The ARM Cortex-M4 Embedded Systems:

Tiva™ TM4C123GH6PM Microcontroller General-Purpose Input/Outputs Session 2

By: Zakriua Gomma

Email: zakriua.gomma37@gmail.com

Agenda

- TM4C123 Overview
- General-Purpose Input/Outputs
- Bitwise operators
- System Timer (SysTick)
- Delay Library
- Interface 74595

• TM4C123 Overview:

• TM4C123GH6PM High-Level Block Diagram:

• TM4C123GH6PM High-Level Block Diagram:

In-Circuit Debug Interface(ICDL)

GPIO Pin	Pin Function
PC0	TCK/SWCLK
PC1	TMS/SWDIO
PC2	TDI
PC3	TDO/SWO

Virtual COM Port

GPIO Pin	Pin Function
PA0	U0RX
PA1	U0TX

Use Switches & RGB User LED

GPIO Pin	Pin Function	USB Device
PF4	GPIO	SW1
PF0	GPIO	SW2
PF1	GPIO	RGB LED (Red)
PF2	GPIO	RGB LED (Blue)
PF3	GPIO	RGD LED (Green)

Agenda

- TM4C123 Overview
- General-Purpose Input/Outputs
- Bitwise operators
- System Timer (SysTick)
- Delay Library
- Interface 74595

First Program: Blink Led red & Green

Table of truth:

clk	D	Q	Q
0	0	Q	Q
0	1	Q	$\overline{\mathbf{Q}}$
1	0	0	1
1	1	1	0

1-First We Must deliver clock to GpioX Module

Warning: IF you try to read or write in any Register in GpioX Module without deliver Clock, you will cause <u>bus</u> <u>fault Exception</u>

1- Clock

Run Mode Clock Gating Control Register 2 (RCGC2):

General-Purpose Input/Output Run Mode Clock Gating Control(RCGCGPIO),

General-Purpose Input/Output Run Mode Clock Gating Control (RCGCGPIO)

Base 0x400F.E000 Offset 0x608 Type R/W, reset 0x0000.0000

GPIO modules. To support

legacy software, the RCGC2 register is available. A write to

the RCGC2 register also

writes the corresponding bit in this register.

If 1 Port C will work If 1 Port B will work

If 1 Port A will work

RCGCGPIO=0x20: The both do the same Job.

2- GPIODIR

2- GPIODIR

Register 2: GPIO Direction (GPIODIR), offset 0x400

The GPIODIR register is the data direction register. Setting a bit in the GPIODIR register configures the corresponding pin to be an output, while clearing a bit configures the corresponding pin to be an input. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 Offset 0x400 Type R/W, reset 0x0000.0000 reserved RO RO RO RO Type Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 DIR reserved RO RO R/W R/W Type R/W 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0

Input 0,output =1

GPIO PORTF DIR=0X0A

=00001010 Means pin0,2,4,5,6,7 is input & pin 1,3 output

3- GPIODEN (GPIO Digital Enable):

Bit/Field	Name	Type	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DEN	RW	_	Digital Enable

Value Description

- 0 The digital functions for the corresponding pin are disabled.
- 1 The digital functions for the corresponding pin are enabled. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed in Table 10-1 on page 648.

The GPIODEN (Digital Enable) special function register allows us to enable the pin to be used as digital I/O pin instead of analog function. Each PORT of A-F has its own GPIODEN register and one can enable the digital I/O for each pin of a given port

GPIO_PORTF_DEN=0X0A

4- GPIODATA

If we wish to access bit	Constant
7	0x0200
6	0x0100
5	0x0080
4	0x0040
3	0x0020
2	0x0010
1	0x0008
0	0x0004

4- GPIODATA

I can access to any pin directly without needing to (read-modify-write operation to set or clear an individual GPIO pin.)

#define GPIO_PORTF_DATA (*((volatile unsigned long *)0x40025028))

GPIO_PORTF_DATA=0X0A

Second Program:

Blink Led red & Green &Blue using switch 1&2

Second Program:

Blink Led red & Green &Blue using switch 1&2

- 1. #define GPIO_PORTF_DATA (*((volatile unsigned long *)0x4002507C)) to acess pin 0 to pin 4
- 2. GPIO_PORTF_DIR=0X0E
- GPIO_PORTF_DEN=0X0E;
- 4. After we deliver clock we will do the next

2- GPIOLOCK

A write of the value 0x4C4F.434B unlocks the GPIO Commit (GPIOCR) register for write access.A write of any other value or a write to the GPIOCR register reapplies the lock, preventing any register updates.

A read of this register returns the following values:

With Port C & Port F, we need to write in GPIOLock Register

<u>0x4C4F434B</u> to can use all of pins of Port C &F, because some of this pin can make damage to the internal Flash memory & microcontroller

Writing <u>0x4C4F434B</u> In **GPIOLock** enable to write In **GPIOCR**

3- GPIOCR

This register is designed to prevent accidental programming of the registers that control connectivity to the NMI and JTAG/SWD debug hardware. By initializing the bits of the GPIOCR register to 0 for PD7, PF0, and PC[3:0].

