1 Gaussian transformations

By Anders J. E. Bjerrum (QPIT)

Prerequisites: Thermal states, Completeness relations In this exercise we explore unitary transformations that are generated by Hamiltonians that are at most quadratic in the ladder operators.

Such unitaries are called gaussian transformations. We consider unitaries $U_G = e^{-itH_G}$ generated by Hamiltonians of the form,

$$H_G = a_i a_j A_{ij} + a_i^{\dagger} a_j B_{ij} + a_i^{\dagger} a_j^{\dagger} C_{ij} + F_i a_i + L_i a_i^{\dagger}$$

where a repeated index implies summation (Einstein convention). a_i is the annihilation operator associated with mode i. We also introduce the vector notation,

$$a = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}^T$$

and the element i, j of matrix A is written as, $(A)_{ij} = A_{ij}$.

1.1 Hamiltonian

1.1.1 a)

Show that hermiticity of H_G implies

$$C_{ij} = A_{ij}^*$$

$$B_{ij} = B_{ji}^*$$

$$L_i = F_i^*$$

i.e. B is an hermitian matrix.

1.1.2 b)

Verify the commutator

$$[H_G, a] = -\left(Ba + (A + A^T)^* a^{\dagger} + F^*\right).$$

Note that this is a vector relation. * indicates elementwise complex conjugation (not the conjugate transpose).

1.1.3 c)

We let $D = A + A^{T}$. Then using the commutator from exercise b we have,

$$\begin{bmatrix} H_G, \begin{pmatrix} a \\ a^{\dagger} \end{bmatrix} \end{bmatrix} = \begin{pmatrix} -B, & -D^* \\ D & B^* \end{pmatrix} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} + \begin{pmatrix} -F^* \\ F \end{pmatrix}.$$

We now seek to show that we have the transformation,

$$e^{itH_G} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} e^{-itH_G} = e^{tG} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} + \int_0^t d\tau e^{\tau G} \begin{pmatrix} (iF)^* \\ iF \end{pmatrix},$$

where,

$$G = i \begin{pmatrix} -B, & -D^* \\ D & B^* \end{pmatrix} = \begin{pmatrix} -iB, & (iD)^* \\ iD & (-iB)^* \end{pmatrix}.$$

We have the Baker-Campbell-Hausdorff (BCH) lemma, see https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff formula

$$e^{X}Ye^{-X} = \sum_{s=0}^{\infty} \frac{[(X)^{s}, Y]}{s!}$$

where

$$[(X)^s, Y] \equiv \underbrace{[X, \cdots [X, [X, Y]] \cdots]}_{s \text{ times}}, \ \left[(X)^0, Y\right] \equiv Y.$$

I) Show that for $s \geq 1$,

$$\left[\left(H_G \right)^s, \left(\begin{array}{c} a \\ a^{\dagger} \end{array} \right) \right] = \left(-iG \right)^s \left(\begin{array}{c} a \\ a^{\dagger} \end{array} \right) + \left(-iG \right)^{s-1} \left(\begin{array}{c} -F^* \\ F \end{array} \right)$$

II) Now show that,

$$e^{itH_G} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} e^{-itH_G} = \sum_{s=0}^{\infty} \frac{1}{s!} (tG)^s \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} + \sum_{s=0}^{\infty} \frac{1}{(s+1)!} (it)^{s+1} (-iG)^s \begin{pmatrix} -F^* \\ F \end{pmatrix}.$$

III) Prove the identity,

$$\frac{1}{s+1}(it)^{s+1} = i \int_0^t d\tau (i\tau)^s,$$

for $s \geq 0$.

IV) Verify that we have,

$$e^{itH_G} \left(\begin{array}{c} a \\ a^{\dagger} \end{array} \right) e^{-itH_G} = e^{tG} \left(\begin{array}{c} a \\ a^{\dagger} \end{array} \right) + \int_0^t d\tau e^{\tau G} \left(\begin{array}{c} \left(iF \right)^* \\ iF \end{array} \right).$$

1.2 Bogoliubov matrices

Even without calculating the matrix exponential,

$$M_{\perp} = e^{tG}$$
,

it is possible to make some general observations about the structure of M_+ , which is called a Bogoliubov matrix. We explore this structure in this exercise. To make our notation more concise, we introduce,

$$C_{a} = \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}, C_{b} = \begin{pmatrix} b \\ b^{\dagger} \end{pmatrix}$$

$$\Omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, D_{+} = \int_{0}^{t} d\tau e^{\tau G} \begin{pmatrix} (iF)^{*} \\ iF \end{pmatrix}$$

where a, b are vectors of annihilation operators. We then have the transformation,

$$e^{itH_G}C_ae^{-itH_G} = M_+C_a + D_+$$

1.2.1 a)

