Learning unary automata

Gregor Gramlich Ralf Herrmann

Institut für Informatik
Johann Wolfgang Goethe–Universität
Frankfurt am Main

30-June-2005, Descriptional Complexity of Formal Systems

Outline

- Introduction
 - Unary Regular Languages
 - Algorithmic Learning Theory
- Consistency Problems and PAC Learning
 - Minimum Consistent DFA
 - Minimum Consistent NFA
 - PAC Learning and VC Dimension
- 3 Learning with Equivalence Queries

Outline

- Introduction
 - Unary Regular Languages
 - Algorithmic Learning Theory
- Consistency Problems and PAC Learning
 - Minimum Consistent DFA
 - Minimum Consistent NFA
 - PAC Learning and VC Dimension
- 3 Learning with Equivalence Queries

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length
- A unary DFA that consists only of a cycle is called a cyclic DFA.

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length
- A unary DFA that consists only of a cycle is called a cyclic DFA

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length
- A unary DFA that consists only of a cycle is called a cyclic DFA.

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length
- A unary DFA that consists only of a cycle is called a cyclic DFA.

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length
- A unary DFA that consists only of a cycle is called a cyclic DFA.

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length
- A unary DFA that consists only of a cycle is called a cyclic DFA

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length.

- A unary language is defined over $\Sigma = \{a\}$.
- A unary regular language is represented by a DFA:

- Ultimate period of a regular language = cycle length.
- Minimum ultimate period = minimum cycle length.
- A unary DFA that consists only of a cycle is called a cyclic DFA.

- Concept $c \subseteq X$.
- Concept class $\mathcal{C} \subseteq \mathcal{P}(X)$, concept $c \in \mathcal{C}$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class
- Universe X: set of words {a}*.
- Example: word.

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class
- Universe X: set of words {a}*.
- Example: word.

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class
- Universe X: set of words {a}*.
- Example: word.

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class
- Universe X: set of words {a}*.
- Example: word

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class
- Universe X: set of words {a}*.
- Example: word.

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class
- Universe X: set of words {a}*.
- Example: word

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class.
- Universe X: set of words { a}*
- Example: word

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class.
- Universe X: set of words {a}*.
- Example: word

- Concept $c \subseteq X$.
- Concept class $C \subseteq \mathcal{P}(X)$, concept $c \in C$.
- Example x ∈ X is a positive example (for c), if x ∈ c and a negative example, if x ∉ c.
- Common problem: Given a set of classified examples, give a good hypothesis for the concept.

- Concept class: class of unary regular languages representable by automata of a certain size.
- Concept: language from the concept class.
- Universe X: set of words {a}*.
- Example: word.

Problems Considered in Learning Theory

- Consistency problem (minimum size of a consistent hypothesis)
- PAC learning
- Learning with equivalence queries

Problems Considered in Learning Theory

- Consistency problem (minimum size of a consistent hypothesis)
- PAC learning (hypothesis that is correct on most examples with high probability)

Learning with equivalence queries

Problems Considered in Learning Theory

- Consistency problem (minimum size of a consistent hypothesis)
- PAC learning (hypothesis that is correct on most examples with high probability)
- Learning with equivalence queries (every wrong hypothesis is answered with a counterexample)

Outline

- Introduction
 - Unary Regular Languages
 - Algorithmic Learning Theory
- Consistency Problems and PAC Learning
 - Minimum Consistent DFA
 - Minimum Consistent NFA
 - PAC Learning and VC Dimension
- 3 Learning with Equivalence Queries

- Input: example sets P, $N \subseteq \Sigma^*$.
- Output: size of a minimum DFA, consistent with P and N
- Known: NP-complete for $|\Sigma| \ge 2$. (Gold, 1978)

We show:

- Input: example sets P, $N \subseteq \Sigma^*$.
- Output: size of a minimum DFA, consistent with P and N.
- NP complete for |∑| > 2 (Cold. 10)

We show:

- Input: example sets P, $N \subseteq \Sigma^*$.
- Output: size of a minimum DFA, consistent with *P* and *N*.
- Known:

```
NP-complete for |\Sigma| \ge 2. (Gold, 1978)
```

- Warmuth, 1993)
- Any "reasonable" efficient approximation is impossible under
- Gryptographic assumptions. (Granifich & Schintger, 2005)
- We show.

