Example 1 If (x + 1, y - 2) = (3,1), find the values of x and y.

Solution Since the ordered pairs are equal, the corresponding elements are equal.

Therefore
$$x + 1 = 3$$
 and $y - 2 = 1$.

Solving we get x = 2 and y = 3.

Example 2 If $P = \{a, b, c\}$ and $Q = \{r\}$, form the sets $P \times Q$ and $Q \times P$.

Are these two products equal?

Solution By the definition of the cartesian product,

$$P \times Q = \{(a, r), (b, r), (c, r)\}\$$
and $Q \times P = \{(r, a), (r, b), (r, c)\}\$

Since, by the definition of equality of ordered pairs, the pair (a, r) is not equal to the pair (r, a), we conclude that $P \times Q \neq Q \times P$.

However, the number of elements in each set will be the same.

Example 3 Let $A = \{1,2,3\}$, $B = \{3,4\}$ and $C = \{4,5,6\}$. Find

- (i) $A \times (B \cap C)$ (ii) $(A \times B) \cap (A \times C)$
- (iii) $A \times (B \cup C)$ (iv) $(A \times B) \cup (A \times C)$

Solution (i) By the definition of the intersection of two sets, $(B \cap C) = \{4\}$.

Therefore, $A \times (B \cap C) = \{(1,4), (2,4), (3,4)\}.$

(ii) Now
$$(A \times B) = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$$

and $(A \times C) = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$

Therefore, $(A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\}.$

(iii) Since,
$$(B \cup C) = \{3, 4, 5, 6\}$$
, we have $A \times (B \cup C) = \{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6)\}.$

(iv) Using the sets $A \times B$ and $A \times C$ from part (ii) above, we obtain $(A \times B) \cup (A \times C) = \{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6)\}.$

Example 4 If $P = \{1, 2\}$, form the set $P \times P \times P$.

Solution We have, $P \times P \times P = \{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)\}.$

Example 5 If **R** is the set of all real numbers, what do the cartesian products $\mathbf{R} \times \mathbf{R}$ and $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ represent?

Solution The Cartesian product $\mathbf{R} \times \mathbf{R}$ represents the set $\mathbf{R} \times \mathbf{R} = \{(x, y) : x, y \in \mathbf{R}\}$ which represents the *coordinates of all the points in two dimensional space* and the cartesian product $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ represents the set $\mathbf{R} \times \mathbf{R} \times \mathbf{R} = \{(x, y, z) : x, y, z \in \mathbf{R}\}$ which represents the *coordinates of all the points in three-dimensional space*.

Example 6 If $A \times B = \{(p, q), (p, r), (m, q), (m, r)\}$, find A and B.

Solution $A = \text{set of first elements} = \{p, m\}$ $B = \text{set of second elements} = \{q, r\}.$

Example 7 Let $A = \{1, 2, 3, 4, 5, 6\}$. Define a relation R from A to A by $R = \{(x, y) : y = x + 1\}$

- (i) Depict this relation using an arrow diagram.
- (ii) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation, $R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}.$

Example 8 The Fig 2.6 shows a relation

between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form.

What is its domain and range?

Solution It is obvious that the relation R is "x is the square of y".

- (i) In set-builder form, $R = \{(x, y): x \text{ is the square of } y, x \in P, y \in Q\}$
 - (ii) In roster form, $R = \{(9, 3), (9, -3), (4, 2), (4, -2), (25, 5), (25, -5)\}$

Fig 2.6

The domain of this relation is $\{4, 9, 25\}$.

The range of this relation is $\{-2, 2, -3, 3, -5, 5\}$.

Note that the element 1 is not related to any element in set P.

The set Q is the codomain of this relation.

Note The total number of relations that can be defined from a set A to a set B is the number of possible subsets of A × B. If n(A) = p and n(B) = q, then $n(A \times B) = pq$ and the total number of relations is 2^{pq} .

Example 9 Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Find the number of relations from A to B.

Solution We have,

$$A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}.$$

Since n (A×B) = 4, the number of subsets of A×B is 2^4 . Therefore, the number of relations from A into B will be 2^4 .

Remark A relation R from A to A is also stated as a relation on A.

The function f from A to B is denoted by $f: A \rightarrow B$.

Looking at the previous examples, we can easily see that the relation in Example 7 is not a function because the element 6 has no image.

