

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

GIFT OF MICHAEL REESE

Haury A Bronnloon 15.8.77.

THE NEW FORMULA

FOR

MEAN VELOCITY OF DISCHARGE

o**f**

RIVERS AND CANALS.

Concert with one thord Stand Bridge and Assilar r co Ganiass Linung Tradition 0.0 Average Rubble FOR Ranned Grad nd li r sca PLES. Rubble e dia the t the the Rivers and Sanals in Earth the me m 0.30 breguter Charmels 0.00010 Curves J 0.00020 n 0.040

THE NEW FORMULA

MEAN VELOCITY OF DISCHARGE

OF

RIVERS AND CANALS.

W. R. KUTTER.

TRANSLATED FROM ARTICLES IN THE 'CULTUR-INGENIEUR,'

 \mathbf{BY}

LOWIS D'A. JACKSON, A.I.C.E.,

AUTHOR OF

HYDRAULIC MANUAL AND STATISTICS; A CURVE BOOK; SIMPLIFIED WEIGHTS AND MEASURES, ETC.

E. & F. N. SPON,

LONDON: 48, CHARING CROSS.

NEW YORK: 446, BROOME STREET.

1876.

3/303

PREFACE BY THE TRANSLATOR.

In presenting to the English public in 1876 a translation of a valuable work that appeared in 1870 in Austria, Germany, and Switzerland, and that was immediately translated into French, Dutch, and Italian, it is not so much an acknowledgment of having been tardy in bringing forward results useful to the hydraulician, as it is an indication that the technical English public has been backward in accepting more advanced views on the subject treated.

A strange anomaly has developed itself in the progress of hydraulic science in the British Empire in modern times. While the lead in engineering progress generally, both theoretical and practical, seems to have been almost entirely taken by the English-speaking races, and whilst improved construction, perfected appliances, and higher economy have progressed in the last thirty years at a speed perhaps greater than has ever been previously known, yet in the hydraulic branches of engineering no similar claim can be very satisfactorily made out for our country. This seems at variance with our present requirements. We have in India a vast empire, existing in a state of mutual dependence with England,

whose enormous wealth is dependent on its population, whose population is dependent upon agriculture, and whose agriculture depends chiefly on irrigation; where water is like silver, and the science of its judicious application and control is like gold. We have in semi-tropical regions large colonies, which suffer from devastating floods alternating with drought. home the catchment areas of our rivers, in fact the country generally, is in a polluted state, the drainage both from farmland and townships being still either badly regulated or under no general control. In spite of the increasing exceptions, the water supply of most of our towns is so contaminated as to conduce amongst other evils to a fearful amount of intemperance; and the sewage, the natural regenerator of soils and crops, is generally allowed to mingle with noxious refuse, or to be so ill-regulated, as regards dilution and application to land, that it not only ceases to be useful, but becomes a source of perpetual pollution.

Yet, in the face of all these circumstances, we find impediments being very frequently raised to the extension of irrigation in India, difficulties magnified, and exceptional failures, due to misapplication and mismanagement, so stated as to appear the rule; we find even in 1871 money refused for purposes of hydraulic experiment, while the adoption of the long-exploded velocity formula of Dubuat was enforced by Government order. In the British colonies, hydraulic improvements are proceeding with a degree of caution and on a scale incompatible with important achievement. At home, vested interests, indecision, parsimony, procrastination, and want of combined action may be said to form the principal obstructions to the development of any extensive

wholesome sanitary regimen. Even when the remodelling of the sewerage of London was being dealt with by the Commissioners of Sewers, the experiments then instituted for determining discharges of pipes of different materials were abruptly stopped before arriving at any useful conclusion.

The result of all this shows itself in the English hydraulic literature of the past, as comprised in the works of Beardmore, Downing, Neville, Box, Latham, &c., where the defective formulæ of Eytelwein, Stevenson, Dubuat, Prony, &c., are used as the bases of calculations of discharge for tables which are still unfortunately believed in by the unreflecting, while any departure from these old principles has been looked upon with suspicion and distrust.

It is, however, highly satisfactory to observe that our most progressive engineering periodical, 'Engineering,' has always been in advance on such subjects. In an article entitled "Hydrodynamic Formulæ," appearing in the year 1873, the results of all the old velocity formulæ, both for open channels and for pipes, are compared; the whole of these formulæ are proved to have no claim to general application; and as a consequence of the dearth of hydraulic observations of modern date, the hydraulician is recommended to use variable coefficients of mean velocity of discharge, to be chosen in accordance with the circumstances of each special case and the nearest similar recorded observation that can be obtained. The article referred to, since embodied in the translator's 'Hydraulic Manual,' shows that, even before the valuable articles of Herr Kutter had attracted notice in England, the erroneous nature of the formulæ we were using was known to some.

At the present day, however, the experiments of D'Arcy and Bazin in France, of Humphreys and Abbot in the United States, and of Ganguillet and Kutter in Switzerland, have become more widely known and studied; and the practical value of the new formula of Herr Kutter, based on the whole of those observations, has become recognized.

The following extracts from another article in 'Engineering,' entitled "Hydraulic Experiments," of the 31st of December, 1875, is also perfectly unsparing in denouncing the old formulæ, and distinct in supporting that of Herr Kutter; while it also calls attention to the need of a translation into English of Herr Kutter's articles in the 'Cultur-Ingénieur.'

"The tabulated velocities (in Neville's work based upon" "Dubuat) though expressed in hundredths of an inch, are " " in reality but the wildest guesses at the actual velocities" " in irrigation canals of ordinary dimensions. Colonel " "Cautley relied upon Dubuat when he laid out the Ganges" "Canal, and found him but a rotten reed, for the water in" "every instance tore along at an unexpected velocity," "and erosion of the bed and destruction of the works" "followed in its wake. Dubuat then must be put upon" "the top shelf of the bookcase, and it will be just as" "well, when the steps are there, to carry up every English" "work in which the names of Brunning, Girard, Bossut," "Prony, Eytelwein, or D'Aubuisson are continually re-" "curring as authorities against whom no action can be" "taken. In this general clearance Beardmore, Downing," "Box, and almost every other hydraulic text-book compiled" "by Englishmen will with more or less hesitation have" "been shelved, and the young engineer will then be able"
to form a fair estimate of the contribution his country-"
men have made to the common fund of knowledge"
concerning the laws governing the flow of water. . . . "
Bazin, Gauckler, and many others have laboured to"
deduce a comprehensive formula which shall include"
every case, from a street gutter to a mighty river. The "
most successful workers in this field are perhaps Gan-"
guillet and Kutter. Mr. Jackson bases some of his tables"
upon Kutter, and so far as we know, that is the only "
instance in which the deductions of the latter have been "
referred to in an English work. Perhaps it is not too"
late even now to induce Mr. Forrest to append a full "
translation of the German original in an ensuing volume "
of the 'Proceedings.'"

From the above remarks it would appear that our engineering students are still adhering to old habits, although curiously enough the students of the Civil Engineering College at Madras have, at the instance of their principal, Captain Edgecombe, and of the able and enlightened secretary to his Excellency the Governor of Madras, the Hon. Robert Ellis, employed since 1869 an earlier edition of the Manual of the translator referred to, and have therefore gone on more correct principles for some years; while again in December, 1875, the Russian Government had already ordered the translation into Russian of the later edition of the same Manual for use of their engineers generally. Hence it would seem that we are even now rather in arrear in England.

The translation of Herr Kutter's German original, at last evidently wanted, has been rendered less with the intention

of making it scrupulously literal than correct and practically useful; literalism having only been adhered to in certain portions where it appeared requisite: parts of the work have been transposed, and some conversion tables, as well as some tables of equivalents of various foreign measures, which have been revised and corrected in accordance with the standards of 1872, introduced for the convenience of the reader.

. L. D'A. J.

ROYAL INSTITUTION, ALBEMARLE STREET, 1st March, 1876.

SUMMARY OF CONTENTS.

TEXT.

CHAPTER I.—Flow in Open Channels generally.

CHAPTER II.—Flow in Open Channels in Earth.

TABLES.

COEFFICIENTS OF MEAN VELOCITY OF DISCHARGE.

DISCHARGES AND MEAN VELOCITIES PER SECOND.

SUPPLEMENTARY TABLE OF PERCENTAGES FOR CERTAIN SECTIONS.

PLATES.

Thapezoidal Sections of Channels adopted in the Tables. Diagram of Coefficients of Mean Velocity.

THE NEW FORMULA FOR MEAN

VELOCITY OF DISCHARGE.

CHAPTER I.

1. THE NEW FORMULE OF D'ARCY AND BAZIN AND HUMPHREYS AND ABBOT, FOR DETERMINING MEAN VELOCITIES OF DISCHARGE OF RIVERS AND CANALS.

In recent times two extremely valuable works on hydraulics have been published, which have thrown a new light on one of the most important branches of that science, the laws of motion of water in rivers and canals. They are, the 'Recherches Hydrauliques' of D'Arcy and Bazin, 1835; and the 'Theory of Motion of Water in Rivers and Canals,' by Captain Humphreys and Abbot, 1867, the latter of which was translated into German by Grebenau. These two works far surpass all others yet written that treat on this branch of hydraulics. Both of them bring forward a very large number of results of experiment and observation that have been most carefully obtained and deduced, and are justified by the highest authority; both of them also propose new formulæ, which essentially differ, not only from each other, but also from all previous formulæ of Prony, Chezy, Eytelwein, St. Venant, &c.: this difference is the more striking, as the whole of these formulæ have been based on carefully conducted observation and experiment. In explanation of this, and with reference to the two modern formulæ, we would notice that the two latter are results deduced from observations made under extremely different conditions; those of the French engineers, D'Arcy and Bazin, having been taken on small canals, and those of the American engineers, Humphreys and Abbot, on

correct within certain limits, but neither can have any pretension to general application, as the former of the two is inapplicable to large rivers with low inclinations, and the latter to small discharges with greater fall. To decide which of these two formulæ is preferable and more useful generally, and to enable us to base our decision on practical considerations, we have made a collection of all known observed results that bear on the subject, together with some that are of special interest from having been conducted on streams of extremely high inclination, and have compared these results with those deduced from the measurements by the formulæ.

2. THE PREVIOUSLY ACCEPTED FORMULÆ.

The well-known formula of ordinary use,

 $v = c \sqrt{rs}$

in which

v is the mean velocity of discharge,

r is the mean hydraulic radius, or the quotient of the water section by the wetted perimeter,

s is the inclination of the water surface,

and

c is the experimental coefficient,

is that of Chezy and Eytelwein; it was assumed that it gave correct results under all cases and conditions of inclination and dimension, a fallacy that vanished only after a long time, with the discovery that the coefficient c was not a constant but a variable quantity. In the formulæ of De Prony and Weisbach the coefficients c vary with the velocity of the water, but their results differ but slightly from those afforded by the former formula with the coefficients of Eytelwein. More recent researches have however shown that the variation of the values of c depends on very varied influences, and can be more correctly determined and expressed than by simply treating it as dependent on the variation of the velocity c.

3. THE NEW FORMULÆ OF D'ARCY AND BAZIN.

In the 'Recherches Hydrauliques' of D'Arcy and Bazin, 1865, the coefficients c are made to vary, not with the velocity, but with the values of r, the hydraulic mean radius, and with the conditions of the section. These conditions are classed in four categories, which, naturally, do not include every degree of roughness of the wetted perimeter, but are merely averages assumed for convenience in determining the coefficients. D'Arcy and Bazin have deduced their formulæ from their own new experimental observations on artificial canals, 2 mètres wide, 1 mètre deep, and about 600 mètres long, whose beds and banks were constructed of various different materials, as well as from other observations on rivers and canals. They gave various forms to the section of their canal, and thence discovered that the semicircular form was that most favourable to a rapid discharge, while they also demonstrated that the form of section was not by any means the most important influence on the velocities and discharges of open channels.

4. THE NEW FORMULA OF HUMPHREYS AND ABBOT.

The American engineers, Humphreys and Abbot, proposed an entirely new formula, based on a vast number of frequently repeated measurements of discharge on the lower Mississippi and its affluents. At page 138 of Grebenau's translation of their work, we find that the extremely ingenious formula deduced by them for velocity is based on the following law, established by their own experiments: That the velocities at different depths below the surface in a vertical plane vary as the abscissæ of a parabola, whose axis is parallel to the water-surface, and represent the maximum velocity; and thus, the position of this axis once determined, the velocity at any depth in this vertical plane can be obtained

from the parabolic curvature. This law is also confirmed by the experience of D'Arcy and Bazin. Since, therefore, this new formula is deduced from observations on large rivers of low inclination, and has also been proved to hold good for rivers and small streams with small inclinations, it becomes important to discover whether it is also correct for discharges of high inclination. Should that be the case, it will then have a claim to general application.

5. PRACTICAL EXAMINATION OF THE NEW FORMULE.

The collection, given on the following page, of observed measurements of discharge on the Wildbachschalen, near Lake Thun, under conditions of very high inclination of channel, affords a ready answer to this important question, without entering into unnecessary details or lengthy discussion. The data and dimensions there given, the observed velocities of discharge, and the velocities calculated according to the well-known formulæ of Chezy-Eytelwein, of D'Arcy and Bazin, and of Humphreys and Abbot, comprise everything that is required.

Besides those above mentioned, we have collected another series of measurements of discharge in Switzerland, that is also applicable to this question; some of them are from streams on the Jura series by Professor Trechsel, some from well-maintained river channels in Canton Graubundten by Oberst La Ricca, and others from the Linth-and-Escher canals by Engineer Legler. The whole are eighty-five in number. The comparison of the observed with the calculated results shows that for steep inclinations the American formula gives far too small velocities of discharge, and that the formulæ of D'Arcy and Bazin give results which are generally much better, and in some cases very good. We hence infer that the American formula has no claim to

general application, and would be much improved by the introduction of variable coefficients. The conclusion is also forced on us, that any formula that would possess any adequate claim to universal utility must necessarily be very complicated, and hence unsuited to practical requirements, while it appears at the same time that if a good general formula, somewhat resembling that of D'Arcy and Bazin, be adopted as a basis, and a collection of correct coefficients be applied to it, every purpose will be sufficiently served. It must, however, be noticed that any such formula must be applicable to all ordinary hydraulic conditions, and that the choice therefore lies between the old general formula, which admits of adaptation to those of D'Arcy and Bazin, and the new American formula.

TABLE OF OBSERVATIONS ON THE WILDBACHSCHALE.

Dates.	Length.	r	Inclination or Fall per 1000.	Observed Velocity.	Calculated Velocities.		
					Chezy- Eytel- wein.	D'Arcy and Bazin.	Hum- phreys and Abbot.
G'rünnbachschale.							
3rd June, 1867	800	0.394	106.775	13.97	19.07	13.68	3.50
' 11 11	1200	0.385	99 · 270	13.54	18.18	12.93	3.37
**	200	0.361	82.85	12.00	16.08	11.17	3.11
27th "June," 1867	800	0.657	106.775	19.48	24.63	20.69	4.56
27 27	1200	6.644	99 · 27	18.58	23.51	19.65	4.42
""	200	0.591	82.85	15.79	20.57	16.77	4.04
Gerbebachschale.					1	1	
27th June, 1867	100	0.197	237 · 3	10-31	20.10	11.20	2.97
,, ,,	100	,,	185.2	9.58	17.76	9.90	2.78
),))))	400	,,	167 · 9	9.33	16.91	9.42	2.71
,, ,,	100	"	137.5	9.05	15.30	8.23	2.57
11 11	100	,,	111.7	8.61	13.79	7.69	2.43
Gontenbachschale.						ĺ	
26th June, 1867	400	0.375	46.425	11.15	12.26	8.64	2.72
29 29	600	,,	42.350	10.05	11.71	8.25	2.65
))))	400	0.328	46.425	10.66	11.48	7.70	2.53
" "	600	n	42.350	9.60	10.96	7.36	2.47
Summation of cresults		••	••	181 · 70	252 · 31	173 · 58	46.83
Ratios	١	l	·	1.00	1.39	0.96	0.26
	l	"	<u> </u>		- 55		1 20

6. Examination of the Old-established Formula and the New American one, with the View of applying Series of Coefficients to either of them as a Basis.

The old formula, $\mathbf{Y} = c \sqrt{rs}$, whose terms have already been explained, may be said to assert the general law that the mean velocity of discharge at any section varies with the square root of the product of the sine of the inclination and the mean hydraulic radius. The value of the experimental coefficient c may be shown to vary greatly; although fixed as a constant quantity $92 \cdot 975$ by Eytelwein, it has yet been proved by the experiments of D'Arcy and Bazin to vary between 5 and 100, while the results on the Mississippi give it not less than 256 as the highest limiting value.

The new American formula, expressed in Swiss feet, is

$$v = \sqrt{0.008\ 299\ b + [229.06\ r_1\ \sqrt{s} - 0.090\ 716\ \sqrt{b}]^2},$$

where

$$b = rac{1 \cdot 7034}{\sqrt{r+1 \cdot 524}} \quad ext{and} \quad r_1 = rac{a}{p+W} \cdot$$

To simplify this rather complicated expression, Grebenau neglects the two smaller quantities represented by the first and third terms of the equation, and reduces it to the form

$$v = c \sqrt{r_1} \sqrt[4]{s},$$

which may be thus verbally expressed: The mean velocity of discharge at any section is the product of the square root of the prime radius or quotient of the sectional area by the whole wetted perimeter and breadth of surface, and the fourth root of the inclination, multiplied by an experimental coefficient. The introduction of the breadth of surface of the water section into the quantities composing this equation, and the resulting substitution for r, the mean radius, of

a new term r, or prime radius, which is about a half of the former, causes a great alteration in the corresponding values. of the coefficient. A still more important difference between the American and the old formula is the introduction of the fourth root of the sine of the inclination into the basis of the formula, instead of the square root; the law of increment of a series of fourth roots varying greatly from that of a series of square roots. Hence, before deciding which of these two formulæ is more suited to our purpose as a general basis, it is first necessary to determine whether mean velocities in similar sections and under corresponding inclinations of every degree happen to vary more exactly with the square roots or with the fourth roots. In order to decide this important point, we have selected, from the five hundred observed results given by D'Arcy and Bazin in the 'Recherches Hydrauliques,' thirty-three cases having different inclinations, but similar in other respects; and from a collection of about one hundred fifty observed results, made by ourselves, and taken from the work of Humphreys and Abbot, the collection of Grebenau, the observations of Trechsel, La Ricca, and Legler, as well as our own, we have selected fifty-two cases of similar results having different inclinations. In all we have chosen eighty-five cases that are suited to the purpose, and have compared the observed velocities with the square roots, the cube roots, and the fourth roots of their inclinations. The results are that out of the first set of thirty-three cases, twenty-seven had their velocities varying more nearly with the square roots, five with the cube roots, and one with the fourth root; and out of the second set of fifty-two cases, thirty cases had their velocities varying more nearly with the square roots, nine with the cube roots, and thirteen with the fourth root. It may also be observed, that the whole of the fourteen cases in which the velocities vary more nearly with the fourth root are cases of extremely low inclination, being those of the Mississippi system, the streams

of Grebenau, and one single case of D'Arcy and Bazin. We will hence conclude, that for most falls, with the exception of those that are very low, like that of the Mississippi, the mean velocities in similar sections are more in accordance with the square roots of the sines of the inclinations, and that the simple and useful old-established formula $v = c\sqrt{rs}$ with variable coefficients not only gives good results, but is also in our opinion that most applicable to very varying conditions of inclination.

Assuming therefore the general formula $v = c\sqrt{rs}$ as that most suitable to our purposes, the next matter is to obtain a series of coefficients that will be equally applicable to every degree of inclination that will occur in practice. We have, however, fruitlessly endeavoured to discover any law for the construction of any single set of series of coefficients, that would apply both to the low inclinations of observation of the American, and to the high falls of the Swiss engineers. In plotting the coefficients deduced from these observed results as ordinates to abscissæ representing the inclinations, we discover that the greatest values of the former correspond to the least values of the latter, and the converse, and that no mean curve could be drawn that would be applicable throughout. It is also necessary to remark that the coefficients obtained in the same way for the American formula show a persistent increase of value with the increase of inclination; a proof that that formula gives incorrect results in this respect.

On plotting the former coefficients as ordinates to abscisse representing values of r, the mean radius, and similarly plotting the curve of the coefficients calculated according to the formulæ of D'Arcy and Bazin, we find that they approximately correspond in cases having similar conditions of section; a confirmation of the correctness of the formulæ of these authors as far as this is concerned.

7. THE VARIATION OF THE COEFFICIENTS c WITH THE INCLINATION.

Having thus discovered that the coefficients c of the oldestablished formula generally vary with the inclinations for like values of r in such a manner that their values are greatest for the lowest inclinations, and the converse, let us consider them now solely with reference to the Mississippi observations. Their extreme limits there are

- c = 256 for an inclination of 0.0034 per thousand, and
 - c = 154 for an inclination of 0.0200 per thousand;

and if a curve be drawn to represent them, it becomes a reversed hyperbola, whose ordinates decrease with the increase of inclination. It is therefore evident, from the extreme sensitiveness of the coefficients when applied within these limits, that the old formula is in this respect inapplicable to extremely low inclinations, while the new American formula on the contrary is very well suited to them.

This relation of the inclinations to the coefficients c holds good with the highest of the falls on the large rivers of the Mississippi series, but is more fully exemplified when the coefficients diminish with decreasing values of r; so that for cases of smaller rivers it may be accepted that with similar values of r the difference of inclination has so small an influence on the coefficient c that it may be entirely neglected without error.

Since the four formulæ of D'Arcy and Bazin have been found to give good results, not only in accordance with the observed results mentioned in their own work, but also with those collected by ourselves, and since they also, while possessing no exclusive claim to general application, admit of

the interpolation and addition of additional series of coefficients beyond those of their four categories, they may most justly be considered as correct points of departure in an extensive field of variation. We will therefore assume that these formulæ are of practical value to us for the purpose of gradually working out a good and complete series of coefficients.

8. THE EMPLOYMENT OF THE FORMULÆ OF D'ARCY AND BAZIN IN CONSTRUCTING A SERIES OF COEFFICIENTS.

The following are the four formulæ for mean velocity of D'Arcy and Bazin, in terms suited to Swiss feet; to each of them is also attached the corresponding expression for the value of c, the coefficient in the general formula, $v = c\sqrt{rs}$, which we have taken as a basis. In each case, as before, r is the mean hydraulic radius, and s is the sine of the inclination of the water surface, or fall in a length of unity.

1st Category.—Very smooth surfaces of pure cement, or carefully planed timber:

$$v = \sqrt{\frac{rs}{0.000\ 045 + \frac{0.000\ 0045}{r}}};$$

$$c = \sqrt{\frac{1}{0.000\ 045 + \frac{0.000\ 0045}{r}}}.$$

2nd Category.—Smooth surfaces of cut stone or brickwork, of cement with sand, or of planking:

$$v = \sqrt{\frac{rs}{0.000057 + \frac{0.0000133}{r}}};$$

$$c = \sqrt{\frac{1}{0.000057 + \frac{0.0000133}{r}}}.$$

3rd Category.—Less carefully constructed sections in rubble:

$$v = \sqrt{\frac{rs}{0.000\ 072 + \frac{0.000\ 0600}{r}}};$$

$$c = \sqrt{\frac{1}{0.000\ 072 + \frac{0.000\ 0600}{r}}}.$$

4th Category.—Sections in earth:

$$v = \sqrt{\frac{rs}{0.000\ 084 + \frac{0.000\ 3500}{r}}};$$

$$c = \sqrt{\frac{1}{0.000\ 084 + \frac{0.000\ 3500}{r}}}.$$

These four expressions indicate a great variation in the values of the terms of the formulæ corresponding to the varieties of quality of the surface. We may hence conclude that the observations of D'Arcy and Bazin prove that the degree of roughness of the wetted perimeter forms a very important influence on the value of the coefficient on small sections of discharge; the respective proportions of these four formulæ also show that this influence decreases with the increase of the sectional area, and, although it never entirely vanishes, is inconsiderable in very large rivers like the Mississippi.

We may also remark, that these four categories admit of the interpolation and addition of a large number of cases of different conditions, and can thus be made to include and produce smaller values of the coefficient c than those afforded by the fourth category; they might then become applicable to the coefficients calculated by ourselves from the observed results on the Aar, and the streams in Canton Graubündten, which are encumbered with detritus. The necessity and the mode of introducing these interpolated and additional categories, suitable to the cases that occur, will necessarily be partly dependent for exactitude on the correctness and sufficiency of knowledge of the details of the observations; the effect of the various degrees of inclination on the coefficients, previously mentioned, must also be borne in mind.

With reference to the observed results on the Wildbachschale, previously quoted, we may notice that the G'rünnbachschale and Gerbebachschale, whose walling is much damaged, can very well come under the third category. This, however, is not applicable to the more recently constructed Gontenbachschale, which have a better walling than that supposed in the third category, and a worse walling than that of the second. The coefficient c calculated for one of them when r = 0.375 according to the third formula is 65, and gives too small a mean velocity, while that according to the second formula is 100, which gives too high a mean velocity; the actually correct coefficient being 83, or approximately a mean between the two; the walling of the Gontenbachschale being in point of fact a mean as regards smoothness between rubble and ashlar. We must therefore not overlook the fact that we here require a · category of coefficients interpolated at about midway between Categories II. and III., under conditions of section that differ sufficiently from those of either of them to justify its adoption; we must also determine more exactly the conditions of section applicable to these three categories.

With reference to our observed results on rivers and streams whose beds and banks are encumbered with deposit, it is evident they cannot come under Category No. IV. of sections in earth, as Formula No. IV. gives values of coefficients c that are too large for them. This is very natural, as part of the living force of the water is destroyed

by the deposit; the larger the boulders, and the greater the quantity of them obstructing the section of flow, the more will the velocity of the water be reduced. In the formula $\frac{1}{c^2} = a + \frac{\beta}{r}$, which expresses the effect of the roughness, and in which the factors a and β are the divisors in the formulæ of D'Arcy and Bazin, these factors will increase with the size and quantity of the deposit, and may hence vary very much for different cases in the same river: they will increase with high water and with motion of the boulders, and decrease with low water and with their deposition.

For our purposes we shall not go far wrong if we calculate these velocities in channels encumbered with detritus for one single value of r only, and make them correspond to those obtained by Formula IV. for sections in earth with a radius of 0.7; or, which is the same thing, if we calculate our coefficients for this purpose from a formula,

$$c = \sqrt{\frac{1}{0.000120 + \frac{0.0007}{r}}},$$

and consider this as the basis of a new or a fifth category of coefficients.

We here attach a table of calculated coefficients resulting from the above five formulæ, which are applicable to all values of r that are likely to occur in practice; and in order to afford a trustworthy guide for their employment, we give also immediately following them a table of practically deter mined coefficients, obtained by ourselves from direct velocity measurements in a considerable number of cases, together with the calculated coefficients corresponding to them, and the differences between the two. A careful examination of these two collections, and a comparison of the similar cases occurring under similar conditions, will aid us in eventually

determining and adopting a final series of coefficients that will be both correct and sufficiently comprehensive for all practical purposes.

9. Table of Calculated Coefficients applicable to the General Formula $v = c\sqrt{rs}$, arranged as to Condition of Section according to the Four Categories of D'Arcy and Bazin, and a Fifth one of the Author.

Explanation.

The quantities given in the three columns, corresponding to all values of r required in practice, are values of the following expressions:

c is the variable coefficient in the formula $v = c \sqrt{rs}$. $c \sqrt{r} = m$ is a variable quantity, dependent on c, useful in obtaining values of v corresponding to different values of \sqrt{s} .

 $\frac{1}{c^2 r} = n$ is a variable quantity, useful in calculating values of s, when v and r are given, as is shown by putting the formula in the form $s = \frac{v^2}{c^2 r}$.

The quantities are applicable to Swiss feet.

CATEGORY I. VERY SMOOTH SURFACES OF PURE CEMENT, WELL-PLANED TIMBER, ETC.

_	_	/	/		1		
٠	_	V	0.000	048		0.000 0045	•
			0 000	OEO	т	<u> </u>	

•	$c \\ (v = c \sqrt{rs})$	$c \sqrt{r} = m$ $(v = m \sqrt{s})$	$\frac{1}{c^2 r} = n$ $(s = n v^2)$
0.01	44 · 95	4 · 495	0.0495000
0.05	86.07	19 · 245	27000
0.1	105.41	33 · 333	9000
0.2	121 · 72	54·433	3875
0.3	129 · 10	70.711	2000
0.4	133 · 33	84 · 327	1407
0.2	136.08	96 · 225	1080
0.6	138.01	106.90	875
0.7	139 · 44	116.67	785
0.8	140·54	125.71	633
0.9	. 141 • 42	13 4 ·61	555
1.0	142 · 13	142.13	495
1.1	142.72	149 · 69	116
1.2	143 · 22	156.89	406
1.3	143 · 65	163 · 79	373
1.4	144 · 02	170· 40	344
1.5	144 · 34	176 · 78	320
1.6	144 · 62	182.93	299
1.7	144 · 87	188 · 89	280
1.8	145 · 10	194 · 67	264
1.9	145 · 30	200 · 28	249
2.0	145 48	205 · 74	236
20	148.70	665 · 00	23
100	149.00	1490.00	2

CHAP. I.

CATEGORY II.

SMOOTH SURFACES, ASHLAR, BRICKWORK, PLANKING, ETC.

$$c = \sqrt{\frac{1}{0.000\ 057 + \frac{0.000\ 013\ 3}{r}}}.$$

r	$c \\ (v = c \sqrt{rs})$	$c \sqrt{r} = m$ $(v = m \sqrt{s})$	$\frac{1}{c^2 r} = n$ $(s = n v^2)$
0.01	26.85	2.685	0.1387000
0.02	55·64 ·	12:442	64600
0.1	72.55	22.042	19000
0.2	89.98	40 · 252	6175
0.3	99 34	51.963	3378
0.4	105 · 26	66 · 574	2256
0.5	109 · 37	77 · 336	1672
0.6	112.39	87 · 057	1319
0.7	114.71	95.971	1086
0.8	116.54	104 · 24	920
0.9	118.03	111.98	797
1.0	119·27	119 · 27	703
1.1	120.33	126 · 20	628
1.2	121 · 20	132.76	567
1.3	121.96	139.06	517
1.4	122 · 65	145 · 12	475
1.5	123 · 22	150.91	439
1.6	123 · 74	156.52	408
1.7	124·20	161 · 94	381
1.8	124 62	167 · 20	358
1.9	125.00	172 · 30	837
2.0	125 · 34	177 · 26	318
20	131 · 69	588.92	29
00	132 · 30	1323 · 00	8

CATEGORY III. MODERATELY WELL-CONSTRUCTED SECTIONS IN RUBBLE, ETC.

$$c = \sqrt{\frac{1}{0.000\ 072 + \frac{0.000\ 060\ 0}{r}}}$$

c	c (v = c √r s)	$c \sqrt{r} = m$ $(v = m \sqrt{s})$	$\frac{1}{c^2 r} = n$ $(s = n v^2)$
0.01	12.83	1 • 283	0 · 6072000
0.05	30 · 54	6.830	214400
0.1	38.57	12 · 199	67200
0.2	51.85	23 · 187	18600
0.3	60 · 63	33.210	9067
0.4	67 · 12	44 · 448	555 4
0.5	72 · 17	51.031	3840
0.6	76.25	59 · 063	2867
0.7	79.63	66 · 624	2253
0.8	82.48	73.771	1837
0.9	84 · 94	80.582	1540
1.0	87.04	87 · 039	1320
1.1	88.91	93 · 251	1150
1.2	90.54	99 · 177	1017
1.3	92.02	104 · 92	908
1.4	93.33	, 110· 4 3	820
1.5	94 · 49	115.73	747
1.6	95.•56	120.88	684
1.7	96·5 4	125 · 87	631
1.8	97 · 45	130 · 74	585
1.9	98 · 25	135· 4 3	545
2.0	99.01	140.03	510
20	115.47	516.40	87
100	117:36	1173 · 63	. 4

CATEGORY IV.

SECTIONS IN EARTH.

$$c = \sqrt{\frac{1}{0.000\ 084 + \frac{0.000\ 350\ 9}{c}}}$$

r	c $(v = c \sqrt{rs})$	$c \sqrt{r} = m$ $(v = m \sqrt{s})$	$\frac{1}{c^2 r} = n$ $(s = n v^2)$
0.1	10.70	5.282	0.0358400
0.1	16.70		
0.2	23.25	10.443	91700
0.3	28 · 27	15.486	41700
0.4	82.29	20 · 423	23975
0.5	85.64	25 · 225	15745
0.6	38.71	29 · 985	11122
0.7	41.38	34 · 5 85	8343
0.8	43.87	39 · 252	6 4 9 4
0.9	45.99	43 · 624	525 4
1.0	48.00	48.002	4340
1.1	49.86	52.298	3656
$ar{f i}\cdotar{f 2}$	51.59	56.518	3131
$\tilde{\mathbf{i}} \cdot \tilde{3}$	53.21	60.666	2717
1.4	54.72	64.743	2386
1·5	56.14	68.753	2115
1.6	57.47	72.697	1892
1.7	58.74	76.585	1705
1.8	59.93	80.401	1547
1.9	61.06	84 · 166	1412
2.0	62.14	87.875	1295
2.1	63.16	91.529	1194
2.2	64 · 14	95.132	1105
2.3	65.07	98.685	1027
2.4	65.96	102.19	957
2.5	66.81	105.64	896
2.6	67:63	109.05	841
2.7	68· 42	112.42	791
2.8	69 17	115.74	746
2.9	69.90	119.03	706
3.0	70.59	122 · 27	6 69
3.1	71.26	125·48	635
3·2	71.91	128·6 4	604
3.3	72·5 4	131 · 77	576
3.4	73·1 4	134 · 86	550
3.2	73.72	137 · 92	526
3.6	74 · 28	140.94	499
3.7	74.83	143.94	483
8.8	75.44	147.07	463
3.9	75.87	149 · 82	445
4.0	76.36	152.72	427
$\overline{4} \cdot \widetilde{1}$	76.84	155.59	413
$\bar{4} \cdot \bar{2}$	77.81	158.43	398
$\mathbf{\hat{4}} \cdot \mathbf{\bar{3}}$	77.76	161.24	385
4.4	78.20	164.03	372
$\tilde{4} \cdot \tilde{5}$	78.62	166.78	359

r	a (v=c√rs)	$c \sqrt{r} = m$ $(v = m \sqrt{s})$	$\frac{1}{c^2 r} = n$ $(s = n v^2)$
4.0		100.00	0.0000048
4.6	78.94	169 · 32	0·0000348 837
4.7	79.44	172·22 174·90	827
4·8 4·9	79.83	177.55	817
5.0	80·21 80·58	180.19	808
5.1	80.94	182.80	299
5·2	81.30	185.38	291
5.3	81.64	187.95	283
5.4	81.98	190.49	276
5.5	82.30	193.01	268
5.6	82 · 62	195 · 51	262
5.7	82.93	198.00	255
5.8	83 · 33	200 · 73	248
5.9	83 - 53	202 · 92	248
6.0	83 82	205 · 32	237
6·1	84 · 10	207 · 72	232
6.2	84 · 38	210.10	226
6.3	84 · 65	212.47	221
6.4	84.91	214.82	217
6.5	85.17	217.15	212
6.6	85.48	219.47	208
6.7	85 67	221.76	203
6.8	85.92	224 · 00	199
6.9	86.15	226.31	195
7:0	86.39	228.56	191 188
$\substack{7\cdot 1\\7\cdot 2}$	86·61 86·84	230·79 233·01	184
7.3	87.06	235 22	181
7.4	87.27	237 · 40	177
7.5	87.48	239.58	174
7.6	87.69	241.74	171
7.7	87.89	243 · 89	168
7·8	88.09	246.02	165
7· 9	88 28	248 · 14	162
8.0	88 • 47	250·2 4	160
8.1	88.66	252·34	157
8.2	88 · 85	254 · 45	154
8.8	89 · 03	256 · 48	152
8.4	89.20	258 · 53	150
8.2	89.38	260 · 58	147
8.6	89.55	262 · 61	145
8.7	89.72	264·63	148
8.8	89.89	266·61 268·54	141 189
8.9	90.01	268·5 4 270·62	187
9·0 9·1	90·21 90·37	270.62	185
9.1	90.52	274 · 56	133
9.3	90.67	276.52	131
9.4	90.81	278.41	129
9·5	90.97	280.39	127
9.6	91.11	282.30	125
9.7	91.26	284 · 54	124
9.8	91.40	286 · 12	122
9.9	91 · 53	288·01	121

		•	-
. <u>.</u>	c (v = c√r s)	$c \sqrt{r} = m$ $(v = m \sqrt{s})$	$\frac{1}{c^2 r} = n$ $(s = n v^2)$
10.0	91.67	289 · 89	. 0.0000119
10.1	91.80	291.76	117
10.2	91.94	293.62	116
10.3	92.06	295.47	114
10.4	92.19	297.32	113
10.5	92.32	299 15	112
10.6	92.44	300.97	110
10.7	92.56	302.79	109
10.8	92.68	304 · 59	108
10.9	92.80	306.39	106
11.0	92.92	308 · 18	105
11.1	93.04	809 97	104
11.2	93.15	811.74	103
11.3	93 · 26	31 3·51	102
11.4	93 · 37	815.26	101
11.5	93.48	317·01	100
11.6	93 · 59	318.75	98
11.7	93 · 70	320·49	97
I1·8	93.80	322 · 21	96
11.9	93.90	323 ·9 3	95
12.0	94.00	325 · 63	94
12.1	94 · 10	327 · 33	93
12.2	94 · 20	829 03	92
12.3	94.30	330.71	91
12.4	94 39	332 · 40	90
12.5	94.49	334.08	90
$\substack{12\cdot 6\\12\cdot 7}$	94·58 94·68	335·74 337·40	89
12.8	94.77	339.06	88 87
12.9	94 86	340.71	86
13.0	94.95	342.35	85
13.1	95.04	343.97	85
13.2	95.12	345 · 59	84
13.3	95.21	347 · 21	83
13.4	95 · 29	348 · 83	82
13.5	95:38	350· 44	81
13.6	95· 4 6	. 352·04	81
13.7	95·5 4	353·6 3	80
13.8	95.62	355 · 23	79
13.9	95.70	356.81	79
14 0	95.78	358 · 39	78
14.1	95.87	360.00	77
14.2	95.94	361 · 52	77
14.3	96.01	363.07	76
14.4	96·09 96·16	364·63 366·18	75
14·5 14·6	96.16	367.73	75 74
14.7	96.31	369 · 26	74 73
14·8	96.38	870.79	73
14.9	96.45	372.31	73 72
15.0	96.53	373.84	72
15·1	- 96.59	375.35	71
15.2	96.66	376.85	70
15.3	96.73	378 · 35	70

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
15·4	r	1		·
15·5 96·86 98 381·35 68 15·7 97·00 884·33 68 15·7 97·00 884·33 68 15·7 97·00 884·33 68 15·8 1 67 15·9 12 887·28 67 16·0 19 388·75 66 16·1 25 31 391·67 65 16·2 31 391·67 65 16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 898·88 63 16·8 67 400·38 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·59 61 17·2 89 405·99 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 17·7 17·7 17·7 17·7 413·00 59 17·8 18·0 32 417·15 57 18·1 37 418·51 57 18·1 37 418·51 57 18·1 37 418·51 57 18·1 37 418·51 57 18·1 87 421·73 56 18·5 62 422·62 55 18·7 67 426·67 55 18·7 67 426·67 55 18·7 67 426·67 55 18·9 76 429·38 54 19·0 81 439·77 56 18·6 62 425·32 55 18·7 67 426·67 55 18·9 76 429·38 54 19·0 81 439·77 56 18·6 62 425·32 55 18·7 67 426·67 55 18·9 76 429·38 54 19·0 81 439·77 56 18·9 76 429·38 54 19·0 81 439·77 56 18·9 76 429·38 54 19·0 81 439·77 55 19·5 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 55 119·6 08 438·36 52 19·7 13 439·97 55 119·6 08 438·36 52 19·7 13 441·59 51 19·9 1		(v=c/rs)	(s=# V/s)	$(s=n v^2)$
15-5		96.79	379 · 85	0.0000069
15·7 97·00 384·83 68 15·9 12 385·81 67 16·0 19 388·75 66 16·1 25 390·21 66 16·2 31 391·67 65 16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·59 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·7 17 413·00 59 17·7 17 413·00 59 17·7	15.5	96.86		
15·8 06 385·81 67 15·9 12 387·28 67 16·0 19 388·75 66 16·1 25 390·21 66 16·2 31 391·67 65 16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·38 62 16·9 72 401·74 62 17·10 78 403·16 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·7 17 413·00 59 17·6 11 411·02 59 17·7 17	15.6	96.93	382 · 83	
15·9 12 387·28 67 16·0 19 388·75 66 16·1 25 390·21 66 16·2 31 391·67 65 16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·1 84 404·59 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 11 411·60 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27<				
16·0 19 388·75 66 16·1 25 390·21 66 16·2 31 391·67 65 16·3 37 398·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32<				
16·1 25 390·21 66 16·2 31 391·67 65 16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 10 411·60 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57				
16·2 31 391·67 65 16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 17·0 78 401·74 62 17·1 84 404·59 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56				
16·3 37 393·12 65 16·4 43 394·57 64 16·5 49 386·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 82 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47<				
16·4 43 394·57 64 16·6 49 396·02 64 16·6 55 397·46 63 16·7 61 398·88 63 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·59 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 421·98 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 428·67 55				
16·5 49 396·02 64 16·6 55 397·46 63 16·7 61 389·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·59 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52<				
16·6 55 397·46 63 16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 428·97 56 18·6 62 425·32 55				
16·7 61 398·88 63 16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55				
16·8 67 400·33 62 16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 404·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 428·97 56 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54				
16·9 72 401·74 62 17·0 78 403·16 62 17·1 84 40·58 61 17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 422·67 55 18·9 76 429·38 54 <	16.8			
17·1 84 404·58 61 17·2 89 405·99 61 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·5 57 423·97 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 53				
17·2 89 405·99 61 17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58			403.16	
17·3 95 407·40 60 17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·3 95 434·71 53 19·4 99·00 436·03 53				
17·4 98·00 408·82 60 17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·92 56 18·5 57 422·97 56 18·6 62 423·97 56 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 53 19·3 95 434·71 53 19·6 08 438·03 53				
17·5 06 410·21 59 17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 53 19·4 99·00 436·03 53 19·7 13 439·97 52				
17·6 11 411·60 59 17·7 17 413·00 59 17·8 22 414·40 58 17·9 27 415·77 58 18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 53 19·4 99·00 436·03 53 19·5 04 437·34 52 19·8 17 441·28 51				
17.7 17 413.00 59 17.8 22 414.40 58 17.9 27 415.77 58 18.0 32 417.15 57 18.1 37 418.51 57 18.2 42 419.89 57 18.3 47 421.73 56 18.4 52 422.62 56 18.5 57 423.97 56 18.6 62 425.32 55 18.7 67 426.67 55 18.8 72 428.02 55 18.9 76 429.38 54 19.0 81 430.71 54 19.1 86 432.05 54 19.2 90 433.37 58 19.3 95 434.71 58 19.4 99.00 436.03 53 19.5 04 437.34 52 19.6 08 438.36 52 19.7 13 439.97 52				
17.8 22 414.40 58 17.9 27 415.77 58 18.0 32 417.15 57 18.1 37 418.51 57 18.2 42 419.89 57 18.3 47 421.73 56 18.4 52 422.62 58 18.5 57 423.97 56 18.6 62 425.32 55 18.7 67 426.67 55 18.8 72 428.02 55 18.9 76 429.38 54 19.0 81 430.71 54 19.1 86 432.05 54 19.2 90 433.37 53 19.3 95 434.71 53 19.3 95 434.71 53 19.5 04 437.34 52 19.6 08 438.36 52 19.7 13 439.97 52 19.8 17 441.28 51 <td></td> <td></td> <td></td> <td></td>				
17.9 27 415.77 58 18·0 32 417.15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 53 19·3 95 434·71 53 19·4 99·00 436·03 53 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51				
18·0 32 417·15 57 18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 58 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 420·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 53 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83				
18·1 37 418·51 57 18·2 42 419·89 57 18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 58 19·3 95 434·71 58 19·3 95 434·33·37 58 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 <td></td> <td></td> <td></td> <td></td>				
18-2 42 419 · 89 57 18 · 3 47 421 · 73 56 18 · 4 52 422 · 62 58 18 · 5 57 423 · 97 56 18 · 6 62 425 · 32 55 18 · 7 67 426 · 67 55 18 · 8 72 428 · 02 55 18 · 9 76 429 · 38 54 19 · 0 81 430 · 71 54 19 · 1 86 432 · 05 54 19 · 2 90 433 · 37 53 19 · 3 95 434 · 71 53 19 · 3 95 434 · 71 53 19 · 3 95 434 · 71 53 19 · 4 99 · 00 436 · 03 53 19 · 5 04 437 · 34 52 19 · 7 13 439 · 97 52 19 · 8 17 441 · 28 51 19 · 9 21 442 · 59 51 20 · 0 26 443 · 90 51				
18·3 47 421·73 56 18·4 52 422·62 56 18·5 57 423·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 53 19·3 95 434·71 58 19·3 95 434·71 58 19·3 95 434·71 58 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24	18.2		419 · 89	
18·4 52 422·62 56 18·5 57 428·97 56 18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 58 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37		47	421 · 73	
18·6 62 425·32 55 18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 53 19·3 95 434·71 53 19·3 95 434·71 53 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37			422.62	
18·7 67 426·67 55 18·8 72 428·02 55 18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 58 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
18 · 8 72 428 · 02 55 18 · 9 76 429 · 38 54 19 · 0 81 430 · 71 54 19 · 1 86 432 · 05 54 19 · 2 90 433 · 37 53 19 · 3 95 434 · 71 53 19 · 4 99 · 00 436 · 03 53 19 · 5 04 437 · 34 52 19 · 6 08 438 · 36 52 19 · 7 13 439 · 97 52 19 · 8 17 441 · 28 51 19 · 9 21 442 · 59 51 20 · 0 26 443 · 90 51 30 102 · 24 40 103 · 83 50 104 · 83 60 105 · 51 70 106 · 00 80 106 · 37				
18·9 76 429·38 54 19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 53 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
19·0 81 430·71 54 19·1 86 432·05 54 19·2 90 433·37 53 19·3 95 434·71 53 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
19·1 86 432·05 54 19·2 90 433·37 58 19·3 95 434·71 58 19·4 99·00 436·03 53 19·5 04 437·34 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
19·2 90 433·37 53 19·3 95 434·71 58 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
19·3 95 434·71 53 19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
19·4 99·00 436·03 53 19·5 04 437·34 52 19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
19·5				
19·6 08 438·36 52 19·7 13 439·97 52 19·8 17 441·28 51 19·9 21 442·59 51 20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37	19.5			
19 · 8 17 441 · 28 51 19 · 9 21 442 · 59 51 20 · 0 26 443 · 90 51 30 102 · 24 40 103 · 83 50 104 · 83 60 105 · 51 70 106 · 00 80 106 · 37	19.6	08	438 · 36	
19 · 9				52
20·0 26 443·90 51 30 102·24 40 103·83 50 104·83 60 105·51 70 106·00 80 106·37				
30				
40			443.90	51
50			••	••
60 105·51			••	••
70 106·00			••	•• ,
80 106.37			···	. ••
			•	••
			l ::	•
			<u>''</u>	

CATEGORY V.

FOR SECTIONS COVERED WITH DETRITUS, CORRESPONDING TO THOSE OF THE STREAMS IN CANTON GRAUBUNDTEN.

$$c = \sqrt{\frac{1}{0.000 \ 120 + \frac{0.000 \ 7}{c}}}$$

+	c	r	c	r	e.
0·1 0·3 0·5 1 2	12 20 26 35 46	3 4 5 7	58 58 62 67	10 13 16 20	78 76 78 80

10. Table of Experimental Values of Coefficients in the Formula $v = c\sqrt{rs}$ obtained from Velocity Observations.

Explanation.

The first three columns give the actual values of r, s, and v, as obtained by measurement; the fourth column gives the value of E, the coefficient resulting from experiment; the columns I. II. III. IV. give values of the corresponding calculated coefficients in these respective categories according to the formulæ of D'Arcy and Bazin; and the last column gives the difference.

The quantities are in Swiss feet.

Fall 9			Coefficients.					Remarks.
	Fall per 1000.		E	п.	III.	IV.	Difference.	
		1		ŀ	1 1			

I. SECTIONS IN MASONBY, SEMICIBOULAB.

		a. Ge						
0.197	237 · 3	10.31	58	90	52		III + 6 ,, + 0	1
"	185.2	9.33		"	"	23	" + 0 " - 1	ţ
" "	137.5	9·05 8·61		1 .	1	ì	" – 2	1
"	111.7	8.61	48	"	"	"	,, -4	'

Rather damaged.

The successive decrements in these coefficients is due to the employment of an average, instead of an exact, value of r.

•	Fall		Coefficients						_
	per 1000.		Е	II.	III.	IV.	Differ	rence.	REMARKS.
1	l	b. G'r	ünnb	i achsci	l hale.	1			Rather damaged.
0.385	106·775 99·270 82·850	13·54 12·00	69 69	105 104 103	66		III - " -	LQ	Little water, but clea
	106·775 99·270 82·850	18.58	73	••	78 78 76	40 40 39	" - " -	- 5 - 5 - 5	Turbid water wit
		c. Gon	tenb	achsci	tale.			1	New and well constructed
	46·425 42·350 46·425 42·350	9·60 11·15	81 84	101 101 104 104	62 62 65 65		III -	- 24 - 19 - 19 - 18	II - 15 , - 20 , - 20 , - 21 Jt is evident the these are mean between Cate gories I. and II.
,	ď.	<i>Mill-le</i>	ats,	ı Dieme	ersteis	n.	•		Section in Sandstone.
3.0	1.40	1.40	70	99	61		111	- 9	
	Fall	Π		c	oeffici	ents.			_
*	per 1000.	. "	1	E	ıv.	Differ	rence.		Remarks.

a. Brooks, Hübengraben, Hockenbach, Speyerbach, Lautercanal, Canal at Ried von Marmels, Canal in England.

0.6 0.9 0.9 1.5 1.6 1.8	1·300 0·778 0·797 0·667 0·267 0·664	1.45 1.46 1.49 1.85 1.83 2.14	52 56 56 59 88 61	39 46 46 56 57 60	IV + 13 " + 10 " + 10 " + 3 " + 31 " + 1
2.35	0.200	1.92	56	65	, - 9
2.50	0.063	1.13	91	67	,, + 24

The inclinations are generally low. The greatest differences occur with the least inclinations. The sections appear to be better than that allowed for by the formula, with the exception of the last but one, which is evidently strong.

b. Chesapeake Ohio Speisecanal, River Hague, Yssel, Ohio (Point Pleasant), Rhine below the Yssel.

3·8 ·3·9 5·1 6·0 6·2 7·0	0.698 0.698 0.165 0.156 0.117 0.098	2·72 3·03 2·49 2·56 2·77 2·51 2·92	54 59 87 85 105 100 97	75 76 81 84 84 86 88	IV - 21 " - 17 " + 6 " + 1 " + 21 " + 14
7.9	0.117	2.92	97	88	,, + 9

In the Chesapeake Ohio Speisecanal there is grass or weeds, and the inclination is high; this is expressed by the coefficients. The remainder have lower inclinations, and hence higher coefficients.

per 1000. E IV Difference.	*	Fall per 1000.	,	Coeffic	ients.	Remarks.	
2 277 232000		per 1000.	E	IV.	Difference.	ABRARAS.	

c. The Tiber at Rome, the Rhine at Speyer, Waal, the Rhine at Pannerden, and at Byland.

```
92
92
93
       0.131
               3.41
                      97
9.9
               2.96
9.9
       0.112
                      89
               3.16
11.5
       0.104
                      93
               3.28
      0.100
                      98
                            94
       0.098
               3.57
                            98
```

d. Bayou Lafourche, Bayou Plaquemine, the Great Newka.

13.6 16.0 16.3 16.8	0.044 0.037 0.144 0.045 0.036	2·79 2·84 3·96 3·08 2·81	119 128 84 115 129	95 95 97 97 98	" + 33 " - 13 " + 18 " + 31	Low inclination. High inclination. Low inclination. ""
18·1	0·015	2·05	127	98	" + 29	"" High inclination.
19·1	0·206	5·20	84	99	" - 15	

e. Newa, Mississippi.

46.4	0.014	3.23	145	102	IV + 43	Low inclination.
32.0	0.022	3.52	130	100	,, + 30	,, ,,
54.3	0.030	5.26	139	103	" + 36	" "
59.8	0.048	6.32	120	103	, + 17	High inclination.
66·8 67·3	0.064	6.95	108 128	104 104	$" + \frac{4}{24}$	Low inclination.
68.6	0.068	6.96	103	104	" _ 1	High inclination.
74.4	0.017	5.89	166	105	", + 61	Slight inclination.
75.1	0.020	5.93	154	105	" + 49	· · · ·
77.0	0.003	4.03	253	105	,, +148	Very slight inclination.
78.3	0.004	3.98	23 4	105	,, +129	" "

f, Linth Canal.

$5 \cdot 2$	0.29	3.47	89	81	IV +	8	The Linth canal has a ra-
6.0	0.30	3.90	92	84	,, +	8	ther smoother section than
6:6	0.31	4.22	93	85	", +	8	that of the Fourth Category.
$7 \cdot 2$	0.32	4.49	93	87	", +	8	Its coefficients run higher
7.6	0.33	4.83	96	88	,, +	8	than, but yet tolerably pa-
$8 \cdot 2$	0.34	5.00	95	89	,, +	6	rallel to, those of D'Arcy and
8.4	0.34	5.14	96	89	", +	7	Bazin.
8.7	0.35	5.31	96	90	", +	6	,
9.0	0.36	5.48	96	90	,, +	6	

r	Fall per 1000.	•		Coefficients.		Remarks.
	per 1000.		E	IV.	Difference.	KENARKS.

III. SECTIONS OBSTRUCTED BY DETRITUS.

a. Aar.

b. Escher Canal.

3,815	3.00	6.46	60	75	IV - 15	The detritus is large.
4.821	3.00	10.87	90	80	" + 10	?

c. The Meuse at Misox.

1.001	11.87	3.93	36	48	IV - 12	Influenc	e of d	etritus.
1.217	11.87 11.87	5.63	47	52	" – 5	"	>>	"
T.990	17.91	1.11	97	07	•••	ŀ		

d. The Rhine at Domleschgerthal.

				-	
0.255	5.77	1.27	33	26	IV + 7
1.073	6.43	3.70	35	48	, - 13
1.086	6.43	4.38	52	49	,, + 3
1.128	6.43	4.60	54	50	$ \ddot{"}+4 $
1.335	6.43	5.13	55	54	", +1
1 · 329	6.43	5.24	57	54	" i 9
1.344	7.73	4.83	45	54	" i a
1.320	7.96	7.00	59	53	"
1.366	7.73	3.91	38	54	16
2.000	7.73	5.97	43	62	7 10
1.970	7.96	7.20	55	-62	l" - 7
2.227	7.03	6.77	76	64	" 1 10
2.429	7.73	6.07	44	66	″ <u> </u>
2.465	7.96	7.40	52	66	14
2.997	7.55	7.25	48	70	" _ 99
2.997	7.75	7.40	49	70	″ _ 91
2,997	7.96	7.54	49	70	" 91
					" _ 14
					″ 9A
					" _ 17
9.419	1.90	0 07	20	10	, - 11
3·110 3·195 3·475	7·96 7·96 7·96 7·96	8·38 8·83 9·67	57 52 56	70 71 72 73	" - 14 " - 20

Some of these results generally indicate the influence of the detritus.

Some of the measurements are doubtful. The influence of the detritus is generally very evident.

•	Fall			Coeffic	ients.	_
	per 1000.		E	IV.	Difference.	Remarks,
	. T	he Pless	ur at 1	Thur.	I	I
1·267 2·373 3·531 3·638 3·650 4·365	9.65 9.65 9.65 9.65 9.65 9.65	6·10 10·15 10·36 13·80 14·17 18·07	55 67 56 74 75 68	53 66 73 74 75 78	IV + 2 " + 1 " - 17 	These results agree well generally, with the exception of two.
	f. The	Rhine	at Rhe	inwald	•	
0·423 0·776 1·229	14·20 14·20 14·20	2·37 4·60 6·13	31 44 46	33 43 52	IV - 2 ,, + 1 ,, - 6	

11. Remarks on the Series of Observations of D'Arcy and Bazin.

The 'Recherches Hydrauliques' of D'Arcy and Bazin contain fifty series, comprising three hundred and seventy measured observations of cases similar to the foregoing, which afford a large number of experimentally obtained coefficients c for the formula $v = c\sqrt{rs}$. We have plotted them to scale according to their respective categories, in conjunction with the curves of the coefficients calculated from the four formulæ; they indicate the following results:

Category I.— Very smooth Sections in Cement, planed Timber. etc.

The coefficients afforded by the series Nos. 2, 24, 25, 28, and 29, group themselves generally close to the calculated coefficients obtained by formula No. I.; in the semicircular sections in cement, series Nos. 24 and 25, the coefficients are higher than those of the formula, and increase very rapidly with the values of r.

Category II.—Sections in Ashlar, Brickwork, and Planking, etc.

The coefficients given by fifteen series agree very well with the curve of coefficients corresponding to formula No. I.; but the sections in plank show greater variability than those in stone, more especially those that are of a semicircular form. The results of the above very varied constructions of section show that the coefficients that correspond to rectilinear sections do not vary much.

Category II. to III.—Sections rougher than Ashlar, Brickwork, and Planking, but smoother than dry Rubble.

This new category adopted by ourselves, and placed as an arithmetic mean between Categories II. and III., is not mentioned by D'Arcy and Bazin. The necessity of this new category as a special class is, however, clearly shown from the examination of series Nos. 12, 13, 14, 27, 30, and 31, as well as those of the Gontenbachschale at Lake Thun. The series Nos. 12, 13, and 14 are rectangular sections in planking, the planks being 0.09 foot wide, placed 0.033 foot apart: series No. 27 is a semicircular section of firmly punned gravel 0.03 to 0.07 foot thick; the Gontenbachschale is also semicircular, but is made of new and wellconstructed large dry rubble. In both sections the derived coefficients fall in a mean curve lying midway between those of Categories II. and III. The series Nos. 30 and 31 have very small sections of plank covered with canvas, and give coefficients which fall between those of formula No. II. and those of the new class midway between Categories II. and III.; they may hence be almost considered as belonging to Category No. II.

Category III.—Ordinary dry Rubble.

To this category belong series Nos. 4, 32, 33, 45, as well as those of the Grünnbachschale and the Gerbebachschale at Merligen on Lake Thun, which are semicircular in section and much damaged.

Category III. to IV.—Worse than ordinary Rubble and better than Earthen Sections, being an arithmetic mean between Categories III. and IV.

This class is not proposed by D'Arcy and Bazin, but is a natural result of the examination of the following series: Series No. 5, rectangular, made of well punned gravel 0·10 to 0·15 foot thick; series Nos. 15, 16, and 17, sections in planks, nailed on transversely, 0·09 foot broad and 0·167 foot apart; series No. 35, bad masonry; series Nos. 44 and 46, rectangular, of damaged masonry, having their beds covered with stones and mud; lastly, the Alpbachschale at Meiringen, of old and very much damaged rubble.

Category IV.—Sections in Earth.

To this belong series Nos. 34, 37, 38, 41, 42, 47, 48, 49, and 50. Some of these are entirely in earth, without any vegetation on the bed or banks; some of bad masonry, covered with moss and plants, or having their beds covered with stones and mud; some rocky sections, etc. To this category also approximately belong a large number of observations on the Seine, Saone, Hayne, Canal du Jard, as well as those of the Swiss, and those of the American engineers on the Mississippi and its tributaries.

Category V.—Sections obstructed by Detritus.

This is not one of D'Arcy and Bazin's categories, but is the result of observations on rivers having their beds and banks obstructed by detritus, principally those of La Ricca, Legler, etc. To this class belong series Nos. 36, 40, and 43, in the sections of which occur many plants, grass, rocks, and stone strewn about.

The determination of the final coefficients for all these classes will be subsequently explained. Further reference as to the observations of D'Arcy and Bazin may be made by consulting their 'Recherches Hydrauliques;' the remaining observations we have already given in the table at pages 25 and 26, paragraph 10.

12. THE COEFFICIENTS OF D'ARCY AND BAZIN FOR CALCULATING MEAN FROM MAXIMUM VELOCITIES.

The numerous and accurate observations of D'Arcy and Bazin have demonstrated that the ratio of mean to maximum velocity in any section, till lately believed to be from 0.80 to 0.83, is not a constant quantity, but a variable one, a fact also noticed by others. Their formula for calculating mean from maximum velocities is as follows:

$$\frac{v_s}{v_m} = 1 + 25.56 \sqrt{\frac{rs}{v_m^2}}; \text{ or } v_s - v_m = 25.56 \sqrt{rs}$$

where v_r is the maximum velocity, and v_m is the mean velocity. The following table of coefficients for calculating mean from maximum velocities, in the four categories, and corresponding to various values of r in Swiss feet, may be found useful. With reference to this subject it may be noticed that in a water-section of small depth the maximum velocity is at the surface, while in one of great depth it is below it; and that in a section of equal breadth and depth, the maximum velocity is at half the depth.*

^{*} See 'Récherches Hydrauliques,' p. 152.

13. Table of the Coefficients of D'Arcy and Bazin for calculating Mean from Maximum Velocities; being Values of the Ratio $\frac{v_m}{v_s}$ as previously explained.

r	Category I.	Category IL	Category III.	Category IV.
0.1	0.80	0.74	0.62	
0.2	0.83	0.78	0.67	0.51
0.3	0.83	0.79	0.70	0.54
0.4	0.84	0.80	0.72	0.56
0.5	0.84	0.81	0.74	0.58
0.6	0.84	0.81	0.75	0.60
0.7	0.84	0.82	0.76	0.62
0.8	0.85	0.82	0.76	0.63
0.9	0.85	0.82	0.77	0.64
1	0.85	0.82	0.77	0.65
2	0.85	0.83	0.80	0.71
3			0.80	0.74
4			0.80	0.75
5			0.81	0.76
4 5 6 7 8 9	 .		0.81	0.77
7	١ ٠			0.77
8	l			0.78
9	٠			0.78
10				0.78
11				0.78
12				0.79
20				0.79

14. Examples Explanatory of the Use of the Table of Coefficients of D'Arcy and Bazin, given at pages 14 to 22.

(Swiss feet are used in these examples, as well as in the table.)

Example 1. A channel of trapezoidal section with side slopes of 45° and an inclination, s = 0.0008, has to discharge 5 cubic feet per second at maximum, when the surface of the water will stand at 1 foot below the surface of the ground; the soil is loam, with one-third sand: what will the bottom width be, and what the depth of excavation?

The method of approximation is best suited to this case. The formula to be used is $v = c\sqrt{rs}$.

Assume as a first approximation a bottom width of 3 feet, and a depth at high water of 1 foot. Then the cross section will be 4 square feet, and the wetted perimeter will = $3 + 2\sqrt{2} = 5.8$, and r will = $\frac{4}{5.8} = 0.69$; the coefficient c corresponding to this value of r in Category IV. is 41.11, but as the soil is loamy and tolerably smooth we may take it as 42.

Applying these values in the formula we obtain

$$v = 42 \sqrt{0.69 \times 0.0008} = 0.987$$

and $q = 4 \times 0.987 = 3.95$ cubic feet per second instead of 5 cubic feet per second.

In order to correct this, either the bottom width or the depth of wetted section must be increased; the latter mode is preferable, on account of its occupying a smaller breadth of land.

Assuming therefore for a second approximation a depth of 1.3 feet, the cross section becomes $(3+1.3) \times 1.3 = 5.59$ square feet, the wetted perimeter $3 + 2\sqrt{2.6} = 6.2$, r will = 0.9, and c in Category IV. will = 46:

hence
$$v \text{ will} = 46 \sqrt{0.9 \times 0.0008} = 1.24$$
,
and $q \text{ will} = 1.24 \times 5.59 = 6.93$ cubic feet per second.

As in the first approximation the discharge resulting from a depth of 1 foot was 1 cubic foot per second too little, and in the second, that from a depth of 1.3 feet was 1.93 cubic feet per second too much, we cannot be far wrong in putting the correct depth at 1.1 feet, the bottom width as 3 feet; and then the depth of excavation will be 2.1 feet.

Example 2. Obtain the bottom width and depth of a planked rectangular channel, which will have maximum discharge of 3.5 cubic feet per second, with an inclination of 0.001.

Assume for a first approximation a bottom width of 2 feet, and a depth of 1 foot.

Then the cross section = 2 square feet, the wetted perimeter = 4 feet, hence r = 0.5 foot, and c in Category II. will be 110.

Therefore

$$v = 110 \sqrt{0.5 \times 0.001} = 2.46 \text{ feet per second}$$
 and
$$q = 2.46 \times 2 = 4.92 \text{ cubic feet per second.}$$

For a second approximation reduce the bottom width to 0.7 foot; the new quantities resulting are then, the cross section = 1.4 square feet, the wetted perimeter = 3.4 feet, r = 0.41, and c = 105, hence

$$v = 105 \sqrt{0.41 \times 0.001} = 2.13$$
, and $q = 2.13 \times 1.4 = 2.93$.

In the first case the discharge was 1.4 cubic feet too much, and in the second 0.52 too little; if then we assume a correct depth of 0.8 instead of 1.0 and 0.7 foot, the error will be very small. The sides of the channel will then be not more than 1 foot in height.

Example 3. To calculate the discharge of a channel.

a. The maximum discharge obtained by repeated observations with floats is 5.27 cubic feet per second; the section taken as a mean of those at the two ends and at the middle of the length of channel under observation, is 210 square feet, and the mean wetted perimeter is 57.5 feet.

Hence

$$r = \frac{210}{57 \cdot 5} = 3 \cdot 65.$$

The mean velocity is obtained from the maximum by applying a coefficient of reduction, given in the last table, of 0.75.

Hence

$$v = 0.75 \times 5.27 = 8.95$$

and

$$q = 3.95 \times 210 = 829.5$$
 cubic feet per second,

or in round numbers 830.

b. If the inclination and dimensions of the channel are given, let the cross section be taken as 117 square feet, the wetted perimeter at 32 feet; and the inclination as S = 0.000753; then will r = 3.656, and c the coefficient will in Category IV. be 74.6.

Hence

$$v = 74.6 \sqrt{3.656 \times 0.000753}$$

= $74.6 \times 0.0525 = 3.92$ feet per second,

and

$$q = 3.92 \times 117 = 458.6$$
 cubic feet per second,

or in round numbers 460.

Example 4. What is the inclination to be given to a channel, having a maximum discharge of 3 cubic feet per second, that has to be conducted down sloping ground of a soil not allowing of a mean velocity of water of more than 3 feet per second?

Let the section be trapezoidal with side slopes of 1 to one, its bottom width 3 feet, and its depth 1 foot.

Then the cross section will be 4 square feet, the wetted perimeter 5.8 feet; and r will = 0.69, and the coefficient n for Category IV. will be 0.000 8621, and hence $S = nv^2 = 0.000 8621 \times 9 = 0.0077$.

The suggestions afforded by these examples will aid in the choice of coefficients for various cases.

