7) Instrumental Variables (IV) and Two-Stage Least Squares (2SLS)

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from:

Wooldridge (2010). **Econometric Analysis of Cross Section and Panel Data**. Ch 5.

Endogeneity: Instrumental Variables

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + u$$

 $Cov(x_j, u) = 0, \ j = 1, 2, ..., K - 1$

I)
$$Cov(z_1, u) = 0$$

$$egin{aligned} x_k &= \delta_0 + \delta_1 x_1 + ... + \delta_{k-1} x_{k-1} + heta_1 z_1 + r_k \end{aligned}$$
 $egin{aligned} \mathsf{II} ig) \; heta_1
eq 0 \end{aligned}$

3/11

Instrumental Variables Estimation

$$y = x\beta + u$$

$$z'y = z'x\beta + z'u$$

$$E(z'y) = E(z'x)\beta$$

$$\hat{\beta}_{IV} = (N^{-1} \sum_{i=1}^{N} z_i' x_i)^{-1} (N^{-1} \sum_{i=1}^{N} z_i' y_i)$$
$$\hat{\beta}_{IV} = (Z'X)^{-1} Z'Y$$

Weak Instrumental Variable

$$y = \beta_0 + \beta_1 x + u$$

$$plim\hat{eta}_{1,IV} = eta_1 + rac{Corr(z,u)}{Corr(z,x)} \cdot rac{\sigma_u}{\sigma_x}$$

$$plim\hat{eta}_{1,OLS} = eta_1 + Corr(x,u) \cdot \frac{\sigma_u}{\sigma_x}$$

4□ > 4□ > 4 = > 4 = > = 90

Vitor Kamada ECO 7100 Econometrics I December 2018 5 / 11

Inference with the IV Estimator

$$Var(u) = E(u^2|z) = \sigma^2$$

$$Var(\hat{eta}_1) = rac{\sigma^2}{n\sigma_{x}^2
ho_{x,z}^2}$$

6/11

Vitor Kamada ECO 7100 Econometrics I December 2018

Two-Stage Least Squares (2SLS)

I)
$$Cov(z_h, u) = 0, \quad h = 1, 2, ..., M$$

II)
$$x_k = \delta_0 + \delta_1 x_1 + \dots + \delta_{k-1} x_{k-1} + \theta_1 z_1 + \dots + \theta_m z_m + r_k$$

$$\hat{\beta}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'Y$$

$$\hat{X} = Z(Z'Z)^{-1}Z'X$$

2SLS - Implementation

1) Get the fitted values \hat{x}_k :

$$x_k$$
 on $1, x_1, ..., x_{k-1}, z_1, ..., z_m$

2) Run OLS

$$y \text{ on } 1, x_1, ..., x_{k-1}, \hat{x}_k$$

8/11

Mroz (1987)

$$log(wage) = \beta_0 + \beta_1 exp + \beta_2 exp^2 + \beta_3 educ + u$$

library(AER); data(mroz, package='wooldridge')
oursample <- subset(mroz, !is.na(wage))

Statistic	N	Mean	St. Dev.	Min	Max
wage	428	4.178	3.310	0.128	25.000
educ	428	12.659	2.285	5	17
exper	428	13.037	8.056	0	38
motheduc	428	9.516	3.308	0	17
fatheduc	428	8.988	3.523	0	17

```
+exper+I(exper^2), data=oursample)
stage1 <- lm(educ~exper+l(exper^2)+
motheduc+fatheduc, data=oursample)
man.2SLS < -lm(log(wage) \sim fitted(stage1)
+exper+l(exper^2), data=oursample)
aut.2SLS<-ivreg(log(wage)~educ+exper+I(exper^2) |
motheduc+fatheduc+exper+I(exper^2),
data=oursample)
     Vitor Kamada
                      ECO 7100 Econometrics I
                                           December 2018
                                                     10 / 11
```

ols <- Im(log(wage)~educ+exper+I(exper^2)

Results (OLS, 1S, 2S, 2SLS)

	(1)	(2)	(3)	(4)
educ	0.107*** (0.014)			0.061* (0.031)
fitted(stage1)			0.061* (0.033)	
exper	0.042*** (0.013)	0.045 (0.040)	0.044*** (0.014)	0.044*** (0.013)
I(exper2)	-0.001** (0.0004)	-0.001 (0.001)	-0.001** (0.0004)	-0.001** (0.0004)
motheduc		0.158*** (0.036)		
fatheduc		0.190*** (0.034)		
Constant	-0.522*** (0.199)		0.048 (0.420)	0.048 (0.400)

Observations
Vitor Kamada

428 428 ECO 7100 Econometrics I 428

428