Hollow Man

数值分析要点提要

1. 第一章

例1 按四舍五入原则写出下列各数的具有5位有效数字的近似数:187.9325,0.03785551,8.000033,2.7182818.

按定义,上述各数的具有5位有效数字的近似数分别是

187.93, 0.037 856, 8.0000, 2.7183.

注意 x=8.000 033 的 5 位有效数字近似数是 8.0000 而不是 8,因为 8 只有 1 位有效数字.

例 2 如果以 m/s² 为单位,重力常数 $g \approx 9.80$ m/s²;若以 km/s² 为单位, $g \approx 0.00980$ km/s²,它们都具有 3 位有效数字,因为按第一种写法

$$|g-9.80| \leqslant \frac{1}{2} \times 10^{-2}$$
,

根据(2.1)式,这里m=0,n=3;按第二种写法

$$\mid g - 0.00980 \mid \leqslant \frac{1}{2} \times 10^{-5}$$
,

这里 m=-3,n=3. 它们虽然写法不同,但都具有 3 位有效数字. 至于绝对误差限,由于单位不同结果也不同, $\epsilon_1^*=\frac{1}{2}\times 10^{-2}\,\mathrm{m/s^2}$, $\epsilon_2^*=\frac{1}{2}\times 10^{-5}\,\mathrm{km/s^2}$. 而相对误差相同,因为 $\epsilon_r^*=0.005/9.80=0.000\,005/0.009\,80$.

例 3 要使 $\sqrt{20}$ 的近似值的相对误差限小于 0.1%,要取几位有效数字?

设取 n 位有效数字,由定理 $1, \varepsilon_r^* \leq \frac{1}{2a_1} \times 10^{-n+1}$. 由于 $\sqrt{20} = 4.4, \dots,$ 知 $a_1 = 4$,故只要取 n = 4,就有

$$\varepsilon_r^* \leq 0.125 \times 10^{-3} < 10^{-3} = 0.1\%$$

即只要对 $\sqrt{20}$ 的近似值取 4 位有效数字,其相对误差限就小于0.1%.此时由开方表得 $\sqrt{20} \approx 4.472$.

2. 拉格朗日插值

对 n=1 及 n=2 时的情况前面已经讨论. 用类似的推导方法,可得到 n 次插值基函数为

$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1}) (x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1}) (x_k - x_{k+1}) \cdots (x_k - x_n)}, \quad k = 0, 1, \dots, n. \quad (2.8)$$

显然它满足条件(2.7). 于是,满足条件(2.6)的插值多项式 $L_n(x)$ 可表示为

$$L_n(x) = \sum_{k=0}^n y_k l_k(x).$$
 (2.9)

由 $l_k(x)$ 的定义,知

$$L_n(x_j) = \sum_{k=0}^n y_k l_k(x_j) = y_j, \quad j = 0, 1, \dots, n.$$

形如(2.9)式的插值多项式 $L_n(x)$ 称为**拉格朗日**(Lagrange)**插值多项式**,而(2.3)式与(2.5)插值余项:

应当指出,余项表达式只有在 f(x)的高阶导数存在时才能应用. ξ 在(a,b)内的具体位置通常不可能给出,如果我们可以求出 $\max_{a\leqslant x\leqslant b}|f^{(n+1)}(x)|=M_{n+1}$,那么插值多项式 $L_n(x)$ 逼近 f(x)的截断误差限是

$$|R_n(x)| \leqslant \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|.$$
 (2.14)

当 n=1 时,线性插值余项为

$$R_1(x) = \frac{1}{2} f''(\xi) \omega_2(x) = \frac{1}{2} f''(\xi) (x - x_0) (x - x_1), \quad \xi \in [x_0, x_1]; \quad (2.15)$$

当n=2时, 抛物线插值的余项为

$$R_2(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2), \quad \xi \in [x_0, x_2]. \tag{2.16}$$

