Ch.4 Exercises: Classification

Conceptual

1.

$$\begin{split} P(x)(1+^{\beta_0+\beta_1x}) &= e^{\beta_0+\beta_1x} \\ \frac{P(x)}{\frac{1}{1+e^{\beta_0+\beta_1x}}} &= e^{\beta_0+\beta_1x} \\ \frac{P(x)}{1-\frac{e^{\beta_0+\beta_1x}}{1+e^{\beta_0+\beta_1x}}} &= e^{\beta_0+\beta_1x} \\ \frac{P(x)}{1-P(x)} &= e^{\beta_0+\beta_1x} \end{split}$$

2.

The terms from (4.12) that do not vary with k:

$$C = \frac{\frac{1}{\sqrt{2\pi}\sigma}\exp(-1/2\sigma^2x^2)}{\sum_l \pi_l \frac{1}{\sqrt{2\pi}\sigma}\exp(-1/2\sigma^2(x-\mu_l)^2)}$$

Replacing C in (4.12):

$$P_k(x) = \pi_k C \exp(\frac{1}{2\sigma^2}(2\mu_k x - \mu_k^2))$$

Taking logs of both sides:

$$\log(P_k(x)) = \log(\pi_k) + \log(C) + \frac{1}{2\sigma^2}(2\mu_k x - \mu_k^2)$$

Rearranging and disregarding C:

$$\delta_k(x) = x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

3.

Removing the assumption of shared variance terms across all K classes, the terms from (4.12) that do not vary with k:

$$C' = \frac{\frac{1}{\sqrt{2\pi}}}{\sum_l \pi_l \frac{1}{\sqrt{2\pi}\sigma_l} \exp(-1/2\sigma_l^2(x-\mu_l)^2)}$$

Replacing C' in (4.12) and taking logs:

$$\begin{split} P_k(x) &= C' \frac{\pi_k}{\sigma_k} \exp(-\frac{1}{2\sigma^2} (x^2 - 2\mu_k x + \mu_k^2)) \\ \log(P_k(x)) &= -\frac{1}{2\sigma_k^2} x^2 + \frac{\mu_k x}{\sigma_k^2} - \frac{\mu_k^2}{2\sigma_k^2} + \log(\frac{\pi_k}{\sigma_k}) + \log(C') \end{split}$$

As can be seen from the presence of x^2 in the final term, the discriminant is not linear.

4.

(a)

In a uniform distribution, all intervals of the same length are equally probable. Assuming $x \in [0.05, 0.95]$, then intervals: [x - 0.05, x + 0.05], so length = 0.1. On average 10% of the observations would be available to make a prediction for the test observation.

(b)

Assuming $x \in [0.05, 0.95]$, $x1_{length} \times x2_{length} = 0.01$. Therefore, 1% of the available observations would be used to make a prediction.

(c)

When p=100; $0.1^p \times 100 = 0.1^{100} \times 100$ of the observations are available.

(d)

As the number of predictors increase, the fraction of observations available to make a prediction is reduced exponentially.

(e)

$$Ifp = 1; d(length) = 0.1^{1/1} = 0.1 \ Ifp = 2; d(length) = 0.1^{1/2} = 0.32 \ Ifp = 100; d(length) = 0.1^{1/100} = 0.977$$

As p increases the side length converges to 1, and this shows that the hypercube centered around the test observation with 10% of the test observation needs to be nearly the same size as the hypercube with all the observations. It also shows that observations are 'further' from a test observation as p increases; that is they are concentrated near the boundary of the hypercube.

5.

(a)

- LDA better on the test set.
- QDA better on the training set (more flexibility to better fit the data), but worse on the test set due to increased variance.

(b)

• QDA better on training and test sets.

(c)

• In general, QDA tends to be better than LDA when the sample size is large, and where there isn't a common covariance between the classes. As such I would expect QDA to provide a better fit and so provide better predictions.

(d)

• False: LDA will likely provide a better fit for a linear decision boundary than QDA, and so provide a better test error rate. QDA could provide an over-fitting model (due to higher flexibility) that performs well on the training set but worse on the test set(due to higher variance).

6.

