Extended Capacity Warehouse Location

Analytical Decision Support Systems

Francisco Pinto João Soares João Vieira

TABLE OF CONTENTS

1 02

Problem MIP and CP Extended Restrictions

03

04 05 06

Analysis of OR-Tools Conclusions
Results and Future
Work

1. Problem

The problem consisted in determining which warehouses supplied each client to meet demand, taking into account transportation costs and opening costs.

2. MIP

The objective function was to minimize the total cost

Decision Variables:

- Binary Variables:
 - x_i ∈ {0, 1}: Indicates whether the warehouse i is open (x_i = 1) or closed (x_i = 0).
 - $y_{i,j} \in \{0,1\}$: Indicates whether customer j is served by warehouse i.
- Integer Variables:
 - amountServed_{i,j} ≥ 0: Amount of goods transported from warehouse i to customer j.

Objective Function:

$$\text{Minimize} \quad \sum_{i=1}^{nW} \text{fixedCost}_i \cdot x_i + \sum_{i=1}^{nW} \sum_{j=1}^{nC} \text{transportCost}_{ij} \cdot \text{amountServed}_{ij}$$

Constraints:

- 1. All Customers must be assigned to warehouses
- 2. All Customers demand must be satisfied
- 3. Warehouse capacity can not be surpassed
- The amount served to a customer from all warehouses must not exceed demand
- 5. <u>x, y must be 0,1 and amountServed larger or</u> equal to zero

2. CP

The decision variables and objective function of MIP and CP were the same, but the constrainst had some changes

Decision Variables:

- Binary Variables:
 - $x_i \in \{0,1\}$: Indicates whether the warehouse i is open (1) or closed (0).
 - y_{ij} ∈ {0, 1}: Indicates whether the client j is served by the warehouse i
 (1) or not (0).
- Integer Variables:
 - amount Served $_{ij} \in [0, 15000]$: Quantity of units supplied from warehouse i to client j.

Objective Function:

Minimize
$$\sum_{i=1}^{nW} \text{fixedCost}_i \cdot x_i + \sum_{i=1}^{nW} \sum_{j=1}^{nC} \text{transportCost}_{ij} \cdot \text{amountServed}_{ij}$$

Constraints:

- 1. All Customers must be assigned to warehouses
- 2. All Customers demand must be satisfied
- 3. Warehouse capacity can not be surpassed
- 4. The amount served to a customer from all warehouses must not exceed demand
- 5. <u>A Customer can only be assigned to an open</u> warehouse
- 6. <u>If a Customer is assigned to a warehouse, the</u>
 warehouse must supply at least 1 unit

3. Extended Restrictions

Three Restrictions were added in order to add more complexity to the problem

Constraints:

A warehouse if open must serve at least
 80% of its capacity

Certain pairs of competitive customers
 cannot be served by the same
 warehouse

3. Some warehouses if open force otherwarehouse to open

Objectives with Constraints:

- To stress the MIP solvers and observe the impact of the adding complexity
- To create conditions for a possible better
 performance of the CP solvers and
 observe the impact of the adding
 complexity

To test the performance of the solvers of IBM (CPLEX), we utilized the file cap44 with a time limit of 10 minutes

Metric	LP (IBM Solver)	CP (IBM Solver)
Execution Time (seconds)	0.64	600.17
Optimal Result	1235500,45	1586247,50
Gap	0%	98.35%

- The MIP solver successfully computed the optimal solution in 0.64 seconds while the CP was not able to achieve a solution.
- Although adding the restrictions worsen the performance of both solvers, MIP was significantly more affected when in comparison with the base model, particularly for higher numbers of instances.

Results revealed that higher number of instances led to an overall negative impact on the solvers performance

The files used differed in the number of clients:

Cap44 - 16

Cap92 - 25 Cap123/124 - 50

MIP

Higher Execution Times

CP

Higher **Optimality Gaps**

Slower Branch
Speed

Altering search strategys had mixed results in the performance of the model, but the Auto (default setting) had the best overall performance

Search Strategy	DepthFirst	Restart	Multipoint	IterativeDiving	Neighborhood	Auto (default)
Time (seconds)	600.17s	600.18s	600.17s	600.21s	600.40s	600.37s
Best Solution Found	Not Found	1615092.60	1849364.34	1592999.19	Not Found	1452414.71
Gap	-	98.38%	100%	98.36%	-	98.20%
Nº Branches	6323802	38101122	16739693	19203337	176087	21947969
Nº Fails	3159049	8142085	6325995	4497714	-	5577895
Memory Usage	66.4 MB	234.3 MB	340.4 MB	261.4 MB	175.5 MB	283.1 MB
Search Sp. (br. /s)	10539.2	63486.4	27898.4	31996.0	293.5	36559.5

