N.I. Lobachevsky State University of Nizhni Novgorod

Probability theory and mathematical statistics:

Dependence and independence of random variables

Conditional distribution

Associate Professor A.V. Zorine

Consider two random variables X and Y. Let numbers x_1, x_2, \ldots , be the possible values of X, and y_1, y_2, \ldots be the possible values of Y. Probabilities

$$p_{i,j} = P(X = x_i, Y = y_j) = P(\{\omega \colon X(\omega) = x_i\} \cap \{\omega \colon Y(\omega) = y_i\})$$

determine *the joint distribution* of random variables *X* and *Y*.

Any numbers $p_{i,j} \ge 0$ can assign probabilities to elements from the set $\{(x_i, y_j); i = 1, 2, ..., j = 1, 2, ...\}$ as soon as

$$\sum_{i\geqslant 1}\sum_{j\geqslant 1}p_{i,j}=1$$

ω	$X(\omega)$	$Y(\omega)$
Н	1	0
T	0	1

$$\{\omega \colon X(\omega) = 0, Y(\omega) = 0\} = \emptyset,$$

$$\begin{array}{c|ccc}
\omega & X(\omega) & Y(\omega) \\
\hline
H & 1 & 0 \\
T & 0 & 1
\end{array}$$

$$P(X=0,Y=0)=0$$

$$\{\omega \colon X(\omega) = 0, Y(\omega) = 0\} = \varnothing,$$

$$\frac{\omega \mid X(\omega) \mid Y(\omega)}{H \mid 1 \mid 0}$$

$$T \mid 0 \mid 1$$

$$\{\omega \colon X(\omega) = 0, Y(\omega) = 0$$

$$\{\omega \colon X(\omega) = 1, Y(\omega) = 0\} = \{H\},$$

$$P(X = 1, Y = 0) = \frac{1}{2}$$

$$\{\omega \colon X(\omega) = 0, Y(\omega) = 0\} = \varnothing,$$

$$\frac{\omega \mid X(\omega) \mid Y(\omega)}{H \mid 1} \quad 0$$

$$T \mid 0 \quad 1$$

$$\{\omega \colon X(\omega) = 1, Y(\omega) = 0\} = \{H\},$$

$$P(X = 1, Y = 0) = \frac{1}{2}$$

$$\begin{array}{c|cccc}
X \setminus Y & 0 & 1 \\
\hline
0 & p_{0,0} & p_{0,1} \\
1 & p_{1,0} & p_{1,1}
\end{array}$$

$$\{\omega \colon X(\omega) = 0, Y(\omega) = 0\} = \varnothing,$$

$$\frac{\omega \mid X(\omega) \mid Y(\omega)}{H \mid 1} = 0$$

$$T \mid 0 \mid 1$$

$$\{\omega \colon X(\omega) = 1, Y(\omega) = 0\} = \{H\},$$

$$P(X = 1, Y = 0) = \frac{1}{2}$$

$X \setminus Y$	0	1
0	$p_{0,0}$	$p_{0,1}$
1	$p_{1,0}$	$p_{1,1}$

$X \setminus Y$	0	1
0	0	$\frac{1}{2}$
1	$\frac{1}{2}$	$\tilde{0}$

Problem. There are M white balls and N-M black balls in an urn. All balls are taken out sequentially without replacement. Let X be the number of black balls taken out before the first white ball appeared, Y be the number of black balls taken out between the first white ball and the second white ball. Find P(X = k), P(X = k, Y = l).

Problem. There are M white balls and N-M black balls in an urn. All balls are taken out sequentially without replacement. Let X be the number of black balls taken out before the first white ball appeared, Y be the number of black balls taken out between the first white ball and the second white ball. Find P(X = k), P(X = k, Y = l).

