Higher-Order Methods for Large Scale Optimization

Kimon Fountoulakis supervised by: J. Gondzio and A. Grothey

Motivation

- Make 2nd-order methods faster
- Capture the structure of the problem such that even ill-conditioned large-scale problems can be solved fast

Solutions in my PhD

- Inexact Newton: low computational complexity per iteration (few matvecs)
 - factorization-free interior point method
 - primal-dual Newton conjugate gradients
- Provably efficient preconditioners; from $\mathcal{O}(n^3)$ to $\mathcal{O}(n)$ (in practice)
- Worst-case iteration complexity for Newton conjugate gradient methods
- A flexible problem generator and many experiments on real and synthetic data sets

Contribution I

signal reconstruction

[K. F., J. Gondzio and P. Zhlobich, Math. Prog. Computation. 6 (1): 1-31, 2014]

Factorization-free primal-dual interior point method for sparse

Data fitting: sparse signal reconstruction

minimize
$$\tau ||x||_1 + \frac{1}{2} ||Ax - b||_2^2$$

minimize $\frac{1}{2}||Ax - b||_2^2$

Shift to a higher dimensional space

Set x = u - v, where u, v > 0, which is true for

$$u_i = \max(x_i, 0), \quad v_i = \max(-x_i, 0) \quad \forall i = 1, 2, \dots, n.$$

We thus have

$$||x||_1 = \sum_{i=1}^n |x_i| = \sum_{i=1}^n u_i + v_i.$$

Primal Dual
$$\min_{\substack{z \in \mathbb{R}^{2n} \\ subject \ to: \ }} c^Tz + \frac{1}{2}z^TF^TFz \qquad \max_{\substack{z,s \in \mathbb{R}^{2n} \\ subject \ to: \ }} -\frac{1}{2}z^TF^TFz \\ subject \ to: \ F^TFz - s = -c \\ z,s \geq 0$$

$$F^T F = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} \in \mathbb{R}^{2n \times 2n}, \quad c = \begin{bmatrix} \tau 1_n - A^T b \\ \tau 1_n + A^T b \end{bmatrix} \in \mathbb{R}^{2n}$$

At every iteration we solve inexactly the following system using PCG:

$$\left(\underbrace{\Theta^{-1}}_{\text{diagonal}} + F^{\mathsf{T}}F\right) \times \Delta x = *, \quad F^{\mathsf{T}}F = \left[\begin{array}{cc} A^{\mathsf{T}}A & -A^{\mathsf{T}}A \\ -A^{\mathsf{T}}A & A^{\mathsf{T}}A \end{array}\right], \quad A \in \mathbb{R}^{m \times n}, \ m \ll n$$

- Rows of A are nearly orthogonal, i.e. $||AA^{\mathsf{T}} I_n||_2 \leq \delta$, where δ is small
- Subsets of columns of A are nearly orthogonal

$$A =$$

At every iteration we solve inexactly the following system using PCG:

$$\left(\underbrace{\Theta^{-1}}_{\text{diagonal}} + F^{\mathsf{T}}F\right) \times \Delta x = *, \quad F^{\mathsf{T}}F = \left[\begin{array}{cc} A^{\mathsf{T}}A & -A^{\mathsf{T}}A \\ -A^{\mathsf{T}}A & A^{\mathsf{T}}A \end{array}\right], \quad A \in \mathbb{R}^{m \times n}, \ m \ll n$$

- Rows of A are nearly orthogonal, i.e. $||AA^{\mathsf{T}} I_n||_2 \leq \delta$, where δ is small
- Subsets of columns of A are nearly orthogonal

At every iteration we solve inexactly the following system using PCG:

$$\left(\underbrace{\Theta^{-1}}_{\text{diagonal}} + F^{\mathsf{T}} F \right) \times \Delta x = *, \quad F^{\mathsf{T}} F = \left[\begin{array}{cc} A^{\mathsf{T}} A & -A^{\mathsf{T}} A \\ -A^{\mathsf{T}} A & A^{\mathsf{T}} A \end{array} \right], \quad A \in \mathbb{R}^{m \times n}, \ m \ll n$$

- Rows of A are nearly orthogonal, i.e. $||AA^{\mathsf{T}} I_n||_2 \leq \delta$, where δ is small
- Subsets of columns of \boldsymbol{A} are nearly orthogonal

At every iteration we solve inexactly using PCG the system:

$$\left(\underbrace{\Theta^{-1}}_{\text{diagonal}} + F^{\mathsf{T}} F\right) \times \Delta x = *, \quad F^{\mathsf{T}} F = \left[\begin{array}{cc} A^{\mathsf{T}} A & -A^{\mathsf{T}} A \\ -A^{\mathsf{T}} A & A^{\mathsf{T}} A \end{array}\right], \quad A \in \mathbb{R}^{m \times n}, \ m \ll n$$

- Rows of A are nearly orthogonal, i.e. $||AA^{T} I_{n}||_{2} \leq \delta$, where δ is small.
- There exists $\delta_q < 1/2$ such that Restricted Isometry Property (RIP) holds:

$$(1 - \delta_q) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_q) \|x\|_2^2,$$

for all at most q-sparse $x \in \mathbb{R}^n$.

