

ADA 0 58158

PILOT PROGRAM TO DEVELOP OPERATING TIME EMISSION DEGRADATION FACTORS FOR GENERAL AVIATION PISTON ENGINES

Robert F. Salmon

JULY 1978

FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

8 08 29 024 Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

18 PAA PONTS AL	2. Government Accession	No. 3.	Recipient's Catalog N	0.
FAA RD (78/74)				
4. Title and Subtitle		5	Report Date	
PILOT PROGRAM TO DEVELOP OPE	RATING TIME EMIS	SION (Jul 178	
DEGRADATION FACTORS FOR GENE			Performing Organization	on Code
ENGINES .			(12)66	20
to the second se	The second secon	8.	Performing Organization	in Report No.
7. Author's)			The second secon	
(O Robert F./Salm	non \	(14)	FAA-NA-78-25	5 4
9. Performing Organization Name and Address		110	. Work Unit No. (TRAIS	3
			. WORK OHIT NO. (TRAIS	5" 1
Federal Aviation Administrat		/ 11	. Contract or Grant No.	- Allertin
National Aviation Facilities		nter	\	Je Ve
Atlantic City, New Jersey 08	3405		201-321-100	
		13,	Type of Report and P	eriod Covered
12. Sponsoring Agency Name and Address			(9)	
U.S. Department of Transport			Final	· ·
Federal Aviation Administrat	ion	(June - 00	et - 77,
Systems Research and Develop	ment Service	The state of the s	Spendering Agency Co	ode
Washington, D.C. 20590				
15. Supplementary Notes				
and the same of th				
16. Abstract				
	ating the problem	ne accordated	with the nicto	on ongine
A pilot program for investig				
A pilot program for investig continuous compliance requir	ement of the Emi	ssion Standard	ls was undertal	ken
A pilot program for investig continuous compliance requir at the National Aviation Fac	ement of the Emi:	ssion Standard ntal Center (N	ls was undertal IAFEC). The pi	ken rogram used
A pilot program for investig continuous compliance requir	ement of the Emi:	ssion Standard ntal Center (N	ls was undertal IAFEC). The pi	ken rogram used
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle	ement of the Emistilities Experiment es to determine es	ssion Standard ntal Center (N mission degrad	ls was undertal NAFEC). The pr lation characte	ken rogram used eristics
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim	ement of the Emistilities Experiments to determine enter period of 150 lines.	ssion Standard ntal Center (N mission degrad hours. This w	ls was undertal IAFEC). The praction character was the initial	ken rogram used eristics L plan for
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr	ement of the Emiserilities Experiments to determine enter period of 150 incomposed modifications.	ssion Standard ntal Center (N mission degrad hours. This w ion in the Env	ls was undertal NAFEC). The prolation characterial Was the initial Vironmental Pro	ken rogram used eristics I plan for otection
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa	rement of the Emistilities Experiments to determine enter period of 150 period of 150 period for piston enter	ssion Standard ntal Center (N mission degrad hours. This w ion in the Env ngines, the pr	ls was undertal IAFEC). The prolation character was the initial vironmental Processor was shown	ken rogram used eristics l plan for otection rtened
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour	rement of the Emiserilities Experiments to determine enter period of 150 period modifications for piston enter on each engine	ssion Standard that Center (Nation degrad hours. This with Environment of the Environment of the properties. This report	ls was undertal IAFEC). The property of the initial vironmental Property of the cogram was shown the cogram was	ken rogram used eristics l plan for otection rtened e work
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the	ement of the Emi- cilities Experiments to determine ender period of 150 looposed modifications for piston enders on each engine to 50-hour engine	ssion Standard that Center (Nation degrade hours. This was ion in the Environment of the properties of the protectime period.	ls was undertal IAFEC). The property of the initial variation character is the initial variation of the initial variation of the initial initial variation of the initial v	ken rogram used eristics l plan for otection rtened e work ndicate that
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in	rement of the Emiscilities Experiment es to determine en the period of 150 period of 150 period modification for piston en the engine es 50-hour engine en emissions occurs	ssion Standard that Center (Nation degrade hours. This was ion in the Environment of the properties of the properties within the formal standard the standard that the formal content of the standard th	Is was undertal AFEC). The property of the initial vironmental Property of the control of the co	cen rogram used eristics l plan for otection rtened e work ndicate that of engine
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the	rement of the Emiscilities Experiment es to determine en the period of 150 period of 150 period modification for piston en the engine es 50-hour engine en emissions occurs	ssion Standard that Center (Nation degrade hours. This was ion in the Environment of the properties of the properties within the formal standard the standard that the formal content of the standard th	Is was undertal AFEC). The property of the initial vironmental Property of the control of the co	cen rogram used eristics l plan for otection rtened e work ndicate that of engine
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in	rement of the Emissilities Experiment es to determine en le period of 150 le coposed modification for piston en le 50-hour engine en emissions occurs de measured on le collecte de measured de	ssion Standard that Center (Nation degrade hours. This was ion in the Environment of the Environment of the period. This report time period. So within the faircraft-instal	Is was undertal AFEC). The property of the initial vironmental Property of the control of the co	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with
A pilot program for investig continuous compliance requir at the National Aviation Fac two aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho	rement of the Emissilities Experiment es to determine en experiod of 150 looposed modifications for piston en experiment es on each engine experiment es on each engine experiment emissions occurs to be measured on experiment experiment experiment experiment experiment.	ssion Standard that Center (Nation degrade hours. This was ion in the Environment of the	Is was undertake (AFEC). The property of the initial vironmental Property of the results in the	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen-
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a	rement of the Emissilities Experiment es to determine en experiod of 150 months for piston en experiment es on each engine experiment es on each engine experiment emissions occurs to be measured on a see obtained in the care used, and (3)	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The property of the initial vironmental Property of the results in the re	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pragency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and ind	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pragency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and ind	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and ind	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and ind	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and ind	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and ind	rement of the Emissilities Experiment es to determine en experiod of 150 les coposed modifications for piston en experiment es on each engine es 50-hour engine en emissions occurs to be measured on a see obtained in the used, and (3) order to achieve	ssion Standard that Center (Nation degrad hours. This within the Environment of the Envir	Is was undertal AFEC). The production character was the initial vironmental Processor was shown to describe the The results in the results in the results in the results in the regimes we covided proper trumentation is requirements,	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments.	rement of the Emissilities Experiment es to determine en the period of 150 is coposed modifications for piston en the son each engine is 50-hour engine in the measured on the end of the e	ssion Standard that Center (Nation in degrad hours. This within the Environment of the property of the period. It is within the faircraft-instatest stands, property of the period of th	Is was undertal AFEC). The production character was the initial vironmental Proceedings was shown to the results in the requirementation is requirements, and on laborator	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments.	rement of the Emissilities Experiments to determine enter period of 150 is reposed modifications for piston enter the emissions occurs to be measured on a see obtained in the used, and (3) order to achieve function airflow model.	ssion Standard that Center (Nation in degrad hours. This was ion in the Environment of the property of the period. This report time period. Within the faircraft-instatest stands, praircraft instates are stands. The period is the measure of the period of	Is was undertal AFEC). The production character was the initial vironmental Proceedings was shown to describe the The results in the results in the results in the results in the reduction of the requirements, and on laborator the requirements.	ken rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft	rement of the Emissilities Experiments to determine enter period of 150 is reposed modifications for piston enter the enterpolitical for piston enter the enterpolitical for piston enter the emissions occurrent be measured on a see obtained in the used, and (3) order to achieve function airflow measured on airflow measured for the enterpolitical forms and the enterpolitical forms and the enterpolitical forms airflow measured for a second forms airflow measured forms airflow meas	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertal AFEC). The production character was the initial vironmental Proceedings was shown to the results in the requirementation is requirements, and on laborator the lable to the Universe to the Universe results in the results in the requirements.	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments.	rement of the Emissilities Experiments to determine ender period of 150 is roposed modifications for piston ender the son each engine is 50-hour engine in the emissions occurs in the measured on a see obtained in the used, and (3) order to achieve suction airflow model.	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertal IAFEC). The production character was the initial vironmental Process of the results in the requirementation is requirements, and on laborator is the lable to the Unital Technical	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pragency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft Emissions (Pollution)	rement of the Emissilities Experiments to determine ender period of 150 is roposed modifications for piston ender the son each engine is 50-hour engine in the emissions occurs in the measured on a see obtained in the used, and (3) order to achieve suction airflow model.	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertal IAFEC). The production character was the initial vironmental Process of the results in the requirementation is requirements, and on laborator is the lable to the Unital Technical	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft	rement of the Emissilities Experiments to determine ender period of 150 is roposed modifications for piston ender the son each engine is 50-hour engine in the emissions occurs in the measured on a see obtained in the used, and (3) order to achieve suction airflow model.	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertal AFEC). The production character was the initial vironmental Proceedings was shown to the results in the requirementation is requirements, and on laborator the lable to the Universe to the Universe results in the results in the requirements.	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft Emissions (Pollution)	rement of the Emissilities Experiments to determine ender period of 150 is roposed modifications for piston ender the son each engine is 50-hour engine in the emissions occurs in the measured on a see obtained in the used, and (3) order to achieve suction airflow model.	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertal IAFEC). The production character was the initial vironmental Process of the results in the requirementation is requirements, and on laborator is the lable to the Unital Technical	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pragency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft Emissions (Pollution)	rement of the Emissilities Experiments to determine ender period of 150 is roposed modifications for piston ender the son each engine is 50-hour engine in the emissions occurs in the measured on a see obtained in the used, and (3) order to achieve suction airflow model.	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertal IAFEC). The production character was the initial vironmental Process of the results in the requirementation is requirements, and on laborator is the lable to the Unital Technical	cen rogram used eristics l plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pr Agency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft Emissions (Pollution) Piston Engines	rement of the Emissilities Experiment es to determine en en period of 150 les coposed modifications for piston en	ssion Standard that Center (Nation in the Environment of the Environme	Is was undertake AFEC). The property of the initial vironmental Property of the results in the requirementation is requirements, and on laborator is requirements.	cen rogram used eristics I plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information a 22161
A pilot program for investig continuous compliance requir at the National Aviation Factwo aircraft as test vehicle of piston engines over a tim the program, but due to a pragency (EPA) emission standa and terminated after 50 hour and results obtained for the (1) no appreciable change in operation, (2) emissions can accuracies comparable to tho tation and test procedures a for some parameters, but in pressure, fuel flow, and indinstruments. 17. Key Words General Aviation Aircraft Emissions (Pollution) Piston Engines	rement of the Emissilities Experiment es to determine en en period of 150 les coposed modifications for piston en	ssion Standard that Center (Nation in the Environment is avair rough the Nation of this page)	Is was undertake AFEC). The property of the initial vironmental Property of the results in the requirementation is requirements, and on laborator is requirements.	cen rogram used eristics I plan for otection rtened e work ndicate that of engine with instrumen- s satisfactory manifold ry-type I.S. public Information a 22161

24 0 550

done

	Sympo			. 5	=	P.	Ē			7	· *	7 <u>.</u>					8 :	2				f1 02	K	÷ 7	i~	ep.				•		1			0	
c Measures	To Find		setoni	inches	feet	yards	miles			andre inches	square mores	square miles	acrès				onuces	short tone				fluid ounces	pints	quarts	cubic faet	cubic yards				Entranhait	temperature			160 200	00 09	
rsions from Metri	Multiply by	LENGTH	3	10	3.3	1.1	9.0		AREA	31.0	1.2	9.0	2.5		MASS (weight)		0.035	7.7	•	VOLUME		0.03	2.1	9. 0	35	1.3			TEMPERATURE (exact)	9/K (then	add 32)		986	80 120	37 40	
Approximate Conversions from Metric Mesures	When You Knew		millimeters	centimeters	meters	meters	kilometers		1	county contimotore	square meters	square kilometers	hectares (10,000 m ²)		2		grams	kilograms	/Ry poor I spend			miliiliters	liters	liters	Cubic meters	cubic meters				Calcius	temperature		95	-40	0 02- 04-	
	Symbol		•	5	E	E	Ę			7	7 _E	² 5	ž,				6	64 .				Ē			- °E	°E				٥	,			i	•	
33	35	s 0	z 	119		18		21 	91		ST	1111	74	1	E1			11) T	6		8		<u>_</u>		9		s			ε 			r	
9	Tit	8		11	·I·	7	Ţï	1	71		' -	''	''	1.1.	5	1.1.			1.	1.1		T	1	3	' '	1	ין'	1	'l'(2	"	"	' '	1'[1	nches	
	Symbol				5	5 5	E	Ę				ZE,	, E	5 2			6	kg	-			Ē	Ē	Ē .		-	_	e.	e _E			ွ		1	of, 286,	
Measures	To Find				Cantimotors	centimeters	meters	kilometers			square centimeters	square meters	square meters	hectares			grams	kilograms	tonnes			milliliters	milliliters	milliliters	liters	liters	liters	cubic meters	cubic meters			Celsius	temperature		ables, see NBS Misc. Put	
Approximate Conversions to Metric Measures	Multiply by		LENGTH		•2.5	30	6.0	9.1	AREA		6.5	60.0	9.6	0.4	See Junitaria	MASS (Weight)	28	0.45	6.0	VOLUME		S	15	30	0.24	0.95	3.8	0.03	97.0	TEMPERATURE (exact)		5/9 (after	subtracting 32)		rsions and more detailed to Catalog No. C13.10:286	
Approximate Conv	When You Know				inches	feet	yards	miles			square inches	square feet	square yards	acres			onuces	spunod	short tons (2000 lb)			teaspoons	tablespoons	fluid ounces	cups	quarts	gallons	cubic feet	cubic yards	TEMPE		Fahrenheit	temperature		11 or 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Meights and Measures, Price \$2.25, SD Catalog No. C13.10.286.	
	Symbol				5	=	P.	Ē			7 <u>e</u> '	*	, A	ı			20	•				qsı	Tbsp	11 02	. 2	. 5	- 86	J-	, p.						Units of Weigh	

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Background	1
Purpose	2
DISCUSSION	2
Description of Aircraft and Engines	2
Instrumentation	3
Engine Performance Instrumentation	3 3 5
Emission Measurement Instrumentation	8
Test Procedures	11
Test Frequency Computation Procedure	11
computation flocedure	11
RESULTS	13
Seneca II Tests	13
Baron B-55 Tests	18
SUMMARY OF RESULTS AND CONCLUSIONS	21
REFERENCES	21
APPENDICES	
A - Seneca II Test Data (TSIO-360E Engine)	

B - Baron B-55 Test Data (IO-470L Engine)

LIST OF ILLUSTRATIONS

Figure		Page
1	Fuel Flow Schematic	3
2	Induction Air Schematic	4
3	Typical Test Configuration	6
4	Emission Measurement System Schematic	7
5	Comparison of Five-Mode and Seven-Mode Cycle	9
6	TSIO-360E Emissions over a 50-Hour Time Period	16
7	Comparison of 50-Hour Emissions with Postoverhaul Emissions	17
8	IO-470L Emissions over a 50-Hour Time Period	20

LIST OF TABLES

Table		Page
1	Chemical Elements for Exhaust Analysis	12
2	Test Conditions for the Seneca II TSIO-360E Engine	14
3	Test Conditions for the Baron B-55 IO-470L Engine	19

GLOSSARY OF TERMS USED IN APPENDICES

Mode Number: The power setting of the engine: 2 = taxi-out,

3 = takeoff, 4 = climb, 5 = approach, 6 = taxi-in

Rated Power: Horse power rating of the engine

Rev per Min: rpm of engine

Run Number: Identification of data run

Baromet. Press.: Ambient atmospheric pressure (inHgA)

Dry Air Temp: Self-explanatory (°F)

Wet Bulb Temp: Self-explanatory (°F)

Spec. Humid: Specific humidity (1bs of water vapor/1b of dry air)

Vapor Press: Water vapor pressure (inHgA)

HC Conc. ppm: Measured HC concentration in ppm

NO Conc. ppm: Measured NO concentration in ppm

CO Conc. Perc.: Measured CO concentration in percent

CO₂ Conc. Perc.: Measured CO₂ concentration in percent

 0_2 Conc. Perc.: Measured 0_2 concentration in percent

Mols out Dry: Mols of dry exhaust products

Mols out Wet: Total Mols of exhaust products

Shaft Torque: Not Measured

Horsepower: Not Measured

Eng. Airflow: Induction airflow (pph)

Eng. Fuel Flo: Engine fuel flow (pph)

Diff. WFC-WFM: Difference between measured fuel flow and exhaust

calculated fuel flow (pph)

Meas. F/A Rat.: Fuel/Air ratio measured

Cal. F/A Rat.: Fuel/Air ratio calculated from emission measurements

78 08 29 024

Diff. M-C F/A: Difference between measured and calculated

F/A ratio (%)

Cyl. Temp. Max: Maximum cylinder head temp (°F)

Man. Pres. HgA: Manifold pressure (inHgA)

Exh. Gas Temp: Exhaust gas temperature (°F)

CO 1bs/Mode: CO produced per mode (1b)

CO lbs/cyc-RHP: CO produced per cycle per rated hp (1b)

Percent of EPA Std. Percent of CO produced per cycle per rated hp compared

for CO: to the EPA standard for CO (0.042 lb/cycle-RHP)

HC lbs/Mode: HC produced per mode (1b)

HC lbs/cyc-RHP: HC produced per cycle per rated hp

Percent of EPA Std. Percent of HC produced per cycle per rated hp compared

for HC: to the EPA standard for HC (0.0019 lb/cycle-RHP)

NO 1bs/Mode: NO produced per mode (1b)

NO 1bs/cyc-RHP: NO produced per cycle per rated hp (1b)

Percent of EPA Std. Percent of ${\rm NO_x}$ produced per cycle per rated hp compared to the EPA standard for ${\rm NO_x}$ (0.0015 lb/cyc-rhp)

for NO:

INTRODUCTION

BACKGROUND.

The Clean Air Amendments of 1970 (references 1 and 2) charged the Environmental Protection Agency (EPA) with the establishment of aircraft engine pollution control standards to protect the public health and welfare. Subsequently the EPA, has published standards for the control of emissions from aircraft engines. The Amendments also specified that the Department of Transportation (DOT) and the Federal Aviation Administration (FAA) promulgate regulations enforcing the EPA aircraft engine emission standards.

