STUDENT NAME: Thomas Green STUDENT ID: 300536064

PART TWO – STRIDE

1. Data flows

Data flow	Type of Threat	Description	Mitigation
1.	Tampering	Attackers alter maintenance data during	Strong encryption like HTTPS must be applied for data
		transmission over the network, compromising	transmission between the office and web app, ensuring
		flight safety. Communication to the web	secure transmission. Implementing checks like digital
		application happens via HTTP, lacking encryption	signatures or hash functions is essential to validate data
		for data in transit which makes it vulnerable to	integrity, preventing tampering during transit.
		attackers to modify data during transmission.	
2	Tampering	Malicious individuals manipulate maintenance	Use encryption protocols such as TLS and SSL to encrypt
		records, endangering data accuracy and aircraft	data in transit, prevent attackers from intercepting and
		safety. Tampering with data from the API server	modifying data, safeguarding integrity and flight schedules
		to service application might disrupt processing,	and operational flow
		leading to unauthorized access and system	
		instability. Attackers can change schedule for	
		maintenance causing disruption in operational	
		flow	
3	Tampering	Maintenance crew interfaces with the Legacy	Deploy Intrustion Detection System (IDS), to continuously
		Web Application within the data center	observe network and application activities, detecting
		environment. Malicious actors exploit	anomalies or suspicious patterns. When potential
		vulnerabilities by manipulating HTTP requests or	tampering attempts occur, administrators are alerted. This
		tampering with cookie values present in the	approach not only safeguards checklists but establishes a
		legacy web application. From here they can	baseline for normal behavior. Any changes from this
		circumvent the authentication mechanisms in	baseline will also initiate alerts for investigation and
		place, granting unauthorised access to enable	mitigation
		them to modify maintence task configuration	
4	Tampering	Adversaries might alter part data, posing risks to	Implement data validation to ensure part data accuracy.
		aircraft safety. They manipulate data being sent	Use digital signatures to verify the legitimacy of critical part
		or received by Service Application, leading to	information. Enforce strong authentication and two-factor
		incorrect instructions, maintenance actions or	authentication for Maintenance Crew members and Service
		system failures	Application to prevent unauthorized access. Employ digital
			signatures to safeguard data during transmission, ensuring
			its integrity and authenticity

1	Information Disclosure	Attackers may attempt to gain access to sensitive maintenance records and proprietary information, potentially leading to exposure of aircraft maintenance procedures and policies	Implement role-based access control to ensure that only authorized personnel with specific roles can access certain records. This prevents unauthorized individuals from accessing sensitive information, as they will not have the necessary permissions. This will reduce unauthorised exposure and tampering with information
2	Information Disclosure	Data exchanged between Service Application and API server is currently transmitted in plaintext without encryption which poses as a security risk. Attackers with access to network traffic can intercept and read sensitive information being transmitted.	Implement strong encryption for data transmitted between service application and API server. Employ transport layer security (TLS) to ensure data is encrypted during transmission. Uses encryption algorithms to scrame data before it is sent and deypts it at receiving end.
3	Information Disclosure	Risk of lost or stolen devices result in exposure of maintenance records and personal data. Due to tablets lacking proper security measures regarding google ID and password and having no lock screen, this enables attackers to extract sensitive data, to be used to exploit the company	Ensure tablet storage is safeguarded through encryption and enable remote wipe functionality. Can also carry out routing security audits and testing on tablets and service application to identify and rectify vulnerabilities.
4	Information Disclosure	Sensitive data is vulnerable when transmitted via unencrypted HTTP connections, posing a risk of interception by hackers monitoring network traffic. Attackers exploit legacy app vulnerabilities to access maintence records and operational data, leading to information disclosure	Implement HTTPS for communication between Office and web-application. This ensures encryption of data in transit, preventing unauthorized interception. Regularly update and patch legacy web app to eliminate security vulnerabilities. Deploy intrusion detection systems to swiftly detect and thward unauthorised access attempts
1	Denial-of-service	Attackers launch coordinated DoS attacks on the API server and service application, overwhelming them with malicious traffic. This disrupts communication, causing service unavailability due to resource overload	Use traffic filtering to identify and block malicious traffic patterns. Employ rate limiting to control the number of requests from a single source within a specific time. Validate requests strictly and use intrusion detection systems to quickly spot and counter potential threats

