PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-086185

(43)Date of publication of application: 06.04.1993

(51)Int.CI.

CO8G 75/02

(21)Application number: 04-061486

(71)Applicant: BAYER AG

(22)Date of filing:

17.02.1992

(72)Inventor:

SCHMIDT MANFRED

ARLT WOLFGANG FISCHER THOMAS TRESPER ERHARD ALEWELT WOLFGANG

(30)Priority

Priority number: 91 4105552

Priority date: 22.02.1991

Priority country: DE

(54) PREPARATION OF OPTIONALLY BRANCHED POLYARYLENE SULFIDE WITH HIGH MOLECULAR WEIGHT

(57)Abstract:

PURPOSE: To obtain a polyarylene sulfide less containing extractable oligomers and the monomer components by introducing a solvent and a specified halogenated aromatic compound into a reactor and adding to this reaction mixture an alkali metal sulfide and/or an alkali metal hydrogen sulfide in the form of small particles through a nozzle. CONSTITUTION: A dihalogenated aromatic compound of formula I and/or II (wherein X represents halogen; R represents hydrogen, alkyl or the like, and Q represents a chemical bond or a bivalent group) and optionally a trihalogenated or tetrahalogenated aromatic compound of formula ArXn (wherein Ar represents arm aromatic group, X represents halogen, and n is 3 or 4) together with an organic solvent to which optionally a cosolvent is added is introduced in a reactor and to this reaction mixture is added an aqueous solution of an alkali metal sulfide and/or an alkali metal hydrogen sulfide in the form of particles having an average particle size <800 i m optionally together with a chain-stopping monohydroxy aromatic</p> compound of formula III (wherein Ar represents an aromatic group and R represents H, alkyl or the like) through a nozzle.

$$HO - A_I - R$$

ilt

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-86185

(43)公開日 平成5年(1993)4月6日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示簡所

C 0 8 G 75/02

NTX

7167-4 J

審査請求 未請求 請求項の数1(全 10 頁)

(21)出顯番号

特願平4--61486

(22)出願日

平成 4年(1992) 2月17日

(31)優先権主張番号 P4105552.7

(32)優先日

1991年2月22日

(33)優先権主張国

ドイツ (DE)

(71)出願人 390023607

パイエル・アクチエンゲゼルシャフト

BAYER AKTIENGESELLS

CHAFT

ドイツ連邦共和国 5090 レーフエルクー

ゼン1・パイエルベルク (番地なし)

(72)発明者 マンフレート・シュミツト

ドイツ連邦共和国デー4150クレーフエル

ト・エーリッヒークラウゼナーシュトラー

±37

(74)代理人 弁理士 小田島 平吉

最終頁に続く

(54)【発明の名称】 高分子量の任意に枝分かれしていることもあるポリ硫化アリーレンの製造方法

(57)【要約】

【目的】 抽出可能なオリゴマーおよび単量体成分の含 有量の少ない高分子量の、任意に枝分かれしていること もあるポリ硫化アリーレン(PAS)の製造方法。

【構成】 アルカリ金属硫化物および/またはアルカリ 金属水素硫化物の水溶液を二ハロゲン化芳香族化合物の 有機溶媒溶液と、212℃以上の温度で混合することによ り反応を実施し、反応溶液の水分含有量が 0.02 重量% を超えず、未反応のハロゲン化芳香族化合物を連続的 に、または反応の終了時に反応混合物から除去し、ま た、上記のアルカリ金属硫化物および/またはアルカリ 金属水素硫化物の水溶液を任意にモノヒドロキシ芳香族 化合物とともにノズルを通して高温で反応混合物に導入 して < 800 μm の平均粒子サイズを有する水性のアル カリ金属の硫化物および/または水素硫化物の粒子を製 造することを特徴とする、任意に枝分かれしていること もあるポリ硫化アリーレンの製造方法。

【特許請求の範囲】

【請求項1】 c)の有機溶媒 d)に対するモル比が 1:3.4ないし 1:1.0、好ましくは 1:2.6 ないし 1:1.3 の範囲内であり、アルカリ金属硫化物および/またはアルカリ金属水素硫化物の水溶液を二ハロゲン化芳香族化合物の有機溶媒溶液と 212℃ 以上の温度で混合することにより反応を実施し、反応溶液の水分含有量が 0.02 重量%を超えず、未反応の式(I)、(II) および(III) に相当するハロゲン化芳香族化合物を連続的

式中、X はハロゲンたとえば塩素または臭素を表し、R は同一であっても異なっていてもよく水素、C1-C20-アルキル、C4-C20-シクロアルキル、C6-C24-アリール、C7-C24-アルキルアリールおよび C7-C24-アリールでカールである 2 個の R は結合して芳香環または 3個以内のヘテロ原子、たとえば N、O または S を有する異節環を形成してもよく、Q は化学結合または二価の基、たとえばAr、O、S、SO、SO2、(CR2)m、CO、CO-Ar-CO、CO-NHまたはCO-NH-Ar-NH-CO(ことで、R は上記の意味を有しArは二価の C6-C24-芳香族基を表し、m は1ないし 24の値を有する整数を表す)を表すに相当する1種または2種以上の二ハロゲン化(異節)芳香族化合物、

b) 式(I) および/または(II) に相当する二ハロゲン化芳香族化合物の合計量を基準にして 0 ないし 5 モル%の式(III)

