Calculs algébriques

1. Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)(a+b) = a^2 - b^2$$

2. Fractions

Une fraction est $\frac{a}{b}$ avec a,b des nombres réels. a est le numérateur, b est le dénominateur. Ce dénominateur ne doit pas être nul : $b \neq 0$.

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

$$\frac{1}{\frac{1}{a}} = a$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

$$\frac{a}{1} = a \qquad \frac{0}{b} = 0 \qquad \frac{ka}{kb} = \frac{a}{b}$$

3. Puissances

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$.

$$x^n = \underbrace{x \times x \times \dots \times x}_{n \text{ termes}}$$

convention: $x^0 = 1$ $x^1 = x$ $x^2 = x \times x$...

Pour $x \neq 0$, on pose $x^{-1} = \frac{1}{x}$. Et $x^{-n} = \frac{1}{x^n}$. Pour $n, a, b \in \mathbb{Z}$:

$$x^a \times x^b = x^{a+b}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$\frac{x^a}{x^b} = x^{a-b}$$

$$(x^a)^b = x^{ab}$$

 x^{a^b} signifie $x^{(a^b)}$

Puissances de 10

10^{0}	10^1	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{9}
1	10	100	1000	10 000	100 000	un million	un milliard
kilo					mega	giga	

10 ⁰	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-6}	10^{-9}	
1	0,1 0,01		0,001 0,0001		un millionième	un milliardième	
			milli		micro	nano	

Pour les puissances positives l'exposant n est le nombre de zéros du nombre : par exemple $10\,000=10^4$ car $10\,000$ a 4 zéros.

Pour les puissances négatives l'exposant est n est aussi le nombre de zéros du nombre, en comptant le zéro avant la virgule : par exemple $0,001 = 10^{-3}$ car 0,001 a un total de 3 zéros (1 avant la virgule et 2 après).

Puissances de 2

Carrés

4. Racine carrée

La racine carrée d'un réel $x \ge 0$ est le réel $\sqrt{x} \ge 0$ tel que $(\sqrt{x})^2 = x$. Pour $x, y \ge 0$.

$$\sqrt{xy} = \sqrt{x}\sqrt{y}$$
 $x, y \ge 0$
 $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$ $x \ge 0, y > 0$

Pour x > 0,

$$\frac{1}{\sqrt{x}} = \frac{\sqrt{x}}{x}$$

Par exemple : $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$. Pour $x \ge 0$,

$$\left(\sqrt{x}\right)^2 = x$$

$$\sqrt{x^2} = x$$

(Attention pour x < 0, $\sqrt{x^2} = -x$!) Pour $x \ge 0$, $n \in \mathbb{Z}$:

$$(\sqrt{x})^n = \sqrt{x^n}$$

Pour $x, y \ge 0$:

$$y = \sqrt{x} \iff y^2 = x$$

Attention! $\sqrt{a+b}$ n'est pas égal à $\sqrt{a} + \sqrt{b}$.

5. Inégalités

Définitions. $a \leq b \iff b-a \in [0,+\infty[$. $a < b \iff b-a \in]0,+\infty[$. Addition. Si $a \leq b$ et $k \in \mathbb{R}$ alors $a+k \leq b+k$.

Multiplication par un réel positif. Si $a \le b$ et $k \ge 0$ alors $ka \le kb$.

Multiplication par un réel négatif. Attention! Si $a \le b$ et k < 0 alors $ka \ge kb$. En particulier si $a \le b$ alors $-a \ge -b$. Par exemple $2 \le 3$ et $-2 \ge -3$

Inverse. Attention! Si $0 \le a \le b$ et alors $\frac{1}{a} \ge \frac{1}{b}$. Par exemple $2 \le 3$ et $\frac{1}{2} \ge \frac{1}{2}$.

Autre formule d'addition. Si $a \le b$ et $c \le d$ alors $a + c \le b + d$.

Autre formule de multiplication. Si $0 \le a \le b$ et $0 \le c \le d$ alors $ac \le bd$.