Каждому комплексному числу z = x + yi ставится в соответствие точка с координатами (x;y) и угол, отложенный на плоскости Oxy от оси Ox к вектору (x,y). Этот угол называется аргументом, обозначается $\arg z$ и определён с точностью до 2π . Когда речь идёт о комплексной плоскости, оси абсцисс и ординат принято обозначать через Re и Im соответственно. Если r = |z| и $\varphi = \arg z$, то, как нетрудно проверить, $z = r(\cos \varphi + i \sin \varphi)$, такое представление называется тригонометрической записью комплексного числа. Принято отождествлять комплексное число z, точку (x;y) и радиус-вектор $\overrightarrow{(x,y)}$ этой точки.

1. Представьте в тригонометрической форме числа:

(a) 1; (b)
$$i$$
; (c) $1+i$; (d) $2+\sqrt{3}+i$; (e) $1+\cos\varphi+i\sin\varphi$; (f) $\frac{\cos\varphi+i\sin\varphi}{\cos\varphi-i\sin\varphi}$.

2. Дайте геометрическую интерпретацию следующих неравенств:

(a)
$$|z_1+z_2| \leqslant |z_1|+|z_2|$$
; (b) $|z_1-z_2| \geqslant ||z_1|-|z_2||$; (c) $|z-1| \leqslant |\arg z|$, при $|z|=1$.

3. Докажите, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Корни *п*-й степени

Для аналитического доказательства основной теоремы алгебры нам понадобится знать, как решать уравнения вида $z^n = a$. Эти решения удобно представлять в тригонометрической форме.

- 4. Пусть $a = r(\cos \psi + i \sin \psi) \neq 0$, докажите, что существует ровно n корней n-ой степени из a (т. е. корней уравнения $z^n = a$) и выпишите их в явном виде.
- 5. Докажите, что корни n-й степени из комплексного числа лежат в вершинах правильного n-угольника. Найдите радиус его описанной окружности.
- 6. Докажите, что все корни уравнения $z^n = 1$ можно записать как $1, \varepsilon, \varepsilon^2, \dots, \varepsilon^{n-1}$. Сколькими способами можно выбрать число ε ?

Упражнения

7. Какие множества на комплексной плоскости описываются условиями:

(a)
$$|z - i| \le 1$$
; (b) $|z| = z$; (c) $\text{Re}(z^2) \le 1$; (d) $|iz + 1| = 3$; (e) $|z - i| + |z + i| = 2$?

- 8. Докажите, что при любых вещественных чисел $a_i, b_i, i = \overline{1, n}$ выполняется неравен-CTBO $\sqrt{(a_1 + \ldots + a_n)^2 + (b_1 + \ldots + b_n)^2} \leqslant \sqrt{a_1^2 + b_1^2 + \ldots + \sqrt{a_n^2 + b_n^2}}$
- 9. Для любых $z_1, z_2 \in \mathbb{C}$ докажите равенство $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$. Дайте геометрическую интерпретацию.
- 10. Пусть $k \neq 1$ положительное вещественное число, а a и b произвольные комплексные числа. Докажите, что равенство |z-a|=k|z-b| задаёт окружность, центр которой лежит на прямой, проходящей через точки а и в. Дайте геометрическую интерпретацию 1 .
- 11. Докажите равенства:

(a)
$$\cos \varphi + \ldots + \cos n\varphi = \frac{\sin(n\varphi/2)\cos((n+1)\varphi/2)}{\sin(\varphi/2)};$$

(b) $\sin \varphi + \ldots + \sin n\varphi = \frac{\sin(n\varphi/2)\sin((n+1)\varphi/2)}{\sin(\varphi/2)};$

(b)
$$\sin \varphi + \ldots + \sin n\varphi = \frac{\sin(n\varphi/2)\sin((n+1)\varphi/2)}{\sin(\varphi/2)};$$

(c)
$$\frac{\sin \varphi + \sin 3\varphi + \ldots + \sin(2n-1)\varphi}{\cos \varphi + \cos 3\varphi + \ldots + \cos(2n-1)\varphi} = \operatorname{tg} n\varphi.$$

¹Эта окружность называется **окружностью Аполлония**.

Задачи

12. Найдите суммы:

(a)
$$C_n^0 - C_n^2 + C_n^4 - \dots$$
; (b) $C_n^1 - C_n^3 + C_n^5 - \dots$; (c) $C_n^0 + C_n^3 + C_n^6 + \dots$;

(d)
$$C_n^1 + C_n^4 + C_n^7 + \dots$$
; (e) $C_n^2 + C_n^5 + C_n^8 + \dots$

13. Докажите равенство:
$$C_n^1 - \frac{1}{3}C_n^3 + \frac{1}{9}C_n^5 - \ldots = \frac{2^n}{3^{(n-1)/2}}\sin\frac{n\pi}{6}$$
.

14. Вычислите:

(a)
$$\cos^2 \varphi + \cos^2 2\varphi + \ldots + \cos^2 2n\varphi$$
;

(b)
$$\sin^2 \varphi + \sin^2 2\varphi + \ldots + \sin^2 2n\varphi$$
.

- 15. Правильный n-угольник вписан в окружность радиуса 1. Докажите, что:
 - (a) сумма квадратов длин всех сторон и всех диагоналей равна n^2 ;
 - (b) сумма длин всех сторон и всех диагоналей равна $n \cot \frac{\pi}{2n}$;
 - (c) произведение длин всех сторон и всех диагоналей равно $n^{n/2}$.
- 16. Решите уравнение $(z-1)^n = (z+1)^n$ и выпишите сумму квадратов всех его корней.
- 17. Докажите, что при всех нечётных n>1 верно равенство $\sum_{m=1}^{n-1} \frac{1}{\sin^2 \frac{\pi m}{n}} = \frac{n^2-1}{3}$.
- 18. Докажите, что для любого нечётного n>1 существует число $\theta(n)\in(0,1)$, такое что выполняется равенство $\sum_{m=1}^{(n-1)/2}\frac{1}{m^2}=\frac{\pi^2}{6}-\frac{\pi^2}{2n}\cdot\theta(n)$, и вычислите $\sum_{n=1}^{\infty}\frac{1}{n^2}$.