

TRES: FENWICK

ISIS 2801

Fenwick trees

Fenwick trees are used to calculate the associative operations over ranges in an array with minimal memory usage (0(N)).

Sometimes called
Binary Index Tree
(BIT)

Fenwick trees

Given an array

index	0	1	2	3	4	5	6	7	8	9	10
value	2	3	4	1	7	2	8	7	4	1	5

A (sum) Fenwick tree is

index	0	1	2	3	4	5	6	7	8	9	10
value	2	5	4	10	7	9	8	34	4	5	5

Fenwick trees

Given an array

index 0 1 2 3 4 5 6 7 8 9 10 value 2 3 4 1 7 2 8 7 4 1 5

A (sum) Fenwick tree is

$$T_i = \sum_{j=g(i)}^l A_j$$

The indexing function g for the Fenwick tree is such that

$$0 \le g(i) \le i$$

and we flip the least significant 1 bits of the binary representation of i

$$g(i) = i \& (i+1)$$

The indexing function g for the Fenwick tree is such that

$$0 \le g(i) \le i$$

and we flip the least significant 1 bits of the binary representation of i

$$g(i) = i \& (i+1)$$

Ex:
$$g(12) = g(1100_2) = 12$$

 $g(13) = g(1101_2) = 12$
 $g(14) = g(1110_2) = 14$
 $g(15) = g(1111_2) = 0$

Need to find the function to get the indexes j

$$h(i) = i | (i+1)$$

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 2
 3
 4
 1
 7
 2
 8
 7
 4
 1
 5

```
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      2
      3
      4
      1
      7
      2
      8
      7
      4
      1
      5
```

$$g(0) = g(0000_2) = 0$$

 $g(1) = g(0001_2) = 0$
 $g(2) = g(0010_2) = 2$
 $g(3) = g(0011_2) = 0$
 $g(4) = g(0100_2) = 4$
 $g(5) = g(0101_2) = 4$
 $g(6) = g(0110_2) = 6$
 $g(7) = g(0111_2) = 0$
 $g(8) = g(1000_2) = 8$
 $g(9) = g(1001_2) = 8$
 $g(10) = g(1010_2) = 10$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

$$g(0) = g(0000_2) = 0$$

 $g(1) = g(0000_2) = 0$
 $g(2) = g(0010_2) = 2$
 $g(3) = g(0011_2) = 0$
 $g(4) = g(0100_2) = 4$
 $g(5) = g(0101_2) = 4$
 $g(6) = g(0110_2) = 6$
 $g(7) = g(0111_2) = 0$
 $g(8) = g(1000_2) = 8$
 $g(9) = g(1001_2) = 8$
 $g(10) = g(1010_2) = 10$

$$sum(0, 0) = 2$$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

$$g(0) = g(0000_2) = 0$$

 $g(1) = g(0000_2) = 0$
 $g(2) = g(0010_2) = 2$
 $g(3) = g(0011_2) = 0$
 $g(4) = g(0100_2) = 4$
 $g(5) = g(0101_2) = 4$
 $g(6) = g(0110_2) = 6$
 $g(7) = g(0111_2) = 0$
 $g(8) = g(1000_2) = 8$
 $g(9) = g(1001_2) = 8$
 $g(10) = g(1010_2) = 10$

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$

```
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      2
      3
      4
      1
      7
      2
      8
      7
      4
      1
      5
```

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$
 $sum(0, 3) = 10$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$
 $sum(0, 3) = 10$
 $sum(4, 4) = 7$

```
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      2
      3
      4
      1
      7
      2
      8
      7
      4
      1
      5
```

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$
 $sum(0, 3) = 10$
 $sum(4, 4) = 7$
 $sum(4, 5) = 9$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$
 $sum(0, 3) = 10$
 $sum(4, 4) = 7$
 $sum(4, 5) = 9$
 $sum(6, 6) = 8$
 $sum(0, 7) = 34$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$
 $sum(0, 3) = 10$
 $sum(4, 4) = 7$
 $sum(4, 5) = 9$
 $sum(6, 6) = 8$
 $sum(0, 7) = 34$
 $sum(8, 8) = 4$

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

0	1	2	3	4	5	6	7	8	9	10
2	3	4	1	7	2	8	7	4	1	5

```
g(0) = g(0000_2) = 0
g(1) = g(0001_2) = 0
g(2) = g(0010_2) = 2
g(3) = g(0011_2) = 0
g(4) = g(0100_2) = 4
g(5) = g(0101_2) = 4
g(6) = g(0110_2) = 6
g(7) = g(0111_2) = 0
g(8) = g(1000_2) = 8
g(9) = g(1001_2) = 8
g(10) = g(1010_2) = 10
```

$$sum(0, 0) = 2$$

 $sum(0, 1) = 5$
 $sum(2, 2) = 4$
 $sum(0, 3) = 10$
 $sum(4, 4) = 7$
 $sum(4, 5) = 9$
 $sum(6, 6) = 8$
 $sum(0, 7) = 34$
 $sum(8, 8) = 4$
 $sum(8, 9) = 5$
 $sum(10, 10) = 5$

Build

```
struct FenwickTree {
    vector<int> bit; // binary indexed tree
    int n;
FenwickTree(vector<int> const &a) : FenwickTree(a.size()){
        for (int i = 0; i < n; i++) {
            bit[i] += a[i];
            int r = i | (i + 1);
            if (r < n) bit[r] += bit[i];</pre>
```

Query

```
int sum(int r) {
      int ret = 0;
      for (; r >= 0; r = (r & (r + 1)) - 1)
          ret += bit[r];
      return ret;
    }
int sum(int l, int r) {
    return sum(r) - sum(l - 1);
}
```

Update

```
void update(int n, int index, int val) {
    while (index <= n) {
        bit[index] += val;
        index += index & (-index);
    }
}</pre>
```