Heaps

Prof. Ki-Hoon Lee
School of Computer and Information Engineering
Kwangwoon University

Heap

• A *max tree* is a tree in which the key value in each node is no smaller than the key values in its children (if any)

• A *min tree* is a tree in which the key value in each node is no larger than the key values in its children (if any)

• The key in the root of a max (min) tree is the largest (smallest) key in the tree

• A max heap is a complete binary tree that is also a max tree

• A min heap is a complete binary tree that is also a min tree

Heap Height

• Since a heap is a complete binary tree, the height h of an n node heap is $\lceil \log_2(n+1) \rceil$

- Basic Operations
 - Creation of an empty heap
 - Insertion
 - Deletion of the root

A Heap Represented as an Array

Node Number Properties

- Parent of node i is node i/2, unless i=1.
- Node 1 is the root and has no parent.

Node Number Properties (Cont.)

- Left child of node i is node 2i, unless 2i > n, where n is the number of nodes.
- If 2i > n, node *i* has no left child.

Node Number Properties (Cont.)

- Right child of node i is node 2i+1, unless 2i+1 > n, where n is the number of nodes.
- If 2i+1 > n, node *i* has no right child.

Template Class MaxHeap

Template Class MaxHeap (cont.)

```
template <class T>
MaxHeap<T>::MaxHeap (int theCapacity = 10)
{
   if (theCapacity < 1) throw "Capacity must be >= 1.";
   capacity = theCapacity;
   heapSize = 0;
   heap = new T[capacity + 1]; // heap[0] is not used
}
```

Insertion

- To determine the correct place for the element being inserted, we use a *bubbling up* process
- The bubbling up process begins at a new leaf node and moves up toward the root
- The element to be inserted bubbles up as far as is necessary to ensure a max (min) heap

New element is 15.

New element is 15.

New element is 15.

```
template <class T>
void MaxHeap<T>::Push(const T& e)
{// Insert e into the max heap.
  if (heapSize == capacity) {// double the capacity
    ChangeSize1D(heap, capacity, 2 * capacity);
    capacity *=2;
  int currentNode = ++heapSize;
 while (currentNode != 1 && heap[currentNode / 2] < e)</pre>
  {// bubble up
    heap[currentNode] = heap[currentNode/2]; // move parent down
    currentNode /= 2; // move to parent
 heap[currentNode] = e;
```

#pragma warning(disable:4996)
#include <algorithm>
using namespace std;

http://www.cplusplus.com/reference/algorithm/copy/

Complexity of Insert

Complexity is $O(\log n)$, where n is heap size.

Deletion of the Root from a Max Heap

- 1. Replace the root of the heap with the last element on the last level
- 2. Compare the new root with its children; if they are in the correct order, stop
- 3. If not, swap the element with one of its children and return to the previous step
 - Swap with its smaller child in a min-heap and its larger child in a max-heap.

Max element is in the root.

After max element is removed.

Reinsert 8 into the heap.

Reinsert 8 into the heap.

Reinsert 8 into the heap.

Max element is 15.

After max element is removed.

Reinsert 7.

Reinsert 7.

Removing the Max Element

Reinsert 7.

Deletion from a max heap

```
template <class T>
 void MaxHeap<T>::Pop()
\Box {// Delete max element.
   if (IsEmpty()) throw "Heap is empty. Cannot delete.";
   heap[1].~T(); // delete max element
  // remove last element from heap
   T lastE = heap[heapSize--];
   // trickle down
   int currentNode = 1; // root
   int child = 2;  // a child of currentNode
   while (child <= heapSize)</pre>
     // set child to larger child of currentNode
     if (child < heapSize && heap[child] < heap[child+1]) child++;
     // can we put lastE in currentNode?
     if (lastE >= heap[child]) break; // yes
     // no
     heap[currentNode] = heap[child]; // move child up
     currentNode = child; child *= 2; // move down a level
   heap[currentNode] = lastE;
```

Complexity of Deletion

Complexity is $O(\log n)$.

