MLDS 2017 Spring HW1 - Language Model

B03901056 孫凡耕 B03901070 羅啓心 B03901032 郭子生 B03901003 許晉嘉

1 Environment

 OS
 CPU
 GPU
 Memory

 1. 硬體資訊:
 Arch linux 4.10
 i7 3.4 GHz
 GTX 1070
 32 GB

2. 所使用的 python library: spacy 1.6.0 | nltk 3.2.2

2 Model description

LSTM based RNN Language Model

1. Performance: public score: 47.308%, private score: 50.962%

使用參數:

word vector : glove.6B.300d

rnn cell : full LSTM (with peephole)

optimizer : Adam clip gradient norm : 5 sampled softmax : used

2. 流程:

處理資料 : 將 Training data 轉成一個個單句或是以 dependency tree 的形式轉成若干單句,

再將句子中每個單詞轉爲對應的 word vector。

訓練模型 : 使用變動長度多種的 rnn cell,輸入是除掉最後一個字的單句,輸出是通過

softmax 之後與輸入算 loss,使用不同的 gradient descent 方法來訓練模型。

測試資料 : 將 Testing data 以與 Training data 相同的方式進行處理,將各個選項填入的單

句個別丟入訓練完成的模型中,依據個別可能的機率來決定填空的答案。

3. 可調整之參數:

word vector : 使用的 word vector 來源及維度(選項:glove.6B.50d, glove.6B.100d,

glove.6B.200d, glove.6B.300d, glove.42B.300d, glove.840B.300d)

RNN layer : RNN 層數

softmax method: : softmax 方法(選項:standard softmax, sampled softmax, nce loss)

sampled number : 在 sampled softmax 或 nce loss 中抽樣的 class 數目

optimizer : optimizers 的類型 (選項: GradientDescent, Adadelta, Adagrad,

Momentum, Adam, RMSProp)

rnn type : RNN Cell 的種類 (選項:Basic, basic LSTM, full LSTM, GRU)

learning rate : Learning rate 的大小

max grad norm : 所允許的 gradient norm 最大值,作爲 clipping 之用

bidirectional : 是否使用 bidirectional RNN model epoch num : 一個 epoch 中總共使用多少個 batch

train num : 總共使用 Holmes Training Data 中做 training 的檔案數目

keep prob: Dropout layer 所使用的 keeping probabilitybatch size: Training 時每個 batch 中 sentence 的數目

hidden size : Hidden layer 的維度

4. 使用的外部資源:

Word vector : GloVe (https://nlp.stanford.edu/projects/glove/)
Dependency Tree Parser : spacy (https://spacy.io/docs/usage/dependency-parse)

Figure 1: 句子長度分佈

Figure 2: 單字出現次數分佈

Figure 3: 單字出現次數比例分佈

3 Improvement

1. 僅使用 Training Data 中,長度在特定範圍之內的句子 特短的句子,大多屬於雜訊或是較無意義的短句(e.g. somebody said,);特長的句子,也均爲雜 訊居多,若納入特長的句子亦會使 training model 維度過高,造成記憶體空間不足。且特短及特長 的句子,本身在 Training Data 中所佔的比例也不高(如 Figure 1)。

2. 將出現次數過少的單字從 corpus 中移除

原本 corpus 的字量過大,會造成記憶體空間不足以及訓練困難,因此,將在 Training Data 中出現次數較少的單字移除(視爲 unknown word),可使訓練學習的過程加速。從上圖 Figure 2 可看出七成左右的單字不在 pretrained corpus 內或是出現次數少於兩次,而從 Figure 3 可看出這些單字又僅佔不到總單字量的一個百分點,因此,將其刪除對於訓練的過程有較大的助益。

3. 將 Training Data 中,開頭及結尾的部分刪去 由於 Training Data 中幾乎所有文章,開頭及結尾皆相當於目錄或版權資訊等,較不爲一般常用語 的句子。有利訓練過程的進行。

4. Dependency Tree

Dependency tree 可表示句子當中各單字之間的關聯。因此,將資料轉爲 dependency tree 後,可更爲有效的分出每個句子中各個合法的語句,使訓練的資料更爲廣泛且一般。

5. Word Normalization

在原先預處理 Training data 時,我們是利用 nltk 套件中的 sent tokenize 以及 word tokenize,但由於 Training data 中,有些單字前後連接一些不重要的字元,形如:'admit、.walk、*what、等單字。而造成原本應是常用的單字,卻被我們判定成 unknown word 的情形。因此,我們將 nltk word tokenize 出來的單字,再進一步判斷,如果他包含兩個以上的英文字母,就將其他所有非英文字母的字元剔除。經過這一個正規化的步驟後,unknown word 的比例降低了 0.5%,並且我們在public score 上提升了 7%!

