School of Mathematics, Thapar Institute of Engineering & Technology, Patiala

1. Find the unique polynomial P(x) of degree 2 or less such that

$$P(1) = 1, P(3) = 27, P(4) = 64$$

using Lagrange interpolation. Evaluate P(1.05).

- 2. For the given functions f(x), let $x_0 = 1$, $x_1 = 1.25$, and $x_2 = 1.6$. Construct Lagrange interpolation polynomials of degree at most one and at most two to approximate f(1.4), and find the absolute error.
 - (a) $f(x) = \sin \pi x$.
 - (b) $f(x) = \sqrt[3]{x-1}$.
 - (c) $f(x) = \log_{10}(3x 1)$.
- **3.** Let $P_3(x)$ be the Lagrange interpolating polynomial for the data (0,0), (0.5,y), (1,3) and (2,2). Find y if the coefficient of x^3 in $P_3(x)$ is 6.
- **4.** Let $f(x) = \sqrt{x x^2}$ and $P_2(x)$ be the interpolation polynomial on $x_0 = 0$, x_1 and $x_2 = 1$. Find the largest value of x_1 in (0, 1) for which $f(0.5) P_2(0.5) = -0.25$.
- **5.** Construct the Lagrange interpolating polynomials for the following functions, and find a bound for the absolute error on the interval $[x_0, x_n]$.
 - (a) $f(x) = \sin x$, $x_0 = 2.0$, $x_1 = 2.4$, $x_2 = 2.6$, n = 2.
 - (b) $f(x) = e^{2x} \cos 3x$, $x_0 = 0$, $x_1 = 0.3$, $x_2 = 0.6$, n = 2.
- **6.** Use the Lagrange interpolating polynomial of degree two or less and four-digit chopping arithmetic to approximate cos 0.750 using the following values. Find an error bound for the approximation.

$$\cos 0.698 = 0.7661$$
, $\cos 0.733 = 0.7432$, $\cos 0.768 = 0.7193$.

The actual value of $\cos 0.750$ is 0.7317 (to four decimal places). Explain the discrepancy between the actual error and the error bound.

- 7. Determine the spacing h in a table of equally spaced values of the function $f(x) = \sqrt{x}$ between 1 and 2, so that interpolation with a quadratic polynomial will yield an accuracy of 5×10^{-4}
- 8. From census data, the approximate population of the United States was 150.7 million in 1950, 179.3 million in 1960, 203.3 million in 1970, 226.5 million in 1980, and 249.6 million in 1990. Using Lagrange interpolation polynomial for these data, find an approximate value for the population in 2000. Then use the polynomial to estimate the population in 1920 based on these data. What conclusion should be drawn?