We have the ladder operator commutation relations in matrix form,

$$C_a \otimes C_a^T - C_a^T \otimes C_a = \Omega$$

Suppose that,

$$C_b = e^{itH_G}C_a e^{-itH_G}$$

Argue that C_b must likewise satisfy

$$C_b \otimes C_b^T - C_b^T \otimes C_b = \Omega$$

1.2.2 b)

Argue that M_{+} and D_{+} must have the block matrix form,

$$M_{+} = \begin{pmatrix} V & J \\ J^{*} & V^{*} \end{pmatrix}$$
$$D_{+} = \begin{pmatrix} z \\ z^{*} \end{pmatrix}.$$

Hint: Use the fact that $G^* = XGX$ where,

$$X = \left(\begin{array}{cc} 0 & I \\ I & 0 \end{array}\right), X^2 = I.$$

Examine XM_+X and XD_+ using the definition of M_+ and D_+ .

1.2.3 c)

In order that M_+ preserves the commutation relation, there must exist certain conditions on the matrices V, J.

Verify the following relation,

$$M_+\Omega M_+^T = \Omega$$

and verify that the following conditions on V, J follow from this relation,

$$VJ^T - JV^T = 0$$
$$VV^H - JJ^H = I$$

where H indicates the conjugate transpose.

1.2.4 d)

Using the relations from exercise c, we argue that V is always invertible.

- I) Argue that $VV^H = I + JJ^H$ implies that VV^H is positive definite.
- II) Note that VV^H is hermitian. We let v_k, λ_k be the eigenvectors and eigenvalues of VV^H , such that,

$$VV^H v_k = \lambda_k v_k$$
.

Argue that V can always be expanded as,

$$V = \sum_{k,m} \alpha_{km} v_k \otimes v_m^H,$$

and verify that the expansion coefficients α_{km} satisfy,

$$\sum_{m} \alpha_{km} \alpha_{sm}^* = \lambda_k \delta_{ks}.$$

Hint: Use the spectral decomposition of VV^H .

III) Verify that V has the inverse,

$$V^{-1} = \sum_{k,m} \frac{\alpha_{km}^*}{\lambda_k} v_k^H \otimes v_m,$$

and that this matrix always exists.

1.2.5 e)

Using the relations from c), namely the relation,

$$M_{+}\Omega M_{+}^{T}=\Omega$$

verify that we have the inverse transformation,

$$M_+^{-1} = \Omega M_+^T \Omega^T = \left(\begin{array}{cc} V^H & -J^T \\ -J^H & V^T \end{array} \right)$$

where ${\cal H}$ indicates the conjugate transpose.

Argue that M_{+}^{-1} also must preserve the commutator, and state further conditions on V, J from this fact. I.e. argue that,

$$-V^H J + J^T V^* = 0$$
$$V^H V - J^T J^* = I$$

1.2.6 f)

Show that the determinant of M_+ , i.e. $|M_+|$, is always +1.

Hint: Use the formulae

$$M_{+} = \exp\left[tG\right]$$
$$\left|e^{tG}\right| = e^{\operatorname{Tr}\left\{tG\right\}}$$

1.2.7 g)

Find the displacement D_{-} and matrix M_{-} associated with the inverse transformation, such that,

$$e^{-itH_G}C_ae^{itH_G} = M_-C_a + D_-.$$

Show that

$$M_{-} = M_{+}^{-1}$$

$$D_{-} = -M_{+}^{-1}D_{+}$$

1.3 Transformation of the state

Using Glauber's formula, and the fact that gaussian transformations are linear transformations on the ladder operators, we derive general statements about how a quantum state ρ transforms under a gaussian transformation. We write a gaussian transformation as,

$$U_G = e^{-itH_G}.$$

We introduce some additional notation, we write,

$$C_{\alpha} = \left(\begin{array}{c} \alpha \\ \alpha^* \end{array}\right)$$

Then the *n*-mode displacement operator $D(\alpha)$ can be written,

$$D(\alpha) = D\left(C_{\alpha}\right) = \exp\left[C_{\alpha}^{T}\Omega C_{a}\right]$$

and Glauber's formula can be written,

$$\rho = \frac{1}{\pi^n} \int_{\mathbb{C}^n} d^{2n} \alpha \chi_{\rho} (C_{\alpha}) \exp \left[-C_{\alpha}^T \Omega C_a \right]$$
$$\chi_{\rho}(C_{\alpha}) = \operatorname{Tr} \left\{ \rho \exp \left[C_{\alpha}^T \Omega C_a \right] \right\}.$$

