CONTRIBUTEURS

ACT-2007 Mathématiques actuarielles vie II

aut. Nicholas Langevin

aut. Gabriel Crépeault-Cauchon

aut. Alexandre Turcotte

aut., cre. Alec James van Rassel

src. Ilie-Radu Mitric

Rappels

Woolhouse

$$\ddot{a}_{x:\overline{n}|}^{(m)} \approx \ddot{a}_{x:\overline{n}|} - \frac{m-1}{2m} (1 - {}_{n}E_{x}) - \frac{m^{2}-1}{12m^{2}} (\delta + \mu_{x} - {}_{n}E_{x}(\delta + \mu_{x+n}))$$

DUD

$$\bar{A}_{x:\overline{n}|} \stackrel{DUD}{=} A^1_{x:\overline{n}|} + A_{x:\overline{n}|}$$

Relation
$$\ddot{a}_{x:\overline{n}|}^{(m)} = \frac{1}{m} + v^{\frac{1}{m}} {}_{\frac{1}{m}} p_x \ddot{a}_{x+\frac{1}{m}:n-\frac{1}{m}|}^{(m)}$$

$$A_x = vq_x + vp_x A_{x+1}$$

Sélection à l'âge [x]

$$\bar{A}_{[x]+h:\overline{n-h}|}^{1} = \int_{0}^{n-h} e^{-\delta t} p_{[x]+h} \mu_{[x]+h+t} dt$$
$$= \int_{h}^{n} e^{-\delta(s-h)} \frac{s p_{[x]}}{h p_{[x]}} \mu_{[x]+s} ds$$

Calcul de réserve

Notation

 $_hL$: Perte nette future sur un contrat d'assurance pour un individu d'âge (x) au temps h.

- Puisque la perte est évaluée au temps h, on suppose que l'assuré va décéder par après et conditionne à sa survie :

$$_{h}L = \{_{h}L|T_{x} > h\}$$

 $_hV$: Réserve nette pour un contrat d'assurance pour un individu d'âge (x) au temps h.

- La réserve est basée sur ce qu'on s'attend à avoir comme perte : $_{h}V = \mathrm{E}[_{h}L]$

 $_{\scriptscriptstyle L}V^g$: Réserve pour contrat avec primes brutes (lorsqu'il y a des frais).

 $_{h}V^{n}$: Réserve pour contrat avec primes pures (lorsqu'il n'y a pas de frais).

 $VP_{@h}$: La valeur présente au temps h.

 $VPA_{@h}$: La valeur présente anticipée au temps h.

$$VPA_{@t} = E[VP_{@h}]$$

Notation pour un contrat d'assurance vie entière

$$hL = MZ_{x+h} - \pi \ddot{Y}_{x+h}$$

$$Var(hL) = \left(M + \frac{\pi}{d}\right)^2 \left[^2 A_{x+h} - (A_{x+h})^2\right]$$

$$hV^n = MA_{x+h} - \pi \ddot{a}_{x+h}$$

$$\equiv \left(M + \frac{\pi}{d}\right) A_{x+h} - \frac{\pi}{d}$$

Sous le principe d'équivalence du portefeuille (PEP) :

$$_{h}V^{n} \stackrel{PEP}{=} M \left[\frac{A_{x+h} - A_{x}}{1 - A_{x}} \right]$$
 $\stackrel{PEP}{=} M \left[1 - \frac{\ddot{a}_{x+h}}{\ddot{a}_{x}} \right]$

Notation pour un contrat d'assurance avec primes non-nivelées

$${}_{h}L = b_{K_{x+h}+h+1}v^{K_{x+h}+1} - \sum_{i=0}^{K_{x+h}} \pi_{i+h}v^{i}$$
$${}_{h}V^{n} = \sum_{j=0}^{\infty} b_{j+h+1}v^{j+1}{}_{j}p_{x+h}q_{x+h+j} - \sum_{j=0}^{\infty} \pi_{i+h}v^{i}{}_{j}p_{x+h}$$

Note

- → La prestation *b* est payable au moment $K_{r+h} + h + 1$.
- \rightarrow Cependant, puisqu'on évalue la perte au temps h, il y a seulement $K_{r+h} + 1$ années à actualiser.

