Análisis formal de complejidad para asignacion_optima_productos_ca

Sean:

- $M = \text{MAX_CAMIONES}$ (número de camiones)
- $L = \text{MAX_LOCALIDADES}$ (número de localidades)
- $n = localidad total_pedidos$ (número de pedidos por localidad, caso peor)
- $W = \text{camion-} \sim \text{capacidadCarga}$ (peso máximo por camión)
- $V = \text{camion-} \sim \text{capacidadVolumen}$ (volumen máximo por camión)

Calculando el Mejor Caso

Supón que todas las localidades tienen total_pedidos = 0, así que no entra a los ciclos internos ni llama a resolver_top_down. Solo se hacen comprobaciones y saltos.

$$T_m(M, L, n, W, V) = t_1$$

Donde t_1 es la suma de todas las instrucciones fuera de los ciclos anidados.

$$T_m(M, L, n, W, V) = c$$

Entonces:

$$T_m(M, L, n, W, V) \in \Theta(1)$$

Calculando el Peor Caso

Supón que para cada camión y cada localidad hay exactamente n pedidos. El costo dominante es la llamada:

que tiene complejidad $\mathcal{O}(nWV)$ (ver análisis anterior).

El ciclo exterior recorre M camiones y, anidado, L localidades, así que:

$$T_p(M, L, n, W, V) = t_1 + \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} t_2(n, W, V) + t_3$$

Donde $t_2(n, W, V) = c_1 nWV$ es el costo de la programación dinámica por localidad y camión.

Resolviendo la sumatoria:

$$T_{p}(M,L,n,W,V) = t_1 + MLc_1nWV + t_3$$

Redefinimos
$$C_1 = c_1, C_2 = t_1 + t_3$$
:

$$T_p(M, L, n, W, V) = C_1 M L n W V + C_2$$

Verificación de cotas por límites:

$$\lim_{\substack{M \to \infty \\ L \to \infty \\ n \to \infty \\ V \to \infty}} \frac{T_p(M, L, n, W, V)}{MLnWV} = C_1$$

Por lo tanto:

$$T_p(M, L, n, W, V) \in \mathcal{O}(MLnWV)$$

$$T_p(M, L, n, W, V) \in \Omega(MLnWV)$$

$$T_p(M, L, n, W, V) \in \Theta(MLnWV)$$

Calculando el Caso Promedio

Supón que el número promedio de pedidos por localidad es \overline{n} , el promedio de peso máximo es \overline{W} y el de volumen es \overline{V} . Entonces:

$$T_{pr}(M, L, \overline{n}, \overline{W}, \overline{V}) = t_1 + MLc_1\overline{n}\,\overline{W}\,\overline{V} + t_3$$

Redefinimos $K_1 = c_1, K_2 = t_1 + t_3$:

$$T_{pr}(M, L, \overline{n}, \overline{W}, \overline{V}) = K_1 M L \overline{n} \overline{W} \overline{V} + K_2$$

Verificación de cotas:

$$\lim_{M,L,\overline{n},\overline{W},\overline{V}\to\infty}\frac{T_{pr}(M,L,\overline{n},\overline{W},\overline{V})}{ML\overline{n}\,\overline{W}\,\overline{V}}=K_1$$

Así que:

$$T_{pr}(M, L, \overline{n}, \overline{W}, \overline{V}) \in \Theta(ML\overline{n}\,\overline{W}\,\overline{V})$$

Resumen Final:

• Mejor caso: $\Theta(1)$

• Peor caso: $\Theta(MLnWV)$

• Caso promedio: $\Theta(ML\overline{n}\,\overline{W}\,\overline{V})$

En todos los casos, la cota ajustada está verificada con límites al infinito usando los nombres exactos del código.