

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Ein grundlegendes Datenbank-Problem

Speicherung von Datensätzen

Beispiel

 Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen,...)

Anforderungen

- Schneller Zugriff
- Einfügen neuer Datensätze
- Löschen bestehender Datensätze

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel)

Beispiel

- Kundendaten (Name, Adresse, Kundennummer)
- Schlüssel: Name
- Totale Ordnung: Lexikographische Ordnung

Problem:

Gegeben sind n Objekte O₁,..., O_n mit zugehörigen Schlüsseln s(O_i)

Operationen:

- Suche(x); Ausgabe O mit Schlüssel s(O) =x;
 nil, falls kein Objekt mit Schlüssel x in Datenbank
- Einfügen(O); Einfügen von Objekt O in Datenbank
- Löschen(O); Löschen von Objekt O mit aus der Datenbank

Drei grundlegende Datenstrukturen

- Feld
- sortiertes Feld
- doppelt verkettete Liste

Diskussion

- Alle drei Strukturen haben gewichtige Nachteile
- Zeiger/Referenzen helfen beim Speichermanagement
- Sortierung hilft bei Suche ist aber teuer aufrecht zu erhalten

Definition (Binärbaum)

- Ein Binärbaum T ist eine Struktur, die auf einer endlichen Menge definiert ist. Diese Menge nennt man auch die Knotenmenge des Binärbaums.
- Die leere Menge ist ein Binärbaum. Dieser wird auch als leerer Baum bezeichnet.
- Ein Binärbaum ist ein Tripel (v, T₁, T₂), wobei T₁ und T₂ Binärbäume mit disjunkten Knotenmengen V₁ und V₂ sind und v∉V₁∪V₂ Wurzelknoten heißt. Die Knotenmenge des Baums ist dann $\{v\}\cup V_1\cup V_2$.
 - T₁ heißt linker Unterbaum von v und T₂ heißt rechter Unterbaum von v.

Darstellung von Binärbäumen

Darstellung von Binärbäumen

· Häufig lässt man die leeren Bäume in der Darstellung eines Binärbaums weg

Binärbäume(Darstellung im Rechner)

- Schlüssel key und ggf. weitere Daten
- Vaterzeiger p[v] auf Vater von v (blau)
- Zeiger lc[v] (rc[v]) auf linkes (rechtes) Kind von v
- Wurzelzeiger root[T]

Binärbäume(Darstellung im Rechner)

- Schlüssel key und ggf. weitere Daten
- Vaterzeiger p[v] auf Vater von v (blau)
- Zeiger lc[v] (rc[v]) auf linkes (rechtes) Kind von v
- Wurzelzeiger root[T]

Binäre Suchbäume

- Verwende Binärbaum
- Speichere Schlüssel "geordnet"

Binäre Suchbaumeigenschaft:

- Sei x Knoten im binären Suchbaum
- Ist y Knoten im linken Unterbaum von x, dann gilt key[y]≤key[x]
- Ist y Knoten im rechten Unterbaum von x, dann gilt key[y]>key[x]

Unterschiedliche Suchbäume

- Schlüsselmenge 3,4,6,7,7,9
- Wir erlauben mehrfache Vorkommen desselben Schlüssels

Ausgabe aller Schlüssel

- Gegeben binärer Suchbaum
- Wie kann man alle Schlüssel aufsteigend sortiert in ⊕(n) Zeit ausgeben?

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Aufruf über Inorder-Tree-Walk(root[T])

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

3

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

3

Kein rechtes Kind vorhanden, d.h. rc[x]=**nil**

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(Ic[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

3

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

-3

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. If x≠nil then
- 2. Inorder-Tree-Walk(Ic[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(Ic[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(Ic[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(Ic[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

"Normale" Induktion

- Wir wollen zeigen, dass Aussage A(i) für alle natürlichen Zahlen i gilt
- Dazu beweisen wir, dass
- (a) A(1) gilt
- (b) Wenn A(i) gilt, dann gilt auch A(i+1)
- (a) heißt Induktionsanfang
- (b) nennt man Induktionsschluss (oder auch Induktionsschritt)
- Die Vorraussetzung in (b) (also A(i)) heißt Induktionsvoraussetzung

Induktion über die Struktur von Binärbäumen

- Wollen zeigen, dass Aussage für alle Binärbäume gilt:
- (a) Zeige Induktionsanfang für "kleine Binärbäume"
- (b) Setze größere Bäume aus kleinen Binärbäumen zusammen, d.h.

