Визуализация графов

Computer Science клуб, март 2014

Александр Дайняк, ФИВТ МФТИ

www.dainiak.com

Рассказ будет по гл. 11 из этой книги:

Трудноукладываемый граф

Прямолинейные упорядоченные укладки

Теорема. Площадь, занимаемая прямолинейной упорядоченной укладкой графа G_n , равна $\Omega(2^n)$ (при условии, что длина рёбер укладки графа G_n ограничена снизу).

От укладки G_n к укладке G_{n-2}

При $n \geq 2$ граф G_n трёхсвязный, значит его укладка единственна в смысле порядка рёбер на гранях.

Пусть $n \ge 4$ и пусть Γ_n — *оптимальная* укладка G_n . Удалив из неё s_n , t_n , s_{n-1} , t_{n-1} , получим (необязательно оптимальную) укладку G_{n-2} .

Рассмотрим случай $\theta' \geq \theta''$ (другой случай симметричен).

Куда можно добавлять s_{n-1}

Т.к. в графе есть дуги из s_{n-1} в t_{n-2} , t_{n-3} , то s_{n-1} лежит правее прямой $t_{n-2}t_{n-3}$.

Т.к. есть дуга из s_{n-1} в s_{n-2} , то s_{n-1} лежит ниже горизонтали s_{n-2} .

Куда можно добавлять t_n

Т.к. t_n соединена с s_{n-1}, s_{n-2} , то t_n лежит левее прямой, параллельной $t_{n-2}t_{n-3}$ и проходящей через s_{n-2} .

Оцениваем площади

$$S_{\Gamma_n} \ge S_{\Delta_{S_{n-1}t_nt_{n-2}}}$$

Оцениваем площади

$$S_{\Gamma_n} \ge S_{\Delta_{S_{n-1}t_nt_{n-2}}} \ge \frac{1}{2}(h' + h'')(l' + l'') \ge \frac{1}{2} \cdot 2\sqrt{h'h''} \cdot 2\sqrt{l'l''} =$$

$$= 2\sqrt{h'l'' \cdot l'h''} = 2 \cdot S_{\square}$$

Оцениваем площади

Мы получили, что $S_{\Gamma_n} \geq 2 \cdot S_{\square}$.

С другой стороны, $S_{S_{n-2}S_{n-3}t_{n-2}t_{n-3}} \leq \frac{1}{2} \cdot S_{\square}$.

Отсюда
$$S_{\Gamma_n} \geq 4 \cdot S_{S_{n-2}S_{n-3}t_{n-2}t_{n-3}} \geq 4 \cdot S_{\Gamma_{n-2}}.$$

Планарные графы

Планарный граф — это граф, для которого существует плоская укладка.

Например, граф

планарный

Утверждение.

В любом планарном графе

#рёбер $\leq 3 \cdot$ #вершин − 6

Число скрещиваний (crossing number)

Число скрещиваний графа G — это

$$\operatorname{cr} G \coloneqq \min_{\substack{T \text{—изобр. } G \\ \text{на плоскости}}} \# \operatorname{пар } \mathsf{p\"{e}\mathsf{5}\mathsf{6}\mathsf{e}\mathsf{p}}, \operatorname{перес. } \mathsf{B} \, T$$

Ясно, что $\operatorname{cr} G = 0$ т. и т.т., когда G планарен.

Точное значение ${\rm cr}\, G$ известно в немногих частных случаях. Остальное — оценки.

Например, известно, что

$$\operatorname{cr} K_n \le \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Быстрых алгоритмов поиска $\operatorname{cr} G$ не известно.

Лемма о видах скрещиваний

Лемма.

Пусть T — изображение простого графа G, в котором ровно $\operatorname{cr} G$ скрещиваний рёбер, и пусть каждая точка плоскости участвует не более чем в одном скрещивании.

Пусть e' и e'' — пара рёбер, скрещивающихся в T.

Тогда

- у e' и e'' нет общих концов,
- e' и e'' участвуют лишь в одном скрещивании.

Лемма о видах скрещиваний

Доказательство леммы:

Если бы у e' и e'' был общий конец, то T можно было бы «улучшить» — уменьшить количество скрещиваний:

Лемма о видах скрещиваний

Доказательство леммы:

Если бы e' и e'' участвовали более чем в одном скрещивании, то T можно было бы «улучшить» — уменьшить количество скрещиваний:

Число скрещиваний

Утверждение. $cr G > ||G|| - 3 \cdot |G|$

Доказательство. Пусть T — изображение G с минимальным (т. е. равным $\operatorname{cr} G$) числом пересечений рёбер.

Будем стирать по одному ребру до тех пор, пока не получится изображение без пересечений. Это укладка некоторого графа G^{\prime} , где

$$||G'|| = ||G|| - #$$
стёртых рёбер $\ge ||G|| - \text{сr } G$
 $||G'|| \le 3 \cdot |G'| - 6 = 3 \cdot |G| - 6$

Отсюда

$$||G|| - \operatorname{cr} G \le 3 \cdot |G| - 6 < 3 \cdot |G|$$
.