2	Denial-of-service	Attackers overwhelm Legacy Web Application with a flood of requests or exploit its vulnerabilities, causing it to slow down, become unresponsive or crash. Disrupts access for legimate office staff or maintenance crew.	Utilise load balancing and reduncancy techniques to distribute traffic and ensure continuous availability. Employ a Web Application Firewall (WAF) to filter incoming traffic and thwart malicious requests, thus minimizing the impact of potential DoS attacks
3	Denial-of-service	Individual within office support team takes actions against company interests. Launches denial-of-service attack against Legacy Web Application, employing a number of tactics including pushing overwhelming requests to exhaust the application's vital resources such as memory, CPU and network bandwidth. This causes the web application to lose responsiveness	Create channels for communication for employees to voice concerns or grievances without resorting to malicious measures. Imperative to establish a incident response plan to address potential indie threats and DoS attacks.
4	Denial-of-service	Resource-intensive operations may render tablets unresponsive, hindering essential maintenance tasks	Enhance application efficiency through optimisation. Prioritise critical tasks to prevent resource drain. Utilise tablets with adequate hardware resources to ensure smooth data flows and counteract denial-of-service risks within scenario

2. Data stores

Data stores	Type of Threat	Description	Mitigation
Data centre	Tampering	Attackers target data center database, where	Implement stricter acess controls and data integrity
database		critical aircraft records are stored. Threat of	measures. Access should be restricted to authorised
		tampering would allow unauthorised individuals	personnel who have the necessary privileges. Enforcement
		to gain access where they manipulate data,	of authentication methods like strong passwords and two-
		introduce inaccuracies and potentially altering	factor authentication to prevent unauthorised access can
		aircraft records. This leads to service application	also be implemented. Regularly audit and monitor database
		providing false information to maintenance	changes also makes it harder for unauthorised users to gain
		crews	entry and monitoring helps rollback unauthorised changes
Tablet	Tampering	Malicious actors forge maintenance personnel's	Deploy robust authentication mechanisms for maintenance
database		signatures in Tablet Database, allowing	personnel, utilising multi-factor authentication where

Data stores	Type of Threat	Description	Mitigation
		incomplete or inadequate maintenance tasks to	possible. Utilise digital signatures for tasks approvals,
		be falsely approved. This fraudulent activity	ensuring non-repudiation and authenticity. Enforce strict
		compromises the accuracy and integrity of	separation of duties, requiring multiple authorised
		maintenance records	individuals to approve critical maintenance tasks,
			preventing unauthorised single-person approvals and
			reducing the risk of falsification
Data centre	Information Disclosure	Data centre database is vulnerable to threat of	Enforce strong authentication mechanisms such as multi-
database		information disclosure. Attacker gains	factor authentication (MFA), which requires users to
		unauthorised access to database due to weak	provide multiple forms of verification before access.
		access controls and lack of encryption. Attacker	
		exploits vulnerabilities to extract customer data,	
		financial records and other critical information.	
Tablet	Information Disclosure	Information disclosures through application data	Exert control over installation of applications on tablets.
database		collections can be manipulated by potential	Policy should dictate that only work-related applications
		attackers to reveal sensitive data that might	are installed with periodic reviews to remove unnecessary
		compromise the integrity of maintence	or non-essential apps.
		operations. Given the tablets role as a tool for	
		service, this can be used for benefit of an	
		attacker, as they can exploit the application	
		data, where they can access, location, time,	
		identity and email.	
Data centre	Denial-of-service	Adversaries leverage vulnerability by inundating	Implement traffic filter. This allows the system to ensure
database		the data center with data packets flooding the	that only relevant data, directly related to aircraft
		system. This imedes the data centers capacity to	operation and organization is allowed to access the data
		opertatie at optimality and causing delays and	center. Non-essential data packets are intercepted and
		distrumptions in functionality.	redirected away from data center.
Tablet	Denial-of-service	Attacker engages in network jamming tablet	Implement intrusion detection system (IDS) to monitor
database		database, sending data packets to overload	network traffic. Identify abnormal patterns indicative of
		communication channels. Effects	network jamming attempts. Monitoring enables rapid
		synchronisation between tablet data base and	response and mitigation to neutralise attackers efforts
		central data center, causing operational delays	before they lead to significant disruption
		and restrain service applications core tasks	

