Hanlin XUE

Email: hlxue@uw.edu Tel: (+1) 206-792-8180 Seattle, WA

EDUCATION

University of Washington, Seattle, WA, USA

09/2025 – 06/2027 (Expected)

Master of Science in Electrical Engineering (MSEE), Professional Master's Program (PMP, Full time)

o Relevant Coursework: ECE Robotics Practicum, The Self Driving Car: AI For Mobile Robots

Xidian University, Xi'an, China

09/2021 - 06/2025

B.Eng in Electronic Information Engineering (EIE)

- o GPA: 3.8/4.0; Average Score: 89.1/100
- National Scholarship, Ministry of Education National Highest Scholarship (Top 1%)

12/2022

• Relevant Coursework: Data Structure & Algorithm (3.8), Advanced Programming (Python) (3.9), Intelligent Robot (3.9), Practice of Ti Robot Suite (4.0)

EXPERIENCE

Dreame Technology, Magiclab (Humanoid Robot) Department, Suzhou, China

VLA-based Robotic Grasping System on Franka and Humanoid Robot

03/2025 - 06/2025

Robotics VLA Algorithm Intern

- Framework Development: Built an end-to-end embodied AI framework for robotic arm grasping tasks: integrated data collection, model inference, and robotic arm control; enabling one-click deployment of multiple ROS2 nodes
- Model Deployment: Fine-tuned and deployed the Pi0 VLA model on the Franka Panda arm and humanoid robot's manipulator, achieving a 67% success rate in natural-language-driven grasping tasks
- **Team Collaboration:** Created onboarding documentation and modular code examples, enabling new interns to quickly contribute to the project

DISCOVER Robotics, AIR Lab, Tsinghua University, Bejing, China Interactive Robotic Arm Grasping System Using YOLO and GraspNet

06/2024 - 09/2024

Robotics Algorithm Intern

- Designed an open-vocabulary robotic grasping system using YOLO-World + GraspNet with RGB-D cameras and point cloud processing, achieving 66% grasp success rate on novel objects
- Refactored robotic arm control into modular object-oriented Python/ROS APIs, enabling flexible perception-to-manipulation pipelines and improving team development efficiency

PROJECTS

Embedded Object Detection System on Edge Devices

02/2025 - 05/2025

Undergraduate Final Year Project Edge Computing

- Compressed deep learning object detection model for edge deployment, reducing model size to 435 KB and achieving stable 2 FPS on <512 KB RAM
- Architected and implemented a lightweight human-detection system on ESP32-S3 in C++/FreeRTOS, integrating sensing, inference, and Wi-Fi communication for real-time IoT applications

SKILLS

- Computer Vision & AI: Python/PyTorch, Vision (CNN, ViT, UNet, Diffusion),
 Object Detection (YOLO), 3D Point Cloud Processing, GraspNet
- o Robotics: ROS/ROS2, MoveIt, Franka, Gazebo, Isaac Sim, Radar, Kinematics/Dynamics, Motion Planning
- o Tools & Platforms: Git, Docker, CMake, Linux/Ubuntu, Jupyter