Artificial Intelligence: Naive Bayes Classification

Russell & Norvig: Sections 13.1 to 13.5 + 22.2

Remember this slide...

History of AI

- 1980s-2010
- The rise of Machine Learning
 - More powerful CPUs-> usable implementation of neural networks
 - Big data -> Huge data sets are available
 - document repositories for NLP (e.g. emails)
 - billions on images for image retrieval
 - billions of genomic sequences, ...
 - Rules are now learned automatically!

40

Today

- Naïve Bayes Classifier
 Introduct:
- Introduction to ML
- Decision Trees
- (Evaluation
- Unsupervised Learning)
- 6. Neural Networks

Motivation

- How do we represent and reason about non-factual knowledge?
 - □ It might rain tonight
 - If you have red spots on your face, you might have the measles
 - □ This e-mail is most likely spam
 - I can't read this character, but it looks like a "B"
 - These 2 pictures are very likely of the same person
 - **...**

Remember...

- P is a probability function:
 - \bigcirc 0 \leq P(A) \leq 1
 - $P(A) = 0 \Rightarrow$ the event A will never take place
 - \neg P(A) = 1 \Rightarrow the event A must take place

 - $P(A) + P(\sim A) = 1$

Joint probability

- intersection $A_1 \cap ... \cap A_n$ is an event that takes place if all the events $A_1,...,A_n$ take place
- □ denoted $P(A \cap B)$ or P(A,B)

Sum Rule

- union $A_1 \cup ... \cup A_n$ is an event that takes place if at least one of the events $A_1,...,A_n$ takes place
- □ denoted $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability

- Prior (or unconditional) probability
 - Probability of an event before any evidence is obtained
 - P(A) = 0.1 $P(rain\ today) = 0.1$
 - i.e. Your belief about A given that you have no evidence
- Posterior (or conditional) probability
 - Probability of an event given that you know that B is true (B = some evidence)
 - \neg P(A|B) = 0.8 P(rain today | cloudy) = 0.8
 - □ i.e. Your belief about A given that you know B

Conditional Probability (con't)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Chain Rule

With 2 events, the probability that A and B occur is:

$$P(A,B) = P(A|B) \times P(B)$$

- With 3 events, the probability that A, B and C occur is:
 - The probability that A occurs
 - □ Times, the probability that B occurs, assuming that A occurred
 - Times, the probability that Coccurs, assuming that A and B have occurred
- With n events, we can generalize to the Chain rule:

$$P(A_1, A_2, A_3, A_4, ..., A_n)$$

$$= P (\cap A_i)$$

=
$$P(A_1) \times P(A_2|A_1) \times P(A_3|A_1,A_2) \times ... \times P(A_n|A_1,A_2,A_3,...,A_{n-1})$$

So what?

- we can do probabilistic inference
 - □ i.e. infer new knowledge from observed evidence

Joint probability distribution:

P(Toothache \(\triangle Cavity \)		evider	nce
sis		Toothache	~Toothache
thes	Cavity	0.04	0.06
hypothesis	~Cavity	0.01	0.89

$$P(H \mid E) = \frac{P(H \cap E)}{P(E)}$$

$$P(cavity \mid toothache) = \frac{P(cavity \cap toothache)}{P(toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

Getting the Probabilities

 in most applications, you just count from a set of observations

$$P(A) = \frac{count_of_A}{count_of_all_events}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{count_of_A_and_B_together}{count_of_all_B}$$

Combining Evidence

- Assume now 2 pieces of evidence:
- Suppose, we know that
 - □ P(Cavity | Toothache) = 0.12
 - □ P(Cavity | Young) = 0.18
- A patient complains about Toothache and is Young...

Combining Evidence

	Tooth	nache	~Toothache		
	Young ~ Young		Young	~ Young	
Cavity	0.108	0.012	0.072	0.008	
~Cavity	0.016	0.064	0.144	0.576	

P(Toothache ∩Cavity ∩Young)

- But how do we get the data?
- In reality, we may have dozens, hundreds of variables
- We cannot have a table with the probability of all possible combinations of variables
 - \Box Ex. with 16 binary variables, we would need 2^{16} entries

Independent Events

- In real life:
 - some variables are independent...
 - ex: living in Montreal & tossing a coin
 - P(Montreal, head) = P(Montreal) * P(head)
 - probability of 2 heads in a row:
 - \Box P(head, head) = 1/2 * 1/2 = 1/4
 - some variables are not independent...
 - ex: living in Montreal & wearing boots
 - P(Montreal, boots) ≠ P(Montreal) * P(boots)

