Resonance structures

Lewis structures

Resonance hybrid

Real Electron Density

Draw **ALL** chemically reasonable Lewis structures of SO₂F₂

- Draw all structures that follow the octet rules and place negative charges on the most electronegative atom and the positive charges on the least electronegative atom.
- Those without the formal charges minimized are still chemically reasonable but they do not contribute significantly to the resonance hybrid.

Draw the **most stable** Lewis structures of SO₂F₂

Unit 4 Intermolecular Interactions

Slide Color Codes

All Lectures Section Only

Required Required OK to Skip Useful Examable

Blueprint question

How does an N95 mask stop a virus in it's tracks?

Learning Objectives

- Predict the polarity of a molecule from its molecular geometry and bond polarity.
- Predict the types of <u>intermolecular forces</u>
 likely to be most important for a particular substance.

Bond Polarity

Because of differences in electronegativity, electrons are never equally distributed when two different atoms bond. This charge separation is known as a dipole. Bonds with a dipole are called **polar bonds**.

Representation of Bond Polarity

• An arrow pointing towards the most electronegative atom is used to show bond polarity. The end of the arrow with the most electron density has the label δ - while the other end has the label δ +

Molecular polarity

 The polarity of a molecule depends on the three dimensional arrangement of atoms. For example, although the <u>C=O bond is polar</u>, the <u>CO₂ molecule is non-polar</u>.

Non-polar

Determining molecular polarity

- 1. Draw the VSEPR <u>molecular shape</u> of the molecule
- 2. Draw arrows to show bond dipoles for each bond in a molecule
- 3. Do a vector addition for each dipole drawn
- 4. If the vector addition is zero, the molecule is non-polar. If the vector addition is non-zero, the molecule is polar

Worksheet Question #1

Add arrows to show bond dipoles for the following polar covalently bonded compounds. Add δ + and δ - to the following structures. Lone pairs are NOT shown. Determine which molecules are polar and which are non-polar.

Non-polar

Polar

Worksheet Question #1

Add arrows to show bond dipoles for the following polar covalently bonded compounds. Add δ + and δ - to the following structures. Lone pairs are NOT shown. Determine which molecules are polar and which are non-polar.

Chemical Bonds vs. Intermolecular Forces

- Chemical Bonds:
 - □ Ionic bonds (300-700 kJ mol⁻¹)
 - □ Covalent bonds (100-500 kJ mol⁻¹)
- Intermolecular Forces

- Energy required to vaporize H₂O: 41 kJ mol⁻¹
- Bond energy of O-H bond in H₂O: 463 kJ mol⁻¹

Intermolecular Forces

- London dispersion forces
- Dipole-dipole forces
- Hydrogen bonding
- Charge-dipole (or ion-dipole) forces
- Charge-charge (or ion-ion) forces

London Dispersion Forces

 Also known as <u>instantaneous dipole-induced</u> <u>dipole forces</u>, they exist between all atoms and molecules, and are always attractive. Arise from a momentary asymmetry in electron density caused by charge fluctuations.

Electric Polarizability

 Measures how large a dipole can be induced by an external electric field. Polarizability is greater in species with more weakly bound or delocalized electrons, thus favouring dispersion.

Halogen Species	Melting Point
F ₂	-219.62°C
Cl ₂	-101.5°C
Br ₂	-7.3°C
I ₂	113.7°C

- Non-polar species only London-dispersion (LD) forces.
- The higher melting point, the greater the LD forces.
- Therefore, I₂ has highest LD and F₂ has lowest LD.

Polarizability

London dispersion forces increase

Boiling points

Noble Gas	Boiling Point (K)
Helium	4.2
Neon	27.1
Argon	87.3
Krypton	120.9
Xenon	166.1
Radon	211.5

- Non-polar species: only London-dispersion (LD) forces.
- The higher melting point, the greater the LD forces.

Boiling Points of Hydrocarbons

• Larger molecules have a greater number of polarizable atoms that contribute to making the total dispersion larger.

Ethane Boiling point: -89 °C

Boiling point: 125.6 °C

Octane

- C–H bond is **weakly polar** (ΔEN = 0.35), but it is often treated as **nonpolar** in practice.
- Therefore, only LD forces are considered in hydrocarbons.

