- \circ Gaussova věta o divergenci: $\oint_S \vec{F} \cdot \overrightarrow{dS} = \int_V \operatorname{div}(\vec{F}) dV$
- Stokesova věta o rotaci: $\oint_I \vec{F} \cdot \overrightarrow{dl} = \int_S \operatorname{rot}(\vec{F}) \cdot \overrightarrow{dS}$

Maxwellovy-Lorentzovy rovnice ve vakuu

- O Popisují nestacionární elmag. pole (na mikroskopické atomární úrovni) buzené rozložením zřídel ρ a \vec{j} (pohyblivými nabitými částicemi)
- Tyto částice jsou popsány rozložením mikroskopických nábojových a proudových hustot, které ovšem nejsou přímo měřitelné.

Maxwellovy rovnice v látkovém prostředí

Od Lorentzových rovnic můžeme přejít k rovnicím Maxwellovým tak, že mikroskopické veličiny vystředujeme přes dostatečně velké prostorové a časové intervaly. Tyto střední hodnoty lze již měřit přístroji. U nábojů a proudů pak musíme rozlišovat veličiny volné (ρ_v a $\overrightarrow{J_v}$) a veličiny vázané v látce, které jsou zahrnuty v \overrightarrow{D} a \overrightarrow{H} .

1. Gaussův zákon elektrostatiky

- Tok intenzity elektrického pole \vec{E} plochou S je $\Phi = \oint_S \vec{E} \cdot \vec{dS}$
- Tok vektoru plochou je maximální, je-li rovnoběžný s normálou k této ploše a nulový, je-li kolmý k normále. (viz skalární součin v integrálu $\vec{E} \cdot \vec{dS} = |\vec{E}| |\vec{dS}| \cos \alpha$).
- Tok vytákající z plochy je kladný, vtékající je záporný.
- **Gaussův zákon**: Tok elektrického pole libovolnou uzavřenou plochou je roven celkovému náboji obklopeném touto plochou děleno ε_0 .

$$\Phi = \oint_{S} \vec{E} \cdot \vec{dS} = \frac{Q}{\varepsilon_{0}} = \frac{1}{\varepsilon_{0}} \sum_{\alpha} q_{\alpha} = \frac{1}{\varepsilon_{0}} \int_{V} \rho dV$$

O S použitím Gaussový věty o divergenci (S je hranicí V) lze vyjádřit v diferenciálním tvaru:

$$\Phi = \oint_{S} \vec{E} \cdot \overrightarrow{dS} = \int_{V} \operatorname{div}(\vec{E}) dV = \frac{Q}{\varepsilon_{0}} = \int_{V} \frac{\rho}{\varepsilon_{0}} dV \implies \operatorname{div}(\vec{E}) = \frac{\rho}{\varepsilon_{0}}$$

– V látkovém prostředí (dielektriku) rozlišujeme hustotu volných nábojů ρ_v a vázaných nábojů $\rho_{pol}=-{
m div}(\vec{P}).$ Pak máme Maxwellku:

$$\operatorname{div}(\vec{E}) = \frac{\rho_v + \rho_{pol}}{\varepsilon_0} = \frac{1}{\varepsilon_0} \left(\rho_v - \operatorname{div}(\vec{P}) \right) \implies \operatorname{div}(\varepsilon_0 \vec{E} + \vec{P}) = \operatorname{div}(\vec{D}) = \rho_v$$

– Integrací přes objem a použitím Gaussový věty o divergenci získáme integrální tvar:

$$\oint_{S} \vec{D} \cdot \vec{dS} = Q$$

– Vektor **elektrické indukce** \vec{D} zahrnuje vlastnosti vnějšího pole i vázaných nábojů. Nábojová hustota ρ_v na pravé straně teď tedy obsahuje pouze volné náboje. \vec{P} je vektor polarizace – udává celkový elektrický dipólový moment jednotky objemu.

