Methods of Knowledge Representation Using Type-1 Fuzzy Sets

葉建華

jhyeh@mail.au.edu.tw

http://jhyeh.csie.au.edu.tw/

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems
- Application of fuzzy sets

Introduction

- Real world phenomena is ambiguous and imprecise
 - "high temperature"
 - "young man"
 - "average height"
 - "large city"
- Describe using classical theory of sets and bivalent logic
 - Unable to formally describe
- Fuzzy sets theory to help

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Universe of Discourse

- Case 1: a lot of money
 - If we limit to USD [0, 1000], we get a different sum
 - If we limit to USD [0, 1000000], we get another different sum
 - What we limit is the universe of discourse

Definition: Fuzzy Set

The fuzzy set A in a given (non-empty) space \mathbf{X} , which is denoted as $A \subseteq \mathbf{X}$, is the set of pairs

$$A = \{(x, \mu_A(x)) ; x \in \mathbf{X}\},\$$

in which

$$\mu_A: \mathbf{X} \to [0, 1]$$

is the membership function of a fuzzy set A.

Three cases:

- 1) $\mu_A(x) = 1$ means the full membership of element x to the fuzzy set A, i.e. $x \in A$,
- 2) $\mu_A(x) = 0$ means the lack of membership of element x to the fuzzy set A, i.e. $x \notin A$,
- 3) $0 < \mu_A(x) < 1$ means a partial membership of element x to the fuzzy set A.

Definition: Fuzzy Set (2)

- $\mathbf{X} = \{x_1, ..., x_n\}$ is a finite set
- Fuzzy set $A \subseteq X$

$$A = \frac{\mu_A(x_1)}{x_1} + \frac{\mu_A(x_2)}{x_2} + \dots + \frac{\mu_A(x_n)}{x_n} = \sum_{i=1}^n \frac{\mu_A(x_i)}{x_i}$$

- $\frac{\mu_A(x_i)}{x_i}$ i = 1, ..., n means $(x_i, \mu_A(x_i))$ i = 1, ..., n
- "+" means set union
- If X is infinite

$$A = \int_{\mathbf{X}} \frac{\mu_A(x)}{x}$$

Example: Natural Numbers

- X = N, a set of natural numbers
- Define the term: set of natural number "close to 7"

$$A = \frac{0.2}{4} + \frac{0.5}{5} + \frac{0.8}{6} + \frac{1}{7} + \frac{0.8}{8} + \frac{0.5}{9} + \frac{0.2}{10}$$

Example: Real Numbers

- X = R, a set of real numbers
- Define the term: set of real number "close to 7"
 - How?

Example: Real Numbers

- X = R, a set of real numbers
- Define the term: set of real number "close to 7"

- Membership function:
$$\mu_A(x) = \frac{1}{1 + (x - 7)^2}$$

– The fuzzy set

$$A = \int_{\mathbf{X}} \frac{\left[1 + (x - 7)^2\right]^{-1}}{x}$$

Many other ways...

$$\mu_{A}(x) = \begin{cases} 1 - \sqrt{\frac{|x-7|}{3}}, & \text{if } 4 \le x \le 10, \\ 0, & \text{otherwise.} \end{cases}$$
Aletheia Univer

Example: Real Numbers (2)

$$\mu_A(x) = \frac{1}{1 + (x - 7)^2}$$

$$\mu_A(x) = \begin{cases} 1 - \sqrt{\frac{|x-7|}{3}}, & \text{if } 4 \le x \le 10, \\ 0, & \text{otherwise.} \end{cases}$$

Example: Proper Temp.

- Appropriate temperature of water for swimming
 - Universe of discourse $X = [15^{\circ}, ..., 25^{\circ}]$
 - Vacationer A:

$$A = \frac{0.1}{16} + \frac{0.3}{17} + \frac{0.5}{18} + \frac{0.8}{19} + \frac{0.95}{20} + \frac{1}{21} + \frac{0.9}{22} + \frac{0.8}{23} + \frac{0.75}{24} + \frac{0.7}{25}.$$

– Vacationer B:

$$B = \frac{0.1}{15} + \frac{0.2}{16} + \frac{0.4}{17} + \frac{0.7}{18} + \frac{0.9}{19} + \frac{1}{20} + \frac{0.9}{21}$$
$$+ \frac{0.85}{22} + \frac{0.8}{23} + \frac{0.75}{24} + \frac{0.7}{25}.$$
Aletheia University

Remark

- The fuzzy sets theory describes the uncertainty in a different sense than the probability theory
- Probability: the probability of casting 4, 5 or 6 while tossing a dice
- Fuzzy: the imprecise notion "casting a large number of pips"

$$A = \frac{0.6}{4} + \frac{0.8}{5} + \frac{1}{6}$$

$$A = \frac{0.1}{3} + \frac{0.5}{4} + \frac{0.85}{5} + \frac{1}{6}$$

Singleton Function

The singleton is a specific function

$$\mu_A(x) = \begin{cases} 1, & \text{if } x = \overline{x}, \\ 0, & \text{if } x \neq \overline{x}. \end{cases}$$

 This membership function characterizes a singleelement fuzzy set

Gaussian Membership Function

Gaussian membership function

$$\mu_A(x) = \exp\left(-\left(\frac{x-\overline{x}}{\sigma}\right)^2\right)$$

- x is the middle
- σ defines the width of the Gaussian curve

Bell Membership Function

Bell membership function

$$\mu\left(x;a,b,c\right) = \frac{1}{1 + \left|\frac{x-c}{a}\right|^{2b}}$$

- Parameter a defines width
- Parameter b defines slopes
- Parameter c defines center

Membership Function of Class s

Membership function of class s

$$s\left(x;a,b,c\right) = \begin{cases} 0 & \text{for } x \leq a, \\ 2\left(\frac{x-a}{c-a}\right)^2 & \text{for } a < x \leq b, \\ 1-2\left(\frac{x-c}{c-a}\right)^2 & \text{for } b < x \leq c, \\ 1 & \text{for } x > c. \end{cases}$$

$$b = (a+c)/2$$

Membership Function of Class π

Membership function of class π

$$\pi(x; b, c) = \begin{cases} s(x; c - b, c - b/2, c) & \text{for } x \le c, \\ 1 - s(x; c, c + b/2, c + b) & \text{for } x > c. \end{cases}$$

zero values for $x \ge c + b$ and $x \le c - b$

 $x = c \pm b/2$ its value is 0.5

Membership Function of Class γ

Membership function of class γ

$$\gamma(x; a, b) = \begin{cases} 0 & \text{for } x \le a, \\ \frac{x - a}{b - a} & \text{for } a < x \le b, \\ 1 & \text{for } a > b. \end{cases}$$

