Chapter 6: Chemical Equilibrium

CONTENTS

Dynamic Equilibrium

The Equilibrium Constant Expression

Relationships Involving Equilibrium Constants

The Magnitude of an Equilibrium Constant

The Reaction Quotient A: Predicting the Direction of Net Change

Altering Equilibrium Conditions: Le Châtelier's Principle

Equilibrium Calculations: Some Illustrative Examples

© 2025 T. Hayashi, UC-Davis

1

Dynamic Equilibrium

Chemical reactions reach a state of dynamic equilibrium when:

- (Rate of forward reaction) = (Rate of reverse reaction)
- There is no net change in composition.

e.g. A water vaporizes within a closed container. The rate of condensation is equal to the rate of vaporization once the partial pressure of water reaches the water vapor pressure.

$$H_2O(1) \rightleftharpoons H_2O(g)$$

Forward reaction: $H_2O(1) \rightarrow H_2O(g)$

Reverse reaction: $H_2O(g) \rightarrow H_2O(l)$

If a reaction mix starts out or is forced away from equilibrium, the composition will change until equilibrium is established.

© 2025 T. Hayashi, UC-Davis

3

Initial Conditions and Equilibria

Different initial conditions may lead to different equilibria.

However, the following <u>ratio of equilibrium molar concentrations</u> always gives a constant value for a given temperature. The constant is called **equilibrium constant**. [CH OH]

$$\frac{[\text{CH}_3\text{OH}]_{\text{eq}}}{[\text{CO}]_{\text{eq}}[\text{H}_2]_{\text{eq}}^2} = \frac{0.09}{0.91 \times 0.82^2} = \frac{0.22}{0.78 \times 1.56^2} = 0.15 = K_c$$

© 2025 T. Hayashi, UC-Davis

Equilibrium Constant Expression

Consider a general chemical equation:

$$aA + bB + \cdots \Longrightarrow gG + hH + \cdots$$

Here, A,B, \cdots are reactants, a,b,\cdots are their coefficients, G,H, \cdots are products, and g,h,\cdots are their coefficients.

The **equilibrium constant** K_c provides the general description of the equilibrium condition and is given by:

$$K_c = \frac{[G]^g [H]^h \cdots}{[A]^a [B]^b \cdots}$$
 Products
Reactants

The square brackets indicate the molarity at equilibrium.

The molarities of reactants and products must be written without unit, and therefore $\underline{K_c}$ is unitless.

© 2025 T. Hayashi, UC-Davis

6

Example 6-1: Equilibrium Constant

For the reaction: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$, $K_c = 92.0$

When equilibrium concentrations of HI and I_2 are [HI] = 0.115 M and $[I_2]$ = 0.250 M, calculate the equilibrium concentration of $[H_2]$.

© 2025 T. Hayashi, UC-Davis

Equilibria involving Gases

For gaseous equilibria, you can also define the equilibrium constant in terms of the partial pressures, in atm, of reactants and products.

$$aA + bB + \cdots \rightleftharpoons gG + hH + \cdots$$

$$K_p \equiv \frac{P_{\rm G}^{\ g} P_{\rm H}^{\ h} \cdots}{P_{\rm A}^{\ a} P_{\rm B}^{\ b} \cdots}$$

The Two equilibrium constants K_c and K_p are related as:

$$K_p = K_c (RT)^{\Delta n_{gas}}$$
 Here $\Delta n_{gas} = (g + h + \cdots) - (a + b + \cdots)$

 Δn_{aas} is a change in moles of gasses. The derivation is given as:

$$K_{c} = \frac{[G]^{s}[H]^{h} \cdots}{[A]^{a}[B]^{b} \cdots} = \frac{\left(\frac{n_{G}}{V}\right)^{g} \left(\frac{n_{H}}{V}\right)^{h} \cdots}{\left(\frac{n_{A}}{V}\right)^{a} \left(\frac{n_{B}}{V}\right)^{b} \cdots} = \frac{\left(\frac{P_{G}}{RT}\right)^{g} \left(\frac{P_{H}}{RT}\right)^{h} \cdots}{\left(\frac{P_{A}}{RT}\right)^{a} \left(\frac{P_{B}}{RT}\right)^{b} \cdots} = \frac{P_{G}^{s} P_{H}^{h} \cdots}{P_{A}^{a} P_{B}^{b} \cdots} (RT)^{(a+b+\cdots)-(g+h+\cdots)} = K_{p} (RT)^{(a+b+\cdots)-(g+h+\cdots)}$$
© 2025 T. Hayashi, UC-Davis

8

Heterogeneous Equilibria

For a heterogeneous reaction, the equilibrium position does NOT depend on the amounts of pure solids or liquids present.

$$CaCO_3(s) \iff CaO(s) + CO_2(g)$$

(marble) (lime)

CaCO₃

When writing the equilibrium constant expression, do NOT include reacting species with state symbols (s) or (l).

$$K_{\rm c} = [{\rm CO_2}]$$
 $K_P = P_{\rm CO} = K_{\rm c} (RT)^1$

© 2025 T. Hayashi, UC-Davis

q

iClicker Example

[

For the reaction: $3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \rightleftharpoons \text{Fe}_3\text{O}_4(\text{s)} + 4 \text{ H}_2(\text{g)}$, the correct Kc expression is:

A.
$$K_C = \frac{[Fe_3O_4][H_2]}{[Fe][H_2O]}$$

B.
$$K_C = \frac{[\text{Fe}_3\text{O}_4][\text{H}_2]^4}{[\text{Fe}]^3[\text{H}_2\text{O}]^4}$$

C. $K_C = \frac{[H_2]^4}{[H_2O]^4}$

D.
$$K_C = \frac{[Fe]^3 [H_2O]^4}{[Fe_3O_4][H_2]^4}$$

E.
$$K_C = \frac{[H_2O]^4}{[H_2]^4}$$

© 2025 T. Hayashi, UC-Davis

10

Example 6-2: K_p and K_c

For the following chemical equilibrium, $K_{\rm p}$ = 4.6 × 10⁻¹⁴ at 25°C, find the value of $K_{\rm c}$ for this reaction at 25°C. 2 Cl₂(g) + 2 H₂O(g) \rightleftharpoons 4 HCl(g) + O₂(g)

© 2025 T. Hayashi, UC-Davis

Reaction Quotient For a given initial condition, we can use the **reaction quotient** (Q) to determine the direction of a net change in establishing equilibrium. Q_c is calculated the same way as K_C but for the **initial** concentrations $([A]_{0}, [B]_{0}, etc).$ $aA + bB \rightleftharpoons gG + hH$ If $Q_c < K_c$, the reactant [products]₀ too large concentration is too high. The net [reactants]₀ reaction proceeds to the right. = too small If $Q_c > K_c$, the product System shifts System shifts to the right to the left concentration is too high. The net reaction proceeds to the left. If $Q_c = K_c$, the system is at equilibrium. No change will occur. Q = KQ < KQ > K© 2025 T. Hayashi, UC-Davis

12

iClicker: Reaction Quotient

For the reaction

 $2 \text{ SO}_2 \text{ (g)} + \text{O}_2 \text{ (g)} \rightleftharpoons 2 \text{ SO}_3 \text{ (g)}, K_c = 2.8 \times 10^2 \text{ at } 1000 \text{ K}.$

If a vessel is filled with these gases such that the initial concentrations are $[SO_2] = 0.010 \text{ M}$, $[O_2] = 0.070 \text{ M}$, and $[SO_3] = 0.050 \text{ M}$, in which direction will the net reaction proceeds and why?

- A. The net reaction proceeds to the right because $Q_C > K_C$.
- B. The net reaction proceeds to the left because $Q_C > K_C$.
- C. The net reaction proceeds to the right because $Q_C < K_C$.
- D. The net reaction proceeds to the left because $Q_C < K_C$.

© 2025 T. Hayashi, UC-Davis

14

Change in Volume

When the volume of an equilibrium mixture of gases is *reduced*, a net change occurs in the direction that produces *fewer moles* of gas.

When the volume is *increased*, a net change occurs in the direction that produces *more moles of gas*.

© 2025 T. Hayashi, UC-Davis

16

Effect of Temperature on Equilibrium

Temperature does not affect Q but affects the K value.

Raising the temperature of an equilibrium mixture shifts the equilibrium in the direction of the endothermic reaction.

Lowering the temperature causes a shift in the direction of the exothermic reaction.

Catalysts

A **catalyst** has **no effect** on the condition of **equilibrium** (Le Chatelier's principle does **NOT** apply). But does affect the *rate* at which equilibrium is attained.

e.g. $SO_3(g)+H_2O(I) \rightleftharpoons H_2SO_4(aq)$ The catalyst, $V_2O_5(s)$, is added to speed up the reaction.

© 2025 T. Hayashi, UC-Davis

18

iClicker Example: Le Chatelier's Principle

The following exothermic reaction is at equilibrium.

$$3A(g) + 2B(g) \rightleftharpoons 2C(g) + 4D(s)$$

Choose all changes (assume changes are small) which cause a shift to the <u>right</u>. Assume a constant volume unless specified otherwise.

