THÉORÈME DE STONE WEIERSTRASS

Soit f une application continue de [0,1] dans \mathbb{C} . Pour tout entier $n \geq 1$, on définit le polynôme B_n de degré $\leqslant n$ par :

$$B_n(x) = \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

On note par ailleurs $M = \sup_{x \in [0,1]} |f(x)|$ et on fixe $\varepsilon > 0$

1. Justifier l'existence d'un réel $\eta_{\varepsilon}>0$ tel que, pour couple $(x,y)\in[0,1]^2$ vérifiant

$$|x - y| \leqslant \eta_{\varepsilon} \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

2. Pour $x, y \in \mathbb{R}$, donner une expression simple des quantités suivantes :

$$\sum_{k=0}^{n} k C_n^k x^k y^{n-k} \text{ et } \sum_{k=0}^{n} k(k-1) C_n^k x^k y^{n-k}.$$

3. Pour $x \in [0,1]$, on pose $r_k(x) = C_n^k x^k (1-x)^{n-k}$. Montrer que

$$\sum_{k=0}^{n} r_k(x) = 1, \ \sum_{k=0}^{n} k r_k(x) = nx, \ \sum_{k=0}^{n} k(k-1) r_k(x) = n(n-1)x^2.$$

En déduire l'égalité :

$$\sum_{k=0}^{n} (k - nx)^{2} r_{k}(x) = nx(1 - x).$$

4. Montrer que pour tout $x \in [0, 1]$, on a :

$$|f(x) - B_n(x)| \le \sum_{k=0}^n \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x).$$

5. Pour $x \in [0,1]$, on note $J(x) = \{0 \leqslant k \leqslant n; |k - nx| \leqslant n\eta_{\varepsilon}\}$. Prouver que :

$$\sum_{\substack{k=0\\k\in J(x)}}^{n} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x) \leqslant \varepsilon.$$

6. Prouver que:

$$\sum_{k=0 \atop k \notin J(x)}^{n} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x) \leqslant 2M \sum_{k=0 \atop k \notin J(x)}^{n} \frac{(k-nx)^2}{n^2 \eta_{\varepsilon}^2} r_k(x),$$

puis que

$$\sum_{\substack{k=0\\k \notin J(x)}}^{n} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x) \leqslant \frac{M}{2n\eta_{\varepsilon}^2}.$$

- 7. En déduire que la suite de polynômes B_n converge uniformément vers f sur [0,1].
- 8. En déduire le théorème d'approximation de Weierstrass : si f est continue sur [a, b], il existe une suite de fonctions polynomiales qui converge uniformément vers f sur [a, b].

<u>Indication</u>: Prendre $g: x \in [0,1] \longrightarrow f(a+x(b-a))$

9. **Application :** Soit a, b réels tels que a < b et $f \in \mathcal{C}([a, b], \mathbb{C})$ telle que

$$\forall n \in \mathbb{N}, \quad \int_{a}^{b} x^{n} f(x) dx = 0$$

Montrer que f est nulle

THÉORÈME DE STONE WEIERSTRASS

- 1. Théorème de Heine
- 2. D'après la formule du binôme :

$$\sum_{k=0}^{n} C_n^k x^k y^{n-k} = (x+y)^n.$$

On dérive les deux membres de cette égalité par rapport à x, puis on multiplie par x:

$$\sum_{k=0}^{n} k C_n^k x^k y^{n-k} = nx(x+y)^{n-1}.$$

De même, en dérivant deux fois :

$$\sum_{k=0}^{n} k(k-1)C_n^k x^k y^{n-k} = n(n-1)x^2(x+y)^{n-2}.$$

3. On spécialise les résultats précédents pour y = 1 - x. On obtient :

$$\sum_{k=0}^{n} r_k(x) = 1$$

$$\sum_{k=0}^{n} k r_k(x) = nx,$$

$$\sum_{k=0}^{n} k(k-1)r_k(x) = n(n-1)x^2.$$

On a de plus :

$$(k - nx)^2 = k(k - 1) + k(1 - 2nx) + n^2x^2.$$

En reportant les calculs précédents, on trouve donc :

$$\sum_{k=0}^{n} (k - nx)^{2} r_{k}(x) = nx(1 - x).$$

4. Remarquons que

$$f(x) = f(x) \sum_{k=0}^{n} r_k(x) = \sum_{k=0}^{n} f(x) r_k(x).$$

On a donc:

$$|f(x) - B_n(x)| \le \sum_{k=0}^n \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x).$$

5. Si $|k - nx| \leq n\eta_{\varepsilon}$, on a en particulier :

$$\left| \frac{k}{n} - x \right| \leqslant \eta_{\varepsilon} \implies \left| f(x) - f\left(\frac{k}{n}\right) \right| \leqslant \varepsilon.$$

En utilisant que $\sum_{k=0}^{n} r_k(x) = 1$, on en déduit le résultat.

