CS21 Decidability and Tractability

Lecture 18 February 19, 2014

February 19, 2014

CS21 Lecture 18

Midterm

- 30 points
- Mean: 20.3 Median: 20
 (last year: 30 pts; mean 22.4; median: 24)
- Distribution:

February 19, 2014

30: 6 (8) 17-21: 29 (14) < 9: 3 (3)

CS21 Lecture 18

26-30: 18 (26) 13-17: 20 (11) 21-26: 32 (22) 9-13: 7 (5)

Outline

- · The complexity class EXP
- · Time Hierarchy Theorem
- · hardness and completeness
- · an EXP-complete problem

February 19, 2014

CS21 Lecture 18

Another puzzle

- Find an efficient algorithm to solve the following problem.
- Input: sequence of triples of symbols
 e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a)
- Goal: determine if it is possible to circle at least one symbol in each *triple* without circling upper and lower case of same symbol.

February 19, 2014

CS21 Lecture 18

3SAT

- This is a disguised version of the language 3SAT = {formulas in Conjunctive Normal Form with 3 literals per clause for which there exists a satisfying truth assignment}
 e.g. (A, b, C), (E, D, b), (d, A, C), (c, b, a) (x₁∨¬x₂∨x₃)√(x₅∨x₄∨¬x₂)√(¬x₄∨x₁∨x₃)√(¬x₃∨¬x₂∨¬x₁)
- observe that this language is in TIME(2ⁿ)

February 19, 2014

CS21 Lecture 18

Time Complexity

Key definition: "P" or "polynomial-time" is

 $P = \bigcup_{k \ge 1} TIME(n^k)$

Definition: "EXP" or "exponential-time" is

FXP

 $\mathsf{P} = \bigcup_{k \geq 1} \mathsf{TIME}(\mathsf{n}^k)$

 $EXP = \bigcup_{k \ge 1} TIME(2^{nk})$

- Note: P ⊂ EXP.
- We have seen 3SAT ∈ EXP.
 - does not rule out possibility that it is in P
- Is P different from EXP?

February 19, 2014

CS21 Lecture 18

Time Hierarchy Theorem

<u>Theorem</u>: For every proper complexity function $f(n) \ge n$:

 $\mathsf{TIME}(\mathsf{f}(\mathsf{n})) \subseteq \mathsf{TIME}(\mathsf{f}(2\mathsf{n})^3).$

- Note: $P \subseteq TIME(2^n) \subsetneq TIME(2^{(2n)3}) \subseteq EXP$
- Most natural functions (and 2ⁿ in particular) are proper complexity functions. We will ignore this detail in this class.

February 19, 2014

CS21 Lecture 18

Time Hierarchy Theorem

<u>Theorem</u>: For every proper complexity function $f(n) \ge n$:

 $TIME(f(n)) \subseteq TIME(f(2n)^3).$

- · Proof idea:
 - use diagonalization to construct a language that is not in TIME(f(n)).
 - constructed language comes with a TM that decides it and runs in time f(2n)³.

February 19, 2014

CS21 Lecture 18

Recall proof for Halting Problem inputs (M, x): does M Turing halt on n Machines x? The existence of H which tells us ves/no for each box allows us to construct a TM H' H': n Y n Y Y n Y that cannot be in the table. February 19, 2014 CS21 Lecture 18

Proof of Time Hierarchy Theorem box (M, x): does M inputs accept x in time f(n)? Turing • TM SIM tells us Machines yes/no for each box in time g(n) · rows include all of TIME(f(n)) · construct TM D running in time q(2n) D: |n | Y | n | Y | Y | n | Y that is not in table February 19, 2014 CS21 Lecture 18

Proof of Time Hierarchy Theorem

- · Proof:
 - SIM is TM deciding language { <M, x> : M accepts x in ≤ f(|x|) steps }
 - Claim: SIM runs in time $g(n) = f(n)^3$.
 - define new TM D: on input <M>
 - if SIM accepts <M, <M>>, reject
 - if SIM rejects <M, <M>>, accept
 - D runs in time g(2n)

February 19, 2014

CS21 Lecture 18

Proof of Time Hierarchy Theorem

- · Proof (continued):
 - suppose M in **TIME(f(n))** decides L(D)
 - M(<M>) = SIM(<M, <M>>) ≠ D(<M>)
 - but M(<M>) = D(<M>)
 - contradiction.

February 19, 2014

CS21 Lecture 18

Proof of Time Hierarchy Theorem

- Claim: there is a TM SIM that decides $\{<M, x> : M \text{ accepts } x \text{ in } \le f(|x|) \text{ steps}\}$ and runs in time $g(n) = f(n)^3$.
- · Proof sketch: SIM has 4 work tapes
 - · contents and "virtual head" positions for M's tapes
 - · M's transition function and state
 - f(|x|) "+"s used as a clock
 - · scratch space

February 19, 2014

CS21 Lecture 18

13

15

17

Proof of Time Hierarchy Theorem

- · Proof sketch (continued): 4 work tapes
 - · contents and "virtual head" positions for M's tapes
 - · M's transition function and state
 - f(|x|) "+"s used as a clock
 - · scratch space
 - initialize tapes
 - simulate step of M, advance head on tape 3;
 - can check running time is as claimed.

February 19, 2014 CS21 Lecture 18 So far...

