

Теория вероятностей и математическая статистика

Лекция 2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Независимые испытания. Схема Бернулли.

С понятием «независимых событий» связано понятие «независимых испытаний (опытов)».

Несколько опытов называются *независимыми*, если их исходы представляют собой независимые события (независимые в совокупности).

Последовательность n независимых испытаний, в каждом из которых может произойти некоторое событие A (его называют ycnexom) с вероятностью P(A) = p или противоположное ему событие \overline{A} (его называют $ney\partial a ue u$) с вероятностью $P(\overline{A}) = q = 1 - p$, называется cxemou Eephynnu.

Например, при стрельбе по мишени: событие A — попадание (успех), событие \overline{A} — промах (неудача); при обследовании n изделий на предмет годности: событие A — деталь годная (успех), событие \overline{A} — деталь бракованная (неудача) и т. д.

Независимые испытания. Схема Бернулли.

В каждом таком опыте ПЭС состоит только из двух элементарных событий, т.е. $\Omega = \{w_0, w_1\}$, где w_0 — неудача, w_1 — успех, при этом $A = \{w_1\}, \ \overline{A} = \{w_0\}$. Вероятности этих событий обозначают через p и q соответственно (p+q=1). Множество элементарных исходов для n опытов состоит из 2^n элементов. Например, при n=3, т. е. опыт повторяется 3 раза, $\Omega = \left\{ \frac{(\overline{A}, \overline{A}, \overline{A})}{w_0}; \frac{(A, A, \overline{A})}{w_1}; \frac{(\overline{A}, \overline{A}, A)}{w_2}; \frac{(\overline{A}, \overline{A}, A)}{w_3}; \frac{(\overline{A}, \overline{$ $\frac{(A,\overline{A},\overline{A})}{w_4};\frac{(\overline{A},A,\overline{A})}{w_5};\frac{(\overline{A},\overline{A},A)}{w_6};\frac{(A,A,A)}{w_7}$ Вероятность каждого элементарного события определяется однозначно. По теореме умножения вероятность события, скажем $w_6 = (\overline{A}, \overline{A}, A)$, равна $q \cdot q \cdot p = pq^2$, события $w_7 - p \cdot p \cdot p = p^3 q^0 = p^3$ и т. д.

Часто успеху сопоставляют число 1, неудаче — число 0. Элементарным событием для n опытов будет последовательность из n нулей и единиц. Тройка чисел (0,0,0) означает, что во всех трех опытах событие A не наступило; тройка чисел (0,1,0) означает, что событие A наступило во 2-м опыте, а в 1-м и 3-м — не наступило.

Формула Бернулли.

Простейшая задача, относящаяся к схеме Бернулли, состоит в определении вероятности того, что в n независимых испытаниях событие A наступит m раз $(0 \le m \le n)$. Обозначается искомая вероятность так: $P_n(m)$ или $P_{n,m}$ или $P(\mu_n = m)$, где μ_n — число появления события A в серии из n опытов.

Например, при бросании игральной кости 3 раза $P_3(2)$ означает вероятность того, что в 3-х опытах событие A — выпадение цифры 4 — произойдет 2 раза. Очевидно,

$$P_3(2) = p^2 q + p^2 q + p^2 q =$$

$$= \left[\left\{ (A, A, \overline{A}); (A, \overline{A}, A); (\overline{A}, A, A) \right\} \right] = 3p^2 q = 3 \cdot \left(\frac{1}{6} \right)^2 \cdot \frac{5}{6} = \frac{5}{72} = 0,069.$$

Теорема Если производится n независимых испытаний. в каждом из которых вероятность появления события A равна p, а вероятность его непоявления равна q=1-p, то вероятность того. что событие A произойдет m раз определяется ϕ ормулой Eернулли

$$P_n(m) = C_n^m \cdot p^m \cdot q^{n-m}, \quad m = 0, 1, 2, \dots, n.$$
 (1.32)

Формула Бернулли.

Доказательство:

на p^mq^{n-m} . Вероятность появления события A снова m раз, но в другом

порядке (например,
$$\overline{A} \cdot \underbrace{A \cdot A \dots \cdot A}_{m \text{ pas}} \overline{A} \cdot \overline{A} \cdot \dots \cdot \overline{A}$$
 или $A \overline{A} A \overline{A} \cdot \dots \cdot A \overline{A}$ и т. д.)