Independent Events

- Two events A and B are independent:
 - if the occurrence of one of them does not influence the occurrence of the other
 - \Box i.e. A is independent of B if P(A) = P(A|B)
- If A and B are independent, then:
 - $P(A,B) = P(A|B) \times P(B) \text{ (by chain rule)}$ $= P(A) \times P(B) \text{ (by independence)}$
- To make things work in real applications, we often assume that events are independent
 - $\neg P(A,B) = P(A) \times P(B)$

Conditional Independent Events

- Two events A and B are <u>conditionally</u> independent given C:
 - Given that C is true, then any evidence about B cannot change our belief about A
 - $P(A, B \mid C) = P(A \mid C) \times P(B \mid C).$

Bayes' Theorem

given:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 so $P(A,B) = P(A|B) \times P(B)$
 $P(B|A) = \frac{P(A,B)}{P(A)}$ so $P(A,B) = P(B|A) \times P(A)$

- then:
$$P(A|B) \times P(B) = P(B|A) \times P(A)$$

• and:
$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

So?

- We typically want to know: P(Hypothesis | Evidence)
 - P(Disease | Symptoms)... P(meningitis | red spots)
 - P(Cause | Side Effect)... P(misaligned brakes | squeaky wheels)
- But P(Hypothesis | Evidence) is hard to gather
 - ex: out of all people who have red spots... how many have meningitis?
- However P(Evidence | Hypothesis) is easier to gather
 - ex: out of all people who have the meningitis ... how many have red spots?
- So

$$P(Hypothesis | Evidence) = \frac{P(Evidence | Hypothesis) \times P(Hypothesis)}{P(Evidence)}$$

Assume we only have 1 hypothesis Assume:

- P(spots=yes | meningitis=yes) = 0.4
- P(meningitis=yes) = 0.00003
- P(spots=yes) = 0.05 P(meningitis = yes | spots = yes) = $\frac{P(spots = yes | meningitis = yes) \times P(meningitis = yes)}{P(spots = yes)}$ $= \frac{0.4 \times 0.00003}{0.05} = 0.00024$
- → If you have spots... you are more likely to have meningitis than if we don't know about you having spots

- Predict the weather tomorow based on tonight's sunset...
- Assume we have 3 hypothesis...

 \Box H_1 : weather will be nice $P(H_1) = 0.2$

 \Box H_2 : weather will be bad $P(H_2) = 0.5$

 \Box H_3 : weather will be mixed $P(H_3) = 0.3$

And 1 piece of evidence with 3 possible values

 \Box E_1 : today, there's a beautiful sunset

□ E₂: today, there's a average sunset

□ E₃: today, there's no sunset

P(E _x H _i)	E ₁	E ₂	E ₃
H ₁	0.7	0.2	0.1
H ₂	0.3	0.3	0.4
H ₃	0.4	0.4	0.2

- Observation: average sunset (E₂)
- Question: how will be the weather tomorrow?
 - $P(H_1 \mid E_2)$?
 - predict the weather that maximizes the probability
 - \square select H_i such that $P(H_i \mid E_2)$ is the greatest

$$P(H_i | E_2) = \frac{P(H_i) \times P(E_2 | H_i)}{P(E_2)}$$

$$P(E_2) = P(H_1) \times P(E_2 \mid H_1) + P(H_2) \times P(E_2 \mid H_2) + P(H_3) \times P(E_2 \mid H_3)$$

= $.2 \times .2 + .5 \times .3 + .3 \times .4 = .04 + .15 + .12 = 0.31$

$$P(H_1 | E_2) = \frac{P(H_1) \times P(E_2 | H_1)}{P(E_2)} = \frac{.2x.2}{.31} = .129$$

$$P(H_2 | E_2) = \frac{P(H_2) \times P(E_2 | H_2)}{P(E_2)} = \frac{.5x.3}{.31} = .484$$

$$P(H_3 | E_2) = \frac{P(H_3) \times P(E_2 | H_3)}{P(E_2)} = \frac{.3x.4}{.31} = .387$$

 \Rightarrow H₂ is the most likely hypothesis, given the evidence P(H₂ | E₂) is the highest

Tomorrow the weather will be bad

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E|H_i)}{P(E)}$$

Bayes' Reasoning

- Out of n hypothesis...
 - □ we want to find the most probable H_i given the evidence E
- So we choose the H_i with the largest $P(H_i|E)$

