By Mistures

Stefan Franssen — Delft Instritute of Applied Mathematics, TU Delft — s.e.m.p.franssen@tudelft.nl Joint work with Jeanne Nguyen and Aad van der Vaart

Mixtures

Suppose we observe a random sample from a mixture density of the form

 $x \mapsto p_{\theta,F}(x) := \int p_{\theta}(x|z) dF(z).$ (1)

The kernel $x \mapsto p_{\theta}(x|z)$ is the density of a random variable X given a latent random variable Z, which has marginal distribution F. The kernel is indexed by a parameter $\theta \in \mathbb{R}^d$ that we wish to estimate.

A prior

We endow q with a prior π ;

We endow F with a Dirichlet process prior.

Earlier literature

Frequentist

- Consistency is understood in some generality [1];
- In a few models MLE is asymptotically efficient [2–4].

Frequentist Bayes

Semiparametric BvM [5, 6];

Parametric Bvm [6];

Two consistency theorems

Lemma 1. Assume the assumptions as in [1] and suppose that (θ_0, F_0) belongs to the Kullback-Leibler support of Π . Then the posterior distribution is consistent at (θ_0, F_0) .

Lemma 2. Suppose that $\{\log(p_{\theta,F})\}\$ is Glivenko-Cantelli, (θ_0, F_0) is identifiable and that (θ_0, F_0) belongs to the Kullback-Leibler support of Π . Then the posterior distribution is consistent at (θ_0, F_0) .

The Bernstein-von Mises theorem for semiparametric mixtures

Theorem 3. If $\Pi_n(\theta \in \Theta_n, F \in \mathcal{F}_n | X_1, \dots, X_n) \to 1$, in P_0^n -probability,

$$\sqrt{n}(\theta - \hat{\theta}_n)|X^{(n)} \leadsto N(0, \tilde{I}_0^{-1}).$$

Verifying the assumptions

The likelihood condition

For given $(\theta, F) \in \Theta \times \mathcal{F}$, assume that there exists a map $t \mapsto F_t(\theta, F)$ from a given neighbourhood of $0 \in \mathbb{R}^d$ to \mathcal{F} such that, for given measurable subsets $\Theta_n \subset \Theta$ and $\mathcal{F}_n \subset \mathcal{F}$,

$$\ell_n \left(\theta + \frac{t}{\sqrt{n}}, F_{t/\sqrt{n}}(\theta, F) \right) - \ell_n(\theta, F)$$

$$= t^T \mathbb{G}_n \tilde{\ell}_0 - t^T \left(\tilde{I}_0 + R_{n,1}(\theta, F) \right) \sqrt{n} (\theta - \theta_0)$$

$$- \frac{1}{2} t^T \tilde{I}_0 t + R_{n,2}(\theta, F),$$

for a matrix-valued process $R_{n,1}$ and and scalar process $R_{n,2}$ such that

$$\sup_{\theta \in \Theta_n, F \in \mathcal{F}_n} ||R_{n,1}(\theta, F)|| + |R_{n,2}(\theta, F)| \xrightarrow{P_0^n} 0.$$
(2)

and (2)-(5) hold, then

Rewriting condition (2)

Condition (2) can be split in a random and a deterministic part:

$$\mathbb{G}_{n} \left[\sqrt{n} \log \frac{p_{\theta+n^{-1/2}t, F_{n^{-1/2}t}(\theta, F)}}{p_{\theta, F}} - t^{T} \tilde{\ell}_{0} \right] = o_{P}(1),$$

$$n P_{0} \log \frac{p_{\theta+n^{-1/2}t, F_{n^{-1/2}t}(\theta, F)}}{p_{\theta, F}} =$$

$$- t^{T} (\tilde{I}_{0} + o_{P}(1)) \sqrt{n}(\theta - \theta_{0}) - \frac{1}{2} t^{T} \tilde{I}_{0} t + o_{P}(1).$$
(3)

Verifying (2)

Lemma 4. Suppose that the map $t \mapsto \ell(t; \theta, F)(x) := \log p_{\theta+n^{-1/2}t, F_{n^{-1/2}t}(\theta, F)}(x)$ is twice continuously differentiable in a neighbourhood of zero, for every $(\theta, F) \in \Theta_n \times \mathcal{F}_n$ and $x \in \mathcal{X}$.

- If the classes of functions $\{\dot{\ell}(t/\sqrt{n};\theta,F): ||t|| < 1, (\theta,F) \in \Theta_n \times \mathcal{F}_n\}$ are contained in a given P_0 -Donsker class and $P_0\|\dot{\ell}(t_n/\sqrt{n};\theta_n,F_n)-\tilde{\ell}_0\|^2\to 0$, for every $\|t_n\|<1$ and $(\theta_n,F_n)\in\Theta_n\times\mathcal{F}_n$, then (3) is valid.
- If $P_0\|\ddot{\ell}(t_n/\sqrt{n};\theta_n,F_n)-\tilde{I}_0\|\to 0$, for every $\|t_n\|\leq 1$ and $(\theta_n,F_n)\in\Theta_n\times\mathcal{F}_n$, then (4) is satisfied if also

$$\sup_{\theta \in \Theta_n, F \in \mathcal{F}_n} \frac{\|P_0 \dot{\ell}(0; \theta, F) + \tilde{I}_0(\theta - \theta_0)\|}{\|\theta - \theta_0\| + n^{-1/2}} \xrightarrow{P_0^n} 0.$$

