1 sELM

Model outputs are GPP (gross primary production) and LAI. To calculate the GPP, need to calculate the GPP flux. GPP flux is calculated from the Williams model . We need the allometric parameters a=[a1,a2,a3,a4,g]. We need the phenology to calculate the leaf area index, which in turn is used to calculate the GPP. The model outputs are

- LAI
- GPP
- NPP
- GR
- MR
- HR
- NEE

For the state variables, we have the following output

- \bullet leafc
- $leafc_{stor}$
- frootc
- $frootc_{stor}$
- livestmc
- deadstemc
- liverootc
- ctcpools
- \bullet totecosysc
- \bullet totsomc
- cstor

The processes associated with each QOI is dependent on the type of physical process. The type of processes associated within the simple sELM are: Phenology, ACM, Maintenance respiration, Allocation and growth respiration and Litter and SOM decompostion model.

1.1 Phenology

We need to calculate the leaf area index (lai) that is needed for GDD. Phenology model depends on the following parameters: gdd_{crit} . First decide whether or not the phenology is decidious or not

- deciduous
- evergreen

If the phenology is deciduous, then need to calculate the following

- leafon
- leafoff

Note that leaf on depends on the parameter nday son, and the $leaf c_{transtot}$, $froot c_{trans}$ needs to be caculated. Calculating $leaf c_{transtot}$ is

$$leafc_{transtot} = leafc_{stor}(n_{obs}) * fstor2tran$$
 (1)

Note that $leaf c_{stor}$ depends on the number of observations. Similarly,

$$frootc_{tot} = frootc_{stor}(n_{obs}) * fstor2tran$$
 (2)

If the variable leafon>0 then $leafc_{transtot}, frootc_{trans}$ is normalized by the number of days on $ndays_{on}$ Also, we need to calculate the number of days off, which depends on $dayl, crit_{dayl}, leafc, frootc$ Similar to days on, if leafoff>0 then

1.2 Pheonology-tree structure

2 GPP subroutine

Calculating the GPP depends on the leaf area index (LAI). If the $LAI < 10^{-3}$, then the GPP for that observation is 0. Also, if the average temperature is below 0 (tmax, tmin) then the GPP is 0. When $LAI > 10^{-3}$ then GPP is non-zero. The GPP depends on the parameter leaf cn, slatop, where

$$leafn = 1.0/leafcn * slatop$$
 (3)

3 Maintenance Respiration

The output parameter xsmr is dependent on leafcn, frootcn, livewdcn, br_{mr} and the other output GPP. Another parameter that is needed is trate which depends on tmin, tmax (min and max temperatures) and the parameter $q10_{mr}$.

4 Allocation and growth respiration

Allocation and respiration depends on the type of pheonogy used (deciduous or evergreen). The parameters rg_{frac} , $f_{lievwed}$, $froot_{leaf}$, $croot_{Stem}$, r_{mort} is important to calculate npp. npp depends on gpp.

5 Litter and SOM Decomposition

Outputs are totlitc, totsomc, totecosysc, nee.

6 Tree Structure of QOI's and their dependencies

