# K Nearest Neighbor

## Fraida Fund

## Contents

|       | lecture                                               | 2        |
|-------|-------------------------------------------------------|----------|
| Parar | etric vs. non-parametric models                       | 3        |
|       | o far                                                 | 3        |
|       | lexible models                                        | 3        |
|       | arametric models                                      | 3        |
|       | on-parametric models                                  | 3        |
| Near  | st neighbor                                           | 3        |
|       | -NN                                                   | 3        |
|       | NN - decision boundaries                              | 3        |
|       | nearest neighbors                                     | 3        |
|       | NN for classification (1)                             | 3        |
|       | NN for classification (Illustration)                  | 4        |
|       | NN for classification (2)                             | 4        |
|       | NN for classification (3)                             | 4        |
|       | NN for regression                                     | 5        |
|       | choices                                               | 5        |
|       | /hat value of K?                                      | 5        |
|       | /hat value of K? Illustration (1NN)                   | 5        |
|       | /hat value of K? Illustration (2NN)                   | 7        |
|       | /hat value of K? Illustration (3NN)                   | 7        |
|       | /hat value of K? Illustration (9NN)                   | 7        |
|       | /hat distance measure? (1)                            | 7        |
|       | /hat distance measure? (2)                            | 7        |
|       | tandardization (1)                                    | 7        |
|       | tandardization (2)                                    | 8        |
|       | /hat distance measure? (3)                            | 8        |
|       | low to combine labels into prediction?                | 8        |
|       | learest neighbor in sklearn                           | 9        |
| The ( | rse of Dimensionality                                 | 9        |
|       | pace grows exponentially with dimension               | 9        |
|       | NN in 1D                                              | 9        |
|       | NN in 2D                                              | 9        |
|       | ensity of samples decreases with dimensions           | 9        |
|       | rensity of samples decreases with dimensions account  | 10       |
|       | ensity of samples decreases with dimensions - general | 10       |
|       | olutions to the curse (1)                             | 10       |
|       | olutions to the curse (1)                             | 10       |
| Diac  | olutions to the curse (2)                             | 11       |
|       | nd variance of KNN                                    |          |
|       | rue function                                          | 11<br>11 |
|       | xpected loss                                          | 11       |
|       | NN output                                             |          |
|       | ias of KNN                                            | 11       |

|     | riance of KNN (1)    .   .                                                                                       | 12 |
|-----|------------------------------------------------------------------------------------------------------------------|----|
|     | riance of KNN (2)                                                                                                | 12 |
|     | SE of KNN                                                                                                        | 12 |
|     | as variance tradeoff                                                                                             | 12 |
|     | as variance tradeoff - selected problems                                                                         | 13 |
| Sum | ry of NN method                                                                                                  | 13 |
|     | I learning                                                                                                       | 13 |
|     | I prediction                                                                                                     | 13 |
|     | e good and the bad (1)                                                                                           | 13 |
|     | e good and the bad (2) $\ldots$ | 13 |
|     | e good and the bad (3) $\ldots$ | 13 |
|     | ustration                                                                                                        | 13 |
|     |                                                                                                                  |    |

## In this lecture

- Parametric vs. non-parametric models
  Nearest neighbor
  Model choices
  The Curse of Dimensionality
  Bias and variance of KNN

## Parametric vs. non-parametric models

#### So far...

All of our models have looked like

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

#### Flexible models

A model is more flexible if it can produce more possibilities for  $f(\mathbf{x})$ .

- Some possibilities for  $f(x_1,\dots,x_p)=\beta_0+\beta_1x_1$
- More possibilities for  $f(x_1,\ldots,x_p)=\beta_0+\beta_1x_1+\beta_2x_2$
- Even more possibilities for  $f(x_1,\ldots,x_n)=\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3$

A way to get more flexible models is with a **non-parametric** approach.

#### Parametric models

- A particular model class is assumed (e.g. linear)
- Number of parameters fixed in advance

## Non-parametric models

- · Minimal assumptions about model class
- · Model structure determined by data

## **Nearest neighbor**

- · A kind of non-parametric model.
- · Basic idea: Find labeled samples that are "similar" to the new sample, and use their labels to make prediction for the new sample.

#### 1-NN

- Given training data  $(\mathbf{x}_1,y_1),\dots,(\mathbf{x}_N,y_N)$  and a new sample  $\mathbf{x}_0$  Find the sample in the training data  $\mathbf{x}_{i'}$  with the least distance to  $\mathbf{x}_0$ .

$$i' = \operatorname*{argmin}_{i=1,\dots,N} d(\mathbf{x}_i,\mathbf{x}_0)$$

• Let  $\hat{y}_0 = y_{i'}$ 

#### **1NN - decision boundaries**

## K nearest neighbors

Instead of 1 closest sample, we find  ${\cal K}$  closest samples.

