

Statistik

1 Deskriptive Statistik

1.1 Merkmalstypen

1.1.1 Qualitativ/Kategoriell

Endliche Anzahl Ausprägungnen

- Nominal (Kategorisierung, keine Ordnung)
- Ordinal (Ranggierung möglich, Ordnung möglich)

1.1.2 Quantitativ/Metrisch

Ausmass in Zahlen

- Diskret (Fixe Sprunggrösse)
- Stetig (Reelle Sprunggrösse)

1.2 PDF & CDF

- Vorkommnis: 1, 2, 3
- Häufigkeit: 40, 50, 10

$$\bullet \ \ \text{Relativ:} \ \frac{Absolut}{Total} = \frac{40}{40 + 50 + 10} = 0.4 = 40\%$$

- $\frac{\text{CDF Wert}}{\text{PDF Wert}} = \text{Anzahl Elemente}$
- [0,1[: Bereich 0 bis 1 ohne Wert 1

1.3 Quantil

- $\bullet \text{ wenn: } n\cdot q\%1 == 0 \rightarrow R_q = \frac{1}{2}(x_{n\cdot q} + x_{n\cdot q+1})$
- wenn: $n \cdot q\%1 <> 0 \rightarrow R_q = x_{n \cdot q + i}$ mit i: zwischen 0 und 1 und n·q+1 ganzzahlig
- $R_{0.25} = Q_1$
- $R_{0.5} = Q_2 = \tilde{x}$ (Median)
- $R_{0.75} = Q_3$
- $Q_3 Q_1 = IQR$

1.4 Boxplot

1.4.1 Ausführliche Angabe aller vorkommenden Grössen

- Werte sortiert
- $R_{0.25}$, median/ $R_{0.5}$, $R_{0.75}$
- Interquantilsabstand
- 1.5 · Interquantilsabstand
- Untere/Obere Antenne
- Ausreisser unten/oben

1.5 Streudiagramm / Scatterplot

Scatterplot for quality characteristic XXX

- Ein Streudiagramm/Punktwolke, ist die graphische Darstellung von beobachteten Wertepaaren zweier statistischer Merkmale
- Wertepaare werden in ein kartesisches Koordinatensystem eingetragen
- Eine Punktwolke entsteht

1.6 Varianz & Standartabweichung

- Vorkommnis: 1, 4, 7
- Varianz: $\sigma^2 = \frac{\sum (x_i \bar{x})^2}{n} = \frac{9 + 0 + 9}{3} = 6$
- kor. Varianz: $\hat{\sigma}^2 = \frac{\sum (x_i \bar{x})^2}{n-1} = \frac{9+0+9}{2} = 9$
- Standartabweichung: $\sigma = \sqrt{6}$
- kor. Standartabweichung $\hat{\sigma} = \sqrt{9} = 3$

2 Regression

2.1 Lineare Regression

- $\bullet \ g(x) = mx + d$
- Steigung: $m = \frac{s_{xy}}{s_{xx}}$
- $d = \bar{y} m\bar{x}$
- Kovarianz: $s_{xy} = \overline{x \cdot y} \bar{x} \cdot \bar{y}$
- Varianz der x-Werte: $s_x^2 = s_{xx} = \overline{x^2} \bar{x}^2 = \frac{1}{n} \sum (x_i \bar{x})^2 = \sigma^2(x)$
- Totale Varianz: $s_y^2 = s_{yy} = \overline{y^2} \bar{y}^2 = \frac{1}{n} \sum (y_i \bar{y})^2 = \sigma^2(y)$
- Residuenvarianz: $s_{\varepsilon}^2 = s_{yy} \frac{s_{xy}^2}{s_{xx}}$
- ullet Summe der Residuen Quadrate: $s_{arepsilon}^2 \cdot n$
- \bullet Erklärte Varianz: $s_{\hat{y}}^2 = s_y^2 s_\varepsilon^2$
- Bestimmtheitsmass: $R^2 = \frac{s_{\hat{y}}^2}{s_y^2}$
- ullet Pearson Korrelationskoeffizient: $R=r_{xy}=rac{s_{xy}}{s_xs_y}$
- Korrigiertes X: $X_{kor} = \frac{X \cdot n}{n-1}$

