Part B: News Article Classification

Name = Manoj Kumar

Batch = 1st September Batch

Course = Data Science Placement Guarantee Course

Email = manojkumarrajput@gmail.com

Part B Explaination Video link =

https://drive.google.com/file/d/10SKXv2R6ILW3WYene6VcA6KQ6usp=drivesdk

Overview

In today's digital world, news articles are continuously generated and shared across different platforms.

Classifying articles into predefined categories such as sports, politics, and technology helps improve

content management and recommendation systems. This project aims to develop a machine learning model that

classifies news articles into categories based on their content.

Problem Statement

The objective of this project is to develop a classification model that can automatically categorize news

articles into predefined categories (e.g., sports, politics, wellness, etc.). The goal is, s.

- (1) to Develop a robust classifier for multiple categories.
- (2) Preprocess text data and extract meaningful features.
- (3) to Train models and evaluate their performances.
- (4) to analyze key features which influence the classification decisions.

Dataset Information

There are 50,000 rows of labeled news articles The dataset and the columns of the dataset is:

category, headline, links, short description and keywords.

1. Data Exploration and Preprocessing

Importing necessary libraries and loading the dataset for analysis.

```
In [1]: import numpy as np
        import pandas as pd
        import re
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.model selection import train test split
        from sklearn.linear model import LogisticRegression
        from sklearn.naive_bayes import MultinomialNB
        from sklearn.svm import SVC
        from sklearn.model_selection import GridSearchCV
        from sklearn.metrics import accuracy_score, f1_score
        from sklearn.metrics import classification report, confusion matrix
        from sklearn.model_selection import cross_val_score
        import matplotlib.pyplot as plt
        import nltk
        from nltk.corpus import stopwords
        from nltk.tokenize import word_tokenize
        from nltk.stem import WordNetLemmatizer
        nltk.download('stopwords')
        from sklearn.preprocessing import LabelEncoder
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model_selection import StratifiedKFold
       [nltk data] Downloading package stopwords to
       [nltk_data]
                       C:\Users\msgme\AppData\Roaming\nltk_data...
       [nltk_data] Package stopwords is already up-to-date!
In [3]:
        data = pd.read_csv("C:\\Users\\msgme\\Downloads\\data_news.csv")
In [5]: df = pd.DataFrame(data)
```

First five rows of the data

```
In [8]: df.head()
```

ut[8]:	category		headline	links	short_descriptio	
	0	WELLNESS	143 Miles in 35 Days: Lessons Learned	https://www.huffingtonpost.com/entry/running-l	Resting is part c training. I'v confirmed wh.	
	1	WELLNESS	Talking to Yourself: Crazy or Crazy Helpful?	https://www.huffingtonpost.com/entry/talking-t	Think of talking t yourself as a too to coac.	
	2	WELLNESS	Crenezumab: Trial Will Gauge Whether Alzheimer	https://www.huffingtonpost.com/entry/crenezuma	The clock i ticking for th United States to	
	3	WELLNESS	Oh, What a Difference She Made	https://www.huffingtonpost.com/entry/meaningfu	If you want to b busy, keep tryin to be perf.	
	4	WELLNESS	Green Superfoods	https://www.huffingtonpost.com/entry/green-sup	First, the ba news: Soda breac corned beef a.	
	4				•	

Checking Total number of rows

```
In [11]: df.shape[0]
```

Out[11]: 50000

Checking Number of unique headline

```
In [14]: df['headline'].nunique()
```

Out[14]: 45577

Checking Number of unique category

```
In [17]: print("Number of unique category:", df['category'].nunique())
```

Checking Number of unique keywords

Number of unique category: 10

```
In [20]: print("Number of unique keywords:", df['keywords'].nunique())
Number of unique keywords: 41558
```

```
In [22]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 5 columns):
    Column
                      Non-Null Count Dtype
    -----
                      -----
0
    category
                      50000 non-null object
1
    headline
                      50000 non-null object
                      50000 non-null object
    links
    short_description 50000 non-null object
    keywords
                      47332 non-null object
dtypes: object(5)
memory usage: 1.9+ MB
```

