### Mathematics for Robotics (ROB-GY 6013 Section A)

- Week 11:
  - Probability and Estimation

# Rolling a Die (Discrete)

#### • Sample space $\Omega$ :

• {"rolling a 1," "rolling a 2," "rolling a 3," "rolling a 4," "rolling a 5," "rolling a 6"}



- P("rolling a 1") = 1/6
- P("rolling an even number") = 3/6
- Expected value: e.g., average points rolled
  - Assign point value to each event
  - Sum of point value × event probability



$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6}$$

# **Probability Distribution (Continuous)**

- Sample space  $\Omega$  :
  - Real numbers  $x \in [-\infty, \infty]$
- Probability of an event
  - Integral of a probability density function f(x)

$$P(x \in [c,d]) = \int_{c}^{d} f(x)dx$$

$$P(x \in [c,d]) = \int_{c}^{d} f(x)dx$$
$$P(x \in [-\infty,\infty]) = 1 = \int_{-\infty}^{\infty} f(x)dx$$

- Expectation operator: e.g., average function value g(x)
  - Assign g(x) to each  $x \in [-\infty, \infty]$
  - Integral of  $g(x) \times f(x)$

$$E\{g(x)\} = \int_{-\infty}^{\infty} g(x)f(x)dx$$

# Probability Space: The RIGHT way to begin

• Disclaimer: This part is just for fun.



# **Definition: Probability Space**

- $(\Omega, \mathcal{F}, P)$  is called a **probability space**.
  - $\Omega$  is the sample space. Think of it as the set of all possible outcomes of an experiment.
  - $E \subset \Omega$  is an event
  - $\mathcal{F}$  is the collection of allowed events. It must at least contain  $\emptyset$  and  $\Omega$ . It is closed with respect to set complement, countable unions, and countable intersections. Such sets are called sigma algebras.
  - $P:\mathcal{F} \to [0, 1]$  is a probability measure. It has to satisfy a few basic operations:
  - 1.  $P(\emptyset) = 0$  and  $P(\Omega) = 1$ .
  - 2. For each  $E \in \mathcal{F}$ ,  $0 \le P(E) \le 1$
  - 3. If the sets  $E_1, E_2, \ldots$  are disjoint (i.e.,  $E_i \cap E_j = \emptyset$  for  $i \neq j$ ), then  $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$

Continuous (real-valued) random variable X

Probability density function

- Continuous (real-valued) random variable X
  - $X: \Omega \to \mathbb{R}$
- Probability density function

- Continuous (real-valued) random variable X
  - $X: \Omega \to \mathbb{R}$
- Probability density function
  - $f: \mathbb{R} \to [0,\infty)$

- Continuous (real-valued) random variable X
  - $X: \Omega \to \mathbb{R}$
- Probability density function
  - $f: \mathbb{R} \rightarrow [0,\infty)$
  - The value of f at a given point is not the probability
  - You have to integrate f to get the probability

- A function  $X: \Omega \to \mathbb{R}$  is a **continuous random variable** with **density**  $f: \mathbb{R} \to [0,\infty)$  if:
  - a) it is a random variable, and
  - b)  $\forall x \in \mathbb{R}, P(\{\omega \in \Omega \mid X(\omega) \le x\}) = \int_{-\infty}^{x} f(\bar{x}) d\bar{x}.$

- A function  $X: \Omega \to \mathbb{R}$  is a **continuous random variable** with **density**  $f: \mathbb{R} \to [0,\infty)$  if:
  - a) it is a random variable, and

b) 
$$\forall x \in \mathbb{R}$$
,  $P(\{\omega \in \Omega \mid X(\omega) \le x\}) = \int_{-\infty}^{x} f(\bar{x}) d\bar{x}$ .

The lower bound of  $-\infty$  is for convenience. It can be replaced with  $\inf\{X(\Omega) \subset R\}$ .

