PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS NÚCLEO DE EDUCAÇÃO A DISTÂNCIA

Pós-graduação *Lato Sensu* em Ciência de Dados e Big Data

ROBERTO TEIXEIRA DE OLIVEIRA

PREVISÃO DE RISCO DE INADIMPLÊNCIA COM AUXÍLIO DE DADOS SOCIOECONÔMICOS

Belo Horizonte 2022

ROBERTO TEIXEIRA DE OLIVEIRA

PREVISÃO DE RISCO DE INADIMPLÊNCIA COM AUXÍLIO DE DADOS SOCIOECONÔMICOS

Trabalho de Conclusão de Curso apresentado ao Curso de Especialização em Ciência de Dados e Big Data como requisito parcial à obtenção do título de especialista.

Belo Horizonte 2022

SUMÁRIO

1. Introdução	4
1.1. Contextualização	4
1.2. O problema proposto	5
1.3. Objetivos	7
2. Coleta de Dados	8
2.1 Dados de aquisição	8
2.2 Enriquecimento com dados socioeconômicos	9
3. Tratamento de Dados	12
3.1 Enriquecimento	12
3.2 Ajustes de variáveis	13
3.3 Criação de novas <i>features</i>	13
3.4 Valores Ausentes	14
4. Análise e Exploração dos Dados	16
4.1 Variável Target	16
4.2 Variável facebook_profile	17
4.3 Variável <i>email</i>	17
4.4 Analisando o percentual de inadimplência dos Estados	18
4.5 Variáveis de Score	19
4.6 Variáveis de Enriquecimento	20
5. Criação de Modelos de <i>Machine Learning</i>	21
5.1 Remoção de variáveis	21
5.2 Pré-processamento	21
5.2 Avalição de métricas	27
6. Interpretação dos Resultados	33
7. Resumo do Estudo	34
8. Links	35
APÊNDICE	36

1. Introdução

1.1. Contextualização

"Em dezembro de 2021, o número de famílias que informaram estar endividadas atingiu uma marca de 76,3%, segundo dados da CNC (Confederação Nacional do Comércio de Bens, Serviços e Turismo). É o maior valor desde o início da pesquisa, em 2010."

Esta é apenas mais uma notícia publicada, desta vez, pelo Jornal Nexo em sua página no dia primeiro de fevereiro de 2022, que evidencia uma característica que o brasileiro adquiriu nos últimos anos, o endividamento. Pesquisadores explicam, que a alta da inflação e por consequência o aumento dos preços dos itens básicos, fizeram com que as famílias optassem por direcionar a renda para os itens essenciais, e para as demais despesas buscassem formas atrativas de pagamento da dívida, como renegociação e contratação de prazos mais longos, possibilitando às famílias condições de ampliar o endividamento e o consumo, porém, mantendo a sua capacidade de pagamento.

No entanto, boa parte destas famílias não conseguem estes "benefícios", e para estas, restam realizar empréstimos pessoais, mesmo com juros elevados, buscando o controle de suas finanças.

Sabendo destas condições, as empresas que fazem concessões de créditos, buscam cada vez mais identificar os melhores clientes na visão financeira, visando o aumento de seus lucros.

É neste ponto, que apresenta-se como uma das soluções mais utilizadas para este problema, a análise de risco de crédito, sendo esta, a probabilidade de um cliente faltar com a quitação de qualquer tipo de dívida. Neste trabalho, iremos apresentar na prática um problema de análise de crédito e como solucionar através de técnicas de *Machine Learning*.

1.2. O problema proposto

A análise de risco de crédito é a maneira como a empresa prevê o descumprimento de acordos, se revelando como o potencial de perda financeira decorrente do não pagamento do principal e dos juros gerados nas condições do empréstimo.

O juros, é uma forma de compensar o credor pelo risco de crédito. Logo, a análise de crédito é fundamental na definição do percentual de juros que será cobrado na operação.

Mas além dos empréstimos concedidos, a análise de crédito ganha cada vez mais espaço no mercado financeiro na solicitação de novos cartões de crédito. Além dos dados concedidos pelo cliente no momento da solicitação, hoje, facilmente é possível adquirir novos dados do solicitante através de empresas que vendem informações exatamente com este propósito, servindo de insumo para predições que levarão a tomada de decisão do companhia de aprovar ou não o início da linha de crédito solicitada, além do limite estabelecido.

Neste trabalho, apresentaremos a resolução de um desafio proposto pela Nubank em 2018, chamado *Data Challenge*. O problema traz como ideia proporcionar aos participantes uma experiência das tarefas do cotidianas de um cientista de dados que trabalha em uma grande companhia financeira.

1.2.1 Sobre o Nubank

O Nubank é uma *fintech*, uma empresa de tecnologia que cria soluções para o mercado financeiro. Não se encaixando como um banco tradicional, o Nubank nasceu para diminuir a burocracia, sendo todos os seus problemas resolvidos via aplicativo.

1.2.2 Sobre o Data Challeng

A problemática do desafio proposto pelo Nubank, consistia em construir 3 modelos de *Machine Learning*, sendo eles:

- Risco de Crédito: Previsão do risco de inadimplência de um cliente utilizando seus dados de aquisição;
- Propensão a Gasto: Distinguir os clientes de acordo com a sua propensão a gasto;

• Fraude: Identificação de possíveis fraudadores.

Nosso estudo, será baseado na resolução do modelo de Risco de crédito, em que, deve-se prever a probabilidade de um cliente Nubank deixar de pagar a sua fatura de crédito e se tornar inadimplente.

1.2.3 Sobre a base disponibilizada

O Nubank disponibilizou para o desafio diversos arquivos que atendem aos três modelos propostos, para o atual trabalho, o arquivo de interesse é chamado de "acquisition_train.csv", este, contêm as informações do solicitante coletadas no momento da requisição, assim como variáveis extras coletadas pelo Nubank através de empresas terceiras com informações financeiras.

Os dados concedidos seguem o formato dos dados reais que utiliza-se no Nubank. Portanto, boa parte das variáveis possuem significado e valores iguais às que lida-se diariamente. Porém, como trata-se de dados sobre informações pessoais, nenhum dos mesmos são referentes a pessoas reais.

O enriquecimento dos dados é a adição de novas informações na base através de outras fontes, visando identificar novas variáveis que somando as informações iniciais, acrescentem na análise.

Na atualidade, é possível encontrar diversas fontes que são facilmente utilizadas como enriquecimento. Nesta ocasião, serão utilizados dados econômicos do Índice de Desenvolvimento Humano (IDH), junto a dados do Censo dos municípios brasileiros de 2010. Estes foram coletados na comunidade Kaggle, famosa por ser utilizada para divulgação de desafios da área de Ciência de Dados.

1.3. Objetivos

Este trabalho terá como objetivo principal construir um modelo de *Machine Learning* que seja capaz de apresentar a probabilidade de um cliente se tornar inadimplente, a partir dos dados coletados de sua aquisição, junto a dados socioeconômicos como fonte de enriquecimento.

Para chegar neste objetivo, assim como toda análise de *Machine Learning*, é possível dividir a mesma em etapas, trataremos cada uma como um objetivo específico.

- 1. Seleção de variáveis: Identificar quais variáveis foram escolhidas para o modelo final, apresentando os critérios utilizados.
- 2. Ajuste do Modelo: Dentre os algoritmos testados, apresentar qual o melhor e o porquê este foi escolhido.
- 3. Variáveis importantes: Apresentar quais variáveis apresentaram uma maior importância para o modelo escolhido.
- 4. Validação: Apresentar quais métricas foram utilizadas para validação.

Acima de tudo, a finalidade deste trabalho é apresentar um passo a passo da resolução de um problema de ciência de dados, passando por todas as etapas necessárias para o processo.

2. Coleta de Dados

O presente estudo trata-se de um *Data Challenge* promovido pelo Nubank em 2018, seus dados foram concedidos na época e diversos participantes aproveitaram a oportunidade para disponibilizar seus resultados em portfólios pessoais. Para este trabalho, utilizou-se os dados concedidos do desafio no github (Plataforma de hospedagem de códigos e arquivos de controle de versão usando o Git) por um usuário, este armazenou toda a documentação fornecida pela companhia no período.

É possível encontrar o mesmo no link https://github.com/luanprates/nubank-challenge/blob/master/questions.md.

2.1 Dados de aquisição

Para ajustar o modelo de Risco de crédito, utilizou-se dados de duas fontes de informações, a principal será os dados de aquisição fornecidos pela companhia no desafio, esta conta com as seguintes colunas.

Coluna	Tipo	Descrição
ids	String	identificador único de um solicitante
email	String	Provedor de e-mail do solicitante
tags	String	Tags descritivas dadas pelo provedor de dados
score_1	String	Score de crédito 1, categorias
score_2	String	Score de crédito 2, categorias
score_3	Float	Score de crédito 3
score_4	Float	Score de crédito 4
score_5	Float	Score de crédito 5
score_6	Float	Score de crédito 6
risk_rate	Float	Risco associado ao solicitante
last_amount_borrowed	Float	Valor do último empréstimo que o solicitante tomou
last_borrowed_in_months	Int	Duração do último empréstimo que o solicitante tomou
reason	String	Razão pela qual foi feita uma consulta naquele cpf
income	Float	Renda estimada pelo provedor dos dados para o solicitante
facebook_profile	Bool	Se o solicitante possui perfil no Facebook
state	String	Estado de residência do solicitante
zip	String	Código postal do solicitante
shipping_zip_code	Int	Código do endereço de entrega
shipping_state	String	Estado do endereço de entrega
channel	String	Canal pelo qual o solicitante aplicou

job_name	String	Profissão do solicitante
real_state	String	Informação sobre habitação do solicitante
ok_since	Float	Quantidade de dias que
n_bankruptcies	Float	Quantidade de bancarrotas que o solicitante já experimentou
n_defaulted_loads	Float	Quantidade de empréstimos não pagos no passado
n_accounts	Float	Número de contas que o solicitante possui
n_issues	Float	Número de reclamações de terceiros feitas em alguma das contas do solicitante
user_agent	String	Informação sobre dispositivo usado para a aplicação
reported_income	Int	Renda informada pelo próprio aplicante
profile_phone_number	String	Número de telefone, ex: 210- 2813414
marketing_channel	String	Canal de marketing pelo qual o solicitante chegou na página de pedido de crédito
lat_lon	Object	Latitude e longitude da localização
external_data_provider_fraud_score	Int	Score de fraude
external_data_provider_first_name	String	Primeiro nome do solicitante
external_data_provider_email_seen_before	String	Se o e-mail já foi consultado junto ao provedor de dados
external_data_provider_credit_checks_last_year	Int	Quantidade de consultas de crédito na janela de um ano
external_data_provider_credit_checks_last_month	Int	Quantidade de consultas de crédito na janela de um mês
external_data_provider_credit_checks_last_2_year	Int	Quantidade de consultas de crédito na janela de dois anos
application_time_in_funnel	Int	Tempo gasto pelo solicitante durante o processo de aplicação
application_time_applied	Date	Horário de aplicação
profile_tags	String	Tags
target_fraud	String	Variável default para o modelo de Fraude
target_default	String	Variável default para o modelo de Inadimplência

Tabela 1: Variáveis de aquisição.

