MAP569 Machine Learning II

PC7: Kernel PCA

Exercise 1. Refresher on matrices

1. Let **A** be a $n \times d$ matrix with real entries. Show that $\text{Im}(\mathbf{A}) = \text{Im}(\mathbf{A}\mathbf{A}^T)$. Solution.

First note that $\mathbf{A}\mathbf{A}^Tx = 0$ implies $\langle \mathbf{A}^Tx, \mathbf{A}^Tx \rangle = 0$ so that $\mathbf{A}^Tx = 0$. The converse is obvious. Therefore, $\operatorname{Ker}(\mathbf{A}\mathbf{A}^T) = \operatorname{Ker}(\mathbf{A}^T)$. And using that $\operatorname{Ker}(B^T) = (\operatorname{Im}(B))^{\perp}$, we deduce that $\operatorname{Im}(\mathbf{A}\mathbf{A}^T)^{\perp} = \operatorname{Im}(\mathbf{A})^{\perp}$, which concludes the proof.

2. Let $\{U_k\}_{1\leq k\leq r}$ be a family of r orthonormal vectors of \mathbb{R}^d . Show that $\sum_{k=1}^r U_k U_k^T$ is the matrix associated with the orthogonal projection onto $\mathbf{H} = \{\sum_{k=1}^r \alpha_k U_k \; ; \; \alpha_1, \ldots, \alpha_r \in \mathbb{R}\}$. Deduce that if \mathbf{A} is a $n \times d$ matrix with real entries such that each column of \mathbf{A} is in \mathbf{H} , then,

$$\left(\sum_{k=1}^r U_k U_k^T\right) \mathbf{A} = \mathbf{A} .$$

Solution.

Let $\pi_{\mathbf{H}}(X)$ be the orthogonal projection of X onto **H**. Since $\{U_k\}_{1 \le k \le r}$ is an orthonormal basis of **H**,

$$\pi_{\mathbf{H}}(X) = \sum_{k=1}^{r} \langle X, U_k \rangle U_k = \left(\sum_{k=1}^{r} U_k U_k^T\right) X.$$

This implies that for each $X \in \mathbf{H}$, $X = \left(\sum_{k=1}^r U_k U_k^T\right) X$. Since all the column vectors of A are in \mathbf{H} , this yields $\left(\sum_{k=1}^r U_k U_k^T\right) \mathbf{A} = \mathbf{A}$.

Exercise 2. Kernel Principal Component Analysis

Principal Component Analysis

Principal component analysis is a multivariate technique which aims at analyzing the statistical structure of high dimensional dependent observations by representing data using orthogonal variables called *principal components*. Reducing the dimensionality of the data is motivated by several practical reasons such as improving computational complexity. Let $(X_i)_{1\leqslant i\leqslant n}$ be i.i.d. random variables in \mathbb{R}^d and consider the matrix $\mathbf{X}\in\mathbb{R}^{n\times d}$ such that the *i*-th row of \mathbf{X} is the observation X_i^T . In this exercise, it is assumed that data are preprocessed so that the columns of \mathbf{X} are centered. This means that for all $1\leqslant k\leqslant d$, $\sum_{i=1}^n X_{i,k}=0$. Let Σ_n be the empirical covariance matrix:

$$\Sigma_n = n^{-1} \sum_{i=1}^n X_i X_i^T.$$

Principal Component Analysis aims at reducing the dimensionality of the observations $(X_i)_{1 \leq i \leq n}$ using a *compression* matrix $\mathbf{U} \in \mathbb{R}^{d \times p}$ with orthonormal columns with $p \leq d$ so that for each $1 \leq i \leq n$, $\mathbf{U}^T X_i$ ia a low dimensional representation of X_i . The original observation may then be partially recovered using $\mathbf{U} \in \mathbb{R}^{d \times p}$. Principal Component Analysis computes \mathbf{U} using the least squares approach:

$$\mathbf{U}_{\star} \in \underset{U \in \mathbb{R}^{d \times p}}{\operatorname{argmin}} \sum_{i=1}^{n} \|X_i - \mathbf{U}\mathbf{U}^T X_i\|^2,$$