будет той же самой, т.е. $p^m q^{n-m}$.

Число таких сложных событий — в n опытах m раз встречается событие A в различном порядке — равно числу сочетаний из n по m, т. е. C_n^m . Так как все эти сложные события несовместны, то по теореме сложения вероятностей искомая вероятность равна сумме вероятностей всех возможных сложных событий, т. е.

$$P_n(m) = \underbrace{p^m q^{n-m} + \ldots + p^m q^{n-m}}_{C_n^m$$
слагаемых $= C_n^m p^m q^{n-m}, \quad m = 0, 1, \ldots, n.$

Биномиальный закон распределения вероятностей

Можно заметить, что вероятности $P_n(m), m = 0, 1, \ldots, n$ являются коэффициентами при x^m в разложении $(q+px)^n$ по формуле бинома Ньютона:

$$(q+px)^n = q^n + C_n^1 q^{n-1} px + C_n^2 q^{n-2} p^2 x^2 + \dots + C_n^m q^{n-m} p^m x^m + \dots + p^n x^n.$$

Поэтому совокупность вероятностей $P_n(m)$ называют биномиальным законом распределения вероятностей (см. п. 2.7), а функцию $\varphi(x) = (q + px)^n$ — производящей функцией для последовательности независимых опытов.

Полиномиальное распределение

Если в каждом из независимых испытаний вероятности наступления события A разные, то вероятность того, что событие A наступит m раз в n опытах, равна коэффициенту при m-й степени многочлена $\varphi_n(z) = (q_1 + p_1 z)(q_2 + p_2 z) \cdot \ldots \cdot (q_n + p_n z)$, где $\varphi_n(z)$ — производящая функция.

Если в серии из n независимых опытов, в каждом из которых может произойти одно и только одно из k событий A_1, A_2, \ldots, A_k с соответствующими вероятностями p_1, p_2, \ldots, p_k , то вероятность того, что в этих опытах событие A_1 появится m_1 раз, событие $A_2 - m_2$ раз, ..., событие $A_k - m_k$ раз, равна

$$P_n(m_1, m_2, \dots, m_k) = \frac{n!}{m_1! m_2! \dots m_k!} p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}, \qquad (1.33)$$

где $m_1 + m_2 + \ldots + m_k = n$. Вероятности (1.33) называются *полиноми-* альным распределением.

Теорема Пуассона

Теорема Если число испытаний неограничено увеличивается $(n \to \infty)$ и вероятность p наступления события A в каждом испытании неограничено уменьшается $(p \to 0)$, но так, что их произведение np является постоянной величиной (np = a = const), то вероятность $P_n(m)$ удовлетворяет предельному равенству

$$\lim_{n\to\infty} P_n(m) = \frac{a^m e^{-a}}{m!}.$$

Это выражение называется ассимптотической формулой Пуассона.

Теорема Пуассона

Доказательство:

Преобразуем формулу Бернулли с учетом того, что $\;p=rac{a}{n}$:

$$P_{n}(m) = \frac{n!}{m!(n-m)!} \cdot \left(\frac{a}{n}\right)^{m} \cdot \left(1 - \frac{a}{n}\right)^{n-m} =$$

$$= \frac{n(n-1)(n-2)\dots(n-(m-1))}{m!} \cdot \frac{a^{m}}{n^{m}} \cdot \left(1 - \frac{a}{n}\right)^{n} \cdot \left(1 - \frac{a}{n}\right)^{-m} =$$

$$= \frac{a^{m}}{m!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{n-(m-1)}{n} \cdot \left(1 - \frac{a}{n}\right)^{n} \cdot \left(1 - \frac{a}{n}\right)^{-m} =$$

$$= \frac{a^{m}}{m!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{m-1}{n}\right) \cdot \left(1 - \frac{a}{n}\right)^{n} \cdot \left(1 - \frac{a}{n}\right)^{-m}.$$

Переходя к пределу при $n \to \infty$, получим $\lim_{n \to \infty} P_n(m) = \frac{a^m e^{-a}}{m!}$ ($\lim_{n \to \infty} \left(1 - \frac{a}{n}\right)^n = e^{-a}$ согласно второму замечательному пределу).

