## Cours N°PM 5: Mouvement de rotation

Introduction: Sous l'action d'un ensemble de forces, la grande roue est animée d'un mouvement de rotation autour d'un axe fixe. Un tel mouvement est caractérisé, à chaque instant, par son accélération angulaire. Qu'est-ce que l'accélération angulaire? Quelle relation la relie aux moments des forces appliquées à la grande roue?



## I- Abscisse angulaire - Vitesse angulaire - accélération angulaire :

#### 1- Rappel:

Un solide indéformable est en mouvement de rotation autour d'un axe fixe ( $\Delta$ ), si : « Tous les points du solide décrivent des trajectoires circulaires centrées sur l'axe de rotation, sauf les points qui appartiennent à cet axe ».



#### 2- Repérage d'un point en mouvement :

On repère la position d'un solide en mouvement de rotation autour d'un axe fixe ( $\Delta$ ), en utilisant l'abscisse angulaire  $\theta$  ou bien l'abscisse curviligne S.

► L'abscisse angulaire  $\theta$  : c'est l'angle entre  $\bar{O}M_0 \rightarrow e^{\bar{I}}OM$ :

$$\theta = (OM_0 \rightarrow \bar{\bar{j}} O\bar{M})$$
 s'exprime en radian (rad)

 $\triangleright$  L'abscisse curviligne s: c'est la longueur de de l'arc  $M_0M$ :

$$S = MM$$
 s'exprime en mètre (m)

> Relation entre l'abscisse angulaire et l'abscisse curviligne est :

$$S = R.\theta$$
 avec: R: rayon du cercle en (m)



# 3- Vitesse angulaire et vitesse linéaire

La vitesse angulaire  $\theta$ : C'est la dérivée de l'abscisse angulaire par rapport au temps :

.....;. en (....)

.....; en (.....)

La vitesse linéaire V : C'est la dérivée de l'abscisse curviligne par rapport au temps :

imps .

Relation entre la vitesse curviligne et la vitesse angulaire :

On a ... ... par dérivation .....

.....

**Remarque** Le vecteur vitesse linéaire  $\vec{V}$  est de direction tangentielle à la trajectoire circulaire au point M , dans la base de Frenet on a :  $\vec{V} = V \cdot \hat{u}$ 

| 4_ | Accél | ération | anou | laire |
|----|-------|---------|------|-------|
| 4- | Accen | ei auon | angu | ian e |

L'accélération angulaire : C'est la dérivée de la vitesse angulaire par rapport au

temps. Dans le repère de Frenet (M, u, n'); le vecteur accélération possède deux

composantes:  $\vec{a} = a_T \vec{u} + a_N \vec{n}$ 







> La composante normale :



L'unité de  $a_T$  et  $a_N$  en SI est m.  $B^{-2}$ 

Application 1: L'expression de l'abscisse angulaire du point M d'un solide en rotation autour d'un axe fixe est :  $\theta(t) = 10t^2 + 40t + 6$  t est en (s) et  $\theta$  en (rad)

- 1- Déterminer l'expression de la vitesse angulaire du point M en fonction du temps.
- 2- Déterminer l'expression de l'accélération angulaire du point M en fonction du temps.
- **3-** Quelle est la nature du mouvement du point M.

## II- Principe fondamentale de la dynamique de rotation : (PFD)

# 1- Rappel moment d'une force

Le moment d'une force par rapport à l'axe de rotation ( $\Delta$ ) (passant par O) est le produit de l'intensité **F** de la force par d distance entre la droite d'action de la force et l'axe de rotation :



s'exprime en (.....)

- o Le moment d'une force est une grandeur algébrique.
- o Si la **droite d'action** de la force se coupe à l'axe ( $\Delta$ ), ou parallèle avec lui, alors le moment de cette force est nul :  $M_{\Delta}(F^{\rightarrow}) = 0$



#### 2- Enoncé PFD

Dans un repère lié au référentiel terrestre, pour un corps solide en rotation autour d'un axe fixe ( $\Delta$ ), la somme algébrique des moments par rapport à l'axe fixe ( $\Delta$ ) de toutes les forces appliquées au solide est égale, à chaque instant, au produit du moment d'inertie  $J_{\Delta}$  de ce solide par son accélération angulaire  $\ddot{\theta}$ :



#### Remarque

- Si  $\ddot{\theta} = 0$ , Le solide a un mouvement de rotation uniforme autour de l'axe ( $\Delta$ )
- Si  $\ddot{\theta} = cte + G = 0$ , Le solide est animé d'un mouvement de rotation uniformément varié autour de l'axe ( $\Delta$ )

#### 3-**Moments d'inertie de quelques solides particuliers :**

Le moment d'inertie d'un solide dépend de la masse du solide et de ses dimensions.



# III- Applications: Mvt d'un solide en translation et en rotation autour d'un axe fixe:

Application 1 Un corps (S) de masse  $m_s = 0.8 \text{ kg}$  est attaché à une corde inextensible et de masse négligeable. La corde est enroulée sans glissement sur la poulie de rayon r = 10 cm et de masse  $m_p = 0$ , 2 kg. La poulie est en mouvement de rotation autour de l'axe  $(\Delta)$ .

1- En appliquant la 2éme loi de Newton sur le **corps** (S),

Trouver l'expression T', l'intensité de la force qui exerce la corde sur le **corps** (S)

2- En appliquant le principe fondamentale de la dynamique sur <u>la poulie (P)</u>,

Trouver l'expression T, l'intensité de la force qui exerce la corde sur la poulie (P)

3- Montrer que l'expression de l'accélération acquise par le corps (S) est :

$$a = \frac{g \sin(\alpha)}{1 + \frac{M}{2m_s}};$$
 puis Calculer sa valeur.

**Données**: moment de couple de frottement du cylindre  $M_c = -0.38 \, N. \, m^{-1}$ 

$$g = 9,81 \ m. \, s^{-2}$$
; Moment d'inertie de poulie :  $J_{\Delta} = \frac{1}{2} m_p \, . \, r^2$ 



| <br>•••••  |
|------------|
| <br>       |
|            |
| <br>       |
| <br>       |
| <br>       |
| <br>       |
|            |
|            |
|            |
|            |
| •••••      |
| •••••      |
|            |
| <br>•••••  |
| <br>       |
| <br>       |
|            |
| <br>       |
| <br>       |
| <br>       |
| <br>       |
|            |
| <br>       |
| <br>       |
| <br>       |
| <br>       |
|            |
|            |
|            |
| <br>•••••• |
| •••••      |
|            |
| <br>•••••  |
|            |