Sayeda Suaiba Anwar Lecturer, Department of CSE East Delta University

Associative Memory

- An associative memory is any memory system that stores information by associating each data item with one or more other stored data items.
 - Usually store information in a distributed form.
 - Content addressable memories.
- Data are stored as patterns of activity in an associative memory.
 - o Insensitive to minor differences in details.
 - Robust and can usually handle incomplete data inputs.
- There are several types of neural networks that constitute associative memories.
 - The most common types are the crossbar associative memory and the adaptive filter.

- Heteroassociative and autoassociative memories are not the same.
 - o In a heteroassociative memory network, the input X and the output Y are the different patterns; that is, the input and output are not the same.
 - o In case of autoassociative memory networks, the input and the output patterns are the same.

- They typically have one or two layers of artificial neurons, and each layer is fully interconnected.
- Matrix Representation is the most commonly used crossbar representation.
 - Because the weights are stored as the elements of a matrix.
 - They are also mathematically tractable, allowing simple explanations of characteristics.

Crossbar Structure

Crossbar Structure

• If we consider the fully connected network shown, the input is a column vector \mathbf{X} with components \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 and \mathbf{x}_4 , and the output is a column vector \mathbf{Y} with components \mathbf{y}_1 , \mathbf{y}_2 and \mathbf{y}_3 , then the equation can be written as

Where W is the weight matrix. If we expand the terms in equation (9.3.1) it becomes

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{21} & w_{31} & w_{41} \\ w_{12} & w_{22} & w_{32} & w_{42} \\ w_{13} & w_{23} & w_{33} & w_{43} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
(9.3-2)

- Mathematically, a bidirectional associative memory (BAM) developed by Kosko
 (1988) is also a matrix; technically it is a crossbar network with symmetric weights.
- Suppose, we construct a BAM to store three pattern pairs: $[X_1,Y_1]$, $[X_2,Y_2]$ and $[X_3,Y_3]$. Since a BAM is bidirectional we can enter any X and retrieve the corresponding Y, or we can enter any Y and retrieve the corresponding X.
- Process in a BAM is fundamentally different than the operation of other types of neural networks.
 - The weight matrix is not trained, it is constructed using the input-output pairs.
 - The process involves constructing a matrix for each input-output pair and then combining them into a master matrix.

• X_i and Y_j are treated as <u>column vectors</u>, and then the matrix is produced by taking the product of the X_i vector and transpose of the Y_i vector, Y_i^T . Let us consider the three following pairs:

Prentice's

the
$$Y_i$$
 vector, Y_i . Let us consider X_i : $(+1-1-1-1+1) \Leftrightarrow (-1+1-1)$: Y_1 (9.3-3)
$$X_1: (+1-1-1-1+1) \Leftrightarrow (-1+1-1) : Y_2$$
 (9.3-4)
$$X_2: (-1+1-1-1+1-1) \Leftrightarrow (-1-1+1) : Y_3$$
 (9.3-5)
$$X_3: (-1-1+1-1-1+1) \Leftrightarrow (-1-1+1) : Y_3$$
 (9.3-5)

Weight Matrix Representation Since X₁ has 6 elements and Y₁ has 3 elements, the matrix for each set of inputs result in a 6×3 matrix. It is important to note that each of the patterns is made up of +1 and -1 values, which means that the components are bipolar. If the patterns values are binary (i.e., made up of 1 and 0 values), they should be converted to bipolar form by substituting -1 for each 0 before they are used in a BAM. The correlation matrices M; for equations (9.3-3), (9.3-4), and (9.3-5) are obtained by cross product of Xi and Yi—that is,

$$\mathbf{M}_i = \mathbf{X}_i \times \mathbf{Y}_i^T \tag{9.3-6}$$

The three correlation matrices are
$$M_{1} = X_{1} \times Y_{1}^{T} = \begin{bmatrix} +1 \\ -1 \\ -1 \\ -1 \\ +1 \end{bmatrix} \times \begin{bmatrix} -1 \\ +1 \\ -1 \end{bmatrix} + 1 -1 \end{bmatrix} = \begin{bmatrix} -1 & +1 & -1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ -1 & +1 & -1 \end{bmatrix}$$
(9.3-7)

