СПРАВОЧНЫЕ ДАННЫЕ

Десятичные приставки

Accura more apartment					
Наимено-	Обозна-	Множитель	Наимено-	Обозна-	Множитель
вание	чение		вание	чение	
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	МК	10 ⁻⁶
гекто	Γ	10^{2}	нано	Н	10 ⁻⁹
деци	Д	10 ⁻¹	пико	П	10 ⁻¹²
санти	c	10-2	фемто	ф	10^{-15}

Константы

Константы	
Число π	$\pi = 3.14$
Ускорение свободного падения	$g = 10 \text{ m/c}^2$
Гравитационная постоянная	$G = 6.7 \cdot 10^{-11} H \cdot \text{m}^2 / \text{kg}$
Газовая постоянная	$R = 8,31$ Дж $c/(моль \cdot K)$
Постоянная Больцмана	$k = 1.38 \cdot 10^{-23} \text{Дж} / K$
Постоянная Авогадро	$N_A = 6 \cdot 10^{23}$ моль $^{-1}$
Скорость света в вакууме	$c = 3 \cdot 10^8 \text{M/c}$
Коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 H \cdot M^2 / Kn^2$
Заряд электрона	$e = -1.6 \cdot 10^{-19} \text{K}\pi$
Постоянная Планка	$6,6 \cdot 10^{-34} Дж \cdot c$
Масса Земли	$6\cdot10^{24}\kappa z$
Масса Солнца	$2\cdot 10^{30}$ kz
Расстояние между Землёй и Солнцем (1 астрономическая единица)	$1a.e. \approx 150$ млнкм = $1,5 \cdot 10^{11}$ м
Примерное число секунд в году	$3\cdot10^7c$

Соотношение между различными единицами

coomomente menaj pastin indian eaminamin	
Температура	$0K = -273,15^{\circ}C$
Атомная единица массы	$1a.e.м. = 1,66 \cdot 10^{-27} $ кг
1 атомная единица массы эквивалентна	931,5 МэВ
1 электрон-вольт	$1 \ni B = -1, 6 \cdot 10^{-19} \ Дж$

Масса частиц

электрона	$9,1 \cdot 10^{-31} \kappa c = 5,5 \cdot 10^{-4} a.e.m$
протона	$1,673 \cdot 10^{-27} \kappa c = 1,007 a.e. M$
нейтрона	$1,675 \cdot 10^{-27} \kappa c = 1,008 a.e. M$

Плотность

алюминия	$2700 \ кг/м^3$	керосина	$800 \ \mathrm{kg/m}^3$
бамбука	400 kg/m^3	меди	8900 кг/м ³
воды	1000 кг/м ³	парафина	900 кг/м ³
древесины (сосны)	$400 \ \kappa \Gamma / \text{м}^3$	пробки	250кг/м^3
древесины (ели)	$450 \ \kappa \Gamma / \text{м}^3$	ртути	13600 кг/м ³

Удельная

теплоемкость воды	4200Дж/(кг·К) (4180 Дж/(кг·К))
теплоёмкость гелия	3120Дж/(кг·К)
теплоёмкость железа	640Дж/(кг·К)
теплоемкость льда	2100 Дж $/(\kappa \epsilon \cdot K)$
теплоёмкость меди	390Дж/(кг·К) (380 Дж/(кг·К))
теплоемкость свинца	130Дж/(кг⋅К)
теплоемкость стали	460 Дж $/(\kappa_{\mathcal{E}} \cdot K)$
теплоёмкость чугуна	500 Дж $/(\kappa_2 \cdot K)$
теплота парообразования воды	$2,3 \cdot 10^6 Дж / к$ г ($2256 \cdot 10^3 Дж / к$ г)
теплота плавления льда	330кДж/кг (333кДж/кг; 335кДж/кг)
Нормальные условия давление	10 ⁵ Па, температура 0 °С

Молярные массы

азота	$28 \cdot 10^{-3}$ кг/моль
аргона	$40\cdot10^{-3}$ кг/ моль
водорода	$2\cdot 10^{-3}$ кг/ моль
воды, водяных паров	$18 \cdot 10^{-3}$ кг/ моль
гелия	$4\cdot 10^{-3}$ кг / моль
воздуха	29·10 ⁻³ кг/ моль
кислорода	$32 \cdot 10^{-3}$ кг/ моль
лития	$6 \cdot 10^{-3}$ кг / моль
неона	$20 \cdot 10^{-3}$ кг/ моль
серебра	$108 \cdot 10^{-3}$ кг / моль
молибдена	96·10 ⁻³ кг / моль
углекислого газа	$44 \cdot 10^{-3}$ кг/ моль
Температура кипения воды при нормальном	100 °C
давлении	
Температура плавления льда при нормальном	0°C
давлении	

Масса атомов

азота	$_{7}^{14}N$	14,0067 а. е. м.	дейтерия	$_{1}^{2}H$	2,0141 а. е. м.
бериллия	$_{4}^{8}$ Be	8,0053 а. е. м.	лития	$_{3}^{6}Li$	6,0151 а. е. м.
водорода	$_{1}^{1}H$	1.0087 а. е. м.	лития	$_{3}^{7}Li$	7,0160 а. е. м.
гелия	$_{2}^{3}He$	3,0160 а. е. м.	углерода	$_{6}^{12}C$	12,0000 а. е. м.
гелия	$_{2}^{4}He$	4,0026 а. е. м.	углерода	$_{6}^{13}C$	13,0034 а. е. м.

Энергия покоя

электрона 0,5 МэВ нейтрона 939,6 МэВ протона 938,3 МэВ

ядра азота	$_{7}^{14}N$	13040,3 МэВ	ядра кремния	$^{30}_{14}Si$	27913,4 МэВ
ядра	$^{27}_{13}$ Al	25126,6 МэВ	ядра лития	$_{3}^{6}Li$	5601,5 МэВ
алюминия ядра аргона	$^{38}_{18} Ar$	35352,8 МэВ	ядра лития	$_{3}^{7}Li$	6533,8 МэВ
ядра бериллия	$_{4}^{8}$ Be	7454,9 МэВ	ядра магния	$_{12}^{24}Mg$	22335,8 МэВ
ядра бериллия	$^{9}_{4}Be$	8392,8 МэВ	ядра натрия	²³ Na	21409,2 МэВ
ядра бора	$_{5}^{10}B$	9324,4 МэВ	ядра натрия	²⁴ Na	22341,9 МэВ
ядра водорода	$_{1}^{1}H$	938,3 МэВ	ядра неона	²⁰ ₁₀ Ne	18617,7 МэВ
ядра гелия	$_{2}^{3}He$	2808,4 МэВ	ядра трития	$_{1}^{3}H$	2809,4 МэВ
ядра гелия	$_{2}^{4}He$	3728,4 МэВ	ядра углерода	$_{6}^{12}C$	11174,9 МэВ
ядра дейтерия	$_{1}^{2}H$	1875,6 МэВ	ядра	$_{6}^{13}C$	12109,5 МэВ
ядра	$^{15}_{8}O$	13971,3 МэВ	углерода ядра фосфора	$_{15}^{30}P$	27917,1 МэВ
кислорода ядра кислорода	$_{8}^{17}O$	15830,6 МэВ		10	