3. 均差

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a, b].$$

4. 差分

$$P_{n}(x_{0} + th) = f_{0} + t\Delta f_{0} + \frac{t(t-1)}{2!}\Delta^{2} f_{0} + \cdots + \frac{t(t-1)\cdots(t-n+1)}{n!}\Delta^{n} f_{0},$$
(3.13)

牛顿前插公式,由(3.7)式得其余项为

$$R_n(x) = \frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi), \quad \xi \in (x_0, x_n).$$
 (3.14)

例 5 给出 $f(x) = \cos x$ 在 $x_k = kh$, $k = 0, 1, \dots, 5, h = 0.1$ 处的函数值,试用 4 次牛顿前插公式计算 f(0.048)的近似值并估计误差.

解 先构造差分表(见表 2-3)并用牛顿前插公式(3.13)求 f(0.048)的近似值.

表 2-3 差分表

x_k	$f(x_k)$	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$
0.00	1.00000					
		-0.00500				
0.10	0.995 00		-0.00993			
		-0.01493		0.00013		
0.20	0.98007		-0.00980		0.00012	
		-0.02473		0.000 25		-0.00002
0.30	0.955 34		-0.00955		0.00010	
		-0.034 28		0.000 35		
0.40	0.92106		-0.00920			
		-0.04348				
0.50	0.87758					

取
$$x=0.048$$
, $h=0.1$, $t=\frac{x-0}{h}=0.48$, 得
$$P_4(0.048)=1.00000+0.48\times(-0.00500)+\frac{(0.48)(0.48-1)}{2}(-0.00993)$$
 $+\frac{1}{3!}(0.48)(0.48-1)(0.48-2)(0.00013)$ $+\frac{1}{4!}(0.48)(0.48-1)(0.48-2)(0.48-3)(0.00012)$

$$= 0.99885 \approx \cos 0.048$$

由(3.14)式可得误差估计为

$$\mid R_4(0.048) \mid \leqslant \frac{M_5}{5!} \mid t(t-1)(t-2)(t-3)(t-4) \mid h^5 \leqslant 1.3433 \times 10^{-7},$$

其中 $M_5 = |\sin 0.5| \le 0.479$.

5. 牛顿插值

例 4 给出 f(x)的函数表(见表 2-2),求 4 次牛顿插值多项式,并由此计算 f(0.596)的近似值.

首先根据给定函数表造出均差表.

表 2-2 函数及均差表

0,40	0,41075					
0.55	0.578 15	1.116 00				
0.65	0.69675	1.186 00	0.28000			
0.80	0.88811	1, 275 73	0,35893	0.197 33		
0.90	1,026 52	1, 384 10	0.43348	0.213 00	0.03134	
1.05	1, 253 82	1.515 33	0.524 93	0.22863	0.031 26	-0.00012

从均差表看到 4 阶均差近似常数,故取 4 次插值多项式 P4(x)做近似即可.

$$P_4(x) = 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55) + 0.19733(x - 0.4)(x - 0.55)(x - 0.65) + 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8),$$

于是

$$f(0.596) \approx P_4(0.596) = 0.63192$$

截断误差

$$|R_4(x)| \approx |f[x_0, x_1, \dots, x_5]\omega_5(0.596)| \leq 3.63 \times 10^{-9}.$$

6. 最佳平方逼近

下面考虑函数 $f(x) \in C[-1,1]$,按勒让德多项式 $\{P_0(x), P_1(x), \dots, P_n(x)\}$ 展开,由 (3.8)式和(3.9)式可得

$$S_n^*(x) = a_0^* P_0(x) + a_1^* P_1(x) + \dots + a_n^* P_n(x),$$
 (3.13)

 $a_k^* = \frac{(f(x), P_k(x))}{(P_k(x), P_k(x))} = \frac{2k+1}{2} \int_{-1}^1 f(x) P_k(x) dx.$

勒让德多项式:

由
$$P_0(x)=1, P_1(x)=x$$
,利用 (2.9) 式就可推出 $P_2(x)=(3x^2-1)/2$, $P_3(x)=(5x^3-3x)/2$, $P_4(x)=(35x^4-30x^2+3)/8$, $P_5(x)=(63x^5-70x^3+15x)/8$, $P_6(x)=(231x^6-315x^4+105x^2-5)/16$,

例 7 求 $f(x) = e^x$ 在[-1,1]上的三次最佳平方逼近多项式.

