

第四部分: 多Agent决策

章宗长 2023年4月11日

内容安排

4.1	多Agent交互
4.2	制定群组决策
4.3	形成联盟
4.4	分配稀缺资源
4.5	协商
4.6	辩论
4.7	分布式规划

多Agent交互

■ 一个多Agent系统包含一些Agent:

- □ 通过通信相互交互
- □可以在环境中动作
- □ 有不同的"作用范围"
 - 可以控制、至少是影响环境的不同部分
- □影响的范围可能重叠
 - 产生Agent间的依赖关系
 - □ 如:两个Agent都可以通过 一道门,但不能同时通过
- □ 其他关系
 - 如: "权力"关系

多Agent系统的标准结构

3

本节最重要的内容:理解发生 在这些Agent之间的交互类型

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

效用(Utility)

- 个体在交互时需要考虑什么?
 - □ 理性假设: 什么样的结果对自己最有利,即效用
- 效用
 - □ 来源: 经济学中的概念,是**价值**的抽象。
 - □ 表示**结果**对某个**个体**的**价值**,能够反映出 一个个体的**意图**
- 效用函数的定义

 - □ 结果 $\Omega = \{\omega_1, \omega_2, \dots\}$
 - □ 效用函数: $u_i:\Omega \to \mathbb{R}$, $u_i:\Omega \to \mathbb{R}$

金钱与效用之间的关系

偏好(Preference)

- 效用函数使得结果能够进行比较
 - □ 偏好关系: $u_i(\omega) \ge u_i(\omega') \Leftrightarrow \omega \ge_i \omega'$
 - □ 严格偏好关系: $u_i(\omega) > u_i(\omega') \Leftrightarrow \omega >_i \omega'$
- 性质:偏好关系是全序关系
 - 自反性: ω ≽_i ω
 - □ 传递性: 如果 $\omega_1 \geq_i \omega_2$ 和 $\omega_2 \geq_i \omega_3$,则 $\omega_1 \geq_i \omega_3$
 - □ 完全性:对于任意 $\omega_1, \omega_2 \in \Omega$,有 $\omega_1 \geq_i \omega_2$ 或 $\omega_2 \geq_i \omega_1$
- 很多时候,人们并不关心结果的具体效用是多少, 只关心偏好

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

环境

- ■环境
 - ightharpoonup Agent: Ag = $\{i, j\}$
 - - C: 合作 (cooperate), D: 不合作 (defect)
 - $□ 结果Ω = \{\omega_1, \omega_2, ...\}$
 - □ 状态转移函数 τ : Ac × Ac $\rightarrow \Omega$
- 如何拓展这样的环境?

Agent i的动作 Agent j的动作

- □ 引入更多的Agent
- □ 动作加入更多的选择
- □设计更复杂的状态转移函数
- □ 在状态转移中引入随机性

环境函数的例子(一)

■ 每个个体的行为都会对结果产生影响

$$T(D,D) = \omega_1, \tau(C,D) = \omega_2, \tau(D,C) = \omega_3, \tau(C,C) = \omega_4$$

注:形式为(j's action, i's action)

	i Defects	<i>i</i> Cooperates
j D efects	ω_1	ω_3
j Cooperates	ω_2	ω_4

这个环境对每个Agent执行的动作是敏感的

环境函数的例子(二)

■ 个体的行为对结果没有影响

	i Defects	<i>i</i> Cooperates
j D efects	ω_1	ω_1
j Cooperates	ω_1	ω_1

在这个环境中,不论Agent做什么动作,结果都是相同的

环境函数的例子(三)

■ 只有一个个体的行为对结果有影响

$$T(D,D) = \omega_1, \tau(D,C) = \omega_1, \tau(C,D) = \omega_2, \tau(C,C) = \omega_2$$

	i Defects	i Cooperates
j D efects	ω_1	ω_1
j Cooperates	ω_2	ω_2

在这个环境中,结果只依赖于Agent j执行的动作

效用函数

- 把环境与效用结合起来,有意思的事情就发生了
- 假设Agent的效用函数如下:

□ Agent *i*:
$$u_i(\omega_1) = 1$$
, $u_i(\omega_2) = 1$, $u_i(\omega_3) = 4$, $u_i(\omega_4) = 4$

□ Agent
$$j$$
: $u_j(\omega_1) = 1$, $u_j(\omega_2) = 4$, $u_j(\omega_3) = 1$, $u_j(\omega_4) = 4$

	i D efects	i Cooperates
j D efects	ω_1	ω_3
j Cooperates	ω_2	ω_4

Agent i: $u_i(D, D) = 1$, $u_i(D, C) = 1$, $u_i(C, D) = 4$, $u_i(C, C) = 4$

Agent $j: u_j(D, D) = 1, u_j(D, C) = 4, u_j(C, D) = 1, u_j(C, C) = 4$

理性的动作

Agent
$$i: u_i(D, D) = 1, u_i(D, C) = 1, u_i(C, D) = 4, u_i(C, C) = 4$$

Agent $j: u_j(D, D) = 1, u_j(D, C) = 4, u_j(C, D) = 1, u_j(C, C) = 4$

- Agent i对于可能的结果的偏好
 - $(C,C) \geqslant_i (C,D) >_i (D,C) \geqslant_i (D,D)$

在这种情况下, Agent i应该选择什么动作?

- Agent i 更愿意选择通过合作产生的结果
 - \square 因此,Agent i的理性动作是C

收益矩阵 (Pay-off Matrix)

	i D efects	i Cooperates
j D efects	ω_1	ω_3
j Cooperates	ω_2	ω_4

■ 假设Agent的效用函数如下

□ Agent *i*:
$$u_i(\omega_1) = 1$$
, $u_i(\omega_2) = 1$, $u_i(\omega_3) = 4$, $u_i(\omega_4) = 4$

□ Agent
$$j$$
: $u_j(\omega_1) = 1$, $u_j(\omega_2) = 4$, $u_j(\omega_3) = 1$, $u_j(\omega_4) = 4$

收益矩阵:

		i Defe	ects	i Co	operates	
i Defeata			1		4	
j D efects		1		1		
<i>:</i> C			1		4	
<i>j</i> Cooperates		4		4		

- ■本节的剩余部分将使用收益矩阵表示双人博弈
 - □ 正则形式的博弈: 采用这种矩阵形式表示的博弈

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

正则形式的博弈

- ■回顾
 - □ 效用: 个体的偏好或目的
 - □ 环境: 个体之间是如何交互的
 - □ 正则形式的博弈: 多Agent交互最基本的模型

下一步是什么?

- ■博弈论最基本的问题
 - □ 个体应该怎么做,才能得到最大的收益?

正则形式的博弈

- 优势策略
- 纳什均衡
- 帕累托最优
- ■最大化社会福利

不同类型的解

最优反应

- s_i : Agent i的策略
- $s_{1:n}$: 所有n个Agent的策略组合(strategy profile)
- s_{-i} : 所有Agent中除去Agent i的策略组合
- $U_i(s_{1:n})$ 或 $U_i(s_i,s_{-i})$:给定一个策略组合 $s_{1:n}$,Agent i的效用
- Agent i对策略组合 s_{-i} 的一个最优反应(best response)是一个策略 s_i^* ,满足:

对所有策略 s_i ,有 $U_i(s_i^*, s_{-i}) \ge U_i(s_i, s_{-i})$

■ 一般地,给定 s_{-i} ,可以有多个不同的最优反应

优势策略

■ 在一些博弈中,存在一个 s_i ,它是所有可能 s_{-i} 的一个最优反应,称 s_i 为一个优势策略(dominant strategy)

