C

# Stochastik für Studierende der Informatik

Dr. Ernst August v. Hammerstein

Albert-Ludwigs-Universität Freiburg Abteilung für Mathematische Stochastik

Sommersemester 2019

# Organisatorisches

### Übungsgruppen

```
Gruppe 1: Mi 08–10 Uhr, R 03 026 (Geb. 51) (Saskia Glaffig)

Gruppe 2: Do 08–10 Uhr, R 00-031 (Geb. 51) (Sebastian Stroppel)

Gruppe 3: Fr 08–10 Uhr, SR 01 009/13 (Geb. 101) (Michaela Freitag)

Gruppe 4: Fr 14–16 Uhr, SR 01 016 (Geb. 101) (Michaela Freitag)

Gruppe 5: Fr 14–16 Uhr, SR 01 018 (Geb. 101) (Jasper Hoffmann)
```

Anmeldung: über HISinOne, möglichst bis Ende der ersten Vorlesung

In der zweiten Semesterwoche finden bereits Übungen statt, in denen Anwesenheitsaufgaben bearbeitet und besprochen werden.

**Ersatztermin Gruppe 1:** Di, 30.04., 08-10 Uhr, R 00-031 (Geb. 51)

Für die an Christi Himmelfahrt und Fronleichnam ausfallenden Übungen wird es Ersatztermine geben.

# Übungsaufgaben, Studien- und Prüfungsleistung

Übungsaufgaben und ggf. weitere Vorlesungsmaterialien werden über ILIAS zur Verfügung gestellt.

**Zugangspasswort für ILIAS:** #St19lvH2t!

Neue Übungsblätter werden montags auf ILIAS hochgeladen, Lösungen sind jeweils bis spätestens am Montag der Folgewoche vor der Vorlesung in die Briefkästen im EG Geb. 51 einzuwerfen. Sie dürfen maximal zu zweit abgeben, dabei sollten die Abgabepartner sich in derselben Übungsgruppe befinden.

#### Voraussetzungen für die Zuerkennung der Studienleistung:

- aktive Teilnahme an den Übungsgruppen
- ▶ Vorrechnen mindestens einer Übungsaufgabe an der Tafel
- ▶ Mindestens 50% der erreichbaren Punkte der Übungsaufgaben

Die **Prüfungsleistung** besteht in der erfolgreichen Teilnahme an der Abschlussklausur. Der genaue Termin hierfür steht noch nicht fest.

#### Literatur (Auswahl)

- Dümbgen, L. (2003), Stochastik für Informatiker, Springer
- ► Henze, N. (2017), Stochastik für Einsteiger, 11. Aufl., Springer
- Kersting, G., Wakolbinger, A. (2010), Elementare Stochastik, 2. Aufl., Birkhäuser

#### Kontakt

Fragen, Anregungen, Kritik (positive oder negative) können Sie neben den Übungsgruppen auch richten an

ernst.august.hammerstein@stochastik.uni-freiburg.de pascal.beckedorf@stochastik.uni-freiburg.de

oder persönlich in den Sprechstunden:

**E.A. v. Hammerstein:** Mi, 10–11 Uhr, Raum 248, Ernst-Zermelo-Str. 1

P. Beckedorf: Di, 14–15 Uhr, Raum 227, Ernst-Zermelo-Str. 1

# Zur Einführung

## Was ist Stochastik?

Stochastik ist der Oberbegriff für Wahrscheinlichkeitsrechnung bzw. -Theorie und mathematische Statistik.

In der Stochastik werden mathematische Modelle von Zufallserscheinungen konstruiert, deren Gesetzmäßigkeiten studiert und ihre Anwendbarkeit auf reale Daten untersucht. Die Modelle basieren auf Zufallsbegriffen, wie z.B. dem der "Wahrscheinlichkeit".

Diese werden durch mathematische Axiome beschrieben (Kolmogorov 1933). Die Axiome erklären jedoch nicht das Wesen des Zufalls.



# Stochastik im Alltag

Entscheiden Auswahl von Kapitalanlagemöglichkeiten Spiele, z.B. Schere-Stein-Papier ( $\rightarrow$  Spieltheorie in den Wirtschaftswissenschaften)

Schätzen jährliches Steueraufkommen, Inflationsraten Krankheitsaufkommen in der Bevölkerung (Inzidenzrate)

Vergleichen/Testen Ist eine Münze oder ein Würfel fair?
Ist ein Medikament besser/wirksamer als ein anderes?
Sind zwei Merkmale unabhängig oder korreliert?

Vorhersagen Wetter

Tippen: Toto, Lotto,...

Zukünftiger Kurs eines Wertpapiers

Messen physikalischer Größen (Messfehler → Fehlerausgleichsrechnung, Fehlergrenzen)

Quantenmechanik, Heisenbergsche Unschärferelation

# Stochastik im Alltag (Forts.)

Mustererkennung, Fehlerkorrektur Stochastische Algorithmen zur Signalentstörung (Funk, Radar, DVD-Player)
Bildverschärfung
Gesichtserkennung in Fotoprogrammen

Verschlüsselungsverfahren stochastische Primzahltests

Analyse von Netzwerken und Algorithmen Graphentheorie, Netzwerkmodelle, Suchbäume, Quicksort

Versicherungsmathematik Prämienkalkulation in z.B. Haftpflicht-, Kranken- und Lebensversicherung (Aktuare)

Finanzmathematik Berechnung von Derivatpreisen (Optionen, Zertifikate, Swaps,...)
Optimale Handelsstrategien und Portfolios
Quantifizierung von Risiken (Markt-, Kredit-,
Liquiditätsrisiken sowie operational risk)
Risikokapitalberechnung (Basel II, Basel III)

## Genereller Ansatz und Verfahren

- lacktriangle Präzisiere, welche Ereignisse man betrachten will  $\longrightarrow$  Modellbildung
- ▶ Ordne jedem Ereignis A eine Wahrscheinlichkeit  $\mathbb{P}(A) \in [0,1]$  zu. Mögliche Prinzipien zur Festsetzung von  $\mathbb{P}(A)$ :
  - 1. **subjektiv:** Maß des persönlichen Glaubens, dass A eintritt
  - 2. **frequentistisch:** Relative Häufigkeit bzw. deren Grenzwert bei beliebig vielen unabhängigen Wiederholungen
  - Gleichverteilung: Quotient aus Anzahl der günstigen durch Anzahl der möglichen Fälle

**Problem:** Alle o.g. Festsetzungsmöglichkeiten für  $\mathbb{P}(A)$  führen zu Schwierigkeiten

Ausweg: Axiomatischer Ansatz (Kolmogorov 1933)

Keine Hinterfragung der genauen Bedeutung von  $\mathbb{P}(A)$  bzw. dessen

Erhalt durch ein konkretes Zufallsexperiment.

Fordere lediglich gewisse (konsistente) Regeln, die für

Wahrscheinlichkeiten  $\mathbb{P}(A)$  gelten sollen.

Leite daraus Wahrscheinlichkeiten komplexerer Ereignisse ab.

## 3 Diskrete Wahrscheinlichkeitsräume

# Definition 3.1 (Diskreter Wahrscheinlichkeitsraum)

Ein diskreter Wahrscheinlichkeitsraum ist ein Tripel  $(\Omega, \mathcal{A}, \mathbb{P})$ , bestehend aus einer nicht-leeren, höchstens abzählbaren Menge  $\Omega$  (Grundraum), der Potenzmenge  $\mathcal{A} = \mathcal{P}(\Omega)$  und einer Abbildung  $\mathbb{P}: \mathcal{A} \to [0,1]$  (Wahrscheinlichkeitsmaß oder -Verteilung), die die folgenden Eigenschaften erfüllen muss:

- a)  $\mathbb{P}(\Omega) = 1$  (Normierung),
- b)  $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$  für jede Folge  $(A_i)_{i \geq 1}$  paarweise disjunkter Mengen  $A_i \in \mathcal{A}$  (d.h.  $A_i \cap A_j = \emptyset$  für  $i \neq j$ ) ( $\sigma$ -Additivität).

