

AU OPTRONICS CORPORATION

Product Specification

17.0" SXGA Color TFT-LCD Module

Model Name: M170EG01 V.5

Approved by	Prepared by

DDBU Marketing Division / AU Optronics

Customer Checked & Approved by

Ver0.1 1/29

17.0" SXGA Color TFT-LCD Module Model Name: M170EG01 V.5

(♠) Preliminary Specifications() Final Specifications

Note: This Specification is subject to change without notice.

Ver0.1 2/29

Contents

1.0 Handling Precautions	
2.1 Display Characteristics	
2.2 Functional Block Diagram	
2.3 Optical Characteristics	
2.4 Pixel format image	
3.0 Electrical characteristics	13
3.1 Absolute Maximum Ratings	13
3.2 Connectors	14
3.3 Signal Pin	14
3.4 Signal Description	15
3.5 Signal Electrical Characteristics	18
3.6 Interface Timings	18
3.6.1 Timing Characteristics	18
3.6.2 Timing Definition	19
3.8 Power ON/OFF Sequence	21
4.0 Backlight Characteristics	22
4.1 Signal for Lamp connector	22
4.2 Parameter guideline for CCFL Inverter	22
5.0 Vibration, Shock, and Drop	23
5.1 Vibration & Shock	23
5.2 Drop test	23
6.0 Environment	23
6.1 Temperature and Humidity	23
6.1.1 Operating Conditions	23
6.1.2 Shipping Conditions	23
6.2 Atmospheric Pressure	24
6.3 Thermal Shock	24
7.0 Reliability	24
7.1 Failure Criteria	24
7.2 Failure Rate	24
7.2.1 Usage	
8.0 Safety	25
8.1 Sharp Edge Requirements	25
8.2 Materials	25
8.2.1 Toxicity	25
8.2.2 Flammability	25
8.3 Capacitors	25

VNO —	Product Specification	M170EG01 V.5
	ement	
9.1 National Test Lab Req	uirement	26
9.2 Label		26
10.0 Mechanical	Characteristics	27

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 2005/2/28	All	First Edition for Customer	All	

Ver0.1 5/29

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL reflector edge softly. Otherwise the TFT module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT module.
- 11) After installation of the TFT module into an enclosure (Desktop monitor Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT module from outside. Otherwise the TFT module may be damaged.

Ver0.1 6/29

2.0 General Description

This specification applies to the 17.0 inch Color TFT/LCD Module M170EG01 V5.

This module is designed for a display unit of personal computer.

The display supports the SXGA (1280(H) x 1024(V)) screen format and 16.2M colors (RGB 6-bits + FRC data).

All input signals are 2 Channel LVDS interface compatible.

This module does not contain an inverter card for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 condition:

ITEMS	Unit	SPECIFICATION	ONS				
Screen Diagonal	[mm]	432(17.0")					
Active Area	[mm]	337.920 (H) x	270.336(V)				
Pixels H x V		1280(x3) x 102	24				
Pixel Pitch	[mm]	0.264 (per one	triad) x 0.20	64			
Pixel Arrangement		R.G.B. Vertica	al Stripe				
Display Mode		Normally Whit	е				
White Luminance	[cd/m ²]	260 (Typ)					
Contrast Ratio		450 : 1 (Typ)					
Optical Rise Time/Fall Time	[msec]	16 (Typ)					
Color Saturation		72% NTSC					
Nominal Input Voltage VDD	[Volt]	+5.0 V					
Power Consumption	[Watt]	25.8 W(Typ)					
(VDD line + CCFL line)		(PDD=6 W, P0	CFL=19.8 V	V @Lamp=7.5ı	mA)		
Weight	[Grams]	1900 (Typ)					
Physical Size	[mm]		Min.	Тур.	Max.		
		Horizatal(H)	358	358.5	359.0		
		Vertical(V)	296	296.5	297		
		Depth(D)	16.5	17.0	17.5		
Electrical Interface		Dual Channel	LVDS				
Support Color		16.2M colors (RGB 6-bit +	FRC data)			
Temperature Range							
Operating	[°C]	0 to +50					
Storage (Shipping)	[°C]	-20 to +60					

Ver0.1 7/29

2.2 Functional Block Diagram

The following diagram shows the functional block of the 17.0 inches Color TFT/LCD Module:

FI-XB30SRL-HF11 / MDF76LBRW-30S-1H

JST-BHSR-02VS-1 (2pin ×2)

