CS 6501 Natural Language Processing

Constituency Parsing

Yangfeng Ji

October 3, 2019

Department of Computer Science University of Virginia

Overview

- 1. Probabilistic CFGs
- 2. Probabilistic CKY Algorithm

Based on slides from [Collins, 2017, Smith, 2017]

1

Probabilistic CFGs

A Probabilistic Context-Free Grammar (PCFG)

- \triangleright \mathcal{N} : a set of non-terminal symbols
- ▶ $S \in N$: a distinguished start symbol
- \triangleright Σ : a set of terminal symbols
- R: a set of production rules

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

\Rightarrow	sleeps	1.0
\Rightarrow	saw	1.0
\Rightarrow	man	0.7
\Rightarrow	woman	0.2
\Rightarrow	telescope	0.1
\Rightarrow	the	1.0
\Rightarrow	with	0.5
\Rightarrow	in	0.5
	⇒ ⇒ ⇒ ⇒ ⇒ ⇒	 ⇒ saw ⇒ man ⇒ woman ⇒ telescope ⇒ the ⇒ with

Probability of a Tree

The probability of a tree t with rules $\{\alpha_i \to \beta_i\}$, such as

$$S \rightarrow NP \ VP, NP \rightarrow DT \ NN, \dots, Vi \rightarrow sleeps$$

is

$$p(t) = \prod_{i=1}^{n} p(\alpha_i \to \beta_i)$$

$$= \prod_{i=1}^{n} p(\beta_i \mid \alpha_i)$$
Standard conditional prob form

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VΡ	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(\text{NP VP} \mid S)$$
(2)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(NP VP \mid S) \cdot p(DT NN \mid NP)$$

(2)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(\text{NP VP} \mid \text{S}) \cdot p(\text{DT NN} \mid \text{NP}) \cdot p(\text{Vi} \mid \text{VP})$$

(2)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(\text{NP VP} \mid \text{S}) \cdot p(\text{DT NN} \mid \text{NP}) \cdot p(\text{Vi} \mid \text{VP})$$
$$\cdot p(\text{the} \mid \text{DT})$$
(2)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(\text{NP VP} \mid \text{S}) \cdot p(\text{DT NN} \mid \text{NP}) \cdot p(\text{Vi} \mid \text{VP})$$
$$\cdot p(\text{the} \mid \text{DT}) \cdot p(\text{man} \mid \text{NN})$$
(2)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

$$p(t) = p(\text{NP VP} \mid \text{S}) \cdot p(\text{DT NN} \mid \text{NP}) \cdot p(\text{Vi} \mid \text{VP})$$
$$\cdot p(\text{the} \mid \text{DT}) \cdot p(\text{man} \mid \text{NN}) \cdot p(\text{sleeps} \mid \text{Vi})$$
(2)

Properties of PCFGs

 Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG

Properties of PCFGs

- Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG
- ► If one sentence has more than one derivations, we can rank them based on their probabilities

Properties of PCFGs

- Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG
- ▶ If one sentence has more than one derivations, we can rank them based on their probabilities
- ► The most likely parse tree for a sentence is

$$\underset{t \in \mathcal{T}(s)}{\operatorname{argmax}} P(t|s) \tag{3}$$

where $\mathcal{T}(s)$ is the set of all possible parse trees of sentence s.

Probabilistic CKY Algorithm

Score of Parse Trees: An example

$$p(t \mid s) = p(\text{NP VP} \mid S) \cdot p(\text{DT NN} \mid \text{NP}) \cdot p(\text{Vi} \mid \text{VP})$$
$$\cdot p(\text{the} \mid \text{DT}) \cdot p(\text{man} \mid \text{NN}) \cdot p(\text{sleeps} \mid \text{Vi})$$
(4)

- ▶ Decoding $argmax_t p(t \mid s)$
- Effect of change on non-terminal node
- Similar phonemenon is handled by Viterbi decoding in HMM and CRF

Notations (I)

Given a sentence (w_1, \dots, w_n)

- ► X: non-terminal node
- ▶ i, j: word indices, $1 \le i < j \le n$
- ▶ $\mathcal{T}(i, j, X)$: the set of all parse trees for words w_i, \dots, w_j with X as the root
- ightharpoonup Example: $\mathcal{T}(1,2,NP)$

9

Notations (II)

- ► X: non-terminal node
- ▶ i, j: word indices, $1 \le i \le j \le n$
- $\pi(i, j, X) = \max_{t \in \mathcal{T}(i, j, X)} p(t)$
- Example: $\pi(1, 2, NP)$

Notations (II)

