Propagació numèrica d'errors dels satèl·lits en òrbita terrestre

Víctor Ballester

Supervisor: Josep Maria Mondelo

Departament de Matemàtiques Facultat de Ciències

11 de juliol de 2023

Motivació

- Aproximadament 27 000 satèl·lits (actius i inactius) orbiten al voltant de la Terra.
- Diverses col·lisions involuntàries s'han produït en el passat.
- El model que considera la Terra com a massa puntual no és suficient. Necessitem un model més precís.

Motivació

- Aproximadament 27 000 satèl·lits (actius i inactius) orbiten al voltant de la Terra.
- Diverses col·lisions involuntàries s'han produït en el passat.
- El model que considera la Terra com a massa puntual no és suficient. Necessitem un model més precís.

Objectius:

- Desenvolupar un model per al potencial de la Terra.
- Predir la posició de satèl·lits considerant diverses pertorbacions.
- Estimar l'error de la trajectòria del satèl·lit.

Índex

- Equació per al geopotencial
- Desviacions de l'eix de rotació de la Terra
- 3 Altres pertorbacions i sistema d'EDOs final
- 4 Resultats
- Conclusions

Equació per al geopotencial

Sigui $\Omega \subseteq \mathbb{R}^3$ la regió que ocupa la Terra.

$$\mathbf{g} = -\int_{\Omega} G \frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^3} \rho(\mathbf{s}) d^3 \mathbf{s} = \nabla V$$
$$V = \int_{\Omega} G \frac{\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} d^3 \mathbf{s}$$

Equació per al geopotencial

Sigui $\Omega \subseteq \mathbb{R}^3$ la regió que ocupa la Terra.

$$\mathbf{g} = -\int_{\Omega} G \frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^3} \rho(\mathbf{s}) d^3 \mathbf{s} = \mathbf{\nabla} V$$

$$V = \int_{\Omega} G \frac{\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} d^3 \mathbf{s}$$

Teorema

V satisfà el següent problema de valors de frontera exterior:

$$\begin{cases} \Delta V = 0 & a \Omega^{c} \\ V = f & a \partial \Omega \end{cases}$$
$$\lim_{\|\mathbf{r}\| \to \infty} V = 0$$

on $f:\partial\Omega\to\mathbb{R}$ és el potencial gravitatori a la superfície de la Terra.

Buscant la solució explícita fent separació de variables, trobem que

$$V = \frac{GM_{\oplus}}{R_{\oplus}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{R_{\oplus}}{r}\right)^{n+1} (\bar{C}_{n,m} Y_{n,m}^{c}(\theta,\phi) + \bar{S}_{n,m} Y_{n,m}^{s}(\theta,\phi))$$

on

$$Y_{n,m}^{c}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\cos(m\phi)$$

$$Y_{n,m}^{s}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\sin(m\phi)$$

són els harmònics esfèrics.

Desviacions de l'eix de rotació de la Terra

- Precessió
- Nutació
- Moviment polar
- Rotació

Font: NASA Earth Orientation Animations

Altres pertorbacions

 ${f r}=$ posició del satèl·lit respecte al centre de masses de la Terra

• Pertorbacions d'altres cossos (Lluna i Sol):

$$\frac{GM}{\left\|\mathbf{s}-\mathbf{r}\right\|^2}(\mathbf{s}-\mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2}\mathbf{s}$$

Altres pertorbacions

 ${f r}=$ posició del satèl·lit respecte al centre de masses de la Terra

Pertorbacions d'altres cossos (Lluna i Sol):

$$\frac{GM}{\|\mathbf{s} - \mathbf{r}\|^2}(\mathbf{s} - \mathbf{r}) - \frac{GM}{\|\mathbf{s}\|^2}\mathbf{s}$$

• Fregament atmosfèric:

$$-\frac{1}{2}C_{\rm F}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

on $\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - oldsymbol{\omega}_{\oplus} imes \mathbf{r}$

