Numerical Computation

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Deep Learning

Topics

- Overflow and Underflow
- Poor Conditioning
- Gradient-based Optimization
- Stationary points, Local minima
- Second Derivative
- Convex Optimization
- Lagrangian

Overview

- ML algorithms usually require a high amount of numerical computation
 - To update estimate of solutions iteratively
 - not analytically derive formula providing expression
- Common operations:
 - Optimization
 - Determine maximum or minimum of a function
 - Solving system of linear equations
- Just evaluating a mathematical function of real numbers with finite memory can be difficult

Overflow and Underflow

- Problem caused by representing real numbers with finite bit patterns
 - For almost all real numbers we encounter approximations
- Although a rounding error it compounds across many operations and algorithm will fail
 - Numerical errors
 - Underflow: when nos close to zero are rounded to zero
 - $-log \theta$ is -∞ (which becomes not-number for further operations)
 - Overflow: when nos with large magnitude are approximated as -∞ or +∞ (Again become not-no.)

Function needing stabilization for Over/Underflow

Softmax probabilities in multinoulli

$$\operatorname{softmax}(\mathbf{x})_{i} = \frac{\exp(x_{i})}{\sum_{i=1}^{n} \exp(x_{i})}$$

- Consider when all x_i are equal to some c. Then all probabilities must equal 1/n. This may not happen
 - When c is a large negative; denominator =0, result undefined underflow
 - When c is large positive, $\exp(c)$ will overflow
- Circumvented using softmax(z) where $z=x-\max_i x_i$
- Another problem: underflow in numerator can cause log softmax (x) to be -∞
 - Same trick can be used as for softmax

Dealing with numerical consderations

- Developers of low-level libraries should take this into consideration
- ML libraries should be able to provide such stabilization
 - Theano for Deep Learning detects and provides this

Poor Conditioning

- Conditioning refers to how rapidly a function changes with a small change in input
- Rounding errors can rapidly change the output
- Consider $f(x)=A^{-1}x$
 - $-A \ \varepsilon \ R^{n \times n}$ has a eigendecomposition
 - Its condition no. is $\max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$, i.e. ratio of largest to smallest eigenvalue
 - When this large, the output is very sensitive to input error
 - Poorly conditioned matrices amplify pre-existing errors when we multiply by its inverse

Gradient-Based Optimization

- Most ML algorithms involve optimization
- Minimize/maximize a function f(x) by altering x
 - Usually stated a minimization
 - Maximization accomplished by minimizing -f(x)
- f(x) referred to as objective function or criterion
 - In minimization also referred to as loss function cost, or error
 - Example is linear least squares $f(x) = \frac{1}{2}||Ax b||^2$
 - Denote optimum value by x^* =argmin f(x)

Calculus in Optimization

- Suppose function y=f(x), x, y real nos.
 - Derivative of function denoted: f'(x) or as dy/dx
 - Derivative f'(x) gives the slope of f(x) at point x
 - It specifies how to scale a small change in input to obtain a corresponding change in the output:

$$f(x + \varepsilon) \approx f(x) + \varepsilon f'(x)$$

- It tells how you make a small change in input to make a small improvement in y
- We know that $f(x \varepsilon \operatorname{sign}(f'(x)))$ is less than f(x) for small ε . Thus we can reduce f(x) by moving x in small steps with opposite sign of derivative
 - This technique is called gradient descent (Cauchy 1847)

Gradient Descent Illustrated

- For x>0, f(x) increases with x and f'(x)>0
- For x<0, f(x) is decreases with x and f'(x)<0
- Use f'(x) to follow function downhill
- Reduce f(x) by going in direction opposite sign of derivative f'(x)

Stationary points, Local Optima

- When f'(x)=0 derivative provides no information about direction of move
- Points where f'(x)=0 are known as stationary or critical points
 - Local minimum/maximum: a point where f(x) lower/higher than all its neighbors
 - Saddle Points: neither maxima nor minima

Deep Learning

Presence of multiple minima

- Optimization algorithms may fail to find global minimum
- Generally accept such solutions

Minimizing with multiple inputs

- We often minimize functions with multiple inputs: $f: R^n \rightarrow R$
- For minimization to make sense there must still be only one (scalar) output

