Question 1

1\2	X	У	Z
a	2,5	2,1	0,1
b	3,2	<mark>4</mark> ,4	1 ,1
c	1,0	1,1	1,2

Find the strictly dominant strategies (there may be zero, one or more):

□ 1) a;

2) b;

□ 3) c;

□ 4) x;

□ 5) y;

□ 6) z;

Question 2

1\2	X	у	Z
a	2 ,5	2,1	0,1
b	3,2	<mark>4</mark> ,4	1,1
c	1,0	1,1	1,2

Find the weakly dominated strategies (there may be zero, one or more):

□ 1) a;

□ 2) b;

✓ 3) C

□ 4) x;

□ 5) y;

□ 6) z;

Question 3

1\2	X	y	Z
a	<mark>2</mark> ,5	2,1	0,1
b	3,2	<mark>4</mark> ,4	1,1
c	1,0	1,1	1,2

Which strategies survive the process of iterative removal of strictly dominated strategies (there may be zero, one or more)?

☐ 1) a;		
☑ 2) b;		
☑ 3) c;		
□ 4) x;		
▽ 5) y;		
6) z;		
Question 4		
1\2 x y z		
a 2,5 2,1 0,1		
b 3,24,41,1		
c [1,0]1,1]1,2		

Find all strategy profiles that form pure strategy Nash equilibria (there may be zero, one or more):

- 1) (a, x);
- 2) (a, y);
- □ 3) (a, z);
- ☐ 4) (b, x);
- 5) (b, y);
- 6) (b, z);
- □ 7) (c, x);
- □ 8) (c, y);
- 9) (c, z).

Question 5

1\2	У	Z
b	<mark>4</mark> ,4	1,1
С	1,1	2 ,2

Which of the following strategies form a mixed strategy Nash equilibrium? (p corresponds to the probability of 1 playing \mathbf{b} and 1-p to the probability of playing \mathbf{c} ; q corresponds to the probability of 2 playing y and 1-q to the probability of playing z).

- \circ 1) p=1/3, q=1/3;
- \circ 2) p=1/3, q=1/4;
- \circ 3) p=2/3, q=1/4;

(a) 4) p=1/4, q=1/4;

Question 6

Burning the Bridge

- One island is occupied by Army 2, and there is a bridge connecting the island to the mainland through which Army 2 could retreat.
- Stage 1: Army 2 could choose to burn the bridge or not in the very beginning.
- Stage 2: Army 1 then could choose to attack the island or not.
- Stage 3: Army 2 could then choose to fight or retreat if the bridge was not burned, and has to fight if the bridge was burned.

First, consider the blue subgame. What is a subgame perfect equilibrium of the blue subgame?

- a) (Attack, Fight).
- b) (Attack, Retreat).
- C) (Not, Fight).
- Od) (Not, Retreat).

Question 7

Burning the Bridge

- One island is occupied by Army 2, and there is a bridge connecting the island to the mainland through which Army 2 could retreat.
- Stage 1: Army 2 could choose to burn the bridge or not in the very beginning.
- Stage 2: Army 1 then could choose to attack the island or not.
- Stage 3: Army 2 could then choose to fight or retreat if the bridge was not burned, and has to fight if the bridge was burned.

What is the outcome of a subgame perfect equilibrium of the whole game?

- a) Bridge is burned, 1 attacks and 2 fights.
- b) Bridge is burned, 1 does not attack.
- c) Bridge is not burned, 1 attacks and 2 retreats.

d) Bridge is not burned, 1 does not attack.

Question 8

There is a probability p that the game continues next period and a probability (1-p) that it ends. What is the threshold p_* such that when $p \ge p_*$ ((Play,Share), (Trust)) is sustainable as a subgame perfect equilibrium by a grim trigger strategy, but when $p < p_*$ ((Play,Share), (Trust)) can't be sustained as a subgame perfect equilibrium? [Here a trigger strategy is: player 1 playing Not play and player 2 playing Distrust forever after a deviation from ((Play,Share),

(Trust)).]

a) 1/2;

b) 1/3;

° c) 2/3;

O d) 1/4.

Question 9

Friend or Foe

- There are two players.
- The payoffs to player 2 depend on whether 2 is a friendly player (with probability p) or a foe (with probability 1-p).
- Player 2 knows if he/she is a friend or a foe, but player 1 doesn't know.

See the following payoff matrices for details.

Friend	Left	Right
Left	3,1	0,0
Right	2,1	1,0

with probability p

Foe	Left	Right
Left	3,0	0,1
Right	2,0	1,1

with probability 1-p

When p=1/4, which is a pure strategy Bayesian equilibrium: (1's strategy; 2's type - 2's strategy)

- a) (Left; Friend Left, Foe Right);
- b) (Right; Friend Left, Foe Right);
- c) (Left; Friend Left, Foe Left);
- d) (Right; Friend Right, Foe Right);

Question 10

Entry Game

Player 1 is a company choosing whether to enter a market or stay out;

• If 1 stays out, the payoff to both players is (0, 3).

Player 2 is already in the market and chooses (simultaneously) whether to fight player 1 if there is entry

• The payoffs to player 2 depend on whether 2 is a normal player (with prob 1-p) or an aggressive player (with prob p).

See the following payoff matrices for details.

Aggressive	Fight	Not
Enter	-1,2	1,-2
Out	0,3	0,3

with probability p

Normal	Fight	Not
Enter	-1,0	1,2
Out	0,3	0,3

with probability 1-p

Player 2 knows if he/she is normal or aggressive, and player 1 doesn't know. Which is true (there may be zero, one or more):

- a) When p>1/2, it is a Bayesian equilibrium for 1 to stay out, 2 to fight when aggressive and not when normal;
- b) When p=1/2, it is a Bayesian equilibrium for 1 to stay out, 2 to fight when aggressive and not when normal;
- ightharpoonup = 1/2, it is a Bayesian equilibrium for 1 to enter, 2 to fight when aggressive and not when normal;
- d) When p<1/2, it is a Bayesian equilibrium for 1 to enter, 2 to fight when aggressive and not when normal.