Induktion über die Struktur von Binärbäumen

- Wollen zeigen, dass Aussage für alle Binärbäume gilt:
- (a) Zeige Induktionsanfang für "kleine Binärbäume"
- (b) Setze größere Bäume aus kleinen Binärbäumen zusammen, d.h.

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 1

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 0

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Übereinkunft: Ein leerer Baum hat Höhe -1

Damit gilt:
 Höhe eines Baumes mit Wurzel v und
 Teilbäumen A und B ist
 1 + max{ Höhe(A), Höhe(B)}

Induktion über die Struktur von Binärbäumen

- Wir wollen Aussage A(i) durch Induktion über die Höhe von Bäumen zeigen
- (a) Zeige die Aussage für leere Bäume (Bäume der Höhe -1)

 (b) Zeige: Gilt die Aussage für Bäume der Höhe i, so gilt sie auch für Bäume der Höhe i+1

В

Induktion über die Struktur von Binärbäumen

- Wir wollen Aussage A(i) durch Induktion über die Höhe von Bäumen zeigen
- (a) Zeige die Aussage für leere Bäume (Bäume der Höhe -1)

 (b) Zeige: Gilt die Aussage für Bäume der Höhe i, so gilt sie auch für Bäume der Höhe i+1

- Dabei können wir immer annehmen, dass ein Baum der Höhe i+1 aus einer Wurzel v und zwei Teilbäumen A,B besteht, so dass
 - (1) A und B Höhe maximal i haben und
 - (2) A oder B Höhe i hat

Induktion über die Struktur von Binärbäumen

- Wir wollen Aussage A(i) durch Induktion über die Höhe von Bäumen zeigen
- (a) Zeige die Aussage für leere Bäume (Bäume der Höhe -1)

 (b) Zeige: Gilt die Aussage für Bäume der Höhe i, so gilt sie auch für Bäume der Höhe i+1

- Dabei können wir immer annehmen, dass ein Baum der Höhe i+1 aus einer Wurzel v und zwei Teilbäumen A,B besteht, so dass
 - (1) A und B Höhe maximal i haben und
 - (2) A oder B Höhe i hat

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Beweis

(I.A.) Leerer Baum: Keine Ausgabe, also korrekt

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe ≤i.

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe ≤i.
- (I.S.) z.z.: Lemma gilt auch für Höhe i+1≥0.

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe ≤i.
- (I.S.) z.z.: Lemma gilt auch für Höhe i+1≥0.
- Betrachte Inorder-Tree-Walk auf solchem Baum. Höhe

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Beweis

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe ≤i.
- (I.S.) z.z.: Lemma gilt auch für Höhe i+1≥0.
- Betrachte Inorder-Tree-Walk auf solchem Baum.
- Nach Suchbaumeigenschaft sind alle Schlüssel in A kleiner oder gleich Schlüssel von v

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe ≤i.
- (I.S.) z.z.: Lemma gilt auch für Höhe i+1≥0.
- Betrachte Inorder-Tree-Walk auf solchem Baum.
- Nach Suchbaumeigenschaft sind alle Schlüssel in A kleiner oder gleich Schlüssel von v
- Zeile 2: Aufruf für Teilbaum A der Höhe ≤i Nach (I.V.): Schlüssel aus A werden in aufsteigender Reihenfolge ausgegeben

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe ≤i.
- (I.S.) z.z.: Lemma gilt auch für Höhe i+1≥0.
- Betrachte Inorder-Tree-Walk auf solchem Baum.
- Nach Suchbaumeigenschaft sind alle Schlüssel in A kleiner oder gleich Schlüssel von v
- Zeile 2: Aufruf für Teilbaum A der Höhe ≤i Nach (I.V.): Schlüssel aus A werden in aufsteigender Reihenfolge ausgegeben

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Beweis

Zeile 2: Aufruf für Teilbaum A der Höhe ≤i
Nach (I.V.): Schlüssel aus A werden in aufsteigender
Reihenfolge ausgegeben

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Zeile 2: Aufruf für Teilbaum A der Höhe ≤i Nach (I.V.): Schlüssel aus A werden in aufsteigender Reihenfolge ausgegeben
- Zeile 3: key[v] wird ausgegeben
- Alle Schlüssel in Teilbaum B sind größer als Schlüssel von v (Suchbaumeigenschaft)

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- Inorder-Tree-Walk(lc[x])
- Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Zeile 2: Aufruf für Teilbaum A der Höhe ≤i Nach (I.V.): Schlüssel aus A werden in aufsteigender Reihenfolge ausgegeben
- Zeile 3: key[v] wird ausgegeben
- Alle Schlüssel in Teilbaum B sind größer als Schlüssel von v (Suchbaumeigenschaft)
- Zeile 4: Aufruf für Teilbaum B der Höhe ≤i
 Nach (I.V.): Schlüssel aus B werden in aufsteigender
 Reihenfolge ausgegeben