- A) Remove A(g)
- B) Add C(g)
- C) Remove D(s)
- D) Decrease the volume
- E) Add E(g), knowing that C(g)+E(g) \rightarrow 2F(g)

© 2025 T. Hayashi, UC-Davis

ICE Tables

ICE table is a tabular system of keeping track of changing quantities in an equilibrium reaction.

e.g. $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ at constant V

The reaction starts with 1.00 M N₂O₄.

During the reaction to reach equilibrium, $[N_2O_4]$ decreases by x M.

ICE Table		
	$N_2O_4(g) \rightleftharpoons$	2NO ₂ (g)
Initial	1.00 M	0.0 M
Changes	-x M	+2x M
Equilibrium	(1.00 - x) M	2 <i>x</i> M

During the change, $x ext{ M of } N_2O_4$ is consumed, $2x ext{ M of } NO_2$ is formed.

© 2025 T. Hayashi, UC-Davis

20

ICE Table - Equilibrium Concentrations

Given the <u>initial concentrations</u> and $\underline{K_c}$, we can calculate the equilibrium concentrations by using an ICE table.

e.g. A reaction, $A(g) + B(g) \rightleftharpoons 2C(g)$, starts with $[A]_i$ and $[B]_i$ in a constant-volume container.

	A(g)	+	B(g)	\rightleftharpoons	2C(g)
1	$[A]_i M$		$[B]_i M$		0 M
С	-x M		-x M		+2x M
E	$[A]_i - x N$	1	$[B]_i - x M$		2 <i>x</i> M

The equilibrium constant is expressed in terms of x.

$$K_c = \frac{[C]_{eq}^2}{[A]_{eq}[B]_{eq}} = \frac{(2x)^2}{([A]_i - x)([B]_i - x)}$$

Solve the equation for x.

© 2025 T. Hayashi, UC-Davis

Quadratic Equation

Sometimes, the equation for x is quadratic:

$$ax^2 + bx + c = 0$$

By using the following solutions of the quadratic equation, we can find two solutions:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Only **one** solution is physically meaningful. Eliminate the other.

© 2025 T. Hayashi, UC-Davis

22

Example 6-4: ICE Table

Consider the reaction:

 $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ at 358 K, $K_P = 2.01$ (at 500 K) A mixture of 2.00 moles of PCl_3 , 1.00 mole of Cl_2 , and 3.00 moles of PCl_5 is introduced into a 10.0 L container and is allowed to reach equilibrium at 500 K. What are the equilibrium molar concentrations of PCl_3 , Cl_2 , and PCl_5 ? (Hint: What is the value of K_C ?)

© 2025 T. Hayashi, UC-Davis

24

Relationships Involving Equilibrium Constants

$$aA + bB + \cdots \Longrightarrow gG + hH + \cdots \qquad \frac{[G]^{g}[H]^{h} \cdots}{[A]^{a}[B]^{b} \cdots} = K_{c}$$

• Reversing the reaction causes the inversion of *K*.

$$gG + hH + \cdots \Longrightarrow aA + bB + \cdots$$

$$\frac{[A]^{n}[B]^{b} \cdots}{[G]^{s}[H]^{h} \cdots} = \frac{1}{K_{c}}$$

• Multiplying coefficients by a common factor *x* raises the equilibrium constant to the power of *x*.

$$xaA + xbB + \cdots \Longrightarrow xgG + xhH + \cdots \qquad \frac{[G]^{xg}[H]^{xh} \cdots}{[A]^{xa}[B]^{xb} \cdots} = \left(\frac{[G]^{g}[H]^{h} \cdots}{[A]^{a}[B]^{b} \cdots}\right)^{x} = K_{c}^{x}$$

$$If x = 2, \quad K_{c}^{2}, \qquad If x = 1/2, \quad \sqrt{K_{c}}$$

© 2025 T. Hayashi, UC-Davis

Combining Equilibrium Constant Expressions

When individual chemical equations are <u>added</u>, their equilibrium constants are <u>multiplied</u> to obtain the equilibrium constant for the overall reaction.

Overall reaction
$$K_c = ?$$

$$\begin{array}{cccc}
 & aA & \Longrightarrow & bB \\
 & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & \downarrow & & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow$$

© 2025 T. Hayashi, UC-Davis

26

iClicker Example: Equilibrium Constants

Given the following:

$$2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$$

$$K_{c} = K_{1}$$

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

$$K_{c} = K_{2}$$

Find the expression of the equilibrium constant for the following equilibrium reaction:

$$N_2(g) + 1/2 O_2(g) \rightleftharpoons N_2O(g)$$

A:
$$K_c = \sqrt{K_1} K_2$$

B:
$$K_c = \frac{1}{2} K_1 K_2$$

C:
$$K_c = \frac{K_2}{\sqrt{K_1}}$$

D:
$$K_c = \frac{1}{2}K_1 + K_2$$

© 2025 T. Hayashi, UC-Davis