Examen algebra (**04.05.2009**), varianta 1

1. Determinanti x,y,z din sistemul Cauchy:

$$x'=y+z$$
, $y'=x-z$, $z'=x-y$
 $x(0)=0, y(0)=0, z(0)=-3$

- 2. In R-spatiul vectorial $R_2[X]$ cu produsul euclidian $< P, Q >= \sum_{i=0}^2 a_i b_i$ fie multimea $V = \{ P \in R_2[X] \mid P(1) = 0 \}$. Sa se determine V^{\perp} si o baza ortonormata in $\mathbb{R}_2[x]$ diferita de baza canonica.
- 3. Sa se reduca la forma canonica si sa se reprezinte grafic conica:

$$4xy-3y^2+4x-14y-7=0$$

4. Sa se determine solutia urmatoarelor ecuatii dif:

a)
$$xy' - y + 2x^2y^2 = 0$$

b)
$$y''y-y^2y'-y'^2=0$$

5. a) Sa se determine intersectia cilindrului ce are generatoarea $\vec{v} = \vec{i} - \vec{j}$ si curba $(C): x^2 + y^2 - z = 4, x - 1 = 0$ cu planul xOz. Ce curba este (intersectia cu planul)? b) $A \in M_n(R)$ nesingulara. Demonstrati ca matricea $B = A^t A$ are toate valorile proprii reale si pozitive si $(\exists) C \in M_n(R)$ astfel incat $C^2 = B$