Interdisciplinary Applied Mathematics

Volume 26

Editors
S.S. Antman J.E. Marsden
L. Sirovich S. Wiggins

Geophysics and Planetary Sciences

Imaging, Vision, and Graphics

D. Geman

Mathematical Biology L. Glass, J.D. Murray

Mechanics and Materials

R.V. Kohn

Systems and Control

S.S. Sastry, P.S. Krishnaprasad

Problems in engineering, computational science, and the physical and biological sciences are using increasingly sophisticated mathematical techniques. Thus, the bridge between the mathematical sciences and other disciplines is heavily traveled. The correspondingly increased dialog between the disciplines has led to the establishment of the series: *Interdisciplinary Applied Mathematics*.

The purpose of this series is to meet the current and future needs for the interaction between various science and technology areas on the one hand and mathematics on the other. This is done, firstly, by encouraging the ways that mathematics may be applied in traditional areas, as well as point towards new and innovative areas of applications; and, secondly, by encouraging other scientific disciplines to engage in a dialog with mathematicians outlining their problems to both access new methods and suggest innovative developments within mathematics itself.

The series will consist of monographs and high-level texts from researchers working on the interplay between mathematics and other fields of science and technology.

Interdisciplinary Applied Mathematics Volumes published are listed at the end of this book.

Springer Science+Business Media, LLC

An Invitation to 3-D Vision From Images to Geometric Models

Yi Ma Stefano Soatto Jana Košecká S. Shankar Sastry

With 170 Illustrations

Yi Ma
Department of Electrical and
Computer Engineering
University of Illinois at
Urbana-Champaign
Urbana, IL 61801
USA
yima@uiuc.edu

Jana Košecká
Department of Computer Science
George Mason University
Fairfax, VA 22030
USA
kosecka@cs.gmu.edu

Editors
S.S. Antman
Department of Mathematics and
Institute for Physical Science and Technology
University of Maryland
College Park, MD 20742
USA
ssa@math.umd.edu

L. Sirovich
Division of Applied Mathematics
Brown University
Providence, RI 02912
USA
chico@camelot.mssm.edu

Stefano Soatto
Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095
USA
soatto@ucla.edu

S. Shankar Sastry
Department of Electrical Engineering
and Computer Science
University of California, Berkeley
Berkeley, CA 94720
USA
sastry@eecs.berkeley.edu

J.E. Marsden
Control and Dynamical Systems
Mail Code 107-81
California Institute of Technology
Pasadena, CA 91125
USA
marsden@cds.caltech.edu

S. Wiggins School of Mathematics University of Bristol Bristol BS8 1TW UK s.wiggins@bris.ac.uk

Cover Illustration: "Axo-GJ" 1968 (180 × 180 cm) by Victor Vasarely. Copyright Michèle Vasarely.

Mathematics Subject Classification (2000): 51U10, 68U10, 65D18

ISBN 978-1-4419-1846-8 ISBN 978-0-387-21779-6 (cBook) DOI 10.1007/978-0-387-21779-6 Printed on acid-free paper.

© 2004 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2004

Softcover reprint of the hardcover 1st edition 2004

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher, (Springer Science+Business Media New York) except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 (EB)

springeronline.com

To my mother and my father (Y.M.)

To Giuseppe Torresin, Engineer (S.S.)

To my parents (J.K.)

To my mother (S.S.S.)

Preface

This book is intended to give students at the advanced undergraduate or introductory graduate level, and researchers in computer vision, robotics and computer graphics, a self-contained introduction to the geometry of three-dimensional (3-D) vision. This is the study of the reconstruction of 3-D models of objects from a collection of 2-D images. An essential prerequisite for this book is a course in linear algebra at the advanced undergraduate level. Background knowledge in rigid-body motion, estimation and optimization will certainly improve the reader's appreciation of the material but is not critical since the first few chapters and the appendices provide a review and summary of basic notions and results on these topics.

