

By @kakashi_copiador

Estratégia Concursos

ESTATÍSTICA

CONCEITOS INICIAIS (MODA)

☐ É O VALOR COM MAIOR FREQUÊNCIA.

MODA PARA DADOS NÃO AGRUPADOS

☐ É O VALOR COM MAIOR FREQUÊNCIA.

4 4 4 8 8 9 9

2222334555666699

2 2 3 3 4 4 5 5 6 6 9 9

€ NÃO HA UMA MODA - AMODAL

EXEMPLO
VARIAVEL

IDADE F.A10 20

12 12

14 416 18

MODA PARA DADOS AGRUPADOS SEM INTERVALOS DE CLASSE

EQUÊNCIA - MODA = 30

Após a extração de uma amostra, as observações obtidas são tabuladas,

gerando a seguinte distribuição de frequencias: POSSUL A MAIOR FREQUÊNCIA - MO = 9									
Valor	3	5	9	Possu (13)	n A	MAIOR	FREQUEN	ICIA —	M0 = 9 ME = 5
Frequência	5	9	10	3					E(x) = 7
Consider	rando	que 📙	X) = N	1édia	de X,	Mo(X)	= Moda	de X	e Me(X)
Mediana de X, é correto afirmar que:									
A.E(X) =	7 e M	o(X) =	10 ;	$\overline{\chi} =$	3.5	+ 5.9 -	+ 9.10 +	13.3	

A.
$$E(X) = 7 e Mo(X) = 10;$$
 $\overline{\chi} = 3.5 + 5.9 + 9.10 + 13.3$
B. $Me(X) = 5 e E(X) = 6.3;$ $5 + 9 + 10 + 3$

Mo(X) = 9 e E(X) = 7.
$$\overline{x} = \frac{189}{\overline{x}} = \frac{27}{189}$$

MODA PARA DADOS AGRUPADOS EM CLASSE

MODA BRUTA

☐ A moda bruta é simplesmente o ponto médio da classe de maior freqüência, a classe modal.

MODA BRUTA (GRUPADO)

78

Xi	fi CLASSE MODAL : 7	4 14
70 74	7	1 1
74 78	19 (MAIOR) MODA BRUTA = 76	
78 82	13	
82 86	11	
86 90	6	
90 94	4	
Total	60	

MÉTODO DE CZUBER (GRUPADA)

$$MODA = l_i + \frac{\Delta_1}{\Delta_1 + \Delta_2} \cdot h$$

MÉTODO DE CZUBER

Xi	fi	$Mo = L_{\lambda} + \Delta_{1}$
70 74	$\Delta_1 = 12$ $\frac{19}{19} \left(\text{CLASSE} \right)$ $\Delta_2 = 6 \boxed{13}$	$\Delta_{\Lambda} + \Delta$
74 78	(19 CLASSE)	1.2
78 82	$\Delta_2 = 6$ (13)	M0 = 74 + 12
82 86	11	12+ 6
86 90	6	M - 7/1 . 10
90 94	4	$Mo = 74 + \frac{12}{18}$
Total	60	

 $\frac{1}{\Delta_2}$. $\frac{8}{3} \cong 2,66...$

 $\Delta_{\lambda} = 6$

mo = 74 + 2,666 ... = 76,666 ... https://t.me/kakashi_copiador

ESTATÍSTICA Prof. JHONI ZINI

 $\Delta_1 = 12$

MÉTODO DE KING (GRUPADA)

$$MODA = l_i + \frac{F_{post}}{F_{ant} + F_{post}} \cdot h$$

MÉTODO DE KING

Xi	fi	Mo = Lit Fost
70 74	7(FREQ	F + F POST
74 78	19	•
78 82	13 (FREA POST)	Mo = 74 + 13
82 86	11	7 + 13
86 90	6	1 7 13
90 94	4	Mo = 74 + 13 .4
Total	60	20

$$Mo = 74 + 52$$

$$M_0 = 74 + 2,6 \longrightarrow M_0 = 76,6$$

MODA PARA DISTRIBUIÇÕES COM AMPLITUDES NÃO CONSTANTES

☐ UTILIZAMOS A DENSIDADE DE FREQUÊNCIA NO LUGAR DA FREQUÊNCIA.

MODA PARA DISTRIBUIÇÕES

COM AMPLITUDES NÃO CONSTANTES

DENSIDADE DE FREQUÊNCIA

> 4 4

15

DENSIDADE = F

CLASSE MODAL = 55 H 60

X FA : 65 10 50

ESTATÍSTICA Prof. JHONI ZINI

QUESTÃO 1

A ideia de grupar as observações de uma população ou amostra constitui uma técnica bem antiga de condensar as informações e assim facilitar o seu tratamento. No passado essa técnica era empregada com sucesso, mas com a ressalva de que os resultados não eram tão precisos quanto aqueles obtidos com dados não grupados.

Classes	Frequências
10 - 20 CLASSE	(50)
20 30	28
30 40	24
Total	102

Considere a distribuição expressa em classes de frequências:

Mesmo sem dispor dos dados de forma desagregada, sobre as estatísticas exatas, é correto afirmar que:

- A. a moda não pertence à última classe;
- B. a média é superior a 28;
- C. a mediana é menor do que 23;
- D. a média é superior a 16;
- E a moda é inferior a 20.

PROPRIEDADES DA MODA

PROPRIEDADES DA MODA

Somando-se (ou subtraindo-se) uma constante c a todos os valores de uma variável, a moda do conjunto fica aumentada (ou diminuída) dessa constante.

EXEMPLO

PROPRIEDADES DA MODA

 \square Multiplicando-se (ou dividindo-se) todos os valores de uma variável por uma constante c, a moda do conjunto fica multiplicada (ou dividida) por essa constante.

EXEMPLO

OBRIGADO

Prof. Ricardo Torques

Estratégia Concursos