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} P(H_i \mid E) = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E \mid H_i)}{P(E)}$$

- But... P(E)
 - \Box is the same for all possible H_i (and is hard to gather anyways)
 - so we can drop it
- So Bayesian reasoning:

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E|H_i)}{P(E)} = \underset{H_i}{\operatorname{argmax}} P(H_i) \times P(E|H_i)$$

Representing the Evidence

- The evidence is typically represented by many attributes/features
 - beautiful sunset? clouds? temperature? summer?, ...
- so often represented as a feature/attribute vector

		hypothesis			
	sunset	clouds	temp	summer	weather
	a_1	a_2	a ₃ .	a ₄	tomorrow
e1	beautiful	no	high	yes	Nice

- = e1 = $\langle a_1, ..., a_n \rangle$
- e1 = <sunset:beautiful, clouds:no, temp:high, summer:yes>

Combining Evidence

toothache	young	cavity
yes	yes	?

```
P(Cavity = yes | Toothache = yes \cap Young = yes) = ?
```

with Bayes Rule :

```
= \frac{P(\mathsf{Toothache} = \mathsf{yes} \cap \mathsf{Young} = \mathsf{yes} | \mathsf{Cavity} = \mathsf{yes}) \mathsf{xP}(\mathsf{Cavity} = \mathsf{yes})}{P(\mathsf{Toothache} = \mathsf{yes} \cap \mathsf{Young} = \mathsf{yes})}
```

with independence assumption:

```
= \frac{P(Toothache = yes \cap Young = yes | Cavity = yes)xP(Cavity = yes)}{P(Toothache = yes) x P(Young = yes)}
```

with conditional independence assumption:

Now we have decomposed the joint probability distribution into much smaller pieces...

Combining Evidence

toothache	young	cavity
yes	yes	yes? or no?

But since we only care about <u>ranking</u> the hypothesis...

$$P(Cavity = yes) \times P(Toothache = yes| Cavity = yes) \times P(Young = yes| Cavity = yes)$$

$$P(Toothache = yes) \times P(Young = yes| Cavity = yes)$$

$$P(Cavity = yes) \times P(Young = yes| Cavity = yes)$$

$$P(Cavity = yes) \times P(Young = yes| Cavity = yes)$$

$$P(Toothache = yes) \times P(Young = yes| Cavity = yes)$$

$$H_{NB} = \underset{H_{i}}{argmax} \quad \frac{P(H_{i}) \times P(E \mid H_{i})}{P(E)} = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(< a_{1}, a_{2}, a_{3}, ..., a_{n} > \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(H_{i}) \times P(H_{i}) = \underset{H_{i}}{argmax} \quad P($$

evidence

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot	High	Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

• Goal: Given a new instance $X = \langle a_1, ..., a_n \rangle$, classify as Yes/No

$$H_{NB} = \underset{H_{i}}{argmax} \quad \frac{P(H_{i}) \times P(E \mid H_{i})}{P(E)} = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(< a_{1}, a_{2}, a_{3}, ..., a_{n} > \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{argmax} \quad P(H_{i}) \times P(H_{i}) = \underset{H_{i}}{argm$$

 Naïve Bayes: Assumes that the attributes/features are conditionally independent

• Goal: Given a new instance $X = \langle a_1, ..., a_n \rangle$, classify as Yes/No

$$H_{NB} = \underset{H_i}{\text{argmax}} P(H_i) \times \prod_{j=1}^{n} P(a_j | H_i)$$

- 1. 1st estimate the probabilities from the training examples:
 - $_{a)}$ For each hypothesis H_{i} estimate $P(H_{i})$
 - For each attribute value a_j of each instance (evidence) estimate P(a_i | H_i)

1. TRAIN:

compute the probabilities from the training set

P(PlayTennis = yes) =
$$9/14 = 0.64$$

P(PlayTennis = no) = $5/14 = 0.36$ prior probabilities P(H_i)