- Input: example sets P, $N \subseteq \Sigma^*$.
- Output: size of a minimum DFA, consistent with P and N.
- Known:

```
NP-complete for |\Sigma| \ge 2. (Gold, 1978)
Even polynomial approximations are NP-complete. (Pitt & Warmuth, 1993)
```

- Any "reasonable" efficient approximation is impossible undecryptographic assumptions. (Gramlich & Schnitger, 2005)
- We show:

- Input: example sets P, $N \subseteq \Sigma^*$.
- Output: size of a minimum DFA, consistent with P and N.
- Known:
 - *NP*-complete for $|\Sigma| \ge 2$. (Gold, 1978) Even polynomial approximations are NP-complete. (Pitt & Warmuth, 1993)
 - Any "reasonable" efficient approximation is impossible under cryptographic assumptions. (Gramlich & Schnitger, 2005)

- Input: example sets P, $N \subseteq \Sigma^*$.
- Output: size of a minimum DFA, consistent with P and N.
- Known:
 - *NP*-complete for $|\Sigma| \ge 2$. (Gold, 1978) Even polynomial approximations are NP-complete. (Pitt & Warmuth, 1993)
 - Any "reasonable" efficient approximation is impossible under cryptographic assumptions. (Gramlich & Schnitger, 2005)
- We show:

- Input: example sets P, N ⊆ Σ*.
- Output: size of a minimum DFA, consistent with P and N.
- Known:

NP-complete for $|\Sigma| \ge 2$. (Gold, 1978) Even polynomial approximations are NP-complete. (Pitt & Warmuth, 1993)

Any "reasonable" efficient approximation is impossible under cryptographic assumptions. (Gramlich & Schnitger, 2005)

We show:

Consistency problem for unary example sets

- Input: example sets P, N ⊆ Σ*.
- Output: size of a minimum DFA, consistent with P and N.
- Known.

NP-complete for $|\Sigma| \ge 2$. (Gold, 1978) Even polynomial approximations are NP-complete. (Pitt & Warmuth, 1993)

Any "reasonable" efficient approximation is impossible under cryptographic assumptions. (Gramlich & Schnitger, 2005)

We show:

Consistency problem for unary example sets

The unary minimum consistent DFA problem is efficiently solvable.

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ▶ Optimum path length = $1+\max\{\min(x,y)|x,y \text{ collide modulo } z\}$
 - Optimum size = z+ optimum path length
- Compute the size of a minimum consistent DFA.

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ➤ Optimum path length = 1+max{min(x, y)| x, y collide modulo z = 1.
 - Optimum size = z+ optimum path length
- Compute the size of a minimum consistent DFA.

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - Optimum path length = 1+max{min(x, y)| x, y collide modulo z}
 - Optimum size = z+ optimum path length
- Compute the size of a minimum consistent DFA.

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.

- Easy, if we fix cycle length z first.
 - We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ▶ Optimum path length = $1+\max\{\min(x,y)| x,y \text{ collide modulo } z\}$.

- Easy, if we fix cycle length z first.
 - We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ▶ Optimum path length = $1+\max\{\min(x,y)|x,y \text{ collide modulo }z\}$.
 - Optimum size = z+ optimum path length.

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ▶ Optimum path length = $1+\max\{\min(x,y)| x,y \text{ collide modulo } z\}$.
 - Optimum size = z+ optimum path length.
- Compute the size of a minimum consistent DFA.

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ▶ Optimum path length = $1+\max\{\min(x,y)|x,y \text{ collide modulo }z\}$.
 - Optimum size = z+ optimum path length.
- Compute the size of a minimum consistent DFA.
 - ▶ Compute the optimum DFA size for cycle lengths z = 1, 2, ...

- Easy, if we fix cycle length z first.
 - ▶ We say example lengths x, y collide modulo z, if $x \equiv y \pmod{z}$ and $a^x \in P$ and $a^y \in N$.
 - If x, y collide modulo z, at least one of them must not reach the cycle in a consistent DFA with cycle length z.
 - ▶ Optimum path length = $1+\max\{\min(x,y)|x,y \text{ collide modulo }z\}$.
 - Optimum size = z+ optimum path length.
- Compute the size of a minimum consistent DFA.
 - ▶ Compute the optimum DFA size for cycle lengths z = 1, 2, ...
 - Stop, if we cannot improve any more, because the cycle length is larger than the best size found so far.

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size $< \ell^3$
- Linear time for each iteration (fixed cycle length).
- Total time O(ℓ⁴).

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size $< \ell^3$
- Linear time for each iteration (fixed cycle length)
- Total time $O(\ell^4)$.

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary, input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size ≤ ℓ
- Linear time for each iteration (fixed cycle length)
- Total time $O(\ell^4)$.

