Lab 2

- Prawdopodobieństwo dziedziczenia pewnej cechy wsród potomków badanego gatunku drapieżnego kota wynosi 0,7. Jakie jest prawdopodobieństwo, że
 - (a) wśród pięciu potomków co najwyżej trzy koty mają badaną cechę?
 - (b) wśród sześciu potomków co najmniej cztery koty mają badaną cechę?
 - (c) wśród siedmiu potomków dokładnie pięć kotów ma badaną cechę?
- (2) Prawdopodobieństwo, że produkt poddawany próbie wytrzymałościowej nie wytrzyma tej próby, wynosi p = 0,02. Wyznaczyć prawdopodobieństwo, że wśród losowo wybranych 20 takich produktów co najmniej 2 produkty nie wytrzymały próby.
- (3) Zakładając, że wzrost w populacji studentów ma rozkład N(176, 10) obliczyć prawdopodobieństwo tego, że wzrost przypadkowo napotkanego studenta
 - (a) jest mniejszy niż 186 cm
 - (b) jest mniejszy niż 166 cm
 - (c) jest większy niż 170 cm
 - (d) jest wiekszy niż 200 cm
 - (e) należy do przedziału (168, 174)
- (4) Zakładając, że wyniki w teście egzaminacyjnym (o zakresie punktacji od 0 do 100) ze statystyki mają rozkład normalny N(58, 10) obliczyć:
 - (a) jaki procent studentów uzyska wynik większy niż 75 punktów,
 - (b) jaki procent studentów uzyska wynik mniejszy niż 50 punktów,
 - (c) poniżej jakiego wyniki student będzie zaliczony do grupy 5% najsłabszych studentów,
 - (d) jaki wynik muszą osiągnąć studenci, aby mogli być zaliczeni do grupy 5% najlepszych studentów.
- (5) Stwierdzono, że przeciętny czas pracy drukarek w pewnej firmie ma rozkład normalny z wartością oczekiwaną wynoszącą 3 lata i odchyleniem standardowym równym 5 miesięcy. Obliczyć prawdopodobieństwo, ze drukarka będzie pracować
 - (a) krócej niż 2 lata,
 - (b) dłużej niż 3 lata.

< - normlanie | > - 1-p

Wprowadzenie:

```
I.Rozkład dwumianowy (Bernoulliego) -> Analiza mocy tekstu
<= - normlanie | > - 1-p

1.Co najwyżej P(X<=x)

2.Co najmniej P(X>=x), np co najmniej 4 to więcej niż 3

3.Dokładnie P(X=x), np dokładnie 5 to P(X<=5)-P(X<=4)

II.Rozkład normalny -> Kalkulator prawdopodobieństwa
```

N(x,y) x - średnia, y - odchylenie standardowe Zad. 1 (a) P(X<=3)=0,47178(b) P(X>=4)=0,74431

Zad. 2

 $P(X \ge 2) = 0,05(98)$

(c) P(X=5)=0,31765

Zad. 3

(a) Z(176,10) = 186 p = 0,841345(b) Z(176,10) = 166 p = 0,158655(c) Z(176,10) = 170 p = 0,725747(d) Z(176,10) = 200 p = 0,008198(e) P(168 < X < 174) = P(X < 174) - P(X < 168) = 0,42074 - 0,211855 = 0,208885* Z(176,10) = 174 p = 0,42074* Z(176,10) = 168 p = 0,211855

Zad. 4

(a) Z(58,10) = 75 p = 0,044565 = 4,5%(b) Z(58,10) = 50 p = 0,211855 = 21,2%(c) Z(58,10) = 41,5515 p = 0,05(d) Z(58,10) = 74,4485 p = 0,05

