Redeeming Reset Indifferentiability and Applications to Post-Quantum Security

Mark Zhandry (Princeton & NTT Research)

Look at my great new hash function!

Can you prove security under widely believed assumptions?

Well, no. But the same is true for SHA.

Fair enough. Let's take a look.

Darn. Let's try something else then.

I don't immediately see any issues, but can you show there aren't any?

Def [Maurer-Renner-Holenstein'04]: *Indifferentiability*

Note: Sim can be stateful

Thm [Maurer-Renner-Holenstein'04]: Indifferentiability composes, implies security for "single stage games"

This Work: An Exploration of Reset Indifferentiability

Limitation [Ristenpart-Shacham-Shrimpton'11]:

Problem: Sim's shared state breaks isolation

MRH composition fails

Examples: Deterministic encryption, KDM security, leakage resilience, etc.

Def [Ristenpart-Shacham-Shrimpton'11]: Reset Indifferentiability

Now Sim must be stateless

Thm [Ristenpart-Shacham-Shrimpton'11]: Reset indiff. implies security for general games

Thm [Ristenpart-Shacham-Shrimpton'11, Luykx-Andreeva-Mennink-Preneel'12, Demay-Gaži-Hirt-Maurer'13, Baecher-Brzuska-Mittelbach'13]:

No reset indifferentiable domain extension

Consequence: Reset indifferentiability largely abandoned

Observations

- Domain extension not always necessary
 (e.g. deterministic encryption for fixed-size messages)
- 2. Essentially nothing else is known
 - Domain shrinkage?
 - Small ROs from ideal ciphers?
 - Vice versa?

Our Results for Reset Indifferentiability

Thm: Domain extension impossibility holds even for *query* unbounded simulators

Thm: In *unbounded* setting, in*distinguisha*bility → in*differentia*bility Domain shrinkage, ideal ciphers from RO's, vice versa, all have constructions that are indistinguishable against query unbounded attacks

Takeaway: useless for applications, but shows prior negative work inherently limited to domain extension

Thm: All results lift to quantum setting

Previously, ideal cipher \rightarrow ROs unknown, even under plain indifferentiability

Non-reset setting concurrently proved by [Czajkowski'21]; entirely different approach

Ideal ciphers \rightarrow Reset Indifferentiable ROs

Thm: If |in|+|out| ≫ |block|, not reset indifferentiable

Thm: If $|in|+|out| \gg |block|$, not reset indifferentiable

Thm: If $|in|+|out| \gg |block|$, not reset indifferentiable

Proof: Construct inverter for H

Pr[x'=x]
$$\geq$$
 Pr[z "correct"]
= $(\frac{1}{2})^{-(|b|ock|-|out|)}$
But, by one-wayness of ROs,
Pr[x'=x] \leq Ω ($q \times (\frac{1}{2})^{-|in|}$)
 $q \geq \Omega$ ($2^{|in|+|out|-|b|ock|}$)

Thm: If |in|+|out|≤|block|, then reset indifferentiable

Proof idea: Statelessly encode x into z

Open Problems

- Reset Indiff. ideal ciphers from ROs?
- 2 More efficient use of ideal ciphers?

3 What about other indiff. results?