A program was initiated in October of 1973 authorizing a three-phase test program entitled "Piston Engine Emission Investigation." This effort, together with other follow-on projects, was designed to provide baseline information on the emission levels of a cross-section of general aviation piston engines, develop test procedures and calculation methods of handling the test data, determine the effects of ambient conditions on the emissions produced, explore the possibilities of reducing emissions by lean-out of the fuel/air (F/A) mixture or spark-timing changes (advance or retard spark timing), and evaluate the impact on aircraft safety that such minor engine changes would have.

The FAA was also required to determine whether general aviation engines met the continuous compliance aspects of the EPA's standards. In order to understand the scope of a full-scale continuous compliance program, a pilot program was run. This report deals with the results obtained from the pilot program entitled "Pilot Program for Piston Engine Continuous Compliance (Emissions)."

PURPOSE.

The purpose of the pilot program is as follows:

- 1. Develop the equipment and test procedures which would be used in expeditiously and accurately measuring emissions and engine parameters in a large-scale continuous compliance program.
- 2. Obtain in-service information on two types of engines which would be representative of the type of aircraft used in the full-scale program.
- 3. Establish whether emissions change to a measurable extent, and if so, over what time frame.

DISCUSSION

DESCRIPTION OF AIRCRAFT AND ENGINES.

In the pilot program, there were two test aircraft, a Seneca II using a TSIO-360E (200-hp) turbocharged engine and a Baron B-55 using an IO-470L fuel-injected engine (260 hp). In both cases, the left engine of the twin-engine aircraft was used for the test.

In order to test the engines with the precision of a laboratory test, modifications to the aircraft were required during round tests. The engine was returned to its original configuration after a test was completed. The modifications included installation of the following: (1) a modified cowling which incorporated provisions for an induction air measuring system, (2) a fuel flow measuring system for both high and low flow, (3) pressure and temperature probes to monitor the cooling air, (4) exhaust pipes modified to accept an emission sampling probe and a thermocouple, (5) precision pressure gages for measurement of manifold pressure and fuel pressure, and (6) an emission sampling probe in the modified exhaust pipe and a chromelalumel thermocouple upstream of the emission probe.

In conducting the tests, it was recognized that the engines could overheat if a high-power condition was maintained for extended periods during stationary testing. To avoid such a situation, a high-volume, high-pressure-rise air blower was installed at the test site. This unit ducted air into the engine at velocities up to 70 miles per hour (mph), equivalent to a 2.3-inch $\rm H_2^{\,0}$ pressure rise to prevent engine overheat.

INSTRUMENTATION.

Two types of instrumentation systems were used in conducting the test; engine performance instrumentation and emission measurement instrumentation.

ENGINE PERFORMANCE INSTRUMENTATION. The engine performance instrumentation used in the tests was identical for both test engines except for differences in adapters, ducting, etc., which were required due to the differences in engine installation; however, these variations had negligible effect on the measurements.

Figure 1 is a schematic of the fuel flow measuring system used. The system incorporated a dual-path flow system. For high flows (20 pounds per hour (pph) to 250 pph), a high-flow Cox rotameter was used. This was calibrated using aviation gasoline (Avgas) and had an accuracy of ± 0.5 percent of full scale. For low fuel flows (0.5 to 22 pph), a low-flow Cox rotameter was used with an accuracy of ± 0.5 percent.

FIGURE 1. FUEL FLOW SCHEMATIC

The airflow measuring system was also a dual-path flow system using Autronics air meters (turbine-type volume-measuring devices). There were two size ranges of meters 0 to 100 cubic feet per minute (cfm) for taxi and 0 to 600 cfm for higher powers. Figure 2 is a schematic of the air system. The tolerance of the air measuring system was ± 3 percent at taxi and ± 2 percent at approach to takeoff power.

FIGURE 2. INDUCTION AIR SCHEMATIC

To measure the manifold pressure, a high-accuracy gage was used. This was a Wallace and Tiernan, 0-60 inches of mercury absolute (inHgA) gage, which was teed into the pressure line carrying manifold pressure to the cockpit gage. This device had an accuracy of ± 0.1 inHgA.

The measurement of exhaust gas temperature was accomplished by inserting a chromel-alumel thermocouple in the exhaust pipe of the engine upstream of the emission measurement sampling probe. The accuracy of the temperature reading was $\pm 3^{\circ}$ Fahrenheit (F).

In addition, the cooling air pressure drop (Δp) across the engine was measured on an inclined water (H_20) tube manometer. Typically, Δp ranged from 0.5 inH $_20$ at taxi to 3 inH $_20$ at takeoff. The accuracy of this measurement was ± 0.1 inH $_20$, but it should be noted that the probe locations used for this measurement were selected based only on geometric considerations and thus may not be truly representative of the pressure drop which the engine was experiencing. However, it served a useful purpose, inasmuch as it provided an indication of the level of pressure developed by the cooling air as it entered the nacelle. The overall test configuration, as illustrated in figure 3, shows the relative position of the aircraft, the cooling air duct, the engine and cowling, and the induction air measuring system.

EMISSION MEASUREMENT INSTRUMENTATION.

Emission Analyzers. The instrumentation used to monitor the exhaust emissions from general aviation piston engines was basically the same as that recommended by EPA but with a number of modifications and additions to enhance the reliability and accuracy of the system. A schematic of the emissions measurement system is shown in figure 4. The basic instrumentation used in this system, shown in figure 4, is as follows.

Carbon dioxide. The carbon dioxide (CO₂) subsystem is constructed around a Beckman model 864-28-2-4 Nondispersive Infrared Analyzer (NDIR). This analyzer has a specified repeatability of ± 1 percent of full scale for each operating range. The calibration ranges on this particular unit are as follows: range 1, 0 to 20 percent; range 3, 0 to 5 percent. Stated accuracy for each range is therefore ± 0.2 and ± 0.05 percent CO₂, respectively.

<u>Carbon monoxide</u>. The subsystem used to measure carbon monoxide (CO) is constructed around a Beckman model 865-X-4-4-4 NDIR. This analyzer has a specified repeatability of ± 1 percent of full scale for ranges 1 and 2, and ± 2 percent of full scale for range 3.

Range 1 was calibrated for 0 to 20 percent by volume, range 2 for 0 to 1,000 parts per million (ppm), and range 3 for 0 to 100 ppm). The widerange capability of this analyzer is made possible by using stacked sample cells which, in effect, give this analyzer six usable ranges.

Total hydrocarbons. The system used to measure total hydrocarbons (HC) was a modified Beckman model 402 heated flame ionization detector. This analyzer has a full-scale sensitivity that is adjustable to 150,000 ppm carbon with intermediate range multipliers of 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001 times full scale.

Repeatability for this analyzer is specified to be ± 1 percent of full scale for each range. In addition, this modified analyzer is linear to the full-scale limit of 150,000 ppm carbon when properly adjusted.

Oxides of nitrogen. Oxides of nitrogen are measured by a modified Beckman Model 951H atmospheric pressure, heated, chemiluminescent (CL) analyzer. This analyzer has a full-scale range of 10,000 ppm with six intermediate ranges. Nominal minimum sensitivity is 0.1 ppm on the 10 ppm full-scale range.

FIGURE 3. TYPICAL TEST CONFIGURATION

FIGURE 4. EMISSION MEASUREMENT SYSTEM SCHEMATIC

A modification was made to this analyzer by adding a flow control valve to adjust and balance the flow rate through the NO and NO $_{\rm X}$ legs. This valve replaced a restrictor clamp that was used by the manufacturer to set the NO to NO $_{\rm X}$ flow balance.

Oxygen measurement. Oxygen (0_2) was measured by a Beckman model OM-11 oxygen analyzer. This analyzer uses a polaragraphic-type sensor unit to measure oxygen concentration. An advanced sensor and amplification system combined to give this analyzer an extremely fast response and high accuracy. Specified response for 90 percent of final reading is less than 200 milliseconds (ms) with an accuracy of less than ± 0.1 percent 0_2 . Ranging on this unit is a fixed 0 to 100 percent 0_2 concentration.

Description of Sample Handling System. Exhaust samples were transported to the analysis instrumentation under pressure through a 35-foot-long, 3/8-inch outer diameter, heated, stainless steel sample line. The gas was first filtered and then pumped through this line by a heated Metal Bellows model MB-158 hightemperature stainless steel sample pump. The pump, filter, and line were maintained at a temperature of 300° +4° F to prevent condensation of water vapor and hydrocarbons. At the instrumentation console, the sample was split to feed the hydrocarbon, oxides of nitrogen (NO_x) and $CO/CO_2/O_2$ subsystems which require different temperature conditioning. The sample gas to the total hydrocarbon subsystem was maintained at 300° F, while the temperature of remaining sample gas to the NO_{X} and $\mathrm{CO/CO}_{2}/\mathrm{O}_{2}$ system was allowed to drop to 150° F. Gas routed to the NO_x subsystem was then maintained at 150° F, while the gas to the CO/CO2/O2 subsystem was passed through a 32° F condenser to remove any water vapor present in the sample. Flow rates to each analyzer were controlled by a fine-metering valve and were maintained at predetermined values to minimize sample transport and system response time. Flow was monitored at the exhaust of each analyzer by three 15-centimeter (cm) rotameters. Two system bypasses were incorporated into the system to keep sample transport time through the lines and condenser to a minimum without causing adverse pressure effects in the analyzers.

<u>Filtration</u>. Particulates were removed from the sample stream at three locations in the system. Upstream of the main sample pump was a heated clamshell-type stainless steel filter body fitted with a Whatman GF/C Glass Fibre paper filter element capable of retaining particles in the 0.1-micrometer (µm) range. A similar filter was located in the total hydrocarbon analyzer upstream of the sample capillary. An MSA-Type H Ultra Filter capable of retaining 0.3-µm particles was located at the inlet to the NO and $\text{CO/CO}_2/\text{O}_2$ subsystems. Filters located at these three locations allowed the entire sample transport and analysis system to be free of particulate contamination, thereby minimizing downtime due to contaminated sample lines and analyzers.

TEST PROCEDURES.

To understand the tests it is necessary to describe the EPA cycle. EPA specifies an idle/taxi-out operation of 12-minutes duration, a 0.3-minute operation at takeoff power, a 5-minute climb, a 6-minute approach, and a 4-minute idle/taxi-in operation.

Initially, a seven-mode cycle was used wherein 1 minute was assigned to idle and 11 minutes to taxi at the start, and 3 minutes to taxi and 1 minute to idle at the end of the cycle. By eliminating the 1-minute idle-power time at start and finish and assigning it to the taxi modes, the accuracy of the tests was improved, inasmuch as it was very difficult to get stable engine readings at idle power. Earlier work indicated that this decision is conservative. The actual emission production at taxi is approximately twice as much as at idle, but the reliability of the data obtained at taxi is of a considerably higher order.

Figure 5 compares the bargraphs for a typical engine based on results obtained from tests with an 10-320 engine in the earlier piston engine emission program.

FIGURE 5. COMPARISON OF FIVE-MODE AND SEVEN-MODE CYCLE

The five-mode baseline was conducted in sequence so that the actual time in mode for any run was approximately 5 minutes. This time was required to assure stability of the engine and to record the values of engine performance and emissions. In calculating the emissions over the EPA cycle, the times in mode as specified by the EPA are used.

In conducting the five-mode tests, it was observed that taxi-out was not necessarily identical with taxi-in. This is attributed to the fact that at startup the preconditioning of the engine consists only of starting and running the engine until the oil is heated up to a specified temperature. During this warmup period, some buildup of carbon, oil past the rings, etc., would occur, and this would be reflected in the emissions measured. The taxi-out condition is set with no clear-out of the engine, and this has an impact on the measured emissions. However, at taxi-in, which follows a sequence of high-power runs which have cleared the engine out, the emissions usually are lower than those measured at taxi-out.

The previous observations indicate that the level of emissions can be changed by varying the procedure used during the testing. It also should be recognized that the impact of the taxi mode in the five-mode baseline is quite significant. The total time assigned to the five-mode cycle is 27.3 minutes. The rate of emission production is low at taxi, but the time in mode assigned to taxi power (16 minutes) is sufficiently long to have a considerable impact on the overall emissions level.

Two types of tests were conducted, (1) the five-mode sequential cycle and (2) lean-out tests at each of the powers in the five-mode cycle. The lean-out tests were incorporated in the program in order to reduce variability that could enter into the results if reliance on the five-mode sequential cycle alone were used. There are several reasons for this variability. Comparing results obtained from five-mode sequential cycle tests conducted at two widely different ambient conditions may result in as much as a 20-percent difference in the pollutant level. This can occur despite the fact that both sets of data can be shown to meet the EPA's accuracy requirements. The differences in pollutant levels arise from the ambient pressure, temperature, and humidity differences which are present at the time of the tests.

Difficulties occur in comparing cycle emissions unless nearly identical ambient conditions prevail for the tests. Lean-out tests, however, provide a convenient mechanism for comparison and analysis of data. These tests are used in developing curves of pollutants versus F/A ratio at a constant power level. Tests at different ambient conditions can generate different lines of pollutant versus F/A ratio for the same power level. The curves can serve as guidelines for interpolation or extrapolation to other ambient conditions. The lean-out curves are also useful in constructing hypothetical flight profiles for an engine. Thus, at takeoff, climb, approach, and taxi, specific F/A ratios can be selected and the emissions from this cycle can be determined without actually trying to set the engine conditions.

TEST FREQUENCY.

Tests were conducted in order to determine if any change in emission levels occurs as a function of engine operating time. The test schedule was as follows:

- 1. Establish the emission levels of the engine at the outset of the program. This is the baseline information to which all later tests are to be compared.
- 2. At 25-hour engine operating time increments, conduct tests which duplicate the procedure, sequence, and instrumentation of the initial baseline tests.
- 3. When an engine is scheduled for a periodic check (oil change, plug change, etc.) run a test prior to and immediately after the check.
- 4. At the end of 150 hours of engine operating time, conduct a final test on the engine prior to restoring it to its original flight condition and returning the aircraft to the owners.

COMPUTATION PROCEDURE.

The EPA standard for determining acceptable data in emission tests is somewhat broad. In effect, it requires that the data must be accurate to within ±5 percent in comparing the measured F/A ratio to the F/A ratio calculated from the exhaust emissions measured by the sampling system. The computation method used is in accord with standard chemistry practice and is basically a carbon balance, hydrogen balance, and oxygen balance technique.

The basic equations used in the computation are shown below. Table 1 defines the chemical terms used.

Wet: M_f (C_8H_{17}) + M_a (O_2 + 3.76 N_2 + XH_2O) \rightarrow Exhaust Constituents where;

TABLE 1. CHEMICAL ELEMENTS FOR EXHAUST ANALYSIS

Elements	Molecular Weight	Exhaust Products Measured Dry	Exhaust Products Measured Wet
С	12.011	CO ₂	NO
н	1.008	со	СН4
0	16.000	02	
N	*14.080		
co ₂	44.011	Exhaust Pr	
со	28.011	Calcula	ited
H ₂ O	18.016	Н20	
02	32.000	N ₂	
СН4	16.043	н ₂	
N ₂	28.160		
NO	30.000		

*There is an approximation used in the computation. This occurs in the assignment of molecular weight of 14.080 to nitrogen (N) instead of the true absolute value of 14.000. However, this slight modification is used to account for the unmeasured inert gases in the exhaust. These unmeasured constituents account for less than 1 percent of the exhaust, and this approximation simplifies the computation without having a significant impact on the accuracy of the results.

RESULTS

There were three tests conducted on the Baron B-55 engine and four tests conducted on the Seneca II aircraft. The average elapsed time between tests was 25 hours. The results indicated that there was no appreciable change in the emission level for the Seneca II during the first 50 hours; however, the aircraft was involved in an accident immediately after it had undergone a 50-hour periodic check. The accident was severe enough to require that the shaft be removed and magnafluxed, the propellers repaired and rebalanced, the main bearings changed, and new rings installed. In effect, this was equivalent to an engine change. After a repair job of this magnitude, the manufacturer recommends that the engine be operated using mineral oil during the break-in period. Thus, the first three Seneca II tests can only be compared to each other, and the postoverhaul test is actually a baseline for a new series of tests with a new engine.

In the introduction to the report, the background and purpose of the program were described, but as the tests were underway, a change in the EPA's position as regards the emission requirements for general aviation piston engines developed. This proposed change in requirements by the EPA in effect removed all the emission level standards as they applied to general aviation piston engines (reference 3). For this reason, all testing on the two aircraft was terminated at the 50-hour point for both the Seneca II and the Baron B-55.

The data obtained from the tests were reduced and analyzed and are tabulated in appendices A and B. The emissions measured at the outset of the program and at the 25-hour increments are shown in these data. The discussion of the test results is divided into two areas, the Seneca II tests and the Baron B-55 tests.

SENECA II TESTS.

Each of the Seneca II tests consisted of obtaining six sets of data wherein the TSIO-360E engine was run in the sequence and at the power levels shown in table 2. It should be noted that the values shown in table 2 for rpm and manifold pressure were the target conditions; however, under actual test, there were tolerances of ± 25 rpm and ± 0.5 inHgA, respectively, on rpm and manifold pressure.

TABLE 2. TEST CONDITIONS FOR THE SENECA II TSIO-360E ENGINE

Test Sequence	Power	rpm	Manifold (inHgA) Pressure	Fuel Flow pph	Remarks
1	Approach	1,900	24.0	Full rich to lean	Lean-out; full rich to 12 lb, lean
2	Climb	2,450	34.0	Full rich to lean	Lean-out; full rich to 12 lb, lean
3	Takeoff	2,550	40.0	Full rich to lean	Lean-out; full rich to 12 lb, lean
4	Taxi	1,200	17.5	Full rich to lean	Lean-out; full rich to 5 lb, lean
5	Five-Mode Cycle				Full rich at taxi, T/O climb, App., and taxi
6	Five-Mode Cycle	rylen bes	- Dengan Leure apera t propaga realis passon banada 16 esempesa	di men bada d 3 mala prosperson p	Full rich at taxi, T/O Climb, App., and taxi

Using the data obtained from these tests, bargraphs of the emissions produced by the engine were developed. These bargraphs are a convenient method of indicating an engine's pollutants in the EPA cycle relative to the federal pollutant limit. The Federal pollutant limits for the emissions are as follows

CO	0.042 lb/cycle-RHP
HC	0.0019 lb/cycle-RHP
NO_	0.0015 lb/cycle-RHP

As shown on the bargraph, figure 6, the Seneca II engine (TSIO-360E) exceeded the limits for both CO and HC during the baseline run. This was expected based on the results of laboratory tests conducted during phase I of this program at NAFEC. The baseline tests on the Seneca II indicated that the CO emission level was 102 percent in excess of the limit, and the HC was 57 percent above the limit.