Membership Function of Class t

Membership function of class t

$$t\left(x;a,b,c\right) = \left\{ \begin{array}{ll} 0 & \text{for} \quad x \leq a, \\ \frac{x-a}{b-a} & \text{for} \quad a < x \leq b, \\ \frac{c-x}{c-b} & \text{for} \quad b < x \leq c, \\ 0 & \text{for} \quad x > c. \end{array} \right.$$

Membership Function of Class L

Membership function of class L

$$L(x; a, b) = \begin{cases} 1 & \text{for } x \leq a, \\ \frac{b - x}{b - a} & \text{for } a < x \leq b, \\ 0 & \text{for } a > b. \end{cases}$$

Multidimensional Membership Functions

- Assume case: independence of variables
- Multidimensional membership functions: Cartesian product of fuzzy sets

Membership Function of Class Π

Membership function of class Π

$$\mu_{A}(\mathbf{x}) = \begin{cases} 1 - 2 \cdot \left(\frac{\|\mathbf{x} - \overline{\mathbf{x}}\|}{\alpha}\right)^{2} & \text{for } \|\mathbf{x} - \overline{\mathbf{x}}\| \leq \frac{1}{2}\alpha, \\ 2 \cdot \left(1 - \frac{\|\mathbf{x} - \overline{\mathbf{x}}\|}{\alpha}\right)^{2} & \text{for } \frac{1}{2}\alpha < \|\mathbf{x} - \overline{\mathbf{x}}\| \leq \alpha, \\ 0 & \text{for } \|\mathbf{x} - \overline{\mathbf{x}}\| > \alpha, \end{cases}$$

 $\overline{\mathbf{x}}$ is the center of the membership function $\alpha > 0$ is the parameter defining its spread

Radial Membership Function

Radial membership function

$$\mu_A(x) = \exp\left(-\left(\frac{x-\overline{x}}{\sigma}\right)^2\right)$$

$$\mu_A(\mathbf{x}) = e^{\frac{\|\mathbf{x} - \overline{\mathbf{x}}\|^2}{2 \cdot \sigma^2}}$$

 \overline{x} is the center.

parameter σ influences the shape

Ellipsoidal Membership Function

Ellipsoidal membership function

$$\mu_A(\mathbf{x}) = \exp\left(-\frac{(\mathbf{x} - \overline{\mathbf{x}})^T \mathbf{Q}^{-1} (\mathbf{x} - \overline{\mathbf{x}})}{\alpha}\right)$$

 $\overline{\mathbf{x}}$ is the center

 $\alpha > 0$ is the parameter defining the spread

 ${f Q}$ is the so-called covariance matrix

Example: Car Speed

- Three imprecise statements
 - "low speed of the car", "medium speed of the car", "high speed of the car"
 - Assume set A is of the L type, B: t type, C: class γ

interval $[0, x_{\text{max}}]$ as the universe of discourse **X** x_{max} is the maximum speed

Example: Amount of Money

• Class s function, X= [0; 100000], a= 1000, c= 10000

Definition: Support, Height, Normal

Support of a fuzzy set

supp
$$A = \{x \in \mathbf{X}; \ \mu_A(x) > 0\}$$

If
$$X = \{1, 2, 3, 4, 5\}$$
 and

$$A = \frac{0.2}{1} + \frac{0.4}{2} + \frac{0.7}{4},$$

then supp $A = \{1, 2, 4\}$.

Definition: Support, Height, Normal

Height of a fuzzy set

$$h\left(A\right) = \sup_{x \in \mathbf{X}} \mu_A\left(x\right)$$

If $\mathbf{X} = \{1, 2, 3, 4\}$ and

$$A = \frac{0.3}{2} + \frac{0.8}{3} + \frac{0.5}{4},$$

then h(A) = 0.8.

Definition: Support, Height, Normal

Normal of a fuzzy set

$$\mu_{A_{nor}}(x) = \frac{\mu_A(x)}{h(A)}$$

$$A = \frac{0.1}{2} + \frac{0.5}{4} + \frac{0.3}{6}$$

$$A_{nor} = \frac{0.2}{2} + \frac{1}{4} + \frac{0.6}{6}$$

Definition: Empty, Included, Equal

Empty fuzzy set

$$\mu_A(x) = 0$$
 for each $x \in \mathbf{X}$

Included fuzzy set

The fuzzy set A is *included* in the fuzzy set B, which shall be notated $A \subset B$, if and only if

$$\mu_A(x) \leq \mu_B(x)$$

Definition: Empty, Included, Equal

Equal fuzzy set

$$\mu_A\left(x\right) = \mu_B\left(x\right)$$

Equality degree of fuzzy sets

$$E(A = B) = 1 - \max_{x \in T} |\mu_A(x) - \mu_B(x)|,$$

where $T = \{x \in X : \mu_A(x) \neq \mu_B(x)\}$

Definition: α-cut

 α -cut of the fuzzy set $A \subseteq \mathbf{X}$, notated as A_{α} is called the following non-fuzzy set:

$$A_{\alpha} = \{x \in \mathbf{X} : \mu_A(x) \ge \alpha\}, \quad \forall_{\alpha \in [0,1]},$$

or the set defined by the characteristic function

$$\chi_{A_{\alpha}}(x) = \begin{cases}
1 & \text{for } \mu_{A}(x) \ge \alpha, \\
0 & \text{for } \mu_{A}(x) < \alpha.
\end{cases}$$

Example: α-cut

Let us consider the fuzzy set $A \subseteq \mathbf{X}$

$$A = \frac{0.1}{2} + \frac{0.3}{4} + \frac{0.7}{5} + \frac{0.8}{8} + \frac{1}{10},$$

while $\mathbf{X} = \{1, ..., 10\}$. According to Definition 4.8 particular α -cuts are defined as follows:

$$A_0 = \mathbf{X} = \{1, ..., 10\},\$$

 $A_{0.1} = \{2, 4, 5, 8, 10\},\$
 $A_{0.3} = \{4, 5, 8, 10\},\$
 $A_{0.7} = \{5, 8, 10\},\$
 $A_{0.8} = \{8, 10\},\$
 $A_1 = \{10\}.$