Functions with multiple inputs

- Need partial derivatives
- $\frac{\partial}{\partial x_i} f(\mathbf{x})$ measures how f changes as only variable x_i increases at point \mathbf{x}
- Gradient generalizes notion of derivative where derivative is wrt a vector
- Gradient is vector containing all of the partial derivatives denoted $\nabla_x f(x)$
 - Element i of the gradient is the partial derivative of f wrt x_i
 - Critical points are where every element of the gradient is equal to zero

Directional Derivative

- Directional derivative in direction u (a unit vector) is the slope of function f in direction u
 - This evaluates to $u^T \nabla_x f(x)$
- To minimize f find direction in which f decreases the fastest
 - Do this using $\left| \min_{\mathbf{u}, \mathbf{u}^{\mathrm{T}} \mathbf{u} = 1} \mathbf{u}^{\mathrm{T}} \nabla_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{u}, \mathbf{u}^{\mathrm{T}} \mathbf{u} = 1} \left\| \mathbf{u} \right\|_{2} \left\| \nabla_{\mathbf{x}} f(\mathbf{x}) \right\|_{2} \cos \theta \right|$
 - where θ is angle between \mathbf{u} and the gradient
 - Substitute $\|\mathbf{u}\|_2 = 1$ and ignore factors that not depend on \mathbf{u} this simplifies to $\min_u \cos \theta$
 - This is minimized when u points in direction opposite to gradient
 - In other words, the *gradient points directly uphill, and*the negative gradient points directly downhill

Method of Gradient Descent

- The gradient points directly uphill, and the negative gradient points directly downhill
- Thus we can decrease f by moving in the direction of the negative gradient
 - This is known as the method of steepest descent or gradient descent
- Steepest descent proposes a new point

$$\mathbf{x'} = \mathbf{x} - \varepsilon \nabla_{\mathbf{x}} f(\mathbf{x})$$

– where ε is the learning rate, a positive scalar. Set to a small constant.

Choosing ε: Line Search

- We can choose ε in several different ways
- Popular approach: set ε to a small constant
- Another approach is called line search:
- Evaluate $f(x-\varepsilon\nabla_x f(x))$ for several values of ε and choose the one that results in smallest objective function value

Ex: Gradient Descent on Least Squares

Criterion to minimize

$$f(x) = \frac{1}{2} ||Ax - b||^2$$

- Least squares regression $\left| E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(x_n) \right\}^2 \right|$

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(x_n) \right\}^2$$

The gradient is

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = A^{T} (A\mathbf{x} - b) = A^{T} A\mathbf{x} - A^{T} \mathbf{b}$$

Gradient Descent algorithm is

1. Set step size ε , tolerance δ to small, positive nos.

2. while $\|A^TAx - A^Tb\|_{> \delta}$ do

$$x \leftarrow x - \varepsilon (A^T A x - A^T b)$$

3.end while

Convergence of Steepest Descent

- Steepest descent converges when every element of the gradient is zero
 - In practice, very close to zero
- We may be able to avoid iterative algorithm and jump to the critical point by solving the equation $\nabla_x f(x) = 0$ for x

Generalization to discrete spaces

- Gradient descent is limited to continuous spaces
- Concept of repeatedly making the best small move can be generalized to discrete spaces
- Ascending an objective function of discrete parameters is called hill climbing

Beyond Gradient: Jacobian and Hessian matrices

- Sometimes we need to find all derivatives of a function whose input and output are both vectors
- If we have function $f: R^m \rightarrow R^n$
 - Then the matrix of partial derivatives is known as the Jacobian matrix J defined as

$$\left| J_{i,j} = \frac{\partial}{\partial x_j} f(x)_i \right|$$

Second derivative

- Derivative of a derivative
- For a function $f: R^n \rightarrow R$ the derivative wrt x_i of the derivative of f wrt x_j is denoted as $\frac{\partial^2}{\partial x_i \partial x_j} f$
- In a single dimension we can denote $\frac{\partial^2}{\partial x^2}f$ by $f''(\boldsymbol{x})$
- Tells us how the first derivative will change as we vary the input
- This important as it tells us whether a gradient step will cause as much of an improvement as based on gradient alone