Preconditioner

$$\mathsf{M} = \Theta^{-1} + \left[\begin{array}{cc} \mathsf{A}^\mathsf{T} \mathsf{A} & -\mathsf{A}^\mathsf{T} \mathsf{A} \\ -\mathsf{A}^\mathsf{T} \mathsf{A} & \mathsf{A}^\mathsf{T} \mathsf{A} \end{array} \right]$$

with:

$$\mathsf{P} = \Theta^{-1} + \rho \left[egin{array}{cc} \mathsf{I} & -\mathsf{I} \ -\mathsf{I} & \mathsf{I} \end{array}
ight], \quad
ho = m/n$$

Systems can be solved with P in O(n) time!

Theorem (Brief description).

- Exactly n eigenvalues of $P^{-1}M$ are 1.
- The remaining n satisfy $|\lambda(P^{-1}M)-1| \leq \delta_q + \frac{n}{m\delta_q L}$

where $L \to \infty$ and δ_q is the RIP-constant.

Practical performance

Required accuracy: 1.0e-6

Experiments: sparco test suite by M. P. Friedlander et al.

-	ID	rhs	Accuracy	mfipm	ℓ_1 _ ℓ_s	pdco	fpc_as cg	spgl1
•	2	$ ilde{b}$ (noisy)	3.0e-04	61	48	687	9	40000
		b (noiseless)	1.0e-11	65	98	40007	40002	22
	3	$ ilde{b}$	7.0e-04	241	462	4941	106	40000
		Ь	1.0e-08	415	1612	40157	212	148
	5	$ ilde{b}$	2.0e-03	5991	9842	28203	521	40000
		Ь	2.0e-05	7953	19684	41283	874	2567
	7	$ ilde{b}$	4.0e-03	179	272	425	62	39
		Ь	1.0e-06	255	850	601	76	81
	9	$ ilde{b}$	1.0e-03	689	1546	7065	1680	40000
		Ь	5.0e-12	649	1886	6845	40016	40000
	10	$ ilde{b}$	1.0e-03	4775	8529	6203	40002	40000
		Ь	9.0e-10	4567	8192	41227	40161	40000
	701	$ ilde{b}$	2.0e-02	947	1794	5967	1049	40000
		Ь	7.0e-09	1341	2656	42041	40017	15239
	702	$ ilde{b}$	4.0e-03	809	1574	3341	40001	40000
		b	1.0e-07	1123	3030	49563	40157	11089

Contribution II Theoretical analysis of primal-dual Newton Conjugate Gradients

[K. F. and J. Gondzio, Math. Prog. A. DOI: 10.1007/s10107-015-0875-4]

General fidelity term

minimize
$$f_{\tau}(x) := \tau ||x||_1 + \varphi(x)$$

- $x \in \mathbb{R}^n$, $\varphi(x) : \mathbb{R}^n \to \mathbb{R}$, $\tau > 0$

Assumptions

- φ is a smooth and strongly convex function

Plenty of data

- *n* is very large. i.e. of order millions or billions

Binary classification

minimize
$$\tau ||x||_1 + \sum_{i=1}^m \log(1 + e^{-b_i x^\intercal a_i})$$

minimize
$$\tau ||x||_2^2 + \sum_{i=1}^m \log(1 + e^{-b_i x^{\mathsf{T}} a_i})$$

Smoothing in pdNCG: Moreau-Yosida

Replace
$$||x||_1 = \sup_{\|g\|_{\infty} < 1} g^{\mathsf{T}} x$$

with
$$\psi_{\mu}(x) = \sup_{\|g\|_{\infty} \le 1} g^{\mathsf{T}} x - \mu d(g),$$

$$\underbrace{d(g) = n - \sum_{i=1}^{n} (1 - g_i^2)^{1/2}}_{\text{proximity function on } \|g\|_{\infty} \le 1}$$