Zad. 5

Z(36,5) = 24 p = 0,008198 Z(36,5) = 36 p = 0,5

Lab 3/4

- (1) Przeprowadzono pomiary dobowych dawek promieniowania nadfioletowego (w MED) w 32 miejscowościach południowej Polski. Obserwacje prowadzono w czerwcu. Uzyskano następujące średnie miesięczne wartości dobowych dawek w tych miejscowościach: 14, 15, 13, 12, 21, 15, 17, 20, 7, 12, 5, 9, 12, 13, 19, 4, 10, 11, 14, 9, 12, 11, 15, 14, 17, 13, 15, 16, 12, 14, 17, 14. Utworzyć szereg rozdzielczy przedziałowy i histogram, wyznaczyć podstawowe miary statystyczne oraz podać ich interpretację, sporządzić wykres ramka-wąsy.
- (2) Czas mocowania detalu toczonego na obrabiarce ma rozkład normalny. Zmierzono czasy mocowania dla n = 10 wylosowanych niezależnie robotników i otrzymano następujące wyniki (w sekundach): 10, 20, 16, 20, 18, 30, 24, 20, 17, 25. Oszacować metodą przedziałową przy współczynniku ufności 0.95 średni czas potrzebny na zamocowanie tego detalu na obrabiarce.
- (3) Pracochłonność 6 losowo wybranych detali (w minutach) kształtowała się następująco: 6, 3; 5, 9; 6, 2; 5, 8; 5, 7; 6, 1. Przyjmując współczynnik ufności 0,90 zbudować przedział ufności określający zróżnicowanie pracochłonności w całej populacji produkowanych detali. Zakładamy, że rozkład badanej cechy jest normalny.
- (4) W pewnym doświadczeniu fizycznym mierzy się czas występowania pewnego efektu świetlnego. Przeprowadzono n = 1000 niezależnych doświadczeń nad tym efektem i zbiór pogrupowanych wyników (w sekundach) jest następujący:

czas efektu	liczba doświadczeń
0,0-0,2	50
0,2-0,4	128
0,4-0,6	245
0,6-0,8	286
0,8-1,0	134
1,0-1,2	90
1,2-1,4	67

Przyjmując współczynnik ufności 0.95 oszacować metodą przedziałową średni czas trwania badanego efektu świetlnego.

		Tabela licz	ności: dawka: d	lawka promie	niowania nadfio	letowego (w MED) (zad1 (1))
ı		Liczba	Skumulow.	Procent	Skumulow.	
Od	Do		Liczba		Procent	
4	<=x<7	2	2	6,25000	6,2500	
7	<=x<10	3	5	9,37500	15,6250	
10	<=x<13	8	13	25,00000	40,6250	
13	<=x<16	12	25	37,50000	78,1250	
16	<=x<19	4	29	12,50000	90,6250	
19	<=x<22	3	32	9,37500	100,0000	
Braki		0	32	0,00000	100,0000	

	Statystyki opis	atystyki opisowe (zad1 (1))										
1	Nważnych	Średnia	Mediana	Moda	Liczność	Minimum	Maksimum	Dolny	Górny	Odch.std	Wsp.zmn.	Skośność
Zmienna	-				Mody			Kwartyl.	Kwartyl.			
dawka	32	13,18750	13,50000	Wielokr.	5	4,000000	21,00000	11,50000	15,00000	3,855767	29,23804	-0,339415

Średnia dobowa dwaka promieniowania wynosi 13,2 MED.

Współczynnik zemienności 29,2% - odchylenie standardowe stanowi 29,2% wartości średniej.

Mediana 13,5: w co najmniej 50% miejscowosći dawka promieniowa wynosi co najmyżej 13,5 MED (w co najmniej 50% miejscowosći dawka promieniowania wynosi co najmniej 13,5 MED).

Kwartyl dolny 11,5: w co najmniej 25% miejscowośći dawka promieniiowa wynosi co najwyżej 11,4 MED(i w co najmniej 75% mejscowości dawka promieniowania wynosi co najmniej 11,5 MED)

Kwartyl górny 15: w co najmniej 75% mejscowości dawka promieniowa wynosi co najwyżej 15 MED (i w co najmniej 25% miejscowości dawka promieniowania wynosi co najmniej 15 MED)

Współczynnik skośności -0.34

Jest asymetria lewostronna: w więcej niż 50% miejscowości dawka promieniownia przekracza średnią.