## KNN for classification (1)

Idea: Estimate conditional probability for class as fraction of points among neighbors with that class label.



Figure 1: 1NN decision boundaries - Nearest neighborhoods for each point of the training data set. Note that there will be zero error on training set!

## KNN for classification (Illustration)



Figure 2: 3-NN classification. Image from ISLR.

## KNN for classification (2)

Let  $N_0$  be the set of K points in the training data that are closest to  $\mathbf{x}_0$ . Then, for each class  $m \in M$ , we can estimate the conditional probability

$$P(y=m|\mathbf{x_0}) = \frac{1}{K} \sum_{(\mathbf{x}_i,y_i) \in N_0} I(y_i=k)$$

where  $I(y_i=m)$  is an indicator variable that evaluates to 1 if for a given observation  $(\mathbf{x}_i,y_i)\in N_0$  is a member of class m, and 0 otherwise.

## KNN for classification (3)

• We can then select the class with the highest probability.

• Practically: select the most frequent class among the neighbors.

## **KNN for regression**

Idea: Use the the combined label of the K nearest neighbors.

Let  $N_0$  be the set of K points in the training data that are closest to  $\mathbf{x}_0$ . Then,

$$\hat{y}_0 = \frac{1}{K} \sum_{(\mathbf{x}_i, y_i) \in N_0} y_i$$

## **Model choices**

- What value of K?
- · What distance measure?
- ullet How to combine K labels into prediction?

## What value of K?

- ullet K must be specified, can be selected by CV. (In general: larger K, less complex model.)
- Often cited "rule of thumb": use  $K=\sqrt{N}$
- Alternative: Radius-based neighbor learning, where fixed radius r is specified, can be selected by CV. (Number of neighbors depends on local density of points.)

## What value of K? Illustration (1NN)



Figure 3: 1NN



Figure 4: 2NN



Figure 5: 3NN



Figure 6: 9NN

What value of K? Illustration (2NN)

What value of K? Illustration (3NN)

What value of K? Illustration (9NN)

What distance measure? (1)

- Euclidean (L2):  $\sqrt{\sum_{i=1}^k (a_i-b_i)^2}$  Manhattan (L1):  $\sum_{i=1}^k |a_i-b_i|$
- Minkowski (generalization of both):  $\left(\sum_{i=1}^k (|a_i-b_i|)^q\right)^{\frac{1}{q}}$

(L2 distance prefers many medium disagreements to one big one.)

## What distance measure? (2)

- Feature weight depends on scale
- · KNN implicitly weights all features equally

## **Standardization (1)**



Figure 7: Without standardization, via https://stats.stackexchange.com/a/287439/

## Standardization (2)



Figure 8: With standardization, via https://stats.stackexchange.com/a/287439/

## What distance measure? (3)

· Alternative to equal weighted features: assign feature weights

$$d(\mathbf{a}, \mathbf{b}) = \left(\sum_{i=1}^k (w_i|a_i - b_i|)^q\right)^{\frac{1}{q}}$$

## How to combine labels into prediction?

- Basic voting: use mode of neighbors for classification, mean or median for regression.
- Distance-weighted: weight of vote inversely proportional to distance from the query point. ("More similar" training points count more.)

## Nearest neighbor in sklearn

- KNeighborsClassifier
- KNeighborsRegressor

## The Curse of Dimensionality

## Space grows exponentially with dimension



Figure 9: Number of cells grows exponentially with dimension. From Bishop PRML, Fig. 1-21

## KNN in 1D

- Consider a dataset  $(x_1,y_1),\ldots,(x_N,y_N)$  with N=100 x takes on values in the range [0,1] with uniform distribution
- On average, one data point is located every 1/100 units along 1D feature axis.
- To find 3NN, would expect to cover 3/100 of the feature axis.

#### KNN in 2D

- Now consider a dataset with two features:  $([x_{1,1},x_{1,2}],y_1),\dots,([x_{N,1},x_{N,2}],y_N)$  with N=100 Each feature takes on values in the range [0,1] with uniform distribution
- To find 3NN, would expect to cover  $0.03^{\frac{1}{2}}$  of the unit rectangle.

## Density of samples decreases with dimensions

To get 3NN,

- need to cover 3% of space in 1D
- need to cover 17% of space in 2D
- need to cover 70% of space in 10D. At this point, the nearest neighbors are not much closer than the rest of the dataset.

## Density of samples decreases with dimensions - general

The length of the smallest hyper-cube that contains all K-nearest neighbors of a test point:

$$\left(\frac{K}{N}\right)^{\frac{1}{d}}$$

for N samples with dimensionality d.

## Density of samples decreases with dimensions - illustration



Figure 10: Image source: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02\_k NN.html

## Solutions to the curse (1)

Add training data?

$$\left(\frac{K}{N}\right)^{\frac{1}{d}}$$

As number of dimensions increases linearly, number of training samples must increase exponentially to counter the "curse".