Число скрещиваний

Утверждение.

$$cr G > ||G|| - 3 \cdot |G|$$

Следствие.

Например, для K_n получаем

$$\operatorname{cr} K_n \gtrsim \frac{n^2}{2}$$

А можно гораздо лучше...

Число скрещиваний

Теорема.

Для любого
$$G$$
, такого, что $\|G\| \ge 4 \cdot |G|$, имеем $\operatorname{cr} G > \frac{\|G\|^3}{64 \cdot |G|^2}$

Следствие.

Для K_n это даёт нам оценку

$$\operatorname{cr} K_n \gtrsim \frac{n^4}{512}$$

— по порядку совпадает с известной верхней.

Д-во теоремы о числе скрещиваний

Пусть T — изображение G с $\operatorname{cr} G$ скрещиваниями.

Выберем случайное подмножество вершин $V' \subseteq V(G)$, взяв каждую вершину независимо от других с вероятностью p.

Пусть G' — подграф в G, порождённый V'.

Пусть T' — изображение G', получаемое из T удалением лишних вершин и рёбер.

Тогда

#скрещиваний в $T' \ge \operatorname{cr} G' > ||G'|| - 3 \cdot |G'|$

Д-во теоремы о числе скрещиваний

$$\mathbb{E}[\#$$
скрещиваний в $T'] > \mathbb{E}[\|G'\|] - 3 \mathbb{E}[|G'|]$

Разлагая матожидания в суммы индикаторов, получаем

- $\mathbb{E}[|G'|] = |G| \cdot p$
- $\mathbb{E}[||G'||] = ||G|| \cdot p^2$
- $\mathbb{E}[\#$ скрещиваний в $T'] = \operatorname{cr} G \cdot p^4$

Отсюда

$$\operatorname{cr} G > ||G|| \cdot p^{-2} - 3|G| \cdot p^{-3}$$

Взяв
$$p \coloneqq \frac{4|G|}{\|G\|}$$
, получим $\operatorname{cr} G > \frac{\|G\|^3}{64 \cdot |G|^2}$.

Плоская единичная укладка

Плоская единичная укладка планарного графа— такая, при которой каждое ребро изображается прямым отрезком единичной длины.

Задача Unit Length Straight-line Drawing (ULPGD):

- Вход: планарный граф
- Вопрос: можно ли построить его плоскую единичную укладку?

Теорема.

Задача ULPGD является NP-трудной.

План доказательства: SAT \rightarrow NAE-SAT \rightarrow Logic Engine \rightarrow ULPGD.

Задача Not-All-Equal-SAT

Задача SAT:

- Вход: КНФ $\mathcal{K}=\cdots \wedge (\ell_1 \vee \ell_2 \vee \cdots \vee \ell_s) \wedge \cdots$, где $\ell_i \in \{x_1,\overline{x_1},\ldots,x_n,\overline{x_n}\}$
- Вопрос: существует ли набор (x_1, \dots, x_n) , на котором $\mathcal{K} = \operatorname{True}$

Задача Not-All-Equal-SAT, сокращённо NAE-SAT:

- Вход: набор скобок вида $[\ell_1,\ell_2,\dots,\ell_s]$, где $\ell_i \in \{x_1,\overline{x_1},\dots,x_n,\overline{x_n}\}$.
- Вопрос: существует ли набор $(x_1, ..., x_n)$, при котором в каждой скобке не все значения литералов равны.

Задача Not-All-Equal-SAT

Задача Not-All-Equal-SAT, сокращённо NAE-SAT:

- Вход: набор скобок вида $[\ell_1,\ell_2,\dots,\ell_s]$, где $\ell_i \in \{x_1,\overline{x_1},\dots,x_n,\overline{x_n}\}$.
- Вопрос: существует ли набор $(x_1, ..., x_n)$, при котором в каждой скобке не все значения литералов равны.

Особенность задачи NAE-SAT

Сведение SAT к NAE-SAT

КНФ задачи SAT: $\mathcal{K}=\cdots \wedge (\ell_1 \vee \ell_2 \vee \cdots \vee \ell_s) \wedge \cdots$ где $\ell_i \in \{x_1,\overline{x_1},\dots,x_n,\overline{x_n}\}$

Введём новую переменную z и заменим каждую скобку $(\ell_1 \lor \ell_2 \lor \cdots \lor \ell_s)$ задачи SAT на скобку $[\ell_1, \ell_2, \dots, \ell_s, z]$.

Пусть $(x_1 \leftarrow \alpha_1, ..., x_n \leftarrow \alpha_n)$ — выполняющий набор для SAT. Тогда $(x_1 \leftarrow \alpha_1, ..., x_n \leftarrow \alpha_n, z \leftarrow 0)$ — выполняющий набор для NAE-SAT.