Definition: Convex

The fuzzy set $A \subseteq \mathbf{R}$ is *convex* if and only if for any $x_1, x_2 \in \mathbf{R}$ and $\lambda \in [0, 1]$ the following occurs

$$\mu_A [\lambda x_1 + (1 - \lambda) x_2] \ge \min \{\mu_A (x_1), \mu_A (x_2)\}.$$

Definition: Concave

The fuzzy set $A \subseteq \mathbf{R}$ is *concave* if and only if there are such points x_1 , $x_2 \in \mathbf{R}$ and $\lambda \in [0, 1]$, that the following inequality holds

$$\mu_A [\lambda x_1 + (1 - \lambda) x_2] < \min \{\mu_A (x_1), \mu_A (x_2)\}.$$

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Intersection of Fuzzy Sets

The intersection of fuzzy sets $A, B \subseteq \mathbf{X}$ is the fuzzy set $A \cap B$ with the membership function

$$\mu_{A\cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

$$\mu_{A_1 \cap A_2 \dots \cap A_n}(x) = \min \left[\mu_{A_1}(x), \mu_{A_2}(x), \dots, \mu_{A_n}(x) \right]$$

Algebraic Product of Fuzzy Sets

The algebraic product of fuzzy sets A and B is the fuzzy set $C = A \cdot B$ defined as follows:

$$C = \{(x, \mu_A(x) \cdot \mu_B(x)) \mid x \in \mathbf{X}\}.$$

Union of Fuzzy Sets

The union of fuzzy sets A and B is the fuzzy set $A \cup B$ defined by the membership function

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

$$\mu_{A_1 \cup A_2 \cup \cdots \cup A_n}(x) = \max \left[\mu_{A_1}(x), \mu_{A_2}(x), \dots, \mu_{A_n}(x) \right]$$

Example: Intersection and Union

$$X = \{1, 2, 3, 4, 5, 6, 7\}$$

$$A = \frac{0.9}{3} + \frac{1}{4} + \frac{0.6}{6},$$

$$B = \frac{0.7}{3} + \frac{1}{5} + \frac{0.4}{6}.$$

$$A \cap B = \frac{0.7}{3} + \frac{0.4}{6}.$$

$$A \cup B = \frac{0.9}{3} + \frac{1}{4} + \frac{1}{5} + \frac{0.6}{6}$$

$$A \cdot B = \frac{0.63}{3} + \frac{0.24}{6}.$$

Decomposition Theorem

Any fuzzy set $A \subseteq \mathbf{X}$ may be presented in the form

$$A = \bigcup_{\alpha \in [0,1]} \alpha A_{\alpha},$$

where αA_{α} means a fuzzy set, to the elements of which the following membership degrees have been assigned:

$$\mu_{\alpha A_{\alpha}}(x) = \begin{cases} \alpha & \text{for } x \in A_{\alpha}, \\ 0 & \text{for } x \notin A_{\alpha}. \end{cases}$$

Complement of Fuzzy Set

The complement of a fuzzy set $A \subseteq \mathbf{X}$ is the fuzzy set \widehat{A} with the membership function

$$\mu_{\widehat{A}}\left(x\right) = 1 - \mu_{A}\left(x\right)$$

for each $x \in \mathbf{X}$.

Example: Complement

$$\mathbf{X} = \{1, 2, 3, 4, 5, 6\}$$

$$A = \frac{0.3}{2} + \frac{1}{3} + \frac{0.7}{5} + \frac{0.9}{6}.$$

$$\widehat{A} = \frac{1}{1} + \frac{0.7}{2} + \frac{1}{4} + \frac{0.3}{5} + \frac{0.1}{6}.$$

$$A \cap \widehat{A} = \frac{0.3}{2} + \frac{0.3}{5} + \frac{0.1}{6} \neq \emptyset$$
$$A \cup \widehat{A} = \frac{1}{1} + \frac{0.7}{2} + \frac{1}{3} + \frac{1}{4} + \frac{0.7}{5} + \frac{0.9}{6} \neq \mathbf{X}.$$

Remark: Notice the Inequality

• Why?

$$\mu_{A \cap \widehat{A}}(x) = \min \left(\mu_{A}(x), \mu_{\widehat{A}}(x)\right) \leq \frac{1}{2}$$

$$\mu_{A \cup \widehat{A}}(x) = \max \left(\mu_{A}(x), \mu_{\widehat{A}}(x)\right) \geq \frac{1}{2}$$

Definition: Cartesian Product

The Cartesian product of fuzzy sets $A \subseteq \mathbf{X}$ and $B \subseteq \mathbf{Y}$ is notated as $A \times B$ and defined as

$$\mu_{A\times B}(x,y) = \min \left(\mu_A(x), \mu_B(y)\right)$$

or

$$\mu_{A\times B}(x,y) = \mu_A(x)\,\mu_B(y)$$

$$\mu_{A_1 \times A_2 \times ... \times A_n}(x_1, x_2, ..., x_n) = \min(\mu_{A_1}(x_1), \mu_{A_2}(x_2), ..., \mu_{A_n}(x_n))$$

or

$$\mu_{A_1 \times A_2 \times ... \times A_n} (x_1, x_2, ..., x_n) = \mu_{A_1} (x_1) \mu_{A_2} (x_2), ..., \mu_{A_n} (x_n)$$

Example: Cartesian Product

$$\mathbf{X} = \{2, 4\}, \, \mathbf{Y} = \{2, 4, 6\} \text{ and}$$

$$A = \frac{0.5}{2} + \frac{0.9}{4},$$

$$B = \frac{0.3}{2} + \frac{0.7}{4} + \frac{0.1}{6}.$$

$$A \times B = \frac{0.3}{(2, 2)} + \frac{0.5}{(2, 4)} + \frac{0.1}{(2, 6)} + \frac{0.3}{(4, 2)} + \frac{0.7}{(4, 4)} + \frac{0.1}{(4, 6)}.$$

