

Applying vContact to Viral Sequences and Visualizing the Output (Cyverse) Version 3

Benjamin Bolduc

Abstract

A collection of protocols designed to guide the user in processing a viral metagenome from raw sequence data to assembly, and subsequent analysis. The user uses *actual* reads from <u>Ocean Sampling Day (2014)</u> and processes them entirely within Cyverse, a NSF-supported cyberinfrastructure.

Citation: Benjamin Bolduc Applying vContact to Viral Sequences and Visualizing the Output (Cyverse). protocols.io

dx.doi.org/10.17504/protocols.io.gwcbxaw

Published: 05 Jan 2017

Guidelines

This is part of a larger protocol *Collection* that involves the end-to-end processing of raw viral metagenomic reads obtained from a sequencing facility to assembly and analysis using Apps (i.e. tools) developed by iVirus and implemented within the Cyverse cyberinfrastructure.

Before start

To run this protocol, users must first <u>register</u> for Cyverse account. All data (both inputs and outputs) are available within Cyverse's data store at /iplant/home/shared/iVirus/ExampleData/

- 1. Download and install <u>lava IDK 8</u>
- 2. Download and install Cytoscape 3.x

Protocol

Affiliating contigs through their shared proteins

Step 1.

Open vContact

Open vContact-0.1.60 from 'Apps'

Affiliating contigs through their shared proteins

Step 2.

Select Inputs

Select the 'Inputs tab.

For Protein clusters info file:

- This file contains the "id", "size", "annotated" and "keys" for each PC in the dataset, with id (PC ID), size (number of genes within the PC), annotated (number of genes including annotation) and keys (;-separated list of key terms extracted from gene annotations).
- Navigate to Community Data --> iVirus --> ExampleData --> vContact --> Inputs --> vcontact_pcs_0.1.60. Select vcontact_pcs_output_pcs.csv Alternatively, copy-and-paste the location: /iplant/home/shared/iVirus/ExampleData/vContact/vcontact_pcs_0.1.60 into the navigation bar and select the csv file.

For the **Contig info file**:

- This file contains the 'id' and 'proteins' in the dataset, with id corresponding to the contig and proteins the number of proteins identified for each contig.
- Navigate to Community Data --> iVirus --> ExampleData --> vContact --> Inputs --> vcontact_pcs_0.1.60. Select vcontact_pcs_output_contigs.csv Alternatively, copy-and-paste the location: /iplant/home/shared/iVirus/ExampleData/vContact/vcontact_pcs_0.1.60 into the navigation bar and select the csv file.

For **Protein cluster profiles**:

- This file contains the 'contig_id' and 'pc_id' between contigs and PCs in the dataset. Essentially a list of the membership of each gene within a contig to its affiliated PC.
- Navigate to Community Data --> iVirus --> ExampleData --> vContact --> Inputs --> vcontact_pcs_0.1.60. Select vcontact_pcs_output_profiles.csv Alternatively, copy-and-paste the location: /iplant/home/shared/iVirus/ExampleData/vContact/vcontact_pcs_0.1.60 into the navigation bar and select the csv file.

NOTES

Benjamin Bolduc 05 Jan 2017

The inputs for this step were generated by vContact-PCs-0.1.60 using a tab-formatted BLASTP file and a gene-to-contig mapping file.

Affiliating contigs through their shared proteins

Step 3.

Select Parameters

Select the 'Parameters' tab.

The default options will suffice for this example. Consult the relevant documentation for what each of these options mean.

Affiliating contigs through their shared proteins

Step 4.

Launch Analysis

Run the job!

vContact can take minutes to hours to the better part of a day to complete.

Affiliating contigs through their shared proteins

Step 5.

Results

vContact will generate a results folder (outDIR in this example) with network files (*.ntw), contig clustering information (cc_*) and modules (mod_*). The network files can be imported into Cvtoscape (below) to visualize the modules and the contig clusters.

Expected results can be found from the 'Outputs' directory of vContact.