2.2 Korrelationskoeffizient r_{xy}

- Pearson-Korrelationskoeffizient, auch Bravais-Pearson-Korrelation oder Produkt-Moment-Korrelation.
- Der Korrelationskoeffizient r_{xy} ist so definiert, das seine Werte immer zischen -1 und +1 liegen, also $-1 \le r_{xy} \le +1$
- ullet Je näher r_{xy} bei -1 oder bei 1 liegt, umso besser liegen die Punkte (x_i,y_i) um eine Gerade konzentriert.
- $r_{xy} > 0$: Die Punkte liegen tendenziell um eine Gerade mit positiver Steigung (gleichsinniger linearer Zusammenhang, positive Korrelation).
- $r_{xy} <$ 0: Die Punkte liegen tendenziell um eine Gerade mit negativer Steigung (gegensinniger linearer Zusammenhang, negative Korrelation).
- ullet $r_{xy}pprox 0$: Kein linearer Zusammenhang zwischen den beiden Merkmalen.

2.3 Spearman-Rangkorrelation r_{sp}

- Die Spearman-Rangkorrelation misst Stärke und Richtung des streng monotonen Zusammenhangs zwischen zwei Merkmalen x und y.
- Bei der Spearman-Korrelation wird nicht davon ausgegangen, dass die Daten aus einer bestimmten Verteilung stammen, es handelt sich um ein sogenanntes nichtparametrisches Korrelationsmass.

2.3.1 Rang

- $x_i: 12, 17, 6, 17, 23$
- $rg(x_i): 2, 3.5, 1, 3.5, 5$
- $\overline{rq(x)}:3$
- $rg(x_i) \overline{rg(x)} : -1, 0.5, -2, 0.5, 2$
- $r_{sp} = \frac{\sum (rg(x_i) \overline{rg(x)})(rg(y_i) \overline{rg(y)})}{\sqrt{\sum (rg(x_i) \overline{rg(x)})^2} \cdot \sqrt{\sum (rg(y_i) \overline{rg(y)})^2}}$

2.4 Nichtlineares Verhalten

Ausgangsfunktion	Transformation
$y = q \cdot x^m$	$\log(y) = \log(q) + m \cdot \log(x)$
$y = q \cdot m^x$	$\log(y) = \log(q) + \log(m) \cdot x$
$y = q \cdot e^{m \cdot x}$	$\ln(y) = \ln(q) + m \cdot x$
$y = \frac{1}{q + m \cdot x}$	$V = q + m \cdot x; V = \frac{1}{y}$
$y = q + m \cdot \ln(x)$	$y = q + m \cdot U; U = \ln(x)$
$y = \frac{1}{q \cdot m^x}$	$\log\left(\frac{1}{y}\right) = \log(q) + \log(m) \cdot x$

- q(x) = mx + d
- ullet Steigung: $m=rac{s_{xy}}{s_{xx}}$
- $d = \bar{y} m\bar{x}$
- log: Basis 10, In: Basis e

3 Kombinatorik

- Binomialkoeffizient $\binom{n}{m} = \frac{n!}{(n-m)! \cdot m!}$
- \bullet Wenn jede der n Stellen m Zustände einnehmen kann, dann gibt es m^n mögliche Kombinationen.
- Wenn aus n unterschiedlichen Elementen m mit **unbestimmter** Reihenfolge ausgewählt werden, dann gibt es $\binom{n}{m}$ mögliche Kombinationen.
- ullet Wenn aus n unterschiedlichen Elementen m mit **bestimmter** Reihenfolge ausgewählt werden, dann gibt es $\dfrac{n!}{(n-m)!}$ mögliche Kombinationen.

• Wenn aus n unterschiedlichen **Kategorien** m Elemente ausgewählt werden, dann gibt es $\binom{n+m-1}{m}$ mögliche Kombinationen.

