EXERCICI 2

Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

Es demana arribar a les formes canòniques:

- 1. Pel mètode 1: Avaluar la funció original per a cada possible combinació, trobant els MINTERMS i MAXTERMS associats a cada combinació (taula de la veritat).
- 2. Pel mètode 2: Realitzant transformacions algebraiques de la funció per arribar tant a la forma canònica de MINTERMS com la de MAXTERMS.

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>#</u>	a b c	q	MINTERMS	MAXTERMS
0	000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
1	001	1	$(\overline{a} \times \overline{b} \times c)$	(a + b + c)
2	010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
3	011	1	$(\bar{a} \times b \times c)$	(a + b + c)
4	100	0	$(a \times \overline{b} \times \overline{c})$	$(\overline{a} + b + c)$
5	101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
6	110	1	(a x b x \bar{c})	(a + b + c)
7	111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\bar{a} + b + c) \times (\bar{a} + b + \bar{c})$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
011	1	$(\bar{a} \times b \times c)$	(a + b + c)
100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
110	1	(a x b x \bar{c})	(a + b + c)
111	1	(a x b x c)	$(\bar{a} + \bar{b} + \bar{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\overline{a} + b + c) \times (\overline{a} + b + \overline{c})$$

MÈTODE 2: MINTERMS

$$q(a, b, c) =$$
 $(a + \bar{c}) \times b + \bar{a} \times c$

 Amb MINTERMS no vull tenir multiplicacions a fora dels parèntesis, per tant, els haig de transformar en sumes

Postulat 3. Operacions distributives

$$a \times (b + c) = (a \times b) + (a \times c)$$

$$a + (b \times c) = (a + b) \times (a + c)$$

Postulat 4. Complementada o inversa

$$a + \overline{a} = 1$$

$$a \times \overline{a} = 0$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
011	1	$(\bar{a} \times b \times c)$	(a + b + c)
100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
110	1	(a x b x \bar{c})	(a + b + c)
111	1	(a x b x c)	$(\bar{a} + \bar{b} + \bar{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\bar{a} + b + c) \times (\bar{a} + b + \bar{c})$$

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c)

Postulat 3. Operacions distributives

$$a \times (b + c) = (a \times b) + (a \times c)$$

 $a + (b \times c) = (a + b) \times (a + c)$

Postulat 4. Complementada o inversa

$$a + \overline{a} = 1$$

$$a \times \overline{a} = 0$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS	
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)	MINTERMS = $(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{b} \times c) + (b$
001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)	$(\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)	
011	1	$(\bar{a} \times b \times c)$	(a + b + c)	MAXTERMS = $(a + b + c) \times (\overline{a} + b + c) \times$
100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$	$(\bar{a} + b + \bar{c})$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$	
110	1	(a x b x \bar{c})	(a + b + c)	
111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$	

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c) =
(a x b x (c+ \bar{c})) + ((a+ \bar{a}) x b x \bar{c}) + (\bar{a} x (b+ \bar{b}) x c)

Afegim les variables que falten a cada terme

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS	
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)	MINTERMS = $(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) +$
001	1	$(\overline{a} \times \overline{b} \times c)$	(a + b + c)	$(\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)	
011	1	$(\bar{a} \times b \times c)$	(a + b + c)	MAXTERMS = $(a + b + c) \times (\overline{a} + b + c) \times$
100	0	$(a \times \overline{b} \times \overline{c})$	$(\overline{a} + b + c)$	$(\bar{a} + b + \bar{c})$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$	(60 - 50 - 6)
110	1	(a x b x \bar{c})	(a + b + c)	
111	1	(a x b x c)	$(\overline{a} + \overline{b} + \overline{c})$	

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c) =
(a x b x (c+ \bar{c})) + ((a+ \bar{a}) x b x \bar{c}) + (\bar{a} x (b+ \bar{b}) x c) =
(a x b x c) + (a x b x \bar{c}) + (\bar{a} x b x \bar{c}) + (\bar{a} x b x \bar{c}) + (\bar{a}

Multipliquem +
Eliminem repetits

 $(a \times b \times c) + (a \times b \times \overline{c}) + (a \times b \times \overline{c}) + (\overline{a} \times b \times \overline{c}) + (\overline{a} \times b \times c) + (\overline{a} \times \overline{b} \times c)$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

