In Exercises 1 through 4, give the set corresponding to the sequence.

- **1.** 2, 1, 2, 1, 2, 1, 2, 1
- **2.** 0, 2, 4, 6, 8, 10, . . .
- 3. aabbccddee · · · zz
- 4. abbcccdddd
- 1. {1,2}
- 2. $\{x \mid x \in \mathcal{N} \land (x = 0 \text{ or } x \text{ is even})\}$
- 3. { x | x is a symbol from english alphabete}
- 4. { a, b, c, d }
- 5. Give three different sequences that have $\{x, y, z\}$ as a corresponding set.

- 6. Give three different sequences that have $\{1, 2, 3, ...\}$ as a corresponding set.
- 1. S: Sn=h, 1 4 h 4 0
- 2. $S \cdot S_1 = 2 \cdot S_2 = 1 \cdot S_n = S_{n-1} + 2 \cdot S_1 \leq n \leq \infty$
- 3.5 1,1,2,2,3,3,4,4,5,5,5,... <=> $5_n = [n/2] + (n\%2)$

In Exercises 7 through 10, write out the first four terms (begin with n = 1) of the sequence whose general term is given.

7.
$$a_n = 5^n$$

8.
$$b_n = 3n^2 + 2n - 6$$

9.
$$c_1 = 2.5, c_n = c_{n-1} + 1.5$$

10.
$$d_1 = -3$$
, $d_n = -2d_{n-1} + 1$

In Exercises 11 through 16, write a formula for the nth term of the sequence. Identify your formula as recursive or explicit.

12.
$$0, 3, 8, 15, 24, 35, \dots$$

16.
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

11
$$S_n = 1 + 2(n-1) - explicit, 1 \le n \le \infty$$

12. $S_1 = 0$, $S_n = S_{n-1} + (1 + 2(n-1))$, $2 \le n \le \infty - recors$

17. Write an explicit formula for the sequence 2, 5, 8, 11, 14, 17,

$$S_{n} = 2 + 3(n - 1), 1 \le n \le \infty$$

18. Write a recursive formula for the sequence 2, 5, 7, 12, 19, 31,

$$S_1 = 2$$
, $S_2 = 5$, $S_n = S_{n-1} + S_{n-2}$, $3 \le N \le \infty$

19. Let $A = \{x \mid x \text{ is a real number and } 0 < x < 1\}$, $B = \{x \mid x \text{ is a real number and } x^2 + 1 = 0\}$, $C = \{x \mid x = 4m, m \in Z\}$, $D = \{(x, 3) \mid x \text{ is an English word whose length is 3}$, and $E = \{x \mid x \in Z \text{ and } x^2 \le 100\}$. Identify each set as finite, countable, or uncountable.

- **20.** Let $A = \{ab, bc, ba\}$. In each part, tell whether the string belongs to A^* .
 - (a) $ababab \checkmark$ (b) $abc \times$ (c) $abba \checkmark$

- (d) abbcbaba √ (e) bcabbab × (f) abbbcba ×
- **21.** Let $U = \{FORTRAN, PASCAL, ADA, ADA, PASCAL, PASCAL, ADA, PASCAL, PAS$ COBOL, LISP, BASIC, C⁺⁺, FORTH}, $B = \{C^{++}, BASIC, ADA\}, C = \{PASCAL,$ ADA, LISP, C^{++} , $D = \{FORTRAN, PASCAL, \}$ ADA, BASIC, FORTH, and $E = \{PASCAL, PASCAL, PASCAL,$ ADA, COBOL, LISP, C⁺⁺}. In each of the following, represent the given set by an array of zeros and ones.
 - (a) $B \cup C$ (b) $C \cap D$ (c) $B \cap (D \cap E)$
 - (d) $\overline{B} \cup E$ (e) $\overline{C} \cap (B \cup E)$
- (9) BUC = { C++, BASIC, ADA, PASCAL, LISP} BUC: 0,1,1,0,1,1,0 (b) CND = { PASCAL, ADA} CAD: 0, 1, 1, 0, 0, 0, 0, 0 (C) Bn(DnE)= BNDnE= LADA ? B1(D1E)=0,0,1,0,0,0,0
- (d) BUE = & PASCAL, ADA, COBOL, LISP, C++, FORTRAN,
- FORTH3; BUE: 1, 1, 1, 1, 1, 1, 0, 1, 1 (e) En (BUE)={ B*SIC COBOLS
 - ĒΛ (BUE): 0,0,0,1,0,1,0,0

- **22.** Let $U = \{b, d, e, g, h, k, m, n\}, B = \{b\}, C = \{d, g, m, n\}, \text{ and } D = \{d, k, n\}.$
 - (a) What is $f_B(b)$? (b) What is $f_C(e)$?
 - (c) Find the sequences of length 8 that correspond to f_B , f_C , and f_D .
 - (d) Represent $B \cup C, C \cup D$, and $C \cap D$ by arrays of zeros and ones.
- (a) 1 (b) 0; (c) f_{B} : 1, 0,0,0,0,0,0,0 f_{C} : 0,1,0,1,0,0,0,1,1 f_{A} : 0,1,0,0,0,0,1,1 (d) Buc: 1,1,0,1,0,0,1,1 CUD: 0,1,0,1,0,1,1,1
- 23. Prove Theorem 1(c).