1. КИНЕМАТИКА

ПРАВИЛО СЛОЖЕНИЯ	ПЕРЕПРАВА	ОТНОСИТЕЛЬНАЯ
СКОРОСТЕЙ		СКОРОСТЬ
$\vec{v}' = \vec{v} + \vec{u}$	через реку шириной АВ	
		$\vec{\mathcal{U}}_{2om+1} = \vec{\mathcal{U}}_2 - \vec{\mathcal{U}}_1$
По течению $\upsilon' = \upsilon + u$	Смещение во время	Скорости тел совпадают
Против течения	переправы	по направлению $\vec{v}_1 \uparrow \uparrow \vec{v}_2$
$\upsilon' = \upsilon - u$	$\frac{AB}{D} = \frac{BC}{u} \Rightarrow BC = \frac{AB \cdot u}{D}$	$\upsilon_{\scriptscriptstyle omh} = \left \upsilon_2 - \upsilon_1\right $
Перпендикулярно	Минимальное время	Скорости тел
течению	переправы $\vec{v} \uparrow \uparrow AB$	противоположно
$\upsilon' = \sqrt{\upsilon^2 + u^2}$		направлены $\vec{v}_1 \uparrow \downarrow \vec{v}_2$
Движение катера	$t_{\min} = \frac{AB}{v}$	$\upsilon_{om\mu} = \upsilon_1 + \upsilon_2$
$\ell = (\upsilon + u)t_1 = (\upsilon - u)t_2 = \upsilon t_3 = ut_4$	Кратчайший путь	Скорости тел
	переправы $\vec{\upsilon}' \uparrow \uparrow AB$	перпендикулярны друг
	$t = \frac{AB}{\sqrt{D^2 - u^2}}$	другу $\vec{v}_1 \perp \vec{v}_2$
	$\sqrt{\upsilon^2-u^2}$	• •
		$\upsilon_{omh} = \sqrt{\upsilon_1^2 + \upsilon_2^2}$
РАВНОУСКОРЕННОЕ	СВОБОДНОЕ	ДВИЖЕНИЕ ПО
ПРЯМОЛИНЕЙНОЕ	ПАДЕНИЕ	ОКРУЖНОСТИ
ДВИЖЕНИЕ	(вертикальный бросок)	_
Ускорение	Ускорение	Период
$\pm a = \frac{\upsilon - \upsilon_0}{t} = \frac{\Delta \upsilon}{t}$	$g = 9.8 \frac{M}{c^2} \approx 10 \frac{M}{c^2}$	$T = \frac{t}{N} = \frac{1}{V}$
Время движения $t = \frac{\upsilon - \upsilon_0}{+a}$	Время движения $t = \frac{\upsilon - \upsilon_0}{\pm g}$	Частота
$t = \frac{1}{\pm a}$	$l = \frac{1}{\pm g}$	$v = \frac{1}{T} = \frac{N}{t}$
Скорость $\upsilon = \upsilon_0 \pm at$	Скорость $\upsilon = \upsilon_0 \pm gt$	T - t Линейная скорость
Перемещение $\ell = s$	Перемещение $\ell = s = h$	-
$1. s = \frac{(v_0 + v)t}{2}$		$\upsilon = \frac{\ell}{t} = \frac{2\pi R}{T} = 2\pi R \upsilon = \frac{2\pi RN}{t} = \omega R$
<u> </u>	$1. s = h = \frac{(\upsilon + \upsilon_0)t}{2}$	Угловая скорость
$2. s = \frac{v^2 - v_0^2}{\pm 2a}$	2. $s = h = \frac{v^2 - v_0^2}{\pm 2g}$	$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi v = \frac{2\pi N}{t} = \frac{v}{R}$
	$3-n-\frac{1}{\pm 2g}$	<i>t T t R</i> Центростремительное
3. $s = v_0 t \pm \frac{at^2}{2}$	3. $s = h = v_0 t \pm \frac{gt^2}{2}$	ускорение
«+» разгон	2	
«-» торможение	«+» движение вниз	$a_{y.c.} = \frac{v^2}{R} = \omega^2 R = \frac{4\pi^2 R}{T^2} = 4\pi^2 R v^2$
Уравнение координаты	«-» движение вверх Уравнение координаты	
$x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$	- ,	
_	$y = y_0 + v_{0y}t + \frac{g_y t^2}{2}$	
Уравнение проекции	Уравнение скорости	
перемещения	$\upsilon_{v} = \upsilon_{0v} + g_{v}t$	
$s_x = v_{0x}t + \frac{a_x t^2}{2}$	y -0y · 8 y	
Уравнение проекции		
скорости		
$v_x = v_{0x} + a_x t$		

	Покой $a_x = 0$ $\sum F_x = 0$ $v_x = 0$	Равномерное прямолинейное движение $a_x = 0$ $\sum F_x = 0$ $v_x = const$ $v_x = const$ $v_x = const$ $v_x = const$ $v_y = const$ $v_z = const$	Равноускоренное прямолинейное движение $a_x = const$, $\sum F_x = ma_x$ $\vec{a} \uparrow \uparrow \vec{v}_0 \uparrow \uparrow OX$ $v_x = v_0 + at$ $s_x = v_0 t + \frac{at^2}{2}$ $x = x_0 + v_0 t + \frac{at^2}{2}$	Равнозамедленное прямолинейное движение $a_x = const$, $\sum F_x = ma_x$ $\vec{a} \uparrow \downarrow \vec{\upsilon}_0, \vec{\upsilon}_0 \uparrow \uparrow OX$ $\upsilon_x = \upsilon_0 - at$ $s_x = \upsilon_0 t - \frac{at^2}{2}$ $x = x_0 + \upsilon_0 t - \frac{at^2}{2}$
$a_x(t)$	a_x	$ \begin{array}{c} $	0 t	
$v_x(t)$	0 t	$0 \frac{D_x}{2}$		O_x t
$S_x(t)$	O t	s_x t t	S_x O t	S_x O t
ℓ(t)Всегдавозрастаю-щая функция	0 t	$0 \xrightarrow{\ell} 1$	l l	
x(t)		x x x x x x x x x x		

Проекции начальной скорости	$ \begin{array}{c cccc} Y & & & & & & & & \\ h_0 & & & & & & & \\ \hline 0 & & & & & & \\ \hline 0 & & & & & & \\ \hline \nu_{0x} = \nu_0; \nu_{0y} = 0 \end{array} $	$ \begin{array}{cccc} Y & \overrightarrow{U}_0 & \overrightarrow{U}_h & \overrightarrow{g} \\ 0 & h & \ell \\ V_{0x} = V_0 \cos \alpha ; V_{0y} = V_0 \sin \alpha \end{array} $
Проекции ускорения свободного падения	$g_x = 0; g_y = -g$	$g_x = 0; g_y = -g$
Проекции мгновенной скорости	$v_x = v_0; \ v_y = -gt$	$\upsilon_{x} = \upsilon_{0} \cos \alpha ; \upsilon_{y} = \upsilon_{0} \sin \alpha - gt$
Модуль мгновенной скорости $v = \sqrt{v_x^2 + v_y^2}$	$\upsilon = \sqrt{\upsilon_0^2 + (gt)^2}$	$\upsilon = \sqrt{\upsilon_0^2 - 2\upsilon_0 \sin \alpha g t + g^2 t^2}$
Минимальная скорость	Начальная скорость	Скорость в верхней точке траектории $\upsilon_{\min} = \upsilon_0 \cos \alpha = \upsilon_h$
Максимальная скорость	Конечная скорость (при падении на землю)	Начальная скорость = конечной скорости
Угол наклона вектора скорости к горизонту	$tg\beta = \frac{v_y}{v_x} = \frac{gt}{v_0}$	$tg\beta_1 = \frac{v_y}{v_x} = \frac{v_0 \sin \alpha - gt_1}{v_0 \cos \alpha}$ $tg\beta_2 = \frac{v_y}{v_x} = \frac{-(v_0 \sin \alpha - gt_2)}{v_0 \cos \alpha}$
Угол наклона вектора скорости к вертикали	$tg\gamma = \frac{\upsilon_x}{\upsilon_y} = \frac{\upsilon_0}{gt}$	$tg\gamma = \frac{\upsilon_x}{\upsilon_y} = \frac{\upsilon_0 \cos \alpha}{\upsilon_0 \sin \alpha - gt}$
Тангенциальное ускорение	$a_{\tau} = g \cos \gamma$	$a_{\tau 1} = -g\cos\gamma \; ; a_{\tau 2} = g\cos\gamma$
Нормальное ускорение	a_n	$=g\sin\gamma$
Горизонт. смещение $x = x_0 + \nu_{0x}t + \frac{g_x t^2}{2}$	$x = v_0 t$	$x = v_0 \cos \alpha t$
М гновенная высота $y = y_0 + \nu_{0y}t + \frac{g_yt^2}{2}$	$y = h_0 - \frac{gt^2}{2}$	$y = v_0 \sin \alpha t - \frac{gt^2}{2}$
Время	Время падения (у=0)	Время подъема $(v_y = 0)$
	$t_{nao} = \sqrt{\frac{2h_0}{g}}$	$t_{noo} = \frac{\upsilon_0 \sin \alpha}{g}$
		Время полета (полное) $t_{nosm} = 2t_{noo} = \frac{2\nu_0 \sin \alpha}{g}$
Наибольшая высота подъема		$h = \frac{{v_0}^2 \sin^2 \alpha}{2g}$
Дальность полета	$\ell = \upsilon_0 t_{nao} = \upsilon_0 \sqrt{\frac{2h_0}{g}}$	$\ell = \frac{\upsilon_0^2 2 \sin \alpha \cos \alpha}{g} = \frac{\upsilon_0^2 \sin 2\alpha}{g}$ $y(x) = xtg\alpha - \frac{gx^2}{2\upsilon_0^2 \cos^2 \alpha}$
Уравнение траектории $y(x)$	$y(x) = h_0 - \frac{g}{2} \left(\frac{x}{\nu_0}\right)^2$	$y(x) = xtg\alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$
-		