Solution. Let event A_i occur when the *i*th ball is white. Then

$$\begin{aligned} \{X=k\} &= \bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_k \cap A_{k+1}, \\ P(X=k) &= P(\bar{A}_1)P(\bar{A}_2|\bar{A}_1) \dots P(A_{k+1}|\bar{A}_1 \cap \ldots \bar{A}_k) = \\ &= \frac{N-M}{N} \cdot \frac{N-M-1}{N-1} \cdots \frac{N-M-k+1}{N-k+1} \cdot \frac{M}{N-k}, \end{aligned}$$

$$\begin{aligned} \{X = k, Y = l\} &= \bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_k \cap A_{k+1} \cap \bar{A}_{k+2} \cap \ldots \cap \bar{A}_{k+l+1} \cap A_{k+l+2}, \\ P(X = k, Y = l) &= \frac{N - M}{N} \cdot \frac{N - M - 1}{N - 1} \cdots \frac{N - M - k + 1}{N - k + 1} \cdot \frac{M}{N - k} \times \\ &\times \frac{N - M - k}{N - k - 1} \cdots \frac{N - M - k - l + 1}{N - k - l} \cdot \frac{M - 1}{N - k - l - 1} = \\ &= \frac{(N - M)(N - M - 1) \cdots (N - M - k - l + 1)M(M - 1)}{N(N - 1) \cdots (N - k - l - 1)} \end{aligned}$$

With respect to the joint distribution the probability distribution of a single variable (e.g. *X*) is called *marginal distribution*. It can be easily recovered from the joint distribution:

$$P(X = x_i) = P\left(\{X = x_i\} \cap \bigcup_{j \ge 1} \{Y = y_j\}\right) =$$

$$= P\left(\bigcup_{j \ge 1} \{X = x_i, Y = y_j\}\right) =$$

$$= \sum_{j \ge 1} P(X = x_i, Y = y_j) = \sum_{j \ge 1} p_{i,j},$$

$$P(Y = y_j) = \sum_{i \ge 1} p_{i,j}.$$

Given an event A, P(A) > 0, the conditional distribution of random variable X can be defined as follows:

$$P(X = x_i | A) = \frac{P(\{X = x_i\} \cap A)}{P(A)}$$

Example. (Lack-of-memory property of geometric distribution) Random variable X is said to have geometric distribution with parameter p if $P(X = k) = (1 - p)^{k-1}p$ for $k = 1, 2, \ldots$ Then

$$P(X > n) = P(X = n + 1) + P(X = n + 2) + \dots =$$

$$= (1 - p)^{n} p + (1 - p)^{n+1} p + \dots =$$

$$= \frac{(1 - p)^{n} p}{1 - (1 - p)} = (1 - p)^{n},$$

$$P(X > k + n | X > n) = \frac{P(X > k + n, X > n)}{P(X > n)} =$$

$$= \frac{P(X > k + n)}{P(X > n)} = \frac{(1 - p)^{k + n}}{(1 - p)^n} = (1 - p)^k,$$

$$P(X = n + k + 1 | X > n) = P(\{X > n + k\} \setminus \{X > n + k + 1\} | X > n)$$

$$= (1 - p)^k - (1 - p)^{k + 1} = (1 - p)^k p.$$

As we know, X sometimes can be interpreted as expectation time for the first success in Bernoulli trials. So, the conditional distribution of expectation time given it's more that n has geometrical distribution as well.

From multiplication theorem,

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j|X = x_i)$$

$$P(X = x_i, Y = y_j) = P(Y = y_j)P(X = x_i|Y = y_j)$$

given that all conditional expectations needed are defined.

Definition

Random variables *X* and *Y* are called *independent* if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

holds for all i, j.

In other words, distribution of *X* does not depend on the value of *Y* and vice-versa.

For a fixed y_j conditional probability distribution of random variable X can be expressed in terms of joint distribution of X and Y:

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{i,j}}{\sum_{m \ge 1} p_{m,j}}.$$

$X \setminus Y$	-1	0	1	
0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	
1	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	

Find marginal and conditional distributions of *X* and *Y*. Check for independence.

$X \setminus Y$	-1	0	1	marginal
0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16} + \frac{1}{4} + \frac{1}{16} = \frac{3}{8}$
1	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{16} + \frac{1}{4} + \frac{5}{16} = \frac{5}{8}$

Find marginal and conditional distributions of *X* and *Y*. Check for independence.