In [24]:	df.desc	ribe(includ	de='all')		
Out[24]:		category	headline	links	short_description
	count	50000	50000	50000	50000
	unique	10	45577	45745	45743
	top	WELLNESS	Sunday Roundup	https://www.huffingtonpost.com/entry/bryce- har	Along with his fists, the star Nationals outfi
	freq	5000	22	8	8
	4)

Performing data cleaning

Checking Duplicates

```
In [28]: df.duplicated().sum()
Out[28]: 4251
In [30]: df = df.drop_duplicates()
```

There are 4251 duplicates out of 50000, so i am removing it.

```
In [33]: df.shape[0]
Out[33]: 45749
```

Checking for Missing Data

```
In [36]: df.isnull().sum()
```

```
Out[36]: category 0
headline 0
links 0
short_description 0
keywords 2379
dtype: int64
```

There are 2379 missing values in keyword column

Handling missing values

```
In [40]: df['keywords'] = df['keywords'].fillna("Unknown")
In [42]: df.shape[0]
Out[42]: 45749
```

Checking category distribution

```
In [45]: plt.figure(figsize=(6,4))
    sns.countplot(x=df['category'])
    plt.title('Category Distribution')
    plt.show()
```


Removing unwanted column

```
In [48]: df.drop(columns=['links'], inplace=True)
```

Creating a new column for headline length

```
In [51]: df['headline_length'] = df['headline'].apply(lambda x: len(x.split()))
```

Visualizing Outliers

Detecting outliers based on headline length

```
In [55]: plt.figure(figsize=(8,5))
    sns.boxplot(x=df['headline_length'])
    plt.title("Boxplot of Headline Lengths (Outlier Detection)")
    plt.show()
```

Boxplot of Headline Lengths (Outlier Detection)

Detected outliers here, using quantile method to remove outliers

```
In [58]: Q1 = df['headline_length'].quantile(0.25)
Q3 = df['headline_length'].quantile(0.75)

In [60]: IQR = Q3 - Q1

In [62]: lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
```

Removing outliers

```
In [65]: df = df[(df['headline_length'] >= lower_bound) & (df['headline_length'] <= upper_bo</pre>
```

Making sure that outliers got removed or not?

Visualizing after removing Outliers

```
In [69]: plt.figure(figsize=(8,5))
    sns.boxplot(x=df['headline_length'])
    plt.title("Boxplot of Headline Lengths (After Removing Outlier)")
    plt.show()
```

Boxplot of Headline Lengths (After Removing Outlier)


```
In [71]: df.shape[0]
Out[71]: 45427
```

Text Preprocessing (Removing stopwords, punctuation, tokenization, and lemmatization)

Creating a function to convert text into lowercase than remove stopwords, punctuation, tokenization, and lemmatization.

```
In [75]: stop_words = set(stopwords.words('english'))
    lemmatizer = WordNetLemmatizer()
```

```
In [77]: def preprocess_text(text):
    text = re.sub(r'[^\w\s]', '', text.lower())
    tokens = word_tokenize(text)
    filtered_tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in
    return ' '.join(filtered_tokens)
```

Applying the preprocess_text function to the headline, keywords and short_description columns

```
In [80]: df['cleaned_headline'] = df['headline'].apply(preprocess_text)
    df['cleaned_description'] = df['short_description'].apply(preprocess_text)
    df['cleaned_keywords'] = df['keywords'].apply(preprocess_text)
```

2. Feature Extraction

Initializing the TF-IDF Vectorizer

```
In [84]: tfidf = TfidfVectorizer(max_features=5000)
```

Combining headline, cleaned_keywords and description into one feature for classification

```
In [87]: df['text'] = df['cleaned_headline'] + " " + df['cleaned_description'] + " " + df['c
```

