# Fontes principais

- 1. Cormem T. H.; Leiserson C. E.; Rivest R.: Stein C. Introduction to Algorithms,  $3^a$  edição, MIT Press, 2009
- 2. Análise de algoritmo IME/USP (prof. Paulo Feofiloff) http://www.ime.usp.br/~pf/analise\_de\_algoritmos

Programação dinâmica (parte 2)

Dado um valor P, e um conjunto S de n moedas, cada um com um valor  $c_i$ , precisamos determinar o número mínimo de moedas para obter a quantidade P.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3



Perceba que temos três casos base:

- ⊳ Se o valor do troco é 0, então temos 0 moedas como solução.
- Se o valor do troco é negativo (< 0), então não é possível dar o troco.
- $\triangleright$  Se o conjunto S é vazio ( $\{\}$  ou  $\emptyset$ ), então não é possível dar o troco.

Definimos a função m(i,Q) como o número mínimo de moedas necessárias para obter uma quantidade Q, usando os i primeiros tipos de moedas  $(1 \cdots i)$ .

A solução para o troco pode utilizar 0 ou mais moedas do tipo i, e assim:

$$m(i,Q) = \left\{ egin{array}{ll} m(i-1,Q) & \text{, se não usa moeda tipo } i \\ m(i-1,Q-k\cdot c_i) & \text{, se usa } k \text{ moedas do tipo } i \end{array} 
ight.$$

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 |   |   |   |   |   |   |   |   |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 |   |   |   |   |   |   |   |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 1 utilizar {1}.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 |   |   |   |   |   |   |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 2 utilizar  $\{1,1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 |   |   |   |   |   |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 3 utilizar  $\{1, 1, 1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 |   |   |   |   |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 4 utilizar  $\{1, 1, 1, 1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 |   |   |   |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 5 utilizar  $\{1, 1, 1, 1, 1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 |   |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 8 utilizar  $\{1, 1, 1, 1, 1, 1, 1, 1, 1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 |   |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 1 utilizar {1}.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 |   |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 2 utilizar  $\{1,1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 |   |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 3 utilizar  $\{1, 1, 1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 |   |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 4 utilizar {4}.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 |   |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 5 utilizar  $\{1,4\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 |   |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 6 utilizar  $\{1, 1, 4\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 |   |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 7 utilizar  $\{1, 1, 1, 4\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 |   |   |   |   |   |   |   |   |

Para o valor 8 utilizar  $\{4,4\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 |   |   |   |   |   |   |   |

Para o valor 1 utilizar {1}.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 |   |   |   |   |   |   |

Para o valor 2 utilizar  $\{1,1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 |   |   |   |   |   |

Para o valor 3 utilizar  $\{1, 1, 1\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 |   |   |   |   |

Para o valor 4 utilizar {4}.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 |   |   |   |

Para o valor 5 utilizar  $\{1,4\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 |   |   |

Para o valor 6 utilizar {6}.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 | 2 |   |

Para o valor 7 utilizar  $\{1,6\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   |   |   |   | Q |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 | 2 |   |

Para o valor 7 utilizar  $\{1,6\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           |   | Q |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 3 |

Para o valor 8 utilizar  $\{1, 1, 6\}$ .

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           | Q |   |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 3 |

Para o valor 8 utilizar  $\{1, 1, 6\}$  ou  $\{4, 4\}$ ?

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           | Q |   |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 3 |

Para o valor 8 utilizar  $\{1, 1, 6\}$  ou  $\{4, 4\}$ ? Queremos o número mínimo de moedas.

Exemplo: P = 8,  $S = \{1, 4, 6\}$ , n = 3

|           | Q |   |   |   |   |   |   |   |   |
|-----------|---|---|---|---|---|---|---|---|---|
| Moedas    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_1 = 1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $c_2 = 4$ | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| $c_3 = 6$ | 0 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 2 |

Para o valor 8 utilizar  $\{1, 1, 6\}$  ou  $\{4, 4\}$ ? Queremos o número mínimo de moedas.