3. Processes

Processes	Type of Threat	Description	Mitigation
Legacy Web Application	Spoofing	Attackers craft deceptive login pages that mimic legitimate interface of application, designed to trick users into entering in credentials without second guessing. Pushes emails to employees through phishing emails. Once attacker has access to credentials, they harvest the sensitive information to exploit it to gain access to the system	Integrate training for both crew members and office staff to be aware of threats such as these. Knowledge about tactics employeed in spoofing attacks, individuals become equipped to recognise these signs. They learn to differentiate authentic login interfaces from deceptive ones, identifying discrepancies.
API Server	Spoofing	Attackers attempt to deceive the system by falsifyfing API requests to impersonate legitimate tablets. Through manipulation, they can gain illicit access to sensitive aircraft data, undermining operational integrity and even compromising flight safety creating significant risks	Assign unique API keys or tokens to each tablet to ensure only authorised devices can interact with API server. Incorporate protocols like OAuth to strengthen identify verification. Implement IP whitelisting for API access, permitting requests only from trusted sources to safeguard against unauthorised access attempts.
Service Application	Spoofing	Unauthorized user impersonating exploiting vulnerabilities, attackers might gain entry to maintenance records, putting processes and flight safety at risk. Attacker aims to manipulate the applications trust in user identities and the integrity of task completion records.	Employing multi-factor authentication, as recommended, can verify genuine users. Enhance security using digital certificates or biometric authentication. Monitoring user access patterns helps support suspicious activity early. Regular security assessments and penetration testing can uncover and address vulnerabilities proactively.
Legacy Web Application	Tampering	Attacker intercepts HTTP request exchanged between user and application while initiating an order. Attacker exploits interception to modify critical details, including adjusting jobs and work specifications. This manipulation aims to undermine integrity resulting in inaccuracte records and work	Implement TLS encryption (HTTPS). Server as a cryptographic protocol so when data is exchanged during HTTP requests, rendering inctercepted data unreadable to unauthorised entities. By adopting HTTPS, the organisation safeguards the integrity of information transmitted during processes

Processes	Type of Threat	Description	Mitigation
API Server	Tampering	Attackers manipulated API payloads meant for	Implement a robust encryption mechanism for data
		the API server. This lead to unauthorised	transmission, especially when itilizing the REST protocol.
		changes or actions within the system,	Utilise HTTPS to ensure that data sent between the API
		jeopardising aircraft data and operations,	server and other components is encrypted and protected
		causing data integrity and confidentiality to be	from eavesdropping. This is important since REST-based
		compromised. Attackers could have the	communications are over open web
		capability to insert harmful data or commands	
		resulting in inaccurate application behaviour,	
		unauthorised access to data and potential data	
		leakage	
Service	Tampering	Unauthorised modification of maintenance	Implement Web Application Firewalls (WAFs) as they serve
Application		tasks. Threat involes attackers attempting to	as a protective layer that can detect and block malicious
		alter maintence tasks, potentially compromising	code injections and tampering attempts before they reach
		aircraft safety and maintenance efficienty.	the service application.
		Manipulation exploits vulnerabilities in the	
		service application leading to discrepancies and	
		hazards.	
Legacy Web	Repudiation	Accountability denial when attackers perform	Implement robust auditing and logging mechanisms within
Application		unauthorised actions in Legacy Web Application	the Legacy Web Application. Record user actions, system
		and subsequently deny involvement. Creates	interactions and activities. Maintiaining comprehensive
		complexities in accuracy attributing specific	logs, the organisation can construct an audit trail that
		actions to individual users which hinders the	effectively tracks and verifies user activities, ensuring
		organisations ability to establish proper	accountability
		accountability	
API Server	Repudiation	Attacker intentionally disown responsibility for	Implementing API throttling mechanism acts to reduce
		generating an excessive influx of API requests.	impact of excessive requests. Involves imposing limits on
		Requests are intented to overwhelm API server	rate and volume of API requests that a user or application
		capacity, leading to service disruptions and	can generate within a timeframe. Organisation establishes
		degradation. Reupdiating involvement the	a safeguard against consumption of server resources
		attacker seeks to evade accountability	
Service	Repudiation	Maintenance Crew member carries out an	Require approval from two authorised maintence
Application		action within application. Member updates	personnel using biometric or multi-factor authentication for

