

Test report No.
Page
Issued date
FCC ID

: 1 of 45 : February 28, 2017 : UJHAR0M

: 11577935H-A

RADIO TEST REPORT

Test Report No.: 11577935H-A

Applicant : MITSUBISHI ELECTRIC CORPORATION SANDA

WORKS

Type of Equipment : Car Audio

Model No. : AR-0M

FCC ID : UJHAR0M

Test regulation : FCC Part 15 Subpart C: 2016

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the above regulation.

4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

January 18 and 19, 2017

Representative test engineer:

Hiroyuki Furutaka

Engineer

Consumer Technology Division

Approved by:

Tsubasa Takayama

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 2 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

REVISION HISTORY

Original Test Report No.: 11577935H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11577935H-A	February 28, 2017	-	-

Test report No. Page Issued date : 11577935H-A : 3 of 45 : February 28, 2017 : UJHAR0M

FCC ID : UJHAROM

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test data	
20dB Bandwidth and Carrier Frequency Separation	
Number of Hopping Frequency	
Dwell time	17
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	23
Conducted Spurious Emission	
Conducted Emission Band Edge compliance	40
99%Occupied Bandwidth	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	45
Radiated Spurious Emission	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 4 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

SECTION 1: Customer information

Company Name : MITSUBISHI ELECTRIC CORPORATION SANDA WORKS

Address : 2-3-33, Miwa, Sanda-city, Hyogo, 669-1513, Japan

Telephone Number : +81-79-559-3623 Facsimile Number : +81-79-559-3875 Contact Person : Kenji Otani

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Car Audio Model No. : AR-0M

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 12 V
Receipt Date of Sample : January 18, 2017
Country of Mass-production : Thailand

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: AR-0M (referred to as the EUT in this report) is a Car Audio.

Radio Specification

[Bluetooth (Ver. 2.1 with EDR function)]

Radio Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Modulation : FHSS
Power Supply (radio part input) : DC 3.3 V
Antenna type : Pattern Antenna
Antenna Goin : 7.4 dBi

Antenna Gain : -7.4 dBi Clock frequency (Crystal) : 26 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 5 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on November 14, 2016 and effective December 14, 2016

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Item Test Procedure Specification		Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	N/A	N/A *1)	-
Carrier Frequency	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)		Complied	Conducted
Separation	IC: -	IC: RSS-247 5.1 (b)			
20dB	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)		Complied	Conducted
Bandwidth	IC: -	IC: RSS-247 5.1 (a)			
Number of	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)(iii)	See data.	Complied	Conducted
Hopping Frequency	IC: -	IC: RSS-247 5.1 (d)		Complica	Conducted
Dwell time	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(1)(iii)		Complied	Conducted
	IC: -	IC: RSS-247 5.1 (d)	_		
Maximum Peak	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(a)(b)(1)		Complied	Conducted
Output Power	IC: RSS-Gen 6.12	IC: RSS-247 5.4 (b)		1	
Spurious	FCC: FCC Public Notice DA 00-705	FCC: Section15.247(d)			Conducted/
Emission & Band Edge	IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9	3.6 dB 87.551 MHz, QP, Vert.	Complied	Radiated (above 30 MHz)
Compliance		RSS-Gen 8.10			*2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

The EUT provides stable voltage (DC 3.3 V) constantly to the wireless transmitter regardless of input voltage. Instead of a new battery, DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d).

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 11577935H-A Page : 6 of 45

Issued date : February 28, 2017 FCC ID : UJHAR0M

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Ise	EMC	Lab.

	Antenna terminal test Uncertainty (+/-)							
Power meter Conducted emission and Power density Conducted emission								
Below	Above	Below	1 GHz	3 GHz	18 GHz	26.5 GHz	Channel power	
1 GHz	1 GHz	1 GHz	-3 GHz	-18 GHz	-26.5 GHz	-40 GHz		
0.9 dB	7 3332					2.6 dB		

Test distance	Radiated emission (+/-) 9 kHz - 30 MHz
3m	3.8 dB
10m	3.7 dB

	Radiated emission (Below 1GHz)					
Dolority	(3 m*) (+	-/-)	(10 m*) (+/-)			
Polarity	30 MHz - 200 MHz	200 MHz	30 MHz	200 MHz		
	30 MINZ - 200 MINZ	- 1000 MHz	- 200 MHz	- 1000 MHz		
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB		
Vertical	4.7 dB	5.9 dB	5.0 dB	5.1 dB		

Radiated emission (Above 1GHz)							
(3 m*) (+/-) (1 m*) (+/-) (10 m*) (+/-)							
1 GHz	6 GHz	10 GHz 26.5 GHz		1 GHz			
- 6GHz	- 18GHz	- 26.5 GHz	- 40GHz	- 18 GHz			
5.2 dB	5.4 dB	5.5 dB	5.5 dB	5.4 dB			

^{*}Measurement distance

Radiated emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A Page : 7 of 45

Issued date : February 28, 2017 FCC ID : UJHAR0M

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 8 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Bluetooth (BT): Transmitting (Tx), Payload: PRBS9

Inquiry

Details of Operating Mode(s)