Miary statystyczne

Miary położenia - do określenia tej wartości zmiennej, wokół której skupiają się wszystkie pozostałe wartości

- Wartość średnia średnia arytmetyczna
- Mediana wartość środkowa w uporządkowanej niemalejąco próbie (co najmniej 50% jednostek ma wartości cechy równe medianie lub niższe od niej, a co najmniej 50% równe medianie lub wyższe od niej)
- Moda (dominanta, wartość modalna) najcześciej powtarzająca się wartość
- Kwartyl dolny (pierwszy) co najmniej 25% jednostek ma wartości cechy równe kwartylowi pierwszemu lub niższe od niego, a co najmniej 75% - równe mu lub wyższe.
- Kwartyl górny (trzeci) co najmniej 75% jednostek ma wartosci cechy równe kwartylowi trzeciemu lub niższe od niego, a co najmniej 25% - równe mu lub wyższe.

Miary rozproszenia (zmiennosci, zróżnicowania) - do badania stopnia zróżnicowania wartosci zmiennej

- Rozstęp
- Rozstęp kwartylowy różnica między kwartylem trzecim i pierwszym (długość przedziału, w którym mieści się 50% środkowych obserwacji)
- Wariancja: $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$, $\hat{s}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$
- Odchylenie standardowe: $s=\sqrt{s^2}$ informuje o przeciętnym odchyleniu wartości cechy od średniej arytmetycznej
- Współczynnik zmienności: $V_s = \frac{s}{x} \cdot 100\%$ określa, jaki procent wartości średniej stanowi odchylenie standardowe, im większy współczynnik zmienności, tym zbiorowość jest mniej jednorodna.

Miary asymetrii - do badania kierunku zróżnicowania wartości zmiennej

Współczynnik skośności (asymetrii) As

- $A_s = 0$ rozkład symetryczny
- A_s wyraźnie różny od 0 rozkład asymetryczny
 - $A_s < 0$ asymetria lewostronna
 - $A_s > 0$ asymetria prawostronna

wartość średnia – moda – mediar rozkład symetryczny

moda < mediana < wartosc sred asymetria prawostronna

wartość średnia < mediana < moda asymetria lewostronna

Zad2

Duub											
	Statystyki opis	Statystyki opisowe (Arkusz1)									
	Nważnych	Średnia	Ufność	Ufność	Minimum	Maksimum	Odch.std				
Zmienna			-95,000%	95,000%							
Zmn1	10	20,00000	16,08183	23,91817	10,00000	30,00000	5,477226				

P(16,08< m < 23,92)=0,95

Przedział (16,1;23,9) z prawdopodobieństwem równym 0,95 pokrywa nieznaną wartość średnią czasu mocowania detlau na obrabiarce.

Zad3

	Statystyki op	Statystyki opisowe (Arkusz1)									
	Średnia	Wariancja	Odch.std	P. ufności odch. std.	P. ufności odch. std.						
Zmienna				-90,000%	+90,000%						
Zmn2	6,000000	0,056000	0,236643	0,159036	0,494409						

Przedział (0,16;0,49) z prawdopodobieństwem rówym 0,90 pokrywa nieznaną wartość odchylenia standardowego pracochłonności detali.

czas efektu	<u> </u>	środek przedziału x	liczba doświadczeń n	xi*ni	(xi-średnia)^2*ni			
		xi	ni					
(0,2	0,1	50	5	16,404992			
0,2	0,4	0,3	128	38,4	17,78941952			
0,4	0,6	0,5	245	122,5	7,3156608			
0,6	0,8	0,7	286	200,2	0,21159424			
0,8	1	0,9	134	120,6	6,91705856			
1	1,2	1,1	90	99	16,4249856			
1,2	1,4	1,3	67	87,1	26,35644928			
alfa	0,05							
n	1000							
średnia	0,6728							
wariancja	0,09151167							
odch. Stand.	0,30250896							
u_alfa	1,95996398							
a.lewo	0,65405064							
b.prawo	0,69154936	Przedział(0,65;0,69) z prawdopodobieńs	twem równym 0,95				
	pokrywa nieznaną wartość srednią czasu występowania efektu świetlne							

