Anticipez les besoins en consommation de bâtiments

14 avril 2023 Yoann Poupart

Exploration des données

- Exploration des données
- Feature engineering

- Exploration des données
- Feature engineering
- Modélisation

- Exploration des données
- Feature engineering
- Modélisation
- Résultats

- Exploration des données
- Feature engineering
- Modélisation
- Résultats
- Conclusion

Exploration des données

0	OSEBuildingID	3376 non-null int64
1	DataYear	3376 non-null int64
2	BuildingType	3376 non-null object
3	PrimaryPropertyType	3376 non-null object
•••		
12	Latitude	3376 non-null float64
13	Longitude	3376 non-null float64
14	YearBuilt	3376 non-null int64
15	NumberofBuildings	3368 non-null float64
16	NumberofFloors	3376 non-null int64
17	PropertyGFATotal	3376 non-null int64
18	PropertyGFAParking	3376 non-null int64
19	PropertyGFABuilding(s) 3376 non-null int64
20	ListOfAllPropertyUse ⁷	Types 3367 non-null object

0 OSEBuildingID	3376 non-null int64	}
1 DataYear	3376 non-null int64	
2 BuildingType	3376 non-null object	
3 PrimaryPropertyType	3376 non-null object	
•••		
12 Latitude	3376 non-null float64	
13 Longitude	3376 non-null float64	
14 YearBuilt	3376 non-null int64	
15 NumberofBuildings	3368 non-null float64	
16 NumberofFloors	3376 non-null int64	
17 PropertyGFATotal	3376 non-null int64	
18 PropertyGFAParking	3376 non-null int64	
19 PropertyGFABuilding	g(s) 3376 non-null int64	
20 ListOfAllPropertyUse	eTypes 3367 non-null object	

•••

0	OSEBuildingID	3376 non-null int64] Identification
1	DataYear	3376 non-null int64	
2	BuildingType	3376 non-null object	Structure
3	PrimaryPropertyType	3376 non-null object	Structure
•••			
12	Latitude	3376 non-null float64	
13	Longitude	3376 non-null float64	
14	YearBuilt	3376 non-null int64	
15			
עב	NumberofBuildings	3368 non-null float64	
	NumberofBuildings NumberofFloors	3368 non-null float64 3376 non-null int64	
16	3		
16 17	NumberofFloors	3376 non-null int64	
16 17 18	NumberofFloors PropertyGFATotal	3376 non-null int64 3376 non-null int64 3376 non-null int64	

0 OSEBuildingID	3376 non-null int64	<u> </u>	Identificati
1 DataYear	3376 non-null int64		
2 BuildingType	3376 non-null object		Cturatura
3 PrimaryPropertyType	3376 non-null object		Structure
•••			
12 Latitude	3376 non-null float64	 	
13 Longitude	3376 non-null float64		
14 YearBuilt	3376 non-null int64		
15 NumberofBuildings	3368 non-null float64		
16 NumberofFloors	3376 non-null int64		
17 PropertyGFATotal	3376 non-null int64		
18 PropertyGFAParking	3376 non-null int64		
19 PropertyGFABuilding	(s) 3376 non-null int64		
20 ListOfAllPropertyUse	Types 3367 non-null object		

0 OSEB	ıildingID	3376 non-null int64		Identification
1 DataYe	ar	3376 non-null int64		
2 Buildin	ıgТуре	3376 non-null object		Ctructure
3 Primai	yPropertyType	3376 non-null object		Structure
•••				
12 Latitu	de	3376 non-null float64		
13 Longit	ude	3376 non-null float64		
14 YearB	ıilt	3376 non-null int64		
15 Numb	erofBuildings	3368 non-null float64		
16 Numb	erofFloors	3376 non-null int64		
17 Proper	tyGFATotal	3376 non-null int64		
18 Prope	tyGFAParking	3376 non-null int64		
19 Prope	tyGFABuilding	(s) 3376 non-null int64)	
20 ListO	AllPropertyUse	Types 3367 non-null object		
•••				Type d'utilisation