- A function  $X: \Omega \to \mathbb{R}$  is a **continuous random variable** with **density**  $f: \mathbb{R} \to [0,\infty)$  if:
  - a) it is a random variable, and

b) 
$$\forall x \in \mathbb{R}, P(\{\omega \in \Omega \mid X(\omega) \le x\}) = \int_{-\infty}^{x} f(\bar{x}) d\bar{x}.$$

The lower bound of  $-\infty$  is for convenience. It can be replaced with  $\inf\{X(\Omega) \subset R\}$ .

We can also use notation  $X \sim f$  to denote the random variable and its density. "X is distributed with density f"

- A function  $X: \Omega \to \mathbb{R}$  is a **continuous random variable** with **density**  $f: \mathbb{R} \to [0,\infty)$  if:
  - a) it is a random variable, and

b) 
$$\forall x \in \mathbb{R}, P(\{X \le x\}) = \int_{-\infty}^{x} f(\bar{x}) d\bar{x}.$$

The lower bound of  $-\infty$  is for convenience. It can be replaced with  $\inf\{X(\Omega) \subset R\}$ .

We can also use notation  $X \sim f$  to denote the random variable and its density. "X is distributed with density f"

- A function  $X: \Omega \to \mathbb{R}$  is a **continuous random variable** with **density**  $f: \mathbb{R} \to [0,\infty)$  if:
  - a) it is a random variable, and

b) 
$$\forall x \in \mathbb{R}, P(\{X \le x\}) = \int_{-\infty}^{x} f(\bar{x}) d\bar{x}.$$

The lower bound of  $-\infty$  is for convenience. It can be replaced with  $\inf\{X(\Omega) \subset R\}$ .

We can also use notation  $X \sim f$  to denote the random variable and its density. "X is distributed with density f"

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f(x) dx$$

# **Examples: Uniform Random Variable**

• Parameters are a, b

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & otherwise \end{cases}$$

#### **Examples:**

• Parameters are  $\sigma > 0, \mu \in \mathbb{R}$ 

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

#### **Examples: Gaussian or Normal Random Variable**

- Parameters are  $\sigma > 0, \mu \in \mathbb{R}$
- $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

### **Expected Value/Expectation Operator**

$$E\{g(x)\} = \int_{-\infty}^{\infty} g(x)f(x)dx$$

# **Expected Value/Expectation Operator**

$$E\{g(x)\} = \int_{-\infty}^{\infty} g(x)f(x)dx$$

- Mean:  $\mu := \mathcal{E}\{X\} := \int_{-\infty}^{\infty} x f(x) dx$
- Variance:  $\sigma^2 := \mathcal{E}\{(X-\mu)^2\}\} := \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$  (Var. for short)
- Standard Deviation:  $\sigma := \sqrt{\sigma^2}$  (Std. Dev. for short)

