EE 2000 Logic Circuit Design Semester A 2024/25

Tutorial 8

1. (a)

Input	Outputs					
A	D1	D0				
0	0	1				
1	1	0				

Functional block: 1-to-2 line decoder

(b)

Inj	outs	Outputs						
A1	A0	D3	D2	D 1	D0			
0	0	0	0	0	1			
0	1	0	0	1	0			
1	0	0	1	0	0			
1	1	1	0	0	0			

Note:

Input	Outputs				
A1/A0	SigA1(1)/SigA0(1)	SigA1(0)/SigA0(0)			
0	0	1			
1	1	0			

Functional block: 2-to-4 line decoder

2. (a)

Input	Output
S	Q
000	0000001
001	0000010
010	00000100
011	00001000
100	00010000
101	00100000
110	01000000
111	10000000

Functional block: 3-to-8 line decoder

(b)

Inputs									Out	puts			
0	1	2	3	4	5	6	7	8	9	A ₃	A ₂	A_1	A_o
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	0	0	1	0	0	0	0	0	0	1	1	0
0	0	0	0	0	1	0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	0	0	0	1	0	1	1	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	1

```
library ieee;
use ieee.std logic 1164.all;
entity DTG encoder is
   port (
         D in : in std_logic_vector(9 downto 0);
         G_out: out std_logic_vector(3 downto 0)
End DTG encoder;
architecture Behavior of DTG_encoder is
begin
         process (D_in)
         begin
                  G out(3) \leq D in(8) OR D in(9);
                  G_{out}(2) \leq D_{in}(4) \mathbf{OR} D_{in}(5) \mathbf{OR} D_{in}(6) \mathbf{OR} D_{in}(7) \mathbf{OR} D_{in}(8)
         OR D in(9);
                  G_{out}(1) \le D_{in}(2) OR D_{in}(3) OR D_{in}(4) OR D_{in}(5);
                  G \text{ out}(0) \leq D \text{ in}(1) \mathbf{OR} D \text{ in}(2) \mathbf{OR} D \text{ in}(5) \mathbf{OR} D \text{ in}(6) \mathbf{OR} D \text{ in}(9);
         end process;
end Behavior
```

4.

	Inp	outs		Internal signal	Output	State	
a	clk	X	y	tmp	Z	State	
1	X	X	X	0	$0 \to 0$ $1 \to 0$	Reset	
0	0, 1, ↑	X	X	$\begin{array}{c} X & 0 \to 0 \\ 1 \to 1 \end{array}$		Hold	
0	\	0	0	X	$\begin{array}{c} X & 0 \to 0 \\ 1 \to 1 \end{array}$		
0	↓ ↓	0	1	$ \begin{array}{ccc} 0 \to 0 \\ 1 \to 0 \end{array} $		Reset	
0	\	1	0	1	$0 \to 1$ $1 \to 1$	Set	
0	\	1	1	$0 \to 1$ $1 \to 0$	$0 \to 1$ $1 \to 0$	Toggle	

Functional block: Negative-edge triggered JK Flip-Flop with asynchronous Active High CLR.