© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°12

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – EPITA 2019

Pour tout réel *strictement positif* α , on se propose d'étudier la fonction S_{α} de la variable réelle x définie (sous réserve de convergence) comme somme de la série de fonctions suivante :

$$S_{\alpha}(x) = \sum_{n=0}^{+\infty} e^{-xn^{\alpha}} = 1 + e^{-x} + e^{-2^{\alpha}x} + e^{-3^{\alpha}x} + e^{-4^{\alpha}x} + \cdots$$

On étudie dans la partie I le domaine de définition et les premières propriétés de la fonction S_{α} . Dans la partie II, on approfondit le cas particulier $\alpha=2$, autrement dit l'étude de la fonction S_2 . Puis on introduit dans la partie III des intégrales auxiliaires afin d'obtenir de façon plus générale des équivalents de $S_{\alpha}(x)$ lorsque x tend vers 0 et $+\infty$.

I Premières propriétés des fonctions S_{α} ($\alpha > 0$)

- 1 Etude du cas particulier de la fonction S_1 .
 - **1.a** Etudier la convergence simple et expliciter la somme de la série de fonctions définissant S_1 :

$$S_1(x) = \sum_{n=0}^{+\infty} e^{-xn}.$$

- **1.b** Préciser la limite et un équivalent de $S_1(x)$ quand x tend vers 0.
- **1.c** Préciser la limite de $S_1(x)$ quand x tend vers $+\infty$, et un équivalent de $S_1(x) 1$ en $+\infty$.
- $|\mathbf{2}|$ Etude du domaine de définition des fonctions S_{α} ($\alpha>0$).
 - **2.a** Examiner pour $x \le 0$ la nature de la série $\sum_{n \ge 0} e^{-xn^{\alpha}}$.
 - **2.b** Pour tout réel x > 0, déterminer la limite de la suite $n \mapsto n^2 e^{-xn^{\alpha}}$. En déduire la nature de la série $\sum_{n \ge 0} e^{-xn^{\alpha}}$ pour x > 0.
 - **2.c** Préciser le domaine de définition de la fonction S_{α} pour $\alpha > 0$.
- |3| Premières propriétés des fonctions S_{α} ($\alpha > 0$).
 - **3.a** Pour tout $\varphi > 0$, établir la convergence normale de la série de fonctions $\sum_{n \ge 0} (x \mapsto e^{-xn^{\alpha}}) \sup [\varphi, +\infty[$. En déduire la continuité de la fonction S_{α} sur $]0, +\infty[$ (on explicitera le théorème utilisé).
 - **3.b** Comparer $S_{\alpha}(x)$ et $S_{\alpha}(y)$ pour $0 < x \le y$ et préciser le sens de variation de la fonction S_{α} . En déduire que la fonction S_{α} admet une limite finie ou infinie en 0 et en $+\infty$.

3.c A l'aide d'un théorème dont on précisera l'énoncé, montrer que : $\lim_{x \to +\infty} S_{\alpha}(x) = 1$.

3.d En exploitant l'inégalité $S_{\alpha}(x) \ge \sum_{n=0}^{N} e^{-xn^{\alpha}}$ pour tout entier naturel N et pour tout réel x > 0, établir, pour tout entier naturel N, que : $\lim_{x \to 0} S_{\alpha}(x) \ge N + 1$. Quelle est la limite de $S_{\alpha}(x)$ quand x tend vers 0?

II Etude de la fonction S₂

On étudie dans cette partie la fonction définie par :

$$\forall x > 0$$
, $S_2(x) = \sum_{n=0}^{+\infty} e^{-xn^2} = 1 + e^{-x} + e^{-4x} + e^{-9x} + e^{-16x} + \cdots$

- $\boxed{\mathbf{4}}$ Recherche d'un équivalent de S_2 en 0.
 - **4.a** Etablir l'inégalité suivante pour tout entier naturel n et tout réel x > 0:

$$e^{-x(n+1)^2} \le \int_{r}^{n+1} e^{-xt^2} dt \le e^{-xn^2}.$$

4.b En exploitant l'égalité $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$, en déduire la double inégalité suivante :

$$\forall x > 0, \quad S_2(x) - 1 \le \frac{\sqrt{\pi}}{2\sqrt{x}} \le S_2(x).$$

- **4.c** Retrouver alors $\lim_{x\to 0} S_2(x)$, puis donner un équivalent de $S_2(x)$ quand x tend vers 0.
- **5** Recherche d'un équivalent de $S_2 1$ en $+\infty$.
 - **5.a** Pour tout réel x > 0, établir que :