(a)

$$\begin{split} P(X) &= \frac{\exp(\hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2)}{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2)} \\ P(X) &= \frac{\exp(-0.5)}{1 + \exp(-0.5)} = 0.38 \end{split}$$

(b)

$$\begin{split} \log(\frac{P(X)}{1-P(X)}) &= \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 \\ \log(\frac{0.5}{1-0.5}) &= -6 + 0.05 X 1 + 3.5 \\ X_1 &= 50 hours. \end{split}$$

7.

$$\begin{split} P(Y = yes | X = 4) &= \frac{\pi_{yes} f_{yes}(x)}{\sum_{l=1}^{K} \pi_{l} f_{l}(x)} = \frac{\pi_{yes} \exp(-1/2\sigma^{2}(x - \mu_{yes})^{2})}{\sum_{l=1}^{K} \pi_{l} \exp(-1/2\sigma^{2}(x - \mu_{l})^{2})} \\ P(Y = yes | X = 4) &= \frac{0.8 \times \exp(-0.5)}{0.8 \times \exp(-0.5) + 0.2 \times \exp(-16/72)} \\ P(Y = yes | X = 4) &= 0.75 \end{split}$$

8.

The KNN with K=1 model would fit the training set exactly and so the training error would be zero. This means the test error has to be 36% in order for the average of the errors to be 18%. As model selection is based on performance on the test set, we will choose logistic regression to classify new observations.

9.

(a)

$$Odds = \frac{P(X)}{1 - P(X)}$$
$$P(X) = \frac{0.37}{1.37} = 0.27$$

• 27% of people with odds of 0.37 will default.

(b)

$$Odds = \frac{0.16}{1 - 0.16} = 0.19$$

Applied

10.

(a)

```
library(ISLR)
summary(Weekly)
```

```
##
        Year
                      Lag1
                                        Lag2
                                                          Lag3
##
   Min.
         :1990
                 Min. :-18.1950
                                   Min. :-18.1950
                                                      Min. :-18.1950
   1st Qu.:1995
                 1st Qu.: -1.1540
                                   1st Qu.: -1.1540
                                                      1st Qu.: -1.1580
  Median:2000
                 Median : 0.2410
                                   Median : 0.2410
                                                      Median: 0.2410
                 Mean : 0.1506
                                   Mean : 0.1511
                                                      Mean : 0.1472
##
   Mean
         :2000
                                    3rd Qu.: 1.4090
                                                      3rd Qu.: 1.4090
##
   3rd Qu.:2005
                 3rd Qu.: 1.4050
##
   Max. :2010
                  Max. : 12.0260
                                    Max. : 12.0260
                                                      Max. : 12.0260
##
        Lag4
                          Lag5
                                           Volume
                                                            Today
##
   Min. :-18.1950
                            :-18.1950
                                              :0.08747
                                                               :-18.1950
                     Min.
                                       Min.
                                                         Min.
##
   1st Qu.: -1.1580
                     1st Qu.: -1.1660
                                       1st Qu.:0.33202
                                                         1st Qu.: -1.1540
   Median : 0.2380
                     Median : 0.2340
                                       Median :1.00268
                                                         Median: 0.2410
  Mean : 0.1458
                     Mean : 0.1399
                                       Mean
                                             :1.57462
                                                         Mean : 0.1499
##
   3rd Qu.: 1.4090
                     3rd Qu.: 1.4050
                                       3rd Qu.:2.05373
                                                         3rd Qu.: 1.4050
##
   Max.
         : 12.0260
                     Max. : 12.0260
                                       Max.
                                              :9.32821
                                                        Max. : 12.0260
   Direction
   Down:484
##
##
   Up :605
##
##
##
##
# Scatterplot matrix.
```

Scatterplot matrix.
pairs(Weekly[,1:8])

