Salut Dominique et Aurelien,

J'ai essayé de fournir ci-dessous une description des variables générées. J'ai également rajouté des liens avec plus de détails sur l peu de biblio à la fin pour se familiariser avec ces questions de dynamiques de transition forêt savane.

N'hésite pas si tu as des questions.

Α+

Le Bien.

Environnemental variables:

- 1- fire_freq = 250-m yearly fire frequency (Fire/year) from MODIS Fire_cci Burned Area Pixel Product from 2001-2020. Each value that pixel. Maxed pixel values from MODIS will have NA meaning there were no fire data for that given pixel.
- 2- mean_precip = Mean annual precipitation (MAP, mm/year) from ERA5 Monthly Aggregates (~ 30km resolution)
- 3- cv_rainfall = MAP variance (MAP, mm/year)
- 4- eff_rainfall = Effective rainfall (mm/year) is equal to the difference between MAP and the evapotranspiration.
- 5- mean_temp = Mean temperature (¤C)
- 6- temp_range = Temperature range (¤C)
- 7- ecoregion = The RESOLVE Ecoregions dataset from the WWF, updated in 2017. We focused on Tropical & Subtropical Grasslar by MODIS canopy cover product).

Vegetation structure variables (see more details about GEDI here https://gedi.umd.edu/mission/technology/):

- 1- GEDI RH98 = canopy height measured from best quality filtered shots (25 m resolution) over savanna. We only considered pix sure that we only consider data from woodlands and savanna.
- 2- GEDI canopy cover = proportion of the canopy between 5-10 m from the ground for each 25 m GEDI shot. This was extracted https://developers.google.com/earth-engine/datasets/catalog/LARSE_GEDI_GEDI02_B_002_MONTHLY#description)

The GEDI data were aggregated from 25 m to 250 m resolution using the average values in order to match the resolution of the fi

https://doi.org/10.1002/fee.2585

Sankaran, M., Hanan, N., Scholes, R. et al. Determinants of woody cover in African savannas. Nature 438, 846-849 (2005). https://d

Lehmann, C.E.R., Archibald, S.A., Hoffmann, W.A. and Bond, W.J. (2011), Deciphering the distribution of the savanna biome. New P

Marina Hirota et al., Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science334,232-235(2011). DOI:10.112

Caroline E. R. Lehmann et al., Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science 343, 548-552 (201-

Higgins, S. I., Conradi, T., Kruger, L. M., O'Hara, R. B., & Slingsby, J. A. (2023). Limited climatic space for alternative ecosystem state

▼ Testable implications

The model implies the following conditional independences:

- CANOPY COVER (%)
 L
 CANOY HEIGHT (m) | Mean
 annual rainfall (mm yr-1), fire
 frequence (yr-1)
- CANOY HEIGHT (m) ⊥
 GRASS biomass (t.ha-1) |
 Mean annual rainfall (mm yr 1), fire frequence (yr-1)


```
dag {
bb="0,0,1,1"
"CANOPY COVER (%)"
[pos="0.528,0.613"]
"CANOY HEIGHT (m)"
[pos="0.173,0.300"]
"GRASS biomass (t.ha-1)"
[pos="0.334,0.457"]
"Mean annual rainfall (mm yr-1)"
[pos="0.174,0.609"]
```

Summary

Model contains cycle: CANOPY COVER (%)→GRASS biomass (t.ha-1)→fire frequence (yr-1)→CANOPY COVER (%) dir()

[1] "Angolan_mopane.fst"

[4] "Central_bushveld.fst"

[7] "Drakensberg_grasslands.fst"

[10] "Guinean_forest-savanna.fst"

[13] "Kalahari_Acacia.fst"

[16] "Northern_Congolian.fst"

[19] "Southern_Congolian.fst"

[22] "Zambezian-Limpopo_mixed.fst" "Zambezian_Baikiaea.fst"

"Angolan_wet.fst"

"Central_Zambezian.fst"

"Dry miombo.fst" "Horn of.fst"

"Mandara Plateau.fst"

"Sahelian_Acacia.fst"

"West Sudanian.fst"

"Campos_Rupestres.fst"

"Drakensberg_Escarpment.fst"

"East Sudanian.fst"

"Itigi-Sumbu_thicket.fst"

"Masai_xeric.fst"

"Serengeti_volcanic.fst"

"Western_Congolian.fst"

"Zambezian_mopane.fst"