Calcul de réserves

Méthodes d'évaluation de la réserve

Prospective

Rétrospective

$${}_{h}V^{g} = VPA_{@t} \left(\begin{array}{c} \text{prestations futures} \\ \text{à payer} \end{array} \right) \quad {}_{h}V^{g} = \frac{{}_{0}V^{g}}{{}_{h}E_{x}} \\ + VPA_{@t} \left(\begin{array}{c} \text{frais futurs} \\ \text{à payer} \end{array} \right) \qquad \qquad + \frac{VPA_{@0} \left(\begin{array}{c} \text{primes recues} \\ \text{avant } h \end{array} \right)}{{}_{h}E_{x}} \\ - VPA_{@t} \left(\begin{array}{c} \text{primes futures} \\ \text{à recevoir} \end{array} \right) \qquad \qquad - \frac{VPA_{@0} \left(\begin{array}{c} \text{prestations à payer} \\ \text{avant } h \end{array} \right)}{{}_{h}E_{x}}$$

Exemple pour un contrat d'assurance vie mixte *n* années :

Méthode prospective $_{h}V^{n} = MA_{x+h:\overline{n-h}} - P\ddot{a}_{x+h:\overline{n-h}}$

Méthode rétrospective $_{h}V^{n} = 0 + \frac{P\ddot{a}_{x:\overline{h}} - MA_{x:\overline{h}}^{1}}{^{LF}}$

L'assurance mixte devient une temporaire puisque la méthode rétrospective considère seulement les prestations à payer avant h.

Relation: $\{T_x - t | T_x > t\} \stackrel{d}{=} T_{x+t}$ où $\stackrel{d}{=}$ veut dire égale en distribution.

Relation récursive pour les réserves (discrètes)

$$_hV^n = \begin{bmatrix} p_{x+h_{h+1}}V^n + q_{x+h}b_{h+1} \end{bmatrix} v - \pi_h$$

$$_hV^g = \begin{bmatrix} p_{x+h_{h+1}}V^n + q_{x+h}(b_{h+1} + E_{h+1}) \end{bmatrix} v - (G_h - e_h)$$
La réserve pour l'année h est composée de :

- \rightarrow La réserve au temps h+1 si l'assuré survie l'année h et
- \rightarrow la prestation payable (et frais encourus) à h+1 si l'assuré décède lors de l'année h,
- \rightarrow actualisés de h+1 à h,
- > moins la prime (plus les frais) reçus de l'assuré au début de l'année h.

où

- G_h La prime (*gross premium*) à recevoir à t = h;
- e_h Les frais reliés à la collecte de la prime (per premium expenses);
- E_h Les frais reliés au paiement de la prestation (settlement expenses).

Avec la réserve pour l'année h + 1 isolée :

$${}_{h+1}V^g = \frac{\binom{1}{h}V^g + G_h - e_h)(1+i) - (b_{h+1} + E_{h+1})q_{x+h}}{p_{x+h}}$$
 Avec le montant net au risque réserve pour l'année $h+1$ isolé :

$$\underbrace{(b_{h+1} + E_{h+1} - {}_{h+1}V^{g})}_{\text{montant net au risque}} q_{x+h} = ({}_{h}V^{g} + G_{h} - e_{h})(1+i) - {}_{h+1}V^{g}$$

Approximation classique pour les réserves à durées fractionnaires

$$_{h+s}V^{g}pprox\left(_{h}V^{g}+G_{h}-e_{h}
ight) \left(1-s
ight) +\left(_{h+1}V^{g}
ight) \left(s
ight) ,\,s\in\left(0,1
ight)$$

Profit de l'assureur

Notation

- N_h : Nombre de contrats d'assurance vie (identiques) du portefeuille en vigueur au temps h.
- $_{h+1}V^E$: Réserve totale pour l'année h+1 du portefeuille selon l'intérêt (i), la mortalité (q_{x+h}) et les frais (e_h et E_h) **espérés** (E_h xpected) pour l'année
- $_{h+1}V^A$: Réserve totale pour l'année h+1 du portefeuille selon l'intérêt (i'), la mortalité (q'_{x+h}) et les frais $(e'_h$ et $E'_h)$ **réellement** (Actually) encourus lors de l'année h.

Le profit de l'assureur pour l'année h sera donc $_{h+1}V^A - _{h+1}V^E$.