Correlation matrix. cor(Weekly[,1:8])

```
##
                Year
                             Lag1
                                        Lag2
                                                    Lag3
                                                                Lag4
## Year
          1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
         -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag1
         -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag2
## Lag3
         -0.03000649 0.058635682 -0.07572091
                                             1.00000000 -0.075395865
         -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag4
## Lag5
         -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
         0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Volume
## Today
         -0.03245989 -0.075031842
                                 0.05916672 -0.07124364 -0.007825873
##
                 Lag5
                           Volume
## Year
         ## Lag1
         -0.008183096 -0.06495131 -0.075031842
## Lag2
         -0.072499482 -0.08551314 0.059166717
## Lag3
          0.060657175 -0.06928771 -0.071243639
## Lag4
         -0.075675027 -0.06107462 -0.007825873
          1.000000000 -0.05851741 0.011012698
## Lag5
## Volume -0.058517414 1.00000000 -0.033077783
## Today
          0.011012698 -0.03307778 1.000000000
```

• As can be seen on the scatterplot and correlation matrices, there appears to be a positive correlation between 'Year' and 'Volume' only. From the summary statistics, we can observe that the Lag variables are very similar to each other and 'Today'. There doesn't appear to to be any patterns except for an increase in volume from 1989 to 2001.

```
(b) (c)
```

##

##

Down

Uр

54 48

430 557

```
logistic_fit = glm(Direction ~ Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family=binomial)
summary(logistic_fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
       Volume, family = binomial, data = Weekly)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                   3Q
                                           Max
## -1.6949 -1.2565
                     0.9913
                               1.0849
                                        1.4579
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686
                           0.08593
                                     3.106
                                             0.0019 **
## Lag1
               -0.04127
                           0.02641
                                    -1.563
                                             0.1181
               0.05844
                           0.02686
                                     2.175
                                             0.0296 *
## Lag2
                                    -0.602
## Lag3
               -0.01606
                           0.02666
                                             0.5469
## Lag4
               -0.02779
                           0.02646
                                    -1.050
                                             0.2937
## Lag5
               -0.01447
                           0.02638
                                    -0.549
                                             0.5833
## Volume
               -0.02274
                           0.03690 -0.616
                                             0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
  • Lag2 is statistically significant.
logistic_probs = predict(logistic_fit, type="response")
logistic_preds = rep("Down", 1089) # Vector of 1089 "Down" elements.
logistic preds[logistic probs>0.5] = "Up" # Change "Down" to up when probability > 0.5.
# Confusion matrix
attach(Weekly)
table(logistic_preds,Direction)
##
                 Direction
## logistic_preds Down Up
```

• The fraction of days where the predictions are correct is 611/1089 = 56%. Therefore, the training error rate is 48%. Of the 987 "Up" predictions the model makes, it is correct 557/987 = 56.4% of the time. Given that there were 605/1089 = 55.6% "Up" days, the model's accuracy when predicting "Up" is only slightly better than random guessing.

(d)

```
# Training observations from 1990 to 2008.
train = (Year < 2009)
# Test observations from 2009 to 2010.
Test = Weekly[!train ,]
Test_Direction= Direction[!train]
# Logistic regression on training set.
logistic_fit2 = glm(Direction ~ Lag2, data=Weekly, family=binomial, subset=train)
# Predictions on the test set.
logistic_probs2 = predict(logistic_fit2,Test, type="response")
logistic_preds2 = rep("Down", 104)
logistic_preds2[logistic_probs2>0.5] = "Up"
# Confusion matrix.
table(logistic_preds2,Test_Direction)
##
                  Test_Direction
## logistic_preds2 Down Up
##
              Down
                      9 5
##
                     34 56
              Uр
  • The model makes correct predictions on 65/104 = 62.5\% of the days.
(e)
# Using LDA.
library(MASS)
lda_fit = lda(Direction ~ Lag2, data=Weekly, subset=train)
\#lda_fit
# Predictions on the test set.
lda_pred = predict(lda_fit,Test)
lda_class = lda_pred$class
# Confusion matrix.
table(lda_class,Test_Direction)
            Test_Direction
##
## lda_class Down Up
                9 5
        Down
##
##
        Uр
               34 56
```

• The lda model makes correct predictions 65/104 = 62.5% of the days.