Our motivation

Research monographs and books on geometric approaches to computer vision have been published recently in two batches: The first was in the mid 1990s with books on the geometry of two views, see e.g. [Faugeras, 1993, Kanatani, 1993b, Maybank, 1993, Weng et al., 1993b]. The second was more recent with books focusing on the geometry of multiple views, see e.g. [Hartley and Zisserman, 2000] and [Faugeras and Luong, 2001] as well as a more comprehensive book on computer vision [Forsyth and Ponce, 2002]. We felt that the time was ripe for synthesizing the material in a unified framework so as to provide a self-contained exposition of this subject, which can be used both for pedagogical purposes and by practitioners interested in this field. Although the approach we take in this book deviates from several other classical approaches, the techniques we use are mainly linear algebra and our book gives a comprehensive view of what is known

to date on the geometry of 3-D vision. It also develops homogeneous terminology on a solid analytical foundation to enable what should be a great deal of future research in this young field.

Apart from a self-contained treatment of geometry and algebra associated with computer vision, the book covers relevant aspects of the image formation process, basic image processing, and feature extraction techniques – essentially all that one needs to know in order to build a system that can automatically generate a 3-D model from a set of 2-D images.

Organization of the book

This book is organized as follows: Following a brief introduction, Part I provides background material for the rest of the book. Two fundamental transformations in multiple-view geometry, namely, rigid-body motion and perspective projection, are introduced in Chapters 2 and 3, respectively. Feature extraction and correspondence are discussed in Chapter 4.

Chapters 5, 6, and 7, in Part II, cover the classic theory of two-view geometry based on the so-called epipolar constraint. Theory and algorithms are developed for both discrete and continuous motions, both general and planar scenes, both calibrated and uncalibrated camera models, and both single and multiple moving objects.

Although the epipolar constraint has been very successful in the two-view case, Part III shows that a more proper tool for studying the geometry of multiple views is the so-called *rank condition on the multiple-view matrix* (Chapter 8), which unifies all the constraints among multiple images that are known to date. The theory culminates in Chapter 9 with a unified theorem on a rank condition for arbitrarily mixed point, line, and plane features. It captures *all* possible constraints among multiple images of these geometric primitives, and serves as a key to both geometric analysis and algorithmic development. Chapter 10 uses the rank condition to reexamine and unify the study of single-view and multiple-view geometry given scene knowledge such as symmetry.

Based on the theory and conceptual algorithms developed in the early part of the book, Chapters 11 and 12, in Part IV, demonstrate practical reconstruction algorithms step-by-step, as well as discuss possible extensions of the theory covered in this book. An outline of the logical dependency among chapters is given in Figure 1.

Curriculum options

Drafts of this book and the exercises in it have been used to teach a one-semester course at the University of California at Berkeley, the University of Illinois at Urbana-Champaign, Washington University in St. Louis, the George Mason University and the University of Pennsylvania, and a one-quarter course at the University of California at Los Angeles. There is apparently adequate material for two semesters or three quarters of lectures. Advanced topics suggested in Part IV or chosen by the instructor can be added to the second half of the sec-

Figure 1. Organization of the book: logical dependency among parts and chapters.

ond semester if a two-semester course is offered. Below are some suggestions for course development based on this book:

- 1. A one-semester course: Appendix A, Chapters 1–6, and part of Chapters 8–10.
- 2. *A two-quarter course:* Chapters 1–6 for the first quarter, and Chapters 8–10, 12 for the second quarter.
- 3. A two-semester course: Appendix A and Chapters 1–6 for the first semester; Chapters 7–10 and the instructor's choice of some advanced topics from Chapter 12 for the second semester.
- 4. A three-quarter sequence: Chapters 1–6 for the first quarter, Chapters 7–10 for the second quarter, and the instructor's choice of advanced topics and projects from Chapters 11 and 12 for the third quarter.

Chapter 11 plays a special role in this book: Its purpose is to make it easy for the instructor to develop and assign experimental exercises or course projects along with other chapters being taught throughout the course. Relevant code is available

x Preface

at http://vision.ucla.edu/MASKS, from which students may get handson experience with a minimum version of a working computer vision system. This chapter can also be used by practitioners who are interested in using the algorithms developed in this book, without necessarily delving into the details of the mathematical formulation. Finally, an additional purpose of this chapter is to summarize "the book in one chapter," which can be used in the first lecture as an overview of what is to come.

Exercises are provided at the end of each chapter. They consist of mainly three types:

- 1. *drill exercises* that help students understand the theory covered in each chapter;
- 2. advanced exercises that guide students to creatively develop a solution to a specialized case that is related to but not necessarily covered by the general theorems in the book;
- 3. *programming exercises* that help students grasp the algorithms developed in each chapter.

Solutions to selected exercises are available, along with software for examples and algorithms, at http://vision.ucla.edu/MASKS.

Yi Ma, Champaign, Illinois Stefano Soatto, Los Angeles, California Jana Košecká, Fairfax, Virginia Shankar Sastry, Berkeley, California Spring, 2003

Acknowledgments

The idea for writing this book grew during the completion of Yi Ma's doctoral dissertation at Berkeley. The book was written during the course of three years after Yi Ma graduated from Berkeley, when all the authors started teaching the material at their respective institutions. Feedback and input from students was instrumental in improving the quality of the initial manuscript. We are deeply grateful to the student input. Two students whose doctoral research especially helped us are René Vidal at Berkeley and Kun Huang at UIUC. In addition, the research projects of many other students led to the development of new material that became an integral part of this book. We thank especially Wei Hong, Yang Yang at UIUC, Omid Shakernia at Berkeley, Hailin Jin, Paolo Favaro at Washington University in St. Louis, Alessandro Chiuso now at the University of Padova, Wei Zhang at George Mason University, and Marco Zucchelli at the Royal Institute of Technology in Stockholm.

Many colleagues contributed with comments and suggestions on early drafts of the manuscript; in particular, Daniel Cremers of UCLA, Alessandro Duci of the Scuola Normale of Pisa, and attendees of the short course at the UCLA Extension in the Fall of 2002. We owe a special debt of gratitude to Camillo Taylor now at the University of Pennsylvania, Philip McLauchlan now at Imagineer Systems Inc., and Jean-Yves Bouguet now at Intel for their collaboration in developing the real-time vision algorithms presented in Chapter 12. We are grateful to Hany Farid of Dartmouth College for his feedback on the material in Chapters 3 and 4, and Serge Belongie of the University of California at San Diego for his correction to Chapter 5. Kostas Daniilidis offered a one-semester course based on a draft of the book at the University of Pennsylvania in the spring of 2003, and we are grateful to him and his students for valuable comments. We also thank Robert Fossum of the

Mathematics Department of UIUC for proofreading the final manuscript, Thomas Huang of the ECE Department of UIUC for his advice and encouragement all along, Alan Yuille of UCLA, Rama Chellappa and Yiannis Aloimonos of the University of Maryland, and Long Quan of Hong Kong University of Science & Technology for valuable references. We would also like to thank Harry Shum and Zhengyou Zhang for stimulating discussions during our visit to Microsoft Research.

Some of the seeds of this work go back to the early nineties, when Ruggero Frezza, Pietro Perona, and Giorgio Picci started looking at the problem of structure from motion within the context of systems and controls. They taught a precursor of this material in a course at the University of Padova in 1991. Appendix B was inspired by the beautiful lectures of Giorgio Picci. We owe them our sincere gratitude for their vision and for their initial efforts that sparked our interest in the field.

In the vision community, we derived a great deal from the friendly notes of Thomas Huang of UIUC, Yiannis Aloimonos of the University of Maryland, Carlo Tomasi of Duke University, Takeo Kanade of Carnegie Mellon University, and Ruzena Bajcsy now at the University of California at Berkeley.

At the same time, we have also been influenced by the work of Ernst Dickmanns of Bundeswehr University in Munich, Olivier Faugeras of INRIA, and David Mumford of Brown University, who brought the discipline of engineering and the rigor of mathematics into a field that needed both. Their work inspired many to do outstanding work, and we owe them our deepest gratitude.

We are grateful to Jitendra Malik and Alan Weinstein at Berkeley, Pietro Perona at Caltech, Berthold Horn at MIT, P. R. Kumar at UIUC, and Roger Brockett at Harvard for their openness to new points of view and willingness to listen to our initial fledgling attempts. We are also grateful to the group of researchers in the Robotics and Intelligent Machines Laboratory at Berkeley for providing a stimulating atmosphere for the exchange of ideas during our study and visits there, especially Cenk Çavuşoğlu now at Case Western University, Lara Crawford now at Xerox Palo Alto Research Center, João Hespanha now at the University of California at Santa Barbara, John Koo now at Berkeley, John Lygeros now at Cambridge University, George Pappas now at the University of Pennsylvania, Maria Prandini now at Politecnico di Milano, Claire Tomlin now at Stanford University, and Joe Yan now at the University of British Columbia.

Much of the research leading to the material of this book has been generously supported by a number of institutions, funding agencies and their program managers. A great deal of the research was supported by the Army Research Office under the grant DAAH04-96-1-0341 for a center "An Integrated Approach to Intelligent Systems" under the friendly program management of Linda Bushnell and later Hua Wang. We would also like to acknowledge the support of the Office of Naval Research and the program manager Allen Moshfegh for supporting the work on vision-based landing under contract N00014-00-1-062. We also thank the ECE Department, the Coordinated Science Laboratory, the Research Board of UIUC, and the Computer Science Departments at George Mason University and

UCLA for their generous startup funds. We also thank Behzad Kamgar-Parsi of the Office of Naval Research, Belinda King of the Air Force Office of Scientific Research, Jean-Yves Bouguet of Intel, and the Robotics and Computer Vision program of the National Science Foundation.

Finally on a personal note, Yi would like to thank his parents for their remarkable tolerance of his many broken promises for longer and more frequent visits home, and this book is dedicated to their understanding and caring. Stefano would like to thank Anthony Yezzi and Andrea Mennucci for many stimulating discussions. Jana would like to thank her parents for their never ceasing inspiration and encouragement and Frederic Raynal for his understanding, continuing support and love. Shankar would like to thank his mother and Claire Tomlin for their loving support during the preparation of this book.

Contents

Pr	eface		vii
A	cknow	vledgments	xi
1	Intro	oduction	1
	1.1	Visual perception from 2-D images to 3-D models	
	1.2	A mathematical approach	. 8
	1.3	A historical perspective	. 9
I	Inti	roductory Material	13
2	Repr	resentation of a Three-Dimensional Moving Scene	15
	2.1	Three-dimensional Euclidean space	. 16
	2.2	Rigid-body motion	. 19
	2.3	Rotational motion and its representations	. 22
		2.3.1 Orthogonal matrix representation of rotations	
		2.3.2 Canonical exponential coordinates for rotations	
	2.4	Rigid-body motion and its representations	
		2.4.1 Homogeneous representation	
		2.4.2 Canonical exponential coordinates for rigid-body m	
		tions	
	2.5	Coordinate and velocity transformations	
	2.6	Summary	37

		Conten
	2.7	Exercises
	2.A	Quaternions and Euler angles for rotations
3	Imag	ge Formation
	3.1	Representation of images
	3.2	Lenses, light, and basic photometry
		3.2.1 Imaging through lenses
		3.2.2 Imaging through a pinhole
	3.3	A geometric model of image formation
		3.3.1 An ideal perspective camera
		3.3.2 Camera with intrinsic parameters
		3.3.3 Radial distortion
		3.3.4 Image, preimage, and coimage of points and lines
	3.4	Summary
	3.5	Exercises
	3.A	Basic photometry with light sources and surfaces
	3.B	Image formation in the language of projective geometry
4	Imag	ge Primitives and Correspondence
	4.1	Correspondence of geometric features
		4.1.1 From photometric features to geometric primitives
		4.1.2 Local vs. global image deformations
	4.2	Local deformation models
		4.2.1 Transformations of the image domain
		4.2.2 Transformations of the intensity value
	4.3	Matching point features
		4.3.1 Small baseline: feature tracking and optical flow
		4.3.2 Large baseline: affine model and normalized cros
		correlation
		4.3.3 Point feature selection
	4.4	Tracking line features
		4.4.1 Edge features and edge detection
		4.4.2 Composition of edge elements: line fitting
		4.4.3 Tracking and matching line segments
	4.5	Summary
	4.6	Exercises
	4.A	Computing image gradients
II	Ge	ometry of Two Views
5		nstruction from Two Calibrated Views
J	5.1	Epipolar geometry
	5.1	5.1.1 The epipolar constraint and the essential matrix
		5.1.1 The epipolar constraint and the essential matrix 5.1.2 Elementary properties of the essential matrix
		2.1.2 Enemelitary properties of the essential IIIallix

	5.2	Basic reconstruction algorithms
		5.2.1 The eight-point linear algorithm
		5.2.2 Euclidean constraints and structure reconstruction 12
		5.2.3 Optimal pose and structure
	5.3	Planar scenes and homography
		5.3.1 Planar homography
		5.3.2 Estimating the planar homography matrix
		5.3.3 Decomposing the planar homography matrix 13
		5.3.4 Relationships between the homography and the essential
		matrix
	5.4	Continuous motion case
		5.4.1 Continuous epipolar constraint and the continuous es-
		sential matrix
		5.4.2 Properties of the continuous essential matrix 14
		5.4.3 The eight-point linear algorithm
		5.4.4 Euclidean constraints and structure reconstruction 15
		5.4.5 Continuous homography for a planar scene 1.
		5.4.6 Estimating the continuous homography matrix 15
		5.4.7 Decomposing the continuous homography matrix 15
	5.5	Summary
	5.6	Exercises
	5.A	Optimization subject to the epipolar constraint
6		onstruction from Two Uncalibrated Views 1
	6.1	Uncalibrated camera or distorted space?
	6.2	r-r 8
	()	6.2.2 Properties of the fundamental matrix
	6.3	Ambiguities and constraints in image formation
		6.3.1 Structure of the intrinsic parameter matrix
		6.3.2 Structure of the extrinsic parameters
	6.4	Stratified reconstruction
	0.4	6.4.1 Geometric stratification
		6.4.2 Projective reconstruction
		6.4.3 Affine reconstruction
	(5	6.4.5 Direct stratification from multiple views (preview) 19
	6.5	Calibration with scene knowledge
		6.5.1 Partial scene knowledge
		E
	66	1 1
	6.6 6.7	11
	6.7	Summary
	οδ	EXERCISES //