2. Neexistence magnetického monopólu

 Experimentálně víme, že neexistují magnetické náboje (magnetické monopóly). Magnetické pole je solenoidální (bez zdrojů). Siločáry jsou buď uzavřené křivky, nebo končí a začínají v nekonečnu. Tok magnetické intenzity uzavřenou plochou je tedy roven nule:

$$\Phi = \oint_{S} \vec{B} \cdot \vec{dS} = 0 \implies \operatorname{div}(\vec{B}) = 0$$

3. Faradayův zákon elektromagnetické indukce

- Elektromagnetická indukce časové změny magnetického indukčního toku (nestacionární magnetické pole) způsobují ve vodiči vznik indukovaného elektromotorického napětí.
 - Zdroje nestacionárního mag. pole: Pohybující se magnet, Vodič v klidu, kterým prochází proměnný proud (např. střídavý proud), Pohybující se vodič (s jakýmkoliv proudem)
- Faradayův zákon elmag. Indukce: $\varepsilon_{ind}=-\frac{d\Phi}{dt}$; $\Phi=\int_{S}\vec{B}\cdot\vec{dS}$; ε_{ind} se indukuje ve smyčce, která je hranicí plochy S (u které zkoumáme mag. indukční tok Φ); nezáleží na konkrétním tvaru plochy
 - V praxi: smyčka (cívka) se otáčí v homogenním magnetickém poli a tím se mění mag indukční tok / nebo se v dutině cívky otáčí permanentním magnetem.
- Lenzův zákon Indukovaný elektrický proud $I_{ind} = \frac{\varepsilon_{ind}}{R}$ má v uzavřeném obvodu takový směr, že svým magnetickým polem (které vytváří) působí proti změně mag. indukčního toku, která je jeho příčinou
 - o Proto je ve Faradayově zákoně znaménko –
 - o Jinak by se magnetické pole zvyšovalo nade všechny meze!
 - \circ I_{ind} (resp. $arepsilon_{ind}$) se tedy snaží zabránit změně ind. mag. toku (která ho vyvolala)
- Maxwellka:

$$\varepsilon_{ind} = \oint_{l} \vec{E} \cdot \vec{dl} = -\frac{\partial \Phi}{\partial t} = -\frac{\partial}{\partial t} \int_{S} \vec{B} \cdot \vec{dS} \; ; \; \text{ kde } l \text{ je hranice } S \text{, tedy } l = \partial S$$
 použijeme Stokesovu větu o rotaci:
$$\oint_{l} \vec{E} \cdot \vec{dl} = \int_{S} \text{rot}(\vec{E}) \cdot \vec{dS} = -\frac{\partial}{\partial t} \int_{S} \vec{B} \cdot \vec{dS}$$

$$\Rightarrow \text{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

4. Ampérův zákon (+ Maxwellův posuvný proud)

- Pokud spočítáme cirkulaci magnetické indukce podél kružnice (myšlená smyčka), kterou obepnemu nekočně dlouhý přímý vodič, získáme: $\Gamma = \oint_{l} \vec{B} \cdot \vec{dl} = \mu_{0}I$. Stejný výsledek platí pro libovolnou uzavřenou křivku.
 - Cirkulace je nenulová pouze pokud uzavřená křivka obepíná proud. To stejné platí i pokud křivka není v rovině kolmé na proud, stačí prostě aby křivka obepínala proud.
- Ampérův zákon: Cirkulace magnetické indukce podél libovolné uzavřené (myšlené) křivky je rovna celkovému proudu, který tato křivka obepíná, násobenému μ₀.

$$\Gamma = \oint_{l} \vec{B} \cdot \vec{dl} = \mu_{0} I_{in} = \mu_{0} \sum_{\alpha} I_{\alpha} = \mu_{0} \int_{S} \vec{J} \cdot \vec{dS}$$