15. THE FORMULÆ AND CATEGORIES OF GAUCKLER.

The two new formulæ of G. Ph. Gauckler, Engineer of the Ponts et Chaussées and the works on the Rhine at Colmar, are given in a treatise, 'Études Theoriques et Pratiques sur l'Écoulement et le Mouvement des Eaux,' in the Comptes Rendus of the Académie des Sciences. They are:

1st. For inclinations exceeding 0.0007, $\sqrt{v} = \alpha \sqrt[3]{r} \sqrt[3]{s}$. 2nd. For inclinations less than 0.0007, $\sqrt[4]{v} = \beta \sqrt[3]{r} \sqrt[3]{s}$.

These two equations may be reduced to the forms

$$v = \alpha^2 \sqrt[6]{r} \sqrt{rs},$$

$$v = \beta^4 \sqrt[3]{r^4s}.$$

Mons. Gauckler, from a comparison of the observations of D'Arcy and Bazin, Dubuat, Woltmann, Brünings, Poirée, Emmery, and Léveillé, determines the values of a and β to be as follows in different sections, according to his six Categories for Swiss feet.

CATEGORIES.	. Values of				
	a	β			
1. Ashlar and cement	10·4 to 12·2	7·7 to 8·1			
2. Ordinary good masonry	9.3 ,, 10.4	7.2 ,, 7.7			
3. Sections with masonry side walls and the bottom in earth	8.3 " 8.3	7.0 , 7.2			
4. Canals entirely in earth	7.0 ,, 8.3	6.3 , 7.0			
5. Canals in earth, with grass on the	6.1 , 7.0	6.0 " 6.3			
6. Rivers		5.8 , 6.0			

First as regards Gauckler's first formula: If we calculate a series of coefficients c for the general formula $v = c\sqrt{rs}$ from those given by Gauckler, for all his six categories, and for a series of values of r, and plot them to the same scale as

the corresponding coefficients of D'Arcy and Bazin, we find that the limits of the former are much greater than those of the latter; for instance, for a value of r = 2, the coefficients of Gauckler's first formula vary between '42 and 168, and those of Bazin between 62 and 145. We also notice that for very small values of r, in the first category the coefficients of D'Arcy and Bazin are higher than those of Gauckler, while in the last category they are lower, and that in the first category the successive increments of c generally rise more steadily according to Gauckler than according to D'Arcy and Bazin, while in the last category, and especially from r =0.01 to 0.02, they first decrease more rapidly, and afterwards increase more slowly than those according to D'Arcy and Bazin. We give here following the calculated coefficients of Gauckler for his six categories obtained from his first formula for Swiss feet.

Secondly, as regards Gauckler's second formula, suited to streams having inclinations less than 0.0007, where $\sqrt[4]{v} = \beta \sqrt[3]{r} \sqrt[4]{s}$. We have calculated a large number of values of the coefficient β from the results of observation, and find that they correspond tolerably well with the Series Nos. 41 to 50 of D'Arcy and Bazin; while on the contrary the values of β are from 5.3 to 5.4, or less than the minimum fixed by Gauckler at 5.8, for the observations on the Rhine at Germersheim of Grebenau, for those on the Linth canal, Nos. 5 to 10 of Legler, and for those on the Mississippi and its affluents in cases where the inclinations are considerable: again, when the inclinations on the Mississippi are small the values of β increase and reach 7.8.

16. Table of Coefficients α for the First Formula of Gauckler, in his Six Categories, adapted to Swiss Feet.

	1.	2.	3.	4.	5 and 6.
r	a =	a =	a =	a ==	a =
	10.389 to 12.222	9·289 to 10·389	8·311 to 9·289	6.966 to 8.311	6·111 to 6·966
0.02	66 to 91	52 to 66	42 to 52	29 to 42	23 to 29
0.1	74 ,, 102	59 , 74	47 ,, 59	33 ,, 47	25 ,, 33
0.5	83 114	66 , 83	53 , 66	87 ,, 58	29 ,, 37
0.3	88 ., 122	71 ,, 88	57 ,, 71	40 , 57	31 ,, 40
0.4	93 128	74 ,, 93	59 ,, 74	42 ,, 59	32 ,, 42
0.2	96 , 133	77 , 96	61 ,, 77	43 ,, 61	33 ,, 43
0.6	99 ,, 137	79 ,, 99	63 , 79	45 ,, 63	34 ,, 45
0.7	102 ,, 141	81 102	65 , 81	46 ,, 65	35 ,, 46
0.8	104 ,, 144	83 , 104	67 , 83	47 ,, 67	36 ,, 47
0.9	106 ,, 147	85 , 106	68 ,, 85	48 , 68	37 ,, 48
1.0	108 ,, 149	86 , 108	69 , 86	49 ,, 69	37 ,, 49
1.25	112 ,, 155	90 112	72 ,, 90	50 , 72	39 ., 50
1.50	115 ,, 160	92 115	74 , 92	52 ,, 74	40 ,, 52
1.75	118 ,, 164	95 ., 118	76 , 95	53 ,, 76	41 ., 53
$2 \cdot 0$	121 ,, 168	97 ,, 121	78 , 97	54 ,, 78	42 ,, 54
2.5	126 ,, 174	101 ,, 126	80 ,, 101	57 ,, 80	44 ,, 57
8	130 , 179	104 , 130	83 ,, 104	58 ,, 83	45 ,, 58
4 5	136 , 188	109 , 136	87 , 109	61 ,, 87	47 ., 61
5	141 ,, 195	113 ,, 141	90 ,, 113	63 ,, 90	49 ,, 63
7	149 ,, 207	119 , 149	96 ,, 119	67 ,, 96	52 ,, 67
10	158 , 219	127 ,, 158	101 ,, 127	71 ,, 101	55 ,, 71
15	170 , 235	135 " 170	108 , 135	76 ,, 108	59 ., 76
20	179 ,, 246	142 " 179	114 ,, 142	80 ,, 114	62 , 80

17. THE FORMATION OF A NEW AND FINAL SET OF TWELVE CLASSES, INSTEAD OF THE PREVIOUS CATEGORIES.

The fifty series of observations mentioned in Bazin's work comprise only a very small number of values of r, to which a moderate number of curves or equations are applicable. The same is the case, but in a higher degree, with the observations of Dubuat, Woltmann, Brünings, Poirée, Emmery, etc. Hence we may observe that the formulæ of Gauckler may with an extension of the values of a and β give quite as good results as those of D'Arcy and Bazin, and perhaps even better, as they are more comprehensive and include the

extreme values of r. A series of coefficients however that are obtained directly from observed results of all degrees and conditions are far more useful and comprehensive; they are of more value to the practical engineer, as they possess an exactitude dependent entirely on the correctness of the observations, and at the same time offer to the scientific an opportunity for deriving theoretical deductions that may be quite as correct as any hitherto made.

Such a series of working coefficients c for the formula $v = c \sqrt{rs}$ adapted to Swiss feet, as are all the foregoing tables, are given in the following table.

They are separated into twelve new classes, in accordance with the various conditions under which the observations were made, and are dependent on the observations given in Series Nos. 1 to 50 of D'Arcy and Bazin, those of Dubuat, Poirée, Emmery, Léveillé, Funk, Brünings, Woltmann, and Bonati; also given in the 'Recherches Hydrauliques,' as well as others taken from the collection of Grebenau, and on the observations of engineers in Switzerland. These observations are referred to their respective classes in the following list.

From the evident incompleteness and deficiency for our purposes of this collection of observed results, it would be highly desirable to increase it by many more; more especially for the case of rivers and channels impeded by detritus.

18. THE NEW CLASSES OF COEFFICIENTS.

The series referred to are those of D'Arcy and Bazin.

Class I. Well-planed timber planks $\frac{1}{3}$ foot wide; rectangular.

Section, Series Nos. 28 and 29. Pure cement, semicircular.

Section, Series No. 24.

Class II. Pure cement, rectangular section, Series No. 2. Cement with one-third fine sand from the Saone, semi-circular section. Series No. 25.

Class III. Planking, semicircular section, Series No. 26.

Class IV. Planking, mill-leats, rectangular, trapezoidal and triangular in section. Series Nos. 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, and 23.

In these the coefficients c increase with the inclinations, which vary from 0.001 487 to 0.008 433.

Class V. Small channels in ashlar and brickwork, rectangular sections. Series Nos. 1 (Baumgarten), 3, and 39.

Class VI. Planks covered with canvas, $\frac{1}{8}$ foot wide, rectangular sections. Series Nos. 30 and 31. Planking of laths 0.09 foot wide, nailed at distances apart of 0.033 foot, rectangular sections. Series Nos. 12, 13, and 14.

In these the coefficients c increase with the decrease of inclination. Well-punned gravel, $\frac{1}{3}$ to $\frac{3}{3}$ inch thick, semi-circular section. Series No. 27.

Good dry rubble, semicircular section. Gontenbachschale at Lake Thun,

Class VII. Well-punned gravel, $\frac{1}{3}$ to inch thick, rectangular section, Series No. 4.

Rubble in cement, with the bed damaged and covered with mud, rectangular section. Series Nos. 32 and 33.

Good masonry in a well-constructed section, rectangular. Series No. 45.

Dry rubble of dressed stone, damaged, semicircular section. G'rünnbachschale and Gontenbachschale, at Lake Thun.

Class VIII, Well rammed gravel, 1 to $1\frac{1}{2}$ inches thick, rectangular section. Series No. 5.

Dry rubble, in bad condition, trapezoidal section. Series No. 35.

Masonry, damaged, with the bottom covered with stones and silt, rectangular section. Series Nos. 44 and 46.

Planking, with boards 0.09 foot broad, nailed at distances of 13 inches apart; rectangular section. Series Nos. 15, 16, and 17.

Here the coefficients c increase with the decrease of inclination.

Dry rubble, old and much damaged, semicircular section. Alpbachschale at Meiringen.

Class IX. Small channels in earth, partly stony soil with γ a few plants, and partly muddy and covered with grass. Series Nos. 37, 38, 41, 47, 48, 49, and 50.

Masonry, in bad condition, with moss and weeds. Series Nos. 34 and 42.

Class X. Small channels in earth, with plants and grass, and strewn with stones. Series Nos. 36, 40, and 43.

Class XI. Streams and rivers. Baumgarten's observations forming Series Nos. 1, and 41 to 50. Those of Poirée and Emmery on the Seine, of Léveillé on the Saone, of Dubuat on the Jard and Hayne, of Funk on the Weser, of Brünings on the branches of the Rhine, of Woltmann (3?), of Bonati, etc., on the Po and Tiber, of Legler on the Linth canal, of Grebenau on streams and on the Rhine in Bavaria, of Humphreys and Abbot on the Mississippi and its affluents, of Destrem on the Great Newka and Neva, etc.

In these cases the coefficients c increase with the decrease of the inclination.

Class XII. Channels of rivers and canals impeded by detritus. Observations of La Ricca on the Rhine at Domleschgerthal and Rheinwald, on the Meuse at Misox, on the Plessur at Thur, and those of Legler on the Escher canal.

19. Table showing the Range of

r	I.	и.	III.	IV.	₹.	VI.
0.02	••					••
0.02	76					30
.045			<i>.</i> .			••
050	90	••			••	46
90.08	. ::	••	••		••	-:-
0.075	100	••	••	••	••	55
0.08	1 .::	••	•• `	••	••	61
)·10)·12	106	••	••	••	••	
)·12	••	••	••	76 to 95	••	••
0.16	126	••	••		••	68
)·18	1	••	••	01 " 100	••	•
0.20	130	117	••	81 ,, 100 83 ,, 103	87	72
0.22			::	84 , 105	••	<u> </u>
0.24	::			86 ,, 107	•	l ::
0 · 26	136	121		88 109	••	76
0.28		١	••	89 110		
0.80		124	••	90 111	94	79
0.32				92 ,, 112	••	
0.34				93 ,, 114	••	::
0.36				94 ,, 115	••	82
0.38	-::	-::	-::	95 ,, 116	::	::
0.40	136	129	109	96 ,, 116	99	85
0.42				98 , 117	••	••
0·44 0·46		••	••	99 , 118 100 , 118	••	87
0.48		••				1
0.20	140	133	113	1 701 " 100	103	89
0.55	1	100	110	1 400 " 401		91
0.60	144	136	117	1 400 " 400	107	93
0.65		1 -00	:	106 ,, 122		95
0.70	148	139	120	108 ,, 124	1111	96
0.75	1	l	١	110 . 126	١	98
0.80	152	142	123	111 , 127	114	99
0.85		1		112 , 128		100
0.90	156	145	126	113 , 128	117	101
0.95				114 ,, 129		102
1.00	159	148	128	114 ,, 130	121	103
1.10	162	150	130	••	124	105
1.20	165	152	132	••	127	107
1.30				••	130	
1·40 1·50	••				133	
1.90					136	
1.70	••				139 142	1
1.80					142	"
1.90	••		••	••	148	••
2.00	::	••	::	1 ::	151	
_ ~~		••	1		101	

OBSERVED COEFFICIENTS. (For Swiss feet.)

AII'	VIII.	IX.	X.	•	XI.	XII.
11				0.25		25 to 83
	· · · · · · · · · · · · · · · · · · ·		I	0.50		80 ,, 42
1 1		•	!!	0.75	•••	83 ,, 49
::		••	• •	1.00	42 to 58	85 ,, 54
1 1	•••	••	••	1.5	12 10 00	00 "
1 1	••	••	•••	2.0	54 to 70	40 " 00
••	••	••		2.5	02 W 10	44 " 00
'	••	••		8.0	63 to 78	45 " 50
••	· ••	••	••		63 to 78	47 ,, 72 49 ., 74
"	••	••	••	8.5	00 4. 04	** " ·-
••	••	••	••	4.0	69 to 84	51 , 77
••	••	••	••	4.5	··	53 " 79
ا ئنا	:-	••	••	5	78 to 88	54 ,, 81
57	38 to 52	••		6	76 , 92	••
••		••		7	78 ,, 95	••
1 1		••		8	81 , 97	••
61		••	l	9	82 , 99	
••	••	••		10	84 , 101	
65	42 to 58			11	85 , 102	
1		••		12	86 , 103	
1 1		••		13	87 ,, 104	
68	• • • • • • • • • • • • • • • • • • • •	•••		14	88 , 106	••
	••		••	15	00 " -0-	••
71	46 to 63	••	••	16	00 " 100	••
1 1		••	••	17		••
"	••	••	••	18	01 " 100	••
73	••	••	••	19	91 ,, 109	••
	••	••	••	20	92 ,, 110	••
75	40	••	••		92 ,, 111	••
	49 to 66	••	••	21	93 ,, 111	••
77	:	••		22	93 ,, 112	••
78	52 to 70	••	••	23	94 ,, 113	••
79	••	••		24	94 ,, 113	
80	54 to 72	••				
81	••	••	1			••
82	56 to 74	35 to 51				
84						l
85	59 to 77	37 to 53				١
86			1	۱	١.,	1
87	61 to 79	39 to 55	28 to 41	II		l ::
88	64 ,, 81	41 ,, 57	29 , 43	I ::	::	l ::
90	66 ,, 83	43 ,, 58	30 , 44	::	::	1
91	67 , 84	45 ,, 60	31 , 46	l ::	1 ::	
92	69 ,, 85	47 ,, 62		1		
93		49 64	1 04 " 40			
94	l =0 ″ 00		1 00 " 20			
95	l =0 " 00	FO " OF	00 " 21	••	••	
	l == " ^-	52 , 67	0~ " *0		••	
96	75 , 91	53 ,, 69	37 ,, 52		"	
97 98	76 , 92	55 , 70	38 , 53		••	••
	77 ,, 93	56 ,, 72	38 , 54	ll		ł

20. DETERMINATION OF THE FINAL COEFFICIENTS FOR THE TWELVE NEW CLASSES IN METRICAL MEASURES.

The four formulæ of D'Arcy and Bazin have the form:

$$v = \sqrt{\frac{rs}{a + \frac{\beta}{r}}},$$

while the general formula we have adopted as a basis is

$$v = c \sqrt{rs}$$

in which the coefficient e would be, according to D'Arcy and Bazin,

$$c=\sqrt{\frac{1}{a+\frac{\beta}{a}}},$$

in which the values of a and β for Swiss feet are

In Category I.
$$\alpha = 0.000 045$$
, $\beta = 0.000 0045$;
" II. $\alpha = 0.000 057$, $\beta = 0.000 0183$;
" III. $\alpha = 0.000 072$, $\beta = 0.000 060 0$;
" IV. $\alpha = 0.000 084$, $\beta = 0.000 850 0$;

and in our new Category V.

$$\alpha = 0.000 120, \quad \beta = 0.000 700 0.$$

These quantities (a and β) being in all cases small and inconvenient, the formula may be improved by putting it into another form.

Reducing the expression
$$\frac{1}{a + \frac{\beta}{r}}$$
, it becomes
$$= \frac{1}{a} - \frac{\frac{1}{a} \times \frac{\beta}{r}}{a + \frac{\beta}{r}} = \frac{1}{a} - \frac{\frac{\beta}{ar}}{\frac{ar + \beta}{r}}$$

$$= \frac{1}{a} - \frac{\frac{\beta}{a}}{ar + \beta} = \frac{1}{a} - \frac{\frac{\beta}{a^2}}{r + \frac{\beta}{r}};$$

and putting
$$\frac{1}{a} = a$$
, and $\frac{1}{\beta} = b$, it becomes
$$= a - \frac{ab}{r+b},$$

and

$$c = \sqrt{a - \frac{ab}{r+b}}.$$

The values of o in each of the above categories for Swiss feet then become as follows, both in exact and in simplified round numbers:

In Category I.

$$c = \sqrt{22222 - \frac{2222}{r + 0.1}}$$
 or $\sqrt{22000 - \frac{2200}{r + 0.1}}$.

In Category II.

$$c = \sqrt{17544 - \frac{4093}{r + 0.2333}} \text{ or } \sqrt{18000 - \frac{3600}{r + 0.2}}.$$

In Category III.

$$c = \sqrt{13899 - \frac{11574}{r + 0.8333}} \text{ or } \sqrt{14000 - \frac{11200}{r + 0.8}}.$$

In Category IV.

$$c = \sqrt{11905 - \frac{49603}{r + 4 \cdot 1666}}$$
 or $\sqrt{12000 - \frac{48000}{r + 4}}$.

In Category V.

$$c = \sqrt{8333^{\frac{2}{r}} - \frac{48611}{r + 5.8333}}$$
 or $\sqrt{8000 - \frac{48000}{r + 6}}$.

The following is also a corresponding reduction and simplification of the same coefficients for metrical measures:

Category I.

$$c = \sqrt{\frac{1}{0.00015 + \frac{0.0000045}{r}}} = \sqrt{\frac{6667 - \frac{200}{r + 0.03}}{r}}.$$

CHAP. I.

Category II.

$$c = \sqrt{\frac{1}{0.00019 + \frac{0.0000138}{r}}} = \sqrt{5286 - \frac{370}{r + 0.07}}.$$

Category III.

$$c = \sqrt{\frac{1}{0.00024 + \frac{0.0000600}{r}}} = \sqrt{\frac{4160 - \frac{1040}{r + 0.25}}{}}.$$

Category IV.

$$c = \sqrt{\frac{1}{0.00028 + \frac{0.0003500}{r}}} = \sqrt{3568 - \frac{4460}{r + 1.25}}.$$

Category V.

$$c = \sqrt{\frac{1}{0.00040 + \frac{0.0000700}{r}}} = \sqrt{2500 - \frac{4375}{r + 1.75}}.$$

The values of these expressions corresponding to different values of r, for metrical measures, are given in the following table:

r	I.	II.	III.	IV.	v .	r	I.	II.	III.	IV.	v.
0.01	40.8	25.7	12.6	5.3	3.8	0.8	80 · 2	69.6	56.3	37.3	28.0
0.03	57.7	39.7	21 · 1	9.2	6.5	0.9	80.3	69 . 9-	57.1	38.7	29.1
0.05	64.6	46.8	26.4	11.7	8.3	1	80.4	70.1	57.7	39.8	30.1
0.07	68.3	51.3	30.2	13.8	9.8	2	·			46.9	36.5
0.10	71.6	55.6	34.5	16.3	11.6	3			••	50.2	39 · 7
0.15	74.5	59.9	39.5	19.6	14.0	4		l		52 · 2	41.7
0.2	76.1	62.4	43.0	22.2	16.0	5				53.5	43.0
0.3	77.9	65.3	47.7	26.3	19.1	6		l	••	54 • 4	44.0
0.4	78.8	66.9	50.6	29.4	21 · 6	7	۱			55.0	44.7
0.5	79.3	67.9	52.7	31.9	23.6	8			••	55.5	45.9
0.6	79.7	68.7	54.2	34.0	25.3	9				56.0	45.7
0.7	80.0	69 · 2	55.4	35.8	26.7	00	81.6	72.5	64.5	59.8	50.0

In the last-mentioned formulæ Bazin has adopted a mean value of the coefficients a and β for each category. These formulæ are wanting in mutual dependence, and have the

disadvantage of having two variable coefficients, while that proposed by us has only one. It will also be observed, from an inspection of the formulæ and from the preceding table of Bazin's coefficients, that when r = o, c = o, and that when r is of infinite value, the values of c become 81.65, 72.55. 64.55, and 59.76, in their respective categories, results which would lead one to the almost inadmissible conclusion. that in rivers of unlimited dimensions the influences of various conditions of roughness of the surfaces of their channels would still be appreciable to an important degree in the discharge. Although the calculation of results based on infinite dimensions may be considered impossible, we cannot neglect the indications afforded by them, which in this case lead us to believe that, if in the case of a very large river, like the Mississippi, the channel were lined for certain distances with various materials, such as smooth cement, plank, rubble, ashlar, or coated with vegetation, then the resistance or friction resulting from these various degrees of roughness of surface would be so appreciable that its influence would be felt throughout the whole of such an enormous section of water, and the quantity of water discharged would be affected in the same way as is known to be the case in small canals—a very doubtful conclusion.

We know that the amount of resistance must be far less on the whole in very large rivers than in small channels, if we take it in proportion to the whole cross section of the water in each case. For example, if we take two cross sections, one of 10 and the other of 20,000 square mètres, the resulting resistances taken in proportion to the sections are as 0.000 01 to 0.000 000 02. We therefore conclude that in a river of unlimited dimensions of section, the resistance would be infinitely small. We can also hence assume without error, that in the case of infinite dimensions the differences of influence of various degrees of roughness of

the wetted perimeter are not constant quantities, and in this respect we would prefer the formula of Gauckler as more correct; it is, however, in itself unimportant which value in that case should be given to c, in the formula $v = c\sqrt{rs}$, for under either assumption v will be infinite.

To return to the formula $c = \sqrt{a - \frac{ab}{r+b}}$, already deduced from that of D'Arcy and Bazin; this may be much simplified by modifying it so as to include only one variable coefficient throughout all the categories; and if, in accordance with the results of previous examination, we put a = 100 in all categories, and obtain corresponding new values for b, the relation between the two coefficients, as well as the corresponding results, may be made to remain unaltered, whatever may be the values of r.

A further simplification of the above formula may be effected by reducing it to the form

$$c = a - \frac{ab}{\sqrt{r+b}}.$$

This simple formula has been found on trial to give at least as good results as those of D'Arcy and Bazin in obtaining values of the variable coefficient c.

As it appears that the four categories of D'Arcy and Bazin are both too few in number, and are placed at intervals apart that are far too large, we have effected a further improvement by departing from their system of categories, and adopting a system of classification of twelve classes suitable for practical employment in obtaining coefficients applicable to any observed dimensions and conditions.

We give here following a table of the values of these coefficients, calculated on our principles, and arranged according to our twelve new classes, for metrical measures; as well as a table of observed results, giving the differences in

each case between the coefficient as practically and as theoretically obtained.

It will be noticed that these coefficients have not been modified so as to make any allowance for the influence of the inclination of the water surface, which we have previously shown to be important, in cases of high inclination combined with small values of r. This matter will be taken into consideration subsequently. At present we have confined ourselves to the more usual cases of ordinary inclination, and have contented ourselves with deducing one practical formula, that takes into consideration all other influences, that is supported both by the observed results of Bazin and those on the Mississippi, and is hence suited to general application.

21: Values of the Calculated Coefficients c for the Formula $v = c\sqrt{rs}$, arranged in Twelve Classes. (For Metrical Measures.)

r	I.	ĪĪ.	Ш.	IV.	- v.	VI.	VII.	VIII.	IX.	X.	XI.	XII.
0	0	0	0	0	0	0	0	0	0	0	0	0
0.01	45.5	40.0	33.3	27.0	22.2	18.2	15.2	12.2	9.7	7.6.	5.6	3.9
0.03	59.0	53.6	46 .4	39.0	33 · 1	27.8	23.6	19.4	15.7	12.4	9.4	6.6
0.05	65.1	59.9	52.9	45.3	39.0	83 . 2	28.6	28.7	19.4	15.5	11.8	8.4
0.07	68.8	63.9	57.0	49.5	43.1	37.1	32.1	26.9	22.2	17.8	13.7	9.8
0.10	72.5	67.8	61.2	53.9	47.5	41.3	36.1	30.5	25.4	20.6		11.5
0.15		72.0	65.9	58.9	52.5	46.2	40.9	35.0	29.4	24 · 1		13.7
0.2	78.8	74.9	69.0	62.3	56.1	49.8	44.4	38.3	32 · 4	26.8		15.5
0.3	82.0	78.5	73.2	67.0	61.0	54.9	49.5	43.2	37.1	31.0		18.4
0.4	84.0	80.8	76.0	70.1	64 · 4	58.4	53.0	46.7	40.4	34.1		20.6
0.2	85.5	82:5	77.9	72.4	66.9	61 · 1	55.8	49.5	43.2	36.7	29.7	22.5
0.6	86.6	83.8	79.5	74.2	68.9	63 · 3	58.1	51.8	45.5	88.9		24.1
0.7	87.5	84.8	80.7	75.6	70.5	65.1	59.9	53.8	47.4	40.7		25.5
0.8	88.2	85.6	81.7	76.8	71.9	66 . 5	61.5	55.4	49.0	42.3		26.8
0.9	88.8	86.4	82.6	77.9	73.0	67.8	62.9	56.9	50.5	43.8	36.2	28.0
1.0	89.3	87.0	83.3	78.7	74.0	69.0	64 · 1	58.2	51.8	45.0	37.5	29.1
2		•••							60.8	53.7		36.7
8									65.0	58.7		41.5
4	•••					::	::		68.3	62·1		45.0
4 5 6									70.6	64.8		47.8
6				···	::	::			72.5	66.8	59.5	50 · 1
7					۱ :: ۱	::			74.0	68.5	61.3	52.0
7	••	••	••		i i		::	::	75.2	69.9		53.7
9	• ••	••	••		· · ·	l ::	::	::	76.3	71.1		55.1
8	100	100	100	100	100	100	100	100	100	100	100	100
~	100	-30	-30	-50	-50	-30	-30	-30		200	130	100

22. Table of observed Results, with their corresponding Coefficients.

Series of	Manual Samuel Forms		Mean Dim	ensions.		Class	
D'Arcy and Basin.	Materials and Form of Section.	r		Surface Breadth.	Depth.	of	
No.	(Confiller along) Abelian						
28	(Carefully planed timber—)	0.022	0.00489	0.10	0.042	II	
29	Carefully planed timber—	0.016	0.01524	0.10	0.024	1+9	
24		0.250	0.00142	1.00	0.45	I+5	
2			0.00506		0.18	$\Pi +$	
-	(Cement with one-third sand-)) !			1	•	
25	semicircular		0.00138	1.00	0.49	п	
26	Unplaned plank—semicircular				0.49	III - :	
21	,, trapezoidal	0.250	0.00152	1.40	0.38	IV	
22	·, ·	0.200	0.00488	1.30	0.30	III —	
23	" triangular 45°	0.200	0 00465	۱	0.57	III —	
6	" rectangular	0.200	0.00221	1.99	0.26	ĪV —	
7	" "	0.160	0.00489	1.99	0.19	III -	
8	"		0.00816		0.16	III -	
9	" "		0.00147		0.28	IV -	
10	20 37		0.00587		0.17	III –	
. 11	y, 12 ·		0.00838		0.12	Ш	
18	" "		0.00460		0.58	III —	
19	"		0.00427		0.25	IV+	
20	B	0.100	0.00598	0.48	0.19	IV+	
	Rammed gravel— $(0.01^{m} \text{ to } 0.02^{m} \text{ thick})$				ĺ		
27	semicircular	0.230	0.00136	1.00	0.41	IV	
	(0.01m to 0.02m thick—)	1					
4	rectangular	0.500	0.00497	1.83	0.26	VII	
_	(0.03m to 0.04m thick—)				l		
5	rectangular	0.550	0.00497	1.80	0.30	VIII —	
	Laths nailed on—	Ì		Į			
12	0.01m apart—rectangular	0.230	0.00147	1.96	0.31	VI	
13	0·01 ^{m.} ,, · ,,		0.00597		0.50	VI+	
14	0·01 ^m . ,, ,,		0.00886			VI+	
15	0·05m. "		0.00147			<u>IX</u> +	
16	0.05., ,, ,,		0.00600	1.96		IX +	
17	0·05 ^m . "		0.00886		0.24	IX +	
1.2	Ashlar—rectangular		0.00084		0.93	<u>III</u> +	
39	Brickwork		0.00810 0.00502	1.20	0·26 0·20	IV -	
8	Brickwork "	0.170	0.00002	1.91	0.20	14 -	

Series of	35.4			Mean Dim	Class		
D'Arcy and Bazin.	Materials and Form of Section.	,		Surface Breadth.	Depth.	of Coefficient.	
No. 32	{Rubble, damaged and c with silt—rectangu	overed)	0.160	0·10076	1.80	0.19	VII+ }
3 3	Ditto ditto- "	••	0·200	0.03686	1.80	0.27	VII+
1.4	Rough rubble "	••	0.190	0.06000	1.00	0.29	VIII — 2}
1.3	n n	••	0 · 220	0.02900	1.00	0.36	VIII + 4
1.6	n n		0.250	0.01400	1.00	0.47	VIII + 1}
1.5	, , ,	••	0.270	0.01220	1.00	0.49	VIII – 1
44	Rough rubble, the covered with stone silt—rectangular	bed es and	0-450	0.00032	2.00	0.80	IX + 3
45	Ditto ditto-ditto		0.400	0.00032	2.00	0.70	IX
85	Ditto ditto, damaged- zoidal	-trape-}	0.370	0.01422	1.50	0.70	IX - 11
Gont dry ord	enbachschale, at Lake y rubble, new and ir ker—semicircular)	ĺ	ł	1.70	0·18	V - 2
	nnbachschale, dry maged—semicircular	rubble,	0.140	0.09927	2.80	0.25	VII – 1
	ebachschale, ditto ditto			0.16800	1.14	0.00	VII - 2
Alpb da	achschale at Meiringen maged	, much	0.220	0.02740	2.50	0.36	IX - 2
Canal	s, Streams, and Rivers, in	Earth.	١.				
Mars	eilles Canal—rounded		0.875	0.000430	6.00	1.35	X - 31
Jard	Canal "		0.600	0.000400	6.00	1.35	XI + 2
Ches	apeake-Ohio Canal—ro	unded	1 · 122	0.000698	6.90	2.40	XII + 1
Cana	l in England	77	0.740	0.000063	5.40	1.20	IX + 21
Laut	er Canal near Neuberg	"	0.554	0.000664	9.00	0.55	$XI + 2\frac{1}{3}$
Pann	erden Canal	"	3.120	0.000224	170.0	3.00	XI - 1
Lint	h Canal—trapezoidal		2.400	0.000340	37.5	3.30	XI + 4
Cana	l at Marmels ,,		0.705	0.000500	8.00	0.78	XI - 3
Hüb	engraben "		0.178	0.001300	1.48	0.24	X + 2
Hock	renbach		0.266	0.000787	8.40	0.35	X + 1
Spey	erbach, 1		0.446	0.000667	5.00	0.60	X - 3

		Mean Dime	nsions.		Class
	r		Surface Breadth.	Depth.	of
Mississippi	20·000 5·130			35·0 7·8	X XII – 2
Bayou La Fourche	4.000		67.0	7·2	IX
Ohio	4.048			2.4	X+1
Tiber	2.883		73.0	4.5	XI + 3
Newka	5.309			6.4	$\cdot \mathbf{IX} - 1$
News		0.000014		16.0	IX + 5
Weser (Schwartz)	2.900		96.0	3.0	XI XII
Rheinarme in Holland (Brünings)	3.800		400.0	4.5	XI
Seine at Paris	3.700			1	ΧÏ
Seine at Poissy, Triel, and Meulan	4.100			l	XI - 2
Saone at Roconay	3.600				XI - 3
Haine	1.600				XI.
Rhine at Speyer	2.964			2.96	
Rhine at Germersheim—pebbles	3.308		228 · 2		XI + 2
Rhine at Basle—pebbles		0.001218			
Lech—pebbles		0.001150		1.13	
Saalach—pebbles	0.422			0.65	
Salzach—pebbles	1.260			3.60	
Ysaar	1.070			1.40	
Rhine at Rheinwald	0.240			0.30	XI
Mosa at Misox	0.380			0.40	
Rhine at Domleschgerthal	0.600			0.75	
Escher Canal	1.240		22.0	1.50	
Simme at Lenk	0.500	0.010500			XII + 2
		l			

CHAPTER II.

FLOW IN OPEN CHANNELS IN EARTH.

23. THE APPLICATION OF THE VARIOUS FORMULÆ OF EYTELWEIN, PATZIG, HAGEN, BORNEMANN, BRUNINGS, BAZIN, HAGEN (NEW), HUMPHREYS AND ABBOT, FOR DETERMINING DISCHARGES OF CANALS AND RIVERS IN EARTHEN CHANNELS.

It is of the utmost importance to the hydraulic engineer, that the velocity formulæ he may employ in his calculations of discharge and velocity for projected canals should be such as will yield trustworthy results; it is also of the greatest advantage to him that such tables as he uses for shortening the labour of calculation should not only be based on accurate formulæ, but should include velocities and discharges for all cases that occur in practice, of canals in channels in earth. We have undertaken the laborious and lengthy task of calculating such tables, with the object of supplanting those now existing that are based on erroneous or defective principles, and of affording undoubtedly accurate results even for channels of extremely large dimensions.

Vincent, in his 'Der Wiesenbau dessen Theorie und Praxis,' makes use of the well-known formula $v = c \sqrt{RJ}$ with the coefficient of Eytelwein, 92.9 for Prussian feet, and 50.9 for metrical measures. This in modern times has been shown to give results undoubtedly too large, the velocities in small canals and drains in earth being actually and invari-

ably less than those calculated with that coefficient; this conclusion is also supported by our own evidence.

At page 71, of the edition of 1858, Vincent gives an example taken from Patzig's 'Praktische Rieselwirth,' in which the latter gives a discharge of 30 cubic feet per second for a case which, according to Eytelwein, would be 98 cubic feet per second; according to Bazin in Category IV., would be 66; and according to the new general formula of Ganguillet and Kutter, already mentioned in the 'Zeitschrift des Oesterreichischen Ingenieur und Architekten-vereins' for the year 1869, would be 64 cubic feet per second, for a coefficient of roughness n=0.03; this last result is an exact arithmetical mean between those of Vincent and Patzig.

In order to compare the results obtained in extreme cases by the various formulæ, we give the following small table containing three examples taken from page 266 of Vincent's work; the two inclinations adopted throughout the three cases are the highest and lowest, and the sectional areas are the minimum, mean, and maximum. As to these results, we would observe that the results of Vincent and Eytelwein are entirely, and those of Hagen mostly, worthless.

An example for the calculation of discharges is given at page 35 of an article in the second number of the 'Cultur-Ingenieur,' by Wasserbau-Inspector Hess. The smallest discharge calculated for this example, from among the results of the formulæ of Eytelwein, Prony, Hagen (old), and Lahmeyer, is that of the last named, and is 45.89 cubic feet per second. The following comparison of this result with those obtained by the newer formulæ of Bazin, Bornemann (Gauckler's system), Hagen (1868), and Ganguillet and Kutter, show that the whole of these last give results still smaller.

	-	
THAP.	п.	

UNIVI	10811Y 534
_	

	a = 2 Sq	uare feet.	a = 22 80	uare feet.		
AUTHORS.	<i>J</i> =	J ≐	J =	J =		
	0 · 000 069 44	0.000 416 66	0.000 069 44	0.000 416 66		
	Di	scharges in cul	ic feet per seco	nd.		
Vincent (Eytelwein)	1.07	2.62	20.19	49.44		
Hagen (1868)	1 · 26	1.70	24 · 15	82.58		
Bazin, Category IV	0.43	1.06	12.63	80.91		
Ganguillet and Kutter $n = 0.030$	0.40	1 '03	10.56	27 · 52		
	1		·			
		a = 80 S	quare feet.			
AUTHORS.	J = 0.0	00 069 44	J = 0.00041666			
	D	ischarges in cul	oic feet per seco	nd.		
Vincent (Eytelwein)	10	2.45	250.89			
Hagen (1868)	11	5·76	156.08			
Bazin, Category IV.	7.	5·8 4	185.76			
Ganguillet and Kutter $n=0.030$	6	2.64	15	8·16		
		`	Cubic per Se			
Lahmeyer			45			
Bazin, Catego	ory IV		85.			
Bornemann (39.			
· · · · · · · · · · · · · · · · · · ·	and Kutter		00	-		
		order $n = 0.0$	25 35	70		
VI VIII		der n = 0.03		• -		
b. In mode			UI	~~		
c. For ch	annels obstr letritus, and si					

25. THE FORMULA OF BORNEMANN AND HAGEN.

Besides the tables based on the above-mentioned formulæ, there are some of a Prussian hydraulician based on a formula $v = 83 \sqrt{RJ}$; it is perhaps almost needless to remark that this gives too high discharges for small canals in channels in earth, in the same way, though not to so great a degree, as

the formula of Eytelwein. We may hence conclude that the results of the most modern experimental observations, which are those of Bazin, are not yet generally known and employed.

We have already in the 'Zeitschrift des Oesterreichischen Ingenieur und Architekten-vereins,' for 1869, commented on the inapplicability of any of the old formulæ that have single constant coefficients to all the various degrees of roughness of wetted 'perimeter; we have also mentioned that we have based our conclusions principally on the careful and valuable observations of D'Arcy and Bazin, recorded in the 'Recherches Hydrauliques,' Paris, 1865; we have besides proved that any formula must assume a binomial form in order to give correct variable values of C, the coefficient in the general formula $v = c \sqrt{R J}$. This is the

case in the new formula of Bornemann,
$$RJ = \gamma \frac{\sqrt[5]{J}}{\sqrt[3]{R}} \times v$$

(see 'Civil-Ingenieur'), which we consider the best of the older formulæ. We have not, however, enough space here to enable us to support our opinion on this subject by bringing forward results of observation, and comparing them fully with the results of these various formulæ, and we therefore refer to our previously mentioned article for further information about this formula, as well as for fuller detail as to the derivation of the formula which we have adopted.

For a stronger recommendation of the new formula of Hagen we must refer the reader to the articles contained in the 'Königlich Akademie der Wissen-Schaften,' Berlin, 1868, and the 'Mittheilungen des Hannoverschen Gerverbevereins,' 1868; and confine ourselves at present to the following remarks on it. This formula $v=2\cdot425$ \sqrt{R} $\sqrt[6]{J}$ for metrical measures is deduced from the results of the observations of Von Brünings, made with his own tachometer, on the

lower Rhine, from 1790 to 1792, on the Waal, the Leck, and the Yssel, on those seventy-five years afterwards, the results of the observations of the Mississippi Commission given in Humphreys and Abbot's work, on those on the Seine at. Paris, by Poirée, and on those on the Rigoles de Chazilly et de Grosbois by Bazin, or altogether on sixty-six cases. While leaving the term VR unaltered, Mr. Hagen introduces the sixth root of the sine of the inclination, instead of its square root, into his formula, with the object of combining the results of the experience gained on the Mississippi with that on the European rivers: the introduction of this sixth root also leads Mr. Hagen to the conclusion that the coefficient of Eytelwein, 50.9 for metrical measures, gives velocities that are nearly three times too high. A conclusion that can only be correct in some cases.

In making the trials necessary for determining the exponents most appropriate for the inclination, there is no objection to leaving the term \sqrt{R} in the formula unchanged as the resulting errors introduced are approximately the same, when the exponents of J are taken at either 1 and 16, or 1 and 1.

The American results (see Hagen's article) require an exponent of $\frac{1}{5}$ or $J^{\frac{1}{5}}$, those of the Netherlands require $J^{\frac{1}{5}}$, those of the Seine at Paris Ji or Ji, and those of the Rigoles, Hence the question arises whether it would not be more advisable to give the term R any other exponent instead of 1, which could be suitably applied to both R and J in the velocity formula. In the article referred to the maximum and minimum values of R occurring in large rivers and small canals have very properly been taken into consideration, while however it is remarkable that the extreme values of J have been neglected, although the essential distinction between the American and the European

formulæ lies in the difference of the exponent assigned to the inclination. All the rivers as well as all the small canals compared in his article have low inclinations, in no case exceeding 0.001: if rivers of high as well as those of low inclination had been included, as is absolutely essential in attempting to deduce a general formula, there is no doubt that some other exponent for J would have been adopted instead of 1. As also in addition to this the influence of the degree of roughness of the wetted perimeter on the velocity of discharge has been entirely neglected, in spite of the evidence afforded by the observations of D'Arcy and Bazin, the new formula of Hagen thus becomes entirely useless in calculations of discharge of the small canals and drains of the agriculturist, where this influence has most effect. This formula also appears to be not suited to artificial channels of any description, but merely to rivers; while even in these the various grades of roughness of the wetted perimeter are doubtless productive of effect, and the results due to weeds and detritus in their channels cannot be justly neglected.

The formula of Humphreys and Abbot has been previously demonstrated to be useful only under special conditions, and to be perfectly useless for high inclinations; since, then, the exponent in their formula is merely raised from $\frac{1}{2}$ to $\frac{1}{4}$, the same defect will show itself to a greater degree in that of Hagen, where the exponent is $\frac{1}{6}$. For example, in a case of well-constructed channels in masonry in good order, having an inclination of 0.1, the formula of Humphreys and Abbot gives only one quarter, and that of Hagen only one-eighth, of the actually observed velocity of discharge. In cases of lower inclination the differences are not so great.

We have compared several hundred results of observations on rivers of various hydraulic inclinations having the same)

degree of roughness of surface of channel, as well as similar values of R, and tried them in the expression

$$\frac{\mathbf{v}_0}{\mathbf{v}_1} = \left(\frac{\mathbf{J}_0}{\mathbf{J}_1}\right)^{\mathbf{v}};$$

but we have never found x to be $\frac{1}{6}$; on the Mississippi alone it was found to be $\frac{1}{4}$, while in most cases it was approximately from $\frac{2}{3}$ to $\frac{1}{3}$, or averaged $\frac{1}{4}$.

If we plot a series of values of ϵ , for the formula $c = \frac{\tau}{\sqrt{R J}}$,

that have been obtained from observed results, and put them as ordinates to a series of abscissæ representing the corresponding values of R, they will be seen to show a steady increase corresponding to the increase of the values of R: these increments being greatest among the smaller values of R, and less among the greater, the resulting curve falling off very much indeed among the least values of R, showing that at last when R is infinitely small, e = 0.

When, however, we plot in the same way the coefficients of the Eytelwein formula, they give us a horizontal straight line, having an ordinate of 50.9; and when we plot those of the formula of Hagen, in which $C = \frac{2 \cdot 425}{\sqrt[3]{J}}$; we find them to vary not with R, but with J. These widely opposed deductions show how it is that both the formula of Eytelwein and Hagen often give results that are positively impossible;—a fact that is also true of the formula of Humphreys and Abbot.

26. SAFE BOTTOM VELOCITIES.

Before going on to our own formula and our tables of velocities and discharges, we will take the opportunity of mentioning the maximum velocities determined by Dubuat as suitable to channels in various descriptions of soil, which are taken from Morin's 'Aide Mémoire de Mécanique Pratique,' p. 63, 1864. The first column in the following table gives the safe bottom velocity, and the second the mean velocity of the cross section; the formula by which these are calculated is

$$v_m = v_u + 6\sqrt{RJ}$$
 for metrical measures.

We are unable, for want of observations, to judge how far these figures are trustworthy. The inclinations certainly have no influence in this case, as the corresponding velocities are mutually interdependent, but the variation of the depth of water is most probably of consequence, and in shallower depths the soil of the bottom is possibly less easily and rapidly damaged than in greater depths, under similar conditions of soil and of inclination. Yet this effect is not very large, while that of the actual velocity of the water is of the highest importance. Hence it appears that these figures may be assumed to be rather disproportionately small than too large, and we therefore recommend them more confidently.

		$v_{\mathbf{s}}$	$v_{\scriptscriptstyle 106}$
1. Soft brown earth		. 0.076	0.100
2. Soft loam		. 0.152	0.200
3. Sand		. 0.305	0.400
4. Gravel	. <i>.</i>	. 0.609	0.800
5. Pebbles			1.200
6. Broken stone, flint 1.220	1:700
7. Conglomerate, soft slate		. 1.520	2.000
8. Stratified rock	.	. 1.830	2.500
9. Hard rock		. 3.050	4.000

27. THE DERIVATION OF THE NEW FORMULA FOR COEFFI-CIENTS OF MEAN VELOCITY.

The derivation of this formula is entirely omitted in the articles of the 'Cultur-Ingenieur,' the reader being referred to the 'Zeitschrift des Oesterreichischen Ingenieur und Architekten-vereins,' 1869, where it is given at full length with explanatory diagrams.

The following brief mention of the mode in which the formula is derived, is therefore extracted from that work with the view of supplying in a small degree the information that Mr. Kutter was from want of space compelled to omit in his article in the 'Cultur-Ingenieur.'

The formulæ of Bazin have the general form

$$v = \sqrt{\frac{RJ}{a + \frac{\beta}{R}}}$$
 where $c = \sqrt{\frac{1}{a + \frac{\beta}{R}}}$

putting

$$\frac{1}{a} = a \text{ and } \frac{1}{\beta} = b$$

it becomes

$$v = \sqrt{\frac{a.R.J}{1 + \frac{b}{R}}}$$
 where $c = \sqrt{\frac{a}{1 + \frac{b}{R}}}$ (1)

or by adopting other coefficients, a', b', or a'', b'', it may be put into either of the forms

$$c = \frac{a'}{1 + \frac{b'}{\sqrt{R}}}$$
 (2) or $c = \frac{a''}{1 + \frac{b''}{R}}$ (3)

A tabulation of these coefficients, together with those based on observed results, is necessary to determine which of these three coefficients is most correct; we therefore attach the following tabulated results for the series Nos. 24, 2, 26, 6, 9, 32, 33, and 17 of D'Arcy and Bazin, which comprise values of the coefficients c, as calculated according to the three formulæ already mentioned, and their differences from the actual values of c, as obtained by observation in those series.

VALUES OF THE COEFFICIENTS c-(Metrical).

Observed. (c)	Formula 1.	Differences.	Formula 2.	Differences.	Fermula 3.	Differences
•			Series No. 2	4.		!
73.0	73.0	0.0	1 73.0	0.0	i 73·0 i	0.0
76.8	77.6	+0.8	77.2	+0.4	77.8	+1.0
78.2	80.0	+0.8	79.7	+1.5	80·1	+1.9
81.4	81.4	0.0	81.2	-0.2	81.5	+0.1
82.2	82.5	+0.3	82.4	+0.2	82.6	+0.4
83.3	83.3	0.0	83.3	0.0	83.3	0.0
83.1	84.0	+0.9	84.1	+1.0	83.9	+0.8
84.3	84.6	+0.3	84.7	+0.4	84.4	+0.1
86 • 4	84 · 9	-1.5	85.2	-1.2	84.7	-1.7
86.9	85.2	-1.7	85.7	-1.2	85.1	-1.8
87 · 4	85.6	-1.8	86.1	-1.3	85.4	-2.0
87.9	85.7	-2.2	86.2	-1.7	85.5	-2.4
Totals of	differences	10.3		9·1	••	- 12.2
			! Series No. :	2.	<u>:</u> !	
63.3	63.3	0.0	63.3	0.0	63.3	0.0
68.0	67.7	-0.3	67.7	-0.9	68.0	l ŏ.ŏ
69.0	70.0	+1.0	69.2	+0.2	70.3	+0.3
71.9	71.2	-0.7	70.5	-1.4	71.5	-0.4
71.9	72.2	+0.3	71.6	-0.3	72.4	+0.5
73.4	72.9	-0.5	72.4	-1.0	73.1	-0.3
73.6	73.5	-0.1	73.0	-0.6	73.6	0.0
74.0	73.9	-0.1	73.5	-0.5	74.0	0.0
74.5	74.8	-0.2	74.0	-0.5	74.3	-0.2
74.5	74.6	+0.1	74.4	-0.1	74.6	+0.1
74.9	74.8	-0.1	74.8	-0.1	74.9	0.0
75.1	75.1	0.0	75.1	0.0	75.1	0.0
Cotale of	differences	3.4		5.6		1.8

Observed.	Formula 1. (c ₁).	Differences.	Formula 2.	Differences.	Formula 3.	Differences.
	1 1		Series No. 2	26.	,	i
59·4 62·9 66·5 67·9 68·5 68·8 70·7 72·0 72·0 73·1 73·5	59·4 64·2 66·4 68·1 70·3 71·1 71·6 72·2 72·6 73·0 73·3 73·5	0·0 +1·3 -0·1 +0·2 +1·4 +0·8 +2·3 +0·9 +1·5 +0·6 +1·0 +0·2 0·0	59·4 63·7 65·7 67·6 68·9 70·7 71·3 71·3 71·4 72·9 73·2 73·5	0·0 +0·8 -0·8 -0·3 +0·9 +0·4 +1·9 +0·6 +1·2 +0·9 +0·1	59·4 64·5 66·8 68·5 69·7 70·6 71·3 71·8 72·3 72·7 73·0 73·3 73·5	0·0 +1·6 +0·3 +0·6 +1·7 +1·1 +2·5 +1·1 +1·6 +0·7 +1·0 +0·2 0·0
	•					
·			Series No.	6.		
49·8 52·3 55·0 57·2 60·2 60·7 61·9 62·2 63·6 Totals of	49·8 54·8 57·3 58·9 60·0 60·8 61·9 62·2 62·6 63·0 63·2 63·6	0·0 +2·5 +2·3 +1·9 +2·8 +0·6 +1·2 +1·5 +0·7 +0·8 -0·5 0·0	49·8 53·8 56·6 58·2 59·5 60·3 61·5 62·3 62·8 63·6	0·0 +1·5 +1·6 +1·2 +2·3 +0·1 +0·8 +1·0 +0·6 -0·5 0·0	49·8 54·7 57·7 59·3 60·4 61·1 62·1 62·3 62·6 62·8 63·6	0·0 +2·4 +2·7 +2·3 +3·2 +0·9 +1·4 +1·6 +0·7 +0·6 -0·7 0·0
			Series No. 1	9		
49·3 53·7 58·2 61·6 64·2 66·5 67·2	47·2 53·7 59·9 63·0 65·0 66·5 67·8	-2·1 0·0 +1·7 +1·4 +0·8 0·0 +0·6	47·9 53·7 59·5 62·7 64·9 66·5 67·9	-1·4 0·0 +1·3 +1·1 +0·7 0·0 +0·7	46·2 53·7 60·2 63·3 65·2 66·5 67·6	-3·1 0·0 +2·0 +1·7 +1·0 0·0 +0·4
Totals of	lifferences	6.6		5·2	•• .	8.2

(c).	Formula 1. (c ₁).	Differences.	Formula 2. (c ₁).	Differences.	Formula 3.	Differences.
	1	,	Series No. 3	2 .	l i	
37·5 41·2	87·5 41·5	+0·3 0·0	87·5 41·4	0·0 +0·2	87·5 41·7	0·0 +0·5
42·7 45·1	43·8 45·1	+1·1	43·7 45·1	41·0	43·9 45·1	+1·2 0·0
Totals of d	lifferences	1.4	••	1.2	••	1.7
	•	,	Series No. 3	3,		
39.9	39·9	0.0	89.9	. 0.0	39.9	j 0 ·0
44·9 45·1	43·9 45·8	+2·0 +0·7	43·8 45·6	+1.9	44·1 45·9	+2·2 +0·8
47.0	47.0	0.0	47.0	0.0	47.0	0.0
Totals of d	lifferences	2.7		2·4		3.0
			Series No. 1	17.		
26.9 28.3 30.8 32.3 33.4 34.0 34.7	26.9 29.8 32.0 33.1 83.8 84.3 34.7	0·0 +1·5 +1·2 +0·8 +0·4 +0·3 0·0	26.9 29.4 31.6 32.8 33.6 34.2 34.7	0·0 +1·1 +0·8 +0·5 +0·2 +0·2 0·9	26·9 29·9 32·1 33·2 33·9 34·3 34·7	0·0 +1·6 +1·3 +0·9 +0·5 +0·3
Totals of d	lifferences	4.2		2.8		4.6
				·	1	
	Co	LLECTION O	F TOTALS	of Differe	NCES.	
Series 24	f !	10.3		9.1		12·2 1·8
" 26 " 6 " 9 " 32 " 33 ", 17		3·4 10·3 14·8 6·6 1·4 2·7		5.6 8.3 10.0 5.2 1.2 2.4 2.8		12·4 16·5 8·2 1·7 3·0 4·6

The above is conclusive in demonstrating that formula No. 2 is the best of the three, and that it yields results at least as good as the established formula of Bazin; assuming therefore this form

$$c = \frac{a'}{1 + \sqrt[b']{R}}$$

and inverting it, it becomes

$$\frac{1}{c} = \frac{1 + \frac{b'}{\sqrt{R}}}{a'} = \frac{1}{a'} + \frac{b'}{a'} \times \frac{1}{\sqrt{R}};$$

and this is the equation to a straight line, whose abscissa $=\frac{1}{\sqrt{R}}$, and whose ordinates are $\frac{1}{c}$; the distance of its intersection with the axis of the ordinates from the origin of the co-ordinates is $\frac{1}{a'}$, and the tangent of its inclination with the axis of the abscissæ is $\frac{b'}{a'}$.

A practical examination and comparison of these plotted coefficients with the results of observation on the Seine, Saone, Weser, a branch of the Rhine in Holland, and the Linth canal, show that this equation to the straight line does not hold entirely good, and that the observed results on the contrary indicate a curvature; it also shows that a' is not a constant quantity, but is dependent on the value of b'; so that b' may either be taken as = na' or $= n^2a'$, where n represents the coefficient of roughness of the natural surface of the wetted perimeter.

Putting therefore the equation into the form

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}},$$

$$z \text{ may } = \frac{a}{\sqrt{n}}$$
 in which case $x = n z = a \sqrt{n}$,

or
$$z$$
 may $=\frac{a}{n}$ in which case $x = n^2z = a$ n .

After much examination, and further comparison, the following form is finally established as preferable:

$$z = a + \frac{l}{n}$$
, and hence $x = nz - l = an$;

and by introducing these quantities, the equation becomes

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}} = \frac{a + \frac{l}{n}}{1 + \frac{an}{\sqrt{R}}}$$

We have, however, already shown that in very large rivers the coefficients c, obtained from observation, decrease with the increase of the inclination of the water-surface; and that the formula, in order to be rendered applicable to all cases whatever, must therefore be modified by introducing a term to suit the extremes of inclination, as well as the extreme limits of sectional area. When R = infinity, c = z, and the coefficients z = z will have their values represented by a hyperbolic curve; the terms of the equation to which curve can then be practically determined.

Hence, putting

$$z = \Delta + \frac{m}{I}$$

the coefficients of the formula become

$$z = a + \frac{l}{n} + \frac{m}{J}$$

$$\alpha = nz - l = \left(a + \frac{m}{J}\right)n,$$

and the formula itself takes the final form,

$$c = \frac{a + \frac{l}{n} + \frac{m}{J}}{1 + \left(a + \frac{m}{J}\right) \frac{n}{\sqrt{R}}}.$$

The effect of the introduction of these quantities into the equation is shown by comparing its values with those of the observed results on the Mississippi and other large rivers, after plotting their curves. They are found to be not only in accordance with them, but also with the following series of Bazin, Nos. 6, 8, 9, 11, 12, 14, 15, 17, 32, and 33. The form of the new general formula is hence perfectly established. The values of its various terms are deduced for metrical measures from a geometrical consideration of the hyperbolic curve plotted from it, and its coincidence with that obtained from the Mississippi observations at ten points in its length. Giving to R and J successively their ultimate values, and taking again the first general form of the equation

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}}$$

in which the new value of z will be $A + \frac{m}{J}$ after the introduction of the new term; in the extreme case, when J is of infinite value, A will $= a + \frac{l}{n}$, and this is found to be = 60 for metrical measures, and

$$\frac{1}{\sqrt{R}} = l$$
, which is found = 1,

and

$$\frac{1}{c} = n = 0.027$$
 for the Mississippi;

hence

$$\frac{l}{m} = \frac{1}{0.027} = 37$$
;

therefore

$$a = A - \frac{l}{a} = 60 - 37 = 23.$$

Taking again the equation $z=A+\frac{m}{J}$; m will be the tangent of the inclination of the asymptote with the axis of abscissæ; this straight line having as abscissæ the values of $\frac{1}{J}$ and as ordinates the values of z; for the extreme case of $J=0.000\ 003\ 63$ and z=487 as determined from the curve, we obtain from the equation $z=A+\frac{m}{J}$ where A=60

$$m = 0.00155$$
.

The values of n are in the same way obtained by plotting observed results; and are found to vary between 0.009 and 0.040; their values as thus obtained are given in the following tables, as are also those of $a + \frac{l}{n}$ for various values of n, and those of $\frac{m}{J}$ for various values of J.

The values of x and z in the formula

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}}$$

are besides given for six successive values of n, namely n = 0.010, 0.012, 0.013, 0.017, 0.025, and 0.030, in the table immediately following them.

Substituting the values of the coefficients deduced in this manner in the formula

$$c = \frac{a + \frac{l}{n} + \frac{m}{J}}{1 + \left(a + \frac{m}{J}\right) \frac{n}{\sqrt{R}}}$$

it becomes for metrical measures

$$c = \frac{28 + \frac{1}{n} + \frac{0.00155}{J}}{1 + \left(28 + \frac{0.00155}{J}\right) \frac{n}{\sqrt{E}}}$$

the formula for mean velocity of discharge thus becoming

$$v = \left\{ \frac{23 + \frac{1}{n} + \frac{0.00155}{J}}{1 + \left(23 + \frac{0.00155}{J}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{RJ}$$

28. Table giving the Observed Values of the Coefficient n, corresponding to their Data of observation, in metrical measures.

