

PROJETO INTEGRADOR DO 4º SEMESTRE DA LEI-ISEP

2019-2020 (versão III.a)

PARTE III – Protocolo de Comunicação

1. Enquadramento

No ano letivo de 2019-2020 o quarto semestre (i.e. 2º ano, 2º semestre) da Licenciatura em Engenharia Informática (LEI) do Instituto Superior de Engenharia do Porto (ISEP) adota um processo de ensino-aprendizagem assente no desenvolvimento de um único projeto que potencia a integração e aplicação dos conhecimentos e competências de todas as unidades curriculares (UC) lecionadas neste semestre: Engenharia de Aplicações (EAPLI), Laboratório e Projeto IV (LAPR4), Linguagens e Programação (LPROG), Redes de Computadores (RCOMP) e Sistemas de Computadores (SCOMP).

O projeto comum a todas as UC requer a utilização de um protocolo de comunicação de aplicação, descrito neste documento, entre o sistema a desenvolver e as máquinas industriais (cf. documento com a mesma designação cujo subtítulo é "PARTE II – Sistema a Desenvolver").

2. Descrição do Protocolo

A descrição do protocolo compreende a existência de três aplicações de rede:

- Sistema Central: corresponde essencialmente ao "core" do sistema a desenvolver. Este recebe e envia mensagens das e para as máquinas.
- Máquinas Industriais ou Emuladores: corresponde a uma máquina industrial real ou a um software que simula o funcionamento geral de uma máquina industrial. Estas enviam mensagens para o sistema central e também recebem mensagens do sistema central e/ou do sistema de monitorização;
- Sistema de Monitorização: parte/componente integrante do sistema a desenvolver cujo objetivo é monitorizar o estado das Máquinas Industriais ou Emuladores. Este apenas envia mensagens para as máquinas.

2.1. Protocolo de Aplicação

O protocolo de aplicação visa:

- Enviar mensagens, sendo que o envio de uma mensagem inclui sempre o envio de um pedido (request) e a receção de uma resposta (response);
- Operar de forma semelhante tanto sobre TCP como sobre UDP. Assim, todas as mensagens (pedidos e respostas), por TCP ou UDP, têm o mesmo formato geral descrito em Tabela 1 (optouse por não traduzir este conteúdo para português para evitar/minimizar erros de tradução e/ou de interpretação);

Quando o modo de operação é sobre TCP, o envio de uma mensagem implica o estabelecimento de uma conexão TCP sobre a qual é enviado o pedido e assim que a resposta seja obtida a conexão é fechada. Quando o modo de operação é sobre UDP, o pedido é transportado por um datagrama UDP e o mesmo acontece para a resposta. Devido aos limites do UDP, o tamanho máximo dos pedidos/respostas é de 512 bytes.

Por fim, assume-se que as máquinas industriais são identificadas através de um **número de identificação único (***unique identification number***)**, que corresponde a um número inteiro positivo entre 1 e 65535.

TABELA 1. FORMATO GERAL DAS MENSAGENS

FIELD	Offset (bytes)	Length (bytes)	Use
VERSION	0	1	Protocol version number, a single byte representing an unsigned integer number within the 0-255 range. The first version to be supported will have number zero.
CODE	1	1	Message type code. A single byte representing an unsigned integer number within the 0-255 range.
ID	2	2	Industrial machine's unique identification number . Number = (first byte + 256 x second byte) If zero, means not applicable to the present message.
DATA LENGTH	4	2	Number of bytes stored in the following RAW DATA field. Number = (first byte + 256 x second byte) The total length of the message is (6 + DATA LENGTH) bytes. DATA LENGTH may be zero, meaning there's no RAW DATA, and thus the total message length is 6 bytes.
RAW DATA	6	DATA LENGTH	Data to be interpreted by end applications, usually a text content.

A Tabela 2 apresenta os códigos (code) de pedidos/respostas (request/response) conhecidos.

TABELA 2. CÓDIGOS DE PEDIDOS/RESPOSTAS CONHECIDOS.

