Logistic Regression

Using excel

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.1455325					
R Square	0.0211797					
Adjusted R						
Square	0.0211665					
Standard Error	0.4466794					
Observations	74343					

ANOVA

				Significance	
	df	SS	MS	F	F
Regression	1	320.9498685	320.95	1608.590206	0
Residual	74341	14832.69889	0.1995		
Total	74342	15153.64876			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	0.6402046	0.002479678	258.18	P-value	0.635344471	0.6450648	0.6353445	0.6450648
male	0.1324836	0.003303234	40.107	0	0.126009259	0.1389579	0.1260093	0.1389579

Using R script

```
1. setwd("A:/MA. Program/Semester 4/Thesis/Analyzing Data/r_language")
2. library(readxl)
3. library(stats)
4. library(knitr)
5.
6. mydata <- read_excel("education_1.xlsx")
8. model <- glm(label ~ sex, data = mydata, family = binomial(link = "logit"))
10. coefficients <- coef(model)
11. std errors <- sqrt(diag(vcov(model)))
12. z_values <- coefficients / std_errors
13. p_values <- 2 * (1 - pnorm(abs(z_values)))
15. # Create a data frame to store the results
16. result <- data.frame(Coefficient = coefficients,
                Std Error = std errors,
17.
                Z_Value = z_values
18.
                P_Value = p_values)
19.
20.
21. # Print the result table using knitr::kable()
22. print(kable(result, format = "markdown"))
```

Using Python

```
Dep. Variable:
                                                                           74342
                                 label
                                         No. Observations:
                                 Logit
                                         Df Residuals:
                                                                           74340
Model:
Method:
                                   MLE
                                         Df Model:
                     Mon, 17 Apr 2023
                                         Pseudo R-squ.:
                                                                         0.01763
Date:
                              08:24:15
Time:
                                         Log-Likelihood:
                                                                         -43656.
                                         LL-Null:
                                                                         -44439.
converged:
                                  True
Covariance Type:
                                         LLR p-value:
                             nonrobust
                                                                           0.000
                                                   P>|z|
                                                                 [0.025
                                                                              0.975]
               coef
                           std err
                                           Z
               0.5761
                           0.012
                                                                           0.599
                                      49.809
                                                  0.000
                                                               0.553
const
               0.6473
                                                  0.000
                                                               0.615
                                                                           0.679
                            0.016
                                      39.415
sex
```

```
1. import pandas as pd
```

14.

```
1. const = model.params['const']
2. sex = model.params['sex']
```

```
3. x min = df[sex].min()
```

```
4. x_{max} = df['sex'].max()
```

^{2.} import statsmodels.api as sm

^{3.} import numpy as np

^{4.} import matplotlib.pyplot as plt

^{5.} df = pd.read_excel('../data_processed/education_1.xlsx')

^{6.} X = df[['sex']]

^{7.} y = df['label']

^{8. #} Add a constant term to the predictor variables

^{9.} X = sm.add constant(X)

^{10. #} Fit the logistic regression model

^{11.} model = sm.Logit(y, X).fit()

^{12. #} Print the summary

^{13.} print(model.summary())

```
5. x = np.linspace(x_min, x_max, 100)
6. y = 1 / (1 + np.exp(-const - sex * x))
7. plt.plot(x, y)
8. plt.xlabel('Sex')
9. plt.ylabel('Probability')
10. plt.title('Logistic Regression Curve')
11. plt.show()
12.
```


