Algorithmen und Wahrscheinlichkeit

Woche 6

Minitest

Nachbesprechung Serie/Peergrading

- Frobenius, Hall und Hopcroft-Karp nur für einfache Graphen beschrieben
 - nicht für Multi Graphen
- Laufzeitanalyse nicht vergessen
- Bei Peergrading wird etwas mehr als einfach "alles gut" erwartet
- Peergrading bis nächsten Sonntag abgeben (Osterferien)

1. Bernoulli-Verteilung

Bezeichnung: $X \sim \text{Bernoulli}(p)$

Wertebereich: $W_X = \{0,1\}$

Dichtefunktion:
$$f_X(i) = \begin{cases} p & i = 1 \\ 1 - p & i = 0 \\ 0 & \text{sonst} \end{cases}$$

Erwartungswert: $\mathbb{E}[X] = p$

Beispiel: Münzenwurf, Indikator für Kopf

2. Binomial-Verteilung

Bezeichnung: $X \sim \text{Bin}(n, p)$

Wertebereich: $W_X = \{0, 1, ..., n\}$

Dichtefunktion:
$$f_X(i) = \begin{cases} \binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} & i \in \{0,1,\ldots,n\} \\ 0 & \text{sonst} \end{cases}$$

Erwartungswert: $\mathbb{E}[X] = np$

Beispiel: n mal Münzenwurf und wir zählen wie oft Kopf vorkommt

$$p = 0.1$$
 blau
 $p = 0.5$ grün
 $p = 0.8$ rot

3. Geometrische-Verteilung

Bezeichnung: $X \sim \text{Geo}(p)$

Wertebereich: $W_X = \mathbb{N}$

Dichtefunktion:
$$f_X(i) = \begin{cases} p \cdot (1-p)^{i-1} & i \in \mathbb{N} \\ 0 & \text{sonst} \end{cases}$$

Erwartungswert: $\mathbb{E}[X] = \frac{1}{p}$

$$\Pr[X > t] = (1 - p)^t$$

Beispiel: Anzahl der Würfe bis das erste Mal Kopf vorkommt

Gedächtnislosigkeit: für alle $s, t \in \mathbb{N}$: $\Pr[X \ge s + t \mid X > s] = \Pr[X \ge t]$

4. Negative Binomial-Verteilung

Bezeichnung: $X \sim \text{NegativeBin}(n, p)$

Wertebereich: $W_X = \mathbb{N}_{\geq n}$

Dichtefunktion:
$$f_X(i) = \begin{cases} \binom{i-1}{n-1} \cdot p^n \cdot (1-p)^{i-n} & i \ge n \\ 0 & \text{sonst} \end{cases}$$

Erwartungswert: $\mathbb{E}[X] = \frac{n}{p}$

Beispiel: Anzahl der Versuche bis wir n Mal einen Kopf werfen

5. Poisson-Verteilung

Bezeichnung: $X \sim Po(\lambda)$

Wertebereich: $W_X = \mathbb{N}_0$

Dichtefunktion:
$$f_X(i) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^i}{i!} & i \in \mathbb{N}_0 \\ 0 & \text{sonst} \end{cases}$$

Erwartungswert: $\mathbb{E}[X] = \lambda$

Beispiel: Anzahl der Herzinfarkte in der Schweiz, die in einer Stunde auftreten, wenn der gemessene Durchschnitt soweit λ Herzinfarkte pro Stunde ist

Konvergenz: Bin $(n, \lambda/n)$ konvergiert zu Po (λ) für $n \to \infty$

Coupon Collector

Es gibt *n* Verschiedene Bilder, in jeder Runde erhalten wir gleichwahrscheinlich ein Bild

X = Anzahl Runden bis wir alle n Bilder sammeln

Phase i: Runden vom Erwerb des (i-1)-ten Bildes (ausschliesslich) bis zum Erwerb des i-ten Bildes (einschliesslich) X_i = Anzahl Runden in Phase i

$$X_i \sim \operatorname{Geo}\left(\frac{n-(i-1)}{n}\right)$$

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i} = n \cdot H_n \approx n \ln n + \mathcal{O}(n)$$

Bekommen wir die **ersten** k Bilder: $\mathbb{E}[X] = n \cdot H_{n-k}$

Bekommen wir die **letzten** k Bilder: $\mathbb{E}[X] = n \cdot (H_n - H_k)$

Bedingte Zufallsvariablen

Definition:
$$\Pr[X = x \mid A] = \frac{\Pr[\{\omega \in A : X(\omega) = x\}]}{\Pr[A]}$$

$$X$$
 wird zu $X \mid A : A \to \mathbb{R}$ mit $f_{X\mid A}(x) = \Pr[X = x \mid A]$

Erwartungswert:
$$\mathbb{E}[X|A] = \sum_{x \in W_X} x \cdot \Pr[X = x|A] = \sum_{\omega \in A} X(\omega) \cdot \Pr[\omega|A]$$

Totale Wahrscheinlichkeit: Seien A_1, \ldots, A_n disjunkt mit $A_1 \cup \ldots \cup A_n = \Omega$ und $\Pr[A_i] > 0$, dann gilt:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \Pr[A_i]$$

Mehrere Zufallsvariablen

Definition: $\Pr[X = x, Y = y] = \Pr[\{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}]$

Gemeinsame Dichte: $f_{X,Y}(x,y) = \Pr[X = x, Y = y]$

Randdichte:
$$f_X(x) = \Pr[X = x] = \sum_{y \in W_Y} \Pr[X = x, Y = y]$$

Unabhängigkeit:

 X_1, \dots, X_n sind unabhängig $\iff \forall (x_1, \dots, x_n) \in W_{X_1} \times \dots \times W_{X_n}$ gilt $\Pr[X_1 = x_1, \dots, X_n = x_n] = \Pr[X_1 = x_1] \cdot \dots \cdot \Pr[X_n = x_n]$

Korollar: X_1, \ldots, X_n sind unabhängig, so ist dann auch jeder Subset von X_1, \ldots, X_n

Mehrere Zufallsvariablen

Satz: Sind $f_1, ..., f_n$ reellwertige Funktionen $(X_i : \mathbb{R} \to \mathbb{R})$ und seien $X_1, ..., X_n$ unabhängig, so sind auch $f_1(X_1), ..., f_n(X_n)$ unabhängig

Satz: Seien X, Y unabhängig und Z := X + Y, dann gilt $f_Z(z) = \sum_{x \in W_X} f_X(x) \cdot f_Y(z - x)$

Waldsche Identität: Seien X,N unabhängig mit $W_N\subseteq \mathbb{N}$. Weiter sei $Z:=\sum_{i=1}^N X_i$, wobei X_i unabhängige Kopien von X sind. Dann gilt: $\mathbb{E}[Z]=\mathbb{E}[N]\cdot\mathbb{E}[X]$

Beispiel: N ist die Augenzahl eines Würfels, X Indikator für Kopf. Z ist die Anzahl von Kopf, wenn wir N mal werfen.

$$\mathbb{E}[Z] = \mathbb{E}[N] \cdot \mathbb{E}[X] = \frac{21}{6} \cdot \frac{1}{2} = 1,75$$

Aufgaben