27	YearsENERGYSTARCertif	ied 119 non-null object
28	ENERGYSTARScore	2533 non-null float64
•••		
33	SiteEnergyUse(kBtu)	3371 non-null float64
34	SiteEnergyUseWN(kBtu)	3370 non-null float64
35	SteamUse(kBtu)	3367 non-null float64
36	Electricity(kWh)	3367 non-null float64
37	Electricity(kBtu)	3367 non-null float64
38	NaturalGas(therms)	3367 non-null float64
39	NaturalGas(kBtu)	3367 non-null float64
•••		
44	TotalGHGEmissions	3367 non-null float64
45	GHGEmissionsIntensity	3367 non-null float64

27 Yea	rsENERGYSTARCertifi	ed 119 non-null	object
28 EN	IERGYSTARScore	2533 non-null	float64
•••			
33 Site	eEnergyUse(kBtu)	3371 non-null flo	oat64
34 Site	eEnergyUseWN(kBtu)	3370 non-null	float64
35 Ste	amUse(kBtu)	3367 non-null floa	nt64
36 Ele	ctricity(kWh)	3367 non-null float	:64
37 Ele	ctricity(kBtu)	3367 non-null floate	64
38 Na	turalGas(therms)	3367 non-null flo	oat64
39 Na	turalGas(kBtu)	3367 non-null floa	at64
•••			
44 Tot	talGHGEmissions	3367 non-null f	loat64
45 GF	IGEmissionsIntensity	3367 non-null	float64

→ Pertinence à évaluer

27 YearsENERGYSTARCertif	fied 119 non-null object	
28 ENERGYSTARScore	2533 non-null float64	Pertinence à évaluer →
•••		
33 SiteEnergyUse(kBtu)	3371 non-null float64	Variables cibles
34 SiteEnergyUseWN(kBtu)	3370 non-null float64	variables cibles
35 SteamUse(kBtu)	3367 non-null float64	
36 Electricity(kWh)	3367 non-null float64	
37 Electricity(kBtu)	3367 non-null float64	
38 NaturalGas(therms)	3367 non-null float64	
39 NaturalGas(kBtu)	3367 non-null float64	
•••		
44 TotalGHGEmissions	3367 non-null float64	
45 GHGEmissionsIntensity	3367 non-null float64	

27	YearsENERGYSTARCertif	fied 119 non-null object	
28	B ENERGYSTARScore	2533 non-null float64	Pertinence à évaluer →
•••	,		
33	SiteEnergyUse(kBtu)	3371 non-null float64	Variables cibles
34	SiteEnergyUseWN(kBtu)	3370 non-null float64	variables cibles
35	SteamUse(kBtu)	3367 non-null float64	
36	Electricity(kWh)	3367 non-null float64	
37	' Electricity(kBtu)	3367 non-null float64	→ Variables pseudo-cibles
38	NaturalGas(therms)	3367 non-null float64	1
39	NaturalGas(kBtu)	3367 non-null float64	
•••	,		
44	TotalGHGEmissions	3367 non-null float64	
45	GHGEmissionsIntensity	3367 non-null float64	

• Energie score informationnel

• Energie score informationnel

Corrélations cibles/pseudo-cibles

• Energie score informationnel

Corrélations cibles/pseudo-cibles

Données structurelles

Distributions des émissions

Distributions des émissions

Distributions catégorielles

BuildingType

Distributions catégorielles

BuildingType

NonResidential 88.26 1.41 Campus 5.13 SPS-District K-12 Nonresidential COS

<u>PrimaryPropertyType</u>

Dépendances linéaires

Somme des consommations

Dépendances linéaires

Somme des aires

Feature engineering

Version 1

- One hot encoding de "PrimaryPropertyType"
- Présence de "ENERGYSTARScore"

Feature engineering Version itératives Modélisation

Version 1
 One hot encoding de "PrimaryPropertyType"

 Présence de "ENERGYSTARScore"

 Version 2
 Nullité de "ParkingGFA"

 Steam ratio - Gas ratio - Elec ratio

Feature engineering Version itératives Modélisation

35 SteamUse(kBtu)	3367 non-null float64
36 Electricity(kWh)	3367 non-null float64
37 Electricity(kBtu)	3367 non-null float64
38 NaturalGas(therms)	3367 non-null float64
39 NaturalGas(kBtu)	3367 non-null float64

