

Course > Week 7 > Home... > hw4\_m...

## hw4\_mdps\_q10\_mdp\_properties

Question 10.1: MDP Properties

5/5 points (ungraded)

Which of the following statements are true for an MDP?

- If the only difference between two MDPs is the value of the discount factor then they must have the same optimal policy.
- For an infinite horizon MDP with a finite number of states and actions and with a discount factor  $\gamma$  that satisfies  $0<\gamma<1$ , value iteration is guaranteed to converge.
- When running value iteration, if the policy (the greedy policy with respect to the values) has converged, the values must have converged as well.
- None of the above



Submit

✓ Correct (5/5 points)

## Question 10.2: MDP Properties Continued

5/5 points (ungraded)

Which of the following statements are true for an MDP?

If one is using value iteration and the values have converged, the policy must have converged as well.

| Expectima MDP. | x will generally run in the same amount of time as value iteration on a given                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | nite horizon MDP with a finite number of states and actions and with a actor $\gamma$ that satisfies $0<\gamma<1$ , policy iteration is guaranteed to converge. |
| □ None of th   | ne above                                                                                                                                                        |
| <b>~</b>       |                                                                                                                                                                 |
| Submit         |                                                                                                                                                                 |
| ✓ Correct (5/  | /5 points)                                                                                                                                                      |

© All Rights Reserved