4 1	p Amm ▼ Filter										
	x	у ‡	rh98 [‡]	canopy_cover ‡	fire_freq ‡	mean_precip ‡	cv_rainfall ‡	eff_rainfall ‡	mean_temp ‡	temp_range ‡	ecoregion ‡
1	37.00048	14.26637	5.982667	0.028192833	NA	723.4141	0.1426200	408.4453	27.65563	39.20422	East_Sudanian
2	37.00048	14.26412	3.955000	0.009793250	NA	723.4141	0.1426200	408.4453	27.65563	39.20422	East_Sudanian
3	37.00048	14.26188	5.516917	0.036079351	NA	723.4141	0.1426200	408.4453	27.65563	39.20422	East_Sudanian
4	37.00273	14.26188	2.362500	0.000000000	NA	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
5	37.00048	14.25963	7.982583	0.067758726	0.5789474	723.4141	0.1426200	408.4453	27.65563	39.20422	East_Sudanian
6	37.00273	14.25739	6.243066	0.051658304	0.5789474	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
7	37.00498	14.25739	3.649250	0.005104925	0.4210526	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
8	37.00273	14.25514	5.696667	0.027369666	0.5789474	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
9	37.00498	14.25514	4.800551	0.021938594	0.2631579	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
10	37.00498	14.25289	4.807361	0.023310125	0.5789474	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
11	37.00048	14.25065	7.596666	0.051529834	0.6315789	723.4141	0.1426200	408.4453	27.65563	39.20422	East_Sudanian
12	37.00498	14.25065	6.462917	0.029497749	0.6315789	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
13	37.00722	14.25065	8.828167	0.062860383	0.6315789	736.2011	0.1401428	421.2323	27.65563	39.20422	East_Sudanian
14	37.00048	14.24840	8.148000	0.070121550	0.7368421	760.8568	0.1408722	461.4591	27.00262	38.99936	East_Sudanian
15	37.00273	14.24840	10.210000	0.149196750	0.6315789	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian
16	37.00498	14.24840	7.349333	0.060823599	0.6842105	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian
17	37.00048	14.24616	6.503056	0.065599903	0.7368421	760.8568	0.1408722	461.4591	27.00262	38.99936	East_Sudanian
18	37.00273	14.24616	6.890729	0.073749000	0.6842105	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian
19	37.00722	14.24616	3.480000	0.000000000	0.6842105	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian
20	37.00947	14.24616	5.408594	0.025604832	0.7368421	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian
21	37.00048	14.24391	5.723690	0.035549358	0.6842105	760.8568	0.1408722	461.4591	27.00262	38.99936	East_Sudanian
22	37.00273	14.24391	3.923333	0.002112929	0.6842105	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian
23	37.00498	14.24391	3.820000	0.001467042	0.7368421	769.7281	0.1392486	470.3304	27.00262	38.99936	East_Sudanian

Pourcentage de données manquantes fréquence de feu

X-axis Label

Pourcentage de données manquantes fréquence de feu

Pourcentage de données manquantes pluie moyenne annuelle

Pourcentage de données manquantes pluie moyenne annuelle

X-axis Label

Pourcentage de données manquantes canopy_cover

Pourcentage de données manquantes canopy_cover

Pourcentage de données manquantes feu + pluie + canopy_cover

X-axis Label

Pourcentage de données manquantes feu + pluie + canopy cover

X-axis Label

% de données manquantes feu + pluie + canopy_cover + au moins une variable

X-axis Label

Salut Dominique et Aurelien,

J'ai essayé de fournir ci-dessous une description des variables générées. J'ai également rajouté des liens avec plus de détails sur l peu de biblio à la fin pour se familiariser avec ces questions de dynamiques de transition forêt savane.

N'hésite pas si tu as des questions.

Α+

Le Bien.

Environnemental variables:

- 1- fire_freq = 250-m yearly fire frequency (Fire/year) from MODIS Fire_cci Burned Area Pixel Product from 2001-2020. Each value that pixel. Maxed pixel values from MODIS will have NA meaning there were no fire data for that given pixel.
- 2- mean_precip = Mean annual precipitation (MAP, mm/year) from ERA5 Monthly Aggregates (~ 30km resolution)
- 3- cv_rainfall = MAP variance (MAP, mm/year)
- 4- eff_rainfall = Effective rainfall (mm/year) is equal to the difference between MAP and the evapotranspiration.
- 5- mean_temp = Mean temperature (¤C)
- 6- temp_range = Temperature range (¤C)
- **7- ecoregion** = The RESOLVE Ecoregions dataset from the WWF, updated in 2017. We focused on Tropical & Subtropical Grasslar by MODIS canopy cover product).

Vegetation structure variables (see more details about GEDI here https://gedi.umd.edu/mission/technology/):

- 1- GEDI RH98 = canopy height measured from best quality filtered shots (25 m resolution) over savanna. We only considered pix sure that we only consider data from woodlands and savanna.
- 2- GEDI canopy cover = proportion of the canopy between 5-10 m from the ground for each 25 m GEDI shot. This was extracted https://developers.google.com/earth-engine/datasets/catalog/LARSE_GEDI_GEDI02_B_002_MONTHLY#description)

The GEDI data were aggregated from 25 m to 250 m resolution using the average values in order to match the resolution of the fi

https://doi.org/10.1002/fee.2585

Sankaran, M., Hanan, N., Scholes, R. et al. Determinants of woody cover in African savannas. Nature 438, 846-849 (2005). https://d

Lehmann, C.E.R., Archibald, S.A., Hoffmann, W.A. and Bond, W.J. (2011), Deciphering the distribution of the savanna biome. New P

Marina Hirota et al., Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science334,232-235(2011). DOI:10.112

Caroline E. R. Lehmann et al., Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science 343, 548-552 (201-

Higgins, S. I., Conradi, T., Kruger, L. M., O'Hara, R. B., & Slingsby, J. A. (2023). Limited climatic space for alternative ecosystem state

▼ Testable implications

The model implies the following conditional independences:

- CANOPY COVER (%)
 L
 CANOY HEIGHT (m) | Mean
 annual rainfall (mm yr-1), fire
 frequence (yr-1)
- CANOY HEIGHT (m) ⊥
 GRASS biomass (t.ha-1) |
 Mean annual rainfall (mm yr 1), fire frequence (yr-1)


```
dag {
bb="0,0,1,1"
"CANOPY COVER (%)"
[pos="0.528,0.613"]
"CANOY HEIGHT (m)"
[pos="0.173,0.300"]
"GRASS biomass (t.ha-1)"
[pos="0.334,0.457"]
"Mean annual rainfall (mm yr-1)" [pos="0.174,0.609"]
```

Summary

Model contains cycle: CANOPY COVER (%)→GRASS biomass (t.ha-1)→fire frequence (yr-1)→CANOPY COVER (%)