	The Series of Bazin.		R	J	Breadth at water surface.	Depth.	n
No. 28 29 24 2	Carefully planed plane In cement—semicircul ,, rectangule ,, with one sand—semicircular	ar	0.016 0.250 0.150	0·0048922 0·0152370 0·0014243 0·0050600 0·0013802	0·10 1·81	0·024 0·45	0·0096 0·00870 0·01005 0·01040 0·01118
26 21 22	Plank—semicircular ,, trapezoidal	:: ::	0.250	0·0015227 0·0015213 0·0048751	1.40	0·49 0·38 0·30	0·01195 0·01255 0·01190
23 6 7 8 9 10 11 18 19 20	Plank—triangular 45° ,, rectangular '' '' '' '' '' '' '' '' '' '' '' '' ''		0·200 0·160 0·140 0·220 0·140 0·130 0·200 0·150	0·0046550 0·0022136 0·0048889 0·0081629 0·0014678 0·0058744 0·0083805 0·0045988 0·0042731 0·0059829	1·99 1·99 1·99 1·99 1·99 1·20 0·80	0·57 0·26 0·19 0·16 0·28 0·17 0·28 0·25 0·19	0·11900 0·13000 0·01190 0·01150 0·01290 0·01170 0·01140
27 4	Rammed gravel— 0 · 01 to 0 · 02 ^m thick circular 0 · 01 to 0 · 02 ^m thick angular	}		0·0013639 0·0049736			0·016 3 0·0170

The Series of Baxin. No. Battens placed— 12	0·170 0·150 0·290 0·210 0·190	0·0014678 0·0059664 0·0088618 0·0014678 0·0059976 0·0088618	1·96 1·96 1·96	0·31 0·20 0·18 0·40	0·0149 0·0147 0·0149
Battens placed— 0·01 ^m apart—rectangular 13 0·01 ^m , , , , , , , , , , , , , , , , , , ,	0·170 0·150 0·290 0·210 0·190	0 · 0059664 0 · 0088618 0 · 0014678 0 · 0059976	1·96 1·96 1·96	0·20 0·18 0·40	0·0147 0·0149
12 0.01 ^m apart—rectangular 13 0.01 ^m , , , , , , , , , , , , , , , , , , ,	0·170 0·150 0·290 0·210 0·190	0 · 0059664 0 · 0088618 0 · 0014678 0 · 0059976	1·96 1·96 1·96	0·20 0·18 0·40	0·0147 0·0149
18 0·01 ^m ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	0·170 0·150 0·290 0·210 0·190	0 · 0059664 0 · 0088618 0 · 0014678 0 · 0059976	1·96 1·96 1·96	0·20 0·18 0·40	0·0147 0·0149
14 0·01m " " " 15 0·05m " " 16 0·05m " " " 17 0·05m " " " 17 0·05m " " 17 0·05m " " " 17 0·05m " " " " 17 0·05m " " " " " " " " " " " " " " " " " " "	0·150 0·290 0·210 0·190	0·0088618 0·0014678 0·0059976	1·96 1·96 1·96	0·18 0·40	0.0149
15 0·05 ^m ,, ,, 16 0·05 ^m ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	0·290 0·210 0·190 0·540	0·0014678 0·0059976	1·96 1·96	0.40	
16 0·05m , , ,	0·210 0·190 0·540	0.0059976	1.96		
17 0.05m " "	0.190				0.0208
17 0.09m "	0.540	0.0088618			0.0211
	0.540		1.96	0.24	0.0215
1.2 Ashlar—rectangular	0.170	0.0008400		0.93	0.0133
3 Brickwork ,,		0.0050250		0.20	0.0129
39 Ashlar—rectangular	0.180	0.0081000	1.20	0.26	0.0129
Rubble—					
Rather damaged—rectan-	0.160	0 · 1007600	1.80	0.19	0.0167
gular	/	0.0368560		0.27	0.0170
1.4 ", ", new		0.0600000		0.29	0.0180
1.3 ,, ,, ,,		0.0290000		0.36	0.0184
1.6 ", ", ",		0.0140000		0.47	0 0182
1.5 " " "		0.0122000		0.49	0.0192
With deposits on the bed)	0.0003200		0.80	0.0204
-rectangular	<i>)</i>	0.0003200		0.70	0.0210
55 Damaged rubble—trapezoidal	0.370	0.0142210		0.70	0.0220
Other	Observati	ons.			•
Gontenbachschale, new rubble-	NI.	0.044000	1.70	0.18	0.0145
semicircular	21		i	l	ĺ
—damaged	0.140	0.099270	2.60	0.25	0.017
Gerbebachschale—semicircular— damaged	0.059	0.168000	1.14	0.09	0.018
Alphachschale — semicircular —	!	1		ł	ŀ
much damaged	0.220	0.027400	2.50	0.36	0.0230
Marseilles Canal	0.875	0.000430	6.00	1.25	0.024
Jard Canal		0.000400	3 30		0.025
Chesapeake Ohio Canal		0.000698	6.90		0.0330
Canal in England		0.000063	5.40		0.0184
Lanter Canal, at Newbury		0.000664	9.00		0.0262
Pannerden Canal, in Holland		0.000224	170.00		0.0254
Canal of Marmels		0.000500	8.00		0.0301
Linth Canal		0.000340	37.50		0.0222
Hübengraben		0.001300	1.48		0.0237
Hockenbach		0.000787	3.40		0.0243
Speyerbach		0.000667	5.00		0.0260
Mississippi		0.000667	760.00	1 2 2 2	0.0270
Bayou Plaquemine		0.0001700	84.00		0.0294
Bayou Latorische		0.0000400		37.20	0.0200
Ohio, Point Pleasant		0.0000930			0.0210
Tiber, at Rome		0.0001300			0.0228
Newka	5.309	0.0000150	270 .00	6.40	0.0252

	The S	Series	of Be	zin.			R	J	Breadth at water surface.	Depth.	*
News.				•••	••	••		0.0000140			0 · 0262
Weser		••	••	••				0.000200	120.00	3.00	0.0232
Elbe				••		••	3.325	0.000310	96.00	13.30	0.0285
Rhine, in	Holl	land					3.800	0.000150	400.00	4.50	0.0248
Seine, at	Paris	.					3.700	0.000137	١		0.0250
Seine, at			c.				4.100	0.000070			0.0260
Saone, at				••			3.600	0.000040			0.0280
Haine	••	•••	.	••		••	1.600	0.000100	l ::		0.0260
				Cha	nnels	obst	-	Detritus.			
The Rhin					nnels 	obsti	2.964	0.000112	439 · 00		0.0260
Rhine, at	Ger	mers	hein			obsti	2.964	0·000112 0·000247	228 · 17		0.0227
Rhine, at Rhine, at	Ger Basl	mers				••	2·964 3·308 2·100	0·000112 0·000247 0·001218	228·17 201·27	2:78	0·022 0·0300
Rhine, at Rhine, at Lech	Ger Basi	mers. le	hein	 a	··	••	2.964 3.308 2.100 0.963	0·000112 0·000247 0·001218 0·001150	228 · 17 201 · 27 48 · 00	2·78 1·13	0 · 0227 0 · 0300 0 · 0220
Rhine, at Rhine, at Lech Saalach	Ger Basl	mers le	hein 		 		2 · 964 3 · 308 2 · 100 0 · 963 0 · 422	0·000112 0·000247 0·001218 0·001150 0·001100	228·17 201·27 48·00 20·70	2·78 1·13 0·65	0 · 0223 0 · 0300 0 · 0220 0 · 0270
Rhine, at Rhine, at Lech Saalach Salzach	Ger Basi	mers le	hein 	 	 		2·964 3·308 2·100 0·963 0·422 1·260	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200	228·17 201·27 48·00 20·70 115·00	2·78 1·13 0·65 3·60	0·022 0·030 0·022 0·027 0·028
Rhine, at Rhine, at Lech Saalach Salzach Isaar	Geri Basi	mers	hein	 		::	2·964 3·308 2·100 0·963 0·422 1·260 1·200	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200 0·002500	228·17 201·27 48·00 20·70 115·00 50·00	2·78 1·13 0·65 3·60 1·35	0·0227 0·0300 0·0220 0·0270 0·0280 0·0305
Rhine, at Rhine, at Lech Saalach Salzach Isaar Escher Ce	Geri Basi	mers	hein 	 			2.964 3.308 2.100 0.963 0.422 1.260 1.200 1.240	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200 0·002500 0·003000	228·17 201·27 48·00 20·70 115·00 50·00 22·00	2·78 1·13 0·65 3·60 1·35 1·50	0·022 0·0300 0·0220 0·0270 0·0280 0·0300
Rhine, at Rhine, at Lech Saalach Salzach Isaar Escher Ce Plessur	Ger Basl	mers	hein	· · · · · · · · · · · · · · · · · · ·			2·964 3·308 2·100 0·963 0·422 1·260 1·200 1·240	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200 0·002500 0·003000 0·009650	228·17 201·27 48·00 20·70 115·00 50·00 22·00 13·00	2·78 1·13 0·65 3·60 1·35 1·50 1·40	0·0227 0·0300 0·0220 0·0270 0·0280 0·0300 0·0300
Rhine, at Rhine, at Lech Saalzach Isaar Escher Ce Plessur Rhine, at	Geri Basi anal 	mers e	hein				2·964 3·308 2·100 0·963 0·422 1·260 1·240 1·070 0·240	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200 0·002500 0·003000 0·009650 0·01420	228·17 201·27 48·00 20·70 115·00 50·00 22·00 13·00 4·30	2·78 1·13 0·65 3·60 1·35 1·50 1·40 0·30	0·0227 0·0300 0·0220 0·0270 0·0300 0·0300 0·0310
Rhine, at Rhine, at Lech . Saalach Salzach Isaar . Escher C Plessur Rhine, at Mösa, at	Gerr Basl anal Rhi	mers e newa	hein :: :: :: :: .: .:	 			2 · 964 3 · 308 2 · 100 0 · 963 0 · 422 1 · 260 1 · 240 1 · 070 0 · 240 0 · 380	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200 0·002500 0·003000 0·009650 0·01420 0·01187	228·17 201·27 48·00 20·70 115·00 50·00 22·00 13·00 4·30 4·00	2·78 1·13 0·65 3·60 1·35 1·50 1·40 0·30 0·40	0·0227 0·0300 0·0220 0·0270 0·0300 0·0300 0·0310 0·0310
Rhine, at Rhine, at Lech Saalzach Isaar Escher Ce Plessur Rhine, at	Gerr Basi anal Rhi Miso:	mers e newa x	hein :: :: :: :: .: .:	 			2 · 964 3 · 308 2 · 100 0 · 963 0 · 422 1 · 260 1 · 240 1 · 070 0 · 240 0 · 380 0 · 600	0·000112 0·000247 0·001218 0·001150 0·001100 0·001200 0·002500 0·003000 0·009650 0·01420	228·17 201·27 48·00 20·70 115·00 50·00 22·00 13·00 4·30	2·78 1·13 0·65 3·60 1·35 1·50 1·40 0·30 0·40 0·75	0·0227 0·0300 0·0220 0·0270 0·0300 0·0300 0·0310

29. TABLE GIVING THE VALUES OF THE EXPRESSIONS $a+rac{l}{n}$ and $rac{m}{J}$ for Metrical Measures, corresponding to various Values of n and of J respectively.

n	$a+\frac{l}{n}$	n	$a+\frac{l}{n}$	n	$a+\frac{l}{n}$
0.0090	134	0.0170	82	0 · 0250	63
0.0095	128	0.0175	80	0.0260	61
0.0100	123	0.0180	79	0.0270	60
0.0105	118	0.0185	77	0.0280	59
0.0110	114	0.0190	76	0.0290	57
0.0115	110	0.0195	74	0.0300	56
0.0120	106	0.0200	73	0.0310	55
0.0125	103	0.0205	72	0.0320	54
0~0130	100	0.0210	71	0.0330	53
0.0135	97	0.0215	70	0.0340	52
0.0140	94	0.0220	68	0.0350	52
0.0145	92	0.0225	67	0.0360	51
0.0150	90	0.0230	66	0.0370	50
0.0155	88	0.0235	66	0.0380	49
0.0160	86	0.0240	65	0.0390	48
0:0165	84	0.0245	64	0.0400	48

J	j.	J	м Ј	J	₩ J
0.000000	oo	0.000050	31	0.00010	15.5
1	1550	51	30	11	14
2	775	52	30	12	13
8	517	53	29	13	12
4	387	54	29	14	11
5	310	55	28	15	10
6	258	56	28	16	10
7	221 194	57	27	17	9 9
8 9	172	58 59	27 26	18 19	8
0.000010	155	0.000060	26 26	0.00020	۵
11	141	61	25	21	7
12	129	62	25 25	22	ż
13	119	63	25	23	877766666555554
14	111	64	24	24	Ġ
15	103	65	24	25	6
16	97	66	23	26	6
17	91	67	23	27	6
18	86	68	23	28	6
19	82	69	22	29	5
0.000020	77	0· 000 070	22	0.00030	5
21	84	71	22	31	5
22	70	72	22	32	5
23	67	73	21	83	5
24	65	74	21	84	3
25	62 60	75 76	21 20	35 36	4
26 27	57	77	20 20	37	4
28	57 55	78	20 ·	38	4
29	53	79	20	39	4
0.000030	52	0.000080	19	0.00040	4
31	50	81	19	0.00050	3
32	48	82	19	0.00060	3
33	47	83	19	0.00070	3 2
34	46	84	18	0.00080	2
35	. 44	85	18	0.00090	2
36	43	86	18	0.001	1.55
37	42	87	18	2	0.8
38	41	88	18	8	0.5
39	40	.89	17	4	0.4
0.000040	39	0.000090	17	5	0.3
41	38	91	17	6	0.3
42 43	37	92 93	17	7	0.2
	36	93 94	17 16	8	0·2 0·2
44 4 5	35 34	94 95	16	0.010	0·2 0·15
46	34	96	16	0.100	0.13
47	88	97	16	0 100	0.00
48	32	98	16		0 00
49	32	99	16	1	

30. TABLE OF THE VALUES OF THE EXPRESSIONS # and α , for metrical measures corresponding to Different Values of n and J in the Formula

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}}$$

$$z = a + \frac{l}{n} + \frac{m}{J} \text{ and } x = \left(a + \frac{m}{J}\right)n = nz - l$$

	n = 0	•010	n = 0	•012	n = 0	•013	n =0	-017
Inclination		æ		æ		æ		g .
0.0000	∞	00	œ	00	00	00	бо	90
0.0001	138.5	0.385	121.8	0.462	115.4	0.500	97.3	0.654
2	130.7	0.307	114.1	0.369	107.7	0.400	89.6	0.523
3	128.2	0.282	115.1	0.338	105.1	0.366	87.0	0.479
4	126.9	0.269	110.2	0.320	103.8	0.349	85.7	0.457
5	126 · 1	0.261	109.4	0.313	103 0	0 339	84.9	0.444
6	125.6	0.256	108.9	0.307	102.5	0.332	84 • 4	0.435
7	125.2	0.252	108.5	0.302	102 · 1	0.328	84.0	0.428
8	124.9	0.249	108.3	0.299	101.8	0.324	83 · 8	0.424
9	124.7	0.247	108.0	0.297	101.6	0.321	83.5	0.420
0.0010	124.5	0.245	107.9	0.295	101.5	0.319	83.4	0.417
20	123.8	0.238	107.1	0.285	100.7	0.309	82.6	0.404
30	123.5	0.235	106.8	0.282	100 • 4	0.306	82.3	0.400
40	123.4	0.234	106.7	0.281	100.3	0.304	82 · 2	0.398
50	123.3	0.5233	106.6	0.280	100.2	0.303	82 · 1	0.396
60	123.3	0.233	106.6	0.279	100.2	0.302	82.1	0.395
70	123 · 2	0.232	106.5	0.279	100 · 1	0.301	82.0	0.395
80	123 · 2	0.232	106.5	0.278	100 · 1	0.301	82.0	0.394
90	123 · 2	0.232	106.5	0.278	100 1	0.301	82.0	0.394
0.0100	123.15	0.231	106.48	0.278	100.06	0.301	81.97	0.393
0.0200	123.08	0.230	106.41	0.277	99.99	0.300	81.90	0.392
0.0300	123.05	0.230	106.38	0.277	99.96	0.299	81.87	0.392
0.0400	123.04	0.230	106.37	0.276	99.95	0.299	81.86	0.392
0.0500	123.03	0.230	106.36	0.276	99.94	0.299-	81.85	0.391
0.0600	123.03	0.230	106.36	0.276	99.94	0.299	81.85	0.391
0.0700	123.02	0.230	106.35	0.276	99.93	0.299	81 · 84	0.391
0.0800	123.02	0.230	106.35	0.276	99.93	0.299	81 · 84	0.391
0.0900	123.02	0.230	. 106 · 35	0.276	99.93	0.299	81 · 84	0.391
0.1000	123.01	0.230	106.34	0.276	99.92	0.299	81.83	0.391
90	123.00	0.230	106.33	0.276	99.91	0.299	81.82	0.391

31. THE TRANSFORMATION OF THE FINAL FORMULA FROM METRICAL INTO SWISS, ENGLISH, AND OTHER MEASURES.

The general formula for coefficients of mean velocity as deduced in the preceding paragraph, is

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}}$$
 where $c = \frac{v}{\sqrt{RJ}}$

the terms of which are

$$z = a + \frac{l}{n} + \frac{m}{J}$$
$$x = \left(a + \frac{m}{J}\right)n.$$

In these formulæ

- v is the mean velocity of discharge;
- c is the coefficient of mean velocity;
- R is the hydraulic mean radius;
- J is the sine of the inclination of the water surface or fall in a length of 1;
- n is the natural coefficient, or coefficient dependent on the nature of the surface of the soil, or material over which the water flows;
- a, l, and m are constant coefficients, determined from experimental observation in the mode already shown.

The expression giving the value of c in a single equation is

$$c = \frac{a + \frac{l}{n} + \frac{m}{J}}{1 + \left(a + \frac{m}{J}\right) \frac{n}{\sqrt{R}}}$$

and this is applicable to measures of any description that may be employed in the formula

$$v = c \sqrt{R J}$$
.

For metrical measures, the values of a, l, and m have been found to be respectively 23, 1, and 0.00155; and n for metrical as well as for all other measures has been found to vary between 0.008 and 0.050. The local values of n for various rivers, streams, and canals, have been already given in the table at pages 67 to 69, paragraph 28. Its general values, as suited to ordinary application, are

- 0.009 Well-planed timber.
- 0.010 Plaster in pure cement.
- 0.011 Plaster in cement, with one-third sand.
- 0.012 Unplaned timber.
- 0.013 Ashlar and brickwork.
- 0.015 Canvas lining on frames.
- 0.017 Rubble.
- 0.020 Canals in very firm gravel.
- 0.025 Rivers and canals in perfect order and regimen, and perfectly free from stones and weeds.
- 0.030 Rivers and canals in moderately good order and regimen, having stones and weeds occasionally.
- 0.035 Rivers and canals in bad order and regimen, overgrown with vegetation, and strewn with stones, or detritus of any sort.

The variable terms of the equation are v, c, R, and R; R, the inclination or fall in a length of unity, being a sine or a ratio, remains the same for all measures; in metrical measures R will be in mètres, R in mètres per second, and R is the corresponding coefficient of mean velocity.

The formula for metrical measures thus becomes

(1)
$$v = \left\{ \frac{23 + \frac{1}{n} + \frac{0.00155}{J}}{1 + \left(23 + \frac{0.00155}{J}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{RJ}.$$

To transform this equation so as to be suitable to values of R and v in other measures, the constant coefficients a, l, m, require new values (n remaining the same), which will be obtained by multiplying those given for metrical measures by the square root of the ratio that the unit of the new system bears to the unit of the metrical system, or mètre.

The square roots of these ratios for the most useful and most general systems are:

		Ratio.	Square Root.
1. Metrical measures		 1.000	1.000
2. English and Russian feet		 3.281	1.811
8. Austrian feet	••	 3.163	1.779
4. Prussian feet		 3.186	1.785
5. Swiss and Baden feet		 3.333	1.826

The equation for each of these sorts of measures then becomes as follows:

(2) For English and Russian feet,

$$v = \left\{ \frac{41 \cdot 6 + \frac{1 \cdot 811}{n} + \frac{0 \cdot 00281}{J}}{1 + \left(41 \cdot 6 + \frac{0 \cdot 00281}{J}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{R.J}.$$

(3) For Austrian feet,

$$v = \left\{ \frac{41 + \frac{1 \cdot 779}{n} + \frac{0 \cdot 00276}{J}}{1 + \left(41 + \frac{0 \cdot 00276}{J}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{R J}.$$

(4) For Prussian feet,

$$v = \left\{ \frac{41 + \frac{1 \cdot 785}{n} + \frac{0 \cdot 00277}{J}}{1 + \left(41 + \frac{0 \cdot 00277}{J}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{R J}.$$

(5) For Swiss feet,

$$v = \left\{ \frac{42 + \frac{1 \cdot 826}{n} + \frac{0 \cdot 00283}{\overline{J}}}{1 + \left(42 + \frac{0 \cdot 00283}{\overline{J}}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{R} \overline{J}.$$

This mode of reduction may be similarly applied to any other unit of measurement whatever. If the values of the coefficients and terms, c, x, and z, obtained through calculations in metrical measures require adaptation to other measures, they will in the same way require multiplying by

the square root of the ratio that the new unit bears to the mètre. Thus if c the coefficient obtained for metrical measures either from a diagram or from tables or calculation is $50 \cdot 00$, its value for English measures will be $50 \times 1.811 = 90.55$, if we retain the same general formula $v = c \sqrt{R J}$. In actual practice, however, the general formula $v = c \times 100 \sqrt{R J}$ is more convenient for English measures, as it affords a ready mode of at once reducing the number of cyphers in the term J; in this case then the corresponding coefficient would be 0.9055, or more simply 0.91.

It will have been noticed that the earlier tables in this work from the beginning up to page 42, par. 20, are in Swiss measures; and that all the later tables from that page to the end are in metrical measures. The former are principally tables of observed results, from Switzerland as well as elsewhere, and of reductions of Bazin's calculated coefficients arranged for purposes of comparison; as then these are never required by the hydraulic engineer as working tables for purposes of calculation; and as the Swiss is nearly equal to the English foot, no object would have been gained by reducing these tables into metrical measures in this translation, except an appearance of uniformity. As, however, there might be an occasional case in which a reduction of coefficients from Swiss into other measures might be required, we annex the following factors of reduction, which can be applied in the mode already described.

1. Metrical measure	8		 		 Ratio. 3:000	Square Root. 0 · 546
2. English and Rus	sian	feet	 		 0.9843	0.992
3. Austrian feet	••	:.	 ••	••	 0.9489	0.974
4. Prussian feet			 		 0.9558	0.977
5. Swiss and Baden	feet	•	 ••		 1.000	1.000

The following tables, for facilitating conversion of metrical into English measures, may also be occasionally of use.

32. CONVERSION TABLES FOR METRICAL MEASURES (STANDARD OF 1872).

,

ذ

(From Jackson's Hydraulic Manual.)
CENTIMÈTEES AND INCHES.

Units.	Inches into Centi- mètres.	Square Inches into Square Centimètres.	Cubic Centimètres.	Units.	Centimètres into Inches.	Square Centimètres into Square Inches.	Čubic Centimètres into Cubic Inches.
-	2.5392	6.4476	16.3721	-	0.3938	0.1551	0.0611
67	5.0785	12.8953	32.7441	c31	0.7876	0.3102	0.1222
တ	7.6177	19.3429	49.1162	8	1.1815	0.4653	0.1832
4	10.1569	25.7906	65.4883	4	1.5753	0.6204	0.2443
5	12.6961	32.2382	81.8603	70	1.9691	0.7754	0.3054
9	15.2354	38 6859	98.2324	9	2.3629	0.9305	0.3665
7	17.7746	45.1335	114.6045	_	2.7567	1.0856	0.4276
00	20.3138	51.5812	130.9766	∞	3.1506	1.2407	0.4886
6	22.8531	58.0288	147.3486	6	3.5444	1.3958	0.5497
10	25.3923	64-4765	163-7207	91	3.9382	1.5509	0.6108
			Measur	MEASURES OF LENGTE.	NGTH.		•
Units.	Feet into Mètres.	Chains into Decambètres.	Miles into Kilomètres.	Units.	Mètres into Feet.	Decamètres into Chains.	Kilomètres into Miles.
1	0.3047	2.0110	1.6089		3.2818	0.4972	0.6215
63	0.6094	4.0221	3.2177	01	6.5636	0.9945	1.2431
တ	0.9141	6.0332	4.8266	က	9.8455	1.4917	1.8647
4	1.2188	8.0443	6.4354	4	13.1273	1.9890	2.4862
ī.	1.5235	10.0554	8.0443	70	16.4091	2.4862	3.1078
9	1.8282	12.0665	9.6532	9	19.6910	2.9835	3.7294
7	2.1329	14.0776	11.2620	7	22.9728	3.4807	4.3509
∞	2.4376	16.0886	12.8708	∞	26.2546	3.9780	4 · 9724
6	2.7428	18.0997	44.4797	6	29.5365	4.4752	5.5940
97	3.0471	20.1108	16.0886	2	32.8183	4.9725	6.2156
	•						

MEASURES OF WRIGHT.

Units.	Grains into Grammes.	Pounds into Kilogrammes.	Tons into Tonneaux.	Units.	Grammes into Grains.	Kilogrammes into Pounds.	Tonnesuz into Tons.
1	0.0648	0.4536	1.0160	H	15-482	2.2046	0.9842
67	0.1296	0.9072	2.0321	61	30.864	4.4092	1.9684
က	0.1944	1.3608	3.0482	ಣ	46.297	6.6138	2.9526
4	0.2592	1.8144	4.0642	4	61.729	8.8185	3.9368
5	0 · 3240	2.2679	2.0802	10	77.161	11.0231	4.9210
9	0.3888	2.7216	6.0963	9	92-594	13.2277	5.9053
2	0.4536	3.1751	7.1124	7	108.026	15.4323	6.8895
∞	0.5184	3.6284	8.1284	∞	123.458	17-6370	7.8737
6	0.5832	4.0824	9.1445	6	138-891	19.8416	8.8578
10	0.6480	4 · 5359	10.1605	01	154.323	22.0462	9.8421
			MEASURES OF PRESSURE	OF PRE	SBURE.		
Unite.	Cwt. per Lineal Foot into Kilogrammes per Linear Mètre.	Pounds per Square Inch into Kilogrammes per Square Centimètre.	Tons per Square Inch into Tonneaux per Square Centimètre.	Units.	Kilogrammes per Linear Mètre into Cwt, per Lineal Foot.	Kilogrammes per Square Centimètre into Pounds per Square Inch.	Tonneaux per Square Centimètre into Tons per Square Inch.
1	15-4788	2.9246	6.5508	1	0.0646	0.3419	0.1526
63	30.9275	5.8492	13.1015	67	0.1292	0.6839	0.3053
က	46.4363	8 - 7739	19.6523	က	0.1938	1.0258	0.4579
4	61.9150	11.6985	26 2030	4	0.2584	1.3677	0.6106
ю	77.3938	14.6231	32.7538	ro.	0.3230	1.7096	0.7632
91	92.8726	17.5477	39.3046	9 1	0.3877	2.0516	0.9159
- 0	100.000	20.4/24	40.8003	~ 0	0.4523	2.3935	1.0685
0 0	139 3089	96.3217	58.9568	0 0	0.5815	3.0774	1.2212
10	154.7876	29.2463	65.5076	01	0.6461	3.4193	1.5265

MEASURES OF SURFACE.

														1 1											
Square Kilomètres into Square Miles.	0.9969	0000	0.7727	1.1590	1.5454	1.0917	1100.1	2.3180	2.7043	3.0908	0.4770	0//#.0	3.8634		Hectolitres into Bushels.	2.7522	5.5045	8.2567	11.0090	18.7612	16.5135	19.2657	22.0180	24 · 7702	$27 \cdot 5225$
Hectares into Acres.	9.4798	2014 4	4.9451	7.4176	9.8902	19.8697	17 207	14.8352	17.3078	19.7804	99 0 0 5 9 9	07(7.77	24.7255		Litres into Gallons.	0.2202	0.4404	0.6605	0.8807	6001.1	1.3210	1.5414	1.7614	1.9816	2.2018
Square Mètres into Square Feet.	10.77.01	#0// OT	21.5409	32.3113	43.0817	59.0591	1700 00	$64 \cdot 6226$	75.3928	86.1634	06:00	600.06	107 - 7043	PACITY.	Cubic Mètres into Cubic Feet.	35.347	70.693	106.040	141.387	176.733	212.080	247.427	282.774	318.120	353 - 467
Units.	-	٠,	81	က	4	ı	٠ د	9	7	• ••		ָ כּ	10	s of Ca	Units.	1	67	67	4	10	9	1	00	6	10
Square Miles into Square Kilomètres.	9.5984	- 000E	5.1768	7.7652	10.3536	19.0490	0710 71	15.5304	18.1188	20.7072	99.0056	0067.07	25.8840	MEASURES OF CAPACITY.	Bushels into Hecto- litres.	0.3633	0.7267	1.0900	1.4534	1.8167	2.1800	2.5433	2.9067	3.2700	3.6334
Acres into Hectares.	0.4044	11010	6808.0	1.2133	1.6178	0.000	2 0666	2.4266	2.8311	3.2356	0065.6	6660.0	4.0444		Gallons into Litres.	4.5417	9.0835	13.6252	18.1669	22.7086	27 - 2504	31.7919	36.3338	40.8756	45.4173
Square Feet into Square Mètres.	0.0090	0760 0	2581.0	0.2785	0.3714	0.4649	71010	0.5571	0.6499	0.7428	0.6956	00000	0.9285		Cubic Feet into Cubic Mètres.	0.0283	0.0266	0.0849	0.1132	0.1414	0.1698	0.1980	0.2264	0.2547	0.2829
Units.	-	- (21	က	4			9	7	• 00		ָ מ	01		Units.	1	67	67	4	ıc	9	7	• 00	a	10

Continued.

- 1 ton per linear inch = 2.5798 tonneaux per linear centimètre.
- 1 pound per square foot = 420.941 kilogrammes per square centimètre.
- 1 cwt. per square foot = 47142 kilogrammes per square centimètre.
- 1 tonneau per linear centimètre = 0.3876 tons per linear inch.
- 1 kilogramme per square centimètre = 0.002 374 pounds per square foot.
- 1 kilogramme per square centimètre = 0.000 021 cwt. per square foot.
- 1 quintal = 100 kilogrammes = 0.1 tonneau = 0.0984 ton.
 - = 1.9684 cwt. = 220.4621 pounds.

MEASURES OF WATER SUPPLY.

A Watering in Cubic Feet per Acre of		A Watering in Cubic Mètres per Hectare of	A Watering in Cubic Mètres per Hectare of		A Watering in Cubic Feet per Acre of
1000	=	11.44	100	=	8739
2000	=	22.88	200	=	17479
3000	=	34 · 32	300	=	26218
4000	=	45.76	400	=	34958
5000	=	57 · 20	500	=	43697
6000	=	68 · 64	600	=	52437
7000	=	80.08	700	=	61176
8000	=	91.52	800	=	69916
9000	=	102 96	900	=	78655
10000	=	114 · 40	1000	=	87395

A watering of 1000 cubic yards per acre = one of 308.9 cubic metres per hectare.

 $\pmb{\mathbb{A}}$ watering of 1000 cubic metres per hectare = one of 3236 \cdot 8 cubic yards per scre.

A supply of 0.01 cubic foot per second per acre = one of 0.1144 litre per second per hectare.

A supply of 1.00 litre per second per hectare = one of 0.0874 cubic foot per second per acre.

- 1 hectare = 10 000 square mètres.
- 1 litre = 0.001 cubic mètre.

MEASURES OF HEAT.

Old Fahrenheit.	Centigrade.	Resumur.	Improved Fahrenheit.	Old Fahrenheit.	Centigrade.	Reaumur.	Improved Fahrenbeit
-13	- 25	- 20	- 45	99.5	37.5	30	67.5
-10	- 23.3	- 18.6	- 42	100	37.8	30.2	68
-8	- 22 · 2	— 17·8	- 40	102	38.9	31.1	70
-4	- 20	— 16	- 36	104	40	32	72
0	– 17∙8	- 14.2	- 32	110	43.8	34.7	78
2	- 16.7	- 13.3	- 30	112	44 · 4	35.6	80 ·
9.5	- 12.5	10	- 22.5	120	48.9	39·1	88
10	- 12.2	- 9.8	- 22	122	50	40	90.
12	- 11·1	-8.9	- 20	130	54.4	43.6	98
14	- 10	-8	- 18	132	55.6	41.4	100.
20	- 6.6	- 5.3	- 12	140	60	48	108
22	- 5.5	- 4·5	- 10	142	61 · 1	48.9	110.
30	- 1.1	- 0.9	- 2	144.5	62.5	50	112.5
32	0	0	0	150	65.6	52 · 4	118.
	l Transmin	 	ı	152	66.7	53.3	120
35	1 1.7	g point.		158	70	56	126
40	4.4	3.6	3	160	71.1	56.9	128
42	5.5	4.5	8 10	162	72.2	57.8	130
50	10	8		167	75	60	135
50 52	11.1	8.9	18 20	170	76.7	61.3	138 ·
54·5	12.5	"		172	77.8	62 · 2	140
60	12.6	10 12·4	22.5	176	80	64	144 ·
62	16.7	13.3	28 30	180	82.2	65.8	148
68	20	16.	36	182	83.3	66.7	150 ·
70	21.1	16.9		189 · 5	87.5	70	157.5
70 72	22.2		38	190	87.8	70.2	158
77	25	17.8	40	192	88.9	71 · 1	160
80	26.7	20	45	. 194	90	72	162
80 82		21.3	48	200	93·3	74.7	168
82 86	27·8 30	22.2	50	202	94 · 4	75.6	170 ·
80 90	32·2	24	54	212	100 ·	80	180
92	33.3	25·8 26·7	58 60		Boiling	point.	İ

33. EQUIVALENTS OF FOREIGN MEASURES.

BY COMPARISON WITH THE METRICAL STANDARDS OF 1872.

(From Jackson's Hydraulic Manual.)
THE FEET OF VARIOUS NATIONS.

		LINEAR	ej.	100	SQUARE.	5	CURRO.
		English Linear Feet.	Mètres.	English Square Fect.	Square Decimètres.	Engilsh Cubic Feet.	Cubic Decimètres or Litres.
-	English, American, and Russian foot	1.	0.3047	1.	9-2846	1.	28.2909
67	The metre of France, Italy, Spain, and Portugal	3.2818	÷	10.7704	100.	35.3467	1000.
ಣ	Rhein-fuse of Prussia, Denmark, and Norway	1.0299	0.3138	1.0609	9⋅8504	1.0928	30-9158
4	Austro-Hungarian and Bohemian Imperial foot	1.0375	0.3161	1.0762	9.9921	1.1164	81 · 5852
10	Swedish foot	0.9744	0.2969	0.9492	8.8130	0.9248	26.1629
9	Hanoverian foot	0.9586	0.2921	0.9189	8.5319	6088.0	24 · 9214
7	Bavarian foot	0.9280	0.2919	0.9174	8.5182	0.8788	24.8611
∞,	Wurtemberg foot	0.9402	0.2865	0.8840	8 - 2077	0.8311	23.5142
o	Baden foot, and Swiss (Vaud)	0.9846	0.3000	0.9693	0000-6	0.9544	27.0000
10	Portuguese foot	1.0830	0.3300	1.1729	10.8900	1:2702	85.9870
11	Spanish foot (Burgos)	0.9133	0.2783	0.8343	7.7469	0.7622	21 · 5623
13	Arabian foot	1.0502	0.8200	1.1029	10.2400	1.1582	82.7680

CHAP. II.] FLOW IN OPEN CHANNELS IN EARTH.

Equivalents of Foreign Measures of Length.

Milze.	in Local Measures,	Number in a degree of latitude.	English Statute Miles.	Kilo- mètres,
The geographical mile of England and America, and nautical mile of all nations	607 6 ·98 ft.	60.	1 · 1509	1.8516
English statute mile since 1824	5280 ft.	69.06	1.	1.6089
Old English mile, now used on Indian canals	5000 ft.	72.93	0.9470	1 · 5236
Irish mile	6720 ft.	54 · 26	1 · 2728	2.0477
Scotch mile	5952 ft.	61 · 26	1 · 1273	1.8137
Kilomètre of France, Italy, Spain, and Portugal	1000 m.	111-10	0.6216	1.
Prussian and Danish post mile	24000 ft.	14.75	4.6816	7 · 5322
Austrian mile	24000 ft.	14.65	4.7136	7 · 5836
Russian verst	3500 ft.	1 04 ·18	0.6629	1.0664
Hungarian mile		13.33	5·1806	8.3350
Norwegian mile		10.	6.9055	11-1100
Swedish mile	36000 ft.	10.4	6.6395	10.6827
Belgian, Dutch, and Polish mile		20.	3.4527	5.5550
Wurtemberg geographical mile	26000 ft.	15.	4.6036	7.4067
Baden stunden	14815 ft.	25 ·	2.7622	4.4440
Bavarian mile of Anspach	28800 ft.	12.87	5.3666	8.6342
Swiss league	18000 ft.	20.58	3.3564	5.4000
Italian miglio		60 ·	1 · 1509	1.8516
Greek stadium (modern)		112-16	0.6156	0.9902
Arabian and Egyptian mile	6000 ft.	57.88	1 · 1933	1.9200
Portuguese milha	6236 ft.	54.	1.2788	2.0574
Spanish milla (Burgos)	5000 ft.	79.86	0.8650	1.3917
Turkish berri		66.66	1.0361	1.6670
Chinese li	360 paces.	199 · 72	0.3458	0.5563
Japanese ri	4 li.	49.93	1 · 3831	2.2253

Equivalents of Foreign Measures of Surface.

Acres.	In Local Measures.	English Acres.	French Hectares.	Acre-side in English Feet.
English and American acre	43 560 sq. ft.	1.	0.404 44	208.7
Irish acre	70 560 sq. ft.	1.6199	0.655 11	265 · 6
Scotch acre	55 353 sq. ft.	1 · 2708	0.513 92	235·3
French hectare	10 000 sq. m.	2 · 4725	1.	328 · 2
Russian dessatina	2 400 sq.sash	2 · 4954	1.092 50	343.0
Prussian morgen	25 920 sq. ft.	0.6313	0 · 255 32	165.7
Wurtemberg morgen	38 400 sq. ft.	0.7793	0.315 17	184 · 1
Baden morgen	40 000 sq. ft.	0.8901	0.360 00	196.9
Amsterdam morgen	101 400 sq. ft.	2.0095	0.812 71	295 · 7
Polish morgow	67 500 sq. ft.	1.3843	0.559 87	245 · 4
Hanoverian morgen	30 720 sq. ft.	0.6476	0 · 261 92	167.7
Austrian jochart	57 600 sq. ft.	1.4230	0.575 54	249.0
Tyrolese jauchart	36 000 sq. ft.	0.8900	0.359 94	196.5
Swiss (Vaud) juchart	50 000 sq. ft.	1.1126	0.450 00	220 · 1
Norman journal	77 440 sq. ft.	2.0204	0.817 15	296 · 7
Bavarian tagwerk	40 000 sq. ft.	0.8425	0.340 73	191.6
Swedish tunnland	56 000 sq. ft.	1.2203	0.493 53	230.6
Danish toende-hartkorn	224 000 sq. ft.	5 · 4557	2 · 206 49	487.3
Piedmontese giornata	14 400 sq. ft.	0.9398	0.380 09	202·1
Venetian migliajo	25 000 sq. ft.	0.7474	0.302 30	180 · 1
Tuscan saccata	16 500 sq. br.	1.3895	0.561 97	245.7
Roman pezza	52 900 sq. pal.	0.6529	0.264 07	168.6
Arabian feddan	57 600 sq. ft.	1 · 4584	0.589 82	251 · 9
Portuguese geira	4 840 sq. va.	1.4480	0.585 64	251.3
Spanish cuadra cuadrada	22 500 sq. va.	3.9600	1.603 56	415.3
Spanish fanegada	82 944 sq. ft.	1.5888	0.642 56	262.8

Equivalents of Foreign Measures of Capacity.

WET AND DRY MRASURES.	Gallons.	Litres.	Side of Cube in English Feet.
English Imperial gallon of 10 lbs. water, 277 · 274 cub. inches	1.	4.54	0.543
Old English wine gallon (American) 231 cub. inches	0.833	3.78	. 0.511
Old English beer gallon, 282 cub. inches	1.017	4.62	0.549
French litre, 1 cub. decimètre	.220	1.	0.328
Russian vedro	2.708	12.30	0.756
Prussian anker, 4 of a scheffel	7.564	34 · 35	1.065
Danish anker	8.242	37 · 43	1.096
Swedish anker	8.641	89 · 24	1.114
Dutch anker	8.387	38.09	1 · 102
Austrian eimer	$12 \cdot 774$	58.01	1.263
Bavarian eimer	15.066	68.42	1.340
Wurtemberg eimer	64 · 721	293 · 93	2.189
Swiss (Vaud) eimer	8.918	40.50	1.125
Turkish alma	1.154	5·24	0.569
Portuguese almude (Lisbon)	3.642	16·5 4	0.835
Spanish arroba (Castille)	3.554	16·1 4	0.828
	Bushels.	Litres,	Side of Cube in English Feet.
English Imperial bushel, 8 gallons	1•	36.33	1.087
Winchester bushel (American)	0.969	35.22	1.074
French hectolitre	2.7522	100	1.523
Russian tschetvert	5.772	209 · 73	1.948
Prussian scheffel	1.512	54 ·96	1.246
Danish skieppe	0.478	17:39	0.849
Bavarian scheffel	6·119	222 · 35	1.986
Wurtemberg scheffel	4.878	177 · 23	1.842
Dutch schepel	0.275	10.	0.707
Austrian metze	1.693	61 · 49	1 · 293
Swedish spann	1.962	73 • 25	1.371
Portuguese fanga (Lisbon)	1.488	54.08	1 · 239
Spanish fanega (Castille)	1.572	57·1 5	1 · 262

Equivalents of Foreign Measures of Weight.

POUNDS AND TONS.	Equivalent in Distilled Water according to Local Measure.	English Grains.	French Grammes
English pound avoirdupois near	y ds of a cub. ft.	7000	453.6
English pound troy near	y dof a cub. ft.	5760	373 · 2
Old English and Scotch pound near	y lof a cub. ft.	7600	492.3
French kilogramme exact	y 1 cub. decim.	15432	1000
Prussian and Wurtemberg pound	of a cub. ft.	7217	467 · 7
Danish and Norwegian pound	of a cub. ft.	7707	499 · 4
Swiss (Vaud) pound	$\frac{1}{86}$ of a cub. ft.	7716	500
Austrian and Bavarian pound		8642	560·
Russian pound		6317	409.4
Swedish skälpund		6535	423.5
Portuguese arratel	·•	7083	459 •
Spanish libra (Castille)		7099	460·
	In Local lbs.	English lbs.	Kilo- grammes
English and American hundredweigh	ıt 112	112	50.80
French quintal	. 100 kilog.	220 · 46	100
Zollverein contner	. 100	110 · 23	50.
Prussian centner	. 110	113.43	51 · 48
Austriau centner	. 100	123 · 46	56.
Russian berkowitz	. 400	361 · 01	163 · 76
Danish centner	. 100	110.10	49.94
Swedish centner	. 120	112.05	50.82
Portuguese quintal	. 128	129.53	58.75
Spanish quintal (Castille)	100.	101 · 42	46.00
English and American ton	2240	2240	1016.0
	1000 kilog.	2201.6	1000
German ton (Hamburg)	2000	2135 · 8	968 · 86
	2400	2166 · 0	982 - 5
Portuguese ton	. 1728	1748 · 5	793 · 1
~	2000	2028 · 2	920 . 0

34. THE APPLICATION OF THE NEW FORMULA TO THE CALCULATION OF DISCHARGES IN OPEN CHANNELS IN EARTH, AND THE USE OF THE TABLES AND DIAGRAM.

The following tables of velocities and discharges in open channels in earth, having an object similar to those of Claudel for pipes, are intended principally for determining the dimensions of cross-section (the depth and bottom width) of any canal designed to carry a previously fixed amount of discharge with a given velocity under limited conditions of inclination. As in these we treat only of canals and channels in earth, and not of those in masonry, brickwork, or timber, we can confine ourselves to the three following grades of roughness of surface of cross-section, indicated by the three values of n, 0.025, 0.030, and 0.035 in our formula for metrical measures:

$$v = \left\{ \frac{23 + \frac{1}{n} + \frac{0.00155}{J}}{1 + \left(23 + \frac{0.00155}{J}\right) \frac{n}{\sqrt{R}}} \right\} \sqrt{R \cdot J}$$

First class.—Perfectly clear and well maintained channels in loamy earth, free from irregularities, and without stones, silt, or weeds, in which n = 0.025.

Second class.—Channels, rather defectively maintained, having slight irregularities, as well as gravel, stones, and weeds occasionally, in which n = 0.030.

Third class.—Very defectively maintained channels with great irregularities, and having grass, weeds, and large stones, in which n = 0.035.

Although these grades are rather distant from each other, they will, in practice, be found to be close enough to render any intermediate degrees needless. We had at one time intended to include the results for these three classes in one table, but have since preferred the arrangement we have

adopted, of making three separate tables, one for each class, as more convenient.

These tables are directly applicable to only one form of section, that shown in Figure 1, Plate I., a trapezoid with side slopes of 1½ to 1; for this the true velocities and discharges are given direct; for the other forms of section, shown in Figure 2, the rectangle or the trapezoid with side slopes of 1 to 0.5, 1 to 1, 1 to 2, and 1 to 3, the velocities and discharges given for the original type of section must be reduced or modified by applying the percentages given in the additional small table constructed for that purpose, which immediately follows them. The following example will illustrate this method of reduction.

Example.—A channel of the first class, for which n = 0.025, having a fall of 1 per thousand, a bottom width of 5 mètres, and a depth of 0.8 mètre, will have its side slopes altered from $1\frac{1}{2}$ to 1, to 1 to 1, what will be the effect on the velocity and on the discharge?

An inspection of the additional table shows that the velocity given for the first case must be increased by 0.3 per cent. to obtain that for the second, and the discharge reduced by 9.1 per cent., the new velocity and discharge becoming

$$v = 0.910 + \frac{0.910 \times 0.3}{100} = 0.913$$
 mêtre per second.
 $q = 4.513 - \frac{4.513 \times 9.1}{100} = 4.102$ cubic mêtres per second.

It is generally found that in such cases the percentages of velocity and of discharge vary principally with the depth of channel and are not much affected by varying either the bottom width or the inclination.

For other sections not comprised in these tables, for which a percentage of reduction cannot be conveniently calculated, the coefficient corresponding to the special case under consideration may be obtained from the tables of coefficients, one of which accompanies and precedes those of velocity and discharge in each of the three classes; this coefficient can then be applied in the formula,

$$v = c \sqrt{RJ}$$

and the velocity and the discharge can then be calculated in the ordinary way. The values of the expression \sqrt{RJ} have been tabulated by Mr. Kutter, but have been omitted in the 'Cultur-Ingenieur' for want of space; these, however, may be obtained from tables of other writers on hydraulics. For most ordinary purposes, however, this mode of determination will only be required for checking the velocities and disharges obtained direct from the tables.

Before using, as intended, the tables for reading off velocities and discharges, it will, of course, be necessary to decide whether the case under consideration is more nearly suited to the first, the second, or the third class, for which separate tables are given, or, in other words, whether the coefficient indicating the nature of the surface on which the water acts in the channel is nearer to 0.025, to 0.030, or to 0.035. cases fall in the second class, and intermediate classes are rarely required in actual practice. After deciding this point, and on referring to the tables, two quantities will be found to correspond to each inclination or fall per thousand and each bottom width; the upper of these, in thinner type. is the mean velocity of discharge per second in mètres, the lower, in thicker type, the discharge per second in cubic mètres corresponding to that velocity as well as to the inclination and the dimensions of cross section adopted.

Should any case happen to comprise any intermediates between the values of the dimensions or quantities, the velocities or discharges, given in the tables, there will be no need to calculate them independently, they can easily be interpolated by proportionate differences which may be added or subtracted, as the limits within which the differences of the quantities given in the tables are kept are such as to allow this to be done with sufficient accuracy.

The following examples will explain the use of the tables.

Example 1. A channel is required to discharge 5 cubic metres per second with an inclination of 0.008, or 0.8 per thousand; its section to be trapezoidal, with side slopes of 1½ to 1; and the highest water level in the canal is to be 0.3 metre below the surface of the ground; the soil is clay, with one-third sand and earth; what will be the depth from the ground surface to the bottom of the channel?

The surface of the section being in smooth soil, and the channel being supposed to be kept in good order by yearly cleansing, the case may be considered as one of the first class. Now as with the given inclination several sections of different forms and dimensions may discharge the required quantity of water, it becomes a question whether greater depth and less bottom width or greater bottom width and less depth is to be preferred.

The following are the tabular depths and bottom widths that will allow of the discharge of 5 cubic mètres per second

and if we assume that a bottom width of $5\cdot 0$ mètres would be the most convenient, the depth corresponding to this, obtained by proportionate differences, will be $0\cdot 91$ mètre, and the depth from ground level to the bottom of the canal will be $0\cdot 30 + 0\cdot 91 = 1\cdot 21$ mètres.

Example 2. Required the mean velocity of discharge of a channel having an inclination of 0.5 per thousand, and a bottom width of 10 mètres, with side slopes of $1\frac{1}{2}$ to 1, first,

CHAP. II.

UNICAL E 197.A

when the depth of water is 1.5 mètres; secondly, when it is 1.45 mètres.

The mean velocity for neither of these cases being given direct by the tables, an intermediate velocity has to be obtained by proportionate differences.

•					1	Métres per second.
The tabular velocity given for	or a	depth	of	1 · 4 m	ètres is	0.971
And that for	••			1.6	99	1.043
Hence that for a depth of	••			1.5	"	1.007

For a depth of 1.45 mètres, one-fourth the difference between the two tabular velocities will be added to the first of them; thus the required velocity for that case will be

$$= 0.971 + \frac{0.072}{4} = 0.989$$
 mètre per second.

Example 3. A channel has to be conducted down sloping ground, whose soil is of such a quality as not to admit of a mean velocity of more than 1 mètre per second without injury to its bed and banks. Its maximum discharge is to be 0.5 cubic mètre per second, its section trapezoidal, with a depth of water of 0.4 mètre, and side slopes of $1\frac{1}{2}$ to 1; what will be the bottom width and the inclination of the channel?

In this case it would appear that the description of soil, and the probable necessity of the adoption of a curved course down the descent would place the example in the second class, but as the table for that class is still in the press we may, for convenience sake, make use of the table for the first class, which we have at hand, as, although the results will differ, the mode of procedure will be exactly the same.

Putting, therefore, the example in the first class, and using the portion of table corresponding to the given depth of water 0.4 mètre, we find that the following inclinations and bottom widths are all applicable to the case as a discharge of 0.5 cubic mètre per second.

0 · 2 per	thousand	inclination	with 4.50	mètres bottom width
0.3	"	"	3.20	29
0.4)1))	8.00	"
0.5	,	. ,,	2.75	"
0.6	"	"	2.50	"
0.7	"	"	$2 \cdot 25$,,
0.8	"	"	2.00	,,
0.9	"	"	1.90	"
1.0	"	,,	1.80	"
1.2	"	2)	1.60	"
1.4	"	"	1 · 45	
1.6	,,	"	1.40	,,
1.8	"	"	1.00	,,

In none of these cases does the mean velocity resulting exceed 1 mètre per second, being 0.250 in the first case and 0.780 in the last; hence, as land may be saved by adopting the smallest bottom width of 1.00 mètre with a fall of 2.8 per thousand, this will probably be the best in practice: 'or, if preferred, a higher inclination and a narrower bottom width may be calculated.

Example 4. What will be the mean velocity of discharge of a river, having an inclination of water surface of 0.000040393, a sectional area of 1864.9 square mètres, with a wetted perimeter of 514.2 mètres?

To calculate this direct from the formula without the aid of the tables, the steps are as follows:

The formula for mean velocity is

$$v = c \sqrt{RJ}$$

where

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}}$$

$$z = a + \frac{l}{n} + \frac{m}{J}$$

$$x = \left(a + \frac{m}{J}\right)n$$

where for metrical measures a = 23, l = 1, m - 0.00155, and n lies between 0.008 and 0.050, remaining the same for all systems of measures.

As in all cases it is necessary that the adopted value of n should be determined by comparison with observed results, and the degree of roughness of the surface of the channel acted on by the water fixed so as to be suitable to the case under consideration; we will in this case assume a value of n of 0.025, which is that suited to rivers and canals in very good order.

Having then all the numerical values needful, we obtain

$$z = 23 + \frac{1}{n} + \frac{0.00155}{J}$$

$$= 23 + 40 + 38.373 = 101.373.$$

$$x = \left(23 + \frac{0.00155}{J}\right)0.025,$$

$$= \left(\frac{23 + 38.373}{40}\right) = 1.5343,$$

and

$$R = \frac{1864 \ 2}{514 \cdot 2} = 3 \cdot 621,$$

hence

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}} = \frac{101 \cdot 373}{1 + \frac{1 \cdot 5343}{\sqrt{3 \cdot 621}}}$$
$$= \frac{101 \cdot 373}{1 \cdot 80631} = 56 \cdot 122$$

but

$$\sqrt{RJ} = \sqrt{3.621 \times 0.000040393} = 0.012094$$

hence

$$v = 56.122 \times 0.012094 = 0.67873$$
 mètre per second.

The actually observed mean velocity of the Danube at Szob, of which this is an example, is 0.686 mètre per

second; the small difference of 0.007 mètre between the calculated and the observed velocity is due to our having assumed too high a value of n; this, to be in accordance with the observed velocity, should be 0.0247 instead of 0.0250.

In the case mentioned in the last example, as well as in all similar cases where the mean velocity has been actually observed, the value of the correct coefficient c may be calculated by the formula $c = \frac{v}{\sqrt{R}J}$, and the exact local value of the coefficient n by means of the formula

$$\mathbf{n} = \sqrt{\frac{\sqrt{\mathbf{R}}}{\mathbf{A}c} + \frac{1}{4} \left(\frac{c - \mathbf{A}}{c \mathbf{A}}\right)^2 \mathbf{R}} - \frac{1}{2} \cdot \frac{c - \mathbf{A}}{c \mathbf{A}} \cdot \sqrt{\mathbf{R}}$$

where

$$A = a + \frac{m}{J}.$$

In the same way, if any three of the four quantities R, J, c, n, be given, the fourth may be calculated by means of the above formula.

Calculations of this nature, as shown in the last example, present no difficulty whatever; a large number of such examples would, however, occupy a considerable amount of time, as each would have to be calculated separately. We therefore attach a diagram, Plate I., by means of which the values of coefficients c, corresponding to given values of R, J, and n, can be read off in a few seconds with the aid of a simple straight edge, or by which any one of the four quantities R, J, n, and c can be obtained from the remaining three, in any number of cases with the least possible expenditure of time and thought.

In this diagram the diverging lines n, radiating from an origin or point where \sqrt{R} and R=1 mètre, indicate the grade of roughness of the surface of the channel, the curved

lines indicate the degree of inclination J of the water surface; the scale on the axis of abscissæ denotes values of R in mètres, and the scale of equal parts on the axis of ordinates gives values of the coefficient c. It is evident, therefore, that if a straight edge be laid across this diagram, in such a manner as to cut three of these lines in points corresponding to the three values given in any example, it will also cut the fourth line in a point, which will indicate to scale the value of the fourth required quantity.

We recommend the employment of this diagram to all hydraulicians that make use of our formula.

In bringing our work to a conclusion, we refer our readers for fuller information as to the derivation of our formula to the 'Zeitschrift des Oesterreichischen Ingenieur und Architekten-vereins' for 1869,* and express a hope that our formula may be universally employed.

^{*} See Extracts therefrom introduced in paragraph 27, pages 59 to 72.

TABLES

OF

COEFFICIENTS OF MEAN VELOCITY,

AND OF

MEAN VELOCITIES AND OF DISCHARGES PER SECOND,

FOB

OPEN CHANNELS IN EARTH,

APPLICABLE TO RIVERS AND CANALS OF THREE CLASSES.

- CLASS I.—Those having their beds and banks in good order, and perfectly free from all irregularities, deposits of stone, and overgrowth.
- CLASS II.—Those with beds and banks in moderately good order in every respect.
- CLASS III.—Those with beds and banks in bad order, having irregularities and deposits of stone and pebbles, or much overgrown with vegetation,

The quantities given in the following Tables are in metrical * measures, and are calculated according to the following formulæ of Ganguillet and Kutter;

$$v = c \sqrt{RJ}$$

$$c = \frac{z}{1 + \frac{x}{\sqrt{R}}}$$

$$z = \frac{1}{n} + 23 + \frac{0.00155}{J}$$

$$x = n\left(23 + \frac{0.00155}{J}\right)$$

Where v is the mean velocity of discharge per second in metres,

c is the coefficient of mean velocity,

R is the hydraulic mean radius,

J is the fall of the water-surface in a length of unity,

n is the coefficient of roughness, having the fixed values of 0.025 for channels of Class I., of 0.030 for those of Class II., and of 0.035 for Class III.

The results are applicable to channels having side slopes \dagger of $1\frac{1}{2}$ to 1, having bottom-widths of from 0·2 to 270 metres, to depths of water of from 0·2 to 6 metres, and to inclinations of from 0·000 02 to 0·003 00, or of 0·02 to 3·00 per thousand.

^{*} For conversion tables, see Paragraph No. 32 of the text.

[†] An additional table enables the quantities to be reduced and applied to various forms of section.

FIRST CLASS.

RIVERS AND CANALS,

HAVING THEIR BEDS AND BANKS IN GOOD ORDER,

AND PERFECTLY FREE FROM ALL IRREGULARITIES,

DEPOSITS OF STONE, AND OVERGROWTH.

n = 0.025.

CLASS I. (n = 0.025.)

COMPFICIENTS OF MEAN VELOCITY.

FOR VALUES OF R.

Fall per thousand.	0.1	0.5	0.3	0.4	0.5	0.6	0.7	0.8	0.8	
0.02	_	_	_	_	32.4	34.0	35.7	37.3	38.7	
0.07	_	_	_		83.0	34.6	86.1	37.5	38.8	
0.1	19.5	25.0	28.5	31.0	33 · 2	35.0	36.5	37.8	39.0	
0.2	20.6	26.2	29.3	31 · 8	33.8	35.5	86.9	88.0	89.0	
0.3	21.3	26.5	29.6	32.2	34 · 2	85.6	36.9	38.0	39.0	
0.4	21.5	26.7	29.8	32.3	34.3	35.8	37.0	88.0	39.0	
0.5	21.7	26.8	30.0	32.4	34.3	85.8	37·1	38·1	39·1	
0.6	21.8	26.9	30.6	32.5	34 · 4	85.8	37·1	38·1	39·1	
0.7	21.9	27.0	30·1	32.5	34.4	35.8	37.1	38·1	39.1	
0.8	22.0	27·1	30 · 2	32.5	34.5	85.9	37.2	38 2	39·1	
0.9	22.0	27.2	30.3	32.6	34.5	85.9	37.2	38.2	39·1	
1.0	22 · 0	27.2	30.3	32.6	34.5	85.9	87.2	38.2	39·1	

FOR VALUES OF R.

Fall per thousand.	2·6	2.8	8.0	3.2	8.4	3.6	8.8	4.0	4.2
0.02	_		_		_	60.7	61 · 7	62 · 5	63.3
0.03	_	_	_	_	_	57 • 4	58.3	59.0	59.7
0.05	51.0	51.9	52.7	53 · 4	54.1	54.8	55.4	56.0	56.5
0.07	50.0	50.7	51.5	52·1	52.6	58.3	53.7	54.2	54.7
0.1	49.0	49.7	50.8	50.8	51.3	51.8	52.4	52.8	53.2
0.2	47.7	48.2	48.7	49.2	49.6	50.0	50 · 4	50.8	51.2
0.8	47.4	48.0	48.4	48.8	49.1	49.5	49.9	50.2	50.5
0.4	47.1	47.7	48.1	48.5	48.9	49.3	49.8	50·1	50· 4
0.5	46.9	47.4	47.8	48.2	48.6	49.0	49.3	49.6	49.9
0.6	46.8	47.8	47.7	48.1	48.5	48.9	49.1	49.4	49.7
07	46.8	47.2	47.6	48.0	48.4	48.8	49.0	49.3	49.6
0 8	16·7	47.1	47.5	47.9	48.3	48.7	49.0	49.8	49.6
0.9	46.7	47.1	47.4	47.8	48.2	48.6	48.9	49.2	49.5
1.0	46.7	47.0	47.4	47.8	48.2	48.6	48.9	49.2	49.5

The coefficients remain unaltered for steeper inclinations.

CLASS I. (n = 0.025.)

COMPFICIENTS OF MEAN VELOCITY.

FOR VALUES OF B.

1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	Fall per thousand.
40.0	42.1	43.8	45.2	46.6	47.9	49.0	. 50.0	0.05
40.0	42.0	43.3	44.7	46.1	47.2	48.2	49.1	0.07
40.0	41.7	43.0	44.3	45.5	46.5	47.4	48.3	0.1
40·0	41.4	42.7	43.8	44.7	45.6	46.4	47.0	0.2
40.0	41.4	42.5	48.5	44.4	45.3	46.1	46.7	0.3
40.0	41.3	42.4	43.4	44.4	45.2	45.9	46.5	0.4
40.0	41.3	42.4	43.4	44.3	45.0	45.7	46.3	0.5
40.0	41.3	42.4	48.4	44.3	45.0	45.7	46.2	0.6
40.0	41.8	42.4	43.4	44.3	45.0	45.7	46.2	0.7
40.0	41.8	42.4	43.4	44.3	45.0	45.7	46.1	0.8
40.0	41.8	42.4	43.4	44.3	45.0	45.7	46.1	0.9
40.0	41.3	42.4	43.4	44.3	45.0	45.7	46.1	1.0

FOR VALUES OF R.

4.4	· 4· 6	4.8	5.0	5·2	5.4	5.6	5.8	6.0	Fall per thousand.
64 · 2	64.9	65.6	66.3	67.0	67.7	68.4	69.0	69.6	0.02
60.4	61.1	61.8	62 · 4	62.9	63 • 4	63.9	64 · 4	64.9	0.03
57 · 1	57.7	58.3	58.9	59.4	59.8	60·1	60.8	60.5	0.05
55 · 1	55.5	55.9	56.3	56.7	57.1	57.5	57.8	58·1	0.07
53.6	54.0	54 · 4	54.8	55 · 1	55 · 4	55.7	56.0	56.2	0.1
51.5	51.8	52.1	52.4	52.7	53.0	53.2	53 · 4	53.6	0.2
50 · 8	51 · 1	51 · 4	51.7	52.0	52 · 2	52.4	52.5	52.6	0.3
50.7	51.0	51.2	51.4	51.6	51.8	52.0	52 · 2	52.8	0.4
50·2	50.5	50.8	51.0	51 · 2	51.4	51.6	51.8	52.0	0.5
50.0	50.3	50.6	50.8	51.0	51 · 2	51.4	51.6	51.8	0.6
49.9	50.2	50.4	50.6	50.8	51.0	51.2	51.4	51.6	0.7
49.9	50.1	50.8	50.5	50.7	50.9	51.1	51.3	51.5	0.8
49.8	50.0	50.2	50.4	50.6	50.8	51.0	51.2	51.4	0.9
49.8	50.0	50.2	50.4	50.6	50.8	51.0	51.2	51.4	1.0

The coefficients remain unaltered for steeper inclinations.

OLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND

FOR A DEPTH OF WATER OF 0.2. FOR BOTTOM-WIDTHS OF

0.3	e	7 :0	0.5	9.0	2.0	8.0	6.0	1.0	1.2	1:4	1.6	1.8	2.0	69	
0.066 0.070 0.007 0.008		0.010	0.012	0.079	0.016	0.018	0.019	0.021	0.025	0.031	0.035	960.0	0.043	0.052	
0.039 0.106 0.010 0.013	es	0.110	0.018 0.018	0.021	0.024	0.027	0.030	0.032	0.133 0.040	0.046	0.140	0.060	990.0	0.146	(
0·126 0·132 0·012 0·016	g 9	0·138 0·019	0.023	0.027	0.030	0.034	0·168 0·038	0.042	0.050	0.170	990.0	0.074	0.180	0·182 0·102	vi)
0.145 0.154 0.014 0.018	≭ ∞	0.022	0.027	0.031	0.035	0.040	0.044	0.049	0.058	0.068	0.303	9.306	0.096	0·212 0·119	
0·164 0·173 0·016 0·021	2 2 3	0.025	0.030	0.035	0.040	0.203	0.020	0.210	0.216	0.075	0.086	0.097	0.108	0.134	
0·180 0·190 0·018 0·023	0·190 0·023	0.028	0.207	0.038	0.043	0.049	0.055	0.080	0.238	0.083	0.250	0.364	0.268	0.262	
0·195 0·0 0·019 0·0	0.025	0.030	0.036	0.229	0.233	0.240	0.059	0.251	0.258	0.090	0.271 0.103	0.276	0.280	0·284 0·159	
0.021 0	0.222	0.232	0.038	0.044	0.051	0.260	0.268 0.064	0.0269	0.277 0.083	0.097	0·291 0·110	0.296	0.300	0.304	
		_	_	_	_	_			-	_					

0.324	0·342 0·191	0.374	0.404	0.433	0.256	0.483	0.507	0.529	0.308	0.572 0.317	0.881
0.319	0.337	0.168	0.398	0.195	0.207	0.219	0.230	0.240	0.250	0.259	0.268
0.314	0.331	0.362	0.392	0.418	0.186	0.197	0.206	0.215	0.224	0.232	0.513
0.308	0.325 0.123	0·356 0·135	0.385	0·411 0·156	0.166	0.175	0.183	0.191	0.524 0.198	0.206	0.563
0.301	0.318 0.108	0.348 0.118	0·376 0·128	0.402	0·426 0·145	0.450	0.472	0.167	0.512	0.532	0.550
0.088	0.310	0.340	0.367 0.110	0.392	0.125	0.132	0.138	0.480	0.150	0.520	0.160
0.287 0.075	0.303	0.086	0.093	0.099	0.406	0.111	0.448	0.468	0.127	0.506	0.523
0.282	0.297 0.071	0.326	0.363	0.376 0.090	0.095	0.101	0.106	0.460	0.479	0.498	0.123
0.277	0.292	0.320	0.348 0.076	0.369	0.392	0.413	0·433 0·095	0.462	0.103	0.107	0.506
0.271	0.286 0.057	0.063	0.068	0.362	0.384 0.076	0.406	0.084	0.443	0.092	0.095	0.486
0.264	0.050	0.306	090.0	0.363	0.373 0.067	0.394	0.413	0.431	0.450	0.466	0.483
0.256	0.270	0.047	0.320	0.342	0·362 0·058	0.382	0.401	0.418	0.436	0.462	0.468
0.034	0.036	0.039	0.043	0.328	0.347	0.367	0.054	0·402 0·056	0.420	0.061	0.461
0.236	0.030	0.270	0.035	0·313 0·037	0.0331	0.350	0.368	0.384	0.400	0.416	0.430
0.223	0.23	0.257	0.028	0.030	0.031	0.033	0.035	9.364	0.038	0.039	0.041
6.0	1.0	1.2	1.4	1.6	1.8	3.0	57 53	6 7	5.6	5.8	3.0

OLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 0.4. FOR BOTTOM-WIDTHS OF

									,							
Fall per thousand.	7.0	9.0	8.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	8.0	8.5	4.0	4.5	2.0	
0.1	0.120	0.061	0.134	0.139	0.108	0.117	0.153	0.154	0·167 0·168	0.201	0.289	0.169	0·171 0·815	0.173	0.175	
0.3	0.068	0.087	0.196	0.203	0.100	0.216	0.220	0.215	0.287	0.291	0.241	0.402	0.458	0.512	0.264 0.569	
0.3	0.086	0.231	0.135	0.261	0.280	0.267	0.240	0.267	0.298	0.380	0.429	0.304	0.569	0.688	0.316 0.708	•
0.4	0.364	0.268	0.282	0.292	0.217	0.310	0.279	0.333	0.941	0.418	0.498	0.353	0.861	0.740	0.860	•
0.2	0.281	0.300	0.317	0.210	0.244	0.348	0.314	0.348	0.369	0.880	0.390	0.651	0.406	0.883	0.410 0.918	
9.0	0.314	0.161	0.348 0.197	0.381	0.269	0.306	0.391	0.388	0.404	0.516	0.615	0.436	0.812	0.910	0.481 1.010	
2.0	0.340	0.360	0.377	0.250	0.290	0.331	0.378	0.431	0.456	0.558	0.665	0.471	0.879	0.987	0.489 1.095	
8.0	0.364	0.384	0.403	0.267	0.431	0.443	0.899	0.448	0.487	0.596	0.494	0.603	0.510	0.516 1.053	0.522 1·169	
6.0	0.386	0.195	0.289	0.283	0.329	0.469	0.423	0.469	0.516	0.632	0.524	0.834 0.876	0.998	0.550	0.558 1.254	
				•	•	-	-	-		•	•	•	-	•		

					(ix)					
0.586 1.313	0.641 1`436	0.693 1.552	0.741	0.786 1.760	0.828 1.855	0.869	0.907 2.032	0.944	0.980 2·195	1.014	
0.579 1.181	0.633 1.291	0.685	0.735	0.777	0.819	0.860	0.898	1.905	0.969	1.004	
0.571 1.050	0.626	0.676	0.726	0.767	0.809	0.850	0.887	0.923	0.956	0.992	
0.923	0.616	1.092	0.714	0.756	0.798 1.309	0.837	0.874	0.910	0.944	1.602	
0.563	0.608	0.942	0.699	1.067	0.782 1.126	0.820	0.856	0.891	0.926	0.967 1.378	
0.667	0.590	0.730	0.844	0.895	0.944	0.989	0.833	1.075	0.800	0.932 1.156	
0.523	0.596	0.619	0.688	0.730	0.769	0.807	0.842	0.843	0.910 0.910	0.942	
0.494	0.540	0.585	0.625	0.663	0.699	0.783	0.788 0.766	0.830	0.862	0.856	
0.507	0.555	0.527	0.564	0.598	0.630	0.661	0.691	0.817 0.719	0.848	0.877	
0.395	0.543	0.585	0.501	0.531	0.559	0.587	0.614	0.638	0.662	0.686	
0.347	0.528	0.571	0.610	0.466	0.491	0.716 0.515	0.539	0.549	0.581	0.602	
0.299	0.327	0.553	0.590	0.401	0.660	0.692	0.463	0.482	0.500	0.810	
0.253	0.276	0.298	0.319	0.339	0.357	0.374	0.390	0.406	0.422	0.437	
0.430	0.470	0.508	0.260	0.576 0.276	0.606	0.305	0.319	0.332	0.345	0.358	
0.406	0.178	0·193	0.514	0.545	0.575 0.230	0.603	0.630	0.262	0.272	0.704	
1.0	1.2	1.4	1.6	1.8	2.0	5.2	2.4	5.6	8.8	3.0	

ţ

OLASS I. (n = 0.025).

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND. FOR A DEPTH OF WATER OF 0.6.

Fall per thousand.