Si uniquement _____ change(nt), alors le profit sur _____ pour l'année *h* est :

les frais $N_h [(e_h - e'_h)(1+i) + (E_{h+1} - E'_{h+1})q_{x+h}].$

l'intérêt $N_h \left({}_h V^g + (G_h - e_h) \right) (i' - i)$.

la mortalité
$$(b_{h+1} + E_{h+1} - {}_{h+1}V^g) (N_h q_{x+h} - N_h q'_{x+h})$$

S'il y a des différentes ordre, il suffit de remplacer les composantes par les nouvelles.

Par exemple :

- > Si l'ordre est frais-intérêt-mortalité, le profit sur l'intérêt devient $N_h \left({}_h V^g + (G_h - e'_h) \right) (i' - i).$
- > Si l'ordre est intérêt-frais-mortalité, le profit sur les frais devient $N_h \left[(e_h - e'_h)(1 + i') + (E_{h+1} - E'_{h+1}) q_{x+h} \right].$

Équation de Thiele

Cette équation permet d'obtenir le *taux instantané d'accroissement* de _tV.

$$\frac{\partial}{\partial t} V^{g} = \delta_{t_t} V^{g} + (G_t - e_t) - (b_t + E_t - {}_t V^{g}) \mu_{[x] + t}$$

- > Applique continûment l'intérêt à la réserve au temps t.
- > Le montant est fixe et payé au début de l'année t.
- > Applique continûment la mortalité au montant payable pour un décès à *t*.

on peut approximer $_{\iota}V^g$ avec la Méthode d'Euler :

$$_{h}V^{g} = \frac{_{t+h}V^{g} - h\left[(G_{h} - e_{h}) - (b_{h} + E_{h})\mu_{[x]+h}\right]}{1 + h\delta_{t} + h\mu_{[x]+h}}$$

Frais d'acquisition reportés

 $_{h}V^{e}$ Réserve pour les frais d'acquisition reportés (DAC).

$$_{h}V^{e} = DAC_{h} = VPA_{@t} \text{ (frais)} - VPA_{@t} \text{ (primes pour les frais futurs)}$$

$$\equiv {}_{h}V^{g} - {}_{h}V^{n}$$

- > « expense reserve » ou « Deferred Acquisition Costs ».
- > Si $e_0 > e_h$, c'est une réserve négative.
- \Rightarrow Si $e_0 = e_h$ alors $_hV^g = _hV^n = 0$ et $DAC_h = 0$.

 P^g : Prime nivelée pour un contrat avec des frais (alias la prime brute G).

 P^n : Prime nivelée pour un contrat sans frais (alias la prime nette P).

 P^e : Prime pour les frais (« $expense\ premium\ »).$

$$\hat{P}^e = P^g - P^n$$

FTP

 $_{h}V^{FTP}$ Réserve de primes FTP.

 π_0^{FTP} Prime FTP pour la première année.

$$\pi_0^{FTP} = {}_1P_{[x]} = \underset{\text{vie entière}}{=} bvq_{[x]}$$

 π_h^{FTP} Prime nivelée FTP pour les $h = 1, 2, \dots$ autres années.

$$\pi_h^{FTP} = P_{[x]+1} \underset{\text{vie entière}}{=} b \frac{A_{[x]+1}}{\ddot{a}_{[x]+1}}$$

- > Habituellement, il y a plus de frais au temps d'acquisition.
- > Ces frais supplémentaire sont répartis sur la durée du contra.
- > Habituellement, on utilise la prime nette pour faire les calculs puisque c'est plus simple.
- > Lorsqu'on établit l'équation pour la perte, utilisée les frais et la prime applicables à partir de la deuxième année et soustraire la différence pour la première.

2 Modèles à plusieurs états

 $_kQ_t^{(i,j)}$ Probabilité de transition de l'état i au temps t à l'état j au temps t+k.

- > De façon équivalente, $_k p_{x+t}^{ij}$.
- M_t État au temps t parmi les $\{1, 2, ..., r\}$ ou $\{0, 1, ..., r\}$ états.
 - \rightarrow De façon équivalente, M(t).
 - \rightarrow Le processus M_t est une "Chaine de Markov" ssi $\forall t = 0, 1, 2, \dots$:

$$Q_t^{(i,j)} = \Pr(M_{t+1} = j | M_t = i, M_{t-1}, \dots, M_0) = \Pr(M_{t+1} = j | M_t = i)$$

- Q_t Matrice des probabilités de transition.
 - > Les transitions sont en fin d'année.
 - > Si la matrice :

dépend du temps alors M_t est une chaîne de Markov **non-homogène**.

ne dépend pas du temps alors M_t est une chaîne de Markov homogène.

