398 427 1845]
Sample 1 (Test set position: 1913):
 Actual: Phishing
 Predicted:Phishing
Sample 2 (Test set position: 475):
 Actual: Legitimate
 Predicted:Legitimate
Sample 3 (Test set position: 1398):
 Actual:
           Phishing
 Predicted:Phishing
Sample 4 (Test set position: 427):
 Actual: Phishing
 Predicted:Phishing
Sample 5 (Test set position: 1845):
 Actual:
           Phishing
 Predicted:Phishing
```

11 STEP: SAVING IN PICKLE FORMAT

import joblib

```
# Save the model
joblib.dump(model, "phishing_model.pkl")
print("Model saved as phishing_model.pkl")
```

OUTPUT: Model saved as phishing model.pkl

Github link: https://github.com/SHREY275/codeb