

École Mines-Télécom

The 6TiSCH Protocol Stack: 6P and MSF

Georgios Z. PAPADOPOULOS, PhD, HDR

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

Overview

		Applications	CoJP			
		CoAP / OSCORE	6LoWPAN ND		RPL	
		UDP	UDP I		CMPv6	
		IPv6				
		6LoWPAN HC / 6LoRH HC Scheduling Funct			on (MSF)	
V		6top inc. 6top Protocol (6p)				
IE	CE	IEEE Std 802.15.4 TSCH				
		IEEE Std 802.15.4 PHY				

Overview

- Scheduling Function: MSF
- ▶ 6TiSCH Operation Sublayer: 6P

Schedule

- All nodes follow a common communication schedule.
- A schedule is a matrix of cells:
 - Consists of a *timeslot* & *channel offset*.
 - Shared (contention-based) and dedicated (contention-free) cells.

Schedule

- All nodes follow a common communication schedule.
- A schedule is a matrix of cells:
 - Consists of a *timeslot* & *channel offset*.
 - Shared (contention-based) and dedicated (contention-free) cells.
- Distributed (6P & MSF) or centralized (PCE) approaches.

Schedule

- All nodes follow a common communication schedule.
- A schedule is a matrix of cells:
 - Consists of a *timeslot* & *channel offset*.
 - Shared (contention-based) and dedicated (contention-free) cells.
- Distributed (6P & MSF) or centralized (PCE) approaches.
- A schedule provides a tunable trade-off:
 - Network capacity.
 - Bounded latency.
 - Network reliability.
 - Energy consumption.

Schedule

- All nodes follow a common communication schedule.
- A schedule is a matrix of cells:
 - Consists of a *timeslot* & *channel offset*.
 - Shared (contention-based) and dedicated (contention-free) cells.
- Distributed (6P & MSF) or centralized (PCE) approaches.
- A schedule provides a tunable trade-off:
 - Network capacity.
 - Bounded latency.
 - Network reliability.
 - Energy consumption.
- A typical industrial trade-off scenario:

to target network reliability and bounded latency at the cost of network capacity and energy.

The 6TiSCH Minimal Scheduling Function (MSF): RFC 9033

6TiSCH MSF (RFC 9033)

Overview

- Bootstrap process for a node to join the network.
- Reactive scheduling function:
 - Adapt to traffic changes.
 - Adapt to routing changes.
 - Handle possible schedule collisions.

6TiSCH MSF (RFC 9033)

Traffic Adaptivity: General Principle

- ▶ Estimate the number of resources actually used for transmission.
- Per neighbour and for TX and RX transmission.
- Decision to allocate/deallocate:
 - usage ≥ 75% ⇒ allocate.
 - usage ≤ 25% ⇒ deallocate.

6TiSCH MSF (RFC 9033)

Traffic Adaptivity: Estimation of resources usage (per neighbour)

- Estimate the number of resources actually used for transmission.
- Per neighbour and for TX and RX transmission.
- Decision to allocate/deallocate:
 - usage ≥ 75% ⇒ allocate.
 - usage ≤ 25% ⇒ deallocate.
- NumCellsPassed: Elapsed number of negotiated cells.
- NumCellsUsed: Number of cells actually used for transmission.
- NumCellsPassed = MAX NUM CELLS ⇒

 - usage ← NumCellsUsed NumCellsPassed
 - Reset NumCellsPassed and NumCellsUsed to 0
- By default MAX NUM CELLS = 100

The schedule of the node H.

Note: 3 cells are employed out of 4 for $H\rightarrow R$ link.

Note: 3 cells are employed out of 4 for $H \rightarrow R$ link.

Employed cells from node H to R: $\frac{3}{4} = 75\%$

75% ≥ 75% (MSF high Threshold) → Add a new cell toward the node B.

Note: a new cell is added for the link $H\rightarrow R$.

75% ≥ 75% (MSF high Threshold) → Add a new cell toward the node B.

Node H has 5 transmission cells toward B.

Note: now, only 1 cell is employed out of 5 for $H\rightarrow R$ link.

Note: now, only 1 cell is employed out of 5 for $H\rightarrow R$ link.

Employed cells from node H to R: $\frac{1}{5}$ = 20%

 $20\% \le 25\%$ (MSF low threshold) \Rightarrow Remove cell to B

 $20\% \le 25\%$ (MSF low threshold) \Rightarrow Remove cell to B

The 6TiSCH Operation Sublayer (6top) Protocol (6P): RFC 8480

Overview

- ► 6TiSCH Operation Sublayer (6top) and Protocol (6P):
 - Means to add, delete, move cells in a neighbour schedule.
- ➤ A Scheduling Function → MSF:
 - Decides when and how many cells to add or delete.

6P only manipulates cells → The scheduling function decides when and how many!

Example of a 2-step 6P ADD transaction

Example of a 2-step 6P ADD transaction

The SF running on node H selects candidate cells for node R to choose from.

Example of a 2-step 6P ADD transaction

Each cell in the CellList is a (timeslotOffset, channelOffset) tuple.

Example of a 2-step 6P ADD transaction

After having successfully received an L2 ACK, node H starts a 6P Timeout to abort the 6P Transaction in the event that no response is received from node R.

Example of a 2-step 6P ADD transaction

The SF running on node R selects one out of the three cells from the CellList of the 6P ADD Request.

Example of a 2-step 6P ADD transaction

Example of a 2-step 6P ADD transaction

École Mines-Télécom

The 6TiSCH Protocol Stack: 6P and MSF

Georgios Z. PAPADOPOULOS, PhD, HDR

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos