MASA CR. /22333

MARTON MARUETTA

AEROSPACE GROUP

DENVER DIVISION, POST OFFICE BOX 179, DENVER, COLORADO 80201

NATIONAL TECHNICAL INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151 N72-17904 (ACCESSION NUMBER) (THRU) SPACE TRAJECTORIES ERROR (PAGES) VOLUME 3: (NASA-CR-122333) MANUAL, UPDATE (Martin Marietta PROGRAMS. unclas ANALYSIS (STEAP) CSCL 22C 16200 G3/30 Dec. 1971

Reproduced by

/1

SPACE TRAJECTORIES ERROR ANALYSIS (STEAP) PROGRAMS

Volume III - Users' Manual(Update)

December 1971

MARTIN MARIETTA CORPORATION
DENVER DIVISION
Denver, Colorado 80201

Volume III of Three Volumes

Final Report

Contract NAS 5-11795

Computer Program for Mission Analysis of Lunar and Interplanetary Missions

Prepared by

E. D. Vogt

G. L. Adams

M. M. Working

J. B. Ferguson

Space Navigation Technology Section Martin Marietta Corporation Denver, Colorado

For

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland

March, 1971

Acknowledgements

The authors wish to acknowledge the invaluable support of several persons whose help was instrumental in the completion of this contract. Dr. Al Bradt, serving as Program Manager, efficiently solved the many administrative problems that arose during the course of the contract. Joanne Spofford did her usual excellent job of typing the voluminous documents. Deborah Bower was responsible for all the graphics work involved with the production of the flowcharts and mathematical analyses. A utility computer program developed by Jim Schnelker aided greatly in the program conversion from CDC single precision to IBM double precision. All of their work was greatly appreciated.

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

STEAP II is a series of three computer programs developed by the Martin-Marietta Corporation for the mathematical analysis of the navigation and guidance of lunar and interplanetary trajectories. STEAP is an acronym for Space Trajectory Error Analysis Programs. The first series of programs under this name was developed under contract NAS 1-8745 for Langley Research Center and was documented in two volumes (STEAP User's Manual, STEAP Analytical Manual) as NASA Contract Report 66818. Under contract NAS 5-11795 the STEAP series was extensively modified and expanded for Goddard Space Flight Center. This second generation series of programs is referred to as STEAP II.

STEAP II is composed of three independent yet related programs: NOMNAL, ERRAN, and SIMUL. All three programs require the integration of n-body trajectories for both interplanetary and lunar missions. The virtual mass technique is the scheme used for this purpose in all three programs.

The first program named NOMNAL is responsible for the generation of n-body nominal trajectories (either lunar or interplanetary) performing a number of deterministic guidance events. These events include initial or injection targeting, midcourse retargeting, and orbit insertion. A variety of target parameters are available for the targeting events. The actual targeting is done iteratively either by a modified Newton-Raphson algorithm or by a steepest descent-conjugate gradient scheme. Planar and nonplanar strategies are available for the orbit insertion computation. All maneuvers may be executed either by a simple impulsive model or by a pulsing sequence model.

ERRAN, the second program of STEAP II, is used to conduct linear error analysis studies along specific targeted trajectories. The targeted trajectory may however be altered during flight by retargeting events (computed either by linear or nonlinear guidance) and by an orbit insertion event. Knowledge and control covariances are propagated along the trajectory through a series of measurements and guidance events in a totally integrated fashion. The knowledge covariance is processed through measurements using an optimal Kalman-Schmidt filter with arbitrary solve-for/consider augmentation. Execution errors at guidance events may be modeled either by an impulsive approximation or by a pulsing sequence model. The resulting knowledge and control covariances may be analysed by the program at various events to determine statistical data including probabilistic midcourse correction sizing and effectiveness, probability of impact, and biased aimpoint requirements.

The third and final program in the STEAP II series is the simulation program SIMUL. SIMUL is responsible for the testing of the mathematical models used in the navigation and guidance process. An "actual" dynamic model is used to propagate an "actual" trejectory. Noisy measurements from this "actual" trajectory are then sent to the estimation algorithm. Here the actual measurement, the statistics associated with that measurement, and an "assumed" dynamical model are blended together to generate the filter estimate of the trajectory state. This process is repeated continually through the measurement schedule. At guidance events corrections are computed

based on the estimate of the current state. These corrections are then corrupted by execution errors and added to the "actual" trajectory. The statistics and augmentation of the filter, the mismatches in the "actual" and "assumed" dynamics, and the execution errors and measurement biases may then be varied to determine the effects of these parameters on the navigation and guidance process.

The documentation for STEAP II consists of three volumes: the Analytic, Programmer's and User's Manuals. Each of these documents is self-contained.

The Analytic Manual consists of two major divisions. The first section provides a unified treatment of the mathematical analysis of the STEAP II programs. The general problem description, formulation, and solution are given in a tutorial manner. The second section of this report supplies the detailed analysis of those subroutines of STEAP II dealing with technical tasks.

The Programmer's Manual provides the reader with the information he needs to effectively modify the programs. Both the overall structure of the programs as well as the computational flow and analysis of the individual subroutines is described in this manual.

The User's Manual contains the information necessary to operate the programs. The input and output quantities of the programs are described in detail. Example cases are also given and discussed.

CONTENTS

	Page
Foreword	iii
Contents	ν
1. Introduction	1
2. Summary of Modes	2
2.1 The Virtual Mass Propagator VMP	2
2.2 The Nominal Trajectory Targeter NOMNAL	3
2.3 The Error Analysis/Generalized Covariance Analysis Program ERRAN	6
2.4 The Simulation Program SIMUL	8
3. Input Description	10
3.1 NOMNAL Input Description	10
3.2 ERRAN Input Description	23
3.3 SIMUL Input Description	27-18
4. Output Description	32
4.1 NOMNAL Output Description	32
4.2 ERRAN Output Description	44
4.3 SIMUL Output Description	55
5. Sample Cases	62
5.1 NOMNAL Sample Cases	62
5.2 ERRAN Sample Cases	71
5.3 SIMUL Sample Cases	76
5.4 Multiprobe Sample Cases	79-2
5.5 Generalized Covariance Analysis Sample Cases	80-5
Bibliography	81
Appendix: Selected Sample Case Output	A. 1

1. INTRODUCTION

The User's Manual provides the user of the STEAP II programs with all the information necessary to input these programs and interpret the output.

Chapter 2 presents a summary of the four programs constituting STEAP II. These are the trajectory propagation package, the targeting program NOMNAL, the error analysis program ERRAN, and the simulation program SIMUL.

Chapters 3 and 4 describe the detailed input and output, respectively, for the three programs NOMNAL, ERRAN, and SIMUL. Restrictions on the input procedure for these programs are also presented.

In Chapter 5 are discussed actual sample cases which were run using the STEAP II programs. These sample cases are presented primarily to demonstrate the operation and versatility of NOMNAL, ERRAN, and SIMUL and to assist the user in the input/output procedure for these programs. Selected pages from these sample cases are found in the Appendix of the User's Manual.

2. SUMMARY OF MODES

The Space Trajectory Error Analysis Programs (STEAP) consist of four subprograms or operational modes. The first mode, used as a subroutine by each of the other three programs, is the trajectory mode VMP by which an n-body trajectory (lunar or interplanetary) is propagated by the virtual mass technique. The second mode is the nominal trajectory generator or targeter (NOMNAL) by which a lunar or interplanetary trajectory meeting specified conditions is determined. The third mode is the error analysis program ERRAN in which the navigation and guidance characteristics of a nominal trajectory are analyzed by linearly propagating knowledge and control covariances along the trajectory. Finally the simulation mode SIMUL tests the mathematical models used in the navigation and guidance processes by modeling the tracking and correction of an "actual" trajectory. In this chapter a general description of each of these modes will be provided.

2.1 The Virtual Mass Propagator VMP

The dynamic model used by STEAP is supplied by the trajectory propagation package. The only external forces acting upon the space-craft are assumed to be the gravitational forces of the celestial bodies considered in the integration. Both the spacecraft and the gravitational bodies are assumed to be point masses so neither spacecraft attitude nor planet asphericities are considered.

The celestial bodies to be in the integration are specified by the user and may include the sun, any of the nine planets, and the earth's moon. The motion of the planets about the sun and the moon about the earth are modeled by using mean ecliptic elements of date. If the user desires, each of the planets can be set in a fixed ellipse referenced to some epoch for speedier computation.

The coordinate system used in the integration is also specified by the user. The options available are either heliocentric ecliptic or barycentric ecliptic (nominally for lunar trajectories).

The actual scheme used in the propagation of the trajectory in the virtual mass or varicentric technique (see reference 15). No actual integration is performed by the trajectory mode; the key idea of the virtual mass technique is to build up an n-body trajectory by using a sequence of conic sections around a moving effective force center called the virtual mass. At each instantaneous moment along the trajectory, the combined effects of all the gravitational bodies can be viewed as resulting from a fictitious body of unique magnitude and position which is called the virtual mass. The computational pro-

cedure then assumes that over a small time interval, the motion of the spacecraft can be represented by a two-body conic section arc relative to this virtual mass. The complete trajectory is thus generated by a series of small arcs pieced together in steps while updating the position and magnitude of the effective force center. The main advantage of the virtual-mass technique is that the tedious numerical integration of the differential equations is avoided.

Another significant feature of the virtual-mass technique is its flexibility. By varying a simple parameter called the "accuracy level" related to the true anomaly increment of each step, trajectories ranging from a sequence of relatively few conic section arcs corresponding to a very approximate solution to those requiring a large number of arcs corresponding to highly accurate solutions may be generated.

2.2 The Nominal Trajectory Targeter NOMNAL

NOMNAL is responsible for the generation of a nominal trajectory for either lunar or interplanetary missions. The method or propagation in either case is the virtual-mass n-body integrator. The trajectory may be processed through a series of deterministic maneuvers including initial or injection targeting, subsequent retargeting, miniprobe targeting, and orbit insertion. A variety of target parameters are available for the targeting events. Both coplanar and nonplanar strategies are permitted in the orbit insertion maneuver.

If an initial state for the problem is known, this may be read in to start the trajectory. Otherwise NOMNAL generates its own zero iterate. In interplanetary missions this involves solving the Lambert time-of-flight equation for the massless planet trajectory that connects the desired initial and final positions in the specified time interval. Four options are available in describing these reference points.

Initial Point	Final Point
Launch Planet Launch Planet Specified Point Specified Point	Target planet Specified Point Target Planet Specified Point

If the initial point is referenced to the launch planet, a launch profile is consulted to generate a realistic set of injection conditions consistent with the heliocentric trajectory.

For lunar trajectories a slightly different procedure is used. The required data for the lunar zero iterate includes specification of the desired semimajor axis with respect to the moon, radius and time of closest approach to the moon, and inclination to the lunar equator. Then the zero iterate is generated by first targeting a patched conic trajectory and then a multiconic trajectory to the desired conditions.

A targeting event may be processed immediately after obtaining a zero iterate state or at any point along the nominal trajectory. At a targeting event the current velocity is refined to yield a trajectory satisfying target parameter constraints. The possible target parameter are:

1)	TPS	5)	B • T	9)	SMA (Lunar)	13)	DCP
2)	TSI	6)	B•R	10)	XF	14)	RAP
3)	TCS	7)	RCA	11)	YF	15)	TPR
4)	TCA	8)	INC	12)	ZF		

The targeting method to be used is specified by the user. Either a modified Newton-Raphson algorithm or a steepest descent/conjugate gradient technique may be used.

Orbit insertion events are also available in NOMNAL. At a specified time the spacecraft state relative to the target body is computed. The resulting conic trajectory relative to the target body is then compared with the desired orbit to determine the optimal time to make the insertion and the required correction. At the proper time the velocity correction is then implemented. Two strategies are permitted in the orbit insertion computation:

- Coplanar The desired semimajor axis, eccentricity, and periapsis shift of a coplanar orbit are specified;
- 2) Nonplanar The desired plane of the postinsertion state is specified along with nominal values of the orbit elements.

The targeted correction, orbit insertion correction, or an externally supplied correction may be executed if desired. Two models are available for this implementation—a simple impulsive addition or a more complex multiple pulse model.

NOMNAL is also capable of targeting a set of three miniprobes to three specified target sites. Since achieving impacts at three specified points on the planet surface constitutes a six-degree-of-freedom constraint while only four miniprobe release controls are available, any targeting process can, at most, achieve a minimum-miss solution. NOMNAL uses as its miss-index a weighted sum of the squares of the distances between the respective actual and desired B-plane asymptote pierce points. The weighting factors, which are supplied by the user, indicate the relative importance of securing nearby impacts at the respective target sites. NOMNAL computes its weighted least-squares solution by a hybrid pseudo-inverse and steepest-descent algorithm. The initial control iterate is constructed by approximately targeting the first miniprobe to one of the target sites using a single Newton-Raphson step.

Finally the program integrates and records all segments of the nominal trajectory between guidance events from injection at the launch planet until the appropriate termination condition input by the user. For a conglomerate vehicle NOMNAL records the separate branches of the trajectory belonging to the main probe and miniprobes as well as to the bus.

2.3 The Error Analysis/Generalized Covariance Analysis Program ERRAN

The error analysis/generalized covariance analysis program ERRAN is a preflight mission analysis tool that is used to determine how selected error sources influence the orbit determination process for interplanetary or lunar missions.

In the error analysis mode, ERRAN provides three primary quantitative results: (1) knowledge covariance matrices, which provide a measure of how well the actual trajectory is known, (2) control covariance matrices, which when propagated forward to the target provide a measure of how well the nominal target conditions will be satisfied by the actual trajectory, and (3) statistical midcourse ΔVs , which provide a measure of the amount of fuel required for a successful mission.

In the generalized covariance analysis mode, ERRAN provides all of the above information plus corresponding "actual" statistical information. The three results discussed in the previous paragraph are all computed on the basis of statistical distributions assumed by the navigation filter to describe the significant error sources. In the generalized covariance analysis mode, "actual" knowledge covariances, control convariances, and statistical midcourse ΔVs are computed on the basis of statistical distributions that actually describe both error sources acknowledged by the navigation filter and the error sources ignored. The primary use of the generalized covariance analysis program is to study the sensitivity of filter performance to off-design conditions.

ERRAN allows for employing gain generators for user-specified linear recursive navigation filters. Two gain generators are currently available in ERRAN: (1) Kalman-Schmidt filter, and (2) equivalent recursive consider mode weighted-least-squares filter.

State transition matrices are required to propagate covariance matrices over an arbitrary interval of time. Three methods are available for computing the 6x6 position/velocity state transition matrix. The first two methods, which are analytical methods, are analytical patched conic and analytical virtual mass. The third method uses numerical differencing to compute the state transition matrix. To increase the accuracy of the analytical techniques over long intervals, a state transition matrix cascading option is also available. Augmented parameter state transition matrices are always computed using numerical differencing.

Up to 23 dynamic and measurement parameters may be solved-for or considered by the navigation filter. Parameters not acknowledged in design of the filter may be treated as ignore parameters when ERRAN is run in the generalized covariance analysis mode. The dynamic parameters include biases in the gravitational constants of the sun and the target planet and biases in the six orbital elements of the target planet. Measurement biases include biases in the locations of the three earth-based tracking stations, and biases in all measurements. Available measurement types are range, rangerate, star-planet angles, and apparent planet diameter measurements. Measurement noise for each measurement type is assumed to be constant.

The computational procedure in ERRAN is divided into basic cycle computations and event computations. Basic cycle computations are concerned with the propagation of covariances forward to a measurement time and processing the measurement. Events refer to a set of specialized computation, not directly concerned with measurement processing, that can be scheduled to occur at arbitrary times along the trajectory.

The four events available in ERRAN are eigenvector, prediction, guidance, and probe release. At an eigenvector event the position and velocity partitions of the knowledge covariance matrix are diagonalized to reveal geometric information about the size and orientation of the position and velocity navigation uncertainties. Associated hyperellipsoids are also computed. At a prediction event the most recent covariance matrix is propagated forward to some critical trajectory time to determine predicted navigation uncertainties in the absence of further measurements.

The guidance event is the most complex event and yields much useful information for preflight mission analysis. Several types of guidance events are available in ERRAN. At a midcourse guidance event the user can choose from three midcourse guidance policies. The midcourse guidance event can also be constrainted to satisfy planetary quarantine requirements. At an orbital insertion guidance event the user can choose from two insertion policies. Options are also available for changing target conditions in midflight and retargeting the trajectory using nonlinear techniques, or for simply applying an externally supplied or precomputed ΔV at some arbitrary trajectory time. Two thrust models are available -- impulse and impulse series. Execution error statistics are generated using an error model defined by a proportionality error, a resolution error, and two pointing angle errors. At a midcourse guidance event in ERRAN we also compute a statistical ΔV and the target condition covariance matrix both before and after the midcourse correction.

Probe release events provide the capability to study missions employing multiprobe spacecraft. The multiprobe spacecraft is modeled as (1) a primary vehicle, or bus, with thrusting capability, (2) a main probe, with no thrusting capability, and (3) three miniprobes located symmetrically on booms attached to the bus, with no thrusting capability, and released simultaneously with ΔVs provided by spinning the bus. Probe release events currently operate only in the error analysis mode of ERRAN. All measurement types and solve-for or consider parameters described previously are defined for all probes. Separate measurement schedules can be defined for the bus and the main probe. An additional measurement schedule can also be defined for all three miniprobes. Knowledge and control covariances are propagated for each probe in sequential fashion.

2.4 The Simulation Program SIMUL

The simulation program SIMUL is the most complex program in the STEAP set of programs. In SIMUL the validity of the navigation and guidance process is examined by simulating an actual mission. Spacecraft state estimates are generated in SIMUL, as well as knowledge covariance matrices. The results given by the error analysis program ERRAN become meaningful only when SIMUL shows that the estimated spacecraft trajectory converges, within reasonable bounds specified by the covariance matrix, to the simulated actual trajectory.

All state transition matrix, parameter augmentation, and measurement options described in section 3.3 are also available in SIMUL. As in ERRAN, the computational procedure in SIMUL is divided into basic cycle computations. The SIMUL basic cycle is concerned with the generation of state estimates and an actual trajectory, together with all quantities generated in the ERRAN error analysis basic cycle. Eigenvector and prediction events in SIMUL involve all computations performed in the corresponding ERRAN events. In addition, the SIMUL prediction event propagates state estimates forward to the time to which we are predicting.

All options available in the ERRAN guidance event (see section 3.3) are also available in the SIMUL guidance event. The treatment of the midcourse guidance event, however, is different in several respects. First, since an estimated spacecraft state is generated in SIMUL, an actual midcourse ΔV can be computed rather than a statistical ΔV as in ERRAN. Also, all linear midcourse ΔV s computed in SIMUL can be recomputed using nonlinear techniques.

Finally, since an actual trajectory is generated in SIMUL, actual target errors after the midcourse correction are also computed.

Probe release events are also available in SIMUL. In addition to propagating knowledge and control covariance matrices for each probe, SIMUL also generates state estimates for each probe.

3. INPUT DESCRIPTION

3.1 NOMNAL Input Description

The input for NOMNAL is transmitted via the namelist TARIN and read in subroutine PRELIM. Each of the variables of TARIN will be described in full in this section. Many namelist variables will be specified by the program if they are not set by the user in the namelist input; these assumed values are the quantities enclosed in parentheses following the variable definition.

Namelist TARIN:

a) Nominal trajectory parameters

ALNGTH	- Length units per AU for output (ALNGTH = 149598500 : kilometers)
TM	- Time units per day for output (TM = 86400 seconds)
ACKT	 Integration accuracy level used in nominal trajectory propagation
NBOD	- Number of gravitation bodies included in integration
NB(11)	 Array of codes (defined below) of gravi- tating bodies to be included in integra- tion
Body	Code
Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto Moon	1 2 3 4 5 6 7 8 9 10

- Code of launch planet

NLP

NTP - Code of target body **IBARY** - Flag determining inertial coordinate system (IBARY = 0)= 0 - Inertial system is heliocentric ecliptic = 1 - Inertial system is barycentric ecliptic NCPR - Number of integration increments between printouts (NCPR = 100) TMPR - Number of days between printouts (TMPR = 500.)SSS(3) - Array of direction cosines of spacecraft spin axis (SSS = (0,0,1)).

b) Zero iterate parameters

IZERO - Flag determining type of zero iterate generation (IZERO = 0) = 0 - Initial state read in through ZDAT (1-6)= 1 - Launch planet at initial time to target body at final time = 2 - Launch planet at initial time to arbitrary point (specified by ZDAT (4-6)) at final time = 3 - Arbitrary initial point (specified by ZDAT (1-3) at initial time to target body at final time = 4 - Arbitrary initial point (specified by ZDAT (1-3) at initial time to arbitrary final point (specified by ZDAT (4-6)) at final time = 10 - Lunar targeting

KALI(5,10), SI(10)

- Calendar date of initial time (year, month, day, hour, minute, second)

Specified to fractional second for IZERO = 0, 3, 4

Specified only to day for IZERO = 1, 2

Not required for IZERO = 10 (lunar targeting)

Example: KALI = 1974, 5, 16, 0, 0, Si = 0.)

- Calendar date of final time (year, month, KALT(5,10). day, hour, minute, second) in zero iterate TS(10) computation (t_{CA} for lunar zero iterate generation) - Vector defining zero iterate computation ZDAT(6) for interplanetary targeting ZDAT(1-3) = arbitrary initial position(inertial ecliptic) ZDAT(4-6) = arbitrary final position (inertial ecliptic) for lunar targeting ZDAT(1-3) = desired semimajor axis,radius of closest approach, and equatorial inclination of lunar conic - Parking orbit radius in launch model RP (RP = 6560 km)- Nominal value of launch aximuth which SIGMAL may be varied if necessary (SIGMAL = 90°) KOAST - Flag determining launch plane (KOAST = 1) = 1 - long coast time orbit

The following parameters are used to define the launch profile for interplanetary trajectories:

FI	- True anomaly at injection (FI = 3.7°)
PSI1	- Angle of first burn (PSI1 = 17.°)
PSI2	- Angle of second burn (PSI2 = 8.°)
TIM1	- Duration of first burn (TIM1 = 500.)
TIM2	- Duration of second burn (TIM2 = 100.)
THELS	- Longitude of launch site (THELS = 279.457°)
PHILS	- Latitude of launch site (PHILS = 28.317°)
THEDOT	- Rotation rate of launch planet (THEDOT = 15.041)
RPRAT	- Inverse parking orbit rate (RPRAT = 14.689)

= -1 - short coast time orbit

Up to 10 guidance events are permitted in any run of NOMNAL. The guidance event parameters are defined as arrays; parameters corresponding to the same event occur in the same component of all arrays. The indices of the events are not required to be consecutive nor must they be in chronological order.

c) General guidance event parameters

KTYP(10) - The types of guidance events

- = 1 Targeting event (the current velocity will be directly refined to yield a trajectory satisfying input target conditions)
- = 2 Retargeting event [the current position and target state will be used to compute a zero iterate velocity (see IZER below) that will then be refined to meet prescribed target conditions]
- 3 Orbit insertion event (using the current state, the velocity correction needed at a later time to insert into a desired orbit is computed and executed at that later time)
- = 4 Main probe propagation event (the current state is stored so it can be returned to after the event. Then it is propagated to a stopping condition generating a printed time history. Finally the original current state is restored in preparation for the next event. This event type is used in treating branched trajectories)
- = 5 Miniprobe release event (the current state is stored. Then the release controls are calculated to apply at the current time to target three miniprobes to three respective target sites characterized by input values of declination and

right ascension. Next each of the miniprobes is propagated from release to impact using the minimummiss controls. Time histories of these trajectories are printed during their generation. Finally the current state is restored for the next event)

(KTYP = 1, 1, 1, ...)

- KTIM(10) Codes defining epochs to which times of guidance events are referenced
 - = 0 Event is not to be processed
 - = 1 Epoch is initial time
 - = 2 Epoch is time of intersection of sphere of influence of target body
 - = 3 Epoch is time of closest approach to target body
 - = 4 Time is read in as calendar date
 in KALG, SG
 (KTIM = 0,0,0,...)
- TIMG(10) Time intervals (days) of guidance events past reference epochs (KTIM)
 (TIMG = 0.,0.,0.,...)
- KALG(5,10) Dates of guidance events (year, month,
 GS(10) day, hour, minute, seconds) used only
 for KTIM(i) = 4.
 Example: KALG(1,i) = 1975,10,12,2,14,
 GS(i) = 10.234
- IZER(10) Flag determining method of computing
 zero iterate velocity for retargeting
 event
 - = 3 Current position to target body at target time
 - = 4 Current position to target position (KTAR = 10,11,12) at target time

(IZER = 0,0,0,...)

```
(KMXQ = 3,3,3,...)
                           = 1 - Compute velocity correction only
                           = 2 - Execute velocity correction only
                           = 3 - Compute and execute velocity cor-
                                 rection at same time
                           = 4 - Compute velocity correction but
                                 execute at a later time (orbit
                                 insertion)
            DELV(3,10) - The impulsive velocity increment in
                           ecliptic coordinates for each event i
                           such that KMXQ(i) = 2 (km/s).
                           Example: DELV(1,1) = .050, + .115, - .007
            MDL(10)
                        - Execution models for velocity cor-
                           rections (MDL = 1,1,1,\ldots)
                           = 1 - Impulsive model
                           = 2 - Multiple pulsing arc
The following parameters need be set only if the multiple pulsing
arc execution model is used in the run.
        PULMAG
                        - Thrust magnitude (T) of pulsing engine
        PULMAS
                         - Nominal mass in of spacecraft during
                           pulsing arc
                         - Time duration (\Delta t) of single pulse
        DUR
                         - Time interval (\Delta t_i) between pulses (days)
        DTI
The units of the first three variables must be such that the ve-
locity increment imparted on a single pulse \Delta v = T/m \Delta t is in km/s.
        KLP(10)
                         - Flags used to change the launch and tar-
                           get bodies at a guidance event
        KTP(10)
                           = 0 - Use previous codes NLP and NTP
                           = K, - Replace previous code by K.
                         Example: KLP = 0,0,5, KTP = 0,0,6, deter-
                         mines that at the third event Mars be-
                         comes the launch planet and Jupiter the
                         target planet.
                         (KLP = 0,0,..., KTP = 0,0,...)
```

- Compute/execute modes of events

KMXO(10)

KTAR(6,10) - Targeting event: Target parameter codes

for each targeting event using the definitions listed below. Example: KTAR(1,i)
= 7,8,3, triggers target parameters r
CA,

i CS.

Code	Symbol	Definition
1	TPS	Time at impact in Julian days epoch 1900 extrapolated conically from SOI conditions.*
2	TSI	Time at SOI
3	TCS	Time at CA extrapolated from SOI conditions
4	TCA	Time at CA
5	BDT	B·T at target time
6	BDR	B•R at target time
7	RCA	Radius of closest approach computed at target time
8	\mathtt{Inc}^\dagger	Inclination (planet equatorial) at target time
9	ASI	Semimajor axis (computed from SOI conditions)
10	XRF	X-component of final position (inertial ecliptic)

^{*}If 1 is among the target codes, 13 and 14 must be the remaining two. Then all the target values, like the 1 value, are extrapolated from SOI conditions.

$$\delta_{M}$$
 = 0 posigrade motion δ_{A} = +1 northern approach = 1 retrograde motion = -1 southern approach

$$i = \delta_{M} 180^{\circ} + \delta_{A}^{\alpha}$$

[†]The inclination must be specified as follows. Let α be the magnitude of the inclination with $0^{\circ} \leq \alpha \leq 90^{\circ}$. Then (see IMPACT for further details)

11	YRF	Y-component of final position (inertial ecliptic)		
12	ZRF	Z-component of final position (inertial ecliptic)		
13	DCP	Declination in degree of probe at impact relative to the probe co- ordinate system specified by IPCS		
14	RAP	Right ascension in degree of probe at impact relative to the probe coordinate system specified by IPCS		
15	TPR	Time at impact in Julian days epoch 1900 obtained completely by integration		
	minin nonpl on an	insertion event: The flag deter- g whether the coplanar (= 1) or anar (= 2) option is to be used orbit insertion event. Example: 1,i) = 1 triggers the coplanar		
TAR(6,10)	param event param = 700	ting event: The desired target eter values for each targeting in the same order as the target eter codes. Example: TAR(1,i) 0., 50., sets the desired values 7000 km, i = 50° if KTAR(1,i) = 7,8		
	Coplanar orbit insertion: $(KTYP(i) = 3KTAR(1,i) = 1)$. The desired values of semimajor axis (km) , eccentricity, and periapsis shift for each coplanar insertion. Example: $TAR(1,i) = 20000$.			
	KTAR(semim gumen clina of as nonpl	anar orbit insertion: (KTYP(i) = 3, 1,i) = 2). The desired values of ajor axis (km), eccentricity, art of periapsis (equatorial), intion (equatorial), and longitude cending node (equatorial) for each anar insertion. Example: .1) = 20000., .75, 30., 15., 210		

Definition

Code

Symbol Symbol

Miniprobe targeting: The contents of the arrays KTAR, TAR, TOL, and WGHTM are redefined as follows for this event type.

- - = 12 Spin axis is aligned with spacecraft velocity vector at release
 - = 13 Spin axis is perpendicular to spacecraft sun line, parallel to ecliptic plane, and within 90° of spacecraft velocity vector at release
 - = 14 Ecliptic declination and right ascension of spin axis are each fixed at values input by the user
- - = 11 Conic model alone
 - = 12 Conic initial iteration followed by virtual-mass refinement

- TOL(j,10) Weighting factor applied to the B·T and B·R errors of the jth target site in the miss-minimizing algorithm. The least important site should be assigned a unity weight, while the more important ones should be given progressively larger values

- Tol(4,10) Tolerance, ε, on release control convergence. For the actual convergence criterion, consult the STEAP Analytical Manual under miniprobe targeting. A suggested value for ε is 1
- TOL(5,10) Declination in degrees of the spin axis for the fixed inertial-orientation spin axis mode
- TOL(6,10) Right ascension in degrees of the spin axis axis for the fixed inertial-orientation spin axis mode
- WGHTM(10) Length of maximum pseudoinverse step in the control space. Longer steps are deferred in favor of a best-step steepest-descent correction. A suggested value is 0.5 radians or decameters
- RPS(10) The radius of the probe impact sphere in km. It must be loaded for each targeting event to planet impact parameters, each main probe propagating event, and each miniprobe targeting event
- IPCS(10) The flag specifying the planetocentric coordinate system for the various types or probe events. It must be loaded for the same cases as is RPS (IPS = O, O, O, \cdots) O = equatorial

1 = subsolar orbit plane

KALT(5,10), - Desired value of target time in calendar
dates for targeting event regardless of
whether the target time is t SI t CS, or

t CA. Thus, if KALT(1,i) = 1975,9,18,0,0,

TS(i) = 0., and KTAR(3,i) = 2, the desired time at the target planet SOI is
September 18, 1975. If KTAR(3,i) = 4,
that date is to be the desired time of
closest approach. If IZERO = 1, 2,
KALT(5,0) and TS(1) must correspond to
the final time of the zero iterate
computation

- TOL(6,10) Tolerances on desired values for targeting events in same order as the target parameter codes. Thus TOL(1,i) = 100.,
 1., .005 sets the tolerances of 100 km in r_{CA}, 1° in i, and .005 days in t_{CS}
 if KTAR(1,i) = 7,8,3
- NPAR(10) The number of targeting parameters to
 be targeted for each targeting event.
 If NPAR(i) = 3, all three velocity com ponents will be refined to meet the
 three velocity components will be re fined to meet the three target parameters.
 If NPAR(i) = 2, the X- and Y-components
 will be refined to meet the first two
 target parameters (NPAR = 3,3,3...)
- d. Targeting Scheme Parameters
 - METH(10) The method to be used in the targeting
 - = 0 Use Newton-Raphson targeting matrix method

Example: METH = 0,1,10 specifies Newton-Raphson technique for first targeting event, steepest descent for second event, and a conjugate gradient technique rectified by steepest descent every 10 steps for third event (METH = 0,0,0,...)

- WGHTM(10) The weighting factor used for the time variable in assigning a scalar loss function for the auxiliary parameters for both the bad-step logic and gradient computations (WGHTM = 10⁵, 10⁵, 10⁵,...)
- PERV(10) The velocity perturbations (km/s) used for each targeting event to compute either the targeting matrix or the gradient (PERV = .00005, .00005,...)

- DVMAX(10) The maximum step allowed (km/s) on any iterate (DVMAX = 0.1,0.1,0.1,...)
- NOIT(10) The number of total iterations allowed at the first and last level of the targeting events (NOIT = 8,8,8,...)
- MAXB(10) The number of bad steps allowed during any targeting event (MAXB = 4,4,4,...)
- - = 1 Never use bad-step check
 - = 2 Use bad-step check at final level only
 - = 3 Use bad-step checks throughout (IBADS = 3,3,3,...)
- ISTART Stage of first targeting event
 - = 0 Compute targeting matrix on first iteration
 - = 1 The first phase of the targeting has been started and a valid targeting matrix for the first phase will be read in as PHI
 - = 2 The second phase of the targeting
 has been started and a valid tar geting matrix for the second phase
 will be read in as PHI
 (ISTART = 0)
- PHI(3,3) The targeting matrix to be used repeatedly, defined by the value of ISTART

MAT(10) - Targeting matrix computation code for each targeting event

= 1 - Compute targeting matrix only at first level

= 2 - Compute targeting matrix at each step

(MAT = 1,1,1,...)

AC(5,10) - The accuracy levels used for each event.

The final accuracy level at each guidance event should be identical to the trajectory accuracy level ACKT. Thus if AC(1,i) - 1.E-4, 2.5E-5, 5.E-6, the ith guidance event will be targeted at those progressive levels

LVLS(10) - The number of accuracy levels used for each targeting event (LVLS = 3,3,3,...)

(10) - The flag used in designating the controls to be used in calculating the sensitivity matrix in a targeting event

- = 10- Intertial x, y, and z spacecraft velocity components
- = 20 Magnitude of the spacecraft velocity relative to the launch planet, and in-plane and out-of-plane rotation angles from the current relative velocity*

(CON = 2, 2, 2, ...)

^{*}See the analysis section of the subroutine KTROL for a detailed description of these controls.

3.2 ERRAN Input Description

The input of the error analysis/generalized covariance analysis program consists of:

- A card containing the variable IRUNX (IIO field) that indicates how many different runs are to be made and is read only once;
- A card containing the problem identification variable (I10 field) that precedes each set of input data;
- c) An error analysis namelist section entitled ERRAN;
- d) Three successive measurement schedules for the primary vehicle, main probe, and miniprobes in that order (see namelist variables NENT, NENT1, and NENT2);
- e) A generalized covariance analysis namelist section entitled GENRAL, that must appear only it a generalized covariance analysis is to be performed.

Most namelist variables are preset by the program; these preset values are the quantities enclosed in parentheses in the namelist definitions. Unless otherwise indicated, input units correspond to the internal units defined by the variables ALNGTH and TM. Unspecified angular units are assumed to be radians.

3.2.1 Namelist ERRAN

1. Nominal trajectory variables

IC $\emptyset\emptyset$ R - Code that specifies coordinate system of initial spacecraft state. (IC $\emptyset\emptyset$ R = 2)

- = 0, heliocentric ecliptic
- = 1, geocentric equatorial
- = 2, geocentric ecliptic
- = 3, JPL conditions: RDS, PHIT, THETA, VEL, CAMMA, SIGMA
- = 4, planetocentric ecliptic (target
 planet)

- = 5, planetocentric equatorial
- = 6, planetocentric orbital elements: semimajor axis, eccentricity, inclination, longitude of the ascending node, argument of periapsis, and true anomaly

The following six variables define the JPL conditions:

RDS - Earth - centered injection radius

PHIT - Injection declination (degrees)

THETA - Injection right ascension (degrees)

VEL - Injection velocity relative to the

Earth

GAMMA - Injection flightpath angle (degrees)

SIGMA - Injection azimuth (degrees)

LMØ - Launch month (integer)

LDAY - Launch day (integer)

LHR - Launch minute (integer)

SECL - Launch second (floating)

LYR - Launch year (integer)

IMØ - Month of final computation (integer)

IDAY - Day of final computation (integer)

IHR - Hour of final computation (integer)

IMIN - Minute of final computation (integer)

SECI - Second of final computation (floating)

IYR - Year of final computation (integer)

ALNGTH - Length units per AU (ALNGTH = 149598500. Kilometers)

TM - Time units per day. (TM = 86400. seconds)

TRTM1 - Initial trajectory time. (TRTM1 = 0.)

TINJ - Injection trajectory time. (TINJ = 0.)

NTMC - Nominal trajectory module code.
(NTMC = 2)

= 1 - patched conic (not supplied
 with this program)

= 2 - virtual mass

NBØD - Number of celestial bodies considered in the generation of the nominal trajectory (NBØD = 3)

NB(11) - Array of codes of celestial bodies considered in the generation of the nominal trajectory

= 1 - Sun

= 2 - Mercury

= 3 - Venus

= 4 - Earth

= 5 - Mars

= 6 - Jupiter

= 7 - Saturn

= 8 - Uranus

= 9 - Neptune

= 10 - Pluto

= 11 - Earth's Moon

NLP - Launch planet code

NTP - Target planet code

IEPHEM - Ephemeris code (IEPHEM = 1)

= 0 - Place each planet in an ellipse. The date at which this ellipse is calculated is determined by reading in a variable entitled as the first six letters of the name of the planet considered. This variable should contain six integers specifying the month, day, hour, minute, second, and year. Example: EARTH = 7, 24, 6 15, 38, 1973.

= 1 - Calculate orbital elements for each planet at each time interval

SSS(3)	- Array of direction cosines of space- craft spin axis (SSS = 0.0.1)
ACC	- Nominal trajectory accuracy figure (ACC = 1.0×10^{-6})
ISP2	<pre>- Code of virtual mass trajectory (ISP2 = 0)</pre>
	 = 0 - Continue integrating to final time ≥ 1 - Stop integrating when target planet sphere of influence is encountered
IBARY	- Reference coordinate system option (IBARY = 0)
	 = 0 - Reference coordinate system is heliocentric ecliptic = 1 - Reference coordinate system is barycentric ecliptic
2. State transition	matrix variables
ISTMC	<pre>- State transition matrix code (ISTMC = 1)</pre>
	 = 1 - Analytical patched conic = 2 - Analytical virtual mass = 3 - Numerical differencing using virtual mass
DTMAX	- Maximum time interval for which analy- tical computation of the state transi- tion matrix is considered valid (DTMAX = 8.days)
NDACC	<pre>- Accuracy code for numerical differ- encing (NDACC = 0)</pre>
	= 0 - Same accuracy as is employed in the computation of the nomi-

nal trajectory

next

= 1 - Accuracy = ACCND, described

ACCND	- Accuracy to be used in the calculation of the state transition matrix by numerical differencing (ACCND = 2.5×10^{-5})
ISTM1	- Cascaded state transition matrix code (ISTM1 = 1) (ISTM1 should be set to 3 for lunar missions since cascading option has not been defined for such missions)
	 = 1 - Patched conic Danby method = 2 - Virtual-mass Danby method = 3 - Numerical differencing (CASCAD not called)
DTSUN	<pre>- Integration interval when sun is cen- tral body and ISTM1 = 1. (DTSUN = 2.0 days)</pre>
DTPLAN	<pre>- Integration interval when target planet is central body and ISTM1 = 1. (DTPLAN = 0.25 days)</pre>
FACP	<pre>- Position factor for numerical differ- encing (FACP = 1.)</pre>
FACV	- Velocity factor for numerical differencing (FACV = 1. $\times 10^{-4}$)

The following eight variables are used to compute the augmented state transition matrix by numerical differencing:

DELMUS

	is nonzero (DELMUS = 1. \times 10 ⁷)
DELMUP	- Target planet gravitational constant factor; need be specified only if IAUGIN(11) is nonzero (DELMUP = 0.1)
DELAXS	- Target planet semimajor axis factor; need be specified only if IAUGIN(12)

is nonzero (DELAXS = 100.)

- Sun gravitational constant factor; need be specified only if IAUGIN(10)

DELECC - Target planet eccentricity factor; need be specified only if IAUGIN(13) is nonzero (DELECC = 1. x 10⁻⁵)

DELICL - Target planet inclination factor; need be specified only if IAUGIN(14) is nonzero (DELICL = .0000484814 radians)

DELNØD - Target planet longitude of the ascending node factor; need be specified only if IAUGIN(15) is nonzero (DELNØD = .0000484814 radians)

DELW - Target planet argument of periapsis factor; need be specified only if IAUGIN(16) is nonzero (DELW = .0000484814 radians)

DELMA - Target planet mean anomaly factor; need be specified only if IAUGIN(17) is nonzero (DELMA = .0000484814 radians)

3. Parameter augmentation variables

IAUGIN(24) - Array of augmented parameter codes; unspecified elements are assumed to be zeros. Up to 12 solve-for parameters may be augmented; up to 8 dynamic-consider parameters; up to 15 measurement-consider parameters; and up to 12 ignore parameters

IAUGIN(I) = 0 - neglected parameter = 1 - consider parameter = 2 - solve-for parameter

= 3 - ignore parameter (generalized covariance only)

I = 1 Radius error of station 1
2 Latitude error of station 1
3 Longitude error of station 1

4 Radius error of station 2

5 Latitude error of station 26 Longitude error of station 2

7 Radius error of station 3

8 Latitude error of station 3 9 Longitude error of station 3 measurement parameters

I = 10	Sun gravitational constant bias		
11	Target planet gravitational constant bias		
12	Target planet semimajor axis bias		
13	Target planet eccentricity bias	•	
14	Target planet inclination bias	/	dynamic
15	Target planet longitude of	(parameters
	ascending node bias	1	
16	Target planet argument of	l	
	periapsis bias	,	
17	Target planet mean anomaly bias	•	
18	Range bias of station 1	\	
19	Range-rate bias of station 1	ı	
20	Star-planet angle 1 bias		measurement
21	Star-planet angle 2 bias	(parameters
22	Star-planet angle 3 bias	1	
23	Apparent planet diameter bias	,	
24	Undefined		
surement	variables		

4. Meas

24	Undei	•	drameter pr	as)	
asurement	varia	ables	•	,	
NENT			of entries measuremen	•	-
NENT1			of entries measurement		
NENT 2		gle mea	of entries asurement sc bbes (NENT2	hedule for	
NST		on the	of tracking rotating eacking station following med:	rth (NST = n informati	3). If • on is read
			Altitude	Latitude	Longitude
	2.		1.031 km .050 km .050 km		3.667 W

If different tracking stations are desired, their locations must be specified by the following three arrays.

SAL(3)	 Array of altitudes of each tracking station
SLAT(3)	- Array of latitudes of each tracking station in degrees north
SLØN(3)	- Array of longitudes of each tracking station in degrees east
UST(3) VST(3) WST(3)	 Direction cosine arrays of three reference stars. If not specified, the three stars and their direction cosines are as follows:
	Canopus Betelgeuse Rigel
	UST061351 .028986 .201963
	VST .237886 .960388 .831343
	WST969355277141517784

5. Eigenvector and prediction event variables

NEV1	- Number of eigenvector events (NEV1 = 0)
NEV2	- Number of prediction events (NEV2 = 0)
T1(20)	 Array of times at which eigenvector events occur; specified only if NEV1 is nonzero. Chronological order required
T2(20)	 Array of times at which prediction events occur; specified only if NEV2 is nonzero. Chronological order required
TPT2(20)	 Array of times to which one wishes to predict. The elements of the TPT2 array must correspond to the elements of the T2 array and must be specified only if the T2 array has been specified

IEIG - Eigenvector code (IEIG = 1)

= 0 - Only position eigenvectors will be calculated

= 1 - Both position and velocity eigenvectors will be calculated

= 1 - Sigma level equals one
= 2 - Sigma level equals three

= 3 - Sigma levels of both one and three

FØP - A value to be used as an off-diagonal annihilation element in subroutine JACØBI for position eigenvalues and eigenvectors (FØP = 1. x 10⁻¹⁵)

- A value to be used as an off-diagonal annihilation element in subroutine JACØBI for velocity eigenvalues and eigenvectors (FØV = 1. x 10⁻²⁵)

6. Covariance variables (filter, or assumed, covariances)

FØV

P(6,6) - Initial P (position and velocity) covariance matrix. Referenced to inertial frame (diag P = 1.,1.,1., 1. x 10⁻⁴, 1. x 10⁻⁴, 1. x 10⁻⁴)

The structure of the following eight parameter covariance matrix partitions must correspond to the structure of the solve-for, dynamic-consider, and measurement-consider parameter vectors.

PS(12,12) - Initial P_S (solve-for parameter) covariance matrix (PS = identity matrix)

UO(8,8) - Initial U_O (dynamic-consider parameter) covariance matrix (UO = identity matrix)

VO(15,15) - Initial V_O (measurement-consider parameter) covariance matrix (VO = identity matrix)

```
- Initial c_{xx} covariance matrix
CXXS(6,12)
                  (CXXS = 0)
                - Initial C covariance matrix
CXU(6,8)
                - Initial C covariance matrix
CXV(6,15)
                - Initial c_{\mathbf{x}_{\mathbf{S}}\mathbf{u}} covariance matrix
CXSU(12,8)
                  (CXSU = 0)
                - Initial C covariance matrix
CXSV(12,15)
                  (CXSV = 0)
IGAIN
                - Filter gain generator code (IGAIN = 1)
                  = 1 - Kalman-Schmidt filter
                  = 2 - Equivalent recursive weighted
                        least-squares consider filter
                         (available only if subroutine
                        GAIN2 has been loaded)
IDNF
                - Dynamic noise flag (IDNF = 0)
                  = 0 - Dynamic noise is zero
                  = 1 - Dynamic noise is not zero
DNCN(3)
                - Array of constants used to calculate
                  dynamic noise covariance matrix; must
                  be specified if IDNF equals 1
                - Measurement noise flag (IMNF = 0)
IMNF
                  = 0 - Measurement noise is constant
                  = 1 - Measurement noise is not con-
                         stant (option is not available
                         with this program)
```

MNCN(12)	 Array of variances for each type of measurement. If not specified, the following values are assumed:
	$MNCN(1) = 1. \times 10^{-6}$ Range (idealized station)
	(2) = 1. x 10^{-12} Range rate (idealized station)
	(3) = 1. x 10^{-6} Range (station 1) (4) = 1. x 10^{-12} Range rate
	(station 1)
	(5) = 1. x 10^{-6} Range (station 2)
	(6) = 1. x 10^{-12} Range rate (station 2)
	(5) = 1. x 10^{-6} Range (station 3)
	(8) = $1.^{\circ} \times 10^{-12}$ Range rate
	(station 3) (9) = 2.5×10^{-9} Star-planet angle 1
	(10) = 2.5 x 10^{-9} Star-planet angle 2
	$(11) = 2.5 \times 10^{-9} \text{ Star-planet angle 3}$
	(12) = 2.5×10^{-9} Apparent planet
	diameter
SIGRES	- Variance of resolution execution error (SIGRES = $4. \times 10^{-8}$)
SIGPRØ	<pre>- Variance of proportionality execution error (SIGPRØ = .0001)</pre>
SIGALP	 Variance of pointing angle alpha execution error (SIGALP = .0043625 radians²)
SIGBET	- Variance of pointing angle beta execution error (SIGBET = .0043625 radians ²)
PSIGS	- Variance of resolution execution error for pulsing engine (PSIGS = $4. \times 10^{-8}$)
PSIGK	- Variance of proportionality execution error for pulsing engine (PSIGK = .0001)
PSIGA	<pre>- Variance of pointing angle alpha exe- cution error for pulsing engine (PSIGA = .0043625 radians²)</pre>

PSIGB - Variance of pointing angle beta execution error for pulsing engine $(PSIGB = .0043625 \text{ radians}^2)$ IGEN - Code that indicates if a generalized covariance analysis is to be performed (IGEN = 0)= 0 - No generalized covariance analysis = 1 - Generalized covariance analysis 7. Print codes - Trajectory print interval in days (DELTP = 1. \times 10⁵⁰) DELTP INPR - Trajectory print interval in increments (INPR = 100000) IPRINT - Measurement print interval; measurement information printed every IPRINT measurements (IPRINT = 1) KPRINT - Correlation matrix print code (KPRINT = 0)= 0 - Print out P and P_S correlation matrices and standard deviations at a measurement = 1 - Print out all correlation matrices and standard deviations at a measurement IPRT - Array of print codes (IPRT = 1,1,1,1) IPRT(I) = 1 - Print out information= 0 - Do not print out information I = 1 Ephemeris data 2 Spacecraft trajectory relative to planets

3 Virtual-mass data

called)

4 Navigation parameters (TRAPAR

8. Guidance event variables

NEV3 - Number of guidance events (NEV3 = 0)

T3(10) - Array of times at which guidance events occur; specified only if NEV3 is nonzero. Chronological order required

ICDQ3(10) - Array of codes for guidance events
to determine how the execution error
covariance matrix is to be calculated.
These codes must correspond to the
elements of the T3 array and need be
specified only if the T3 array has
been specified (ICDQ3 = array of 1's)

- = 0 Calculated directly from velocity correction covariance matrix
- = 1 Calculated from the eigenvector corresponding to the maximum eigenvalue of the velocity correction covariance matrix
- - 2 Two-variable B-plane midcourse guidance event
 - 3 Three-variable B-plane midcourse guidance event
 - 4 Planar orbital insertion decision event
 - 5 Nonplanar orbital insertion decision event
 - 6 Externally supplied velocity change event
 - 7 Retargeting event
- IGUID(2,I) = 0 Linear guidance 1 - Nonlinear guidance

IGUID(3,I)	= 0 - Planetary quarantine constraints not in effect
	 1 - Planetary quarantine constraints in effect; use linear guidance to achieve biased aimpoint 2 - Planetary quarantine constraints in effect; use nonlinear guidance to achieve biased aimpoint
IGUID(4,I)	<pre>= 1 - Single impulse thrust model 2 - Pulsing thrust model 3 - Finite burn (not available)</pre>
IGUID(5,1)	 = 1 - Execute event only 2 - Compute event only 3 - Compute and execute event 4 - Compute, but execute event later

The IGUID(J,I) array cannot be chosen arbitrarily, but must conform to the following table of permissible combinations.

IGUID(1,I)	IGUID(2,I)	IGUID(3,I)	IGUID(4,I)	IGUID(5,I)
1, 2, 3	0	0, 1, 2	1, 2	2, 3
4, 5		0	1, 2	2, 4
6		0	1, 2	1
7		О	1, 2	2, 3

Additional restrictions on the IGUID(J,I) array are listed below:

- a. ICDQ3(I) must be set to 1 if $IGUID(3,I) \neq 0$.
- b. Only one orbital insertion event may occur, and it must be the final guidance event.
- c. An externally supplied velocity change event may not be preceded by a midcourse guidance event if the original nominal does not pierce the target planet sphere of influence. Note also that nominal target conditions TNØMB and TNØMC are not altered when an externally supplied velocity change event occurs.

No additional guidance variables are required if the guidance event is a linear impulsive midcourse guidance event subject to no planetary quarantine constraints. Other types of guidance events require that some of the following guidance variables be specified:

LKTAR (6,10)	- Array defining target parameters, identical to KTAR in NOMNAL
XTAR(6,10)	 Desired target value; identical to TAR in NØMNAL
XPERV(10)	 Velocity perturbation used to compute targeting matrix; identical to PERV in NØMNAL
XDVMAX(10)	 Maximum allowable velocity correction; identical to DVMAX in NØMNAL
LNPAR(10)	 Number of target parameters desired; identical to NPAR in NØMNAL
LLVLS(10)	 Number of integration accuracy levels used; identical to LVLS in NØMNAL
TGT3(10)	 Desired target times; referenced to initial trajectory time
DELV(3,10)	 Array of externally supplied velocity changes (DELV = array of zeros)
TNØMB(3)	- Nominal B-plane target conditions: B·T, B·R, and t _{SI}
TNØMC(7)	- Nominal closest approach target conditions: \vec{R}_{CA} , \vec{V}_{CA} , and t_{CA}
PRØBI	<pre>- Allowable probability of impact (PRØBI = 1.)</pre>
IDENS	- Code defining method of treating probability density function in sub- routine BIAIM. Option not available at present (IDENS = 1)
PULMAG	- Magnitude of pulsing engine thrust

PULMAS - Nominal mass of spacecraft

DUR - Duration of single pulse

DTI - Time interval between pulses

List of required variables for guidance events other than linear impulsive midcourse guidance events subject to no planetary quarantine constraints:

- a. Retargeting: LKTAR, XTAR, XTØL, XAC, LNPAR, XPERV, XDVMAX, LLVLS, TGT3.
- b. Nonlinear guidance: XTØL, XAC, XPERV, XDVMAX, LLVLS, TNØMB, TNØMC.
- c. Orbital insertion: XTAR.
- d. Biased aimpoint guidance (planetary quarantine): PRØBI, TNØMB, TNØMC, TINJ, IDENS.
- e. Pulsing thrust model: PULMAG, PULMAS, DUR, DTI, PSIGS, PSIGK, PSIGA, PSIGB.
- f. Externally supplied velocity change: DELV.
- 9. Probe release events

T6 - Time of main probe release event

T7 - Time of miniprobe release event

PMN(12) - Array of main probe measurement noise variances for each type of measurement.

PMN(I) refers to same measurement type as MNCN(I) and is preset to the same values

= 0 - PMN array will be set equal to MNCN array

= 1 - PMN array will be specified in the namelist

SMN(12) - Array of miniprobe measurement noise variances for each type of measurement.

SMN(I) refers to same measurement type as MNCN(I) and is preset to the

same values

ISMN - Miniprobe measurement noise code (ISMN = 0)

= 0 - SMN array will be set equal to MNCN array

= 1 - SMN array will be specified in the namelist

See section 4 for definitions of NENT1 and NENT2.

XEE(5) - Miniprobe release execution error variances

XEE(1) : spin rate variance
XEE(2) : boom length variance

XEE(3): spin axis right ascension

variance

XEE(4): spin axis declination

variance

XEE(5): release angle variance

YYL - Miniprobe boom length

TIMPCT - Approximate probe impact (trajectory) time. Can be obtained from a NØMNAL

run

RPS - Probe sphere radius; equals planet

radius plus altitude of probe above

planet surface at entry

IUTC - Miniprobe targeting code (IUTC = 0)

= 0 - Target controls computed internally

= 1 - Target controls supplied by user

The next four variables are user-supplied miniprobe target controls and must be specified only if IUTC = 1.

XPHI - Miniprobe release angle

ABW - Miniprobe spin rate magnitude

ALFA - Right ascension of spin axis relative to the ecliptic coordinate system

DELT - Declination of spin axis relative to the ecliptic coordinate system

The remaining variables are required for internal miniprobe targeting and must be specified only if IUTC = 0.

ACTPP - Accuracy level for virtual-mass propagation for miniprobe targeting

 $(ACTPP = 2.5 \times 10^{-5})$

IPRØPI - Trajectory propagation code (IPRØPI = 1)

= 1 - Conic propagation

= 2 - Initial conic propagation with virtual-mass propagation refinement

ج

= 1 - Subsolar orbital-plane coordinate system

= 2 - Equatorial coordinate system

RATP(3) - Array of right ascensions of the three miniprobe targets relative to the coordinate system specified by IPCSK

DCTP(3) - Array of declinations of the three miniprobe targets relative to the coordinate system specified by IPCSK

ISA \emptyset - Spin axis orientation flag (ISA \emptyset = 1)

= 1 - Spin axis declination and right ascension are free controls

= 2 - Spin axis is aligned with spacecraft velocity vector at release

27-13

- = 3 Spin axis is perpendicular to the spacecraft-sun line, parallel to the ecliptic plane, and within 90° of the spacecraft velocity vector at release
- = 4 Spin axis declination and right ascension are fixed by userspecified values of DCSAF and RASAF

DCSAF	-	Fixed spin	axis	de	eclination	at	release;
		specified	only i	if	ISAØ = 4		

RASAF	-	Fixed	spin	axis	right	ascension	at	re-
		lease;	spec	cified	only	if ISAØ =	4	

SO - Step size upper bound in the control space (SO = 0.1)

WFLS(3) - Miniprobe target site weighting factors that indicate the relative importance of impacting each of the three target sites

3.2.2 Measurement Schedules

Three successive measurement schedules must appear immediately after the namelist ERRAN section. The first schedule appears on NENT cards and defines the measurement schedule for the primary vehicle. Immediately following these NENT cards are NENT1 cards that define the main probe measurement schedule. Following the NENT1 cards are NENT2 cards that define the single measurement schedule for all three miniprobes.

Each card defines an entry in the measurement schedule according to the following format:

From DAY1 (F10.0) to DAY2 (F10.0), every X (F10.0) days, measurement code ITRK (I10).

The measurement codes are defined as follows:

ITRK = 1 - Range rate (idealized station)
2 - Range and range rate (idealized station)
3 - Range rate (station 1)

- = 4 Range and range rate (station 1)
 - 5 Range rate (station 2)
 - 6 Range and range rate (station 2)
 - 7 Range rate (station 3)
 - 8 Range and range rate (station 3)
 - 9 Three star-planet angles
 - 10 Apparent planet diameter
 - 11 Star-planet angle 1
 - 12 Star-planet angle 2
 - 13 Star-planet angle 3

The total number of primary vehicle measurements must not exceed 1000, and measurement times must not coincide. The total number of main probe measurements must not exceed 100. The total number of miniprobe measurements must not exceed 100.

3.2.3 Namelist GENRAL

GP(6,6)	- Actual spacecraft position/velocity
	covariance matrix $P'(GP = P)$

- GPS(12,12) Actual solve-for parameter covariance matrix P; (GPS = PS)
- GU(8,8) Actual dynamic-consider parameter covariance matrix V' (GU = VO)
- GV(15,15) Actual measurement-consider parameter covariance matrix V' (GV = VO)
- GW(12,12) Actual ignore parameter covariance matrix W' (GW = identity matrix)
- GCXXS(6,12) Actual state/solve-for parameter covariance matrix C' (GCXXS = CXXS)
- GCXU(6,8) Actual state/dynamic-consider parameter covariance matrix C' (GCXU = CXU)
- GCXV(6,15) Actual state/measurement-consider parameter covariance matrix C' (GCXV = CXV)
- GCXW(6,12) Actual state/ignore parameter covariance matrix C' (GCXW = 0)

GCXSU(12,8)	- Actual solve-for parameter/dynamic- consider parameter covariance matrix C' (GCXSU = CXSU) x u
GCXSV(12,15)	<pre>- Actual solve-for parameter/measurement- consider parameter covariance matrix C' (GCXSV = CXSV)</pre>
GCXSW(12,12)	- Actual solve-for parameter/ignore parameter covariance matrix C' (GCXSW = 0) sw
GCUV(8,15)	<pre>- Actual dynamic-consider parameter/ measurement-consider parameter co- variance matrix C' (GCUV = 0) uv</pre>
GCUW(8,12)	<pre>- Actual dynamic-consider parameter/ ignore parameter covariance matrix C' (GCUW = 0) uw</pre>
GCVW(15,12)	<pre>- Actual measurement-consider parameter/ ignore parameter covariance matrix C' (GCVW = 0)</pre>
EXI(6)	- Actual spacecraft position/velocity deviation mean \bar{x}_0^* (EXI = 0)
EXSI(12)	- Actual solve-for parameter deviation mean $\bar{\mathbf{x}}'$ (EXSI = 0)
EU(8)	- Actual dynamic-consider parameter deviation mean \bar{u}_{o}^{\dagger} (EU = 0)
EV(15)	- Actual measurement-consider parameter deviation mean $\overline{\mathbf{v}}'$ (EV = 0)
EW(12)	- Actual ignore parameter deviation mean \bar{w}' (EW = 0)

- Actual dynamic noise flag (IGDNF = IDNF) IGDNF = 0 - Actual dynamic noise is zero = 1 - Actual dynamic noise is not zero GDNCN(3) - Array of constants used to calculate actual dynamic noise covariance matrix; must be specified if IGDNF equals - Actual measurement noise flag (IGMNF = 0) IGMNF = 0 - Actual measurement noise is constant = 1 - Actual measurement noise is not constant (option is not available with this program) GMN CN (12) - Actual measurement noise variance for each type of measurement. GMNCN(I) refers to same measurement type as MNCN(I) (GMNCN = MNCN) EVK - Actual proportionality execution error mean (EVK = 0.)EVS - Actual resolution execution error mean (EVS = 0.) EVA - Actual pointing angle alpha execution error mean (EVA = 0.) EVB - Actual pointing angle beta execution error mean (EVB = 0.)VARK - Actual proportionality execution error variance (VARK = SIGPRØ) VARS - Actual resolution execution error variance (VARS = SIGRES) VARA - Actual pointing angle alpha execution error variance (VARA = SIGALP) VARB - Actual pointing angle beta execution error variance (VARB = SIGBET)

3.3 SIMUL Input Description

The input of the simulation program consists of:

- a. A card containing the variable IRUNX (I10 field) that indicates how many different runs are to be made and is read only once.
- b. A card containing the problem identification variable IPRØB (I10 field) that precedes each set of input data.
- c. A simulation namelist section entitled SIMUL.
- d. Three successive measurement schedules for the primary vehicle, main probe, and miniprobes in that order.

Namelist SIMUL contains all variables appearing in namelist ERRAN except for the variables ICDQ3 and IGEN. No generalized covariance variables may appear in namelist SIMUL and no element of the IAUGIN array may be set to 3. The variable IGUID(2,I) may also take on the variable 1 for IGUID(1,I) = 1, 2, or 3. Variables appearing in namelist SIMUL, but not in namelist ERRAN, are defined below.

1. Actual trajectory variables

•	•
NBØD1	- Number of celestial bodies considered in the generation of the actual tra- jectory (NBØD1 = 11)
NB1(11)	- Array of codes of celestial bodies considered in the generation of the actual trajectory; NB1 codes defined identically to NB codes (NB1 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
ACC1	- Actual trajectory accuracy figure (ACCl = 1.0 x 10 ⁻⁶)
ADEVX(6)	- Actual initial position and velocity deviations from the most recent nominal trajectory (ADEVX = 0, 0, 0, 0, 0, 0)

2. Actual dynamic biases

DMUSB - Actual bias in the gravitational constant of the sun (DMUSB = 0.) **DMUPB** - Actual bias in the gravitational constant of the target planet (DMUPB = 0.)DAB - Actual bias in the semimajor axis of the target planet (DAB = 0.) DEB - Actual bias in the eccentricity of the target planet (DEB = 0.) DIB - Actual bias in the inclination of the target planet (DIB = 0.) DNØB - Actual bias in the longitude of the ascending node of the target planet $(DN \emptyset B = 0.)$ - Actual bias in the argument of periapsis DWB of the target planet (DWB = 0.) - Actual bias in the mean anomaly of **DMAB** the target planet (DMAB = 0.) - The first time at which the values TTIM1 used for the actual unmodeled acceleration will be altered $(TTIM1 = 1. \times 10^{50})$ TTIM2 - The second time at which the values used for the actual unmodeled acceleration will be altered $(TTIM2 = 1. \times 10^{50})$

UNMAC(3,3) - Array of actual unmodeled accelerations to be used over a given time interval.

Each row defines the values used over a given time interval; columns define the X, Y, and Z components of the unmodeled acceleration (UNMAC = array of zeros)

3. Actual measurement biases and variances

- BIA(12) Array of actual biases for each type of measurement (BIA = array of zeros).

 The following association exists:
 - BIA(1) = Range bias (idealized station)
 - (2) = Range-rate bias (idealized station)
 - (3) = Range bias (station 1)
 - (4) = Range-rate gias (station 1)
 - (5) = Range bias (station 2)
 - (6) = Range-rate bias (station 2)
 - (7) = Range bias (station 3)
 - (8) = Range-rate bias (station 3)
 - (9) = Star-planet angle 1 bias
 - (10) = Star-planet angle 2 bias
 - (11) = Star-planet angle 3 bias
 - (12) = Apparent planet diameter
 bias
- SLB(9) Array of actual biases in the locations of the three tracking stations on the rotating earth (SLB = array of zeros). The following association exists:
 - SLB(1) = Station 1 altitude bias
 - (2) = Station 1 latitude bias
 (degrees north)
 - (3) = Station 1 longitude bias
 (degrees east)
 - (4) = Station 2 altitude bias
 - (5) = Station 2 latitude bias
 (degrees north)
 - (6) = Station 2 longitude bias
 (degrees east)
 - (7) = Station 3 altitude bias
 - (8) = Station 3 latitude bias
 (degrees north)
 - (9) = Station 3 longitude bias
 (degrees east)

IAMNF

- Actual measurement noise code
 (IAMNF = 0)
 - = 0 Actual measurement noise has same statistics assumed by the navigation process (as represented by the MNCN array and the R covariance matrix)
 - = 1 Actual measurement noise has different statistics from those assumed by the navigation process. These statistics are defined by the AVARM array

AVARM(12)

- Array of actual variances for each type of measurement; specified only if IAMNF = 1. The following association exists:

- AVARM(1) = Range variance (idealized station)
 - (2) = Range-rate variance (idealized station)
 - (3) = Range variance (station 1)
 - (4) = Range-rate variance
 (station 1)
 - (5) = Range variance (station 2)
 - (6) = Range-rate variance
 (station 2)
 - (7) = Range variance (station 3)
 - (8) = Range-rate variance
 (station 3)
 - (9) = Star-planet angle 1 variance
 - (10) = Star-planet angle 2 variance
 - (11) = Star-planet angle 3 vari-
 - (12) = Apparent planet diameter variance

4. Actual midcourse velocity correction errors

ARES(10) - Array of actual resolution execution errors. The elements of this array and the following three arrays must correspond to the elements of the T3 array and need be specified only if the T3 array has been specified (ARES = array of zeros)

APRØ(10) - Array of actual proportionality execution errors (APRØ = array of zeros)

AALP(10) - Array of actual pointing angle alpha execution errors (AALP = array of zeros)

ABET(10) - Array of actual pointing angle beta execution errors (ABET = array of zeros)

5. Quasi-linear filtering event variables

NEV5 - Number of quasi-linear filtering events (NEV5 = 0)

T5(20) - Array of times at which quasi-linear filtering events occur; specified only if NEV5 is nonzero. Chronological order required

6. Probe release event variables

PAVARM(12) - Array of actual main probe measurement noise variances for each measurement type. PAVARM(I) refers to same measurement type as AVARM(I) and is preset to the same values

SAVARM(12) - Array of actual miniprobe measurement noise variances for each measurement type. SAVARM(I) refers to same measurement type as AVARM(I) and is present to the same values

PBIA(12) - Array of actual main probe biases for each measurement type. PBIA(I) refers to same measurement type as BIA(I) and is preset to the same values.

SBIA(12) - Array of actual miniprobe biases for each measurement type. SBIA(I) refers to same measurement type as BIA(I) and is preset to the same values

The next five variables define the actual miniprobe release execution errors:

DW - Actual spin-rate execution error (DW = 0.)

DA - Actual spin axis right ascension execution error (DA = 0.)

DD - Actual spin axis declination execution error (DD = 0.)

DP - Actual release angle execution error (DP = 0.)

DL - Actual boom length error (DL = 0.)

NQLE(2) - Number of probe quasi-linear filtering events. NQLE(1) = number of main probe quasi-linear filtering events. NQLE(2) = number of miniprobe quasi-linear filtering events

QLTIM(2,10) - Array of probe quasi-linear filtering event times. QLTIM(1,1) defines the sequence of event times for the main probe. QLTIM(2,1) defines the sequence of event times for the miniprobe. Event times must be arranged in chronological order

3.3 SIMUL Input Description

The input of the simulation program consists of (a) a card containing the variable IRUNX (IIO field) which indicates how many different runs are to be made and is read only once, (b) a card containing the problem identification variable IPROB (IIO field) which precedes each set of input data, (c) a namelist entitled SIMUL, and (d) a measurement schedule. The measurement schedule is treated exactly the same way as it is treated in the error analysis program. Namelist SIMUL contains all variables appearing in namelist ERRAN except for the variable ICDQ3. In addition, IGUID(2,I) can also take on the value 1 for IGUID(1,I) = 1,2, or 3.

Variables appearing in namelist SIMUL, but not in namelist ERRAN, are defined below.

a. Actual trajectory variables

- NBOD1 Number of celestial bodies considered in the generation of the actual trajectory. (NBOD1 = 11)
- NB1(11) Array of codes of celestial bodies considered in the generation of the actual trajectory; NB1 codes defined identically to NB codes. (NB1 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
- ACC1 Actual trajectory accuracy figure. (ACC1 = 1.0×10^{-6})
- ADEVX(6) Actual initial position and velocity deviations from the most recent nominal trajectory. (ADEVX = 0, 0, 0, 0, 0, 0)

b. Actual dynamic biases

- DMUSB Actual bias in the gravitational constant of the Sun. (DMUSB = 0.)
- DMUPB Actual bias in the gravitational constant of the target planet. (DMUPB = 0.)
- DAB Actual bias in the semi-major axis of the target planet. (DAB = 0.)
- DEB Actual bias in the eccentricity of the target planet.
 (DEB = 0.)
- DIB Actual bias in the inclination of the target planet.
 (DIB = 0.)

DN ϕ B - Actual bias in the longitude of the ascending node of the target planet. (DN ϕ B = 0.)

DWB - Actual bias in the argument of periapsis of the target planet. (DWB = 0.)

DMAB - Actual bias in the mean anomaly of the target planet. (DMAB = 0.)

TTIM1 - The first time at which the values used for the actual unmodeled acceleration will be altered. $(TTIM1 = 1. \times 10^{50})$

TTIM2 - The second time at which the values used for the actual unmodeled acceleration will be altered. $(TTIM2 = 1. \times 10^{50})$

UNMAC(3,3) - Array of actual unmodeled accelerations to be used over a given time interval. Each row defines the values used over a given time interval; columns define the X, Y, and Z components of the unmodeled acceleration. (UNMAC = array of zeros)

c. Actual measurement biases and variances

BIA(12) - Array of actual biases for each type of measurement.

(BIA = array of zeros) The following association exists:

BIA(1) = Range bias (idealized station)

(2) = Range-rate bias (idealized station)

(3) = Range bias (station 1)

(4) = Range-rate bias (station 1)

(5) = Range bias (station 2)

(6) = Range-rate bias (station 2)

(7) = Range bias (station 3)

(8) = Range-rate bias (station 3)

(9) = Star-planet angle 1 bias

(10) = Star-planet angle 2 bias

(11) = Star-planet angle 3 bias

(12) = Apparent planet diameter bias

SLB(9) - Array of actual biases in the locations of the three tracking stations on the rotating earth.

(SLB = array of zeros) The following association exists:

- SLB(1) = Station 1 altitude bias
 - (2) = Station ! latitude bias (degrees north)
 - (3) = Station 1 longitude bias (degrees east)
 - (4) = Station 2 altitude bias
 - (5) = Station 2 latitude bias (degrees north)
 - (6) = Station 2 longitude bias (degrees east)
 - (7) = Station 3 altitude bias
 - (8) = Station 3 latitude bias (degrees north)
 - (9) = Station 3 longitude bias (degrees east)

IAMNF - Actual measurement noise code. (IAMNF = 0)

- = 0 Actual measurement noise has same statistics assumed by the navigation process (as represented by the MNCN array and the R_k covariance matrix).
- = 1 Actual measurement noise has different statistics from those assumed by the navigation process. These statistics are defined by the AVARM array.
- AVARM(12) Array of actual variances for each type of measurement; specified only if IAMNF = 1. The following association exists:
 - AVARM(1) = Range variance (idealized station)
 - (2) = Range-rate variance (idealized station)
 - (3) = Range variance (station 1)
 - (4) = Range-rate variance (station 1)
 - (5) = Range variance (station 2)
 - (6) = Range-rate variance (station 2)
 - (7) = Range variance (station 3)
 - (8) = Range-rate variance (station 3)
 - (9) = Star-planet angle 1 variance
 - (10) = Star-planet angle 2 variance
 - (11) = Star-planet angle 3 variance
 - (12) = Apparent planet diameter variance
- d. Actual midcourse velocity correction errors
 - ARES(10) Array of actual resolution errors. The elements of this array and the following three arrays must correspond to the elements of the T3 array and need be specified only if the T3 array has been specified. (ARES = array of zeros)
 - APRO(10) Array of actual proportionality errors. (APRO = array of zeros)

02

- AALP(10) Array of actual pointing angle alpha errors.

 (AALP = array of zeros)
- ABET(10) Array of actual pointing angle beta errors.

 (ABET = array of zeros)
- e. Quasi-linear filtering event variables
 - NEV5 Number of quasi-linear filtering events. (NEV5 = 0)
 - T5(20) Array of times at which quasi-linear filtering events occur; specified only if NEV5 is non-zero.

4. OUTPUT DESCRIPTION

4.1 NOMNAL Output Description

The output from the nominal trajectory generator NOMNAL is conveniently divided into seven sections — initial data, interplanetary zero iterate, lunar zero iterate generation, nominal trajectory data, nonlinear guidance, orbit insertion, execution of a correction, and miniprobe targeting. Each of these sections will be discussed individually.

a. Initial Data

The namelist TARIN is first printed out as the data are input. Then much of the data with useful extensions are recorded in unified sections. More specific definitions of the input data are given in the Input Description Section. The trajectory parameters are first recorded.

ALNGTH	Length units per AU for trajectory output
TM	Time units per day for trajectory output
NBOD	Number of bodies used in integration
NB	Array of codes of gravitational bodies
IBARY	Flag indicating whether inertial system is heliocentric ecliptic (IBARY = 0) or barycentric ecliptic (IBARY = 1)
ICOORD	Flag not currently used
NCPR	Integration increments between printouts of nominal trajectory
TMPR	Days between printouts of nominal tra- jectory

Next the zero iterate data are printed, including the initial state itself and the parameters necessary to compute it.

IZERO	Flag designating which option of zero iterate generation was used
ZDAT(6)	Zero iterate state (inertial ecliptic) generated

RP	Parking orbit radius
FI	Injection true anomaly
A1	Angle of first burn
A2	Angle of second burn
T 1	Time interval of first burn
Т2	Time interval of second burn
LAT	Latitude of launch site
LON	Longitude of launch site
THD	Rotation rate of launch planet
RAT	Inverse rate in parking orbit
AZI	Launch azimuth

Then for each guidance event to be processed (KTIM \neq 0), the following data are recorded.

EVENT TYPE	Value of KTYP flag designating whether event is targeting, retargeting, orbit insertion, main-probe propagation, miniprobe targeting, or termination
REF TIME	Value of TIMG, giving time interval between event and reference epoch
REF CODE	Value of KTIM, designating the epoch to which event times are referenced (initial time, SOI, CA)
EVENT (TARGET) CALENDAR DATE	The calendar date of the event (target time)
EVENT (TARGET) JULIAN DATE	The Julian date (epoch 1900) of the guidance event (target time)
EVENT (TARGET) TRAJ DAY	The time of the guidance event (target time) referenced to the initial time

CONTROL Code indicating which of the two possible sets of velocity control variables are to

be used

IMP Implementation code giving the compute-

execute mode KMXQ

Model to be used in execution (MDL) MOD

TAR KEY Target parameter keys (KTAR)

TAR1, TAR2, Desired values of target parameters (TAR)

TAR3

TOL1, TOL2, Allowable tolerances of target parameters

TOL3 (TOL)

Velocity components (inertial ecliptic) DVX, DVY, DVZ

of correction supplied externally (KMXQ = 2)

MAT, BAD, Values of targeting matrix option (MAT), bad-step option (IBADS), iterations (NOIT) ITS, BIT

and bad iterations (MAXB)

Interplanetary Zero Iterate

The massless planet (or point-to-point) approximation is used as a zero iterate for interplanetary trajectories. Since these data are printed in SPARC, it is convenient to record the zero iterate information in the same format as SPARC. The launch date, arrival date, and flight time are self explanatory. The heliocentric parameters are listed.

RL, RP Heliocentric radius of initial and final points (10^6 km)

Heliocentric ecliptic latitude of initial LAL, LAP

and final points

Heliocentric ecliptic longitude of ini-LOL, LOP

tial and final points

VL, VP Heliocentric speeds at initial and final

points (km/s)

Flightpath angles at initial and final GAL, GAP

points

AZL, AZP Azimuth at initial and final points

HCA Heliocentric central angle of transfer

TAL, TAP True anomaly at initial and final points

SMA Semimajor axis of heliocentric conic

 (10^6 km)

ECC Eccentricity of heliocentric conic

INC Heliocentric ecliptic inclination of conic

RCA Perihelion of conic (10⁶ km)

APO Aphelion of conic (10⁶ km)

V1 Heliocentric speed of launch planet (if

applicable)

V2 Heliocentric speed of target planet (if

applicable)

The data defining the launch planet conic are then listed:

The launch energy (= VHL^2)

VHL The hyperbolic excess velocity (km/s)

DLA The declination of the departure asymptote

RAL The right ascension of the departure

asymptote

RAD The injection radius with respect to the

launch planet (km)

VEL The injection velocity with respect to the

launch planet (km/s)

PTH The injection path angle

VHP The hyperbolic excess velocity at the

target planet

DPA The declination of the approach asymptote

(heliocentric ecliptic)

RAP The right ascension of the approach asymptote

(heliocentric ecliptic)

ECC The eccentricity of the launch planet

conic

LNCH AZMTH The launch azimuth

LNCH TIME The time of launch on the launch date

L-I TIME The time between launch and injection

(seconds)

INJ LAT The injection latitude

INJ LONG The injection longitude

INJ RT ASC The right ascension at injection

INJ TIME The time at injection on the launch date

PO CST TIM The parking orbit coast time (sec)

c. Lunar Zero Iterate Generation

The zero iterate generation for lunar trajectories proceeds in two stages. The first stage determines iteratively a targeted patched conic; the second stage generates a targeted multi-conic trajectory. The following information is recorded for each iterate and for each perturbed trajectory in the patched conic trajectory:

ITR Iteration counter

ALPHA, DELTA, Controls used on current trajectory (see

THETA LUNCON, LUNTAR)

SIGMA Launch azimuth

SMA, RCA, INC Semimajor axis, radius of closest ap-

proach, and equatorial inclination of

current iterate

VSI (1, 2, 3) Hyperbolic approach velocity of current

iterate

B.T, B.R Impact plane parameters (earth equatorial)

of current iterate

Following the perturbed trajectories a summary of the targeting data for that iterate is listed

PHI MATRIX Sensitivity matrix from numerical differ-

encing

PHI INVERSE Targeting matrix (inverse of sensitivity

matrix)

ERRORS The current errors in semimajor axis, B·T

and B.R from the desired values

TARGETS The desired values of semimajor axis,

B•T and B•R

CORRECTION The correction to be added to the controls

for the next iterate

In the initial targeting to semimajor axis the numerical partial of semimajor axis to the alpha control is recorded as PARTA.

During the multi-conic stage of targeting slightly different information is recorded. Initially the targeting scheme is described:

TARGETS Desired values of semimajor axis, incli-

nation, radius of closest approach, and

time of closest approach

TOLERANCES Acceptable tolerances of semimajor axis,

B•T, B•R, and t_{CA}

PERTURBATIONS Perturbations used in constructing the

first targeting matrix (later iterations use a perturbation which for each component would null the time error if the previous sensitivity matrix were still

valid)

MAX STEPS Maximum correction allowed on first iter-

ate (later iterations use 100 times the

perturbation size)

MAX ITERS Maximum number of iterations allowed in

multi-conic targeting

MULTI-CONIC Step size in hours of multi-conic propa-

STEP gator

For each iterate and for each perturbed trajectory the following data is recorded:

ITER	Iteration counter
JULIAN DATE	Julian date of injection (referenced to 1950)
x, y, z, vx, vy, vz	Injection state in earth ecliptic coordinates
SMA, B.T, B.R, TCA	Target parameter values achieved on current trajectory (impact plane parameters in earth ecliptic coordinates)

Following the perturbed trajectories a summary of the current trajectory data is given.

SENSITIVITY MATRIX	Sensitivity matrix computed from numerical partials
TARGETING MA T RIX	Targeting matrix (inverse of sensitivity matrix)
ERRORS	Errors in target parameters (a, B·T, B·R, t _{CA})
TARGETS	Target values of (a, B·T, B·R, t _{CA})
PREDICT	Predicted corrections
CORRECT	Actual correction added to controls after applying constraints

After obtaining an acceptable trajectory, a summary is given listing the injection Julian and calendar date and the injection state in both earth-centered and barycenter ecliptic coordinates.

d. Nominal Trajectory Data

The nominal trajectory can consist of up to five branches if the spacecraft is a conglomerate vehicle made up of a bus, main probe, and three miniprobes. The first branch corresponds to the bus trajectory, the second to the main probe, and the last three to the miniprobes. The propagation and concurrent printout of the bus trajectory between guidance events is directed by the subroutine TRJTRY. The virtual-mass propagation (VMP) initiation data are provided, together with the trajectory status information at intervals of NCPR integration steps and TMPR days.

A time-history of the main-probe trajectory is initiated by scheduling a main-probe propagation event. When the trajectory time reaches that at which the propagation event is scheduled, control is transferred to MPPROP. This subroutine then calls VMP to propagate and simultaneously record the trajectory of the main probe from its current state, which is identical to that of the bus, to its final stopping condition. The resulting trajectory history is preceded for identification purposes by the title "Main-Probe Propagation Event" followed by the heading "Main-Probe Approach Trajectory." It contains the usual VMP propagation-initiation and trajectory status data at fixed intervals of 100 integration steps and 5 days.

Finally histories of the three miniprobe trajectories for the minimum-miss release controls are provided without user scheduling. At completion of the miniprobe targeting, the subroutine TPRTRG directs VMP via TPPROP to provide the usual VMP time history for each of the miniprobe trajectories in succession, starting from the release state. The trajectory corresponding to the ith miniprobe is identified by the title "Miniprobe I Minimum-Miss Approach Trajectory." The intervals between trajectory state printouts are the same as for the main-probe history.

The standard trajectory information printed during a given call to the VMP, with the print flag set, is as follows:

- 1) Initiation data (provided only at the start of the propagation)
 - a) The output length units per AU and time units per day,
 - b) The number of gravitational bodies,
 - c) The initial date of integration,
 - d) The final date of integration,
 - e) The initial trajectory time,
 - f) The integration accuracy level,

- g) The true anomaly increment in radians corresponding to the accuracy level;
- Trajectory status data (provided at intervals of NCPR integration steps and TMPR days),
 - a) Block 1 Spacecraft inertial state,
 - (1) The current trajectory time,
 - (2) The cumulative number of integration increments used to this point,
 - (3) The current spacecraft state (position vector, radius, velocity vector, and speed) in inertial (heliocentric or barycentric) ecliptic coordinates,
 - b) Block 2 Gravitational bodies states,
 - (1) The current calendar date,
 - (2) The current Julian date (reference year 0),
 - (3) The current state of all gravitating bodies in inertial ecliptic coordinates,
 - c) Block 3 Spacecraft relative state,
 - (1) The current state of the spacecraft relative to all gravitational bodies in inertial ecliptic coordinates,
 - d) Block 4 Virtual mass data,
 - (1) The current state of the virtual mass in inertial ecliptic coordinates,
 - (2) The current state of the spacecraft relative to the virtual mass in inertial ecliptic coordinates,
 - (3) The Kepler (angular momentum) vector in inertial ecliptic coordinates,
 - (4) The eccentricity vector in inertial ecliptic coordinates,

- (5) The virtual mass magnitude and magnitude rate,
- e) Block 5 Virtual mass relative positions, which are the current position vector and radius of the virtual mass relative to all gravitational bodies,
- f) Block 6 Navigation parameters,
 - (1) Flightpath angle,
 - (2) Angle between relative velocity and plane of the sky,
 - (3) Geocentric declination,
 - (4) Earth/spacecraft/target planet angle,
 - (5) Antenna axis/earth angle,
 - (6) Antenna axis/limb of sun angle,
 - (7) Spacecraft occultation ratio for the sun and gravitational bodies.

e. Nonlinear Guidance

At a targeting or retargeting guidance event, the following general information is first printed:

- The trajectory time, calendar date, and Julian date (reference 1900) of the current event;
- 2) The event codes of the current event including its index KUR, the type KTYP, the compute/execute flag KMXQ, and the model MDL;
- 3) The current spacecraft state in inertial ecliptic and all-gravitational body-centered ecliptic coordinates;
- 4) A listing of the targeting parameter key definitions;
- 5) The targeting specifications, including the target parameter keys, desired values, and tolerances;
- 6) The targeting scheme parameters, including the accuracy levels to be used, the maximum velocity movement allowed, and the bad-step flag.

For each trajectory generated during the course of a nonlinear guidance event the following data are recorded.

ACCURACY	The integration accuracy level used on the integration
VX, VY, VZ	The velocity components (inertial ecliptic) used on the integration
TAR(i), TAR(j), TAR(k)	The target parameter codes (i,j,k) and the corresponding values achieved on the integration
AUX(1), AUX(m), AUX(n)	The auxiliary parameter codes (l,m,n) and the corresponding values achieved on the integration
INCR .	The number of integration increments in the integration

If the method used to target the trajectory is the Newton-Raphson technique, the nominal trajectory and the three perturbed trajectories used to generate the targeting matrix are recorded in the above format. If the velocity controls used are those relative to the current spacecraft launch-planeto-centric velocity rather than to the heliocentric velocity, additional printout is supplied from the subroutine KTROL as follows.

STATE	in km and km/s
IOPT	Code signaling to KTROL which of the velocity controls \mathbf{C}_1 , \mathbf{C}_2 , and \mathbf{C}_3 are to be perturbed
CON	Velocity control components. First component has units of km/s; the last two components have units of radians
DA	Control correction to the spacecraft launch planetocentric velocity vector in km/s

COLATIT

The following targeting information is printed after the last perturbed trajectory data of the current iteration and before the nominal data of the next.

SENSITIVITY MATRIX	The Jacobian matrix giving the sensitivi- ties of the auxiliary targets to the ve- locity controls
TARGETING MATRIX	The inverse of the Jacobian matrix giving the sensitivities of the velocity controls to the auxiliary targets
AUX ERROR	The negatives of the errors of the current auxiliary target values from the desired values
VEL COR	The predicted ecliptic cartesian velocity correction (after the DVMAX constraint) in $\ensuremath{\mathrm{km/s}}$
DES AUX VAL	The desired auxiliary target values
DES TAR VAL	The desired actual target values
TAR TOL	The actual target tolerances

Then the four trajectories of the next iterate are given and so on through the targeting.

If the targeting method is the steepest descent technique, five trajectories are printed out for each iterate. The first trajectory is the nominal or iterate trajectory. The next three trajectories are the perturbed trajectories used to compute the gradient vector. If the velocity controls are those relative to the launch-planetocentric state, the same additional information is printed by the subroutine KTROL with each trajectory as was described for the Newton-Raphson targeting scheme. The following data unique to the descent targeting technique are printed out for each iterate.

WEI G HTS	The weighting factors for the auxiliary parameters for the scalar error
PER-ERRS	The errors corresponding to each of the perturbed trajectories
GRADIENT	The gradient based on those perturbed trajectories

CON-GRAD The conjugate gradient

DIRECTION The unit vector in the direction of

the correction

EN The error of the nominal trajectory

DD The directional derivative of the error

in the correction direction

HB The linearly predicted step size

EB The error corresponding to the linearly

predicted step size

HS The predicted optimal step size

HH The step size to be actually used

DELTAV The actual correction to be made on the

next iterate

AUX ERR The auxiliary errors of the current

iterate

D-AUX The desired auxiliary parameter values

D-TAR The desired target parameter values

The following diagnostic messages may be printed out during the targeting.

