1. V Pythonu proveď te lineární regresi závislosti veličiny y na x metodou nejmenších čtverců

fit polynomu v Pythonu metodou nejmenších čtverců

Metoda nejmenších čtverců – fit polynomu

polyfit-sim.py

fit polynomu v Pythonu metodou nejmenších čtverců

Metoda nejmenších čtverců – nelineární fit

sterbina.py

nelineární fit metodou nejmenších čtverců

Metoda nejmenších čtverců – nelineární fit

sterbina.py

nelineární fit metodou nejmenších čtverců

Lineární regrese – chyby obou proměnných

- jak x, tak y jsou náhodné proměnné
- σ_x chyby x, σ_y chyby y
- modelová funkce f(x|a,b) = ax + b
 - jak x, tak y jsou náhodné proměnné

$$\chi^{2}(\theta|y) = \sum_{i=1}^{N} \frac{(y_{i} - ax_{i} - b)^{2}}{\sigma_{y_{i}}^{2} + a^{2}\sigma_{x_{i}}^{2}}$$

Metoda nejmenších čtverců - lineární regrese

2. V Matlabu proveďte lineární regresi závislosti veličiny y na x metodou nejmenších čtverců

matlab skript: lfit.m

Metoda nejmenších čtverců – fit polynomu

3. V Matlabu proveďte fit závislosti veličiny y na x polynomem metodou nejmenších čtverců

matlab skript: polyfit.m