1.3.1 a)

Suppose we have a characteristic function $\chi_i(C_\alpha)$ such that,

$$\chi_i(C_\alpha) = \operatorname{Tr}\left\{\rho_i \exp\left[C_\alpha^T \Omega C_a\right]\right\}$$

Show that the transformed state ρ_f ,

$$\rho_f = e^{-itH_G} \rho_i e^{itH_G},$$

has the characteristic functions,

$$\chi_f(C_\alpha) = \operatorname{Tr} \left\{ \rho_f \exp \left[C_\alpha^T \Omega C_a \right] \right\}$$
$$= \chi_i \left(M_+^{-1} C_\alpha \right) \exp \left[C_\alpha^T \Omega D_+ \right].$$

It follows that the action of a gaussian transformation is to deform phase space by application of the invertible map M_+^{-1} .

Hint: The followings relation will be helpful,

$$\Omega M_{+} = M^{-T} \Omega$$

1.3.2 b)

We define the displacement,

$$\bar{C}_i = \operatorname{Tr} \left\{ \rho_i C_a \right\},\,$$

and covariance matrix,

$$\Sigma_{i} = \frac{1}{2} \operatorname{Tr} \left\{ \rho_{i} \left(C_{a} \otimes C_{a}^{T} + C_{a}^{T} \otimes C_{a} \right) \right\} - \operatorname{Tr} \left\{ \rho_{i} C_{a}^{T} \right\} \otimes \operatorname{Tr} \left\{ \rho_{i} C_{a} \right\}$$
$$= \operatorname{Tr} \left\{ \rho_{i} C_{a}^{T} \otimes C_{a} \right\} + \frac{1}{2} \Omega - \operatorname{Tr} \left\{ \rho_{i} C_{a}^{T} \right\} \otimes \operatorname{Tr} \left\{ \rho_{i} C_{a} \right\}$$

Given that,

$$\rho_f = e^{-itH_G} \rho_i e^{itH_G}$$

Show that,

$$\bar{C}_f = \text{Tr}\left\{\rho_f C_a\right\} = M_+ \bar{C}_i + D_+$$

$$\Sigma_f = \text{Tr}\left\{\rho_f C_a^T \otimes C_a\right\} + \frac{1}{2}\Omega - \text{Tr}\left\{\rho_f C_a^T\right\} \otimes \text{Tr}\left\{\rho_f C_a\right\} = M_+ \Sigma_i M_+^T$$

1.3.3 c)

We have the characteristic function of an *n*-mode thermal state,

$$\chi_{\mathrm{Th}}(C_{\alpha}) = \exp\left[\frac{1}{2}C_{\alpha}^{T}\Omega^{T}\Sigma_{\mathrm{Th}}\Omega C_{\alpha} - \bar{C}^{T}\Omega C_{\alpha}\right]$$

where $\Sigma_{\rm Th}$ is the covariance matrix of $\rho_{\rm Th}$ and \bar{C} is the displacement of $\rho_{\rm Th}$. Show that applying a gaussian transformation to a thermal state,

$$\rho_f = e^{-itH_G} \rho_{\mathrm{Th}} e^{itH_G},$$

results in the characteristic function,

$$\chi_f(C_\alpha) = \exp\left[\frac{1}{2}C_\alpha^T \Omega^T M_+ \Sigma_{\text{Th}} M_+^T \Omega C_\alpha - \left(M_+ \bar{C} + D_+\right)^T \Omega C_\alpha\right]$$

Hint:

Use the relations,

$$M_{+}^{-1} = \Omega M_{+}^{T} \Omega^{T}$$

$$\Omega \Omega = -I, \ \Omega^{T} = -\Omega$$

1.3.4 d)

The class of states that can be obtained by applying a gaussian transformation to a thermal state are called gaussian states.

Argue based on the result from c), that the characteristic function of an arbitrary gaussian state can be written as,

$$\chi_G(C_\alpha) = \exp\left[\frac{1}{2}C_\alpha^T \Omega^T \Sigma \Omega C_\alpha - \bar{C}^T \Omega C_\alpha\right]$$

where \bar{C}, Σ are the displacement and covariance matrix of the gaussian state.