Pattern Recognition

Yukyung Choi

yk.choi@rcv.sejong.ac.kr

Before Starting

https://github.com/sejongresearch/2019.Fall.PatternRecognition/issues/27

Subject

- https://github.com/sejongresearch/2019.Fall.PatternRecognition/issues/12
- Image classification using Pattern Recognition
- Beyond bags of features spatial pyramid matching for recognizing natural scene categories, CVPR 2006

Competition using Kaggle

- https://www.kaggle.com/c/2019-fall-ml-project/overview
- Baseline: Coming Soon
- Activation: 11/11~

Baseline

Caltech101 dataset

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
0	15.5 ± 0.9		41.2 ± 1.2		
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8	
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ± 0.8	
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	64.6 ± 0.7	

Default →

Baseline

Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Multi-class classification results (100 training images per class)

	Weak features		Strong features		
	(vocabulary size: 16)		(vocabulary size: 200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6		
$1(2\times2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5	
$2(4\times4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3	
$3(8\times8)$	63.3 ± 0.8	66.8 ± 0.6	77.2 ± 0.4	80.7 ± 0.3	##

Default →

Fei-Fei & Perona: 65.2%

- Reference Tools
 - VLFEAT Library
 - http://www.vlfeat.org/index.html
 - http://www.vlfeat.org/applications/apps.html#apps.caltech-101

- Program Language
 - Python + Colab or Your Env.
 - You should submit the kernel in the Kaggle.

Goal

• Image classification using Pattern Recognition

Goal

• Image classification using Pattern Recognition

Goal

• Image classification using Pattern Recognition

Gradient

2	3	4	4	3	4	2	2
5	11	17	13	7	9	3	4
11	21	23	27	22	17	4	6
23	99	165	135	85	32	26	2
91	155	133	136	144	152	57	28
98	196	76	38	26	60	170	51
165	60	60	27	77	85	43	136
71	13	34	23	108	27	48	110

Gradient Magnitude

Gradient Direction

가운데: 화살표를 사용하여 RGB 패치와 그라디언트를 나타냅니다. 오른쪽: 동일한 패치의 그라디언트가 숫자로 표시됩니다.

HOG(Histogram of Oriented Gradient)

1.Clustering

- Voice
 - https://musicinformationretrieval.com/kmeans.html
 - ??
 - Voice → Feature Extractor → Kmeans
- Images
 - VLFEAT
 - Images → Feature Extractor → Kmeans
 - Visual Bag of words