Assignment 2 Due Date: 27 Feb'24

1. Riemann sphere and Bloch Sphere

(a) Using stereographic projection, show that any arbitrary 1-Qubit state can be written as a vector on the unit Riemann sphere of the form discussed in Assignment 1:

$$|+\psi\rangle = \cos\frac{\theta}{2}|+z\rangle + e^{i\phi}\sin\frac{\theta}{2}|-z\rangle.$$
 (1)

(b) Starting with the state $|0\rangle$, show that the state in Eq. (1) can be obtained through a cascade of 4 gates: Hadamard gate followed by Phase-Shift gate of $-\theta$, followed by another Hadamard, followed by yet another Phase-shift gate of $-\frac{\pi}{2} + \phi$.

2. Product States vs Entangled States

- (a) Show that $|\xi\rangle_{\pm} = \frac{1}{\sqrt{2}} (|00\rangle \pm |11\rangle)$ cannot be written as product of two single Qubit states, i.e., as Product states.
- (b) For $|\xi\rangle_{\pm}$ find the expectation values of $\sigma_x^A \sigma_x^B$, $\sigma_y^A \sigma_y^B$, $\sigma_z^A \sigma_z^B$, where A, B superscripts refer to the first (left) and second (right) Qubits respectively.
- (c) Define a new observable (Hermitian operator) $\sigma^A \cdot \sigma^B = \sigma_x^A \sigma_x^B + \sigma_y^A \sigma_y^B + \sigma_z^A \sigma_z^B$ and show that $|\xi\rangle_{\pm}$ is an eigenvector of this observable.

3. Quantum C-Not gate

- (a) Write the matrix representation of Quantum C-Not gate.
- (b) Starting with the state $|00\rangle$, use the 1-Qubit Hadamard gate and the C-Not gate to construct an entangled state.

4. Hermitian and Unitary matrices

- (a) Show that for a Hermitian operator $(H = H^{\dagger})$, the eigenvalues are real and eigenvectors are orthogonal.
- (b) Show that for a Unitary operator $(UU^{\dagger} = I)$, the eigenvalues have modulus 1 and the eigenvectors are orthogonal.

5. Quantum cryptography

This is a coding based question. Download this notebook. You are expected to complete the tasks in it and submit the notebook (with all cells executed) as a .pdf file. Thus your solution file should have the resulting quantum circuits and all the outputs as required by the exercise.