Checking first five rows again

```
In [90]: df.head()
```

Out[90]:		category	headline	short_description	keywords	headline_length	cleaned_headli
	0	WELLNESS	143 Miles in 35 Days: Lessons Learned	Resting is part of training. I've confirmed wh	running- lessons	7	143 mile 35 d lesson learn
	1	WELLNESS	Talking to Yourself: Crazy or Crazy Helpful?	Think of talking to yourself as a tool to coac	talking-to- yourself- crazy	7	talking cra crazy help
	2	WELLNESS	Crenezumab: Trial Will Gauge Whether Alzheimer	The clock is ticking for the United States to	crenezumab- alzheimers- disease-drug	13	crenezumab tr gauge wheth alzheimers druς
	3	WELLNESS	Oh, What a Difference She Made	If you want to be busy, keep trying to be perf	meaningful- life	6	oh differen ma
	4	WELLNESS	Green Superfoods	First, the bad news: Soda bread, corned beef a	green- superfoods	2	green superfoo
	4						•

Creating function to count words

```
In [93]: word_counts = df['text'].apply(lambda x: len(x.split()))
In [95]: print(word_counts)
        0
                 39
        1
                 19
        2
                 22
        3
                 14
                 18
        49988
                 17
        49991
                 10
        49995
                 19
        49996
                 16
        Name: text, Length: 45427, dtype: int64
```

Creating function to check length of text column

Creating a vocabulary set.

Creating Summary statistics of headline lengths

```
In [104...
          print(df['headline_length'].describe())
                  45427.000000
         count
                      9.237172
         mean
         std
                      3.067637
         min
                      1.000000
         25%
                      7.000000
         50%
                      9.000000
         75%
                     11.000000
         max
                     17.000000
         Name: headline_length, dtype: float64
```

Visualizing headline length distribution

```
In [107... plt.figure(figsize=(8,5))
    plt.hist(df['headline_length'], bins=50, color='purple', alpha=0.7)
    plt.title("Distribution of Headline Lengths")
    plt.xlabel("Number of Words in Headline")
    plt.ylabel("Frequency")
    plt.show()
```


Vectorize the Text Data (TF-IDF)

Converting the text data into a numerical format using TF-IDF (Term Frequency - Inverse Document Frequency).

```
In [110... X = tfidf.fit_transform(df['text']).toarray()
```

Checking the shape of the feature matrix

```
In [112... X.shape
Out[112... (45427, 5000)
```

Encoding category into numarical format

Converting the textual categories into numeric format for model training.

```
In [117... label_encoder = LabelEncoder()
y = label_encoder.fit_transform(df['category'])
```

Splitting the data into training and testing sets (80% training, 20% testing)

```
In [120... X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
```

3. Model Development and Training

Creating a variable of logistic regression

```
In [124... logreg = LogisticRegression(max_iter=1000)
```

Training the Logistic Regression models

Predictions

```
In [129... y_pred_logreg = logreg.predict(X_test)
```

Acccuracy

```
In [132... print("Logistic Regression - Accuracy:", accuracy_score(y_test, y_pred_logreg))
print("Logistic Regression - F1-Score:", f1_score(y_test, y_pred_logreg, average='w

Logistic Regression - Accuracy: 0.7890160686770856
Logistic Regression - F1-Score: 0.7885771617420181
```

Cross-validation setup

```
In [135... cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
```

Creating a function for **Cross-validation**

```
In [138...

def cross_validate_model(model, X, y, model_name):
    scores = cross_val_score(model, X, y, cv=cv, scoring='accuracy')
    print(f"{model_name} Cross-validation Accuracy: {scores.mean():.4f} (+/- {score})
```

Applying the **Cross-validation** function on Logistic Regression Model

```
In [141... cross_validate_model(LogisticRegression(max_iter=1000), X, y, "Logistic Regression" Logistic Regression Cross-validation Accuracy: 0.7894 (+/- 0.0030)
```

Explanation of Cross-validation

Got Accuracy: 0.7894 (78.94%) → This means that, on average, your Logistic Regression model is correct in 78.94%

of the cases during cross-validation.

