Lecture 03/04: Functions, Derivatives, Analytic Functions, and Cauchy-Riemann Equations, Laplace's Equation

Tasaduq Hussain

August 26, 2024

Function

A function between two sets A and B is a rule that assigns to each element in set A exactly one element in set B. This is formally written as:

$$f:A\to B$$

Where:

- A is the **domain** of the function, which is the set of all possible inputs.
- B is the **codomain** of the function.
- The **range** of the function is the set of all actual outputs. The range is a subset of the codomain *B*.

Real-Valued Function

If both A and B are from the set of real numbers \mathbb{R} , the function is called a **real-valued function** and is typically denoted by:

$$y = f(x)$$

Example: Real-Valued Function

Let $A = \mathbb{R}$ and $B = \mathbb{R}$.

Define the function $f: \mathbb{R} \to \mathbb{R}$ by:

$$y = f(x) = x^2$$

- Domain of $f = \mathbb{R}$
- Codomain of $f = \mathbb{R}$
- Range of $f = [0, \infty)$

Complex-Valued Function

If both A and B are from the set of complex numbers \mathbb{C} , the function is called a **complex-valued function** and is typically denoted by:

$$w = f(z)$$

Example: Complex-Valued Function

Let $A = \mathbb{C}$ and $B = \mathbb{C}$ the set of all complex numbers.

Define the function $f: \mathbb{C} \to \mathbb{C}$ by:

$$w = f(z) = z^2 + 1$$

- Domain of $f = \mathbb{C}$
- Codomain of $f = \mathbb{C}$
- The range of f will include all complex numbers that can be obtained by squaring any complex number z and adding 1.

Note

Note that a complex-valued function f(z) can also be expressed in terms of its real and imaginary components. If z is a complex number represented as z = x + iy, the function can be written as:

$$w = f(z) = u(x, y) + iv(x, y)$$

Where:

- u(x,y) is the real part of the function f(z).
- v(x,y) is the imaginary part of the function f(z).

Example

Express the complex function $w=f(z)=z^2+1$ in terms of its real and imaginary parts.

For this we substitute z = x + iy

$$w = (x + iy)^2 + 1$$

$$w = (x^2 + 2ixy - y^2) + 1$$

$$w = (x^2 - y^2 + 1) + i(2xy)$$

Therefore,

Real part:
$$u(x, y) = x^2 - y^2 + 1$$

Imaginary part:
$$v(x,y) = 2xy$$

Remark

The standard rules of differentiation (such as the sum, product, quotient, power and chain rules) that apply to real-valued functions are also valid for complex-valued functions, provided that the complex function is differentiable.

Problem Set 13.3

Question 11

$$f(z) = \frac{1}{1-z}$$

Substitute z = 1 - i:

$$f(1-i) = \frac{1}{1 - (1-i)} = \frac{1}{i} = -i$$

Real part:

$$Re(f(1-i)) = 0$$

Imaginary part:

$$\operatorname{Im}(f(1-i)) = -1$$

Question 20

Find the value of the derivative of $\frac{1.5z+2i}{3iz-4}$ at any z. Explain the result.

Solution

The function given is

$$f(z) = \frac{1.5z + 2i}{3iz - 4}$$

To find the derivative, we apply the quotient rule:

$$f'(z) = \frac{(3iz-4)\left(\frac{d}{dz}(1.5z+2i)\right) - (1.5z+2i)\left(\frac{d}{dz}(3iz-4)\right)}{(3iz-4)^2}$$

Now, calculate the derivatives of the numerator and denominator:

$$\frac{d}{dz}(1.5z + 2i) = 1.5$$

$$\frac{d}{dz}(3iz - 4) = 3i$$

Substitute these into the quotient rule formula:

$$f'(z) = \frac{(3iz - 4)(1.5) - (1.5z + 2i)(3i)}{(3iz - 4)^2}$$

Simplify the numerator:

$$f'(z) = \frac{4.5iz - 6 - (4.5iz + 6)}{(3iz - 4)^2}$$
$$f'(z) = \frac{4.5iz - 6 - 4.5iz - 6}{(3iz - 4)^2}$$
$$f'(z) = \frac{-12}{(3iz - 4)^2}$$

Thus, the derivative is:

$$f'(z) = \frac{-12}{(3iz - 4)^2}$$

Analyticity

A function f(z) is said to be analytic in a domain D if f(z) is defined and differentiable at all points of D. A more modern term for analytic in D is holomorphic in D.