假设Agent j采取策略D,那么Agent i的最优反应是D 假设Agent j采取策略C,那么Agent i的最优反应是D

D是Agent i的<mark>优势策略</mark>

■ 当所有Agent都使用优势策略,称它们的组合为优势策略均 衡(dominant strategy equilibrium)

优势策略的性质

■ 好消息: 优势策略让决策变得非常简单

	i D e	efects	i Cooj	perates
i Defeate		4		1
j D efects	4		3	
i Camanatas		3		2
<i>j</i> Cooperates	1		2	

■ 坏消息: 优势策略不一定存在

	i Defects		<i>i</i> Cooperates		i的最优反应
j D efects	4	4	3	3	Defect
j Cooperates	1	1	2	2	Cooperate

j不合作,i的最 好反应是不合作

*j*合作,*i*的最好 反应是合作

纳什均衡

- 优势策略并不适用于所有的问题,因此需要更通用的解决方法
- 纳什均衡(Nash equilibrium)
 - □ 策略 s_i 和 s_j 处在**纳什均衡**,当且 仅当
 - = 当Agent i采取策略 s_i ,Agent j没有比 s_i 更好的策略
 - = 当Agent j采取策略 s_j ,Agent i没有比 s_i 更好的策略
 - o 或者说,Agent i和Agent j的策略 s_i, s_j 互为最优反应

纳什均衡的性质

- 理性个体思考的方式:
 - \Box 如果对方选择 a_1 ,那么我应该选择 b_1 ,则对方会选择 a_2 ,那么我应该选择 b_2 ……则对方会选择a',那么我应该选择b',则对方会选择a',那么我应该选择b'
 - □ 那么a′,b′处在纳什均衡

■ 当策略 s_i , s_j 处在纳什均衡时,Agent没有动力来改变原来的策略,因此非常**稳定**

纳什均衡的性质

即使博弈问题没有优势策略,但还是可能存在纳 什均衡

	i Defects	<i>i</i> Cooperates	i的最优反应
j D efects	4	3	Defect
j Cooperates	1	2 2	Cooperate

在这种情况下,没有优势策略,但存在纳什均衡(D,D)

纯策略的纳什均衡

- 一个Agent的策略(strategy)分为:
 - □ 纯策略: 行动的选择是确定性的
 - 如:以1的概率选择不合作
 - □ 混合策略: 行动的选择是概率性的
 - 如: [不合作: 0.7; 合作: 0.3]

纯策略是混合策略的一种特殊情形

- 两个重要的结论:
 - □ 并不是每个交互的情形都有纯策略的纳什均衡
 - □有些交互的情形有一个以上的纯策略的纳什均衡

纯策略的纳什均衡 (续)

■ 在石头-剪子-布博弈中,纯策略的纳什均衡**不存在**

游戏规则:

石头克剪刀,剪刀克布,布克石头

	i 孑	子	i 剪	打	i	布
: T 3		0		-1		1
j石头	0		1		-1	
· 1 17		1		0		-1
<i>j</i> 剪刀	-1		0		1	
· 左		-1		1		0
<i>j</i> 布 	1		-1		0	

纯策略的纳什均衡(续)

在猎鹿博弈中,存在多个纯策略的纳什均衡

猎鹿博弈(Stag hunt)

在这一场景下,两名猎人一起去打猎,他们可以猎取鹿,也可以猎取野兔。鹿需要两个人合作才能获取,野兔一个人就可猎得,但猎鹿所得的收益大于猎野兔所得的收益。

	i 鹿		i 兔	
<i>j</i> 鹿		3		2
<i>)</i> /FE	3		0	
: <i>A</i>		0		1
<i>j</i> 兔	2		1	

纯策略的纳什均衡为:两个猎人都去打鹿,或者都去打兔

混合策略的纳什均衡

- 纳什定理: 一个动作空间有限的博弈问题, **总是 存在**至少一个纳什均衡解。
- 例子: 石头-剪子-布博弈没有纯策略的纳什均衡, 但是有混合策略的纳什均衡
 - □ 以相同的概率选取石头,剪刀和布中的一个

	i 7	5头	i剪刀		i 布	
;云刘		0		-1		1
<i>j</i> 石头	0		1		-1	
j 剪刀		1		0		-1
	-1		0		1	
j 布		-1		1		0
	1		-1		0	

