Exercice d'application

Soit une adresse 192.168.1.113 masque 255.255.255.0, trouvez l'adresse du réseau, trouvez la première adresse du réseau et la dernière adresse de réseau.

1) Tout transformer en binaire : (Base 2)

Nom	Octet 4	Octet 3	Octet 2	Octet 1
Adresse IP				
@ Masque				

2) Travail sur les bits de la partie machine

L'adresse du Réseau ==> Partie Machine tout à 0 L'adresse de diffusion ==> Partie Machine tout à 1

Nom	Octet 4	Octet 3	Octet 2	Octet 1
@ Réseau				
@ Diffusion				

3) Première et dernière adresse du réseau

Première adresse = adresse du Réseau avec (octet 1) +1

Dernière adresse = adresse de diffusion avec (octet 1) -1

Nom	Octet 4	Octet 3	Octet 2	Octet 1
Première @				
Dernière @				

4) Tout transformer en décimal (Base 10)

Nom	Octet 4	Octet 3	Octet 2	Octet 1
Masque				
@ Réseau				
@ Diffusion				
Première @				
Dernière @				

Combien d'adresses de machine possibles dans ce réseau?

Barrez les adresses machines qui ne font pas partie du même réseaux :

Exercice d'application

Soit une adresse 172.20.4.53 masque 255.255.0.0, trouvez l'adresse du réseau trouvez la première adresse du réseau et la dernière adresse de réseau.

1) Tout transformer en binaire : (Base 2)

Nom	Octet 4	Octet 3	Octet 2	Octet 1
Adresse IP				
@ Masque				

2) Travail sur les bits de la partie machine

L'adresse du Réseau ==> Partie Machine tout à 0 L'adresse de diffusion ==> Partie Machine tout à 1

Nom	Octet 4	Octet 3	Octet 2	Octet 1
@ Réseau				
@ Diffusion				

3) Première et dernière adresse du réseau

Première adresse = adresse du Réseau avec (octet 1) +1

Dernière adresse = adresse de diffusion avec(octet 1) -1

Nom	Octet 4	Octet 3	Octet 2	Octet 1
Première @				
Dernière @				

4) Tout transformer en décimal (Base 10)

Nom	Octet 4	Octet 3	Octet 2	Octet 1
Masque				
@ Réseau				
@ Diffusion				
Première @				
Dernière @				

Combien d'adresses de machine possibles dans ce réseau?

Barrez les adresses machines qui ne font pas partie du même réseau (ou fausses) :

172.20.4.8 172.16.4.14 172.20.14.84 173.20.4.24 172.20.10.0

172.2.4.4 172.20.200.84 172.20.4.300 172.20.0.80 172.20.0.255