24. Using characteristic functions, prove that $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.

$$f_{(A \oplus B) \oplus C} = f_{A \oplus B} + f_{C} - 2 f_{A \oplus B} f_{C}$$

$$= f_{A} + f_{B} - 2 f_{A} f_{B} + f_{C} - 2 (f_{A} + f_{B} - 2 f_{A} f_{B}) f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{A} f_{B} - 2 f_{A} f_{C} - 2 f_{B} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{A} f_{B} - 2 f_{A} f_{C} - 2 f_{B} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 2 f_{A} (f_{B} + f_{C} - 2 f_{B} f_{C}) =$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 1 f_{A} f_{B} - 2 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 2 f_{A} f_{C} + 4 f_{A} f_{C} + 4 f_{A} f_{B} f_{C}$$

$$= f_{A} + f_{B} + f_{C} - 2 f_{B} f_{C} - 2 f_{A} f_{C} + 4 f_{A} f_{C}$$

25. Let $A = \{+, \times, a, b\}$. Show that the following expressions are regular over A.

(a) $a + b(ab)*(a \times b \vee a)$

(b) $a + b \times (a^* \vee b)$

(c) $((a*b \lor +)* \lor \times ab*)$

(3):

2, +, b are RE2, 1+b are RE3 2, b are RE2, ab are RE3

(2b) RES

2+b(2b) 2re R=3

a,x,b are KE2, axb ere KE3

2 is RE2

(axb va) is RE4

9+P(3P), (3×p 15) 12 123

25. Let $A = \{+, \times, a, b\}$. Show that the following expressions are regular over A.

(a)
$$a + b(ab)*(a \times b \vee a)$$

(b)
$$a + b \times (a^* \vee b)$$

(c)
$$((a*b \lor +)* \lor \times ab*)$$

(b):

a,+,b,x with RF2=> regular
a+bx with RF3=> regular
a* with RF3=> regular
a* vb with RF4=> regular
a+bx (a* vb) with R3=> regular

25. Let $A = \{+, \times, a, b\}$. Show that the following expressions are regular over A.

(a)
$$a + b(ab)*(a \times b \vee a)$$

(b)
$$a + b \times (a^* \vee b)$$

(c)
$$((a*b \lor +)* \lor \times ab*)$$

(c):

- **26.** Let $A = \{a, b, c\}$. In each part we list a string in A^* and a regular expression over A. In each case, tell whether or not the string on the left belongs to the regular set corresponding to the regular expression on the right.
 - (a) $ac \quad a*b*c \checkmark$
 - (b) abcc $(abc \lor c)^* \checkmark$
 - (c) aaabc $((a \lor b) \lor c)^* \checkmark$
 - (d) $ac (a*b \lor c) \times$
 - (e) abab (ab)*c ×
- 27. We define T-numbers recursively as follows:
 - 1. 0 is a T-number.
 - 2. If X is a T-number, X + 3 is a T-number. Write a description of the set of T-numbers.

$$T = \{ x \mid x = 3 \cdot i, i \in \mathcal{A} \}$$

- **28.** Define an S-number by:
 - 1. 8 is an S-number.
 - 2. If X is an S-number and Y is a multiple of X, then Y is an S-number.
 - 3. If X is an S-number and X is a multiple of Y, then Y is an S-number.

Describe the set of S-numbers.

2. ..., $g_{-(-2)}$, $g_{-(-1)}$, g_{-0} , g_{-1} , g_{-2} , ... are g_{-1} , $g_$

29. Let *F* be a function defined for all nonnegative integers by the following recursive definition:

$$F(0) = 0,$$
 $F(1) = 1,$
 $F(N+2) = 2F(N) + F(N+1),$ $N \ge 0$

Write the first six values of F; that is, write the values of F(N) for N = 0, 1, 2, 3, 4, 5.

30. Let G be a function defined for all nonnegative integers by the following recursive definition:

$$G(0) = 1,$$
 $G(1) = 2,$
 $G(N+2) = G(N)^2 + G(N+1),$ $N \ge 0$

Write the first five values of G.