Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 4 am 28.07.2020

Name:	Matrike	Inummer: Punkte: /	
echnung		euz bei der richtigen Antwort. Sie dürfen Extrapapier für Zwischenb. Richtige Antworten zählen 1 Punkt, falsche, keine oder mehre	
1. Ei W	in LTI-System wird durch die Übertragungsfunktion $G(s)$ = Vas können wir über die Eingang/Ausgangs (E/A) Stabilität	= $\frac{3s+4}{(s+2)(s+5)}$ beschrieben. Betrachten Sie den Regler $K(s) = \frac{s+4}{s+4}$ und die innere (I) Stabilität des geschlossenen Kreises sagen?	
((a) E/A-stabil, I-stabil	(b) E/A-stabil, I-instabil	
((c) E/A-instabil, I-instabil	(d) E/A-instabil, I-stabil	
2. Be	etrachten Sie das folgende Bode Diagramm.		
	60 90 20 -40 -40 -40 -40 -40 -40 -40 -4	-90 -90 -90 -90 -90 -90 -180 -225 -270 -270 -270 -10 ⁻¹ 10 ⁻⁰ 1 Frequency (rad/sec)	
	as System hat die folgende Phasenreserve:		
((a) keine (b) 160 deg	(c) 20 deg (d) -160 deg	
sit	tivitätsfunktion $T(j\omega)$ beschrieben.	uency (rad/sec)	
	ieses System hat ein schlechtes Verhalten für		
((a) Störungen mit Frequenz $\omega = 0.3 \frac{\rm rad}{\rm s}$	(b) Messrauschen mit Frequenz $\omega = 95 \frac{\text{rad}}{\text{s}}$	
((c) Referenzsignale mit Frequenz $\omega = 100 \frac{\rm rad}{\rm s}$	(d) Referenzsignal mit Frequenz $\omega = 4 \frac{\mathrm{rad}}{\mathrm{s}}$	
4. W	Velche der folgenden Aussagen über das Wind-Up ist falsch'		
	(a) Durch das I-Glied im PID-Regler kann es zu reglerinduzierten Oszillationen kommen.	(b) Für den P- und den D-Regler ist die Saturation ein marginales Problem.	
,	(c) Der Integrationsanteil bei einem PI- bzw. PID-Regler kann im ungünstigsten Fall ins Unendliche steigen.	(d) Wind-Up kann durch die geeignete Wahl des Parameters $K_{\rm D}$ verhindert werden.	

5. Betrachten Sie das folgende Nyquist Diagramm einer stabilen offenen Kette.

Das System hat die folgende Amplitudenreserve:

(a) 1.5	(b) 0.66	(c)0.66	(d) <u></u> ∞	

6. Betrachten Sie die Systeme $G_1(s)=\frac{1}{s^2+s+3}$ und $G_2(s)=\frac{1}{s^2+0.1s+3}$. Wir definieren die Überschwinghöhe Δh , die statische Verstärkung als $h(\infty)$ und die Abklingzeit als T_{ab} . Welche der folgenden Aussagen ist falsch?

(a) $\triangle h_1 < \triangle h_2$ (b) $\triangle h_1(\infty) = h_2(\infty)$	(c) keine	(d) $T_{ab,1} = T_{ab,2}$
---	-----------	---------------------------

7. Betrachten Sie das folgende Nyquist-Diagramm einer stabilen offenen Kette, in dem außerdem der Einheitskreis eingezeichnet ist

Das System hat die folgende Phasenreserve:

8. Betrachten Sie das folgende Nyquistdiagramm.

Welcher Übertragungsfunktion entspricht es?

(a)	$(b) \qquad \frac{8}{s^2 + s + 2}$	(c) $\frac{4s}{s^2+s+1}$	$(d) \qquad \frac{1}{s^2 + s + 2}$

9. Ein LTI-System wird durch die Übertragungsfunktion $G(s) = \frac{s^3 + 2}{(s+2)(s+3)}$ beschrieben. Wenn der Regler K(s) = 1 + s benutzt wird, ist die Sensitivitätsfunktion S(s) gegeben durch

(a) $\frac{s^2 + 5s + 6}{s^4 + s^3 + s^2 + 7s + 8}$ (b) $\frac{(s+2)(s+3)}{s^3 + s^2 + 7s + 8}$	(c) $\frac{(s+2)(s+3)}{s^4+s^3+2+2s}$	(d) $\frac{s^2 + 5s + 6}{3s^2 + 5s + 10}$
---	---------------------------------------	---