

将数据加载到 Pandas DataFrame 中

00:00 / 04:06 1x CC

在机器学习中,你很有可能会使用来自很多来源的数据库训练学习算法。Pandas 使我们能够将不同格式的数据库加载到 DataFrame 中。用于存储数据库的最热门数据格式是 csv。 CSV 是指*逗号分隔值*,是一种简单的数据存储格式。我们可以使用 pd.read_csv() 函数将 CSV 文件加载到 Pandas DataFrame 中。我们将 Google 股票数据加载到一个 Pandas DataFrame 中。GOOG.csv 文件包含从雅虎金融那获取的 2004 年 8 月 19 日至 2017 年 10 月 13 日 Google 股票数据。

```
# 我们将 Google 股票数据加载到 DataFrame 中
Google_stock = pd.read_csv('./G00G.csv')

# 我们输出关于 Google_stock 的一些信息
print('Google_stock is of type:', type(Google_stock))
print('Google_stock has shape:', Google_stock.shape)
```


可以看出,我们将 GOOG.csv 文件加载到了 Pandas DataFrame 中,其中包含 3,313 行和 7 列数据。现在我们来看看股票数据

Google_stock

	Date	Open	High	Low	Clos
0	2004- 08-19	49.676899	51.693783	47.669952	49.845
1	2004- 08-20	50.178635	54.187561	49.925285	53.805
2	2004- 08-23	55.017166	56.373344	54.172661	54.346
•••					
3311	2017- 10-12	987.450012	994.119995	985.000000	987.83(
3312	2017- 10-13	992.000000	997.210022	989.000000	989.679
4					>

3313 rows × 7 *columns*

可以看出,这是一个非常庞大的数据集,Pandas 自动为该 DataFrame 分配了数字行索引。Pandas 还使用出现在 CSV 文件中的标签为列分配标签。

在处理这样的大型数据集时,通常有必要直接查看前几行数据,而不是整个数据集。我们可以使用 ·head() 方法查看前 5 行数据,如下所示

Google_stock.head()

0	2004- 08-19	49.676899	51.693783	47.669952	49.845802	4
1	2004- 08-20	50.178635	54.187561	49.925285	53.805050	;
2	2004- 08-23	55.017166	56.373344	54.172661	54.346527	
3	2004- 08-24	55.260582	55.439419	51.450363	52.096165	•
4	2004- 08-25	52.140873	53.651051	51.604362	52.657513	
4						•

我们还可以使用 .tail() 方法查看最后 5 行数据:

Google_stock.tail()

	Date	Open	High	Low	Clos
3308	2017- 10-09	980.000000	985.424988	976.109985	977.000
3309	2017- 10-10	980.000000	981.570007	966.080017	972.599
3310	2017- 10-11	973.719971	990.710022	972.250000	989.25(
3311	2017- 10-12	987.450012	994.119995	985.000000	987.83(
3312	2017- 10-13	992.000000	997.210022	989.000000	989.679
					>

我们还可以选择使用 .head(N) 或 .tail(N) 分别显示前 N 行和后 N 行数据。

Google_stock.isnull().any()

Date	False
Open	False
High	False
Low	False
Close	False
Adj Close	False
Volume	False
dtype: bool	

可以看出没有任何NaN值。

We get descriptive statistics on our stock data
Google_stock.describe()

	Open	High	Low	Close
count	3313.000000	3313.000000	3313.000000	3313.000000
mean	380.186092	383.493740	376.519309	380.072458
std	223.818650	224.974534	222.473232	223.853780
min	49.274517	50.541279	47.669952	49.681866
25%	226.556473	228.394516	224.003082	226.407440
50%	293.312286	295.433502	289.929291	293.029114
75%	536.650024	540.000000	532.409973	536.690002

max 992.000000 997.210022 989.000000 989.679993 →

如果有必要,我们可以对单列应用。describe()方法,如下所示:

We get descriptive statistics on a single column of our DataFra
Google_stock['Adj Close'].describe()

count 3313.000000 380.072458 mean std 223.853780 49.681866 min 25% 226.407440 293.029114 50% 75% 536.690002 989.679993 max

Name: Adj Close, dtype: float64

同样,你可以使用 Pandas 提供的很多统计学函数查看某个统计信息。我们来看一些示例:

```
# We print information about our DataFrame
print()
print('Maximum values of each column:\n', Google_stock.max())
print()
print('Minimum Close value:', Google_stock['Close'].min())
print()
print('Average value of each column:\n', Google_stock.mean())
```