Przedziały ufności dla średniej

 \bullet cecha Xma w populacji generalnej rozkład $N(m,\sigma),\,m,\,\sigma$ - nieznane

$$P\left(\overline{x} - t_{\alpha, n-1} \cdot \frac{s}{\sqrt{n-1}} < m < \overline{x} + t_{\alpha, n-1} \cdot \frac{s}{\sqrt{n-1}}\right) = 1 - \alpha$$

$$P\left(\overline{x} - t_{\alpha, n-1} \cdot \frac{\hat{s}}{\sqrt{n}} < m < \overline{x} + t_{\alpha, n-1} \cdot \frac{\hat{s}}{\sqrt{n}}\right) = 1 - \alpha$$

$$t_\alpha:\,P(|t|>t_{\alpha,n-1})=\alpha,$$

t ma rozkład t-Studenta o n-1 stopniach swobody $(t_{\alpha,n-1}=\mathbf{rozkl.t.odwr}(1-\frac{\alpha}{2};n-1))$

 \bullet cecha Xma w populacji generalnej rozkład dowolny, n - duże

$$\begin{split} P\left(\overline{x} - u_\alpha \cdot \frac{\hat{s}}{\sqrt{n}} < m < \overline{x} + u_\alpha \cdot \frac{\hat{s}}{\sqrt{n}}\right) &= 1 - \alpha \\ u_\alpha : \ P(|U| > u_\alpha) &= \alpha, \quad U \sim N(0,1) \\ &\qquad \qquad (u_\alpha = \mathbf{rozkl.normalny.s.odwr}(1 - \frac{\alpha}{2})) \end{split}$$

Przedziały ufności dla wariancji i odchylenia standardowego

 \bullet cecha Xma w populacji generalnej rozkład $N(m,\sigma)$

$$P\left(\frac{ns^2}{\chi^2_{\frac{\alpha}{2},n-1}} < \sigma^2 < \frac{ns^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \alpha$$

$$P(\chi^2 < \chi^2_{1-\frac{\alpha}{2},n-1}) = P(\chi^2 > \chi^2_{\frac{\alpha}{2},n-1}) = \frac{\alpha}{2},$$

 χ^2 ma rozklad chi-kwadrat o n-1 stopniach swobody

$$(\chi^2_{\frac{\alpha}{2},n-1}=\mathbf{rozkl.chi.odwr.ps}(\frac{\alpha}{2};n-1),\quad \chi^2_{1-\frac{\alpha}{2},n-1}=\mathbf{rozkl.chi.odwr.ps}(1-\frac{\alpha}{2};n-1))$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$
 (dla szeregu rozdzielczego $\bar{x} = \frac{1}{n} \sum \dot{x}_i \cdot n_i$)

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \qquad \qquad \text{(dla szeregu rozdzielczego } s^2 = \frac{1}{n} \sum_{i=1}^n (\dot{x}_i - \bar{x})^2 \cdot n_i)$$

$$\hat{s}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
 (dla szeregu rozdzielczego $\hat{s}^2 = \frac{1}{n-1} \sum_i (\dot{x}_i - \bar{x})^2 \cdot n_i$)

Lab 5

 Na plantacji agrestu pobrano w sposób losowy 26 owoców agrestu a następnie zważono je. Odnotowano następujace wyniki (w gramach):

$$3,5;\ 5,2;\ 4,8;\ 4,6;\ 4,4;\ 4,5;\ 6,2;\ 5,8;\ 4,2;\ 3,8;\ 6,0;\ 7,0,\ 4,2;$$

Sprawdzić, czy na poziomie istotności $\alpha=0,05$ można twierdzić, że waga owoców agrestu ma rozkład normalny.