(Under some Donsker conditions and smoothness assumptions we can verify the likelihood condition)

The change of measure condition

$$\frac{\int_{\Theta_n \times \mathcal{F}_n} e^{\ell_n \left(\theta - t/\sqrt{n}, F_{-t/\sqrt{n}}(\theta, F)\right)} d\Pi(\theta, F)}{\int_{\Theta_n \times \mathcal{F}_n} e^{\ell_n \left(\theta, F\right)} d\Pi(\theta, F)} \xrightarrow{P_0^n} 1.$$
 (5)

Verifying (5) for DP mixtures

Lemma 5. Let G be a atomless probability measure with a density g. Assume that we model $(\theta, F) \sim \pi \times$ DP(MG) and let π have a density h. Assume the posterior is consistent of p_{θ_0,F_0} Let T be an open neighbourhood of 0. Denote $\Pi_t = \Pi \circ (\theta_t, F_t)$. Assume that $(\theta_t, F_t) = (\theta + t, F \circ \phi_t^{-1}(\theta))$. In addition, suppose that there exists constants $c_t > 0$ such that for all $\theta \in \Theta_n$, $F \in \mathcal{F}_n$, $t \in T$ the following two smoothness conditions hold:

- Smoothness in
$$G$$
: $\left\| \frac{g(\phi_{\underline{t}}^{-1}(\theta)(z))\phi_{\underline{t}}^{-1'}(\theta)(z)}{g(z)} - 1 \right\| \leq \frac{C_t}{\sqrt{n}};$

Smoothness in h: $\left\| \frac{h(\theta + \frac{t}{\sqrt{n}})}{h(\theta)} - 1 \right\| \leq \frac{C_t}{\sqrt{n}}$.

Finally assume that for all $t \in T$:

$$\frac{e^{-C\sqrt{n}\log(n)}}{\prod_{\frac{t}{\sqrt{n}}}(B_{n,k}((\theta_0, F_0), \epsilon_n))} = o(e^{-2n\epsilon_n^2}).$$
(6)

Then the change of measure condition (5) is satisfied.

Proof sketch

- Mixtures can be seen as a hierarchical model with latent variables;
- Each latent variable under the model is distributed according to F;
- Which under the prior is Dirichlet distributed;
- Using the Chinese restaurant representation we can compute prior expectations;

$$\mathbb{E}_F \left[\prod_{i=1}^n p_{\theta}(X_i | Z_i) \right] = \frac{1}{M^{[n]}} \sum_{S \in \mathcal{S}_n} \prod_{j=1}^{\# S} \left[(\# S_j - 1)! \int \prod_{l \in S_j} p_{\theta}(X_l | z) \, \mathrm{d} \, G(z) \right].$$

- Note that partitions correspond to having the same atom in F;
- This is rare under the prior, so under KL assumptions we can apply the remaining mass theorem;
- This means we can restrict to sums over partitions which have less than \sqrt{n} distinct latent variables;
- For those terms, we can bound the error in each product by $O(\frac{1}{\sqrt{n}})$;
- And since there are less than \sqrt{n} terms, total error becomes o(1).

Example: Symmetric location mixtures

Suppose we observe a sample from a distribution $f(x-\theta)$ where f is some symmetric density around 0 and θ is the parameter of

Least favourable submodel is known explicitly, $F_t = F$

Tricky part becomes consistency. Need to find a good prior, symmetrized DP mixtures do not work!

Example: Exponential frailty

We observe a sample from the distribution of $(X,Y)^T$, where given Z the variables X and Y are independent and exponentially distributed with intensities Z and θZ . Hence F is a distirbution on $(0, \infty)$ and $\theta > 0$. The least favourable submodel is known explicitly [4]

$$\mathcal{F}_t(\theta)(B) = F(B(1 - \frac{t}{2\theta})^{-1})$$

Hence $\phi_t^{-1}(\theta)(z) = z(1 - \frac{t}{2\theta})^{-1}$ Kullback-Leibler balls can be constructed using the stick-breaking construction for the Dirichlet process, bounding prior mass via [6, Lemma G.13], showing approximation via [6, Lemma B.2].

References

- 1. Kiefer, J. & Wolfowitz, J. Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters. 27, 887–906. ISSN: 0003-4851 (1956).
- 2. van der Vaart, A. W. Estimating a Real Parameter in a Class of Semiparametric Models. The Annals of Statistics 16, 1450–1474 (Dec. 1988). 3. Murphy, S. & van der Vaart, A. Likelihood Inference in the Errors-in-Variables Model. Journal of Multivariate Analysis 59, 81–108. ISSN: 0047-259X (Oct. 1996).
- 4. van der Vaart, A. W. Efficient Maximum Likelihood Estimation in Semiparametric Mixture Models. The Annals of Statistics 24, 862–878 (Apr. 1996).
- 5. Castillo, I. & Rousseau, J. A Bernsteinvon Mises Theorem for Smooth Functionals in Semiparametric Models. The Annals of Statistics 43, 2353–2383. ISSN: 0090-5364 (2015). 6. Ghosal, S. & van der Vaart, A. Fundamentals of Nonparametric Bayesian Inference xxiv+646. ISBN: 978-0-521-87826-5 (Cambridge University Press, Cambridge, 2017).
- 7. Franssen, S. E. M. P., Nguyen, J. & van der Vaart, A. W. Bernstein-von Mises for Semiparametric Mixtures