CODE	Meaning and usage			
0	HELLO request – greeting message from an industrial machine to the central system or from the monitoring system to industrial machines.			
1	MSG request – message from an industrial machine to the central system.			
2	CONFIG request – message from the central system to an industrial machine.			
3	RESET request – message from the monitoring system an industrial machine.			
150	ACK response – the request has been accepted and executed.			
151	NACK response – the request has been refused and ignored.			

Os procedimentos a ter em consideração nas diversas comunicações são descritos nas secções seguintes.

2.2. Comunicações entre o Sistema Central e as Máquinas Industriais

A comunicação entre o sistema central e as máquinas **é baseada em TCP** e assenta nos seguintes pressupostos:

- Cada máquina industrial conhece:
 - O seu próprio número de identificação único;
 - o O endereço de rede ou o nome DNS do sistema central.
- O sistema central conhece o número de identificação único de cada máquina industrial através do seu repositório de dados. Contudo, o endereço de rede de cada máquina industrial somente é conhecido depois de este ter sido ser contatado pela máquina através de uma mensagem HELLO.

Quando uma máquina industrial é iniciada, ela envia um pedido HELLO baseada em TCP para o sistema central. Por sua vez, o sistema central verifica se o ID da máquina é seu conhecido. Se sim, este envia de volta uma resposta ACK e atualiza/define no seu repositório o endereço de rede da máquina industrial. Caso contrário, uma resposta NACK é retornada.

As máquinas industriais enviam pedidos MSG baseadas em TCP ao sistema central e recebem uma resposta ACK caso o ID e endereço de rede da máquina coincidam com a informação disponível no sistema central. Caso contrário, o pedido é ignorado e a resposta NACK é retornada.

O sistema central envia pedidos CONFIG baseadas em TCP para as máquinas industriais. Caso o ID constante no pedido corresponda ao ID da máquina industrial deve ser retornado uma resposta ACK. Caso contrário, o pedido deve ser recusado e uma resposta NACK é retornada.

Por fim, salienta-se que as respostas ACK e NACK podem conter um texto de status explicando o resultado do pedido e o estado atual da contraparte.

2.3. Comunicações entre o Sistema de Monitorização e as Máquinas Industriais

A comunicação entre o sistema de monitorização e as máquinas **é baseada em UDP** e assenta nos seguintes pressupostos:

- Não há conhecimento mútuo inicial;
- As máquinas industriais tornam-se conhecidas pelo sistema de monitorização ao responder a pedidos HELLO remetidos por este;
- As máquinas industriais nunca enviam pedidos ao sistema de monitorização.

O sistema de monitorização envia pedidos HELLO baseados em UDP para máquinas industriais. Neste caso específico, nestes pedidos não consta o número de identificação único da máquina e, portanto, deve ser zero. A resposta ao pedido HELLO é ACK ou NACK, dependendo da última resposta que a máquina industrial recebeu do sistema central. Qualquer texto de status retornado pelo sistema central na última resposta deve ser adicionado à resposta enviada ao sistema de monitorização.

O sistema de monitorização deve possuir uma lista de endereços de rede a serem monitorizados, podendo esta lista incluir endereços específicos (unicast) e/ou de difusão (broadcast). A cada trinta segundos (ou outro valor configurado), o sistema de monitorização envia um pedido HELLO baseado em UDP para cada um desses endereços. A partir das respostas que chegam ao sistema de

monitorização, uma lista de máquinas industriais é construída e mantida. Se não houver atualização de uma máquina industrial por mais de um minuto (valor configurável), esta deverá ser marcada como indisponível, mas não removida da lista.

O sistema de monitorização pode enviar a uma máquina industrial um pedido RESET. Neste caso, a máquina industrial deve enviar um pedido HELLO para o sistema central e a resposta correspondente deve ser encaminhada como resposta ao pedido de RESET.

Por fim, devido a erros de configuração das máquinas, poderá acontecer que máquinas distintas e, por conseguinte, também em/com endereços IP distintos, estejam a responder com o mesmo **número de identificação único.** Assim, é desejável que o sistema de monitorização seja capaz de detetar estas anomalias de forma a facilitar a sua correção.