4. 識別 一統計的手法一

• 数值特徵

4.1 統計的識別とは

• 最大事後確率則による識別

$$C_{MAP} = rg \max_i P(\omega_i | oldsymbol{x})$$
 に特徴ベクトル $\omega_i \quad (1 \leq i \leq c):$ クラス

- データから直接的にこの確率を求めるのは難しい
- ベイズの定理 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

$$C_{MAP} = \arg \max_{i} P(\omega_{i}|\boldsymbol{x})$$

$$= \arg \max_{i} \frac{P(\boldsymbol{x}|\omega_{i})P(\omega_{i})}{P(\boldsymbol{x})}$$

$$= \arg \max_{i} P(\boldsymbol{x}|\omega_{i})P(\omega_{i})$$

4.1 統計的識別とは

• 事前確率

$$P(\omega_i)$$

- 特徴ベクトルを観測する前の、各クラスの起こりや すさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

N: 全データ数、 n_i : クラス i のデータ数

4.1 統計的識別とは

• 尤度

 $P(\boldsymbol{x}|\omega_i)$

- 特定のクラスから、ある特徴ベクトルが出現する尤 もらしさ
- d 次元ベクトルの場合の最尤推定
 - 値の組合せが データ中に出 現しないもの 多数

Weka の weather.nominal データ 3×3×2×2=36 種類の組合せ

- ナイーブベイズの近似
 - 全ての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d|\omega_i)$$
$$= \prod_{j=1}^d P(x_j|\omega_i)$$

$$C_{NB} = \arg\max_{i} P(\omega_i) \prod_{j=1}^{a} P(x_j | \omega_i)$$

• 尤度の最尤推定

$$P(x_j|\omega_i) = \frac{n_{ij}}{n_i}$$

 n_{ij} : クラスi のデータのうち、j 次元目の値が x_{ij} の個数

ゼロ頻度問題

• 確率の m 推定

$$P(x_j|\omega_i) = \frac{n_{ij} + mp}{n_i + m}$$

p: 事前に見積もった各特徴値の割合

m: 事前に用意する標本数

ラプラス推定

- m: 特徴値の種類数、 p: 等確率 とすると、 mp=1

weather.nominal データ

<u>S</u> Viewer X					
Relation: weather symbolic					
No.	1: outlook Nominal	2: temperature Nominal	3: humidity Nominal	4: windy Nominal	5: play Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no
Undo OK Cancel					

実行例

入力

$$m{x}$$
=(sunny, hot, high, false) $P(yes) = 0.63$ $P(no) = 0.38$ $P(m{x}|yes) = 3/12 \times 3/12 \times 4/11 \times 7/11 = 0.0144$ $P(m{x}|no) = 4/8 \times 3/8 \times 5/7 \times 3/7 = 0.0574$ $P(m{x}|yes) \cdot P(yes) = 0.0091 < P(m{x}|no) \cdot P(no) = 0.0218$

• 出力

no

4.3 ベイジアンネットワーク

- ベイジアンネットワークの仮定
 - 変数の部分集合が、ある分類値のもとで独立である

$$P(x_1, \dots, x_d) = \prod_{i=1}^{\infty} P(x_i | Parents(X_i))$$

