

Basic Text Processing

Tokenizing

Sentence splitting

Word Normalisation

Task description

• Input is plain text (and sometimes the tokens)

It's over, Anakin. I have the high ground!

Task is to determine "sentences"

It`s over, Anakin. I have the high ground!

Sentence splitting

- Challenges:
 - Most common issue is the dot ".", since it can denote:
 - Abbreviation (Mr.)
 - Enumeration (2.)
 - Punctuation in a number (12.4)
 - End of sentence
 - ...
 - Meaning of semi-colon ";" is unspecific, sometimes it breaks sentences, sometimes it does not

Rule Based Sentence Splitting

The following slides present the PUNKT-Algorithm (available in NLTK)

Unsupervised Multilingual Sentence Boundary Detection

Tibor Kiss* Ruhr-Universität Bochum Jan Strunk** Ruhr-Universität Bochum

ACL 2006, https://www.aclweb.org/anthology/J06-4003.pdf

Formalizing the task

- For now we will restrict ourselves to determining the meaning of the dot "."
- For every occurrence of the dot, we determine:
 - Part of the token (Abbreviation <A>)
 - End of sentence (<S>)
- Strongly connected with tokenization
- → Classical binary decision problem
- → Or a multi-class classification if there are several categories (abbreviation, part of a number, enumeration,...).

- Idea: We can extract domain specific abbreviations automatically, given a large corpus of text (without labels)
- This results in a procedure which is split into 2 phases:
 - 1. Determine a label for every word type
 - → We hope to get it right for the majority of a type
 - 2. Correct mistakes introduced in the first phase

A word type is the form of the token, e.g. "Dr.", "Mr."

Every specific appearance of a token

• Basic idea of the algorithm:

Idea:

- Abbreviations should appear more frequently (statistically speaking) with a dot ".", than without
- → We can create a statistical test for independence
- We therefore create two hypotheses:

Null-hypothesis: There is no statistical dependency between a word w and a dot •

$$P(\bullet | w) = p = P(\bullet | \neg w)$$

Alternative-hypothesis: They are not independent

$$P(\bullet | w) = p_1 \neq p_2 = P(\bullet | \neg w)$$

- The test we are deriving now is according to Dunning (1993)
- We are deriving the test for arbitrary words w_1 and w_2 (and then apply it to our abbreviation with the dot •)
- But first, we are trying to model our text

We can now count some statistics:

- c_{12} common appearance of the bigram w_1w_2
- c_1 appearances of the word w_1
- c_2 appearances of the word w_2
- N, total amount of words in our text

We observe:

$$p(W_2|W_1) = \frac{p(W_1, W_2)}{p(W_1)} = \frac{\frac{c_{12}}{N}}{\frac{c_1}{N}} = \frac{c_{12}}{c_1}$$

$$p(W_2|_{\neg}W_1) = \frac{p(_{\neg}W_1, W_2)}{p(_{\neg}W_1)} = \frac{c_2 - c_{12}}{N - c_1}$$

We can now count some statistics:

- c_{12} common appearance of the bigram w_1w_2
- c_1 appearances of the word w_1
- c_2 appearances of the word w_2
- N, total amount of words in our text

We are now trying to get a total probability of the text, given these observations!

- Modelling the text
 - This test assumes, that our text consists of:

Some appearances of w_1, w_2

Some appearances of $\neg w_1 w_2$

Some appearances of $w_1 \neg w_2$

Some other stuff

- Modelling the text
 - This test assumes, that our text consists of:

Some appearances of w_1, w_2

Some appearances of $\neg w_1 w_2$

- Modelling the text
 - This test assumes, that our text consists of:

Some appearances of w_1, w_2

Some appearances of $\neg w_1 w_2$

We ignore them (after counting c_1)

Some

appearances

of $w_1 \neg w_2$

Some other stuff

We ignore them (after counting N)

 w_1w_2 w_1w_2 w_1w_2

 $\neg w_1 w_2$

 $\neg w_1 w_2$

 $\neg w_1 w_2$

 $\neg w_1 w_2$

- counted c_1
- counted N

We ignore the order in which they appear (we are only interested in the counts)

• Let us recite our observations:

We observe:

$$p(W_2|W_1) = \frac{p(W_1, W_2)}{p(W_1)} = \frac{\frac{c_{12}}{N}}{\frac{c_1}{N}} = \frac{c_{12}}{c_1}$$

Of c_1 possibilities to observe w_1w_2 , we observe it c_{12} times

 $p(W_2|_{\neg}W_1) = \frac{p(_{\neg}W_1, W_2)}{p(_{\neg}W_1)} = \frac{c_2 - c_{12}}{N - c_1}$