· Variables pseudo-cibles

35 SteamUse(kBtu)	3367 non-null float64
36 Electricity(kWh)	3367 non-null float64
37 Electricity(kBtu)	3367 non-null float64
38 NaturalGas(therms)	3367 non-null float64
39 NaturalGas(kBtu)	3367 non-null float64

Variables pseudo-cibles

35 SteamUse(kBtu)	3367 non-null float64	
36 Electricity(kWh)	3367 non-null float64	
37 Electricity(kBtu)	3367 non-null float64	
38 NaturalGas(therms)	3367 non-null float64	
39 NaturalGas(kBtu)	3367 non-null float64	

Ratios:

$$s \div (s+e+g)$$

$$g \div (s+e+g)$$

35 SteamUse(kBtu)	3367 non-null float64	
36 Electricity(kWh)	3367 non-null float64	
37 Electricity(kBtu)	3367 non-null float64	
38 NaturalGas(therms)	3367 non-null float64	
39 NaturalGas(kBtu)	3367 non-null float64	

Variables pseudo-cibles

Ratios:

$$s \div (s+e+g)$$

$$g \div (s+e+g)$$

/!\ Data leakage

7 PropertyGFAParking	1637 non-null float64	Nullité de la variable
•••		
28 ENERGYSTARScore	2533 non-null float64	
•••		
35 SteamUse(kBtu)	3367 non-null float64	
36 Electricity(kWh)	3367 non-null float64	
37 Electricity(kBtu)	3367 non-null float64	
38 NaturalGas(therms)	3367 non-null float64	
39 NaturalGas(kBtu)	3367 non-null float64	

7 Prope	rtyGFAParking	1637 non-null float64	Nullité de la variable
•••			
28 ENEI	RGYSTARScore	2533 non-null float64	
•••			
35 Stean	ıUse(kBtu)	3367 non-null float64	
36 Elect	ricity(kWh)	3367 non-null float64	
37 Elect	ricity(kBtu)	3367 non-null float64	
38 Natu	ralGas(therms)	3367 non-null float64	
39 Natu	ralGas(kBtu)	3367 non-null float64	

One hot encoding:

 $f \neq 0$

One hot encoding:

 $f \neq 0$

One hot encoding:

 $f \neq 0$

f ≠ null

One hot encoding:

 $f \neq 0$

f ≠ null

One hot encoding

0 BuildingType 1637 non-null object
1 PrimaryPropertyType 1637 non-null object

••••

28 is_ENERGYSTARScore 1637 non-null object

29 is_SteamUse 1637 non-null object

30 is_NaturalGas 1637 non-null object

31 is_PropertyGFAParking 1637 non-null object

Variable catégorielle

One hot encoding

```
0 BuildingType 1637 non-null object
1 PrimaryPropertyType 1637 non-null object

28 is_ENERGYSTARScore 1637 non-null object
29 is_SteamUse 1637 non-null object
30 is_NaturalGas 1637 non-null object
31 is_PropertyGFAParking 1637 non-null object
```

One hot encoding

```
0 BuildingType 1637 non-null object
1 PrimaryPropertyType 1637 non-null object

28 is_ENERGYSTARScore 1637 non-null object
29 is_SteamUse 1637 non-null object
30 is_NaturalGas 1637 non-null object
31 is_PropertyGFAParking 1637 non-null object
```

Encoding des valeurs:

["a"; "b"; "c"]
$$\rightarrow$$
 [(1, 0, 0); (0, 1, 0); (0, 0, 0)]

Valeurs uniques transformées en variables

20 ListOfAllPropertyUseTypes

3367 non-null object

→ Type d'utilisation

```
20 ListOfAllPropertyUseTypes 3367 non-null object  
Type d'utilisation

Équation sémantique: reine ≈ roi - homme + femme
```

20 ListOfAllPropertyUseTypes 3367 non-null object Type d'utilisation Équation sémantique: reine ≈ roi - homme + femme bibliothèque = galerie - tableaux + livres Hotel, Parking, Restaurant

