2022-2023 学年第一学期 2017、2018、2019、2020、2021 级各专业本科《医学细胞生物学》补考/重修考试试卷

	牟亚	班级	姓名	学号	日期_	
_,	A ₁ 型题:请	从备选答案中选	出1个最佳答案,	并使用 2B 铅	笔将答题卡里相应	立的字母涂黑(每小题 1
分,	共 40 分)。					
	1. 细胞生物	学的发展离不开。	众多科学家的共同	司努力,其中,	Schleiden 和 Sch	wann 对此门学科的伟大
	贡献在于	()				
	A. 提出 D	NA 双螺旋结构构	莫型			
	B. 制造了	世界上第一台电	子显微镜			
	C. 发现核	分裂现象 D). 建立细胞学说	E. 发现组	田胞	
	2. 溶酶体的	标志酶是()				
	A. 酸性磷	养酸酶 B. AT	TP 合酶 C. 细	胞色素氧化酶	D. 苹果酸脱氧	氢酶 E. 糖基转移酶
	3. 细胞变形	运动的本质是()			
	A. 细胞膜	迅速扩张使细胞	变形 B. ß	包内微管迅速解	聚使细胞变形	
	C. 胞内微	丝迅速重组装使	细胞变形 D. 刖	包内中间丝重聚	合使细胞变形	
	E. 细胞质	含量增加导致细	胞变形			
	4. 易化扩散	与主动运输的共	司点是 ()			
	A. 顺浓度	梯度运输 B	3. 逆浓度梯度运输	渝 C. 消耗	能量	
	D. 不消耗	能量 E. 需	言要载体蛋白			
	5. 真核细胞	周期中进行组蛋	白合成和 DNA 复	[制的时期是()	
	A. G0 期	B. G1 期	C. G2	期 D.	M 期 E.	. S 期
	6. 关于光学:	显微镜的叙述,	错误的是()			
	A. 利用光	光线照明,将观察	区对象形成放大影	像的仪器		
	B. 由照明	月系统、光学放 大	系统和机械系统	三部分构成		
	C. 用于观	l 察细胞的显微结	构			
	D. 光学显	と微镜下,可观察	区 到细菌和线粒体			
	E. 分辨率	由目镜决定				
	7. 有关细胞	呼吸的叙述,错	误的是 ()			

A. 细胞内供能物质生成的能量转化为 ATP 才能被细胞利用
B. 剧烈运动时肌肉细胞的能量供应主要依靠糖酵解
C. 细胞呼吸的 4 个阶段均在线粒体内完成
D. 该体系最终以氧作为电子接受体,与细胞摄氧有关,又称为呼吸链
E. 电子传递链进行一系列酶催化的氧化还原反应
8. 1953 年,Watson 和 Crick 在前人拍摄的 DNA 晶体 X 射线衍射照片的基础上,研究并提出了(
A. DNA 双螺旋模型 B. 中心法则 C. 基因学说 D. 原生质学说 E. 细胞学
9. 主动运输与胞吞作用的共同点是 ()
A.运输大分子物质 B.逆浓度梯度运输 C.需载体蛋白介导
D.消耗代谢能 E.有质膜形态和结构的改变
10. 线粒体内合成 ATP 的部位是 ()
A. 线粒体基质腔 B. 线粒体内核糖体 C. 膜间隙 D. 线粒体基粒 E. 线粒体外膜
11. 通过钠钾泵进行物质运输的运输方式是()
A. 自由扩散 B. 小泡运输 C. 离子通道扩散 D. 主动运输 E. 易化扩散
12. 线粒体外膜的标志性酶是()
A. 单胺氧化酶 B. 细胞色素氧化酶 C. 腺苷酸激酶
D. 腺苷酸环化酶 E. 苹果酸脱氢酶
13. 肺换气过程中, O_2 和 CO_2 进行气体交换的方式是()
A. 简单扩散 B. 易化扩散 C. 离子通道扩散 D. 协同运输 E. ATP 驱动泵
14. 引导游离核糖体到内质网上继续蛋白质合成的氨基酸序列称为()
A. 引导肽 B. 信号肽 C. 转运肽 D. 前导肽 E. 分子伴侣
15. 下列对质膜流动性描述错误的是()
A. 脂肪酸链短能降低脂肪酸链尾部的相互作用,膜脂流动性增大
B. 脂肪酸链的不饱和程度增高,膜脂流动性增大
C. 膜蛋白质分子含量少,流动性增大
D. 温度及 PH 值对膜流动性有影响
E. 卵磷脂和鞘磷脂的比值越小,膜脂流动性越大
16. 核仁组织区(NOR)存在于有丝分裂中期近端着丝粒染色体的()
A. 着丝粒 B. 次缢痕 C. 随体 D. 端粒 E. 动粒
17. 1970 年, L.D.Frye 和 M.Edidin 采用人、鼠细胞融合实验和间接免疫荧光法验证了膜蛋白质在脂