(f)

```
# Using QDA.
qda_fit = qda(Direction ~ Lag2, data=Weekly, subset=train)
qda_pred = predict(qda_fit,Test)
qda_class = qda_pred$class
table(qda_class,Test_Direction)
```

```
## Test_Direction
## qda_class Down Up
## Down 0 0
## Up 43 61
```

• QDA model's TPR=1 and precision(correct predictions)=0.58, which is no better than guessing each day is "Up".

(g)

```
# Using KNN
library(class)
set.seed(1)
train_X = Weekly[train,3]
test_X = Weekly[!train,3]
train_direction = Direction[train]

# Changing from vector to matrix by adding dimensions
dim(train_X) = c(985,1)
dim(test_X) = c(104,1)

# Predictions for K=1
knn_pred = knn(train_X, test_X, train_direction, k=1)
table(knn_pred, Test_Direction)
```

```
## Test_Direction
## knn_pred Down Up
## Down 21 30
## Up 22 31
```

• KNN with K=1 in correct in its predictions for 50% of the days.

(h)

- Logistic regression, LDA give the exact same confusion matrix. The TPR = 0.92, Precision = 0.62, TNR = 0.21 and NPV(Negative Predictive Value) = 0.64.
- For KNN with K=1, the TPR=0.51, Precision=0.58, TNR=0.48 and PPV=0.41.
- The logistic and LDA models provide the best results, particularly for predicting "Up" days.

(i)

```
# Using KNN and K=3
knn_pred2 = knn(train_X, test_X, train_direction, k=3)
table(knn_pred2, Test_Direction)
```

```
##
            Test_Direction
## knn_pred2 Down Up
        Down
##
               16 19
               27 42
##
        Uр
# Using KNN and K=9
knn_pred3 = knn(train_X, test_X, train_direction, k=6)
table(knn_pred3, Test_Direction)
##
            Test_Direction
## knn_pred3 Down Up
##
        Down
               15 20
##
        Uр
               28 41
```

• Higher K values shown an improvement in the overall correct predictions (59/104) made by a KNN model when using Lag2 as the only predictor.

```
# Using LDA with all Lag values
lda_fit2 = lda(Direction ~ Lag1+Lag2+Lag3+Lag4+Lag5, data=Weekly, subset=train)
# Predictions on the test set
lda_pred2 = predict(lda_fit2,Test)
lda_class2 = lda_pred2$class
# Confusion matrix
table(lda_class2, Test_Direction)
##
             Test_Direction
## lda_class2 Down Up
##
         Down
                 9 13
##
         Uр
                34 48
```

• No real improvement using LDA when using all Lag variables.

```
# Using logistic with lag2 and lag2^2
logistic_fit3 = glm(Direction ~ Lag2 + I(Lag2^2), data=Weekly, family=binomial, subset=train)
# Predictions on the test set.
logistic_probs3 = predict(logistic_fit3,Test, type="response")
logistic_preds3 = rep("Down", 104)
logistic_preds3[logistic_probs3>0.5] = "Up"
# Confusion matrix.
table(logistic_preds3,Test_Direction)
                  Test_Direction
##
## logistic_preds3 Down Up
##
              Down
                      8 4
##
                     35 57
              Uр
```

• Results are similar to Lag2 only.

```
# Using logistic with lag2 and lag1~2
logistic_fit4 = glm(Direction ~ Lag2 + I(Lag1^2), data=Weekly, family=binomial, subset=train)
# Predictions on the test set.
logistic_probs4 = predict(logistic_fit4,Test, type="response")
logistic_preds4 = rep("Down", 104)
logistic_preds4[logistic_probs4>0.5] = "Up"
# Confusion matrix.
table(logistic_preds4,Test_Direction)
##
                  Test_Direction
## logistic_preds4 Down Up
                      8 2
##
              Down
##
              Uр
                     35 59
  • This model is correct on 64% of the days.
11. (a)
# Dataframe with "Auto" data and empty "mpq01" column
df = Auto
df$mpg01 = NA
median_mpg = median(df$mpg)
# Loop
for(i in 1:dim(df)[1]){
  if (df$mpg[i] > median_mpg){
    df$mpg01[i] = 1
 }else{
    df$mpg01[i] = 0
  }
}
# function to move a column to end of dataframe.
movetolast = function(data, move) {
  data[c(setdiff(names(data), move), move)]
(b)
df = movetolast(df, c("name"))
pairs(df[,1:9])
```


