

王石嵘

February 8, 2020

Contents

4	Con	afiguration Interaction		2
	4.1	Multiconfigurational Wave Functions and the Structure of Full CI Matrix		2
		4.1.1 Intermediate Normalization and an Expression for the Correlation Energy .		2
		Ex 4.1		2
		Ex 4.2		2
		Ex 4.3		2
	4.2	Doubly Exited CI		9
	4.3	Some Illustrative Calculations		9
	4.4	Natural Orbitals and the 1-Particle Reduced DM		9
		Ex 4.4		3
		Ex 4 5		9

4 Configuration Interaction

4.1 Multiconfigurational Wave Functions and the Structure of Full CI Matrix

4.1.1 Intermediate Normalization and an Expression for the Correlation Energy

Ex 4.1 If $a \notin \{c, d, e\}$ and $r \notin \{t, u, v\}$,

$$\langle \Psi_a^r \mid \mathcal{H} \mid \Psi_{cde}^{tuv} \rangle = 0 \tag{4.1.1}$$

Let's suppose a = e, thus

$$\left\langle \Psi_{a}^{r} \middle| \mathcal{H} \middle| \Psi_{cde}^{tuv} \right\rangle = \left\langle \Psi_{a}^{r} \middle| \mathcal{H} \middle| \Psi_{acd}^{vtu} \right\rangle \tag{4.1.2}$$

if $r \neq v$, this term will still be zero, thus

$$\sum_{c < d < e, t < u < v} c_{cde}^{tuv} \left\langle \Psi_a^r \middle| \mathcal{H} \middle| \Psi_{cde}^{tuv} \right\rangle = \sum_{c < d, t < u} c_{acd}^{rtu} \left\langle \Psi_a^r \middle| \mathcal{H} \middle| \Psi_{acd}^{rtu} \right\rangle \tag{4.1.3}$$

Ex 4.2

$$\begin{vmatrix}
-E_{\text{corr}} & K_{12} \\
K_{12} & 2\Delta - E_{\text{corr}}
\end{vmatrix} = 0 \tag{4.1.4}$$

$$-E_{\rm corr}(2\Delta - E_{\rm corr}) - K_{12}^2 = 0 (4.1.5)$$

$$E_{\text{corr}} = \frac{2\Delta \pm \sqrt{4\Delta^2 + 4K_{12}^2}}{2} = \Delta \pm \sqrt{\Delta^2 + K_{12}^2}$$
 (4.1.6)

choosing the lowest eigenvalue,

$$E_{\rm corr} = \Delta - \sqrt{\Delta^2 + K_{12}^2} \tag{4.1.7}$$

Ex 4.3 At R = 1.4,

$$\Delta = \varepsilon_2 - \varepsilon_1 + \frac{1}{2}(J_{11} + J_{22}) - 2J_{12} + K_{12}$$

$$= 0.6703 + 0.5782 + \frac{1}{2}(0.6746 + 0.6975) - 2 \times 0.6636 + 0.1813$$

$$= 0.78865 \tag{4.1.8}$$

$$E_{\text{corr}} = \Delta - \sqrt{\Delta^2 + K_{12}^2} = 0.78865 - \sqrt{0.78865^2 + 0.1813^2} = -0.020571$$
 (4.1.9)

$$c = \frac{E_{\text{corr}}}{K_{12}} = \frac{-0.020571}{0.1813} = -0.1135 \tag{4.1.10}$$

As $R \to \infty$, $\varepsilon_2 - \varepsilon_1 \to 0$, all 2e integrals $\to \frac{1}{2}(\phi_1\phi_1|\phi_1\phi_1)$, thus

$$\lim_{R \to \infty} \Delta = 0 + \lim_{R \to \infty} \left[\frac{1}{2} (J_{11} + J_{22}) - 2J_{12} + K_{12} \right] = 0$$
 (4.1.11)

$$\lim_{R \to \infty} E_{\text{corr}} = -\lim_{R \to \infty} K_{12} \tag{4.1.12}$$

$$\lim_{R \to \infty} c = \lim_{R \to \infty} \frac{E_{\text{corr}}}{K_{12}} = -1 \tag{4.1.13}$$

As $R \to \infty$, the full CI wave function will be

$$|\Phi_0\rangle = |\Psi_0\rangle - |\Psi_{1\bar{1}}^{2\bar{2}}\rangle = |\psi_1\bar{\psi}_1\rangle - |\psi_2\bar{\psi}_2\rangle \tag{4.1.14}$$

Since

$$\psi_1 = \frac{1}{\sqrt{2(1+S_{12})}}(\phi_1 + \phi_2) \tag{4.1.15}$$

$$\psi_2 = \frac{1}{\sqrt{2(1 - S_{12})}} (\phi_1 - \phi_2) \tag{4.1.16}$$

we get

$$|\psi_1 \bar{\psi}_1 \rangle = \frac{1}{2(1 + S_{12})} (|\phi_1 \bar{\phi}_1 \rangle + |\phi_1 \bar{\phi}_2 \rangle + |\phi_2 \bar{\phi}_1 \rangle + |\phi_2 \bar{\phi}_2 \rangle)$$
(4.1.17)

$$|\psi_2\bar{\psi}_2\rangle = \frac{1}{2(1-S_{12})} (|\phi_1\bar{\phi}_1\rangle - |\phi_1\bar{\phi}_2\rangle - |\phi_2\bar{\phi}_1\rangle + |\phi_2\bar{\phi}_2\rangle)$$
(4.1.18)