2.2 Enriquecimento com dados socioeconômicos

Para o enriquecimento da base de aquisição, utilizou-se dados econômicos dos municípios brasileiros, disponibilizados através na comunidade Kaggle. A base é contida por diversas informações de diferentes áreas, porém, filtrou-se apenas as variáveis relacionadas

a economia de cada município. O link para acessar o conjunto de dados está disponível em https://www.kaggle.com/datasets/pauloeduneves/hdi-brazil-idh-brazil?select=desc.csv.

Coluna	Tipo	Descrição
corte1	Float	Renda per capita máxima do 1º quinto mais pobre
corte2	Float	Renda per capita máxima do 2º quinto mais pobre
corte3	Float	Renda per capita máxima do 3º quinto mais pobre
corte4	Float	Renda per capita máxima do 4º quinto mais pobre
corte9	Float	Renda per capita mínima do décimo mais rico
gini	Float	Índice de Gini
pind	Float	% de extremamente pobres
pindcri	Float	% de crianças extremamente pobres
pmpob	Float	% de pobres
pmpobcri	Float	% de crianças pobres
ppob	Float	% de vulneráveis à pobreza
ppobcri	Float	% de crianças vulneráveis à pobreza
pren10ricos	Float	Percentual da renda apropriada pelos 10% mais ricos
pren20	Float	Percentual da renda apropriada pelos 20% mais pobres
pren20ricos	Float	Percentual da renda apropriada pelos 20% mais ricos
pren40	Float	Percentual da renda apropriada pelos 40% mais pobres
pren60	Float	Percentual da renda apropriada pelos 60% mais pobres
pren80	Float	Percentual da renda apropriada pelos 80% mais pobres
prentrab	Float	% da renda proveniente de rendimentos do trabalho
r1040	Float	Razão 10% mais ricos / 40% mais pobres
r2040	Float	Razão 20% mais ricos / 40% mais pobres
rdpc	Float	Renda per capita
rdpc1	Float	Renda per capita média do 1º quinto mais pobre
rdpc10	Float	Renda per capita média do décimo mais rico
rdpc2	Float	Renda per capita média do 2º quinto mais pobre
rdpc3	Float	Renda per capita média do 3º quinto mais pobre
rdpc4	Float	Renda per capita média do 4º quinto mais pobre
rdpc5	Float	Renda per capita média do quinto mais rico
rdpct	Float	Renda per capita , exceto renda nula
rind	Float	Renda per capita , execto renda nala Renda per capita média dos extremamente pobres
rmpob	Float	Renda per capita média dos pobres
rpob	Float	Renda per capita média dos vulneráveis à pobreza
·		Índice de Theil - L - Mede a Desigualdade segundo a
theil	Float	renda domiciliar percapita
cpr	Float	% de trabalhadores por conta própria - 18 anos ou mais
emp	Float	% de empregadores - 18 anos ou mais
p_agro	Float	% dos ocupados no setor agropecuário - 18 anos ou mais
p_com	Float	% dos ocupados no setor comércio - 18 anos ou mais
p_constr	Float	% dos ocupados no setor de construção - 18 anos ou mais
p_extr	Float	% dos ocupados no setor extrativo mineral - 18 anos ou mais
p_formal	Float	Grau de formalização dos ocupados - 18 anos ou mais

	p_fund	Float	% dos ocupados com fundamental completo - 18 anos ou mais
	p_med	Float	% dos ocupados com médio completo - 18 anos ou mais
	p_siup	Float	% dos ocupados no SIUP - 18 anos ou mais
	p_serv	Float	% dos ocupados no setor serviços - 18 anos ou mais
	p_super	Float	% dos ocupados com superior completo - 18 anos ou mais
	p_transf	Float	% dos ocupados na indústria de transformação - 18 anos ou mais
	ren0	Float	% dos ocupados sem rendimento - 18 anos ou mais
	ren1	Float	% dos ocupados com rendimento de até 1 s.m 18 anos ou mais
	ren2	Float	% dos ocupados com rendimento de até 2 s.m 18 anos ou mais
	ren3	Float	% dos ocupados com rendimento de até 3 s.m 18 anos ou mais
	ren5	Float	% dos ocupados com rendimento de até 5 s.m 18 anos ou mais
	renocup	Float	Rendimento médio dos ocupados - 18 anos ou mais
	t_ativ	Float	Taxa de atividade - 10 anos ou mais
	t_ativ1014	Float	Taxa de atividade - 10 a 14 anos
	t_ativ1517	Float	Taxa de atividade - 15 a 17 anos
	t_ativ1824	Float	Taxa de atividade - 18 a 24 anos
	t_ativ18m	Float	Taxa de atividade - 18 anos ou mais
	t_ativ2529	Float	Taxa de atividade - 25 a 29 anos
	t_des	Float	Taxa de desocupação - 10 anos ou mais
	t_des1014	Float	Taxa de desocupação - 10 a 14 anos
	t_des1517	Float	Taxa de desocupação - 15 a 17 anos
	t_des1824	Float	Taxa de desocupação - 18 a 24 anos
	t_des18m	Float	Taxa de desocupação - 18 anos ou mais
	t_des2529	Float	Taxa de desocupação - 25 a 29 anos
	theiltrab	Float	Índice de Theil-L dos rendimentos do trabalho - 18 anos ou mais
	trabcc	Float	% de empregados com carteira - 18 anos ou mais
	trabpub	Float	% de trabalhadores do setor público - 18 anos ou mais
	trabsc	Float	% de empregados sem carteira - 18 anos ou mais
	t_luz	Float	% da população em domicílios com energia elétrica
	parede	Float	% de pessoas em domicílios com paredes inadequadas
t_n	estuda_ntrab_mmeio	Float	% de pessoas de 15 a 24 anos que não estudam nem trabalham
	t_ocupdesloc_1	Float	% de pessoas vulneráveis à pobreza e que gastam mais de uma hora até o trabalho
	t_ocupaesioc_1		de dina nota ate o trabamo
	t_rmaxidoso	Float	% de pessoas em domicílios vulneráveis à pobreza e dependentes de idosos

Tabela 2: Variáveis de enriquecimento – Dados socioeconômicos.

3. Tratamento de Dados

Nesta seção, apresentaremos o tratamento realizado nas bases relacionadas ao estudo. Para isto, trabalhou-se com a linguagem R versão 4.1.3, sendo esta uma das principais linguagens utilizadas entre os Cientistas de Dados.

Para início do estudo, os arquivos "acquisition_train.csv" e "atlas.csv"" (enriquecimento) foram carregadas através da função *read.csv.* Abaixo, encontra-se as dimensões iniciais de cada base.

Base	Linhas	Colunas
Aquisição	45.000	43
Atlas 2010 – Variáveis Econômicas	5.565	74

Tabela 3: Dimensões iniciais.

3.1 Enriquecimento

Bases carregadas, o interesse passa a ser unificar as bases. Para isto, utilizou-se a variável *lat_lon*, variável do tipo *string* que apresenta as informações de Latitude e Longitude do solicitante no momento da aplicação. Dessa forma, tratou-se a variável utilizando pacote *Stringr*, separando-a em duas novas colunas, Latitude e Longitude. Agora o desafio se torna através dessas informações de localização, identificar o município do solicitante. Através de pesquisas, encontrou-se o pacote *tidygeocoder*, este possibilita através da função *reverse_geocode*, obter diversas informações relacionadas a localização a partir dos campos Latitude e Longitude.

Após isto, novos tratamentos precisaram ser realizados para então relacionar as informações das duas bases através dos nomes dos municípios. Como chave, utilizou-se o padrão nomeMunicipio-UF, uma vez que existem no país municípios com o mesmo nome.

O próximo passo é a identificação dos endereços através da função *reverse_geocode*, nesta, foi possível identificar 43.193 municípios. Para finalizar, fez-se a mescla da base de aquisição com a base de enriquecimento atlas através da chave nomeMunicipio-UF, encerrando esta etapa com 37.857 registros enriquecidos, equivalente a 84% da base total.

3.2 Ajustes de variáveis

Começando o processo de limpeza dos dados, analisamos a variável target_default para verificar a existência de nulos e identificou-se 3.259 registros, como esta variável é a principal do estudo, pois é a que identifica o evento de inadimplência do cliente, removeu-se estes registros do dataset, restando um total de 41.741.

Ainda sobre a limpeza dos dados, os processos listados abaixo foram executados.

- Troca de campos "" para NA, isto ocorreu em 52.384 valores.
- Correções de valores no campo *email*.
- Substituição de valores Inf para NA no campo *reported_income*.
- No campo external_data_provider_email_seen_before, substituição de valores -999
 para NA.

3.3 Criação de novas features

O processo de criação de novas variáveis é fundamental em qualquer análise de *Machine Learning*, em nosso estudo criamos quatro novas variáveis, na tabela abaixo apresentamos as variáveis criadas.

Variável	Tipo	Descrição		
hora_aplicacao	Integer	Hora extraída do campo		
nora_apricacao	iiitegei	application_time_applied		
Região	String	Região baseado na variável de Latitude e		
hegido	String	Longitude		
Turno	String	Turno em relação a variável hora_aplicacao		
sins_state	String	Grupos em relação a variável codificada state		
Group_lat_lon	String	Grupos calculados pelas variáveis Latitude e Longitude pelo algoritmo Kmeans		

Tabela 4: Features criadas.

Antes do ajuste final do modelo, novas *features* foram criadas a partir de transformações de variáveis já existentes, seguindo metodologias conhecidas da área, porém, está etapa é apresentada apenas no capítulo 5.

3.4 Valores Ausentes

Após efetuar os passos listados acima, analisaremos os variáveis que as apresentaram valores nulos. A Figura 1 apresenta um gráfico de barras com o percentual de valores nulos encontrados em 21 variáveis. A variável target_fraud, apresentou 96,75% dos registros nulos, porém, esta variável é referente ao default de outro modelo proposto pelo Nubank no desafio, logo, ela já seria removida na etapa de seleção de variáveis.

Para a geração da figura a seguir, apresentamos somente as variáveis da base de aquisição, já que todas as variáveis enriquecidas pela base do IDH, terão a mesma quantidade de nulo, 6.644 registros e todas serão imputadas em etapas posteriores.

Figura 1: Percentual de valores nulos por variável.

Para analisar a necessidade de imputação dos dados ou remoção a da variável, examinou-se caso a caso e tomou-se as devidas decisões a respeito das variáveis com nulos apresentadas na Figura 1.

