

# **Space X Falcon 9 First Stage Landing Prediction**

Hands on Lab: Complete the Machine Learning Prediction lab

Estimated time needed: 60 minutes



Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.



Several examples of an unsuccessful landing are shown here:



Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

# Objectives

Perform exploratory Data Analysis and determine Training Labels

- · create a column for the class
- · Standardize the data
- · Split into training data and test data
- -Find best Hyperparameter for SVM, Classification Trees and Logistic Regression
  - · Find the method performs best using test data

## Import Libraries and Define Auxiliary Functions

```
import piplite
await piplite.install(['numpy'])
await piplite.install(['pandas'])
await piplite.install(['seaborn'])
```

```
# Pandas is a software library written for the Python programming language for data manipulat
import pandas as pd
# NumPy is a library for the Python programming language, adding support for large, multi-dim
import numpy as np
# Matplotlib is a plotting library for python and pyplot gives us a MatLab like plotting fram
import matplotlib.pyplot as plt
#Seaborn is a Python data visualization library based on matplotlib. It provides a high-level
import seaborn as sns
# Preprocessing allows us to standarsize our data
from sklearn import preprocessing
# Allows us to split our data into training and testing data
from sklearn.model_selection import train_test_split
# Allows us to test parameters of classification algorithms and find the best one
from sklearn.model selection import GridSearchCV
# Logistic Regression classification algorithm
from sklearn.linear_model import LogisticRegression
# Support Vector Machine classification algorithm
from sklearn.svm import SVC
# Decision Tree classification algorithm
from sklearn.tree import DecisionTreeClassifier
# K Nearest Neighbors classification algorithm
from sklearn.neighbors import KNeighborsClassifier
```

This function is to plot the confusion matrix.

```
def plot_confusion_matrix(y,y_predict):
    "this function plots the confusion matrix"
    from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y, y_predict)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
    ax.set_xlabel('Predicted labels')
    ax.set_ylabel('True labels')
    ax.set_title('Confusion Matrix');
    ax.xaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_ticklabels(['did not land plt.show())
```

## Load the dataframe

Load the data

```
from js import fetch
import io

URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-Skills
resp1 = await fetch(URL1)
text1 = io.BytesIO((await resp1.arrayBuffer()).to_py())
data = pd.read_csv(text1)
data.head()
```

|   | FlightNumber | Date       | BoosterVersion | PayloadMass | Orbit | LaunchSite      | Outcome        | Flights | G |
|---|--------------|------------|----------------|-------------|-------|-----------------|----------------|---------|---|
| 0 | 1            | 2010-06-04 | Falcon 9       | 6104.959412 | LEO   | CCAFS SLC<br>40 | None<br>None   | 1       |   |
| 1 | 2            | 2012-05-22 | Falcon 9       | 525.000000  | LEO   | CCAFS SLC<br>40 | None<br>None   | 1       |   |
| 2 | 3            | 2013-03-01 | Falcon 9       | 677.000000  | ISS   | CCAFS SLC<br>40 | None<br>None   | 1       |   |
| 3 | 4            | 2013-09-29 | Falcon 9       | 500.000000  | РО    | VAFB SLC<br>4E  | False<br>Ocean | 1       |   |
| 4 | 5            | 2013-12-03 | Falcon 9       | 3170.000000 | GTO   | CCAFS SLC<br>40 | None<br>None   | 1       |   |
|   |              |            |                |             |       |                 |                |         |   |

```
URL2 = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-Skills
resp2 = await fetch(URL2)
text2 = io.BytesIO((await resp2.arrayBuffer()).to_py())
X = pd.read_csv(text2)
```

X.head(100)

|    | FlightNumber | PayloadMass  | Flights | Block | ReusedCount | Orbit_ES-<br>L1 | Orbit_GEO | Orbit_GTO | Ort |
|----|--------------|--------------|---------|-------|-------------|-----------------|-----------|-----------|-----|
| 0  | 1.0          | 6104.959412  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |     |
| 1  | 2.0          | 525.000000   | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |     |
| 2  | 3.0          | 677.000000   | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |     |
| 3  | 4.0          | 500.000000   | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       |     |
| 4  | 5.0          | 3170.000000  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 1.0       |     |
|    |              |              |         |       |             |                 |           |           |     |
| 85 | 86.0         | 15400.000000 | 2.0     | 5.0   | 2.0         | 0.0             | 0.0       | 0.0       |     |
| 86 | 87.0         | 15400.000000 | 3.0     | 5.0   | 2.0         | 0.0             | 0.0       | 0.0       |     |
| 87 | 88.0         | 15400.000000 | 6.0     | 5.0   | 5.0         | 0.0             | 0.0       | 0.0       |     |
| 88 | 89.0         | 15400.000000 | 3.0     | 5.0   | 2.0         | 0.0             | 0.0       | 0.0       |     |
| 89 | 90.0         | 3681.000000  | 1.0     | 5.0   | 0.0         | 0.0             | 0.0       | 0.0       |     |

