Engineering Analysis I, Fall 2018 Midterm 2

SOLUTIONS

Section number

Section number	Discussion time	Instructor
30	9:00 a.m.	Randy Freeman
31	10:00 a.m.	Michael Honig
32	11:00 a.m.	Prem Kumar
33	12:00 noon.	Prem Kumar
35	11:00 a.m.	Michael Honig

This exam is closed-book and closed-notes. Calculators, computers, phones, or other computing/communication devices are not allowed.

Students should skip this page—it is only for graders.

Question	Points	Score
1	12	
2	10	
3	23	
4	9	
5	10	
6	27	
7	9	
Total:	100	

Answer each question in the space provided. There are 7 questions for a total of 100 points.

Problem 1

Consider the following network flow diagram and flow balance equations:

(a) [2 points] Write the flow balance equations in the form $A\mathbf{x} = \mathbf{b}$, with \mathbf{x} as defined above.

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{13} \\ x_{14} \\ x_{24} \\ x_{34} \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 3 \\ 6 \end{bmatrix}$$
 (OK if rows are swapped or negative)

(b) [3 points] Find the reduced row echelon form of the augmented matrix $[A \ \mathbf{b}]$.

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 4 \\ 0 & 1 & 0 & 0 & -1 & -3 \\ 0 & 0 & 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(c) [3 points] Write the solution set for your system of equations in parametric vector form.

$$\mathbf{x} = \begin{bmatrix} x_{12} \\ x_{13} \\ x_{14} \\ x_{24} \\ x_{34} \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 6 \\ 0 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
 (last 2 vectors can be multiples) (accept x_{24} and x_{34} as parameters)

(d) [2 points] Find a parametric vector form solution in which the flows in the particular solution are all non-negative. There may be more than one right answer.

$$\mathbf{x} = \begin{bmatrix} x_{12} \\ x_{13} \\ x_{14} \\ x_{24} \\ x_{34} \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 3 \\ 0 \\ 3 \end{bmatrix} + c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

$$OR$$

$$\mathbf{x} = \begin{bmatrix} x_{12} \\ x_{13} \\ x_{14} \\ x_{24} \\ x_{34} \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \\ 0 \\ 4 \end{bmatrix} + c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

$$OR$$

$$\mathbf{x} = \begin{bmatrix} x_{12} \\ x_{13} \\ x_{14} \\ x_{24} \\ x_{34} \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 5 \end{bmatrix} + c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

$$OR$$

(e) [2 points] Draw a solution to the network flow problem which has $x_{14} = 0$. Make sure no flows are negative! There may be more than one right answer.

Problem 2

Let

$$A = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -3 & 1 & 4 \\ 2 & 1 & -2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 3 \\ 2 & -1 \\ -2 & -2 \end{bmatrix}$$

$$C = \left[\begin{array}{rr} 1 & 3 \\ 2 & -1 \\ -2 & -2 \end{array} \right]$$

Find each of the following quantities or write "not defined" if the operation is not defined.

(a) [2 points]
$$A^2$$

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]$$

(b) [2 points]
$$A^{-1}$$

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

(c) [2 points]
$$B^2$$

Not defined

(d) [2 points]
$$BC$$

Not defined

(e)
$$[2 \text{ points}] CB$$

$$\begin{bmatrix}
7 & 0 & -5 & 7 \\
0 & -7 & 4 & 7 \\
-6 & 4 & 2 & -10
\end{bmatrix}$$

Problem 3

(a) i. [3 points] Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that maps the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $T(\mathbf{x}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and the vector $\mathbf{x} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ to $T(\mathbf{x}) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. What is the image of $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ under T?

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

ii. [3 points] Suppose T is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 that maps the vector $\mathbf{x} = \begin{bmatrix} -1 \\ 1.5 \\ 2 \end{bmatrix}$ to $T(\mathbf{x}) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Write a vector \mathbf{x} such that $T(\mathbf{x}) = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix}$. Is this \mathbf{x} unique?

$$\left[\begin{array}{c} -0.5 \\ 0.75 \\ 1 \end{array}\right], \text{ not unique}$$

- (b) Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 such that $T(\mathbf{x}) = A\mathbf{x}$. Write the standard matrix A for each of the following transformations.
 - i. [2 points] T reflects about the line $x_2 = -x_1$.

$$A = \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right]$$

ii. [2 points] T first rotates by 90 degrees counterclockwise, then projects onto the x_2 axis.

$$A = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$$

iii. [2 points] T first scales horizontally by a factor of 2 then reflects about the x_2 axis.

 $A = \left[\begin{array}{cc} -2 & 0 \\ 0 & 1 \end{array} \right]$

(c) [1½ points] Select all transformations from part (b) that are **onto**. Put a check mark \checkmark in the box next to **EACH** correct answer.

v i.

- √ iii.
- (d) [1½ points] Select all transformations from part (b) that are **one-to-one**. Put a check mark \checkmark in the box next to **EACH** correct answer.

ii.

- √ iii.
- (e) Consider the linear transformation from \mathbb{R}^3 to \mathbb{R}^4 given by $T(\mathbf{x}) = \begin{vmatrix} x_1 + 2x_2 + 2x_3 \\ x_1 + 2x_2 + ax_3 \\ 2x_1 + 4x_2 + 4x_3 \\ x_2 \end{vmatrix}$ where a is a constant.

 - i. [2 points] Write the standard matrix A of this transformation.

