# nstituto de Informática - UFRGS

# Redes de Computadores

Algoritmos de roteamento

Aula 20

# Introdução

- Um rede é modelada através de um grafo direcionado onde os nós representam roteadores e as arestas ligações entre estes
  - Cada aresta é caracterizada por um custo
  - O custo de um caminho é a soma dos custos das arestas deste caminho
- Algoritmo de roteamento deve encontrar o menor caminho
  - São derivados da teoria dos grafos
- Algoritmos
  - Estáticos: caminho mais curto
  - Dinâmicos: vetor de distância (distance vector), estado de enlace (link state)

d 20

Redes de Computadores

2

# Princípio da otimização de uma rota

"Se o roteador J está no caminho ótimo do Roteador I para K, então a rota ótima de I para J e de J para K também estão contidos nesta mesma rota"



# Algoritmo estático: caminho mais curto

- Mais simples
- Considera uma topologia da rede (fixa)
  - Matriz de conexões, nó /é conectado ao nó /a um custo c
  - O custo associado a um arco pode ter várias interpretações
    - e.g.: número de saltos (hops), menor atraso, largura de banda, etc...
- Consiste basicamente em encontrar uma seqüência de nós a serem percorridos para "ir" de um nó /a um nó /
  - Algoritmo global, isto é, se tem o conhecimento completo do grafo
  - Calculado de forma centralizada e distribuída para os roteadores
- Vários algoritmos da teoria de grafos
  - Mais conhecido é o Algoritmo de Dijkstra (1959)

Instituto de Informática - UFRGS A. Carissimi -24-out-11

Instituto de Informática - UFRGS A. Carissimi -24-out-11

Instituto de Informatica - UFRG

Redes de Computadores

- Algoritmo distribuído
- Local
- Sistema autônomo é visto como um grafo
  - Roteador é um nó
  - Rede é uma aresta conectando dois nós
- Objetivo: encontrar o menor caminho entre dois nós
  - Algoritmo Bellman-Ford (Ford-Fulkerson)

Redes de Computadores

# Algoritmo de roteamento por vetor de distância

- Adaptações ao algoritmo Bellman-Ford
  - O custo é o número de saltos (hops) então custo da aresta é 1
    - Menor caminho = menor número de intermediários
  - Roteadores atuam de forma assíncrona
    - Avaliam rotas sempre que recebem informações dos vizinhos
    - Sistema distribuído
- Informação = vetor de distância
  - {Rede de destino, Custo a partir do vizinho \(\omega\)}
- Cada roteador mantém uma tabela de roteamento
  - Uma entrada por rota: {Rede de destino, custo e próximo salto}
- Envio periódico e em alteração

# Princípio do algoritmo Bellman-Ford

■ Se os vizinhos de um nó / conhecem um caminho até um nó /, a menor distância entre o nó i e i e obtido encontrando o menor valor resultante da soma da distância de /até um vizinho e deste até o nó /.

5



Redes de Computadores

# Exemplo de tabela de roteamento



(N1,1)(N2,1)(N4,1)(N5, Vetor de distância

N2 Α N4 2 Α Α

Redes de Computadores

Redes de Computadores

# Exemplo: roteamento por vetor de distância



# Contagem para o infinito

■ Problema de convergência no roteamento por vetor de distância



# Soluções para contagem ao infinito

- Horizonte dividido
  - Envio parcial do vetor de distância a cada interface
  - Não envia informação na direção (interface) em que a rota foi aprendida
    - ex: se B sabe que o caminho para X foi aprendido via A, não precisa informar a rota para X para o A
- Inversão envenenada
  - Responde a todas direções (interfaces) porém, para aquela em que "aprendeu" a informação divulga a rota com distância "infinita"
    - ex.: se B aprendeu de A o caminho para X, então declara para A que o custo de B para ser é infinito

11

# Soluções para contagem ao infinito (cont.)

■ Definir "um valor" para infinito

Redes de Computadores

■ Ao atingir o valor de infinito (ex. 16) o destino é declarado inatingível



Instituto de Informática - UFRGS A. Carissimi - 24-out-11

Redes de Computadores

- Algoritmo distribuído
- Global
- Todos nós possuem a topologia completa da rede, mas tem visão diferente das rotas
  - Ex.: o caminho de A e B são diferentes para atingir X
- Usa o algoritmo de Dijkstra para construir a tabela de roteamento

Redes de Computadores

# Link State Packet (LSP)

- Composto por:
  - Identificação do nó
  - Lista dos enlaces diretos do nó com custos
  - Número de seguência
    - Distinguir novos LSPs dos antigos ou duplicados
  - Idade
    - Previnir que um LSP antigo permaneça muito tempo

Gerados periodicamente ou sempre que houver mudanças

13

Link State Packets



| A.   |   | В |      | C |      | D |      | П | E |      | F |      |   |   |
|------|---|---|------|---|------|---|------|---|---|------|---|------|---|---|
| Seq. |   |   | Seq. |   | Seq. |   | Seq. |   | П | Seq. |   | Seq. |   |   |
| Age  |   |   | Age  |   | Age  |   | Age  |   | П | Age  |   | Age  |   |   |
| В    | 4 |   | A.   | 4 | В    | 2 | C    | 3 | П | А    | 5 | П    | В | 6 |
| E    | 5 |   | C    | 2 | D    | 3 | F    | 7 | П | C    | 1 | П    | D | 7 |
|      |   |   | F    | 6 | Е    | 1 |      |   |   | F    | 8 | П    | E | 8 |

