Assignment_2 Solution

1. Corner Detection

a.

- 1. Check the local neighborhood to see if there are more than one direction or orientation of gradient.
- 2. The number of principal directions is derived as follows:
 - 1. Find correlation matrix in local neighborhood
 - 2. Find eigenvalues of matrix
 - 3. Check that $\lambda_1 \cdot \lambda_2 > au$

b.

Given $\{p_i\}_{i=1}^n$, find v to minimize projection of points p_i in v:

$$egin{aligned} E(v) &= \sum_{i=1}^n (p_i v)^2 = v^T \left(\sum_{i=1}^n p_i p_i^T
ight) v \
abla E(v) &= 0 \Rightarrow Av = 0 \end{aligned}$$

The solution is the eigenvector of matrix \boldsymbol{A} belonging to zero eigenvalue.

$$\mathbf{c.} \begin{bmatrix} 4 & 6 \\ 6 & 44 \end{bmatrix}$$

d. $\lambda_1\cdot\lambda_2> au$, where λ_1 and λ_2 are the eigenvalue of gradient correlation matrix, and au is the threshold

e.

- Get λ_1 and λ_2 for each point
- ullet Compute $\lambda_1 \cdot \lambda_2$ and sort in decreasing order
- Select top points as corner and delete the neighboring points
- Stop deleting corner candidates after a desired percentage of the corners have been detected

f.
$$C(G)=\det(G)-k\cdot tr^2(G)$$
, where $\det(G)$ is $\lambda_1\cdot\lambda_2$, and $tr^2(G)$ is $\lambda_1+\lambda_2$

g.

- 1. $P=C^{-1}v$, the condition is $\lambda_1\cdot\lambda_2> au$ in C.
- 2. C must be a non-singular matrix

h.

1. Point characterized using HOG:

- Take window and split into blocks
- Compute histogram of gradient orientations
- Concatenate histogram
- 2. A good characterization of feature points should be translation, rotation, scale, and illumination invariant.
- i. First a set of orientation histograms is created on 4×4 pixel neighborhoods with 8 bins each. These histograms are computed from magnitude and orientation values of samples in a 16×16 region around the key point such that each histogram contains samples from a 4×4 subregion of the original neighborhood region. The magnitudes are further weighted by a Gaussian function with σ equal to one half the width of descriptor window. The descriptor then becomes a vector of all the values of these histograms. Since there are $4\times 4=16$ histograms each with 8 bins the vector has 128 elements.

2. Line Detection

- a. The range of slope and y-intercept are infinity
- **b.** Multiple solutions:

Equation	Graph
$a=-b, c=10\sqrt{2}a$ $a=b, c=-10\sqrt{2}a$ $a=-b, c=10\sqrt{2}b$ $a=b, c=10\sqrt{2}b$	1. 2. $10\sqrt{2}$ 4. 3. $10\sqrt{2}$

- c. Line appears as sinusoid curve
- **d.** Each edge point is transformed to a line in the Hough space, and the areas where most lines intersect in the Hough space is interpreted as true lines in the edge map.

e.

- Big bin: fewer votes, faster, lower accuracy
- Small bin: more votes, slower, higher accuracy
- **f.** Instead of $heta \in [0,180] o heta \in [heta \Delta heta, heta + \Delta heta]$

3. Model Fitting 1

a.

- 1. With y=ax+b, we cannot model vertical or near vertical lines because the slope dy/dx would have to be infinite. This shows that we need to be careful when choosing the model so that it can describe all possible (and not only a subset) of observations.
- 2. Vertical and near vertical lines.

b.
$$[1/\sqrt{5}, 2/\sqrt{5}, -2]^T$$

C.