 $A = \left[\begin{array}{ccc} 1 & 2 & 2 \\ 1 & 2 & a \\ 2 & 4 & 4 \\ 0 & 1 & 0 \end{array} \right]$

ii. [2 points] For what values of a (if any) is T onto?

ii. <u>none</u>

iii. [2 points] For what values of a (if any) is T NOT **one-to-one**?

iii. a = 2

iv. [2 points] For what values of a (if any) is T invertible?

iv. <u>none</u>

EA1 Midterm #2

Fall 2018

Problem 4

(a) Consider the following matrix:

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 3 \\ 0 & a & b & 0 & 0 \\ 0 & 0 & 0 & 1 & c \\ 0 & 0 & 0 & 0 & d \end{bmatrix}$$

Here a, b, c, and d represent constants. If this matrix is in reduced row echelon form, and there are $three\ pivots$, then what must be the values of these four parameters? For each parameter, either write a specific number or write "any number" if the parameter can have any value.

i. $[1\frac{1}{2}]$ points What must be the value of a?

i. _____0

ii. $[1\frac{1}{2}]$ points What must be the value of b?

ii. 1

iii. $[1\frac{1}{2}]$ points What must be the value of c?

iii. <u>anything</u>

iv. $[1\frac{1}{2}]$ points What must be the value of d?

iv. ____0

(b) [3 points] What is the reduced row echelon form of the following matrix?

$$\begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ 6 & 6 & 6 \end{bmatrix}$$

identity,
$$I$$
, or $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

EA1 Midterm #2

Problem 5

Answer each question in the space provided. Consider the following matrices:

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -5 & 3 & 0 \\ 0 & 4 & -3 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 2 & 2 & 4 \\ 1 & 2 & 6 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 2 & 2 & 4 \\ 1 & 2 & 6 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) [2 points] Is A invertible? If so, find its inverse.

yes,
$$A^{-1} = B = \begin{bmatrix} 1 & -5 & 3 & 0 \\ 0 & 4 & -3 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(b) [2 points] Is B invertible? If so, find its inverse.

yes,
$$B^{-1} = A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(c) [2 points] Is C invertible? If so, find its inverse.

no

(d) [2 points] Is the product AB invertible? If so, find its inverse.

yes, AB = I so its inverse is also the 4×4 identity I

(e) [2 points] Is the product AC invertible? If so, find its inverse.

no

Problem	6	(27)	points))
---------	---	------	---------	---

Answer TRUE or FALSE for each of the following statements. You do not have to explain your answer. (1.5 points each)

expl	ain your answer. (1.5 points each)
(a)	In a network flows problem, you will always have more unknowns than equations.
	(a) False
(b)	If $\{x, y, z\}$ is a linearly independent set, then $\{x, y\}$ must be linearly independent.
	(b) <u>True</u>
(c)	Given the three row operations (exchange 2 rows, multiply a row by a non-zero scalar, and add a scalar multiple of a row to another row), any matrix can be put into echelon form without using the second of these operations.
	(c) <u>True</u>
(d)	Any two row equivalent matrices will have the same reduced echelon form.
	(d) <u>True</u>
(e)	If a matrix is in reduced row echelon form, then the entry in its bottom left-hand corner must be 0 .
	(e) False
(f)	If a matrix A has a row of all zeros, then the system of linear equations $A\mathbf{x} = \mathbf{b}$ must be inconsistent.
	(f) <u>False</u>
(g)	There is exactly one way to write the parametric vector form solution for a system of equations having multiple solutions.
	(g) False
(h)	The span of a set of vectors can contain exactly one vector.
	(h) <u>True</u>
(i)	If a linear transformation from \mathbb{R}^3 to \mathbb{R}^4 is one-to-one, then the span of the columns of its standard matrix must be \mathbb{R}^4 .
	(i) <u>False</u>
(j)	If a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 is one-to-one, then the span of the columns

of its standard matrix must be \mathbb{R}^3 .

(j) <u>True</u>

EA1 Midterm #2

(k)	If a matrix product AB exists and is invertible, then both A and B is ible with $(AB)^{-1} = B^{-1}A^{-1}$.	nust	be invert-
	(k)		False
(l)	If a matrix product AB exists and has all zero entries, then either A must have all zero entries.	or B	(or both)
	(1)		False
(m)	If $A = B^T$, and the columns of A are linearly independent, then it me that the linear transformation defined by the standard matrix B is		e the case
	(m)		True
(n)	A linear transformation defined by a matrix with more columns that be onto.	ın rov	ws cannot
	(n)		False
(o)	A linear transformation defined by a matrix with more columns that onto.	ı row	s must be
	(o)		False
(p)	A linear transformation defined by a matrix with more columns that be one-to-one.	ın rov	ws cannot
	(p)		True
(q)	A linear transformation defined by a matrix with more columns that one-to-one.	ı row	s must be
	(p)		False
(r)	If matrix A has more rows than columns, then $A\mathbf{x} = \mathbf{b}$ cannot have solutions.	infini	tely many
	(r)		False

Problem 7 (9 points)

Write a function called in_span that has 2 inputs and 1 output. The inputs are a matrix A and a column vector b, and the output is a logical scalar y. The columns of A form a set of vectors, i.e. $A = [\vec{a}_1 \ \vec{a}_2 \cdots \vec{a}_n]$. The function should check if b is in the span of the columns of A, i.e. $b \in Span\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}$ If it is, then y should be true. Otherwise, it should be false. No error checking, help lines, etc. is necessary. Just provide the code. *Hint: use* rref.