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Zeile 2: Aufruf für Teilbaum A der Höhe ≤i
 Nach (I.V.): Schlüssel aus A werden in aufsteigender
 Reihenfolge ausgegeben
- Zeile 3: key[v] wird ausgegeben
- Alle Schlüssel in Teilbaum B sind größer als Schlüssel von v (Suchbaumeigenschaft)
- Zeile 4: Aufruf für Teilbaum B der Höhe ≤i
 Nach (I.V.): Schlüssel aus B werden in aufsteigender
 Reihenfolge ausgegeben

Lemma

 Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Insgesamt:
- Schlüssel aus A aufsteigend, Schlüssel von v, Schlüssel aus B aufsteigend
- Nach Suchbaumeigenschaft ist dies aufsteigende Folge

Suchen in Binärbäumen

- Gegeben ist Schlüssel k
- Gesucht ist ein Knoten mit Schlüssel k

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

Baumsuche(x,k)

Aufruf mit
x=root[T]

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. if x=nil or k=key[x] then return x
- 2. if k<key[x] then return Baumsuche(lc[x],k)
- 3. **else** return Baumsuche(rc[x],k)

- 1. while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

Aufruf mit x=root[T]

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

Aufruf mit x=root[T]

- while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

- 1. while x≠nil and k≠key[x] do
- 2. **if** k < key[x] **then** $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

- while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x,k)

1. while x≠nil and k≠key[x] do

2. **if** k < key[x] **then** $x \leftarrow lc[x]$

3. else $x \leftarrow rc[x]$

4. return x

Aufruf mit x=root[T]

- 1. while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

- while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

- 1. while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key[x] do
- 2. if k < key[x] then $x \leftarrow lc[x]$
- 3. else $x \leftarrow rc[x]$
- 4. return x

Funktionsweise wie (rekursive) Baumsuche. Laufzeit ebenfalls O(h).

Minimum- und Maximumsuche

- Suchbaumeigenschaft:
 Alle Knoten im rechten Unterbaum eines Knotens x sind größer gleich key[x]
- Alle Knoten im linken Unterbaum von x sind ≤ key[x]

Wird mit Wurzel aufgerufen

MinimumSuche(x)

- 1. while $lc[x]\neq nil$ do $x \leftarrow lc[x]$
- 2. return x

Wird mit Wurzel aufgerufen

Laufzeit O(h)

MinimumSuche(x)

- 1. while $lc[x]\neq nil$ do $x \leftarrow lc[x]$
- 2. return x

Wird mit Wurzel aufgerufen

Laufzeit O(h)

MaximumSuche(x)

- 1. while $rc[x] \neq nil do x \leftarrow rc[x]$
- 2. return x

Nachfolgersuche

- Nachfolger bzgl. Inorder-Tree-Walk
- Wenn alle Schlüssel unterschiedlich, dann ist das der nächstgrößere Schlüssel

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$
- 6. return y

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq nil$ and x=rc[y] do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$
- 6. return y

Laufzeit O(h)

Vorgängersuche

- Symmetrisch zu Nachfolgersuche
- Daher ebenfall O(h) Laufzeit

Laufzeit O(h)

Binäre Suchbäume

- Aufzählen der Elemente mit Inorder-Tree-Walk in O(n) Zeit
- Suche in O(h) Zeit
- Minimum/Maximum in O(h) Zeit
- Vorgänger/Nachfolger in O(h) Zeit

Dynamische Operationen?

- Einfügen und Löschen
- Müssen Suchbaumeigenschaft aufrecht erhalten
- Auswirkung auf Höhe des Baums?

Einfügen

- Ähnlich wie Baumsuche: Finde Blatt, an das neuer Knoten angehängt wird
- Danach wird nil-Zeiger durch neues
 Element ersetzt

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

1. $y \leftarrow nil; x \leftarrow root[T]$

2. while x≠nil do

$$3. \quad y \leftarrow x$$

- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

y wird Vater des einzufügenden Elements

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- $3. \quad y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- $3. \quad y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- $3. \quad y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. **if** key[z]< key[y] **then** $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. **if** key[z]< key[y] **then** $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. **if** y=**nil** then root[T] \leftarrow z
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root[T]$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if key[z] < key[x] then $x \leftarrow lc[x]$
- 5. else $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if y=nil then root[T] $\leftarrow z$
- 8. else
- 9. if key[z] < key[y] then $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Laufzeit O(h)