Definition: Concentration and Dilation

The concentration of a fuzzy set $A \subseteq \mathbf{X}$ shall be notated as CON(A) and defined as

$$\mu_{CON(A)}(x) = (\mu_A(x))^2$$

The dilation of a fuzzy set $A \subseteq \mathbf{X}$ shall be notated as DIL(A) and defined as

$$\mu_{DIL(A)}(x) = (\mu_A(x))^{0.5}$$

Example: Concentration and Dilation

$$\mathbf{X} = \{1, 2, 3, 4\}$$

$$A = \frac{0.4}{2} + \frac{0.7}{3} + \frac{1}{4},$$

$$CON(A) = \frac{0.16}{2} + \frac{0.49}{3} + \frac{1}{4},$$

$$DIL(A) = \frac{0.63}{2} + \frac{0.84}{3} + \frac{1}{4}.$$

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Extension Principle

 Extend different mathematical operations from nonfuzzy to fuzzy sets

Consider a non-fuzzy mapping f of the space X in the space Y

$$f: \mathbf{X} \to \mathbf{Y}$$

given fuzzy set $A \in \mathbf{X}$

$$A = \frac{\mu_A(x_1)}{x_1} + \frac{\mu_A(x_2)}{x_2} + \dots + \frac{\mu_A(x_n)}{x_n}$$

then

$$B = f(A) = \frac{\mu_A(x_1)}{f(x_1)} + \frac{\mu_A(x_2)}{f(x_2)} + \dots + \frac{\mu_A(x_n)}{f(x_n)}$$
Aletheia University

$$A = \frac{0.1}{3} + \frac{0.4}{2} + \frac{0.7}{5}$$

and
$$f(x) = 2x + 1$$

$$B = f(A) = \frac{0.1}{7} + \frac{0.4}{5} + \frac{0.7}{11}$$

$$A = \frac{0.3}{-2} + \frac{0.5}{3} + \frac{0.7}{2}$$

and
$$f(x) = x^2$$

$$B = f(A) = \frac{0.5}{9} + \frac{0.7}{4}$$

Extension Principle I

$$B = f(A) = \{(y, \mu_B(y)) \mid y = f(x), x \in \mathbf{X}\},\$$

where

$$\mu_{B}(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu_{A}(x), & \text{if} \quad f^{-1}(y) \neq \emptyset, \\ 0, & \text{if} \quad f^{-1}(y) = \emptyset. \end{cases}$$

Extension Principle II

$$f: \mathbf{X}_1 \times \mathbf{X}_2 \times \ldots \times \mathbf{X}_n \to \mathbf{Y}$$

and given fuzzy sets $A_1 \subseteq \mathbf{X}_1, A_2 \subseteq \mathbf{X}_2, ..., A_n \subseteq \mathbf{X}_n$, then

$$B = f(A_1, ..., A_n) = \{(y, \mu_B(y)) \mid y = f(x_1, ..., x_n), (x_1, ..., x_n) \in \mathbf{X}\},\$$

while

$$\mu_{B}(y) = \begin{cases} \sup_{\substack{(x_{1}, \dots, x_{n} \\ \in f^{-1}(y))}} \min \{\mu_{A_{1}}(x_{1}), \dots, \mu_{A_{n}}(x_{n})\}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{if } f^{-1}(y) = \emptyset. \end{cases}$$

$$f(x_1, x_2) = \frac{x_1 x_2}{(x_1 + x_2)}$$

determine a fuzzy set $B = f(A_1, A_2)$

$$B = f(A_1, A_2) = \int_{\substack{x_1 \in \mathbf{X}_1 \\ x_2 \in \mathbf{X}_2}} \int_{\substack{(x_1, \dots, x_n \\ \in f^{-1}(y))}} \min(\mu_{A_i}(x_1), \mu_{A_2}(x_2)) \left| \frac{x_1 x_2}{x_1 + x_2} \right|$$

$$A_{1} = \frac{0.7}{1} + \frac{1}{2} + \frac{0.8}{3} \qquad A_{2} = \frac{0.8}{3} + \frac{1}{4} + \frac{0.9}{5} \qquad y = f\left(x_{1}, x_{2}\right) = x_{1}x_{2}$$

$$B = f\left(A_{1}, A_{2}\right) \qquad B \subseteq \mathbf{Y} = \{1, 2, ..., 36\}$$

$$B = f\left(A_{1}, A_{2}\right) = \sum_{i,j=1}^{3} \left[\min\left(\mu_{A_{1}}\left(x_{1}^{(i)}\right), \mu_{A_{2}}\left(x_{2}^{(j)}\right)\right)\right] / x_{1}^{(i)}x_{2}^{(j)}$$

$$= \frac{\min(0.7; 0.8)}{3} + \frac{\min(0.7; 1)}{4} + \frac{\min(0.7; 0.9)}{5}$$

$$+ \frac{\min(1; 0.8)}{6} + \frac{\min(1; 1)}{8} + \frac{\min(1; 0.9)}{10} + \frac{\min(0.8; 0.8)}{9}$$

$$+ \frac{\min(0.8; 1)}{12} + \frac{\min(0.8; 0.9)}{15}$$

$$= \frac{0.7}{3} + \frac{0.7}{4} + \frac{0.7}{5} + \frac{0.8}{6} + \frac{1}{8} + \frac{0.8}{9} + \frac{0.9}{10} + \frac{0.8}{12} + \frac{0.8}{15}$$
iver

X is the Cartesian product of sets $\mathbf{X}_1 = \mathbf{X}_2 = \{1, 2, 3, 4\}$

$$A_1 = \frac{0.7}{1} + \frac{1}{2} + \frac{0.8}{3}$$
 $A_2 = \frac{0.8}{2} + \frac{1}{3} + \frac{0.6}{4}$

$$A_2 = \frac{0.8}{2} + \frac{1}{3} + \frac{0.6}{4}$$

$$B = f(A_1, A_2)$$

$$B = f(A_1, A_2)$$
 $B \subseteq \mathbf{Y} = \{1, 2, ..., 16\}$

$$B = f(A_1, A_2) = ?$$

X is the Cartesian product of sets $\mathbf{X}_1 = \mathbf{X}_2 = \{1, 2, 3, 4\}$

$$A_1 = \frac{0.7}{1} + \frac{1}{2} + \frac{0.8}{3} \qquad A_2 = \frac{0.8}{2} + \frac{1}{3} + \frac{0.6}{4}$$

$$B = f(A_1, A_2) \qquad B \subseteq \mathbf{Y} = \{1, 2, ..., 16\}$$

$$\min\{0.7, 0.8\} \quad \min\{0.7, 1\}$$

$$B = f(A_1, A_2) = \frac{\min(0.7; 0.8)}{2} + \frac{\min(0.7; 1)}{3} + \frac{\max[\min(0.7; 0.6); \min(1; 0.8)]}{4} + \frac{\max[\min(1; 1); \min(0.8; 0.8)]}{6} + \frac{\min(1; 0.6)}{8} + \frac{\min(0.8; 1)}{9} + \frac{\min(0.8; 0.6)}{12}$$

$$= \frac{0.7}{2} + \frac{0.7}{3} + \frac{0.8}{4} + \frac{1}{6} + \frac{0.6}{8} + \frac{0.8}{9} + \frac{0.6}{12}.$$

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Fuzzy Number

A fuzzy set A defined on the set of real numbers, $A \subseteq \mathbf{R}$, the membership function of which

$$\mu_A:\mathbf{R}\to[0,1]$$

meets the conditions:

- 1) $\sup_{x \in \mathbf{R}} \mu_A(x) = 1$, i.e. the fuzzy set A is normal,
- 2) $\mu_A \left[\lambda x_1 + (1-\lambda) x_2\right] \ge \min \left\{\mu_A \left(x_1\right), \mu_A \left(x_2\right)\right\}$, i.e. the set A is convex,
- 3) $\mu_A(x)$ is a continuous function by intervals, is called a fuzzy number.