6. 加上 dropout 層

因為 3x512 的模型有點大,因此我們在 rnn 的 output layer 上加上 dropout 層,防止模型 overfitting,雖然 perplexity 降得稍微慢一點,但最終訓練出來的模型好壞較為穩定。

7. 加上 sampled softmax

一開使用 standard softmax (呼叫 tensorflow 中的 sequence_loss_by_example)訓練的速度較慢,通常需要訓練十幾個小時且結果也普通,換成 sampled softmax (呼叫 tensorflow 的 sampled_softmax) 之後訓練約 $7 \sim 8$ 個小時即可達到約 0.48 的結果。

4 Experiment

除了嘗試不同的 model 以及各種 improvement,我們也針對以下幾種參數進行實驗,除了試圖尋找最佳的參數,也嘗試驗證關於參數設定的各種傳聞。

1. RNN Cell

我們共嘗試了四種 RNN Cell,分別為 TensorFlow 1.0 所提供的:BasicRNNCell, BasicLSTMCell,

LSTMCell, 以及 GRUCell。其中 LSTMCell 不同於 basic 的版本是有使用 peep-hole。從 Figure 4 可以發現四種 cell 隨著 training epoch 數目的增加,perplexity 下降的幅度並無明顯差異,且基本上在經過一個 epoch 之後 perplexity 便無明顯變化,惟 BasicRNNCell 的振幅略大。儘管如此,在 private data score 的表現上,四種 cell 的分數依序是 0.40769, 0.46731, 0.48077, 0.46923,因此我們仍選擇有 peep-hole 的 LSTMCell 作為 model 中的 RNN cell。

2. Learning Rate

我們嘗試三種不同的 learning rate,分別為 0.1, 0.01, 0.001。由 Figure 5 可以發現 learning rate 越大,perplexity 下降的速度也越快。然而正如同許多文獻所指出的:太大的 learning rate 可能無法到達 optimal 的點,這個說法亦在我們的實驗中得到驗證。

3. RNN Layer **層數**

在 RNN model 中,我們除了使用單一層的 RNN cell,也有嘗試堆疊至 2 層及 3 層。由 Figure 6 可以發現 RNN cell 的層數越少,training 的速度越快,原因是參數較少的關係。三者在 private data score 上的表現別為 0.47308, 0.48077, 以及 0.49231,可以發現當 RNN cell 的層數為三層的時候,在這個 task 上有較佳的 performance。

4. N-gram Model

除了以上參數之外,我們也試圖做 model ensemble。其中包含 n-gram、pointwise mutual information (PMI) 等等。在 n-gram 的例子當中, $n=1\sim 4$ 於 private data 的分數分別為 $0.24615,\,0.25962,\,0.27885,\,0.25769$,其中 trigram 的表現最佳。由於我們發現在某些題目中,當空格代入不同的的選項時整句話所計算出的機率相同,因此我們認為或許是 Holmes training corpus 不夠大,使得許多 n-gram 的機率相同,因此沒有辦法有效提升分數。

5. Pointwise Mutual Information (PMI)

PMI 是我們嘗試使用的另一個 model,他的想法是將一個 sentence 先經過各種方法處理成為各種的 feature sets,這些 feature sets 包含的是一個 sentence 經過 filter 過後剩下的詞彙。得到 feature set 的方法有許多種,例如考慮 stop-word、使用 dependency tree、甚至只取空格前後兩個字等等。將處理完後的 feature sets 中的單字取出,根據 information theory 計算空格候選字與這些單字的關聯性,取出分數最高的即可。這個 model 在 MSR Sentence Completion Challenge 的分數表現高達 61.44%,然而最終我們因為時間因素來不及完成。

Figure 4: 不同 RNN cell

Figure 5: 不同 learning rate

Figure 6: 不同 RNN 層數

5 Team division

孫凡耕	寫 RNN 模型、分配組內工作、教導組員
羅啓心	嘗試寫 Improvement、撰寫報告的模型描述
郭子生	N-gram、跑實驗
許晉嘉	資料處理、PMI、統整撰寫報告、優化 kaggle 分數表現