		Contents	xvii
	6.A	From images to fundamental matrices	211
	6.B	Properties of Kruppa's equations	215
		6.B.1 Linearly independent Kruppa's equations under special	
		motions	217
		6.B.2 Cheirality constraints	223
7	Estin	nation of Multiple Motions from Two Views	228
	7.1	Multibody epipolar constraint and the fundamental matrix	229
	7.2	A rank condition for the number of motions	234
	7.3	Geometric properties of the multibody fundamental matrix .	237
	7.4	Multibody motion estimation and segmentation	242
		7.4.1 Estimation of epipolar lines and epipoles	243
		7.4.2 Recovery of individual fundamental matrices	247
		7.4.3 3-D motion segmentation	248
	7.5	Multibody structure from motion	249
	7.6	Summary	252
	7.7	Exercises	253
	7.A	Homogeneous polynomial factorization	256
II	I G	eometry of Multiple Views	261
8	Mult	iple-View Geometry of Points and Lines	263
8	Mult 8.1	iple-View Geometry of Points and Lines Basic notation for the (pre)image and coimage of points and	263
8		Basic notation for the (pre)image and coimage of points and	263 264
8		Basic notation for the (pre)image and coimage of points and	
8	8.1	Basic notation for the (pre)image and coimage of points and lines	264
8	8.1	Basic notation for the (pre)image and coimage of points and lines	264 267
8	8.1	Basic notation for the (pre)image and coimage of points and lines	264 267 267
8	8.1 8.2	Basic notation for the (pre)image and coimage of points and lines	264 267 267 270
8	8.1 8.2	Basic notation for the (pre)image and coimage of points and lines	264 267 267 270 273
8	8.1 8.2	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank	264 267 267 270 273 273
8	8.1 8.2	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features	264 267 267 270 273 273 276
8	8.18.28.3	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features	264 267 267 270 273 273 276 278
8	8.18.28.3	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition	264 267 267 270 273 273 276 278 283
8	8.18.28.38.4	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines	264 267 267 270 273 273 276 278 283 283 284 288
8	8.18.28.3	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification	264 267 267 270 273 273 276 278 283 283 284
8	8.18.28.38.4	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification 8.5.1 Equivalent multiple-view matrices	264 267 267 270 273 276 278 283 283 284 288 289 290
8	8.18.28.38.4	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification 8.5.1 Equivalent multiple-view matrices 8.5.2 Rank-based uncalibrated factorization	264 267 267 270 273 273 276 278 283 283 284 288 289 290 291
8	8.18.28.38.48.5	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification 8.5.1 Equivalent multiple-view matrices 8.5.2 Rank-based uncalibrated factorization 8.5.3 Direct stratification by the absolute quadric constraint	264 267 267 270 273 276 278 283 283 284 288 289 290 291 292
8	8.1 8.2 8.3 8.4 8.5	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification 8.5.1 Equivalent multiple-view matrices 8.5.2 Rank-based uncalibrated factorization 8.5.3 Direct stratification by the absolute quadric constraint Summary	264 267 267 270 273 276 278 283 283 284 288 290 291 292 294
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification 8.5.1 Equivalent multiple-view matrices 8.5.2 Rank-based uncalibrated factorization 8.5.3 Direct stratification by the absolute quadric constraint Summary Exercises	264 267 267 270 273 276 278 283 283 284 288 289 290 291 292 294 295
8	8.1 8.2 8.3 8.4 8.5	Basic notation for the (pre)image and coimage of points and lines Preliminary rank conditions of multiple images 8.2.1 Point features 8.2.2 Line features Geometry of point features 8.3.1 The multiple-view matrix of a point and its rank 8.3.2 Geometric interpretation of the rank condition 8.3.3 Multiple-view factorization of point features Geometry of line features 8.4.1 The multiple-view matrix of a line and its rank 8.4.2 Geometric interpretation of the rank condition 8.4.3 Trilinear relationships among points and lines Uncalibrated factorization and stratification 8.5.1 Equivalent multiple-view matrices 8.5.2 Rank-based uncalibrated factorization 8.5.3 Direct stratification by the absolute quadric constraint Summary	264 267 267 270 273 276 278 283 283 284 288 290 291 292 294

xviii	Contents

	9.1	Incidence relations among points, lines, and planes	310
		9.1.1 Incidence relations in 3-D space	310
		9.1.2 Incidence relations in 2-D images	312
	9.2	Rank conditions for incidence relations	313
		9.2.1 Intersection of a family of lines	313
		9.2.2 Restriction to a plane	316
	9.3	Universal rank conditions on the multiple-view matrix	320
	9.4	Summary	324
	9.5	Exercises	326
	9.A	Incidence relations and rank conditions	330
	9.B	Beyond constraints among four views	331
	9.C	Examples of geometric interpretation of the rank conditions.	333
		9.C.1 Case 2: $0 \le \text{rank}(M) \le 1$	333
		9.C.2 Case 1: $1 \le \text{rank}(M) \le 2$	335
		_ () _	
10	Geon	netry and Reconstruction from Symmetry	338
	10.1	Symmetry and multiple-view geometry	338
		10.1.1 Equivalent views of symmetric structures	339
		10.1.2 Symmetric structure and symmetry group	341
		10.1.3 Symmetric multiple-view matrix and rank condition.	344
		10.1.4 Homography group for a planar symmetric structure.	346
	10.2	Symmetry-based 3-D reconstruction	348
		10.2.1 Canonical pose recovery for symmetric structure	349
		10.2.2 Pose ambiguity from three types of symmetry	350
		10.2.3 Structure reconstruction based on symmetry	357
	10.3	Camera calibration from symmetry	364
		10.3.1 Calibration from translational symmetry	365
		10.3.2 Calibration from reflective symmetry	365
		10.3.3 Calibration from rotational symmetry	366
	10.4	Summary	367
	10.5	Exercises	368
IV	, A.	mlications	373
1 4	A	pplications	313
11	Step-	by-Step Building of a 3-D Model from Images	375
	11.1	Feature selection	378
	11.2	Feature correspondence	380
		11.2.1 Feature tracking	380
		11.2.2 Robust matching across wide baselines	385
	11.3	Projective reconstruction	391
	11.5	11.3.1 Two-view initialization	391
		11.3.2 Multiple-view reconstruction	394
		11.3.3 Gradient descent nonlinear refinement ("bundle adjust-	J J 4
			207
		ment")	397

