

Vorhersage von Unfallzahlen

Mithilfe eines künstlichen neuronalen Netzes und einer polynomiellen Regression

Maurice Ahrens & Corinne Pretz 13. Juli 2022

uni-siegen.de

Inhaltsübersicht

Einleitung

Daten

Polynomielle Regression

Theorie

Implementierung

Ergebnisse

Künstliche neuronale Netze

Theorie

Implementierung

Ergebnisse

Fazit

Einleitung

Kapitel 1: Einleitung

Einleitung

- Motivation:
 - Jährlich rund 150.000 bis 200.000 Unfälle mit Personenschaden.
 - Möglichkeit zur Verringerung der Unfälle durch Unfall-Vorhersage
- Zielsetzung:
 - Interaktive Anwendung entwickeln
 - Gibt Nutzer eine Vorhersage zur Wahrscheinlichkeit für Anzahl der Unfälle zu Zeitpunkt und Ort
- Methode:
 - Entwicklung eines künstlichen neuronalen Netzes zu Vorhersage
 - Entwicklung einer polynomiellen Regression als Benchmark-Vorhersage

Daten

Kapitel 2: Daten

Unfallatlas

- Quelle: Statistische Ämter des Bundes und der Länder
- Enthält jährlich polizeilich aufgenommene Unfälle des Straßenverkehrs mit Personenschaden
- Aktueller Erfassungszeitraum: 2016 2020
- Stärke: Informationen zu Unfallkategorie, -art, -typ, Lichtverhältnisse, Straßenzustand, Position des Unfalls und beteiligte Verkehrsmittel
- Schwäche: Keine Informationen zum genauen Unfallzeitpunkt
- Änderungen:
 - Beschränkung auf Mainz und Wiesbaden
 - Datensatz um keine Unfallzeitpunkte erweitert
 - Für die Vorhersage unbrauchbare Attribute entfernt

Analyse des Unfallatlas

Kapitel 2: Daten

Unfälle von 2016 bis 2020 in Deutschland

Unfälle von 2016 bis 2020 in Deutschland im Monat

Unfälle von 2016 bis 2020 in Deutschland am Wochentag

July 13, 2022

Kapitel 2: Daten

Temperatur und Niederschlag

- Quellen: Wetterstation Mainz-Lerchenberg und Wetterstation Wiesbaden-Auringen
- Lufttemperatur:
 - Temperatur in stündlichen Abständen
 - Angabe in 2 Meter Höhe und Grad Celsius
 - Zusätzlich: Relative Luftfeuchtigkeit und Qualitätsniveau der Angaben
- Niederschlagshöhe:
 - Niederschlag in 10 Minuten Abständen
 - Angabe in Millimeter
 - Zusätzlich: Niederschlagsform, Qualität der Angaben und binärer Wert für Niederschlag
- Änderung:
 - Lediglich Informationen zu stündlicher Lufttemperatur und Niederschlagshöhe verwendet
 - Mittelwerte der Wochentage in einem Monat berechnet

Polynomielle Regression

Theorie

- Polynomfunktion = Funktion, bestehend aus Summe beliebig vieler Potenzfunktionen mit natürlichen
 Exponenten
- Form:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$$

- n = Grad der Funktion
- $n \in \mathbb{N}$
- a = Koeffizient
- $a_{n}, a_{n-1}, \dots, a_{2}, a_{1}, a_{0} \in \mathbb{R}$
- $a_n \neq 0$

Theorie

- Je höher der Grad, desto mehr Steigungsänderungen
- Verlauf der Unfallzahlen unterliegt ständigen Schwankungen
- Funktion auf Unfallverlauf anpassen
- Weitere Verlauf der Funktion = Vorhersage
- Wahl eines geeigneten Grades ist wichtig
- Grad zu niedrig = Funktion passt sich Unfallverlauf zu oberflächlich an
 - Underfitting-Problem
- Grad zu hoch = Funktion passt sich Unfallverlauf zu streng an
 - Overfitting-Problem

Theorie – Accuracy vs. F1-Score

Accuracy:

$$A = \frac{\text{\# richtig vorhergesagter L\"osungen}}{\text{\# der L\"osungen insgesamt}}$$

• Recall (Sensitivität):

$$Recall = \frac{\#richtig\ positiv}{\#richtig\ positiv + \#falsch\ negativ}$$

• Precision:

$$Precision = \frac{\#richtig\ positiv}{\#richtig\ positiv + \#falsch\ positiv}$$

• F1-Score:

$$f1 - Score = 2 \frac{Recall * Precision}{Recall + Precision}$$

F1-Score berücksichtigt die Fehlerart und nicht nur die Anzahl der Fehler

Implementierung

Zeitreihe als Input:

Tag	1	2	3	 420
Anzahl Unfälle	3	9	3	 2

Polynomielle Funktion auf den Daten trainieren lassen:

Ergebnisse

- Accuracy Score = 5.6 %
- Macro f1-Score = 0.086 %
- Micro f1-Score = 0.952 %
- Weighted f1-Score = 0.018 %
- Ergebnisse der Vorhersage:

Tage	1	ab 9	ab 25	ab 36	ab 45	ab 52	ab 63
Anzahl Unfälle	5	4	3	2	1	0	-1

14

Ergebnisse

• Vorhersage für 70 Tage:

