Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики

Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Нахождение числовых характеристик выборки

По дисциплине «Теория вероятностей и математическая статистика»

Выполнил Студент гр.3630201/80101		В.Н. Сеннов
Руководитель доцент к.фм.н.		А.Н. Баженов
	«»	202г.

Содержание

1	Постановка задачи						
2	Математическое описание 2.1 Вариационный ряд	5					
3	Особенности реализации	6					
4	Результаты работы программы	7					
За	аключение	9					
\mathbf{C}_{1}	писок литературы	10					
\mathbf{A}	Репозиторий с исходным кодом	11					

Список таблиц

1	Числовые характеристики выборки, соответствующей нормальному распреде-	
	лению	7
2	Числовые характеристики выборки, соответствующей распределению Коши	7
3	Числовые характеристики выборки, соответствующей распределению Лапласа.	7
4	Числовые характеристики выборки, соответствующей распределению Пуассона	8
5	Числовые характеристики выборки, соответствующей равномерному распреде-	
	лению	8

1 Постановка задачи

Для заданных распределений нужно сгенерировать выборки размером 10, 100, 1000 элементов. Для каждой выборки нужно найти следующие характеристики:

- 1. среднее значение;
- 2. медиану;
- 3. полусумму экстремальных значений;
- 4. полусумму квартилей;
- 5. усеченное среднее.

Это нужно повторить 1000 раз и найти среднее значение и дисперсию этих характеристик для каждого размера выборки.

Заданные распределения:

- 1. Нормальное (гауссово) распределение с параметрами $\mu = 0, \, \sigma = 1;$
- 2. Распределение Коши с параметрами $\mu = 0, \lambda = 1;$
- 3. Распределение Лапласа с параметрами $\mu = 0, \lambda = \frac{1}{\sqrt{2}}$;
- 4. Распределение Пуассона с параметром $\mu = 10$;
- 5. Равномерное распределение с параметрами $a = -\sqrt{3}, b = \sqrt{3}$.

2 Математическое описание

2.1 Вариационный ряд

Вариационным рядом называется последовательность элементов выборки, расположенных в неубывающем порядке, причем одинаковые элементы повторяются [2].

2.2 Выборочные числовые характеристики

Для вариационного ряда x_1, x_2, \ldots, x_n определяют следующие числовые характеристики:

1. Выборочное среднее:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

2. Выборочная медиана:

3. Полусумма экстремалей:

$$z_R = \frac{x_1 + x_n}{2} \tag{3}$$

4. Выборочный квантиль порядка p:

$$z_p = x_{\lceil np \rceil}$$

5. Полусумма квартилей:

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{4}$$

6. Усеченное среднее:

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i, \quad r \approx \frac{n}{4}$$
 (5)

[1]

2.3 Характеристики рассеяния

Для выборки можно рассчитать выборочную дисперсию по формуле:

$$D = \overline{x^2} - (\overline{x})^2 \,, \tag{6}$$

где \bar{x} — выборочное среднее, а $\overline{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2$.

3 Особенности реализации

Программа для выполнения лабораторной была написана на языке Python 3.8.2. Для генерации выборок использовался модуль **distributions**, написанный для лабораторной №1. Для расчета численных характеристик был написан модуль **characteristics**. В нем на основе формул (1-5) рассчитываются числовые характеристики. При помощи формулы (1) рассчитывается среднее значение для каждой характеристики, при помощи формулы (6) рассчитывается дисперсия.

В приложении А приведена ссылка на репозиторий с исходным кодом.

4 Результаты работы программы

В данном разделе в таблицах 1-5 представлены результаты расчета числовых характеристик выборки.

Выборочные характеристики \bar{x} - z_{tr} были рассчитаны по формулам (1-5).

Рассчет погрешности для средней величины был произведен по формуле:

$$\Delta_z = \sqrt{D(z)}$$

Нормальное распределение							
		\bar{x}	$\mod x$	z_R	z_Q	z_{tr}	
n = 10	$\bar{z} \pm \Delta_z$	0.0 ± 0.4	0.0 ± 0.4	0.0 ± 0.5	0.0 ± 0.4	0.0 ± 0.4	
n = 10	D_z	0.103	0.146	0.183	0.124	0.124	
n = 100	$\bar{z} \pm \Delta_z$	0.0 ± 0.1	0.0 ± 0.2	0.0 ± 0.3	0.0 ± 0.2	0.0 ± 0.2	
	D_z	0.009	0.015	0.074	0.012	0.011	
n = 1000	$\bar{z} \pm \Delta_z$	0.00 ± 0.04	0.00 ± 0.04	0.0 ± 0.2	0.00 ± 0.04	0.00 ± 0.04	
n = 1000	D_z	0.001	0.002	0.042	0.001	0.001	

Таблица 1: Числовые характеристики выборки, соответствующей нормальному распределению