#### Sprechweisen:

- ► Teilmengen A ∈ P(Ω) von Ω heißen *Ereignisse*,
- ightharpoonup A = Ω heißt sicheres Ereignis,
- $ightharpoonup A = \emptyset$  heißt unmögliches Ereignis,
- ▶  $A = \{\omega\}$  mit  $\omega \in \Omega$  heißt *Elementarereignis*,

- ▶  $A \cup B$  bedeutet, dass A oder B (oder beide) eintreten,
- ▶  $A \cap B$  bedeutet, dass sowohl A als auch B eintreten.

#### Einfache Folgerungen:

- a)  $\mathbb{P}(\emptyset) = 0$  ( $\mathbb{P}$  ist nulltreu)
- b)  $\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i)$  für paarweise disjunkte Mengen  $A_1, \ldots, A_n \in \mathcal{A}$  (endliche Additivität)  $\Longrightarrow \mathbb{P}(A^C) = 1 \mathbb{P}(A)$  und  $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(B \cap A)$ ,
- c)  $A, B \in \mathcal{A}, A \subset B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$  (Monotonie),
- d) Seien  $A_1, \ldots, A_n \in \mathcal{A}$ , so gilt die sog. Sieb- oder Einschluss-Ausschluss-Formel

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{1 \leq i < j \leq n} \mathbb{P}(A_i \cap A_j) + \cdots \pm \mathbb{P}(A_1 \cap \cdots \cap A_n)$$

Speziell: 
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
,

e)  $A_1, A_2, \dots \in \mathcal{A} \Rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mathbb{P}(A_i)$  (Sub- $\sigma$ -Additivität).

# Satz 3.2 (Eindeutige Festlegung von $\mathbb{P}$ )

Sei  $\Omega$  eine nicht-leere, höchstens abzählbare Menge und  $(p_n)_{n\geq 1}$  eine Folge nicht-negativer Zahlen (d.h.  $p_n\geq 0$  für alle n), für die gilt  $\sum_{n=1}^{\infty}p_n=1$ .

Dann gibt es auf dem Grundraum  $\Omega$  genau ein Wahrscheinlichkeitsmaß  $\mathbb{P}: \mathcal{A} \to [0,1]$  mit  $\mathbb{P}(\{\omega_n\}) = p_n$ , d.h. das Wahrscheinlichkeitsmaß  $\mathbb{P}$  ist durch Angabe der Elementarwahrscheinlichkeiten  $\mathbb{P}(\{\omega_n\})$ ,  $n \ge 1$ , bereits eindeutig festgelegt.

Beweis: Anwesenheitsaufgabe

#### Einfache Beispiele: Würfel und Münzwurf

**Einmaliger Würfelwurf:** Grundraum der möglichen Ergebnisse  $\Omega = \{1, 2, 3, 4, 5, 6\}$ 

Bei einem fairen Würfel sollten alle möglichen Ergebnisse gleich wahrscheinlich sein

**Laplace-Ansatz:** Bei endlichem Grundraum  $\Omega$  sollen alle Elementarereignisse die gleiche Wahrscheinlichkeit haben. Im Fall des Würfels bedeutet das

$$1=\mathbb{P}(\Omega)=\mathbb{P}\left(\bigcup_{i=1}^6\{i\}\right)=\sum_{i=1}^6\mathbb{P}(\{i\})\stackrel{\mathsf{Laplace}}{=}\sum_{i=1}^6\rho=6p,\ \mathsf{d.h.}\ p=\mathbb{P}(\{i\})=\frac{1}{6}.$$

Sei  $A_{\rm g}$  das Ereignis, eine gerade Zahl zu würfeln, dann ist  $A_{\rm g}=\{2,4,6\}$  und

$$\mathbb{P}(A_g) = \mathbb{P}(\{2\}) + \mathbb{P}(\{4\}) + \mathbb{P}(\{6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.$$

Allgemein gilt unter dem Laplace Ansatz: Ist  $\Omega = \{\omega_1, \ldots, \omega_n\}$  und somit  $|\Omega| = \#\Omega = n$ , dann ist  $\mathbb{P}(\{\omega_k\}) = \frac{1}{|\Omega|} = \frac{1}{n}$  für  $1 \leq k \leq n$ , und für  $A \subseteq \Omega$  gilt

$$\mathbb{P}(A) = \sum_{\omega_k \in A} \mathbb{P}(\{\omega_k\}) = \sum_{\omega_k \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|} = \frac{\mathsf{Anzahl \ günstiger \ F\"{a}lle}}{\mathsf{Anzahl \ m\"{o}glicher \ F\"{a}lle}}.$$

Anderes Modell: Manipulierter Würfel

Bei diesem fällt die 6 mit Wahrscheinlichkeit  $\mathbb{P}(\{6\}) = p$  für ein  $0 und die anderen Zahlen mit <math>\mathbb{P}(\{i\}) = \frac{1-p}{5}$ ,  $1 \le i \le 5$ .

#### Zweimaliger Würfelwurf:

$$\begin{split} \Omega &= \{(1,1),(1,2),\ldots,(6,6)\} = \{(\omega_1,\omega_2) \mid \omega_1,\omega_2 \in \{1,2,3,4,5,6\}\} \\ \text{Hier ist offensichtlich } |\Omega| &= 6 \cdot 6 = 36. \text{ Damit ergibt sich mit dem} \\ \text{Laplace-Ansatz z.B. für die Wahrscheinlichkeit eines Paschs} \end{split}$$

$$\mathbb{P}(\{(1,1),(2,2),\ldots,(6,6)\}) = \sum_{i=1}^{6} \mathbb{P}(\{(i,i)\}) = \sum_{i=1}^{6} \frac{1}{36} = \frac{1}{6}.$$

#### n-maliger Münzwurf:

Mögliche Ergebnisse bei einmaligem Wurf: Kopf = 1, Zahl = 0 Grundraum:  $\Omega = \{(\omega_1, \dots, \omega_n) \mid \omega_i \in \{0, 1\}, \ 1 \leq i \leq n\} \implies |\Omega| = 2^n$  Laplace:  $\mathbb{P}(\{(\omega_1, \dots, \omega_n)\}) = \frac{1}{2^n}$ 

Allgemeiner: p-Münze, d.h.  $\mathbb{P}(\{1\}) = p$ ,  $0 , <math>\mathbb{P}(\{0\}) = 1 - p$ .

Für das n-malige Würfeln mit einem manipulierten Würfel bzw. das n-malige Werfen einer p-Münze sind die Grundräume  $\Omega$  dieselben wie zuvor, jedoch ist hier die Laplace-Annahme zur Festsetzung der Wahrscheinlichkeiten offensichtlich nicht gerechtfertigt. Hierzu benötigt man andere Annahmen (z.B. Unabhängigkeit).

#### Ziehen aus einer Urne

Eine Urne enthalte m weiße und n schwarze Kugeln. Wie groß ist die Wahrscheinlichkeit, eine weiße Kugel zu ziehen?

Grundraum:  $\Omega = \{1, ..., n+m\}$ , wobei  $W = \{1, ..., m\}$  die weißen und  $S = \{m+1, ..., n+m\}$  die schwarzen Kugeln seien.

Mit Laplace-Annahme gilt 
$$\mathbb{P}(W) = \frac{|W|}{|\Omega|} = \frac{m}{m+n}$$
 und analog  $\mathbb{P}(S) = \frac{n}{n+m}$ .