Para determinar o número mínimo de moedas devemos ter:

$$m(i,Q) = \min_{k=0\cdots Q} \{m(i-1,Q), m(i-1,Q-k\cdot c_i) + k\}$$

Como é o algoritmo de programação dinâmica para resolver este problema?

```
calcula_total_moedas(P, n, c[])
    para i = 0 até n faça m[i][0] = 0
 1
    para i=1 até P faça m[0][i]=\infty
 3
    para i = 0 até n faça
        para j = 1 até P faça
 4
              se (c[i] > j) então m[i][j] = m[i-1][j]
 5
              senão
 6
                se (m[i-1][j] < m[i][j-c[i]] + 1) então
 7
                      m[i][j] = m[i-1][j]
 8
                senão
 9
                      m[i][j] = m[i][j - c[i]] + 1
10
```

```
calcula_total_moedas(P, n, c[])
     para i = 0 até n faça m[i][0] = 0
    para i = 1 até P faça m[0][i] = \infty
 3
     para i = 1 até n faça
        para j = 1 até P faça
 4
              se (c[i] > j) então m[i][j] = m[i-1][j]
 5
              senão
 6
                se (m[i-1][j] < m[i][j-c[i]] + 1) então
 7
                      m[i][j] = m[i-1][j]
 8
 9
                senão
                      m[i][j] = m[i][j - c[i]] + 1
10
```

Complexidade:  $O(n \cdot P)$ 

#### Problema da mochila

#### Problema da mochila

#### Mochila

Dados dois vetores  $m[1 \cdots n]$  e  $w[1 \cdots n]$ , denotamos por  $m \cdot w$  o produto escalar  $m[1]w[1] + m[2]w[2] + \cdots + m[n]w[n]$ .

Suponha um número inteiro não-negativo W e vetores positivos  $w[1 \cdots n]$  e  $v[1 \cdots n]$ .

#### Problema da mochila

Uma mochila é qualquer vetor  $m[1\cdots n]$  tal que  $m\cdot w\leq W$  e  $0\leq m[i]\leq 1$  para todo i.

Denotamos por W a capacidade da mochila. O **valor** de uma mochila é o produto escalar  $m \cdot v$ .

Dizemos que uma mochila é ótima se ela tem valor máximo.

Uma mochila  $m[1 \cdots n]$  tal que m[i] = 0 ou m[i] = 1, para todo i, é chamada de mochila booleana (ou binária ou 0 - 1).

Exemplo: n = 4, W = 50

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 40  | 30  | 20  | 10  |
| V | 840 | 600 | 400 | 100 |
| m | 0   | 0   | 0   | 0   |

Valor: 0

Peso: 0

Uma mochila  $m[1 \cdots n]$  tal que m[i] = 0 ou m[i] = 1, para todo i, é chamada de mochila booleana (ou binária ou 0 - 1).

Exemplo: n = 4, W = 50

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 40  | 30  | 20  | 10  |
| V | 840 | 600 | 400 | 100 |
| m | 1   | 0   | 0   | 0   |

Valor: 840

Peso: 40

Uma mochila  $m[1 \cdots n]$  tal que m[i] = 0 ou m[i] = 1, para todo i, é chamada de mochila booleana (ou binária ou 0 - 1).

Exemplo: n = 4, W = 50

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 40  | 30  | 20  | 10  |
| V | 840 | 600 | 400 | 100 |
| m | 1   | 0   | 0   | 1   |

Valor: 940

Peso: 50 ⊳ atingiu a capacidade

Uma mochila  $m[1 \cdots n]$  tal que m[i] = 0 ou m[i] = 1, para todo i, é chamada de mochila booleana (ou binária ou 0 - 1).

Exemplo: n = 4, W = 50

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 40  | 30  | 20  | 10  |
| V | 840 | 600 | 400 | 100 |
| m | 0   | 0   | 0   | 0   |

Valor: 0

Peso: 0

Uma mochila  $m[1 \cdots n]$  tal que m[i] = 0 ou m[i] = 1, para todo i, é chamada de mochila booleana (ou binária ou 0 - 1).

