

Course > Unit 3: ... > 5 Solvi... > 6. Exist...

6. Existence and uniqueness

The following theorems are straight-forward generalizations of the ones for $\mathbf{2} \times \mathbf{2}$ systems.

Dimension theorem for a homogeneous linear system of ODEs. For any first-order homogeneous linear system of n ODEs in n unknown functions

$$\dot{\mathbf{x}} = \mathbf{A}(t) \mathbf{x},$$

the set of solutions is an n-dimensional vector space.

The dimension theorem is a consequence of the existence and uniqueness theorem:

Existence and uniqueness theorem for a linear system of ODEs. Let ${\bf A}(t)$ be a square matrix-valued function and let ${\bf r}(t)$ be a vector-valued function, both continuous on an open time interval ${\bf I}$. Let ${\bf a}\in {\bf I}$, and let ${\bf b}$ be a vector. Then there exists a unique solution ${\bf x}(t)$ to the system

$$\dot{\mathbf{x}} = \mathbf{A}(t)\,\mathbf{x} + \mathbf{r}(t)$$

satisfying the initial condition

$$\mathbf{x}(a) = \mathbf{b}.$$

Note that for n imes n systems, the initial condition really consists of n conditions, one for

each component of
$$egin{pmatrix} x_1(a) \ dots \ x_n(a) \end{pmatrix} = egin{pmatrix} b_1 \ dots \ b_n \end{pmatrix}.$$

In other words, to pin down one solution to a first order linear system, we need to specify the initial condition $\mathbf{x}(a) = \mathbf{b}$, which consists of n equations, one for each component, for $n \times n$ systems.

How does the existence and uniqueness theorem lead to the dimension theorem?

First, set $\mathbf{r}(t) = \mathbf{0}$ for a homogenous system. Secondly, by the existence and uniqueness theorem, once the starting time a is fixed, the solutions to the system are in 1-to-1 correspondence to the possibilities for the initial condition vector \mathbf{b} . Therefore, the set of solutions to the homogeneous system is n-dimensional.

<u>Hide</u>

In most cases, we will consider the differential equation

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{r}(t).$$

In other words, we assume $\bf A$ is **constant**, **independent of** $\bf t$, i.e. $\bf A(t) = \bf A$. We will also assume in most cases that $\bf A$ is **complete**, i.e. the dimension of the eigenspace for each eigenvalue is equal to the multiplicity of the eigenvalue. When $\bf r(t) = \bf 0$, the general solution to the homogeneous equation, $\dot{\bf x} = \bf A \bf x$, takes the form

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots c_n \mathbf{v}_n e^{\lambda_n t},$$

where the eigenvalues λ_i may not be distinct, but the exponential solutions $\mathbf{v}_i e^{\lambda_i t}$ are linearly independent. This is consistent with the dimension theorem because this is an n-dimensional family of solutions.

6. Existence and uniqueness

Hide Discussion

Topic: Unit 3: Solving systems of first order ODEs using matrix methods / 6. Existence and uniqueness

		Add a Post
Show all posts ▼		by recent activity ▼
There are no posts in this t	opic yet.	
×		
	Learn About Verified Certificates	
		© All Rights Reserved