【化2】

ArX_n (III)

式中、Ar は芳香族基またはその環炭素原子の 3 個以内がヘテロ原子、たとえばN、O または S により置換されていてもよい 6 ないし 24 個の環原子を有する異節環状基であり、Xはハロゲン、たとえば塩素または臭素を表し、n は 3 または4 の数を表すに相当する三ハロゲン化または四ハロゲン化芳香族化合物、ならびに式(I)、(II) および(III) に相当するハロゲン化芳香族化合物を基準にして 0 ないし30 モル%の式(IV)

【化3】

$$HO-Ar-R$$
 (IV)

式中、Ar は式 (III) に関して与えた意味を有し、R は H、C1-C8-アルキル、C6H5、S-C6H5、SO2-C6H5またはCO-C6H5を表し得るに相当する連鎖停止性モノヒドロキシ芳香族化合物、ならびに

c) (a + b): c のモル比が 0.75:1 ないし 1.15:1 の範囲内である50 ないし 100 モル%のアルカ 50 に、または反応の終了時に反応混合物から除去し、また、上記のアルカリ金属硫化物および/またはアルカリ金属水素硫化物の水溶液を任意に式(IV)に相当するモノヒドロキシ芳香族化合物とともにノズルを通して高温で反応混合物に導入して < 800 μm の平均粒子サイズを有する水性のアルカリ金属の硫化物および/または水素硫化物の粒子を製造することを特徴とする、

a) 式(1) および/または(II)

$X \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} X \qquad (11)$

リ金属硫化物、たとえば硫化ナトリウムまたは硫化カリウムおよび 0 ないし 50 モル%のアルカリ金属水素硫化物、たとえば硫化水素ナトリウムまたは硫化水素カリウム、よりの、

d) 任意に共溶媒を添加した有機溶媒中における高分子量の任意に枝分かれしていることもあるポリ硫化アリーレンの製造方法。

【発明の詳細な説明】

【0001】本発明は、抽出可能なオリゴマーおよび単量体成分の含有量の少ない高分子量の、任意に枝分かれしていることもあるポリ硫化アリーレン(PAS)の、好ましくはポリ硫化フェニレン(PPS)の製造方法に関するものである。これらは極性有機溶媒中で、アルカリ金属硫化物および/またはアルカリ金属水素硫化物と二ハロゲン化芳香族化合物との反応により製造され、アルカリ金属硫化物および/またはアルカリ金属水素硫化物は水を含有する、任意に有機溶媒との混合物としての、熔融フラックスの形状で提供され、ノズルを通して反応混合物に供給される。

【0002】ポリ硫化アリーレン(PAS) およびその 製造は公知である(たとえば US-A 3 354 129、EP -A 171 021)。

【0003】PAS は高温抵抗性の合成樹脂である。 これらは好ましくは電気的/電子的分野で使用される。 この種の応用面は合成樹脂の純度と抵抗性とに関して高 度の要求をする。

【0004】アルカリ金属ハロゲン化物の分解により得られるポリ硫化アリーレンは抽出可能な低分子量のオリゴマーおよび単量体を含有している可能性がある。

【0005】高い比率の抽出可能なオリゴマーおよび重合体を含有するポリ硫化アリーレンは、たとえばガラス繊維または鉱物質充填剤を充填した混和物を製造するために射出成形により加工する場合に欠点を有する可能性がある。たとえば、これらから製造した成形品は表面欠陥を有する可能性がある。これらを熱可塑的工程により成形品に加工する場合には、熱可塑性集合体中のオリゴ

マー成分の流動性が増加するために、成形品の端部においていわゆるフラッシュが形成される可能性がある。加えて、重合体中に存在する反応性末端基、たとえば S H 末端基およびC1 末端基の比率が増加して、これが熱可塑的加工工程における気体 H C1 の放出の増加および電解質含有量の増加につながる結果となる可能性がある。

【0006】反応性末端基の比率はポリ硫化アリーレンの分子量と副反応の広がりとに応じて変化する。

【0007】低分子量のオリゴマーおよび単量体の(た 10 とえば塩化メチレンを用いる)抽出は、EP-A 215 25 9 および EP-A 240 016 に記載されている。

【0008】EP-A 240 016 より、まず沈澱した固体 重合体を熱反応混合物から分離し、ついでこれを反応に 使用したものと同一の溶媒で、少なくとも 50℃ の温度 で数回洗浄する方法が公知である。オリゴマー成分およ び単量体はこの方法で抽出することができる。

【0009】高い分子量を得るために重合助剤を添加することも公知である。たとえばEP-A 0 325 061 はアルカリ金属カルボン酸塩の添加を記述しており、EP-A 281 406 は CaCl2 の添加を、EP-A 306 025 は LiCl および CaCl2の添加を、また、EP-A 302 218 は金属塩化物、金属炭酸塩または金属カルボン酸塩の重合助剤としての、アルカリ金属硫化物1モルあたり4.5モル以内の量での添加を記述している。

