# Visual SLAM for Mobile Robotics

Research Assistant @ NAAMII

#### R.O.B.O.T. Comics



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

## **Mobile robotics**

Refers to the use of robots that can **move** and operate in a variety of environments

## **Mobile robotics**









Mars Rover

Service Robots

Drones

Automatic Vacuum Cleaner

## Localization

Process of determining the position and orientation of a robot in its environment

## Localization

Crucial for the robot to be able to navigate through the environment and perform tasks effectively

# Mapping

Process of creating a map of an environment

## Mapping

In the context of mobile robotics, mapping refers to creating a "representation" of the robot's surroundings

# Mapping



**Point Cloud** 



Occupancy Grid (Floor Plan)



3D reconstruction

### Conundrum

Localization is the process of determining the position within a **KNOWN** environment/map

Robot needs to know its position to accurately align the data it collects and create accurate map

## Conundrum

Localization and Mapping are "Chicken and Egg" problem



## Conundrum

But there is an algorithm which can do both localization and mapping **simultaneously** 

## Simultaneous Localization and Mapping (SLAM)

Technique used to create a map while simultaneously determining its own position

## Sensors used for SLAM

**Global Positioning System (GPS)** is one of the sensors that can be used for localization

## Sensors used for SLAM

Other sensors like camera, lasers, infra-red, ultrasonic can also be used

## **Visual SLAM**

SLAM algorithm implemented using **Cameras** as sensor

## **Visual SLAM**



Common process used for Visual SLAM

## **Frontend**



# **Frontend: Visual Odometry**

Odometry is a technique used to determine the position and orientation of a robot relative to its starting point



Wheel Odometer used on Vehicles

## **Frontend: Visual Odometry**

Odometry can also be achieved using Cameras only, termed as Visual Odometry

## **Frontend: Triangulation**

Technique used to determine the position of a point in space relative to two or more other points



# Frontend: Triangulation



## **Frontend details**

#### **Frontend**

- Visual Odometry
  - Triangulation



## **Frontend details**

#### **Frontend**

- Visual Odometry
  - Triangulation



## **Visual Odometry Problem**

X (Map point) known

x1 known

x2 known

Find [R|t]



# **Triangulation Problem**

x1 known
x2 known
[R|t] known
Find X (Map point)



## How to find the corresponding points?

Traditionally this problem has been tackled by a field of study called "Photogrammetry"







Image 2

How do we know if these two points correspond to the same 3D point?

Why we took these specific points? There are thousands of other points in the image

## **Photogrammetry**

- 1. Feature Detection
- 2. Feature Description
  - 3. Feature Matching

## **Photogrammetry: Feature Detection**

- Impractical to match every points!
- Find distinct points in image
- Called "Interest Point" or "Feature Point"
- Ought to be unique in across all images
- Methods: FAST, SIFT, SURF, SuperPoint



Why to choose this point?

## **Photogrammetry: Feature Description**

- Uniquely Represent each feature point mathematically
- Normally each feature points are represented as a vector.
- Methods: ORB, SIFT, SURF, BRIEF, Superpoint



Different Points should have different Representations

# **Photogrammetry: Feature Matching**



Find the corresponding points based on their descriptors and location

Better feature detection, description and matching can significantly increase the visual SLAM accuracy

## **Backend**



Backend Refines the rough poses and map

**Graph Based Representation:** 

Transformation from State Xi -> Xj (Known)



#### **Graph Based Representation:**

#### Add 3 liters water



Example

#### **Graph Based Representation:**

#### Add 3 liters water



Example

#### **Graph Based Representation:**



From Zij, we know: y= x+3

**Graph Based Representation:** 



u= Given by Visual Odometryz= Given by Triangulation



Graph based representation of Visual SLAM

Find best values for each state (nodes) that best explains the given observation (edges)

## **Challenges**



Change in lighting



Dynamic Objects



Seasonal Change