4. Частные случаи горизонтального броска и броска под углом

Бросок с горы (частный случай горизонтального броска)

lpha - угол наклона плоскости к горизонту

s - расстояние от места бросания до места падения

Дальность полета $\ell = s \cos \alpha$ Начальная высота $h_0 = s \sin \alpha$

Бросок под углом к горизонту с некоторой высоты (упругое отражение от наклонной плоскости вертикально падающего тела)

Уравнение координаты х

$$x = v_0 \cos \alpha t$$

Уравнение координаты у

$$y = h_0 + v_0 \sin \alpha t - \frac{gt^2}{2}$$

Уравнение траектории

$$y = h_0 + xtg\alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$$

Бросок под углом к горизонту с учетом силы сопротивления воздуха

Проекции ускорения $a_x = -a$; $g_y = -g$

 $v_x = v_0 \cos \alpha - at; v_y = v_0 \sin \alpha - gt$

Уравнения координаты

$$x = v_0 \cos \alpha t - \frac{at^2}{2}$$
$$y = v_0 \sin \alpha t - \frac{gt^2}{2}$$

5. ДИНАМИКА

			э. динамика	1
ЗАКОНЫ Н	НЬЮТОНА	CV	ІЛА ВСЕМИРНОГО	СИЛА ТЯЖЕСТИ
			ТЯГОТЕНИЯ	
Первый	Первый закон		$F_1 = F_2 = F_{mse} = \frac{Gm_1m_2}{r^2}$	$F_{mg} = mg$
$\Sigma \vec{F} = 0$	$\Sigma \vec{F}_i = 0; \vec{a} = 0$		$r_1 - r_2 - r_{mse} - \frac{r_2}{r^2}$	TIBIOIC -
			r -расстояние между	$F_{msx} = \frac{GMm}{(R+H)^2} = \frac{GMm}{r^2}$
Второй зак	юн (РуПД)		центрами тел	` '
$\vec{R} = \Sigma \vec{F}_i = n$	$n\vec{a}:\vec{a}\uparrow\uparrow\vec{R}$		$G = 6.67 \cdot 10^{-11} \frac{H \cdot M^2}{m^2}$	r = R + H - радиус
_			K2 ²	орбиты
Третий зако	$F_1 = -F_2$		гравитационная	
			постоянная	
Į	Движение ИС	3	$F_{m_{\mathcal{H}}} = ma_{u.c.}$ ИЛИ	GMm
			тим ц.с.	$\frac{GMm}{(R+H)^2} = ma_{y.c.}$
	g		$v_{_{I}}$	T
$a_{u.c.}$	$a_{u.c.} = g$		$a_{y.c.} = \frac{v^2}{r}$	$4\pi^2 r$
-,	-,		$a_{y.c.} = \frac{}{r}$	$a_{y.c.} = \frac{4\pi^2 r}{T^2}$
11 0 11	CM		, , , , , , , , , , , , , , , , , , ,	CM:: 1 4 - 2 (B + 11)
II 3.H.	$\frac{GMm}{(R+H)^2} = n$	ıg	$\frac{GMm}{(R+H)^2} = \frac{m\upsilon_I^2}{R+H}$	$\frac{GMm}{(R+H)^2} = \frac{m4\pi^2(R+H)}{T^2}$
	· · ·		(K+H) $K+H$, ,
На высоте Н	$g = \frac{GM}{(R+H)^2} = \frac{G}{R}$	<u>M</u>	$\upsilon_{I} = \sqrt{\frac{GM}{R+H}} = \sqrt{\frac{GM}{r}}$	$T = 2\pi \sqrt{\frac{(R+H)^3}{GM}} = 2\pi \sqrt{\frac{r^3}{GM}}$
	(K+II) /		120 122 17	V GM V GM
			$\upsilon_I = \sqrt[3]{\frac{2\pi GM}{T}}$	
H = 0	CM		GH	
H=0	$g_0 = \frac{GM}{R^2}$		$v_I = \sqrt{\frac{GM}{R}}$	$T = 2\pi \sqrt{\frac{R^3}{CM}}$
	R ²		· V R	V GIVI
$M = \rho \cdot \frac{4}{3} \pi R^3$	$g_0 = \frac{4}{3}G\pi R\rho$		$v_I = 2R\sqrt{\frac{G\rho\pi}{3}}$	$T = \sqrt{\frac{3\pi}{G\rho}}$
H = 0	3		o ₁ 2π√ 3	V $G ho$
$H = 0$ $GM = g_0 R^2$			$\upsilon_I = \sqrt{\frac{g_0 R^2}{(R+H)}} = \sqrt{\frac{g_0 R^2}{r}}$	$T = 2\pi \sqrt{\frac{(R+H)^3}{g_0 R^2}} = 2\pi \sqrt{\frac{r^3}{g_0 R^2}}$
- 80			$O_I = \sqrt{(R+H)} = \sqrt{r}$	$I = 2\pi \sqrt{-g_0 R^2} = 2\pi \sqrt{g_0 R^2}$
СИЛА УПІ	РУГОСТИ		СИЛА ТРЕНИЯ	BEC ТЕЛА $P = F_{\partial aea.}$
Закон	Гука		рение скольжения	$(\vec{a}=0)P_0=mg$
$F_{ynp} =$	•		$F_{mp.c\kappa.} = \mu N$	Ускорение опоры
			- mp.cк. Р	направленно
Γ Де $x = \Delta$			или	BBepx: $P_{\uparrow} = m(g+a)$
- деформаци	ия пружины		$F_{mp.c\kappa.} = \mu F_{\partial a \epsilon n}$	вниз: $P_{\perp} = m(g-a)$
Коэффициен				v =
	F 6		Трение покоя	Нижняя точка вогн. Моста
κ = =	$k = \frac{E \cdot S}{\ell_0}$		$0 < F_{mp.n} < F_{mp.c\kappa}.$	$P_{\cup} = m(g + a_{u.c.})$
Паралл	Параллельное		Трение покоя и	Верхняя точка вып. Моста
соедин			приложенная сила	$P_{\cap} = m(g - a_{y.c.})$
$k_{nap} = k$	$k_1 + k_2$		$F_{mp.n} = F_{npu au.}$	Верхняя точка «мертвой
Последов	ательное	-		петли»
соедин		ŀ	Если $F_{npun.} > \mu N$, то	$P = m (a_{uc} - g)$
		Į.	$F - F - \mu N$	Перегрузка р
$\frac{1}{k_{nocs}} = \frac{1}{k_{nocs}}$	$\overline{k_1} + \overline{k_2}$	1	$F_{mp.} = F_{mp.c\kappa.} = \mu N$	Перегрузка $\frac{P}{P_0} = \frac{P}{mg}$
				Hевесомость $P = 0$
<u> </u>				

