EM CONSTRUÇÃO

I.A NA PRÁTICA

com alguns exemplos na automação comercial.

https://bit.ly/4cLF7SL

I.A NA PRÁTICA

com alguns exemplos na automação comercial.

Marcelo Filipak, Engenheiro e Cientista de dados.

- Treino redes neurais há 7 anos.
- Me especializei em criar modelos.

mfilipak@hotmail.com

https://www.linkedin.com/in/marcelo-filipak-97386710/

https://github.com/mfilipak/AUTOCOM2024

4 POR HORA 88 POR DIA 32000

INFANT.ID

Construindo um mundo mais seguro para as nossas criancas

CONHEÇA A PLATAFORMA INFANT.ID

PROJETO DE IDENTIFICAÇÃO NEONATAL

Recife - PE

Através de um convênio de cooperação técnica em parceira com o IITB (Instituto de Identificação Tavares Buril) e Secretaria de Saúde de Pernambuco, existe desde 2016 o projeto IDENTIFICAÇÃO NEONATAL em maternidades do estado para validar e aprimorar a solução de identificação de recém-nascidos neonatal desenvolvida pela empresa, sob a supervisão e validação dos peritos papiloscopistas do IITB.

Nós já coletamos mais de 6000 imagens. Uma pequena contribuição mas um grande passo para um mundo mais seguro para as crianças.

- Consegue vincular a mãe com a criança e autenticar na saída da maternidade.
- Consegue usar os dados da criança para autenticação do indivíduo quando adulto.
- Uso intenso de modelos de visão computacional.
- Modelos treinados e desenvolvidos em cima da base de coletas.

Descrição do NCM

Reatores nucleares, caldeiras, máquinas, aparelhos e instrumentos mecânicos, e suas partes. Máquinas e aparelhos de impressão por meio de placas, cilindros e outros elementos de impressão da posição 84.42; outras impressoras, aparelhos de copiar e aparelhos de telecopiar (fax), mesmo combinados entre si; partes e acessórios. Outras impressoras, aparelhos de copiar e aparelhos de telecopiar (fax), mesmo combinados

import requests

Nota Certa

O novo projeto revolucionário da AFRAC traz mais uma facilidade para você, associado, encontrar de uma forma **rápida e simples** o **NCM** do produto desejado.

mandioca kg

07141000

probabilidade 11%

Produtos hortícolas, plantas, raízes e tubérculos, comestíveis Raízes de mandioca, de araruta e de salepo, tupinambos, batatas-doces e raízes ou tubérculos semelhantes, com elevado teor de fécula ou de inulina, frescos, refrigerados, congelados ou secos, mesmo cortados em pedaços ou em pellets; medula de sagueiro.- Raízes de mandioca.

```
url = "https://afrac-ncm-demo.hf.space/api/predict"
pavload = {
   "data": ["Coca-Cola PET 21"]
headers = {
   "Content-Type": "application/json"
response = requests.post(url, json=payload,
headers=headers)
result = response.json()
print(result)
```



```
url = "https://afrac-ncm-demo.hf.space/api/predict"
payload = {
   "data": ["Coca-Cola PET 21"]
headers = {
   "Content-Type": "application/json"
response = requests.post(url, json=payload,
headers=headers)
result = response.json()
print(result)
```

```
result
{'data': [{'label': '22021000',
   'confidences': [{'label': '22021000', 'confidence': 0.5184
    {'label': '22011000', 'confidence': 0.03791089728474617},
    {'label': '22030000', 'confidence': 0.03218604251742363},
    {'label': '21069090', 'confidence': 0.02866430953145027},
    {'label': '22029900', 'confidence': 0.02776830829679966}]
  'Bebidas, líquidos alcoólicos e vinagres.Águas, incluindo a
sucos (sumos) de fruta ou de produtos hortícolas da posição 2
 'is generating': False,
 'duration': 0.09473180770874023,
 'average duration': 0.07237190791693515}
```

I.A NA PRÁTICA

com alguns exemplos na automação comercial.

- 1 Use agentes (LLM) pra quase tudo.
- 2 Inteligência Artificial não é magia negra.
- 3 Entenda seu problema O que já fiz de "errado".
- 4 O inesperado acontece. O que são LLMs e o que é I.A generativa?
- 5 Agentic A.I é o futuro?
- 6 Considerações finais. Alguns exemplos na automação comercial.

Bônus 1 - Sugestões para aprendizado de I.A.

Bônus 2 - Uma breve história da I.A. Marcos importantes. Quem é Quem?

LLMs pra quase tudo...