Again, the relation in Example 8 is not a function because the elements in the domain are connected to more than one images. Similarly, the relation in Example 9 is also not a function. (*Why*?) In the examples given below, we will see many more relations some of which are functions and others are not.

Example 10 Let N be the set of natural numbers and the relation R be defined on N such that $R = \{(x, y) : y = 2x, x, y \in N\}$.

What is the domain, codomain and range of R? Is this relation a function?

Solution The domain of R is the set of natural numbers N. The codomain is also N. The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a function.

Example 11 Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not?

- (i) $R = \{(2,1),(3,1),(4,2)\}, (ii) R = \{(2,2),(2,4),(3,3),(4,4)\}$
- (iii) $R = \{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\}$
- **Solution** (i) Since 2, 3, 4 are the elements of domain of R having their unique images, this relation R is a function.
 - (ii) Since the same first element 2 corresponds to two different images 2 and 4, this relation is not a function.
 - (iii) Since every element has one and only one image, this relation is a function.

Example 12 Let N be the set of natural numbers. Define a real valued function

 $f: \mathbb{N} \to \mathbb{N}$ by f(x) = 2x + 1. Using this definition, complete the table given below.

X	1	2	3	4	5	6	7
у	f(1) =	f(2) =	f(3) =	f(4) =	f(5) =	f(6) =	f(7) =

Solution The completed table is given by

X	1	2	3	4	5	6	7	
у	f(1) = 3	f(2) = 5	f(3) = 7	f(4) = 9	f(5) = 11	f(6) = 13	f(7) = 15	

The graph is a line parallel to x-axis. For example, if f(x)=3 for each $x \in \mathbb{R}$, then its graph will be a line as shown in the Fig 2.9.

(iii) **Polynomial function** A function $f: \mathbf{R} \to \mathbf{R}$ is said to be *polynomial function* if for each x in \mathbf{R} , $y = f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, where n is a non-negative integer and a_0 , a_1 , a_2 ,..., $a_n \in \mathbf{R}$.

The functions defined by $f(x) = x^3 - x^2 + 2$, and $g(x) = x^4 + \sqrt{2}x$ are some examples

of polynomial functions, whereas the function h defined by $h(x) = x^{\frac{2}{3}} + 2x$ is not a polynomial function. (Why?)

Example 13 Define the function $f: \mathbf{R} \to \mathbf{R}$ by $y = f(x) = x^2$, $x \in \mathbf{R}$. Complete the Table given below by using this definition. What is the domain and range of this function? Draw the graph of f.

x	- 4	-3	-2	-1	0	1	2	- 3	4
$y = f(x) = x^2$					Ş				

Solution The completed Table is given below:

x	- 4	-3	-2	-1	0	1	2	3	4
$y = f(x) = x^2$	16	9	4	1	0	1	4	9	16

Domain of $f = \{x : x \in \mathbb{R}\}$. Range of $f = \{x^2 : x \in \mathbb{R}\}$. The graph of f is given by Fig 2.10

Example 14 Draw the graph of the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$, $x \in \mathbb{R}$.

Solution We have

$$f(0) = 0, f(1) = 1, f(-1) = -1, f(2) = 8, f(-2) = -8, f(3) = 27; f(-3) = -27, etc.$$

Therefore, $f = \{(x,x^3): x \in \mathbb{R}\}.$

The graph of f is given in Fig 2.11.

Fig 2.11

(iv) **Rational functions** are functions of the type $\frac{f(x)}{g(x)}$, where f(x) and g(x) are polynomial functions of x defined in a domain, where $g(x) \neq 0$.

Example 15 Define the real valued function $f: \mathbf{R} - \{0\} \to \mathbf{R}$ defined by $f(x) = \frac{1}{x}$,

 $x \in \mathbf{R} - \{0\}$. Complete the Table given below using this definition. What is the domain and range of this function?

x	-2	-1.5	-1	-0.5	0.25	0.5	1	1.5	2
$y = \frac{1}{x}$) :	:	:		:			:	

Solution The completed Table is given by

X		-2	-1.5	-1	-0.5	0.25	0.5	1	1.5	2
$y = \frac{1}{\lambda}$	<u>-</u>	- 0.5	- 0.67	-1	- 2	4	2	1	0.67	0.5