第2页共8页

	双层中可()
	A. 侧向运动 B. 旋转运动 C. 钟摆运动 D. 翻转运动 E. 旋转异构运动
18.	细胞周期的长短主要取决于 ()
	A. G0 期 B. G1 期 C. G2 期 D. M 期 E. S 期
19.	强调了膜的流动性和膜组分分布的不对称性,较合理地解释了生物膜动态变化的模型是(
	A. 片层结构模型 B. 单位膜模型 C. 流动镶嵌模型
	D. 晶格镶嵌模型 E. 脂筏模型
20.	高尔基体顺面的小囊泡来自()
	A. 溶酶体 B. 糙面内质网 C. 光面内质网 D. 吞噬体 E. 微粒体
21.	含微管(三联管)的结构是()
A	A. 小肠绒毛 B. 纤毛轴丝 C. 鞭毛轴丝 D. 中心粒 E. 纺锤丝
22.	原核细胞与真核细胞存在许多不同之处,下列有关真核细胞描述不正确的是(
	A. 具有真正的细胞核
	B. 核内及细胞质中均具有遗传物质
	C. 转录和翻译过程同时进行
	D. 具有细胞骨架系统
	E. 膜性细胞器发达
23.	能抑制 Cdk 活性而阻断或延迟细胞周期进行的酶是 ()
	A. CKI B. CAK C. Cyclin D. MPF E. Ubiquitin
24.	COP II 有被小泡介导的物质运输方向是()
A	. 高尔基体→线粒体 B. 高尔基体→溶酶体 C. 高尔基体→内质网
D	D. 内质网→高尔基体 E. 内质网→线粒体
25.	MPF 是 1970 年由 Johnson 何 Rao 发现的促有丝分裂原成熟因子。MPF 的组成成分是(
A	a. cyclinB-CDK1 B. cyclinB-CDK2 C. cyclinA-CDK2
D	D. cyclinB-CDK4 E. cyclinD-CDK4
26.	有关线粒体的结构与功能,下列描述错误的是()
	A. 含酶的种类较少 B. 物质氧化和能量转换的场所
	C. 由两层单位膜围成的封闭性囊状结构 D. 光镜下呈线状或颗粒状
	E. 胞内线粒体的数量与分布随细胞的形态和功能不同而变化
27.	微管的踏车运动发生在 ()