6. Remarquons que si $|k - nx| \ge n\eta_{\varepsilon}$, on a alors

$$1 \leqslant \frac{(k - nx)^2}{n^2 \eta_{\varepsilon}^2}.$$

On déduit :

$$\sum_{k \in J(x)^c} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x) \leqslant \frac{2M}{n^2 \eta_{\varepsilon}^2} \sum_{k \in J^c} (k - nx)^2 r_k(x)
\leqslant \frac{2M}{n^2 \eta_{\varepsilon}^2} \sum_{k=0}^n (k - nx)^2 r_k(x)
\leqslant \frac{2M}{n^2 \eta_{\varepsilon}^2} nx(1 - x)
\leqslant \frac{M}{2nn^2},$$

THÉORÈME DE STONE WEIERSTRASS

où la dernière inégalité vient du fait que le maximum de $x \mapsto x(1-x)$ sur [0,1] est atteint en $\frac{1}{2}$ et vaut $\frac{1}{4}$.

7. Fixons $\varepsilon > 0$. D'après la question 4, on a l'inégalité

$$|f(x) - B_n(x)| \le \sum_{k=0}^n \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x).$$

 $\eta_{arepsilon}$ est donné par l'uniforme continuité. On fixe ensuite n_0 suffisamment grand tel que :

$$\forall n \geqslant n_0, \quad \frac{M}{2n\eta_{\varepsilon}^2} \leqslant \varepsilon.$$

On a alors, pour $n \ge n_0$ et $x \in [0, 1]$:

$$|f(x) - B_n(x)| \leqslant \sum_{k=0}^{n} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x)$$

$$\leqslant \sum_{k \in J(x)^c} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x) + \sum_{k \in J(x)} \left| f(x) - f\left(\frac{k}{n}\right) \right| r_k(x)$$

$$\leqslant \frac{M}{2n\eta_{\varepsilon}^2} + \varepsilon \sum_{k \in J(x)} r_k(x) \leqslant \frac{M}{2n\eta_{\varepsilon}^2} + \varepsilon \sum_{k=0}^{n} r_k(x)$$

$$\leqslant 2\varepsilon$$

On en déduit donc que $\forall n \geq n_0$, on a $||f - B_n||_{\infty} \leq 2\varepsilon$.

Ceci prouve bien la convergence uniforme de la suite $(B_n)_{n\geq 0}$ vers f.

- 8. Posons g(x) = f(a + (b a)x), pour $x \in [0, 1]$. La suite (B_n) de polynômes de Bernstein associée à g converge uniformément vers g sur [0, 1]. Posons $Q_n(x) = B_n\left(\frac{x-a}{b-a}\right)$, pour $x \in [a, b]$. (Q_n) est encore une suite de fonctions polynomiales, et il est trivial de vérifier que (Q_n) converge uniformément vers f sur [a, b].
- 9. Par linéarité de l'intégrale, pour tout polynôme $P \in \mathbb{C}[X]$, on a :

$$\int_{a}^{b} P(x) f(x) dx = 0$$

La fonction $\overline{f}: x \longmapsto \overline{f(x)}$ est elle aussi continue sur [a,b]. Donc, d'après théorème de Weierstrass, il existe une suite $(P_n)_{n\in\mathbb{N}}$ convergeant uniformément sur [a,b] vers \overline{f} .

Pour tout $n \in \mathbb{N}$ et tout $x \in [a, b]$, en écrivant

$$\left| \left| f(x) \right|^2 - f(x) P_n(x) \right| = \left| f(x) \left(\overline{f(x)} - P_n(x) \right) \right|$$

et il en résulte que la suite $(fP_n)_{n\in\mathbb{N}}$ converge uniformément vers $|f|^2$ sur [a,b]. D'après le théorème d'intégration des limites uniformes, il vient alors :

$$\int_{a}^{b} |f(x)|^{2} dx = \lim_{n \to +\infty} \int_{a}^{b} f(x) P_{n}(x) dx$$

Donc

$$\int_{a}^{b} \left| f(x) \right|^{2} \, \mathrm{d}x = 0$$

La fonction $\left|f\right|^2$ étant continue positive sur le segment [a,b] d'intégrale nulle, donc $\left|f\right|=0$, ainsi la nullité de f