Cauchy-Riemann Equations

The Cauchy–Riemann equations provide a criterion for the analyticity of a complex function f(z) = u(x, y) + iv(x, y). A function f is analytic in a domain D if the first partial derivatives of u and v satisfy:

$$u_x = v_y, \quad u_y = -v_x.$$

In polar coordinates, where $z=r(\cos\theta+i\sin\theta)$ and $f(z)=u(r,\theta)+iv(r,\theta),$ the equations become:

$$u_r = \frac{1}{r}v_\theta, \quad v_r = -\frac{1}{r}u_\theta.$$

Problem Set 13.4

Question 2

Is the function

$$f(z) = iz\overline{z}$$

analytic?

Solution:

$$z = x + iy$$
, $\overline{z} = x - iy$

$$f(z) = iz\overline{z} = i(x+iy)(x-iy) = i(x^2+y^2)$$

$$u(x,y) = 0, \quad v(x,y) = x^2+y^2$$

$$u_x = 0, \quad u_y = 0$$

$$v_x = 2x, \quad v_y = 2y$$

$$u_x \neq v_y, \quad u_y \neq -v_x$$

$$f(z) \text{ is not analytic.}$$

Question 3

Is the function $f(z) = e^{-2x}(\cos 2y - i \sin 2y)$ analytic?

Solution: To determine whether the function $f(z) = e^{-2x}(\cos 2y - i\sin 2y)$ is analytic, we express it as f(z) = u(x,y) + iv(x,y), where $u(x,y) = e^{-2x}\cos 2y$ and $v(x,y) = -e^{-2x}\sin 2y$.

The partial derivatives are:

$$\frac{\partial u}{\partial x} = -2e^{-2x}\cos 2y, \quad \frac{\partial u}{\partial y} = -2e^{-2x}\sin 2y$$
$$\frac{\partial v}{\partial x} = 2e^{-2x}\sin 2y, \quad \frac{\partial v}{\partial y} = -2e^{-2x}\cos 2y$$

Since the Cauchy-Riemann equations are satisfied, f(z) is analytic.

Question 5

Is the function

$$f(z) = \operatorname{Re}(z^2) - i\operatorname{Im}(z^2)$$

analytic?

Solution:

$$z = x + iy$$

$$z^{2} = (x + iy)^{2} = x^{2} - y^{2} + 2ixy$$

$$Re(z^{2}) = x^{2} - y^{2}, \quad Im(z^{2}) = 2xy$$

$$f(z) = Re(z^{2}) - iIm(z^{2}) = (x^{2} - y^{2}) - i(2xy)$$

$$u(x,y)=x^2-y^2, \quad v(x,y)=-2xy$$

$$u_x=2x, \quad u_y=-2y$$

$$v_x=-2y, \quad v_y=-2x$$

$$u_x\neq v_y, \quad u_y\neq -v_x$$

$$f(z) \text{ is not analytic.}$$

Question 8

Is the function

$$f(z) = \operatorname{Arg}(2\pi z)$$

analytic?

Solution:

Given:

$$f(z) = \operatorname{Arg}(2\pi z)$$

Let z = x + iy, where x and y are real numbers.

Thus,

$$2\pi z = 2\pi(x+iy) = 2\pi x + i2\pi y$$

The argument of a complex number z = x + iy is given by:

$$\operatorname{Arg}(z) = \tan^{-1}\left(\frac{y}{x}\right)$$

Therefore,

$$f(z) = \operatorname{Arg}(2\pi z) = \operatorname{Arg}(2\pi x + i2\pi y) = \tan^{-1}\left(\frac{2\pi y}{2\pi x}\right) = \tan^{-1}\left(\frac{y}{x}\right)$$