→ We can now model the entire text using the product of 2 Bernoulli distributions, each with their respective observations

 w_1w_2 w_1w_2 w_1w_2

 $\neg w_1 w_2 \qquad \neg w_1 w_2 \qquad \neg w_1 w_2$

 $\neg w_1 w_2$

- counted c_1
- counted N

We model the observations: $(W_2|W_1)$ with the following probability:

$$B(c_1, c_{12}, p_1) = {c_1 \choose c_{12}} p_1^{c_{12}} \cdot (1 - p_1)^{c_1 - c_{12}}$$

 w_1w_2 w_1w_2

• counted c_1

And the observations: $(W_2|\neg W_1)$ with the following probability:

 $\neg w_1 w_2 \qquad \neg w_1 w_2 \qquad \neg w_1 w_2$

$$B(N-c_1,c_2-c_{12},p_2) = \binom{N-c_1}{c_2-c_{12}} p_2^{c_2-c_{12}} \cdot (1-p_2)^{N-c_1-c_2+c_{12}} \neg w_1 w_2$$

counted c₁counted N

We can now model the entire observations as the product of both terms:

$$p(\text{observations}) = \binom{c_1}{c_{12}} p_1^{c_{12}} \cdot (1 - p_1)^{c_1 - c_{12}} \cdot \binom{N - c_1}{c_2 - c_{12}} p_2^{c_2 - c_{12}} \cdot (1 - p_2)^{N - c_1 - c_2 + c_{12}}$$

• Almost there:

Null-hypothesis: There is no statistical dependency between a word w and a dot •

$$p_1 = P(\bullet \mid w) = p = P(\bullet \mid \neg w) = p_2$$

Alternative-hypothesis: They are not independent

$$P(\bullet | w) = p_1 \neq p_2 = P(\bullet | \neg w)$$

$$H_0 = {c_1 \choose c_{12}} p^{c_{12}} \cdot (1-p)^{c_1-c_{12}} \cdot {N-c_1 \choose c_2-c_{12}} p^{c_2-c_{12}} \cdot (1-p)^{N-c_1-c_2+c_{12}}$$

$$H_A = \begin{pmatrix} c_1 \\ c_{12} \end{pmatrix} p_1^{c_{12}} \cdot (1 - p_1)^{c_1 - c_{12}} \cdot \begin{pmatrix} N - c_1 \\ c_2 - c_{12} \end{pmatrix} p_2^{c_2 - c_{12}} \cdot (1 - p_2)^{N - c_1 - c_2 + c_{12}}$$

- The test now for real:
- We use both our hypotheses and calculate the Likelihood-Ratio

$$\lambda = \frac{H_0}{H_A} = \frac{\max_{p} B(c_{12}, c_1, p) \cdot B(c_2 - c_{12}, N - c_1, p)}{\max_{p_1, p_2} B(c_{12}, c_1, p_1) \cdot B(c_2 - c_{12}, N - c_1, p_2)}$$

We compare the most likely manifestations of both hypotheses

• Maximization of the Hypothesis for p, p_1 and p_2 yields:

$$p = \frac{c_2}{N}$$
; $p_1 = \frac{c_{12}}{c_1}$; $p_2 = \frac{c_2 - c_{12}}{N - c_1}$

- You can recover this by forming the derivations and setting them to zero!
- → Exercise

A small simplification

$$H_0 = \binom{c_1}{c_{12}} p^{c_{12}} \cdot (1-p)^{c_1-c_{12}} \cdot \binom{N-c_1}{c_2-c_{12}} p^{c_2-c_{12}} \cdot (1-p)^{N-c_1-c_2+c_{12}}$$

$$H_A = \begin{pmatrix} c_1 \\ c_{12} \end{pmatrix} p_1^{c_{12}} \cdot (1 - p_1)^{c_1 - c_{12}} \cdot \begin{pmatrix} N - c_1 \\ c_2 - c_{12} \end{pmatrix} p_2^{c_2 - c_{12}} \cdot (1 - p_2)^{N - c_1 - c_2 + c_{12}}$$

These terms are equal and cancel each other in the fraction!

• The final form (after applying the logarithm)

$$\log \lambda = \log(L(c_{12}, c_1, p)) + \log(L(c_2 - c_{12}, N - c_1, p)) - \log(L(c_{12}, c_1, p_1)) - \log(L(c_2 - c_{12}, N - c_1, p_2))$$

Using: $L(k, n, p) = p^k \cdot (1 - p)^{n-k}$

Note: One can show, that the value $-2 \log \lambda$ follows a Chi-Square distribution with 1 degree of freedom (this means, we can calculate that value and read from a precalculated table if we have statistical significance)

- Likelihood-Ratio Dunning (1993)
- Examples from his paper (k means count, and ~ means "not")

Bigrams Ranked by Log-Likelihood Test

В	A	$k(\sim A \sim B)$	$k(\sim AB)$	$k(A \sim B)$	k(AB)	$-2 \log \lambda$
swiss	the	29114	111	2442	110	270.72
be	can	31612	123	13	29	263.90
year	previous	31584	139	23	31	256.84
water	mineral	31764	3	0	10	167.23
the	at	29121	2476	104	76	157.21
terms	real	31694	51	16	16	157.03
gas	natural	31763	5	0	9	146.80
to	owing	30896	865	0	16	115.02
insurance	health	31717	41	9	10	104.53
competition	stiff	31740	27	2	8	100.96

If $-2 \log \lambda \ge 3.841$, there is approx. 95% certainty (sig. value 0.05) that B appears together with A more frequently than without.