解 先计算 $(f(x), P_k(x))(k=0,1,2,3)$.

$$(f(x), P_0(x)) = \int_{-1}^1 e^x dx = e - \frac{1}{e} \approx 2.3504;$$

$$(f(x), P_1(x)) = \int_{-1}^1 x e^x dx = 2e^{-1} \approx 0.7358;$$

$$(f(x), P_2(x)) = \int_{-1}^1 \left(\frac{3}{2}x^2 - \frac{1}{2}\right) e^x dx = e - \frac{7}{e} \approx 0.1431;$$

$$(f(x), P_3(x)) = \int_{-1}^1 \left(\frac{5}{2}x^3 - \frac{3}{2}x\right) e^x dx = 37 \frac{1}{e} - 5e \approx 0.02013.$$

由(3.14)式得

$$a_0^* = (f(x), P_0(x))/2 = 1.1752,$$

 $a_1^* = 3(f(x), P_1(x))/2 = 1.1036,$
 $a_2^* = 5(f(x), P_2(x))/2 = 0.3578,$
 $a_3^* = 7(f(x), P_3(x))/2 = 0.07046.$

代人(3.13)式得

$$S_3^*(x) = 0.9963 + 0.9979x + 0.5367x^2 + 0.1761x^3$$
.

均方逼近的误差

$$\|\delta_{u}(x)\|_{2} = \|e^{x} - S_{3}^{*}(x)\|_{2} = \sqrt{\int_{-1}^{1} e^{2x} dx - \sum_{k=0}^{3} \frac{2}{2k+1} a_{k}^{*2}} \leqslant 0.0084.$$

最大误差

$$\| \delta_n(x) \|_{\infty} = \| e^x - S_3^*(x) \|_{\infty} \le 0.0112.$$

如果 $f(x) \in C[a,b]$, 求 [a,b]上的最佳平方逼近多项式, 做变换

$$x = \frac{b-a}{2}t + \frac{b+a}{2}$$
 $(-1 \leqslant t \leqslant 1)$,

12. 设 $f(x) = x^2 + 3x + 2, x \in [0,1]$, 试求 f(x) 在[0,1]上关于 $\rho(x) = 1, \Phi = \text{span}\{1,x\}$ 的最佳平方逼近多项式. 若取 $\Phi = \text{span}\{1,x,x^2\}$, 那么最佳平方逼近多项式是什么?

解 若
$$\Phi$$
= span $\{1,x\}$,则 $\varphi_0(x)=1,\varphi_1(x)=x$,这样

$$(\varphi_0, \varphi_0) = \int_0^1 1 dx = 1, \quad (\varphi_1, \varphi_1) = \int_0^1 x^2 dx = \frac{1}{3},$$

$$(\varphi_0, \varphi_1) = (\varphi_1, \varphi_0) = \int_0^1 x dx = \frac{1}{2},$$

$$(f, \varphi_0) = \int_0^1 (x^2 + 3x + 2) dx = \frac{23}{6},$$

$$(f, \varphi_1) = \int_0^1 x(x^2 + 3x + 2) dx = \frac{9}{4},$$

所以法方程为

$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{23}{6} \\ \frac{9}{4} \end{bmatrix},$$

解出 $a_0 = \frac{11}{6}$, $a_1 = 4$, 所以 $s_1(x) = \frac{11}{6} + 4x$.