- As variáveis external_data_provider_credit_checks_last_2_year será removida por apresentar apenas um único valor.
- 2. As variáveis *job_name*, *user_agent* e *reason*, serão removidas por se tratar de variáveis codificadas ou categóricas que possuem um elevado número de classes.
- 3. As variáveis *marketing_channel*, *n_bankruptcies*, *n_defaulted_loans* e *external_data_provider_credit_checks_last_year*, são variáveis categóricas e serão imputadas pela classe com maior frequência a variável *facebook_profile* será imputada com uma nova classe chamada ausente, está decisão foi tomada devido na análise descritiva esta variável se apresentar promissora.
- 4. As variáveis las_amount_borrwed, last_borrewd_in_months, ok_since, n_issues, credit_limit, external_data_provider_email_seen_before e reported_income, são variáveis numéricas e receberão valores imputados a partir da mediana. Esta etapa será realizada no préprocessamento da base, apresentada no capítulo 5.

4. Análise e Exploração dos Dados

Nessa seção será apresentado uma análise descritiva em relação a base criada até o momento. Trabalharemos com foco na principal variável do modelo *target_default*, buscaremos entender como algumas variáveis se comportam em relação aos níveis desta variável.

Após toda a etapa de enriquecimento e tratamento dos dados, neste momento, a base do estudo encontra-se com 41.741 linhas e 135 colunas, dessa forma, optamos por apresentar o comportamento somente de algumas variáveis.

4.1 Variável Target

A principal variável de nosso estudo se chama *target_default*, ela apresenta, se o evento inadimplência ocorreu ou não após a entrada do cliente na companhia. A Figura 1, apresenta a distribuição das classes desta variável.

Figura 2: Distribuição da variável target_default (Default).

Nota-se que se deparamos com uma situação de desbalanceamento, em que a classe *True* possui somente 15,96% registros de toda a base. Trataremos melhor sobre este tema no capítulo 5, pois será feito um processo de balanceamento das classes antes do ajuste final dos modelos.

4.2 Variável facebook profile

Iniciando a busca de insights, analisamos a variável *facebook_profile* que apresenta a informação se o solicitante possuía conta na rede social facebook no momento da aquisição.

Figura 3: Distribuição da variável facebook_profile em relação ao target (inadimplência).

Nota-se através da Figura 3, que dentro do público que apresentaram inadimplência, aproximadamente 50% tinham conta no facebook, já no público que não apresentaram inadimplência 30,26% possuía conta na rede social, levando a uma hipótese de que a informação do solicitante possuir conta na plataforma no momento da solicitação, leva a uma probabilidade maior deste se tornar inadimplente.

4.3 Variável email

A variável *email* também foi analisada, esta informa o provedor do *e-mail* do solicitante. Novamente calculamos a distribuição das classes de forma separada para cada categoria da variável default e o resultado pode ser visto na Figura 1.

Analisando o gráfico, percebe-se que a distribuição dos provedores é muito próxima quando segregada pela variável *target*, isto nos diz que o evento se tornar inadimplente, independe do provedor de e-mail do solicitante.

Figura 4 Distribuição da variável e-mail em relação ao target (inadimplência).

4.4 Analisando o percentual de inadimplência dos Estados

A variável *lat_lon* que trouxe a informação da localização do solicitante no momento da requisição do crédito, foi responsável por nos apresentar o endereço exato de cada cliente, dessa forma, analisamos o estado coletado e calculamos o percentual de inadimplência de cada.

Figura 5: Mapa dos estados brasileiros pelo percentual de inadimplentes

Analisando a Figura 5, nota-se que 2 estados se destacaram dos demais, são eles, Rondônia e Rio Grande do Norte, na Tabela 5 apresenta o percentual de inadimplência de cada um. Para entender a que esse número representa, basta compara-los com o percentual de inadimplentes da base, que é de 15,96%, logo, estes dois estados possuem em pontos percentuais, mais que o dobro do comportamento comum.

Estado	Quantidade Registros	Quantidade Inadimplentes	Percentual Inadimplentes
Rondônia	1286	439	34,14%
Rio Grande do Norte	1771	658	37,15%

Tabela 5: Estados que se destacaram na inadimplência.

4.5 Variáveis de Score

A base de aquisição nos trouxe seis variáveis de scores de crédito de provedores terceiros. As variáveis *score_1* e *score_2*, estão codificadas, logo não iremos analisá-las.

Na busca da identificação de insights entre uma variável categoria (*target*) e outra contínua (variáveis de scores), é comum analisar gráficos, um dos mais utilizados para isto se chama *boxplot*.

Figura 6: Boxplot das variáveis score_3, socre_4, score_5 e score_6 segregado pelo target.

A Figura 6 apresenta os gráficos de *boxplot* para as variáveis de scores que não estavam codificadas. A caixa destacada no gráfico representa que 50% dados estão localizados naquela região. Comparando as caixas em todos os gráficos, nota-se que em nenhum score o comportamento da caixa se altera quando comparado ao evento d*efault*, ou seja, nenhum dos scores aparenta influenciar na probabilidade do evento inadimplência.

4.6 Variáveis de Enriquecimento

Novamente utilizou-se do gráfico de *boxplot* para buscar insights, agora em relação a três variáveis que foram enriquecidas.

- Renda Per capita
- Rendimento médio dos ocupados 18 anos ou mais
- Percentual de extremamente pobres

Novamente, nota-se que estas variáveis aparenta não influenciar no evento se tornar inadimplente.

Figura 7: Boxplot de variáveis socioeconômicas.

5. Criação de Modelos de Machine Learning

Considera-se esta seção a principal deste trabalho, uma vez que nela será apresentada todo o passo a passo para a construção do nosso modelo de *Machine Learning*. Iniciaremos apresentando o processo de seleção de variáveis, logo após, ajuste dos Modelos e por fim o comparativos entre eles. Serão exibidos os principais códigos utilizados.

Assim como no capítulo tratamento de dados, continuaremos utilizando a linguagem R versão 4.1.3. Todas as bibliotecas necessárias serão informadas no decorrer do capítulo.

5.1 Remoção de variáveis

Inicia-se etapa com um refinamento nas variáveis, uma análise detalhada foi realizada e diversas variáveis foram removidas cada uma com seu motivo.

Variáveis	Motivo da remoção
name_state, state.y, cidade_atlas, uf.y, uf.x, cidade, codmun6, codmun7, município, Municipio	Variáveis duplicadas que surgiram através das mesclas de bases
channel e external_data_provider_credit_checks_last_2_year	Por apresentar um único valor
ids, score_1, score_2, reason, state_codificado, zip, job_name, profile_tags, user_agent, shipping_state,state_reverse	Variáveis que estavam codificadas ou possuíam um elevado número de classes
external_data_provider_first_name, profile_phone_number, shipping_zip_code	Dados sem interpretação
lat_lon, Latitude, Longitude	Sem informação para modelagem
target_fraud	Default para outro modelo

Tabela 6: Variáveis removidas.

Após a remoção das variáveis listadas na Tabela 6, passamos a ter uma base com dimensão de 41.741 linhas por 105 colunas.

5.2 Pré-processamento

Neste momento trabalharemos no pré-processamento dos dados, última etapa antes do ajuste do modelo. Aqui iremos criar novas variáveis, imputar dados nulos, realizar transformações e fazer novas reduções de variáveis.

5.2.1 One_hot_encoder ou dummy

Para iniciar, uma estratégia bastante conhecida e utilizada no pré-processamento é o one hot encoder, este processo é aplicado as variáveis categóricas explicativas, criando uma coluna para cada categoria com os valores de 0 ou 1.

Em nossa base as variáveis real_state, email, marketing_channel, estado_loc, região, bins_state, turno e group.lat.lon, passaram por este processo.

Abaixo temos o código utilizado nesse processo. O pacote *dataPreparation* foi utilizado na operação.

```
b_oneHotEncoder = dataPreparation::one_hot_encoder(base_preparada,drop=T)
```

Após este passo, o conjunto de dados passou a ter 174 colunas.

5.2.3 População de treino e teste

A partir deste momento, utilizaremos em específico o pacote *tidymodels* junto as suas dependências. Este pacote possibilita realizar o processo completo de modelagem.

Para iniciar, utiliza-se o função *inicial_split* do pacote *rsample* para separarmos nossa base em treino e teste.

```
dt_split = rsample::initial_split(data = b_oneHotEncoder , prop = 0.75, strata = target_default)
```

O parâmetro prop, recebe o percentual da base designado a base de treino, nota-se que utilizamos uma separação de 75% para treino e 25% para teste.

5.2.3 Recipes

Dando prosseguimento a construção do modelo, iremos agora trabalhar com o pacote *recipes*, com este é possível criamos um objeto que armazenará passos a se realizar nas bases de treino e teste.

Para criamos um objeto *recipe*, precisamos repassar uma base inicial e em seguida elencar os *steps* que serão processados. Abaixo temos a criação do objeto *recipe* utilizado no estudo e posteriormente a explicação de cada passo.

Balanceamento

O balanceamento da nossa base de treino é feito a partir do *step_downsample*, neste passo estamos realizando um *undersamplig* em nossa base, ou seja, estamos igualando os valores da classe majoritária para classe minoritária através de amostras aleatórias.

Target	Quantidade Base Original	Base Teste (25%)	Base Treino (75%)	Base Treino com Undersampling
1	6.661	1.666	4.995	4.995
0	35.080	8.770	26.310	4.995

Tabela 7: Balanceamento e *Split* das bases de treino e teste.

Imputação de dados nulos

No capítulo 3 apresentamos os valores nulos, algumas variáveis numéricas ficaram de ser imputadas e este processo é realizado através da função *step_impute_median*, utilizouse a mediana por dois motivos, esforço computacional reduzido, já que temos muitos registros a imputar e devido a mediana ser uma métrica que não é sensível a dados discrepantes.

Nominais em Fator

Para transformar as variáveis nominais em fator é utilizado a função step_novel.

Variáveis correlacionadas

Através da função *step_corr*, removemos as variáveis com alta correlação entre elas, efeito conhecido como multicolinearidade. Neste passo utilizamos um valor limite de 0,8.

Após este passo, 48 colunas foram removidas, indo para o modelo final 126 variáveis.

Normalizando

Finalizando o pré-processamento aplicamos a normalização das variáveis numéricas, fazendo com que elas passem a ter uma média zero e desvio padrão um. Estes passos são realizados pelas funções *step center* e *step scale*.

5.3 Ajuste do Modelo

Nesta sessão apresentaremos o passa a passo dos modelos analisados. Continuamos utilizando as extensões do pacote *tidymodels* no R para isto.