$X \setminus Y$	-1	0	1	marginal	
0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16} + \frac{1}{4} + \frac{1}{16} = \frac{3}{8}$	
1	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{16} + \frac{1}{4} + \frac{5}{16} = \frac{5}{8}$	
marginal	$\frac{2}{16}$	$\frac{2}{4}$	$\frac{6}{16}$		

Find marginal and conditional distributions of *X* and *Y*. Check for independence.

$X \setminus Y$	-1	0	1	marginal	
0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{16} + \frac{1}{4} + \frac{1}{16} = \frac{3}{8}$	
1	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{1}{16} + \frac{1}{4} + \frac{5}{16} = \frac{5}{8}$	
marginal	$\frac{2}{16}$	$\frac{2}{4}$	$\frac{6}{16}$		

Find marginal and conditional distributions of *X* and *Y*. Check for independence.

Since $P(X = 0, Y = -1) = \frac{1}{16} \neq \frac{3}{8} \cdot \frac{1}{8} = P(X = 0)P(Y = -1)$, the two random variables are dependent.

Conditional distribution of *Y*:

$X \setminus Y$	-1	0	1	marginal
0	$\frac{1.8}{16.3} = \frac{1}{6}$	$\frac{1.8}{4.3} = \frac{2}{3}$	$\frac{1.8}{16.3} = \frac{1}{6}$	$\frac{3}{8}$
1	$\frac{1.8}{16.5} = \frac{1}{10}$	$\frac{1.8}{4.5} = \frac{2}{5}$	$\frac{5.8}{16.5} = \frac{1}{2}$	$\frac{5}{8}$
marginal	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{3}{8}$	

Theorem

Let *X* and *Y* be independent nonegative integer random variables.

Then

$$P(X + Y = m) = \sum_{k=0}^{m} P(X = k)P(Y = m - k), \qquad m = 0, 1, ...$$

Proof.

$$\begin{split} \mathbf{P}(X+Y=m) &= \mathbf{P}\Big(\{X+Y=m\} \cap \bigcup_{k=0}^{\infty} \{X=k\}\Big) \\ &= \sum_{k=0}^{\infty} \mathbf{P}(X+Y=m,X=k) = \sum_{k=0}^{\infty} \mathbf{P}(k+Y=m,X=k) \\ &= \sum_{k=0}^{\infty} \mathbf{P}(Y=m-k,X=k) = \sum_{k=0}^{\infty} \mathbf{P}(X=k) \mathbf{P}(Y=m-k) \\ &= \sum_{k=0}^{m} \mathbf{P}(X=k) \mathbf{P}(Y=m-k). \end{split}$$

Sum of independent Poissonian random variables. Let X have Poisson distribution with parameter λ , Y Poisson distribution with parameter μ . Then according to previous theorem,

$$P(X + Y = m) = \sum_{k=0}^{m} \frac{\lambda^{k}}{k!} e^{-\lambda} \cdot \frac{\mu^{m-k}}{(m-k)!} e^{-\mu} =$$

$$= e^{-(\lambda+\mu)} \frac{1}{m!} \sum_{k=0}^{m} \frac{m!}{k!(m-k)!} \lambda^{k} \mu^{m-k}$$

$$= \frac{(\lambda+\mu)^{m}}{m!} e^{-(\lambda+\mu)}.$$

In othe words, class of poissonian random variables is closed under summation.

Let *X* and *Y* be independent integer random variables. As we have just seen, the joint distribution of a term and a sum is given by the following formula:

$$P(X = k, X + Y = m) = P(X = k)P(Y = m - k).$$

Applying it to the previous example, obtain:

$$P(X = k|X + Y = m) = \frac{\frac{\lambda^k}{k!}e^{-\lambda} \cdot \frac{\mu^{m-k}}{(m-k)!}e^{-\mu}}{\frac{(\lambda+\mu)^m}{m!}e^{-(\lambda+\mu)}}$$
$$= \frac{m!}{k!(m-k)!} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{m-k}$$

The conditional distribution of one term is binomial. Nota bene: sometimes known distributions appear not from their usual physical origins!

