Computational Methods

RECURRENCE RELATIONS

A sequence of numbers $(a_n)_{n\geq 0}$ is said to satisfy a **(homogeneous) linear** recurrence relation of order d if there are scalars c_1, \ldots, c_d such that $c_d \neq 0$, and for all $n \geq d$, we have

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_d a_{n-d}.$$

Example The Fibonacci numbers f_n are given by the sequence $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$. This isn't really telling you what the general f_n is, so instead let me say that for all $n \geq 2$, we have

$$f_n = f_{n-1} + f_{n-2}$$
.

Together with the initial conditions $f_0 = 0$, $f_1 = 1$, this is enough information to calculate any f_n . So (by definition), the Fibonacci numbers satisfy a linear recurrence relation of order 2.

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more previous terms of the sequence $a_0, a_1, ..., a_{n-1}$. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

The recurrence relation together with the initial conditions uniquely determines a sequence, i.e., a solution.

e.g. Consider the recurrence relation (Fibonacci numbers):

$$a_n = a_{n-1} + a_{n-2}$$
, $n \ge 2$
where $a_0 = 0$ and $a_1 = 1$.

Then $\{0,1,1,2,3,5,8,...\}$ is the solution.

Question: Is it possible to find an explicit formula for a_n ? In some conditions yes!

Definition Let $(a_n)_{n\geq 0}$ be a sequence of numbers. The generating function associated to this sequence is the series

$$A(x) = \sum_{n \ge 0} a_n x^n.$$

Example Let p be a positive integer. The generating function associated to the sequence $a_n = \binom{k}{n}$ for $n \le k$ and $a_n = 0$ for n > k is actually a polynomial:

$$A(x) = \sum_{n \ge 0} {k \choose n} x^n = (1+x)^k.$$

Solve $a_n = 8a_{n-1} + 10^{n-1}$ with initial condition $a_0 = 1$.

Solution:

Let G(x) be the generating function for the sequence $\{a_n\}$, that is, $G(x) = \sum_{n=0}^{\infty} a_n x^n$

$$\Rightarrow G(x) = 1 + \sum_{n=1}^{\infty} a_n x^n = 1 + \sum_{n=1}^{\infty} (8a_{n-1}x^n + 10^{n-1}x^n) = 1 + 8x \sum_{n=1}^{\infty} a_{n-1}x^{n-1} + x \sum_{n=1}^{\infty} 10^{n-1}x^{n-1}$$

$$= 1 + 8x \sum_{n=0}^{\infty} a_n x^n + x \sum_{n=0}^{\infty} 10^n x^n = 1 + 8x \cdot G(x) + x/(1 - 10x) \quad \text{since by geometric series:}$$

$$\Rightarrow G(x) = \frac{1 - 9x}{(1 - 8x)(1 - 10x)} = \frac{1}{2} \left(\frac{1}{1 - 8x} \right) + \frac{1}{2} \left(\frac{1}{1 - 10x} \right) \qquad 1/(1 - rx) = \sum_{k=0}^{\infty} r^k x^k$$

$$= \frac{1}{2} \left(\sum_{n=0}^{\infty} 8^n x^n + \sum_{n=0}^{\infty} 10^n x^n \right) = \sum_{n=0}^{\infty} \frac{1}{2} (8^n + 10^n) x^n$$

$$\Rightarrow a_n = \frac{1}{2} (8^n + 10^n)$$

Solve $a_k = 3a_{k-1}$ with initial condition $a_0 = 2$.

Solution:

Let G(x) be the generating function for the sequence $\{a_k\}$, that is, $G(x) = \sum_{k=0}^{\infty} a_k x^k$.

$$G(x) = \sum_{k=0}^{\infty} a_k x^k = 2 + \sum_{k=1}^{\infty} 3a_{k-1} x^k$$
 (by the recurrence relation $a_k = 3a_{k-1}$)

$$=2+3x\sum_{k=1}^{\infty}a_{k-1}x^{k-1}=2+3x\cdot G(x)$$

$$\Rightarrow$$
 $G(x) - 3x \cdot G(x) = (1 - 3x) \cdot G(x) = 2$

$$\Rightarrow$$
 $G(x) = 2/(1-3x)$

Using the identity, $1/(1-rx) = \sum_{k=0}^{\infty} r^k x^k$,

$$G(x) = 2 \cdot \sum_{k=0}^{\infty} 3^k x^k = \sum_{k=0}^{\infty} 2 \cdot 3^k x^k : a_k = 2 \cdot 3^k$$

Exercises

Solve the below recurrence relations using generating function-:

$$F_n = F_{n-1} + F_{n-2} \quad n \ge 2 \quad F_1 = 1 \quad F_0 = 0$$