Прогнозирование рыночных цен на арматуру

Работу выполнили студенты группы ИСП-22:

Кривобокова Ольга

Хусаинов Марат

Салимов Динислам

Преподаватель:

Коновалов Игорь Васильевич

Окейсе

Постановщик задачи:

Компания «Самолет»

Название кейсового задания:

Прогнозирование рыночных цен на арматуру

Цель:

Создание модели прогнозирования рыночных цен на арматуру для рекомендации лучшего времени для выгодной закупки арматуры.

Стек технологий

Этапы работы

1

Предварительный анализ данных

2

Подготовка данных

3

Построение моделей

каждый участник

4

Изучение и сравнение полученных решений

5

Объединение лучших подходов в одно решение 6

Обучение, настройка и оптимизация итоговой модели

7

Получение и интерпретация итогового результата 8

Создание презентации

Обработка и подготовка данных

Приведение данных к корректным форматам и типам

Удаление слабо заполненных данных

Слияние данных по датам

Заполнение пропусков методом backfill

Демонстрация методов обработки показывает, что данные подготовлены для дальнейшего анализа

Использование методов pd.merge для объединения DataFrame

Приведение типов данных с помощью методов pd.to_datetime для обработки данных

Использование функции seasonal_decompose с периодом в 52 недели

ВЫСОКАЯ ВАЛАТИЛЬНОСТЬ

ВЫРАЖЕННАЯ ГОДОВАЯ СЕЗОННОСТЬ

Вначале дисперсия остатков относительно стабильна, но начиная с 2020 года разброс резко увеличивается

Это может указывать на структурные изменения в данных (например, экономические шоки, изменения в рыночных условиях)

Предположение, что тренд имеется, начали проверять на стационарность

Применяется тест Дики-Фуллера:

ADF Statistic: -1.5484468381220473

p-value: 0.5094239275287091

Ряд нестационарный, требуется

дифференцирование

ACF:

- Медленно убывает (не резко обрывается) - признак не стационарности ряда
- Высокие значения на первых лагах (сильная корреляция с соседними точками)

PACF:

- Резко обрывается после 1-2 лага это характерно для моделей AR (авто регрессионных)
- Значимый пик на лаге 1, затем быстро затухает

Модели

SARIMAX без доп данных

Модели

RandomForestRegressor с доп данными

Лучшая модель

SARIMAX с доп данными

Выбор модели и автоматический подбор параметров

```
Выбранная модель: ARIMA(2,0,0)(0,0,1)[52]
```

```
•(2,0,0) – авторегрессия (AR=2), без дифференцирования (d=0),
```

без МА-компонента (МА=О)

•(O,O,1)[52] – сезонная часть с MA=1 и периодом **52 недели**

(годовой цикл)

Оценка качества модели

- •R² = 0.827 -> модель объясняет 82,7% изменчивости цен
- •RMSE = 4442.37 → средняя ошибка ~4442 руб
- •MAE = 3459.11 → типичная ошибка ~3459 руб

Интеграция:

Результаты предсказания

Изменение цены: Прогнозируется снижение цен. Закупайтесь на 1 неделю (Х тонн), не стоит увеличивать объем.

График предсказаний:

Числовые данные:

Дата	Предсказанная цена
2022-09-05	69235.16035513811
2022-09-12	68752.02222646668
2022-09-19	72060.33951657797
2022-09-26	69458.0976499989
2022-10-03	72033.44280487433
2022-10-10	73568.16163878934
2022-10-17	64289.535036973466
2022-10-24	63412.73836248913
2022-10-31	70135.7612205564
2022-11-07	65810.8538180039
2022-11-14	57487.76961564558
2022-11-21	57941.0379590933
2022-11-28	53088.99276246144
2022-12-05	45083.711067050994
2022-12-12	48539.16003861715
2022-12-19	40030.196806653636
2022-12-26	47788.59072442148
2023-01-02	48027.82045957172
2023-01-09	45981.680604235546
2023-01-16	45371.11228953819
2023-01-23	42584.55125854277

рейдите в раздел "Параметры

Интеграция: архитектура

Flask сервер с моделью

Gin-сервер

Пользователь

Вывод по проделанной работе

- Удалось собрать качественный датасет для прогнозирования цен на арматуру.
- Разработаны три модели с разной сложностью и точностью.
- Улучшена предсказательная способность за счет дополнительных признаков.
- Настроена интеграция с веб-интерфейсом через API.
- Основные проблемы связаны с обработкой данных и оптимизацией моделей, но были успешно решены.