Homework 7

Sahil Palnitkar CSCE 411

35.2-3)

Let the optimal tour at the step I as H_i^* and the tour made by the heuristic as H_i . Let the vertex u_i be added such that it is nearest to v_i . The cost function satisfies the triangle inequality, giving us: $c(H_i) < c(H_{i-1} + 2c)$. So, $c(H_i) < 2 \sum_i c(u_i, v_i)$

The nodes and edges are added in closest point heuristic the same way as Prim's algorithm.

Therefore, the cost of the MST produced by Prims algorithm is equal to $\sum_i c(u_i, v_i)$.

From the textbook, we see that $c(MST) \le c(H^*)$. From that we get.

 $c(H) \le 2c(MST) \le 2c(H^*).$

So it is proved that a heuristic returns a tour whose total cost is not more than twice the cost of an optimal tour.

35.4-3)

For each vertex v, we will randomly and independently place v in S with a probability ½ and in V – S with probability ½. For an edge e_i , we define the indicator random variable $Y_i = I\{e_i \text{ crossing a cut. For an edge } e_i \text{ to cross a cut, its vertices u,v have to be in S and V – S respectively. The probability of such an event is <math>P\{e_i \text{ crossing a cut}\} = P\{u \text{ in S and v in V-S}\}$ OR $\{u \text{ in V-S and v in S}\} = \frac{1}{2} \times \frac{1}$

With this we get

$$E[Y] = E[\sum_{i=1}^{n} Y_i]$$

$$= \sum_{i=1}^{n} E[Y_i] \text{ (because of expectation linearity)}$$

$$= \sum_{i=1}^{n} \frac{1}{2}$$

$$= \frac{1}{2} n$$

Let c^* be the weight of the max-cut. The upper bound of c^* is the total number of edges, which is $c^* \le n$.

We get
$$c^* \le n$$

= 2 x $\frac{1}{2}$ n
= 2E[Y]

Therefore we get $c^*/E[Y] \le 2$ (as this is a maximization problem) Therefore this is a random 2-approximation problem.

Let $x : V -> R_{\geq 0}$ be an optimal solution for the linear programming relaxation with condition 35.19 removed. Suppose there exists v from V such that x(v) > 1. Let x' be such that x'(u) = x(u) for u = v and x'(v) = 1.

The conditions 35.18 and 35.20 are still satisfied for x'.

```
But \sum_{(u \text{ in } V)} w(u)x(u) = \sum_{(u \text{ in } V - V)} w(u)x'(u) + w(v)x(v)

> \sum_{(u \text{ in } V - V)} w(u)x'(u) + w(v)x'(v)

= \sum_{(u \text{ in } V)} w(u)x'(u)
```

which contradicts the assumption that x minimized the objective function. So it must be true that $x(v) \le 1$ for all v in V. So the condition 35.19 is redundant, proved.

26.2-6)

We can modify this similarly to as it is done in section 26.1. We can create an extra vertex s^{hat}_i for each i and place it between s and s_i . Remove, the edge from (s, s_i) and add edges (s, s^{hat}_i) and (s^{hat}_i, s_i) . In the same way, we create an extra vertex t^{hat}_i and place it between t and t_i . Remove the edges (t_i, t) and add edges (t_i, t^{hat}_i) and (t^{hat}_i, t) . Assign $c(s^{hat}_i, s_i) = p_i$ and $c(t^{hat}_i, t) = q_i$. If a flow that satisfies the constraints exists, it will assign $f(s^{hat}_i, s_i) = p_i$. By flow conservation, this implies that $\sum_{(v \mid n \mid v)} f(s_i, v) = p_i$. Similarly, we must have $f(t_i, t^{hat}_i) = q_i$ so by flow conservation we get $\sum_{(v \mid n \mid v)} f(v, t_i) = q_i$