Since the argument $Arg(2\pi z)$ represents an angle, it is a real-valued function, and the imaginary part v(x, y) is zero, and u(x, y) is given by:

$$u(x,y) = \operatorname{Arg}(2\pi z) = \tan^{-1}\left(\frac{y}{x}\right)$$

and the imaginary part v(x, y) is:

$$v(x,y) = 0$$

Next, let's compute the partial derivatives of u(x, y) and v(x, y) with respect to x and y.

$$u_x = \frac{\partial}{\partial x} \tan^{-1} \left(\frac{y}{x} \right)$$

Using the chain rule and the derivative of $\tan^{-1}(z)$, which is $\frac{1}{1+z^2}$, we get:

$$u_x = \frac{\partial}{\partial x} \tan^{-1} \left(\frac{y}{x} \right) = \frac{-y}{x^2 + y^2}$$

Similarly, for u_y :

$$u_y = \frac{\partial}{\partial y} \tan^{-1} \left(\frac{y}{x} \right) = \frac{x}{x^2 + y^2}$$

Since v(x, y) = 0, its partial derivatives are:

$$v_x = 0, \quad v_y = 0$$

For f(z) to be analytic, the Cauchy-Riemann equations must be satisfied:

$$u_x = v_y$$
 and $u_y = -v_x$

Substituting the computed derivatives:

$$u_x = \frac{-y}{x^2 + y^2}, \quad v_y = 0$$

$$u_y = \frac{x}{x^2 + y^2}, \quad v_x = 0$$

Clearly, $u_x \neq v_y$ and $u_y \neq -v_x$. Therefore, the Cauchy-Riemann equations are not satisfied.

Hence, the function $f(z) = \text{Arg}(2\pi z)$ is **not analytic**.

Laplace's Equation

Laplace's equation is a second-order partial differential equation of the form:

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

 ∇^2 read as "nabla squared".

Harmonic Function

A function u(x, y) is called a **harmonic function** if it satisfies Laplace's equation:

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

• If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then both u and v satisfy Laplace's equation, and so both are harmonic functions.

Harmonic Conjugate

Given a harmonic function u(x,y), a function v(x,y) is called a **harmonic conjugate** of u(x,y) if the complex function f(z) = u(x,y) + iv(x,y) is analytic, where z = x + iy. The relationship between u and v is governed by the Cauchy-Riemann equations:

$$u_x = v_y$$
 and $u_y = -v_x$

The function v(x, y) is also harmonic, and together with u(x, y), they form the real and imaginary parts of the analytic function f(z).

Problem Set 13.4

Question 12

Is the function $u(x,y)=x^2+y^2$ harmonic? If your answer is yes, find a corresponding analytic function f(z)=u(x,y)+iv(x,y).

Solution:

$$u_{xx} = \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x}(2x) = 2$$

$$u_{yy} = \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y}(2y) = 2$$

Therefore,

$$u_{xx} + u_{yy} = 2 + 2 = 4$$

Since the Laplacian of u is not zero, u(x,y) is not a harmonic function.

Question 14

Is the function v(x,y) = xy harmonic? If your answer is yes, find a corresponding analytic function f(z) = u(x,y) + iv(x,y).

Solution: To check if v(x,y) is harmonic, we compute its second partial derivatives:

$$v_{xx} = \frac{\partial^2 v}{\partial x^2} = \frac{\partial}{\partial x}(y) = 0$$

$$v_{yy} = \frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y}(x) = 0$$

Therefore,

$$v_{xx} + v_{yy} = 0 + 0 = 0$$

Since the Laplacian $v_{xx} + v_{yy}$ is zero, v(x,y) is a harmonic function.

To find the corresponding analytic function f(z) = u(x,y) + iv(x,y), we assume u(x,y) satisfies the Cauchy-Riemann equations:

$$u_x = v_y$$
 and $u_y = -v_x$

Given v(x, y) = xy:

$$v_y = x$$
 and $v_x = y$

From $u_x = v_y$:

$$u_x = x$$

Integrating with respect to x, we get:

$$u(x,y) = \frac{x^2}{2} + g(y)$$

From $u_y = -v_x$:

$$\frac{\partial u}{\partial y} = -y$$

$$g'(y) = -y$$

Integrating with respect to y, we get:

$$g(y) = -\frac{y^2}{2} + C$$

Thus,

$$u(x,y) = \frac{x^2}{2} - \frac{y^2}{2} + C$$

The corresponding analytic function is:

$$f(z) = u(x,y) + iv(x,y) = \frac{x^2}{2} - \frac{y^2}{2} + C + ixy$$

Question 16

Is the function $u(x,y) = \sin x \cosh y$ harmonic? If your answer is yes, find a corresponding analytic function f(z) = u(x,y) + iv(x,y).

