ESTIMATION BAYÉSIENNE CIBLÉE DE MODÈLES STRUCTURELS MARGINAUX

Herb Susmann^{1,2} and Antoine Chambaz²

¹Department of Biostatistics & Epidemiology, University of Massachusetts Amherst et ²MAP5 (UMR CNRS 8145), Université de Paris

8 décembre, 2021

Introduction

- Slides: herbsusmann.com/jmb2021.
- Causal analysis is concerned with estimating treatment effects: the effect of an intervention on an outcome.
- We may also be interested in how individual characteristics affect the size of the treatment effect.
- Can we estimate how a set of treatment effect modifiers influence the size of the treatment effect?
- Our contribution: asymptotically efficient non-parametric Bayesian estimator

Cheatsheet

- Data structure
 - $W \in \mathbb{R}^d$: vector of covariates
 - $A \in \{0,1\}$: binary indicator of treatment
 - $Y \in \mathbb{R}$: outcome
 - Observed data: $O = (W, A, Y) \sim P_0$
- Conditional mean:

$$\bar{Q}_P(a, w) = \mathbb{E}_P[Y \mid A = a, W = w]$$

Conditional treatment effect:

$$\widetilde{Q}_P(w) = \bar{Q}_P(1,w) - \bar{Q}_P(0,w)$$

- Treatment effect modifiers
 - Let $V = (V_1, \ldots, V_k) \subset W$.
 - Let $X = (1, V_1, ..., V_k)$. $(X \in \mathbb{R}^p$, with p = k + 1.)
- Marginal structural model:

$$m{B}(P) = \mathop{\mathrm{arg\,min}}_{m{eta} \in \mathbb{R}^p} \mathbb{E}_P \left[\left(\widetilde{Q}_P(W) - X^{ op} m{eta} \right)^2
ight]$$

Data Structure

Data structure:

- $W \in \mathbb{R}^d$: vector of covariates
- $A \in \{0,1\}$: binary indicator of treatment
- $Y \in \mathbb{R}$: outcome

Observed data:

• We assume that the observed data are n i.i.d. draws of O = (W, A, Y) from a distribution P_0 .

Average Treatment Effect

- Suppose we are interested in summarizing the effect of the treatment on the outcome over the entire population.
- Notation

$$egin{aligned} ar{Q}_P(a,w) &= \mathbb{E}_P[Y \mid A=a,W=w] \ &\widetilde{Q}_P(w) &= ar{Q}_P(1,w) - ar{Q}_P(0,w) \end{aligned}$$

Average Treatment Effect (ATE):

$$\begin{split} \Psi_P^{ATE} &= \mathbb{E}_P[\widetilde{Q}_P(W)] \\ &= \mathbb{E}_P[\bar{Q}_P(1,W) - \bar{Q}_P(0,W)] \\ &= \mathbb{E}_P[\mathbb{E}_P[Y \mid A = 1,W] - \mathbb{E}_P[Y \mid A = 0,W]] \end{split}$$

Treatment Effect Modification

- What if we are interested in whether the size of the effect is influenced by the covariates?
- Naive approach: estimate the conditional treatment effect for every value of W:

$$\widetilde{Q}_{P}(w) = \overline{Q}_{P}(1, w) - \overline{Q}_{P}(0, w)$$

$$= \mathbb{E}_{P}[Y \mid A = 1, W = w] - \mathbb{E}_{P}[Y \mid A = 0, W = w]$$

- Two problems:
 - Could be difficult to estimate for every w, especially if there are strata with few observations.
 - How do we make sense of the results?