优势策略均衡 vs. 纳什均衡

优势策略 均衡

纯策略的纳什均衡

混合策略的纳什均衡

- 优势策略均衡:自己的一个动作,是对方**所有**动作的最 优反应
- 纯策略的纳什均衡:自己的动作与对方的动作,**互为最** 优反应 □

在策略中引入随机性

■ 混合策略的纳什均衡:自己的策略与对方的策略,互为 最优反应

帕累托最优(Pareto Optimality)

■ 帕累托最优性(也称帕累托效率, Pareto efficiency)

结果ω为帕累托最优 如果想要提升一个个体的效用,必须以 其它个体效用的减少作为代价

例1:

N31.	i Defects		i Coop	perates
i Defeate		5		1
j D efects	3		2	
i Campuntas		0		0
<i>j</i> Cooperates	2		1	

帕累托最优解为(D,D)

例2:

/ , 	i D ef	ects	i Coop	erates
j D efects	2	2	5	0
j Cooperates	0	5	3	3

帕累托最优解为(C,D), (D,C), (C,C)

社会福利(Social welfare)

■一个结果ω的社会福利,是所有Agent效用的总和

$$\sum_{i \in Ag} u_i(\omega)$$

例2:

■ 在**合作型**的多Agent系统中,目标往往是最大化社 会福利

ITA 1			/			
例1:			D ef	fect	Co	op
		D efect		2		1
j	7		2		1	
		Coop		3		4
			3		4	

(C,C)最大化社会福利

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

竞争

- 对于一个Agent,它与其他Agent存在**竞争**,如果
 - □ 当它的效用最大时,其它Agent的效用并不是最大
- ■严格竞争性
 - □ 对于环境中的任意两个结果 $\omega,\omega' \in \Omega$,满足

$$\omega \succ_i \omega' \iff \omega' \succ_j \omega$$

Agent i和Agent j的偏好相互处于完全对立的位置

- ■零和博弈满足严格竞争性
 - □ 竞争最"激烈的"博弈形式

零和博弈

- 零和博弈 (Zero-sum game)
 - □ 对于任意结果 $\omega \in \Omega$,两个Agent的效用之和为零:

$$u_i(\omega) + u_j(\omega) = 0$$

- ■零和博弈的例子
 - □下棋
 - □ 石头-剪子-布

- 现实世界中,真正的零和博弈是非常罕见的
 - □ 在很多情形下,有相互利益合作的可能

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

囚徒困境

- 有两个囚徒(Agent)被隔离审讯
 - □ 一方可以揭发(即不合作,D)另一方,也可以保持沉默(即合作,C)
 - \square 如果i揭发j, j保持沉默,则i被释放,j判10年
 - □ 如果*i*和*j*相互揭发,则*i*和*j*各判5年
 - □ 如果*i*和*j*都保持沉默,则各判1年
- 假设两个Agent都知晓右 图的收益矩阵

元11十 	i 揭发	(D)	<i>i</i> 沉默	(C)
: +11 42 (D)		-5		-10
<i>j</i> 揭发 (D)	-5		0	
<i>j</i> 沉默(<i>C</i>)		0		-1
	-10		-1	

■ 两个Agent需要在不知晓另一方行动的前提下,同时行动

囚徒困境(续)

- \blacksquare 对于理性的Agent i来说:
 - □ 当Agent j选择揭发时,最优反应是<mark>揭发</mark>
 - \square 当Agent j选择沉默时,最优反应是<mark>揭发</mark>
- 因此,相互揭发不仅是**纳什均衡,也是优势策略** 均**衡**

	i揭发	(D)	i沉默	(C)
		-5		-10
万均 及(D)	-5		0	
		0		-1
<i>j</i> 沉默(C) 	-10		-1	

囚徒困境(续)

直觉告诉我们,双 方保持沉默是比相 互揭发更好的选择

	i 揭发	(D)	i 沉默	(C)
j 揭发 (D)		-5		-10
万 烟及(D)	-5		0	
		0		-1
<i>j</i> 沉默(C)	-10		-1	

- 然而,如果两个Agent都做**理性的推理**,会做出揭 发的选择
- 因此,这被称作是一个困境(Dilemma)

这一悖论是多Agent交互的一个根本问题

囚徒困境(续)

- 囚徒困境问题在真实世界中普遍存在
 - □ 如: 两个国家达成核武器条约的问题
 - 合作(销毁核武器)还是不合作(保留核武器)?

为什么人类社会在面对这些问题时,有时不会选择完全不合作的方式呢?

- 人类交互时并不总是寻找最大化自己利益的行为
 - □ 具有牺牲精神,享受被信任,不会不考虑他人

重复进行的囚徒困境

- 囚徒困境的变种: 重复进行的囚徒困境
 - □ 想法:对局进行多次,每一次对局称为"一轮"
 - □ 假设每个Agent都可以看到其对手前一轮的动作

- 重复进行的囚徒困境有两种类型:
 - □ 重复固定轮数的囚徒困境
 - □ 重复无限轮数的囚徒困境

这两种情形下, Agent的理性动作分别是什么?

重复固定轮数的囚徒困境

- 在固定轮数的囚徒困境中,不合作是理性的行为!
 - □ 假设双方都知道对局的轮数为n
- 反向归纳法(backwards induction)
 - □ 第*n*轮事实上是一次性囚徒困境对局,理性的行为是不 合作
 - □ 但是,这又意味着"真正的"最后一轮是第*n* 1轮,同样的推理导致这一轮事实上也会像一次性囚徒困境对局,理性的行为是不合作
 - □ 继续这样的反向归纳过程,得到结论:在固定的、事先 双方都知道轮数的囚徒困境问题中,不合作是理性的

重复无限轮数的囚徒困境

在无限轮数的囚徒困境中,合作是理性的行为!

■ 两个原因:

- □ 如果你现在不合作,对手将来可以通过不合作惩罚你
 - 这种惩罚不可能发生在一次对局的囚徒困境问题中
- 如果你一开始通过合作"试试深浅",并且在第一轮得到欺骗的回报,那么因为你们要无限期地进行对局,这次的效用损失会在将来的轮次中"分期偿还"
 - 相比合作可能带来的期望效用而言,这个损失更小

阿克塞尔罗德(Axelrod)竞赛

虽然个体之间交互的过程中会遭受 其它个体的背叛,但仍然有很大概 率遇见愿意合作的个体

Robert Axelrod

- ■阿克塞尔罗德竞赛
 - □ 一个个体,与**多个个体**进行多轮 囚徒困境博弈
 - □ 被用于研究合作的行为,在由理性个体组成的**群体**中,是如何产生的

阿克塞尔罗德竞赛

不同领域的专家被邀请参加比赛,设计程序来进行多轮囚徒困境博弈。参与比赛的程序两两之间进行一场比赛,对弈5局,组局由200轮的囚徒困境组成。比赛的最终胜利者是成。比赛的最终胜利者是好的。

一些参赛的程序

- 随机: 总是以相同的概率选择合作(沉默,C)或背叛(揭发,D)
- ALL-D: 无论对手之前选择什么,总是背叛
- 以牙还牙(TIT-FOR-TAT):
 - □ 在首轮选择合作
 - □ 在第一轮后,重复对手上一轮的动作
- Joss: 90%的时间采取以牙还牙的策略, 10%的时间采取背 叛
- Tester: 在第1轮通过不合作检验对手。如果对手以不合作报复,那么接着采用以牙还牙的策略。如果对手合作,那么它重复进行两轮合作对局,然后不合作

思考

- 基于到目前为止已经了解的,特别是有关重复固定轮数的囚徒困境问题的结论,你认为哪个策略是总体上最好的?
- 如果你参加比赛,你会采取什么策略?