5.3.1 Cross-Validation

Para iniciarmos o ajuste do modelo, ajustamos as configurações de *cross-validation*, no *tidymodels*, utilizamos a função *vfold* do pacote *rsample* para esta etapa.

```
cv = rsample::vfold_cv(data= rsample::training(x = dt_split), v = 6, repeats = 2, strata =
target_default)
```

A função *rsample* recebe os parâmetros data que recebe o conjunto de dados de treino, v que recebe o número de dobras, *repeats* que recebe o número de vezes que será repetido os particionamentos das dobras e *strata* em que passamos a variável default.

Em nosso estudo, trabalhamos com 6 *folds* e 2 repetições para cada conjunto de parâmetros.

5.3.2 Treinamento

Para ajustar os modelos, utilizaremos os pacotes *workflow*, *parsnip* e *tune*, também fazendo parte do *tidymodels*.

Todos os modelos ajustados seguirão uma mesma estrutura.

- Especificação do modelo utilizado: Nestas etapa informamos qual modelo queremos treinar, junto a quais hiperparâmetros iremos ajustar.
- Criação de workflow: Criação um objeto que agrupa as solicitações de préprocessamento, modelagem e pós-processamento.
- Criação da grade de parâmetros: Dataframe com os hiperparâmetros para ser treinados e avaliados.
- Ajuste do modelo: Ajuste efetivamente calcula um conjunto de métricas de desempenho. Para isto, recebe todos os objetos anteriores criados.
- Análise de desempenho: Após isto, avalia-se no treino e principalmente no teste as métricas importantes para o estudo.

Randon Forest

O primeiro modelo estudado será o *randon forest*, em português florestas aleatórias. Este modelo opera construindo infinitas árvores aleatórias em tempo de treinamento. O algoritmo cria uma estrutura simular a um fluxograma, com nós no de uma condição é verificada, e se atendida o fluxo segue por um ramo, caso contrário, por outro, sempre levando ao próximo nó, até a finalização da árvore.

Abaixo segue os códigos utilizados para o treinamento do modelo. Os resultados serão apresentados logo mais.

```
# ESPECIFICANDO O MODELO
rf_spec = parsnip::rand_forest() %>%
 set_args(mtry = tune()) %>%
 parsnip::set_engine("ranger", importance = "impurity") %>%
 parsnip::set_mode("classification")
# CRIANDO WORKFLOW
rf_workflow = workflows::workflow() %>%
 workflows::add_recipe(data_recipe) %>%
 workflows::add_model(rf_spec)
# GRID DE PARAMETROS
rf_grid = expand.grid(mtry = c(5,10,30,50,60,70))
# AJUSTE DO MODELO
rf_fit_tune = rf_workflow %>%
 tune::tune_grid(resamples = cv, # CV object
          grid = rf_grid, # grid of values to try
          metrics = yardstick::metric_set(recall,f_meas,accuracy,kap,roc_auc,sens),
control = tune::control_resamples(save_pred = TRUE,verbose=T)
```

SVM - Support Vector Machine

O segundo modelo estudo foi o SVM, este é um algoritmo plota-se cada item de dados como um ponto no espaço n-dimensional (n é o número de recursos), com o valor de cada recurso sendo o valor de uma determinada coordenada. Então, nós executamos a classificação encontrando o hiperplano que melhor diferencia as classes.

Para o ajuste do modelo SVM no tidymodels utilizamos o código abaixo.

```
# ESPECIFICANDO O MODELO
SVM_spec = parsnip::svm_rbf(
  cost = tune(),
  rbf_sigma = tune()) %>%
 parsnip::set_engine("kernlab", importance = "impurity") %>%
 parsnip::set_mode("classification")
# CRIANDO WORKFLOW
SVM_workflow = workflows::workflow() %>%
 workflows::add_recipe(data_recipe) %>%
 workflows::add model(SVM spec)
# GRID DE PARAMETROS
SVM\_grid = expand.grid(cost = c(0.1,1),rbf\_sigma=c(0.01,0.001))
# AJUSTE DO MODELO
SVM_fit_tune = SVM_workflow %>%
 tune::tune_grid(resamples = cv, # CV object
         grid = SVM_grid, # grid of values to try
```

```
metrics = yardstick::metric_set(recall,f_meas,accuracy,kap,roc_auc,sens),
control = tune::control_resamples(save_pred = TRUE,verbose=T)
)
```

XGBoost

Por último, o terceiro modelo analisado é o XGBoost. Este algoritmo é baseado em árvore de decisão e utiliza uma estrutura de *Gradiente boosting*.

Abaixo segue os códigos utilizados para ajustar este modelo.

```
# ESPECIFICANDO O MODELO
XGB_spec <- parsnip::boost_tree(
 trees = 1000,
 tree_depth = tune(),
 min_n = tune(),
 loss_reduction = tune(),
 sample_size = tune(),
 mtry = tune(),
 learn_rate = tune()
) %>%
 parsnip::set_engine("xgboost") %>%
 parsnip::set_mode("classification")
# GRADE DE PARAMETROS
XGB_grid <- grid_latin_hypercube(</pre>
 tree_depth(),
 min_n(),
 loss_reduction(),
 sample_size = sample_prop(),
 finalize(mtry(), training(dt_split)),
 learn_rate(),
 size = 5
)
# CRIANDO WORKFLOW
XGB_workflow = workflows::workflow() %>%
 workflows::add_recipe(data_recipe) %>%
 workflows::add model(XGB spec)
# AJUSTE DO MODELO
XGB_fit_tune = XGB_workflow %>%
 tune::tune_grid(resamples = cv, # CV object
          grid = XGB_grid, # grid of values to try
          metrics = yardstick::metric_set(recall,f_meas,accuracy,kap,roc_auc,sens),
          control = tune::control_resamples(save_pred = TRUE,verbose=T)
)
```

5.2 Avalição de métricas

O objetivo de nosso modelo é predizer com o máximo de exatidão se o cliente será inadimplente, logo, necessitamos minimizar os falsos negativos e assim maximizando a identificação de cliente inadimplentes, para isto acontecer necessitamos trabalhar com a métrica sensibilidade.

Nas análises a seguir inicialmente apresentamos para cada modelo os resultados olhando somente para acurácia e posteriormente fazendo uma otimização de *threshold* para maximizar a sensibilidade, limitando a especificidade em 0,5, ou seja, a probabilidade de um cliente adimplente ser classificado como inadimplente ser 50%.

É válido ressaltar que todos as métricas aqui apresentadas foram calculadas na base final de teste.

5.2.1 Avaliação Randon Forest

O modelo de *randon forest* foi treinado avaliando diferentes valores do parâmetro *mtry*, que se ajustou melhor com o valor 45. A Figura 8 apresenta a curva ROC para as duas repetições no treinamento, este tipo de gráfico ilustra o desempenho de um sistema classificador binário.

Figura 8: Balanceamento e Split das bases de treino e teste.

O melhor modelo encontra apresentou uma acurácia de 68,2% e sensibilidade de 59,7%. O próximo passo é encontrar o melhor *threshold* que irá maximizar a sensibilidade fazendo com que a especificidade não fique abaixo de 50%.

Após aplicado da etapa de otimização, encontrou-se um *threshold* do valor de 0,416 que apresenta uma sensibilidade de 75,%. Abaixo visualiza-se as matrizes de confusão antes e depois do novo *threshold* ser aplicado.

Figuras 9 e 10: Matrizes de confusão para o modelo Randon Forest com threshold 0,5 e otimizado para benefício da sensibilidade

5.2.1 Avaliação SVM

O modelo SVM foi ajustado variando valores dos hiperparâmetros *cost* e *rbf_sigma*, os melhores resultados apresentados foram respectivamente 0,1 e 0,01. A Figura 11 apresenta a curva ROC para o melhor modelo encontrado com este classificador.

Figuras 11: Curva ROC modelo SVM

Figuras 12 e 13: Matrizes de confusão para o modelo SVM com *threshold* 0,5 e otimizado para benefício da sensibilidade

Para o modelo SVM o melhor modelo ajustou obteve-se uma acurácia de 77,8%, sendo o melhor resultado avaliando essa métricas entre todos os modelos, porém, ao avaliarmos a sensibilidade, métrica escolhida como principal neste estudo, o resultado foi de apenas 32,4%.

Ao otimizar o *threshold*, encontrou-se um valor de 0,413 que apresentava uma sensibilidade de 71,5%.

5.2.1 Avaliação XGBoost

Terceiro modelo avaliado, o XGBoost apresentou seu melhor modelo com os seguintes parâmetros e resultados, *mtry* com 124, *min_n* com 24, *tree_depth* com 15, *learn_rate* com 0,00000160, *loss_reduction* com 0,00000257 e *sample_size* com 0,886.

Figuras 14: Curva ROC modelo XGBoost

A Figura 14 apresenta a curva ROC do melhor modelo ajustado do algoritmo XGBoost.

Para finalizar a avaliação das métricas, otimizou-se o *threshold* para maximizar a sensibilidade. Encontrou-se um valor de 0,4999863 que apresentava no conjunto de treino uma sensibilidade de 74,5%. A seguir apresentamos a matriz de confusão obtida no conjunto de teste para o modelo com *threshold* de 0,5 e otimizado.

Figuras 15 e 16: Matrizes de confusão para o modelo XGBoost com *threshold* 0,5 e otimizado para benefício da sensibilidade

5.2.1 Comparativo entre os modelos

Calculado todas métricas, avaliamos agora o desempenho de forma conjunta para escolhermos o melhor modelo.

Figura 17: Comparação de métricas para os modelos ajustados utilizando threshold de 0,5

A Figura 17 nos apresenta as métricas acurácia, sensibilidade e especificidade para cada modelo quando utilizado o *threshold* padrão de 0,5. Nota-se que nesta visão, se utilizássemos a acurácia como métrica principal deste estudo, o modelo escolhido seria o SVM chegando a um valor de 77,81%.

Figura 18: Comparação de métricas para os modelos ajustados utilizando threshold otimizado

Porém, como explicado no início desta sessão, a melhor métrica a se analisar no contexto estudado é a sensibilidade. A Figura 18 nos apresenta um comparativo de como ficou todas as métricas quando otimizado a sensibilidade, limitando a especificidade a 50%.

Através desta nova visão, optou-se por escolher o modelo *randon forest* como o melhor entre os três avaliados no estudo. Este, após ter *threshold* otimizado, apresentou resultados próximos ao modelo XGBoost, mas por décimos ganhou na sensibilidade.

5.2.1 Importância das variáveis

Escolhido o melhor modelo, podemos agora analisar quais variáveis apresentaram a maior importância no ajuste. Utilizou-se o pacote vip do R para construir a gráfico apresentado na Figura 19.

Nota-se que as variáveis *income, facebook_profile* e *risk_rate* foram as que contribuíram mais para o modelo *Randon Forest* ajustado.

Observa-se que entre as 10 variáveis com maior importância, não presenciamos nenhuma variável da base de enriquecimento do estudo.

