22/10/2024 Lab 5

Stimulated Annealing.

Algorithm.

function stimulated Annealing (initial_state)

initial_temp, cooling_rate, max_iterations

stop_state = 01

current_state = initial_state

best state = current state

best reduc = obj junc (current state)

temp = initial_temp

while temp > stop_state:

for i < 1 to iteration:

new_state = eurrent_state.f random (-1,1)

new-cost = obj-junc(current_state)

if acceptance_prob(cur-cost, new-cost temp) +

currestate = new state

Sest_state = new_state

best_cost = new_cosb

temp * = cooling_rate

return (best state, best cost)

Junction objective - Bunction (state) cost = 0 for ele in state: eost += 3 ele** 3 + 19 return cost. Zunction Acceptance-probability Cour-cost, newson of (new-cost 2 corcost). return I else _(corrost -new cost)/temp return e Objective junction $3x^3+4$

Output Clear .034583502919782516, 0.016824134456549622] Best Cost Found: 0.008158362864996674 === Code Execution Successful ===