

Focus of Today's Discussion

Introduction

Motivation behind the Proof of Concept (POC)

Proposed Workflow

Interplay between
Components in an LLM
Pipeline

Future Scope and Conclusion

Potential Enhancements

Demo of the Working Pipeline

Al-Builder

Motivation behind the POC- Enhancing Platform Utility

Source-code tutorials for Graphene Pipelines

Frequent documentation updates

Documentation Challenges

- Often, inadequacy, inaccessibility, or cumbersome processes
- Need to automate this process

Large Language Models (LLMs) as Documentation Augmenters

 Leveraging the use of LLMs enhances the Eclipse Graphene platform's [1][2] capability to handle and maintain documentation effectively

Proposed Workflow

User Input:

- Model Selection
- Intended Graphene Tutorial Repo
- Prompts
- Queries
- Ratings and Feedback

Pipeline Output:

- README.md
- Metrics Metadata

LLM-Selection

- Pipeline Tested with Four LLMs (Ongoing)
- 1. gpt-3.5-turbo-instruct
- 2. Mistral-7B-Instruct-v0.1_v2
- 3. llama-2-13b-chat_v3
- 4. OpenGPT-X-24EU-Bactrian-X-ENDEFRITES

LangChain Framework

- Designed to simplify the creation of applications using LLMs
- Addresses use-cases:
 - Chatbots, retrieval-augmented generation, document summarization, etc.
- Main Features used in POC
 - Models I/O
 - Chains
 - Agent Tooling
 - Lang Chain Expression Language (LCEL)

LangChain Stack [4]

Readme-Gen-Module - Core Logic

MapReduce Chain

- Summarize each document on its own in a "map" step and then "reduce" the summaries into a final summary
- Iterative approach
- Parallel aggregation of results

Agent Tooling

- Simple, basic functions as tools
- Reduce LLM Hallucinations
- Controlled text generation
- Aids in building structured prompts

User-Feedback – Human-in-loop

- Manages README file's user ratings and feedback
- Helps gauge the pipeline's effectiveness

overall_avg_star_rating:

- Scale: 1 to 5 for user satisfaction.
- Mean rating received for READMEs in Graphene Tutorials.

overall_avg_feedback_sentiment_score:

Scale: -1 to 1 for sentiment polarity.

Average sentiment polarity derived from README feedback

Feedback Text	Corresponding Sentiment Score
Good explanation	0.7
The generated docker commands were not accurate.	-0.2
Very good!	1.0
LLM can generate a better response!	0.5
Good generation	0.7

▼ metrics:	
date_time:	"2024-04-18 17:32:01"
type:	"LLM Metrics"
status_text:	"success"
<pre>▼ more_is_better:</pre>	
overall_avg_star_rating:	2.625
overall_avg_feedback_sentiment_score:	0.375

Al-Builder Pipeline

OpenAl LLMs

OpenAl LLMs

open-source-model-selector1

open-source-model-selector1

0

/data/shared

Readme-Gen-Module-OS1 🧿

user-feedback-diagnostics1

Open-source LLMs

Future Scope

- **1. Q&A Chatbot** using the generated README
- 2. Automated tracking of **code updates** and README maintenance
- 3. Source code optimization recommendations
- 4. Improvise content generation for **Domain-Specific terminologies**
- 5. Identify issues and areas for enhancement in large codebases

References

- 1. https://gitlab.eclipse.org/eclipse/graphene/tutorials
- 2. https://www.ai4europe.eu/ai-builder
- 3. https://gitlab.eclipse.org/eclipse/graphene/tutorials/-/tree/main/graphene llm-readme-gen?ref-type=heads
- 4. https://python.langchain.com/docs/get_started/introduction
- 5. https://python.langchain.com/docs/modules/chains/document/map_reduce
- 6. https://python.langchain.com/docs/modules/tools/
- 7. https://arxiv.org/abs/2403.10588
- 8. https://arxiv.org/abs/2404.02183
- 9. https://arxiv.org/abs/2308.03099
- 10. https://arxiv.org/abs/2306.01394
- 11. https://arxiv.org/abs/2201.11903
- 12. https://arxiv.org/abs/2310.12430
- 13. https://www.lakera.ai/blog/large-language-model-evaluation
- 14. https://textblob.readthedocs.io/en/dev/
- 15. https://openai.com/
- 16. https://huggingface.co/mistralai/Mistral-7B-v0.1

Thank you

Inside the Pipeline: Key Components

• Open-Source and Closed-Source LLMs

OpenAl LLMs

- Model: text-davinci-003
- GPT-3.5 architecture

Open-source LLMs

- Model: mistralai/Mistral-7B-Instruct-v0.1
- Instruct fine-tuned version of the Mistral-7Bv0.1 generative text model
- Set up in FEC VM with 1 A100 GPU

