```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

url = "/content/drive/MyDrive/IdentityResolution.csv"
df = pd.read_csv(url)

#Visualize data
df.columns = ['Name','Twitter','Facebook','Instagram']

df.head()
```

	Name	Twitter	Facebook	
0	Alex Sablan	https://www.twitter.com/AlexSablancom	https://facebook.com/alexsablancom	http:/
1	Xavier Gass	https://www.twitter.com/XaviGasso	http://www.facebook.com/xgasso	http://i
2	Nicole Lapin	https://www.twitter.com/NicoleLapin	http://www.facebook.com/nicolelapin	http://iı
•	Mattan	1. 14 11	1-14	L. LL / P

Extracting Username from profile url of all the social networks sites

df.iloc[:,i] = df.iloc[:,i].apply(lambda x: getUsername(x))

```
def getUsername(x):
    x = x.split('/')
    x = x[-1]
    return x.lower();

for i in range(1,4):
    # print(df.iloc[:,i])
```

	Name	Twitter	Facebook	Instagram
0	Alex Sablan	alexsablancom	alexsablancom	a_sablan
1	Xavier Gass	xavigasso	xgasso	xavigasso
2	Nicole Lapin	nicolelapin	nicolelapin	nicolelapin
3	Mattan Griffel	mattangriffel	mattangriffel	mattangriffel
4	Shashank Bharadwaj	snk	shashu10	shashu10
318	Vasu Chawla	vasuchawla	vasuchawla26	vasuchawla
319	Dayn Wilberding	dayn	daynw	dayn
320	Guillermo Navarro	bildenlex	drguillermonavarro	bildenlex
321	Antonio J. Cuevas	zeroneuronas	antonio.j.cuevas	zeroneuronas
322	Ghibril Ariadna	arighibril	ghibril	ghibril

323 rows × 4 columns

Now we have the username for futher analysis

The Two distance metrics I'll be using are "HAMMING" and "LEVENSHTEIN"

- Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other.
- The Levenshtein distance is a string metric for measuring the difference between two sequences. Informally, the Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

-1+ -----1-+/1 2 1\

```
plt.subplot(1, 2, 1)
plt.title('Hamming vs Similarity', fontsize = 20, fontweight = 15)
sns.lineplot(x="Hamming",y = 'Similarity',data=tf)

plt.subplot(1, 2, 2)
plt.title('Levenshtein vs Similarity', fontsize = 20, fontweight = 15)
sns.lineplot(x= 'levenshtein',y='lev_Similar',data = tf)
plt.show()
```

Twitter-Facebook

tf

	Twitter	Facebook
0	alexsablancom	alexsablancom
1	xavigasso	xgasso
2	nicolelapin	nicolelapin
3	mattangriffel	mattangriffel
4	snk	shashu10
318	vasuchawla	vasuchawla26
319	dayn	daynw
320	bildenlex	drguillermonavarro
321	zeroneuronas	antonio.j.cuevas
322	arighibril	ghibril
323 ro	ws × 2 columns	

```
df1 = tf
tf = get_score(df1)
```

tf

	Twitter	Facebook	Hamming	Similarity	levenshtein	lev_Similar
0	alexsablancom	alexsablancom	0	1	0	1
1	xavigasso	xgasso	8	0.111111	3	0.666667
2	nicolelapin	nicolelapin	0	1	0	1
3	mattangriffel	mattangriffel	0	1	0	1
4	snk	shashu10	7	0.125	7	0.125
318	vasuchawla	vasuchawla26	2	0.833333	2	0.833333
319	dayn	daynw	1	0.8	1	0.8
320	bildenlex	drguillermonavarro	16	0.111111	14	0.222222
321	zeroneuronas	antonio.j.cuevas	14	0.125	12	0.25
322	arighibril	ghibril	8	0.2	3	0.7
323 rc	ws × 6 columns					

323 rows × 6 columns

count_plot(tf)