Формула Пуассона

Из предельного равенства теоремы Пуассона при больших n и малых p вытекает приближенная формула Пуассона:

$$P_n(m) \approx \frac{a^m e^{-a}}{m!}, \quad a = np, \quad m = 0, 1, 2, \dots$$

Формула применяется, когда вероятность успеха крайне мала, т. е. сам по себе успех является редким событием. Её обычно используют, когда

$$n \ge 50$$
, a $np \le 10$.

Формула Пуассона находит применение *в теории массового обслуэкивания*.

Математическая модель простейшего потока событий

Формулу Пуассона можно считать математической моделью простейшего потока событий.

• Потоком событий называют последовательность событий, наступающих в случайные моменты времени (например, поток посетителей в парикмахерской, поток вызовов на телефонной станции, поток отказов элементов, поток обслуженных абонентов и т.п.).

Поток событий, обладающий свойствами стационарности, ординарности и отсутствия последствия называется простейшим (пувссоновским) потоком.

Свойство стационарности означает, что вероятность появления k событий на участке времени длины τ зависит только от его длины (т. е. не зависит от начала его отсчета). Следовательно, среднее число событий, появляющихся в единицу времени, так называемая интенсивность λ потока, есть величина постоянная: $\lambda(t) = \lambda$.

Математическая модель простейшего потока событий

Свойство *ординарности* означает, что событие появляется не группами, а поодиночке. Другими словами, вероятность появления более одного события на малый участок времени Δt пренебрежительно мала по сравнению с вероятностью появления только одного события (например, поток катеров, подходящих к причалу, ординарен).

Свойство *отсутствия последствия* означает, что вероятность появления k событий на любом участке времени длины τ не зависит от того, сколько событий появилось на любом другом не пересекающимся с ним участком (говорят: «будущее» потока не зависит от «прошлого». например, поток людей, входящих в супермаркет).

Можно доказать, что вероятность появления m событий простейшего потока за время продолжительностью t определяется формулой Пуассона

$$P_t(m) = p_m = \frac{(\lambda t)^m \cdot e^{-\lambda t}}{m!}.$$

Локальная и интегральная теоремы Муавра-Лапласа

В тех случаях, когда число испытаний n велико, а вероятность p не близка к нулю ($p \neq 0, p \neq 1$), для вычисления биномиальных вероятностей используют теоремы Муавра-Лапласа. Приведем только их формулировки в силу сложности доказательства.

Локальная теорема Муавра-Лапласа

Теорема Локальная теорема Муавра—Лапласа Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, а число независимых испытаний достаточно велико, то вероятность $P_n(m)$ может быть вычислена по приближенной формуле

$$P_n(m) pprox rac{1}{\sqrt{npq}} \cdot rac{1}{\sqrt{2\pi}} \, e^{-rac{x^2}{2}}, \quad ext{где} \quad x = rac{m-np}{\sqrt{npq}} \, .$$

Равенство тем точнее, чем больше n.

Функция Гаусса

Выражение

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} = \varphi(x)$$

называется функцией Гаусса, а ее график — кривой вероятностей

Интегральная теорема Муавра-Лапласа

В тех случаях, когда требуется вычислить вероятность того, что в n независимых испытаниях событие A появится не менее k_1 раз, но не более k_2 раз, т. е. $P_n(k_1 \leqslant m \leqslant k_2)$ или $P_n(k_1; k_2)$, используют интегральную теорему Муавра-Лапласа (является частным случаем более общей теоремы — центральной предельной теоремы).

Теорема (Интегральная теорема Муавра–Лапласа). Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность $P_n(k_1 \leq m \leq k_2)$ может быть найдена по приближенной формуле

$$P_n(k_1\leqslant m\leqslant k_2)pprox rac{1}{\sqrt{2\pi}}\int\limits_{x_1}^{x_2}e^{-rac{x^2}{2}}\,dx$$
, где $x_1=rac{k_1-np}{\sqrt{n\overline{pq}}}\,, \quad x_2=rac{k_2-np}{\sqrt{n\overline{pq}}}\,.$

Равенство тем точнее, чем больше n.