【0010】この種の重合助剤の添加はポリ硫化アリーレンの体積/時間収率を減少させ、材料の経費を増加させるので非経済的である。

【0011】塩化メチレンを用いて抽出し得るオリゴマーおよび単量体の含有量が 2.1 重量%未満である重合体が得られるポリ硫化アリーレン (PAS)の、好ましくはポリ硫化フェニレン (PPS)の製造方法がここに見いだされた。これらは均一な分子量を有し (分子量分布曲線の不均一性が少ない)、無機塩素の含有量は 5ppm未満である。このポリ硫化アリーレンは高い分子量を有し、本発明に従って重合助剤を添加することなく得られる。

【0012】本発明は、c)の有機溶媒 d)に対する モル比が 1:3.4 ないし 1:1.0、好ましくは 1:2.6 ないし 1:1.3 の範囲内であり、アルカリ金属硫化物お よび/またはアルカリ金属水素硫化物の水溶液を二ハロ ゲン化芳香族化合物の有機溶媒溶液と 212℃ 以上の温 度で混合することにより反応を実施し、反応溶液の水分 含有量が 0.02 重量%を超えず、未反応の式(1)、

(II) および (III) に相当するハロゲン化芳香族化合物を連続的に、または反応の終了時に反応混合物から除去し、また、上記のアルカリ金属硫化物および/またはアルカリ金属水素硫化物の水溶液をノズルを通して高温で、アルカリ金属の硫化物および/または水素硫化物の粒子が < 800 μm の、好ましくは < 400 μm の平均粒子サイズを有するような様式で反応混合物に導入することを特徴とする、

a) 式(1)および/または(II)

[0013]

[化4]

$$X \xrightarrow{R} X \qquad (I), \qquad X \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} X \qquad (II)$$

【0014】式中、X はハロゲンたとえば塩素または臭素を表し、R は同一であっても異なっていてもよく水素、C1-C20-アルキル、C4-C20-シクロアルキル、C6-C24-アリール、C7-C24-アルキルアリールまたはC7-C24-アリールアルキルを表し、また、相互にオルト位置にある 2個の R は結合して芳香環または 3 個以内のヘテロ原子、たとえば N、Oまたは S を有する異節環を形成してもよく、Q は化学結合または二価の基、たとえば Ar、O、S、SO、SO2、(CR2)。、CO、CO-Ar-CO、CO-NH またはCO-NH-Ar-NH-CO(ここで、R は上記の意味を有しAr は二価の C6-C24-芳香族基を表し、m は1ないし 24 の値を有する整数を表す)を表すに相当する1種または2種以上の二ハロゲン化(異節)芳香族化合物、

b) 式(1) および/または(II) の二ハロゲン化芳 香族化合物の合計量を基準にして 0 ないし 50 モル% の、好ましくは O ないし 1.25 モル%の式 (III)

[0015]

【化5】 ArXa

(III)

式中、Ar は芳香族基またはその環炭素原子の 3 個以内がヘテロ原子、たとえばN、O または S により置換されていてもよい 6 ないし 24 個の環原子を有する異節環状基であり、Xはハロゲン、たとえば塩素または臭素を表し、n は 3 または4 の数を表すに相当する三ハロゲン化または四ハロゲン化芳香族化合物、ならびにc) (a + b): c のモル比が 0.75:1 ないし1.15:1 の、好ましくは0.90:1.1:1 の範囲内である50 ないし 100 モル%のアルカリ金属硫化物、たとえば硫化ナトリウムまたは硫化カリウムおよび 0 ないし50モル%のアルカリ金属水素硫化物、たとえば硫化水素ナトリウムまたは硫化水素カリウム、よりの、

d) 任意に共溶媒の存在下の有機溶媒中における高分

子量の任意に枝分かれしていることもあるポリ硫化アリーレンの、好ましくはポリ硫化フェニレンの製造方法に関するものである。

【0016】本件方法の改良された態様は、アルカリ金属硫化物および/またはアルカリ金属水素硫化物の水溶液を一定量の有機溶媒と混合し、微細に分割された形状で反応混合物に、100ないし300℃の、好ましくは130ないし240℃の温度で導入する二物質ノズル、たとえば環状チャネルノズルの使用よりなるものである。本件方法は連続的にでもバッチ方式ででも実施することができる。

【0017】以下のものは、本発明に使用し得る式

(1)の二ハロゲン化芳香族化合物の例である:1,4-ジ クロロベンゼン、1,4-ジブロモベンゼン、1-ブロモ-4-クロロベンゼン、1,3-ジクロロベンゼン、1,3-ジブロモ ベンゼン、1-ブロモ-3-クロロベンゼン、2,5-ジクロロ トルエン、2,5-ジクロロキシレン、1,4-ジクロロ-2-エ チルベンゼン、1,4-ジブロモ-2-エチルベンゼン、1,4-ジクロロ-2,3,5,6-テトラメチルベンゼン、1,4-ジクロロ-2-シクロヘキシルベンゼン、2-ベンジル-1,4-ジクロローンでンゼン、2,4-ジクロロキシレンおよび 2,4-ジクロロケメン。1,4-ジクロロベンゼン、1,3-ジクロロベンゼンおよび 2,5-ジクロロトルエンが好ましい。

