

Algorithm Efficiency

Văn Chí Nam

Contents

A review on algorithm

Analysis and Big-O notation

Algorithm efficiency

A review on algorithm

What is Algorithm?

- An algorithm is
 - a finite sequence of well-defined steps (statements, often called instructions or commands)
 - that provides the solution to a problem.

Algorithm

• Give some examples of algorithms.

An Example

- Input: No
- Output: what do you think about the output?
- Step 1. Assign sum = 0. Assign i = 0.
- Step 2.
 - Assign i = i + 1
 - Assign sum = sum + i
- Step 3. Compare i with 10
 - if i < 10, back to step 2.
 - otherwise, if $i \ge 10$, go to step 4.
- Step 4 return sum

Characteristics of Algorithms

- Finiteness
 - For any input, the algorithm must terminate after a finite number of steps.
- Correctness
 - Always correct. Give the same result for different run time.
- Definiteness
 - All steps of the algorithm must be precisely defined.
- Effectiveness
 - It must be possible to perform each step of the algorithm correctly and in a finite amount of time.

Algorithm Efficiency

- The two factors of Algorithm Efficiency are:
 - **Time Factor**: Time is measured by counting the number of key operations.
 - **Space Factor**: Space is measured by counting the maximum memory space required by the algorithm.

Measuring Efficiency of Algorithms

- Can we compare two algorithms (in time factor) like this?
 - Implement those algorithms (into programs)
 - Calculate the execution time of those programs
 - Compare those two time values.

Measuring Efficiency of Algorithms

 Comparison of algorithms should focus on significant differences in efficiency

- Difficulties with comparing programs instead of algorithms
 - How are the algorithms coded?
 - What computer should you use?
 - What data should the programs use?

Measuring Efficiency of Algorithms

• Employ mathematical techniques that analyze algorithms independently of specific implementations, computers, or data.

Execution Time of Algorithm

 Derive an algorithm's time requirement as a function of the problem size

- base on the key operations:
 - Comparisons
 - Assignments
- For exmaple
 - Algorithm A requires $n^2/5$ time unit to solve a problem of size n.
 - Algorithm *B* requires 5 x n time unit to solve a problem of size *n*.

Execution Time of Algorithm

Traversal of linked nodes – example:

```
Node<ItemType>* curPtr = headPtr; \leftarrow 1 \ assignment
while (curPtr != nullptr) \leftarrow n + 1 \ comparisons
{
   cout << curPtr->getItem() < endl; \leftarrow n \ writes
   curPtr = curPtr->getNext(); \leftarrow n \ assignments
} // end while
```

- Assignment: *a* time units.
- Comparison: *c* time units.
- Write: w time units.
- Displaying data in linked chain of n nodes requires time proportional to n

Execution Time of Algorithm

Nested loops

```
for (i = 1 through n)

for (j = 1 through i)

for (k = 1 through 5)

Task T
```

Task T requires t time units.

Previous Example

- Step 1. Assign sum = 0. Assign i = 0.
- Step 2.
 - Assign i = i + 1
 - Assign sum = sum + i
- Step 3. Compare i with 10
 - if i < 10, back to step 2.
 - otherwise, if $i \ge 10$, go to step 4.
- Step 4. Return sum

How many

- Assignments?
- Comparisons?

Another Example

- Step 1. Assign sum = 0. Assign i = 0.
- Step 2.
 - Assign i = i + 1
 - Assign sum = sum + i
- Step 3. Compare i with n
 - if i < n, back to step 2.
 - otherwise, if $i \ge n$, go to step 4.
- Step 4. Return sum

How many

- Assignments?
- Comparisons?

Algorithm Growth Rates

- Measure algorithm's time requirement as a function of problem size
- Compare algorithm efficiencies for large problems
- Look only at significant differences.

Algorithm Growth Rates

• Time requirements as a function of the problem size *n*

Analysis and Big O Notation

Big O Notation

- Definition:
 - Algorithm A is order f (n)
 - Denoted O(f(n))
 - If constants \mathbf{k} and \mathbf{n}_0 exist
 - Such that A requires **no more** than $\mathbf{k} \times \mathbf{f}$ (**n**) time units to solve a problem of size $\mathbf{n} \ge \mathbf{n}_0$.

Example

- An algorithm requires n^2 3n + 10 (time units). What is the order of algorithm?
 - Hint: Find the values k va n_0 .
- When 1 < n
 - $1 < n^2$
 - $10 < 10n^2$, -3n < 0
 - $n^2 3n + 10 < 11n^2$
- $O(n^2)$, $n_0 = 1$, k = 11

Example

The graphs of $3 \times n^2$ and $n^2 - 3 \times n + 10$

Another Example

- How about the order of an algorithm requiring (n + 1) × (a + c)
 + nw time units?
 - a, c, w are constants and greater than 0
- $(n + 1) \times (a + c) + nw = (a + c + w)n + a + c$
- When 1 < n
 - a + c < a + c + w, a + c + w < (a + c + w)n
 - a + c < (a + c + w)n
 - (a + c + w)n + a + c < 2(a + c + w)n
- O(n), $n_0 = 1$, k = 2(a + c + w)