4 Kenngrössen

- $E(X) = \sum P(X = x)$
- $\bullet \ E(X+Y) = E(X) + E(Y)$
- E(aX) = aE(X)
- $V(X) = E(X) \cdot (x E(X))^2$
- $V(X) = E(X^2) (E(X))^2$
- $V(aX + b) = a^2 \cdot V(X)$

5 Intervallwahrscheinlichkeiten

- $P(X \le b) = \int_{-\infty}^{b} f(u) \delta u$
- $P(a < X \le b) = \int_{-\infty}^{b} f(u)\delta u \int_{a}^{\infty} f(u)\delta u = \int_{a}^{b} f(u)\delta u$
- $P(X > a) = \int_a^\infty f(u) \delta u$

6 Diskrete Verteilungen

6.1 Hypergeometrische Verteilung

- $X \sim H(N, M, n)$
- ullet N Objekteanzahl, M Merkmalsträger, n Ziehungsanzahl
- $P(X = x) = \frac{\binom{M}{x} \cdot \binom{N-M}{n-x}}{\binom{N}{n}}$
- Lotto: $P(X = x) = \frac{\binom{6}{x} \cdot \binom{49-6}{6-x}}{\binom{49}{6}}$
- N Kugeln, M schwarz, ohne Zurücklegen n ziehen. Wahrscheinlichkeit für x schwarze Kugeln P(X=x)
- $E(X) = n \cdot \frac{M}{N}$
- $V(X) = n \cdot \frac{M}{N} (1 \frac{M}{N}) \frac{N n}{N 1}$

6.2 Bernoulliverteilungverteilung

- P(X = 1) = p
- P(X = 0) = 1 p = q
- E(X) = p
- $\bullet \ V(X) = p \cdot q$

6.3 Binomialverteilung

- $X \sim B(n,p)$
- q = 1 p
- n-faches Bernoulli-Experiment
- $P(X=x) = \binom{n}{x} \cdot p^x \cdot q^{n-x}$
- $E(X) = n \cdot p$
- $V(X) = n \cdot p \cdot q$

6.3.1 Binomialverteilung als Näherung der hypergeometrischen Verteilung

- $\bullet \ \ \mathsf{Faustregel:} \ n \lesssim \frac{N}{20}$
- $H(N, M, n) \approx B(n, \frac{M}{N})$
- \bullet N Einheiten, M Merkmalsträger, Stichprobengrösse n

6.4 Poissonverteilung

- $X \sim Poi(\lambda)$
- Beschreibt die Anzahl Ereignisse pro Zeit, Fläche, Länge,...

•
$$P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}, \lambda > 0$$

- $E(X) = \lambda$
- $V(X) = \lambda$
- $V(X) = \lambda$

6.4.1 Poissonverteilung als Näherung der Binomialverteilung

- Faustregel: $n \gtrsim 50$, $p \lesssim 0.1$
- $B(n,p) \approx Poi(n \cdot p)$
- ullet N Einheiten, M Merkmalsträger, Stichprobengrösse n

7 Stetige Verteilungen

7.1 Gaussverteilung/Normalverteilung

- $\bullet \ \, X \sim N(\mu;\sigma)$
- $\bullet \ \ \mathsf{Standardnormal} \mathsf{verteilung} \ N(0;1) \\$
- $\bullet \ \ U = \frac{X \mu}{\sigma}$
- $P(X \le x) = P(U \le \frac{x \mu}{\sigma}) = \phi(u) = \text{Tabellenwert}$
- $E(X) = \mu$
- $\bullet \ V(X) = \sigma^2$
- Ca. 68 % der beobachteten Werte liegen zwischen $\mu \sigma$ und $\mu + \sigma$.
- ullet Ca. 95 % der beobachteten Werte liegen zwischen $\mu-2\sigma$ und $\mu+2\sigma$.
- Ca. 99.7 % der beobachteten Werte liegen zwischen $\mu 3\sigma$ und $\mu + 3\sigma$.