(LLM = Large Language Models)

Inspirado nas imagens acima, gere uma figura para a abertura de uma apresentação que será dada no evento Elgin Tech Day. O slide deve ter um robô simpático programando em um laptop com itens usados na automação comercial como impressora, gaveta de dinheiro e maquinetas de cartão.

Here are the images for the presentation opening at Elgin Tech Day. Choose the one you find best

LLMs pra quase tudo...

(LLM = Large Language Models)

Inspirado nas imagens acima, gere uma figura para a abertura de uma apresentação que será dada no evento Elgin Tech Day. O slide deve ter um robô simpático programando em um laptop com itens usados na automação comercial como impressora, gaveta de dinheiro e maquinetas de cartão.

, aerial view, made of crystal

DALL-E

LLMs pra quase tudo...

(LLM = Large Language Models)

M You

Crie uma imagem simples de um cérebro estilizado

Here are the stylized brain images for you to consider.

Inteligência Artificial não é magia negra.

Vamos usar o chat gpt para construir um modelo simples de Inteligência Artificial que qualquer pessoa consegue compreender (e que ainda assim é muito poderoso).

Isso que vou apresentar aqui se assemelha muito em como o chat gpt me ajuda a programar/construir modelos.

User

Tenho um dataset com 30 linhas e 4 colunas e preciso fazer uma predição do tipo sim e não. Qual o tipo de modelo recomendável pra esse caso? Gostaria que esse modelo tivesse boa acurácia e não ficasse viciado.

Para um dataset relativamente pequeno com 30 linhas e 4 colunas e uma tarefa de classificação binária (sim e não), você pode considerar usar um modelo de Árvore de Decisão com técnicas de regularização para evitar o overfitting e garantir uma boa acurácia. Aqui estão algumas sugestões específicas:

- Árvore de Decisão com Pruning (poda): Após construir a árvore de decisão, você pode podá-la para evitar que ela se torne muito complexa e se ajuste em excesso aos dados de treinamento. A poda remove ramos da árvore que não contribuem significativamente para a sua capacidade de generalização.
- 2. Validação Cruzada: Use técnicas de validação cruzada, como a validação cruzada k-fold, para avaliar o desempenho do modelo de forma mais robusta e evitar que ele esteja viciado em um único conjunto de treinamento/teste. Isso ajuda a estimar melhor a capacidade de generalização do modelo.

- 3. Regularização: Alguns algoritmos de Árvore de Decisão, como o algoritmo CART (Classification and Regression Trees), oferecem parâmetros de regularização que você pode ajustar para controlar a complexidade da árvore e evitar overfitting. Por exemplo, você pode definir um limite para a profundidade máxima da árvore ou o número mínimo de amostras necessárias em um nó folha.
- Random Forest: Uma alternativa às Árvores de Decisão simples é usar um modelo de Random Forest, que é uma coleção de árvores de decisão. O Random Forest pode reduzir o overfitting ao combinar várias árvores e fazer previsões com base na média ou votação das previsões individuais das árvores.

Ao implementar qualquer modelo, certifique-se de dividir seu dataset em conjunto de treinamento e conjunto de teste para avaliar o desempenho do modelo em dados não vistos durante o treinamento. Isso ajudará a garantir que o modelo generalize bem para novos dados.

Gostaria de uma tabela relativamente pequena para ilustrar a aplicação do algoritmo de random tree

ChatGPT

Uma tabela simples para ilustrar a aplicação do algoritmo de Random Tree pode conter atributos (features) que são utilizados para fazer as divisões durante a construção da árvore. Aqui está um exemplo de uma tabela pequena que poderia ser usada para ilustrar esse processo:

ID	Cor	Tamanho	Forma	Classe
1	Azul	Pequeno	Redonda	A
2	Verde	Médio	Quadrada	В
3	Azul	Grande	Redonda	A
4	Verde	Pequeno	Quadrada	В
5	Azul	Médio	Redonda	A

Nesta tabela, os atributos são "Cor", "Tamanho" e "Forma", e o objetivo do algoritmo seria aprender a classificar as instâncias nas classes "A" ou "B" com base nestes atributos. O algoritmo de Random Tree selecionaria aleatoriamente um subconjunto de atributos em cada divisão para construir a árvore de decisão, ajudando a reduzir o overfitting e aumentando a generalização do modelo.

