#### Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Optimización con restricciones

#### Motivación



#### Un "parche": Projected Gradient Descent

¿Cuál es el peligro de usar GD as-is? Caer afuera de la región válida D. ¿Cómo lo podemos corregir "fácil"? Buscamos el valor válido  $\theta_{t+1}$  más cercano al update propuesto  $\tilde{\theta}_{t+1} \to \text{jGD} + \text{proyección ortogonal!}$ 

$$\theta_{t+1} = \Pi_D(\tilde{\theta}_{t+1}) = P_D \cdot (\theta_t - \gamma \cdot g_t)$$



Esto solo tiene sentido si proyectar es <u>barat</u>o, pero a veces lo es. Ejemplo: proyectar a valores no negativos es aplicar  $\theta_{t+1} = max(\tilde{\theta}_{t+1}, 0)$ .

# Optimización con restricciones de igualdad

Definimos un problema de optimización con restricciones de igualdad en formato estándar:

min 
$$f(x_1,...,x_n)$$
 $subject$ 
 $s.t. g_1(x_1,...,x_n) = 0$ 
 $g_m(x_1,...,x_n) = 0$ 
 $g_m(x_1,...,x_n) = 0$ 

donde  $f, g_i : \mathbb{R}^n \to \mathbb{R}$  con  $i = 1, \dots m$  están definidas sobre  $R \subset \mathbb{R}^n$ .

Se define la región válida  $D = \{\vec{x} \in R : g_i(\vec{x}) = 0 \ \forall i = 1, ..., m\}.$ 

Se define el *Lagrangiano* del problema  $\mathscr{L}: \mathbb{R}^{n+m} \to \mathbb{R}$ :

$$\mathscr{L}(\vec{\lambda}, \vec{x}) = f(\vec{x}) + \lambda_1 g_1(\vec{x}) + ... + \lambda_m g_m(\vec{x}) = f(\vec{x}) + \vec{\lambda} \cdot \vec{g}(\vec{x})$$

# Optimización con restricciones de desigualdad

Si agregamos condiciones de desigualdad queda:

min 
$$f(x_1,...,x_n)$$
  
 $s.t. \ g_i(x_1,...,x_n) = 0$  )  $f(x_1,...,x_n) = 0$  )  $f(x_1,...,x_$ 

con 
$$i = 1, ..., l$$
 y  $j = 1, ..., k$  suponiendo  $l + k = m$ .

Ahora tenemos que la región válida es

$$D = \{\vec{x} \in R : g_i(\vec{x}) = 0 \ \forall i = 1, ..., l \land h_j(\vec{x}) \le 0 \ \forall j = 1, ..., k\}$$

Y el Lagrangiano es:

$$\mathscr{L}(\vec{\lambda}, \vec{x}, \vec{\mu}) = f(\vec{x}) + \sum_{i=1}^{l} \lambda_i g_i(\vec{x}) + \sum_{j=1}^{k} \mu_j h_j(\vec{x}) = f(\vec{x}) + \vec{\lambda} \cdot \vec{g}(\vec{x}) + \vec{\mu} \cdot \vec{h}(\vec{x})$$

#### Condiciones necesarias de Karush-Kuhn-Tucker (KKT)



Sea un punto  $\vec{x}^* \in D$  tal que  $f, g_i, h_i \in C^1(\mathcal{E}(\vec{x}^*))$ . Bajo ciertas condiciones de regularidad, si  $\vec{x}^*$  es un mínimo local entonces existen  $\vec{\lambda}^* \in \mathbb{R}^I, \vec{\mu}^* \in \mathbb{R}^k$  tales que:

- (Estacionariedad)  $\nabla_{\vec{x}} \mathscr{L}(\vec{\lambda}^*, \vec{x}^*, \vec{\mu}^*) = \vec{0}$
- (Factibilidad primal)  $g_i(\vec{x}^*) = 0 \quad \forall i$   $h_j(\vec{x}^*) \le 0 \quad \forall j$
- $\bullet$  (Factibilidad dual)  $\mu_j^* \geq 0 \quad \forall j$
- **4** (Holgura complementaria)  $\mu_i^* \cdot h_i(\vec{x}^*) = 0 \quad \forall j$

pero alques de los debe ses O

# Ejemplo analítico

$$\min_{\substack{x,y\\ x,y}} x^2 + y^2 \quad \text{f (*,5)}$$
s.t.  $x + y = 1$  \quad \text{S1}
$$x \ge 0 \quad \text{Jh} \Rightarrow \text{h (*,5)} \Rightarrow \text{S2}$$

El Lagrangiano es: 
$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(-x)$$

Condiciones KKT:

Estacionariedad: 
$$2x + \lambda - \mu = 0, \quad 2y + \lambda = 0$$

 $x + y = 1, \quad x > 0$ Factibilidad primal:

Factibilidad dual:  $\mu > 0$ 

Holgura complementaria:  $\mu x = 0$ 

#### Solución:

$$x^* = 0.5, \ y^* = 0.5, \ \lambda^* = -1, \ \mu^* = 0 \Rightarrow f^* = 0.5$$