Распределение Коши								
		\bar{x}	$\mod x$	z_R	z_Q	z_{tr}		
n = 10	$\bar{z} \pm \Delta_z$	0 ± 4	0.0 ± 0.6	0 ± 20	0.0 ± 1.1	0.0 ± 0.8		
n = 10	D_z	15.4	0.35	296	1.16	0.519		
n = 100	$\bar{z} \pm \Delta_z$	0.0 ± 1.2	0.0 ± 0.2	0.0 ± 40	0.0 ± 0.3	0.0 ± 0.2		
	D_z	1.521	0.024	1190	0.050	0.024		
n = 1000	$\bar{z} \pm \Delta_z$	0.00 ± 0.5	0.00 ± 0.06	0 ± 20	0.00 ± 0.08	0.00 ± 0.06		
	D_z	0.172	0.002	400	0.005	0.003		

Таблица 2: Числовые характеристики выборки, соответствующей распределению Коши

Распределение Лапласа							
		\bar{x}	$\mod x$	z_R	z_Q	z_{tr}	
n = 10	$\bar{z} \pm \Delta_z$	0.0 ± 0.6	0.0 ± 0.6	0.0 ± 1.2	0.0 ± 0.6	0.0 ± 0.6	
n = 10	D_z	0.361	0.284	1.379	0.369	0.278	
n = 100	$\bar{z} \pm \Delta_z$	0.0 ± 0.2	0.0 ± 0.2	0.0 ± 1.0	0.0 ± 0.2	0.0 ± 0.2	
	D_z	0.041	0.027	1.025	0.040	0.028	
n = 1000	$\bar{z} \pm \Delta_z$	0.00 ± 0.07	0.00 ± 0.05	0.0 ± 0.6	0.00 ± 0.06	0.00 ± 0.05	
	D_z	0.0036	0.0019	0.3298	0.0034	0.0021	

Таблица 3: Числовые характеристики выборки, соответствующей распределению Лапласа

Распределение Пуассона							
		\bar{x}	$\mod x$	z_R	z_Q	z_{tr}	
n - 10	$\bar{z} \pm \Delta_z$	10.0 ± 1.0	9.8 ± 1.2	10 ± 2	9.9 ± 1.2	9.9 ± 1.1	
n=10	D_z	1.019	1.442	1.762	1.245	1.156	
m — 100	$\bar{z} \pm \Delta_z$	10.0 ± 0.3	9.8 ± 0.5	10.9 ± 0.8	9.9 ± 0.4	9.8 ± 0.4	
n = 100	D_z	0.097	0.211	0.689	0.152	0.121	
n = 1000	$\bar{z} \pm \Delta_z$	10.0 ± 0.1	10.00 ± 0.04	11.3 ± 0.4	10.00 ± 0.06	9.86 ± 0.10	
	D_z	0.0096	0.0019	0.1105	0.0027	0.0109	

Таблица 4: Числовые характеристики выборки, соответствующей распределению Пуассона

Равномерное распределение							
		\bar{x}	$\mod x$	z_R	z_Q	z_{tr}	
n = 10	$\bar{z} \pm \Delta_z$	0.0 ± 0.4	0.0 ± 0.5	0.0 ± 0.3	0.0 ± 0.4	0.0 ± 0.5	
n=10	D_z	0.106	0.232	0.046	0.141	0.166	
n - 100	$\bar{z} \pm \Delta_z$	0.00 ± 0.11	0.0 ± 0.2	0.00 ± 0.03	-0.02 ± 0.12	0.0 ± 0.2	
n = 100	D_z	0.0103	0.232	0.0462	0.141	0.166	
n = 1000	$\bar{z} \pm \Delta_z$	0.00 ± 0.04	0.00 ± 0.06	0.000 ± 0.003	0.00 ± 0.04	0.00 ± 0.05	
	D_z	0.0009	0.0028	0.00005	0.0014	0.0019	

Таблица 5: Числовые характеристики выборки, соответствующей равномерному распределению

Заключение

В рамках лабораторной работы были рассчитаны средние значения числовых характеристик выборок разного размера для заданных распределений.

Заметно, что при большем количестве элементов выборки значения среднего и медианы точнее соответствует математическому ожиданию и теоретическому значению медианы.

Стоит отметить, что при реализации генерации выборки, соответствующей распределению Коши, был намеренно ограничен диапазон значений до интервала (—1591; 1591), чтобы избежать чересчур больших значений случайной величины. Несмотря на это, заметно, что дисперсия при подсчете среднего больше, чем для других распределений. Заметно также, что для медианы и усеченного среднего этого эффекта не наблюдается.

Программа для лабораторной была написана языке Python 3.8.2.

Список литературы

- [1] Максимов Ю. Д. Математика. Теория вероятностей и случайных процессов; Учебное пособие / Под ред. В. И. Антонова. СПб.: Изд-во Политехн. ун-та, 2008. 384 с.
- [2] Теоритическое приложение к лабораторным работам №1-4 по дисциплине «Математическая статистика». Спб.: Сантк-Петербургский политехнический университет, 2020. $12~\rm c.$

А Репозиторий с исходным кодом

Исходный код программы для данной лабораторной размещен на сервисе GitHub. Ссылка на репозиторий: https://github.com/Vovan-S/TV-Lab1.