, ractice	Multerm
-----------	---------

- The three points A(1,0,0) B(2,1,2) and C(2,0,1) lie in a plane
 - a) Determine two vectors which lie in the plane.

 Clearly indicate how you constructed these vectors.
 - b) Hence determine a normal vector to the plane. Check
 - c) Finally, determine the equation of the plane <u>Chack</u>
 your answer
 - d) What is the shortest distance from this plane to the point D(3,1,8)

 C_2 ; $\vec{R}_2(t) = \langle 0, \cos t, 2 \sin t \rangle$ $0 \leq t < T$

- a) Ditermine the point of intersection of the two curves.
- b) Determine the angle of intersection of the curves
- $3 \quad \overrightarrow{A} \times \overrightarrow{B} \neq \overrightarrow{O}$

Use vector methods to prove that for a triangle with sides given by the vectors \vec{a} , \vec{b} , \vec{c} and opposite angles A, B, C $\frac{\sin A}{\|\vec{c}\|} = \frac{\sin C}{\|\vec{c}\|}$

- (5) Find the tangent plane to the graph of $f(x,y) = 2x^2 + 3y^3$ at the point (1,1,5)
- (a) Assume that at the point (1,1), $\frac{\partial f}{\partial x} = -3$, $\frac{\partial f}{\partial y} = 3$
 - a) Draw Tf at (1,1)
 - b) What is the maximal directional derivative of f at (1,1)?
 - c) For what it is fit at (1,1) maximal? Write it in the form xi+yj.
- (7) Let $\vec{\Gamma}(t) = \frac{t^2}{2}\vec{l} + \frac{t^3}{3}\vec{j}$, Find $a_T \neq a_N$ for t=1.
- (8) Find the area of the parallelogram spanned by $\vec{A} = 3\vec{t} + 4\vec{j} \vec{k}$ and $\vec{B} = 2\vec{t} 4\vec{j} + 2\vec{k}$

This practice midterm does not cover all the material you have learned, please look at the other practice midterm.