

DEPARTMENT OF ENGINEERING

Test of Distributed Systems Lecture 10

Distributed Snapshot Algorithms

Example: Chandy-Lamport

Today's lecture

- Distributed snapshots
- Chandy-Lamport's snapshot algorithm
- Properties of snapshots
- Next time, exercises

Distributed snapshots

- The ability to create discrete snapshots of global state is quite useful
- Apart from GPE, also useful in other situations
 - Take snapshots at suitable points in time, roll back and restart in case of system failure(s)
 - Create "system dump" in case of detected failure (for debugging purposes)
 - Etc.

Distributed snapshots

- Desirable properties of a snapshot algorithm
 - Superimposed on (or running alongside) underlying computation
 - May send messages and require dedicated computations
 - May not alter the underlying computation
 - Should leave a footprint as small as possible (memory, cpu, network bandwidth)

Today's lecture

- Distributed snapshots
- Chandy-Lamport's snapshot algorithm
- Properties of snapshots
- Next time, exercises

Chandy-Lamport's distributed snapshot algorithm

- Rather than "develop" it in a sequence of analytical steps, it will just be presented
- Afterwards we will prove that it actually works
- The algorithm has two parts, an easy one and a more tricky one:
 - Easy: Record local state when a special message is received
 - Tricky: Record channel state in a way that assures that we create a consistent snapshot

Chandy-Lamport's distributed snapshot algorithm

- Works by sending special "Marker messages"
- Apart from registering local state, each process p_i records the state of each incoming *channel* (unidirectional communications connection) $\chi_{j,i}$ from other processes, where

 $\forall j \neq i : \chi_{j,i}$ are the set of messages sent from p_i but not yet received by p_i

• I.e. we not only record local process states but also messages that were in transit when the snapshot was taken

Chandy-Lamport's distributed snapshot algorithm – details 1/4

- Marker Receiving Rule (MRR) for process p_i on receiving marker from process p_f on an incoming channel:
 - 1. if (first marker seen)

Record local process state σ_i Execute Marker Sending Rule (MSR)

else

Stop recording messages on channel from p_f Declare channel state $\chi_{f,i}$ to be those messages recorded

2. Carry on normal computation

Chandy-Lamport's distributed snapshot algorithm – details 2/4

- Marker Sending Rule (MSR) for process p_i:
 - 1. Relay marker message on all outgoing channels
 - 2. Set the state of each incoming channel $\chi_{j,i}$ to be an empty set of messages
 - 3. Start recording non-marker messages $\chi_{x,i}$ on all incoming channels from processes p_x , $x \neq f$, where p_f was the one from which first marker message came
 - 4. Carry on normal computation
- *Important:* No event processing of the underlying computation takes places between step 1 & 2

(10

Chandy-Lamport's distributed snapshot algorithm – details 3/4

- Recording Completion Rule (RCR) for process
 p_i:
 - When a marker has been received on all incoming channels (and recording thus terminated on all channels), p_i has completed its role in capturing snapshot
 - 2. Report recorded local state σ_{l} , and the set of all recorded channel states $\chi_{f,l}$, to observer
 - 3. Carry on normal computation

(11

Chandy-Lamport's distributed snapshot algorithm – details 4/4

- Recording Initiation Rule (RIR) for process p_i:
 - Any process p_i that wants to take a snapshot simply executes the Marker Sending Rule

- We need to assure ourselves that the algorithm produces consistent observations
- Remember: an observation/cut C is consistent
 if ∀ events e, e': (e ∈ C) ∧ (e'→ e) ⇒ e' ∈ C
- That translates into: every message that is recorded as received must also be recorded as sent

(i.e we cannot include the effect of receiving a message if we have no record of it being sent, that would put effect before cause)

• Let's look at the channels between any two processes p, and p:

• What do we know? When was pre- and postmarker messages sent in relation to the time where p_i recorded its local state σ_i ?

- So pre-marker messages are always included in σ_i and always included in σ_j (directly or as part of recorded channel state $\chi_{i,i}$)
- Post-marker messages are never included in σ_i and never included in σ_j (because p_j will always form σ_j first or stop recording on channel)
- So pre-marker messages are always, and post-marker messages never, part of the snapshot in p_i and p_i

- 1. For each recorded recv-message in p_j (either directly or as part of channel state), p_i has recorded a send-message
- 2. Hence the combined snapshot is consistent

Today's lecture

- Distributed snapshots
- Chandy-Lamport's snapshot algorithm
- Properties of snapshots
- Next time, exercises

Properties of (CL) snapshots

- We know a global state Σ^s constructed via CL is consistent. But the actual system run may not even pass through Σ^s .
- However, Σ^s is not some arbitrary state, it has useful properties closely related to the run that created it.
- Let's look at an example ...