Example 16 Let $f(x) = x^2$ and g(x) = 2x + 1 be two real functions. Find

$$(f+g)(x), (f-g)(x), (fg)(x), \left(\frac{f}{g}\right)(x).$$

Solution We have

e have,

$$(f+g)(x) = x^2 + 2x + 1$$
, $(f-g)(x) = x^2 - 2x - 1$,

$$(fg)(x) = x^{2}(2x+1) = 2x^{3} + x^{2}, \ \left(\frac{f}{g}\right)(x) = \frac{x^{2}}{2x+1}, x \neq -\frac{1}{2}$$

Example 17 Let $f(x) = \sqrt{x}$ and g(x) = x be two functions defined over the set of non-

negative real numbers. Find (f+g)(x), (f-g)(x), (fg)(x) and $\left(\frac{f}{g}\right)(x)$.

Solution We have

$$(f+g)(x) = \sqrt{x} + x, (f-g)(x) = \sqrt{x} - x,$$

 $(fg) x = \sqrt{x}(x) = x^{\frac{3}{2}} \text{ and } \left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{x} = x^{-\frac{1}{2}}, x \neq 0$

Miscellaneous Examples

Example 18 Let **R** be the set of real numbers. Define the real function

$$f: \mathbf{R} \rightarrow \mathbf{R} \text{ by } f(x) = x + 10$$

and sketch the graph of this function.

Solution Here
$$f(0) = 10$$
, $f(1) = 11$, $f(2) = 12$, ..., $f(10) = 20$, etc., and

$$f(-1) = 9$$
, $f(-2) = 8$, ..., $f(-10) = 0$ and so on.

Therefore, shape of the graph of the given function assumes the form as shown in Fig 2.16.

Remark The function f defined by f(x) = mx + c, $x \in \mathbb{R}$, is called *linear function*, where m and c are constants. Above function is an example of a *linear function*.

Example 19 Let R be a relation from **Q** to **Q** defined by $R = \{(a,b): a,b \in \mathbf{Q} \text{ and } a-b \in \mathbf{Z}\}$. Show that

- (i) $(a,a) \in \mathbb{R}$ for all $a \in \mathbb{Q}$
- (ii) $(a,b) \in \mathbb{R}$ implies that $(b,a) \in \mathbb{R}$
- (iii) $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$ implies that $(a,c) \in \mathbb{R}$

Solution (i) Since, $a - a = 0 \in \mathbb{Z}$, if follows that $(a, a) \in \mathbb{R}$.

- (ii) $(a,b) \in \mathbb{R}$ implies that $a-b \in \mathbb{Z}$. So, $b-a \in \mathbb{Z}$. Therefore, $(b,a) \in \mathbb{R}$
- (iii) (a, b) and $(b, c) \in \mathbb{R}$ implies that $a b \in \mathbb{Z}$. $b c \in \mathbb{Z}$. So, $a c = (a b) + (b c) \in \mathbb{Z}$. Therefore, $(a, c) \in \mathbb{R}$

Example 20 Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a linear function from **Z** into **Z**. Find f(x).

Solution Since f is a linear function, f(x) = mx + c. Also, since $(1, 1), (0, -1) \in \mathbb{R}$, f(1) = m + c = 1 and f(0) = c = -1. This gives m = 2 and f(x) = 2x - 1.

Example 21 Find the domain of the function $f(x) = \frac{x^2 + 3x + 5}{x^2 - 5x + 4}$

Solution Since $x^2 - 5x + 4 = (x - 4)(x - 1)$, the function f is defined for all real numbers except at x = 4 and x = 1. Hence the domain of f is $\mathbf{R} - \{1, 4\}$.

Example 22 The function f is defined by

$$f(x) = \begin{cases} 1-x, & x < 0 \\ 1, & x = 0 \\ x+1, & x > 0 \end{cases}$$

Draw the graph of f(x).

Solution Here, f(x) = 1 - x, x < 0, this gives

$$f(-4) = 1 - (-4) = 5;$$

$$f(-3) = 1 - (-3) = 4,$$

$$f(-2) = 1 - (-2) = 3$$

$$f(-1) = 1 - (-1) = 2$$
; etc,

and
$$f(1) = 2, f(2) = 3, f(3) = 4$$

$$f(4) = 5$$
 and so on for $f(x) = x + 1, x > 0$.

Thus, the graph of f is as shown in Fig 2.17

Fig 2.17