cor(df[,1:9])

```
##
                       mpg
                            cylinders displacement horsepower
                                                                   weight
## mpg
                 1.0000000 -0.7776175
                                         -0.8051269 -0.7784268 -0.8322442
                -0.7776175
                            1.0000000
                                          0.9508233
                                                     0.8429834
## cylinders
                                                                0.8975273
## displacement -0.8051269
                            0.9508233
                                          1.0000000
                                                     0.8972570
                                                                0.9329944
                                                     1.0000000
## horsepower
                -0.7784268
                            0.8429834
                                          0.8972570
                                                                0.8645377
## weight
                -0.8322442
                            0.8975273
                                          0.9329944
                                                     0.8645377
                                                                1.0000000
## acceleration 0.4233285 -0.5046834
                                         -0.5438005 -0.6891955 -0.4168392
                 0.5805410 -0.3456474
## year
                                         -0.3698552 -0.4163615 -0.3091199
                 0.5652088 -0.5689316
                                         -0.6145351 -0.4551715 -0.5850054
## origin
                                         -0.7534766 -0.6670526 -0.7577566
## mpg01
                 0.8369392 -0.7591939
##
                acceleration
                                   year
                                             origin
                                                         mpg01
## mpg
                   0.4233285
                              0.5805410
                                         0.5652088
                                                     0.8369392
## cylinders
                  -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement
                  -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower
                  -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight
                  -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration
                   1.0000000 0.2903161
                                         0.2127458
                                                     0.3468215
                   0.2903161
                              1.0000000
                                         0.1815277
                                                     0.4299042
## year
## origin
                   0.2127458
                              0.1815277
                                         1.0000000
                                                     0.5136984
                              0.4299042 0.5136984
                                                     1.0000000
## mpg01
                   0.3468215
```

• There is a strong positive correlation between mpg and mpg01, and a strong negative correlation between cylinders, displacement, weight, horsepower and mpg01.

• I will use these variables except mpg.mpg was used to separate observations into mpg01 values and so using it can lead to perfectly separating test observations.

(c)

(f)

```
# Training and Test data
require(caTools)
## Loading required package: caTools
## Warning: package 'caTools' was built under R version 3.6.2
set.seed(123)
sample_data = sample.split(df$mpg, SplitRatio = 0.70)
train2 = subset(df, sample_data==TRUE)
test2 = subset(df, sample_data==FALSE)
(d)
# LDA model
lda_fit3 = lda(mpg01 ~ cylinders+displacement+horsepower+weight, data=train2)
\# Predictions and confusion matrix
lda_pred3 = predict(lda_fit3,test2)
predictions = lda_pred3$class
actual = test2$mpg01
table(predictions,actual)
##
              actual
## predictions 0 1
##
             0 48 4
             1 8 44
##
  • The test error of this model is 11.5%.
(e)
# QDA model
qda fit2 = qda(mpg01 ~ cylinders+displacement+horsepower+weight, data=train2)
qda_pred2 = predict(qda_fit2,test2)
predictions = qda_pred2$class
table(predictions,actual)
##
              actual
## predictions 0 1
##
             0 50 4
##
             1 6 44
  • The QDA model has a test error of 9.6%.
```

```
# Logistic regression model
logistic_fit5 = glm(mpg01 ~ cylinders+displacement+horsepower+weight, data=train2, family=binomial)
logistic_probs5 = predict(logistic_fit5,test2, type="response")
logistic_preds5 = rep(0, length(test2$mpg01))
logistic_preds5[logistic_probs5>0.5] = 1
table(logistic_preds5,actual)
##
                  actual
## logistic preds5 0 1
##
                 0 50 4
                 1 6 44
##
  • The logistic model has a 9.6\% test error rate.
(g)
# Train, Test and response matrices.
train2_matrix = data.matrix(train2[,c("cylinders", "displacement", "weight", "horsepower")])
test2_matrix = data.matrix(test2[,c("cylinders","displacement","weight","horsepower")])
train2_y = data.matrix(train2$mpg01)
test2_y = data.matrix(test2$mpg01)
# K=1 and predictions
knn_pred4 = knn(train2_matrix, test2_matrix, train2_y, k=1)
table(knn_pred4, test2_y)
##
            test2_y
## knn_pred4 0 1
##
           0 45 9
           1 11 39
##
  • KNN with K=1 has a test error of 20%.
# K=3 and predictions
knn_pred5 = knn(train2_matrix, test2_matrix, train2_y, k=3)
table(knn_pred5, test2_y)
##
            test2_y
## knn_pred5 0 1
           0 45 5
##
           1 11 43
##
  • KNN with K=3 is has a test error of 15%.
# K=9 and predictions
knn_pred6 = knn(train2_matrix, test2_matrix, train2_y, k=10)
table(knn_pred6, test2_y)
```

```
## test2_y
## knn_pred6 0 1
## 0 45 4
## 1 11 44
```

