

数学与经济管理

课程内容提要

- ▶ 运筹方法(★★)
 - 关键路径法
 - 线性规划
 - 动态规划
- ▶ 随机函数 (★)
- > 数学建模 (★)

考情分析

知识点/考点	分值分布			合计
线性规划	0	1	0	1
动态规划	0	0	0	0
数学建模	0	0	0	0
随机函数模型	1	0	1	2
数学与经济管理	1	1	1	3

线性规划

线性规划的一些特点:

- ✓ 线性规划的可行解域是由一组线性约束条件形成的,从几何意义来说,就是由一些线性解面围割形成的区域,不一定是封闭的多边形或多面体。
- ✓ 如果存在两个最优解,则连接这两点的线段内所有的点都是最优解,而线段两端延长线上可能会超出可行解区。
- ✓ 增加一个约束条件时,要么缩小可行解域(新的约束条件分割了原来的可行解域),要么可行解域不变(新的约束条件与原来的可行解域不相交)。
- ✓ 如果最优解在可行解域边界某个非顶点处达到,则随着等值域向某个方向移动,目标函数的值会增加或减少(与最优解矛盾)或没有变化(在此段边界上都达到最优解),从而仍会在可行解域的某个顶点处达到最优解。若最优解存在且唯一,则可以从可行解区顶点处比较目标函数值来求解。

某企业需要采用甲、乙、丙三种原材料生产 I、II 两种产品。生产两种产品所需原材料数量、单位产品可获得利润以及企业现有原材料数如下表所示,则公司可以获得的最大利润是(1)万元。取得最大利润时,原材料(2)尚有剩余。

(1) A 21 B 34 C 39 D 48

(2) A甲 B乙 C丙 D乙和丙

产品(吨)			现有原材料(吨)	
		1	II .	现有原材料 (吨)
所需资源	甲	1	1	4
	乙	4	3	12
	丙	1	3	6
单位利润	(万元/吨)	9	12	

设生产 I 与 II 产品的数量分别为: X和Y。则有:

(1) $X+Y \le 4$

(2) 4X+3Y <= 12

9X+12Y=?

(3) X+3Y <= 6

(1) 与(2) 求解得: X=0, Y=4。 X+3Y = 12

(1) 与(3) 求解得: X=3, Y=1。 4X+3Y = 15

9*2+12* (4/3) =34

(2) 与(3) 求解得: X=2, Y=4/3。 X+Y=10/3

		产品	(吨)	现有原材料(吨)
			Ш	201日 (水化) 个十 (平化)
所需资源	甲	1	1	4
	乙	4	3	12
	丙	1	3	6
单位利润	(万元/吨)	9	12	

在如下线性约束条件下: 2x+3y≤30; x+2y≥10; x≥y; x≥5; y≥0,目标函数2x+3y的极小值为()。

A 16.5

B 17.5

C 20

D 25

暴力法求解

某公司现有400万元用于投资甲、乙、丙三个项目,投资额以百万元为单位,已知甲、乙、丙三项投资的可能方案及相应获得的收益如下表所示,则该公司能够获得的最大收益值是()百万元。

A 17 B 18 C 20 D 21

投资额 收益 项目	1	2	3	4
甲	4	6	9	10
乙	3	9	10	11
丙	5	8	11	15

暴力法求解

项目	甲	Z	丙	收益值
	0	0	4	15
		1	3	14
		2	2	17
1835 4		3	1	15
投资金		4	0	11
额	1	0	3	15
		1	2	15
		2	1	18
		3	0	14

项目	甲	Z	丙	收益值
		0	2	14
	2	1	1	14
投资	投资	2	0	15
金额 3 4	0	1	14	
	3	1	0	12
	4	0	0	10

贪心策略分析

设三个煤场A、B、C分别能供应煤12、14、10万吨,三个工厂X、Y、Z分别需要煤11、12、13万吨,从各煤场到各工厂运煤的单价(百元/吨)见下表方框内的数字。只要选择最优的运输方案,总的运输成本就能降到()百万元。

	エ厂X	ТГY	工厂Z	供应商(万吨)
煤场A	5	1	6	12
煤场B	2	4	3	14
煤场C	3	6	7	10
需求量(万吨)	11	12	13	36

A 83 B 91 C

C 113

D 153

贪心策略分析

某企业准备将四个工人甲、乙、丙、丁分配在A、B、C、D四个岗位。每个工人由于技术水平不同,在不同岗位上每天完成任务所需的工时见下表。适当安排岗位,可使四个工人以最短的总工时()全部完成每天的任务。

	A	В	С	D
甲	7	5	2	3
乙	9	4	3	7
丙	5	4	7	5
丁	4	6	5	6

A 13

B 14

C 15

D 16

数学建模

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象和简化,建立能近似刻画并解决实际问题的模型的一种强有力的数学手段。

数学建模

- 模型准备:了解问题的实际背景,用数学语言来描述问题。
- 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化, 并用精确的语言提出一些恰当的假设。
- 模型建立:在假设的基础上,建立相应的数学结构。
- 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
- 模型分析:对所得的结果进行数学上的分析。
- 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
- 模型应用:应用方式因问题的性质和建模的目的而异。

数学建模

模型分析

- 模型的合理性分析:最佳、适中、满意等。
- 利用实际案例数据对模型进行检验
- 可以请专家来分析模型是否合理
- 利用计算机来模拟实际问题,再在计算机上检验该数学模型。
- 模型的误差分析:模型误差、观测误差、截断误差、舍入误差、 过失误差、绝对误差、相对误差等。
- 参数的灵敏性分析:变量数据是否敏感,在最优方案不变的条件 下这些变量允许变化的范围。

数学模型常带有多个参数,而参数会随环境因素而变化。根据数学模型求出 最优解或满意解后,还需要进行(),对计算结果进行检验,分析计算结果 对参数变化的反应程度。

- A 一致性分析
- B 准确性分析
- C灵敏性分析
- D 似然性分析

1路和2路公交车都将在10分钟内均匀随机地到达同一车站,则它们相隔4分钟内到达该站的概率

为()。

A 0.36

B 0.48

C 0.64

D 0.76

- 模拟随机数
- 面积比与概率比

为近似计算XYZ三维空间内由三个圆柱 $x^2+y^2 \le 1$, $y^2+z^2 \le 1$, $x^2+z^2 \le 1$ 相交部分V的体

积,以下四种方案中,() 最容易理解,最容易编程实现。

A 在z=0平面中的圆 x^2 + y^2 ≤1上,近似计算二重积分

B 画出V的形状,将其分解成多个简单形状,分别计算体积后,再求和

C将V看作多个区域的交集,利用有关并集、差集的体积计算交集体积

D V位于某正立方体M内,利用M内均匀分布的随机点落在V中的比例进行计算

章节回顾

- 1、掌握线性规划题型的分析。
- 2、掌握动态规划题型的分析。
- 3、了解数学建模的相关概念和思想。
- 4、了解随机应用模型的基本思想和应用。