1. Prove that for all $\mathbb{R}^{n\times d}$ matrix **A** with rank r, there exist $\sigma_1 \geqslant \ldots \geqslant \sigma_r > 0$ such that

$$\mathbf{A} = \sum_{k=1}^{r} \sigma_k u_k v_k^T \,,$$

where $\{u_1, \ldots, u_r\} \subset \mathbb{R}^n$ and $\{v_1, \ldots, v_r\} \subset \mathbb{R}^d$ are two families of orthonormal vectors. The vectors $\{u_1, \ldots, u_r\}$ (resp. $\{v_1, \ldots, v_r\}$) are the left-singular (resp. right-singular) vectors associated with $\{\sigma_1, \ldots, \sigma_r\}$, the singular values of **A**. **Solution.**

Since the matrix $\mathbf{A}\mathbf{A}^T$ is positive semidefinite, its spectral decomposition is given by

$$\mathbf{A}\mathbf{A}^T = \sum_{k=1}^r \lambda_k u_k u_k^T \,,$$

where $\lambda_1 \geqslant \ldots \geqslant \lambda_r > 0$ are the nonzero eigenvalues of $\mathbf{A}\mathbf{A}^T$ and $\{u_1, \ldots, u_r\}$ is an orthonormal family of \mathbb{R}^n . For all $1 \leqslant k \leqslant r$, define $v_k = \lambda_k^{-1/2} \mathbf{A}^T u_k$ so that

$$\begin{split} \|v_k\|^2 &= \lambda_k^{-1} \langle \mathbf{A}^T u_k; \mathbf{A}^T u_k \rangle = \lambda_k^{-1} u_k^T \mathbf{A} \mathbf{A}^T u_k = 1 \,, \\ \mathbf{A}^T \mathbf{A} v_k &= \lambda_k^{-1/2} \mathbf{A}^T \mathbf{A} \mathbf{A}^T u_k = \lambda_k v_k \,. \end{split}$$

On the other hand, for all $1 \leqslant k \neq j \leqslant r$, $\langle v_k; v_j \rangle = \lambda_k^{-1/2} \lambda_j^{-1/2} u_k^T \mathbf{A} \mathbf{A}^T u_j = \lambda_k^{-1/2} \lambda_j^{1/2} u_k' u_j = 0$. Therefore, $\{v_1, \dots, v_r\}$ is an orthonormal family of eigenvectors of $\mathbf{A}^T \mathbf{A}$ associated with the eigenvalues $\lambda_1 \geqslant \dots \geqslant \lambda_r > 0$. Define, for all $1 \leqslant k \leqslant r$, $\sigma_k = \lambda_k^{1/2}$ which yields

$$\sum_{k=1}^{r} \sigma_k u_k v_k^T = \sum_{k=1}^{r} u_k u_k^T \mathbf{A} = \left(\sum_{k=1}^{r} u_k u_k^T\right) \mathbf{A}.$$

As $\{u_1, \ldots, u_r\}$ is an orthonormal family, $\mathbf{U}\mathbf{U}^T = \sum_{k=1}^r u_k u_k^T$ is the orthogonal projection onto the range $(\mathbf{A}\mathbf{A}^T) = \operatorname{range}(\mathbf{A})$ which implies

$$\sum_{k=1}^{r} \sigma_k u_k v_k^T = \left(\sum_{k=1}^{r} u_k u_k^T\right) \mathbf{A} = \mathbf{A}.$$

If **U** denotes the $\mathbb{R}^{n \times r}$ matrix with columns given by $\{u_1, \ldots, u_r\}$ and **V** denotes the $\mathbb{R}^{d \times r}$ matrix with columns given by $\{v_1, \ldots, v_r\}$, then the singular value decomposition of **A** may also be written as

$$\mathbf{A} = \mathbf{U}\mathbf{D}_r\mathbf{V}^T$$
,

where $\mathbf{D}_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$. Then, $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ are positive semidefinite such that

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{D}_r^2 \mathbf{V}^T$$
 and $\mathbf{A} \mathbf{A}^T = \mathbf{U} \mathbf{D}_r^2 \mathbf{U}^T$.

