21-238, Math Studies Algebra 2, Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc TARTAR, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

34- Monday April 16, 2012.

Lemma 34.1: (fundamental theorem of Galois theory) Let F be a finite Galois extension of E. Then a) The mapping $K \mapsto Aut_K(F)$ for intermediate fields (i.e. $E \subset K \subset F$), and the mapping $H \mapsto Fix(H)$ for subgroups of $Aut_E(F)$ are inverse bijections.

- b) For any intermediate field K, F is a Galois extension of K.
- c) For an intermediate field K, K is a Galois extension of E if and only if K is a normal extension of E, or if and only if $Aut_K(F) \triangleleft Aut_E(F)$. In that case the mapping $\sigma \mapsto \sigma|_K$ maps $Aut_E(F)$ into $Aut_E(K)$, it is surjective with kernel $Aut_K(F)$, and it induces an isomorphism from $Aut_E(K)$ onto the quotient group $Aut_E(F)/Aut_K(F)$.

Proof: If H is a subgroup of $Aut_E(F)$, then H is finite since $|Aut_E(F)| = [F:E] < \infty$, so that if K = Fix(H) one has $H = Aut_K(F)$ by Lemma 32.6. By Lemma 33.8, F is a splitting field extension for a separable $f \in E[x]$ over E. If K is an intermediate field, then F is a splitting field extension for f over K, f is separable over K by Lemma 33.6, so that F is a Galois extension of K by Lemma 33.8, and this proves b); it means $K = Fix(Aut_K(F))$, which ends the proof of a).

Since F is a separable extension of E, K is also a separable extension of E, and then K is a Galois extension of E if and only if it is a normal extension of E by Lemma 33.8. Each $\sigma \in Aut_E(F)$ permutes the roots of any polynomial $Q \in E[x]$, in particular if $a \in K$ has minimal (monic irreducible) polynomial $P_a \in E[x]$, $\sigma(a)$ is another root of P_a belonging to F; the restriction $\sigma|_K$ of σ to K is an homomorphism of K into F, and if all the roots of P_a belong to K, one has $\sigma|_K(a) \in K$.

Assuming that K is a Galois extension of E, K is a normal extension of E, i.e. all P_a split over K for $a \in K$, so that $\sigma|_K$ maps K into K, and it is an automorphism of K since it is a bijection in F, and $\sigma|_K \in Aut_E(K)$ because it fixes E. Moreover, the mapping which to $\sigma \in Aut_E(F)$ associates $\sigma|_K \in Aut_E(K)$ is an homomorphism, and its kernel corresponds to $\sigma|_K = id_K$, i.e. σ fixes K, or $\sigma \in Aut_K(F)$, which is then a normal subgroup of $Aut_E(F)$ as the kernel of an homomorphism. Also, the image of this homomorphism is contained in $Aut_E(K)$ whose order is $\leq [K:E]$, and the image has order $\frac{|Aut_E(F)|}{|Aut_K(F)|} = \frac{[FE]}{|FK|} = [K:E]$, so that the homomorphism is surjective, and the first isomorphism theorem gives $Aut_E(K)$ isomorphic to $Aut_E(F)/Aut_K(F)$.

Finally, assuming that $Aut_K(F)$ is a normal subgroup of $Aut_E(F)$, one wants to show that K is a normal extension of E. Let $a \in K$ and let $P_a \in E[x]$ be its monic irreducible polynomial, which splits in F as $\prod_i (x - a_i)$, where the a_i run through the orbit of a by action of $Aut_E(F)$ (by the proof of Lemma 33.8), and one wants to show that each a_i belongs to K: one starts by choosing $\sigma \in Aut_E(F)$ such that $\sigma(a) = a_i$, and then for $\tau \in Aut_K(F)$ one has $\sigma^{-1}\tau \sigma \in Aut_K(F)$ since $Aut_K(F)$ is a normal subgroup of $Aut_E(F)$, so that $\sigma^{-1}\tau \sigma(a) = a$ because $a \in K$, i.e. $\tau(a_i) = a_i$; since this holds for all $\tau \in Aut_K(F)$, it means that $a_i \in Fix(Aut_K(F))$, which is K, because F is a Galois extension of K by b), and it proves c).

Lemma 34.2: Let $f \in E[x]$ be separable over E, and let F be a splitting field extension for f over E. Every $\sigma \in Aut_E(F)$ determines a permutation π of the roots of f, and the knowledge of π characterizes σ .