Pseudo-Huber:
$$\psi_{\mu}(x) = \sum_{i=1}^{n} \left(\sqrt{\mu^2 + x_i^2} - \mu \right)$$

Smoothing in pdNCG: Moreau-Yosida

Smoothing in pdNCG: Moreau-Yosida

A better linearization

$$au\underbrace{\mathcal{D}x}_{\nabla\psi_{\mu}(x)}+A^{\intercal}(Ax-b)=0,$$

where $D := diag(D_1, D_2, \cdots, D_n)$ with

$$D_i := (\mu^2 + x_i^2)^{-\frac{1}{2}} \quad \forall i = 1, 2, \cdots, n$$

Set g = Dx and linearise the blue instead of the red equations.

$$\tau g + A^{\mathsf{T}}(Ax - b) = 0,$$
 $\tau g + A^{\mathsf{T}}(Ax - b) = 0,$ $g = Dx.$ $D^{-1}g = x.$

Essentially we are solving the primal-dual problem:

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \tau \sup_{\|g\|_{\infty} \leq 1} g^{\mathsf{T}}x - \mu d(g)$$

[Chan, Golub, Mulet, SIAM. J. Sci. Comput. 20 (6) 1999 pp. 1964-1977]

A better linearisation

Example: $g_i = 0.99$

Newton-type directions

Linearisation of the optimality conditions reduces to

$$B(x,g)\Delta x = -\nabla f_{\tau}^{\mu}(x)$$
 where $B := \tau \nabla^2 \psi(x,g) + A^{\mathsf{T}}A.$ (1)

 Δg is inexpensive to calculate

- $B \succ 0$ if $||g||_{\infty} \leq 1$
- Use PCG to solve (1) approximately

Primal-dual Newton Conjugate Gradient (pdNCG)

- 1: **Input:** x^0 , g^0 , where $||g^0||_{\infty} \le 1$
- 2: **Loop:** For k = 1, 2, ..., until termination criteria are met
- 3: Calculate primal-dual directions Δx^k , Δg^k approximately with PCG
- 4: $\mathbf{g^{k+1}} := \mathbf{P}_{\|\cdot\|_{\infty} \leq 1}(\mathbf{g^k} + \Delta \mathbf{g^k}), \ P_{\|\cdot\|_{\infty} \leq 1}(\cdot) \text{ is the projection on the } \ell_{\infty} \text{ ball}$
- 5: Perform backtracking line search for the direction Δx^k
- 6: Set $x^{k+1} := x^k + \alpha \Delta x^k$

[Chan, Golub, Mulet, SIAM. J. Sci. Comput. 20 (6) 1999 pp. 1964-1977]

pdNCG: convergence

Theorem (Primal convergence). Let $\{x^k\}_{k=0}^{\infty}$ be a sequence generated by pdNCG. Then the sequence $\{x^k\}_{k=0}^{\infty}$ converges to the primal perturbed solution $x_{\tau,\mu}$.

Theorem (Dual convergence). The sequences of dual variables generated by pdNCG satisfy $\{g^k\}_{k=0}^{\infty} \to \nabla \psi_{\mu}(x_{\tau,\mu})$.

Lemma (Convergence of approximate Hessian). Let the sequences $\{x^k\}_{k=0}^{\infty}$ and $\{g^k\}_{k=0}^{\infty}$ be generated by pdNCG. Then $B(x^k,g^k)\to \nabla^2 f_{\tau}^{\mu}(x_{\tau,\mu})$.

[K. F. and J. Gondzio, Math. Prog. A. DOI: 10.1007/s10107-015-0875-4]

pdNCG: worst case iteration complexity

pdNCG needs at most

$$\mathcal{O}\left(\frac{\kappa^2}{(1-\eta^2)^2}\right) + \log_2\log_2\frac{const.}{\epsilon}$$

iterations to converge to a solution x^k of accuracy

$$f(x^k) - f^* \le \epsilon$$
.

Damped Newton, see S. Boyd and L. Vandenberghe, Convex Optimization

$$\mathcal{O}(\kappa^2) + \log_2\log_2rac{const.}{\epsilon}.$$

[K. F. and J. Gondzio, Math. Prog. A. DOI: 10.1007/s10107-015-0875-4]

Contribution III

sparse signal reconstruction [I. Dassios, K. F. and J. Gondzio, Technical Report ERGO-14-021] (2nd round of revisions SIAM Scientific Computing)

A preconditioner for primal-dual Newton Conjugate Gradients for

Data fitting: non-separable regularizers

minimize
$$\tau \|W^*x\|_1 + \frac{1}{2}\|Ax - b\|_2^2$$

where W^* is tridiagonal; a discretization of the ∇ operator for images

Preconditioner and spectral properties

Approximate: $\bar{B} := \tau/2(\tilde{B} + \tilde{B}^{\intercal}) + A^{\intercal}A$, with: $N := \tau/2\underbrace{(\tilde{B} + \tilde{B}^{\intercal})}_{5-diagonal} + \rho I_m$, where $\rho \in [\delta_q, 1/2]$ and $\delta_q < 1/2$.