In the framework of this exercise, $n\Sigma_n = \mathbf{X}^T\mathbf{X}$ so that diagonalizing $n\Sigma_n$ is equivalent to computing the singular value decomposition of \mathbf{X} .

2. Prove that solving the PCA least squares optimization problem boils down to computing

$$\mathbf{U}_{\star} \in \underset{\mathbf{U} \in \mathbb{R}^{d \times p}, \ \mathbf{U}^T \mathbf{U} = \mathbf{I}_p}{\operatorname{argmax}} \left\{ \operatorname{trace}(\mathbf{U}^T \mathbf{\Sigma}_n \mathbf{U}) \right\}.$$

Solution.

Let $\mathbf{U} \in \mathbb{R}^{d \times p}$ be such that $\mathbf{U}^T \mathbf{U} = \mathbf{I}_p$. Then,

$$\begin{split} \sum_{i=1}^{n} \|X_{i} - \mathbf{U}\mathbf{U}^{T}X_{i}\|^{2} &= \sum_{i=1}^{n} \|X_{i}\|^{2} + \sum_{i=1}^{n} \|\mathbf{U}\mathbf{U}^{T}X_{i}\|^{2} - 2\sum_{i=1}^{n} \langle X_{i}; \mathbf{U}\mathbf{U}^{T}X_{i} \rangle, \\ &= \sum_{i=1}^{n} \|X_{i}\|^{2} + \sum_{i=1}^{n} X_{i}^{T}\mathbf{U}\mathbf{U}^{T}X_{i} - 2\sum_{i=1}^{n} X_{i}^{T}\mathbf{U}\mathbf{U}^{T}X_{i}, \\ &= \sum_{i=1}^{n} \|X_{i}\|^{2} - \sum_{i=1}^{n} X_{i}^{T}\mathbf{U}\mathbf{U}^{T}X_{i}, \\ &= \sum_{i=1}^{n} \|X_{i}\|^{2} - \operatorname{trace}(\mathbf{U}^{T}\mathbf{X}\mathbf{X}^{T}\mathbf{U}). \end{split}$$

3. Let $\{\vartheta_1, \ldots, \vartheta_d\}$ be orthonormal eigenvectors associated with the eigenvalues $\lambda_1 \geqslant \ldots \geqslant \lambda_d$ of Σ_n . Prove that a solution to this problem is given by the matrix \mathbf{U}_{\star} with columns $\{\vartheta_1, \ldots, \vartheta_p\}$.

Solution.

Let $\Sigma_n = \mathbf{V}\mathbf{D}_n\mathbf{V}^T$ be the spectral decomposition of Σ_n where $\mathbf{D}_n = \mathrm{Diag}(\lambda_1, \dots, \lambda_d)$ and $\mathbf{V} \in \mathbb{R}^{d \times d}$ is a matrix with orthonormal columns $\{\vartheta_1, \dots, \vartheta_d\}$. For all $\mathbf{U} \in \mathbb{R}^{d \times p}$ matrix with orthonormal columns define $\mathbf{B} = \mathbf{V}^T\mathbf{U}$ so that, as $\mathbf{V} \in \mathbb{R}^{d \times d}$ is an orthogonal matrix,

$$VB = VV^TU = U$$
 and $U^T\Sigma_nU = B^TV^TVD_nV^TVB = B^TD_nB$.