	A. 正端的聚合率大于负端的解聚率 B. 正端的聚合率小于负端的解聚率
	C. 正端解聚率小于负端的解聚率 D. 既不聚合也不解聚的稳定状态
	E. 正端的聚合率等于负端的解聚率
28.	哺乳动物受精过程中精子顶体反应依赖于()
	A. 线粒体 B. 内质网 C. 高尔基体 D. 溶酶体 E. 过氧化物酶体
29.	小肠上皮微绒毛和应力纤维分别与哪种细胞骨架有关()
	A. 微丝,中间丝 B. 微管,中间丝 C. 微丝,微管 D. 微丝,微丝
	E. 中间丝, 微丝
30.	关于中间丝描述正确的是()
	A. 形态为中空管状结构 B. 具有极性 C.组装不存在踏车现象
	D. 鬼笔环肽能够阻止其解聚 E. 聚合时由 ATP 提供能量
31.	支持线粒体起源的内共生学说的依据是()
	A. 线粒体 DNA 和蛋白质合成系统类似于病毒
	B. 线粒体 DNA 和蛋白质合成系统类似于细菌
	C. 真核细胞的前身是一种比原核细胞大、进化程度高的需氧细菌
	D. 随着不断进化,细胞逐渐增加具有呼吸功能的膜表面结构
	E. 质膜内陷、折叠、融合逐步演变为线粒体
32.	溶血实验结果显示等渗的乙醇、丙醇和丙三醇均可使牛蛙红细胞发生溶血,这是因为(
	A. 它们均为脂溶性物质,可通过质膜进入细胞,发生溶血,且随分子量增大,溶血时间延长
	B. 它们均为脂溶性物质,可通过质膜进入细胞,发生溶血,溶血时间无差异
	C. 它们均为亲水性物质,可通过质膜进入细胞,发生溶血
	D. 它们均为小的不带电物质,可通过质膜进入细胞,发生溶血
	E. 它们均为带电离子,可通过质膜进入细胞,发生溶血
33.	秋水仙素抑制微管聚合可阻断周期细胞于有丝分裂的()
	A. 前期 B. 中期 C. 后期 D. 末期 E. 间期
34.	原核细胞与真核细胞的最主要的区别是()
	A. 细胞直径大小不同 B. 细胞膜的化学组成不同
	C. 有无核膜、核仁等核结构 D. 细胞器的种类及复杂程度不同
	E. 遗传物质的存在形式不同
35.	关于核孔,描述错误的是()

		A.内外两层移	《 被 膜 融 合 形	成的小孔				
		B.多种核孔蛋	百构成的复	杂而有规律	律的结构			
		C.普遍存在于	真核细胞核	被膜上				
		D.数目与细胞	1类型和细胞	1的生理状	态有关			
		E.在代谢旺盛	k、增殖活跃	的细胞中	数目较少			
3	36.	关于核被膜的	结构描述错	误的是()			
		A. 双层膜结	构 B.	内外核膜	结构对称	C. 外核膜属于内	內膜系统的组成部分	}
		D. 外核膜是	内质网的特伯	化区域	E. 核孔:	是细胞核内外信息交流		
3	37.	同源染色体耶	关会发生的时	期是()			
		A. 细线期	B. 偶约	线期	C. 粗线期	D. 双线期	E. 终变期	
3	38.	下列哪种组蛋	白具有种属	特异性()			
		A. H1 I	В. Н2А	C. H2B	D. H3	E. H4		
3	39.	葡萄糖氧化分	·解生成 ATP	进行细胞	呼吸的4个阶	个段的顺序是 ()		
	A	. 糖酵解→丙酮	酮酸脱氢、	三羧酸循环	下→电子传递	和氧化磷酸化		
	В	. 糖酵解→电-	子传递和氧化	化磷酸化—	→丙酮酸脱氢	、三羧酸循环		
	C	. 丙酮酸脱氢、	、三羧酸循环	不→糖酵解	₽→电子传递	和氧化磷酸化		
	D	. 丙酮酸脱氢	、三羧酸循环	环→电子供	步递和氧化磷	酸化→糖酵解		
	Е	. 电子传递和氧	氧化磷酸化-	→丙酮酸脱	氢、三羧酸	盾环→糖酵解		
2	1 0.	染色质的基本	结构单位是	()				
	A	. 微带	B. 串珠状约	千维	C. 核小体	D. 核纤层蛋	É E. 30nm :	纤维
=,	A2	型题:请从备:	选答案中选	出1个最佳	圭答案并用 铅	笔将答题卡里相应的	字母涂黑(每小題	1分,共
10 分	·) 。							
41.	细胞	包核的核质比与	与细胞的类型	型,生理状	态及染色体值	音数有关,临床上可じ	、 通过观察核质比变	E 化反应细
胞	生理	里状态的改变。	因此,以下	细胞中可	以看到核质比	比显著增大的是()	
A.	肿	廇细胞	B. 代	谢不旺盛的	的细胞	C. 衰老的细胞		
D.	表	皮角质细胞	E. 成	熟红细胞				
42.	男性	生不育患者主要	要表现为少料	青、弱精或	无精子症。其	其中还有很大一部分个	`体虽然精子数量〕	E常,但精
子运	动能	6力丧失。请问]由于精子运	动能力丧	失导致的男性	上不育可能是由于以下	哪种细胞结构功能	 上 异 常 导 致