- Mean
- Variance
- Skewness
- Kurtosis

$$\mu := E\{X\}$$

$$\sigma^2 := E\{(X - \mu)^2\}$$

$$\gamma_1 := \tilde{\mu}_3 = \frac{E\{(X - \mu)^3\}}{\sigma^3}$$

$$\text{Kurt}[X] := \frac{E\{(X - \mu)^4\}}{\sigma^4}$$



- Mean
- Variance
- Skewness
- Kurtosis

$$\mu := E\{X\}$$

$$\sigma^2 := E\{(X - \mu)^2\}$$

$$\gamma_1 := \tilde{\mu}_3 = \frac{E\{(X - \mu)^3\}}{\sigma^3}$$

$$\operatorname{Kurt}[X] := \frac{E\{(X - \mu)^4\}}{\sigma^4}$$



- Mean
- Variance
- Skewness
- Kurtosis

$$\mu := E\{X\}$$

$$\sigma^2 := E\{(X - \mu)^2\}$$

$$\gamma_1 := \tilde{\mu}_3 = \frac{E\{(X - \mu)^3\}}{\sigma^3}$$

$$\operatorname{Kurt}[X] := \frac{E\{(X - \mu)^4\}}{\sigma^4}$$



$$E\{(X-\mu)^{2}\} = \int_{-\infty}^{\infty} (X-\mu)^{2} f(x) dx$$

- Mean
- Variance
- Skewness
- Kurtosis

$$\mu := E\{X\}$$

$$\sigma^2 := E\{(X - \mu)^2\}$$

$$\gamma_1 := \tilde{\mu}_3 = \frac{E\{(X - \mu)^3\}}{\sigma^3}$$

$$\operatorname{Kurt}[X] := \frac{E\{(X - \mu)^4\}}{\sigma^4}$$



$$E\{(X-\mu)^{2}\} = \int_{-\infty}^{\infty} (X-\mu)^{2} f(x) dx$$

2-norm squared for random variables

$$\gamma_1 := \tilde{\mu}_3 = \frac{E\{(X - \mu)^3\}}{3}$$

• Variance • Skewnesc • Kurtc  $11^{12}$ • Kurtc  $11^{12}$ • Minimum Variance • Within Minimum Variance • Kurtc  $11^{12}$ • Minimum Variance • Kurtc  $11^{12}$ • Minimum Variance • Kurtc  $11^{12}$ • Minimum Variance • Kurtc  $11^{12}$ 

$$E\{(X-\mu)^2\} = \int_{-\infty}^{\infty} (X \text{Weighted Least squares})$$

2-norm squared for random variables

#### **Random Vectors**

• For example, the joint angles of a 6-DOF robot

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{bmatrix} \qquad \mu = E\{X\} = \begin{bmatrix} E\{X_1\} \\ E\{X_2\} \\ \vdots \\ E\{X_p\} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix}$$

# Random Vectors are painful

**Definition 5.15** Let  $(\Omega, \mathcal{F}, P)$  be a probability space. A function  $X : \Omega \to \mathbb{R}^p$  is called a **random vector** if each component of

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \text{ is a random variable, that is, } \forall \ 1 \leq i \leq p, \ X_i : \Omega \to \mathbb{R} \text{ is a random variable.}$$

Consequently,  $\forall x \in \mathbb{R}^p$ , the set  $\{\omega \in \Omega \mid X(\omega) \leq x\} \in \mathscr{F}$  (i.e., it is an allowed event), where the inequality is understood **pointwise**, that is,

$$\{\omega \in \Omega \mid X(\omega) \leq x\} := \left\{ \omega \in \Omega \mid \begin{bmatrix} X_1(\omega) \\ X_2(\omega) \\ \vdots \\ X_p(\omega) \end{bmatrix} \leq \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \right\} := \left\{ \omega \in \Omega \mid \begin{bmatrix} X_1(\omega) \leq x_1 \\ X_2(\omega) \leq x_2 \\ \vdots \\ X_p(\omega) \leq x_p \end{bmatrix} \right\} = \bigcap_{i=1}^p \{\omega \in \Omega \mid X_i(\omega) \leq x_i\}.$$

# Random Vectors are painful

**Definition 5.16**  $X: \Omega \to \mathbb{R}^p$  is a continuous random vector if there exists a density  $f_X: \mathbb{R}^p \to [0, \infty)$  such that,

$$\forall x \in \mathbb{R}^P, \ P(\{X \le x\}) = \int_{-\infty}^{x_p} ... \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_X(\bar{x}_1, \bar{x}_2 ... \bar{x}_p) d\bar{x}_1 d\bar{x}_2 ... d\bar{x}_p.$$

More generally, for all  $A \subset \mathbb{R}^p$  such that the indicator function  $I_A$  has bounded variation,

$$P(\{X \in A\}) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_A(\bar{x}_1, \bar{x}_2 ... \bar{x}_p) f_X(\bar{x}_1, \bar{x}_2 ... \bar{x}_p) d\bar{x}_1 d\bar{x}_2 ... d\bar{x}_p.$$

**Notation 5.17** The notation  $X \sim f$  is read as X is distributed with density f or that X is a random vector with density f.