Therefore,

$$\operatorname{Trace}(\mathbf{U}^T \mathbf{\Sigma}_n \mathbf{U}) = \operatorname{Trace}(\mathbf{B}^T \mathbf{D}_n \mathbf{B}) = \sum_{i=1}^d \lambda_i \sum_{j=1}^p b_{i,j}^2.$$
 (1)

On the other hand,

$$\mathbf{B}^T \mathbf{B} = \mathbf{U}^T \mathbf{V} \mathbf{V}^T \mathbf{U} = \mathbf{U}^T \mathbf{U} = I_p,$$

so that the columns of ${\bf B}$ are orthonormal and

$$\sum_{i=1}^{d} \sum_{j=1}^{p} b_{i,j}^{2} = p.$$

Hence, introducing for all $1 \le i \le d$, $\alpha_i = \sum_{j=1}^p b_{i,j}^2$, by (1),

$$\operatorname{Trace}(\mathbf{U}^T \mathbf{\Sigma}_n \mathbf{U}) = \sum_{i=1}^d \alpha_i \lambda_i \,,$$

with, for all $1 \le i \le d$, $\alpha_i \in [0,1]$ and $\sum_{i=1}^d \alpha_i = p$. As $\lambda_1 \ge \lambda_2 \ge \ldots, \lambda_d$,

$$\operatorname{Trace}(\mathbf{U}^T \mathbf{\Sigma}_n \mathbf{U}) \leqslant \sum_{i=1}^p \lambda_i$$
.

Indeed, the function $f_d: (\alpha_1,\ldots,\alpha_d) \mapsto \sum_{i=1}^d \alpha_i \lambda_i$ is maximized under the constraints $\alpha_i \in [0,1]$ and $\sum_{i=1}^d \alpha_i = p$ by $(\alpha_i^*)_{1 \leqslant i \leqslant d}$ such that $\alpha_1^* = \ldots = \alpha_p^* = 1$. Assume that $(\alpha_1,\ldots,\alpha_d)$ is such that there exists $1 \leqslant j_0 \leqslant p$ such that $\alpha_{j_0} < 1$. Then, $\sum_{j=p+1}^d \alpha_j \geqslant 1 - \alpha_{j_0}$ and we may write, as $\lambda_{j_0} \geqslant \lambda_{p+1} \geqslant \ldots \geqslant \lambda_d$,

$$f_d: (\alpha_1, \dots, \alpha_d) \leqslant \sum_{i=1, i \neq j_0}^p \alpha_i \lambda_i + \lambda_{j_0} + \sum_{i=p+1}^d \tilde{\alpha}_i \lambda_i,$$

where $(\tilde{\alpha}_i)_{p+1 \leqslant i \leqslant d}$ are in [0,1] and such that $\sum_{i=1,i\neq j_0}^p \alpha_i + 1 + \sum_{i=p+1}^d \tilde{\alpha}_i = p$.

As the columns of \mathbf{U}_{\star} are $\{\vartheta_1,\ldots,\vartheta_p\}$, for all $1\leqslant i\leqslant d$ and $1\leqslant j\leqslant p$, $b_{i,j}=\langle\vartheta_i;\vartheta_j\rangle=\delta_{i,j}$. Therefore, for all $1\leqslant i\leqslant d$, $\sum_{j=1}^p b_{i,j}^2=1$ and

$$\operatorname{Trace}(\mathbf{U}_{\star}^{T} \mathbf{\Sigma}_{n} \mathbf{U}_{\star}) = \sum_{i=1}^{p} \lambda_{i},$$

which completes the proof.

4. For any dimension $1 \leq p \leq d$, let \mathcal{F}_d^p be the set of all vector subpaces of \mathbb{R}^d with dimension p. Consider the linear span V_d defined as

$$V_p \in \underset{V \in \mathcal{F}_d^p}{\operatorname{argmin}} \sum_{i=1}^n \|X_i - \pi_V(X_i)\|^2,$$

where π_V is the orthogonal projection onto the linear span V. Prove that $V_1 = \text{span}\{v_1\}$ where

$$v_1 \in \underset{v \in \mathbb{R}^d ; ||v||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2.$$

Solution.