- X: non-terminal node
- ▶ i, j: word indices, $1 \le i \le j \le n$
- $\pi(i, j, X) = \max_{t \in \mathcal{T}(i, j, X)} p(t)$
- ightharpoonup Example: $\pi(1, 2, NP)$

- If $\Im(i, j, X) = \emptyset$, then $\pi(i, j, X) = 0$
 - ightharpoonup Example: $\pi(1, 2, VP)$

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

 $ightharpoonup \mathcal{T}(1, n, S)$: all possible trees with all possible non-terminal nodes

Special Cases of $\Im(i, j, X)$ and $\pi(i, j, X)$

 $ightharpoonup \mathcal{T}(1, n, S)$: all possible trees with all possible non-terminal nodes

 \blacktriangleright $\pi(1, n, S)$: the score of the optimal tree

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

For the example sentence the man sleeps

$$\mathfrak{T}(1,1,X) \text{ if } X = DT$$

$$DT$$

$$|$$
the

\Rightarrow	sleeps	1.0
\Rightarrow	saw	1.0
\Rightarrow	man	0.7
\Rightarrow	woman	0.2
\Rightarrow	telescope	0.1
\Rightarrow	the	1.0
\Rightarrow	with	0.5
\Rightarrow	in	0.5
	\Rightarrow \Rightarrow \Rightarrow \Rightarrow	⇒ saw ⇒ man ⇒ woman ⇒ telescope ⇒ the ⇒ with

Special Cases of $\Im(i, j, X)$ and $\pi(i, j, X)$

For the example sentence the man sleeps

$$\mathcal{T}(1,1,X) \text{ if } X = DT$$

$$DT$$

$$|$$
the

- $\pi(1, 1, DT) = 1$
- \blacktriangleright What if X = NN?

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Special Cases of $\mathcal{T}(i, j, X)$ and $\pi(i, j, X)$

For the example sentence the man sleeps

$$\mathfrak{T}(1,1,X) \text{ if } X = DT$$

$$DT$$

$$|$$
the

- $\pi(1, 1, DT) = 1$
- \blacktriangleright What if X = NN?

$$\mathcal{T}(1,1,NN) = \emptyset$$
$$\pi(1,1,NN) = 0$$

because there is no such rule $NN \rightarrow the$

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Summary

- $ightharpoonup \mathfrak{I}(i,j,X)$: two special cases
 - $ightharpoonup \mathfrak{T}(1,n,S)$
 - **▶** $\Im(i,i,X)$
- \blacktriangleright $\pi(i, j, X)$: two special cases
 - \blacktriangleright $\pi(1, n, S)$
 - $ightharpoonup \pi(i,i,X)$

Summary

- $ightharpoonup \mathfrak{T}(i,j,X)$: two special cases
 - $ightharpoonup \mathfrak{T}(1,n,S)$
 - $ightharpoonup \mathfrak{T}(i,i,X)$
- \blacktriangleright $\pi(i, j, X)$: two special cases
 - \blacktriangleright $\pi(1, n, S)$
 - \blacktriangleright $\pi(i,i,X)$
- Parsing:
 - from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
 - ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \to P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

$S \to NP\; VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \to P NP$	1.0	NP → astronomers	0.1
$VP \to VNP$	0.7	NP → ears	0.18
$VP \to VP \; PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

Sentence

astronomers saw stars with ears

Parse Chart

Parsing:

- from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
- ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

Parse Chart

Parsing:

- from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
- ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

	1	2	3	4	5
astronomers	(1, 1, X)				
	saw	(2, 2, X)			
		stars	(3,3,X)		
			with	(4, 4, X)	
				ears	(5,5,X)

1

2

3

Parse Chart

Parsing:

- from $\mathcal{T}(1, n, S)$, find the tree with score $\pi(1, n, S)$
- ▶ starting points $\mathcal{T}(i, i, X)$, $\forall i \in \{1, ..., n\}$

	1	2	3	4	5	
astronomers	(1, 1, X)				(1,5,S)	
	saw	(2, 2, X)				
		stars	(3, 3, X)			
			with	(4, 4, X)		
				ears	(5, 5, X)	

1

2

3

Sentence

astronomers saw stars with ears

▶ For $i \in \{1, ..., n\}$

$$\pi(i,i,X) = P(X \to w_i)$$

Sentence

astronomers saw stars with ears

▶ For $i \in \{1, ..., n\}$

$$\pi(i, i, X) = P(X \rightarrow w_i)$$

ightharpoonup Example: $w_2 = \text{saw}$

$$\pi(2, 2, V) = p(V \to \text{saw}) = 1.0$$

 $\pi(2, 2, NP) = p(NP \to \text{saw}) = 0.04$ (5)

