

Année universitaire: 2023-2024

Ecole Nationale de la Statistique et de l'Analyse Economique
(ENSAE) Pierre Ndiaye de Dakar Dr. S. DIOUF

Contrôle 1 D'algèbre 1 du 1^{er}Semestre : Section AS1

Durrée : 4 heures

Exercice 1: 1,5 pts Soient $n \in \mathbb{N}^*$ et x_0, x_1, \dots, x_n des nombres réels dans [0, 1] tels que : $x_0 \le x_1 \le \dots \le x_n \le 1$.

Montrer par l'absurde que $\exists i \in \{1, 2, \dots, n\}$ tel que $|x_i - x_{i-1}| \leq \frac{1}{n}$.

Exercice 2: 4 pts (Les parties I, II, III, et IV sont indépendantes)

Partie I : Soit $\mathcal R$ la relation binaire dans $E=\{0,1,2,3,4\}$ définie par :

 $x\mathcal{R}y \iff x+y$ est divisible par 3.

1. R est -elle réflexive?

2. R est -elle symétrique?

3. R est -elle antisymétrique?

4. R est -elle transitive?

Partie II: Une relation binaire \mathcal{R} sur un ensemble E est dite circulaire si pour tous $x, y, z \in E$, on a: $(x\mathcal{R}y \ et \ y\mathcal{R}z) \Longrightarrow z\mathcal{R}x$.

Montrer qu'une relation binaire est d'équivalence si et seulement si elle est réflexive et circulaire.

Partie III : On dit qu'une relation binaire sur un ensemble E est une relation de prépériode si elle est réflexive et transitive.

Soit P une relation binaire de prépériode. On considère la relation binaire \mathcal{R} définie par : $x\mathcal{R}y \iff (xPy \ et \ yPx)$.

Montrer que R est une relation d'equivalence.

Partie IV : Dans $\mathbb{Z} \times \mathbb{Z}^*$, on définit \mathcal{R} par : $(x,y)\mathcal{R}(x',y') \iff xy' = x'y$.

- 1. Démontrer que \mathcal{R} est une relation d'equivalence.
- 2. Déterminer les classes d'equivalences de (0,1) et de (6,2).
- 3. Soit $(x, y) \in \mathbb{Z} \times \mathbb{Z}^*$. Calculer C(x, y); la classe déquivalence de (x, y).

Exercice 3:3 pts

Soit les deux applications suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 et $g: \mathbb{R} \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto f(x,y) = x+y$ $x \longmapsto g(x) = (x^2, -x^2)$

- 1. f est-elle injective? f est-elle surjective?
- 2. g est-elle injective? g est-elle surjective?
- 3. Calculer $(f \circ g)(x)$.
- 4. $f \circ g$ est-elle injective? $f \circ g$ est-elle surjective?

Exercice 4: 3 pts (Les parties I et II sont indépendantes)

Partie I : Soit (G, .) un groupe. Le centre de G, noté Z(G), est l'ensemble : $Z(G) = \{x \in G/xy = yx, \forall y \in G\}.$

- 1. Vérifier que Z(G) est un sous-groupe commutatif de G.
- 2. Montrer que G est commutatif si et seulement si G = Z(G).

Partie II : Étant donnés un groupe G et une partie non vide A de G, on appelle normalisateur et centralisateur de A, les parties N(A) et C(A) de A, respectivement déterminés par : $N(A) = \{x \in G/Ax = xA\}$ et $C(A) = \{x \in G/\forall a \in A, ax = xa\}$.

1. Montrer que N(A) est un sous-groupe de G.

2. Montrer que C(A) est un sous-groupe de N(A).

3. Calculer N(Z).

Exercice 5:4 pts.

On note $\mathbb{Z}[\sqrt{2}]$ l'ensemble des réels suivant :

$$\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2}/m, n \in \mathbb{Z}\}.$$

1. Montrer que $(\mathbb{Z}[\sqrt{2}], +, .)$ est un sous-anneau de \mathbb{R} .

2. On considère l'application

$$f: \mathbb{Z}[\sqrt{2}] \longrightarrow \mathbb{Z}[\sqrt{2}]$$

$$m + n\sqrt{2} \longmapsto f(m + n\sqrt{2}) = m - n\sqrt{2}$$

Montrer que f est un automorphisme de l'anneau $(\mathbb{Z}[\sqrt{2}],+,.)$

3. On considère l'application

$$N: \mathbb{Z}[\sqrt{2}] \longrightarrow \mathbb{Z}$$

$$x \mapsto N(x) = xf(x)$$

Montrer que N est un morphisme d'anneaux pour la multiplication.

