Universidade de Brasília

Instituto de Ciências Exatas Departamento de Estatística

Análise de Sobrevivência: estudo sobre câncer de pulmão em estágio avançado diagnosticado em veteranos do serviço militar americano

Davi Dantas Erthal 200016741 Eduardo Moreira Araújo 202043700 Júlia Garcia Ribeiro 202017960

Sumário

Introdução

Banco de dados

Análise Descritiva

Modelagem em Sobrevivência

Considerações Finais

Referências Bibliográficas

Introdução

- Administração de Veteranos: sistema de assistência médica para veteranos militares dos Estados Unidos. Atende mais de 9 milhões de pessoas todos os anos.
- Foco do estudo: experimento envolvendo 137 homens com câncer de pulmão inoperável avançado que foram randomizados para quimioterapia padrão ou teste.
- Variável resposta: Tempo em dias desde o início do experimento até o dia da morte do paciente. Também consideramos a indicação de censura.

Banco de dados

Dados fornecidos pela Administração de Veteranos em 1980. Dentre 137 tempos de sobrevivência, 9 são censurados.

- ► **Tempo:** tempo em dias desde o início do experimento até o dia da morte do paciente;
- ► Censura: 0 = houve censura e 1 = não houve censura;
- ➤ Score: medida de avaliação do status de desempenho do paciente: 10-30 totalmente hospitalizado, 40-60 confinamento parcial, 70-90 capaz de cuidar de si mesmo. Obs: variável quantitativa;
- ► **Tratamento:** 0 = quimioterapia padrão, 1 = quimioterapia teste;

Banco de dados

- ► Idade: idade do paciente em anos;
- ► Terapia anterior: indica se realizou terapia prévia; 0 = não, 10 = sim;
- ► Célula: tipo histológico de tumor: escamoso, células pequenas, adeno, células grandes;
- Meses diagnóstico: tempo em meses desde o diagnóstico até a randomização.

Análise Descritiva: técnicas tradicionais

Figura: Análise Univariada

Análise Descritiva: técnicas tradicionais

Figura: Análise Bivariada

Modelo de Sobrevivência Geral

Figura: Função de Sobrevivência de Kaplain Meier

Figura: Gráfico TTT

Curva convexa monotonicamente decrescente, possível distribuição: Weibull.

Modelo de sobrevivência por Tratamento

Figura: Função de Sobrevivência de Kaplain Meier por Tratamento

Modelo de sobrevivência por Célula

Figura: Função de Sobrevivência de Kaplain Meier por Célula

Modelo de sobrevivência por Terapia Anterior

Figura: Função de Sobrevivência de Kaplain Meier por Terapia Anterior

Teste de Wilcoxon

 $\begin{cases} H_0 : N$ ão existe diferença entre as curvas de sobrevivência $H_1 : E$ xiste diferença entre as curvas de sobrevivência

Tabela: Resultados do Teste de Wilcoxon

Modelo	Pvalor	Decisão do teste		
Tratamento	0,4	Não Rejeita H ₀		
Célula	<0,001	Rejeita H ₀		
Terapia Anterior	0,8	Não Rejeita H ₀		

Teste de Resíduos de Schoenfeld

 $\begin{cases} H_0 : \text{Os riscos são proporcionais} \\ H_1 : \text{Os riscos não são proporcionais} \end{cases}$

Tabela: Resultados do Teste de Schoenfeld

Modelo	Pvalor	Decisão do teste		
Tratamento	0,06	Rejeita H ₀		
Célula	0,031	Rejeita H ₀		
Terapia Anterior	0,083	Rejeita H ₀		
Score	<0,001	Rejeita H ₀		
Meses diag.	0,91	Não Rejeita H ₀		
Idade	0,2	Não Rejeita <i>H</i> ₀		

Escolha do modelo paramétrico

Figura: Comparação entre distribuições de probabilidade e Kaplan-Meier

Escolha do modelo paramétrico

Tabela: Critérios para classificação e seleção de modelos - AIC, AICc e BIC

Modelo	AIC	AICc	BIC
Weibull	1500,18	1500,27	1506,02
Log-Normal	1502,95	1503,04	1508.79
Log-Logística	1504,53	1504,62	1510,37

Weibull: apresenta o melhor ajuste da curva de sobrevivência e os valores AIC, AICc e BIC são menores do que em outros modelos. Estimação: $\hat{\gamma} = 0,852$ e $\hat{\alpha} = 120,680$.

Stepwise manual:

- Modelos para medir efeitos individuais;
- Modelos mais complexos com pares ou grupos de covariáveis para medir efeitos conjuntos. Retirada e inclusão de variáveis e comparação entre modelos pelo Teste da Razão de Verossimilhança (TRV);
- Modelos mais complexos com presença de interações.

Tabela: Candidato 2 - Modelo com Célula, Score, Tratamento e Interação

Efeito	Estimativa	Erro Padrão	Z	P-valor
Intercepto	3,352	0,347	9,64	<0,001
Pequena	-0,306	0,298	-1,02	0,305
Adeno	-1,091	0,392	-2,79	0,005
Grande	0,043	0,347	0,13	0,900
Score	0,028	0,004	6,26	<0,001
Trat. Teste	0,317	0,331	0,96	0,338
Teste*Pequena	-1,020	0,432	-2,36	0,018
Teste*Adeno	-0,076	0,513	-0,15	0,882
Teste*Grande	-0,756	0,481	-1,57	0,116

Figura: Sobrevivências dos resíduos de Cox-Snell estimadas pelo método de Kaplan-Meier e pelo modelo exponencial padrão (gráfico à esquerda) e respectivas curvas de sobrevivência estimadas (gráfico à direita).

