Journey Pembelajaran VIX
BTPN SYARIAH: Data
Engineer

KERANGKA YANG DIGUNAKAN

Dalam pengerjaan tugas ini, digunakan kerangka CRISP-DM (hanya hingga evaluasi) karena kerangka ini searah dengan deskripsi dan pencapaian yang harus dicapai dalam pengerjaan tugas ini.

BUSINESS UNDERSTANDING

Mengidentifikasi faktor apa saja yang menjadi penyebab customer terlambat membayar tunggakan kredit.

Mengidentifikasi faktor penyebab customer berhenti menggunakan layanan.

customer_data_history

Berisi data mengenai profil customer dan jumlah transaksi yang berkaitan dengan penggunaan data kredit.

category_db

Berisi data kategori jenis kartu yang digunakan oleh para pengguna layanan kartu kredit.

DATA UNDERSTANDING

status_db

Berisi data terkait keaktifan pengguna, apakah pengguna masih aktif atau sudah berhenti menggunakan layanan?

marital_db

Berisi data kategori status pernikahan pengguna layanan kartu kredit.

education_db

Berisi data kategori pendidikan terakhir dari para pengguna

DATA PREPARATION

Link Notebook (.ipynb): NADINE HANINTA TASK 5 DATA ENGINEER VIX BTPNS

	accuracy	macro_avg_precision	macro_avg_recall	macro_avg_f1_score	roc_auc
model					
Logistic Regression	0.843529	0.844049	0.843657	0.843499	0.843657
Ridge Classifier	0.842588	0.844765	0.842850	0.842405	0.842850
KNN	0.826353	0.853196	0.827260	0.823262	0.827260
SVC	0.892706	0.894335	0.892921	0.892629	0.892921
Neural Network	0.931294	0.931902	0.931424	0.931281	0.931424
Decision Tree	0.928941	0.928981	0.928981	0.928941	0.928981
Gradient Boosting Classifier	0.960471	0.960542	0.960522	0.960471	0.960522
AdaBoost Classifier	0.947529	0.947821	0.947622	0.947526	0.947622
Hist Gradient Boosting	0.973412	0.973406	0.973421	0.973411	0.973421
XGBoost	0.960471	0.960542	0.960522	0.960471	0.960522
LightGBM	0.973647	0.973670	0.973630	0.973645	0.973630
Random Forest	0.967294	0.967385	0.967350	0.967294	0.967350
Catboost Classifier	0.975529	0.975532	0.975525	0.975528	0.975525

DATA MODELLING

Digunakan uji coba berbagai model untuk mencari nilai akurasi, presisi, dan parameter lainnya yang seimbang dan tertinggi.

CODE SNIPPET (DATA MODELLING)

Python query:

from sklearn.linear model import LogisticRegression from sklearn.linear model import RidgeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.neural network import MLPClassifier from xgboost import XGBClassifier from xgboost import XGBRFClassifier from lightgbm import LGBMClassifier from sklearn.ensemble import VotingClassifier from sklearn.ensemble import StackingClassifier from catboost import CatBoostClassifier

```
model list = {
  'Logistic Regression':LogisticRegression(max iter=1000,
random state=42).
  'Ridge Classifier':RidgeClassifier(random_state=42),
  'KNN':KNeighborsClassifier(),
  'SVC':SVC(random state=42),
  'Neural Network': MLPClassifier (max iter=1000, random state=42),
  'Decision Tree': Decision Tree Classifier (random state=42),
  'Gradient Boosting
Classifier':GradientBoostingClassifier(random_state=42),
  'AdaBoost Classifier':AdaBoostClassifier(random state=42),
  'Hist Gradient
Boosting':HistGradientBoostingClassifier(random state=42),
  'XGBoost':XGBClassifier(random state=42, use label encoder=False,
eval metric='logloss'),
  'LightGBM':LGBMClassifier(random state=42),
  'Random Forest':RandomForestClassifier(random state=42),
  'Catboost Classifier':CatBoostClassifier(random state=42, silent=True),
```

Dideklarasikan jenis model yang digunakan dan metode pemodelan pada masing-masing jenis model.