**Definition 5.18** (Moments) Suppose  $g: \mathbb{R}^p \to \mathbb{R}^k$ 

$$\mathcal{E}\{g(X)\} := \int_{\mathbb{R}^p} g(x) f_X(x) dx := \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} g(x_1, ..., x_p) f_X(x_1, ..., x_p) dx_1 ... dx_p$$

#### **Covariance matrix and Variance**

- Covariance matrix is a matrix
- Variance remains a scalar

$$\Sigma := \operatorname{cov}(X) = \operatorname{cov}(X, X) = E\{(X - \mu)(X - \mu)^T\}$$

$$Var(X) := trace(\Sigma) = \sum_{i=1}^{p} \sum_{i} cov(X, X) = E\{(X - \mu)^{T} (X - \mu)\}$$

#### **Covariance matrix and Variance**

- Covariance matrix is a matrix  $\Sigma_{ij} = E\{(X_i \mu_i)(X_j \mu_j)\}$
- Variance remains a scalar

$$\Sigma := \operatorname{cov}(X) = \operatorname{cov}(X, X) = E\{(X - \mu)(X - \mu)^T\}$$

$$Var(X) := trace(\Sigma) = \sum_{i=1}^{p} \sum_{i} cov(X, X) = E\{(X - \mu)^{T} (X - \mu)\}$$

#### **Covariance matrix and Variance**

- Covariance matrix is a matrix  $\Sigma_{ij} = E\{(X_i \mu_i)(X_j \mu_j)\}$
- Variance remains a scalar

$$\Sigma := \operatorname{cov}(X) = \operatorname{cov}(X, X) = E\{(X - \mu)(X - \mu)^T\}$$

$$Var(X) := trace(\Sigma) = \sum_{i=1}^{p} \sum_{i=1}^{p} cov(X, X) = E\{(X - \mu)^{T} (X - \mu)\}$$

- Note is μ a vector
- Our trick is to get all relevant information from mean and covariance matrix so we can avoid working with the density, which requires a lot of integration

# **Covariance Matrix is positive semi-definite**

# Covariance Matrix is positive semi-definite

**Exercise 5.19**  $\Sigma := \text{cov}(X) = \text{cov}(X, X)$  is a positive semi-definite matrix.

**Solution:** For  $v \in \mathbb{R}^p$ , we need to show that  $v^{\top} \Sigma v \geq 0$ , where  $\Sigma := \mathcal{E}\{(X - \mu) \cdot (X - \mu)^{\top}\}$ .

$$v^{\top} \Sigma v := v^{\top} \mathcal{E}\{(X - \mu) \cdot (X - \mu)^{\top}\} v$$

$$= \mathcal{E}\{v^{\top} (X - \mu) \cdot (X - \mu)^{\top} v\}$$

$$= \mathcal{E}\{((X - \mu)^{\top} v)^{\top} \cdot ((X - \mu)^{\top} v)\}$$

$$= \mathcal{E}\{||(X - \mu)^{\top} v||^{2}\}$$

$$= \int_{\mathbb{R}^{p}} ||(X - \mu)^{\top} v||^{2} f_{X}(x) dx$$

$$\geq 0$$

because the integral of a non-negative function over  $\mathbb{R}^p$  is non-negative.

# Covariance Matrix is positive semi-definite

• If the covariance matrix is **positive definite**, its inverse is the **information matrix**. The interpretation is that "high variance" means "low information" and vice versa.

# **Eigenvalues and Shape of Covariance Matrix**

• What does a diagonal covariance matrix mean?

# **Eigenvalues and Shape of Covariance Matrix**

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?

# **Eigenvalues and Shape of Covariance Matrix**

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?
  - What does the corresponding density look like?

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?
  - What does the corresponding density look like?
- What does diagonalizing a covariance matrix (with an orthogonal matrix) mean?

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?
  - What does the corresponding density look like?
- What does diagonalizing a covariance matrix (with an orthogonal matrix) mean?
  - How does the corresponding density change in shape?

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?
  - What does the corresponding density look like?
- What does diagonalizing a covariance matrix (with an orthogonal matrix) mean?
  - How does the corresponding density change in shape?
  - What do the eigenvectors (that form the orthogonal matrix) mean?

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?
  - What does the corresponding density look like?
- What does diagonalizing a covariance matrix (with an orthogonal matrix) mean?
  - How does the corresponding density change in shape?
  - What do the eigenvectors (that form the orthogonal matrix) mean?