(2) W pewnym biochemicznym doświadczeniu bada się czas życia pewnych żywych komórek w pewnym środowisku. Dokonano 8 pomiarów i otrzymano następujące czasy życia tych komórek w badanym środowisku (w godz):

$$4,7, 5,3, 4,0, 3,8, 6,2, 5,5, 4,5, 6,0.$$

Przyjmując poziom istotności $\alpha = 0,05$ zweryfikować hipotezę, że średni czas życia komórek w tym środowisku jest większy niż 4 godziny.

(3) Spośród dzieci uczęszczających do przedszkoli wylosowano dwie próby złożone z 10 chłopców oraz 8 dziewcząt. Następnie dokonano pomiaru czasu ich snu po obiedzie. Dla chłopców otrzymano następujące wyniki (w minutach):

analogicznie dla dziewcząt:

Na poziomie istotności $\alpha = 0,05$ zweryfikować hipotezę o jednakowym czasie snu w obu grupach.

- (4) W jednym z pomieszczeń fabrycznych temperatura powinna utrzymywac się na poziomie 4°C. W ciągu roku dokonano 60 pomiarów temperatury w tym pomieszczeniu, na podstawie których stwierdzono, że średnia temperatura wynosiła 3,74°C, a odchylenie standardowe s = 1,4°C. Czy można uznać, że średnia temperatura w tym pomieszczeniu spełnia normę? Przyjąć poziom istotności α = 0,05. Zakładamy, że badana zmienna ma rozkład normalny.
- (5) W wylosowanej próbie 100 pracownic dużego zakładu przemysłowego, średni czas przebywania ich na zwolnieniach lekarskich w ciągu roku wyniósł $\bar{x}=38$ dni, a odchylenie standardowe s=16 dni. Czy można na tej podstawie twierdzić, że średni roczny czas zwolnień lekarskich dla pracownic tego zakładu jest dłuższy niż 31 dni? Przyjąć poziom istotności $\alpha=0,01$. Zakładamy, że badana zmienna ma rozkład normalny.
- (6) Spośród studentów pewnego wydziału wylosowano niezaleznie 10 studentów IV roku i otrzymano dla nich następujące średnie oceny uzyskane w sesji egzaminacyjnej na I roku studiów (xi) oraz na IV roku studiów (yi):

		4,0								
y_i	4,2	3,9	3,8	4,5	4,2	3,4	3,8	3,9	4,6	4,0

- Zbadać, czy średnia ocen na IV roku zależy od średniej ocen na I roku, przeanalizować istotność tej zależności.
- Znaleźć oszacowanie liniowej funkcji regresji cechy Y względem cechy X.
- != p<alfa odrzucamy H0 na H1

p>alfa H0 zostaje (obustronne)

Przy badaniu hipotezy:

- 1. badamy rozkład normalny -> wykres normalności -> test wilka
- 2. próby niezależne to badamy wariancje -> statystyki podstawowe i tabele -> Test t dla (zależy co badamy) -> Testy jednorodności wariancji
- 3. badamy hipotezę p

Testy t-Studenta w programie Statistica

test t dla pojedyńczej próby

 $H_0: m = m_0 \quad (m_0 - \text{wartość hipotetyczna})$ $H_1: m \neq m_0 \quad \text{lub} \quad m < m_0 \quad \text{lub} \quad m > m_0$

założenie: normalność rozkładu badanej zmiennej

test t dla dwóch prób niezależnych

 $H_0: m_1 = m_2$

 $H_1: m_1 \neq m_2$ lub $m_1 < m_2$ lub $m_1 > m_2$

założenia:

- normalność rozkładu
- jednorodność wariancji

• test t dla dwóch prób zależnych

 $H_0: m_1 = m_2$

 $H_1: m_1 \neq m_2$ lub $m_1 < m_2$ lub $m_1 > m_2$

założenie: normalność rozkładu różnic


```
1)
H0 - średni czas życia komórek jest równy 4
H1 - średni czas życia komówek jest większy od 4

2)
robimy rozkład t-studenta bo takie sie robi dla hipotez opartych na średnich
3)

Żeby móc zrobić testy t-studenta trzeba sprawdzić czy badana zmienna ma rozkład normalny:
{
H0 - ma rozkład normalny
H1 - nie ma rozkładu normalnego
wykres robimy jak w poprzednim zadaniu i otrzymujemy:
```


p > alfa więc nie ma podstaw do odrzucenia H0(tej z rozkładem normalnym) - na poziomie istotniości 0.05 można przyjąć, że rozkład jest normalny $\}$