Sentence

astronomers saw stars with ears

▶ For $i \in \{1, ..., n\}$

$$\pi(i,i,X) = P(X \to w_i)$$

ightharpoonup Example: $w_2 = \text{saw}$

$$\pi(2, 2, V) = p(V \rightarrow \text{saw}) = 1.0$$

 $\pi(2, 2, NP) = p(NP \rightarrow \text{saw}) = 0.04$

ightharpoonup Example: $w_3 = \text{stars}$

$$\pi(3, 3, NP) = p(NP \rightarrow stars) = 0.18$$

16

(5)

(6)

	$S \rightarrow NPV$ $PP \rightarrow PN$ $VP \rightarrow VP$ $VP \rightarrow With$ $V \rightarrow saw$	P 1.0 IP 0.7 PP 0.3 1.0	$NP \rightarrow ear$ $NP \rightarrow saw$ $NP \rightarrow staw$	ronomers s	0.4 0.1 0.18 0.04 0.18 0.1
	1	2	3	4	5
astronomers	NP, 0.1				
	saw	V, 1.0 NP, 0.04			
		stars	NP, 0.18		
			with	P, 1.0	
				ears	NP, 0.18

3

Probabilistic CKY: Recursive cases (I)

For each i, j such that $1 \le i < j \le n$ and each $X \in \mathcal{N}$

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} p(X \to YZ) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z) \quad (7)$$

Probabilistic CKY: Recursive cases (I)

For each i, j such that $1 \le i < j \le n$ and each $X \in \mathcal{N}$

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} p(X \to YZ) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z) \quad (7)$$

Example with i = 1 and j = 4

astronomers saw stars with ears
$$k = 1$$
 $X = NP$ \vdots $X = PP$

Probabilistic CKY: Recursive cases (I)

For each i, j such that $1 \le i < j \le n$ and each $X \in \mathcal{N}$

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} p(X \to YZ) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z) \quad (7)$$

Example with i = 1 and j = 4

astronomers saw stars with ears
$$k = 2$$

$$X = NP$$

$$\vdots$$

$$X = PP$$

Probabilistic CKY: Recursive cases (I)

For each i, j such that $1 \le i < j \le n$ and each $X \in \mathcal{N}$

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} p(X \to YZ) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z) \quad (7)$$

Example with i = 1 and j = 4

astronomers saw stars with ears
$$k = 3$$

$$X = NP$$

$$\vdots$$

$$X = PP$$

Probabilistic CKY: Recursive cases (II)

Example with i = 2 and j = 3

$$\pi(2,3,X) = \max_{Y,Z \in \mathcal{N}, k \in \{2\}} P(X \to YZ) \cdot \pi(2,k,Y) \cdot \pi(k+1,3,Z)$$

►
$$\pi(2,3,NP) = P(NP \to YZ) \cdot \pi(2,2,Y) \cdot \pi(3,3,Z), Y, Z \in \mathcal{N}$$

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \to VP \; PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

Probabilistic CKY: Recursive cases (II)

Example with i = 2 and j = 3

$$\pi(2,3,X) = \max_{Y,Z \in \mathcal{N}, k \in \{2\}} P(X \to YZ) \cdot \pi(2,k,Y) \cdot \pi(k+1,3,Z)$$

- ► $\pi(2,3,NP) = P(NP \to YZ) \cdot \pi(2,2,Y) \cdot \pi(3,3,Z), Y,Z \in \mathcal{N}$
- $\pi(2,3,\mathrm{VP}) = P(\mathrm{VP} \to YZ) \cdot \pi(2,2,Y) \cdot \pi(3,3,Z), \, Y,Z \in \mathcal{N}$

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \to PNP$	1.0	$NP \rightarrow astronomers$	0.1
$VP\rightarrowVNP$	0.7	NP → ears	0.18
$VP \to VP \; PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

Recursive Cases: Example (I)

Recursive Cases: Example (II)

Recursive Cases

NP, 0.18

ears

Probabilistic CKY: Recursive cases

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y|Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z)$$

$$\begin{array}{c} \text{S} - \text{NP VP } \quad \text{1.0} & \text{NP} - \text{NP PP } \quad \text{0.4} \\ \text{PP} - \text{P NP } \quad \text{1.0} & \text{NP} - \text{astronomers } \quad \text{0.1} \\ \text{VP} - \text{V NP } \quad \text{0.7} & \text{NP} - \text{ears } \quad \text{0.18} \\ \text{VP} - \text{VP PP } \quad \text{0.3} & \text{NP} - \text{saw} \quad \text{0.04} \\ \text{P} - \text{with } \quad \text{1.0} & \text{NP} - \text{stars } \quad \text{0.18} \\ \text{V} - \text{saw} & \text{1.0} & \text{NP} - \text{telescopes } \quad \text{0.1} \end{array}$$