Mating Type: JAE FI-X30C2L / HRS MDF76G-30P-1SD

SM02B-BHSS-1-TB

Ver0.1 8/29

2.3 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 (Room Temperature):

Item	Unit	Conditions	Min.	Тур.	Max.	Note
		Horizontal (Right) CR = 10 (Left)	60 60	70 70	-	-
\\(\tau_1 \)		Vertical (Up) CR = 10 (Down)	60 50	70 60	-	-
Viewing Angle	[degree]	Horizontal (Right) CR = 5 (Left)	70 70	80 80		
		Vertical (Up) CR = 5 (Down)	70 70	80 80		
Contrast ratio		Normal Direction	250	450	-	-
		Rising Time	-	12	20	
Response Time	[msec]	Falling Time	-	4	5	Note 1
		Rising + Falling	-	16	25	
		Red x	0.61	0.64	0.67	-
		Red y	0.31	0.34	0.37	-
Color / Chromaticity		Green x	0.26	0.29	0.32	-
Coordinates (CIE)		Green y	0.58	0.61	0.64	-
		Blue x	0.11	0.14	0.17	-
		Blue y	0.04	0.07	0.10	-
Color Coordinates (CIE)		White x	0.28	0.31	0.34	-
White		White y	0.30	0.33	0.36	-
White Luminance @ CCFL 7.5mA (center)	[cd/m ²]		210	260		-
Luminance Uniformity	[%]		75	80		Note 2
Crosstalk (in 75Hz)	[%]				1.5	Note 3
Flicker	dB				-20	Note 4

Equipment: Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter

(PR 880, BM-5A / BM7, CS-1000, CA210, SR_3, EZ Contrast*, Optiscope& Westar TRD-100)

Aperture 1 ° with 100cm VD or 2 ° with 50cm viewing distance

Test Point Center (VESA point 9)

Environment < 1 lux

^{*} EZ Contrast is a different measurement tool with very close viewing distance.

Ver0.1 9/29

Note 1: Definition of Response time

The output signals of photodetector are measured when the input signals are changed from 'Full Black" to 'Full White" (rising time), and from 'Full White" to 'Full Black "(falling time), respectively. The response time is interval between the 10% and 90% of amplitudes.

Note 2: Brightness uniformity of these 9 points is defined as below

Uniformity =
$$\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$$

Ver0.1 10/29

Note 3:

Unit: percentage of dimension of display area

0 gray level

I L_A - L_A : I / L_A x 100%= 1.5% max., L_A and L_B are brightness at location A and B

I $L_{B^{\text{-}}}L_{B^{\text{+}}}$ I / L_{B} x 100%= 1.5% max., $L_{A^{\text{+}}}$ and $L_{B^{\text{+}}}$ are brightness at location A' and B'

Note4:

Test Paterm: Subchecker Pattern

Gray Level = L127

Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at } 30 \text{ Hz)}}{DC \text{ Level}}$$

Ver0.1 11/29

2.4 Pixel format image

Following figure shows the relationship of the input signals and LCD pixel format.

	(DDE)	E	VEI	N	(ODI	O	E۱	/EN	1	C	DD)	E۱	/EN	I
1 ST	R	G	В	R	G	В	R	G	В	 R	G	В	R	G	В	R	G	В
								1				•		1 1 1				
								1						1 1 1 1				
								1 1 1 1						1 1 1 1 1			1 1 1 1 1 1	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1						1 1 1 1 1 1			1 1 1 1 1 1	
		i ! !			-			1			 			1 1			1	
1024 TH	R	G	В	R	G	В	R	G	В	 R	G	В	R	G	В	R	G	В

Ver0.1 12/29

3.0 Electrical characteristics

3.1 Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VIN	-0.3	6	[Volt]	
CCFL Current	ICFL	-	8.5	[mA] rms	
Operating Temperature	TOP	0	+50	[°C]	Note
Operating Humidity	HOP	5	90	[%RH]	Note
Storage Temperature	TST	-20	+60	[°C]	Note
Storage Humidity	HST	5	90	[%RH]	Note

Please refer the graph below for corresponding of Min/Max values of temperature and humidity.

Note: Maximum Wet-Bulb should be 39 and No condensation.