若取 $\Phi = \text{span}\{1, x, x^2\}$,继续计算

$$(\varphi_2, \varphi_2) = \int_0^1 x^4 dx = \frac{1}{5},$$

$$(\varphi_1, \varphi_2) = (\varphi_2, \varphi_1) = \int_0^1 x^3 dx = \frac{1}{4},$$

$$(\varphi_0, \varphi_2) = (\varphi_2, \varphi_0) = \int_0^1 x^2 dx = \frac{1}{3},$$

$$(f, \varphi_2) = \int_0^1 x^2 (x^2 + 3x + 2) dx = \frac{97}{60},$$

得法方程为

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \frac{23}{6} \\ \frac{9}{4} \\ \frac{97}{60} \end{bmatrix},$$

解得 $a_0=2$, $a_1=3$, $a_2=1$, 所以 $s_2(x)=2+3x+x^2$.

7. 最小二乘法拟合

12. 设 $f(x)=x^2+3x+2$, $x\in[0,1]$,试求 f(x)在[0,1]上关于 $\rho(x)=1$, $\Phi=\text{span}\{1,x\}$ 的最佳平方逼近多项式. 若取 $\Phi=\text{span}\{1,x,x^2\}$,那么最佳平方逼近多项式是什么?

解 若
$$\Phi$$
= span $\{1,x\}$,则 $\varphi_0(x)=1,\varphi_1(x)=x$,这样

$$(\varphi_0, \varphi_0) = \int_0^1 1 dx = 1, \quad (\varphi_1, \varphi_1) = \int_0^1 x^2 dx = \frac{1}{3},$$

$$(\varphi_0, \varphi_1) = (\varphi_1, \varphi_0) = \int_0^1 x dx = \frac{1}{2},$$

$$(f, \varphi_0) = \int_0^1 (x^2 + 3x + 2) dx = \frac{23}{6},$$

$$(f, \varphi_1) = \int_0^1 x(x^2 + 3x + 2) dx = \frac{9}{4},$$

所以法方程为

$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{23}{6} \\ \frac{9}{4} \end{bmatrix},$$

解出 $a_0 = \frac{11}{6}, a_1 = 4$,所以 $s_1(x) = \frac{11}{6} + 4x$.

若取 $\Phi = \text{span}\{1, x, x^2\}$,继续计算

$$(\varphi_2, \varphi_2) = \int_0^1 x^4 dx = \frac{1}{5},$$

$$(\varphi_1, \varphi_2) = (\varphi_2, \varphi_1) = \int_0^1 x^3 dx = \frac{1}{4},$$

$$(\varphi_0, \varphi_2) = (\varphi_2, \varphi_0) = \int_0^1 x^2 dx = \frac{1}{3},$$

$$(f, \varphi_2) = \int_0^1 x^2 (x^2 + 3x + 2) dx = \frac{97}{60},$$

得法方程为

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \frac{23}{6} \\ \frac{9}{4} \\ \frac{97}{60} \end{bmatrix},$$

解得 $a_0=2$, $a_1=3$, $a_2=1$, 所以 $s_2(x)=2+3x+x^2$.

8. 求积公式系数和代数精度

$$\int_{-h}^{h} f(x) dx \approx A_{-1} f(-h) + A_{0} f(0) + A_{1} f(h);$$

解 (1) 将 $f(x)=1,x,x^2$ 分别代入公式两端并令其左右相等,得

$$\begin{cases} A_{-1} + A_0 + A_1 = 2h, \\ -hA_{-1} + hA_1 = 0, \\ h^2A_{-1} + h^2A_1 = \frac{2}{3}h^3. \end{cases}$$

解得 $A_{-1} = A_1 = \frac{h}{3}$, $A_0 = \frac{4h}{3}$, 所求公式至少具有 2 次代数精度.

