

Engineering Dynamics Formalities

ME 46055 Farbod Alijani

- Lectures are Tuesdays 13:45-15:45 & Fridays 8:45-10:45
- Tuesday lectures will be given at LR-CZ D, and Friday lectures at 3mE-CZ E (Robert Hooke)
- We will have 13 sesions+1 session open question
- Exam is on November 8 (Tuesday) from 18:30-21:30.
- Office hours: every Thursday from 4-5 pm, except Oct 13.

- Lectures are NOT recorded at Collegerama. However, lectures of last year are already recorded and available.
- You are all encouraged to come anyway.
- You can directly ask questions.
- You will listen to the lectures in real pace.

Lecture notes

- The notes and the reader are already available on the balckboard. This contains almost everything that I will discuss
- The slides, additional problems, samples of previous exams are already posted on blackboard
- The note you find on the blackboard is the shortened version of the following book:

Engineering Dynamics

Lecture Notes
Draft, V 3.0

Daniel J. Rixen

Prof. Dr. Ir., MSc.

Delft University of Technology
Faculty of Mechanical, Maritime and Materials Engineering
Section of Engineering Dynamics

References

For those of you who are interested in additional material

Exam

- Written exam (75%)
- Assignment (25%)
- Weighs may slightly vary.
- Your final mark will be an almost weighted average of the above two.

Written Exam

- You will be asked to answer two/three questions.
- One big problem in which you will be asked to apply/calculate whatever is taught in the class
- A conceptual question: No derivation of equations or formulas

Assignment

- To apply the course topics to a realistic problem.
- It will be given in parts as soon as the relative materials are covered in the class.
- A Matlablike software is required to carry out the assignment
- To be documented in the form of a report (Refer to "how to write a good report" on blackboard)
- The report is intended for you to outline your understanding of the problem. Imagine it is intended for a client. that is an engineer but not a specialist in dynamics. The client has 20 minutes to read the report and to be convinced that you understand what you did.
- The deadline for the report is Monday November 14.
- You are encouraged to do the assignment in team of 2.

Dynamics overview

Automotive

civil

Biomechanics

Microsystems

Music

Dynamics overview

As engineers we need to well-observe phenomena in order to analyze them

1. How to model a dynamic phenomena?

1. Equations of motion 2. Vibrations 3. Stability

ME46055 - Engineering Dynamics

Dr. Farbod Alijani

Credits: 4 ECTS

Quarter: 1

2. How to numerically solve the developed model?

Finding solutions for mathematical models!

- 1. Discretization
- 2. Time integration
- 3. Eigensolvers
- 4.FEM ...

ME46050 – Advanced Finite Element Method

Dr. Alejandro Aragon

Credits: 4 ECTS

Quarter: 3-4

How to experimentally validate the model?

Practicing theory in real application

ME46040 - Experimental Dynamics

Dr. Dennis de Klerk

Credits: 3 ECTS

Quarter: 3-4

How complex systems could be in reality?

Periodic (Linear)

ME46000 - Non-linear Mechanics

Prof. van Keulen, Dr. Ayas, Dr. Alijani

Credits: 4 ECTS

Quarter: 2

Chaotic (Non-linear)

Dynamics overview

What you will learn in this course is the first step

- Different ways to obtain dynamic equilibrium; I assume you all know Newton's 2nd law of motion and rigid body dynamics.
- How we can linearize dynamic equations? You will learn that this can be done around points we call equilibrium points.
- You will learn about stability.
- Small oscillations around stable equilibrium.
- If time permits a brief introduction to continuous systems.