#### Geburtstagsproblem

In einem Raum befinden sich  ${\it N}$  Personen. Mit wecher Wahrscheinlichkeit haben mindestens zwei der Anwesenden am gleichen Tag Geburtstag?

Grundraum: 
$$\Omega = \{(\omega_1, \dots, \omega_N) \mid \omega_i \in \{1, 2, \dots, 365\}\} \implies |\Omega| = 365^N$$

$$A = \{ \text{Mind. 2 Personen haben am gleichen Tag Geburstag} \}$$
$$= \{ \omega \in \Omega \mid \exists \ i \neq j : \omega_i = \omega_j \}$$

Unter der Laplace-Annahme gilt  $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$ . Problem: Bestimmung von |A| kompliziert!

Ausweg: Nutze 
$$\mathbb{P}(A) = 1 - \mathbb{P}(A^C) = 1 - \frac{|A^C|}{|\Omega|}$$
.

Es ist 
$$|A^C| = \begin{cases} \prod_{i=1}^N (366 - i), & N \leq 365, \\ 0, & N > 365. \end{cases}$$

#### Damit erhält man

|                 | 10     |        |        |        |        |        |        |           |
|-----------------|--------|--------|--------|--------|--------|--------|--------|-----------|
| $\mathbb{P}(A)$ | 0.1169 | 0.4114 | 0.5073 | 0.7063 | 0.8912 | 0.9704 | 0.9941 | 0.9999997 |

#### (Un)Faire Wetten

Man wettet mit einem Einsatz von  $1 \in$  auf ein Ereignis E, das mit Wahrscheinlichkeit p (0 ) eintritt.

Prinzip des fairen Wettens: Der (Netto-)Gewinn G muss gerade so groß sein, dass man im Mittel nichts gewinnt, d.h. der mittlere Gewinn MG is gleich Null:

$$MG = G \cdot \mathbb{P}(E) - 1 \cdot \mathbb{P}(E^C) = G \cdot p - 1 \cdot (1 - p) \stackrel{!}{=} 0 \implies G = \frac{1}{p} - 1$$

Auflösen nach p ergibt  $p = \frac{1}{G+1}$ , d.h. bei einer fairen Wette ist die Erfolgswahrscheinlichkeit der Kehrwert der Wettquote (G+1): 1.

Solche Wettquoten werden u.a. bei Sportwetten (z.B. b-win, tipico) angegeben, z.B. für das Spiel SC Freiburg gegen Fortuna Düsseldorf

|                        | Heimsieg | Unentschieden | Auswärtssieg |
|------------------------|----------|---------------|--------------|
| Freiburg vs Düsseldorf | 2.1      | 3.6           | 3.4          |

Aus den obigen Quoten erhält man

$$\mathbb{P}(\mathsf{Sieg Freiburg}) = \frac{1}{2.1} = \frac{10}{21} \approx 0.4762, \ \mathbb{P}(\mathsf{Sieg Ddorf}) = \frac{1}{3.4} = \frac{5}{17} \approx 0.2941, \\ \mathbb{P}(\mathsf{Unentsch.}) = \frac{1}{3.6} = \frac{5}{18} \approx 0.2778,$$

$$\text{Wegen } \mathbb{P}(\mathsf{Sieg}\ \mathsf{F}) + \mathbb{P}(\mathsf{U}) + \mathbb{P}(\mathsf{Sieg}\ \mathsf{D}) = \frac{10}{21} + \frac{5}{18} + \frac{5}{17} \approx 1.048086 > 1$$

ist das Spiel nicht ganz fair (da der Wettanbieter Gewinn machen will). Die tatsächlichen (vermuteten) Wahrscheinlichkeiten erhält man hier durch Renormierung, z.B.  $\mathbb{P}(\text{Sieg Freiburg}) = \frac{0.4762}{1.048086} \approx 0.4544$ .

## Urnenmodelle

Zur Anwendung des Laplace-Ansatzes muss man insbesondere die Mächtigkeit des Grundraumes  $\Omega$  bestimmen, wozu häufig kombinatorische Überlegungen notwendig sind.

#### Fall 1: Anordnungen von m aus N Elementen mit Wiederholung

$$A = \{a_1, \dots, a_N\}$$
 sei endliche Menge mit unterscheidbaren Objekten  $\Omega := \{\omega = (\omega_1, \dots, \omega_m) \mid \omega_i \in A, 1 \le i \le m\} = A^m \implies |\Omega| = N^m$ 

 $\ddot{A}$ quivalentes Urnenmodell: m-faches Ziehen mit Zurücklegen und Beachtung der Reihenfolge aus einer Urne mit N unterscheidbaren Kugeln

Für  $A = \{1, 2, ..., 6\}$  entspricht dies dem m-maligen Würfeln.

Weitere Anwendung: Belegung von Zellen/Schachteln mit unterscheidbaren Objekten

Beispiel: Für m verschiedene Elementarteilchen stehen N verschiedene Energiezustände zur Auswahl. Belegung der Energiezustände wird beschrieben durch  $(\omega_1,\ldots,\omega_m)$ , wobei  $\omega_i$  den Energiezustand von Teilchen i angibt (mehrere Teilchen können denselben Energiezustand haben, Modell ohne Pauli-Prinzip)

*Verallgemeinerung:* m verschiedene Mengen  $A_i$  (Ziehen aus verschieden gefüllten Urnen)

$$\Omega := \{ \omega = (\omega_1, \ldots, \omega_m) \mid \omega_i \in A_i, \ 1 \leq i \leq m \}, \quad |\Omega| = \prod_{i=1}^m |A_i|$$

#### Fall 2: Anordnungen von m aus N Elementen ohne Wiederholung

 $A = \{a_1, \dots, a_N\}$  sei endliche Menge mit unterscheidbaren Objekten

$$\Omega := \{ \omega = (\omega_1, \dots, \omega_m) \mid \omega_i \in A \text{ und } \omega_i \neq \omega_j \text{ für } i \neq j \}$$

$$\Longrightarrow |\Omega| = \prod_{i=1}^m (N - i + 1) = \frac{N!}{(N - m)!}, \text{ wobei } n! := n \cdot (n - 1) \cdot \dots \cdot 1$$

Aquivalentes Urnenmodell: m-faches Ziehen ohne Zurücklegen, aber mit Beachtung der Reihenfolge aus einer Urne mit N unterscheidbaren Kugeln **Spezialfall Permutation** (m = N): Als Permutation bezeichnen wir eine bijektive Abbildung einer Menge A auf sich selbst. Bei einer endlichen Menge  $A = \{a_1, \ldots, a_N\}$  entspricht eine Permutation einer Umordnung der Elemente von A.

Die Menge aller möglichen Permutationen von A ist damit

$$\Omega := \{ \omega = (\omega_1, \dots, \omega_N) \mid \omega_i \in A, \, \omega_i \neq \omega_i \} \quad \Longrightarrow |\Omega| = N!$$

Nach Obigem muss ferner  $|\Omega| = N! = \frac{N!}{0!}$  sein, d.h. man setzt 0! := 1.

#### Fall 3: Kombinationen von m aus N Elementen ohne Wiederholung

Äquivalentes Urnenmodell: m-faches Ziehen ohne Zurücklegen und ohne Beachtung der Reihenfolge aus einer Urne mit N unterscheidbaren Kugeln Beispiel: Zahlenlotto "6 aus 49". Hier kommt es nur darauf an, welche Zahlen gezogen werden, aber nicht auf die Ziehungsreihenfolge (Zahlen werden später aufsteigend sortiert).