0.5

0.1

0.3

0.4

0.5

9.0

2.0

8.0

6.0

						(1)							•		٠	
	5.2	0.237	0.910	0.344	1.321	0.427	1.640	0.493	1.889	0.552	2.120	809.0	2.335	0.654	2.511	0.697	2.682	0.742	2.846
	2.0	7EZ-0	0.828	0.339	1.200	0.431	1.490	0.485	1.717	0.544	1.926	0.599	2.120	0.645	2.284	889.0	2.439	0.732	2.590
	4.5	0.231	0.748	0.334	1.082	0.415	1.345	0.478	1.549	0.536	1.737	0.290	1.908	969-0	2.061	849.0	2.206	0.723	2.343
	4.0	122.0	299.0	0.338	9.364	607.0	1.202	0.471	1.385	0.528	1.552	0.280	1.705	0.626	0.840	899-0	1.966	0.711	2.089
	3.5	0.223	0.589	0.322	0.820	0.403	1.061	0.463	1.222	0.519	1.370	0.670	1.505	0.616	1.626	0.658	1.739	0.700	1.847
	3.0	0.318	0.210	0.315	0.737	0.391	0.915	0.452	1.058	0.607	1.186	0.557	1.303	0.603	1.409	0.643	1.504	0.683	1.597
1 0	2.5	0.313	0.432	0.304	0.626	0.380	0.775	0.441	0.00	0.484	1.008	0.543	1.108	0.587	1.198	0.625	1.280	999-0	1.357
	2.0	0.306	0.354	0.296	0.513	0.368	0.640	0.424	0.738	0.476	0.826	0.522	906.0	0.563	0.979	0.602	1.049	0.641	1.114
FOR ВОТТОМ-WIDTHS	1.8	0.300	0.324	0.289	0.468	0.360	0.583	0.416	0.674	0.466	0.755	0.613	0.829	0.653	968.0	0.691	0.929	0.629	1.019
FOR	1.6	0.196	0.294	0.283	0.434	0.352	0.528	0.408	0.612	0.457	0.685	0.502	0.753	0.543	0.815	0.580	0.872	0.617	0.926
	1.4	0.191	0.264	0.277	0.382	0.344	0.475	0.399	0.521	0.448	0.618	0.491	9.678	0.532	0.734	0.569	0.785	0.605	0.835
	1.2	0.186	0.234	0.210	0.340	0.336	0.422	0.388	0.489	0.436	0.548	0.478	0.602	0.517	0.651	0.553	0.697	0.588	0.741
	1.0	0.180	0.505	0.362	0.299	0.325	0.320	0.376	0.429	0.423	0.481	0.464	0.529	0.501	0.571	0.637	0.612	0.571	0.651
	8.0	0.173	0.176	0.252	0.257	0.313	0.318	0.362	698.0	0.404	0.415	0.446	0.455	0.483	0.493	0.517	0.527	0.550	0.561
	9.0	0.166	.149	0.241	.217	0.299	.269	0.347	.312	0.391	.352	0-427	.384	0.464	.418	0.497	.447	0.529	9.416

1.0	0.502	0.592	989.0	0.620	0.880	0.977	0.663	0.675	0.701	0.720	1.948	0.749	0.760	0.771 2.730	0.781 3.000
1.2	0.550	0.649	0.660	0.680	0.965	0.713 1.070	0.726 1.176	0.739	0.768	0.789	0.809	0.821	0.833	0.845	0.867 3.291
1.4	0.594	0.701	0.713 0.813	0.925	0.755	0.770	0.785	0.800	0.830	0.852	0.873	0.887 2.607	0.900	0.913 3.232	0.926 3.556
1.6	0.706 0.635	0.750	0.869	0.989	0.807	0.823	0.839	0.865	0.887	0.911 2·132	0.934 2.466	0.948	0.962 3.117	0.975 3.452	0.988 3.794
1.8	0.748 0.673	0.794	0.921	0.832	0.866	0.873 1.310	0.890	0.907 1.578	0.941	0.966	0.990	1.006	3.308	1.036 3.668	1.061 4.036
2.0	0.739 0.710	0.837	0.971	0.878	0.903	0.921	0.938	0.966 1.662	0.992	1.018	1.044	1.060 3.116	3.486	1.091	1·106 4·246
5.5	0.827	0.80	0.893 1.018	0.920	1.307	0.966	1.594	1.002	1.040	1.068	1.096	3.269	1.128	1.144	1.160
2.4	0.864 0.778	0.900	0.933 1.064	0.962	0.989	1.009	1.028	1.047	1.086	1.116	3.020	1·161 3·413	1·178 3·817	1·195 4·231	1.212
5.6	0.900	0.936	0.971 1.107	1.261	1.029	1.050	1.070	1.090	1.131	1.163	1·190 3·141	1.208	1.226 3.972	1:244	1.262
8.8	0.933	0.970	1.005	1.037	1.068	1.000	1.798	1.130	1.173	1.204	1.236	1.264	1.272 4·121	1.290	i·308 5·024
3.0	698·0	1.006	1.043	1.353	1.102	1·12† 1·690	1.149	1.171 2.038	1.214	1.247	3.377	1.298 3.816	1.317	1.336	1.355

1.232

0.300

9.9

1.798 9.418 2.563 3.148

0.211

4.079

0.662

3.641

0.691

4.478

0.726

5.169

0.839

4.830

0.784

OLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

					H	FOR A DEPTH OF WATER OF 0.8. FOR BOTTOM-WIDTES OF	A DEPTH OF WATER FOR BOTTOM-WIDTES	WATER WIDTER	OF 0.8,						
Fall per thousand.	1.0	1.2	1.4	1.6	1.8	2.0	2.2	3.0	3.5	4.0	4.5	5.0	5.5	6.0	
0.02	0·148 0·260	0.153	0·157 0·327	0.361	0.394	0.167	0.174	0·178 0·598	0.182	0.186	0.190	0·193	0.196	0-198 1-141	
0.1	0.380	0.222	0.228	0.522	0.571	0.243	0.261	0.269 0.870	1.000	0 272	1.263	0·281 1·394	0.285 1.528	0.288 1.659	
0.5	0·312 0·549	0.322 0.618	0.331	0.338	0.344	0.360	0.362	0.373 1.253	0.382 1.436	0.390	1.806	0·402 1·994	0.407 2.182	0.412 2.973	- 04
0.3	0.386 0.679	0.397	0.407	0.982	0.424 1.018	0.433	0.446	0-459 1-542	0.470 1.767	0.479	0.487	0.494	0.600	0.506 2.914	- 4,
9.4	0·447 0·787	0.460	0.982	0.483	0.492	0·501 1·283	0.618 1.533	0·532 1·787	0.544 2.045	0.554	0.563	0.673 2.837	0.879 3.104	0.586 3.375	- 4,
0.5	0.200	0.989	0.528	0.540	0.550	0.860	0.578	0.594 1.996	0.608	0.620	0.631 2.878	0·641 3·179	0.650 3.484	0.667 3.785	_ 4r
9.0	0.966	0.566	0.580 1.206	0.592	0.604	0.614 1.572	0.636 1.880	0.663 2·194	0.668	0.681	0.693 3·160	0.103 3.487	0·112 3·817	0·719 4·141	4
0.7	0.593	0.612 1.175	0.627	0.640	0.662	0.663	0.686	0.707	0.723	0·736 3·062	0.748 3.411	0.759 3.765	0·769 4·122	0·177 4·475	- 4
8.0	0.636 1.120	0.686	0·672 1·398	1.539	0·700 1·680	0.711	0·737 2·182	0.767 2.543	0.774 2.910	0.788 8.278	0.801 3.653	0.813 4.033	0.823 4.412	0.832 4.792	- 10

	849.0	969.0	0.716	0.728	0.741	0.754	0.780	0.803	0.830	0.836	0.820	0.862	0.873	0.883	0.890
6.0	1.193	1.336	1.487	1.631	1.778	1.930	2.309	2.698	3.083	3.478	8.876	4.276	4.680	5.081	5.483
	0.718	0.738	0.752	992.0	0.782	0.795	0.833	0.848	0.888	685	0.897	0.010	0.031	0.030	938
1.0	1.264	1.413	1.564	1.720	1.877	2.035	2.433	2.843	3.252	3.670	4.091	4.518	4.936	5.857	5.778
	0.440	0.603	768.0	0.671	0.087	1,0,0	.0	9000	976.0	0.044	0.000	900.0	999	9.01	1.00%
1.2	1.871	1.549	1.714	1.884	2.057	2.530	2.667	3.111	8.565	4.019	4.478	4.941	5.408	5.870	6.997
			90.0	9990			o do co								
1.4	1.482	1.665	1.854	2.034	2•220 2•220	2.409	2.878	3.353	3.842	4.339	4.834	5.337	5.837	6.336	6.838 6.838
	0.800	0.938	0.951	176-0	686.0	1.006	1.041	1.070	1.094	1-116	1.134	1.150	1.164	1.176	1.186
1.6	1.584	1.782	1.980	2.175	2.374	2.575	3.081	8.595	4.113	4.639	5.171	5.704	6.239	6.773	7.306
	926-0	0.984	1.009	1.030	1.049	1.067	1.106	1.134	1.160	1.183	1.303	1.220	1.236	1.248	1.259
œ - 1	1.679	1.889	2.099	2.307	2.518	2.732	3.271	3.810	4.362	4.922	5.482	6.052	6.625	7.188	7.765
	1.006	1.036	1.062	1.085	1.106	1.134	1.164	1.196	1.223	1.247	1.267	1.286	1.302	1.316	1.326
) N	1.77.1	1.989	2.209	2.431	2.652	2.878	3.446	4.015	4.598	5.188	5.778	8.378	6.828	7.574	8.168
0	1.055	1.087	1.114	1.138	1.159	1.179	1.218	1.263	1.283	1.308	1.330	1.349	1.366	1.381	1.394
N	1.857	2.087	2.317	2.550	2.782	3.018	3.605	4 ·209	4.854	5.441	6.065	6.691	7.322	7.954	8.288
	1.102	1.136	1.165	1.190	1.313	1.232	1.274	1.310	1.340	1.366	1.388	1.409	1.437	1-441	1.463
* 7	1.940	2.181	2.423	3.666	5.303	8.154	3.772	4.402	2.039	2.682	6.330	686.9	7.649	8.300	8.92
9	1.147	1.182	1.212	1.238	1.261	1.282	1.336	1.364	1.394	1.431	1.446	1.467	1.486	1.501	1.613
0	2.019	2.269	2.521	2.773	3.026	3.282	3.925	4.583	5.242	5.912	6.231	7.276	7.960	8.646	9.320
0.0	1.191	1-227	1.258	1.284	1.308	1.330	1.376	1.416	1.448	1.475	1.600	1.622	1.641	1.556	1.670
0	2.096	2.356	2.617	2.876	3.139	3.402	4.073	4.758	5.445	6.136	6.841	7.549	8.260	8.962	9.672
٠. د	1.232	1.271	1.302	1.329	1.364	1.377	1-434	1.465	1.499	1.527	1.552	1.578	1.596	1.613	1.625
 -	2.168	2.440	2.708	2.977	3.250	8.525	4.215	4.922	2.636	6.352	7.078	7.818	8.555	9.282	10.01

CLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.0.

Ö
DITH
W-MO
Borr
FOR

Fall per thousand.	2.0	2.2	3.0	3.5	0.7	4.5	5.0	5.5	0.9	6.5	0.2	7.5	8.0	8.5	0.6
90.0	0·192 0·672	0.200	0.206	0.212	0-217 1-193	0.221 1.326	0.226	0.228 1.596	0.231	0.234	0.237 2.014	0·239 2·151	0.241	0.243 2.430	0.244
0.1	0.380	0.290	0.298	0.306	0.313	0.319	0.324 2.106	0.328 2.296	0·332 2·490	0.335	0.338 2.873	3.069	3.268	0.347 8.470	0.349 3.664
3 ·0	0.400	0.414 1.656	0.426 1.917	0.438 2·190	0.448	0.454 2.624	0.461	0.468 3.276	0.473 3.547	0-477 3-816	0.481 4.008	0.488	0.488 4.636	0.491 4.910	0.494 5.187
0.3	0.491 1.718	0.509	0:524 2·358	0.536	0.547 3.008	0.556 3.336	0.564 3.666	3.997	0.678 4.335	0.584 4.672	0.589	0.594 5.346	0.598	0.603	0.608
0.4	0.571 1.998	0.590	0.607 2.731	0.621 3·105	0.634 3.487	3.864	0.664 4.251	0.664 4.648	0.670 5.075	5.400	0.681	0.686	6.564	0.695	0.690
0.5	0.638	0.659	0·679 3·055	0.696	0.710 3.905	0.722 4.332	0.732 4.758	0.742 5.194	0.749	0.756 6.048	0.763	0.769 6.921	0.774	0.7790	0.784 8.232
9.0	0.699 2.446	0.724 2.896	0.744 3.348	0.762 3.810	0.778 4.279	0.791	0.802	0.812 5.684	0.820 6.151	0.828	0.836 7·106	0.843	0.848 8·056	0.863 8·530	600·6
2.0	0·756 2·642	0·780 3·120	0.803 3.613	0.824 4·120	0.840	0.864 5.124	0.867 5.635	0.878 6.146	0.887	0.895 7·160	0.903 7.675	0.910 8·190	0.916 8·702	0.922 9.220	0.927 9.733
8.0	0.809 2.831	0.838 3.352	3:879	0.883	0.901 4.955	0.916 5.496	6.045	0.941	0.960	0.969	0.967 8.219	0.975 8·775	0.982 9.329	9.880	0.994 10·44

CLASS I. (n=0.025.) Mean Velocities and Quantities of Discharge fer second. For a Depth of Water of 1.2.

FOR BOTTOM-WIDTHS OF

L	Ī								, [\cdot						
3.5		4.0	4.5	2.0	5.5	0.9	6.5	1.0	7.5	8.0	8.5	9.0	9.2	10	11	
0.738		9.377	0.249	0.263	0.257	0.361	0.364	196.0	0.210	0-272	0.274	0.276	0.278	0.281	0.383	
1.520	•	1.698	1.882	2.074	2.202	2.448	2.630	2.820	8.013	3.199	3.386	8.577	3.784	8.979	4.347	
0.342	_	0.349	938.0	0.363	0.367	0.372	0.376	0.379	0.383	0.386	988-0	0.391	0.394	0.397	0.400	
2.175	īO.	2.429	2.691	2.953	3.215	8.482	3.745	4.003	4.263	4.528	4.795	2.068	5.342	2.621	6.145	
0.485	10	0.496	0.00	0.612	0.619	0.525	0.631	0.536	0.541	0.646	0.249	0.863	999.0	0.562	0.586	`
3.082	10	3.452	3.818	4.178	4.547	4.914	5.288	2.660	6.037	6.409	984.9	7.166	7.567	7.958	8.694	
0.595	20	809.0	0.618	0.627	969-0	779.0	0.661	199.0	0.063	899.0	0.673	878	789.0	989.0	769.0	
3.785	10	4.232	4.672	5.117	5.572	8.028	6.483	6.940	7.398	7.857	8.818	8.788	9.270	9.757	10.66	,
989.0		0.703	9.714	0.724	0.734	0.743	0.753	0.759	9.166	144.0	111.0	0.783	0.789	9.795	0.801	
4.363	63	4.885	5.398	606.9	6.431	6.955	7.490	8.015	8.537	990.6	809.6	10.15	10.70	11.26	12.30	
0.770	_	0.787	0.800	0.812	0.833	0.838	0.843	0.820	0.867	0.863	0.869	948-0	0.883	688.0	968-0	
4.898	90	2.478	6.048	6.627	7.210	7.797	8.897	9.6.8	9.563	10.15	10.74	11.34	11.96	12.59	13.75	
0.843		0.862	0.877	0.890	0.902	0.913	0.923	0.833	0.840	0.947	896.0	0.929	196.0	974	186.0	
5.862	83	000.9	6.630	7.263	7.901	8.545	9.194	9.842	10.25	11.13	11.78	12.48	13.11	13.79	15.42	
0.810	•	0.931	0.947	196.0	9.84	986.0	266.0	1.006	1.016	1.022	1.020	1.035	1.048	1.061	1.069	
5.788	90	6.479	7.160	7.862	8.531	9.228	9.929	10.62	11.33	12.02	12.72	13.41	14.14	14.88	16.27	
1.00		966.0	1.013	1.028	1.041	1.064	1.066	1.076	1.085	1.092	1.080	1.106	1.114	1.122	1-132	
6.195	20	6.949	7.658	8.889	9.118	9.865	10.62	11.86	12.11	12.84	13.55	14.83	15.10	15.88	17.88	
	-	-	•	-	-	-	-	- : :	-	-	-	_	-	-	•	

		_			`						
1.201	1.266	1.386	1.498	1.602	1.689	1.791	1.878	1.962	31.36	2·119 32·54	2·193 33·68
1·190 16·85	1.255 17.77	1.374	$\begin{array}{c} \textbf{1.486} \\ \textbf{21} \cdot \textbf{08} \end{array}$	1.588 22·48	1.686 23.80	1.776 25·15	1.862	1. 94 3 27.51	28·63	29·74	2·172 30·75
1·182 16·03	1.246	1.365	1.475 20·00	1.677 21.38	1.673 22.66	1·763 23·90	1.849	1.930	27·24	28.27	2·158
15.22	1.238	1.356	18.98	1.566 20.30	1.661	1.750	1.836	1.917	1.996 25.87	26.84	27.78
1.167	1.230	1-347 16·65	17.98	1.656 19·23	1.650	1.739	1.824	1.906	1.983	25.42	26.31
1.159	1.223	1.338	16.99	1.646	1.639	1.727 20.31	1.812	1.892	1.970	24.03	24·85
12.84	1.213	1.329	1.436	1.634	1.627	1.41	1.799	1.879	1.966	22.64	23.40
1.141	1.203	1.318	1.423	1.621	1.616	1.701	1.784	1.863	1.937	2·012	2.083 21.96
11.26	1.192	1.306	1.410	1.508	1.603 15.93	1.686	1.768	1.847	1.922	1.994	2.065 20.53
10.46	11.03	1.291	1.394	13.96	1.683	15.60	1.748 16·36	1.826	1.900	1.971	2·041 19·09
1.104	1.164	1.276	1.377	12.91	1.562	1.646	1.727	1.803	1.877	1.948	2.016 17.68
1.090	1.149	1.269	1.360	1.464	1.542	1.626	1.705	1.780	1.863	1.923	1.991
1.074	8.559	1.240	1.340	10.83	1.519	1.601	1.680 . 12·70	1.754	1.826	1.896 14.33	1.961 14.86
1.056	1.113	1.219	1.317 9.167	1.408	1.493	10.95	11.49	12.00	1.796	12.97	1.928 13·44
1.036	1.093	1.195	1.291	1.380	1.464 9.311	1.543 9.813	10.30	1.691	1.760 11.19	1.826	1.890 12.03
6.0	1.0	1.2	1.4	1.6	1.8	5.0	67 63	5.5	5.6	89	0. 8

						CLASS I.	8 I. ((n=0.025.)	025.)						
	-	į	ME	Mean Velocities and Quantities of Discharge per second.	COULTIES	AND G	JUANTIT	TIES OF	DISCHA	BGE PE	B SECO	ě			
	-				-	for A D For	FOR A DEPTH OF WATER OF 1.4. FOR BOTTOM-WIDTHS OF	WATER-WIDTER	or 1·4.						
Fall per thousand	2.0	5.5	0.9	6.5	0.2	7.5	8.0	8.5	0.6	9.2	10	п	12	13	14
0.06	0.281 2.793	0.286 3.035	0.289 3.277	0.292 3.519	0.296 3.762	0·298 4·005	0·301 4·250	6.303 4.498	0.306	0.308 4.999	6·310 5·252	0.314 5.746	6.242	0.319 6.738	0.321
0.1	3.946	0.403	0.408	0.412	0.416 5·303	0.420 5.644	5.987	0.427	6.680	0.433	0.436	8.089	0.445	9.504	0.463
0.3	0.561	0.570 6.049	6.523	7.000	0.587	0.592	0.596 8·438	8.923	9.411	9.902	0.614 10.40	0.620	0.626	0.630	0.636 14·31
0.3	0.689	0.698 7.426	9.706 8.006	0.712 8.588	9.172	0.726 9.757	0.733 10.34	0·737 10·93	0.742 11.53	0.747	0.752	0.762 13·96	0.772	0.778	0.784 17·67
4.0	0.795	0.80e 8.568	9.236	0.823 9.917	0.831 10.59	0.838 11.26	0.845 11.93	0.862 12.61	0.858 13·30	0.863 14.00	0.868 14.70	0.876 16.08	0.884	18.82	0.898 20·24
0.5	0.889 8.837	0.901	10.33	0.920	0.929	0.937 12·59	0.945 13·35	0.953	0.959	0.966	16.45	0.980	0.989	0.997 21.08	1·004 22·63
9.0	9.685	0.88¢ 10.50	0.997 11.32	1.007	1.017.	1.027	1.036 14.63	1.043 15·46	16.30	1.067	1.063	1.073	1.083 21.40	1.092	1·100 24·79
2.0	1.052	11.34	1.078	1.088	1.099	14.90	1·118 15·80	1·127 16·71	1.134	1.141	1·148 19·44	1·159 21·27	1·170 23·11	1.180	1·189 26·80
8.0	11.18	1-139	13.07	1.163	11.174	1·186 15·92	1·196 16·88	1.207	1.214	1.221	1·227 20·78	1·239 22·73	1·251 24·69	1.261	1·270 28·62

(xviii)

					(2	ux)					
1.348	1.421 32·02	1.666 35·07	1.681 37.89	1.797	1.910 43.05	2.009 45.28	2·107 47·49	2·200 49·59	2·290 51·62	2·377 53·58	2·460 55·45
1·338 28·29	1.410 29.82	1.544	1.668 35·30	1.783 37.71	1.894	1.994	2·091 44·23	2·184 46·19	2·273 48·08	2·359 49·90	2.441
1.327	1.399	1.532 30.26	1.665 32.70	1.769 34.93	1.877 37·11	1.978 39.07	2.074 40.98	2·167 42·80	2·266 44·54	2·340 46·23	2.422
1.316	1.386	1.518 27.86	1.640 30.10	1.768 32.16	1.854	1.960	2.066 87.73	2·147 39·41	2·234 41·01	2·318	\$-400 44·05
1.303	1.373 23.26	1.604	1.624	1.736 29.40	1.841 31·19	1.941 32.88	2.036 34.49	2·126 36·02	2·213 37·49	2·296 38·90	2.377 40.26
1.294	1.366 22.16	1.496 24.27	1.614 26.20	1.726 28.02	1.830 29.72	1.929 31.33	32.85	2·113	2·201 35·71	2·282 87·07	2-363 38-36
1·286 19·95	1.356 21.07	1.486 23·08	1.604	1.716 26·64	1.819	1.917	2.011 31.22	2·100 32·62	2·187 83·95	2·268	3.348 36.46
1.278	1.347	1.476 21.89	1.693	1.704 25.27	1.807	1.905	1.998	3·086 30·93	2·172 32·20	3·263	2·333 34·58
1.268	1.337 18.90	1.464 20.70	1.581 22.34	1.691	1.793	1.890	1.982	29.25	2·166 30·45	2·236 31·61	2·316 32·71
1.267	1.326	1.462	1.568 21.07	1.677	1.778	1.874	1.966	2.063 27.59	28.72	29·81	2·296 30·86
1-246	1.314	1.439	1.654	1.661 21·19	1.762	1.867 23.68	1.948	25·84	27·118	2.198 28·02	20.05
1-234	1.301	1.426	1.639	1.645 19·84	1.745	1.840	1.830 23.26	2.013 24·29	25·28	2·177 26·24	27·18
1.221	1.288	10.91	1.624	1.620	1.728 19·61	1.822 20.67	1.910 21.68	1.994	2-077 23 · 57	2·156 24·46	2·230 25·34
1.208	1.274	1.395	1.507	17.14	1.709	108.1	1.889 20·11	1.973 21.00	21.86	2·131 22·68	2·205 23·50
11.86	1.267	1.377	1.488 14·79	1.590	1.687 16·77	1.778 17.67	18.54	1.948 19.36	2.027 20.15	2·104 20·91	2·180 21·67
6.0	1.0	1.2	1.4	1.6	1.8	2.0	6 7	4.2	5.6	5. 8	3.0

MAAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.6.

FOR BOTTOM-WIDTER OF

Fall per housand.	1.0	7.5	8.0	8.5	0.6	9.5	10	=	12	13	14	15	16	17	18	
0.05	0.321	0·324 5·143	0.328	0.331 5.773	0.334	968.9	902-9	0.342	7.964	0.348 8·594	9.225	9.856	0.357 10.49	0.359 10.63	0.361 11·78	
0.1	0.450	0.454 7.198	0.468	0.462 8.058	0.466 8.492	0.469	0.472 9.365	0.477	6.4 81 11·10	0.485	0.489	0.493	0.496 14·61	0.489	0·502 16·39	
0.5	9.535	0.640	0.645	0.649	.11.93	0.669	0.663 13·15	0.670 14.36	0.676 15.58	0.682 16.81	0.687 18·04	0.682 19.27	0.697 20.52	0·102 21·78	0·706 23·05	•
0.3	0.776 11.67	0.783	0.789	0·796 13·86	0.800	0.806 15.33	0.810 16.07	0.819 17.56	0.838 19·05	0.833 20 · 54	0.840 21.05	.0.846 23.55	0.851	0.855 26.53	0.869 28·03	,
9.4	13.45	0.902	0.909	0.916 15.96	16.81	0.927 17.66	0.933 18·51	0.943 20.24	0.962 21.97	0.960	0.968 25.43	0.975 27·15	0.980	0.986 30.57	0.989 32.28	
0.5	15.04	15.97	16.90	1.023	18.79	1.037	1.043	1.065	1.064 24.56	1.073	1.082	1.090 30.35	1.096 32.27	1·101 84·19	1·106 36·10	
9.0	1.095 16.47	1.102	18.53	19.121	1.129	1.136	1.143	1.155	1·166 26·90	1·176 29·01	1·186 31·11	1·193 33·21	1.199	1.205	1·211 39·53	
2.0	1.184	16.81	1.201	1.211	1.219	1.227 23.36	1·234 24·48	1.248	1.269 29·06	1·270 81·35	1·280 33·63	1·290 35·91	1·296 38·17	1.302	1·308	
8.0	1·265 19·02	1·273 20·21	1·284 21·40	1.296 22.58	1.304	1.312	1.320 26.19	1.334 28.62	1.346 31.05	1.367 33.48	1.368	1.378 38.36	1.386	1.392	1·398 45·64	
-	_	_	_	_	_	-	_	_	-	-	_	-	-	-		

(xx)

							_				-	_	-		
6.	1.341	1·350 21·43	1.362 22.68	1·373 23·94	1.382 25.22	1.391	1.400	1.416	1.428 32.95	1·440 35·53	1·451 38·11	1.462	1·469 48·27	1.476	1·483 48·41
0.1	1.414 21.27	1.423	1.436	1.448	1.458	1.467	1.476	1.491	1·506 34·73	1·518 37·45	1.630	1.541	1.549	1.657	1·564 51·05
1.2	1.549	1.569	1.572	1.685	1.686	1.606 30.58	1.616 82.06	35.05	1·649 38·03	1.663	1.676	1.688 46.99	1.697	1.706	1·113 55·91
1.4	1.671 25·13	1.684	1.698	1.712 29.86	1.724	1.736 33·04	1.746 34.64	1.761	1.779	1.796	1.810 47.53	1.823 50·76	1.832 53.97	1.841	1.860 60.38
1.6	1.788 26.89	1.800	1.816 30.25	1.831 31.93	1.843	1.866 35.32	1.866 37.02	1.886 40.47	1.903	1.920 47.37	1.936	1.949	1.969	1.969	1.978 64·57
1.8	1.897 28.53	1.909	1.927	1.944 33.90	1.966 35.69	1.968 37.48	1.980	2·001 42·94	2·019 46·59	2·036 50·24	2·052 53·89	2.067 57.54	2.078 61.19	2.088 64.84	2.098 68.49
2.0	2.000	2·013 31·96	2·030 33·84	2·047	2·061 37·61	2.074	2.087	2.109	2·128 49·13	2.146	2·163 56·84	2·180 60·69	2·191	2·201 68·34	2·211 72·16
2.5	31.54	2·111 33·50	2.130	2.147	2.161	2.175	2·189 43·43	2·212 47·48	2·232 51·52	2·261 55·56	2.269	2·286 63·64	2.297	2.308	2-319
2.4	2.191	2·205 34·99	2·224 37·04	2·242 39·10	2.267	2.272	2·286 45·35	2.310	2·331 53·79	2.361	2.369	2.387	2.400	2.411	2·422 79·05
5.6	2·280 34·29	2·294 36·42	2·314 38·56	2.334	2·349 42·85	2.364	2·379 47·20	2·405 51·59	2·426 55·98	2.447	2·466 64·78	2.485	2.497	2.509	2·621 82·28
2. 8	2.366 35.59	2·381 37·80	2·401 40·01	2·421 42·23	2·438 44·48	2.454	2.469	2·495 53·56	2.519	2·540 62·68	2·560 67·24	2·678 71·80	2·692 76·33	2.604 80.86	2·616 85·39
3.0	2.449	2·465 39·13	2.486 41.43	2·507 43·72	2.524 46.04	2.540 48.36	2.655	2.583	2.607	2.629	2.650	2.669	2.684	2·696 83·70	2·708 88·39

(xxii

)

CLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.8. FOR BOTTOM-WIDTHS OF

			`	•					
22	0.396 17.63	0.549	0.770	41.70	1.079	1.207	1.321	1.428 63·46	1·526 67·84
21	0·396 16·84	0.547 23.36	0·767 32·67	0.934 39·85	1.076	$\begin{array}{c} 1 \cdot 202 \\ 51 \cdot 27 \end{array}$	1.31 6 56·17	1.422 60·66	1.520
20	0·393 16·06	0.545 22.27	0.763 31·17	0.88	1.071 43.76	1.197	1.311	1.416	1.514
19	6·391 15·27	0.543 21·17	0.759 29·67	0.926 36·15	1-067 41-64	1.192	1.306	1.410	1.507
18	0·389 14·49	0.540	0.766 28·17	0.921 34.31	1.061	1·186 44·19	1.299	1.403	1.500
17	0.387 13.71	0.637 19·00	0.751 26·67	0.916 32.47	1.066	1.180	1.292	1.396	1.492
91	0.385	0.583 17.92	0.147	30.63	1.049	1.173	1.285	1.388	1.484
15	0.382 12·17	0.520 16·85	0·743 23·67	0.904 28.80	1·043 33·20	1·166 37·12	1.276	1.379	1.474
14	0·379 11·40	0.526 15·78	0·738 22·17	0.897 26.98	1.034 31.11	1.157 34.78	1.267	1.369	1.463
13	0.376 10.63	0.521 14.71	0·732 20·68	0.890	1.026	1.148	1.267 35·54	1.358 38·40	1.461
12	0.372 9.860	0·517 13·65	0·726 19·19	0.882 23.36	1.017 26.94	1·138 30·10	1·246 32·98	1·346 35·63	1.439 38·08
11	9.090	0·511 12·59	0·117 17·70	0.873 21.55	1.007 24.85	1·128 27·77	1·233 30·42	1·3\$2 82·87	1·424 35·13
10	0.364	0.505 11.54	0·709 16·21	0.864 19.75	0.996 22·77	1·113 25·44	1·219 27·87	1·317 30·11	1.408 32·19
9.5	0.361	0.502	0.704 15.46	0.859 18.86	0.990	1·107 24·30	1.212	1.309	1.400
0.6	0.358	0.498 10·49	0.699	0.854 17.98	0.984	1.100	1.204	1.301	1.391
Fall per thousand.	0.02	0.1	0.5	e. 0	0.4	0.5	9.0	2.0	8.0

	1.476	1.484	1.493	1.510	1.526	1.639	1.562	1.563	1.573	1.582	1.691	1.589	1.606	1.613	1.619	
6.0	31.06	82.60	84.13	37.26	40.39	43.53	46.66	49.80	52.95	26.11	59.27	62.44	65.62	08.89	71.98	
	1.565	1.565	1.674	1.593	1.609	1.623	1.636	1.647	1.658	1.067	1.676	1.685	1.693	1.700	1.707	
1.0	32.75	84.36	35.38	39.27	42.57	45.87	49.17	52-47	55.78	29.11	62.46	65.82	81.69	72.54	75.90	
	1.703	1.714	1.734	1.744	1.762	1.778	1.792	1.806	1.817	1.827	1.837	1.847	1.855	1.862	1.869	
1.2	35.87	87.64	39-41	43.01	46.62	50.24	53.87	57.50	61.14	64 - 79	68.45	72.12	15.79	79.46	83.14	
	1.840	1.851	1.862	1.884	1.904	1.920	1.936	1.960	1.962	1.973	1.884	1.884	2.003	2.011	2.019	
4.	38.75	40.66	42.24	46.48	50.39	54.30	58.21	62.13	66.05	86.69	78.92	77.88	81.85	85.82	89.80	
	1.967	1.980	1.991	2.014	2.036	2.063	3.069	2.083	2.097	2.109	2.121	2.132	3.141	2.150	2.168	•
1.6	41.43	43.47	45.51	49.66	53.82	57.99	62.17	98.99	20.26	74.77	18.99	83.23	87.48	91.73	95.98	
	2.087	2.100	3.113	2-137	2.169	2.178	2.195	2.210	3.232	2.237	3.349	2.261	2.271	2.281	2.290	•
1.8	43.96	46.12	48.28	52.69	57.11	61.54	65.97	70.41	74.86	79.82	83.80	88.29	92.79	97.29	8-101	
	3.200	2.213	2.236	2.363	2.276	2.296	2.314	2.330	2.345	2.358	2.371	2.384	2.394	2.404	2.413	
5.0	46.33	48.61	50.89	55.55	60.21	64.88	69.55	74.23	78.92	83.62	88.34	93.07	97.81	102.2	107.2	•
	2.306	2.331	3.338	2.363	2.387	2.408	2.421	2.444	2.460	3.474	2-487	3.200	2.617	2.531	2.531	
	48.56	50.97	53.38	28.56	63.15	68.05	72.95	27.86	82.78	87.72	92.67	97.68	102.6	9.701	112.6	
	2.409	3.434	2.438	2.466	2.483	2.218	2.535	2.663	2.269	2.284	2.598	2.613	2.623	2.634	2.644	
2. 4	50.74	53.24	55.73	60.84	96.39	71.08	76.21	81.34	86.49	91.65	8.96	102.0	107.2	112.4	117.6	
	2.507	2.623	2.638	2.567	2.594	2.617	2.638	2.657	2.674	2.689	2-704	2.718	2.730	2.741	2.162	
9.7	52.80	55.41	28.03	63.33	88.66	73.98	79.31	84.65	% %	95.37	100.8	106.2	9.111	117.0	122.4	
(2.602	2.618	2.634	2.665	2.693	3.716	2.737	2.757	3.77.5	2.790	3.802	2.820	2.832	3.844	3.822	
% %	54.80	57.50	60.21	65.72	71.24	16.77	82.30	87.84	93.40	98.97	104.5	110.1	115.7	121.3	126.9	
6	2.693	2.710	2.727	2.759	2.787	2.812	2.834	2.854	2.873	3.889	3.806	2.830	2.832	3.944	2.955	
<u>۾</u> ج	56.72	59.53	62.35	68.05	73.76	79.48	85.20	86.06	89.96	102.4	108.5	114.0	119.8	125.6	131 · 4	

xxiv

OLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCEARGE PER SECOND.

FOR A DEPTH OF WATER OF 2.0.

	56	0.439	25.06	0.597	34.62	0.830	48.14	1.012	58.70	1.166	67.73	1.302	75.52	1.427	82.77	1.641	89.38	1.647	95.53
	22	0.431	24.12	0.595	33.30	0.838	46.34	1.000	56.52	1.162	65.16	1.298	72.68	1.422	79.65	1.536	86.03	1.643	96.16
	22	0.430	23.18	0.593	31.99	0.825	4.2	1.006	54.33	1.158	62.60	1.294	69.84	1.417	76.53	1.631	85.68	1.637	88.39
FOR Воттом-Widths от	क्ष	0.428	22.24	0.290	89.0g	0.822	42.74	1.003	52.14	1.164	50.09	1.289	10.29	1.413	78.43	1.526	79.84	1.631	84.82
	ន	0.426	21.30	0.588	29.40	0.819	40.95	666.0	49.95	1.150	57.50	1.284	64.20	1.407	70.85	1.520	00.92	1.625	81.25
	21	0.434	20.36	0.585	28.12	0.816	39·16	986.0	47.76	1.146	54.97	1.279	61.40	1.401	67.28	1.514	72.67	1.618	09.22
	03	0.422	19.42	0.582	26.83	0.813	37.38	0.801	45.57	1-141	52.44	1.274	28.60	1.395	64.21	1.508	69.34	1.611	74.18
	19	0.430	18.48	0.280	25.54	608.0	.32.60	986.0	43.38	1.136	49.91	1.268	22.80	1.389	61.14	1.501	66.01	1.604	70.58
	18	0.417	17.54	0.677	24.25	908.0	33.82	186.0	41.19	1.128	47.39	1.262	53.00	1.382	28.07	1.483	62.68	1.596	67.03
	17	0.416	16.60	0.674	22.96	0.801	32.04	0.975	39.00	1.122	44 ·88	1.266	20.50	1.375	22.00	1.484	59.36	1.587	63.48
	16	0.412	15.66	6.570	21.67	964.0	30.56	696.0	36.82	1.116	42.38	1.247	47.40	1.368	51.93	1.476	26.05	1.577	59.94
	15	0.408	14.73	0.565	20.38	0.190	28.48	0.962	34.64	1.108	88.68	1.239	44.61	1.358	48.87	1.465	22.76	1.566	26.40
	14	0.405	13.80	0.280	19.09	0.784	26.70	0.954	32.46	1.089	37.38	1.230	41.82	1.347	45.81	1-455	49.46	1.555	52.87
	13	0.403	12.87	999.0	17.81	0.778	24.92	0.846	30.58	1.090	34.89	1.220	39.03	1.336	42.75	1.443	46.16	1.642	49.35
	12	0.398	11.94	0.561	16.53	177.0	23.13	126.0	28.11	1.080	32.40	1.208	36.24	1.323	39.69	1.429	42.87	1.528	45.84
	Fall per thousand.		3		•	6.0	1	 6:0)	4.0	•	0.5	,	9.0))	2.0		8.0	

1·747 101·2	1·842 106·8 2·017 117·0	2·179 126·4 2·329 135·1	2·461)	2.604 A	2·132 158·5 2·862 165·4	2.970 172.3	3.081 178.7 3.190	0.681
	1.836 1 102.8 2.011 2 112.6		2.466 1 137·6	3 145.3	2·724 3 152·5 2·843) 159·2	2.960 3 165·8		178.0
1.736	1.830 98.81 2.006 108.2	2·166 116·9 2·316 125·0	2.461	2.589 139·6	2·716 146·6 2·834 153·0	2.960	3.062	1.1/1
1.730	1.823 94.82 1.998 103.9	2·158 112·2 2·307 119·9	2·446 127·1	2.580 134.0	2·705 140·7 2·825 146·8	2.940 152.8	3.062 158·6 3·160	7. 401
1·723 86·15	1.816 90.80 1.990 99.50	2·150 107·5 2·298 114·9	2·437 121·8	2.569 128·4	2.696 134.8 2.814 140.7	2.929	3.040 152.0 3.147	6./61
1.716	1.808 86.83 1.982 95.13	2·141 102·8 2·289 109·8	2-427 116-4	2.558 122.8	2.686 128·9 2·803 184·5	2.918 140·0	3.027	100.4
1.709	1.801 82.86 1.974 90.76	2·132 97·99 2·279 104·8	2-417 1111-1	2.547	2.673 123.0 2.791 128.3	2.906 133·6	3.014 138.6 3.120	C. 0#1
1.701	1.793 78.89 1.964 86.40	2·122 93·29 2·268 99·79	2·406 105·8	2.536 111.6	2.660 117·1 2·778 122·1	2·892 127·2	3.000 182.0 3.106	0.007
1·692 71·08	1.785 74.92 1.964 82.05	2·111 88·60 2·257 94·77	2·394 100·5	2·524 106·0	2.647 111.2 2.764 116.0	2.877 120.8	2.986 125.4 3.091	143 0
1.683 67·32	1.774 70.96 1.943 77.72	2.098 83.92 2.244 89.76	2·380 95·20	2.510 100.4	2·632 105·3 2·748 109·9	2.861	2.969 118.8 3.073	6 771
1·673 63·57	1.763 67.01 1.932 73.40	2.085 79.26 2.231 84.76	2·366 89·90	2·494 94·90	2·616 99·44 2·732 103·8	2.843 108.0	3.054 116.0	
1·662 59·83	1.751 63 · 06 1.919 69 · 08	2·072 74·60 2·216 79·77	2·350 84·60	2·477 89·31	2·599 93·58 2·714 97·68	2·826 101·7	3.034 109.2	7 201
1.650 56·09	1.739 59.11 1.905 64.77	2.058 69.95 2.200 74.78	2·333 79·31	2·459 83·73	2·579 87·72 2·694 91·58	2·804 95·35	2.910 98.96 3.012	1 201
1·636 52·36	1.724 55.17 1.890 60.46	2.041 65.80 2.182 69.80	2.314	2·439 78·15	2.558 81.87 2.672 85.94	2.781	2.886 92.35 2.987 95.62	3
1.621	1.708 51.24 1.872 56.16	2.022 60.66 2.161 64.83	2.292	2·416 72·48	2·534 76·02 2·647 79·41	2.775	2.960 2.960 88.80	
6.0	1.0	1.4	1.8.	2.0	. 5.2 2.4 2.4	5.6	3.0	

OLASS I. (n = 0.025.)

FOR A DEPTH OF WATER OF 2.2.

FOR BOTTOM-WIDTHS OF

Fall per thousand.

0.05

0.1

			(xxvi)									
80	0.466 84.06	0.640 46.88	0.891	65.27	79.27	1.247	1.390	101.8	1.623	111.5	1.644	120.4	1.758	128.8
23	0.464 32 .95	0.639 45·36	0.688	11.63	20.92	1.244	1.387	98.20	1.518	107.9	1.640	116.5	1.754	124.6
28	0.463 31·85	0.637 43.84	0.886	1.076	74.09	1.240	1.383	95.21	1.514	104.3	1.636	112.6	1.749	120.4
27	0.462 30.75	0.636 42.82	0.883	08.80 1.073	71.50	1.236	1.379	91.92	1.510	100.1	1.631	108.7	1.744	116.2
56	0.460	40.80	0.879	1.089	68.91	1.233	1.376	88.63	1.506	97.07	1.626	104.8	1.739	112.1
22	0.458 28·55	0.631 39.28	9.876	1.066	86.33	1.229	1.370	85.34	1.501	93.46	1.621	100.9	1.733	108.0
24	0.456	0.629 87·76	0.873	1.061	63.75	1.226	1.365	82.02	1.496	\$6 .08 .08	1.615	97.02	1.727	103.8
23	0.468 26.33	0.627 36.24	0.869	1.057	61.17	1.220	1.360	28.76	1.480	86.24	1.609	93·14	1.721	99.59
22	0.463 25·22	0·624 34·72	998.0	1.052	28.60	1.215	1.366	75.47	1.484	85.63	1.603	89.36	1.714	95.43
21	0·451 24·11	0.621 33.20	198.0	1.048	26.03	1.210	1.350	72.18	1.478	79.01	1.697	85.37	1.707	91.27
20	0·448 22·99	0.617 31.68	199.0	1.043	53.46	1.204	1:344	68.89	1.472	75.41	1.590	81.49	1.700	87.12
19	0.445 21.87	0·614 30·15	0.863	1.038	20.89	1.198	1.337	65.60	1.464	71.81	1.582	77.60	1.791	82.97
18	0·442 20·75	0.611 28.62	0.848	39.74	48.32	1.191	1.329	62.31	1.456	68.21	1.573	73.71	1.681	78.81
17	0·439 19·63	0.607	0.843	37.64	45.75	1.183	1.321	29.01	1.447	64.61	1.563	69.83	1.671	74.65
16	0.436 18·51	0.602 25·56	0.837	30.04	43.18	1.176	1.312	55.71	1.437	61.01	1.553	65.93	1.660	70.49

0.3

0.4

0.5

9.0

1.0

0.5

8.0

				•		(x)	c v ii)					
1.864	136.5	1.965 143·9	2·152 157·6	· 2·325 170·3	2·486 182·0	2·636 193·1	203·6	2.915 213.5	3·044 223·0	3·168 232·1	3·288 240·9	3·403 249·3
1.860	132.0	139.2	2.147	2-319 164-7	2.479 176·1	2·630 186·8	2·772 197·0	2.908 206·5	3.037 215.7	3·160 224·5	3·280 233·0	3.395
1.855	127.6	1.955	2·142 147·4	2·313 159·2	2·473 170·2	2·623 180·5	2·765 190·4	2.900 199·6	3.029 208·5	3·152 217·0	3-271 225-2	3.386
	123.2	1.949	2·136 142·3	2·307 158·7	2.466 164·3	2·616 174·3	2·767 183·8	2·892 192·7	3.021 201.3	3.144	3.262	3·377 225·1
1.844	118.8	1.942	2·129 137·2	2.300	2.468 158.4	2·608 168·1	2.748	2.883 185.8	3.011 194·1	3·134 202·0	3.262 209·6	3.366
1.838	114.4	1.936	2·122 132·2	2.293	2.450 152.5	2·600 161·9	2·139 170·7	2.874 178.9	3.001	3·124 194·5	3·242 201·8	3.356
1.831	110.0	1.928	2.115	2·285 137·2	2·442 146·6	155.7	2·730 164·1	2.864 172.0	179.7	3·113 187·0	3.231 194.0	3.344
1.825	105.6	1.928	2·108	2.276 131.7	2·433 140·7	2·681 149·5	2·720 157·5	2·864 165·1	2.880 172.5	3·102 179·5	3.219 186.2	3·332 192·7
1.818	101.2	1.917	2·100 116·9	2·267 126·2	2.424 134·8	2.611 143.2	2.710 150.9	2.843 158·2	2.968 165.3	3.090	8·207 178·4	3·319 184·6
1.811	96.81	1.909	2.091	2·268 120·7	2.414 129·0	2·561 136·9	2.689	2·831 151·3	2.956 158·1	3.077	8·194 170·7	3.304
1.803	92.40	1.900	2·082 106·7	2·249 115·2	2·404 123·1	2.560 130.7	2·687 137·7	2.819	2.944 150.9	3.064	3·180 162·9	3.292
1.793	87.99	1·890 92·72	2·071 101·6	2·237 109·7	2·391 117·2	2.536	2·673 131·1	2·804 137·5	2.828 143.7	3.048	3·163 155·1	3.275 160·5
1.783	88.57	1.880 88·08	2.069	2·224 104·2	2.377	2·522 118·3	2.668 124.5	2·788 130·6	2.912 136.5	3·031 142·0	3.145	3.267 152.5
1.772	79.15	1.868	2.046 91.41	2·210 98·73	2·363 105·6	2·507 112·0	2.641	2·770 123·7	2·894 129·3	3·012 134·5	3·126 139·5	3.234
1.760	74.73	1.856	2·033 86·32	2:196 93:24	2.348 99·70	2·490 105·7	2·624 111·4	2·752 116·8	2·875 122·1	2.882 127.0	3·105 131·8	3.216
d	s. O	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	5.6	8.7	3.0

CLASS I. (n = 0.025.)

FOR A DEPTH OF WATER OF 2.4.

						FOR	FOR BOTTOM-WIDTHS		J IO			•				
Fall per thousand.	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	
0.05	0.474 26.85	0.477	0.479	0.481 30.71	0.483 32.00	0.485 33·29	0.487 34·59	0.489	0·491 37·21	0·493 38·52	0.494 39.83	0.495	0.496 42.40	0.497 43·67	0.498	
0.1	0.662 36.93	0.656 38.68	0.658 40.43	0.661 42·19	0.663	0.666	0.668	0.670 49.23	50.99	0.674 52.75	0.676 54·51	0.678 56.28	0.680	0.682 59.84	0.683 61.63	
0.5	1.904	0.908	0.912 56.06	0.916 58·49	0.920	0.923	0.926	0.830	0.933	0.936	0.939 75·72	0.941 78·19	0.943 80.63	90.88	0.947 85·45	•
8.0	1.100	1.106	1.110	1.116	1.119	1.123	1·127 80·03	1.130	1.133	1.136	1·139 91·86	1·142 94·83	1.146	1.148	1·161 103·8	,
· ••0	1.267	1.273	1.279	1.285 82·02	1.290	1.295	1.289	1.302	1.306	1.309	1.313	1.316 109.3	1.319	1.322	1.326 119·6	
0.5	1.411	1.417	1.423	1.429	1.436 95·04	1.440	1.445	1.450 106·3	1.454	113.9	1.462	1.466	1.469	129.1	1.476 133·0	
9.0	1.546 87.50	1.552 91.65	1.659	100.0	1.572	1.578 108·3	1.683	1.588 1 116·7	1.593	1.598 125·1	1.602	1.606	1.610	1.614 141 · 8	1.617 145.9	
1.0	1.669	1.677	1.684 103·5	103.1	1.698	1.704	1.710 121.4	1.715	1.720 130.4	1.726	1.730	1.734	1.738	1.742	1.746	
8· 0	1.786 101.1	105.8	1.801	1.809	1.816 120.2	1.822 125·0	1.828 129.8	1.834 134.6	1.839	1.844	1.849 149·1	1.864 153.9	1.858	1.862	1.886	

xxviii

)

										(X	xix)							•			·	
1.980	178.7	2.087	0.991	2.286	2002	2.469	222.8	2.640	238.2	2.800	252.6	2.961	266.3	3.096	279.3	3.232	291.7	3.365	303.7	3.492	315.1	3.614	326.1	
1.976	173.5	2.083	2.701	2.281	2.002	2.464	216.4	2.634	231.3	2.194	245.3	3.845	258.6	3.089	271.3	3.236	283.3	3.358	294.9	3.484	306.0	3.606	316.7	
1.972	168.4	2.078	G. //T	2.276	184 25	2.459	210.0	2.628	224.5	2.788	238.1	2-939	251.0	3.083	263.3	3.219	274.9	3.361	286.2	3.476	297.0	3.598	307-4	
1.967	163.3	2.073	1.2.1	2.270	188.4	2.463	203.6	2.623	217.7	2.781	230.9	2.833	243.4	3.075	255.3	3.212	266.6	3.343	277.5	3.468	288.0	3.690	298.1	
1.962	158.2	2.067	2.001	2:264	c. 781	2.446	197.2	2.615	210.9	2.114	223.7	3.934	235.8	3.067	247.3	3.203	258.3	3.334	268.6	3.469	278.9	3.581	288.8	
1-956	152.0	2.061	6. TOT	2.258	9.9/1	2.439	190.8	2.608	204.1	3.766	216.4	2.916	228.2	3.028	239.3	3.184	249.9	3.325	260.1	3.460	270.0	3-671	279.4	
1.950	147.9	2.055	S.CCT	2.251	2.02	2.433	184·4	2.600	197.8	2.758	209.2	3.308	220.6	3.049	231.3	3.185	241.5	3.316	251.4	3.440	261.0	3.561	270.1	
1.944	142.8	2.049	c.ncr	2.246	8.491	3.422	178.0	2.293	190.2	2.750	202.0	3.888	213.0	3.040	223.8	3.175	233.2	3.308	242.7	3.430	252.0	3.550	8.097	
1.938	137·7	2.043	1.041	2.238	6.801	2.418	171.7	2.282	183.7	2.742	194.8	2.890	205.4	3.031	215.3	3.165	224.9	3.398	234.0	3.419	243.0	3.539	251.5	
1.932	132.6	2.037	9.601	2.231	1.801	3.410	165.4	2.677	176.9	2.733	9.281	2.880	197.8	3.021	207.3	3.155	216.6	3.284	225.4	3.409	234.0	3.528	242.2	
1.925	127.5	2.030	*. #cT	2.233	7.7.51	2.403	159.0	2.268	170.1	2.723	180.4	2.870	190.2	3.010	199.3	3.144	208.3	3.273	216.7	3.397	225.0	3.616	232.9	
1.918	122.4	190.0	0.621	2.314	141.3	2.382	152.6	2.557	163.3	2.113	173.2	2.869	182.6	3.988	191.3	3.131	200.0	3.260	208.0	3.383	216.0	3.502	223.6	
1.910	117.3	2.012	0.621	3.206	130.4	2.383	146.3	2.546	156.5	2.701	166.0	2.847	175.0	3.986	183.4	3.118	191.7	3.246	199.4	3.268	207.0	3.487	214.3	
1.902	112.2	3.004	C.011	2.196	9.621	2.373	140.0	2.636	149.7	3.689	158.8	2.832	167.4	2.973	175.5	3.106	183.4	3.232	190.8	3.353	198.0	3.472	205.0	
1.893	107.2	1.995	0.911	3.186	8.821	2.361	183.7	3.524	143.0	2.677	151.6	2.823	159.8	2.960	9.291	3.091	175.1	3.217	182.2	3.338	189.1	3.456	195.7	
ć	B D	1.0		1.2		1.4	H T	•	o. T	•	8.1		0.7	6	N N	,	# 27	9	9.7	0	0	0.0	9	

OLASS I. (n = 0.025.)

FOR A DEPTH OF WATER OF 2.6.

						FOB]	Воттом-Widths	Widths	0						
Fall per thousand.	56	7.2	87	62	90	81	32	88	28	35	38	37	88	æ	94
0.05	0.513 39·89	0.515 41·41	0.517 42.93	0.519	0.\$21 45·95	0.523 47·46	0.524 48·95	0.526	0·627 51·92	0.528 53·40	0.529 54.88	0.630	0.531 57·86	0.632	0.633 60.84
0.1	0·102 54·58	0·108 56·63	0·101 58·67	0.710 60.71	0·712 62·75	0.714 64.79	9.716	68·83	0.718 70.85	0.720 72.88	0.722 74·91	0.724 76.95	0·126 78·99	0.727 81.04	0.728 83·10
0.3	0.972 75·56	0.975 78·34	0.978 81·12	0.981 83.90	0.983 86.68	0.986 89.47	0.988 92.25	95.08	0.983 97.82	966.0	103.4	1.000	109.0	1.003	1.004 114·6
8.0	1·183 91·96	1·187 95·34	1·191 98·73	1·194 102·1	105.5	1.200	1.203	1.206	1.208	1.211	1.214	1.216	1.218 132.7	1·220 136·1	1·221 139·5
0.4	1.360	1·364 109·6	1.368	1.372	1.376 121.3	1.380	1.383	1.386 183·0	1.389	1.393	1.396	1.399	1.401	1.403	1·404 160·2
0.5	1.614	1.619 122·1	1·623 126·5	1.627 130·8	1.631 185·1	1.536	143.8	1.543	1.647	1.660	1.663	1.666 165·5	1.669 169·8	1.561	1.563 178·4
9.0	1.669 129·0	1.664 133·7	1.668	1.673 143·1	1.677	1.681 152·6	1.685	1.689 162.0	1.693	1.697	1.700	1.703 181.0	1.706 185.8	1.709	1·712 195·4
2.0	1.792	1.796	149.5	1.806	1.810 159.7	1.816 164.8	1.820 169.9	1.825 175·0	1.830	1.833 185·2	1.836	1.839	1.843	1.846 205.8	1.849 211.0
89	1.916	1.921	159.9	1.932	1.936	1.941	1.946	1.950	1.954 192.7	1.968	1.962	1.965 209·0	1.968	1.971	1.974 225·3

(XXX)

																(ζ, U	o. Ni	٠ ا	٠ ١.	<u>-</u>] '	ν ΤΥ	,
										(X	cxi)			`	\	(~	<u>.</u>		\ <u>^</u>	`. 	/
2.094	239.0	2.207	251.9	2.418	0.92	2.613	298.1	2.791	318.6	2.961	338.0	3.121	326.2	3.274	373.7	3.419	390.5	3.559	406.2	3.693	421.5	3.823	. 436.3
2.091	233.3	2.204	245.8	2.416	269.4	2.608	290.8	2.787	310.9	2.967	329.8	3.117	347.6	3.269	364.6	3.414	380.7	3.554	396.4	3.687	411.8	3.817	425.8
3.088	227.5	2.201	239.7	2.411	262.7	3.604	283.6	2.783	303.2	2.952	321.6	3.112	339.0	3.264	355.5	3.409	871.3	3.549	9.988	3.681	401.1	3.811	415.3
7.08	221.7	2.197	233.6	2.407	256.0	2.589	276.4	2.778	295.5	3.947	313.4	3.107	330.4	3.258	346.4	3.403	361.8	3.543	8.928	3.675	830.3	3.802	404.7
2.081	215.9	2.193	227.5	2.403	249.3	3.296	269.2	2.114	287.7	2.843	305.2	3.102	321.8	3.252	837.4	3.397	352.4	3.537	866.9	3.669	9.088	3.789	394 · 1
2.074	210.1	2.189	221.3	2.398	242.6	2.590	261.9	2.769	280.0	2.937	297.0	3.096	313.2	3.246	328.4	3.391	342.9	3.530	357.1	3.663	370.4	3.792	983.6
2.073	204.3	2.185	215.2	2.393	235.9	3.586	254.6	3.764	272.2	2.931	8.887	3.090	304.6	3.240	319.4	3.382	333.4	3.523	347.3	3.666	360.1	3.786	373.0
2.069	198.2	2.180	209.1	2.389	229.2	2.280	247.4	3.758	264.5	2-925	280.6	3.084	296.0	3.233	810.3	3.378	324.0	3.516	837.4	3.648	349.9	3.777	362.4
2.064	192.7	2.175	203.0	2.384	222.5	2.574	240.2	2.162	256.8	8.818	272.4	3.077	287.3	3.236	301.2	3.371	314.5	3.508	327.5	3.640	339.7	3.768	351.8
2.069	186.9	2.170	196.9	2.378	215.8	3.568	233.0	2.746	249.1	2.813	264.2	3.070	9.82	3.219	292 · 1	3.363	305.1	3.500	317.6	3.632	329.5	3.759	341.2
2.054	181.1	2.165	190.8	2.371	209.1	2.262	225.7	2.739	241.3	3.905	256.0	2.062	270.0	3.211	283.1	3.354	295.6	3.491	307.8	3.623	819.3	3.750	330.7
2.049	175.3	2.160	184.7	2.361	202.4	2.25	218.2	8.132	233.6	2.897	247.8	3.054	261.4	3.203	274.1	3.346	286.1	3.482	298.0	3.614	309.1	3.740	320.1
2.043	169.2	3.154	9.821	2.369	195.7	3.548	211.3	2.134	225.9	. 2.889	239.6	3.046	252.8	3.184	265.0	3.337	276.7	3.473	288.1	3.604	298.9	3.730	309.2
2.037	163.7	2.148	172.5	2.323	0.681	2.641	204.1	2.716	218.2	2.881	231.4	3.037	244.1	3.186	255.9	3.327	267.3	3.463	278.2	3.594	288.7	3.720	298.9
2.031	157.9	2.141	166.4	2.345	182.8	2.633	196.9	2.708	210.5	2.872	223.3	3.028	235.4	3.175	246.8	3.317	257.9	3.462	268.3	3.583	278.5	3.109	288.3
-	<u>ب</u>	,	0. 1	(7. T	;	4	9	9	9	0	0.0		9	q q		H Q	9.6) 1	8.6		0.8	
													-										

.

)

CLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 2.8.

Fall per thousand.	34	35	36	37	88	39	40	41	42	43	44	45	46	47	48
0.02	0.552 59·05	0.553	0.554	0.656	0.567	0.568	0.669	0.560	0.561	0.562	0.563	0.564	0.565	0.566	0.567 82.87
0.1	0.754 80.65	0.756 82.92	0.767 85·20	0·758 87·48	0.760 89.76	0.761 92.05	0·762 94·35	96.66	0.766 98.97	101.3	0.769 103·6	0.770 106·0	108.3	0.772 110·7	0·773 118·0
0.5	1.037	1.039	1.041	1.043	1.046	1.047	1.049	1.061	1.063	1.056	1.067	1.069	1.661	1.063	1.065
0.3	1·262 135·0	1.265	1.268 142·6	1.270	1.273	1.276	1.277	1·280 162·0	1.282	1·284 169·8	1787	1·289 177·6	1.291	1.293	1·295 189·3
4. 0	1.461	1.465 159·6	1.468 164·0	1.461	1.464	1.467	1.470	1.473	1.476	1.477	1.480	1·483 204·2	1.484	1.486	1.488 217·5
0.2	1.616 172.8	1.619	1·622 182·7	1.625	1.628	1.631	1.634	1.637	1.640	1.642	1.645	1.647	1.649	1.661	1·653 241·6
9.0	1.766	1.770	1·773 199·7	1.776	1.780	1.783 215.8	1.786 221.2	1.790 226.6	1.793 232.0	1.796	1.799	1.801 248·0	1.803	1.805	1.807 264·1
0.7	1.906	1.910	1.914	1.917 221.2	1.921 227·0	1.926	1.928 238·7	1.932	1.935	1.938	1.942 262·0	1.945	1.948 273·7	1.951	1.954
8.0	2.034	2.039 228·8	2.043 230.0	236.2	242.4	2.055 248.6	2.069 254.8	2·063 261·0	2.066	278.4	2.072 279·6	2.075 285.8	292.0	2.081	2·084 304·6
		! -									-	-	•		

					, ~~	<u> </u>	,			
2-209 322-8	2·329 840·5	2·661 372·9	2.156	2.946 430·6	3·124 456·7	3·294 481·4	3.454 504·8	3.608 527.4	3·756 549·0	
2.206 316·3	2·326 333·6	2·548 365·4	394.5	2.943	3-120	3·290 471·6	3.460 494.6	3.603	3·161 537·8	
2·203 309·7	2·323 326·7	2·646 357·8	2·749 386·3	2.938 413·1	3·116 438·1	3·285 461·8	3·446 484·3	3·598 505·8	3·746 526·6	
2·200 303·1	2·320 319·7	2·542 350·2	2·146 378·1	2.934 404·3	3·112 428·8	3·281 452·0	3·441 474·0	3·593	3·741 515·4	
2·197 296·5	2-317 812-7	2·539 342·6	2·741 369·9	2-930 395·5	3°108 419°5	3.276 442.0	3.436	3.588	3·736 504·2	
2·194 290·0	2.813	2·535	2·131 361·7	2.926 386·7	3·103	3·271 432·3	3.431	3.583	3.730	
2·191 283·5	298.9	2·631 327·4	2•733 353·5	2-921 377-9	3.098 400·9	3.266 422.5	3·426 443·1	3.577	3·724 481·7	
2·188 276·9	2·305	2.526 319.8	2·728 345·3	2.916 369·1	3·093	3·261 412·7	3·420 432·8	3.571	3.718 470·5	
2·184 270·3	2·301	2·521 312·1	2·123 337·0	2-911 360·3	3.088	3.266	3-414	3.565	3·711 459·3	
2·180 263·7	2-297 277-9	304.4	2·718 328·8	2.906 351·5	3·083 372·9	3·249 393·0	3.408 412·2	3.669	3·706 448·1	
2·176 257·1	2·293 271·0	296.8	2·113	2·900 342·7	3.077 363·6	3.243	3.402	3.663	3.698 436·9	·
2.171	2·288 264·1	289.2	2·707 312·4	2·894 333·9	3.671 354·3	3.237	3·396 391·6	3·546 408·9	3.691 425·7	
248.9	2·283	2·501 281·6	2·102 304·2	2.888 325·I	3.065 345·0	3.230	3·388 381·3	3.539	3.683 414·5	
2.162	2.278 250·1	274·0	296·0	2·882 316·3	335.7	3-223 353-8	3-381 \$71 · 0	3-631	3·675 403·3	
2·167 230·7	2·2†3	2.491 266·3	2.690	2.876 307.5	3.061 326·3	3.215	3-373	3·523 376·8	3.666	
6.0	1.0	1.2	1.4	1.6	1.8	2.0	5.5	5.4	5.6	

CLASS I. (n = 0.025.)

						COMPA		(.040.)	0.040.)						
			M	MEAN VE	LOCITIES) CMA 8	QUANTI'	VELOCITIES AND QUANTITIES OF		DISCHARGE PER	B SECOND.	ē			
					_	FOR A D	EPTH OF	FOR A DEPTH OF WATER OF 3.0.	or 3.0.						
						FOR	Воттом	FOR ВОТТОМ-WIDTHS	0.						
Fall per thousand.	40	41	42	4 3	77	45	97	1.7	48	49	20	15	52	53	54
0.05	0.570	0.672	0.673	0.574	0.576 81.16	•• 677 83 · 06	0.578 84.96	0.579 86.86	0.580	0.581 90.64	0.582 92.53	0.583	0.584 96·31	0.586 98·21	0.586 100·1
0.1	100.1	0.778 102·7	0.780 105·3	107.9	0.783	0.785 113·0	0.786 115·6	0.788 118·2	0.789 120.8	0.790	0.792	0·793 128·5	0·194 131·0	0·796 133·6	0·796 186·1
0.5	1.067	1.070	1.072 144·6	1.074	1.077	1.079	1.081	1.083 162·6	1.086	1.087	1.089	1.091	1.093	1.095	1. 69 7 187·6
6.0 €	1.299	1.302	1.306	1.308	1.311	1.314	1.817	1.320	1.323	1.324	1.326 210.8	1.338	1.330	1.332	1·334 228·1
0.4	1.492	1.496	1.499 202·3	1.502	1.505	1.508	1.511	1.514	1.617	1.619 287·0	1.622 242.0	1.624	1.526	1.528	1.530 261·8
0.5	1.661 214·3	1.665 219.8	1.669	1.672	1.676	1.679 241.8	1.682	1.686 252.8	1.688	1.691	1.694	1.697	1.689	1.702	1·704 291·4
9.0	1.816 234·1	1.819 240.1	1.823 246.1	1.827	1.831	1.885 264.2	1.838 270.2	1.842	1.845	1.848	1.851 294·3	1.864	1.867	1.860	1.863 318·6
2.0	1.961 253·0	1.966 259.4	1.970 265·9	1.974	1.978	1.982 285·4	1.986 291.8	1.990	1.993 304·8	1.996 311.3	1.999 317.8	2·002 324·3	330.8	2·008	2·011 843·9
8.0	2.096 270.4	2·101 277·3	2·106 284·2	2°110 291°1	2·116 298·1	2·119 305·1	2·123 812·0	2·127 318·9	2·131 325·8	2·134 382·8	2·138 339·8	2.141	2-144	2·147 360·6	2-160 367-6

(xxxiv)

2·280 389·9	2·403 410·9	2·631 449·9	2·844 486·3	3·040 520·0	3·224 551·3	3·398 581·0	3.868 609·7	
2·277 382·6	2·400 403·2	2·628 441·5	2.840	3.036 510.2	3.220	3.394	3.560	
2.274 375-3	2·397	2·626	2·836 468·1	3.032	3·216 530·5	3·390 559·2	3.555 586·7	
2·271 368·0	2.394	2·622 424·7	2·832 458·9	3·028 490·6	3·211 520·1	3.385	3.550	
2·268 360·6	2·390 379·9	2.618 416·3	2.828 449.7	3.024 480.8	3·206 509·7	3.380	3.646	
3.264	2·386 372·2	2·614 407·8	2·823 440·5	3.019 471.0	3·201	3.375	3.539	
2·260 345·9	2·382 364·5	2·610 399·3	2.819 431·3	3.014	2.126	3.369	3.533 540·6	
2.256	2.378 356·7	2.605 390.8	2·814 422·1	3.009	3.190	3.363	3·527 529·1	
2·252	3-374	2-600 382·3	2·809 412·9	3.003	3·184 468·1	3.367	3.521	
2·248 323·7	2·369 341·1	2.595 373·7	2·803 403·7	2.997 431.6	3.178	3.350	3.514	
2·243 316·1	2·364 333·4	2.590 365.2	2-197 394 · 5	2.991 421.8	3.172	3.343	3.507	
2·238 308·9	2·369 325·7	2·584 356·7	2·791 385·3	2.984 412.0	3.165	3.336	3.500.	
2·233	3.364	2·679 348·2	2·785 376·1	2.978 402·2	3.158	3.329	3.492	
2.228	2·349 310·1	2.673 339.7	2.779 366.9	2-971 392-3	3·151 416·0	3.322	3.484	
286.7	2·343 302·3	2·567 331·1	2·173 857·7	2·964 382·4	3.144	3.314	3.476 448·4	
6.0	1.0	1.5	1.4	1.6	1.8	2.0	5.5	·

(22211

xxxvi

CLASS I. (n=0.025.) Mean Velocities and Quantities of Discharge per second.

FOR A DEPTH OF WATER OF 3.5.

Fall per thousand.	#	46	8	82	22	\$	26	88	8	89.	\$	8	88	02	72
0.05	0.662	0.666	0.667	0.669	0.661	0.663	0.664	0.666	0.668 152·5	0.669	0.670 162·4	0.671 167.4	0.672 172.8	0.673 177.2	0.674 182·2
0.1	0.880 151.7	0.883	0.886 165·2	0.888 171 · 9	0.891 178·6	0.893 185.3	0.895	0.887 198.7	0.899 205.4	0.901 212·1	0.903 218·8	0.904	0.80¢	0.906 238·6	0.907
0.5	1.205	1.209	1.218	1.216	1-219	1.222	1.236 262·7	1.228 271.9	1-231 281-0	1.233 290·1	1.236	1.237 308·3	1.239	1.240	1·241 335·5
6.0	1.465	1.470 263·7	1·474 274·9	1.478	1.482	308.2	1.490 319.4	1.493 330·6	1.496 341.7	1.499 352.8	1.502 363·9	1.604 375·0	1.506 386.1	1.508	1.610 408·3
7.0	1.681 289.7	1.687	1.692 315·3	1.697 328·1	1.702 840.9	1.706 353.7	1.710	1.714 379.3	1.717	1.720	1.723	1.726	1.729	1.732	1.734 468·8
0.5	1.869 322.2	1.875 336.3	1.880 350.4	1.886 364·6	1.890 378.8	1.896 393·0	1.900	1.904	1.908 485·6	1.911	1.915	1.918	1.921	1.924 506·7	1-927 521 · 0
9.0	2.042 352.0	2.049 367.4	2.055 382.9	2.061 398·4	2.066 413.9	2.071 429.4	2.076 444.9	2.081 460·4	2.085 475.9	2.089 491.5	2.093	2.097 522.6	2.100	2·103 553·8	2·106 569·4
2.0	2·202 379·6	396.2	2·215 412·9	2·221 429·6	2.227	2-233 463·0	2·238 479·7	2·243 496·4	2.248	2.262 529.9	2.256 546·7	2.260 563.4	2·263 580·1	2.266 596.8	2·269 613·5
8.0	2.349 404·9	2.356 422.8	2·863 440·6	2.369 458·4	2-376 476-2	2·382 494·0	2·388 511·9	2.393	2·398 547·7	2·402 565·6	2·407 583·5	2·411 601·4	2.416	2.419	2·423 655·1
_	_	_	-	-	_	_	_	-	-	-	_		_		•

					•		,
2.663	2·102 780·5	2.961 800·6	3·198 864·6	3:417 923·9	3·626 980·2	3.822	· .
2.559 674·0	2.698 710:6	2.956 778·6	3.193	3.412	3.620	3.816	
2.566 655·1	2.694 690·7	2-961	3.188	3.407	3.614 926.6	3.810 976·6	·
2.561 636·2	2.690	2.946	3-183	3.402 848·2	3.608 839.8	3.804	
2.647 617·3	2.686	2.941	3.177	3-396 823-0	3.602 873.0	3·797 920·2	
2.542 598·4	2.680	2.936 691.0	3.171	3-390	3.595	3·790 891·0	
2.637	2.676	2-930 669-1	3.166	3.384	3.688	3.783 863.8	
2.532 560·6	2·670 591·1	2.924	3·169 699·3	3-317 747-4	3.581	3.776 835.7	
2.527	2.664	2.918	3-152	8-810 722-2	3.574	3.768 807.6	
522.8	2.668	2.911	3.145	3·362 697·1	3.566	3.169	
2.515 493.9	2.661 531.3	2·904 581·9	3·137 628·6	3·354 671·9	3.567 712.7	3-749	
2.508	2.644 511.4	2-897 560-1	3·129 605·0	3.345	3.548 686.0	3.739	
2·501 456·1	2.636 491.5	2.889 538·3	3·120 581·4.	3·336 621·5	3·638 659·3	3·729 695·1	
2.484	2.628 471.6	2.880 516.6	3·110 557·8	3·326 596·3	3·527 632·6	3·718 667·0	
2·486 428·5	2·620 451·6	2·871 494·9	3·100 534·3	3·314 571·2	3.515	3·706 638·9	
6.0	1.0	1.2	1.4	1.6	1.8	2.0	

CLASS I. (n = 0.025.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 4.0.