 $(+/-0.0030) \rightarrow$ This means that the accuracy changes slightly (by around 0.30% up or down) in different folds

of cross-validation.

Logistic Regression model is performing well with stable accuracy (~79%).

Since the fluctuation is very small, your model is reliable.

Tuning hyperparameters on Logistic Regression model

Defining parameter grid

```
In [143...
param_grid = {
    'C': [0.01, 0.1, 1, 10],
    'solver': ['liblinear', 'lbfgs'] }
```

Performing Grid Search on Logistic Regression model

Best Model which i got

```
In [147...
best_logreg = grid_search.best_estimator_
print("Best Parameters:", grid_search.best_params_)

Best Parameters: {'C': 1, 'solver': 'liblinear'}
```

Training & Evaluating Best Model

```
In [150...
best_logreg.fit(X_train, y_train)
y_pred_best = best_logreg.predict(X_test)
print("Improved Accuracy:", accuracy_score(y_test, y_pred_best))
```

Improved Accuracy: 0.7886858903808056

Got almost same accuracy

Creating a variable of MultinomialNB()

```
In [154... naive_bayes = MultinomialNB()
```

Training the MultinomialNB models

Predictions

```
In [160... y_pred_nb = naive_bayes.predict(X_test)
```

Acccuracy

```
In [163... print("Naive Bayes - Accuracy:", accuracy_score(y_test, y_pred_nb))
    print("Naive Bayes - F1-Score:", f1_score(y_test, y_pred_nb, average='weighted'))

Naive Bayes - Accuracy: 0.7722870349988994
Naive Bayes - F1-Score: 0.7701244707783852
```

Cross-validation setup

```
In [166... cross_validate_model(naive_bayes, X, y, "MultinomialNB")
```

MultinomialNB Cross-validation Accuracy: 0.7709 (+/- 0.0028)

Tuning hyperparameters on MultinomialNB

Defining parameter grid

```
In [170... param_grid_naive_bayes = {'alpha': [0.1, 0.5, 1, 5, 10]}
```

Performing Grid Search on MultinomialNB model

Best Model which got

```
In [175... best_nb = grid_search.best_estimator_
```

```
print("Best Alpha:", grid_search.best_params_)

Best Alpha: {'alpha': 0.5}
```

Training & Evaluating Best Model

```
In [179...
best_nb.fit(X_train, y_train)
y_pred_best_nb = best_nb.predict(X_test)
print("Improved Accuracy:", accuracy_score(y_test, y_pred_best_nb))
```

Improved Accuracy: 0.7749284613691393

Creating a variable of **Support Vector Machine**

```
In [182... svm = SVC(kernel='linear', C=0.1)
```

Training the Support Vector Machine models

Predictions

```
In [187... y_pred_svm = svm.predict(X_test)
```

Acccuracy

```
In [189... print("SVM - Accuracy:", accuracy_score(y_test, y_pred_svm))
    print("SVM - F1-Score:", f1_score(y_test, y_pred_svm, average='weighted'))

SVM - Accuracy: 0.7507153863086067
    SVM - F1-Score: 0.7500076098427396
```

Cross-validation setup

```
In [192... cross_validate_model(svm, X, y, "Support Vector Machine")
```

Support Vector Machine Cross-validation Accuracy: 0.7529 (+/- 0.0033)

Defining parameter grid

```
In [194... param_grid = {
    'C': [0.1, 1, 10],
    'kernel': ['linear'] }
```

Performing Randomized Search Cv instead of GridSearchCV on Support Vector Machine Model

GridSearchCV was taking too much time it was running from 6 hours.