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary, input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size $\leq \ell^3$
- Linear time for each iteration (fixed cycle length)
- Total time $O(\ell^4)$.

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary, input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size $\leq \ell^3$ for ℓ large enough.
- Linear time for each iteration (fixed cycle length)
- lotal time $O(\ell^{-})$.

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary, input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size $\leq \ell^3$ for ℓ large enough.
- Linear time for each iteration (fixed cycle length).

- Number of iterations = optimum size.
- Obvious: optimum size ≤ |longest example| + 1.
- Representing inputs: example lengths are coded in binary, input length $\approx \ell = \sum_{x \in P \cup N} \log x$.
- Optimum size $\leq \ell^3$ for ℓ large enough.
- Linear time for each iteration (fixed cycle length).
- Total time O(ℓ⁴).

- Known:
 - $N\!P$ -complete for $|\Sigma| \geq 2$
- We show:

- Known:
 - NP-complete for $|\Sigma| \geq 2$, even any "reasonable" approximation is intractable.
- We show:

- Known:
 - *NP*-complete for $|\Sigma| \ge 2$, even any "reasonable" approximation is intractable.
- We show:

Intractability

Approximability

- Known: $NP\text{-complete for } |\Sigma| \geq 2, \text{ even any "reasonable" approximation is intractable.}$
- We show:

Intractability

- Known: $NP\text{-complete for } |\Sigma| \geq 2, \text{ even any "reasonable" approximation is intractable}$
- We show:

Intractability

Unary problem is not in P, unless $NP \subseteq DTIME(n^{O(\log n)})$.

- Known: $NP\text{-complete for } |\Sigma| \geq 2, \text{ even any "reasonable" approximation is intractable}$
- We show:

Intractability

Unary problem is not in P, unless $NP \subseteq DTIME(n^{O(\log n)})$.

Approximability

- Known: $NP\text{-complete for } |\Sigma| \geq 2, \text{ even any "reasonable" approximation is intractable}$
- We show:

Intractability

Unary problem is not in P, unless $NP \subseteq DTIME(n^{O(\log n)})$.

Approximability

A unary NFA with $O(opt^2)$ states can be constructed efficiently.

- Known:
 - *NP*-complete for $|\Sigma| \ge 2$, even any "reasonable" approximation is intractable.
- We show:

Intractability

Unary problem is not in P, unless $NP \subseteq DTIME(n^{O(\log n)})$.

Approximability

A unary NFA with $O(opt^2)$ states can be constructed efficiently.

A is a PAC (probably approximately correct) algorithm, if

- A determines how many examples it needs in dependence on input parameters $0 < \delta < 1/2$ and $0 < \epsilon < 1/2$.
- Classified examples are chosen randomly under some distribution
 D and presented to A.
- With probability $\geq 1 \delta$, A computes a hypothesis that classifies only an ϵ -portion (measured under \mathcal{D}) of examples incorrectly.
- Relation to the consistency problem:
- An algorithm that solves the consistency problem for \mathcal{C} on $\Theta(\frac{1}{2}\log\frac{1}{2}+\frac{\text{VC}(\mathcal{C})}{2}\log\frac{1}{2})$ examples is a PAC algorithm.

A is a PAC (probably approximately correct) algorithm, if

- A determines how many examples it needs in dependence on input parameters 0 < δ < 1/2 and 0 < ϵ < 1/2.
- Classified examples are chosen randomly under some distribution
 - \mathcal{D} and presented to A.
- With probability $\geq 1 \delta$, A computes a hypothesis that classifies only an ϵ -portion (measured under \mathcal{D}) of examples incorrectly.
- Relation to the consistency problem:
 - An algorithm that solves the consistency problem for \mathcal{C} on $\Theta(\frac{1}{z}\log\frac{1}{x}+\frac{\mathrm{VC}(\mathcal{C})}{z}\log\frac{1}{x})$ examples is a PAC algorithm.

A is a PAC (probably approximately correct) algorithm, if

- A determines how many examples it needs in dependence on input parameters $0 < \delta < 1/2$ and $0 < \epsilon < 1/2$.
- Classified examples are chosen randomly under some distribution \mathcal{D} and presented to A.
- With probability $\geq 1 \delta$, A computes a hypothesis that classifies only an ϵ -portion (measured under \mathcal{D}) of examples incorrectly.
- Relation to the consistency problem:
 - An algorithm that solves the consistency problem for C on $\Theta(\frac{1}{2}\log\frac{1}{x}+\frac{VC(C)}{2}\log\frac{1}{x})$ examples is a PAC algorithm.