Test Item	Mode	Tested frequency
Spurious Emission	Tx (Hopping Off) DH5, 3DH5	2402 MHz
(Conducted/Radiated)		2441 MHz
		2480 MHz
Carrier Frequency Separation	Tx (Hopping On) DH5, 3DH5	2402 MHz
	Inquiry	2441 MHz
		2480 MHz
20dB Bandwidth	Tx (Hopping Off) DH5, 3DH5	2402 MHz
	Inquiry	2441 MHz
		2480 MHz
Number of Hopping Frequency	Tx (Hopping On) DH5, 3DH5	-
	Inquiry	
Dwell time	Tx (Hopping On),	-
	-DH1, DH3, DH5	
	-3DH1, 3DH3, 3DH5	
	Inquiry	
Maximum Peak Output Power	Tx (Hopping Off) DH5, 2DH5, 3DH5	2402 MHz
	Inquiry	2441 MHz
		2480 MHz
Band Edge Compliance	Tx DH5, 3DH5	2402 MHz
(Conducted)	-Hopping On	2480 MHz
	-Hopping Off	
99% Occupied Bandwidth	Tx DH5, 3DH5	2402 MHz
-	-Hopping On	2441 MHz
	-Hopping Off	2480 MHz
	Inquiry	

^{*}As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

Power settings: Same as production model

Software: HCI Tester2.1.00 *This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2}DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

^{*}EUT has the power settings by the software as follows;

Test report No. : 11577935H-A Page : 9 of 45

Issued date : February 28, 2017 FCC ID : UJHAR0M

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Car Audio	AR-0M	96ZM6049 for AT* 96ZM6056 for RE*	MITSUBISHI ELECTRIC CORPORATION SANDA WORKS	EUT
В	USB Memory	RUF-C/U2	A7110101237	BUFFALO	-

List of cables used

No.	Name	Length (m)	Shi	eld	Remarks
			Cable	Connector	
1	FM Antenna Cable	5.0	Shielded	Shielded	-
2	Maintenance Cable	0.3	Unshielded	Unshielded	-
3	Control Cable	1.0	Unshielded	Unshielded	-
4	USB Cable	1.4	Shielded	Shielded	-
5	Camera Cable	2.0	Shielded	Shielded	-
6	Power Cable	0.8	Unshielded	Unshielded	-
7	Speaker Cable	1.1	Unshielded	Unshielded	-
8	Signal Cable	0.8	Unshielded	Unshielded	-
9	Signal Cable	0.8	Unshielded	Unshielded	-
10	DC Cable	2.0	Unshielded	Unshielded	-

^{*}AT: Antenna Terminal Conducted Tests, RE: Radiated Spurious Emission test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 10 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20~dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9~(IC) and outside the restricted band of FCC 15.205 / Table 6 of RSS-Gen 8.10~(IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz
		VBW: 3 MHz	VBW: 10 Hz *1)	VBW: 300 kHz
Test Distance	3 m	3.75 m*2) (1 GHz – 1	0 GHz),	3.75 m*2) (1 GHz – 10 GHz),
		1 m*3) (10 GHz – 26	.5 GHz)	1 m*3) (10 GHz – 26.5 GHz)

^{*1)} Although DA 00-705 accepts VBW = 10 Hz for AV measurements, it was confirmed that superfluous smoothing was not performed.

*2) Distance Factor: $20 \times \log (3.75 \text{ m/}3.0 \text{ m}) = 1.94 \text{ dB}$ *3) Distance Factor: $20 \times \log (1.0 \text{ m/}3.0 \text{ m}) = -9.5 \text{ dB}$

The test was made on EUT at the normal use position.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11577935H-A Test report No. Page : 11 of 45 : February 28, 2017 **Issued date** FCC ID

: UJHAR0M

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
20dB Bandwidth	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak Average *2)	-	Power Meter (Sensor: 50MHz BW)
Carrier Frequency Separation	5 MHz or 3 MHz	100 kHz or 30 kHz	300 kHz or 100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Number of Hopping Frequency	30 MHz	300 kHz	1 MHz	Auto	Peak	Max Hold	Spectrum Analyzer
Dwell Time	Zero Span	100 kHz, 1 MHz	300 kHz, 3 MHz	As necessary capture the entire dwell time per hopping channel	Peak	Clear Write	Spectrum Analyzer
Conducted Spurious Emission *3)	9 kHz to 150 kHz 150 kHz to 30 MHz 30 MHz to 25 GHz	200 Hz 9.1 kHz 100 kHz	620 Hz 27 kHz 300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Conducted Spurious Emission Band Edge compliance	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz -150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

Test report No. : 11577935H-A
Page : 12 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

APPENDIX 1: Test data

20dB Bandwidth and Carrier Frequency Separation

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka

Mode Tx, Hopping On/Off, DH5/3DH5/Inquiry

Mode	Freq.	20dB Bandwidth	Carrier Frequency	Limit for Carrier
			Separation	Frequency separation
	[MHz]	[MHz]	[MHz]	[MHz]
DH5	2402.0	0.946	1.000	>= 0.631
DH5	2441.0	0.912	1.000	>= 0.608
DH5	2480.0	0.959	1.000	>= 0.639
3DH5	2402.0	1.264	1.000	>= 0.843
3DH5	2441.0	1.270	1.000	>= 0.847
3DH5	2480.0	1.284	1.000	>= 0.856
Inquiry	2441.0	0.761	2.000	>= 0.508

Limit: Two-thirds of 20dB Bandwidth or 25kHz (whichever is greater).

