Avisos

- a) A primeira aula prática ocorrerá na semana de 27 de setembro a 1 de outubro.
- b) Para as aulas práticas é indispensável que os alunos venham munidos de calculadora, da coletânea de questões de escolha múltipla e do enunciado dos problemas da respectiva semana.
- c) Apesar das perturbações causadas pelos feriados, procurar-se-à, tanto quanto possível, que o figurino das aulas ao longo da semana siga o mesmo padrão.
- d) Nos últimos 30m da segunda aula das semanas 3, 5, 6 e 7, será efectuado um teste individual de resposta múltipla para avaliação.

Conceitos Básicos em Análise de Circuitos

- P1.1 Um circuito é alimentado por uma bateria V_R = 6V e tem uma resistência total de R=35 Ω , de acordo com o esquema eléctrico da figura.
 - a) Arbitre, no esquema eléctrico, o sentido da corrente eléctrica e calcule o valor da intensidade da corrente que percorre a resistência.
 - b) Qual a potência associada na resistência?
 - c) Qual a potência associada à bateria?
 - d) Se a bateria estiver ligada durante meiahora, qual é a energia fornecida à resistência?

- P1.2 Considere o circuito da figura 1.2 onde I_G = 1 A, V_G = 10V, R = 10 Ω .
 - a) Calcule V.
 - b) Calcule a potencia na fonte de corrente.
 - c) A fonte de corrente está a fornecer ou a dissipar energia?

Figura 1.2

- P1.3 Uma bateria de automóvel de 12V tem uma capacidade de 50 Ah (nota: 1 Ah = 1 A x 1 h).
 - a) Qual a capacidade da bateria em Coulomb.
 - b) Quantas horas a bateria pode estar ligada a fornecer uma corrente constante de 12 A?
 - c) Qual a corrente fornecida pela bateria se estiver a fornecer energia e ficar totalmente descarregada ao fim de um dia?
- P1.4 Calcule a potência fornecida ou absorvida pelos elementos das figuras 1.5 a) e b).

Figura 1.4

P1.5 – Determine V_x na no circuito da figura 1.6

Figura 1.5

P1.6 – Uma fonte de tensão caracterizada por V_G = 110 V e resistência interna R_G = 5 Ω alimenta um receptor resistivo que absorve uma corrente de 5 A.

- a) Desenhe o esquema eléctrico do circuito.
- b) Qual a resistência total do circuito (admitindo desprezável a resistência dos fios de ligação).
- c) Qual é a resistência do receptor?
- d) Qual é a potencia dissipada no receptor resistivo.

Programação

Semana	1ª aula	2ª aula
Semana 1 (27/9 – 01/10)	E1, P1.1, P1.3, E3, P1.2, E6	E10, P1.4, P1.6, E8, P1.5, E16

Soluções

P1.1 – a) 0,17A; b) 1W; c) -1W; d) 1,8 kJ

P1.2 - a) 20V; b) -20W; c) Está a fornecer

P1.3 - a) 180 kC; b) 4,17h; c) 2,08A

P1.4 - a) - 12W; $P_1 = 4W$; $P_2 = 8W$; a) - 48W; $P_1 = 32W$; 16W

P1.5 – 8V

 $P1.6 - b) 22\Omega$; c) 17Ω ; d) 425W