3- Un Excepted input

3- Un Excepted input

In tiva-c is available internal Pull up Resistor & internal pull down Resistor on every pin . Switches on PFO,PF4 Is suitable For Pull up resistor

- General-Purpose Input/Outputs
- 3- GPIO Pull-Up Select (GPIOPUR)
 GPIO Pull-down Select (GPIOPDR)

Agenda

- TM4C123 Overview
- General-Purpose Input/Outputs
- Bitwise operators
- System Timer (SysTick)
- Delay Library
- Interface 74595

Symbol	operator
&	bitwise AND
	bitwise inclusive OR
٨	bitwise XOR (eXclusive OR)
<<	left shift
>>	right shift
~	bitwise NOT (one's complement)

-ORGPIO_PORTF DATA=0X0A | 0x04 0b00001010 0b00000100= 0b00001110 = 0x0EGPIO PORTF DATA = 0x04 © -Xor GPIO PORTF DATA=0X0E^0x04 0b00001110 0b00000100= 0b00001010 = 0x0A

GPIO_PORTF DATA^=0x04 ©

- Not

```
GPIO_PORTF_DATA=0x0A
GPIO_PORTF_DATA=~GPIO_PORTF_DATA
0b00001010=
0b11110101 =0xF5
GPIO_PORTF_DATA~=0x0A ☺
```

- And or Mask

```
GPIO_PORTF_DATA=0X0E&0x04
0b00001110
0b0000100=
0b00000100 = 0x04
GPIO_PORTF_DATA&=0x04 ©
```

```
- ( >>) right shift
  Data>>Number of bit
  GPIO PORTF DATA=0x0A>>1
  0b00001010=
  0b00000101 = 0x05
  GPIO PORTF DATA>>=1 ©
- ( <<) left shift
  Data<<Number of bit
  GPIO PORTF DATA=0x0A<<1
  0b00001010=
  0b00010100 = 0x14
  GPIO_PORTF DATA<<=1 ©
```

Exercise

```
GPIO_PORTF_DATA=0XFF;
GPIO_PORTF_DATA&=~(0X02);
```

Answer is **GPIOF_PORTF_DATA=0XFD**;

Agenda

- TM4C123 Overview
- General-Purpose Input/Outputs
- Bitwise operators
- System Timer (SysTick)
- Delay Library
- Interface 74595

- System Timer (SysTick)
 - Tiva-c includes an integrated system timer (SysTick):
 - SysTick is part of Cortex-M4 Core.
 - SysTick is 24 bit timer wide.
 - SysTick is use in RTOS operations .
 - SysTick is decrement timer.
 - 24 bit timer mean the timer can count 16777215
 Cycle.
 - With 16 MHz speed the SysTick can generate 1 second delay when count 16000000 cycles which mean 1599999 because timer count to 0.

• System Timer (SysTick)

Clock Diagram In Tiva-c

System Timer (SysTick) SysTick diagram In Tiva-c

PIOSC (Precision Internal OSC 16 MHz).

System Clock can be from 32,768 KHz To 80 MHz.

System Timer (SysTick)

SysTick consist from 3 Register:

Register 1: SysTick Control and Status Register (STCTRL):

SysTick Control and Status Register (STCTRL)

Base 0xE000.E000 Offset 0x010 Type R/W, reset 0x0000.0004

- Enable: 0 timer is disabled, 1 timer is enabled.
- INTEN: 0 Interrupt is disabled, 1 An interrupt is generated to the NVIC when SysTick counts to 0.
- CLK_SRC: 0 (PIOSC) divided by 4,1 System clock.
- COUNT: 0 The SysTick timer has not counted to 0 yet, 1 The SysTick timer
 has counted to 0. This bit is cleared by a read of the register or if the
 STCURRENT register is written with any value.

System Timer (SysTick)

SysTick consist from 3 Register:

Register 2: SysTick Reload Value Register (STRELOAD)

SysTick Reload Value Register (STRELOAD)

Base 0xE000.E000 Offset 0x014 Type R/W, reset -

- The STRELOAD register specifies the start value to load into the SysTick Current Value (STCURRENT) register when the counter reaches.
- The start value can be between 0x1 and 0x00FFFFFF.
- The STRELOAD should contain the value N 1 for the COUNT to fire every N clock cycles because the counter counts down to 0. For example, if we need 1000 clocks of interval, then we make STRELOAD =999.

System Timer (SysTick)

SysTick consist from 3 Register:

Register 3: SysTick Current Value Register (STCURRENT)

SysTick Current Value Register (STCURRENT)

Base 0xE000.E000 Offset 0x018 Type R/WC, reset -

• This register is write-clear. Writing to it with any value clears the register. Clearing this register also clears the COUNT bit of the STCTRL register.

• System Timer (SysTick)

Working with SysTick

- I. We **Must** Disable SysTick during setup, STCTRL=0.
- II. We put the value that SysTick count it in STRELOAD.
- III. The value must be not more than 16777215 or FFFFFF.
- IV. We Enable SysTick & choose the configurations.
- V. STCTRL=0x05 (enable it, no interrupt, use system clock).
- VI. Wait Flag

Agenda

- TM4C123 Overview
- General-Purpose Input/Outputs
- Bitwise operators
- System Timer (SysTick)
- Delay Library
- Interface 74595

Agenda

- TM4C123 Overview
- General-Purpose Input/Outputs
- Bitwise operators
- System Timer (SysTick)
- Delay Library
- Interface 74595

• Interface 74595