A is a PAC (probably approximately correct) algorithm, if

- A determines how many examples it needs in dependence on input parameters $0 < \delta < 1/2$ and $0 < \epsilon < 1/2$.
- Classified examples are chosen randomly under some distribution $\mathcal D$ and presented to $\mathcal A$.
- With probability $\geq 1 \delta$, A computes a hypothesis that classifies only an ϵ -portion (measured under \mathcal{D}) of examples incorrectly.

 $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{\mathrm{VC}(\mathcal{C})}{\epsilon}\log\frac{1}{\epsilon})$ examples is a PAC algorithm.

A is a PAC (probably approximately correct) algorithm, if

- A determines how many examples it needs in dependence on input parameters $0<\delta<1/2$ and $0<\epsilon<1/2$.
- Classified examples are chosen randomly under some distribution \mathcal{D} and presented to A.
- With probability $\geq 1 \delta$, A computes a hypothesis that classifies only an ϵ -portion (measured under \mathcal{D}) of examples incorrectly.

Relation to the consistency problem:

ullet An algorithm that solves the consistency problem for ${\mathcal C}$ on

 $\Theta(\frac{1}{2}\log\frac{1}{3}+\frac{3}{2}\frac{2}{2}\log\frac{1}{2})$ examples is a PAC algorithm.

A is a PAC (probably approximately correct) algorithm, if

- A determines how many examples it needs in dependence on input parameters $0 < \delta < 1/2$ and $0 < \epsilon < 1/2$.
- Classified examples are chosen randomly under some distribution \mathcal{D} and presented to A.
- With probability $\geq 1 \delta$, A computes a hypothesis that classifies only an ϵ -portion (measured under \mathcal{D}) of examples incorrectly.

Relation to the consistency problem:

• An algorithm that solves the consistency problem for $\mathcal C$ on $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{\mathrm{VC}(\mathcal C)}{\epsilon}\log\frac{1}{\epsilon})$ examples is a PAC algorithm.

VC Dimension of a Class of Unary Languages

VC Dimension of \mathcal{L}_n

Let \mathcal{L}_n be the class of unary languages, accepted by DFAs with at most n states and $\pi(n)$ be the number of primes $\leq n$. Then

$$n-1+|\log(\pi(n)+1)| \leq \frac{VC(\mathcal{L}_n)}{n} \leq n+\log(n)$$
.

• Bounds are almost tight: $\log(\pi(n) + 1) \approx \log n - \log \ln n$.

VC Dimension of a Class of Unary Languages

VC Dimension of \mathcal{L}_n

Let \mathcal{L}_n be the class of unary languages, accepted by DFAs with at most n states and $\pi(n)$ be the number of primes $\leq n$. Then

$$n-1+|\log(\pi(n)+1)| \leq \operatorname{VC}(\mathcal{L}_n) \leq n+\log(n).$$

• Bounds are almost tight: $\log(\pi(n) + 1) \approx \log n - \log \ln n$.

Let \mathcal{L}_n be the class of languages, that are accepted by unary DFAs with at most n states.

Let \mathcal{L}_n be the class of languages, that are accepted by unary DFAs with at most n states.

- The VC dimension of \mathcal{L}_n is $n + \log n \pm \Theta(\log \log n)$.
- problem is efficiently solvable and the number of examples
- needed is bounded by $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{1}{\epsilon}\log\frac{1}{\epsilon})$
- $(N_n|n \in \mathbb{N})$ is not efficiently PAC learnable, if hypotheses from N are used to learn concepts from N_n and NP-complete problems are not solvable by Monte-Carlo Turing machines in time $n^{O(\log n)}$

• $(\mathcal{N}_n|n\in\mathbb{N})$ is efficiently PAC learnable, if hypotheses from $\mathcal{N}_{O(n^2)}$ are used to learn concepts from \mathcal{N}_n .

Let \mathcal{L}_n be the class of languages, that are accepted by unary DFAs with at most n states.

- The VC dimension of \mathcal{L}_n is $n + \log n \pm \Theta(\log \log n)$.
- $(\mathcal{L}_n|n\in\mathbb{N})$ is efficiently PAC learnable, because the consistency problem is efficiently solvable and the number of examples needed is bounded by $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{n+\log n}{\epsilon}\log\frac{1}{\epsilon})$.

Let \mathcal{L}_n (\mathcal{N}_n) be the class of languages, that are accepted by unary DFAs (NFAs) with at most n states.

