Computational Methods of Optimization Final Exam-Part 2(25th Jan,2021)

Start Time: 10:30 AM End Time: 12:00 Noon

Instructions

- Answer all questions
- $\bullet\,$ See upload instructions in the form

Question:	1	2	3	Total
Points:	10	10	10	30
Score:				

1. Consider the gradient projection algorithm

$$\mathbf{x}^{(k+1)} = P_C \left(\mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)}) \right)$$

for

$$\min_{\mathbf{x} \in C} f(\mathbf{x})$$

where $P_C(\mathbf{z})$ is the projection of the point \mathbf{z} on the convex set C.

(a) (5 points) At a feasible point $\mathbf{x}^{(k)}$ suppose we use

$$\mathbf{x}^{(k+1}) = P_C \left(\mathbf{x}^{(k)} + \alpha \mathbf{u} \right)$$

where $\mathbf{u} \in \mathbb{R}^d$. For what values of \mathbf{u} is $\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$ a feasible descent direction.

(b) (5 points) State an upper-bound on the step size if the derivative of f was continuous with Lipschitz constant L

2. Consider the following problem

$$p^* = min_{x,y \in \mathbb{R}} f(x,y) \left(\equiv x^2 - y^2 + 2(x+y) \right)$$

subject to $x^2 + y^2 = 1$.

(a) (3 points) Define the dual function, $g(\mu)$ where μ is a dual variable? What is the domain of the function

(b) (2 points) State the optimality criteria of the dual optimization problem	
(c) Let d^* be the optimal value of the dual problem.	
i. (1 point) Is $p^* = d^*$? A. Yes B. No	
ii. (4 points) Give reasons	

3. Consider the following Linear Program

 $min_{x_1,x_2}x_1 + x_2$ subject $tox_1 + 2x_2 \le 4, x_2 \le 1$

			_
x_1	x_2	>	0

a)	(2 points) Express the problem in the standard form?
	$min_z c^{\top} z$, subject to $Az = b, z \ge 0$
	Clearly State A, b, c
b)	(2 points) Find the Basis and BFS, \hat{z} , corresponding to the point where the constraints $x_1+2x_2 \leq 4$, and $x_2 \leq 1$ are active.
(c)	(3 points) Is the BFS optimal? Give reasons
.~)	(0
d)	(3 points) Find a new BFS using the simplex method? Identify the new basis vector and the vector which is leaving?