Count of levenshtein Distance

line_plot(tf)


```
tt = []
```

for i in range(0,323):
 tt.append(td.lcsstr.distance(tf.iat[i,0],tf.iat[i,1]))

tt

Twitter-Instagram

	Twitter	Instagram
0	alexsablancom	a_sablan
1	xavigasso	xavigasso
2	nicolelapin	nicolelapin
3	mattangriffel	mattangriffel
4	snk	shashu10
318	vasuchawla	vasuchawla
319	dayn	dayn
320	bildenlex	bildenlex
321	zeroneuronas	zeroneuronas
322	arighibril	ghibril
323 ro	ws × 2 columns	

```
df1 = ti
ti = get_score(df1)
ti
```

	Twitter	Instagram	Hamming	Similarity	levenshtein	lev_Similar
0	alexsablancom	a_sablan	12	0.0769231	6	0.538462
1	xavigasso	xavigasso	0	1	0	1
2	nicolelapin	nicolelapin	0	1	0	1

count_plot(ti)

line_plot(ti)

, / \

02]

Facebook-Instagram

0.2 -

fi

	Facebook	Instagram			
0	alexsablancom	a_sablan			
1	xgasso	xavigasso			
2	nicolelapin	nicolelapin			
3	mattangriffel	mattangriffel			
4	shashu10	shashu10			
318	vasuchawla26	vasuchawla			
319	daynw	dayn			
320	drguillermonavarro	bildenlex			
321	antonio.j.cuevas	zeroneuronas			
322	ghibril	ghibril			
323 rows × 2 columns					

df1 = fi
fi = get_score(df1)

	Facebook	Instagram	Hamming	Similarity	levenshtein	lev_Similar
0	alexsablancom	a_sablan	12	0.0769231	6	0.538462
1	xgasso	xavigasso	8	0.111111	3	0.666667
2	nicolelapin	nicolelapin	0	1	0	1
3	mattangriffel	mattangriffel	0	1	0	1
4	shashu10	shashu10	0	1	0	1
318	vasuchawla26	vasuchawla	2	0.833333	2	0.833333
319	daynw	dayn	1	0.8	1	0.8
320	drguillermonavarro	bildenlex	16	0.111111	14	0.222222
321	antonio.j.cuevas	zeroneuronas	14	0.125	12	0.25
322	ghibril	ghibril	0	1	0	1

323 rows × 6 columns

count_plot(fi)

Count of Hamming Distance

line_plot(fi)

tf['lev_Similar'].value_counts()

1.000000	113
0.000000	18
0.153846	6
0.909091	6
0.666667	6
0.071429	1
0.454545	1
0.533333	1
0.857143	1

```
0.136364 1
Nama: low Similar Langth: 07 dtwn: int64
ti['lev_Similar'].value_counts()
```

1.000000	211
0.000000	12
0.333333	5
0.111111	4
0.583333	4
0.928571	4
0.222222	4
0.875000	4
0.857143	4
0.200000	3
0.888889	3
0.571429	3
0.166667	3
0.153846	3
0.777778	3
0.230769	3
0.428571	2
0.666667	2
0.714286	2
0.833333	2
0.800000	2
0.133333	2
0.066667	2
0.44444	2
0.272727	2
0.250000	2
0.454545	2
0.125000	2
0.100000	2
0.909091	2
0.625000	1
0.500000	1
0.384615	1
0.529412	1
0.545455	1
0.923077	1
0.142857	1
0.266667	1
0.700000	1
0.818182	1
0.933333	1
0.076923	1
0.900000	1

```
0.260870
              1
0.466667
              1
0.307692
              1
0.285714
              1
0.214286
              1
0.416667
              1
0.357143
              1
0.400000
              1
0.538462
              1
Name: lev_Similar, dtype: int64
```

```
fi['lev_Similar'].value_counts()
```

```
1.000000
            114
0.000000
             18
              6
0.666667
0.916667
              6
0.153846
              6
0.437500
              1
0.652174
              1
0.615385
              1
0.692308
              1
0.642857
              1
Name: lev_Similar, Length: 86, dtype: int64
```

From above analysis we can conclude that the pair Twitter-Instagram has the max comman name username, followed by Facebook-Instagram and then Twitter-Facebook

✓ 0s completed at 10:12 PM