Properties of (CL) snapshots - example

- Run is at state Σ^{21} when snapshot starts and in state Σ^{55} when snapshot is complete
- The actual run does not pass through the constructed global state Σ^{23}
- However $\Sigma^{21} \rightarrow_R \Sigma^{23} \rightarrow_R \Sigma^{55}$ in this example
- I.e. the constructed state lies somewhere between the start and end state
- We'll show that this holds in general

Properties of (CL) snapshots – proof

of
$$\sum_{R} \sum_{R} \sum$$

• Let $r = actual\ run$, Σ^f , Σ^l be first/last global state involved during protocol run, Σ^s global state constructed

$$\sum_{\mathbf{l}=\mathbf{\Sigma}^{55}} \sum_{\mathbf{l}=\mathbf{\Sigma}^{55}} \sum_{\mathbf{l}=\mathbf{\Sigma$$

• We want to show that another consistent run R always exists so that $\Sigma^f \rightarrow_R \Sigma^s \rightarrow_R \Sigma^l$

Properties of (CL) snapshots – proof of $\Sigma^{\text{first}} \rightarrow_{R} \Sigma^{\text{snapshot}} \rightarrow_{R} \Sigma^{\text{last}}$

- Step 1: Swap pre- and post-recording events
 - For each process pi that receives 1^{st} marker event e_i^* , any other event e_i is either pre-recording $(e_i \rightarrow e_i^*)$ otherwise it is post-recording
 - \forall e,e' in run: (e post-rec) \land (e' pre-rec) \Rightarrow ¬(e→e') I.e. no pre-rec event is causally dependent on a post-rec event
 - Trivially true for two events e, e' in same process
 - If e is send-event of p_i and e' is corresponding receive event of p_j, p_i will have sent marker-msg before e, so e' will also be post-recording

Properties of (CL) snapshots – proof

of
$$\sum_{R} \sum_{R} \sum$$

- Step 1: Swap pre- and post-rec events (contd.)
 - Since no pre-rec event is causally dependent on a post-rec event, we can form a new run R from r by sorting events so that all pre-rec events comes before post-rec events

$$r = e_2^1 e_1^1 e_1^2 e_1^3 e_2^2 e_1^4 e_2^3 e_2^4 e_1^5 e_2^5 e_1^6$$

$$R = e_2^1 e_1^1 e_1^2 e_2^2 e_2^3 e_1^3 e_1^4 e_2^4 e_1^5 e_2^5 e_1^6$$

- Snapshot state Σ^s formed after last pre-rec event
- Σ^{s} reachable from Σ^{f} and Σ^{l} reachable from Σ^{s}

Comparing the original run with the "sorted" run

e_2^1	01	e ₂ ¹	01
e_1^1	11	e ₁ ¹	11
e_1^2	21	e ₁ ²	21
e_1^3	31	e_2^2	22
e_2^2	32	e_2^3	23
e ₁ ⁴	42	e ₁ ³	33
e_2^3	43	e ₁ ⁴	43
e ₂ ⁴	44	e ₂ ⁴	44
e ₁ ⁵	54	e ₁ ⁵	54
e ₂ ⁵	<i>55</i>	e ₂ ⁵	55
e ₁ ⁶	65	e ₁ ⁶	65

Properties of (CL) snapshots – proof of $\Sigma^{\text{first}} \rightarrow_{R} \Sigma^{\text{snapshot}} \rightarrow_{R} \Sigma^{\text{last}}$

- Hence we have shown that given any run r, there exists another run R, such that $\Sigma^f \rightarrow_R \Sigma^s \rightarrow_R \Sigma^l$
- Step 2: We also need to show that the state Σ^s formed after the last pre-rec event in R, is the same as the one formed by the protocol
 - Each process p_i records its local state σ_i in the same relative spot in R with respect to all events e_i
 - Each process p_i records the same channel state(s),
 because, as seen by process p_i, the sequence of prerec messages, marker and post-rec messages remain the same

Today's lecture

- Distributed snapshots
- Chandy-Lamport's snapshot algorithm
- Properties of snapshots
- Next time, exercises

Next time

- Exercise on monday
 - We'll hear some (informal) presentations of suggested solutions for improving the "broadcast token passing algorithm" for DS
- Reading material
 - Nothing