BISECTION PROGRAM: OUTPUT

```
=====MENU====
1) Enter the limits of the roots of given polynomial
2) Let the program calculate the limits of the roots.
Your choice: 1
Enter the Roots: 1 2
        f(1.000000)=-9.000000
       f(2.000000)=-25.000000
The actual root of the polynomial do not lie between (1.000000,
2.000000).
=====MENU====
1) Enter the limits of the roots of given polynomial
2) Let the program calculate the limits of the roots.
Your choice: 2
|f(0.000000)=-1.000000
                        (-ive)
|f(0.500000)=-3.250000
                        (-ive)
|f(1.000000)=-9.000000
                        (-ive)
|f(1.500000)=-16.750000 (-ive)
|f(2.000000)=-25.000000 (-ive)
|f(2.500000)=-32.250000 (-ive)
|f(3.000000)=-37.000000 (-ive)
|f(3.500000)=-37.750000 (-ive)
|f(4.000000)=-33.000000 (-ive)
|f(4.500000)=-21.250000 (-ive)
```

The roots lie between (5.000000 , 5.500000)
Enter the allowed error and number of iterations: 0.001 15

(-ive)

(+ive)

|f(5.000000)=-1.000000

f(5.500000)=29.250000

Ī	#No	r1	r2	x	f(x)		aer	ae
	======	======	=====	=====	==========	======	=====	=====
	1	5.00000	5.50000	5.25000	12.781250	(+ive)	5.25000	0.00100
	2	5.00000	5.25000	5.12500	5.566406	(+ive)	0.12500	0.00100
	3	5.00000	5.12500	5.06250	2.203613	(+ive)	0.06250	0.00100
	4	5.00000	5.06250	5.03125	0.582092	(+ive)	0.03125	0.00100
	5	5.00000	5.03125	5.01562	-0.213860	(-ive)	0.01562	0.00100
	6	5.01562	5.03125	5.02344	0.182887	(+ive)	0.00781	0.00100
	7	5.01562	5.02344	5.01953	-0.015793	(-ive)	0.00391	0.00100
	8	5.01953	5.02344	5.02148	0.083470	(+ive)	0.00195	0.00100
	9	5.01953	5.02148	5.02051	0.033819	(+ive)	0.00098	0.00100
	10	5.01953	5.02051	5.02002	0.009008	(+ive)	0.00049	0.00100
	11	5.01953	5.02002	5.01978	-0.003394	(-ive)	0.00024	0.00100
	12	5.01978	5.02002	5.01990	0.002807	(+ive)	0.00012	0.00100
	13	5.01978	5.01990	5.01984	-0.000293	(-ive)	0.00006	0.00100
Ī	14	5.01984	5.01990	5.01987	0.001257	(+ive)	0.00003	0.00100
	15	5.01984	5.01987	5.01985	0.000482	(+ive)	0.00002	0.00100

After completing 15 iterations, the root is: 5.019852

REGULA-FALSI PROGRAM: OUTPUT

=====MENU====

- 1) Enter the limits of the roots of given polynomial
- 2) Let the program calculate the limits of the roots.

```
Your choice: 2
```

```
|f(0.000000)=-1.200000 (-ive) |
|f(0.500000)=-1.350515 (-ive) |
|f(1.000000)=-1.200000 (-ive) |
|f(1.500000)=-0.935863 (-ive) |
|f(2.000000)=-0.597940 (-ive) |
|f(2.500000)=-0.205150 (-ive) |
|f(3.000000)=0.231364 (+ive)
```

The roots lie between (2.500000 , 3.000000)
Enter the allowed error and number of iterations: 0.1 4

#No	r1	r2	x	f(x)		aer	ae	
======	======	======	=====	========		=====	=====	
1	2.50000	3.00000	2.73499	-0.004933	(-ive)	2.73499	0.10000	
2	2.73499	3.00000	2.74052	-0.000111	(-ive)	0.00553	0.10000	
3	2.74052	3.00000	2.74064	-0.000002	(-ive)	0.00012	0.10000	
4	2.74064	3.00000	2.74065	0.000000	(+ive)	0.00000	0.10000	

After completing 4 iterations, the root is: 2.740646

NEWTON-RAPHSON PROGRAM: OUTPUT

=====MENU====

- 1) Enter the limits of the roots of given polynomial
- 2) Let the program calculate the limits of the roots.

Your choice: 2

```
|f(0.000000)=-10.000000 (-ive)
|f(0.500000)=-10.437500 (-ive)
|f(1.000000)=-10.000000 (-ive)
|f(1.500000)=-6.437500 (-ive)
|f(2.000000)=4.000000 (+ive)
```

The roots lie between (1.500000 , 2.000000)
Enter the allowed error and number of iterations: 0.001 15

Let us take x0 = 2.000000

#No	x	aer	ae	
======	========	======	=====	
1	x1 = 1.87097	0.12903	0.00100	
2	x2 = 1.85578	0.01519	0.00100	
3	x3 = 1.85558	0.00020	0.00100	
4	•		0.00100	
5	x5 = 1.85558	0.00000	0.00100	
6	x6 = 1.85558	0.00000	0.00100	

Since we get the same values of x, i.e 1.855585, hence we stop here, and donot go further.

After completing 6 iterations, the root is: 1.855585