又由于

$$\int_{-h}^{h} x^{3} dx = \frac{1}{4} x^{4} \Big|_{-h}^{h} = 0 = \frac{h}{3} (-h)^{3} + \frac{h}{3} (h)^{3},$$

$$\int_{-h}^{h} x^{4} dx = \frac{1}{5} x^{5} \Big|_{-h}^{h} = \frac{2}{5} h^{5} \neq \frac{2}{3} h^{5} = \frac{h}{3} (-h)^{4} + \frac{h}{3} (h)^{4},$$

故
$$\int_{-h}^{h} f(x) dx \approx \frac{h}{3} f(-h) + \frac{4h}{3} f(0) + \frac{h}{3} f(h)$$
 具有 3 次代数精度.

9. 梯形公式, 辛普森公式

$$(1) \int_0^1 \frac{x}{4+x^2} \mathrm{d}x, n = 8;$$

解 (1) 用复合梯形公式, $h = \frac{1}{8}$, $f(x) = \frac{x}{4+x^2}$, $x_k = \frac{1}{8}k(k=1,2,\dots,7)$,

$$T_8 = \frac{h}{2} [f(0) + 2 \sum_{k=1}^{7} f(x_k) + f(1)] = 0.1114024,$$

用复合辛普森公式, $h=\frac{1}{8}$, $f(x)=\frac{x}{4+x^2}$, $x_k=\frac{1}{8}k(k=1,2,\dots,7)$,

$$x_{k+\frac{1}{2}} = \frac{1}{8}k + \frac{1}{16}, \quad k = 0, 1, \dots, 7,$$

$$S_8 = \frac{h}{6} [f(0) + 4 \sum_{k=0}^{7} f(x_{k+1/2}) + 2 \sum_{k=1}^{7} f(x_k) + f(1)] = 0.1115718.$$

- 10. 两点公式, 三点公式
- 11,带余项的两点公式是

$$f'(x_0) = \frac{1}{h} [f(x_1) - f(x_0)] - \frac{h}{2} f''(\xi);$$

$$f'(x_1) = \frac{1}{h} [f(x_1) - f(x_0)] + \frac{h}{2} f''(\xi).$$

带余项的三点求导公式如下:

$$\begin{cases} f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_1) - f(x_2)] + \frac{h^2}{3} f'''(\xi_0); \\ f'(x_1) = \frac{1}{2h} [-f(x_0) + f(x_2)] - \frac{h^2}{6} f'''(\xi_1); \\ f'(x_2) = \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)] + \frac{h^2}{3} f'''(\xi_2). \end{cases}$$

11. 直接分解法

8. 用直接三角分解(杜利特尔(Doolittle)分解)求线性方程组

$$\begin{cases} \frac{1}{4}x_1 + \frac{1}{5}x_2 + \frac{1}{6}x_3 = 9, \\ \frac{1}{3}x_1 + \frac{1}{4}x_2 + \frac{1}{5}x_3 = 8, \\ \frac{1}{2}x_1 + x_2 + 2x_3 = 8 \end{cases}$$

的解.

解 设

$$\mathbf{A} = \begin{bmatrix} \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix},$$

则由对应元素相等,有 $\frac{1}{4}$ = u_{11} , $\frac{1}{3}$ = $l_{21}u_{11}$ \Rightarrow $l_{21}=\frac{4}{3}$, $\frac{1}{2}$ = $l_{31}u_{11}$ \Rightarrow $l_{31}=2$,

$$\frac{1}{5} = u_{12}, \quad \frac{1}{4} = l_{21}u_{12} + u_{22} \Rightarrow u_{22} = -\frac{1}{60}, \quad 1 = l_{31}u_{12} + l_{32}u_{22} \Rightarrow l_{32} = -36,$$

$$\frac{1}{6} = u_{13}, \quad \frac{1}{5} = l_{21}u_{13} + u_{23} \Rightarrow u_{23} = -\frac{1}{45}, \quad 2 = l_{31}u_{13} + l_{32}u_{23} + u_{33} \Rightarrow u_{33} = \frac{13}{15},$$

故A的杜利特尔分解为

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{4}{3} & 1 & 0 \\ 2 & -36 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 0 & -\frac{1}{60} & -\frac{1}{45} \\ 0 & 0 & \frac{13}{15} \end{bmatrix},$$

解 Lv=b,得

$$y_1 = 9$$
, $y_2 = -4$, $y_3 = -154$,

解 Ux = y,得

$$x_3 = -177.69$$
, $x_2 = 476.92$, $x_1 = -227.08$.