Python query:

if average != None:

```
from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import fl_score from sklearn.metrics import roc_auc_score from sklearn.metrics import log_loss from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import make_scorer
```

```
def get_score(y_pred_list, y_test, average=None, plot=True, axis=0,
cmap='Blues'):
  model_name = []
  accuracy = []
  precision = []
  recall = []
  f1 = []
  roc_auc = []

for name, y_pred in y_pred_list.items():
  model_name.append(name)
```

```
precision.append(precision_score(y_test, y_pred,
average=average))
  recall.append(recall_score(y_test, y_pred, average=average))
  fl.append(fl_score(y_test, y_pred, average=average))
  roc_auc.append(roc_auc_score(y_test, y_pred, average=average))
```

accuracy.append(accuracy_score(y_test, y_pred))

```
score list = {
    'model':model name,
    'accuracy':accuracy,
    f'{average}_avg_precision':precision,
    f'{average{_avg_recall':recall,
    f'{average}_avg_fl_score':fl,
    'roc auc':roc auc
  else:
   accuracy.append(accuracy_score(y_test, y_pred))
   precision.append(precision_score(y_test, y_pred))
   recall.append(recall_score(y_test, y_pred))
   fl.append(fl_score(y_test, y_pred))
   roc_auc.append(roc_auc_score(y_test, y_pred))
   score list = {
    'model':model name,
    'accuracy':accuracy,
    'precision':precision,
    'recall':recall.
    'fl score':fl,
    'roc_auc':roc_auc
 score_df = pd.DataFrame(score_list).set_index('model')
 if plot:
  display(score_df.style.background_gradient(axis=axis,
cmap=cmap))
 return score df
```

CODE SNIPPET (DATA MODELLING)

Dilakukan iterasi untuk tiap pemodelan dan pendeklarasian fungsi untuk mengembalikan nilai score_list dari tiap model.

CODE SNIPPET (DATA MODELLING)

```
Python query:
```

```
y_pred_list = dict()
```

```
for name, model in model_list.items():
  model.fit(X_train, y_train)
  y_pred_list[name] = model.predict(X_test)
```

```
score = get_score(y_pred_list, y_test, average='macro')
```

Digunakan untuk menampilkan hasil dari pembelajaran model

EXPLORATORY DATA ANALYSIS (EKSPLORASI DATA)

Python Query:

```
feature_importance =
catBoostModel.feature_importances_
feature_importance = 100.0 * (feature_importance /
feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
```

```
plt.figure(figsize=(8, 18))
plt.barh(pos, feature_importance[sorted_idx],
align='center')
plt.yticks(pos, X_train.keys()[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()
```

5 Fitur teratas yang dijadikan pembelajaran model

transaction_frequency, inactive_total, transaction_count, contacted_total, dan product_count

Rata-rata dari setiap fitur yang dikelompokkan berdasarkan keaktifan pengguna

is_attr ited	transaction_ frequency	inactive_ total	transaction_ count	contacted_ total	product_ count
0	68.672588	2.273765	4654.655882	2.356353	3.914588
1	44.933620	2.693301	3095.025814	2.972342	3.279656

is_attrited	transactio	n_frequency	inactive_total
Existing Custome	er	68.6726	2.2738
Attrited Custome	r	44.9336	2.6933
transaction_co	ount contac	cted_total pro	oduct_count

2 3564

2.9723

3.9146

3.2797

4654 6559

3095.0258

EXPLORATORY DATA ANALYSIS (EKSPLORASI DATA)

Python Query:

df_case2.groupby("is_attrited").mean()[['transacti
on_frequency,'inactive_total,'transaction_count',
'contacted_total,'product_count']]

SQL Query (Membuat VIEW):

CREATE VIEW view_df_case2_EDA1 AS
SELECT status is_attrited, AVG(total_trans_ct)
transaction_frequency,
AVG(months_inactive_12_mon) inactive_total,
AVG(total_trans_amt) transaction_count,
AVG(contacts_count_12_mon) contacted_total,
AVG(total_relationship_count) product_count
FROM customer_data_history, status_db
WHERE customer_data_history.idstatus =
status_db.id
GROUP BY status db.status;

EXPLORATORY DATA ANALYSIS (INSIGHT)

Didapatkan adanya nominal atau angka yang cukup berbeda antar-kelompok

Dari angka ini, dapat dilihat adanya kecenderungan bagi seseorang yang berhenti menggunakan layanan yaitu, lebih sedikit melakukan transaksi, lebih lama inaktif, lebih sering dikontak oleh pihak bank, dan lebih sedikit menggunakan produk layanan kredit dari bank.

EXPLORATORY DATA ANALYSIS (INSIGHT)

Didapatkan adanya nominal atau angka yang cukup berbeda antar-kelompok

Dari angka ini, dapat dilihat adanya kecenderungan bagi seseorang yang berhenti menggunakan layanan yaitu, lebih sedikit melakukan transaksi, lebih lama inaktif, lebih sering dikontak oleh pihak bank, dan lebih sedikit menggunakan produk layanan kredit dari bank.