Fuzzy Numbers

Positive/Negative Fuzzy Numbers

The fuzzy number $A \subseteq \mathbf{R}$ is *positive*, if $\mu_A(x) = 0$ for all x < 0. The fuzzy number $A \subseteq \mathbf{R}$ is *negative*, if $\mu_A(x) = 0$ for all x > 0.

Basic Arithmetic Operations

Adding two fuzzy numbers

$$A_{1} \oplus A_{2} \stackrel{\text{def}}{=} B,$$

$$\mu_{B}(y) = \sup_{\substack{x_{1}, x_{2} \\ y = x_{1} + x_{2}}} \min \{\mu_{A_{1}}(x_{1}), \mu_{A_{2}}(x_{2})\}$$

Subtracting two fuzzy numbers

$$A_{1} \ominus A_{2} \stackrel{\text{def}}{=} B,$$

$$\mu_{B}(y) = \sup_{\substack{x_{1}, x_{2} \\ y = x_{1} - x_{2}}} \min \{\mu_{A_{1}}(x_{1}), \mu_{A_{2}}(x_{2})\}$$

Basic Arithmetic Operations

Multiplying two fuzzy numbers

$$A_{1} \odot A_{2} \stackrel{\text{def}}{=} B,$$

$$\mu_{B} (y) = \sup_{\substack{x_{1}, x_{2} \\ y = x_{1} \cdot x_{2}}} \min \left\{ \mu_{A_{1}} (x_{1}), \mu_{A_{2}} (x_{2}) \right\}$$

Dividing two fuzzy numbers

$$A_{1} \bigoplus A_{2} \stackrel{\text{def}}{=} B,$$

$$\mu_{B}(y) = \sup_{\substack{x_{1}, x_{2} \\ y = x_{1} : x_{2}}} \min \{\mu_{A_{1}}(x_{1}), \mu_{A_{2}}(x_{2})\}$$

Example: Arithmetic Operations

$$A_{1} = \frac{0.7}{2} + \frac{1}{3} + \frac{0.6}{4} \qquad A_{2} = \frac{0.8}{3} + \frac{1}{4} + \frac{0.5}{6}$$

$$A_{1} \oplus A_{2} = \frac{\min(0.7; 0.8)}{5} + \frac{\max\{\min(0.7; 1), \min(1; 0.8)\}}{6} + \frac{\max\{\min(1; 1), \min(0.6; 0.8)\}}{7} + \frac{\max\{\min(0.7; 0.5), \min(0.6; 1)\}}{8} + \frac{\min(1; 0.5)}{9} + \frac{\min(0.6; 0.5)}{10} = \frac{0.7}{5} + \frac{0.8}{6} + \frac{1}{7} + \frac{0.6}{8} + \frac{0.5}{9} + \frac{0.5}{10}.$$

How about subtraction, multiplication, division?

Example: Arithmetic Operations

$$A_{1} \odot A_{2} = \frac{\min(0.7; 0.8)}{6} + \frac{\min(0.7; 1)}{8} + \frac{\min(1; 0.8)}{9} + \frac{\max\{\min(0.7; 0.5), \min(1; 1), \min(0.6; 0.8)\}}{12} + \frac{\min(0.6; 1)}{16} + \frac{\min(1; 0.5)}{18} + \frac{\min(0.6; 0.5)}{24} = \frac{0.7}{6} + \frac{0.7}{8} + \frac{0.8}{9} + \frac{1}{12} + \frac{0.6}{16} + \frac{0.5}{18} + \frac{0.5}{24}.$$

Do the rest parts by yourself!

Unary Operations

- Unary operations on fuzzy numbers
 - Reversal of sign operation
 - Inverse operation
 - Scaling operation
 - Exponent operation
 - Absolute value operation

Unary Operations

Reversal of sign operation

$$f(x) = -x$$
 $A \subseteq \mathbf{R}$ $-A \subseteq \mathbf{R}$
 $\mu_{-A}(x) = \mu_{A}(-x)$

Inverse operation

$$f(x) = x^{-1}, x \neq 0$$

$$\mu_{A^{-1}}(x) = \mu_A(x^{-1})$$

Scaling operation

$$f(x) = \lambda x, \lambda \neq 0$$
$$\mu_{\lambda A}(x) = \mu_{A}(x\lambda^{-1})$$

Unary Operations

Exponent operation

$$f(x) = e^{x}, x > 0$$

$$\mu_{e^{A}}(x) = \begin{cases} \mu_{A} (\log x) & \text{for } x > 0, \\ 0 & \text{for } x < 0, \end{cases}$$

Absolute value operation

$$\mu_{|A|}(x) = \begin{cases} \max(\mu_A(x), \mu_A(-x)) & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$$

Example: Unary Operations

$$A = \frac{0.7}{1} + \frac{1}{2} + \frac{0.6}{5},$$

$$-A = \frac{0.6}{-5} + \frac{1}{-2} + \frac{0.7}{-1},$$

$$A^{-1} = \frac{0.6}{0.2} + \frac{1}{0.5} + \frac{0.7}{1}.$$

• Note that
$$A + (-A) \neq \frac{1}{0}$$
$$A \cdot A^{-1} \neq \frac{1}{1}.$$

Remark

- The fuzzy numbers are characterized by a lack of opposite and inverse fuzzy number with relation to adding and multiplication
 - impossible to use, for instance, the elimination method to solve equations with fuzzy numbers

$$A + (-A) \neq \frac{1}{0}$$
$$A \cdot A^{-1} \neq \frac{1}{1}.$$

Fuzzy Numbers of L-P Type

- Let L, P be the functions mapping $(-\infty, \infty) \to [0, 1]$
 - Meet conditions:
 - 1) L(-x) = L(x) and P(-x) = P(x),
 - 2) L(0) = 1 and P(0) = 1,
 - 3) L and P are nonincreasing functions in the interval $[0, +\infty)$
 - Examples of function L:

$$L(x) = P(x) = e^{-|x|^p}$$
 $p > 0$

$$L(x) = P(x) = \frac{1}{1 + |x|^p}$$
 $p > 0$

$$L(x) = P(x) = \max(0, 1 - |x|^p)$$
 $p > 0$

$$L(x) = P(x) = \begin{cases} 1 & \text{for } x \in [-1,1], \\ 0 & \text{for } x \notin [-1,1]. \end{cases}$$
Aletheia University

Fuzzy Numbers of L-P Type

The fuzzy number $A \subseteq \mathbf{R}$ is a fuzzy number of the L-P type if and only if

$$\mu_{A}(x) = \begin{cases} L\left(\frac{m-x}{\alpha}\right), & \text{if } x \leq m, \\ P\left(\frac{x-m}{\beta}\right), & \text{if } x \geq m, \end{cases}$$

$$A\left(\mu_A\left(m\right)=1\right)$$

 α -positive real number, called the left-sided spread β -positive real number, called the right-sided spread

$$A = (m_A, \alpha_A, \beta_A)_{LP}$$
Aletheia University

Example: L-P Type Fuzzy Number

$$A = (9, 3, 3)_{LP} \,.$$

$$L(x) = P(x) = \frac{1}{1+x^2}.$$

Flat Fuzzy Number

$$\mu_{A}(x) = \begin{cases} L\left(\frac{m_{1} - x}{\alpha}\right), & \text{if} \quad x \leq m_{1}, \\ \\ 1, & \text{if} \quad m_{1} \leq x \leq m_{2}, \end{cases}$$

$$P\left(\frac{x - m_{2}}{\beta}\right), & \text{if} \quad x \geq m_{2}.$$

$$A = (m_1, m_2, \alpha, \beta)_{LP}.$$

Example: Flat Fuzzy Number

• "the price of the motorbike in this store varies from approx. 3,000 USD to 6,000 USD"

$$A = (3, 6, \alpha, \beta)_{LP}$$

Triangular Fuzzy Number

 A triangular fuzzy number A is defined on the interval [a₁,a₂], the membership function takes the value equal to 1 in the point a_M

$$A=(a_1, a_M, a_2)$$

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Generalized Intersection/Union

Originally:

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x)),$$

 $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)).$

Generalized:

$$\mu_{A\cap B}(x) = T(\mu_A(x), \mu_B(x))$$

$$\mu_{A \cup B}(x) = S(\mu_A(x), \ \mu_B(x))$$

Function T is called t-norm

Function S is called t-conorm

t-norm and t-conorm belong to the so-called triangular norms

t-norm

- Function T:[0,1]×[0,1]→[0,1] is called a t-norm if:
 - (i) function T is nondecreasing with relation to both arguments

$$T(a,c) \le T(b,d)$$
 for $a \le b, c \le d$

(ii) function T satisfies the condition of commutativity

$$T\left(a,b\right) = T\left(b,a\right)$$

(iii) function T satisfies the condition of associativity

$$T\left(T\left(a,b\right),c\right) = T\left(a,T\left(b,c\right)\right)$$

(iv) function T satisfies the boundary condition

$$T\left(a,1\right) =a,$$

where
$$a, b, c, d \in [0, 1]$$
.

$$T\left(a,b\right) = a * b.$$

Weighted t-norm

$$T^* \{a_1, ..., a_n; w_1, ..., w_n\} = \prod_{i=1}^n \{1 - w_i (1 - a_i)\},\$$

$$0 \le w_i \le 1, i = 1, ..., n.$$

t-conorm

- t-conorm function S: $[0,1]\times[0,1]\rightarrow[0,1]$
 - Also meets the condition of commutativity and associativity, and boundary condition
- Weighted t-conorm

$$S^* \{a_1, ..., a_n; w_1, ..., w_n\} = \int_{i=1}^n \{w_i a_i\}$$

Dual triangular norms

$$\overset{n}{\underset{i=1}{S}} \{a_i\} = 1 - \overset{n}{\underset{i=1}{T}} \{1 - a_i\}$$

$$T_{i=1}^{n} \{a_i\} = 1 - S_{i=1}^{n} \{1 - a_i\}$$

Archimedean Property

$$T\{a, a\} < a < S\{a, a\}$$
 for each $a \in (0, 1)$

np/st Type Dual Triangular Norm

np (nilpotent) type triangular norm

$$T\{a_1, a_2, ..., a_n\} = 0,$$

$$S\{a_1, a_2, ..., a_n\} = 1.$$

st (strict) type triangular norm

$$T\left\{a_1,a_2,\ldots,a_n\right\}>0,$$

$$S\{a_1, a_2, \ldots, a_n\} < 1$$

for $0 < a_i < 1$, i = 1, ..., n, $n \ge 2$ and $a_1 = a_2 = ... = a_n$.

Aletheia University

Min/Max Type Dual Triangular Norm

$$T_M \{a_1, a_2\} = \min \{a_1, a_2\},$$

$$S_M \{a_1, a_2\} = \max \{a_1, a_2\},$$

$$T_M \{a_1, a_2, ..., a_n\} = \min_{i=1,...,n} \{a_i\},$$

$$S_M \{a_1, a_2, ..., a_n\} = \max_{i=1,...,n} \{a_i\}.$$

 Min/max triangular norms are dual but are not Archimedean

Algebraic Triangular Norms

$$T_{P} \{a_{1}, a_{2}\} = a_{1}a_{2},$$

$$S_{P} \{a_{1}, a_{2}\} = a_{1} + a_{2} - a_{1}a_{2},$$

$$T_{P} \{a_{1}, a_{2}, ..., a_{n}\} = \prod_{i=1}^{n} a_{i},$$

$$S_{P} \{a_{1}, a_{2}, ..., a_{n}\} = 1 - \prod_{i=1}^{n} (1 - a_{i})$$

$$T_{\{a_{1}, a_{2}\}}$$

$$0.5$$

$$0.8$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.5$$

$$0.6$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.5$$

$$0.6$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.5$$

$$0.6$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.5$$

$$0.5$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.8$$

$$0.7$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

Algebraic Triangular Norms

Algebraic triangular norms are dual triangular norms of the strict type

Remarks

- Try to find the definitions:
 - Łukasiewicz triangular norms
 - Boundary triangular norms
 - Multiplicative generator of Archimedean t-norm/t-conorm
 - Additive generator of Archimedean t-norm/t-conorm

Negations

- Negations are extensions of a logical contradiction
- (i) A nonincreasing function $N:[0,1] \to [0,1]$ is called a *negation*, if N(0) = 1 and N(1) = 0.
- (ii) Negation $N:[0,1] \to [0,1]$ is called a st (strict) type negation, if it is continuous and decreasing.
- (iii) A negation of st (strict) type is called strong type negation, if it is involution, i.e. N(N(a)) = a.