- The VC dimension of \mathcal{L}_n is $n + \log n \pm \Theta(\log \log n)$.
- $(\mathcal{L}_n|n\in\mathbb{N})$ is efficiently PAC learnable, because the consistency problem is efficiently solvable and the number of examples needed is bounded by $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{n+\log n}{\epsilon}\log\frac{1}{\epsilon})$.
- $(\mathcal{N}_n|n\in\mathbb{N})$ is not efficiently PAC learnable, if hypotheses from \mathcal{N}_n are used to learn concepts from \mathcal{N}_n and NP-complete problems are not solvable by Monte-Carlo Turing machines in time $n^{O(\log n)}$.

Let \mathcal{L}_n (\mathcal{N}_n) be the class of languages, that are accepted by unary DFAs (NFAs) with at most n states.

- The VC dimension of \mathcal{L}_n is $n + \log n \pm \Theta(\log \log n)$.
- $(\mathcal{L}_n|n\in\mathbb{N})$ is efficiently PAC learnable, because the consistency problem is efficiently solvable and the number of examples needed is bounded by $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{n+\log n}{\epsilon}\log\frac{1}{\epsilon})$.
- $(\mathcal{N}_n|n\in\mathbb{N})$ is not efficiently PAC learnable, if hypotheses from \mathcal{N}_n are used to learn concepts from \mathcal{N}_n and NP-complete problems are not solvable by Monte-Carlo Turing machines in time $n^{O(\log n)}$. (Consequence of the intractability of the NFA consistency problem.)
- $(\mathcal{N}_n|n\in\mathbb{N})$ is efficiently PAC learnable, if hypotheses from $\mathcal{N}_{O(n^2)}$ are used to learn concepts from \mathcal{N}_n .

Let \mathcal{L}_n (\mathcal{N}_n) be the class of languages, that are accepted by unary DFAs (NFAs) with at most n states.

- The VC dimension of \mathcal{L}_n is $n + \log n \pm \Theta(\log \log n)$.
- $(\mathcal{L}_n|n\in\mathbb{N})$ is efficiently PAC learnable, because the consistency problem is efficiently solvable and the number of examples needed is bounded by $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{n+\log n}{\epsilon}\log\frac{1}{\epsilon})$.
- (N_n|n∈ℕ) is not efficiently PAC learnable, if hypotheses from N_n are used to learn concepts from N_n and NP-complete problems are not solvable by Monte-Carlo Turing machines in time n^{O(log n)}. (Consequence of the intractability of the NFA consistency problem.)
- $(\mathcal{N}_n|n \in \mathbb{N})$ is efficiently PAC learnable, if hypotheses from $\mathcal{N}_{O(n^2)}$ are used to learn concepts from \mathcal{N}_n .

consistency problem and $VC(N_n) \leq n \log n$.

Let \mathcal{L}_n (\mathcal{N}_n) be the class of languages, that are accepted by unary DFAs (NFAs) with at most n states.

- The VC dimension of \mathcal{L}_n is $n + \log n \pm \Theta(\log \log n)$.
- $(\mathcal{L}_n|n\in\mathbb{N})$ is efficiently PAC learnable, because the consistency problem is efficiently solvable and the number of examples needed is bounded by $\Theta(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{n+\log n}{\epsilon}\log\frac{1}{\epsilon})$.
- (N_n|n∈ℕ) is not efficiently PAC learnable, if hypotheses from N_n are used to learn concepts from N_n and NP-complete problems are not solvable by Monte-Carlo Turing machines in time n^{O(log n)}. (Consequence of the intractability of the NFA consistency problem.)
- $(\mathcal{N}_n|n\in\mathbb{N})$ is efficiently PAC learnable, if hypotheses from $\mathcal{N}_{O(n^2)}$ are used to learn concepts from \mathcal{N}_n . (Consequence of the quadratic approximability of the NFA consistency problem and $VC(\mathcal{N}_n) < n \log n$.)

Outline

- Introduction
 - Unary Regular Languages
 - Algorithmic Learning Theory
- Consistency Problems and PAC Learning
 - Minimum Consistent DFA
 - Minimum Consistent NFA
 - PAC Learning and VC Dimension
- 3 Learning with Equivalence Queries

- Learning algorithm submits a hypothesis from ${\cal H}$ as a query to the oracle.
- ullet Oracle compares the hypothesis with the concept c from $\mathcal C$ and

• How many counterexamples are sufficient and necessary to learn the concept?