EXPECTED RESULTS

Name	Last Modified	Size	
∰ a outDIR	2017 Jan 4 02:58:02		ca 🧞 🏳 🧬
nagave.log	2017 Jan 4 02:57:36	354 bytes	ag 🧀 🟳 🧬
# C457509b-dc48-4e0f-bc9e-f7b730c	2017 Jan 4 02:57:45	12.43 KB	9 8 🕏 🕏
# in c457509b-dc48-4e0f-bc9e-f7b730c	2017 Jan 4 02:57:58	884 bytes	9 8 🕏 🕏
Vcontact_pcs_output_contigs.csv	2017 Jan 4 03:00:26	31.62 KB	9 8 🕏 🕏
Vcontact_pcs_output_pcs.csv	2017 Jan 4 03:00:43	34.57 KB	9 8 🕏 🕏
Vcontact_pcs_output_profiles.csv	2017 Jan 4 03:01:03	178.47 KB	9 8 🕏 🕏

Notable files:

cc_sig1.0_mcl2.0.clusters: Contains each contig cluster's members, one line per cluster, with each member tab separated

cc_sig1.0_mcl2.0.ntw: Contig clusters network edge file, with source member, target member, and significance score strength

mod_sig1.0_i5.0_mcl_5.0.clusters: Contains each module's members, one line per module, with
each member tab separated

mod_sig1.0_i5.0.ntwk: Module network edge file, with source PC, target PC, and significance score strength

*.pandas: These files are generated by python-pandas to store a raw copy of the data parsed above

Name	Last Modified	Size	
cc_sig1.0_mcl2.0.clusters	2017 Jan 4 02:58:07	13.56 KB	99 🔊 🗁 🧬
cc_sig1.0_mcl2.0.ntw	2017 Jan 4 02:58:18	102.38 KB	ag 🧀 🟳 🧬
mod_sig1.0_i5.0.ntwk	2017 Jan 4 02:58:34	18.03 KB	ag 🧀 🟳 🧬
mod_sig1.0_i5.0_mcl_5.0.clusters	2017 Jan 4 02:58:45	1.69 KB	ag 🧀 🗁 🧬
mod_sig1.0_i5.0_mcl_5.0_module	2017 Jan 4 02:58:58	3.66 KB	ag 🧀 🗁 🧟
mod_sig1.0_i5.0_mcl_5.0_pcs.pan	2017 Jan 4 02:59:08	26.36 KB	9
outDIR.h5	2017 Jan 4 02:59:18	802.94 KB	ag 🧀 🗁 🧟
m grofiles.pkle	2017 Jan 4 02:59:33	82.91 KB	ag 🧀 🗁 🧬
sig1.0_mcl2.0_clusters.csv	2017 Jan 4 02:59:45	846 bytes	9 8 €
sig1.0_mcl2.0_contigs.csv	2017 Jan 4 02:59:55	41.15 KB	ag 🧀 🗁 🧟
sig1.0_mcl2.0_modsig1.0_modmcl	2017 Jan 4 03:00:06	2.47 KB	ag 🧀 🗁 🧬
sig1.0_mcl5.0_minshared3_modul	2017 Jan 4 03:00:13	1.33 KB	ag 🧀 🗁 🧬

Cluster Visualization

Step 6.

Open Cytoscape

Open Cytoscape on your local machine.

Cluster Visualization

Step 7.

Locate and Select Network File

- If a 'splash window' appears, select 'Start New Session From Network File...'
- If the window doesn't appear, go to File -> Import -> Network -> File...

Select the contig *.ntw (typically *cc_sig1.0_mcl2.0.ntw).

Step 8.

Import Network File

- 1. Select 'Advanced Options' and select the appropriate Delimiter, in this case 'SPACE.' and click 'OK.'
 - At this point you can change the 'Default Interaction' to something more meaningful, or keep as is.
 - This changes the single column import into 3 (there might be one hiding on the right)
- 2. Click on 'Column 1' and under *Meaning*, select *Source Node* (little green button).
- 3. Click on 'Column 2' and under Meaning, select Target Node (red bullseye).
- 4. Click on 'Column 3' and under Meaning, select Edge Attribute (purple file).
- 5. Select 'Ok.' One this happens, it might take a while to load the network.

Cluster Visualization

Step 9.

Results

Depending on the size of your network, Cytoscape might not automatically create a *View* for the network. Our example case is small enough so it should automatically create one. However, real data often has 100s, 1000s, 10s of 1000s of nodes and can be memory intensive.

If your data is large, you can still visualize the network. A popup will appear, "Create Network Views?" Select "Ok." Once finished, the network view will be *roughly* ordered by cluster size!

Cluster Visualization

Step 10.

Cleaning Up

There's *a lot* of options in Cytoscape - far more than can be elborated here. Play around and try different things. Although to make this look a bit more presentable you'll want to remove duplicated edges and apply a visual style.

Remove duplicate edges...

Apply a visual style....