Second derivative measures curvature

- Derivative of a derivative
- Quadratic functions with different curvatures

Hessian

- Second derivative with many dimensions
- H(f)(x) is defined as $H(f)(x)_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j} f(x)$
- Hessian is the Jacobian of the gradient
- Hessian matrix is symmetric, i.e., $H_{i,j} = H_{j,i}$
 - anywhere that the second partial derivatives are continuous
 - So the Hessian matrix can be decomposed into a set of real eigenvalues and an orthogonal basis of eigenvectors
 - Eigenvalues of H are useful to determine learning rate as seen in next two slides

Role of eigenvalues of Hessian

- Second derivative in direction d is d^THd
 - If ${
 m d}$ is an eigenvector, second derivative in that direction is given by its eigenvalue
 - For other directions, weighted average of eigenvalues (weights of 0 to 1, with eigenvectors with smallest angle with d receiving more value)
- Maximum eigenvalue determines maximum second derivative and minimum eigenvalue determines minimum second derivative

Learning rate from Hessian

• Taylor's series of f(x) around current point $x^{(0)}$

$$f(\boldsymbol{x}) \approx f(\boldsymbol{x}^{(0)}) + (\boldsymbol{x} - \boldsymbol{x}^{(0)})^T \boldsymbol{g} + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^{(0)})^T H(\boldsymbol{x} - \boldsymbol{x}^{(0)})$$

- where ${m g}$ is the gradient and H is the Hessian at ${m x}^{(0)}$
- If we use learning rate ε the new point \boldsymbol{x} is given by $\boldsymbol{x}^{(0)}$ - $\varepsilon \boldsymbol{g}$. Thus we get $f(\boldsymbol{x}^{(0)} \varepsilon \boldsymbol{g}) \approx f(\boldsymbol{x}^{(0)}) \varepsilon \boldsymbol{g}^T \boldsymbol{g} + \frac{1}{2} \varepsilon^2 g^T H \boldsymbol{g}$
 - There are three terms:
 - original value of f,
 - expected improvement due to slope, and
 - correction to be applied due to curvature
 - Solving for step size when correction is least gives

$$arepsilon^* pprox rac{oldsymbol{g}^T oldsymbol{g}}{oldsymbol{g}^T H oldsymbol{g}}$$

Second Derivative Test: Critical Points

- On a critical point f'(x)=0
- When f''(x)>0 the first derivative f'(x) increases as we move to the right and decreases as we move left
- We conclude that x is a local minimum
- For local maximum, f'(x)=0 and f''(x)<0
- When f''(x)=0 test is inconclusive: x may be a saddle point or part of a flat region

Multidimensional Second derivative test

- In multiple dimensions, we need to examine second derivatives of all dimensions
- Eigendecomposition generalizes the test
- Test eigenvalues of Hessian to determine whether critical point is a local maximum, local minimum or saddle point
- When H is positive definite (all eigenvalues are positive) the point is a local minimum
- Similarly negative definite implies a maximum

Saddle point

- Contains both positive and negative curvature
- Function is $f(x) = x_1^2 x_2^2$

- Along axis x_I , function curves upwards: this axis is an eigenvector of H and has a positive value
- Along x_2 , function corves downwards; its direction is an eigenvector of H with negative eigenvalue
- At a saddle point eigen values are both positive and negative

Inconclusive Second Derivative Test

- Multidimensional second derivative test can be inconclusive just like univariate case
- Test is inconclusive when all non-zero eigen values have same sign but at least one value is zero
 - since univariate second derivative test is inconclusive in cross-section corresponding to zero eigenvalue

Poor Condition Number

- There are different second derivatives in each direction at a single point
- Condition number of H e.g., $\lambda_{\max}/\lambda_{\min}$ measures how much they differ
 - Gradient descent performs poorly when H has a poor condition no.
 - Because in one direction derivative increases rapidly while in another direction it increases slowly
 - Step size must be small so as to avoid overshooting the minimum, but it will be too small to make progress in other directions with less curvature

Gradient Descent without H

- *H* with condition no, 5
 - Direction of most curvature has five times more curvature than direction of least curvature
- Due to small step size
 Gradient descent wastes time
- Algorithm based on Hessian can predict that steepest descent is not promising