Relative Humidity %

Ver0.1 13/29

3.2 Connectors

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	JAE or compatible
Type Part Number	FI-XB30SRL-HF11 / MDF76LBRW-30S-1H
Mating Housing Part Number	JAE FI-X30C2L / HRS MDF76G-30P-1SD

Connector Name / Designation	Lamp Connector / Backlight lamp
Manufacturer	JST
Type Part Number	BHSR-02VS-1
Mating Type Part Number	SM02B-BHSS-1-TB

3.3 Signal Pin

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	VSS	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	VSS
15	RxEIN1-	16	RxEIN1+
17	VSS	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	VSS
25	VSS	26	NC
27	VSS	28	VCC
29	VCC	30	VCC

Ver0.1 14/29

3.4 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN#	SIGNAL NAME	DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data,H-Sync,V-Sync,DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
7	VSS	Power Ground
8	RxOCLKIN-	Negative LVDS differential clock input (Odd clock)
9	RxOCLKIN+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	VSS	Power Ground
15	RxEIN1-	Positive LVDS differential data input (Even data)
16	RxEIN1+	Negative LVDS differential data input (Even data)
17	VSS	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLKIN-	Negative LVDS differential clock input (Even clock)
21	RxECLKIN+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	VSS	Power Ground
25	VSS	Power Ground
26	NC	No Connection (for AUO test)
27	VSS	Power Ground
28	VCC	+5.0V Power Supply
29	VCC	+5.0V Power Supply
30	VCC	+5.0V Power Supply

Ver0.1 15/29

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

Note3: Please follow PSWG.

Ver0.1 16/29

The input data format:

Note1: Normally, DE, VS, HS on EVEN channel are not used.

Note2: Please follow PSWG.

Note3: 8-bit in

Ver0.1 17/29

3.5 Signal Electrical Characteristics

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VTH	Differential Input High Threshold	-	-	100	[mV]	VICM = 1.2V Note
VTL	Differential Input Low Threshold	-100	-	-	[mV]	VICM = 1.2V Note
VID	Input Differential Voltage	100	400	600	[mV]	Note
VICM	Differential Input Common Mode Voltage	1.1	-	1.45	[V]	VTH/VTL = ± 100Mv Note

Note

LVDS Signal Waveform

3.6 Interface Timings

3.6.1 Timing Characteristics

Item		Symbol	Min	Тур	Max	Unit
Da	ta CLK	Tclk	40	54	70	MHz
Llagation	Period	Th	685	844	1024	Tclk
H-section	Display Area	Tdisp(h)	640	640	640	Tclk
V a a ation	Period	Tv	1036	1066	2048	Th
V-section	Display Area	Tdisp(v)	1024	1024	1024	Th
Fran	ne Rate	F	49	60	76	Hz

Note: DE mode only

Ver0.1 18/29

3.6.2 Timing Definition

Ver0.1 19/29

3.7 Power Consumption

Input power specifications are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	4.5	5	5.5	[Volt]	± 10%
IDD	VDD current	-	1200	1560	[mA]	Vin=5V , All Black Pattern, at 75Hz
Irush	LCD Inrush Current	-	-	2.5	[A]	Note
PDD	VDD Power		6	7.8	[Watt]	Vin=5V , All Black Pattern, at 75Hz
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV]	Vin=5V , All Black Pattern, at 75Hz

Note: Measurement conditions:

Vin rising time

Ver0.1 20/29

3.8 Power ON/OFF Sequence

Vin and lamp power on/off sequence are as follows. The timing parameters of interface signal are shown in the table below. The signal please reference "3.4 Signal Description".

Symbol		Values				
Syllibol	Min.	Тур.	Max.	Unit		
T1	0.5	-	10	ms		
T2	0	-	10	ms		
Т3	200	-	-	ms		
T4	100	-	-	ms		
T5	0	16	50	ms		
T6	-	-	10	ms		
T7	1000	-	-	ms		

Note: The values of the table are follow PSWG.

Ver0.1 21/29

4.0 Backlight Characteristics

4.1 Signal for Lamp connector

	Connector No.	Pin No.	Input	Color	Function
	CNIA	1	Hot1	Pink	High Voltage
	CN1	2	Cold1	White	Low Voltage
Upper	ONIO	1	Hot2	Blue	High Voltage
CN2	CN2	2	Cold2	Black	Low Voltage
	ONIO	1	Hot1	Pink	High Voltage
	CN3	2	Cold1	White	Low Voltage
Lower	ONIA	1	Hot2	Blue	High Voltage
	CN4	2	Cold2	Black	Low Voltage

