Uebungsblatt 05

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

a. $(a^+ + b^+ a^*)(b + bba^+)^*$ b. $a^*(ba^* + bb^+ a)^*$ c. $(b^*ab^*ab^*ab^*ab^*ab^*)^*$

Aufgabe 2

a. Behauptung: L_1 ist nicht regulär, also

 $L_1 = \{a^m \mid m > 0 \text{ ist ein Quadratzahl }\}$ ist nicht durch endlichen Automaten erkennbar.

- Angenommen, L_1 wäre regulär. Dann gäbe es ein k wie im Pumping Lemma. Jeder k-große $(|w| \ge k)$ Wort $w \in L_1$ hätte im k-vorderen Bereich $(|xy| \le k)$ ein nichtleere Teilwort y, das sich "aufpumpen" lässt.
- Mit dem k von oben betracten wir jetzt das Wort $w = (a^k)^k$
- 1. Es ist in L_1
- 2. Es ist k-gross ($|w| k^2 \ge k$)
- Es müsst im k-vorderen Bereich ein Teilwort haben, das sich aufpumpen lässt. Aber wenn wir einen nichtleeren Teil y aufpumpen bekommen wir ein neues Wort w', dessen Länge |w'| keine Quadratzahl ist.

Spezifischer: $|w| = k^2$

Das Wort mit der kleisten Länge, die aber größer als k^2 ist, ist $w_0 = (a^{(k+1)})^{k+1}$

mit
$$|w_0| = (k+1)^2 = k^2 + 2k + 1$$

Da
$$0 < |y| \le k$$
 gilt $|w'| = k^2 + |y| \le k^2 + k < k^2 + 2k + 1$, also $w' \notin L_1$. Widerspruch!

Es gibt daher keinen endlichen Automaten A mit $L_1 = L(A)$.

Daraus folgt: L_1 ist nicht regulär. \square

b.
$$L = \{a^n b^n | n \in \mathbb{N} \land n > 0\}$$

Äquivalenzklassen von $L_2 = \{a^n b^n | n \in \mathbb{N} \land n > 0\}$

•
$$[\epsilon] = {\epsilon}, [a] = {a}, [aa] = {aa}, ..., [a^k] = {a^k}(k \in \mathbb{N})$$

•
$$[ab] = \{ab, a^2b^2, \dots\}, [a^2b] = \{a^2b, a^3b^2, a^4b^3, \dots\},$$

 $[a^3b] = \{a^3b, a^4b^2, a^5b^3, \dots\}, \dots, [a^kb] = \{a^{k+i-1}b^i|i \ge 1\}(k \in \mathbb{N})$

•
$$\Sigma^* - L_2$$
 mit $\Sigma = \{a, b\} = \{bx, a^n b^m, xbay \mid x, y \in \Sigma^* \land n, m \in \mathbb{N} \land m > n\}$

1

Aufgabe 3

a.

- Automat A hat keine nicht erreichbaren Zustände.
- $\Sigma_A = \{a, b\}, F = \{q_2, q_5, q_6\}, Q F = \{q_0, q_1, q_3, q_4\}$
- Wir beginnen damit, in der tabelle die Paare zu markieren, bei denen einer in F ist und der andere nicht

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
0	/		X			X	X
1	/	/	X			X	X
2	/	/	/	X	X		
3	/	/	/	/		X	X
4	_	/	_	/	_	X	X
5	_	/	_	/	_	_	
6		/					

• Als nächstes wählen wir $e := a \in \Sigma_A$ und markieren alle (q_i, q_j) (i < j) für die $(\delta(q_i, e), \sigma(q_j, e))$ schon markiert ist

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
0	/		X			X	X
1	_	_	X			X	X
2	_	_		X	X	X	X
3	_	_	_			X	X
4						X	X
5							
6							_

• Wir wiederholen das gleiche mit e := b

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
0	/	X	X		X	X	X
1	/	/	X	X	X	X	X
2	/	/		X	X	X	X
3	/	/	_			X	X
4	/	/	_	/	_	X	X
5	/	/	_	/	_	_	X
6	/	/	\	/	\	\	_