	_	_	9		9
astronomers	NP, 0.1	Ø	S, 0.0126		
	saw	V, 1.0 NP, 0.04	VP, 0.126	Ø	
		stars	NP, 0.18	Ø	NP, 0.01296
			with	P, 1.0	PP, 0.18
				ears	NP, 0.18

Probabilistic CKY: Recursive cases

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y|Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z)$$

$$\begin{array}{c} \text{S} - \text{NP VP } \quad \text{1.0} & \text{NP} - \text{NP PP} \quad \text{0.4} \\ \text{PP} - \text{P NP } \quad \text{1.0} & \text{NP} - \text{astronomers} \quad \text{0.1} \\ \text{VP} - \text{V NP } \quad \text{0.7} & \text{NP} - \text{ears} \quad \text{0.18} \\ \text{VP} - \text{VP PP } \quad \text{0.3} & \text{NP} - \text{saw} \quad \text{0.04} \\ \text{P} - \text{with} \quad \text{1.0} & \text{NP} - \text{stars} \quad \text{0.18} \\ \text{V} - \text{saw} \quad \text{1.0} & \text{NP} - \text{telescopes} \quad \text{0.1} \end{array}$$

			9		~
astronomers	NP, 0.1	Ø	S, 0.0126	Ø	
	saw	V, 1.0 NP, 0.04	VP, 0.126	Ø	VP, 0.009
		stars	NP, 0.18	Ø	NP, 0.01296
			with	P, 1.0	PP, 0.18
				ears	NP, 0.18

Probabilistic CKY: Recursive cases

$$\pi(i,j,X) = \max_{Y,Z \in \mathcal{N}, k \in \{i,\dots,j-1\}} P(X \to Y \ Z) \cdot \pi(i,k,Y) \cdot \pi(k+1,j,Z)$$

$$\begin{array}{c} \text{S} - \text{NP} \cdot \text{VP} \quad 1.0 & \text{NP} - \text{NP} \cdot \text{PP} \quad 0.4 \\ \text{PP} - \text{P} \cdot \text{NP} \quad 1.0 & \text{NP} - \text{astronomers} \quad 0.1 \\ \text{VP} - \text{V} \cdot \text{NP} \quad 0.7 & \text{NP} - \text{ears} \quad 0.18 \\ \text{VP} - \text{VP} \cdot \text{PP} \quad 0.3 & \text{NP} - \text{saw} \quad 0.04 \\ \text{P} - \text{with} \quad 1.0 & \text{NP} - \text{stars} \quad 0.18 \\ \text{V} - \text{saw} \quad 1.0 & \text{NP} - \text{telescopes} \quad 0.1 \end{array}$$

	_	_	9		9
astronomers	NP, 0.1	Ø	S, 0.0126	Ø	S, 0.0009
	saw	V, 1.0 NP, 0.04	VP, 0.126	Ø	VP, 0.009
		stars	NP, 0.18	Ø	NP, 0.01296
			with	P, 1.0	PP, 0.18
				ears	NP, 0.18

Parse Tree

Sentence

astronomers saw stars with ears

Probabilistic CKY

Input: a sentence $s=x_1\dots x_n$, a PCFG $G=(N,\Sigma,S,R,q)$. Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i,i,X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- For $l = 1 \dots (n-1)$
 - For $i = 1 \dots (n l)$
 - * Set i = i + l
 - * For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \rightarrow YZ \in R, \\ s \in \{i,..(j-1)\}}} \left(q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

and

$$bp(i,j,X) = \underset{\substack{x \, \rightarrow \, Y \not \in R, \\ s \in \{i...(j-1)\}}}{\max} \left(q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Output: Return $\pi(1, n, S) = \max_{t \in T(s)} p(t)$, and backpointers bp which allow recovery of $\arg \max_{t \in T(s)} p(t)$.

Remarks

- Space and runtime requirements
 - Space: $\mathbb{O}(|\mathcal{N}|n^2)$ Time: $\mathbb{O}(|\mathcal{N}|n^3)$

astronomers					
	saw				
		stars			
			with		
				ears	

Probabilistic CKY vs. Viterbi Decoding

Viterbi decoding

► Probabilistic CKY

Keywords: conditional independence, forward enumerating, backward tracing, dynamic programming

Summary

1. Probabilistic CFGs

2. Probabilistic CKY Algorithm

Reference

Collins, M. (2017).

Natural language processing: Lecture notes.

Smith, N. A. (2017).

 $Natural\ language\ processing:\ Lecture\ notes.$