Negations

Zadeh negation: strong type

$$N\left(a\right) = 1 - a$$

Yager negation: strict type

$$N(a) = (1 - a^p)^{\frac{1}{p}}, \quad p > 0$$

Sugeno negation: strong type

$$N(a) = \frac{1-a}{1+pa}, \quad p > -1$$

De Morgan Triple

- T: t-norm, S: t-conorm, N: strong negation
 - Then

$$\sum_{i=1}^{n} \{a_i\} = N^{-1} \left(\prod_{i=1}^{n} \{N(a_i)\} \right)$$

$$\overset{n}{\underset{i=1}{T}} \{a_i\} = N^{-1} \left(\overset{n}{\underset{i=1}{S}} \{N (a_i)\} \right)$$

t-norm T and t-conorm S are called N-dual

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Fuzzy Relation

The fuzzy relation R between two non-empty (non-fuzzy) sets X and Y is called the fuzzy set determined on the Cartesian product X x Y

$$R \subseteq \mathbf{X} \times \mathbf{Y} = \{(x, y) : x \in \mathbf{X}, y \in \mathbf{Y}\}.$$

$$R = \{((x, y), \mu_R(x, y))\}, \quad \forall_{x \in \mathbf{X}} \forall_{y \in \mathbf{Y}},$$

$$\mu_R : \mathbf{X} \times \mathbf{Y} \to [0, 1]$$

$$R = \sum_{\mathbf{X} \times \mathbf{Y}} \frac{\mu_R(x, y)}{(x, y)}$$

$$R = \int_{\mathbf{X}\times\mathbf{Y}} \frac{\mu_R(x,y)}{(x,y)} \prod_{\mathbf{i}} \frac{\mathbf{University}}{\mathbf{University}}$$

"y is more or less equal to x"

$$- X={3, 4, 5}, Y={4, 5, 6}$$

$$R = \frac{1}{(4,4)} + \frac{1}{(5,5)} + \frac{0.8}{(3,4)} + \frac{0.8}{(4,5)} + \frac{0.8}{(5,4)} + \frac{0.8}{(5,6)} + \frac{0.6}{(3,5)} + \frac{0.6}{(4,6)} + \frac{0.4}{(3,6)}.$$

$$\mu_R(x,y) = \begin{cases} 1 & \text{if} \quad x = y, \\ 0.8 & \text{if} \quad |x - y| = 1, \\ 0.6 & \text{if} \quad |x - y| = 2, \\ 0.4 & \text{if} \quad |x - y| = 3. \end{cases}$$

Relation R notated using matrix

where
$$x_1 = 3$$
, $x_2 = 4$, $x_3 = 5$, and $y_1 = 4$, $y_2 = 5$, $y_3 = 6$

"a person of agex is much older than a person of age y"

How?

"a person of age x is much older than a person of age y"

Let X=Y=[0,120] be the human lifespan

$$\mu_R(x,y) = \begin{cases} 0 & \text{if} \quad x - y \le 0, \\ \frac{x - y}{30} & \text{if} \quad 0 < x - y < 30, \\ 1 & \text{if} \quad x - y \ge 30 \end{cases}$$

Composition of sup-Ttype of Fuzzy Relations

- R⊆XxY, S⊆YxZ
- Composition R∘S⊆XxZ, membership function

$$\mu_{R \circ S}(x, z) = \sup_{y \in \mathbf{Y}} \left\{ \mu_{R}(x, y) * \mu_{S}(y, z) \right\}$$

Basic Properties of Fuzzy Relations

$$1 \quad R \circ I = I \circ R = R$$

$$2 \quad R \circ O = O \circ R = O$$

$$3 \quad (R \circ S) \circ T = R \circ (S \circ T)$$

$$4 \quad R^m \circ R^n = R^{m+n}$$

$$5 \quad (R^m)^n = R^{mn}$$

$$6 \quad R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

$$7 \quad R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

$$8 \quad S \subset T \to R \circ S \subset R \circ T$$

Remarks

- Try to find the definitions:
 - Cylindrical extension
 - Projection of fuzzy set

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Inference in Binary Logic

Premise Implication	$A \to B$
Inference	В

Generalized Modus Ponens Inference Rule

Premise	x is A'
Implication	IF x is A THEN y is B
Inference	y is B'

 A, A' ⊆X and B,B' ⊆Yare fuzzy sets, and x, y are the linguistic variables ("low speed", "young person",...)

Premise	The car speed is high
Implication	If the car speed is very high, then the noise level is high
Inference	The noise level in the car is medium-high

- Linguistic variable T₁ and T₂
 - T₁={"low", "medium", "high", "very high"}
 - T₂={"low", "medium", "medium-high", "high"}
- Fuzzy sets
 - A="very high speed of the car"
 - A'="high speed of the car"
 - B="high noise level"
 - B'="medium-high noise level"

- Fuzzy set A="very high speed of the car" is not equal to the fuzzy set A' ="high speed of the car"
- The inference of the fuzzy rule relates to a certain fuzzy set B', which is defined by the composition of the fuzzy set A' and a fuzzy implication A→B

$$B' = A' \circ (A \to B)$$

 The fuzzy implication A→B is equivalent to a certain fuzzy relation R∈XxY with the membership function µ_R(x, y)

$$\mu_{B'}(y) = \sup_{x \in \mathbf{X}} \left\{ \mu_{A'}(x) * \mu_{A \to B}(x, y) \right\}$$
Alethera University

$$\mu_{B'}(y) = \sup_{x \in \mathbf{X}} \left\{ \min \left[\mu_{A'}(x), \mu_{A \to B}(x, y) \right] \right\}$$

Assume

- 1) A' = A,
- 2) $A' = \text{"very } A\text{"}, \text{ while } \mu_{A'}(x) = \mu_A^2(x),$
- 3) A' = "more or less A", while $\mu_{A'}(x) = \mu_A^{1/2}(x)$,
- 4) A' = ``not A'', while $\mu_{A'}(x) = 1 \mu_A(x)$.