No limit applies to 20dB Bandwidth.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 13 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

20dB Bandwidth and Carrier Frequency Separation

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 14 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

20dB Bandwidth and Carrier Frequency Separation

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 15 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Number of Hopping Frequency

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H

Date January 18, 2017

Temperature / Humidity 22 deg. C /35 % RH

Engineer Hiroyuki Furutaka

Mode Tx, Hopping On, DH5/3DH5/Inquiry

Mode	Number of channel	Limit
	[channels]	[channels]
DH5	79	>= 15
3DH5	79	>= 15
Inquiry	32	>= 15

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 16 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Number of Hopping Frequency

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 17 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Dwell time

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka

Mode Tx, Hopping On DH1 - 5/3DH1 - 5/Inquiry

Mode		Number of to in a 31.6(79 H			Length of transmission	Result	Limit
			x 0.4) second perio	[msec]	[msec]	[msec]	
DH1	48.6 times /	5 sec. x	31.6 sec. =	308 times	0.465	143	400
DH3	23.2 times /	5 sec. x	31.6 sec. =	147 times	1.730	254	400
DH5	16.0 times /	5 sec. x	31.6 sec. =	102 times	2.997	306	400
3DH1	48.6 times /	5 sec. x	31.6 sec. =	308 times	0.461	142	400
3DH3	23.8 times /	5 sec. x	31.6 sec. =	151 times	1.719	260	400
3DH5	14.8 times /	5 sec. x	31.6 sec. =	94 times	2.967	279	400
Inquiry	100.0 times /	1 sec. x	12.8 sec. =	1280 times	0.150	192	400

Sample Calculation

Result = Number of transmission x Length of transmission

*Average data of 5 tests.(except Inquiry)

Mode	1	Sampling [times]									
	1	2	3	4	5	Average [times]					
DH1	52	46	48	50	47	48.6					
DH3	20	22	25	22	27	23.2					
DH5	17	18	13	13	19	16					
3DH1	50	49	48	48	48	48.6					
3DH3	21	23	25	23	27	23.8					
3DH5	12	19	12	14	17	14.8					

Sample Calculation

Average = Summation (Sampling 1 to 5) / 5

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4s, where N is the number of channels being used in the hopping sequence $(20 \le N \le 79)$, is always less than 0.4s regardless of packet size. This is confirmed in the test report for N = 79.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 18 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Dwell time

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 19 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Dwell time

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 20 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Maximum Peak Output Power

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka

Mode Tx, Hopping Off, DH5/2DH5/3DH5/Inquiry

Mode	Freq.	Reading	Cable	Atten.	Re	sult	Li	mit	Margin
	-	-	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
DH5	2402.0	-11.89	1.57	10.08	-0.24	0.95	20.96	125	21.20
DH5	2441.0	-11.84	1.58	10.08	-0.18	0.96	20.96	125	21.14
DH5	2480.0	-12.20	1.59	10.08	-0.53	0.89	20.96	125	21.49
2DH5	2402.0	-10.22	1.57	10.08	1.43	1.39	20.96	125	19.53
2DH5	2441.0	-10.19	1.58	10.08	1.47	1.40	20.96	125	19.49
2DH5	2480.0	-10.54	1.59	10.08	1.13	1.30	20.96	125	19.83
3DH5	2402.0	-9.70	1.57	10.08	1.95	1.57	20.96	125	19.01
3DH5	2441.0	-9.66	1.58	10.08	2.00	1.58	20.96	125	18.96
3DH5	2480.0	-10.07	1.59	10.08	1.60	1.45	20.96	125	19.36
Inquiry	2441.0	-12.17	1.58	10.08	-0.51	0.89	20.96	125	21.47

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Test was not performed at AFH mode, because the decrease of number of channel (min: 20ch) at AFH mode does not influence on the output power and bandwidth of the EUT.

As this device had AFH mode and frequency separation could not meet the requirement of over 20dB BW without 2/3 relaxation, 125mW power limit was applied to it.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11577935H-A Page : 21 of 45

Issued date : February 28, 2017 FCC ID : UJHAR0M

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka

Mode Tx, Hopping Off, DH5/2DH5/3DH5

Mode	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
			Loss	Loss	(Time average)		factor	(Burst pow	er average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
DH5	2402.0	-13.60	1.57	10.08	-1.95	0.64	1.00	-0.95	0.80
DH5	2441.0	-13.55	1.58	10.08	-1.89	0.65	1.00	-0.89	0.81
DH5	2480.0	-13.95	1.59	10.08	-2.28	0.59	1.00	-1.28	0.74
2DH5	2402.0	-14.10	1.57	10.08	-2.45	0.57	1.01	-1.44	0.72
2DH5	2441.0	-14.06	1.58	10.08	-2.40	0.58	1.01	-1.39	0.73
2DH5	2480.0	-14.45	1.59	10.08	-2.78	0.53	1.01	-1.77	0.67
3DH5	2402.0	-14.09	1.57	10.08	-2.44	0.57	1.02	-1.42	0.72
3DH5	2441.0	-14.06	1.58	10.08	-2.40	0.58	1.02	-1.38	0.73
3DH5	2480.0	-14.48	1.59	10.08	-2.81	0.52	1.02	-1.79	0.66

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11577935H-A
Page : 22 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Burst Rate Confirmation

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H

Date January 18, 2017

Temperature / Humidity 22 deg. C /35 % RH

Engineer Hiroyuki Furutaka

Mode Tx, Hopping Off

DH5

2DH5 3DH5

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 23 of 45
Legged data : Enhance : 28

Issued date : February 28, 2017 FCC ID : UJHAR0M

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH 25 deg. C / 33 % RH
Engineer Ryota Yamanaka (Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	87.551	QP	41.4	7.9	7.3	28.0	28.6	40.0	11.4	
Hori.	177.839	QP	36.8	16.1	8.0	27.5	33.4	43.5	10.1	
Hori.	204.286	QP	47.0	11.4	8.1	27.4	39.1	43.5	4.4	
Hori.	379.389	QP	42.3	15.2	9.3	27.7	39.1	46.0	6.9	
Hori.	554.492	QP	39.3	18.4	10.0	28.1	39.6	46.0	6.4	
Hori.	703.485	QP	34.6	19.8	10.5	27.6	37.3	46.0	8.7	
Hori.	2390.000	PK	44.2	27.6	4.3	34.6	41.5	73.9	32.4	
Hori.	4804.000	PK	43.0	31.5	6.2	33.8	46.9	73.9	27.0	
Hori.	5276.092	PK	48.1	32.0	6.4	33.7	52.8	73.9	21.1	
Hori.	7206.000	PK	48.7	36.1	7.0	33.9	57.9	73.9	16.0	
Hori.	9608.000	PK	42.9	38.5	7.6	34.5	54.5	73.9	19.4	
Hori.	2390.000	AV	32.2	27.6	4.3	34.6	29.5	53.9	24.4	
Hori.	4804.000	AV	31.3	31.5	6.2	33.8	35.2	53.9	18.7	
Hori.	5276.092	AV	43.3	32.0	6.4	33.7	48.0	53.9	5.9	
Hori.	7206.000	AV	40.8	36.1	7.0	33.9	50.0	53.9	3.9	
Hori.	9608.000	AV	31.5	38.5	7.6	34.5	43.1	53.9	10.8	
Vert.	87.551	QP	48.2	7.9	7.3	28.0	35.4	40.0	4.6	
Vert.	177.839	QP	34.2	16.1	8.0	27.5	30.8	43.5	12.7	
Vert.	204.286	QP	45.4	11.4	8.1	27.4	37.5	43.5	6.0	
Vert.	379.389	QP	39.5	15.2	9.3	27.7	36.3	46.0	9.7	
Vert.	554.492	QP	38.7	18.4	10.0	28.1	39.0	46.0	7.0	
Vert.	703.485	QP	32.9	19.8	10.5	27.6	35.6	46.0	10.4	
Vert.	2390.000	PK	45.3	27.6	4.3	34.6	42.6	73.9	31.3	
Vert.	4804.000	PK	43.1	31.5	6.2	33.8	47.0	73.9	26.9	
Vert.	5275.712	PK	48.3	32.0	6.4	33.7	53.0	73.9	20.9	
Vert.	7206.000	PK	47.2	36.1	7.0	33.9	56.4	73.9	17.5	
Vert.	9608.000	PK	44.3	38.5	7.6	34.5	55.9	73.9	18.0	
Vert.	2390.000	AV	32.4	27.6	4.3	34.6	29.7	53.9	24.2	
Vert.	4804.000	AV	32.4	31.5	6.2	33.8	36.3	53.9	17.6	
Vert.	5275.712	AV	43.8	32.0	6.4	33.7	48.5	53.9	5.4	
Vert.	7206.000	AV	39.1	36.1	7.0	33.9	48.3	53.9	5.6	
Vert.	9608.000	AV	32.6	38.5	7.6	34.5	44.2	53.9	9.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m}/3.0 \text{ m}) = 1.94 \text{ dB}$

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

20dBc Data Sheet

Edube Bata Sirect												
Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark			
			Factor									
[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]				
2402.000	PK	89.7	27.6	4.4	34.6	87.1	-	-	Carrier			
2400.000	PK	49.6	27.6	4.4	34.6	47.0	67.1	20.1				
2402.000	PK	94.0	27.6	4.4	34.6	91.4	-	-	Carrier			
2400.000	PK	53.6	27.6	4.4	34.6	51.0	71.4	20.4				
	Frequency [MHz] 2402.000 2400.000 2402.000	Frequency Detector	Frequency Detector Reading [MHz] [dBuV] 2402.000 PK 89.7 2400.000 PK 49.6 2402.000 PK 94.0	Frequency Detector Reading [BuV] Ant Factor [dBw] [MHz] [dBuV] [dBm] 2402.000 PK 89.7 27.6 2400.000 PK 49.6 27.6 2402.000 PK 94.0 27.6	Frequency Detector Reading Factor [dB/Mz] Ant Factor [dB/m] Loss [dB/m] 2402.000 PK 89.7 27.6 4.4 2400.000 PK 49.6 27.6 4.4 2402.000 PK 94.0 27.6 4.4	Frequency Detector Reading Factor [dBwV] Ant Factor [dBm] Loss [dB] Gain [dB] 2402.000 PK 89.7 27.6 4.4 34.6 2400.000 PK 49.6 27.6 4.4 34.6 2402.000 PK 94.0 27.6 4.4 34.6	Frequency Detector Reading Factor [dBwV] Ant Factor [dBwV] Loss [dB] Gain [dBwV/m] Result [dBwV/m] 2402.000 PK 89.7 27.6 4.4 34.6 87.1 2400.000 PK 49.6 27.6 4.4 34.6 47.0 2402.000 PK 94.0 27.6 4.4 34.6 91.4	Frequency Detector Reading [dBuV] Ant Factor [dBm] Loss [dBm] Gain [dBuV/m] Result [dBuV/m] Limit [dBuV/m] 2402.000 PK 89.7 27.6 4.4 34.6 87.1 - 2400.000 PK 49.6 27.6 4.4 34.6 47.0 67.1 2402.000 PK 94.0 27.6 4.4 34.6 91.4 -	Frequency Detector Reading Factor [dBwV] Ant Factor [dBwV] Loss [dB] Gain [dBwV/m] Result [dBwV/m] Limit [dBwV/m] Margin [dBwV/m] 2402.000 PK 89.7 27.6 4.4 34.6 87.1 - - - 2400.000 PK 49.6 27.6 4.4 34.6 47.0 67.1 20.1 2402.000 PK 94.0 27.6 4.4 34.6 91.4 - -			

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}These results have sufficient margin without taking account Dwell time factor.

Test report No. : 11577935H-A
Page : 24 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H
Date January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka
(1GHz - 10 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 25 of 45
Issued date : February 28, 2017

FCC ID : UJHAR0M

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka (Above 1 GHz)
January 19, 2017
25 deg. C / 33 % RH
Takafumi Noguchi (Below 1 GHz)

Mode Tx, Hopping Off, DH5 2441 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	87.551	QP	41.5	7.9	7.3	28.0	28.7	40.0	11.3	
Hori.	177.839	QP	34.0	16.1	8.0	27.5	30.6	43.5	12.9	
Hori.	204.286	QP	46.3	11.4	8.1	27.4	38.4	43.5	5.1	
Hori.	379.389	QP	42.3	15.2	9.3	27.7	39.1	46.0	6.9	
Hori.	554.492	QP	37.5	18.4	10.0	28.1	37.8	46.0	8.2	
Hori.	703.485	QP	34.5	19.8	10.5	27.6	37.2	46.0	8.8	
Hori.	4882.000	PK	43.1	31.7	6.2	33.8	47.2	73.9	26.7	
Hori.	5276.092	PK	48.3	32.0	6.4	33.7	53.0	73.9	20.9	
Hori.	7323.000	PK	44.4	36.3	7.1	33.9	53.9	73.9	20.0	
Hori.	9764.000	PK	44.2	38.5	7.6	34.5	55.8	73.9	18.1	
Hori.	4882.000	AV	31.2	31.7	6.2	33.8	35.3	53.9	18.6	
Hori.	5276.092	AV	43.4	32.0	6.4	33.7	48.1	53.9	5.8	
Hori.	7323.000	AV	35.5	36.3	7.1	33.9	45.0	53.9	8.9	
Hori.	9764.000	AV	31.6	38.5	7.6	34.5	43.2	53.9	10.7	
Vert.	87.551	QP	48.8	7.9	7.3	28.0	36.0	40.0	4.0	
Vert.	177.839	QP	31.0	16.1	8.0	27.5	27.6	43.5	15.9	
Vert.	204.286	QP	43.9	11.4	8.1	27.4	36.0	43.5	7.5	
Vert.	379.389	QP	39.0	15.2	9.3	27.7	35.8	46.0	10.2	
Vert.	554.492	QP	37.4	18.4	10.0	28.1	37.7	46.0	8.3	
Vert.	703.485	QP	33.2	19.8	10.5	27.6	35.9	46.0	10.1	
Vert.	4882.000	PK	43.1	31.7	6.2	33.8	47.2	73.9	26.7	
Vert.	5276.250	PK	48.0	32.0	6.4	33.7	52.7	73.9	21.2	
Vert.	7323.000	PK	44.7	36.3	7.1	33.9	54.2	73.9	19.7	
Vert.	9764.000	PK	44.1	38.5	7.6	34.5	55.7	73.9	18.2	
Vert.	4882.000	AV	32.3	31.7	6.2	33.8	36.4	53.9	17.5	
Vert.	5276.250	AV	43.6	32.0	6.4	33.7	48.3	53.9	5.6	
Vert.	7323.000	AV	35.8	36.3	7.1	33.9	45.3	53.9	8.6	
Vert.	9764.000	AV	32.2	38.5	7.6	34.5	43.8	53.9	10.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11577935H-A
Page : 26 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka (Above 1 GHz) January 19, 2017
25 deg. C / 33 % RH
Takafumi Noguchi (Below 1 GHz)

Mode Tx, Hopping Off, DH5 2480 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	87.551	QP	42.0	7.9	7.3	28.0	29.2	40.0	10.8	
Hori.	177.839	QP	39.9	16.1	8.0	27.5	36.5	43.5	7.0	
Hori.	204.286	QP	47.0	11.4	8.1	27.4	39.1	43.5	4.4	
Hori.	379.389	QP	42.1	15.2	9.3	27.7	38.9	46.0	7.1	
Hori.	554.492	QP	37.8	18.4	10.0	28.1	38.1	46.0	7.9	
Hori.	703.485	QP	34.2	19.8	10.5	27.6	36.9	46.0	9.1	
Hori.	2483.500	PK	54.2	27.7	4.4	34.6	51.7	73.9	22.2	
Hori.	4960.000	PK	43.4	32.0	6.3	33.8	47.9	73.9	26.0	
Hori.	5276.123	PK	48.9	32.0	6.4	33.7	53.6	73.9	20.3	
Hori.	7440.000	PK	44.9	36.4	7.1	34.0	54.4	73.9	19.5	
Hori.	9920.000	PK	43.0	38.6	7.7	34.6	54.7	73.9	19.2	
Hori.	2483.500	AV	32.5	27.7	4.4	34.6	30.0	53.9	23.9	
Hori.	4960.000	AV	31.3	32.0	6.3	33.8	35.8	53.9	18.1	
Hori.	5276.123	AV	43.9	32.0	6.4	33.7	48.6	53.9	5.3	
Hori.	7440.000	AV	35.1	36.4	7.1	34.0	44.6	53.9	9.3	
Hori.	9920.000	AV	31.1	38.6	7.7	34.6	42.8	53.9	11.1	
Vert.	87.551	QP	48.9	7.9	7.3	28.0	36.1	40.0	3.9	
Vert.	177.839	QP	36.5	16.1	8.0	27.5	33.1	43.5	10.4	
Vert.	204.286	QP	44.5	11.4	8.1	27.4	36.6	43.5	6.9	
Vert.	379.389	QP	38.9	15.2	9.3	27.7	35.7	46.0	10.3	
Vert.	554.492	QP	34.7	18.4	10.0	28.1	35.0	46.0	11.0	
Vert.	703.485	QP	32.7	19.8	10.5	27.6	35.4	46.0	10.6	
Vert.	2483.500	PK	55.9	27.7	4.4	34.6	53.4	73.9	20.5	
Vert.	4960.000	PK	43.2	32.0	6.3	33.8	47.7	73.9	26.2	
Vert.	5276.155	PK	48.5	32.0	6.4	33.7	53.2	73.9	20.7	
Vert.	7440.000	PK	44.8	36.4	7.1	34.0	54.3	73.9	19.6	
Vert.	9920.000	PK	43.7	38.6	7.7	34.6	55.4	73.9	18.5	
Vert.	2483.500	AV	32.9	27.7	4.4	34.6	30.4	53.9	23.5	
Vert.	4960.000	AV	32.2	32.0	6.3	33.8	36.7	53.9	17.2	
Vert.	5276.155	AV	44.1	32.0	6.4	33.7	48.8	53.9	5.1	
Vert.	7440.000	AV	34.8	36.4	7.1	34.0	44.3	53.9	9.6	
Vert.	9920.000	AV	32.5	38.6	7.7	34.6	44.2	53.9	9.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11577935H-A Test report No. Page : 27 of 45 : February 28, 2017 : UJHAR0M

Issued date FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H Date January 19, 2017 Temperature / Humidity 25 deg. C / 36 % RH Engineer Ryota Yamanaka (1 GHz -10 GHz)

Mode Tx, Hopping Off, DH5 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 28 of 45
Issued date : February 28

Issued date : February 28, 2017 FCC ID : UJHAR0M

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka (Above 1 GHz) January 19, 2017
25 deg. C / 33 % RH
Takafumi Noguchi (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

D 1 1	г	D	D 1'	4 . F		o :	D 1/	Y 1 1		D 1
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
Hori.	[MHz] 87.551	QP	[dBuV] 42.2	[dB/m] 7.9	[dB] 7.3	[dB] 28.0	[dBuV/m] 29.4	[dBuV/m] 40.0	[dB] 10.6	
		`								
Hori.	177.839	QP	37.4	16.1	8.0	27.5	34.0	43.5	9.5	
Hori.	204.286	`	46.9	11.4	8.1	27.4	39.0	43.5	4.5	
Hori.	379.389	QP	42.0	15.2	9.3	27.7	38.8	46.0	7.2	
Hori.	554.492	QP	39.2	18.4	10.0	28.1	39.5	46.0	6.5	
Hori.	703.485	`	34.3	19.8	10.5	27.6	37.0	46.0	9.0	
Hori.	2390.000		44.5	27.6	4.3	34.6	41.8	73.9	32.1	
Hori.	4804.000		43.4	31.5	6.2	33.8	47.3	73.9	26.6	
Hori.	5276.092		49.0	32.0	6.4	33.7	53.7	73.9	20.2	
Hori.	7206.000	PK	47.9	36.1	7.0	33.9	57.1	73.9	16.8	
Hori.	9608.000		42.4	38.5	7.6	34.5	54.0	73.9	19.9	
Hori.	2390.000	AV	32.3	27.6	4.3	34.6	29.6	53.9	24.3	
Hori.	4804.000	AV	31.4	31.5	6.2	33.8	35.3	53.9	18.6	
Hori.	5276.092	AV	44.3	32.0	6.4	33.7	49.0	53.9	4.9	
Hori.	7206.000	AV	40.9	36.1	7.0	33.9	50.1	53.9	3.8	
Hori.	9608.000	AV	31.4	38.5	7.6	34.5	43.0	53.9	10.9	
Vert.	87.551	QP	49.1	7.9	7.3	28.0	36.3	40.0	3.7	
Vert.	177.839	QP	34.1	16.1	8.0	27.5	30.7	43.5	12.8	
Vert.	204.286	QP	44.4	11.4	8.1	27.4	36.5	43.5	7.0	
Vert.	379.389	QP	38.7	15.2	9.3	27.7	35.5	46.0	10.5	
Vert.	554.492	QP	37.9	18.4	10.0	28.1	38.2	46.0	7.8	
Vert.	703.485	QP	33.5	19.8	10.5	27.6	36.2	46.0	9.8	
Vert.	2390.000	PK	44.9	27.6	4.3	34.6	42.2	73.9	31.7	
Vert.	4804.000	PK	43.4	31.5	6.2	33.8	47.3	73.9	26.6	
Vert.	5275.712	PK	49.1	32.0	6.4	33.7	53.8	73.9	20.1	
Vert.	7206.000		47.1	36.1	7.0	33.9	56.3	73.9	17.6	
Vert.	9608.000	PK	44.4	38.5	7.6	34.5	56.0	73.9	17.9	
Vert.	2390.000		32.4	27.6	4.3	34.6	29.7	53.9	24.2	
Vert.	4804.000	I	32.6	31.5	6.2	33.8	36.5	53.9	17.4	
Vert.	5275.712	I	44.2	32.0	6.4	33.7	48.9	53.9	5.0	
Vert.	7206.000	I	38.5	36.1	7.0	33.9	47.7	53.9	6.2	
Vert.	9608.000	I	32.5	38.5	7.6	34.5	44.1	53.9	9.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2402.000	PK	90.1	27.6	4.4	34.6	87.5	-	-	Carrier
Hori	2400.000	PK	49.8	27.6	4.4	34.6	47.2	67.5	20.3	
Vert	2402.000	PK	94.1	27.6	4.4	34.6	91.5	-	-	Carrier
Vert	2400.000	PK	53.2	27.6	4.4	34.6	50.6	71.5	20.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11577935H-A
Page : 29 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H
Date January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka
(1 GHz -10 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 30 of 45
Issued date : February 28, 2017

FCC ID : UJHAR0M

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka (Above 1 GHz)
January 19, 2017
25 deg. C / 33 % RH
Takafumi Noguchi (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	,	[dBuV/m]	[dB]	
Hori.	87.551	QP	42.4	7.9	7.3	28.0	29.6	40.0	10.4	
Hori.	177.839	QP	34.7	16.1	8.0	27.5	31.3	43.5	12.2	
Hori.	204.286	QP	46.7	11.4	8.1	27.4	38.8	43.5	4.7	
Hori.	379.389	QP	42.0	15.2	9.3	27.7	38.8	46.0	7.2	
Hori.	554.492	QP	37.9	18.4	10.0	28.1	38.2	46.0	7.8	
Hori.	703.485	QP	34.3	19.8	10.5	27.6	37.0	46.0	9.0	
Hori.	4882.000	PK	43.2	31.7	6.2	33.8	47.3	73.9	26.6	
Hori.	5276.092	PK	48.4	32.0	6.4	33.7	53.1	73.9	20.8	
Hori.	7323.000	PK	44.2	36.3	7.1	33.9	53.7	73.9	20.2	
Hori.	9764.000	PK	44.1	38.5	7.6	34.5	55.7	73.9	18.2	
Hori.	4882.000	AV	31.6	31.7	6.2	33.8	35.7	53.9	18.2	
Hori.	5276.092	AV	43.9	32.0	6.4	33.7	48.6	53.9	5.3	
Hori.	7323.000	AV	35.3	36.3	7.1	33.9	44.8	53.9	9.1	
Hori.	9764.000	AV	31.7	38.5	7.6	34.5	43.3	53.9	10.6	
Vert.	87.551	QP	49.1	7.9	7.3	28.0	36.3	40.0	3.7	
Vert.	177.839	QP	31.2	16.1	8.0	27.5	27.8	43.5	15.7	
Vert.	204.286	QP	44.1	11.4	8.1	27.4	36.2	43.5	7.3	
Vert.	379.389	QP	38.7	15.2	9.3	27.7	35.5	46.0	10.5	
Vert.	554.492	QP	37.2	18.4	10.0	28.1	37.5	46.0	8.5	
Vert.	703.485	QP	33.6	19.8	10.5	27.6	36.3	46.0	9.7	
Vert.	4882.000	PK	42.9	31.7	6.2	33.8	47.0	73.9	26.9	
Vert.	5276.250	PK	48.6	32.0	6.4	33.7	53.3	73.9	20.6	
Vert.	7323.000	PK	44.5	36.3	7.1	33.9	54.0	73.9	19.9	
Vert.	9764.000	PK	44.2	38.5	7.6	34.5	55.8	73.9	18.1	
Vert.	4882.000	AV	31.3	31.7	6.2	33.8	35.4	53.9	18.5	
Vert.	5276.250	AV	44.0	32.0	6.4	33.7	48.7	53.9	5.2	
Vert.	7323.000	AV	35.9	36.3	7.1	33.9	45.4	53.9	8.5	
Vert.	9764.000	AV	32.4	38.5	7.6	34.5	44.0	53.9	9.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11577935H-A
Page : 31 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH 25 deg. C / 33 % RH
Engineer Ryota Yamanaka Takafumi Noguchi
(Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 32 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Radiated Spurious Emission