获胜者:以牙还牙(TIT-FOR-TAT)

- 意想不到的是,以牙还牙策略最终取胜
 - □ 以牙还牙策略并不能够在多轮囚徒困境中,赢下所有对手
 - □ 当有足够多的机会遇到愿意合作的Agent,这种策略还是 足够好的

■ 获胜的启示

- □ 不要过分想赢
- □ 不要首先背叛
- □ 正确回应合作和背叛行为
- □不要过分聪明

程序均衡(Program Equilibria)

- 传统的策略直接给出动作,能否采取更加精细化的策略?
 - □ 例如:策略"如果你合作,那么我就合作"
- 新的规则
 - □ 每个Agent提交<mark>程序</mark>给仲裁(mediator),仲裁再同时执 行提交的程序
 - □ 每个程序可以**基于对方给出的程序**,来决定采取什么动 作

程序均衡(续)

- 如果对方提交左边的程序,那么最优反应也是提 交相同的代码
- 双方提交相同的程序形成纳什均衡

旅行者困境

- 航空公司弄丢了两个旅行者(Lucy和Pete)的两个相同的 箱子
- 让旅行者写下他们箱子的价值 a_i 和 a_{-i} ,范围是\$2和\$100 之间

旅行者困境的效用函数

■ 效用函数

$$U_{i}(a_{i}, a_{-i}) = \begin{cases} a_{i} & \text{if } a_{i} = a_{-i} \\ a_{i} + 2 & \text{if } a_{i} < a_{-i} \\ a_{-i} - 2 & \text{otherwise} \end{cases}$$

例1: Lucy报价\$100, Pete报价

\$100

赔偿给Lucy和Pete各\$100

例2: Lucy报价\$10, Pete报价\$90 以\$10为基准,

赔偿给Lucy: \$10 + \$2 = \$12

赔偿给Pete: \$10 - \$2 = \$8

- 问:大家倾向写多少钱?
- 大多数人倾向写\$97和\$100之间

旅行者困境的收益矩阵和纳什均衡

■ 收益矩阵(又称效用矩阵)

事实上, 旅行者困境问题只有唯一一个纳什均衡:

(\$2,\$2)

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

对称2×2交互

■ 在囚徒困境问题中,Agent i偏好的排序:

$$(D,C) \succ_i (C,C) \succ_i (D,D) \succ_i (C,D)$$

- 如果把注意力限制在两个Agent的交互上,每个Agent有两个可能的动作(C或者D),这种情况是对称的,那么总共有4! = 24个偏好排序
- 合作占优势的博弈

- 合作不占优势的博弈
- $(C,C) \succ_i (C,D) \succ_i (D,C) \succ_i (D,D)$

- 留下了两个有意思的情况需要研究:
 - □ 猎鹿博弈 (stag hunt): $(C,C) >_i (D,C) >_i (D,D) >_i (C,D)$
 - □ 小鸡博弈 (game of chicken): $(D,C) >_i (C,C) >_i (C,D) >_i (D,D)$

猎鹿博弈

■ 猎鹿博弈的收益矩阵如下:

	i Defects		i Coop	perates
i Defeats		1		0
j D efects	1		2	
i Cooperates		2		3
<i>j</i> Cooperates	0		3	

猎鹿博弈(Stag hunt)

在这一场景下,两名猎人一起去打猎,他们可以猎取鹿,也可以猎取野兔。鹿需要两个人合作才能获取,野兔一个人就可猎得,但猎鹿所得的收益大于猎野兔所得的收益。

- □ "猎鹿"是合作行为,"猎兔"是不合作行为
- ■有两个纳什均衡解
 - □ 分别是(*C*, *C*)和(*D*, *D*)
- 帕累托最优解只有(C,C)
 - □ 理性的Agent会排除解(D,D)

