Convolutional Neural Networks

Neural Networks Design And Application

LeNet-5 in 1999

One more question:
Where C5 comes from? 16 matrices → a 120d vector?

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5 in 1999

One more question:

Where C5 comes from? 16 matrices \rightarrow a 120d vector?

trained

Layer C5 is a convolutional layer with 120 feature maps. Each unit is connected to a 5x5 neighborhood on all 16 of S4's feature maps. Here, because the size of S4 is also 5x5, the size of C5's feature maps is 1x1: this amounts to a full connection between S4 and C5. C5 is labeled as a convolutional layer, instead of a fully-connected layer, because if LeNet-5 input were made bigger with everything else kept constant, the feature map dimension would be larger than 1x1. This process of dynamically increasing the Fig. 1. size of a convolutional network is described in the section s recog-

Fig. 1. size of a convolutional network is described in the section nition. Section VII. Layer C5 has 48,120 trainable connections. to be identical.

LeNet-5 in 1999

One more question:

Where C5 comes from? 16 matrices \rightarrow a 120d vector?

Layer C5 is a convolutional layer with 120 feature maps. Each unit is connected to a 5x5 neighborhood on all 16 of S4's feature maps. Here, because the size of S4 is also 5x5, the size of C5's feature maps is 1x1: this amounts to a full connection between S4 and C5. C5 is labeled as a convolutional layer, instead of a fully-connected layer, because if LeNet-5 input were made bigger with everything else kept constant, the feature map dimension would be larger than 1x1. This process of dynamically increasing the Fig. 1. size of a convolutional network is described in the section s recognition. Section VII. Layer C5 has 48,120 trainable connections.

trained

to be identical.

Step 1: finding pairs

Step 1: finding pairs 1 pair

Step 2: elementwise summation

Step 1: finding pairs 1 pair Step 2: elementwise summation

Step 1: finding pairs 1 pair Step 2: elementwise

summation

- Padding
- Pooling layers for arbitrary input resolution

• Padding: convolution operation reduces the size of feature maps

• Padding: convolution operation reduces the size of feature maps

0	0 0
0	1 0
1	1
1	1

• Padding: convolution operation reduces the size of feature maps

0	0
. 0	1
1	1
	0
	0

If m>1 \rightarrow ??

• Padding: convolution operation reduces the size of feature maps

If $m>1 \rightarrow$ convolution will reduce the dimension

Padding: convolution operation reduces the size of feature maps

If m>1 → convolution will reduce the dimension

The input resolution introduces a limits of #convolution layers

• Padding: convolution operation reduces the size of feature maps

• Padding: convolution operation reduces the size of feature maps

Padding: convolution operation reduces the size of feature maps

Input size n → 7

Padding: convolution operation reduces the size of feature maps

Input size $n \rightarrow 7 \rightarrow n-m+1=7-3+1=5$ Output size

• Padding: convolution operation reduces the size of feature maps

 $n \rightarrow 7 \rightarrow n-m+1=7-3+1=5$

Conclusion:

dimension of feature maps remains the same

- Padding: convolution operation reduces the size of feature maps
- Pooling layers for an arbitrary input resolution

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Cropped Image

Original Image

Resized Image

Any input image must be 224x224

Any input image must be 224x224

Q: how to handle an arbitrary resolution?

- Spatial pyramid pooling [pyramid]
- Global average pooling [NIN]

•

Spatial pyramid pooling

Spatial pyramid pooling

Spatial pyramid pooling

Some pooling (max/average)

Spatial pyramid pooling

Some pooling (max/average)

Spatial pyramid pooling

16 numbers

Some pooling (max/average)

Spatial pyramid pooling

46

▲ 256-d

50

Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Input resolution issue Average pooling over each matrix (f. map) to generate a scalar Global average pooling change to C3: f. maps 16@10x10 C1: feature maps S4: f. maps 16@5x5 **INPUT** 6@28x28 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14 The number of classes Full connection Gaussian connections Convolutions Subsampling Subsampling Fall connection Convolutions 10@5x5 kernels 16@5x5 kernels

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Input resolution issue Average pooling over each matrix (f. map) to generate a scalar Global average pooling 10@1 change to C3: f. maps 16@10x10 C1: feature maps S4: f. maps 16@5x5 **INPUT** 6@28x28 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14 The number of classes Full connection Gaussian connections Convolutions Subsampling Subsampling Fall connection Convolutions 16@5x5 kernels 10@5x5 kernels

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Input resolution issue Average pooling over each matrix (f. map) to generate a scalar Global average pooling 10@1 10@5x5 change to Each element is C3: f. maps 16@10x10 the prediction C1: feature maps S4: f. maps 16@5x5 **INPUT** 6@28x28 of each class 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14 The number of classes Full connection Gaussian connections Convolutions Subsampling Subsampling Fall connection Convolutions 16@5x5 kernels 10@5x5 kernels

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

References

- [Alexnet] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 25 (2012): 1097-1105. Conference proceeding version at
 - https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html or
 - https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (Section 3.5)
- [pyramid] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial pyramid pooling in deep convolutional networks for visual recognition." *IEEE transactions on pattern analysis and machine intelligence* 37, no. 9 (2015): 1904-1916. ArXiv version at https://arxiv.org/abs/1406.4729 (Section 2.2)
- [NIN] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." *arXiv* preprint arXiv:1312.4400 (2013). ArXiv version at https://arxiv.org/abs/1312.4400 (Section 3.2)