Explicit Equation:

1. Explicit line equation: y = ax + b

$$egin{aligned} E(a,b) &= \sum_{i=1}^m (y_i - (ax_i + b))^2 \ a^*, b^* &= rg \min_{a,b} E(a,b) \ &\Rightarrow
abla E(a,b) = 0 \Rightarrow a^*, b^* \end{aligned}$$

2. The equation need to solve:

$$x=A^{-1}b$$
 where $A=egin{bmatrix} \sum x_i^2 & \sum x_i \ \sum x_i & m \end{bmatrix}$ and $b=egin{bmatrix} \sum x_iy_i \ \sum y_i \end{bmatrix}$

Implicit Equation:

- 1. Implicit line equation: $l^T x = 0$
- 2. The equation need to solve:

$$E(l) = l^T S l o
abla E(l) = 0 o S l = 0$$
, where $l = egin{bmatrix} \sum x_i^2 & \sum x_i y_i & \sum x_i \\ \sum x_i y_i & \sum y_i^2 & \sum y_i \\ \sum x_i & \sum y_i & n \end{bmatrix}$

d.
$$\begin{bmatrix} 5 & 15 & 3 \\ 15 & 46 & 10 \\ 3 & 10 & 3 \end{bmatrix}$$

e.

- 1. Implicit equation: $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- 2. Constraint: $b^2 4ac < 0$

f.

 \circ The solution is the eigenvector of $S^{-1}C$ belonging to its negative eigenvalue

2. Short axis:

algebraic distance: $q_i\equiv l^Tp_ipprox rac{d_i}{d_i+r_i}\Rightarrow rac{d}{d+r_1}>rac{d}{d+r_2}$, where r_1 is the short axis and r_2 is the long axis

g.

1.
$$E(l) = \sum_i rac{|f(P_i;l)|}{|
abla f(P_i;l)|}$$

2. No explicit solution to $abla E(l)=0\Rightarrow$ iterative numerical solution (gradient decent)

h.

$$egin{aligned} E(arphi(s)) &= \int \left(lpha E_{ ext{continuity}} + eta E_{ ext{curvature}} + \gamma E_{ ext{image}}
ight) ds \ \end{aligned} \ ext{Where } E_{ ext{continuity}} &= \left| rac{\partial arphi}{\partial s}
ight|^2, \quad E_{ ext{curvature}} &= \left| rac{\partial^2 arphi}{\partial s^2}
ight|^2, \quad E_{ ext{image}} &= \Sigma - \left|
abla I\left(P_i
ight)
ight|^2 \end{aligned}$$

i.

$$\begin{split} \bullet & E_{\text{continuity}} = \left|\frac{\partial \varphi}{\partial s}\right|^2 = \sum |P_i - P_{i-1}|^2 \\ \bullet & E_{\text{curvature}} = \left|\frac{\partial^2 \varphi}{\partial s^2}\right|^2 = \sum |(P_{i+1} - P_i) - (P_i - P_{i-1})|^2 = \sum |P_{i+1} - 2P_i - P_{i-1}|^2 \end{aligned}$$

j. In high curvature point, we set $eta_i=0$ in order to accommodate for sharp corners:

If
$$|P_{i+1}-2P_i-P_{i-1}|> au
ightarrow eta_i=0$$

4. Model Fitting 2

a.
$$\begin{bmatrix} 10 & 14 \\ 14 & 20 \end{bmatrix}$$

b.

1.
$$-x + y = 0$$

2. Normalized normal: $[-1/\sqrt{2},1/\sqrt{2}]$

$$c. -2.5$$

d. 1

e.
$$\begin{bmatrix} 10 & 14 & 4 \\ 14 & 20 & 6 \\ 4 & 6 & 2 \end{bmatrix}$$

f.
$$1/2$$

g.

- Approximated geometric distance: 1/2
- Algebraic distance: 1

h.

- $E_{
 m continuity} = 2$
- $E_{\text{curvature}} = 0$
- i. $\beta = 0$

5. Robust Estimation

a.

- 1. Outliers are the observation point that is distant from other observations.
- 2. The fundamental problem is that the model fitting can be mismatched by the influence of outlier.

b.

- 1. $E(\theta) = \sum_{i=1}^n \xi_{\sigma}(d(x_i; \theta))$
- 2. In robust estimation, the function give low weight for high value outlier, however the least squares objective function give higher weight for high value outlier.

c.

- 1. $\xi_{\sigma}(x) = x^2/(x^2 + \sigma^2)$
- 2. Advantage:
 - we can control the loss function
 - the weight of outliers is up to 1 (has upper bound)
- 3. Start with large σ and decrease as converging: $\sigma^{(n)}=1.5 imes \mathrm{median}\{d(x_i; heta^{(n-1)})\}$

d. 1/2

e.