Priority Queues

- The element to be deleted is the one with highest (or lowest) priority
- At any time, an element with arbitrary priority can be inserted into the queue

Priority Queues (cont.)

Two kinds of priority queues:

- Min priority queue
- Max priority queue

Max Priority Queue

- Collection of elements
- Each element has a priority
- Supports following operations:
 - empty
 - size
 - insert an element into the priority queue (push)
 - get element with max priority (top)
 - remove element with max priority (pop)

Complexity of Operations

Use a heap

empty, size, and top \Rightarrow O(1) time

insert (push) and remove (pop) =>

O(log n) time where n is the size of the priority queue

Applications of Priority Queues

Sorting

- use element key as priority
- push elements
- top/pop elements
 - if a min priority queue is used, elements are extracted in ascending order of priority (or key)
 - if a max priority queue is used, elements are extracted in descending order of priority (or key)
- Scheduler of an OS

Heap Sort

• Uses a max (or min) priority queue that is implemented as a heap

- Complexity of sorting n elements.
 - n insert operations \Rightarrow O(n log n) time.
 - n remove max operations \Rightarrow O(n log n) time.
 - total time is $O(n \log n)$.
 - compare with $O(n^2)$ for insertion or bubble sort

Binomial Heaps

- Binomial heaps are similar to binary heaps, but binomial heaps allow for efficient merging of heaps.
 - Binary heap: O(n) for merging, O(log n) for insertion and deletion
 - Binomial heap: O(log n) for merging, insertion,
 and deletion
- A binomial heap is implemented as a set of binomial trees.

Binomial Trees

• B_k is degree k binomial tree.

• B_k , k > 0, is:

Examples

Number of Nodes in B_k

- B_k , k > 0, is two B_{k-1} s.
- One of these is a subtree of the other.

Number of Nodes in B_k

• N_k = number of nodes in B_k

•
$$N_k = 2^0 + 2^1 + 2^2 + ... + 2^{k-1} + 1 = 2^k$$

•
$$k = log_2 N_k$$

Binomial Min Heap

- A binomial min heap *H* is a set of binomial trees that satisfies the following properties:
- 1. Each binomial tree in *H* obeys the min-heap property: the key of a node is greater than or equal to the key of its parent.
- 2. For any nonnegative integer *k*, there is at most one binomial tree in *H* whose root has degree *k*.

Binomial Heap

- For any nonnegative integer k, there is at most one binomial tree in H whose root has degree k.
- An n-node binomial heap H consists of $O(\log_2 n)$ binomial trees.

$$n = 2^0 + 2^1 + 2^2 + ... + 2^k = 2^{k+1}-1$$

 $k + 1 = \log_2(n+1)$

Binomial Heap Representation

- The roots of the binomial trees within a binomial heap are organized in a linked list called the *root list*.
- The degrees of the roots strictly increase as we traverse the root list.

- Merging two binomial trees of the same degree one by one.
 - The root node with the larger key is made into a child of the root node with the smaller key.
 - Complexity is O(log n).

• There may be three roots of a given degree appearing on the root list at some time.

Inserting an Element

• Creating a one-node binomial heap and then merging it with the original heap.

• Complexity is $O(\log n)$.

- Deleting the minimum element from the binomial heap *H*:
 - 1. Finding the root *x* with the minimum key in the root list of *H*.
 - 2. Removing *x* from its binomial tree, and obtain a list of its child subtrees.
 - 3. Transforming this list of subtrees into a separate binomial heap.
 - 4. Merging this heap with the original heap.
- Complexity is O(log n).

Homework

- 1. Implement and test
 - Programs 5.15, 5.16, 5.17
- 2. 예외처리(try, throw, catch)에 대해 공부하고 예를 들어 설명할 것

Homework을 제출할 필요는 없으나 중간/기말고사에 출제할 계획임