- Learning algorithm submits a hypothesis from ${\cal H}$ as a query to the oracle.
- ullet Oracle compares the hypothesis with the concept c from ${\mathcal C}$ and
 - contirms equivalence or
 - returns counterexample
- How many counterexamples are sufficient and necessary to learn the concept?

- Learning algorithm submits a hypothesis from ${\cal H}$ as a query to the oracle.
- ullet Oracle compares the hypothesis with the concept c from ${\mathcal C}$ and
 - confirms equivalence or
- How many counterexamples are sufficient and necessary to learn the concept?

- Learning algorithm submits a hypothesis from ${\cal H}$ as a query to the oracle.
- ullet Oracle compares the hypothesis with the concept c from ${\mathcal C}$ and
 - confirms equivalence or
 - returns counterexample.
- How many counterexamples are sufficient and necessary to learn

- Learning algorithm submits a hypothesis from ${\cal H}$ as a query to the oracle.
- ullet Oracle compares the hypothesis with the concept c from ${\mathcal C}$ and
 - confirms equivalence or
 - returns counterexample.
- How many counterexamples are sufficient and necessary to learn the concept?

- Learning algorithm submits a hypothesis from ${\cal H}$ as a query to the oracle.
- ullet Oracle compares the hypothesis with the concept c from ${\mathcal C}$ and
 - confirms equivalence or
 - returns counterexample.
- How many counterexamples are sufficient and necessary to learn the concept?

Angluin, 1990

Non-unary DFAs and NFAs are not learnable from equivalence queries with polynomially many counterexamples and hypotheses of polynomial size.

Let $C_n = \mathcal{H}_n$ be the class of languages, that are accepted by a cyclic unary DFA with prime cycle length $\leq n$.

Let $C_n = \mathcal{H}_n$ be the class of languages, that are accepted by a cyclic unary DFA with prime cycle length $\leq n$.

Learning prime cycles with equivalence queries

Let $C_n = \mathcal{H}_n$ be the class of languages, that are accepted by a cyclic unary DFA with prime cycle length $\leq n$.

Learning prime cycles with equivalence queries

• There is a learning algorithm that needs at most $O(\frac{n^2}{\ln n})$ counterexamples to learn an arbitrary concept from C_n .

Let $C_n = \mathcal{H}_n$ be the class of languages, that are accepted by a cyclic unary DFA with prime cycle length $\leq n$.

Learning prime cycles with equivalence queries

- There is a learning algorithm that needs at most $O(\frac{n^2}{\ln n})$ counterexamples to learn an arbitrary concept from C_n .
- There is an oracle, such that any learning algorithm needs at least $\Omega(\frac{n^2}{\ln n})$ counterexamples.

Let $C_n = \mathcal{H}_n$ be the class of languages, that are accepted by a cyclic unary DFA with prime cycle length $\leq n$.

Learning prime cycles with equivalence queries

- There is a learning algorithm that needs at most $O(\frac{n^2}{\ln n})$ counterexamples to learn an arbitrary concept from C_n .
- There is an oracle, such that any learning algorithm needs at least $\Omega(\frac{n^2}{\ln n})$ counterexamples.

Using larger hypotheses

Let $C_n = \mathcal{H}_n$ be the class of languages, that are accepted by a cyclic unary DFA with prime cycle length $\leq n$.

Learning prime cycles with equivalence queries

- There is a learning algorithm that needs at most $O(\frac{n^2}{\ln n})$ counterexamples to learn an arbitrary concept from C_n .
- There is an oracle, such that any learning algorithm needs at least $\Omega(\frac{n^2}{\ln n})$ counterexamples.

Using larger hypotheses

If we allow unary cyclic DFAs with at most n^d ($d \le n$) states as hypotheses to learn concepts from \mathcal{C}_n , then the upper bound is $O(\frac{n^2}{d})$, whereas the lower bound is $\Omega(\frac{n^2}{d} \cdot \frac{\ln d}{(\ln n)^2})$.

- Produce hypotheses with prime cycle length p consistent with previous counterexamples.
- Colliding examples modulo p indicate that cycle length p is impossible for the concept.
- At most p counterexamples for each prime p until collision.
- The algorithm needs at most

$$\sum_{p < n, p \text{ prime}} p = \Theta\left(\frac{n^2}{\ln n}\right)$$

counterexamples to learn a cyclic DFA with unknown prime cycle length < n.

