МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Лабораторная работа № 2.3.1

Получение и измерение вакуума.

Выполнил студент группы Б04-006 Вовк Дмитрий

Цель работы:

- 1) Измерение объемов форвакуумной и высоковакуумной частей установки.
- 2) Определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

Оборудование:

вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1. Установка

В данной работе используются традиционные методы откачки механическим форвакуумным насосом до давления 10-2 торр и диффузионным масляным насосом до давления 10-4 торр.

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М1 и М2), форвакуумного насоса (ФН) и соединительных кранов (К1, К2, ..., К6) (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса

Рисунок 1 - Схема установки.

Устройство и принцип действия диффузионного насоса схематически изображены на рис 3. Такой насос работает в тысячи раз быстрее форвакуумного. Его действие основано на диффузии. Масло, налитое в сосуд А, подогревается электрической печкой. Пары масла поднимаются по трубке Б и вырываются из сопла В. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку ВВ. В трубке Г мало осаждается и стекает вниз. Оставшийся газ, выходя в трубку ФВ, откачивается форвакуумным насосом.

Рисунок 2 - Схема устройства форвакуумного насоса

Рисунок 3 - Схема устройства диффузионного

Термопарный манометр. Чувствительным элементом манометра является платиновородиевая термопара, спаянная с никелевой нитью накала и заключённая в стеклянный баллон. Устройство термопары пояснено на рис. 4. По нити накала НН пропускается ток постоянной величины. Для установки тока служит потенциометр R, расположенный на передней панели вакуумметра. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство. Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы, и теплоизлучением нити (инфракрасное тепловое излучение). В обычном режиме лампы основную роль играет теплопроводность газа. При давлениях, не меньших 1 торр, теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает. При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает, и температура спая возрастает. При вакууме порядка 10-3 торр теплоотвод, осуществляемый газом, становится сравнимым с другими потерями тепла, и температура становится практически постоянной. Градуировочная кривая термопары приведена на рис. 5.

Рисунок 5 -Градуировочная кривая термопары ЛТ-2

Рисунок 4 - Схема термопарного манометра с лампой ЛТ-2

Ионизационный манометр. Схема ионизационного манометра изображения на рисунке 6. Он представляет собой трехэлектродную лампу. Электроны испускаются раскалённым катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Проскакивая за её витки, электроны замедляются полем коллектора и возвращаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своём пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток. Накалённый катод ионизационного манометра перегорает, если давление в системе превышает 10-3 торр, поэтому перед его включением необходимо проверить давление термопарным манометром.

Рисунок 6 - Схема ионизационной лампы ЛТ-2

2. Теория

2.1 Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Qi для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне Qu, десорбция с поверхностей внутри сосуда Qд, обратный ток через насос Qн. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -V dP и сумму перечисленных токов? имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt \tag{1}$$

При достижении предельного вакуума устанавливается давление Pпp, и dP = 0. Тогда:

$$W = \left(\sum_{i} Q_{i}\right) / P_{np} \tag{2}$$

Поскольку обычно Qи постоянно, а Qн и Qд слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{np} = \left(P_0 - P_{np}\right) \exp\left(-\frac{W}{V}t\right) \tag{3}$$

Полная скорость откачки W, собственная скорость откачки насоса Wн и проводимости элементов системы C1, C2, ... соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots$$
 (4)

2.2 Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется взаимодействием со стенками Для количества газа, протекающего через трубу длины 1 и радиуса г в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^{3}\sqrt{\frac{2\pi RT}{\mu}}\frac{P_{2} - P_{1}}{I}$$
 (5)

Если труба соединяет насос установку, то давлением P1 у насоса можно пренебречь. Давление в сосуде P=P2. Тогда имеем:

$$C_{mp} = \left(\frac{dV}{dt}\right)_{om\mu} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Для пропускной способности отверстий имеется формула

$$C_{mp} = \left(\frac{dV}{dt}\right)_{om} = S\frac{\vec{v}}{4} \tag{7}$$

Для воздуха при комнатной температуре $\upsilon/4 = 110 \text{ м/c} = 11 \text{ л/c} \cdot \text{см2}$

3. Ход работы

3.1 Измерение объёмов форвакуумной и высоковакуумной частей установки

- 1. Запускаем атмосферу в сосуд $V = 50 \text{ см}^3$
- 2. Откачиваем установку и подготавливаем масляный манометр к работе.
- 3. Открываем кран и записываем высоту столбов масла, после чего открываем кран в ВБ и опять снимаем показания. Результаты в таблице:

h1,см	h2,см	h3,см	h4,см
32,25	6,5	27	11

 $\sigma h = 0.25$ см (пол цены деления)

4. Рассчитываем объемы по закону Бойдя-Мариотта. $\rho = 885 \text{кг/м}^3$, $P_0 = 10^5 \text{ Па}$:

$$V_{\Phi B} = \frac{P_0 V_0}{(h_1 - h_2) \rho g} - V_0$$

$$V_{BB} = \frac{h_1 - h_2}{h_2 - h_4} (V_{\Phi B} + V_0) - V_{\Phi B} - V_0$$

	Л	σV, л	εV
ФБ	2,21	0,04	0,02
BB	1,38	0,05	0,04

3.2 Получение высокого вакуума и измерение скорости откачки

- 5. Откачиваем установку до необходимого вакуума и включаем диффузионный насос.
- 6. Включаем термопарный манометр.
- 7. Измеряем $P_{np} = 5.2 *10^5 \text{ торр.}$
- 8. Ухудшаем вакуум после чего продолжаем откачку и снимаем зависимость Р от времени по улучшению вакуума.