- Alternative approach: summarize the relationship between covariates and treatment effects via a low-dimensional working model.
- Let $V = (V_1, \dots, V_k) \subseteq W$ be a set of possible *treatment* effect modifiers.
- Let $X = (1, V_1, \dots, V_k)$.
 - $X \in \mathbb{R}^p$, where p = k + 1.
- Define $oldsymbol{B}(P) \in \mathbb{R}^p$ as the solution to the optimization problem

$$m{B}(P) = \mathop{\mathsf{arg\,min}}_{m{eta} \in \mathbb{R}^p} \mathbb{E}_P \left[\left(\widetilde{Q}_P(W) - X^ op m{eta} \right)^2
ight]$$

$$\boldsymbol{B}(P) = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{P}} \mathbb{E}_{P} \left[\left(\boxed{\widetilde{Q}_{P}(W)} - X^{\top} \boldsymbol{\beta} \right)^{2} \right]$$
treatment effect for W

$$\boldsymbol{B}(P) = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \mathbb{E}_P \left[\left(\widetilde{Q}_P(W) - X^\top \boldsymbol{\beta} \right)^2 \right]$$
linear working model

$$m{B}(P) = \operatorname*{arg\,min}_{m{eta} \in \mathbb{R}^p} \boxed{\mathbb{E}_P \left[\left(\widetilde{Q}_P(W) - X^ op m{eta} \right)^2 \right]}$$

$$\boxed{\mathbf{B}(P)} = \arg\min_{\beta \in \mathbb{R}^p} \mathbb{E}_P \left[\left(\widetilde{Q}_P(W) - X^\top \beta \right)^2 \right]$$

defined in terms of P

Semi-parametric inference

- Define $\beta_0 \equiv \boldsymbol{B}(P_0)$
- Estimation: we assume only that P_0 falls within the non-parametric model \mathcal{M} .
- We wish to construct regular, asymptotically normal and efficient estimator of β_0 .
- We start with a frequentist estimator, which we develop a Bayesian version of.

Semi-parametric inference

• We can write any regular estimator of β_0 as:

$$\hat{\beta}_n = \beta_0 + \frac{1}{n} \sum_{i=1}^n IC_{P_0}(O_i) + o_p(n^{-1/2}),$$

where IC_{P_0} is called an *influence function* of the parameter β_0 .

• The influence function with the smallest variance is called the efficient influence function (EIF). The EIF of β_0 is given by:

$$D_P(O) = M^{-1} \left[\frac{2A-1}{g_P(A,W)} (Y - \bar{Q}_P(A,W)) + \widetilde{Q}_P(W) - \beta^\top X \right] X,$$

with
$$g_P(a, w) \equiv \mathbb{P}_P[A = a | W = w]$$
 and $M = \mathbb{E}_P[X^\top X]$.

• The semi-parametric efficiency bound for estimating β_0 is given by $\operatorname{var}_{P_0}(D_{P_0}(O))$

Targeted Maximum Likelihood Estimation

- It turns out we can construct an estimator that achieves this efficiency bound!
- Targeted Maximum Likelihood Estimation (TMLE) (van der Laan and Rose, 2011, 2018)
- Plug-in estimator of the form

$$\boldsymbol{\beta}^{TMLE} = \boldsymbol{B}(P_n^0(\epsilon))$$

where $\{P_n^0(\epsilon) : \epsilon \in \mathbb{R}^p\}$ is a *fluctuation* of an initial estimator P_n^0 of the pieces of P_0 relevant to β .

• The TMLE estimator is designed to solve the EIF of the target parameter: $\mathbb{E}_{P_n}[D_{P_n^*}(O)] = 0$.

- Can we make this procedure Bayesian?
- Core insight: the fluctuation submodel $\left\{P_n^0(\epsilon):\epsilon\in\mathbb{R}^p\right\}$ defines a proper likelihood. So we can use Bayesian inference to estimate $\epsilon!$ (Diaz et al., 2011; Díaz et al., 2020)
- ullet Basic application of Bayes rule: posterior distribution of ϵ is given by

$$\Pi_{\boldsymbol{\epsilon}}(\boldsymbol{\epsilon} \mid O_1, \ldots, O_n) \propto \pi_{\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) \prod_{i=1}^n p_{\boldsymbol{\epsilon}}(O_i \mid \boldsymbol{\epsilon})$$

- In practice, we probably don't have any prior information for ϵ .
- Instead, we can put a prior on $oldsymbol{eta}$, which we map to a prior on $oldsymbol{\epsilon}$:

$$\pi_{\epsilon}(\epsilon) = \pi_{\beta}(\mathbf{B}(P_n^0(\epsilon)))|\det(J(\epsilon))|,$$

where *J* is the Jacobian of the transformation $\boldsymbol{B}(P_n^0(\epsilon))$.