As $R \to \infty$, $S_{12} \to 0$, thus

$$|\Phi_0\rangle = |\psi_1\bar{\psi}_1\rangle - |\psi_2\bar{\psi}_2\rangle = \frac{1}{2}(|\phi_1\bar{\phi}_2\rangle + |\phi_2\bar{\phi}_1\rangle)$$

$$(4.1.19)$$

Renormalize it, we get

$$|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|\phi_1 \bar{\phi}_2\rangle + |\phi_2 \bar{\phi}_1\rangle) \tag{4.1.20}$$

4.2 Doubly Exited CI

4.3 Some Illustrative Calculations

4.4 Natural Orbitals and the 1-Particle Reduced DM

Ex 4.4

$$\gamma_{ij} = \int d\mathbf{x}_1 d\mathbf{x}_1' \chi_i^*(\mathbf{x}_1) \gamma(\mathbf{x}_1, \mathbf{x}_1') \chi_j(\mathbf{x}_1')$$
(4.4.1)

$$\gamma_{ji}^* = \int d\mathbf{x}_1 d\mathbf{x}_1' \chi_j(\mathbf{x}_1) \gamma^*(\mathbf{x}_1, \mathbf{x}_1') \chi_i^*(\mathbf{x}_1')$$

$$= \int d\mathbf{x}_1' d\mathbf{x}_1 \chi_j(\mathbf{x}_1') \gamma^*(\mathbf{x}_1', \mathbf{x}_1) \chi_i^*(\mathbf{x}_1)$$

$$= \int d\mathbf{x}_1' d\mathbf{x}_1 \chi_j(\mathbf{x}_1') \gamma(\mathbf{x}_1', \mathbf{x}_1) \chi_i^*(\mathbf{x}_1)$$

$$= \gamma_{ij}$$

$$(4.4.2)$$

 $\therefore \gamma$ is Hermitian.

Ex 4.5

$$\operatorname{tr} \boldsymbol{\gamma} = \sum_{i} \gamma_{ii}$$

$$= \sum_{i} \int d\mathbf{x}_{1} d\mathbf{x}_{1}' \chi_{i}^{*}(\mathbf{x}_{1}) \gamma(\mathbf{x}_{1}, \mathbf{x}_{1}') \chi_{i}(\mathbf{x}_{1}')$$

$$= \sum_{i} \int d\mathbf{x}_{1} d\mathbf{x}_{1}' \chi_{i}^{*}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{1}') N \int d\mathbf{x}_{2} \cdots d\mathbf{x}_{N} \Phi^{*}(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \Phi(\mathbf{x}_{1}', \dots, \mathbf{x}_{N})$$

$$= N \sum_{i} \int d\mathbf{x}_{2} \cdots d\mathbf{x}_{N} \int d\mathbf{x}_{1} \chi_{i}^{*}(\mathbf{x}_{1}) \Phi^{*}(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \int d\mathbf{x}_{1}' \chi_{i}(\mathbf{x}_{1}') \Phi(\mathbf{x}_{1}', \dots, \mathbf{x}_{N})$$

$$= N \sum_{i} \int d\mathbf{x}_{2} \cdots d\mathbf{x}_{N} \int d\mathbf{x}_{1} \chi_{i}^{*}(\mathbf{x}_{1}) \Phi^{*}(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \int d\mathbf{x}_{1}' \chi_{i}(\mathbf{x}_{1}') \Phi(\mathbf{x}_{1}', \dots, \mathbf{x}_{N})$$

$$(4.4.3)$$

Since

$$\int d\mathbf{x}_1' \chi_i(\mathbf{x}_1') \Phi(\mathbf{x}_1', \dots, \mathbf{x}_N) = \int d\mathbf{x}_1 \chi_i(\mathbf{x}_1) \Phi(\mathbf{x}_1, \dots, \mathbf{x}_N)$$
(4.4.4)

we have

$$\operatorname{tr} \boldsymbol{\gamma} = N \sum_{i} \int d\mathbf{x}_{2} \cdots d\mathbf{x}_{N} \int d\mathbf{x}_{1} \chi_{i}^{*}(\mathbf{x}_{1}) \Phi^{*}(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}) \int d\mathbf{x}_{1} \chi_{i}(\mathbf{x}_{1}) \Phi(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N})$$

$$= N \sum_{i} \int d\mathbf{x}_{1} \chi_{i}^{*}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{1}) \int d\mathbf{x}_{1} d\mathbf{x}_{2} \cdots d\mathbf{x}_{N} \Phi^{*}(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}) \Phi(\mathbf{x}_{1}, \cdots, \mathbf{x}_{N})$$

$$= N \sum_{i} \int d\mathbf{x}_{1} \chi_{i}^{*}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{1})$$

$$= N \sum_{i} \int d\mathbf{x}_{1} \chi_{i}^{*}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{1})$$

$$(4.4.5)$$