Altres pertorbacions

 ${f r}=$ posició del satèl·lit respecte al centre de masses de la Terra

Pertorbacions d'altres cossos (Lluna i Sol):

$$\frac{GM}{\left\|\mathbf{s} - \mathbf{r}\right\|^2} (\mathbf{s} - \mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2} \mathbf{s}$$

• Fregament atmosfèric:

$$-\frac{1}{2}C_{\rm F}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

on
$$\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - oldsymbol{\omega}_{\oplus} imes \mathbf{r}$$

Pressió per radiació solar:

$$-\nu P_{\odot} C_{\rm R} \frac{A_{\odot}}{m} \frac{\mathbf{s}_{\odot} - \mathbf{r}}{\|\mathbf{s}_{\odot} - \mathbf{r}\|}$$

Sistema d'equacions diferencials ordinàries

Utilitzant el mètode de Runge-Kutta-Fehlberg d'ordre 7(8) integrarem el sistema diferencial:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{\mathrm{GP}} + \delta_{\mathrm{F}} \mathbf{a}_{\mathrm{F}} + \delta_{\mathrm{R}} \mathbf{a}_{\mathrm{R}} + \delta_{\mathrm{sol}} \mathbf{a}_{\mathrm{sol}} + \delta_{\mathrm{lluna}} \mathbf{a}_{\mathrm{lluna}} \end{cases}$$

Sistema d'equacions diferencials ordinàries

Utilitzant el mètode de Runge-Kutta-Fehlberg d'ordre 7(8) integrarem el sistema diferencial:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{GP} + \delta_{F}\mathbf{a}_{F} + \delta_{R}\mathbf{a}_{R} + \delta_{sol}\mathbf{a}_{sol} + \delta_{lluna}\mathbf{a}_{lluna} \end{cases}$$

Les condicions inicials provenen de **TLEs** (*Two Line Elements sets*).

Línia	Número satèl·lit	Classe						nal Peç			Any		Dia	a de		any	(o		_	frac	ció)				[re	n ev/	/2 dia	ι ²]					[ñ/(r/d	lia ²	-				(te	gar	ne ne	nt))		Model	Ш	Núm TLI	Ε	Check
1 2	3 4 5 6 7	8	9 1	0 11	12	13 1	4 15	16	17	18	19 2	0 2	22	23		25	26 2	7 2	5 2	9 30	31	32	33	34 3	15 3	6 37	38	29	40 4	1 4	2 43	44	45	46	47	48 4	9 50	0 51	52	53 5	4 53	56		58	59	60 6	51 62	2 63	64	55 66 6	7 68	69
		П	Т	П	П	Т	Т	П	П	Т	Т	Т	Т	П	П	П	Т	Т	Т	Т	Т	П	П	\mathbf{S}	Т	Т	П	П	Т	Т	Т	Т	IS		П	Т	Т	Т	П	- 15	3.	П	П	П	П	SI	E	П	П	\neg		П
1	5 5 1 2 4	U	1	9 8	0	6	7 L	R		1	2 :	3 0	8	6		1	6	7 7	7 8	9	9	4		1	. () 1	5	4	0 -	4 (7			1	4	1 () 2	2 -	2		2	6	6	3	4	- 2	2	0		9 9	9	1
Línia	Número satèl·lit			Inc	elir	ac °]	ió			A	Asc	ens Ω	ió [°]	rec	eta			E	xce	nt e	rici	tat	t		(iel				s		A	no	ma I	lia И		itja	ana	Ŀ			ovi n				nitj y]	jà		d	iomb e rev	0-	Checksum
1 2	3 4 5 6 7	8	9 1	0 11	12	13 1	4 15	16	17	18	19 2	0 2	22	23	24	25	26 2	7 2	5 2	9 30	31	32	33	34 3	15 3	6 37	38	39	40 4	1 4	2 4:	44	45	46	47	48 4	9 54	0 51	52	53 5	4 53	56	57	58	59	60 6	61 62	2 63	64	55 66 6	7 68	69
2	5 5 1 2 4			5 1		6	2 3	7				<i>.</i>	0	0	1	7	j	0 0) 1	. 0	7	5	7		1 8	8		3	8	6 9)	1	7	1		6 9	9 6	3		1 (6 .	0	1	8	7	8 1	1 9	9		1 3 7	9	2

Resultats - LEO (Low Earth Orbit)

- L'ISS fa aproximadament 16 òrbites al dia.
- Els satèl·lits LEO interactuen amb l'atmosfera.
- És difícil de predir el fregament atmosfèric.