Processes	Type of Threat	Description	Mitigation
		status of task only to deny involvement with it	secure task acknowledgment. Adds extra layer of
		later. This creates uncertainty which could lead	verification, preventing situation such as falsely denying
		to challenges in accountability tracking and	completed avionics system inspections
		confidence in the integrity of actions taken	
		within the application	
Legacy Web	Information Disclosure	Attacker uses vulnerability of path traversal to	Implement stringent input validation and sanitisation
Application		access unauthorised information that would	mechanisms within the codebase of the application. This
		necessitate valid credentials for retrieval. By	helps filter out path manipulation, which can help the
		exploiting this vulnerability the attacker can	application thwart attempts to exploit traversal
		manipulate paths to traverse through directories	vulnerabilities.
		to gain access to sensitive data, compromising	
		integrity and confidentiality of the application	
API Server	Information Disclosure	Exposure of unguarded configuration files	Employ awareness to developers about the importance of
		containing sensitive information are accessible	securing configuration files. Awareness of the
		to external parties. Attackers can exploit this	consequences of file exposure and make aware the
		vulnerability to gain insight into server settings,	necessity of safeguarding sensitive information.
		architecture and other potential vulnerabilities.	Implementation of access controls at file system level can
			also restrict unauthorised access to configuration riles.
			Role-based access control mechanisms can ensure files can
			only be accessed by authorised personnel
Service	Information Disclosure	Attackers may exploit vulnerabilities in service	Implement strong user authentication mechanisms,
Application		application to gain unauthoritised access to	including multi-factor authentication (MFA), to ensure that
		confidential information related to aircraft	only legitimate users can access servive application.
		maintence, records, checklists and manuals. This	Authroisation mechanisms should be integrated to allow
		breach of security could lead to unauthorised	access to relevant information based on roles and
		parties obtaining insights into procedures,	permissions
		potentially compromising the integrity of	
	 	maintenance operations	
Legacy Web	Denial-of-service	Attacker exploits vulnerabilities in	Implement rate limiting mechanisms to restrict number of
Application		authentication mechanism by repeadly guessing	login attempts within a specific time frame, preventing
		user credentials or tokens. This could potentially	attacker from executing guesses in a short period.
		overwhelm the application's authentication	Implement account lokout policies that temporarily

Processes	Type of Threat	Description	Mitigation
		protocols, causing degradation of service or	suspend user accounts after a certain number of failed
		complete availability	attempts have been made by the same IP address
API Server	Denial-of-service	Malicious actors push a high-volume of	Implement intrusion detection and prevention systems
		convincing HTTP requests directed at the API	(IDS/IPS) that can identify abnormal spikes in incoming
		server. The quanitiy of requests overwhelms the	request rates. Utilise load balancing techniques to
		server's resources, such as CPU and bandwidth,	distribute incoming traffic across multiple server instances,
		resulting in a slowdown of complete	preventing any single instance from becoming a bottleneck
		unresponsiveness of the API server, distrupting	
		essential function of data synchronisation for	
		tablets	
Service	Denial-of-service	Group of actors initiates DoS attack on Service	Implement CAPTCHA challenges into high-risk areas of the
Application		Application for financial and personnel gain.	application, such as login pages or areas prone to being
		These threats encompass scenarios involving	attacked. This helps differentiate between human users
		brute-force login attacks and "Ping Flood"	and bots attempting attacks. Implement architecture of
		attacks. These malicious actions aim to overload	service application to be capable of dynamically distributing
		the applications resources, leading to	traffic across multiple servers. Load balances can help
		unavailability and inconveniencing legitimate	distribute load and mitigate impact of a sudden increase of
		users, thereby distrupting critical maintenance	requests
Logacy Mah	Florestian of privilege	tasks. Malicious actor identifies a weakness in	Employing role based access control (BBAC) Implementing
Legacy Web Application	Elevation of privilege	application, specifically a flaw that enables the	Employing role-based access control (RBAC). Implementing it in the buisiness provides a formidable barrier around the
Application		manipulation of URL parameters during the login	Legacy Web Application. This approach ensures that even if
		process. Seizing upon this vulnerability, the	an attacker manages to exploit a vulnerability, their actions
		attacker modifies these parameters, effectively	remain confined within the limitations of their designated
		tricking the application into bestowing them	user role.
		with administrator priviledges. With access to	user role.
		these permissions, the attacker breaches the	
		authorised boundaries of access, potentially	
		compromising the integrity of our maintenance	
		protocols	
API Server	Elevation of privilege	Attackers have potential to steal API keys, to	Adopt tokens like JSON Web Tokens (JWT) instead of simple
		impersonate legitimate personnel and	API keys. JWTs are short-lived tokens with build-in