12. 平方根法

例 用平方根法求解方程组

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 7 \end{bmatrix}$$

解 设

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 11 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

右端矩阵相乘并比较等式两端。由第一列有

$$1 = l_{11}^2$$
, $1 = l_{11}l_{21}$, $2 = l_{11}l_{31}$

可得

$$l_{11} = 1, l_{21} = 1, l_{31} = 2$$

比较第二列有

$$2 = l_{21}^2 + l_{22}^2$$
, $0 = l_{31}l_{21} + l_{32}l_{22}$

求得

$$l_{22} = (2 - l_{21}^2)^{\frac{1}{2}} = 1$$
, $l_{32} = (0 - l_{31}l_{21})/l_{22} = -2$

由第三列得 $11 = l_{31}^2 + l_{32}^2 + l_{33}^2$, 故 $l_{33} = (11 - l_{31}^2 - l_{32}^2)^{\frac{1}{2}} = \sqrt{3}$

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & \sqrt{3} \end{bmatrix}$$

由 Ly = b 解得 $y_1 = 5$, $y_2 = 3$, $y_3 = \sqrt{3}$, 由 $L^T x = y$ 解得 $x_1 = -2$, $x_2 = 5$, $x_3 = 1$.

13. 条件数

$$\operatorname{cond}(\boldsymbol{A})_{2} = \|\boldsymbol{A}^{-1}\|_{2} \|\boldsymbol{A}\|_{2} = \sqrt{\frac{\lambda_{\max}(\boldsymbol{A}^{T}\boldsymbol{A})}{\lambda_{\min}(\boldsymbol{A}^{T}\boldsymbol{A})}} :$$

14. 矩阵范数

$$\|A\|_{1} = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|$$
 (称为 A 的列范数),

$$\|\mathbf{A}\|_{2} = \sqrt{\lambda_{\max}(\mathbf{A}^{\mathrm{T}}\mathbf{A})}$$
 (称为 \mathbf{A} 的 2-范数),

$$\|\mathbf{A}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{i=1}^{n} |a_{ij}|$$
 (称为 \mathbf{A} 的行范数).

15. 雅可比、赛德尔迭代法

将线性方程组(1.1)中的系数矩阵 $\mathbf{A}=(a_{ij})\in\mathbb{R}^{n\times n}$ 分成三部分

$$\mathbf{A} = \begin{pmatrix} a_{11} & & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix} - \begin{pmatrix} 0 & & & & \\ -a_{21} & 0 & & & \\ \vdots & \vdots & \ddots & & \\ -a_{n-1,1} & -a_{n-1,2} & \cdots & 0 & \\ -a_{n1} & -a_{n2} & \cdots & -a_{n,n-1} & 0 \end{pmatrix}$$

· 188 ·

第6章 解线性方程组的迭代法

$$-\begin{pmatrix}
0 & -a_{12} & \cdots & -a_{1,n-1} & -a_{1n} \\
0 & \cdots & -a_{2,n-1} & -a_{2n} \\
& \ddots & \vdots & \vdots \\
0 & -a_{n-1,n} \\
0
\end{pmatrix}$$

$$\equiv \mathbf{D} - \mathbf{L} - \mathbf{U}. \tag{2.1}$$

其Jacobi 迭代矩阵为:

$$J = D^{-1}(L+U) = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{pmatrix}$$

矩阵G=(D-L)-1U为解Ax=b的高斯-塞德尔迭代法的迭代矩阵.