【0018】以下のものは、本発明に適した式(II)の 二ハロゲン化芳香族の例である:4,4'-ジクロロジフェ ニル、4,4'-ジプロモジフェニル、4,4'-ジクロロベンゾ フェノン、3,3'-ジクロロベンゾフェノン、4,4'-ジクロ ロジフェニルスルホンおよび 1,4-ビス-(4'-クロロベン ゾイル)-ベンゼン。4,4'-ジクロロジフェニル、4,4'-ジ クロロジフェニルスルホンおよび 4,4'-ジクロロベンゾ フェノンが好ましい。

【0019】式(1) および/または(II) に相当する 二ハロゲン化芳香族化合物は単独でも、他のものとの混 合物としても使用することができる。

【0020】以下のものは、本発明に適した式(III)の三ハロゲン化および四ハロゲン化芳香族化合物の例である:1,2,4-トリクロロベンゼン、1,3,5-トリクロロベンゼン、2,2',4,4'-テトラクロロジフェニルスルフィド、1,3,5-トリクロロトリアジン、1,2,6-トリクロロナフタレンおよび1,3,5-トリス-(4-クロロフェニル)-ベンゼン。

【0021】アルカリ金属硫化物は通常の量で、通常の手法で使用する。たとえば、硫化水素と水酸化ナトリウムまたは水酸化カリウムとの反応により製造した硫化ナトリウムおよび硫化カリウムを使用することができる。これらは硫化物1モルあたり1ないし9モルの水を含有し、無溶媒で使用される。

【0022】硫化水素ナトリウムおよび硫化水素カリウムが適当な水素硫化物である。これらは水酸化物と硫化 50

水素とから製造することができる。これらはまた、硫化物と硫化水素との反応により製造することもできる。これらは1ないし4 モルの水を含有していることがあり得る

【0023】1.0 モル%(式(1) および/または(II)の二ハロゲン化芳香族化合物の100 モル%を基準にして)以内の連鎖停止性のモノヒドロキシ芳香族化合物、たとえばフェノール、4-ヒドロキシジフェニルスルフィド、4-ヒドロキシジフェニルまたは 4-ヒドロキシジフェニルスルホンを、アルカリ金属硫化物および/またはアルカリ金属水素硫化物とともに使用することができる。

【0024】本発明に従って使用する有機溶媒には非プロトン性溶媒、特に N-アルキル化ラクタム、たとえば N-メチルピロリドン、N-エチルピロリドン、N-メチルピペリドン、N-イソプロピルピロリドンおよび N-メチルカプロラクタム、二置換環状尿素、たとえば N, N-ジメチルピリミダゾリジノン (N, N-ジメチルプロピレン尿素としても知られる) および N, N'-ジメチル イミダゾリジノンが可能である。この溶媒の沸点は 212 ℃ ないし 280℃ の、好ましくは 212℃ ないし 242℃の範囲である。この温度範囲に達するために僅かに(1バール以内)過剰の圧力で反応を実施することができる。

【0025】使用する共溶媒には、たとえば硫化物を基準にして 0.02 ないし 19 モル%の量で導入する C_1 - C_8 -脂肪族カルボン酸および C_6 - C_{12} -芳香族カルボン酸のN,N-ジアルキルアミノカルボン酸または N-アルキルアミノカルボン酸が可能である。N,N-ジメチルアセタミド、N,N-ジメチルアセタミド、N,N-ジメチルプロピオナミドまたは N-アルキルカルボン酸、たとえば N-メチルカプロン酸が有利に使用される。アミノ酪酸も共溶媒として使用することができる。

【0026】本発明記載の工程を実施する好ましい方法 においては、上記の溶媒ならびに式(I)および(II) および/または(III)に相当するハロゲン化芳香族化 合物を任意に共溶媒とともに反応器に導入し、この反応 混合物に水性水素硫化物および/または硫化物を、任意 に連鎖停止性モノヒドロキシ芳香族化合物(たとえばフ ェノール)とともに、一物質ノズルを通して同時に、ま たは順次に添加する。本発明の好ましい具体例として は、使用する一物質ノズルはジルコニウム、タンタル、 白金または鋼 1.4575 (チッセン (Thyssen, BRD) の "スーパーフェライト") のような材料から製造した、 熱処理の可能な全円錐形一物質ノズルである。本発明記 載の方法の改良された態様においては、これもまたジル コニウム、タンタル、白金または鋼 1.4575 から製造し た熱処理の可能な二物質ノズル、たとえば環状チャネル ノズルを使用する。無機硫化物反応成分の水性熔融物を ノズルの内側の有機溶媒と合一させ、緊密に混合して小 さな粒子の形状で反応混合物に供給する。

【0027】この種の噴霧用ノズルの予備的な液体圧での使用により、無機硫化物反応剤の反応性表面の拡大の可能性により、微細に分割された無機硫化物反応成分と有機ハロゲン化芳香族反応成分との間のより均一な、かつ迅速な反応が得られる。この迅速な反応により、高い分子量と大きな純度とを有するポリ硫化アリーレンが得られる。

【0028】この場合には、反応混合物の温度は 212℃ 以上である。脱水が自発的に起こり、同時に共沸的に蒸留除去された式(I)、(II) および(III)のハロゲン化芳香族化合物が復帰する。反応混合物の水分含有量は 0 ないし 0.02 重量%である。

