

FACULTAD DE INGENIERÍA

Álgebra y Geometría Guía Nº 1 Ejercicios Resueltos Primer Semestre 2017 Instituto de Ciencias Básicas

Ejercicio: Demuestre la siguiente ley de absorción: $p \lor (p \land q) \equiv p$

Solución: Se realiza una tabla de verdad.

p	q	$p \wedge q$	$p\vee (p\wedge q)$
V	V	V	V
V	F	F	V
F	V	F	F
F	F	F	F

Observe que la columna asociada a $p \lor (p \land q)$ coincide con la columna asociada a p. Así, la proposición $p \lor (p \land q)$ es equivalente a la proposición p.

Ejercicio: Demuestre la siguiente proposición compuesta:

$$[\sim p \Rightarrow \sim (p \Rightarrow q)] \vee [(p \land (p \Rightarrow q)) \Rightarrow p]$$

es una tautología

- a) mediante álgebra de proposiciones.
- b) mediante una tabla de verdad.

Solución:

a) Simplificando:

$$[\sim p \Rightarrow \sim (p \Rightarrow q)] \vee [(p \wedge (p \Rightarrow q)) \Rightarrow p]$$

$$\equiv [p \vee \sim (p \Rightarrow q)] \vee [(p \wedge (\sim p \vee q)) \Rightarrow p]$$

$$\equiv [p \vee \sim (\sim p \vee q)] \vee [((p \wedge \sim p) \vee (p \wedge q)) \Rightarrow p]$$

$$\equiv \underbrace{[p \vee (p \wedge \sim q)]}_{p \text{ (ley absorción)}} \vee [(F \vee (p \wedge q)) \Rightarrow p]$$

$$\equiv p \vee [(p \wedge q) \Rightarrow p]$$

$$\equiv p \vee [\sim (p \wedge q) \vee p]$$

$$\equiv p \vee [\sim p \vee \sim q \vee p]$$

$$\equiv p \vee [\sim p \vee \sim q \vee p]$$

$$\equiv p \vee [(\sim p \vee p) \vee \sim q]$$

$$\equiv p \vee [V \vee \sim q]$$

$$\equiv p \vee V$$

$$\equiv V$$

FACULTAD DE INGENIERÍA

b) Tabla de verdad:

p	q	$\sim p$	$p \Rightarrow q$	$\sim (p \Rightarrow q)$	$\sim p \Rightarrow \sim (p \Rightarrow q) \ (*)$	$p \land (p \Rightarrow q)$	$(p \land (p \Rightarrow q)) \Rightarrow p \ (**)$	(*) \(\langle \(\text{(**)} \)
V	V	F	V	F	V	V	V	V
V	F	F	F	V	V	F	V	V
F	V	V	V	F	F	F	V	V
F	F	V	V	F	F	F	V	V

Ejercicio: Simplifique las expresiones:

a)
$$\sim [(p \Rightarrow q) \land (\sim p \Rightarrow q)]$$

b)
$$[(p \Leftrightarrow \sim q) \land (q \land \sim p)]$$

Solución:

a)

$$\sim [(p \Rightarrow q) \land (\sim p \Rightarrow q)]$$

$$\equiv \sim [(\sim p \lor q) \land (p \lor q)]$$

$$\equiv \sim [(\sim p \land p) \lor q]$$

$$\equiv \sim [F \lor q]$$

$$\equiv \sim q$$

b)

$$\begin{split} & \left[(p \Leftrightarrow \sim q) \wedge (q \wedge \sim p) \right] \\ & \equiv \left[\left((p \Rightarrow \sim q) \wedge (\sim q \Rightarrow p) \right) \wedge q \wedge \sim p \right] \\ & \equiv (p \Rightarrow \sim q) \wedge (\sim q \Rightarrow p) \wedge q \wedge \sim p \\ & \equiv (\sim p \vee \sim q) \wedge \underbrace{(q \vee p) \wedge q}_{q} \wedge \sim p \\ & \equiv (\sim p \vee \sim q) \wedge q \wedge \sim p \\ & \equiv \underbrace{(\sim p \vee \sim q) \wedge \sim p}_{\sim p} \wedge q \\ & \equiv \sim p \wedge q \end{split}$$

FACULTAD DE INGENIERÍA

Ejercicio: Se sabe que la proposición $[(q \Leftrightarrow p) \land \sim q] \Rightarrow (p \land \sim q)$ es falsa. Determine los valores de verdad de $p \neq q$.

Solución:

Observe que la proposición consiste en una implicancia cuyo antecedente es $(q \Leftrightarrow p) \land \sim q$ y cuyo consecuente es $p \land \sim q$.

El único caso en que la implicancia entrega un resultado falso es que el antecedente sea verdadero y el consecuente sea falso. Entonces,

$$\begin{split} [(q \Leftrightarrow p) \land \sim q] &\Rightarrow (p \land \sim q) \equiv F \\ \Leftrightarrow [(q \Leftrightarrow p) \land \sim q] \equiv V \quad \land \quad (p \land \sim q) \equiv F \\ \Leftrightarrow [q \Leftrightarrow p \equiv V \land \sim q \equiv V] \quad \land \quad (p \land \sim q) \equiv F \\ \Leftrightarrow [q \Leftrightarrow p \equiv V \land q \equiv F] \quad \land \quad (p \land \sim q) \equiv F \\ \Leftrightarrow (q \equiv F) \land (q \Leftrightarrow p \equiv V) \land (p \land \sim q \equiv F) \\ \Leftrightarrow (q \equiv F) \land (F \Leftrightarrow p \equiv V) \land (p \land \sim F \equiv F) \\ \Leftrightarrow (q \equiv F) \land (p \equiv F) \land (p \land V \equiv F) \\ \Leftrightarrow (q \equiv F) \land (p \equiv F) \land (p \Rightarrow F) \end{split}$$

Luego, tanto p como q son falsas.

Ejercicio: Se sabe que $[(p \land \sim q) \Rightarrow r] \Rightarrow (\sim p \lor \sim s)$ es falsa, y que $(\sim s \lor \sim r)$ es verdadera. Encuentre los valores de verdad de p,q,r y s.

Solución:

De la primera proposición, se deduce que $(p \land \sim q) \Rightarrow r \equiv V$ y que $(\sim p \lor \sim s) \equiv F$.

Si $(\sim p \lor \sim s) \equiv F$ entonces $p \land s \equiv V$, por lo que $p \equiv V$ y $s \equiv V$.

Por otro lado, considerando que $s \equiv V$, la segunda proposición entrega como información que $(\sim V \lor \sim r) \equiv V$, es decir $\sim r \equiv V$, por lo que $r \equiv F$.

Finalmente, considerando estos valores de verdad, en conjunto con la primera proposición, se tiene que $(V \land \sim q) \Rightarrow F \equiv V$, es decir $\sim q \Rightarrow F \equiv V$. En otras palabras, $\sim q \equiv F$, y así $q \equiv V$.

En conclusión: p,q,s son verdaderas, y r es falsa.