Introduction to HPC HW6 Report

姓名: 任一

学号:2018011423

ry18@mails.tsinghua.edu.cn

2020年5月15日

	实验环境
集群 GPU 节点:	cn006-cn007
nvcc 版本:	Cuda compilation tools, release 9.0, V9.0.176

1 实验概述

本次作业中,我通过所学的 CUDA 编程知识,结合对 GPU 架构的理解,实现了优于 baseline 的 gemm 算法,即计算 $C=\alpha AB+\beta C$,其中 A,B,C 的矩阵大小分别为 $M\times K,K\times N,M\times N$. 我做的 优化也主要集中于 AB 的矩阵乘法运算。提交目录中的 gemm_2018011423.h 即为我实现的 gemm 算法头文件。

2 实验思路

本次实验中,我主要利用了 GPU 每个 block 中的 shared memory,来减少从 global memory 中读取数据,以加快矩阵乘法计算速度。

具体来说,我将每个 block 的形状设置为 32 * 32,对于每个待计算的 Block,令 Block 中的每个 Thread 都从当前 Block 计算所涉及的 A 矩阵和 B 矩阵中的某一部分,读取相应的一个元素到 A_shared 和 B_shared 这样的 shared memory 中的矩阵里面。由于 shared memory 大小有限,我固定 A_shared 和 B_shared 矩阵的大小均为 32 * 32. 这样就需要在一个 Block 的计算中,对涉及的 A 矩阵和 B 矩阵的某一部分进行循环遍历,每次遍历都需要更新 A_shared 和 B_shared 中的数据,以得到最终该 Block 内元素的计算结果。实现示意图如图 1(b) 所示¹。

图 1: baseline 实现方法与我的实现方法对比

 $^{^1}$ 图源https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory

3 实验中的改进思路

本部分中我将介绍在进行本实验的过程中,我的一些想法和改进思路。

3.1 使用动态分配的 **shared memory**, 难以突破 **shared memory** 大小的瓶颈

当我对整个实验框架和 baseline 的实现思路进行学习后,我认为 baseline 很慢的很大一部分原因在于,没有使用 shared memory,每个线程只是从 global memory 当中读取数据,这样就没有很好地利用 GPU 的体系结构。

一个最直观的改进想法是,将实验中用到的矩阵 A,B,C 都存在 shared memory 中. 但经过资料的查找,我发现实验平台上 GPU 的 shared memory 大小为 48KB 2 ,这样小的存储空间难以存下 A,B,C 这 3 个矩阵,同时也不利于任意大小矩阵的计算。

为了减少对 shared memory 大小的占用,我发现每个 Block 在计算的过程中,只需要 A,B 矩阵的一部分内容,即可完成 Block 内的元素计算。举例来说,使用框架最初默认的 32×8 的 Block 大小,M=300,N=400,K=500. 在这样的参数下,每个 Block 所需要矩阵 A 中 $8\times K=4000$ 个元素,需要矩阵 B 中 $32\times K=16000$ 个元素,总计需要 20000 个元素。每个 double 型变量大小为 8Byte,因此该 Block 需要的元素所占的空间为 160KB,这比 shared memory 的 48KB 要大,因此不可行。此外这个数字还依赖于 K 的大小,也不利于任意大小矩阵的计算。

3.2 固定所需的 shared memory 大小,效果较好

为了解决该问题中,shared memory 大小有限带来的瓶颈,我上网查阅了一些资料,在 Nvidia 官方文档中找到了较为合适的解决方案 ³ ,并参考官方的解决方法,顺利完成了该实验,并得到了优于 baseline 的较好的结果。

具体来说,shared memory 一次难以存下每个 Block 所需的矩阵元素,一个解决方法就是固定每次 shared memory 存储的元素个数,分多次将所需的矩阵元素放入 shared memory 中进行计算。示意图如图 1(b) 所示。使用这个方法可以充分利用 GPU 中的 shared memory,同时也巧妙地解决了 shared memory 大小有限的问题,并且该解决方案也不依赖于输入矩阵的大小,具有很强的灵活性。不过该算法对于 M,N,K 不被 Block 大小整除的情况,需要一些特殊处理,经过一定的调试,我也完成了对该情况的处理,从而能够处理任意大小矩阵的乘法运算,

²资料来源于https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

³参考了 Nvidia 文档https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory

为了进一步优化该算法,我试图调整每个 Block 的大小,从 16×16 调整到了 32×32 . 在 M = 978, N = 782, K = 633 的 double 型运算中,得到的实验结果如下表: 从表中可以看出,我实现的算

表 1: 使用不同大小的 BlockSize 对性能的影响

	time(s)	GFLOPS	SpeedUp Ratio
BlockSize=16	0.005441	177.94	2.50
BlockSize=32	0.004417	219.20	3.09
Cublas	0.001247	776.36	10.95
Baseline	0.013540	70.91	1.00

法性能较 baseline 有很大的提升,此外 BlockSize 较大时性能相较 BlockSize 较小时的性能更好。这让我思考上面两个现象的原因。我从对 global memory 读取次数角度,来看我的算法相较 baseline 算法的提升之处,以及 BlockSize 对算法性能的影响。

为了分析的简便起见,我们在分析时认为 M,N,K 都可以被 BlockSize 整除,且仅考虑矩阵乘法的部分 (即 C=AB 两个矩阵的乘法). 对于 baseline 算法来说,C 中每个元素的计算,都需要从 global memory 中读取所需的元素。C 中每个元素的计算需要 A,B 两个矩阵中的 $2\times K$ 个元素,C 中共有 $M\times N$ 个元素. 因此使用 baseline 算法,共需从 global memory 中读取 2MNK 个元素.