				_
d	0.05	0.01	0.001	
1	3.841	6.635	10.828	
2	5.991	9.210	13.816	
3	7.815	11.345	16.266	

We drifted away...

- Abbreviations tend to be short
- They introduced a factor for the length of the token w:

$$F_{length} = \frac{1}{e^{length(w)}}$$

- With length(w) being the amount of characters excluding inner punctuation
- Example:

$$length(u.s.a)=3$$

- Internal punctuation is a strong hint for an abbreviation (e.g.)
- Another term:

$$F_{periods} = number\ internal\ periods + 1$$

Abbreviations should (almost never) appear without a dot

$$F_{penalty} = \frac{1}{length(w)^{C(w, \neg \bullet)}}$$

PUNKT-Algorithm – first decision

• The authors argued, that:

If: Scaled
$$\log \lambda = \log \lambda(w, \bullet) \cdot F_{length}(w) \cdot F_{periods}(w) \cdot F_{penalty}(w) \ge 0.3$$

 \rightarrow w is an abbreviation (else it is not)

PUNKT-Algorithm – first decision

Examples for "Scaled Likelihood"

Final sorting	Scaled log λ	
n.h	7.60	
a.g	6.08	
m.j	4.56	
u.n	4.56	
u.s.a	4.19	
ga	3.04	
vt	3.04	
ore	0.32	
reps	0.31	
mo	0.30	
1990s	0.26	
ounces	0.06	
alex	0.03	
depositor	0.00	

PUNKT-Algorithm – first decision

- Now we have the chance to correct some individual instances
- For all abbreviations (after stage 1), check these heuristics:
 - 1. Orthographic heuristic (does a token appear both upper- and lowercase)
 - 2. Frequent Starter heuristic (does a token start a sentence significantly often)
 - 3. Collocational bond heuristic (does the token before the dot form a significant connection to the token after the dot)
- If any one heuristic matches, then we modify the previous decision

"Punkt" - Unsupervised Multilingual Sentence boundary Detection

• Evaluation on 11 languages :

Results of classification—newspaper corpora (mixed case).

Corpus	Error (<s>) (%)</s>	Prec. (<s>) (%)</s>	Recall (<s>) (%)</s>	F (<s>) (%)</s>	Error (<a>) (%)	Prec. (<a>) (%)	Recall (<a>) (%)	F (<a>) (%)
B. Port.	1.11	99.14	99.72	99.43	0.99	96.88	70.89	81.87
Dutch	0.97	99.25	99.72	99.48	0.66	99.31	90.24	94.55
English	1.65	99.13	98.64	98.89	0.71	99.86	97.52	98.68
Estonian	2.12	98.58	99.07	98.83	1.75	98.22	83.51	90.27
French	1.54	99.31	99.08	99.19	0.72	95.19	79.20	86.46
German	0.35	99.69	99.93	99.81	0.26	99.91	97.34	98.61
Italian	1.13	99.32	99.49	99.41	0.74	96.60	83.48	89.56
Norw.	0.81	99.45	99.68	99.56	0.72	98.16	90.81	94.34
Spanish	1.06	99.66	99.23	99.45	0.35	98.70	93.33	95.94
Swedish	1.76	98.82	99.36	99.09	1.48	94.10	66.32	77.80
Turkish	1.31	99.40	99.24	99.32	0.43	95.35	89.13	92.13
Mean	1.26	99.25	99.38	99.31	0.80	97.48	85.62	90.93
SD	0.49	0.33	0.38	0.29	0.46	1.99	10.19	6.69

Sentence Splitting using Machine Learning

- Instance: For every ambiguous character ("."), we decide:
 - End of sentence
 - Abbreviation
 - Enumeration
 - ...
- → Multilabel classification
- Requires a labelled corpus
- Can make use of standard classifiers

Sentence Splitting using Machine Learning

- Features (Riley 1989):
 - Probability of a token at the end of a sentence
 - Probability of a token at the start of a sentence
 - Length of the token (in characters)
 - Length of the next token
 - Orthographic features (Uppercase, Lowercase, Full Capitalized, Number)
 - Orthographic features of the next token
 - Character after the dot (or null)
 - Equivalence class of an abbreviation according to a (e.g. month, unit, title, address, name)
- → Error rate of 0.2% on the Brown Corpus!