Trabajo Práctico N° 3

Propiedades de los códigos

Codificación de información. Códigos unívocamente decodificables. Códigos instantáneos. Inecuación de Kraft. Inecuación de Mac Millan. Longitud media del código. Códigos compactos.

- 1. Proponer un alfabeto código y una codificación para el alfabeto fuente S = {1, 2, 3}.
- 2. Generar una posible codificación, utilizando el alfabeto código binario, para los estados del tiempo: soleado, nublado, lluvioso y nevado.
- 3. Dados los siguientes códigos para una fuente con un alfabeto de cuatro símbolos, determinar si se trata de códigos no singulares:

Fuente	Código 1	Código 2
А	100	011
В	10	0
С	1000	01
D	0	011

- 4. Considerando los números del 1 al 9:
 - a. Construir una posible codificación no singular, utilizando palabras código de 4 símbolos binarios.
 - b. ¿El código propuesto serviría para transmitir un mensaje y luego decodificarlo?
 - c. En caso afirmativo, ¿el mensaje podría ser decodificado por el receptor mientras está siendo transmitido?
- 5. Dados los siguientes códigos para una fuente con un alfabeto de cuatro símbolos, verificar si son unívocamente decodificables y/o instantáneos:

Fuente	Código 1	Código 2
А	010	110
В	101	001
С	000	11
D	111	00

- 6. Desarrollar funciones booleaneas en Python que reciban como parámetro una lista con palabras código y verifiquen si el código es:
 - a. no singular
 - b. instantáneo
 - c. unívocamente decodificable

7. Clasificar los siguientes códigos binarios de acuerdo a sus propiedades:

Fuente	Código 1	Código 2	Código 3	Código 4	Código 5	Código 6
S ₁	011	110	10	1101	011	1110
S ₂	000	100	1100	10	0111	0
S ₃	010	101	0101	1111	01	110
S ₄	101	001	1011	1100	0	1101
S ₅	001	110	0	1110	011111	1011
S ₆	100	010	110	0	01111	10

8. Clasificar los siguientes códigos de acuerdo a sus propiedades:

Fuente	Probs	Código 1	Código 2	Código 3	Código 4
S ₁	0.10	==)	/	٠,
S ₂	0.50	<	[]	*	;
S ₃	0.10	<=]]	1	, ,
S ₄	0.20	>])	*	:
S ₅	0.05	>=	[()]	++	• • •
S ₆	0.05	<>	([)]	+-	,:;

- 9. Dada una lista que contiene las palabras código de una codificación, implementar funciones en Python que resuelvan lo siguiente:
 - a. obtener una cadena de caracteres con el alfabeto código.
 - b. generar otra lista con las longitudes de las palabras (utilizar comprensión de listas).
 - c. calcular la sumatoria de la inecuación de Kraft (utilizar las funciones anteriores).
- 10. Calcular las sumatorias de la inecuación de Kraft de los códigos de los ejercicios 7 y 8. Analizar los resultados obtenidos en función de su clasificación.
- 11. Dadas dos listas paralelas que contengan las palabras código de una codificación y sus respectivas probabilidades, codificar funciones en Python que calculen:
 - a. la entropía de la fuente
 - b. la longitud media del código
- 12. Calcular la entropía de la fuente y la longitud media de cada código del ejercicio 8. Analizar los resultados obtenidos en función de su clasificación.
- 13. Construir posibles códigos compactos para las siguientes fuentes:

Fuen	te 1	Fuente 2		
Símbolos	Símbolos Probs		Probs	
Α	0.500	1	0.333	
В	0.250	2	0.333	
С	0.125	3	0.167	
D	0.125	4	0.167	

- a. utilizando el alfabeto código binario
- b. utilizando el siguiente alfabeto código: X = { 1, 2, 3 }
- 14. Realizar una función booleana en Python que reciba como parámetros dos listas paralelas que contengan las palabras código de una codificación y sus respectivas probabilidades, y determine si se trata de un código compacto.
- 15. Verificar si los códigos del ejercicio 8 son compactos y obtener conclusiones de acuerdo a los resultados obtenidos previamente.
- 16. Implementar una función en Python que reciba como parámetros: un número entero N y dos listas paralelas que contengan las palabras código de una codificación y sus respectivas probabilidades, y genere aleatoriamente un posible mensaje de N símbolos codificados emitido por dicha fuente.

Resultados:

3.	No singular				Singular				
5.	Instantáneo				Unívoco				
7.	Instantáneo Bloque		No singular		Instantáneo		Unívoco	Unívoco No singu	
8.	No singu	lar	Unívo	со	Bloque			Instantáneo	
10.	0.75 0.7	5 1.06	1.00	0.98	1.06	1.11	0.26	1.13	0.66
12.	H(S) = 1.3003 $H(S) = 1$		H(S) = 1.	0305	H(S) = 1.0305		5	H(S) = 1.0305	
	L = 1.3		L = 2.2		L = 1.1			L = 1.4	
15.	No	No No			No		Compa	cto	