$$S_2(x) - 1 - e^{-x} \le \sum_{n=2}^{+\infty} e^{-xn}.$$

- **5.b** En calculant cette dernière somme, démontrer que $S_2(x) = 1 + e^{-x} + o(e^{-x})$. En déduire un équivalent de $S_2(x) 1$ quand x tend vers $+\infty$.
- **6** Recherche d'une valeur approchée de $S_2(x)$ pour x > 0.
 - **6.a** En raisonnant comme dans la question 4.(a), établir pour tout entier naturel N et tout réel x > 0:

$$\sum_{n=N+1}^{+\infty} e^{-xn^2} \le \int_{N}^{+\infty} e^{-xt^2} dt.$$

6.b A l'aide d'un changement de variable dans cette dernière intégrale, en déduire que :

$$\forall N \in \mathbb{N}^*, \ \forall x > 0, \quad S_2(x) - \sum_{n=0}^{N} e^{-xn^2} \le \frac{1}{2\sqrt{x}} \int_{xN^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} \ du \le \frac{e^{-xN^2}}{2Nx}.$$

- **6.c** En déduire un algorithme permettant d'obtenir une valeur approchée de $S_2(x)$ à $\varphi > 0$ près.
- **6.d** Préciser une valeur approchée de $S_2(1)$ à 10^{-7} près.

III Etude de $S_{\alpha}(x)$ quand x tend vers 0 et $+\infty$

7 *Comparaison de deux intégrales.*

On considère pour tous réels $\alpha > 0$ et x > 0 les deux intégrales suivantes :

$$\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha - 1} du$$
, et $I(\alpha) = \int_0^{+\infty} e^{-xt^{\alpha}} dt$.

- 7.a Pour quelles valeurs de α les intégrales $\int_0^1 e^{-u} u^{\alpha-1} du$ et $\int_1^{+\infty} e^{-u} u^{\alpha-1} du$ convergent-elles? En déduire que l'intégrale $\Gamma(\alpha)$ converge pour $\alpha > 0$.
- **7.b** A l'aide d'une intégration par parties, exprimer $\Gamma(\alpha + 1)$ en fonction de $\Gamma(\alpha)$. Calculer $\Gamma(1)$ et en déduire $\Gamma(n + 1)$ pour tout entier naturel n.
- 7.c Pour tout x > 0, effectuer dans l'intégrale $\Gamma\left(\frac{1}{\alpha}\right)$ le changement de variables défini par $u = xt^{\alpha}$. Qu'en déduit-on pour l'intégrale $I(\alpha)$, et quelle relation obtient-on entre $\Gamma\left(\frac{1}{\alpha}\right)$ et $I(\alpha)$?
- **8** Recherche d'un équivalent de S_{α} en 0 ($\alpha > 0$).
 - **8.a** En raisonnant comme à la question 4.(a), établir pour $\alpha > 0$ et x > 0 l'inégalité suivante :

$$0 \le S_{\alpha}(x) - \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{r_{\alpha}^{\frac{1}{\alpha}}} \le 1.$$

- **8.b** Retrouver $\lim_{x\to 0} S_{\alpha}(x)$, puis donner un équivalent de $S_{\alpha}(x)$ quand x tend vers 0.
- **9** *Majoration d'une intégrale auxiliaire* $(\alpha > 0)$.
 - **9.a** Justifier pour tous réels $\alpha > 0$ et x > 0 la relation suivante :

$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt = \frac{1}{\alpha x^{\frac{1}{\alpha}}} \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 1} du.$$

9.b Etablir l'égalité suivante pour tous réels $\alpha > 0$ et x > 0:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 1} du = e^{-x} x^{\frac{1}{\alpha} - 1} + \left(\frac{1}{\alpha} - 1\right) \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 2} du.$$

Justifier ensuite l'inégalité suivante pour tous réels $\alpha > 0$ et x > 0:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-2} du \le \frac{1}{x} \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du.$$

En déduire enfin l'équivalence suivante lorsque x tend vers $+\infty$:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \underset{x \to +\infty}{\sim} e^{-x} x^{\frac{1}{\alpha}-1}.$$

- **9.c** En conclure que l'intégrale $\int_{1}^{+\infty} e^{-xt^{\alpha}} dt$ est négligeable devant e^{-x} lorsque x tend vers $+\infty$.
- **10** Recherche d'un équivalent de S_{α} en $+\infty$ ($\alpha > 0$).
 - **10.a** Etablir pour $\alpha > 0$ et x > 0 l'inégalité suivante :

$$\sum_{n=2}^{+\infty} e^{-xn^{\alpha}} \le \int_{1}^{+\infty} e^{-xt^{\alpha}} dt.$$

10.b En déduire un équivalent de $S_{\alpha}(x) - 1$ quand x tend vers $+\infty$.