- Produce hypotheses with prime cycle length p consistent with previous counterexamples.
- Colliding examples modulo p indicate that cycle length p is impossible for the concept.
- At most p counterexamples for each prime p until collision
- The algorithm needs at most

$$\sum_{p \le n, p \text{ prime}} p = \Theta\left(\frac{n^2}{\ln n}\right)$$

counterexamples to learn a cyclic DFA with unknown prime cycle length < n.

- Produce hypotheses with prime cycle length p consistent with previous counterexamples.
- Colliding examples modulo p indicate that cycle length p is impossible for the concept.
- At most p counterexamples for each prime p until collision.

counterexamples to learn a cyclic DFA with unknown prime cycle length < n.

- Produce hypotheses with prime cycle length p consistent with previous counterexamples.
- Colliding examples modulo p indicate that cycle length p is impossible for the concept.
- At most p counterexamples for each prime p until collision.
- The algorithm needs at most

$$\sum_{0 \le n, p \text{ prime}} p = \Theta\left(\frac{n^2}{\ln n}\right).$$

counterexamples to learn a cyclic DFA with unknown prime cycle length $\leq n$.

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every counterexample reveals as little information as possible
- Number of counterexamples $\sum_{p \leq n} (p-2) = \Omega\left(\frac{n^2}{\ln n}\right)$

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every counterexample reveals as little information as possible
- ullet Number of counterexamples $\sum_{p\leq n}(p-2)=\Omega\left(rac{n^2}{\ln n}
 ight)$

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every counterexample reveals as little information as possible
- Number of counterexamples $\sum_{p \leq n} (p-2) = \Omega\left(\frac{n^2}{\ln n}\right)$

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every Counterexample reveals as little information as possible
- Number of counterexamples $\sum_{p \leq n} (p-2) = \Omega\left(\frac{n^2}{\ln n}\right)$

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every counterexample reveals as little information as possible.

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every counterexample reveals as little information as possible.
- Number of counterexamples $\sum_{p \le n} (p-2) = \Omega\left(\frac{n^2}{\ln n}\right)$.

- The concept is not fixed, but constructed depending on the queries.
- Just make sure, the concept is consistent with the counterexamples.
- Every counterexample reveals as little information as possible.
- Number of counterexamples $\sum_{p \le n} (p-2) = \Omega\left(\frac{n^2}{\ln n}\right)$.

Hypothesis

Examples

	2	3	5	7
140	0	2	0	0

List of residues

2	3	5	7
0	0	0	0
1	1	1	1

Hypothesis

Examples

	2	3	5	7	
140	0	2	0	0	

List of residues

2	3	5	7	
0	0	0	0	
1	1	1	1	
	2	2	2	
		3	3	
		4	4	
			5	
			6	

Hypothesis

Examples

	2	3	5	7	
141	1	0	1	1	

List of residues

2	3	5	7
0	0	0	0
1	1	1	1
	2	2	2
		3	3
		4	4
			5
			6

Hypothesis

Examples

	2	3	5	7	
141	1	0	1	1	

List of residues

2	3	5	7
0	0	0	0
1	1	1	1
	2	2	2
		3	3
		4	4
			5
			6

Hypothesis

Examples

	2	3	5	7	
106	0	1	1	1	

List of residues

2	3	5	7
0	0	0	0
1	1	1	1
	2	2	2
		3	3
		4	4
			5
			6

Hypothesis

Examples 2 3 5 7

106 0

Hypothesis

Hypothesis

Examples

	2	3	5	7	
127	1	1	2	1	-

List of residues

2	3	5	7
0	0	0	0
1	1	1	1
	2	2	2
		3	3
		4	4
			5
			6

Hypothesis

Examples

	2	3	5	7	
127	1	1	2	1	

List of residues

2	3	5	7
0	0	0	0
1	1	1	1
	2	2	2
		3	3
		4	4
			5
			6

Hypothesis

Hypothesis

Examples

		3	5	7
168	0	0	3	0

List of residues

2	3	5	7	
0	0	0	0	
1	1	1	1	
	2	2	2	
		3	3	
		4	4	
			5	
			6	

Hypothesis

Examples

	2	3	5	7	
168	0	0	3	0	

List of residues

 ٠.	. •	3.0.0		
2	3	5	7	
0	0	0	0	
1	1	1	1	
	2	2	2	
		3	3	
		4	4	
			5	
			6	

Hypothesis

... At least $\sum_{p \le n} (p-2) = \Omega\left(\frac{n^2}{\ln n}\right)$ counterexamples.