#### Satz 4.1

Sei  $A = \{a_1, \dots, a_N\}$  eine endliche Menge unterscheidbarer Objekte. Dann gibt es

$$\frac{N!}{m!(N-m)!}=:\binom{N}{m}$$

verschiedene m-elementige Teilmengen von A ( $m \le N$ ). Man bezeichnet die (ungeordneten) Teilmengen als Kombinationen (ohne Wiederholungen) der Größe m aus N Elementen.

**Beweis:** Wählt man nacheinander *m* Elemente aus *A* unter Berücksichtigung der Reihenfolge aus, erhält man als mögliche Ergebnisse die Menge

$$\Omega := \{\omega = (\omega_1, \dots, \omega_m) \in A^m \, | \, \omega_i \neq \omega_j \text{ für } i \neq j\}$$

mit  $|\Omega| = \frac{N!}{(N-m)!}$  (vgl. Fall 2). Da es auf die Reihenfolge/Ordnung *nicht* ankommen soll, sind sämtliche möglichen Anordnungen/Permutationen derselben m gezogenen Objekte als äquivalent anzusehen.

Für ein m-Tupel  $(\omega_1,\ldots,\omega_m)$  gibt es m! verschiedene Anordnungen. Zusammenfassung aller Tupel, die die gleichen Objekte in unterschiedlicher Anordnung enthalten ("Äquivalenzklassen"), ergibt  $\frac{|\Omega|}{m!}=\frac{N!}{(N-m)!m!}$ .

Für jede Äquivalenzklasse kann man einen *Repräsentanten*, d.h. ein Tupel mit spezieller Anordnung, auswählen, z.B. mit aufsteigender Reihenfolge (sofern auf A eine Ordnungsrelation existiert). Damit lässt sich die Menge  $\Omega_m$  der m-elementigen Teilmengen von A darstellen als

$$\Omega_m = \{ \omega \in A^m \mid \omega_1 < \omega_2 < \dots < \omega_m \}, \ |\Omega_m| = \frac{N!}{m!(N-m)!} = \binom{N}{m}. \ \square$$

## Bemerkung 4.2

Die Zahlen  $\binom{n}{k} := \frac{n!}{k!(n-k)!}, \ 0 \le k \le n$ , heißen **Binomialkoeffizienten**. Man setzt  $\binom{n}{k} = 0$  für k > n.

#### Anwendungen:

- a) Zahlenlotto "6 aus 49". Es gibt  $\binom{49}{6} = 13983816$  verschiedene mögliche Ziehungsergebnisse (ohne Superzahl).
- b) Belegung vom N verschiedenen Energiezuständen durch m Elementarteilchen, wobei jeder Energiezustand nur von höchstens einem Teilchen angenommen werden darf (Pauli-Prinzip, gilt z.B. für Elektronen, Protonen und Neutronen).

## Bemerkung 4.3

Äquivalent zu "unterscheidbare Objekte ohne Anordnung" (d.h. eine Auswahl verschiedener Objekte, bei der es nicht auf die Reihenfolge ankommt) ist, *ununterscheidbare* (gleiche) Objekte zu betrachten, die man mangels charakteristischer Eigenheiten nicht auseinander halten und somit auch nicht anordnen kann.

(Dies ist z.B. bei Anwendung b) oben der Fall.)

#### Fall 4: Kombinationen von m aus N Elementen mit Wiederholung

 $\ddot{A}$  quivalentes Urnenmodell: m-faches Ziehen mit Zurücklegen und ohne Beachtung der Reihenfolge aus einer Urne mit N unterscheidbaren Kugeln

 $A = \{a_1, \dots, a_N\}$  sei endliche Menge mit unterscheidbaren Objekten (o.B.d.A. mit Ordnungsrelation)

Analog zum Beweis von Satz 4.1 lässt sich die Menge  $\bar{\Omega}_m$  aller m-elementigen Auswahlen (Ziehungen) aus A mit Wiederholung, aber ohne Berücksichtigung der Reihenfolge, darstellen als

$$\bar{\Omega}_m = \{ \omega \in A^m \, | \, \omega_1 \le \omega_2 \le \cdots \le \omega_m \}$$

( $\leq$ , da nun Wiederholungen möglich sind). Es gilt  $|\bar{\Omega}_m| = {N+m-1 \choose m}$ .

**Beweis:** O.B.d.A. sei  $A = \{1, ..., N\}$ . Definiere ferner

 $\bar{A}:=\{1,\ldots,N+m-1\}$  sowie  $\mathcal{P}_m(\bar{A})=\{\bar{B}\subset\bar{A}\,|\,|\bar{B}|=m\}$  (*m*-elementige Teilmengen von  $\bar{A}$ ) und

$$f: \bar{\Omega}_m \to \mathcal{P}_m(\bar{A}) \text{ durch } (\omega_1, \dots, \omega_m) \mapsto (\omega_1, \omega_2 + 1, \dots, \omega_m + m - 1).$$

Beachte, dass f bijektiv ist (die Injektivität ist trivial)!

f ist surjektiv, denn zu jeder m-elementigen Teilmenge  $\bar{B}$  von  $\bar{A}$  erhält man ein Urbild aus  $\bar{\Omega}_m$ , indem man die Elemente von  $\bar{B}$  zunächst nach aufsteigender Größe ordnet und dann vom i-ten Glied der geordneten Folge i-1 subtrahiert.

Da f bijektiv ist, muss gelten  $|\bar{\Omega}_m| = |\mathcal{P}_m(\bar{A})|$ .

Da  $ar{A}=\{1,\ldots,N+m-1\}$  N+m-1 verschiedene Elemente hat, ist die Anzahl der m-elementigen Teilmengen von  $ar{A}$  nach Satz 4.1 gerade  ${N+m-1\choose m}$ , d.h.  $|\bar{\Omega}_m|=|\mathcal{P}_m(\bar{A})|={N+m-1\choose m}$ .

Bemerkung: Die Funktion f oben stellt eine 1:1-Beziehung zwischen Ziehen mit und ohne Zurücklegen (jeweils ohne Reihenfolge) her: Ziehen von m aus N Elementen mit Zurücklegen ohne Reihenfolge (Elemente von  $\bar{\Omega}_m$ ) ist (vermöge der Abbildungsvorschrift f) äquivalent zu Ziehen von m aus N+m-1 Elementen ohne Zurücklegen und ohne Reihenfolge, d.h. Bildung einer m-elementigen Teilmenge aus  $\bar{A}$  (Elemente von  $\mathcal{P}_m(\bar{A})$ )

# Korollar 4.4 (Binomischer Lehrsatz)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \qquad x, y \in \mathbb{R}, \ n \ge 1.$$

Beweis: 
$$(x+y)^n = (x+y) \cdot \dots \cdot (x+y) = \sum_{A \subset \{1,\dots,n\}} x^{|A|} y^{|A^c|}$$

$$= \sum_{k=0}^n \sum_{A \subset \{1,\dots,n\}} x^k y^{n-k} \stackrel{\mathsf{Satz}}{=} {}^{4.1} \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

**Anwendung:** Ist  $|\Omega| = n$ , so gilt  $|\mathcal{P}(\Omega)| = 2^n$ .

**Beweis:** Sei  $\mathcal{P}_k(\Omega) := \{A \subset \Omega \mid |A| = k\}$  die Menge der k-elementigen Teilmengen von  $\Omega$  für  $k = 0, 1, \dots, n$ . Dann gilt

$$|\mathcal{P}(\Omega)| = \sum_{k=0}^n |\mathcal{P}_k(\Omega)| \overset{\mathsf{Satz}}{=} \overset{4.1}{=} \sum_{k=0}^n \binom{n}{k} \overset{\mathsf{Kor. 4.4}}{=} (1+1)^n = 2^n.$$