Outra informação interessante é a variável *facebook_profile* se apresentar como a segunda mais importante. Esta variável foi notada como uma possível variável que influenciaria nos resultados na análise descritiva deste estudo.

Figura 19: Importância das variáveis ajustadas no modelo Randon Forest

6. Interpretação dos Resultados

Este trabalho apresentou um passo a passo da resolução de uma solução de *machine learning* utilizando a linguagem R. Nosso estudo tratava-se de uma análise de crédito e tinha como objetivo prever se cliente seria inadimplente, levando a tomada de decisão de concessão de crédito ou não.

Na análise descritiva, observou-se poucas variáveis correlacionadas com a variável target_default, evento de nosso estudo. As que se destacaram foram as variáveis facebook_profile e estados. Dentre estas a variável facebook_profile se apresentou com a segunda mais importante no ajuste, confirmando a hipótese apresentada da variável no capítulo 3.

No ajuste do modelo, analisou-se os resultados dos algoritmos Randon Forest, SVM e XGBoost. Avaliamos inicialmente as métricas utilizando o *threshold* a 0,5 padrão dos algoritmos e posteriormente otimizados para beneficiar a sensibilidade. Esta que foi escolhida como métrica principal no estudo por prevalecer a intensão de acertar o máximo de inadimplentes possível, limitando a especificidade em 50%.

A Tabela 8 apresenta um resultado geral dos modelos ajustados. Escolheu-se o modelo Randon Forest como o melhor devido a este apresentar a maior sensibilidade.

Modelo	Valor threshold	Acurácia	Sensibilidade	Especificidade
Randon Forest	0,5	68,2%	59,7%	69,9%
SVM	0,5	77,8%	32,4%	86,4%
XGBoost	0,5	66,8%	60,1%	68,1%
Randon Forest	0,416	54,0%	75,0%	50,1%
SVM	0,413	53,4%	71,5%	50,0%
XGBoost	0,4999863	54,1%	74,5%	50,3%
	Randon Forest SVM XGBoost Randon Forest SVM	ModelothresholdRandon Forest0,5SVM0,5XGBoost0,5Randon Forest0,416SVM0,413	Modelo threshold Acurácia Randon Forest 0,5 68,2% SVM 0,5 77,8% XGBoost 0,5 66,8% Randon Forest 0,416 54,0% SVM 0,413 53,4%	Modelo threshold Acuracia Sensibilidade Randon Forest 0,5 68,2% 59,7% SVM 0,5 77,8% 32,4% XGBoost 0,5 66,8% 60,1% Randon Forest 0,416 54,0% 75,0% SVM 0,413 53,4% 71,5%

Tabela 8: Tabela geral com métricas dos modelos ajustados

7. Resumo do Estudo

PREVISÃO DE RISCO DE INADIMPLÊNCIA COM AUXÍLIO DE DADOS SOCIOECONÔMICOS

1. Problema a se resolver

O objetivo do modelo é predizer se um cliente se tornará inadimplente a partir de dados coletados em sua aquisição e valores socioeconômicos do município em que este estava localizado no momento da solicitação.

2. Variáveis Utilizadas na solução

Variáveis explicativas:

Dados na aquisição:

- Escore de provedores de terceiros, Possui Facebook.
- · Renda estimada por provedores
- · Entre outras.

Dados Socioeconômicos (Município):

- · Renda percepita
- · Percentual de probreza
- · Percentual de empregados
- Entre outras.

Variável resposta: Inadimplente (1), Não Inadimplente (0)

3. Fonte dos dados

Um vez que o presente estudo é referente a um Data Challeng de 2018, encontrou-se os arquivos em repositório público no GitHub.

Outras fontes utilizadas agora como enriquecimento foram de dados socioeconômicos do IGBE disponibilizados na comunidade Kaggle.

4. Modelos utilizados

Optou-se por utilizar três modelos algoritimos de machine learning, foram eles:

- Random Forest
- · Support Vector Machine SVM
- XGBoost

Avaliação dos modelos e resultados

A principal métrica utilizada neste estudo foi a sensibilidade, pois prevaleceu a intenção de acertar o máximo de clientes inadimplentes possíveis.

Utilizou-se técnicas de otimização de threshold para maximizar os valores de sensibilidade.

O melhor modelo apresentado obteve uma sensibilidade de 75%, sendo este o Randon Forest.

Preparação dos dados utilizados nos modelos

Para preparar a base de dados ajusta na modelagem as etapas abaixo em ordem foram executadas.

- 1. Coleta das informações (Dados de Aquisição)
- 2. Enriquecimemnto com dados Socioeconômicos
- 3. Exclusão de registros com target nulos
- 4. Criação de novas features
- 5. Aplicação de OneHotEncoder
- Imputação utilizando valor mais frequente e mediana
- 7. Exclusão de variáveis correlacionadas
- Divisão dos dados em 75% para treino e 25% para teste
- Balanceamento utilizando técnica Undersampling na base de treino

8. Links

Abaixo encontra-se os links para o vídeo da apresentação resumida de 5 minutos e do repositório do github com todos os dados utilizados no trabalho.

Link para o vídeo: https://www.youtube.com/watch?v=WKgnaXtKt0k
Link para o repositório: https://github.com/robertooliveira94/POS-nubank-challenge2018