Subsequent tests at 25 hours and at 50 hours indicated some increase in the pollutant level for CO; i.e., from 202 to 220 percent of the federal limit and from 157 percent to 172 percent of the limit for HC. The change in NO_{X} indicated a decline of about 7 percent in the emission level. It should be noted that the three tests shown were run with ambient conditions essentially the same; i.e., the ambient temperatures were within 10° F of each other, and the ambient pressures were within 0.1 inHgA. There was no attempt made to correct the data to a standard-day condition. All data are compared directly in the bargraph presentation.

Figure 6 indicates that the CO and HC measured in the baseline run was within 10 percent of the CO and HC measured after 50 hours of engine operation. A ± 10 -percent band on the baseline reading encompasses all the CO and HC values measured for the EPA cycle throughout the 50-hour period. The NO_x values shown in figure 6 range from 10/72 to 8.2 percent of the federal limit during the 50-hour test period. This indicates a band of ± 1.25 percent for the NO_x.

It is clearly shown in figure 6 that NO_{x} is the least critical of the emissions produced by the piston engines, since it is usually only about 8 to 15 percent of the allowable federal limit.

It is reasonable to state that changes observed in the emission levels during the abbreviated test program cannot be attributed to engine wear, since measurement accuracy and ambient atmospheric differences at the time of testing could have an impact on the emission levels equal to the changes observed in the 50-hour period. An extended program would probably have been able to determine whether engine wear or measurement accuracy was the cause of the emission increase in CO and HC levels shown in figure 6.

Figure 7 is a bargraph which depicts the change in cycle emissions resulting from the major engine overhaul which took place after the 50-hour test. There are three groups of bargraphs shown: (1) the two 50-hour preoverhaul tests, (2) the two sets of postoverhaul tests, and (3) the 50-hour preoverhaul test bargraph constructed from lean-out data with the same F/A ratios which were run during the postoverhaul test. The contrast between the first and second group of bargraphs indicates a very marked change in emissions between the 50-hour and the postoverhaul tests. However, in rigging the reinstalled engine it was found that the full-rich mixture setting of the engine for the postoverhaul tests was leaner than the full-rich setting obtained during the 50-hour tests. Therefore, to compare the emissions on an equal footing, lean-out curves were used to generate cycle information for the 50-hour tests at the same F/A ratios experienced during postoverhaul tests. The third set of bargraphs constructed as described is in good agreement with the postoverhaul results, thus indicating that the extensive overhaul which the engine experienced had no appreciable impact on the emission levels produced by the engine.

FIGURE 6. TSIO-360E EMISSIONS OVER A 50-HOUR TIME PERIOD

FIGURE 7. COMPARISON OF 50-HOUR EMISSIONS WITH POSTOVERHAUL EMISSIONS

BARON B-55 TESTS.

The engine of the Baron aircraft was an IO-470L rated at 260 hp. This is a naturally aspirated fuel-injected engine with a maximum nominal airflow of about 1,550 lb per hour. The Baron was tested three times, and the engine was run in the sequence and at the power levels shown in table 3. The bargraphs for the pollutants measured on this engine are shown in figure 8. These bargraphs show the baseline, the 25-hour test, and the 50-hour test.

At the start of the program, the CO exceeded the EPA standard for the cycle by 61 percent, the HC exceeded the standard by 8 percent, and the $\mathrm{NO_x}$ was 12 percent of the standard. After 24 hours, the CO and HC exceeded the standard by 61 percent and 26 percent, and the $\mathrm{NO_x}$ was 12 percent of the standard. At the 50-hour point, the values for the pollutants were essentially unchanged; i.e., CO, 56 percent over the standard; HC, 22 percent over the standard; and $\mathrm{NO_x}$, 13 percent of the standard.

When it is recognized that the combined overall accuracy of the measurements for pollutants and engine parameters falls in the ± 5 percent range and the impact of ambient conditions for even minor differences in temperature and pressure can contribute additional variations of several percent, then it is reasonable to expect overall variations at 25-hour intervals to vary as much as ± 10 percent, even if there is no degradation change in pollutants produced by the engines. The type of change significant enough to be considered due to degradation would have to at least equal 10 percent and indicate a trend, i.e., a change versus time, which could be plotted over an extended time period.

Based on the limited time period during which the Baron's engine was tested, no appreciable change in pollutant level could be noted. The CO and HC levels remained virtually constant over the 50-hour time period.

TABLE 3. TEST CONDITIONS FOR THE BARON B-55 IO-470L ENGINE

Test Sequence	Power	rpm	Manifold Pressure (inHgA)	Fuel Flow (pph)	Remarks
1	Approach	2,000	21.0	58.0	Lean out; full rich to 12 lbs, lean
2	Climb	2,500	27.0	105.0	Lean out; full rich to 12 lbs, lean
3	Takeoff	2,575	29.0	126.0	Lean out; full rich to 12 lbs, lean
4	Taxi	1,100	15.0	17.0	Lean out; full rich to 4 lbs, lean
5	Five Mode Cycle	-	-	-	Full rich at taxi, T/O, climb, Appr and taxi

FIGURE 8. 10-470L EMISSIONS OVER A 50-HOUR TIME PERIOD

SUMMARY OF RESULTS AND CONCLUSIONS

The results and conclusions drawn from the foreshortened tests conducted in the degradation study can be summarized as follows:

- 1. The limited time period of approximately 50 hours of engine operation was insufficient to establish a definite emission degradation trend for either the Seneca II TSIO-360E or the Beech Baron B-55 IO-470L engines.
- 2. The degree of accuracy of emission measurement attainable on an aircraft-installed engine is comparable to the level of accuracy obtainable on an engine test stand, provided proper instrumentation and test procedures are used. It is essential that accurate fuel flow and manifold pressure measurements be made; typical cockpit instrumentation for these parameters does not provide the degree of accuracy specified by the EPA. If the requirement of provable accuracy of ± 5 percent is imposed, it is essential that a means of measuring engine induction airflow be included in the test design.
- 3. The use of an external supply of cooling air to a static engine installed in an aircraft is essential in emission tests to prevent engine overheat at high power settings. Propeller wash provides insufficient cooling at high power settings.

REFERENCES

- 1. Clean Air Amendments of 1970, Public Law 91-604, 91st Congress, H. R. 17255, December 31, 1970.
- 2. <u>Control of Air Pollution from Aircraft and Aircraft Engines</u>, Federal Register, Volume 43, Number 58, Pages 12614 thru 12634, March 24, 1978.
- 3. <u>Control of Air Pollution from Aircraft and Aircraft Engines</u>, Federal Register, Volume 43, Number 58, Pages 12,614 thru 12,634, March 24, 1978.

APPENDIX A

SENECA II TEST DATA (TSI0-360E ENGINE)

MEASURED F/A RATIO VERSUS THE PERCENT DIFFERENCE BETWEEN THE CALCULATED AND MEASURED F/A RATIO FOR THE SENECA II AIRCRAFT WITH TSIO 360E ENGINE FIGURE A-1.

TABLE A-1. NONSTANDARD BASELINE CYCLE - (CHECKOUT RUNS)

3.0 200.0 2550.0 2.0 30.12 88.0 78.0 0.0 0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	4.0 200.0 2375.0 3.0 30.12 88.0 78.0 0.0 0.185 0.8807 2098.0 274.0 10.3 7.8 0.4	30.12 88.0 78.0 0.0 0.0 0.185 0.8807 2748.0 163.0 9.8 8.4	6.0 200.0 1225.0 5.0 30.12 88.0 78.0 0.0 0.0185 0.8807 17754.0 55.0 8.8
2550.0 2.0 30.12 88.0 78.0 0.0 0.185 0.8807 1938.0 87.0 11.5 7.2 0.4	2375.0 3.0 30.12 88.0 78.0 0.0 0.0 0.185 0.8807 2098.0 274.0 10.3 7.8	1700.0 4.0 30.12 88.0 78.0 0.0 0.0185 0.8807 2748.0 163.0 9.8	1225.0 5.0 30.12 88.0 78.0 0.0 0.0185 0.8807 17754.0
2.0 30.12 88.0 78.0 0.0 0.185 0.8807 1938.0 87.0 11.5 7.2 0.4	3.0 30.12 88.0 78.0 0.0 0.185 0.8807 2098.0 274.0 10.3 7.8	30.12 88.0 78.0 0.0 0.0185 0.8807 2748.0 163.0 9.8	30.12 88.0 78.0 0.0 0.0185 0.8807
30.12 88.0 78.0 0.0 0.0 0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	30.12 58.0 78.0 0.0 0.185 0.8807 2098.0 274.0 10.3 7.8	30.12 88.0 78.0 0.0 0.0185 0.8807 2748.0 163.0 9.8	30.12 88.0 78.0 0.0 0.0185 0.8807 17754.0
88.0 78.0 0.0 0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	88.0 78.0 0.0 0.0 0.185 0.8807 2098.0 274.0 10.3 7.8	88.0 78.0 0.0 0.0185 0.8807 2748.0 163.0 9.8	88.0 78.0 0.0 0.0185 0.8807 17754.0 55.0
88.0 78.0 0.0 0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	88.0 78.0 0.0 0.0 0.185 0.8807 2098.0 274.0 10.3 7.8	88.0 78.0 0.0 0.0185 0.8807 2748.0 163.0 9.8	88.0 78.0 0.0 0.0185 0.8807 17754.0 55.0
78.0 0.0 0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	78.0 0.0 0.0185 0.8807 2098.0 274.0 10.3 7.8	78.0 0.0 0.0185 0.8807 2748.0 163.0 9.8	78.0 0.0 0.0185 0.8807 17754.0 55.0
0.0 0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	0.0 0.0185 0.8807 2098.0 274.0 10.3 7.8	0.0 0.0185 0.8807 2748.0 163.0 9.8	0.0 0.0185 0.8807 17754.0 55.0
0.0185 0.8807 1938.0 87.0 11.5 7.2 0.4	0.0185 0.8807 2098.0 274.0 10.3 7.8	0.0185 0.8807 2748.0 163.0 9.8	0.0185 0.8807 17754.0 55.0
0.8807 1938.0 87.0 11.5 7.2 0.4	0.8807 2098.0 274.0 10.3 7.8	0.8807 2748.0 163.0 9.8	0.8807 17754.0 55.0
87.0 11.5 7.2 0.4	274.0 10.3 7.8	163.0 9.8	55.0
87.0 11.5 7.2 0.4	274.0 10.3 7.8	163.0 9.8	55.0
11.5 7.2 0.4	10.3		8.8
7.2 0.4 52.2	7.8		
0.4 52.2			7.1
		0.4	3.1
	37.0	13.8	8.0
58.7	42.2	15.6	9.1
Measured			
Measured			
1455.0	1049.0	392.0	229.2
1433.6	1033.6	386.2	225.8
132.0	96.0	34.0	19.5
0.0707	0.0707	0.0707	0.0707
0.0728	0.0728	0.0728	0.0728
117.3977	80.6690	30.0823	15.3070
19.1307	14.0832	4.8845	2.5026
136.5284	94.7522	34.9669	17.8096
4.5284	-1.2478	0.9669	-1.6904
0.0921	0.0929	0.0880	0.0864
0.0976	0.0927	0.0923	0.0895
5.9978	-0.2326	4.8813	3.6928
420.0000	420.0000	320.0000	280.0000
44.0	34.0	21.0	18.5
0.	0.	0.	0.
0.8401	8.9190	3.7838	1.3153
1			
219.3035			
0.0091	0.1183	0.0687	0.1758
	0.0289	0.0076	0.0010
0.0008			78-25-A-
4	213.2096	213.2096 0.0008 0.0289	0.0008 0.0289 0.0076

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

TABLE A-2. LEAN-OUT AT 25 PERCENT POWER - (NONSTANDARD APPROACH)

MODE NUMBER	5.0	5.0	5.0	5.0
RATED POWER	200.0	200.0	200.0	200.0
REV PER MIN	1725.0	1690.0	1500.0	1850.0
RUN NUMBER	6.0	7.0	8.0	9.0
BAROMET PRES	30.12	30.12	30-12	30-12
DRY AIR TEMP	88.0	88.0	. 88.0	88.C
WET BULB TEM	78.0	78.0	78.0	78.0
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC.HUMID.	0.0185	0.0185	0.0185	0.0185
VAPOR PRESS.	0.8807	0.8807	0.8807	0.8807
HC CONC-PPM	2863.0	916.0	579.8	2262.0
NOX CONC-PPM	180.0	1003.0	789.0	248.0
CO CONC-PERC	9.4	2.1	0.4	8.7
CO2 CON-PERC	8.6	12.7	11.0	9.0
02 CONC-PERC	0.7	2.0	1.9	1.0
MOLS OUT DRY	14.9	13.8	13.8	16.1
MOLS OUT WET	16.7	15.5	16.6	18.1
SHAFT TORQUE		leasured		
HORSEPOWER		Measured		
ENG AIR FLOW	424.0	423.0	445.0	460-0
DRY AIR FLOW	417.8	416.8	438.4	453.2
ENG FUEL FLO	36.0	27.0	26.0	40.6
DRY AIR DENS	0.0707	0.0707	0.0707	0.0707
WET AIR DENS	0.0728	0.0728	0.0728	0.0728
5×11 54.00041	72 40//	21 5405	10.0407	
EXH CARBON EXH HYDROGEN	32.1066	24.5195 3.5141	18.9687 5.6738	34.3667 5.3478
EXH FUEL FLO	37.1121	28.0336	24.6426	39.7145
DIFF WEC-WEM	1.1121	1.0336	-1.3574	-0.8855
		1.0330	133714	
MEAS F/A RAT	0.0862	0.0648	0.0593	0.0896
CAL F/A RAT	0.0903	0.0680	0.0560	0.0867
DIFF M-C F/A	4.7556	5.0250	-5.5989	-3.1788
CYL TEMP MAX	275.0000	295.0000	310.0000	300.0000
MAN PRES.HGA	21.0	21.5	23.0	22.9
EXH GAS TEMP	0.	0.	0.	0.
CO LBS/MODE	3.9086	0.7981	0.1472	3.9397
HC LBS/MODE	0.0768	0.0226	0.0154	0.0657
			0-0393	0-0135
NO LBS/MODE	0.0090	0-0464	11-11343	

THIS PAGE IS BEST QUALITY PRACTICABLE

TABLE A-3. LEAN-OUT AT CLIMB POWER

DE NUMBER	4.0	4.0	4.0
TED POWER	200.0	200.0	200.0
V PER MIN	2425.0	2495.0	2495.0
NUMBER	10.0	11.0	12.0
ROMET PRES	30.12	30-12	30-12
Y AIR TEMP	88.0	88.0	88.0
T BULB TEM	78.0	78.0	78.0
D AIR TEMP	0.0	0.0	0.0
EC.HUMID.	0.0185	0.0185	0.0185
POR PRESS.	0.8807	0.8807	0.8807
CONC-PPM	2063.0	1562.0	1365.0
X CONC-PPM	134.0	330.0	569.0
CONC-PERC	10.3	7.4	5.6
2 CON-PERC	8.0	9.8	10.9
CONC-PERC	1.1	1.2	0.0
LS OUT DRY	38.6	38.8	36.7
LS OUT WET	42.9	43.5	42.5
		Magaumad	
AFT TORQUE		Measured	
RSEPOWER	Not	Measured	
G AIR FLOW	1081.0	1123.0	1101-0
Y AIR FLOW	1065.1	1106.5	1084.8
G FUEL FLO	95.0	94.5	89.0
Y AIR DENS	0.0707	0.0707	0.0707
T AIR DENS	0.0728	0.0728	0.0728
H CARBON	85.0864	80.5948	72.9957
H HYDROGEN	12.4754	12.2775	13.5929
H FUEL FLO	97.5618	92.8723	86.5886
FF WFC-WFM	2.5618	-1.6277	-2.4114
	2.2010	-140217	
AS F/A RAT	0.0892	0.0854	0.0820
L F/A RAT	0.0919	0.0826	0.0792
FF M-C F/A	3.0331	-3.3263	-3.4363
L TEMP MAX	380.0000	420.0000	450.0000
N PREST HGA	34.0	34.7	34.5
H GAS TEMP	0.	. 0.	0.
LBS/MODE	9.2998	6-7438	4-8374
LBS/MODE	0.1182	0.0909	0.0776
LBS/MODE	0-0144	0.0359	0.0605
			78-25-A-3

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

TABLE A-4. STANDARD FIVE-MODE CYCLE - BASELINE RUN

NO LBS/MODE	0.0035	3000.0	0.0149	0-0112	78-25-Ā-
PERCENT OF EPA	STD FOR HC	157.8578			
HC LBS/MODE HC LBS/CYC-RHP		0.0085	0.1103	0.0722	0.102
PERCENT OF EPA	SID FOR CO	201.6261			
CO LBS/CYC-RHP	0.0847	204 / 2/4			
CO LBS/MODE	2.9433	0.7497	8.2615	3,9815	1.000
EXH GAS TEMP	0.	0.	0.	0.	0.
MAN PRES. HGA	17.5	40.0	34.0	23.0	17.
CYL TEMP MAX	280.0000	440.0000	460.0000	380.0000	280.000
DIFF M-C F/A	-6.6752	3.5222	3.8023	-4.6230	-1.720
CAL F/A RAT	0.0858	0.0932	0.0894	0.0855	0.085
MEAS F/A RAT	0.0919	0.0900	0.0861	0.0896	0.087
DIFE WEC-WEM	-2.1968	3.2924	2.5895	-1.8233	-1.387
EXH FUEL FLO	17.3032	134.2924	97.5895	43.1767	17.012
EXH CARBON EXH HYDROGEN	14.6241	115.7119 18.5805	83.7544 13.8351	36.6114 6.5653	14.568
WET AIR DENS	0.0718	0.0718	0.0718	0.0718	0.071
DRY AIR DENS	0.0699	0.0699	0.0699	0.0699	0.0699
ENG FUEL FLO	19.5	131.0	95.0	45.0	18.4
DRY AIR FLOW	212.1	1455.4	1103.1	502.2	211.
HORSEPOWER ENG AIR FLOW	215.0	1475.0	1118.0	509.0	214-0
SHAFT TORQUE		easured easured			
MOLS OUT WET	8.5	58.9	44.2	20-1	8.6
MOLS OUT DRY	7.3	52.3	39.0	17.5	7.4
OZ CONC-PERC	1.0	0.4	0.4	0.4	1.5
CO2 CON-PERC	9.4	8.2	8.8	9.3	9.2
NOX CONC-PPM CO CONC-PERC	7.1	10.2	9.1	8.1	7.3
HC CONC-PPM	11091.0	1809.0	1868.0 135.0	186-0	64.0
				2234.0	11253.0
SPEC.HUMID.	0.0166	0.7958	0.7958	0.7958	0.7958
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0166
WET BULB TEM	78.0	78.0	78.0	78.0	78.0
DRY AIR TEMP	96.0	96.0	96.0	96.0	96.0
BAROMET PRES	30.12	30.12	30.12	30.12	30.12
KUN NUMBER	13.0	14.0			
REV PER MIN RUN NUMBER	1210.0	2550.0	15.0	16.0	18.0
RATED POWER	200-0	200.0	200.0	1900.0	1250.0
MODE NUMBER	2.0	3.0	4.0	5.0	200-0

TABLE A-5. STANDARD FIVE-MODE CYCLE 25-HOUR TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	200.0	200.0	200.0	200.0	200.0
REV PER MIN	1200.0	2525.0	2450.0	1900.0	1200.0
RUN NUMBER	20.0	21.0	22.0	23.0	45.0
BAROMET PRES	30.02	30.02	30.02	30-02	30-02
DRY AIR TEMP	84.0	84.0	84.0	84.0	84.0
WET BULB TEM	78.0	78.0	78.0	78.0	78.0
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0
SPEC.HUMID.	0.0194	0.0194	0.0194	0.0194	0.0194
VAPOR PRESS.	0.9231	0.9231	0.9231	0.9231	0.9231
				2424 0	44707.0
HC CONC-PPM	10559.0	1920.0	2002.0	2131.0	11387.0
NOX CONC-PPM	62.0	86.0	131.0	249.0	65.0
CO CONC-PERC	7.6	10.7	9.7	7.9 9.4	7.2
CO2 CON-PERC	9.6	8.0	8.6		
02 CONC-PERC	0.4	0.2	0.2	0.2	0.5
MOLS OUT DRY	7.0	52.9	38.5	17.2	6.9
MOLS OUT WET	8.0	59.7	43.9	19.6	7.9
	Not 1	Measured			
SHAFT TORQUE		Measured			
HORSEPOWER		1490.0	1097.0	502.0	203.0
ENG AIR FLOW	204.0	1466.9	1080.0	494.2	199.9
DRY AIR FLOW	200.8	135.0	102.0	41.0	17.2
ENG FUEL FLO	17.5		0.0709	0.0709	0.0709
DRY AIR DENS	0.0709	0.0709	0.0709	0.0731	0.0731
WET AIR DENS	0.0731	0.0731	U.U.J.	U.U.JI	0.013.
	44 4366	119.0596	84.3003	35.8751	14.2242
EXH CARBON	14.4255	19,2113	14.5017	6.1812	2.3457
EXH HYDROGEN	2.4491	138.2708	98.8020	42.0563	16.5700
EXH FUEL FLO	16.8746 -0.6254	3.2708	-3.1980	1.0563	-0-6300
DIFF WFC-WFM	-0.0274	3.2.03	711700		
MEAS F/A RAT	0.0871	0-0920	0.0944	0.0830	0_0861
CAL F/A RAT	0.0899	0.0955	0.0910	0.0863	0.0891
DIFF M-C F/A	3.1316	3.7474	-3.6449	4.0152	3.5391
				<u></u>	
CYL TEMP MAX	275.0000	440.0000	440.0000	350.0000	275.0000
MAN PRES. HGA	17.5	40.0	34-5	24.0	17.8
EXH GAS TEMP	762.0	1265.0	1261.0	1103.0	803.0
CO LBS/MODE	2.9791	0.7953	8.6718	3.8218	0.9312
CO LBS/CYC-RHP	0.0860				
PERCENT OF EPA		204.7525			
HC LBS/MODE	0.2748	0.0092	0.1174	0.0671	0.0979
HC LBS/CYC-RHP	0.0028				
PERCENT OF EPA	SID FUR HL	147.0424			
NO LBS/MODE	0.0030	0.0008	0.0144	0.0147	0.0010
NO LBS/CYC-RHP	0.0002				78-25-A-
NO LUSTEIL WILL					

TABLE A-6. LEAN-OUT AT APPROACH - 25-HOUR TEST

MODE NUMBER	5.0	5.0	5.0	5.0
RATED POWER	200.0	200.0	200.0	200.0
REV PER MIN	1900.0	1900.0	1900.0	1900.0
RUN NUMBER	24.0	25.0	26.0	27.0
BAROMET PRES	30.02	30.02	30.02	30.02
DRY AIR TEMP	84.0	84.0	84.0	84.0
WET BULB TEM	78.0	78.0	78.0	78.0
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC HUMID	0.0194	0.0194	0.0194	0.0194
VAPOR PRESS.	0.9231	0.9231	0.9231	0.9231
HC CONC-PPM	1942.0	1682.0	1409.0	927.0
NOX CONC-PPM				
	233.0	400.0	684-0	1076-0
CO CONC-PERC	8.0	6.2	4.4	2.3
CO2 CON-PERC	9.4	10.3	11.6	12.1
02 CONC-PERC	0.3	0.3	0.3	0.7
MOLS OUT DRY	17.3	16.9	16.4	15.9
MOLS OUT WET	19.7	19.4	18.8	18.
SHAFT TORQUE	Not	Measured		
HORSEPOWER	Not	Measured		
ENG AIR FLOW	504.0	503.0	497.0	494.0
DRY AIR FLOW	496.2	495.2	489.3	486.3
ENG FUEL FLO	41.0	38.5		
DRY AIR DENS			36.0	34.0
WET AIR DENS	0.0709	0.0709	0.0709	0.0709
WE! AIR DENS	0.0731	0.0731	0.0731	0.0731
EXH CARBON	36.1635	** ***		
EXH HYDROGEN		33.5543	31.5050	28.7726
EXH FUEL FLO	6.1064	6.0126	5.4811	5.1290
	42.2699	39.5668	36.9861	33.9016
DIFF WFC-WFM	1.2699	1.0668	0.9861	-0.0984
MEAS F/A RAT	0.0826	0.0777	0.0736	0.0699
CAL F/A RAT	0.0862	0.0808	0.0763	0.0699
DIFF M-C F/A	4.3593	3.9869	3.7069	0.0293
CYL TEMP MAX	305.0000	315.0000	325.0000	335,0000
MAN PRES. HGA	23.9	23.9	23.9	23.9
EXH GAS TEMP	1094.0	1118.0	1151.0	1184.0
CO LBS/MODE	3.8582	2.9522	2.0113	0 0022
HC LBS/MODE	0.0613	0.0523		0.9873
NO LBS/MODE	0.0013		0.0424	0.0272
as contrious	U.U.138	0.0232	0.0385	0.0591

TABLE A-7. LEAN-OUT AT CLIMB - 25-HOUR TEST

200-	200-0	200.0	200.0	4.0 200.0	MODE NUMBER Rated Power
2450 -	2450.0	2450.0	2460.0	2460.0	REV PER MIN
32.	31.0	30.0	29.0	28.0	RUN NUMBER
30.0	30.02	30.02	30.02	30.02	BAROMET PRES
84.	84.0				The same of the sa
78.	78.0	84.0	84.0	84.0	RY AIR TEMP
0.		78.0	78.0	78.0	SET BULB TEM
0-019	0.0	0.0	0.0	0.0	IND AIR TEMP
0.923	0.9231	0.0194	0.0194	0.0194	SPEC.HUMID.
0.723	0.9231	0.9231	0.9231	0.9231	VAPOR PRESS.
1884.	2003.0	1995.0	1862.0	1596.0	IC CONC-PPM
160-	115.0	118.0	155.0	273.0	IOX CONC-PPM
8.	9.9	10.1	8.9	7.1	CO CONC-PERC
8.	8.2	8.1	8.8	9.7	OZ CON-PERC
0.	0.2	0.2	0.2	0.2	OZ CONC-PERC
38.	38.6	39.1	39.0	38.3	MOLS OUT DRY
44.	44.2	44.7	44.9	44.4	MOLS OUT WET
			Measured	Not	SHAFT TORQUE
			Measured	Not	ORSEPOWER
1115-	1103.0	1112.0	1128.0	1130.0	NG AIR FLOW
1097.	1085.9	1094.8	1110.5	1112.5	RY AIR FLOW
100-0	101.0	103.0	102.0	96.5	NG FUEL FLO
0.070	0-0709	0-0709	0.0709	0.0709	RY AIR DENS
0.073	0.0731	0.0731	0.0731	0.0731	ET AIR DENS
80-509	83.8624	85-8603	82.6812	77.3751	XH CARBON
15.281	15.0204	15.0311	15.2511	14.9279	XH HYDROGEN
95.791	98.8827	100.8914	97.9323	92.3030	XH FUEL FLO
-4.208	-2.1173	-2.1086	-4.0677	-4.1970	OIFF WFC-WFM
0.091	0.0930	0.0941	0.0918	0.0867	IEAS F/A RAT
0.087	0.0916	0.0926	0.0878	0.0823	AL F/A RAT
-4.3830	-1.4926	-1.6284	-4.3841	-5.1288	DIFF M-C F/A
420.000	410.0000	395.0000	385.0000	380.0000	YL TEMP MAX
34.	34.5	34.3	34.2	34.2	IAN PRES. HGA
1280.0	1317.0	1284.0	1261.0	1258.0	XH GAS TEMP
7.796	8.9292	9.2702	8.0616	6.3578	O LBS/MODE
0.111	0.1185	0.1191	0.1118	0.0946	C LBS/MODE
0.0178	0.0127	0.0132	0.0174	0.0303	O LAS/MODE
78-25-A-7					

TABLE A-8. LEAN-OUT AT TAKEOFF - 25-HOUR TEST

MODE NUMBER	3.0	3.0	3.0
RATED POWER	200.0	200.0	200.0
REV PER MIN	2500.0	2500.0	2500.0
RUN NUMBER	33.0	34.0	35.0
BAROMET PRES	30.02	30.02	30.02
DRY AIR TEMP	84.0	84.0	84.0
WET BULB TEM	78.0	78.0	78.0
IND AIR TEMP	0.0	0.0	0.0
SPEC.HUMID.	0.0194	0.0194	0.0194
VAPOR PRESS.	0.9231	0.9231	0.92,31
HC CONC-PPM	1935.0	1892.0	1575.0
NOX CONC-PPM	72.0	98.0	149.0
CO CONC-PERC	11.3	10.3	8.7
CO2 CON-PERC	7.3	7.8	. 8 . 9
OZ CONC-PERC	0.2	0.2	0.2
MOLS OUT DRY	52.6	51.3	50.4
MOLS OUT WET	59.7	58.7	57.7
SHAFT TORQUE		Measured	
HORSEPOWER		Measured	
ENG AIR FLOW	1479.0	1462.0	1459.0
DRY AIR FLOW	1456.1	1439.3	1436.4
ENG FUEL FLO	134.0	131.0	125.0
DRY AIR DENS	0.0709	0.0709	0.0709
WET AIR DENS	0.0731	0.0731	0.0731
EXH CARBON	117.4133	111.5402	106.4258
EXH HYDROGEN	23.1928	19.9992	19.0669
EXH FUEL FLO	137.6061	131.5394	125.4928
DIFF WFC-WFM	3.6061	0.5394	0.4928
MEAS F/A RAT	0.0920	0.0910	0.0870
CAL F/A RAT	0.0972	0.0930	0.0880
DIFF M-C F/A	5.6288	2.2310	1.0724
CYL TEMP MAX	420.0000	435.0000	460.0000
MAN PRES. HGA	40.0	40.0	40.0
EXH GAS TEMP	1267.0	1291.0	1328.0
CO LBS/MODE	0.8305	0.7369	0.6152
HC LBS/MODE	0.0093	0.0089	0.0073
NO LBS/MODE	0.0006	0.0009	0.0013

78-25-A-8

TABLE A-9. FIVE-MODE CYCLE - 25-HOUR TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	200.0	200.0	200.0	200.0	200.0
REV PER MIN	1200.0	2500.0	2450.0	1900.0	1200.0
RUN NUMBER	36.0	37.0	38.0	39.0	40-0
BAROMET PRES	30.02	30.02	30.02	30.02	30.02
DRY AIR TEMP	84.0	84.0	84.0	84.0	84.0
ET BULB TEM	78.0	78.0	78.0	78.0	78.0
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0
PEC.HUMID.	0.0194	0.0194	0.0194	0.0194	0.0194
APOR PRESS.	0.9231	0.9231	0.9231	0.9231	0.9231
HC CONC-PPM	11062.0	1809.0	1927.0	2105.0	11192.0
NOX CONC-PPM	68.0	88.0	. 123.0	235.0	68.0
CO CONC-PERC	7.2	10.8	9.8	8.1	7.2
COZ CON-PERC	9.7	7.9	8.7	9.8	9.8
22 CONC-PERC	0.4	0.2	0.2	2.0	0.5
OLS OUT DRY	6.9	53.6	39.3	16.8	6.7
MOLS OUT WET	8.0	60.5	44.4	18.9	7.7
	Not	Measured			<u> </u>
SHAFT TORQUE					
HORSEPOWER		Measured	1117.0	485.0	197.0
ENG AIR FLOW	204.0	1509.0	1099.7	477.5	193.9
DRY AIR FLOW	200.8	137.0	101.5	41.0	17.0
DRY AIR DENS	0.0709	0.0709	0.0709	0-0709	0-0709
JET AIR DENS	0.0731	0.0731	0.0731	0.0731	0.0731
EXH CARBON	14.1295	120.7314	87-4624	36-0195	13.6495
EXH HYDROGEN	2.4793	19.5776	14.0401	5.6923	2.3673
EXH FUEL FLO	16.6088	140.3090	101.5025	41.7119	16-0168
DIFF WFC-WFM	-0.8912	3.3090	0.0025	0.7119	-0.9832
MEAS F/A RAT	0.0871	0.0922	0.0923	0.0859	0.0877
CAL F/A RAT	0.0887	0.0957	0.0922	0.0876	0.0883
DIFF M-C F/A	1.7578	3.7639	-0-1443	1.9950	0.7651
*					300.0000
	275.0000	440.0000	440.0000	350.0000	280.0000
MAN PRES. HGA	17.8	40.0	440.0000 34.5	350.0000 23.6	17.8
MAN PRES. HGA			440.0000	350.0000	
MAN PRES.HGA EXH GAS TEMP	17.8 790.0	1269.0	440.0000 34.5 1261.0	350.0000 23.6	17.8
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE	17.8 790.0	1269.0	440.0000 34.5	350.0000 23.6 1102.0	17.8 806.0
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP	17.8 790.0 2.8150 0.086	1269.0	440.0000 34.5 1261.0	350.0000 23.6 1102.0	17.8 806.0
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP	17.8 790.0 2.8150 0.086	40.0 1269.0 • 0.8128	440.0000 34.5 1261.0	350.0000 23.6 1102.0	17.8 806.0 0.9007
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE	17.8 790.0 2.8150 0.086 SID FOR CO	0.8128 6 206.0774	440.0000 34.5 1261.0	350.0000 23.6 1102.0	17.8 806.0
CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/CYC-RHP PERCENT OF EPA	17.8 790.0 2.8150 0.086 SID FOR CO	0.8128 6 206.0774	440.0000 34.5 1261.0 8.9761	350.0000 23.6 1102.0 3.8059	17.8 806.0 0.9007
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE HC LBS/CYC-RHP	17.8 790.0 2.8150 0.086 SID FOR CO	0.8128 6 206.0774	440.0000 34.5 1261.0 8.9761	350.0000 23.6 1102.0 3.8059	17.8 806.0 0.9007
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE HC LBS/CYC-RHP PERCENT OF EPA	17.8 790.0 2.8150 0.086 SID FOR CO	0.8128 6 206.0774	440.0000 34.5 1261.0 8.9761	350.0000 23.6 1102.0 3.8059	17.8 806.0 0.9007
MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE HC LBS/CYC-RHP	17.8 790.0 2.8150 0.086 SID FOR CO 0.2879 0.002 SID FOR HC	0.8128 6 206.0774 0.0088 149.6924	440.0000 34.5 1261.0 8.9761	350.0000 23.6 1102.0 3.8059	0.9007 0.0938

TABLE A-10. LEAN-OUT AT TAXI - 25-HOUR TEST

MODE NUMBER	2.0	2.0	2.0	2.0
RATED POWER	200.0	200.0	200.0	200.0
REV PER MIN	1200.0	1220.0	1200.0	1200.0
RUN NUMBER	41.0	42.0	43.0	44.0
BAROMET PRES	30.02	30.02	30.02	30-02
DRY AIR TEMP	84.0	84.0	84.0	84.0
WET BULB TEM	78.0	78.0	78.0	78.0
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC.HUMID.	0.0194	0.0194	0.0194	0.0194
VAPOR PRESS.	0.9231	0.9231	0.9231	0.9231
us saus nou	24247.0	9950 5	6090-0	4776-0
HC CONC-PPM	24213.0	8859.3		
NOX CONC-PPM	43.0	77.0	56.0	60.0
CO CONC-PERC	8.7	7.8	6.2	5.8
CO2 CON-PERC	7.7	9.4	10.2	10.8
OZ CONC-PERC	2.4	0.3	0.5	0.6
MOLS OUT DRY	7.3	7.0	6.8	6.8
MOLS OUT WET	8.3	8.1	7.9	7.8
SHAFT TORQUE	Not 1	Measured		
HORSEPOWER	Not N	Measured		
ENG AIR FLOW	209.0	206.0	202.0	201.0
DRY AIR FLOW	205.8	202.8	198.9	197-9
ENG FUEL FLO	19.0	17.5	17.0	16.5
DRY AIR DENS	0.0709	0.0709	0.0709	. 0.0709
WET AIR DENS	0.0731	0.0731	0.0731	0.0731
EXH CARBON	14.4247	14.5091	13,3415	13.4185
EXH HYDROGEN	2.2727	2.5508	2.5208	2.3371
		17.0600	15.8623	15.7556
EXH FUEL FLO	16.6975			
DIFF WFC-WFM	-2.3025	-0.4400	-1.1377	-0.7444
MEAS F/A RAT	0.0923	0.0863	0.0855	0.0834
CAL F/A RAT	0.0955	0.0893	0.0816	0.0806
DIFF M-C F/A	3.3810	3.4404	-4.5324	-3.3253
CYL TEMP MAX	270.0000	275.0000	280.0000	285.0000
MAN PRES. HGA	18.5	17.5	17.5	17.5
EXH GAS TEMP	740.0	771.0	792.0	786.0
CO LBS/MODE	3.5752	3.0564	2.3492	2.1909
HC LBS/MODE	0.6656	0.2326	0.1549	0.1195
	0.0022	0.0038	0.0027	0.0028
NO LBS/MODE				
NO LESTMODE	0.000			78-25-A-1

TABLE A-11. LEAN-OUT AT APPROACH - 50-HOUR TEST

MODE NUMBER	5.0	5.0	5.0	5.
RATED POWER	200.0	200.0	200.0	200-
REV PER MIN	1900.0	1925.0	1900.0	1875.
RUN NUMBER	46.0	47.0	48.0	49.
BAROMET PRES	30.01	30.01	30.01	30.01
DRY AIR TEMP	73.0	73.0	73.0	73.0
WET BULB TEM	62.0	62.0	62.0	62.0
IND AIR TEMP	0.0	0.0	0.0	0-0
SPEC.HUMID.	0.0095	0.0095	0.0095	0.009
VAPOR PRESS.	0.4546	0-4546	0-6566	0.454
HC CONC-PPM	1639.0	1497.0	1050-0	502-0
NOX CONC-PPM	273.0	631.0	1043.0	1398.0
CO CONC-PERC	7.3	4.6	2.8	1-
CO2 CON-PERC	9.7	11.1	12.6	13.4
02 CONC-PERC	0.4	0.4	0.5	1.0
MOLS OUT DRY	17.8	17.1	16.9	16.5
MOLS OUT WET	20.5	19.9	19.4	18.8
SHAFT TORQUE	Not N	leasured		
HORSEPOWER	Not N	leasured		
ENG AIR FLOW	520.0	515.0	515.0	511.0
DRY AIR FLOW	516.0	511.1	511.1	507-1
ENG FUEL FLO	43.5	39.5	36.9	33.1
DRY AIR DENS	0.0735	0.0735	0.0735	0.0739
WET AIR DENS	0.0746	0.0746	0.0746	0.0746
EXH CARBON	36.4784	32.0893	31-1394	28.7473
EXH HYDROGEN	6.5308	6.3234	5.4748	4.8568
EXH FUEL FLO	43.0092	38-4127	36.6142	33.6041
DIFF WFC-WFM	-0.4908	~1.0873	-0.2558	0.4791
MEAS F/A RAT	0.0843	0.0773	0.0721	0.045
CAL F/A RAT	0.0834	0.0750	0.0717	0.0653
DIFF M-C F/A	-1.0986	-2.9536	-0.6060	2.3524
CYL TEMP MAX	295.0000	300.0000	300.0000	310.0000
MAN PRES. HGA	23.5	23.5	23.7	24.0
EXH GAS TEMP	1093.0	1143.0	1176.0	1203.0
CO LBS/MODE	3-6488	2-1915	1.3135	0.5036
HC LBS/MODE	0.0604	0.0477	0.0326	0.0151
NO LBS/MODE	0.0168	0.0376	0-0605	0.0151
				78-25-A-11

TABLE A-12. LEAN-OUT AT CLIMB - 50-HOUR TEST

MODE NUMBER	4.0	4.0	4.0	4.1
RATED POWER	200.0	200.0	200.0	200.
REV PER MIN	2450.0	2475.0	2475.0	2425.
RUN NUMBER	50.0	51.0	52.0	53.0
BAROMET PRES	30.01	30.01	30.01	30.0
DRY AIR TEMP	73.0	73.0	73.0	73.
WET BULB TEM	62.0	0.59	62.0	62.
SPEC.HUMID.	0.0	0.0_	0.0	0.1
VAPOR PRESS.	0.0095	0.0095	0.0095	0.009
THE UNITED ST	0.4190	0.4546	0.4546	0.454
HC CONC-PPM	1933.0	1919.0	1602-0	1239.
NOX CONC-PPM	84.0	86.0	173.0	348.
CO CONC-PERC	10.2	10.1	7.9	5.
COZ CON-PERC	7.9	7.7	9.2	10.
OZ CONC-PERC	0.3	0.2	0.2	0.1
MOLS OUT DRY	39.7	39.3	38.4	37.1
MOLS OUT WET	45.2	45.0	44.0	43.
SHAFT TORQUE	Not	Measured		
HORSEPOWER	Not	Measured		
ENG AIR FLOW	1120.0	1115.0	1115.0	1104.0
DRY AIR FLOW	1111.5	1106.5	1106.5	1095
ENG FUEL FLO	100.5	98.0	91.0	85.0
DRY AIR DENS	0.0735	0.0735	0-0735	0.073
WET AIR DENS	0.0746	0.0746	0.0746	0.074
EXH CARBON	86.3942	84.1478	70 7004	
EXH HYDROGEN	15.1521	15.4327	78.7801	71.8186
EXH FUEL FLO	101.5463	99.5806	93.1096	86.086
DIFF WFC-WFM	1.0463	1.5806	2.1096	1.086
MEAS F/A RAT	0.0904	0.0886	0.0822	0.0776
CAL F/A RAT	0.0930	0.0923	0.0852	0.0793
DIFF M-C F/A	2.8331	4.2661	3.6510	2.188
CYL TEMP MAX	390.0000	400.0000	420.0000	435.0000
MAN PRES. HGA	34.2	34.8	34.5	34.2
EXH GAS TEMP	1249. 0000	1420.0	1465.0	1520.0
	9.4884	9.2597	7.0505	5.1131
HC LBS/MODE	0.1169	0.1156	0.0943	
CO LBS/MODE MC LBS/MODE NO LBS/MODE				5.1131 0.0713 0.0374

TABLE A-13. LEAN-OUT AT TAKEOFF - 50-HOUR TEST

MODE NUMBER	3.0	3.0	3.0
RATED POWER	200.0	200.0	200.0
REV PER MIN	2500.0	2500-0	2500-0
RUN NUMBER	54.0	55.0	56.0
BAROMET PRES	30.01	30.01	30.01
DRY AIR TEMP	73.0	73.0	73.0
WET BULB TEM	62.0	62.0	62.0
IND AIR TEMP	0.0	0.0	0.0
SPEC. HUMID.	0.0095	0.0095	0.0095
VAPOR PRESS.	0.4546	0.4546	U-4740
	4944 0	1562-0	1396-0
HC CONC-PPM	1864-0 55-0	94.0	149.0
NOX CONC-PPM	11.1	9.3	7.8
CO CONC-PERC	7.2	8.4	9.1
CO2 CON-PERC	0.2	0.1	0.1
OZ CONC-PERC			
MOLS OUT DRY	53.2	52.1	50.1
MOLS OUT WET	60.7	59.6	58.1
	Not N	Measured	
SHAFT TORQUE			
HORSEPOWER		Measured	1462.0
ENG AIR FLOW	1490.0	1488.0	1450.9
DRY AIR FLOW	1478.7	1476.7	122.0
ENG FUEL FLO	136.0	0.0735	0-0735
DRY AIR DENS	0.0746	0.0746	0.0746
			. 101 /3/9
EXH CARBON	116.9086	111.0002	19.9604
EXH HYDROGEN	21.0738	20.0654	121.3851
EXH FUEL FLO	137.9825	2.0656	-0.6149
DIFF WFC-WFM	1.4023	2.0070	
	, , , , , , ,	0.0874	0.0841
MEAS FIA RAT	0.0920	0.0901	0.0844
CAL F/A RAT	4.5008	3.1320	0.3168
DIFF M-C F/A	4.7000		
CYL TEMP MAX	440.0000	450.0000	455.0000
MAN PRES. HGA	40-0	40.0	1351.0
EXH GAS TEMP	1267.0	1309.0	1351.0
CO LBS/MODE	0.8261	0.6811	0.5447
HC LBS/MODE	0.0091	0.0075	0.0065
			0.0013
NO LBS/MODE	0.0005	0.0008	78-25-A-13

TABLE A-14. LEAN-OUT AT TAXI - 50-HOUR TEST

MODE NUMBER	2.0.	2.0	2.0	2.0
RATED POWER	200.0	200.0	200.0	200.0
REV PER MIN	1200-0	1225.0	1175-0	1150-0
RUN NUMBER	58.0	59.0	60.0	61.0
BAROMET PRES	30.01	30.01	30.01	30.01
DRY AIR TEMP	73.0	73.0	73.0	73.0
WET BULB TEM	62.0	62.3	- 62.0	62.0
IND AIR TEMP	0.0	.0.0	0.0	0.0
SPEC.HUMID.	0.0095	0.0095	0.0095	0.0095
VAPOR PRESS.	0.4546	C.4546	0.4546	0.4546
HC CONC-PPM	15629.0	4146.0	5413.0	27227.0
NOX CONC-PPM	54.0	74.0	86.0	35.0
CO CONC-PERC	7.9	5.7	3.2	8.0
CO2 CON-PERC	8.5	10.4	10.2	6.9
OZ CONC-PERC	0.9	0.4	2.6	2.9
MOLS OUT DRY	6.6	. 5.5	6.3	6.9
MOLS OUT WET	7.7	7.5	7.3	8.1
SHAFT TORQUE	Not N	leasured		
HORSEPOWER	Not N	leasured		
ENG AIR FLOW	192.0	193.0	191.0	200.0
DRY AIR FLOW	190.5	191.5	189.5	198.5
ENG FUEL FLO	17.0	15.0	12.8	17.9
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735
WET AIR DENS	0.0746	0.0746	0.0746	0.0746
EXH CARBON	12.9930	12.5043	10-0976	12.3496
EXH HYDROGEN	2.4967	2,3755	2.1043	2.4669
EXH FUEL FLO	15.4897	14.8799	12,2019	14.8165
DIFF WFC-WFM	-1.5103	-0.1201	-0.5981	-3.0835
MEAS F/A RAT	0.0892	0.0783	0.0675	0.0902
CAL F/A RAT	0.0911	0.0798	0.0669	0.0929
DIFF M-C F/A	2.0953	1.8341	-0.8669	3.0124
CYL TEMP MAX	280,0000	285.0000	295.0000	280,0000
MAN PRES. HGA	17.8	17.0	18.0	18-1
EXH GAS TEMP	770.0	777.0	777.0	722.0
	2 2000	2.0736	1.1291	3.0915
CO LBS/MODE	2,9080	C.U(30		
CO LBS/MODE	0.3939	0.1003	0.1270	0.7308

78-25-A-14

TABLE A-15. FIVE-MODE CYCLE - 50-HOUR TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	. 200.0	200.0	200.0	200.0	200.0
REV PER MIN	1200.0	2525.0	2450-0	1900.0	1200.0
RUN NUMBER	62.0	63.0	64.0	65.0	66.0
BAROMET PRES	30.01	30.01	30.01	30.01	30.01
DRY AIR TEMP	73.0	73.0	73.0	73.0	73.0
WET BULB TEM	62.0	62.0	62.0	62.0	62.0
IND AIR TEMP	0.0	0.0	0.0	0_0_	
SPEC.HUMID.,	0.0095	0.0095	0.0095	0.0095	0.0099
VAPOR PRESS.	0.4546	0.4546	0.4546	0.4546	0.4546
HC CONC-PPM	13648.0	1880.0	2001.0	2124.0	12172-0
NOX CONC-PPM	45.0	68.0	90.0	175.0	55.0
CO CONC-PERC	8.4	10.8	10-1	8-5	8.
COZ CON-PERC	7.9	7.6	7.9	8.7	8.5
02 CONC-PERC	1.4	0.2	0.2	5.0	0.9
MOLS OUT DRY	6.8	53.4	39.2	17.9	6.8
MOLS OUT WET	7.9	60.7	44.8	20.7	7.9
SHAFT TORQUE	Not	Measured			
HORSEPOWER	Not	Measured			
ENG AIR FLOW	195.0	1496.0	1110.0	518.0	196.0
DRY AIR FLOW	193.5	1484.6	1101.6	514.1	194.5
ENG FUEL FLO	17.7	136.0	99.0	44.0	17.8
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735	0.0739
WET AIR DENS	0.0746	0.0746	0.0746	0.0746	0.0746
EXH CARBON	13.3188	118.1625	85.1265	36.9376	13.7196
EXH HYDROGEN	2.5460	20.4484	15.1266	7.0012	2.5489
EXH FUEL FLO	15.8648	138.6109	100.2531	43.9388	16.268
DIFF WFC-WFM	-1.8352	2.6109	1.2531	-0.0612	-1.4814
MEAS F/A RAT	0.0915	0.0044	0.000		
CAL F/A RAT	0.0898	0-0916	0.0899	0.0856	0.0913
DIFF M-C F/A	-1.8213	0.0955 4.2007	0.0929	0.0868	0.0904
CYL TEMP MAX	280.0000	390.0000	400.0000	360.0000	300.0000
MAN PRES. HGA	17.7	40.0	33.7	24.0	17.9
EXH GAS TEMP	780.0	1250.0	1250.0	1130.0	829.0
CO LBS/MODE	3,2010	0.8097	9.2887	4-2394	1.0564
CO LBS/CYC-RHP	0.093				1011111
PERCENT OF EPA	STD FOR CO	221.3703			
HC LBS/MODE	0.3501	_0.0092	0.1199	0.0704	0.1040
HC LBS/CYC-RHP	0.003				
PERCENT OF EPA	STD FOR HC	171.9942			
		•			
	0.0022	0.0006	0.0101	0.0109	0.0009
NO LBS/MODE			0.0101	•••••	

TABLE A-16. FIVE-MODE CYCLE - 50-HOUR TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.1
RATED POWER	200.0	200.0	200.0	200.0	200.0
REV PER MIN	1200.0	2520.0	2450.0	1900.0	1200-0
RUN NUMBER	67.0	68.0	69.0	70.0	71.0
BAROMET PRES	30.01	30.01	30.01	30.01	30.01
DRY AIR TEMP	73.0	73.0	73.0	73.0	73.0
WET BULB TEM	65.0	62.0	62.0	62.0	62.0
IND AIR TEMP	0.0	0.0	0.0.	0.0	0.0
SPEC. HUMID	0.0095	0.0095	0.0095	0.0095	0.009
VAPOR PRESS.	0.4546	0.4546	0.4546	0.4546	0.454
HC CONC-PPM	. 13798.0	1898.0	1982.0	1965-0	13110-0
NOX CONC-PPM	46.0	65.0	92.0	186.0	44.1
CO CONC-PERC	8.3	10.9	10.1	8.2	8.4
CO2 CON-PERC	7.7	7.5	7.8	9.0	7.0
Q2 CONC-PERC	1.8	0.2	0.2	0.2	1.1
MOLS OUT DRY	6.9	53.6	38.0	17.5	6.5
MOLS OUT WET	8.0	61.0	43.6	20.1	8.0
SHAFT TORQUE	Not	Measured			
HORSEPOWER	Not	Measured			
ENG AIR FLOW	199.0	1501.0	1077.0	506.0	198.0
DRY AIR FLOW	197.5	1489-6	1068.8	502-2	196.
ENG FUEL FLO	18.0	137.0	97.0	42.0	17.9
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735	0.0739
WET AIR DENS	0.0746	0.0746	0.0746	0.0746	0.074
401 414 0045	0.0140	0.0140	0.0740	0.0740	0.074
EXH CARBON	13.3492	118.3972	81.7387	36.2351	13-204
EXH HYDROGEN	2.5879	20.7908	15.0927	6.5664	2.624
EXH FUEL FLO	15.9371	139.1880	96.8314	42.8015	15.828
DIFF WFC-WFM	-5.0629	2.1880	-0.1686	0.8015	-2.071
MEAS F/A RAT	0.0911	0.0920	0.0908	0.0836	0.091
CAL F/A RAT	0.0885	0.0957	0.0924	0.0866	0.0880
DIFF M-C F/A	-2.9491	4.0887	1.8594	3.5338	-3.366
CYL TEMP MAX	280.0000	410.0000	390.0000	360.0000	275.000
MAN PRES. HGA	18.0	40.0	33.2	23.3	17.
EXH GAS TEMP	764.0	1266.0	1249.0	1109.0	772.
CO LBS/MODE	3.2275	0.8201	8.9760	4.0317	1.0746
CO LBS/CYC-RHP	0.090				7-7
PERCENT OF EPA		215.8315			
HC LBS/MODE	0.3610	0.0093	0.1156	0.0632	0.1139
MC FROVETE - KHD	0.003				
	STD FOR HC	174.4757			
HC LBS/CYC-RHP PERCENT OF EPA			0.0100	D: 0112	0.0003
	0.0023	0.0006	0.0100	0.0112	0.0007

TABLE A-17. LEAN-OUT AT APPROACH - (POSTOVERHAUL)

MODE NUMBER	5.0	5.0	5.0	5.0
RATED POWER	200.0	200.0	200.0	200.0
REV PER MIN RUN NUMBER	1900.0	1900.0 73.0	1875.0 74.0	1740.0 75.0
KUN NUMBER	72.0	73.0	74.0	75.0
BAROMET PRES	30.01	30.01	30.01	30.01
DRY AIR TEMP	65.0	65.0	65.0	65.0
WET BULB TEM	62.5	62.5	- 62.5	62.5
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC.HUMID.,	0.0117	0.0117	0.0117	0.0117
VAPOR PRESS.	0.5577	0.5577	0.5577	0.5577
HC CONC-PPM	1575.0	934.0	502.0	1537.0
NOX CONC-PPM	579.0	849.0	970.0	982.0
CO CONC-PERC	4.1	2.0	0.7	0.2
CO2 CON-PERC	10.7	11.6	11.6.	11.8
02 CONC-PERC	0.5	0.9	1.7	2.8
MOLS OUT DRY	18.3	17.9	17.3	17.3
MOLS OUT WET	21.6	21.2	20.5	20.1
			,	
SHAFT TORQUE		Measured		
HORSEPOWER		Measured		_
ENG AIR FLOW	560.0	560.0	548.0	546.0
DRY AIR FLOW	554.8	554.8	542.9	540.9
ENG FUEL FLO	41.0	37.0	32.5	31.5
DRY AIR DENS	0.0743	0.0743	0.0743	0.0743
WET AIR DENS	0.0758	0.0758	0.0758	0.0758
EXH CARBON	32.7044	29.1764	25.5356	25.0638
EXH HYDROGEN	7.1992	6.9193	6.4386	5.5680
EXH FUEL FLO	39.9037	36.0957	31-9741	30-6318
DIFF WFC-WFM	-1.0963	-0.9043	-0.5259	-0.8682
MEAS F/A RAT	0.0739	0.0667	0.0599	0.0582
CAL F/A RAT	0.0723	0.0653	0.0591	0.0574
DIFF M-C F/A	-2.2037	-2.1593	-1.2717	-1.4160
CYL TEMP MAX	320.0000	315.0000	320,0000	320.0000
MAN PRES. HGA	23.9	24.0	24.5	25.1
EXH GAS TEMP	1174.0	1202.0	1226.0	1192.0
CO LBS/MODE	2.1109	1.0028	0.3343	0.1118
HC LBS/MODE	0.0545	0.0317	0.0164	0.0496
NO LBS/MODE	0.0374	0.0539	0.0594	0.0592
				78-25-A-17

78-25-A-17

TABLE A-18. LEAN-OUT AT CLIMB - (POSTOVERHAUL)

MODE NUMBER	4.0	4.0	4.0	4.0
RATED POWER	200.0	200.0	200.0	200.0
REV PER MIN	2450.0	2450.0	2450.0	2450.0
RUN NUMBER	76.0	77.0	78.0	79.0
BAROMET PRES	30.01	30.01	30.01	30.01
DRY AIR TEMP	65.0	65.0	65.0	65.0
WET BULB TEM	62.5	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC. HUMID	0.0117	0.0117	0.0117	0.0117
VAPOR PRESS.	0.5577	0.5577	0.5577	0.5577
HC CONC-PPM	1460.0	1350.0	1207.0	1133.0
NOX CONC-PPM	124.0	193.0	368.0	588.0
CO CONC-PERC	8.0	6.8	5.1	4.0
COZ CON-PERC	' 8.3	9.3	10.1	10.4
02 CONC-PERC	0.2	0.2	0.2	0.2
MOLS OUT DRY	38.7	38.2	37.2	36.7
MOLS OUT WET	45.4	44.8	44.1	43.8
SHAFT TORQUE	Not	Measured		
HORSEPOWER	Not	Measured		
ENG AIR FLOW	1136.0	1136.0	1131.0	1131.0
DRY AIR FLOW	1125.4	1125.4	1120.4	1120.4
ENG FUEL FLO	94.0	90.5	85.5	82.0
DRY AIR DENS	0.0743	0.0743	0.0743	0.0743
WET AIR DENS	0.0758	0.0758	0.0758	0.0758
12.000.00			67.8521	63.4111
EXH CARBON	76.0872	73.6966	15.5798	15.798
EXH HYDROGEN	16.5862	15.7877 89.4843	83.4319	79.209
DIFF WFC-WFM	92.6734	-1.0157	-2.0681	-2.790
-				
3286	•			
MEAS F/A RAT	0.0835	0.0804	0.0763	0.073
CAL F/A RAT	0.0840	0.0803	0.0748	0.071
DIFF M-C F/A	0.5466	-0.0895	-1.9603	-3.011
49621.500	- 20 0 0			
CYL TEMP MAX	405.0000	430.0000	450.0000	460.000
MAN PRES.HGA	34.1	34.5	34.8	35.0
EXH GAS TEMP	1285.0	1315.0	1355.0	1380.
CO LBS/MODE	7.2625	6.0502	4.3897	3.397
HC LBS/MODE	0.0886	0.0809	0.0711	0.066
NO LBS/MODE	0.0141	0.0216	0.0405	0.064
				78-25-A-1

TABLE A-19. LEAN-OUT AT TAKEOFF - (POSTOVERHAUL)

MODE NUMBER	3.0	3.0	3.0
RATED POWER	200.0	200.0	200.0
REV PER MIN	2500-0	2500.0	2480.0
RUN NUMBER	80.0	81.0	82.0
BAROMET PRES	30.01	30.01	30.01
DRY AIR TEMP	65.0	65.0	65.0
WET BULB TEM	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0
SPEC.HUMID.	0.0117	0.0117	0.0117
VAPOR PRESS.	0.5577	0.5577	0.5577
HC CONC-PPM	1398.0	1371-0	1323.0
NOX CONC-PPM	121.0	137.0	170.0
CO CONC-PERC	8.4	7.9	7.6
CO2 CON-PERC	8.3	8.4	8.5
02 CONC-PERC	. 0.1	0.1	0.1
MOLS OUT DRY	52.6	52.3	51.7
MOLS OUT WET	61.4	61.3	61.1
SHAFT TORQUE	Not	Measured	
HORSEPOWER	Not	Measured	
ENG AIR FLOW	1535.0	1536.0	1534.0
DRY AIR FLOW	1520.7	1521-7	1519.7
ENG FUEL FLO	128.0	126.0	124.0
DRY ALR DENS	0-0743	0-0743	0.0743
WET AIR DENS	0.0758	0.0758	0.0758
EXH CARBON	105.2777	102.7607	98.8467
EXH HYDROGEN	22.1994	22.2802	22.7482
EXH FUEL FLO	127.4771	125.0409	121-5950
DIFF WFC-WFM	-0.5229	-0.9591	-2.4050
		2 2020	0.0014
MEAS F/A RAT	0.0842	. 0.0828	0.0816
CAL F/A RAT	0.0856	0.0838	0-0815
DIFF M-C F/A	1.7017	1.2190	-0.1210
CYL TEMP MAX	440.0000	450.0000	460,0000
MAN PRES. HGA	40.0	40.0	40.0
EXH GAS TEMP	1500.0	1510.0	1530-0
EAN GAS IEMP	120010	12124	
CO LBS/MODE	0.6193	0.5812	0.5336
HC LBS/MODE	0.0069	0.0067	0.0065
NO LBS/MODE	0.0011	0.0013	0.0016

TABLE A-20. LEAN-OUT AT TAXI - (POSTOVERHAUL)

MODE NUMBER RATED POWER REV PER MIN RUN NUMBER	2.0 200.0 1220.0	2.0	2.0	2.0
RATED POWER	200.0	200.0		
REV PER MIN			4335 0	4450 0
		1250.0	1225.0	1150.0
	84.0	85.0	86.0	87.0
				30.01
BAROMET PRES	30.01	30.01	30.01	65.0
DRY AIR TEMP	65.0	65.0	62.5	62.5
WET BULB TEM	62.5	62.5	0.0	0.0
IND AIR TEMP	0.0	0.0	0.0117	0.0117
SPEC. HUMID	0.0117	0.0117	0.5577	0.5577
VAPOR PRESS.	0.5577	U-33(/		
	10500 0	6120.0	2299-0	8256.0
HC CONC-PPM	10580.0	110.0	105.0	89.0
NOX CONC-PPM	93.0	5.9	3.6	2.4
CO CONC-PERC	7.0	9.0	10.2	9.0
COZ CON-PERC	8.7	0.4	1.0	4.1
02 CONC-PERC	0.6			
MOLS OUT DRY	7.1	7.0	6.7	6.9
MOLS OUT WET	8.4	8.3	8.0	8.1
	Not M	leasured		
SHAFT TORQUE		leasured		
HORSEPOWER		210.0	208.0	213.0
ENG AIR FLOW	210.0 208.0	208.0	206.1	211.0
DRY AIR FLOW		16.9	14.8	13.1
ENG FUEL FLO	17.9 0.0743	0.0743	0.0743	0.0743
DRY AIR DENS	0.0758	0.0758	0.0758	0.0758
WET HIM DEMO				
		42 /57/	11.2125	9-4371
EXH CARBON	13.3017	12.4574	2.7884	2.3860
EXH HYDROGEN	2.9770	15.5471	14.0009	11.8231
EXH FUEL FLO	16.2787	-1.3529	-0.7991	-1.2769
DIFF WFC-WFM	-1.6213	-1.3327	• • • • • • • • • • • • • • • • • • • •	
MEAS F/A RAT	0.0860	0.0812	0.0718	0.0621
CAL F/A RAT	0.0848	0.0783	0.0685	0.0605
DIFF M-C F/A	-1.4283	-3.6659	-4.6068	-2.5894
CYL TEMP MAX	260,0000	280,0000	290.0000	300.0000
MAN PRES. HGA	17.0	16.9	17.5	18.5
EXH GAS TEMP	790.0	797.0	813.0	780.0
CO LBS/MODE	2.7631	2.2860	1.3689	0.9214
HC LBS/MODE	0.2883	0.1646	0.0593	0.2160
		2200 0	0.0051	0.0044
NO LBS/MODE	0.0047	0.0055	0.0031	0.0044

TABLE A-21. FIVE-MODE CYCLE - (POSTOVERHAUL)

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	200.0	200.0	200.0	200.0	200.0
REV PER MIN RUN NUMBER	1200-0 88.0	2500-0 89.0	2450-0 90.0	91.0	1200-0 92.0
KUN NUMSEK	83.0	87.0	70.0		
BAROMET PRES	30.01	30.01	30.01	30.01	30.01 65.0
DRY AIR TEMP	65.0	65.0	65.0	65.0	
WET BULB TEM	62.5	62.5	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0		
SPEC.HUMID.,	0.0117	0.0117	0.0117	0.0117	0.0117
VAPOR PRESS.	0.5577	0.5577	0.5577	0.5577	U. 3377
HC CONC-PPM	10540-0	1446.0	1594.0	1660.0	9470.0
NOX CONC-PPM	77.0	102.0	132.0	507.0	91.0
CO CONC-PERC	6.9	8.2	8.0	4.7	6.7
CO2 CON-PERC	8.1	7.8	7.9	9.6	8.7
02 CONC-PERC	0.7		0.2	0.3	0.5
WOL C OUT DOV	7.0	52.2	38.4	17.8	7.0
MOLS OUT DRY MOLS OUT WET	8.5	62.1	45.7	21.4	8.4
SHAFT TORQUE		leasured			
HORSEPOWER		leasured			240 0
ENG AIR FLOW	210.0	1540.0	1135.0	546.0 540.9	210.0
DRY AIR FLOW	208.0	1525.6	1124.4		208-0 17-9
ENG FUEL FLO	17.9	130.0	94.5	40.5	0-0743
DRY AIR DENS	0.0743	0.0743	0.0743		0.0758
WET AIR DENS	0.0758	0.0758	0.0758	0.0758	0.0736
				70 4743	13-0367
EXH CARBON	12.6631	100.3995	73.1673	30.6362	
EXH HYDROGEN	3.1823	24.1584	17.6741	8.0001	3.0728
EXH FUEL FLO	15.8453	124.5579	90.8414	38.6363	16.1095
DIFF WFC-WFM	-2.0547	-5.4421	-3.6586	-1.8637	-1-7905
MEAS F/A RAT	0.0860	0.0852	0.0840	0.0749	0.0860
CAL F/A RAT	0.0832	0.0836	0.0829	0.0722	0.0831
DIFF M-C F/A	-3.3293	-1.8418	-1.3558	-3.5152	-3.3894
CYL TEMP MAX	280,0000	440.0000	450,0000	400-0000	300-0000
MAN PRES. HGA	17.4	40.0	35.0	23.8	17.2
EXH GAS TEMP	791.0	1308.0	1285.0	1147.0	847.0
CO LBS/MODE	2.7169	0.6000	7.1636	2.3417	0.8859
CO LBS/CYC-RHP	0.0685				
PERCENT OF EPA	STD FOR CO	163.1918			
HC LBS/MODE	0.2892	0.0072	0.0974	0.0569	0.0860
HC LBS/CYC-RHP		1/1 373/			
PERCENT OF EPA	SID FOR MC	141.2324		<u> </u>	
	0.0040	0.0010	0.0151	0.0325	0.0015
		0.0010	0.0.7.		
NO LBS/MODE NO LBS/CYC-RHP PERCENT OF EPA	0.0003	18.0065			

TABLE A-22. FIVE-MODE CYCLE - (POSTOVERHAUL)

DRY AIR TEMP MET BULB TEM IND AIR TEMP SPEC.HUMID., VAPOR PRESS. IC CONC-PPM NOX CONC-PPM CO CONC-PERC CO CONC-PERC CO CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	Not Me	200.0 2500.0 94.0 30.01 65.0 62.5 0.0 0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2 52.5 62.0 asured	200.0 2450.0 95.0 30.01 65.0 62.5 0.0 0.0117 0.5577 1521.0 127.0 8.1 8.1 0.2 38.6 45.6	200.0 1900.0 96.0 30.01 65.0 62.5 0.0 0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	200.0 1225.0 97.C 30.01 65.0 62.5 0.0 0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
RUN NUMBER BAROMET PRES DRY AIR TEMP MET BULB TEM LND AIR TEMP SPEC.HUMID., /APOR PRESS. HC CONC-PPM HOX CONC-PPM CO CONC-PERC CO2 CON-PERC CO2 CON-PERC MOLS OUT DRY HOLS OUT WET SHAFT TORQUE HORSEPOWER	93.0 30.01 65.0 62.5 0.0 0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me Not Me 210.0	94.0 30.01 65.0 62.5 0.0 0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2	95.0 30.01 65.0 62.5 0.0 0.0117 0.5577 1521.0 127.0 8.1 8.1 0.2	96.0 30.01 65.0 62.5 0.0 0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	97.0 30.01 65.0 62.5 0.0 0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
AROMET PRES RY AIR TEMP IET BULB TEM ND AIR TEMP IPEC.HUMID., IAPOR PRESS. IC CONC-PPM IOX CONC-PPR IOX CONC-PERC IOX CONC-PERC IOX CONC-PERC IOX CONC-PERC IOX OUT DRY IOLS OUT WET IOX OUT SET	30.01 65.0 62.5 0.0 0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	30.01 65.0 62.5 0.0 0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2	30.01 65.0 62.5 0.0 0.0117 0.5577 1521.0 127.0 8.1 8.1 0.2	30.01 65.0 62.5 0.0 0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	30.01 65.0 62.5 0.0 0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
WET BULB TEM IND AIR TEMP SPEC.HUMID., VAPOR PRESS. HC CONC-PPM NOX CONC-PPM CO CONC-PERC CO2 CON-PERC CO2 CON-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	65.0 62.5 0.0 0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	65.0 62.5 0.0 0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2	65.0 62.5 0.0 0.0117 0.5577 1521.0 127.0 8.1 8.1 0.2	65.0 62.5 0.0 0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	65.0 62.5 0.0 0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
IND AIR TEMP SPEC.HUMID., VAPOR PRESS. HC CONC-PPM NOX CONC-PPR CO CONC-PERC CO2 CONC-PERC CO2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	62.5 0.0 0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	62.5 0.0 0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2 52.5 62.0	62.5 0.0 0.0117 0.5577 1521.0 127.0 8.1 8.1 0.2	62.5 0.0 0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	62.5 0.0 0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
SPEC.HUMID., VAPOR PRESS. HC CONC-PPM NOX CONC-PERC CO2 CONC-PERC Q2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	0.0 0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	0.0 0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2 52.5 62.0	0.0 0.0117 0.5577 1521.0 127.0 8.1 8.1 0.2	0.0 0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	0.0 0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
VAPOR PRESS. HC CONC-PPM NOX CONC-PPM CO CONC-PERC CO2 CON-PERC Q2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	0.0117 0.5577 1400.0 104.0 8.3 8.0 0.2 52.5 62.0	0.0117 D.5577 1521.0 127.0 8.1 8.1 0.2	0.0117 0.5577 1648.0 489.0 4.9 10.3 0.3	0.0117 0.5577 9525.0 91.0 6.8 9.0 0.6
SPEC.HUMID., VAPOR PRESS. HC CONC-PPM NOX CONC-PPM CO CONC-PERC CO2 CON-PERC O2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER ENG AIR FLOW	0.0117 0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	0.5577 1400.0 104.0 8.3 8.0 0.2 52.5 62.0	0.5577 1521.0 127.0 8.1 8.1 0.2 38.6	0.5577 1648.0 489.0 4.9 10.3 0.3	9525.0 91.0 6.8 9.0 0.6
VAPOR PRESS. HC CONC-PPM NOX CONC-PPM CO CONC-PERC CO2 CON-PERC Q2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	0.5577 10525.0 91.0 6.6 8.6 0.5 7.0 8.4 Not Me	1400.0 104.0 8.3 8.0 0.2 52.5 62.0	1521.0 127.0 8.1 8.1 0.2	1648.0 489.0 4.9 10.3 0.3	9525.0 91.0 6.8 9.0 0.6
NOX CONC-PPM CO CONC-PERC CO2 CONC-PERC O2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	91.0 6.6 8.6 0.5 7.0 8.4 Not Me	104.0 8.3 8.0 0.2 52.5 62.0	127.0 8.1 8.1 0.2 38.6	489.0 4.9 10.3 0.3	91.0 6.8 9.0 0.6
NOX CONC-PPM CO CONC-PERC CO2 CONC-PERC O2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	91.0 6.6 8.6 0.5 7.0 8.4 Not Me	104.0 8.3 8.0 0.2 52.5 62.0	127.0 8.1 8.1 0.2 38.6	4.9 10.3 0.3	6.8 9.0 0.6
CO CONC-PERC CO2 CON-PERC O2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	6.6 8.6 0.5 7.0 8.4 Not Me	8.3 8.0 0.2 52.5 62.0	8.1 8.1 0.2 38.6	4.9 10.3 0.3	9.0 0.6 7.1
CO2 CON-PERC O2 CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	8.6 0.5 7.0 8.4 Not Me Not Me 210.0	8.0 0.2 52.5 62.0	8.1 0.2 38.6	10.3	9.0 0.6 7.1
OZ CONC-PERC MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	7.0 8.4 Not Me Not Me 210.0	52.5	38.6	18-1	7.1
MOLS OUT DRY MOLS OUT WET SHAFT TORQUE HORSEPOWER	7.0 8.4 Not Me Not Me 210.0	52.5			
MOLS OUT WET Shaft torque Horsepower	Not Me Not Me 210.0	62.0			
SHAFT TORQUE HORSEPOWER	Not Me		45.0	21.3	0.4
HORSEPOWER	Not Me	asured			
	210.0				
ENG AIR FLOW	210.0	asured			
		1542.0	1135.0	549.0	210.0
DRY AIR FLOW	208.0	1527.6	1124.4	543.9	208.0
ENG FUEL FLO	17.8	129.0	95.0	41.0	17.9
DRY AIR DENS	0.0743	0.0743	0.0743	0.0743	0.0743
MET AIR DENS	0.0758	0.0758	0.0758	0.0758	0.0758
EXH CARBON	12.8160	102.3420	75.3928	33.1402	13.4280
EXH HYDROGEN	3.0902	23.4238	17-0651	7.2648	2,9254
- Contract of the Contract of	15.9062	125.7659	92.4579	40.4049	16.3534
EXH FUEL FLO	-1.8938	-3.2361	-2.5421	-0.5951	-1.5466
DIFF WEC-WFM	-1.0730				
	b 2				
MEAS F/A RAT	0.0856	0.0844	0.0845	0.0754	0.0860
CAL F/A RAT	0.0830	0.0843	0.0840	0.0750	0.0840
DIFF M-C F/A	-3.0014	-0.1900	-0.5623	-0.4743	-2.3170
CYL TEMP MAX	290.0000	450.0000	455.0000	405.0000	305.0000
MAN PRES. HGA	17.2	40.0	35.0	23.0	17.1
EXH GAS TEMP	809.0	1314-0	1285.0	1144-0	847.0
CO LBS/MODE	2.5781	0.6081	7.3486	2.5001	0.9044
CO LBS/CYC-RHP	0.0697				
PERCENT OF EPA	STD FOR CO	165.9439			
HC 185/8005	0.2872	0.0070	0.0927	0.0563	0.0861
HC LBS/MODE	0.0026	44414			
HC LBS/CYC-RHP		120 2441			
PERCENT OF EPA	SID FOR HC	139.2661			
NO LBS/MODE	0.0046	0.0010	0.0145	0.0312	0.0015
NO LBS/CYC-RHP	0.0003	J.J.J.			
PERCENT OF EPA		17 6149			78-25-A-22

APPENDIX B

BARON B-55 TEST DATA (IO-470L ENGINE)

MEASURED F/A RATIO VERSUS THE PERCENT DIFFERENCE BETWEEN THE CALCULATED AND MEASURED F/A RATIO FOR THE BARON B-55 AIRCRAFT WITH IO-470L ENGINE FIGURE B-1.

TABLE B-1	l. F	VE-MODE	CYCLE .	- BASELINE	TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	260.0	260.0	260.0	260.0	260.0
REV PER MIN	1100.0	2525.0	2500.0	2010.0	1120.0
RUN NUMBER	1.0	2.0	3.0	4.0	5.0
BAROMET PRES	30.05	30.05	30.05	30.05	30.05
DRY AIR TEMP	82.0	82.0	82.0	82.0	82.0
WET BULB TEM	72.0	72.0	72.0	72.0	72.0
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0
SPEC.HUMID., VAPOR PRESS.	0.0152	0.0152	0.0152	0.0152	0.0152
					44470 0
HC CONC-PPM	9845.0	2376.0	1825.0 239.0	2747.0 138.0	11130.0
NOX CONC-PPM CO CONC-PERC	27.0	210.0			25.0 8.3
COZ CON-PERC	8.1	7.3	7.1 9.0	8.2	6.0
OZ CONC-PERC	6.3 3.9	8.5 1.0	0.7	8.2 1.2	3.7
MOLE OUT ORY				24.0	
MOLS OUT DRY	6.6	53.2	46.1	24.0	6.6
MOLS OUT WET	7.5	62.0	53.3	27.7	7.6
SHAFT TORQUE		easured			-
HORSEPOWER		easured	1740 0	400.0	100 0
DRY AIR FLOW	189.0 186.7	1550.9	1360.0	698.0 689.5	189.0
ENG FUEL FLO	15.7	126.0	1343.5 106.0	59.0	16.4
DRY AIR DENS	0.0717	0.0717	0.0717	0.0717	0.0717
WET AIR DENS	0.0735	0.0735	0.0735	0.0735	0-0735
WET AIR DENS	0.0732	y.u(3)	Uadraa		
EXH CARBON	11.3855	101.1413	89.0277	47.1279	11.2542
EXH HYDROGEN	2.3277	21.2802	17.7324	9.3535	2.5145
EXH FUEL FLO	13.7133	122.4215	106.7602	56.4814	13.7687
DIFF WFC-WFM	-1.9867	-3.5785	0.7602	-2.5186	-2.6313
MEAS F/A RAT	0.0841	0.0312	0.0789	0.0856	0.0878
CAL F/A RAT	0.0788	0.0803	0.0808	0.0830	0.0803
DIFF M-C F/A	-6.3022	-1.1738	2.4573	-3.0433	-8.6043
CYL TEMP MAX	290.0000	410.0000	440.0000	370-0000	320,0000
MAN PRES. HGA	15.9	28.8	28.3	21.4	16.2
EXH GAS TEMP	763.0	1322.0	1340.0	1156.0	771.0
CO LBS/MODE	2.9809	0.5435	7.6455	5.4887	1.0156
CO LBS/CYC-RHP	0.0680				
PERCENT OF EPA	STO FOR CO	161.8512			
HC LBS/MODE	0.2409	0.0118	0.1301	0.1223	0-0919
HC LBS/CYC-RHP					
PERCENT OF EPA		120.8356			
NO LOCIMONE	0.0012	0 0030	0 0710	0 0115	0 0004
NO LBS/MODE		0.0020	0.0318	0.0115	0.0004
NO LBS/MODE NO LBS/CYC-RHP PERCENT OF EPA	0.0005	0.0020	0.0318	0.0115	0.0004 78-25-B-1

TABLE B-2. LEAN-OUT AT APPROACH - 25-HOUR TEST

					78-25-B-2
-	NO LBS/MODE	0.0107	0.0213	0.0387	0.0807
	CO LBS/MODE	5.4407	3.9273	2.9255	1.6045
	July 1 Line	1,00.0	120310	163140	1210.0
	MAN PRES.HGA EXH GAS TEMP	21.0	21.0 1203.0	20.9 1237.0	1270.0
	CYL TEMP MAX	330.0000	340.0000	345.0000	360.0000
	CAL F/A RAT DIFF M-C F/A	0.0816 -2.2851	0.0744	0.0704	-3.1124
	MEAS F/A RAT	0.0835	0.0771	0.0728	0.0668
_1	DIFF WFC-WFM	-2.4140	-2.5626	-2.0688	-1.7131
(EXH FUEL FLO	55.0860	50.4374	47.9312	43.7869
	EXH HYDROGEN	9.4053	9.3561	8.7305	7.9153
-	EXH CARBON	45.6807	41.0814	39.2007	35.8717
_1	MET AIR DENS	0.0746	0.0746	0.0746	0.0746
_	DRY AIR DENS	0.0727	0.0727	0.0727	0.0727
	ENG FUEL FLO	57.5	53.0	50.0	45.5
	DRY AIR FLOW	688.8	687.8	686.8	680.9
	ENG AIR FLOW	698.0	697.0	696.0	690.0
	SHAFT TORQUE		leasured leasured		
_	MOLS OUT WET	27.7	27.3	26.8	26.0
	MOLS OUT DRY	23.9	23.3	22.9	22.3
-	02 CONC-PERC	1.5	1.5	1.6	1.9
	CO2 CON-PERC	7.8	8.7	9.7	10.8
	CO CONC-PERC	8.1	6.0	4.6	2.6
	HC CONC-PPM NOX CONC-PPM	2822.0	2452.0	2198.0 482.0	1683.0
_					
	VAPOR PRESS.	0.0165	0.0165	0.0165	0.7933
	IND AIR TEMP	0.0	0.0	0.0	0.0
	WET BULB TEM	73.0	73.0	73.0	73.0
	DRY AIR TEMP	79.0	79.0	79.0	79.0
	BAROMET PRES	30.35	30.35	30.35	30.3
	RUN NUMBER	6.0	7.0	8.0	9.0
	REV PER MIN	2010.0	2010.0	2020.0	2020-0

TABLE B-3. LEAN-OUT AT CLIMB - 25-HOUR TEST

MODE NUMBER	4.0	4.0	6.0
RATED POWER	260.0	260.0	260.0
REV PER MIN	2500-0	2490.0	2500-0
RUN NUMBER	10.0	11.0	12.0
BAROMET PRES	30.35	30.35	30.35
DRY AIR TEMP	79.0	79.0	79.0
WET BULB TEM	73.0	73.0	73.0
IND AIR TEMP	0.0	0.0	0.0
SPEC.HUMID.	0.0165	0.0165	0:0165
VAPOR PRESS.	0.7933	0.7933	0.7933
HC CONC-PPM	2152.0	2365.0	1011.0
NOX CONC-PPM	311.0	438.0	418-0
CO CONC-PERC	6.4	5.4	5.6
GOZ CON-PERC	8.8	9.4	9.8
OZ CONC-PERC	1.1	1.1	0.9
MOLS OUT DRY	46.6	45.7	44.7
MOLS OUT WET	54.5	53.6	52.1
SHAFT TORQUE	Not	Measured	
HORSEPOWER	Not	Measured	
ENG AIR FLOW	1392.0	1380.0	1343.0
DRY AIR FLOW	1373.7	1361.8	1325.3
ENG FUEL FLO	106.0	102.8	104.0
DRY AIR DENS	0.0727	0.0727	0.0727
WET AIR DENS	0.0746	0.0746	0.0746
EXH CARBON	85.2929	81.6050	82.6627
EXH HYDROGEN	18.5961	18.0742	17.2773
EXH FUEL FLO	103.8890	99.6792	99.9399
DIFF WFC-WFM	-2.1110	-3.1208	-4.0601
MEAS F/A RAT	0.0772	0.0755	0.0785
CAL F/A RAT	0.0770	0.0743	0.0749
DIFF M-C F/A	-0.1761	-1.5515	-4.5480
CYL TEMP MAX	420.0000	460.0000	450.0000
MAN PRES. HGA	27.9	28.0	27.9
EXH GAS TEMP	1353.0	1370.0	1360.0
CO LBS/MODE	7.0092	5.8165	5.8038
		0.1694	0.0704
HC LHS/MODE	U - 1 3 C /		
NO LBS/MODE	0.1567	0.0587	0.0544

TABLE B-4. LEAN-OUT AT TAKEOFF - 25-HOUR TEST

MODE NUMBER	3.0	
RATED POWER	260.0	
REV PER MIN	2525.0	
RUN NUMBER	14.0	
KUN NUMBER		
BAROMET PRES	30.05	
DRY AIR TEMP	82.0	
MET BULB TEM	72.0	-
IND AIR TEMP	0.0	
SPEC_HUMID.	0.0152	- 100
VAPOR PRESS.	0.7249	
HC CONC-PPM	2168.0	
NOX CONC-PPM	194.0	
CO CONC-PERC	7.5	
CO2 CON-PERC	8.5	
OZ CONC-PERC	0.8	
MOLS OUT DRY	52.7	-
MOLS OUT WET	61.4	-
SHAFT TORQUE	Not	Measured
HORSEPOWER	Not	Measured
ENG AIR FLOW	1554-0	_
DRY AIR FLOW	1535.1	
ENG FUEL FLO	124-4	
DRY AIR DENS	0.0717	
WET AIR DENS	0.0735	
WET HIM DENG		
EXH CARBON	101.0626	
EXH HYDROGEN	21.3128	
EXH FUEL FLO	122.3754	
DIFF WFC-WFM	-2.0246	
W646 6/4 0AT	0.0810	
MEAS F/A RAT	0.0813	
DIFF M-C F/A	0.3796	
DIFF Hat I'M	0.5	
CYL TEMP MAX	440.0000	
MAN PRES.HGA	28.8	
EXH GAS TEMP	1335.0	
E 011 E 112 1 E 11		
CO LBS/MODE	0.5530	
HC LBS/MODE	0.0107	
NO LBS/MODE	0.0018	
	AND DESCRIPTION OF THE PARTY OF	14

78-25-B-4

TABLE B-5. FIVE-MODE CYCLE - 25-HOUR TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	260.0	260.0	260-0	260.0	260.0
REV PER MIN	1100.0	2575.0	2500.0	2000.0	1100.0
RUN NUMBER	25.0	26.0	27.0	28.0	29.0
BAROMET PRES	30.04	30.04	30-04	30-04	30-04
DRY AIR TEMP	73.0	73.0	73.0	73.0	73.0
ET BULB TEM	62.5	62.5	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0
SPEC.HUMID.	0.0099	0.0099	0.0099	0.0099	0.0099
APOR PRESS.	0.4729	0.4729	0.4729	0.4729	0.4729
HC CONC-PPM	9168.0	2334.0	1798.0	3297.0	11512,0
NOX CONC-PPM	29.0	219.0	308.0	100.0	24.0
CO CONC-PERC	8.2	6.7	5.9	9.3	8.6
COZ CON-PERC	7.4	10.2	10.3	8.3	6.8
D2 CONC-PERC	2.5	0.3	0.3	0.9	3.1
MOLS OUT DRY	6.8	53.2	45.8	. 24.3	6.6
OLS OUT WET	7.8	60.7	52.8	27.4	7.5
SHAFT TORQUE		easured			
HORSEPOWER	Not M	easured			
ENG AIR FLOW	194.0	1561.0	1360.0	690-0	188.0
DRY AIR FLOW	192.5	1548.7	1349.3	684.5	186.5
ENG FUEL FLO	16.8	123.0	105.0	58.5	16.3
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735	0.0735
MET AIR DENS	0.0747	0.0747	0.0747	0.0747	0.0747
EXH CARBON	12,7179	108.0074	89.3140	51.3120	12.2799
EXH HYDROGEN	2.4305	18.4461	16.8262	8-4340	2.2954
EXH FUEL FLO	15.1483	126.4535	106.1402	59.7460	14.5752
DIFF WFC-WFM	-1.6517	3.4535	1.1402	1.2460	-1.7248
MEAS F/A RAY CAL F/A RAT DIFF M-C F/A	0.0873 0.0832 -4.7305	0.0794 0.0828 4.2518	0.0778 0.0795 2.1054	0.0855 0.0893 4.4558	0.0374 0.0845 -3.3643
		7,00			
CYL TEMP MAX	250.0000	360.0000	390.0000	340.0000	280.0000
MAN PRES. HGA	15.2	28.7	26.8	20.2	15.2
EXH GAS TEMP	761.0	1415.0	1420.0	1146-0	780.0
CO LBS/MODE	3.1232	0.4963	6.3235	6.3068	1.0656
CO LBS/CYC-RHP	0.0566				
PERCENT OF EPA	STD FOR CO	158.5662			
HC LBS/MODE	0.2309	0.0114	0.1270	0.1453	0.0943
HC LBS/CYC-RHP PERCENT OF EPA		123.2426			
- CACENI OF EPA	JIV FOR HE	163.2460			
				0.0082	0.0004
	0.0014	0.0020	0.0407	0,0002	0.000
NO LBS/MODE NO LBS/CYC-RHP PERCENT OF EPA	0.0002	13.5002	0.0407	0,0002	78-25-B-5

TABLE B-6.	FIVE-MODE	CYCLE -	25-HOUR	TEST
------------	-----------	---------	---------	------

MODE NUMBER	2.0	3.0	4.0	5.0	1.0
RATED POWER	260.0	260.0	260.0	260.0	260.0
REV PER MIN	1100.0	2525.0	2500.0	2000.0	1100.0
RUN NUMBER	18.0	19.0	20.0	21.0	22.0
				20.40	30-05
BAROMET PRES	30.05	30.05	30.05	30.05	
DRY AIR TEMP	82.5	82.5	82.5	82.5	82.5
WET BULB TEM	73.0	73.0	73.0	73.0	73.0
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0
SPEC.HUMID.	0.0158	0.0158	0.0158	0.0158	0.0158
VAPOR PRESS.	0.7561	0.7561	0.7561	0.7561	0.7561
HC CONC-PPM	10170.0	2064.0	1772.0	2985.0	11792.0
NOX CONC-PPM	27.0	187.0	271.0	93.0	26.0
CO CONC-PERC	7.9	7.3	6.4	9.2	8.0
COZ CON-PERC	6.7	8.9	9.6	7.6	6.5
02 CONE-PERC	3.3	0.7	0.7	1.2	3.4
MOLS OUT DRY	4.7	52.9	46.4	23.7	6.7
	6.7	61.2	53.7	1 27.2	7-7
MOLS OUT WET	7.8	01.2	13./		
SHAFT TORQUE		easured			
HORSEPOWER	Not Me	easured		4-1/1-2	
ENG AIR FLOW	195.0	1560-0	1380.0	681.0	193.0
DRY AIR FLOW	192.5	1540.2	1362.5	672.4	190.6
ENG FUEL FLO	16.1	123.0	106.0	58.0	16.0
DRY AIR DENS	0.0716	0.0716	0.0716	0.0716	0.0716
WET AIR DENS	0.0734	0.0734	0.0734	0.0734	0.0734
EXH CARBON	11.7360	102.8451	89.3717	47.7402	11.6357
EXH HYDROGEN	2.4925	20.3771	17.3764	9.0983	2.4306
EXH FUEL FLO	14.2285	123.2222	106.7481	56.8385	14.0663
DIFF WFC-WFM	-1.8715	0.2222	0.7481	-1.1615	-1.9337
MEAS F/A RAT	0.0836	0.0799	0.0778	0.0863	
MEAS F/A RAT	0.0836	0.0799 0.0814	0.0778	0.0866	0.0811
A DESCRIPTION OF THE PROPERTY					0.0811
CAL F/A RAT DIFF M-C F/A	0.0800	0.0814	0.0793 1.9393	0.0866	0.0840 0.0811 -3.4386
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX	0.0800 -4.3827	0.0814 1.9359 390.0000	0.0793 1.9393	0.0866 0.4439	0.0811 -3.4386
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA	0.0800 -4.3827 285.0000 15.8	0.0814 1.9359 390.0000 28.8	0.0793 1.9393 440.0000 27.9	0.0866 0.4439 370.0000 21.0	0.0811 -3.4386 310.0000 15.7
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX	0.0800 -4.3827	0.0814 1.9359 390.0000	0.0793 1.9393	0.0866 0.4439	0.0811 -3.4386 310.0000 15.7
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP	0.0800 -4.3827 285.0000 15.8 733.0	0.0814 1.9359 390.0000 28.8 1339.0	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	0_0811 -3.4386 310_0000 15.7 816_0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE	0.0800 -4.3827 285.0000 15.8 733.0	0.0814 1.9359 390.0000 28.8	0.0793 1.9393 440.0000 27.9	0.0866 0.4439 370.0000 21.0	0.0811 -3.4386 310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP	285.0000 15.8 733.0 2.9666 0.0676	0.0814 1.9359 390.0000 28.8 1339.0	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	0.0811
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE	285.0000 15.8 733.0 2.9666 0.0676	0.0814 1.9359 390.0000 28.8 1339.0	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	0.0811 -3.4386 310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA	285.0000 15.8 733.0 2.9666 0.0676 STD FOR CO	0.0814 1.9359 390.0000 28.8 1339.0 0.5374	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC~RHP PERCENT OF EPA HC LBS/MODE	285.0000 15.8 733.0 2.9666 0.0676 STD FOR CO	0.0814 1.9359 390.0000 28.8 1339.0	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE HC LBS/MODE HC LBS/CYC-RHP	285.0000 15.8 733.0 2.9666 0.0676 STD FOR CO	0.0814 1.9359 390.0000 28.8 1339.0 0.5374 160.9454	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC~RHP PERCENT OF EPA HC LBS/MODE	285.0000 15.8 733.0 2.9666 0.0676 STD FOR CO	0.0814 1.9359 390.0000 28.8 1339.0 0.5374	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE HC LBS/CYC-RHP PERCENT OF EPA	0.0800 -4.3827 285.0000 15.8 733.0 2.9666 0.0676 STD FOR CO	0.0814 1.9359 390.0000 28.8 1339.0 0.5374 160.9454 0.0101	0.0793 1.9393 440.0000 27.9 1362.0 6.9713	0.0866 0.4439 370.0000 21.0 1125.0 6.0982	0.0811 -3.4386 310.0000 15.7 816.0
CAL F/A RAT DIFF M-C F/A CYL TEMP MAX MAN PRES.HGA EXH GAS TEMP CO LBS/MODE CO LBS/CYC-RHP PERCENT OF EPA HC LBS/MODE HC LBS/MODE HC LBS/CYC-RHP	285.0000 15.8 733.0 2.9666 0.0676 STD FOR CO	0.0814 1.9359 390.0000 28.8 1339.0 0.5374 160.9454	0.0793 1.9393 440.0000 27.9 1362.0	370.0000 21.0 1125.0	0.0811 -3.4386 310.0000 15.7 816.0

