Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-227. Вариант 33

1. Пусть
$$z = \frac{3}{2} - \frac{3\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{1}{2} - \frac{\sqrt{3}i}{2}}$ имеет аргумент $\frac{4\pi}{3}$.

2. Решить систему уравнений:

$$\begin{cases} x(7+7i) + y(11+5i) = -235 - 253i \\ x(1-2i) + y(10-11i) = -248 + 97i \end{cases}$$

- 3. Найти корни многочлена $-2x^6+4x^5+64x^4-304x^3-392x^2+5232x-7488$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=3-3i, x_2=-5+i, x_3=2.$
- 4. Даны 3 комплексных числа: -22+11i, 7+21i, 16+18i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=-1, z_2=-\frac{\sqrt{3}}{2}-\frac{i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 5 - 3i| < 1\\ |arg(z + 5 - 2i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (2, 0, 7), b = (-3, 1, 6), c = (5, -1, 4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-1, -4, 4) и плоскость P: 28x + 14y + 32z + 958 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-9, -1, 2), $M_1(1, 7, 11)$, $M_2(-8, -2, 11)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 3x + 23y - 11z + 361 = 0 \\ -8x + 17y + 2z + 256 = 0 \end{cases} \qquad L_2: \begin{cases} 11x + 6y - 13z - 1851 = 0 \\ -20x - 12y + 17z + 2821 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.