What is claimed is:

- 1. A single focus lens comprising, arranged along an optical axis in order from the object side: 1 a first lens component having positive refractive power and having a convex surface on 2 the object side; 3 4 a stop; 5 a second lens component having a meniscus shape with a concave surface near the optical 6 axis on the object side, being made of plastic, and having at least one aspheric surface; a third lens component having a meniscus shape, positive refractive power, a convex 7 8 surface on the object side near the optical axis, an aspheric object-side surface, and an aspheric 9 image-side surface; wherein 10 11 the following condition is satisfied: 0.8 < f1 / f < 2.012 13 where fl is the focal length of the first lens component, and 14 f is the focal length of the entire single focus lens. 15 2. The single focus lens of claim 1, wherein the following condition is satisfied: 1 2 0.5 < (|R2| - R1) / (R1 + |R2|)3 where
 - 3. The single focus lens of claim 1, wherein the following condition is satisfied:
- 2 1.5 < f3 / f < 3.0
- 3 where

4

5

1

4 f3 is the focal length of the third lens component.

R1 is the radius of curvature of the object-side surface of the first lens component, and

R2 is the radius of curvature of the image-side surface of the first lens component.

- 1 4. The single focus lens of claim 2, wherein the following condition is satisfied:
- 2 1.5 < f3 / f < 3.0
- 3 where
- 4 f3 is the focal length of the third lens component.
- 1 5. The single focus lens of claim 1, wherein the first lens component, the second lens
- 2 component, and the third lens component are arranged in that order along the optical axis from
- 3 the object side without any intervening lens element.
- 1 6. The single focus lens of claim 5, wherein the single focus lens is formed of only three lens
- 2 components.
- 7. The single focus lens of claim 6, wherein the single focus lens is formed of only three lens
- 2 elements.
- 1 8. The single focus lens of claim 1, wherein each of the first, second, and third lens components
- 2 consists of a lens element.
- 9. The single focus lens of claim 2, wherein the first lens component, the second lens
- 2 component, and the third lens component are arranged in that order along the optical axis from
- 3 the object side without any intervening lens element.
- 1 10. The single focus lens of claim 9, wherein the single focus lens is formed of only three lens
- 2 components.
- 1 11. The single focus lens of claim 10, wherein the single focus lens is formed of only three lens
- 2 elements.

12. The single focus lens of claim 2, wherein each of the first, second, and third lens components 1 2 consists of a lens element. 13. The single focus lens of claim 4, wherein the first lens component, the second lens 1 component, and the third lens component are arranged in that order along the optical axis from 2 the object side without any intervening lens element. 3 14. The single focus lens of claim 13, wherein the single focus lens is formed of only three lens 1 2 components. 15. The single focus lens of claim 14, wherein the single focus lens is formed of only three lens 1 2 elements. 16. The single focus lens of claim 4, wherein each of the first, second, and third lens components 1 2 consists of a lens element. 17. The single focus lens of claim 1, wherein: 1

both the object-side surface and the image-side surface of the second lens component are aspheric;

2

3

4

5

6

7

8

9

10

11

within an effective aperture range of the single focus lens, the absolute value of the negative refractive power of the object-side surface of the second lens component decreases in a direction from the optical axis toward the periphery of the second lens component and the positive refractive power of the image-side surface of the second lens component decreases in a direction from the optical axis toward the periphery of the second lens component; and

within an effective aperture range of the single focus lens, the positive refractive power of the object-side surface of the third lens component decreases in a direction from the optical axis toward the periphery of the third lens component.

18. The single focus lens of claim 4, wherein:

both the object-side surface and the image-side surface of the second lens component are aspheric;

within an effective aperture range of the single focus lens, the absolute value of the negative refractive power of the object-side surface of the second lens component decreases in a direction from the optical axis toward the periphery of the second lens component and the positive refractive power of the image-side surface of the second lens component decreases in a direction from the optical axis toward the periphery of the second lens component; and

within an effective aperture range of the single focus lens, the positive refractive power of the object-side surface of the third lens component decreases in a direction from the optical axis toward the periphery of the third lens component.

19. The single focus lens of claim 7, wherein:

both the object-side surface and the image-side surface of the second lens element are aspheric;

within an effective aperture range of the single focus lens, the absolute value of the negative refractive power of the object-side surface of the second lens element decreases in a direction from the optical axis toward the periphery of the second lens element and the positive refractive power of the image-side surface of the second lens element decreases in a direction from the optical axis toward the periphery of the second lens element; and

within an effective aperture range of the single focus lens, the positive refractive power of the object-side surface of the third lens element decreases in a direction from the optical axis toward the periphery of the third lens element.

20. The single focus lens of claim 16, wherein:

both the object-side surface and the image-side surface of the second lens element are aspheric;

Attorney Docket No. 25-276

within an effective aperture range of the single focus lens, the absolute value of the
negative refractive power of the object-side surface of the second lens element decreases in a
direction from the optical axis toward the periphery of the second lens element and the positive
refractive power of the image-side surface of the second lens element decreases in a direction
from the optical axis toward the periphery of the second lens element; and
within an effective aperture range of the single focus lens, the positive refractive power

within an effective aperture range of the single focus lens, the positive refractive power of the object-side surface of the third lens element decreases in a direction from the optical axis toward the periphery of the third lens element.