【0029】反応時間は1時間以内から40時間まで変化し得る。2ないし24時間が最も好ましい。未反応の式(I)、(II)および(III)のハロゲン化芳香族化合物は、たとえば反応の間に、または反応の終了に近い時期に蒸留により反応混合物から除去される。

【0030】ポリ硫化アリーレンは、たとえば冷却、濾過および、最初にケトンたとえばアセトンまたはアルコ 20 ールたとえばメタノール、エタノールもしくはイソプロパノールを用いる反応混合物の洗浄により単離することができる。ついで、残留物1部に対して水5ないし20部の比率で残留物を水に懸濁させ、このようにして得られる懸濁液を酸、たとえば酢酸、塩酸、リン酸または硫酸でpH1-5に調節し、ついで中性になるまで水で洗浄する。

【0031】このようにして製造したポリ硫化アリーレンは、ジクロロメタンで抽出し得るオリゴマー成分および単量体成分の含有量が 2.1 重量%未満である。これらは均一な分子量を有する。これらの無機塩素含有量は 5 ppm 未満である。通常行われる酸化的な熱後処理と抽出による付加的な精製とは省略することができる。本発明に従って製造したポリ硫化アリーレンの、その分子量の尺度としての熔融粘性の測定は、たとえば 310℃で、DIN 54 811 に記載されている高圧毛細管粘度計で行う。 τ = 1000 秒-1 の熔融粘性を比較値として選択する。表1を参照されたい。

【0032】抽出可能な成分を測定するには、100gの乾燥ボリ硫化アリーレンを800ml(=1070g)ずつの40塩化メチレンで2回抽出し、抽出液を蒸発により濃縮し、秤量する。反応に使用した溶媒の残留物および反応に導入した単量体の残留物、ならびに副反応で精製した単量体、たとえばジベンゾチオフェンおよび4-クロロジフェニルエーテルは、ガスクロマトグラフィーにより抽出液中で測定することができる。溶媒の蒸発後に残された物質の重量から単量体の重量を引いたものが抽出し得るオリゴマーの量である。

【0033】分子量分布の測定は、たとえばポリ硫化ア リーレンの N-メチルカプロラクタム中の 0.05 重量% 溶液の、シリカゲルカラムを用いる 185℃ での高温ゲル透過クロマトグラフィーにより実施することができる。

【0034】重合体の不均一性 U1 は、重量平均分子 量 M*を数平均分子量 M*で割った商と数1との間の 差として定義される。

[0035]

【数1】

$$U_1 = \frac{M_w}{M_n} - 1$$

【0036】ポリ硫化アリーレン中の無機塩素含有量の 測定は、たとえば銀滴定法により実施することができ る。

【0037】他の無機または有機のオリゴマーまたは重合体、ならびに顔料および充填剤、たとえばカーボンブラック、黒鉛、金属粉末、ガラス粉末、粉末石英、雲母、ガラス繊維および炭素繊維または他の無機もしくは有機物質の繊維、金属酸化物および金属硫酸塩から選択した通常の無機充填剤、ならびに他の添加剤、たとえば安定剤および/または離型剤を、本発明に従って製造したポリ硫化アリーレンに添加することができる。

【0038】本発明に従って製造したポリ硫化アリーレン、またはその混合物は押出し、押出しブロー成形、射出成形または他の通常の加工技術により直ちに加工してフィルム、成形品または繊維を製造することができる。これらは通常の応用面に、たとえば自動車部品、枠材および結合部材、バルブ、ボールベアリング部品、電気部品たとえばスィッチ、電子回路板、耐化学薬品性部品および耐候性部品、ならびに機械部品、たとえばポンプケースおよびボンプの羽根車、腐食浴用の皿、シーリングリング、オフィス用機械部品、通信機器、家屋備品等として使用することができる。

【0039】本発明記載の方法により製造した重合体は好ましくは電気部品、たとえばトランジスター、ダイオードおよびマイクロチップの被覆に使用する。

[0040]

【実施例】

[0041]

【実施例1】N-メチルカプロラクタム(NMC)2331 kg(18.35 キロモル)と 1.4-ジクロロベンゼン 1197 kg(8.14 キロモル)とを窒素下で 6 m³の反応器に導入し、214℃ に加熱する。硫化ナトリウム 625.3 kg(8.2 キロモル)、硫化水素ナトリウム 5.6 kg(0.1 キロモル)、N-メチルカプロン酸 208 kg(1.44 キロモル)、フェノール 7.65 kg(0.08 キロモル)(= 1.4-ジクロロベンゼンを基準にして 0.5 モル%)および水522 kg(29 キロモル)よりなる 140℃ に加熱した熔融物を、140℃ に加熱したジルコニウム製の全円錐形ノズル(ノズル直径 2mm)を通して、撹拌し、かつ、反応混

合物の温度 214 ないし 220℃ で反応混合物を共沸的に脱水しながら 6.5 時間以内に導入する。300 μm の平均粒子サイズを有する粒子が得られる。硫化ナトリウム三水和物と 30 重量%の水分含有量を有する硫化水素ナトリウムとを使用した。硫黄供与体のモル数 (= 8.12 キロモル)の溶媒のモル数 (= 18.35 キロモル)に対する比は 1:2.26 である。ジクロロベンゼンのモル数の (硫化ナトリウム + 硫化水素ナトリウム)のモル数に対する比は 1:0.9975 である。水とともに共沸的に蒸留除去される 1.4-ジクロロベンゼンは、連続的に反応器に戻される。ついで反応混合物を還流下で 4時間沸騰させる。この間に反応混合物の温度は 235℃に上昇す