Exemplo: n = 4, W = 50

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 40  | 30  | 20  | 10  |
| V | 840 | 600 | 400 | 100 |
| m | 0   | 1   | 0   | 0   |

Valor: 600

Peso: 30

Uma mochila  $m[1 \cdots n]$  tal que m[i] = 0 ou m[i] = 1, para todo i, é chamada de mochila booleana (ou binária ou 0 - 1).

Exemplo: n = 4, W = 50

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 40  | 30  | 20  | 10  |
| V | 840 | 600 | 400 | 100 |
| m | 0   | 1   | 1   | 0   |

Valor: 1000 ⊳ ótimo

Peso: 50 ⊳ atingiu a capacidade

#### Subestrutura ótima

Suponha que m[1..n] é uma mochila ótima para o problema (w, v, n, W).

```
Se m[n]=1 então m[1..n-1] é uma mochila booleana ótima para o subproblema (w,v,n-1,W-w[n]) senão m[1..n] é uma mochila booleana ótima para o subproblema (w,v,n-1,W)
```

#### Simplificação

Problema: Encontrar o valor de uma mochila boolean ótima.

t[i, Y] = valor de uma mochila booleana ótima para (w, v, i, W)

Possíveis valores de  $Y = 0, 1, 2, \cdots, W$ 

#### Recorrência

```
t[i,Y] = \text{valor da expressão } m \cdot v \text{sujeito à restrição } m \cdot w \leq Y \text{ (pesquisa operacional)} t[0,Y] = 0 \text{ para todo } Y t[i,0] = 0 \text{ para todo } i t[i,Y] = t[i-1,Y] \text{ se } w[i] > Y t[i,Y] = \max\{t[i-1,Y], t[i-1,Y-w[i]] + v[i]\} \text{ se } w[i] \leq Y
```

#### Solução recursiva

Devolve o **valor** de uma mochila booleana ótima para (w, v, n, W).

```
mochila-recursiva(w, v, n, W)

1 se n = 0 ou W = 0

2 então retorne 0

3 se w[n] > W

4 então retorne mochila-recursiva(w, v, n - 1, W)

5 a = \text{mochila-recursiva}(w, v, n - 1, W)

6 b = \text{mochila-recursiva}(w, v, n - 1, W - w[n]) + v[n]

7 retorne \max\{a, b\}
```

#### Solução recursiva

Consumo de tempo no pior caso é  $\Omega(2^n)$ , pois o mesmo subproblema é resolvido muitas vezes.

Com programação dinâmica cada subproblema, valor de uma mochila booleana ótima para (w, v, i, Y), é resolvido **apenas uma vez**.

Como é o algoritmo?

Devolve o valor de uma mochila booleana ótima para (w, v, n, W).

```
mochila-pd(w, v, n, W)
   para i = 0 até n faça t[i, 0] = 0
   para Y = 0 até W faça t[0, Y] = 0
3
   para i = 1 até n faça
       para Y = 1 até W faça
4
            a = t[i - 1, Y]
5
            se w[i] > Y então b = 0
6
                         senão b = t[i - 1, Y - w[i]] + v[i]
7
            t[i,Y] = \max\{a,b\}
8
   retorne t[n, W]
9
```

Devolve o **valor** de uma mochila booleana ótima para (w, v, n, W). mochila-pd(w, v, n, W)

```
1 para i = 0 até n faça t[i, 0] = 0

2 para Y = 0 até W faça t[0, Y] = 0

3 para i = 1 até n faça

4 para Y = 1 até W faça

5 a = t[i - 1, Y]

6 se w[i] > Y então b = 0

7 senão b = t[i - 1, Y - w[i]] + v[i]

8 t[i, Y] = \max\{a, b\}

9 retorne t[n, W]
```

