Departamento de Tecnologías de la Información Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación

Examen de febrero

EJERCICIO 1 (1 punto)

Enuncie y demuestre el Lema de Bombeo para Autómatas Finitos.

EJERCICIO 2 (2 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky.

$E \rightarrow E A$	$F \rightarrow M H$	$H \rightarrow E N$
$E \rightarrow T B$	$\mathrm{F} o id$	$\mathrm{M} o Iparen$
$E \rightarrow M C$	$A \rightarrow O T$	$N \rightarrow rparen$
$E \rightarrow id$	$B \rightarrow P F$	$O \rightarrow plus$
$T \rightarrow T D$	$C \rightarrow E N$	$P \rightarrow prod$
$T \rightarrow M G$	$D \rightarrow P F$	
$T \rightarrow id$	$G \rightarrow E N$	

Verifique que la cadena "id prod lparen id plus id rparen" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

El siguiente algoritmo permite reconocer el lenguaje L={ $0^k \ 1^k \mid k \geq 0$ }

- 1.- Recorrer la cinta. Si se encuentra un 0 a la derecha de un 1, rechazar.
- 2.- Repetir mientras queden 0s y 1s:
- 3.- Recorrer la lista verificando si el número de 0s y 1s es par o impar.Si es impar, *rechazar*.
- 4.- Recorrer la lista marcando (quitando) la mitad de 0s y la mitad de 1s.
- 5.- Si no quedan 0s ni 1s, aceptar. En otro caso, rechazar.

Desarrolle una Máquina de Turing que implemente este algoritmo.

EJERCICIO 4 (1.5 puntos)

Sea $HALT_{TM}$ el lenguaje formado por las cadenas < M, w> tales que M es la codificación de una máquina de Turing y w es una cadena que hace que dicha máquina termine (ya sea aceptando o rechazando). Demuestre que el lenguaje $HALT_{TM}$ es indecidible.

EJERCICIO 5 (2 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Factorial(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOI-gual(x,y), MenorOIgual(x,y).

Demuestre que la función Mod3(x) es primitiva recursiva.

$$Mod3(x) = Resto(x, 3) = x \% 3$$

EJERCICIO 6 (1.5 puntos)

Defina los siguientes conceptos:

- (a) ¿Qué es un problema de clase P?
- (b) ¿Qué es un problema de clase NP?
- (c) ¿Qué es un problema NP-completo?