6. СТАТИКА И ГИЛРОСТАТИКА

6. C	ТАТИКА И ГИДРОСТАТ	ГИКА
ПРАВИЛО	ДАВЛЕНИЕ	СИЛА ДАВЛЕНИЯ
MOMEHTOB		
Момент силы	Давление твердого тела	$F_{\scriptscriptstyle \partial a s n} = p S$
$M = F \cdot d$,	$p = \frac{F}{S} = \frac{mg}{S}$	На дно сосуда
где d - плечо силы	_ 5 5	$F_{\scriptscriptstyle{\partial aen}}= ho_{\scriptscriptstyle{\mathcal{H}}}ghab$
Правило моментов	Давление жидкости	На боковую грань сосуда
$\sum M_{no \ vac.cmp.} = \sum M_{np.vac.cmp.}$	$p = \rho_{\mathcal{H}} gh,$	$F_{\partial a e \pi} = \frac{\rho_{\mathcal{H}} g h}{2} h b$
Правило моментов для	<i>h</i> - глубина определяется от поверхности жидкости	$\Gamma_{\partial a a n} = \frac{1}{2} n v$
двух сил	Атмосферное давление	
$F_1 \cdot d_1 = F_2 \cdot d_2$	$p = \rho_{pm} gh$	
1 1 2 2	Давление на глубине	
	$p = p_{am_{\mathcal{M}}} + \rho_{\mathscr{H}} gh$	
ГИДРАВЛИЧ. ПРЕСС	АРХИМЕДОВА СИЛА	УСЛОВИЯ ПЛАВАНИЯ
		ТЕЛ
Закон Паскаля	Закон Архимеда	Тело тонет
$p_{_{\scriptscriptstyle M}}=p_{_{\scriptscriptstyle ar{O}}}$	$F_{Apx} = P_{\mathcal{K}u\partial.},$	$F_{ extit{ms.mc.}} > F_{ extit{Apx.}}; \; ho_{ extit{m}} > ho_{ extit{mc}}$
$\frac{F_{\scriptscriptstyle M}}{F_{\scriptscriptstyle M}} = \frac{F_{\scriptscriptstyle \delta}}{F_{\scriptscriptstyle \delta}}$	где P_{yead} - вес,	Тело плавает внутри
$\frac{\overline{S}_{M}}{S_{M}} \equiv \frac{\overline{S}_{\tilde{G}}}{S_{\tilde{G}}}$	вытесненной телом	жидкости
Работа поршней	жидкости (или газа)	$F_{\scriptscriptstyle M\!R\!S\!R\!C\!C}=F_{\scriptscriptstyle A\!p\!X\!C}$; $ ho_{\scriptscriptstyle m}= ho_{\scriptscriptstyle S\!R\!C}$
(без потерь энергии)	$F_{Apx} = \rho_{\mathcal{H}} V_{n,y} g$	Тело всплывает
$A_{_{M}}=A_{_{B}}$	P	$F_{\scriptscriptstyle M\!R\!,\!M\!C} < F_{\scriptscriptstyle A\!D\!X}$; $ ho_{\scriptscriptstyle m} < ho_{\scriptscriptstyle M\!C}$
$F_{_{M}}h_{_{M}}=F_{_{D}}h_{_{D}}$	где $V_{n.ч.}$ - объём	Тело плавает на
Выигрыш в силе	погруженной части	поверхности
*	тела	$F_{Apx}=F_{\mathit{mяж.}}=P_{\mathit{mела}}$
$\frac{F_{\delta}}{F_{M}} = \frac{h_{M}}{h_{\delta}} = \frac{S_{\delta}}{S_{M}}$	$F_{Apx} = P_{603\partial} - P_{\mathcal{H}}$, где	•
n_{δ} n_{δ} n_{δ}	P_{6030} - вес тела в	$\rho_{m}V_{m}g=\rho_{\mathcal{H}}V_{n.4.}g$
	воздухе;	Часть тела, погруженная в
	P_{yc} - вес этого тела в	жидкость
	жидкости	$rac{V_{n.4.}}{V_m} = rac{ ho_m}{ ho_{_{\mathcal{M}^{\!\scriptscriptstyle C}}}}$
	жидкости	$m{v}_m$ $m{\mathcal{P}}_{\scriptscriptstyle\mathcal{H}\!\!c}$
I		

7. ЗАКОНЫ СОХРАНЕНИЯ

	JAKOHDI COZI AHEH	11/1
ИМПУЛЬС	II З.НЬЮТОНА В ИМПУЛЬСНОМ ВИДЕ	ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА (ЗСИ)
Определение импульса $\vec{p} = m\vec{\upsilon}$ Относительный импульс $\vec{p} = m\vec{\upsilon}_{2omn1} = m(\vec{\upsilon}_2 - \vec{\upsilon}_1)$ Изменение импульса $\Delta \vec{p} = \vec{p} - \vec{p}_0$ МЕХАНИЧЕСКАЯ	$ec{F}\Delta t = \Delta ec{p}$ Реактивная сила $F_p = rac{\Delta m \upsilon}{\Delta t}$ II З.Н. для ракеты $F_p = Ma^{-\text{ИЛИ}} rac{\Delta m \upsilon}{\Delta t} = Ma$ МОЩНОСТЬ	Полный импульс $\vec{p} = \vec{p}_1 + \vec{p}_2$ Закон сохранения импульса $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$ КПД
РАБОТА $A = Fs \cos \alpha, \text{где}$ $F - \text{модуль конкретной силы; } s - \text{модуль }$ перемещения; α - угол	Определение $N = \frac{A}{t}$ Мощность при РмПД $N = F_m \upsilon$ Средняя мощность	Определение $\eta = \frac{A_{nosesp.}}{A_{nosnas}} 100\%$ или
между \vec{F} и \vec{s} ВИДЫ	$N_{\varphi} = F_m \nu_{\varphi}$. Мгновенная мощность $N_{MPH.} = F_m \nu_{MPH.}$ ЗАКОН	$\eta = rac{N_{noseyp.}}{P_{nompe6.}} 100\%$ Наклонной плоскости $\eta = rac{mgh}{F\ell} 100\%$ РАБОТА И ИЗМЕНЕНИЕ
МЕХАНИЧЕСКОЙ ЭНЕРГИИ	СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ (ЗСЭ)	ЭНЕРГИИ
Кинетическая энергия $E_k = \frac{m \upsilon^2}{2},$ где υ - мгновенная скорость Потенциальная энергия поднятого над Землёй тела $E_p = mgh,$ где h - высота центра масс Потенциальная энергия упруго деформированной пружины $E_p = \frac{k x^2}{2}$	Полная энергия $E = E_k + E_p$ Закон сохранения механической энергии $E_{k0} + E_{p0} = E_k + E_p$ Упругий центральный удар о неподвижное тело $3CU : m_1 \upsilon_1 = m_1 \upsilon_1' + m_2 \upsilon_2'$ $3C\Im : \frac{m_1 \upsilon_1'^2}{2} = \frac{m_1 \upsilon_1'^2}{2} + \frac{m_2 \upsilon_2'^2}{2}$ Итог: $OX : \upsilon_1' = \frac{m_1 - m_2}{m_1 + m_2} \upsilon_1$ $OX : \upsilon_2' = \frac{2m_1}{m_1 + m_2} \upsilon_1$	Изменение энергии $\Delta E = E - E_0$ Работа $A = \Delta E$ Работа внешней силы и силы трения $\Delta E = A(F_{\textit{вн.с.}}) + A(F_{\textit{mp.}}),$ где $A(F_{\textit{mp.}}) < 0$ Превращение механической энергии во внутреннюю $E_0 = E + Q$ Энергия, выделяемая при взрыве $E_0 + Q = E$

8. МОЛЕКУЛЯРНАЯ ФИЗИКА И ГАЗОВЫЕ ЗАКОНЫ

		UDDIE SAKUNDI
ИЗ ХИМИИ	МОЛЕКУЛЫ	ЧИСЛО ЧАСТИЦ
Относительная атомная	Масса молекулы	Число частиц
масса Ar в т. Менделеева	$m_0 = \frac{M}{N_A}$	N = nV
, где , где	**	Число молекул
$Ar=rac{m_0}{\dfrac{1}{12}m_{0C}}$, где	Количество вещества	$N = vN_A = \frac{m}{M}N_A$
	$v = \frac{N}{N_A} = \frac{m}{M}$	Число атомов
m_0 - масса одного атома,	Концентрация	$N = vN_A \cdot k$, ГДе
m_{0C} - масса атома углерода	$n = \frac{N}{V}$	k - количество атомов в
Относительная	V	молекуле
молекулярная масса	Плотность	Двухатомный газ
$Mr = \sum Ar$	$\rho = \frac{m}{V}$	перешёл в атомарное
Молярная масса	'	состояние
$M = Mr \cdot 10^{-3}$	Масса вещества	
	$m = \rho V = vM$	$M_2 = \frac{M_1}{2} \; ; \; v_2 = 2v_1$
СЛЕДУЕТ ЗНАТЬ	ОСНОВНОЕ	СЛЕДСТВИЯ ИЗ
	УРАВНЕНИЕ МКТ	ОСНОВНОГО
		УРАВНЕНИЯ МКТ
Абсолютная температ.	1. $p = \frac{1}{3} m_0 n v^2$	Скорость движения
T = t + 273		частиц
Изменение температуры $\Delta T = \Delta t$	$2. p = \frac{1}{3} \rho \overline{v^2}$	$\upsilon = \sqrt{\frac{3kT}{m_0}} \qquad \text{ИЛИ} \qquad \upsilon = \sqrt{\frac{3RT}{M}}$
Нормальные условия	3. $p = \frac{2}{2} n \overline{E}_k$	Температура и средняя
$T_o = 273 \text{ K}; p_o = 10^5 \Pi a$	4. p = nkT	кинетическая энергия
Двухатомные газы	$rac{1}{2} = \frac{1}{2} $	\bar{z} 3 . z $2\bar{E}_{\iota}$
H_2 , O_2 , N_2 , Cl_2		$\overline{E}_k = \frac{3}{2}kT \qquad T = \frac{2\overline{E}_k}{3k}$
УРАВ. СОСТОЯНИЯ	ГАЗОВЫЕ ЗАКОНЫ	НАСЫЩЕННЫЙ ПАР.
При изменении	При неизменной М,	ВЛАЖНОСТЬ
M, m, v, N	m,v,N	ВОЗДУХА
1. $pV = \frac{m}{M}RT$	Объединенный газовый	Давление насыщенного
1/1	3akoh $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	пара
2. $pV = vRT$	I -	$p_{nac} = f(T); p = nkT$
3. $p = \frac{\rho}{M}RT$	Бойля — Мариотта (T) $p_1V_1 = p_2V_2$	$p_{\text{hac}} \neq f(V)$
Все величины должны	Гей – Люссака (р)	Относительная
быть выражены в СИ!	-	влажность
	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\varphi = \frac{\rho}{\rho_{nac}(t)} \cdot 100\%$
	Шарля (V) $\frac{p_1}{T_1} = \frac{p_2}{T_2}$	$\varphi = \frac{p}{p_{\text{\tiny mac}}(t)} \cdot 100\%$
	Температура в $[K]$!	