· We have defined the complexity classes P (polynomial time), EXP (exponential time)

Poly-time reductions

· Type of reduction we will use:

February 19, 2014

- "many-one" poly-time reduction (commonly)
- "mapping" poly-time reduction (book)

CS21 Lecture 18

Poly-time reductions

function f should be poly-time computable

Definition: $f: \Sigma^* \rightarrow \Sigma^*$ is poly-time computable if for some $g(n) = n^{O(1)}$ there exists a g(n)-time TM M_f such that on every $w \in \Sigma^*$, M_f halts with f(w) on its tape. February 19. 2014

CS21 Lecture 18

Poly-time reductions

<u>Definition</u>: A ≤_P B ("A reduces to B") if there is a poly-time computable function f such that for all w

 $w \in A \Leftrightarrow f(w) \in B$

- as before, condition equivalent to:
 - YES maps to YES and NO maps to NO
- · as before, meaning is:
 - B is at least as "hard" (or expressive) as A

February 19, 2014

CS21 Lecture 18

40

Poly-time reductions

Theorem: if $A \leq_{P} B$ and $B \in P$ then $A \in P$.

Proof:

- a poly-time algorithm for deciding A:
- on input w, compute f(w) in poly-time.
- run poly-time algorithm to decide if $f(w) \in B$
- if it says "yes", output "yes"
- if it says "no", output "no"

February 19, 2014

CS21 Lecture 18

20

22

Example

- 2SAT = {CNF formulas with 2 literals per clause for which there exists a satisfying truth assignment}
- L = {directed graph G, and list of pairs of vertices $(u_1, v_1), (u_2, v_2), \ldots, (u_k, v_k)$, such that there is no i for which $[u_i$ is reachable from v_i in G and v_i is reachable from u_i in G]}
- We gave a poly-time reduction from 2SAT to L.
- determined that 2SAT \in P from fact that $L \in P$

February 19, 2014

CS21 Lecture 18

cture 18 21

Hardness and completeness

- Reasonable that can efficiently transform one problem into another.
- Surprising:
 - can often find a special language L so that every language in a given complexity class reduces to L!
 - powerful tool

February 19, 2014

CS21 Lecture 18

Hardness and completeness

- · Recall:
 - a language L is a set of strings
 - a complexity class C is a set of languages

<u>Definition</u>: a language L is <u>C-hard</u> if for every language A ∈ C, A poly-time reduces to L; i.e., $A ≤_P L$.

meaning: L is at least as "hard" as anything in C

February 19, 2014

CS21 Lecture 18

Hardness and completeness

- · Recall:
 - a language L is a set of strings
 - a complexity class C is a set of languages

<u>Definition</u>: a language L is C-complete if L is C-hard and $L \in C$

meaning: L is a "hardest" problem in C

February 19, 2014

CS21 Lecture 18

An EXP-complete problem

Version of A_{TM} with a time bound:

ATM_B = {<M, x, m> : M is a TM that accepts x within at most m steps}

Theorem: ATM_B is EXP-complete.

Proof:

- what do we need to show?

February 19, 2014 CS21 Lecture 18

An EXP-complete problem

- ATM_B = {<M, x, m> : M is a TM that accepts x within at most m steps}
- Proof that ATM_B is EXP-complete:
 - Part 1. Need to show $ATM_B \in EXP$.
 - simulate M on x for m steps; accept if simulation accepts; reject if simulation doesn't accept.
 - running time m^{O(1)}.
 - n = length of input ≥ log₂m
 - running time $\leq m^k = 2^{(\log m)k} \leq 2^{(kn)}$

February 19, 2014

CS21 Lecture 18

26

28

An EXP-complete problem

- ATM_B = {<M, x, m> : M is a TM that accepts x within at most m steps}
- Proof that ATM_B is EXP-complete:
 - Part 2. For each language A ∈ EXP, need to give poly-time reduction from A to ATM_B.
 - for a given language $A \in EXP$, we know there is a TM M_A that decides A in time $g(n) \le 2^{n^k}$ for some k.
 - what should reduction f(w) produce?

February 19, 2014

CS21 Lecture 18

An EXP-complete problem

- ATM_B = {<M, x, m> : M is a TM that accepts x within at most m steps}
- Proof that ATM_B is EXP-complete:
 - $-f(w) = \langle M_A, w, m \rangle$ where $m = 2^{|w|^k}$
 - is f(w) poly-time computable?
 - hardcode M_A and k...
 - YES maps to YES?
 - $w \in A \implies \langle M_A, w, m \rangle \in ATM_B$
 - NO maps to NO?
 - w $\notin A \Rightarrow \langle M_A, w, m \rangle \notin ATM_B$

February 19, 2014

27

CS21 Lecture 18

An EXP-complete problem

- A C-complete problem is a surrogate for the entire class C.
- For example: if you can find a poly-time algorithm for ATM_B then there is automatically a poly-time algorithm for every problem in EXP (i.e., EXP = P).
- Can you find a poly-time alg for ATM_R?

February 19, 2014

CS21 Lecture 18

An EXP-complete problem

- Can you find a poly-time alg for ATM_B?
- NO! we showed that P ⊆ EXP.
- ATM_B is not tractable (intractable).

Back to 3SAT

- Remember 3SAT ∈ EXP
 3SAT = {formulas in CNF with 3 literals per clause for which there exists a satisfying truth assignment}
- It seems hard. Can we show it is intractable?
 - formally, can we show 3SAT is EXPcomplete?

February 19, 2014

CS21 Lecture 18

Back to 3SAT

- can we show 3SAT is EXP-complete?
- · Don't know how to. Believed unlikely.
- One reason: there is an important positive feature of 3SAT that doesn't seem to hold for problems in EXP (e.g. ATM_B):

3SAT is decidable in polynomial time by a nondeterministic TM

February 19, 2014

31

CS21 Lecture 18