Modélisation

Energy score

Embeddings PCA

Embeddings PCA

LR	Train	Test
15 Composantes	R ² : 0.079	R²: 0.094
20	R ² : 0.131	R²: 0.226

Categorical PCA

Categorical PCA

Threshold = 0

N_components=1

Résultats

Baselines énergie

|--|

Dummy (mean)
Dummy (Q:0.8)

R ² : 0.0	R²: -0.001
R ² : -0.012	R ² : -0.021

Baselines énergie

	Train	Test
Dummy (mean)	R ² : 0.0	R²: -0.001
Dummy (Q:0.8)	R ² : -0.012	R ² : -0.021
Danning (Q.0.0)	17. 0.012	17. 0.021
LR (S:surface)	R ² : 0.4617	R²: 0.502

Baselines énergie

	Train	Test
Dummy (mean)	R ² : 0.0	R ² : -0.001
Dummy (Q:0.8)	R ² : -0.012	R ² : -0.021
LR (S:surface)	R ² : 0.4617	R²: 0.502
LR	R ² : 0.522	R²: 0.298
(S+year+#floor) LR (S+embeddings)	R ² : 0.547	R²: 0.575
Lit (O'Cilibedaii 193)		

Train Test

ElasticNet

R²: 0.417 R²: 0.546

L1-ratio = 0.1 Alpha = 3.2

	Train	Test
ElasticNet	R ² : 0.417	R²: 0.546
Ridge	R ² : 0.548	R²: 0.643

Alpha = 10^3

	Train	Test
ElasticNet	R ² : 0.417	R²: 0.546
Ridge	R ² : 0.548	R²: 0.643
SVR (racine)	R ² : 0.822	R²: 0.815
SVR (log)	R ² : 0.743	R²: 0.656

 $C = 10^4$ Epsilon = 10^2

	Train	Test
ElasticNet	R ² : 0.417	R²: 0.546
Ridge	R ² : 0.548	R²: 0.643
SVR (racine)	R ² : 0.822	R²: 0.815
SVR (log)	R ² : 0.743	R²: 0.656

C = 1 Epsilon = 0.01

RandomForest (RF)

RF (racine)

Train	Test
R ² : 0.730	R²: 0.658
R ² : 0.734	R²: 0.714

Estimators = 200 Depth = 25 Samples = 7

|--|

RandomForest (RF)

RF (racine)

R ² : 0.730	R²: 0.658
R²: 0.734	R²: 0.714

stimators = 150 Depth = 15 Samples = 5

Résultats énergie

Train	Test

RandomForest (RF)

RF (racine)

R²: 0.730	R²: 0.658
R ² : 0.734	R²: 0.714

XGB

XGB (racine)

R²: 0.998	R²: 0.492
R²: 0.970	R²: 0.679

Estimators = 150
Depth = 15
Gamma = 0.1

Résultats énergie

Train	Test

RandomForest (RF)

RF (racine)

R²: 0.730	R²: 0.658
R ² : 0.734	R²: 0.714

XGB

XGB (racine)

R²: 0.998	R²: 0.492
R²: 0.970	R²: 0.679

Estimators = 200Depth = 25Gamma = 0.01

Baselines émissions

	Train	Test
Dummy (mean)	R ² : 0.0	R²: -0.001
Dummy (Q:0.8)	R ² : -0.001	R ² : -0.000
LR (S:surface)	R ² : 0.236	R²: 0.331
LR (2)	R ² : 0.294	R²: 0.409
(S+year+#floor)	R ² : 0.396	R²: 0.421
LR (S+embeddings)		

Baselines émissions

	Train	Test
Dummy (mean)	R ² : 0.0	R²: -0.001
Dummy (Q:0.8)	R ² : -0.001	R ² : -0.000
LR (S:surface)	R ² : 0.236	R²: 0.331
LR	R²: 0.294	R ² : 0.409
(S+year+#floor)	R²: 0.396	R²: 0.421
LR (S+embeddings)	······································	