9. ГРАФИКИ ИЗОПРОЦЕССОВ

ТЕПЛОВЫЕ ПРОЦЕССЫ ПРИ НАГРЕВАНИИ И ОХЛАЖДЕНИИ

	, I	
1-2	Нагревание твердого тела	$Q = c_m m (t_{nn} - t_o)$
2-3	Плавление (\mathbf{t}_{nn})	$Q = \lambda m$
3-4	Нагревание жидкости	$Q=c_{\mathcal{H}} m(t_{\kappa un}-t_{nn})$
4-5	Кипение $(\mathbf{t}_{\kappa \mathbf{u} \mathbf{n}})$	Q = r m
5-6	Нагревание пара	$Q = c_n m(t - t_{\kappa un})$
6-7	Охлаждение пара	$Q = c_n m \left(t_{\kappa un} - t \right)$
7-8	Конденсация $(\mathbf{t}_{\kappa\mathbf{n}\mathbf{n}})$	Q = -rm
8-9	Охлаждение жидкости	$Q=c_{\mathcal{H}} m(t_{n\pi}-t_{\kappa un})$
9-10	Отвердевание $(\mathbf{t}_{\mathbf{n}\mathbf{n}})$	$Q = -\lambda m$
10-11	Охлаждение твердого тела	$Q = c_m m (t_o - t_{nn})$

10. ТЕРМОДИНАМИКА

10. TEPMO	ОДИНАМИКА
КОЛИЧЕСТВО ТЕПЛОТЫ	ВНУТРЕННЯЯ ЭНЕРГИЯ ИД. ГАЗА
Нагревание и охлаждение	Внутренняя энергия
$Q = cm(t_2 - t_1)$	$U = \frac{i}{2} \cdot \frac{m}{M} RT = \frac{i}{2} vRT = \frac{i}{2} pV$
Теплоемкость и молярная	Степень свободы газа і
теплоемкость $C = c m$	Одноатомного 3, двухатомного 5,
Сгорание топлива $Q = q m$	трех- и более 6
Плавление и отвердевание	и облес о <u>Изменение в</u> нутренней энергии
$Q = \pm \lambda m, t_{nn}$	$\Delta U = \frac{i}{2} \cdot \frac{m}{M} R\Delta T = \frac{i}{2} vR\Delta T = \frac{i}{2} (p_2 V_2 - p_1 V_1) =$
Кипение и конденсация	$\begin{bmatrix} 2 & M & M \\ \vdots & \vdots & \vdots \end{bmatrix} 2^{MM} = 2^{(p_2 r_2 - p_1 r_1)}$
$Q=\pm rm, \ t_{rm}$	$=\frac{i}{2}p\Delta V = \frac{i}{2}\Delta pV$
«+» энергия поглощается	Работа в термодинамике
«-» энергия поглощается «-» энергия выделяется	$A' = p\Delta V = \frac{m}{M} R\Delta T = vR\Delta T = \Delta pV$
Мощность теплопередачи или	$\frac{ A - p\Delta v }{M} - \frac{1}{M} K\Delta I - VK\Delta I - \Delta p V$
	Геометрический смысл работы
теплоотвода $P = \frac{Q}{t}$	$A' = S_{\phiисуры}$ в осях (p,V)
ПЕРВОЕ НАЧАЛО	МАКСИМАЛЬНЫЙ КПД тепловой
ТЕРМОДИНАМИКИ	машины
$\pm \Delta U = \pm Q \pm A'$	$Q_{\mu} - Q_{x,1000}$
Изотермический процесс	$1 \cdot \eta = \frac{Q_n - Q_x}{Q_u} 100\%$
$\Delta U=0$; $Q=A'$	2 A' A'
Изохорный процесс	$2 \cdot \eta = \frac{A'}{Q_n} 100\% = \frac{A'}{A' + Q_x} 100\%$
$A' = 0; \Delta U = Q$	T - T
Изобарное расширение газа	$4. \ \eta = \frac{T_{_{H}} - T_{_{X}}}{T} 100\%$
$\Delta U = Q - A'$	4' N. O. D. O. D.
Адиабатный процесс	$A' = Nt \; ; \; Q_{\scriptscriptstyle H} = P_{\scriptscriptstyle H}t \; ; \; Q_{\scriptscriptstyle X} = P_{\scriptscriptstyle X}t$
$Q=0; \ \Delta U=A'$	Температура в $\left[K ight]$!
КПД электронагревателей	КПД нагревателей
Чайник	Газовый или спиртовой нагреватель
$\eta = \frac{cm\Delta t}{R_t} \cdot 100\%$	$\eta = \frac{cm\Delta t}{qm_{mon}} \cdot 100\%$
1 1	qm_{mon}
Кофейник, самовар	Плавильная печь
$\eta = \frac{cm\Delta t + rm}{Pt} \cdot 100\%$	$\eta = \frac{cm\Delta t + \lambda m}{qm_{mon}} \cdot 100\%$
Pt	qm_{mon}

11. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Изотермический процесс

	T	ΔU	V	A'	Первое начало
1-2	T = const	0	↑	$A'_{12} < 0$	$0 = Q_{12} - A_{12}'$
2-1	T = const	0	\	$A'_{21} > 0$	$0 = -Q_{21} + A_{21}'$

Изохорный процесс

$A'=0; \Delta U=Q$	$ \begin{array}{c c} p & 2 \\ 1 & V \end{array} $	V 1 2 0 T	
Что можно определить по графику	$\Delta U = \frac{3}{2} \Delta p V$	$\Delta U = \frac{3}{2} \nu R \Delta T$	$\Delta U = \frac{3}{2} \nu R \Delta T$

	T	ΔU	V	A'	Первое начало
1-2	↑	$\Delta U_{12} > 0$	V = const	0	$+\Delta U_{12} = +Q_{12}$
2-1	\	$\Delta U_{21} < 0$	V = const	0	$-\Delta U_{21} = -Q_{21}$

12. Изобарный процесс

	T	ΔU	V	A'	Первое начало
1-2	↑	$\Delta U_{12} > 0$	↑	$A'_{12} < 0$	$\Delta U_{12} = Q_{12} - A'_{12}$
2-1	\	$\Delta U_{21} < 0$	\	$A'_{21} > 0$	$-\Delta U_{21} = -Q_{21} + A_{21}'$

Произвольный процесс

$A' = \frac{p_1 + p_2}{2} (V_2 - V_1); \ A'_{12} < 0$
$\Delta U = \frac{3}{2} \nu R \Delta T; \Delta U_{12} > 0$ $\Delta U = \frac{3}{2} \nu R (T_2 - T_1) = \frac{3}{2} (p_2 V_2 - p_1 V_1)$
$\Delta U_{12} = Q_{12} - A_{12}'$