• K=10 leads to a slight improvement in test $\operatorname{error}(14.4\%)$, with diminishing returns as K gets even higher.

```
12. (a) (b) (c)
```

```
Power2 = function(x,a){
  print(x^a)
}
Power2(3,8)
```

[1] 6561

```
Power2(10,3)
```

[1] 1000

```
Power2(8,17)
```

[1] 2.2518e+15

```
Power2(131,3)
```

[1] 2248091

(d) (e)

```
Power3 = function(x,a){
  result = x^a
  return(result)
}

# Plot f(x) = x^2
x = 1:100
y = Power3(x,2)
plot(x,y,log="x", main="Plot of x against x^2")
```

Plot of x against x^2

(f)

```
PlotPower = function(x,a){
  x_values = x
 y_values = x^a
 plot(x_values, y_values)
PlotPower(1:10,3)
```


13.

```
#library(ISLR)
#library(MASS)
#library(class)
boston_df = Boston
\#Add\ 1 to column if CRIM > median and O otherwise
median_crim = median(Boston$crim)
boston_df$crim01 = with(ifelse(crim>median_crim, 1, 0), data=Boston)
#Correlation between crim01 and other variables.
cor(boston_df$crim01,boston_df)
##
                            indus
           crim
                      zn
                                       chas
                                                 nox
## [1,] 0.4093955 -0.436151 0.6032602 0.07009677 0.7232348 -0.1563718 0.6139399
##
                               tax
                                    ptratio
                                                black
crim01
##
## [1,]
           1
\#Training\ and\ Test\ sets
require(caTools)
set.seed(123)
boston_sample = sample.split(boston_df$crim01, SplitRatio = 0.80)
```

```
boston_train = subset(boston_df, boston_sample==TRUE)
boston_test = subset(boston_df, boston_sample==FALSE)
# Logistic regression using all variables except CHAS
# and crim(using crim will lead to perfect separation).
boston lr = glm(crim01 ~.-chas-crim , data=boston train, family=binomial)
summary(boston_lr)
##
## Call:
## glm(formula = crim01 ~ . - chas - crim, family = binomial, data = boston_train)
## Deviance Residuals:
     Min
              10
                  Median
                             30
                                    Max
## -1.8978 -0.1705 -0.0002 0.0025
                                 3.5340
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -39.431670 7.164710 -5.504 3.72e-08 ***
## zn
             ## indus
             48.381844
                      8.123415 5.956 2.59e-09 ***
## nox
## rm
             0.084088
                       0.798160 0.105 0.916096
             0.023671 0.013566 1.745 0.081014 .
## age
## dis
             ## rad
             0.631930 0.164647
                                 3.838 0.000124 ***
             -0.005362 0.002838 -1.889 0.058826 .
## tax
             0.334091 0.133126 2.510 0.012087 *
## ptratio
## black
             ## 1stat
## medv
              ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 560.06 on 403 degrees of freedom
## Residual deviance: 169.97 on 391 degrees of freedom
## AIC: 195.97
##
## Number of Fisher Scoring iterations: 9
boston_probs = predict(boston_lr,boston_test, type="response")
boston_preds = rep(0, length(boston_test$crim01))
boston_preds[boston_probs>0.5] = 1
actual = boston_test$crim01
table(boston_preds, actual)
##
            actual
## boston_preds 0 1
           0 46 5
```