## Solutions to the curse (2)

Reduce d?

- Feature selection (and in previous lab)
- Dimensionality reduction: a type of unsupervised learning that *transforms* high-d data into lower-d data.

## **Bias and variance of KNN**

#### **True function**

Suppose data has true relation

$$y = f_0(\mathbf{x}) + \epsilon, \quad \epsilon \sim N(0, \sigma_{\epsilon}^2)$$

and our model predicts  $\hat{y} = f(\mathbf{x})$ .

## **Expected loss**

We will use least square loss function, so that the expected error at a given test point  $\mathbf{x}_{test}$  is:

$$\begin{split} MSE_y(\mathbf{x}_{test}) &:= E[y - \hat{y}]^2 \\ &= E[f_0(\mathbf{x}_{test}) + \epsilon_0 - f(\mathbf{x}_{test})]^2 \\ &= E[f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test})]^2 + \sigma_{\epsilon}^2 \end{split}$$

which we know can be further decomposed into squared bias, variance, and irreducible error.

#### **KNN output**

The output of the KNN algorithm at a test point is

$$f(\mathbf{x}_{test}) = \frac{1}{K} \sum_{\ell \in K_r} f_0(\mathbf{x}_\ell) + \epsilon_\ell$$

where  $K_x$  is the set of K nearest neighbors of  $\mathbf{x}_{test}$ . (We assume that these neighbors are fixed.)

#### **Bias of KNN**

When we take the expectation of bias over all test samples, the  $\epsilon$  values disappear because it has zero mean, so squared bias becomes

$$\begin{split} Bias^2 &= \left(f_0(\mathbf{x}_{test}) - E[f(\mathbf{x}_{test})]\right)^2 \\ &= \left(f_0(\mathbf{x}_{test}) - E\left(\frac{1}{K}\sum_{\ell \in K_x} f_0(\mathbf{x}_\ell) + \epsilon_\ell\right)\right)^2 \\ &= \left(f_0(\mathbf{x}_{test}) - \frac{1}{K}\sum_{\ell \in K_x} f_0(\mathbf{x}_\ell)\right)^2 \end{split}$$

(We also rely on the assumption that neighbors are fixed.)

### Variance of KNN (1)

$$\begin{split} Var(\hat{y}) &= Var\left(\frac{1}{K}\sum_{\ell \in K_x} f_0(\mathbf{x}_\ell) + \epsilon_\ell\right) \\ &= \frac{1}{K^2}\sum_{\ell \in K_x} Var\left(f_0(x_\ell) + \epsilon_\ell\right) \\ &= \frac{1}{K^2}\sum_{\ell \in K_x} Var\left(f_0(x_\ell)\right) + Var\left(\epsilon_\ell\right) \end{split}$$

## Variance of KNN (2)

$$\begin{split} &= \frac{1}{K^2} \sum_{\ell \in K_x} Var\left(\epsilon_\ell\right) \\ &= \frac{1}{K^2} K \sigma_\epsilon^2 \\ &= \frac{\sigma_\epsilon^2}{K} \end{split}$$

where  $Var(f_0(x_\ell)) = 0$  only if we assume that the neighbors are fixed.

#### **MSE of KNN**

Then the MSE of KNN is

$$MSE(\mathbf{x}_{test}) = \left(f_0(\mathbf{x}_{test}) - \frac{1}{K} \sum_{\ell \in K_x} f_0(\mathbf{x}_\ell)\right)^2 + \frac{\sigma_\epsilon^2}{K} + \sigma_\epsilon^2$$

where  $K_x$  is the set of K nearest neighbors of  $\mathbf{x}_{test}$ .

#### **Bias variance tradeoff**

- · Variance decreases with K
- Bias likely to increase with K, if function  $f_0()$  is smooth. (Few closest neighbrs to test point will have similar values, so average will be close to  $f_0(\mathbf{x})$ ; as K increases, neighbors are further way, and average of neighbors moves away from  $f_0(\mathbf{x})$ .)

## Bias variance tradeoff - selected problems



Figure 11: Via Domingos 2000.

## **Summary of NN method**

## **NN** learning

## Learning:

- · Store training data
- · Don't do anything else until you have a new point to classify

## **NN** prediction

## Prediction:

- Find nearest neighbors using distance metric
- · Classification: predict most frequently occuring class among nearest neighbors
- Regression: predict mean value of nearest neighbors

## The good and the bad (1)

## Good:

- · Good interpretability
- Fast "learning" (memory-based)
- Works well in low dimensions for complex decision surfaces

## The good and the bad (2)

## Neutral:

· Assumes similar inputs have similar outputs

## The good and the bad (3)

#### Bad:

- Slow prediction (especially with large N)
- · Curse of dimensionality

## Illustration



Figure 12: 1NN, 3NN, 9NN comparison on three types of data, with accuracy on test set shown in the corner.