Recall: you can always diagonalize a symmetric matrix with an orthogonal matrix

- What does a diagonal covariance matrix mean?
  - What do the eigenvalues mean?
  - What does the corresponding density look like?
- What does diagonalizing a covariance matrix (with an orthogonal matrix) mean?
  - How does the corresponding density change in shape?
  - What do the eigenvectors (that form the orthogonal matrix) mean?

- Recall: you can always diagonalize a symmetric matrix with an orthogonal matrix
- Subtle: Independence for random vectors → diagonal covariance matrix.
   Converse not true. Covariance matrix does not capture all information about the density.



#### Idea

• Least squares as a minimum distance problem

#### Idea

- Least squares as a minimum distance problem
- Estimation as a weighted least squares problem

## **Overdetermined equations**

Too many equations (find best approximation)

$$\widehat{\alpha} = \underset{\alpha \in \mathbb{R}^m}{\arg \min} \|A\alpha - b\|^2 \iff (A^{\top}SA)\widehat{\alpha} = A^{\top}Sb \iff \widehat{\alpha} = (A^{\top}SA)^{-1}A^{\top}Sb$$

### **Underdetermined equations**

- Too many solutions (too few equations)
  - Find "smallest" solution

$$\widehat{x} := \underset{Ax=b}{\operatorname{arg\,min}} ||x|| = \underset{Ax=b}{\operatorname{arg\,min}} ||x||^2$$

# **Underdetermined equations**

- Too many solutions (too few equations)
  - Find "smallest" solution

$$\widehat{x} := \underset{Ax=b}{\operatorname{arg\,min}} ||x|| = \underset{Ax=b}{\operatorname{arg\,min}} ||x||^2$$

$$\widehat{x} = S^{-1}A^{\top}\beta$$
,  $AS^{-1}A^{\top}\beta = b$  or, equivalently,  $\widehat{x} = S^{-1}A^{\top} \left(AS^{-1}A^{\top}\right)^{-1}b$ 

#### **Best Linear Unbiased Estimator**

• Goal: How to choose the weight matrix in an overdetermined problem

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ ,
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$
  - **Noise** (output)  $\varepsilon \in \mathbb{R}^m$

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (*C* is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$
  - **Noise** (output)  $\varepsilon \in \mathbb{R}^m$

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (*C* is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$  unknown, deterministic
  - Noise (output)  $\varepsilon \in \mathbb{R}^m$  stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon \varepsilon^T\} = Q > 0$

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (*C* is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$  unknown, deterministic
  - Noise (output)  $\varepsilon \in \mathbb{R}^m$  stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon \varepsilon^T\} = Q > 0$

$$\hat{x} = Ky$$

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (*C* is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$  unknown, deterministic
  - Noise (output)  $\varepsilon \in \mathbb{R}^m$  stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon \varepsilon^T\} = Q > 0$

$$\hat{x} = Ky \qquad E\{\hat{x} - x\} = 0$$

holds for all  $x \in \mathbb{R}^n$ 

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (*C* is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$  unknown, deterministic
  - Noise (output)  $\varepsilon \in \mathbb{R}^m$  stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon \varepsilon^T\} = Q > 0$

$$\hat{x} = Ky$$
  $E\{\hat{x} - x\} = 0$   $Var(\hat{x} - x) = E\{(\hat{x} - x)^T(\hat{x} - x)\}$  holds for all  $x \in \mathbb{R}^n$  Minimizes variance

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (C is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$  unknown, deterministic
  - **Noise** (output)  $\varepsilon \in \mathbb{R}^m$ stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon\varepsilon^T\} = Q > 0$

$$\hat{x} = Ky \qquad E\{\hat{x} - x\} = 0$$

holds for all  $x \in \mathbb{R}^n$ 

$$\hat{x} = Ky$$
  $E\{\hat{x} - x\} = 0$   $Var(\hat{x} - x) = E\{(\hat{x} - x)^T (\hat{x} - x)\}$ 