Complexidade:  $O(n \cdot W)$ 

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|             | 0 | 1 | 2 | 3 | 4 | 5 | Y |
|-------------|---|---|---|---|---|---|---|
| 0           | 0 | 0 | 0 | 0 | 0 | 0 |   |
| 1           | 0 |   |   |   |   |   |   |
| 2           | 0 |   |   |   |   |   |   |
| 2<br>3<br>4 | 0 |   |   |   |   |   |   |
| 4           | 0 |   |   |   |   |   |   |
| i           |   |   |   |   |   |   |   |

capacidade: 0, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1 | 2 | 3 | 4 | 5 | Y |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
| 1 | 0 | 0 |   |   |   |   |   |
| 2 | 0 |   |   |   |   |   |   |
| 3 | 0 |   |   |   |   |   |   |
| 4 | 0 |   |   |   |   |   |   |
| i |   |   |   |   |   |   |   |

capacidade: 1, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|     | 0 | 1 | 2 | 3 | 4 | 5 | Y |
|-----|---|---|---|---|---|---|---|
| 0   | 0 | 0 | 0 | 0 | 0 | 0 |   |
| 1   | 0 | 0 | 0 |   |   |   |   |
| 2   | 0 |   |   |   |   |   |   |
| 2 3 | 0 |   |   |   |   |   |   |
| 4   | 0 |   |   |   |   |   |   |
| i   |   |   |   |   |   |   |   |

capacidade: 2, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|     | 0 | 1 | 2 | 3 | 4 | 5 | Y |
|-----|---|---|---|---|---|---|---|
| 0   | 0 | 0 | 0 | 0 | 0 | 0 |   |
| 1   | 0 | 0 | 0 | 0 |   |   |   |
| 2 3 | 0 |   |   |   |   |   |   |
| 3   | 0 |   |   |   |   |   |   |
| 4   | 0 |   |   |   |   |   |   |
| i   |   |   |   |   |   |   |   |

capacidade: 3, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|     | 0 | 1 | 2 | 3 | 4   | 5 | Y |
|-----|---|---|---|---|-----|---|---|
| 0   | 0 | 0 | 0 | 0 | 0   | 0 |   |
| 1   | 0 | 0 | 0 | 0 | 500 |   |   |
| 2 3 | 0 |   |   |   |     |   |   |
| 3   | 0 |   |   |   |     |   |   |
| 4   | 0 |   |   |   |     |   |   |
| i   |   |   |   |   |     |   |   |

capacidade: 4, objetos: {1}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|     | 0 | 1 | 2 | 3 | 4   | 5   | Y |
|-----|---|---|---|---|-----|-----|---|
| 0   | 0 | 0 | 0 | 0 | 0   | 0   |   |
| 1   | 0 | 0 | 0 | 0 | 500 | 500 |   |
| 2 3 | 0 |   |   |   |     |     |   |
| 3   | 0 |   |   |   |     |     |   |
| 4   | 0 |   |   |   |     |     |   |
| i   |   |   |   |   |     |     | 1 |

capacidade: 5, objetos: {1}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|     | 0 | 1 | 2 | 3 | 4   | 5   | Y |
|-----|---|---|---|---|-----|-----|---|
| 0   | 0 | 0 | 0 | 0 | 0   | 0   |   |
| 1   | 0 | 0 | 0 | 0 | 500 | 500 |   |
| 2 3 | 0 |   |   |   |     |     |   |
| 3   | 0 |   |   |   |     |     |   |
| 4   | 0 |   |   |   |     |     |   |
| i   |   |   |   |   |     |     | • |

capacidade: 0, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|     | 0 | 1 | 2 | 3 | 4   | 5   | Y |
|-----|---|---|---|---|-----|-----|---|
| 0   | 0 | 0 | 0 | 0 | 0   | 0   |   |
| 1   | 0 | 0 | 0 | 0 | 500 | 500 |   |
| 2 3 | 0 | 0 |   |   |     |     |   |
| 3   | 0 |   |   |   |     |     |   |
| 4   | 0 |   |   |   |     |     |   |
| i   |   |   | 1 |   | ı   | 1   | 1 |

capacidade: 1, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1 | 2   | 3 | 4   | 5   | Y |
|---|---|---|-----|---|-----|-----|---|
| 0 | 0 | 0 | 0   | 0 | 0   | 0   |   |
| 1 | 0 | 0 | 0   | 0 | 500 | 500 |   |
| 2 | 0 | 0 | 400 |   |     |     |   |
| 3 | 0 |   |     |   |     |     |   |
| 4 | 0 |   |     |   |     |     |   |
| i |   |   | 1   |   | ı   | 1   | 1 |