Maximum values of each column:

 Date
 2017-10-13

 Open
 992

 High
 997.21

 Low
 989

Volume 82768100

dtype: object

Minimum Close value: 49.681866

Average value of each column:

Open3.801861e+02High3.834937e+02Low3.765193e+02Close3.800725e+02Adj Close3.800725e+02Volume8.038476e+06

dtype: float64

另一个重要统计学衡量指标是数据相关性。数据相关性可以告诉我们不同列的数据是否有关联。我们可以使用 corr() 方法获取不同列之间的关联性,如下所示:

We display the correlation between columns
Google_stock.corr()

	Open	High	Low	Close	Adj C
Open	1.000000	0.999904	0.999845	0.999745	0.999
High	0.999904	1.000000	0.999834	0.999868	0.999
Low	0.999845	0.999834	1.000000	0.999899	0.999
Close	0.999745	0.999868	0.999899	1.000000	1.000
Adj Close	0.999745	0.999868	0.999899	1.000000	1.000
Volume	-0.564258	-0.562749	-0.567007	-0.564967	-0.564
					>

使我们能够以不同的方式对数据分组。我们来看看如何分组数据,以获得不同类型的信息。 在下面的示例中,我们将加载关于虚拟公司的虚拟数据。

We load fake Company data in a DataFrame
data = pd.read_csv('./fake_company.csv')

data

	Year	Name	Department	Age	Salary	
0	1990	Alice	HR	25	50000	
	1990	Bob	RD	30	48000	
2	1990	Charlie	Admin	45	55000	
3	1991	Alice	HR	26	52000	
4	1991	Bob	RD	31	50000	
5	1991	Charlie	Admin	46	60000	
6	6 1992 ,	Alice	Admin	27	60000	
7	1992	Bob	RD	32	52000	
8	1992	Charlie	Admin	28	62000	

可以看出,上述数据包含从 1990 年到 1992 年的信息。对于每一年,我们都能看到员工姓名、所在的部门、年龄和年薪。现在,我们使用 •groupby() 方法获取信息。

我们来计算公司每年在员工薪资上花费的数额。为此,我们将使用 。groupby() 方法按 年份对数据分组,然后使用 。sum() 方法将所有员工的薪资相加。

We display the total amount of money spent in salaries each year
data.groupby(['Year'])['Salary'].sum()

•

1991 162000

1992

Name: Salary, dtype: int64

174000

可以看出,该公司在1990年的薪资花费总额为153,000美元,在1991年为162,000美元,在1992年为174,000美元。

现在假设我们想知道每年的平均薪资是多少。为此,我们将使用 •groupby() 方法按*年份*对数据分组,就像之前一样,然后使用 •mean() 方法获取平均薪资。我们来看看代码编写方式

```
# We display the average salary per year
data.groupby(['Year'])['Salary'].mean()
```

Year

1990 51000

1991 54000

1992 58000

Name: Salary, dtype: int64

可以看出,1990年的平均薪资为51,000美元,1991年为54,000美元,1992年为58,000美元。

现在我们来看看在这三年的时间内每位员工都收到多少薪资。在这种情况下,我们将使用 · groupby() 方法按照Name来对数据分组。之后,我们会把每年的薪资加起来。让我们来看看结果。

We display the total salary each employee received in all the yedata.groupby(['Name'])['Salary'].sum()

Name

Alice 162000

Bob 150000

=

我们看到, Alice在公司工作的三年时间里共收到了162,000美元的薪资, Bob收到了150,000, Charlie收到了177,000。

现在让我们看看每年每个部门的薪资分配状况。在这种情况下,我们将使用。groupby() 方法按照Year和Department对数据分组,之后我们会把每个部门的薪资加起来。让我们来 看看结果。

We display the salary distribution per department per year.
data.groupby(['Year', 'Department'])['Salary'].sum()

Year	Department	
1990	Admin	55000
	HR	50000
	RD	48000
1991	Admin	60000
	HR	52000
	RD	50000
1992	Admin	122000
	RD	52000

Name: Salary, dtype: int64

我们看到,1990年,管理部门支付了55,000美元的薪资,HR部门支付了50,000,研发部门支付了48,000。1992年,管理部门支付了122,000美元的薪资,研发部门支付了52,000。

Search or ask questions in Knowledge.

Ask peers or mentors for help in Student Hub.