104 HW #1 Final 3. a) k/n Looking at the relationship between k and n,

1 4 we can see that it is 22k=n.

2 16
3 1256 $2^{2^{k}} = n \rightarrow \log_{2}(2^{2^{k}}) = \log_{2}n \rightarrow 2^{k} \log_{2}(2) = \log_{2}n \rightarrow 2^{k} = \frac{\log_{2}n}{\log_{2}(2)} \rightarrow \log_{2}(2^{k}) = \log_{2}(\frac{\log_{2}n}{\log_{2}(2)}) \rightarrow \log_{2}(\frac{\log_{2}n}{\log_{2}(2)})$ > k = log, (log, (n)) = 0(log (log(n))) b) $\frac{2|n|}{4|2}$ This relationship can be represented as $k=(i\sqrt{n})^3$ g 3 for the inner loop

1614 The total runtime can be represented by: Enterins

the for n $i = \sqrt{n} \quad k = (i\sqrt{n})^3$ $(i\sqrt{n}) \rightarrow 2 \quad \Theta(1) + 2 \quad \Xi \quad \Theta(i\sqrt{n})^3) \rightarrow 2 \quad \Theta(1) + 2 \quad \Theta(i\sqrt{n})^3) \rightarrow 2 \quad \Theta(1) + 2 \quad \Theta(i\sqrt{n})^3$ > = O(1) + (m) = O(1) = (m) O(m) = O(n7/2) Relationship for inner loop: $2^m = n \rightarrow \log_2(2^m) = \log_2(n) \rightarrow m \log_2(2) = \log_2 n$ $\rightarrow m = \frac{\log_2 n}{\log_2} \rightarrow m = \log_2(n)$

d) T(n) = \(\text{D} \text{(1)} + \text{Z} \text{E} \text{O(1)}

Assume the if statement is true for & times, and when true, size will update with the corresponding pattern 1== size== 10/3)°size → 10 · (3)

 $i = size = 10 \cdot \left(\frac{3}{2}\right)^{1} : size \rightarrow 10 \cdot \left(\frac{3}{2}\right)^{2}$

i== size == (0 -(3) k1: size -> 10 - (3) k

The stopping condition is ien so we have 10-(3) ten or k < logy (1/10)

k is the number of times the if statement executes given n

 $\frac{\log_3(70)}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{10\cdot(\frac{3}{2})^2+...+10\cdot(\frac{3}{2})^k}{1=1}$

10. \(\frac{1}{2}\) = 10. \(\theta(\frac{13}{2})^k), where \(k = (\log_3)^n\)

 $= 10 \cdot \Theta\left(\left(\frac{3}{2}\right)^{(\log 3)}\right)^{\frac{n}{\log 3}} = \left(0 \cdot \Theta\left(\frac{n}{\log 3}\right) = \Theta(n)\right)$