### Phase Equilibria & Kirchhoff Equation

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

#### Previously: Thermal & Electrochemical combustion-Enthalpy & Gibbs Free Energy Changes

$$S_{\text{gen,adiabatic}} = S_{\text{prod}} - S_{\text{react}} \ge 0 \quad \overline{s}_{i}(T, P_{i}) = \overline{s}_{i}^{\circ}(T, P_{0}) - R_{u} \ln \frac{y_{i} P_{m}}{P_{0}}$$

$$X_{\text{destroyed}} = T_{0} S_{\text{gen}} \qquad (kJ) \qquad W^{\text{rev}} = \sum_{P} n_{i} \overline{g}_{i} - \sum_{P} n_{e} \overline{g}_{e} = -\Delta G$$

$$\Delta G = -nFE$$

Thermochemical Properties of Selected Substances at 298K and 1 atm

|                 |                     |                             |                                                     | 011. 5 41                                                     |                                            | Heating Values            |                          |
|-----------------|---------------------|-----------------------------|-----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|---------------------------|--------------------------|
| Substance       | Formula             | Molar Mass,<br>M (kg/ kmol) | Enthalpy of Formation, $\overline{h_f^o}$ (kJ/kmol) | Gibbs Function of Formation, $\overline{g}_{f}^{o}$ (kJ kmol) | Absolute<br>Entropy,<br>\$°<br>(kJ kmol·K) | Higher,<br>HHV<br>(kJ/kg) | Lower,<br>LHV<br>(kJ/kg) |
| Carbon          | C(s)                | 12.01                       | 0                                                   | 0                                                             | 5.74                                       | 32,770                    | 32,770                   |
| Hydrogen        | H <sub>2</sub> (g)  | 2.016                       | 0                                                   | 0                                                             | 130.57                                     | 141,780                   | 119,950                  |
| Nitrogen        | N <sub>2</sub> (g)  | 28.01                       | 0                                                   | 0                                                             | 191.50                                     | _                         | _                        |
| Oxygen          | O <sub>2</sub> (g)  | 32.00                       | 0                                                   | 0                                                             | 205.03                                     | _                         | _                        |
| Carbon Monoxide | CO(g)               | 28.01                       | -110,530                                            | -137,150                                                      | 197.54                                     | _                         | _                        |
| Carbon dioxide  | CO <sub>2</sub> (g) | 44.01                       | -393,520                                            | -394,380                                                      | 213.69                                     | _                         | _                        |
| Water           | H₂O(g)              | 18.02                       | -241,820                                            | -228,590                                                      | 188.72                                     | _                         | _                        |
| Water           | H₂O(I)              | 18.02                       | -285,830                                            | -237,180                                                      | 69.95                                      | _                         | _                        |



Figs: TD-Borgnakke & Sonntag; Moran, Shapiro, Boettner & Bailey; Cengel & Boles

#### From 2<sup>nd</sup> law to Chemical Equilibrium

$$dS_{\rm sys} \ge \frac{\delta Q}{T}$$





#### Extremal condition for chemical equilibrium

$$\left. \begin{array}{l} \delta Q - P \, dV = dU \\ dS \geq \frac{\delta Q}{T} \end{array} \right\} \quad dU + P \, dV - T \, ds \leq 0$$



$$(dG)_{T,P} = dH - T dS - S dT$$

$$= (dU + P dV + V dP) - T dS - S dT$$

$$= dU + P dV - T dS$$

$$(dG)_{T,P} \le 0 \qquad (dG)_{T,P} = 0$$



Figs: TD-Cengel & Boles

# Centrality of chemical potential/molar Gibbs function

| Reaction                                   |
|--------------------------------------------|
| chamber                                    |
| T, P                                       |
| $N_A$ moles of $A$                         |
| $N_B$ moles of $B$                         |
| $N_C$ moles of $C$                         |
| $N_D$ moles of $D$                         |
| 1999<br>1000 1990 1990 1990 1990 1990 1990 |
| $dN_A A + dN_B B \to dN_C C + dN_D D$      |

$$\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$$

$$\nu_C \overline{g}_C + \nu_D \overline{g}_D - \nu_A \overline{g}_A - \nu_B \overline{g}_B = 0$$

**Criterion for chemical equilibrium** 

$$(dG)_{T,P} = \sum (dG_i)_{T,P} = \sum (\overline{g}_i dN_i)_{T,P} = 0$$

$$\overline{g}_C dN_C + \overline{g}_D dN_D + \overline{g}_A dN_A + \overline{g}_B dN_B = 0$$

$$dN_A = -\varepsilon \nu_A \qquad dN_C = \varepsilon \nu_C$$
  
$$dN_B = -\varepsilon \nu_B \qquad dN_D = \varepsilon \nu_D$$

| $H_2 \rightarrow 2H$                            |
|-------------------------------------------------|
| $0.1\text{H}_2 \rightarrow 0.2\text{H}$         |
| $0.01\mathrm{H}_2\!\rightarrow 0.02\mathrm{H}$  |
| $0.001\mathrm{H}_2 \rightarrow 0.002\mathrm{H}$ |
| $v_{\rm H_2} = 1$                               |
| $v_{\rm H} = 2$                                 |

