Machine Learning Package

Portfolio de algoritmos de Machine Learning

Sumário

- Feature extraction consiste em calcular ou inferir novas variáveis a partir do dataset.
- No caso de sequências biológicas é comum usar descritores da composição nucleotídica (DNA) ou peptídica (aminoácidos)
- O k-mer é um método normalmente utilizado para calcular composições nucleotídica (DNA) ou peptídica (aminoácidos)
- No nosso portefólio, métodos de feature extraction podem seguir a estrutura de um *Transformer*.

Datasets

- Os datasets estão disponíveis em:
 - https://www.dropbox.com/sh/oas4yru2r9n61hk/AADpRunbqES 44W49gx9deRN5a?dl=0

k-mer

O *k-mer* consiste no conjunto de substrings de comprimento *k* contidas numa sequência.

Por exemplo, para k=3

Objeto *KMer*

- Adiciona o sub-package feature_extraction, com o módulo k_mer.py que deve conter o objeto KMer.
- O KMer a implementa é específico para DNA (alfabeto: ACTG)
- class KMer:
 - Parâmetros:
 - k tamanho da substring
 - Parâmetros estimados:
 - k_mers todos os k-mers possíveis
 - Métodos:
 - fit estima todos os k-mers possíveis; retorna o self (ele próprio)
 - transform calcula a frequência normalizada de cada k-mer em cada sequência
 - fit_transform corre o fit e depois o transform

Teste KMer

- KMer para sequências de nucleótidos:
 - 1. Usa o dataset *tfbs.csv*. Inspeciona o conteúdo do dataset.
 - Usa o KMer para obter a frequência de cada substring em cada sequência do dataset. Tamanho da substring (k): 3
 - Usa o sklearn.preprocessing.StandardScaler para standardizar o dataset da composição nucleotídica. dataset.X = StandardScaler().fit_transform(dataset.X)
 - 4. Divide o dataset em treino e teste.
 - 5. Treina o modelo *LogisticRegression* no dataset de composição nucleotídica.
 - 6. Qual o score obtido?

Avaliação

- Exercício 9: Adapta o KMer para calcular a composição peptídica
 - 9.1) O *KMer* deve ser capaz de calcular a composição nucleotídica e peptídica. Podes adicionar um novo parâmetro chamado *alphabet* onde o utilizador fornece o alfabeto da sequência biológica.
 - 9.2) Testa o novo KMer para sequências de aminoácidos:
 - 1. Usa o dataset *transporters.csv*. Inspeciona o conteúdo do dataset.
 - 2. Usa o *KMer* para obter a frequência de cada substring em cada sequência do dataset. **Tamanho da substring (k): 2**
 - 3. Usa o *sklearn.preprocessing.StandardScaler* para standardizar o dataset da composição pepetídica.

 dataset.X = StandardScaler().fit transform(dataset.X)
 - 4. Divide o dataset em treino e teste.
 - 5. Treina o modelo LogisticRegression no dataset de composição pepetídica.
 - 6. Qual o score obtido?