- Dále musíme započítat **Maxwellův posuvný proud** $\overrightarrow{J_M} = \varepsilon_0 \frac{d\vec{E}}{dt}$ (aby platila rce. kontinuity $\frac{\partial \rho}{\partial t} + \text{div}(\vec{j}) = 0$)
 - O Ten není spojen s přesunem nábojů! Koeficient $\frac{1}{c^2}$ je velmi malý, projeví se proto až při velmi rychlých změnách \vec{E} . Při malých změnách (např. $f=50~{\rm Hz}$ v zásuvce) lze zanedbat.
 - \circ Při vysokých frekvencích $\overrightarrow{j_M}$ zanedbat nelze. V takovém případě dochází k vyzařování elmag. vln, vodič se tedy stává anténou.
 - o Máme Maxwellku ve vakuu:

$$\oint_{l} \vec{B} \cdot \vec{dl} = \mu_{0} \varepsilon_{0} \int_{S} \frac{d\vec{E}}{dt} \cdot \vec{dS} + \mu_{0} \int_{S} \vec{J} \cdot \vec{dS}$$

S použitím Stokesovy věty o rotaci získáme

$$\oint_{l} \vec{B} \cdot \vec{dl} = \int_{S} \operatorname{rot}(\vec{B}) \cdot \vec{dS} = \int_{S} \mu_{0} \varepsilon_{0} \frac{d\vec{E}}{dt} \cdot \vec{dS} + \int_{S} \mu_{0} \vec{J} \cdot \vec{dS} \implies \operatorname{rot}(\vec{B}) = \mu_{0} \vec{J} + \mu_{0} \varepsilon_{0} \frac{d\vec{E}}{dt}$$

Pro látkové prostředí rozlišujeme hustoty volných proudů $\overrightarrow{J_v}$, magnetizačních proudů $\overrightarrow{J_m} = \operatorname{rot}(\overrightarrow{M})$, polarizačních proudů $\overrightarrow{J_{pol}} = \frac{\partial \overrightarrow{P}}{\partial t}$ a Maxwellův posuvný proud $\overrightarrow{J_M} = \varepsilon_0 \frac{d \overrightarrow{E}}{dt}$. Pak platí:

$$\operatorname{rot}(\vec{B}) = \mu_0 \overrightarrow{J_{celkem}} = \mu_0 (\overrightarrow{J_v} + \overrightarrow{J_m} + \overrightarrow{J_{pol}} + \overrightarrow{J_M}) = \mu_0 \left(\overrightarrow{J_v} + \operatorname{rot}(\vec{M}) + \frac{\partial \vec{P}}{\partial t} + \varepsilon_0 \frac{d\vec{E}}{dt} \right)$$

$$\operatorname{rot}\left(\frac{\vec{B}}{\mu_0} - \overrightarrow{M}\right) = \overrightarrow{J_v} + \frac{\partial}{\partial t} (\vec{P} + \varepsilon_0 \vec{E})$$

$$\operatorname{rot}(\vec{H}) = \overrightarrow{J_v} + \frac{\partial \vec{D}}{\partial t}$$

Integrací přes plochu a Stokesovou větou o rotaci získáme integrální tvar:

$$\int_{S} \operatorname{rot}(\vec{H}) \cdot \vec{dS} = \oint_{l} \vec{H} \cdot \vec{dl} = \int_{S} \vec{J_{v}} \cdot \vec{dS} + \frac{\partial}{\partial t} \int_{S} \vec{D} \cdot \vec{dS}$$

$$\oint_{l} \vec{H} \cdot \vec{dl} = I + \frac{\partial \Psi}{\partial t}$$

SHRNUTÍ – Maxwellky v diferenciálním tvaru a látkovém prostředí:

Gaussův zákon elektrostatiky	$\operatorname{div}(\overrightarrow{D}) = ho_v$
Neexistence magnetického monopólu	$\operatorname{div}(\vec{B}) = 0$
Faradayův zákon elektromagnetické indukce	$\operatorname{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$
Ampérův zákon (+ Maxwellův posuvný proud)	$\operatorname{rot}(\vec{H}) = \vec{J_v} + \frac{\partial \vec{D}}{\partial t}$

– Vztahy mezi \vec{E} , \vec{B} a \vec{D} , \vec{H} se nazývají materiálové vztahy a je třeba je určit experimentálně ($\vec{D} = \varepsilon E$, $\vec{H} = \vec{B}/\mu$)