Write $V_1 = \operatorname{span}\{v_1\}$ for $v_1 \in \mathbb{R}^d$ such that $||v_1|| = 1$. Then

$$\begin{split} \sum_{i=1}^{n} \|X_i - \pi_{V_1}(X_i)\|^2 &= \sum_{i=1}^{n} \|X_i - \langle X_i; v_1 \rangle v_1\|^2 \,, \\ &= \sum_{i=1}^{n} \left(\|X_i\|^2 - 2\langle X_i; \langle X_i; v_1 \rangle v_1 \rangle + \|\langle X_i; v_1 \rangle v_1\|^2 \right) \,, \\ &= \sum_{i=1}^{n} \left(\|X_i\|^2 - \langle X_i; v_1 \rangle^2 \right) . \end{split}$$

Consequently, V_1 is a solution if and only if v_1 is solution to:

$$v_1 \in \underset{v \in \mathbb{R}^d ; ||v||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2.$$

5. For all $2 \leq p \leq d$, following the same steps, prove that a solution to the optimization problem is given by $V_p = \text{span}\{v_1, \dots, v_p\}$ where

$$v_1 \in \underset{v \in \mathbb{R}^d; ||v||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2 \quad \text{and for all } 2 \leqslant k \leqslant p \;, \; v_k \in \underset{v \in \mathbb{R}^d; ||v||=1}{\operatorname{argmax}} \sum_{i=1}^n \langle X_i, v \rangle^2 \;. \tag{2}$$

Solution.

Write $V_p = \operatorname{span}\{v_1, \dots, v_p\}$ where $\{v_1, \dots, v_p\}$ is an orthonormal family. Then,

$$\sum_{i=1}^{n} \|X_i - \pi_{V_p}(X_i)\|^2 = \sum_{i=1}^{n} \|X_i - \sum_{k=1}^{p} \langle X_i; v_k \rangle v_k\|^2 = \sum_{i=1}^{n} \left(\|X_i\|^2 - \sum_{k=1}^{p} \langle X_i; v_k \rangle^2 \right).$$

 (v_1, \ldots, v_p) is therefore solution to

$$v = (v_1, \dots, v_p) \in \operatorname{argmax} \sum_{k=1}^{p} \sum_{i=1}^{n} \langle X_i; v_k \rangle^2$$
.

The additive form of the function to be maximized allows to build the orthonormal basis of V_p sequentially as claimed.

6. Prove that the vectors $\{v_1, \ldots, v_k\}$ defined by (2) can be chosen as the orthonormal eigenvectors associated with the k largest eigenvalues of the empirical covariance matrix Σ_n . Solution.

Note that for all $v \in \mathbb{R}^d$ such that ||v|| = 1,

$$\frac{1}{n} \sum_{i=1}^{n} \langle X_i, v \rangle^2 = \frac{1}{n} \sum_{i=1}^{n} (v^T X_i) (X_i^T v) = v^T \mathbf{\Sigma}_n v.$$

As $(\vartheta_i)_{1\leqslant i\leqslant d}$ are the orthonormal eigenvectors associated with the eigenvalues $\lambda_1\geqslant\ldots\geqslant\lambda_d\geqslant 0$ of Σ_n . Then,

$$\frac{1}{n}\sum_{i=1}^n \langle X_i,v\rangle^2 = v^T \left(\sum_{i=1}^d \lambda_i \vartheta_i \vartheta_i^T\right) v = \sum_{i=1}^d \lambda_i \langle v,\vartheta_i\rangle^2 \leqslant \lambda_1 \sum_{i=1}^d \langle v,\vartheta_i\rangle^2$$

and, as $(\vartheta_i)_{1 \leqslant i \leqslant d}$ is an orthonormal basis of \mathbb{R}^d , $\sum_{i=1}^d \langle v, \vartheta_i \rangle^2 = ||v||^2 = 1$. Therefore,

$$\frac{1}{n} \sum_{i=1}^{n} \langle X_i, v \rangle^2 \leqslant \lambda_1.$$

On the other hand, for all $2 \le i \le d$, $\langle \vartheta_1, \vartheta_i \rangle = 0$ and $\langle \vartheta_1, \vartheta_1 \rangle = 1$ so that $\sum_{i=1}^d \lambda_i \langle \vartheta_1, \vartheta_i \rangle^2 = \lambda_1$ which proves that ϑ_1 is solution to (2).