Gostaria de algo um pouco mais realista. Algo que seja comum na vida real

ChatGPT

Vamos criar uma tabela mais realista usando o exemplo de pacientes em um hospital, onde o algoritmo de Random Tree poderia ser usado para prever se um paciente precisará ser internado com base em seus sintomas e resultados de exames. Aqui está uma tabela simplificada que ilustra isso:

ID	Idade	Pressão Sanguínea	Colesterol	Nível de Glicose	Diagnóstico
1	45	Normal	Alto	Normal	Não
2	60	Alta	Alto	Alto	Sim
3	30	Normal	Normal	Normal	Não
4	50	Alta	Normal	Alto	Sim
5	65	Normal	Alto	Normal	Não

Nesta tabela:

- Idade: Representa a idade do paciente.
- Pressão Sanguínea: Pode ser "Normal", "Alta" ou "Baixa".
- Colesterol: Níveis de colesterol, categorizados como "Normal" ou "Alto".
- Nível de Glicose: Indica se o paciente tem níveis de glicose "Normal" ou "Alto".
- Diagnóstico: Representa se o paciente necessitou ("Sim") ou não ("Não") de internação.

O algoritmo Random Tree utilizaria essas informações para aprender padrões e poder prever, com base em novos dados de pacientes, se seria necessário interná-los ou não. M

You

Crie uma tabela com pelo menos 30 pacientes

ChatGPT

Vamos expandir a tabela anterior para incluir 30 pacientes, com uma variedade de características e diagnósticos:

ID	Idade	Pressão Sanguínea	Colesterol	Nível de Glicose	Diagnóstico	
1	45	Normal	Alto	Normal	Não	
2	60	Alta	Alto	Alto	Sim	
3	30	Normal	Normal	Normal	Não	
4	50	Alta	Normal	Alto	Sim	
5	65	Normal	Alto	Normal	Não	
6	35	Baixa	Normal	Normal Normal		
7	55	Normal	Alto	Alto	Sim	
8	40	Alta	Normal	Normal	Não	
9	70	Alta	Alto	Normal	Sim	
10	32	Normal	Normal	Alto	Não	
11	47	Baixa	Alto	Normal	Não	
12	53	Alta	Alto	Alto	Sim	
13	29	Normal	Normal	Normal	Não	
14	58	Normal	Alto	Alto	Sim	
15	62	Alta	Normal	Normal	Não	
16	37	Normal	Normal	Alto	Não	
17	43	Baixa	Alto	Alto	Sim	
18	48	Alta	Normal	Normal	Não	
19	54	Normal	Alto	Normal	Não	

Agora gere para essa tabela o modelo de árvore de decisão considerando como dados de treino as colunas de 1 a 25 e como teste as colunas 26 a 30

ChatGPT

Aqui estão os resultados da predição do modelo de árvore de decisão para os últimos 5 pacientes (ID 26 a 30), considerando "0" como "Não" e "1" como "Sim" para o diagnóstico:

	Real	Predição	
0	0	0	
1	2 1 0	1	
2	0	1	
3	0	0	
4	1	0	

Os resultados mostram que para os pacientes 1 e 3 (na tabela de resultados), o modelo previu corretamente o diagnóstico, enquanto para os pacientes 2, 4 e 5, o modelo não foi totalmente preciso nas previsões. Isso pode indicar uma necessidade de ajuste no modelo ou considerar mais dados para melhorar a precisão. (>-)

Use um algoritmo de random forest

ChatGPT

Aqui estão os resultados da predição do modelo de Random Forest para os últimos 5 pacientes (ID 26 a 30), considerando "0" como "Não" e "1" como "Sim" para o diagnóstico:

	Real	Predição	
0	0	0	
1	1	1	
2	0	0	
3	0	0	
4	1	0	

Neste caso, o modelo de Random Forest previu corretamente os diagnósticos dos pacientes 1, 2, 3 e 4 (na tabela de resultados), mas não acertou o do paciente 5. Isso demonstra uma melhoria em relação ao modelo de árvore de decisão, com apenas um erro nas predições. [--]

ID	Idade	Pressão Sanguínea	Colesterol	Nível de Glicose	Diagnóstico
1	45	Normal	Alto	Normal	Não
2	60	Alta	Alto	Alto	Sim
3	30	Normal	Normal	Normal	Não
4	50	Alta	Normal	Alto	Sim
5	65	Normal	Alto	Normal	Não
6	35	Baixa	Normal	Normal	Não
7	55	Normal	Alto	Alto	Sim
8	40	Alta	Normal	Normal	Não
9	70	Alta	Alto	Normal	Sim
10	32	Normal	Normal	Alto	Não
11	47	Baixa	Alto	Normal	Não
12	53	Alta	Alto	Alto	Sim
13	29	Normal	Normal	Normal	Não
14	58	Normal	Alto	Alto	Sim
15	62	Alta	Normal	Normal	Não
16	37	Normal	Normal	Alto	Não
17	43	Baixa	Alto	Alto	Sim
18	48	Alta	Normal	Normal	Não
19	54	Normal	Alto	Normal	Não
20	39	Normal	Normal	Alto	Não