C343 Lab Report 4

Name: Aniruddha Seal
ID Number: 1811022 4 March 2021

1

Figuur 1: Potential energy profile for Ammonia inversion from MP2/6-31G** energies

Fitting Equation:
$$V_{fit}(x) = a + bx^2 + cx^4$$
 (1)

$Parameters \longrightarrow$	a	b	c
Value after Fitting	-56.374	-3.14882e-05	2.84015e-08
Asymptotic Standard Error	+/- 0.0001885	+/-7.13e-07	+/-4.956e-10

• Chi-Square Goodness of Fit Test: performed using python code

Chi-squared Test Statistic =
$$\sum_{x=-40}^{40} \frac{(V_{data}(x) - V_{fit}(x))^2}{V_{fit}(x)}$$

$$= -3.61146581e-06$$
(2)

• Barrier for Inversion: 0.0093509 Hartree = 5.86768975 kcal/mol

Initial Values : $\Psi(-5.0) = 0$, $\Psi(-4.9) = 0.001$, when no of nodes is odd and $\Psi(-4.9) = -0.001$, when no of nodes is even.

(Code implementing the Numerov's method can be found at the end of the report)

Figuur 2: Energy eigenvalue: 0.5 Hartree, Number of Nodes: 0

Figuur 3: Energy eigenvalue: 1.5 Hartree, Number of Nodes: 1

Figuur 4: Energy eigenvalue: 2.5 Hartree, Number of Nodes: 2

3

Initial Values : $\Psi(-40.0) = 0$, $\Psi(-39.9) = 0.001$, when no of nodes is odd and $\Psi(-39.9) = -0.001$, when no of nodes is even.

(Code implementing the Numerov's method can be found at the end of the report)

Figuur 5: Energy eigenvalue: -56.377784611 Ha, Number of Nodes: 0

Figuur 6: Energy eigenvalue: -56.377090847 Ha, Number of Nodes: 1

Tunelling Splitting Energy = Difference in Energy between 0th and 1st Energy Level
=
$$0.000641278$$
 Hartree (3)
= 140.744 cm⁻¹(Experimental Value: 0.793 cm⁻¹)

Sources of Error:

- Fitting: We have approximated the Potential to be of form **Eqn 1**. It underestimates the barrier height. Instead using an expotential term with quadratic gives a better fit.
- Numerov : The wavefunctions computed using this numerical methods of solving differential equations are accurate within their cutoff
- Experiment: There will be a limit of accuracy of the instruments and it will involve other conditions too.

Reference for Experimental Tunelling Splitting Value:

Papoušek, D. (1983). The story of the ammonia molecule: Ten years of investigation of molecular inversion. **Journal of Molecular Structure**, 100, 179-198.

 $Codes \ for \ Lab \ 4: \ \texttt{https://github.com/aniruddha-seal/C343-Computational-Chtree/main/Lab\%204}$