# Zusammenfassung

#### Anordnungen/Kombinationen von m aus N Elementen

| Statistische | unterscheidbare      | ununterscheidbare                  |             |
|--------------|----------------------|------------------------------------|-------------|
| Physik       | Objekte              | (gleiche) Objekte                  |             |
| ohne         | <i>N<sup>m</sup></i> | $\binom{N+m-1}{m}$ "Bose-Einstein" | mit         |
| Pauliprinzip | "Maxwell-Boltzmann"  |                                    | Zurücklegen |
| mit          | $\frac{N!}{(N-m)!}$  | (N/m)                              | ohne        |
| Pauliprinzip |                      | "Fermi-Dirac"                      | Zurücklegen |
|              | geordnete            | ungeordnete                        | Ziehen aus  |
|              | Stichproben          | Stichproben                        | einer Urne  |

# Beispiel 4.5 (Fixpunkte in Permutationen)

Sei  $\mathcal{S}_n$  die Menge aller Permutationen der Zahlen  $\{1,\ldots,n\}$ . Eine Permutation  $\sigma \in \mathcal{S}_n$  hat einen Fixpunkt, falls es ein  $i \in \{1,\ldots,n\}$  gibt mit  $\sigma(i)=i$ . Wie wahrscheinlich ist es, dass eine (zufällig ausgewählte) Permutation  $\tau \in \mathcal{S}_n$  keinen Fixpunkt besitzt?

Sei  $A_i = \{ \sigma \in S_n \mid \sigma(i) = i \}$  die Menge der Permutationen, die (mindestens) die Zahl i als Fixpunkt haben. Dann gilt (unter der Laplace-Annahme)

$$\mathbb{P}(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}$$

denn wenn i ein Fixpunkt ist, können effektiv nur noch n-1 Zahlen permutiert werden, so dass  $|A_i| = (n-1)!$ .

Analog ergibt sich für die Wahrscheinlichkeit, dass eine Permutation k Fixpunkte  $1 \le i_1 < i_2 < \cdots < i_k \le n$  hat

$$\mathbb{P}(A_{i_1}\cap\cdots\cap A_{i_k})=\frac{(n-k)!}{n!}=\frac{1}{n\cdot(n-1)\cdot\ldots\cdot(n-k+1)}.$$

Die Wahrscheinlichkeit, dass die Permutation  $\tau$  mindestens einen Fixpunkt hat, ist daher  $\mathbb{P}(A_1 \cup \cdots \cup A_n)$ .

Nach Siebformel und Satz 4.1 erhält man diese Wahrscheinlichkeit durch (beachte:  $\mathbb{P}(A_i) = \mathbb{P}(A_1) \ \forall i$ , ebenso  $\mathbb{P}(A_{i_1} \cap A_{i_2}) = \mathbb{P}(A_1 \cap A_2)$  usw.)

$$\mathbb{P}(A_1 \cup \dots \cup A_n) = n\mathbb{P}(A_1) - \binom{n}{2}\mathbb{P}(A_1 \cap A_2) + \binom{n}{3}\mathbb{P}(A_1 \cap A_2 \cap A_3)$$
$$- \dots \pm \binom{n}{n}\mathbb{P}(A_1 \cap \dots \cap A_n)$$
$$= 1 - \frac{1}{2!} + \frac{1}{3!} - \dots \pm \frac{1}{n!}$$

Damit ist die Wahrscheinlichkeit, dass eine zufällig ausgewählte Permutation au keinen Fixpunkt besitzt, gegeben durch

$$\mathbb{P}\big((A_1\cup\cdots\cup A_n)^C\big)=1-\mathbb{P}(A_1\cup\cdots\cup A_n)=\frac{1}{2!}-\frac{1}{3!}+\cdots\mp\frac{1}{n!}$$

Für  $n \to \infty$  erhält man

$$\mathbb{P}((A_1 \cup \cdots \cup A_n)^C) = \sum_{k=2}^n \frac{(-1)^k}{k!} = \sum_{k=0}^n \frac{(-1)^k}{k!} \xrightarrow[n \to \infty]{} e^{-1}.$$

# Hypergeometrische und Binomialverteilung

Betrachte Urne mit s schwarzen und w weißen Kugeln, s+w=n. Ziehe m Kugeln mit einem Griff heraus. Wie groß ist die Wahrscheinlichkeit, genau  $k \leq \min(m,s)$  schwarze Kugeln zu ziehen?

Seien  $A=\{1,\ldots,n\}$  die Menge aller Kugeln in der Urne,  $A_0=\{1,\ldots,s\}$  die schwarzen und  $A_0^{\mathcal{C}}=\{s+1,\ldots,n\}$  die weißen Kugeln. Da es nur auf die Anzahlen der gezogenen schwarzen bzw. weißen Kugeln ankommt, aber nicht auf deren Reihenfolge innerhalb der Ziehung, liegt eine Ziehung ohne Anordnung und ohne Wiederholung vor bzw. eine Kombination von m aus n Elementen ohne Wiederholung.

$$\Omega = \{(\omega_1, \ldots, \omega_m) \mid \omega_i \in A, \, \omega_1 < \omega_2 < \cdots < \omega_m\}, \quad |\Omega| = \binom{n}{m}.$$

$$E :=$$
 "genau  $k$  schwarze unter den  $m$  gezogenen Kugeln"  $= \{ \omega \in \Omega \mid \omega_i \in A_0, \ 1 \leq i \leq k, \ \omega_i \in A_0^C, \ i > k \}$ 

#### Betrachte

$$\Omega' := \{ \omega' = (\omega_1', \dots, \omega_k') \mid \omega_i' \in A_0, \ \omega_1' < \dots < \omega_k' \}, \quad |\Omega'| = \binom{s}{k},$$

$$\Omega'' := \{ \omega'' = (\omega_1'', \dots, \omega_{m-k}'') \mid \omega_i'' \in A_0^C, \ \omega_1'' < \dots < \omega_{m-k}'' \}, \quad |\Omega'| = \binom{w}{m-k},$$

Definiere

$$\varphi: E \to \Omega' \times \Omega'', \ \varphi((\omega_1, \ldots, \omega_m)) = ((\omega_1, \ldots, \omega_k), (\omega_{k+1}, \ldots, \omega_m))$$

Offensichtlich ist  $\varphi$  bijektiv, daher gilt  $|E| = |\Omega'| \cdot |\Omega''| = \binom{s}{k} \binom{w}{m-k}$ .

Unter der Laplace-Annahme gilt

$$\mathbb{P}(E) = \frac{|E|}{|\Omega|} = \frac{\binom{s}{k} \binom{w}{m-k}}{\binom{n}{k}}.$$

# Definition 5.1 (Hypergeometrische Verteilung)

Die Wahrscheinlichkeitsverteilung  $\mathbb{P}$  auf  $\{\max(0, m-w), \ldots, \min(m, s)\}$ , gegeben durch

$$\mathbb{P}(\{k\}) = \frac{\binom{s}{k}\binom{w}{m-k}}{\binom{n}{m}} = \frac{\binom{s}{k}\binom{n-s}{m-k}}{\binom{n}{m}},$$

heißt hypergeometrische Verteilung zu den Parametern n, s und m.

**Bemerkung:** Die Verteilung ist auch auf der u.U. größeren Menge  $\{0, \ldots, m\}$  definiert, da für k < m - w und k > s jeweils ein Binomialkoeffizient im Zähler 0 wird.