4.2 Parameter guideline for CCFL Inverter

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
ISCFL	CCFL standard current	7.0	7.5	8.0	[mA] rms	(Ta=25°C) <i>Note 1</i>
IRCFL	CCFL operation range	3.0	7.5	8.0	[mA] rms	(Ta=25°C)
FCFL	CCFL Frequency	40	60	80	[KHz]	(Ta=25°C) Note 2
ViCFL (0°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1500	-	-	[Volt] rms	(Ta=0°C)
ViCF (25°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1150	-	-	[Volt] rms	(Ta=25°C)
VCFL	CCFL Operation Voltage	-	660 @7.5mA	700 @3.0mA	[Volt] rms	(Ta=25°C) Note 1
PCFL	CCFL Power consumption (for reference)	-	19.8	21.8	[Watt]	(Ta=25°C) Note 3
LTCFL	CCFL life Time	30,000	50,000	-	[Hour]	(Ta=25°C) <i>Note 4</i>

Note 1: CCFL standard current is measured at 25 ±2 .

Note 2: CCFL Frequency should be carefully determined to avoid interference between inverter and TFT LCD

Note 3: The variance of CCFL power consumption is ± 10%. Calculator value for reference (ICFLxVCFLx4=PCFL).

Note 4: CCFL life time is determined as the time at which brightness of lamp is 50%. The typical life time of CCFL is on the condition at 7.5 mA lamp current.

Ver0.1 22/29

5.0 Vibration, Shock, and Drop

5.1 Vibration & Shock

Vibration Test Spec:

Frequency: 10 - 200Hz

Sweep: 30 Minutes each Axis (X, Y, Z)

Acceleration: 1.5G(10~200Hz P- P)

Test method:

Acceleration (G)	1.5
Frequency (Hz)	10~200~10
Active time (min)	30

Shock Test Spec:

Acceleration (G) –a	50
Active time -b	20 ms
Wave form	Half-sin
Times	1

Direction: ±X, ±Y, ±Z

5.2 Drop test

Package test: The drop height is 60cm.

6.0 Environment

The display module will meet the provision of this specification during operating condition or after storage or shipment condition specified below. Operation at 10% beyond the specified range will not cause physical damage to the unit.

6.1 Temperature and Humidity

6.1.1 Operating Conditions

The display module operates error free, when operated under the following conditions;

Temperature $0 \, ^{\circ}\text{C}$ to $50 \, ^{\circ}\text{C}$ Relative Humidity 8% to 95% Wet Bulb Temperature $39.0 \, ^{\circ}\text{C}$

6.1.2 Shipping Conditions

The display module operates error free, after the following conditions;

Temperature $-20\,^{\circ}\text{C}$ to 60 $^{\circ}\text{C}$ Relative Humidity 5% to 100% Wet Bulb Temperature 39.0 $^{\circ}\text{C}$

Ver0.1 23/29

6.2 Atmospheric Pressure

The display assembly is capable of being operated without affecting its operations over the pressure range as following specified;

	Pressure	Note
Maximum Pressure	1040hPa	(sea level)
Minimum Pressure	674hPa	(3048m)

6.3 Thermal Shock

The display module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again.

Thermal shock cycle -20 °C for 30min 60 °C for 30min

Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before powering on.

7.0 Reliability

This display module and the packaging of that will comply following standards.

7.1 Failure Criteria

The display assembly will be considered as failing unit when it no longer meets any of the requirements stated in this specification. Only as for maximum white luminance, following criteria is applicable.

Maximum white Luminance shall be 150cd/m² or more.

7.2 Failure Rate

The average failure rate of the display module (from first power-on cycle till 1,000 hours later) will not exceed 1.0%. The average failure rate of the display module from 1,000 hours until 16,000 hours will not exceed 0.7% per 1000 hours.

7.2.1 Usage

The assumed usage for the above criteria is:

- 220 power-on hours per month
- 500 power on/off cycles per month
- Maximum brightness setting
- Operation to be within office environment (25°C typical)

Ver0.1 24/29

8.0 Safety

8.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

8.2 Materials

8.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible ADT Toxicologist.

8.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

8.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

Ver0.1 25/29

9.0 Other requirement

9.1 National Test Lab Requirement

The display module will satisfy all requirements for compliance to

UL 1950, First Edition
U.S.A. Information Technology Equipment
CSA C22.2 No.950-M89
Canada, Information Technology Equipment
International, Information Technology Equipment
International, Information Processing Equipment

(European Norm for IEC950)

9.2 Label

The label is on the panel as shown below:

Ver0.1 26/29

10.0 Mechanical Characteristics

Ver1.0 27/29

Ver1.0 28/29