13. ЭЛЕКТРОСТАТИКА

CHILA IOMIOTIA	TOUEHH IĂ 2A DAH	CHCTEMA DARGIOD
СИЛА КУЛОНА	ТОЧЕЧНЫЙ ЗАРЯД	СИСТЕМА ЗАРЯДОВ
Закон Кулона	Модуль напряженности	Результирующая сила
$F_K = \frac{k q_1 \cdot q_2 }{\alpha^2}$;	$E = \frac{kQ}{r^2}$	$\vec{R} = \sum_i \vec{F}_i$
$r_K = \frac{1}{\varepsilon r^2}$		Общая напряженность
$1 \qquad 1 \qquad H \cdot M^2$	где Q - модуль заряда,	
$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{Kn^2}$	создающего поле	$ec{E} = \sum ec{E}_i$
Определение	Потенциал (учитывайте	Общий потенциал
напряженности	знак заряда)	$\varphi = \sum_{i} \pm \varphi_{i}$
	_	—
$\vec{E} = \frac{F_K}{q} \Rightarrow F_K = q_0 \vec{E}$	$\varphi = Er = \pm \frac{kQ}{r}$	Потенциальная энергия
Избыток электронов	Потенциальная энергия	$W_{p}=\sum\pm W_{ m scex}$ nap
N = q	двух зарядов (учиты-	
$N = \frac{q}{q_e}$	вайте знак заряда)	
$q_a = -1.6 \cdot 10^{-19} \text{Kz}$	kq_1q_2	
ie ,	$W_p = \pm \frac{kq_1q_2}{r}$	
НАПРЯЖЕННОСТЬ	ПОТЕНЦИАЛ СФЕР.	ОДНОРОДНОЕ ПОЛЕ
СФЕР. ПРОВОДНИКА	ПРОВОДНИКА	
Внутри $(r < R)$	Внутри и на поверхности	Разность потенциалов
E=0	$(0 < r \le R)$	$\varphi_1 - \varphi_2 = Er_{12}$
Ha поверхности $(r=R)$, , ,	Напряжение
$E = \frac{kQ}{R^2}$	$\varphi = \frac{kQ}{R}$	U = Ed
K	Вне $(r>R)$	Сила Кулона
Вне $(r>R)$		_
$E = \frac{kQ}{r^2} = \frac{kQ}{(R+a)^2}$	$\varphi = \frac{kQ}{r} = \frac{kQ}{R+a}$	$F_K = qE = q\frac{U}{d}$
РАБОТА ЭЛ/СТАТИЧ.	КОНДЕНСАТОРЫ	СОЕДИНЕНИЕ
ПОЛЯ		КОНДЕНСАТОРОВ
Учитывайте знак	Электроемкость	Последов. соединение
заряда	$C = \frac{\varepsilon_0 \varepsilon S}{d}$	$U = U_1 + U_2$
1. $A = F_K s \cos \alpha$	d	$q = q_1 = q_2$
2. $A = \pm q E s \cos \alpha$	Заряд, напряжение,	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$
3. $A = \pm qE(r_0 - r)$	электроёмкость	· -
	$C = \frac{q}{U}$	Параллельное
4. $A = \overline{+}(qEr - qEr_0) = -\Delta W_p$	U	соединение
$5. A = \pm q \frac{U}{J} s \cos \alpha$	«Конденсатор отключен от источника»	$U = U_1 = U_2$ $q = q_1 + q_2$
a	q = q'	$C = C_1 + C_2$
6. $A = \pm q \frac{U}{d} (r_0 - r)$	q-q «Конденсатор подключен	Параллельное
7. $A = \pm q(\varphi_1 - \varphi_2) = \pm qU_{12}$	к источнику»	соединение
8. $A = \frac{mv^2}{2} - \frac{mv_0^2}{2} = \Delta E_k$	U = U'	конденсаторов
$A = \frac{1}{2} - \frac{1}{2} = \Delta E_k$	Энергия конденсатора	одноименно («+») и
		разноименно («-»)
	$W_{_{3}} = \frac{q^2}{2C} = \frac{CU^2}{2}$	заряженными пластинами
		$U' = \frac{q'}{C'} = \frac{C_1 U_1 \pm C_2 U_2}{C_1 + C_2}$
L	l .	1

14. ЗАКОНЫ ПОСТОЯННОГО ТОКА

14. ЗАКОНЫ ПОСТОЯННОГО ТОКА			
СИЛА ТОКА, СОПРОТИВЛЕНИЕ, НАПРЯЖЕНИЕ	СОЕДИНЕНИЯ ПРОВОДНИКОВ	ЗАКОНЫ ОМА	
Определение силы тока $I = \frac{\Delta q}{\Delta t} = \frac{q}{t} = \frac{Nq_e}{t}$ Заряд при равномерном изменении тока $q = \frac{I_1 + I_2}{2}t$ Определение сопрот. $R = \frac{\rho\ell}{S}$ Зависимость от температуры $R = R_0(1 + \alpha t)$ Напряжение $U = \frac{A_{_{3,3}}}{q}$	Последовательное $I = I_1 = I_2$ $U = U_1 + U_2$ $R = R_1 + R_2$ Одинаковые сопротивления $R = nR_0$ Параллельное $I = I_1 + I_2$ $U = U_1 = U_2$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ Одинаковые сопротивления $R = \frac{R_0}{n}$	Для участка цепи $I = \frac{U}{R}$ Для полной цепи $I = \frac{\varepsilon}{R+r}$ ЭДС $\varepsilon = \frac{A_{cm}}{q}$ Падение напряжения, напряжение на полюсах источника $U = IR = \varepsilon - Ir$ Ток короткого замыкания $R \to 0; I_{\kappa.s.} = \frac{\varepsilon}{r}$ КПД источника $\eta = \frac{U}{\varepsilon} \cdot 100\% = \frac{R}{R+r} \cdot 100\%$	

	МОЩНОСТЬ	РАБОТА, КОЛИЧЕСТВО
	,	ТЕПЛОТЫ
На внешней цепи, на нагрузке,	$P_{\text{eneu}} = IU = \frac{U^2}{R} = I^2 R = \left(\frac{\varepsilon}{R+r}\right)^2 R$	$A_{\text{oneu}} = IUt = \frac{U^2}{R}t = I^2Rt = \left(\frac{\varepsilon}{R+r}\right)^2Rt = Q_{\text{\tiny even}}$
полезная	, , ,	
Максимальная на внешней цепи, при $R=r$	$P_{\text{max}} = \left(\frac{\varepsilon}{2r}\right)^2 r = \frac{\varepsilon^2}{4r}$	$A_{\max} = \left(\frac{\varepsilon}{2r}\right)^2 rt = \frac{\varepsilon^2}{4r}t = Q_{\max}$
Внутренней цепи, внутри источника	$P_{\omega_{ijmp}} = I^2 r = \left(\frac{\mathcal{E}}{R+r}\right)^2 r$	$A_{\omega_{ijmp}} = P_{\omega_{ijmp}} t = Q_{\omega_{ijmp}}$
Полная	$P_{norm} = I\varepsilon = I^{2}(R+r) = \frac{\varepsilon^{2}}{R+r}$	$A_{nom} = P_{nom} t = Q_{nom}$

Работа, энергия, количество теплоты, мощность и время

$$A = W = Q = Pt$$

Закон Джоуля – Ленца

 $Q = I^2 Rt$

КПД электродвигателя

$$\eta = \frac{A_{\text{nonesn}}}{W_{\text{n.n.moka}}} 100\% = \frac{F_{\text{m}} \cdot s}{IUt} \cdot 100\%$$

15. ЭЛЕКТРОМАГНЕТИЗМ

СИЛА АМПЕРА	РАБОТА СИЛЫ АМПЕРА	ЧАСТИЦЫ
$F_A = BI\ell \sin lpha$, где $lpha$ - угол между направлением \vec{B} и условным направлением	$A = F_A s \cos lpha',$ где $lpha'$ - угол между направлением \vec{F}_A и	Протон $q_p > 0$ Электрон $q_e < 0$ Нейтрон $q_n = 0$ α - частица
тока	перемещением S	α - частица $q_{\alpha} = 2q_p; m_{\alpha} = 4m_p$

СИЛА ЛОРЕНЦА $F_{\pi} = q \upsilon B \sin \alpha$

Движение заряженной частицы в магнитном поле $(\vec{v} \perp \vec{B})$			
	qvB =	= ma _{ų.c.}	Итог
υ		$a_{u.c.} = \frac{v^2}{R}$	$\upsilon = \frac{qBR}{m}$
R		$a_{y.c.} = \frac{v^2}{R}$	$R = \frac{m\upsilon}{qB}$
ω	$\upsilon = \omega R$	$a_{u.c.} = \omega^2 R$	$\omega = \frac{qB}{m}$
T	$\upsilon = \frac{2\pi R}{T}$	$a_{u.c.} = \frac{4\pi^2 R}{T^2}$	$T = \frac{2\pi m}{qB}$
ν	$\upsilon = 2\pi R \nu$	$a_{y.c.} = 4\pi^2 R v^2$	$v = \frac{qB}{2\pi n}$
$p = m \upsilon$		$a_{u.c.} = \frac{v^2}{R}$	p = qBR
$E_k = \frac{mv^2}{2}$		$a_{u.c.} = \frac{v^2}{R}$	$E_k = \frac{q \upsilon BR}{2}$

МАГНИТНЫЙ ПОТОК	ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ		
	Изменение магнитного	$\varepsilon_i = -N \frac{\Delta \Phi}{\Delta r}$	
$\Phi = BS \cos \alpha$	потока	$\mathcal{E}_i = \mathcal{W}$ Δt	
$\Phi = BS\cos(\omega t)$	Изменение вектора	$\varepsilon_i = -N \frac{\Delta B}{\Delta t} S \cos \alpha$	
$\Phi = LI$	магнитной индукции	Δt	
$N\Phi = LI$	Изменение площади	$\varepsilon_i = -NB \frac{\Delta S}{\Delta t} \cos \alpha$	
ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ	Изменение угла	$\varepsilon_i = -NBS \frac{\Delta \cos \alpha}{\Delta t}$	
$W_{\scriptscriptstyle M} = \frac{LI^2}{2}$	ЭДС самоиндукции	$arepsilon_{is} = -L rac{\Delta I}{\Delta t}$	
_	ЭДС индукции в	$\varepsilon_i = \upsilon B \ell \sin \alpha$	
	движущихся		
	проводниках		