() 。

A. 微管	B. 微丝	C. 中间丝	D. 核纤层	E. 驱动蛋白	İ	
43. 患儿出生	后数月内一般表现]大致正常,但第 1	年即出现生长发	育落后,第2年起	明显缓慢,并逐	逐渐出
现典型的面容	、脱发、皮下脂肪	消失、异常的姿势	、关节僵直、皮脂	共和骨骼的变化等	,但智力及运动	力功能
发育尚正常,	经诊断确诊为早衰	症。直接参与其发	病的细胞结构是	()		
A. 线粒	体 B. 核仁	C. 内质网	D. 溶酶体	E.核纤层		
44.肌无力、	运动不耐受、听力	受损、共济失调、	突发中风、学习障	章碍、白内障、心	衰、糖尿病和生	三长缓
慢,如果兼有	3 种以上的上述病	症,或累及多器官	、多系统,可初数	步考虑为 ()		
A. 线粒体	肌病 B. 膜载	戏体蛋白病 C.浴	容酶体病 D.微	效管异常 E. [为质网功能异常	≠ J
45. 某些人因	为质膜中低密度脂	蛋白受体编码的基	因有遗传缺陷,造	i成血液中()	含量过高,从而	ī 导致
动脉粥样硬化	症。					
A. 蛋白质	B. 糖脂 C	. 胆固醇 D.	糖蛋白 E. 磷)	指		
46. 患者,女,	45 岁,乳腺癌术	后化疗,化疗药物	为紫杉醇。紫杉醇	享是临床中常用的	抗肿瘤药物,非	 非能够
抑制肿瘤生长	的机制是(
A. 抑制微管	管的聚合 B. (足进微管的解聚	C. 抑制微管的	解聚		
D. 促进微丝	丝的聚合 E. 扣	即制微丝的解聚				
47. 脾脏细胞	具有高度的特化性	,当脾脏细胞被破	坏或者手术切除其	其中的一部分, 脾	脏组织仍会生长	と。 那
么,脾脏细胞	属于哪一类细胞() 。				
A. S 期的细	胞 B. G1 期的	细胞	的细胞 D. C	G2 期的细胞	E. M 期的细胞	Ī
48.渐冻症,又	、称为肌肉萎缩性侧	索硬化症(ALS)	,患者主要临床和	 長现为四肢、躯干	、胸腹部的肌肉	习逐渐
无力和萎缩。	以下哪种蛋白质可	能参与了 ALS 的用	彡成 ()。			
A. 微管蛋	白 B. 肌动登	蛋白 C. 组蛋	白 D. 非组	蛋白 E. 网格	各蛋白	
49. 患者,男,	28岁,煤矿工人	。因胸闷气短3年	,病情加重2个月	月入院,胸部常有	有针刺样痛,纟	2诊断
确诊为硅沉着	病。硅沉着病(也	称硅肺)的发生与	细胞自溶有关,其	其发病机制是()	
A. 溶酶体的	的酶没有活性	B. 溶酶体	的数量不够			
C. 溶酶体酶	与不能消化硅尘, 码	挂尘使溶酶体破裂				
D. 溶酶体生	卡去极性	E. 溶酶体	膜质子泵异常			
50. 研究显示	示, 阿尔兹海默症	与脂筏功能紊乱有	着密切关系。以下	不有关脂筏的描述领) 。
A. 富含胆固	固醇和鞘磷脂					
B. 比膜的非	其它部分厚					
C 与膜的信	言号转导、蛋白分流	 - - - - - - - - - -				