#### Anwendungen:

a) Lotto "6 aus 49": n=49 Kugeln, s=6 schwarze (Richtige, d.h. zuvor getippte Zahlen), m=6 Kugeln werden gezogen,  $k=0,1,\ldots,6$ .  $p_k$  ist die Wahrscheinlichkeit, dass genau k der getippten Zahlen gezogen werden:  $p_k=\frac{\binom{6}{k}\binom{43}{6-k}}{\binom{69}{6}}$ 

|   | k     | 0      | 1      | 2      | 3       | 4                      | 5                      | 6                     |   |
|---|-------|--------|--------|--------|---------|------------------------|------------------------|-----------------------|---|
| Ì | $p_k$ | 0.4359 | 0.4130 | 0.1324 | 0.01765 | $0.9686 \cdot 10^{-3}$ | $0.1845 \cdot 10^{-4}$ | $0.715 \cdot 10^{-7}$ | ĺ |

b) Qualitätskontrolle: n Werkstücke, s defekt, w=n-s ok. Für Stichprobe der Größe m kann mit hypergeom. Vert. die Wahrscheinlichkeit berechnet werden, dass Stichprobe genau k defekte Stücke enthält.

Was passiert, wenn der Gesamtumfang n der Urne immer größer wird  $(n \to \infty)$ , dabei aber der relative Anteil der schwarzen Kugeln  $\frac{s_n}{n}$  nahezu konstant bleibt bzw. gegen ein festes Verhältnis strebt  $(\frac{s_n}{n} \to p)$ ?

#### Satz 5.2

Sei  $m \in \mathbb{N}$  beliebig, aber fest gewählt. Gilt  $\frac{s_n}{n} \to p$  für  $n \to \infty$  und  $0 , so folgt für <math>0 \le k \le m$ ,  $k \in \mathbb{N}$ ,

$$\frac{\binom{s_n}{k}\binom{n-s_n}{m-k}}{\binom{n}{m}}\underset{n\to\infty}{\longrightarrow} \binom{m}{k}p^k(1-p)^{m-k}.$$

**Interpretation:** Ist n (und damit auch  $s_n$ ) groß gegenüber m, besteht nahezu kein Unterschied zwischen Ziehen mit und ohne Zurücklegen.  $p \approx \frac{s_n}{n}$  ist dann (nach Laplace-Annahme) die Wahrscheinlichkeit, eine schwarze Kugel zu ziehen. Die rechte Seite entspricht somit der Wahrscheinlichkeit, bei m Ziehungen von einer Kugel aus der Urne mit jeweils anschließendem Zurücklegen genau k schwarze Kugeln zu erhalten.

# Definition 5.3 (Binomialverteilung)

Sei  $n \ge 1$  und  $0 \le p \le 1$ . Die auf  $\Omega = \{0, 1, \dots, n\}$  durch

$$p_k = b_{n,p}(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}$$

definierte Wahrscheinlichkeitsverteilung heißt Binomialverteilung zu den Parametern n und p. Sie wird oft auch mit B(n,p) bezeichnet.

**Bemerkung:** Dass die  $p_k = b_{n,p}(\{k\})$  eine Wahrscheinlichkeitsverteilung auf  $\Omega = \{0, 1, ..., n\}$  definieren, folgt aus Satz 3.2 und Korollar 4.4:

$$\sum_{k=0}^{n} b_{n,p}(\{k\}) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} \stackrel{\text{Kor. 4.4}}{=} (p+(1-p))^{n} = 1.$$

## Bemerkung 5.4

Bei der Definition von hypergeometrischen Verteilung kam es nur auf die Gesamtzahlen der gezogenen schwarzen und weißen Kugeln an, aber nicht auf die genaue Reihenfolge. Zieht man z.B. 3 Kugeln ohne Zurücklegen, aber *mit* Beachtung der Reihenfolge, so erhält man nach der Verallgemeinerung von Fall 1 und Fall 2 aus dem vorigen Abschnitt

$$\mathbb{P}(\{(S,W,S)\}) = \frac{s \cdot w \cdot (s-1)}{n \cdot (n-1) \cdot (n-2)}$$

Allgemeiner gilt, falls man m Kugeln zieht und sich darunter k schwarze (in einer bestimmten Reihenfolge) befinden sollen,

$$\mathbb{P}(\{(S, W, W, \dots, S)\}) =$$

$$= \frac{s \cdot (s-1) \cdot \dots \cdot (s-k+1) \cdot w \cdot (w-1) \cdot \dots \cdot (w-(m-k)+1)}{n \cdot (n-1) \cdot \dots \cdot (n-m+1)}$$

Wird wie in Satz 5.2 der Umfang der Urne immer größer  $(n \to \infty)$ , wobei der relative Anteil der schwarzen Kugeln konstant bleibt  $(\frac{s_n}{n} \to p)$ , gilt für die obige Wahrscheinlichkeit

$$\lim_{n\to\infty} \mathbb{P}(\{(S,W,W,\ldots,S)\}) = p^k(1-p)^{m-k}.$$

Im Vergleich zur Binomialverteilung fällt der Binomialkoeffizient  $\binom{m}{k}$  weg, da hier die Ziehungsreihenfolge berücksichtigt wird.

# Anwendungsbeispiele

#### Beispiel 5.5

a) In einer Keksdose befinden sich 20 Kekse, davon 6 mit und 14 ohne Schokolade. Wie wahrscheinlich ist es, bei Entnahme von 5 Keksen (ohne hinzusehen!) genau einen Schokokeks zu erwischen?

Ziehen ohne Zurücklegen, Gesamgröße der Urne/Keksdose ist endlich ⇒ Hypergeometrische Verteilung

$$\mathbb{P}(\{1 \text{ Schokokeks bei 5 Ziehungen}\}) = \frac{\binom{6}{1}\binom{14}{4}}{\binom{20}{5}} \approx 0.387$$

b) Erfahrungsgemäß sind bei der Produktion elektronischer Bauteile 3% der Teile fehlerhaft. Wenn man aus der Gesamtproduktion 10 Teile herausgreift, mit welcher Wahrscheinlichkeit ist dann höchstens eines davon fehlerhaft?

Urne (Gesamtproduktion) sehr groß, daher Ziehen ohne Zurücklegen  $\approx$  Ziehen mit Zurücklegen  $\Longrightarrow$  Binomialverteilung

"Höchstens eins" bedeutet entweder kein oder genau ein fehlerhaftes Teil, also ist

$$\begin{split} \mathbb{P}(\{\text{h\"{o}chstens eins von 10 Teilen fehlerhaft}\}) \\ &= \mathbb{P}(\{0 \text{ Teile fehlerhaft}\}) + \mathbb{P}(\{1 \text{ Teil fehlerhaft}\}) \\ &= \binom{10}{0} \cdot 0.03^0 \cdot 0.97^{10} + \binom{10}{1} \cdot 0.03^1 \cdot 0.97^9 \approx 0.965 \end{split}$$

c) Von k Personen werden in einer anonymen Befragung die Geburtsmonate festgestellt. Wie viele verschiedene Ergebnisse sind bei einer solchen Befragung möglich? Durch die Anonymisierung hat man k ununterscheidbare Objekte (Personen), die auf 12 verschiedene Schachteln (Geburtsmonate) zu verteilen sind, wobei Mehrfachbelegungen (gleiche Geburtsmonate verschiedener Personen) möglich sind. Das entspricht einer Ziehung von k Elementen aus einer Menge von N=12 Elementen mit Wiederholung und ohne Reihenfolge (für jedes Objekt wird eine Schachtelnummer bzw. Geburtsmonat gezogen). Dafür gibt es nach Fall 4  $\binom{12+k-1}{k}=\binom{k+11}{k}$  Möglichkeiten.

