METODI E MODELLI PER LE DECISIONI

Prof. Roberto Cordone 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018

Magistrale Informatica Università di Milano Italy 2 novembre 2017

Indice

1	Intr	roduction	2
	1.1	Dispense	2
2	Pro	blemi di Decisione	3
		2.0.1 Problemi complessi	3
		2.0.2 Proprietà delle preferenze	4
		2.0.3 Ipotesi funzione del valore	
		2.0.4 Tabella riassuntiva	5
	2.1	Conto di Borda	6
	2.2	Problemi semplici	6
3		ogrammazione matematica	7
	3.1	Programmazione matematica	8
	3.2	Lemma di Farkas	8
	3.3	Altra roba che non capisco	ç

Capitolo 1

Introduction

1.1 Dispense

Sono disponibili dispense sul sito del corso.

Capitolo 2

Problemi di Decisione

2.0.1 Problemi complessi

$$P = (X, \Omega, F, f, D, \Pi)$$

Figura 2.1: Definizione formale di problema di decisione.

Queste variabili rappresentano:

- 1. X rappresenta l'insieme delle alternative, o delle soluzioni o anche delle soluzioni ammissibili.
- 2. Ω rappresenta insieme degli **scenari** o **esiti**.
- 3. F rappresenta l'insieme degli **impatti**.
- 4. f rappresenta la funzione dell'impatto.
- 5. *D* rappresenta l'insieme dei **decisori**, tipicamente un insieme finito e di dimensione bassa. Un decisore è un'entità umana, modellata quanto possibile matematicamente.
- 6. Π insieme delle **preferenze**.

X viene definito come:

$$X \subseteq \mathbb{R}^n$$
 se f als $e \in X \Rightarrow f$ als $e = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$

con ogni termine x_i viene chiamato o **elemento di alternativa** o **variabile di decisione**.

 Ω viene definito come:

$$\Omega \subseteq \mathbb{R}^r \text{se } \omega \in \Omega \Rightarrow \omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \dots \\ \omega_r \end{bmatrix}$$

con ogni termine ω_i viene chiamato o **elemento di scenario** o **variabile esogene**, cioè variabili che influiscono sulla configurazione del nostro sistema, non decise arbitrariamente ma provenienti dall'esterno.

F viene definito come:

$$F \subseteq \mathbb{R}^p \text{se } false \in F \Rightarrow false = \begin{bmatrix} f_1 \\ f_2 \\ \dots \\ f_p \end{bmatrix}$$

Le $f_l \in \mathbb{R}$ vengono ipotizzate ad essere intere e vengono chiamate **indicatore**, **attributo**, **criterio** o **obbiettivo**. Un **indicatore** per esempio potrebbe essere un *valore ottimo*.

La *f* viene definita come:

$$f(false,\omega): X \times \Omega \to F$$

La matrice di tutte le combinazioni viene chiamata matrice delle valutazioni.

La Π viene definita come

$$\Pi: D \to 2^{F \times F}$$

, dove $\pi_d \subseteq F \times F$. $F \times F$ rappresenta l'insieme delle **coppie ordinate di impatti**, mentre $2^{F \times F}$ rappresenta l'insieme delle **relazioni binarie**.

Per esempio, ponendo $F = \{f, f', f''\}$, otteniamo un prodotto cartesiano:

$$F \times F = \{(f,f'),(f,f''),(f',f),(f,f''),(f'',f),(f'',f'),(f,f),(f',f'),(f'',f'')\}$$

La preferenza è la volontà per cui il decisore risulta disponibile a fare uno scambio.

Un esempio di preferenza è:

$$f' \preccurlyeq_d f' \Leftrightarrow (f', f'') \in \Pi_d$$

. In un ambiente ingegneristico si usa il \preccurlyeq_d , minimizzando i costi, mentre in un ambiente economico si cerca di massimizzare i costi \succcurlyeq_d .