Quatro etapas

- Construção do estado de cada enlace (*Link State Packet* LPC)
- Disseminação do LSP para demais roteadores (flooding inundaçãp)
- Formação da topologia da rede e determinação do menor caminho (Dijkstra)
- Cálculo da tabela de rotas

Construindo tabela de roteamento

Instituto de Informática - UFRGS A. Carissimi - 242-04-44

Redes de Computadores

14

16

# Divulgação de informações (inundação)

- Enviar informações (LSPs) através de flooding
- Problema é que nós podem ter visões diferentes da topologia
  - Os primeiros a receber as informações já podem usá-las
- Melhorias:
  - Número de sequência: saber se um LSP é novo ou não
    - Se novo, é considerado e reenviado para as saídas, senão, é descartado
  - Idade: dupla função
    - Eliminar pacotes de laços de roteamento
    - Dizer por quanto tempo aquela informação deve ser armazenada no nó
      - e.g.: decrementar esse valor uma vez por segundo, ao chegar em zero, "limpa" a entrada referente ao nó

Instituto de Informática - UFRGS A. Carissimi -24-out-11

15 Redes de Computadores Redes de Computadores

### Após receber LSPs cada nó constrói a topologia

- Observação: pode não estar completa e ser diferente da visão dos demais roteadores
- Algoritmo de Dijkstra
  - Seleciona nó como raiz da árvore de caminhos
  - Busca o menor caminho para cada destino

Redes de Computadores

## Construção da tabela de rota





Tabela roteamento A

| Destino | Custo | Próximo |
|---------|-------|---------|
| Α       | 0     | -       |
| В       | 2     | -       |
| С       | 7     | В       |
| D       | 3     | -       |
| E       | 6     | В       |
| F       | 8     | В       |
| G       | 9     | В       |
|         |       |         |

# Comparação

| Vetor de distância                                                                                              | Estado de enlace                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Cada nó envia informações para seus vizinhos imediatos.                                                         | Cada nó envia informações para todos os outros nós.                                                                              |
| A informação enviado é o custo (estimado) para todos os nós .                                                   | A informação enviada é o custo do nó para cada um de seus vizinhos imediatos.                                                    |
| A informação é enviada periodicamente.                                                                          | A informação é enviada sempre que uma troca ocorrer na rede.                                                                     |
| Um nó determina o <i>next-hop</i> usando o algoritmo distribuído (e.g. Bellman-Ford) sobre os custos recebidos. | Um nó constrói a topologia completa da rede (segundo sua visão) e usa um algoritmo qualquer de caminho mínimo entre dois pontos. |

# Roteamento hierárquico

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -24-out-11

Instituto de Informática - UFRGS A. Carissimi -24-oct.-11

17

19

- Problemas com vetor de distância e estado de enlace
  - Escalabilidade
  - Questão de autonomia administrativa
    - Evitar tráfego de outras redes em uma rede interna de uma organização
    - Não usar algoritmos de roteamento impostos por outros
- Roteadores são organizados de forma hierárquica em regiões
  - Um roteador conhece detalhes internos apenas da sua região e nenhum detalhe sobre a região vizinha
    - Conhece apenas o roteador responsável pela região vizinha
- Princípio usado quotidianamente
  - Exemplo: ensina como chegar a SP, BH e RJ sem se preocupar com a zona, bairro, rua e casa



# Exemplo de roteamento hierárquico



Redes de Computadores

Roteamento hierárquico na Internet

- Roteamento na Internet tem dois níveis de hierarquia
  - Interdomínio: executam um protocolo de roteamento de acordo com as necessidades de uma organização (Interior Routing Protocol – IRP)
    - Sistemas autônomos (AS Autonomous Systems)
  - Intradomínio: executam um mesmo protocolo de roteamento (Exterior Routing Protocol – ERP)

nstituto de Informática - UFR A. Carissimi -24-out-11

21

Redes de Computadores 22

# Roteamento hierárquico na Internet

- Interior Routing Protocol
  - RIP (Routing Information Protocol) → Vetor de distância
  - OSPF (Open Shortest Path First) → Estado de enlace
- Exterior Routing Protocol
  - BGP (Border Gateway Protocol)



- Protocolos multicast
  - IGMP, MOSPF, DVMPR, CBT, PIM,...

Maiores detalhes e sequência na disciplina de protocolos

# Leituras complementares

- Stallings, W. <u>Data and Computer Communications</u> (6<sup>th</sup> edition), Prentice Hall 1999.
  - Capítulo 10, seção 10.2 e anexo 10.A
  - Capítulo 16, seção 16.1
- Tanenbaum, A. *Redes de Computadores* (4ª edição), Campus2003.

24

- Capítulo 5, seções 5.2.2, 5.2.4, 5.2.5 e 5.2.6
- Carissimi, A.; Rochol, J; Granville, L.Z; <u>Redes de Computadores</u>.
  Série Livros Didáticos. Bookman 2009.
  - Capítulo 5, seções 5.2.3, 5.2.4 e 5.3

Instituto de Informática - UFRGS A. Carissimi - 24-out-11

Redes de Computadores 23 Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -24-out-11

Instituto de Informática - UFRGS A. Carissimi - 24-24