Homework 2 for **MATH 574**, Topics in Logic

Due: Wednesday Feb 12

Problem 1

Let μ be a Borel probability measure on a sequence space $A^{\mathbb{N}}$, A finite. A sequence $x \in A^{\mathbb{N}}$ is called an *atom* of μ if $\mu(\{x\}) > 0$. Show that the set of all atoms of μ is a Borel set.

Problem 2

Prove the following lemma from Lecture 1-5:

LEMMA: Suppose *A* is a finite alphabet. Let μ be a function defined on cylinders so that for all $\sigma \in A^{\leq \mathbb{N}}$,

$$\mu[\sigma] = \sum_{a \in A} \mu[\sigma^{\hat{}} a].$$

Suppose $\{\sigma_1, ..., \sigma_n\}$ and $\{\tau_1, ..., \tau_m\}$ are prefix-free sets of strings so that

$$\bigcup_{i=1}^n [\sigma_i] = \bigcup_{j=1}^m [\tau_j].$$

Then

$$\sum_{i=1}^n \mu[\sigma_i] = \sum_{j=1}^m \mu[\tau_j].$$

Problem 3

Let (P_n) be the distribution of a discrete A-valued process (X_k) , and suppose the (P_n) satisfy the consistency condition

$$P_n(\sigma) = \sum_{a \in A} P_{n+1}(\sigma^{\frown} a).$$

The conditional distribution on A of level k is defined as

$$P(a|a_0a_1...a_{k-1}) = \text{Prob}(X_k = a|X_0 = a_0,...,X_{k-1} = a_{k-1}).$$

The process (X_n) is called *independent* if for all k, a and A-strings $a_0 \dots a_{k-1}$,

$$P(a|a_0...a_{k-1}) = \text{Prob}(X_k = a).$$

Moreover, (X_n) is called identically distributed if for all $k \ge 0$, $a \in A$

$$Prob(X_k = a) = Prob(X_0 = a).$$

Show that a binary process (X_n) is independent and identically distributed (i.i.d.) if and only if there exists a $p \in [0,1]$ such that, if μ denotes the Kolmogorov extension of the process to $\{0,1\}^{\mathbb{N}}$,

$$\mu[\sigma] = p^N (1-p)^{|\sigma|-N},$$

where $N = \# \{i : \sigma(i) = 1\}.$