Chapter08. Celeb CNN 이미지 분석

딥 러닝 적용 이미지 분석 절차

STEP 01

STEP 02

STEP 03

Deep_Learning (Tensorflow)

STEP 01: 이미지 자료수집

이미지 자료 수집 계획

- 5명 연예인(5 * 200 = 1,000)

 $Train_Data : 150 * 5 = 750$

Test_Data : 50 * 5 = 250

배두나 조인성 조진웅 조승우 최민식

• Selenium 설치 pip install selenium

Anaconda Prompt (anaconda3)

(base) C:\(\pi\Users\pi\user>\pi\pi\) install selenium

Collecting selenium

Using cached selenium—3.141.0-py2.py3-none-any.\(\pi\hl) (904 kB)

Requirement already satisfied: urllib3 in c:\(\pi\users\pi\user\pi\user\pi\user\pi\user\pi\user\pi\user\pa\user\pi\uneq\uneq\pi\uneq\uneq\pi\uneq\pi\uneq\uneq\pi\uneq\pi\uneq\pi\uneq\uneq\pi\uneq\pi\uneq\pi\uneq\pi\uneq\pi\uneq\pi\un

● 크롬 드락이버 다운로드(chromedriver.exe)

https://chromedriver.chromium.org/downloads

1. 검색어 입력상자 찾기

G Google 이미지

대한민국

검색어 입력상자 찾기

Console What's New X

- https://www.google.co.kr/imghp?hl=ko 접속
- F12 단축키 누름
- <body>태그 시작으로 순차적으로 마우스 오버 시 활성화된 tag 선택
- 선택한 tag의 하위 tag 순차적으로 마우스 오버하여 입력상자 영역 찾기

2. 검색어 입력 후 전송 버튼 찾기

● Selenium 데이터 수집 절차

Google

1. 문자 삽입 및 찾기

하정우

스 Google 정보

3. 이미지 저장

STEP 02: 이미지 정제

이미지 데이터 정제

- Work Flow

1) Face Detection

HOG - Histogram of Gradient : 이미지에서 face 감지 알고리즘

Face Detection

HOG – **Histogram** of Gradient

HOG는 대상 영역을 일정 크기의 셀로 분할하고, 각 셀마다 edge 픽셀 (gradient magnitude가 일정 값 이상인 픽셀)들의 방향에 대한 히스토그램을 구한 후 이들 히스토그램 bin 값들을 일렬로 연결한 벡터이다. 즉, HOG는 edge의 방향 히스토그램 템플릿으로 볼 수 있다.

https://darkpgmr.tistory.com/116

1) Face Detection

- 한 장 사진에서 다수의 Face Detection

2) Face Alignment

68 LandMark Centralization

2) Face Alignment

68 Point Landmark Estimation

3) API Install

Anaconda python3.7에서 Conda 방식으로 dlib 설치

> conda install -c conda-forge dlib

Conda-forge : git 허브 조직

68 landmark 다운로드/압축풀기

1 http://dlib.net/files

② 작업 위치에 압축파일 풀기

4) Image crop

Image reshape

STEP 03: CNN model

● CNN 모델 구조

훈련 데이터 셋(Training Dataset)

모델을 훈련하는 데 사용되는 데이터 셋(신경망: 가중치, 바이어스)

유효성 데이터 셋(Validation Dataset)

모델의 Hyper Parameter를 튜닝 하는데 사용되는 데이터 셋(모델 최적화)

검정 데이터 셋(Test Dataset)

모델이 완전히 훈련 된 후에 만 사용되는 데이터 셋(실제 업무 데이터)

CNN 모델링 처리 가정

Accuracy, Loss 결과(10 epoch)

- 학습 시간 : 15분

Train_Data : 150 * 5 = 750

Test_Data : 50 * 5 = 250

Accuracy, Loss 결과(20 epoch)

- 학습 시간 : 20분

 $Train_Data : 150 * 5 = 750$

Test_Data : 50 * 5 = 250