#### Satz 5.6

Zu einer endlichen Menge  $A=\{a_1,\ldots,a_n\}$  und ganzen Zahlen  $n_1,\ldots,n_r\geq 0$  mit  $\sum_{i=1}^r n_i=n$  gibt es genau  $\frac{n!}{n_1!n_2!\ldots n_r!}$  Zerlegungen von A in Teilmengen  $A_1,\ldots,A_r$  derart, dass  $A_i$  genau  $n_i$  Elemente enthält. Die Zahlen  $\frac{n!}{n_1!n_2!\ldots n_r!}=:\binom{n}{n_1,\ldots,n_r}$  heißen Multinomialkoeffizienten.

**Beweis:** Man erhält eine Partition von A mit den gewünschten Eigenschaften durch Auswahl der  $n_1$  Elemente für  $A_1$  ( $\binom{n}{n_1}$ ) Möglichkeiten nach Satz 4.1), dann der nächsten  $n_2$  Elemente von  $A_2$  ( $\binom{n-n_1}{n_2}$ ) Möglichkeiten nach Satz 4.1) usw. Die Gesamtzahl der möglichen Partitionen von A in Teilmengen der gewünschten Größe ist dann  $\binom{n}{n_2} \cdot \binom{n-n_1}{n_2} \cdot \dots \cdot \binom{n_r}{n_r} = \frac{n!}{n_1!(n-n_1)!} \cdot \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \cdot \dots \cdot \frac{n_r!}{n_r!0!} = \frac{n!}{n_1! n_1!}$ 

# Korollar 5.7 (Multinomialsatz)

$$(x_1+\cdots+x_r)^n=\sum_{n_1,\ldots,n_r\geq 0\atop \sum_{l=1}^r n_l=n}\frac{n!}{n_1!\ldots n_r!}\cdot x_1^{n_1}\cdot\ldots\cdot x_r^{n_r},\quad x_1,\ldots,x_r\in\mathbb{R},\ n,r\in\mathbb{N}.$$

#### **Beweis:**

$$(x_{1} + \dots + x_{r})^{n} = \sum_{\substack{(A_{1}, \dots, A_{r}) \\ \text{Zerlegung} \\ \text{von}\{1, \dots, n\}}} \prod_{i=1}^{r} x_{i}^{|A_{i}|} = \sum_{\substack{n_{1}, \dots, n_{r} \geq 0 \\ \sum n_{i} = n}} \sum_{\substack{(A_{1}, \dots, A_{r}) \\ \text{Zerlegung} \\ \text{mit}|A_{i}| = n_{i}}} \prod_{i=1}^{r} x_{i}^{n_{i}}$$

$$= \sum_{\substack{n_{1}, \dots, n_{r} \geq 0 \\ \sum n_{i} = n}} \frac{n!}{n_{1}! \dots n_{r}!} \prod_{i=1}^{r} x_{i}^{n_{i}}$$

**Folgerung:** Für Parameter  $p_1, \ldots, p_r \geq 0$  mit  $\sum_{i=1}^r p_i = 1$  und  $n, r \in \mathbb{N}$  ist eine Wahrscheinlichkeitsverteilung  $\mathbb{P} = M(n, r, p_1, \ldots, p_r)$  auf dem Raum  $\Omega = \{(n_1, \ldots, n_r) \mid n_i \geq 0, \sum_{i=1}^r n_i = n\}$  gegeben durch

$$\mathbb{P}\big(\{(n_1,\ldots,n_r)\}\big)=\frac{n!}{n_1!\ldots n_r!}\cdot p_1^{n_1}\cdot\ldots\cdot p_r^{n_r}.$$

Diese Verteilung heißt Multinomialverteilung.

**Beweis:** 
$$\sum_{\substack{n_1,\ldots,n_r\geq 0\\ n_1\equiv n}} \frac{n!}{n_1!\ldots n_r!} \cdot p_1^{n_1} \cdot \ldots \cdot p_r^{n_r} \overset{\text{Kor. 5.7}}{=} (p_1+\cdots+p_r)^n = 1^n = 1.$$

**Beispiel:** Wie groß ist die Wahrscheinlichkeit, bei n Würfen mit einem fairen Würfel  $n_1$ -mal die 1,  $n_2$ -mal die 2, ...,  $n_6$ -mal die 6 zu erhalten, wobei  $n_i \ge 0$  und  $\sum_{i=1}^6 n_i = n$ ?

Setze 
$$\Omega := \{(\omega_1, \dots, \omega_n) \mid \omega_i \in \{1, \dots, 6\}\}$$
  
und  $A := \{\omega \in \Omega \mid |\{i \mid \omega_i = j\}| = n_i, 1 \le j \le 6\}.$ 

Jedes  $\omega \in A$  definiert eine geordnete Zerlegung von  $\{1,\ldots,n\}$  in 6 Teilmengen mit  $|A_1|=n_1,\ldots |A_6|=n_6$ :  $A_1$  enthält die Indizes aller  $\omega_i$  aus  $\omega$  mit  $\omega_i=1$ ,  $A_2$  die Indizes aller  $\omega_i$  aus  $\omega$  mit  $\omega_i=2$  usw. Nach Satz 5.6 ist  $|A|=\frac{n!}{n_1!\ldots n_6!}$  und nach dem Laplace-Ansatz somit  $\mathbb{P}(A)=\frac{|A|}{|\Omega|}=\frac{|A|}{n_1!\ldots n_6!}$ 

Die entsprechende Verteilung auf 
$$\{(n_1, \ldots, n_6) \mid n_i \geq 0, \sum_{i=1}^6 n_i = n\}$$
 ist also eine Multinomialverteilung mit den Parametern  $n, 6, p_1 = \cdots = p_6 = \frac{1}{6}$ .

# Bedingte Wahrscheinlichkeit

Einführendes Beispiel: Dreimaliges Werfen einer fairen Münze

"Kopf"= 1, "Zahl"= 0. Dann ist 
$$\Omega=\{0,1\}^3$$
, und mit der Laplace-Annahme gilt  $\mathbb{P}(\{\omega\})=\frac{1}{|\Omega|}=\frac{1}{8}$  für jedes  $\omega\in\Omega$ .

Betrachte Ereignis

$$A = \{\text{,mindestens zweimal Kopf"}\} = \{(1,1,0), (1,0,1), (0,1,1), (1,1,1)\},\$$

dann ist  $\mathbb{P}(A) = \frac{4}{8} = \frac{1}{2}$ .

Angenommen, wir wissen bereits, dass das Ergebnis des ersten Wurfs "Kopf" ist. Wie ändert sich dann unsere Einschätzung für die Wahrscheinlichkeit des Eintretens von A?

Wir wissen also, dass eines der Ereignisse von

$$B = \{(1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$$
 eintritt (und kein anderes!).

Daher können wir B als neuen Grundraum  $\tilde{\Omega}$  ansehen mit

$$\tilde{\mathbb{P}}(\{\tilde{\omega}\})=\frac{1}{|\tilde{\Omega}|}=\frac{1}{4}$$
 für alle  $\tilde{\omega}\in\tilde{\Omega}=B$  (Laplace-Annahme).

Auf dem neuen Grundraum ist

 $\{\text{,,mindestens zweimal Kopf}^{\text{"}}\} = \{(1,1,0),(1,0,1),(1,1,1)\} = A \cap B.$ 

#### Folglich ist

$$\widetilde{\mathbb{P}}(\{\text{,,mindestens zweimal Kopf"}\}) = \frac{3}{4} = \frac{|A \cap B|}{|B|} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $\tilde{\mathbb{P}}$  kann als *bedingte Wahrscheinlichkeit* aufgefasst werden, die die Wahrscheinlichkeiten von Ereignissen unter der Voraussetzung/Bedingung angibt, dass das Ereignis B in jedem Fall eintrit.

# Definition 6.1 (Bedingte Wahrscheinlichkeit)

Sei  $(\Omega, \mathcal{A}, \mathbb{P})$  ein diskreter Wahrscheinlichkeitsraum,  $B \in \mathcal{A}$  mit  $\mathbb{P}(B)>0$ , dann heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad (A \in A)$$

die bedingte Wahrscheinlichkeit von A gegeben B.