Нормированная функция Лапласа

для упрощения вычислений вводят специальную функцию

$$\Phi_0(x) = rac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-rac{t^2}{2}} \, dt,$$

называемую нормированной функцией Лапласа.

Функция Лапласа

Наряду с нормированной функцией Лапласа используют функцию

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt,$$

называемую также ϕy нкцией Лапласа. Для нее справедливо равенство $\Phi(-x) + \Phi(x) = 1$; она связана с функцией $\Phi_0(x)$ формулой

$$\Phi(x) = 0.5 + \Phi_0(x).$$

Приближенную формулу для вычисления вероятности $P_n(k_1 \leq m \leq k_2)$ можно записать в виде

$$P_n(k_1\leqslant m\leqslant k_2)=\Phi(x_2)-\Phi(x_1)=\Phi_0(x_2)-\Phi_0(x_1),$$
 где $x_1=rac{k_1-np}{\sqrt{npq}}\,, \quad x_2=rac{k_2-np}{\sqrt{npq}}\,.$

Случайная величина

Под *случайной величиной* понимают величину, которая в результате опыта принимает то или иное значение, причем неизвестно заранее, какое именно.

Примерами с. в. могут служить: 1) X число очков, появляющихся при бросании игральной кости; 2) Y — число выстрелов до первого попадания в цель; 3) Z — время безотказной работы прибора и т. п. (рост человека, курс доллара, количество бракованных деталей в партии, температура воздуха, выигрыш игрока, координата точки при случайном выборе ее на [0;1], прибыль фирмы, . . .).

Случайная величина, принимающая конечное или счетное множество значений, называется *дискретной* (сокращенно: д.с.в.).

Если же множество возможных значений с.в. несчетно, то такая величина называется *непрерывной* (сокращенно: н.с.в.).

Строгое определение

Случайной величиной X называется числовая функция, определенная на пространстве элементарных событий Ω , которая каждому элементарному событию w ставит в соответствие число X(w), т.е. $X = X(w), w \in \Omega$ (или X = f(w)).

Пример. Опыт состоит в бросании монеты 2 раза. На ПЭС $\Omega = \{w_1, w_2, w_3, w_4\}$, где $w_1 = \Gamma\Gamma$. $w_2 = \Gamma$ Р. $w_3 = \Gamma$ Р. $w_4 = \Gamma$ Р, можно рассмотреть с. в. X — число появлений герба. С. в. X является функцией от элементарного события w_i : $X(w_1) = 2$, $X(w_2) = 1$, $X(w_3) = 1$, $X(w_4) = 0$; X — д. с. в. со значениями $x_1 = 0$, $x_2 = 1$, $x_3 = 2$.

Отметим, что если множество Ω конечно или счетно, то случайной величиной является любая функция, определенная на Ω . В общем случае функция X(w) должна быть такова, чтобы для любых $x \in \mathbb{R}$ событие $A = \{w : X(w) < x\}$ принадлежало σ -алгебре множеств S и, значит, для любого такого события была определена вероятность P(A) = P(X < x).

Закон распределения случайной величины

Для полного описания с. в. недостаточно лишь знания ее возможных значений; необходимо еще знать вероятности этих значений.

Любое правило (таблица, функция, график), позволяющее находить вероятности произвольных событий $A \subseteq S$ ($S - \sigma$ -алгебра событий пространства Ω), в частности, указывающее вероятности отдельных значений случайной величины или множества этих значений, называется законом распределения случайной величины (или просто: распределением). Про с. в. говорят, что «она подчиняется данному закону распределения»:

Закон распределения случайной величины

Пусть X — д. с. в., которая принимает значения $x_1, x_2, x_3, \ldots, x_n, \ldots$ (множество этих значений конечно или счетно) с некоторой вероятностью p_i , где $i=1,2,3,\ldots,n,\ldots$ Закон распределения д. с. в. удобно задавать с помощью формулы $p_i=P\{X=x_i\},\ i=1,2,3,\ldots,n,\ldots$ определяющей вероятность того, что в результате опыта с. в. X примет значение x_i . Для д. с. в. X закон распределения может быть задан в виде magnuyы pacnpedenenus:

X	x_1	x_2	 x_n	
P	p_1	p_2	 p_n	 ,

где первая строка содержит все возможные значения (обычно в порядке возрастания) с. в., а вторая — их вероятности. Такую таблицу называют рядом распределения.

