Bivariate Analysis

Numerical vs Categorical

```
In [32]: import pandas as pd
import seaborn as sns

In [33]: data = pd.read_csv('star_dataset.csv')
    data.head()
```

Temperature Absolute Star Spectral Out[33]: Luminosity(L/Lo) Radius(R/Ro) Star type magnitude(Mv) Class color **(K)** Red 0 3068 0.002400 0.1700 16.12 Red Μ Dwarf Red 1 3042 0.000500 0.1542 16.60 Red Μ Dwarf Red 2 2600 0.000300 0.1020 18.70 Red Μ Dwarf Red 3 2800 0.000200 0.1600 16.65 Red M Dwarf

0.1030

Radius bij Star type

1939

4

De star types zijn onderverdeeld in categorieën op basis van hun onder andere hun grootte. Ik verwacht dus een significant verschil te zien tussen de verschillende types.

Red

Dwarf

Red

Μ

20.06

```
In [34]: star_type = 'Star type'
radius = 'Radius(R/Ro)'
data.groupby(star_type).mean().sort_values(radius)
```

Out[34]: Temperature (K) Luminosity(L/Lo) Radius(R/Ro) Absolute magnitude(Mv)

0.000138

```
Star type
  White Dwarf
                       13931.450
                                          0.002434
                                                         0.010728
                                                                                   12.582500
    Red Dwarf
                        2997.950
                                          0.000693
                                                         0.110015
                                                                                   17.563500
 Brown Dwarf
                        3283.825
                                          0.005406
                                                         0.348145
                                                                                   12.539975
Main Sequence
                       16018.000
                                      32067.386275
                                                         4.430300
                                                                                   -0.367425
   Super Giant
                       15347.850
                                     301816.250000
                                                        51.150000
                                                                                   -6.369925
  Hyper Giant
                       11405.700
                                     309246.525000
                                                      1366.897500
                                                                                   -9.654250
```

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(8, 6))
sns.barplot(y=radius, x=star_type, data=data, ax=ax, log=True, order=data.groupby(star_t
```

Out[41]: <AxesSubplot:xlabel='Star type', ylabel='Radius(R/Ro)'>

Zoals verwacht is er een voor elke type een significant verschil in radius, de confidence intervals overlappen niet.

Radius by Spectral class

Binnen een spectral class kunnen meerdere typen sterren vallen (dwarf, main sequence, giant) dus ik verwacht weinig tot geen significante verschillen te zien.

```
In [36]: spectral_class = 'Spectral Class'
  data.groupby(spectral_class).mean().sort_values(radius)
```

ut[36]:		Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)
	Spectral Class				
	F	8516.823529	1.383960	0.551334	8.611765
	А	9842.368421	49860.247538	135.878422	4.085211
	В	19574.478261	78179.393322	202.022292	3.722609
	0	22294.075000	330564.625000	257.794675	-6.596175
	М	3257.333333	61423.425621	273.894832	8.367829
	K	4499.500000	152000.204167	475.444333	0.267333
	G	6850.000000	229000.000000	1467.000000	-10.070000

Zoals ook verwacht zijn er vrijwel geen significante verschillen tussen de stralen van sterren op basis van hun classificatie, behalve F en G. G is vooral omdat er maar één record is met classificatie G. Voor F is er wel een significant verschil, dus er zullen in deze dataset weinig tot geen giants met classificatie F zitten. Het lijkt erop dat in A en K veel kleine sterren zitten en het gemiddelde erg omhoog is gegaan door een aantal grotere sterren.

In [75]:	<pre>data.groupby([spectral_class, star_type]).count()[radius]</pre>						
Out[75]:	Spectral Class	Star type					
	A	Hyper Giant	2				
		Main Sequence	10				
		White Dwarf	7				
	В	Hyper Giant	7				
		Main Sequence	13				
		Super Giant	2				
		White Dwarf	24				
	F	Main Sequence	8				
		White Dwarf	9				
	G	Hyper Giant	1				
	K	Hyper Giant	2				
		Main Sequence	4				
	M	Brown Dwarf	40				
		Hyper Giant	22				
		Red Dwarf	40				
		Super Giant	9				
	0	Hyper Giant	6				
		Main Sequence	5				
		Super Giant	29				
	Name: Radius(R/	Ro), dtype: int64	4				

Temperature by Star color

Aangezien de kleur van een ster afhankelijk is van de temperatuur verwacht ik hier significante verschillen.

```
In [38]: color = 'Star color'
  temperature = 'Temperature (K)'
  data.groupby(color).mean().sort_values(temperature)
```

Out[38]: Temperature (K) Luminosity(L/Lo) Radius(R/Ro) Absolute magnitude(Mv)

Star color				
Red	3291.785714	60526.787893	283.529700	8.173384
Orange	4382.666667	393333.543333	987.958667	-4.190000
Yellow	5203.250000	0.148770	0.700750	7.898500
Yellow-White	7609.166667	1.960553	0.776803	6.684167
White	9579.583333	78542.975191	211.647388	7.486667
Blue-White	16659.951220	68904.416521	185.800842	1.968268
Blue	21918.339286	249974.732446	214.802452	-2.382446

In [39]: sns.barplot(y=temperature, x=color, data=data, order=data.groupby(color).mean().sort_val
Out[39]: <AxesSubplot:xlabel='Star color', ylabel='Temperature (K)'>

Hoewel niet overal een significant verschil is te zien tussen verschillende kleuren, kan je wel duidelijk zien dat de overlap is tussen kleuren die bij elkaar in de buurt liggen op het (licht) kleurenspectrum.