			(xx:	cvi ii)				
88	0.745	0.996 378·4	1.360 516.7	1. 647 625·9	1.895 720·1	2·106 799·9	2·300 874·0	2·481 942·8	2.646 1006
98	0.744 273.7	0.994 365·8	1.367	1.644	1.892	2·102 778·4	2.297	2·477 911·4	2·642 972·5
88	0·742 264·3	0.992 353·2	1.354	1.641	1.888 672.2	2·098 746·9	2·293 816·0	2·472 880·0	2·637 939·1
8	0.741	0.990 340·6	1.361	1.638 563·7	1.884	2.094 720.3	2·289 787·1	2.467 848·6	2.632 905.6
11	0.739	0.988 328·0	1.348	1.636	1.880	2.090	2.284	2.462	2.627
74	0.737 236.0	0.986 315.4	1.345	1.631	1.876	2.086	2.279	2:456 786·0	2·621 838·7
11	0·736 226·6	0.984 302.8	1.341	1.627	1.871	2.080	2.273	2.450 754.7	2.614
89	0.733 217.2	0.981 290.2	1.33	1.623	1.866	2.074	2·267 671·1	2·444 723·4	2·607 771·8
33	0·731 207·8	0.978 277.7	1·336 379·1	1.618 459.3	1.861	2.068	2.261	2·437 692·2	738.4
62	0·729 198·3	0.975	1·331 362·0	1.613	1.856 504·6	2.061	2·264 613·1	2·430 661·0	2.582 705·0
59	0.726 188·9	0.972 252·7	1.326 344.9	1.607	1.849	2.054	2·247 584·1	2·422 629·8	2·583 \
56	0.723	0.968 240·2	1·321 327·8	1.601 397·3	1.842 457·0	2·047 507·6	2 ⁻²³⁹ 555·2	2·413 598·6	2.574 638·4
53	0.720 169·9	0.965 227.7	1.316 310·7	1.595 376·6	1.835 433.2	2·039 481·2	2·230 526·3	2·403 567·4	2·564 605·1
20	0·716 160·4	0.961 215·3	1.311 293·6	1.589 356·0	1.827	2.030 454.8	2·220 497·4	2.393	2.553
47	0-712 150-9	0.957 202.9	1.305	1.582 335.4	1.819 385.7	2.021	2·210 468·5	2.382	2.541
Fall per thousand.	0.05	0.1	0.5	6.0	4.0	0.5	9.0	2.0	8.0

							•
2.800	2.962 1122	3·234 1229	3.504	3.737	3-964 1506	4-177	
2·796 1030	2·947 1084	3·229 1188	3.498	3·730 1372	3.958 1455	4.169	
2·791 994·2	2.942	3-223	3·482 1241	3·722 1325	3.960	4.161	
2·786 958·5	2.936 1010	3.217	3-475	3·714 1278	3.941	4·163	
2·780 923·0	2.930 972.8	3.210	3.468	3.706	3.933	4·144 1376	
2.774	2.924 935.5	3.203	3.460	3.698	3.923	4.135	
2.767	2.917	3·196 983·6	3.462	3.689 1136	3.913	4·126 1270	·
2·760 816·8	2-909 861-1	3·187 942·9	3·443 1019	3.680	3.903	4.116	•
2.752	2.901 823.9	3·178 902·2	3·433 974·7	3.670	3.892	4.103	
2.743	2.892 786.7	3·168 861·6	3·422 930·7	3.660 995.4	3.880 1055	4.091	
2.734	2·882 749·5	3·157 820·9	3.410 886.8	3.647	3.867	1060	
2.725	2·872 712·3	3.146	3.398 842.9	3·633 901·2	3.863 955.5	1008	
2·715 640·5	2·860 675·2	3·133 739·6	3·384 799·0	3·619 854·2	3.838	4.045	
2·703 605·4	2.848 638·1	3·120 699·0	3.370 755·1	3·603 807·2	3.822	4.028 902.7	
2.690	2.836 601.0	3·106 658·4	3.365	3·586 760·2	3.806	4.010 850·2	
6.0	1.0	1.2	1.4	1.6	1.8	2.0	

				-
	ECONT.			-
•	PER 6			_
(22.)	FELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.	4.5.	-	
?0.0 =	S OF D	ATER OF	IDTHE 01	_
CLASS 1. ($n = 0.025$.)	DANTITIE	FOR A DEPTH OF WATER OF 4.5.	FOR BOTTOM-WIDTHS OF	
CLASS	AND Q	OR A DEF	FOR E	-
	OCITIES	Ĕ		
	/EL			-

								•										
			106	0.574	291.2	0.665	337.4	0.812	412.0	0.830	471.8	1.081	548.4	1.411	746.3	1.780	903.0	
			102	0.573	280.3	0.663	324.5	0.810	396.2	0.928	454.2	1.079	528.1	1.469	718.6	1.776	869.7	
			98	0.572	269.4	0.661	311.7	808.0	381.0	0.836	436.6	1.011	201.8	1.466	6.069	1.772	835.2	
ě			\$	0.571	258.5	0.659	6.867	908.0	365.5	0.824	419.0	1.075	487.4	1.463	663.2	1.768	801.8	-
R SECOND.			06	0.569	247.6	0.657	286.2	108.0	350.1	0.923	401.4	1.013	467.0	1.460	635.4	1.764	768.1	-
DISCHARGE PER			98	199-0	236.6	0.655	263.6	0.803	334.7	0.618	883.8	1.070	446.5	1.456	607.5	1.760	734.6	-
DISORA	OF 4.5.	j.	83	999-0	225.7	0.663	261.0	0.800	319.4	0.917	366.2	1.067	426.0	1.462	579.6	1.756	700.1	-
TES OF DISC	WATER	WILLIAM	78	0.563	214.8	199.0	248.2	90.198	304.1	416.0	348.6	1.064	405.2	1.448	551.8	1.750	9.299	-
MEAN VELOCITIES AND QUANTITIES OF	FOR A DEPTH OF WATER OF 4.5.	DOLLON	74	0.561	203.9	0.649	236.0	0.196	888.8	0.911	830.9	1.060	385.1	1.443	524.0	1.746	634.1	-
O GNY S	los A D	FOF	70	0.559	193.0	0.647	223.5	0.792	273.5	406.0	313.2	1.056	364.7	1.437	496.2	1.739	9.009	-
LOCITIES	-		99	0.557	182.1	0.644	210.8	0.789	258.1	0.803	295.7	1.062	344.4	1.431	468.5	1.733	567.3	
AN VE		ĺ	62	0.554	171.2	0.641	198.1	0.785	242.8	668.0	278.2	1.047	324 · 1	1.425	440.8	1.726	534.0	-
M		ľ	80	199	.3	37	4.0	181	.5	76		2	œ ••	81	22	18	2.	-

185.4

172.8

0.627 160.2

0.03

0.637

0.632

227.5

 $212 \cdot 2$

0.771 196.9

0.05

181.0

0.776

260.7

243.2

225.7

0.02

0.894

688.0

0.884

303.8

283.5

263.3

0:1

1.043

1.037

1.031

413.2

382.6

358.0

0.2

500.7 1.718

467.4

434.1 1.700

0.3

1.709

1.418

1.410

1.403

160.3

149.4

138.6

0.02

0.551

0.647

0.543

28

2

යි

Fall per thousand.

xl)

2.080

3.05 1001

용

962.7 2. 42

924·1 2. 88

885.5

808 2.033

7.69.7 2.017

692.5

623.0

615.3 1.988

538.2

499.7

0.4

. 3. 3.

2.039 846.9

2.011 731·1

3.002

1.997

1.978 576.7

1.968

1.967

3.310

3.365 1108

3.780 1065

2.266 1022

2.348

2.339

2.233 851.3

2.226

2.218

2.210

2.201

2.191 638.4

979.5 2.20

986.7

894.0

9.808

765.9

680.9 723.4

595.9 2.180

553.4

0.2

2.167

1151

(

	•									((xli)	
2.477	1256	2.671	1355	2.854	1448	3.020	1532	3.186	1616	3.489	1769	3.767	1911	
3.472	1209	2.665	1304	2.849	1394	3.012	1475	3.179	1555	3.483	1703	3.760	1840	-
2.467	1162	2.659	1254	2.843	1340	3.009	1418	3.172	1495	3.475	1637	3.752	1769	
2.462	1115	2.663	1203	2.837	1286	3.003	1361	3.166	1435	3.468	1571	3.744	1698	· ·
3.499	1069	2.647	1153	2.831	1232	2.896	1304	3.158	1875	3.460	1506	3.736	1627	
3.420	1022	2.641	1102	2.834	1178	2.989	1247	3.150	1315	3.461	1440	3.727	1556	
2.443	8.226	3.634	1052	2.817	1124	2.981	1190	3.142	1255	3.442	1374	3.718	1485	
2.436	929.2	2.626	1002	3.809	1070	2.973	1133	3.133	1195	3.432	1308	3.708	1414	
2.439	882.7	2.618	951.7	2.800	1017	2.963	1076	3.123	1135	3.421	1243	3.696	1343	·
2.421	886.2	2.610	901.4	2.190	9.896	2.963	1020	3.112	1075	3.410	1178	3.682	1272	
2.413	789.7	2.600	851.3	2.179	910.0	2.941	963.2	3.100	1015	3.397	1112	3.688	1201	
2.403	743.2	2.589	801.2	2.167	856.4	2.939	306.2	3.087	955.6	3.383	1046	3.663	1130	
2.390	2.969	3.576	751.1	2.754	802.8	2.915	849.8	3.073	895.8	3.365	981.3	3.636	1060	
2.378	650.2	2.663	0.102	3.740	749.3	2.900	793.1	3.067	836.0	3.348	915.8	3.617	8.686	
3.364	603.7	3.549	620.9	2.726	695.8	2.884	736.4	3.040	776.3	3.330	850.4	3.597	918.6	
,	9.0		· ·		ю Э	0	8.0 0	,	0.1	,	7.1	7.1	# .1	

CLASS I. (n = 0.025.)

Maan Velocities and Quantities of Discharge per second.

FOR A DEPTH OF WATER OF 5.0.

				(xl	ii)					
	150	0·631 496·9	0·728 573·3	0.887 698·6	1·008 793·8	1·173 923·5	1.590 1252	1.922 1513	2·213 1743	2.461 1930
ĺ	145	0.630 480.5	0.727	0.886 675·3	1.001	1.171	1.588	1.919	2·210 1685	2.448
	140	0.629 464.0	0·726 535·1	0.885	1.006	1.169	1.586	1.916 1.919 1413 1463	2·207 2·210 1627 1685	2.445 1801
	135	0.628	0.725 516.0	0.883 628·8	1.004	1.167	1.584	1.913	2·204 1570	2·441 1738
	130	0.627 431.0	0·723 497·0	0.881 605·6	1.002	1.166 801.0	1.581	1.910 1313	2·201 1513	2·437 1675
	125	0. 626 414.6	0·722 477·9	0.880 582.4	1.000 662·6	1.163	1.578	1.907	2·197 1455	2·433 1611
	120	0.625 398·2	0.720 458·8	0.878 559·2	0.999 636·4	1·161 740·0	1.576	1.903 1213	2·193 1397	2·428 1547
	115	0.623 381.7	0·718 439·8	0.876 536·0	0.997 610·2	1·159 709·5	1·672 963·1	1.899	2·189 1339	2-423 1488
	110	0. 622 365·2	0.716 420·8	0.874 512·9	0.995 584·1	1·156 679·0	1.569 921·9	1.895	2·184 1282	2·418 1419
	105	0.620 348·7	0.714 401 · 8	0.871 489·8	0.993 558·0	1·153 648·6	1.566 880·7	1.891	2·179 1225	2·413 1356
	100	0.618 332·3	0·112 382·8	0.8 6 8 466·6	0.990 531·8	1·150 618·1	1·562 839·5	1.886 1014	2·174 1167	2·407 1292
-	95	0.616 315.9	0·710 363·8	0.865 443·4	0.987 505·6	1·147 587·7	1.557 798·2	1.881 964·4	2·168 1110	2·401 1228
TO STITUTE WITHING OF	06	0.614 299.4	0·708 344·8	0.862 420·3	0.984 479·4	1·143 557·3	1.662 756·9	1.876 914·6	2·162 1053	2·393 1165
•	85	0.612 282.9	0·705 325·9	0.859 397.2	0.980 453·3	1·139 526·9	1.647 715·6	1.870 864 · 8	2·155 996·1	2·386 1102
	80	0.609 266.4	0·702 307·0	0.855 374·1	0.976 427·2	1·136 496·5	1·641 674·3	1.863 815·1	2·146 938·9	2·376 1039
	91.	0.606 250.0	0.699 288·0	0.851 351·0	0.972 401·0	1·130 466·0	1.535 633·2	1.855 765·4	2·137 881·8	2·366 975·8
	02	0.603 0.606 0.609 0.612 0.614 0.616 0.618 0.620 0.623 0.623 0.625 0.625 0.627 0.628 0.639 0.639 0.631 0.838.2414.6431.0447.5464.0480.5496.8	0-886 0-899 0-702 0-705 0-708 0-710 0-712 0-714 0-716 0-718 0-720 0-722 0-723 0-723 0-723 0-725 0-726 0-727 0-728	0.847 0.851 0.855 0.855 0.859 0.862 0.865 0.868 0.871 0.874 0.876 0.878 0.880 0.881 0.883 0.885 0.805	0.962 0.967 0.972 0.976 0.986 0.984 0.987 0.989 0.988 0.998 0.995 0.998 1.000 1.002 1.004 1.006 1.906 1.907 1.008 348.8 374.9 401.0 427.2 453.3 479.4 505.6 531.8 558.0 584.1 610.2 636.4 662.6 688.8 715.0 741.2 767.5 793.6	1.119 1.126 1.130 1.136 1.136 1.136 1.143 1.147 1.150 1.158 1.156 1.159 1.161 1.163 1.161 1.163 1.166 1.163 1.164 1.163 1.169 1.169 1.161 1.163 1.166 1.165 1.166 1.167 1.169 1.171 1.173	1.521 1.628 1.535 1.541 1.547 1.552 1.557 1.557 1.557 1.558 1.559	1.846 1.855 1.863 1.870 1.876 1.881 1.886 1.891 1.885 1.895 1.895 1.903 1.903 1.903 1.913 1.813	824-7 881-8 938-9 996-1 1053 1110 1167 1225 1282 1339 1397 1455 1518 1570 1627 1685	2.365 2.366 2.376 2.386 2.388 2.401 2.407 2.418 2.418 2.418 2.423 2.438 2.438 2.437 1611 1675 1738 1801 1865 1990
	65	0.599 217·1	0.691 0.685 0.689 0.702 0.705 0.706 0.710 0.711 0.714 0.716 0.718 0.720 0.722 0.722 0.723 0.725	0.843	0.966 0.967 0.967 0.976 0.986 0.987 0.987 0.987 0.984 0.984 0.987 <td< td=""><td>1.119 405·2</td><td>1·521 551·2</td><td>1.826 1.837 616.5 666.1</td><td>2·116 767·6</td><td>2·343 849·4</td></td<>	1.119 405·2	1·521 551·2	1.826 1.837 616.5 666.1	2·116 767·6	2·343 849·4
	09	0.589 0.584 0.589 0.603 0.606 0.609 0.612 0.614 0.618 0.638 0.632 0.633 0.635 0.638 0.639	0.685 231·1	0.829 0 282.0 305.0 328.0 351.0 374.1 397.2 420.3 443.4 466.6 489.8 512.9 536.0 559.2 582.4 605.6 628.8 652.0 675.3 698.6	0.956 322.7	1-104 1-112 1-119 1-126 1-136 1-136 1-136 1-138 1-147 1-150 1-158 1-156	1.612	1.826 616·5	2·104 2·116 710·5 767·6	2-314 2-329 2-343 2-346 2-366 2-376 2-376 2-376 2-376 2-401 2-407 2-418 2-418 2-428 2-428 2-428 2-438 2-438 2-448
	55	0.589 184·1	0.679 212.2	0.829 259·0	0.950 296.6	1-104	1.502	1.814	2·091	2·314 723·1
	Fall per thousand.	0.05	0.03	0.02	10.0	0.1	0.5	e.0	0 ·4	0.5

2.675	2107	2.883	2271	3.073	2420	3.254	2563	3.429	2700	3.767	2959	4.056	3200	
2.671 2		2.879	2196	3.069		3.260		3.426	2612	3.752	2861	4.052	3093	
2.667		2.875	2121	3.065		3.246		3.421	2523	3.747	2763	4.048	2987	
2.663	1897	2.871	2046	3.061	2180	3.241	2309	3.416	2434	3.742	7666	4.043	2881	•
2.659 2.663	1828	2.867	1971	3.056		3.236	2225	3.411	2345	3.737	2569	4.037	2775	
2.649 2.654	1688 1758	2.867 2.862		3.052	2021	3.225 3.231	2140	3.399 3.406	2256	3.724 3.731	2471	4.030	2670	
2.649	1688	2.857	1821	3.047	1941				2167		2374	3.998 4.007 4.015 4.023 4.030	2565	
2.644	1618	2.837 2.844 2.851	1746	3.042	1861	3.219	1972	3.393	2078	3.717	2277	4.015	2460	
2.638	1549	2.844	1596 1671	3.035	1703 1782	3.213	1804 1888	3.379 3.386	1900 1989	3.702 3.710	2180	4.007	2355	
2.632	1480	2.837	1596	3.028	1703	3.306	1804				2083	3.998	2250	
2.611 2.619 2.626 2.632 2.638 2.644	1410	2.830	1521	3.015 -3.021 3.028 3.035	1623	3.199	1719	3.371	1811	3.693	1985	3.989	2145	
2.619	1341	2.815 2.823	1446		1543	3.191	1635	3.353 3.362	1722	3.673 3.683	1791 1888	3.968 3.979	2040	·
2.611	1203 1272		1371	3.007	1464	3.182	1551		1633	3.673	1791		1935	
2.602		3.806	1297	2.997	1385	3.172	1467	3.343	1545	3.662	1694	3.956	1830	
2.693	1134	2.783 2.795	1223	2.974 2.986 2.997	1306	3.149 3.161	1383	3.331	1457	3.660	1499 1597	3.943	1725	
2.570 2.582 2.593 2.602	996.0 1065 1184		1148	2.974	1226	3.149	1298	3.318	1368	3.636	1499	3.927	1620	
2.570	0.966	2.770	1074	2.961	1147	3.135	1214	3.304	1279	3.620	1402	3.909	1515	
999.7	927.0	2.758	999.4	2.846	1068	2.118	1130	3.288	1191	3.601	1305	3.889	1410	
	858.0	2.140	924.9	2.929	988.5	3.100	1046	3.269	1103	3.280	1208	3.867	1305	
07.0.7.	789-1	2.721	850.4	3.909	909•1	3.080	962.4	3.247	1015	3.556	1111	3.842	1200	· ·
9.0)		-	0.0	0	0.0		1.0	>	6.1	1	1.4	# -	

OLASS I. (n = 0.025.)

FOR A DEPTH OF WATER OF 5.5.

FOR BOTTOM-WIDTER OF

					40.4		TOP TOTAL WILLIAM OF						
Fall per thousand.	09	99	72	82	3 5	90	96	102	108	114	120	126	132
0.02	0.632	0.637 260.4	0.642 283·6	0.647 306·9	0.661 330·2	0.664 353·5	0.667 376.8	0.660	0.663 423·6	0.666	0.667 470·4	0.669 493.8	0.670 517·2
0.03	0·728 273·3	0·735 300·1	0·741 326·9	0.746 353.7	0.750 380·6	0.754 407·5	0.758 434·3	0-761 461-1	0.764 488·0	0.766 514·9	0.768 541.8	0.770 568·6	0·772 595·5
0.05	0.888 333.3	0.89e 366•0	0.903 398.7	0.909 431.4	0.914 464.1	0.919 496·8	0.923	0.927	0.930	0.638	0.936 860·3	0.939 693-1	0.941 725·9
20.0	1.009	1.016	1.023	1.030	1.036	1.040	1.046	1.048	1.063	1.066	1.069	1.062	1.064
0.1	1.174	1.183	1-191	1.198	1.204	1.210	1.216	1.221	1·226 782·6	1.28	1.231	1.234	1·237 954·2
0.5	1.691	1.603	1.614	1.623	1.632 827.9	1.639	1.645	1.651	1.666	1116	1.665	1.669	1.673 1290
8.0	1.923 721.8	1.937 791.4	1.950	1.961	1.971	1.980	1.888	1.995	1280	2·007 1350	2·012 1419	2·017 1489	2·022 1559
0.4	2·213 830·6	2·229 910·2	2.243 989·9	2.266 1070	2.265 1150	2.275 1229	2.284 1309	1389	2·298 1469	2.304 1549	2·309 1628	2.314	2·319 1788
0.5	2.463	1009	1097	2.501	2·518 1274	2·528 1863	2.632	2.540 1589	2.548 1628	2.656	2.561 1806	2.667 1895	2.673 1984

xliv)

OLASS I. (n = 0.025.)

FOR A DEPTH OF WATER OF 5.5. FOR BOTTOM-WIDTHS OF

			(x	l v i)					
204	798.6	0.786 917·5	0.969	1.083	1.258	1·102 1987	2401	2.356	2·614 3051
198	0.683	0.786 890.8	1087	1.082	1.267	1.700	2331	2·364 2670	2·612 2961
192	0.682 751·4	0.786 864·1	0.967 1054	1.081	1.256	1.698	2·052 2261	2.352	2.610
186	0.681 727·8	0.784	0.956	1.080	1.254	1.696 1812	2.050 2191	2·350 2510	2784
180	0.681 704.2	0.783 810.7	0.986 989·0	1.079	1·263 1297	1.694	2·048 2121	2430	2696
174	0.680	0·783 783·8	0.95 4 956·0	1.077	1.252	1.692	2.046	2.344	2608
168	0.679 657.4	0.781 756·9	0.962 923.0	1.075	1.250	1.690	2.043	2.341	2.597
162	0.678 634·1	0·780 730·0	0.951 890·1	1.074	1.248	1.688	2·040 1909	2.338	2.584
156	2·677 610·8	0·779 703·1	0.949 857-2	1.073 969·2	1.246	1523	2·037 1839	2.335	2·591 2341
150	0.675 587·5	0.111 676·2	0.947 824·3	1.071 932·2	1.244	1.683 1465	2.033	2·331	2.587
144	0·674 564·0	0·776 649·3	0.945 791·5	1.069 895·2	1.242	1. 6 80 1406	2·030 1699	2·327 1948	2.683
138	0·672 540·6	0.774° 622.4	0.943 758·7	1.067 858·2	1·240 997·1	1.677 1348	2·026 1629	2·323 1868	2.678
Fall per thousand.	0.05	0.03	0.02	20.0	0·1	0.3	6.0	0.4	0.5

					(x	l v ii)	1
3830	3.069	3.274	3.467	3.655	4·002 4672	4·322 5046	
2·850 3233	3.066	3·271 3710	3-464	3.661	3.998	4.318	
2·847 3136	3.063	3.268 3599	3.460	3.647	3.994	4.314	
2·844 3039	3.060 3270	3-266	3.456	3893	3-990	4.310	,
2·841 2942	3·067 3166	3·261 3377	3.462	3.639	3.986	4.306	
2.838	3.064	3-267 3265	3-448	3.636	3.982 8991	4.300	
2.834	3.050 2956	3·263 3153	3339	3.631	3.977	4.295	
2650	3.046	3.249	3.439	3.626	3·972 8719	4.290	
2.826 2553	3.043	3.246	3.434	3-621	3.966	4·284 3870	
2.822	3·037 2643	3.240	3.429	3.615	3-960	4.278	
2.817	3·032 2538	3.236	3-423	3.609	3.963 3310	4·271 8576	
2.812	3.026	3·229 2596	3·417 2749	3.603	3.946	4.263	
9.0	2.0	8.0	6.0	1.0	1.2	1.4	

165 0-123 755-2 0-828 863-8 1-006 1-107 1-137 1-137 1-137 1-137 1-137 1-137 1-137 1-137 1-137 1-246 2-240	
	28 28
0.721 0.723.2 0.836 827.4 1.003 1.004 1.135 1.135 1.135 1.779 2.146 2.466	2459 2.728
0.719 0.719 0.824 791.0 1.001 960.8 1.133 1087 1.312 1.312 1.258 1.701 2.139 2052 2.460	2351 2·718 2609
0.718 6:59.2 0.922 754.6 0.999 916.4 1130 11201 1:309 1623 2:134 1958	2244 2·713 2490
MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND. FOR A DEPTH OF WATER OF 6.0. FOR A DEPTH OF WATER OF 6.0. FOR BOTTOM-WIDTHS OF 0.137 FOR BOTTOM-WIDTHS OF 0.13	2137 2·107 2371
130 0-714 595-2 0-817 681-8 0-994 828-6 1-124 987-8 1-908 1-708 1-711 1468 2-124 1777	2029
0.00 Our 6:0.0 Our 6:0. Our 6:0.0 Our 6:0.0 Our 6:0.0 Our 6:0.0 Our 6:0.0 Our 6:0.0 Ou	1921 2·692 2188
WATER OF 116 116 0.708 581.3 0.812 0.812 0.989 740.8 1.116 887.5 1.286 971.1 1.761 1.312 2.112	1814 2.684 2014
ASS I. (n = 0.025 D QUANTITIES OF DI A DEPTH OF WATER OF FOR BOTTOM-WIDTER OF 102 109 116 7.5 499.4 531.3 5 6.2 572.6 609.0 6 81 0.988 0.989 0 82. 697.0 740.8 7 108 1.112 1.118 1 108 1.124 1.118 1 118 1.112 1.118 1 119 787.7 887.5 8 226 1.290 1.296 1 138 1.744 1.741 1 138 1.745 1.741 1 138 1.745 1.741 1 138 1.745 1.741 1 138 1.745 1.741 1 138 1.745 1.741 1 138 1.745 1.741 1 148 1.741 1 158 1.741 1 167 1.284 1.812 1 168 1.889 1.888 1 1086 2.168 1.881 1 1096 2.168 1.881 1 1006 2.168 1.881 1 1006 2.168 1.881 1 1007 1.881 1 1008 2.113 2.421 2 1008 2.113 2.421 2 1008 2.113 2.421 2 1008 2.113 2.421 2 1008 2.113 2.421 2 1008 2.113 2.421 2 1008 2.113 2.421 2 1008 2.113 2.421 2 1009 2.113 2 1009 2.113 2	1707 2.676 1895
CLASS I. (n = 0.025.) RAND QUANTITIES OF DISCRIPTION A DEPTH OF WATER OF 6.0. FOR A DEPTH OF WATER OF 6.0. FOR BOTTOM-WIDTHS OF 6.0. 102 109 116 123 - 0.702 0.706 0.711 467.5 499.4 531.3 563.2 536.2 572.6 609.0 645.4 0.981 0.985 0.982 0.982 1.108 1.112 1.116 1.120 1.285 1.290 1.296 1.296 1.285 1.290 1.296 1.399 1.785 1.787 387.5 887.4 1.785 1.290 1.296 1.296 1.787 913.5 971.1 1029 1.788 1.781 1.761 1.788 1.781 1.761 1.788 1.781 1.761 1.788 1.781 1.761 2.7086 2.106 2.112 2.7086 2.106 2.112 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.113 2.7086 2.106 2.108 2.7086 2.106 2.108 2.7086 2.106 2.108 2.7086 2.106 2.108 2.7086 2.106 2.108 2.7086 2.106 2.108 2.7087 2.108 2.7087 2.108 2.7087 2.108 2.7088 2.108 2.7087 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.108 2.7088 2.708 2.7	1600 2.667 1776
95 0.688 435.7 0.801 0.976 609.3 1.103 688.1 1.302 1.730 1.730 1.730 1.730 1.730 1.730 1.730	1493 2.656 1657
88 0-694 408:9 0-796 464:1 0-971 565:4 1:973 740:9 1:722 1002 2-078 2-078	1386 2.643 1588
MEA 81 0-600 372·1 0-701 428·1 0-905 521·5 1-306 683·4 1-712 924·0 2-907 1116	1279 2·627 1419
74 0-684 340-4 0-786 392-1 0-968 477-6 1-082 539-0 1-700 846-4 2-064 1023	1172 2.610 1300
67 0-677 308-7 0-781 356-1 0-950 433-7 1-073 489-3 1-247 568-6 1-886 768-8 3-039 929-8	1065 2·691 1181

Fall per thousand.

0.03

0.03

0.02

0:1

0.5

0.3

4.0

0.2

0.02

3.976	3344	3567	3·617 3776	3-813 3981	4.177	4·612 4710	
2.971	3204	3417	3.611	3-806	4.170	4.504	
2847	3064	3.400	3.604	8-799 3647	4·162 3994	4.496	
2717	2924	3119	3·597 8302	3-791 3480	4·163 3812	4.486	
2587	2784	2970	3.589	3·783 8314	4·144 8630	4·476 3921	
2.946	2644	2820	3.580	3-774	4-134	4.465	
2.939	2504	2671	3.570 2828	3·764 2980	4·122 3265	4-453	
2.930	2364	2522	3.569	3·763 2813	4·110 3083	3330	
2.920	2224	2373	3·548 2512	3·740 2647	4.097	4-426	
1937	2085	2224	3·536 2355	3·726 2481	4·083 2719	4-410	
1807	1945	2075	3·521 2197	3·710 2315	4.066	4·391 2740	
1677	1805	1926	3.504	3·692 2149	4.046	4·369 2543	
1548	1666	17771	3.484	3.671	4·023 2173	4.346	
1419	1527	1620	3.462	3.648 1817	3-997 1991	4-318 2151	
1290	1388	1481	3-437 1567	3·623 1652	3-967 1809	4·288 1955	
9.0	2.0	8.0	6.0	1.0	1.2	1.4	

CLASS I. (n = 0.025.)

						FOR A D	KPTH OF	FOR A DEPTH OF WATER OF	or 6·0.						
						FOR	Воттом	FOR BOTTOM-WIDTHS	OF						
Fall per thousand.	7.1	179	186	193	200	207	214	122	228	235	242	648	256	263	270
0.03	0·725 787·3	0.727 819·3	0·728 851·3	0·729 883·3	0.730 915·3	0·731 947·3	0·733 . 979·2	0·733 1011	0·734 1043	0·734 1075	0·736 1107	0.736 1139	0.736 1171	0-137 1203	0·738 1235
0.03	0.829 900.3	936.8	0.832 973.3	0.833	0.834	0.835	0.836	0-837 1155	0.838	0.839	0.840	1301	1337	0.842 1374	0.843 1411
0.05	1092	1.00è	1184	1.010	1.012	1.013	# 1-014 1356	1.015	1.016	1.017	1533	1.019	1.019	1.020	1.021
40.0	1·139 1237	1-141	1.143	1.144	1-146	1.148	1537	1-161	1·162 1637	1.163	1.164	1.166	1838	1.167	1.168
0.1	1.319	1.321	1.323	1.325	1.327	1.339	1.330	1-332	1.333	1-334	1.336	1.336	1-33† 2125	1.338	1:339
0.5	1·782 1935	1.786	1.787	1.789	1.791	1.793	1.795	1·797 2480	1.799	1.800	1.802 2714	1.803	1.804	1.805	1.806 3024
0.3	2·149 2334	2.162	2.155	2·167 2616	2.160	2.162	2.164	2990	3084	3177	2·171 3270	3364	2·176 3458	2·176 3551	2·177 3644
0.4	2·463 2675	2·467 2782	2.471	2.474	3106	2·480 3214	3-482	2·485 3430	2-487 3538	2·489 3646	2-491 3752	2·493 8861	3969	2·497 4076	2·499 4183
0.2	2·138 2967	2·737 3086	2·740 3205	2·743 3324	2·746 8444	2·749 3564	2.762 3683	2·755 8702	3822	3942	2·764 4162	2.766 4282	2.768	2.770 4521	2·772 4640

3.024	3.268 5445	3·472 5812	3·676 6153	3·874 6485	124 7104	4-583
3.022	3·251 5305	3.470 5662	3·673 5994	3·871 6318	4.241	4.580
3.020 4802	2·249 5165	3-467	3·670 5835	3.868	4·238 6739	4·677 7276
3.018	3.247	3.466	3.667	3.865	4.236	4.674 7079
3.016 4541	3·244 4885	3.462	3.664	3.862	4-232	6882
3·013 4411	3·241 4745	3-469	3·660 5359	3.859	4·228 6189	4.566 6604
3.010	3·238 4605	3·456 4913	3-667	3.856	4.224	4·562 6486
3.007	3·236 4465	3·453 4763	3.664	8·863 5317	4.220	4.668 6289
3.004	3·232 4325	3·449 4614	3·651 4884	3·849 5150	4·216 5640	4·663
3.001	3·229 4185	3-445 4465	3.647	3.845	4.210	4·548 5895
2-998 3758	3.226	3·441 4315	3·643 4567	3.840	4·205 5274	4·543 5697
2·994 .	3·221 3905	3·437 4165	3·638 4408	3.836	4.200	4·637 5499
2.990 3497	3·217 3765	3·433 4015	3·633 4250	3-830 4482	4.195	4·631 5302
2.986 3367	3-213	3-428	3.628	3.826	4.190	4·525 5105
2·981 3237	3·208 3484	3·423 3717	3934	3.820 4148	4·184 4543	4.619
9.0	2.0	8,0	6.0	1.0	1.2	1.4

(liii)

SECOND CLASS.

RIVERS AND CANALS,

WITH BEDS AND BANKS IN MODERATELY GOOD ORDER IN EVERY RESPECT.

n = 0.030.

CLASS II. (n = 0.030.)

COEFFICIENTS OF MEAN VELOCITY.

FOR VALUES OF R.

Fall per thousand.	0.1	0.5	0.8	0.4	0.2	0.6	0.7	0.8	0.9
0.05	_	_		_	26.5	28·1	29.6	31.0	32.2
0.07		_			27.0	28.5	29.9	31.2	32.3
0.1	15.5	20.0	23.0	25.2	27.3	28.9	30.3	31 · 4	32.4
0.2	16.5	21.0	23.8	26.0	27.8	29 · 2	30.4	31.4	32.4
0.3	17.0	21.3	24 · 2	26.3	28 · 2	29 · 4	30.5	31.5	32.5
0.4	17·2	21.5	24.3	26.4	28.2	29.4	30.5	31 · 5	32.5
0.5	17.3	21.6	24.3	26.5	28.2	29.4	30.6	31.6	32.5
0.6	17.4	21.7	24 · 4	26.5	28.3	29.5	30.7	31.6	32.5
0.7	17.5	21 · 8	24.5	26.6	28.3	29.5	30.7	31.6	32.5
0.8	17.6	21.9	24.6	26.6	28.4	29.6	30.8	31.7	32.5
0.8	17.7	22.0	24.7	26.7	28.4	29.6	30.8	31.7	32.5
1.0	17.7	22.0	24.7	26.7	28.4	29.6	30.8	31.7	32.5

FOR VALUES OF R.

Fall per thousand.	2.6	2.8	3.0	3·2 .	3.4	3.6	3.8	4.0	4.2
0.02	_	_	_	_	_	51.8	52.7	58.5	54.3
0.03	_		_		_	49.6	50.3	51.0	51.7
0.05	43.5	44.8	45.0	45.7	46.4	47.0	47.6	48.1	48.6
0.07	42.6	43.3	44.0	44.7	45.2	45.8	46.2	46.7	47.2
0.1	41.7	42.4	43.0	43.5	44.0	44.5	45.0	45.4	45.8
0.2	40.6	41.1	41.6	42.1	42.5	43.0	43.3	43.7	44.0
0.3	40.2	40.7	41.2	41.6	42.0	42.4	42.8	43.1	43.4
0.4	40.0	40.5	41.0	41.4	41.7	42.2	42.5	42.8	43.1
0.5	89.9	40.3	40.8	41.1	41.5	41.9	42.2	42.5	42.8
0.6	39.7	40.2	40.6	41.0	41.4	41.8	41.9	42.2	42.5
0.7	39.7	40.1	40.5	40.9	41.8	41.6	41.8	42.1	42.4
0.8	39.7	40.1	40.4	40.8	41.2	41.5	41.8	42.1	42.4
0.9	39.7	40.1	40.8	40.7	41-1	41.4	41.7	42.0	42.3
1.0	39.7	40.1	40.3	40.7	41.1	41.4	41.7	42.0	42.3

The coefficients remain unaltered for steeper inclinations.

CLASS II. (n = 0.030.)

COEFFICIENTS OF MEAN VELOCITY.

FOR VALUES OF R.

1.0	1.2	1.4	1.6	1.8	2.0	2.2	2·4	Fall per thousand.
33:3	35.3	36.9	38·2	39 · 4	40.5	41.6	42.6	0.05
33.3	35.2	36.6	37.8	38.9	39.9	40.9	41.8	0.07
33.3	35.0	36.3	37.4	38.5	39 · 4	40.2	41.0	0.1
33.3	34 · 8	36.0	37.0	37.9	38.7	39.4	40.0	0.2
33.3	34 · 7	35.8	36.7	37.6	38.4	39·1	39.7	0.3
33.3	34.7	35.8	36.7	37.5	38.3	39.0	39.5	0.4
33.3	34.7	35.7	36.6	37.4	38·1	38.8	39.4	0.5
33.3	34.7	35.7	36.6	37.4	38·1	38.7	39 · 2	0.6
33.3	34.7	35.7	36.6	37.4	38·1	38.7	39 · 2	0.7
33.3	34.7	35.7	36.6	37.4	38·1	38.7	39 · 2	0.8
33.3	34.7	35.7	36.6	37.4	38·1	38.7	39.2	0.9
33.3	34.7	35.7	36.6	37.4	38·1	38.7	39.2	1.0

FOR VALUES OF R.

4.4	4.6	4.8	5.0	5.2	5·4	5.6	5.8	6.0	Fall per thousand.
55·1	55.8	56.5	57.2	57.8	58.4	59.0	59.5	60.0	0.02
52.3	52 9	53.5	54 · 1	54.7	55.2	55.6	56.0	56•4	0.03
49.1	49.6	50 · 1	50·6	51.1	51.6	52.1	52.4	52.5	0.05
47.6	48.0	48-4	48.8	49 · 2	49.6	49.9	50 • 2	50.5	0.07
46.2	46.6	46.9	47.2	47.5	47.8	48.1	48.4	48.6	0.1
44.3	44.6	44.9	45.2	45.5	45.8	46.0	46.2	46.4	0.2
43.7	40.0	44.3	44.5	44.7	44.9	45.1	45.3	45.5	0.3
43.4	43.8	44.0	44.2	44.4	44·6	44.8	45.0	45.2	0.4
43.1	43.4	43.7	43.9	44.1	44.3	44.5	44.7	44.9	0.5
42.8	43.1	43.4	43.6	43.8	44.0	44.2	44 · 4	44.6	0.6
42.7	43.0	43.2	43.4	43.6	43.8	44.0	44.2	44.4	0.7
42.7	42.9	43.1	43.3	48.5	43.7	43.9	44.1	44.3	0.8
42.6	42.8	43.0	43.2	43.4	43.6	43.8	44.0	44.2	0.9
42.6	42.8	43.0	43.2	43.4	43.6	43.8	44.0	44.2	1.0

The coefficients remain unaltered for steeper inclinations.

CLASS II. (n = 0.030.)

FOR A DEPTH OF WATER OF 0.2. FOR BOTTOM-WIDTHS OF

Fall per thousand.	0.2	8.0	0.4	0.5	9.0	2.0	8.0	6.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	
0.1	0.003	9.000	0.00 C	0.001	0.011	0.018	0.067	0.069	0.010	0.072	0.025	0.029	0.034	0.089	0.079	
0.5	0.008	0.084	0.012	0.092 0.014	0.016	0.019	0.03	0.024	0.027	0.106	0.100	0.043	0.020	0.058	0.066	
. 0	0.100	0.106	0.015	0·116 0·018	0.119	0.024	0.126	0.127	0.139	0.089	0.136	0.139	0.062	0.072	0.147	•
4.0	0.116	0.123	0.018	0.134	0.024	0.028	0.146	0.035	0.150	0.046	0.158	0.162	0.166	0.084	0.096	•
0.5	0·131 0·013	0.138 0.016	0.020	0.150	0.028	0.160	0.036	0.040	0.169	0.051	0.059	0·182 0·069	0.080	0.093	0·192 0·108	
9.0	0.014	0·152 0·018	0.159	0.166	0.030	0.035	0.180	0.043	0.048	0.056	0·196 0·066	0.500	0.204	0.208	0.212 0.119	
2.0	0·166 0·016	0.166	0.173	0.180	0.033	0.190	0.194	0.198	0.052	0.060	0.070	0.082	0.095	0.226	0·230 0·129	
8.0	0·168 0·017	0.021	0.186	0.031	0.036	0.00	0.209	0.213	0.056	0.065	0.076	0.089	0.103	0.243	0·247 0·138	
6.0	0·179 0·018	0.023	0.028	0.033	0.038	0.044	0.049	0.227	0.060	0.037	0.082	0.095	0.110	0.269	0.263 0.147	
	_	_	_	_		•	•				-		_			

0.019	0.024	0.08	0.034	0.224	0.530	0.051	0.057	0.063	0.074	0.086	0.100	0.268 0.116	0.273	0.277
0.201	0.218	0.228	0.238	0.245	0.252	0.267	0.262	0.267	0.274	0.281	0.388	0.293	0.398	0.303
0.021	97.0	0.032	0.038	0.044	00.0	0.056	0.962	690.0	0.080	0.093	0.109	0.127	0.147	0.170
0.022	0.028	0.034	0.041	0.048	0.055	0.061	0.068	0.075	0.087	0.102	0.118	0.137	0.159	0.184
0.338	0.252	0.364	0.275	0.283	0.391	0.297	0.303	908-0	0.316	0.324	0.333	0.338	0.344	0.360
0.024	0.030	0.037	0.044	0.021	0.028	0.065	0.072	080.0	0.093	0.108	0.126	0.146	0.170	961.0
0.354	0.267	0.380	0.393	0.301	0.308	0.316	0.331	0.336	0.338	0.344	0.362	0.369	0.366	0.372
0.025	0.032	0.039	0.046	0.054	0.062	690.0	0.077	0.085	0.100	0.116	0.134	0.155	0.180	0.208
0.267	0.383	0.396	0.308	0.317	0.326	0.332	0.338	0.344	0.363	0.362	0.371	0.378	0.385	0.393
0.027	0.034	0.041	0.049	0.057	0.065	0.073	0.081	060.0	0.105	0.122	0.141	0.163	0.190	0.220
0.380	0.296	0.311	0.323	0.333	0.342	0.349	0.355	0.361	0.371	0.380	0.389	0.397	0.404	0.411
0.028	0.036	0.044	0.025	090.0	890.0	9.00	0.085	9.004	0.109	0.127	0.148	0.172	0.199	0.230
0.293	0.308	0.324	0.337	0.347	0.367	0.365	0.372	0.377	0.387	0.397	0.404	0.415	0.433	0.429
0.029	0.037	0.045	0.023	0.062	0.071	080.0	680.0	860.0	0.114	0.133	0.155	0.180	0.508	0.240
0.308	0.323	958.0	0.351	0.363	0.371	0.378	0.386	0.393	0.403	0.413	0.423	0.433	0.440	0.447
0.030	0.038	0.047	0.026	0.065	0.074	0.083	0.092	0.102	0.118	0.137	0.160	0.186	0.216	0.250
0.316	0.334	0.360	0.364	0.376	0.382	0.393	0.400	0.401	0.418	0.429	0.439	0.448	0.458	0.463
0.032	0.041	0.020	0.029	890.0	0.077	980.0	960.0	901.0	0.123	0.143	0.167	0.193	0.224	0.259
0.327	0.347	0.364	0.377	0.388	0.399	0.407	0.414	0.431	0.433	0.444	0.455	0.464	0.472	0.480
0.033	0.042	0.021	090.0	0.070	080.0	680.0	660.0	0.109	0.127	0.148	0.173	0.501	0.233	0.269

)

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 0.4.

6	
Воттом-Widths	
FOR	

Fall per thousand.	0.4	9.0	8.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	8.0	3.5	4.0	4.5	2.0
	960.0	0.102	0.104	0-111	0.115	0.119	0.122	0.124	0.136	0.130	0.134	0.137	0.139	0.141	0.143
0.1	0.038	0.049	090.0	0.071	0.083	0.095	0.107	0.119	0.131	0.162	0.193	0.224	0.255	0.286	0.318
	0.143	0.150	0.158	0.164	0.170	0.175	0.179	0.182	0.185	161.0	0.196	0.300	0.203	0.306	0.308
0.5	0.057	0.078	0.089	901.0	0.123	0.140	0.157	0.174	0.192	0.237	0.282	0.827	0.373	0.419	0.466
	0.177	0.187	0.197	0.304	0.211	0.217	0.223	0.226	0.230	122.0	0.243	0.247	0.321	0.264	0.267
0.3	0.071	0.091	0.111	0.132	0.153	0.174	0.195	0.217	0.239	0.294	0.320	0.406	0.462	0.519	0.576
	0.206	0.218	0.229	0.238	0.246	0.252	0.258	0.363	0.267	0.275	0.283	0.287	0.291	. 0.295	0.298
7. 0	0.082	0.106	0.130	0.154	0.178	0.205	0.227	0.252	0.278	0.342	0.406	0.470	0.535	0.601	199.0
	0.227	0.246	0.357	0.266	0.274	0.281	0.288	0.384	0.399	0.308	0.316	0.333	0.327	0.331	0.336
	0.091	0.118	0.145	0.172	0.199	0.226	0.254	0.282	0.311	0.383	0.455	0.528	0.602	9.90	0.750
	0.253	0.270	0.282	0.282	0.303	0.310	0.317	0.323	0.327	0.337	0.347	0.364	0.369	0.363	198.0
9.0	101.0	0.130	0.159	0.188	0.218	0.248	0.278	0.309	0.340	0.450	0.200	0.280	099.0	0.741	0.822
	0.275	0.291	908-0	0.317	0.327	0.336	0.344	0.320	998.0	998.0	978-0	0.384	0.388	0.384	0.398
2.0	0.110	0.141	0.173	0.202	0.237	0.269	0.302	0.336	0.370	0.456	0.542	0.629	0.716	90.804	0.892
	0.294	0.311	0.327	0.339	0.320	0.328	998-0	0.375	0.381	0.392	0.403	0.410	0.418	0.423	0.427
8.0 0	0.118	0.151	0.185	0.219	0.253	0.588	0.323	0.359	968-0	0.488	0.280	9.674	992.0	0.862	0.957
	118.0	0.339	0.346	0.369	0.371	0.381	0.390	0.397	0.404	0.418	0.427	0.436	0.443	0.448	0.466
	0.124	0.160	0.196	0.232	0.268	0.302	0.343	0.381	0.420	0.517	0.615	0.714	0.813	0.916	1.019
-				-!			-		-	-		_	-	-	

					(lix)					
0.479	0.526 1.176	0.567 1.270	0.606	0.643	0.678 1.519	0·711 1·592	0·743 1·662	0·773 1·731	0·803 1·799	1.830	
0.965	0.518 1.058	0.560	0.599	0.636	0.670	0.701	0.134	0.763 1.556	0·793 1·618	1.819	
0.466	0.940	0.552 1.016	1.087	0.627 1.154	0.661 1.216	0.691	0.724	0·752 1·383	0.782	0.807	
0.459	0.503	0.830	0.953	1.012	0.661	0.680	0·712 1·167	0.740	0.769	0·796 1·302	,
0.460	0.493	0.532	0.820	0.604	0.916	0.961	1.004	0.725	0.763	0.780	
0.545	0.480	0.518	0.689	0.731	0.770	0.808	0.843	0.106	0.911	0.943	
0.426	0.485	0.524	0.538	0.594	0.602	0.632	0.685	0.686	0.740	0.737 0.766	
0.408	0.440	0.496	0.508	0.589	0.568	0.596	0.621	0.678	0.100	0.695	
0.361	0.396	0.428	0.520	0.552	0.510	0.610	0.559	0.582	0.604	0.625	•
0.401	0.352	0.381	0.406	0.539	0.454	0.596	0.498	0.518	0.538	0.556	
0.391	0.310	0.335	0.495	0.879	0.399	0.419	0.438	0.456	0.656	0.488	
0.245	0.268	0.230	0.309	0.508	0.345	0.362	0.378	0.394	0.409	0.422	
0.365	0.400	0.245	0.261	0.490	0.516	0.306	0.819	0.333	0.345	0.357	
0.347	0.380	0.200	0.213	0.226	0.239	0.516	0.261	0.560	0.282	0.292	
0.328	0.359	0.389	0.416	0.176	0.464	0.195	0.509	0.530	0.550	0.228	
1.0	1.2	1.4	1.6	1.8	2.0	5.5	5.4	5.6	8.8	9.0	

CLASS II. (n = 0.030.)

FOR A DEPTH OF WATER OF 0.6. FOR BOTTOM-WIDTHS OF

			(1	x)					
5.2	0.194	0·282 1·081	0.348	0.404	0.455	0.496	0.538 2.059	0.570 2.189	0.612 2.342
2.0	0.191	0.984	0.343	0·398 1·409	0.448 1.586	0.489 1.731	0.530	1.997	0.603
4.5	0·188 0·609	0.274 0.887	0.338 1.096	0.392	0·441 1·429	0·482 1·562	0.522 1.694	1.805	0.594
4.0	0·185 0·544	0.269	0.333 0.979	0.386 1·134	0.434	0.474	0.514	0.650	0.585
3.5	0.182	0.264	0.327	0.379	0.426	0.466	0.506	0.639	0.575 1.518
3.0	0·178 0·416	0.258	0.319	0·370 0·867	0.975	0.454	0.493	0.527	0.561
2.5	0·173	0·252 0·512	0.311	0·361 0·735	0.405	0.903	0.480	0.513 1.047	0.546
2.0	0.289	0.242	0.298 0.519	0.347	0.391	0.426	0.462	0.496	0.526
1.8	0.163	0.384	0.293	0.340	0.382	0.418 0.678	0·463 0·735	0.485	0.516
1.6	0.160	0.332	0.288	0.333	0.374	0.410 0.615	0.444	0.475	0.508
1.4	0.156	0.313	0.389	0.326	0.365	0.401 0.554	0.598	0.465	0.495
1.2	0·151 0·192	0·221 0·278	0.346	0.317	0.355	0.390	0.532	0.453	0.481
1.0	0.146	0.215	0.304	0.307	0.344	0.378	0.410	0.501	0.467
8.0	0.140	0.206	0.262	0.303	0.331	0.363	0.403	0.433	0.450
9.0	0.134	0·196 0·176	0.244	0.255	0.317	0.348	0.378 0.340	0.406	0.432
Fall per thousand.	0.1	0.5	0.3	0.4	0.5	9.0	2.0	8.0	6.0

,	0.455	0.474	0.493	0.207	0.522	0.233	0.244	0.555	0.576	0.283	0.607	119.0	0.627	9.99	0.645
0.1	0.409	0.485	0.562	0.640	0.720	008.0	0.882	996.0	1.177	1.389	1.602	1.816	2.032	2.251	2.471
	0.498	0.230	0.539	999.0	0.573	0.584	969-0	809.0	0.630	0.648	999.0	0.678	0.690	0.103	0.714
7. I	0.448	0.532	0.617	0.702	0.788	928.0	996.0	1.058	1.287	1.519	1.755	1.994	2.237	2.485	2.735
	0.538	0.260	0.582	0.80	0.618	0.631	0.644	0.657	189.0	0.700	0.718	0.130	0.741	0.752	0.763
1.4	0.484	0.574	999.0	694.0	0.852	0.946	1.043	1.143	1.392	1.643	1.895	2.148	2.404	2.662	2.922
,	9.226	0.600	0.623	0.641	099-0	149.0	889.0	0.102	0.728	0.748	191.0	0.180	0.792	0.804	0.816
9.1	0.518	0.613	0.710	608.0	0.909	1.011	1.115	1.221	1.487	1.755	2.022	2.297	2.571	2.846	3.121
,	0.610	0.635	099.0	0.680	0.700	0.715	0.730	0.745	0.773	0.793	0.814	0.838	0.841	998.0	198.0
». T	0.549	0.649	0.751	0.855	0.965	1.072	1.184	1.296	1.577	1.861	2.149	2.439	2.731	3.023	3.316
9	0.643	0.670	969.0	111.0	0.738	0.754	0.769	0.784	0.814	0.836	0.828	0.872	988.0	668.0	0.913
0.7	0.579	0.685	0.793	0.904	1.017	1.131	1.247	1.364	1.662	1.962	2.265	2.569	2.875	3.182	3.490
o o	0.675	0.703	0.130	0.752	9.774	161.0	108.0	0.833	0.824	0.877	0.60	916.0	0.838	0.943	196.0
N N	0.607	0.717	0.830	0.946	1.065	1.186	1.309	1.432	1.744	2.029	2.376	2.692	3.016	3.338	3.661
7.6	0.105	0.734	0.762	984.0	608.0	0.826	0.843	0.860	0.883	0.816	0.60	996-0	0.810	0.986	1.000
#	0.634	0.751	0.870	0.991	1.114	1.239	1.367	1.496	1.821	2.149	2.481	2.815	3.150	3.486	3.823
9.	0.734	0.765	0.194	0.819	0.843	0.860	118.0	968.0	0.928	0.847	878.0	766.0	1.010	1.025	1.040
9	199.0	0.783	0.907	1.033	1.161	1.290	1.323	1.557	1.897	2.239	2.285	2.927	8.276	3.628	3.982
0.6	0.761	0.793	0.823	0.848	0.873	0.892	0.6.0	0.928	0.963	066.0	1.015	1.032	1.048	1.084	1.080
0	0.685	0.812	0.941	1.072	1.205	1.338	1.475	1.614	1.966	2.321	2.680	3.041	3.403	3.766	4.130
0.0	0.788	0.820	0.852	0.878	0.904	0.923	0.843	196.0	166.0	1.025	1.051	1.068	1.085	1.101	1.117
.	0.709	0.840	0.973	1.108	1.245	1.384	1.527	1.672	2.038	2.406	2.775	3.146	3.520	3.897	4.277
										-					

)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND. CLASS II. (n = 0.030.)

FOR A DEPTH OF WATER OF 0.8.

6
DTH
cW-
OTT
Ä
F

	1.0	1.2	1.4	1.6	1.8	2.0	2.2	3.0	3.2	4.0	4.2	2.0	5.5	0.9	6.5
0.05	0·122 0·215	0.126	0.129	0.298	0.136	0.138	0.143	0.496	0.568	0.154	0.157 0.717	0.160	0.869	0.945	0.166
0.1	0.310	0.182	0.390	0.430	0.196	0.199	0.206	0.705	0.820	0.926	0.226	0.230	0.233	0.236	0.238
0.5	0.255	0.263	0.271	0.277	0.282	0.735	0.297	0.307	0.314	0.321 1.331	0.326	0.330	0.336	0.339	0.342 2·106
8.0 0	0.316	0.326	0.698	0.343	0.839	0.355	1.091	0.379	0.388	0.396	0.402	0.408	0.413	0.418 2.402	0-421 2-593
0.4	0.367	0.378	908.0	0.396	0.403	0.410	0.424 1.260	0.438	0.449	0.457	0.465	0.473 2.341	0.478	0.483	0.487 3.000
0.5	0.410	0.422	0.901	0.992	0.461	0.459	1.408	0.489	0.501	0.610	0.519	0.527 2.614	0.634	0.540 3.106	0.544 3.351
9.0	0.451	0.892	0.990	0.486	0.495	1.290	0.621	0.638 1.810	0.551	0.561	0.671	0.679 2.871	0.587 3.142	0.693 3.413	0.598 3.684
0.7	0.487	0.501	1.068	0.626	0.636	0.646	0.664	0.681	0.595	0.606	0.617 2.812	0.626 3.104	0.634 3.394	0.640 3.684	0.648 3.975
8.0	0.919	0.538	0.663	0.565	0.676	0.585	0.e06 1.798	0.623 2.099	0.638	0.660	0.662 3.021	0.672 3.333	0.680 3.645	0.687 3.957	0.693 4.269

					(12	riii)					
0·735 4·528	0·774 4·768	0.848 5.225	0.917 5.648	6.037	1.040	1.096 6.752	1.160	1.200	1.248	1-296 7-984	1.341
0·729 4·193	0·167 4·421	0.841	0.909 5.234	0.971 5.592	1.031	1.086	1.140	1.190	1.238	1.286	1.331
0.721 3.860	0·760 4·073	0.832 4.459	4.819	0.961 5.148	1.020	1.075	1.128	1.178	1.226	1.272	1.319
9.530	0.761 3.725	0.822	0.888 4.404	0.949 4.706	1.007	1.062	1.114	1.163	1.211	1.257	1.304
0·701 3·200	0.740 3.377	0.810 3.694	0.876 3.989	0.935 4.266	0.992	1.046	1.097	1.145	1.193	1.238	1.286
0.689	0.727 3.029	0.796 3.313	0.860	0.919 3.828	0.975 4.057	1.028 4.281	1.078	1·126 4·692	1.173	1.216	1.264
0.676	0·113 2·681	0.780	0.842 3·167	0.902 3.392	0.965 3.591	1.008 3.791	1.068 3.978	1·106 4·158	1.150	1.194	1.238
0.661	0.696	0.763 2.560	0.822	0.881 2.960	0.934 3.133	0.985 3.304	1.033 3.469	1.079 3.626	1·122 3·772	1·165 3·915	1.208
0.642	0.676 2.000	0.740 2.193	0·799 2·366	0.856 2.534	0.907	0.956 2.828	1.002	3.103	1.090	1·130 3·350	3.481
0.620	0.662 1.669	0·716 1·833	0.772	0.826 2.114	0.877	0.923	0.969	1.012	1.054	1.092	1.136
0.611	0.642 1.540	0.705 1.691	0.760	0.813 1.951	0.862	0.908	0.963	0.886	1.036	1.076 2.580	1.116
0.599	0.630 1.411	0.692	0.746	0.798	0.846	0.892	0.936 2.097	0.978 2.191	1.017	1.056	1.094
0.586 1.219	0.618 1.286	0.677 1.408	0·731 1·520	0.782	0.829	0.874	0.916 1.906	0.958 1.991	0.997	1.034	1.070
1.097	0.605	0.660	0.712 1.368	0.762	0.807	0.866	0.892	0.933 1.792	0.970	1.934	1.043
0.975	0.689 1.036	0.640	0.691 1.216	0.739	0·783 1·378	0.834 1.468	0.866	0.905	0.942	1.719	1.011
6.0	1.0	1.2	1.4	1.6	1.8	2.0	5.5	4.2	2.6	8.2	3.0

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

Fall per thousand.

0.02

0.1

0.5

0.3

1.0

0.5

9.0

0.7

				(1	xiv))				•	
	0.6	0.202	0.289 8·042	0.400 4.301	0.503	0.880	6.094	6.819	0·113 7·480	0.770 8.080	0.824 8.660
	2.8	0-201 2-010	0.288 2.880	0.407	0.200	0.677	5.770	6.460	0.708 7.080	0.7650	0.820 8.200
	0.8	0.300	0.286 2.718	9.888	0.467	0.673	5.445	6.101	0.703 6.680	0.760	0.815 7.740
Ġ	2.2	0.198	0.284 2.556	0.401	0-493	0.569	5.121	5.748	0.688	0.755 6.793	0.809
DISCHARGE PER SECOND. OF 1.0.	0.2	0·196 1·668	0·282 2·894	0.398	0.489	707 4	4.798	5.874	0.693 5.888	0.749 6.364	0.803 6.820
CON PER	6.5	0.194	0.279	0.394	0.070	0.869	4.472	5.015	5.496	0.743	0.795 6.361
DISCHAR OF 1.0.	0.9	0.192	0.276 2.072	0.390	0.479	0.663	4.150	4.658	5.103	0.735 5.513	0.788 5.910
	5.2	0.190	0.273	0.386	0.474	0.547	3.829	4.298	0.673 4.711	0.727 5.090	0.780 5.460
D QUANTITIES OF A DEPTH OF WATER FOR BOTTOM-WIDTHS	2.0	0·187 1·316	0.269	0.381	0.468	0.640	3.509	3.940	0.665 4.320	0.718 4.668	0.770 5.007
MEAN VELOCITIES AND QUANTITIES OF FOR A DEPTH OF WATER FOR BOTTOM-WIDTH	4.5	0.184	0.265	0.375	0.461	0.632	3.192	3.582	0.655 3.930	0.708 4.247	0.759
A THE STATE OF THE	4.0	0.992	0.260	0.368	0.463	0.623	2.875	3.225	0.644 3.542	0.696 3.826	0.744 4.102
	3.5	0.176	0.264	0.361	0.443	213.0	2.560	2.870	0·631 3·155	0.681 3.405	0.730 8.650
MEA	3.0	0.171	0.248	0.351	0.433	0.009.0	2.248	2.517	0.615	0.663	0.714 8.208
	2.2	0.664	0.240	0.341	0.421	987.0	1.944	2.172	0.597	0.643	0.694 2.776
	2.0	0.159	0.231 0.818	0.330	0.401	0.410	1.644	1.832	0.577 2.008	v·623 2·160	0.668 2.854

					(1	(AX	•	•			
9.200	0.921	1.009	1,089 11·45	1.165	1.236	1.302 18·68	1.366	1.428 15·01	1.486 15·59	1.540 16·19	1.696 16·76
0.871	9.170	1.004	1.084	1.169	1.220	1.296	1.359	1.431	1.477	1.633 15.83	1.687 15·87
6.865 8.220	0.911 8.657	9.478	1.078	10.94	1.221	1.289	1.361	1.412	1.469	1.626	1.578 14.98
0.859	0.906 8.145	0.991 8.919	1.070 9.630	1.144	1·213 10·91	1.280	1.341	1.402	13.12	1.616	1.567
0.852	0.898	0.983 8·359	1.062 9.026	1·136 9·645	1.204	1.269	1.331	1.391	1.447	1.503	1.665
0.844	0·890 7·120	0.975	1.063	1.126	9.544	10.06	1.319	1.378	11.47	11.90	1-640
0.835	0.880 6.611	0.965	1.043	1.114	1.181	1.245	1.306	1.364	1.420	11.05	1.526
0.827 5.789	0.872 6.104	0.966	1.081 7.217	1.103	1·169 8·183	1.283	1.282	1.350 9.450	1.405	1.468	1.509
0.817 5.309	0.860 5.598	0.943 6·129	1.018	1.088	1.164	1·218 7·915	1.277	1.334	1.388	1.440	1.486
0.805	0.849 5.094	0.929 5.574	1.004	1.071 6·426	1·137 6·822	1.200	1.260	1.316 7.896	1.369	1.421	1.471
0·792 4·352	0.834 4.591	0.913	0.987 5.426	1.063 5.693	1.117	1.180	1.237 6.803	1.293	1.345	1.396	1.446
0·775 3·875	0.818 4.090	0.894	0.966 4·830	1.033 5.165	1.096	1.155	1.211	1.265	1.318	1-367 6-835	7.080
0.758 3.404	0.798 3.594	0.877 3.930	0.944	1.010	1.071	1.129	1.184	1.237 5.566	1.288	1.336 6.012	1.383
0.736 2.944	0.776 3.104	0.850 3.400	0.918 3.672	0.982 3.928	1.048	1.097	1.151	1·202 4·808	1.261	1.299	1.344
0.709	0.747	0.819	0.884 3·105	3.325	1.003 3.581	1.057	1·100 3·881	1.158	1.205	1.261	1.295
6.0	1.0	1.2	1.4	1.6	1.8	2.0	5.5	2.4	5.6	64 66	3.0

CLASS II. (n = 0.30.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.2.