APÊNDICE

```
Scripts R utilizados no trabalho
# DATA CHALLENGE 2018 NUBANK TCC
rm(list = ls())
library("janitor")
library(dataPreparation)
# PACOTES -----
pacotes = c("dplyr", "stringr", "tidyverse", "tidymodels", "ranger", "tune", "probably",
      "xgboost","tictoc", "ggplot2", "abjutils",
"ggthemes","dataPreparation","tidygeocoder","Cluster","ClusterR","themis","janitor")
novos.pacotes = pacotes[!(pacotes %in% installed.packages()[, "Package"])]
if(length(novos.pacotes)) install.packages(novos.pacotes, repos = 'https://cran.us.r-
project.org')
options(warn = -1)
unlist(lapply(pacotes, require, character.only = TRUE))
acquisition_train = read.csv("codigo-fonte/data/acquisition_train.csv")
# DICIONARIO DA BASE DE AQUISICAO
dicionario = read.table("codigo-fonte/data/dicionario.txt",sep = "-",header = T,encoding =
"UTF-8")
# ENRRIQUECIMENTO DOS DADOS ------
# CORRIGINDO COLUNAS DE ESTADO E SEPARANDO COLUNAS DE LATITUDE E LONGITUDE
acquisition train = acquisition train %>%
 dplyr::mutate(shipping_state = stringr::str_sub(string = shipping_state,start = 4,end = 5),
        lat_lon = str_replace(lat_lon, "\\(",""),
       lat_lon = str_replace(lat_lon, "\\)",""))
# NESTA ETAPAZ FOI REALIZADO UMA BUSCA DE ENDERECOS ATRAVES DAS VARIAVEIS DE
LATITUDE E LONGITUDE COM A AJUDA DO PACOTE tidygeocoder
# SPLIT COLUNA lat lon
# base_split = str_split_fixed(acquisition_train_$lat_lon, ",", 2)
# acquisition_train_$Latitude = as.numeric(base_split[,1])
# acquisition_train_$Longitude = as.numeric(base_split[,2])
# reverse <- acquisition train %>%
# reverse_geocode(lat = Latitude, long = Longitude, method = 'osm',
          address = address found, full results = TRUE)
# save(reverse,file = "codigo-fonte/data/reverse.Rdata")
```

```
# CARREGANDO OBJETO BAIXADO
load(file = "codigo-fonte/data/reverse.Rdata",verbose = T)
# REMOVENDO VARIAVEIS EXTRAS ORIUNDAS DO REVERSE GEOCODE
base reverse = reverse %>%
 dplyr::mutate(municipio = gsub("^.*? de ","",municipality)) %>%
 dplyr::select(c(ids:target fraud,Latitude,Longitude,municipio,state...60)) %>%
 dplyr::rename(state = state...16,
        state_reverse = state...60)
# ENRRIQUECIMENTO DOS DADOS --------
# BASES DO IBGE IDH
atlas = read.table("codigo-fonte/data/atlas.csv",encoding = 'UTF-8',sep = ',',header = T)
desc = read.csv("codigo-fonte/data/desc.csv",encoding = 'UTF-8',sep = ',')
estados = read.table("codigo-fonte/data/estados.txt",encoding = 'UTF-8',sep = ';',header = T)
# BASE DE 2010 COM COLUNAS RELACIONADAS A ECONOMIA DO MUNICIPIO
atlas 2010 = atlas %>%
 dplyr::filter(ano=='2010') %>%
 dplyr::select(codmun6,uf,codmun7,município,desc$SIGLA[desc$cat=='econ']) %>%
 dplyr::left join(estados,by=c("uf"="uf")) %>%
 dplyr::mutate(cidade = paste0(município,"-",state)) %>%
 dplyr::mutate(cidade = str_to_upper(abjutils::rm_accent(cidade)),
        cidade atlas = str to upper(abjutils::rm accent(cidade)))
# JOIN DAS BASES PELO NOME DO MINICIPIO
base_mesclada = base_reverse %>%
dplyr::mutate(municipio = stringr::str to upper(abjutils::rm accent(municipio))) %>%
 dplyr::mutate(shipping_state = stringr::str_to_upper(abjutils::rm_accent(shipping_state)))
%>%
 dplyr::mutate(state_reverse = stringr::str_to_upper(abjutils::rm_accent(state_reverse)))
%>%
 dplyr::rename(state_codificado = state) %>%
 dplyr::left_join(estados %>%
          dplyr::mutate(name_state
                                                                                   =
stringr::str to upper(abjutils::rm accent(name state))),
         by = c("state reverse"="name state")) %>%
 dplyr::mutate(cidade = ifelse(is.na(municipio),NA,paste0(municipio,"-",state))) %>%
 dplyr::left join(atlas 2010,by = c("cidade"="cidade"))
# REMOVENDO LINHAS EM QUE A VARIAVEL TARGET DEFAULT E NULA
base mesclada 1 = base mesclada %>%
 dplyr::mutate(target_default = ifelse(target_default=="",NA,target_default)) %>%
 dplyr::filter(!is.na(target default))
```

```
# QUANTIDADE DE REGISTROS ""
sum(as.data.frame(base_mesclada_1) == "",na.rm = T)
# SUBSTITUINDO "" POR NA
base_mesclada_2 = as.data.frame(base_mesclada_1)
base_mesclada_2[base_mesclada_2 == ""] <- NA
# TRATANDO ALGUMAS VARIAVEIS
# APLICATION_TIME_APLIED: RETIRAR HORA DA APLICACAO
# EXTERNAL DATA PROVIDER EMAIL SEEN BEFORE = -999 POR NA
# email.hotmail.com e email.hotmaill.com
# variavel "reported_income" nos valores Inf tranforma-se em NA
# Criando variavel Regiao
base_mesclada_3 = base_mesclada_2 %>%
 dplyr::mutate(hora_aplicacao = as.numeric(substr(application_time_applied,start = 1,stop =
2)),
        external_data_provider_email_seen_before
                                                                                      =
ifelse(external data provider email seen before==-
999,NA,external_data_provider_email_seen_before),
        email = ifelse(email=="hotmaill.com","hotmail.com",email),
        email = ifelse(email=="gmaill.com", "gmail.com", email),
        reported_income = ifelse(reported_income==Inf,NA,reported_income),
        regiao = dplyr::case_when(state.y %in% c("AM","RR","AP","PA","TO","RO","AC") ~
"Região Norte",
                      state.y %in% c("MA","PI","CE","RN","PE","PB","SE","AL","BA") ~
"Região Nordeste",
                      state.y %in% c("MT","MS","GO") ~ "Região Centro-Oeste",
                      state.y %in% c("SP","RJ","ES","MG") ~ "Região Sudeste",
                      state.y %in% c("PR","RS","SC") ~ "Região Sul",TRUE ~ "")) %>%
 dplyr::select(-c(application_time_applied))
                                                                                   TIPO
DADOS/QTDE_VALORES_AUSENTES/PERC_VALORES_AUSENTES/QTDE_VALORES_UNICOS
df_colunas = function(base_analise){
 colunas
                                              data.frame(row.names
                                                                                      =
c("Coluna", "Tipo", "qtde_Valores_ausentes", "Perc_Valores_ausentes"))
 for(i in 1:dim(base_analise)[2]){
  colunas_i = data.frame(coluna=colnames(base_analise)[i],
              Tipo = class(base_analise[,i]),
              qtde_Valores_ausentes = sum(is.na(base_analise[,i])),
              Perc_Valores_ausentes
                                                                                      =
round(sum(is.na(base_analise[,i]))*100/nrow(base_analise),2),
              qtde_valores_unicos = length(unique(base_analise[,i])))
  colunas = rbind(colunas,colunas_i) %>% dplyr::arrange(desc(Perc_Valores_ausentes))
 return(colunas)
```

```
colunas = df colunas(as.data.frame(base mesclada 3))
# TRATANDO COLUNAS COM NULOS
colunas nulos = colunas %>%
 dplyr::filter(qtde Valores ausentes>0) %>%
 dplyr::arrange(desc(qtde Valores ausentes)) %>%
 dplyr::mutate(perc label
                                       pasteO(as.character(format(Perc Valores ausentes,
decimal.mark = ','))," %"))
colunas nulos$coluna
                                           factor(colunas nulos$coluna,levels
rev(colunas nulos$coluna),ordered = T)
# REMOVER COLUNAS DA BASE DE ENRRIQUECIMENTO
library(Hmisc)
colunas nulos2=colunas nulos %>%
 dplyr::filter(qtde Valores ausentes!=6644) %>%
 dplyr::filter(coluna %nin% c("municipio", "cidade", "uf.x", "uf.y", "state.x"))
# GRAFICO DE COLUNAS COM NULOS
graf nulos = ggplot(colunas nulos2, aes(x=coluna))+
 labs(title = "Percentual de valores ausentes por coluna",x="Coluna",y="Percentual")+
geom bar(aes(weight = Perc Valores ausentes, fill = "#66C2A5"))+
ylim(0,110)+
geom_text(aes(label = perc_label, y = Perc_Valores_ausentes),hjust = -0.2,size = 4) +
 coord flip()+
scale fill brewer(palette = "Set2") +
 theme_bw()+theme(legend.position = "none"); graf_nulos
# SALVANDO GRAFICO
ggsave(plot = graf_nulos,filename = "codigo-fonte/imagens/graf_colunas_nulas.png",width =
10,height = 7)
# VARIAVEIS COM NULOS QUE RECEBERAO A CLASSE MAIS FREQUENTE
Mode <- function(x){ ux <- sort(unique(x));ux[which.max(tabulate(match(x, ux)))]}
base mesclada 3.1 = base mesclada 3 %>%
 dplyr::mutate(facebook profile = ifelse(is.na(facebook profile), 'Ausente', facebook profile),
        marketing channel
ifelse(is.na(marketing channel), Mode(base mesclada 3$marketing channel), marketing channel
annel),
        n bankruptcies
ifelse(is.na(n_bankruptcies), Mode(base_mesclada_3$n_bankruptcies), n_bankruptcies),
        n defaulted loans
ifelse(is.na(n defaulted loans), Mode(base mesclada 3$n defaulted loans), n defaulted lo
        external_data_provider_credit_checks_last_year
ifelse(is.na(external_data_provider_credit_checks_last_year),
Mode(base_mesclada_3$external_data_provider_credit_checks_last_year),
```

```
external data provider credit checks last year))
# CRIANDO VARIAVEIS
# BINS State
# Turno através da variavel hora aplicação
df state bins = data frame(state = unique(acquisition train$state), bins state =
pasteO("bins ",rep(seq(1,length(unique(acquisition train$state)),5),5)[1:51]))
base mesclada 4
                                                base mesclada 3.1
                                                                                  %>%
dplyr::left_join(df_state_bins,by=c("state_codificado"="state"))%>%
 dplyr::mutate(turno = dplyr::case when(hora aplicacao>=0 & hora aplicacao< 6 ~
"Madrugada",
                     hora_aplicacao>=6 & hora_aplicacao< 12 ~ "Manha",
                     hora aplicacao>=12 & hora aplicacao< 18 ~ "Tarde",
                     hora aplicacao>=18 ~ "Noite")) %>%
 dplyr::mutate(Latitude = ifelse(is.na(Latitude),0,Latitude)) %>%
 dplyr::mutate(Longitude = ifelse(is.na(Longitude),0,Longitude)) %>%
 dplyr::mutate(last amount borrowed
ifelse(is.na(last_amount_borrowed),0,last_amount_borrowed),
        last borrowed in months
                                                                                      =
ifelse(is.na(last borrowed in months),0,last borrowed in months),
        ok_since = ifelse(is.na(ok_since),0,ok_since))
# Criando Cluster para a variável longitude e latitude
df = base mesclada 4 %>% dplyr::select(Latitude,Longitude)
set.seed(240) # Setting seed
kmeans.re <- kmeans(df, centers = 10, nstart = 20)
base_mesclada_4$Group_lat_lon = paste0("cluster_",kmeans.re$cluster)
save(x=base_mesclada_4,file="codigo-fonte/data/base_mesclada_4.Rdata")
# PRE PROCESSAMENTO ------
# SELECAO VARIAVEIS
# Removendo variáveis duplicadas que surgiram nos joins
base mesclada 5 = base mesclada 4 %>%
 dplyr::rename(estado loc = state.x) %>%
 dplyr::select(-
c(name state, state.y, cidade atlas, uf.y, uf.x, cidade, codmun6, codmun7, municipio, município))
# Removendo variáveis que tiveram mais de 50% de valores Nulos
base mesclada 6 = base mesclada 5 %>%
```

dplyr::select(-c(channel,external data provider credit checks last 2 year))

