# Attention Is All You Need

Vaswani et al (2017)

NLP reading club 2021/06/24

# Key Points

The paper introduces the Transformer architecture, which:

- Rely completely on attention to learn the sequence of input instead of using recurrent/convolutional units
- Uses multiheaded attention over the same input to get different projections to improve model performance
- Positional encodings to encode word ordering
- Faster training times as compared to RNNs/CNNs trained to do the same (translation/seq2seq) task

#### Model architecture



from http://jalammar.github.io/illustrated-transformer/

Similar to previous seq2seq models, the transformer has a encoder-decoder setup. However, multiple words can now pass through the model at once as opposed to RNN architectures where words have to be fed sequentially



## Why self-attention

- Consider constant number of positions regardless of length of input ( as opposed to RNNs, which have to consider O(n) positions
- Easily parallelizable
- Path length from distance part of the sentence is the same as those that are closer (unless you
  restrict the attention to a certain distance)

#### Attention mechanism





#### Multihead attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to input sentence\* each word\* We multiply X or using the resulting produce the output of the layer R with weight matrices Q/K/V matrices  $W_0^Q$ Thinking Machines Mo \* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

## **Experiment results**

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

|                                 | BL    | EU    | Training Cost (FLOPs) |                     |  |  |
|---------------------------------|-------|-------|-----------------------|---------------------|--|--|
| Model                           | EN-DE | EN-FR | EN-DE                 | EN-FR               |  |  |
| ByteNet [18]                    | 23.75 |       |                       |                     |  |  |
| Deep-Att + PosUnk [39]          |       | 39.2  |                       | $1.0 \cdot 10^{20}$ |  |  |
| GNMT + RL [38]                  | 24.6  | 39.92 | $2.3 \cdot 10^{19}$   | $1.4 \cdot 10^{20}$ |  |  |
| ConvS2S [9]                     | 25.16 | 40.46 | $9.6 \cdot 10^{18}$   | $1.5 \cdot 10^{20}$ |  |  |
| MoE [32]                        | 26.03 | 40.56 | $2.0 \cdot 10^{19}$   | $1.2 \cdot 10^{20}$ |  |  |
| Deep-Att + PosUnk Ensemble [39] |       | 40.4  | 11 011                | $8.0 \cdot 10^{20}$ |  |  |
| GNMT + RL Ensemble [38]         | 26.30 | 41.16 | $1.8 \cdot 10^{20}$   | $1.1 \cdot 10^{21}$ |  |  |
| ConvS2S Ensemble [9]            | 26.36 | 41.29 | $7.7 \cdot 10^{19}$   | $1.2 \cdot 10^{21}$ |  |  |
| Transformer (base model)        | 27.3  | 38.1  | $3.3 \cdot 10^{18}$   |                     |  |  |
| Transformer (big)               | 28.4  | 41.8  | $2.3 \cdot 10^{19}$   |                     |  |  |

# Experiment results

#### Parameter variations

|      | N                                         | $d_{\mathrm{model}}$ | $d_{ m ff}$ | h  | $d_k$ | $d_v$ | $P_{drop}$ | $\epsilon_{ls}$ | train<br>steps | PPL<br>(dev) | BLEU<br>(dev) | params<br>×10 <sup>6</sup> |
|------|-------------------------------------------|----------------------|-------------|----|-------|-------|------------|-----------------|----------------|--------------|---------------|----------------------------|
| base | 6                                         | 512                  | 2048        | 8  | 64    | 64    | 0.1        | 0.1             | 100K           | 4.92         | 25.8          | 65                         |
| (A)  |                                           |                      |             | 1  | 512   | 512   |            |                 |                | 5.29         | 24.9          |                            |
|      |                                           |                      |             | 4  | 128   | 128   |            |                 |                | 5.00         | 25.5          |                            |
|      |                                           |                      |             | 16 | 32    | 32    |            |                 |                | 4.91         | 25.8          |                            |
|      |                                           |                      |             | 32 | 16    | 16    |            |                 |                | 5.01         | 25.4          |                            |
| (B)  |                                           |                      |             |    | 16    |       |            |                 |                | 5.16         | 25.1          | 58                         |
|      |                                           |                      |             |    | 32    |       |            |                 |                | 5.01         | 25.4          | 60                         |
| (C)  | 2                                         |                      |             |    |       |       |            |                 |                | 6.11         | 23.7          | 36                         |
|      | 4                                         |                      |             |    |       |       |            |                 |                | 5.19         | 25.3          | 50                         |
|      | 8                                         |                      |             |    |       |       |            |                 |                | 4.88         | 25.5          | 80                         |
|      |                                           | 256                  |             |    | 32    | 32    |            |                 |                | 5.75         | 24.5          | 28                         |
|      |                                           | 1024                 |             |    | 128   | 128   |            |                 |                | 4.66         | 26.0          | 168                        |
|      |                                           |                      | 1024        |    |       |       |            |                 |                | 5.12         | 25.4          | 53                         |
|      |                                           |                      | 4096        |    |       |       |            |                 |                | 4.75         | 26.2          | 90                         |
| (D)  |                                           |                      |             |    |       |       | 0.0        |                 |                | 5.77         | 24.6          |                            |
|      |                                           |                      |             |    |       |       | 0.2        |                 |                | 4.95         | 25.5          |                            |
|      |                                           |                      |             |    |       |       |            | 0.0             |                | 4.67         | 25.3          |                            |
|      |                                           |                      |             |    |       |       |            | 0.2             |                | 5.47         | 25.7          |                            |
| (E)  | positional embedding instead of sinusoids |                      |             |    |       |       |            |                 | 4.92           | 25.7         | 111           |                            |
| big  | 6                                         | 1024                 | 4096        | 16 |       |       | 0.3        |                 | 300K           | 4.33         | 26.4          | 213                        |

### Further resources

- The illustrated transformer
- The Annotated Transformer
- https://github.com/xmu-xiaoma666/External-Attention-pytorch