Figura: Residuos de Martingal e Deviance em relação ao índice das observações

O preditor linear do modelo pode ser escrito da seguinte maneira:

$$3,35+0,03X_1-0,31X_{21}-1,09X_{22}+0,04X_{23}+0,32X_3-1,02X_{21}X_3$$

- $-0,08 X_{22}X_3 0,76X_{23}X_3$
 - ► X₁ representa a variável *score*;
 - X₂₁, X₂₂ e X₂₃ representam variáveis binárias para as células do tipo pequena, adeno e grande. Quando todas são iguais a zero temos o submodelo da célula escamosa;
 - X₃ representa a variável tratamento. Quando o valor é igual a 1 temos o tratamento teste, quando for igual a 0 o modelo refere-se ao tratamento padrão.

- O intercepto não nos retorna uma interpretação válida se considerado de forma isolado:
- exp^{0,028} = 1,03, ou seja, para cada aumento de uma unidade no score do paciente o tempo mediano de sobrevivência aumenta 1,03 vezes, mantidos tratamento e tipo de tumor contantes. O intervalo com 95% de confiança varia entre 1,02 e 1,036;
- Se considerarmos a razão entre tempos medianos, temos também uma ideia de razão de chances de sobrevivência.
- ▶ Para um indivíduo com tratamento padrão, tumor de célula escamosa e score igual a 20, o tempo médio de sobrevivência é de aproximadamente 50 dias. Quando o score é igual a 50 o tempo médio de sobrevivência é de 116 dias e para score igual a 90 o tempo médio de sobrevivência é de 355 dias.

- ▶ O tempo mediano de sobrevivência dos pacientes com câncer adeno é quase um terço se comparado com os pacientes com tumores do tipo escamoso (exp^{-1,091} = 0.33), mantido o restante constante.
- ▶ O tempo mediano de sobrevivência dos pacientes com câncer pequeno e submetido ao tratamento teste é quase um terço se comparado com os pacientes com tumores do tipo escamoso e tratamento padrão (exp^{-1,02} = 0.36), mantido o restante constante.

- ightharpoonup Célula escamosa e tratamento padrão: 3,35 + 0,03 X_1
- ► Célula pequena e tratamento padrão: 3,04 + 0,03X₁
- ► Célula adeno e tratamento padrão: 2,26 + 0,03X₁
- ► Célula grande e tratamento padrão: 3,39 + 0,03X₁
- ► Célula escamosa e tratamento teste: $3,67 + 0,03X_1$
- ► Célula pequena e tratamento teste: $2,36 + 0,03X_1$
- ► Célula adeno e tratamento teste: $2,51 + 0,03X_1$
- ► Célula grande e tratamento teste: $3,32 + 0,03X_1$

Tratamento padrão: Para os 4 tipos de tumor e um score de 50, por exemplo, o tempo médio de sobrevivência é de 128, 94, 43 e 133 dias, considerando as células escamosa, pequena, adeno e grande, respectivamente.

Tratamento Teste: Para os 4 tipos de tumor e um score de 50, por exemplo, o tempo médio de sobrevivência é de 176, 48, 55 e 124 dias, considerando as células escamosa, pequena, adeno e grande, respectivamente.

Considerações Finais

- Existem diferenças significativas entre tratamentos quando comparamos os tipos de tumores. O tratamento teste afeta negativamente o processo quando a célula cancerígena é do tipo pequena.
- ► Existem diferenças significativas entre os tipos de células. As células pequena e adeno afetam negativamente quando o tratamento é padrão ou de teste, respectivamente. Existe uma redução considerável no tempo médio de sobrevivência nesses casos se comparado com as células grande e escamosa.
- Não foi identificado diferença entre as células escamosa e grande, independentemente do tratamento utilizado.

Referências Bibliográficas

CARVALHO, M. S. et al. Análise de sobrevivência: teoria e aplicações em saúde. [S.I.]: SciELO-Editora FIOCRUZ, 2011.

COLOSIMO, E. A.; GIOLO, S. R. Análise de sobrevivência aplicada. [S.I.]: Editora Blucher, 2006.

DOBSON, A. J.; BARNETT, A. G. An introduction to generalized linear models. [S.I.]: CRC press, 2008.

KLEIN, J. P.; MOESCHBERGER, M. L. Survival analysis: techniques for censored and truncated data. [S.I.]: New York: Springer, 2003

Referências Bibliográficas

LAWLESS, J. F. Statistical models and methods for lifetime data. [S.I.]: John Wiley Sons, 2003.

MORETTIN, P. A.; BUSSAB, W. O. Estatística Básica. 6° edição. ed. [S.I.]: Saraiva, 2010.

PRENTICE, R. L. et al. The analysis of failure times in the presence of competing risks. Biometrics, JSTOR, p. 541–554, 1978.

SAIKIA, R.; BARMAN, M. P. A review on accelerated failure time models. International Journal of Statistics and Systems, v. 12, n. 2, p. 311–322, 2017.