1. Compute $\int_2^4 t^3 dt$.

2. Compute $\int_2^4 e^{-t} dt.$

3. Compute $\int_0^1 \frac{1}{1+s^2} \, ds$

4. Compute $\int_{-1}^{1} \sin(x) dx$. Then give a geometric answer to justify your result.

5. Compute $\int_0^{\frac{\pi}{2}} \cos(5x) \ dx$. You'll need to play around to find an antiderivative.

6. Compute $\int_{1}^{2} \frac{t^3 - 3t^2}{t^4} dt$

7. Can the Fundamental Theorem of Calculus help you compute $\int_0^{\pi} \tan(x) dx$?

8. Can the Fundamental Theorem of Calculus help you compute $\int_0^{\pi} \tan(x) dx$?

9. Compute

$$\frac{d}{dx}\int_{5}^{x}\tan(\sqrt{s})\ ds$$

10. Compute

$$\frac{d}{dx}\int_{5}^{x^{3}}\tan(\sqrt{s})\ ds.$$

Hint: Let $H(x) = \int_5^x \tan(\sqrt{s}) ds$. You're interested in $H(x^3)$. Apply the Chain Rule!

11. Challenge! Compute

$$\frac{d}{dx}\int_{x}^{x+1}\sqrt{s^2+1}\,ds.$$