

СВЁРТОЧНАЯ НЕЙРОННАЯ СЕТЬ

Выход сети распределение вероятностей принадлежности к классу

СВЁРТОЧНАЯ НЕЙРОННАЯ СЕТЬ ДЛЯ MNIST

СВЁРТОЧНАЯ НЕЙРОННАЯ СЕТЬ ДЛЯ MNIST

СВЁРТКА СО СТРАЙДОМ

Conv

Шаг окна: 1

СВЁРТКА СО СТРАЙДОМ

Conv

Шаг окна: 1

Strided Conv

Шаг окна: 2

РЕГУЛЯРИЗАЦИЯ: DROPOUT

Без Дропаута

РЕГУЛЯРИЗАЦИЯ: DROPOUT

Без Дропаута

С Дропаутом

РЕГУЛЯРИЗАЦИЯ: WEIGHT DECAY (L2)

РЕГУЛЯРИЗАЦИЯ: WEIGHT DECAY (L2)

Значения нейрона для батча *В*

$$(x_1,\ldots,x_N)$$

Значения нейрона для батча *В*

$$(x_1, \dots, x_N)$$

BatchNorm

$$(y_1, \dots, y_N)$$

Mean

$$\mu_B = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Variance

$$\sigma_B^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_B)^2$$

Значения нейрона для батча *В*

$$(x_1, \dots, x_N)$$

BatchNorm

$$(y_1, \dots, y_N)$$

Значения нейрона для батча В

$$(x_1, \dots, x_N)$$

BatchNorm

$$(y_1, \dots, y_N)$$

Mean

$$\mu_B = \frac{1}{N} \sum_{i=1}^N x_i$$

Variance

$$\sigma_B^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_B)^2$$

Нормализация

$$\widehat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$$

Значения нейрона для батча В

$$(x_1, \dots, x_N)$$

BatchNorm

$$(y_1, \dots, y_N)$$

Mean

$$u_{\mathbf{B}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Variance

$$\mu_B = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\sigma_B^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_B)^2$

Нормализация

$$\widehat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$$

Шкалирование и сдвиг

$$y_i = \gamma \hat{x_i} + \beta$$

РЕГУЛЯРИЗАЦИЯ ДЛЯ СВЁРТОЧНХ НЕЙРОСЕТЕЙ

Dropout

Полносвязные слои

Batch Norm Свёрточные слои

Weight Decay (L2) Все слои с параметрами

ПРОСТЫЕ ИЗОБРАЖЕНИЯ

СЛОЖНЫЕ ИЗОБРАЖЕНИЯ

IMAGENET

ILSVRC 2012

~1'000'000 изображений 1'000 категорий

- Классификация
- Локализация
- Детектирование объектов

ALEXNET (2012)

- Архитектура: глубже и шире
- Local Response Normalization
- Dropout
- Аугментация данных
- SGD + Momentum

ALEXNET (2012)

- Архитектура: глубже и шире
- Local Response Normalization
- Dropout
- Аугментация данных
- SGD + Momentum

Ядра свёрток первого слоя 11х11

ZF Net (2013)

- Архитектура: похожа на AlexNet
- Local Contrast Normalization

VGG (2014)

- Очень глубокая и широкая сеть
- Группы свёрток 3х3
- Только элементарные слои:
 - Conv
 - Pooling
 - Fully-connected

Α	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224×224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
\sim	1/		conv1-512	conv3-512	conv3-512				
\wedge	/				conv3-512				
maxpool									
FC-4096									
FC-4096									
FC-1000									
soft-max									

VGG (2014)

- Очень глубокая и широкая сеть
- Группы свёрток 3х3
- Только элементарные слои:
 - Conv
 - Pooling
 - Fully-connected

VGG-16 VGG-19

Α	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
\ / \ \	LRN	conv3-64	conv3-64	conv3-64	conv3-64
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
$\langle \cdot \rangle$					conv3-256
\sim					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
\mathcal{N}			conv1-512	conv3-512	conv3-512
\triangle					conv3-512

VGG-16

Crop

Wrap

• Стек из Inception блоков

- Стек из Inception блоков
- Несколько выходов на лосс из середины сети

INCEPTION-V3

AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

27

Residual block

Residual block

ResNet-34

VGG-19

INCEPTION-RESNET-V2 (2016)

АУГМЕНТАЦИЯ ДАННЫХ: ОБУЧЕНИЕ

АУГМЕНТАЦИЯ ДАННЫХ: ИНФЕРЕНС

TRANSFER LEARNING

TRANSFER LEARNING

TRANSFER LEARNING