【0042】ついで N-メチルカプロラクタム 70 kg と 1,4-ジクロロベンゼン 50 kg とを蒸留除去し、0.1 バールの過剰の窒素圧下、238 ないし 240℃ でさらに 4 時間反応を継続させる。反応混合物を反応器から取り出し、窒素雰囲気下で 70℃にまで放冷し、撹拌しながら 1.4 トンのイソプロパノールと混合する。塩および重合体を濾別し、0.6 トンのイソプロパノールで洗浄して溶媒の NMC を除去する。残留物を 6 トンの水に懸濁させ、この懸濁液を 78 %硫酸で pH 2.5にまで酸性化し、重合体を濾別する。この重合体を電解質がなくなるまで水で洗浄し、真空中で乾燥する(120℃、12 時間)。

【0043】上記の量は純粋物質の量に変換した。この ことは以下の各実施例にも適用される。

【0044】収量:800.6 kg(= 使用したジクロロベンゼンを基準にして 95 %)。比較した分析データは表1に示してある。

[0045]

【実施例2】NMC 1836 kg (14.46 キロモル) と 1,4 -ジクロロベンゼン 1093 kg (7.435キロモル) とを窒素 下、214℃ で実施例1に記述した反応器に導入する。硫 化ナトリウム 504 kg (6.462 キロモル)、硫化水素ナ トリウム 3.7 kg (66 モル)、フェノール 0.7 kg (7.4 モル) (= 1,4-ジクロロベンゼンを基準にして0.05 モル%)、N-メチルカプロン酸 175 kg(1.2066 キロ モル) および水 563kg (31.28 キロモル) よりなる 130 ℃ に加熱した熔融物を、210℃ に加熱したジルコニウ ム製の全円錐形ノズル (ノズル直径 2 mm) を通して 6. 0 時間以内に導入し、同時にこの反応混合物を撹拌し、 かつ、215 ないし 221℃ の温度で共沸的に脱水して 30 0 μmの平均粒子サイズを有する粒子を製造する。硫黄 供与体のモル数 (6.528 キロモル) の溶媒のモル数 (1 4.46 キロモル) に対する比は1:2.215 である。ジクロ ロベンゼンのモル数の(硫化ナトリウム+硫化水素ナト リウム) のモル数に対する比は 1:1.139 である。実施 例1と同様にして反応を継続させて、4時間の反応時間 ののちに NMC 60 kg と 1,4-ジクロロベンゼン 46 k 50

g とを蒸留除去する。反応混合物の後処理は実施例1と 同様にして行う。ポリ硫化フェニレン 735 kg(= ジクロロベンゼンを基準にして 95.5 %)が得られる。比較 した分析データに関しては表1を参照されたい。

10

[0046]

【実施例3】NMC 1920 kg(15.12 キロモル)と 1.4 -ジクロロベンゼン 1199 kg(8.1565キロモル)とを窒 素下、212℃ で 6 ㎡ の反応器に導入する。硫化ナトリ ウム 480 kg (6.154 キロモル)、硫化水素ナトリウム 165 kg (2.946 キロモル)、フェノール 770 g (8.1 モ ル) (= 1,4-ジクロロベンゼンを基準にして0.05 モル %) および水 695 kg (38.61 キロモル) よりなる 130 ℃ に加熱した熔融物を、150℃ に加熱したジルコニウ ム製の全円錐形ノズル(ノズル直径 1.8mm)を通して 6.0 時間以内に導入し、同時にこの反応混合物を撹拌 し、かつ、212 ないし 220℃ の温度で共沸的に脱水し て250 μm の平均粒子サイズを有する粒子を製造する。 硫黄供与体のモル数(6.154 + 2.946 = 9.1 キロモ ル)の溶媒のモル数(15.12 キロモル)に対するモル比 は 1:1.66 である。実施例1と同様にして反応を継続 させて、235℃ における 3.5 時間の反応時間ののちに NMC 70 kg と 1,4-ジクロロベンゼン 75 kg (0.51 キロモル)とを反応混合物から蒸留により除去する。実 施例1に記述したものと同様にして反応を継続させ、反 応混合物を実施例1と同様にして後処理する。ポリ硫化 フェニレン 780kg (= ジクロロベンゼンを基準にして 94.5 %) が得られる。

【0047】比較データに関しては表1を参照されたい。

[0048]