Minimizes variance

• Find: 
$$\hat{K}$$

• Find: 
$$\hat{K}$$
  $\hat{K} = (C^T Q^{-1} C)^{-1} C^T Q^{-1}$ 

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (C is linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$  unknown, deterministic
  - **Noise** (output)  $\varepsilon \in \mathbb{R}^m$ stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon\varepsilon^T\} = Q > 0$

$$\hat{x} = Ky \qquad E\{\hat{x} - x\} = 0$$

holds for all  $x \in \mathbb{R}^n$ 

$$\operatorname{Var}(\hat{x} - x) = E\{(\hat{x} - x)^{T}(\hat{x} - x)\}\$$

Minimizes variance

• Find: 
$$\hat{K}$$

• Find: 
$$\hat{K}$$
  $\hat{K} = (C^T Q^{-1} C)^{-1} C^T Q^{-1}$ 

$$cov(\hat{x} - x) = (C^T Q^{-1} C)^{-1}$$

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ ,
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$
  - **Noise** (output)  $\varepsilon \in \mathbb{R}^m$

stochastic, 
$$E\{\varepsilon\} = 0$$
,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon\varepsilon^T\} = Q > 0$ 

$$\hat{x} = Ky \qquad E\{\hat{x} - x\} = 0 \qquad \text{Var}(\hat{x} - x) = E\{(\hat{x} - x)^T (\hat{x} - x)\}$$
holds for all  $x \in \mathbb{R}^n$ 
Minimizes variance

Minimizes variance

• Find:  $\hat{K}$ 

- Goal: How to choose the weight matrix in an overdetermined problem
- **Model:**  $y = Cx + \varepsilon$ , (*C* does not have to be linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$
  - Noise (output)  $\varepsilon \in \mathbb{R}^m$  stochastic,  $E\{\varepsilon\} = 0$ ,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon \varepsilon^T\} = Q > 0$

$$\hat{x} = Ky$$
  $E\{\hat{x} - x\} = 0$   $Var(\hat{x} - x) = E\{(\hat{x} - x)^T(\hat{x} - x)\}$  holds for all  $x \in \mathbb{R}^n$  Minimizes variance

• Find:  $\hat{K}$ 

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (C does not have to be linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$

*stochastic,* 
$$E\{x\} = 0$$
,  $cov\{x, x\} = E\{xx^T\} = P > 0$ 

• **Noise** (output)  $\varepsilon \in \mathbb{R}^m$ 

stochastic, 
$$E\{\varepsilon\} = 0$$
,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon\varepsilon^T\} = Q > 0$ 

state and noise are uncorrelated  $E\{xx^T\} = 0$ 

$$\hat{x} = Ky \qquad E\{\hat{x} - x\} = 0$$

$$\hat{x} = Ky$$
  $E\{\hat{x} - x\} = 0$   $Var(\hat{x} - x) = E\{(\hat{x} - x)^T (\hat{x} - x)\}$ 

holds for all  $x \in \mathbb{R}^n$ 

Minimizes variance

• Find:  $\hat{K}$ 

- Goal: How to choose the weight matrix in an overdetermined problem
- Model:  $y = Cx + \varepsilon$ , (C does not have to be linearly independent)
  - **Measurement** (model output)  $y \in \mathbb{R}^m$
  - State (model input)  $x \in \mathbb{R}^n$

*stochastic,* 
$$E\{x\} = 0$$
,  $cov\{x, x\} = E\{xx^T\} = P > 0$ 

• **Noise** (output)  $\varepsilon \in \mathbb{R}^m$ 

*stochastic,* 
$$E\{\varepsilon\} = 0$$
,  $\operatorname{cov}\{\varepsilon, \varepsilon\} = E\{\varepsilon\varepsilon^T\} = Q > 0$ 

state and noise are uncorrelated  $E\{xx^T\}=0$ 

$$\hat{x} = Ky \qquad E\{\hat{x} - x\} = 0$$

$$Var(\hat{x} - x) = E\{(\hat{x} - x)^T (\hat{x} - x)\}\$$

holds for all  $x \in \mathbb{R}^n$ 

#### Minimizes variance

• Find: 
$$\hat{K}$$
  $\hat{K} = PC^T (CPC^T + Q)^{-1}$   $cov(\hat{x} - x) = P - PC^T (CPC^T + Q)^{-1}CP$