4) Po sprawdzeniu że rozkład długości życia komórek jest normalny możemy zrobić testy t-studenta :

Statystyka -> statystyki podstawowe i tabele -> Test t dla pojedynczej próby -> w polu testuj średnie względem wpisać liczbę względem której robimy test (w tym zadaniu 4)

	Test średnic	est średnich względem stałej wartości odniesienia (Arkusz3)								
	Średnia	Odch.st.	Ważnych	Bł. std.	Odniesienie	t	df	р		
Zmienna					Stała					
Zmn1	5,000000	0,891227	8	0,315096	4,000000	3,173632	7	0,015629		

5)
Odrzucamy HO na rzecz H1, bo p/2 < alfa
(Średni czas życia komórek jest większy niż 4h)

Zad.3

```
1)  
H0 - czas snu w obu grupach jest taki sam ( porównywalny ) -> m1 = m2  
H1 - czas snu w obu grupach jest różny -> m1!=m2
```

2) Sprawdzamy rozkłady normalne HOc - ma rozkład normalny (chłopcy) H1c - nie ma rozkładu normalnego (chłopcy)

H0d - ma rozkład normalny (dziewczynki)

Hld - nie ma rozkładu normalnego (dziewczynki)

pch > alfa -> nie ma podstaw do odrzucenia HOc pdz > alfa -> nie ma podstaw do odrzucenia HOd

W obu przypadkach mamy rozkłady normalne.

3)

testy dla grup niezależnych

założenie: rozkłady zmiennych są normalne

równość wariancji

wtedy test t dla prób niezależnych

jeżeli wariancje są różne -> test t z uwzględnieniem wariancji

4) Sprawdzamy jednorodność wariancji

Statystyka -> statystyki podstawowe i tabele -> Test t dla prób niezależnych wzgl. zmiennych -> w karcie opcje zaznaczemy test levena i tego drugiego żeby dostać wariancje

Testy dla prób niezależnych (Arkusz7)								
	Uwaga: Zmienne traktowane są jako niezależne próby.							
	Średnia	Średnia	t	df	р	Nważnych	Nważnych	
Grupa 1 wz. Grupy 2	Grupa 1	Grupa 2				Grupa 1	Grupa 2	
Chłopcy vs. Dupy	56,00000	70,00000	-1,81607	16	0,088144	10	8	

	iloraz F	р	Levene'a	df	р	Brn-Fors	df	р
	Wariancje	Wariancje	F(1,df)	Levene'a	Levene'a	F(1,df)	Brn-Fors	Brn-Fors
=	1,331907	0,721336	0,619002	16	0,442917	0,546807	16	0,470336

Dla testu Browna-Forsytha p=0.47

dla testu Levene'a p=0.44

dla testu F p=0.72;

we wszystkich testach p>alfa zatem nie ma podstaw do odrzucenia hipotezy o równości wariancji

5) Teraz test t-studenta odczytujemy z tabelki powyżej tam p = 0.088144 > 0.05 zatem nie ma podstaw do odrzucenia hipotezy HO o jednakowym czasie snu w obu grupach.

gdybyśmy wzieli H1 jako m1<m2 wychodzi nam p/2 < 0.05 w związku z czym odrzucamy H0

jeżeli byłoby czas snu i płeć wtedy sprawdzamy normalność: wykresy -> wykresy skategoryzowane -> wykresy normalności i tam zaznaczamy test shearera wilka

Zad 4

Ho m=4 (\acute{s} rednia temp)

H1 m! = 4

p=0,1556 > a

Odrzucamy HO na rzecz H1.