<u>a b c</u>	q	MINTERMS	MAXTERMS
000	0	$(\bar{a} \times \bar{b} \times \bar{c})$	(a + b + c)
001	1	$(\bar{a} \times \bar{b} \times c)$	(a + b + c)
010	1	$(\bar{a} \times b \times \bar{c})$	(a + b + c)
011	1	$(\bar{a} \times b \times c)$	(a + b + c)
100	0	$(a \times \overline{b} \times \overline{c})$	$(\bar{a} + b + c)$
101	0	$(a \times \overline{b} \times c)$	$(\bar{a} + b + \bar{c})$
110	1	(a x b x \bar{c})	(a + b + c)
111	1	(a x b x c)	$(\bar{a} + \bar{b} + \bar{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\overline{a} + b + c) \times (\overline{a} + b + \overline{c})$$

Comprovem que el resultat és el mateix

MÈTODE 2: MINTERMS

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c =
(a x b) + (\bar{c} x b) + (\bar{a} x c) =
(a x b x (c+ \bar{c})) + ((a+ \bar{a}) x b x \bar{c}) + (\bar{a} x (b+ \bar{b}) x c) =

$$(a \times b \times c) + (a \times b \times \overline{c}) + (\overline{a} \times b \times \overline{c}) + (\overline{a} \times b \times c) + (\overline{a} \times \overline{b} \times c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$q(a, b, c) =$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) =$$
 $(a + \overline{c}) \times b + \overline{a} \times c =$

 Amb MAXTERMS no vull tenir sumes a fora dels parèntesis, per tant, els haig de transformar en multiplicacions

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c = ((a + \bar{c}) x b) + (\bar{a} x c)

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =
(a +
$$\bar{c}$$
) x b + \bar{a} x c = ((a + \bar{c}) x b) + (\bar{a} x c)

Si mirem d'aplicar el Postulat 3 tal qual veurem que no ens serveix.

$$a \times (b+c) = (a \times b) + (a \times c)$$
$$a + (b \times c) = (a+b) \times (a+c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =
$$(a + \overline{c})xb + \overline{a}xc = (y \cdot z) + w \leftarrow Canvi de variable per veure-ho més clar$$

Amb les noves variables veiem que el podem aplicar però al revés.

$$a \times (b+c) = (a \times b) + (a \times c)$$
$$a + (b \times c) = (a+b) \times (a+c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =

$$(a + \bar{c}) \times b + \bar{a} \times c = (y \cdot z) + w$$

Canvi de variable per veure-ho més clar

Amb les noves variables veiem que el podem aplicar però al revés.

$$a \times (b+c) = (a \times b) + (a \times c)$$
$$a + (b \times c) = (a+b) \times (a+c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

q(a, b, c) =

$$(a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w)$$

$$a + (b \times c) = (a + b) \times (a + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) = (a + \overline{c}) \times b + (\overline{a} \times c) = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$
Desfem el canvi

Problema a dins: seguim tenint multiplicacions enlloc de sumes

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

q(a, b, c) =
$$(a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c))$$

Apliquem canvi de variables per tal de poder aplicar el Postulat 3 un altre cop.

$$a + (b \times c) = (a + b) \times (a + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c}) + (\overline{a} \times c) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c))$$

$$w \quad y \quad z$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c}) + (\overline{a} \times c) \times (b + (\overline{a} \times c)) = ((w + y) \times (w + z)) \times (b + (\overline{a} \times c))$$

$$w \quad y \quad z$$

$$a + (b \times c) = (a + b) \times (a + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$q(a, b, c) =$$

$$(a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c)) =$$

$$((a + \overline{c} + \overline{a}) \times (a + \overline{c} + c)) \times (b + (\overline{a} \times c))$$
Desfem el canvi

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c)) = ((a + \overline{c} + \overline{a}) \times (a + \overline{c} + c)) \times (b + (\overline{a} \times c))$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + (\overline{a} \times c))$$
Tornem a aplicar el Postulat 3.
$$a + (b \times c) = (a + b) \times (a + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c)) =$$