Сила тока и заряд $I = \frac{\Delta q}{\Delta t} = \frac{\mathcal{E}_i}{R}$

16. КОЛЕБАНИЯ И ВОЛНЫ

16. КОЛЕБАНИЯ И ВОЛНЫ			
МЕХ. КОЛЕБАНИЯ	АМПЛИТУДА	ПУТЬ	
Уравнение	Амплитуда скорости	1. $\ell(T/4) = \ell(\pi/2) = X_m$	
$x = X_m \sin(\omega t + \varphi_o)$	$\upsilon = x'(t); \upsilon_m = \omega X_m$	2. $\ell(T/2) = \ell(\pi) = 2X_m$	
Циклическая частота	Амплитуда ускорения	3. $\ell(3T/4) = \ell(3\pi/2) = 3X_m$	
$\omega = 2\pi v = \frac{2\pi}{T}$	$a = x''(t); a_m = \omega^2 X_m$	$4. \ \ell(T) = \ell(2\pi) = 4X_m$	
-	Амплитуда силы	Весь путь $L = N4X_m$	
Период $T = \frac{t}{N} = \frac{1}{v} = \frac{2\pi}{\omega}$	$F_m = ma_m = m\omega^2 X_m$	December $L = IV4X_m$	
МАТЕМ. МАЯТНИК	ПРУЖИН. МАЯТНИК	ЭЛЕКТРИЧ. КОНТУР	
Период	Период $T = 2\pi \sqrt{\frac{m}{k}}$	Период $T = 2\pi \sqrt{LC}$	
$T = 2\pi \sqrt{\frac{\ell}{g}}$; $T = 2\pi \sqrt{\frac{\ell}{a_{max}}}$	1 A	Частота $v = \frac{1}{2\pi\sqrt{LC}}$	
\sqrt{g} $\sqrt{a_{no,nu}}$	Частота $v = \frac{\sqrt{k}}{2\pi\sqrt{m}}$		
Hactota $v = \frac{\sqrt{g}}{2\pi\sqrt{\ell}}$	$2\pi\sqrt{m}$ Циклическая частота	Циклическая частота 1	
$2\pi\sqrt{\ell}$ Циклическая частота	$\omega = \frac{\sqrt{k}}{\sqrt{k}}$	$\omega = \frac{1}{\sqrt{LC}}$	
$\omega = \frac{\sqrt{g}}{\sqrt{g}}$	\sqrt{m}	Соединение катушек и	
\mathbf{v}^{ℓ}	Соединение пружин	конденсаторов	
Маятник в вертикальном	$k_{nap} = k_1 + k_2$	$C_{nap} = C_1 + C_2; \frac{1}{L_{nap}} = \frac{1}{L_1} + \frac{1}{L_2}$	
эл. поле	$\frac{1}{k_{\text{max}}} = \frac{1}{k_1} + \frac{1}{k_2}$		
$T = 2\pi \sqrt{\frac{\ell}{g \pm qE}}$	κ_{nocn} κ_1 κ_2	$\frac{1}{C_{nocn}} = \frac{1}{C_1} + \frac{1}{C_2}; L_{nocn} = L_1 + L_2$	
ЗАКОН СОХРАНЕНИЯ	ПЕРЕМЕННЫЙ ТОК	ТРАНСФОРМАТОР	
ЭНЕРГИИ	TT V	TC 1.1	
Полная энергия	Действующие значения	Коэффициент	
колебаний пружинного маятника	$I_{\partial} = \frac{I_{m}}{\sqrt{2}}; U_{\partial} = \frac{U_{m}}{\sqrt{2}}$	трансформации <i>U. п. I.</i>	
	Закон Ома	$\frac{U_1}{U_2} = \frac{n_1}{n_2} = \frac{I_2}{I_1} = k$	
$E = \frac{kX_m^2}{2} = \frac{kx^2}{2} + \frac{mv^2}{2} = \frac{mv_m^2}{2}$	$I_{\partial} = \frac{U_{\partial}}{Z}; I_{m} = \frac{U_{m}}{Z}$		
	$\frac{Z}{A$ ктивное сопрот. R	КПД $\eta = \frac{I_2 U_2}{I_1 U_1} \cdot 100\%$	
Полная энергия	Ёмкостное сопротив.	ВОЛНЫ	
колебательного контура $CU^2 = CU^2 = U^2 = U^2$	$X_C = \frac{1}{\omega C} = \frac{1}{2\pi vC}$	Длина мех. волны	
$\frac{CU_m^2}{2} = \frac{CU^2}{2} + \frac{Li^2}{2} = \frac{LI_m^2}{2}$	&& 2.1. C	$\lambda = vT = \frac{v}{v} = \frac{v \cdot 2\pi}{\omega}$	
или	Индуктивн. сопротив.	$V = \omega$ Длина эл/м волны	
$\frac{q_m^2}{2C} = \frac{q^2}{2C} + \frac{Li^2}{2} = \frac{LI_m^2}{2}$	$X_L = \omega L = 2\pi v L$	$\lambda = cT = \frac{c}{c} = c \cdot 2\pi \sqrt{LC}$	
2C 2C 2 2 Период энергии и	Последователь соед.	$\lambda = cI = - = c \cdot 2\pi \sqrt{LC}$	
период энсргии и период колебаний	$Z = \sqrt{R^2 + (X_L - X_C)^2}$	<u>ИНТЕРФЕРЕНЦИЯ</u>	
- m	Закон Джоуля –Ленца $Q = I_a^2 Rt$	Условие максимума	
$T_{_{\mathfrak{M}}} = \frac{T_{\kappa o \pi}}{2}$	$Q = I_{\partial} R t$ Мощность	$\Delta d = n\lambda$, где $n = 0;\pm 1;\pm 2;\pm 3$	
	$P = I_{\theta}^{2} R = \frac{U_{\theta}^{2}}{R}$	Условие минимума	
	$P = I_{\partial} K = \frac{1}{R}$	1	
		$\Delta d = (2n+1)\frac{\lambda}{2}$	

19. ОПТИКА

19. ОПТИКА			
ГЕОМЕТРИЧЕСКАЯ ОПТИКА	линзы		
Закон отражения	Формула тонкой линзы		
$\alpha = \beta$	$\pm \frac{1}{E} = \pm \frac{1}{d} \pm \frac{1}{f}$		
Закон преломления	r a j		
$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = n_{21} = \frac{\nu_1}{\nu_2} = \frac{\lambda_1}{\lambda_2}$	Увеличение линзы		
$\sin \beta = n_1 \qquad v_2 = \lambda_2$	$\Gamma = \frac{H}{h} = \frac{f}{d} = \sqrt{\frac{S_{usoóp}}{S_{unoðy}}}$		
Для вакуума	$h d \sqrt{S_{npe \partial_{\mathcal{M}}}}$		
$n=1; v=c=3\cdot 10^8 \frac{M}{c}$	Оптическая сила линзы		
Полное отражение возможно только	$D = \frac{1}{F} = \left(\frac{n_{\text{minist}}}{n_{\text{carebis}}} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$		
при переходе из ОБП в ОМП	(4)		
$\sin \alpha_{nned} = n_2 = \nu_1 = \lambda_1$	Составные линзы		
$\frac{\sin \alpha_{npeo}}{\sin 90^{\circ}} = \frac{n_2}{n_1} = \frac{\nu_1}{\nu_2} = \frac{\lambda_1}{\lambda_2}$	$D = D_1 + D_2$		
ВОЛНОВЫЕ СВОЙСТВА СВЕТА	ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ		
<u> </u>	Релятивистское увеличение массы и		
Доказывает $ec{ec{ u}}\perpec{B}\perpec{E}$	времени		
ИНТЕРФЕРЕНЦИЯ СВЕТА	$m = \frac{m_0}{\sqrt{1 + \frac{t_0}{m_0}}}$ $t = \frac{t_0}{\sqrt{1 + \frac{t_0}{m_0}}}$		
Условие максимума	$m = \frac{m_0}{\sqrt{1 - \frac{U^2}{2}}} \qquad t = \frac{t_0}{\sqrt{1 - \frac{U^2}{a^2}}}$		
$\Delta d = n\lambda$, где $n = 0;\pm 1;\pm 2;\pm 3$	V C V C		
0-первый порядок	Уменьшение длины $\ell = \ell_0 \sqrt{1 - \frac{v^2}{c^2}}$		
Условие минимума	V C		
$\Delta d = (2n+1)\frac{\lambda}{2}$	Сложение скоростей $v+u$		
«Просветление оптики» - свет	$v' = \frac{v + u}{1 + \frac{vu}{2}}$		
проходит через пленку	c^2		
	Релятивистский импульс		
$2h = \frac{\lambda}{2n_{nnenku}}$	$p = m\upsilon = \frac{m_0\upsilon}{\sqrt{1 - \frac{\upsilon^2}{2}}} = \frac{E_{no.m}}{c^2}\upsilon$		
Максимальное отражение	$\sqrt{1-\frac{c}{c^2}}$		
$2h = \frac{\lambda}{n}$	Полная и кинетическая энергия		
	$E_{mon} = \frac{m_0 c^2}{c} = c \sqrt{p^2 + m_0^2 c^2}$		
Максимум дифракционной решетки	$E_{noin} = rac{m_0 c^2}{\sqrt{1 - rac{v^2}{c^2}}} = c \sqrt{p^2 + m_0^2 c^2}$		
$d\sin\varphi = n\lambda$, где			
n = 0;1;2;3 - порядок максимума	$E_{k} = \frac{m_{0}c^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} - m_{0}c^{2}$		
0 – центральный максимум	Y C		
$d = \frac{\ell}{N}$ - период решетки	Энергия и масса. Работа и энергия		
I V	$E = mc^2$ или $\Delta E = \Delta mc^2$		
При малых углах $\sin \varphi \approx tg\varphi = \frac{a}{b}$	$A = \frac{m_0 c^2}{\sqrt{1 - \frac{v_2^2}{2}}} - \frac{m_0 c^2}{\sqrt{1 - \frac{v_1^2}{2}}}$		
Максимальный период, если	$\sqrt{1-\frac{\upsilon_2}{c^2}} \sqrt{1-\frac{\upsilon_1}{c^2}}$		
$\sin \varphi \approx 1$			