Zad 5

Wyślij lub drukuj wyniki do okna raportu dla każdego obliczenia Różnica między dwoma współczynnikami korelacji r1: 0.00	Inne testy istotności: Arkusz1	?	×
r1: 0,00 N1: 10 Dednostronny r2: 0,00 Dwustronny Różnica między dwiema średnimi (rozkład nomalny) Śr.1: 38 Odch.std.1: 16 N1: 100 Pp = ,0000 Śr.2: 31 Odch.std.2: 16 N2: 100 Dwustronny Średnia z pomiarów 1 a średnia z populacji 2 Różnica między dwoma wskaźnikami struktury % 1: ,500000 N1: 10 Dednostronny Oblicz	Wyślij lub drukuj wyniki do okna raportu dla każdego obliczenia	- 1	Anuluj
r2: 0.00 N2: 10 Dwustronny Różnica między dwiema średnimi (rozkład nomalny) Śr.1: 38 Odch.std.1: 16 N1: 100 P = .0000 Oblicz Śr.2: 31 Jednostronny Średnia z pomiarów 1 a średnia z populacji 2 Różnica między dwoma wskaźnikami struktury % 1: .500000 N1: 10 Jednostronny Oblicz	Różnica między dwoma współczynnikami korelacji		
r2: 0,00 N2: 10 Dwustronny Różnica między dwiema średnimi (rozkład nomalny) Śr.1: 38 Odch.std.1: 16 N1: 100 p= ,0000 Oblicz Śr.2: 31 Jednostronny Średnia z pomiarów 1 a średnia z populacji 2 Różnica między dwoma wskaźnikami struktury % 1: ,500000 N1: 10 Jednostronny Oblicz	_ 1 0000 Ciediosionily	(Oblicz
Śr.1: 38	r2: 0,00 N2: 10 P 1,0000 Dwustronny		
Śr.2: 31	Różnica między dwiema średnimi (rozkład normalny)		
Srednia z pomiarów 1 a średnia z populacji 2 Różnica między dwoma wskaźnikami struktury % 1:			Oblicz
Srednia z pomiarow 1 a srednia z populacji 2 Różnica między dwoma wskaźnikami struktury % 1:	3.2. 31 State 10 11 112 100 11		
% 1: ,50000(N1: 10 Jednostronny Oblicz	✓ Średnia z pomiarów 1 a średnia z populacji 2 Obwustron	ny	
- 1 0000 Cocaroaccing	Różnica między dwoma wskaźnikami struktury		
		(Oblicz
% 2: ,500000 N2: 10 Dwustronny	% 2: .500000 N2: 10 P 1,0000 Dwustronny		

h0 m = 31

h1 m > 31

p/2 = 0,000 < a

Nie ma podstaw do odrzucenia HO.

Lab 6

Wprowadzenie:

Statystyki podstawowe i tabele -> macierze korelacji -> dwie listy zmiennych -> wi**ę**cej -> 2W rozrzutu ...wracamy -> wyswietl dokładną tabelę -> podsumowanie

Współczynnik korelacji r(X,Y) wynosi ... co świadczy, o (silnej zależności, jak jest bliżej 1, słabej jak jest bliżej 0)

Współczynnik determinacji $\mathbf{r2}$ wynosi ..., co oznacza, że ... jest wyjaśniona w ..% przez ...

H0: wsp korelacji = 0

H1: wsp korelacji != 0

Zad 6

Współczynnik korelacji r(X,Y) wynosi 0,83 co świadczy, o silnej zależności średniej ocen na IV roku od sredniej ocen na I roku.

0,830619 0,689928 4,219063 0,002920

Współczynnik determinacji r2 wynosi 0,69 , co oznacza, że średnia ocen na IV roku jest wyjaśniona w 69% przez średnią ocen na I roku.

1,617387 0,621807

-0.591499 1.109553

H0: wsp korelacji = 0

0.356059

H1: wsp korelacji != 0

p = 0,029 < a= 0,05 zatem współczynnik korelacji jest istotnie rozny od zera.

Znaleźć oszacowanie liniowej funkcji regresji cechy Y względem cechy X.