Another Example

- Another algorithm requires n² + 3n + 2 time units. What is the order of this algorithm?
- When 1 < n
 - $n < n^2, 1 < n^2$
 - $3n < 3n^2, 2 < 2n^2$
 - $n^2 + 3n + 2 < 6n^2$
- $O(n^2)$, $n_0 = 1$, k = 6

- f(n) =
 - 1: Constant
 - log₂n: Logarithmic
 - n: Linear
 - n × log₂n: Linearithmic
 - n²: Quadratic
 - n³: Cubic
 - 2ⁿ: Exponential

Order of growth of some common functions

$$O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n^2) < O(n^3) < O(2^n)$$

• A comparison of growth-rate functions in tabular form

				n A		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	10 ⁶
n × log₂n	30	664	9,965	10 ⁵	10 ⁶	10 ⁷
n^2	10 ²	104	10 ⁶	10 ⁸	1010	1012
n^3	10³	10 ⁶	10 ⁹	1012	1015	10 ¹⁸
2 ⁿ	10³	1030	10301	1 103,01	10 ^{30,}	103 10301,030

• A comparison of growth-rate functions in graphical form

Properties of Growth-Rate Functions

- Ignore low-order terms
- Ignore a multiplicative constant in the high-order term
- O(f(n)) + O(g(n)) = O(f(n) + g(n))

Some Useful Results

- Constant Multiplication:
 - If f(n) is O(g(n)) then c.f(n) is O(g(n)), where c is a constant.

Polynomial Function:

•
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
 is $O(x^n)$.

Some Useful Results

Summation Function:

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$
- Then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

Multiplication Function:

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$
- Then $f_1(n) \times f_2(n)$ is $O(g_1(n) \times g_2(n))$

Quiz

Are these functions of order O(x)?

- a) f(x) = 10
- b) f(x) = 3x + 7
- c) $f(x) = 2x^2 + 2$

Quiz

What are the order of the following functions?

•
$$f(n) = (2 + n) * (3 + log_2 n)$$

•
$$f(n) = 11 * log_2 n + n/2 - 3542$$

•
$$f(n) = n * (3 + n) - 7 * n$$

•
$$f(n) = log_2(n^2) + n$$

Notes

- Use like this:
 - f(x) is O(g(x)), or
 - f(x) is of order g(x), or
 - f(x) has order g(x)

Algorithm Efficiency

Algorithm Efficiency

Best case

Worst case

Average case

An Algorithm to Analyze

- Input:
- Output:
- Step 1. Set the first integer the temporary maximum value (temp max).
- Step 2. Compare the current value with the temp_max.
 If it is greater than, assign the current value to temp max.
- Step 3. If there is other integer in the list, move to next value. Back to step 2.
- Step 4. If there is no more integer in the list, stop.
- Step 5. return temp max (the maximum value of the list).

Another Algorithm to Analyze

- Input:
- Output:
- Step 1. Assign $\mathbf{i} = 0$
- Step 2. While $\mathbf{i} < \mathbf{n}$ and $\mathbf{x} \neq \mathbf{a_i}$, increase \mathbf{i} by 1. while (i < n and $\mathbf{x} \neq \mathbf{a_i}$) $\mathbf{i} = \mathbf{i} + \mathbf{1}$
- Step 3.
 - If i < n, return i.
 - Otherwise (i >= n), return -1 to tell that \boldsymbol{x} does not exist in list \boldsymbol{a} .

Another Algorithm to Analyze

Use comparisons for counting.

- Worst case:
 - When it occurs?
 - How many operations?
- Best case:
 - When it occurs?
 - How many operations?

Another Algorithm to Analyze

Use comparisons for counting.

- Average case:
 - If x is found at position ith, the number of comparisons is 2i + 1.
 - The average number of comparisons is:

$$\frac{3+5+7+..+(2n+1)}{n} = \frac{2(1+2+3+...+n)+n}{n} = \frac{2\frac{n(n+1)}{2}+n}{n} = n+2$$

Keeping Your Perspective

- If problem size always small, ignore an algorithm's efficiency
- Weigh trade-offs between algorithm's time and memory requirements
- Compare algorithms for both style and efficiency

fit@hcmus | DSA | 2020

• Propose an algorithm to calculate the value of *S* defined below. What order does the algorithm have?

$$S = 1 + \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n!}$$

• How many comparisons, assignments are there in the following code fragment with the size *n*?

```
sum = 0;
for (i = 0; i < n; i++)
{
    cin >> x;
    sum = sum + x;
}
```


How many assignments are there in the following code fragment with the size *n*?

• Give the order of growth (as a function of N) of the running time of the following code fragment:

```
int sum = 0;
for (int n = N; n > 0; n /= 2)
  for (int i = 0; i < n; i++)
    sum++;</pre>
```


• Give the order of growth (as a function of N) of the running time of the following code fragment:

```
int sum = 0;
for (int i = 1; i < N; i *= 2)
  for (int j = 0; j < i; j++)
    sum++;</pre>
```


• Give the order of growth (as a function of N) of the running time of the following code fragment:

```
int sum = 0;
for (int i = 1; i < N; i *= 2)
  for (int j = 0; j < N; j++)
    sum++;</pre>
```


Questions and Answers