Moreover, if f is irreducible and $a, b \in F$ are two roots of f, there exists $\sigma \in Aut_E(F)$ with $\sigma(a) = b$, i.e. $Aut_E(F)$ acts transitively on the roots of f.²

Proof: For any polynomial $P \in E[x]$, any root $r \in F$ of P, and any $\sigma \in Aut_E(F)$, $\sigma(r)$ is a root of P (in F), and since $\sigma^{-1} \in Aut_E(F)$ one deduces that σ induces a permutation π of the roots of P. Since F is a splitting field extension for f over E, and $r_1, \ldots, r_n \in F$ are the roots of f, then $F = E(r_1, \ldots, r_n) = E[r_1, \ldots, r_n]$, 3 so that every $c \in F$ can be written $c = Q(r_1, \ldots, r_n)$ for a polynomial $Q \in E[x_1, \ldots, x_n]$, and then $\sigma(c) = Q(\sigma(r_1), \ldots, \sigma(r_n)) = Q(\pi(r_1), \ldots, \pi(r_n))$ is determined by π .

¹ f splits over F and F is generated by E and the roots of f, hence generated by K and the roots.

² A group G acts transitively on a set X if for every $x_1, x_2 \in X$ there exists $g \in G$ with $g x_1 = x_2$.

³ Since K(r) = K[r] if r is algebraic over K, one deduces by induction that $E(r_1, \ldots, r_n) = K(r_n)$ with $K = E(r_1, \ldots, r_{n-1}) = E[r_1, \ldots, r_{n-1}]$ and then $K(r_n) = K[r_n] = E[r_1, \ldots, r_n]$.

⁴ Not every permutation on the roots defines an element $\sigma \in Aut_E(F)$, of course.

The case b=a is obvious (with $\sigma=id$), and one assumes $b\neq a$, so that $deg(f)\geq 2$, and neither a nor b belong to E. Because f is irreducible, E(a) is isomorphic to E(b), and there exists a unique isomorphism σ_0 from E(a) onto E(b) extending id_E and such that $\sigma_0(a)=b.$ Then, F is a splitting field extension for f over E(a), and also over E(b), and by the uniqueness of the splitting field extension up to isomorphism, one can extend σ_0 (not in a unique way) into an isomorphism σ of F, which then belongs to $Aut_E(F)$.

Lemma 34.3: The splitting field extension for $x^4 - 2$ over \mathbb{Q} is $\mathbb{Q}(\alpha, i)$ with $\alpha = \sqrt[4]{2}$; it is a Galois extension of \mathbb{Q} with $|Aut_{\mathbb{Q}}(\mathbb{Q}(\alpha, i))| = [\mathbb{Q}(\alpha, i) : \mathbb{Q}] = 8$.

Proof: The polynomial $f = x^4 - 2$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein criterion, and its roots in \mathbb{C} are $\alpha, \alpha, \alpha, \alpha, \alpha, \alpha$, so that $\mathbb{Q}(\alpha, \alpha, \alpha, \alpha, \alpha, \alpha) = \mathbb{Q}(\alpha, \alpha)$ is the desired splitting field extension, but since $\frac{1}{\alpha} \in \mathbb{Q}[\alpha]$, it is $\mathbb{Q}(\alpha, i)$. Since $\mathbb{Q}(\alpha) \subset \mathbb{R}$, $x^2 + 1$ is irreducible in $\mathbb{Q}(\alpha)$ (because $\pm i \notin \mathbb{Q}(\alpha)$), so that $Q(\alpha, i) = (\mathbb{Q}(\alpha))(i)$, and $[\mathbb{Q}(\alpha, i) : \mathbb{Q}(\alpha)] = 2$, which with $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ gives $[\mathbb{Q}(\alpha, i) : \mathbb{Q}] = 8$. Since f is irreducible in $\mathbb{Q}[x]$ and $f' \neq 0$, f is separable by Lemma 33.4, so that $\mathbb{Q}(\alpha, i)$ is a Galois extension of \mathbb{Q} by Lemma 33.8, which gives $|Aut_{\mathbb{Q}}(\mathbb{Q}(\alpha, i))| = [\mathbb{Q}(\alpha, i) : \mathbb{Q}] = 8$.

Remark 34.4: Up to isomorphism, the Abelian groups of order 8 are \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, and the non-Abelian groups of order 8 are the dihedral group D_4 , and the quaternion group Q_8 .

Lemma 34.5: For $\alpha = \sqrt[4]{2}$, $Aut_{\mathbb{Q}}(\mathbb{Q}(\alpha, i))$ is isomorphic to the dihedral group D_4 .

