In diesem Kapitel werden die physikalische Vorgänge des Versuches beschrieben. Es geschehen drei Vorgänge, der Raketentrieb, einen elastischen Stoss und einen inelastischen Stoss. Die gegebenen Massen sind:

- Gewicht(m) = 2kg
- Velocity(v) = 2m/s
- Würfelseite = 1.5m

Raketenantrieb 0.1

Um die Kraft des Raketenantriebs zu berechnen nehmen wir die gewünschte Geschwindigkeit und berechnen damit die Beschleunigung,a. Da Kraft:

$$F = m * a$$
.

Um dieses Anfangwertproblems zu lösen nehmen wir die Formel

$$\dot{v} = a$$

$$2m * s^{-1} \to -2m * s^{-2} \to a = \left[\frac{2m}{s^2}\right]$$

Somit:
$$F = 2kg * \frac{2m}{s^2} = > \frac{4kg*m}{s^2} = 4N$$

Somit: $F=2kg*\frac{2m}{s^2}=>\frac{4kg*m}{s^2}=4N$ 4N werden deshalb als konstante Kraft angewendet, damit auch die gewünschte Geschwindigkeit erreicht wird.

0.2Elastischer Stoss

Beim elastischen Stoss ist die kinetische Energie vom Stosspartner vor und nach der Kollision gleich. Kinetische Energie wird mit folgender Formel berechnet:

$$\tfrac{1}{2}*m*v^2$$

Setzt man die Massen in diesem Projekt ein bekommt man:

$$\tfrac{1}{2}*2kg*(\tfrac{2m}{s})^2$$

0.3 Inelastischer Stoss

0.4