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H

Date January 19, 2017 January 19, 2017
Temperature / Humidity 25 deg. C / 36 % RH
Engineer Ryota Yamanaka (Above 1 GHz)
January 19, 2017
25 deg. C / 33 % RH
Takafumi Noguchi (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	87.551	QP	42.2	7.9	7.3	28.0	29.4	40.0	10.6	
Hori.	177.839	QP	35.2	16.1	8.0	27.5	31.8	43.5	11.7	
Hori.	204.286	QP	46.7	11.4	8.1	27.4	38.8	43.5	4.7	
Hori.	379.389	QP	42.2	15.2	9.3	27.7	39.0	46.0	7.0	
Hori.	554.492	QP	38.2	18.4	10.0	28.1	38.5	46.0	7.5	
Hori.	703.485	QP	34.4	19.8	10.5	27.6	37.1	46.0	8.9	
Hori.	2483.500	PK	54.1	27.7	4.4	34.6	51.6	73.9	22.3	
Hori.	4960.000	PK	43.7	32.0	6.3	33.8	48.2	73.9	25.7	
Hori.	5276.123	PK	48.8	32.0	6.4	33.7	53.5	73.9	20.4	
Hori.	7440.000	PK	44.6	36.4	7.1	34.0	54.1	73.9	19.8	
Hori.	9920.000	PK	43.4	38.6	7.7	34.6	55.1	73.9	18.8	
Hori.	2483.500	AV	32.4	27.7	4.4	34.6	29.9	53.9	24.0	
Hori.	4960.000	AV	31.5	32.0	6.3	33.8	36.0	53.9	17.9	
Hori.	5276.123	AV	44.5	32.0	6.4	33.7	49.2	53.9	4.7	
Hori.	7440.000	AV	35.2	36.4	7.1	34.0	44.7	53.9	9.2	
Hori.	9920.000	AV	31.5	38.6	7.7	34.6	43.2	53.9	10.7	
Vert.	87.551	QP	49.2	7.9	7.3	28.0	36.4	40.0	3.6	
Vert.	177.839	QP	32.5	16.1	8.0	27.5	29.1	43.5	14.4	
Vert.	204.286	QP	43.7	11.4	8.1	27.4	35.8	43.5	7.7	
Vert.	379.389	QP	38.5	15.2	9.3	27.7	35.3	46.0	10.7	
Vert.	554.492	QP	37.4	18.4	10.0	28.1	37.7	46.0	8.3	
Vert.	703.485	QP	33.6	19.8	10.5	27.6	36.3	46.0	9.7	
Vert.	2483.500	PK	56.2	27.7	4.4	34.6	53.7	73.9	20.2	
Vert.	4960.000	PK	43.1	32.0	6.3	33.8	47.6	73.9	26.3	
Vert.	5276.155	PK	48.9	32.0	6.4	33.7	53.6	73.9	20.3	
Vert.	7440.000	PK	44.8	36.4	7.1	34.0	54.3	73.9	19.6	
Vert.	9920.000	PK	43.6	38.6	7.7	34.6	55.3	73.9	18.6	
Vert.	2483.500	AV	32.9	27.7	4.4	34.6	30.4	53.9	23.5	
Vert.	4960.000	AV	32.0	32.0	6.3	33.8	36.5	53.9	17.4	
Vert.	5276.155	AV	44.7	32.0	6.4	33.7	49.4	53.9	4.5	
Vert.	7440.000	AV	34.9	36.4	7.1	34.0	44.4	53.9	9.5	
Vert.	9920.000	AV	32.5	38.6	7.7	34.6	44.2	53.9	9.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11577935H-A Test report No. Page : 33 of 45 **Issued date** : February 28, 2017 : UJHAR0M

FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11577935H Date January 19, 2017 Temperature / Humidity 25 deg. C / 36 % RH Engineer Ryota Yamanaka (1 GHz -10 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 34 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka
Mode Tx, Hopping Off, DH5

2402 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 35 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka
Mode Tx, Hopping Off, DH5

2441 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 36 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka
Mode Tx, Hopping Off, DH5

2480 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 37 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka
Mode Tx, Hopping Off, 3DH5

2402 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 38 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka
Mode Tx, Hopping Off, 3DH5

2441 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 39 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Spurious Emission

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka
Mode Tx, Hopping Off, 3DH5

2480 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A Page : 40 of 45 : February 28, 2017 Issued date FCC ID : UJHAR0M

Conducted Emission Band Edge compliance

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H Date January 18, 2017 Temperature / Humidity 22 deg. C/35 % RH Hiroyuki Furutaka Engineer

Mode Tx, DH5

Hopping On

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 41 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

Conducted Emission Band Edge compliance

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H

Date January 18, 2017

Temperature / Humidity 22 deg. C /35 % RH

Engineer Hiroyuki Furutaka

Mode Tx, 3DH5

Hopping On

Hopping Off

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 42 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

99%Occupied Bandwidth

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka

Mode Tx, Hopping Off, DH5/3DH5

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 43 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

99% Occupied Bandwidth

Test place Ise EMC Lab. No.7 Shielded Room

Report No. 11577935H
Date January 18, 2017
Temperature / Humidity 22 deg. C /35 % RH
Engineer Hiroyuki Furutaka

Mode Tx, Hopping On, DH5/3DH5/Inquiry

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11577935H-A
Page : 44 of 45
Issued date : February 28, 2017
FCC ID : UJHAR0M

APPENDIX 2: Test instruments

Test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MPM-12	Power Meter	Anritsu	ML2495A	0825002	AT	2016/06/06 * 12
MPSE-17	Power sensor	Anritsu	MA2411B	0738285	AT	2016/06/06 * 12
MRENT-126	Spectrum Analyzer	KEYSIGHT	E4440A	MY46185516	AT	2016/07/01 * 12
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2016/11/28 * 12
MCC-64	Coaxial Cable	UL Japan	-	-	AT	2016/03/10 * 12
MAT-20	Attenuator(10dB)(above 1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-110	-	AT	2016/12/15 * 12
MCC-171	Microwave Cable	Junkosha	MWX221	1409S494	AT	2016/03/11 * 12
MOS-34	Thermo-Hygrometer	Custom	CTH-201	3401	AT	2016/01/21 * 12
MMM-16	DIGIITAL HITESTER	Hioki	3805	070900532	AT	2017/01/19 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2016/08/02 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2016/12/13 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2016/11/10 * 12
MHA-06	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	RE	2016/02/29 * 12
MCC-216	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 1608S087(5	RE	2016/08/29 * 12
				m)		
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2017/01/16 * 12
MHA-02	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	RE	2016/02/29 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	RE	2016/08/23 * 12
MHF-06	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	RE	2016/05/16 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2016/10/21 * 12
MBA-08	Biconical Antenna	Schwarzbeck	VHA9103B	08031	RE	2016/09/29 * 12
MLA-22	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	RE	2016/01/30 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2016/02/08 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2016/11/28 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2016/09/13 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN