## Chemometrics MA4605

Week 7. Lecture 14. Prediction Intervals for Regression

October 18, 2011



## Using regression for comparing analytical methods

- New analytical methods can be validated against standard procedures.
- The validation is done by comparing two methods of determination of an analyte: an old reliable one and a new one that is examined for accuracy.
- The aim of the comparison is to identify systematic errors in the new method.
- Does the new method give results higher or lower than the established procedure?



- In cases where the analysis is repeated over a small concentration range we can use methods such as the t-test for paired samples.
- In cases where the analysis is done over large concentration ranges we use a regression line to compare the methods.
- One axis of a regression graph is used for the results obtained by the new method and the other axis for the standard method.
- How to allocate the method to the x and y axis?
- The old(standard) method is assigned to the *x*-axis and the new one is assigned to the *y*-axis.



- Linear regression is then applied to calculate the slope (a) and the intercept(b) of the regression line.
- If the two methods yield similar results the the regression line will have a=0 and b=1 and correlation coefficient =1.
- The ideal situation a=0 and b=r=1. In practice this never occurs.
- Regression analysis is performed of y-s on x-s in order to detect any significant deviation from the y = x relation.



In practice we want to test if the intercept differs significantly from 0 and if the slope differs significantly from 1. We can test this by calculating the confidence intervals for the slope and the intercept estimates.

**Example 5.9.1** The level of phytic acid in 20 urine samples is measured by a new catalytic fluorimetric (CF) method and compared with those obtained using an established extraction photometric (EP) technique.

```
\begin{split} & \mathsf{CF}{<}\text{-}\mathsf{c}(1.87, 2.20, 3.15, 3.42, 1.10, 1.41, 1.84, 0.68, 0.27, 2.80, 0.14, \\ & 3.20, 2.70, 2.43, 1.78, 1.53, 0.84, 2.21, 3.10, 2.34) \\ & \mathsf{EP}{<}\text{-}\mathsf{c}(1.98, 2.31, 3.29, 3.56, 1.23, 1.57, 2.05, 0.66, 0.31, 2.92, 0.13, \\ & 3.15, 2.72, 2.31, 1.92, 1.56, 0.94, 2.27, 3.17, 2.36) \end{split}
```





The output from the lm function indicates that the intercept a is not significantly different from 0.

```
Test H_0: \beta = 1 vs H_a: \beta \neq 1.
Test statistic t = \frac{0.98794 - 1}{0.01903} = -0.6337362.
```

The test statistic is higher than the critical value qt(0.025,18)=-2.100922,

hence we accept the null hypothesis that the slope is 1.

## y = -0.04563 + 0.98794 x

Calculate the 95% confidence intervals for the slope(b) and the intercept(a).

## > confint(model)

2.5 % 97.5 % (Intercept) -0.1352092 0.04395558 EP 0.9479627 1.02791138

The 95% CI for the intercept contains the ideal values of 0.

The 95% CI for the slope contains the ideal values of 1.