	Number of Training Samples	Number of Features/ Dimensionality	Types and Properties of Distribution	Density	Separation	Concentration	Label Noise and Label Granularity	Domain specific
Illustration	$\begin{array}{c} f_2 \\ \hline \\ f_1 \\ \hline \\ f_1 \\ \hline \end{array}$	f_3	f ₃ Gaussian f ₃ Bernoulli	f^*_2 f^*_1	f_2 f_1 f_2 f_1	Error Error under expansion	f ₂ f ₂ f ₁ /o Incorrect labels /o Correct labels	High frequency Low frequency
Main results	 Significantly larger quantity is needed for adversarial vs. standard generalization Robustness is harder on imbalanced data 	 High-dimensional datasets are more prone to adversarial examples More challenges in generalizing robust solutions 	 Certain distribution types are more optimal Distributions with symmetry and low variance are more optimal for robustness 	 Adversarial examples from low density regions are more transferable Can defend by projecting to high density regions 	 Optimal-transport-based separation defines adversarial risk's lower bound Local classifiers are inherently robust on well-separated data 	 Evaluating the concentration of 	 Using refined labels, e.g., "cat" instead of "animal", improves robustness Training with multiple tasks boosts robustness 	 CNNs are vulnerable to attacks on high frequency components Diverse image frequencies boosts robustness