## Benchmark case: acoustic modes of a 2D rectangular domain

## Computational details

| Computational technique  | Finite Differences applied to the Helmholtz equa-                             |
|--------------------------|-------------------------------------------------------------------------------|
|                          | tion (FDH) [4], the finite difference time domain                             |
|                          | (FDTD) method [3] and the transmission line ma-                               |
|                          | trix (TLM) method [1,2].                                                      |
| Computed results         |                                                                               |
| Programming language     | Python 2.7.14 - additional packages: numpy, scipy,                            |
|                          | matplotlib, os, site.                                                         |
| Programming details      | all details are available at https://github.com/                              |
|                          | pchobeau/sinecity_testcases , BSD 3-Clause                                    |
|                          | License.                                                                      |
| Code accessibility       | BSD 3-Clause License                                                          |
| Processing details       | e.g. for a FDTD calculation, it starts from                                   |
|                          | the main folder with case2_modes.py in which                                  |
|                          | the main parameters are set. The initial-                                     |
|                          | ization of the domain (geometry, boundaries,                                  |
|                          | source and receiver locations) are described in                               |
|                          | init_fdtd_modes.py. The update calculation is                                 |
|                          | carried out in upd_fdtd.py. Finally, the results                              |
|                          | are processed in errors_calc2_modes.py.                                       |
| Computational complexity | N.A.                                                                          |
| Notes                    | This case can be used with both time domain                                   |
|                          | method - using initial condition, and frequency                               |
|                          | domain method - assuming the harmonic behav-                                  |
|                          | ior of the exact solution, <i>i.e.</i> $\omega_{i,j}n\delta t = 0$ . It takes |
|                          | into account perfectly reflecting boundary condi-                             |
|                          | tions only.                                                                   |
| References               | [1–5]                                                                         |
| Contributing institute   | Laboratoire d'Acoustique de L'Université du                                   |
|                          | Maine (LAUM), Le Mans Acoustique (LMAc),                                      |
|                          | UMRAE.                                                                        |

## Results

Figure 1 shows the norms of the errors for the three numerical methods. All are second order convergent as expected from the local truncation error - see e.g. [3, Sec. II.F.].



Figure 1: Two-norm and the max-norm of the absolute error (top) and the corresponding observed orders of accuracy (bottom) for case 3, using the FDH, the FDTD and TLM methods.

## References

- [1] P. Aumond, G. Guillaume, B. Gauvreau, C. Lac, V. Masson, and M. Berengier. Application of the Transmission Line Matrix method for outdoor sound propagation modelling - Part 2: Experimental validation using meteorological data derived from the meso-scale model Meso-NH. Applied Acoustics, 76:107-112, 2014.
- [2] G. Guillaume, P. Aumond, B. Gauvreau, and G. Dutilleux. Application of the transmission line matrix method for outdoor sound propagation modelling Part 1: Model presentation and evaluation. *Applied Acoustics*, 76:113–118, 2014.

- [3] B. Hamilton and S. Bilbao. FDTD Methods for 3-D Room Acoustics Simulation With High-Order Accuracy in Space and Time. *IEEE/ACM Transactions on Audio, Speech and Language Processing* (TASLP), 2017.
- [4] G. Hegedüs and M. Kuczmann. Calculation of the Numerical Solution of Two-dimensional Helmholtz Equation. *Acta Technica Jaurinensis*, 3(1):75–86, 2010.
- [5] G. Sutmann. Compact finite difference schemes of sixth order for the helmholtz equation. *Journal of Computational and Applied Mathematics*, 203:15–31, 2007.