F. Little Artem and 2-SAT

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Little Artem is a very smart programmer. He knows many different difficult algorithms. Recently he has mastered in <u>2-</u>SAT one.

In computer science, 2-satisfiability (abbreviated as $\underline{\text{2-SAT}}$) is the special case of the problem of determining whether a conjunction (logical $\underline{\text{AND}}$) of disjunctions (logical $\underline{\text{OR}}$) have a solution, in which all disjunctions consist of no more than two arguments (variables). For the purpose of this problem we consider only $\underline{\text{2-SAT}}$ formulas where each disjunction consists of exactly two arguments.

Consider the following <u>2-SAT</u> problem as an example: Note that there might be negations in <u>2-SAT</u> formula (like for x_1 and for x_4).

Artem now tries to solve as many problems with <u>2-SAT</u> as possible. He found a very interesting one, which he can not solve yet. Of course, he asks you to help him.

The problem is: given two <u>2-SAT</u> formulas f and g, determine whether their sets of possible solutions are the same. Otherwise, find any variables assignment x such that $f(x) \neq g(x)$.

Input

The first line of the input contains three integers n, m_1 and m_2 ($1 \le n \le 1000$, $1 \le m_1$, $m_2 \le n^2$) — the number of variables, the number of disjunctions in the first formula and the number of disjunctions in the second formula, respectively.

Next m_1 lines contains the description of <u>2-SAT</u> formula f. The description consists of exactly m_1 pairs of integers x_i ($-n \le x_i \le n, x_i \ne 0$) each on separate line, where $x_i > 0$ corresponds to the variable without negation, while $x_i < 0$ corresponds to the variable with negation. Each pair gives a single disjunction. Next m_2 lines contains formula g in the similar format.

Output

If both formulas share the same set of solutions, output a single word "SIMILAR" (without quotes). Otherwise output exactly n integers x_i () — any set of values x such that $f(x) \neq g(x)$.

Examples

input 2 1 1 1 2 1 2 Output SIMILAR

input

2 1 1

1 2

1 -2

output

0 0

Note

First sample has two equal formulas, so they are similar by definition.

In second sample if we compute first function with $x_1=0$ and $x_2=0$ we get the result 0 , because formula is 1 , because .	But the second