7.1.1 Normalverteilung als Näherung der Binomialverteilung

- Faustregel: npq > 9
- $\mu = np$
- $\sigma = npq$
- $X \sim B(n; p)$
- $Y \sim N(\mu; \sigma)$
- $P(a \le X \le b) = P((a-1) < X < (b-1))$
- $P(a \le X \le b) \approx P((a 0.5) < Y < (b + 0.5))$

7.2 Zentraler Grenzwertsatz

Identisch verteilte und stochastisch unabhängige Zufallsvariablen:

- $E(S_n) = n \cdot \mu$
- $V(S_n) = n \cdot \sigma^2$
- $E(\bar{X}_n) = \mu$
- $V(\bar{X}_n) = \frac{\sigma^2}{n}$
- $S_n \sim N(n \cdot \mu; \sqrt{n} \cdot \sigma)$
- $\bar{X}_n \sim N(\mu; \frac{\sigma}{\sqrt{n}})$

8 Schliessende Statistik

- Schätzfunktion Θ eines Parameters θ erwartungstreu: $E(\Theta) = \theta$
- Erwartungstreue Schätzfunktion Θ_1 effizienter Θ_2 : $V(\Theta_1) < V(\Theta_2)$
- Konsistent $E(\Theta) \to \theta$ und $V(\Theta) \to 0$ für $n \to \infty$

8.1 Schätzfunktionen für die wichtigsten statistischen Parameter

	Schätzfunktion	Schätzwert
Erwartungswert Spezialfall: Anteilswert einer Bernoulli-Verteilung	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$	$\hat{\mu} = \bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ $\hat{p} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{\text{Anzahl len}}{n}$
Varianz	$S^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	$\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \bar{x})^2$
Standardabweichung	$S = \sqrt{S^2}$	$\hat{\sigma} = s = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$

Satz

- (1) \bar{X} und S^2 sind erwartungstreu und konsistent.
- (2) S ist konsistent, aber nicht erwartungstreu.

9 Vertrauensinterval

Übersicht über verschiedene Vertrauensintervalle zum Niveau γ

	(1) Verteilung der Grundgesamtheit	(2) zu schätzender Parameter	(3) Schätzfunktionen	(4) zugehörige standardisierte Zufallsvariable	(5) Verteilung und benötigte Quantile	(6) Zufallsvariablen für Intervallgrenzen	
1	Normalverteilung (Varianz σ^2 bekannt)	μ	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$	$U = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	Standardnormalverteilung (Tabelle 2) $c = u_p \text{ mit } p = \frac{1+\gamma}{2}$	$\Theta_u = \bar{X} - c \cdot \frac{\sigma}{\sqrt{n}}$ $\Theta_o = \bar{X} + c \cdot \frac{\sigma}{\sqrt{n}}$	
2	Normalverteilung (Varianz σ^2 unbekannt und $n \leq 30$; sonst Fall 1 mit s als Schätzwert für σ)	μ	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$ $S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \bar{X})^2$	$T = \frac{\bar{X} - \mu}{SI\sqrt{n}}$	t-Verteilung (Tabelle 4)	$\Theta_u = \bar{X} - c \cdot S/\sqrt{n}$ $\Theta_o = \bar{X} + c \cdot S/\sqrt{n}$	
3	Normalverteilung	σ^2	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$ $S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \bar{X})^2$	$Z = (n-1)\frac{S^2}{\sigma^2}$	$\begin{array}{l} \textbf{Chi-Quadrat-Verteilung} \; (\text{Tabelle 3}) \\ \text{mit} \; f = n-1 \\ c_1 = z_{(p_1;f)} \; \text{mit} \; p_1 = \frac{1-\gamma}{2} \\ c_2 = z_{(p_2;f)} \; \text{mit} \; p_2 = \frac{1+\gamma}{2} \end{array}$	$\Theta_u = \frac{(n-1) \cdot S^2}{c_2}$ $\Theta_o = \frac{(n-1) \cdot S^2}{c_1}$	
4	Bernoulli-Verteilung $\min n \hat{p} (1-\hat{p}) > 9$	p	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$ $X_i \text{ 0/1-wertig mit}$ $P(X_i = 1) = p$	$U = \frac{\overline{X} - p}{\sqrt{p(1 - p)/n}}$	Standardnormalverteilung näherungsweise (Tabelle 2) $c=u_q \ \mathrm{mit} \ q=\frac{1+\gamma}{2}$	$\Theta_{u} = \bar{X} - c \cdot \sqrt{\frac{\bar{X} \cdot (1 - \bar{X})}{n}}$ $\Theta_{o} = \bar{X} + c \cdot \sqrt{\frac{\bar{X} \cdot (1 - \bar{X})}{n}}$	
5	beliebig mit $n > 30$	μ , σ^2	wie im Fall 1 (gegebenenfalls mit s als Schätzwert für σ) bzw. wie im Fall 3				

10 Hypothesentest

Hypothesentests

Vorgehen bei einem Parametertest

1. Nullhypothese H_0 aufstellen

Um welchen Parameter geht es? Welchen Wert hat er angeblich? Oder werden zwei Parameter verglichen?