小鸡博弈

■ 小鸡博弈的收益矩阵如下:

	i Defects	i Cooperates
j D efects	0	3
j Cooperates	1	2

小鸡博弈

两个局中人通过驾驶他们的汽车向悬崖高速驶去,两者中最不勇敢的人("小鸡")是第一个绕开悬崖的人。胜者是在车上坚持时间最长的人。这里,合作表示绕开悬崖,不合作表示呆在车上。

- 有两个纳什均衡解: (D,C)和(C,D)
- 有三个帕累托最优解: (D,C), (C,D), (C,C)
- 有三个社会福利最优解: (D,C), (C,D), (C,C)

多Agent交互

- 效用和偏好
- 多Agent相遇
- 解的概念和性质
- 竞争与零和交互
- 囚徒困境
- 其他的对称2×2交互
- 多Agent系统的依赖关系

独立关系 & 单向依赖

■ 独立 (independence): 个体要实现目标,不需要

对方的帮助

	i D e	efects	i Coo	perates
j D efects		1		0
	1		1	
i Campuntas		1		0
<i>j</i> Cooperates	0		0	

■ 单向 (unilateral): 一方实现目标需要对方帮助,

另一方不需要

	i D efects		i Coo	perates
i Defeata		0		0
j D efects	1		1	
i Cooperatos		1		0
<i>j</i> Cooperates	0		0	

互惠依赖 & 共同依赖

■ 互惠 (reciprocal): 双方实现目标,都需要对方的

帮助

□ 双方的目标可以不同

	i D efects		i Coo	perates
i Defeata		0		0
j D efects	0		1	
<i>i</i> C		1		1
j Cooperates	1		1	

- 共同(mutual): 互 惠依赖的一种形式
 - □ 双方有相同的目标

	i De	fects	ts <i>i</i> Cooperate	
i Defeats		0		1
j D efects	0		1	
; Canada and a		1		2
j Cooperates	1		2	

小结

■博弈

- □ 效用: 定义环境中不同结果对于个体的价值
- □ 环境: 定义个体的行为会带来什么结果
- □ 策略: 纯策略、混合策略
- □解:优势策略、纳什均衡、帕累托最优、社会福利最优
- 对称2×2交互
 - □囚徒困境
 - 个人最佳选择并非团体最佳选择
 - 变种: 重复进行(重复固定轮数、无限轮数的)囚徒困境
 - □ 猎鹿博弈、小鸡博弈.....

课后作业4-1

■ 考虑下列交互的情形:

	i D efect		i Co	оор
i Defeat		-5		-10
j D efect	-5		0	
; Carr		0		-1
j Coop	-10		-1	

	i D efect	i Coop
i Defect	-5	-4
j D efect	-5	0
. C	0	-1
j Coop	-4	-1

	i Descend i Clim	
i Dagaand	-4	-1
j D escend	-4	0
; Climb	0	-5
j Climb	-1	-5

对于每种情形,写出所有的(纯策略)纳什均衡解、帕累 托最优解和社会福利最优解。 注: 形式为(j's action, i's action)

课后作业4-2

■ 考虑下列交互的情形:

		i	
		defect	coop
	defect	1	2
j		1	4
	coop	4	3
		2	3

	def	fect	co	op
defect		-1		1
	1		-1	
coop		1		-1
	-1		1	

i

$oldsymbol{\iota}$		
	defect	coop
defect	5	1
	3	2
coop	0	0
	2	1

对于每种情形,写出所有的(纯策略)纳什均衡解、帕累 托最优解和社会福利最优解。 注:形式为(j's action, i's action)

课后作业4-3

解释为什么在只有一轮的囚徒困境问题中,得到的程序均衡解可以是相互合作的行为?