$$((a + \overline{c} + \overline{a}) \times (a + \overline{c} + c)) \times (b + (\overline{a} \times c))$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + \overline{a}) \times (b + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$\begin{aligned} &\mathsf{q}(\mathsf{a},\,\mathsf{b},\,\mathsf{c}) = \\ &(\mathsf{a}+\bar{c})\,\mathsf{x}\,\mathsf{b} + \bar{a}\,\mathsf{x}\,\mathsf{c} = \,(\mathsf{y}\cdot\mathsf{z}) + \mathsf{w} = \,(\mathsf{y}+\mathsf{w})\,\,\mathsf{x}\,\,(\mathsf{z}+\mathsf{w}) = \,((\mathsf{a}+\bar{c})+(\bar{a}\,\mathsf{x}\,\mathsf{c}))\,\,\mathsf{x}\,\,((\mathsf{b})+(\bar{a}\,\mathsf{x}\,\mathsf{c})) \\ &(\mathsf{a}+\bar{c}+(\bar{a}\,\mathsf{x}\,\mathsf{c}))\,\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = ((\mathsf{w}+\mathsf{y})\,\mathsf{x}\,\,(\mathsf{w}+\mathsf{z}))\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = \\ &((\mathsf{a}+\bar{c}+\bar{a})\,\mathsf{x}\,\,(\mathsf{a}+\bar{c}+\mathsf{c}))\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = \\ &(\mathsf{a}+\bar{c}+\bar{a})\,\mathsf{x}\,\,(\mathsf{a}+\bar{c}+\mathsf{c})\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = \\ &(\mathsf{a}+\bar{c}+\bar{a})\,\mathsf{x}\,\,(\mathsf{a}+\bar{c}+\mathsf{c})\,\mathsf{x}\,\,(\mathsf{b}+\bar{a})\,\mathsf{x}\,\,(\mathsf{b}+\mathsf{c}) = \end{aligned}$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + \overline{a} + (c \times \overline{c})) \times ((a \times \overline{a}) + b + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c)) =$$

$$((a + \overline{c} + \overline{a}) \times (a + \overline{c} + c)) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + \overline{a}) \times (b + c) =$$

$$(\mathbf{a} + \overline{\mathbf{c}} + \overline{\mathbf{a}}) \times (\mathbf{a} + \overline{\mathbf{c}} + \mathbf{c}) \times (\mathbf{b} + \overline{\mathbf{a}} + (\mathbf{c} \times \overline{\mathbf{c}})) \times ((\mathbf{a} \times \overline{\mathbf{a}}) + \mathbf{b} + \mathbf{c})$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

$$\begin{array}{l} \mathsf{q}(\mathsf{a},\mathsf{b},\mathsf{c}) = \\ (\mathsf{a} + \bar{c}) \times \mathsf{b} + \bar{a} \times \\ (\mathsf{a} + \bar{c} + (\bar{a} \times \mathsf{c})) \\ ((\mathsf{a} + \bar{c} + \bar{a}) \times (\mathsf{a} + (\bar{a} \times \bar{c})) \\ ((\mathsf{a} + \bar{c} + \bar{a}) \times (\mathsf{a} + (\bar{a} + \bar{c} + \bar{a}) \times (\mathsf{a} + \bar{c} + \bar{a}) \times (\mathsf{a}$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) = (a + \bar{c}) \times b + \bar{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \bar{c}) + (\bar{a} \times c)) \times ((b) + (\bar{a} \times c))$$

$$(a + \bar{c} + (\bar{a} \times c)) \times (b + (\bar{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\bar{a} \times c)) =$$

$$((a + \bar{c} + \bar{a}) \times (a + \bar{c} + c)) \times (b + (\bar{a} \times c)) =$$

$$(a + \bar{c} + \bar{a}) \times (a + \bar{c} + c) \times (b + (\bar{a} \times c)) =$$

$$(a + \bar{c} + \bar{a}) \times (a + \bar{c} + c) \times (b + \bar{a}) \times (b + c) =$$

$$(\mathbf{a} + \overline{c} + \overline{a}) \times (\mathbf{a} + \overline{c} + \mathbf{c}) \times (\mathbf{b} + \overline{a} + (\mathbf{c} \times \overline{c})) \times ((\mathbf{a} \times \overline{a}) + \mathbf{b} + \mathbf{c})$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$\begin{aligned} &\mathsf{q}(\mathsf{a},\,\mathsf{b},\,\mathsf{c}) = \\ &(\mathsf{a}+\bar{c})\,\mathsf{x}\,\mathsf{b} + \bar{a}\,\mathsf{x}\,\mathsf{c} = \,(\mathsf{y}\cdot\mathsf{z}) + \mathsf{w} = \,(\mathsf{y}+\mathsf{w})\,\,\mathsf{x}\,\,(\mathsf{z}+\mathsf{w}) = \,((\mathsf{a}+\bar{c})+(\bar{a}\,\mathsf{x}\,\mathsf{c}))\,\,\mathsf{x}\,\,((\mathsf{b})+(\bar{a}\,\mathsf{x}\,\mathsf{c})) \\ &(\mathsf{a}+\bar{c}+(\bar{a}\,\mathsf{x}\,\mathsf{c}))\,\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = ((\mathsf{w}+\mathsf{y})\,\mathsf{x}\,\,(\mathsf{w}+\mathsf{z}))\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = \\ &((\mathsf{a}+\bar{c}+\bar{a})\,\mathsf{x}\,\,(\mathsf{a}+\bar{c}+\mathsf{c}))\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = \\ &(\mathsf{a}+\bar{c}+\bar{a})\,\mathsf{x}\,\,(\mathsf{a}+\bar{c}+\mathsf{c})\,\mathsf{x}\,\,(\mathsf{b}+(\bar{a}\,\mathsf{x}\,\mathsf{c})) = \\ &(\mathsf{a}+\bar{c}+\bar{a})\,\mathsf{x}\,\,(\mathsf{a}+\bar{c}+\mathsf{c})\,\mathsf{x}\,\,(\mathsf{b}+\bar{a})\,\mathsf{x}\,\,(\mathsf{b}+\mathsf{c}) = \end{aligned}$$