P(Out = sunny | PlayTennis = yes) = 2/9 = 0.22

P(Out = sunny | PlayTennis = no) = 3/5 = 0.60

P(Out = rain | PlayTennis = yes) = 3/9 = 0.33

P(Out = rain | PlayTennis = no) = 2/5 = 0.4

•••

P(Wind = strong | PlayTennis = yes) = 3/9 = 0.33

P(Wind = strong | PlayTennis = no) = 3/5 = 0.60

conditional probabilities $P(a_i | H_i)$

30

2. TEST:

```
classify the new case: X=(Outlook: Sunny, Temp: Cool, Hum: High, Wind: Strong) H_{NB} = \underset{H_i \in [yes,no]}{argmax} \ P(H_i) \times P(X \mid H_i)
= \underset{H_i \in [yes,no]}{argmax} \ P(H_i) \times \prod_j P(a_j \mid H_i)
= \underset{H_i \in [yes,no]}{argmax} \ P(H_i) \times P(Outlook = sunny \mid H_i) \times P(Temp = cool \mid H_i)
\times P(Humidity = high \mid H_i) \times P(Wind = strong \mid H_i)
```

```
1) P(PlayTennis = yes)

x P(Outlook = sunny | PlayTennis = yes)xP(Temp = cool | PlayTennis = yes)xP(Hum = high | PlayTennis = yes)xP(Wind = strong | PlayTennis = yes)
= 0.0053
```

```
2) P(PlayTennis = no)

x P(Outlook = sunny | PlayTennis = no)xP(Temp = cool | PlayTennis = no)xP(Hum = high | PlayTennis = no)xP(Wind = strong | PlayTennis = no)
= 0.0206
```

 \Rightarrow answer : PlayTennis(X) = no

Application of Bayesian Reasoning

- Categorization: P(Category | Features of Object)
 - Diagnostic systems: P(Disease | Symptoms)
 - Text classification: P(sports_news | text)
 - Character recognition: P(character | bitmap)
 - Speech recognition: P(words | acoustic signal)
 - Image processing: P(face_person | image features)
 - Spam filter: P(spam_message | words in e-mail)
 - ...

Naive Bayes Classifier

- A simple probabilistic classifier based on Bayes' theorem
 - with strong (naive) independence assumption
 - i.e. the features/attributes are conditionally independent
- The assumption of conditional independence, often does not hold...
- But Naïve Bayes works very well in many applications anyways!
 - ex: Medical Diagnosis
 - ex: Text Categorization (spam filtering)

Ex. Application: Spam Filtering

- Task: classify e-mails (documents) into a predefined class
 - □ ex: spam / ham
 - ex: sports, recreation, politics, war, economy,...
- Given
 - N sets of training texts (1 set for each class)
 - Each set is already tagged by the class name

Strictly speaking, what we will see is called a Multinomial Naïve Bayes classifier, because we will count the number of words, as opposed to just using binary values for the presence/absence of words...

e-mail Representation

- each e-mail is represented by a vector of feature/value:
 - feature = actual words in the e-mail
 - value = number of times that word appears in the e-mail
- each e-mail in the training set is tagged with the correct category.

data		features / evidence / X						
instance	offer	money	viagra	laptop	exam	study	category	
email 1	3	2	5	1	0	1	SPAM	
email 2	1	1	0	5	4	3	HAM	
email 3	0	3	2	1	0	1	SPAM	

task: correctly tag a new e-mail

	offer	money	viagra	laptop	exam	study	category
new email	2	1	0	1	1	2	?

Naive Bayes Algorithm

```
// 1. training for all classes c_i // ex. ham or spam for all words w_j in the vocabulary compute P(w_j \mid c_i) = \frac{\text{count}(w_j, c_i)}{\sum_{j} \text{count}(w_j, c_i)} for all classes c_i \text{compute } P(c_i) = \frac{\text{count}(\text{documents in } c_i)}{\text{count}(\text{all documents})} // 2. testing a new document D for all classes c_i // ex. ham or spam score (c_i) = P(c_i) for all words w_j in the D score (c_i) = \text{score}(c_i) \times P(w_j \mid c_i) choose c^* = \text{with the greatest score}(c_i)
```

	W ₁	W 2	W 3	W 4	W 5	W ₆
c1 : SPAM	p(w ₁ c ₁)	p(w ₂ c ₁)	p(w ₃ c ₁)	p(w ₄ c ₁)	p(w ₅ c ₁)	p(w ₆ c ₁)
c2 : HAM	p(w ₁ c ₂)	p(w ₂ c ₂)	p(w ₃ c ₂)	p(w ₄ c ₂)	p(w ₅ c ₂)	p(w ₆ c ₂)

Dataset

□ c1: SPAM

doc1: "cheap meds for sale"

doc2: "click here for the best meds"

doc3: "book your trip"

doc4: "cheap book sale, not meds"

doc5: "here is the book for you"

- □ doc6: "the cheap book"
- should it be classified as HAM or SPAM?