Приведем таблицу логарифмов отношений давлений причем не будем пренебрегать P_0

	ln((P-Pπp)/(Po-Pπp))		
t,c	I	II	
0	0,000	0,0000	
1	0,3254	0,2829	
2	0,4626	0,4499	
3	0,6217	0,6506	
4	0,8109	0,8668	
5	0,9209	1,1431	
6	1,0445	1,2384	
7	1,0986	1,4009	
8	1,2481	1,5261	
9	-	1,6692	
10	-	1,8362	
11	-	1,9315	

Построим зависимость представленную в таблице. Она представляет собой прямую. Подсчитаем по МНК коэфициент наклона

Рисунок 7 - улучшение 1

Рисунок 8 - улучшение 2

	< _X >	<y></y>	<xy></xy>	<x^2></x^2>	<y^2></y^2>
Better 1	4	0,72	3,87	22,67	0,67
Better 2	5,5	1,08	8,03	42,17	1,54

	W/V, c^-1	σW/V, c^-1	εW/V,%
Better 1	0,17	0,007	4,2
Better 2	0,19	0,004	2,28

S

$$\langle \frac{W}{V} \rangle = 0,18 c^{-1}; \sigma \langle \frac{w}{V} \rangle = \sqrt{\frac{\sum \sigma^2 \langle \frac{W}{V} \rangle}{N(N-1)}} = 0,006 c^{-1}; \epsilon \langle \frac{W}{V} \rangle = 0,04$$

$$W = \langle \frac{W}{V} \rangle * V_{BB} = 0.25 \frac{n}{c}; \epsilon W = \epsilon \langle \frac{W}{V} \rangle + \epsilon V_{BB} = 0.07; \sigma W = 0.02 \frac{n}{c}$$
$$W = (0.25 \pm 0.02) \frac{n}{c}$$

9. Теперь снимаем зависимость ухудшения вакуума от времени.

t,c	P, torr		
-	I	II	
0	6,70E-05	6,00E-05	

10	1,40E-04	1,20E-04
20	2,10E-04	1,90E-04
30	2,80E-04	2,50E-04
40	3,50E-04	3,10E-04
50	4,20E-04	3,70E-04
60	4,80E-04	4,30E-04
70	5,50E-04	4,90E-04
80	6,00E-04	5,40E-04
90	6,70E-04	6,00E-04
100	7,30E-04	6,50E-04
110	7,90E-04	7,10E-04
120	-	7,70E-04

Рисунок 9 - ухудшение 1

Рисунок 10 - ухудшение 1

	dP/dt, torr/c	σdP/dt, torr/c
Worse 1	6.5535e-06	6.6725e-08
Worse 2	5.8681e-06	4.6622e-08

$$\langle \frac{dP}{dt} \rangle = 6.2 \frac{torr}{c}; \sigma \langle \frac{dP}{dt} \rangle = \sqrt{\frac{\sum \sigma^2 \langle \frac{dP}{dT} \rangle}{N(N-1)}} = 0.3 \frac{torr}{c}; \epsilon \langle \frac{dP}{dt} \rangle = 0.06$$

По формуле (1) при W = 0:

$$\begin{split} V_{BB}dP = & (Q_{\partial} + Q_{u})dt \quad ; \quad Q_{H} = P_{np}W - (Q_{\partial} + Q_{u}) = P_{np}W - V_{BB}\frac{dP}{dt} \\ Q_{H} = & 4,3\frac{torr*_{\mathcal{H}}}{c} \qquad \sigma Q_{H} = & 2,2*_{10}^{-6}\frac{torr*_{\mathcal{H}}}{c} \\ Q_{H} = & (4\pm2)\frac{torr*_{\mathcal{H}}}{c} \qquad \epsilon Q_{H} = & 0,5 \end{split}$$

10. Рассчитаем пропускную способность капилляра по формуле:

$$C = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2 \pi RT}{\mu}} = 0,62 \,\text{л}$$
, где $r = 4*10^{-4} \,\text{m}$, $L = 10 \,\text{cm}$, $\mu = 0,028 \,\text{кг/м}^3$

$$C = 0.62 \text{ n/c}$$

Это меньше, чем W.

11. Посчитаем W другим способом

$$P_{\it np}W = Q_1$$
;
$$P_{\it ycm}W = \frac{d\,(PV)_{\it капилляра}}{dt} = \frac{d\,(PV)_{\it капилляра}}{dt} = \frac{4}{3}\frac{r^3}{L}\sqrt{\frac{2\,\pi\,RT}{\mu}}(P_2 - P_1) \;\;$$
, где $P_2 = \; 10^{-4}$ torr, $P_1 = P_{\it ycr}$

$$W = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2 \pi RT}{\mu}} \frac{P_2 - P_1}{P_{vcm} - P_{np}} = 0.19 \pm 0.4 \frac{\pi}{c} \qquad \epsilon W = 0.21$$

это значение близко к измеренному до этого.