Failed to find
Optimal
Solution
High
S

to find High Memory imal Usage and worst Solution

High Search Speed 2nd best solution

Failed to find solution and low Search Speed **Best Overall**

Log verbosity refers to how much information the program displays while it's running

Verbosity Level	Quiet	Terse	Normal (default)	Verbose
Time (seconds)	-	600.36s	600.37s	600.42s
Lower Bound	-	26142.21	26142.21	26142.21
Best Solution Found	1485744.28	1451732.90	1452414.71	1452506.40
Gap	-	98.20%	98.20%	98.20%
Nº Branches	_	23138180	21947969	21493557
Nº Fails	-	5910487	5577895	5444298
Memory Usage (MB)	-	283.7	283.1	282.4
Search Speed (br. /s)	-	38542.9	36559.5	35799.9

Higher Verbosity Setting:

- Slower Search Speed
- Worst Solution Foun

5. OR-Tools

Comparison of OR-Tools and DOcplex

Base Results

- MIP-based solvers and OR-tools CP achieve optimal solutions
- Docplex MIP implementation shows superior speed
- Cplex CP struggles with execution time and solution quality

Method	cap44	cap92	cap123	cap124
Optimal Reference Value	$1235500,\!45$	855 733,50	895 302,33	946 051,33
LP - OR-Tools	Optimal	Optimal	Optimal	Optimal
Execution Time (s)	0,400	0,410	1,430	3,030
CP - OR-Tools	Optimal	Optimal	Optimal	Optimal
Execution Time (s)	0,359	$0,\!325$	$3,\!452$	4,593
LP - Cplex	Optimal	Optimal	Optimal	Optimal
Execution Time (s)	0,640	0,170	0,380	0,380
CP - Cplex	Suboptimal	Suboptimal	Suboptimal	Suboptimal
Difference (%)	$28,\!4\%$	7,1%	$28,\!0\%$	17,7%
Execution Time (s)	600,130	600,080	600,190	$600,\!150$

5. OR-Tools

Comparison of OR-Tools and DOcplex

Results with added Restrictions

Method	cap44	cap92	cap123	cap124
Optimal Achieved Value	1 327 373,35	1 080 811,69	1 095 811,69	1 118 311,69
LP - OR-Tools	Optimal	Optimal	Optimal	Optimal
Execution Time (s)	1,440	22,700	$429,\!280$	291,230
CP - OR-Tools	Optimal	Optimal	Optimal	Optimal
Execution Time (s)	3,639	$14,\!49$	$112,\!01$	92,87
LP - Cplex	Optimal	Optimal	Optimal	Optimal
Execution Time (s)	0,720	0,730	$3{,}740$	3,440
CP - Cplex	Suboptimal	Suboptimal	Suboptimal	Suboptimal
Difference (%)	$9{,}42\%$	$27{,}18\%$	$77{,}15\%$	$38,\!56\%$
Execution Time (s)	600,340	600,130	600,360	600,170

- **CP OR-Tools outperforms MIP OR-Tools** in several cases,
 benefiting from its hybrid
 approach.
 - DOcplex MIP maintains **optimal** solutions with **fastest computation times**
- CP CPLEX consistently underperforms across all test scenarios

5. OR-Tools

Comparison of OR-Tools and DOcplex

Key Solver Performance Findings

CPLEX MIP: Superior Performance

Why: Advanced simplex methods optimized for large-scale linear problems

OR-Tools CP: Surprising Strength

Outperformed OR-Tools MIP with the new restrictions

· Why: Combinatorial Handling, Efficient Algorithms, Reduced Overhead

CPLEX CP: Underperformer- Poor performance across all test cases

Why: Less mature CP implementation compared to its MIP capabilities

Conclusion

- CPLEX MIP model exceled compared to the rest while CPLEX CP struggled
- 2. OR-Tools CP performed unexpectedly well. On the other hand, OR-Tools MIP performed unexpectedly bad

6. Conclusions and Future Work

Future Work

- Explore the model **OR-Tools** in more detail.
- 2. Test with more instances
- Try different and more diverse constraitns

THANKS!

Do you have any questions?

Francisco Pinto João Soares João Vieira

Appendix

MIP Mathematical Constraints

 Assignment of Customers to Warehouses: Each customer must be served by at least one warehouse:

$$\sum_{i=1}^{nW} y_{ij} \ge 1 \quad \forall j = 1, \dots, nC$$

Demand Satisfaction: The total amount served to each customer must meet their demand:

$$\sum_{i=1}^{nW} \text{amountServed}_{ij} = \text{demand}_{j} \quad \forall j = 1, \dots, nC$$

 Capacity Constraints: The total amount served by a warehouse cannot exceed its capacity if it is open:

$$\sum_{j=1}^{nC} \text{amountServed}_{ij} \leq \text{capacity}_i \cdot x_i \quad \forall i = 1, \dots, nW$$

4. Linking Transportation and Assignment: The amount served to a customer from all the warehouses cannot exceed the customer demand:

$$\mathrm{amountServed}_{i,j} \leq \mathrm{demand}_j \cdot y_{i,j} \quad \forall i \in \mathrm{Warehouses}, \forall j \in \mathrm{Customers}$$

$$y_{i,j} \leq x_i \quad \forall i \in \text{Warehouses}, \forall j \in \text{Customers}$$

5. Non-Negativity and Binary Constraints:

$$x_i, y_{i,j} \in \{0, 1\}, \text{ amountServed}_{i,j} \ge 0$$

Appendix

CP Mathematical Constraints

 Assignment of Customers to Warehouses: Each customer must be served by at least one warehouse.

$$\sum_{i=1}^{nW} y_{ij} \ge 1 \quad \forall j = 1, \dots, nC$$

Demand Satisfaction: The total quantity served to each client must equal their demand.

$$\sum_{i=1}^{nW} \text{amountServed}_{ij} = \text{demand}_{j} \quad \forall j = 1, \dots, nC$$

3. Capacity Constraints: The total quantity served by each warehouse cannot exceed its capacity.

$$\sum_{j=1}^{nC} \text{amountServed}_{ij} \leq \text{capacity}_i \cdot x_i \quad \forall i = 1, \dots, nW$$

4. Consistency Between Quantity and Assignment: The quantity supplied from warehouse i to client j must be zero if client j is not assigned to warehouse i.

amountServed_{ij}
$$\leq$$
 demand_j \cdot $y_{ij} \quad \forall i = 1, ..., nW, j = 1, ..., nC$

Assignment to Open Warehouses: A client can only be assigned to an open warehouse.

$$y_{ij} \le x_i \quad \forall i = 1, \dots, nW, j = 1, \dots, nC$$

Binding Variables: If a client is assigned to a warehouse, the warehouse must supply at least one unit.

amountServed_{ij}
$$\geq y_{ij} \quad \forall i = 1, \dots, nW, j = 1, \dots, nC$$

Appendix

CPLEX performance results of MIP and CP models for different number of instances

Table 3. Comparison of LP Solvers with and without Restrictions Across Datasets

Dataset	Metric	LP (No Restriction)	LP (With Restriction)
cap44	Execution Time (seconds)	0.64	0.72
Cap44	Solution Found	1235500.45	1327496.93
cap92	Execution Time (seconds)	0.17	0.73
cap92	Solution Found	855733.5	1080811.69
cap123	Execution Time (seconds)	0.38	3.74
Cap123	Solution Found	895302.32	1095811.69
cap124	Execution Time (seconds)	0.38	3.44
	Solution Found	946051.33	1118345.66

Table 4. Comparison of CP Solvers with and without Restrictions Across Datasets

Dataset	Metric	CP (No Restriction)	CP (With Restriction)
cap44	Execution Time (seconds)	600.17	600.37
	Solution Found	1586247.5	1452414.71
сар44	Optimality Gap (%)	98.35%	98.20%
	Search Sp. (br. /s)	30962.3	36559.5
	Execution Time (seconds)	600.14	600.19
00202	Solution Found	916489.13	1374624.01
cap92	Optimality Gap (%)	98.39%	98.87%
	Search Sp. (br. /s)	23945.0	20403.8
	Execution Time (seconds)	600.28	600.46
con 199	Solution Found	1145804.16	1941252.85
cap123	Optimality Gap (%)	98.47%	99.10%
	Search Sp. (br. /s)	14505.6	13330.3
cap124	Execution Time (seconds)	600.26	600.25
	Solution Found	1113363.93	1549509.59
Cap124	Optimality Gap (%)	97.75%	98.39%
	Search Sp. (br. /s)	12256.9	11319.7