Example (con't)

Assume

vocabulary = {best, book, cheap, sale, trip, meds}
If not in vocabulary, ignore word

1. Training:

```
    P(best|SPAM) = 1/7
    P(book|SPAM) = 1/7
    P(book|HAM) = 2/5
    P(cheap|SPAM) = 1/7
    P(sale|SPAM) = 1/7
    P(sale|SPAM) = 1/7
    P(trip|SPAM) = 1/7
    P(trip|SPAM) = 1/7
    P(meds|SPAM) = 2/7
    P(meds|HAM) = 1/5
    P(meds|HAM) = 1/5
    P(meds|HAM) = 1/5
```

2. Testing: "the cheap book"

- □ Score(HAM)= $P(HAM) \times P(cheap|HAM) \times P(book|HAM)$
- □ Score(SPAM)= $P(SPAM) \times P(cheap|SPAM) \times P(book|SPAM)$

Be Careful: Smooth Probabilities

- normally: $P(w_i \mid c_j) = \frac{(frequency of w_i in c_j)}{total number of words in c_j}$
- what if we have a $P(w_i|c_j) = 0...?$
 - ex. the word "dumbo" never appeared in the class SPAM?
 - □ then P("dumbo" | SPAM) = 0
- so if a text contains the word "dumbo", the class SPAM is completely ruled out!
- to solve this: we assume that every word always appears at least once (or a smaller value)
 - a ex: add-1 smoothing:

$$P(w_i \mid c_j) = \frac{(frequency of w_i in c_j) + 1}{total number of words in c_j + size of vocabulary}$$

Be Careful: Use Logs

- if we really do the product of probabilities...
 - \Box argmax_{cj} $P(c_j) \prod P(w_i | c_j)$
 - we soon have numerical underflow...
 - \Box ex: 0.01 x 0.02 x 0.05 x ...
- so instead, we add the log of the probs
 - $= \operatorname{argmax}_{cj} \log(P(c_j)) + \sum_{i=1}^{n} \log(P(w_i|c))$
 - \neg ex: $\log(0.01) + \log(0.02) + \log(0.05) + ...$

Dataset

c1: COOKING	c2: SPORTS
doc ₁ : stove kitchen the heat doc ₂ : kitchen pasta stove	doc ₁ : ball heat doc ₂ : the referee player
doc ₁₀₀₀₀₀ : stoveheat ball	doc ₇₅₀₀₀ : goal injury

Assume:

- |V| = 100 vocabulary = {ball, heat, kitchen, referee, stove, the, ... }
- 500,000 words in Cooking
- 300,000 words in Sports
- □ 100,000 docs in Cooking
- □ 75,000 docs in Sports

Training - Unsmoothed / Smoothed probs:

Testing: "the referee hit the blue bird"

Score(COOKING)=
$$log(\frac{100,000}{175,000}) + log(P(the|COOKING)) + log(P(referee|COOKING)) + log(P(the|COOKING)) + log(P(the|COOKING))$$

Score(SPORTS)=
$$log(\frac{75,000}{175,000}) + log(P(the|SPORTS)) + log(P(referee|SPORTS)) + log(P(the|SPORTS)) + log(P(the|SPORTS))$$

Another Application: Postal Code Recognition

BAM BAM 42 T-REX RD. PANGAGA, RB 48016

FRED FLINSTONE
69 OLD SCHOOL AVE
BEDROCK, OLDEN-TOWN
77005

Digit Recognition

- MNIST dataset
- data set contains handwritten digits from the American Census Bureau employees and American high school students
- 28 x 28 grayscale images
- training set: 60,000 examples
- test set: 10,000 examples.
- Features: each pixel is used as a feature so:
 - there are 28x28 = 784 features
 - each feature = 256 greyscale value
- Task: classify new digits into one of the 10 classes

Image Classification

Comments on Naïve Bayes Classification

- Makes a strong assumption of conditional independence
 - that is often incorrect
 - ex: the word ambulance is not conditionally independent of the word accident given the class SPORTS

BUT:

- surprisingly very effective on real-world tasks
- basis of many spam filters
- fast, simple
- gives confidence in its class predictions (i.e., the scores)

Today

- 1. Naive Bayes Classifier
- 2. Introduction to ML
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks

