

Overview - two short lectures

epcc

- Lecture 1 Matrix Splitting Techniques
 - relaxation techniques as matrix methods
 - analysis of convergence
 - mapping PDE solution domains to vectors
- Lecture 2 Sparse Matrices
 - A classification of linear systems
 - A history of large matrix computations
 - Sources of linear systems
 - Sparse matrices and PDEs
 - Sparse matrix storage
 - The COO and CSR storage technique
 - Matrix operations

PNA L14

Summary of Relaxation Methods

- epcc
- So far presented as a pragmatic approach
 - write down the discrete PDE that each solution point must satisfy
 - loop over every interior point and solve the PDE locally
 - apply the boundary conditions by hand
 - iterate many times and hope for convergence
- Some extensions to this Jacobi method
 - eg in-place solution (Gauss-Seidel) and over-relaxation
- Not obviously related to matrix methods

PNA L14

2

Matrix Splitting

- |epcc|
- Any linear problem is of the form A x = b
 - A encodes the precise form of the PDE
 - b contains any fixed boundary conditions
- Split A into three parts
 - Diagonal, Strictly Upper and Strictly Lower triangular: A = L + D + U
 - not the same as the LU factors!

$$(L+D+U)x = b, Dx = -(L+U)x + b$$

- view these as iterative expressions, eg Jacobi corresponds to

$$Dx^{(n+1)} = -(L+U)x^{(n)} + b$$
$$x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + D^{-1}b$$

PNA L14

Consider 1D Pollution Problem

• A represents: -d²/dx²

$$A = \begin{bmatrix} 2 & -1 & \cdot & \cdot \\ -1 & 2 & -1 & \cdot \\ \cdot & -1 & 2 & -1 \\ \cdot & \cdot & -1 & 2 \end{bmatrix}$$

- Splitting into L, D and U
 - a Jacobi iteration is: $D x^{(n+1)} = -(L+U) x^{(n)} + b$

$$\begin{bmatrix} 2 & \cdot & \cdot & \cdot \\ \cdot & 2 & \cdot & \cdot \\ \cdot & \cdot & 2 & \cdot \\ \cdot & \cdot & 2 & \cdot \\ \cdot & \cdot & \cdot & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^{(n+1)} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^{(n)} + \begin{bmatrix} b_1 \\ 0 \\ 0 \\ b_4 \end{bmatrix}$$

PNA L14

-

Jacobi Equations

- Equations the same as in previous lectures
 - with u_i replaced by x_i
 - exterior boundary values u_0 and u_{N+1} replaced by b_1 and b_N

$$x_{1}^{(n+1)} = \frac{1}{2} (b_{1} + x_{2}^{(n)})$$

$$x_{2}^{(n+1)} = \frac{1}{2} (x_{1}^{(n)} + x_{3}^{(n)})$$

$$x_{3}^{(n+1)} = \frac{1}{2} (x_{2}^{(n)} + x_{4}^{(n)})$$

$$x_{4}^{(n+1)} = \frac{1}{2} (x_{3}^{(n)} + b_{4})$$

- •
- Procedure
 - impose PDE at each interior point
 - new value is the average of the old neighbouring points

PNA L14

Gauss Seidel

epcc

• Keep both D and L on the LHS: $(D+L) x^{(n+1)} = -U x^{(n)} + b$

$$\begin{bmatrix} 2 & \cdot & \cdot & \cdot \\ -1 & 2 & \cdot & \cdot \\ \cdot & -1 & 2 & \cdot \\ \cdot & \cdot & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^{(n+1)} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^{(n)} + \begin{bmatrix} b_1 \\ 0 \\ 0 \\ b_4 \end{bmatrix}$$

$$\begin{bmatrix} x_1^{(n+1)} = \frac{1}{2} (b_1 + x_2^{(n)}) \\ x_2^{(n+1)} = \frac{1}{2} (x_1^{(n+1)} + x_3^{(n)}) \\ x_3^{(n+1)} = \frac{1}{2} (x_2^{(n+1)} + x_4^{(n)}) \\ x_4^{(n+1)} = \frac{1}{2} (x_3^{(n+1)} + b_4) \end{bmatrix}$$

- equivalent to solving Jacobi equations in-place in order 1, 2, ..., N

PNA L14

.....

Jacobi and (over-relaxed) Gauss-Seidel

epcc

- · Connection to matrix-splitting
 - Jacobi

$$x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + b$$

- Gauss-Seidel

$$x^{(n+1)} = -(D+L)^{-1}Ux^{(n)} + b$$

- Over-relaxed Gauss-Seidel

$$x^{(n+1)} = (D + wL)^{-1}((1 - w)D - wU)x^{(n)} + wb$$

PNA L14

2D Problem as a Matrix Problem

- Easy to write down difference equations in 2D
 - eg: $u_{2,1} u_{1,2}$ + 4 $u_{2,2} u_{3,2}$ $u_{2,3}$ = 0
 - but how do we write these as Au = b?
- Map MxM solution $u_{i,j}$ to a vector x_i of length N
 - mapping has no effect on the solution
 - but some may be more convenient than others
 - commonly use lexicographic order, ie $u_{i,j} \rightarrow x_{i+(j-1)^*M}$
- Consider 3x3 problem
 - nine unknowns
 - solution x has nine elements

и

PNA L14

0

Focus on Equation for $u_{2,2}$

 \boldsymbol{x}

• *u* equations:

$$-\nabla^2 u_{2,2} = -u_{2,1} - u_{1,2} + 4u_{2,2} - u_{3,2} - u_{2,3}$$

– in terms of x:

$$-\nabla^2 x_5 = -x_2 - x_4 + 4x_5 - x_6 - x_8$$

- row 5 of matrix:

PNA L14

Choice of Ordering

- Has some effect on performance
 - may want to reflect red/black nature of chequerboard update
 - ie try to achieve linear access patterns on x
- Has a major effect in parallel
 - parallel matrix-vector performed by decomposing over vectors
 - eg y = Ax is parallelised by regular domain decomposition of y
 - amount of communications determined by form of mapping
 - optimising the mapping is a *mesh decomposition* problem
 - standard algorithms exist (recursive spectral bisection, ...)

PNA L14

11

Note: Convergence of Splitting

- General matrix splitting eqns: $E x^{(n+1)} = F x^n + b$
 - actual solution is perfect solution plus correction
 - $-x^n = \hat{x} + \delta x^n$ where $E\hat{x} = F\hat{x} + b$
 - substituting into main equation gives $E \delta x^{n+1} = F \delta x^n$
 - error in solution evolves according to $\delta x^n = (E^{-1}F)^n \delta x^0$
- Convergence depends on eigenvalues of E⁻¹F
 - must all be less than one in order to get a solution
 - speed of convergence depends on condition number
- Iteration matrix
 - $-E^{-1}F$ is $-D^{-1}(L+U)$ for Jacobi and $-(D+L)^{-1}U$ for Gauss Seidel
 - can show that latter is better conditioned
 - heuristically, GS inverts more of the matrix at each step

PNA L14

Summary

- lebcc
- Relaxation methods are very easy to program
 - may achieve good performance using over-relaxation
- Amount to matrix splitting for linear problems
 - allows for a formal analysis of convergence properties
 - equivalence of GS algorithm not immediately apparent
- Can be applied to non-linear problems
 - no longer equivalent to matrix method
 - under-relaxation may be required for stability

PNA L14

Overview

epcc

- Motivation
 - A classification of linear systems
 - A history of large matrix computations
 - Sources of linear systems
 - Sparse matrices and PDEs
 - Sparse matrix storage
 - The COO and CSR storage technique
 - Matrix operations

PNA L14

15

Recall what a linear system is

epcc

 Recall that a linear system (of size N) can be represented by a matrix equation, of the form:

This is simply a representation of N equations linking N unknown quantities: u₁, u₂,..., u_N.

PNA L14

Classification of systems

epcc

- Small dense systems
 - are easily stored as dense arrays
 - can be efficiently factorised, e.g. using LU or QR method
 - are well-understood and easily solved, e.g. LAPACK.
- Large sparse systems
 - Contain large numbers of unknowns
 - Possess significant structure e.g. bandedness
 - cannot be efficiently stored in dense arrays
 - present significant practical difficulties.

PNA L14 22

Computational cost

lebcc

1950	N=20	(Wilkinson)
1965	N=200	(Forsythe and Moler)
1980	N=2,000	(LINPACK)
1995	N=20,000	(LINPACK)
2002	N=300,000	(LINPACK)

Table 1: Typical matrix computations over last 50 years - an increase in size of O(10⁴).

PNA L14

22

Viable matrix computations

- Matrix factorisation takes O(N³) flops
 - to solve a problem of N unknowns, containing N² coefficients
- Computing power has increased by O(10¹²) in last fifty years
- Notice $(10^4)^3 = 10^{12}$.
- If we could solve system in O(N²) flops, maybe tackle problems with tens of millions of unknowns!

PNA L14

Sources of linear systems

- Small dense systems (<O(10⁴) unknowns)
 - forces between bodies in a mechanical structure
 - interaction between chemicals in a reaction
- Large sparse systems (>O(10⁴) unknowns)
 - models from CFD, financial markets, biology, particle physics, environmental:

discretisation of PDEs

 finite difference, finite element, or finite volume methods

Gear box model: 153,746 unknowns, 9,080,404 nonzeros, T. Davis, University of Florida Sparse Matrix Collection

PNA L14

OF.

QCD

- Continuous space-time is replaced with a 4D lattice
- For a lattice with 24³ x 48 space-time points with 4 spin and 3 colour components each matrix size is
 - $-7,962,624 \times 7,962,624 = 63,403,380,965,376$ elements
 - This corresponds to 1,014,454,095,446,016 Bytes ≈ 1 PB c.f.
 HECTOR (ARCHER predecessor) which had total of 90 TB RAM
- The matrix represents a Dirac operator
 - essentially a complicated differential operator so mostly we're dealing with nearest-neighbour interactions.

PNA L14

Finite difference matrix

$$\begin{bmatrix} d & u & 0 & & & 0 \\ l & d & \ddots & & & & \\ 0 & \ddots & \ddots & \ddots & & & \\ & & \ddots & \ddots & \ddots & 0 \\ & & & \ddots & \ddots & u \\ 0 & & & 0 & l & d \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} -lb_1 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ -ub_N \end{bmatrix}$$

$$l = -\frac{1}{h^2}$$
, $d = 2\frac{1}{h^2} + \frac{a}{h}$, $u = -\frac{1}{h^2} - \frac{a}{h}$

PNA L14

21

Sparse matrix storage

- As majority of entries in matrix A are zero, it is inefficient to store a sparse matrix in a 2-D array.
 - makes elimination of redundant calculations more difficult
 - large amounts of memory for storage
- Dozens of storage techniques -- we consider 2 popular choices:
 - COO format (most obvious technique)
 - CSR/ CSC format (as used by Sun S3L, MATLAB, PETSc etc)

PNA L14

COO format

Co-ordinate (COO) storage involve 3 scalars and 3 arrays:

 int nRow
 - number of rows

 int nCol
 - number of columns

 int nNz
 - number of nonzero elements

 double value[nNz]
 - contents of matrix location

 int rowldx[nNz]
 - row index of each element

 int colldx[nNz]
 - likewise for columns

- Data usually in row-major order
- Not particularly efficient
 - redundant storage of column entries (when ordered)
 - easy for user, not optimised for programming
 - expensive to add/modify data or change capacity
 - very easy to perform matrix transpose operation

PNA L14

33

Example of COO format

Matrix

$$A = \begin{pmatrix} 1.0 & 0.1 & 0.5 & \bullet \\ 0.4 & \bullet & \bullet & 0.7 \\ \bullet & 0.6 & \bullet & \bullet \\ 0.3 & \bullet & 0.2 & 0.8 \end{pmatrix}$$

```
nRow = 4; nCol = 4; nNz = 9;

value[9] = {1.0, 0.1, 0.5, 0.4, 0.7, 0.6,

0.3, 0.2, 0.8};

colIdx[9] = {0, 1, 2, 0, 3, 1, 0, 2, 3};

rowIdx[9] = {0, 0, 0, 1, 1, 2, 3, 3, 3};
```

PNA L14

Matrix-vector multiplication public void timesv(double[] v, double[] w) { for(int j=0; j<this.nRow; j++) w[j] = 0.0; for(int j=0; j<this.nNz; j++) w[this.rowIdx[j]] += this.value[j]*v[this.colIdx[j]]; return; }</pre>

double indirection for assignment and data access

PNA L14

35

CSR format

 Compressed sparse row (CSR) format - 3 scalars and 3 arrays (data stored in row-major order).

int nRow

- number of rows

int nCol

- number of columns
- int nzMax
- maximum number of elements
- double value[nzMax]
- contains nonzero entries, stored in row-major order
- int colldx[nzMax] co
 - columns index of corresponding element in valueindex into value[] and colldx[] of the first entry in
- int rowStart[nRow+1]
 - each row

(nNz = rowStart[nRow])

- Good for matrix-vector multiplication, and reasonable for transpose operation.
- Flexible design in terms of expansion, modification.

PNA L14

Example of CSR format

lebcc

Matrix

$$A = \begin{pmatrix} 1.0 & 0.1 & 0.5 & \bullet \\ 0.4 & \bullet & \bullet & 0.7 \\ \bullet & 0.6 & \bullet & \bullet \\ 0.3 & \bullet & 0.2 & 0.8 \end{pmatrix}$$

```
nRow = 4; nCol = 4; nzMax = 9;
value[9] = {1.0, 0.1, 0.5, 0.4, 0.7, 0.6,
0.3, 0.2, 0.8};
colIdx[9] = {0, 1, 2, 0, 3, 1, 0, 2, 3};
rowStart[5] = {0, 3, 5, 6, 9};
```

PNA L14

37

Matrix-Vector multiplication


```
public void timesv(double[] v, double[] w) {
  for(int j=0; j<this.nRow; j++)
    w[j] = 0.0;
  for(row=0;this.nrow;row++) {
    for(col=this.rowStart[row];
        col<this.rowStart[row+1];col++) {
        w[row]+=this.value[j]*v[this.colIdx[j]];
        j++;
}return;}</pre>
```

double indirection for update access only

PNA L14

CSC format

epcc

Compressed sparse column (CSC) similar to CSR

int nRow - number of rows
int nCol - number of columns
int nzMax - maximum capacity

int nzMax - maximum capacity
double value[nZmax] - nonzero entries in column-major format

int rowIndex[nZmax] - row index for each corresponding element in

value[]

int colStart[nCol+1] - index of first element in each column

 used by packages/libraries derived from FORTRAN which store arrays in column-major format, e.g. MATLAB

analogous format to CSR matrices

PNA L14

39

Conclusions

- Large, sparse, linear systems are widely used in scientific computing
- Generally result from discretising PDEs
- · Contain significant structure
- Require specialised storage techniques
- Require specialised solution techniques most commonly iterative methods

PNA L14