第6页共8页

D. 是质膜上由特殊脂质和蛋白质组成的微区
E. 比膜的其它部分流动性高
三、 X 型题:下列每题给出的五个选项中,至少有两个选项是符合题目要求的,请正确选择并使用 $2B^{\pm}$
笔将答题卡里相应的字母涂黑,多选或少选均不得分(每小题 1 分,共 10 分)。
51.著名的细胞生物家 Wilson 提出"The key to every biological problem must finally be sought in the cel
是因为细胞是()
A. 构成生物有机体的基本单位
B. 新陈代谢的基本单位
C. 遗传的基本单位
D. 生长发育的基本单位
E. 生命活动的基本单位
52. 内膜系统房室化的意义在于()
A. 使细胞内不同的生化反应在特定区域内进行
B. 增加细胞内有限空间
C. 提高细胞整体的代谢效率
D. 提高蛋白质的合成效率
E. 保持内膜系统细胞器功能的独立性
53. 脂筏的微区结构中,富含的脂质包括()
A. 卵磷脂 B. 脑磷脂 C. 胆固醇 D. 鞘磷脂 E. 磷脂酰肌醇
54. 下列由细胞骨架构成的临时性结构为 ()
A. 纤毛 B. 微绒毛 C. 纺锤体 D. 细肌丝 E. 收缩环
55. 离子通道扩散的特征包括()
A.不消耗 ATP B.转运速率高 C.特异性强 D.通道开关受调节 E.需载体蛋白介料
56. 染色质的化学组成包含 ()
A.DNA B.糖类 C.RNA D.组蛋白 E.非组蛋白
57. 细胞呼吸的特点是 ()
A.产生的能量主要以热能形式传给细胞 B.在恒温(37℃)、恒压下进行
C.线粒体内进行的一系列酶促氧化还原反应
D.产生的能量逐步释放 E.反应过程需要加热
58. 下列对于核孔描述正确的是()

第7页共8页

- A. 有核定位信号的蛋白进入细胞核不需要核孔复合体
- B. 介导组蛋白入核转运, 介导 RNA、核糖核蛋白颗粒出核转运
- C. 亲核蛋白通过核孔复合体由细胞质转运核内需要能量
- D. 生物分子通过被动扩散和主动运输进出核孔复合体
- E. 核孔复合体是疏水性通道
- 59. 由中心体发出的微管是()
 - A. 动粒微管 B. 星体微管 C. 中心体微管 D. 极微管 E. 中心粒微管
- 60. 下列哪些细胞属于连续增殖细胞()
- A. 骨髓造血干细胞 B. 心肌细胞 C. 上皮细胞
- D. 神经细胞 E. 脾脏细胞

四、名词解释题: (每小题 3 分, 共 15 分)。

- 1. 生物膜
- 2. 细胞骨架
- 3. 限制点
- 4. 异染色质
- 5. Endomembrane system

五、简答题: 简要回答下列各题(每小题5分,共25分)。

- 1. 质膜对小分子物质和大分子物质运输有何不同?
- 2. 简述糙面内质网的超微结构及功能。
- 3. 高尔基体对蛋白质加工修饰的最重要方式是蛋白质糖基化,请就两种糖基化的修饰方式加以简要比较。
- 4. 简述真核细胞周期检查点与细胞周期调控的关系。
- 5. 请简述微管的功能。