Processes	Type of Threat	Description	Mitigation
		manipulate the API server. This can lead to	expiration, limiting their usefulness for extended periods.
		unauthorised actions and compromise security	Ensures that even if a token is compromised it will only be
		protols.	viable for a limited time, reducing potential impact of
			unauthorised access attempts.
Service Application	Elevation of privilege	Threat of tablet authentication bypass, where malicious actors attempt to circumvent the authentication mechanisms on the tablets. This could enable them to gain access to maintenance records and perform actions that are not authorized	Regularly updating and patching the Service Application is crucial to address any known vulnerabilities and minimize the risk of exploitation. Additionally, implementing strong authentication mechanisms on the tablets, such as biometric or PIN-based authentication, can help prevent unauthorized access attempts. Employing secure coding practices and encryption to protect sensitive data stored on the tablets enhances overall security.

4. Interactors

Interactors/Actors	Type of Threat	Description	Mitigation
Office Support	Spoofing	Attackers craft convincing emails posing as	Implement email filtering solutions to work as a frontline
		office support staff, tricking employees into	defense. These solutions identify and intercept phishing
		malicious actions. Emails sent contain urgent	emails ensuring they never reach employer inboxes. Also
		maintenance tasks, containing deceptive links	implement email filters that examine content, links and
		which lead to harmful sits. These threats	attachments, that recognise malicious intent, preventing
		exploit recipients trust and jeopardise	employees from interacting with altogether harmful
		organisational security	information
Maintenance	Spoofing	Attacker gains access to maintenance crew	Implementing 2FA adds additional layer of security. Even
Crew		area and gains access to crew member login	if attacker manages to obtain login credentials they will
		credentials via a sticky note. Attacker uses	still require a second form of verification. Employ regular
		these credentials to impersonate crew	training sessions within the company to sensitise crew
		member, gaining unauthorised access to	members about risks of weak password practices and
		service application and gains information for	potential consequences of unauthorised access
		personal benefit	
Office Support	Repudiation	Inside Attacker with malicious attempt targets	Implement monitoring and auditing so system can track
		an account that remains unattended by	and log activities associated with user profile. Review and

		employee on holiday. They access crew members profile using compromised credentials or exploiting weak security measures. Once inside system, attacker alters maintenance logs and records.	analysing logs can identify unauthorised access and alterations. Employ account lockdown so that if employee is on leave or absent their account is temporarily locked or subjected to restricted access to prevent unauthorised use.
Maintenance Crew	Repudiation	Maintenance crew member engages with service application carrying out essential actions like modifying configurations or updating maintenance logs. Insider threat emerges as crew member attempts to manipulate or tamper with audit trails and other records so they can deny involvement. They argue that the records inaccurately depict their actions or that another individual conducted the activities	Integrate digital signatures and biometric authentication methods to tie actions directly to the responsible maintenance crew emember leaving no room for ambiguity or denial. Integration of audit logging systems that are tamper-proof. This ensures that once a record is created, it cannot be altered or deleted by anyone