设线性方程组

$$\begin{cases} 5x_1 + 2x_2 + x_3 = -12, \\ -x_1 + 4x_2 + 2x_3 = 20, \\ 2x_1 - 3x_2 + 10x_3 = 3. \end{cases}$$

- (1) 考察用雅可比迭代法,高斯一塞德尔迭代法解此方程组的收敛性;
- (2) 用雅可比迭代法及高斯—塞德尔迭代法解此方程组,要求当 $\| \mathbf{x}^{(k+1)} \mathbf{x}^{(k)} \|_{\infty} < 10^{-4}$ 时迭代终止.
 - 解 (1) 因系数矩阵严格对角占优,故雅可比迭代、高斯一塞德尔迭代均收敛.
 - (2) 雅可比迭代格式为

$$\begin{cases} x_1^{(k+1)} = -\frac{2}{5}x_2^{(k)} - \frac{1}{5}x_3^{(k)} - \frac{12}{5}, \\ x_2^{(k+1)} = \frac{1}{4}x_1^{(k)} - \frac{1}{2}x_3^{(k)} + 5, \\ x_3^{(k+1)} = -\frac{1}{5}x_1^{(k)} + \frac{3}{10}x_2^{(k)} + \frac{3}{10}. \end{cases}$$

取 $x^{(0)} = (1,1,1)^{T}$,则迭代 17 次可达到精度要求,即

$$\mathbf{x}^{(17)} = (-4.0000186, 2.9999915, 2.0000012)^{\mathrm{T}}.$$

高斯-塞德尔迭代格式为

$$\begin{cases} x_1^{(k+1)} = -\frac{2}{5}x_2^{(k)} - \frac{1}{5}x_3^{(k)} - \frac{12}{5}, \\ x_2^{(k+1)} = \frac{1}{4}x_1^{(k+1)} - \frac{1}{2}x_3^{(k)} + 5, \\ x_3^{(k+1)} = -\frac{1}{5}x_1^{(k+1)} + \frac{3}{10}x_2^{(k+1)} + \frac{3}{10}. \end{cases}$$

取 $x^{(0)} = (1,1,1)^{T}$,则迭代 8 次可达到精度要求,即

$$\mathbf{x}^{(8)} = (-4.0000186, 2.9999915, 2.0000012)^{\mathrm{T}}.$$

16. 雅可比、赛德尔迭代法收敛条件

(1) 如果A的元素满足

$$|a_{ii}| > \sum_{\substack{j=1\\i\neq i}}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n,$$

称 A 为严格对角占优矩阵.

(2) 如果 A 的元素满足

$$|a_{ii}| \geqslant \sum_{\substack{j=1\\i\neq i}}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n,$$

且上式至少有一个不等式严格成立,则称 A 为弱对角占优矩阵.

定理9 设Ax=b,如果:

- (1) A 为严格对角占优矩阵,则解 Ax=b 的雅可比迭代法,高斯-塞德尔迭代法均收敛.
- (2) A 为弱对角占优矩阵,且A 为不可约矩阵,则解 Ax=b 的雅可比迭代法,高斯-塞德尔迭代法均收敛.

例 8 在线性方程组 Ax=b 中,

$$\mathbf{A} = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix},$$

证明当 $-\frac{1}{2}$ <a<1 时高斯-塞德尔法收敛,而雅可比迭代法只在 $-\frac{1}{2}$ <a< $\frac{1}{2}$ 时才收敛.

证明 只要证 $-\frac{1}{2}$ <a<1 时 A 正定,由 A 的顺序主子式 $\Delta_2 = \begin{vmatrix} 1 & a \\ a & 1 \end{vmatrix} = 1 - a^2 > 0$,得 |a|<1,而 $\Delta_3 = \det A = 1 + 2a^3 - 3a^2 = (1-a)^2(1+2a) > 0$,得 $a > -\frac{1}{2}$,于是得到 $-\frac{1}{2}$ <a<1 时 $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$,故 A 正定,故高斯-塞德尔法收敛.

