Algoritma Tree Decision

```
In [1]:
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import StandardScaler
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
In [2]:
         # read file
          df = pd.read_csv('[Dataset]_Train_(Keryawan).csv')
          df.head()
Out[2]:
            Employee ID Gender Age Education Level Relationship Status
                                                                                          Unit Decision
         0
                              F 42.0
                                                                                            IT
              EID 23371
                                                  4
                                                               Married
                                                                           Franklin
         1
              EID_18000
                             M 24.0
                                                  3
                                                                        Springfield
                                                                 Single
                                                                                       Logistics
         2
                                                  3
               EID_3891
                              F 58.0
                                                               Married
                                                                           Clinton
                                                                                        Quality
```

3

5 rows × 24 columns

EID_17492

EID 22534

3

F 26.0

F 31.0

Preprocess Data

```
In [3]:
         #data tidak Lengkap
         nan_data = df[df.isna().any(axis=1)]
         nan_data
```

Out[3]:		Employee_ID	Gender	Age	Education_Level	Relationship_Status	Hometown	Unit	D€
	3	EID_17492	F	26.0	3	Single	Lebanon	Human Resource Management	
	7	EID_1235	F	NaN	3	Married	Springfield	Sales	
	8	EID_10197	М	40.0	4	Single	Springfield	Production	
	15	EID_20121	F	NaN	3	Married	Springfield	Logistics	
	19	EID_12947	М	32.0	3	Single	Lebanon	IT	
	•••								
	6969	EID_18566	F	NaN	1	Single	Washington	R&D	
	6975	EID_2706	F	52.0	3	Married	Clinton	R&D	
	6976	EID_15099	М	28.0	4	Married	Franklin	Operarions	

Human

Resource Management

Logistics

Lebanon

Springfield

Single

Married

	Employee_ID	Gender	Age	Education_Level	Relationship_Status	Hometown	Unit D€
6981	EID_25181	М	NaN	3	Married	Springfield	Logistics
6986	EID_17099	М	NaN	4	Single	Franklin	Human Resource Management

1647 rows × 24 columns

```
In [4]: # delete data tidak lengkap
    df = df.dropna()
    df
```

Out[4]:		Employee_ID	Gender	Age	Education_Level	Relationship_Status	Hometown	Unit	Deci
	0	EID_23371	F	42.0	4	Married	Franklin	IT	
	1	EID_18000	М	24.0	3	Single	Springfield	Logistics	
	2	EID_3891	F	58.0	3	Married	Clinton	Quality	
	4	EID_22534	F	31.0	1	Married	Springfield	Logistics	
	5	EID_2278	М	54.0	3	Married	Lebanon	Purchasing	
	•••								
	6995	EID_16328	F	23.0	5	Married	Franklin	Operarions	
	6996	EID_8387	F	44.0	1	Married	Lebanon	R&D	
	6997	EID_8077	F	49.0	3	Single	Springfield	IT	
	6998	EID_19597	F	47.0	3	Married	Washington	Sales	
	6999	EID_1640	F	58.0	3	Married	Franklin	IT	

5353 rows × 24 columns

```
In [5]: # Visualisasi data
fig,axes = plt.subplots(2,2,figsize=(15,8))

sns.histplot(data=df,x='Gender',ax=axes[0,0],color='aqua')
sns.histplot(data=df,x='Age',ax=axes[0,1],color='cyan')
sns.histplot(data=df,x='Hometown',ax=axes[1,0],color='skyblue')
sns.histplot(data=df,x='Unit',ax=axes[1,1],color='lightblue')
plt.show()
```



```
In [6]:
    from sklearn.preprocessing import LabelEncoder
    encode = LabelEncoder()
```

```
In [7]:
# Transformasi
df['Gender'] = encode.fit_transform(df['Gender'].values)
df['Relationship_Status'] = encode.fit_transform(df['Relationship_Status'].values)
df['Hometown'] = encode.fit_transform(df['Hometown'].values)
df['Unit'] = encode.fit_transform(df['Unit'].values)
df['Decision_skill_possess'] = encode.fit_transform(df['Decision_skill_possess'].val
df['Compensation_and_Benefits'] = encode.fit_transform(df['Compensation_and_Benefits'])
```

```
In [8]: #hapus kolom tidak perlu

df = df.drop(['Employee_ID'],axis=1)

df = df.drop(['Attrition_rate'],axis=1)
```

Normalisasi

```
from sklearn.preprocessing import MinMaxScaler
kolom = [col for col in df.columns]
scaler = MinMaxScaler()
scaled = scaler.fit_transform(df[kolom])
df_scaled = pd.DataFrame(scaled,columns=kolom)
```

```
In [10]: df_scaled
```