#### Weiteres Beispiel: Zweimaliger Würfelwurf

$$\Omega = \{(i,j) \mid 1 \le i, j \le 6\}, \ \mathbb{P}(\{\omega\}) = \frac{1}{36} \ \forall \omega \in \Omega \ \text{(Laplace-Annahme)}.$$

$$A = \{6 \text{ im ersten Wurf}\} = \{(6, j) \mid 1 \le j \le 6\} \implies \mathbb{P}(A) = \frac{1}{6}.$$

$$B = \{ \text{Augensumme ist } 11 \} = \{ (6,5), (5,6) \} \implies \mathbb{P}(B) = \frac{1}{18}.$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\{(6,5)\})}{\mathbb{P}(B)} = \frac{\frac{1}{36}}{\frac{1}{18}} = \frac{1}{2}.$$

### Satz 6.2

 $\mathbb{P}(\cdot|B):\mathcal{A}\to[0,1]$  ist eine auf B konzentrierte Wahrscheinlichkeitsverteilung.

#### Spezialfälle:

$$A \supset B \implies \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1,$$

$$A \subset B^{C} \implies \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\emptyset)}{\mathbb{P}(B)} = 0,$$

$$B = \Omega \implies \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)}{\mathbb{P}(A)} = \mathbb{P}(A).$$

## Korollar 6.3 (Multiplikationsformel)

Sei  $(\Omega, \mathcal{A}, \mathbb{P})$  ein diskreter Wahrscheinlichkeitsraum und  $A_1, \ldots, A_n \in \mathcal{A}$ Ereignisse mit  $\mathbb{P}(\bigcap_{i=1}^{n-1} A_i) > 0$ , dann gilt

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 \cap A_2) \cdot \cdots \cdot \mathbb{P}(A_n | A_1 \cap \cdots \cap A_{n-1}).$$

# Satz 6.4 (Satz von der totalen Wahrscheinlichkeit)

Sei  $(\Omega, \mathcal{A}, \mathbb{P})$  ein diskreter Wahrscheinlichkeitsraum und  $B_1, B_2, \dots \in \mathcal{A}$  eine endliche oder abzählbare Zerlegung von  $\Omega$  (d.h.  $B_i \cap B_j = \emptyset$  für  $i \neq j$  und  $\bigcup_{i \geq 1} B_i = \Omega$ ) mit  $\mathbb{P}(B_i) > 0$  für alle  $i \geq 1$ . Dann gilt für jedes  $A \in \mathcal{A}$ 

$$\mathbb{P}(A) = \sum_{i>1} \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i).$$

## Satz 6.5 (Bayes'sche Regel)

Unter den Voraussetzungen von Satz 6.4 gilt für jedes  $A \in \mathcal{A}$  mit  $\mathbb{P}(A) > 0$ , dass

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{i \geq 1} \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}.$$

# Anwendungsbeispiele

### Beispiel 6.6

a) Ein elektronisches Gerät enthält zwei Schaltkreise I und II. Schaltkreis I fällt mit Wahrscheinlichkeit 0.1 aus. Fällt Schaltkreis I aus, so fällt Schaltkreis II mit Wahrscheinlichkeit 0.2 ebenfalls aus. Bleibt Schalkreis I intakt, fällt Schaltkreis II mit Wahrscheinlichkeit 0.05 aus. Mit welcher Wahrscheinlichkeit fallen beide Schaltkreise aus? Mit welcher Wahrscheinlichkeit fällt auch Schaltkreis I aus, wenn Schaltkreis II ausfällt?

Seien  $A = \{Schaltkreis I fällt aus\}$  und  $B = \{Schaltkreis II fällt aus\}$ , dann folgt aus obigen Angaben

$$\mathbb{P}(A) = 0.1, \quad \mathbb{P}(B|A) = 0.2, \quad \mathbb{P}(B|A^{C}) = 0.05.$$

Damit ist die Wahrscheinlichkeit für den Ausfall beider Schaltkreise

$$\mathbb{P}(A \cap B) = \mathbb{P}(B|A) \cdot \mathbb{P}(A) = 0.2 \cdot 0.1 = 0.02.$$

Die in der zweiten Frage gesuchte Wahrscheinlichkeit ist  $\mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}. \text{ Hierfür benötigen wir } \mathbb{P}(B). \text{ Nach Satz 6.4 ist}$   $\mathbb{P}(B) = \mathbb{P}(B|A) \cdot \mathbb{P}(A) + \mathbb{P}(B|A^C) \cdot \mathbb{P}(A^C)$   $= \mathbb{P}(B|A) \cdot \mathbb{P}(A) + \mathbb{P}(B|A^C) \cdot (1 - \mathbb{P}(A))$   $= 0.2 \cdot 0.1 + 0.05 \cdot 0.9 = 0.065.$   $\Longrightarrow \mathbb{P}(A|B) = \frac{0.02}{0.065} \approx 0.3078$ 

b) Bei der Massenproduktion eines Computerchips ist erfahrungsgemäß 1% der Produktion fehlerhaft. Daher wird jeder einzelne Chip vor der Auslieferung überprüft; Chips, bei denen die Prüfung einen Fehler anzeigt, werden aussortiert, die anderen ausgeliefert. Da auch das Prüfverfahren nicht perfekt ist, zeigt es mit Wahrscheinlichkeit 0.1 bei an sich einwandfreien Chips fälschlich einen Defekt an. Umgekehrt wird bei tatsächlich fehlerhaften Chips mit Wahrscheinlichkeit 0.05 irrtümlich kein Defekt erkannt. Mit welcher Wahrscheinlichkeit ist ein ausgelieferter Chip tatsächlich fehlerfrei? Mit welcher Wahrscheinlichkeit ist ein aussortierter Chip wirklich defekt?

Sei  $A = \{Chip \text{ ist fehlerfrei}\}\ und\ B = \{Prüfung zeigt Fehler an},$  dann gilt n.V.

$$\mathbb{P}(A) = 0.99, \quad \mathbb{P}(B|A) = 0.1, \quad \mathbb{P}(B^{C}|A^{C}) = 0.05.$$

Dann ist die Wahrscheinlichkeit, dass ein ausgelieferter Chip tatsächlich fehlerfrei ist, nach Satz 6.5

$$\mathbb{P}(A|B^{C}) = \frac{\mathbb{P}(B^{C}|A) \cdot \mathbb{P}(A)}{\mathbb{P}(B^{C}|A) \cdot \mathbb{P}(A) + \mathbb{P}(B^{C}|A^{C}) \cdot \mathbb{P}(A^{C})}$$

$$= \frac{(1 - \mathbb{P}(B|A)) \cdot \mathbb{P}(A)}{(1 - \mathbb{P}(B|A)) \cdot \mathbb{P}(A) + \mathbb{P}(B^{C}|A^{C}) \cdot \mathbb{P}(A^{C})}$$

$$= \frac{0.9 \cdot 0.99}{0.9 \cdot 0.99 + 0.05 \cdot 0.01} \approx 0.999$$

Die Wahrscheinlichkeit, dass ein aussortierter Chip tatsächlich defekt ist, beträgt

$$\mathbb{P}(A^C|B) = \frac{\mathbb{P}(B|A^C) \cdot \mathbb{P}(A^C)}{\mathbb{P}(B|A^C) \cdot \mathbb{P}(A^C) + \mathbb{P}(B|A) \cdot \mathbb{P}(A)}$$
$$= \frac{0.95 \cdot 0.01}{0.95 \cdot 0.01 + 0.1 \cdot 0.99} \approx 0.0876.$$