- 1. The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed data. Given a dataset whose data elements contain both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting result.
- 2. It should be small, because it can avoid include more outliers.

f.

- 1. Parameter of RANSAC algorithm:
 - \circ n: is the number of points at each evaluation
 - d: is the minimum number of points needed
 - *t*: is the threshold to identify inliers
 - k: is the number of trials

2.
$$k = \log(1-p)/\log(1-w^n)$$

g.
$$k = \log(0.01)/\log(1 - 0.9^n)$$

6. Segmentation and Recognition

a. The objective of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze.

b.

- 1. The merge approach starts with each pixel as a separate cluster and iterates merging clusters,
- 2. The split approach starts with all pixels as one cluster and iterating splitting the cluster.

c. k-means is to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.

- Select *k* (number of clusters)
- Select initial guess of mean: $\mu_1, \mu_2, \dots, \mu_k$
- Repeat while μ_j change:

$$\circ \ \ l_i = rg \min_{j \in [1,k]} \|f_i - m_j\|^2$$

$$\circ \ \ s_j = \{i|l_i = j\}$$

$$\circ$$
 $m_j = \sum_{i \in s_i} f_i/|s_j|$

d.

- 1. Difference between graph cut and normalized cut:
 - o In graph cut, the weight is computed as: $w_{pq} = \exp(-\|f(p) f(q\|))$ and we remove weak links to generate segmentations.
 - In normalized cut, instead of just using the weight, we add cut cost to weights then we normalize the it by taking account the size of produced clusters.
- 2. To avoid generating single node

e.

$$\bullet \ \ \text{Similarity matrix: } W = \begin{bmatrix} w_{1,1} & \dots & w_{1,100} \\ \vdots & \ddots & \vdots \\ w_{100,1} & \dots & w_{100,100} \end{bmatrix}_{100\times100}$$

$$\bullet \ \ \text{Weighted degree matrix: } D = \begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & d_{100} \end{bmatrix}_{100\times100}^{100\times100} \text{ where } d_i = \sum_{j=1}^{100} w_{i,j}$$

• Laplacian matrix: L = D - W

f. Cut is a sequence of number +1 or -1 ($X=\{1,-1\}^n$) to present two group we created after cut. If the X(i)=1, the node i belonging to cluster A. If X(i)=-1, the node i belonging to cluster B.

$$egin{aligned} N_{ ext{cut}}(A,B) &= rac{Cut(A,B)}{Vol(A)} + rac{Cut(A,B)}{Vol(B)} \ &= rac{\sum_{(x_i>0,x_j<0)}(-W_{i,j}x_ix_j)}{\sum_{x_i>0}d_i} + rac{\sum_{(x_i>0,x_j<0)}(-W_{i,j}x_ix_j)}{\sum_{x_j<0}d_j} \end{aligned}$$

g.

$$egin{aligned} \min_x N_{ ext{cut}}(x) &= \min_y rac{y^T (D-W) y}{y^T D y} \ ext{s.t.} \quad y^T D \mathbf{1} &= 0 \quad ext{where} \quad \mathbf{1} \equiv [1, \dots, 1] \end{aligned}$$

h.

$$egin{aligned} \min_x N_{ ext{cut}}(x) &= \min_y rac{y^T (D-W) y}{y^T D y} \ ext{s.t.} \quad y^T D \mathbf{1} &= 0 \quad ext{where} \quad \mathbf{1} \equiv [1, \dots, 1] \end{aligned}$$

Solution $(D-W)y=\lambda Dy\Rightarrow$ The eigenvector of the second smallest eigenvalue is the solution

i.

- 1. Eigenfaces approach:
 - o map image to lower dimensional vector using PCA
 - o measure similarity to templates in lower dimensional space
- 2. Limitation:
 - In low dimensional space, it is less sensitive to small variations

j.

- 1. bag-of-words approach:
 - Extract features (e.g. SIFT or HOG)
 - Cluster features to create a codebook
 - o Compute a distribution of code words in each class
 - Classify using distribution of code word
- 2. Limitation:
 - The classifier looks different local neighborhoods to make decision but not look the relationship between them.