Так как события $\{X=x_1\}, \{X=x_2\}\dots$ несовместны и образуют полную группу, то сумма их вероятностей равна единице т. е. $\sum_i p_i = 1$.

Многоугольник (полигон) распределения

Закон распределения д. с. в. можно задать $\it графически$, если на оси абсцисс отложить возможные значения с. в., а на оси ординат — вероятности этих значений. Ломаную, соединяющую последовательно точки $(x_1,p_1), (x_2,p_2), \ldots$ называют *многоугольником* (или *полигоном*) $\it pacnpedenenus$ (см. рис. 17).

Дискретная случайная величина

Случайная величина X дискретна, если существует конечное или счетное множество чисел x_1, x_2, \ldots таких, что $P\{X=x_i\}=p_i>0$ $(i=1,2,\ldots)$ и $p_1+p_2+p_3+\ldots=1$.

Определим математические операции над дискретными с. в.

Суммой (разностью, произведением) д. с. в. X, принимающей значения x_i с вероятностями $p_i = P\{X = x_i\}, i = 1, 2, \ldots, n$ и д. с. в. Y, принимающей значения y_j с вероятностями $p_j = P\{Y = y_j\}, j = 1, 2, \ldots, m$, называется д. с. в. Z = X + Y (Z = X - Y, $Z = X \cdot Y$), принимающая значения $z_{ij} = x_i + y_j$ ($z_{ij} = x_i - y_j$, $z_{ij} = x_i \cdot y_j$) с вероятностями $p_{ij} = P\{X = x_i, Y = y_j\}$ для всех указанных значений i и j. В случае совпадения некоторых сумм $x_i + y_j$ (разностей $x_i - y_j$, произведений $x_i y_j$) соответствующие вероятности складываются.

Дискретная случайная величина

Произведение д. с. в. на число с называется д. с. в. cX, принимающая значения cx_i с вероятностями $p_i = P\{X = x_i\}$.

Две д.с.в. X и Y называются независимыми, если события $\{X=x_i\}=A_i$ и $\{Y=y_j\}=B_j$ независимы для любых $i=1,2,\ldots,n;$ $j=1,2,\ldots,m,$ т.е.

$$P\{X = x_i; Y = y_i\} = P\{X = x_i\} \cdot P\{Y = y_j\}.$$

В противном случае с. в. называются *зависимыми*. Несколько с. в. называются взаимно независимыми, если закон распределения любой из них не зависит от того, какие возможные значения приняли остальные величины.

Функция распределения случайной величины

Очевидно, ряд распределения с. в. может быть построен только для д. с. в.; для н. с. в. нельзя даже перечислить все ее возможные значения.

Для характеристики поведения н. с. в. целесообразно использовать вероятность события $\{X < x\}$ (а не $\{X = x\}$), где x — некоторое действительное число. С точки зрения практики нас мало интересует событие, состоящее, например, в том, что лампочка проработает ровно 900 часов, т. е. X = 900. Более важным является событие вида $\{X < 900\}$ (или $\{X > 900\}$). Такое событие имеет ненулевую вероятность; при изменении x вероятность события $\{X < x\}$ в общем случае будет меняться. Следовательно, вероятность $P\{X < x\}$ является функцией от x.

Универсальным способом задания закона распределения вероятностей, пригодным как для дискретных, так и для непрерывных случайных величин, является ее функция распределения, обозначаемая $F_X(x)$ (или просто F(x), без индекса, если ясно, о какой с. в. идет речь).

Функция распределения случайной величины

 Φ ункцией распределения с. в. X называется функция F(x), которая для любого числа $x \in R$ равна вероятности события $\{X < x\}$. Таким образом, по определению

$$F(x) = P\{X < x\}$$
 r. e. $F(x) = P\{w : X(w) < x\}$.

Функцию F(x) называют также интегральной функцией распределения. Геометрически равенство можно истолковать так: F(x) есть вероятность того, что с. в. X примет значение, которое изображается на числовой оси точкой, лежащей левее точки x, т. е. случайная точка X попадет в интервал $(-\infty, x)$.