FOR BOTTOM-WIDTES OF

Fall per thousand.	3.5	4.0	4.5	2.0	5.5	0.9	6.5	0.2	7.5	8.0	8.5	0.6	9.2	10	11
0.05	0·198 1·262	0.203	0.207	0.211	0.214	0.217 2.031	0.230 2.191	0.233	0.226	0.237 2.669	0.239 2.831	0.230 2.980	0-232 3-145	0.234 3.313	0.236 3.625
0.1	0·284 1·806	0.291	0.296	0.301	0·306 2·672	0.309	0.313 3.117	0.316 3.337	0.318 3.549	0.331 3.77.5	0.523 3.992	0.325 4.212	0.338	0.331 4.687	0.383 5·114
0.5	0·401 2·550	0·411 2·860	0.419 8·167	0.426 3.468	3.776	4.091	0.443 4.402	0.446 4·710	0.450 5.022	5.839	0.467 5.648	0.460	0.444	0.468	0.473 7.249
0.3	0·493 3·135	0.505 3.515	3.886	0.522 4.260	0.630 4.643	0.637 5.027	0.643 5.409	0.548 5.786	0.562 6.160	0.557 6.551	0.661	0.566	0.510	0.574 8.128	0.578 8.878
9.4	0.569 3.619	0.583 4.058	0.594 4.491	0.603	0.612 5.860	0.620 5.804	0.627 6.245	0.632	0.637 7·109	0.643	879.0	0.663 8·463	0.668 8·923	9.889	0.667 10·24
0.5	0.639 4.064	0.652	0.664	0.676 5.516	0.684	6.486	0.701	0.101	0·112 7·945	0·718 8·443	0.724 8.950	0.730 9.460	0.736 9.979	10.49	0.746 11.46
9.0	0·100 4·452	0.714 4.969	0.727 5.497	6.021	0.749	0.759	0.768	0.774 8.178	0.780 8·706	0.787 9.256	0.783 9.802	0.799 10.35	10.91	0.811 11.48	0.817 12·55
1.0	0.756 4.808	0.172 5.373	0.786	0.798 6.512	980.1	0.820	0.830 8.266	0.837 8.839	0.843 9.408	9.996	0.867 10.59	0.863 11·18	0.870	0.877	0.883 13·56
8.0	0.811 5.158	0.827 5.756	0.840 6.350	0.863	0.865	0.876 8.200	0.887 8.835	9.441	10.00	0.908 10.68	0.916 11.31	0.922 11.95	0.928	0.934 13·22	0.943
-		_	_	_	_	_		_	_	_	_	_	_		

					(r	kvii)					
1.000	1.054	17.71	1.247	1.333	1.414	1.491	1.663 24·00	1.633 25.08	1.700	1.764 27.09	1.826
0.991	1.044	1.144	1.237	1.321	1.403	1.479	1.551	1.619	1.686	1.766	1.812
0.985 13·86	1.038 14.08	1·137 · 15·37	1.229	1.313	18.91	19.92	1.541	1.609	1.675	1.740	1.800
0.979	1.032 18·37	1·130 14·64	1·221 15·82	1·306 16·91	1·386 17·95	1.459	1.631 19·84	1.699	1.664	1.727 22.38	1·787 23·16
0.972 12.02	1.024	1·122 13·82	1.212	1·296 16·01	1.374	1.448	1.619	19.60	1.661	1.713 21.18	1.773 21.92
0.965	11.96	13.10	1.202	1.285	1.363	1.436	1.507	1.673	1.638	19.98	1.759 20.69
10.68	11.26	12.28	1.192	1.274	1.361	1424	1.494	1.560	1.624	1.685	1.746
0.949	1.001	1.096 11.57	1.183	1.265	1.341	14.98	1.483 15·66	1.549	1.612	1.673	18.29
0.941	0.992 9.881	10.82	11.69	1.265	1.331	1.403	14.63	1.637	1.599	1.660	17·18
0.830	0.980 9·173	10.04	1.160	1.240	1.316	1.387	1.463	1.518	1.580	1.640	1.697 15.88
0.917 8.033	0.967 8.470	1.069 9.277	1.144	1·226 10·73	1·298 11·37	11.99	1-434 12-57	13.13	1.559 13.67	1.618 14·18	1.676
0.905	0.953 7.777	1.046	1·128 9·205	1.208	10.44	1.349	11.54	12.06	1.538	1.586	1.662
0.891	0.839	1.029	1.111	1.188	1.260 9.526	1.338	1.393	11.00	1.514	1.672	12.30
6.111	0.925 6.437	1.013	1.095	1·170 8·143	1.241	1.308	1.372 9.550	1.433 9.975	1:492	1.548	11.15
0.860	0.906 5.762	0.992 6.310	1.072 6.817	1.146	1.216	1·281 8·147	1.344 8.549	1.404	1.461	1.516 9.643	9.979
6.0	1.0	1.2	1.4	1.6	1.8	2.0	5.5	2.4	5.6	8.	3.0

second.	10 11 12 18 14	0.300 0.363 0.366 0.370 4.405 4.824 5.250 5.665 6.086	6.183 6.767 7.864 7.969 8.564	0-513 0-516 0-523 0-528 0-532 8-690 9-500 10-32 11-16 11-99	0-629 0-638 0-647 0-658 0-657 10-65 11-70 12-77 13-79 14-81	0.726 0.733 0.740 0.747 0.763 12.30 13.46 14.63 15.80 16.97	0.812 0.820 0.828 0.841 13.75 15.05 16.35 17.65 18.95	0.889 0.888 0.907 0.915 0.923 15.06 16.49 17.92 19.85 20.78
BGH P	9.5	0.258 4·190	6.363 5.895	0.510 8.283	0.626 10.15	0.723 11.72	0.807 13·10	0.883 14.35
Discharge per of 1.4.	0.6	0.256 3.978	0.360 5.595	7.880	9.649	0.717 11.14	0.802	0.877 13.64
WATER	8.5	0.263 3.754	0.367 5.298	0.508 7.465	9.141	0.712 10.56	0.796 11.81	0.871 12.93
D QUARTITIES OF A DEPTH OF WATER FOR BOTTOM-WIDTHS	0.8	0.261 3.549	0.354 5.006	7.055	0.611 8.640	9.984	0.789	0.864 12.22
S AND QUARTITIES OF DISCH. FOR A DEFIE OF WATER OF 1.4. FOR BOTTOM-WINTER OF	2.2	0.249 8·847	0.351 4.717	9.639	0.606 8.145	9.408	10.27	0.867 11.51
AOUTURE I	0.2	0.246 .3·184	0.348 4.433	6.243	0.600	0.693 8.829	9.874	0.848
MEAN VELOCITIES AND QUANTITIES OF FOR A DEFTE OF WATER FOR BOTTOM-WITHE	8.5	0.243	0.344 4.142	5.840	0.594	0.686	9.234	0.839
Ms	0.9	0.240	0.340 3.856	0.480 5.443	999-9	0.679 7.700	8.606	0.831
	5.2	0.237 2.522	0.336 3.565	0.475 5:054	6.182	7.140	7.980	0.822 8.746
					- 10		-	

9.08

2.0

Fall per thousand.

3.290

0.1

0.331

0.468 4.652

0.2

0.673 5.695

9

6.580

4.0

0.740

0.5

0.662

7.355

lxviii

)

38.38

22.88

19.08

17.38

1.026

1.018 15.74

1.006 13.95

> 086.0 12.48

096.0 10.89

6.676

10.10

9.307

8.0

14.92

1.086

22.45

8.8

19.33 1.047 20.68

17.80 1.037

16.28

15.49 1.020 16.56

14·72 948

> 13.19 866.0 14.10

> 12.43 686.0 13.29

:: 88 0.917

> 8 9 9 0.970 11.68

10.19 668.0

9.449

869.8 986.0

6. 6. 6.

0.979

0.820

<u>\$</u>

. 9. 98. 9.

. 7

9.88

0.938

98.0

988.0

9.878

0:7

8.025 0.810

9.0

(

(*) = 0.20

ULABB 11.

6.0	0.983 9.870	1.006	1.018	1.029	1.039	1.049	1.068 14.96	1.067	1.075	1.082.	1.089	1.101	21.94	1.120	1·12 9 25·44
1.0	1.046	1.061	1.073	1.085	13.97	1.106	11.116	1·126 16·69	1.133	18.53	1.148	1.160	1·171 23·13	1.181	1.190 26.82
1.2	11.39	12.36	1.176	1.188	1.200	1·212 16·29	1.222	1.232	1.241	1.246	1.267	1.270	1.282	1.293	1.304
1.4	1.238 12.30	1.265	1.270	1.284	1.297	1.309	1.320	1.831	1.340	1.348	1.368 23.00	1.372 25.18	1.386	1.397	1.408 31.73
1.6	1.323 13·15	1·342 14·27	1.358	1.372	1.386	1.399	117.11	1.423	1.433	1.443	1.452 24.60	1.467	1.481	1.493	1.506 33.92
1.8	13.96	1.423	16.33	1.466	1.470	19.94	1.497 21·16	1.510	1.520	1.630	1.640	1.566	1.671	1.586 33.57	1.600 36.07
2.0	11479	1.500	1.518	1.634	1.549	1.564	1.578	1.591	1.602	1.618 26·19	1.623	1.639	1.666	1.669	1.683 37·93
2.2	1.552	1.574	1.593	1.609	1.625	1.641	1.665	1.669	1.680	1.691	1.702	31.56	1.736	1.761	1.766 39.78
7.7	1.621	17.46	18.82	1.678	1.696 21.62	1.714	1.729	1.743	1.766	1.767 28.70	1.778	1.796	1.814	1.828	1:843 41:54
9.8	1.687	18.20	1.731	1.749	1.767	1.784	1.800	1.814	1.827	1.839	1.851	1.870	1.888	1.904	1.919
8.	1.751	1.775 18.88	1.796 20.36	1.816	1.833 23.37	1.861	1.867	1.883	1.886	1.908 30.99	1.920	1.940	1.969	1.976	1.983 44.90
3.0	1.814	1.838	1.860	1.879 22.64	1.898	1.916	1.933 27.33	1.949	1.962	1.976 32.08	i-988 33·67	36.86	2.028 40.05	3.045	2·061 46·45

CLASS II. (n = 0.30.)

MEAN VELOCITIES AND QUANTITIES OF DISCRARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.6. FOR BOTTOM-WIDTHS OF

													-		-	
all per ousand.	0.2	2.2	8.0	8.5	0.6	9.2	10	п	12	13	14	15	16	17	18	
0.05	0.269 4.046	0.272	0.276	0.278	0.280	0.282	0.284	0.288	6.705	0.293	0.296	0.298 8·296	0.300 8.832	0.302	0.304	
0.1	0.378 5.685	6.053	0.385	0.388	0.391	0.394	0.397	0.401 8.598	0.406 9.330	0.409	0.413	0.416	0.419	0-421 13·06	0·423 13·81	
0.5	0.631 7.986	0.536	0.541	0.545 9.504	10.03	0.654	0.558	0.565	0.570 13·13	0.675	0.579	0.583	0.687	18.91	0.595 19·42	•
0.3	0.660	0.666	0.661	0.666	0.671	0.676 12.86	0.680	0.688 14·74	15.99	0.700	0.706 18·50	19.77	0.716 21.04	0.720 22.32	0·723 23·60	•
0.4	0.761 11.29	0.758	0.764 12.71	0.769	0.775	0·780 14·85	0.786 15.57	17.02	0.802	0.808 19.98	0.816 21.38	0.823 22.84	0.826 24·30	0.830 25.76	0·834 27·22	
0.2	0.837 12.59	0.842 13.34	0.850	0.858 14.94	0.864 15.74	0.870	0.875 17·36	0.885 18·97	0.893	0.901	0.909	0.916 25·50	0.922 27·15	0.928 28·80	0.933 30.45	
9.0	18.79	0.923	0.932	0.940 16·38	0.947	0.953 18·14	0.969	0.970 20·79	0.979	0.988	0.996	1.004	1.010	1.016 81.55	1·023 33·36	
2.0	0.991	0.997	1.006	17.68	1.023	1.029	1.035	1.047	1.067	1.067	1.076	1.084	1.091	1.098 34.08	1·104 36·03	
8.0	1.069 15.92	1.066	1.076	18.90	1.003	1.100	1.107	1.120	1.130	1.140	1.150	1-169	1.166	1.173	1·180 38·51	
	_		_	_	_		_	_	_		_	_	_	_		

. (lxx)

41 38.62 40.83	94 1·312 1·319 89 40·72 43·05	29 1.437 1.445 06 44.61 47.16	43 1·562 1·561 48 48·18 50·94	49 1.659 1.669 58 51.53 54.48	51 54·64 57·77	44 1.855 1.865 26 57.56 60.87	34 1.946 1.967 93 60·40 63·87	20 2·032 2·043 45 63·06 66·68	90 65·66 69·42	82 2·196 2·207 21 68·12 72·03	44 70.52 74.58
1·229 1·237 34·20 36·41	1-296 1-304 36-06 38-39	1.420 1.429 89.51 42.06	1.633 1.643 42.68 45.48	1.639 1.649 45.63 48.58	1.738 1.749 48.39 51.51	1.833 1.844 50.97 54.26	1.922 1.934 53.47 56.93	2.007 2.020 55.85 59.45	2.090 2.103 58.14 61.90	2·168 2·182 60·31 64·21	2·244 2·260 62·42 66·44
1.219 1. 31.99 34	1.286 1. 33.73 36	1.409 1. 36.96 39	1·521 1· 39·93 42	1.626 1. 42.69 45	1.726 1· 45.27 48	1.818 1. 47.69 50	1.907 1. 50.02 53	1.992 2. 52.25 55	2.073 2. 54.39 58	2·151 2· 56·42 60	2.226 2.
1.209	1·276 31·41	34.42	1.509 37·18	1·613 39·75	1.711 42·16	1.803	1.891	1.976	2.086	2·133 52·55	2.208
1·198 27·60	1.264 29·10	1.384 31.89	1-495 34-45	1.598 36·83	39.07	1·787 41·17	1.875	1.967 45·09	2·037 46·95	2.114	2.180
1-187 25-44	1.252	1.371	31.75	33.94	36.00	1.770 87.94	1.867 39.79	1.939	2·018 43·26	2·094 44·88	2.168
1.174 23.29	1.238	1.356	1.466	31.07	1.661 32.95	1.751	1.836 36.42	1.918 38·05	1.996	2.071	2·144 42·54
1.167	1.230		1.455	1.556 29·62	30.40	33.07	34.66	1.906	37.69	2.068 39·12	2.132
1·159 21·13	1.222	1.338	1.446	1.546 28·18	1.640	1.728 31.43	1.812 32.94	1.892	1.970 35.83	2.044	2·117 38·52
1.151	1.213 21·14	1.329	1.436	1.534	1.629	1.716 29.82	1.799 31.26	1.879 32·67	34.00	35.29	36.55
18.98	1.203	1.317	1.423	1.621	1.614	1.701	1.783	1.863	1.939	33.43	2.083
1.131,	18.88	1.306	1.410 22.33	1.607 23.87	1.699	1.686	1.767	1.846	1.921	1.994 31.59	32.70
1.123	1.184	1.297	1.399 21.04	1.498	1.589	1.675	1.756	1.834	1.909	1.981	2.051
6.0	1.0	1.2	1.4	1.6	1.8	2.0	5. 5	4.2	5.6	8.	3.0

CLASS II. (n = 0.30.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.8.

FOR BOTTOM-WIDTHS OF

			(lx:	xii)					
53	0·336 14·88	0.466 20.68	0.660	0·789 85·10	0.909 40.89	1.017	1·114 49·55	1·204 54·06	1.287
21	0.834 14·22	0.463 19·76	0.647 27·59	0.786 88.55	0.90e 38·62	1.013	1.110	1.199	1.282
20	0·332 13·56	18.84	0.644 26.31	0.783 32.00	0.903 36'85	1.009	1·106 45·15	1·194 48·79	1.277
19	0·330 12·90	0.458 17·92	0.640	0·780 30·45	0.898 35.08	1.006 39·23	1.100	1.189	1.271
18	0.328 12.24	0.456 17·00	0.637 23.75	0.776 28.90	0.894 88.31	1.000	1.094	1·183 44·04	1.264
17	0·326 11·58	0.463 16·08	0.634	0.773 27.86	0·890 31·55	0.994 85·23	1.088 38·58	1·176 41·68	1.257
16	0·324 10·92	0.450	0.630 21·21	0·767 25·82	0.885 29.79	0.988 33.24	1.082 36.41	39.38	1.250
15	0.323 10.26	0.447 14·24	0.626 19.94	0.762 24.28	0.880	0.981 31·26	1.078 34.25	1·161 36·99	1.242 89.57
14	9.589	0·444 13·31	0.621 18.68	0·151 22·74	0.874 26.27	0.974	1.068 82·19	1·163 34·66	1.283 37.07
18	0.316 8.930	0·440 12·38	0.616 17·42	0.750 21.21	0.867 24.51	0.966 26·32	1.060	1·144 82·38	1·228 84·58
12	0.313 8.282	0.436 11.44	0.610 16·16	0.743 19·68	0.859 22.74	0.95s 24.35	1.060 27.77	30.00	1·212 82·09
11	0.310	0.431 10·50	0.604 14·90	0·736 18·15	0.860 20.97	0.948 23.38	1.03 9 25.62	1·122 27·67	1.200
10	0.30 6 6.995	0·426 9·739	0·597 13·65	0·727 16·62	0.840	0.937 21.42	1.027 28·47	1.109	1·186 27·11
9.2	0.304	0.423 9.289	0.593	0.723 15.88	0.836 18.34	9-931	1.020	1.102	1·178 25·87
0.6	0·302 6·361	0.420 8.845	0.589	0.719 15·14	0.830 17.48	0.926 19·48	1.013	1.095	1.170
Fall per thousand.	90.0	0.1	0.5	8.0	9.4	0.5	9.0	0.7	8.0

-					(lx:	tiii)					
1.366	1.438 63·86	70.10	1·708 75·68	1.819 80.96	1.930 85·76	1:034 90:43	2·138 94·82	2·229 99·12	2·320 103·0	2·407 107·0	2·491 110·8
1.359	90-19	1.670 66.98	72.83	1.812	1.922 81.98	2.036	2·126 90·64	2-220 94-73	2.310	102.3	2.481 105·9
1.363	1.426	1.563		1.806	1.914	2.018 82.45	2·116 86·46	2·211 90·35	2·300 93·97	2·387 97·54	2-471 101-0
1.347	1.420	1.556	65.64	1.197	1.906	78.47	2·107 82·28	2-201 85-97	7-290 89-44	2·377 92·82	2.460 96·10
1.340	1.413	1.548	62.31	1.788	1.896	1.999	2.096 78·11	2·189 81·60	2.278 84.92	3.364 88·11	3.447 91.21
1-333	1.406	1.540	1.663 58.98	1.778	1.886 66.89	1.988 70·51	2.0% 78.94	2·1f7 77·23	2·266 80·40	2·361 83·40	2·434 86·33
1.326	1.398	1.631	1.664 55·66	1.768 59·49	1.875 63·12	1.977 66·54	2.073 69.78	2·166 72·87	2.264 75.88	2.338 78·70	2·421 81·46
1.317	1.389	1.621	1.643 52.35	1.756 55.95	1.863 59·36	1.964 62·58	2·060 65·63	3·161 68·53	2·240 71·37	2·323 74·01	2.404
1.307 39.31	1.379	1.510	1.631 49.04	1.744 52.42	1.868	1.949	2.045 61.48	2·136 64·21	2-223 66-87	1.306 69.33	2·387 71·75
1·296 36·67	1.367 38.68	1.498	1.618	1.730	1.836	1.934 54.69	2.028 57·34	2.118	2·206 62·37	2·288 64·66	2·368 66·91
1.285 84.03	1.356 35.89	1·484 39·29	1:603	1.714	1.818 48·12	1.917 50·75	2.010 53.20	2.099 55.57	2·185 57·87	2.268 60·00	2·347 62·09
1.273	1.842 33·10	1·469 36·24	1.587 39·14	1.697 41.85	1.800 44.39	1.897 46·81	1.990 49·07	2.078 51.26	2·162 58·37	2.244	2·328 57·28
1·258 28·76	1.326 30.31	1·462 38·19	1.568 35·84	1.677 38·34	1.779 40.67	1.875 42.87	1.966 44.95	2.064 46.96	2·138 48·88	2·218 50·70	2·296 52·48
1.260	1.317	31.69	1.559 34·23	1.666 36·60	1.768 38.82	1.863 40.92	1.964 42.91	2·041 44·82	2·124 46·65	2·204 48·41	2·282 50·11
1.241	1.309	1.434 30.20	1.549 32.62	1.665 34.86	1.756 36·98	1.861 38·98	1.941	2.027 42.69	2·110 44·43	2·190 46·12	2.267 47.74
. 6.0	1.0	1.2	1.4	1.6	1.8	5.0	2.2	2.4	5.6	8.2	3.0

OLASS II. (n = 0.30.)

Mean Velocities and Quantities of Discharge per second. For a Depth of Water of 2.0. For Bottom-Widths of	13 14 15 16 17 18 19 20 21 22 23 24 25 26	0.339 0.342 0.345 0.347 0.350 0.353 0.354 0.356 0.356 0.356 0.356 0.358 0.360 0.361 0.363 0.361 0.363 0.361 0.363 0.361 0.363 0.361 0.363 0.361 0.363 0.361 0.363	0 0469 0 -473 0 -481 0 -486 0 -488 0 -488 0 -488 0 -488 0 -488 0 -488 0 -489 0 -488 0 -502 0 -502 0 -503 0 -503 0 -503 0 -504 0 -503 5 15 04 16 13 17 22 18 31 19 40 20 50 21 60 22 70 23 80 24 90 26 00 27 10 28 20 29 29	0 0.657 0.663 0.668 0.673 0.677 0.681 0.685 0.688 0.688 0.689 0.679 0.688 0.689 0.694 0.689 0.701 0.703	0 0.798 0.806 0.812 0.812 81.07 82.92 84.76 86.60 88.45 40.80 42.15 44.01 45.88 47.76 49.64	6 29-48 31-61 88-74 85-87 88-00 40-13 42-26 44-89 46-52 48-65 50-78 52-91 55-05 57-19	1 1028 1 023 1 037 1 046 1 068 1 076 1 076 1 076 1 084 1 084 1 084 1 086 <t< th=""><th>1 1:126 1:136 1:164 1:160 1:172 1:171 1:187 1:187 1:180 1:190 1:204 8 36:06 38:64 41:22 48:81 46:40 48:98 51:57 54:16 56:75 59:35 61:96 64:58 67:20 69:83</th><th>1 1 217 1 227 1 24 4 4 4 4 28 50 08 55 70 58 51 61 52 64 14 66 95 69 76 75 40</th><th>1 :300 1 :312 1 :321 1 :323 1 :386<</th></t<>	1 1:126 1:136 1:164 1:160 1:172 1:171 1:187 1:187 1:180 1:190 1:204 8 36:06 38:64 41:22 48:81 46:40 48:98 51:57 54:16 56:75 59:35 61:96 64:58 67:20 69:83	1 1 217 1 227 1 24 4 4 4 4 28 50 08 55 70 58 51 61 52 64 14 66 95 69 76 75 40	1 :300 1 :312 1 :321 1 :323 1 :386<
	Fall per 12 ihousand.	0.05 0.336	0.1 0.465	0.2 19.50	0.3 0.790	0.4 0.912	0.5 30.54	0.6 1.116 33.48 3	0.7 1.205	0.8 1.288 98.64 4
	Fall per thousand	ō	ò	Ò	Ò	ò	ò	ò	Ö	ò

(lxxiv)

٠					(l:	XXV)					
1.474	1.666 90·19	1.703 98.77	1.839	1.966 114·0	2.086 121.0	2·198 127·5	2·306 133·7	2·408 139·7	2·507 145·4	2·601 150·9	2·692 156·1
1.470 82.29	1.550	1.698 95·05	1.833 102·7	1.960	2.079	2·191 122·7	2.298	2.400	2.499	2.683	2.683 150·2
1.465	1·646 83·41	1.692 91.34	1.827 98·71	1.964	2.072	2·184 117·9	2·290 123·7	2.392	2.490	2.684 139.5	2.674
1.460	1.639	1.686	1.821 94·70	1.947	2.064 107.8	2.177	2.282	2.384	2.481 129·0	2.676 133.8	2.666 138·5
1-454	1.633	1.679	1.814	1.939	2.056 102.8	2.168	2-274	2.376	2.471	2.565 128.2	2.665 132.7
1.448	1.527	1.672	1.807	1.931	2.048	2·159	2.265	2.365	2.461	2.554 122·6	2.644 126.9
1.442	1.620 69·91	1.666	1.799	1.923	2.039 93.79	2.149	2·256 103·7	2.366	2.461	2.643	2.633 121·1
1·436 63·16	1.613	1.667	1.790	1.914	2.039 89.29	2·139 94·16	2.244	2·344 103·1	2.440	2.631	2.620 115.3
1.428	1.505	1.649	1.781	1.904	2.019 84.80	2·129 89·42	2·233	2·332 97·94	2·427 101·9	2·618 105·8	2.601 109.5
1.420	1.496	1.639	1.770	1.883	2.008	2.117	2·220 88·80	2·319 92·76	2·413 96·52	2.504	2.593 103.7
1.411	1.487	1.629	1.769	1.882	1.996	2.104	3·206 83·84	2·306 87·59	2·398 91·07	2·489 94·61	97.91
1.402	1.477	1.618	1.748	1.870 67·28	1.982 71.37	2.090 75.23	2·192 78·89	2·289 82·43	2·382 85·76	2·472 89·03	2.560 92.18
1.392	1.467	1.607	1.736 58.98	1.866 63·07	1.967 66·90	2·074 70·52	2·176 73·95	2·212 77·27	2.365 80.40	2·454 83·45	2.540
1.380	1.464	1.593	1.720 55.06	1.840 58.86	1.951	2.067 65.81	2·167 69·01	2·263 72·11	2.345 75·04	2.433	2.519
1.366 40.98	1.440 43·20	1.578	1.706 51.15	1.822 54.66	1.938	2.037 61.11	2·136 64·08	2·232 66·96	2.323 69.69	2.410	2-496
	ė.	63	7.	9.	œ	•	67	4	9.	œ	0

OLASS II. (n = 0.30.)

MEAN VELOCITIES AND QUANTITIES OF DISCRARGE PER SECOND.

FOR A DEPTH OF WATER OF 2.2. FOR BOTTOM-WIDTHS OF

28 29 80	0 0.392 0.393 0.394 26·97 27·92 28·87	8 0.546 0.542 0.543 55 37·16 38·47 89·78	8 0.750 0.752 0.754 16 51.65 53.44 55.24	9 0.912 0.914 0.916 18 62.76 64.94 67.12	9 1.062 1.066 1.068 4 72.46 74.99 77.52	1.169 1.172	9 80.48 83.28 86.08	80·48 83·28 1·281 1·284 88·17 91·23	80.48 88.28 1.281 1.284 88.17 91.23 1.383 1.387 95.20 98.50
26 27	0.389 0.380 25.08 26.02	0.536 0.538 34.55 35.85	0.746 0.748 48.07 49.86	0.906 0.909 58.40 60.58	1.046 1.049 67.42 69.94		69.27 08.47	·	
25	0.386 0.388 28·18 24·13	0.631 0.634 81.95 83.15	0.740 0.743 44.47 46.27	0.899 0.903 . 54.04 56.22	1.038 1.042 62.86 64.89	1·154 1·158 69·81 72·10	!	1.269	1.269 79·00 1·371 85·32
23	0.385	0.528 30.65	0.131 42.67	0.896 51.85	1.084	1.150	!	1.269	1.269 72.88 1.361 78.72
22	1 0.383 36 21·30	5 0.527 77 29·36	1 0.734 77 40.87	8 0.892 17 49.66	5 1.030 30 57.32	0 1·146 04 63·73	-	9 1.264 77 69·82	
20 21	0.379 0.381 19.42 20.36	0.622 0.626 26.77 28.07	0-727 0-731 87-27 89-07	0.884 0.888 45.28 47.47	1.026 1.026 52.28 54.80	1·136 1·140 58·15 60·94	_	1.243 1.249 63.71 66.77	
19	0.377 (0.520 (25.48 2	0.723 (85.47 8	48.10	1.016 1	1.129 55.86 5		1.236 1	
18	0.374	0.517	0.719 33.68	0.874 40.92	1.009	1.122		1.239	
17	16.57	0.613	91.89	98.74	1.002	1.115		1.221	
16	0.368 15·62	0.509	0.100 30.10	36.56	0.994	1.107		1.213	1.213 51.50 1.311 55.67
Fall per thousand.	0.03	0.1	0.5	0.3	4.0	0.5		9.0	1. 0

(lxxvi)

		li	FE'	٠.		
xv ii)	($\frac{1}{N} \frac{N_T}{C_{3'}}$	$V_{E_{RS}}$	TTY)
X VIII	,		`*.	ساسسساس (بران ۱۳۰۸)	:A.	
2·350 172·1	2·465 180·6	2.574 188·6	2·679 196·3	203·6	2.878 210.9	
2.344	2.459	2·568 182·4	189.9	2·773 197·0	204·0	
2.338 160.9	2.452 168·8	2.661 176.3	2.666 183.5	2.766 190.4	2.863 197·1	
2-331 155-3	2.446 163·0	2.654 170·2	2.658 177.T	2.768 183.8	2.866 190.2	
2·324 149·8	2.437	2.546 164·1	2.660 170.8	2·750 177·2	2.846 183.4	
2.316	2.429 151·3	2.637 157.9	2.641 164.4	2.741	2.837 176.5	
2·308 138·6	2.420 145.4	2.528 151.8	2.633 158·0	2·731 164·0	2.827 169·7	
2·290	2·411 189·5	2.618 145·7	2.622 151·6	2·720 157·4	\$-816 162-9	
2.290 127.4	2·402 183·7	2.508 189·6	2.611 145.3	2.709 150.8	156.1	
2·280 121·9	2·392	2·497 133·5	139.0	2·697 144·2	2.792 149.3	
2.270 116.8	2.381 122·0	2·486 127·4	2.588 132.6	2.686 137.6	2·180 142·4	
2.267	2.867 116·1	2·473 121·8	2.574	2.670 131.0	2·766 135·6	
2.244	2.353 110·8	2.469	2.659	2.655	2.750 128.8	
2-230 99-61	2·338 104·5	2.44¢ 109·1	2.643	2.639	2·132 122·0	
						1

k (115.5 121.7 133.3 144.0 154.0 1.662 1.830 2.103 2.230 163.4 149.0 158.0 139.8 111.7 1.668 128.9 1.673 1.961 2.097 3.234 1.816 144.0 107.9 124.6 152.7 1.663 134.6 2.318 2.091 1.569 1.811 1.956 147.4 104.2 8.601 129.9 139.0 120.3 3.082 2.313 1.564 1.648 1.806 1.950 100.5 1.643 116.0 134.0 2·206 142·1 125.3 2.079 1.559 1.800 1.944 96.74 1.638 111.6 120.6 129.0 186.8 2.072 1.554 1-794 2.198 1.938 131.5 124.0 3.190 92.99115.9 1.548 1.632 98.00 107.3 3.062 1.788 1.931 119.0 126.2 111.289.24 2.181 1.626 94.06 103.0 1.543 1.834 1.781 114.0 2·172 120·9 85.49 1.619 98.72 106.6 3.048 1.114 1.916 1.536 2.163 109.1 102.0 1.612 86·18 81.74 1.766 94.41 2.039 1.529 1.908 110.3 78.00 1.605 90.10 97.34 104.1 2.030 2.158 1.623 1.758 1.899 1.201 92.68 2.018 99.12 74.26 85.79 1.614 1.296 78.82 1.748 1.889 82.66 70.53 94.13 1.587 74.89 81.48 88.02 2.004 2.139 1.506 1.138 1.878 89.14 2·116 94·51 66.81 1.577 83.37 1.996 71.17 1.727 1.866 63 · 10 1.567 72.86 78-72 1.983 84.16 2·102 89·25 111.8 1.864 2·427 108·0 2.526 107.2 1.486 1.716 \$.\$ 98.63 2.316 115.2 2.333 2.621 2.713

. 73

2.4

2.6

8

9

6.0

1.0

1.2

1:4

9.1

1.8

CLASS II. (n = 0.30.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 2.4.

FOR BOTTOM-WIDTHS OF

0-450 0-408 0-409 0-411 0-418 <th< th=""><th>Fall per housand.</th><th>21</th><th>22</th><th>83</th><th>42</th><th>25</th><th>98</th><th>27</th><th>28</th><th>29</th><th>30</th><th>31</th><th>33</th><th>88</th><th>25</th></th<>	Fall per housand.	21	22	83	42	25	98	27	28	29	30	31	33	88	25
0.565 0.567 0.569 0.567 0.569 0.569 0.570 0.571 0.571 0.562 0.567 0.569 0.570 0.571 0.572 0.587 41.78 43.28 44.78 46.29 47.99 49.91 0.571 0.781 0.781 0.782 41.78 46.29 47.78 46.99 0.781 0.782 0.781 0.783 0.781 0.783 0.781 0.783 0.783 0.783 0.784 0.783 0.784 0.783 0.784 0.783 0.784 0.783 0.784 <th< td=""><td></td><td> 0.403</td><td>0.405 24·89</td><td>0.401 26·00</td><td>0.409 27·10</td><td>0.411</td><td>0.413</td><td>0.416 30.40</td><td>0-416 31 · 50</td><td>0-417 32·60</td><td>0-418 33·70</td><td>0-419 34-80</td><td>0.420 35·90</td><td>0.421 36·99</td><td>0·422 38·08</td></th<>		 0.403	0.405 24·89	0.401 26·00	0.409 27·10	0.411	0.413	0.416 30.40	0-416 31 · 50	0-417 32·60	0-418 33·70	0-419 34-80	0.420 35·90	0.421 36·99	0·422 38·08
0.711 0.774 0.778 0.781 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.786 0.784 0.784 0.786 0.784 <th< td=""><td>10 ·</td><td> 0.555</td><td>0.567 84.27</td><td>0.560</td><td>0.562 37.27</td><td>0.565 38·78</td><td>0.567 40.28</td><td>0.569 41.78</td><td>0.570 43.28</td><td>0.572 44.78</td><td>0.574 46.29</td><td>0.575 47.80</td><td>0.577 49.31</td><td>0.579 50.82</td><td>0.580 52.34</td></th<>	10 ·	 0.555	0.567 84.27	0.560	0.562 37.27	0.565 38·78	0.567 40.28	0.569 41.78	0.570 43.28	0.572 44.78	0.574 46.29	0.575 47.80	0.577 49.31	0.579 50.82	0.580 52.34
0-837 0-946 0-948 0-966 0-969 0-961 0-964 0-967 0-964 0-969 0-967 0-964 0-967 <th< td=""><td></td><td> 0.771 45.52</td><td>0.174 47·59</td><td>0.778 49·66</td><td>0.781 51.73</td><td>0.784 53.80</td><td>0.787 55.87</td><td>0.789 57.94</td><td>10.09</td><td>0·793 62·08</td><td>0·796 64·14</td><td>0.197</td><td>0.800</td><td>0.802</td><td>0.804 72.54</td></th<>		 0.771 45.52	0.174 47·59	0.778 49·66	0.781 51.73	0.784 53.80	0.787 55.87	0.789 57.94	10.09	0·793 62·08	0·796 64·14	0.197	0.800	0.802	0.804 72.54
1.065 1.086 1.089 1.081 1.104 1.101 1.101 1.101 1.101 1.101 1.111 1.111 1.112 1.113 1.113 1.113 1.113 1.113 1.113 1.113 1.113 1.113 1.113 1.113 1.114 1.117 1.119 1.113 1.113 1.113 1.113 1.113 1.113 1.113 1.114 <th< td=""><td>Ø :</td><td> 0.937</td><td>0.941</td><td>60.37</td><td>68.29</td><td>0.963</td><td>9966</td><td>0.959</td><td>72.97</td><td>0.964</td><td>0.967 77.99</td><td>0.969 80.52</td><td>0.972 83·06</td><td>0.978 85·61</td><td>0.977 88·16</td></th<>	Ø :	 0.937	0.941	60.37	68.29	0.963	9966	0.959	72.97	0.964	0.967 77.99	0.969 80.52	0.972 83·06	0.978 85·61	0.977 88·16
1.206 1.206 1.206 1.216 1.216 1.221 1.228 1.228 1.236 1.236 1.246 1.246 1.228 1.229 1.236 1.236 1.246 1.246 1.229 1.236 1.236 1.246 1.246 1.256 1.260 1.367 1.366 1.367 1.366 1.367 1.366 1.466 1.466 1.466 1.466 1.466 1.466 1.466 1.466 1.466 1.466 1.467 1.466 <th< td=""><td>•</td><td> 1.078 53.67</td><td>1.083</td><td>1.088</td><td>1.003</td><td>1.097</td><td>1.101</td><td>1.104</td><td>1.107</td><td>11111</td><td>1.114</td><td>1111</td><td>1.120</td><td>1·123 98·58</td><td>1·126 101·5</td></th<>	•	 1.078 53.67	1.083	1.088	1.003	1.097	1.101	1.104	1.107	11111	1.114	1111	1.120	1·123 98·58	1·126 101·5
1.314 1.326 1.326 1.327 1.346 1.346 1.364 1.364 1.365 1.367 1.366 1.346 1.367 1.366 1.346 1.367 1.366 1.346 1.367 1.366 1.367 1.366 1.267 1.367 1.367 1.366 1.267 1.367 1.367 1.367 1.367 1.367 1.367 1.207 <th< td=""><td>7 .</td><td> 1.200</td><td>1.206</td><td>1.211</td><td>1.216</td><td>1.221</td><td>1.24</td><td>1.228</td><td>1.232</td><td>1·236 96·76</td><td>1.240</td><td>1.243</td><td>1.246</td><td>1.249</td><td>1-261 113-0</td></th<>	7 .	 1.200	1.206	1.211	1.216	1.221	1.24	1.228	1.232	1·236 96·76	1.240	1.243	1.246	1.249	1-261 113-0
1.426 1.426 1.426 1.446 1.446 1.446 1.446 1.446 1.456 1.463 1.463 1.466 1.476 1.476 1.463 1.466 1.476 1.476 1.476 1.463 1.473 118.2 1.22.0 1.25.6 1.264 1.563 <		 1.314	1.320 81.15	1.326	1.332	1.337 91.77	1.841	1.346	1.350	1.364	1.368	1.361	1.365	1.368	1.871 128·7
1.618 1.622 1.632 1.648 1.663 1.663 1.663 1.664 1.567 1.571 1.675 89.65 98.71 97.77 101.8 105.9 114.0 118.1 122.2 126.8 180.4 134.5 138.6	* :	 1.420	1.426 87.66	1.432	1.438	11.66	102.9	1.464	1.468	1.462	118.2	1.470	125.8	129.6	1·481 133·5
	•	 1.518	1.626 98.71	1.632 97.77	1.538 101.8	1.543	1.648	1.563	1.558	1.562	1.567	1.571	1.575	1.579 138·6	1.582 142.7

lxxviii

)

	276.5	268.5	260.5	252.6	244.7	236.7	228.8	220.9	213.0	205.1	197·2	189.3	181 -	173.5	165.6	
	3.066	3.028	3.061	3.044	3.036	3.026	3.011	3.008	3.999	2.989	2.978	2.865	2.952	3.939	2.926	
	267.2	259.5	251.8	244.1	236.4	228.7	221.0	213.3	205.7	198.1	190.4	187.8	175.2	167.6	160.0	
	2.961	7.824	3.947	2.940	2.932	2.824	3.916	3.906	2.897	2.887	2.877	2.865	2.823	2.830	2.836	
	257.4	250.0	242.6	235.2	227.8	220.4	213.0	205.6	198.2	190.9	183.5	176.1	168.8	161.5	154.2	
	2.863	2.847	2.841	2.834	2.826	2.818	2.809	3.800	2.791	2.781	2.771	2.760	2.748	2.136	2.723	
	247.8	240.2	233.1	226.0	218.9	211.8	204.7	197.6	190.2	183.5	176.4	169.3	162.2	155.2	148.2	
	2.741	2.135	2-729	2.723	3.715	2.707	3.689	2.691	2.683	2.673	2.663	2.652	3.640	3.638	3.616	
	236.8	230.0	223.2	216.4	209.6	202.8	196.0	189.2	182.4	175.6	168.8	162.0	155.8	148.6	141.9	
	2.624	2.619	2.613	2.607	.2.600	2.283	2.584	2.576	3.568	2.559	3.650	2.639	2.628	2.217	3.505	
	225.9	219.4	212.9	206.4	200.0	193.2	187.0	180.5	174.0	167.6	161·1	154.6	148.1	141.7	135.3	
	2.502	2.497	2-493	3.486	2.480	2.473	3.464	2.456	3.448	3.440	2.431	2.431	2.410	2.399	2.388	
	214.2	208.0	201.8	195.7	189.6	183.4	177.2	171-1	165.0	158.9	152.7	9.971	140.2	134.4	128.3	
•	3.874	2.369	2.364	2.368	2.361	2.344	2.337	2.330	2.333	2.315	2.307	2.297	2.287	2.277	3.266	
	201.9	196.1	190.8	184.5	178.8	173.0	167.2	161.4	155.6	149.9	144·1	138.3	132.5	126.7	121.0	
	2.238	2.233	3.338	2.23	2.217	2.211	3.304	2.197	2.190	2.183	2.176	2.166	2.156	3.146	3.136	
	189.0	183.5	178.0	172.5	167.1	161.7	156.3	150.9	145.5	140.1	134.7	129.3	123.9	118.5	113.1	
	3.084	2.089	3.087	2.079	2.013	2.067	3.061	2.055	3.048	2.041	3.034	3.036	2.017	3.008	1.998	
	174.9	169.8	164.8	159.8	154.8	149.8	144.8	139.8	134.8	129.8	124.8	119.8	114.8	109.8	104.8	
	1.938	1.934	1.930	1.925	1.820	1.914	1.908	1.903	1.896	1.890	1.883	1.875	1.867	1.859	1.850	
	159.6	155.0	120.4	145.8	141.3	136.7	132.1	127.5	123.0	118.5	113.9	109.3	104.7	100.2	95.65	
	1.769	1.765	1.761	1.757	1.752	1.747	1.743	1.137	1.731	1.726	1.719	1.712	1.704	1.697	1.689	_
	151.4	147.0	142.6	138.3	134.0	129.6	125.2	120.9	116.6	112.3	108.0	103.7	99.85	32.œ 32.œ	90.74	
	1.679	1.675	1.671	1.667	1.663	1.658	1.663	1.648	1.642	1.637	1.631	1.624	1.617	1.610	1.603	
ı																

1.8

6.0

1.0

1.2

1.6

 $\mathbf{5.7}$

2.4

8.

5.6

3.0

(lxxix)

OLASS II. (n = 0.80.)

		28	0+03 50-40	0.618 68·92	0.862 95.02	1.036	1.188 138.0	1·326 147·7	1.450 161·6	1.564	1.673
		8	0.461 49·17	0.617 67·18	0.861 92.67	1.034	1·190 129·6	1.322 144·0	1.44	1.561	1.670
Ą		1.8	0.480 47.84	0.618 65·44	0.850	1.033 109·6	1.167	1.820	158.5	1.558	1.667
BECOMD.		98	e - 450 46 · 69	0.614 63.69	0.848 87.96	1.029	1.186	1.317	1411	1.666	1.664
		98	0.449	0.612 61.98	0.846 85.58	1.026	1.183	1.314	1.438	1.554	1.661
DIBORABOR	or 2.6.	78	0.448	0.610	0.844 88·19	1.023	1.181	1.311	1.486	1.661	1.667
	WATER	8	0.447 42.85	0.e0e	0.842 80.80	1.021 98·03	1·178 112·9	1.309	1.433	1.647	1.663
VELOCITIES AND QUANTITIES OF	FOR A DEFTE OF WATER FOR BOTTOM-WIDTER	88	0.446	58.64	0.840	1.019	1.176 109·6	1.307	1.428 133·8	1.643	1.649
CALA C	OR A DE	81	9.03 40.29	54.90	0.838 76.08	1.017	1.172	1.304	1.426	1.639	1.645
COCITIES	5 4	80	0.442 89·01	0.608	0.836 78·66	1.016	1.169	1.301	1.421	1.634	1.641
		84	0.411 87.78	0.602	0.838	1.013	1.166	1.298 111 · 0	1.417 121·2	1.630	1.636
Maan		88	0.438 86.45	49.74	0.831	1.010	1.161	1.284	1.418	1.526	1.631
					_						

(bxx

97.86

9-462 51-61

35.17

33.80 0.586

0.05

48.03

46.33

0.1

0.288

0.438

9:730

2

8

Fall per thousand. 66.57

64.21

0.5

0.826

80.88

78.05

1.001

1.00

9

\$

70.68

0.010

)

118.8

1.037

186.4

93.15

89.87

1.159

1.186

•

9.801

86.68

113.2

109.2

1.409

1.406

9.0

1.290

1.286

0.5

151.4

1.334

1.196

165.7

1.483

178.8

1.667

191.3

9.981

181.9

172.6 177.2

158.8 | 158.5 | 168.2 | 167.9

139.8 144.5 149.2

1.631

1.618

9.0

122.2

1.517

2.0

1.621

125.8 130.4

					(l:	exxi))					
1.777	1.873 213·8	2·052	2-217 253·0	2.369	2·513 286·8	302.3	2·778 317·1	2-902 331-2	3·021 344·8	3·135 357·8	3·245 370·4	
1.774	1.870 208·6	2.049 228·5	2.213	2.365	2.509	294.9	309.4	2·897 323·1	3.016	3.130	3.240	
1.771 192.2	1.867 203.4	2.046	2.209 240.6	2·361 257·2	2.505	2.641 287·6	2·769 301·7	2.892 315·0	328.0	3.124	3·235 352·3	1
1.768	1.864	2·042 217·1	234.4	2·357	265·8	2.636 280·3	2·764 294·0	2.887 306·9	3.008	3.118	3.229	7
1.766	1.861	2.038 211.4	2.28·3	2-363 244·1	2.496 258·9	273·0	2·759 286·2	2·882 298·9	3.000	3.112	3.223	
1.762	1.867 187.7	2.034	2.197 2.22·1	2·349 237·5	251·9	2·626 265·6	2.754	2·876 290·8	2.994 302.8	3·106 314·1	3.216	
1.758	1.863	2.030	2.192	230.9	244.9	2.620 258·2	270.8	282.7	2·988 294·4	3·100	3.209	
1.754	1.849	2.025	209·7	2.338 2.24·3	2·480 237·9	250.8	263.1	274.6	286·0	3.093	3.202	
1.749	1.844	2.020	203·6	2-332 217-7	230.9	243.4	255.3	266.6	2.973 277.6	3.085	3.194	
1.745	1.840	2·016 182·8	2.177	2·327 211·1	223·9	236.1	2·728 247·5	2.850 258.6	2.86 6	3.078 279.3	3·186 289·1	
1.741	1.836 161.7	2·010 177·1	2·171 191·3	2·321 204·5	2·462 216·9	2.595 228·7	239·8	250·5	2.958 260·8	3.070	3·178 280·1	
1.736	1.830 156.5	2·005 171·4	2·165 185·1	2·315 197·9	2.455 209·9	221·3	2·114 232·1	242·4	2-950 252-4	3.062 261.9	3·169 271·1	
1.731	1.826 151·3	1.999 165·7	2·159 178·9	2·308 191·3	2.448 202.9	2.580 213·9	2.706 2.24.4	2.827 234·4	2·942 244·0	3.054 253.2	3·160 262·1	
1·726 138·6	1.819 146·1	1.993 160·0	2·152 172·8	2·301 184·7	2·440 195·9	2·572 206·6	2·698 216·7	2.818 226.4	2·933 235·6	3·044 244·5	3·161 253·1	
1·720 133·7	1.813 140.9	1.986	2·145 166·7	2·293 178·2	2·432 189·0	2·564 199·3	2.689 209·0	2.809 218·4	2.923 227-2	3.034	3·141 244·2	
6.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	2.4	5.6	8.8	3.0	

				45 46 47 48	0.482 0.483	67. 89 Se. 19	90·10 92·08 94·05 96·08	0.901 0.902 0.903 0.904	124.0 126.7 129.4 182.1	1.095 1.096 1.098 1.099	150.7 154.0 157.3 160.6	1.258 1.260 1.262 1.264	173.8 177.1 180.9 184.7	1.403 1.405 1.407 1.409	193.2 197.4 201.6 205.9	1.631 1.633 1.636 1.637	210.8 215.4 220.0 224.6	1.653 1.655 1.657 1.660	227.6 232.6 237.6 242.6	1.765 1.767 1.769 1.771	243.0 248.3 253.6 258.9
	B BECOMD.			#	0.481	3	88.13	006.0	121.3	1.093	147.4	1.256	169.5	1.400	189.0	1.529	206.2	1.650	222.6 2	1.763	237.8 2
	BGE PE			4 3	0.480	S	0.652 86·15	0.899	118.6	1.001	144.1	1.254	165.7	1.398	184.8	1.526	201.6	1.647	217.6	1.760	232.5
.030.)	DISCRA	or 2·8.	8	42	0.479	96.10	0.651 84·17	968-0	115.9	1.089	140.8	1.262	161.9	1.396	180.6	1.623	197.0	1.644	212.6	1.757	227.2
(n = 0.030.)	TES OF	WATER	W IDTES	#	0.478	•	0.650 82·19	968.0	113.2	1.087	137.5	1.250	158.1	1.394	176.4	1.520	192.4	1.641	207.6	1.754	221.9
	UANTIT	FOR A DEPTH OF WATER OF 2.8.	FOR BOTTOM-WIDTER	40	0.477	20.0C	0.648 80.22	0.894	110.5	1.085	134.2	1.248	154.4	1.391	172.2	1.611	187.8	1.637	202.6	1.761	216.6
CLASS II.	AND G	OB A Di	For	83	0.476	/c./c	0.647 78·25	0.883	107.9	1.083	131.0	1.246	150.7	1.389	168.0	1.514	183.2	1.634	197.7	1.748	211.4
	VELOCITIES AND QUANTITIES OF DISCHARGE PER	ř4		88	0.475	11.06	0.646 76·28	0.890	105.2	1.081	127.7	1.244	146.9	1.386	163.8	1.611	178.6	1.631	192.7	1.745	206.1
	Mean Vei			37	0.473	ය දී	74.32	9.888	102.2	1.079	124.4	1.241	143.1	1.383	129.6	1.508	174.0	1.627	187.7	1.741	200.8
	MB			36	0.472	8T.50	0.643 72.36	0.887	88.66	1.077	121.1	1.239	139.3	1.381	155.4	1.505	169.4	1.624	182.8	1.738	195.5
				33.	0.471	6/.TC	0.643	9882	97.14	1.075	117.9	1.236	135.6	1.378	151.2	1.502	164.8	1.621	6.771	1.734	190.2
			- 1			_															

0.1

0.883 94.45

0.5

1.073

0.3

1·233 181·9

0.4

0.470 50.27

0.05

\$

Fall per thousand. 1.375

0.2

1.499

9.0

1.618 173·0

2.0

1.730 185.0

8.0

(lxxii)

1.838		~ ?	1.842	1.846	1.850	1.854	1.867	1.860	1.863	1.866	1.869	1.872	1.874	1.876	1.878
201.7 207.3 212.9 218.5	207.8 212.9 218.5	212.9 218.5	218.5		$224 \cdot 2$		8.622	235.4	241.0	246.6	252.2	257.8	263.4	269.0	274.5
1.938 1.942 1.946 1.950	1.942 1.946 1.950	1.946 1.950	1.960		1.954		1.967	1.961	1.964	1.967	1.970	1.973	1.975	1.978	1.980
212.6 218.5 224.4 230.3	218.5 224.4 250.3	224.4 230.3	230.3		8.98.7 7.36.3		242.2	248.1	254.0	259.9	265.9	271.8	277.7	283.6	c.687.
2:118 2:123 2:128 2:132 2:136 2:140 006:5 939:9 930:8 945:8 959:8 958:8	989.8 945.8 959.8	945.8 959.9	2.136 959.9		2.140		2.143	2.147	2.161	2.156	2.158	2.161	2.164	2.167	2.170
3:393 3:308 3:307 3:307	3:298 2:302 3:307	3:303	3.307		3:31		2.316	0.000	2000	1000	3.431		9.337	2.37	91378
251.6 258.5 265.5 272.5	258.5 265.5 272.5	265.5 272.5	272.5		279.5		286.5	293.5	300.5	307.5	314.5	321.5	328.5	335.5	342.5
2-446 2-452 2-457 2-462 2-467 2-471	2.467 2.462 2.467	2.462 2.467	2-467		2.471		3.475	2.480	2.484	2.488	2.493	2.496	2.499	2.203	2.506
261.6 269.0 276.4 283.9 291.4 298.9	276.4 283.9 291.4	283.9 291.4	291.4		298.9		306.3	313.8	321.3	328.8	336.3	343.7	351.2	358.7	366.2
2.594 2.600 2.606 2.612 2.617 2.622	2.606 2.612 2.617	2.612 2.617	2.617		2.623		2.626	2.631	2.635	2.639	2.643	3.647	2.620	2.653	2.658
277.5 285.4 293.3 301.2 309.1 317.1	293.3 301.2 309.1	301.2 309.1	309.1		317.1		325.0	332.9	340.8	348.7	356.7	364.6	372.5	380.4	388.3
2.734 2.740 2.746 2.752 2.757 2.762	2.746 2.752 2.757	2.752 2.757	2.757		2.162		2.767	2.772	2.777	2.782	3.786	2.790	2.793	3.196	3.800
292.4 300.7 309.0 317.4 325.8 334.2	309.0 317.4 325.8	317.4 325.8	325.8		334.2		342.5	350.8	359.2	9. 298	376.0	384.3	392.7	401.0	409.4
2.868 2.875 2.881 2.887 2.893 2.898	2.881 2.887 2.893	2.887 2.893	2.893		3.898		2.903	3.808	2.913	2.918	2.833	2.826	2.830	3.834	2.838
306.8 315.5 324.2 333.0 341.8 350.6	324.2 333.0 341.8	333.0 341.8	341.8		320.6		359.3	368.0	8.928	385.6	394.4	403.1	411.9	420.6	429.4
2.996 3.003 3.009 3.015 3.021 3.026	3.009 3.015 3.021	3.015 3.021	3.021		3.036		3.031	3.037	3.042	3.047	3.052	3.056	3.060	3.064	3.068
320.5 329.6 338.7 347.8 356.9 366.1	338.7 347.8 356.9	347.8 356.9	356.9		366.1		375.2	384.3	393.4	402.6	411.8	420.9	430.1	439.2	448.4
3-117 3-124 3-131 3-138 3-144 3-150	3-131 3-138 3-144	3.138 3.144	3.144		3.150		3.155	3.161	3.167	3.172	3.177	3.181	3.185	8.188	3.193
333.4 342.9 352.4 361.9 371:4 381.0	352.4 361.9 371:4	361.9 371.4	371:4		381.0		390.2	400.0	409.5	419.1	428.7	438.2	447.8	421.4	4 67.0
			-												1
					-										
													•		
				•						_					
													_		

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 3.0. FOR BOTTOM-WIDTHS OF

3 5	0·501 85·47	0.678 115.8	0.933 159.2	1·132 193·2	1·300 221·8	1:440 247·3	1·581 269·8	1·107 291·2	1.824 311·2
23	0.500 83 · 86	0.677 113·7	0.932 156·3	1.130	1.298 217·7	1.447	1.579	1.704	1.822 305.6
52	0-499 82-25	0.676 111.5	0.930 153·4	1·128 186·0	1·296 213·6	1.446	1.676	1.701	1.819
51	0.498 80·64	0.678 109·3	0.929 150·5	1·127 182·4	1·294 209·5	1·443 233·7	1.574	1.699	1.817
20	0 497 79·02	0.674 107·1	0.927 147·5	1·126 178·8	1.292	1.441	1.671	1.697	1.814
49	0.496	0.672 104·9	0.926 144·4	1·123 175·2	1.290	1.439	1.568 244·7	1.694	1.811
48	0.495	0.671 102·7	0.924 141.3	171.6	1.288	1.437 219.8	1.566 239.6	1.691	1.808
. 14	0.494	0.670	0.922 138·3	911·1 167·9	1.286 192.8	1.434	1.562	1.688	1.805
46	0.493	0.668 98·25	0.920 135·3	1.117	1.283 188·6	1.431 210.4	1.669	1.686 247·8	1.801
45	0.492	0.667 96·05	0.919	1.115	1.281	1.429	1.666	1.682 242.2	1.798
4	0·490 69·21	0.666 93.86	0.917	1.113	1.278 180·2	1.426 201.1	1.653 219·1	1.679 236.7	1.794
43	0.489 67·58	0.664 91.67.	0.915 126·1	1.110	1.275 176·0	1.423	1.560 214.0	1.675	1.790
42	0·488 65·95	0.663 89·49	0.913 123·1	1·108 149·5	1.273	1.420 191.7	1.647	1.671	1.786
41	0.487	0.662 87.31	0.911 120·1	1·106 145·9	1.270	1.417	1.544	1.667	1.782 235.8
40	0.486	0.660	0.808	1·103 142·3	1.267	1.413 182·3	1.640	1.663 214·6	1.778
Fall per thousand.	0.05	0.1	0.5	8.0	9.0	0.5	9.0	2.0	8.0

lxxxiv

										(1X	XXV	,	' .		
1.934	330.0	2.040	348.1	2.234	381.2	2.413	411.8	2.580	440.1	2.736	466.8	2.884	492.0	3.024	515.9	
1.932	324.0	2.037	341.8	2.231	374.3	2.410	404.3	2.576	432.1	2.132	458.3	2.880	483.1	3.020	506.5	
1.929	318.0	2.034	335.4	2.238	367.3	2.406	396.7	2.273	424.0	2.728	449.7	2.878	474.1	3.016	497.1	
1.927	312.0	2.031	329.0	3.332	360.2	2.403	389.1	2.569	415.9	2.724	441.1	2.873	465.1	3.012	487.7	
1.924	305.9	2.038	322.5	2.22	353.2	2.399	381.4	2.262	407.7	2.720	432.4	3.868	456.0	3.008	478.2	
1.921	299.7	3.034	315.9	2.218	346.0	2.396	373.6	2.561	399.4	2.716	423.6	2.863	446.7	3.003	468.5	
1.918	293.2	2.031	309.3	2.214	338.8	2.391	365.8	2.657	391.1	2.711	414.8	2.858	437.4	2.998	458.7	
1.914	287.2	2.018	302.7	2.210	331.6	2.387	358.0	2.552	387,8	3.706	406.0	2.853	428.1	2.893	448.9	
1.910	580.9	2.014	296.1	2.202	324.3	2.382	350.2	2.247	374.4	2.701	397.1	2.847	418.7	2.881	439.1	
1.907	274.6	2.010	289.2	2.201	317.0	2.377	342.4	2.642	366.0	3.686	388.2	2.842	409.3	3.981	429.3	
1.903	789.4	3.006	585.9	2.197	80608	2.372	334.6	2.637	357.7	2.691	379.4	2.836	400.0	2.975	419.6	
1.899	262.2	2.003	276.3	2.192	302.6	2.367	326.8	2.632	349.4	2.685	9.028	2.830	390.7	2.969	8.604	
1.895	255.9	1.998	269.7	2.188	295.4	2.362	319.0	2.627	341.1	3.680	361.8	2.824	381.4	2.963	400.0	
1.891	249.6	1.993	263.1	2.183	288.2	2.357	311.2	2.621	332 · 8.	2.674	353.0	2.818	372.0	2.986	390.2	
1.886	243.3	1.988	256.4	2.178	280.9	2.352	303.4	2.515	324.4	2.668	344.2	2.811	362.6	2.948	380.4	
	s.0	-	<u>-</u>	Ġ.	7.1	7.	#. T	3.1	2	9	0 1	6.6	> 4	6.6	4	

CLASS II. (n=0.030.) Mean Velocities and Quantities of Discharge per second.

FOR A DRPIH OF WATER OF 3.5.

FOR BOTTOM-WIDTHS OF

0.565 0.567 0.570 0.571 0.573 0.574 0.573 0.574 113.2 117.5 121.8 126.1 130.4 134.7 138.9 143.2 0.762 0.764 0.766 0.768 0.770 0.771 0.773 0.774 152.7 158.4 164.2 170.0 175.8 181.6 187.3 193.1 1.042 1.048 1.061 1.083 1.065 1.067 1.069 208.9 216.7 224.6 232.5 240.4 248.8 256.1 263.9 1.263 1.266 1.772 1.275 1.277 1.263 1.263.9 253.1 262.6 272.2 281.7 291.2 300.7 310.2 319.8 290.9 301.8 312.8 328.8 334.7 345.6 356.5 367.4 1.451 1.651 1.652 1.768 1.777 1.780 1.784 1.783 290.9 301.8	4	46	48	50	52	54	26	58	09	62	64	99	89	70	72
0.762 0.764 0.766 0.788 0.770 0.771 0.773 0.774 152.7 158.4 164.2 170.0 175.8 181.6 187.3 193.1 1.042 1.046 1.048 1.061 1.058 1.065 1.067 1.068 208.9 216.7 224.6 232.5 240.4 248.8 256.1 263.9 1.263 1.266 1.289 1.772 1.275 1.277 1.280 1.283 1.461 1.465 1.468 1.468 1.461 1.471 1.473 290.9 301.8 312.8 323.8 334.7 345.6 356.5 367.4 1.611 1.616 1.623 1.626 1.639 1.633 1.635 1.636 322.8 334.7 345.6 356.5 367.4 445.7 1.611 1.618 1.639 1.777 1.780 1.784 352.7 366.0 379.2 392.5 405.8	0.557 0.559 0.561 0 96.00 100.3 104.6 10	104.6		0.863 108.9	0.565	0.567	0.568 121·8	0.570 126·1	0.671	0.673 134·7	0.673 138·9	0.574	0.578	0.676 151.8	0.877 158·0
1.042 1.046 1.061 1.053 1.065 1.065 1.067 1.068 1.068 1.069 1.068 1.069 <th< td=""><td>0.762 0.766 0.768 0 129.6 135.4 141.2 1.</td><td>0.758</td><td></td><td>0.741</td><td>0·162 152·7</td><td>0.764 158·4</td><td>0·766 164·2</td><td>0.768 170.0</td><td>0.770 175.8</td><td>0·771 181·6</td><td>0.773 187.3</td><td>193.1</td><td>0.775 198·8</td><td>0.176</td><td>0.777 210-2</td></th<>	0.762 0.766 0.768 0 129.6 135.4 141.2 1.	0.758		0.741	0·162 152·7	0.764 158·4	0·766 164·2	0.768 170.0	0.770 175.8	0·771 181·6	0.773 187.3	193.1	0.775 198·8	0.176	0.777 210-2
1.263 1.266 1.269 1.772 1.275 1.277 1.275 1.277 1.280 1.280 1.283 253.1 262.6 272.2 281.7 291.2 300.7 310.2 319.8 1.451 1.456 1.458 1.463 1.468 1.471 1.473 290.9 301.8 312.8 323.8 334.7 345.6 356.5 367.4 1.611 1.615 1.619 1.628 1.626 1.639 1.635 1.635 322.8 334.9 347.1 359.2 371.8 383.4 395.5 407.6 1.760 1.776 1.777 1.780 1.784 1.787 352.7 366.0 379.2 392.5 405.8 419.1 425.4 445.7 1.886 1.901 1.916 1.914 1.913 1.922 425.2 451.2 455.8 480.1 2.022 2.028 2.038 2.043 2.047 2.050 2.083	1.029 1.033 1.036 1 177.4 185.8 193.2 2	1.036		1.039	1.042	1.045 216·7	1.048 224.6	1.061	1.053	1.065	1.067	1.059	1.060 271.7	1.061	1.062 287·1
1.451 1.456 1.463 1.465 1.465 1.465 1.473 1.473 290.9 301.8 312.8 323.8 334.7 345.6 356.5 367.4 1:611 1.615 1.619 1.623 1.639 1.633 1.636 367.4 322.8 334.9 347.1 359.2 371.8 383.4 395.5 407.6 1.766 1.765 1.769 1.777. 1.780 1.784 1.787 352.7 366.0 379.2 392.5 405.8 419.1 482.4 445.7 1.886 1.901 1.906 1.910 1.914 1.918 1.922 445.7 2.022 2.028 2.038 2.043 2.047 2.043 2.047 2.043 2.022 2.023 2.038 2.043 2.047 2.050 2.083 2.024 4.81.6 4.81.6 4.81.6 4.81.2 0.080 2.083	1.248 1.252 1.256 1. 215·1 224·6 234·1 24	1.256 234·1		1.259 243·6	1.263	1.268 262·6	1.269 272.2	1.272 281.7	1·275 291·2	1.277 300·7	1.280 310.2	1.282 319·8	1.284 329·3	1.286 338·8	1.288 348·3
1.611 1.615 1.619 1.623 1.626 1.629 1.639 1.639 1.639 1.639 1.636 1.636 1.636 407.6 1.760 1.765 1.766 1.777 1.777 1.780 1.784 1.787 352.7 366.0 379.2 392.5 405.8 419.1 482.4 445.7 1.886 1.901 1.906 1.910 1.914 1.918 1.922 1.926 380.0 394.3 408.6 422.9 437.2 451.5 465.8 480.1 2.022 2.028 2.038 2.043 2.047 2.047 2.050 2.083 405.4 481.6 481.6 486.8 419.0 2.083 2.047 2.047 2.047 2.050 2.083	1.434 1.439 1.443 1.4 247.2 258.2 269.1 280	1.443		1.447 280·0	1.451 290·9	1.455 301.8	1.458 312.8	1.462	1·465 334·7	1.468 345·6	1.471	1.473	1·475 378·3	1.477 389·1	1-479 399-9
1.766 1.765 1.769 1.771 1.771 1.780 1.784 1.787 352.7 366.0 379.2 392.5 405.8 419.1 452.4 445.7 1.886 1.901 1.916 1.914 1.918 1.922 1.925 380.0 394.3 408.6 422.9 437.2 451.5 465.8 480.1 2.022 2.028 2.033 2.043 2.047 2.050 2.083 405.4 490.6 485.9 451.2 466.4 481.6 466.8 512.0	1-591 1-597 1-602 1-607 274-2 286-4 298-6 310-7	1.602		70	1.611	1.615 334.9	1.619 347.1	1.623 359·2	1.626 371.3	1.629 383.4	1.632 395·5	1.636	1.637 419.7	1.639	1·641 443·7
1.896 1.901 1.906 1.910 1.914 1.918 1.922 1.938 380·0 394·3 408·6 422·9 437·2 451·5 465·8 480·1 2·022 2·028 2·038 2·043 2·047 2·050 2·063 4·5·4 4·90·6 4·85·9 4·51·2 4·66·4 4·81·6 4·96·8 5/12·0	1.739 1.746 1.750 1.756 299.8 313.0 326.2 339.4	1.750		1.755 339.4	1.760 352.7	1.765 366.0	1.769 379.2	1.773	1.777.	1·780 419·1	1.784	1.787 445.7	1.790	1.793	1·796 485·6
2.022 2.028 2.033 2.043 2.047 2.050 2.053 4.05.4 4.00.6 4.85.9 4.51.2 4.66.4 4.81.6 4.86.8 5112.0	1.874 1.880 1.886 1. 323.0 337.2 351.4 36	1.886 351.4		1.891 365·7	1.896 380·0	1.901 394·3	1.906 408·6	1.910	1.914	1.918 451.5	1.922 465·8	1.925	1.928	1.931	1.93 4 522.9
	1.998 2.004 2.010 2 844.4 859.7 875.0 89	2.010		2.016 890.2	2.022	2.028 420.6	2·033 435·9	2.038 451.2	2.043	2.047 481.6	2.050 496·8	2.063 512.0	2.056 527.2	2·059 542·4	2.062 557.5

lxxxvi

)

					(14	AA 111	,
2.184	2.300	2·520 681·2	2·124 736·4	2.910	3.087	3·263 879·4	
2.180	2·297 604·8	2·516 662·5	2·719 716·1	2·905 765·1	3.082 811.6	3.248	
2·176 557·9	2·293 587·8	2·512 643·8	2·714 695·8	2.900 743.5	3·0·7 788·7	3·243 831·2	
2.172	2.289	2.508	2·709 675·6	2·895 722·0	3·072 765·8	3·237 807·2	
2.168	2·286 553·8	2.503	2.704	2.890	3.066	3·231 783·2	
2.164	2·281 536·8	2.498	2·698 635·3	2.886 679·0	3.060	3.226	
2·160 493·3	2.277	2.483	2.693 615.2	2.878	3.054	3.219	
2.156	2.272	2.488	2.688 595·1	2·873 636·0	3·048 674·6	3·213 711·2	
2·151 461·1	2·267	2·483 532·2	2·682 575·0	2.867 614·6	3.041	3.207	
2·146 445·0	2·262 469·0	2·477 513·7	2.676 555.0	2.860	3.034	3.199	·
2.140	2.266 452.0	2·471 495·1	2.669 534.9	2.853 571.7	3.026	3·190 639·3	
2.134	2·250 435·0	2.464	2.662 514·8	2.846 550.2	3.018	3·181 615·3	
2·128 396·7	2·243 418·0	2·457 457·9	2.654	2.837	3.003	3·172 591·3	
2·121 380·6	2·236 401·1	2.450	2.646 474.6	2.828	3.000 538·1	3.162	
2.114	2·228 384·2	2·442	2·637 454·6	2·819 486·0	2.990 515.4	3·152 543·3	
6.0	1.0	1.2	1.4	1.6	1.8	2.0	

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 4.0. FOR BOTTOM-WIDTHS OF

0.625 0.627 0.639 0.631 170·1 178·3 186·5 194·6 0.837 0.840 0.843 0.845 227·7 238·5 249·8 260·1 1·144 1·148 1·111 1·114 311·3 326·0 340·8 355·6 1·381 1·386 1·390 1·384 1·58 1·693 1·693 1·602 432·0 452·5 473·0 493·5 1·762 1·78 1·773 1·778 1·762 1·78 1·773 1·778 1·926 1·932 1·938 1·943 523·9 548·7 573·5 598·3 2·076 2·986 2·986 2·984	0.627 0.629 178.3 186.5 0.840 0.843 238.5 249.8 1.148 1.151 326.0 340.8 1.386 1.390 393.6 411.4 1.683 1.698 452.5 473.0 1.768 1.773 502.2 525.0 1.932 1.938 248.7 573.5	0.623 0.624 0.629 162.0 170.1 178.3 186.5 0.834 0.837 0.840 0.643 216.8 227.7 238.5 249.8 1.140 1.144 1.148 1.151 296.5 311.3 326.0 340.8 1.376 1.381 1.396 411.4 1.582 1.583 1.593 411.4 411.5 432.0 452.5 473.0 1.766 479.4 502.2 525.0 1.920 1.926 1.932 1.938 499.1 523.9 548.7 573.5 2.069 2.086 2.088
564.7 591.5	538.0 564.7 591.5	484-6 511-3 538-0 564-7 591-5
2.214	2.206 2.214	2·189 2·198 2·206 2·214
		0.617 0.620 145.8 153.9 0.827 0.631 195.2 206.0 1.131 1.136 267.0 281.7 1.366 1.371 32.24 340.2 1.669 1.676 370.5 391.0 1.742 1.750 411.2 433.9 1.906 1.913 449.5 474.3 2.062 2.061 484.6 511.3

lxxxviii

)

2.387

2.383

2.379

2.374

2.369

2.363

2.357

2.350

2.342

2.334

2.325

2.315

2.302

2.294

6.909

576.7

546.5

516.4

486.3

6.0

8.004

0.999

631.2

596.4

2.649 561.6

1.2

2.695

2.682

2.674

2.662

639.8

0.809

576.2

544.4

512.6

1.0

2.460

2.451

2.441

2.430

2.418

757.0

719.4

681.8

644.2

2.909

7.