Newton's method uses Hessian

- Another second derivative method
 - Using Taylor's series of f(x) around current $x^{(0)}$

$$f(\mathbf{x}) \approx f(\mathbf{x}^{(0)}) + (\mathbf{x} - \mathbf{x}^{(0)})^T \nabla_{\mathbf{x}} f(\mathbf{x}^{(0)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(0)})^T H(f) (\mathbf{x} - \mathbf{x}^{(0)}) (\mathbf{x} - \mathbf{x}^{(0)})$$

- solve for the critical point of this function to give $\boxed{x^* = x^{(0)} H(f)(x^{(0)})^{-1}\nabla_x f(x^{(0)})}$
- When f is a quadratic (positive definite) function use solution to jump to the minimum function directly
- When not quadratic apply solution iteratively
- Can reach critical point much faster than gradient descent
 - But useful only when nearby point is a minimum

Summary of Gradient Methods

- First order optimization algorithms: those that use only the gradient
- Second order optimization algorithms: use the Hessian matrix such as Newton's method
- Family of functions used in ML is complicated, so optimization is more complex than in other fields
 - No guarantees
- Some guarantees by using Lipschitz continuous functions, $||f(x)-f(y)| \le L||x-y||$
 - with Lipschitz constant L

Convex Optimization

- Applicable only to convex functions functions which are well-behaved,
 - e.g., lack saddle points and all local minima are global minima
- For such functions, Hessian is positive semi-definite everywhere
- Many ML optimization problems, particularly deep learning, cannot be expressed as convex optimization

Constrained Optimization

- We may wish to optimize f(x) when the solution x is constrained to lie in set S
 - Such values of x are feasible solutions
- Often we want a solution that is small, such as $||x|| \le 1$
- Simple approach: modify gradient descent taking constraint into account (using Lagrangian formulation)

Ex: Least squares with Lagrangian

• We wish to minimize

$$f(\boldsymbol{x}) = \frac{1}{2} || A\boldsymbol{x} - \mathbf{b} ||^2$$

- Subject to constraint ${m x}^{\! {\mathrm{\scriptscriptstyle T}}} {m x} \le 1$
- We introduce the Lagrangian

$$L(oldsymbol{x},\lambda) = f(oldsymbol{x}) + \lambda \Big(oldsymbol{x}^Toldsymbol{x} - 1\Big)$$

And solve the problem

$$\min_{m{x}} \max_{\lambda, \lambda \geq 0} L(m{x}, \lambda)$$

- For the unconstrained problem (no Lagrangian) the smallest norm solution is x=A+b
 - If this solution is not feasible, differentiate Lagrangian wrt x to obtain $A^{T}Ax A^{T}b + 2\lambda x = 0$
 - Solution takes the form $\mathbf{x} = (A^{\mathrm{T}}A + 2 \lambda I)^{-1}A^{T}b$
 - Choosing λ : continue solving linear equation and increasing λ until x has the correct norm

Generalized Lagrangian: KKT

- More sophisticated than Lagrangian
- Karush-Kuhn-Tucker is a very general solution to constrained optimization
- While Lagrangian allows equality constraints, KKT allows both equality and inequality constraints
- To define a generalized Lagrangian we need to describe S in terms of equalities and inequalities

Generalized Lagrangian

• Set S is described in terms of m functions g(i) and n functions h(j) so that

$$S = \left\{ \boldsymbol{x} \mid \forall i, g^{(i)}(\boldsymbol{x}) = 0 \text{ and } \forall j, h^{(j)}(\boldsymbol{x}) \leq 0 \right\}$$

- Functions of g are equality constraints and functions of h are inequality constraints
- Introduce new variables λ_i and α_j for each constraint (called KKT multipliers) giving the generalized Lagrangian

$$L(\boldsymbol{x},\lambda,\alpha) = f(\boldsymbol{x}) + \sum_i \lambda_i g^{(i)}(\boldsymbol{x}) + \sum_j \alpha_j h^{(j)}(\boldsymbol{x})$$
 • We can now solve the unconstrained

We can now solve the unconstrained optimization problem

Gradient

Essential role of calculus