【比較例1】

(直接比較用の本発明に従わない変法)NMC 2200 kg (17.32 キロモル) と 1,4-ジクロロベンゼン 1190 kg (8.095キロモル)とを窒素下、214℃ で 6 🗗 の反応 器に導入する。硫化ナトリウム621.6 kg (7.97 キロモ ル)、硫化水素ナトリウム 5.6 kg (0.1 キロモル)、 N-メチルカプロン酸 207 kg(1.43 キロモル)、フェ ノール 7.60 kg (0.08 キロモル) (= 1,4-ジクロロベ ンゼンを基準にして 0.5 モル%) および水 691 kg (3 8.38 キロモル) よりなる 140℃ に加熱した熔融物を、 140℃ に加熱した 25mm の内径を有する導入管を通して 8.5 時間以内に導入し、同時にこの反応混合物を撹拌 し、かつ、213 ないし 220℃ の温度で共沸的に脱水す る。硫黄供与体のモル数(7.97 + 0.1 = 8.07 キロモ ル)の溶媒のモル数(17.32 キロモル)に対するモル比 は 1:2.146 である。ジクロロベンゼンのモル数の(硫 化ナトリウム+ 硫化水素ナトリウム) のモル数に対す るモル比は 1:0.997である。水とともに共沸的に蒸留 除去したジクロロベンゼンは反応器に連続的に戻す。こ の反応混合物を還流下、235℃ で 4 時間沸騰させ、つ

12

いで NMC 70 kg と 1,4-ジクロロベンゼン 55 kg とを蒸留除去し、0.1 バールの過剰圧の窒素下、238℃ないし 240℃ でさらに 4 時間反応を継続させる。反応混合物を実施例 1 と同様にして後処理したのちに、ポリ硫化フェニレン 710.3 kg (= 工程に投入したジクロロベンゼンを基準にして 92 %) が得られる。表 1 は比較の分析データを包含している。

[0049]

【比較例2】

(直接比較用の本発明に従わない変法) NMC 1920 kg 10 (15.12 キロモル) と 1,4-ジクロロベンゼン 1199 kg (8.1565 キロモル) とを窒素下、212℃ で 6 m³ の反 応器に導入する。硫化ナトリウム 480 kg (6.154 キロモル)、硫化水素ナトリウム 165 kg (2.946 キロモル)、フェノール 770 g (8.1 モル) (= 1,4-ジクロロベンゼンを基準にして 0.05 モル%) および水 695 kg (38.61 キロモル) よりなる 130℃ に加熱した熔融物を、150℃ に加熱した 25 mm の内径を有する導入管を

通して 9.0 時間以内に導入し、同時にこの反応混合物を撹拌し、かつ 213 ないし 220℃ の温度で共沸的に脱水する。硫黄供与体のモル数 (6.154 + 2.946 = 9.1 キロモル)の溶媒のモル数 (15.12 キロモル)に対するモル比は 1:1.66 である。ジクロロベンゼンのモル数の(硫化ナトリウム+ 硫化水素ナトリウム)のモル数に対するモル比は 1:1.1157 である。水とともに共沸的に蒸留除去したジクロロベンゼンは反応器に連続的に戻す。この反応混合物を 0.1 バールの過剰圧の窒素下、235℃で 4 時間加熱して NMC 60 kg とジクロロベンゼン 82 kg とを蒸留除去し、238℃ ないし240℃でさらに 6 時間加熱を継続し、反応混合物を実施例1と同様にして後処理する。

【0050】ポリ硫化フェニレン 751 kg (= ジクロロ ベンゼンを基準にして 91.5%) が得られる。表1は比較の分析データを包含している。

[0051]

【表1】

20

30

4	A

K K										13
実施例	7) m	分析值	400)			HTGPC	P C			
	310°C, HDK*	(* 群	血蘇	ジベンジ	ジクロロ	M.	M. M.	U,	全反応	
	1-000 4-1	-1 C1	C1	チオフェン	メタンホ				宇	
	(DIN 54811)	11)		含有量	抽出可能な					
	(Pa·s)	(%) (wdd)	(% (%)	(mdd)	オリゴマー				(全間)	
Н	76	\ \ re	< 5 0.06 < 2	7	1.9 重量%	42740	42740 7540 4.67	4.67	14.5	
8	295	\ \	< 5 0.04	°2 'V	1.1 重量%	82750	82750 10400 6.96	6.96	14.0	
ಯ	286	\ 5	< 5 0.035	7	1.0 重量%	82140	82140 10600 6.75	6.75	13.5	
比較例	出較例(Na₂S 熔融物の射出なし)	りの射出なし)								
ᆏ	55	21	21 0.13	12	3.6 重量%	48200	7030 5.86	5.86	16.5	
63	88	۸ ت	< 5 0.11	10	2.1 重量%	57330	7610 6.53	6, 53	19.0	
~ *	HDK = 高圧毛細管粘度計法	毛細管粘度計	斑							

【0052】本発明の主なる特徴および態様は以下のとおりである。

【0053】1. c)の有機溶媒 d)に対するモル比 40 が 1:3.4 ないし 1: 1.0、好ましくは 1:2.6 ないし 1:1.3 の範囲内であり、アルカリ金属硫化物および/またはアルカリ金属水素硫化物の水溶液を二ハロゲン化 芳香族化合物の有機溶媒溶液と 212℃ 以上の温度で混合することにより反応を実施し、反応溶液の水分含有量が 0.02 重量%を超えず、未反応の式(I)、(II) および (III)に相当するハロゲン化芳香族化合物を

連続的に、または反応の終了時に反応混合物から除去し、また、上記のアルカリ金属硫化物および/またはアルカリ金属水素硫化物の水溶液を任意に式(IV)に相当するモノヒドロキシ芳香族化合物とともにノズルを通して高温で反応混合物に導入して < 800 μm の平均粒子サイズを有する水性のアルカリ金属の硫化物および/または水素硫化物の粒子を製造することを特徴とする、

a) 式(I)および/または(II)