90 rows × 83 columns

# TASK 1

Create a NumPy array from the column Class in data, by applying the method to\_numpy() then assign it to the variable Y, make sure the output is a Pandas series (only one bracket df['name of column']).

```
Y=data['Class'].to_numpy()
```



Standardize the data in X then reassign it to the variable X using the transform provided below.

```
# students get this
transform = preprocessing.StandardScaler()
X = transform.fit_transform(X)
```

We split the data into training and testing data using the function <a href="train\_test\_split">train\_test\_split</a>. The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function <a href="GridSearchCV">GridSearchCV</a>.

## TASK 3

Use the function train\_test\_split to split the data X and Y into training and test data. Set the parameter test\_size to 0.2 and random\_state to 2. The training data and test data should be assigned to the following labels.

```
X_train, X_test, Y_train, Y_test
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
```

we can see we only have 18 test samples.

```
Y_test.shape
```

(18,)

LogisticRegression

Create a logistic regression object then create a GridSearchCV object logreg\_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

We output the <a href="GridSearchCV">GridSearchCV</a> object for logistic regression. We display the best parameters using the data attribute <a href="best\_params">best\_params</a> and the accuracy on the validation data using the data attribute <a href="best\_score">best\_score</a>.

```
print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
print("accuracy :",logreg_cv.best_score_)

tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
accuracy : 0.8464285714285713
```

Calculate the accuracy on the test data using the method score:

```
accuracy = logreg_cv.score(X_test, Y_test)
print(f"Test set accuracy: {accuracy:.4f}")
```

Test set accuracy: 0.8333

Lets look at the confusion matrix:

Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the problem is false positives.

Overview:

True Postive - 12 (True label is landed, Predicted label is also landed)

False Postive - 3 (True label is not landed, Predicted label is landed)

```
yhat=logreg_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```

Confucion Matrix



TASK 6

Create a support vector machine object then create a <code>GridSearchCV</code> object <code>svm\_cv</code> with <code>cv = 10</code>. Fit the object to find the best parameters from the dictionary <code>parameters</code> .

```
j:
print("tuned hpyerparameters :(best parameters) ",svm_cv.best_params_)
print("accuracy :",svm_cv.best_score_)

tuned hpyerparameters :(best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel':
    'sigmoid'}
accuracy : 0.8482142857142856
```

Calculate the accuracy on the test data using the method score :

```
]: accuracy = svm_cv.score(X_test, Y_test)
print(f"Test set accuracy: {accuracy:.4f}")
```

Test set accuracy: 0.8333

We can plot the confusion matrix

```
yhat=svm_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



## TASK 8

Create a decision tree classifier object then create a GridSearchCV object tree\_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
► GridSearchCV ① ②

► estimator: DecisionTreeClassifier

► DecisionTreeClassifier ②
```

```
print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
print("accuracy :",tree_cv.best_score_)

tuned hpyerparameters :(best parameters) {'criterion': 'gini', 'max_depth': 12, 'max_feature
s': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 10, 'splitter': 'best'}
accuracy : 0.9178571428571429
```

Calculate the accuracy of tree\_cv on the test data using the method score :

```
accuracy = tree_cv.score(X_test, Y_test)
print(f"Test set accuracy: {accuracy:.4f}")
Test set accuracy: 0.8333
```

We can plot the confusion matrix

```
yhat = tree_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```

.



TASK 10

Create a k nearest neighbors object then create a GridSearchCV object knn\_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
► GridSearchCV ① ②

► estimator: KNeighborsClassifier

► KNeighborsClassifier ②
```

```
print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
print("accuracy :",knn_cv.best_score_)

tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
accuracy : 0.8482142857142858
```

Calculate the accuracy of knn\_cv on the test data using the method score :

```
accuracyknn=knn_cv.score(X_test,Y_test)
accuracyknn
```

0.83333333333333334

We can plot the confusion matrix

We can plot the confusion matrix

```
yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



T. C. / 1 C

# TASK 12

Find the method performs best:

[ ]