Löschen

- 3 unterschiedliche Fälle
- (a) zu löschendes Element z hat keine Kinder
- (b) zu löschendes Element z hat ein Kind
- (c) zu löschendes Element z hat zwei Kinder

Fall (a)

zu löschendes Element z hat keine Kinder

Fall (a)

- zu löschendes Element z hat keine Kinder
- Entferne Element

Fall (b)

Zu löschendes Element z hat 1 Kind

Fall (b)

Zu löschendes Element z hat 1 Kind

Fall (c)

Zu löschendes Element z hat 2 Kinder

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z

Nachfolger hat nur ein Kind

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z
- Schritt 2: Entferne Nachfolger

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z
- Schritt 2: Entferne Nachfolger
- Schritt 3: Ersetze z durch Nachfolger

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Datenstruk

Referenz auf z wird übergeben!

Löschen(T,z)

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Löschen(T,z)

- 1. | if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. else y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger

Löschen(T,z)

- 1. | if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. else y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger

Löschen(T,z)

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. | if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. | else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Bestimme das Kind von y, falls existent

en(6)

- 1. if lc[z]=nil or rc[z]=nil then y ←
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. If $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Löschen(T,z)

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. else y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. **if** p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. | else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. else $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. | else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[v]$
- 6. **if** p[y]=**nil then** root[T] Umkopieren des
- 7. else if y=lc[p[y]] then Inhalts von y nach z
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $|\text{key}[z] \leftarrow \text{key}[y]$

Löschen(T,z)

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. else y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Laufzeit O(h)

Löschen(T,z)

- 1. if lc[z]=nil or rc[z]=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq nil$ then $p[x] \leftarrow p[y]$
- 6. if p[y]=nil then $root[T] \leftarrow x$
- 7. else if y=lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $rc[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Binäre Suchbäume

- Ausgabe aller Elemente in O(n)
- Suche, Minimum, Maximum, Nachfolger in O(h)
- Einfügen, Löschen in O(h)

Frage

Wie kann man eine "kleine" Höhe unter Einfügen und Löschen garantieren?

AVL-Bäume [Adelson-Velsky und Landis]

 Ein Binärbaum heißt AVL-Baum, wenn für jeden Knoten gilt: Die Höhe seines linken und rechten Teilbaums unterscheidet sich höchstens um 1.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

a)
$$n \le 2^{h+1}$$
 -1:

AVL-Baum ist Binärbaum

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

a)
$$n \le 2^{h+1} -1$$
:

- AVL-Baum ist Binärbaum
- Ein vollständiger Binärbaum hat eine maximale Anzahl Knoten unter allen Binärbäumen der Höhe h

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

a)
$$n \le 2^{h+1} -1$$
:

- AVL-Baum ist Binärbaum
- Ein vollständiger Binärbaum hat eine maximale Anzahl Knoten unter allen Binärbäumen der Höhe h
- N(h) = Anzahl Knoten eines vollständigen Binärbaums der Höhe h

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

a)
$$n \le 2^{h+1} -1$$
:

 N(h) = Anzahl Knoten eines vollständigen Binärbaums der Höhe h

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

a)
$$n \le 2^{h+1} -1$$
:

 N(h) = Anzahl Knoten eines vollständigen Binärbaums der Höhe h

•
$$N(h) = 1 + 2 + 4... + 2^h = \sum_{i=0}^{h} 2^i = 2^{h+1} - 1$$

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b)
$$(3/2)^h \le n$$
:

Beweis per Induktion über die Struktur von AVL-Bäumen

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- Beweis per Induktion über die Struktur von AVL-Bäumen
- (I.A.) Wir betrachten alle AVL-Bäume der Höhe 0 und 1.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- Beweis per Induktion über die Struktur von AVL-Bäumen
- (I.A.) Wir betrachten alle AVL-Bäume der Höhe 0 und 1.
- h=0: Der Baum hat einen Knoten. Es gilt (3/2)^h =1 ≤ 1.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- Beweis per Induktion über die Struktur von AVL-Bäumen.
- (I.A.) Wir betrachten alle AVL-Bäume der Höhe 0 und 1.
- h=0: Der Baum hat einen Knoten. Es gilt (3/2)^h =1 ≤ 1.
- h=1: Der Baum hat 2 oder 3 Knoten. Es gilt $(3/2)^h = 3/2 \le 2 \le 3$.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- Beweis per Induktion über die Struktur von AVL-Bäumen.
- (I.A.) Wir betrachten alle AVL-Bäume der Höhe 0 und 1.
- h=0: Der Baum hat einen Knoten. Es gilt $(3/2)^h = 1 \le 1$.
- h=1: Der Baum hat 2 oder 3 Knoten. Es gilt $(3/2)^h = 3/2 \le 2 \le 3$.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b)
$$(3/2)^h \le n$$
:

(I.V.) Für jeden AVL-Baum der Höhe j, 0 ≤ j ≤ h, gilt der Satz.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- (I.V.) Für jeden AVL-Baum der Höhe j, $0 \le j \le h$, gilt der Satz.
- (I.S.) Sei h≥1. Betrachte AVL-Baum T der Höhe h+1 mit Wurzel v.
- Seien A,B linker bzw. rechter Teilbaum von v.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- (I.V.) Für jeden AVL-Baum der Höhe j, 0 ≤ j ≤ h, gilt der Satz.
- (I.S.) Sei h≥1. Betrachte AVL-Baum T der Höhe h+1 mit Wurzel v.
- Seien A,B linker bzw. rechter Teilbaum von v.
- A oder B (oder beide) hat Tiefe h.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- (I.V.) Für jeden AVL-Baum der Höhe j, 0 ≤ j ≤ h, gilt der Satz.
- (I.S.) Sei h≥1. Betrachte AVL-Baum T der Höhe h+1 mit Wurzel v.
- Seien A,B linker bzw. rechter Teilbaum von v.
- A oder B (oder beide) hat Tiefe h.
- Wegen AVL-Eigenschaft haben A und B Tiefe mindestens h-1≥0.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b) $(3/2)^h \le n$:

- (I.V.) Für jeden AVL-Baum der Höhe j, 0 ≤ j ≤ h, gilt der Satz.
- (I.S.) Sei h≥1. Betrachte AVL-Baum T der Höhe h+1 mit Wurzel v.
- Seien A,B linker bzw. rechter Teilbaum von v.
- A oder B (oder beide) hat Tiefe h.
- Wegen AVL-Eigenschaft haben A und B Tiefe mindestens h-1≥0.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

b)
$$(3/2)^h \le n$$
:

- Wegen AVL-Eigenschaft haben A und B Tiefe mindestens h-1≥0.
- Da T ein AVL-Baum ist, sind auch A und B AVL-Bäume.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b)
$$(3/2)^h \le n$$
:

- Wegen AVL-Eigenschaft haben A und B Tiefe mindestens h-1≥0.
- Da T ein AVL-Baum ist, sind auch A und B AVL-Bäume.

 Kann also (I.V.) anwenden, da A und B AVL-Bäume der Tiefe ≥0 sind

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b) $(3/2)^h \le n$:

- Wegen AVL-Eigenschaft haben A und B Tiefe mindestens h-1≥0.
- Da T ein AVL-Baum ist, sind auch A und B AVL-Bäume.

 Kann also (I.V.) anwenden, da A und B AVL-Bäume der Tiefe ≥0 sind

- Es gibt drei Fälle:
 - 1) A,B haben Höhe h
 - 2) A hat Höhe h und B Hat Höhe h-1
 - 3) A hat Höhe h-1 und B hat Höhe h

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b)
$$(3/2)^h \le n$$
:

Sei T(h) die minimale Anzahl Knoten in einem AVL-Baum der Tiefe h.

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

Beweis

b)
$$(3/2)^h \le n$$
:

 Sei T(h) die minimale Anzahl Knoten in einem AVL-Baum der Tiefe h. Nach (I.V.) gilt in allen drei Fällen

$$T(h+1) \ge T(h) + T(h-1) + 1 \ge \left(\frac{3}{2}\right)^h + \left(\frac{3}{2}\right)^{h-1} + 1$$

Satz

Für jeden AVL-Baum der Höhe h≥0 mit n Knoten gilt:

$$(3/2)^h \le n \le 2^{h+1}-1$$

- b) $(3/2)^h \le n$:
- Sei T(h) die minimale Anzahl Knoten in einem AVL-Baum der Tiefe h.
 Nach (I.V.) gilt in allen drei Fällen

$$T(h+1) \ge T(h) + T(h-1) + 1 \ge \left(\frac{3}{2}\right)^{h} + \left(\frac{3}{2}\right)^{h-1} + 1$$

$$\ge (1+3/2) \cdot \left(\frac{3}{2}\right)^{h-1} \ge \left(\frac{3}{2}\right)^{2} \cdot \left(\frac{3}{2}\right)^{h-1} = \left(\frac{3}{2}\right)^{h+1}$$

$$B \qquad B$$