Variaveis que serão removidas por conta da codificação ou ter classe demais

base mesclada 7 = base mesclada 6 %>%

```
dplyr::select(-c(ids,score 1,score 2,reason,state codificado,zip,job name,
                                                                          profile tags,
user agent, shipping state, state reverse))
# Outras removidas
base mesclada 8 = base mesclada 7 %>%
 dplyr::select(-c(external data provider first name,lat lon,
                                                                   shipping zip code,
target fraud,
         Latitude, Longitude, profile phone number))
# TRANSFORMANDO COLUNA TARGET EM 0 OU 1, E depois em fator
base mesclada 9 = base mesclada 8 %>%
dplyr::mutate(target_default = ifelse(target_default=="True",1,0)) %>%
 dplyr::mutate(target default = factor(target default,levels = c(1,0),ordered = T))
# GARANTINDO QUE OS NOMES ESTEJAM EM MINUSCULO
base_preparada <- base_mesclada_9 %>% janitor::clean_names()
dim(base preparada)
# DEFININDO SEMENTE
set.seed(123)
base_preparada$facebook_profile = factor(base_preparada$facebook_profile,ordered = T)
base preparada$facebook profile = ifelse(base preparada$facebook profile=="True",1,0)
b oneHotEncoder = dataPreparation::one hot encoder(base preparada,drop=T)
b oneHotEncoder$target default = factor(b oneHotEncoder$target default,levels
c(1,0), ordered = T)
dim(b_oneHotEncoder)
# DIVIDINDO A POPULAÇÃO EM TREINO E TESTE
dt split = rsample::initial_split(data = b_oneHotEncoder , prop = 0.75, strata =
target default)
# save(dt split, file = "codigo-fonte/data/dt split.Rdata")
# DATA PREPARATION
data recipe = rsample::training(x = dt split) %>%
 recipes::recipe(target_default ~ .) %>% # INFORMANDO QUAL O DEFAULT
themis::step downsample(target default, under ratio = 1) %>%
 recipes::step impute median(recipes::all numeric predictors()) %>%
 recipes::step novel(recipes::all nominal predictors(),
                                                      -recipes::all outcomes())
                                                                                 %>%
#TRANSFORMANDO AS VARIAVEIS NOMINAIS EM FATOR
 recipes::step_center(recipes::all_numeric_predictors()) %>% # NORMALIZANDO OS DADOS
NUMERICOS PARA TER UMA MEDIA DE ZERO
 recipes::step scale(recipes::all numeric predictors()) %>% # NORMALIZANDO OS DADOS
NUMERICOS PARA TER UM DESVIO PADRAO DE UM
 recipes::step_corr(recipes::all_numeric_predictors(), threshold = 0.85, method = "pearson")
%>% #REMOVENDO VARIAVEIS NUMERICAS ALTAMENTE CORRELACIONADAS
 recipes::step zv(recipes::all numeric predictors(), -recipes::all outcomes()) #REMOVENDO
VARIAVEIS COM VARIABILIDADE PROXIMA DE ZERO
```

```
# AJUSTE DOS MODELOS ------
# CROSS VALIDATION
cv = rsample::vfold_cv(rsample::training(x = dt_split), v = 6, repeats = 2, strata =
target default)
# RANDOM FOREST ============
# ESPECIFICANDO O MODELO
rf spec = parsnip::rand forest() %>%
set args(mtry = tune()) %>%
 parsnip::set_engine("ranger", importance = "impurity") %>%
 parsnip::set mode("classification")
# CRIANDO WORKFLOW
rf workflow = workflows::workflow() %>%
 workflows::add recipe(data recipe) %>%
 workflows::add model(rf spec)
# GRID DE PARAMETROS
rf grid = expand.grid(mtry = c(45,50,55))
# AJUSTE DO MODELO
rf fit tune = rf workflow %>%
tune::tune grid(resamples = cv, # CV object
        grid = rf_grid, # grid of values to try
        metrics = yardstick::metric set(recall,f meas,accuracy,kap,roc auc,sens),
metrics we care about
        control = tune::control resamples(save pred = TRUE,verbose=T)
)
# SALVANDO O MODELO EM UM ARQUIVO .RDATA
# save(rf fit tune, file = "codigo-fonte/data/rf fit tune predicao 1.Rdata")
# save(rf workflow, file = "codigo-fonte/data/rf workflow.Rdata")
# CARREGANDO O MODELO
# load(file = "codigo-fonte/data/rf fit tune predicao 1.Rdata", verbose = T)
# load(file = "codigo-fonte/data/rf_workflow.Rdata", verbose = T)
# METRICAS NO TREINO
rf fit tune %>% collect metrics()
# MOSTRANDO O MELHOR MODELO NO TREINO
rf fit tune %>% tune::show best(metric = "recall")
rf_fit_tune %>% tune::show_best(metric = "accuracy")
# AVALIE O MODELO NO CONJUNTO DE TESTE -----
# FINALIZANDO O FLUXO DE TRABALHO
param final <- rf fit tune %>% tune::select best(metric = "accuracy")
rf workflow best <- rf workflow %>% finalize workflow(param final)
```

```
# Ajustar no conjunto de treinamento e avaliar no conjunto de teste
rf fit <- rf workflow best %>% tune::last fit(dt split)
# COLENTANDO METRICAS MELHOR MODELO AVALIADO no TESTE
rf fit %>% collect metrics()
# GERANDO PREDICOES DO DATASET DE TREINO
train predictions <- rf fit %>% collect predictions(); train predictions
# CONFUSION MATRIX
graf MC rf = rf fit %>%
 collect_predictions() %>%
 conf mat(truth = target default, estimate = .pred class, dnn = c("Predição", "Real")) %>%
 autoplot(type = "heatmap") +
 labs(title = "Matriz de confusão - Randon Forest");graf MC rf
ggsave(plot = graf_MC_rf,filename = "codigo-fonte/imagens/graf_MC_rf.png",width =
4,height =3)
# METRICAS
rf_metrics <- metric_set(accuracy, sens, spec)
train_predictions %>% rf_metrics(truth = target_default, estimate = .pred_class)
# CURVA ROC
rf curva ROC = rf fit tune %>%
 collect predictions() %>%
 group by(id) %>% # id contains our folds
 roc_curve(target_default, .pred_1) %>%
 autoplot() +
 labs(title="Curva ROC - Randon Forest",
   x = "1 - Especificidade",
   y = "Sensibilidade",
   fill="Repetição")+
 scale_fill_brewer(palette = "Set2") +
 theme bw(); rf curva ROC
ggsave(rf_curva_ROC,filename =
                                     "codigo-fonte/imagens/rf_curva_ROC.png",width
6, height = 4.2)
# OTIMIZANDO O CUTOFF RF ------
# OTIMIZANDO O PONTO DE CORTE
rf fit %>%
 tune::collect predictions() %>%
 dplyr::group by(id) %>%
 yardstick::roc_curve(target_default, .pred_1) %>%
 dplyr::filter(specificity >= 0.5) %>%
 dplyr::arrange(desc(sensitivity)) %>%
 dplyr::filter(dplyr::row_number() == 1)
```

```
# OTIMIZANDO O PONTO DE CORTE
set.seed(123)
rf fit preds = rf fit %>% collect predictions()
rf fit preds new <-
 rf fit preds %>%
 mutate(.pred class = make two class pred(.pred 1, levels(target default), threshold =
0.416))
# OTIMIZANDO O PONTO DE CORTE
rf metrics <- metric set(accuracy, sens, spec)
rf_fit_preds_new %>% rf_metrics(truth = target_default, estimate = .pred_class)
# CONFUSION MATRIX nova
graf MC rf otim = rf fit preds new %>%
 conf mat(truth = target default, estimate = .pred class, dnn = c("Predição", "Real")) %>%
 autoplot(type = "heatmap") +
 labs(title = "Matriz de confusão - Randon Forest \nOtimizado para sensibilidade");
graf_MC_rf_otim
                                graf_MC_rf_otim,filename
                                                                              "codigo-
ggsave(plot
fonte/imagens/graf_MC_rf_otim.png",width = 4,height =3)
# GRAFICO ANALISANDO A PREDICAO DO TREINO AJUSTADO
graf dens rf train = rf fit preds new %>%
ggplot() +
geom_density(aes(x = .pred_1, fill = target_default), alpha = 0.5) +
 labs(x = "Predição",y="Densidade",
   title = " Distribuição das predições para as classes 1 e 0 - Modelo Randon
Forest",fill="Default") +
scale fill viridis d() +
theme_bw(); graf_dens_rf_train
# SVM ==========
# ESPECIFICANDO O MODELO
SVM spec = parsnip::svm rbf(
  cost = tune(),
  rbf sigma = tune()) %>%
 parsnip::set_engine("kernlab", importance = "impurity") %>%
 parsnip::set mode("classification")
# CRIANDO WORKFLOW
SVM workflow = workflows::workflow() %>%
workflows::add recipe(data recipe) %>%
 workflows::add model(SVM spec)
# GRID DE PARAMETROS
SVM_grid = expand.grid(cost = c(0.1),rbf_sigma=c(0.01))
# AJUSTE DO MODELO
SVM_fit_tune = SVM_workflow %>%
```

```
tune::tune grid(resamples = cv, # CV object
         grid = SVM grid, # grid of values to try
         metrics = yardstick::metric_set(recall,f_meas,accuracy,kap,roc_auc,sens),
metrics we care about
         control = tune::control_resamples(save_pred = TRUE,verbose=T)
)
# SALVANDO O MODELO EM UM ARQUIVO .RDATA
# save(SVM_fit_tune, file = "codigo-fonte/data/SVM_fit_tune_predicao_1.Rdata")
# save(SVM workflow, file = "codigo-fonte/data/SVM workflow.Rdata")
# CARREGANDO O MODELO
# load(file = "codigo-fonte/data/SVM fit tune predicao 1.Rdata", verbose = T)
# load(file = "codigo-fonte/data/SVM_workflow.Rdata", verbose = T)
# METRICAS NO TREINO
SVM fit tune %>% collect metrics()
# MOSTRANDO O MELHOR MODELO NO TREINO
SVM fit tune %>% tune::show best(metric = "recall")
SVM_fit_tune %>% tune::show_best(metric = "accuracy")
# AVALIE O MODELO NO CONJUNTO DE TESTE -----
# FINALIZANDO O FLUXO DE TRABALHO
param_final <- SVM_fit_tune %>% tune::select_best(metric = "accuracy")
SVM_workflow_best <- SVM_workflow %>% finalize_workflow(param_final)
# Ajustar no conjunto de treinamento e avaliar no conjunto de teste
SVM fit <- SVM workflow best %>% tune::last fit(dt split)
# COLENTANDO METRICAS MELHOR MODELO AVALIADO no TESTE
SVM_fit %>% collect_metrics()
# GERANDO PREDICOES DO DATASET DE TREINO
train predictions <- SVM fit %>% collect predictions(); train predictions
# CONFUSION MATRIX
graf MC svm = SVM fit %>%
collect predictions() %>%
conf_mat(truth = target_default, estimate = .pred_class, dnn = c("Predição", "Real")) %>%
 autoplot(type = "heatmap") +
 labs(title = "Matriz de confusão - SVM "); graf_MC_svm
ggsave(plot = graf_MC_svm, filename = "codigo-fonte/imagens/graf_MC_svm.png", width =
4, height =3)
```