		Contents	xix
	11.4	Upgrade from projective to Euclidean reconstruction	398
		11.4.1 Stratification with the absolute quadric constraint	399
		11.4.2 Gradient descent nonlinear refinement ("Euclidean bun-	
		dle adjustment")	402
	11.5	Visualization	403
		11.5.1 Epipolar rectification	404
		11.5.2 Dense matching	407
		11.5.3 Texture mapping	409
	11.6	Additional techniques for image-based modeling	409
12	Visua	l Feedback	412
	12.1	Structure and motion estimation as a filtering problem	414
		12.1.1 Observability	415
		12.1.2 Realization	418
		12.1.3 Implementation issues	420
		12.1.4 Complete algorithm	422
	12.2	Application to virtual insertion in live video	426
	12.3	Visual feedback for autonomous car driving	427
		12.3.1 System setup and implementation	428
		12.3.2 Vision system design	429
		12.3.3 System test results	431
	12.4	Visual feedback for autonomous helicopter landing	432
		12.4.1 System setup and implementation	433
		12.4.2 Vision system design	434
		12.4.3 System performance and evaluation	436
V	An	anding	439
٧	App	pendices	437
A		Facts from Linear Algebra	441
	A .1	Basic notions associated with a linear space	442 442
		A.1.1 Linear independence and change of basis	442
		A.1.2 Inner product and orthogonality	444
	A.2	Linear transformations and matrix groups	446
	A.3	Gram-Schmidt and the QR decomposition	449
	A.4	Range, null space (kernel), rank and eigenvectors of a matrix	451
	A.5	Symmetric matrices and skew-symmetric matrices	454
	A.6	Lyapunov map and Lyapunov equation	456
	A.7	The singular value decomposition (SVD)	457
	/	A.7.1 Algebraic derivation	457
		A.7.2 Geometric interpretation	459
		A.7.3 Some properties of the SVD	459
В	Least	-Variance Estimation and Filtering	462

XX	Contents

	B.1	Least-	variance estimators of random vectors	463
		B.1.1	Projections onto the range of a random vector	464
		B.1.2	Solution for the linear (scalar) estimator	464
		B.1.3	Affine least-variance estimator	465
		B.1.4	Properties and interpretations of the least-variance esti-	
			mator	466
	B.2	The Ka	alman-Bucy filter	468
		B.2.1	Linear Gaussian dynamical models	468
		B.2.2	A little intuition	469
		B.2.3	Observability	471
		B.2.4	Derivation of the Kalman filter	472
	B.3	The ex	tended Kalman filter	476
C	Basic	Facts f	rom Nonlinear Optimization	479
C	Basic C.1		rom Nonlinear Optimization strained optimization: gradient-based methods	479 480
C			<u>-</u>	
C		Uncon	strained optimization: gradient-based methods Optimality conditions	480
C		Uncon C.1.1 C.1.2	strained optimization: gradient-based methods Optimality conditions	480 481
C	C.1	Uncon C.1.1 C.1.2	strained optimization: gradient-based methods Optimality conditions	480 481 482
C	C.1	Uncon C.1.1 C.1.2 Constr	strained optimization: gradient-based methods Optimality conditions	480 481 482 484
C Re	C.1	Uncon C.1.1 C.1.2 Constr C.2.1 C.2.2	strained optimization: gradient-based methods Optimality conditions	480 481 482 484 485
Re	C.1 C.2	Uncon C.1.1 C.1.2 Constr C.2.1 C.2.2	strained optimization: gradient-based methods Optimality conditions	480 481 482 484 485 485