$$(b + \overline{a} + (c \times \overline{c})) \times ((a \times \overline{a}) + b + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen \rightarrow (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) =$$

$$(a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c)) =$$

$$((a + \overline{c} + \overline{a}) \times (a + \overline{c} + c)) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + \overline{a}) \times (b + c) =$$

$$(b + \overline{a} + (c \times \overline{c})) \times ((a \times \overline{a}) + b + c) = (\overline{a} + b + c) \times (\overline{a} + b + \overline{c}) \times (a + b + c) \times (\overline{a} + b + c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 2: MAXTERMS

Aplicarem postulats per tenir coses que es multipliquen → (cosa) x (cosa) x ...

Coses → Expressions que incloguin una variable.

Expressions que incloguin dos o més variables que es sumen.

$$q(a, b, c) =$$

$$(a + \overline{c}) \times b + \overline{a} \times c = (y \cdot z) + w = (y + w) \times (z + w) = ((a + \overline{c}) + (\overline{a} \times c)) \times ((b) + (\overline{a} \times c))$$

$$(a + \overline{c} + (\overline{a} \times c)) \times (b + (\overline{a} \times c)) = ((w+y) \times (w+z)) \times (b + (\overline{a} \times c)) =$$

$$((a + \overline{c} + \overline{a}) \times (a + \overline{c} + c)) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + (\overline{a} \times c)) =$$

$$(a + \overline{c} + \overline{a}) \times (a + \overline{c} + c) \times (b + \overline{a}) \times (b + c) =$$

$$(b+\overline{a}+(c\times \overline{c}))\times((a\times \overline{a})+b+c)=(\overline{a}+b+c)\times(\overline{a}+b+\overline{c})\times(a+b+c)\times(\overline{a}+b+c)$$

Exercici: Donada la funció: $q(a, b, c) = (a + \overline{c}) \times b + \overline{a} \times c$

MÈTODE 1:

a b c
 q
 MINTERMS
 MAXTERMS

 0 0 0

$$(\bar{a} \times \bar{b} \times \bar{c})$$
 $(a + b + c)$

 0 0 1
 1
 $(\bar{a} \times \bar{b} \times \bar{c})$
 $(a + b + c)$

 0 1 0
 1
 $(\bar{a} \times b \times \bar{c})$
 $(a + b + c)$

 1 0 1
 1
 $(\bar{a} \times \bar{b} \times \bar{c})$
 $(\bar{a} + b + c)$

 1 0 1
 0
 $(\bar{a} \times \bar{b} \times \bar{c})$
 $(\bar{a} + b + \bar{c})$

 1 1 0
 1
 $(\bar{a} \times \bar{b} \times \bar{c})$
 $(\bar{a} + b + \bar{c})$

 1 1 1
 1
 $(\bar{a} \times \bar{b} \times \bar{c})$
 $(\bar{a} + \bar{b} + \bar{c})$

MINTERMS =
$$(\bar{a} \times \bar{b} \times c) + (\bar{a} \times b \times \bar{c}) + (\bar{a} \times b \times c) + (a \times b \times \bar{c}) + (a \times b \times c)$$

MAXTERMS =
$$(a + b + c) \times (\overline{a} + b + c) \times (\overline{a} + b + \overline{c})$$

$$(b + \overline{a} + (c \times \overline{c})) \times ((a \times \overline{a}) + b + c) = (\overline{a} + b + c) \times (\overline{a} + b + \overline{c}) \times (a + b + c)$$