Angalar Momentum

First non-thing example of classification of states according to their symmetries, in this case in particular according to how the quantum states transform under rotations in 3D.

Orbital augular momentum operator

$$\hat{L}_{x} = \hat{y} \hat{p}_{x} - \hat{z} \hat{p}_{y}$$

$$\hat{L}_{y} = \hat{z} \hat{p}_{x} - \hat{x} \hat{p}_{z}$$

$$\hat{L}_{y} = \hat{z} \hat{p}_{x} - \hat{y} \hat{p}_{x}$$

Lj = Ejkl rk Pj No ordering problem [rj, pk] = itojk

Vector $\hat{L} = \hat{L}_{x}\hat{e}_{x} + \hat{L}_{y}\hat{e}_{y} + \hat{L}_{z}\hat{e}_{z}$

$$\begin{aligned} \begin{bmatrix} \hat{L}_{x}, \hat{L}_{y} \end{bmatrix} &= \begin{bmatrix} \hat{\gamma} \hat{p}_{z} - \hat{z} \hat{p}_{y}, \hat{z} \hat{p}_{x} - \hat{x} \hat{p}_{z} \end{bmatrix} \\ &= \hat{\gamma} \begin{bmatrix} \hat{p}_{z}, \hat{z} \end{bmatrix} \hat{p}_{x} + \hat{x} \begin{bmatrix} \hat{z}, \hat{p}_{z} \end{bmatrix} \hat{p}_{y} \\ &= i\hbar (\hat{x} \hat{p}_{y} - \hat{\gamma} \hat{p}_{x}) = i\hbar \hat{L}_{z} \end{aligned}$$

[Lj, Lu] = it Ejul Le same as Pauli matrices

(\{\hat{L};\rac{1};&\{\darkar};\text{ are two reps}\}

(of the same Lie algebra) 9 equations (3 independent) To derive all of them in one go, we index notation $\overrightarrow{A} \times \overrightarrow{B} = \widehat{e}_{j} \in_{j} \text{ what } A_{k}B_{k} = \text{det} \begin{pmatrix} \widehat{e}_{1} & \widehat{e}_{2} & \widehat{e}_{3} \\ A_{1} & A_{2} & A_{3} \end{pmatrix}$ $\overline{\delta}_{jk} \overline{\delta}_{k,0} = \overline{\delta}_{j,0}$ (Dimension of) the space)

Ejkl Ejmn = Jhm Jln - Jhn Jlm

 $\frac{\partial \mathcal{E}_{jkl} \mathcal{E}_{jkm}}{\partial \mathcal{E}_{jkm}} = \frac{\partial \mathcal{E}_{kl} \mathcal{E}_{lm}}{\partial \mathcal{E}_{lm}} - \frac{\partial \mathcal{E}_{lm} \mathcal{E}_{lm}}{\partial \mathcal{E}_{lm}} = \frac{\partial \mathcal{E}_{lm}}{\partial \mathcal{E}_{lm}} =$

Lj - Angular momentum operator in 3D J, = Abstract angular momentum operator $[\hat{J}_{j}, \hat{J}_{u}] = i \epsilon_{ju} \hat{J}_{l}$ $\vec{J}^2 := \hat{g}_X^2 + J_Y^2 + J_Z^2$ $[\hat{J}^2, \hat{J}_j] = [\hat{J}_k \hat{J}_k, \hat{J}_j]$ $= \hat{J}_{k} [\hat{J}_{k}, \hat{J}_{j}] + [\hat{J}_{k}, \hat{J}_{j}] \hat{J}_{k}$ = it $\epsilon_{kjl} (\hat{J}_k \hat{J}_l + \hat{J}_l \hat{J}_k) = 0$ Antisymmetric Symmetric under interchange of j and le

Jand Jz form an CSCO (Complete set of)
community
observables

We can also choose $\{\hat{J}, \hat{J}_x\}$ or $\{\hat{J}^2, \hat{J}_y\}$ to be a CSCO, but once we include one of the \hat{J}'_5 , we cannot include other \hat{J}'_5 since they don't commente.

J2/B,m> = Bt2/B,m> I follow Ballertine Jection 7.2 J2 | B,m > = mt | B,m > Fact 1 B > m2 $\langle \beta, m | \tilde{J}^2 | \beta, m \rangle = \langle \beta, m | \tilde{J}_x^2 | \beta, m \rangle + \langle \beta, m | \tilde{J}_y^2 | \beta, m \rangle$ $\beta t^2 + \langle \beta, m | \hat{J}_{\xi} | \beta, m \rangle$ Define $\hat{J}_{\pm} := \hat{J}_{x} \pm i \hat{J}_{y}$ [Ĵz,Ĵ±]=±ħĴ+ $[\hat{J}_{+}, \hat{J}_{-}] = 2 \hbar \hat{J}_{2}$ $\hat{J}_{-}\hat{J}_{+} = \hat{J}_{x}^{2} + \hat{J}_{y}^{2} + i[\hat{J}_{x}, \hat{J}_{y}]$

= $J^2 - J_z^2 - t_J = Simple action on 18, m>$

$$\hat{J}_{z}(\hat{J}_{+}|\beta,m)=([\hat{J}_{z},\hat{J}_{+}]+\hat{J}_{+}\hat{J}_{z})|\beta,m\rangle$$

$$= tr(m+1)|\beta,m\rangle$$

$$= tither \hat{J}_{+}|\beta,m\rangle \text{ is an eigenvector with eigenvalue}$$

$$(m+1)tr \text{ or } \hat{J}_{+}|\beta,m\rangle=0$$
Suppose that we call the value of m for which the equation $\hat{J}_{+}|\beta,m\rangle=0$ is true $m=1$

