ITE1015		Soft Comp	uting	L T P J C
				3 0 0 4 4
Pre-requisite	;	MAT2001		Syllabus version
C Ol .	.4•			1.0
Course Obje			and a amounting to about an	
		e the fundamental concepts behind the various architectures and algorit		es.
		he fuzzy sets, fuzzy logic, rough se		9
10 00	piore	ile fuzzy sets, fuzzy logie, fougii se	is and genetic argorithms	5.
Expected Co	urse (Outcome:		
1) Identit	fy the	essential components of soft compu	ıting.	
2) Descri		d recognize the various types o	f memory models asso	ociated with neural
3) Demo	nstrat	various unsupervised learning tecl	nniques.	
4) Exami	ine the	fundamentals of fuzzy sets and op	erations associated with	them .
5) Establ	ish fu	zzy rules for decision making in rea	l-time scenarios.	
6) Invest	igate 1	he idea behind rough sets.		
7) Invest	igate 1	he idea behind searching strategies.		
8) Deterr	nine a	nd construct a soft computing syste	m required to address a	computational task.
		Outcomes (SLO): 1, 2, 7		
		y to apply knowledge of mathemat		
		inderstanding of the subject related ational thinking	concepts and of contem	porary issues
[/] Having ec	mput	monar minking		
Module:1	Neura	l networks:		7 hours
Introduction 1	to So	t computing, basics. Neural netwo	orks, introduction, evolu	tion, basic models,
terminologies	of .	ANN, Pitts model, Perceptron, A	Adaline, Back-propagat	ion network, RBF
network.				
M	N / T	N/ 11		
		ry Models:	d-1- DAM H£1-d	5 hours
rauem associ	auon,	auto & hetero associative memory	models, BAIM, Hopfiled	network.
Module:3	Unsur	ervised Networks:		6 hours
		os, LVQ network, ART network.	<u> </u>	
M- 1-1 4 1	D			<u> </u>
	Fuzzy		mambarghin function	6 hours
defuzzificatio	-	sets, operations, fuzzy relations	s, membership function	is, iuzzification &
GCTGZZIIICallO	11.			

ggregation of 5 hours					
5 hours					
5 hours					
5 hours					
5 hours					
of rough sets,					
rough memberships, reducts, and approximations.					
6 hours					
Genetic algorithms, hybrid systems.					
3 hours					
45 hours					
, 2011.					
1. Samir Roy and Udit Chakraborty, Introduction to Soft Computing, Pearson Education, 2013.					
2. T.J. Ross, Fuzzy logic with Engineering Applications, Third Edition, Wiley India, 2010.					
3. Laurene Fausett, Fundamentals of Neural networks: architectures, algorithms and					
applications, Pearson India, 2008.					
Recommended by Board of Studies 05-03-2016					
a,					