capacidade: 2, objetos: {2}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1 | 2   | 3   | 4   | 5   | Y |
|---|---|---|-----|-----|-----|-----|---|
| 0 | 0 | 0 | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0 | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0 | 400 | 400 |     |     |   |
| 3 | 0 |   |     |     |     |     |   |
| 4 | 0 |   |     |     |     |     |   |
| i |   |   |     |     |     |     | ı |

capacidade: 3, objetos: {2}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1 | 2   | 3   | 4   | 5   | Y |
|---|---|---|-----|-----|-----|-----|---|
| 0 | 0 | 0 | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0 | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0 | 400 | 400 | 500 |     |   |
| 3 | 0 |   |     |     |     |     |   |
| 4 | 0 |   |     |     |     |     |   |
| i |   | • |     |     |     |     | • |

capacidade: 4, objetos:  $\{1\}$  > objeto 1 vale mais que objeto 2

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1 | 2   | 3   | 4   | 5   | Y |
|---|---|---|-----|-----|-----|-----|---|
| 0 | 0 | 0 | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0 | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0 | 400 | 400 | 500 | 500 |   |
| 3 | 0 |   |     |     |     |     |   |
| 4 | 0 |   |     |     |     |     |   |
| i |   |   |     |     |     |     | 1 |

capacidade: 5, objetos: {1}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1 | 2   | 3   | 4   | 5   | Y |
|---|---|---|-----|-----|-----|-----|---|
| 0 | 0 | 0 | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0 | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0 | 400 | 400 | 500 | 500 |   |
| 3 | 0 |   |     |     |     |     |   |
| 4 | 0 |   |     |     |     |     |   |
| i |   |   |     |     |     |     |   |

capacidade: 0, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 |     |     |     |     |   |
| 4 | 0 |     |     |     |     |     |   |
| i |   |     |     |     |     |     |   |

capacidade: 1, objetos: {3}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 |     |     |     |   |
| 4 | 0 |     |     |     |     |     |   |
| i |   |     |     |     |     |     | ı |

capacidade: 2, objetos: {2} > objeto 2 vale mais que objeto 3

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 |     |     |   |
| 4 | 0 |     |     |     |     |     |   |
| i |   |     |     |     |     |     |   |

capacidade: 3, objetos: {2,3}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 |     |   |
| 4 | 0 |     |     |     |     |     |   |
| i |   |     |     |     |     |     | , |

capacidade: 4, objetos: {2,3}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 |     |     |     |     |     |   |
| i |   |     |     |     |     |     |   |

capacidade: 5, objetos: {1,3}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 |     |     |     |     |     |   |
| i |   |     |     |     |     |     | • |

capacidade: 0, objetos: {}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 | 300 |     |     |     |     |   |
| i |   |     |     |     |     |     |   |

capacidade: 1, objetos: {3}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 | 300 | 400 |     |     |     |   |
| i |   |     |     |     |     |     |   |

capacidade: 2, objetos: {2}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 | 300 | 400 | 700 |     |     |   |
| i |   |     |     |     |     |     | ı |

capacidade: 3, objetos: {2,3}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 | 300 | 400 | 700 | 750 |     |   |
| i |   |     |     |     |     |     |   |

capacidade: 4, objetos: {3,4}

Exemplo: n = 4, W = 5

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| W | 4   | 2   | 1   | 3   |
| V | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 700 | 700 | 800 |   |
| 4 | 0 | 300 | 400 | 700 | 750 | 850 |   |
| i |   |     |     |     |     |     | • |

capacidade: 5, objetos: {2,3}

#### Obtenção da mochila booleana (PD)

```
mochila(w,v,n,W)

1 Y=W

2 para i=n até 1 faça

3 se (t[i,Y]=t[i-1,Y]) então m[i]=0

4 senão m[i]=1

5 Y=Y-w[i]

6 retorne m
```

Complexidade: O(n)

# Obrigado