METRICAS

```
SVM metrics <- metric set(accuracy, sens, spec)
train predictions %>% SVM metrics(truth = target default, estimate = .pred class)
# CURVA ROC
SVM_curva_ROC = SVM_fit_tune %>%
 collect predictions() %>%
 group by(id) %>% # id contains our folds
 roc_curve(target_default, .pred_1) %>%
 autoplot() +
 labs(title="Curva ROC - SVM",
   x = "1 - Especificidade",
   y = "Sensibilidade")+
 scale fill brewer(palette = "Set2") +
 theme_bw();SVM_curva_ROC
ggsave(SVM_curva_ROC,filename = "codigo-fonte/imagens/SVM_curva_ROC.png",width =
6, height = 4.2)
# OTIMIZANDO O CUTOFF SVM ------
# OTIMIZANDO O PONTO DE CORTE PARA SENSIBILIDADE
SVM fit %>%
 tune::collect_predictions() %>%
 dplyr::group by(id) %>%
 yardstick::roc curve(target default, .pred 1) %>%
 dplyr::filter(specificity >= 0.5) %>%
 dplyr::arrange(desc(sensitivity)) %>%
 dplyr::filter(dplyr::row number() == 1)
# 0.413
# OTIMIZANDO O PONTO DE CORTE
set.seed(123)
SVM_fit_preds = SVM_fit %>% collect_predictions()
SVM fit preds new <-
 SVM fit preds %>%
 mutate(.pred class = make two class pred(.pred 1, levels(target default), threshold =
0.413))
# OTIMIZANDO O PONTO DE CORTE
SVM_metrics <- metric_set(accuracy, sens, spec)</pre>
SVM_fit_preds_new %>% SVM_metrics(truth = target_default, estimate = .pred_class)
# CONFUSION MATRIX nova
graf MC_svm_otim = SVM_fit_preds_new %>%
 conf mat(truth = target default, estimate = .pred class, dnn = c("Predição", "Real")) %>%
 autoplot(type = "heatmap") +
```

```
labs(title =
               "Matriz de confusão - SVM
                                                  \nOtimizado
                                                                         sensibilidade");
                                                                  para
graf MC svm otim
ggsave(plot
                               graf_MC_svm_otim,filename
                                                                                "codigo-
fonte/imagens/graf MC svm otim.png",width = 4,height = 3)
# GRAFICO ANALISANDO A PREDICAO DO TREINO AJUSTADO
graf dens SVM train = SVM fit preds new %>%
 ggplot() +
 geom_density(aes(x = .pred_1, fill = target_default), alpha = 0.5) +
 labs(x = "Predição",y="Densidade",
   title = "Distribuição das predições para as classes 1 e 0 - Modelo SVM",fill="Default") +
 scale_fill_viridis_d() +
 theme bw(); graf dens SVM train
# Xgboost ==========
# ESPECIFICANDO O MODELO
xgb spec <- parsnip::boost tree(
 trees = 1000,
 tree depth = tune(),
 min n = tune(),
 loss_reduction = tune(),
 sample size = tune(),
 mtry = tune(),
 learn rate = tune()
) %>%
 parsnip::set_engine("xgboost") %>%
 parsnip::set_mode("classification")
# GRADE DE PARAMETROS
xgb_grid <- grid_latin_hypercube(</pre>
 tree_depth(),
 min n(),
 loss_reduction(),
 sample_size = sample_prop(),
 finalize(mtry(), training(dt_split)),
 learn rate(),
 size = 5
)
# CRIANDO WORKFLOW
xgb workflow = workflows::workflow() %>%
 workflows::add recipe(data recipe) %>%
 workflows::add model(XGB spec)
# AJUSTE DO MODELO
xgb fit tune = xgb workflow %>%
 tune::tune grid(resamples = cv, # CV object
         grid = XGB_grid, # grid of values to try
```

```
metrics = yardstick::metric set(recall,f meas,accuracy,kap,roc auc,sens),
         control = tune::control resamples(save pred = TRUE, verbose=T)
 )
# SALVANDO O MODELO EM UM ARQUIVO .RDATA
# save(xgb fit tune, file = "codigo-fonte/data/xgb fit tune predicao 1.Rdata")
# save(xgb workflow, file = "codigo-fonte/data/xgb workflow.Rdata")
# CARREGANDO O MODELO
# load(file = "codigo-fonte/data/xgb_fit_tune_predicao_1.Rdata", verbose = T)
# load(file = "codigo-fonte/data/xgb workflow.Rdata", verbose = T)
# METRICAS NO TREINO
xgb_fit_tune %>% collect_metrics()
# MOSTRANDO O MELHOR MODELO NO TREINO
xgb fit tune %>% tune::show best(metric = "accuracy")
# CURVA ROC
xgb_curva_ROC = xgb_fit_tune %>%
 collect_predictions() %>%
 group by(id) %>% # id contains our folds
 roc_curve(target_default, .pred_1) %>%
 autoplot() +
 labs(title="Curva ROC - XGBoost",
   x = "1 - Especificidade",
   y = "Sensibilidade")+
 scale fill brewer(palette = "Set2") +
 theme_bw(); xgb_curva_ROC
ggsave(plot = xgb curva ROC,filename = "codigo-fonte/imagens/xgb curva ROC.png",width
= 6, height = 4.2)
# AVALIE O MODELO NO CONJUNTO DE TESTE ------
# FINALIZANDO O FLUXO DE TRABALHO
param final <- xgb fit tune %>% tune::select best(metric = "accuracy")
xgb workflow best <- xgb workflow %>% finalize workflow(param final)
# Ajustar no conjunto de treinamento e avaliar no conjunto de teste
xgb_fit <- xgb_workflow_best %>% tune::last_fit(dt_split)
# COLENTANDO METRICAS MELHOR MODELO AVALIADO no TESTE
xgb fit %>% collect metrics()
# GERANDO PREDICOES DO DATASET DE TREINO
train_predictions <- xgb_fit %>% collect_predictions(); train_predictions
# CONFUSION MATRIX
graf MC xgb = xgb fit %>%
```

```
collect predictions() %>%
 conf_mat(truth = target_default, estimate = .pred_class, dnn = c("Predição", "Real")) %>%
 autoplot(type = "heatmap") +
 labs(title = "Matriz de confusão - XGBoost"); graf MC xgb
ggsave(plot = graf_MC_xgb,filename = "codigo-fonte/imagens/graf_MC_xgb.png",width =
4,height =3)
# METRICAS
xgb_metrics <- metric_set(accuracy, sens, spec)</pre>
train predictions %>% xgb metrics(truth = target default, estimate = .pred class)
ggsave(plot = xgb_curva_ROC,filename = "codigo-fonte/imagens/xgb_curva_ROC.png",width
= 6, height = 4.2)
# OTIMIZANDO O CUTOFF XGB -----
# OTIMIZANDO O PONTO DE CORTE
a = xgb fit %>%
 tune::collect_predictions() %>%
 dplyr::group by(id) %>%
 yardstick::roc_curve(target_default, .pred_1) %>%
 dplyr::filter(specificity >= 0.5) %>%
 dplyr::arrange(desc(sensitivity)) %>%
 dplyr::filter(dplyr::row_number() == 1)
# OTIMIZANDO O PONTO DE CORTE
set.seed(123)
xgb_fit_preds = xgb_fit %>% collect_predictions()
xgb fit preds new <-
 xgb_fit_preds %>%
 mutate(.pred_class = make_two_class_pred(.pred_1, levels(target_default), threshold =
0.4999863))
# OTIMIZANDO O PONTO DE CORTE
xgb metrics <- metric_set(accuracy, sens, spec)</pre>
xgb_fit_preds_new %>% xgb_metrics(truth = target_default, estimate = .pred_class)
# CONFUSION MATRIX nova
graf_MC_xgb_otim = xgb_fit_preds_new %>%
 conf_mat(truth = target_default, estimate = .pred_class, dnn = c("Predição", "Real")) %>%
 autoplot(type = "heatmap")+
 labs(title
                   "Matriz
                                     confusão
                                                       XGBoost\n
             =
                              de
                                                                      Otimizado
                                                                                    para
sensibilidade");graf_MC_xgb_otim
                                graf MC xgb otim, filename
                                                                                 "codigo-
fonte/imagens/graf_MC_xgb_otim.png",width = 4,height =3)
confusion matrix new = xgb fit preds new %>%
 yardstick::conf_mat(truth = target_default, estimate = .pred_class);confusion_matrix_new
```

```
True Positive = confusion matrix new$table[1] # Eram inadimplentes e eu disse que era
inadimplente ()
False Positive = confusion matrix new$table[3] # Eram adimplentes e eu disse que era
inadimplentes ()
False Negativo = confusion matrix new$table[2] # Eram inadimplentes e eu disse que era
adimplentes (Pior)
True Negative = confusion matrix new$table[4] # Eram adimplentes e eu disse que era
adimplentes ()
# GRAFICO ANALISANDO A PREDICAO DO TREINO AJUSTADO
graf dens xgb train = xgb fit preds new %>%
ggplot() +
geom density(aes(x = .pred 1, fill = target default), alpha = 0.5) +
 labs(x = "Predição",y="Densidade",
   title = " Distribuição das predições para as classes 1 e 0 - Modelo Xgboost",fill="Default")
 scale fill viridis d() +
theme_bw(); graf_dens_xgb_train
table metrics <- metric set(accuracy, sens, spec)
# MODEL METRICS TREINO
rf_metrics = rf_fit %>%
collect predictions() %>%
table metrics(truth = target default, estimate = .pred class) %>%
 dplyr::mutate(model = "Random Forest")
svm metrics = SVM fit %>%
collect_predictions() %>%
table metrics(truth = target default, estimate = .pred class) %>%
 dplyr::mutate(model = "SVM")
xgb metrics = xgb fit %>%
 collect predictions() %>%
table_metrics(truth = target_default, estimate = .pred_class) %>%
 dplyr::mutate(model = "XGBoost")
model compare = dplyr::bind rows(
 rf metrics,
svm_metrics,
xgb metrics
) %>% dplyr::mutate(.metric = dplyr::case when(.metric=="accuracy" ~ "Acurácia",
                       .metric=="sens" ~ "Sensibilidade",
```

```
.metric=="spec" ~ "Especificidade")) %>%
 dplyr::rename(Metricas =.metric,
        Modelos = model) %>%
 dplyr::mutate(label name
                                                                                      =
pasteO(format(round(.estimate*100,2),decimal.mark=","),"%"))
graf_comp_modelos =
                          ggplot(data=model compare, aes(x=Metricas, y=.estimate,
group=Metricas)) +
geom_bar(stat="identity",fill="#66C2A5")+
geom text(aes(label=label name), vjust=-0.5, size=4)+
 scale fill brewer(palette = "Set2") +
 labs(title = "Métricas dos modelos ajustados na base de treino",
   y= "Valor",
   x = "Métricas")+
theme bw()+
facet_grid(. ~ Modelos); graf_comp_modelos
ggsave(plot
                              graf comp modelos, filename
                                                                               "codigo-
fonte/imagens/graf_comp_modelos.png",width = 12,height =5)
# MODEL METRICS TREINO OTIMIZADO
rf metrics otm = rf fit %>%
collect predictions() %>%
 mutate(.pred class = make two class pred(.pred 1, levels(target default), threshold =
0.416)) %>%
table metrics(truth = target default, estimate = .pred class) %>%
 dplyr::mutate(model = "Random Forest")
svm metrics otm = SVM fit %>%
 collect predictions() %>%
 mutate(.pred_class = make_two_class_pred(.pred_1, levels(target_default), threshold =
0.413)) %>%
table_metrics(truth = target_default, estimate = .pred_class) %>%
 dplyr::mutate(model = "SVM")
xgb metrics otm = xgb fit %>%
collect predictions() %>%
 mutate(.pred_class = make_two_class_pred(.pred_1, levels(target_default), threshold =
0.4999863)) %>%
table_metrics(truth = target_default, estimate = .pred_class) %>%
 dplyr::mutate(model = "XGBoost")
model compare otm = dplyr::bind rows(
 rf_metrics_otm,
svm metrics otm,
 xgb metrics otm
) %>% dplyr::mutate(.metric = dplyr::case_when(.metric=="accuracy" ~ "Acurácia",
```

```
.metric=="sens" ~ "Sensibilidade",
                         .metric=="spec" ~ "Especificidade")) %>%
 dplyr::rename(Metricas =.metric,
        Modelos = model) %>%
 dplyr::mutate(label name
                                                                                        =
pasteO(format(round(.estimate*100,2),decimal.mark=","),"%"))
graf comp modelos otim
                                   ggplot(data=model compare otm,
                                                                         aes(x=Metricas,
                             =
y=.estimate, group=Metricas)) +
 geom bar(stat="identity",fill="#66C2A5")+
 geom text(aes(label=label name), vjust=-0.5, size=4)+
 scale_fill_brewer(palette = "Set2") +
 labs(title = "Métricas dos modelos ajustados na base de treino - OTIMIZADOS PARA
SENSIBILIDADE",
   y= "Valor",
   x = "Métricas")+
 theme bw()+
 facet_grid(. ~ Modelos);graf_comp_modelos_otim
                            graf comp modelos otim, filename
                                                                                 "codigo-
ggsave(plot
                                                                       =
fonte/imagens/graf_comp_modelos_otim.png",width = 12,height =5)
# ====== Variáveis mais importantes
library(vip)
# Finalizando o modelo
wf rf final <- rf workflow %>% finalize workflow(select best(rf fit tune, "accuracy"))
# treinando o modelo com a base de treino
modelo_final <- fit(wf_rf_final, rsample::training(x = dt_split))
graf var importantes = vip(modelo final$fit$fit) +
 aes(fill = "#66C2A5") +
 labs(title = "Variáveis mais importantes",
   x= "Variáveis",
   y = "Importância")+
 scale_fill_brewer(palette = "Set2") +
 theme bw() +
 theme(legend.position = "none");graf_var_importantes
                                                                                 "codigo-
ggsave(plot
                              graf var importantes, filename
                                                                      =
fonte/imagens/graf var importantes.png",width = 7,height =5)
```