4. Montrer qu'un élément x de $\mathbb{Z}[\sqrt{2}]$ est inversible si et seulement si $N(x)=\pm 1$.

5. On note
$$\mathbb{Q}[\sqrt{2}] = \{m + n\sqrt{2}/m, n \in \mathbb{Q}\}.$$

Montrer que $(\mathbb{Q}[\sqrt{2}], +, .)$ est un corps.

Anneaux booléens PROBLEME

Partie 1: Etude de la différence symétrique.

Soient A et B deux sous-ensembles d'un ensemble E. On appelle différence symétrique de A et B le sousensemble:

 $A\Delta B = (A \setminus B) \cup (B \setminus A).$

- 1. Démontrer que la différence symétrique est commutative.

- Est-elle associative? en pout whiter la fonction indicatrice
 Admet-elle un élément neutre?
 Montrer que AΔB = (A∪B) \ (A∩B). on peut while ser la fonction indicatrice
- 5. Montrer que l'intersection est distributive sur la différence symétrique.

Partie 2: Etude d'un anneau de Boole

On considère un anneau A dont l'addition (loi de groupe) et la multiplication sont respectivement notées + et On note 0 l'élément neutre de l'addition. On dit que l'anneau A est un anneau de Boole si tout élément de A est idempotent pour la multiplication, c'est-à-dire si

$$\forall x \in A, \ x \times x = x$$

- 1. Montrer que l'anneau $(\mathbb{Z}/2\mathbb{Z}, +, \times)$ est un anneau de Boole.
- 2. (a) Montrer que dans un anneau de Boole, tout élément est son propre symétrique pour l'addition.
 - (b) En déduire qu'un anneau de Boole est nécessairement commutatif.
- 3. On suppose que A est intègre. Montrer alors que $Card(A) \leq 2$.

Partie 3: Exemple d'anneau de Boole en théorie des ensembles Bonus:

- 1. Dans cette question, on considère E un ensemble non vide et on désigne par $\mathcal{P}(E)$ l'ensemble des parties de E. En utilisant la première partie, montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau de Boole.
- 2. Dans la suite de ce problème, $(A, +, \times)$ désignera un anneau de Boole, et on désigne par E l'ensemble des éléments m de A, non nuls et tels que pour tout $x \in A$, mx = 0 ou mx = m. Montrer que si m et m' sont deux éléments distincts de E alors mm' = 0.
- 3. Pour tout élément $x \in E$, on définit la partie

$$\Phi(x) = \{ m \in E | mx = m \}.$$

- (a) Montrer que, pour tout x et y de A, $\Phi(xy) = \Phi(x) \cap \Phi(y)$.
- (b) Montrer que, pour tout $(x, y) \in A^2$, $\Phi(x + y + xy) = \Phi(x) \cup \Phi(y)$.
- (c) Montrer que pour tout $x \in A$, $\Phi(1+x) = \overline{\Phi(x)}$ (le complémentaire est dans E).
- (d) Montrer que, pour tout $(x,y) \in A^2$, $\Phi(x)\Delta\Phi(y) = \Phi(x+y)$.
- (e) En déduire que Φ est un morphisme d'anneaux de $(A, +, \times)$ dans $(\mathcal{P}(E), \Delta; \cap)$.
- 4. On suppose à présent que $(A, +, \times)$ est un anneau de Boole de cardinal fini.
- 5. (a) Soit x_0 un élément non nul de A. Montrer que si $x_0 \notin E$, il existe $x_1 \in A$ tel que $x_0x_1 \neq 0$ et $x_0x_1 \neq x_0$. En déduire l'existence d'un élément $y \in A$ tel que $x_0y \in E$
 - (b) En déduire que le morphisme Φ est injectif
 - (c) Soit F un sous-ensemble de E, et soit S_F la somme des éléments de F (avec par convention $S_\emptyset=0$). Déterminer la partie $\Phi(S_F)$. En déduire que le morphisme Φ est surjectif.
 - (d) Prouver que le cardinal d'un anneau booléen fini est une puissance de 2.