Out[10]:		Gender	Age	Education_Level	Relationship_Status	Hometown	Unit	Decision_skill_pos
	0	0.0	0.500000	0.75	0.0	0.25	0.181818	0.66
	1	1.0	0.108696	0.50	1.0	0.75	0.272727	0.00
	2	0.0	0.847826	0.50	0.0	0.00	0.727273	0.66
	3	0.0	0.260870	0.00	0.0	0.75	0.272727	0.66
	4	1.0	0.760870	0.50	0.0	0.50	0.636364	0.66

	Gender	Age	Education_Level	Relationship_Status	Hometown	Unit	Decision_skill_po:
•••							
5348	0.0	0.086957	1.00	0.0	0.25	0.454545	0.33
5349	0.0	0.543478	0.00	0.0	0.50	0.818182	0.00
5350	0.0	0.652174	0.50	1.0	0.75	0.181818	1.00
5351	0.0	0.608696	0.50	0.0	1.00	0.909091	0.33
5352	0.0	0.847826	0.50	0.0	0.25	0.181818	1.00

5353 rows × 22 columns

```
In [11]:
            #Visualisasi data
            fig,axes = plt.subplots(2,2,figsize=(15,8))
            sns.histplot(data=df,x='Gender',ax=axes[0,0],color='aqua')
            sns.histplot(data=df,x='Age',ax=axes[0,1],color='cyan')
            sns.histplot(data=df,x='Hometown',ax=axes[1,0],color='skyblue')
            sns.histplot(data=df,x='Unit',ax=axes[1,1],color='lightblue')
            plt.show()
            3000
                                                                500
            2500
                                                                400
            2000
                                                                300
           5
1500
                                                                200
            1000
                                                                100
             500
                 0.0
                         0.2
                                0.4
                                                0.8
                                                        1.0
                                                                              30
                                   Gender
            1600
                                                                1000
            1400
            1200
            1000
                                                                600
             800
                                                                400
             600
             400
                                                                200
             200
                               1.5
                                    2.0
                                         2.5
In [12]:
            #input test data
            test_data = pd.read_csv('[Dataset]_Test_(Karyawan).csv')
```

```
In [13]: #pre processing
   test_data = test_data.drop(['Employee_ID'],axis=1)
   test_data = test_data.dropna()
   #encode
   test_data['Gender'] = encode.fit_transform(test_data['Gender'].values)
   test_data['Relationship_Status'] = encode.fit_transform(test_data['Relationship_Stat
   test_data['Hometown'] = encode.fit_transform(test_data['Hometown'].values)
   test_data['Unit'] = encode.fit_transform(test_data['Unit'].values)
   test_data['Decision_skill_possess'] = encode.fit_transform(test_data['Decision_skill_test_data['Compensation_and_Benefits'] = encode.fit_transform(test_data['Compensation_and_Benefits'] = encode.fit_transform(test_data['Compensation_and_Ben
```

Unit Decision_skill_pos

Out[13]:

Gender

```
test_data_kolom = [col for col in test_data.columns]
test_data_scaled = scaler.fit_transform(test_data[test_data_kolom])
test_data = pd.DataFrame(test_data_scaled,columns=test_data_kolom)
test_data
```

Age Education Level Relationship Status Hometown

Evaluasi kinerja model dengan metrik

```
In [17]:
          # Evaluate Model
          y pred = model.predict(X test)
          accuracy = accuracy_score(y_test, y_pred)
          print(f'Accuracy: {accuracy}')
          conf_matrix = confusion_matrix(y_test, y_pred)
          print(f'Confusion Matrix:\n{conf_matrix}')
          class_report = classification_report(y_test, y_pred)
          print(f'Classification Report:\n{class_report}')
         Accuracy: 1.0
         Confusion Matrix:
         [[677
                 0]
          [ 0 394]]
         Classification Report:
```

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	677
1.0	1.00	1.00	1.00	394
accuracy			1.00	1071
macro avg	1.00	1.00	1.00	1071
weighted avg	1.00	1.00	1.00	1071

Uji Coba Model

```
In [18]:
           # Make predictions
           new_prediction = model.predict(test_data)
           print(f'New Prediction: {new_prediction}')
          New Prediction: [1. 1. 0. ... 1. 0. 1.]
In [22]:
           sns.histplot(data=new_prediction,color='gray')
          <AxesSubplot:ylabel='Count'>
Out[22]:
            1400
            1200
            1000
             800
             600
             400
             200
               0
                  0.0
                           0.2
                                    0.4
                                              0.6
                                                       0.8
                                                                1.0
 In [ ]:
```