ENTER OUTER (The current iterate missed the target

TARGETING planet SOI)

RCA The radius of closest approach to the

target planet

ARTIFICIAL SOI The SOI set up for outer targeting

(= 1.2 RCA)

TCA The time of closest approach to the tar-

get planet

ORIG TSI The original target time at the SOI

MODIFIED TSI The adjusted target time to hit the artificial SOI

EXIT OUTER (The outer targeting has been success-TARGETING fully accomplished; return and target to the original values)

BAD STEP - (Since the current iterate missed the SOI ITERATE when previous iterates intersected it,

MISSED SOI reduce the correction)

BAD STEP (The current iterate has a larger error

than the previous)

locity correction for a bad step

PREVIOUS ERROR The previous error

CURRENT ERROR The current error

f. Orbit Insertion

At the start of an orbit insertion event, the following general information is given:

- 1) The trajectory time, calendar date, and Julian date (referenced 1900) of the current event;
- 2) The event codes of the current event including its index KUR, the type KTYP, the compute/execute flag KMXQ, and the model MDL:
- The current spacecraft state in inertial ecliptic and all-gravitational body-centered ecliptic coordinates;
- 4) The orbit insertion option selected (coplanar or nonplanar) and the desired values of the target parameters (semimajor axis, eccentricity, and periapsis shift for coplanar, equatorial conic elements for the nonplanar option.

The program then records a detailed description of all important states generated during the analysis of the orbit insertion. In this section all states refer to target planet-centered equatorial coordinates. The Cartesian state (X, Y, Z, R, VX, VY, VZ, V) provides the position vector, radius,

velocity vector, and speed of the spacecraft with respect to the target body at the given epoch. The conic parameters (A, E, W, TA, I, N, RP, RA, TIME) supply the semimajor axis, eccentricity, argument of periapsis, true anomaly, inclination, longitude of the ascending node, periapsis radius, apoapsis radius, and time from periapsis of the target planet-centered conic at the given epoch. The terms used in the summary of both coplanar and nonplanar insertions are defined as follows:

- The "decision state" is the Cartesian and conic state (on the approach hyperbola) of the spacecraft at the time at which the insertion event is computed;
- 2) The "target orbit" is the unmodified desired orbit. Obviously only the conic parameters may be given;
- 3) The "preinsertion state" is the predicted Cartesian and conic state on the hyperbola at the instant before a candidate impulsive correction;
- 4) The "postinsertion state" is the predicted Cartesian and conic state on the ellipse immediately following the candidate impulsive correction;
- 5) The "insertion velocity" is the impulsive velocity (equatorial) of a candidate solution;
- 6) The "errors" are the weighted scalar loss functions associated with each candidate solution;
- 7) The "selected correction" is the impulsive velocity (equatorial) having the minimum loss function and therefore chosen for execution.

In the coplanar insertion, the target orbit automatically lies in the plane of the approach asymptote. The shape of the target ellipse is determined by the desired values of semimajor axis and eccentricity. Its orientation is fixed by the desired periapsis shift from the approach hyperbola. There are two possibilities for solutions: either the hyperbola and ellipse intersect or they do not. In the former case there are two candidate solutions and the one with minimum delta velocity is chosen for execution. In the latter case three modifications of the target orbit leading to tangential solutions are analyzed: (1) vary periapsis while holding apoapsis constant, (2) vary apoapsis holding periapsis constant, and (3) vary semimajor

٤

axis while holding eccentricity constant. The weighting factors used are identical to the indices. When a candidate modification cannot lead to a tangential solution, a message to that effect is printed out.

In the nonplanar case the two points of intersection of the approach hyperbola and the desired plane are computed and recorded. If one of the points lies in the impossible region, that information is recorded. The candidate modifications of the target orbit discussed in the coplanar case are made to determine the optimal impulsive correction. The weights are the same as above with the extension that all corrections on the departure ray are doubled. Invalid candidate modifications are recorded.

g. Execution of Correction

At an execution event, the following information is recorded regardless of the model used.

- 1) The title "Execution Event" is written;
- The impulsive velocity correction and its magnitude are recorded in inertial ecliptic coordinates;
- 3) The conic elements (semimajor axis, eccentricity, argument of periapsis, inclination, longitude of the ascending node, and true anomaly) of the spacecraft with respect to the dominant body in ecliptic coordinates before and after an impulsive addition of the correction is recorded;
- 4) If the dominant body is not the sun, the same information is listed in dominant body equatorial coordinates.

If the model used is the multiple thrusting arc, the following data are also written:

- The thrust magnitude, the nominal mass of the spacecraft during the pulsing arc, the duration of a single pulse, and the resulting magnitude of the velocity increment are recorded;
- 2) The ecliptic components of the total velocity increment to be imparted, the nominal impulse of the series, and the final (partial) pulse of the series are listed;

- 3) The time information of the pulsing arc, including the calendar and Julian dates of the initiation, midpoint, and termination of the arc, are provided;
- 4) The terms of the f and g series used to propagate the launch and target bodies through the pulsing arc are given;
- 5) The pulse-by-pulse listing of the inertial ecliptic state following each of the pulses is given (propagation between pulses is perturbed conic);
- 6) The state computed by adding the correction impulsively at the nominal time of the correction and then propagating by the perturbed conic to the time at the end of the arc is provided for comparison;
- 7) The two final states of (5) and (6) are converted to conic elements for a final comparison of the two techniques.

h. Miniprobe Targeting

When a miniprobe targeting event is begun, the following general information is given:

- 1) The trajectory time, calendar date, and Julian date (epoch 1900) of the current event;
- The event codes for the current event, including its index KUR, type KTYP, compute/execute flag KMXQ, and model MDL;
- 3) The current spacecraft (bus) state in heliocentricecliptic and gravitational-body-centered coordinates for all gravitating bodies (units are km and km/s);
- 4) Planetocentric ecliptic state of spacecraft (bus) at impact based on an n-body propagation from the release state (units are km and km/s);
- 5) Equivalent conic planetocentric ecliptic state of spacecraft (bus) at release in km and km/s.

Next, information from the Gauss least-squares routine is printed. This begins with a summary of procedure parameters.

Gauss Least-Squares Parameters

N	Number of control variables (preset at 4 for miniprobe targeting)
М	Number of constraint variables (preset at 6 for miniprobe targeting)
DELTA	Perturbation size used for all control variables in approximating the Jacobian matrix by divided differences (preset at 10^{-5} for miniprobe targeting)
C1	Weighting factor applied to length change of control vector in convergence criterion (preset at 10^4 for miniprobe targeting)
C2	Weighting factor applied to change in magnitude of miss index in convergence criterion (preset at 1 for miniprobe targeting)
EPS	Upper limit on weighted sum of change in length of control vector and change in magnitude of miss index in the convergence criterion (preset at 1 for miniprobe targeting)
SO .	Upper bound on length of control correction above when a steepest-descent rather than a pseudo inverse step is taken (input by user for miniprobe targeting)
ITLIM	Maximum number of iterations permitted before the least-squares procedure is terminated (preset at 20 for miniprobe targeting)

Then a series of descriptions of the individual iterations is printed. $% \left(1\right) =\left(1\right) \left(1\right) \left($

Individual Iteration Description

XN1	Nth iterate value of first control variable release roll angle of the first miniprobe in radians
XN2	Nth iterate value of the second control variable tangential release velocity in decameters/s
XN3	Nth iterate value of the third control variable inertial ecliptic declination of spacecraft spin axis at release in radians
XN4	Nth iterate value of the fourth control variable inertial ecliptic right ascension of spacecraft spin at release in radians
GRADN	Magnitude of the gradient of the miss index at the nth iterate
YN	Value of miss index at the nth iterate in $\ensuremath{\text{km}^{2}}$
PHI(j)	Jth component of constraint (miss) vector printed at the iteration point itself as well as at those points obtained from it by successively perturbing each component by DELTA (units are km)
JACOBIAN MATRIX	Jacobian matrix of constraint vector with respect to control vector as obtained by divided differencing
PROJECTION MATRIX	Pseudoinverse of Jacobian matrix, i.e., $(J^{T}J)^{-1} J^{T}$
LAMB DA	Initial estimate of the step size in the search direction necessary to bracket the minimum of the miss index as required in the descent procedure
ALPHA	Fraction of the bracketing step at which miss index is evaluated for cubic interpolation

YP(0) Slope of miss index in the search direction at the current iterate

XK Length of a trial step in the search direction as used in bracketing the minimum of the miss index and fitting it with a cubic polynomial

Y(XK) Value of the miss index at the trial step

The following messages may be printed out when the iteration process is terminated. A brief explanation of each is provided.

Iteration Termination Messages

ADEQUATE CONVERGENCE OCCURRED ON PREVIOUS STEP - This is the normal termination after a successful miniprobe targeting

CONVERGENCE DID NOT OCCUR - After ITLIM iterations the current and previous iterations are still too far apart to satisfy the convergence criterion

PERFORMANCE INDEX DECREASES MONOTONICALLY IN SEARCH DIRECTION. SEARCH HAS BEEN TERMINATED - A minimum of the miss index in the direction of search could not be bracketed in 10 trial steps

To conclude the least-squares printout, an "Iteration History" is supplied. It contains the control vector, the miss index and the gradient magnitude of the miss index for each iterate in sequential order.

The "Minimum-Miss Release Controls for Conic Propagation" are next printed after being converted from the unusual dimensions required by the iteration process to the standard ones indicated in the output itself.

Then the "Conic-Model Probe Impact Data" are printed. For each miniprobe and the bus (numbered miniprobe 0) the impact declination and right ascension in the probe-sphere system, the impact speed, and the impact flightpath angle are recorded.

The information for the miniprobes is based on the conic model while that for the bus is derived from the initial n-body propagation of the bus from the release state to impact. In addition to the above data, an angle of attack is printed for each miniprobe assuming its longitudinal body axis at impact remains parallel to the spacecraft spin axis at release.

If n-body release controls are not requested by the user, the n-body time histories of the respective miniprobe trajectories for minimum-miss conic release controls are printed next as described in the nominal trajectory section.

If n-body controls are requested, the output from the application of the least-squares routine to the n-body propagation model is printed next. Its format is identical to that for the conic model. After the miss-minimizing procedure is completed, the "Minimum-Miss Release Controls for the N-Body Propagation" are printed. They too are identical in format to the conic case. Then the respective n-body miniprobe trajectory histories are printed for the minimum-miss n-body release controls as described in the nominal trajectory section.

Finally the "N-Body Model Probe Impact Data" are printed. The same quantities are presented as in the corresponding section for the conic model described above, but they are now calculated from the recently computed n-body miniprobe trajectories.

43-10

.

4.2 ERRAN Output Description

The printed output of the error analysis mode is described in this section according to the following groups: input data, measurement output, additional trajectory output, eigenvector event output, prediction event output, guidance event output, and summary output.

a. Input data

The initial output consists of the following input data:

- (1) Namelist ERRAN.
- (2) Calendar date and Julian date at launch.
- (3) Final calendar date and Julian date.
- (4) Initial trajectory time in days (TRTM1).
- (5) Lists of solve-for, dynamic consider, and measurement consider parameters augmented to the position/velocity state vector.

 Definitions of names appearing in this list are given below:

Radius error of station 1
Latitude error of station 1
Longitude error of station 1
Radius error of station 2
Latitude error of station 2
Longitude error of station 2
Radius error of station 3
Latitude error of station 3
Longitude error of station 3
Sun gravitational constant bias
Target planet gravitational constant bias
Target planet semi-major axis bias
Target planet eccentricity bias
Target planet inclination bias
Target planet longitude of ascending node bias
Target planet argument of periapsis bias
Target planet mean anomaly bias
Range bias of station 1
Range-rate bias of station 1
Star-planet angle 1 bias
Star-planet angle 2 bias
Star-planet angle 3 bias
Apparent planet diameter bias

- (6) Definition of inertial frame.
- (7) Initial spacecraft position/velocity state vector in both input coordinates (ICOOR) and inertial coordinates (IBARY).
- (8) Nominal trajectory code (NTMC).
- (9) List of celestial bodies assumed in the computation of the nominal trajectory (NB array).
- (10) Target planet (NTP).
- (11) Length units per A.U. (ALNGTH) and time units per day (TM).
- (12) If the orbital elements of the assumed celestial bodies are to be computed at every time interval, a message to this effect will be printed. Otherwise, the orbital elements that will be used throughout the trajectory will be printed.
- (13) If output at the initial and final steps of the virtual mass trajectory is to be suppressed, a message to this effect will be printed.
- (14) If the virtual mass program will integrate only until the sphere of influence of the target planet is reached, a message to that effect will be printed. However, if the trajectory will continue until reaching a normal stopping condition, the appropriate message will be printed.
- (15) Trajectory accuracy figure (ACC).
- (16) Trajectory print intervals in days (DELTP) and increments (INPR).
- (17) Measurement schedule; measurement codes defined in section dealing with input description.
- (18) Schedule of eigenvector, prediction, and guidance events.
- (19) Sigma level of hyperellipsoid computed at an eigenvector event (IHYP1).
- (20) Initial P, C_{xx} , C_{xu} , C_{xv} , P_s , C_{xu} , U_o , and V_o covariance matrix partitions; defined in section dealing with input description.
- (21) Definition of structure of augmented state transition, observation, and covariance matrices and their dimensions.

- (22) State transition matrix code (ISTMC). If the state transition matrix is to be computed using numerical differencing, the position and velocity factors are also printed.
- (23) Dynamic noise constants used to compute the dynamic noise covariance matrix if dynamic noise is non-zero.
- (24) Measurement noise for range, range-rate, star-planet angle, and apparent planet diameter measurements.
- (25) Tracking station locations.

b. Measurement output

Measurement information is printed every IPRINT measurements. At such a time the following information is printed:

- (1) Measurement number and corresponding trajectory time.
- (2) Type of measurement.
- (3) Trajectory time t_{k-1} at most recent measurement or event (initial trajectory time).
- (4) Trajectory time t_k at present measurement (final trajectory time).
- (5) Initial and final spacecraft ecliptic position/velocity components and magnitudes relative to inertial space, the Earth, and the target planet.
- (6) If IPRT(4) = 1, all navigation parameters at the present measurement time will be printed.
- (7) State transition matrix partitions \mathcal{D} , θ_{xx} , and θ_{xu} over the time interval $\left[t_{k-1}, t_k\right]$, relating deviations in spacecraft position and velocity, solve-for parameters, and dynamic consider parameters at time t_{k-1} to spacecraft position and velocity deviations at time t_k . Note that transposed matrices are printed.
- (8) Diagonal of dynamic noise covariance matrix Q; represents unmodeled accelerations over the time interval $[t_{k-1}, t_k]$.

- (9) Observation matrix partitions H, M, G, and L relating deviations in spacecraft position and velocity, solve-for parameters, dynamic consider parameters, and measurement consider parameters at time t to deviations in the observables at time t Note that transposed matrices are printed.
- (10) Measurement noise correlation matrix and standard deviations (covariance matrix R).
- (11) Measurement residual correlation matrix and standard deviations (covariance matrix J).
- (12) Kalman gain matrix partitions. The K matrix is used in the filtering equations to compute the P, C, C, xx, and C covariance matrix partitions. The S matrix is used in the filtering equations to compute the P, C, and C, covariance matrix partitions.
- (13) Correlation matrix partitions and standard deviations at time t_k, just before the measurement. The first group of correlation matrix partitions represents the correlation between spacecraft position and velocity and the variables listed in the left hand column; they are obtained by converting P, C_{XX}, C_{XU}, and C_{XV} into the corresponding correlation matrices and standard deviations. The second group represents the correlation between the solve-for parameters and the variables listed in the left hand column; they are obtained by converting P_S, C_X, and C_X into the corresponding correlation matrices and standard deviations.
- (14) Correlation matrix partitions and standard deviations at time t_k, just after processing the measurement. See (13) above for definitions of the two groups of matrix partitions.

c. Additional trajectory output

If the spacecraft encounters the sphere of influence or closest approach during the course of the nominal trajectory, the information related to the encounter is printed. Also information normally printed during trajectory mode operation is printed during error analysis mode operation every DELTP days and INPR increments. This information includes spacecraft inertial state, planet ephemeris data, spacecraft state relative to planets, virtual mass data, and navigation parameters, depending on the value of the IPRT vector.

d. Eigenvector event output

At an eigenvector event the following information is printed:

- (1) Name of event and event time tev.
- (2) Spacecraft position/velocity state vector relative to inertial space at event time t_{ev}.
- (3) If IPRT(4) = 1, all navigation parameters at event time t will be printed.
- (4) State transition matrix partitions \mathbf{D} , θ_{xx} , and θ_{xu} over the time interval $[t_{k-1}, t_{ev}]$, where t_{k-1} is the time of the most recent measurement or event.
- (5) Diagonal of dynamic noise covariance matrix Q; represents unmodeled accelerations over the time interval $\begin{bmatrix} t_{k-1}, t_{ev} \end{bmatrix}$.
- (6) Correlation matrix partitions and standard deviations at event time $t_{\rm ev}$ propagated forward from time $t_{\rm k-1}$. See article (13) under measurement output for definitions of the two groups of matrix partitions.

1

- (7) Spacecraft position and velocity eigenvalues, square roots of eigenvalues, and eigenvectors at event time as specified by IEIG code.
- (8) Hyperellipsoids for both position and velocity covariance matrix partitions at event time for the sigma level specified by IHYP1 code.

e. Prediction event output

At a prediction event the following information is printed:

- (1) Name of event, event time t ev, and time t to which prediction is being made.
- (2) Articles (2) through (6) under eigenvector event output.
- (3) State transition matrix partitions \mathbf{D} , θ_{xx} , and θ_{xu} over the time interval $[t_{ev}, t_p]$.

- (4) Diagonal of dynamic noise covariance matrix Q; represents unmodeled accelerations over the time interval [t_{ev}, t_D].
- (5) Correlation matrix partitions and standard deviations at time t based on prediction from time t ev. See article (13) under measurement output for definitions of the two groups of matrix partitions.
- (6) Spacecraft position and velocity eigenvalues, square root of eigenvalues, and eigenvectors at time t as specified by IEIG code.
- (7) Hyperellipsoids for both position and velocity covariance matrix partitions at time t for the sigma level specified by IHYP1 code.
- (8) If time t p occurs within the target planet sphere of influence, the Cartesian position/velocity correlation matrix and standard deviations are transformed to B-plane coordinates B·T, B·R, time-of-flight, S·R, S·T, and C₃. The transformation matrix relating these coordinates to Cartesian position/velocity coordinates is printed, followed by the B-plane correlation matrix and standard deviations. The semimajor axis, semiminor axis, and orientation of the B-plane 1-0 uncertainty ellipse are also printed.
- f. Output preceding all types of guidance events

At a guidance event the following information is printed:

- Articles (1) through (8) under eigenvector event output.
- (2) State transition matrix partitions over the time interval [tg, tev], where tg is the time of the previous guidance event (tg = t of no guidance event has occurred previously).
- (3) Diagonal of dynamic noise covariance matrix Q; represents unmodeled accelerations over the time interval [tg, tev].
- (4) Control correlation matrix partitions and standard deviations at time t_{ev}, just before the guidance correction is applied. See article (13) under measurement output for

definitions of the two groups of matrix partitions. Eigenvalues, eigenvectors, and hyperellipsoids are also printed.

- (5) Description of guidance event:
 - (a) Guidance policy
 - (b) Linear or nonlinear guidance
 - (c) Status of planetary quarantine constraints
 - (d) Thrust model
 - (e) Guidance event treatment
- g. Linear midcourse guidance event output

Three midcourse guidance policies are available: fixed-time-of-arrival (FTA), two-variable B-plane (2VBP), and three-variable B-plane (3VBP).

- (1) Time, position, and velocity when spacecraft encounters closest approach at target planet if FTA. Time, position, and velocity when spacecraft pierces target planet sphere of influence, together with B, B·T, and B·R, if 2VBP or 3VBP.
- (2) Matrix M relating position/velocity deviations at t_{SI} to deviations in B•T and B•R.
- (3) State transition matrix partitions over $[t_{ev}, t_{CA}]$ if FTA; over $[t_{ev}, t_{SI}]$ if 2VBP.
- (4) Variation matrix η (or partitions) relating position/velocity deviations at time t to target condition deviations.
- (5) Target condition correlation matrix and standard deviations (covariance matrix W̄) immediately prior to guidance correction, together with eigenvalues, eigenvectors, and hyperellipsoid.
- (6) Guidance matrix Γ used to compute the velocity correction required to null out target condition deviations.

- (7) Velocity correction correlation matrix and standard deviations (covariance matrix S), together with eigenvalues and eigenvectors. The hyperellipsoid is also printed if the guidance policy is not 2VBP.
- (8) Expected value of the effective velocity correction.
- (9) Execution error correlation matrix and standard deviations (covariance matrix \tilde{Q}).

50/2

,

- (10) Control (and knowledge) correlation matrix partitions and standard deviations just after the guidance correction at time t_{ev}, together with eigenvalues, eigenvectors, and hyperellipsoids.
- (11) Target condition correlation matrix and standard deviations (covariance matrix W) just after guidance correction is applied, together with eigenvalues, eigenvectors, and hyperellipsoid.
- (12) Targeted nominal trajectory just after guidance correction.
- h. Orbital insertion guidance event output
 - (1) Orbital insertion decision output: see NOMNAL output description.
 - (2) Orbital insertion execution output:
 - (a) Orbital insertion ΔV in both ecliptic and equatorial coordinates.
 - (b) Execution error correlation matrix and standard deviations.
 - (c) Spacecraft position/velocity state relative to target planet immediately after orbital insertion in both ecliptic and equatorial coordinates.
 - (d) Spacecraft orbital elements relative to the planeto-centric equatorial coordinate system immediately after orbital insertion.
- i. Nonlinear guidance and retargeting event output is summarized in the NOMNAL output description.
- j. Pulsing thrust model output.
 - (1) Pulsing arc output: see NOMNAL output description.
 - (2) Pulsing arc covariance output:
 - (a) Nominal state transition matrix over the time interval separating pulses.
 - (b) Error model variances.
 - (c) Nominal pulse components and magnitude.
 - (d) Nominal execution error covariance matrix.

- (e) Final pulse components and magnitude.
- (f) Final execution error covariance matrix.
- (g) Accumulated execution error covariance matrix.
- k. Biased aimpoint guidance event output.
 - (1) Target planet capture radius.
 - (2) Matrix ψ used to compute the velocity correction required to achieve the biased aimpoint.
 - (3) Previously imparted aimpoint bias, $\vec{\delta \mu}$, if any.
 - (4) Velocity correction $\overrightarrow{\Delta v}_{RB}$ required to remove the previously imparted aimpoint bias.
 - (5) Execution error covariance matrix associated with the velocity correction required to remove bias and null out nominal target errors.
 - (6) Covariance matrix Λ_{+} , the projection of the target condition covariance matrix W into the impact plane.
 - (7) Probability of impact if the spacecraft is targeted to the nominal aimpoint.

Articles (8) through (13) appear for each iteration which occurs within subroutine BIAIM.

- (8) Equation defining the probability constraint ellipse.
- (9) Biased aimpoint μ and aimpoint bias $\delta\mu$.
- (10) Velocity correction $\overrightarrow{\Delta V}_{\text{bias}}$ required to achieve the biased aimpoint.
- (11) Execution error covariance matrix associated with the velocity correction required to achieve the biased aimpoint and null out target errors.
- (12) Covariance matrix Λ .
- (13) Probability of impact if the spacecraft is targeted to the biased aimpoint.

1. Probe release event output

The probe release event output for both main probe and miniprobe release events is essentially the same. Differences are noted in the following probe release event output description:

- Type of probe release event and trajectory time t at release.
- (2) Heliocentric ecliptic probe state at ti.
- (3) If IPRT(4) = 1, all navigation parameters at t will be printed.
- (4) State transition matrix partitions over the interval $[t_k, t_j]$, where t_k is the time of the previous measurement or event.
- (5) Probe knowledge correlation matrix partitions and standard deviations at t_i .
- (6) Eigenvalues, eigenvectors, and hyperellipsoids of the position and velocity partitions of the probe position/ velocity knowledge covariance matrix.
- (7) If a miniprobe is being treated and if miniprobe targeting has been performed internally (i.e., user-specified target controls are not available), the following information is printed,
 - a) Bus state at probe sphere relative to target planet obtained by propagating bus state at t forward to entry. B-plane coordinates of bus at entry,
 - b) Miniprobe target controls, including release roll angle of miniprobe No. 1 (radians), tangential velocity magnitude of miniprobe at release (decameters/s), declination of spin axis (radians), and right ascension of spin axis (radians),
 - c) Value of KKWIT. If KKWIT = 0, miniprobe targeting was successful. If KKWIT = 1, targeting failed.
- (8) If a miniprobe is being treated, the execution error covariance matrix for the ith miniprobe is printed.

- (9) Probe planetocentric ecliptic state relative to target planet when probe sphere is pierced at entry trajectory time t_E. Probe B-plane coordinates at entry.
- (10) Probe planetocentric ecliptic state (same as item 9)).
- (11) Julian date (epoch 1900) and trajectory time at entry. Probe sphere radians (AUs).
- (12) State transition matrix partitions over $[t_i, t_E]$.
- .(13) Probe control correlation matrix partitions at $t_{\rm E}$.
- (14) Julian date (epoch 1900) and calendar date at $t_{\rm p}$.
- (15) Probe state relative to target planet at $t_{\rm E}$ in planetocentric ecliptic coordinates.
- (16) Probe state relative to target planet at t_E in subsolar orbital-plane coordinates;
- (17) Probe communication angle at $t_{\rm p}$.
- (18) Transformation matrix relating Cartesian position and velocity coordinates to (LTR) entry parameters h, v, γ , and ϕ_s at entry.
- (19) Entry parameters h, v, γ , ϕ_s , Ω_s , and i_s at t_E .
- (20) Entry parameter control covariance matrix at t_E for entry parameters h, v, γ , and ϕ_S .
- (21) Measurement output for every IPRINT probe measurement over the interval $[t_j, t_e]$. Format is identical to the standard ERRAN measurement output format.
- (22) Probe planetocentric ecliptic state relative to target planet at $t_{\rm F}$. Probe B-plane coordinates at entry.
- (23) Items 1) through 20) with the words "control correlation" replaced with "knowledge coorelation."
- (24) If probe release event is a miniprobe release event and if not all miniprobes have been treated (three miniprobes), return to item 8) and continue.

m. Summary output

At a successful conclusion of an error analysis run, the following error analysis summary is printed:

- (1) Method used to compute nominal trajectory.
- (2) Trajectory accuracy figure (ACC) and true anomaly increment.
- (3) Length units per AU; time units per day.
- (4) Method used to compute orbital elements of planets.
- (5) Initial and final trajectory times, calendar dates, and Julian dates.
- (6) Inertial coordinates of spacecraft position and velocity at initial and final times.
- (7) Spacecraft position and velocity coordinates relative to both Earth and target planet at final time.
- (8) Time of closest approach and position and velocity relative to target planet at closest approach.
- (9) If the spacecraft did not reach the target planet sphere of influence, a message to that effect is printed. Otherwise, the time at which the sphere of influence is pierced, together with position and velocity relative to the target planet at that time B, B·T, and B·R, are printed.
- (10) Method used to compute state transition matrix, together with associated information.
- (11) Number of measurements taken.
- (12) Number of events having occurred and the number of each type of event.
- (13) Variances used for the resolution, proportionality, and pointing angle errors in guidance events.
- (14) Locations of tracking stations.
- (15) Dynamic and measurement noise constants.

- (16) Direction cosines of the three reference stars.
- (17) Lists of solve-for, dynamic consider, and measurement consider parameters.
- (18) Correlation matrix partitions and standard deviations at final time.

4.3 SIMUL Output Description

The printed output of the simulation mode is described in this section according to the following groups: input data, measurement output, additional trajectory output, eigenvector event output, prediction event output, guidance event output, quasi-linear filtering event output, and summary output.

a. Input data

The initial output consists of the following input data:

- (1) Namelist SIMUL.
- (2) All input data printed out in the error analysis mode.
- (3) Actual trajectory information:
 - (a) List of celestial bodies assumed in the computation of the actual trajectory (NBl array).
 - (b) Trajectory accuracy figure (ACC1).
 - (c) Actual measurement biases (BIA array).
 - (d) Dynamic biases.
 - (e) Description of unmodeled acceleration characteristics.
 - (f) Station location biases (SLB array).
 - (g) Actual spacecraft position and velocity deviations from the most recent nominal trajectory at the initial time (ADEVX array).
 - (h) Actual measurement noise variances (AVARM array).

b. Measurement output

Measurement output in the simulation mode repeats the measurement output in the error analysis mode except for the following differences:

- (1) Spacecraft states are given for three trajectories: targeted nominal, most recent nominal, and actual.
- (2) Navigation parameters are based on the actual trajectory.

(3) State transition, observation, and covariance matrices are based on the most recent nominal trajectory.

In addition, the following output appears:

- (4) Actual dynamic noise representing effect of the actual unmodeled acceleration.
- (5) Actual measurement noise correlation matrix and standard deviations (covariance matrix R).
- (6) Actual measurement noise ν .
- (7) Estimated and actual measurements. Measurement residuals ϵ .
- (8) Estimated and actual spacecraft position/velocity deviations from the most recent and the targeted nominal trajectories.
 Actual orbit estimation error.
- (9) Estimated and actual solve-for parameter deviations. Actual estimation error.
- c. Additional trajectory output appearing in the simulation mode is identical to that appearing in the error analysis mode.
- d. Eigenvector event output.

Eigenvector event output appearing in the simulation mode is identical to that appearing in the error analysis mode with the following additions:

- (1) Spacecraft position/velocity states for three trajectories: targeted nominal, most recent nominal, and actual.
- (2) Actual dynamic noise representing effect of the actual unmodeled acceleration.
- (3) Estimated and actual spacecraft position/velocity deviations from the most recent nominal trajectory.
- (4) Estimated and actual solve-for parameter deviations.
- e. Prediction event output

Prediction event output appearing in the simulation mode is identical to that appearing in the error analysis mode with the following additions:

- (1) Spacecraft position/velocity states for three trajectories: targeted nominal, most recent nominal, and actual.
- (2) Actual dynamic noise representing effect of the actual dynamic noise at the time of the event t_{ev} .
- (3) Estimated and actual spacecraft position/velocity deviations from the most recent nominal trajectory at t_{ev} .
- (4) Estimated and actual solve-for parameter deviations at tev.
- (5) Most recent nominal trajectory state and the estimated deviations from this state at time t to which the prediction is being made.
- f. Output preceding all types of guidance events.
 - (1) All eigenvector event output.
 - (2) State transition matrix partitions over the time interval [tg, tev], where tg is the time of the previous guidance event (tg = to if no guidance event has previously occurred).
 - (3) Diagonal of dynamic noise covariance matrix Q.
 - (4) Control correlation matrix partitions and standard deviations at time t_{ev}, just before the guidance correction is applied.
 - (5) Eigenvalues, eigenvectors, and hyperellipsoids associated with the position and velocity partitions of the previous control covariance.
 - (6) Description of guidance event:
 - (a) Guidance policy
 - (b) Linear or nonlinear guidance
 - (c) Status of planetary quarantine constraints.
 - (d) Thrust model
 - (e) Guidance event treatment
- g. Linear midcourse guidance event output

Three midcourse guidance policies are available: fixed-time-of-arrival (FTA), two-variable B-plane (2VBP), and three-variable B-plane (3VBP).

- (1) Closest approach conditions on targeted nominal trajectory if FTA. Sphere of influence conditions on targeted nominal if 2VBP or 3VBP.
- (2) Matrix M relating position/velocity deviations at sphere of influence to B·T and B·R deviations.
- (3) Closest approach conditions on most recent nominal trajectory if FTA. Sphere of influence conditions on most recent nominal trajectory if 2VBP or 3VBP.
- (4) State transition matrix partitions over $\begin{bmatrix} t_{ev}, t_{CA} \end{bmatrix}$ if FTA; over $\begin{bmatrix} t_{ev}, t_{SI} \end{bmatrix}$ if 2VBP. Based on most recent nominal trajectory.
- (5) Variation matrix η (or partitions) relating position/velocity deviations at time t to target condition deviations.
- '(6) Target condition correlation matrix and standard deviations (covariance matrix W) immediately prior to guidance correction, together with eigenvalues, eigenvectors, and hyperellipsoid.
- (7) Guidance matrix Γ used to compute the velocity correction required to null out target condition deviations.
- (8) Velocity correction correlation matrix and standard deviations (covariance matrix S), together with eigenvalues and eigenvectors. The hyperellipsoid is also printed if the guidance policy is not 2VBP.
- (9) Estimated and actual spacecraft position/velocity deviations from targeted nominal immediately prior to the guidance correction.
- (10) Commanded and perfect velocity corrections $\Delta \hat{V}$ and $\underline{\Delta V}$.
- (11) Magnitude of commanded velocity correction.
- (12) Error in velocity correction, ΔV_e , due to navigation uncertainty.
- (13) Execution error correlation matrix and standard deviations (covariance matrix \tilde{Q}).
- (14) Control (and knowledge) correlation matrix partitions and standard deviations just after the guidance correction at time t ev, together with eigenvalues, eigenvectors, and hyperellipsoids.

- (15) Actual velocity correction execution error $\delta \Delta V$.
- (16) Actual velocity correction ΔV .
- (17) Target condition correlation matrix and standard deviations (covariance matrix W⁺) just after the guidance correction is applied, together with eigenvalues, eigenvectors, and hyperellipsoid.
- (18) Actual target errors ε_{nav} and ε_{ex} due to navigation uncertainty and execution error. Total target error.
- (19) Most recent and targeted nominal trajectories immediately following guidance correction.
- (20) Actual and estimated spacecraft position/velocity deviations from most recent nominal trajectory immediately following guidance correction.
- h. Orbital insertion guidance event output

- (1) Orbital insertion decision output: see NOMNAL output description.
- (2) Orbital insertion execution output:
 - (a) Actual orbital insertion ΔV in both ecliptic and equatorial coordinates.
 - (b) Execution error correlation matrix and standard deviations.
 - (c) Actual spacecraft position/velocity state relative to target planet immediately after orbital insertion in both ecliptic and equatorial coordinate.
 - (d) Actual spacecraft orbital elements relative to the planetocentric equatorial coordinate system immediately after orbital insertion.
- i. Nonlinear guidance and retargeting event output is summarized in the NOMNAL output description.
- j. Pulsing thrust model output is identical to that appearing in the error analysis mode except that pulsing arc information is printed for both the estimated and actual trajectories.

- k. Biased aimpoint guidance event output is identical to that appearing in the error analysis mode.
- Quasi-linear filtering event output
 - (1) Spacecraft position/velocity states for three trajectories: targeted nominal, most recent nominal, and actual.
 - (2) Navigation parameters based on actual trajectory.
 - (3) State transition matrix partitions over the interval $[t_k, t_{ev}]$, where t_k is the time of the last event or measurement.
 - (4) Correlation matrix partitions and standard deviations at the time of the event, together with eigenvalues, eigenvectors, and hyperellipsoids.
 - (5) Actual dynamic noise representing effect of the actual unmodeled acceleration.
 - (6) Estimated and actual spacecraft position/velocity deviations from the most recent nominal trajectory just prior to the event.
 - (7) Estimated and actual solve-for parameter deivations just prior to the event.
 - (8) Most recent nominal trajectory just after the event.
 - (9) Estimated and actual spacecraft position/velocity deviations from the most recent nominal trajectory just after the event.
 - (10) Estimated and actual solve-for parameter deviations just after the event.
- m. Probe release event output

Probe release event output in SIMUL is identical to probe release event output in ERRAN, except for the following items:

(1) Targeted nominal, most recent nominal, and actual probe states are printed at release time t, instead of just the targeted nominal.

- (2) If a miniprobe release event is being executed, the actual miniprobe execution error is printed in addition to the execution error covariance matrix.
- (3) Format for probe measurement output is identical to the standard SIMUL measurement output format.
- (4) Quasi-linear filtering event output for a probe is identical to standard SIMUL quasi-linear filtering event output.

n. Summary output

- (1) Accuracies used in nominal and actual trajectory computation.
- (2) Bodies treated in nominal and actual trajectory computation.
- (3) Gravitational constant biases used in actual trajectory.
- (4) Ephemeris biases used in actual trajectory.
- (5) Initial trajectory time.
- (6) Final trajectory time.
- (7) Position and velocity of vehicle relative to sun, earth, and target planet at initial time.
- (8) Position and velocity of vehicle relative to sun, earth, and target planet on targeted nominal, most recent nominal, and actual trajectory at final time.
- (9) Time at closest approach plus position and velocity of vehicle relative to target planet on all three trajectories.
- (10) The time at which the vehicle enters the sphere of influence of the target planet in addition to the position and velocity of the vehicle relative to the target planet and B, B•T, and B•R on all three trajectories.
- (11) Method by which the state transition matrix is computed in addition to its limitations.

- (12) Number of measurements taken.
- (13) Number of events plus the number of each type of event.
- (14) Variances of errors used in guidance events.
- (15) Actual errors used in guidance events.
- (16) Station location constants.
- (17) Dynamic noise constants.
- (18) Actual unmodeled acceleration.
- (19) Assumed measurement noise constants.
- (20) Actual measurement noise constants.
- (21) Direction cosines for three star planet angles.
- (22) Initial state vector for both nominal and actual trajectories.
- (23) Final state vector for all three trajectories.
- (24) Estimated and actual deviations from most recent nominal at final time.
- (25) Estimated and actual deviations from targeted nominal at final time.
- (26) Actual orbit determination error at final time.
- (27) Initial correlation matrix partitions and standard deviations.
- (28) Final correlation matrix partitions and standard deviations.

4.4 GENCØV Output Description

Although the generalized covariance program GENCØV is actually a part of the error analysis program ERRAN, for the purpose of clarity and convenience to the user, the GENCØV output will be described separately in this section according to the following groups: Input data, measurement output, and guidance event output. Output for eigenvector and prediction events will not be described because of its similarity to standard ERRAN eigenvector and prediction event output. The only difference consists in the fact that both assumed and actual statistics are printed for GENCØV eigenvector and prediction events.

a. Input data

The initial output consists of the following input data:

- (1) Namelist ERRAN.
- (2) Calendar date and Julian date at launch or initial time.
- (3) Final calendar date and Julian date.
- (4) Initial trajectory time in days (TRTM1).
- (5) Lists of solve-for, dynamic-consider, measurementconsider, and ignore parameters. Definitions of parameter names can be found in subsection a of the ERRAN output description.
- (6) Definition of inertial frame.
- (7) Initial spacecraft position/velocity state vector in both input coordinates (ICOOR) and inertial coordinates (IBARY).
- (8) Nominal trajectory code (NTMC).
- (9) List of celestial bodies assumed in the computation of the nominal trajectory (NB array).
- (10) Target planet (NTP).
- (11) Length units per AU (ALNGTH) and time units per day (TM).

- (12) If the orbital elements of the assumed celestial bodies are to be computed at every time interval, a message to this effect will be printed. Otherwise, the orbital elements that will be used throughout the trajectory will be printed.
- (13) If output at the initial and final steps of the virtual mass trajectory is to be suppressed, a message to this effect will be printed.
- (14) If the virtual mass program will integrate only until the sphere of influence of the target planet is reached, a message to that effect will be printed. However, if the trajectory will continue until reaching a normal stopping condition, the appropriate message will be printed.
- (15) Trajectory accuracy figure (ACC).
- (16) Trajectory print intervals in days (DELTP) and increments (INPR).
- (17) Measurement schedule; measurement codes defined in section dealing with input description.
- (18) Schedule of eigenvector, prediction, and guidance events.
- (19) Sigma level of hyperellipsoid computed at an eigenvector vent (IHYP1).
- (20) Initial assumed covariance matrix partitions; defined in input description section.
- (21) Definition of structure of augmented state transition, observation, and assumed covariance matrices and their dimensions.
- (22) State transition matrix code (ISTMC). If the state transition matrix is to be computed using numerical differencing, the position and velocity factors are also printed.
- (23) Dynamic noise constants used to compute the assumed dynamic noise covariance matrix if dynamic noise is non-zero.

- (24) Assumed measurement noise variances for range, rante-rate, star-planet angle, and apparent planet diameter measurements.
- (25) Nominal tracking station locations.
- (26) Namelist GENRAL.
- (27) Initial position/velocity, solve-for, dynamic-consider, measurement-consider, and ignore parameter deviation means.
- (28) Initial actual covariance matrix partitions; defined in input description section.
- (29) Definition of structure of augmented actual covariance matrix and dimensions of each partition.
- (30) Dynamic noise constants used to compute the actual dynamic noise covariance matrix if dynamic noise is non-zero.
- (31) Actual measurement noise variances for range, range-rate, star-planet angle, and apparent planet diameter measurements.

b. Measurement output

Measurement information is printed every IPRINT measurements. At such a time the following information is printed:

- (1) Measurement number and corresponding trajectory time.
- (2) Measurement type.
- (3) Trajectory time t_{k-1} at most recent measurement or event.
- (4) Trajectory time t_k at present measurement.
- (5) Initial and final spacecraft position/velocity components and magnitudes relative to inertial space, the earth, and the target planet.
- (6) Elevation and azimuth of spacecraft relative to the tracking station if a range or range-rate measurement is being processed.

- (7) If IPRT(4) = 1, all navigation parameters will be printed.
- (8) State transition matrix partitions Φ , θ , θ , ∞ , and θ and θ over the time interval $[t_{k-1}, t_k]$, relating spacecraft position/velocity, solve-for, dynamic-consider, and ignore parameters at t_{k-1} , respectively. Note that transposed matrices are printed.
- (9) Diagonal of assumed dynamic noise covariance matrix Q.
- (10) Observation matrix partitions H, M, G, L, and N, relating deviations in spacecraft position and velocity and solvefor, dynamic-consider paramters, measurement-consider and ignore parameters, at time t_k to deviations in the observables at time t_k. Note that transposed matrices are printed.
- (11) Assumed measurement noise correlation matrix and standard deviations (covariance matrix R).
- (12) Assumed measurement residual correlation matrix and standard deviations (covariance matrix J).
- (13) Kalman gain matrix partitions.
- (14) Assumed correlation matrix partitions and standard deviations at time t_k just before the measurement. The first group of correlation matrix partitions represents the correlation between spacecraft position and velocity and the variables listed in the left-hand column. The second group represents the correlation between the solvefor parameters and the variables listed in the left-hand columns.
- (15) Assumed correlation matrix partitions and standard deviations at time t_k just after processing the measurement (see 14) for definitions of the two groups of matrix partitions).
- (16) Diagonal of actual dynamic noise covariance matrix Q'.
- (17) Actual measurement noise correlation matrix and standard deviations (covariance matrix R[†]).

- (18) Actual measurement residual mean $E[\varepsilon']$.
- (19) Actual measurement residual correlation matrix and standard deviations (2nd moment matrix J').
- (20) Actual estimate error means at time t_k just before the measurement for both position/velocity and solve-for parameter states.
- (21) Actual correlation matrix partitions and standard deviations at time t_k just before the measurement.
 The first group of correlation matrix partitions represents the correlation between spacecraft position and velocity and the variables listed in the left-hand column. The second group represents the correlation between the solve-for parameters and the variables listed in the left-hand column.
- (22) Actual estimation error means at time t_k just after processing the measurement, for both position/velocity and solve-for parameter states.
- (23) Actual correlation matrix partitions and standard deviations at time t_k just after processing the measurement. See 21) for definitions of the two groups of matrix partitions.

c. Guidance event output

Generalized covariance analysis information relating to the execution of the guidance event is printed immediately after the standard ERRAN guidance event information has been printed. This standard guidance event output, which is described in the ERRAN output description, comprises the assumed guidance data in contrast to the actual guidance data generated by the generalized covariance analysis. The generalized covariance analysis guidance event output for a midcourse guidance policy follows. The output for other guidance policies is a subset of this output.

- (1) Actual position/velocity and solve-for parameter deviation means just before the guidance correction.
- (2) Actual control correlation matrix partitions and standard deviations just before the guidance correction.

- (3) Eigenvalues, eigenvectors, and hyperellipsoids of the position and velocity partitions of the actual position/ velocity control covariance matrix.
- (4) Actual target state deviation mean, $E[\delta \tau']$, just before the guidance correction.
- (5) Actual target condition correlation matrix and standard deviations just before the guidance correction (2nd moment matrix W').
- (6) Eigenvalues, eigenvectors, and hyperellipsoid of actual target condition covariance matrix.
- (7) Actual velocity correlation 2nd moment matrix S', together with eigenvalues and eigenvectors.
- (8) Actual velocity correction correlation matrix and standard deviations (2nd moment matrix S').
- (9) Mean of actual commanded velocity correction, $E[\Delta V']$.
- (10) Mean of magnitude of actual commanded velocity correction, $E[|\Delta V'|]$.
- (11) Actual statistical, or effective, velocity correction, " $E[\Delta V']$."
- (12) Actual execution error mean, $E[\delta \Delta V']$.
- (13) Actual execution error correlation matrix and standard deviation (2nd moment matrix \tilde{Q}').
- (14) Actual position/velocity deviation means just after the guidance correction.
- (15) Actual position/velocity estimation error means just after the guidance correction.
- (16) Actual control (and knowledge) correlation matrix partitions and standard deviations just after the guidance correction.
- (17) Eigenvalues, eigenvectors, and hyperellipsoids of the position and velocity partitions of the actual position/velocity control (and knowledge) covariance matrix.

- (18) Actual target state deviation mean, $E[\delta \tau^{,+}]$, just after the guidance correction.
- (19) Actual target condition correlation matrix and standard deviations just after the guidance correction (2nd moment matrix W'⁺).
- (20) Eigenvalues, eigenvectors, and hyperellipsoid of actual target condition covariance matrix.

5. SAMPLE CASES

5.1 NOMNAL Sample Cases

Three typical trajectories generated by NOMNAL will be described in this section to illustrate the operation and versatility of the nominal trajectory generator NOMNAL. The three cases to be discussed are:

- Case N-1. Broken Plane Viking Mars "75 Mission Case N-2. Planetary Explorer Venus '78 Mission
- Case N-3. Lunar Viking '76 Mission
- 5.1.1 Broken Plane Viking Mars '75 Mission
- a. Sample Data

```
NBOD=3,NB=1,4,5,NLP=4,NTP=5,ACKT=2.5E-5,NCPR=10000,TMPR=10.,
KALI=1975,8,30,0,0,SI=0.,
IZERO=2, ZDAT(4)=-4.201823E+6,1.98231564E+8,-7.118753E+6,
KTYP=1,2,3,-1, KMXQ=3,3,4, KTIM=1,4,2,3, PERV=1.E-5,5.E-5,
IBADS=2,2, LVLS=2,2, AC(1,1)=5.E-4,2.5E-5, AC(1,2)=5.E-4,2.5E-5,
KALG(1,2)=1976,1,5,9,59, GS(2)=4.901, TIMG(3)=2.0,.5, IZER(2)=3,
KTAR(1,1)=10,11,12, TAR(1,1)=-4201823.,198231564.,-7118753.,
KTAR(1,2)=8,7,3, TAR(1,2)=40.92, 5000., TOL(1,2)=1., 10., .001,
KTAR(1,3)=2,TAR(1,3)=20428.,.70,77.,40.,50., TOL(1,1)=3*100.,
KALT=1976,1,5,9,59, TS=4.901, KALT(1,2)=1976,7,19,0,0, TS(2)=0.,
```

The exact data as read in for the Broken Plane Viking case are given above. A detailed explanation of this data follows.

The first line defines the nominal trajectory propagation between guidance events. The sun, Earth, and Mars are the gravitational bodies with the Earth as the launch planet and Mars as the target planet. The integration level of 2.5E-5 is a moderate accuracy level. The trajectory will be recorded at intervals of ten days with no printouts occurring on integration increment counts.

The initial date is given on the next line. It is specified only to a calendar day; the hours, minutes, and seconds at injection will be computed in the zero iterate computation using the internally set launch profile with a Cape Kennedy launch.

The third line defines the zero iterate computation. The option specified (IZERO=2) specifies the launch planet to prescribed point option. The heliocentric ecliptic coordinates of that point are provided in ZDAT.

The next lines of input define the guidance events. The data defining each event will be discussed in the order of the indices of the events.

The first event will be a targeting event (KTYP=1) to occur at 0 days (TIMG=0,) after the initial time (KTIM=1). The correction is to be computed and executed (KMXQ=3) using the impulsive model (MDL undefined, hence set to 1). The target values are x_f , y_f , z_f (KTAR=10,11,12) with values identical to ZDAT and tolerances of 100 km (TOL=3*100). The final time is read in the KALT, TS arrays (and used incidentally in the zero iterate computation). The Newton-Raphson scheme is to be used (METH not set, hence equal to 0) with a perturbation size of 10^{-5} km/sec (PERV) at two levels (LVLS) defined by AC to be 5×10^{-4} , 2.5×10^{-5} . Bad-step checks will be made at the high level only (IBADS=2).

The second event will be a retargeting event (KTYP=2) to occur on the calendar date (KTIM=2) specified by KALG, SG which is the same time as the target time of the first event. The correction is to be computed and executed (KMXQ=3) using the impulsive model (MDL=1 since undefined). The target parameters are i, r_{CA} , t_{CS} (KTAR=8,7,3) with target values of 40,92°, 5000 km (TAR) and 7/19/1976 (KALT) respectively and tolerances of 1°, 10 km, .001 days (TOL). The scheme to be used is identical to that of the first event with the exception of the velocity perturbation which is now set to 5×10^{-5} km/sec (PERV).

The third event is an orbit insertion event (KTYP=3) occurring .5 days (TIMG) after intersection of the Martian SOI (KTIM=2). The insertion is to be the nonplanar option (KTAR=2) with target conic elements of

The fourth event is a termination event (KTYP= -1) occurring at 0 days (TIMG=0 since undefined) after closest approach to Mars (KTIM=3). Thus the nominal trajectory will be integrated and recorded to the Martian closest approach.

b. Sample Output

Selected pages of the actual output from this run are supplied in the Appendix to this volume.

c. Discussion

The Broken Plane Viking Mars '75 mission data may be summarized as follows:

Launch date: 8/30/1975

Broken plane date: 1/5/1976 9^{hr}-59^m-4.901^{sec}

Encounter date: 7/19/1976

The authors are indebted to R. T. Gamber of the Martin-Marietta Corporation who generated this minimum-delta V data based on massless-planets trajectories. The sum of the broken-plane velocity and orbit insertion velocity is minimized.

Launch planet: Earth

Broken plane point (heliocentric ecliptic); 1.38780(8), -5.96016(7),

1.49455(2) km

Target planet: Mars

The massless planet trajectory generated for the first leg of the mission led to the following heliocentric conic:

SMA: 198.29 M km TAL: 348.90° ECC: .24094 TAP: 104.08° INC: 2.2722° TOF: 128.42 days

The injection conditions computed using the massless planet heliocentric trajectory and the internally stored launch profile generated the following near-earth conic:

C3: 14.242 SMA: -27988.6 RAD: 6567.6 ECC: 1.23438

VEL: 11.646 INJ TIME: 18^{hr}-26^m-51^{sec}

When the injection state consistent with this conic is integrated by NOMNAL to the broken plane time, the error in position is 2.18×10^5 km. Three iterations are made at both the first and second accuracy levels to obtain a trajectory that has an error of 25 km. The Δv required and the elements of the corrected near earth conic are

 $\Delta v = 13.6 \text{ m/sec}$ SMA = -28085.0 km ECC = 1.23356

The corrected nominal trajectory is now integrated to the time of the broken plane point. The second guidance event occurs at this time. First, a massless-planet trajectory is determined between the current position and the location of Mars at the encounter time. The elements of this conic are

SMA: 200.21 M km TAL: 101.83° ECC: .24069 TAP: 191.76° INC: 2.4785 TOF: 195.58 days

The velocity thus generated at the broken plane point by the virtual mass trajectory was altered by the massless planet correction ($\Delta v = 222$ m/sec) before integrating to the target planet for the second guidance event. The target errors on the first propagation are $\Delta i = 40^{\circ}$, $\Delta r_{CA} = 3906$ km,

 Δt_{CS} = .003 day. Three iterations at the first accuracy level and two

iterations at the second are required to reduce the errors to Δi = .000, Δr = 1.1 km, Δt = .000. The additional correction in velocity was Δv = 4.2 m/sec.

The corrected nominal trajectory is now integrated to the time of the orbit insertion decision (.71 days before CA). The elements of the approach hyperbola, the target orbit, the modified orbit, and the orbit actually achieved upon the later execution are compared below:

Orbit	а	e	ω	i	${\it \Omega}$
Approach hyperbola	- 8149	1.6009	80.2	40.26	51.45
Target orbit	20428	.7600	77.00	40.00	50.00
Modified orbit	20471	.7563	77.00	40.00	50.00
Achieved orbit	19967	.7513	76.13	39.77	50.53

The program computed the "best" modified orbit to be the one in which r alone is modified. The insertion velocity required was 886 m/sec. The time interval between decision and execution was .707 days.

After computing the time of the execution event and the velocity correction to be made at that time NOMNAL returns to the propagation of the nominal trajectory. At the required time, the insertion velocity is added impulsively and the resulting conic elements relative to the target planet are computed. The resulting conic is described in the previous chart. The achieved and modified orbits would have been improved if the decision event had been entered later.

5.1.2 Planetary Explorer Venus '78 Mission

KALI=1978,8,17,4,49,SI=15.201,

a. Sample Data

```
NBOD=3,NB=1,3,4, NCPR=200, TMPR=500., NLP=4, NTP=3, ACKT=2.5E-5,
KALI=1978,8,17,0,0, SI=0., IZERO=1,
TIMG=0., 90., .5, .25,
            1,
KTIM = 1.
                 2,
                       3.
KTYP = 1,
                      -1,
                  3,
            1,
KMXQ = 3,
            3,
                       3,
                 4,
MDL= 1,
            2,
                 1,
LVLS= 2,
            1,
PERV=.00001, .00005,
DVMAX=.01,.01, IBADS=1,
KTAR=7,8,3,
                   KTAR(1,2)=7,8,4,
                                              KTAR(1,3)=1,
TAR=7000.,-50.,
                   TAR(1,2) = 7500., -60.,
                                              TAR(1,3) = 27000...75,5..
TOL = 100., 1., .01,
                  TOL(1,2)=50.,.50,.005,
KALT=1978,12,16,0,0, TS=0.,
KALT(1,2)=1978,12,16,5,0, GS(2)=0.,
PULMAG=.001, PULMAS=1., DUR=1., DTI=.1.
AC=1.E-4,2.5E-5, AC(1,2)=2.5E-5,
NOIT=12.
IZERO=0, ZDAT=1.2244485426E+8,-8.9139153205E+7,-4.6158128562E+3,
             6.1928578,22.7126246,-3.2751748,
```

The data defining the Planetary Explorer Venus '78 mission is given above. This data will now be explained in detail.

The first line defines the nominal trajectory propagation between guidance events. The sun, Earth, and Venus are the gravitational bodies used in the trajectory integration, the Earth acting as launch planet and Venus acting as target planet. A moderate accuracy level of 2.5E-5 is used. Printouts of trajectory information are given every 200 integration increments so that the frequency of output is a function of the nearness to the virtual mass.

The initial date is read in as 8/17/1978. Since IZERO=1 the zero iterate will be based on the planet-to-planet option. Thus for the zero iterate the initial position will be Earth at the initial time and the final position will be Venus at the time given by KALT(5,1), TS(1).

Four guidance events are to be processed during the trajectory. The four events are generally defined columnwise on the input for clarity. Each event will be discussed separately.

The first event is a targeting event (KTYP=1) occurring at 0 days (TIMG=0.) after the initial time (KTIM=1). The correction is to be computed and executed (KMXQ=3) using an impulsive model (MDL=1) for the execution. The target parameters are r_{CA} , t, t_{CS} (KTAR=7,8,3) with desired values 7000 km, -50° , 1978/12/16 (TAR and KALT) and tolerances 100 km, 1° , .01 days (TOL) respectively. The Newton-Raphson scheme is to be used (METH=0) with the perturbation size 10^{-5} km/sec (PERV) and a maximum allowable step of 10^{-2} km/sec (DVMAX) during the progressive accuracy levels of 10^{-4} , 2.5×10^{-5} .

After targeting and executing the first guidance event, the trajectory is to be integrated at the second targeting event (KTYP=1) occurring 90 days (TIMG=90.) after the initial time (KTIM=1). This event has target parameters of r_{CA} , i, t_{CA} (KTAR=7,8,4) with slightly different target values and tolerances. The targeting scheme parameters are identical to the first event except that now only one accuracy level is used to do the targeting. After determining the correction to be made, the execution is to be done (KMXQ=3) using the pulsing arc model (MDL=2). The pulsing arc parameters are set as thrust magnitude: .001, nominal mass: 1, thrust duration: 1, and time interval between pulses: .1 day (PULMAG, PULMAS, DUR, DTI). This determines that 1 m/sec of velocity will be imparted on each pulse.

The third guidance event is a coplanar orbit insertion event (KTYP=3, KTAR=1) to be processed a half-day (TIMG= .5) after encountering the sphere of influence of Venus (KTIM=2). The desired orbit is to have a semimajor axis of 27000 km, an eccentricity of .75, and a periapsis shift of 5° (TAR). After generating the time of execution and the correction to be executed, the trajectory is to be integrated to that time and then added impulsively (KMXQ=4, MDL=1).

The final guidance event is a termination event (KTYP = -1) to be performed at .25 days (TIMG) after closest approach to Venus (KTIM = 3). After integrating the trajectory from the insertion execution to this time, the program is ended.

It should be noted that the data as recorded above represents two successive runs. The data to the blank line is the first run. The first run while not targeting the first event in the allowable number of iterations did significantly improve the zero iterate. Therefore a second run was made in which the last three rows of data were added to the original data. This has the effect of storing the later values over the earlier values.

Therefore in the second run IZERO was set to zero to permit the direct input of the partially targeted initial position and velocity vectors in ZDAT. The initial date KALI, SI was also updated to the exact time of injection rather than the launch date. Thus the results of the first run are used to good advantage in making the second.

b. Sample Output

Selected pages of the actual output from this run are supplied in the Appendix to this volume.

c. Discussion

The Planetary Explorer Venus '78 mission is launched from Earth on 8/17/1978 and arrives at Venus on 12/16/1978. The massless planet trajectory generated for the zero iterate for these dates has the following properties:

SMA: 128.38M km TAL: 185.78° ECC: .18117 TAP: 328.54° INC: 2.8123° TOF: 121 days

The hear earth conic based on the input launch profile and the departure asymptote of the above described heliocentric conic may be summarized:

C3: 8.801 RAD: 6567.3 SMA: -45,599 VEL: 11.410

ECC: 1.1439 INJ TIME: $4^{hr}-49^{m}-15^{sec}$

The injection state was computed from this conic. When integrated to the SOI of Venus the radius of closest approach is 592,130 km with a time error of 1.43 days. Counting the two runs, twelve iterations at the low level and four at the high level are required to reduce the errors to 39 km in r $_{\rm CA}$ (=7000), .70 in i $_{\rm CA}$ (=-500) and .005 days in t $_{\rm CA}$. The velocity correction needed to accomplish this and the elements of the refined near earth conic are

 $\Delta v = 10.4 \text{ m/sec}$ SMA = -45593. ECC = 1.1439 The corrected trajectory is now integrated to the midcourse maneuver ninety days later. It is desired to increase the r_{CA} by 500 km, vary the inclination by 10° , and delay the arrival by 5 hours. This targeting requires five iterations to generate the Δv of 34 m/sec which yields errors of $\Delta r_{CA} = .26$ km, $\Delta i_{CA} = .001^{\circ}$, and $\Delta t_{CA} = .000$ days. The execution model to be used in the implementation of this correction is the pulsing arc.

The velocity increment imparted per pulse is 1 m/sec with pulses occurring at intervals of 2.4 hours. Thus the pulsing arc requires 34 pulses and lasts 3.3 days. The current state as generated by the virtual mass trajectory is propagated backwards over half the pulsing arc interval. Then alternately single pulses are added and the resulting state propagated until the final pulse has been executed. All propagations in this process use a conic propagation corrected by the direct term effects of the launch and target bodies. A comparison of the heliocentric conics corresponding to the uncorrected trajectory, the impulsively corrected trajectory, and the pulsing arc trajectory is provided below.

	a	е	i
Uncorrected	128 383 969	.18071	2.87435
Impulsive	128 343 645	.17996	2.87120
Pulsing Arc	128 341 692	.17997	2.87122

The n-body trajectory then picks up at the end of the pulsing arc to integrate to the next guidance event.

A coplanar orbit insertion occurs .82 days before closest approach. The elements of the approach hyperbola, the target orbit, the modified orbit, and the orbit actually achieved upon the later execution are compared below:

Orbit	a	е	. ω	i	Ω
Approach Hyperbola	-12625	1.68285	-102.50	63.53	-161.06
Target Orbit	27000	.75	-97.50	63.53	-161.06
Modified Orbit	27916	.69256	- 97.50	63.53	-161.06
Achieved Orbit	28327	.69424	- 97 . 51	63.59	-161.16

The approach hyperbola and original target ellipse do not intersect: hence the target orbit is modified to obtain a tangential intersection by varying $r_{\rm p}$. The time until execution is computed along with the velocity impulse to be added at that time (Δv = 2080 m/sec). The trajectory mode is then reentered and the nominal trajectory is integrated to the time of the execution of the insertion. Upon addition of the velocity increment, the orbit achieved is given in the last row of the above table.

The integration of the nominal trajectory continues after the addition of the impulsive insertion until the termination event .25 day after closest approach.

.1.3 Lunar Viking '76 Mission

a. Sample Data

```
NBOD=2, NB=4,11, NLP=4, NTP=11, IBARY=1, ACKT=2.5E-5, NCPR=100,
IZERO=10, RP=6563.365, ZDAT=-7200.,1820.,89., LTARG=1, TMPR=20.,
        1,
              3,
                   -1,
KTIM=
        1,
              2,
TIMG=
       9.,
             .3,
KMXQ=
        3,
LVLS=1, AC=2.5E-5,
SPHFAC=.25,
KT4R= 7,8,3,
TAR=1820., 89., KALT=1976,6,20,12,0, TS=0.,
TOL=25.,1.0, .005,
               TAR(1,2) = 3000...4, +5...
KTAR(1,2)=1,
```

The data listed above for the Lunar Viking '76 mission is typical of the data required for lunar targeting.

The first line defines the nominal trajectory. The earth and the moon are the only bodies in the integration, the earth being the launch planet and the moon the target body. The inertial coordinate system is to be the earth-moon barycentric ecliptic system (IBARY=1). The accuracy level of 2.5E-5 is a reasonable figure. Printouts of the nominal trajectory data will occur every 100 integration increments.

The second line defines the zero iterate ocmputation. Lunar targeting is specified (IZERO=10) with target conditions at closest approach to the moon given as a = -7200, r_{CA} = 1820, and r_{CA} = 89°. The input parking orbit radius is specified as r_{D} = 6563.365 km.

Three guidance events are specified. A targeting event (KTYP=1) is requested at the initial time (TIMG=0., KTIM=1). The velocity refinement is to be both computed and executed (KMXQ=3). The target parameters are to be r_{CA} ,

 $^{\circ}_{CA}$, and $^{\circ}_{CA}$ (KTAR) with desired values of 1820 km, 89°, and 1976/6/20/12 (TAR,KALT) and tolerances of 25 km, 1°, and .005 days respectively. For this event the SOI of the moon is to be reduced to one-fourth its usual value (SPHFAC=.25) so that the conditions at the (reduced) SOI will be nearly identical to those at closest approach. The Newton-Raphson scheme will be used with the internally stored perturbation size PERV=.00001 and maximum step DVMAX=1. Only one level of accuracy will be used.

A coplanar insertion event (KTYP=1, KTAR=1) will be processed at .3 day (TIMG=.3) after intersecting the (normal) SOI. The desired conic elements are a semimajor axis of 3000 km, eccentricity of .4, and a periapsis shift of 5° . The impulsive model will be used for its execution at the required time.

The program will be terminated upon reaching the termination event (KTYP=-1) one day after lunar closest approach.

b. Sample Output

Selected pages of the actual output from this run are supplied in the Appendix to this volume.

c. Description

The Lunar Viking '76 mission discussed here is a 100-hour trajectory to the moon, arriving at closest approach to the moon on 1976/6/20/12. Because of the relatively long flight time involved, this is a reasonable test of the lunar trajectory targeter.

The first guidance event involves determining the injection time, position, and velocity required to yield a trajectory with a radius of closest approach of 1820 km, an equatorial inclination of 89°, and the time of closest approach defined above. NOMNAL first generates a patched conic trajectory meeting the targeted conditions and a semi-major axis relative to the moon of -7200. Seven iterations are required to produce a patched conic trajectory having errors of Δ a = 3.4 km, Δ r $_{CA}$ = 7 km, Δ i $_{CA}$ = .1°, and Δ t $_{CA}$ = 0. The injection conditions of this targeted patched conic are then input to the multi-conic targeter. The zero iterate of this process has errors of Δ a = 1150 km, Δ r $_{CA}$ = 630 km, and Δ t $_{CA}$ = .1 days. One hundred and one iterations are required in the multi-conic targeting to reduce these errors to Δ a = 1 km, Δ r $_{CA}$ = 10 km, Δ i $_{CA}$ = .1°, and Δ t $_{CA}$ = .001. The targeted multi-conic trajectory when integrated in the virtual mass model has errors of Δ r $_{CA}$ = .15 km, Δ i $_{CA}$ = .4°, and Δ t $_{CA}$ = .002 and hence falls within the allowable tolerances. The elements of the targeted near earth conic are

a = 214325 km i =
$$46.46^{\circ}$$

e = .96941 Ω = 2.23° ω = -166.53°

This trajectory is then integrated to the time of the second guidance event, an orbit insertion decision, occurring at .3 days after SOI intersection. The elements of the approach hyperbola, the target orbit, the modified orbit and the orbit actually achieved upon the later execution are compared below.

Orbit	a	e	ω	i	arOmega
Approach hyperbola	- 7224	1.25206	135.50	90.70	-138.53
Target Orbit	3000	.40000	140.50	90.70	-138.53
Modified Orbit	3008	.39608	140.50	90.70	-138.53
Achieved Orbit	3028	.39406	135.57	88.75	-138.39

The discrepancy between the modified orbit and the achieved is caused by the fact that the time interval over which the insertion maneuver was predicted was so large (.3 days) that the conic approximation was bad. Therefore if the orbit insertion is required more accurately, the time of the orbit insertion decision should be adjusted later.

5.2 ERRAN Sample Cases

Two error analysis cases performed by the error analysis program ERRAN will be described in this section to illustrate the operation and versatility of ERRAN. The two cases to be discussed are:

Case E-1. Planetary Explorer Venus '78 Mission Case E-2. Lunar Viking '76 Mission

5.2.1 Planetary Explorer Venus '78 Mission

a. Sample Data `

```
XI=6.55455973324E2.4.62539152599E3.-4.6158128562E3.
-1.08560236161F1.-1.25168693509.-3.27287460527.ICOOR=2.NBOD=3.
NLP=4.NTP=3.NB(1)=1.3.4.ACC=2.5E-5.TINJ=0..
TNOMB=1.36633590427E4.6.06305868021E3.119.48805958.
TNOMC=-5.45453815909E3,4.59782347257E2.-4.82462411161E3.
2.21797795136,-9.90977032363,-3.45655168685,120.79425159,
LMO=8.LDAY=17.LHR=4.LMIN=49.SECL=15.201.LYR=1978.IMO=12.
IDAY=16 . IHR=5 . IMIN=53 . SECI=10 . 465 . IYR=1978 . ISTMC=1 .
IAUGIN(1)=1.1.1.TAUGIN(11)=2.1.0.1.0.0.1.0.2. NENT=7.NEV1=1.
T1=60.•NEV2=1.T2=100.01.TPT2=120.794.NEV3=4.T3=0..10..100..
120.4*P(1*1)=2.*P(2*2)=2.*P(3*3)=2.*P(4*4)=19.E-6*P(5*5)=18.E-6*
P(606)=180E-60PS(101)=100PS(202)=90E-120U0(101)=10000
U0(2,2)=1.E-14.U0(3,3)=82.81E-16.V0(1.1)=1.7F-7.VC(2.2)=2.2E-15.
VO(3,3)=2.5E-14.IDNF=0.MNCN(3)=25.E-6.9.E-12.25.E-6.9.E-12.
25.E-6.9.E-12.SIGRFS=16.E-10.SIGPR0=16.E-6.SIGALP=20.E-5.
SIGRET=20.F-5.PSIGS=4.E-10.PSIGK=4.E-6.PSIGA=10.F-5.
PSIGB=10.E-5.IPRINT=3.KPRINT=1.IPRT=0.0.1.PULMAG=.D01.
PULMAS=1.00DUR=1.+DTI=.1.XTAR(1.4)=27000.+.75.5.+PR0BI=1.E-5.
IGUID(1 · 1) = 2 · 0 · 1 · 1 · 3 · IGUID(1 · 2) = 2 · 0 · 1 · 2 · 3 · IGUID(1 · 3) = 2 · 0 · 1 · 2 · 3 ·
IGUID (1 04) = 4 + 0 + 0 + 1 + 4 +
```

The first two lines of the above sample data define the dynamic model assumed in the error analysis. The spacecraft position/velocity injection state (XI) is referenced to geocentric ecliptic coordinates as indicated by the value of ICOOR. The motion of the spacecraft will be subject to the influence of the three (NBØD) celestial bodies indicated by the NB array, namely, the Sun, Venus, and the Earth, and will be launched from the Earth (NLP) toward Venus (NTP). A moderate trajectory accuracy (ACC) will be employed in the generation of the spacecraft trajectory. Since the initial time is the injection time, TINJ is set to 0. Nominal B-plane and closest approach target conditions are defined by the TNOMB and TNOMC arrays. These arrays, which are obtained from the NØMNAL run which generated the injection conditions, are required in this error analysis run because several biased aimpoint guidance events are to be performed. The launch and final dates are defined by the series of variables LMØ through IYR. State transition matrices will be computed analytically using the patched conic technique as indicated by the value of ISTMC.

The IAUGIN array defines the parameter augmentation for this run, and indicates that there are two solve-for parameters: target planet gravitational constant bias and range-rate bias; three dynamic consider parameters: target planet semi-major axis, inclination, and mean anomaly biases; and three measurement consider parameters: station 1 radius, latitude, and longitude biases. The number of entries in the measurement schedule, which is presented below, is specified by NENT.

The variables NEV1 and T1 indicate that an eigenvector event will occur at 60 days, while NEV2, T2, and TPT2 indicate that a prediction event will occur at 100.01 days and will predict to 120.794 days. Four guidance events are scheduled at 0., 10., 100., and 120.4 days in this run, as indicated by NEV3 and T3. The characteristics of these guidance events are specified by the IGUID arrays which appear in the last two lines of the previous sample data. IGUID(1,1) indicates that the first guidance event will be 2VBP, linear, subject to planetary quarantine constraints, impulsive, and both computed and executed. The second and third guidance events differ from the first in that they will employ a pulsing thrust model. The final guidance event is an impulsive planar orbital insertion, not subject to quarantine constraints, computed, and executed at the appropriate time. The thrust characteristics of the pulsing engine are defined by the variables PULMAG, PULMAS, DUR, and DTI. The variable PRØBI indicates that the probability of impact with the target planet Venus must not be more than $1.x10^{-5}$. The XTAR array indicates that we desire to insert the spacecraft in an orbit about Venus having a semi-major axis of 27000 km., an eccentricity of .75, and a periapsis shift of 5 degrees.

The spacecraft injection covariance matrix is assumed to be diagonal with position variances of 2 km. and velocity variances 18 m. 2/sec. The parameter covariance matrices are also assumed to be diagonal. Solve-for parameter variances are defined in the PS array; dynamic consider parameter variances, in the UO array; and measurement consider parameter variances, in the VO array. The arrangement of the elements in the PS, UO, and VO arrays must correspond to the structure of the solve-for, dynamic consider, and measurement consider parameter vectors.

Dynamic noise will be absent from this run, as indicated by the value of IDNF. Noise corrupting range and range-rate measurements from all three tracking stations will be assumed to have the statistics described by the MNCN array. Execution error statistics are described by the variables SIGRES through PSIGB.

· Variables not defined in the previous sample data take on internally-specified values. For example, the internally-specified values of all required numerical differencing factors (DELMUP, DELAXS, DELICL, and DELMA) were deemed satisfactory for this run, and so were not defined in the sample data.

The measurement schedule input for this error analysis run is presented below:

.2	9.2	1.	3
.6	9.6	1.	5
•9	9.9	1.	7
19.5	99.5	5.	4
100.3	120.3	2.	3
70.1	90.1	10.	9
110.4	114.4	2.	10

The first row indicates that range-rate measurements from station 1 will be taken once a day beginning at .2 days and ending at 9.2 days. The other rows are interpreted in a similar fashion.

b. Sample Output

Selected pages of the actual output from this run are supplied in the Appendix to this volume.

c. Discussion

Planetary quarantine constraints require that the nominal aimpoint be biased at injection since the probability of impact (POI) exceeds the allowable POI. The linear theory indicates that a bias ΔV of nearly 15 m/sec. is required to reduce the POI to $1.x10^{-5}$. The bias in B·T is computed as 8674 km., the bias in B·R, as 119,447 km. At 10 days we recompute the target conditions and find that they do not agree with the desired bias aimpoint. This indicates that nonlinear guidance should have been employed at injection to re-target the trajectory to the bias aimpoint. The linear theory, however, does provide us with valid bias ΔV 's at guidance events occurring in the heliocentric phase. After the midcourse at 10. days the spacecraft is once again heading toward the nominal aimpoint since planetary quarantine constraints are no longer violated.

Shortly before encountering the sphere of influence of Venus, space-craft position uncertainties (1σ) have values of 5.6, 6.1, and 12.6 km. in the x,y, and z directions, respectively. Velocity uncertainties have values of 3.3×10^{-6} , 4.5×10^{-6} , and 6.7×10^{-6} km./sec. At this time the uncertainty (1σ) in the station 1 range-rate bias has been reduced from $3.\times 10^{-6}$ to $.62\times 10^{-6}$ km./sec.

At the orbital insertion decision event at 120.4 days we compute an insertion ΔV of 1.96 km./sec. to be executed at 120.77 days. After execution we are close to the desired Venus orbit.

5.2.2 Lunar Viking '76 Mission

a. Sample Data

```
XI=-6.21904171E3.-1.99290848E3.-6.5$435808E2.3.162899754.
-9.601153294.-4.173272404.ICOOR=2.NROD=2.NLP=4.NTP=11.IBARY=1.
ACC=2.5E-5.NR=4.11.LM0=6.LDAY=16.LHR=11.LMIN=7.SECL=50.055.
LYR=1976.IM0=6.IDAY=20.IHR=19.IMIN=30.SECI=43.022.IYR=1976.
FACP=.01.FACV=1.E-6. IAUGIN(7)=1.01.01.02.2.2.0.0.1.01.02.2.0.1.
NENT=7.NEV2=1.T2=1.01.TPT2=2.99.NEV3=3.T3=1..3..3.83.
IGUID(1.1)=3.0.0.1.3.IGUID(1.2)=1.0.0.1.3.IGUID(1.3)=4.0.0.1.4.
XTAR(1.3)=3000...4.5..P(4.4)=9.E-6.P(5.5)=9.E-6.P(6.6)=9.E-6.
PS(1.1)=3.6E-3.PS(2.2)=100...PS(3.3)=9.E-6.U0(1.1)=1.E-12.
U0(2.2)=1.E-12.V0(1.1)=.169E-6.V0(2.2)=.223E-14.V0(3.3)=2.46E-14.V0(4.4)=1.E-8.SIGPRO=25.E-6.SIGRES=9.E-10.SIGALP=5.E-5.
SIGBET=5.E-5.IPRINT=3.KPRINT=1.IPRT=0.0.0.0.1. ISTMC=3.
TNOMB=-2.36489848784E2.-5.47059458514E3.3.433385.
TNOMC=5.253575073E2.-1.111622873E3.1.359994681E3.1.053301945.
-1.498851835.-1.632004962.4.037704.NDACC=1.ACCND=1.E-4.
```

The first two lines of the above sample data define the dynamic model assumed in the error analysis. The spacecraft position/velocity injection state (XI) is referenced to geocentric ecliptic coordinates (IC ϕ R). Only two (NB ϕ D) bodies the Earth and the Moon, will govern the motion of the spacecraft. The IBARY code indicates that the barycentric ecliptic coordinate system will be used as an inertial reference coordinate system. A moderate trajectory accuracy (ACC) will be used to generate the spacecraft trajectory.

The ISTMC code indicates state transition matrices will always be computed using numerical differencing. Numerical differencing factors FACP and FACV different from the preset values were selected since the preset values are more suitable for interplanetary trajectories than for lunar trajectories. The last two variables indicate that a reduced trajectory accuracy will be employed in numerical differencing.

The IAUGIN array defines the parameter augmentation for this run, and indicates that there are three solve-for parameters: gravitational constant and semi-major axis biases of the Moon, and range bias; two dynamic consider parameters: longitude of the ascending node and argument of periapsis biases of the Moon; and four measurement consider parameters: station 3 radius, latitude, and longitude biases and star-planet angle 1 bias.

A single prediction event occurs at 1.01 days as indicated by NEV2 and T2. The prediction is made to 2.99 days (TPT2). The variables NEV3 and T3 define a schedule of three guidance events occurring at 1., 3., and 3.83 days. According to the IGUID(1,1) array, the first guidance event is 3VBP, linear, not subject to planetary quarantine constraints, impulsive,

and is to be both computed and executed. The second guidance event is identical to the first except that it is FTA rather than 3VBP. The third guidance event is a planar orbital insertion, applied impulsively, and not subject to quarantine constraints. It is to be computed and executed later at the appropriate time. The desired lunar orbit has a semi-major axis of 3000. km., an eccentricity of .4, and a periapsis shift of 5 degrees. This target orbit is defined by the XTAR array.

The spacecraft injection covariance matrix is assumed to be diagonal with position variances equal to the pre-set values of 1 km.² and velocity variances of 9 m.²/sec.², as indicated by the P array. Solve-for parameter variances are defined in the PS array; dynamic consider parameter variances, in the UO array; and measurement consider parameter variances, in the VO array. The arrangement of the elements in these latter three arrays conforms to the structure of the three parameter vectors.

Measurement noise variances will take on internally-specified values and so do not appear in the previous sample data. Execution error variances are defined by the variables SIGPRØ through SIGBET.

b. Sample Output

Selected pages of the actual output from this run are supplied in the Appendix to this volume.

c. Discussion

Prior to the first guidance event at 1. days from injection, spacecraft position knowledge uncertainties (1 σ) have values of 1.85x10^-3, 6.36x10^-2, and 4.31x10^-2 km. in the x, y, and z directions, respectively. Velocity uncertainties have values of 1.55x10^-7, 1.24x10^-6, and 1.53x10^-6 km./sec. The control covariance at this time indicates position control uncertainties (1 σ) of 1075., 579, and 279. km. and velocity control uncertainties of 1.86x10^-2, 5.44x10^-3, and 2.87x10^-3 km./sec. These control uncertainties are a measure of the dispersion of the actual trajectory from the nominal and are useful in determining the efficacy of the guidance (control) process. Propagating these control uncertainties forward to the target indicates that if no guidance correction is applied target condition dispersions will have 1 σ values of 8106 km. in B·T , 1889 km. in B·R , and .057 days in to 1 σ values of the guidance correction, we can reduce target condition dispersions to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km. in B·T , 39 km. in B·R , and 3.5x10^-4 days in to 1 σ values of 48 km.

The orbital insertion decision event at 3.83 days computes an orbital insertion ΔV of .525 km./sec. to be executed at 4.038 days. After execution of the insertion ΔV the spacecraft is in a lunar orbit close to the desired orbit.

5.3 SIMUL Sample Cases

Two simulation cases performed by the simulation program SIMUL will be described in this section to illustrate the operation and versatility of SIMUL. These cases correspond to the two ERRAN sample cases. The two cases to be discussed are:

Case S-1. Planetary Explorer Venus '78 Mission Case S-2. Lunar Viking '76 Mission

5.3.1 Planetary Explorer Venus'78 Mission

a. Sample Data

```
XI=6.55455973324E2.4.62539152599E3.-4.6158128562E3.
-1.08560236161E1.-1.25168693609.-3.27287460527.ICOOR=2.NBOD=3.
NLP=4 .NTP=3 .N9(1)=1.3.4.ACC=2.5E-5.TINJ=0..
TNOMB=1.36633590427E4.6.06305868021E3.119.48805958.
TNOMC = -5.46453815909E3.4.59782347257E2.-4.82462411161E3.
2.21797795136.-9.90977032363.-3.45655168685.120.79425159.
LMO=8.LDAY=17.LHP=4.LMIN=49.SECL=15.201.LYR=1978.IMO=12.
IDA V=16 .IHR=5 .TMIN=53 .SECI=10.465 .IYR=1978 .ISTMC=1 .
IAUGIN(1)=1.1.1.1AUGTN(11)=2.1.0.1.0.0.1.0.2. NENT=7.NEV1=1.
V1=60..NEV2=1.72=100.01.TPT2=120.794.NEV3=4.T3=0..10..100..
120.4.P(1.1)=2...P(2.2)=2...P(3.3)=2...P(4.4)=18.E-6.P(5.5)=18.E-6.
P(6.6)=18.E-6.PS(1.1)=1..PS(2.2)=9.E-12.UC(1.1)=100..
UC(2,2)=1.F-14,UC(3,3)=82.81E-16,VC(1,1)=1.7E-7,VC(2,2)=2.2E-15,
VO(3,3)=2.5E-14.IPNF=0.MNCN(3)=25.F-6.9.E-12.25.E-6.9.E-12.
25.E-6.3.E-12.SIGPFS=16.E-10.SIGPR0=16.E-6.STGALP=20.E-5.
SIGRET=20.E-5.PSIGS=4.E-10.PSIGK=4.E-6.PSIGA=10.E-5.
PSIGB=10.E-5.IPRINT=3.KPRINT=1.IPRT=0.C.O.1.PULMAG=.001.
PULMAS=1..DUR=1..DTT=.1.XTAR(1.4)=27000...75.5..PROBI=1.E-5.
ADEVX=1.0-.5.1.0-2.E-3.2.E-3.1.5E-3.ACC1=2.5E-5.NBOD1=3.
NB1=1.0304.0DMUPR=.8.0DAB=15..DTB=1.5E-7.DMAR=-12.E-8.BIA(4)=6.E-6.
SL3=8.E-4.-10.E-8.3.E-7.IAMNF=1.4VARM(3)=25.F-8.9.E-14.25.E-8.
9.E-14.25.E-8.9.E-14.4.2.5E-11.ARFS=.01.-2.E-5.-2.E-5.-3.E-5.
APRO=.01.2.E-3.2.E-3.4.E-3.AALP=.01.1.E-2.1.E-2.1.E-2.
ABET=.010-1.E-2,-1.F-2,-1.E-2.NEV5=2.T5=4..50..NDACC=1.
ACCND=1.E-4.IGUID(1.1)=2.1.2.1.3.IGUID(1.2)=2.1.2.2.3.
IGUID(1.3)=2.1.2.2.3.IGUID(1.4)=4.1.0.1.4.XTOL(1.1)=100..100..
.005.XTOL(1.2)=100..100...005.XTOL(1.3)=100...100...005.
XAC(1+1)=2.5E-5,XAC(1+2)=2.5E-5,XAC(1+3)=2.5F-5,XPERV=3*1.E-5,
XDVMAX= 3 * . 05 . LLVLS= 3 * 1 .
```

The first half of this sample data has already been discussed in the ERRAN Sample Cases section. The data peculiar to the simulation program is concerned primarily with the definition of actual dynamics and actual error statistics, and begins with the ADEVX array above.

The ADEVX array defines the actual initial spacecraft position/velocity deviation from the nominal trajectory. Actual trajectory accuracy (ACC1) and actual celestial bodies (NBØD1 and NB1 array) are not different from the assumed values (ACC, NBØD, and NB), although normally the actual dynamic model would be more refined than the assumed model. Some differences between these two models have been defined: actual dynamic biases in the target planet gravitational constant, semi-major axis, inclination, and mean anomaly will be added to the nominal values in the generation of the actual trajectory. These dynamic biases are specified by the variables DMUBP, DAB, DIB, and DMAB.

Actual station location errors have been defined in the SLB array for station 1. Range-rate measurements from this station will be biased by 6.x10⁻³ m./sec. as indicated by the variable BIA(4). Actual measurement noise variances are different from their assumed values as indicated by the value of IAMNF. The actual variances are defined in the AVARM array. Actual execution errors corresponding to the four guidance events are defined in the ARES, APRØ, AALP, and ABET arrays. The first value in each of these arrays is a dummy value for this particular run since the first guidance event occurs at injection. The object of a guidance event at injection is solely to change the injection velocity state; injection statistics are assumed to remain unchanged.

The characteristics of the first 3 guidance events differ from the first 3 guidance events in the corresponding ERRAN sample case in that nonlinear guidance will be used to re-compute the guidance correction. This necessitates the specification of targeting tolerances for these three events in the three XTØL arrays. In this case all three XTØL arrays are identical and indicate that the re-targeted trajectories have tolerances of 100 km. in B·T and B·R, and .005 days in t_{SI}. A single accuracy level, which is usually chosen to be identical to the trajectory accuracy ACC, is employed in nonlinear guidance as indicated by the variables LLVLS and XAC. The XPERV array indicates that a velocity perturbation of 1.x10⁻⁵ km./sec. will be used to compute the targeting matrix at each nonlinear guidance event. Velocity steps of .05 km./sec. in the targeting process are permissible, as indicated by the XDVMAX array.

b. Sample Output

Selected pages of the actual output from this run are supplied in the Appendix to this volume.

c. Discussion

Nonlinear guidance is employed at each midcourse guidance event in the case under consideration. At 0. days the aimpoint is biased in order to satisfy planetary quarantine constraints and the bias velocity is re-computed using nonlinear guidance. The nonlinear bias velocity has a magnitude over twice as large as the linear bias velocity, which indicates that linear guidance is not valid during the initial phase of the trajectory.

The measurement data presented at 9.9 days shows a convergent navigation process at that point in the trajectory. All orbit estimation errors fall within their predicted (1σ) standard deviations.

At the guidance event at 10. days the nominal aimpoint satisfies the planetary quarantine constraints. The velocity required to remove the bias (DVRB) has a magnitude of about 15 m./sec. Linear guidance is valid in this region since the sum of the commanded correction (to null out target errors) and the velocity correction required to remove the aimpoint bias agrees quite well with the total velocity correction computed using non-linear guidance. The z-components of the linear and nonlinear Δ V's will always differ for 2VBP guidance since the z-component has been constrained to be zero for nonlinear 2VBP guidance.

The guidance correction at 10. days is executed using the impulse series thrust model operating over a 1.3 day arc. The re-computed target conditions at 100. days show, as one might expect, that the impulsive guidance policy will not satisfy the target conditions if an impulse series is used to execute the impulsive $\Delta \, V$.

5.3.2 Lunar Viking '76 Mission

a. Sample Data

```
XI=-6.21904171E3.-1.99290848E3.-6.55435808E2.3.162899754.
-9.601153294.-4.173272404.ICCOR=2.NBOD=2.NLP=4.NTP=11.IBARY=1.
acc=2.5E-5.NB=4.11.LM0=6.LDAY=16.LHR=11.LMIN=7.SECL=50.055.
LYR=1976.IMO=6.IDAY=20.IHR=19.IMIN=30.SECI=43.022.IYR=1976.
FACP=.01.FACV=1.E-6. IAUGIN(7)=1.1.1.0.2.2.0.0.1.1.0.2.2.0.1.
NENT=7.NEV2=1.72=1.01.TPT2=2.99.NEV3=3.T3=1...3...3.83.
IGUID(1,1)=3,1,0,1,3,IGUID(1,2)=1,1,0,1,3,IGUID(1,3)=4,1,0,1,4,
XTAR(1:3)=3000...4.5..P(4.4)=9.E-5.P(5.5)=9.F-6.P(6.6)=9.E-6.
PS(1.1)=3.6E-3.PS(2.2)=100..PS(3.3)=9.E-5.U0(1.1)=1.E-12.
UO(2.2)=1.E-12.VO(1.1)=.169E-6.VO(2.2)=.223E-14.VO(3.3)=2.46E-14.
VO(4,4)=1.E-8.STGPR0=25.E-6.STGRES=9.E-10.STGALP=5.E-5.
SIGBET=5.E+5.IPRINT=3.KPRINT=1.IPRT=0.0.0.1. ISTMC=3.
ADEVX=.30-.30.30-1.5E-301.5E-30-1.5E-30ACC1=2.5E-50
NBOD1=2 . NB1=4 . 11 .
DMUPB=.04.0AB=5..DNOB=5.E-6.DWB=-6.E-6.BIA(3)=-5.E-3.
BIA(9)=6.E-5.SLB(7)=8.E-4.-7.F-8.2.5E-7.IAMNF=1.
AVARM(3)=25.F-8.9.E-14.25.E-8.9.E-14.25.E-8.9.E-14.4*2.5E-11.
ARES=-2.E-5.-2.E-5.-3.E-5.APR0=2.E-3.2.E-3.4.E-3.
AALP=1.E-2.1.E-2.1.E-2.ABFT=3*-1.E-2.NEV5=4.T5=.2..7.1.5.2..
TNOMB=-2.36489848784E2.-5.47059458514E3.3.433385.
TNOMC = 5.253575073E2.+1.11162287353.1.359994681E3.1.053301945.
-1.498851835.-1.632004962.4.737704.NDACC=1.ACCND=1.E-4.
XTOL(1.1)=100..100...005.XTOL(1.2)=100..100..100..
XAC(1:1)=2.5E-5.XAC(1:2)=2.5E-5.XPERV=2*.0001.
 XDVMAX=2+.010+LLVLS=2+1.
```

The first half of this sample data has already been discussed in the ERRAN Sample Cases section. The data peculiar to the simulation program is concerned primarily with the definition of actual dynamics and actual error statistics, and begins with the ADEVX array above.

The ADEVX array defines the actual initial spacecraft position/velocity deviation from the nominal trajectory. Actual trajectory accuracy (ACC1) and actual celestial bodies (NBØD1 and NB1 array) were chosen to be identical to the assumed values (ACC, NBØD, and NB). However, some differences between the actual and assumed dynamic models were defined: actual dynamic biases in the gravitational constant, semi-major axis, longitude of the ascending node, and argument of periapsis of the Moon are to be added to the nominal values to generate the actual trajectory. These dynamic biases are specified by the variables DMUPB, DAB, DNØB, and DWB.

Actual station location errors have been defined in the SLB array for station 3. Range measurements from station 1 will be biased by -5 meters, while star-planet angle 1 measurements will be biased by 6.x10⁻⁵ radians. These biases are defined in the BIA array. Actual measurement noise variances are different from their assumed values as indicated by the value of IAMNF. The actual variances are defined in the AVARM array. Actual execution errors corresponding to the three guidance events are defined in the ARES, APRØ, AALP, and ABET arrays.

The characteristics of the first 2 guidance events differ from the first 2 guidance events in the corresponding ERRAN sample case in that nonlinear guidance will be used to re-compute the guidance correction. This requires the specification of several targeting variables for these two events. At the first event tolerances of 100 km. in B·T and B·R, and .005 days in t_{SI} are imposed; at the second event tolerances of 100 km. in each of the final position components are imposed. These tolerances are defined in the XTØL arrays. A single accuracy level (LLVLS) is usually selected for a nonlinear guidance event. The accuracy level itself (XAC) is usually set to the trajectory accuracy (ACC). The XPERV array defines the velocity perturbation to be used in the computation of the targeting matrix, while the XDVMAX array defines the maximum permissible velocity changes that can be used in the targeting process.

b. Sample Output

The output from this run is provided in the accompanying document, Tabulated Runs. In the final documentation selected pages from that output will be reduced to standard size and included in the User's Manual.

c. Discussion

All midcourse guidance velocity corrections have been recomputed using nonlinear techniques. Comparison of the linear and nonlinear ΔV 's at the 1st guidance event indicates very good agreement. No nonlinear ΔV is computed at the guidance event at 10. days since the target tolerances of 100. km. in each position component are satisfied by the uncorrected

trajectory. This is further substantiated by the target condition standard deviations just prior to the guidance event at 3 days which indicate standard deviations of 24, 31, and 43 km. in the x, y, and z target position components, respectively.

Comparing actual orbit estimation errors with predicted 1σ position and velocity uncertainties indicates that the navigation process is generally convergent. In a convergent process the actual errors should be bounded by the $\pm 3\sigma$ predicted uncertainties. Prior to encountering the sphere of influence of the Moon at 3.3 days our error in the range bias estimate has been reduced from 5 meters to .16 meters. Errors in the estimation of the gravitational constant and semi-major axis biases of the Moon, however, have not been reduced. This may be due to the strong correlation between these two parameters in the trans-lunar phase of the mission, making it difficult for the estimation process to separate the effects of biases in these two parameters.

5.4 Multiprobe Sample Cases

5.4.1 NOMNAL Multi-Probe Sample Case

C VIRTUAL-MASS INTEGRATOR DATA

The exact data as input for a representative 1977 Planetary Explorer targeting problem is given below:

```
ACKT=2.5E-05,
    NBOD=3,
    NB=1,3,4,
    NLP=4,
    NTP=3,
    TMPR=50..
    NCPR=500,
C INITIAL TRAJECTORY TIME
    KALI=1977,1,4,6,49
    SI = 38.,
C GUIDANCE EVENT SCHEDULE
    KTYP=1,4,1,5,1,-1,
    KTIM=1,1,1,1,1,3,
    TIMG=0.,122.,122.5,123.,123.5,1.,
C TARGET SPECIFICATION
    KTAR=13,14,1,0,0,0,
         0,0,0,0,0,0,
         13,14,1,0,0,0,
         11,11,0,0,0,0,
         13,14,15,0,0,0,
    TAR=0.,68.2,0.,0.,0.,0.,
        0.,0.,0.,0.,0.,0.,
        -14.,100.,0.,0.,0.,0.,
        30.3,-14.6,-34.4,71.3,137.7,66.6,
        20.,30.,0.,0.,0.,0.,
    TOL=1.,1.,.001,0.,0.,0.,
        0.,0.,0.,0.,0.,0.,
        1.,1.,.001,0.,0.,0.,
        1.,1.,1.,1.,0.,0.,
        1.,1.,.001,0.,0.,0.,
    KALT=1977,5,17,6,49,
         0,0,0,0,0,
         1977,5,17,6,49,
         0,0,0,0,0,
         1977,5,17,5,49,
    TS=38.,0.,38.,0.,38.,
```

```
INITIAL INTERATE DATA
    IZERO=1.
C TARGETING SCHEME DATA
    LVLS=6*2.
    AC=1.0E-04,2.5E-05,0.0,0.0,0.0
       0.0.0.0.0.0.0.0.0.0.
       1.0E-04,2.5E-05,0.0,0.0,0.0,
       0.0,0.0,0.0,0.0,0.0,
       1.0E-04,2.5E-05,0.0,0.0,0.0,
    PERV = 6 * 1.0E - 05.
    CONTR=6*2.,
    DVMAX=6*5.0E-01.
    NOIT=6*12.
    MAXB=6*12.
    WGHTM=1.0E+05,0.,1.0E+05,.5,1.0E+05,
C PROBE TARGETING DATA
    IPCS=6*1.
    RPS=6*6200..
```

A brief description of the nominal mission profile is given to motivate the selection of guidance events. A detailed explanation of the data is then provided. Finally a discussion of the targeting output is given.

a. Mission Description

The trajectory is to be of the Type I category with a launch data of 1/4/77 and an arrival date of 5/17/77. The entire conglomerate vehicle consisting of the bus, the main probe, and the three miniprobes is targeted at injection to impact the main probe target site at 0° declination and 68.2° right ascension in the planetocentric subsolar frame. The injection-targeted trajectory is then flown uneventfully until 11 days prior to entry. At this time the main probe is released to impact its target site without any further velocity correction. Twelve hours after the main probe release the conglomerate spacecraft now consisting of the bus and miniprobes is retargeted to a pseudo-impact site at -14 and 100° declination and right ascension respectively. Since the bus as well as the miniprobes will subsequently be retargeted, this site will never be reached by any portion of the spacecraft. It serves the purpose instead of shifting the ballistic trajectory of the spacecraft so that at the time of miniprobe release its point of contact with the planet is centered among those of the miniprobes. Ten days before entry the miniprobes are deployed by

a simultaneous release from the spinning spacecraft. A sufficient number of release controls is not available to permit exact targeting of all three miniprobes to their respective target sites. Hence controls are used which minimize a miss index of the impact site distribution; they are tabulated in the Discussion section. Finally, nine and one-half days before entry, the bus is retargeted to its desired impact site at 20° declination and 30° right ascension. The bus is accelerated at this time to impact the planet one hour before the probes thereby easing the data management burden.

b. Sample Data

Consider the sample input of Table 1. First observe the input to the virtual-mass propagator. ACKT sets the VMP accuracy level for propagation of the nominal trajectory between guidance events at the moderate accuracy level of 2.5E-5. NBOD indicates that 3 gravitational bodies are to be considered in the virtual-mass integration. The array NB identifies these as the sun, Earth, and Venus. NLP and NTP further identify the Earth as the launch planet and Venus as the target planet. TMPR triggers trajectory status printouts every 50 days while NCPR initiates them every 500 integration steps.

Examine next the scheduling of guidance event times. The array KTYP states that there are to be 6 guidance events in all. The first, third and fifth are ordinary targetings; the second is a main probe propagation; the fourth is a miniprobe targeting, and the sixth is a termination event. The array KTIM specifies that the first five event times in the array TIMG are to be referenced to the initial trajectory time at injection while the entry for the last event is referenced to closest approach of the target planet. Observing that the trajectory is 132 days long the reader should satisfy himself that the event times listed in TIMG will indeed produce the nominal trajectory described in the mission profile.

Consider next the specification of the targets. The array KTAR specifies that all of the targeting events have the time, right ascension and declination at impact as their target variables. The first and third events, however, permit extrapolation of these target values from the integrated state at the SOI, while the fifth requires virtual-mass propagation all the way to impact. For the fourth or miniprobe targeting event KTAR dictates that the spin-axis orientation is to be of mode 1 (both the ecliptic right ascension and declination of the spin axes are free release controls) and that for targeting purposes the miniprobes are to be propagated according to the conic model. The TAR array contains

the right ascensions and declinations of the respective target sites. The reader can easily verify that they agree with those given in Table 1 for the intended mission. The array TOL specifies that for all the targeting events the desired right ascensions and declinations must be achieved to within 1 deg. and the desired impact times to within 0.001 day. For the miniprobe targeting event, TOL states that equal unity weighting factors should be applied to the B.T and B.R errors for all the miniprobe target sites and that the weighted sum of the change in length of the release control vector and the change in magnitude of the miss index be less than 1 for convergence in the least-squares routine. The target times are input through the variables KALT and TS in accordance with the nominal mission profile discussed above. assuming the trajectory initial time given in KALT and SI. Actually, the initial date need only be specified to a calendar day; the hours, minutes, and seconds at injection are computed in the zero iterate computation using the internally set launch. profile with a Cape Kennedy launch.

Next consider the zero iterate data. IZERO specifies for an initial iterate, a Lambert massless-planet conic from the launch planet at the initial time to the target planet at the target time.

Now study the targeting scheme data. The array LVLS specifies that all of the targeting events are to have two levels. According to AC the first level should be propagated at a VMP accuracy level of 1.0E-4 and the second at 2.5E-5. The velocity perturbation size used in approximating the sensitivity matrices of the target variables to velocity controls is given by PERV to be 1.0E-5 throughout the run. The launch-planetocentric velocity controls are to be used exclusively according to CONTR. The maximum permissible velocity correction is universally fized at 0.5 km/sec by DVMAX. The maximum number of iterations and bad steps are both set wherever applicable to 12 by the variables NOIT and MAXB, respectively. The weighting factor of timing errors to distance errors for bad step calculations is assigned the value 1.0E5 by WGHTM for all targeting events. For the miniprobe targeting event the length of pseudo-inverse release control correction is bounded above by 0.5 according to WGHTM.

Consider the special probe targeting data. The afray IPCS sets the plantocentric probe-sphere frame to subsolar orbit-plane coordinates while RPS sets the radius of the probe sphere to 6200 km for all probe related targeting.

c. Sample Output

Selected pages of the actual output of this run are supplied in the appendix to this volume.

d. Discussion

The interpretation of the output from the NOMNAL programs is aptly illustrated in other sample cases. Only the printout from the miniprobe targeting algorithm and the main probe propagator are unique to this case. This "new" output is thoroughly described in the Output Description.

Table 1 Sample 1977 Planetary Explorer Targeting Results

Body	Declination Site in De	on of Impact egrees	Right Ascension of Impact Site in Degrees		Julian Date Epoch 1900 of Impact Time	
	Desired	Achieved	Desired	Achieved	Desired	Achieved
Main Probe	0.0	0.3	68.2	71.1	28260.784	28260.78460
Bus (Prior to Miniprobe Release)	-14.0	-12.90	100.0	102.4	28260.784	28260.78450
Miniprobe 1	30.3	30.9	71.3	74.1		28260.78731
Miniprobe 2	-14.6	-11.9	137.7	139.8		28260.78422
Miniprobe 3	-34.4	-34.5	66.6	70.8		28260.79070
Bus (Final)	20.0	20.0	30.0	30.0	28260.743	28260.74292

Table 2 Comparison of Results of Conic and Virtual-Mass Miniprobe Propagation Models

	Declination Site in D	on of Impact egrees	Right Asc Impact Si Degrees	cension of ite in	Julian Date 1900 of Epoc	• 1
Miniprobe	Conic	N-Body	Conic	N-Body	Conic	N-Body
1	-12.279	-11.932	139.718	139.798	28260.78397	28260.78422
2	-34.649	-34.451	70.944	70.785	28260.79087	28260.79070
3	31.622	30.922	73.562	74.054	28260.78746	28260.78731

The results of the targeting as summarized in Tables 1 and 2 deserve some comment. First, the disparity between the desired and achieved impact sites for the main probe and the bus prior to miniprobe release as compared to the bus after final retargeting is caused by the use of target option 1 for the former cases and 15 for the latter cases. Thus, in the first two instances, the trajectory was integrated to the SOI and then conically extrapolated to impact, while in the latter cases, it was integrated over its entirety. Second, the promixity of the various miniprobes to their respective sites is more than satisfactory. The initial control estimate was relatively accurate and the least-squares iterations proceeded entirely by pseudo-inverse steps. The symmetrical distribution of the miniprobe target sites about the bus pseudo-impact point no doubt facilitated the miss minimization. Table 2 compares the respective impact sites and times of the miniprobes propagated under both the conic and virtual-mass models. The respective impact sites will be observed to agree to within a degree and the times to within 0.025 days illustrating the accuracy of the conic miniprobe propagation model.

5.4.2 ERRAN Multiprobe Sample Case

a. Input data

The input data for this sample case consists of the namelist ERRAN and three measurement schedules. The namelist defines the mission and the filter design and consists of the following cards:

```
XI = -1,03633510620E + 8, -6.16234867839E + 07, -1.27614089726E + 06,
    2.15882811727E+01, -2.62615614273E+01, 1.04039769246E-01,
LMØ=4, LDAY=14, LHR=5, LMIN=22, SECL=19.879, LYR=1977,
IMØ=5, IDAY=16, IHR=23, IMIN=54, SECI=40.788, IRY=1977,
ICØØR=0,
NLP=4, NTP=3, NB=1,3,4,
P(1,1)=1.E4
P(2,2)=1.E4,
P(3,3)=1.E4,
P(4,4)=2.5E-3
P(5,5)=2.5E-3
P(6,6)-2.5E-3
MNCN(4)=1.315E-14, MNCN(5)=0.5E-14, MNCN(8)=0.561E-14,
IAUGIN=9*1,
NEV1=8,
T1=21.383,23.383,25.383,27.383,28.383,29.383,30.383,30.883,
NEV2=1,
T2=19.383,
TPT2=21.383,
ACC=2.5E-5
DTMAX=.5,
KPRINT=1,
IPRINT-10,
VO(1,1) = .1495568E-5,
VO(1,2) = -.166533E - 9,
VO(2,1) = -.166533E - 9,
VO(2,2) = .1854361E-13,
VO(3,3) = .3328075E-12,
VO(4,4) = .1304207E - 5,
VO(4,5) = -.1741507E - 9
VO(5,4) = -.1741507E - 9
VO(5,5) = .2325433E-13,
VO(6,6) = .3817565E-12,
VO(7,7) = .1498273E-5,
VO(7,8) = .16641E-9
VO(8,7) = .16641E-9
VO(8,8) = .1848279E-13
VO(9,9) = .3323088E - 12,
```

```
NENT=9.
NEV3=1, T3=18.5, IGUID(1,1)=2,0,0,1,3,
SIGPRØ=2.25E-4, SIGRES=1.0E-8,
SIGALP=6.85E-4, SIGBET=6.85E-4.
T6=19.
T7=20.,
SMN(4)=1.315E-10,
SMN(6) = 0.5 E - 10
SMN(8) = 0.561E - 10,
ISMN=1,
IUTC=0,
WFLS=3*1.
DCTP=2*0.,-60.,
RATP=165.,105.,135.,
SØ=0.5
ISAØ=1.
IPCSK=2,
YYL=1.5E-3
TIMPCT=35.0.
RPS=6200..
XEE(1)=0.01,
XEE(2)=2.E-12,
XEE(3)=4.E-4
XEE(4) = 4.E-4
XEE(5) = 4.E - 4,
NENT1=9,
NENT2=9.
```

The first section of namelist ERRAN variables, beginning with XI and ending with SIGBET, defines the bus or primary vehicle Venus approach trajectory, the bus event schedule, and the navigation filter design. The initial bus state at the beginning of the approach phase is defined by XI and ICOOR. The initial bus position/velocity covariance is defined by the P array. Doppler measurement noise variance are specified by the MNCN variables. The navigation filter solves for no dynamic or measurement parameters, but considers the nine station location biases as indicated by the IAUGIN vector. The covariance matrix for these consider parameters is given by the VO array. Eight eigenvector events and one prediction event are scheduled for the bus. The NEV3, T3, and IGUID variables indicate that a linear 2VBP midcourse guidance event will occur at 18.5 days. Since the variable IGEN does not appear in namelist ERRAN, a standard error analysis will be performed for the bus and all four probes. A generalized covariance analysis could be performed for the bus, although the four probes currently can only be treated in the standard error analysis mode.

The final section of namelist ERRAN variables, beginning the T6 and ending with NENT2, defines the main probe and miniprobe release events. The variable T6 indicates that the miniprobe will be released at 19. days, shortly after the final bus midcourse correction, while all three miniprobes will be released at T7=20. days. A different set of doppler measurement noise variances will be used for miniprobe tracking, as indicated by variable ISMN. These new variances are defined by the SMN variables. The absence of the IPMN and PMN variables indicate that the measurement noise variances used for the bus will also be used for the main probe. The miniprobe release controls have not been specified by the user in this example, as is indicated by IUTC. Thus, the miniprobes must be targeted using the ERRAN program. Variables WFLS through IPCSK are required to perform this targeting. The miniprobe release execution error variances are specified by the XEE.

The measurement schedules for the bus, the main probe, and the three miniprobes are each defined by nine cards according to variables NENT, NENT1, and NENT2. The bus measurement schedule cards are listed.

0.0167	32.7000	1.00	3
0.0958	32.7790	1.00	3
0.1750	32.7580	1.00	3
0.1760	32.7590	1.00	7
0.3500	32.7330	1.00	7
0.5450	32.7280	1.00	7
0.5710	32.7540	1.00	5
0.7870	32.7740	1.00	5
0.9880	32.7710	1.00	5

The main probe measurement schedule cards are listed next.

19.0167	32.8000	2.00	3
19.0958	32.8790	2.00	3
19.1750	32.8580	2.00	3
19.1760	32.8590	2.00	7
19.3500	32.8330	2.00	7
19.5450	32.8280	2.00	7
19.5710	32.8540	2.00	5
19.7870	32.8740	2.00	5
19.9880	32.8710	2.00	5

Finally, the measurement schedule cards used for all three miniprobes are listed.

20.0167	30.4000	1.00	3
20.0958	30.4790	1.00	3
20.1750	30.5580	1.00	3
20.1760	30.5590	1.00	7
20.3500	30.7330	1.00	7
20.5450	30.9280	1.00	7
20.5710	30.9540	1.00	5
20.7870	3 1. 1740	1.00	5
20.9880	31.3710	1.00	5

b. Output discussion

Selected pages from the output of this sample case appear in the appendix, where it is referred to as case MP-2. Only portions of miniprobe 1 output are presented since the output formats for the main probe and the remaining miniprobes are essentially the same. Output associated with the targeting of the miniprobes occurs on page 4. Targeting was successful, as indicated by KKWIT = 0. The final target controls are given by the UCNTRL vector. Immediately following this information, the release execution error covariance matrix for miniprobe 1 is given. The control correlation matrix partitions and standard deviations at entry time 32.781 days for miniprobe 1 are obtained by adding this execution error covariance matrix to the bus covariance matrix immediately before releasing the probe and progating the result to entry. The matrix represent the 1-o dispersions of the miniprobe deviations about the nominal target site. The probe state relative to Venus is written out in planetocentric ecliptic and subsolar orbital-plane coordinates before transforming this state and the previous control covariance matrix to entry parameter coordinates. The following page shows the output for measurement 10 of miniprobe 1. The format is identical to bus measurement output and requires no further explanation. The output for this sample case was generated on the IBM 360 computer at GSFC.

5.5 Generalized Covariance Analysis Sample Cases

Two generalized covariance analysis sample cases generated by ERRAN will be described in this section. The nominal trajectory for both cases is an approach trajectory to Venus beginning at about 30 days before encounter. The spacecraft is tracked from three earth-based stations using doppler measurements only. In each case the objective is to examine the sensitivity of the navigation filter to off-design conditions.

5.5.1 Spectral Mismatch Sample Case

a. Input data

The input data for this sample case consists of two namelists and a measurement schedule. The first namelist, entitled ERRAN, defines the mission and the filter design and consists of the following cards:

```
XI = -1.00905168154E8, -6.40166075581E7, -1.72408766917E6,
    22.4153491439,-25.9718887728,0.248319225059,
LMØ=4,LDAY=15,LHR=14,LMIN=42,SECL=48.82,LYR=1977,
IM\emptyset=5, IDAY=16, IHR=23, IMIN=54, SECI=40.788, IYR=1977,
ICØØR=0.
NLP=4,NTP=3,NB=1,3,4,
P(1,1)=1.E4,
P(2,2)=1.E4,
P(3,3)=1.E4
P(4,4)=2.5E-3
P(5,5)=2.5E-3
P(6,6)=2.5E-3
MNCN94)=1.315E-14,MNCN(6)=0.5E-14,MNCN(8)=0.561E-14,
IAUGIN=9*1,
NEV1=8,
T1=21,383,23.383,25.383,27.383,28.383,29.383,30.383,30.883,
NEV2=1,
T2=19.383
TPT2=21,383,
ACC=2.5E-5,
DTMAX=1.,
KPRINT=1.
IPRINT=10,
VO(1,1) = .1495568E-5,
VO(1,2) = -.166533E - 9
VO(2.1) = -.166533E - 9,
VO(2,2) = .1854361E - 13
VO(3,3) = .3328075E-12,
```

```
VO(4,4)=.1304207E-5,

VO(4,5)=-.1741507E-9,

VO(5,4)=-.1741507E-9,

VO(5,5)=.2325433E-13,

VO(6,6)=.3817565E-12,

VO(7,7)=.1498273E-5,

VO(7,8)=.16641E-9,

VO(8,7)=.16641E-9,

VO(8,8)=.1848279E-13,

VO(9,9)=.3323088E-12,

NENT=9,

IGEN=1,
```

The spacecraft state at the beginning of the approach phase is defined by XI relative to the heliocentric ecliptic coordinate system as indicated by $IC\phi\phi R$. The computation of the nominal trajectory will include the gravitational effects of the sun, Venus, and the earth. The initial assumed position/velocity covariance matrix is defined by the P-array. The assumed measurement noise variances for doppler measurements for each of the three tracking stations are given by the MNCN variables. The navigation filter design involves the nine consider parameters indicated by the IAUGIN vector. These consider parameters are the station location biases for all three stations. The assumed covariance matrix for these consider parameters is specified by the VO array. The variable IGEN set to 1 indicates that a generalized covariance analysis will be performed. The measurement schedule is defined by nine measurement cards, as indicated by NENT. These measurement cards are listed.

.0167	30.4000	1.00	3
.0958	30.4790	1.00	3
.1750	30.5580	1.00	3
.1760	30. 5 590	1.00	7
.3500	30.7330	1.00	7
.5450	30.9280	1.00	7
.5710	30.9540	1.00	5
.7870	31.1700	1.00	5
.9880	31.3710	1.00	5

The second namelist, GENRAL, which follows the above measurement schedule cards, defines the "actual" statistics of relevant parameters. The namelist GENRAL cards for this sample case consist of the following.

```
GV(1,1)=.1346011E-4,
GV(1,2)=-.1498797E-8,
GV(2,1)=-.1498797E-8,
```

```
GV(2,2)=.1668925E-12,

GV(3,3)=.2995268E-11,

GV(4,4)=.1173786E-4,

GV(4,5)=-.1567356E-8,

GV(5,4)=-.1567356E-8,

GV(5,5)=.209289E-12,

GV(6,6)=.3435808E-11,

GV(7,7)=.1348446E-4,

GV(7,8)=.149769E-8,

GV(8,7)=.149769E-8,

GV(8,8)=.1663451E-12,

GV(9,9)=.2990779E-11.
```

For the sample case under consideration, the only difference between actual and assumed (by filter) error statistics occurs for the station location biases considered by the filter. This is indicated by the appearance of only the GV array in name—list GENRAL. Actual standard deviations for the station location biases are defined to be three times as large as the corresponding standard deviations assumed by the filter to describe these error sources. Cases involving differences in the actual and assumed statistical distributions of an error source acknowledged (i.e., solved-for or considered) by the filter can be referred to as "spectral mismatch" cases for convenience.

b. Output discussion

Selected pages from the output of this sample case appear in the appendix, where it is referred to as case G-1. The output corresponding to measurements 220 and 270 is presented. The quantities of interest are the assumed and actual position and velocity standard deviations after the measurement is processed. At measurement 220, which occurs several days before the spacecraft pierces the sphere of influence (SOI) of Venus, actual standard deviations are about two to three times as large as the assumed standard deviations. However, at measurement 270, which occurs about a day after the spacecraft has entered the SOI, the actual standard deviations range from one to two times the magnitude of the assumed standard deviations. These results indicate that the navigation filter design is less sensitive to spectral mismatch for (considered) station location biases when the spacecraft is tracked inside the SOI. The output for this sample case was generated on the CDC 6400/6500 computer at Martin Marietta's Denver Division.

5.5.2 Ignore Parameter Case

a. Input data

The mission and filter design have not changed from the previous case discussed. Consequently, the namelist ERRAN, and measurement schedule cards for both cases are essentially the same and need not be reproduced in their entirety. Namelist ERRAN contains one additional card, namely.

IAUGIN(19)=3,

which indicates that the doppler bias for station 1 will be treated as an ignore parameter in the generalized covariance analysis.

The actual variance for this single ignore parameter is defined by

GW(1,1)=1.E-10,

which is the only card appearing in namelist GENRAL for the case under discussion.

b. Output discussion

Selected pages from the output of this sample case appear in the appendix, where it is referred to as case G-2. Output for measurement 90 and an eigenvector event occurring at 30.383 days is shown. As in the previous sample case, we are primarily interested in comparing actual and assumed position and velocity uncertainties. At measurement 90, which occurs some distance from the Venusian sphere of influence (SOI), actual standard deviations are nearly an order of magnitude larger than the assumed standard deviations. Inside the SOI, however, the ratio of actual to assumed standard deviations has been much decreased, as is evident in the output for the eigenvector event occurring at 30.383 days. This behavior appears plausible. Prior to penetrating the SOI the spacecraft velocity is not changing rapidly and as a result (doppler) observability is reduced. Consequently, ignoring the doppler bias in the filter design during this phase can be detrimental. But after the SOI has been penetrated, the spacecraft velocity begins to change rapidly both in magnitude and direction so (doppler) observatibility increases. In this situation, neglecting the doppler bias in the filter design is of less consequence. The output for this sample case was generated on the CDC 6400/6500 computer at Martin Marietta's Denver Division.

BIBLIOGRAPHY

- 1. Baker, R.M.L. and Makemson, M.W.: An Introduction to Astrodynamics, Academic Press, New York, 1967.
- 2. Battin', R.H.: Astronautical Guidance, McGraw-Hill Book Company, Inc., New York, 1964.
- 3. Battin, R.H. and Fraser, D.C.: Space Guidance and Navigation, AIAA Professional Study Series, 1970.
- 4. Byrnes, D.V. and Hooper, H.L.: Multiconic: A Fast and Accurate Method of Computing Space Flight Trajectories, AAS/AIAA Astrodynamics Conference, Santa Barbara, Cal., 1970, AIAA Paper 70-1062.
- 5. Danby, J.M.A.: Matrizant of Keplerian Motion, AIAA J., vol 3, no. 4, April, 1965.
- Hoffman, L.H. and Young, G.R.: Approximation to the Statistics of Midcourse Velocity Corrections, NASA TN D-5381, Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia.
- 7. Jazwinski, A.H.: Adaptive Filtering, Analytical Mechanics Associates, Lanham, Maryland, May, 1968.
- 8. Joseph, A.E. and Richard, R.J.: Space Research Conic Program, Engineering and Planning Document 406, Jet Propulsion Laboratory, July, 1966.
- 9. Kizner, W.: A Method of Describing Miss Distances for Lunar and Interplanetary Trajectories Under the Influence of Multiple Planet Attractions, TR-32-464, Jet Propulsion Laboratory, 1963.
- 10. Lee, B.G., Falce, R.R., and Hopper, F.: Interplanetary Trajectory Error Analysis, Volume I Analytical Manual, Vol II Computer Program Design, MCR-67-441, Martin-Marietta Corporation, Denver, Colorado, December, 1967. (Completed under Contract NAS8-21120)
- 11. Lee, B.G., Vogt, E.D., Falce, R.R., Pearson, S., and Demlow, E.: Simulated Trajectories Error Analysis Program, Vol I - Users Manual, Vol II - Analytical Manual, NASA CR-66818, Martin Marietta Corporation, Denver, Colorado. (Completed under Contract NAS1-8745)
- 12. Lesh, H.F. and Travis, C.: FLIGHT: A Subroutine to Solve the Flight Time Problem, JPL Space Programs Summary 37-53, Vol II.

- 13. Mitchell, R.T. and Wong, S.K.: Preliminary Flight Path Analysis, Orbit Determination and Maneuver Strategy, Mariner Mars 1969, Project Document 138, Jet Propulsion Laboratory, 1968.
- 14. Myers, G.E.: Properties of the Conjugate Gradient and Davidon Methods, AAS Paper 68-081. Presented at 1968 AAS/AIAA Astrodynamics Specialist Conference, Jackson, Wyoming.
- 15. Novak, D.H.: Virtual Mass Technique for Computing Space Trajectories, ER-14045, Martin-Marietta Corporation, Denver, Colorado, January 1966. (Completed under Contract NAS9-4370)
- 16. Scheid, F.: Theory and Problems of Numerical Analysis, McGraw-Hill Book Company, Inc., New York, 1968.
- 17. Sorenson, H.: Kalman Filtering, Advances in Control Systems, vol. 3, C.T. Leades (Ed.), Academic Press, New York, 1966.

APPENDIX: SELECTED SAMPLE CASE OUTPUT

Case N-1. Broken Plane Viking Mars '75 Mission

ECTORY ROGRAM œ TARGETIN INTERPLANE

9

INPUT DATA

HELIOCENTRIC DATA

POINT-TO-POINT CONDITIONS

AUNCH DATE 1975 HELIOGENTRIC CONIC	1975 g	8 30 0	0 0.			FLI	FLIGHT TIME DISTANCE	128,42		ARRIVAL DATE		1976 1 5	65 6	4.901
L 151.06 LAL P 198.40 LAP -	151.06 LAL .06 198.40 LAP -2.06 NATOCENTRIC CONIC	100 100 100	-23.98 VL 91.21 VP		32,982 GAL 25,856 3AP	2.15 AZL 13.94 AZP	ZL 92.27 ZP 69.63	HCA 115	HCA 115.18 SMA 198.29 ECC .24094 INC 2.2722 V1 TAL 348.90 TAP 104.08 RCA 150.51 APO 246.06 V2	98.29 EC	C .24094 A 150.51	+ INC 2.	2722 V 6.06 V	1 29.495 2 0.
C3 14.242 VH_ LNCH AZMTH L4 90.00 17) <u>75</u>	4 DLA L-I 2263	2.84 TIME .33	RAL 80 INJ LAT -19.81	1.31 RAD INJ LON 41.94	9.6567.6 000 LNJ 94	31 RAJ 6567.6 VEL 11.6 INJ LONG INJ RT ASC 41.94 -63.03	46 PTH INJ AZMTH 110.66	80.31 RAJ 6567.6 VEL 11.646 PTH 2.04 VHP 0. T INJ LONG INJ RT ASC INJ AZMTH INJ TIME 41.94 -63.03 110.66 18 26 51		DPA 0. PO CST TIM 1663.3	RAP 0. INJ 2 LAT	н	ECC 1.2344 INJ 2 LONG
ZERO ITERATE IZERO	PARAMETERS 2 204T		1.3878020121E+08 -5.90 2.0519717719E+01 3.10	20121E+08 17719E+01	81 11 27 13 13	-5.9601624791E+07 3.1020278288E+01	791E+07 1288E+01	1.4945 -5.9936	1.4945546632E+02 -5.9936918916E+00	~.0				
дР 656 FI 3.	6560.0 Ai 3.700 A2	17.63 8.00	11 5 1 12 1	500.0 L	LAT 28	28.32 THD	15.04 T 15.04	AZI	00.06					
GENERAL TARGETING LEVELS 0 MAX ITERS 0 IBAST 0		E X A D	5.00E-04 STEPS 0 1 ISTART	1E-04 1TART 0										
GUIDANCE EVENT SCHEDULE	T SCHEDU	ור												
EVENT EVENT INDEX TYPE 1 1 1 2 2 3 3 3 4 -1	REF TIME 0. 127.65 2.00	REF CODE 1 1 1 2 3 3	CAL 1975 8 1976 1 0 0	EVENT LENDAR DATE 30 18 26 50.847 5 9 59 4.901 0 0 0 0.	ATE 6 30 84 9 4 90 0 0 0		EVENT JULIAN DAY 1 27635.269 27762.916 0.	EVENT TRAJ DAY 0.00.00.	CALENC 1976 1 5 1976 7 19 0 0 0	TARGET CALENDAR DATE 1 5 9 59 7 7 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TE 4.901 0. 0.	TARGET JULIAN DAY 27762.916 27958.500 0.	ET DAY 916 500	TARGET TRAJ DAY 0. 0. 0.
IMP MOD 3 1 4 1 3 1	TAR KEY 10 11 12 9 7 3 2 0 0	1 -4201d	TAR1 01823.00*8 40.92 20428.00 0.	TAR2 TAR3 8231564.00-7118753.00 5000.00 27958.50 .75 77.00	22 1•00-7118 1•00 27 •75	TAR3 3753.00 7958.50 77.00	TOL1 100.00 1.00 0.	TOL2 100.00 10.00 0.	TOL3 100.00 00.	× >••••	> · · · · ·	0 V Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₩ ₩	BADITS BIT 2 B 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

T AT 0. DAYS 1975 8 30 18 26	KUR 1 KTYP 1 KMX2 3 MDL 1	CCAAFT STATE Y-COMP Z-COMP RADIUS X-DOT Z-DOT VELOCITY X-COMP Y-COMP 149.46 151037405.71 20.51971772 31.02027829 -5.99369189 37.67281278 780201.21 -59601624.79 149.46 151037405.71 20.51971772 31.02027829 -5.99369189 37.67281278 2802.50 -5937.67 20.51971772 31.02027829 -5.99369189 31.64585580 2066444.57 -1470958999.01 2914874.80 157141571.89 29.53610766 6.87260275 -6.72253939 31.06134028	1.3878020121E+08 -5.9601624791E+07 1.4945546632E+02 2.0519717719E+01 3.1020278288E+01 -5.9936918916E+00 ATE 2.7635268644E+04	R KEY DEFINITIONS RF 4-TCA 10-XRF SI 5-B.T 8-INC 11-Y?F CS 5-B.R 9-ASI 12-ZRF	G SPECIFICATIONS TARGET VALUE TOLERANCE -4201823.000 100.000 *8231564.000 100.000 -7118753.000 100.000	G SCHEME ELS 5.000E-04 2.500E-05 Ax 1.0000000LE-01 ST 2	KEYTAR DTAR(1) DTAR(2) DTAR(3) KAXTAR DAUX(1) DAUX(2) DAUX(3) ISTOP DELT 0 11 12 -4201823.00 198231564.00 -7118753.00 10 11 12 -4201823.00 198231564.00 -7118753.00 1 127.647	7X 31.0202783 -5.9936919 -4417219.879198196361 31.0202783 -5.9936919 -4416808.571138196770 31.0202883 -5.9936919 -4417141.549198196496 31.0202783 -5.9936819 -4417442.305198196120	MATRIX TARGETINS MATRIX AUX ERROR VEL COR DES AJX VAL DES TAR VAL TAR TOL 06 -2.22E+U7 1.09E-07 -1.75E-08 3.10E-07 2.15E+05 2.59E-02 -4201823.000 -4201823.000 100.000 07 -2.42E+U7 1.34E-07 1.87E-07 2.41E-07 3.52E+04 -1.98E-02 198231564.000 198231564.000 100.000
ENT AT 0. TE 1975 8		TE EVENT	STATE 1.3878020121E 2.0519717719E JULIAN DATE 2.76352		TARGETING SPECIFICATION KEY TARGET VALUE 10 -4201823.000 11 *8231564.000 12 -7118753.000	TARGETING SCHEME LEVELS 5.000E-04 DVMAX 1.0000000 IBAST 2	-45	ACCURACY VX VY 5.00E-04 26.5197177 31.0202783 5.00E-04 26.5197277 31.0202783 5.00E-04 20.5197177 31.0202883 5.00E-04 20.5197177 31.0202783	SENSITIVITY MATRIX 4.11E+07 7.83E+06 -2.22E+07 4.08E+07 1.35E+07 -2.42E+07

56		30	CP T 43	1000	CP T 56	_000	CP T 0		CP T 83	
191	TAR TOL 100.000 100.000	INCR 191	INCR 796	TAR TOL 100.000 100.000	INCR 797	TAR TOL 100.000 100.000	INCR 797	TAR TOL 100.000 100.000	INCR 797	
51 -7120824.137	DES TAR VAL -4201823.000 138231564.000 -7118753.000	AUX -12- -7118781.806	AUX -12- -7127949.794	0ES TAR VAL -4201823.000 198231564.000 -7118753.000	.1- AUX -12-	DES TAR VAL -4201823.000 198231564.000 -7118753.000		DES TAR VAL -4201823.000 198231564.000 -7118753.000	AUX -12- -7118755.630	
-4192973.745198241573.051 -7120824.137 -4192973.745198241573.051	DES AUX VAL -4201823.000 - 198231564.000 13 -7118753.000 -	AUX -10- AUX -114201756.789198231584.308	AUX -10- AUX -113981218-855138329969.949	DES AUX VAL -4201823.000 - 198231564.000 19 -7118753.000 -	TAR -10- TAK -11- TAR -12- AUX -10- AUX -11- AUX -11- AUX -12- 4178240.538198254721.934 -7124397.799 -4178240.538198254721.934 -7124397.799	DES AUX VAL -4201823.000 - 198231564.000 19 -7118753.030 -	TAR -10- TAR -11- TAR -12- AUX -10- AUX -11- AUX -12- 4201351.548198231933.023 -7118839.497 -4201351.548198231933.023 -7118839.497	DES AUX VAL -4201823.000 198231564.000 19 -7118753.600	TAR -10- TAR -11- TAR -12- AUX -10- AUX -11- -4201814.223198231567.947 -7118755.630 -4201814.223198231567.947	
824.137 -41929	VEL COR -1.43E-04 -2.10E-04 6.21E-05			VEL COR -1.89E-02 1.32E-02 -2.17E-02	AR -12- AU 397.799 -41782	VEL COR -3.94E-04 1.53E-04 3.63E-04	TAR -12- AU .8839.497 -42013	VEL COR -1.74E-05 1.45E-05 -7.03E-06	TAR -12- AU 8755.630 -42018	
1573.051 -7120	AUX ERROR -9.07E+03 -1.02E+04 2.13E+03	TAR -11- T 1584.308 -7118	TAR -11- T 9969.949 -7127	AUX ERROR -2.21E+05 -9.84E+04 9.20E+03	TAR -11- T 4721.934 -7124	AUX ERROR -2.36E+04 -2.32E+04 5.64E+03	TAR -11- T	AUX ERROR -4.71E+02 -3.69E+02 8.65E+01	TAR -11- T	.01363439
92973.74519824	GETING MATRIX -1.45=-08 3.08E-07 1.93E-07 2.55E-07 3.95E-08 6.83E-07	TAR -10- TAR -11- TAR -12- 4201756.789198231584.308 -7118781.806	TAR -10- TAR -11- TAR -12-3981218.855198323363.949 -7127949.794	1.465-08 3.082-07 1.93E-07 2.55E-07 3.95E-08 6.83E-07	TAR -10- 178240.53819825	5ETINS MATRIX -1.45E-08 3.08E-07 1.93E-07 2.55E-07 3.95E-08 6.83E-07	TAR -10- 201351.54819823	RGETINS MATRIX -1.452-08 3.08E-07 1.93E-07 2.55E-07 3.95E-08 6.83E-07	TAR -10- 201814.22319823	.01000209
-5.9623750 -41	TARGETING MA 1.05E-07 -1.45E-08 -1.36E-07 1.93E-07 1.09E-07 3.95E-08	VZ -5.3623229 -42	VZ -5.9623229 -39	1.05E-07 -1.45E-08 -1.36E-07 1.93E-07 1.09E-07 3.95E-08	VZ -5.9840461 -41	TARGETINS MA 1.05E-07 -1.45E-08 -1.36E-07 1.93E-07 1.09E-07 3.95E-08	VZ -5.9836823 -43	1.05E-07 1.04 -1.36E-07 1.93 1.09E-07 3.93	7 Z X Z X Z X Z X Z X Z X Z X Z X Z X Z	00659756
7 31.0005188	IVITY MATRIX 7.72E+05 -2.21E+07 1.32E+07 -2.38E+07 .2.00E+06 6.37E+06	VY 5 31.0003091	VY 5 31.0003091	IVITY MATRIX 7.725+05 -2.215+07 1.325+07 -2.395+07 2.005+05 6.375+06	VY 3 31.0135127	IVITY MATRIX 7.72E+05 -2.21E+07 1.32E+07 -2.38E+07 2.00E+05 6.37E+06	VY 0 31.0136552	TRIX -2.21E+U7 -2.38E+U7 6.37E+O6	VY 6 31.0136807	.00650591
20.5456477	SENSITIVITY MATRIX E+07 7.72E+05 -2. E+07 1.32E+07 -2. E+06 -2.00E+06 6.	VX 20.5455045	VX 20.5455045	1	VX 20.5266353	-	VX 20.5262410	SENSITIVITY MATRIX E+07 7.72E+05 -2. E+07 1.32E+07 -2. E+06 -2.00E+05 6.	VX 20.5262236	TION EVENT
5 .00 E-04	SENS1 4.25E+07 4.19E+07 -9.22E+06	ACCURACY 5.00E-04	ACCURACY 2.50E-05	SENS. 4.25±07 4.19E+07 -9.22E+06	ACCURACY 2.50E-05	SENS 4.25E+07 4.19E+07 -9.22E+06	ACCURACY 2.50E-05	SENS 4.25±407 4.19E+07 -9.22E+06	ACCURACY 2.50E-05	EXECUTION DELTA V =

	T A	3.70000	3.78172		3.70000	3.78172
	NODE	117.43128	117.43548		75.03138	74.95731
39	INC	31.08471	31.03562		28.31700	28.28264
.01363439	OMEGA	173,77382	173,68850		-138,11351	-138.13601
.01000209	ECC	1.2343811E+00	1.2335644E+00		1.2343811E+00 -138.11351	1.2335644E+00
00659756	SMA	-2.738859949E+04	-2.808503330E+04		-2.798859949E+04	-2.808503330E+04
•00659591	ENTS	-2.7	-2.8		-2.7	-2·8
00.	ODY ELEM IPTIS	BEFORE IMPULSE	MPJLSE	ATORIAL	IMPULSE	MPULSE
DELTA V =	DOMINANT BODY ELEMENTS PLANET ECLIPTIC	BEFORE	AFTER IMPOLSE	PLANET EQU	BEFURE IMPULSE	AFTER IMPULSE

			PROBLEM	0	PAGE 2
A.6	× - COMP.	Y - COMP.	Z - COMP.		RESULTANT
TRAJECTORY TIME = 0.	TOTAL TIME	TOTAL TIME INCREMENTS =	0		
SPACECRAFT INERTIAL TRAJECTORY POSITION	1.38780201207E+08 2.0526236309E+01	-5.96016247908E+07 3.10136807255E+01	1.3878U2D12D7E+08 -5.96D162479D8E+D7 1.49455466318E+D2 2.05262236309E+01 3.101368D7255E+01 -5.98368979867E+D0	1.51	1.51037405714E+08 3.76693349064E+01

CALENDAR DATE = AUGUST 30, 18 HR, 26 MIN, 50.847 SEC, 1975 JULIAN DATE = 2442655.26864406

• 0	•0	1.51032487520E+08	2.95006724037E+01	2.12825374473E+08	2.57863573290E+01	
•0	•0	0.	•0	-2.91472534875E+06	7.28847495917E-01	
.0	•0	-5.95956871174E+07	2.72638536742E+01	8.74942742201E+07	2.41476755358E+01	
• 0	. •0	1.38777398605E+08	1.12681833098E+01	1.33986845880E+08	-9.01638994106E+00	
•	• • • • • •		• • • • • •	•	•	
EPHEMERIS DATA POSITION OF SUN	VELOCITY OF SUN	POSITION OF EARTH	VELOCITY OF EARTH	POSITION OF MARS	VELOCITY OF MARS	

174E+07 0. 1.51032487520E+08	742E+01 0. 2.95006724037E+01	201E+07 -2.91472534875E+06 2.12825374473E+08	358E+01 7.28847495917E-01 2.57863673290E+01	计分类分类 医克格勒氏 医克克斯氏试验 医克格氏试验 医克格氏性 医克格氏征 医氏征 医克格氏征 医克格氏征 医氏征性 医氏征性 医氏征性 医氏征 医氏征性 医氏征性 医氏征性 医克格氏征性 医氏征性 医氏征性 医氏征性 医氏征性 医氏征性 医氏征性 医氏征性 医	908E+07 1.49455466318E+02 1.51037405714E+08	-5.98368979867E+00	466E+03 1.49455466318E+02 6.56756264054E+03	129E+00 -5.98368979867E+00 1.16437561426E+01	011E+08 2.91487480422E+06 1.57141571893E+08	961E+00 -6.71253729458E+00 3.10639051128E+01
-5.95956871174E+07	2.72638536742E+01	8.74942742201E+07	2.41476755358E+01	*****	-5.96016247908E+07		-5.93767343466E+03	3.74982705129E+00	-1.47095899011E+08	6.86600518961E+00
1.38777398605E+08	1.12681833098E+01	1.33986845880E+08	-9.01638934106E+00	· · · · · · · · · · · · · · · · · · ·	1.38780291207E+08	2.05262236309E+01	2.80250169919E+03	9.25804032110E+00	-5.52066446734E+07	2.95426135720E+01
•	•	•	:	***	LES .	•	•	•	•	•
•	•	•	•	* * * * * * * * * * * * * * * * * * * *	AJECTORI UN	Z	ARTH	ARTH	ARS	ARS
EARTH	EARTH	MARS	MARS	* * * * * * *	TIVE TR	. To S	. TO	TO E	. TO M	M.OT .
POSITION OF EARTH	VELOCITY OF	POSITION OF	VELOCITY OF MARS	水水溶液 化水水 医牙牙氏 化化二苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	SPACECRAFT RELATIVE TRAJECTORIES	VELOCITY REL. TO SUN	POSITION REL	VELOCITY REL. TO EARTH	POSITION REL	VELOCITY REL. TO_MARS

X = COMP. Z = COMP. A COMP. A COMP. A COMP. A COMP. RESULTANT RESULTANT RESULTANT RESULTANT RESULTANT RESULTANT	1.38777394806E+03 -5.95956854860E+07 -2.28637692234E-08 1.51032483386E+08
化热热剂 化 使使使使人 医皮肤 医克格特氏 医克格特氏氏病检验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检验	VIRTUAL MASS DATA VIRTUAL MASS POSITION VIRTUAL HASS VELOCITY SPACECRAFT POS. REL. TO V.M. SPACECRAFT VEL. REL. TO V.M. KEPLER (ANG. MOM.) VECTOR ECCENTRICITY VECTOR V.M. MAGN. RATE = 8.4216606

1.51032483386E+08 4.13437142477E+00 1.57136995511E+08	
-2.28637692234E-08 -2.28637692234E-08 2.91472534875E+06	
1.38777394806E+08 -5.95956854860E+07 3.79889955057E+00 1.63137626648E+00 -5.52094510740E+07 -1.47089959706E+08	
• • •	
V.M. RELATIVE POSITIONS POSITION REL. TO SUN POSITION REL. TO EARTH POSITION REL. TO MARS	

1.01247710061E+01	2.08855729429E+00	-1.98056964733E+01	4.58293765313E+01	1.30397033273E+00	4.12257826971E+01
•	•	•	•	•	•
•	•	•	•	•	. •
	•	•	•	•	Ä
•	•	•	•	•	20
•	>-	•	•		⋖
•	쏬	•	_	11	2
	ų.	<u>.</u>	AE	2	S
•	0	S	2)	⋖	J.
•	7	Ξ	w	Ξ	æ
ωm	Ļ	A A	5	AR	Σ
NAVIGATION PARAMETERS FLIGHT PATH ANGLE	INCLINATION TO PLANE OF SKY	GEOCENTRIC DECLINATION	TARGET PLANET ANGLE (ZAE)	ANTENNA AXIS - EARTH ANGLE	ANTENNA AXIS - LIMB OF SUN ANGLE.
A N	2	Ē	-	•	1
A I	z	<u></u>	Ä	SI	13
A A T	5	210	۲	Ă	Ā
7-	Z	=	L	₹	₹
őE	É	Ú	<u> </u>	ź	ž
Ę.	ತ	8	8	Ξ	==
3	=	3	-	Ā	ä
&					
Z					

化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		

* * * * * * *		

经银银银金 医有性性 化乙基苯基 化二氯甲基 医二氯甲基 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医克勒特氏	A	8
*		

		11 11 71 78		•	CPT 102 104 106
		VELOCITY 25.86396611 25.86396611 13.77012971 5.43147878	2.213	DELT 215.142	3- INCR 230 93 228 93 228 93
		41682 41682 41682 68719		3) ISTOP 50 2	AUX - 3- 27958.230 27958.228 27958.228
		.,	76 7 19 3 ING 2.4	DAUX (3) 27958.50	AUX - 5- -14967.954 -13730.472 -15817.154
		Y-DOT 5.71737 5.71737 13.13092 5.04702	DATE 19 ECC .2406 RCA 152.0	DAUX(2) 5000.00	537,298 -1,409,275 -1
		X-DOT -25.22336477 -25.22336477 4.14210124 -1.96911581	ARRIVAL 200-21 191.76		
27762.91603		00.00	58 89.93 SMA 101.83 TAP 66	DAUX(1) 40.92	TAR - 3- 27958.230 27958.228 27958.228
DATE 27		RADIUS 198403877.04 198403877.04 64503792.52 40580912.00	GHT TIME 195°. TANCE ZL 88.62 HCA ZP 87.94 TAL 1 .1187579972E+06 .8451481743E-01	KAXTAR 6 5 3	TAR - 7- 8916-422 7826-960 9679-287
JULIAN E	MDL 1	Z-COMP 7118758.00 7118758.00 7118758.00 2405765.41	FLI 01S 67 A -7 A	DTAR(3) 27958.50	
4.901	KMX2 3	2-COMP -7118758.00 -7118758.00 -7118758.00 -12405765.41	7 3AP 7 3AP 53918E+0 19107E+0 1 2 RF	.00	TAR - 8- 137.653 137.893 136.441
65 6	2	Y-COMP 198231599.18 198231599.18 55625312.74 -37519518.68	21 VL 25.980 90 VP 20.317 1 5.7310315 1 5.731031 029E+04 6-INC 11-7 9-ASI 12-2 1.000 10.000 10.000 10.000		V2 .3845148 .3845148 .3845148
27.647 DAYS 1 5	KTYP		NTRIC DATA NT CONDITIONS 6.1 5 9 59 4.90 1.38 LOP-178.90 VP TINS EVENT 2017609634E+05 533700436E+01 5.27762916029E+04 F.T.A 7-RCA 5-B.T 8-10 6-B.R 9-ASI 6-B.R 9-ASI 6-B.R 9-ASI 6-B.R 9-ASI 700000000000000000000000000000000000	DIAR(1) 40.92	
AT 127. 1976	KU3 2	CECRAFT STATE X-CO42 -4201760.96 -4201760.96 31872984.12 9229605.48	THE CONTRACT OF THE CONTRACT O	7.7	VY 4 5.7310319 4 5.7310819 4 5.7310819
VCE EVENT DAR DATE	COUES	A A	HELIOCENTRIC LAUNCH DATE 1976 1 HELIOCENTRIC CONIC RL 198-40 LAL -2.05 RP 246.76 LAP 1.38 N-BODY TARGETINS STATE -4.20176 JULIAN DATE 2.53370 JULIAN DATE 6-2.53370 JULIAN DATE 6-2.53370 JULIAN DATE 6-2.53370 JULIAN DATE 7.55 3-103 3-103 DVMAX 1.00	PHS	VX -25,3370084 -25,3369584 -25,3370084
GUIDANCE	EVENT	CURRENT S REFERENCE INERTIAL SUN EARTH MARS	RAUNC RP HELI R R R R R R R R R R R R R R R R R R R	IND NOF 1	ACCURACY 5.00E-04- 5.00E-04- 5.00E-04-

93 107	TAR TOL 1.000 10.000	INCR CPT 96 109 96 111 96 112 96 114	TAR TOL 1.000 10.000 .001	INCR CPT 95 116	INCR CPT 313 121	TAR TOL 1.000 10.000	INCR CPT 313 126	TAR TOL 1.000 10.000 .001	INCR CPT 313 132	
27958.229	S TAR VAL 40.920 5000.000	AUX - 3- 27958.542 27958.546 27958.535 27958.535	S TAR VAL 40.920 5000.000 27958.500	AUX - 3- 27958.500	AUX - 3- 27958.529	S TAR VAL 40.920 5000.000 27958.500	AUX - 3- 27956.503	S TAR VAL 40.920 5000.000 27958.500	AUX - 3- 27958.500	
-14956.497	S AUX VAL DE: 4.203 10315.239 27958.500	AUX - 5- 10432.599 11675.201 9577.873 10444.196	VAL DE	AUX - 5- 10317.924	AUX - 5- 21322.445	S AUX VAL DES -13.509 10321.766 27958.500	AUX - 5- 10326.723	S AUX VAL DE: -17.704 10321.084 27958.500	AUX - 5- 10322.486	
114.366	DE	AUX - 6- 15.245 -110.761 520.750 -407.515	DES 10 27	AUX - 6- 18-127	AUX - 6- -290.172	DES 10 27	AUX - 6- 25.366	90	AUX - 6- -17.878	
27958.229	0R VEL COR 02 -1.12E-03 04 -3.17E-03 01 -3.40E-03	TAR - 3- 27958.542 27958.546 27958.535 27958.539	VEL 2.96	TAR - 3- 27958.500	TAR - 3- 27958.523	VEL -5.07 -9.29 7.17	TAR - 3- 27958.503	4.0 4.0	TAR - 3- 27958.500	
8888.266	AUX ERROR -5.33E+02 2.53E+04 2.70E-01	TAR - 7- 5090.128 6090.433 4438.285 5105.523	AUX ERROR 3 3.76E+00 -1.15E+02 -4.15E-02	TAR - 7- 5000.035	TAR - 7- 14676.274	AUX ERROR 2.77E+02 -1.10E+04 -2.95E-02	TAR - 7- 5004.438	AUX ERROR -4.31E+01 -5.64E+00 -3.48E-03	TAR - 7- 5001.114	
138.767	3.322-08 -7.235-03 -1.086-08 -1.076-02 -2.305-08 -1.065-02	TAK - 8- 40.935 41.362 38.946 42.526	SETING MATRIX 6.62E-08 -7.32E-03 3.81E-08 -1.08E-02 2.53E-08 -1.07E-02	TAR - 8- 40.921	TAR - 8- 41.400	5ETINS MATRIX 6.62E-08 -7.32E-03 3.81E-03 -1.08E-02 2.59E-08 -1.07E-02	TAR - 8- 40.759	3.81E-08 -1.08E-02 2.59E-08 -1.08E-02 2.59E-08 -1.07E-02	TAR - 8- 40.921	
.3845648	2.29E-08 3.32 3.23E-08 -1.08 -8.65E-08 -2.30	VZ •3811170 •3811170 •3811170	TARGETIN 2.26E-08 6.62 3.16E-08 3.81 -8.72E-08 2.53	V2 .3815585	vZ •3815585	7486 2.26E-08 3.16E-08 8.72E-08	VZ •3815657	Z.26E-08 6.62E-3.16E-08 3.81E-8.72E-08 2.59E-	v2 .38160ö6	
5.7310319	45E+06 29E+05 58E+01	VY 5.7278584 5.7278588 5.7279088 5.7278588	45E+06 32E+05 40E+01	VY 5.7283023	vY 5.7283023	45E+05 32E+05 40E+01	VY 5.7282094	46E+06 32E+05 40E+01	VY 5.7282454	
5.00E-04 -25.3370084	ITIVITY MAT 1.01E+07 -1.70E+07 -4.59E+01	VX -25.3381328 -25.3380828 -25.3381528 -25.3381328	TIVITY MAT 1.01E+07 -1.71E+07 -1.24E+02	VX -25.3378365	VX -25.3378365	ITIVITY MA 1.01E+07 -1.71E+07 -1.24E+02	VX -25.3383431	ITIVITY MAT 1.01E+07 -1.71E+07 -1.24E+02	VX -25.3383190	EXECUTION EVENT
5.00E-04	SENS -2.56E+06 2.47E+07 -3.28E+01	ACCURACY 5.00E-04 5.00E-04 5.00E-04 5.00E-04	SENSI -2.52E+06 2.49E+07 8.05E+01	A CCURACY 5.00E-04	A CCURACY 2.50E-05	SENS -2.52E+06 2.49E+07 8.05E+01	ACCURACY 2.50E-05	SENS -2.52E+06 2.49E+07 8.05E+01	ACCURACY 2.50E-05	EXECU

101.82803 101.80954

147.25780

2.47850

2.4068580E-01 -157.89640 2.4057977E-01 -158.01039

2.002140384E+08 2.002237818E+08

DOMINANT GODY ELEMENTS
PLANET ECLIPTIS
BEFORE IMPULSE
AFTER IMPULSE
2.

T A

NODE

INC

OMEGA

ECC

SMA

.00423561

-.00290823

-.00278654

-.00131062

DELTA V =

	5.65236086800E+05 2.32488275974E+00	• • -1.85777005725E+01
42975,78932916		1.03661674091E+04 B.R
AT DATE 2442975.78932916	-6.95082474569E+04 -4.77171026624E+05 -2.94903795681E+05 3.27400897279E-01 1.95600059388E+00 1.21323953765E+00	8.1 1.036616
SPACECRAFT PLERCED SPHERE OF INFLUENCE OF MARS	POSITION6.95082474569E+04	B • • • 1.03661840560E+04 B.T INCLINATION = 40.92

INTERPOLATED INFORMATION AT SPHERE OF INFLUENCE

SPACECRAFT PIERCED SPHERE OF INFLUENCE OFMARS

	5.65482330018E+05 2.32488275974E+00	B.R1.85782988716E+01
975.78810307	-2.95032318648E+05 1.21323953765E+00	
AT DATE 2442975.78810307	-6.95429302491E+04 -4.77378233027E+05 -2.95032318648E+05 3.27400897279E+01 1.95600059388E+00 1.21323953765E+00	8.T · · · 1.03661023010E+04
RE OF INFLUENCE OFMARS		1.03661189492E+04 B.T = 40.92
AFT PIERCED SPHERE	POSITION VELOCITY	8 1 INCLINATION =

GUIDANCE EVENT AT CALENJAR DATE 193 EVENT CODES CURRENT SPACECRAFT REFERENCE -24673654, SUN -312841455 MARS INSERTION DECISION	2 X C D D D D D D D D D D D D D D D D D D	2.521 7 3 3 TE	DAYS 18 6 5 KTYP 3 KTYP 3 Y-COMP -3507608.19 -3507608.19 133399537.68	v ×	38.039 JULI MX2 4 MDL Z-COMP 5894116.42 5894116.42 5894116.42 5894116.42 5894116.42	JULIAN DATE MDL 1 RA 5.42 246 5.42 246 5.42 340 4.78	DATE 27957. RADIUS 246831857.12 246831857.12 340146961.82 159143.93		X-DOT X-DOT 1.58836302 1.58836302 1.58836302 1.54.75107655 1.33553763	Y-DOT 2 -20.14071398 2 -20.14071398 5 -32.98521033	2-D0T .75935741 .75935741 .75935741 .13 .75935741 .16 1.25618173	VELOCITY 20.21751420 20.21751420 41.24580432 2.40708273
NON-PLANAR OPTION TARGET PARAMETERS PLANAR INSERTION 8 T	EVENT	A= 2 Y//Y	0428.60	0 E= 2/vz	.760000 R/V	# *	77.000 A/E	I= W/TA	=N 0000.04	50.000 RP/RA	TIME	
DECISION APPROACH RAY TIME= -61240,43 HYPERBOLA INTERSE DESIRED ORBIT IS THE TRUE ANOMALY	DECISION 137303.9 35639.1 -7213 PPROACH RAY -2.0710840658 1.15 TIME= -61240.43 HYPERBOLA INTERSECTS DESIRED ORBIT AT TA= 3 DESIRED ORBIT IS ALIGNED WITH INTERSECTION THE TRUE ANOMALY 0= 173.45 LIES IN THE UNRE	35639.1 40658 ED ORBIT // LIM INTERS	AT SEC THE	-72138.2 1 1.15727 TA= 353.45 173.45 TION AT TA= UNREALIZABL	159142.8 2.40706 R=	40 3	-8149.3 1.60989 -1 4.99022E+03 2.16415E+04 TA= 537.81	80.25 24.79 AND	40.26 51.45 231.60	4970.13	-61240.43	
TARGET ORBIT						Ñ ¯	20428.0 .76000	77.00	00.03	4902.72 35953.28		
PRE-INSEKTION APPROACH RAY MODIFY RA INVALIO	-1945.6 -3.48353 [0	3372.9	7 N	3095.6 .64973	4990.2 4.73511		-8149.3 1.60989	80.25	40.26 51.45	4970.13	-120.13	
POST-INSERTION MODIFY RP INSERTION VEL	-1985.ó -2.97952 .50402	3372.9 -2.41219 .72853		3095.6 .61415 03558	4990.2 3.88244 .88660	8	20471.0 .75631	77.00 357.81	40°00 50°00	4988•55 35953•28	-49.10	
POST-INSERTION MODIFY A INSERTION VEL	5•6 258 096	3372.9	,	3095.6 •61469 •03505	ъ. •	,	0786 •760	00 77.00	50.00	4988.64 36583.39	-48°05	
ERKORS= 1.0000 SELECTED CORREC	1.00000E+25 1.0 ORREC .50402	1./185/E+UC .72853	', '	c.14810E+U 03558	•	1.UUUUUE+23 88660	- 1	00E+63	1 • # UUUUE • Z	n		

		VELOCITY 18,61565760	18,61565760	41.70659486	4.74338515							
		Z-DOT 1.53547007	1.53547007	1.53547007	2.03551190							
		Y-DOT 18.53110862	18.53110862	-31.69075935	3,63312112			TA	-4.32468		-4.32561	.54860
t		- 292067	88490262 -18.53110862		-2,27086434			NODE	-7.06510	•	51.89792	50.53004
27958.49674		-x x-			4965.77 -2		885	INC	31.46490	30.00	39,98745	39,77122
JULIAN DATE	MDL 1				.		. 88659885	OMEGA	36.36081	35.25	79,95153	76.12704
18.345 JU	KMX3 2 MD	Z-COMP 5948040•46	5948040.46	5948040.46	1374.9		36383122	ECC	1.6075797E+00	70-36603676	1.607555E+00	7.5130403E-01
8 DAYS 18 23 55	KTYP 3	Y-COMP -4725570.31	-4725570.31	131386842,32	1711.97		55380964	SMA	-8.158692272E+03		-8.158963023E+03	
AT 323.22 1976 7	KU3 3	PACEC	-246638977.17	-314349133.86	4453.94	_	* 58904944	ELEMENTS	SE			
GUIDANCE EVENT AT 323.228 DAYS CALENDAR DATE 1976 7 18 23	EVENT CODES	CURRENT SPACECRAFT STATE REFERENCE X-SOMP INERTIAL -246638977.17	•	ī	MARS	EXECUTION EVENT	DELTA V =	DOMINANT BODY ELEMENTS PLANET FOLTDITS	BEFORE IMPULSE	PLANET EQUATORIAL	BEFORE IMPULSE	AFTER IMPJLSE

185	4.96641732914E+03 3.88625620619E+00
AT DATE 2442978.49698485	4.41802684500E+03 1.77699543901E+03 1.41018682471E+03 4.96641732914E+03 -1.71462090457E+00 3.06641029286E+00 1.66138206612E+00 3.88625620619E+00
	1.77699543901E+03 3.06641029286E+00
SPACECRAFT REACHED POINT OF CLOSEST APPROACH OF MARS	PUSITION 4.41802684500E+03 1.77699543901E+03 VELOCITY1.71462090457E+00 3.06641029286E+00

96,	4.96568823901E+03 3.88658201108E+00
AT DATE 2442978.49659796	1,35437698487E+03 4,96568823801E+03 1,67754336091E+00 3,88658201108E+00
	1.67414871733E+03 3.08658523674E+00
AT CLOSEST APPROACH OF CLOSEST APPROACH OF	1 4.47447748148E+03 1.67414871733E+03 11.66263633350E+00 3.08658523674E+00 ION = 39.77 TACA= 1.99686832E+04
INTERPOLATED INFORMATION AT CLOSEST APPROACH SPACECRAFT REACHED POINT OF CLOSEST APPROACH OF MARS	POSITION 4.47 VELOCITY1.66 INCLINATION = 39.77 TACA= 1.996

Case N-2. Planetary Explorer Venus '78 Mission

TRAJECTORY TARY INTERPLAN

4 œ R 0 6 ۵. G z TARGETI

Þ
_
⋖
C
-
\supset
o.
Z
H

				> > > 0 0 0 0 0
			DAT 0 0	
			TARGET CALENDAR DATE 12 16 0 0 12 16 5 0	× × · · · · ·
	m a		TAR END 16 16	
	2E+0		TAI CALENI 12 16 12 16	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-4.6158128562E+03 -3.2751748000E+00 AZI 90.00		CAL 1978 12 1978 12	10F
	7517		_ <u></u>	11.00 1.00 .50 0.
			EVENT TRAJ DAY 0.	10L2 10.00 10.00
	+07 +01 15.04 15.04		7	0 0
	-8.9139153205E+07 2.2712624600E+01 TERS 28.32 THD 15. 279.46 RAT 15.		EVENT JULIAN DAY 28717-701 28807-701	TOL1 100.00 50.00
	5320 2460 THD RAT		EVE 1AN 717 807	0.0
	915 262 T R		JUL 28 28	1R3 18.50 18.71 5.00
	-8.9139 2.2712 TERS 28.32 279.46			TAR3 28838.50 28838.71 5.00
	-8. TER 28		ENT IR DATE 4 49 15.201 4 49 15.201	. 58 8 28
	S C S S S S S S S S S S S S S S S S S S		153	
	E+08 E+00 PARAY LAT	0	20 4 4 6	TAR2 -50.00
00	1.2244485426E+08 -8.91 6.1928578000E+00 2.27 LAUNCH PROFILE PARAMETERS 17.60 T1 500.0 LAT 28.3 8.00 T2 100.0 LON 279.4	04 RT	35	- 11
• 0 0	7 8 7 8 5 7 8 5 7 8 5 7 8 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.00E-04 'S 0 ISTART)ALENI 8 17 11 15	
985	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S I I		000
149598500.00 1 3 4 1 500.000	1.22444 6.19285 LAUNCH PA 7.60 T1 8.00 T2	SCHEME ACOYS 1.00E MAX BAD STEPS 0 MATRIX 0 IST	1978 1978	TAR1 7000.00 7500.00 27000.00
r.	7 L A	S G		7 27 27 27 27 27 27 27 27 27 27 27 27 27
GTH IES ORD R	RS T	EME YS 9A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı m
FRS ALNGTH AODIES ICOURD TMPR	ETER: ZDAT ZDAT A1	SCHEME ACOYS Max Bai Matrix	ED J	8 8 K 5 5 C C C C C C C C C C C C C C C C C
Ε Ε	RAM 0		SCHED REF: IME 0.00	. 25 . 25 . 25 . 8 % . 8 %
PAKA +00.0 3 200	TE PAR, 0 6550.0	ETI 0 RS 0	⊢ Z	1 2 2 1 0
24 P 3640 3 24	2ATE 20 65	TARG ELS ITE	E EVE EVENT TYPE 1	21 E 4244
TRAJECTORY PARAMETERS TM 86400.00 ALN NBOD 3 A00 IBARY 0 ICO NCPR 200 IMP	ITERATE PARAMETERS IZERO 0 ZUAT RP 6550.0 A1 FI 3.700 A2	GENERAL TARGETING LEVELS 0 HAX ITERS 0 IBAST 0	S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
.AJE	ZERO	NER	GUIDA EVENT INDEX 2	-
F	ZE	35	E G	44007

· 我,我们我们的,我们我们的,我们我们的,我们的,我们的,我们的人们的,我们的人们的,我们的人们的,我们的人们的人们的人,我们的人的人的人的人,我们的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人

									⊢ 0 e e • 0		- i∧ + ∞	
			161 161 10						CPT 9 18 27 36	TOL	67 67 64 64 64 64	
			VELOCITY 23.76849961 23.76849961 35.14749690 11.40747410					LT .879	INCR 538 538 538 538	100.01 100.01 1.01	INCR 538 538 538	
			VELO 23.7 23.7 25.1 11.4					P DEL 132.	. 502 . 504 . 502 . 503		. 502 . 504 . 503	
			7480 7480 0684 7480					1510P 2	AUX 28838 28838 28838 28838	S TAR VAL 7000.000 -50.000 28838.500	AUX - 28838.9 28838.9 28838.9	
			2-DOT 3.27517480 3.27517480 1.30410684 3.27517480					DAUX (3)		DES TAI 7001 -51 28834	1 3 01 4	
			1111					DAU 2883	10x - 6- 7231.367 1944.730 7273.831		AUX - 6- 7168.344 7842.102 7207.784	
			26246 26246 76117 16410					. 0	AU 72 72 72 74	X VAL 8.232 1.464 8.500	AU 71 78 72	
			Y-DOT 22.71262460 22.71262460 20.50761175 -1.26164101					DAUX (2) -50.00	- 5- 108 2.234 3.600	DES AUX 13518.2 6341.4 28838.5	5- 024 143 877	
								0	AUX - 13124. 12716. 3119. 2981.		1UX - 5- 2987.024 2601.143 2983.877	
			00T 5.19285780 5.19285780 5.51462264 1.85412167					00	~ ਜਜਜਜ ਜਜਜਜ ਜਜਜਜ ਜ	/EL COR 1.41E-04 1.39E-04 3.72E-04	122 122 122 122	
	.70087		X-D0T 6.1 6.1 -28.5 -10.8					DAUX (1) 7000.00	3-502 8-504 3-504 3-502	VEL 1.4 1.3	TAR - 3- 28838.502 28838.504 28838.503	
	8717.		5.97 5.97 9.44 7.31	93					TAR - 28838 28838 28838	08 02 03	1AR 28838 28838 28838	
	2		RADIUS 151454715.97 151454715.97 116842819.44 6567.31	.6158128562E+0 .2751748000E+0				KAXTAR 5 6 3	8- 53 27 31	ERR 94E+ 90E+ 93E-	8- 76 73 48	
	OATE		RA 151 151 151	58128 51748					AR - 51.8 53.5 51.9	AUX 33.	51.87 53.47 53.47	
	JULIAN	MDL 1	8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-4.61				AR(3)	Ë	E-01 E-01	<u> </u>	
	٦	Σ	-COMP -4615.81 -4615.81 917002.09 -4615.81	•				DT / 2883		AIX -2.86 4.26 8.63	033	
	.201	ب د	2-6	3205E+07 4600E+01	6. 6. 6. Fr Fr			2)	TAR 7040 7047 7053 7032	S MATI	TAR 6925 6930 6937	
	. 6	X X		391532 12624	10-X 11-Y 12-Z	ERANCE 100.000 1.000		DTAR(?	ರು ಕರ ಕರ ಕರ		0.00	
	± ±	-4	COMP 153.20 153.20 117.86 625.39	2.27 2.27 104	a () u	TOLERANCE 100.00 1.00	JE-05	J	51748 51748 51748	TAR(=09=07-07-08-08-08-08-08-08-08-08-08-08-08-08-08-	V2 8.2748030 3.2748030 8.2748030	
	DAYS 17	KTYP	Y-COMP -89139153.20 -89139153.20 19393117.86 4625.39	36 10 1870€	7-RCA 8-INC 9-ASI		2•500E- 02	(1)	V2 -3.2751748 -3.2751748 -3.2751748	TARGETIN -8.53E-09 7.74 4.74E-07 -8.70 -6.06E-08 -2.19	V2 -3.27 -3.27 -3.27	
	8	_	EN T	1.2244485426E+08 -8.913915 6.1928578000E+00 2.271262 E 2.8717700870E+04	EFINITIONS 4-TCA 5-B.T 5-B.R	SPECIFICATIONS TARGET VALUE 7000.000 -50.000 29838.500	HEME 1.0006-04 2. 1.0000000E-02	DTAK(1) 7000.00			538 738	
	9	KUR 1	ω >	25.85 2.8578)=FINI 4-TCA 5-B.T 5-B.R	FICAL FET VV 7000 -50	100000 100000 100000		VY 22.7126246 22.7126246 22.7126346 22.7126246	TRIX -1.43E+07 2.31E+07 6.31E+01	VY 22.7127538 22.7127638 22.7127738	
	AT 1973	ž	HUETEC	1.224 6.192 E	Kē⊀ O	SPECI TARG	GETING SCHEME LEVELS 1.00 DVMAX 1.000 IBAST 1	EYTAR 8 3	~~~	TRIX -11.4		
	EVENT Date	SI	1224 1224 1224 1152 1152	E 1. 6. IN DATE	PARAMETER 1 1-TRF 2-TSI 3-TGS	ARGETING KEY 7 3	LEVEL DVMAX IBAST	Si .	VX 6.1928578 6.1928678 6.1928578 6.1928578	TY MA 1E+03 5E+06 5E+06	VX 6.1927169 6.1927265 6.1927165	
	ANCE NO AR	r cobes	CURRENT SPACECRAFT REFERENCE X-1 TIAL 12244485 11520623 N-BODY TARGET	STATE JULIAN	PARA	TARGE	TARGETING LEVEI DVMA IBAS	NOF PHS		SENSITIVITY MATRIX 7.13E+07 -4.51E+05 -1.43 7.13E+07 4.25E+05 2.31 1.91E+02 1.15E+01 6.31	9000	
16	GUIDANCE CALENDAR	EVENT	CURRE REFER RTIAL US TH					IND N	ACCURACY 1.00E-04 1.00E-04 1.00E-04 1.00E-04	SENS 18E+07 3E+07 1E+02	ACCURACY 1.00E-04 1.00E-04 1.00E-04	
.16			CE T NERT I S UN V ENU S E ARTH						A CCC	-4.0 7.1 1.9	A CCU 1 .00 1 .00	

72	1000	CPT 81	CPT 98	1000	CPT 114	0L 00 10	CPT 131	J 0 0 0	CP T 148	1000	CPT 165			,		
538	TAR TOI 100.000 1.000	INCR 538	INCR 1011	100.000 1.000	INCR 1010	TAR TOU	INCR 1009	TAR TOL 100.000 1.000	INCR 1010	TAR TOL 100.000 1.000	INCR 1009					
.503		- 3-	- 3-		535		- 3-		533		. 495					
28838	TAR VAL 7000.000 -50.000 8838.500	AUX - 28838.	AUX - 28638	TAR VAL 7000.000 -50.000 8838.500	AUX - 28838.	TAR VAL 7000.000 -50.000 8838.500	AUX -	TAR VAL 7000.000 -50.000 8838.500	AUX -	TAR VAL 7000.000 -50.000 8838.500	AUX -					
5.880	DES 2	- 6-	- 6- 9.346	DES 2	- 6- 5•052	DES 2	-9 - 7.397	DES	- 6- 6.313	DES 2	X - 6- 27.572				6.5	5° (X)
739	X VAL 8.430 0.892 8.500	AUX 609	AUX 3290	UX VAL 50.615 08.160 38.500	AUX 19895	JX VAL 37.753 31.510 38.500	AUX 11647	X VAL 4.472 6.302 8.500	4UX 1865	UX VAL 39.248 29.236 38.500	AUX 602			T A	3,1973	3.1073 3.1563
660.448	DES AU 1351 634 2883	149.849	UX - 5- 983.081	DES AU 1356 630 2883	UX - 5- 921.716	DES AJX 13537 6331 28638	UX - 5- 269.906	DES AUX 13524, 6346, 28838,	UX - 5- 763.701	DES AU) 13530 6320 2883	UX - 5- 719.060			ы	2911 8543	4721 2194
128	FL COR •• 81E-05 •• 76E-05	13 13	A -17	EL COR •77E-03 •34E-03	A -	. COR 15E-04 74E-03 25E-04	10 10	COR 3E-03 2E-03 8E-03	A 6	COR 1E-04 8E-05 5E-04	13 13			00N	-158.12	-143.44 -143.52
838.503	VEL 4.8 -7.7	AR - 3- 838.499	AR - 3- 838.596	VEL 1.7 -1.3	AR - 3- 838.535	VEL -7.0 - 6.7 3.2	TAR - 3- 8838.497	VEL 4.9	AR - 3- 838.533	VEL -2.5	AR - 3- 838.495			U	.74751	05035
28	CERROR 31E+02 27E+02 41E-03	T 28	28	ERROR 15E+04 66E+04 58E-02	T 28	ERROR 05E+04 36E+04 50E-02	~	ERROR 5E+03 0E+03 6E-03	1 28	ERROR 8E+03 3E+04 8E-02	28		184	INC	48 48	28. 28.
52.419	AUX 5.3	TAR - 8- 49.493	TAR - 8- 113.821	AUX 3.1 -2.6	TAR - 8- 107.276	AUX 2.0 -1.3 -3.5	TAR - 8- 63.639	AUX -5.2 -5.3	TAR - 8- 78.669	AUX 6.7 -1.2	TAR - 8- 49.339		.01040	OMEGA	3.90007 3.91186	2,27175 2,25472
12	X .09E-01 .34E-01 .23E-01	7- 61	-2	X 1.09E-01 5.34E-01	711	X .09E-01 .34E-01	7- 26	x •095-01 •345-01 •235-01	- - 2	X •092-01 •34E-01 •23E-01	35		463	_	111-0	1 -13 0 -13
6915.1	MATRI -07 -3 -06 5	TAR - 7012.8	TAR -	MATRI -07 -3 -06 5	TAR - 2016.8	MATRI -07 -3 -06 5 -06 8	TAR -	3 MATRIX E-07 -3. E-06 5.	TAR - 0974.6	HATRI -07 -3 -06 5	TAR - 7038.5		.00231	ECC	9099E+ 9262E+	39099E+0(39262E+0(
30	ARGETING 9 8.38E 7 -1.16E 8 -2.24E	82	C.	TARGETING 09 8.38E 07 -1.16E 08 -2.24E	2711 1	GETIN 8.33 -1.15 -2.24	29	6ETIN 8.38 -1.15 -2.24	648 1	TARGETING 09 8.38E 07 -1.16E 08 -2.24E	02		'n		1.143	1.143
-3.274793	TAR -7.62E-09 4.76E-07 -5.99E-08	VZ -3.274968	VZ -3.274968	TAR -7.62E-09 4.76E-07 -5.99E-08	VZ -3.28027	TAR -7.62E-03 4.70E-07 -5.99E-08	VZ -3.279946	TAR -7.62E-09 4.76E-07 -5.99E-08	VZ -3.27306	TAR -7.62E-09 4.76E-07 -5.99E-08	VZ -3.27286	•	.0099632	ΑA	8781E+04 9446E+04	8781E+04 9446E+04
22.7127638	43E+07 -28E+07 -26E+01	VY 22.7126862	VY 22. 71 26862	43E+07 28E+07 20E+01	VY 22.7113443	43E+07 29E+07 20E+01	VY 22.7160828	43E+07 29E+07 20E+01	VY 22.7226016	43E+07 28E+07 20E+01	VY 22.7225878		00190711	s s	-4.559908781E -4.559279446E	-4.559908781E -4.559279446E
6.1927155	.TIVITY MATRI) -3.15E+05 -1. 3.94E+06 2. 1.07E+01 6.	VX 6•1927645	VX 6.1927645	IVITY MATR 3.15E+05 - 3.94E+35 1.07E+01	VX 6.1945352	IIIVITY MATRIX -3.15E+05 -1. 3.94E+05 2. 1.07E+01 6.	VX 6.1938298	SENSITIVITY MATRIX E+07 -3.15E+05 -1. E+07 3.94E+06 2. E+02 1.07E+01 6.	VX 6.1912320	IVITY MA 3.15E+03 3.94E+03 1.07E+01	VX 6.1909507	ON EVENT	н	DOMINANT 800Y ELEMENT PLANET FOLIPITA	BEFORE IMPULSE AFTER IMPULSE	ANET EMONTUKIAL BEFORE IMPULSE AFTER IMPULSE
1.00E-04	SENSIT -3.86E+07 6.74E+07 1.80E+02	ACCURACY 1.00E-04	ACCURACY 2.50E-05	SENSIT -3.86E+07 6.74E+07 1.80E+02	A CCURACY 2.50E-05	SENSIT -3.86E+07 - 6.74E+07 1.80E+02	ACCURACY 2.50E-05	SENSIT -3.86E+07 - 6.74E+07 1.80E+02	A CCURACY 2 .50 E-05	SENSIT -3.86E+07 - 6.74E+07 1.80E+02	ACCURACY 2.50E-05	EXECUTION	DELTA V	DOMINAN PART I	BEFO AFTE	A.17

•

	^
	-
S	
IE	100
~	۵
0	
-	
ပ	~
W	
A	_
R	Į,
-	ē
	ď
w	
Ü	
⋖	
•	
S	
ی	
z	
Н	
-	
>	
O	
Σ	
0	
_	
œ	
0	
ш	
Σ	
R A	
ري.	
0	
œ	
a.	
S	
'n	
⋖	
Σ	
ر.	
4	
>	
-	
¥	
-	
•	

			**			***			
RE SUL TANT		1.51454715972E+08 2.37772050899E+01			0. 1.08790367636E+08 3.4833265555E+01 1.51456908338E+08 2.94170855239E+01	经存货 医电子电子 医电子 医电子 医二甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲	1.51454715972E+08 2.37772050899E+01	1.16842819441E+08 3.51547722957E+01	6.56731281614E+03 1.14075269822E+01
Z - COMP.	0		****		0. 0. -1.92161790346E+06 -1.97106795620E+00 0.	安排存储器经验证 电电流运动电池电池电池电池电池	-4.61581285620E+03 -3.27286016578E+00	1.91700209060E+06 -1.30179220958E+00	-4.61581285620E+03 -3.27286016578E+00
Y - COMP.	E INCREMENTS =		***	978	0. 0. -1.08532271069E+08 2.20501285155E+00 -8.91437785965E+07 2.39742656129E+01		-8,91391532050E+07 2,27225878325E+01	1.93931178641E+07 2.05175749809E+01	4.62539152599E+03 -1.25167778042E+00
х - СОМР.	TOTAL TIM	1.22444854260E+O 6.19095368768E+O	****	MIN, 15.201 SEC,	0. 7.23861945766E+06 3.47074804399E+01 1.22444198804E+08 1.70469734598E+01	* * * *	1.22444854260E+08 6.19095068768E+00	1.15206234802E+08 -2.85165297522E+01	6.55455973324E+02 -1.08560287821E+01
A.18	FRAJECTORY TIME = . 0.	SPACECRAFT INERTIAL TRAJECTORY POSITION	***************	TE = AUGUST 17, 4 HR, = 2443737.70087038	PHEMERIS DATA POSITION OF SUN VELOCITY OF SUN POSITION OF VENUS VELOCITY OF VENUS POSITION OF EARTH VELOCITY OF EARTH	经存储存储 医多种性 医克勒氏性 医多种性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医二甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲	PACECRAFT RELATIVE TRAJECTORIES POSITION REL. TO SUN VELOCITY REL. TO SUN	POSITION REL. TO VENJS	POSITION REL. TO EARTH
	х - СОМР. Y - СОМР. Z - СОМР.	$X - COMP_{\bullet}$ $Y - COMP_{\bullet}$ $Z - COMP_{\bullet}$	TIME = 0. TIME = 0. TOTAL TIME INCREMENTS = 0 INERTIAL TRAJECTORY 1.22444854260E+08 -8.91391532050E+07 -4.61581285620E+03 TY - 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	TIME = 0. TIME = 0. TOTAL TIME INCREMENTS = 0 INERTIAL TRAJECTORY N	TIME = 0. TIME = 0. TOTAL TIME INCREMENTS = 0 INERTIAL TRAJECTORY N	TIME = 0. INERTIAL TRAJECTORY V	E = 0. RIAL TRAJECTORY RIAL TRAJECTORY 1.22444854260E+08 -8.91391532050E+07 -4.61581285620E+03 1.51454715972E+08 6.1909510876E+00 2.27225870E+07 -4.61581285620E+03 1.51454715972E+08	E = 0. RITIAL TRAJECTORY AUGUST 17, 4 HR, 49 MIN, 15.201 SEC, 1978 E VENUS F VENUS F VENUS F VENUS F SAN THE TRAJECTORIES 1.22444654260E+08 -0.91394532050E+07 -4.61581285620E+03 2.37772050899E+01 2.27722597255620 0.0000 E SAN THE TRAJECTORIES 1.22444654260E+08 -0.91394532050E+07 -4.61581285620E+03 2.37772050899E+01 1.22444654260E+08 -0.91394532050E+07 0.00000 1.2244665420E+08 -0.91394532050E+07 0.00000 1.22444654260E+08 -0.91394532050E+07 0.00000 1.22444654260E+08 -0.91394532050E+07 0.000000 1.22444654260E+08 -0.91394532050E+07 0.000000 1.22444654250E+08 -0.91394532050E+07 0.0000000000000000000000000000000000	TOTAL TIME INCREMENTS = 0 TOTAL TIME INCREMENTS

	RESULTANT
•	•
	2 - COMP.
	Y - COMP.
	x - COMP.

	х - СОМР.	Y - COMP.	2 - COMP.	RESULTANT
特特 计转移电路 医脊髓 医脊髓 医克拉氏 计记录中语 经经济的 经保险 医克格特氏 医克格特氏 计记录 计分数 计分数 计多数 计多数 医皮肤皮肤 医皮肤皮肤 医皮肤皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医	医骨骨骨 医骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨	**************************************	化水子 计计算 化二苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基	经存储额 医电子性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
VIRTUAL MASS DATA VIRTUAL MASS POSITION VIRTUAL MASS VELOCITY	1.2244419548DE+08	1 +8.91437761767E+07	-2.78073434538E-07	1.51456904226E+08
SPACECRAFT POS. REL. TO V.M. SPACECRAFT VEL. REL. TO V.M. KEDI ED (ANG. MOM.) VECTOR	6.58773774571E+02 -1.08555187293E+04 -2.0903557765504			6.571,0,1,05E,01 6.146794139456E+01 7.4866882025E+01
ECCENTRILITY VECTOR V.M. MAGN. V.M. MAGN. A.9.28922994087E-01	1.73920521160E-01 53E+05 87E-01		•	1.14465764992E+00
经存款的 化铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	*****************	. 格雷特拉特格特特特特特特特特特特特特	经存储 医电子 医电子 医电子 医电子	化电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子
V.M. RELATIVE POSITIONS POSITION REL. TO SUN 1.22444195480E+08 -8.91437761767E+07 -2.78073434538E-07 1.51456904226E+08 POSITION REL. TO VENJS 1.15205576023E+08 1.93884948924E+07 1.92161790346E+06 1.16841478492E+08 POSITION REL. TO VENJS 2.41983175278E+00 -2.78073434538E-07 4.11135489463E+00	1.22444195480E+08 1.15205576023E+08 -3.32380104065E+00	8.91437761767E+07 1.93884948924E+07 2.41983175278E+00	-2.78073434538E-07 1.92161790346E+06 -2.78073434538E-07	1.51456904226±*08 1.16841478492E+08 4.11135489463E+00

-2.06062132742E+01 1.68413230154E+00 -2.13829902458E+01 7.82422426963E+01 -4.46558279065E+01 1.177247676565E+02 2.04537765147E+02

1 JULIAN DATE 28807.70087 3 MDL 2 -COMP RADIUS X-DOT Y-DOT Z-DOT Y-3494527 34.24186406 110901.56 120308321.43 -31.72685391 12.8733374843494527 34.24186406 110901.56 120308321.43 -31.72685391 12.8733374843494527 34.24186406 110901.56 133385409.77 -7.61632742 -5.1639554443494527 9.21216894	6.0109015557E+06 -4.3494527019E-01	•		DTAR(3) KAXTAR DAUX(1) DAUX(2) DAUX(3) ISTOP DELT 28838.71 5 6 3 7500.00 -60.00 28838.71 2 34.108	2 - 7 - TAR - 8 - TAR - 3 - AUX - 5 - AUX - 6 - AUX - 5 - AUX - 5 - AUX - 3 - INCR CPT 18.729 49.478 28838.495 13719.219 6027.774 28838.495 225 183 13.592 49.453 28838.495 13782.120 6126.094 28838.495 225 181 12.093 49.197 28838.495 13719.910 5939.723 28838.495 225 195	17RIX AUX ERROR VEL COR DES AUX VAL DES TAR VAL TAR TOL 3 5.32E-02 -2.32E+03 3.19E-03 11403.102 7500.000 50.000 7 9.01E-02 4.59E+03 4.95E-03 10615.810 -60.000 500 7 1.23E-01 2.14E-01 6.24E-03 28838.708 28838.708 .005	2-7- TAR - 8- TAR - 3- AUX - 5- AUX - 6- AUX - 3- INCR CPT 22.08 51.778 28838.548 13149.088 7187.510 28838.548 226 198 53.115 51.947 28838.548 13040.759 7225.078 28838.548 226 206 11.098 51.889 28838.548 13212.239 7286.098 28838.548 226 206
IAN DATE 28807. 2 RADIUS 120308321.43 120308321.43 14887616.06 31385409.77	STATE 6.3379142859E+U7 1.0208352226E+08 6.0109015557E+06 -3.1725853912E+01 1.287337485E+01 -4.3494527019E-01 JULIAN JATE 2.8807700870E+04 PARAMETER KEY DEFINITIONS 1-TRF 4-TCA 7-RCA 10-XRF 2-TSI 5-B.T 8-INC 11-YRF 3-TCS 6-B.R 9-ASI 12-ZRF	TARGETING SPECIFICATIONS KEY TARGET VALUE TOLERANCE 7 75000.000 50.000 8 -60.000 .500 4 28438.708 .005	TARGETING SCHEME LEVELS 2.500E-05 DVMAX 1.00000000E-02 IBAST 3	DTAR(3) KAXTAR 8838.71 5 6 3	.729 49.339 28838.495 .295 49.478 28838.495 .592 49.453 28838.495 .093 49.197 28838.495	AUX ERROR -2,32E+03 4,59E+03 2,14E-01	TAR - 8- TAR - 3- 51.778 28838.548 51.947 28838.548 51.889 28838.548

210	00 00 02	CPT 214 218 221	00 00 02	CP T 22.9		CPT 240 252 264 275	CP T 287	00 00 02	CPT 299								
226	TAR T 50.0	INCR 227 227 227 227	TAR T	INCR 219	ELT 4.108	INCR 700 700 700	INCR 700	TAR T	INCR 703								
28838.548	TAR VAL 7500.000 -60.000 8838.708	AUX - 3- 28838.629 28838.629 28838.629 28838.629	TAR VAL 7500.000 -60.000 8838.708	AUX - 3- 28838.709	3) ISTOP DE 71 3 34	AUX - 4- 28838.709 28838.709 28838.709 28838.709	AUX - 4- 28838.709	TAR VAL 7500.000 -60.000 8838.708	AUX - 4- 28838.708								
7099.388	VAL DES 694 564 708 2	AUX - 6-8934.762 8934.762 8972.286 9033.559 8846.335	VAL DES .121 .161 .708 2	AUX - 6- 10667.025	DAUX (28838.	AUX - 6- 11977.494 11981.283 11987.432	AUX - 6- 10977.494	VAL DES 247 535 708 2	AUX - 6- 10647.545			TA	•71127 •68032				
13149.784	R DES AUX 03 11424, 03 10625, 03 28838	AUX - 5- 12306.171 12197.644 12369.695 12306.877	A DES AUX 03 11457 03 10640 03 28833	AUX - 5- 11476.907	DAUX(2) -60.00	AUX - 5- 11766.880 11756.007 1173.285 11766.942	AUX - 5- 11766.880	11497 11497 11647 05 28838	AUX - 5- 11497.290			NODE	16.74059 -79				
28838.548	VEL CO 4.76E- 7.37E- 9.30E-	TAR - 3- 28838.629 28838.629 28838.629 28838.629	R VEL CO 2 4.70E- 3 7.27E- 2 9.20E-	TAR - 3- 28838.709	DAUX(1) 7500+00	TAR - 4- 28838.709 28838.709 28838.709	TAR - 4- 28838.709	R VEL COI 2 4.33E- 2 -1.37E- 4 5.08E-	TAR - 4- 28838.708			INC	2.87435 -3 2.87120 -3		0E-03		
51,625	AUX ERRO -1.72E+0 3.44E+0 1.60E-0	TAR - 8- 55.826 56.033 55.919 55.669	AUX ERRO -8.49E+0 1.71E+0 7.98E-0	TAR - 8- 60.040) KAXTAR 1 5 6 4	TAR - 8- 60.131 60.154 60.138 60.117	TAR - 8- 60.131	AUX ERRO -2.70E+0 -3.30E+0 -8.95E-0	TAR - 8- 59.999		.03397338	OMEGA	4.61141 3.78454		0V 1.000	MAG .033973 .001000	
990.207	MATRIX 08 5.31E-02 07 8.97E-02 07 1.23E-01	48 - 7- 167.787 117.391 252.363 128.361	MATRIX 08 5.29E-02 07 8.90E-02 07 1.22E-01	489.455	DTAR(3 28838.7	AR - 7- 830.483 826.263 839.493 825.776	AR - 7- 830.483	MATRIX 08 5.24E-02 07 8.84E-02 07 1.22E-01	AR - 7- 500.257		02478908	၁	017E-01 17 488E-01 17		1.0000£+00	Z-COMP .024789 .000730	ATE
586579 63	TARGETINS -07 7.84E- -08 1.39E- -07 -3.79E-	1 94059 7 94059 7 94059 7	TARGETINS -07 7.22E- -08 1.28E- -07 -3.93E-	Z 102070	DTAR(2) -60.00	1 2070 7 2070 7 2020 7	T 02070 7	TARGETING E-07 6.76E- E-08 1.19E- E-08 -4.04E-	2 101562 7		. 08784	Ē	+08 1.8071 +08 1.7996		E+00 0Jł	-COMP 19458 00573 00557	CALENDAR D
	-4.30E- 5.58E- -1.21E-	++++++++++++++++++++++++++++++++++++++	-4.25E- 6.28E- -1.11E-	> 3	AR(1) 00.00		VZ 41	-4.19 7.11 -9.96	> 4		.019	SMA	39695E 36452E		1.0000	× 0 0 0	
12.8782920	RIX 1.39E+04 -1.76E+06 2.72E+00	VY 12.8856558 12.8856658 12.8857158	RIX 1.41E+04 -1.75E+06 2.52E+00	VY 12.8929327	4R DI	VY 12.8929327 12.8929327 12.8929377 12.8929327	VY 12.8929327	Y MATRIX E+06 1.23E+04 E+06 -1.77E+06 E+00 2.35E+00	VY 12.8927953		01269195	ENTS	1.2838.		03 MASS	X-COMP .U12692 .000374 .000364	JULIAN DATE
31.7236663	ITIVITY MATR 1.26E+05 1.97E+06 7.32E+00	VX 31.7189099 31.7188599 31.7189099	TIVITY MAT 1.27E+06 1.98E+05 7.50E+00	VX 31.7142053	F PHS KEYT	VX -31.7142053 -31.7142003 -31.7142053 -31.7142053	VX -31.7142053	ITIVITY MATE 1.28E+06 1.99E+06 7.62E+00	VX -31.7141620	TION EVENT)• = A	INT BODY ELEME	REFORE IMPULSE AFTER IMPULSE	IG ARC DATA	1.30006-	V SIVE ILSE	ARC JI
2.50E-05 -	SENSI: -2.17E+06 7.51E+05 1.86E-01	A CCURACY 2.50E-05 2.50E-05 2.50E-05 2.50E-05	SENSI -2.17E+06 7.54E+05 4.49E-01	ACCURACY 2.50E+05 -	IND NO	ACCURACY 2.50E-05 - 2.50E-05 - 2.50E-05 - 2.50E-05 -	A CCURACY 2.50E-05 -	SENSI -2.17E+06 7.58E+05 7.32E-01	ACCURACY 2.50E-05 -	EXECUTI	DELTA	DOMINANT PLANET P	ANCE BEF AFT	PULSING	THRUST	DELTA V IMPULSIVE NOM PULSE END PULSE	PULSE

MIDPOINT Initiation Termination	28807.70087 28805.05087 28809.35087		1978 11 15 4 4915.201 1978 11 13 13 1315.200 1978 11 16 20 2515.200	.201 .200 .200					
F AND G SERIES LAUNCH BODY TARGET BODY	F2 -2.0482E-14 -5.2655E-14	F3 F4 F5 F6 G3 G4 G5 + -5.2887E-23 7.2029E-29 5.5868E-37 3.6651E-42 -6.8272E-15 -2.6444E-23 1.5251E-29 1.91 + -1.1160E-22 4.6454E-28 2.9541E-36 6.3805E-41 -1.7555E-14 -5.5798E-23 9.3822E-29 9.89	F4 7.2029E-29 4.6454E-28	F5 5.5868E-37 2.9541E-36	F6 3.6651E-42 6.3805E-41	63 -6.8272E-15 -1.7555E-14	64 -2.6444E-23 -5.5798E-23	65 1.5251E-29 9.3822E-29	1.91 9.8

EXECUTION -5.1043E-14 -1.1160E-22 1.6545E-29 5.8868E-37 3.6651E-42 -6.8272E-1 -5.5746E-23 9.8307E-29 1.8392E-29 1.8307E-42 1.2555E-49 1.8307E-42 9.8307E-42 1.8307E-42 9.8307E-42 9.8307E-42 1.8507E-42 9.8307E-42 9.8307E-42 1.8507E-42 9.8307E-42 9.9307E-42 9.9307E-	ERMINATION 2. AND 6 SERIES		1978 11 16 2U 25 3 F4	FS	F6	33 64	99	99
6.69649.25.36 10077025.747 666860.250 -31.0204702 13.9616772 -3.56947 65949.25.35 10077025.772 666860.250 -31.0204702 13.96167547 -3.56947 65949.25.35 10077025.772 666860.250 -31.02047022 13.96167547 -3.5947 666949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 1001209.394 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.250 10069437.28 66949.290 10069437.28 66949.290 10069437.28 66949.290 10069437.28 66949.290 10069437.28 66949.290 10069437.28 66949.290 100	-2.	482E-14 -5.28 665E-14 -1.11	7E-23 7.2029E 0E-22 4.6454E	68E-37 3 41E-36 6	.6651E-42 -6 .3805E-41 -1	72E-15 -2 55E-14 -5	1.5251E-29 9.3822E-29	9192E 8987E
6.785.225.396 100170251.747 6.06.860.250 33.02124380 13.96110273 -3.5997 6.7552.5395 100170251.747 6.06.860.250 33.02124380 13.96110273 -3.5997 6.7552.5395 100170251.747 6.06.860.2395 -33.06110360 13.76.89196 -3.7552.5395 100170251.747 6.06.860.2395 -33.06110360 13.76.89196 -3.7552.5395 100170251.747 6.06.860.2395 13.0756.4910 13.76.89196	×	TION						
6 6795225 396 100770251.747 606856.250 -31.0287022 13.96157947 -35997 6775591 100290501.242 606553.905 -31.05418502 13.96157947 -35997 6775591 100290501.242 606553.905 -31.05418502 13.8957272 -35997 6775591 100290501.242 606553.905 -31.10541860 13.7699051 -3.7523 10029051.242 606592.249 -31.10541860 13.7699051 -3.7523 10029051 -3.7523 1029051 -3.7523 10029051 -		-COM	Y-COMP	7	-D0T	Y-00T	TCO	
6 6785225 396 101070251.747 6 66856.250 -33.10287122 13.95615728 -37532 1010291051.242 661618.978 -33.102487122 13.95615728 -3.7552 1010291051.242 661618.978 -33.10242046 13.76901510 -3.7552 1010291051.242 661618.978 -33.10242046 13.76901510 -3.7552 1010291051.242 661555.445 -33.10250154.817.284 6.05 66575.245 -31.10748713 1010101015.315 661555.445 -31.10748713 1010101015.315 661555.445 -31.10748713 1010101015.315 661555.445 -31.10748713 1010101015.315 661555.445 -31.10748713 1010101015.315 661555.445 -31.10748713 1010101015.315 661555.445 -31.10748713 1010101015.315 661555.445 -31.4650154 13.44465266 -3.34758 -3.1465144 13.14465266 -3.34758 -3.1465144 13.14465266 -3.34758 -3.1465144 13.1446526 -3.34758 -3.1465144 13.1446526 -3.34758 -3.1465144 13.1446526 -3.34758 -3.1465144 13.1446526 -3.34758 -3.1465144 13.1446526 -3.34758 -3.1465144 13.1446526 -3.34758 -3.1465144 13.1446526 -3.14754 13.1446526 -3.14766 13.14754 13.14765 13.14465 13.14765 13.14465 13.14465 13.14465 13.14465 13.14465 13.14465 13.14465 13.14465 13.14466 13.14469 13.14466 13.14469		7852225.39	0170251.74	06826	31.0212438	3.9611027	.36987	
0.67154.3.3.35 1004.0396.242 606503.395 -31.064.8506 13.8373246 -37528 -		7852225.39	51.74	6826	31.0208702	9724	. 55914	
0.7146/17.931 1006/0317.284 6061819.978 -31.1078118 13.76890510 -378722 6677420.280 1006/0317.284 605569.280 -31.1974599 13.77693127 -378122 6677420.280 1006/0317.284 605569.280 -31.23625166 13.76990510 -378122 6677420.280 1008/04010.580 605569.280 -31.23625166 13.576905903 -38132 65609.88.56.1 1008/04010.06.397 60456598 -31.23625166 13.576905965 -394159 665969.88.52.1 1008/040100.997 60456598.39 13.3126909 13.313690959 -394159 6554499.524 1011117449.180 6059698.524 13.4063815 13.4063815 13.40646266 -339759 66481540.310 101463373.180 6049419.979 13.3136449266 -339759 66481540.310 101463373.180 6049419.979 13.3136449 -40138 66481540.310 101463373.180 6049419.979 13.313644926 13.31364499 -40138 66481540.310 101463373.180 6049419.944 -31.4063699 13.31368449 -40138 66481540.310 101463373.180 6049419.944 -31.4063699 13.31368449 -40138 66481540.310 101463373.180 60496997.82 -31.4063699 13.31368449 -40138 664918.399 101691153.29 6012695.69 -31.7616099 13.31368449 -40138 664918.399 101691153.29 6012695.69 -31.7616099 13.31368449 -40138 665918.399 10225969.79 6012695.69 -31.7616099 13.3136949 -40138 665918.399 10225969.79 6012695.79 60126997.82 -31.406999 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665918 -31.206997 12.59240821 -401399 665997 12.59240821 -401399 665997 12.59240821 -401399 665997 12.59240821 -401399 665997 12.59240821 -401399 665997 12.59240894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 1002894 100289	0	7584016.17	501.24	6065053.905	ŝ	13.89757728	37233	
65966946,756 100564010,316 605659,246 -31.1954596 13.70433127 -38128 65567422344 -31.1954596 13.70433127 -38128 -381	0	7315433.23	196.24	6061819.978	끍	13.83332046	37552	
66277150.280 100646017.284 605269280 -31.23662166 13.63999013 -336127 -336136 66577452.341 100864013.186 60526166 -31.23662166 13.63999013 -3.86131 66594648.756 100894013.186 6054617.958 -31.27696716 13.57740847 -31.29148 665946918.756 101010105.907 6046525.753 -31.2266918 13.5764967 -31.2366918 13.576497.247 10117445.194 604451745 -31.236518 13.44465266 -339478 65696145.213 10117445.194 604451745 -31.236518 13.44465266 -339478 65696145.213 10117445.194 60445174 -31.49176961 13.44465266 -339478 66696145.213 10117465.194 60445174 -31.49176961 13.2476817 -31.4917691 13.44465266 -339478 66696145.213 10117465.314 6034419.414 -31.49176991 13.2478817 -410178 646937.7 485 101174617.318 602495.244 -31.44680619 13.2478817 -410178 646936.525 1011014174.318 602185.604 -31.49176991 13.2478817 -410178 6469615.525 1011014174.318 602185.604 -31.49176991 13.24788179 -410178 6469615.525 1011014174.318 602185.604 -31.4917691 12.991761 12.99		7046477.59	35.38	6058558.445	8	13.76890510	37872	
6656745.341 10076440.585 6051952.459 -31.23629166 13.599903385120 665734.817 1001005.315 604465.84 6145.23 1001005.315 604465.84 6145.23 1001005.315 604465.84 6145.23 1001005.315 604465.84 6145.82 1011014.4445.84 614465.84 614465.84 614465.84 614465.84 614465.84 614465.84 614465.84 614465.84 614465.84 614465.84 61446.84 61		6777150.28	117,28	6055269.280	20	13.70433127	.38192	
66237384,817 100884003316 60446807.958 -31,2289616 13,57708687 -33833 10 65966948.756 1010101023105 6042235.753 -31,3245696 13,51065968 -39475 10 6596245.217 101117445.194 6042235.753 -31,446636109 13,5106596 -39475 10 65924975.247 10112345.0140 6013469.414 -31,44606109 13,31356449 -401118 10 6488540.311 101463373.18 6013469.414 -31,4907099 13,31356449 -40118 10 6488540.373.18 601249.414 -31,4907099 13,31356449 -40118 10 6488540.373.18 601249.414 -31,4907099 13,31356449 -40118 10 6488540.373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 10 101463373.18 101463373.18 101463373.18 10146340.77 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18 10 10146373.18	0	6507452.34	140.58	6051952.459	16	13.63959903	.38512	
65966948.756 101001005307 604235.753 -31.32156096 13.506995 -339154 669756 -539154 6697525.247 1011346501.186 6034695.820 -31.324603247 13.344445256 -339756 65153439.923 1011346501.186 6034693.41 -31.4960609 13.3156449 -40118	a	6237384.81	03.91	6048607.958	-31,27896716	13.57470847	38833	
6596445.13 10111745.194 604.835 820 -31.36403247 13.4446266 -339750 610 6542475.247 1013465301.86 6013469.414 -31.44660609 13.5.1356449 -401180 651534.39.227 1015465301.86 6013469.414 -31.44660609 13.5.1356449 -401180 643662.252 101546337.161 6012495.414 -31.5466009 13.5.1356449 -401180 6433652.252 101641875.297 60127952.241 -31.5368306 13.1820449.7 -401080 6433652.252 10164187.236 6012495.414 -31.5765375 13.1820449.3 -411804 6433652.252 10164187.236 6012495.419 -31.5765375 13.1820449.3 -411804 6433656.252 10164187.236 6012495.409 -31.56162641 13.0498379 -411804 6436652.252 10164187.236 6012495.409 -31.56162641 13.0498379 -411804 6436652.252 10164187.236 6012495.269 -31.54166997 12.5614999 -421804 65216215.794 10229853.292 6012655.269 -31.7486425 12.74874919 10225989.049 6010599.782 -31.64932714 12.9498379 -411804 6269335.202 10255059.049 6010599.782 -31.9464496 12.584625 12.749726 10255059.049 6010599.782 -31.9464496 12.584625 12.749726 -43276 61137307.447 1029049.218 599240.579 -31.9464496 12.5846021 -442378 61137094.99.218 599240.579 -31.9464496 12.5846021 -445978 61137307.447 10290283.319 593844.3597 12.0567325 -445978 61137307.447 10290283.319 593846.800 12.384643.377 1032216.612 -32.1861858 12.10729964 -445978 61137307.447 10290283.319 5967978 612 -32.18681858 12.1072599 -445978 612 -32.18681858 12.1072599 -445978 612 -32.18681858 12.1072599 -445978 612 -32.18681858 12.1072599 -45599 11333564.435.72 103344435.72 12.449737 11.044973 11.7621964 -445978 612 -32.18681858 12.1072599 -46598 12.108494 11.34 11.346498 12.1072539 11.7621964 -445978 612 -32.18681858 12.1072599 -46598 12.108494 11.34 11.		5966948.75	05.30	6045235.753	-31,32156096	13.50965965	39154	
65424975.247 101233320.406 603408.135 -31.40638105 13.3790875839996 648154.403.401669 13.1356449401186 663424975.247 101463373.161 603449.414 -31.4966069 13.31356449401186 648154.0310 101463737.161 603449.414 -31.4968306 13.1856449401186 648154.0310 101463737.161 603469.414 -31.4968306 13.1856449401186 648154.0310 101463153.250 66240419.402 -31.5758306 13.1860462401082 648154.0310 101463153.250 66240419.402 -33.6575841 12.08693741184 648152.0310.568 10191649.772 6612865.664 -31.6578541 12.089371941184 648152.0310.568 10191649.772 6612855.809 -31.78186425 12.98593941184 6481533.3970 1022853.832 6612855.294 -31.78186425 12.98593941289 65242533.832 1022833.832 6612855.294 -33.78186425 12.893871942253 1022833.832 1022793.82 6012894.768 -33.78186425 12.893861242263 1022833.839 1022793.82 6012894.768 -33.86932470 12.893861242263 10227932.82 10227932.82 6012894.768 -33.86932470 12.893861242362 10227932.82 1022793.82 1022793.83 10227932.82 10227932.82 10227932.82 10227932.82 10227932.82 1022793.83 1022793.83 1022793.83 1022793.83 102279283 1022793.84 1027778.85 10227717 1022793.83 1022793.83 1022793.84 1027778.85 10277778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 1027778 102777778 10277778 102777778 102777778 102777778 102777778 102777778 102777778 10277778 102777778 102777778 102777778 102777778 102777	, c	5696145.21	45.19	6041835.820	3640	13.44445266	39475	
6.6153439.923 101348630.186 603469.414 -31.44860609 13.3135644940118 6681540.31 10146373.185 6027958.414 -31.49076696 13.24788347 -401439 6681540.31 10146149.725 6027958.414 -31.49076696 13.182478847401439 668154.914 10159153.250 6027943.41 -31.45266306 13.182478847401439 6681565.52 1018014187.538 60120852.604 13.65785642 13.186480341108 6433665.558 1018014187.538 60120852.604 13.65785642 12.918019937941108 6433665.558 1018014187.538 60120852.604 13.65785642 12.918019937941108 6433665.558 10120164913.739 60103944.78 13.186785642 12.918019937941108 643368.555 101801948.738 60103944.78 13.186785642 12.918019937941108 643368.555 101801948.738 60103944.78 13.1868425 12.7180148.5 1012139951.837 60103944.78 13.1868425 12.71867425 12.71867425 12.7180148.5 1012240149.139 60103594.78 13.1868425 12.71867125 12.71867125 14.42739 12.7180148.5 1012240149.139 60103594.78 13.1868425 12.71867125 12.71867125 14.42739 12.71867125 12.7	•	5424975.24	20.40	6038408.135	+063	13,37908758	39796	
0.0 0.4831540.310 101463373.161 0.031469.414 -31.49970696 13.24788347 404.39 0.00 0.483562.525 101691153.2570 0.02441.94 -31.5745375 13.11604062 -41.016 0.02441.94 0.02652.523 101601153.2570 0.02441.94 -31.61625841 13.01698379 -41.016 0.024656.525 101604187.538 0.02062.604 -31.61625841 13.01698379 -41.016 0.02665.525 101804187.538 0.02062.604 -31.61625841 13.01698379 -41.016 0.02665.525 101804187.538 0.02062.604 -31.61625841 13.01698379 -41.016 0.02665.525 0.026649.724 -31.6166937 -21.61625841 12.61648612 -42.016 0.02669.734 0.02269.744 12.6164612 -42.016 0.02669.745 0.02269.744 0.02260.824 0.02269.744 0.02260.824 0.02269.744 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02260.824 0.02667747.409	•	5153439.92	101348630.186	6034952.674	-31.44860609	13.	40118	
64609277,485 101577547.970 6027954.331 -31.53268306 13.18204462 -41076 000 6436652.525 101691153.250 6024419.402 -31.6162841 13.181048373 -410104 000 64336652.525 101691153.250 60262.604 -31.6162841 13.04989379 -41084 000 64336652.525 101916649.772 601725.914 -31.6162841 12.985139 -41084 000 63790320.568 101916649.772 601725.404 -31.6576642 12.985139 -42057 000 63246253.185 10225059.049 6019364.768 -31.7406697 12.05704819 -42057 000 6254333.970 10225059.049 6010530.266 -31.7406697 12.05704819 -42057 000 6214774.601 102679328.105 5998865.266 -31.6674957 12.0540811 -42057 000 6214777.601 102679328.105 599102.779 -31.9464937 12.0540821 -42174 000 621477.701 102295583.331 598764.886 -31.4067457 12.17470	•	LA81540.31	101463373,161	6031469.414	-31,49070696	13.	62404	
6433652.528 101691153.250 6024419.402 -31.57453375 13.11604003 -441080 641035652.528 101691153.250 6017257.944 -31.65785841 13.0498379 -4411000 64103566.525 101804187.538 6021082.604 -31.65785842 12.98358199 -441300 6372020.568 101916649.772 60117257.944 -31.65785842 12.91711274 -42176 6113230.558 101916699.7	, c	46.09277.48	101577547.970	6027958.331	-31,53268306	13.	40762	
64063666.525 1018044187.538 602082.604 -31.61625841 13.0498379 -441407 64063665.525 10181649.772 601736.36.49 -31.6593274 12.9483379 -441730 6351615.74 1020538.292 601736.36.49 -31.6993274 12.9471474 -4205376 60364255.185 102139851.837 6009984.788 -31.7406997 12.8581899 -441730 100 6296313.970 102260789.049 6006306.266 -31.8488425 12.8570226 -422376 102360748.369 6006306.266 -31.8488425 12.8570226 -422376 102360748.369 6006306.266 -31.8488425 12.8570226 -422376 102470329.039 59984.789 -31.8632947 12.84966125 -442378 102697329.09 59984.789 -31.8632947 12.8496611 -43573 102697329.09 599122.779 -31.90474990 12.86496619 -443573 102697329.105 599546.860 -32.9463399 12.851499641 -443573 102697329.319 599546.860 -32.0643539 12.87970281 -444373 10.867075.892 103149573.892 599544.893 12.818646.860 -32.0643539 12.87970281 -444973 100 610482497.407 103221065.196 597772.824 -32.96609577 12.2437639 -446278 100 610482497.407 103221065.196 5976772.824 -32.9669329 12.3118226 -446378 100 60204573.853 103425539 10344435.725 595931.467 -32.26619959 11.90125330 -466278 100 59089420.403 103409573.83 103637109.775 595931.467 -32.36645339 11.90125330 -466378 100 59089420.405 103841456.337 5976031 11.90125330 -466378 100 59089420.405 103841456.337 5976031 11.90125330 -466378 100 59089420.405 103841455.775 5976039 -32.3469333 11.76219664 -47559 100 59089420.405 103841455.775 5976039 -32.3469333 11.76219664 -47593 103637109.775 5976030 -32.3469333 11.76219664 -47593 103637109.775 5976030 -32.3469333 11.76219664 -47593 103637109.775 5976030 -32.3469333 11.76219664 -47593 103637169.775 5976030 -32.3469333 11.76219664 -47593 103637169.275 5976030 -32.3469333 11.76219664 -47593 103637169.736 59369736.836 103841435.775 5947758.773 -32.38480813 11.76219664 -47593 1036341692330 -47593 1036341435.775 5947758 100 59487122 -35.94810 -77.37316 100 59487169 11.7837316 -47593 1036341692320 -47593410 -47593 1036341692320 -47593410 -47593 103634169238 11.7763386 -47593 103634169238 11.7763386 -47593 10363410 -47593 1036341692330 -47593 103644435.773 -	, –	4336652.52	101691153,250	6024419.402	-31,57453375	13.1	41084	
0.0 0.37 9 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	4063666,52	101804187.538	6020852.604	-31,61625841	13.	41407	
6.3516615.754 102028536.292 6013555.309 -31.6993714 12.91711274 -4.2053 10213951.837 6010994.768 -31.7406697 12.85048612 -4.2376 -4.2376 -31.8659359.2247 12.85048612 -4.2376 -4.2376 -31.8659359.2247 12.85048612 -4.42376 -31.8659359.2247 12.85048612 -4.42376 -4.42376 -31.865912.224 -31.865912.77 -31.865912.77 -31.865912.77 -31.865912.77 -31.865912.77 -31.865912.77 -4.3518 -4.43748 -4	0	3790320.56	101916649.772	6017257,914	-31,65785642	12.	•41730	
0.0 62942553.185 102139851.837 6019984.768 -31.74066997 12.85046812 -42700 0.0 62968133.970 102250589.049 60102599.782 -31.80296937 12.76370226 -43700 0.0 6269823.920 102250748.569 60102599.782 -31.80296937 12.7657022 -43700 0.0 62418230.056 102470329.039 5998865.294 -31.806392470 12.64966319 -433048 0.0 62418270.056 102470329.039 5998102.779 -31.90474960 12.56240821 -433948 0.0 61242747.601 102579329.105 5995102.779 -31.90474960 12.56240821 -445739 0.0 6134191.344 102902833.319 59974932.584 -31.90474960 12.56240821 -445739 0.0 6134191.344 102902833.319 59974932.584 -32.905643539 12.37970281 -44973 0.0 6137307.547 103009498.218 5997772.024 -32.90673233 12.37970281 -44973 0.0 6137307.547 103009498.218 597772.024 -32.10689547 12.24378337 -44973 0.0 610482497.407 103229964.483 5967978.628 -32.10689547 12.10723997 -449529 0.0 610482497.407 103329964.483 5967978.628 -32.34691858 11.9707096 -46078 0.0 610482497.407 103529964.483 5967978.628 -32.34625338 11.76219664 -47598 0.0 610482497.407 10353998.142 595938.467 -32.38425338 11.76219664 -47598 0.0 610482497.407 103541455.727 5947758.773 -32.38480813 11.76219664 -47598 0.0 610482497.407 103841455.727 5947758.773 -32.38480813 -32.38480813 -47593 0.0 61048247.605 103841435.727 -46078 -46078 -46078 0.0 61048247.605 1038414435.773 -46078 -47598 0.0 6104824169238408 -475934738 -47598 -47598 0.0 61048247695.620 103841435.773 -47598 -47598 0.0 61048247695.620 103841435.773 -47598 -	00	3516615.75	102028538.292	6013635,309	-31.69932714	12.	42053	
Color Colo	00	3242553.18	102139851.837	6009984.768	-31.74066997	12.	42376	
10	00	2968133.97	102250589.049	6006306.266	-31,78188425	12.	42700577	
100 62448230.056 102470329.039 5998865.294 -31.86392470 12.64966319 -43348 100 62142747.601 102579329.105 5995102.779 -31.90474960 12.58240821 -43573 100 61366912.984 10267323.319 5987493.584 -31.9454433 -443298 100 61590727.342 102795582.98 5987493.584 -32.02643539 12.4474270 -443298 100 6137307.547 103009498.218 5973742.024 -32.02643539 12.3182126 -44648 100 60760075.692 103115575.945 5975869.054 -32.1669247 12.3182126 -44648 100 6076075.692 103115575.945 5975869.054 -32.1669247 12.437837 -45529 100 6076075.692 10312576.945 597391.131 -32.1669247 12.1072397 -45628 100 6076075.5062 5963797.471 12.037323 12.0373233 -45628 100 5948743.293 10353398.142 595997.477 12.26619959 11.76219664 -47592 <td>00</td> <td>2693359.22</td> <td>102360748.569</td> <td>6002599.782</td> <td>-31,82296937</td> <td>12.</td> <td> 43024573</td> <td></td>	00	2693359.22	102360748.569	6002599.782	-31,82296937	12.	43024573	
0.0 62142747.601 102579329.105 5995102.779 -31.90474960 12.58240821 -43573 -4366912.984 102687747.409 5991312.216 -31.94544343 12.51499641 -443593 10268777.777.7342 102902833.319 5983646.860 -32.02643539 12.44742790 -444648 -446487307.547 103009498.218 5973772.024 -32.02643539 12.37970231 -4464973 -446737307.547 103009498.218 5973772.024 -32.02643539 12.37182126 -4464973 -446737307.547 103009498.218 5973772.024 -32.06673223 12.37182126 -4467373 -45299 -46278	0	2418230.05	102470329.039	5998865.294	-31.86392470	12.	43348825	
61866912.984 102687747.409 5991312.216 -31.9454343 12.51499641 43998 100 61590727.342 10279582.598 5987493.584 -31.98600557 12.44742790 44323 100 61314191.814 102012833.319 5983646.860 -32.02643539 12.37740281 44928 100 610482497.407 1031019948.218 597772.04 -32.016689547 12.24378337 45299 100 602457.407 103221065.150 597786.024 -32.11689547 12.24378337 45299 100 602457.407 103221065.150 5977978.628 -32.14692447 12.17558927 45299 100 59926306.200 10342072.596 5967978.628 -32.14692447 12.17558927 45278 100 59926306.20 10343071.20.776 59567978.628 -32.14692447 12.0723907 456278 100 5947436.628 595731.40 -32.2657777 12.0723907 456278 100 594746.628 -32.34568523 11.7621964 45931 100 <td>0</td> <td>2142747.60</td> <td>102579329.105</td> <td>5995102,779</td> <td>-31,90474960</td> <td>12.</td> <td>43573330</td> <td></td>	0	2142747.60	102579329.105	5995102,779	-31,90474960	12.	43573330	
100 61590727.342 102795582.598 5987493.584 -31.98600557 12.44742790 -44323 100 61314191.814 102902833.319 5983646.860 -32.02643539 12.37970281 -44648 100 61037307.547 103109498.218 5975863.064 -32.02643539 12.24378337 -445293 100 60760075.697 103115575.945 5975863.064 -32.10689547 12.24378337 -445293 100 60204573.853 103325964.483 5967978.628 -32.14692447 12.17558927 -45625 100 59926306.200 10343072.596 5967978.628 -32.14692447 12.17558927 -45627 100 59926306.20 10343072.596 5967978.628 -32.14692447 12.1072397 -45627 100 59926306.20 10343072.596 5967978.628 -32.14692447 11.9700709 -45278 100 5994765.418 -32.2661959 11.97070709 -45278 -46074 101 5984965.429 -32.34603337 11.83228010 -47259 <	0	1866912.98	102687747.409	5991312.216	-31.94544343	12.	43998	
61314191.814 102902833.319 5983646.860 -32.02643539 12.37970281 -44648 100 61037307.547 103009498.218 5979772.024 -32.06673223 12.31862126 -44973 100 60482497.407 103221065.150 5973772.024 -32.1668947 12.24378337 -445299 100 60482497.407 103221065.150 597378.628 -32.14692447 12.17558927 -445299 100 60482497.407 103325964.483 5967978.628 -32.14692447 12.17523907 -46578 100 5992647695.620 103430272.596 5963991.131 -32.26619959 11.97007096 -46578 100 59368743.293 103637109.776 5959975.418 -32.3668521 11.97007096 -46578 100 59389450.405 10373963.154 595189.258 -32.3450337 11.83228010 -47593 100 59809450.405 103841435.727 5947750.012 -32.38480813 11.76219664 -47592 101 58809736.965 103841435.727 5947750.012 -32.38480813	0	1590727.34	102795582.598	5987493.584	-31.98600557	15.	44323	
010 61037307.547 103009498.218 5979772.024 -32.06673223 12.3182126 -44973 100 60760075.692 103115575.945 5975869.054 -32.10689547 12.24378337 -45299 100 60482497.407 103221065.150 5971937.929 -32.10689547 12.17558927 -45299 100 60204573.853 103325964.483 59673978.628 -32.18681858 12.10723907 -45299 100 59926306.20 103430272.596 596391.11 -32.2665777 12.0387393 -46678 100 59989450.405 103533983.14 5955931.467 -32.3658521 11.97007096 -46678 100 59989450.405 103739636.154 5951859.258 -32.34503337 11.83228010 -47593 100 59889818.144 103841435.727 5947750.012 -32.38480813 11.76219664 -47592 101 58809736.965 103841435.727 5947750.012 -32.38480813 11.76219664 -47592 102 58809736.965 103841435.727 5947750.012 -3	0	1314191.81	102902833,319	5983646.860	-32.02643539	12,37970	44648	
100 60760075.692 103115575.945 5975869.054 -32.10689547 12.24378337 -45299 103221065.150 5975869.054 -32.14692447 12.17558927 -456259 103221065.150 597686.28 -32.14692447 12.17558927 -456259 1031325964.483 5967376.628 -32.14692447 12.10723907 -45628 1031325964.483 5967376.628 -32.26657377 12.013673293 -46628 10353398.142 5959975.418 -32.26657377 12.01367393 -46628 10353398.142 5959975.418 -32.26619959 11.97007096 -46628 103637109.776 5959975.467 -32.3658951 11.97007096 -465931 103739636.154 5951859.258 -32.3450337 11.83228010 -475593 -47588 11.76313624 -47592 -47592 11.76313624 -47592 -4759	00	1037307.54	103009498.218	5979772.024	-32,06673223	12.31182	+4973	
100 601482497.407 103221065.150 5971937.929 -32.14692447 12.17558927 45625 100 60204573.853 103325964.483 5967978.628 -32.18681858 12.10723907 45625 100 599263106.200 1034302722.596 5963991.131 -32.26657717 12.03873293 466278 100 59447695.620 103533988.142 5959375.446 -32.26695959 11.97107096 466278 100 59369450.405 103739636.154 5955931.467 -32.30568521 11.90125330 46931 100 59889450.405 103739636.154 5951859.258 -32.3450337 11.83228010 47593 101 58809818.144 1038414356.727 5947750.012 -32.38480813 11.76219664 47592 102 SMA ECC ONEGA INC -47592 PULSES 1.283416923E+08 1.7393473E-01 173.78856 2.887122 -35.94810 -77.37316	0.0	0760075.69	103115575.945	5975869.054	-32,10689547	12.24378	+5299	
100 60204573.853 103325964.483 5967978.628 -32.18681858 12.1072390745951 100 59926306.200 103430272.596 5963991.131 -32.22657717 12.0387329346278 100 5947695.620 1035373988.142 5959575.418 -32.22657717 12.0387329346278 100 5936743.293 103637109.776 595931.477 -32.33568521 11.9012533046594 100 5989450.405 103739636.154 5951859.258 -32.336425338 11.7631362447259 101 58809818.144 103841435.727 5947750.012 -32.38480813 11.7621966447592 102 58809736.965 103841435.727 5947750.012 -32.38480813 11.7621966447592 1038416923E+08 1.7933473E-01 173.78856 2.87122 -35.94810 -77.37316		0482497.40	103221065,150	5971937,929	-32,14692447	12,17558	+5625	
100 5996306.200 103430272.596 5963991.131 -32.22657717 12.038732934627827 100 59368743.293 103637109.776 5959375.418 -32.26619959 11.970070964660497 100 59389450.405 103739636.154 5951859.258 -32.33689521 11.901253304693190 100 59889450.405 103739636.154 5951859.258 -32.33450337 11.832280104759917 100 59889450.405 103841435.727 5947758.773 -32.38480813 11.762196644759237 100 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237 100 58809736.965 103841435.727 103841435.727 100000000000000000000000000000000000		0204573.85	103325964,483	5967978.628	-32,18681858	12.10723	. 45951	
100 59647695.620 103533988.142 5959375.418 -32.26619959 11.970070964660497 100 59368743.293 103637109.776 5955931.467 -32.30568521 11.901253304693190 100 59089450.405 103739636.154 5951699.258 -32.3450337 11.832280104725907 100 59089450.405 103841435.727 5947758.773 -32.38480813 11.76219644759237 12.83416923E+08 1.7993473E-01 173.78856 2.87122 -35.94810 -77.37316	, c	9926306.20	103430272,596	5963991.131	-32,22657717	12.03873	.4627827	
100 59368743.293 103637109.776 5955931.467 -32.30568521 11.901253304693190 100 59089450.405 103739636.154 5951859.258 -32.3450337 11.832280104725907 100 59889450.405 103841565.931 5947758.773 -32.38425338 11.763136244759841 101 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237 102 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237 102 58809736.965 103841435.727 100000000000000000000000000000000000	, =	9647695.62	103533988.142		,2661995	20	• 4660497	
100 59089450.405 103739636.154 5951859.258 -32.34503337 11.832280104725907 100 58809818.144 103841565.931 5947758.773 -32.38425338 11.763136244758841 100 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237 100 100 100 100 100 100 100 100 100 100	Э с	06.5478350	103637109.776	4	3056852	1.9012533	4693190	
100 58809818.144 103841565.931 5947758.773 -32.38425338 11.763136244758841 101 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237 101 102 10283416923E+08 1.7993473E-01 173.78856 2.87122 -35.94810 -77.37316	,	0080450.40	3739636-15	951859.2	32,3450333	1.8322801	4725907	
DEL 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237 FR ARC SMA ECC OMEGA INC NODE TA PULSES 1.283416923E+08 1.7993473E-01 173.78856 2.87122 -35.94810 -77.37316	9 0	8809848.14	3841565.43	947758.7	32,3842533	1,7631362	4758841	
_ 58809736.965 103841435.727 5947750.012 -32.38480813 11.762196644759237. Arc SMA ECC ONEGA INC NODE TA ULSES 1.283416923E+08 1.7933473E-01 173.78856 2.87122 -35.94810 -77.37316	•							
R ARC SMA ECC OMEGA INC NODE PULSES 1.283416923E+08 1.7933473E-01 173.78856 2.87122 -35.94810	Ē	8809736.96	3841435.72	947750.01	32,3848081	.7621966	.4759237	
PULSES 1.283416923E+18 1.7933473E-01 173.78856 2.87122 -35.94810	0		ECC	OMEGA	INC			
	PULS	S	+08 1	11		35.94810	7316	

	6.16167778450E+05 5.17551306698E+00	• • 1.25440899875E+04				6.16345820018E+05 5.17551306698E+00	• • 1.25440167805E+04
OF INFLUENCE OF VENUS AT DATE 2443857.39948677	1.84943221199E+05 4.28881601958E+05 4.01894647432E+05 -1.60842615751E+00 -3.50281023521E+00 -3.45387047506E+00	4359E+04 B.T 1.11204243509E+04 B.R .		SPHERE OF INFLUENCE	OF INFLUENCE OFVENUS AT DATE 2443857.39908847	1.84998571953E+05 4.29002144133E+05 4.02013505444E+05 -1.60842615751E+00 -3.50281023521E+00 -3.45387047506E+00	2230E+04 B.T 1.11203573706E+04 B.R .
SPACECRAFT PIERCED SPHERE OF IN	POSITION 1.	3 1.57635924359E+04 INCLINATION = 63.61		INTERPOLATED INFORMATION AT SPH	SPACECRAFT PIERCED SPHERE OF IN	POSITION 1.	3 • • • 1.67634932230E+04 INCLINATION = 63.61

		VELOCITY 37.87345036 37.87345036 5.23338930 17.56848860															
		Z-DOT -1.67332788 -1.67332788 -3.49288922 -1.67332788			TIME	-70537.94			-140.55	-270.68				-151.78	-292•40		
		Y-DOT 4 -13.13631803 4 -13.13631803 9 -3.54110303 7 -16.62562017			RP/RA T	8621.21 -7	6750.00 47250.00		8621.21	8582.67 47250.00				8621.21	8576.90 60038.33		
6766		x-DOT -35.48288834 -35.48288834 -1.62747589			N/I	63.53 -161.06	63.53 -161.06		63.53 -161.06	63.53 -161.06				63.53 -161.06	63.53 -161.06		
28837.89949		21.45 21.45 68.34 04.15	2.000		M/TA	-102.50 -124.00	-97.50 0.		-102.50 -9.34	-97.50				-102.50 -10.73	-97.50 -15.73		
JULIAN DATE	+		OPER= 5		A/E	-12625.2 1.68285	27000.0		-12625.2 1.68285	27916.3 .69256				-12625.2 1.68285	34307.6 .75000		
15.657 JUL]	TOW + NOF	Z-COMP 3351068.81 3351068.81 251961.91 3351068.81	150000		R /v	391668.3 5.23339			8693.5 10.02307	8693.5 7.94330	2.07977			8716.8 10.01308	8716.8 8.06621	1.94687	2.07977
9 35 15	3 KMXQ	Y-COMP 103833709.73 103833709.73 276881.58 -42325152.81). 000 E=		21/2	254318.5 -3.53148			-7223.3	-7223.3 -1.95784	.51261	3.375E+03		-7170.0 -2.54570	-7170.0	26767.	.51261
120.199 DAYS 12 15	3 KTYP	ω	NT A= 27000•000		Y / / Y	-32265.1 .54708			4452.2	4452.2 -1.55674	.40759			4493.4	4493.4-1.54473	.37284	.40759
AT 1978	KUR	AGECRAFT STAT X-COMP -28741310.05 -28741310.05 115134.18 -46523784.51	ĒVĒ	INSERTÍON EVENT	×//×	296116.8 -3.82332			1891.8 -9.51316	1891.8 -7.53919	1.97396	=-1.448E+04		2093.5 -9.49233	2093.5 -7.64670	1.84562	1.97396
GUIDANCE EVENT CALENDAR DATE	EVENT CODES	CURRENT SPACECRAFT REFERENCE X 131 INERTIAL -2874131 SUN -2874131 VENUS 11513	INSERTION DECISION PLANAR OPTION TARGET PARAMETERS	COPLANAR INSERTIO	EVENT	DECISION	TARGET ORBIT	MODIFY RP	PRE-INSERTION	POST-INSERTION	INSERTION VEL	HODIFY RA CANDIDATE SMA S = SOLUTION INVALID	MODIFY SMA	PRE-INSERTION	POST-INSERTION	INSERTION VEL	SELECTED CORREC

		VELOCITY 39.56471886	39.56471886 9.98262924	23,41160335							
		Z-DOT 83882848	83882848	83882848							
		Y-DOT -19.93538767	-19.98548767	-23.04696731			ΤΑ	-10.13130	-15.25729	-10.13130	-15.25729
2:		X-DOT Y-34.13543085 -1	-34.13543085 -1.	-4.02949577 -2			NODE	-84.06486	-84.08115	-161.14760	-161.16356
28838.71427		35.83	107543795.83 -3 ¹ 8788.57	64071273.15 -		643	INC	60.39051	60.38419	63.59727	63.59127
JULIAN DATE	MDL 1					2.07976843	OMEGA	-103.90760	-98.77356	-102.64665	-97,51356
33.046 JUI	GM S EXMX	Z-COMP 3219391.56	3219391.56 -6978.19	3219391,56		.53584847	ECC	1.6832768E+00	6.9423570E-01	1.6392768E+00	6.9423570E-01
3 DAYS 16 5 8	KTYP 3	Y-COMP 102857165.86	102857165.86 3150.83	-43532275.83		2,00730507	SMA	-1.262552949E+04	2.832781908E+04	-1.262552949E+04	2.8327819085+04
AT 121.01 1978 12	KU3 3	ACECRAFT STATE X-COMP -31236308.54	-31236308.54 -4314.53	-46901007.59	_	.09502502	EL EMENTS	SE			
GUIDANCE EVENT AT 121.013 DAYS CALENDAR DATE 1978 12 16	EVENT CODES	CURRENT SPACECRAFT STATE REFERENCE X-COMP INERTIAL -31236308.54	SUN -3123	EARTH -4590	EXECUTION EVENT	DELTA V =	DOMINANT BODY ELEMENTS PLANET ECLIPTIS	BEFORE IMPULSE	AFTER IMPULSE PLANET EQUATORIAL	BEFORE IMPULSE	AFTER IMPULSE

AT DATE. . . . 2443858.71784429 SPACECRAFT REACHED POINT OF CLOSEST APPROACH OF VENUS

8.66193337431E+03 7.97097655917E+00 -7.45891062252E+03 -9.95472606517E-01 7.47453026131E+02 -7.90460103986E+00 POSITION. -4.33993733595E+03 VELOCITY. . . . 2.50567350507E-01 INCLINATION = 63.59

AT DATE. . . . 2443858.71765341 INTERPOLATED INFORMATION AT CLOSEST APPROACH SPACECRAFT REACHED POINT OF CLOSEST APPROACH OF VENUS

8.66152459987E+03 7.97119859839E+00 -7.44198654885E+03 -1.05689567625E+00 POSITION. . . . -4.34377459084E+03 8.77762442151E+02 VELOCITY. . . 2.14772172746E-01 -7.89790171744E+00 INCLINATION = 63.59

TACA= 2.83256689E+04

Case N-3. Lunar Viking '76 Mission

TARGETING OF LUNAR PATCHED CONIC

B.T B.R	53946.9 -6370. 56065.9 -7276. 53333.5 -10647.	TARGETS CORRECTION -7200.0 1.000 96.0 -10.000 -5418.7 10.000	3) B.T B.R 56 41370.9 -14702.6	56 40936.7 -14707.4 58 44082.6 -15852.9 61 39754.1 -18942.0	TARGETS CORRECTION -7200.0 .759 92.8 -10.000 -5231.2 5.363) B.T B.R 6 27858.3 -17136.9	56 27391.3 -17105.2 59 31200.6 -18459.5 61 26086.7 -21320.8	TARGETS CORRECTION -7200.0353 90.3 -10.000 -5092.6422) B.T B.2 9 20818.7 -13322.2	.8 20300.1 -13277.0 11 24485.0 -14740.5 4 19199.3 -17625.8	3) B.T B.R 36 2172,9 -6226,9	36 1617.5 -6151.2 38 6231.6 -7692.2 41 851.3 -10696.8	TARGETS CORRECTION -7200.0047 95.6 -2.308 -5410.9006	B.T. 8.R.
VSI(2) VSI(3)	25 18 13	E220RS -4.09E+01 -5.42E+04 8.95E+02	VSI(2) VSI(3) • 19	.704 .15 .698 .15 .693 .16	ERRORS -5.90E+02 -4.13E+04 9.47E+03	VSI(2) VSI(3 .755 .15	.764 .15 .758 .15	ERRORS -9.83E+02 -2.78E+04 1.20E+04	VSI(2) VSI(3	.727 .14 .720 .15	VSI(2) VSIC .693 .13	.702 .694 .692	ERRORS -6.41E+01 -2.08E+03 8.16E+02	VSI (2) VSI (3
SA SA	.823 .67 .379 .68	3.647E-05 -4.200E-04 -8.315E-04	4C VSI(1)	.124 .638 .251 .545 .534 .639	6.116E-06 -4.506E-04 -8.215E-04	NC VSI(1)	.332 .605 .107 .612 .435 .607	5.957E-06 -4.047E-04 -8.263E-04	NC VSI(1) .865 .608	.391 .605 .431 .611 .539 .607	NC VSI(1) •996 •603	.440 .600 .552 .604 .510 .603	1.322E-06 -2.565E-04 -8.099E-04	NC VSI(1)
RCA I	708.3 913.5 666.8	PHI-INVERSE -04 -5.001E-05 -03 1.679E-03 -03 -3.470E-04	RCA I 37790.3 21	37459.6 22 40778.4 22 37898.4 27	PHI-INVERSE 03 -3.158E-05 03 1.096E-03 03 -2.960E-04	RCA I 27075.7 32	26735.5 33 30629.9 32 28030.4 40	PHI-INVERSE 03 -2.336E-05 03 9.100E-04 03 -2.947E-04	RCA II 18912.4 33	18531.3 34 22713.8 32 20205.2 43.	RCA I 2580.9 70	2445.4 75 5084.0 51 5747.7 85	PHI-INVERSE 03 -1.007E-05 03 8.387E-04 03 -2.818E-04	RCA
SMA	-7071 -7062-1	9.510E- 5.336E- -1.900E-	SMA 0 -6610.3	0 -6525.7 0 -6519.5 0 -6634.9	1.021E- 5.605E- -1.567E-	S4A 0 -6217.2	0 -6135.7 0 -6138.4 0 -6232.2	1.092E-	S4A 1 -6634.7	1 -6609.4 -6623.3 -6707.0	SMA -7135.9	0 -7048.7 0 -7096.3 0 -7142.8	1.081E- 5.561E- -1.091E-	AMS
TA SIGMA	00.06 86 90.00 98 90.00	8.425E+00 2.392E+02 1.083E+03	TA SIGMA 498 90.000	498 90.000 498 90.000 498 90.000	6.151E+00 4.042E+02 1.060E+03	TA SIGMA 498 90.00	98 90•00 998 90•00 90•00	3.7715+00 4.429E+02 1.0465+03	TA SIGMA 498 90.000	498 90.000 498 90.000 900.000	TA SIGMA 498 90.000	498 90•000 498 90•000 90•000	1.712E+00 3.304E+02 1.117E+03	TA SIGMA
DELTA THE	.698 -179 .698 -175 .302 -179	2.425E+01 - 4.439E+02 - -2.406E+02 -	JELTA THE 6.302 -189.	6.302 -189. 6.302 -185. 10.302 -189.	2.2695+01 - 6.7795+02 - -2.8765+02 -	DELTA THE 11.664 -199.	11.654 -199. 11.654 -195. 15.664 -199.	PHI MATRIX 1.969E+01 - 8.335E+02 - -3.307E+12 -	DELTA THE	11.242 -209. 11.242 -205. 15.242 -209.	DELTA THE 11.353 -229.	11.353 -229. 11.353 -225. 15.353 -229.	9.904E+00 1.015E+03 -3.663E+02	JELTA THE
ALPHA		8.731E+02 -3.435E+03 -5.616E+02	ALP4A 6.000	6.100 6.000 6.000	8.453E+02 -4.341E+03 -4.835E+01	ALPHA 6.759	6.859 6.759 6.759	8.143E+02 +4.570E+03 3.169E+02	ALPHA 6.407	6.507 6.407 6.407	ALPHA 5.206	6.306 6.206 6.206	8.725E+02 -5.554E+03 7.567E+03	ALPHA
IT R	. 444	•	ITR 2	<i>~~</i> ~		ITR 3	www		ITR 4	***	ITR 6	Φ ′0 Φ		118

TARGETING OF LUNAR MULTI-CONIC

10.000 1976 6 16 18 19 10.366	B.T 8.R TCA 0 1018.2 -4960.5 27929.91774	4 -24.3 -4690.1 27929.90748 0 4211.7 -6152.0 27929.96115 7 3154.0 -5761.1 27929.94619 1 1174.9 -4906.8 27929.91611	SE-02 TARGETS PREDICT CORRECT SE+03 -7200.0002420209026 SE-02 397.390 .07280 .02715 4E+01 -5016.8812079107753 SE-02 27930.0002581510000	8.T 8.R TCA 0 4050.4 -5666.0 27930.03214	4 3921.0 -5636.5 27930.03067 8 3676.1 -5543.4 27930.02726 2 3792.0 -5582.0 27930.02879 6 4063.0 -5660.3 27930.03197	RRORS TARGETS PREDICT CORRECT 20E+02 -7200.000 .01178 .00021 61E+03 435.975 -1.5058402749 63E+02 -5203.230 2.19131 .04000 21E-02 27930.0001327500242	8.T 3.R TCA 382.4 -5361.6 27929.99919	8	ERRORS TARGETS PREDICT CORRECT 7.05E+00 -7200.0030007100071 8.50E+01 467.4520058400584 4.92E+01 -5410.752 .01297 .01297 8.08E-34 27930.0000009200092	8.7 8.2 TCA 1 444.4 -5405.7 27329.99977
w	SMA -6048.	-6002.4 -6198.0 -6148.7 -6043.1	ERRORS -1.15E+03 -6.21E+02 -5.64E+01 8.23E-02	SMA -6580.	-6575. -6565. -6570. -6579.	- 4-61 - 3-61 - 3-61	SHA -7193.	-7196.8 -7196.3 -7195.4 -7193.4	1 1	SMA -7199.1
MAX ITERS 150 MULTI-CONIG STEP INJ CALENDAR DAT	VZ -5.902328	-5.902328 -5.902328 -5.900324	-7.55E-03 1.88E+00 -2.81E+00 -1.03E-01	VZ -5.979928	-5.979928 -5.979928 -5.980128 -5.979928	-1.00E+00 9.02E+00 -1.35E+01 -4.81E-01	VZ -4.183960	-4.183960 -4.183360 -4.183877 -4.183961	4.89E-01 5 4.17E+00 + -9.18E+09 5 7.07E-02	VZ -4.170989
. 10000 . 10000 . 10000	VY -8.777029	-8.777029 -8.775029 -8.777029	ING MATRIX 16 -2.32E-05 6 5.46E-05 16 -9.22E-05 16 -9.81E-06	VY -8.686307	-8.686307 -8.686507 -8.686307 -8.686434	ING MATRIX 16 -3.27E-05 15 1.02E-04 16 -1.64E-04 16 -1.23E-05	VY -9.596955	-9.596955 -9.535313 -9.596955 -9.596816	ING MATRIX 16 -2.046-05 15 5.366-05 15 -1.616-06 15 -9.946-06	VY -9.602158
MAA X X Y V V V V V V V V V V V V V V V V V	VX 2.797551	2.799551 2.797551 2.797551 2.793701	14 1.31E-06 -05 -1.32E-06 -05 2.96E-06 -004 8.15E-06 -004	VX 2.899300	2.899500 2.899300 2.899300 2.898918	TARGETIN 06 2.22E-05 03 -4.85E-05 03 8.47E-05 04 8.97E-05	vx 3.161630	3.161501 3.15153) 3.161633 3.162054	TARGITIN 04 5.24E-06 03 1.73E-05 03 -3.65E-05 04 1.07E-05	VX 3.162868
**************************************	2 -655.3618	-655.3618 -655.3618 -655.3618 -655.3613	2.10E-04 6.90E-05 -1.70E-05 2.22E-04	598£°559~	-655.3855 -655.3865 -655.3865 -655.3864	-4.25E-06 2.07E-03 -3.00E-03 1.78E-04	95£4°559-	-655,4356 -655,4356 -655,4356 -655,4356	3.62E-04 1.08E-03 -2.21E-03 3.37E-04	2 -655,4358
TOLERANCES PER A 25.00 VX .T 25.00 VY .3 25.00 VZ .3 25.00 VZ CA .0050 TI	r -1579, 0456	-1579.0456 -1579.0456 -1579.0456 -1576.2663	TRIX E+04 2,44E+03 E+06 7,83E+04 E+05 2,68E+04 E+01 -8,14E-01	, -1717.7625	-1717, 7625 -1717, 7625 -1717, 7625 -1717, 4855	TRIX E+04 2.26E+03 E+06 6.30E+04 E+05 2.90E+04 E+01 -8.12E-01	, -1991.6911	-1991.6911 -1991.6911 -1991.6911	TRIX =+04 2.23E+03 E+06 5.46E+04 E+05 2.51E+04 E+00 -1.19E+00	f -1992.9528
ν œ œ ⊢	x -6336.7875	-6336.7875 -6335.7875 -5335.7875 -6337.4795	SENSITIVITY MATRIX -7.50E+04 -5.04E+04 1.60E+06 1.07E+06 -5.96E+05 -4.00E+05 2.17E+01 1.42E+01	X -6300.5969	-6300.5969 -6300.5969 -6300.5969 -6300.6724	SENSITIVITY MATRIX -7.11E+04 -4.92E+04 1.87E+06 1.29E+06 -6.13E+05 -4.20E+05 2.44E+01 1.57E+01	× -6219.4317	-6219,4317 -6219,4317 -6219,4317 -6219,3438	SENSITIVITY MATRIX -9.34E+04 -4.0 8E+04 2.31E+06 1.01E+06 -5.25E+05 -2.32E+05 2.25E+01 9.78E+00	-5219.0275
TARGETING SCHEME TARGETS SWA -7200.00 INC 89.000 RCA 1R20.00	JULIAN JATE 27926.26331	27926,26331 27926,26331 27926,26331 27926,26531	SENS 2.28E+04 -7.50 -5.21E+05 1.60 1.35E+05 -5.96 -5.13E+00 2.17	JULIAN DATE 27926.16331	27926.16331 27926.16331 27926.16331 27926.16351	2.31E+04 -7.11 -6.47E+05 1.87 1.48E+05 -6.13 -7.32E+00 2.44	JULIAN DATE 27925.96466	27925.96466 27925.96466 27925.96465	SENS 2.99E+04 -9.34 -7.82E+05 2.31 1.29E+05 -5.29 -6.35E+00 2.29	JULIAN DATE 27925.96374
_	I TER 0	0000		ITER 1	ਜਿਜਜ		ITER 100	100 100 100		ITER 101

SUMMARY OF MULTI-CONIC TARGETING

						Ħ
V 10.936285 10.941606				TARGET TRAJ DAY 0.	0 0	BAOITS BIT 3 8 4 3 8 4 3 8 4
त स				7 08 ₹	200	# # # # # # # # # # # # # # # # # # #
V2 -4.170989 -4.170867				TARGET JULIAN DAY 27930.000	0. -693991, 500	DV Z 0. 0.
5.8				•	• •	0. 0. 0.
VY -9.602158 -9.510995				ATE O	00	
× × 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.				TARGET CALENDAR DATE 6 20 12 0	- C	0.0 0.0
	m o			TARGET Endar 20 12	00	
3 6 8 3 8 1	н н + 0 + 1			CALI	00	L3 .01 0.
VX 3.162868 3.154781	-1.0766319127E+03 -4.1708666790E+00 AZI 90.00			1976	0 0	TOL3 .0 0.
נאקינאו ניאן ניאו	6631 1866 90					0.0
4 4 6 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.07 4.17 AZI			EVENT TRAJ DAY 0.	• •	TOL2 1.00 0.
. 963 2 3650 3717				EV RAJ	0 0	⊢
27925,96374 R 6563,365000 9958,371762	+03 +00 15 • 04 15 • 04					70L1 25.00 9.
20 99	19E+			NT 0 40 6.	• •	TOL1 25. 9.
TE 815 913	14293 15312 THD			EVENT JULIAN DAY 27925.964	0 6	
4 DA 2 435	5555 1099 52 16			מה מ		14R3 930.0 5.0
47.268 JULIAN DATE Y 292.952778 -655.435815 065.554292 -1076.631913	-9.8424908396E+03 1.0655542919E+03 3.1545808277E+00 -9.6109953127E+30 LAUNCH PROFILE PARAMETERS .00 T1 500.0 LAT 28.32 THO 15.			2 6 8		TAR3 27930.00 5.00
3 17	MET.			in 4		
47.268 Y 1992.952778 1065.554292	+03 +00 PARAN LAT	•			0 0	AR2 89.00 .40
47.268 Y 992.95	96E 77E 1 10			EVENT NDAR 6 11	0 0	TAR2 89.0
	308396 308277 3081LE 500.0	. 50E-05 0 ISTART		EVENT CALENDAR DATE 6 16 11 7 47.268		
9 - 7	9.8424908396E+03 3.1545808277E+00 UNCH PROFILE PAR 0 T1 500.0 LA 0 T2 100.0 LO	2.50 S 0 I S		ວິຈ	0.0	000
5 11 2751 1084	-9.8424908396E+03 3.1545808277E+00 AUNCH PROFILE PAR 00 T1 500.0 LA	TEP		1976		TAR1 1820.00 3000.00
4 × 6 × 5	2 -9 3 LAU 17.00	GV		E E	NI PO	+4 M
1976 6 16 11 7 X -6219.027516 -1 -9842.490840 1	IETERS ZDAT A1 1	SCHEME ACCYS HAX SAD STEPS MATRIX 0	ULE	REF CODE 1		> M = =
1	1MET 2D A1 A2		HED	H.W.	.30	TAR KEY 7 8 3 1 0 0 0 0 0
TE PTI(E31	PAR!	O O C	T SC	REF TIME 0.	**	1 A 7 0
DAT STA ECLI	ATE PARI 0 10 5553.4 3.700	ARGE S TER	VEN	PR		0
ECTION DATE ECTION STATE EARTH ECLIPTIC BARYCENTER ESL	ITERATE P IZERO 18 RP 6553 FI 3.7	RAL TARGETI LEVELS 0 MAX ITERS IBAST 0	3 E	EVENT TYPE 1	E 4	5444
INJECTION DATE INJECTION STAT EARTH ECLIP	ZERO ITERATE PARAMETERS IZERO 10 ZDAT RP 5553.4 A1 FI 3.700 A2	GENERAL TARGETING LEVELS D MAX ITERS D IBAST D	GUIDANCE EVENT SCHEDULE	⊢× zu		IND IMP MOD 1 3 1 2 4 1 3 3 1
ž Ž	ZER	ຂ ພ	GUI	EVENT INDEX 1	N M	1 2 2 E

	Y-DOT Z-DOT VELOCITY -9.610 99531 -4.170 85668 10.94160531 -9.60215803 -4.170 98914 10.93528460 -10.33012884 -4.16090124 11.40948135					DAUX(2) DAUX(3) ISTOP DELT 89.00 27930.00 2 4.440	- 4UX - 6- AUX - 3- INCR CPT 0 -5421.798 27930.002 542 136			1A	3,56901 3,56901	3,56901 3,56901
	007 3.15458083 -9 3.16286763 -9						AUX - 5 428.01			NOOE	4.12243 4.12243	2.22430 2.22490
27 925 • 9637 4	×	£ 0				DAUX(1) 1820.00	TAR - 3- 27930.002			INC	23.04528 23.04528	• 45843 • 45843
DATE	1 RADIUS 9958.37 555.3.36 395687.54	-1.0766319127E+03 -4.1708666790E+00	r	v) KAXTAR 0 5 6 3	TAR - 8- 89.420		. c	OMEGA 1	-168.78924 23 -168.78924 23	-166,52789 46.
47.268 JULIAN	3 MJL Z-COMP -1076.63 -555.44 -35351.45	542919E+03 -1.0 353127E+00 -4.1	14. 14. 14.) JTAR(3)	TAR - 7- 1821.498		•0	ECC	6940640E-01 -16 6940640E-01 -16	6940640E-U1 -16 6940640E-01 -16
7 47.	1 KMXQ HP 5.55 1.50	06555 61099	10-XRF 11-YRF 12-2RF	TOLE RANCE 25.000 1.000		OTAR(2) 89.00	VZ ••1703667		-		9 6	9.0
DAYS . 16 11	Y-C0 106 -199 24995	+2E+	TIONS 7-2CA 8-INC 9-ASI		-05 000E-01	0TAR(1) 1820.00	7		0•	SMA	2.143291105E+05 2.143291105E+05	2.143291105E+05 2.143291105E+05
AT 1). 1975 6	KUR 1 EC34FT STATE X-COMP -9842.49 -6219.03 -304701.74 TARGETING EVENT	. 1545	KEY DEFINITIONS 4-TCA 5-8.T 6-8.R	SPECIFICATIONS TARSET VALUE 1820.000 89.000 27930.000	SCHEME S 2.500E-05 1.0000000E-	KELTAR 7 8 3	VY 8 -9.6139953			EMENTS		
GUIDANCE EVENT	EVENT CODES CURRENT SPACECRAFT REFERENCE X-(INERTIAL -621 EARTH -621 HOON N-BODY TARGET	STATE -9. 3 JULIAN DATE	PARAMETER 1 1-TRF 2-TSI 3-TCS	TARGETINS S KEY 7 7 3	TARGETING SCHEME LEVELS 2. DVMAX 1.0 IBAST 3	IND NOF PHS KE	ACCURACY VX 2.50E-05 3.1545808	EXECUTION EVENT	DELTA V = 0.	DOMINANT BODY ELEMENTS	1 BEFORE IMPULSE	PLANE! ENDAIDSEAU BEFORE IMPULSE AFTER IMPULSE

		SPACE TRAJ PROBLEM	TRAJECTORIES PROBLEM I PAGE 2	
A.32	. Y - СОМР.	Z - COMP.	RESULTANT	
TRAJECTORY TIME = 0.	TOTAL TIME INCREMENTS =	0		
SPACECRAFT INERITAL TRAJECTORY POSITION	+03 1.06555429194E+03 :+00 -9.61099531272E+00	-1.07663191273E+03 -4.17086667904E+00	9,95837176209E+03 1,09416059129E+01	
计操作法语法 经存货 医神经神经 计存储器 计存储器 计存储器 经收益 医阴道 医外腺 医外腺 医外腺 医多种性 医多种性 医多种性 医多种性 医牙孔 医牙孔 医牙孔 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎 医皮肤炎	化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	化环络抗 电动电话电话 医电子性 医二甲基苯酚 医二甲基苯酚	中原有的原因中原外原外的原外的原因的原因的	*
CALENDAR DATE = JUNE 16, 11 HR, 7 MIN, 47.268 SEC, 1976 JULIAN DATE = 2442945,96374153	1976			
EPHEMERIS DATA POSITION OF EARTH3.62346332392E+03 VELOCITY OF EARTH8.28679986450E-03 POSITION OF MOON 2.94859247199E+05 VELOCITY OF MOON 6.74338154220E-01	3.05850706948E+03 -8.83728976715E-03 -2.48895944589E+05 7.19133525400E-01	-4.21196096638F+02 1.22463146433E-04 3.42748229734E+04 -9.96543581067E-03	4.76039474263E+03 1.21154273789E-02 3.87377016049E+05 9.85892632847E-01	
******************			*****************	*
SPACECRAFT RELATIVE TRAJECTORIES				

4.76037275037E+03 1.21151314561E-02 5.56337676544E+03 1.09362810894E+01 7.17452002649E+04 9.69397966653E-01 -4.21194150779E+02 1.22879738739E-04 -5.55437761955E+02 -4.17098955878E+00 6.60196210683E+04 -7.37795239294E-02 3.05849293966E+03 -8.84026912532E-03 -1.99293864773E+03 -9.60215504359E+00 -2.80126291571E+04 -2.41339059749E-01 -3.62344658410E+03 -8.28317285583E+03 -6.21904425549E+03 3.16286400053E+00 2.018911279245+03 -9.35972466389E-01 3.98602140110E+05 -4.75650325677E-03 VIRTUAL MASS POSITION
VIRTUAL MASS POSITION
SPACECRAFT POS. REL. TO V.M.
SPACECRAFT VEL. REL. TO V.M.
KEPLER (ANG. 401.) VECTOR
ECCENTRICITY VECTOR
V.M. MAGN. = 3.986021 V. M. MAGN. RATE = VIRTUAL MASS DATA

3.95687536220E+05 1.14094813505E+01

-3.53514548861E+04-4.16090124323E+00

2.49951498881E+05 -1.03301288381E+01

-3.04701738039E+05 2.43024267346E+00

٠.

N00 N00 N

010 REL. REL.

POSITION VELOCITY

6.56336499399E+03 1.09362846033E+01

-6.55435816096E+02 -4.17098914219E+00

-1.99295277754E+03 -9.60215803195E+00

-6.21902751567E+03

EARTH Earth

REL. TO REL. TO 1

POSITION VELOCITY

	M
TORIES	PAGE
TRAJEC	PROBLEM 0
SPACE	
COMPUTING	
F 0 R	
PROGRAM	
MASS	
RTUAL	

м	+ N ₽	**	-02 +05
PAGE	RESULTANT	**	2.19922634415E-02 3.92137388799E+05
0		# # #	2.19 3.92
PROBLEM	Z - COMP.	不安全的 计多数 计分析 化环环 医克拉氏氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏氏征 医克拉氏氏征 医克拉氏氏征 医克拉氏氏征 医克拉氏氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏征 医克拉氏征 医二甲基苯酚 医二甲基酚 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	1.94585369758E-03 -3.46960171241E+04
	Y - COMP.	******************	1.67398218618E-02 -1.41298141371E-02 -2.98482693783E+05 2.51944437529E+05
	х - СОМР.	**************	1.67398218618E-02 -2.98482693783E+05
		**	• •
		********	V.M. RELATIVE POSITIONS POSITTON REL. T) EARTH POSITION REL. TO MOON

	5.55358952327£+04 9.21212442584E-01	8.R5.47225030501E+03
2949, 39724678	-5.43436728687E+03 1.70198941133E-01	
AT DATE 2442949.39724678	-2.798369847E+04 4.76614731215E+04 -5.43436728687E+03 4.61377667924E-01 -7.78970587735E-01 1.70198941133E-01	B.T2.3783992168E+02
SPACEGRAFT PIERCED SPHERE OF INFLUENCE OF MOON	POSITION2.798369647E+04 VELOCITY 4.61377667924E-01	B 5.47742642515E+03 B.T INCLINATION = 96.32

	39694294
	AT DATE 2442949.39694294
	AT DATE.
INFLUENCE	E OFMOON
SPHERE OF	- INFLUENC
INTERPOLATED INFORMATION AT SPHERE OF INFLUENCE	SPACECRAFT PIERCED SPHERE OF INFLUENCE OFMOON
ATED INFO	FT PIERCE
INTERPOL	SPACECRA

5.55599853496E+04 9.21212442584E-01	5.47194902927E+03
-2.79958089263E+04 4.76819224154E+04 -5.43883523503E+03 5.55599853496E+04 4.61377667924E-01 -7.78970687735E-01 1.70198941133E-01 9.21212442584E-01	46091E+02 B.R
4.76819224154E+04 -7.78970687735E-01	8.T2.37825246091E+02
• •	5.47711484512E+03 95.32
POSITION VELOCITY	B INCLINATION =

\$	
(*) 计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设	

* * *	
*	
**	
* 22	
*	
*	

**	
*	
* *	
* *	
* * *	
*	
* * *	
*	
* *	
*	
* * * *	
* * *	
* * *	

* * *	
* *	

* * * *	
* *	
* * *	
*	

*	
* * *	
*	
* * *	
* * *	
*	

...

-26377.08 -67.14 -167.09 -357.32 -459.74	35 10 10 10 10 10 10 10 10 10 10 10 10 10	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			1825.0 1.93395 .52502 2.39634 1934.4 2.17989 .21644	1391.7 -1.32347 .35931 1829.7 -1.33035 -1.21019 .12016	1.17196 794.4 .92172 25024 1.30784 432.2 1.18971 11813	973. 973. 0670. 2897. 455. 5040. 1358.	POST-INSERTION INSERTION VEL DDIFY RA PRE-INSERTION POST-INSERTION ODIFY SMA PRE-INSERTION
		•	.,			-1.68168	1.17258	1.35746	POST-INSERTION
-68.12	æ	0.7	U		1825.1	1393.4 -1.68168	793.3 1.17258	872.0	SERTION
									SMA.
					216	201	•	-:	INSERTION VEL
459.7	~ A	.53	140.50	r. •		3.	432.2 1.18971	455.4	POST-INSERTION
-357.3	85	90.70 -138.53	135.50	-7224.0 1.25206	1934.4 2.39634	303	432.2	455.4 1.50405	PRE-INSERTION
			٠						
					52	TU.	~	28970	
•	816. 200.	33	140.50 -10.19	3008.4	182 •93	1391.7 -1.32347	794. 9217	873 • 067	POST-INSERTION
∹	820.8	-138.53	35.				1.17196	873.3	
		~		-7224.0 1.25206	1825.0	1391.7	794.4		NSERTION
		~		-7224.0 1.25206	1825.0	1391.7	794.4		RP NSERTION
26377.0	1800.00 4200.00	٠٠. د	.0	3000.0 .40000 -7224.0	1825.0	1391.7	7.467		ORBIT RP NSERTION
TIME	20.85 00.00	38.5 38.5 390.7 38.5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-7224.0 1.25206 3000.0 .40000 -7224.0	30876.9 .99767 .99767 .825.0 2.45887	893.2 .11653 .1391.7	-20432.0	-23132.6	ORBIT RP NSERTION
	7.RA 20.85 00.00	1/N 38.5 38.5 38.5 38.5 38.5	133 133 140	A/E -7224.0 1.25206 3000.0 .40000	8/V 30876-9 .99767 1825-0 2.45887	2/VZ 893.2 .11653 -1.68277	-20432.0	×/V× -23132.6 .74147	ON ORBIT RP NSERTION
	7.RA 20.85 00.00	1/N 30.70 30.53 30.70 30.70	133 133 140 140	A/E -7224.0 1.25206 3000.0 .40000	8/V 30876-9 . 99767 1825.0 2.45887	2/VZ 893.2 .11653 -1.68277	**************************************	INSERTION EVENT	A NO SA PA
	/RA 20.85 00.00	I/N 1/N 138.5 388.5 7.09 7.09 7.09	1133 140	A/E -7224.0 1.25206 3000.0 .40000	767 767 767 887	3000.000 E= Z/VZ -0 893.2 26 .11653 -4 1391.7	4/VY 20432 657	ECISION EVENT HETERS A= ION EVENT X/VX -23132.6 -	NS ON SERVERS
Z-30T .10557471 25 .10472154 18 .17590141	Y-DJT .101223 .112907 849520 RP/RA 1820.85	01 •422547 •422694 •492981 I/N I/N 38.53 38.53	47.52 39.71 76.94 W/TA W/TA 135.50 133.84 140.50	RA/E -7224.6 1.25200.6 -7224.6	MP 714.92 714.92 942.85 5.0 767	Y-COMP 65110.96 55584.62 26565.43 2/VZ 2/VZ 3 893.2 5 11653	= 3 - 20432. - 55726	CECRAFT STAT 381034.76 385910.24 -15707.36 -15707.36 ECISION EVENT X/VX X/VX -23132.6	CURRENT SPACECRAFT REFERENCE 381034 EARTH 385910 FORMAN 385910 INSERTION DECISION PLANAR OPTION TARGET PARAMETERS COPLANAR INSERTION EVEN EVENT X/VX DECISION -23132, TARGET ORBIT MODIFY RP MODIFY RP
	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	-DOT -42259457 -42259457 -49298162 I/N 90.70 -138.53	47.52 39.71 76.94 W/TA W/TA 135.50 133.84	A/E = 7224.000.000.000.000.000.000.000.000.000.	Z-COMP 19464.20 19714.97 -942.85 -942.85 -942.85 -99767 -99767 1825.0 2.45887		= 31 */// * *65728	CURRENT SPACECRAFT ST REFERENCE 331034.7 EARTH 385910.2 HOON 1NSERTION DECISION EVENT EVENT X/VX DECISION -23132.6 HOONIFY RP	RRENT SPI FERENCE AL SERTION CANAR OPTI RGET PARE ON ORBIT RP
	-67.1 -167.0 -357.3 -459.7	34 -167.0 10 10 -459.7 20 -459.7	.73 1820.85 -67.1 .53 4200.00 -167.0 .70 1820.85 -357.3 .53 29555.20 -459.7	90.70 1816.84 -167.0 -138.53 4200.00 -138.53 1800.00 -459.7 -138.53 29555.20	140.50 90.70 1816.84 -167.0 -10.19 -138.53 4200.00 -357.3 -26.57 -138.53 1800.00 -459.7 -31.57 -138.53 29555.20 -459.7 -135.50 90.70 1820.85 -68.1	1825.0 3008.4 140.50 90.70 1816.84 -167.0 .33608 -10.19 -138.53 4200.00 .357.3 .39608 -10.19 -138.53 4200.00 -357.3 .39634 1.25206 -26.57 -138.53 2955.20 -459.7 .17989 .88519 -31.57 -138.53 29555.20 -459.7 .1825.1 -7224.0 135.50 90.70 1820.85 -68.1 .45980 1.25206 -5.27 -138.53	2.45887 1.25206 -5.19 -138.53 1825.0 3008.4 140.50 90.70 1816.84 -167.0 .52502 .39608 -10.19 -138.53 4200.00 .52502 .39634 -7224.0 135.50 90.70 1820.85 -357.3 2.39634 1.25206 -26.57 -138.53 2955.20 -459.7 2.17989 .88519 -31.57 -138.53 29555.20 -459.7 .21644 -7224.0 135.50 90.70 1820.85 -68.1 2.45880 1.25206 -5.27 -138.53 -4468.0	1391.7 1825.0 -7224.0 135.50 93.73 1820.85 -67.11 1391.7 1825.0 -7224.0 135.50 90.70 1816.84 -167.0 1391.7 1825.0 3008.4 140.50 90.70 1816.84 -167.0 132347 1.93385 .39608 -10.19 -138.53 4200.00 1829.7 1934.4 -7224.0 135.50 90.70 1820.85 -357.3 1829.7 1934.4 1567.6 140.50 90.70 1800.00 -459.7 1829.7 1934.4 1567.6 140.50 90.70 1820.85 -357.3 1829.7 1934.4 1567.6 140.50 90.70 1820.85 -56.1 1393.4 1825.1 -7224.0 135.50 90.70 1820.85 -68.1 1393.4 1825.1 -7224.0 135.50 90.70 1820.85 -68.1	1.35677 1.17196 -1.68277 2.45887 1.25206 -5.19 -138.53 873.3 794.4 1391.7 1825.0 3008.4 140.50 90.70 1816.84 -167.0 1.06707 .92172 -1.32347 1.93395 .39608 -10.19 -138.53 4200.00 -2897025024 .35931 .52502 455.4 432.2 1829.7 1934.4 -7224.0 135.50 90.70 1820.85 -357.3 1.50405 1.30784 -1.33035 2.39634 1.25206 -26.57 -138.53 455.4 432.2 1829.7 1934.4 15677.6 140.50 90.70 1800.00 -459.7 1.36820 1.18971 -1.21019 2.17989 .88519 -31.57 -138.53 29555.20 -1358511813 .12016 .21644 -7224.0 135.50 90.70 1820.85 -68.1 1.35746 1.17258 -1.68168 2.45880 1.25206 -5.27 -138.53 -138.58

~
-
0
Ň
-3
2442950.00142044
0
0
-
_
~~
-
٠.
ú
- 3
•
∾
•
_
•
•
•
•
ATE
=
•
=
\Box
-
⋖
-
~
100H
O
X
CH OF MOON
L
Ö
_
7
-
\simeq
=
PPR 0 A(
Q.
ā.
O.
APPRO
-
in
S
ES.
SES
OSES.
LOSES
CLOSES.
CLOSEST A
- CLOSES
OF CLOSES
P.
POINT OF

POSITION.	•	•	5.33426293421E+02	-1.13122452789E+03	5.33426293421E+02 -1.13122452789E+03 1.339392900E+03 1.83429162223E+03	1.83429162229E+03
VELOCITY			1.04727564992E+00	-1.48735591313E+00	1.04727564992E+00 -1.48735591313E+00 -1.64553378293E+00 2.45291567935E+00	2.45291567935E+00
INCLINATION = 89.98		33.	98			

AT DATE. . . 2442950.00127019 INTERPOLATED INFORMATION AT CLOSEST APPROAGH SPACECRAFT REACHED POINT OF CLOSEST APPROAGH OF MOON POSITION. . . . VELOCITY. . . . INCLINATION = 8

		VEL OCITY	2.03454830 2.03167552	2.45203772								
		7-001	-1.74865940 -1.74955092	-1.67611210								
		Y = 90T	51794470	-1.45054808				ΤA	3.24488	2.96591	3.24488	2 • 95 5 91
2			.90183722	1.03437737 -				NODE	120.72348	120.94039	-133.59525	-138.39345
27930.00175		7-0-x S	400032 . 59 404943 . 05				. +6	INC	85.12325	34.90631	88.97857	38.74912
JULIAN DATE	MDL 1	RADIUS					.52501894	0ME3A	131, 87761	132,13773	135,23037	135,55532
32,053 JUL	KMXO 2 MDL	7-COMP	19810.11	1290.71			.33541619	ECC	1,2532630E+00		1.2532630F+00	7.9405798E+01
4.038 DAYS 6 20 12 2	K TYP 3	4-CO4P	62425.51 63209.10	-1174.61			.33752312	SMA		3.028569855E+13	-7.242496663E+03	
975	KUR 2	RAFT STATE X-COMP	394634.72 399477.30	569.98		-	22195357	EL EMENTS G				
GUIDANCE EVENT AT CALENDAR DATE 1	EVENT COUES	CURRENT SPACECRAFT STATE REFERENCE x-COMP	INERTIAL 3 EARTH 3	NOCH	:	EXECUTION EVENT	DELTA V =	DOMINANT RODY ELEMENTS PLANET ESTIPTIO	REFORE IMPULSE	AFTER IMPULSE	SEFORE IMPULSE	AFTER IMPULSE

AT DATE. . . . 2442950.00194252 SPACECRAFT REACHED POINT OF CLOSEST APPROACH OF MOON

5.82758105222E+02 -1.19230039411E+03 1.26943381957E+03 1.83647746005E+03	8.05326963470E-01 $-1.10824803209E+00$ $-1.35667924985E+00$ $1.92804144294E+00$	
-1-19230039	-1.10824803	
5.82758105222E+02		. 75
•	•	98
POSITION 5.	VELOCITY	INCLINATION = 88.75

AT DATE. . . . 2442950.00118881 INTERPOLATED INFORMATION AT CLOSEST APPROACH SPACECRAFT REACHED POINT OF CLOSEST APPROACH OF MOON

1.83526291837E+03 1.92895672511E+00 1,35560237335E+03-1,28897494834E+00 -1.11816989365E+03 -1.16783784603E+00 5.29365916776E+02 - 8.34009831544E-01 - 88.75 = 3.02903382E+03 POSITION. . . . VELOCITY. . . . INCLINATION = 8

TACA=

Case E-1. Planetary Explorer Venus '78 Mission

```
JULIAN DATE . . .2443737.70087038
                                       JULIAN DATE . . .2443858.74526000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    VIRTUAL MASS PROGRAM WILL INTEGRATE UNTIL REACHING ANORMAL STOPPING CONDITION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            OUTPUT FROM VIRTUAL MASS PROGRAM WILL BE SUPRESSED AT INITIAL AND FINAL STEPS
                                                                                                                   THE FOLLOWING QUANTITIES ARE TO BE AUGMENTED TO THE STATE VECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8.64000000E+04/DAY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ORBITAL ELEMENTS WILL BE CALCULATED AT EVERY TIME INTERVAL
                                      5 53 10,465 1978
4 49 15.201 1978
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ACCURACY FIGURE. . . . 2.50000E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                      INERTIAL FRAME IS HELIOCENTRIC ECLIPTIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COORDINATES
                                                                                 •
                                                                                                                                                                                                                                                                                                                                               MEASUREMENT CONSIDER PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    NOMINAL TRAJECTORY INFORMATION
BODIES TO BECONSIDERED
                                       12 16
                                                                                                                                                                                                                                       DYNAMIC CONSIDER PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INITIAL STATE VECTOR
INERTIAL COORDINATES
1.22444854E+08
-8.91391532E+07
-4.61581286E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NOMINAL TRAJECTORY CODE. .
                                                                               INITIAL TRAJECTORY TIME =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TARGET PLANET. . . VENUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -4.61581285E+03
-1.08560236E+01
-1.25168694E+00
-3.27287461E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.27225787E+01
-3.27287461E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  6.55455973E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4.62539153E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6.19095585E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.49598500E+08/A.U.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INITIAL STATE VECTOR
GEOCENTRIC ECLIPTIC
                                                                                                                                                      SOLVE-FOR PARAMETERS
MU PLN
                                      FINAL DATE
                                                                                                                                                                                                                                                                                                                                                                     RADIUS 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     VENUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EARTH
                                                                                                                                                                                                 R-RATE
                                                                                                                                                                                                                                                                                                                                                                                                              LONG 1
                                                                                                                                                                                                                                                                                                                                                                                        LAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           UNITS
```

8 17

LAUNCH DATE

A.40

	10	*******
(Δ	PROBLEM	***
DAYS		****
•0		*****
TIME		****
EVENT AT TRAJECTORY TIME		*******
A T		***
EVENT		****
ERROR ANALYSIS MODE-GUIDANCE		海南 中国南部南部南部南部南部南部南部南部南部南部南部南部南部南部南部南部南部南部南部

RESULTANT 6.1634582000E+05 5.2138283932E+00 DAYS 119.488 4.0583373049E+05 -3.4711552211E+00 5.9950443708E+03 TRAJECTORY AT TRAJECTORY TIME 1.323232E+05 4.2735490946E+05 4795943E+00 -3.5386553471E+00 1.3736693529E+04 B DOT R = ON TARGETED NOMINAL -1.5164795943E+00 1.8041323232E+05 ----USE-LINEAR-GUIDANCE-11 POSITION RELATIVE TO TARGET PLANET VELOCITY RELATIVE TO TARGET PLANET B = 1.49879053286+04 B DOT T -EXECUTE SPHERE OF INFLUENCE TOR AT TIME 0. X 1.2244485426000E+08 Y-8.9133153204999E+07 VX 5.1909558537136E+00 VY 2.2722578676819E+01 VZ-3.2728746052700E+00 Z-4.5158128562000E+03 IN-EFFECT LINEAR-GUIDANCE-REACHED SINGLE--IMPJLSE -COMPUTE--AND VECTOR M MATRIX VEHICLE STATE 2VBP IPC

7.6837092066E-08 VZ(119.488) 1.8452509114E-06 VY (119.488) -6.2193124982E-08 5.7368105197E-08 VX(119.488) -- TRANSPOSES SHOWN 3.1657631365E-01 Z(119.488) , 119.488) 3.6112699962E+00 Y (113,488) . PARTITIONS OVER 5.1757055330E+00 X(119,488) MATRIX **TRANSITION** STATE

-8.8182011511E+04

ċ

4.9522699427E+04 7.0608552440E+04

-1.0841074997E+05 3.4788016020E+04

-7.4616649077E-01

<u>.</u>

4.1550643317E-01 6.0556824491E-01

-9.0959023961E-01 2.7662731033E-01

-1.4497128023E-07 3.7240794621E-01 2.3926363326E-01 -1,9038528473E-08 -1.1371217357E+00 3,42704604386-08 -8,23575493756+00 4,03121123056+00 4,55775307976-01 --6.6131076362E-07 4.8692391509E-09 2.1321064240E-01 1.0206558676E+00 8.2242015651E-02 1.2642206951E+06 4.6379146909E+05 2.6253398074E+06 -6.1731481782E-02 -5.3167994842E-01 8.2087623563E-02 -1.6926772924E+07 1.0917407980E+07 8.4366447578E+05 -1.1747565226E+00 1.2143401672E-01 2.2001410422E+07 4.2583778760E+06 7.5400257605E+05 -1.2089015489E+00 00000

-1.9813882091E-07

-2.1579865006E-07

-8.7268290372E-08

-6.0945004225E-02

-3.8013458252E-02

PARAMETERS -1.5446113586E-02

SOL VE-FOR

MU PLN

2-RATE

•

DYNAMIC CONSIDER PARAMETERS

-1.0485454581E-07 -1.2718743192E+00 7.6741371883E+00 -6.4128355461E-08 -4.2197056018E-08 -2.0869455343E+00 -5.4228457724E+00 -5.3421716363E+00 5.6004805710E+00 -1.2944249958E-02 -1.1355787550E+05 6.8166753289E+05 -3.1213603020E-02 -4.3043053840E+05 4.9230898862E+05 -3.3703082800E-02 -1.6539947499E+05 -7.4315697542E+05

CORRECTION APPLIED GUIDANCE

BIASED AIMPOINT GJIDANCE EVENT

1.3675480823E+04 CAPTURE RADIUS=

	• 0			
			•	
7.1589616840E-09 1.1166157123E-07 -1.9303140821E-08	• 0	• 0	• 0	0.
PSIJ MATRIX -7.0317024070E-08 1.4120341509E-07 -2.5613302141E-08	DVR8= 0.	EXECUTION ERROR MATRIX 0.	• 0	•0
A.42				

-3.5045013227E+09 2.8671517452E+09 5.6797261139E+09 -3.5045013227E+09 LAMBDA STAR=

3.7577281215E-02

PROBABILITY OF IMPACT=

1.6839393205E+01 7.1623158215E-10 U2*U2= 1.0741004168E+05 -7.5986667941E-06 -1.8772694409E+04 -8.6127903627E+02 -1.7854190266E+00 -7.0917314235E+04 7.8362885499E+03 3.7753735147E+02 3.4377870076E-06 8.0038977100E-01 1.7508906051E-09 U1*U2+ 1.2551045483E+05 3.7736172025E+04 1.1944739615E+05 1.4514621370E+05 1.2637351929E+05 1.2551224025E+05 1.2551045484E+05 1.2551045483E+05 2.2337370958E+04 8.5040058899E+04 8.6740119156E+03 1.4188294106E-09U1*U1+ 1.41227445646+04 2.2336570565E+04 2.2337370958E+04 2.1959033214E+04 2,2337370955E+04 ELLIPSE CONSTANTS= MU SUPER I = INITIAL XM= DEL TA MU=

-3.5045013227E+09 2.8671517452E+09 5.6797261139E+09 -3.5045013227E+09

-2.5278799965E-03

1.4562484038E-02

2.4518862762E-04

DVBIAS=

AND STANDARD DEVIATIONS JUST AFTER GUIDANCE CORRECTION AT TIME CONTROL (AND KNOWLEDGE) CORRELATION MATRIX PARTITIONS STD DEV

1.000000000E-05

PROBABILITY OF IMPACT=

DAYS

1.00000000 ċ 1.000000000 -.00000000 -.00000000 .00000000 1.00000000 -.000000000-1.000000000 -.00000000 .00000000 1.000000000 -- 000000000 .00000000 --00000000 -.0000000000 1.00000001 .00000000 -.000000000 -.00000001 4,24264068E-03 4,24264068E-03 4,24264069E-03 1.41421356E+00 1.41421356E+00 1.41421356E+00

TARGET CONDITION CORRELATION MATRIX AND STANDARD DEVIATIONS AFTER GUIDANCE CORRECTION 15791106E+04 -8.6843474748E-01 -8.6843474748E-01 -8.6843474748E-01 5,3545791106E+04 7,5363957658E+04 RANGE-RATE HAS MEASURED FROM STATION 3 AT TRAJECTORY TIME 9.90000 DAYS

INITIAL TRAJECTORY TIME 9.600 FINAL TRAJECTORY TIME 9.900

VELOCITY	26.978113175	25.613752818	26,987767732	2,963079441	25.540776670
Z-00T	1.339508851	3.079114510	1.337659615	1.337659615	3.067960815
Y-00T	24 .522482323 -1.956411358	13.238486338	24.593631589	-1.952827646	13.035848359
X-00T	150553250.51 11.165669134 2606234.02 -1.783224006		1197171.63 150514400.89 11.031933609 24.593631589		-21.748230891
RADIUS	1162475.59 150553250.51 11.165669134 1162475.59 2606234.02 -1.783224006	103424281.12	150514400.89	2683111.99 -1.782405878	103004597.84 -21.748230891
Z-C042	1162475.59		1197171,63	1197171,63	4711765.58
Y-COMP	-69895631.48 -1721719.15	33007391.22	-69259082,84	-1772409.07	33347901.45
X-COMP	133339906.22 -1573781.89	97906269.97	133627593.61	-1620311.15	97343021.84
STATE INITIAL	INERTIAL GEO-	PLANETO- FINAL	INERTIAL	GE0-	PLANETO-

-- TRANSPOSES SHOWN 006.6 9.600, STATE TRANSITION MATRIX PARTITIONS OVER(

_	11	11	60	07	07	10							
VZ(9.900)	2.1026002362E-	1.0959324057E-	1.0082480323E-	2.7398876168E-	1. 4254282754E-	9.9998693141E-01		.	.0		0.	0.	.0
(006*6) \ \ \	1,0000177331E+00 -1,5084879087E-05 2,7100403321E-07 1,3703936663E-09 -1,2399413407E-09 2,1026002362E-11	-3.6211927502E-10 -	-1.0959321295E-11 -	-1.6054330772E-05	9.999528146E-01 -	-1.4254280378E-07		•0	•0		0.	•0	•0
(006*6)XA	1.3703936663E-09 -	-1.2399414323E-09 -	2.1025998616E-11 -	1.0000177873E+00 -	-1.6054331559E-05			•	•0		•0	•0	•0
(006°6)Z	2.7100403321E-07	-1.4152221173E-07 -	9.9998693474E-01	2.3543428979E-03	-1.2270671723E-03	2.5919887103E+04 2.7398872948E-07		0.	• 0		0.	•0	.0
(006.6)Y	-1.6084879087E-05	9.9999533232E-01	-1.4152218242E-07	-1.3884202453E-01	2.5919959454E+04	-1.2271229280E-03		0.	•0		••	•0	•0
(006°6)×	1,0000177331E+00	-1.6084880052E-05	2.7100399369E-07	2.5320153449E+04 -1.3884202453E-01 2.3543428979E-03 1.0000177873E+00 -1.6054330772E-05 2.7398876168E-07	-1.3884017549E-01	2.3544185169E-03 -	ETERS	•0	0.	R PARAMETERS	•0	0.	0.
	(009°6)X	9.600)		(009°6)XA	VY(9.600)	VZ(9.600)	SOLVE-FOR PARAMETERS	HU PLN	R-RATE	DYNAMIC CONSIDER PARAMETERS			
							Š	Ĩ	ά	á		⊢ .4:	Σ

MEASUREMENT NOISE CORRELATION MATRIX AND STANDARD DEVIATIONS RANGE-DATE(1)	
OBSERVATION MATRIX PARTITIONS TRANSPOSES SHOWN	X -3.205122

												•
2500E+04	2221E+06 3832E+06 3128E+03 33959E+00 1535E+00	121735-01		7 / 7	1.00000000				ZN	1.00000000		
	2.837800 4.246211 9.519056 3.290573 4.838718		EASUREMENT	^	1.00000000			EASUREMENT	۲,	1.00000000	·	
PARTITI		S-MATZI)	BEFORE THE	×	1.00000000 30638742 01985896			AFTER THE	×	1.00000000 31856413 02153492		
GAIN MATRIX			9.900 DAYS, JUST	2	1.00000000 00265604 .95115407			9.900 DAYS, JUSI	2	1.00000000 00355944 .94734459 .99776828		
			AT TIME	>	1.0000000 95829748 28424994 .99761289	METERS	R-RATE 1.0000000	ONS AT TIME	>	1.00000000 .95519319 29530232 .9974464	HETERS	R-RATE 1.0000000
	ERS	METERS	STANDARD DEVIATI	×	1,00000000 -,25838670 ,05233553 ,99539278 -,27482839	SOLVE-FOR PARA	MU PLN 1.00000000 0.	STANDARD DEV	× 6	1.000000 -27285471 .02084443 .99551755 -29024548	SOLVE-FOR PAR	MU PLN 1.00000000
OR PARAMETERS 0.	CONSIDER	CONSIDER	IX PARTITIONS AND	STD DEV	9,63646504E+00 3,48359493E+01 4,82461472E+01 1,14812391E-05 3,98721987E-05 5,42449594E-05		STD DEV 1.000000006+00 2.93175079E-06	RIX PARTITIONS AND	STD DEV	3.36149416E+01 4.6266236E+01 1.14811981E-05 3.84370571E-05 5.19569264E-05		STD DEV 1.00000000E+00 2.90977237E-06
SOLVE-F MU PLN R-RATE	DYNAMIC A I M	MEASURE RADIUS LAT 1 LONG 1	CORRELATION MATR	:	×		MU PLN R-RATE	CORRELATION MATA	>	< > < > > > > > > > > > > > > > > > > >		MU PLN R-RATE
	0. 0. GAIN MATRIX PARTITIONS 0.	OR PARAMETERS 0. CONSIDER PARAMETERS 0. 0. 0.	OR PARAMETERS 0. CONSIDER PARAMETERS 0. 0. 0. HENT CONSIDER PARAMETERS 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OR PARAMETERS CONSIDER PARAMETERS 0. 0. 0. 1. 0. 1. 0. 0. 1. 1.	PARAMETERS 0. K-MATRIX 6.5385872500E+0 2.8378002221E+0 2.8378002221E+0 4.2462113832E+0 4.2462113832E+0 4.29053339E+0 4.8307181535E+0 4.8307181535E+0 1.1122292173E-0 PARTITIONS AND STANDARD DEVIATIONS AT TIME 9.900 DAYS, JUST BEFORE THE MEASUREMENT	PARAMETERS 0. K-MATRIX K-MATRIX 6 SIN HATRIX PARTITIONS K-MATRIX F.5385872500E+04 2 8378002221E+05 4.6378002221E+05 4.637802221E+05 4.637802221E+05 4.637802221E+05 4.6373359E+00 4.6373399E+00 1.1122292173E+01 1.25838670 1.00000000 1.00000000 1.00000000 1.00000000	PARAMETERS 0.	PARAMETERS 0. (PARAMETERS 0. K-HATRIX K-HATRIX R-HATRIX R-15.6386872500E-04 2.8378602221E+05 4.246211832E+05 4.246211832E+05 1.000000000 R-100000000 R-1000000000 R-10000000000	PARAMETERS 0. K-MATRIX K-MATRIX K-MATRIX K-MATRIX K-MATRIX K-MATRIX K-MATRIX K-MATRIX C-378060221E+06 C-377000221E+06 C-377000221E+06 C-378063726-13 C-388067736-13 C-388067736	PARAMETERS 0. 0. NISIDER PARAMETERS NISIDE	PARAMETERS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

```
-2.6575165119E-09
-1.8057829242E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7.4678906365E-08
                                                                                                                                                                                                                                                                                                                                                                                          6.1634582000E+05
5.2027937814E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.
-8.8156229194E+04
DAYS
                                                                                                                                                                                                                                                                                                                                                             119.527
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5.1304005171E+04
6.9532111762E+04
                                                                                                                                                                                                                                                                                                                                                                                          3.8624147590E+05
-3.4651128137E+00
                                                                                                                                                                                                                                                                                                                                                                                                                          3.1807189294E+04
                                                                                                                                                                                                                                                                                                                                                             ON TARGETED NOMINAL TRAJECTORY AT TRAJECTORY TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -2.9015627498E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      VX(119,527)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -- TRANSPOSES SHOWN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -1.1237690828E+05
3.7219842018E+04
                                                                                                                                                                                                                                                                                                                                                                                          4.4818858816E+05
-3.5304690293E+00
                                                                                                                                                                                                                                                                                                                                                                                                                          œ
                                                                                                                                                                                                                                                                                                                                                                                                                           80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2(119,527)
                                                                                                                                                                                                                                                                                                                                                                                                                        2.9623370217E+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -7.4594279091E-01
                                                                                                                                                                                                                                                                                                                                                                                          1.7270402885E+05
-1.6117830977E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        119.527)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.5252339431E+00
                                                                                                                                                                                                                                                                             ----USE-LINEAR-GUIDANCE-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Y(119.527)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        10.000,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4.1530242167E-01
6.0585826726E-01
                                  DAYS
                                                                                                                                                                                                                                                                                                                                                                                                                        -
                                                                                                                                                                                                                                                                                                                                                        VEHICLE REACHED SPHERE OF INFLUENCE
                                                                                                                                                                                                                                                                                                                                                                                          PLANET
PLANET
                                                                                                                                                                                                                                                                                                                                                                                                                        9 DOT
                                  10.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TRANSITION MATRIX PARTITIONS OVER(
                                                              Y-5.9046491649646E+07
Z 1.2087263349909E+06
VX 1.0987259581970E+01
VY 2.4617203194930E+01
VZ 1.3370435448021E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.61359874825+00
                                                  X 1.3372270592511E+08
                                                                                                                                                                                                                                                                                                                                                                                          POSITION RELATIVE TO TARGET VELOCITY RELATIVE TO TARGET
                                                                                                                                                                                                                                                                                                                                                                                                                        4.3465404103E+04
                                                                                                                                                                                                                                                                                                                                          -EXECUTE
                                 AT TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -9.0968340567E-01
2.7659557602E-01
                                                                                                                                                                                                                                                                                                           SERIES-OF-IMPULSES
                                                                                                                                                                                                                                                                             IN-EFFECT
                                                                                                                                                                                                                                           LINEAR-GUIDANCE-
                                                                                                                                                                                                                                                                                                                                         -COMPUTE--AND
                               VEC TOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10.000)
                                                                                                                                                                                                                                                                                                                                                                                                                                                        MATRIX
                               STATE
                                                                                                                                                                                                                                                                           IPC
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Σ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STATE
```

3.0564361767E-01 2.4788745966E-01 -9.9673855487E-01 -2.0275578549E-07 0. 1.7468862904E-06 -3.0372908951E-07 4.7369300463E-08 6.6811131846E+00 4.4490258728E+00 4.1918472171E-01 -9.2531990958E-08 -2.4201142423E-07 7.3491995343E-08 7.5496935271E-09 2.4299366716E-01 9.6081986449E-01 7.6251261957E-02 0 2.9285521830E-01 -1 -7.8833396790E-03 1 -4.378016834E-01 7 4.9258564015E+05 5 3.0418785501E+05 -5.8442056179E-02 -4.2382852511E-01 1.0628936425E-01 -9.0661048889E-02 1.3855486211E+07 1.1617517329E+077.6076719018E+05 -2.9422680062E-01 1.3940951813E-01 1.7762665837E+07 4.8931856284E+06 6.3831427133E+05 -3.4862756729E-02 0. SOLVE-FOR PARAMETERS 10.000) 10.000) 10.000) 10.000) MU PLN R-RATE

-1.0041959818E-07 -9.4291989517E-01 7.4557824239E+00 -3.5499730870E-08 -5.4539664500E+00 5.8681641247E+00 CORRECTION APPLIED -6.4032342380E-08 -1.9531808928E+00 -5.4542734673E+00 GUIDANCE -8.6812215953E-01 1.00000000000E+00 -1.1617101282E-02 -9.6634400587E+04 6.7362606825E+05 -6.3086998463E-03 -4.6468400955E-03 -1.5896984990E+05 -4.3259403749E+05 -6.9523848613E+05 5.6217476720E+05 DYNAMIC CONSIDER PARAMETERS 5.3458160579E+04 7.5431113792E+04 TARGET

HΣ

A.45

-1.4349179760E-02 1.9615705133E-01 -4.0308242129E-02 -2.9329133731E-03 -9.5990630484E-01 1.9615705133E-01 -9.9978545303E-01 -2.9329133731E-03 -1.4349179760E-02 GUIDANCE POLICY -1.0024971033E-08 -3.6829943607E-08 7.3779971214E-09 IMO VARIABLE B-PLANE G 8.2368036654E-09 -2.8123340993E-08 --5.6251397617E-09 1 MO -2.6106085714E-07 9.6081583315E-09 -5.8672142677E-39 GUIDANCE

1.4205556702E-01 -9.9545483701E-01 1.0000000000E+00 5.2821404321E-03 4.0161563387E-03 4.0161563387E-03 -4.7140905625E-02 1.00000000E+00 1.4205556702E-01 -9.9545483701E-01

A.46

OF ABOVE MATRIX EIGENVALUES

2.8015832976E-05 1.6700889843E-05 6.6871541642E-21

4 0 B

3.3921866767E-02 -1.9788266494E-01 9.7963858533E-01 -9.3170584071E-02 9.7530792425E-01 2.0023410089E-01 EIGENVECTORS OF ABOVE MATRIX 9.9507213267E-01 9.806581366E-02 -1.4647421993E-02 - 0 M

5.9488240685E-03 ٠ DELTA V. P EXPECTED VALUE

3.0542126679E-03 ٠ > STANDARD DEVIATION OF EXPECTED VALUE OF DELTA

EXPECTED VALUE OF VELOCITY CORRECTION

5.919509E-03 -5.542541300E-04 2.0179521747E-04

BIASED AIMPOINT GJIDANCE EVENT

1.3699758425E+04 CAPTURE RADIUS=

PSIJ MATRIX

5.7731374430E-09 1.0685495838E-07 -2.1754395198E-08 -9.1654671752E-08 1.3750160331E-07 -2.9475170738E-08 2.5744130614E+04 1.59600111746+04 DELTA MU=

1.0304720457E-03 -4.94541513062-03 1.3141851809E-03 DVR8=

EXECUTION ERROR MATRIX 8.1858042565E-09

-1.4705440122E-09 1.1180328233E-09 6.5631116141E-09 1.1828401679E-08 6.5631116141E-09

1.6567729505E-08 1.1180328233E-09 -1.4705440122E-09

7.8586059809E+05 3.7655901290E+06 -1.3625441263E+06

LAMBDA STAR=

-1.5625441263E+06

IMPACT= BILITY OF

°

⋖
-
⋖
0
ARC
œ
4
9
z
I
S
_
\supset
2

THRUST 1.0000E-03

DV 1.0000E-03

DJR 1.0000E+00

MASS 1.0000E+00

X-COMP	JULIAN DATE CALENDAR DATE 28727-70087 1978 8 26 18 115-201 28727-25087 1978 8 26 18 115-201 28728-15087 1978 8 27 15 3715-200	F2 F3 F4 F5 F6 G3 G4 G5 G6 G6 G7 G7 G7 G6 G8 G7 G6 G8 G7 G6 G6 G7 G6 G6 G7 G7 G6 G7 G7 G6 G7 G7 G6 G7	IANJE PROPAGATION	RANSITION MATRIX +00 -1.773834E-06 3.814697E-08 8.640006E+03 -5.006790E-03 1.907349E-04 +00 -1.773834E-06 3.814697E-08 -5.149841E-03 8.63998E+13 -9.536743E-05 -0 -1.609325E-08 9.99985E-01 9.015203E-05 4.619360E-05 8.639936E+03 -10 -4.113025E-10 7.216840E-12 9.999997E-01 -5.928541E-07 1.038529E-08 -10 -1.244086E-10 -3.717560E-12 -5.906031E-07 9.999989E-01 -5.331913E-09 -12 -3.734328E-12 -3.363139E-10 1.047056E-08 -5.405809E-09 9.99985E-01	NCES 4.0000000E-10 1.0000000E-04 1.0000000E-04	888	ERROR MATRIX 0 -1.438202E-10 3.222464E-11 0 2.093444E-10 -2.44992E-11 1 -2.449992E-11 1.054895E-10	RROR MATRIX	1.3420009E-04 -1.0203034E-04 2.2861124E-05 1.7012492E-04 -10 -1.879226E-10 4.210632E-11 -10 1.457690E-10 -3.201281E-11 -11 -3.201281E-11 1.006710E-11	TION ERROR COVARIANCE 6.856052E-01 1.124443E-04 -5.592711E-05 1.252884E-05 0 4.453901E+00 -5.21242E-01 -5.592950E-05 8.139539E-05 -9.525282E-06 4.101077E-05 0 4.453901E+00 -5.212422E-01 2.244187E+00 1.253041E-05 -9.526068E-06 4.101077E-05 0 4.101077E-05 0 4.101077E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111	CALENDA 1978 827 1978 826 1978 827	F3 -14 -2,4272E-23 7 -14 -5,3022E-23 4		MATRIX 1.773834E-06 9.399995E-01 1.609325E-08 4.113025E-10 1.244086E-10		-04 -5.	HATRIX -1.438202E-10 2.093444E-10 -2.449992E-11	~	-1.020303 9226E-10 7690E-10 1281E-11	ERROR COVARIANCE -3.060147E+00 4.453901E+00 -5.212422E-01 -5.592950E-05 8.139539E-05
IMPULSIVE .007 NOM PULSE .000 END PULSE .000	PULSE ARG JULIAN 28727 10 INITIATION 28727 1ERMINATION 28728	F AND G SERIES F2 LAUNCH BODY -2.0785 TARGET BODY -5.3336	PULSING ARC COVARIANDE	NOMINAL STATE TRANSIT 1.000002E+00 -1.778603E-06 3.129244E-08 4.606937E-10 -4.107824E-10 7.236594E-12	ERROR MODEL VARIANCES PROPORTION RESOLUTION POINTING 8	DELTA V 7.8883	NOMINAL EXECUTION ERA 2.891661E-10 -1.438202E-10 3.222464E-11	FINAL EXECUTION ERROR	DELTA V 1.3420 2.500681E-10 -1.879256E-10 4.210632E-11	ACCUMULATED EXECUTION 6.152575E+00 -3.060147E+00 6.856052E-01 1.124443E-04 -5.59271E-05

MEASUREMENT NO 63 AT TRAJECTORY TIME 118,300

RANGE-RATE WAS MEASURED FROM STATION 1 AT TRAUECTORY TIME 118.30000 DAYS

P INITIAL TRAJECTORY TIME 116.300

8 FINAL TRAJECTORY TIME 118.300

	•		_	_	٠,0	_
VELOCITY	37.473673939	16,319210335	5,150427390	37,672912910	16,944683856	5.168586260
Z-00T	-1.478532790	-1.478532790	-3.398192708	-1,560539209	-1.560539203	-3.431690351
Y-00T	108902338.12 -36.255087241 -9.362629356			108278430.52 -35.907380162 -11.290400096 -1.560539209	60608753.99 -5.988445260 -15.774205264 -1.560539203	1139475.27 -1.595862394 -3.520086430 -3.431690351
x-00T	-36.255087241	58088906.71 -6.517640545 -14.887945745	-1,569820633	-35,907380162	-5.988445260	-1.595862394
RADIUS		58088906.71	2030456.49	108278430.52	60608753,99	1139475.27
Z-COMP	3812108,97	3812108.97	1343406.71	3549746.68	3549746.68	753428.23
Y-COMP	-16685323.46 107548998.38	44542731.13 -37090888.53	1392527.20	105764888.12	-45624104.88 -39739922.15	783374.08
X-COMP	-16685323.46	-44542731.13	615532,25	-22921741.98 105764888.12	-45624104.88	342162.00
STATE INITIAL	INERTIAL	6E0-	PLANETO- FINAL	INERT IAL	GE 0 -	PLANETO-

-- TRANSPOSES SHOWN STATE TRANSITION MATRIX PARTITIONS OVER(116.300, 118.300)

VZ(118,300) -3,3212625267E-10	1.7910956541E-09	-1.7840590050E-08	-2.9995104759E-05	1.5319236142E-04	9.9845363483E-01
VY(118,300) -9,6372522113E-09	3.3991843955E-08	1.79117074346-09	-8.7782663167E-04	1.0029273622E+00	1.5319496707E-04
Y(118,300) Z(118,300) VX(118,300) VX(118,3	.0029433226E+00 1.5623323230E-04-9.6397214780E-09 3.3991843955E-08 1.7910956541E-09	1.5623581809E-04 9.9846271035E-01 -3.3222542609E-10 1.7911707434E-09 -1.7840590050E-08	-4,7949425540E+01 -1,6535190897E+00 9,9862140383E-01 -8,7782663167E-04 -2,9995104759E-05	.7296907536E+05 8.9120750519E+00 -8.7791231694E-04 1.0029273622E+00 1.5319236142E-04	8.9121497367E+00 1.7271118014E+05 -2.9998546145E-05 1.5319496707E-04 9.9845363483E-01
Z(118.300) -2.7386506612E-05	1.5623323230E-04	9.9846271035E-01	-1.6535190897E+00	8.9120750519E+00	1.7271118014E+05
Y(118.300) -7.8718912543E-04	1.0029433226E+00	1.5623581809E-04	-4.7949425540E+01	1.7296907536E+05	8.9121497367E+00
X(118.300) 9.9859635151E=01		-2.7389921770E-05	1.7271982622E+05	-4.7951881508E+01	-1.6536177290E+00
X(116.300)	Y (116.300)	Z(116.300)	VX(116.300)	VY(116.300)	VZ(116.300)

-4.9485109344E-08 ċ -2.2619133233E-08 -5.1118149713E-08 -1.6272068024E-03 -3.8337707520E-03 -3.4722685814E-03 0. SOL VE-FOR PARAMETERS MU PLN R-RATE

-3.6047935486E-04 -1.2677167356E-03 -1.269552414E-08 -5.0997692824E-09 -2.0238316196E-08 -6.4810119401E+04 -1.4986283905E+04 -4.1329997500E-01 -1.0410079977E+00 -2.4608123510E-01 7.1051503819E+04 9.3302052694E+04 -1.1082187756E+00 1.1202484479E+00 1.5247713933E+00 -7.7461123466E-04 -2.4738166132E+04 -7.0128095549E+04 DYNAMIC CONSIDER PARAMETERS

STANDARO DEVIATIONS 00000E+00	STANDARD DEVIATIONS 00E+00		[E+05 E+05 E+05 E-01	E-01 SE-01 SE-01 SE-03		V Z	10				2 A	.3 1.00000000		
MATRIX AND STANDARO 1.000000000E+00	MATRIX AND STANDARD 1.000000000E+00		7.3685942691E+05 -1.079909523E+05 -2.3501823298E+05 4.4126963658E-01	-8.0406581957E-01 -1.4322885703E-01 4.3243710373E+03 1.1888804690E-03	MEASUREMENT	*	1.0000000			MEASUREHENT	*	1.0000000		
RRELATION	AL CORZELATION 16	S		S-MATZIX	BEFORE THE	×>	1.00000000 91766269 .17449043			AFTER THE	×	1,00000000 -,90096752 -23551075		
MEASUREMENT NOISE CO 3.000000000E-06	SUREMENT RESIDUAL 3.7707872970E-06	MATRIX			118.300 DAYS, JUST	2	1.00000000 .14221637 02390943 .96191355			118.300 DAYS, JUST	2	1.00000000 .19405532 07634610		
# EAS	MEAS	GAIN			AT TIME	>	1.00000000 10012440 90432636 98701622 07803835	PARAMETERS	R-RATE 1.0000000	AT TIME	>	1.00000000 16803589 88271782 .98112983 14843723	PARAMETERS R-RATE	
TRANSPOSES SHOWN RANGE-RATE(1) 8.3627528806E-08 -9.9713380550E-08 -4.1703798859E-08	.5270122699E-01 .5575516003E-01 .8532324228E-02	0. 1.0000000000E+00	FRS	PARAMETERS -5.5885189977E-05 2.5378207929E-01 9.9653805969E-02	D STANDARD DEVIATIONS	×	1,00000000 -,91309946 -,24768131 -,98949621 -,88998355 -,21702801	SOLVE-FOR PARA	MU PLN 1.00000000 0006843	STANDARD DEVIATIONS	×	1.0000000 89605861 .31061440 .96211995 86399238 .28169443	SOLVE-FOR PARAI	1.00000000
PARTITIONS	× > 2	OR PARAMETERS	C CONSIDER PARAMETERS	CONSIDER	TRIX PARTIFIONS AND	STO DEV	6.33020899E+00 7.30383090E+00 1.2559211E+01 3.73978535E-06 5.41538577E-06		STD DEV 9.99976079E-01 6.17284138E-07	RIX PARTITIONS AND	STO DEV	5.68781584E+00 6.06332088E+00 1.2628264E+01 3.34922764E-06 4.48704963E-06 6.70115531E-06	STO DEV	9.99843120E-01
OBSERVATION MATRIX X Y Z Z	-	SOLVE-FI MU PLN R-RATE	DYNAMIC A I M	MEASUREMENT RADIUS,1 LAT 1 LONG 1	GORRELATION MATRIX		~		MU PLN R-RATE	CORRELATION MATRIX		×-~×->>	A.49	MU PLN

.

		VELOCITY 37.99826416 37.99826416 5.43377646 17.80322042															
		2-D01 -1.79967503 -1.79967503 -3.61345376 -1.79967503			TIME	290•85			-132.07	-232.73				-137 ; 36	-238.11		
		Y-D01 -13.43174486 -13.48174486 -3.69443769			RP/RA TI	7264.53 -32290	6750.00 47250.00		7264.53	7226.74 47250.00				7264.53	7225.24: 50576.69		
10087		x-D01 -35.48058349 -35.48058349 -1.67928816 -5.41093069			I/N	49.08 -136.01	49.08 -136.01		49.08 -136.01	49.08 -136.01				49.08 -136.01	49.08 -136.01		
28838,10087		RADIUS 107668605.11 107668605.11 191208.88 63324258.26	2.000		W/TA	-113.82 -124.70	-108.82 0.		-113.82 -11.11	-108.82 -16.11				-113.82 -11.55	-108.82 -16.55		
JULIAN DATE			0PER= 5		A/E	-12432.7 1.58431	27600.0 .75000		-12432.7 1.58431	27238.4				-12432.7 1.58431	28901.0 .75000		
15.200 JUL	T 4 MDL	Z-COMP 3253267.93 3253267.93 122551.44 3253267.93	.750000		R/V	191208.9 5.43378			7349.0 10.70200	7349.0 8.74521	1.95679			7355.8 10.69816	7355.8	1.91849	1.95679
14 25 15	3 KHXQ	Y-COMP 103526737.71 103526737.71 138537.42 -42691919.53	•000 E=		2//2	123210.7 -3.65269			-4552.9 -3.81063	-4552.9 -3.11389	• 69675	3.375E+03		-4532.7 -3.83026	-4532.7 -3.14338	.68688	•69675
120.400 DAYS 12 15	1 KTYP		NT A= 27000•000		Y / V Y	-7483.4			5761.7 -4.17898	5761.7 -3.41488	.76410			5783.7 -4.15405	5783.7 -3.40911	46446.	.76410
EVENT AT 120 DATE 1978	KUR	ACECRAFT STATE X-COMP -29396587.44 -29396587.44 48470.21 -46655952.88	Ė. VE	ON EVENT	×//×	146027.3 -3.98451			286.7 -9.08559	286.7 -7.42435	1.66124	=-1.600 <u>E</u> +04		334.7 -9.08425	334°7 -7.45518	1.62907	1.66124
SUIDANCE EVE CALENDAR DAI	EVENT CODES	CURRENT SPACECRAFT REFERENCE X-C INERTIAL -29395587 SUN -29395887 VENUS +8470	INSERTION DECISION PLANAR OPTION TAKGET PARAMETERS	COPLANAR INSERTION EVENT	EVENT	DECISION	TARGET ORBIT	MODIFY RP	PRE-INSERTION	POST-INSERTION	INSERTION VEL	MODIFY RA Candidate SMA S Solution invalid	MODIFY SMA	PRE-INSERTION	POST-INSERTION	INSERTION VEL	SELECTED CORREC TIME= 32158.78

1.20772208085+02

ORBITAL INSERTION WILL BE EXECUTED AT

PROBLEMS

DAYS TOR AT TIME 120.772 x-3.0536227965981E+07 Y 1.0306945206713E+08 Z 3.1846594872672E+06 VX-3.1997193700899E+01 VY-1.9900571998239E+01 VZ-2.2481100709743E+00 STATE VECTOR AT TIME

1.38383645807E+02 1.11767474033E+00 6.69601982651E+01 2.85993755734E+00 1.15841304608E+02 -1.54464879548E+01 4.66736382554E+01 -1.29334123626E+01 • OCCULTATION RATIO FOR SUN OCCULTATION RATIO FOR VENUS FLIGHT PATH ANGLE NAVIGATION PARAMETERS

PLANAR-ORBIT-INSERTION

IPC-NOT-IN-EFFECT

SINGLE--IMPULSE-

-EXECUTE-ONLY

1.9567872445E+00 MAG. OF DVUP= 7.4076751365E-01 1.7838223924E+00 -3.1346049738E-01 0 vuP=

ECLIPTIC COORDINATES NOMINAL STATE RELATIVE TO TARGET PLANET IMMEDIATELY FOLLOWING ORBITAL INSERTION— -4.2026075664E+03

1.7055905571E+03

-5.7808998425E+03

POSITION

7.3477719408E+03

8.7457353802E+00 -3.3102787303E+00 -7.9752192565E+00 1.3877391248E+00 VELOCITY

EQUATORIAL COORDINATES NOMINAL STATE RELATIVE TO TARGET PLANET IMMEDIATELY FOLLOWING ORBITAL INSERTION-

7.3477719408E+03 -4.5516377464E+03 5.7599935071E+03 3.0793037957E+02 POSITION

6.9674824491E-01 7.6409792605E-01 1.6612382619E+00 PLANETO-CENTRIC EQUATORIAL COORDINATES OF DVUP= A.51

-3.1142662005E+00

-3.4027840795E+00

-7.4303629711E+00

VELOCITY

8.7457353802E+00

NOMINAL PLANETO-CENTRIC EQUATORIAL ORBITAL ELEMENTS IMMEDIATELY FOLLOMING ORBITAL INSERTION -8.7639486733E+01 -1.799995954E+02 9.999999890E-010= 9.7861907070E-01E= 2.0877423159E+01N= # " I

Case E-2. Lunar Viking '76 Mission

```
JULIAN DATE . . .2442950.31299794
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           OUTPUT FROM VIRTUAL MASS PROGRAM WILL BE SUPRESSED AT INITIAL AND FINAL STEPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 VIRTUAL MASS PROGRAM WILL INTEGRATE UNTIL REACHING ANORMAL STOPPING CONDITION
                                                                             THE FOLLOWING QUANTITIES ARE TO BE AUGMENTED TO THE STATE VECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8.64000000E+04/DAY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ORBITAL ELEMENTS AILL BE CALCULATED AT EVERY TIME INTERVAL
 6 20 19 30 43.022 1976
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ACCURACY FIGURE. . . . 2.50000E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                               INERTIAL FRAME IS BARYCENTRIC ECLIPTIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          COORDINATES
                                                                                                                                                                                                                                                                                                           MEASUREMENT CONSIDER PARAMETERS
                                         •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NOMINAL TRAJECTORY CODE. . . 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NOMINAL TRAJECTORY INFORMATION
BODIES TO BECONSIDERED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        INITIAL STATE VECTOR
INERTIAL COORDINATES
-9.84252824E+03
1.06557382E+03
-1.07663155E+03
3.15461302E+00
-9.6099063E+00
-4.17314993E+00
                                                                                                                                                                                                                           DYNAMIC CONSIDER PARAMETERS
                                       INITIAL TRAJECTORY TIME =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TARGET PLANET. . . MOON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   INITIAL STATE VECTOR
GEOCENTRIC ECLIPTIC
-6.21904171E+03
-1.99290848E+03
-6.55435809E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.16289975E+00
-9.60115329E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -4.17327240E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.49598500E+08/A.U.
                                                                                                                    SOLVE-FOR PARAMETERS MU PLN
                                                                                                                                                                                                                                                                                                                                                      RADIUS 3
LAT 3 .
LONG 3
FINAL DATE
                                                                                                                                                                                                                                                                                                                                                                                                                  ST ANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    EARTH
                                                                                                                                                                                 RANGE
                                                                                                                                                                                                                                                                       ONEGA
                                                                                                                                                                                                                                                  NODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      UNITS
```

JULIAN DATE . . .2442945.96377377

LAUNCH DATE

```
2,17156085020E+02
                                                                                                                          1.10318010160E+02
                                      7.58383255880E+01
-1.08914976323E+00
1.26825056131E+02
          7,66727042276E+01
                                                                                 -1.46868685603E+00
                                                                                              9.39356977892E+01
         ANTENNA AXIS - EARTH ANGLE. . . . . ANTENNA AXIS - LIMB JF SUN ANGLE. . OCCULTATION RATIO FOR SUN IS
NAVIGATION PARAMETERS
```

--TRANSPOSES SHOWN 1.000) .900 STATE TRANSITION MATRIX PARTITIONS OVER

VZ (1.000)	-2.0737352315E-05 -1.7852027668E-04 8.9964750316E-07 1.1414513779E-09 -3.7960568022E-08	9.9800657248E-01 -5.2186078392E-06 1.1763034991E-09 -4.4683321931E-07 -1.2200018773E-09	-1.9004801288E-05 9.9798878306E-01 -3.7600784708E-08 -1.2131806670E-09 -4.5075775557E-07	8.6501653306E+03 $-2.3650645744E-01$ $-5.3020194173E-01$ $1.0037670968E+00$ $1.8326495876E-05$ $-1.5268271092E-04$.6343341216E+03 -4.0954910219E-02 1.9837642640E-05 9.9813087058E-01 -5.9285909515E-06	-1.2036412954E+00 -2.2522581276E-01 8.6343411793E+03 -1.4708660956E-04 -5.6791904512E-06 9.9811171363E-01	
VY(1.000)	1.1414513779E-D	-4.4683321931E-0	-1.2131806670E-0	1.8326495876E-0	9.9813087058E-0	-5.6791904512E-0	
VX(1.000)	8.9964750316E-07	1.1763034991E-09	-3.7600784708E-08	1.0037670958E+00	1.9837642640E-05	-1.4708660956E-04	
2(1.000)	-1.7852027668E-04	-5.2186078392E-06	9.9798878306E-01	-5.3020194173E-01	-4.0954910219E-02	8.6343411793E+03	
Y(1.000)	-2.0737352315E-05	9.9800657248E-01	-1.9004801288E-05	-2.3650645744E-01	•	-2.2522581276E-01	
X 1.000)	1.0039629880E+00	-1.5217810869E-05	-2.2432766855E-04	8.6501653306E+03	-4.8801302910E-01	-1.2036412954E+00	
	(006.	(006*	(006.	(006.	(006*	. 90 0	
	×)) Z	××)) Z A	

	942240E-88 -4.509/401369E-88	570584E-09 -1.9511725924E-09	•0
	1F-8/ 9.3042	E-09 7.6325	•
	8.5232305178	7.3370176068	•
	4.2053143261E-U4 -2.142UU4U866E-U4 8.5232YU51/8E-U/ 9.3U42942Z4UE-U8 -4.5U3/4U1369E-U8	3.2842293149E-05 -8.5164181655E-06 7.3370176068E-09 7.6325670584E-09 -1.9511725924E-09	.0
	3.7622638047E-03	3.2022204250E-05	•0
SOLVE-FOR PARAMETERS	AC PLN	4	RANGE

.2204699464E-04 .5620655896E-04
PARAMETERS 1.5259197986E+01 -8.4172886457E+00 4.5567341519E-01 3.4230278412E-03 -1.8979989437E-03 1.2204699464E-04 1.5391054792E+01 -8.4734037883E+00 6.1180794213E-01 3.4583697505E-03 -1.9094248684E-03 1.5620655896E-04
3.4230278412E-03 - 3.4583697505E-03 -
4.5567341519E-01 6.1180794213E-01
.8.4172886457E+00 .8.4734037883E+00
PARAMETERS 1.5259197986E+01 -8. 1.5391054792E+01 -8.
DYNAMIC CONSIDER PARAMETERS NODE 1.5259197986 OMEGA 1.5391054792

•

•

•

1.000 DAYS CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT EVENT TIME PROPARATED FORMARD FROM TIME SOUNDAYS

;		×	>-	2	ЖA	٨٨	ΛZ
~ >		1.000000000	1000000				
7		. 51193313	04082556	1.00000000			
S		.71487211	94116257	07110677	1.00000000		
≯ ∧ ∧	1.23976769E-06 1.52855412E-06	55456299	.89075789	05171117	82496282	1.00000000	4.0000000
•							
	SOLVE-FOR PARAMETERS						
MU PLN		.34715525	27762750	.00280527	.46679153	38488017	00133251
Ø		25675828	14980807	39032159	01014155	28601619	57352658
RANSE		. 18861439	29439092	.34517938	.20697815	51855817	.13429914
EOCN	DYNAHIC CONSIDER PARAMETERS	62266500*	01036071	00974187	.01904233	02658538	01377998
OMESA		.00688763	01088219	+6982600*-	.01997315	02716803	01327722
RADIUS 3	MEASUREMENT CONSIDER PARAME	TERS 14210334	07930789	14809101	.05511950	07435258	08313806
LAT 3		07880884	04040910	08081868	.02877790	03700608	04255874
LON3 3		14494649	.10991840	08249419	04127249	.14789857	19984960.
ST ANG 1		• 0	• 0	•0	•0	•0	•0
	o,	SOLVE-FOR PAR	PARAHETERS				
2		MU PLN	۷	RANGE			
	5.85995413E+00 1.02089440E-03	56878834 19049450	1.0000000000000000000000000000000000000	1.00000000			
NODE OMESA	DYNAMIC CONSIDER PARAMETERS	00693375	02535530 02543702	.00360183			
108 3	MEASUREMENT CONSIDER PARAMET	00207737 00040618 03606609 0.	.07471394 .03624105 19314169	.03954807 .02028657 04773865			
•55	POSITION EIGENVALU 1 1.097070 2 4.053981 3 1.859693	ES 5609334E-05 8305835E-03 8581657E-03	SQUARE ROOTS OF	EIGENVALUES 1.0474113619E-03 6.3670886837E-02 4.3124167913E-02			

3E+06 5E+06	-1.0107151130888E-02 4.6656024915289E-02 9.9885988048129E-01
2 1,2457056423E-06 3 1,5291920166E-06	1.0297922262905E-01 9.9364822266215E-01 -4.5370577548143E-02
1.5517826468894E-12 2.3384281931146E-12	VELOCITY EIGENVECTORS 1 9.9463215572527E-01 2 -1.0240324672314E-01 3 1.4847553934123E-02
N M	VELOCITY 1 2 3

	VY(1.000) VZ(1.000) 1.3258354347E-03 6.9846073709E-04 5.8558829457E-04 3.8813640753E-04 3.0101731417E-04 -7.4926361200E-05 2.7310041162E-01 -1.6552116406E-01 1.5850690211E+00 8.2525793745E-01 6.7708241218E-01 3.6524033185E-01	2.6601453137E-04 3.4248767018E-06 0.	3.5512394292E+00 3.5722575556E+00
	1.3258354347E-03 6.9846073709E-04 5.8558629457E-04 3.8813640753E-04 3.0101731417E-04 -7.4926361200E-05 -2.7310041162E-01 -1.6552116406E-01 1.5850690211E+00 8.2525793745E-01 6.7708241218E-01 3.6524033185E-01	6.3311883766E-04 8.1987692606E-06 0.	6.1849978084E+00 6.1907984478E+00
TRINSPOSES SHOWN		2.0642343620E+01 -2.5674785513E-03 2.6611876934E-01 -3.3178806062E-05 0.	3.6736419485E+05 -2.0373773098E+01 3.6991708980E+05 -2.0428095765E+01
	Y(1,000) 1,4074173095E+02 6.7202552774E+01 :4,7751941151E-03 6,8733035528E+01 4,4451663440E+01 :1,5798027640E-03 3,7473183602E+01 -1,2860604930E+01 :1,5798027640E-03 -1,9596040441E+04 -1,1165985474E+04 1,6639818185E+00 1,7022850653E+05 7,8946998471E+04 :5,2578404556E+00 7,0359892090E+04 3,9771962704E+04 :2,2828443164E+00	2.0642343620E+01 2.6611876934E-01 0.	3.6736419485E+05 3.6991708980E+05
R(0. , 1.000)	Y(1.000) 1.4074173095E+02 6.8733035528E+01 3.7473183602E+01 -1.9596040441E+04 1.7022850553E+05 7.0359892090E+04	6.4342182688E+01 8.3109165472E-01 0.	6.7682379290E+05 6.7711339513E+05
STATE TRANSITION MATRIX PARTITIONS OVER!	X(1.000) -2.7553385271E+02 -8.8292909237E+01 -2.9358153917E+01 9.9530360475E+05 -3.0290608564E+05 -1.3146763984E+05	1RAMETERS -1.5064202173E+02 6.4342182688E+01 -1.9455382088E+00 8.3109165472E-01 0.	DYNAMIC CONSIDER PARAMETERS NODE -1.1682291238E+D6 OMEGA -1.1714036864E+D6
STATE TRANSITION	0) Z / 0 ° / X / 0 ° / X / C 0 ° / X / X / X / X / X / X / X / X / X /	SOLVE-FOR PARAMETERS MU PLN -1.500 A -1.940	DYNAMIC CONS NODE OMEGA

. DIAGONAL OF DYNAMIC NOISE MATRIX

ċ

•

•

A.56

1.000 DAYS
X PARTITIONS AND STANDARD DEVIATIONS JUST BEFORE GUIDANCE CORRECTION AT TIME
STANDARD DEVIATIONS JUST
PARTITIONS AND
CORRELATION MATRIX
CONTROL

1.000 DAYS	VZ	1.00000000	.00556625	.01194403	• 0	.00123847	.00124580	•	• 0	•0	•0							
	٨٨	1.0000000	.00698113	.01506739	•0	.00113666	.00113772	•0	.0	0.	.0					·		નાઝા ન
NCE CORRECTION AT TIME	× >	1.00000000 99201189 99238178	00827763	01782825	• 0	00109476	00109768	•	0.	0.	•0							2.2096675241009E-01 3.2347176180515E-01 9.2007112473651E-01
JUST BEFORE GUIDANCE	2	1.00000000 98155449 .99126003 .99696117	.00443132	.00952135	0 •	.00131438	.00132351	•	.0	• 0	• 0		RANGE	1.00000000	•••	• • • •	F EIGENVALUES 1.2478704465E+03 1.0162991997E+02 3.4605611681E+01	•
DEVIATIONS	>	1.00000000 .99032201 98417214 .99861987 .99283321	.00667166	.01436268	• 0	.00116967	.00117017	•	0.	•0	•0	PARAMETERS	۵	1.000000000 0.	• •	• • • •	SQUARE ROOTS OF	-4.5909437434265E-01 7.9783232625736E-01 -3.9076327184842E-01
ARTITIONS AND STANDARD	X	-98234118 -98234118 -97987184 -9994739 -99127244	00840818	01809858	•0	:TERS00108676	00108971	PARAMETERS 0.	•0	•0	• 0	SOLVE-FOR PAR	MU PLN	0.0000000000000000000000000000000000000	TERS 0.	PARAMETERS 0. 0. 0.	EIGENVALUES 1.5571806513287E+06 1.0126380792271E+04 1.1975483597946E+03	EIGENVECTORS 8.6046336976431E-01 5.0875298376857E-01 2.7806308643948E-02
CORRELATION MATRIX PAR	STD DEV	5.7866670E+02 2.79496812E+02 1.86102448E-02 5.44139875E-03	SOLVE-FOR PARANETERS			MIC, CONSIDER PARAMETERS		MEASUREMENT CONSIDER PA					STD DEV	1.00000000E+01 3.0000000E+03	MIC CONSIDER PARAMET	MEASUREMENT CONSIDER PA	POSITION EIGE 1 1.5 2 1.0 3 1.1	POSITION EIGE 1 8.6 2 5.0 3 2.7
CONTROL CORF	×	24X24; 4<6	SOLVI		RANSE	DYNAMIC, NODE	OMESA	MEASI RADIUS 3	LAT 3	LONG 3	ST ANG 1		2		DYNAMIC NODE OMESA	MEASI RADIUS 3 LAT 3 LONG 3 ST ANG 1	A.57	

.

LINEAR-GUIDANCE

5.5559985315E+04 9.2118516132E-01

DAYS

3.433

AT TRAJECTORY TINE

-5.4422571441E+03 1.7023246623E-01 -5.4707928663E+03 -2.5428907102E+03 -2.4467291610E+05 -2.4994369596E-01

-1.3310806363E+05 -3.9707642456E+04 2.0710285753E+00

9.9876898595E-01 -9.9894432190E-01 1.0000000000E+00

-5.9046278055E+04

-3.1123289304E+04 -9.5311313455E+03

```
-3.3861903441E+05
3.2770536607E+04
-1.6249250621E+00
                                                                                                                                                                                                     -5.2549973399E+04
5.6949021339E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -1.000000000E+00
                                                                                                                                    -7.7895184389E-01
                                                                                                                  4.7681876379E+04
                                                                                                                                                                                                                                                                                                                                                                                                                                            8.3218147988E+03
1.5307168858E+02
1.3460054585E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SQUARE ROOTS OF EIGE
2.7837748162E-02
9.7583371362E-04
2.7565778293E-04
                                                                                                                                                                                                                                                                                                                                                                                                                           ROOTS OF EIGENVALUES
                                                                                   TRAJECTORY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9.7406516598969E-01
1.5992114489877E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -2.2626765599554E-01
                                                                                                                                                                                                                                                                                                                                                         -9.9653316172E-01
                                                                                                                                                                                                                                                                                                                                                                                           -9.9894432190E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -9.9084239462E-01
1.0000000000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        9.9464556575E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ö
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   VELOCITY CORRECTION CORRELATION MATRIX AND STANDARD DEVIATIONS
                                                                                                                  -2.7995222279E+04 4.
4.6134264250E-01 -7.
= -2.3695805520E+02
                                                                                                                                                                                                                                                                     4.1091727326E-03
-3.3614948043E-01
-7.2177499533E-07
                                                                                                                                                                                                                     -9.8277667033E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -3.6498845949E-08
1.5052834557E-07
-1.4031904241E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GUIDANCE POLICY
                                                                                   ON TARGETED NOMINAL
                                                                                                                                                                                                                                                                                                                                           CORRELATION MATRIX AND STANDARD DEVIATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                           SQUARE
                                                                                                                                                                                                        •
                                                                                                                                                                                                                                                                                                                                                           1.000000000E+00
                                                                                                                                                                                                                                                                                                                                                                           -9.9653316172E-01
                                                                                                                                                                                                                                                                                                                                                                                           9.9876898595E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.00000000000E+00
-9.9084239462E-01
-9.9050454472E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -- THREE VARIABLE B-PLANE

-06 2.1394885689E-07 -3

-07 -2.6749218211E-06 1

-08 2.9196211414E-07 -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.3430941844525E+04
1.8117306943258E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                             6.9252601545615E+07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9.7405516609654E-01
2.2626765607565E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -3.3678533577767E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ABOVE MATRIX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EIGENVECTORS OF ABOVE MATRIX
                                                                                                                                                                                                                                                                     -2.8286408087E-01
-4.1790836258E-02
5.9604644779E-06
                                                                                                                                                                                                        -5.0959109105E-01
                                                                                                                                                                                                                      -1.5900262529E-01
                                                                                                                                                    B DOT T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7.7494022275E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9.5225143663E-07
                                                                                   VEHICLE REACHED SPHERE OF INFLUENCE
                                                                                                                                 PLANET
                                                                                                                    PL ANET
                                                                                                                                                                                                                                                                                                                                                                                                                             EI GENVALUES
                                                                                                                  POSITION RELATIVE TO TARGET VELOCITY RELATIVE TO TARGET B = 5.4759221786E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6
                                                                   -EXECUTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EIGENVECTORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EIGENVALUES
                                                                                                                                                                                                      -8.6041671295E-01
9.4171022116E-02
                                                                                                                                                                                                                                                                       -2.5012645219E+00
2.3083676060E-01
-1.2596137822E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -7.4689106320E-06
2.1097562551E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -9.1145328788E-08
IPC-NOT-IN-EFFECT
                                                                                                                                                                                                                                                                                                                                                                                                                                               ⊣ 0.10
                                                                                                                                                                                                                                                        VARIATION MATRIX
                                SINGLE--IMPULSE-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GUIDANCE MATRIX
                                                                   -COMPUTE--AND
                                                                                                                                                                                                                                                                                                                                                           9.1060639083E+03
                                                                                                                                                                                                                                                                                                                                                                         1.8888516087E+03
                                                                                                                                                                                                                                                                                                                                                                                          5.7472793704E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.6750556907E-02
7.1702603974E-03
2.9939159022E-03
                                                                                                                                                                                       MATRIX
                                                                                                                                                                                                                                                                                                                                           TARGET
A.58
```

-1.000000000E+00

-1.000000000E+00

•

-9.9050454472E-01 9.9464556575E-01 1.0000000000E+00

EIGENVALUES

2.9428107558E-01 9.4975090057E-01

9.1499812964E-01 -3.1220628378E-01 -2.5554971949E+01

9.6 089659864E-01 2.7600194079E-01 2.2371035345E-02

a a'm

6.8990069012899E-06 -1.4815325371817E-05 9-999999986645E-01

2.2240431109E-02 OF DELTA V. . . EXPECTED VALUE

1.6772865487E-02 STANDARD DEVIATION OF EXPECTED VALUE OF DELTA V. .

-2,3717036369E-03 EXPECTED VALUE OF VELOCITY CORRECTION 2.1370814483E-02 -5.6835512641E-03

	6.2982305942E-02	-1.2863761383E-02	1.0000000000E+00
DEVIATIONS	1.5286429986E-01	1.0000000000E+00	-1.2863761383E-02
EXECUTION ERROR CORRELATION MATRIX AND STANDARD DEVIATIONS	1.000000000E+00	1.5286429986E-01	6.2982305942E-02
EXECUTION ERROR	1.1893346739E-04	1.5486503304E-04	1.5684891607E-04

1.000 DAYS CONTROL (

	1.000	7.7						1.00000000
	T I ME							1.0
	CORRECTION AT	٨٨					1.0000000	01286414
-1.2863761383E-02 1.00000000000E+00	AFTER GUIDANCE	×>				1.00000000	.15285065	.06298072
	IATIONS JUST	2			1.00000000	00009278	00041396	.00819757
1.0000000000E+00 -1.2863761383E-02	AND STANDARD DEV	>-		1,00000000	04082556 1.	00122804		
.5286429986E-01 .2982305942E-02	MATRIX PARTITIONS AND STANDARD DEVIATIONS JUST AFTER GUIDANCE CORRECTION AT TIME	×	1.00000000		.51193313 -	. 00093277	00443940	.00514274 -
₩ 9	IL (AND KNOWLEDGE) CORRELATION P	STD DEV	1.85354596E-03	6.36130997E-02	4.31822956E-02	1.18933559E-04	1.54869995E-04	1.56856364E-04
5486503304E-04 5684891607E-04	L CAND KNOWLEI	STI	~ ×	٨ .	· • • 7			VZ 1.9

-4.9175547845E-03 -1.7296656510E-02 1.0000000000E+00 SQUARE ROOTS OF EIGENVALUES TARGET CONDITION CORRELATION HATRIX AND STANDARD DEVIATIONS AFTER 4.7985974800E+01 5.2693582725E-02 3.8648225420E+01 5.2693582725E-02 1.000000000E+00 -4.9175547846E-03 -1.729655510E-02 POSITION EIGENVALUES

4.8107083798E+01 3.8497371261E+01 3.5221009111E-04 408 2.3142915115323E+03 1.4820475940087E+03 1.2405194827981E-07 POSITION EIGENVECTORS

-4.7698695035124E-08 -1.5114380194773E-07 9.9999999999999E-01 1.1825211026550E-01 9.9298360430458E-01 1.5572378857117E-07 9.9298360430460E-01 -1.1825211026550E-01 2.9490948582733E-08 H 0/ M

		VELOCITY • 44739687 • 44751521 1• 05620458																		
		Z-DOT •10473621 •10387047			TIME	-18009.82			-67.13	-167.03			-347.57	-449.91			-68.07	-168.00		
		Y-DOT .04720771 .05886478 90138610			RP/RA 1	1820.31 -1	1800.00 4200.00		1820.31	1816.30 4200.00			1820.31	1800.00 27843.61			1820.31	1816.24 4237.90		
9377		x-DOT .43239532 .43129540 .52190141			I/N	89.90 -138.53	89.90 -138.53		89.90 -138.53	89.90 -138.53			.89.90 -138.53	89.90 -138.53			89.90 -138.53	89.90 -138.53		
27929.7937		92.85 92.94 35.96	92.85 92.94 35.96		H/TA	135.48 -130.74	140.48 0.		135.48	140.48 -10.19			135.48	140.48 -30.91			135.48	140.48		
AN DATE	₩	RADIUS 3916 3955 224	OPER= 5.		A/E	-7214.9 1.25230	3000.0		-7214.9 1.25230	3008.1 .39621			-7214.9 1.25230	14821.8			-7214.9 1.25230	3027.1		
54 JULIAN	4 MOL	Z-COMP 20337.43 20580.97 519.72	, 000004•		R/V	22436.0 1.05620			1824.5 2.45937	1824.5 1.93422	. 52514		1928.1 2.40000	1928.1 2.17959	.22041		1824.6 2.45930	1824.6 1.93676	. 52253	.52514
7 3 2°0'	SAMA	Y-COMP 65770.54 66342.08 19260.78	000 E=		2//2	1855.4 .11329			1391.7 -1.68281	1391.7 -1.32349	.35933		1816.6 -1.34219	1816.6 -1.21893	.12327		1393.3 -1.68175	1393.3 -1.32443	.35733	• 35 933
.830 DAYS 6 20	1 KTYP	ш	T = 3000,000		Y / V Y	-14809.7 . 69529			779.5 1.18990	779.5 • 93583	25408		425.4 1.31934	425.4 1.19817	12117		778.4 1.19050	778.4	-, 25295	25408
r at 1976	KU?	SPACECRAFT STAT. SE X-COMP 384579.57 389446.95 -11494.55	DISION EVENT	ON EVENT	×//×	-16751.2 .78696			885.6 1.34192	885.6 1.05538	28654		486.0 1.48925	486.0 1.35248	13677		884.3 1.34260	884.3 1.05733	28526	28654
GUIDANCE EVENT CALENDAR DATE	EVENT CODES	95JURENT SPACI REFERENCE INERTIAL EARTH MOON	INSERTION DECISION EVENT PLANAR OPTION TARGET PARAMETERS A=	COPLANAR INSERTION EVENT	EVENT	DECISION .	TARGET ORBIT	MODI=Y RP	PRE-INSERTION	POSF-INSERTION	INSERTION VEL	MODIFY RA	PRE-INSERTION	POST-INSERTION	INSERTION VEL	MODIFY SMA	PRE-INSERTION	POST-INSERTION	INSERTION VEL	SELECTÈD CORREC TIME= 17942.69

4.0376700789E+00

ORBITAL INSERTION WILL BE EXECUTED AT

PROBLEM.

4.038 DAYS Y 6.2472215465729E+04 Z 1.9890444669031E+04 VX 9.2274798833918E-01 VY-5.6134190636143E-01 VECTOR AT TIME 4. X 3.9458316135420E+05 VZ-1.6985772249288E+00 STATE

PLANAR-ORBIT-INSERTION

IPC-NOT-IN-EFFECT

SINGLE--IMPULSE-

-EXECUTE-ONLY

5.2514387522E-01 OF DVUP= MAG. 3.3509334950E-01 3.3513980294E-01 -2.2620753587E-01 DVUP= ECLIPTIC COORDINATES 1.8333343571E+03 INSERTION-NOMINAL STATE RELATIVE TO TARGET PLANET IMMEDIATELY FOLLOWING ORBITAL 1.3690428490E+03 -1.1030265276E+03 5.1977785819E+02 POSITION

EQUATORIAL COORDINATES INSERTION-NOMINAL STATE RELATIVE TO TARGET PLANET IMMEDIATELY FOLLOWING ORBITAL

-1.2909396456E+00

-1.1688159835E+00

8.2901545648E-01

VEL OCI TY

1,9287100868E+00

3.5932791752E-01 -2.5407800514E-01 -2.8653778926E-01 PLANETO-CENTRIC EQUATORIAL COORDINATES OF DVUP=

1,8333343571E+03 1.9287100868E+00 NOMINAL PLANETO-CENTRIC EQUATORIAL ORBITAL ELEMENTS IMMEDIATELY FOLLOMING ORBITAL INSERTION 1.2991134906E+03 -1.3784985484E+00 8.3810748827E+02 9.1437156919E-01 9.8533070506E+02 9.9175054789E-01 POSITION VELOCITY

1.3758170815E+02-2.7146155515E+00

3.9248059041E-010= -1.3848131946E+02T=

3.0167834275E+03E= 8.8868624709E+01N=

¥=I

A.61

Case S-1. Planetary Explorer Venus '78 Mission

```
JULIAN DATE . . . 2443858.74526000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                OUTPUT FROM VIRTUAL MASS PROGRAM WILL BE SUPRESSED AT INITIAL AND FINAL STEPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         VIRTUAL MASS PROGRAM WILL INTEGRATE UNTIL REACHING ANORMAL STOPPING CONDITION
                                                                            THE FOLLOWING QUANTITIES ARE TO BE AUGMENTED TO THE STATE VECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8.64000000E+04/DAY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ORBITAL ELEMENTS WILL BE CALCULATED AT EVERY TIME INTERVAL
 5 53 10.465 1978
                                                                                                                                                                                                                                                                                                                                                                                                           INERTIAL FRAME IS HELIOCENTRIC ECLIPTIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COORDINATES
                                                                                                                                                                                                                                                                                                        MEASUREMENT CONSIDER PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NOMINAL TRAJECTORY CODE. . . 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NOMINAL TRAJECTORY INFORMATION
BODIES TO BECONSIDERED
 12 16
                                                                                                                                                                                                        DYNAMIC CONSIDER PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          INITIAL STATE VECTOR
INERTIAL COORDINATES
                                        INITIAL TRAJECTORY TIME =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TARGET PLANET. . . VENUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -8.91391532E+07
-4.61581286E+03
6.19095585E+00
2.27225787E+01
-3.27287461E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -1.08560236E+01
-1.25168694E+00
-3.27287461E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.49598500E+08/A.U.
                                                                                                                                                                                                                                                                                                                                                                                                                                                      INITIAL STATE VECTOR
GEOCENTRIC ECLIPTIC
6.55455973E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -4.61581286E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.62539153E+03
                                                                                                                     SOLVE-FOR PARAMETERS
MU PLN
                                                                                                                                                                                                                                                                                                                               RADIUS 1
LAT 1
 FINAL DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   VENUS
                                                                                                                                                                 R-RATE
```

JULIAN DATE . . . 2443737.70087038

8 17

LAUNCH DATE

```
•
TO BE USED IN THE DETERMINATION OF THE ACTUAL TRAJECTORY
                                                                                                                                 ;
                                                                                                                                                                           LONGITUDE
        -1.000000000000E-07
                                                                                                                                                                                                                     ACTUAL DEVIATION OF STATE VECTOR AT INITIAL TIME ' 1.00000000E+00
                                                                                                                                                                LATITUDE
                                                                                                                                   9
                                                                                                                               DAYS THROUGH 121.044 DAYS.
                                                                                                                                                     BIASES IN LOCATIONS OF ROTATING STATIONS ALIITUDE
                                                                                                                                                                           8.00000000000E-04
DYNAMIC CONSTANT BIASES
                                                                                                                                                                                                                                                                                                                                                                                       6.0000000E-06
                                                                                                                                                                                                                                                       -5.0000000E-01
                                                                                                                                                                                                                                                                             1.00000000E+00
                                                                                                                                                                                                                                                                                                 -2.0000000E-03
                                                                                                                                                                                                                                                                                                                       2.0000000E-03
                                                                                                                                                                                                                                                                                                                                            -1.50000000E-03
                                                                                                                                                                                                                                                                                                                                                                8.0000000E-01
                                                                                                                                 •
                                                                                                                                 FROM
                                                                                                                                                                                                                                                                                                                                                                 MU PLN
                                                                                                                                                                                                                                                                                                                                                                                       R-RATE
```

7

RANGE (GEO CENTRIC) RANGE-RATE (GEO CENTRIC)

RANGE CSTATION 1
RANGE-RATE (STATION 1
RANGE (STATION 2
RANGE-RATE (STATION 2
RANGE (STATION 3 (STATION 1

(STATION 1 (STATION 2 (STATION 3 (STATION 3

2.500000000000E-11 STAR PLANE ANGLE 1 STAR PLANE ANGLE 1 STAR PLANE ANGLE 2 STAR PLANE ANGLE 3

SINCLALION NOOF "- GOLDANCE CVENIA I INDUSTRIA NOOF "- GOLDANCE TO THE TO DATE TO THE TO THE TOTAL TO THE TOT	NAL 266+0 056+0 626+0 376+0 776+0	2 VBP NON-LINEAR-GUIDANCE-	USE- NON-LINEAR-GUIDANCE-FOR-BIASED-AIMP OINT SINGLEIMPULSE-	-COMPUTEAND -EXECUTE	VEHICLE REACHED SPHERE OF INFLUENCE ON TARGETED NOMINAL TRAJECTORY AT TRAJECTORY TIME 119.488 DAYS $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	M MATRIX -9.0959023961E-01 4.1550643317E-01 0. 2.7662731033E-01 6.0556824491E-01 -7.º%616649077E-01 3.4788016020E+04 7.0608552440E+04 -8.8182011511E+04	VEHICLE REACHED SPHERE OF INFLUENCE ON MOST RECENT NOMINAL TRAJECTORY AT TRAJECTORY TIME 119.488 DAYS Z RESULTANT POSITION RELATIVE TO TARGET PLANET 1.6041323232E+05 4.2735490946E+05 4.0583373049E+05 6.1634582000E+05 VELOCITY RELATIVE TO TARGET PLANET -1.6164795943E+00 -3.5386553471E+00 -3.4711552211E+00 5.2136283932E+00 B = 1.4987905328E+04 B DOT T = 1.3736693529E+04 B DOT R = 5.9950443708E+03	STATE TRANSITION MATRIX PARTITIONS OVER(0. , 119.488) TRANSPOSES SHOWN
--	--	-------------------------------	---	----------------------	---	---	--	---

ċ

EVENT AT TRAJECTORY TIME

GUIDANCE

SIMULATION MODE

. .

7.6837092066E-08 7 -1.9038528473E-08 8 -1.4497128023E-07 3.7240794621E-01 2.3926363326E-01 1 -1.1371217357E+00 -1.9474263979E-07 0. 1.8452509114E-06 8-6.6131076362E-07-9 3.4270460438E-08-1 8.2357549375E+00 1 4.0312112305E+00 -1.7376123651E-07 ô 1 -6.2193124982E-08 2 5.7368105197E-08 -1 1 4.8692391509E-09 5 2.1321064240E-01 5 1.0206558676E+00 -8.6592990556E-08 0. 3.6112699962E+00 3.1657631365E-01 -1.1747565226E+00 -6.1731481782E-02 8.2087623563E-02 -5.3167994842E-01 1.6926772924E+07 1.2642206951E+06 1.0917407980E+07 4.6379146909E+05 8.4366447578E+05 2.6253398074E+06 -5.6762397289E-02 • 4.9962997437E-02 0. 5.1757055330E+00 -1.2089015489E+00 1.2143401672E-01 2.2001410422E+07 4.2583778760E+06 7.5400257605E+05 1.0545969009E-01 DYNAMIC CONSIDER PARAMETERS PARAMETERS SOL VE-FOR MU PLN -RATE

VZ(119,488)

VY(119.488)

VX(119.488)

Z(119.488)

Y (119,488)

X(119.488)

TARGET CONDITION CORRELATION MATRIX AND STANDARD DEVIATIONS BEFORE GUIDANCE CORRECTION APPLIED 5.3545791106E+04 -0.53545791106E+04 -0.6843474748E-01 -0.5353957658E+04 -0.6843474748E-01 1.000000000E+00 5.3545791106E+047.5363957658E+04

-1.1550577831E-07 -1.7540978775E+00 7.9361043868E+00

-3.1548112247E-08 -6.1703816296E+00 5.4005445763E+00

-4.6001447601E-03 -1.2448314428E-02 -6.3860425144E-08 -4.8503434614E+05 -1.3830266982E+05 -2.0042613925E+00 5.5156326589E+05 6.9583296238E+05 -6.7779706579E+00

A.65

-6.0948455334E-03 -1.5893573802E+05 -7.7398596701E+05

BIASED AIMPOINT GUIDANCE EVENT

1.3675480823E+04 CAPTURE RADIUS=

	°			
		ŝ	ô	0
7.1589616860E-09 1.186157123E-07 -1.9303140821E-08	°	•0	00°	•
PSIJ MATRIX ~7.0337024070E-06 1.4120341509E-07 -2.5533302141E-08	DVR8= 0.	EXECUTION ERROR MATRIX 0_{\circ}	0	•0

-3,5065013227E+09 2.8671517452E+09 5.6797261139E+09 LAMBDA STAR=-3.5045013227E+09

3.7577261215E-02 PROBABILITY OF IMPACT=

1.6899393205E+01 7.1623158215E-10 U2#U2= -1.8772694409E+04 -8.6127903627E+02 -1.7854190266E+00 1.0741004168E+05 -7.5986667941E-06 -7.0917314235E+04 7.8362885499E+03 3.7753735147E+02 8.0038977100E-01 3.4377870076E-06 1.7508906051E-09 U1*U2+ 3.7736172025E+04 3.7736172025E+04 1.4514621370E+05 1.2551224025E+05 1.2637351929E+05 1.2551045684E+05 8.5040058899E+04 ELLIPSE CONSTANTS= 1.4188294106E-09U1*U1* 2.2336570565E+04 8.5040058899E+04 1.4122744664E+04 2.1959033214E+04 2.2337370955E+04 INITIAL XM=

1.2551045483E+05 2.2337370958E+04 MU SUPER I =

1.1944739615E+05 8.6740119156E+03 DELTA NU=

-2.5278799965E-03 -3.5045013227E+09 1.4562484038E-02 2.4518862762E-04 DVBIAS=

2.8671517452E+09 5.6797261139E+09 LAMBDA STAR= -3.5045013227E+09 COMMANDED VELOCITY CORRECTION WILL BE RECOMPUTED USING NON-LINEAR GUIDANCE

ZERO ITERATE PARAMETERS IZERO

MAT BADITS BIT 1 2 6 4 DV Z 0. ٠٠ • × ^ 0 10L3 TOL2 100.00 TOL1 100.00 28837.19 22337.37 125510.45 TAR KEY 5 6 2 IND IMP MOD 1 4 1

13
D
다
Ď
Ď
のななな事業をなななななない。
20
*
蜂
() なななななななななな
000
000
0000000000
2000
Ď
Ö
\$

\$
44
0
ø
10000
15

•
*
*
*
*
*
IŞ IŞ
*
*
*
\$.
ě
*
*
*
D)
참
*
*
\$
炒炒
1
E)

中华企业
i)
10
4
*
蜂
*
*
蜂
蜂
*
* *
*

*
*
公安公安会会会会会会
*
*
*
蜂蜂
i i
r,

								CPT 401 416 431		CPT 447 462 478	
		VELOCITY 23.77719967 23.77719967 35.15476330 11.40752721					DELT 129.488	2- INCR 1009 1009 1009	TAR TOL 100.000	2- INGR 1007 1007	100.000
		87461 87461 80665 87461					ISTOP 2	AUX 0	DES TAR VAL 22337.371 125510.455	AUX - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DES TAR VAL 22337.371
							DAUX (3) 28837 • 19	AUX - 6- 5995.044 6687.046 6045.844	DE 1	AUX - 6- 111336.367 112064.860 111377.321	님
		Y-DOT 22.72257868 20.51756583 -1.25168694					DAUX(2) 125510.45		DES AUX VAL 22337.371 125510.455		DES AUX VAL 22337.371
					·			AUX - 5- 13736.694 13339.580 13725.729	<u>.</u>	AUX - 5-34984.900 34581.005 34982.586	
28717.70087		x-DOT 6.19095585 6.19095585 -28.51652459 -10.85602362					DAUX (1) 22337.37	2 - 2- 0. 0.	VEL COR -1.39E-03 4.24E-02	2 - 2- 0. 0.	VEL COR 3.27E-04
28717		RADIUS 151454715.97 151454715.97 116842819.44 6567.31	562E+03 053E+00				KAXTAR 5 6 2	6- TAR	NUX ERROR 8.60E+03 1.20E+05	6- TAR 167 160 121	AUX ERROR -1.26E+04
JULIAN DATE	≈.		-4.6158128562E+03 -3.2728746053E+00			·	(3)	TAR - 6- 5995.044 6687.046 6045.844	AUX 8.6	TAR - 6- 111336.367 112064.860 111377.321	A L
	4 MDL	Z-COMP -4615.81 -4615.81 1917002.09					DTAR(3) 28837-19	TAR - 5- 13736.694 13339.580 13725.729	ATRIX 9 0. 7 0.	TAR - 5- 34984.900 34581.005 34982.586	ATRIX 9 0.
49 15°201	KMXQ		8.9139153205E+07 2.2722578677E+01 04	11-YRF 12-ZRF	ERANCE 100.000 100.000		DTAR(2) 125510.45		GETING MATRIX -8.71E-09 0. 3.16E-07 0.		TARGETING MATRIX 08 -1.56E-09 0.
DAYS 17 4	KTYP 1	Y-COMP -89139153.20 -89139153.20 19393117.86 4625.39	70E+	7-RCA 8-INC 9-ASI	TOLERANCE 100.00 100.00	02		VZ -3.2728746 -3.2728746 -3.2728746	TARGE-08-4-5-50E-07	VZ -3.2728746 -3.2728746 -3.2728746	TAR -2.76E-08
• •	+	AATE 5 5 6 EVENT	1.2244485426E+08 6.1909558537E+00 E 2.871770087	DEFINITIONS 4-TGA 5-B.T 6-B.R	SPECIFICATIONS TARGET VALUE 22337.371 125510.455	EME 2.500E-05 5.0000000E-02 2	DTAR(1) 22337.37	VY 22.7225787 22.7225787 22.7225887	•	VY 22.7650177 22.7650177 22.7650277	Ĩ
ENT AT TE 1978	KUR		DAT	KEY	TING SPECI KEY TARG 5 2 6 12	TARGETING SCHEME LEVELS 2. DVMAX 5.0 IBAST 2	KEYTAR 5 6 2	09559 09559 09559	Y MATRIX E+06 0. E+06 0.	מממ	Y MATRIX E+05 0.
GUIDANCE EVENT CALENDAR DATE	EVENT CODES	ENT SP RENCE N-80D	STATE	PARAMETER 1-TRF 2-TS] 3-TCS	TARGETING KEY 5 5	TARGET: LI D)	IND NOF PHS		SENSITIVITY MATRIX E+07 -1.10E+06 0. E+07 5.08E+06 0.	VX 5 6.189567 5 6.189577	SENSITIVITY MATRIX E+07 -2.31E+05 0.
CAL	EVE	CURR REFE INERTIAL SUN VENUS EARTH					IND	ACCURACY 2.50E-05 2.50E-05 2.50E-05	SENS -3.97E+07 6.92E+07	ACCURACY 2.50E-05 2.50E-05 2.50E-05	SENS. -4.04E+07
				•						A.67	

€ 9.	7.20E+07 4.10E+06	0°	6.90E-07 2.72E-87	.72E-87 3.	ৡ ৽ ৵ ৢৢ ৼ৽ঢ়৽	~ 2° 35E ~ 03	125510.455	10655	125510,455		100.000	-
6.4 8	VX 6. 18989 41	VV VV 1 22°7626692	42 -3.2728746	7AR 0 50 23784.045	TAR = 6= 123518,487	TAR - 2- AI	AUX - 5- 23784.045	AUX - 6-		AUX - 2- INCR 0. 1008	INCR	C & & & & & & & & & & & & & & & & & & &
ۉ	6.1899041			23396.475	124220,334		23396.475	124220 .334		. 0	1008	500
ဖိ	6.1898941			23789,218	123543,315	83.	23789.218	123543.315	15 0°	۰	1008	28€
AXI:	SENSITIVITY MATRIX	REX	TARGE	G MATR	AUX ERROR	VEL COR	DES AUX VAL		DES TAR VAL		TAR TOL	٠.,
γų	2.48E+06	°°	-1.87E-06 3.90E-09 5.30E-07 2.92E-07	.92E-09 0.	-1.45E+03 1.99E+03	3.49E-05 -1.84E-04	22337.371 125510.455	25337.371	22337,371 125510,455		100.000	20
	××	٨	V Z	TAR = 50	TAR - 6-	TAR - 2- A	AUX - 5-	AUX - 6-	5- AUX - 2-	2	INCR	5
Ġ	6.1899290	1 22.7624856	-3.2728746	225530555			22553.595	125215,215			1008	S.
Ġ	6.1899390	3 22.7624856	-3,2728746	22159.069	125831.495		22159.669	125633.495	95 0	•	1008	554
Ġ	6.1899290	0 22,7624956	-3.2728746	22537.178	125183.630		22537.178	125183.630	20 0	•	1008	Ø 25
AIT.	SENSITIVITY MATRIX	TRIX	TARGE	TING MATRIX	AUX ERROR	VEL COR	DES AUX VAL		DES TAR VAL		TAR TO	پ
-1:	-3.94E+07 -1.64E+06	•	-4.50E-08 -1.08	08 -1.08E-08 0.	-2.16E+02	5.47E-06	22337,371		22337.371		100.000	0
ģ	7.16E+07 6.84E+06	• 0	4.72E-07 2.59	.59E-07 0.	3.95E+02	5.39E-07	125510,455	1.455	125510.455		100.000	
ø	VX 6.1899345	VY 5 22.7624861	V2 -3.2728746	TAR - 5- 22327.566	TAR - 6- 125528.042	TAR - 2- A	AUX - 5- 22327.566	AUX - 6- 125528.042	5- / AUX - 2- INCR +2 0 1008	- 2-	INCR 1008	CP1 585
<u>.</u>	-1.02	DVUP= ' -1.0213745230E-03	3.9907459511	511E-02 0.		MAG. OF DVUP=		3.9920527684E-02	-02			

• CONTROL (AND KNOWLEDGE) CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS JUST AFTER GUIDANCE CORRECTION AT

۸Z						1.00000000
AA					1,000000000	00000000
×>				1.00000000	-00000000	°0000000°
2				•		
>		1.00000000	.00000000.	00000000	. 0000000	000000000-
×	1.00000000	00000000	000000000	000000005	00000000	00000001
STD DEV	1.41421356E+00	1.41421356E+00	1.41421356E+00	4.24264068E-03	4.24264068E-03	4.24264069E-03
:	×	 ≻	. 2	× >	>	λZ

2.7171381187E+04 -1.4753416061E+04 TOTAL DUE TO EXECUTION ERROR • DUE TO NAVIGATIONAL UNCERTAINTY 2.7171381187E+04 ACTUAL TARGET ERROR

•

-1.4753416061E+04

MOST RECENT NOMINAL TRAJECTORY 1.2244485426E+08

-8.9139153205E+07

-4.6158128562E+03

6.1899344792E+00

2.2762486136E+01

-3.2728746053E+00

TARGETED NOMINAL TRAJECTORY AFTER GUIDANCE CORRECTION 1.2244485426E+08

-8.9139153205E+07

-4.6158128562E+03

6.1899344792E+00

2.2762486136E+01

-3.2728746053E+00

ACTUAL DEVIATIONS JUST AFTER GUIDANCE CORRECTION 9.9999952315E-01

-5.000000000E-01

1.000000000E+00

-2.0000000000E-03

-1.5000000000E-03 2.000000000E-03

ESTIMATED DEVIATIONS JUST AFTER GUIDANCE CORRECTION

;

ċ

÷

A.69

HEASUREMENT NO

RANGE-RATE HAS HEASURED FROM STATION 3 AT TRAJECTORY TIME

9.90000 DAYS

init i Final	INITIAL TRAJECTORY TIME FINAL TRAJECTORY TIME	Time 9.600 Time 9.900							
TARG NOE	X~COMP	A-COMP	Z-COMP	RADIUS	X-DOT	100-A	Z-001	VELOCITY	
INERTIAL GEO- PLANETO-	133340479.97 ~1573208.14 97906643.73	-6968619°79 -1714707°47 33014402°91	1159046.05 1159046.05 4628670.36	150550477.13 2599729.46 103426906.67	11,166798824-1,762094316-21,708911000	24.531015563 -1.947878115 13.24701958	1.335245649 1.335245649 3.074851308	26.986126095 2.958541912 25.616694952	
TINAL INERTIAL GEO- PLANETO-	133628186,60 -1619408,15 97343624,84	-69251849.96 -1765176.19 33355134.33	1193631.59 1193631.59 4706226.54	150514580°C7 2676394°24 103007347°70	11.033061450 -1.781278037 -21.747183051	24.602164985 -1.944294250 13.044361755	1,333396852 1,333396852 3,863698853	26.995794377 2.954856806 25.543661292	
RECENT N	HOST RECENT NOW X-COMP	Y~COMP	Z~COMP	RADIUS	x-00T	Y-00T	Z-D07	VELOCITY	
INERTIAL INERTIAL GEO- PLANETO-	133336281.8% -1577406.27 97902645.59	-69898416.34 -1716584.03 33812606.36	1159498°94 1159498°94 4629123°29	150567596.43 2603657.88 103422381.40	11.161589783 -1.787303437 -21.714120121	24.528669028 -1.950224668 13.244673035	1.335969264 1.335969264 3.075574824	26.981873586 2.963552496 25.619983156	
FINAL INERTIAL GEO- PLANETO-	133623853,39 -1623741,36 97339291,63	-69253707。31 -1767033.54 33353276.98	1194103.27 1194103.27 4708698.21	150508591°30 2680452°60 103002672°88	11.827847165 -1.786492322 -21.752317335	24°599820929 -1.946638306 13.042037699	1.334122572 1.334122572 3.064423773	26.991563235 2.959671374 25.546991014	
ACTUAL TRAJ	X-COMP	Y-COMP	Z-COMP	RADIUS	x-001	Y-DOT	Z-001	VELOCITY	
INIIIAL INERTIAL GEO- PLANETO-	133336240.71 -1577447.40 97902604.46	-69890455.68 -1716543.35 33012567.02	1159403.59 1159403.59 4629027.90	150547577.53 2603666.27 103422325.64	11.161535736 -1.787357404 -21.714174088	24.528618485 -1.950275196 13.244622500	1.335870584 1.335870584 3.075476243	26.981800440 2.963573864 25.619990937	
INERTIAL GEO- PLANETO-	133623810.87 -1623783.89 97339249.10	-69253747。96 -1767074。19 33353236。34	1194005.36 1194005.36 4708600.31	150508571.47 2680461.54 103002615.05	11.027793202 -1.786546284 -21.752371298	24.599770473 -1.946688762 13.041987243	1.334024150 1.334024150 3.064325351	26.991490338 2.959892767 25.546999397	

-3.22381081655E+00	8.96617900103E+01				1.04917505475E+02	2.09798879702E+02	1.09533765749E+04
z –	ANGLE BETWEEN RELATIVE VELOCITY AND PLANE OF THE SKY	GEOCENTRIC DECLINATION	EARTH/SPACECRAFT/TARG PLANET ANGLE	ANTENNA AXIS - EARTH ANGLE	ANTENNA AXIS - LIMB OF SUN ANGLE.	ION RATIO FOR SUN	OCCULTATION RATIO FOR VENUS IS

--TRANSPOSES SHOWN

92 (9.59593290E-11 1 -0.0032497633E-11 1 -0.0083641519E-09 5 2.7333145936E-07

1.3706003270E-09 -1.240048844E-09 -1.2400489758E-09 -3.6220981002E-10 2.0975549552E-11 -1.0932494876E-11 1.0000177900E+00 -1.6055727231E-05 -1.6055727730E-05 9.9999528026E-01 2.7333143826E-07 -1.6219388578E-07

1.0000177358E+00 -1.6086270470E-05 2.7035368610E-07 -1.6086271102E-05 9.9999533115E-01 -1.4117578595E-07 2.703536057E-07 -1.4117576685E-07 9.9998693324E-01 2.5920153471E+04 -1.3885471765E-01 2.3486587925E-03 2.3487425497E-03 -1.2241879813E-03 2.5919887089E+04

9.600)

9.600) 9.600) 9.600)

72 74 74 74 74 74 74 74 74

9.9998692990E-01

• 6

å ö

ခွဲ ခွဲ

° °

ôô

DYNAMIC CONSIDER PARAMETERS

..

ċ

R-RATE

SOL VE-FOR PARAMETERS

9.600)

000

666

000

000

ċ

ô

ċ

ů

DIAGONAL OF DYNAMIC NOISE MATRIX

OBSERVATION MATRIX PARTITIONS -- TRANSPOSES SHOWN

•• SOLVE-FOR PARAMETERS

MU PLN R-RATE

DYNAMIC CONSIDER PARAMETERS

MEASUREMENT CONSIDER PARAMETERS RADIUS 1 LONG 1 LAT

K-MATRIX GAIN MATRIX PARTITIONS

2.6214596587E406 4.2099754312E406 1.4237045564E-03 3.2733284550E400

S-MATRIX

0. 1.1133747634E-01

CORRELATION MATRIX PARTITIONS	AND ST	ANDARD DEVIATIONS	MS AT TIME	9.900 DAYS, JUST	BEFORE THE	MEASUREMENT	
STD DEV	ć	× 6	≻	2	×^	۸۸	λV
X 3.47280134E+01 Z 4.80621681E+01 VX 1.14427632E-05 VY 3.97532011E-05 VZ 5.40425869E-05		1.0000000 25804206 .02706652 27431214	1.00000000 .95787182 28426239 .99759293	1.0000000 00120172 .95073604	1.00000000 30625318 01833611	1.00000000	1.00000000
SOLVE-FOR PARAMETERS		• 0	•	•	÷	•0	•
R-RATE	•	57533608	*82525484	.67584106	57779703	. 81989477	.67567199
DYNAMIC CONSIDER PA	PARAMETERS	•	9	•	ô	• 0	•
I		•	0	0.	°	• 0	•
T		•	•	• 0	•0	• 0	• 0
MEASUREMENT CONSIDER RADIUS 1	PARAMETE	RS 00371906	.00525602	0.00430670	00375702	.00522390	.00428253
LAT 1		.00188624	00270271	00221582	.00189596	00268371	00220994
LONG 1		.00665303	00943071	00770261	.00670547	00938841	00771369
	108	SOLVE-FOR PARAMETERS	ETERS				
STD DEV HU PLN 1.00000000E+00 R-RATE 2.93246111E-06	N.	MU PLN 1.00000000 0.	R-RATE 1.00000000				
DYNAMIC CONSIDER PARAMETERS I H		• • • •	• °°°				
MEASUREMENT CONSIDER RADIUS 1 LAT 1 LONG 1	PARAMETE	γ ∘ • ∘	00027155 .00014514 .00055755				

CORRELATION	ION MATRIX PARTITIONS AND	STANDARD DEVIATIONS	CONS AT TIME	9.900 DAYS, JUST AFTER		THE MEASUREMENT	
·		× (>	2	×	٨٨	7 /
>	X 9.6068595E+UU Y 3.35186036E+U1 Z 4.61107974E+01 VX 1.4427623E-05 VY 3.83304599E-05 VZ 5.17860554E-05	1.0000000 27180907 .0342064 .99551616 28901684	1.00000000 .95474835 29462769 .99745071	1.00000000 00137036 .94691244 .99774725	1.00000000 31773080 01925464	1.00000000	1.00000000
MU PLN	SOLVE-FOR PARAMETERS	• 0	• 0	• 0	•0	• 0	• 0
RERATE		58177055	.82810692	.67355328	-,58221331	. 82288279	.67368576
⋖	DYNAMIC CONSIDER PARAMETER	ERS 0.	• 0	• 0	•	• 0	•0
H		•0	•0	• 0	.0	• 0	•
Σ		• 0	•0	• 0	•0	• 0	• 0
RADIUS	MEASUREMENT CONSIDER 1	PARAMETERS 00373223	. 00523503	• 00426049	00375733	.00520411	*00423724
LAT 1		.00189300	00269210	00219231	.00189612	00267363	00218720
LONG 1		• 00667692	00938878	00761401	.00670604	00934912	00762901
		SOLVE-FOR PAR	PARAMETERS				
MU PLN R-RATE	STD DEV 1.00000000E+00 2.91046432E-06	MU PLN 1.0000000 0.	R-RATE 1.00000000				
αμΣ	DYNAMIC CONSIDER PARAMETER	ERS 0.00	• • •				
RADIUS LAT 1 LONG 1	MEASUREMENT CONSIDER PAR/	PARAMETERS 0. 0.	00036933 .00019537 .00073546				

ACTUAL MEASUREMENT NOISE -1.12488510E-07

MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 3.21998205835-16

ESTIMATED MEASUREMENT

2.6030753716E+00

7.5188395385E-06

2.6030678527E+00

POSITION/VELOCITY DEVIATIONS FROM MOST RECENT NOMINAL

-4.50820980E+01 -4.25294290E+01 -3.42962316E+01 -4.06469913E+01 -8.72827793E+01 -9.79074202E+01

X Z Z Z Z X Z X

ESTIMATED

ACTUAL ORBIT ESTIMATION ERROR

FROM TARGETED NOMINAL

(ESTIMATED-ACTUAL)

-4.37828934E+03 -4.37573667E+03 -1.89164171E+03 -1.89799247E+03 ESTIMATED

3.84392635E+02 3.73767995E+02 -5.27139907E-03 -5.26824711E-03 -2.36807449E-03 -2.39451167E-03

1.06246409E+01 -3.15196378E-06 -2.55266901E+00 6.35075961E+00

2.64371821E-05 1.69408346E-05

6.46238492E-04 6.27297657E-04

-5.71144701E-05 -5.39625063E-05 -2.40184740E-05 -5.04556560E-05 -7.94817013E-05 -9.84225359E-05

RECENT NOMINAL=TARGETED NOMINAL FOR SOLVE-FOR PARAMETERS) SOLVE-FOR PARAMETER DEVIATIONS (MOST

ESTIMATION ERROR (ESTIMATED-ACTUAL) -0.00000000E-01 -2.02616276E-06

3.97383724E-06

ESTIMATED

MU PLN R-RATE

A.74

STATE VECTOR X Y X VX VX VX VZ	TARGETED NOMINAL 1.3372331866E+08 -6.9039185041E+07 1.2051494696E+06 1.098336716E+01 2.4625736545E+01	MOST	RECENT NOMINAL 1.3371894039E+08 6.9041062636E+07 1.2056274183E+06 1.0983170674E01 2.4623393408E+01	ACTUAL 1.3371889740E+01 6.9041103719E+01 1.205528607E+06 2.4623342940E+01 1.3334090356E+01	+0 8 +0 7 +0 1 +0 1		
2 V B P NON-L INE	**************************************	O to o o o o o o o o o o o o o o o o o o	***************************************	** ** ** ** ** ** ** ** ** **			
USE-	NON-LINEAR-GUIDANCE- -1MP111 SFS	-FOR-BIASED-AIMP O	OINT				
COMPUTE-	ID -EXECUTE						
VEHICLE REACHED POSITION RELATIV VELOCITY RELATIV B = 1.276748	EACHED SPHERE OF INFLUENCE RELATIVE TO TARGET PLANET RELATIVE TO TARGET PLANET -2767455672E+05 B DOT	ON TARGETED X 2.02545693 -1.60726026 T = 2.205	L TRAJECTORY 4.915469 -3.489651 1E+04 B	/ AT TRAJECTORY 6458E+05 3. 4232E+00 -3. 007 R = 1.	RY TIME 119.761 D 2 3.1176570741E+05 3.4532614611E+00 1.2575574207E+05	AYS RESULTANT 6.1634582455E+05 5.1658462363E+00	
M MATRIX -9.0829067377E-0 2.7965140275E-0	377E-01 4.1833963707E 275E-01 6.0717354636	107E-01 0. 33E-01 -7.437307157	-1.2559 5E-01 3.6080	150622E+05 5 069885E+04 6	.7844814054E+04 .9364107338E+04	0. -8.6887894817E+04	
VEHICLE REACHED POSITION RELATI VELOCITY RELATI B = 8.68705	VEHICLE REACHED SPHERE OF INFLUENCE POSITION RELATIVE TO TARGET PLANET VELOCITY RELATIVE TO TARGET PLANET B = 8.6870518087E+04 B DOT	ENCE ON MOST RECENT NOMI X HET 1.1831992548E+05 NET -1.6019041270E+00 OOT T = 8.4274755216	NAL TRAJECT 1 4.619735 -3.541336 E+04 B	ORY AT TRAJECTI 12441E+05 3. 14962E+00 -3. 001 R = 2.	CTORY TIME 119.47 3.9046514422E+05 3.4613366731E+00 2.1077299307E+04	4 DAYS RESULTANT 6.1634582084E+05 5.2046159072E+00	
STATE TRANSITION MA	MATRIX PARTITIONS OVER	(10.000, 119.	1 (7/	RANSPOSES SHOWN	_		
X(10.000) Y(10.000) Z(10.000) VX(10.000) VX(10.000)	X(119,474) 4.6128656237E+00 -2.9395088759E-01 1.3899985358E-01 1.775644466E+07 4.8894013182E+06 6.3612180680E+05	Y(119,474) 3,5190591813E+00 -4,2232321509E-01 1,0585099655E-01 1,3829535845E+07 1,1602725931E+07 7,571695233E+05	2.9175899260E-01 -7.8163988879E-03 -4.3727707402E-01 9.9399232847E+05 4.9038160746E+05	VX(119.474) -2.6828290478E-08 7.33335353553E-08 7.5939697306E-09 2.5146049135E-01 9.6465398472E-01 7.640413133E-02	474) VY(119.474) 8E-08 1.7452197970E-06 5E-08 -3.0327812942E-07 6E-09 4.7216428243E-08 ISE-01 6.6734828511E+00 2E-01 4.4423164204E+00 3E-02 4.1747192822E-01	474) VZ(119.474) 0E-05 7.4475484366E-08 2E-07 -2.6282833998E-09 3E-08 -1.8079875670E-07 1E+00 3.0469736621E-01 4E+00 2.4698650302E-01	
SOLVE-FOR PARAMU PLN R-RATE	PARAMETERS -3.8591623306E-02 - 0.	9.3832015991E-02 0.	-5.9963464737E-02 . 0.	-6.8819190346E 0.	:-08 -2,5858184927E	7E-07 -2.1768826741E-07 0.	

EVENT AT TRAJECTORY TIME

SIMULATION MODE -- GUIDANCE

10.000 DAYS

DYNAMIC CONSIDER PARAMETERS

⊢4 ∑

-1.2176433425E+00 6.6530219414E+00 -1.1516960207E-07 ~5.5564667036E~03 ~4.6328764256E-08 ~1.4142229280E+00 ~5.9991642206E+00 ~7.2389567522E<00 4.7724871500E+00 -5.7490873337E-03 -5.6027&9&202E-03 -1.2&98729&76E-02 -1.2&21967241E+05 -4.793325&791E+05 -1.1202158020E+05 -8.0501742136E+05 5.1920377393E+05 6.24496&797&E+05

-1,5368293486E-02 1,9935614963E-01 -4,1719582394E-02 -3.1971474731E-03 -9.5852688455E-01 1.9935614963E-01 -9.9975353306E-01 -3.1971474731E-03 -1.5368293486E-02 -9.8193271225E-09 -3.7227613630E-08 7.5871814539E-09 GUIDANCE MATRIX -- TWO VARIABLE B-PLANE GUIDANCE POLICY 8.2881224235E-09 2.7797418533E-08 -5.6499245221E-09 9.7026163768E-09 -6.2064518968E-09 -2.6113797717E-07

-4.6922117517E-02 1.0000000000E+00 -9.9495149736E-01 VELOCITY CORRECTION CORRELATION MATRIX AND STANDARD DEVIATIONS 1.000000000E+00 -4.6922117517E-02 1.4693164540E-01 5.2823240694E-03 8.4320270757E-04 4.0136016762E-03

-9.9495149736E-01 1.000000000E+00

DEVIATION OF STATE VECTOR FROM TARGETED NOMINAL TRAJECTORY ESTIMATED

-4.4212601867E+03 -1.9186779056E+03 3.7919112990E+02 -4.4238401276E+03 -1.9120987453E+03 3.8997931879E+02 -5.2731636748E-03

-5.2700032901E-03 -2.3935651144E-03 6.2804655888E-04 -2.3671317616E-03 6.4696428244E-04 6.4016382879E-03 2.3260019684E-03 -3.0122509209E-04 COMMANDED DELTA V. . . 6.8173165419E-03
ERROR IN CORRECTION DUE TO NAVIGATION UNCERTAINTY 6.4050449658E-03 2.3042025908E-03 -3.7663541800E-04

PERFECT CORRECTION

COMMANDED CORRECTION

-3.4066779125E-06

2.1799377569E-05 -4.5896740888E-06

A.76

											DVX	
											Ó	ė
											101.3	• 01
			93						GUIDANCE		1012	100.00
			2.9299173056E-03	5116-09	967E-09	771E-08			ON-LINEAR		1011	100.00
		339E+05		-2.9323016511E-09	5.2730920967E-09	3.6426815771E-08	-5.0180483632E+06		ED USING N		TAR3	28637.19
7 0	1194E-09 776E-07 873E-08	1.1969268339E+05	-1.40730017015-02		0356-08	967E-09	-5.01.804		E RECOMPUT		TAR2	6063.06
1.3781926171E+04	5.2541439194E-09 1.0798407776E-07 -2.2380236873E-08	6.3885291180E+03		X' 1.3515808508E-08	1.32656570356-08	5.2730920967E-09	2.9997975496E+06 8.9713215002E+06	• 0	COMMANDED VELOCITY CORRECTION WILL BE RECOMPUTED USING NON-LINEAR GUIDANCE		TARI	13663.36
	J MATRIX -9.1591985416E-08 1.3686519469E-07 -2.9941685354E-08	6.38852	1.3943945203E-04	EXECUTION ERROR MATRIX 3.0054856581E-08	1.3515608508E-08	-2.9323816511E-09		PROBABILITY OF IMPACT=	CITY CORRE	ZERO ITERATE PARANETERS Izero	TAR KEY	6
CAPTURE RADIUS=	PSIJ MATRIX -9.159190 1.368651 -2.994160		**	10N E	35158	93238	LAMBDA STAR= .80483632E+06	ILITY	VEL O	RATE PI		4
APTG	SIJ 7 -9. 1. 1.	DELTA MU=	OVR8=	XECU1	Ä	-5	AMBD/ 04636	ROBAE	ANDE	ITERA IZERO	IND IMP MOD	•
ټ	ā.	Ō	0	iú			LAHBDA STAR= -5.0180483632E+06	ā .	COMM	ZERO	IND	-

BLASED ALMPOINT GUIDANCE EVENT

DVZ MAT BADITS BIT

0 V Y

.

.

க்க 200000 0 இத்த இருக்க விக்க விக்க இருக்கு இத்த இத்த இத்த இத்த இத்த இத்த இத்த இத்		

*		
* * * * *		

* * * * *		
5 3 4 4		
* * *		
**		167
**		28727.70967
10 10 10 10 10 10 10 10 10 10 10 10 10 1		287
***		ATE
***		JULIAN DATE
*		ğ
* * * * * *		202
***		49 85.201
**************************************		\$
*		\$ SA
*		SAVO DI
2. 公司 特林		10.900 DAVS
කම් මිස් සිස් මිසිම ම ම ද යට එසිසිම සිජ එට එයි එම එහිම එම එම එම එකි.		920
2 \$ \$ \$ \$ \$		GUIDAMCE EVENT AT
****		MCF OAR O
**		GUIDA Caler
***	A.78	

						•				
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$						CPT 679 684 689	455	CPT 694 699 784	۰.
	VEL OCITY 26. 99476124 26. 99476124 25.52288951 2.95865594					DELT 119.488	2- INCR 328 328 328	TAR TOL 100.000 100.000	2- INCR 338 338 338	148 TOL
	142735 142735 168121 142795					S) ISTOP	YOY O	DES TAR VAL 13663.359 6063.059	YOY	DES TAR VAL 13663.359
						DAUX (3) 28837.19	AUX - 6- 20076.185 20207.821 20168.536	0ES 13	AUX - 6- 6176.368 6307.378 6268.558	0ES
	Y-DOT 24.62336941 24.62336941 12.97450405 -1.94546241						AUX 20076 20207 20160	S AUX VAL 13663.359 6063.059	AUX 6176 6387 6261	S AUX VAL 13663-359
						DAUX(2) 6063.06	AUX - 5- 84981.798 84888.744 84986.194	DES AUX 13663. 6063.	- 5- 1.580 3.592 5.052	DES AUX 13663.
	X-DOT 10.98311355 10.98311355 -21.76470044 -1.78629507					- 10	A C C C C C C C C C C C C C C C C C C C	COR +E-03 5E-02	AUX - 5- 13641.580 13540.592 13646.052	κ. 2
	X-001 10.99 10.99					DAUX(1) 13663.36	-2	VEL COR 6.54E-03 -1.18E-02	-2 - 0 - 0 - 0	VEL COR -2.57E-86
	IUS 95412.72 95412.72 95494.20 06040.66	90+3				•	TAR	20 4 9 4 9 4 9 4 9 4 9 4 9 4 9 9 9 9 9 9	₹ ₹ 000	
	RADIUS 150495412.72 150495412.72 102862694.20 2706040.66	1。2055394489E+06 1.3334279534E+00				KAXTAR 5 6 2	TAR - 6- 20076.105 20207.021 20160.536	AUX ERROR -7.136+04 -1.406+04	TAR - 6- 6176.368 6307.378 6260.658	AUX ERROR 2.18E+01
MOL	የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	1.333			•	DTAR(3) 28837.19	7AR 2007 2020 2016		TAR 6176 6307 626	
	2-COMP 1205539.45 1205539.45 4735070.03 1205539.45	+07				DTA 2883	- 5- 1.798 1.744 5.194	.0 0.	- 568 - 592 - 592	RIX 0.
KHIQ 6	ひょうというないなっている。	1971\$0E+07 369&13E+01	10-xrf 11-yrf 12-2rf			R(2) 3.06	TAR - 5- 84981.798 84880.744 84986.194	ING MATRIX 83E-09 0. 11E-07 0.	TAR - 5- 13641.588 13540.592 13646.052	ING MATRIX 12E-09 0.
e4	7.4.8 0.92 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	-6.904189 2.462336 +84		TOLERANCE 100.000 100.000		01 AR 6063	14280 14280 14280	TARGETIN 08 4.83 07 1.11	6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TARGETING D8 4.921
KTYP	Y-COMP -69041097.14 -69041097.14 33465631.92 -1783891.01	70E+	7-RCA 8-INC 9-ASI		-02	R(1) 3.36	V2 1.3334260 1.3334260 1.3334260	TAF -9.27E-08 1.44E-07	VZ 1.3334280 1.3334280 1.3334280	TAF -9.26E-08
*	E VENT	1.3371889\02E\08 1.0983113552E+01 E 2.87277008	0EFINITIONS 4-TGA 5-8-T 6-8-R	SPECIFICATIONS TARGET VALUE 13663.359 6063.059	EME 2.500E-05 5.00880000E-0	DTAR(1) 13663.36	VY 24.6233694 24.6233694 24.6233794	. •	VY 24.6115630 24.6115630	•
X S S	X-COMP X-COMP 3894-82 3894-82 245-19 2256-51	3371	KEY OE -	PECIFICATION TARGET VALUE 13663.359	SCHEME S 2.50	TAR 6 2	24.62 24.62 24.62	X	24.61 24.61 24.61	X .
ES	NI SPACECRAFI STAT	OAT	PARAMETER K 1-TRF 2-TSI 3-TCS		CTING SOLEVELS DVHAX IBAST	χ ñ Y	VX 10.9831136 10.9831236 16.9831136	IVITY HATR 4.40E+05 8.44E+86	VX 18.9896574 18.9896674 18.9896574	IVITY MATR 4.47E+05
NT CODES	REMOTE NOTE	STATE	9 8 8 8 8	TARGETING KEY 5	TARGETING LEVEL DVMAX IBAST	MOF PHS				5
EVERT	CURR REFE INERTIAL SUN VENUS EARTH					QN ₹	ACCURACY 2.50E-05 2.50E-05 2.50E-05	SENS: -1.01E+07 1.31E+07	ACCURACY 2.50E-05 2.50E-05 2.50E-05	SEMS: -1.61E+8?
							∢ N N N	•	< 000	•

7 8-43E-06 0. 1.44E-07 1.11E-07 01.13E+02 -9.44E-06 6063.059 6063.059 100.000	VX VY VZ TAR - 5- TAR - 6- TAR - 2- AUX - 5- AUX - 6- AUX - 6- AUX - 2- INCR CPT 10.9896548 24.6115536 1.3334280 13663.365 6063.058 0. 330 709	VUP= 6.5412569837E-03 -1.1815822986E-02 0. MAG. OF DVUP= 1.3505617933E-02	KECUTION ERROR MATRIX= 1.000000000E+00 7.2573510734E-01 0. 24298350E-04 1.00000000E+00 7.2573510734E-01 1.0000000E+00 0. 51796008E-04 7.2573510734E-01 1.0000000E+00 0.	ING ARC DATA ST 1.0000E-03 MASS 1.0000E+00 DUR 1.0000E+00 DV 1.0000E-03	A V X-COMP Y-COMP MAG SIVE .005541011816 0013506 SULSE .000484000875 0001000 SULSE .000245000442 0000506	E ARC JULIAN DATE CALENDAR DATE DINT 28727.70087 1978 8 27 4 4915.201 (ATION 28727.05087 1978 8 26 13 1315.200 INATION 28728.35087 1978 8 27 20 2515.200) G SERIES F2 F3 F4 F5 F6 G3 G4 G5 G5 G6 3H BODY -1.9217E-14 -4.9211E-23 5.9482E-29 4.5761E-37 3.2032E-42 -6.4057E-15 -2.4606E-23 1.1069E-29 1.4745E-37 ET BODY -5.1394E-14 4.1261E-23 4.3186E-28 -1.0402E-36 6.0577E-41 -1.7131E-14 2.0631E-23 8.3026E-29 -3.4004E-37	ING ARC COVARIANCE PROPAGATION	NAL STATE TRANSITION MATRIX 1.000002E+00 -8.869171E-07 -5.722046E-07 8.640006E+03 -2.717972E-03 -1.716614E-03 -8.821487E-07 9.99997E-01 -6.675720E-07 -2.527237E-03 8.63999E+03 -1.859665E-03 -8.821487E-07 9.99997E-01 -1.856750E-01 -1.856893E-03 -1.925975E-03 8.639935E+03 -5.710870E-07 -6.713718E-07 9.99998E-01 2.897991E-07 -5.862375E-07 -2.055174E-10 -7.239805E-11 -1.547005E-10 2.920274E-07 9.999991E-01 -6.545974E-07 -1.315268E-10 -1.547198E-10 -4.05670E-10 -5.861018E-07 -6.546230E-07	MODEL VARIANCES	. V 4.8433500E-04 -8.7488207E-04 0. 1.000000E-03	IAL EXECUTION ERROR MATRIX 1.713127E-10	EXECUTION ERROR MATRIX	V 2.4488897E-04 -4.4235606E	1.150405510 -1.5990952510 0.
.43E+06	VX 0.989654	9	EXECUTION ERROR 1.7024298350E-04 1.0961796008E-04 1.9099828049E-04	DATA	S E E E	- Ž	SERIE: BODY BODY		NOMINAL STATE TRAN 1.000002E+00 -8.821487E-07 -5.710870E-07 4.780344E-10 -2.055174E-10 -1.315268E-10	ERROR MODEL VARIAND PROPORTION RESOLUTION POINTING A POINTING B		NIHON	64 FINAL EXECUTION ER	DELTA V 2.44	

		10.000 VZ 1.00000000	0. .55107667	• • •
-2.201001E-09 -1.221157E-08 7.860728E-05 -5.633505E-14 -1.761278E-13	79 1.33743054 101 1.33743054 124 1.33578024 124 1.33509497 127 1.33405432 127 1.33405432 128 1.3337845 140 1.33209497 140 1.33209497 140 1.33209162 140 1.3309162 140 1.33099162 140 1.33099162 140 1.33099162 140 1.3316962 140 1.33342795 140 1.33342795 140 1.33342795 140 1.33342795 140 1.33342795 140 1.33342795 140 1.33342795	CORRECTION AT VY 1.00000000 .38191765	0.	• • •
-1.012976E-04 2.615694E-04 -8.308909E-09 -1.80388E-09 4.657574E-09	Y-DOT 24,468010 24,491111 24,514111 24,537156 24,56006 24,56006 24,6006 24,6006 24,6006 24,6006 24,74076 24,74076 24,74076 24,74076 24,74076 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,74076 24,602 24,602 24,602 24,602 24,602 24,602 24,602 24,602 24,602 24,602 24,602 24,602 24,74076 24,602 2	AFTER GUIDANCE VX 1.00000000 49371687	0. 13272082	• • •
320E-04 174E-04 613E-09 668E-09 868E-09	X-DOT 11.27260888 11.27309321 11.122921257 11.15531458 11.16531458 11.00920578 10.96505082 10.96505082 10.96505082 10.96505082 10.96505082 10.96505082 10.96505082 10.98965481 10.98965481	EVIATIONS JUST Z 1.000000000006064946304176	0. .67262118	• • •
	Z-COMP 1130541.812 1130541.812 1142094.452 1153641.271 1165182.180 1179769.667 121287.144 1222798.804 1234314.662 1245804.729 1257299.016 1268787.533 1205556.173 1205556.173	ND STANDARD D Y 94504408 12576546 5820983	.82082299	
1.532305E-04 -4.775871E-04 6.133024E+00 -4.308909E-09 7.860728E-05	Y-COMP -70419621.562 1-70419621.562 1-70419621.562 1-6996407.734 1-69784512.162 1-69784512.162 1-69784512.162 1-69361096.799 1-69361096.799 1-69361096.799 1-69361096.799 1-69361096.799 1-69361096.799 1-69361097.140 1-69361097.140 1-69361097.140 1-69361097.140 1-69361097.140 1-69361097.140 1-69361097.140 1-69361097.140	PARTITIONS X 000000 853758 182944 682004 829511	0 55192378	
ON ERROR COVARIANCE -7.876783E+00 -7.03369E+01 -4.775871E-04 -1.013174E-04 -1.221157E-08	X-COMP 193944.282 191152.123 287980.809 384499.932 576188.058 671496.053 671496.053 766422.769 860967.767 955130.611 955130.869 142308.108 235321.900 2357951.815 718894.818 718894.818	TION HA	ν ·	CR PARAMETERS 0.00
ED EXECUTI 47550E+01 76783E+00 32305E-04 4730E-04 12976E-04 01001E-09	ARC EXECUTI TIME 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(AND KNOMLEDGE) CORRELA STD DEV 1.02307721E+01 Y 3.41480455E+01 Z 4.66227675E+01 X 5.03008765E-05 Y 7.82283320E-05 6.32886343E-05	SOLVE-FOR PARAMETER	DYNAMIC CONSIDER
ACCUMULATE	PULSENG A PULSE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONTROL CX X Y Y Y VY VY VY VY	MU PLN R-RATE	, d H I

1.3505617933E-04	1.3505617933E-04
ACTUAL EXECUTION ERROR	ACTUAL VELOCITY CORRECTION
-1.1476243591E-04 1.1202422530E-04	6.4264945478E-03 -1.1703798760E-02

PULSING ARC DATA

			G6 1.4745E- -3.4004E-	
			65 1.1069E-29 8.3026E-29	
			F6 G3 G4 G5 G6 3.2032E-42 -6.4057E-15 -2.4606E-23 1.1069E-29 1.4745E- 6.0577E-41 -1.7131E-14 2.0631E-23 8.3026E-29 -3.4004E-	
ю			G3 -6.4057E-15 -1.7131E-14	
DV 1.0000E-03	MAG • 013353 • 001000		F6 3.2032E-42 6.0577E-41	
		01 00 00	F5 5761E-37 0402E-36	
DUR 1.0000E+00	Z-COMP • 000135 • 00010	CALENDAR DATE 1978 8 27 4 4915.201 1978 8 26 13 1315.200 1978 8 27 20 2515.200	F4 9482E-29 4 3186E-28 -1	
1.0000E+00	Y-COMP 011704 000877 00309	CALEN 1978 8 2 1978 8 2 1978 8 2	F AND G SERIES F2 F3 F4 F4 F5 LAUNCH BODY -1.9217E-14 -4.9211E-23 5.948ZE-29 4.5761E-37 TARGET BODY -5.1394E-14 4.1261E-23 4.3186E-28 -1.040ZE-36	
MASS	X-COMP .006426 .000481	JULIAN DATE 28727.70087 28727.05087 28728.35087	F2 3217E-14 -4 394E-14 4	NOI
THRUST 1.0000E-03		ר	SERIES 107 -1.9 107 -5.1	PULSING ARC EXECUTION
THRUST 1	DELTA V IMPULSIVE NOM PULSE END PULSE	PULSE ARC MIDPOINT INITIATION TERMINATION	F AND G S LAUNCH BC TARGET BO	PULSING A

-37

,		
Z-DJT 1.33741159 1.33742170 1.33678153 1.33543390 1.33409608 1.33343033 1.33343033 1.33276643 1.332164342 1.33144342 1.33078839 1.3307833 1.3304342	1,33230576	TA -165.31801 -165.31808
Y-00T 24.46884935 24.46797284 24.51413893 24.5112333 24.56113171 24.5611333 24.66195330 24.661995330 24.661995330 24.7183830 24.7183830 24.74071565	24.61247723	NODE -36.41739 -165 -36.40853 -165
x-DOT 11.27261201 11.27309330 11.22920961 11.18530857 11.09735955 11.09735965 11.05329476 11.05329476 10.96502957 10.96502957 10.96502957 10.83225316 10.78789438	10.99081397	INC 2.89662 2.89937
Z-COMP 1130532.087 1130532.087 1142084.651 1153631.481 11767072.489 1176707.2.489 1188237.127 1199760.796 121278.721 1224297.398 1245798.176 1257298.176 1257298.176	1205545.752	OMEGA 1 174.43885 1 174.43008
7-COMP -70419626.656 -70419626.656 -70208119.726 -6996413.327 -69572404.456 -69172401.456 -69172401.456 -69172010.059 -68934910.421 -685202010.059 -68934910.621 -681720120.059 -681720120.059	-69041149.651 -69041103.719	ECC 1.8263332E-01 1.8271320E-01
711111111111111111111111111111111111111	169-	1E+08 9E+08
X-COMP 133093946.685 133191154.527 133287983.188 133287983.188 133287432.318 133576190.201 133576190.201 133576424.624.624 133576424.624 133764812.095 134142309.072 134235322.574	133718896.786	. ++
	STATE PROP BACK 13	ARC LSE DEL
PULSE 11 12 5 6 6 7 7 11 12 13 14	STATE P	ELEMENTS A SERIES IMPULS

TARGET CONDITION SORRELATION MATRIX AND STANDARD DEVIATIONS AFTER GUIDANCE CORRECTION 5.4337478064E+02 1.000000000E+00 -5.0645197795E-01 1.000000000E+00 -5.0645197795E-01

EIGENVALUES SQUARE ROOTS OF EIGENVALUES 1.6661865057522E+05 1.66618650577516E+02 5.3375849720738E+05 2 7.3058777516E+02

40

EIGENVECTORS

8.0599169278208E-01-5.9192684612735E-01

5.9192684612735E-01 8.0599169278208E-01

FOR THE NORMAL DISTRIBUTION X = N(0,Q) AND THE,3 SIGHA LEVEL THE HYPERELLIPSOID HAS THE FOLLOWING EQUATION 4.555E-06 X**2 \div 3.939E-06 XY \div 3.320E-06 Y**2 = 9

ACTUAL TARGET ERROR

DUE TO EXECUTION ERROR DUE TO NAVIGATIONAL UNCERTAINTY

1.1826517641E+03 -4.5468698042E+01

-7.5730446838E+02 -1.4424622299E+02

1.1371830660E+03

TOTAL

-9.0155069137E+02

MOST RECENT NOMINAL TRAJECTORY 1.3371889015E+08

-6.9041135504E+07

1.2055561726E+06

1.0990925581E+01

2.4612391634E+01

1.3321896225E+00

TARGETED NOMINAL TRAJECTORY AFTER GUIDANGE CORRECTION 1.3371889015E+08

-6.9041135504E+07

1.2055561726E+06

1.0990925581E+01

2.4612391634E+01

1.3321896225E+00

ACTUAL DEVIATIONS JUST AFTER GUIDANCE CORRECTION 6.6263551712E+00

-1.4147167683E+01

-1.1161552499E-04

-1.0420651421E+01

8.5599524823E-05

1.1613869344E-04

A.82

ESTIMATED DEVLATIONS JUST AFTER GUIDANCE CORRECTION

•

•

Case S-2. Lunar Viking '76 Mission

```
JULIAN DATE . . . 2442950.31299794
JULIAN DATE . . .2442945.96377377
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               OUTPUT FROM VIRTUAL MASS PROGRAM WILL BE SUPRESSED AT INITIAL AND FINAL STEPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       VIRTUAL MASS PROGRAM WILL INTEGRATE UNTIL REACHING ANORMAL STOPPING CONDITION
                                                                                                        THE FOLLOWING QUANTITIES ARE TO BE AUGMENTED TO THE STATE VECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     8.64000000E+04/DAY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ORBITAL ELEMENTS WILL BE CALCULATED AT EVERY TIME INTERVAL
6 16 11 7 50.055 1976
                           6 20 19 30 43.022 1976
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ACCURACY FIGURE. . . . 2.50000E-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                     INERTIAL FRAME IS BARYCENTRIC ECLIPTIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   COORDINATES
                                                                                                                                                                                                                                                                                                                                 MEASUREMENT CONSIDER PARAMETERS RADIUS 3
                                                                   •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NOMINAL TRAJECTORY CODE. . . 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NOMINAL TRAJECTORY INFORMATION
BODIES TO BECONSIDERED
                                                                                                                                                                                                                                                 DYNAMIC CONSIDER PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               INERTIAL COORDINATES
-9.84252824E+03
1.06557382E+03
-1.07663156E+03
3.15461302E+00
                                                                   INITIAL TRAJECTORY TIME =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TARGET PLANET. . . MOON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -1.99290846E+03
-6.55435808E+02
3.16289975E+00
-9.60115329E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -6.21904171E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -9.60999063E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -4.17314993E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.49598500E+08/A.U.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               INITIAL STATE VECTOR
GEOCENTRIC ECLIPTIC
                                                                                                                                            SOLVE-FOR PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INITIAL STATE VECTOR
LAUNCH DATE
                                                                                                                                                                                                                                                                                                                                                                       LAT 3
LONG 3
ST ANG 1
                             FINAL DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EARTH
                                                                                                                                                                    MU PLN
                                                                                                                                                                                                                                                                      NODE
OMEGA
                                                                                                                                                                                                           RANGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                UNITS
```

```
DYNAMIC CONSTANT BLASES TO BE USED IN THE DETERMINATION OF THE ACTUAL TRAJECTORY
                                                                                                                                                 •
                                                                                                                                                                                                                        2.5000000000000E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          THE ACTUAL MEASUREMENT NOISE WILL BE CALCULATED FROM THE FOLLOWING CONSTANTS
         ċ
                                                                                                                                                 ;
                                                                                                                                                                                                                       -7.000000000000E-08
                                                                                                                                                                                                                                               DEVIATION OF STATE VECTOR AT INITIAL TIME 3.00000000E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4.349 DAYS. .
                                                                                                                                                                      BIASES IN LOCATIONS OF ROTATING STATIONS ALTITUDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RANGE (GEO CENTRIC) 0.
RANGE-RATE (GEO CENTRIC) 0.
RANGE (STATION 1 ) 2.
                                                                                                                                                                                                                     8.00000000000E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RANGE-RATE (STATION 3 ) 9
STAR PLANE ANGLE 1
STAR PLANE ANGLE 2
STAR PLANE ANGLE 3 2
APPARENT PLANET DIAMETER 2.
                                                                                                                                               DAYS THROUGH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (STATION 2
(STATION 3
(STATION 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RANGE-RATE (STATION 1
RANGE (STATION 2
                                                                                                                                                                                                                                                                                                         3.00000000E-01
                                                                                                                                                                                                                                                                                                                                                        1.50000000E-03
                                                                                                                                                                                                                                                                                  -3.0000000E-01
                                                                                                                                                                                                                                                                                                                                 -1.50000000E-03
                                                                                                                                                                                                                                                                                                                                                                                 -1.50000000E-03
                                                                                                                                                                                                                                                                                                                                                                                                         4.0000000E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                5.0000000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                         -5.0000000E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RANGE-RATE (STATION
                                                                                                                                              .
                                                                                                                                                                                              .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RANGE
                                                                                                                                              FROM
                                                                                                                                                                                                                                               ACTUAL
                                                                                                                                                                                                                                                                                                                                                                                                         NO PLN
                                                                                                                                                                                                                                                                                                                                                                                                                                                       RANGE
```

•

46132	TODE.								
1.000 DAYS	公司公司的公司的公司的 电电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电路电	ACTUAL	1.9860646929E+05	4.7381063514E+03	-5.5350179372E+03	1,3775788081E+00	3.3049672719E-01	1.0396003840E-01	
EVENT AT TRAJECTORY TIME	中国专种种种的自由的表现的现在分词是实现的现在分词是不是有的,我们也可以是有的,我们们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一	MOST RECENT NOMINAL	1.9860655461E+05	4.7384119473E+03	-5.5349786993E+03	1.3775783054E+00	3.3050039544E-01	1.0395621146E-01	
SIMULATION MODE GUIDANCE	1 医环境性现代性性性性性 化苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基	TARGETED NOMINAL	1.9907853073E+05	4.5262036957E+03	-5.6135461489E+03	1.3856671812E+00	3.2841662795E-01	1.0295098234E-01	
SIMUL ATION	CTATE VECTOR		×	>	2	×>	٨	ZA	

A.86

7.57328482952E+01
-1.04752984681E+00
1.26831168864E+02
-1.44992044121E+00
9.39972339765E+01
2.17138578028E+02
1.10512349738E+02

7.65703507126E+01

NAVIGATION PARAMETERS

申むな会

	10001
	>>
SHOWN	1000 1 727
TRANSPOSES SHOWN	. XX
TR	77 4 0001
	7.6
1.000)	_
.900.	Y 4 1,0001
STATE TRANSITION MATRIX PARTITIONS OVER((800 1 2%

 .			
2.2182433642E-05 8.8474635618E-07 2.2016166668E-09 -3.7237648520E-08 2.893552305E-04 -2.6728983471E-08 -4.5042879648E-07 -4.5506265423E-10 9.9802035082E-01 -4.1908653206E-08 -1.3314505054E-09 -4.5364253243E-07	4.9885420594E-01 1.0036900768E+00 2.1304025211E-05 -1.4900769507E-04 7.2852999438E-01 -5.0648196748E-05 9.9811618899E-01 -3.9036773813E-06 8.6368446791E+03 -3.9965399878E-04 -1.0947687201E-05 9.9810581027E-01	9.5607948225E-08 -4.4639856256E-08 7.6387471637E-09 -1.9423572706E-09 0.	3.4086853366E-03 -1.9048147881E-03 1.2066663794E-04 3.4384529843E-03 -1.9162264598E-03 1.5561400787E-04
VZ -3.72376 -4.55062	-1.49007 -3.90367 9.98105	-4.46398 -1.94235 0.	1.20666 1.55614
VY(1.000) 116166668E-09 142879648E-07 114505054E-09	5211E-05 8899E-01 7201E-05	8225E-08 1637E-09	7881E-03 4598E-03
2.201616 -4.504287 -1.331450	2.130402 9.981161 -1.094768	9.560794 7.638747 0.	-1.904814
VX(1.000) 74635618E-07 28983471E-08 08663206E-08	768E+00 748E-05 1878E-04	025E-07 289E-09	366E-03 843E-03
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.9885420594E-01 1.0036900768E+00 7.285299438E-01 -5.0648196748E-05 8.6368446791E+03 -3.9965399878E-04	8.3003421025E-07 7.3901286289E-09 0.	3.4086853366E-03 -1.9048147881E-03 3.4384529843E-03 -1.9162264598E-03
2(1.000) 2433642E-05 5523005E-04 2035082E-01	594E-01 438E-01 - 791E+03 -	105E-05 180E-06	
2 (1.000) 3.2182433642E-05 2.8935523005E-04 9.9802035082E-01	4.9885420 7.2852999 8.6368446	5.1363313 8.3929012 0.	7.1410730340E-01 9.2878042182E-01
		106E-03 .97E-05 -	192E+00 163E+00
Y(1.000) 7.9565244960E-04 9.9912964768E-01 1.5379773686E-04	3.7682533730E+00 8.6372728285E+03 9.5762021374E+00	1.4618985006E-03 5.1363313105E-05 3.3235135197E-05 -8.3929012180E-06 0.	PARAMETERS 1.8848742106E+01 -7.4240865992E+00 7.1410730340E-01 1.9734914353E+01 -7.2643147963E+00 9.2878042182E-01
X(1.000) 8234429E+00 6134627E-03 0697947E-04	580E+03 255E+01 773E+01	300E-03 936E-05	RS 106E+01 - 353E+01 -
X(1.000) 1.0068234429E+00 3.9696134627E-03 3.8150697947E-04	8.6643997580E+03 1.0007899255E+01 3.3127702773E+01	TERS 7.3767360300E-03 3.3643906936E-05 0.	-8848742 -9734914
	.900) 8 .900) 1	SOLVE-FOR PARAMETERS MU PLN 7.37 A 3.36 RANGE 0.	DYNAMIC CONSIDER PARAMETERS NODE 1.884874210 OMEGA
) X X X) Z A	SOLVE-FO MU PLN A RANGE	DYNAMIC NODE OMEGA

•

•

ċ

	AA		1.00000000 01509338	38378562	28795935	-,51832088	02658506	02717258	07447310	03703154	.14808503	• 0					
DAYS	× >	4.00000000	-,82877030 -,10436700	.45617959	.00664421	.20736322	.01879896	.01968891	.05711110	.02973418	04477526	•0					
T TIME 1.000	2	1.000000000	04868618 84043316	.00267357	38929424	.34425018	00985165	00950568	14831730	08080708	08311443	.0		RANGE	1.000000000	.00352042	.03954752 .02025977 04779557
LATIONS AT EVENT	>-	1.000000000000-03633943	.89027521 -17494352	27635288	15256196	-,29300610	01026968	01079128	07961452	04051588	.11040158	••	PARAMETERS	ď	1.000000000.	02545206	.07455088 .03614869 19213981 0.
D STANDARD DEVIATIONS E .900 DAYS	× 6	. 61521713 . 63054763 . 67906150	52381843 53377423	. 42746357	33562503	.19231208	•00577664	.00702772	TERS 15174009	08358596	13318712	• 0	SOLVE-FOR PARAM	MU PLN	57028093 57028093 .18942217	00691535 00707851	TERS 00203203 00039278 .03580133
CORRELATION MATRIX PARTITIONS AND Propagated forward from time	STO DEV	1.654U6515E-U3 6.356U5720E-U2 4.30718411E-U2 1.676427ksE-U2	1.23779178E-06 1.52322379E-06	SOLVE-FOR PARAMETERS			DYNAMIC CONSIDER PARAMETERS		MEASUREMENT CONSIDER PARAMETERS					STD DEV	5.419119335-02 5.85532730E+00 1.02120105E-03	DYNAHIC CONSIDER PARAMETERS	MEASUREMENT CONSIDER PARAMETERS
CORREL	,	× > N >	2 A A A A A A A A A A A A A A A A A A A	MU PLN	A	RANGE	D NODE	OMEGA	M RADIUS 3	LAT 3	LONG 3	ST ANG 1		i	A A RANGE	D NODE OMEGA	RADIUS 3 LAT 3 LONG 3 ST ANG 1

-.04252620

-.08314986

1.000000000

7 /

-.57235190

.13256067

-.00128437

-.01395012

-.01345292

SQUARE ROOTS OF EIGENVALUES 1 1.1164870050E-03 2 6.3607875442E-02 3 4.3028898848E-02

POSITION EIGENVALUES
1 1.2465432322667E-06
2 4.0459618182004E-03
3 1.8514861360363E-03

-2.1910340436119E-02 -4.5712227701188E-02 9.9871433814708E-01	S 0E-08 6E-06 9E-06	-9.4780200439049E-03 4.0022525936310E-02 9.9915382427017E-01	TRANSPOSES SHOWN
1。740442665161E-02 9.9878532420612E-01 4.6097304975139E-02	SQUARE ROOTS OF EIGENVALUES 1 8.6516601500E-08 2 1.2442017766E-06 3 1.5236987219E-06	1.0527755469487E-01 9.9368547476715E-01 -3.8804815605998E-02	, 1.000)TRAN
POSITION EIGENVECTORS 1 9°9960843451698E-01 2 -1°8392074082348E-02 3 2°1088130629834E-02	VELOCITY EIGENVALUES 1 7.4851223350583E-15 2 1.5480380608069E-12 3 2.3216577951962E-12	VELOCITY EIGENVECTORS 1 9.9439770897438E-01 2 -1.0482067856308E-01 3 1.3631644510467E-02	STATE TRANSITION MATRIX PARTITIONS OVER(0.
A.88			STATE TR

V2(1.000) 6.9846073709E-04 3.8813640753E-04 -7.4926361200E-05 -1.6552116406E-01 8.2525793745E-01 3.6524033185E-01	2.6601453137E-04 3.4248767018E-06 0.	3.5512394292E+00 3.5722575556E+00
1,3258354347E-03 6,9846073709E-04 5,8558829457E-04 3,8813640753E-04 3,0101731417E-04 -7,4926351200E-05 -2,7310041162E-01 -1,6552116406E-01 1,5850690211E+00 8,2525793745E-01 6,7708241218E-01 3,6524033185E-01	6.3311883766E-04 8.1987692606E-06 0.	6.1849978084E+00 3.5512394292E+00 6.1907984478E+00 3.5722575556E+00
Y(1.000) VX(1.000) <th< td=""><td>2.0642343620E+01 -2.5674785513E-03 6.3311883766E-04 2.6611876934E-01 -3.3178806062E-05 8.1987692606E-06 0. 0.</td><td>-2.0373773098E+01 -2.0428095765E+01</td></th<>	2.0642343620E+01 -2.5674785513E-03 6.3311883766E-04 2.6611876934E-01 -3.3178806062E-05 8.1987692606E-06 0. 0.	-2.0373773098E+01 -2.0428095765E+01
Y(1,000) *4074173095E+02 6.720255774E+01 -4.7751941151E-03 *8733035528E+01 4,4451663440E+01 -1.5798027640E-03 \$1,7473183602E+01 -1.2860604930E+01 -1.5798027640E-03 \$1,7473183602E+01 -1.2860604930E+01 -5.3142344242E-04 \$1,6539818185E+00 \$1,65398185E+00 \$1,65398185E+	2.0642343620E+01 2.6611876934E-01 0.	6.7682379290E+U5 3.6736419485E+U5 -2.0373773098E+01 6.7711339513E+U5 3.6991708980E+U5 -2.0428095765E+01
Y(1,000) 1,4074173095E+02 6,8733035528E+01 3,7473183602E+01 -1,9596040441E+04 1,702285053E+05 7,0359892090E+04	6.4342182688E+01 8.3109165472E-01 0.	6.7682379290E+05 6.7711339513E+05
X(1.000) -2.7553385271E+02 -8.8292909237E+01 -2.9958153917E+01 9.9530360475E+04 -3.0290608564E+05	.AMETERS -1.5064202173E+02 -1.9455382088E+00 0.	DYNAMIC CONSIDER PARAMETERS NODE -1.1682291238E+06 OMEGA -1.1714036864E+06
X X X X X X X X X X X X X X X X X X X	SOLVE-FOR PARAMETERS Mu Pln -1.50 A -1.94 Range 0.	DYNAMIC CONSINODE

ċ DIAGONAL OF DYNAMIC NOISE MATRIX 0.

•

•

•

1.000 DAYS CONTROL CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS JUST BEFORE GUIDANCE CORRECTION AT TIME

:		×	>	2	××	>	Z
N	1.07496704E+03 5.78446570E+02 2.79496812E+02 1.86102448E-02 5.44139875E-03 2.86743790E-03	1.00000000 98234118 99994739 990694595	1.0000000 .99032201 98417214 .99651987	1.00000000 98155449 .99126003	1.00000000 99201189 99238178	1.00000000	1.00000000
HU PLN	SOLVE-FOR PARAMETERS	00840818	.00667166	.00443132	00827763	.00698113	.00556625
4		01809858	.01436268	.00952135	01782825	.01506739	.01194403
RANGE		• 0	• 0	•0	• 0	. 0	0.
NODE	DYNAMIC CONSIDER PARAMETERS	00108676	.00116967	.00131438	00109476	.00113666	.00123847
OMEGA		00108971	.00117017	.00132351	00109768	.00113772	.00124580
RADIUS 3	MEASUREMENT CONSIDER PARAME	ETERS 0.	•0	• 0	•0	• G	• 0
LAT 3		• 0	•0	•0	•0	• 0	•0
LONG 3		•0	0.	•0	.0	• 0	:
ST ANG 1		• 0	0°	• 0	• 0	• 0	.0
		SOLVE-FOR PARAM	PARAMETERS				
MU PLN A	STD DEV 6.00000000E-02 1.00000000E+01	MU PLN 1.0000000 0.	A 1.00000000	RANGE			
RANGE	3.0000000E-03	• 0	•	1.00000000			
NODE	DYNAHIC CONSIDER PARAMETERS	• • •	• • •	• • •			
RADIUS 3 LAT 3 LONG 3 ST ANG 1	MEASUREMENT CONSIDER PARAMET	TTERS 0. 0.	• • • • •	••••			

IPC-NOT-IN-EFFECT

SINGLE--IMPULSE-

-EXECUTE -COMPUTE--AND

```
-2.7348242729E+03
-2.4603556510E+05
-2.3026950657E-01
                             5.5559985315E+04
9.2118515325E-01
                                                                                                              0.
-5.9046278542E+04
                                                                                                                                                                                            5.5559985433E+04
9.1452271842E-01
              RESULTANT
                                                                                                                                                                            RESULTANT
                                                                                                                                                              DAYS
 DAYS
                                                                                                                                                              3.459
3.433
                                                                                                           -3.1123289070E+04
-9.5311317468E+03
                                                                                                                                                                                                                                                                          -1.3049452471E+05
-4.1129389661E+04
2.0505394787E+00
                            -5.4422568509E+03
1.7023246538E-01
-5.4707932543E+03
                                                                                                                                                                                          -4.8674891987E+03
1.7022694275E-01
-6.1936932604E+03
                                                                                                                                                             MOST RECENT NOMINAL TRAJECTORY AT TRAJECTORY TIME
                                                                                                                                                                                                                                                                                                                                         E CORRECTION
9.9894810399E-01
-9.9879859785E-01
1.000000000E+00
AT TRAJECTORY TIME
                                                                                                           -5.2549974217E+04
5.6949017209E+03
                                                                                                                                                                                                                                                                        -3.4945438828E+05
3.0941870180E+04
-1.7915153876E+00
                                                                                                                                                                                         4.6464597290E+04
-7.7999423775E-01
-03 8 DOT R =
                            4.7681875576E+04
-7.7895184163E-01
-02 B DOT R =
                                                                                                                                                                                                                                                                                                                                         TRAJECTORY
                                                                                                                                                                                         -3.0070928301E+04 4.4607575538E-01 -7.2 3.4219893834E+03
                                                            -2.3695558776E+02
                                                                                                                                                                                                                                                                           1.1191266822E-03
-3.2114222704E-01
-6.6356733441E-07
                                                                                                                            -9.8277667020E-01
ON TARGETED NOMINAL
                          -2.7995223703E+04
4.6134263051E-01
                                                                                                              .
                                                                                                                                                                                            PLANET -3.
PLANET 4.
                                                              Ħ
                                                                                                                                                              Z
O
                                                                                                           -5.0959108234E-01
-1.5900262684E-01
                                                                                                                                                                                                                                                                           -2.8211554454E-01
-3.9554759860E-02
5.6810677052E-06
VEHICLE REACHED SPHERE OF INFLUENCE
                                                                                                                                                             VEHICLE REACHED SPHERE OF INFLUENCE
                            POSITION RELATIVE TO TARGET PLANET VELOCITY RELATIVE TO TARGET PLANET B = 5.4759224594E+03 B DOT
                                                                                                                                                                                          POSITION RELATIVE TO TARGET
VELOCITY RELATIVE TO TARGET
B = 7.0761463767E+03
                                                                                                           -8.6041671811E-01
9.4171020858E-02
                                                                                                                                                                                                                                                                           -2.5858700261E+00
2.1797534719E-01
-1.3911630958E-05
                                                                                                                                                                                                                                                             VARIATION MATRIX
                                                                                             M MATRIX
                                                                                                                                                                                                                                                                                                                                            TARGET
```

8.6108670278E+03 1.5212918676E+02 1.3392702387E-03 **EIGENVALUES** P SQUARE ROOTS - 0 M 7.4147030969754E+07 2.3143289465355E+04 1.7936447723290E-06 EIGENVECTORS EIGENVALUES 400

-9.9879859785E-01

9.9894810399E-01

6.1785945802E-02

7.168855494243E-06 -1.4842394580385E-05 9.99999986416E-01 -2.1383400501218E-01 9.7687001082203E-01 1.6032037366987E-05 9.7687001092728E-01 2.1383400509806E-01 -3.8292409920661E-06 -1 CI M

-1.0000000000E+00 -9.9050593957E-01 9.9467589415E-01 1.00000000000E+00 . -1.0000000000E+00 -9.9091518496E-01 1.000000000E+00 9.9467589415E-01 •• -- THREE VARIABLE B-PLANE GUIDANCE POLICY E-06 1.6035091601E-07 -3.8666846042E-08 E-07 -2.5974564785E-06 1.4007054224E-07 E-08 2.9361033502E-07 -1.3335456902E-06 DEVIATIONS CORRELATION MATRIX AND STANDARD 1.000000000E+00 -9.9091518496E-01 ~9,9050593957E-01 -7.4861134261E-06 2.3329443265E-07 -9.4515848611E-08 GUIDANCE MATRIX 2.6737943902E-02 7.1521271284E-03 2.9699599663E-03 CORRECTION

VELOCITY

-1.00000000000E+00

		3.8006005994E-02 -7.2279097451E-03 1.0000000000E+00	JES 105E-05 197E-05	-8.3852500320295E-02 4.6543887323106E-03 9.9646730746953E-01	E,3 SIGMA LEVEL EQUATION XY + -1.355E+07 XZ + 3.173E+06 YZ = 9 .07 XY + 1.430E+08 Y**2 = 9 .07 XZ + 1.392E+08 Z**2 = 9 .06 YZ + 1.392E+08 Z**2 = 9	JANCE
TARGETED MOMINAL TRAJECTORY 3TUAL 1431986+02 265573E+02 211740E+01 731177E-03 992402E-03	CORRECTION 53220888E-02 96369809E-03 169429165E-03 UNCERTAINTY	O DEVIATIONS 1.0385181855E-01 1.00000000E+00 -7.2279097451E-03	SQUARE ROOTS OF EIGENVALUES 1 6.7126649205E-05 2 8.4923342297E-05 3 8.4923342297E-05	-2,2719804505786E-01 9,7356097185169E-01 -2,3666060277958E-02	NORMAL DISTRIBUTION X = N(0,Q) AND THE,3 SIGMA THE HYPERELLIPSOID HAS THE FOLLOWING EQUATION Y**2 + 1.392E+08 Z**2 + -3.671E+07 XY + -1.35 2.170E+08 X**2 + -3.671E+07 XY + 1 2.170E+08 X**2 + -1.355E+07 XZ + 1 1.430E+08 X**2 + -1.355E+07 XZ + 1	RECOMPUTED USING NON-LINEAR GUIDANCE
ECTOR FROM -4.7206. 2.1190. 7.8528 -8.0883	PERFECT 1,16 -2,72 -1,00 -2009974244E-02 DUE TO NAVIGATION	TION MATRIX AND STANDARD 1.000000000000000000000000000000000000	EIGENVALUES 4.5059870334645E-09 7.2119740669291E-09 7.2119740669292E-09	EIGENVECTORS 9.7023183132276E-01 2.2837988254818E-01 8.0578053683100E-02	FOR THE NORMAL DISTRIBUTION X THE HYPERELLIPSOID HAY THE HYPERELLIPSOID 2.17 GE+08 HYPERELLIPSOID 2.17 GE+08 HYPERELLIPSOID 2.17 GE+08	ECTION WILL BE
DEVIATION OF STATE V ESTIMATED -4.71975591676402 2.11828126156402 7.85700604056+01 -8.08826771356-03 2.07932440396-03 1.0090937149E-03	COMMANDED CORRECTION 1.16524593155-02 -2.72864266945-03 -1.00706636915-03 -1.00706636915-03 ERROR IN CORRECTION 7.61583526635-07 1.23452594865-07	VELOCITY CORRECTION CORRELA 6.8298562917E-05 8.4096931294E-05 8.4811247000E-05	# KN PS	el (U PS)	2.170E+08 X**2 + XY HYPER XZ HYPER YZ HYPER	COMMANDED VELOCITY CORR ZERO ITERATE PARAMETERS IZERO

MAT BADITS BIT

2 AQ

DΛΥ

۸×

TOL 3

T0L2

TOL 1

TAR3

TAR2

TAR1

TAR KEY

IND IMP MOD

.

•

•

•01

-5470.79 27929.40 100.00 100.00

-236.96

~

9

*	
*	
蜂蜂	
おなる	
살 쓸 쓸 한	
# #	

•	

*	

*	

4444	
中中中	
电电电极存储存储存储存储存储存储存储存储	
*	
中华	

40	
西季运动	
0 0	
· · · · · · · · · · · · · · · · · · ·	

静口	
444	
2 2 2 2	
存存	
4444	
静林	
**	
**	
10000	
命公公	
公安公安安安县1	
-	
15 15	
А	•

00 DAYS 17 11 7 50.054 JULIAN DATE 27926.96377	KTYP 1 KMXQ 4 MDL 1	Y-COMP Z-COMP RADIUS X-DOT Y-DOT Z-DOT VELOCITY 4738.03 -5534.98 198740.15 1.37757891 .33049595 .10396008 1.42047842 2516.22 -5134.86 202935.16 1.38363511 .34083277 .10360367 1.42875708 185537.53 -38094.25 239806.01 .8847562551066227 .13296278 1.03016924	655513E+05 4.7380318219E+03 -5.5349760885E+03 789135E+00 3.3049595235E-01 1.0396007605E-01 2.7926963774E+04	FIONS 7-RCA 10-XRF 8-INC 11-YRF 9-ASI 12-ZRF	LONS LUE TOLERANCE 356 100.000 793 100.000 397 .005	-05 000E-02	DTAR(1) DTAR(2) DTAR(3) KAXTAR DAUX(1) DAUX(2) DAUX(3) ISTOP DELT -236.96 -5470.79 27929.40 5 6 2 -236.96 -5470.79 27929.40 2 12.433	VZ TAR - 5- TAR - 6- TAR - 2- AUX - 5- AUX - 6- AUX - 2- INCR CPT 3422.451 -6194.428 27929.422 136 382 386 .1039601 33422.451 -6194.428 27929.422 136 382 386 .1039601 3347.513 -6191.332 27929.422 136 384 360 .1039601 3409.404 -6198.541 27929.421 136 386 386 .1040601 3422.179 -6219.031 27929.422 136 388	TARGETING MATRIX AUX ERROR VEL COR DES AUX VAL DES TAR VAL TAR TOL -2.16E-06 1.49E-07 -1.34E-01 -3.66E+03 5.70E-03 -236.956 100.000 -1.88E-06 -3.17E-07 3.62E-01 7.24E+02 -1.24E-03 -5470.793 -5470.793 100.000 4.26E-08 -3.99E-06 -7.74E-02 -2.53E-02 -5.46E-04 27929.397 27929.397 .005	VZ TAR - 5- TAR - 6- TAR - 2- AUX - 5- AUX - 6- AUX - 2- INCR CPT 1503.317 -5833.751 27929.410 1603.317 -5833.751 27929.410 140 390 578 .1034141 1568.919 -5837.557 27929.410 140 392 578 .1034141 1590.128 -5837.783 27929.410 1590.128 -5837.783 27929.410 1503.053 -5858.279 27929.410 140 395 578 .1035141 1603.053 -5858.279 27929.410 1603.053 -5858.279 27929.410 140 397
11 7 50.	1 KMXQ	2- 103 153 153	4.738031 3.30495 74E+04	7-RCA 8-INC 9-ASI	TOLERA 100 100	- 0 5) DTAR(2 6 -5470.7		GETING MA1 1.49E-07 -3.17E-07 -3.99E-06	
GUIDANCE EVENT AT 1.000 C CALENDAR DATE 1976 6 1	EVENT CODES KUR 1	CURRENT SPACECRAFT STATE REFERENCE X-COMP INERTIAL 1986.06.56 EARTH 202854.58 HOON 147076.77	STATE 1.9860655513E+05 1.3775789135E+00 JULIAN DATE 2.79269637	PARAMETER KEY DEFINITIONS 1-TRF 4-TCA 2-TSI 5-B.T 3-TCS 6-B.R	TARGETING SPECIFICATIONS KEY TARGET VALUE 5 -236.956 6 -5470.793 2 27929.397	TARGETING SCHEME LEVELS 2.500E-05 DVMAX 1.0000000E-02 IBAST 2	IND NOF PHS KEYTAR DTA 1 1 1 5 6 2 -23	ACCURACY VX VY 2.50E-05 1.3775789 .3304960 2.50E-05 1.3776789 .3305960 2.50E-05 1.3775789 .3305960 2.50E-05 1.3775789 .3304960	SENSITIVITY MATRIX -3.49E+05 -1.30E+05 -2.72E+03 3.10E+04 -4.11E+04 -2.46E+05 -1.79E+00 2.05E+00 -2.30E-01	ACCURACY VX VY 2.50E-05 1.3832825 .3292578 2.50E-05 1.3832825 .3292578 2.50E-05 1.3832825 .3292578 2.50E-05 1.3832825 .3292578

TAR TOL 100.000 100.000	- 2- INCR CPT			0.0	2	00000	02319	33342	39329	25186	24288	50121	76778	00173098					
DES TAR VAL -236.956 -5470.793 27929.397	- AUX 7 27929	-02		AT 1.000	>	1.00000000	00002	010	• 002	0005	0002	9001501	0007677	•	•				
5 AUX VAL D -236.956 -5470.793	AUX - 6 -5472.02	1.1946143180E-		CORRECTION	٨٨	1.00000000	00567586	00425867	00766552	00039317	00040186	00110139	00054766	.00219005	• 0				
DE 4	AUX - 5- -226.285	DVUP= 1.1	419E-02 483E-03 000E+00	AFTER GUIDANCE	××	1.00000000 .10128833 .03884324	.00105786	00001541	00048087	00004359	995+0000	.00013244	.00006895	.00010383					
VEL C 5.906 11.426	TAR - 2- 27929.397	MAG. 0F	3,8845303419E-02 -7,2266526483E-03 1,000000000E+00	JUST			25	. 42	5018 .	65	68	30	0.8	Н	ů			0000	2042
AUX ERROR -1.84E+03 3.63E+02 -1.29E-02	TAR - 6- 5472.027	9405486E-03	0774E-01 0000E+00 6483E-03	ARD DEVIATIONS	2	1.00000000 00018713 00072003 .01517344	.002673	389294	.3442	009851	-, 009505	148317	080807	0831144	• 0		RANGE	1.0000000	.0035204
TRIX -1.38E-01 3.62E-01 -7.75E-02	- 5-	-1.02694	1.0132810774E-01 1.0000000000E+00 -7.2268526483E-03	S AND STANDARD	>	1.0000000 03633943 00219008 .01316640	27635288	-,15256196	29300610	01026968	01079128	07961452	04051588	.11040158	•0	TERS		1.00000000 .15727957	02545206
1.58E-07 1.58E-07 -3.33E-07 -4.00E-06	TAR -226	6575539835E-03	0000E+00 0774E-01 3419E-02	PARTITIONS	×	61521713 61521713 53054763 00157469 00774682	42746357	.33562503	9231208	•00577664	.00702772	S •15174009	1358596	.13318712		FOR PARAMETER	- (1.00000000 57028093 .18942217	.00691535
TAR -2.215-06 -1.835-06 1.41E-08	VZ • 102933	-2.	1.00000000000 1.01328107745 3.88453034195	CORREL ATION MATRIX			. 42	-, 33	• 19		00.	PARAMETERS 15	08358	13	•0	SOLVE-FOR	MU PLN	1.00000 57028 -18942	
MATRIX 05 -2.64E+03 04 -2.45E+05 00 -2.39E-01	VY 03 • 3278384	1.1601428223E-02	RROR MATRIX= 05 05 05		STD DEV	1.054400515E-U3 6.35615720E-U2 6.730718411E-U2 8.36960229E-U5 8.43689679E-U5	PARAMETERS			CONSIDER PARAMETERS		CONSIDER					STD DEV	5.41611933E-02 5.85532730E+00 1.02120105E-03	CONSIDER PARAMETERS
SITIVITY 5 -1.32E+ 4 -4.03E+ 0 2.06E+	VX 5 1.389180	DVUP= 1.	EXECUTION ERROR 16.7966885003E-05.8.3686869475E-05	(AND KNOWLEDGE)		% X X X X X X X X X X X X X X X X X X X	SOLVE-FOR			DYNAMIC C		MEASUREMENT 3			+				DYNAMIC C
SEN -3.44E+0 3.18E+0 -1.71E+0	ACCURACY 2.50E-05	J	88.7 8.36 8.46	CONTROL			MU PLN	⋖	RANGE	NODE	OMEGA	RADIUS	LAT 3	LONG 3	ST ANG		A.	SS A BE NGE	NODE

```
11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ۲,
                                                                                                                                                                                                                                                                                                                                                                                  -5.493E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -1.344E+07
                                                                                                                                                                                                                                                         -2.2098675241009E-01
3.2347176180515E-01
9.2007112473651E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.6256588888063E-01
9.2053803661549E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -1.4544998922061E-01
                                                                                                                                                                                                                                                                                                                                                                                                                   2**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2**2
                                                                                                                                                                                                                                                                                                                                                                                                 1.905E-04 Y**2
                                                                                                                                                                                                                                                                                                                                                                                                                                     7.173E-04 Z**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.580E+06 Y**2
                                                                                                                                                                                                                                                                                                                                       FOR THE NORMAL DISTRIBUTION X = N(0,0) AND THE,3 SIGMA LEVEL THE HYPERELLIPSOID HAS THE FOLLOWING EQUATION

**2 + 1.905E-04 Y**2 + 7.173E-04 Z**2 + 6.151E-05 XY + 7.499E-05 XZ

HYPERELLIPSOID. . . . . 2.668E-05 X**2 + 6.151E-05 XY + 1.905E-04

HYPERELLIPSOID. . . . . 2.668E-05 X**2 + 7.499E-05 XZ + 7.173E-04

HYPERELLIPSOID. . . . . . 1.905E-04 Y**2 + -5.493E-04 YZ + 7.173E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4.680E+06 Y**2 + 1.767E+07 Z**2 + 6.592E+05 XY + 1.504E+06 XZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.767E+07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.767E+07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GUIDANCE CORRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.3918916610E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -5.7296480316E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.000000000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOR THE NORMAL DISTRIBUTION X = N(0,Q) AND THE,3 SIGMA LEVEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  THE HYPERELLIPSOID HAS THE FOLLOWING EQUATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.134E+05 X**2 + 6.592E+05 XY + 2.134E+05 X**2 + 1.504E+06 XZ + 4.680E+06 Y**2 + -1.344E+07 YZ +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ; OF EIGENVALUES
2.7152600872E+01
2.0986262598E+01
1.9929582158E-04
                                                                                                                                                    1,2478704465E+03
1,0062991997E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.9586452821E-02
7.0313613982E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.2067713483E-04
                                                                                                                                                                                      3.4605611681E+01
                                                 .03954752
.00388936
                                                                                 -.04779557
                                                                                                                                       EIGENVALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SQUARE ROOTS OF EIGENVALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -2.7598309109717E-01
8.7863122643111E-01
-3.8966716742445E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              7.9783232625736E-01
-3.9076327184842E-01
                                                                                                                                                                                                                                                            -4.5909437434265E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -9.0825593316E-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.1868461547E-04
                                                                                                                                     P
                                                 .07455088
                                                                                  --19213981
 -.02552667
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SQUARE ROOTS
                                                                                                                                       SQUARE ROOTS
                                                                   -.00039278
                                                                                                                                                    1.5571806513287E+06
1.0126380792271E+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         7.3726373413190E+02
4.4042321784873E+02
3.9718824499842E-08
                                                                                                                                                                                                                                                            8.6046336976431E-01
5.0875298376857E-01
2.7806308643948E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         VELOCITY EIGENVALUES
1 3.8362913410283E-04
2 4.9440043112745E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.1073001811918E-01
2.7734847673624E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -.00203203
                                                                                                                                                                                          1.1975483597946E+03
                                                                                                                                                                                                                                                                                                                                                                                                     XY HYPERELLIPSOID. . . . . .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4.8698397835358E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 EIGENVECTORS
9.5009348701281E-01
   -.00707851
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -2.6340386175E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.3515365960E-05
                                    MEASUREMENT CONSIDER PARAMETERS
                                                                                                                                                                                                                                             EIGENVECTORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EIGENVALUES
                                                                                                                                        EIGENVALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ACTUAL VELOCITY CORRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ACTUAL EXECUTION ERROR
-1.2884181177E-05
                                                                                                                                        POSITION
                                                                                                                                                                                                                                                POSITION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  VELOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.1588544042E-02
                                                                                                                                                                                                                                                                                                                                                                                      2.668E-05 X**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2.134E+05 X**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TARGET CONDITION
                                                                                                                                                                                                                                                                                 N M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2,7136908394E+01
2,1006550283E+01
2,0164028821E-04
                                                      M
                                                       RADIUS
                                                                                                       ST ANG
                                                                      LONG
      OMEG!
```

A.94

σ

5.3572527220344E-02 1.0139287272904E-06 9.9856396105952E-01 -6.4290064263244E-07 5.8765868793292E-07 9.999999999938E-01	M(0,Q) AND THE,3 SIGMA LEVEL 4E FOLLOWING EQUATION 41.288E-04 XY + -5.272E+01 XZ + 2.959E+01 YZ = 9 41.288E-04 XY + 2.277E-03 Y**2 = 9 45.272E+01 XZ + 2.518E+07 Z**2 = 9 5. 2 + 2.959E+01 YZ + 2.518E+07 Z**2 = 9			1.2459496969E+DD	-3.0600556263E+01	4.7403638257E-05	ACTUAL DEVIATIONS JUST AFTER GUIDANCE CORRECTION -8.5840309162E-02	7.4529576210E-02	-4.1848664389E-D2	-1,298958571E-05	CO. 137707774.57	I.1854595591E-U4 ESTIMATED DEVIATIONS JUST AFTER GUIDANCE CORRECTION	• • •	•0	• 0	•0	• 0	
5918E-01 9710E-02 3326E-06	ENORMAL DISTRIBUTION X = N(0,0) AND TH THE HYPERELLIPSOID HAS THE FOLLOWING 33 Y**2 + 2.518E+07 Z**2 + -1.288E-04 5 1.387E-03 X**2 + -1.286E- 5 1.387E-03 X**2 + -5.272E* 6 2.277E-03 X**2 + 5.959E*		DUE TO EXECUTION ERROR TOTAL	1.1092255801E+00 1.245	3.0566469748E+01 -3.060	4.3971947249E-05 4.740							GUIDANCE CORRECTION					
EIGENVECTORS 1 9.985639610 2 -5.357252721 3 -1.046914498	FOR THE 1.387E-03 X**2 + 2.277E-03 XY HYPERELLIPSOID. XZ HYPERELLIPSOID. YZ HYPERELLIPSOID.	ACTUAL TARGET ERROR	DUE TO NAVIGATIONAL UNCERTAINTY	1.3672411686E-01	-3.4086515775E-02 -3	3,4316910085E-06	HOST RECENT NOMINAL TRAJECTORY 1.9860655513E+05	4.7380318219E+03	-5,5349760885E+03	1.3891803418E+00	3,2783839837E-01	1,0293313550E-01	TARGETED NOMINAL TRAJECTORY AFTER G 1.9860655513E+05	4.7380318219E+03	-5.5349760885E+03	1.3891803418E+00	3.2783839837E-01	1.0293313550E-01

3,300 62 AT TRAJECTORY TIME MEASUREMENT NO

3.30000 DAYS
TIME
TE WERE MEASURED FROM STATION 2 AT TRAJECTORY T
4
STATION 2
FROM
MEASURED
WERE M
ANGE AND RANGE-RATE
AND
RANGE

	VELOCITY	.539082218	.900186900	.527925340	.532415595		VELOCITY	.539082218	.543729552	.900187500	627925340	532415595	.905525666	VELOCITY	.539082238	.543729569	.900187633	.527 925357	.532415609	.905525786
	Z-D0T V	.103746134	.15/5882/3	.103743436	.102951367	******	Z-001	.103745134	.102961592	.167588273	4037424	102951367	.168198011	Z-00T V	.103746330	.102961787	.167588468	.103743627	.102951558	.168198202
	Y-00T	*199031576 *210772721	/26403886	.193170986	.204911981 762252188		Y-00T	.199031576	.210772721	756403886	191170986	204911981	762252188	Y-00T	.199031474	.210772620	756403987	.193170895	.204911889	762252280
	x-001	.490135501	.4563/19/6	.480236853	. 480498139		X-D0T	. 490135501	. 490525836	. 458371976	480236851	460630630	. 458974687	X-D0T	. 490135523	. 490525858	. 458371997	. 480236866	.480498153	.458974701
	RADIUS	367185.84	(0045.19	369407.00	374243.90	2000	RADIUS	367185.84	372014.43	70045.19	369407.00	374243.90	66135.50	RADIUS	367185.75	372014.33	70045.28	369406.91	374243.81	66135.59
	Z-COMP	15155.17 15440.54	-9000-	15603.34	15885.27		Z-COMP	15155.17	15440.54	-8066.83	15503.34	15885.27	-7338.67	Z-COMP	15155.19	15440.56	-8066.82	15603.36	15885.29	-7338.65
IME 3.250	Y-COMP	58402.24 58383.46	24 • nesse		59281.79		Y-COMP	58402.24	58383.46	59930.42	29249.56			Y-COMP		58383.50	29930•47	59249.61	59281.83	56627.06
INITIAL TRAJECTORY TIME FINAL TRAJECTORY TEME	X-COMP	362194.62 367079.96	0000000	364290.49	369177,23		X-COMP	362194.62	367079.96	-35349.68	364298.49	369177.23	-33368.09	X-COMP	362194.51	367079.85	-35349.78	364290.38	369177.13	-33368.19
INITIA FINAL	TARG NOM INITIAL	INERTIAL GEO-	FINAL	INERTIAL	GEO- PLANETO-		MOST RECENT NOM X-COMP INITIAL	INERTIAL	GE0-	PLANETO-	TINERTIAL	GE0-	PL ANE TO-	ACTUAL TRAJ Initial	INERTIAL	6E0-	PLANETO-	INERTIAL	GE 0-	PLANETO-

7.45917431457E+01	7.36259622374E+01	5.85206072659E+00	1.11517872907E+02	2.43272815196E+00	1.00151433905E+02	2.14121159595E+02	3.54242186694E+01
NAVIGATION PARAMETERS FLIGHT PATH ANGLE	ANGLE BETWEEN RELATIVE VELOCITY AND PLANE OF THE SKY	GEOCENTRIC DECLINATION	EARTH/SPACECRAFT/TARG PLANET ANGLE	ANTENNA AXIS - EARTH ANGLE	ANTENNA AXIS - LIMB OF SUN ANGLE	OCCULTATION RATIO FOR SUN IS	OCCULTATION RATIO FOR MOON IS

3,300)

VY(3.300) VZ(3.300) 8 4.9945434455E-08 1.5616143934E-08 8 -1.884799972E-08 9 -1.8847057248E-08 0 -1.634369972FE-08 4 1.0001198568E+00 4 -1.0001198568E+00 5 -4.2555736712E-05 9 99978477781E-01	7 -8.7037911101E-07 1.1527963029E-07 8 9.1220614626E-08 -7.9578400936E-09 0.	2 -3.2273252003E-02 7.7676734295E-03 2 -3.2646023864E-02 5.9927193156E-03	• 0					
VX(3.300) 4.7794195268E-08 1.559786963E-08 1.0000973303E+00 -1.5064429704E-04 3.3131009047E-05	5.1851705152E-0 1.6510750296E-0 0.	3.459790082E-0 3.4913108831E-0	•					0E+00
2 (3.300) 3.3074175008E-05 -3.9636506699E-05 9.9979360006E-01 4.8440415412E-02 -5.8434670791E-02	2.4508044589E-04 -1.6867694212E-05 0.	1.6333682555E+01 1.2627941306E+01	•0	RANGE-RATE(2) -1.761474431E-07 -1.4721094064E-07 9.8784767052E-01 1.5209743540E-01 3.1989842164E-02		^ •••	••••	ARD DEVIATIONS 10E+00 0. 1.0000000E+00
1.4865305275E-04 1.0001013475E+00 -3.959052547E-05 -2.1175947040E-01 4.3201279826E+03 -5.5227428675E-02	-1.8356926739E-03 1.9124755403E-04 0.	-6.6985576851E+01 -6.7770037439E+01	RIX •	TRANSPOSES SHOWN RANGE(2) 9.8784767052E-01 1.5209743540E-01 3.1989842164E-02 0.			S .	WATRIX AND STANDARD 1.0000000E+0
1.0001046534E+00 -1.4957046548E-04 3.3117830753E-05 4.3201627210E+03 -2.6207417250E-01 5.2899122238E-02	PARAMETERS 1.1000037193E-03 3.4425202757E-05 0.	ER PARAMETERS 7.2954042308E+01 7.3618820370E+01	OF DYNAMIC NOISE MATRI)		PARAMETERS 0.00.00.00.00.00.00.000.0000.0000.000	CONSIDER PARAMETERS 0. 0.	T CONSIDER PARAMETERS 0. 0. 0.	T NOISE CORRELATION 1.00000000E-03 1.00000000E-06
X(3.250) Y(3.250) Z(3.250) VX(3.250) VY(3.250) VZ(3.250)	SOLVE-FOR PARAM HU PLN A RANGE	DYNAMIC CONSIDER NODE OMEGA	DIAGONAL OF	OBSERVATION MATRIX PARTITIONS X Y Z Z VX VX VY VZ	SOLVE-FOR F MU PLN A RANGE	DYNAMIC CON NODE OMEGA	HEASUREMENT RADIUS 3 LAT 3 LONG 3 ST ANG 1	MEASUREMENT NOISE 1.0000

		THE MEASUREMENT	5	1.0000000 .7905986	4145541	.5521594	0487805
			×>	1.000000000 96657197 89372757	.32223127	42808279	02392038
E + 0.3 E + 0.4 E + 0.4 E + 0.1 E + 0.0	E+03 E+05 E+01	3.300 DAYS, JUST BEFORE	1.00000000	-,89527282 ,79627965 ,99482064	12174598	.12282583	.01716783
-5.1176088764E÷03 2.6873337518E÷04 3.1131979568E÷04 -1.4867304005E-01 7.7001811635E-01	-3.1984200322E+03 3.6333578198E+05 -1.9139930394E+01	ONS AT TIME	1.0000000000000000000000000000000000000	89350460 .95017436 .67163798	64290009*-	•67468369	08954131
1.6810420288E+00 -6.1944130141E+00 7.2642625441E+00 4.6626054210E-05 -1.2340265169E-04 2.8786056171E-04	1.6239122147E+00 -2.2238635261E+02 -3.3533120190E-02	AND STANDARD DEVIATIONS AT TIME	1.0000000 96701327 82229289	.96873031 96533485 81488268	. 50369615	56734319	.01799803
K-HATRIX	S-MATRIX	PARTITIONS	3.61718379E-02 1.66378942E-01 3.94775386E-01	1.25456024E-06 5.32916959E-06 1.50303577E-05	-FOR PARAMETERS		
A.98		CORRELATION MATRIX	×≻N	×	SOLVE-FOR MU PLN	⋖	RANGE

7 /

1.00000000	09683241	.10116289	.01588528	.02250052	.02171158	00069273	00024946	02916136	.00879370				
1.00000000	41455410	.55215946	04878053	15505179	15674504	.00098133	.00091504	05375859	.01769562		÷		
1.000000000 96657197 89372757	.32223127	42808279	02392038	.10260053	.10404380	•00077379	00044942	.04928791	01415150				·
1.0000000 89527282 .79627965 .99482064	12174598	.12282583	.01716783	.01361005	.01264796	*8690900*	.00740797	05386140	.00961738		RANGE	1.000000000	.01490069
. 67163798	6729009*-	•67468369	08954131	14931939	15114187	.00005292	.00316582	.01152629	.02019319	HETERS	V	1.00000000	35316106 35617972
-,82229589 -,96873031 -,96533485 -,81488268	. 50369615	56734319	.01799803	.10178632	.10341225	FERS 00128050	00444158	.01995364	01827529	SOLVE-FOR PARAMETERS	MU PLN	69370127 -19608282	07324282
2 3.94/7336E-U1 VX 1.25456024E-06 VY 5.32916959E-06 VZ 1.50303577E-05	SOLVE-FOR PARAMETERS			DYNAMIC CONSIDER PARAMETERS		HEASUREMENT CONSIDER PARAMETERS			1	<i>3,</i>		2.65925466E-02 2.65925615E+00 5.01366979E-04	DYNAHIC CONSIDER PARAMETERS
<i>></i> > >	MU PLN	⋖	RANGE	NODE	OMEGA	RADIUS	LAT 3	LONG 3	ST ANG	•	i	A A RANGE	NODE

		7 7	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		12063099	.13721962	.05197062	.02351912	.02274855	00140503	00056209	03633482	.00890717					
7 V V V V V V V V V V V V V V V V V V V	ASOREREN	AA	1.0000000	1500+500.	39602810	.55105901	07450157	15395723	15563954	.00159414	.00123894	04821523	.01681017					
17 F	AFIEK INE	× >	1.00000000	60 t 60 t 76 t	.28241339	39352380	.02020957	.10124980	.10269478	00030135	00099112	.03901584	01310171					
.00365794 00066959 00213511	UATO	2	1.00000000 92476603 .81059503	600+1+66.	14582215	.15935329	.05234938	.01461083	.01366624	.00543258	.00716548	2*686 090*-	.00971227		RANGE	1.00000000	.01707658	.00616250 .00035963 06363675
.00281813 .00144500 07257355 .02429003	A - LAC	>	1.00000000 .70233870 68968850 .95034294	6636060•	57907199	.66552907	13914591	14892283	15075282	.00110502	.00377083	.02275836	.01917012	PARAMETERS	A	1.0000000000023582601	37773875	.0058212 .00288369 05060133
TERS 03238927 02600477 .00144154 01715652	ANDARD DEVIENT	X COULDOOR .	- 96643526 - 96643526 - 966305261 - 96979501	0700000	.46671531	53375697	.07806488	.10074509	.10238852	TERS 00270443	00525131	• 00629663	01718276	SOLVE-FOR PARAN	MU PLN	1.00000000 65481902 .30735612	08159447	TERS 03613304 02633938 01961433
MEASUREMENT CONSIDER PARAMETA	DAIRTY PARITIONS AND	STD DEV	1.622535150 1.622535256 3.917459886- 1.230425886- 5.230425886-		SOLVE-FOR PARAMETERS			DYNAMIC CONSIDER PARAHETERS		MEASUREMENT CONSIDER PARAMET 3						2,36123082E-02 2,45076368E+00 4,76404683E-04	DYNAMIC CONSIDER PARAMETERS	MEASUREMENT CONSIDER PARAMETS 3
RADIUS 3 LAT 3 LONG 3 ST ANG 1	CURRELAI		(Š	MU PLN	Ø	RANGE	NODE	OMEGA	RADIUS	LAT 3	LONG 3	ST ANG			MU PLN A Range	NODE OMEGA	66.8 LAT 3 LONG 3 ST ANG 1

```
ACTUAL ORBIT ESTIMATION ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.13390625E-01
-5.23315254E-02
-1.04146409E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.71788232E-07
-3.31421687E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -3.51643716E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RECENT NOMINAL=TARGETED NOMINAL FOR SOLVE-FOR PARAMETERS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (ESTIMATED-ACTUAL)
                                                                                                                                                                                                                                                                                                                                                                                                                RESIDUAL
-2.3834649473E-03
-9.1438966621E-08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -1.05050715E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8.33991021E-03 -1.05050715E-01
-7.37682290E-03 4.49547025E-02
-8.50655342E-02 1.90808746E-02
1.85416481E-07 1.36282488E-08
-4.23360696E-07 -9.19390084E-08
-3.32550651E-06 1.90930652E-07
                                                                                                                                                                         1.0000000E+00
                                                                                                                                    FROM TARGETED NOMINAL
                                                                                                                                                                                                                                                                                                                                              1.2790594770E-01
1.0000000000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ESTIMATION ERROR
(ESTIMATED-ACTUAL)
-1.22940164E-01
-5.3680596+00
1.66364170E-04
                                                                                                                                                                                                                                                                                                                            MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 4.5476140984E+03 1.2790594 1.0265273602E-06 1.2790594770E-01 1.0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ESTIMATED
                                                                                                                                                                                                                                                                                                                                                                                                                  ACTUAL
3.7863367154E+05
5.5775942694E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -7.37682290E-03 4.49547025E-02
-8.50655342E-02 1.90808746E-02
1.85416481E-07 1.36282488E-08
-4.23360696E-07 -9.19390084E-08
-3.32550651E-06 1.90930652E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SOLVE-FOR PARAMETER DEVIATIONS (MOST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1.05050715E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ACTUAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ACTUAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  POSITION/VELOCITY DEVIATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FROM MOST RECENT NOMINAL
                                                                                                                                                     5.00000000E-04
                                                                                                                                                                                                     ACTUAL MEASUREMENT NOISE
-6.60826000E-04
-7.18706400E-08
                                                                                                                                                                                                                                                                                                                                                                                                                3.7863367393E+05
5.5775951838E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -4.83363583E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8.33991021E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -8.29401641E-02
-3.68059688E-01
ACTUAL DYNAMIC NOISE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ESTIMATED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ESTIMATED
                                                                                                                                                                                                                                                                                                                                                                                                MEASUREMENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       × > ~ × > 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MU PLN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RANGE
```

Case MP-1. N \emptyset MNAL Multiprobe Sample Case

PROGRAM TARGETING

INPUT DATA

TRAJECTURY PARAMETERS

TM 86400.00 ALNUTH 149558500.00

NUDD 3 HUDLES 1 3 4

IBARY 0 ICUOND 1

NCPR 500 TMPR 50.300

HELIOCENTRIC DATA

POINT-TO-POINT CONDITIONS

						CONT		8	2	8	%	2	2•							
9 38.000	V1 30.287 V2 34.867	DLA 1.05 RAL 24.61 RAD 6557.3 VEL 11.364 PTH 1.956 VHP 4.395 DPA-40.09 RAP 149.93 ECC 1.1275 L-1 TIME INJ LAT INJ LONG INJ RT ASC INJ AZMTH INJ TIME PO CST TIM INJ 2 LAT INJ 2 LONG 2080.69 -15.15 30.94 -127.19 114.21 23 38 55. 1480.7				TARGET	TRAJ DAY	0.0	0.0	0.0	0.0	0.0	0.0	MAT BADITS BIT	3 12 12	3 12 12	3 12 12	3 12 12	3 12 12	3 12 12
7 6 49	.8597 47.21	49.93 LAT I				TARGET	JULIAN DAY	28260.784	1.500	28260.784	1 • 500	28260.743	1.500		-	-			~	-
71 8 17	S INC O	RAP 1	. ′			TAR	JULIA	2826	-693991,500	2826	-693991 • 500	2826	-693991.500	DVZ	0.0	0.0	0.0	0.0	0.0	0.0
TE 1977	107.01	DPA-40.09 CST TIM 1480.7					ш	6 49 38,000	0.0	6 49 38.000	0.0	5 49 38,000	0.0	٨٨	0.0	0.0	0.0	0.0	0.0	0.0
ARRIVAL DATE	4 ECC	195 DP PO CS 14				ĒT	R DAT	6 49	0	6 4 9	0	5 49	0	DVX	0.0	0.0	0.0	0.0	0.0	0.0
ARRIV	127•1 332•9	6 VHP 4.3 INJ TIME 23 38 55.	03			TARGET	CALENDAR DATE	5 17			0	2 17	0	٥						
	36 SMA	96 VHP 1NJ	40126D 98630D	00.06			ũ	12261	0	1215	0	1977	0	TOL3	00.0	0.0	00.0	1.00	00.00	0.0
133.00	0.95 AZL 90.86 HCA 155.08 SWA 127.14 ECC0.15786 INC 0.8597 V1 3.60 AZP 89.20 TAL 174.90 TAP 332.98 RCA 107.07 APD 147.21 V2	PTH 1 13 AZMTH 114.21	0.4339240126D 03 -0.1993798630D 01	4Z I 91		EVENT	TRAJ DAY	0.0	0.0	0.0	0.0	0.0	0.0	TOLE	1.00	0.0	1.00	1.00	1.00	0.0
	.86 HG	1.364 C INJ	'	15.04 A		Ē	TRA	•	0	0	0	0	0	1	00	_	00	8	00	_
FLIGHT TIME DISTANCE	2P 89	.3 VEL 1 NJ RT AS -127.19	254D 0			EVENT	JULIAN DAY	28128.770	28250,770	28251,270	28251.770	28252,270	0.0	TOL 1	1.00	0.0	1.00	1.00	1.00	0.0
FL1(0.95 AZL 3.60 AZP	5557.3 1NJ -13	0.1422013254D 09 -0.1468428602D 02 :TERS	32 THD 16 RAT		ú	100	281	282	282	282	282		TAR3	28260.78	0.0	29260.78	-34.40	28260.74	0.0
		L RAD (0.14 -0.14 RETERS	28.32				13, 331	33,331	33,331	33,331	33,331	0.0				2926	7	2826	
	27.578 GAL 37.394 GAP	24.61 AT IN	U 08 D 02 PARAN	LAT		L	CALENDAR DATE	6 28 33,331	28	18 28	6 28	18 28 3	0	TARS	68.20	0.0	00.00	-14.60	30.00	0.0
38.000		6 RAL INJ LA -15.15	680914 307137 ROF1LE	500.0		FVENT	ALENUA	1 5	5 7	5 7 1	9	5 8 1	0	1			-	•		
6 4 9	RP 108.68 LAP -0.32 LOP -93.10 VP DAY ANSTRUCENTOL CONT.	DLA 1.0 L-I TIME 2080.69	-0.3762680914D 08. 0.1. -0.2052307137D 02 -0.1. LAUNCH PROFILE PARAMETERS	17.00 T1 8.00 T2			U	1977	1977	1977	1977	1977	0	TAK 1	0.0	0.0	-14.00	30,30	20.00	0.0
4		m		17.0	ฑ์	REF	CODE			-	-	-	ъ				•			
77 1 ONIC	00.00	2.783 2.783 H TIME 4 15.	AMETERS ZDAT	A 1	CFEDUL	브) 3M1L	0.0	22.00	22.50	23.00	123.50	1.00	TAR KEY	14 1	0	14 1	11 0	14 15	0
LAUNCH DATE 1977 HELIUCENTRIC CONIC	RL 147.10 LAL 0.00 L RP 108.68 LAP -0.32 L BLANETOCENTOL CONT	C3 7.746 VHL 2.78: LNCH AZMTH LNCH TIME 90.00 23 4.15.	ZERO ITEKATE PARAMETERS IZERO I ZDAT	3.700	GUIDANCE EVENT SCHEDULE				12	12	12	12			13	0	13	11	13	0
IUCEN'	147.1 108.68	7.746 H AZMTH	ITERA] IZERO	RP 6	NCE E	EVENT	TYPE	-	4	-	ŝ	-	-1	GDM AMI	3	3 1	3 1	3	3	3 1
LAUN	A & @	C3 LNCH	ZERO		GUIDA	EVENT	INDEX	-	ы	က	4	S	9	IND	_	2	m	4	S	٥

		x-DOT Y-DOT Z-DOT VELOCITY -20.52307137 -14.68428602 -1.99379863 25.31402669 -20.52307137 -14.68428602 -1.99379863 25.31402669 6.04685081 -37.47566245 -3.84222030 38.15432266 8.76123194 -6.95710839 -1.99379863 11.36379228					DELT 145.216	AUX - 5- AUX - 6- AUX - 1- INCR 240548.938 345451.268 28259.400 541	0.682000 02 0.282610 05	241131.544 346229.251 28259.397 541	0.68200D 02 0.28261D 05	240478.499 345399.457 28259.400 541
ATE 28123.76983		+ ADIUS x - DOT 1705-185-89 - 20.51 14705-185-89 - 20.51 124215-800.85 6.00	0.4339240126D 03 0.1993798630D 01				KAXTAR ISTUP DELT 5 6 1 2 145.2	TAR -14- TAR - 1- -92.562 28259.400	DTAR= 0.0	-1.99380 -92.570 28259.397	DTAR= 0.0	-1.99380 -92.558 28259.400
28 33.331 JULIAN DATE	KMXQ 3 MDL 1	Z-COMP 433.92 433.92 2949955.23 433.92	1422013254D 09 1468428602D 02	10-XRF 13-DCP 11-YRF 14-RAP 12-ZRF 15-TPR	TOLERANCE 1.000 1.000 0.001	4 0 1	OTAR(2) DTAR(3) 68.20 28260.78	TAR -13- T	04 0.28261D 05	8.76123 -6.95711 0.0 -0.1754518721D-05 4 -37.406	0.282610 05	6.76123 -6.95711 000000000-05 0.0 -0.8195511393D-06
GUIDANCE EVENT AT 0.0 DAYS CALENDAR DATE 1977 1 5 6	CODES KUR 1 KIYP 1	CURRENT SPACECRAFT STATE Y-COMP X-COMP X-COMP TIAL -37626809.14 142201325.40 -37626809.14 142201325.40 -37626809.14 142201325.40 -37626809.14 162201352.40 S -108417541.47 -5316.20 H -600Y TARGETING EVENT	STATE -0.37626805140 38 0. -0.20523671376 02 -0. JULIAN DATE 0.2812375939 05	PARAMETER KEY DEFINITIONS 1-TPS 4-TCA 7-RCA 2-TSI 5-B.T B-INC 3-TCS 6-G.R 9-ASI	TARGETING SPECIFICATIONS KFY TARGET VALUE TOLE 13 0.0 14 68.200 1 28.260.784	TARGETING SCHEME LEYELS 0.100U-03 0.250D-04 DVMAX 0.510000000 00 19AST 3	IND NOF PHS KEYTAR DTAR(1)	ACCURACY VX VY VZ 0.10D-03 -20.5230714 -14.6842860 -1.9937986	DAUX= -0.11506D 05 -0.31738D	STATE= -38315316. 434. IOPT= 1 CUN= 0.10000000000-04 0.0 DV= 0.77097783170-05 -0.61221713760-05 0.100-03 -20.5230637 -14.6842921 -1.9938004	DAUX= -0.11506D 05 -0.31738D 04	STATE= -38315316. 434. IOOT= 2 CON= 0.0 0.1000 DV= 0.6933354489D-G5 0.8966197999D-G5 0.10D-U3 -20.5230644 -14.6642770 -1.9937994
GUIDAN CALEND	EVENT CODES	CURRENT SI REFERENCE INEWTIAL SUN VENUS FANTH N-800	ני ט	ā	L		1 ND NO!	ACCURACY 0.10D-03 -	۵	STATE= IOPT= 1 DV= 0.7 0.100-03 -	Q	STATE= IODT= 2 DV= 0.6 0.10D=03 -

-04 +0

30 M30211 0.

2007 THE TO THE PROPERTY OF TH

541		TAR TOL 1.000 1.000 0.001	1 NCR 529	529		529		529			TAR TOL 1.000 1.000 0.001	1NCR 531		531		
	S 0 0	DES TAR VAL 0.0 68.200 28260.784	AUX - 1- 28260.746		3 05	28260,746	50 0	28260•746	90 0	٠	TAR VAL 0.0 68.200 8260.784	AUX - 1- 28260•811	9 05	28260.804	90 0	
3454	0.282610	VAL DES 672 803	AUX - 6- -23914.361	-230	0.282610	-23971.667	0.282610	-23891.891	0.282610		DES 2	AUX - 6- -6707.066	0.282610	-5845.980	0.282610	
571.612	0.68200D 02	DES AUX VAL 1 -11505.672 2 -3173.803 0 28260.784	AUX - 5- 1443.228		0.68200D 02	1378.212	0.682000 02	1464,540	0.682000 02		DES AUX VAL 11635,810 1 -3503,145 0 28260,784	AUX - 5- -14205.830	0.68200D 02	-13693,286	0.682000 02	
259.399	0	VEL COR -0.33D-01 0.11D-02 -0.12D 00	TAR - 1- 28260.746	28260•742	•	28260•746	0	28260.746	0		VEL COR -0.30D-01 0.10D-01 -0.16D 00	TAR - 1- 28260+811 -		28260.804		
380 0D-05 3	05 DTAR= 0.0 95711 -1.99380 -0.1079271603D-01 03D 00	AUX ERROR -0.25D 06 -0.35U 06 0.14D 01	TAR -14- T 138,705 28	247	DTAR= 0.0	-2.11247 136.389 28	OTAR= 0.0	5599 -2.11247 0.500000000000005 9D-04 139.495 28	DTAR= 0.0	95599 -2.11247 -0.1429773180D-01 360 00	AUX ERROR -0.130 05 0.20D 05 0.380-01	TAR -14- 14.332 26	OTAR= 0.0	-2.27169 46.299 28	DTAR= 0.0	-2.27169
• 40 E	736D 04 0.28251D 05 434. 8.76123 -6.95711 -0.9396496830D-03 -0.1073 800-02 -0.1186701303D 00	TARGETING MATRIX 07 0.30D-07 0.41D-03 07 0.34D-08 -0.55D-02 09 -0.33D-06 -0.91D-01	TAR -13- T. 85.720 1	. 95599 0.0 5000-05	0.282610 05	434. 9.72826 -6.95599 0.130000000000-05 0.0 50-05 -0.82531600650-06 124696 86.651	0.282610 05	8.72826 -5.95599 0.500(0.5565230919D-04 d6.743	0.282610 05	434. 8.72 826 -6.95599 0.1054839769D-03 -0.1429 7D-01 -0.1592178236D 00	TARGETING MATRIX 07 0.34D-07 0.19D-02 07 -0.57D-08 -0.53D-02 03 -0.50D-06 -0.10D 00	TAR -13- TA 40.989	0.28261D 05	8.69787 -6.94560 0.0 -0.1999683791D-05 25.320	0.282610 05	434. 8.69787 -6.94560
0.0 0.0 0.29229843590-05 0842899 -1.9937428	• 31	TARGE -0.210-07 0 -0.310-07 0 0 0.320-09 -0	VZ -2.1124686	434. 04. 0.0 36738430-05 -2.1124706	-0.35031D 04	626150 -2.1	-0.35031D 04	434. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-0.350310 04	3121	TARGE -0.220-07 0 -0.330-07 -0 0.410-03 -0	v2 -2.2716860	-0.35226D 04	434. 0.0 58349D-05 -2.2716835	-0.35226D 04	434.
1 4	06D 05 -5316. 2339990D-	TRIX 1 0.45D 07 3 0.35D G7 3 -0.24D 02	VX VY -20.5560455 -14.6831627 PAUXE -0.118760 05	-5316. 100000000- 10.612	-0.11636D 05	-53 4.68	-0.116360 05	1 4	-0.116360 05	-5316. 0.1059241815D-02 6D-01 0.10338	430 07 450 07 310 02	ACCURACY VX VY 0.1003-03 -20.5864340 -14.6727743	-0.116090 05	900	-0.116090 05	-5316.
-3831. 3 CCN= 0.0 0.10 374287870-04	DAUX= -0.115 -3831. 4 CON= -0.462 -0.32974155590-01	SENSITIVITY MATRIX 0.580 03 -0.700 08 0.400 0.780 03 -0.220 08 0.350 0.280 03 0.190 03 -0.240	Y VX 3 -20.556045	-3931. -3931. 1 CUN= 0.1000 0.76834871390-05 03 -20.55500378 -14	DAUX= -0	-3831. 2 CON= 0.0 0.6937936943D-05	CAUX= -0	-3831. 3 CON= 0.10854869350-04 13 -20.5560347 -1	DAUX= -0	-3831. 4 CON= 0.105 -0.3033850246D-01	5 1 1	Y VX 3 -20.586434	DAUX= -0	-3831. 1 CON= .76564207C	DAUX= -0	-3331.
STATE= 10PT= 10PT= 0.10D-0	STATE= IOPT= DV= -	SENS 0.580 08 0.780 08 -0.280 03	ACCURACY 0+100-03	STATE= IOPT= DV= 0.100-0		STATE= IUPT= DV= 0.10D-0		STATE= IOPT= DV= 0.10D-0		STATE= 10PT= 0V= -(SENS. 0.520 08 0.860 08	ACCUR ACY 0.100-03		STATE= IOPT= DV= 0.		STATE=

0.00-03 -20.5864271 -14.6727554 -2.2715674 41.005	14.546	28260.811	-14270.530	-6764.634	28260•811 5	531
DAUX= -0.11609D 05 -0.35226D 04 0.28261D 05	OTAR= 0	0•0	0.68200D 02	0.282610	05	
STATE38115316. 434. 3.09787 -5.94500 100T= 3 CDN= 0.0 0.500 DV= 0.1149522442D-04 -0.3755096744D-05 0.55496704 04D-04 0.103-03 -30.5464225 -14.0727731 -2.2718311 39.255	-2.27169 0000000D-U5 20.881	28260.810	-14182.995	-6682.246	28260.810	531
DAUX= -0.11609D 05 -0.35225D 04 0.28251D 05	DTAR= 0	0•0	0.682000 02	0.282610	90	
STATE= -38318310. 434. 8.69787 -5.94560 HIPT= 4 COM= 0.20972767:60-04 -0.21592460350D-04 0.2722 DV= -0.70991463640F-04 -0.2267353D-03 0.3165829714D-03	4560 -2.27169 0.2728330809D-04 4D-03					
SENSITIVITY MATRIX 0.510 0H -0.65E 08 0.460 07 -0.230-07 0.273-07 0.180-03 0.660 08 -0.55E 08 0.550 07 -0.300-07 0.140-07 -0.430-03 -0.750 05 0.31L 03 -0.150 03 0.510-07 -0.100-06 -0.520-02	АUX ЕННОН 0.260 04 0.320 04 -0.270-01	VEL COR 4 -0.710-04 4 -0.230-03 1 0.320-03	DES AUX VAL -04 -11609.204 -03 -3522.553 -03 28260.784	VAL DES 204 558 784 2	S TAR VAL TA 0.0 69.200 28260.784	TAR TOL 1.000 1.000 0.001
ACCURACY VX VY VZ TAR -13- T 0.100-03 -20.0855050 -14.6730011 -2.2713700 0.035	TAR -14- 68.200	TAR - 1-	AUX - 5- -11609.512	AUX - 6- -3526.008	AUX - 1- IN 28260.789	INCR 531
D4UX= -0.11609D 05 -0.35195D 04 0.28261D 05	OTAR= 0	0.	0.682000 02	0.28261D	05	
STATE= -38315216. 4.34. 8.09780 -6.94532 10PT= 1 CDN= 0.10000000000-04 0.0 OV= 0.7550344021D-05 -0.6114143651D-05 -0.1999401423D-05 0.10D-0.3 -20.5864674 -14.673072 -2.2713720 -6.266	-2.27137	28260.785	-11096.012	-2665.104	28260.785	531
DAUX= -0.11609D 05 -0.35196D 04 0.28261D 5	OTAR= 0	0•	0.682000 02	0.28261D	05	
STATE= -3531, -5316, 434, 6.65780 -5.94582 IUPT= 2 CDN= 0.0 0.0 0.13000000000000000000000000000	-2.27137	28260.750	-11674-171	-3583,391	28260.790	531
DAUX≃ -0.11€09D 05 -0.35196D 04 0.28261D 05	OTAR= 0	0.0	0.682000 02	0.282610	05	
STATE -38315310. 434. 8.65780 -5.04582 10PT= 3 CON= 0.0 0.550 DV= 0.1149502c32D-04 -0.37541990300-05 0.5549912035D-04 0.100-03 -20.6864535 -14.5730048 -2.2713145 -0.168	-2,27137 0000000D-05 53,341	26250.789	-11586.554	-3501.074	28260.789	531
04UX= -0.11c090 05 -0.351550 04 0.2826.10 05	OTAR= 0	0•	0.682000 02	0.282610	05	
STATE= -34315316. 4.34. 3.69780 -6.49582 IUPT= 4 CDN= -0.11239375760-04 0.20959210740-04 0.505/ DV= 0.13395159800-02 -0.13031670030-03 0.555914344030-02	4582 -2.27137 0.5055307029D-03 3D-02					
SENSITIVITY MATRIX 0.510 03 -0.650 08 0.460 07 -0.100-07 0.330-07 0.230-02 0.360 03 -0.570 08 0.500 07 -0.430-07 -0.850-09 -0.550-02 -0.410 03 0.310 03 -0.360 02 -0.180-06 -0.300-06 -0.100 00	AUX EMMUN 0.860 00 0.640 01 -0.490-02	VEL CUR 0.130-02 1 -0.130-03 2 0.550-02	0ES	DE	5 TAR VAL TA 0.0 68.200 58260.784	TAR TDL 1.000 1.000 0.001
ACCURACY VX VY VZ TAF -13- T 0.100-03 -20.5851655 -14.6731314 -2.2657730 0.164	TAR -14- 68-125	TAR - 1- 28200.735	AUX - 5- -11622+245	AUX - 6- -3539.915	AUX - 1- IN 28260.785	INCR 531
0AUX= -0.116090 05 -0.351850 04 0.282610 05	OTAR≕ 0	0.0	0.682000 02	0.282610	05	
ACCURACY VX VY VZ TAH -13- T 0.25D-04 -20.581655 -14.6731314 -2.2657780 34.031	TAR -14- 52-813	TAR - 1- 26200.938	AUX - 5- -46707.473	AUX - 6- -31537.026	AUX - 1- INCR 28260.938 1015	4CR 315

0.282610 05

0.68200D 02

0.0

OTAR=

0.282010 05

DAUX= -0.11609D 05 -0.35520D 04

STATE= -3831. -5316. 434. 3.69914 -6.94595 -2.26578 IOPT= 4 CUN= -0.50434027320-04 -0.6700749937D-03 -0.1227971156D-02 -0.5047120948D-02 -0.130528199HD-01 -0.7512669084D-02

TAR TOL 1.000 0.000 1.000 1.000 AUX + 1- INCR 28260.799 1022 AUX - 1- INCR 28260.785 1021 68,200 DES TAR VAL 28260.784 DES TAR VAL 28260.784 0.0 0.0 0.282610 05 0.282610 05 TAR - 1- AUX - 5- AUX - 6-29260.799 -11735.312 -3443.218 -3556.020 AUX - 6-DES AUX VAL -11609.109 DES AUX VAL -11608.309 -3551,979 28260,784 28260.784 -3526.458 0.68200D 02 0.682000 02 AUX - 5--11629.910 VEL CUR -0.75D-02 -0.50D-02 -0.13D-01 0.400-02 0.170-01 VEL COR TAR - 1-28260.785 0.0 AUX ERRUR 0.13D 03 -0.83D 02 -0.15D-01 0.0 AUX ERRUR 0.35D 05 0.28D 05 -0.15D 00 TAR -14-63.085 TAR -14-67.209 UT AR= DTAR= TARGETING MATHIX
-0.16D-07 0.330-07 0.23D-02
-0.430-07 -0.55D-09 -0.55D-02
-0.180-06 -0.38D-06 -0.100 00 -0.180-07 0.330-07 0.230-02 -0.430-07 -0.850-09 -0.550-02 -0.18U-06 -0.38D-06 -0.10D 00 0.282610 05 0.282610 05 TAR -13-0.158 TAR -13-0.251 TARGETING MATRIX 0.250-04 -20.5926782 -14.0761785 -2.2738414 DAUX= -0.116080 05 -0.352650 04 0.25D-04 -20.5886813 -14.6786252 -2.2619737 -0.35233D 04 SENSITIVITY MATRIX
0.510 08 -0.650 08 0.460 07
0.460 08 -0.570 08 0.360 07
-0.410 03 0.330 03 -0.360 02 SENSITIVITY MATRIX
0.510 05 -0.0550 08 0.4460 07
0.660 04 -0.0.570 08 0.0500 07
-0.410 03 0.330 03 -0.360 02 DAUX= -0.11610D 05 ACCURACY ACCURACY

EXECUTION EVENT

	ΤA	3.85551	3.70000
	NODE	74.26438 71.98035	22.63881 24.19617
34	INC	10.93505 12.24832	28.31700 29.48676
0.27614234	OMEGA	155.91574	-150.25672 -151.77571
-0.26817509	ECC	0.1127475D 01 0.1126100D 01	0.11274750 01 -150.25672 0.1126100D 01 -151.77571
7 0.00566086	SKA	-0.514612519D 05 -0.520172159D 05	-0.514612519D 05 -0.520172159D 05
V = -0.06560997	DOMINANT BODY ELEMENTS	ш	PLANET EQUATORIAL BEFORE IMPULSE0 AFTER IMPULSE0
UELTA V =	NIMOO	BEI AF	PLANF BEI AFI

	5 4 4 2 2 4 3 3		SPACE TRAJ	TRAJECTORIES PROBLEM O PAGE 31	
	x - COMP.	Y - CUMP.	2 - COMP.	RESULTANT	
TRAJECTURY TIME = 0.13200782234D 03		TOTAL TIME INCREMENTS =	000		
SPACECRAFT INEPTIAL TRAJECTORY PUSITION	-0.153533cu239D 08	3 -0.10759326976U 09 2 -0.19970309470D 01	0 -0.61014185865D 06	0.10868491358D 09 0.41480665195D 02	
经存款 化苯基苯甲苯甲苯甲苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	***************************************	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	*************************	特种精神物种物种物种物种物物物物物物物物物物物物物物物物物物物物物物物物物物物物	*
CALENCAR DATE = MAY 17, 6 HR, 39 JULIAN JATE = 2443280,77765337	6 HR. 39 MIN. 49.225 SEC. 1977	776			
EPHEMERIS DATA	o c			c.	
			0.0	1 to	
			-0.20562174701D 01		
POSITION OF EARTH	-0.34051222350D 03	-0.12531111649D 09 -0.16655317191D 02	0.0	0.15130447810D 09 0.29447078972D 02	
化二甲基苯甲基苯甲基苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	*******************	计多数 经条件条件 经存存帐 计连续存储 计	***	计解检查 计 有 经 	*
SPACECRAFT RELATIVE TRAJECTORIUS					
PUSITION REL. TO SUN					
VLLOCITY REL. TC SUN	0.413441151570 02	-0.19970309470D 01	0.27058444609D 01	0.414806651950 02	
POSITION REL. TO VENUS				0.107241731550 05	
VELDCITY REL. TO VENUS	0.691027208110 01	0.308375516500 01	0.476206193100 01	0.894084112300 01	
PUSITION REL. TO EARTH	0.68697836611D 08 0.17060426030D 02	0.182178467170 0u 0.14659286244D 02	-0.610141858E5D 06 0.27058444609D 01	0.71074995372D 03 0.22655560107D 02	

VIKIUAL MASS FRUGRA	Σ Σ		2 -	ν 4	PROBLEM	<u>د</u> π	CTUKIES O PAGE 32		
	X - COMP.		Y - CUMP.		Z - CUMP	å	RESULTANT		
传播的 经存储的 医神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经	***************************************	****	* * * * * * * * * * * * * * * * * * * *	**	***	* *	***	* * * * * * *	* *
SS POSITION SS VELUCITY FLUS. RECL. TO V.M. VEL ELL. TO V.M. S. MOM.) VECTOR Y VECTUR	-0.153430305750 0.344212100630 0.692205638140 0.6922050940 0.13345621060	08 -0.10 02 -0.51 05 0.10 01 0.31 05 0.31	-0.10759434573D (0.51692835499D (0.1075965531D (0.317225029D (0.31477394160D (0.95329653831D (0.953296538331D (0.95329653831D (0.953296523005200000000000000000000000000000000	09 -0.60 01 -0.20 04 -0.25 01 0.47 05 -0.40	-0.607564328160 -0.205671640840 -0.427733068320 0.476256086930 -0.403133703830	00 00 00 00	0.10868450191D 09 0.34867911853D 02 0.1072572354D 05 0.89817474664D 01 0.52848893532D 05	09 02 05 01 01	
V.M. MAGN. FATE = -0.168193874789	00 P	***************************************	***	**	**************************	**	10 10 10 10 10 10 10 10 10 10 10 10 10 1	***	
V.M. RELATIVE PUSITIONS PUSITION MEL. TO SUN PUSITION REL. TO VENUS POSITION REL. TO EARTH POSITION REL. TO EARTH	0.15343030575D 08 0.50216889924D 01 0.68704192275D 08	-0.107594345735 0.422295755970 0.18215770750D	0.10759434573D 09 0.422957559Tb 02 0.18215770750D 08	-0.60756432816D 0.23846518842D -0.60756432816D	432816D 06 518842D C0 432816D 06		0.10868450191D 09 0.42657410365D 02 0.71094706911D 08		
计操作性 张 使有 表 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有	安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	# ** ** ** **	***	***	***	* * * *	据操作的 计多数	***************************************	*
FLIGHT PATH ANGLE	-0.53653476283D 0.6.4211305664D 0.53991555721D 0.1549166047987D 0.11260513123D 0.126353357676D	01 02 03 03 03 03							
SPACECRAFT PASSING IN FRONT OF VENUS INTERPOLATED INFORMATION AT IMPACT SPACECRAFT IMPACTED VENUS AT DATE)5 ACT • 2443280•7845992	629							
PUSITION0.55109222046D VELOCITY 0.96858980228D DECLINATION . 0.299 AT. ASCENSION . 71.073	04 0.281393273370 01 0.22481490288D	337D 04 288D 01	0.38925444767D 0.50278702539D	670 03 390 01	0.6200000000000 0.11142274178D		04 02		

MOL 1	Z-CUMP RADIUS x-DOT Y-DOT Z-DOT VELOCITY (10.9803.77 111153522.60 34.77555111 -11.60696386 0.51188536 36.66500500 -10.943033.77 111153522.80 34.77555111 -11.60696386 0.51188536 36.66500500 -2181372.21 3710157.41 2.82999075 2.34789039 2.54769537 4.47389848 -1033803.77 58391869.45 13.44870713 8.78862863 0.51188536 16.07388389	09 -0.109±8037590 07 02 0.511±8535640 00	13-DCP 14-HAP 15-TPR			DTAR(3) KAXTAR 1STDP DELT 28260.78 5 6 1 2 10.466	0-339 65-415 282-00-735 -11837-808 -3377-699 282-60-785 105	0.28261D 05	44871 5.78863 0.51189 0.31545779170-05 0.31545779170-05 0.313 56.414 28260.785 -11837.380 -3372.852 28260.785 105	0.28281D 05
EVENT CUDES KUR 3 KTYP 1 KMXG 3	CURRENT STACECRAFT STATE REFERENCE A-GUMP INESTIAL -45143090.6.69 -10156770.4.88 -1010101010101010101010101010101010101	STATE -0.4519.4696690 08 -0.10156770696 0.34775551110 02 -0.11600963866 JULIAN DATE 0.2225126930 C5	DARAMETER KEY DEFINITIONS 1-TPS 4-TCA 7-RCA 10-KRF 2-TS1 5-D.T 9-INC 11-YKF 3-TCS 0-D.P 9-ASI 12-ZRF	TARGETING SPECIFICATIONS KEY TARGET VALUE TULERANCE 13 -14.000 14 10.000 1 28260.734 0.001	TAKULING SCHEME LEVELS 0.1000-33 0.2500-34 5VMAX 0.500000000000000000000000000000000000	IND NUF PHS KEYTAR DTAM(1) DTAP(2)	ACCUJACY VX VY VZ 1AP 0.5118354 0.5118354 0	CAUX= -0.548090 C4 -0.374770 04 0.20	STATE= 57634770, 3992797, -1055304, 13.44871 10PT= 1 CON= 0.1000300000000 04 9.0 DV= 0.83658061543-05 0.84c75447170-05 0.315 0.100-03 34.7753595 -11.6065334 0.5118387	DAUX= -0.648090 C4 -0.474770 04 0.23

FO 0000001,0

21010340 ; 33333403 1 1 2 2 4 4 5 0.51189 13.44371 8.78863 ; -1098804. 8392797。 200011001 57684770.

;

1.000 1.000 TAR TOL 1.000 1.000 - 1 - INCR 105 105 AUX - 1 - INCR 28260.785 188 28260.787 28260.784 28260.787 28260.787 28260.784 -14.000 100.000 28260.784 100.000 DES TAR VAL -14.000 DES TAR VAL 9 9 0 0.282610 05 0.282610 05 0.282610 05 0.282610 05 0.282610 0.282610 0.282610 AUX - 6--3798.148 -3432,609 -3743.224 -3738,371 -3743.811 - 6 -9 --3757.562 DES AUX VAL -6480.871 -3747.733 28260.784 -3757.514 DES AUX VAL -6466.895 0.100000 03 0.10000D 03 03 0.10000D 03 0.10000D 03 0.10000D 03 0.10000D 03 - 5--11830,206 0.100000 -6476.608 -6476.193 -6490.060 -6469.006 -6466.894 -5 -6259.793 5 ŧ Ϋ́ Š VE_ COR 0.12D-02 -0.70D-02 -0.20D-02 0.820-03 0.58D-03 0.78D-03 VEL COR -0.14000C 02 DTAR= -0.14C00D 02 -0.14000D 02 -0.14000U 02 -0.14000D 02 -0.14000D 02 -0.14000D 02 28260.784 TAR - 1-28260.785 -1 -28260.787 28260.787 28260.787 28260.787 -1 -28260.784 TAR TAR 0.54D 04 -0.37D 03 -0.65D-04 0.97D 01 -0.14D 02 -0.27D-02 AUX ERROR AUX ERROR 0. 8992797. -1098304. 13.44371 3.78853 0.51189 -0.2856735360D-02 -0.4157469164D-03 -0.7106167858D-04 085D-02 -0.69748784660-02 -0.19958206900-02 0.5000000000D-05 . 8992797. -1098804. 13.45074 8.78223 0.51067 0.31000769000-03 0.1578695527D-04 -0.2686924167D-05 94U-03 0.3948436967D-03 -0.3756934786D-05 \$0-Q00000C0005*0 0.46246553790-04 0.50989 0.50989 0.50989 0.50989 66.522 100.023 TAR -14-101.294 TAR -14-99,932 066.66 99.857 TAR -14-966.66 DT AR= DT AR= DT AR= OTAR= OT AR= DTAR= 0.3172725248D-06 0.18521584870-05 0.7977897494D-04 0.79791526130-04 -1059804. 13.44993 8.78165 8992797. -1098804. 13,44993 8,78165 0.7847331392D-03 -0.50D-05 0.50D-06 -0.39D 00 -0.78D-07 -0.62D-08 -0.32D-02 -0.18D-07 -0.69D-07 -0.17D-01 -0.160-06 0.520-06 -0.390 00 -0.750-07 -0.600-08 -0.310-02 -0.310-08 -0.680-07 -0.170-01 8992797. -1098804. 13.44993 8.78165 -1098804. 13.44993 6.78165 • 0.0 0.282610 05 0.282610 05 0.28261D 05 0.28261D 05 0.282610 05 0.282610 05 0.28261D 05 0.572 TAR -13--14.083 -13,784 TAR -13--14.057 TAR -13--13.994 TARGETING MATRIX 0.1333479616D-04 0.1852158 TARGETING MATRIX 67990-02 0.76745806350-05 0.57871778030-03 0.784733 0.5098914 0.5119651 -0.37477D 04 0.5098995 0.5098899 -0.37575D 04 0.100-03 34.7767720 -11.6135479 0.5099693 -0.375750 04 -0.37575D 04 -0.37575D 04 3 CON= 0.0 0.0 0.2944602750D-05 -0.9142819884D-05 0.5106743 0.5106743 -0.37617D 04 0.29474055990-05 -0.91579875460-05 . 8992797. -1099804. 0.10000000000-04 0.0 350-05 0.54642765970-05 -0.37568D 04 0.0 • 7 0.10265767990-02 0.100-03 34.7755541 -11.6069730 0.100-03 34.7767690 -11.6139387 0.10D-03 34.7767774 -11.6135333 0.100-03 34.7767602 -11.0139254 34.7775880 -11.6133600 0.100-03 34.7775880 -11.6133600 8992797. DAUX= -0.64669D 04 0.430 05 -0.130 08 0.150 07 0.480 06 -0.560 06 -0.110 06 -0.200 01 0.170 02 -0.160 02 DAUX= -0.64669D 04 -0.64669D C4 -0.64665D 04 -0.646340 04 -0.54809D C4 0.42D 05 -0.13D 08 0.15D 07 0.49D 06 -0.55D 06 -0.11D 08 0.19D 01 0.48D 01 -0.15D 02 DAUX= -0.64658D 04 > 0.83690512850-05 = 2 CON= 0.0 -0.8775709743D-05 0.1217914085D-02 0.8190131558D-03 SENSITIVITY MATRIX SENSITIVITY MATRIX 4 CON= 0.3100 0.1192914594U-03 0.0 0.0 57634770. 57684770. 57¢84770. 57684770. 57684770. 57684770. 3 CON= 4 CUN DAUX= DAUX= 4 CUNII 1 CGN 3 CON= -0.190 01 ACCURACY 0.25D-04 ACCURACY **ACCURACY** = Ld0I IOPT = =1401 10p1= =190I 10PT= =100I

SENSITIVITY MATRIX	TARC	TARGETING MATRIX	AUX EYROR	ROK VEL COR		DES AUX VAL	DES TAR VAL	TAR TOL
420 05 -0.130 08 0.150 07	-0.160-06	-0.160-05 0.520-06 -0.390 00 -0.753-07 -0.600-08 -0.310-02	-0.200 03	0.3 0.120-03		-6463.362	-14.000	1.000
19D 01 0.48D 01 -0.15D 02	-0.310-03	-0.310-03 -0.680-07 -0.170-01	ľ	'		28260.784	28260.784	0.001
JRACY VX VY 50-04 34.7777073 -11.0129752	VZ 752 0.5106705	TAR -13- -13.996	TAR -14-	TAR - 1- 28260.784	AUX - 5- -6463.399	- AUX - 6- 3761.797	8	AUX - 1- INCR 28260.784 188
DAUX= -0.64638D 04	-).37609D 04	0.282610 05	OTAR=	-0.140000 02	0.10000D 03		0.282610 05	
EXECUTION EVENT								
DELTA V = 0.00215622	-0.00601132	-0.00121484	0.00650085	č				
DOMINANT BODY ELEMENTS DIAMET GOLIDITA	SMA	ECC	OMEGA	INC	NUDE	TA		
SE 0	1271570380 09	0.15792760 00	5.38506	93906	-76.86909	-42.98306		
AFTER IMPULSE 0.1.	0.127202229D 09	0.15803680 00	5.71355	0.93752	-76.79810	-42.88253		

	LOCITY • 71364771 • 71364771 • 46356408 • 21902413		.14117877	41849103																				
	Z-DOT VE 0.51585470 36 0.51585470 36 2.55632534 4		5.44043184 11	2.63976012 4														PHI(5) OR PHI(10)				941877028450 01	57032937941D 01	
	Y-DOT -11.18650277 -11.18650277 2.31966668 9.02423020		4.14451540	2.12520723														08	02	02	02	02	02	
	x-DDT 34.96409556 34.96409556 2.42979709 13.46677047		3E 8.79491659	2.83517615	INE								300-01	3610 00			VA_JES	PHI(4)	5711349261702	.5703888335275	.5711938081520	i.5711550012245	5707506398633	
	RADIUS 111002725,44 111002725,44 3517315,25 59025754,06			RELEASE 3510458.03		17	0	= 0.100D=	= 0.100D	= 0.1000	= 20	RATION POINT			040	IATRIX ROUTINE	RNED FUNCTION	(3) 0R II(8)	03	03	03	03	93	?
3 MDL 1	2-COMP 1076631.10 1076631.10 2071649.72 1076631.10		BASED UN	SPACECRAFT AT 2093986.35	GAUSS LEAST	2	1	DELTA	3 3	EPS	11/1	GAUSS ITE				JACOBIAN N	INAL AND PERTU	I d						
KTYP 5 KMX0		+ Z	SPACECRAFT AT -440.58	STATE OF													MON	PHI(2) OR PHI(7)	.4319756519321910					
KUR 4			STATE 14	LENT CONIC PLANET														1(1) UR 41(6)	0 20	5 C C	0.2	0 0 2 2	0.4	0.4
EVENT CUDES	CURRENT SPA HEFERENCE INERTIAL SUN VENUS	RIVIE	PLANET	F0U1VA														1.0.		-0.11120	-0.111209 2 -0.241371	-0.111213	-0.11120	-0.11120
	KUR 4 KTYP 5 KMX0 3	EVENT CUDES KUR 4 KTVP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE HEFERENCE ACCOMP TOO BOOL 14.85 - 1070631.10 111002725.44 34.96409556 - 11.18650277 0.51585470 36.7136477 TIAL -436.3664.23 - 102060214.85 - 1076531.10 111002725.44 34.96409556 - 11.18650277 0.51585470 36.7136477 -43636664.23 - 102060214.85 - 1076531.10 111002725.44 34.96409556 - 11.18650277 0.51585470 36.7136477 -5251864.13 - 1734612.95 - 2071049.72 351735.25 2.62979709 2.31966668 2.55632534 4.4653640 FRADIUS ACCOUNT AC	EVENT CUDES KUR 4 KTVP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE L-COMP HEFENENT SPACECRAFT STATE V-COMP TITIAL -43636664.23 -102060214.85 -1076631.10 111002725.44 34.96409556 -11.18650277 0.51585470 34.96409566 -11.18650277 0.51585470 3	EVENT CUDES KUR 4 KTVP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE THEFEROLE -43630504.23 -102000214.85 -1076631.10 111002725.44 34.96409556 -11.18650277 0.51585470 34.9640956 -11.18650277 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707 0.51585470 34.9640956 -11.186707	EVENT CUDES KUR 4 KTYP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE V=CUMP V=COMP V=COM	EVENT CUDES KUR 4 KTYP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE V=COMP V=COM	EVENT CUDES KUR 4 KTVP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE **COWP **COWP **COWP **COWP **COWP **COMP **COMP **COWP **COMP **COMP **COMP **COMP **COMP **COMP **COMP **COWP **COMP **COMP **COMP **COMP **COMP **COMP **COMP **COWP **COMP **COM	CURRENT SPACECRAPT STATE CURRENT SPACECRAPT STATE V-COMP V-COMP V-COMP V-COMP V-COMP V-COMP V-COMP V-COMP V-COMP V-DOT V-COMP V-C	EVENT CUDES KUR 4 KTYP 5 KMX0 3 MDL 1 CURRENT SPACECRAFT STATE V-COMP V-COTOMP V-COMP V-COMP V-COMP V-COTOMP V-COMP V-COMP V-COMP V	EVENT CUDES KUR 4 KTVP 5 KMXO 3 MDL 1 CURRENT SPACECRAFT STATE WEER REVIEW WE WEER REVIEW WE WAS WELL AND TOOLOGY WE WE WANT AND TOOLOGY WE WANT AND TOOLOGY	EVENT CUDES KUR 4 KTVP 5 KMX0 3 MOL 1 CUBRENT SPACECRAFT STATE W-COMP Y-COMP Y-COM	EVENT CUDES KUR 4 KTYP 5 KMXO 3 MDL 1 CURRENT SPACECRAFT STATE V-COMP V-COM	FURNET CLUES	EVENT CUDES KUR 4 KTYP 5 KMK0 3 MDL 1 CURRENT SPACEGRAFT STATE V-CUMP 2-COMP NEFFHENCE -4 36-56-64-23 -1076-311-10 111002722-44 34-96-09556 -11:16650277 0-51555470 34-96-09556 -11:16650277 0-51555470 1714L -4 36-66-64-23 -1076-311-10 111002722-44 34-96-09556 -11:16650277 0-51555470 34-96-09556 -11:16650277 0-51555470 1736-61-49 NINTPROUBE TARGETING EVENT PLANETICENTRIC STATE UF SPACECRAFT AT IMPACT BASED ON STATE AT RELEASE -22580-26-38 FOULVALENT C.NIC PLANETIC STATE UF SPACECRAFT AT RELEASE -22580-26-39 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-30 -22580-26-3	EVENT CUDES KUR & KTYP 5 KMKO 3 MOL 1 CURRENT SPACECRAFT STATE LOCADH LOCAD	CUBRENT SPACECRAPT STATE **COMPANY SPACECRAPT SPACECRAPT SPACECRAPT SPACES SPA	CUBRENT SPACECRAT STATE **COMPANY SPACECRAT* SPACECRAT* SPACECRAT* SPACECRAT* SPACECRAT* **COMPANY SPACECRAT* SPACECRAT* SPACECRAT* SPACECRAT* **COMPANY SPACECRAT* SPACECRAT* SPACECRAT* SPACECRAT* **COMPANY SPACERAT* SPACECRAT* SPACECRAT* **COMPANY SPACERAT* SPACECRAT* SPACECRAT* **COMPANY SPACERAT* SPACECRAT* SPACECRAT* **COMPANY SPACERAT* **COMPAN	EVENT CLUES AND A KTYP 5 KM 3 MDL 1 COMPANY SPACECRATY SIATE COMPANY SPACECRATY SIATE COMPANY SPACECRATY STATE COMPANY SPACECRATY SPACECRATY STATE COMPANY SPACECRATY SPACECRATY SPACECRATY COMPANY SPACECRATY SPACECRATY SPACECRATY COMPANY SPACECRATY SPACECRATY SPACECRATY COMPANY SPACECRATY SPACECRATY SPACECRATY COMPANY SPACECRATY SPACECRATY COMPANY SPACECRATY SPACECRATY COMPANY SPACECRATY COMPANY SPACECRATY SPACECRATY COMPANY SPACECRATY SPACECRATY COMPANY SP	PHILED ON THE A KTYP 5 KMX0 3 MDL 1 WHORE SPACECRATY STATE Y-COMP LOCAL STATE LOCAL	PUBLICATIONES KINR 4 KTYP 5 KMKO 3 MOL 1 Comparison of the comp	VERTICONES VIUR 4	Variety Chors	WENT CLOURS KIN 8 KITP 5 KMG 3 MOL 1 WENT CLOURS WENT	WERN CODES KIR 4 KITP 5 KMI 3 MOL 1 WERNER CORES

											03	03	03	03	03						
ý ×		-0.28650264050-03	0.61272547765-06	0.19100675580-03	0.4793919896D-03					PHI(5) OR PHI(10)	03 -0.635297474623906D	03 -0.636325584895955D	03 -0.636227235074736D	03 -0.636260532678007D	03 -0.636311041272134D	ις ×		-0.46125589540-04	0.40227419700-05	0.1485843395D-03	0.29582369330-04
x4 0.236288405D 03 -0.3457957019D 04 0.331603635D 04 0.3842863069D 04 -0.1703416995D 04		0.64452093560-03	-0.9702540681D-06	-0.10625619840-04	-0.10787986580-02		3180D 00 3048D 00 5921D 00 2580D 00		N VALUES	PHI(4) 0R PHI(9)	-0.177222185446591D U	-0.1771555633451640 0	-0.177229068604882D 0	-0.177231592443477D 0	-3.177182927049516D			-0.24169069150-04	0.42175742390-04	-0.11934600235-03	0.1894336412D-03
JACJOIAN MATRIX X 1 0.7465729331D 00 0.2 0.1317548249D 01 0.3 0.2715542516D 01 0.3 0.2715542516D 01 0.3 0.275562240D 04 -0.1	PROJECTION MATRIX	-0.53341937700-03	-0.4540002474D-04	0.13482415080-03	0.10358695220-02	GAUSS ITERATION POINT	x 1 1=-0.24614431800 x 1 2= 0.46678780480 x 1 3= 0.27314159210 x 1 3= 0.90080028600 x 1 a= 0.90080028600 x 1 = 0.16305810970 y 1 = 0.16250004590	JACOBIAN MATRIX ROUTINE	AND PERTURNED FUNCTION VALUES	PHI(3) OR PHI(8)	0.611409002019425D 02	0.8119199414746070 02	0.8109091842858330 02	0.8115298126145540 02	0.8116633269583360 02	JACQUIAN MATRIX X3 0.41F9594492D 03 -0.1 -0.16.34053529D 04 -0.1 0.21E4105951D 04 0.2 0.3694194590D 04 -0.1 -0.2757561133D 04 -0.2	PROJECTION MATRIX	0.57337917880-04	-0.73633209650-04	0.15675971070-03	-0.73042474715-04
20,734.3692542D 04 0.1 -0,4519158493D 04 -0.1 -0.456741931 79D 04 -0.56741931 79D 03 -0.56741931 79D 04 0.28743313100D 04 -0.28742312542 04 +0.26742		4 0.5817972314D-03	4 -0.38337866050-04	3 0.1155122795D-03	3 4 -0.11292060940-02. 3			j	ND WINAL O	P4I(2) 0R PHI(7)	U•1019212651967005 04 0.	0.1019149531581880 04 0.	0.1017186492129905 04 0	0.1019196311431710 04 0	0.101923010477544D 04 0.	X2 0.759481614D 04 0.4 -0.2615993710D 04 -0.4 -0.9943153291D 03 -0.6 0.7023454917D 04 0.4 -0.6314231344D 04 -0.6		4 -0.14415206060-03	4 0.20963719000-04	4 -0.0393300942D-04	3 0.23279642230-03
0.4106171520 03 0.657920864590 04 -0.577272370 04 +0.07409204270 04 -0.3113323170 04 -0.41675615520 04 -0.416756155520 0		-0.4077901242D-04	0.83557344970-64	00-1251516000000000000000000000000000000000	-0.181955594560-03 0.79474415330-04 C.6015464470U-03					PHI(1) 02 PHI(6)	50	n M. a	n :: :	5 C C		X1 0.11/32212330 C4 -3.65020245127 04 -0. 0.5119 5945520 C4 -0. 0.56221014 30 C4 -00.24110272050 C4 -0.		0.37107295290-04	0.10404040404040 0.10404040404040404040404040404040404040	#0 - CC 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	-0.1607055530-03 -0.1607055530-03 -0.1607057576
= 3 E 4 D 6									,	ו ווו וו		•		•	, ,	0 0 0 0 0					•

```
GAUSS ITERATION PUINT
```

DE - CALEDE 300 17+4-

X 2 1=-0.1244553791D 00 X 2 2= 0.8386445551D 00 X 2 3= 0.3992665688D 00 X 2 4= 0.6619046362.0 00 GRAD 1= 0.1270770463D 04 Y 2= 0.1076473883D 07

JACOBIAN MATRIX ROUTINE

				~								m	
	PHI(5) 0R	PHI(10)		0.650229038029805D 03 0.403740035002525D 03 -0.354275979252919D 03 -0.378599811949994D 03		0.650167631294085D 03 0.403793624066224D 03 -0.354207375659003D 03 -0.378627355153910D 03		0.650197616174340D 03 0.403692333010630D 03 -0.354285205758566D 03 -0.378524164256249D 03		0.650227958164662D 03 0.403740987474651U 03 -0.354280536942461D 03 -0.378565969891176D 03		-0.3786155622566820 03	
				03		03		03		03		03	
ON VALUES	PHI(4) OR	PH1(9)		-0.3542759792529190		-0.3542073756590030		-0.3542852057585660		-0.3542805369424610		-0.3542364096422310	
CT 1.0				03		03		03		03		03	
NOMINAL AND PERTURNED FUNCTION VALUES	PHI(3) 0R	PH1(8)		0.4037400350025250		0.4037936240662240		0.4036923330106300		0.4037409874746510		0.403761542330681D	
4I NA				03		03		03		03		03	
ION	PHI(2) 0R	PHI (7)						0.650197616174340D		0.650227958164662D		0.650205598033414D	
	PHI(1) UR	PHI(6)		0.166725146552114D 03	-0.4409348066337770 03	0.166732891681209D 03	-0.4409760525325680 03	0.1668041908932780 03	-0.4410010311512600 03	0.1667253066243400 03	-0.4409641453041200 03	0.1667229795940820 03 0.650205598033414D 03 0.403761542330681D 03 -0.35423642642231D 03 -0.378615562256682D 03	-0.4409587181943160 03
	INCRE-	V AR 1 -	ABL E	0		-		N		'n		4	

	X						
×	**	0.18330459680 03	-0.2343999639D 04	0.2150732816D 04	0.39569£1069D 04	-0.1575030669D 04	-0.2391156054D 04
JACOBIAN MATRIX	ХЗ	0.15007222600 02	-0.1079865143D 03	0.9524721363D 02	-0.45576895430 03	0.33842058820 04	-0.29338670340 04
	×2	0.79044341160 04	-0.31421855460 04	-0.4769699189D 04	-0.92265055870 03	0.75647693740 04	-0.662245174'8D 04
	x1	0.77451290950 03	-0.61406735720 04	0.53589063700 04	0.68603593000	-0.2754320392D 04	-0.41245898790 04
		PHI(1)	PHI(2)	PHI(3)	(*) IHd	PHI(5)	PHI(6)

0.49230930570-03

-0.3213621343D-C3

0.12742927150-03 -0.4104420718D-03 GAUSS ITERATION POINT

0.68034279740-04 -0.25865876850-05 0.17287081190-03 -0.18298869640-03

-0.1954744838D-03 0.74811630500-05 -0.3966033903D-04 0.5044448106D-03

0.23736241090-03

-0.28389836050-03

-0.2601765577D-04 0.5640370015D-04

0.490719P573D-04 0.12726B513D-03 0.8186622407D-04 -0.456156E634D-05 -0.13421E7004D-03 -0.13421E7004D-03

PROJECTION MATRIX

-0.56062695650-04

X 3 1=-0.31288427580-01 X 3 2= 0.8642473472D 00 X 3 3= 0.3338667242D 00 X 3 4= 0.4897784822D 00 GRAD 2= 0.5260204579D 07 Y 3= 0.9773079595D 06

JACOBIAN MATRIX ROUTINE

PH1(4) 0R NOMINAL AND PERTURNED FUNCTION VALJES PHI(3) 0R PHI(2) UR

-0.412211569704345D 03 -0.379351164107829D PHI (9) 0.5189754549919640 03 PHI (8) 0.3784728967599570 03 PHI (7) 0.324191793943608D 03 PHI(6)

PHI(1) OR

03

PHI(5) OR PHI(10)

A-114

3 -0.3793780312728940 03 3 -0.3792777620588170 03 3 -0.379317364273320D 03 3 -0.379368530917821D 03	95 ×		0.98721592462-04	0.2570912645D-04	0.9734200925D-04	-0.2228567504D-03					PHI(S) OR	0.4017106.0-	-0.3917376728606240	03 -0.3916377079863080 03	3 -0.391675693807302D 03.	3 -0.391727743611900D 03	v,
03 -0.412143291941499D 03 03 -0.412221191455840D 03 03 -0.412212769865548D 03 03 -0.412171045113065D 03	X4 0.1105124761D 04 0.2462555969D 04 0.1344835873D 04 0.405245912BD 04 -0.1736680999D 04	×	.03 -0.9707785882D-04	.04 -0.36075545190-04	-05 0.7171126035D-04	-03 0.32100741010-03	POINT	1=-0.63947135035-01 2= 0.8656331384D 00 3= 0.3261215689D 00 4= 0.5510462718D 00 4= 0.9559053662D 06	ROUT INC	TION VALUES	PHI(4) OR	03 -0-3881496541220	-0.3880813644922450	03 -0.388158922214368D 0	03 -0.3881521180103540 03	03 -0.388108676903900D 03	X4 0.759977618D 03 0.12260957666D 04 0.1428332461D 04 0.4095275022D 04 -0.171422921DD 04
03 0.5190315038076790 03 0.5189305160859490 03 0.5189670338730900 03 0.5189889033506990	JACUSIAN MATRIX X3 -0.30617170430 02 0.87493697740 03 -0.12001852040 03 0.33799334510 04 -0.32645550390 04	PRGJECTION MATRIX	ID-03 0.1892121318D-03	35-64 -0.10417797640-64	00-03 0.7893705414D-05	4D-03 -0.3214411596D-03	GAUSS ITERATION PE	X 4 1==0.638 X 4 2= 0.886 X 4 3= 0.328 X 8 4= 0.551 CRAD 3= 0.238 Y 4= 0.995	JACOBIAN MATRIX ROL	NOMINAL AND PERTURNED FUNCTION VALUES	PHI(3) 0R	03 0.4075375905539210		03 0.407491592784753D	03 0.4075326027627510	03 0,407552473878536D	JACOBIAN MATRIX X37544991380 02 0.53437931760 03 -0.49977911710 03 -0.24665562720 03 0.34907512490 04 -0.32466655050 04
0.3784112541516620 0.3784392639053320 0.3784315401292300 0.378482732002670	X2 C.78354343760 04 -0.4362854620 04 -0.44638906020 04 -0.96217514900 03 0.73402049010 04 -0.63507078710 04		400-04 -0.14558798110-03	533279D-05 118543D-04 -0.6466071613D-04	380-34 500-33 0.145057c9700-03	89762715-03 15c9934D-04 0.2339363084D-03 6666461D-04				NOM	PHI(2) 0R	0.41672834897055310	0.4166656573820520	0.416695344400518D	0.416733763498707D	0.416705760128870D	X2 0.7898430709D 04 -0.330559050ID 04 -0.4597769ITO 04 -0.9222560247D 03 0.729343349D 04 -0.6337730854D 04
0.3242(531)25685220 03 -0.3741863355905754D 03 0.324270345257572D 03 -0.341907353200259D 03 0.3242028451772103D 03 -0.34191467772103D 03 -0.34191467772103D 03 -0.341967014624314D 03	X1 0.55186247149 03 -0.51642608270 04 0.56046416719 04 0.6827775259 04 -0.26667165670 04			0.80265332795-05 0.75221185435-04		-0.16989702 0.84715099 -0.97766664					PHI(1) OR	0.535	-0.333178275629490D 03 0.396830592279264D 03	-0.393219642466864D 03	-0.395841656538016D 03	-0.393210746264544D 03 0.396831811179154D 03 -0.393202148137156D 03	X1 0.6381077724D 03 -0.627126234BD 04 0.5625195210D 04 0.6826510189D 04 -0.2707154083D 04
- 0 m 4	PHI(1) PHI(2) PHI(3) PHI(4) PHI(5)										INCRE- MENTED VAD II	ABLE		Q.	m	4	PHI(1) PHI(2) PHI(3) PHI(5) PHI(6)

```
03
                                                                                                                                                                                                                                                                                                                                                                                                               03
                                                                                                                                                                                                                                                                                                                                                                                                                                               03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        03
                                                                                                                                                                                                                                                                                                                                                                                  0.405175757266134D 03 -0.390058699646451D 03 -0.392065543525286D
                                                                                                                                                                                                                                                                                                                                                                                                                0.405232130277161D 03 -0.389990449631534D 03 -0.392092590659882D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.405170630126398D 03 -0.350061151050960D 03 -0.392030556387159D
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.405129816566659D 03 -0.390067996836060D 03 -0.391992786767870D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.4051904019706090 03 -0.290017676668350 03 -0.3920827416495750
                                                                                                                                                                                                                                                                                                                                       PHI (5) 0R
                                                                                                                                                                                                                                                                                                                                                     PHI (10)
 0.73008555720-04
                               0.13429033030-04
                                                            0.12491663250-03
                                                                                           -0.19255085190-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.71893045570-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.13660176650-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.1240172547D-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.1904608046D-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ×
-0.1047272520D-03
                            -0.2353426503D-04
                                                                                         0.33408963930-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.1016233748D-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -0.2379575591D-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.32825099060-03
                                                              0.3637740475D-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C.3688256345D-04
                                                                                                                                                                                                                                                                                                                                       PHI(4) 0R
                                                                                                                                                                                                                                                                                                                                                       PHI(9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.7725882488D C
-0.2249793102D O
0.1464470448D O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -0.1719812429D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -0.2383189648D
                                                                                                                                                                  X $ 1=-0.6280703625D-01
X $ 2= 0.8702230539D 00
X $ 3= 0.3228023806D 00
X $ 5 = 0.5488405365D 00
GRAD 4= 0.249156258eD 06
Y $ = 0.955665884D 06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X 6 1=-0.62821050330-01

X 5 2= 0.8702241321D 00

X 6 3= 0.322679585D 00

X 6 4= 0.5468670654D 00

GRAD 5= 0.1495317261D 04

Y 6= 0.9556c65831D 06
                                                                                                                                                                                                                                                                                                        NUMINAL AND PERTURNED FUNCTION VALUES
                                                                                                                                                                                                                                                                            JACOBIAN MATRIX ROUTINE
                                                                                                                                        GAUSS ITERATION POINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GAUSS ITERATION PUINT
   0.18220795340-03
                                                                                           -0.3074520246D-03
                               -0.2705217304D-04
                                                              0.4681922823D-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.17947700530-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -0.26755213690-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.45757556980-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.3023546578D-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PROJECTION MATRIX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    JACOBIAN MATRIX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -0.3789598442D 02
0.5536805063D 03
-0.5127139735D 03
-0.2451404509D 03
                                                                                                                                                                                                                                                                                                                                       PHI(3) OR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.4
                                                                                                                                                                                                                                                                                                                                                        PHI (8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.3498713813D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -0.32562872970
                                                            0.11789802170-03
   -0.1640169597D-03
                               -0.5426584147D-04
                                                                                           0.2679485614D-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.11784445610-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.2013237088D-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.16074191340-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -0.544004881D-04
                                                                                                                                                                                                                                                                                                                                                                                                                0.4073227293105850 03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.4073910601549220 03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.4073630254188430 03
                                                                                                                                                                                                                                                                                                                                                                                  0.407385523349859D 03
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.4073524508998270 03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    02696057567.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.3307245003D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.4554059947D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.92571896090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.72756757420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -0.6323457861D
                                                                                                                                                                                                                                                                                                                                       PHI(2) UR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -0.1745351824D-04

0.2949038460D-04

0.8124806950D-04

0.1046921350D-03

-0.1674818346D-03

-0.16749121340D-03

-0.13758039070-03
                                                           -0.1645EE1853D-03
-0.1621511144D-03
0.3660940376D-04
-0.1413184085D-03
 .0.1691013801D-04
                               0.81368691810-04
                  0.31478314460-04
                                               0.10438716640-04
                                                                                                                                                                                                                                                                                                                                                                                     03
                                                                                                                                                                                                                                                                                                                                                                                                 £ 0
                                                                                                                                                                                                                                                                                                                                                                                                                                               03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -0.3909005159226420 03
0.4085383964595070 03
-0.3908518149461520 03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.4085302915871740 03
                                                                                                                                                                                                                                                                                                                                                                                                                                                           -0.390931167628288D 03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.6340992e74D (
-0.6279403927D (
0.5637301103D (
0.6825001492D (
                                                                                                                                                                                                                                                                                                                                                                                                                              -0.3909093048134720
0.408609645673935D
                                                                                                                                                                                                                                                                                                                                                                                   0.4035305705770180
                                                                                                                                                                                                                                                                                                                                                                                                 -0.3904674330496760
                                                                                                                                                                                                                                                                                                                                                                                                                  0.408537011E69692D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -0.2704713460D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -0.4137176380D
                                                                                                                                                                                                                                                                                                                                       PHI(1) OR
                                                                                                                                                                                                                                                                                                                                                     PH1(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    - 0 E 4 E 0
                                                                                                                                                                                                                                                                                                                        NC RE -
                                                                                                                                                                                                                                                                                                                                      MENTED
                                                                                                                                                                                                                                                                                                                                                     V AR 1-
                                                                                                                                                                                                                                                                                                                                                                    ABLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ) IHd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ) IHd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ) IHd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ) ] Hd
```

. .

CANLINE METINGONE

ADEQUATE CONVERGENCE OCCURRED ON PREVIOUS STEP

	>	8 0.2089388BD 07	18 0.16250005D 07	07 0.107687390 07	00 096708740 06	06 0.95590537D 06	04 0.955666590 06	0.955666580 06							ANGLE OF	ATTACK	DEG		11.958	23.977	15,933
	GRADYM	0.16305811D 08	0.127077050 08	0.526020460	0.232190830 (0.249155260 0	0.149531730 0	0.0							FL IGHT	PATH ANGLE	DĔG	-62.200	-71.445	-54.030	-27,537
5 -	x(5)	0.269289330-77	0.262516020-77	0.113046530-67	0.518373860-84	0.265459150-77	0.5:5567700-78	0.61210451D-87							VELOCITY	a	KM/SEC	11.1412	11.1410	11.1402	11.1423
ITEMATION HISTORY	(†) X	0.643235840 00	0.900300260 00	0.66190845D 00	0.489778480 00	0.35194627D 00	0.54884054D 00	0.548357070 00	7.5		SEC)E.c		DATE		DAY	28260.78449	23250.78397	23260.79087	29260.78746
	x(3)	0.640298400 00	0.273141590 00	0.399258695 00	0.133896720 00	0.326121610 00	0.322502360 00	0.322507960 00	CUNIC PROPAGATI		0.0087022 KM/SEC	- 15.474 DEG	AIS - 31.448		RIGHT	ASCENSION	n <u>e</u> G	102.437	139.718	70.944	73.562
	x(3)	0.410517740 00	0.655737300 00	0. 438684550 00	0.86424735D 00	0.355535140 00	0.87022305b 00	0.870224130 00	SE CUNTROLS FOR	-3.599 DEG	Y AT RELEASE -	ON OF SPIN AXIS	ENSION OF SPIN A	IMPACT DATA	UECL INATION		95G	-12.875	-12,279	-34.049	31.622
	x(1)	-0.050577080-01	-0.245144320 00	-0.124495380 00	-0.312884240-01	-0.639371330-01	-0.525070360-01	-0.628216500-01	MINIMUM-MISS RELEASE CONTROLS FOR CONIC PROPAGATION	ROLL RELEASE ANGLE * *3.599 DEG	TANGENTIAL VELUCITY AT RELEASE -	ECLIPTIC DECLINATION OF SPIN AXIS -	FCLIPTIC RIGHT ASCENSION OF SPIN AXIS - 31.448 DE3	CONIC MODEL PROBE IMPACT DATA	PRUBE	NOMBER		0		83	m
	11.8	· c	-	٠ ٧	· -	,	2	· .	5	ĕ	1.1	Ţ	ĭ	ť							

Reproduced from Reproduced from Pest available

MINIPROBE 1 MINIMUM MISS APPROACH TRAJECTORY

	۶
S	
IE	U
~	ò
۰	
Ü	
ш	
7	
4	3
α	á
-	Ö
	Ĉ
ш	
ν	
a a	
S	
()	
z	
-	
۰	
7	
۵,	
X	
0	
Ų	
œ	
0	
u.	
Σ	
4	
Y	
ڻ	
⊃ ∻	
1	
_	
S	
S A	
Σ	
_	
A	
>	
۲	
α	
-	

		X - CUMP.	GMD2 - X	. Z - COMP	• RESULTANT
*** ** ** ** ** ** ** ** ** ** ** ** **	***************************************	*************************	**	***************************************	
VIRTUAL MASS DATA VIRTUAL MASS PESITION VIRTUAL MASS VELOCITY SPACECRAFT POS. REL. TO V.M. SPACECRAFT VEL. REL. TO V.M. KEPLER (ANG. MOM.) VECTOR ECCENTRICITY VETTOR V.M. MAGN. 0.3245 V.M. MAGN.	TD V.M. TD V.M. CTDR 0, 22451 H20005D	-0.153132259260 08 0.344325460030 02 -0.433506259590 04 0.105907365610 02 -0.412534839850 04 0.571167905770-02 06	08 -0.107598774650 02 -0.508999316500 04 0.220218500140 02 0.27970938891D 04 0.49453942205D 02 0.758073110790	09 -0.609344517800 01 -0.205626898320 04 0.357664774590 01 0.267025431490 05 -0.354501517820 00 0.105687406830	06 0.108684692990 09 01 0.34867398510D 02 04 0.6036551455D 04 01 0.112746481790 02 05 0.60987105165D 05
	《 化二甲基苯甲基甲基甲甲基甲甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	**************	格拉特拉拉拉斯 新拉斯拉拉斯拉拉拉斯拉拉斯	经存货帐 化苯酚磺胺 医甲基苯酚 医二甲基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	(多种种种 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性
V.M. RELATIVE POSITIONS PUSITION REL. TO VENUS POSITION REL. TO VENUS POSITION REL. TO EARTH	• • •	-0.15313225926D 08 0.10730137387D 01 0.68716973211D 08	-0.10759877463D 09 0.75399079286D 01 0.18226759479D 08	-0.60934451780D 06 0.426999213810-01 -0.60934451780D 06	0.10868469299D 09 0.76159958862D 01 0.71095769699D 08
***	**	*******	*****************	****	
NAVIGATION PARAMETERS FLIGHT PATH ANGLE	NE OF SKY	-0.51907937686D 0 0.70069369061D 0 0.54046898870D 0 0.12722945581D 0 0.11259178906D 0 0.11259178906D 0 0.14337536750D	01 02 03 03 03 03		
SPACECRAFT PASSING IN	IN FRENT OF VENUS	10			
N-BODY MODEL PRO	PROBE IMPACT DATA				
PROBE NUMBER	DECL INATION DEG	RIGHT ASCENSION DEG	UATE V DAY	VELDCITY FLIGHT PATH ANGLE KM/SEC DEG	ANGLE OF LE ATTACK DEG
0 = 0 F	-112.895 -11.932 -34.451 30.922	102.437 139.798 70.785 74.054	28260.78449 1 28260.78422 1 28260.79070 1 28260.78731 1	11.1412 -62.200 11.1408 -71.199 11.1404 -53.892 11.1425 -28.052	0 11.889 2 23.984 2 15.761

		Y-DOT Z-DOT VELOCITY 1-100-75621092 0.52103817 36.75781194 1-10.75621092 0.52103817 36.75781194 3 2.29877132 2.56577298 4.45716443 4 9.26827361 0.52103817 16.36611469						AUX - 5- AUX - 6- AUX - 1- INCR -6722.441 -3546.397 28260.784 102	0.30000D 02 0.28261D 05	-6722,224 -3542,051 28260,784 102	0.30000D 02 0.28261D 05	-6734.741 -3547.070 28260.784 102
28252*26983		x-DOT 79 25.14497381 79 35.14497381 95 2.62821043 43 13.47877344					1ST UP DELT 2 9.320	TAR - 1- AUX 28260.784 -6722	0.20000D 02 0.	28260.784 -67	0.20000D 02 0.	28260•784 -67
JULIAN JATE 282	1	RADIUS 110854250.79 110854250.79 3324751.95 59653373.43	-0.10542345320 07 0.52103817400 00				KAXTAR. 5 6 1	TAR -14- 98-413 2	OTAR= 0.	0.52104	DTAR= 0.	0.52104
33.331 JUL IA	KMXQ 3 WDL	2-CUMP -105424.53 -105424.53 -1951010.54 -1054274.53	-0.1025342163D 09 -0.1	10-XRF 13-DCP 11-YHF 14-RAP 12-ZHF 15-TPR	;ë 0.00 0.00		DTAR(2) DTAR(3) 30.00 28260.74	TAR -13- -14.611	0.282610 05	13.47877 9.26827 0.0 0.3183640002D-06 -14.633	0.282610 05	235. 13.4787 9.26827 0.100000000000-05 0.0 8D-04 0.1783351926D-05 210400 -14.583
123-500 DAYS 7 5 4 16 25	5 KTYP 1	Y-CONP -102534216.25 -102534216.25 -1045421.15 9772545.72	C8 02 269430	7-RCA 3-INC 9-ASI	ATTUNS TOLE ANCE 0.000 1.000 0.000 1.000 0.743 0.001	00-03 0.250D-04	DTA:(1) DT 20.00	VZ 52109 0.5210382	0.5 -0.24699D 04	1054235. 	05 -0.24699D 04	• -1054 133730373 975 0•5
GUIDANCE EVENT AT 123. CALFNDAR DATE 1977	EVENT CUDES KUR S	CUBRENT SPACECKAFT STATE REFERENCE -42122296.19 SUN -42122296.19 VENUS -2125697.06 EARTH -3009 TARGETING EVE	STATE -0.4212229819D 0.3514497331D JULIAN DATE 0.282525	PAPAMETEK KEY DEFINITIONS 1-TPS 4-TCA 2-TSI 5-0.T 3-TCS 6-H.P	TARGETING SPECIFICATIONS KEY TANGET VALUE 13 20.000 14 30.000	TARGETING SCHEME LEVELS 0.100D-03 CVMAX 0.50C0000D IBAST 3	IND NUF PHS KEYTAR 5 2 1 13 14 1	ACCURACY VX VY 0*100-03 35*1449738 -10*7562109	DAUX= -0.15119D 05	STATE= 58448144, \$772546, [OPT= 1 CUN= 0.100000000000-04 OV= 0.6235780878D=05 0.56630 0.10U=03 35.1449820 -10.7562053	DAUX= -0.15119D 05	STATE= 58848144. 5772546 IUPT= 2 CON= 0.0 DV= -0.92645149370-05 0.

A 444600, 6 . CA AAAAA AE

טיייייי י

70 010101+0 to 055543+010 - 00 051101+01 - VOWS

		TAR TOL 1.000 1.000 0.001	INCR 102		102		102		102			1AR TOL 1.000 1.000	INCR 102		1 NCR 1 84	
90		TAR VAL 20.000 30.000 260.743	AUX - 1- 28260.750	05	28260,750	05	28260.750	05	28260.750	05		TAR VAL 20.000 30.000 260.743	AUX - 1- 28260.743	90	AUX - 1- 28260.743	90
0.282610		DES	AUX - 6-	0.282610	-2471.633	0.282610	.2476.593	0.282610	.2525.961	0.282610		DES 28	AUX - 6-	0.282610	AUX - 6-	0.28261D
0.30000D 02		٥	AUX - 5- -15077.273	0.300000 02	-15077.037	0.30000D 02	-15689,511	0.30000D 02	5070.613	0.30000D 02		ä '	AUX - 5- 5060.433	0.30000D 02		0.300000 02
0.200000 02	33		TAR - 1- 28260.750	0.20000D 02	28260,750	0.200000 02	26260.750	0.200005.0	28260•750	0.200005 02	93		TAR - 1- 28260.743	0.200000 02	TAR - 1- 28260•743	0.200000 02
OT AR=	0.52104 1553471D-(AUX ERE -0.84D 0.11D -0.41U	AR -14- 29.507	OTAR=	0.53495	OT AR=	0.53495	OT AR=	0.53495 000000000-c 29.565	OTAR=	0.53495 8344033D-C	AUX ERF 0.17D 0.40D -0.73D-	AR -14- 29.742	JT AR=	AR -14- 34.907	OT AR=
0.28261D 05	9.2 4530	11NG MATRIX .590-06 -0.44D 00 .69D-08 -0.28D-02 .74D-07 -0.19D-01	TAR -13- T	0.282010 05	3.48868 9.28926 0.0 0.3264565407D-06 20.435	0.28261D 05	3.48363 9.28926 00000D-03 0.1810225941D-05 20.654	0.282610 05	.48868 9.2 0.813876337 20.631	0.282610 05	9 • 2 7834	11NG MATRIX 43D-06 -0.44D 00 80D-08 -0.29D-02 810-07 -0.19D-01	TAR -13- T. 20•155	0.282610 05	TAR -13- T. 17.823	0.282610 05
-0.24699D 04	-1054 01 858921	TARGE: -0.23D-06 0 -0.82D-07 -0	VZ 0.5349516	-0.24364D 04	-1054235. 1 04 0.0 8810730D-05 0.5349520	-0.24364D 04	-1054 796428 0.5	-0.24364D 04	-1054235. 0.0 0.00508D-05	-0.24364D 04	-1054 02 801708	TARGE1 -0.19U-05 0. -0.93U-07 -0. -0.75U-07 -0.	VZ 0.5372718	-0.243480 04	V2 0.5372718	-0.243650 04
-0.151190 05	. 9772546. 0.2049666562D- 640-02 0.203	MATRIX 08 0.13D 07 06 -0.10D 08 01 -0.14D 02	VY 867 -10.735256	-0.150600 05	. 9772546. 0.1003030303030-380-95 0.556	-0.150660 05	. 9772546. 0.0 86U-05 0.133	-0.150600 05	0.0 59D-05 -0.396	-0.150600 05	5416	447RIX 58 0.130 07 56 -0.100 08 52 -0.150 02	VY 342 -10.7333770	-0.150500 C5		-0.150540 05
DAUX=	STATE 58848144. IOPT= 4 CON= DV= 0.99069136	SENSITIVITY P 0.220 US -0.120 0.430 US -0.670 -0.170 UL 0.560	ACCUMACY VX 0.10D-03 35.1548t	DAUX=	STATE= 5H848144. IDPT= 1 CNN= DV= 0.92715254. 0.10P-03 35.1548	DAUX=	STATE= 59843144. 10PT= 2 CON= DV= -0.92859707E 0.10U-03 35.15487	DAUX=	STATE= 58x48144. IDPT= 3 CUN= DV= 0.2940x50955	DAUX≃	STATE= 58848144. IUPT= 4 CUN= OV= 0.25549582	SENSITIVITY PO.24D 05-24D 05-0.12D 00.43D 06-0.65D 0-0.19D 01 0.51D 0	ACCUMACY VX 0.100-03 35.15743	DAUX=	ACCURACY VX 0.250-04 35.15743	DAUX=
	-0.151190 05 -0.246950 04 0.28261D 05 DTAR= 0.20000D 02 0.30000D 02 0.28261D 0	DAUX= -0.151193 05 -0.246950 34 0.28261D 05 DTAR= 0.20000D 02 0.30000D 02 0.28261D 0 SBR48144. 97725401054235. 13.47877 9.26827 0.52104 4 CUN= 0.204566662D-01 0.7967448711D-03 0.7271553471D-03 0.99069136640-02 0.20985892120-01 0.1391345306D-01	358848144.	DAUX= -0.151190 C5 -0.246950 04 0.28261D 05 DTR= 0.20000D 02 0.30000D 02 0.28261D 05 SHR48144.	DAUX	SHR48 144, G772546, -1054235, 13447877 9,26827 0,52104 1	-0.246950 04 0.28261D 05 DTAR= 0.20000D 02 0.30000D 02 0.28261D 05 -1054235. 13.47877 9.26927 0.52104 01 0.7967448711D-03 0.7271533471D-03 8589212D-01 0.1391345306D-01 AUX ERROR VEL COR DES AUX VAL DES TAR VAL -0.23D-06 0.590-06 -0.44D 00 -0.84D 04 0.990-02 -15118.509 -0.44D-03 -0.74D-07 -0.19D-01 0.11D 04 0.21D-01 28260.743 28260.743 VZ -0.44D-03 -0.74D-07 -0.19D-01 0.14D-01 28260.753 28260.750 1 -0.24564D 04 0.28221D 05 0.533495 -0.24364D 04 0.28221D 05 0.533495 -0.24364D 04 0.28221D 05 0.583495	DAUX	-0.245690 34 0.28251D 05 DTAR= 0.20000D 02 0.30000D 02 0.28261D 05 -1054245. 13.47877 9.2827 0.52104 01 0.7967448711D-03 0.7221533471D-03 01 0.796742B70 01 0.7221533471D-03 01 0.796742B10 02 0.28251D 05 01 0.796742B10 02 01 0.796742B10 03 01 0.796742B10 04 01 0.796742B10 04 01 0.796742B10 05 01 0.796742B10 04 01 0.796742B10 05 01 0.796742B10 05 01 0.796742B10 05 01 0.796742B10 04 01 0.796742B10 05 01 0.796742B10 05 01 0.796742B10 04 01 0.796742B10 05 01 0.796742B10 04 01 0.796742B10 05 01 0.796742B10 04 01 0.796742B10 05 01 0.796742B10 04 01 0.796742B10 05	-0.246950 04 0.28261D 05 DTAR= 0.20000D 02 0.30000D 02 0.28261D 05 -1034235, 13.47877 9.26827 0.52104 01 0.79674487110-03 0.7271533471D-03 8589212D-01 0.1391345306D-01 TARCETING MATRIX TARCETING MATRIX -0.2320-06 0.590-06 -0.2800-02 0.110 04 0.200-01 -2469.944 30.000 -0.4320-07 0.0400-09 -0.2800-02 0.110 04 0.200-01 -2469.944 30.000 -0.4400-03 0.7400-07 -0.190-01 -0.410-01 2.8260.743 2.8260.743 3.0000 -0.4400-03 0.7400-07 -0.190-01 -0.410-01 2.8260.743 2.8260.743 3.0000 -0.4400-03 0.7400-07 -0.190-01 -0.410-01 2.8260.773 -2475.947 2.8260.750 1.105235. 13.48868 9.28926 0.533495 -0.24464D 04 0.28251D 05 0.53495 -1054235. 13.48864 9.28926 0.533495 -1054235. 13.48864 9.28926 0.533495 -10542364 04 0.28251D 05 0.533495	-0.246940 04 0.28261D 05 DTAR= 0.20000D 02 0.30000D 02 0.28261D 05 0.294945 01 0.796744877 9.2827 0.52104 01 0.7967448711D-03 0.727155347D-03 0.727155347D-03 0.727155347D-03 0.727155347D-03 0.727155347D-03 0.727155347D-03 0.727155347D-03 0.727155347D-03 0.7967448711D-03 0.727155347D-03 0.7967448711D-03 0.727155347D-03 0.7967488711D-03 0.727155347D-03 0.796748711D-03 0.796748711D-	-0.245690 04 0.28261D 05 01AR= 0.20000D 02 0.30000D 02 0.28261D 05 -1054255 13.47877 9.26227 0.52104 01 0.79674487110-03 0.7271539471D-03 0.72715394950 0.72825077 0.7190-03 0.7282507 0.7190-03 0.7282	-0.246540 04 0.226210 05 0178E 0.200000 02 0.300000 02 0.282610 05 01 01 01 0246234; 13.47877 9.26427 0.25104 01 0.159234. 13.47877 9.26427 0.25104 01 0.159234. 13.47877 9.26427 0.25104 01 0.159134.2000-01 0.15	-0.246590; 04 0.28251D 05 0774:3277 0.52104 01 0.70546491D-03 0.7771:53347D-03 01 0.70546491D-04 0.7771:53347D-03 01 0.70546491D-04 0.7771:53347D-03 01 0.440-04 0.740-04 0.7280-06 0.440-04 0.0110 0.440-01 0.140-01 0.140-01 0.7571:53347D-03 01.440-04 0.740-04 0.740-07 0.190-01 0.0110 0.440-01 0.140-0	1,0,0,4,0,5,0, 0 0,1,2,0,5,0 0,1,0,0,0 0,1,0,0	-0.246596 04 0.2865010 05 07741 0.28027 0.200000 02 0.300000 02 0.2865010 05 -1.054235. 114.47377 0.28027 0.52104 -0.07574407110-0.0 072715334710-03 -0.250-06 0.293-06 0.282500 0 0.72715334710-03 -0.250-06 0.293-06 0.2825010 0 0.7271533452 -0.250-06 0.293-06 0.2825010 0 0.72715340 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2825010 0 0.72710-03 -0.250-06 0.293-06 0.2925010

TAR TOL 1.000 1.000 0.001	NCR 184			1 NCR 353		353		355		354		INCR 667		÷	TAR TOL 1.000 1.000 0.001	INCR 685					
TAR VAL TA 20,000 30,000 8260,743	AUX - 1- IN 28260.743 1	3 05		AUX -15- IN 28260,742 3	D 05	28260,742	D 05	28260•742 3	90 0	. 28260,742 3	D 05	AUX -15- IN 28260.742 6	50 0	Reproduced from best available copy.	TAR VAL 20.000 30.000 3260.743	AUX -15- IN 28260.743 6	50 0				
VAL DES 652 743 2	AUX - 6- -2437.108	0.282610		AUX - 6-	0.28261	-2769.645	0.282610	-2770.732	0.282610	-2920.017	0.28261	AUX - 6-	0.282610	Repr	DES	AUX - 6-	0.28261D			T.A.	ACF 20.A
DES AUX VAL 13 -15053.652 13 -2436.790	AUX - 5- -15053.580	0.300000 02	0	AUX - 5- -14691+353	0.30000D 02	-14651.330	0.300000 02	-14703.578	0.300000 02	-14684.606	0.300000 02	AUX - 5- -14663.685	0.30000D 02		DES AUX VAL 15045.111 13 -2442.418 13 28260.743	AUX - 5- -15045.194	0.30000D 02			NODE	174 975EE -A1
VEL COR 13 0.190-03 13 0.550-03 13 0.140-04	TAR - 1- 28260.743 -	0.200000 02	1510P 05LT 2 9.320	TAR -15- 28250.742 -	0.200000	28260.742	0.200000 02	26250.742	0.200000 02	28260.742	.20000D 02	TAR -15- 28250.742 -	0.200000 02		0F VEL COR 13 -0.130-03 15 0.540-03 12 -0.400-03	TAR -15- 28260.743 -	0.200005.02			Z	AT. 01050 0
AUX ERRUH -0.250 03 0.210 03 1 0.190-03	TAR -14- 29.978	OTAR= 0	3) KAXTAR 74 5 6 15	TAR -14- 35.655	OTAR= 0	0.53727 37 36.655	OTAR≒ 0	0.53727	OT AR= 0	9111 0.53727 0.50000000000000000 10-04 36.718	OTAR≕ 0	TAR -14-	OTAR= 0	29165 0.53729 -0.2815098631D-04 149-03	AUX ERHOR 0 -0.39D 03 2 0.34D 05 1 0.12D-02	TAR -14-	OTAR= 0		0.03130639	OMEGA	06106
TARGETING MATRIX 05 0.4 30-06 -0.440 00 07 -0.800-08 -0.290-02 07 -0.81D-07 -0.190-01	TAR -13- 20.015	0.28261N 05	DTAR(2) DTAR(3) 30.00 25250.74	TAR -13- 17.214	0.282610 05	.49123 9.29111 0.30 0.3274079163D-07 17.212	0.282610 05	235. 13.499123 6.29111 0.10000000000-05 0.0 03-04 0.10151455410-05 372735 17.356	0.282610 05	3.49123 9.29111 0.500 0.8140072581D-04 17.396	0.282610 05	TAR -13- 16-930	0.282610 05	235. 13.49143 9.29165 0.23436190750-04 -0.281 10-03 -0.40063212149-03	TAKGETING MATRIX 05 0.470-06 -0.44D 30 07 -0.790-06 -0.290-02 07 -0.790-07 -0.190-01	TAR -13- 19+999	0.282510 05		0.01584740	ECC	120114031 00
TARGE1 -0.190-05 0. -0.930-07 -0.	VZ 37 0.5372362	-3.24563D 04	0TAK(1) 0TA 20.30	V2 70 0•>372713	-) • 2440 30 04	146 1054235. 13 0000-08 0.50034220520-08 133704 0.8372713	-0.244035 04	-1054 315364 0.5	-3.244030 04	-1054235. 1 0.0 52554210-05 0.337332	-0.244030 04	VZ 87 0.5372962	-0.24424D 04	1054 6124	148651 -0.140-05 -0.900-07 -0.550-07	V2 925 0.1388350	-0.244210 04		0.02351839	SMA	A CW NGT81101
SENSITIVITY MATRIX 0.240 05 -0.120 09 0.130 07 0.430 06 -0.050 06 -0.100 05 -0.190 01 0.516 02 -0.150 02	ACCUPACY VX VY 0.250-04 35.1576265 -10.7328267	DAUX= -0.150530 05	IND NAF PHS KEYTAR 5 2 2 13 14 15	ACCUPACY VX VY 0.100-03 35.1574342 -10.7333770	DAUX= -0.150415 CS	53F45144. 37725 1 C3N= 0.1300330 0.42314625010-06 03 30.1574350 -10.73	04UX= -0.150410 05	11= 58848144, 5772 11= 7 CUN= 0.0 -0.92878955080-05 00-03 35-1574249 -10.7	DAUX= -0.150410 05	\$8848144, \$772 3 CDN= 0.0 0.29515154010-05 0. 35.1574372 -10.7	DAUX= -0.15041D 95	ACCURACY VX VY 0.250-04 35.1576485 -10.7528287	DAUX= -0.15045D 05	58848144, 97728 4 CUM= 6.1952523 -0.12827277570-03	SENSITIVITY NATRIX 0.23D 05 -0.12D 09 0.13D 07 0.43D 00 -0.65D 04 -0.10D 03 -0.19D 01 0.35D 02 -0.10D 0.2	ACCURACY VX VY 0.25D-04 35.1574992 -10.73229	24UA= ~0.150450 05	EXECUTION EVENT	DELIA V = 0.01252441	COMINANT BOOK BLEMENTS	PLANET ECLIPTIC
2.00	ACCL 0.2 E			ACC.		\$1416= 1001= 0.100-		STATUE ICHTE DVE 0.10P-		STATE= 10PT= 0V= 0•10D-		ACC!		STATE= IUPT= DV=	0 0 0	ACCL 0.25					

A. (22

•

PRECEDING PAGE BLANK NOT FILMED

Case MP-2. ERRAN Multiprobe Sample Case

tų.
TIME
TRAJLCTORY
ΑT
FVENT
PRUBE
ZΙΣ
MOUF
ANALYS 15
E ARUA

INI PRUBE FVENT AT THAJLCTORY TIME 20.000 DAYS PROBLEM. • BB	۵۷۸، کا ۵۵۰	•	VZ(20.000) 0.12111007670-11 0.21317921850-11 -0.9675794110-09 0.11051285140-08 0.9999994980 00	\$
PRUGLEM			00-1-0	0.0
20.000 DAYS ####################################			TRANSPUSES SHOWN 0) -09 -0.2594070423D-10 -06 0.1241100767D-11 -06 0.999999865D 00 -06 0.9999999865D 00 -06 0.64623376074D-77 04 0.6277579056D-09	20.000 DAYS
ORY TIME 20.		01 02 03 01 03 03 03	41 20.00) 21 20.00 21 20.00 20.1051137580 20.105245999520 20.103679999930	S AT EVENT TIME
MINI PRUBE EVENT AT TRAJLCTORY TIME	S > 4 € 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-0.640352604010 0.675331236450 0.13624667260 0.13624667260 -0.10069747410 0.12997847820 0.1299083640	19.908. Y(20.000 .6493987430100000000040 .110511369064239711260010364000220 .3410575550-	0.0 STANDARD DEVIATIONS 19.988 DAYS
	20. 2560545190 00 745691753270 00 49684125650 00 93525019710 02 80362743020 02	ATIVE VELOCITY SKY	0.000 0.000	UNS AND UN TIME
ERRUR ANALYSIS MUUF - N	STATE VECTOR AT X = 0.555 Y = 0.545 Y = 0.545	MAVIGATION PARAMETERS FLIGHT PATH ANGLE	STATE TRANSITION MATRIX PARTIT X(2	U.O CURPELATIUN MATRIX PARTITI PROPAGATED FURWARD FR
¥ A-124	ä	ż	<u>v</u>	

7	1.00000000					-0.09792381	.09792382	0.24033135	0.05503754	503754	-0.48187171	0.37917599	0.37917604	.21129907						
	1.00					60 • 0 -	0.09	0.24	0.05	-0.055037	-0.48	0.37	0.37	0.21				5 1		
,	1.00000000					0.10948997	-0.10948997	-0.27386526	0.00173056	-0.00173056	0.44429927	-0.33009738	-0.33009743	-0.23046802			00 -01	+ 0.7140-01 YZ = Y**2 = 9 Z**2 = 9 Z**2 = 9		-01
<	1.00000000 -0.95450206 0.99855464					-0.09946192	0.09946193	0.26094840	0.03734599	-0.03734599	-0.46829006	0.36993365	0.36993370	0.22879949		01 - 1 Cl	0.1319107767930D 00 0.6127078428625D-01 0.9593661799146D 00	XZ 00 1-02	n a n	-C2759162850522D-01
1	1.000000000 0.69737575 -0.74201210 0.71475231					-0.04841615	0.04841615	-0.14996230	0.09795704	-0.09795704	-0.67113884	0.32870509	0.32870514	-0.20107957		EIGENVALUES 0.27832805590 02 0.12817551450 01 0.6684122902D 02		NORMAL DISTRIBUTION X = N(0,0) AND THL,3 SIGM. THE HYPERELLPSOID HAS THE FULLOWING COLATION Y**2 + 0.2530-02 Z**2 + 0.3250 00 XY + 0.0 0.04370-01 X**2 + 0.2115-01 XZ + 0.0 0.5590 00 XX + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	OF EIGENVALUES 0.5723802543D-06 0.1009608389D-04 0.3846482928D-03	
-	1.00000000 -0.22817476 -0.47345120 0.20872130					0.00136374	-0.00136874	0.64779950	-0.05714122	0.05714122	0.38828769	-0.22430526	-0.22430629	0.07193221		SCUARE ROOTS OF	-0.2651894174053D 00 0.9582340527025D 00 -0.21313899538997D-01	ISTRIBUTION X = N(0. RELLIPSOID HAS THE F 0.2530-02 2**2 + 0.4370-01 X**2 + 0.4370-01 X**2 + 0.5550 00 Y**2 +	SQUAKE ROOTS OF	0.21977865196060-02
<	1,000000000 -0,45264343 -0,252643443 -0,07145652 0,21404704 0,05400557	٠		SHE		AMETERS 0.02990948	-0.02990948	-0.03515895	0.01184649	-0.01184649	-0.04255415	0.03203697	0.03203697	-0.01232504		EIGENVALUES 0.7746650668259D 03 0.1642921836834D 01 0.4467749396712D 04	EIGENVECTORS 0.94935056962700 00 0.2793445743778D 00 -0.1438751776386D 00	FOR THE NURMAL DISTRIBUTION X = N(0,0) AND THE,3 SIGMA LEVEL 0.5550-00 HAS THE FULLOWING EQUATION 0.5550-00 VX + 0.2110-01 LLIPSOID 0.4370-01 X**2 + 0.3250 00 XY + 0.5530 LLIPSOID 0.4370-01 X**2 + 0.2110-01 XZ + 0.5530 LLIPSOID 0.4370-01 X**2 + 0.2110-01 XZ + 0.2530 LLIPSOID 0.5550 00 Y**2 + 0.7140-01 YZ + 0.2530	EIGENVALUES 0.3276191555114D-12 0.10193090594990-09 0.1479545091903D-06	EIGENVECTORS 0.9996166624982D 00
200	0.28121000D 02 0.81575595ED 01 0.66232.336D 02 0.105612730-04 0.3426137ED-04	OK PARAMETERS	INCONE	DYNAMIC CONSIDER PARAMETERS	NONE	MENT CONSIDER PARAMETERS 0.									E-FUR PARAMETERS	POSITION EIGEN 1 0.77 2 0.17 3 0.44	POSITION EIGEN 1 0.94 2 0.27 3 -0.14	FOR X*#? + 0.555 XY HYPERELLIPS XZ HYPERELLIPS YZ HYPERELLIPS	VELOCITY EIGEN 1 0.33 2 0.10 3 0.14	VELUCITY EIGEN 1 0.999
	× > N × > N > > >	SOLVE-FOR P		DYNAM 1C		MEASUMEMENT RADIUS 1	LAT 1	LONG 1	PADIUS 2	LAT 2	FUN9 2	RADIUS 3	LAT 3	LONG 3	NU SOLVE-FUR			0.44370-01		

FOR THE NDRMAL DISTRIBUTION X = N(0.0) AND THE,3 SIGMA LEVEL

THE HYPERELLIPSDID. HAS THE FOLLOWING EQUATION

0.305D 13 X**2 + 0.975D 10 Y**2 + 0.240D 10 Z**2 + 0.134D 11 XY + 0.168D 12 XZ + 0.129D 10 YZ = XY HYPERELLIPSUID. 0.305D 13 X**2 + 0.134D 11 XY + 0.975D 10 Y**2 = 9

XZ HYPERELLIPSUID. 0.975D 10 Y**2 + 0.129D 10 YZ + 0.240D 10 Z**2 = 9

YZ HYPERELLIPSUID. 0.975D 10 Y**2 + 0.129D 10 YZ + 0.240D 10 Z**2 = 9

	02 02		0.56887121650 01						
88	RESULTANT 0.62000000000 0.1114152624D 02		01 0.5688			0.273346190 00 0.267886670 00			
PROBLEM 'S	0.6		25830 0						
PF 32.77735 DAYS	2 -0.2614905311D 04 0.5683712165D 01	-0.1558558406D 04	0.5945402583D		0.6592120675D 00	-0.14280361D 02 -0.14278840D 02			
	0.26	-0-15	780 01		592120				
FRAJECTORY TI	Y -0.3271904069D 04 0.5945402583D 01	B DUT R =	0.75116142780 01			0.33332527D 02 0.333334198D 02			
LUENCE AT .		3220 03	-0.26149053110 04		0.3912024515D 00	-0.94949696D 06 -0.94949696D 06	-0.2241875133D-08	-0.20401137450-08	0.21276851470-07
RE OF IN	X -0.4571314251D 04 0.7511614278D 01	-0.70659163220 03	-0.26149		6P 00		-0.2241	-0.2040	0.21276
TERED SPHE		H F	04 0 0 0 0 0 4		0.59083843060 00	-0.97774587D 08 -0.97774587D 08	INCE MATRIX -0.3979359281D-09	0.15643200640-07	-0.20401137460-08
ORY ENCUUR	TO TARGET PLANET TO TARGET PLANET	н рит	-0.32719040690 04				CDVARIANCE MATRIX D-07 -0.39793593	0.156432	-0.204011
TARGETED NOMINAL TRAJECTORY ENCOUNTERED SPHERE OF INFLUENCE AT TRAJECTORY TIME		0.17112458470 04	-0.4571314251D 04	0.28260501190 05	0.16010570230 01	0 -0.555256160 08 -0.555256160 08	•	-0.3979359281D-09	-0.22416751339-08
TAMGETED NOA	POSITIUN RELATIVE VELOCITY RELATIVE	5 = 0 • 1	-0.457	0.282	UCNTRL=	X X ¥ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EXECUTION ERNOR 0.155664906	155.0-	-0.224

	1100
32.78123 DAYS	•
T TRAJECTORY TIME	>
F INFLUENCE A	
SPHERE DI	,
ARGETED NUMINAL TRAJECTORY ENCOUNTERED SPHERE OF INFLUENCE AT TRAJECTORY TIME	
TARGETED NOWINAL	

RESULTANT	0.62000000000 04 0.1114115888D 02	
7	-0.2745748636D 04 -0.1637574717U 04 -0.5312175964D 04 0.620000000D 04 0.6642699166D 01 0.5147885384D 01 0.7314317814D 01 0.1114115889D 02	
>	-0.1637574717U 04 0.5147885384D 01	
×	-0.2745748636D 04 0.6642699166D 01	
	PUSITION RELATIVE TO TARGET PLANET -0.2745748636D 04 -0.1637574717D 04 -0.5312175964D 04 VFLUCITY RELATIVE TO TARGET PLANET 0.6642699166D 01 0.5147885384D 01 0.7314317814D 01	

0.48923436750 04

B DOT R =

-0.88422918150 03

8 DOT T =

0.49716081790 04

II I

PRUBE RELEASE EVENT

0.7314317814D 01 0.1052832863D-02 0.9173152384D-03 0.8614286693D-03 0.1135267350D 04 0.9041636113D 03 VZ(32.781) 1.0000000 -0.08096300 0.08096301 7.7 0.29484045970-03 0.3720136422D-03 0.5097218146D-03 -0.1368741432D-04 0.6617301850D-03 0.4409112293D-03 0.3034244253D 03 0.41731442190 03 0.5160433758D 03 0.5047527684D 03 0.779537384D 03 0.5047527684D 03 0.51478853840 01 0.0 1.000000000 -0.03693396 VY(32.781) 0.03693396 > 1.00000000 0.97175160 0.97511635 32.781 DAYS -0.08672604 0.08672605 VX(32.781) š 0.06426991060 01 -- TRANSPUSES SHOWN CONTROL CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT ENTRY TIME 0.99705434 1.000000000 0.97685849 -0.08704927 0.08704927 2(32.781) 0.79269329340 00 0.71366795310 00 0.13143544740 01 0.54946329620 05 0.70162916110 06 0.15041641620 07 0.0 -0.53121759540 04 0.41200000000-02 0.89945472 0.91528292 0.83391935 0.95230178 -0.07047941 0.07047942 1.00000000 32.781) 0.54269509800 00 0.1051A21791D 31 0.4464597974D 00 0.55377323412D 05 0.11054e0753D 07 Y(32.781) 20.000 UAYS 50.000€ 02 0.94306506 0.92938566 0.93965721 0.98613421 -0.1637574717D 04 -0.07595023 1.00000000 0.92383489 0.07595024 0.32781232500 DIAGONAL OF DYNAMIC NOISE MATRIX STATE TRANSITION MATRIX PARTITIONS UVER(MEASUREMENT CONSIDER PARAMETERS 0.1221422333 01 0.63537010137 00 0.64470526627 00 0.1341940033 07 0.0056713070 06 PROPAGATED FURWARD FROM TIME x(32,731) DYNAMIC CUNSIDER PAPAMETERS 0.36336557D 03 0.25811573D 03 0.66901568D 03 0.34051365D 00 0.23706371D 00 CONSIDER PARAMETERS SULVE-FOR PARAMETERS -0.27457486360 04 0.28260505C7D 05 SOLVE-FOR PARAMETERS --NONE **以入りスート** HNONE STD DEV IGNURE PARAMETERS X(20.000)
Y(20.000)
Z(20.000)
VX(20.000) 20.000) V.Z.(20.000) DANAMIC ***** * * * *

RAD IUS

LAT A-129

LONG 1	0.15953538	0.14306419	0.18043009	0.17869655	0.18225412	0.16813432
RADIUS 2	0.05577962	09690250•0	0.06061731	0.06122813	0.05820295	0.05925948
LAT 2	-0.05577962	-0.05706300	-0.06061732	-0.06122813	-0.05820295	-0.05925948
LONG 2	-0.44163523	-0.41241646	-0.49080305	-0.48876914	-0.48880784	-0.46528137
RADIUS 3	0.32627705	0.30521578	0.36163257	0.36017005	0.35989366	0.34350409
LAT 3	0.32627710	0.30521582	0.36163262	0.36017010	0.35989371	0.34350414
LONG 3	0.13483042	0.12073093	0.15085044	0.14927400	0.15243017	0.14143509
NO SOLVE-FOR PARAMETERS						
TIME= 26260.50507369	1977 5	17	****	***		
STATE AT PWUBE SPHERE -0.274564070 0 -0.16369530 0 -0.62181320 0 0.6515697100 0 0.7315567100 0	00 4 4 4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	•				
STATE AT PROBE SPHERE IN	N SUB-SOLAR COORDINATE	NATES				
	0 0 2 2 2 3 4 4 0 0 1 4 4 0 0 1 4 4 0 0 1 4 4 0 0 1 4 1 1 1 1					
COMMUNICATION ANGLE=	1 60.7548380836 DEGREES	Degrees				
A MATRIX= 0.4406332834D 00 0.5258086338D-02		-0.8769059239D 00				
0.0	0 • 0					
-0.1379321457D-03 -0.3525772497D-04		-0.7581226106D-04				
0.2672024745D-07 0.2923176219D-09		0.3446201591D-03				
H= 0.145955281D 03						
V= 0.1113153474D 02						
GAMMA= -0.7157677763D	0.2					
PHI-S= -0.1180873530D	03					
OMEGS= -0.1687436936D	03					
I-S= 0.5577341E26D 02						
P (LTK) COVARIANCE MATRIX	×					
0.1804.359202D 060.1182594264D 02 0.6562534477D 020.970094299D 02	0.58309755930-02 -0.7565007940D-02 0.6596823137D-02	0.6562934477D 02 -0.7565007940D-02 0.2597634951D-01 -0.36726365350-01	, ,	-0.9700942999D 02 0.8596823137D-02 -0.3672636535D-01 0.5316109199D-01		

A-130

•	
÷	
ű.	
藚	
ď	
u.	

MEASUREMENT NO 10 AT THAJECTORY TIME 21.017

RANGE-RATE WAS MEASURED FRUM STATION I AT TRAJECTORY TIME 21.01670 DAYS

	VELOC! TY	0.276033027 36.364148613	0.276033027 15.468124563	4.573026047	0.276269559 36.367011175	0.276269559 15.476456693	2,282455838 4,572010935
	Z-D0T	0.276033027	0.276033027	2,281825487	0.276269559	0.276269559	2,282455833
	Y-00T	-13.490695561	7.828391671	2.717240297	-925596.79 112093538.97 33.730293615 -13.467551381	7.841384898	2,715524055
	TUU-X	-926281.56 112103345.41 33.767976596 -13.490695561	55233618.28 13.338027107 7.828391671	4612888.32 2.884864786 2.717240297	33,730293615	55258871.62 13.340055089 7.841384898	4601565.73 2.884373146 2.715524055
	RADIUS	112103345.41	55233618,28	4612888•32	112093538.97		4601565.73
20.988 21.017	dwno-7	-926281.56	-926281.56	-2456161.27	-925596.79	-925596.79	-2450502.25
	Y-C04P	-98959957.70	6989978.46	-2562113.73	-98993361.62	7009409.02	-2555377.03
INITIAL TRAJECTORY TIME FINAL TRAJECTORY TIME	XICOMP	-52661454.83	54781701.20	-2946452,73 -2562113,73	-52577705.78 -58593361.62	54814775.62	-2539301.64
Z 11	STATE	INFPTIAL	GE 0-	PLANETO- FINAL	INERTIAL	-039	PLANETU-

CLEVATION AND AZIMUTH RELATIVE TO TRACKING STATION

ELEVATION ANGLE= -52.234 DEGREES

AZIMUTH ANGLE= 9.289 DEGREES

1 00000	T ANGLE C ANGLE: 0	-0.62408241086D 01	0.667502538710 02	0.201084737590 01	0.13402907855D 03	-0.959586605890 00	0.124902776690 03	0.131155964460 03	0.54687538567D 03
VELOCI VELOCI VELANET NGLE	ARAMETERS WEEN RELATIVE VELOCI OF THE SKY IC DECLINATION AXIS - EARTH ANGLE AXIS - LIMB OF SUN AN IDN RATIO FOR SUN AN IDN RATIO FOR VENUS IDN RATIO FOR VENUS							SI	SI
	ATAMETERS ATH ANGLE ATH ANGLE CD THE SKY. CD DECLINATION CCECKAFITTARG AXIS - EARTH A AXIS - LIMB OF CIDN NATIO FOR	• • • • • • • • • • • • • • • • • • • •		•	PLANET	NGLE .	SUN AN	SCN	VENUS

TRANSPUSES SHOWN	
21.017)	
20.988.	
STATE THANSITION MATRIX PARTITIONS OVER(
STATE THANSIT!	

	_	_	œ.	m	m	_
VZ(21.017)	0.27174782110-11	0.5111536969D-11	-0.2335743157D-09	0.3368174712D-08	0.6337525426D-08	0.9999997104D 00
VY(21.017)	0.29048010860-09	0.31276681690-09	0.5111536970D-11	0.36009983850-06	0.10000003880 01	0.63375254770-08
VX(21.017)	0.99599990190 00 0.3601978421D-06 0.3370301638D-08 -0.7919236578D-10 0.2904801086D-09 0.2717478211D-11	0.3301978510D-06 0.10000000388D 01 0.6337450132D-08 0.2904801085D-09 0.3127668169D-09 0.5111536969D-11	0.3370301675D-08 0.6337450047D-08 0.9999997104D 00 0.2717478210D-11 0.5111536970D-11 -0.2335743157D-09	0.24796799197 04 0.2976300017D-03 0.2784832532D-05 0.999999917D 00 0.3600998385D-06 0.3368174712D-08	0.2977516343D-U3 0.2479680320D 04 0.5238765421D-05 U.3600998335D-06 0.1000000388D 01 0.6337525426D-08	0.27553350950-05 0.5237570372D-05 0.2479679761D 04 0.3368174692D-08 0.6337525477D-08 0.9999997104D 00
2(21.017)	0.33703016380-08	0.63374501320-08	0.99999971040 00	0.27848325320-05	0.52387654210-05	0.2479679761D 04
Y(21.017)	0.36019784210-06	0.10000003880 01	0.63374500470-08	0.2976300017D-03	0.24796803200 04	0.5237570372D-05
X(21.017)	00 06106565556.0	0.36019785100-06	0.33703016750-08	0.24796799190 04	0.29775163430-03	0.27653350950-05
	20.988)	50.988)	20.588)	20.988	70.988	20.988)
	×	→	} 7	××)	727

--NONE

SOLVE-FUR PARAMETERS

DYNAMIC CONSIDER PARAMETERS

0.0 0.0 0.0 DIAGGNAL OF DYNAMIC NUISE MATRIX

0.0

0.0

OBSERVATION MATRIX PARTITIONS -- TRANSPOSES SHOWN

RANGE-RATE(1)
-0.14-550221640-07
0.1154-658470-06
0.56507707110-08
0.9917-6516580
0.12630470780
0.12630470780

SULVE-FUR PARAMETERS

--NUNE

DYNAMIC CONSIDER PARAMETERS

--NONE

MEASUREMENT CONSIDER PARAMETERS
RADIUS 1 0.26323071690-01
LOAT 2 0.37657695800 00
RADIUS 2 0.0
LAT 2 0.0
RADIUS 3 0.0
LONG 3 0.0

IGNORE PARAMETERS

HUNDNE

MEASUMEMENT NOISE CORRELATION MATAIX AND STANDARD DEVIATIONS 0*11467344540-04

MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 0.11856648090-04

GAIN MATRIX PARTITIONS

K-MATRIX

-0.10047210190 05 0.1098307738D 06 -0.1734164558D 06 -0.1100953646D 00 0.1164259981D 01 -0.4403002245D 00

A-132

--NONE

- 4171414

NOT DEFINED

THE MEASUREMENT 21.017 DAYS. JUST BEFORE IX PARTITIONS AND STANDAPD DEVIATIONS AT TIME MATI CORRELATION

1.000000000 7 1.00000000 -0.28170907 ≿ 1.000000000 -0.92411803 0.59492044 × 1.000000000 0.49892373 -0.25261913 0.85185467 Z 1.00000000 -0.18692692 -0.87187459 0.31453049 -0.47319499 > 0.09236836 0.00583613 0.03652042 1.000000000 -0.49828259 -0.15381561 0.232333300 02 0.14050372D 02 0.94104231D 02 0.192c3375D-04 0.12500895D-03 0.408b3379D+03 STC DEV

SOLVE-FOR PARAMETERS

ENDN--

DYNAMIC CONSIDER PARAMETERS

--NONE

-0.09169253 0.09169253 -0.05139195 0.22530500 0.05139194 -0.45032737 0.35472667 0.19804027 0.35472662 0.02887815 -0.02887815 0.00200385 -0.00200385 0.12540017 -0.09115746 -0.06483490 -0.07675842 -0.09115745 -0.05456300 0.05456300 -0.01763847 0.12928824 0.14741862 0.01763847 -0.26336040 0.20537554 0.20537551 -0.06906796 0.06906796 -0.01965580 -0.08654155 -0.64418390 0.36668499 -0.00015014 0.08854154 0.36668504 0.02333735 -0.02333785 -0.03159729 0.03158729 -0.03216064 0.32327132 -0.20139288 -0.00882A24 -0.20139291 0.02651368 0.01235560 -0.02651368 -0.02619312 -0.01285566 -0.05820949 0.04424729 0.04424730 -0.00503811 MEASUREMENT CONSIDER PARAMETERS RADIUS 1 Ŋ RADIUS 3 ۳) Ç LONG 1 RADIUS LUNG 2 LUNG 3 L.A.T LAT LAT

NO SOLVE-FOR PARAMETERS

THE MEASUREMENT 21.017 DAYS, JUST AFTER CURRELATION MATKIX PARTITIONS AND STANDARD DEVIATIONS AT TIME

1.000000000 ζ 1.000000000 -0.92440041 0.59431190 1.00000000 0.49870823 -0.25180609 0.65177844 -0.38665804 -0.87133880 0.81274356 -0.47311169 1.000000000 1.00000000 -0.50004331 -0.15374587 0.09229541 0.00534091 0.28232778D 02 0.1398985D 02 0.54681765D 02 0.19219059D-04 0.12424429D-03 STO DEV × > \ \ > \ > \

1.000000000

7

SULVE-FUR PARAMETERS

HADNIL

DYNAMIC CONSIDER PARAMETERS

0.19815654	-0.06549528	0.12974591	-0.06611951	-0.00908540	-0.00502822	LONG 3
0.35467946	-0.09102279	0.20542348	0.35663577	-0.20168075	0.04422128	LAT 3
0.35467942	-0.09102278	0.20542345	0 • 30663572	-0.20168072	0.0442127	RADIUS 3
-0.45005821	0.12433556	-0.26284465	-0.64397653	0.32313042	-0.05814027	LONG 2
-0.05143700	-0.00188054	-0.01776203	-0.09856937	0.03183748	-0.01246092	LAT 2
0.05143700	0.00188054	0.01776203	0.08658937	-0.03183748	0.01286092	RADIUS 2
0.22492083	-0.07517536	0.14650181	-0.02009485	-0.03057773	-0.02627640	LONG 1
0.09168226	-0.02888487	0.05458419	0.06905082	-0.02329550	-0.02652041	LAT 1
-0.09168226	0.02888487	-0.05458418	-0.06905082	0.02329549	MEASUREMENT CONSIDER PARAMETERS 0.02652041	MEAS PADIUS 1

NO SGLVE-FOR PAHAMETERS

Generalized Covariance Spectral Mismatch Case Case G-1.

PROBLEM 1		Z-DOT VELOCITY	.50811515 36.865749637 .508811515 16.679108319 2.561001874 4.443938624	.508821439 36.865835210 .508821439 16.679405475 2.561018310 4.443931532	
ν. ν	1 1	Y-00T	-9.873343707 9.767615516 2.255438411	-9.872462948 9.768116854 2.255404879	
2470 10871.45		x-00T	35.515372603 13.510272102 2.846551856	110480984.01 35.515706129 61039584.64 13.510276121 2816910.46 2.846552565	
24.176 PALFCTORY TIME		RADIUS	110481268.18 61038288.64 2817294.28	110480984.01 61039584.64 2816910.46	ATION 3
STORY TIME	24.175	Z-COMP	-923582.48 -923582.48 -1650130.39	-923538.52 -923538.52 -1649909.11	TO TRACKING ST
1 220 AT TRAJECTORY TIME 24.176 MFASHDEN FROM STATION 3 AT TRAJECTORY TIME	DRY TIME 24.	Y-COMP	-103380455.01 10671212.83 -1373236.22	-103381308.03 10672056.84 -1373041.32	MUTH RELATIVE
MEASUREMENT NO		X-COMP	-38958171.62 60091138.22 -1824401.01	-38955103.08 - 60092305.43 -1824155.14	ELEVATION AND AZIMUTH RELATIVE TO TRACKING STATION 3
- ō	a a li	STATE	INERTIAL GEO- PLANETO-	FINAL INERTIAL GEO- PLANETO-	ELE

15.111 DEGREES ELEVATION ANGLE=

74.815 DEGREES AZINUTH ANGLE=

1 1 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1001/00/1011	6.40737633388E+01	3.19151028433E+00	1.35551680106E+02	-8.66927234348E-01	1.20354143230E+02	1.36094015805E+02	3.260599598035+02
NAV IGATION, PARAMETERS	ANGLE BETWEEN RELATIVE VELOCITY	AND PLANE OF THE SKY	GEOCENTRIC DECLINATION	EARTH/SPACECRAFT/TARG PLANET ANGLE	ANTENNA AXIS + EARTH ANGLE	ANTENNA AXIS - LIMB OF SUN ANGLE	OCCULTATION RATIO FOR SUN IS	

	VZ(24.176) 7.5189719217E-14 1.9953414737E-13 3.55111078555E-12 3.65912746F-12 8.6214924089E-12 9.999999963E-01
	VY(24.176) 8.4165352329E-12 1.3832426287E-11 1.9953414653E-13 3.6933414653E-13 1.00000000000000000000000000000000000
TRANSPOSES SHOWN	VX(24.176) -5.3313183684E-12 8.4165351567E-12 7.5189718973E-14 9.999999999778=13.6364647816E-10 3.2474578582E-12
	2(24.176) 3.2512881276E-12 8.6207152528E-12 9.99999963E-01 -2.9872708751E-09 7.139125396E-09
1 24.175, 24.	Y(24,176) 3,6354700235-10 1,0000000065+00 6,61943849655-12 4,2499996815-07 8,6399996815-01
TE TRANSITION MATRIX PARTITIONS OVER(24.175, 24.176)	X(24,176) Y(24,176) Y(24,176) YX(24,176) YX(24,176) YY(24,176) YZ(24,17
TE TRANSITION MA	X(24.175) Y(24.175) Z(24.175) VX(24.175) VY(24.175) VZ(24.175)

STATE TRANSITION MATRIX PARTITIONS OVER(

SOLVE-FOR PARAMETERS

--NONE

DYNAMIC CONSIDER PARAMETERS

2.0083791577E+07 -1.3005072467E+05 -1.056655651E+07

GAIN MATRIX PARTITIONS
K-MATRIX

A-136

IGNORE PARAMETERS

;

ċ

:

•

.

DIAGONAL OF DYNAMIC NOISE MATRIX

-2.9336976997E-01 6.6472917229E+00 6.5863356101E+00

S-MATRIX

NOT DEFINED

	ZA	1.00000000					.08451658	08451658	-,37814808	.05838135	05838135	25727783	.05881325	.05881326	24815920		7.0	1.00000000
MEASUREMENT	*>	1.0000000 .58760305					.00269910	33269910	12435435	06765887	.06765887	02359048	06411690	06411690	.07935567	THE MEASUREMENT	>	1.00000000
BEFORE THE	×	1.30000000 15872713 .05736418					01368931	. 31368931	.34705615	02366019	.02366019	.36115425	03053287	03053287	.32985039	JUST AFTER THE ME	× >	1.0000000 13825686 .06442234
24.176 DAYS, JUST	2	1.00000000 47502032 09059102					.10048892	13048893	54314945	.13484899	13484899	50652723	.13702548	.13702550	-,56063832	Ś	2	1,3030000 -,48234338 -,08584625 -,56005638
AT TIME	>	1.0000000 65250750 .06111130 55620398					08773217	.08773218	.42895595	07089869	.07089469	.31394190	07181736	07181737	.31115914	AT TIME	>-	1,0000000 -,65538508 -,65548879 -,55839864 -,99068819
STANDARD DEVIATIONS	×	1.000000 4231252 27374452 05026704 .98163298			Ş		ETERS 01611785	.01611785	01463801	08798337	.08798337	.07538852	08528006	08528007	.18054800	STANDARD DEVIATIONS	1 • 00 0 00 0 0 0	-,427295875 -,27295875 -,02773973 -,98110225
PARTITIONS AND	STD DEV	1.45146976E*01 3.62196806E*00 4.76776056E*01 3.61491599E-07 4.60467740E-06 1.71158726E-05	SOLVE-FOR PARAMETERS	NONE	DYNAMIC CONSIDER PARAMETERS	NONE	HEASUREMENT CONSIDER PARAMETERS									FOR PARAMETERS PARTITIONS AND	STD DEV 1.43239104E+01	3.617 (94385±10 4.76531711E+01 3.58999510E-07 4.50346799E-06 1.70894147E-05
CORRELATION MATRIX	;	04×04× c<<	SOLV		DYNA		MEAS RADIUS 1	LAT 1	LONG 1	RADIUS 2	LAT 2	LONG 2	RADIUS 3	LAT 3	FONG 3	NO SOLVE-I	×	A-137

1.000000000

t

i

SOLVE-FOR PARAMETERS

--NONE

DYNAMIC CONSIDER PARAMETERS

MEASUREMENT CONSIDER PARAMETERS	ERS - 02624.003	779225900	1000000	70320000	7968367	0 4 9 0 0 0
KAULUS I	C6 042920*_	********	+9600701•	10 C	16266168*-	00122400
LAT 1	.02624093	.08533844	10208964	.00807507	.00755257	08195481
LONG 1	.03846289	.41584112	55187271	.31834366	07093576	36405583
RADIUS 2	09464608	06974373	.13568935	02098225	07431309	.05713130
LAT 2	.09464608	.06974373	13568935	.02098225	.07431309	05713130
LONG 2	.12554349	.30189617	51447679	,33532176	.02706744	24431056
RADIUS 3	.35012036	10707882	.11540874	11065845	.07880365	.09659814
LAT 3	.05012037	10707983	.11540876	11066846	.07880366	.09659816
LONG 3	.11864786	.32839138	55055680	.37035322	.01211697	26656558

NO SOLVE-FOR PARAMETERS

ACTUAL ESTIMATION ERROR STATISTICS

DIAGONAL OF ACTUAL DYNAMIC NOISE COVARIANCE MATRIX 0.

•

•

ACTUAL MEASUREMENT NOISE CORRELATION MATRIX AND STANDARD DEVIATIONS 7.48999332E-08

ACTUAL MEASUREMENT RESIDUAL MEAN

ACTUAL MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 3.69582298E-07 1.00000000

ACTUAL ESTIMATION ERROR MEANS AT TIME $24.176\ \text{Days}$ Before the measurement x 0.

ACTUAL CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAYS JUST BEFORE THE MEASUREMENT

*>					1,0000000
××				1.00000000	1518225A
7			1.00000000	87894007	.01501090
>		1.000000000	91846819	.74921874	33777598
×	1.000000000	.11275733	44304398	.27240779	.88905360
STO DEV	1.74775447E+01	7.40345394E+00	1.37387932E+02	7.13053460E-07	5.14429027E-06
	×	>	2	×	^

CONSIDER PARAMETERS0404331812876278 .1046177302081991 .040433181287627910461773 .0208199103672084629570295654659957833742207146710405611403895403598451 .2207146710405611403895403598451 .10911930460766345273399854927530213933231054049914265548046437092139332310540495142655590464370921393323105404951426555950166564 ETERS RROR HEANS AT TIME 24.176 DAVS AFTER THE HEASUREHENT HATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAVS JUST FF.011000000045959921318036460000000045859921318000000
PARAHETERS0404331812876278 .10461773020804043318 .1287627910461773 .020803672084 .6295702956546599 .52782207146710405661 .14038954 .035922071467 .10405661 .14038954 .035921393323 .4607663452733898 .54922139332310540495 .1426555004642139332310540495 .1426555004642139332310540495 .1426555004642139332310540495 .1426555004642139332310540495 .1426550 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .50164529492120180000014726346000000001472634600000000147263460000000014726346000000001472634600000000147263460000000014726346000000001472634600000000
PARAMETERS04.04331812876278 .10461773020804.043318 .1287627910461773 .020803672084 .6295702956546599 .52782207146710405661 .14038954 .0359 .18911930 .4607663452733898 .54922139332310540494 .1426554804642139332310540494 .1426554804642139332310540495 .1426555004642139332310540495 .1426554804642139332310540495 .14265548 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821658367336 .5016452949212918001601000000001472634610000000014726346100000000147263461000000001472634610000000014726346100000000147263461000000001472634610000000014726346100000000
PARAMETERS0404331812876278 .10461773020804043318 .1287627910461773 .020803672084 .6295702956546599 .52782207146710405661 .140389540359 .2207146710405661 .1403895403599 .2207146710540494 .1426554804642139332010540495 .1426555004642139332310540495 .1426555004642139332310540495 .1426555004642139332310540495 .1426555004642139332410540495 .1426555004642139332510540495 .1426555004642139332610540495 .1426555004642139332710540495 .1426555004642139332610540495 .142655480046000045292190 .4566821558367336 .501645263460000000014726346000000001472634634872760348727641
03672084 .1287627910461773 .02088
03672084 .6295702956546599 .52782207146710405661 .140389540359 .22071467 .1040566114038954 .0359 .18911930 .4607663452733898 .54922139332010540494 .1426555004642139332310540495 .142655500464 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4556821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .452092190 .4566821558367336 .5016
2207146710405661 .140389540359 .22071467 .10405661140389540359 .18911930 .4607663452733898 .54922139332310540494 .1426555004642139332310540495 .14265550046445292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .45292190 .4566821558367336 .5016 .4565942192180166 .10000000 .1472634692180166 .10000000 .1472634692180166 .10000000 .1472634692180166 .10000000 .1472634992180166 .10000000
-22071467 .1040565114038954 .0359 -18911930 .4607663452733898 .5492 -2139332010540494 .142655500464 -2139332310540495 .142655500464 -45292190 .4566821558367336 .5016 -45292190 .4566821558367336 .5016 -145292190 .4566821558367336 .5016 -145292190 .4566821558367336 .5016 -1452634692100000001472634692180166938272411
213933231054049452733898 .54922139332310540495 .1426555004642139332310540495 .14265550046445292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821558367341 1.00000001472634692180166 .38207441
2139332010540494 .1426555480464 2139332310540495 .142655500464 .45292190 .4566821556367336 .5016 AT TIME 24.176 DAYS AFTER THE MEASUREMENT ITIONS AND STANDARD DEVLATIONS AT TIME 24.176 DAYS 1.00000000
2139332310540495 .14265550046445292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .501645292190 .4566821558367336 .50164529323192180166 .10000000452942192180166 .338227411
AT TIME 24.176 DAYS AFTER THE MEASUREMENT AT TIME 24.176 DAYS AFTER THE MEASUREMENT AT TIME 24.176 DAYS AFTER THE BEASUREMENT AT TIME 24.176 DAYS AT TIM
AT TIME 24.176 DAYS AFTER THE MEASUREMENT ITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAYS 1.0000000 14726346 -4659421 -34574031 -34574031 -34574031
AT TIME 24.176 DAYS AFTER THE MEASUREMENT ITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAYS 1.0000000 14726346 -4659421 -34654421 3467741
AT TIME 24.176 DAYS AFTER THE MEASUREMENT ITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAYS 1.0000000 14726346 -4659421 -34654421 34677021 34677021 34677021
AT TIME 24.176 DAYS AFTER THE MEASUREMENT ITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAYS 1.00000000 -14726346 -348594921 -348726346 -348594921 -34872644
AT TIME 24.176 DAYS AFTER THE MEASUREMENT TITIONS AND STANDARD DEVIATIONS AT TIME 24.176 DAYS 1.0000000 -14726346 -146594921 -2181016 -31872731 1.00000000 -31872731
AT TIME 24.176 DAYS
1.0000000 92180166 1.0000000 -7458470038227411 1.0000000
.32933908 .015735091264802

1.000000000

.39296043

-.67910898

.87231278

-.04122083 -.99393882

3.09898647E-05

2 N

-.01225188 -.16791150 .56191764 -.03183527 -.16791148 .10620438 -. 10620439 -- 57411612 -.14115832 -. 53521286 .14115833 .12006032 .12006034 -- 57274711 -.12545936 .12545937 .61134427 -.10253296 .10253296 .44382927 -- 15742074 -.15742076 .48278093 MEASUREMENT CONSIDER PARAMETERS -.06780882 .06780882 -.24457361 . 19939144 .24457360 .32441519 .12951534 .12951535 .30659630 --NONE RADIUS 1 RADIUS 2 RADIUS 3 LONG 1 LONG 3 LAT 1 LONG 2 LAT 3 LAT 2

.13615625 -.13615626 -.60482704 .09491552 -. 09491552 -.40588723 .160484091 .16048411 -.44286079

-.02120595 .02120596 -.19917210

.01225188

.48300630

-.20865488 .20865488 *107599944 .22126341

> .03183527 .50876621

. 22126343 .03402179

IGNORE PARAMETERS

SOLVE-FOR PARAMETERS NO SOLVE-FOR PARAMETERS

```
MEASUREMENT NO 270 AT TRAJECTORY TIME 29.988
```

PROBLEM. .

•)		
⊢ L	INITIAL TRAJECTORY TIME INAL TRAJECTORY TIME		29.787 29.988					
A FI	X-COMP	Y-COMP	Z-C0MP	RADIUS	x-201	1-00f	7-001	VELOCITY
TIAL	•	-106933342.58	-660445.36	-660445.36 109044273.94 37.039264915 -4.700711425	37,039264915	-4.700711425	.597110416	.597110416 37.341135149
		16112618.09	-660445.06	68530176.39	68530176.39 13.290487840 12.729538332	12,729538332	.597110416	.597110416 18.412896405
PLANETO-		-436176.99 -309189.73	-387125.51	660086.97	660086.97 2.909571667	2.177460684	2,660718350	4.504038683
TIAL	•	-107013268.46	-649993.63	-649993.63 108998536.04 37.086377342 -4.503554977	37,086377342	-4.503554977	.606887453	.606887453 37.363748529
		66836488.33 16334692.88	-649993.63	68806691.94	68806691.94 13.279151288 12.844627035	12.844627035	.606887453	.606887453 18.484821205
E 10-		-271327.87	-340840.79		2,919655615	2,919655615 2,182948498	2.669972137	4.518668975

ELEVATION AND AZIMUTH RELATIVE TO TRACKING STATION 2

ELEVATION ANGLE= 16.050 DEGREES

AZIMUTH ANGLE= -97.340 DEGREES

5.95943954955E+01 4.92067297440E+00 1.38501133122E+02 -5.41261969105E-01 1.44313224038E+02 1.41899209286E+02 6.37193703629E+01 -4.02834733771E+00

```
STATE TRANSITION MATRIX PARTITIONS OVER( 29.787, 29.988) --TRANSPOSES SHOWN
```

X(29.787) Y(29.787) Z(29.787) VX(29.787)	X(29,988) Y(29,988) V2(29,988) V3(29,988) V3(29,988) V3(29,988) V4(29,988) V2(29,988) V2(29,988) V2(29,988) V3(29,988) V3(29,888) V3	V(29.988) 1.7934475105E-04 9.9993360066E-01 1.5896484144E-04 1.1052124061E+00	2,2480163966E-04 1,5896486626E-04 1,0800060358E+00 1,3860535641E+00	VX(29.988) 7.4592456620E-39 2.2039890634E-08 2.7642527620E-08 1.0000691054E+00	VY(29.988) 2.2039674038E-08 -8.1842910749E-09 1.9521590122E-08 2.0339553305E-04	VZ(29.988) 2.7642516311E-0 1.9521596834E-0 7.3480315303E-1 2.5523302717E-0
22	1.1052127389E+00 1.3860537939E+30 9	1.7365989702E+04 3.7902240464E-01	9.7902253928E-01 1.7366436843E+04	2.0339560799E-04 2.5523307823E-04	9.9992424437E-11 1.8004336430E-04	

SOL VE-FOR PARAMETERS

DYNAMIC CONSIDER PARAMETERS

--NONE

IGNORE PARAMETERS

DIAGONAL OF DYNAMIC NOISE MATRIX

.

ċ

÷

.

•

SOLVE-FOR PARAMETERS

--NONE

DYNAMIC CONSIDER PARAMETERS

--NONE

0. 5.2790506088E-05 -2.8721918833E-01 1.0253774519E-01 0.

IGNORE PARAMETERS

--NONE

MEASUREMENT NOISE CORRELATION MATRIX AND STANDARD DEVIATIONS 7.07106781195-08

HEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 1.5318793244E-06

GAIN MATRIX PARTITIONS
K-MATRIX

-1.773884826E+06 -1.6916165677E+06 3.2860420602E+07

S-MATRIX

NOT DEFINED

CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME 29,988 DAYS, JUST BEFORE THE MEASUREMENT

7.6590452252E-01 4.2454433046E-01 5.2354494762E+00

	STO DEV	×	٠	2	× >	>	7 /
× > N	8.97033548E+00 2.8132188BE+00 5.07267636E+01	1.00000000 .27638167 37543757	1.000000000-	1. 00000000			
X	1,23872799E-06 3,00399169E-06 1,27548831E-05	53108238 .86263910 .38600572	-,94499756 -,19208367 -,76996484	.97232826 .14137159 .59707086	1.00000000 04751599 .53098806	1,00000000 ,71130659	1.000000000
v	SOLVE-FOR PARAMETERS						
	NONE						
0	DYNAMIC CONSIDER PARAMETERS						
	NONE						
M RADIUS 1	MEASUREMENT CONSIDER PARAMETERS	TERS 10826519	12374062	. 12587596	.13950569	05114286	.04557781
LAT 1		.10826519	.12374063	12587597	13950570	.05114286	04557781
LONG 1		.26865637	.41896148	47326453	47312335	.02948248	19835496
RADIUS 2		06339173	17374763	.21950942	.19701022	.05822205	.10493212
LAT 2		.06339174	.17374763	21950943	19701022	05822205	10493212
LONG 2		.15510458	.48432977	+.55149924	51309341	14072132	32450602
RADIUS 3		08807186	16317381	.16106655	.16784953	01017349	• 09479705
LAT 3		08807187	16317383	.16106657	.16784956	01017349	90262460.
LONG 3		.19480460	.45435175	53469482	50206047	09057348	26864081
z	NO SOLVE-FOR PARAMETERS						
CORRELATION MATRIX	PARTITIONS AND	STANDARD DEVIATIONS AT TIME		29.988 DAYS, JUST	AFTER THE	ME AS UREMENT	
*	SIO OEV 8.54884580F+00	X X	>	Z	×A	>	2 ^
A-143	1.095031031+00 6.2665963E+00 3.97337130E-07 2.93274787E-06 9.91793381E-06	00716305 63558398 79871514 .99764736	1.00000000 39024799 58096338 01930922	1,0000000 .81824727 -,60913423 -,28000920	1.00000000 68653957 25888905	1.00000000 .75767188	1.0000000

DYNAMIC CONSIDER PARAMETERS

3N0N--

0788654403794687	.07886545 .03794687	.13389317 .12303624	0053836610215305	.00538366 .10215306	02899719 .00254697	0451792100483655	0451792200483655	.02726087 .09223100
				•				Ī
.08231444	08231445	09422237	25160015	, 25161016	06639125	06044519	. 06044520	.03314559
. 05972779	05972779	07477515	57838685	. 57838686	-, 29337515	. 04471424	. 04471425	.01985928
03531464	.03531464	03023587	. 24749347	24749348	.01553126	04827840	04827841	11368973
HEASUREMENT CONSIDER PARAMETERS 5 1	1 .07564612	1 .13326554	S 2 .02668316	202668316	00229460	S 3	3 04259388	3 .03235055
RADIUS	LAT	LONG 1	RADIUS 2	LAT	LONG 2	RADIUS 3	LAT	LONG

NO SOLVE-FOR PARAMETERS

ACTUAL ESTIMATION ERROR STATISTICS

• DIAGONAL OF ACTUAL DYNAMIC NOISE COVARIANCE MATRIX 0.

•

•

ACTUAL MEASUREMENT NOISE CORRELATION MATRIX AND STANDARD DEVIATIONS 7.07106731E-08

ACTUAL MEASUREMENT RESIDUAL MEAN

ACTUAL MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 4.39958236E-06 1.000000000

ACTUAL ESTIMATION ERROR MEANS AT TIME 29.900 DAYS BEFORE THE MEASUREMENT X D. Y D. Z D. VX D. VX D. VY D. VZ O. VZ

* × N × × > > >

1.000000000 1,00000000 ,39563020 ,33139369 1.00000000 -.98897175 -.99131587 -.34117213 x 1.00000000 .72878617 -.75186776 -.79719975 .37158926 STD DEV 1.34896426E+01 7.17746652E+00 1.45542539E+02 3.41605733E-06 3.39845892E-06

ACTUAL CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME 29,988 DAYS JUST BEFORE THE MEASUREMENT

77

1.000000000

14550097 .13161677 .1517623313561975 .08013910 -145500981316167815176234 .1356197608013910 -,492637814948487251469088 .0781811434876595 -,20430192 .22952055 .21431905 .15439222 .18450127 -,2043019222952055214319051543922218450127 -,5695013257665140558172533731623457057621 -,19186867 .16841231 .1825964002697789 .16668099 -,5342515555908060546170292401811847234895	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841232 .1825964002697789759080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .0781811422952055 .214319051543922222952055214319051543922257665140558172533731623416841232 .1825964202697789559080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841232 .1825964202697789559080605461702924018118
.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841232 .1825964002697789559080605461702924013118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841232 .1825964002697789759080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841232 .1825964202697789559080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841232 .1825964202697789359080605461702924018118
.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841231 .1825964002697789559080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841232 .1825964002697789359080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841237 .1825964002697789359080605461702924018118	.13161677 .15176233135619751316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841231 .1825964002697789559080605461702924018118
1316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841231 .1825964002697789559080605461702924418118	1316167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789	1516167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222229520552143190515439222576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789	1516167815176234 .135619764948487251469088 .07818114 .22952055 .2143190515439222576651405581725337316234 .16841231 .1825964002697789559080605461702924018118
4948487251469088 .07818114 .22952055 .21431905 .1543922 229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 16841232 .1825964202697789	4948487251469088 .07818114 .22952055 .21431905 .15439222 229520552143190515439222 576651405581725337316234 .16841232 .1825964002697789 759080605461702924018118	4948487251469088 .07818114 .22952055 .21431905 .15439222 229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 559080605461702924018118	4948487251469088 .07818114 .22952055 .21431905 .1543922 229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 759080605461702924018118
.22952055 .21431905 .15439222 229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789	.22952055 .21431905 .15439222 229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 .16441232 .1825964202697789	.22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789	.22952055 .21431905 .15439222229520552143190515439222576651405581725337316234 .16841231 .1825964002697789359080605461702924018118
229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789 559080605461702924018118	229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 16841232 .1825964202697789 59080605461702924018118	229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 159080605461702924013118	229520552143190515439222 576651405581725337316234 .16841231 .1825964002697789 159080605461702924013118
576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789 559080605461702924013118	576651405581725337316234 .16841231 .1825964002697789 .16841232 .1825964202697789 359080605461702924013118	576651405581725337316234 .16841231 .1825964002697789 .1641232 .1825964202697789 359080605461702924018118	57316234 .16841231 .1825964002697789 .16841232 .1825964202697789 759080605461702924013118
.16841231 .1825964002697789 .16841232 .1825964202697789 359080605461702924018118	.16841231 .1825964002697789 .16841232 .1825964202697789 559080605461702924018118	.16841231 .1825964002697789 .16841232 .1825964202697789 359080605461702924018118	.16841231 .1825964002697789 .16841232 .1825964202697789 359080605461702924013118
9 .16841232 .1825964202697789 5359080605461702924013118	9 .16841232 .1825964202697789 5359080605461702924013118	9 .16841232 .1825964202697789 5359080605461702924013118	9 .16841232 .1825964202697789 5359080605461702924013118
75908060 54617029 24018118	759080605461702924018118	759080605461702924018118	759080605461702924018118
88 DAYS AFTER THE MEASUREMENT	DAYS AFTER THE	DAYS AFTER THE	AFTER THE
S AFTER THE	S AFTER THE MEASUREHENT DEVIATIONS AT TIME 29.988 DAYS JUST AFTER THE	S AFTER THE MEASUREMENT DEVIATIONS AT TIME 29.988 DAYS JUST AFTER THE	DAYS AFTER THE MEASUREHENT ARD DEVIATIONS AT TIME 29.988 DAYS JUST AFTER THE

A-145

--NONE

DYNAMIC CONSIDER PARAMETERS

SOLVE-FOR PARAMETERS

NONE						
RADIUS 1	MEASUREMENT CONSIDER PARAMETERS20575754	10676290*-	.08487222	.18912295	21399302	10044967
LAT 1	.20575756	.08294902	08487223	18912296	.21399303	.10044968
LONG 1	*36248248	07101973	10625429	21648222	.36330498	.32569196
RADIUS 2	• 07257822	.58132657	82187832	57806816	01460800	27041073
LAT 2	07257822	58132656	.82187831	.57806816	.01460800	.27041072
LONG 2 '	00624131	.03648071	41688133	15253834	07868079	.00674211
RADIUS 3	11584726	11339903	.06353822	.13887688	12258900	01280289
LAT 3	11584727	11339905	.06353823	.13887690	12258902	01280289
LONG 3	+3£66180*	26704084	. 02821972	.07615422	.07396947	.24414595

A-146

IGNORE PARAMETERS

SOLVE-FOR PARAMETERS NO SOLVE-FOR PARAMETERS

Case G-2. Generalized Covariance Ignore Parameter Case

. . .

35.432238209 12.603356306 5.076780509 35.454509458 12.657098600 5.059105481 VEL OCITY PROBLEM. .360554701 .360554701 2.158069275 .362790866 .362790866 2.165999752 Z-00T 28.678394790 -20.805364142 12.047772691 3.683173041 3.285543259 3.212731367 26.796916795 -20.679173262 12.083139022 3.750770472 3.270627180 3.194681705 Y-00T 9.98800 DAYS X-00T RANGE-RATE WAS MEASURED FROM STATION 2 AT TRAJECTORY TIME -1466297.05 115437041.15 -1466297.05 44047148.14 -4618515.07 8589696.98 -1460016.09 115357883.06 -1460016.09 44259775.69 -4580967.96 8502569.08 RADIUS 9.988 Z-COMP MEASUREMENT NO 90 AT TRAJECTORY TIME 9.787 SIATE
INITIAL
INERIAL -79242965.63 -83929194.38
INERIAL -79242965.63 -83929194.38
GEO +3948238.56 2559993.22
GEO -5521607.71 -4686593.08 INERTIAL -78743915.33 -84289414.14 GEO- 44157766.15 2624560.09 PLANETO- -5464690.28 -4630936.57 INITIAL TRAJECTORY TIME FINAL TRAJECTORY TIME

ELEVATION AND AZIMUTH RELATIVE TO TRACKING STATION

20.432 DEGREES ELEVATION ANGLE=

AZIMUTA ANGLE= -109.064 DEGREES

化化学 医电子 化化二苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	计数据表示 计分词分词 计分词分词 计分词分词 计分词分词 计分词 计分词 计分别
MAVIGATION PARAMETERS	
•	••••• -7.37609551809E+00
ANGLE BETWEEN RELATIVE VELOCITY	
AND PLANE OF THE SKY	7.57148522276E+01
GEOCENTRIC DECLINATION	-3.82401770232E+01
EARTH/SPACECRAFT/TARG PLANET ANGLE	1.30976814990E +02
ANTENNA AXIS - EARTH ANGLE	-1.89038325862E+00
ANTENNA AXIS - LIMB OF SUN ANGLE	1.36101781523E+02
OCCULTATION RATIO FOR SUN IS	1.14012611653E+02
OCCULTATION RATIO FOR VENUS IS	1.06107077116E+03

	VZ (9.988)	3.9052861536E-11	1,3488707439E-05 1,0000076956E+00 3,6085831451E-07 2,2449420402E-09 8,9053650646E-10 4,1582009336E-11	-1.49908775236-09	3.3869725541E-07	3.6126994270E-07	9.9998697862E-01	
	VY (9.988)	2.24494219535-09	8.9053650646E-10	4.1582011660E-11	1.9497771080E-05	1.0000077697E+00	3.6126995542E-07	
TRANSPOSES SHOWN	VX(9,988)	6.0859031038E-10	2.2449420402E-09	3.9052861020E-11	1.0000052519E+00	1.9497770231E-05	3.3869725258E-07	
	(886.6) Z	3.3950890482E-07	3.6085831451E-07	9.9998698757E-01	1.9630162606E-03	2.0901532641E-03	1.7366324648E+04	
PARTITIONS OVER(9.787, 9.988)	۲(9,988)	1.9488707785E-05	1.00000076956E+00	3.60858319735-07	1.1283900607E-01	1.7366444760E+04	2.0900670906E-03	
RRIX PARTITIONS OVER	(886.6)X	1.0000053170E+00	1.3488707439E-05	3,3950890371E-07	1.7366430592E+04	1.1284475728E-01	1.3636353745E-03	
ATE TRANSITION MATRIX		X(9.787)	Y(9.787)	(28.46) 7			VZ(9.787)	
ATE								

DYNAMIC CONSIDER PARAMETERS --NONE

SOL VE-FOR PARAMETERS

A-147

--NONE

. . ; . • ċ • DIAGONAL OF DYNAMIC NOISE MATRIX
0. IGNORE PARAMETERS
R-RATE 0.

.

ċ

SOLVE-FOR PARAMETERS

DYNAMIC CONSIDER PARAMETERS

--NONE

--NONE

MEASUREMENT CONSIDER PARAMETERS RADIUS 1 0.

0. 4.9107016916E-05 -2.6705610773E-01 1.6426974225E-01 0. LAT 1 LONG 1 RADIUS 2 LAT 2 LONG 2 RADIUS 3 LAT 3

IGNORE PARAMETERS R-RATE

MEASUREMENT NOISE CORRELATION MATRIX AND STANDARD DEVIATIONS 7.0710678119E-08

MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 1.5865031983E-07

GAIN MATRIX PARTITIONS
K-MATRIX

3.513838194E+07 -4.088281586E+06 -4.7641061439E+07 -3.6634926272E-01 9.7779391890E+00

-3.5571318406E+01

101.00.01

S-MATRIX

CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME

NOT DEFINED

9.988 DAYS, JUST BEFORE THE MEASUREMENT

-.18996475 1.00000000 -.15000395 -.13182679 .13182679 -.27886160 .00941319 .00941319 -.23718568 1.00000000 .15000394 21 27 1.00000000 1.00000000 .06950898 -.06950898 -.08429456 .12342147 -.12342148 --11738425 .06447743 .06447744 -.18861991 9.988 DAYS, JUST AFTER THE MEASUREMENT ۲ Š 1,00000000 ,86142926 ,74457502 1.00000000 .85248598 .73927712 .13627821 -.13627822 --04570975 .00029754 -.10357916 .04855385 .04855386 -.12122490 --00029754 × × 1.00000000 -.70772817 -.82606636 -.06353862 1.00000000 -.71520435 -.82363878 -.08230094 -.04906756 -.15397025 .04906757 -,22261458 -.13012626 ..20980604 -,06336369 -.06336369 .13012627 7 1.00000000 .74321683 -.95502149 -.95753720 1.00000000 .74517726 -.95627674 -.96134778 -.60825384 .16103301 .20714642 -.10482750 .10482751 .13109235 -.04559357 .04559357 -.05159161 -,05159161 CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME 1.000000000 -.92529159 -.87828462 .80906098 .98438639 X 1.00000000 -.92789113 -.87679802 -.81623731 -.9842640 -.26931853 .11866759 -.11866759 -.05176670 .05942579 .05942579 -.12628539 .06024531 -.06024531 -.05406132 MEASUREMENT COUSIDER PARAMETERS JYNAMIC CONSIDER PARAMETERS STD DEV 5.22048478E+01 2.25917237E+01 6.53577335E+01 2.6776031E-06 1.3003061EE-05 3.77434556E-05 5.19063451E+01 2.23823278E+01 6.49192259E+01 2.6769723E-06 1.29161966E-05 3.73191702E-05 NO SOLVE-FOR PARAMETERS SOL VE-FOR PARAMETERS --NONE --NONE STD 0E/ 2 4 X Z X X X X RADIUS RADIUS LONG 2 LAT 1 LONG 1 LAT 2 LAT 3 LONG 3

.1/0

)

SOLVE-FOR PARAMETERS

DYNAMIC CONSIDER PARAMETERS

--NONE

.15870486	15870487	21581302	02836909	.02836909	21874468	.01368009	.01368009	27849014
.06445036	06445036	06607808	.04091127	04091127	16851649	.06163581	.06163582	15929903
.13731472	13731472	04912164	.01536690	01536690	09451700	.04916256	.04916256	12679666
04401308	, 04401308	-, 24235631	05019818	.05019818	-,16249765	-,06058896	-,06058897	-,18473486
10353094	.10353095	.12660791	02549971	.02549971	.17322848	05081610	05081611	.19983488
MEASUREMENT CONSIDER PARAMETERS .05562340	05562341	03754812	.04480777	-*04480777	09701237	.05681310	.05681311	09959152
MEASUREMENT RADIUS 1	LAT 1	LONG 1	RADIUS 2	LAT 2	LONG 2	RADIUS 3	LAT 3	LONG 3

NO SOL VE-FOR PARAMETERS

ċ ACTUAL MEASUREMENT NOISE CORRELATION MATRIX AND STANDARD DEVIATIONS 7.07106781E-08 DIAGONAL OF ACTUAL DYNAMIC NOISE COVARIANCE MATRIX 0. ACTUAL ESTIMATION ERROR STATISTICS

ACTUAL MEASUREMENT RESIDUAL MEAN 0.

ACTUAL MEASUREMENT RESIDUAL CORRELATION MATRIX AND STANDARD DEVIATIONS 1.44430325E-06 1.00000000

ACTUAL ESTIMATION ERROR HEANS AT TIME 9.908 DAYS BEFORE THE MEASUREMENT X 0. Y 0. Z 0. VX 0. VX 0. VX 0. VZ 0. VZ 0.

ACTUAL CORRELATION MATRIX PARTITIONS AND STANDARD DEVIATIONS AT TIME 9.908 DAYS JUST BEFORE THE MEASUREMENT

7.7						1.000000000
>					1.00000000	.98742483
×>				1.0000000	.99607252	.99438851
7			1,00000000	. 97226523	.96452503	.99125767
-		1.00000000	98005086	99847980	99715249	99640630
×	1.00000000	98841725	.94134184	.98841140	.99658092	.97204716
SIU DEV	2.15438200E+02	2.12579382E+02	6.01735425E+02	1.83715121E-05	7.677177235-05	5.49034131E-04
	×	>	2	× >	٨	ZA

-.01988172 .01092073 -.98555217 -.01177294 -.01427722 .01177294 .02090426 -.02090426 .01092073 -.03194711 .01986222 -.01986222 -.00666208 --00004337 -.01509641 .00707661 -.01766823 -.98932182 .00004337 .00707661 -.00532949 .00532949 -.99408392 -.02417937 ..01413372 .01413372 -.02278817 -.00688227 -.00688227 -.01672354 -.01104184 .01104184 0 1380841 -.00480253 .00480253 -.00543432 .01696217 -.0 (543432 .02181945 .99443697 MEASUREMENT CONSIDER PARAMETERS .01459860 -.01310010 .01440002 -.97019725 -.02875546 -.03060139 -.01459861 .02875545 --01254407 .01440002 IGNORE PARAMETERS RADIUS 1 RADIUS 3 RADIUS 2 LAT 1 LONG 1 LAT 2 LONG 2 LAT 3 LONG 3 R-RATE

-.01031205

-.01305916 ..00906246 .00906246 -.01917039 .00064711 .00064711 -.01630537 -.99763433

.01031205

DYNAMIC CONSIDER PARAMETERS

UNON--

SOLVE-FOR PARAMETERS

SOL VE-FOR PARAMETERS

NO SOLVE-FOR PARAMETERS

9.988 DAYS AFTER THE MEASUREMENT ACTUAL ESTIMATION ERROR MEANS AT TIME

× × × × × ×

9.988 DAYS JUST AFTER THE MEASUREMENT 1.00000000 .99401524 .99455149 1.00000000 .97534617 .95805975 .99282837

1.00000000

1.000000000

SOLVE-FOR PARAMETERS

--NONE

DYNAMIC CONSIDER PARAMETERS

--NONE

-00989542	00989542	01345617	00176884	.00176884	01363896	.00085297	.00005297	01736416	-* 99805435
.01313470	01313470	01346642	.00833753	00833753	03434291	.01256110	.01256111	03246443	97901369
.01947249	01947249	06496900*-	.00217917	00217917	01340338	.00697170	.00697170	01798093	20468666
00427859	.00427859	02355988	00487985	.00487985	01579668	00588996	00588996	01795840	99526379
01119957	.01119957	.01369594	00275846	.00275846	.01873917	00549708	00549708	.02161734	.99413177
DER PARAMETERS •C1716554	01716554	01158746	.01382781	01382781	02993830	.01753269	.01753269	03073423	95119223
MEASUREMENT CONSIDER PARAMETERS .01716									IGNORE PARAMETERS
RADIUS 1	LAT 1	LONG 1	RADIUS 2	LAT 2	LONG 2	RADIUS 3	LAT 3	LONG 3	R-RATE

SOLVE-FOR PARAMETERS NO SOLVE-FOR PARAMETERS

F.1.0.00054.7.19. Y. 1.0.0.0054.7.2.4.7.6.7.0.2.2.7.4.7.8.7.8.7.8.7.8.7.8.7.8.7.8.7.8.7.8	383 DAY				
-3.97863335456E+03 5.9310753695E+11 5.0330748457E-01 1.1390927244E+02 1.142275290725402 4.62831622171E+01 4.789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206272-05 1.4789206277-05 1.478	VZ 6.3522294272467E-01				
5.0330964545660 1.39013518124600 1.39013518124600 1.39013518124602 1.190108276290726402 1.47292061272116401 1.47292061276290726402 1.47292061276690 9.999419946676766 1.289953809660 1.2899580831194660 1.328421259066060 1.2890831194660 1.3284212590660 1.3284212590660 1.3284212590660 1.3284212590660 1.3284212590660 1.3284212590660 1.3284212590660 1.3284212590660	*	35335456E+O3	***************************************	***************************************	** ** ** ** ** ** ** ** ** ** ** ** **
ON MATRIX PARTITIONS OVER(36.350, 30.383)		355955401 3554543E+01 13518124E+02 13518124E+02 13748457E-01 09827248E+02 237629072E+02 881622171E+01			
X(36.383)	TIONS OVER(30	, 30,383)			
PARAMETERSNONE ONSIDER PARAMETERSNONENONE G. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	30.350) 1.000054273E-00 1.4759202 30.350) 1.4759206126E-05 9.999941 30.350) 1.87707405261E-05 1.2899553 30.350) 1.87707405261E-05 1.2899553 30.350) 1.4236954457E-02 2.851194 30.350) 1.8048750517E-02 1.244036	30,383) 2 (30,383) 5127E-05 1,8707540262E-0 3991E-01 1,2899553809E-0 3996E-0 1,8040365485E-0 3996E-0 2,8512003580E+0	VX(30,383) 3,8700259841E-09 1,0509756958E-08 1,332379225E-08 1,0000055067E+00 1,5206131852E-05	VY (30,333) 1,0509756753E-08 4,1339906124E-09 1,8206131719E-05 9,999401322E-01 1,3284212590E-05	1,3325/9079E-08 9,183446651E-09 2,64335909E-10 1,928083199E-05 1,3284212642E-05 1,000003803E+00
NONENONENONE ETERS G. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SOLVE-FOR PARAMETERS				
NONENONE ETERS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	NONE				
ETERS G. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	CONSIDER PARAMETERS				
ETERS G. G. OF DYNAMIC NOISE MATRIX OF DYNAMIC NOISE MATRIX	NONE				
OF DYNAMIC NOISE MATRIX	•	• 0		0.	•0
	DYNAMIC NOISE	0	•0	• 0	

RAMETERS RAMETE	02033327 .02925570 .03185305 .04299556 .02033327 .02925570 .03185305 .04299556 .02033327 .02925570 .03185305 .04299556 .02033327 .02925570 .03185305 .04299556 .02033327 .02925570 .03185305 .04299556 .02033327 .02925570 .03185305 .04299556 .02033327 .02925570 .03185305 .04299556 .02033327 .04484538 .06396939 .01460557 .05391595 .01756166 .00802865 .00671655 .05391595 .01756166 .00802865 .004958435 .05391595 .014884538 .06396939 .01460557 .05391595 .01756166 .00802865 .004958435 .00574458 .17600895 .16248260 .01859408 .01859408 .00574458 .17600895 .16248260 .01859408 .01859408 .003311107 .31448941 .32552798 .01859408 .01859408 .000574458 .17600895 .16248260 .01859408	STD DEV X 8.475630 43E+00 1.000000000 1.00258513E+00 .08615729 3.97722851E+00 -90643312
02033327 .02925570 .0318530504299656 .02033327029255700318530504299656 .020333270292557003185305 .04299656 .06820572053915940175616600802865 .00671655 .0539159401756166 .00802865 .00671655 .05391595 .01756166 .0080286500671655 .05391595 .01756166 .0080286500671655 .05391595 .01756186 .0152482600495843500574458 .17600895 .162482600495843500574458 .17600895 .1624826004958435073111073414894132552798 .01859408 .073111073414894132552798 .01859408 .0731110744026278428853E-01	.031853050429965603185305 .0429965610975569 .0336866210975569 .00671655 .00639696500802865006716550083693901460557 .162482690495843532552798 .01859408325527983255	.86294945 .99862325 .83124226
02033327 .02925570 .0318530504299656 .020333270292557003185305 .04299656 .020823327028645610975569 .03368862 .053915940175616600802865 .00671655 .05391595 .01756166 .00802865 .00671655 .05391595 .01756166 .00802865 .00671655 .05391595 .01760892 .1562482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1760892 .162482600495843500574458 .1664896135 -01859408 .007311073414894132552798 .01859408 .16648965959579179178E-01 +.408050839679412E-01 +.408050839679412E-01 +.4080539679412E-01 +.4	.031853050429965603185305 .0429965610975569 .0336886210975569 .0336886210975569 .033688621097556901460557 .1624825804958435162482600495843532552798 .01859408325527883255278325527832552788325527832	
02033327 .02925570 .0318530504299656 .020333270292557003185305 .04299656 .02033270292557003185305 .04299656 .0268206721288645610975569 .03368862 .05391594017561660080286500671655 .05391595 .01756166 .008028650067165505391595 .01756166 .008028650067165500574458 .17600892 .162482600495843500574458 .17600892 .162482600495843500574458 .17600892 .1624826004958435073111073414894132552798 .01859408 2 7.4979386132E-01 2 7.4979386132E-01 3 1.6743611434E+00 2 7.4080508967309E-02 4.0426273446489E-01 8.9980539679412E-01 8.9980539679412E-01 8.2117799779178E-01	031853050429965603185305 .0429965610975569 .0336886210975569 .035686200802865 .00671655 .0083689593901460557 .162482690495843532552798 .018594083255279832552798 .0185940832552798325527983255279832552798325527983	
02033327 .02925570 .0318530504299656 .020333270292557003185305 .04299656 .062033271288645610975569 .0336862 .063915940175616600802865 .00671655 .0539159401756166 .00802865 .00671655 .05391595 .01756166 .0080286500671655 .05391595 .01756166 .0080286500671655 .05391595 .017600892 .162482580146055700574458 .17600892 .1624825801495843500574458 .17600895 .1624826001495843500574458 .17600895 .1524826001495843500574458 .17600895 .1524826001495843500574458 .17600895 .1624826001495843500574458 .17600895 .1624826001495843500574458 .17600895 .16248260014958435000574458 .17600895 .16248260014958435000574458 .1760089501489260014892608 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859408 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859435 .01859408 .01859435 .018	03185305042996560318530503185305 .0429965610975569 .035886200802865 .00671655 .00839693901460557 .162482600495843532552798 .01859408325528527832552798 .01859408325528527832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798325527983255279832552798325527983255279832552798325527983255279832552798325527983255279832552793255279832552798325527983255279832552798325527983255279832552798325527983255278325527983255278325527983255278325527832552783255278325527832552783255278325527832552783255278325527	
02033327029255700318530504299656020333270292557003185305 .0429965602033270292557003185305 .04299656028206721288645610975569 .006716550539159401756166008028650067165505391594017561660080286500671655053915950175616600802865014605570539159501756186063969390146055700574458 .17560895 .1624826001495843500574458 .17560895 .1624826001495843500574458 .17560895 .1524826001495843500574458 .17560895 .1524826001495843500574458 .17560895 .1524826001495843500574458 .17560895 .1624826001495843500574458 .175608950327882014285150185940801859408073111073414894132552798 .01859408018594080140850896731954.027882014228535-01	03185305042996560318530504299656109755690336886210975569033688620080286500671655008368959390146055716248269049584353255279801859408018594083255279801859408325527	
068206721288645610975569 .01356862068206721288645610975569 .013568620539159401756166008028650067165516278537 .01484538 .063969390146055700574458 .17600895 .162482580495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843500574458 .17600895 .162482600495843501859408005311073414894132552798 .01859408	03185305 .0429965610975569 .0336886200802865 .00671655 .0639693901460557 .1624826904958435 1624826004958435 232552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .0185940832552798 .01859408	č
068206721288645610975569 .0336862053315940175616600802865 .0067165505331595 .01756166 .008028650067165516278537 .04484538 .063969390146055700574458 .17600895 .1624825804958435 073111073414894132552798 .01859408 2 7.4979388032E=01 3 1.6743611434E+00 4.0826273446489E=01 8.9805339679412E=01 8.9117799778E=01 8.980533679412E=01 8.2117799778E=01	10975569 .0336866200802865 .00671655 .00839693901460557 .1624826004958435152482600495843532552798 .01859408 .162482600495843532552798 .01859408 .16248260945843532552798 .01859408 .16248260945843532552798 .01859408 .15248260945843532552798 .01859408 .55252798 .01859408 .55252798 .01859408 .55252798 .01859408	<u>~</u> .
053915940175616600802865 .00671655 .038807505391595 .01756166 .008028650067165503880751627857 .04484538 .0639693901460557 .075635200574458 .17600895 .1624826004958435058108100574458 .17600895 .1624826004958435058108100574458 .17600895 .1624826004958435058108100574458 .17600895 .1624826004958435058108100574458 .17600895 .1624826004958435058108100574458 .17600895 .1624826004958435058108100574458 .17600895 .162482635064958435058108100574458 .17600895 .16248263504958435058108100574458 .17600895 .16248263504958435058108100574458 .17600895 .16248263504958435058108100574458 .17600895 .16248263504958435058108100574458 .17600895 .16248263504958435058108100574458 .17600895 .16248285304958435058108100574458 .17600895 .16248285304958435058108100574458 .17600895 .16248285304958435058108100574458 .17600895 .16248285304958635058108100574458 .17600895 .162485804958635058108100574458 .17600895 .162485804958635058108100574458 .17600895 .162485804958635058108100574458 .17600895 .162485804958635058108100674458 .17600895 .1624858049586350495863504968585804968585804968585804968585804968585804968585804968585804968804968804968804968804968049680496804968 -	00802865 .00671655 . 00802865 . 008071655	
16278537 .04484538 .06396950067165516278537 .04484538 .063969390146055700574458 .17600895 .162482600495843500574458 .17600895 .1624826004958435073111073414894132552798 .01859408073111073414894132552798 .01859408073111073414894132552798 .01859408073111073414894132552798 .0185940807311107 -4.365127419464096-01 -4.0278820422853E-01 -4.027885386012 -4.02788538601 -4.02788538601 -4.02788538601 -4.02788538601 -4.02788538601 -4.0027885	0080286500671655014605571624826001450843532552798018594083255279801859408325527980185940832552798 -01859408	
16276537 .04484538 .063969390146055700574458 .17600895 .1624826004958435 00574458 .17600895 .1624826004958435 0073111073414894132552798 .01859408 2 27497938803226-01 3 1.67436114346+00 1.4080508967309E-02 -4.0278820422853E-01 8.9980539679412E-01 4.042627346489E-01 -4.3606420074043E-01 8.2117799779178E-01	.0639693901460557 .1624825804958435 .1624826004958435 .32552798 .01859408 .26273446489E-01 .17799779178E-01 .LEVEL 30E-01 .5508E-01 XX + 1.038E+00 YZ = 9 5.331E-01 X**2 = 9 5.331E-01 X**2 = 9	
00574458 .17600895 .162482580495843500574458 .17600895 .162482600495843500574458 .17600895 .1624826004958435073111073414894132552798 .01859408	162482580495843532552798 .0185940832552798 .01859408 -22523446489E-01 117799779178E-01 1	~
00574458 .17600895 .16248260049584350581081 .073111073414894132552798 .01859408 .0163397 SQUARE RODIS OF EIGENVALUES 1 9.23561274918+00 2 7.4979388032E-01 3 1.6745611434E+00 1.4080508967309E-02 -4.0278820422853E-01 8.9980533679412E-01 4.042623446486E-01 -4.3606420074043E-01 8.2117799779178E-01	.162482600495843532552798 .01859408 32552798 .01859408 -26273446489E-01 117799779178E-01 1	
O73111073414894132552798 .01859408 .0163397 SQUARE RODIS OF EIGENVALUES 1 9-2556127419E+00 2 7.497938083E-01 3 1.6743611434E+00 1.4086508967309E-02 -4.0278820422853E-01 -4.3606420074043E-01 6.2117799779178E-01	32552798 .01859408 78820422853E-01 117799779178E-01 1 EVEL 1.508E-10 X + 1.038E+00 YZ = 9 5.331E-01 Z2 = 9 5.331E-01 Z**2 = 9	
SQUARE ROOTS OF EIGENVALUES 1 9.2356127419E+ 2 7.4979388032E- 3 1.6743611434E+ 1.4080508967309E-02 8.998053967412E-01 -4.3606420074043E-01	78820422853E-01 4627346489E-01 117799779178E-01 1 LEVEL 350E-01 XZ + 1.033E+00 YZ = 1.508E+01 Y*2 = 9 5.331E-01 Z**2 = 9 5.331E-01 Z**2 = 9	9
SQUARE ROOTS OF EIGENVALUES 1 9.2356127419E+ 2 7.4379388032E- 3 1.6743611434E+ 1.4080508967309E-02 8.99053967412E-01 -4.3606420074043E-01	78820422853E-01 127799779178E-01 117799779178E-01 1 LEVEL 1.508E-01 XZ + 1.038E+00 YZ = 1.508E+01 Y**2 = 9 5.331E-01 Z**2 = 9 5.331E-01 Z**2 = 9	
1.4080508967309E-02 8.9980539679412E-01 -4.3606420074043E-01	78820422853E-01 12779973446489E-01 117799779178E-01 1 LEVEL 1.508E-01 XZ + 1.038E+00 YZ = 1.508E+01 Y**2 = 9 5.331E-01 Z**2 = 9 5.331E-01 Z**2 = 9	IGENVALUES 8.5296542717864E+01 5.6219086296823E-01 2.8034852386458E+00
	\ \text{LEVEL} \\ \text{1.038E+00 YZ} = \\ \\ \text{1.506E+01 XZ} + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	000

	σ.	海绵 经存货 医外腺性 医水杨醇 医水杨醇 医水杨醇		计算机转换 化化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基							1.0000000					0191688	.01916888	.06385165	.03044000	03044000	.05932701	04557906	04557906
277	-4.901E+11 YZ = *2 = 9 *2 = 9 *2 = 9	****	•0	***							1.000000000					03878486	.03878486	.03038868	*00605864	00605864	01317489	04472734	04472735
-3.1575365057773E-02 -2.646690251282FE-01 9.6382223644150E-01	A LEVEL 597E+12 XZ + 1.429E+12 Y* 5.448E+10 Z*	经存货帐据 医水杨醇硷 医水红红斑 经存货的	• 0	经存储分别的 经存储分割的 医电子性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医二甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲				83 DAYS			1.00000000 .26811250 58680538					.00640812	00640812	02208038	00161518	.00161518	.01286920	.03268784	.03268785
	ORMAL DISTRIBUTION X = N(0,0) AND THE,3 SIGN HE MYPERELLIPSOID HAS THE FOLLOWING EQUATION Y*2 + 5.446E+10 Z*2 + 1.077E+13 XY + -1.0 Y*2 + 5.446E+13 X*2 + 1.077E+13 XY +	· 在安安安安安安安安安安安安安安 ·	•	******				S AT TIME 30.383		1.00000000	.99938636 .27191179 70148184					.00552124	00552124	02431976	00331430	.00331430	00846337	.03321701	.03321701
2.1094560812185E-01 9.4081758220625E-01 2.6526256318155E-01	DISTRIBUTION X = N(0,0 ERELLIPSOID HAS THE FO 5.446E+10 2**2 + 1. . 2.521E+13 X**2 + . 2.521E+13 X**2 + . 1.429E+12 Y**2 +	计电子分类 化二苯甲苯甲甲苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	•	*	183 DA 1S			STANDARD DEVIATIONS		1.00000000	.61126449 .36114423 70149129					01465045	.01465045	04914405	03884731	.03884731	11728950	00413906	00413906
EIGENVECTORS 9.7698769015582E-01 -2.1168983005613E-01 -2.6124109845766E-02	Z -	***	NOISE MATRIX 0.	电电流电阻 医电压性 医电压性 医电压性 医电压性	IS AT TIME 30.3			PARTITIONS AND STA	00000	05406290	-,34750930 .80813112 .75323201			HETERS		PARAMETERS 03964757	.03964757	.04839912	.01053634	01053634	00046005	16419756	06409757
VELOCITY EIGENVECTORS 1 9.769876901 2 -2.116898300 3 -2.612410984	FOR X**2 + 1,429 XY HYPERELLIPS XZ HYPERELLIPS YZ HYPERELLIPS	经存货 化异丙基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	L OF ACTUAL DYNAMIC 6.	经股份股份 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	STIMATION ERROR MEANS	• • •	• • • • • • • • • • • • • • • • • • • •	• ATION MATRIX	33E+00	1.39148166E+UU 2.10759655E+01	2.58732187E-06 3.70817871E-06 1.32001899E-05	SOLVE-FOR PARAMETERS		DYNAMIC CONSIDER PARAMET		MEASUREMENT CONSIDER							
	2.521E+13	· · · · · · · · · · · · · · · · · · ·	DIAGONAL	计分字符号 计分字符号 化二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	ACTUAL ES	< > 1	7 X > 1	VZ ACTUAL CO		> 72 <u>:</u>	× ^ ^ × ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	SO	NONE	A O	NONE	ME. RADIUS 1	LAT 1	LONG 1	RADIUS 2	LAT 2	LONG 2	RADIUS 3	LAT 3

.01281662	.62028326					ø			o
.01677271	43164169					=8.412E-02 Y2 = +2 = 9 +2 = 9			-8.504E+10 YZ = +2 = 9 +2 = 9
06548892	97955480				1.6096797474522E-01 -4.6242857313282E-02 9.858757067971E-01	A LEVEL 7275-03 XZ + 9.1216-01 Y* 4.4966-03 Z*		1.5809229825948E-01 3.0056484010737E-02 9.8696678414216E-01	XZ + +11 Y* +10 Z* +10 Z*
06444705	-,98203027			OF EIGENVALUES 7.9991401989E+00 1.0455520339E+01 2.1337924065E+01		= N(0,0) AND THE,3 SIG : THE FOLLOWING EQUATIO : + -5.220E-02 XY + X**2 + -5.20E-02 XY + X**2 + 6.727E-03 XZ + Y**2 + -8.412E-02 YZ +	EIGENVALUES 1.2248306733E-06 3.7900024132E-06 1.3372565542E-05	•	9,4) AND THE,3 SIG FOLLOWING EQUATIO 4,209E+11 XY + 1 + -4,209E+11 XY + + 1,880E+11 XZ + + -8,504E+10 YZ +
.05267771	69344875			SQUARE ROOTS OF	3,6270145376657E-02 9,985041735568E-01 4,0913224559935E-02	NORHAL DISTRIBUTION X = N(0,0) AND THE,3 SIGH THE HYPERELLIPSOID HAS THE FOLLOWING EQUATION Y**2 + 4,496E-02 X**2 + -5,220E-02 XY + 6, 1,604E-02 X**2 + -5,22E-03 XY + 9,121E-01 Y**2 + -8,412E-02 YZ +	SQUARE ROOTS OF 1 1 2 2 3 3 1 1 3 1 1	-3,9004255457208E-01 9,1635021923619E-01 9,0382970346405E-02	1 HE X * * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 2 X * 4 X * 4 X * 2 X * 4 X * 2 X * 4 X
.05341925	.18044156	TERS		EIGENVALUES 6.3986243921820E+01 1.0931790556329E+01 4.5530703341289E+02	EIGENVECTORS 9.869295225138E-01 -2.9172136311304E-02 -1.6240442974949E-01	FOR THE NORMAL DISTR THE HYPERELL 9.121E-01 Y**2 + 4,4, LLIPSOID	EIGENVALUES 1.5002101783548E-12 1.4364118292235E-11 1.7882550916426E-10	LIGENVECTORS 9.0712382333057E-01 3.9924789727018E-01 -1.3314460436463E-01	THE MORMAL DISTRIBUTION X THE HYPERELLIPSOID HAS 1+11 Y**2 + 2.217E+10 Z** DID 5.597E+11 DID 5.597E+11
	IGNORE PARAMETERS	SOL VE-FOR PARAMETERS	NO SOLVE-FOR PARAMETERS	POSITION EIGEN 1 6.39 2 1.09 3 4.55	POSITION EIGEN 1 9.86 2 -2.91 3 -1.62	FOR THE 1.604E-02 X**2 + 9.121E-01 XY HYPERELLIPSOID. XZ HYPERELLIPSOID. YZ HYPERELLIPSOID.	VELOCITY EIGEN 1 1.50 2 1.436 3 1.78	VELOCITY EIGENV 1 9.073 2 3.995 3 -1.333	FOR THE 5.597E+11 X**2 + 1.599E+11 XY HYPERELLIPSOID. XZ HYPERELLIPSOID. YZ HYPERELLIPSOID.
LONG 3	I R-RATE		NO SOLVE			1.604			. 593.