EXPLORATORY DATA ANALYSIS (EKSPLORASI DATA)

Python Query:

df_corr = df_case1.corr()[['utilization_ratio']]
dataplot = sns.heatmap(df_corr, cmap="rocket_r",
annot=True)

Perlu diketahui bahwa df_case1 hanya menggunakan data dari pengguna yang memiliki utlization_ratio di atas 0,3 atau 30%. Hal ini didasari oleh parameter umum yang digunakan sebagai ambang batas nilai rasio penggunaan.

3 Fitur teratas yang dapat ditelusuri lebih lanjut

credit_limit, transaction_count, dan transaction_frequency

EXPLORATORY DATA ANALYSIS (EKSPLORASI DATA)

credit_limit	income	transaction_count	transaction_frequency	utilization_ratio
3544.0	Less than \$40K	15149	111	0.5
3421.0	\$40K - \$60K	992	21	0.7
2834.0	Less than \$40K	1598	39	0.5
5723.0	Less than \$40K	2732	63	0.3
2679.0	Less than \$40K	4943	85	0.9
1438.3	\$40K - \$60K	2928	48	0.6
2072.0	Less than \$40K	4210	64	0.7
2616.0	Less than \$40K	4655	68	0.3
4906.0	\$40K - \$60K	3999	71	0.4
1438.3	Less than \$40K	2336	46	0.6
3031.0	\$80K - \$120K	2188	50	0.8

SQL Query (Membuat VIEW Gabungan):

CREATE VIEW view_df_case1_EDA1 AS
SELECT credit_limit, income_category income,
total_trans_amt transaction_count, total_trans_ct
transaction_frequency, round(avg_utilization_ratio, 1)
utilization_ratio
FROM customer_data_history
WHERE avg_utilization_ratio > 0.30

EXPLORATORY DATA

ANALYSIS

(EKSPLORASI DATA)

Rata-rata Batas Kredit (credit_limit) dari Pembulatan Rasio Penggunaan

avg_credit_limit
4708. 1 4358
3848.66256
2872.69986
2573.61283
2571.82067
2530.43285
2387.30652
2156.71053

SQL Query (Membuat VIEW):

CREATE VIEW view_df_case1_avg_credit_limit AS SELECT utilization_ratio, AVG(credit_limit) avg_credit_limit FROM view_df_case1_eda1 GROUP BY utilization_ratio ORDER BY utilization_ratio ASC;

Rata-rata Total Transaksi (transaction_count) dari Pembulatan Rasio Penggunaan

utilization_ratio	avg_transaction_count
0.3	4343.8631
0.4	4461.0378
0.5	4335.0085
0.6	4060.3258
0.7	3967.7447
0.8	3493.6198
0.9	3407.8348
1.0	3047.2632

EXPLORATORY DATA ANALYSIS (EKSPLORASI DATA)

SQL Query (Membuat VIEW):

CREATE VIEW view_df_case1_avg_tran_count AS SELECT utilization_ratio, AVG(transaction_count) avg_transaction_count FROM view_df_case1_eda1 GROUP BY utilization_ratio ORDER BY `view_df_case1_eda1`.`utilization_ratio` ASC

ANALYSIS (EKSPLORASI DATA)

Rata-rata Frekuensi Transaksi (transaction_frequency) dari Pembulatan Rasio Penggunaan

utilization_ratio	avg_transaction_frequency
0.3	64.0642
0.4	65.9409
0.5	67.1567
0.6	66.3597
0.7	66. <mark>1</mark> 140
0.8	60.9855
0.9	61.0217
1.0	55.2632

SQL Query (Membuat VIEW)::

CREATE VIEW view_df_case1_avg_tran_freq AS SELECT utilization_ratio, AVG(transaction_frequency) avg_transaction_frequency FROM view_df_case1_eda1 GROUP BY utilization_ratio ORDER BY `view_df_case1_eda1`.`utilization_ratio` ASC

Modus Jenis Pemasukan pada Masing-masing Rasio Penggunaan Kredit

utilization_ratio	income
0.3	Less than \$40K
0.4	Less than \$40K
0.5	Less than \$40K
0.6	Less than \$40K
0.7	Less than \$40K
0.8	Less than \$40K
0.9	Less than \$40K
1.0	Less than \$40K