Aby znaleźć oszacowanie liniowej funkcji regresji musimy obliczyć błąd standardowy estymacji:

Statystyka -> regresja wieloraka (Ważna jest kolejność zmiennych, najpierw podejmy zmienna zależna, czyli IV rok i dalej I rok, klikamy ok i podsumowanie)

	Podsumowa R= ,8306192 F(1,8)=17,80	26 R^2= ,689	92835 Popra	w. R2= ,6511	6940	
	b*	Bł. std.	b	Bł. std.	t(8)	р
N=10		z b*		z b		
W. wolny			1,617387	0,575690	2,809475	0,022862
xi	0,830619	0,196873	0,621807	0,147380	4,219063	0,002920

Zależność średniej ocen na IV roku od średniej na I roku można zapisać wzorem: y = 0,62x + 1,62 +/- 0,21 (+/- to bład estymacji)

Kolos_1

- (1) Wadliwość procesu produkcyjnego wynosi 10%. Obliczyć prawdopodobieństwo, że na dziesięć wylosowanych produktów będzie mniej niż 8 dobrych.
- (2) Procentowa zawartość tłuszczu w mleku 50 krów wynosi: 3.35, 4.16, 3.24, 4.23, 3.42, 3.73, 3.56, 3.98, 3.70, 4.47, 3.94, 3.92, 3.62, 3.53, 3.93, 4.16, 3.22, 4.10, 3.72, 4.26, 3.92, 3.66, 3.78, 3.96, 3.81, 4.28, 3.50, 3.39, 3.83, 4.27, 4.26, 3.71, 3.93, 4.27 4.06, 3.78, 3.96, 3.89, 3.93, 4.06, 3.99, 3.77, 4.22, 3.78, 3.66, 3.41, 3.53, 3.54, 4.08, 3.44
 - (a) Dla powyższych danych skonstruować szereg rozdzielczy (7 przedziałów, zaczynając o 3.2) oraz histogram.
 - (b) Na poziomie istotności 0,01 zweryfikować hipotezę, że średnia zawartość tłuszczu w mle jest większa, niż 3,7%.
 - (c) Wyznaczyć współczynnik zmienności i podać jego interpretację.
 - (d) Wyznaczyć kwartyl dolny i podać jego interpretację.
- B) Dzienny przebieg taksówek pewnej korporacji charakteryzował szereg rozdzielczy:

przebieg w km	0.40	40-80	80-120	120-160	160-200
przebieg w km	0-40	40-00	65	28	8
liczba taksówek	26	82	00		

Obliczyć średnią arytmetyczną oraz odchylenie standardowe.

Kolos_2

- (1) Wśród ziaren pszenicy znajduje się 0,6% ziaren chwastów. Jakie jest prawdopodobieństwo, że wśród 50 losowo wybranych ziaren znajduje się co najmniej 45 ziaren pszenicy?
- (2) Na podstawie danych pogrupowanych dotyczących wielkości gospodarstw rolnych w pewnej wsi, oszacować przedzialowo średnią wielkość gospodarstwa. Przyjąć poziom ufności 0.90.

			-		70.00	1 /20 20	(10 14-	1 (34 36
wielkość gospodarstw w ha	(0,2>	(2,4>	(4.6>	(6,8>	(8,10>	(10,12>	(12,14>	(14,10>
wielkość gospodarstw w ha liczba gospodarstw (n _i)	5	5	6	29	23	11	9	4

(3) W dwóch niezależnych próbach osób , które poddały się dwóm różnym kuracjom odchudzającym, otrzymano (X - ubytek wagi w kg):

$$n_1 = 16$$
, $\bar{x}_1 = 5, 4$, $s_1 = 2, 4$, $n_2 = 11$, $\bar{x}_2 = 3, 4$, $s_2 = 2, 8$.

Czy są podstawy by twiedzić na poziomie istotności 0,05, że średni ubytek wagi przy stosowaniu pierwszej kuracji jest wyższy niż w przypadku drugiej kuracji? Zakładamy, że rozkład ubytków wagi w każdym przypadku jest normalny.