$$M_{1} = X_{1} \times Y_{1}^{T} = \begin{bmatrix} +1 \\ -1 \\ -1 \\ -1 \\ +1 \end{bmatrix} \times \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} = \begin{bmatrix} -1 & +1 & -1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \\ -1 & +1 & -1 \end{bmatrix}$$

$$(9.3)$$

(9.3-7)

$$M_{2} = X_{2} \times Y_{2}^{T} = \begin{bmatrix} -1 \\ +1 \\ -1 \\ +1 \\ -1 \end{bmatrix} \times \begin{bmatrix} +1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & +1 & +1 \\ +1 & -1 & +1 \\ -1 & +1 & +1 \\ +1 & -1 & +1 \\ +1 & -1 & +1 \end{bmatrix}$$

$$(9.3-8)$$

$$M_{3} = X_{3} \times Y_{3}^{T} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ -1 \\ -1 \\ +1 \end{bmatrix} \times \begin{bmatrix} -1 & -1 & +1 \end{bmatrix} = \begin{bmatrix} +1 & +1 & -1 \\ +1 & +1 & -1 \\ -1 & -1 & +1 \\ +1 & +1 & -1 \\ +1 & +1 & -1 \\ -1 & -1 & +1 \end{bmatrix}$$

$$(9.3-9)$$

Note that each value in the above matrices is a product of two quantities, one component of X and one component of Y. This product $x_i \cdot y_j$ is a classical indication that Hebbian learning is involved.

In order to obtain an associative weight memory (called the master weight matrix) capable of storing the three pairs in equations (9.3-3), (9.3-4), and (9.3-9). The result is

$$M = M_1 + M_2 + M_3$$

$$M = \begin{bmatrix} -1 & +3 & -1 \\ +3 & -1 & -1 \\ -1 & -1 & +3 \\ +1 & +1 & +1 \\ +3 & -1 & -1 \\ -3 & +1 & +1 \end{bmatrix}$$

$$(9.3-10)$$

$$(9.3-11)$$

Matrices can be added only if they are the same size. Hence, this means that all of the X_i vector patterns must have the same number of components, and all of the Y_i vector patterns must have the same number of components. However, the number of components in the X_i pattern can be different from the number of components in the Y_i patterns (as is the case in this example). In order to put in any X_i and get back any Y_i (or put in any Y_i and get back any X_i), we have to take the product of the input vector and the matrix. This is equivalent to taking the dot product of the vectors and the master matrix. The result is

$$X_i = M \cdot Y_i$$

(9.3-12)

$$Y_i = M^T \cdot X_i \qquad (9.3-13)$$
where the M's are 6×3 weight matrices, X_i is a 6×1 column vector, and Y_i where the M's are 6×3 weight matrices, X_i is a 6×1 column vector, and Y_i is a 3×1 column vector. Note that we must use the transpose of the master is a 3×1 to get Y_i ; that is,

$$M^T = \begin{bmatrix} -1 & +3 & -1 & +1 & +3 & -3 \\ +3 & -1 & -1 & +1 & -1 & +1 \\ -1 & -1 & +3 & +1 & -1 & +1 \end{bmatrix}. \qquad (9.3-14)$$

Operation of a BAM

The sequence of events are as follows:

- An X input pattern is presented to the BAM.
- The neurons in field X generate an activity pattern that is passed to field Y through the weight matrix M.
- Field Y accepts input from field X and generates a response back to field X through the transpose weight matrix M^T .
- Field X accepts the return response from Y, and then it generates a response back to field Y through the weight matrix M.
- The activity bounces back and forth until a "resonance" is achieved, which means that no further changes in the pattern occur. At this point, the output Y is one of the Y values stored in the master matrix, and it is the correct response for the distorted X input.

Adding and Deleting Pattern to the Master Matrix

• We can add another pattern pair $[X_4,Y_4]$ to our matrix by adding its matrix M_4 to get to the memory matrix M:

New
$$M = M_1 + M_2 + M_3 + M_4$$

 Alternately, we can forget or erase a pattern pair by subtracting the matrix for that pattern pair from the memory matrix.

For instance,

New
$$M = M - M_2$$

- Disadvantages of Crossbar [From Book]
- Example 9.2