Definizione 2.0.1 (indifferenza) Due preferenze f' e f'' sono dette **indifferenti** quando:

$$f' f'' \Leftrightarrow \begin{cases} f' \preccurlyeq_d f'' \\ f' \succcurlyeq_d f'' \end{cases}$$

Definizione 2.0.2 (Preferenza Stretta) *Una preferenza f' è detta preferenza stretta quando:*

$$f' <_d f'' \Leftrightarrow \begin{cases} f' \preccurlyeq_d f'' \\ f' \not\succ_d f'' \end{cases}$$

Definizione 2.0.3 (Incomparabilità) Due preferenze f' e f'' sono dette incomparabili quando:

$$f' \bowtie_d f'' \Leftrightarrow \begin{cases} f' \not\prec_d f'' \\ f' \not\prec_d f'' \end{cases}$$

2.0.2 Proprietà delle preferenze

Proprietà riflessiva

$$f \preccurlyeq f \quad \forall f \in F$$

Proprietà di completezza

Un decisore può sempre concludere una decisione (ipotesi molto forte che talvolta porta a risultati impossibili):

$$f \not\prec f' \Rightarrow f' \preccurlyeq f \quad \forall f, f' \in F$$

Proprietà di anti-simmetria

$$f \preccurlyeq f' \land f' \preccurlyeq f \Rightarrow f' = f \quad \forall f, f' \in F$$

Proprietà Transitiva

Solitamente i decisori non possiedono questa proprietà, anche perché è necessario modellare lo scorrere del tempo, per cui le proprietà valgono potenzialmente solo in un determinato periodo temporale. Viene generalmente considerata verificata.

$$f \preccurlyeq f' \land f' \preccurlyeq f'' \Rightarrow f \preccurlyeq f'' \qquad \forall f, f', f'' \in F$$

2.0.3 Ipotesi funzione del valore

Un decisore che ha in mente una funzione valore ν , ha in mente una relazione di preferenza Π **riflessiva**, **completa**, **non necessariamente anti simmetrica** e **transitiva**. Quando una relazione possiede queste proprietà viene chiamata **ordine debole**, debole perché possono esiste dei *pari merito*. Un campo di applicazione sono i campionati sportivi.

$$\exists v : F \to \mathbb{R} : f \preccurlyeq f' \Leftrightarrow v_{(f)} \succcurlyeq v_{(f')}$$

Condizioni di preordine

Avendo le condizioni di riflessività, transitività si ottiene la condizione di preordine.

Ordini deboli

Avendo le condizioni di **riflessività**, **transitività** e **completezza** si ha la condizione di ordine debole, che è molto utilizzata.

Ordine parziale

Avendo le condizioni di riflessività, transitività e antisimmetria si ottiene la condizione di ordine parziale.

Ordine totale

Avendo le condizioni di riflessività, transitività, completezza e antisimmetria si ottiene la condizione di ordine totale.

2.0.4 Tabella riassuntiva

Proprietà	Preordine	Ordine debole	Ordine parziale	Ordine totale
Riflessività	~	✓	✓	✓
Transitività	✓	✓	✓	✓
Completezza		✓		✓
Antisimmetria			~	✓

2.1 Conto di Borda

La formula in figura 2.2 utilizzato per costruire una funzione valore:

$$v(f) = |\{f' \in F : f \preccurlyeq f'\}|$$

Figura 2.2: Conto di Borda

Il valore di un impatto è pari al numero di impatti cui esso è preferibile, compreso l'impatto stesso.

Quando la cardinalità dell'insieme è $\mathbb{N} \times \mathbb{R}$ è possibile ottenere una **funzione valore**, ma quando ci si trova in condizioni come $\mathbb{R} \times \mathbb{R}$ che non risultano più mappabili sull'insieme \mathbb{R} non risulta più possibile realizzare una **funzione valore**.

2.2 Problemi semplici

Un problema viene detto *semplice* quando essi possiedono queste caratteristiche:

- 1. $\exists v(f)$ conforme
- 2. $|\Omega| = 1 \Rightarrow f: X \to \mathbb{R}$, cioè esiste un f(x)
- 3. |D| = 1
- 4. $X = \{x \in \mathbb{R}^n : g_j(x) \le 0 \forall j = 1, ..., n\} \text{ con } g_j \in C^1(\mathbb{R}^n)$

Capitolo 3

Programmazione matematica

Minimizzo f(x), con la condizione di $g_j(x) \le 0 \forall j = 1...n$.

Supponiamo di voler identificare la posizione migliore di una discarica, e che il punto in cui i rifiuti vengono prodotti sia R = (1,0), che in punto C = (0,0) vi sia in una città e che si debba avere una distanza di almeno 2 dalla città. Inoltre, la nostra discarica deve trovarsi a sinistra di $\frac{3}{2}$, cioè $x_0 < \frac{3}{2}$, perché li vi è un confine.

La funzione di minimo che vado a definire risulta:

3.1 Programmazione matematica

Definizione 3.1.1 Ottimo locale \widetilde{x} ottimo locale $\Leftrightarrow f(x) \ge f(\widetilde{x}) \forall x \in \mathbb{U}_{\widetilde{x},\varepsilon}$

Dato \tilde{x} come un **ottimo locale**, e $\xi(\alpha)$ un **arco ammissibile** con la caratteristica di:

$$\xi(0) = \widetilde{x}$$
 $\xi(alpha) \in X \forall \alpha \in [0, \widehat{\alpha})$

Allora vale che ξ risulta **non migliorante**:

$$f(\xi(\alpha)) \ge f(\widetilde{x}) = f(\xi(0)) \, \forall \alpha \in [0, \widehat{\alpha})$$

La formula sovra riportata può essere espressa più semplicemente tramite:

$$[\nabla f(\widetilde{x})]^T P_{\xi} \ge \emptyset$$

Definizione 3.1.2 (Punti non regolari)

 \widetilde{x} regolare $\Leftrightarrow \nabla g_j(\widetilde{x})$ per g_j attivo, con le varie funzioni g_j linearmente indipendenti

Definizione 3.1.3 (Punti non regolari) Sono dei punti per cui non vale

$$[\nabla g_j(\widetilde{0})]^T P_{\xi}(\widetilde{x}) \ge 0 \ per \ g_j \ attivo \leftarrow \begin{cases} \xi \ arco \ ammissibile \\ \widetilde{x} \ ottimo \ locale \end{cases} \Rightarrow [\nabla f(\widetilde{x})]^T P_{\xi} \ge \emptyset$$

3.2 Lemma di Farkas

Non ho capito a che serve

$$C_j = \{ p \in \mathbb{R}^2 : g_i^T p \le 0 \,\forall \, j \}$$

Figura 3.1: Cono direzioni "opposte" ai vettori g_j

$$C_f = \{ p \in \mathbb{R}^2 : f^T p \le 0 \,\forall \, j \}$$

Figura 3.2: Cono direzioni "opposte" a f

Se
$$\exists \mu_j \ge 0 : f = \sum_j \mu_j g_j \Leftrightarrow (C_g \subseteq C_f) - f^T p \le 0 \forall p : g_i^T p \le 0 \forall j$$

Posso riscrivere questa formula usando i gradienti:

Se
$$\exists \mu_j \geq 0 : \nabla f = \sum_j \mu_j \nabla g_j \Leftrightarrow (C_g \subseteq C_f) - \nabla f^T p \leq 0 \forall p : \nabla g_j^T p \leq 0 \forall j$$

che cosa è la combinazione lineare? e convessa? e conica?

3.3 Altra roba che non capisco

Se $\widetilde{(x)}$ è un **ottimo locale** e **regolare**, allora $\exists \mu_j \ge 0 : \nabla f(\widetilde{x}) + \sum_{j:g_j \text{ attivo}} \mu_j \nabla g_j = \emptyset$

Questo viene posto a sistema con $\mu_j g_j(\widetilde{x}) = \emptyset \forall j = 1...n$:

$$\begin{cases} \exists \mu_j \geq 0 : \nabla f(\widetilde{x}) + \sum_{j:g_j \text{ attivo}} \mu_j \nabla g_j = \emptyset \\ \mu_j g_j(\widetilde{x}) = \emptyset \, \forall \, j = 1...n \\ g_j(\widetilde{x}) < 0 \Rightarrow \mu_j = 0 \\ g_j(x) \leq 0 \, \forall \, j = 1...m \end{cases}$$