Assume now that $v \in \mathbb{R}^d$ is such that ||v|| = 1 and for all $1 \le j \le k - 1$, $\langle v; \vartheta_j \rangle = 0$ and write

$$\frac{1}{n}\sum_{i=1}^n \langle X_i,v\rangle^2 = \sum_{i=1}^d \lambda_i \langle v,\vartheta_i\rangle^2 \leq \lambda_k \sum_{i=k}^d \langle v,\vartheta_i\rangle^2 \leq \lambda_k \;,$$

since, as $(\vartheta_i)_{1\leqslant i\leqslant d}$ is an orthonormal basis of \mathbb{R}^d , $\sum_{i=1}^d \langle v, \vartheta_i \rangle^2 = \sum_{i=k}^d \langle v, \vartheta_i \rangle^2 = \|v\|^2 = 1$. On the other hand, for all $1\leqslant i\leqslant d$, $i\neq k$, $\langle \vartheta_k, \vartheta_i \rangle = 0$ and $\langle \vartheta_k, \vartheta_k \rangle = 1$ so that $\sum_{i=1}^d \lambda_i \langle \vartheta_k, \vartheta_i \rangle^2 = \lambda_k$ which proves that ϑ_k is solution to (2).

Therefore, $V_p = \operatorname{span}\{\vartheta_1, \dots \vartheta_p\}$ is a solution to (2) and, as $(\vartheta_i)_{1 \leqslant i \leqslant p}$ is an orthonormal family, the projection matrix onto V_p is given by $\mathbf{U}_{\star}\mathbf{U}_{\star}^T$ where \mathbf{U}_{\star} is a $\mathbb{R}^{d \times p}$ matrix with columns $\{\vartheta_1, \dots \vartheta_p\}$. \square

7. The orthonormal eigenvectors associated with the eigenvalues of Σ_n allow to define the principal components as follows. Then, as $V_d = \text{span}\{\vartheta_1, \dots, \vartheta_d\}$, for all $1 \leq i \leq n$,

$$\pi_{V_d}(X_i) = \sum_{k=1}^d \langle X_i, \vartheta_k \rangle \vartheta_k = \sum_{k=1}^d (X_i^T \vartheta_k) \vartheta_k = \sum_{k=1}^d c_k(i) \vartheta_k \,,$$

where for all $1 \leq k \leq d$, the k-th principal component is defined as $c_k = \mathbf{X}\vartheta_k$. Prove that (c_1, \ldots, c_d) are orthogonal vectors.

Solution.

The k-th principal component is the vector whose components are the coordinates of each X_i , $1 \le i \le n$, relative to the basis $\{\vartheta_1, \ldots, \vartheta_d\}$ of V_d . For all $1 \le i \ne j \le d$,

$$\langle c_i, c_j \rangle = \vartheta_i^T \mathbf{X}^T \mathbf{X} \vartheta_j = \vartheta_i^T (n \Sigma_n) \vartheta_j = n \lambda_j \vartheta_i^T \vartheta_j = 0$$

as $\{\vartheta_1, \ldots, \vartheta_d\}$ is an orthonormal family.

Application to RKHS

Let $(X_i)_{1 \leq i \leq n}$ be n observations in a general space \mathcal{X} and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a positive kernel. \mathcal{W} denotes the Reproducing Kernel Hilbert Space associated with k and for all $x \in \mathcal{X}$, $\phi(x)$ denotes the function $\phi(x): y \to k(x,y)$. The aim is now to perform a PCA on $(\phi(X_1), \ldots, \phi(X_n))$. It is assumed that

$$\sum_{i=1}^{n} \phi(X_i) = 0.$$

Define

$$\mathbf{K} = (k(X_i, X_j))_{1 \le i, j \le n}$$

1. Prove that

$$f_1 = \underset{f \in \mathcal{W}; \|f\|_{\mathcal{W}} = 1}{\operatorname{argmax}} \sum_{i=1}^{n} \langle \phi(X_i), f \rangle_{\mathcal{W}}^2$$

may be written

$$f_1 = \sum_{i=1}^n \alpha_1(i)\phi(X_i)$$
, where $\alpha_1 = \underset{\alpha \in \mathbb{R}^n ; \alpha^T \mathbf{K} \alpha = 1}{\operatorname{argmax}} \alpha^T \mathbf{K}^2 \alpha$.

Solution.

Any solution to the optimization problem lies in the vectorial subspace $V = \text{span}\{\phi(X_i), \dots, \phi(X_n)\}$. Let $f = \sum_{i=1}^n \alpha(i)\phi(X_i)$ be such that $||f||_{\mathcal{W}} = 1$. Then,

$$||f||_{\mathcal{W}}^2 = \sum_{i,j=1}^n \alpha_i \alpha_j \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{W}} = \alpha^T \mathbf{K} \alpha.$$

On the other hand, $\langle \phi(X_i), f \rangle_{\mathcal{W}} = f(X_i) = [\mathbf{K}\alpha](i)$ so that,

$$\sum_{i=1}^{n} \langle \phi(X_i), f \rangle_{\mathcal{W}}^2 = \sum_{i=1}^{n} f^2(X_i) = \sum_{i=1}^{n} ([\mathbf{K}\alpha](i))^2 = (\mathbf{K}\alpha_1)^T \mathbf{K}\alpha_1 = \alpha^T \mathbf{K}^2 \alpha.$$

2. Prove that $\alpha_1 = \lambda_1^{-1/2} b_1$ where b_1 is the unit eigenvector associated with the largest eigenvalue λ_1 of **K**.

Solution.

Let $\lambda_1 \geqslant \ldots \geqslant \lambda_n \geq 0$ be the eigenvalues of **K** associated with the orthonormal basis of eigenvectors (b_1, \ldots, b_n) . For any $\alpha \in \mathbb{R}^n$ such that $\alpha^T \mathbf{K} \alpha = 1$,

$$\alpha^T \mathbf{K}^2 \alpha = \alpha^T \left(\sum_{i=1}^n \lambda_i b_i b_i^T \right)^2 \alpha = \sum_{i=1}^n \lambda_i^2 \langle \alpha, b_i \rangle^2 \leqslant \lambda_1 \underbrace{\sum_{i=1}^n \lambda_i \langle \alpha, b_i \rangle^2}_{-1} = \lambda_1 ,$$

as $\alpha^T \mathbf{K} \alpha = \sum_{i=1}^n \lambda_i \langle \alpha, b_i \rangle^2 = 1$. On the other hand,

$$\left(\lambda_1^{-1/2}b_1\right)^T \mathbf{K}^2 \left(\lambda_1^{-1/2}b_1\right) = \lambda_1^{-1} \sum_{i=1}^n \lambda_i^2 \langle b_1, b_i \rangle^2 = \lambda_1 .$$

Following the same steps, f_j may be written $f_j = \sum_{i=1}^n \alpha_j(i)\phi(x_i)$ with $\alpha_j = \lambda_j^{-1/2}b_j$.

3. Write $H_d = \text{span}\{f_1, \dots, f_d\}$. Prove that, for all $1 \leq i \leq n$,

$$\pi_{H_d}(\phi(X_i)) = \sum_{j=1}^d \lambda_j \alpha_j(i) f_j .$$

Solution.

Note first that the (f_1, \ldots, f_d) is an orthonormal family. Therefore,

$$\pi_{H_d}(\phi(X_i)) = \sum_{i=1}^d \langle \phi(X_i), f_j \rangle_{\mathcal{W}} f_j = \sum_{i=1}^d \langle \phi(X_i), \sum_{\ell=1}^n \alpha_j(\ell) \phi(X_\ell) \rangle_{\mathcal{W}} f_j = \sum_{i=1}^d [\mathbf{K}\alpha_j](i) f_j.$$

Therefore,

$$\pi_{H_d}(\phi(x_i)) = \sum_{j=1}^d \lambda_j^{-1/2} [\mathbf{K} b_j](i) f_j = \sum_{j=1}^d \lambda_j^{1/2} b_j(i) f_j = \sum_{j=1}^d \lambda_j \alpha_j(i) f_j .$$