

## Capstone Project -4

**Unsupervised Machine Learning – Clustering** 

**Customer Segmentation** 

**Jouher Lais Khan** 

#### Approach







#### **Problem Description**

- 1. In this project, our task is to identify major customer segments on a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.
- 2. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.



#### **Data Description**

**StockCode**: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product.

**Description**: Product (item) name.(Nominal)

**Quantity**: The quantities of each product (item) per transaction. (Numeric)

**InvoiceDate**: Invoice Date and time. Numeric, the day and time when each transaction was generated.

**UnitPrice**: Unit price.Product price per unit in sterling.(Numeric)

**CustomerID**: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer.

**Country**: Country name. Nominal, the name of the country where each customer resides.

**InvoiceNo**: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation.

#### **Data Processing**



- 1. The customer ID contains 133626 null values, as clustering should be done on the basis of customer, so these row will be removed.
- 2. The invoice number that end with C is cancelled so we will remove these row and also the item which are cancelled was also bought so this should also be removed.
- 3. Stock code and Item description represent the same thing, but item description describes it more clearly. Hence, we can drop the stock code.
- 4. Quantity and Unit Price cannot be negative we will drop row where quantity or unit price is negative
- 5. Data Contains no duplicates value

# **Exploratory Data Analysis**Distribution of Quantity









# Top 10 most repeatedly sold items





#### Distribution of the Unit Price











# Countries that were sold different items the most











#### **Outliers Removal**





Quantity



**Unit Price** 





- 1. For the purpose of this project Recency, Frequency and Monetory(RFM) analysis shall be conducted.
- 2. On the basis of these 3 factors, customers can be classified into different groups.
- 3. They can be catered by the business depending on the cluster they belong to.





- 1. Creating copy of Data Frame for Modelling.
- 2. Creating list of final features which will be used in modelling.
- 3. Scaling the dataset

## Models Implemented



- 1. K-Means with silhouette score
- 2. K-Means with Elbow methos
- 3. K-Means with distortion methos
- 4. K-Means with calinski harabasz
- 5. Hierarchical clustering(ward) with silhouette score
- 6. Hierarchical clustering(ward) with dendogram and euclidean distance 40

# **Kmeans Clustering**









### **Kmeans Clusters**





## **Cluster Profiling**

We can associate each clusters by

- 1. Cluster 0 comprises of customers who are moderately recent, frequent and contribute an average amount to sales.
- 2. Cluster 1 comprises of customers who made purchases a long time ago and purchase infrequently and contribute the least towards the sales of the company.
- 3. Cluster 2 comprises of customers who are very recent, frequent and also contribute largely to the sales.



# **Hierarchical Clustering**





# **Hierarchical Clustering**



| Clusters | Silhouette Score |          |
|----------|------------------|----------|
| 0        | 2.0              | 0.518650 |
| 1        | 3.0              | 0.549241 |
| 2        | 4.0              | 0.500661 |
| 3        | 5.0              | 0.436785 |
| 4        | 6.0              | 0.399488 |
| 5        | 7.0              | 0.401470 |
| 6        | 8.0              | 0.401609 |
| 7        | 9.0              | 0.367218 |
| 8        | 10.0             | 0.355250 |



# **Hierarchical Clustering**







We can associate each clusters by

- 1. Cluster 0 comprises of customers who are very recent, frequent and also contribute largely to the sales.
- 2. Cluster 1 comprises of customers who made purchases a long time ago and purchase infrequently and contribute the least towards the sales of the company.
- 3. Cluster 2 comprises of customers who are moderately recent, frequent and contribute an average amount to sales.





| Model_Name                                                             | Data | Optimal_Number_of_cluster |
|------------------------------------------------------------------------|------|---------------------------|
| K-Means with silhouette_score                                          | RFM  | 3                         |
| K-Means with Elbow methos                                              | RFM  | 3                         |
| K-Means with distortion methos                                         | RFM  | 3                         |
| K-Means with calinski_harabasz                                         | RFM  | 3                         |
| Hierarchical clustering(ward) with silhoutte_score                     | RFM  | 3                         |
| Hierarchical clustering(ward) with dendograms and eulidean distance 40 | RFM  | 3                         |

|          | _                   |          |              | _                   |          |
|----------|---------------------|----------|--------------|---------------------|----------|
| Clusters | Silhouette<br>Score |          | Cluste<br>rs | Silhouette<br>Score |          |
| 0        | 2.0                 | 0.519950 | 0            | 2.0                 | 0.518650 |
| 1        | 3.0                 | 0.580663 | 1            | 3.0                 | 0.549241 |
| 2        | 4.0                 | 0.498186 | 2            | 4.0                 | 0.500661 |
| 3        | 5.0                 | 0.485991 | 3            | 5.0                 | 0.436785 |
| 4        | 6.0                 | 0.479926 | 4            | 6.0                 | 0.399488 |
| 5        | 7.0                 | 0.433104 | 5            | 7.0                 | 0.401470 |
| 6        | 8.0                 | 0.425016 | 6            | 8.0                 | 0.401609 |
| 7        | 9.0                 | 0.419886 | 7            | 9.0                 | 0.367218 |
| 8        | 10.0                | 0.397676 | 8            | 10.0                | 0.355250 |

**Kmeans Silhouette Score** 

Hierachical(ward) Silhouette Score



## Conclusions of Modelling

- 1. Exploratory Data Analysis (EDA): The company offers medium-to-low quantities of single items at a cheaper unit cost. More orders of various items were placed in the previous quarter, with the UK placing the highest orders overall. The "Paper craft little Berdie" was the best-selling item in terms of amount sold.
- 2. Data Transformation: For each customer ID in this section, Monetary, frequency, and recency analysis was produced. These three elements are essential part of customer segmentation.
- 3. Clustering Kmeans: In this step, the optimal number of clusters was ascertained by using silhouette analysis and the elbow technique. The optimal clusters were found to be three.
- Clustering Hierarchical: Using the silhouette analysis and dendograms distance, the ideal number of clusters is three.
- 5. Cluster Profiling: The three groups clusters were identified as high value and loyal customers, average value and frequent customers, and low value and infrequent customers.
- 6. Model Performance: The best performance is given by kmeans with 3 clusters and in Hierarchical clustering best model is given by ward method with 3 clusters



#### **Thank You**