2	3	5	7
0	0	0	0
4	4	4	4

Consistency and PAC learning for DFAs

The consistency problem for unary DFAs becomes simple

The volumension of unary DFAS with \(\sigma \) States is

 $n + \log n \perp O(\log \log n)$.

Unary DFAs are efficiently PAC learnable

Consistency and PAC learning for NFAs

(□ > ∢┛ > ∢ 差 > ∢ 差 > · 差 · りへの

Consistency and PAC learning for DFAs

• The consistency problem for unary DFAs becomes simple.

Consistency and PAC learning for DFAs

- The consistency problem for unary DFAs becomes simple.
- The VC dimension of unary DFAs with $\leq n$ states is $n + \log n \pm \Theta(\log \log n)$.

Consistency and PAC learning for DFAs

- The consistency problem for unary DFAs becomes simple.
- The VC dimension of unary DFAs with $\leq n$ states is $n + \log n \pm \Theta(\log \log n)$.
- Unary DFAs are efficiently PAC learnable.

Consistency and PAC learning for DFAs

- The consistency problem for unary DFAs becomes simple.
- The VC dimension of unary DFAs with $\leq n$ states is $n + \log n \pm \Theta(\log \log n)$.
- Unary DFAs are efficiently PAC learnable.

Consistency and PAC learning for NFAs

Consistency and PAC learning for DFAs

- The consistency problem for unary DFAs becomes simple.
- The VC dimension of unary DFAs with $\leq n$ states is $n + \log n \pm \Theta(\log \log n)$.
- Unary DFAs are efficiently PAC learnable.

Consistency and PAC learning for NFAs

 The consistency problem remains hard for unary NFAs, but can efficiently be approximated quadratically.

Consistency and PAC learning for DFAs

- The consistency problem for unary DFAs becomes simple.
- The VC dimension of unary DFAs with $\leq n$ states is $n + \log n \pm \Theta(\log \log n)$.
- Unary DFAs are efficiently PAC learnable.

Consistency and PAC learning for NFAs

- The consistency problem remains hard for unary NFAs, but can efficiently be approximated quadratically.
- It is hard to PAC learn unary NFAs with small hypotheses.

Consistency and PAC learning for DFAs

- The consistency problem for unary DFAs becomes simple.
- The VC dimension of unary DFAs with ≤ n states is n + log n ± Θ(log log n).
- Unary DFAs are efficiently PAC learnable.

Consistency and PAC learning for NFAs

- The consistency problem remains hard for unary NFAs, but can efficiently be approximated quadratically.
- It is hard to PAC learn unary NFAs with small hypotheses.
- Unary NFAs are efficiently PAC learnable with quadratically larger hypotheses.

Learning cyclic DFAs by equivalence queries

4 ロ ト 4 同 ト 4 豆 ト 4 回 ト 4 回 ト 4 回 ト

Learning cyclic DFAs by equivalence queries

- Learn DFAs with $p \le n$ states by hypotheses with $p \le n$ states:
 - $\Theta\left(\frac{n^2}{\ln n}\right)$ counterexamples are sufficient and necessary.

4□ > 4□ > 4□ > 4□ > 4□ > 9

Learning cyclic DFAs by equivalence queries

- Learn DFAs with $p \le n$ states by hypotheses with $p \le n$ states: $\Theta\left(\frac{n^2}{\ln n}\right)$ counterexamples are sufficient and necessary.
- Learn DFAs with at most n states by hypotheses with at most n^d states (d ≤ n):
 - $O(\frac{n^2}{d})$ counterexamples are sufficient and $\Omega(\frac{n^2}{d} \cdot \frac{\ln d}{(\ln n)^2})$ are necessary.

- Learning non-cyclic unary DFAs with equivalence queries.
- Learning unary NFAs with equivalence gueries.
- Learning unary PFAs for fixed isolation

- Learning non-cyclic unary DFAs with equivalence queries.
- Learning unary NFAs with equivalence queries.

Learning unary PFAs for fixed isolation

- Learning non-cyclic unary DFAs with equivalence queries.
- Learning unary NFAs with equivalence queries.
- Learning unary PFAs for fixed isolation.

- Learning non-cyclic unary DFAs with equivalence queries.
- Learning unary NFAs with equivalence queries.
- Learning unary PFAs for fixed isolation. (Consistency, PAC, equivalence queries.)

- Learning non-cyclic unary DFAs with equivalence queries.
- Learning unary NFAs with equivalence queries.
- Learning unary PFAs for fixed isolation. (Consistency, PAC, equivalence queries.)

Thanks for the attention.