Intuitive Relations

Relation	Premise x is A'	Inference y is B'
1	$x ext{ is } A$	y is B
2a	x is "very A "	y is "very B "
2b	x is "very A "	y is B
3a	x is "more or less A "	y is "more or less B "
3b	x is "more or less A "	y is B
4a	x is "not A "	y is undefined
4b	x is "not A "	y is "not B "

Other Issues

- Generalized fuzzy modus tollens inference rule
- Inference rules for the Mamdani model
- Inference rules for the logical model
 - Fuzzy implication

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

Fuzzy Inference System

Elements

- Rules base
- Fuzzification block
- Inference block
- Defuzzification block

Rules Base

Rules base (linguistic model): a set of fuzzy rules

$$R^{(k)}: \mathbf{IF} \ x_1 \text{ is } A_1^k \mathbf{AND} \ x_2 \text{ is } A_2^k \mathbf{AND}...\mathbf{AND}$$
 $x_n \text{ is } A_n^k \mathbf{THEN} \ y_1 \text{ is } B_1^k \mathbf{AND} \ y_2 \text{ is } B_2^k \mathbf{AND}...\mathbf{AND} \ y_m \text{ is } B_m^k$
 $A_i^k \subseteq \mathbf{X}_i \subset \mathbf{R}, \quad i = 1, ..., n,$
 $B_j^k \subseteq \mathbf{Y}_j \subset \mathbf{R}, \quad j = 1, ..., m,$
 $[x_1, x_2, ..., x_n]^T = \mathbf{x} \in \mathbf{X}_1 \times \mathbf{X}_2 \times ... \times \mathbf{X}_n,$
 $[y_1, y_2, ..., y_m]^T = \mathbf{y} \in \mathbf{Y}_1 \times \mathbf{Y}_2 \times ... \times \mathbf{Y}_m.$

Rules Base

Assume outputs are independent

$$R^{(k)}$$
: IF x_1 is A_1^k AND x_2 is A_2^k AND ...AND x_n is A_n^k THEN y is B_n^k ,

• $R^{(k)} \subseteq X \times Y$ is a fuzzy set with membership function

$$\mu_{R^{(k)}}\left(\mathbf{x},y\right) = \mu_{A^k \to B^k}\left(\mathbf{x},y\right)$$

Fuzzification Block

 Fuzzification block is a control system with fuzzy logic operates on fuzzy sets

$$\overline{\mathbf{x}} = [\overline{x}_1, \overline{x}_2, ..., \overline{x}_n]^T$$

$$A' \subseteq \mathbf{X} = \overline{\mathbf{X}}_1 \times \overline{\mathbf{X}}_2 \times ... \times \overline{\mathbf{X}}_n$$

The fuzzy set A' is an input of the inference block

$$\mu_{A'}(\mathbf{x}) = \delta(\mathbf{x} - \overline{\mathbf{x}}) = \begin{cases} 1, & \text{if } \mathbf{x} = \overline{\mathbf{x}}, \\ 0, & \text{if } \mathbf{x} \neq \overline{\mathbf{x}}. \end{cases}$$

• If the input considers interference:

$$\mu_{A'}(\mathbf{x}) = \exp\left[-\frac{(\mathbf{x} - \overline{\mathbf{x}})^T (\mathbf{x} - \overline{\mathbf{x}})}{\delta}\right], \ \delta > 0.$$
 in University

Inference Block

- Find an appropriate fuzzy set at the output of this block
- Two cases
 - Obtain N fuzzy sets B_k⊆Y according to the generalized fuzzy modus ponens inference rule

$$\overline{B}^{(k)} = A' \circ (A^k \to B^k), \quad k = 1, \dots, N$$

$$\mu_{\overline{B}^k}(y) = \sup_{\mathbf{x} \in \mathbf{X}} \left[\mu_{A'}(\mathbf{x}) * \mu_{A^k \to B^k}(\mathbf{x}, y) \right]$$

Defuzzifigification Block

The output value of the inference block is either N fuzzy sets \overline{B}^k with membership functions $\mu_{\overline{B}^k}(y)$, k = 1, 2, ..., N, or a single fuzzy set B' with membership function $\mu_{B'}(y)$.

Output method

- Center average defuzzification method
- Center of sums defuzzification method
- Center of gravity method(or center of area method)
- Maximum membership function method

Center Average Defuzzification Method

$$\overline{y} = \frac{\sum_{k=1}^{N} \mu_{\overline{B}^k} (\overline{y}^k) \overline{y}^k}{\sum_{k=1}^{N} \mu_{\overline{B}^k} (\overline{y}^k)},$$

where \overline{y}^k is the point in which the function $\mu_{B^k}(y)$ takes the maximum value, i.e.

$$\mu_{B^k}\left(\overline{y}^k\right) = \max_{y} \mu_{B^k}\left(y\right).$$

Center of Sums Defuzzification Method

$$\overline{y} = \frac{\int_{\mathbf{Y}} y \sum_{k=1}^{N} \mu_{\overline{B}^{k}} (y) \, \mathrm{d}y}{\int_{\mathbf{Y}} \sum_{k=1}^{N} \mu_{\overline{B}^{k}} (y) \, \mathrm{d}y}.$$

Center of Gravity Method

$$\overline{y} = \frac{\int_{\mathbf{Y}} y \mu_{B'}(y) \, \mathrm{d}y}{\int_{\mathbf{Y}} \mu_{B'}(y) \, \mathrm{d}y} = \frac{\int_{\mathbf{Y}} y \, S_{k=1}^{N} \, \mu_{\overline{B}^{k}}(y)}{\int_{\mathbf{Y}} S_{k=1}^{N} \, \mu_{\overline{B}^{k}}(y)},$$

In a discrete case,

$$\overline{y} = \frac{\sum_{k=1}^{N} \mu_{B'} \left(\overline{y}^{k}\right) \overline{y}^{k}}{\sum_{k=1}^{N} \mu_{B'} \left(\overline{y}^{k}\right)}.$$

Maximum Membership Function Method

$$\mu_{B'}\left(\overline{y}\right) = \sup_{y \in \mathbf{Y}} \mu_{B'}\left(y\right)$$

Outline

- Introduction
- Basic terms
- Operations on fuzzy sets
- The extension principle
- Fuzzy numbers
- Triangular norms and negations
- Fuzzy relations and their properties
- Approximate reasoning
- Fuzzy inference systems