Свойства функции распределения

Функция распределения обладает следующими свойствами:

1. F(x) ограничена, т. е.

$$0 \leqslant F(x) \leqslant 1$$
.

2. F(x) — неубывающая функция на R, т. е. если $x_2 > x_1$, то

$$F(x_2)\geqslant F(x_1).$$

3. F(x) обращает в ноль на минус бесконечности и равна единице в плюс бесконечности, т. е.

$$F(-\infty) = 0, \qquad F(+\infty) = 1.$$

4. Вероятность попадания с. в. X в промежуток [a,b) равна приращению ее функции распределения на этом промежутке, т. е.

$$P\{a \leqslant X < b\} = F(b) - F(a).$$

5. F(x) непрерывна слева, т. е.

$$\lim_{x\to x_0-0} F(x) = F(x_0).$$

Непрерывная случайная величина

С помощью функции распределения можно вычислить вероятность события $\{X\geqslant x\}$:

$$P\{X \geqslant x\} = 1 - F(x).$$

Можно дать более точное определение н. с. в.

Случайную величину X называют непрерывной, если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, может быть, отдельных точек.

для н.с.в. справедливы равенства

$$P\{a \le x < b\} = P\{a < x < b\} = P\{a \le x \le b\} = P\{X \in (a, b]\}.$$

Функция распределения дискретной случайной величины

Функция распределения д.с.в. имеет вид

$$F(x) = \sum_{x_i < x} p_i.$$

Здесь суммирование ведется по всем i, для которых $x_i < x$.

Плотность распределения вероятностей

 Π лотностью распределения вероятностей (плотностью распределения, плотностью вероятностей или просто плотностью) непрерывной случайной величины X называется производная ее функции распределения.

Обозначается плотность распределения н.с.в. X через $f_X(x)$ (или $p_X(x)$) или просто f(x) (или p(x)), если ясно о какой с.в. идет речь. Таким образом, по определению

$$f(x) = F'(x).$$

Функцию f(x) называют также дифференциальной функцией распределения; она является одной из форм закона распределения случайной величины, существует только для непрерывных случайных величин.

Плотность распределения вероятностей

Установим вероятностный смысл плотности распределения. Из определения производной следует

$$f(x) = \lim_{\Delta x \to 0} \frac{\Delta F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}.$$

Ho согласно формуле $P\{a \leqslant X < b\} = F(b) - F(a)$

$$F(x + \Delta x) - F(x) = P\{x \leqslant X < x + \Delta x\}.$$

Отношение $\frac{P\{x\leqslant X< x+\Delta x\}}{\Delta x}$ представляет собой среднюю вероятность, которая приходится на единицу длины участка $[x,x+\Delta x)$, т. е. среднюю плотность распределения вероятности. Тогда

$$f(x) = \lim_{\Delta x \to 0} \frac{P\{x \leqslant X < x + \Delta x\}}{\Delta x},$$

т. е. плотность распределения есть предел отношения вероятности попадания с. в. в промежуток $[x; x + \Delta x)$ к длине Δx этого промежутка, когда Δx стремится к нулю.

Плотность распределения вероятностей

Из равенства следует, что

$$P\{x \leqslant X < x + \Delta x\} \approx f(x)\Delta x.$$

То есть плотность вероятности определяется как функция f(x), удовлетворяющая условию $P\{x \leq X < x + dx\} \approx f(x) dx$; выражение f(x) dx называется элементом вероятности.

Отметим, что плотность f(x) аналогична таким понятиям, как плотность распределения масс на оси абсцисс или плотность тока в теории электричества.

Свойства плотности распределения

Плотность распределения обладает следующими свойствами:

1. f(x) неотрицательная, т. е.

$$f(x) \geqslant 0.$$

2. Вероятность попадания н. с. в. в промежуток [a;b] равна определенному интегралу от ее плотности в пределах от a до b, т. е.

$$P\{a\leqslant X\leqslant b\}=\int\limits_a^bf(x)\,dx.$$

3. Функция распределения н.с.в. может быть выражена через ее плотность вероятности по формуле

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

4. Условие нормировки: несобственный интеграл от плотности вероятности н. с. в. в бесконечных пределах равен единице, т. е.

$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$