Assumptions

- Rows of A are nearly orthogonal, i.e. $||AA^{\mathsf{T}} I_n||_2 \leq \delta$, where δ is small.
- There exists $\delta_q < 1/2$ such that Restricted Isometry Property (W-RIP) holds:

$$(1 - \delta_q) \|Wz\|_2^2 \le \|AWz\|_2^2 \le (1 + \delta_q) \|Wz\|_2^2$$

for all at most q-sparse $z \in E^I$. In subspaces defined by any at most q columns of W matrix A^TA behaves like a scaled identity.

Theorem (Brief description). Let $\lambda \in spec(N^{-1}\bar{B})$, then close to the solution the following holds

$$- \ |\lambda - 1| \leq \tfrac{1}{2} (\chi + 1 + (5\chi^2 - 2\chi + 1)^{\frac{1}{2}}) \mathcal{O}(\mu), \quad \text{where} \quad \chi := 1 + \delta - \rho, \ \text{and} \ \mu \approx 0$$

Spectrum in practice ($\mu = 1.0e-5$)

Dependence of pdNCG on problem size

The image Shepp-Logan has been used for this experiment, 25% of the measurements are used and SNR is fixed to 15 dB.

Solver	64 × 64	128×128	256×256	512×512	1024×1024
TFOCS (Candès et al.)	17	23	56	260	1018
TVAL3 (Wotao et al.)	5	8	37	99	365
pdNCG	2	6	12	62	250

Single pixel camera benchmarks

Contribution IV

A problem generator for ℓ_1 -regularized least squares

[K. F. and J. Gondzio, Technical Report ERGO-15-005 (submitted)]

Motivation

Issue: frequently, the performance of new methods is tested on well-conditioned randomly generated problems

Need: controlled testing – a problem generator which can reveal weaknesses and strengths of new methods

A problem generator

minimize
$$\tau ||x||_1 + \frac{1}{2} ||Ax - b||_2^2$$

$$\tau > 0$$
, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

- The generator is inexpensive and has a
- low-memory-footprint

The generator allows control of the

- dimensions m, n
- sparsity and the values of the optimal solution x^*
- sparsity of A and $A^{T}A$ (independently of A)
- singular value decomposition of A

A trillion variable problem

ARCHER

- 25th fastest supercomputer worldwide out of 500 supercomputers (based on TOP500 commercial supercomputers list)
- 118,080 cores, we used 65,536

n	processors	terabytes	seconds
$2^{36} \approx 68$ billion	4096	12.288	1970
2^{38}	16384	49.152	1990
$2^{40}pprox 1$ trillion	65536	196.608	2006

All problems have been solved to a relative error of order 10^{-4} using pdNCG

Givens rotation

 $G(i,j,\theta) \in \mathbb{R}^{n \times n}$, which rotates plane i-j by an angle θ :

$$G(i,j, heta) = egin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \ \vdots & \ddots & \vdots & & \vdots & & \vdots \ 0 & \cdots & c & \cdots & -s & \cdots & 0 \ \vdots & & \vdots & \ddots & \vdots & & \vdots \ 0 & \cdots & s & \cdots & c & \cdots & 0 \ \vdots & & \vdots & & \vdots & \ddots & \vdots \ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix},$$

where $i, j \in \{1, 2, \dots, n\}$, $c = \cos \theta$ and $s = \sin \theta$.

- Memory requirements: coordinates i, j and a 2×2 matrix

$$\Sigma G(1,2,\theta)^{\intercal} = A_1$$

$$A_1G(3,4,\theta)^{T}=A_2$$

$$A_2G(5,6,\theta)^{T}=A_3$$

$$A_3G(7,8,\theta)^{T}=A_4$$

$$ilde{G}_{5:12}(heta)A_4 = A_{12}$$

- $A_{12} = \tilde{G}_{5:12}(\theta) \Sigma (G(7,8,\theta)G(5,6,\theta)G(3,4,\theta)G(1,2,\theta))^{\mathsf{T}}$
- We only need to store a 2×2 matrix
- Matrix-vector products can be computed fast using a simple algorithmic process

Control of sparsity using Givens rotations