2.911

2.900

2.889

2.876

2.862

809.3

769.1

728.9

2.889

648·5 3·245

1.6

3.112

3.100

3.088

3.074

3.028

2.098

817.6

774.5

731-4

688.2

1.8

3.301

3.289

3.276

3.261

905.1

860.1

815.1

3·437 770·1

725.1

5.0

3.430

3.480

3.467

CLASS TI, (n = 0.030)

					(2	ro)					
		106	0.492 249·7	0.673 290.8	0.699 354·7	0.80 2 406.9	0.931 472·4	1·264 641·4	1.628 775·2	1.754 889.8	1.946 987·4
		102	0.491	0.572 280·0	0.698 341·4	0.800 391·7	0.929 454·6	1.262 617.7	1.525	1.750	1.942 950·6
		86	0.490	0.571 269.2	0.696 328·1	0.799 376.5	0.927 436·9	1.260	1.522	1.746	1.838 913.8
		#	0.489 221.8	0.570 258·4	0.695 314.8	0·797 361·3	0.925 419·1	1·268 570·2	1.519 688·8	1·742 789·9	1.934 877.0
		06	0·488 212·5	0.569 247·6	0.693 301·6	0·795 346·1	0.922 401·4	1·265 546·4	1.516 660·0	1·738 756·6	1.930
		88	0.486 203·1	0.567 236·7	0.691 288·3	0.793 330·9	0.920 383·8	1·252 522·6	1·612 631·1	1·134 723·5	1.926 803·4
or 4·5.	# 0	88	0.485 193·7	0·565 225·8	0.689 275·0	0·791 315·7	366.2	1.249	1.508 602·2	1·729 690·4	1.920 766·7
WATER	WIDTHS	78	0.483 184·3	0.563 214·9	0.687 261·7	0·788 300·5	0.915 348·7	1·245 474·9	1·503 573·3	1.724 657·4	1.914
TTH OF	Воттом-	74	0-481 174·9	0.561 204·0	0.684 248·5	0·78b 285·3	0.912 331.2	1·241 451·0	1·498 544·5	1.718 624·4	1.908 693·3
OB A DE	FOR	70	0.479 165·5	0.559 193·1	0·681 235·3	0·782 270·1	0.908 313·7	1·237 427·1	1·493 515·7	1·712 591·4	1.901 656·6
ř.		99	0.477 156·1	0.556 182·2	0.678 222·1	0·779 254·9	0.904 296·1	1·232 403·3	1.487 487·0	1·705 558·4	1.893 620.0
		62	0.474 146·7	0·653 171·3	0.675 208·9	0·775 239·7	0.900 278·5	1·226 879·5	1·481 458·3	1.698 525·4	1.885 583.4
		28	0-471 137·3	0.550 160.4	0.671 195·7	0·771 224·5	0.895 261.0	1·219 355·6	1·474 429·6	1.690 492.4	1.876 546.9
		54	0.468 127·9	0.547 149·5	0.667 182.5	0.766 209.4	0.890 243.5	1·212 831·7	1·466 400·9	1·681 459·5	1.866
		20	0.464	0.643 138·7	0.663 169·3	0·761 194·3	0.885 226·0	1.205 307·8	1·468 372·3	1.671 426·6	1.856
	FOR A DEPTH OF WATER OF 4.5.	FOR A DEPTH OF WATER OF 4.5. FOR BOTTOM-WIDTHS OF	FOR A DEPTH OF WATER OF 4.5. FOR BOTTOM-WIDTHS OF 54 58 62 66 70 74 78 82 86 90 94 98 102	FOR A DEPTH OF WATER OF 4·5. FOR BOTTOM-WIDTHS OF 4·5. FOR BOTTOM-WIDTHS OF 4·5. FOR BOTTOM-WIDTHS OF 4·5. FOR BOTTOM-WIDTHS OF 4·5. FOR BOTTOM Of 4 and 10 an	FOR A DEPTH OF WATER OF 4.5. FOR BOTTOM-WIDTHS OF 4.5. FOR BOTTOM-WIDTHS OF 4.5. FOR BOTTOM-WIDTHS OF 4.5. FOR BOTTOM-WIDTHS OF 4.5. FOR BOTTOM O.479 O.479 O.479 O.479 O.489 O.486 O.486 O.486 O.489 O.490 O.491 I27.9 I37.9 I46.7 I56.1 I65.5 I74.9 I84.3 I98.7 203.1 212.5 221.8 231.1 240.4 O.447 O.469 O.681 O.681 O.691 O	FOR BOTTOM-WINTERS OF 4.5. FOR BOTTOM-WINTERS OF 4.5. FOR BOTTOM-WINTERS OF 4.5. FOR BOTTOM-WINTERS OF 4.5. FOR BOTTOM-WINTERS OF 4.6. O-468	FOR BOTTOM-WINTERS OF 6.6 66 70 74 78 82 86 90 94 98 102 106 106 127.9 137.3 146.7 156.1 165.5 174.9 184.3 198.7 203.1 212.5 221.8 231.1 240.4 249.7 149.5 160.4 171.8 182.2 193.1 204.0 214.9 225.8 286.7 247.6 218.8 280.0 290.8 0.698 0.699 0	For Botton-Water of 4.5. For Botton-Winter of 4	For Bottom-Winters of 4.5. Fo	54 58 62 66 70 74 78 88 86 90 94 98 102 106 0.488 0.481 0.481 0.485 0.486 0.486 0.489 0.689 0.689 0.689 <	54 58 62 66 70 74 78 88 86 90 94 98 102 108 127.9 137.8 6.6 70 74 78 88 86 90 94 98 102 108 127.9 137.8 6.48 6.48 6.48 6.48 6.48 6.48 6.48 102 106 127.9 137.8 146.7 156.1 165.5 174.9 184.8 189.7 203.1 212.5 221.8 231.9 246.7

0.03

20.0

0.1

0.5

0.3

9.4

0.2

					(2	kci))
2·118 1074	2.278 1157	2·439 1237	2·580 1309	2·722 1381	2.982 1513	3·220 1634	
2.113	2·276 1114	2·434 1191	2·575 1260	2.716 1329	2.975	3-213	
2·108 993·7	2·2†2 1071	2·429 1145	2·570 1211	2-710 1277	2.968 1399	3.206	
2·103 953·6	2·269 1028	2·424 1099	2.565 1162	1225	2.961 1342	3-199	
2.098 913.5	2·265 985·4	2·418 1053	2.559 1114	2.697	2.954 1286	3.192	
2.093 873·6	2·260 942·5	2·412 1007	2·563 1065	2·690 1122	2.947	3.184	
2.087 833.7	2·254 899·6	2.406	2.546 1016	2·683 1071	2.939 1173	3.175	
2.081 793.8	2.247	2·398 914·5	2·537 967·8	2·675 1020	2-930 1117	3.165	
2.075 754·0	2·240 813·8	2.390	2·529 919·1	2.666 968.5	1061	3·155 1146	
2.068	2.232	2·381 822·3	2·520 870·4	2.656 917·3	2-911 1005	3.143	-
2.060	2·224 728·0	2.372	2.510 821.9	2.646 866.2	2.900 949·0	3.131	
2.051 634·6	2·216 685·1	2·362 731·3	2.500	2.635 815·1	2.887 893.0	3·118 964·3	
2.041	2.204	2·352 685·8	2·488 725·0	2·621 764·0	2·873 837·1	3·103 904·0	,
2.030	2·192 599·5	2·342 640·4	2·475 676·6	712.9	2.857 781.2	3.086	
2.018	2·180 556·7	2·330 595·0	2.460	2·592 661·9	2·840 725·3	3.068	
9.0	2.0	8.0	6.0	1.0	1.2	1.4	

						(x	cii)					
			150	0.543	0.631 496·9	0.163 600.9	0.872 686·8	1.011	1.370 1079	1303	1·897 1494	2.106
			145	0.542	0.630 480·2	0·762 580·9	0.871 0.872 664-1 686-8	1.010	1.368	1.663	1.895	2.104
			140	0.642 399·5	0.629 463·5	0·161 561·0	0.870 641.4	1.009	1.366	1.651	1.893	2.071 2.076 2.081 2.086 2.091 2.098 2.108 2.104 2.106
			135	0.541	0.628 446·9	0.760 541·1	0.869 618·7	1.008	1.364	1.648	1.890	2.098
			130	0.540	0·626 430·3	0.768 521.2	0.867	1.006 691.6	1.362 936.3	1.645	1-887 1296	2.095
	OND.		120 125	0.539	0.626	6.757 501.3	0.866	1.004	1.359	1.642	1.883	2.091
	B SEC		120	0.638 342·5	0.624 397·3	0.755 \$81.4	0.864 550·6	1.002	1.367	1.638	1.879	3.086
	H PE		115	0.536 328·2	0.622 380·9	0.753 461.5	0.862	1.000	1.354	1.634	1.875	2.081
÷	CHARG.		110	0.536 314·0	0.621 B64·5	0.752	0.860	0.982	1.361	1.630 957.8	1099	2.076
030	Dis	18 OF	105	0.633	0.619	0.750 421.8	0.868 482.6	0.995 559·6	1.348	1.626 914·5	1.867	2.071
) = #	ES OF	Widte	00Ì	0.531	0.617 331·6	0.748 401.9	0.866 459.9	0.992 533.3	1.345	1.622 871 · 2	1.862	3.066
) H	TITIN.	TTOM-	95	0.529	0.615 315.2	0.746 382.0	0.853	0.202	1.341	1.618	1.867 951.6	2.062
CLASS II. $(n = 0.030.)$	3 AND QUANTITIES OF DISCHA	FOR BOTTOM-WIDTHS OF	06	0.627 257.2	0.613	0.743	0.850	0.986 480·7	1-337 651 · 2	1.614	1.851	2.068
CIT/	AND For A	1	85	0.525 243.0	0.610	0.740	0.847 391.8	0.983	1.332	1.610 741.4	1.845	2.049
	CITIE		80	0.523	0.992	0.737	369.2	0.979 428·3	1.326	1.596	1.838	2.041
	VELO		75	0.520	0.605	0·733 302·5	0.840 346·6	0.974 402.0	1.320	1·692 655·6	1.830	2.032
	Mean Velocities and Quantities of Discharge per second. For a Depth of Water of 5:0.		70	0.617 0.620 0.623 0.526 0.627 0.629 0.631 0.633 0.636 0.636 0.639 0.639 0.640 0.641 0.643 0.643 0.643 20.64	0.602 0.605 0.608 0.610 0.613 0.615 0.617 0.618 0.621 0.622 0.624 0.625 0.626 0.628 0.628 0.629 0.639 0.639 0.631 233.2 249.6 266.0 282.4 298.8 315.2 331.6 348.1 364.5 380.9 397.3 413.8 430.3 446.9 463.5 480.2 496.9	0.733 0.733 0.737 0.740 0.743 0.746 0.748 0.750 0.753 0.755 0.755 0.755 0.755 0.755 0.757 0.769 0.761 0.763 0.765 0.765 0.765 0.765 0.769 0.763 0.765	0.836 0.846 0.844 0.847 0.850 0.853 0.866 0.858 0.866 0.863 0.864 0.864 0.866 0.865 0.865 0.865 0.866 0.867 0.869 0.870 0.871 0.872 324.0 346.6 369.2 391.8 414.5 437.2 459.9 482.6 505.2 527.9 550.6 573.3 596.0 618.7 641.4 664.1 686.8	0.969 0.974 0.979 0.983 0.986 0.989 0.992 0.996 0.989 1.000 1.002 1.004 1.006 1.008 1.009 1.010 1.011 375.8 402.0 428.3 454.5 480.7 507.0 533.3 559.6 586.0 612.4 638.8 665.2 691.6 717.9 744.1 770.2 796.8	1.314 1.320 1.326 1.322 1.337 1.341 1.345 1.348 1.351 1.356 1.356 1.357 1.359 1.357	1.688 1.692 1.696 1.616 1.614 1.618 1.622 1.626 1.630 1.634 1.638 1.642 1.645	1.821	2.022 2.032 2.041 2.049 2.066 2.062 2.066 2.071 2.076 2.086 2.081 2.086 2.091 2.098 2.098 2.104 2.104
	F		65	0.513 186·2	0.698 0.602 0.606 0.608 0.610 0.613 0.615 0.617 0.619 0.621 0.622 0.632 0.636 0.638	0.724 262.7	0.831 301·4	0.963 349·6	1.307		1.811 1.621 1.630 1.838 1.846 1.851 1.857 1.667 1.050 1.099 1148 1197 1246 1296 1345 1394 1444 1494	2.011
			09	0.509 0.513 172.0 186.2	0.594 200·4	0.719	0.826 278·8	0.957 0.963 323.4 349.6	1.399 1.307 1.314 1.320 1.328 1.332 1.337 1.341 1.346 1.348 1.351 1.364 1.357 1.364 1.367 1.368 1.365 1.368	1.667 1.573 529·3 571·4	1.800	
•			55	0.505	0.589	0.714	0.820	0.961	1.291	1.560	1.789	1.986 1.999
		-										

0:1

0.5

0.3

9.4

0.5

0.02

Fall per thousand.

0.03

0.05

0.02

 $620 \cdot 6 \mid 675 \cdot 0 \mid 729 \cdot 4 \mid 783 \cdot 9 \mid 888 \cdot 4 \mid 892 \cdot 9 \mid 948 \cdot 5 \mid 1003 \mid 1057 \mid 1111 \mid 1166 \mid 1220 \mid 1274 \mid 1829 \mid 1384 \mid 1439 \mid 1493 \mid 1548 \mid 1603 \mid 1658 \mid$

	(xeiii)
2·292 1805 2·470 1945 2·632	2073 2-786 2194 2-936 2312 3-216	2736
2·289 1745 2·467 1880 2·629	2004 2-782 2121 2-932 2235 3-212	3.470
	2.178 2048 2.928 2.928 2.159 3.208	2555
2·283 1625 2·460 1752 2·623	2.774 1976 2.924 2083 3.204	3.460
2.279 1566 2.456 1688 2.618	2.770 1904 2.920 2007 3.199	2375
3.336 2.243 2.249 2.255 2.280 2.265 2.200 2.270 2.275 1089 1148 1208 1268 1327 1386 1446 1506 2*10 2*41 2*42 2*430 2*43 2*44 2*44 2*46 1175 1239 1303 1367 1431 1495 1559 1623 2*673 2*680 2*686 2*692 2*698 2*604 2*609 2*614	1595 1663 1731 1800 2.766 2.761 2.786 2.770 1687 1759 1831 1904 2.906 2.910 2.915 2.920 1779 1855 1931 2007 3.182 3.188 3.198 3.199 1948 9031 9115 9190	22855
2.270 1446 2.447 1559 2.609	2.766 2.761 1687 1759 2.908 2.910 1779 1855 3.182 3.188	2195
2.285 1386 2.442 1495 3.604	2.744 2.750 2.756 1543 1553 1615 1687 2.882 2.899 2.905 1627 1703 1779 1779 1789 1789 1789 1789 1785 1948	2105
2·260 1327 2·436 1431 2·598	1459 1527 2-744 2-750 1543 1615 2-882 2-899 1627 1703 3-169 3-176 1782 1865	3.430
2.255 1268 2.430 1367 2.592	1459 2-744 1543 2-892 1627 3-169	3°386 3°396 3°414 3°422 1565 1655 1745 1835 1925
2 · 249 1208 2 · 424 1303 2 · 586	2.731 2.738 1399 1471 2.877 2.886 1475 1551 3.162 3.161	3.414
2·243 1148 2·417 1239 2·580		3.406
	2.714 2.723 1255 1327 2.860 2.869 1323 1399 3.133 3.143	3.386
	2-714 1255 2-860 1323 3-133	12.3.3.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
2-210 2-219 2-228 911-5 970-7 1030 2-383 2-393 2-402 983-1 1047 1111 2-646 2-666 2-666	2.705 2.705 1183 2.849 1247 3.123	1476
2·210 911·5 2·383 983·1 2·646	2.694 11111 2.838 11711 3.111	3.380
	2.682 2.682 1039 2.826 1095 3.097	3.34
2·188 793·2 2·358 855·3	2.668 966.8 2.812 1019 3.080	1206
	2.652 2.652 894.8 2.795 943.5 3.061	3.306
	2:633 822:8 2:776 2:776 867:6 3:040	3.284

2.0

8.0

6.0

1.0

1.2

)

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 5.5. FOR BOTTOM-WIDTHS OF

Fall per thousand.	09	99	72	78	84	06	96	102	108	114	120	126	132
0.02	0.544	0.549 224·3	0.563 244·4	0.557 264·5	0.661 284·6	0.564 304.8	0.567 325·0	0.570 345.2	0·672 365·5	0.674 385·8	0.676 406·1	0.677 426·3	0.678 446.5
0.03	0.631	260.1	283.4	9.646	930.0	953.3	9.928	999.0	0.662	0.664	0.666 469·8	0.668 493·3	0.670 516·8
0.05	0·763 286·4	0.770 314·4	0.776 342·4	0·181 370·4	0.785 398·4	0.789 426.4	0.193 454·5.	0.196 482.6	0.799 510•7	0.802	0.804 567·1	0.807 595.3	0.80 9 623·5
. 20.0	0·873 327·7	0.880 359·6	0.886 391.5	0.892	0.897 455•4	0.902 487.4	0.906	0.909 551·4	0.912 583·4	0.915 615·5	0.918 647·6	0.921 649·7	0.923 681·8
0.1	1.012 379.8	1.020	1.027	1.033	1.038	1.043	1.047	1.051	1.056	1.068	1.061	1.064	1.066
0.5	1.370	1.381	1.391	1.399	1.406	1.412 763·0	1.418 813·0	1.423 863·0	1.428 913·0	1·433 963·0	1.437	1.441	1113
8.0	1.656 621.6	1.668	1.679	1.689	1.698 861·8	1.706 921.9	1.712 981.9	1.717	1.722	1.727 1162	1.732	1.736	1.740
0.4	1.902	1.915	1.927	1.937 919·0	1.946 987·0	1.956	1.963	1.969	1.975	1.981	1.986	1.991	1.995
0.5	2·109 791·6	2·126 867·8	2·140 944·0	2·162 1020	2·162 1096	2·171 1178	2.179	2·186 1325	2·193 1401	2·199 1478	2.205 1555	2.210 1631	2.216 1707

2.410	1858	2.591	1997	2.764	2131	2.924	2255	3.083	2377	3.378	2604	3.648	2814	
2.402	1775	2.586	1908	2.758	2036	3.918	2154	3.011	2271	3.371	2488	3.641	2688	
2.389	1692	2.579	1819	2-752	1941	2.913	2053	3.070	2165	3.363	2372	3.633	2562	
2.393	1608	2.573	1729	2.745	1845	2.905	1952	3.062	2058	3.354	2255	3-623	2436	
2.387	1525	2.566	1639	2.737	1749	2.896	1821	3.053	1921	3.344	2138	3.612	2310	
2.380	1442	2.558	1550	2.728	1654	2.887	1750	3.043	1844	3.334	2021	3.601	2184	
2.371	1359	2.549	1461	2.719	1559	2.877	1649	3.033	1738	3.323	1905	3.589	2058	
2.361	1276	2.540	1372	2.109	1464	2.866	1549	3.021	1632	3.311	1789	3.576	1932	
2.351	1193	2-629	1283	2.698	1369	3.854	1448	3.008	1526	3.297	1672	3.561	1806	
2.340	1110	2.617	1194	2.685	1274	2.841	1347	3.884	1420	3.280	1556	3.543	1670	
2.327	1027	2.204	1105	2.670	1179	2.836	1246	2.979	1314	3.261	1440	3.522	1555	
2.312	944.3	2.488	1016	2.663	1084	2.808	1146	3.960	1208	3.241	1324	3.200	1430	·
3.292	861.4	2.470	927.3	2.634	8.886	2.788	1046	2.938	1103	3.219	1208	3.476	1305	
9.0	0	t	- - -	9.0	o > .	0.0	>	9	- 	1.9	1	1.4		

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCRARGE PER SECOND.

FOR A DEPTH OF WATER OF 5.5. FOR BOTTOM-WIDTHS OF

:	_											
138		144	150	156	162	168	174	180	186	192	198	20 1
0.580	08	0.582	0.583	0.584	0.586	0.586	189.0	0.687	0.588	0.589	0.590	069.0
4 66	8.99	487.1	£.70c	9.120	8. 240	268.0	7.880	4 .809	c.879	9.8.6	2.899	86. 889.
9.0	- 27:	0.674	0.675	0.677	0.678	0.679	0.680	0.681	0.683	0.683	0.683	0.684
540.3	<u>.</u> ق	563.8	587.4	6.019	634.4	627.9	681.4	705.0	728.4	751.8	775-2	798.5
8.0	=	0.813	9.814	0.816	0.818	0.819	0.830	0.831	0.823	0.823	728.0	0.825
651	8.129	680.1	708.4	736.7	765.0	793.3	821.6	849.9	878.2	906.2	934.8	963·2
*		0-927	0.939	0.931	0.833	0.933	0.936	0.936	0.937	0.838	0.939	0.940
714	0.412	746.2	808.4	840.2	872.6	904.8	937.0	2.696	1002	1034	1066	1098
1:0		1.070	1.073	1.074	1.076	1.071	1.079	1.080	1.081	1.083	1.084	1.085
823	859.0	0.968	933.0	0.026	1007	1044	1081	1118	1155	1192	1229	1266
1.4		1.450	1.462	1.456	1.457	1.459	1.461	1.463	1.465	1.466	1.468	1.469
1163	 83	1213	1264	1314	1364	1414	1464	1515	1565	1615	1665	1715
1.1	-43	1.746	1.749	1.752	1.754	1.756	1.769	1.761	1.763	1.765	1.767	1.768
1402	 73	1462	1522	1582	1642	1702	1762	1823	1883	1943	2003	2064
1.9		2.003	2.002	2.008	2.011	2.014	2.017	2.020	2.023	3.034	2.026	2.028
1607		1676	1745	1814	1883	1952	2021	2090	2159	2228	2297	2367
2.219		2.233	2.227	2.231	2.234	2.237	2.240	2.243	2.246	2.247	2.249	2.261
12	84	1861	1988	2014	2091	2168	2245	2322	2398	2475	2552	2629

xcvi

					•	•	1
2.450	3075	2·809 8279	3-974	3·134	3·433 4007	3.708	
2·448 2781	2.632	3183	2.971 3369	3-131 3551	3.430	3·105 4202	·
2696	2895	3.804	2.968 3267	3·128 3444	3-426	3·701 4076	
2·442 2611	2.626 2805	2-801 2992	3.964	3337	3-422	3950	
2526	2·623 2716	2.798 2897	2.961 3065	3.121	3-418	3.603	
2442	2.626	2.795	2.963	3.117	3-414	3.688	
2358	2536	2·791 2705	2.963	3·113 3017	3.410	3.683	
2·430 2275	2·613 2446	2.787	2.949	3·109 2910	3.406	3.678 3444	
2·427 2192	2356	2·783 2514	2.945	3·106 2804	3.401	3·673 8318	
2.423	2.606 2267	2419	2558	3.100	3-396	3.668 3192	
2025	2-601	2323	2.935	3.096 2591	3-39 6 2838	3.662	
2-416	2-596 2087	2.700 2227	2.930	3.089	3·384 2721	3.656	
9.0	2.0	8.0	6.0	1.0	1.2	1.4	

CLASS II. (n = 0.030.)

MEAN VELOCITIES AND QUANTITIES OF DISCRARGE PER SECOND.

FOR A DEPTH OF WATER OF 6.0.

FOR BOTTOM-WIDTHS OF

			(xc	viii)					
165	0·623 650·1	0.720	0.871 908·5	1031	1·13† 1187	1.539	1.847	2.119	2456
158	0.623 622·6	0.119 719·7	0.869 870·2	0.886	1.136	1.636	1.844 1847	2·116 2118	2.350
151	0.620 595·1	688·0	0.867 831.9	0.983 944·5	1·133 1087	1-633	1.840	2025	2250
144	9.499 \$67.6	0·715 656·3	0.865 793·6	0.981 901.0	1·130 1037	1.630	1.836 1685	2·107 1933	2.340
137	0.618 540·1	0·713 624·6	0-86S 755·3	0.979 857·6	1·127 987·2	1.627 1387	1.833	2·102 1841	2.334 2044
130	0.616 512.6	0·111 593·0	0.860	0.976 814·2	1·124 937·3	1.624	1-827 1524	2.097 1748	2.328
123	0·614 485·1	0·109 561·4	0.857 678·7	0.973 770·8	1·121 887·4	1.619	1.822	2·001 1655	1838
116	0-611 457·7	0·101 529·9	0.8 54 640.4	0.970 727-4	1·117 887·5	1134	1362	2.084	2.314
109	0.608 430·3	0.704 498.4	0.850 602·1	0.966 684·0	1·113 787·7	1.508	1281	2.077 1470	1632
102	0.606 402.9	0·701 466·9	0.848 563·8	0.962 640-6	1·108 737·9	1.502	1.804	2.069 1378	1530
35	e-602 375·5	0.697 435·3	0.842 525·5	0.967 597.2	1·103 687·2	1·498 932·6	1.796	2·060 1285	1427
88	0.599 348·2	0.693 403·7	0.837 487·2	0.962 553·9	1.007 637·6	1·487 865·3	1.787	2.050 1193	2·277 1324
18	0.595 820·9	0.688 372.2	0.831 448·9	0.945 510·6	1.090	1.479 798·0	1.776 959·7	2·038 1101	2·265 1222
74	0.590 293·6	0.683 340·7	0.824 410·7	0.938 467·3	1.082	1.468	1.766 879·4	2.026 1009	2.260 1120
29	0.584 266·3	0.678 309.2	0.817 372.5	0.930 424.0	1.074 489·8	1.455	1.763 799·8	2.010 916·7	2·232 1018
Fall per thousand.	0.02	0.03	90.0	20.0	0.1	0.5	8.0	4. 0	0.2

		(xcix)
2·560 2672 2·752 2873	2·935 3065 3·107 3243	3·275 3419 3·587	3.876 4045	
2.556 2560 2.747 2.752	2.936 3.101 3107	3·269 3276 3·581	3588 3 · 868 3875	
2.550 2448 2.742 2631	2-926 2807 3-095 2971	3·263 3133 3·574	3431 3·861 3705	-
2·544 2336 2·736 2511	2.918 2679 3.088 2835	3.268 2990 3.567	3274 3·863 3536	
2·538 2224 2·730 2391	2551 3.081 2699	3·260 2847 3·559	3117 3*844 3367	
2·532 2112 2·723 2270	2·804 2422 3·074 2563	3.241 2703 3.550	2960 3·834 3197	
2.525 2000 2.716 2150	2.293 3.065 2427	3·231 2560 3·539	2808 3·823 3027	,
2·518 1888 2·707 2030	3·887 2165. 3·066 2291	3·221 2417 3·528	2646 3·812 2858	
2.510 1776 2.698 1910	2037 3·046 2155	3-211 2274 3-517	3.799	
2·500 1665 2·688 1790	2·867 1909 3·033 2020	3·199 2131 3·504	2333 3·786 2520	
2·489 1553 2·676 1670	2.856 1781 3.020 1884	3·184 1988 3·489	2176 3·768 2351	
2·477 1441 2·663 1550	2·841 1653 3·006 1749	3·168 1845 3·471	2019 3·749 2182	
2.464 1330 2.648 1430	2·824 1525 2·990 1614	3·161 1702 3·460	3.728 2013	
2.448 1219 2.631 1310	2·806 1397 2·970 1479	3·131 1559 3·427	3.704 1845	
2.430 1108 2.612 1191	2·786 1270 2·948 1344	3·108 1417 3·402	3.677 1677	

0.6 0.9 0.9 1.2 1.4

OLASS II. (n = 0.030.)

Mean Velocities and Quantities of Discharge per second. For a Depth of Water of 6.0.

FOR BOTTOM-WIDTHS OF

Fall per thousand.	172	6/1	186	193	200	207	214	221	228	235	242	249	256	263	270
0.02	0.624 677.7	0.626 705·4	0.627 783·1	0.628 760·8	0.629	0.630 816·3	0-631 844·0	0-632 871-7	0.633 899.4	0 · 633 927 · 1	0.634 954.8	982.6	0.636 1010	0.636 1038	1066
0.03	0·721 783·1	0.723 814.8	0.724 846·6	0.726 878·4	0.726 910·2	942.0	0.128 973·8	0.729 1006	0.730 1038	0.730 1070	0·731 1101	0·733 1133	0.733 1165	0.733 1197	0·734 1229
0.05	0.872 946·9	985.3	0.816 1023	0·876 1061	0.878 1100	0.879 1139	0.880	0.881	0.882	0.883	0.884 1331	0-885 1369	1407	0.886	0.887 1485
20.0	1075	1118	0.992 1161	0.993	0.995	1291	1334	1377	0.999	1464	1.001	1.002	1.003	1638	1.006
0.1	1.139	1-141	1337	1387	1-146	1.148	1.149	1.150	1-151	1-162	1.163	1.154	1.166	1.166	1·167 1937
6. 0	1.641	1.643	1.646	1.547	1.549	1.651	1.663	1.666	1.656	1.667	1.659	1.560	1.561	1.662	1·563 2617
0.3	1.860	1.863	1.856	1.858	1.860	1.862	1.864	1.866	1.868	1.870 2737	1.872	1.874	1.875	1.876 3061	1-877 3142
4.0	2.122	2·126	2.128	2582	2.134	2·136 2768	2·138	2954	2·143 3047	2·146 3140	2·147 3233	2·149 3326	2·150 3418	2·161 3511	2·152 3603
0.5	2559	2.360	2.363	2.366	2·369 2971	2·372 3074	2·374 8177	2·377 8280	3383	2·382 3486	2·384 3590	2.386 3693	2·388 3796	3.390	2·392 4004
	-		_	_	_	-	_	_	-	_	-	_	_	_	

											(
2.603	4357	2.798	4684	2.984	4996	3.160	5289	3.339	5578	3.645	6102
2.600	4244	2.796	4563	2.983	4867	3.157	5152	3.327	5429	3.643	5946
2.598	4131	2.794	4442	2.980	4738	3.154	2012	3.324	5285	3.641	5789
2.296	4019	2.792	4321	2.978	4609	3.151	4878	3.322	5141	3.639	5632
7.294	3907	2.780	4201	3.976	4481	8.148	4742	3.319	4998	3.636	5475
2.283	3794	2.787	4080	2.973	4352	3.145	4605	3.316	4824	3.633	5317
2.290	3681	2.784	3959	2.970	4223	3.142	4469	3.313	4710	3.630	5159
2.587	3569	2.781	3838	2.967	4094	3.139	4333	3.310	4566	3.626	2002
2.584	3457	2.779	3717	3.964	3965	3.136	4197	3.306	4423	3.622	4845
2.581	3345	3.776	3597	2.961	3837	3.133	4061	3.302	4280	3.618	4688
2.578	3232	2.773	3476	3.967	3708	3.129	3924	3.298	4136	3.613	4530
3.575	3120	2.769	3355	2.953	3579	3.126	3788	3.294	3992	3.608	4373
2.572	3008	2.765	3234	2.949	3450	3.121	3652	3.290	3849	3.603	4216
2.268	2896	2.761	3114	2.846	3322	3.117	3516	3.286	3706	3.598	4059
2.264	2784	2-757	2994	3.840	3194	3.113	3380	3.280	3563	3.593	3902

8.0

2.0

9.0

6.0

1.0

1.2

ci)

3-939 6598

3-936 6422

3-933 6252

3-930 6082

3-927 **5**912

3.923 5742

3-919 5572

3-916 5402

3·911 5232

3·907 5063

4893

3.898 4723

3·893 4553

3.887 4384

3-881 4215

(ciii)

THIRD CLASS.

RIVERS AND CANALS,

WITH BEDS AND BANKS IN BAD ORDER, HAVING IRREGULARITIES
AND DEPOSITS OF STONE, AND MUCH OVERGROWN
WITH VEGETATION.

n = 0.035.

CLASS III. (n = 0.035.)

COMPTICIENTS OF MEAN VELOCITY.

FOR VALUES OF R.

Fall per thousand.	0.1	0.2	0.8	0.4	0.2	0.6
0.02	_	_	_	_	22.6	24.0
0.07	_	_		_	22.8	24.3
0.1	12.8	16.7	19.3	21.3	23.0	24.5
0.2	13.6	17.5	20.0	22.0	23 · 5	24.8
0.8	14.0	17.8	20.2	22 · 1	23.8	24.9
0.4	14.1	18.0	20.3	22 · 2	23.9	25.0
0.2	14.2	18·1	20.4	22.3	24.0	25 · 1
0.6	14.3	18.2	20.5	22.3	24.0	25 · 1
0.7	14.4	18.3	20.5	22.4	24.0	25 · 2
0.8	14.5	18.4	20.6	22 · 4	24.0	25.2
0.8	14.5	18.4	20.6	22 · 4	24.0	25 · 2
1.0	14.5	18.4	20.6	22.4	24.0	25.2

FOR VALUES OF R.

Fall per thousand.	1.4	1.6	1.8	2.0	2.2
0.02	81.7	33.0	34.2	35.3	36.3
0.07	81.5	32.7	33.8	34 · 8	35.7
0.1	31.3	32.4	33.5	34.3	35·1
0.2	81 · 0	31.9	32.8	33.6	34 · 4
0.3	80.9	81.8	32.6	33· 4	34.0
0.4	80.8	31.7	82.5	33.2	33.9
0.2	80.8	31.6	32 · 4	33 · 1	33.8
0.6	30.8	31.6	32 · 4	33·1	33.8
0.7	80.8	81.6	32.4	33 · 1	33.8
0.8	30.8	31.6	32 · 4	33 · 1	33.8
0.9	80.8	81.6	32.4	33 · 1	33.8
1.0	30.8	81.6	32.4	83 · 1	33.8

The coefficients remain unaltered for steeper inclinations.

CLASS III. (n = 0.035.)

COEFFICIENTS OF MEAN VELOCITY.

FOR VALUES OF R.

0.7	. 0.8	0.9	1.0	1.2	Fall per thousand.
25.3	26.5	27.6	28.6	30.3	0.05
25.6	26.7	27.7	28.6	30.2	0.07
25.8	26.8	27.7	28.6	30·1	0.1
26.0	26.9	27.8	28.6	80.0	0.2
26.0	27.0	27 · 9	28.6	80.0	0.3
26.1	27.1	27.9	. 28.6	30.0	0.4
26 · 1	27.1	27.9	28.6	80.0	0.5
26 · 2	27·1	27 · 9	28.6	30.0	0.6
26.3	27.1	27.9	28.6	30.0	0.7
26.3	27·1	27.9	28.6	30.0	0.8
26.3	27 · 1	27.9	28.6	80.0	0.9
26.3	27.1	27.9	28.6	30.0	1.0

FOR VALUES OF B.

2·4	2.6	2.8	8.0	3·2	Fall per thousand
37.2	38.0	38.7	39.4	40.0	0.05
36.5	37 · 2	87.9	38.6	89.1	0.07
35.9	36.5	37·1	37 · 7	38.2	0.1
35.0	85.5	36.0	36.5	37.0	0.2
34.6	85·1	85.6	36·1	86.5	0.3
84.5	85.0	35.5	35.9	36.2	0.4
34.4	34.9	35.3	35.7	86.0	0.5
34.3	84.8	35 · 2	35.6	35.9	0.6
84.3	34.7	85·1	85.5	35.8	0.7
34.2	34.6	85·1	35· 4	85.7	0.8
34 · 2	84.6	85 · 1	35.4	35.7	0.9
34 · 2	34.6	35.1	35.4	35.7	1.0

The coefficients remain unaltered for steeper inclinations.

CLASS III. (n=0.035.) Mean Velocities and Quantities of Discharge per second.

FOR A DEPTH OF WATER OF 0.2.

FOR BOTTOM-WIDTHS OF

Fall per thousand.

0.1

0.5

0.3

0•4

0.2

9.0

2.0

8.0

				(c	vi)					
	2.2	0.037	0.055	0.123	0.143	0.090	0.099	0·192 0·108	0.206 0.115 0.219	0.123
	2.0	0.083	0.049	0.060	0.070	0.080	0.088	960.0	0.203	0.109
	1.8	9.0et 0-029	0.043	0.053	0·138 0·061	0.166 0.070	0.171 · 0.077	0·186 0·084	0.200	960.0
	1.6	0.025	0.037	0.116 0.046	0.136 0.053	0·162 0·061	9.168	0·182 0·073	0.196	0.083
	7- I	0.021	0.091	0.039	0.133	0.149	0.057	0.178	0.191	0.070
	1.2	0.018	0.087	0.110	0.038	0.044	0.160	0.052	0.186	0.059
- C	1.0	0.015	0.022	0·107 0·028	0.124	0.037	0.040	0.044	0.047	0.050
WILLIAM	6.0	0.018	0.080	0.106	0.123 0.030	0.034	0.036	0.040	0.042	0.045
FUR DOLLOM-WIDTHS OF	8.0	0.056	0.083 0.018	0·103 0·022	0.120	0.030	0.032	0·162 0·036	0.176 0.038 0.186	0.040
FUE	2.0	0.054	0.081	0.000	0·118	0·133 0·027	0.146	0·159 0·032	0.034	0.036
	9.0	0.000 0.009	0.019	0.098	0.116	0.129	0.025	0.154	0·166 0·030	0.081
	0.2	0.001	0.076 0.012	0.095	0·111 0·018	0·126 0·020	0·137 0·021	0.149	0.026	0.027
	9.6	0.049	0.010	0.091	0.107	0.120	0·132 0·018	0.143	0.155	0.023
	0.3	0.005	0.008	010·0	0.102	0.014	0.126	0.136	0·147 0·018 0·156	0.019
	0.5	0.004	900.0	0.008	0.096	0·108 0·011	0·119 0·012	0·129 0·013	0·138 0·014 0·148	0.015

				•	((c v ii)	í				
0.130	0.253	0.273	0·292 0·164	0.310 0.174	0.326 0.183	0.343	0.200	0·372 0·208	0.216	0·400 0·224	
0.227	0.249	0.269	0.145	0.305	0.321	0.337	0.362	0.366	0.190	0.394	
0.223	0.246	0.264	0.127	0.300	0.139	0.150	0.154	0.161	0.373 0.165	0.387	
0.219	0.094	0.104	0.109	0.294	0.310 0.120	0.130	0.133	0.139	0.366	0.379	
0.214	0.034	0.088	0.270	0.100	0.303	0.317	0.331	0.119	0.357	0.370	
0.209	0.068	0.247	0.079	0.084	0.088	0.30	0.097	0.101	0.348	0.108	
0.203	0.222	0.062	0.067	0.071	0.075	0.078	0.082	0.085	0.33	0.091	
0.048	0.218	0.056	0.061	0.064	0.068	0.071	0.309	0.077	0.080	0.082	
0.195	0.047	0.020	0.055	0.057	0.061	0.064	990.0	0.069	0.072	0.338	
0.038	0.209	0.229	0.049	0.051	0.054	0.057	0.059	0.308	0.320	0.331	
0.033	0.037	0.039	0.043	0.045	0.047	0.020	0.052	0.054	0.056	0.058	
0.180	0.032	0.033	0.037	0.039	0.040	0.043	0.045	0·290 Q·046	0.301	0.050	
0.172	0.027	0.028	0.031	0.083	0.034	0.036	0.038	0·279 0·039	0.289	0.300	
0.050	0.180	0.194	0.308	0.220	0.028	0.029	0.254	0.032	0.033	0.034	
0.016	0·170 0·017	0·184 0·018	0.020	0.209	0.220	0.23	0.024	0.025	0.026	0.269	
1.0	1.2	1.4	1.6	1.8	2.0	23	2.4	5.6	8.8	3.0	

CLASS III. (n = 0.035.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 0.4. FOR BOTTOM-WIDTHS OF

Fall per thousand.	4.0	9.0	8.0	1.0	1.2	1.4	1.6	1.8	2.0	2.2	3.0	3.2	0.7	4.5	2.0
0.1	0.032	0.086	0.090	090.0	0.000	0.100	0.030	0.100	0.110	0.110	0·113 0·162	0·115 0·189	0.215	0.119	0.136
0.5	0.048	0.126	0.132	0.088	0.142	0.146	0.150	0.146	0.161	0.160	0.237	0.275	0.314	0.858	0·176 0·392
0.3	0.148	0.076	0.166	0.110	0.127	0.181	0.188	0.181	0.192	0.198	0.294	0.341	0.388	0.436	0.216 0.484
9.4	0.172	0.089	0.191	0.129	0.206	0.211	0.130	0.220	0.232	0.230	0.341	0.396	0.450	0.505	0.560
0.5	0.191	0.203	0.216	0.223	0.230	0.130	0.213	0.237	0.261	0.322	0.383	0.271 0.444	0.505	0.567	182.0
9.0	0.085	0.226	0.236	0.245	0.263	0.200	0.234	0.260	0.287	0.354	0.422	0.300	0.557	0.307	60.00 60.00
2.0	0.230	0.244	0.257	0.266	0.274	0·282 0·226	0.254	0.282	0.310	0.383	0.316	0.529	0.602	0.675	0.334
8.0	0.098	0.260	0.274 0.154	0.284	0.293	0.301	0.309	0.314	0.338	0.328	0.338	0.346	0.352	0.356	0.369
6.0	0.261	0.277	0.291	0.301	0.310	0.255	0.327 0.287	0.333	0.338	0.434	0.359	0.386	0.372	0.376	0.380 0.851

cviii)

										(C	ix)									
0.401	0.897	0.430	0.983	9.414	1.062	109.0	1.136	0.538	1.205	0.567	1.270	0.295	1.333	0.621	1.391	0.647	1.449	0.671	1.503	0.695	1.557	
0.397	608.0	0.435	988.0	0.469	0.957	0.201	1.024	0.632	1.086	0.260	1-144	0.289	1.202	0.614	1.254	0.640	1.305	0.665	1.354	0.689	1.403	
0.392	0.721	0.430	0.4	0.463	0.853	0.495	0.912	0.526	296.0	0.563	1.019	0.583	1.071	109.0	1-117	0.632	1.162	0.657	1.206	0.680	1.250	,
0.386	0.633	0.423	0.694	0.456	0.749	0.488	0.800	0.517	0.848	0.545	0.894	0.673	0.940	0.288	0.981	0.623	1.020	0.646	1.059	699-0	1.097	
0.378	0.545	0.414	0.598	0.447	0.645	0.478	689.0	0.507	0.130	0.535	694.0	0.561	608.0	0.286	0.845	609.0	6.879	0.632	0.912	0.655	0.945	
0.367	0.457	0.403	0.203	0.434	0.541	0.465	0.579	0.493	0.613	0.230	0.646	979.0	6.679	0.269	0.709	0.593	0.738	0.614	992.0	0.636	0.793	
0.356	0.370	0.380	0.406	0.431	0.438	0.451	0.469	0.478	0.497	0.204	0.524	0.28	0.549	0.552	0.574	9.674	0.597	969-0	0.620	0.617	0.642	
0.321	0.336	0.384	998.0	0.418	0.398	0.444	0.425	0.471	0.451	0.498	0.476	0.219	0.499	0.544	0.521	0.265	0.541	0.587	0.563	0.607	0.583	
0.346	0.305	0.378	0.331	0.408	0.358	0.436	0.382	0.463	0.406	0.488	0.428	0.612	0.449	0.536	0.469	999.0	0.487	0.577	0.206	0.597	0.524	
0.338	0.269	0.368	0.295	0.398	0.318	0.425	0.340	0.451	0.361	0.476	0.381	0.488	668.0	0.621	0.417	0.542	0.434	0.562	0.420	0.283	0.466	
0.327	0.237	0.368	0.260	0.387	0.279	0.414	0.299	0.439	0.317	0.463	0.335	0.486	0.320	109.0	998.0	0.527	0.382	0.547	0.395	0.567	0.409	
0.317	0.502	0.347	0.225	0.375	0.541	0.401	0.258	0.435	0.274	0.448	0.230	0.462	0.305	0.491	0.317	0.511	0.330	0.830	0.342	0.550	0.353	
0.301	0.173	0.336	0.190	0.363	0.203	0.388	0.218	0.411	0.231	0.434	0.245	0.438	0.255	0.415	0.268	0.495	0.279	0.513	0.589	0.631	0.298	
0.391	0.141	0.320	0.155	0.346	991.0	998.0	0.178	0.381	0.189	0.413	0.500	0.434	0.209	0.461	0.219	0.410	0.228	0.488	0.236	0.202	0.244	
0.275	0.110	0.303	0.121	0.326	0.130	0.348	0.139	0.370	0.148	0.389	0.156	0.409	0.164	0.427	0.171	0.444	0.178	0.481	0.184	0.477	0.191	
	0.1		7	•	† .1	•	9.1		8. T	•))	6	N N		# 7	0.0	0	0.0	0	0.0	>	

CLASS III. (n = 0.035.)

MEAN VELOUITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 0.6.

						FOR	FOR BOTTOM-WIDTHS		1 0						
Fall per thousand.	9.0	8.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	3.0	3.5	4.0	4.5	2.0	5.5
0.1	0.113	0.118	0.133	0·127 0·162	0.131	0.135	0.223	0.245	0.300	0.354	0.409	0.465	0.521	0.577	0·166 0·634
0.5	0.165	0·173 0·177	0.180	0.235	0.264	0.294	0.324	0.355	0.435	0.220	0.597	0.E79	0.762	0.238	0.929 0.929
6.0	0.206	0.219	0.255	0.230	0.236	0.363	0.400	0.438	0.533	0.629	0.278 0.726	0.280	0.924	0.290 1.026	0·295 1·183
9.0	0·238 0·214	0.254	0.295	0.386	0.378	0.280	0.286	0.508	0.304	0.312	0.319	0.958	0.331 1.076	0.337 1.196	0-343 1-317
0.2	0.240	0.295	0.341	0.387	0.308	0.315	0.522	0.572	0.696	0.350	0.948	0.365	0.371	1.888	0-383 1-470
9.0	0.265	0.311	0.318	0.328	0.337	0.517	0.353	0.628	0.372 0.760	0.895	0.391	0.399	0.408	0.418	0-422 1-620
2.0	0.285	0.330	0.343	0.355	0.503	0.561	0.382	0.390	0.406	0.973	0.426	0.434	0.441	0.448	0·455 1·747
8.0	0.341	0.368	0.369	0.380	0.391	0.400	0.409	0.418	0.432	0.444	0.456	0.463	0.470	0.477	0.484 1.859
6.0	0.360	0.376	0.391	0.510	0.578	0.428	0.434	0.772	0.937	0.471	0.483	0.491	0.489	0.506	0.513 1.970

(cx)

	3.601	3.282	2.962	2.644	2.329	2.017	1.710	1.408	1.284	1.162	1.041	0.924	0.810	669.0	0.591	
	0.938	176.0	0.810	968-0	0.883	098-0	0.837	0.809	0.792	0.775	191.0	0.138	0.114	989.0	0.657	3.0
	3.479	3.168	2.829	2.552	2.249	1.949	1.652	1.359	1.241	1.123	1.006	0.892	0.782	0.675	0.571) •
	906.0	0.893	0.880	998-0	0.852	0.831	608.0	181.0	0.765	0.749	0.132	0.711	0.690	0.662	0.634	8
	3.32	3.051	2.753	2.428	2.167	1.879	1.593	1.310	1.195	1.081	996.0	0.829	0.753	0.650	0.550	, 1
	0.873	0.860	0.847	0.834	0.821	0.195	0.780	0.753	0.737	0.721	0,108	0.685	999.0	0.639	0.611	9.6
	3.218	2.933	2.648	2.364	2.083	1.802	1.530	1.258	1.148	1.039	0.933	0.828	0.726	0.626	0.528	H 3
	0.838	0.836	0.814	0.803	0.789	0.769	0.749	0.723	90.108	0.693	0.678	099.0	0.639	0.614	0.587	4.6
)	3.080	5.806	2.534	2.264	1.996	1.730	1.466	1.204	1.100	966.0	9.894	9.794	969.0	009.0	0.506	q q
xi	0.803	0.791	0.780	0.768	0.756	0.737	111.0	0.692	0.678	0.664	0.649	0.630	0.611	0.587	0.562	6.6
(2.938	2.675	2.414	2.156	1.900	1.646	1.396	1.148	1.048	0.948	0.820	0.755	0.662	0.571	0.482	> 4
(0.765	9-754	0.743	0.732	0.730	101.0	0.683	0.660	979.0	0.632	0.618	0.601	0.583	0.260	0.236	6
	2.792	2.543	2.294	2.047	1.803	1.562	1.324	1.089	0.994	0.00	0.807	0.716	0.628	0.542	0.458	0.1
	0.727	911.0	0.105	9.09	0.683	999-0	0.649	0.626	0.613	009-0	0.587	0.570	0.553	0.531	0.208	9
	2.630	2.394	2.160	1.929	1.700	1.473	1.249	1.027	0.988	0.849	0.760	0.675	0.592	0.511	0.432	5
	0.685	0.675	999-0	0.655	0.644	0.628	0.611	0.290	0.578	0.566	0.223	0.537	0.521	0.501	0.480	9.
	2.457	2.239	2.022	1.806	1.592	1.380	1.170	0.962	0.877	0.793	0.711	0.631	0.553	0.477	0.403	H
	0.640	0.631	0.622	0.613	0.603	0.588	0.573	0.553	0.541	0.529	0.617	0.503	0.488	0.488	0.448	4.1
	2.273	2.072	1.872	1.672	1.473	1.275	1.080	0.887	0.811	0.735	0.661	0.587	0.514	0.443	0.373	1
	0.693	0.584	0.576	199-0	0.658	0.544	0.230	0.210	0.200	0.490	0.479	0.486	0.462	0.434	0.416	6.
-	2.077	1.892	1.708	1.525	1.344	1.165	988.0	0.813	0.741	0.670	0.603	0.536	0.470	0.405	0.341	>
	0.641	0.633	0.625	0.517	0.208	0.496	0.483	0.467	0.467	0.447	0.437	0.426	0.413	0.396	0.379	9.
1)	7			ř ·	,					1				

CLASS III. (n = 0.035.)

ę

SHOOM	4.5	0.136
MA PET	0.7	0.133
Mean Velocities and Quantities of Discharge per showi For a Depth of Water of 0.8. For Bottom-Widter of	3.5	0.115 0.115 0.117 0.123 0.126 0.129 0.135
WATER WIDTER	3.0	0.126
S AND QUANTITIES OF DISCHA- FOR A DEPTH OF WATER OF 0.8, FOR BOTTOM-WIDTER OF	2.2	0.123
AND Q	2.0	0.117
OUTTER	1.8	0.116
ан Уед	1.6	0.118
Me	4	91

Fall per thousand.	1.0	1.2	1.4	1.6	1.8	2.0	2.2	3.0	3.5	4.0	4.5	5.0	5.2	0.9	6.5
0.05	0·103 0·181	0.107	0.110	0.118	0.116	0.299	0.360	0.126	0.129	0.132	0.614	0.137	0.139	0.140	0.143
0.1	0.260	0.294	0.158	0.162	0.397	0.430	0.519	0.181	0.699	0.190	0.184	781.0	0.200	0·203 1·167	0·206 1·263
0.5	0.380	0.223	0.229	0.234	0.239	0.622	0.262	0.260	0.266	0.272 1.129	0.276 1.259	0·280 1·389	0.284 1.520	0.287	0.290 1.786
8.0	0.266	0.275	0.283	0.289	0.296	0.300	0.921	0.321 1.076	0.328	0.336	0.340	0.345	0.360	0.364	0.367 2·199
4.0	0.309	0.319	0.682	0.336	0.821	0.891	0·361 1·069	0.373	0.381	0.388	0.396	1.988	0.406	0.410	0.414
0.5	0.347	0.688	0.369	0.377	0.922	0.391	0.405	0.418	0.427	0.436	0.443	0.450	0.455	0.460	0.464 2.858
9.0	0.380	0.392	0.404	0.923	0.420	0.428	0.443	0.458	0.468	1.986	0.486	0.483	0.499	0.504	0.609
2.0	0.413	0.816	0.907	0.999	0.465	0.463	0.480	0.495	0.507 1.906	0.518 2.153	0.527 2.402	0.836 2.653	0.542 2.904	0.647 3·155	0.553 3.406
8.0	0.441	0.454 0.878	997.0	1.068	0.487 1.167	0.495	0.613	0.529	0.542 2.038	0.553 2.300	0.562	0.571 2.832	0.578 3.101	0.585 3.371	0·591 3·641

CLASS III. (n = 0.035.)

				(cx	iv)					
	0.6	0.173	0.24 2.801	0.351 3.688	0.432 4.534	0.498 5·145	0.557 5.840	0.610 6.400	6.924	0.708
	8.5	0·172 1·720	0.246 2.660	0.349 3.490	0.429 4.290	0.496 4.966	0.554 5.540	0.000	0.656 6.560	0.701
	8.0	0·171 1·620	0.244 2.319	0.347 3.293	0.426 4.047	0·493 4·587	0.561 5.238	0.604 5.737	0.652 6·196	6.625
ė	7.5	0·169 1·521	0.242 2·178	0.344 3.096	0.423 3.804	0.490 4.408	0.548 4.932	0.600	0.648 5.832	0.693 6.237
SECOND.	1.0	0.168	0.240 2.039	0.341 2.899	0.418 3.562	0.486 4.028	0.544 4.624	0.595 5.060	0.643 5.468	0.688 5.847
DISCHARGE PER OF 1.0.	6.5	0.166	0.238 1.900	0.338 2.702	0.415 3.320	0.481 3.848	0.539 4.312	0.590 4.720	0.638 5·104	0.682 5.456
DISCRASS OF 1.0.	0.9	0.164	0.235	0.334	3.079	0.476 3.469	0.533 3.997	0.584 4.379	0.632 4.739	0.675 5.063
	5.5	0·162 1·134	0·232 1·624	0·330 2·311	0.406 2.840	0.470 3·290	0.526 3.682	6.517 4. 039	0.626 4.375	0.667 4.669
D QUANTITIES OF J A DEPTH OF WATER FOR BOTTOM-WIDTHS	2.0	0.160	0.229	0.326 2.118	0.400	0.463 2.912	0.518 3.367	0.569 3.699	0.616 4.008	0.658
VELOCITIES AND QUANTITIES OF DISCHA FOR A DEPTH OF WATER OF 1.0. FOR BOTTOM-WIDTHS OF	4.5	0.157	0.226 1.350	0·321 1·925	0.393 2.360	0.466 2.736	0.509 3.054	0.560 3.360	0.607 3.642	3.888
OCITIES	4.0	0·154 0·846	0·221 1·215	0·315 1·733	0.386 2·124	0.448 2.365	0.500	0.550 3.025	0.596 3.275	0.637 8.502
	3.5	0.150	0.216 1.080	0·308 1·541	0.378	0.439	0.490 2.450	0.539 2.695	0.583 2.915	0.624 3.120
Mean	3.0	0.657	0.210	0.300	0.369	0.428	0.478 2·153	0.527 2.368	0.568 2.558	0.609
	2.2	0.141	0.203	0·291 1·164	0.358	0.415	0.465	0.512 2.048	0.562	0.591 2.364
	2.0	0.136	0·196 0·679	0.281	0.345	0.400 1.425	0.449 1.568	0.492 1.730	0.533 1.860	0.670

0.1

0.02

Fall per thousand.

0.5

0.3

7.0

0.5

9.0

2.0

0-605 0-627 0-646 0-656 0-677 0-681 0-687 0-671 2-113 2-508 2-905 3-310 3-719 0-637 0-661 0-681 0-688 0-713 2-224 2-644 3-066 3-490 3-915 0-688 0-724 0-766 0-764 0-780 0-764 2-896 3-521 3-820 4-290 0-764 0-782 0-806 0-826 0-843 0-806 0-836 0-815 0-915 0-915 0-865 0-836 0-915 4-633 0-91 0-866 0-836 0-915 4-633 0-91 0-867 0-836 0-915 4-954 0-901 0-934 4-110 4-680 5-251 0-946 0-986 1-101 1-035 1-067 3-450 3-920 4-545 5-175 5-807 0-988 1-024 4-746 5-405 6-070				_	_		_				_	_	_	_			
0.53 2.113 2.508 2.905 3.310 3.719 1.0 0.637 0.661 0.681 0.698 0.713 1.2 2.224 2.644 3.066 3.490 3.915 1.2 2.446 2.896 3.51 3.820 4.290 1.4 2.628 3.128 3.628 4.130 4.633 1.6 2.813 3.344 8.877 4.415 4.954 2.98 3.544 4.110 4.680 5.251 2.9 3.544 4.110 4.680 5.251 2.9 3.544 4.110 4.680 5.251 2.9 3.544 4.110 4.680 5.251 2.9 3.544 4.110 4.680 5.251 2.9 3.140 3.736 4.334 4.985 5.589 2.9 3.100 4.746 5.405 5.607 2.4 4.09 4.746 5.405 6.07 3.4		ج	0.605	0.627	0.646	0.662	9.678	0.688	869.0	101.0	0.716	0.723	0.128	0.134	0.139	0.743	0.747
1.0 0.637 0.661 0.681 0.688 0.713 1.2 2.224 2.644 3.066 3.490 3.915 1.2 0.688 0.724 0.746 0.744 0.748 0.749 1.4 2.628 3.128 3.628 4.130 4.633 1.6 2.628 3.128 3.628 4.130 4.633 1.6 2.813 3.344 3.877 4.415 4.933 2.9 0.856 0.81 0.836 0.91 1.007 2.9 3.544 4.110 4.680 5.251 2.0 3.140 3.736 4.834 4.955 5.251 2.0 3.140 3.736 4.834 4.935 5.539 2.0 3.140 3.736 4.545 5.175 5.807 2.4 3.296 3.920 4.545 5.405 6.070 3.4 3.450 4.945 5.405 6.070 3.6 4.066	>	, ,	2.113	2.208	2.902	3.310	3.719	4.128	4.538	4.949	5.362	5.776	6.191	g. 606	7.020	7.430	7.840
1.0 2.224 2.644 3.066 3.490 3.915 1.2 0.688 0.724 0.746 0.746 0.780 0.780 4.290 1.4 2.628 3.128 3.628 4.130 4.633 1.6 2.813 3.344 3.877 4.415 4.933 1.6 2.813 3.344 3.877 4.415 4.954 1.8 2.980 0.814 4.110 4.680 5.251 2.0 3.140 3.736 4.834 4.935 5.251 2.0 3.140 3.736 4.834 4.935 5.589 2.0 3.140 3.736 4.834 4.935 5.589 2.0 3.140 3.736 4.834 4.935 5.589 2.2 3.296 3.920 4.545 5.175 5.807 2.4 3.450 4.096 4.746 5.405 6.070 2.4 3.450 4.942 5.625 6.311 <t< th=""><th>•</th><th></th><th>0.637</th><th>199.0</th><th>0.681</th><th>869.0</th><th>0.712</th><th>0.724</th><th>0.735</th><th>0.745</th><th>0.754</th><th>0.762</th><th>0.769</th><th>0.776</th><th>0.180</th><th>0.784</th><th>0.788</th></t<>	•		0.637	199.0	0.681	869.0	0.712	0.724	0.735	0.745	0.754	0.762	0.769	0.776	0.180	0.784	0.788
1.2 0.688 0.724 0.746 0.746 0.764 1.4 2.446 2.896 3.351 3.820 1.4 2.628 3.128 3.628 4.130 1.6 2.813 3.344 3.628 4.150 1.8 2.980 3.544 4.110 4.415 2.0 3.140 3.544 4.110 4.680 2.0 3.140 3.736 4.334 4.935 2.0 3.140 3.736 4.545 5.175 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.4 3.56 4.096 4.746 5.405 2.4 3.58 4.264 4.942 5.625 2.6 3.588 4.264 4.942 5.625 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840 3.720 <td< th=""><th>~</th><th>?</th><td>2.224</td><td>2.644</td><td>3.066</td><td>3.490</td><td>3.915</td><td>4.344</td><td>4.777</td><td>5.215</td><td>5.655</td><td>960.9</td><td>6.536</td><td>6.974</td><td>7.409</td><td>7.840</td><td>8.270</td></td<>	~	?	2.224	2.644	3.066	3.490	3.915	4.344	4.777	5.215	5.655	960.9	6.536	6.974	7.409	7.840	8.270
1.4 2.446 2.896 3.551 3.820 1.4 2.628 3.128 3.628 4.130 1.6 2.813 3.344 3.877 4.415 1.8 2.980 3.544 4.110 4.680 2.0 3.140 3.736 4.334 4.935 2.0 3.140 3.736 4.334 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.256 4.096 4.746 5.405 2.4 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 2.8 3.750 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840 2.9 3.720 4.424 5.130 5.840	•	4	869.0	0.724	0.746	0.764	0.780	0.194	908.0	0.817	0.826	0.834	0.841	0.848	9.824	698-0	0.863
1.4 0.754 0.783 0.806 0.828 1.6 2.628 3.128 3.628 4.130 1.6 2.813 3.344 3.877 4.415 1.8 0.865 0.886 0.913 0.836 2.9 3.544 4.110 4.680 2.0 3.140 3.736 4.334 4.935 2.2 3.140 3.736 4.334 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.4 3.450 4.096 4.746 5.405 3.58 4.264 4.942 5.625 3.58 4.264 4.942 5.625 3.70 4.424 5.130 5.840 3.70 4.424 5.130 5.840	7		2.446	5.896	3.351	3.820	4.290	4.704	5.241	5.719	2.196	6.674	7.152	7.630	8.110	8.290	9.020
1.4 2.628 3.128 3.628 4.130 1.6 2.813 3.344 3.877 4.415 1.8 2.980 3.544 4.110 4.680 2.0 3.140 3.734 4.334 4.935 2.0 3.140 3.736 4.334 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.4 3.450 4.096 4.746 5.405 3.588 4.264 4.942 5.625 3.588 4.264 4.942 5.625 3.720 4.424 5.130 5.840 3.720 4.424 5.130 5.840 2.8 3.720 4.224 5.130 5.840	,	•	0.754	0.782	908.0	0.826	0.843	0.857	0.810	0.881	0.891	006-0	806.0	0.918	0.921	0.927	0.933
1.6 0.806 0.836 0.861 0.883 1.8 2.813 3.344 3.877 4.415 2.0 0.865 0.886 0.913 0.936 2.0 3.544 4.110 4.680 2.0 3.140 3.736 4.934 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840	-	#	2.628	3.128	3.628	4.130	4.633	5.142	5.653	6.167	6.683	7.200	7.717	8.235	8.752	9.270	9.787
1.0 2.813 3.344 3.877 4.415 1.8 2.980 3.544 4.110 4.680 2.0 3.140 3.736 4.935 4.935 2.2 3.140 3.736 4.545 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 2.6 3.588 4.264 4.942 5.625 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840	-	٩	908-0	0.836	0.861	0.883	106.0	916.0	0.830	0.942	0.952	0.962	0.971	0.979	986.0	0.993	0.997
1.8 0.885 0.933 0.936 2.980 3.544 4.110 4.680 2.0 0.901 0.934 0.963 0.987 2.2 3.140 3.736 4.334 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 1.038 1.066 1.039 1.136 2.6 3.588 4.264 4.942 5.625 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.224 5.130 5.840		٥	2.813	3.344	3.877	4.415	4.954	5.496	6.046	962.9	7.148	7.700	8.255	8.811	9.365	9.920	10.46
2.980 3.544 4.110 4.680 2.0 9.91 0.934 0.963 0.987 2.2 3.140 3.736 4.334 4.935 2.2 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 2.8 3.720 4.424 5.130 5.840 1.067 1.106 1.140 1.188 2.8 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	•	9	0.855	988.0	0.913	0.936	0.955	176-0	986.0	866.0	1.010	1.021	1.030	1.038	1.045	1.081	1.057
2.0 0.901 0.984 0.963 0.987 2.2 3.140 3.736 4.334 4.935 2.2 3.296 0.980 1.010 1.038 2.4 0.988 1.024 1.055 1.081 2.6 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 3.720 4.424 5.130 5.840 1.067 1.106 1.140 1.186 1.04 1.144 1.779 1.209	-	×	2.980	3.544	4.110	4.680	5.251	2.836	6.404	986.9	7.576	8.168	8.756	9.342	9.927	10.51	11.09
2.0 3.140 3.736 4.834 4.935 2.2 0.946 0.980 1.010 1.036 2.4 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 2.8 3.720 4.424 5.130 5.840 2.8 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	c	9	0.901	0.934	0.963	0.987	1.007	1.024	1.040	1.054	1.066	1.076	1.086	1.094	101.1	1.108	1.114
2.2 0.946 0.980 1.010 1.035 2.4 3.296 3.920 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 1.038 1.066 1.099 1.125 2.6 3.588 4.264 4.942 5.625 2.8 1.067 1.106 1.106 1.106 1.104 1.144 1.179 1.209 1.204 1.144 1.179 1.209	N	<u> </u>	3.140	3.736	4.334	4.935	5.539	6.147	092.9	7.377	7.993	8.609	9.227	9.846	10.46	11.08	11.70
2.4 3.506 3.900 4.545 5.175 2.4 3.450 4.096 4.746 5.405 2.6 1.028 1.086 1.089 1.126 3.588 4.264 4.942 5.625 2.8 1.067 1.106 1.140 1.188 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	G	ç	0.946	0.980	1.010	1.036	1.067	1.074	1.090	1.105	1.118	1.129	1.139	1-148	1.158	1.163	1.169
2.4 0.988 1.024 1.055 1.081 3.450 4.096 4.746 5.405 2.6 3.588 4.264 4.942 5.625 2.8 1.067 1.106 1.140 1.188 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	N	N	3.296	3.920	4.245	2.175	2.807	6.444	7.087	7.735	8.383	9.032	189.6	10.33	10.98	11.63	12.28
2.6 3.450 4.096 4.746 5.405 2.6 1.038 1.068 1.039 1.135 2.8 1.067 1.106 1.140 1.168 2.8 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	G		986.0	1.024	1.055	1.081	1.104	1.124	1.140	1.154	1.167	1.179	1.190	1.200	1.208	1.318	1.222
2.6 1.028 1.066 1.099 1.126 3.588 4.264 4.942 5.625 2.8 1.067 1.106 1.140 1.168 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	•	H	3.450	4.096	4.746	5.405	0.00	6.740	7.411	8.082	8.756	9.432	10.11	10.79	11.47	12.15	12.83
3.588 4.264 4.942 5.625 1.067 1.106 1.140 1.188 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	٠	9.6	1.028	1.066	1.099	1.125	1.147	1.167	1.186	1.202	1.216	1.226	1.236	1.246	1.256	1.262	1.271
2.8 1.067 1.106 1.140 1.168 3.720 4.424 5.130 5.840 1.104 1.144 1.179 1.209	•	- -	3.588	4.264	4.942	5.625	6.311	7.004	2.708	8.410	9.110	9.810	10.21	11.21	11.91	12.62	13.32
3·720 4·424 5·130 5·840	•	0.6	1.067	1.106	1.140	1.168	1.192	1.212	1.229	1.244	1.258	1.271	1.283	1.294	1.303	1.311	1.318
1.104 1.144 1.179 1.209		o 1	3.720	4.424	5.130	2.840	6.555	7.272	7.989	8.708	9.437	10.17	10.90	11.64	12.37	13.11	13.90
		6.0	1.104	1.144	1.179	1.209	1.234	1.254	1.272	1.288	1.302	1.316	1.327	1.338	1.348	1.357	1.366
3.846 4.576 5.308 6.045 6.782	•	>	3.846		2.308	6.045	6.782	7.524	8.268	9.016	992.6	10.52	11.28	12.04	12.80	13.57	14.33

CLASS III. (n = 0.035.)