- Erneute Versuche mit e := a und e := b bringen eine neue Tabelle, in der alle Feldern markiert sind. (Zeichne neue Tabelle)
- Die nicht markierten Position in der oberen tabelle zeigen, welche Zustände äquivalent sind (Es gibt aber keine). Hier bestehen die Äquivalenzklassen von \sim aus $\{q_0\}, \{q_3\}, \{q_2\}, \{q_4\}, \{q_5\}, \{q_6\}, \{q_1\}$. Das Automat A ist schon minimal (Zeichne das Automat wieder)
- b. Z.z. Der Minimalautomat A/\sim besitzt eine minimale Anzahl an Zuständen
- Sei L die Sprache, die der Automat A erkennt. nach Nerode-Lemma, A ein DFA ist , gibt es eine minimale endlichen Menge von n Worten, die paarweise L-trennbar sind, und daraus folgt, jeder Automat, der L erkennt, hat mindesten n Zustände (inklusiv A/\sim)

- n ist aber auch die Anzahl der Äquivalenzklassen von L, denn diese n Worte sind paarweise L-trennbar.
- Zwei Worte $u, v \in \Sigma^*$ sind in derselben Äquivalenzklassen von $L(u \sim_L v)$, genau dann wenn $\forall w \in \Sigma^*$: $(uw \in L \Leftrightarrow vw \in L)$
- Der Minimalautomat A/\sim wird als der Faktorautomat ohne die nicht erreichbaren Zustände

$$A/\sim:=(Q/\sim,\Sigma,\delta_{\sim},[q_0]_{\sim},F_{\sim})$$
 mit

$$Q/\sim:=\{[q]_{\sim}\mid q\in Q\} \text{ aus } A=(Q,\Sigma,\delta,q_0,F)$$

deformiert, indem man verhaltensgleiche Zustände identifiziert. Da A/\sim auch L erkennt, und aus der Eigenschaft: In A/\sim sind je zwei verschiedene Zustände trennbar, muss gelten dass die Anzahl der Zuständen in A/\sim gleiche der Angenommen der Äquivalenzklassen von L ist, also $|Q/\sim|=n$. d.h der Minimalautomat A/\sim besitzt eine minimale Anzahl an Zuständen.

Aufgabe 4

Z.z: $\forall w \in \Sigma^* : \delta^*_{AxB}((p,q),w) = (\delta^*_A(p,w), \delta^*_B(q,w))$

Induktionbeweis: IA: $w = \epsilon$

 $LHS = \delta_{AxB}^*((p,q),\epsilon) = (p,q)$ //Ausdehnung von δ auf Worte, 1. Fall in Definition von δ^*

 $RHS = (\delta_A^*(p,\epsilon), \delta_B^*(q,\epsilon)) = (p,q) // 1$. Fall in Definition von δ^*

IV: $\forall u \in \Sigma^*: \delta_{AxB}^*((p,q),u) = (\delta_A^*(p,u),\delta_B^*(q,u))$

IS: Z.z: $\forall a \in \Sigma, \forall u \in \Sigma^*$:

 $\delta_{AxB}^*((p,q),a.u) = (\delta_A^*(p,a.u),\delta_B^*(q,a.u))$

 $LHS = \delta_{AxB}^*((p,q), a.u)$

 $=\delta_{AxB}^*(\delta_{AxB}^*((p,q),a),u)$ // 2. Fall in Definition von δ^*

= $\delta^*_{AxB}((\delta_A(p,a),\delta_B(q,a)),u)$ // Definition von $\delta_{AxB}((p,q),a)$ Folie 43 Kap 4

 $= (\delta_A^*(\delta_A(p,a), u), (\delta_B^*(\delta_B(q,a), u) // \text{ IV})$

 $=(\delta_A^*(p,a.u),(\delta_B^*(p,a.u)))/2$. Fall in Definition von δ^*

= RHS. Also $\forall w \in \Sigma^* : \delta_{AxB}^*((p,q),w) = (\delta_A^*(p,w),\delta_B^*(q,w))$