### Chemical equilibrium of ideal-gas mixtures

$$u_C \overline{g}_C + \nu_D \overline{g}_D - \nu_A \overline{g}_A - \nu_B \overline{g}_B = 0$$
Criterion for chemical equilibrium

$$(\Delta \overline{g})_{T} = \Delta \overline{h}^{>0} T(\Delta \overline{s})_{T} = -T(\Delta \overline{s})_{T} = R_{u}T \ln \frac{P_{2}}{P_{1}}$$

$$v_{C}[\overline{g}_{C}^{*}(T) + R_{u}T \ln P_{C}] + v_{D}[\overline{g}_{D}^{*}(T) + R_{u}T \ln P_{D}]$$

$$-v_{A}[\overline{g}_{A}^{*}(T) + R_{u}T \ln P_{A}] - v_{B}[\overline{g}_{B}^{*}(T) + R_{u}T \ln P_{B}] = 0$$

$$\Delta G^{*}(T) = v_{C}\overline{g}_{C}^{*}(T) + v_{D}\overline{g}_{D}^{*}(T) - v_{A}\overline{g}_{A}^{*}(T) - v_{B}\overline{g}_{B}^{*}(T)$$

$$\Delta G^{*}(T) = -R_{u}T(v_{C}\ln P_{C} + v_{D}\ln P_{D} - v_{A}\ln P_{A} - v_{B}\ln P_{B}) = -R_{u}T \ln \frac{P_{c}^{v_{C}}P_{D}^{v_{D}}}{P_{A}^{v_{D}}P_{B}^{v_{B}}}$$

$$K_{P} = \frac{P_{C}^{v_{C}}P_{D}^{v_{D}}}{P_{A}^{v_{A}}P_{B}^{v_{B}}}$$

$$K_{P} = e^{-\Delta G^{*}(T)/R_{u}T}$$

$$P_{i} = y_{i}P = \frac{N_{i}}{N_{\text{total}}}P$$

$$K_{P} = \frac{N_{C}^{v_{C}}N_{D}^{v_{D}}}{N_{A}^{v_{A}}N_{B}^{v_{B}}} \left(\frac{P}{N_{\text{total}}}\right)^{\Delta v}$$

$$\Delta v = v_{C} + v_{D} - v_{A} - v_{B}$$

6

## $\mathcal{K}_p(T)$ , Van't Hoff & Kirchhoff equation

$$\ln K_{P} = -\frac{\Delta G^{*}(T)}{R_{u}T} \qquad \qquad \frac{d(\ln K_{p})}{dT} = \frac{\Delta H^{*}(T)}{R_{u}T^{2}} - \frac{d[\Delta H^{*}(T)]}{R_{u}T dT} + \frac{d[\Delta S^{*}(T)]}{R_{u} dT}$$

$$T ds = dh - v dP$$

$$T d(\Delta S^*) = d(\Delta H^*)$$

$$\frac{d(\ln K_p)}{dT} = \frac{\Delta H^*(T)}{R_u T^2} = \frac{\overline{h}_R(T)}{R_u T^2}$$

$$\ln \frac{K_{P_2}}{K_{P_1}} \cong \frac{\overline{h}_R}{R_u} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\left(\frac{\partial h_i}{\partial T}\right)_{\mathbf{p}} = c_{\mathbf{p_i}}$$

$$\frac{\mathrm{d}\Delta H}{\mathrm{d}T} \equiv \frac{\mathrm{d}}{\mathrm{d}T} (\Sigma \nu_i h_i)$$
$$= \Sigma \nu_i c_{p_i},$$

### Fundamental equations of TD (Table TD)

| Function              | Extremum at Equilibrium | Fundamental Equation                                                                                              | Definition          |
|-----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|
| $U(S, V, \mathbf{N})$ | Minimum                 | $dU = T dS - p dV + \sum_{j} \mu_{j} dN_{j}$                                                                      |                     |
| $S(U, V, \mathbf{N})$ | Maximum                 | $dS = \left(\frac{1}{T}\right) dU + \left(\frac{p}{T}\right) dV - \sum_{j} \left(\frac{\mu_{j}}{T}\right) dN_{j}$ |                     |
| $H(S, p, \mathbf{N})$ | Minimum                 | $dH = T dS + V dp + \sum_{j} \mu_{j} dN_{j}$                                                                      | H = U + pV          |
| $F(T, V, \mathbf{N})$ | Minimum                 | $dF = -S dT - p dV + \sum_{j} \mu_{j} dN_{j}$                                                                     | F = U - TS          |
| $G(T,p,{\sf N})$      | Minimum                 | $dG = -S dT + V dp + \sum_{j} \mu_{j} dN_{j}$                                                                     | G = H - TS = F + pV |

#### The Limits on Constructing Thermodynamic Functions

What are the limits on constructing functions of T, S, p, V, N, U, F, H, and G? You can divide thermodynamic functions into four categories:

**FUNDAMENTAL AND USEFUL.** Table **TD** lists the main fundamental thermodynamic functions and their natural variables. The states of equilibrium are identified by extrema in these functions.

**USEFUL BUT NOT FUNDAMENTAL.** U(T,V,N), S(T,V,N), H(T,p,N), and S(T,p,N) are not functions of natural variables. These functions do not have corresponding extremum principles, but they are useful because they are components of F(T,V,N) and G(T,p,N).

**COMPLETE BUT NOT USEFUL.** Rearrangements of the dependent and independent variables from a fundamental thermodynamic function are possible, but not often useful. For example, T(F, V, N) is a rearrangement of the fundamental Helmholtz free energy function, F(T, V, N). This function is not very useful because you usually cannot constrain F at the system boundary.

**INCOMPLETE.** Additional functions could be constructed, such as U(p, V, N) or  $S(U, \mu, N)$  but because these involve conjugate pairs p and V, or  $\mu$  and N, and are missing other variables, they do not uniquely specify the state of a system. Such functions cannot be obtained by Legendre transforms of the fundamental equations.

#### What's next?

• Phase rule