Обратно, если $(\alpha_1, \dots, \alpha_n, 0)$ — хороший набор для NAE-SAT, то $(\alpha_1, \dots, \alpha_n)$ — хороший набор для SAT.

(Простой вопрос: а если выполняющий набор для NAE-SAT $(\alpha_1, ..., \alpha_n, 1)$?)

Логическая машина (Logic Engine)

- Если флажки на соседних рамах поворачиваются друг к другу, они сталкиваются.
- Задача «о логической машине»: существует ли такое положение машины, при котором флажки не сталкиваются?

Сведение NAE-SAT к Logic Engine

- Каждая рама, кроме внешней и внутренней, соответствует переменной.
- Положение рамы значение переменной True/False.
- На внешней и внутренней раме везде устанавливаем флажки.
- Каждая линия звеньев соответствует скобке NAE-SAT.

Сведение NAESAT к Logic Engine

Вешаем флажки на все рамы, кроме случаев:

- Если литерал x_i входит в скобку S_j , то на раме i на линии TRUE-j флажок не ставим.
- Если литерал $\overline{x_i}$ входит в скобку S_j , то на раме i на линии FALSE-j флажок не ставим.

Пример: скобки $[x_1, \overline{x_2}, \overline{x_3}, \overline{x_4}],$ $[x_1, x_2],$ $[\overline{x_1}, x_2, x_3, \overline{x_4}]$

Сведение NAESAT к Logic Engine

Пример: скобки

$$[x_1, \overline{x_2}, \overline{x_3}, \overline{x_4}],$$

$$[x_1, x_2],$$

$$[\overline{x_1}, x_2, x_3, \overline{x_4}]$$

Видно, что нужно повернуть раму x_2 , и тогда флажки можно выстроить «без конфликтов».

Сведение Logic Engine к ULPGD

Естественная идея: нужен «жёсткий граф».

Жёсткий кусок, допускающий единственную единичную укладку, и этот же кусок с флагом.

Граф, моделирующий Logic Engine

Ещё NP-трудные задачи

Задача Unit Grid Drawing of Trees:

- Вход: дерево (можно сузить до двоичных деревьев)
- Вопрос: можно ли так уложить его на единичной сетке, чтобы рёбра имели длину 1?

Задача Minimum Area Grid Drawing of Trees:

- ullet Вход: дерево T и число A.
- Вопрос: можно ли так уложить T на единичной сетке, чтобы площадь укладки не превзошла A?

Планарная версия задачи SAT

Planar 3-SAT:

- **Вход:** набор скобок, по 3 литерала разных переменных в каждой. Граф соответствий скобок/литералов *планарен* (паре противоположных литералов отвечает пара смежных вершин)
- Вопрос: можно ли так присвоить значения литералам, чтобы в каждой скобке оказался хотя бы один истинный литерал?

Задача NP-трудна (<u>D. Lichtenstein '1981</u>).

Сведение 3-SAT к Planar 3-SAT

Для удобства сначала рассмотрим Weak Planar 2-3-SAT:

- В скобках может быть 2 или 3 литерала.
- Каждой переменной соответствует не две, а одна вершина.

Переход от 3-КНФ к «слабопланарной» 2-3-КНФ

Пусть задана произвольная 3-КНФ.

Уложим её в два слоя, невзирая на скрещивания:

Дальше поднимаемся по каждому ребру снизу вверх и устраняем скрещивания...

Фрагмент проверки « $x \oplus y \oplus z = 0$ »

Фрагмент, устраняющий скрещивание

Борьба с единичным скрещиванием

Переход от слабопланарной к планарной КНФ

Берём укладку графа, в котором литералы одной переменной склеены.

Нужно построить граф, в котором противоположным литералам отвечают смежные вершины.

При этом КНФ можно менять на эквивалентную.

Переход от переменных к литералам

Если каждую вершину просто «расщепить», то может исчезнуть планарность.

Выход: введение дополнительных переменных.

Переход от переменных к литералам

Переход от переменных к литералам

Переход от 2-3-КНФ к 3-КНФ

О планарных версиях SAT

Positive Planar 1-in-3-SAT:

- **Вход:** набор скобок, по 3 литерала *без отрицаний* в каждой. Граф соответствий скобок/литералов *планарен*.
- **Bonpoc:** можно ли так присвоить значения литералам, чтобы в каждой скобке оказался *ровно* один истинный литерал?

Задача NP-трудна (<u>W. Mulzer, G. Rote '2006</u>).

О планарных версиях SAT

Planar NAE-SAT:

- Вход: набор скобок. Граф соответствий скобок/литералов планарен (паре противоположных литералов отвечает пара смежных вершин).
- Вопрос: можно ли так присвоить значения литералам, чтобы в каждой скобке не все литералы были равны?

Задача полиномиально разрешима (<u>B.M.E. Moret '1988</u>).