Suppose that we call the value of m for which the equation $\hat{J}_{+}(\beta,m)=0$ is true m=j $\hat{J}_{+}(\beta,j)=0$

 $0 = \hat{J}_{-}\hat{J}_{+}|B,j\rangle = (\hat{J}^{2} - \hat{J}_{2}^{2} - \hbar\hat{J}_{2})|B,j\rangle$ $= \hbar^{2}[\beta - j(j+1)]|B,j\rangle$

 $\Rightarrow \beta = j(j+1)$

Since B is positive (Proof: $\langle 24|\hat{J}^2|24\rangle$ is a sum of positive numbers $\langle 24|\hat{J}_1^2|24\rangle = (\langle 24|\hat{J}_1\rangle)(\hat{J}_1|24\rangle) > 0$ for a given B, we can solve for a unique j. Thus, we can label the eigenstates by j instead of B.

(j,m)

Similarly,
$$J_{z}(J_{-}|j_{1}m)$$
 = $h(m-1)(J_{-}|j_{1}m)$
 \Rightarrow Either $\hat{J}_{-}|p_{,m}\rangle$ is an eigenvector with eigenvalue $(m-1)h$ or $\hat{J}_{-}|p_{,m}\rangle = 0$

Call this lowest value of $m = k$
 $0 = \hat{J}_{+}\hat{J}_{-}|j_{,k}\rangle = h^{2}[\hat{j}(j+1) - k(k-1)]|j_{,k}\rangle$
 $\Rightarrow j(j+1) = k(k-1)$
 $= (-k)(-k+1)$
 $\Rightarrow k = -j$

Thus, we have that $-j < m < j$

Now we don't know yet the range of values m or j can take, but we do know that an application of \hat{J}_{+} (resp. \hat{J}_{-}) increases (resp. decrease) the value of m by 1. Therefore, # of stops to hit the highest $m + p = j$ rung from m
 $m + p = j$
 $m - q = -j$
 $m - q = -j$
 $m - q = -j$

$$\frac{p+q}{2}=j$$

j is either an integer or half-integer

	J=1/2	j=3 2	
		3/2 1/2 -1/2 -3/2	

· j labels an (2j+1)-dimensional subspace Hj

· in labels a specific element of the ONB 15, m)

Normalization of Jt 1, m>

$$\|\hat{J}_{+}\|_{,m}^{2}\| = \langle j_{1}m|\hat{J}_{-}\hat{J}_{+}|j_{1}m\rangle$$

= $\pi^{2}[j(j+1) - m(m-1)]|j_{1}m\rangle$

$$\hat{J}_{j,m} = \hbar / j(j+1) - m(m-1) |j,m\rangle$$

$$= \hbar / (j-m+1)(j+m) |j,m\rangle$$

Example

(1)
$$j = \frac{1}{2}$$
 $\hat{J}_{+} | \frac{1}{2} | \frac{1}{2} \rangle = \frac{1}{4} | \frac{3}{4} | \frac{3}{2} | \frac{1}{2} \rangle = 0$

Ordered basis
$$\{|\frac{1}{2},\frac{1}{2}\rangle, |\frac{1}{2},-\frac{1}{2}\rangle\}$$

$$\hat{J}_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\hat{J}_{-} = \hat{J}_{+}^{\dagger} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\hat{J}_{x} = \hat{J}_{+} + \hat{J}_{-} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \hat{\sigma}_{x}^{2}$$

$$\hat{J}_{y} = \hat{J}_{+} - \hat{J}_{-} = \frac{\pi}{2} (0 - i) = \frac{\pi}{2} \partial_{y}$$

Jz just has mit in the diagonal:
$$\frac{1}{2}(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2}\hat{\sigma}_{z}$$

$$\hat{J}_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} \hat{J}_{x} & \hat{J}_{y} \\ \hat{J}_{y} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} & \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{z} \\ \hat{J}_{z} \end{pmatrix} \begin{pmatrix} \hat{J}_{z} & \hat{J}_{$$

$$j = 0; \quad \frac{1}{2} \quad ; \quad 1 \quad ; \quad \frac{3}{2}$$

$$m = 0; \frac{1}{2}, \quad -\frac{1}{2}; 1, \quad 0, -1; \frac{3}{2}, \quad \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$$

$$j' = 0, \quad m' = 0 \quad 0$$

$$j' = \frac{1}{2}, \quad m' = \frac{1}{2}$$

$$-\frac{1}{2}$$

$$j' = 1, \quad m' = 1$$

$$0 \quad 0$$

$$0 \quad \sqrt{2} \quad 0$$

$$0 \quad 0 \quad \sqrt{2}$$

$$0 \quad 0 \quad 0$$

$$0 \quad \sqrt{3} \quad 0 \quad 0$$

$$0 \quad 0 \quad \sqrt{4} \quad 0$$

$$0 \quad 0 \quad \sqrt{4} \quad 0$$

$$0 \quad 0 \quad 0 \quad \sqrt{3}$$

$$0 \quad 0 \quad 0 \quad 0$$

Matrix representation of Îț in HoPHIDH, DHz D. where the subscript indicates the j eigenvalue.

(Ballentine p.164)