2. Alternativhypothese $\mathcal{H}_{\!A}$ aufstellen

Kommt es darauf an, in welche Richtung die Abweichung geht? Ist dies der Fall, so beschreibt H_A nur die relevante Alternative.

3. Die richtige Zeile in der Tabelle "Übersicht über die wichtigsten Parametertests" finden

Welcher Verteilung folgt die Grundgesamtheit? Um welche Nullhypothese geht es? Welcher Fall liegt vor?

4. Kritische Grenzen bestimmen

Dabei müssen wir Folgendes berücksichtigen:

- Verteilung der Testvariablen gemäss Tabelle "Übersicht über die wichtigsten Parametertests" (letzte Kolonne)
- Signifikanzniveau lpha
- Ist $H_{\!A}$ einseitig oder zweiseitig? Wenn einseitig, auf welcher Seite befindet sich der kritische Bereich?

5. Testwert berechnen

gemäss Tabelle "Übersicht über die wichtigsten Parametertests" (vorletzte Kolonne).

6. Testentscheidung fällen

Liegt der Testwert im Annahmebereich oder im kritischen Bereich?

11 Parametertest

Übersicht über die wichtigsten Parametertests

	Verteilung der Grundgesamtheit	Nullhypothese	Fall	Schätzfunktion	Testvariable (standardisiert)	Verteilung der Testvariablen unter ${\cal H}_0$	
1	Normalverteilung	$\mu = \mu_0$	Varianz σ^2 bekannt oder $n>30*$	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i \qquad \qquad U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$		Standardnormal-verteilung (Tabelle 2)	
2	Normalverteilung	$\mu = \mu_0$	Varianz σ^2 unbekannt	$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$	$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$	t-Verteilung mit $f=n-1$ (Tabelle 4)	
3	2 Normal-verteilungen	$\mu_1 - \mu_2 = 0$	Abhängige Stichproben; Varianzen σ_1^2 und σ_2^2 bekannt oder $n>30^*$	$ar{Z} = ar{X} - ar{Y}$ $U = rac{ar{Z}}{\sigma l \sqrt{n}} ext{ mit}$ $\sigma^2 = rac{\sigma_1^2 + \sigma_2^2}{n}$		Standardnormal-verteilung (Tabelle 2)	
4	2 Normal-verteilungen	$\mu_1 - \mu_2 = 0$	Abhängige Stichproben; Varianzen σ_1^2 und σ_2^2 unbekannt	$\bar{Z} = \bar{X} - \bar{Y}$ $S^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - Y_{i} - \bar{Z})^{2}$	$T = \frac{\bar{Z}}{Sl\sqrt{n}}$	$t ext{-Verteilung mit}f=n-1 \; ext{(Tabelle 4)}$	
5	2 Normal-verteilungen	$\mu_1 - \mu_2 = 0$	Unabhängige Stichproben; Varianzen σ_1^2 und σ_2^2 bekannt oder $n_1, n_2 > 30^*$	$\bar{Z} = \bar{X} - \bar{Y}$	$U = \frac{Z}{\sigma} \text{ mit}$ $\sigma^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$	Standardnormal-verteilung (Tabelle 2)	
6	2 Normal-verteilungen	$\mu_1 - \mu_2 = 0$	Unabhängige Stichproben; Varianzen σ_1^2 und σ_2^2 unbekannt, aber gleich	$T = \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \cdot \frac{\bar{X} - \bar{Y}}{\sqrt{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}}$		$t ext{-Verteilung mit } f = n_1 + n_2 - 2$ (Tabelle 4)	
7	Normalverteilung	$\sigma^2 = \sigma_0^2$		$S^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	$Z = (n-1)\frac{S^2}{\sigma_0^2}$	Chi-Quadrat-Vert. mit $f = n-1$ (Tabelle 3)	
8	Bernoulli-Verteilung	$p = p_0$		$\bar{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i = \frac{\text{Anzahl len}}{n}$	$U = \frac{\bar{X} - p_0}{\sqrt{p_0 (1 - p_0)/n}}$	näherungsweise Standardnormal- verteilung (Tabelle 2)	