Resultats - GEO (Geostationary Earth Orbit)

TDRS-3

- Afegint-hi la Lluna i el Sol, els errors es redueixen.
- La pressió per radiació solar augmenta les oscil·lacions.
- Maniobra al voltant del dia 13.

Conclusions

- El model de la Terra com a massa puntual no és suficient per predir l'òrbita d'un satèl·lit durant uns quants dies.
- Afegint-hi la Lluna i el Sol, els errors es redueixen.
- La pressió per radiació solar augmenta les oscil·lacions dels errors.

Conclusions

- El model de la Terra com a massa puntual no és suficient per predir l'òrbita d'un satèl·lit durant uns quants dies.
- Afegint-hi la Lluna i el Sol, els errors es redueixen.
- La pressió per radiació solar augmenta les oscil·lacions dels errors.

Possibles refinaments:

- Millorar el modelatge del fregament atmosfèric i la pressió per radiació solar.
- Estudiar la influència de la inclinació i l'excentricitat en els errors.

Extres

Separació de variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

$$\begin{cases} \frac{(r^2R')'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases}$$

$$\left(\frac{\left(r^2R'\right)'}{n}-n(n+1)\right)$$

 $n, m \in \mathbb{N} \cup 0, m < n$

Separació de variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

$$\begin{cases} \frac{\left(r^2R'\right)'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 & n, m \in \mathbb{N} \cup 0, m \le n \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases}$$

Imposant condicions de frontera:

$$V = rac{GM_{\oplus}}{R_{\oplus}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(rac{R_{\oplus}}{r}
ight)^{n+1} (\bar{C}_{n,m}Y_{n,m}^{c}(\theta,\phi) + \bar{S}_{n,m}Y_{n,m}^{s}(\theta,\phi))$$

on

$$Y_{n,m}^{c}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\cos(m\phi)$$
$$Y_{n,m}^{s}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\sin(m\phi)$$

són els harmònics esfèrics.

Esfera celeste

- Esfera abstracta de radi infinit centrada en la Terra.
- Tots els objectes celestes s'hi projecten de forma natural.

Eix mitjà de rotació: eix de rotació quan les pertorbacions de nutació es promitgen.

Equador mitjà: pla perpendicular a l'eix mitjà de rotació.

Equinocci vernal mitjà (Υ) : el punt d'intersecció entre l'equador mitjà amb l'eclíptica on el Sol creua l'equador celeste de sud a nord.

Sistemes de referència inercials i no inercials

Data J2000: 1 de gener de 2000 a les 12:00 TT.

Quasi-inercial:

- Eix x: apuntant cap a $\overline{\Upsilon}$ de la data J2000
- Eix z: perpendicular a l'equador mitjà de la data J2000

No inercial (fix amb la Terra):

- Eix z: apuntant cap a l'IRP (International Reference Pole)
- Eix x: apuntant cap al meridià zero i situat en el pla perpendicular a l'eix z

En ambdós sistemes, l'eix y s'escull de manera que la base (x, y, z) sigui positiva.

Resultats

Esquema de la nostra simulació:

Resultats

Esquema de la nostra simulació:

Zones que hem estudiat:

- Satèl·lits d'òrbita baixa (LEO)
- Satèl·lits d'òrbita mitjana (MEO)
- Satèl·lits d'òrbita geoestacionària (GEO)

Resultats - MEO

- El model geopotential és molt oscil·latori.
- La Lluna i el Sol redueixen les oscil·lacions.
- La pressió per radiació solar augmenta les oscil·lacions.