- Sampling techniques such as Markov-Chain Monte Carlo can be used to draw a set of samples from the posterior distribution of ϵ .
- Then, we can map each of these samples of ϵ to a β , yielding a set of samples from the posterior distribution of β .
- Credible intervals can be constructed using the empirical quantiles of the posterior samples.

Theorem

Under certain conditions, the posterior distribution converges in total variation:

$$\sup_{\mathbb{B}^p} \left| \Pi_{\beta} \left\{ \sqrt{n} (\bar{\beta} - \beta) \in \mathbb{B}^p \mid O_n \right\} - N_{\sqrt{n} (\tilde{\beta} - \beta), P_n D_n^\top D_n} (\mathbb{B}^p) \right| \to 0$$

where \mathbb{B}^p is a subset of \mathbb{R}^p , $N_{\mu,\Sigma}$ is the multivariate normal distribution with mean vector μ and covariance matrix Σ , D_n is the targeted estimate of the EIF, $\bar{\beta} \sim \Pi_{\beta}$, and $\tilde{\beta}$ is the targeted MLE.

Simulation

Data generating process P₀:

$$W_1, W_2, W_3, V \sim N_4(0, I_4)$$

 $A|W_1, W_2, W_3, V \sim \text{Bernoulli}(\text{logit}^{-1}(W_1 + W_2 + W_3))$
 $Y|A, W_1, W_2, W_3, V \sim N(W_1 + W_2 + W_3 + 3A + 1.5AV, 0.1)$

- True average treatment effect: $\Psi_{P_0}^{ATE} = 3$.
- $X = (1, V)^{\top}$.
- Optimization problem:

$$m{B}(P) = rg \min_{m{eta} \in \mathbb{R}^p} \mathbb{E}_P \left[\left(\widetilde{Q}_P(W) - X^{ op} m{eta} \right)^2
ight]$$

- Target parameter: $\beta_0 \equiv \boldsymbol{B}(P_0)$
- $oldsymbol{eta}_0 \in \mathbb{R}^2$: intercept term and linear effect of V on treatment effect
- For this data generating process, $\beta_0 = (0, 1.5)^{\top}$.

Simulation

- Simulate 500 datasets for n = (100, 250, 500, 1000).
- Estimate nuisance parameters g_P and \bar{Q}_P with correctly specified regressions.
- Flat priors on β in Bayesian TMLE.
- Frequentist TMLE implemented in R, Bayesian TMLE implemented in R and Stan.
- Julia implementation with automatic differentiation

Simulation

Conclusions

- Marginal Structural Models provide a method for summarizing impact of treatment effect modifiers.
- TMLE provides a framework for efficient estimation of Marginal Structural Model parameters within a semi-parametric model.
- Bayesian TMLE brings benefits of both frequentist and Bayesian approaches
- Ongoing work: does the Bayesian estimator inherit other useful properties of the frequentist TMLE? Does incorporation of prior information improve finite-sample performance?

References

- I. Diaz, A. E. Hubbard, and M. J. van der Laan. Targeted Bayesian learning. In *Targeted Learning*, pages 475–493. Springer, 2011.
- I. Díaz, O. Savenkov, and H. Kamel. Nonparametric targeted Bayesian estimation of class proportions in unlabeled data. *Biostatistics*, 2020.
- M. J. van der Laan and S. Rose. Targeted learning: causal inference for observational and experimental data. Springer Science & Business Media, 2011.
- M. J. van der Laan and S. Rose. *Targeted learning in data science:* causal inference for complex longitudinal studies. Springer, 2018.