20. КВАНТОВАЯ ФИЗИКА

20. КВАНТОВАЯ ФИЗИКА			
КОНСТАНТЫ	ФОТОЭФФЕКТ	ФОТОНЫ	
Постоянная Планка	Формула Эйнштейна	Энергия одного фотона	
$h = 6,62 \cdot 10^{-34} \text{Дж} \cdot c$	$E_{\Phi} = A_{\text{\tiny GDLX}} + E_{k}$	$E_0 = h v = \frac{hc}{r^2} = m_0 c^2$	
Скорость света	Энергия фотона	λ Масса и импульс одного	
$c = 3 \cdot 10^8 \text{m/c}$	· · · · · ·	фотона	
Заряд и масса	$E_{\phi} = h \nu = \frac{hc}{\lambda}$	$m_0 = \frac{E_0}{c^2} = \frac{hv}{c^2} = \frac{h}{c^2}$	
фотоэлектрона	л Работа выхода	c c cn	
$q_e = e = 1.6 \cdot 10^{-19} \text{Kn}$	* *	$p_0 = m_0 c = \frac{hv}{a} = \frac{h}{a}$	
$m_e = 9.1 \cdot 10^{-31} \kappa \varepsilon$	$A_{\scriptscriptstyle GbbX} = h u_{\scriptscriptstyle KP} = rac{h c}{\lambda_{\scriptscriptstyle KP}}$	ε λ	
Единицы энергии		Заряд фотона $q=0$	
$19B = 1,6 \cdot 10^{-19} $ Дже	Кинетическая энергия	Число фотонов	
Постоянная Ридберга	электрона	$N = \frac{E}{E_0} = \frac{Pt}{E_0} = \frac{m_{\text{ecex}}}{m_0}$	
$R = 3.3 \cdot 10^{15} \Gamma \psi$	$E_k = \frac{m_e v^2}{2} = q_e U_{3aa}$		
Атомная единица массы	2 2 3	Длина волны де Бройля h	
$1a.e.м. = 1,66 \cdot 10^{-27} $ кг		$p = m\upsilon = \frac{n}{\lambda_{Ep}}$	
		Дифракция волн де Бройля	
		$d\sin\varphi=n\lambda_{Ep}$	
ИЗЛУЧЕНИЕ	ДАВЛЕНИЕ	ATOM	
Энергия излучения	Давление света при	Обозначение атома	
поглощения атома	поглощении	${}_{7}^{A}X$	
$h v = \frac{hc}{\lambda} = E_n - E_k$	$p = \frac{W}{tSc} = \frac{I}{c} [\Pi a]$	А - атомный вес (число	
Частота излучения	Давление света при	нуклонов)	
$v = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right); k < n$	зеркальном отражении	A = Z + N	
$\binom{k^2}{n^2}$, $\binom{n}{n}$	$p = \frac{2W}{tSc} = \frac{2I}{c} [\Pi a]$	Z - число протонов и	
	Сила давления света	электронов; N – число	
	$F = pS_{nos}[H]$	нейтронов	
ЧАСТИЦЫ	РАСПАД ЯДЕР	РАДИОАК. РАСПАД	
Протон $_{1}^{1}p=_{1}^{1}H$	lpha - распад	Число не распавшихся	
	$_{Z}^{A}X = {}_{2}^{4}He + {}_{Z-2}^{A-4}Y$	ядер	
Нейтрон $\frac{1}{0}n$	eta - распад	$N = \frac{N_0}{\frac{t}{t}}$ или $m = \frac{m_0}{\frac{t}{t}}$	
Электрон $_{-1}^{0}e$, -	$\frac{t}{2T}$ $\frac{t}{2T}$	
	$_{Z}^{A}X = _{-1}^{0}e + _{Z+1}^{A}Y$	21 21	
Позитрон $_{+1}^{0}e$	γ - распад	где Т- период полураспада Число распавшихся ядер	
α – частица ${}_{2}^{4}He$	$_{Z}^{A}X=_{Z}^{A}X$	$N_0 - N$	
АТОМНОЕ ЯДРО	ЯДЕРНЫЕ РЕАКЦИИ	ЭНЕРГИЯ РЕАКЦИЙ	
Дефект массы ядра	${}^{A_1}_{Z_1}X + {}^{A_2}_{Z_2}Y = {}^{A_3}_{Z_2}X' + {}^{A_4}_{Z_4}Y'$	Энергия выделяется, если	
$\Delta m = Zm_p + Nm_n - m_g$	1 2 3 4	$\Delta m > 0$	
Энергия связи ядра	Законы сохранения	Энергия поглощается, если	
	$\Sigma Z = \Sigma Z'; \Sigma A = \Sigma A'$	$\Delta m < 0$	
$E_{cs.} = \Delta mc^2,$	$\Sigma N = \Sigma N'$	Выделяемая или	
Удельная энергия связи	Дефект массы в ядерных	поглощаемая энергия	
$\underline{E_{cs.}}$	реакциях	$E = \Delta mc^2$	
\overline{A}	$\Delta m = (m_1 + m_2) - (m_1' + m_2')$		
	. 1 2, . 1 2,	l	

ОПРЕДЕЛЕНИЕ ВЕЛИЧИН ЧЕРЕЗ ПЛОЩАДЬ ФИГУРЫ ПОД ГРАФИКОМ

TIMPHION			
Зависимость скорости от времени (или силы тока,	Зависимость давления от объема	Зависимость давления от объема (замкнутый	
или мощности)		цикл)	
$0 \xrightarrow{v_x; i; P} t$	$ \begin{array}{c c} p_2 \\ p_1 \\ \hline V_1 \\ V_2 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$s = S_1 - S_2 ; \ell = S_1 + S_2$ $\upsilon_{cp} = \frac{\ell}{t}; \vec{\upsilon}_{cp} = \frac{s}{t}$ $q = S_{\phi \iota c \gamma p \iota i}; A = S_{\phi \iota \iota c \gamma p \iota i}$	$A = \frac{p_1 + p_2}{2} (V_2 - V_1)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

ОПРЕДЕЛЕНИЕ ВЕЛИЧИН ЧЕРЕЗ ПЛОЩАДЬ ФИГУРЫ ПОД ГРАФИКОМ

ПАФИКОМ			
Зависим	ость силы от	Зависимость силы	Зависимость силы
переме	ещения тела	тяжести от высоты	упругости от
			деформации
$F_x lack$	s	$F_{mg,nc}$ 0 h	F_{ynp} α α α
A =	$=S_{\phi$ игуры	$A = S_{npsмoye.}$ $A = mgh$	$A = S_{mpeye.}; A = \frac{kx^2}{2}$