Let σ denote the element satisfying $\sigma(\alpha) = \alpha i$ and $\sigma(i) = i$, which when restricted to being a permutation of $\{1, 2, 3, 4\}$ corresponds to the circular permutation (1, 2, 3, 4); let τ denote the element satisfying $\tau(\alpha) = \alpha$ and $\tau(i) = -i$, which when restricted to being a permutation of $\{1, 2, 3, 4\}$ corresponds to the transposition (2, 4); then $\tau^{-1}\sigma\tau(i) = i = \sigma^{-1}(i)$ and $\tau^{-1}\sigma\tau(\alpha) = -\alpha i = \sigma^{-1}(\alpha)$, so that $\tau^{-1}\sigma\tau = \sigma^{-1}$ (or equivalently $\tau\sigma\tau = \sigma^3$), and such a relation between two generators characterizes the dihedral group D_4 .

Lemma 34.6: For $\alpha = \sqrt[4]{2}$, besides \mathbb{Q} itself, and $\mathbb{Q}(\alpha, i)$, which is an extension of \mathbb{Q} of order 8, the intermediate fields (strictly) between \mathbb{Q} and $\mathbb{Q}(\alpha, i)$ are:

 $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, and $\mathbb{Q}(\sqrt{2}i)$, which are extensions of \mathbb{Q} of order 2,

 $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\alpha i)$, $\mathbb{Q}(\alpha (1-i))$, $\mathbb{Q}(\alpha (1+i))$, and $\mathbb{Q}(\sqrt{2},i)$, which are extensions of \mathbb{Q} of order 4.

Proof: Because $\mathbb{Q}(\alpha, i)$ is a Galois extension of \mathbb{Q} , one must make the list of all subgroups of the dihedral group D_4 , and identify the corresponding intermediate fields fixed by the subgroups. The group is made of e, $\sigma = (1234)$, $\sigma^2 = (13)(24)$, $\sigma^3 = (1432)$, $\tau = (24)$, $\tau = (14)(23)$, $\tau = (13)$, and $\tau = (12)(34)$.

The subgroups of order 2, corresponding to field extensions of \mathbb{Q} of order 4, are

 $\{e, (24)\}$: fixes α , so the fixed field contains $\mathbb{Q}(\alpha)$, but $[\mathbb{Q}(\alpha):\mathbb{Q}] = 4$, so that the fixed field is $\mathbb{Q}(\alpha)$;

 $\{e, (13)\}$: fixes αi , and similarly the fixed field is $\mathbb{Q}(\alpha i)$,

 $\{e, (13)(24)\}$: maps α to $-\alpha$, so it fixes $\alpha^2 = \sqrt{2}$, and it fixes i, so that the fixed field is $\mathbb{Q}(\sqrt{2}, i)$;

 $\{e, (14)(23)\}$: maps α to $-\alpha i$, and αi to $-\alpha$, so it fixes $\beta = \alpha (1-i)$, and the fixed field contains $\mathbb{Q}(\beta)$; one has $\beta^2 = -2\alpha^2 i$, $\beta^3 = 2\alpha^3 (1-i)$, $\beta^4 = -8$, and Eisenstein criterion does not apply to $x^4 + 8$, but 1, β , β^2 and β^3 are \mathbb{Q} -linearly independent, so that $[\mathbb{Q}(\beta):\mathbb{Q}] = 4$, and the fixed field is $\mathbb{Q}(\beta)$;

 $\{e, (12)(34)\}$: maps α to αi , and αi to α , so it fixes $\gamma = \alpha (1+i)$, and similarly the fixed field is $\mathbb{Q}(\gamma)$.

The subgroups of order 4, corresponding to field extensions of \mathbb{Q} of order 2, are

 $\{e, \sigma, \sigma^2, \sigma^3\}$: fixes i, so that the fixed field is $\mathbb{Q}(i)$;

 $\{e, (24), (13), (13), (24)\}$: fixes α^2 , so that the fixed field is $\mathbb{Q}(\sqrt{2})$;

 $\{e, (12), (34), (13), (24), (14), (23)\}$: fixes $\alpha^2 i$, so that the fixed field is $\mathbb{Q}(\sqrt{2}i)$.

⁵ It is defined by $\sigma_0(R(a)) = R(b)$ for all $R \in E[x]$.

⁶ τ is the restriction of complex conjugation to $\mathbb{Q}(\alpha, i)$.

⁷ It suffices to show that $\mathbb{Q}(\beta)$ is not an extension of \mathbb{Q} of order 2, i.e. that 1, β , and β^2 are \mathbb{Q} -linearly independent.