EXPLORATORY DATA ANALYSIS (EKSPLORASI DATA)

```
SQL Query (Membuatt VIEW):
CREATE VIEW view_df_casel_income_mode AS(
       WITH look_for_mode AS(
              SELECT
              utilization ratio,
              income,
              COUNT(income) AS frequency,
              RANK() OVER (PARTITION BY
utilization_ratio ORDER BY COUNT(income) DESC) As
rank num
              FROM view_df_case1_eda1
              GROUP BY utilization ratio, income
       SELECT
       utilization ratio,
       income
       FROM look_for_mode
       WHERE rank_num = 1
```

EXPLORATORY DATA ANALYSIS (INSIGHT)

Didapatkan Pola

Dari angka ini, dapat dilihat adanya kecenderungan bagi seseorang yang memiliki rasio penggunaan yang tinggi, semakin rendah pula batas kredit dan rata-rata total transaksi yang pernah mereka lakukan. Hal ini sejalan dengan rendahnya batas saldo yang diberikan terhadap para pengguna.

EXPLORATORY DATA ANALYSIS (INSIGHT)

utilization_ratio	income_mode
0.3	Less than \$40K
0.4	Less than \$40K
0.5	Less than \$40K
0.6	Less than \$40K

utilization_ratio	income_mode
0.7	Less than \$40K
0.8	Less than \$40K
0.9	Less than \$40K
1.0	Less than \$40K

Sebagian Besar Pengguna Memiliki Pendapatan di Bawah \$40K

Didapatkan pada masing-masing rasio penggunaan, pendapatan mayoritas pengguna yang memiliki rasio penggunaan di atas 0,3 adalah di bawah \$40K, yang mana hal ini tidak menutup kemungkinan bahwa pendapatan jauh ada di bawah batas kredit (credit_limit). Sehingga, menyebabkan ketidakmampuan pengguna untuk membayar tunggakan secara berketerusan.

KESIMPULAN

PENYEBAB KETERLAMBATAN PEMBAYARAN TUNGGAKAN

Pengguna dengan credit limit rendah
cenderung terlambat membayar
tunggakan, tapi hal ini tidak dapat
dijadikan sebagai faktor utama.
Sehingga, didapatkan penyebab utama
keterlambatan adalah dana/keuangan
customer

FAKTOR PENYEBAB CUSTOMER BERHENTI MENGGUNAKAN LAYANAN

Hasil EDA menunjukkan bahwa
customer yang berhenti menggunakan
layanan kredit adalah yang **sudah tidak membutuhkan layanan kartu kredit**. Hal ini terlihat dari jumlah
transaksi dan frekuensi transaksi yang
lebih sedikit dibanding customer yang
masih menggunakan layanan hingga
saat ini.

Strategi Menghadapi Customer yang Terlambat Membayar Tunggakan Kredit

<u>Antisipasi</u>

- Memberi tahu risiko dan kesepakatan pembayaran pada awal pembukaan layanan. Ditujukan agar customer mengerti hal apa saja yang akan dihadapi serta didapatkan melalui layanan kredit ini.
- Melihat riwayat kredit pengguna dan potensial dari pengguna. Agar tidak terjadi adanya hambatan dalam pembayaran tagihan.

Menghadapi Kasus yang Sudah Terjadi

- Mengusahakan reconditioning pada pengontrakan dengan niat untuk membantu customer. reconditioning ini dapat berupa meningkatkan batas kredit atau penurunan bunga pembayaran apabila dalam usaha pengguna masih memiliki potensial.
- Memberikan tambahan kredit atas aset yang dimiliki oleh customer, selain membantu dalam pelunasann tunggakan, hal ini dapat membantu atas terbatasnya modal yang dimiliki oleh customer.

SOLUS

Strategi Mencegah Seorang Customer Menggunakan Layanan Kredit

<u>Antisipasi</u>

- Rewarding bagi pengguna kredit yang sudah lama menggunakan layanan,
- **Melakukan pengamatan lebih jauh** terkait penggunaan kredit bagi customer sehingga layanan menjadi lebih tepat dan sesuai bagi kebutuhan pengguna.

Menghadapi Kasus yang Sudah Terjadi

- Melakukan campaign agar pengguna kembali menggunakan layanan dapat dilakukan. Adapun bentuknya dapat berupa penambahan produk dalam layanan dan dapat digunakan pula untuk strategi upselling layanan kredit tersebut.
- Memberikan informasi secara berkala pada beberapa akun yang masih memiliki potensi menggunakan layanan kembali.
- Membuka layanan kritik & saran, karena ada kemungkinan bahwa seoarang customer terkendala dalam menggunakan layanan.

SOLUS

Adapun *snippet* program lebih detil dapat dilihat di bit.ly/NadineH_Task5

- ◆ Presentation template by Slidesgo
- ◀ Icons by Flaticon

CREDITS