对雅可比迭代矩阵

$$\mathbf{J} = \begin{pmatrix} 0 & -a & -a \\ -a & 0 & -a \\ -a & -a & 0 \end{pmatrix},$$

有

$$\det(\lambda \mathbf{I} - \mathbf{J}) = \lambda^3 - 3\lambda a^2 + 2a^3 = (\lambda - a)^2(\lambda + 2a) = 0,$$

当 $\rho(\mathbf{J}) = |2a| < 1$,即 $|a| < \frac{1}{2}$ 时雅可比法收敛. 例如,当 a = 0. 8 时高斯-塞德尔法收敛,而 $\rho(\mathbf{J}) = 1$. 6> 1,雅可比法不收敛,此时2 $\mathbf{D} - \mathbf{A}$ 不是正定的.

注意,求线性方程组 Ax=b 时,如原线性方程组换行后 A 满足收敛条件,则应将方程换行后再构造雅可比迭代法及高斯迭代法.例如,线性方程组

$$\begin{cases} 3x_1 - 10x_2 = -7, \\ 9x_1 - 4x_2 = 5, \end{cases}$$

可换成

$$\begin{cases} 9x_1 - 4x_2 = 5, \\ 3x_1 - 10x_2 = -7, \end{cases}$$

即将 $\mathbf{A} = \begin{pmatrix} 3 & -10 \\ 9 & -4 \end{pmatrix}$ 换成 $\tilde{\mathbf{A}} = \begin{pmatrix} 9 & -4 \\ 3 & -10 \end{pmatrix}$, 显然 $\tilde{\mathbf{A}}$ 是严格对角占优矩阵, 对新线性方程组 $\tilde{\mathbf{A}} \mathbf{x} = \tilde{\mathbf{b}}$ 构造雅可比迭代及高斯-塞德尔迭代均收敛.

17. 二分法

1. 用二分法求方程 $x^2 - x - 1 = 0$ 的正根,要求误差小于 0.05.

解 设 $f(x)=x^2-x-1$,因为 f(0)=-1<0,f(2)=1>0,所以[0,2]为 f(x)的有根区间.

又 f'(x) = 2x - 1,故当 $0 < x < \frac{1}{2}$ 时,f(x)单调递减,当 $x > \frac{1}{2}$ 时,f(x)单调递增.

而
$$f\left(\frac{1}{2}\right) = -\frac{5}{4}$$
, $f(0) = -1$, 由单调性知 $f(x)$ 的唯一正根 $x^* \in (1.5,2)$.

根据二分法的误差估计式,要求误差小于 0.05,只需 $\frac{1}{2^{k+1}}$ <0.05,解得 k+1>4.322,故至少应二分 6 次. 具体计算结果见下表.

k	a_k	b_k	x_k	$f(x_k)$ 的符号	k	a_k	b_k	x_k	$f(x_k)$ 的符号
0	1	2	1.5	_	3	1.5	1.625	1.5625	_
1	1.5	2	1.75	+	4	1.5625	1.625	1.593 75	_
2	1.5	1.75	1.625	+	5	1.593 75	1.625	1.609 375	

因此 $x^* \approx x_5 = 1.609375$.

18. 证明题 P167

· 167 ·

$$\| (\mathbf{I} \pm \mathbf{B})^{-1} \| \leqslant \frac{1}{1 - \| \mathbf{B} \|},$$
 (4.12)

其中 | • | 是指矩阵的算子范数.

证明 用反证法. 若 $\det(I-B)=0$,则(I-B)x=0 有非零解,即存在 $x_0\neq 0$ 使 $Bx_0=x_0$, $\frac{\parallel Bx_0\parallel}{\parallel x_0\parallel}=1$,故 $\parallel B\parallel \geqslant 1$,与假设矛盾. 又由 $(I-B)(I-B)^{-1}=I$,有

$$(I - B)^{-1} = I + B(I - B)^{-1},$$

从而

$$\| (I - B)^{-1} \| \leq \| I \| + \| B \| \| (I - B)^{-1} \| ,$$

$$\| (I - B)^{-1} \| \leq \frac{1}{1 - \| B \|} .$$