《高等数学》单元自测题

第九章 多元函数微分法及其应用

专	业	姓名	学·	号
	、填空题			
1.	设 $z = 3^{xy}$,则 $\frac{\partial z}{\partial x} = $ 。 2. i	$ \frac{1}{x^2 + y} $	$_{\frac{1}{2}}$, $\mathbb{M} f_{y}(1,3) = _{-}$	o
3.	方程式 $xy + yz + zx = 1$ 确定 $z \in x, y$ 的二元	元函数,则 $\frac{\partial z}{\partial x} = $		•
4.	设 $z = y \sin e^x$,则 $\frac{\partial^2 z}{\partial x \partial y} = $ 。	$5. \forall z = \frac{1}{2} \ln(1+x)$	$(z^2 + y^2), dz _{(1,1)}$	=
6.	设函数 $z = f(x, y)$ 的全微分 $dz = 2xy^3 dx + dz$	ax^2y^2 dy,则常数 a =		o
7.	函数 $z = 3x^4 + xy + y^3$ 在点 A(1,2)处沿从点	(A到B(2,1)方向的方	万向导数等于	
8. 函数 $u = xy + yz + zx$ 在点(1,2,3)处的梯度 $\nabla u(1,2,3) =$ 。				
二、单项选择题				
1.	设 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ 则函	数 $f(x,y)$ 在原点 $(0$	9,0) 处()。	
	(A) 不连续,但偏导数存在 (C) 连续,且偏导数存在	(B) 连续,但偏 (D) 不连续,且		
2.	设 $z = \ln(2e^x - e^y)$, 则 $\left. \frac{\partial^2 z}{\partial^2 x} \right _{(0,0)} = 0$).		
	(A) 1 (B) -2	(C) 2	(D) -1	
3.	设方程 $F(x-y,y-z,z-x)=0$ 确定 z 是	x,y 的二元函数,则	$\frac{\partial z}{\partial x} = ($)	,
	(A) $\frac{F_1' - F_2'}{F_2' - F_3'}$ (B) $\frac{F_2' - F_1'}{F_2' - F_3'}$	(C) $\frac{F_1' - F_3'}{F_2' - F_3'}$	(D) $\frac{F_3' - F_1'}{F_2' - F_3'}$	
4.	函数 $z = \frac{x+y}{x-y}$ 的全微分 $dz = ($)。			

(A)
$$\frac{2(xdx - ydy)}{(x - y)^2}$$
 (B) $\frac{2(ydy - xdx)}{(x - y)^2}$ (C) $\frac{2(ydx - xdy)}{(x - y)^2}$ (D) $\frac{2(xdy - ydx)}{(x - y)^2}$

- 5. 函数 $z = 3x^3 xy + xy^2$ 在点 M(1,2)处沿 $l = \{11,3\}$ 方向的方向导数 ()。
 - (A) 最大 (B) 最小
- (C) 等于 1 (D) 等于 0
- 6. 在曲线 $x = t, y = t^2, z = t^3$ 的所有切线中与平面 x + 2y + z = 0 平行的切线 ()。

- (A)只有一条 (B)只有两条 (C)只有三条 (D)至少有三条
- 7. 函数 $f(x,y) = x^2 2xy y^3 + 4y^2$ 有 () 个驻点。

(B) 3

(C) 2

(D) 1

- 8. 对于函数 $z = x^2 y^2$, 原点(0,0) ()。

- (A) 是极小值点 (B) 是极大值点 (C) 不是驻点 (D) 是驻点但不是极值点

三、解答题

2. 设
$$z = \arctan \frac{y}{x}$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$ 。

3. 设方程
$$x^3 + 2y^2 + z^2 - z = 0$$
 确定 $z \neq x, y$ 的二元函数, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

4. 设
$$z = e^{u-2v}$$
, 而 $u = y \sin x, v = x \cos y$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

5. 设 $z = f(xy, \frac{y}{x}), f$ 具有二阶**连续的**偏导数, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

6. 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值.

7. 求球面 $x^2 + y^2 + z^2 = 14$ 在点(1,2,3)处的切平面和法线方程.

8. 要制作一个容积为 $2m^3$ 的无盖长方体水箱,问怎样选取长,宽,高,才能使得用料最省.