Également, dans ce cas-ci, on dénote $oldsymbol{Q}_t$ par $oldsymbol{Q}$ puisque $Q_t^{ij} = Q^{ij} \, orall t \geq 0$

 $_k Q_t$ Matrice de k-étapes des probabilités de transition.

$$_{m+n}Q_{t}^{(i,j)} = \sum_{k=1}^{r} {}_{m}Q_{t}^{(i,k)}{}_{n}Q_{t+m}^{(k,j)}$$

En temps continu

 $_kp_{x+t}^{ij}$ probabilité qu'un individu d'âge x dans l'état i au temps x+t soit dans l'état j (où j peut être égale à i) au temps x+t+k.

$$_{k}p_{x+t}^{ij} = \Pr(Y_{x}(t) = j|Y_{x} = i)$$

 $_{k}p_{x+t}^{ij}$ probabilité qu'un individu d'âge x dans l'état i au temps x+t reste dans dans l'état i continument jusqu'au temps x+t+k.

$$_{k}p_{x+t}^{\overline{ij}} = \Pr(Y_{x}(s) = i, \quad \forall s \in [0, t] \quad |Y_{x} = i)$$

- $Y_x(t)$ Processus stochastique $\{Y(s); s \geq 0\}$ de l'état dont les transitions peuvent se produire à n'importe quel moment $t \geq 0$ et donc pas seulement en fin d'année.
 - \rightarrow De façon équivalente, Y(x + t).
 - $Y_x(t) = i \text{ si l'assur\'e d'\^age } (x) \text{ est \`a l'\'etat } i \text{ au temps } t \text{ (ou, \`a l'\^age } x + t).$

Il s'ensuit que $_kp_{x+t}^{ij} \geq _kp_{x+t}^{\overline{ij}}$ car : $_kp_{x+t}^{ij} = _kp_{x+t}^{\overline{ij}} + \Pr(Y_x(t)=i, \text{après avoir sorti et revenu}|Y_x=i)$

Donc, pour le modèle actif (0) décédé (1), on substitut $_tp_x$ pour $_tp_x^{\overline{00}}$ (ou $_tp_x^{00}$ puisque décéder est un état absorbant) et $_tq_x$ pour $_tp_x^{01}$ avec la nouvelle notation.

Hypothèses

1. Le processus stochastique Y_t est une chaîne de Markov.

$$\Pr(Y_{t+s} = j | Y_t = \hat{i}, Y_u, 0 \le u < 1) = \Pr(Y_{t+s} = j | Y_t = i)$$

2. Pour toute intervalle de longueur h,

Pr
$$\left(\text{pendant une période de longueur } h \right) = o(h)$$

- > Une fonction g ∈ o(h) si $\lim_{h\to 0} \frac{g(h)}{h} = 0$.
- 3. Pour tous les états i et j et toute âge $x \ge 0$, $_tp_x^{ij}$ est différentiable par rapport à t.

 μ_x^{ij} **Force de transition** de l'état *i* à l'état *j* pour un assuré d'âge (*x*).

$$\mu_x^{ij} = \lim_{h \to 0^+} \frac{h}{h} p_x^{ij}, i \neq j$$

- > Il s'ensuit que ${}_{h}p_{x}^{ij} = h\mu_{x}^{ij} + o(h)$. Donc, ${}_{h}p_{x}^{ij} \approx h\mu_{x}^{ij}, i \neq j$ pour h > 0 très petit.
- > Pour le modèle actif (0) décédé (1), μ_x^{01} est la force de mortalité μ_x .

Remarques

- 1. $_hp_x^{ii}={}_hp_x^{i\bar{j}}+o(h)$ où o(h) est la probabilité de sortir et revenir de l'hypothèse 2.
- 2.

$$_{h}p_{x}^{ij} \ge {}_{h}p_{x}^{ii} = 1 - \sum_{j \ne i,j=0}^{n} p_{x}^{ij} + o(h) = 1 - h \sum_{j \ne i,j=0}^{n} \mu_{x}^{ij} + o(h)$$