Performing Grid Search on Support Vector Machine model

Best Model which got

```
In [202... best_svm = random_search.best_estimator_
    print("Best Parameters:", random_search.best_params_)

Best Parameters: {'kernel': 'linear', 'C': 1}
```

Training & Evaluating Best Model

```
In [204...
best_svm.fit(X_train, y_train)
y_pred_best_svm = best_svm.predict(X_test)
print("Improved Accuracy:", accuracy_score(y_test, y_pred_best_svm))
```

Improved Accuracy: 0.7759189962579793

The top 10 most important features for Logistic Regression

```
In [207... feature_names = np.array(tfidf.get_feature_names_out())
    top_n = 10
    coefficients = logreg.coef_.flatten()
```

Trimming to match feature_names.

```
In [225... coefficients = coefficients[:len(feature_names)]
```

Top 10 Most Influential Features for Classification (Positive & Negative)

The indices of the top 10 important features

```
In [227... top_indices = coefficients.argsort()[-top_n:]
```

Plotting the top 10 most important features

```
plt.figure(figsize=(10, 5))
    plt.barh(feature_names[top_indices], coefficients[top_indices])
    plt.xlabel('Coefficient Value')
    plt.title('Top 10 Important Features for Logistic Regression')
    plt.show()
```


Saving the Logistic Regression model

Top 10 Features Most Strongly Impacting Classification

Extracting important features

```
feature_names = tfidf.get_feature_names_out()
    feature_importance = np.argsort(best_model.coef_).flatten()[::-1][:10]
    print("Top 10 Important Features:", [feature_names[i] for i in feature_importance])
```

```
Top 10 Important Features: ['refugee', 'attack', 'korea', 'isi', 'killed', 'saudi', 'minister', 'israel', 'philippine', 'syria']
```

These words strongly impact whether a review is classified as positive or negative.

Report summarizing the entire process, from data collection to model

evaluation, and present the findings

News Article Classification Project Report

After preprocessing, removed duplicates and filled missing values with "unknown" and detected outliers and

removed outliers.

Data Preprocessing

Duplicate Removal:removed 4,251 duplicate records out of 50000.

Missing Values Treatment: There were 2,379 missing values in keywords and i replaced them with "Unknown".

Outlier Treatment: Detected Outliers in headline_length using the Interquartile Range (IQR) method and removed them.

Text Cleaning:

Created a function named "preprocess text" for

- (1) Converting text to lowercase.
- (2) Removing stopwords and punctuation.
- (3) Tokenizing and Lemmatizing the text.

I applied the "preprocess_text" function to the headline, keywords and short description columns and saved these

columns as cleaned_headline, cleaned_description and cleaned_keywords

Combined cleaned_headline, cleaned_description and cleaned_keywords

columns into one column named "text" for classification.

Feature Engineering

- (1) Word Count: I calculated number of words in each headline.
- (2) TF-IDF Vectorization: Converted textual data into numerical format using the TF-IDF method.
- (3) Label Encoding: Converted category column into numerical format for model training.
- (4) Visualized headline length distribution using histogram

Split the data into training and testing sets (80% training, 20% testing)

Model Development and Training

Built and trained classification models like:

- (1) Logistic Regression
- (2) Multinomial Naïve Bayes
- (3) Support Vector Machine (SVM)

Model Evaluation

The models were evaluated based on Accuracy and F1-score.

- (1) Logistic Regression Accuracy: 0.79 (Best Performing Model)
- (2) Naïve Bayes Accuracy: 0.77
- (3) SVM Accuracy: 0.75

A 5-fold Stratified Cross-Validation was performed to ensure robustness.

Feature Importance Analysis

Used Logistic Regression, identified the top 10 most important words influencing classification and got:

"business, company, job, ceo, employee, wall, uber, bank, worker, corporate"

These keywords play a crucial role in determining the news article category.

Model Deployment

The best-performing model (Logistic Regression) was saved using joblib for future classification of unseen articles.

Conclusion

The project successfully built a robust news classification model with high accuracy.

The model generalizes well to unseen data and identifies key influential keywords that impact classification decisions.

Part B Explaination Video link =

https://drive.google.com/file/d/10SKXv2R6ILW3WYene6VcA6KQ6usp=drivesdk