15

Künstliche neuronale Netze

Kapitel 4: Künstliche neuronale Netze Theorie – Aufbau eines KNNs

- Wird dem Machine Learning zugeordnet
- Aufbau orientiert sich an der Biologie
- KNNs bestehen aus mehreren Schichten (engl. Layer)
 - Inputlayer
 - Hiddenlayer (eins oder mehr (Deep Learning))
 - Outputlayer
- Schichten bestehen aus einer festgelegten
 Anzahl an künstlichen Neuronen

Theorie – Datenfluss eines KNNs

- 1. Inputlayer bekommt unveränderte Trainingsdaten
- 2. Weitergabe der Werte an den ersten Hiddenlayer
- 3. Werte gehen in die "Aktivierung" der künstlichen Neuronen ein
- 4. Berechnung der Aktivierung: $f(x_j) = f(\sum_{i \in I} w_i a_i + b) = y_j \quad \forall j \in J$
- 5. Aktivierung der künstlichen Neuronen dient als Input für den nächsten Layer

Theorie - Datenfluss eines KNNs

13. Juli 2022

Theorie - Trainingsalgorithmus

Implementierung - Daten

#Jahre + #Monate + #Wochentage + #Stunden = 10080

	Insgesamt	Trainingsdaten	Validierungsdaten	Testdaten
# Instanzen	10080	7257	806	2016
rel. Anteil	1	0.72	0.08	0.2

Wiesbaden Mainz

# Unfälle	0	1	2	3	4	5	6	# Unfälle	0	1	2	3	4	5
# Instanzen	6413	2483	879	222	61	18	4	# Instanzen	7528	1936	495	98	22	1
rel. Häufigkeit	0.63	0.25	0.09	0.022	0.006	0.002	0.0004	rel. Häufigkeit	0.75	0.19	0.05	0.001	0.002	0.0001

Bei unbalancierten Daten ist das Bewertungsmaß Accuracy nicht besonders aussagekräftig

Implementierung – Aufbau des KNNs

Erster Durchlauf

Implementierung – Aufbau der KNNs

mit Wetterdaten

ohne Wetter Daten

Implementierung - weitere Einstellungen des KNNs

- Aktivierungsfunktionen
 Hiddenlayer "ReLu" Funktion
 Outputlayer "Softmax" Funktion (multiclass multilabel problem)
- Optimierer "Adaptive Moment Estimation" (Adam)
- Lossfunktion "sparse catergorical-crossentropy"
- Trainierte Epochen = 200

Beispielhafte Vorhersage eine KNNs für die Stadt Mainz

betrachtetes Output-Neuron (Label)	0	1	2	3	4	5
Output des KNN	0.7532	0.2455	0.0001	0.0012	0	0
Gewünschter Output	1	0	0	0	0	0

Ergebnisse – Training der KNNs und testen auf den Testdatensätzen

Ergebnisse

Training mit den Daten einer Stadt und testen auf den Daten der jeweils anderen Stadt

Fazit

Kapitel 5: Fazit

Fazit

- Zu unbalancierter Datensatz um sichere Vorhersage treffen zu
- Mehr Daten könnten das Problem vielleicht lösen allerdings bleibt vermutlich das Problem der unbalancierten Daten
- Training mit den Daten einer größeren Stadt in der mehr Unfälle geschehen
- Vorhersage der Kategorie des Unfalls oder den involvierten Fahrzeugen könnte Problem des unbalancierten Datensatzes lösen

Quellen

- **3Blue1Brown**. But what is a neural network? https://www.youtube.com/watch?v=aircAruvnKk, 2021. Accessed: 2021-14-07.
- Bradley, R. A., and Srivastava, S. S.: Correlation in polynomial regression. The American Statistician 33, 1 (1979), 11–14.
- Brownlee, J. Gentle introduction to the adam optimization algorithm for deep learning.
 https://machinelearningmastery.com/adam-optimization-algorithm-fordeep-learning/, 2017. Accessed: 2022-25-06.
- **Brownlee, J.** A gentle introduction to the rectified linear unit (relu). https://machinelearningmastery.com/rectified-linear-activation-functionfor-deep-learning-neural-networks/, 2019. Accessed: 2022-25-06.
- **Buckland, M., and Gey, F.** The relationship between recall and precision. Journalof the American society for information science 45, 1 (1994), 12–19.
- Chollet, F. Deep learning with Python. Simon and Schuster, 2017.
- Korstanje, J. The f1 score. https://towardsdatascience.com/the-f1-scorebec2bbc38aa6, 2021. Accessed: 2022-25-06.
- Ostertagov a, E.: Modelling using polynomial regression. Procedia Engineering 48 (2012), 500–506.
- Strecker, S. K"unstliche Neuronale Netze: Aufbau und Funktionsweise. Universit"atsbibliothek, 2004.
- **Tensorflow.** Module: tf.keras.activations. https://www.tensorflow.org/api docs/python/tf/keras/activations, 2021. Accessed: 2021-14-07.

Vielen Dank für eure Aufmerksamkeit

Maurice Ahrens & Corinne Pretz

Projektseminar SoSe 22