Solution:

$$u_{xx} = \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} (\cos x \cosh y) = -\sin x \cosh y$$

$$u_{yy} = \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} (\sinh y \sin x) = \cosh y \sin x$$

Therefore,

$$u_{xx} + u_{yy} = -\sin x \cosh y + \sin x \cosh y = 0$$

Since the Laplacian $u_{xx} + u_{yy}$ is zero, u(x,y) is a harmonic function.

To find the corresponding analytic function f(z) = u(x, y) + iv(x, y), we assume v(x, y) satisfies the Cauchy-Riemann equations:

$$u_x = v_y$$
 and $u_y = -v_x$

Given $u(x, y) = \sin x \cosh y$:

$$u_x = \cos x \cosh y$$
 and $u_y = \sin x \sinh y$

From $u_x = v_y$:

$$v_y = \cos x \cosh y$$

Integrating with respect to y, we get:

$$v(x,y) = \cos x \sinh y + h(x)$$

From $u_y = -v_x$:

$$\sin x \sinh y = -v_x = -\frac{\partial}{\partial x} (\cos x \sinh y + h(x))$$

$$\sin x \sinh y = \sin x \sinh y - h'(x)$$

Therefore, h'(x) = 0, and h(x) is a constant. We can take h(x) = 0 for simplicity.

Thus, $v(x, y) = \cos x \sinh y$.

The corresponding analytic function is:

$$f(z) = u(x, y) + iv(x, y) = \sin x \cosh y + i \cos x \sinh y$$

Question 21

Determine a and b so that the given function is harmonic and find a harmonic conjugate.

$$u(x,y) = e^{\pi x} \cos(ay)$$

Solution: First, we need to compute the second partial derivatives of u(x,y):

$$u_{xx} = \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} (\pi e^{\pi x} \cos(ay)) = \pi^2 e^{\pi x} \cos(ay)$$

$$u_{yy} = \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(-ae^{\pi x} \sin(ay) \right) = -a^2 e^{\pi x} \cos(ay)$$

For u(x,y) to be harmonic, the Laplacian must be zero:

$$u_{xx} + u_{yy} = \pi^2 e^{\pi x} \cos(ay) - a^2 e^{\pi x} \cos(ay) = e^{\pi x} \cos(ay) (\pi^2 - a^2) = 0$$

This equation is satisfied when:

$$\pi^2 - a^2 = 0 \quad \Rightarrow \quad a^2 = \pi^2 \quad \Rightarrow \quad a = \pi$$

Thus, $a = \pi$.

To find the harmonic conjugate v(x,y), we use the Cauchy-Riemann equations:

$$u_x = v_y$$
 and $u_y = -v_x$

Given $u(x,y) = e^{\pi x} \cos(\pi y)$:

$$u_x = \pi e^{\pi x} \cos(\pi y)$$
 and $u_y = -\pi e^{\pi x} \sin(\pi y)$

From $v_y = \pi e^{\pi x} \cos(\pi y)$, integrating with respect to y, we get:

$$v(x,y) = e^{\pi x} \sin(\pi y) + h(x)$$

From $u_y = -v_x$:

$$-\pi e^{\pi x}\sin(\pi y) = -h'(x)$$

Thus, h'(x) = 0, and h(x) is a constant. We can take h(x) = 0 for simplicity. Therefore, the harmonic conjugate is:

$$v(x,y) = e^{\pi x} \sin(\pi y)$$

The corresponding analytic function is:

$$f(z) = u(x, y) + iv(x, y) = e^{\pi x} \cos(\pi y) + ie^{\pi x} \sin(\pi y) = e^{\pi z}$$