	Train	Test
ElasticNet	R ² : 0.440	R ² : 0.422
Ridge	R ² : 0.543	R²: 0.544

L1-ratio = 10^{-3} Alpha = 1

	Train	Test
ElasticNet	R ² : 0.440	R²: 0.422
Ridge	R²: 0.543	R²: 0.544

Alpha = 10^2

	Train	Test
ElasticNet	R ² : 0.440	R²: 0.422
Liasticivet	17 . 0.440	N . 0.422
Ridge	R ² : 0.543	R²: 0.544
SVR	R ² : 0.963	R²: 0.856
SVR (racine)	R²: 0.971	R²: 0.909

$$C = 10^4$$

Epsilon = 1

	Train	Test
ElasticNet	R ² : 0.440	R ² : 0.422
Ridge	R ² : 0.543	R ² : 0.544
SVR	R ² : 0.963	R²: 0.856
SVR (racine)	R ² : 0.971	R²: 0.909

C = 100Epsilon = 0.01

RandomForest (RF)

RF (racine)

Train	Test
R ² : 0.680	R²: 0.501
R ² : 0.827	R²: 0.570

Estimators =250 Depth = 15 Samples = 5

Train Test

RandomForest (RF)

RF (racine)

R ² : 0.680	R²: 0.501
R²: 0.827	R²: 0.570

Estimators = 200 Depth = 15 Samples = 3

RandomForest (RF)
RF (racine)

Train	Test
R ² : 0.680	R²: 0.501
R ² : 0.827	R²: 0.570

XGB	ر
XGB (racine)	

R ² : 0.995	R²: 0.846
R²: 1.000	R²: 0.855

Estimators = 200 Depth = 5 Gamma = 0.1

Train	Test

RandomForest (RF)

RF (racine)

R ² : 0.680	R²: 0.501
R ² : 0.827	R²: 0.570

XGB

XGB (racine)

R²: 0.995	R²: 0.846
R²: 1.000	R²: 0.855

Estimators = 300
Depth = 15
Gamma = 0.01

Conclusion

Énergie	Train	Test	Fit time
SVR (racine)	R ² : 0.85 ± 0.04 MAE: 143.10 ⁴ ± 9.10 ⁴	R ² : 0.78 ± 0.09 MAE: 29.10 ⁵ ± 5.10 ⁵	0.58 ± 0.07 s
RF (racine)	R ² : 0.93 ± 0.01 MAE: 126.10 ⁴ ± 4.10 ⁴	R ² : 0.6 ± 0.2 MAE: 32.10 ⁵ ± 5.10 ⁵	3.4 ± 0.4 s

Énergie		
SVR (racine)		
RF (racine)		

Train	Test	Fit time
R ² : 0.85 ± 0.04 MAE: 143.10 ⁴ ± 9.10 ⁴	R ² : 0.78 ± 0.09 MAE: 29.10 ⁵ ± 5.10 ⁵	0.58 ± 0.07 s
R ² : 0.93 ± 0.01 MAE: 126.10 ⁴ ± 4.10 ⁴	R ² : 0.6 ± 0.2 MAE: 32.10 ⁵ ± 5.10 ⁵	3.4 ± 0.4 s

Énergie	Train	Test	Fit time
SVR (racine)	R ² : 0.85 ± 0.04 MAE: 143.10 ⁴ ± 9.10 ⁴	R ² : 0.78 ± 0.09 MAE: 29.10 ⁵ ± 5.10 ⁵	0.58 ± 0.07 s
RF (racine)	R ² : 0.93 ± 0.01 MAE: 126.10 ⁴ ± 4.10 ⁴	R ² : 0.6 ± 0.2 MAE: 32.10 ⁵ ± 5.10 ⁵	3.4 ± 0.4 s
Émissions	Train	Test	Fit time
SVR (racine)	R ² : 0.977 ± 0.003 MAE: 17.1 ± 0.8	R ² : 0.87 ± 0.05 MAE: 65 ± 10	0.75 ± 0.02 s
XGB (racine)	R ² : 1.000 ± 0.001 MAE: 1.0 ± 0.1	R ² : 0.7 ± 0.2 MAE: 79 ± 9	4 ± 1 s

Énergie	Train	Test	Fit time
SVR (racine)	R ² : 0.85 ± 0.04 MAE: 143.10 ⁴ ± 9.10 ⁴	R ² : 0.78 ± 0.09 MAE: 29.10 ⁵ ± 5.10 ⁵	0.58 ± 0.07 s
RF (racine)	R ² : 0.93 ± 0.01 MAE: 126.10 ⁴ ± 4.10 ⁴	R ² : 0.6 ± 0.2 MAE: 32.10 ⁵ ± 5.10 ⁵	3.4 ± 0.4 s
Émissions	Train	Test	Fit time
SVR (racine)	R ² : 0.977 ± 0.003 MAE: 17.1 ± 0.8	R ² : 0.87 ± 0.05 MAE: 65 ± 10	0.75 ± 0.02 s
XGB (racine)	R ² : 1.000 ± 0.001 MAE: 1.0 ± 0.1	R ² : 0.7 ± 0.2 MAE: 79 ± 9	4 ± 1 s

Prédictions résiduelles

Prédictions résiduelles

Énergie	Train	Test
LR (S)	R ² : 0.477 ± 0.02 MAE: 47 ± 3.10 ⁵	R ² : 0.4 ± 0.1 MAE: 48.10 ⁵ ± 7.10 ⁵
LR (S+is_ES)	R ² : 0.48 ± 0.02 MAE: 47 ± 2.10 ⁵	R ² : 0.43 ± 0.09 MAE: 48 ± 4.10 ⁵
LR (S+ES)	R ² : 0.490 ± 0.009 MAE: 47 ± 3.10 ⁵	R ² : 0.44 ± 0.08 MAE: 48.10 ⁵ ± 6.10 ⁵
LR	R ² : 0.49 ± 0.04 MAE: 47 ± 3.10 ⁵	R ² : 0.47 ± 0.08 MAE: 48 ± 7.10 ⁵
(S+ES+is_ES)		

Fit time

 $3 \pm 1 \, \text{ms}$

 $3 \pm 1 \, \text{ms}$

 $3 \pm 1 \, \text{ms}$

 $3 \pm 1 \, \text{ms}$

Énergie	Train	Test	Fit time
LR (S)	R ² : 0.477 ± 0.02 MAE: 47 ± 3.10 ⁵	R ² : 0.4 ± 0.1 MAE: 48.10 ⁵ ± 7.10 ⁵	3 ± 1 ms
LR (S+is_ES)	R ² : 0.48 ± 0.02 MAE: 47 ± 2.10 ⁵	R ² : 0.43 ± 0.09 MAE: 48 ± 4.10 ⁵	3 ± 1 ms
LR (S+ES)	R ² : 0.490 ± 0.009 MAE: 47 ± 3.10 ⁵	R ² : 0.44 ± 0.08 MAE: 48.10 ⁵ ± 6.10 ⁵	3 ± 1 ms
LR (S+ES+is_ES)	R ² : 0.49 ± 0.04 MAE: 47 ± 3.10 ⁵	R ² : 0.47 ± 0.08 MAE: 48 ± 7.10 ⁵	3 ± 1 ms

$$(C_{\text{var}} \times M_{\text{var}}) \div M_{\text{E}}$$

Analyse rétrospective

- Propreté des données
 - → Quelques outliers (2015 pire)

Analyse rétrospective

- Propreté des données
 - → Quelques outliers (2015 pire)
- Energie score
 - → Contient de l'information pertinente
 - → Pas de motif caché

Analyse rétrospective

- Propreté des données
 - → Quelques outliers (2015 pire)
- Energie score
 - → Contient de l'information pertinente
 - → Pas de motif caché
- Feature importance
 - → Valeurs de shapley

Analyse rétrospective

- Propreté des données
 - → Quelques outliers (2015 pire)
- Energie score
 - → Contient de l'information pertinente
 - → Pas de motif caché
- Feature importance
 - → Valeurs de shapley

Axes d'amélioration

- Text embeddings
 - → Ajouter toutes les variables catégorielles
 - → Ajuster la PCA dans la modélisation

Analyse rétrospective

- Propreté des données
 - → Quelques outliers (2015 pire)
- Energie score
 - → Contient de l'information pertinente
 - → Pas de motif caché
- Feature importance
 - → Valeurs de shapley

Axes d'amélioration

- Text embeddings
 - → Ajouter toutes les variables catégorielles
 - → Ajuster la PCA dans la modélisation
- Analyse résiduelle
 - → Inspecter les différences de distribution
 - **→** Raffinement par boosting

Merci de votre attention.

•••

Des questions?