^{*)} Falls gilt: n > 30 bzw. $n_1 > 30$ und $n_2 > 30$, so kann der entsprechende Fall für bekannte Varianzen angewendet werden; dabei dient s als Schätzwert für σ bzw. s_i als Schätzwert für σ .

12.1 CDF $\Phi(u)$ der Standardnormalverteilung

$$P(U \le u) = \Phi(u)$$

$$P(U \ge u) = 1 - \Phi(u)$$

$$P(-u \le U \le u) = 2 \cdot \Phi(u) - 1$$

$$\Phi(-u) = 1 - \Phi(u)$$

и	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

12.2 Quantile der Standardnormalverteilung

p: vorgegebene Wahrscheinlichkeit

 u_p : zur Wahrscheinlichkeit p gehöriges Quantil

p	u_p	p	u_p
0.90	1.282	0.10	-1.282
0.95	1.645	0.05	-1.645
0.975	1.960	0.025	-1.960
0.99	2.326	0.01	-2.326
0.995	2.576	0.005	-2.576
0.999	3.090	0.001	-3.090

12.3 Quantile der t-Verteilung

p: vorgegebene Wahrscheinlichkeit

$$t_{(1-p;f)} = -t_{(p;f)}$$

			р		
f	0.9	0.95	0.975	0.99	0.995
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
22	1.321	1.717	2.074	2.508	2.819
24	1.318	1.711	2.064	2.492	2.797
26	1.315	1.706	2.056	2.479	2.779
28	1.313	1.701	2.048	2.467	2.763
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
50	1.299	1.676	2.009	2.403	2.678
60	1.296	1.671	2.000	2.390	2.660
L00	1.290	1.660	1.984	2.364	2.626
200	1.286	1.653	1.972	2.345	2.601
500	1.283	1.648	1.965	2.334	2.586
:	:	:	:	:	:
∞	1.282	1.645	1.960	2.326	2.576

12.4 Quantile der Chi-Quadrat-Verteilung

p: vorgegebeneWahrscheinlichkeit

 $z_{(p;f)}$: zur Wahrscheinlichkeit p gehöriges Quantil bei f Freiheitsgraden

	р									
f	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995
1	0.000	0.000	0.001	0.004	0.016	2.71	3.84	5.02	6.63	7.88
2	0.010	0.020	0.051	0.103	0.211	4.61	5.99	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	6.25	7.81	9.35	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.95
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
22	8.6	9.5	11.0	12.3	14.0	30.8	33.9	36.8	40.3	42.8
24	9.9	10.9	12.4	13.8	15.7	33.2	36.4	39.4	43.0	45.6
26	11.2	12.2	13.8	15.4	17.3	35.6	38.9	41.9	45.6	48.3
28	12.5	13.6	15.3	16.9	18.9	37.9	41.3	44.5	48.3	51.0
30	13.8	15.0	16.8	18.5	20.6	40.3	43.8	47.0	50.9	53.7
40	20.7	22.2	24.4	26.5	29.1	51.8	55.8	59.3	63.7	66.8
50	28.0	29.7	32.4	34.8	37.7	63.2	67.5	71.4	76.2	79.5
60	35.5	37.5	40.5	43.2	46.5	74.4	79.1	83.3	88.4	92.0
70	43.3	45.4	48.8	51.7	55.3	85.5	90.5	95.0	100.4	104.2
80	51.2	53.5	57.2	60.4	64.3	96.6	101.9	106.6	112.3	116.3
90	59.2	61.8	65.6	69.1	73.3	107.6	113.1	118.1	124.1	128.3
100	67.3	70.1	74.2	77.9	82.4	118.5	124.3	129.6	135.8	140.2