[0054]

【化6】

$$X \xrightarrow{R} X \qquad (1), \qquad X \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} X \qquad (11)$$

【0055】式中、X はハロゲンたとえば塩素または 臭素を表し、R は同一であっても異なっていてもよく 水素、C1-C20-アルキル、C4-C20-シクロアルキル、 C6-C24-アリール、C1-C20-アルキルアリールおよび C7-C24-アリールアルキルを表してもよく、また、相 互にオルト位置にある 2 個の R は結合して芳香環ま たは 3 個以内のヘテロ原子、たとえば N、O または S を有する異節環を形成してもよく、Q は化学結合ま たは二価の基、たとえば Ar、O、S、SO、SO2、 (CR2)m、CO、CO-Ar-CO、CO-NH また はCO-NH-Ar-NH-CO (ここで、R は上記の 意味を有しAr は二価の C6-C24-芳香族基を表し、m は1ないし 24 の値を有する整数を表す)を表すに相当 する1種または 2 種以上の二ハロゲン化(異節)芳香 族化合物、

b) 式(I) および/または(II) に相当する二ハロゲン化芳香族化合物の合計量を基準にして 0 ないし 5 モル%の式(III)

[0056]

【化7】

$$ArX_n$$
 (III)

式中、Ar は芳香族基またはその環炭素原子の 3 個以内がヘテロ原子、たとえばN、O または S により置換されていてもよい 6 ないし 24 個の環原子を有する異節環状基であり、Xはハロゲン、たとえば塩素または 30 臭素を表し、n は 3 または4 の数を表すに相当する三ハロゲン化または四ハロゲン化芳香族化合物、ならびに式(I)、(II) および(III) に相当するハロゲン化芳香族化合物を基準にして 0 ないし30 モル%の式(IV)

[0057]

【化8】

$$HO-Ar-R$$
 (IV)

式中、Ar は式 (III) に関して与えた意味を有し、R は H、C₁-C₈-アルキル、C₆H₅、S-C₆H₅、SO₂- 40 C₆H₅またはCO-C₆H₅を表し得るに相当する連鎖停止性モノヒドロキシ芳香族化合物、ならびに

c) (a + b): c のモル比が 0.75:1 ないし 1.15:1 の範囲内である50 ないし 100 モル%のアルカ り金属硫化物、たとえば硫化ナトリウムまたは硫化カリ ウムおよび 0 ないし 50 モル%のアルカリ金属水素硫化物、たとえば硫化水素ナトリウムまたは硫化水素カリウム、よりの、

16

- d) 任意に共溶媒を添加した有機溶媒中における高分子量の任意に枝分かれしていることもあるポリ硫化アリーレンの製造方法。
- 2. 使用する有機溶媒が N-メチルピロリドンである ことを特徴とする 1. 記載の方法。

【0058】3. 使用する有機溶媒が N-メチルカプロラクタムであることを特徴とする1. 記載の方法。

【0059】4. 使用する有機溶媒が N,N'-ジメチルプロピレン尿素であることを特徴とする 1. 記載の方法。

【0060】5. 使用する式(1)の二ハロゲン化芳 20 香族化合物が 1,4-ジクロロベンゼン、1,3-ジクロロベンゼンおよび/または 2,5-ジクロロトルエンであることを特徴とする 1. 記載の方法。

【0061】6. 使用する式(II)の二ハロゲン化芳香族化合物が 4.4'-ジクロロジフェニル、または 4.4'-ジクロロベンゾフェノンであることを特徴とする 1. 記載の方法。

【0062】7. アルカリ金属硫化物の水溶液が 212 ℃ 以上の温度で反応溶液に導入される間中、また反応混合物の共沸脱水がこれに伴って起きている間中、水とともに共沸的に蒸留除去される式(I)、(II) および/または(III)の多ハロゲン化芳香族化合物を反応混合物に連続的に戻すことを特徴とする 1. 記載の方法。8. 式(IV)のモノヒドロキシ芳香族化合物および 1 c)記載の反応成分を射出するために使用する全円錐形ノズルがジルコニウム、タンタル、白金、または鋼よりなるものであることを特徴とする 1. 記載の方法。

【0063】9. 式(IV)のモノヒドロキシ芳香族化合物および1c)記載の反応成分を射出するための二物質ノズルがジルコニウム、タンタル、白金、または鋼1.4575よりなるものであることを特徴とする1.記載の方法。

【0064】10. 反応剤1c)の導入用のノズルを100℃以上の温度で作動させることを特徴とする1. 記載の方法。

フロントページの続き

(72)発明者 ボルフガング・アルルト

ドイツ連邦共和国デー4150クレーフエル ト・シエーンバツサーシュトラーセ230シ

(72)発明者 トーマス・フイツシヤー

ドイツ連邦共和国デー4150クレーフエル

ト・エミールーフアイネンデゲンシユトラ

ーセ2

(72)発明者 エアハルト・トレスパー

ドイツ連邦共和国デー4150クレーフエル

ト・メルザーシュトラーセ394

(72)発明者 ボルフガング・アレベルト

ドイツ連邦共和国デー4150クレーフエル

ト・シュトラトウマーフエルト17