TABLE B-7. LEAN-OUT AT APPROACH - 50-HOUR TEST

6.0	5.0	5.0	5.0	MODE NUMBER
260.0	260.0	260.0	260.0	RATED POWER
2000.0	2000.0	2000.0	5000.0	REV PER MIN
33.0	32.0	31.0	30.0	RUN NUMBER
30-04	30-04	30.04	30.04	BAROMET PRES
73.0	73.0	73.0	73.0	DRY AIR TEMP
62.5	62.5	62.5	62.5	WET BULB TEM
0.0	0.0	0.0	0.0	IND AIR TEMP
0.0099	0.0099	0.0099	0.0099	SPEC.HUMID.
0.4729	0.4729	0.4729	0.4729	VAPOR PRESS.
1902.0	2239.0	2724.0	3274.0	HC CONC-PPM
586.0	341.0	201.0	108.0	NOX CONC-PPM
3.7	5.3	6.8	9.0	CO CONC-PERC
11.5	10.2	9.3	8.2	CO2 CON-PERC
1.1	1.0	0.9	0.9	O2 CONC-PERC
22.8	23.1	23.5	23.6	MOLS OUT DRY
26.1	26.6	27.0	26.9	MOLS OUT WET
		easured	Not M	SHAFT TORQUE
		easured	Not M	HORSEPOWER
690.1	690.0	690.0	675.0	ENG AIR FLOW
684.	684.5	684.5	669.7	DRY AIR FLOW
48.	51.0	54.0	57.0	ENG FUEL FLO
0.073	0.0735	0.0735	0.0735	DRY AIR DENS
0.074	0.0747	0.0747	0.0747	WET AIR DENS
41.507	43.2916	45.6525	48.8893	EXH CARBON
7-411	8.1501	8.5180	8.5414	EXH HYDROGEN
48.919	51.4417	54.1705	57.4307	EXH FUEL FLO
0.794	0.4417	0.1705	0.4307	DIFF WFC-WFM
0.070	0.0745	0.0789	0.0851	MEAS F/A RAT
0.072	0.0762	0.0805	0.0878	CAL F/A RAT
2.982	2.3021	2.1090	3.1898	DIFF M-C F/A
315.0000	306.0000	295.0000	290.0000	CYL TEMP MAX
20.0	19.9	19.9	19.8	MAN PRES. HGA
1246.0	1209.0	1174.0	1141.0	EXH GAS TEMP
1.576	3.4604	4.5064	5.9458	CO LBS/MODE
	0.0956	0.1181	0.1413	HC LBS/MODE
0.053			and the second s	
0.053	0.0272	0.0163	0.0087	NO LBS/MODE

TABLE B-8. LEAN-OUT AT CLIMB - 50-HOUR TEST

MODE NUMBER	4.0	4.0	4.0	. 4.0
RATED POWER	260.0	260.0	260-0	260-0
REV PER MIN RUN NUMBER	2500.0 34.0	2500.0 35.0	2490.0 36.0	2490.0 37.0
BAROMET PRES		*0.0:		
DRY AIR TEMP	73.0	30.04 78.0	73.0	30.04
WET BULB TEM	62.5	62.5	62.5	73.0
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC HUMIDA	0.0099	0-0099	0.0099	0.0099
VAPOR PRESS.	0.4729	0.4729	0.4729	0.4729
HC CONC-PPM	1756.0	1562.0	1412.0	1339.0
NOX CONC-PPM	341.0	484.0	732.0	1002.0
CO CONC-PERC	5.8	4.8	3.7	2.6
CO2 CON-PERC	10.4	11.0	12.0	12.5
OZ CONC-PERC	0.3	0.3	0.3	0.4
MOLS OUT DRY	44.7	43.6	43.1	42.1
MOLS OUT WET	51.7	50.5	49.6	48.6
SHAFT TORQUE		leasured		
HORSEPOWER	Not M	leasured		
ENG AIR FLOW	1330.0	1310.0	1307.0	1292.0
DRY AIR FLOW	1319.5	1299.6	1296.7	1281.8
ENG FUEL FLO	104.5	99.0	94.5	90.3
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735
WET AIR DENS	0.0747	0.0747	0.0747	0.0747
EXH CARBON	86.9176	83.0054	81.5679	76.7818
EXH HYDROGEN	16.6579	15.8384	14.4084	14-1023
EXH FUEL FLO	103.5755	98.8438	95.9763	90.8841
DIFF WFC-WFM	-0.9245	-0.1562	1.4763	0.6341
MEAS F/A RAT	0.0792	0.0762	0.0729	0.0704
CAL F/A RAT	0.0783	0.0764	0.0746	0.0716
DIFF M-C F/A	-0.4725	0.3148	2.3550	1.6552
CYL TEMP MAX	360.0000	380.0000	395.0000	400.0000
MAN PRES. HGA	26.3	26.3	26.3	400.0000
EXH GAS TEMP	1373.0	1393.0	1428.0	1446.0
CO LBS/MODE	6.0618	4.9228	3.7240	2 501/
CO LBS/MODE	6.0618	4.9228	3.7240	2-5934
CO LBS/MODE HC LBS/MODE NO LBS/MODE		4.9228 0.1054 0.0610	3.7240 0.0935 0.0907	2.5934 0.0870 0.1217

TABLE B-9. LEAN-OUT AT TAKEOFF - 50-HOUR TEST

MODE NUMBER	3.0	3.0	3.0	3.0
RATED POWER	260.0	260.0	260.0	260.0
REV PER MIN	2575.0	2520.0	2525.0	2525.0
RUN NUMBER	38.0	39.0	60.0	61.0
BAROMET PRES	30.04	30.04	30-04	30.04
DRY AIR TEMP	73.0	73.0	73.0	73.0
WET BULB TEM	62.5	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC.HUMID.	0.0099	0.0099	0.0099	0.0099
VAPOR PRESS.	0.4729	0.4729	0.4729	0.4729
HC CONC-PPM	2098.0	1963.0	2013.0	1743.0
NOX CONC-PPM	206.0	277.0	491.0	633.0
CO CONC-PERC	7.0	6.0	4.6	3.8
COZ CON-PERC	9.8	10.3	11.4	11.9
OZ CONC-PERC	0.3	0.3	0.3	0.4
MOLS OUT DRY	53.?	52.5	51.2	51.3
MOLS OUT WET	61.0	60.5	58.8	58.8
SHAFT TORQUE	Not	Measured		
HORSEPOWER	Not	Measured		
ENG AIR FLOW	1560.0	1560.0	1537.0	1552-0
DRY AIR FLOW	1547.7	1547.7	1524.9	1539.7
ENG FUEL FLO	124.2	119.5	113.6	111.0
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735
WET AIR DENS	0.0747	0.0747	0.0747	0.0747
5 VIII	107.6385	102.9299	98.2568	97.2457
EXH CARBON EXH HYDROGEN	19.2910	19.0984	17.5207	16.8743
EXH FUEL FLO	126.9295	122.0283	115.7775	114.1200
DIFF WFC-WFM	2.7295	2.5283	2.1775	3.1200
	· · · ·			
MEAS F/A RAT	0.0802	0.0772	0.0745	0.0721
CAL F/A RAT	0.0832	0.0800	0.0769	0.0751
DIFF M-C F/A	3.6286	3.5453	3.2073	4.2066
CYL TEMP MAX	385.0000	395.0000	405.0000	420.0000
MAN PRES. HGA	28.7	28.7	28.7	28.7
EXH GAS TEMP	1360.0	1388.0	1424.0	1441.0
CO LBS/MODE	0.5243	0.4401	0.3310	0.2759
			0.0095	0.0082
	0.0103	0.0095	0.0073	
NO LBS/MODE	0.0103	0.0095	0-0043	0.0056

TABLE B-10. LEAN-OUT AT TAXI - 50-HOUR TEST

MODE NUMBER	2.0	2.0	2.0	2.0
RATED POWER	260.0	260.0	260.0	260.0
REV PER MIN	1100.0	1100.0	1100.0	1090.0
RUN NUMBER	42.0	43.0	44.0	45.0
BAROMET PRES	30.04	30-04	30.04	30-04
DRY AIR TEMP	73.0	73.0	73.0	73.0
WET BULB TEM	62.5	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0	0.0
SPEC. HUMID.	0.0099	0.0099	0.0099	0.0099
VAPOR PRESS.	0.4729	0.4729	0.4729	0.4729
HC CONC-PPM	7109.0	7044.0	8663.0	3027.0
NOX CONC-PPM	29.0	29.0	27.0	46.0
CO CONC-PERC	7.7	7.5	7.5	4.0
CO2 CON-PERC	7.6	7.8	7.6	10.1
OZ CONC-PERC	2.7	2.7	3.0	2.8
MOLS OUT DRY	6.9	6.3	6.2	5.9
MOLS OUT WET	7.9	7.2	7.1	6.8
SHAFT TORQUE	Not M	leasured		
HORSEPOWER		leasured		
ENG AIR FLOW	200.0	182.0	180.0	178-0
DRY AIR FLOW	198.4	180.6	178.6	176.6
ENG FUEL FLO	16.1	15.0	14-1	12.7
DRY AIR DENS	0.0735	0.0735	0.0735	0.0739
WET AIR DENS	0.0747	0.0747	0.0747	0.074
BEL AIR DENS	U.U/4/	Uzurar	u.u.q.	
EXH CARBON	12.7572	11.6256	11.3627	10.0553
EXH HYDROGEN	2.3817	2.1761	2.0459	1.8981
EXH FUEL FLO	15.1389	13.8017	13.4086	11.953
DIFF WEC-WEM	-0.9611	-1.1983	-0.6914	-0.746
MEAS F/A RAT	0.0811	0.0831	0.0790	0.0719
CAL F/A RAT	0.0799	0.0793	0.0799	0.0679
DIFF M-C F/A	-1.5253	-4.5010	1.2408	-5.6324
		4.50,0	1,2,400	J. U.J.E.
CYL TEMP MAX	275.0000	280.0000	280.0000	275.0000
MAN PRES. HGA	15.4	15.1	15.1	14.9
EXH GAS TEMP	746.0	770.0	754.0	765.0
CO LBS/MODE	2.9810	2.6617	2.6272	1.3281
HC LBS/MODE	0.1819	0.1643	0.1993	0.0662
NO LBS/MODE	0.0014	0.0013	0.0012	0.0019
				78-25-B-10

THIS PAGE IS BEST QUALITY PRACTICABLE

TABLE B-11. FIVE-MODE CYCLE - 50-HOUR TEST

MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	260.0	260.0	260.0	260.0	260.0
REV PER MIN	1100.0	2550.0	2500.0	2000.0	1100.0
RUN NUMBER	46.0	47.0	48.0	49.0	50.0
	70.04	70.04	30-04	30.04	30.04
BAROMET PRES	30.04	30.04		73.0	73.0
DRY AIR TEMP	73.0	73.0	73.0 62.5	62.5	62.5
WET BULB TEM IND AIR TEMP	62.5	62.5	0.0	0.0	0.0
SPEC.HUMID.	0.0	0.0099	0.0099	0.0099	0.0099
VAPOR PRESS.	0.4729	0.4729	0.4729	0.4729	0.4729
			4/05 0	24.70 0	1/272 0
HC CONC-PPM	9590.0	2194.0	1605.0	2678.0	14372.0
NOX CONC-PPM	26.0	206.0	292.0	124-0	22.0
CO CONC-PERC	8.0	6.9	6.2	8.6	8.4
CO2 CON-PERC O2 CONC-PERC	7.1	9.8	10.5	0.8	3.7
	3.1	0.5			
MOLS OUT DRY	6.7	53.2	46.4	24.2	6.
MOLS OUT WET	7.7	61.0	52.9	27.6	
SHAFT TORQUE		easured			
HORSEPOWER	Not Me	easured			
ENG AIR FLOW	193.0	1560.0	1368.0	695.0	192.0
DRY AIR FLOW	191.5	1547.7	1357.2	689.5	190.5
ENG FUEL FLO	16.2	123.0	105.0	58.0	16.7
DRY AIR DENS	0.0735	0.0735	0.0735	0.0735	0.073
WET AIR DENS	0.0747	0.0747	0.0747	0.0747	0.074
EXH CARBON	12.2351	106.7520	92.8221	49.3733	12.088
EXH HYDROGEN	2.3635	19.3260	15.9973	8.94.98	2.237
EXH FUEL FLO	14.5987	126.0781	108.8194	58.3232	14.326
DIFF WFC-WFM	-1-6013	3.0781	3.8194	0.3232	-1.873
	promise the telephone and a second of				
MEAS F/A RAT	0.0846	0.0795	0.0774	0.0841	0.085
CAL F/A RAT	0.0813	0.0828	0.0810	0.0863	0.083
DIFF M-C F/A	-3.9655	4.2186	6.7423	2.5928	-1.721
				340.0000	205 000
CYL TEMP MAX	290.0000	365.0000	385.0000	360.0000	295.000
MAN PRES.HGA EXH GAS TEMP	766.0	28.6 1359.0	1367.0	1165.0	754.
CAN GRO FEIT	. 00.0	. , , , , ,			
CO LBS/MODE	3.0285	0.5167	6.6876	5,8012	1.054
CO LBS/CYC-RHP	0.0657				
PERCENT OF EPA		156.4925			
HC LBS/MODE	0.2397	0.0107	0.1136	0.1188	0.120
	0.0023				
HC LBS/CYC-RHP		122 0433			
HC LBS/CYC-RHP PERCENT OF EPA		122.0633			
PERCENT OF EPA		0.0019	0.0386	0.0103	0.000
	STD FOR HC		0.0386	0.0103	78-25-B-1

TABLE B-12. FIVE-MODE CYCLE - 50-HOUR TEST

_					
MODE NUMBER	2.0	3.0	4.0	5.0	6.0
RATED POWER	260.0	260.0	260.0	260.0	260.0
REV PER MIN	1100.0	2550.0	2500.0	2000.0	1100.0
RUN NUMBER	51.0	52.0	53.0	54.0	55.0
BAROMET PRES	30.04	30.04	30.04	30.04	30.04
DRY AIR TEMP	73.0	73.0	73.0	73.0	73.0
WET BULB TEM	62.5	62.5	62.5	62.5	62.5
IND AIR TEMP	0.0	0.0	0.0	0.0	0.0
SPEC. HUMID.	0.0099	0.0099	0.0099	0.0099	0.0099
VAPOR PRESS.	0.4729	0.4729	0.4729	0.4729	0.4729
HC CONC-PPM	10720.0	2096.0	1753.0	2900.0	10455.0
NOX CONC-PPM	21.0	221.0	305.0	122.0	24.0
CO CONC-PERC	8.2	6.9	6.0	8.5	8.3
COZ CON-PERC	6.4	10.0	10.2	8.7	7.1
02 CONC-PERC	3.9	0.3	0.3	0.8	3.0
MOLS OUT DRY	6.5	51.3	46.2	24.1	6.7
MOLS OUT WET	7.4	58.5	53.3	27.4	7.6
SHAFT TORQUE		Measured			
HORSEPOWER		Measured			
ENG AIR FLOW	186.0	1500.0	1372.0	692.0	
DRY AIR FLOW ENG FUEL FLO	184.5	1488.1	1361.2	686.5	189.5
DRY AIR DENS	15.2	119.0	105.0	57.8	16.3
WET AIR DENS	0.0735	0.0735	0.0735	0.0735	0.0735
-LI KIN DENG		u grar	U-UI'SI	U.U.U.	0.0747
EXH CARBON	11.4310	104.3055	89.9038	49.6889	12.4076
EXH HYDROGEN	2.2030	18.0145	17.0671	8.6191	2.2989
EXH FUEL FLO	13.6339	122.3200	106.9709	58.3080	14.7065
DIFF WFC-WFM	-1.5661	3.3200	1.9709	0.5580	-1.5935
MEAS F/A RAT	0.0824	0.0800	0.0771	0.0841	0.0860
CAL F/A RAT	0.0801	0.0833	0.0796	0.0865	0.0830
DIFF M-C F/A	-2.7517	4.1157	3.2024	2.7966	-3.5231
CYL TEMP MAX MAN PRES. HGA	260.0000 15.6	360.0000 28.6	380.0000 27.1	340.0000	280.0000
EXH GAS TEMP	742.0	1360.0	1367.0	1163.0	766.0
CO LBS/MODE	3.0034	0 4000			
CO LBS/CYC-RHP	0.064	0.4990	6.4887	5.7096	1.0363
	STD FOR CO	153.2700			
TERCENT OF EFA	The state of the s				
HC LBS/MODE	0.2587	0.0098	0.1250	0.1276	0.0864
	0.2587	0.0098	0.1250	0.1276	0.0864
HC LBS/MODE HC LBS/CYC-RHP PERCENT OF EPA NO LBS/MODE	0.2587 0.002 STD FOR HC	0.0098			
HC LBS/MODE HC LBS/CYC-RHP PERCENT OF EPA NO LBS/MODE	0.2587 0.002 STD FOR HC	0.0098		0.1276	
MC LBS/MODE MC LBS/CYC-RHP PERCENT OF EPA	0.2587 0.002 STD FOR HC	0.0098			0.0864