Problem. Ann and Bart roll one die each untill \square appears. The one who gets \square first recieves one rouble from other and the game is over. If they both have \square , it's a tie and nobody pays. Let X denote the number of rolls until the end of game, Y denote Ann's gain. Find joint distribution of X and Y and then find marginal probability distributions of X and Y.

Problem. Ann and Bart roll one die each untill \blacksquare appears. The one who gets \blacksquare first recieves one rouble from other and the game is over. If they both have \blacksquare , it's a tie and nobody pays. Let X denote the number of rolls until the end of game, Y denote Ann's gain. Find joint distribution of X and Y and then find marginal probability distributions of X and Y.

Solution. *Y* is either -1 rouble, 0 roubles, or 1 rouble. Then event $\{X = k, Y = -1\}$ occurs if there were k - 1 non- \blacksquare on both dice, and for last time Bart had \blacksquare while Ann hadn't. Since all trials are independent,

$$P(X = k, Y = -1) = \left(\frac{5}{6} \cdot \frac{5}{6}\right)^{k-1} \cdot \frac{5}{6} \cdot \frac{1}{6} = \left(\frac{5}{6}\right)^{2k-1} \frac{1}{6}.$$

$$P(X = k, Y = 1) = \left(\frac{5}{6} \cdot \frac{5}{6}\right)^{k-1} \cdot \frac{1}{6} \cdot \frac{5}{6} = \left(\frac{5}{6}\right)^{2k-1} \frac{1}{6},$$

$$P(X = k, Y = 0) = \left(\frac{5}{6} \cdot \frac{5}{6}\right)^{k-1} \cdot \frac{1}{6} \cdot \frac{1}{6} = \left(\frac{5}{6}\right)^{2k-2} \frac{1}{36},$$

Now,

$$P(X = k) = P(X = k, Y = -1) + P(X = k, Y = 0) + P(X = k, Y = 1) =$$

$$= \left(\frac{5}{6}\right)^{2k-2} \left(\frac{5}{36} + \frac{1}{36} + \frac{5}{36}\right) =$$

$$= \left(\frac{25}{36}\right)^{k-1} \frac{11}{36}.$$

X has geometric distribution with parameter $\frac{11}{36}$ (non wonder!).

$$P(Y = -1) = \sum_{k=1}^{\infty} P(X = k, Y = -1) =$$

$$= \sum_{k=1}^{\infty} \left(\frac{5}{6}\right)^{2k-1} \frac{1}{6} = \frac{5}{6} \cdot \frac{1}{6} \frac{1}{1 - \frac{25}{36}} = \frac{5}{11},$$

$$P(Y = 1) = \dots = \frac{5}{11},$$

$$P(Y = 0) = \sum_{k=1}^{\infty} P(X = k, Y = 0) =$$

$$= \sum_{k=1}^{\infty} \left(\frac{5}{6}\right)^{2k-2} \frac{1}{36} = \frac{1}{36} \frac{1}{1 - \frac{25}{36}} = \frac{1}{11}.$$

$$P(X = k, Y = -1) = \left(\frac{5}{6}\right)^{2k-1} \frac{1}{6} = \left(\frac{5}{6}\right)^{2k-2} \frac{11}{36} \cdot \frac{5}{11} = P(X = k)P(Y = -1)$$

$$P(X = k, Y = 1) = \left(\frac{5}{6}\right)^{2k-1} \frac{1}{6} = \left(\frac{5}{6}\right)^{2k-2} \frac{11}{36} \cdot \frac{5}{11} = P(X = k)P(Y = 1).$$

$$P(X = k, Y = 0) = \left(\frac{5}{6}\right)^{2k-2} \frac{1}{36} = \left(\frac{5}{6}\right)^{2k-2} \frac{11}{36} \cdot \frac{1}{11} = P(X = k)P(Y = 0).$$

We see that random variables X and Y are independent.