1 5 46

##

• Test error rate of 9.8%. Same accuracy when predicting 0(crime below median) or 1(crime above median).

```
# Logistic regression using zn, nox, dis, rad and ptratio.
# These variables were statistically significant in the previous model.
boston_lr2 = glm(crim01 ~ zn+nox+dis+rad+ptratio, data=boston_train, family=binomial)
boston_probs2 = predict(boston_lr2,boston_test, type="response")
boston_preds2 = rep(0, length(boston_test$crim01))
boston_preds2[boston_probs2>0.5] = 1
actual = boston_test$crim01

table(boston_preds2, actual)
```

```
## actual
## boston_preds2 0 1
## 0 45 9
## 1 6 42
```

• Test error rises to 14.7% when using this subset.

```
# LDA
boston_lda = lda(crim01 ~.-chas-crim , data=boston_train)
boston_preds2 = predict(boston_lda, boston_test)
table(boston_preds2$class, actual)
```

```
## actual
## 0 1
## 0 49 12
## 1 2 39
```

• Test error rate of 13.7%.

```
# QDA
boston_qda = qda(crim01 ~.-chas-crim , data=boston_train)
boston_preds3 = predict(boston_qda, boston_test)
table(boston_preds3$class, actual)
```

```
## actual
## 0 1
## 0 50 9
## 1 1 42
```

• Test error rate of 9.8%. More accurate when predicting 0.

```
#KNN
#Training and Test sets without crim and chas
boston_train2 = data.matrix(subset(boston_train,select=-c(crim,chas)))
boston_test2 = data.matrix(subset(boston_test,select=-c(crim,chas)))

train2_y = data.matrix(boston_train[,15])
test2_y = data.matrix(boston_test[,15])
```

```
# KNN-1 and predictions
boston_knn1 = knn(boston_train2, boston_test2, train2_y, k=1)
table(boston_knn1, test2_y)
##
              test2_y
## boston_knn1 0 1
##
             0 47 1
##
             1 4 50
  • Test error rate of 4.9%.
# KNN-3 and predictions
boston_knn2 = knn(boston_train2, boston_test2, train2_y, k=3)
table(boston_knn2, test2_y)
##
              test2_y
## boston knn2 0 1
             0 45 1
##
##
             1 6 50
  • Higher test error rate of 6.9%.
# KNN-10 and predictions
boston_knn3 = knn(boston_train2, boston_test2, train2_y, k=10)
table(boston_knn3, test2_y)
##
              test2_y
## boston_knn3 0 1
##
             0 43 5
##
             1 8 46
  • Much higher test error rate of 11.7%.
  • Higher K values result in the test error rate increasing. KNN-1 gives the best performance, therefore
     the Bayes decision boundary for the data set is likely non-linear.
  • QDA and Logistic regression perform better than LDA but worse than KNN.
#KNN-1 using indus, nox, age, dis, rad, tax (strongly correlated variables with crim01)
```

#KNN-1 using indus, nox, age, dis, rad, tax (strongly correlated variables with crim01)
boston_train3 = data.matrix(subset(boston_train,select=c(indus,nox,age,dis,rad,tax)))
boston_test3 = data.matrix(subset(boston_test,select=c(indus,nox,age,dis,rad,tax)))
boston_knn4 = knn(boston_train3, boston_test3, train2_y, k=1)
table(boston_knn4, test2_y)

```
## test2_y
## boston_knn4 0 1
## 0 42 1
## 1 9 50
```

• The test error is worse when using these variables.

```
#KNN-2 using nox and rad - most statistically significant in the first logistic model.
boston_train4 = data.matrix(subset(boston_train,select=c(nox,rad)))
boston_test4 = data.matrix(subset(boston_test,select=c(nox,rad)))
boston_knn5 = knn(boston_train4, boston_test4, train2_y, k=2)
table(boston_knn5, test2_y)
```

• Test error of 4%, which is the lowest among the tested models and subsets of variables. KNN with values of K=1,2 or 3 give the best results.