DPENCLASSROOMS

Mission 6 Détectez des faux billets

Mentor: Claire Della Vedova

Agenda

Analyse de l'échantillon

- A propos du dataset
- Analyse univarée
- Analyses bivariées

ACP

- Eboulis des valeurs propres et variances
- Contribution et qualité des variables
- Cercle des corrélations
- o Projection des individus

K-means

- o Projection des individus
- Confusion matrix

Régression logistique

- Multicolinéarité
- Confusion matrix
- o Construcion d'un modèle de prédiciton

Analyse de l'échantillon

- A propos du dataset
- Analyse univarée
- Analyse bivariées

A propos du dataset

- L'<u>échantillon</u> a 170 observations et 7 variables
- La variable is_genuine (bool) nous indique vrais et faux billets
- Les autres sont quantitatives et caratérisent chaque individu (mm)
- Les mesures sont sur des échelles différentes (cf margin vs diagonal, length, height)
- Les écart-types de lengh et margin_low sont élevés : forte dispersion des individus

Dataset info Variables types Number of variables 7 Numeric Categorical Number of observations 170 Missing cells Boolean (0.0%)Date **Duplicate rows URL** (0.0%)Text (Unique) Total size in memory 8.2 KiB Rejected Average record size in 49.5 B Unsupported

Dataset overview

	is_genuine	length	diagonal	height_left	height_right	margin_low	margin_up
note_id							
0	True	112.83	171.81	104.86	104.95	4.52	2.89

Dataset describe

	length	diagonal	height_left	height_right	margin_low	margin_up
std	0.92	0.31	0.30	0.33	0.70	0.24
min	109.97	171.04	103.23	103.14	3.54	2.27
25%	111.85	171.73	103.84	103.69	4.05	3.01
50%	112.84	171.94	104.06	103.95	4.45	3.17
75%	113.29	172.14	104.29	104.17	5.13	3.33
max	113.98	173.01	104.86	104.95	6.28	3.68

Analyse univariée

True or False

sur 170 billets, 100 sont vrai
 et 70 sont faux (+/- 60%-40%)

Variables numériques

- diagonal, heigh_right et margin_up ont 5 outliers
- length a un skewness à gauche, médiane haute. Les données sont étalées (std=92)
- Heigh_left est plutôt centrée (std=30)
- margin_low a un skewness à droite, médiane haute. Les données sont étalées (std=70)

Is_genuine (boolean)

Value	Count	Frequency (%)
True	100	58.8%
False	70	41.2%

Variables numériques

Analyse bivariée

- Pour lenght, la distribution des individus montre que les faux billets sont plutôt moins larges que les vrais billets
- Pour margin_low, la distribution des individus montre que les faux billets tendent à avoir une marge inférieure plus grande que les vrais billets
- Pour les autres variables, on peut difficilement séparer vrai et faux en fonction de la dimension au vu des graphiques

Dispersion de *True* et *False* par mesure (mm) : individus

Analyse bivariée

- Pour length et margin_low, nous confirmons une dichotomie relative entre *True* et *False* selon la mesure des billets
- Pour **length** les vrais billets ont tendance à avoir une mesure élevée
- Pour height et margin les billets
 True tendent à avoir une mesure basse
- Pour margin, les faux billets tendent à avoir une mesure élevée

Dispersion de True et False par mesure (mm) : fréquence

Analyse en composantes principales

- Eboulis des valeurs propres et variances
- Contribution et qualité des variables
- Cercle des corrélations
- Projection des individus

Eboulis des valeurs propres

- Le coude apparaît dès la deuxième composante.
- Le premier plan factoriel CP1-CP2 représente
 69,4 % variance cumulée
- Il est légitime de se poser la question de travailler avec une représentation en 3D, en ajoutant CP3 (83,6 % variance cumulée)
- Nous nous en tenons aux 2 dimensions offrant la meilleure variance cumulée

	CP1	CP2	CP3	CP4	CP5	CP6
Variance expliquée	47.45	21.96	14.23	8.53	4.61	3.22
Variance cumulée	47.45	69.41	83.64	92.17	96.78	100.00

Contribution et qualité des variables

- Les variables heigh_left, heigh_right, length et margin_low sont très biens représentées sur l'axe CP1
- La variable diagonal est de loin la mieux représentée sur l'axe CP2 (90%)
- Cependant, length, height_left et margin_low contribuent à hauteur de 36-39% sur CP2
- Qualité de représentation des variables COS² confirme les observations

Qualité de représentation des variables (CP1-CP2)

OS2_2
13.03
80.08
15.16
7.31
13.54
2.62

Cercle des corrélations : contribution des variables

- Les variables heigh_left, heigh_right et margin_low sont positivement très biens représentées sur l'axe CP1
- La variable **length** est négativement très bien représentée sur l'axe CP1.
- margin_low est anticorrélée à length
- La variable diagonal est la mieux représentée sur l'axe CP2
- diagonal n'est pas corrélée à margin_up et margin_low, et faiblement à length

Projection des individus : premier plan factoriel CP1-CP2

Sur le premier plan on peut distinguer 3 zones :

- Sous -0,6 il est presque certain d'avoir des vrais billets
- Au-dessus de 1,0, la probabilité est élevée d'avoir de faux billets
- Entre -0,6 et 1,0 cela peut être un vrai ou un faux billet, à moins de tenir compte de la distribution sur le 2^e plan

En effet, les vrais billets sur cette zone sont plutôt vrais au-dessus de **-0,6** sur CP2 et faux en-dessous

Projection des individus contribution et qualité de représentation

- La qualité de représentation des individus a été requise par le commanditaire.
- Cela ne nous semble pas, contrairement à la qualité de représentation des variables, un critère d'analyse pertinent pour objectif de prédiction de vrais/faux billets.
- Ce qui compte pour notre modèle, ce ne sont pas tant les caractéristiques individuelles de chaque billet de l'échantillon que les caractéristiques des mesures utilisées pour déterminer l'authenticité ou non d'un billet.

Mission 2

K-means

- Projection des individus
- Confusion matrix

K-means projection des individus

- L'apprentissage non-supervisé Kmeans (avec K=2 clusters) est une méthode qui fournit rapidement une solution, pas nécessairement optimale par son appartenance à une classe de problèmes donnés déjà identifiés (heuristique)
- Notre modèle, projeté sur les plans factoriels 1 et 2 propose une solution de classement proche de celle fourni par le statut réel des individus (is_genuine) sur les composantes 1 et 2

ACP (centré-réduit)

k-means (centré-réduit)

K-means confusion matrix

- La matrice de confusion nous montre que sur 100 vrais billets, 92 ont été identifies comme vrais et 8 comme faux par l'algorithme
- Sur 70 faux billets, il en classe 69 comme faux et un comme vrai
- On pourrait en déduire que les faux billets sont plutôt mieux identifiés que les vrais par cette méthode

Marge d'erreur constatée (%)

•	Faux billets	1,4%
•	Vrais billets	8,0%

• Ensemble 6,5%

Mission 3 Régression logistique

- Multicolinéarité
- Confusion matrix
- Construcion d'un modèle de prédiciton

Corrélation & Colinéarité

La régression logistique avec statsmodels ne converge pas avec 6 puis 5 variables

- Forte corrélation entre heigh_left et heigh_right
- Forte corrélation entre length et margin_low
- heigh_left et margin_low ont un fort Variance Inflation Factor indiquant une multi-colinéarité élevée
- Nous réalisons notre modèle de régression logistique, qui converge, avec diagonal, heigh_right, margin_up et lenght

Corrélation

Calcul VIF pour 6 et 4 variables

Six variables	VIF
diagonal	6,63
height_left	12,21
height_right	2,34
margin_low	7,95
margin_up	2,70
length	2,87

Quatre variables	VIF
diagonal	1,14
height_right	1,16
margin_up	1,08
length	1,04

Régression logistique

Les résultats de Logit sous statsmodels confirment que le modèle est pertinent

- Log-Likelihood Ratio p-value est quasi-nulle => Notre modèle est significatif
- Les ratio P>z (p-values) des variables sont significatifs
- Nous réalisons un test d'entraînement sur l'échantillon

Logit Regression Results

Dep. Variable:	is_genuine	No. Observations:	170
Model:	Logit	Df Residuals:	165
Method:	MLE	Df Model:	4
Date:	Mon, 16 Sep 2019	Pseudo R-squ.:	0.8147
Time:	12:09:55	Log-Likelihood:	-21.347
converged:	True	LL-Null:	-115.17
Covariance Type:	nonrobust	LLR p-value:	1.692e-39

	coef	std err	Z	P> z
const	-402.2483	258.483	-1.556	0.120
x1	3.4597	0.728	4.753	0.000
x2	2.9821	1.376	2.167	0.030
х3	-4.6289	1.537	-3.011	0.003
х4	-5.6137	2.695	-2.083	0.037

Confusion matrix Logit

Marge d'erreur constatée (%)

•	Faux billets	9,4%
•	Vrais billets	3,0%
•	Ensemble	5,3%

Train test

Set d'entraînement : 119 individus

Set de validation: 51 individus

Variance expliquée : 0.84

Score Log_loss: 0.17

Des questions?

Conclusion

Pour aller plus loin

Analyses bivariées corrélations

Heatmap corrélations

Analyses bivariées True or False

Analyses bivariées dispersion

Diagrammes de dispersion