Boiling Points of Hydrocarbons

- Branching within a molecule <u>reduces</u> the possibilities for <u>intermolecular interactions</u> and <u>lowers the melting/boiling points</u>.
- Example: C_5H_{12} :

H₃C CH CH₃

H₃C CH₃

Pentane

BP: 309.2 K

2-methylbutane

BP: 301.0 K

2,2-dimethylpropane

BP: 282.6 K

Dipole-dipole interactions

- Dipole-dipole interactions arise from favourable alignment of dipoles in molecules.
- Example:

Dipole-dipole interactions

 In a liquid there are both repulsive and attractive forces. Overall the number of attractive forces outweigh the repulsive forces

Consider NaCl

 It requires 769 kJ to separate one mole of solid NaCl into gaseous Na⁺and Cl⁻ ions

Strongest covalent bonds known:

C-F: 544 kJ/mol

Si-F: 582 kJ/mol

N=N: 418 kJ/mol

N≡N: 942 kJ/mol

Charge-dipole interactions

- lons in a sea of polar molecules (e.g. H₂O)
 - □ a.k.a. "solvation" of ions
 - molecules orient to stabilize ionic charge
 - effect is about <u>5-20 kJ/mol</u> per interaction

$$E \propto -\frac{|z|\mu}{r^2}$$

where:

z is the charge of the ion, μ is the dipole moment, and r is the distance between the ion and the molecule

Water solvation

Clicker Question

Which dissolved ion are we looking at here

- Na⁺ or Cl⁻?

a) Na⁺

Worksheet Question #3

Which one experiences greater ion-dipole forces in water, Mg²⁺ or Na⁺?

ANS: Mg²⁺

Worksheet Question #3

Which one experiences greater ion-dipole forces in water, Mg²⁺ or Na⁺?

Mg2+ has the stronger interaction

Radial Distance (Å)

 Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte, Lowe, B. M.; Maekawa, Y.; Shibuta, Y., et al., Physical chemistry chemical physics, 2017, Volume 19, Issue 4

Hydrogen Bonding

A strong <u>dipole-dipole</u> force in molecules with a <u>hydrogen atom</u> bonded to an electronegative atom (**N**, **O**, **or F**).

Energy ~ <u>10-40 kJ/mol</u>

Neat application: molecular self-assembly

https://www.youtube.com/watch?v=G25mMDCFMwo

https://www.youtube.com/watch?v=HU_pgHIWsdc

Hydrogen Bonding (HB)

Hydrogen attached to a N, O, F interacting with ANOTHER N, O, F

- A hydrogen atom bonded to O, N, or F, making the hydrogen partially positive and able to form hydrogenbonds.
- Around 10-40 kJ/mol

Examples:

Water

Methanol

Water- ammonia

Hydrogen Bonding

Acetic acid dimerization

Hydrogen Fluoride chains (HF)_n

Clicker Question

 Which of these pure substances will not form hydrogen bonds?

- a) I and II
- b) I and III
- c) II and III
- d) II and IV
- e) I and IV

Clicker Question

Which of the following compounds is expected to have the highest boiling point?

- a) CH₃CH₂CH₃
- b) CH₃CH₂CH₂CH₃
- c) CH₃OCH₃
- d) CH₃CH₂NH₂
 - e) CH₃CH₂F

Worksheet Question #4

Which type of intermolecular interactions need to be overcome to convert each of the following liquids to gases?

- a) CH₄ London dispersion forces
- b) CH₃F London dispersion and dipole-dipole interactions
- c) CH₃OH London dispersion and hydrogen bonding (also a dipole-dipole interaction)

Worksheet Question #4 - Clicker Question

Which of the molecules from WS Q2 (CH₄, CH₃F, and CH₃OH) will experience **London dispersion forces**?

- A. CH₄
- B. CH₃F
- C. CH₃OH
- D. CH₄ and CH₃F
- E. All of the above

(All molecules have LD forces, but it might not be the most significant interaction.)

Worksheet Question #4 - Clicker Question

Which of the molecules from WS Q2 (CH_{4} , $CH_{3}F$, and CH₃OH) will experience dipole-dipole interactions?

- A. CH₄
- B. CH₃F
- C. CH₃OH
- ✓ D. CH₃F and CH₃OH
 - E. All of the above

(All polar molecules have dipole-dipole interactions.)

Worksheet Question #4 - Clicker Question

Which of the molecules from WS Q2 (CH₄, CH₃F, and CH₃OH) will experience **hydrogen bonding** interactions?

- A. CH₄
- B. CH₃F
- ✓C. CH₃OH
 - D. CH₃F and CH₃OH
 - E. All of the above

Summary

Force type	Strengt h	Exhibited by	Examples
London Dispersion forces	Weak	Present in all atoms and molecules. Strength increases as the number of electrons in the molecule increases (more polarizable)	I _{2,} Kr, PCI ₅
Dipole-dipole interactions	Strong	Molecules with a permanent dipole.	PCl ₃ , ICl, CH ₃ Cl
Hydrogen bonds	Strong	Molecules with H bonded to F, O, or N. The large electronegativity difference and resulting permanent dipole are responsible for the strength of these forces.	HF, H ₂ O
Charge-charge or Ion-ion interactions	Very Strong	Ionic solids or ionic liquids.	NaCl, K ₃ PO ₄

Clicker Question

There are three isomers of C₂H₂Cl₂, shown as ball-and-stick models below. Which isomer experiences London Dispersion forces only?

How do detergents and dispersants work?

Hydrocarbons from petroleum

 δ^{-}

(length appears different for perspective (3D))

Detergent or dispersant