对于我的算法来说,C 中每个 Block 需要从 global memory 中读取 $2 \times BlockSize \times K$ 个元素,C 中共有 $\frac{MN}{BlockSize^2}$ 个 Block. 因此使用我的方法需要从 global memory 中读取 $\frac{2MNK}{BlockSize}$ 个元素,需要从 global memory 中读取的元素少于 Baseline 算法。

由上面的分析,相较 baseline 算法,我的算法可以显著降低从 global memory 读取元素的次数,且从 global memory 中读取元素的个数与 BlockSize 成反比。这样就可以很好地解释在表 1 的实验中的两个实验现象,即我实现的算法性能较 baseline 有很大的提升,以及 BlockSize 较大时性能相较 BlockSize 较小时的性能更好。

4 实验结果分析

本部分中,我将通过不同尺寸的矩阵,对我的算法进行充分的性能测试,并与 Cublas 和 Baseline 算法进行对比分析。在表格和图中, MyGemm-16 和 MyGemm-32 分别表示 BlockSize 为 16 和 32 的我的算法。为了展示清晰,图中的横坐标均为以 2 为底的对数坐标。在如下所有测试中,我的算法结果均与正确结果保持一致。

4.1 固定 K, 改变 M, N

在本部分测试时,为了方便起见,我令 K=1024, M=N=MatrixOrder. 得到性能分析图表 如下:

表 2: GFLOPS-矩阵阶数表									
MatrixOrder	4	32	128	512	2048	8192	16384		
Baseline	0.172	9.982	61.494	77.081	78.642	78.363	78.397		
MyGemm-16	0.253	14.306	132.436	193.081	204.026	203.275	203.108		
MyGemm-32	0.286	10.821	110.799	223.122	236.552	237.245	237.023		
Cublas	0.109	7.081	109.683	702.897	1044.848	1078.783	1079.668		

表 3: 加速比-矩阵阶数表

MatrixOrder	4	32	128	512	2048	8192	16384
MyGemm-16	1.469	1.433	2.153	2.504	2.594	2.594	2.591
MyGemm-32	1.660	1.084	1.802	2.895	3.008	3.028	3.023
Cublas	0.631	0.709	1.784	9.119	13.286	13.767	13.772

图 2: 固定 K, 改变 M, N 时的性能分析

从图 2 中可以看出,随着矩阵阶数的增加,GFLOPS 和加速比都在增加。当矩阵阶数达到 2048 及更大的时候,GFLOPS 和加速比在各算法中的变化都趋于平缓。这样的现象可以解释为,当矩阵阶数增加时,并行计算的效率逐渐显现出来,当矩阵阶数达到一定值之后,并行计算的效率就逐渐趋于饱和,不再有很大的增长。

此外,对比各算法,当矩阵阶数很大的时候 (例如 512 及以上), Cublas 能够表现出很好的性能, 其次是 MyGemm-32 和 MyGemm-16, 这也佐证了 3.2 中的分析,即 BlockSize 较大时,性能会更好一些。不过在矩阵阶数很小的时候 (例如 32 及一下), Cublas 的性能甚至比 Baseline 算法还要慢一些, MyGemm-16 和 MyGemm-32 算法略优于 Baseline 算法。这可以理解为, Cublas 对大型矩阵计算做了很多较为复杂的优化,但当矩阵规模很小时,这些优化的开销相较优化带来的收益更大,因此矩阵规模小时 Cublas 的性能较低。而我实现的 MyGemm 算法没有过于复杂的优化技术,因此对于较小规模的矩阵运算也能表现出一定的优势。

4.2 固定 *M*, *N*, 改变 *K*

本部分测试中,我固定 M=N=1024, 改变 K, 得到性能分析图表如下:

表 4:	GFLOPS-K	数据表

农 +、GILOI 5-K 数版农								
K	32	128	512	2048	8192	16384	32768	
Baseline	71.131	76.723	77.846	78.042	77.098	76.750	76.556	
MyGemm-16	165.632	192.100	199.415	201.285	201.376	201.115	201.118	
MyGemm-32	172.557	216.842	229.456	234.087	237.662	236.905	237.452	
Cublas	309.196	651.014	876.057	945.675	970.994	968.644	971.713	

表 5: 加速比-K 数据表

K	32	128	512	2048	8192	16384	32768
MyGemm-16	2.329	2.504	2.562	2.579	2.612	2.620	2.627
MyGemm-32	2.426	2.826	2.948	3.000	3.083	3.087	3.102
Cublas	4.347	8.485	11.254	12.118	12.594	12.621	12.693

图 3: 固定 M, N, 改变 K 时的性能分析

从图 3 中可以得到和 4.1 中类似的结论,即当 K 增加时,各个算法的 GFLOPS 和加速比都有一定的提升,在矩阵规模很大时,这样的提升就趋于平缓。此外,Cublas 展现出了优异的性能,我实现的 MyGemm 算法相较 Baseline 算法也有较大的提升,并且 BlockSize 大的性能会更好一些。这些现象和结论与 4.1 中的非常相似,由于我在 4.1 中已经进行了详细的分析,在此就不再赘述了。

5 总结

在本次作业中,结合对 GPU 体系结构的理解,我尝试了 CUDA 编程。这让我加深了对于 GPU 的理解,也体验到了 GPU 编程与 CPU 编程的显著差异,从中也收获了很多,感谢老师和助教的悉心指教!