Скалярное произведение

- 1. Угол между векторами $\vec{a} = (x_1, y_1)$ и $\vec{b} = (x_2, y_2)$ равен α . Докажите, что $|a| \cdot |b| \cos \alpha = x_1 x_2 + y_1 y_2$.
- **2.** Найдите наибольшее и наименьшее значения функции $f(x,y) = 6 \sin x \cdot \cos y + 2 \sin x \cdot \sin y + 3 \cos x$.
- **3.** Даны действительные числа a, b, c и d такие, что $a^2 + b^2 = 1, c^2 + d^2 = 1$ и ac + bd = 0. Найдите ab + cd.
- **4.** Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трёх векторов.
- **5.** Про тетраэдр ABCD известно, что $DA \perp BC$ и $DB \perp CA$. Докажите, что $DC \perp AB$.
- 6. Дан набор из 100 векторов на плоскости. Двое по очереди берут себе по одному вектору, пока они не закончатся. Проигрывает тот, у кого длина суммы векторов, которые ему достались, окажется меньше. У кого из игроков есть непроигрышная стратегия?
- 7. Докажите, что в выпуклом многоугольнике сумма расстояний от любой внутренней точки до сторон постоянна тогда и только тогда, когда сумма векторов единичных внешних нормалей равна нулю.
- 8. Для произвольного $\triangle ABC$ докажите неравенства:
- a) $\cos \angle A + \cos \angle B + \cos \angle C \le 3/2$;
- **b**) $\cos 2\angle A + \cos 2\angle B + \cos 2\angle C \ge -3/2;$ и определите, когда достигаются равенства.
- 9. На окружности $\omega(O;R)$ отметили точки A_1,A_2,\ldots,A_n такие, что $\overrightarrow{OA_1}+\overrightarrow{OA_2}+\ldots+\overrightarrow{OA_n}=\overrightarrow{0}$. Докажите, что для любой точки X выполнено неравенство

$$XA_1 + XA_2 + \ldots + XA_n \ge nR$$
.