MEAN VELOCITIES AND QUANTITIES OF DISCRARGE PER SECOND. FOR A DEPTH OF WATER OF 1.2.

FOR BOTTOM-WIDTER OF

			(cz	(vi)					
11	0.308 8·118	4.898	0.408	9.496	0.878 8.800	9.881	10.77	0·767 11·63	0.810
10	0.301 3.846	4.021	0.403 5.690	0.493 6.981	0.869 8.057	9.002	9.828	0·762 10·65	0.804
9.8	0·199 2·704	8.826	6.390	0.490 6.644	0.566	0.632 8.563	0.681	0.747 10·18	0.799 10.83
9.0	0·197 2·568	0.260 8·631	0·396 5·184	6.307	0.561	0.627 8·124	0.686 8.894	0.742 9.612	0.794 10.29
8.2	0.196	8.436	0.383 4.859	0.483	0.867	0.622	0.681 8.418	9.097	0.789 9.750
8.0	0·194 2·281	0.276 8.241	0·390 4·589	0.479	0.568	7.257	0.676	0.730 8.585	0·783 9·205
7.5	0·192 2·148	8.046	4.819	5.301	6.115	0.612	0.670	0.724 8.080	0.776 8 · 660
0.2	0·190 2·007	0.270	4.047	4.969	0.543	0.607	7.014	0.718	0.768 8.115
6.5	0·188 1·872	0.267 2.663	8.775	0.466 4.688	0.537 5.948	5.985	0.668	0.711	0.180
0.9	0·186 1·787	0.264	0.376 8.507	0.460 4.307	0.631 4.971	0.594	6.095	0.703 6.580	0.751 7.032
5.2	0·183 1·603	0.261	0·370 3·241	3.977	0.585 4.599	0.587 5.142	0.643	0.694	0.742 6.500
5.0	0.180	0.257 2.098	0.365	3.649	0.518 4.227	0.579 4.714	0.634 5.181	0.685 5.590	0·132 5·973
4.5	1.838	0.268	0.359	0.440	0.510 8.855	0.570 4.309	0.625 4.725	0.675	0.721
4.0	0.174	0.248	0.352	3.006	0.501 3.486	9.896	4.270	0.663 4.610	0·709 4·927
3.5	0.170	0.242	0.344 2.188	0.423	0.490 3-117	0.648 3.485	0.600 3.816	0.648	0.693 4.407
Fall per thousand.	0.05	1.0	0.5	6.0	4.0	0.5	9.0	2.0	8.0

	13.21	0.908	13.90	0.991	15.22	1.071	16.45	1.146	17.59	1.316	18.66	tvii	19.66	1.343	20.63	1.403	21.55
	12.06	0.897	12.70	0.983	13.90	1.062	15.04	1.134	16.06	1.204	17.05	1.269	17.97	1.331	18.93	1.390	19.68
	11.47	0.891	12.08	0.976	13.23	1.055	14.30	1.127	15.28	1.197	16.23	1.261	17.10	1.322	17.99	1.381	18.72
:	10.89	0.885	11.47	0.870	12.57	1.048	13.57	1.120	14.51	1.189	15.41	1.253	16.23	1.313	17.06	1.372	17.71
;	10.31	0.879	10.87	796.0	11.91	1.040	12.85	1.113	13.74	1.181	14.60	1:24	15.37	1.304	16.13	1.362	16.83
3	9.734	0.873	10.27	0.967	11.25	1.032	12.14	1.104	12.98	1.172	13.78	1.236	14.52	1.295	15.23	1.382	15.89
;	9.162	998.0	9.665	0.848	10.29	1.034	11.43	1.095	12.22	1.163	12.97	1-226	13.67	1.285	14.34	1.841	14.96
	8.594	0.858	190.6	0.840	9.926	1.016	10.72	1.085	11.46	1-151	12.15	1.214	12.82	1.273	13.44	1.329	14.03
_																	

10.70

9.948

9.198

8.452

7.711

6.971

6.233

1.6

1.050

1.036

1.020

1.003

0.880

1.074

11.34

10.54

1.139

1.126

1·112 9·741

1.097 8-951 1.167

1.081 8.171 1.140

1.063

7.390

6.614

1.8

11.97

11.12

10.27

9.443

8.618

7.793

1.120

1.096 6.971

5.0

1.202

1.188

1.173

12.55

11.66

10.77

9.838

8.174

7.320 1.200 7.631 1.250

5.5

1.260

1.246

1.230

1.213

1·196 9·034 1·248

1.176

1.151

0.860

0.862

0.846

0.840

0.834

0.838

0.814 0.821

908-0

191.0

0.787

9.77.0

0.765

0.752

8.026

7.459

968.9

6.337

5.783

5.228

0·735 4·674

6.0

8.457

7.855

7.253

6.665

6.085

5.505

4.929

1.0

0.839

0.828

0.817

0.802

0.792

0.775

9.262

8.604

7.954

0.896 7.314

9.9.9

6.038

5.400

1.2

0.883

9.868

0.849

0.830

0.818

906.0

10.01

0.994 9.300 1.063

0.982

696.0

0.954

0.937

0.917

8.602

7.907

7.213

6.522

5.831

1.4

>

23.27

21.26

20.23

18.19

17·07 1·612

16.16

15.15

14.14

13.14

12.15

11.18

10.20

9.224

8.249

. 8

1.438

1.420

1.404

1.387

1.369

1.349

1.336

1-297

1.568

1.586

1.646

25.02

20.95

19,88

18.82

17-71

15.69

14.65

13.62

12.59

11.56

10.54

9.537

8.535

1.623

1·500 16·73

1.486

1.411

1.484

1.437

1.417

1.394

1.372

1.343

3.0

1.615

1.503

1.483

1:483 19:21 1:634

1.473

1.461

1.448 20.50

19.50

18.21

17.53

16.55

15.58

14.60

13.63

12.67

11.71

10.76

9.820

8.882

7.950

2.6

1.354

1.337

1.319

1.299

1.438

1.428

1.418

1.404

1.396

1.383

13·10 1·369

12.17

11.25

10.34

9.434

1.315

1.300

1.284

1.267

1.227 8.531 1.277

CLASS III. (n = 0.035.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.4.

			((exv	iii)					
	14	0.231 5.207	0.326 7.325	0.460	0.563 12.69	0.650 14.65	0·127 16·39	0·796 17·94	0.860 19.38	0.920 20.73
	13	0.229	0.323 6.821	9.643	0.559	0.645	0.721	0.790 16.69	18.04	0.912 19.27
	12	0.237 4.481	6.314	0.482 8.923	10.93	0.639	0·715 14·11	0.783 15.45	0.846 16·70	0.904 17.84
	11	0·236	0.317 5.810	0.448 8·210	90.01	0.633 11.60	0·708 12·98	0.776 14.22	0.837 15.36	0.895 16.41
	10	0.723 8.774	0.313 5.303	0.443	0.543	0.626 10.60	0.700	0.767 12.99	0.828	0.885 14.99
	9.2	0.221 8·590	5.051	0.440	0.539	0.622 10·10	0.696 11:29	0·762 12·37	0.823 13.36	0.879 14.28
0.	0.6	0.219 3.408	6.309 4.800	6.730	0.535	9.600	0.691 10·73	0·757 11·76	0.817 12.70	0.873 13.57
	8.5	0.217 3.231	0.306 4.549	0.434	0.531	0·613 9·099	0.685 10·16	0.751 11·14	0.811 12.03	12.86
Вогтом-Wіртня	8.0	0-216 3-054	4.298	0.430	0.526	0.608 8.598	9.600	0.745 10.53	0.804	0.860
FOR	7.5	0.214	0.301 4.047	0-426 5-727	0.521	8.096	9.041	0.738 9.912	0·797 10·71	0.852
1	1.0	0.212	0.298 3.797	0·423 5·376	0.516 6.574	0.596	0.666 8.484	0.730 9.300	0·789 10·05	0.843 10.74
	6.5	0.209	0·295 3·553	0.418 5.030	0.511 6.148	0.590	0.659	0·722 8·695	0·781 9·405	10.05
	0.9	0-207 2-347	0.292	0-413 4-684	0.505	0.584	0.662	0.714 8.097	0.773 8.760	0.825 9.356
	5.2	0.204	0.288 3.066	0.408	5.307	0.577 6.132	0.644	0·106 7·504	0.763 8.115	0.815 8.667
	2.0	0.201	0.284 2.823	0.402 3.996	0.492	0.568	0.635 6.312	0.696 6.918	0·161 7·470	0.803 7.982
	Fall per thousand.	0.05	0.1	0.5	6.9	9.4	0.2	9.0	2.0	8.0

0.976 22.00 1.029	23·19 1·127 25·40	1.217 27.43 1.301	29·32 1·383 31·17	1:464 32:77	1:526 34·37	1.683 35.91	1.658 37.37	1.721 38·79	1·781 40·14
0.968 20.46 1.020	21.57 1.114 23.61	1·207 25·51 1·290	27·26 1·370 28·96	30.48	1.612 31.96	1.580	1.644	36.06	1.766 37.32
0.959 18.93 1.011	13°96 1°107 21°85	1·196 23·61 1·278	25·23 1·356 26·78	1.429	1.498 29.57	1.566 30.91	1.629 32.16	1.690 33.36	1·749 34·52
0.949 17.41 1.001	18.36 1.096 20.09	1·184 21·71 1·266	23·21 1·342 24·63	1.416	1.484	1.550	29.58	1.674 30·70	1·132 31·75
0.939 15.91 0.990	1.084 1.084 18.36	1·171 19·84 1·262	21·21 1·328 22·50	1.400	1.468 24.86	1.633 25.97	1.596 27·03	1.656	1.714
0.933 15.15 0.984	15°97 1°077 17°49	1·163 18·89 1·244	20·20 1·319 21·42	1.391	1.458 23·67	1.623 24·74	1.585	1.645	1.703 27.62
0.927 14.40 0.977	1.070	1·165 17·95 1·236	19·20 1·310 20·35	1.381	1·447 22·48	1.513 23·51	1.574 24.46	1·634 25·39	1.691 26·28
0.920 13.64 0.969	14.38 1.062 15.76	1·147 17·01 1·227	18·19 1·300 19·28	1.371 20.34	1.436 21.30	1·603 22·28	1.563 23·18	1·622 24·06	1.678 24.90
0.912 12.89 0.961	1.063 1.063 14.89	1·137 16·08 1·216	17·19 1·289 18·22	1.359	1:423 20·12	1.489 21.05	1·549 21·90	1·608 22·73	1·664 23·53
0.904	12.80 1.043 14.02	1·127 15·15 1·206	16·19 1·277 17·17	1·346 18·10	1.411	1.475 19·82	1·536 20·63	1·593 21·41	$\begin{array}{c} 1 \cdot 649 \\ 22 \cdot 16 \end{array}$
0.896 11.40 0.943	12°01 1°033 13°16	1·116 14·22 1·193	15·20 1·265 16·12	1·333 16·99	1.398	1.460	1.520 19.37	1.677 20·09	1.633 20·80
0.886 10.66 0.933	1.023 1.023 12.31	1·104 13·30 1·180	14·21 1·252 15·08	1.319	1.384	17.40	1.504	18.80	1.616
0.876 9.922 0.922	10.45 1.011 11.46	1.092 12.38 1.167	13·23 1·239 14·05	1.305	15.52	1.429	16.87	1.544	1.598 18·12

9.190

0.852 8.468

6.0

0.911 9.682

0.898 8.927

1.0

0.999 10.62

0.984 9.781

1.2

1.079

1.063 10.56

1.4

1·153 12·26

1·136 11·29

1.6

1.223 12.91 1.289 13.71

1.205 11.98

1.8

1.270 12.62

5.0

1·352 14·38

1.332 13.24

> 77 73

1.412 15·01

1·391 13·82

5.4

1·470 15·63

1.448 14.39 1.503

 $\mathbf{5.6}$

16·22 1·5¹⁹ 16·80

14.94

5.8

1.567

15.48

3.0

1.626

cxix)

CLASS III. (n = 0.035.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 1.6.

FOR BOTTOM-WIDTHS OF

			(cz	x)					
18	6.261 8·519	0.364 11.88	16.68	0.624 20.36	0·717 23·40	0·799 26·08	0.876 28·56	0.945 30.84	1.011 83·00
17	0.260 8·051	0.363	0.508	0.621 19.26	0·714 22·14	0·795 24·69	0.871 27.02	0.941 29·19	31.28
16	0.258	0.360 10.59	0.506 14.87	0.618 18·16	0·710 20·89	0.791 23.30	0.867 25.49	0.936 27·55	1.001
15	0.256 7·130	9.940	0.502 13.97	0.614 17.07	0·706 19·64	0·787 21·91	0.862 23.97	0.931 25.91	0.995 27·70
14	0.254 6.670	9.290	0.498 13.07	15.98	18.39	0.782 20.52	0.856 22.46	0.925 24·27	0.989 25.95
13	0.262 6.215	0.361 8·649	0.494 12·18	0.604 14.89	0.696 17·15	0.776 19·14	0.850 20.95	0.918 22·64	.0.982 24·21
12	0.250 5.760	0.348 8.018	0·490 11·29	0.599 13·81	0.691 15·91	0·770 17·76	0.844 19·45	0.911 21.01	0.974 22.47
11	0.247 5.302	0.345	0.486 10.41	0.594	0.685 14.67	0.764 16.39	0.837	0.904 19.39	0.966 20.73
10	0·244 4·840	6.786	0.480 9.524	0.587 11.65	0.677	0.757 15.02	0.830 16.46	0.896 17.71	19.00
9.2	0.243 4.607	0.339 6.454	9.085	0.584	0.673 12.81	0·763 14·33	0.826 15.70	16.95	0.953 18·13
9.6	0.240	0.336 6·129	0-474 8-646	0.580 10·58	0.669	0.749	0.820 14.94	0.886 16·13	0.947 17·26
8.5	0.238 4·150	0.333 5.810	0-471 8·208	0.576 10.05	0.665	0.744	0.815 14·18	0.880 15.82	16.39
0.8	0.236 3.924	0.330 5.491	0.467	0.572 9.517	0.660 10.98	0.737 12.26	0.808	0.872	0.933
7.5	0.234 3.699	0.327 5.174	0.463 7·336	0.567 8.985	0.665 10.37	0.730 11.56	0.800	0.864	0.924
0.2	0.231 3.474	0.323 4.857	6.904	0.562 8.453	0.649 9.761	0.723 10.87	0.792	0.856 12.87	0.916 13·76
Fall per thousand.	0.02	0.1	0.3	.0	9.4	0.5	9.0	2.0	8.0

					(c	xx i)					
1.072 34.98	1·130 36·88	1·238 40·41	1·337 48·64	1.430 46.68	1.516 49.48	1.698 52·15	1·676 54·70	1.751 57·15	1.822 59.47	1.891 61.71	1.957 63·87
1·067 33·11	1·126 34·90	1·232 38·24	1.330	1. 423	1.509	1.590	1.668	1.742	1.814	1.882	1.948
1.062 31.24	1·119 32·93	1·226 36·08	1·323 38·97	1.416 41.66	1·501 44·18	1.582 46·56	1.659	1·733 51·00	1.805 53·11	1.872 55·11	1.938 57·03
1.056	1·112 30·96	1-219 33-92	1.316 36·64	1·407 39·16	1.493	1·673 43·78	1.650	1.723	1.795	1.862 51.82	1.927 53·62
1.049 27.52	1·106 28·99	1.211 31.77	1·308 34·32	1·398 36·68	1·483 38·91	1.563 41.01	1.639 43.00	1·712 44·92	1·783 46·78	1.860 48.54	1.914
1.041	1.097 27·03	1·202 29·63	1·299 32·01	1.388 34.22	1·472 36·39	1·552 38·25	1.627 40·12	1.700 41.91	1.770 43.64	1.836 45.28	1.900
1.033 23.83	1.089	1·193 27·50	1·289 29·71	1·377 31·76	1·461 33·79	1.540 35.51	1.615	1.687	1.756	1.822 42.03	1.886
1.025 21.99	1.080 28·16	1·183 25·38	1·278 27·42	1.366 29.31	1.449 81·10	1·528 32·78	1.602	1.673 35.90	1.742 37.38	1.807 38·78	1.871 40.13
1.016 20·15	1.071 21.24	1·173 23·27	1·267 25·13	1.355	1·437 28·52	1·518 30·06	1·689 31·53	1.669 32.91	1.727 34.26	1·792 35·55	1.855 36·80
1.010 19.23	1.066 20.28	1.166	1.260	1.349	1·431 27·22	1.508 28.67	1.582 30·07	1.650 31.41	1.718 32.70	1·782 33·93	1.848 35·12
1.004	1.060 19.31	$\begin{array}{c} 1 \cdot 158 \\ 21 \cdot 12 \end{array}$	1·253 22·82	1·341 24·42	1·423 25·92	1.499 27·28	1.573 28·61	1.640 29.91	1·708 31·14	1.772 32.31	1.835 33.44
0.997 17.38	1.053 18·34	1.150	1.244	1.331	1.413 24·61	1.488 25.89	1·561 27·16	1.630 28.40	1·697 29·57	1.761 30.69	1.823 31.75
0.989 16·45	1·044 17·36	18.98	1.234	1.319 21.95	1.401 23.30	1.476 24·50	1.547	1.618 26.88	1.684	1.747 29·05	1.801 30.06
0.980	1.034	17.91	1·222 19·34	1.307	1·388 21·96	1·461 23·12	1·532 24·26	1.603	1.668	1.731	1.792 28·36
0.970 14.59	1.023	1.120	1.209	1.294	1.372	1.446	1.517	1.584	1.649	11.711	1.772 26·65
6.0	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	8.	3.0

CLASS III. (n = 0.035.)

	PER SECOND.	
(mm.)	D 180наван	or 1.8.
	MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.	FOR A DEPTH OF WATER OF 1.8.
	MEAN V	

0.02

0.1

0.3

4.0

0.2

9.0

2.0

8.0

				(cı	cxii)					
	83	0·289 12·93	0·402 17·84	0.560 24.94	0.683	0.784	34.90	39.04	42.75	1.039 46.25	1·111 49·39
	21	0.288 12.33	0.400	0.568	0.681	0.783	33.36	37.31	40.86	1.035	1.107
	50	0.287 11.73	0.398 16·26	0.556	0.678	0.779	31.82	35.58	38.97	1.031 42.13	1·102 45·03
	19	0.286	0.396	0.563 21·61	0.675	977.0	30.28	33.85	37.08	1.026 40.06	1.097
	18	0·283 10·64	0.394	0.550	0.671	0.772	28.74	32.13	35.20	1.021 38·01	1.091
	17	10.06	0.392	0.547 19·40	0.667 93.65	9.768	27.21	30.41	33.32	1.015 85-97	38.49
ō	16	0·279 9·493	0.390	0.544 18·30	0.663	0.763	25.68	28.69	31.44	1.009 33.94	36.32
-Wілтня	15	0.277 8.825	0.387	0.540	90.06	0.758	24.15	26.98	29.56	1.002 81.92	1.072 34.15
FOR ВОТТОМ-WIDTHS	14	0.278	0.384	0.636	0.653	0.752	22.62	25.28	27.69	0.996 29.91	1.064
For	13	0.273	0.381 10.75	0.631	18.81	0.746	21.09	23.58	25.83	0.987 27.90	1.055
	12	0.270	0.377 9.961	0.526 13.93	16.00	0.739	19.57	21.88	28.97	0.978 25.89	1.045
	11	0.267 6.572	0.372 9.175	0.620	0.636	0.731	18.05	20.18	22-11	0.968 23·88	1.036
	10	0·263 6·012	0.367 8.389	0.514	0.628	0.723	16.53	18.49	20.25	0.957 21.88	1.023
	9.6	0.261	0.364	0.611	13.70	0.718	15.77	17.66	19.33	0.951 20.89	1.017
	0.6	0.269	0.367	0.508	0.620	0.713	15.01	16.83	18.42	0.945 19.90	1.010

1.168 1.173 1.178 47·72 50·04 52·36	7 1.242	1·361 60·48	1·469 65·35	= 25							
 -	7		- 33	1.671	1.666	1.756 78·11	1.842 81.91	1.924	2·003 89·01	2.078 92.37	2·151 95·51
.168	1·237 52·77	1.365	1.463	1.565	1.669	1.749	1.835	1.917	1.996	2.070 88·29	2·142 91·31
1.4	1.232	1.349	1.467	1.558 63·66	1.652	1.743	1.827	1.909	1.986	2.061 84.21	2.132
1.163	1.226	1.343	1.451 56·64	1.661	1.644	1.734	1.819	1.900	1.977	2.051	2·122 82·91
1.157	1.220	1.336	1.444	1.543	1.636	1.726 64.26	1.810	1.890	1.967	2.041	2.112
1.151	1.214	1.329	1.436	1.634	1.627 57.71	1.716	1.800	1.880	1.956	2.030	2.101
1.144	1.207	1.321	1.427	1.626 51.33	1.618 54.46	1.706	1.789	1.869	1.946	2.018 67.93	2·089 70·30
1·136 36·19	1.189	1.312	1.417	1.515	1.608	1.694	1.777	1.866 59·13	1.932 61.56	2·006 63·88	2.075 66·11
1·128 33·91	1·190 35·78	1·303 39·16	1.407	1.504	1.597	1.682 50.56	1.764	1.842	1.918	1.990	2.060 61.93
1·119 31·63	1.180	1.292 36.53	1.396	1.492	1.584 44.76	1.669	1.750	1.827 51.66	1.902	1.974	2·043 57·76
1.109	1.169 30.96	1.281 33.90	1.383	1.479 39·14	1.669	1.664	1.734 45.90	1.811	1.886	1.956	2.026 53.60
1.097 27.07	1.157	1.268 31.27	1.369 33.76	1.464 36·10	1.553 38·31	1.637	1.717	1.793	1.866	1.936	2.005
1.086	1.144 26.15	1.263 28·64	1.363	1.447 33·07	1.535 35.09	1.618 36·99	1.697	1.772	1.845 42·18	1.914	1.982
1.079	1.137	1.245 27.34	1.345 29·54	1·438 31·58	1.526 33.51	1.608 35.32	1.686 37·03	1.761 38.67	1.833	1.902	1.970
1.072 22.58	1·130 23·79	1.237 26·05	1.337 28·16	1·429 30·09	1.516 31.93	1.598 33.65	1.675 35·27	1.750 36.85	1.821 38·35	1.890 39.80	1.957
6.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	2.4	2.6	2.8	3.0

CLASS III. (n = 0.035.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND. FOR A DEPTH OF WATER OF 2.0.

						FOB]	FOR BOTTOM-WIDTHS		1 0							
Fall per thousand.	12	13	14	15	16	17	18	19	. 30	21	83	ន្ត	77	22	88	
0.02	0·290 8·700	0.283	0·296 10·07	0·299 10·75	0.301	0.303	0.306	0·307 13·50	0.309	0.311	0.312	0.313 16.29	0.316 16.99	0.316 17.69	0.317 18·39	
0.1	0.403	0.406	0.410	0.414	0.417	0.420 16.80	0.423 17·76	0-426 18-72	0.428	0.430 20.64	0.432	0.434	0.436	0.438	0.440	
0.5	0.560	0.566	0.571 19·44	0.576 20.75	0.581 22·06	0.586	0.588 24.69	0.591 26.00	0.594 27.31	0.597 28.63	0.599 29.95	0.601 31.26	0.603 82.57	0.60s 33.89	0.607 35.21	•
0.3	0.684 20.52	0.691 22·12	0.698	0.704	0.709 26.93	0.714 28·54	0.718 30.14	0·722 31·75	0.726 33.36	0.728 34.97	0.731 36.50	0.734 38·20	0.738 39.84	0·741 41·49	0·744 48·15	•
10.4	0-790	0.797	0.803	0.809 29·16	0.816 30.99	0.820	0.826 34.68	0.830 36.53	0.836 38.38	0.839 40.23	0.842 42.08	0.845 43.94	0.848 45.80	0.851 47.66	0.864 49.53	
0.2	0.879 26.37	0.887	0.895 30.45	0.902 32.50	0.909	0.915 36.60	0.820	0.926 40.72	0.930	0.934	0.938 46.90	0.942 48.96	51.02	0.948 53.09	0.951 5 5·16	
9.0	0.963	0.972 31·13	0.981 33.37	0.989	986-0	1.003	1.009	1.014	1.019	1.023	1.027 51.38	1.031	1.035	1.039	1·043 60·49	
2.0	1.040 31.20	1.050	1.069	1.067	1.075	1.082	1.088	1.094	1.100	1.106	1.110	1.114	1.118	1.122	1·126 65·31	
8.0	1.112	1·122 35·94	1.132	1.141	1.149	1.157	1.164	1.170	1.176	1.181	1·186 59·30	1-191 61-91	1-196	1.189	1·203 69·77	
_	_	_		-	_	_	_	_	-	-	_	_	_	_		

(

cxxiv

					(cz	(vxv					
1.276 74·01	1.346	1·474 85·49	1·592 92·34	1·102 98·72	1·805 104·7	1.903 110.4	1.996 115·8	2.084 120.9	2·170 125·9	2·251 130·5	2·330 135·1
1.272	1.341	1.469	1.587	1.686	1.799 100.7	1.897	1.989	2.077 116·3	2·163 121·1	2·244 125·6	2·322 130·0
1.268	1.336	1·464 79·07	1.581	1·690 91·26	1·793 96·82	1.890 102.1	1.982	2.070 111.7	2·156 116·3	2·236 120·7	2.314
1.263	1.331	1.459 75·86	1.676 81.92	1·684 87·55	1·786 92·88	1.883 97.87	1.975 102·7	2·062 107·2	2·147 111·6	2·228 115·8	2·306 119·8
1.268	1.326	1.463	1.569	1.677	1·779 88·95	1.875 93·75	1.967 98·35	2.054 102.7	2·139 106·9	2·219 110·9	2·297 114·8
1.253	1·320 63·38	1.447	1.563	1.670 80·16	1.772 85.02	1.867 89·64	1.959 94.04	2.046	2·130 102·1	2·210 106·0	2·287 109·7
1.247	1.314 60.46	1.440	1.556	1.663	1.764 81.10	1.859 85·53	1.950 89.73	2·036 93·66	2·120 97·40	2·200 101·2	2·276 104·7
1.241	1.308	1.433	1.548	i.655 72·80	1·755 77·19	1.860 81.42	1.941	2·026 89·15	2·109 92·79	2.189	2·265 99·70
1.234	1.301	1.426 59.87	1.539	1.646	1.745	1.840 77.31	1.931 81.11	2.016 84.65	2·097 88·09	2·177 91·41	2·263 94·65
1.227	1.293	1.417	1.530 61.20	1.636 65·44	1·736 69·40	1.830	1.920	2.004	2.086 83.40	2.164	2.240
1.219	1.285	1.408 53.50	1.520	1.626 61.77	1.724	1.818 69·10	1.907 72.50	1.991	2·072 78·73	2·150 81·72	2·226 84·58
1.210	1.276	1.398	1.510	1.616 58·11	1·712 61·64	1.806	1.893 68·19	1.977 71.19	2.058	2.136	2.210
1.201	1.266	1.387	1.498 50·94	1.602 54.46	1·699 57·77	1.791	1.878 63.89	1·962 66·71	2·042 69·42	2·119 72·05	2·193 74·59
1.191	1.255	1.376	1.486	1.588	1.685	1.776	1.862	1.945	2·026 64·78	2·101 67·22	2·175 69·60
1·180 35·40	1.243	1.362	1.471	1·573 47·19	1.668	1.768	1.844	1.926 57.78	2.005 60·15	2.080 62.40	2·164 64·62
6.0	• <u>·</u>	5.	4.	9.1	8.1	8.0	2.5	4.2	5.6	8.	3.0

;

CLASS III. (n = 0.035.)

MEAN VELOUITIES AND QUANTITIES OF DISCHARGE PER SECOND.

FOR A DEPTH OF WATER OF 2.2. FOR BOTTOM-WIDTHS OF

				(02	_,,				•	
	88	0.343 25·14	0.472 34·58	0.664 47.91	0·796 58·32	0.917 67·17	1.020 74.73	1·117 81·83	1·207 88·43	1·290 94·51
	29	0-342 24-31	0-471 33·47	0.663 46·35	0.794 56.43	0.914 64.95	1.017	1.114	1.204	1.287 91.43
	88	0.341	92.35	0.651 44·79	0.792 54.53	0.911 62·74	1.014	1.111	1.201	1.283 88·35
	27	0.340	0-469 31 · 23	0.649	0·790 52·63	0.908 60.53	1.011	1.108	191.17	1.279
	26	0.339	0.467 30·10	0.647 41.66	0·787 50·73	0.908	1.008	1.104	1.193	1·275 82·19
	22	0.338	0.465 28·97	0.644 40.08	0.784 48.82	0.902 56·14	1.004	1.100	1.189	1.271
OF	24	0.336	0.463	38.50	0.781 46.90	0.899 53.96	1.000	1.096	1.184	1.286
Widths	23	0.334 19·32	0.461 26·69	0.638 36.92	0.778 44.98	0.895 51.78	0.996	1.092	1.179	1.261
Воттом-Widter	22	0·332 18·49	0.459 25·56	0.636 35·35	0.774 43.07	0.891 49.60	0.992 55·25	1.087	1.174	1.266
FOR	21	0.330	0·457 24·43	0.632 33·78	0·770 41·16	0.887 47·42	0.988	1.082	1.169	1.250
	20	0.328 16·84	0·455 23·29	0·629 32·22	0.766 39.26	0.882 45·24	0.983 50.40	1.077 55·17	1·163 59·62	1.244
	19	0.326 16.02	0·453 22·16	0.626 30.67	0·762 37·36	0.877 43.07	0.978 47·98	1.071 52.50	1·157 56·76	1·237 60·68
	18	0·324 15·21	0.450 21·03	0.622 29·12	0.757 35·46	0·872 40·90	0.972 45.56	1.066	1·150 53·90	1.229
	17	0.322	0.446 19.90	0.618 27·57	0·752 33·56	0.867 38·73	0.966 43·14	1.058 47·18	1·143 51·04	1·221 54·56
	16	0.320 13.59	0·442 18·77	0.613 26.02	0·746 31·67	0.861 36.56	0.959 40.72	1.051 44.52	1·136 48·19	1·213 51·50
	Fall per thousand.	0.05	0.1	0.5	8.0	4.0	g.0	9.0	2.0	8.0

cxxvi

											(cx	xv i	i)									
	1.368	7.001	1.443	105.7	1.581	115.8	1.707	125.0	1.824	133.7	1.936	141.7	2.040	149.4	2.139	156.7	2.234	163.7	2.335	170.3	2.413	176.7	2.498	183.0
	1.365	# 6	1.439	102.2	1.576	112.1	1.702	120.9	1.819	129.3	1.930	137.0	3.034	144.5	2.133	151.6	3.238	158.3	2.319	164.7	2.401	170.9	2.491	177.0
	1.861	80.08	1.436	92.86	1.671	108.3	1.697	116.8	1.814	124.9	1.926	132.4	2.028	139.6	2.127	146.5	2.223	153.0	2.313	159.2	2.400	165.2	2.484	171.0
_	1.357	30.47	1.430	95.30	1.566	104.5	1.692	112.7	1.809	120.6	1.919	127.8	2.033	134.7	2.121	141.4	2.216	147.6	3.306	153.6	2.393	159.4	3.477	165.0
	1.352	oT : /.e	1.426	91.85	1.561	100.7	1.687	108.7	1.803	116.3	1.913	123.2	2.015	129.9	2.114	136.3	3.208	142.3	2.298	148.1	2.382	153.7	2.469	159.1
	1.347	98.88	1.420	88.41	1.556	96.95	1.681	104.6	1.797	111.9	1.906	9.811	2.008	125.0	2.107	131.2	2.200	136.9	2.290	142.6	2.377	147.9	2.460	153.1
	1.343	\$0.0 \$	1.416	84.97	1.650	93.15	1.674	9.001	1.791	107.6	1.899	114.0	2.001	120.1	2.089	126.1	2.192	131.6	2.282	137·1	2.368	142.1	2.451	147.1
	1.337	68.77	1.408	81.54	1.644	89.38	1.667	96.49	1.784	103.3	1.891	109.4	1.993	115.2	2.091	121.0	2.183	126.3	2.273	131.6	2.359	136.4	2.441	141.2
	1.332	41.4/	1.403	78.11	1.538	85.61	1.660	92.43	1.777	80.05	1.883	104.8	1.985	110.4	2.083	115.9	2.174	121.0	2.284	126.1	2.349	130.7	2.431	135.3
	1.326	60.07	1.397	74.68	1.631	81.85	1.653	88.37	1.769	94.28	1.874	100.2	1.976	105.6	2.073	110.8	2.165	115.7	3.254	120.6	2.339	125.0	3.420	129.4
	1.319	¥0./0	1.380	71.26	1.523	60.82	1.645	84.32	1.760	90.23	1.865	95.61	1.966	100.1	2.062	105.7	2.155	110.4	2.243	115.0	2-328	119.2	2.409	123.4
	1.312	£6.₹6	1.383	67.85	1.515	74.34	1.636	80.27	1.750	85.88	1.855	91.02	1.956	95.92	2.051	100.6	2.143	105.1	2.230	109.5	2.315	113.5	2.396	117.5
	1.304	#I .TO	1.376	64.44	1.506	70.59	1.626	76.23	1.739	81.54	1.844	86.43	1.944	91.08	2.038	95.57	2.130	18.66	2.216	103.9	2.301	107.8	2.382	111.6
	1.296	60.70	1.366	61.03	1.486	66.84	1.616	72.19	1.728	77.20	1.833	81.85	1.931	86.25	2.026	90.20	2.116	94.51	2.303	98.40	2.286	102.1	2.367	105.7

1:605 68:16 1:716 72:86 1:820 1:820 1:918 81:43 81:43 81:43

1.8

5.0

5.5

5.4

2·101 89·21 2·187 92·85 2·270 96·38

5.6

5.8

2·350 99·77

3.0

1·287 54·65

6.0

1·367 57·62 1·486 63·10

1.2

1.4

1.6

								(CXX	vii:	i))							•		
				\$	0.369	18.83 0.50	45.65	669.0	83.08	678.0	19.92	0.977	88.17	1.089	98.27	1.193	107.6	1.288	116.5	1.377	124.2
				88	0.368	92.32	44.36	0.698	61.26	0.848	74.44	9.84	82.28	1.087	95.43	1.190	104.5	1.285	112.8	1.374	120.6
				83	196.0	92.138	43.06	969.0	59.44	978-0	72.27	0.972	.83.00	1.084	92.29	1.187	101.4	1.282	109.4	1.871	117.0
	ė			31	0.366	30.41	41.76	0.694	29.19	0.844	20.09	696.0	80.44	1.081	92.68	1.184	98.33	1.279	106.1	1:367	113.4
	S BIBCOND.			8	0.365	0.502	40.44	0-69.7	55.81	0.843	67.90	996.0	77.90	1.078	86.92	1.181	95.24	1.275	102.8	1.363	109.9
	MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER			68	0.364	0.80	39.11	069-0	53.99	0.840	65.70	0.963	75.37	1.075	84.08	1.178	92.14	1.271	99.45	1.359	106.3
035.)	DISCHA	or 2·4.	ã O	88	0.363	0.488	37.78	0.688	52.17	0.838	63.50	096.0	72.84	1.072	81.25	1.174	89.04	1.267	96.10	1.365	102.8
(n=0.035.)	. 40 SE	WATER	WIDTHS	22	0.362	26.53	36.44	989.0	50.36	0.836	61.30	0.957	70.32	1.068	78.42	1.170	85.94	1.263	92.76	1.351	99.18
H.	TANTE	FOR A DEPTH OF WATER OF 2.4.	FOR ВОТТОМ-WIDTHS	92	0.361	20.06	35.10	0.683	48.55	0.832	59.10	0.954	08.19	1.064	75.59	1.166	82.85	1.259	89.42	1.346	95.61
CLASS III.	AND Q	OB A Dr	FOR	25	0.359	0.482	33.77	0.681	46.74	0.839	26.90	0.951	65.28	1.060	72.76	1.162	92.62	1.254	80.98	1.341	92.04
J	OCITIES	F		**	0.367	0.490	32.45	0.678	44.95	0.826	54.70	0.948	62.75	1.056	69.93	1-157	19.91	1.249	82.74	1.336	88.48
	IN VEL			23	0.365	0.488	31.13	0.675	43.17	0.833	52.50	776.0	60.23	1.052	67.12	1.162	73.58	1-244	79.42.	1.330	84.93
	ME,			22	0.363	0.486	29.81	0.673	41.40	818-0	50.29	0.840	17.73	1.047	64.32	1.147	20.20	1.239	76.11	1.324	81.39
				12	0.351	20.72	28.50	699.0	39.64	0.814	48.08	0.935	55.19	1.042	61.52	1.142	67.42	1.233	72.80	1.318	24.42
				8	0.349	19.76	27.19	999.0	37.89	0.810	45.87	0.830	52.67	1.037	58.73	1.136	64.34	1.227	69.20	1.312	74 · 32
				-								_									

Fall per thousand.

0.05

0.1

0.5

0.3

4.0

0.5

9.0

2.0

					(cx	xix))				
1.461	1.540	1.687 152.2	1.822	1.948	2.066 186.4	2·177 196·5	206·2	2.386	2.483 224·1	2·576	2.667 240·6
1.468	1.637	1.683 147.8	1.818 159.7	1.943 170·8	2.061 181.0	2·172 190·8	2·279 200·2	2·380 208·9	2·477 217·6	2.510 225·7	233.6
1.454	1.633 130·9	143.4	1.814 155·0	1.938 165·7	2.056 175.6	2·167 185·1	2·273 194·2	2·374 202·7	2·471 211·1	2.564 219·0	2.654 226·7
120.4	1.629 126·9	1.674	1.809 150.8	1.933	2.051 170.2	2·162 179·4	2·267 188·2	2·368 196·5	2·465 204·6	2·567 212·3	2.647 219·8
1.446	1.525	1.669 134·6	1·804 145·5	1.928 155·5	2.045 164.9	2.156	2·261 182·3	2·361 190·3	2.468 198.2	2.550 205·6	2.640 212·9
1.442	1.520 118·9	1.664	1.799 140.7	1.922 150·4	2.039	2·149 168·1	2.264	2.354	2-450 191-7	2.543 198.9	205.9
1.438	1.515	1.669 125·8	1.793 185.9	1.916 145·3	2.033 154·1	2.142	2-247 170-3	2.347	2.442 185·2	2.636 192.2	2·624 198·9
1.433	1.610	1.664 121.4	1·787 131·1	1.910 140.2	2·026 148·7	2·136 156·7	2.240	2·339 171·7	2.434	2.627 185·5	2.616
1.428	1.505	1.649	1·781 126·4	1.904	2.019	2·128 151·1	2·232 158·5	2·331 165·5	2.426	2.518 178.8	2.607
1.423	1.499	1.643 112.8	1·174 121·7	1.897 130·2	2·012 138·1	2·120 145·5	2·224 152·6	2·322 159·3	2.417	2.509	2.597
1.417	1.493	1.636 108.4	1.767	1.889	2.004 132.7	2·112 139·8	2.215	2·313 153·1	2·407 159·5	2.499	2.587 171·3
1.411	1.487	1.629	1.760	1.881 120·1	1.996 127.3	2·103 134·2	2·206 140·8	2.304	2·397 153·1	158.8	2.576
1.405	1.481	1·622 99·73	1.762	1.873	1.987	2.094	2·196 134·9	2·294 140·9	2.387 146.7	2.478 152.2	2.565
1.398	1.474	1.615	1.744	1.864	1.978	2.084	2·186 129·0	1.283 134·8	2.376 140.3	2.466 145.6	2.553 150·7
1.391	1.467	1.607 91.01	1.735 98.27	1.855	1.968	2.074	2·176 123·2	2·272 128·7	2·364 133·9	2·464 139·0	2·540 143·9
6.0	1.0	1.2	1.4	1.6	1.8	2.0	3.5	5.4	5.6	8.	3.0

OLASS III. (n = 0.035.)

MEAN VELOCITIES AND QUANTITIES OF DISCHARGE PER SECOND.

				MIEAN VELOCITIES AND COANTITIES OF	OCITIES EX	ES AND 4	ND QUANTITY		DISCHARGE FER BECOMD.			ദ്	•		
		,			á	E E		W.torias			•				
Fall per thousand.	36	27	88	83	88	31	226	88	ಪ	8	36	37	88	88	\$
20.0	0.380 29.54	0.382 30.65	0.384 31.76	0.386 32.87	0.386 33.98	0.387 35·10	0.388 36·21	0.389 87·32	0.390 38·44	0·301 39·56	6·392 40·68	0.303 41.80	0.394 42.93	6.396 44.06	o.39
0.1	0.620 40.42	0.622 41.93	0.624 43·44	0.526 44·96	0.528 46·48	0.529 48.00	0·530 49·52	0.532 51.05	0.533	0.636 54·13	0.53¢ 55.66	0.637 57·18	0.539 58·70	0.540 60.22	61.7
0.5	0.121 56.05	0·124 58·12	0.726 60.20	0·728 62·28	0·730 64·36	0·733 66·44	0·734 68·52	0.736 70.60	0.137 72.68	0·139 74·76	0.741 76.84	e.743 78·92	0.744 81.00	0.745 82.09	9.74 85·1
0.3	0-873 67-87	0.876 70.87	0.879 72.87	75.38	0.884 77.89	0.886 80.40	0.888 82.92	0.890 85.45	0.893 87.98	90.51	0.887 93·04	0.889 95·58	0.901 98·12	100.6	103
0.4	1.00¢	1.008	1:011	1.014	1.011 89·67	1.020 92.56	1.023 95·44	1.026 98·33	1.028	1.031	1.033	1.036	1.037 112.8	1.039	118.
0.5	1·120 87·08	1.124 90.30	1.128	1·131 96·74	1·134 100·0	1·137 103·2	1·140 106·4	1·143 109·6	1·146 112·8	1.149	1.161 119·3	1.183	1·166 125·7	1.157	1.15
9.0	1·227 95·39	1.231	1.236 102.4	1·239 105·9	1.242 109·5	1.246 112.9	1·248 116·4	1.261 119·9	1.254	1:267	1.260 130·6	1.263	1.266	1.267	1.26 144
2.0	1.326 103·0	1.329 106·7	1·338 110·5	1.337 114·3	1.341 118·1	1.345 121.9	1.349	1.362 129·6	1.365	1.357	1.359	1.361	1·363 148·5	1.365	1.36 155
8.0	1.416	1.421	1.426 118·1	1·430 122·2	1·434 126·3	1.438	1:411	1.444	1.447	1.450 146·6	1.453	1.456 154·7	1.459 158·8	1.461	1.46 167

(exxx

					(cz	exxi)					
1. 55 1 177·0	1.636 186·6	1.791	1.936 220.9	236·0	2·183	263·9	2-426 276-7	2·633 289·0	300.9	2·736 312·3	323.2
1.549	1.633 182·0	1.788	1.933 215·6	2.066 230·2	2·190 244·3	2·309	2.421 270·0	282·0	293·5	2·733	315.3
1.646 168·4	1.630 177.4	1·786 194·5	1.929 210.2	2.062 224·4	2·187 238·2	2·306	2-417 263·3	2.626 275·0	2.628 286·2	297·1	2·823 307·4
1·643 164·1	1.627 172·9	1.782	1.926 204·8	2.068 218·7	232·1	244.7	2-413 256-6	268·0	2.623 278·9	2.722 289·5	2.99.5
1.640 159.8	1.624 168·4	1.779	1.922 199·4	2.054 213·0	226.0	238.3	2.409 249·9	2.516 261·0	2.618 271.6	2·117 281·9	2.813 291·7
1·537 155·5	1.621 163·8	1.776 179·6	1.918 194·1	2.000 207.2	2·176 219·9	231·8	243·1	2.511 254·0	2.613 264·2	2·112 274·3	283·8
1·634 151·2	1.617 159·2	1.772 174.6	1.914 188·7	2.046 201·4	2·170 213·8	2.25·3	236·3	2.506 2.47·0	2.608 256·9	2.706 ·	2.801 275-9
1.631	1.614	1.768 169·6	1.910 183·3	2.042 195·7	2·166 207·7	2·282 218·9	2·394 229·6	2.501 240·0	249·6	259·1	2·195 268·0
1.528 142.6	1.611	1.764	1.906	2.037 190.0	2·160 201·6	2·277 212·5	222.9	2.495	242.3	251.5	2.189 260·2
1.624	1.607	1.760 159·6	1.901	2.032 184.3	2·166 195·5	2·272 206·1	2·382 216·2	225.8	2.590 235·0	243.9	2.782 252.4
1.520 134·0	1.603	1.756 154.6	1.896	2.027 178·5	2·150 189·4	2.266 199·6	2.376 209.4	2.483 218·8	227·6	2.681 236·3	2-776
1.616	1.599	1.761 149·6	1.891	3.022 172.8	2·144 183·3	2·260 193·2	202·6	211.8	220·3	2.674 228·7	2.768 236·6
1.512	1. 694 132·0	1.746 144·6	1.886 156·4	2·016 167·1	2·138 177·2	2·264 186·8	2·363 195·9	2.469 204.8	2.570 213·0	221·1	2·760 228·7
1.507	1.589	139.7	1.879 151.0	2.010 161.4	2·131 171·1	2·247 180·4	2.366 189.2	2·461 197·7	2.562	2.668 213·5	220·9
1.602	123.0	1.734	1.873	2.003 155.7	2·124 165·1	2·239 174·0	2·348 182·5	2·462 190·6	2.563 198·4	205.9	2.742
6.0	1.0	1.2	1.4	1.6	1.8	2.0	2.5	2.4	5.6	8.	3.0

OLASS III. (n = 0.035.)

MEAN VELOUTIES AND QUANTITIES OF DISOHARGE PER SECOND.

FOR A DEPTH OF WATER OF 2.8. FOR BOTTOM-WIDTHS OF

				(ex	xxii))				
FOR DOTTOR WINTER OF	. 48	0.422 61.77	0.675 84.00	0.791 115·5	0.960 140.3	1·106 161·5	1·229 179·6	1·342 196·1	1·450 211·9	1.545 225·8
	47	0.423	0.574 82.26	0.790	0.959	1.103	1.227	1.340 192·0	1.448	1.643
	94	0·422 59·25	0.673 80.52	0.789 110.7	0.967 134·5	1·101 154·7	1.226	1.338	1.446 203·1	1·541 216·6
	45	0-421 57-99	0.572 78·78	0.788 108·4	0.956 131·6	1.099 151 · 3	1.23 168·5	1.336 184.0	1.444 198·8	1.539
	#	0.421	0.571 77.05	106.1	0.964 128·7	1.097	1.221	1.334	1.442	1.637 207·4
	43	0.420	0.570 75·33	0.786 103·7	0.952 125·8	1.096	1·219 161·1	1·332 175·9	1·439 190·1	1.636 202·7
	42	0.419 54·15	0.569 73·61	0.784 101·3	0-951 122·9	1.094 141·4	1.217	1·330 171·9	1·437 185·7	1.532 198·1
	41	0.418 52·87	0.568 71.89	0·783 99·03	0.949 120·0	1.092 138·1	1.216	1.328 167·9	1·434 181·3	1.530 .193.5
	40	0.417	0.567 70.18	181.0 96.68	0.947	1.090	1.213	1.325	1.431	1.527
	89	0.416 50.31	0.566	0.780 94·34	0.945	1.088	1.211	1.322	1.428 172.7	1.624
	88	0.415 49·04	0.565	0.779 92.00	0.943	128.3	1.209	1.320	1.426 168·3	1.621 179·7
	37	0-414	0.564	0.177 89·67	108.5	1.084	1.207	1.317	1.422 164·0	1.518
	36	0.413 46·50	0.563 63·32	0.776 87.34	0.940 105·7	1.082 121.7	1·205 135·7	1.314	1.419 159·7	1.516
	38	0·412 45·23	0.562 61.61	0·776 85·01	0.938 102.9	1.080	1·203 182·1	143.9	1.416	1.512
	38	0.411 43.96	0.560 59.90	0·773 82·68	100.1	1.077	1.201	1.308	1.413	1.509
	Fall per thousand.	0.02	0.1	0.5	0.3	6.4	0.5	9.0	2.0	8.0

					, 02	AAIL	,			
1.638	1·726 252·3	1.892	2.042 298·4	2·185 319·3	2·316 338·5	2·443 357·1	374·2	2·674 390·9	2·783 406·7	
1.636	1·724 247·1	1·890 270·8	292.3	2·182 312·8	2·313 331·6	2.440 849.7	2.557 366·6	2.671 382.9	2·780 398·4	
1.634 229·8	1.722 241.9	1.887	2.038 286.3	306.3	2.310 324·7	2·437 342·4	2.554 359·0	2.668 374·9	2.777 890·2	
1.632	1·720 236·8	1.885	280.3	2-176 299-8	2·307 317·8	2·433 335·1	2.661 351·4	2.665 367.0	2·174 381·9	
1.630	1.718 231.7	1.882 254·0	274.3	293·3	2.304 310.9	2·429 327·8	2.548 343.8	2·661 359·1	2·770 373·7	
1.628 215·1	1.716	1.879	2.030	286.7	2·301 304·0	2.426 320·5	2.544 336.2	2.667 351·1	2·766 365·4	
1.626	1·713 221·3	1.876 242.6	2.027 262·1	2.167	2·298 297·1	2·421 313·2	2.640 328.6	2.653 343·1	2·762 857·1	
1.622	1.710 216.2	1.873 237.0	2.024 256.0	2·163	2.294	2.417 305·9	2.536 321.0	2.649 335·1	2·757 348·8	
1.619	1.707 211.1	1.870	2.021 249.9	2·169 267·2	283.3	2.413	2·532 313·4	2.645 327.2	2·752 340·5	
1.616 195·5	1.704	1.867	243.9	2·156 260·7	2·286 276·4	2·409 291·4	2.528 305.8	2.640 319·3	2·147 332·3	
1.613 190·6	1·101 200·8	1.864	2.013	254·2	2.282	2·406 284·1	2.624 298·2	2.636 311.3	2·742 324·0	
1.610 185.7	1.698 195·6	1.860 214.4	231.7	2-147 247-7	2.278	2.400	2.620 290.6	2.630 303·3	2·737 315·7	
1.607 180·8	1.694	1.856 208·8	2.005 225·6	2.143	255·7	2.395	2.616	295.3	2.132	
1.604	1.690	1.862	219.5	2·139 234·7	2-268 248·8	2·390 262·3	2.510 275.4	287.4	2.726 299·1	
1.600	1.686 180·3	1.848	1.996	2·134 228·2	2.263 242·0	2.385 2.5.5·1	2·505 267·9	2·613 279·5	2·720 290·9	
6.0	1.0	1.2	1.4	1.6	1.8	2.0	5.5	2.4	2.6	

					0	CLASS III.		(n = 0.035)	035.)						
			MRAN	AN VEL	VELOCITIES AND QUARTITIES OF	AMD Q	UANTITI		DISCRARGE PER		SECOND.	و			
					ř	OR A DE FOR]	A DEPTH OF WATER FOR BOTTOM-WIDTHS	FOR A DEPTH OF WATER OF 3.0. FOR BOTTOM-WIDTHS OF	or 3·0.						
Fall per thousand.	07	17	42	43	#	45	46	47	84	49	20	51	52	83	\$
0.02	0.424 54.70	0.426 56·11	0·426 57·52	0-427 58-93	0-428	61.77	0.430 63:22	0.431	66.12	0-433	69.01	0.436 70.36	0.688 71.77	0.436	0.436
0.1	0.577 74·44	0.579 76·38	0.580	0.581 80·24	0.683 82·17	0.584 84·10	0.586 86.02	0.586 87.98	0.587 89.84	0.588 91.75	93.65	0.590 95·54	0.601 97.43	0.582 99.32	0.693 101·2
0.5	0·794 102·4	0.796 105·1	0.798 107.8	0.800	0.802	0.804 115.8	0.805	121.1	0.808	0.800	0.811 128.9	0.812 131.5	0.813 134.0	0.814 136.5	0.816 139·0
6.0	0.962 124·1	0.966 127.3	0.967 130.5	133.7	0.971 136.9	0.973 140·1	0.976	146.5	0.979	0.880 152.9	0.982 156·1	0.984 159·3	0.985 162·4	165.5	0.988 168·6
*0.	1·108 142·9	1·111 146·6	1·118 150·3	1·116 154·0	1.118	1.121	1.123	1.126	1.127	1.129	1.131	1.133	1.134	1·136 190·6	1·138 194·1
0.2	1.236	1.238	1.241	1.24	1.247	1.249	1.261	1.264 188·0	1.26 192.1	1.268	1.260	1-262 204-3	1.264	1.266	1.268 216·8
9.0	1.346	1.349	1.352 182.5	1.356 187.0	1.368	1.361	1.364 200.6	1.367	1.370 209.7	1.273	1.376	1.379	1.381	1.383	1.386 236·8
2.0	1.454 187·6	1.468 192.5	19461	1.464	1.467	1.470 211.7	1.473	1.476	1.478	1.480	1.483	1.486 240.4	1.487	1.489	1·491 254·5
8.0	1.555 200.6	1.559	1.562	1.565	1.568	1.571	1.574	1.577	1.680	1.582	1.586	1.688	1.590	1.583	1.596 272·1

(exxxiv)

					(CX	XXV))	
1.692	1.783	1.963 333·2	2-110 360·0	2·254 384·6	2.393	2·523 430·4	2.645 451·2	
1.690	1·781 298·6	1.950 327.1	2·107 353·4	2·261 877·6	2.389	2·618 422·4	2·641 443·0	
1·687 278·1	1.778 293·0	1.947 321.0	2·103 346·8	3.078	2·386 393·1	2.514	2.687 434.7	
1.685 272.8	1.775 287·4	1.944 314·8	2·100 340·1	2·246 363·5	2·381 385·5	2·510 406·4	2·633 426·4	
1.682	1.773 281.7	1.941	2.097 333.4	2·242 356·4	2.377 377.9	398.4	2.629 418.0	
1.679 262·0	1.769 276·0	1.938	2.083 826.6	3.238	2.373	3.502	2·624 409·5	
1.676	1.766	1.935	319.8	2·234 341·9	2.369	382.2	2.620 401.0	
1.673 251 · 0	1.763 264·6	1.982	312.9	2·230 334·6	2·365 354·8	374.1	2.616 392.4	
1.670	1.760	1.928	2.081 306·6	3.226 827.8	3·361 347·1	365.9	2·611 383·8	
1.667	1.757	1.924	299.1	320.0	339.4	357.7	2·606 375·2	
1.664 284·6	1-754	1.921	292.4	2.218°	2·362 831·7	349.5	2.601	
1.660	1.750 241.6	1.917	285.7	305.5	2.347 324·0	2-474 341-4	3.58.2	
1.657	1.147	1.913	278.9	2.208	2:842 316·3	333.3	2.591 849·7	
1.663	1.748	1.909	272·1	290.9	308.6	2·464 325·2	2.586 341.2	
1.649	1.739 224.3	1.904	2.067 265.3	283.6	2·332 300·8	2·468 817·1	2.579 832·7	
6.0	1.0	1.2	1.4	1.6	1.8	2.0 	75 75	

OLASS III. (n = 0.035).

MEAN VELOCITIES AND QUANTITIES OF DISCRARGE PER SECOND.

FOR A DEPTH OF WATER OF 3.5. FOR BOTTOM-WIDTER OF

						40.4	-								
Fall per,	44	46	48	20	52	25	26	28	99	62	49	99	89	70	72
0.05	0.488 84·12	0.490 87.85	0·492 91·58	0·493 95·31	0.495 99·05	0.496 102.8	0.497 106·5	0.499	0.500	0.501	0.502 121.6	0.503	0.504	0.891	0.506 136·8
0.1	0.660	0.663	0.666 123·8	0.667 128·9	0.669 134.0	0.671 139·1	0.672	0.674 149·1	0.676 154.2	0.677 159·3	0.679 164.4	169.4	0.681 174·5	0.682 179·6	0.683 184·7
0.5	0.903 155·6	0.906 162·6	0.908 169·6	0.912 176·6	0.915	0.918 190.4	0.920	0.923	0.926 211.8	0.927 218·2	0.929 225·1	0.931 232.0	0.932 238.9	0.933 245·7	0.934 252·5
0.3	1.094	1.098	1.101	1.104	1·107 221·8	1·110 230·2	1.113	1.f16 246.8	1·118 255·1	1.120	1·122 271·9	1·124 280·3	1·126 288·7	1·128 297·1	1·130 805·5
0.4	1.265 216·3	1.259 225·8	1.263	1.266 244.8	1.270	1.273 264·0	1.278	1.279 283·0	1.282 292.5	1.284 302·1	1.286 311·7	1·288 321·3	1.200	1-292 840-3	1·294 349·8
0.5	1.396 240·6	1.400	1.404	1.408	1.412	1.416	1.418 304·1	1.421	1.424 325·3	1.427	1.430 346·5	1.432	1.434	1.436	1-438 388-8
9.0	1.524 262·7	1.529	1.534	1.538	1.642 309·0	1.546 320·6	1·649 332·2	1.663 343·8	1.556 355·4	1.659	1.562 378·6	1.566 390·2	1.567	1.569	1.671
2.0	1.642 283.0	1.647	1.662 307·8	1.667 320·3	1.661	1.666 345·3	1.669 357·7	1.673	1.676 382.6	1.679 395·1	1.682 407·6	1.686	1.688	1.691	1·694 458·0
8.0	1.751 301.8	1.756 315.1	1.761 328·4	1.766 341.7	1.771 355 · 0	1.776 368·3	1.780 381.6	1·784 394·9	1.787 408·2	1·790 421·5	1.794 434.8	1.797	1.800 461.5	1.803 474.9	1.806 488.3
_	_	_		-	-	-	•	-	-	-	-	-	•	-	

cxxxvi

)

					(exx	xvii
1.914 517·5	2·018 545·6	2.212	2·389 646·0	2.552 689.9	2·107 731·8	2·856 772·0
1.911	2.018 530·7	2·208 581·5	2·386 628·3	2.548 671.0	2·103 711·8	2·850 750·7
1.908	2.012 515.8	2·204 565·0	2·381 610·6	2·544 652·2	2.699 691.8	2.845 729.4
1.906	2.009	2·200 548·6	2·377 592·9	2·540 633·4	2-695 671-8	2·840 708·2
1.902 461.0	2.005 486.0	2·196 532·2	2.373	2.536 614·6	2·690 651·9	2·836 687·1
1.898 446.9	2·001	2·192 515·9	2.369	2-532 595-8	2·685 631·9	2·830 666·1
1.895 432.8	1.997	2·188 499·6	2.364	2·527 577·0	2·680 611·9	2·826 645·1
1.891	1.993	2.184	2.359	2.522	2.676	2.820
1.887	1.989 426·4	2·179 467·0	2.354	2.516	2.669	2·814 603·1
1.883 390.5	1.985	2·174 450·8	2·349 487·1	2·510 520·6	2.663	2·807 582·1
1.878 376·3	1.980 396·7	2·169 434·5	2·343 469·4	2.504	2.667	2·800 561·1
1.873 362.2	1.975 381.8	2·163 418·2	2·337 451·8	2·498 483·0	2.650 512.2	2.792
1.868 348·1	1.969 366·9	2·157 402·0	2.330	2.491	2.642	2.784 519·1
1.862 334·0	1.963 352·1	2·151 385·8	2·323 416·6	2.483	2.634	2.776 498.1
1.866 319.9	1.957 337·3	2·144 369·6	2.316 399·0	2·475 426·6	2·625 452·5	2·167 471·1
6.0	1.0	1.2	1.4	1.6	1.8	2.0

(exxxviii

SUPPLEMENTARY TABLE,

GIVING PERCENTAGES OF MEAN VELOCITY AND OF DISCHARGE TO BE ADDED TO OR SUBTRACTED FROM THE QUANTITIES GIVEN IN THE PRECEDING TABLES FOR OTHER SECTIONS OF CHANNEL

For Daysha of Water of Water of Water of Union (1 to 0). For Side-Stapes of Union (1 to 0). For Side (1 to 0). F			Moan V	Mean Velocities of Discharge.	charge.			Quantities	Quantities Discharged per Second	er Second.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	For Depths of Water of		Ŗ	x Side-Slopes	<u></u>			Ä	or Side-Slopes	ي ا	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5		-4.6			- 8.8			ı		
8.6	4.0		1 2.5			9.8					
- 6.4 - 0.3 + 0.3 - 1.8 - 80.4 - 119.3 + 5.0 + 4.6 + 6.5	9.0	9.8	- 1.2			8. 8.					
4.8 +0.2 +0.4 -1.4 -3.8 -25.4 -16.2 +8.0 +6.5 <t< th=""><th>8.0</th><th>-</th><th>1 0.3</th><th></th><th></th><th>8.8 1</th><th></th><th></th><th></th><th></th><th></th></t<>	8.0	-	1 0.3			8.8 1					
1.8	1.0	1 8.	+ 0.5			о Э					
1.8	1.2	9.6	9.0+			ه ه ه					
1.8	1.4		8.0+			ю :					
1.8	1.6	1.8	6.0+			ص ج					
1.0	7		+ 1:0			ب ج ب					
1.0	5.0		+ 1.0			80 60 1					
1.05	5.7		+1:0			1 3.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.2		+1.0			9.6					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.6	1 0. 4	+ 1.0			13.4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80. 83.		+1.0						_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0 8		+1.0						_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5		+ 1.0						_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7	- 0.1	6.0+				_	_	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5		8.0+				_		0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	ö	8.0+				_		0		
0. +0.6 +0.5 -0.5 -1.4 - 4.2 - 2.8 - 0.9 + 0.9 +	5.2	ö	+0.4				_		0		
	0.9	ò	9.0+				_		•		

TABLE OF CONTENTS.

CHAPTER I.

FLOW IN OPEN CHANNELS GENERALLY.

		PAGE
1.	The formulæ of D'Arcy and Bazin and of Humphreys and Abbot, for determining Mean Velocities of Discharge of Rivers and Canals	1
2.	The previously accepted formulæ	2
3.	The formulæ of D'Arcy and Bazin	3
4.	The formulæ of Humphreys and Abbot	3
5.	Practical Examination of these formulæ, and Table of Discharges	
	of Channels of High Inclination	4
6.	Examination of the old-established formula and the new American one, with the view of applying Series of Coefficients to either of them as a basis	6
7.	The Variation of the Coefficients c with the Inclination	9
	The Employment of the formulæ of D'Arcy and Bazin in con-	Ū
٠.	structing a Series of Coefficients	10
9.	Table of Calculated Coefficients of D'Arcy and Bazin applied to	
	the Formula $v = c \sqrt{rs}$	14
10.	Table of corresponding Coefficients experimentally obtained \dots	22
11.	Remarks on the Series of Observations of D'Arcy and Bazin	26
12.	The Coefficients of D'Arcy and Bazin for calculating Mean from	
	Maximum Velocities	29
13.	Table of those Coefficients	30
	Examples illustrating the application of the Table No. 9	30
	The formulæ and categories of Gauckler	34
16.	Table of the Coefficients of Gauckler's First Formula	36
17.	The Formation of a New and final set of Twelve Classes instead of the previous Categories	36
18.	The Twelve New Classes of Coefficients	37
	Table showing the Range of the observed Coefficients in these	٠,
	Classes	40
20.	Determination of the Final Coefficients for these Classes in Metrical Measures	42
21.	Table of Values of the New Coefficients c for the Formula $v = c \sqrt{rs}$	47
	Table of Observed Results with their corresponding Coefficients	48

CHAPTER II. FLOW IN OPEN CHANNELS IN EARTH.

23. Various Formulæ of Eytelwein Patzig, Hagen, Bornemann, Brünings, Bazin, Hagen (new), Humphreys and Abbot, for	PAGE
determining Discharges of Canals and Rivers in Earthen Channels	51
24. Table—Comparison of Results of various Formulæ	53
25. The Formula of Bornemann and Hagen	53
26. Safe Bottom Velocities of Dubuat, with Table	57
27. The Derivation of the New Formula for Coefficients of Mean Velocity	59
28. Table giving the Observed Values of the Coefficient n, corresponding	00
to their data of observation	67
29. Table giving the Values of the Expressions $a + \frac{l}{n}$ and $\frac{m}{J}$ corre-	
sponding to various Values of n and of J	69
80. Table of the Values of the Expressions z and z, corresponding to	P1 1
different Values of n and J in the Formula	71
English, and other Measures	73
32. Conversion Tables of the Translator	77
33. Tables of Equivalents of Foreign Measures, by the Translator	82
34. The Application of the New Formula to the Calculation of Dis-	
charges in Open Channels in Earth; and Explanation and	
Examples for the use of the Tables and Diagrams	87
WORKING TABLES.	
Class I. $(n = 0.025)$. Coefficients of mean velocity. Mean	
Velocities and Discharges per Second i	to li
CLASS II. $(n = 0.030)$. Coefficients of mean velocity. Mean Velocities and Discharges per Second	i to ci
Velocities and Discharges per Second	. 10 ČI
Velocities and Discharges per Second ciii to ex	TTVII
~ .	KXVIÍI
way from the first of a control of the first	1 111

PLATES.

- PLATE I. Figure 1. Type of Section adopted in the Working Tables. Figure 2. Types of Sections for which Percentages are given in the Subsidiary Table.
- PLATE II. Diagram for obtaining Coefficients of Mean Velocity for Metrical and for English Measures.

.

17.00
!
İ
1
í

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

DEC 3 1940 M APR 9 1500 MAR 26 1968 LD 21-100m-7,'83

YC 13491 31303 TC175 K8 UNIVERSITY OF CALIFORNIA LIBRARY

