Capítulo 1

Dinámica cuántica

Queremos ver la evolución temporal de los kets

$$|\alpha, t_0, t\rangle$$
,

notación que refiere al estado α que partió en t_0 al tiempo t. Pictóricamente

$$|\alpha,t_0\rangle \underset{\text{evoluciona}}{\longrightarrow} |\alpha,t_0,t\rangle$$

Emplearemos para ello un operador de evolución temporal $U_{(t,t_0)}$ al cual le pediremos

$$|\alpha,t_0,t\rangle=U\,|\alpha,t_0\rangle$$

con las propiedades

Unitariedad

$$\begin{split} \left<\alpha,t_0,t\,|\,\alpha,t_0,t\right> &= 1 \forall t \\ \left<\alpha,t_0\,|\,U^\dagger U\,|\,\alpha,t_0\right> &= 1 \quad \Rightarrow \quad U^\dagger U = U U^\dagger = \mathbb{1} \end{split}$$

para conservación de la probabilidad.

• Linealidad

$$U(t_2,t_0) = U(t_2,t_1) U(t_1,t_0) \qquad t_2 > t_1 > t_0$$

• Límite a 1

$$U_{(t,t_0)} \to \mathbb{1}$$
 si $t \to t_0$

o bien

$$U_{(t_0+dt,t_0)} \to \mathbb{1}$$
 si $dt \to 0$

Se propone entonces un

$$U_{(t+d\,t\,,\,t)}=\mathbb{1}-i\Omega dt$$

con Ω hermítico. Comparando con clásica vemos que H origina la evolución temporal, entonces identificamos Ω con H, del modo $\Omega=H/\hbar$ así que

$$U_{(t+dt,t)} = \mathbb{1} - \frac{i}{\hbar} H dt.$$

De esta forma

$$\begin{split} U_{(t+dt,t_0)} &= U_{(t+dt,t)} U_{(t,t_0)} = \left(\mathbb{1} - \frac{i}{\hbar} H dt\right) U_{(t,t_0)} \\ &\frac{\partial U}{\partial t} = \frac{U_{(t+dt,t_0)} - U_{(t,t_0)}}{dt} = -\frac{i}{\hbar} H U_{(t,t_0)} \end{split}$$

y entonces

$$i\hbar \frac{\partial U}{\partial t} = HU$$

que es la ecuación para $U_{(t,t_0)}$.

$$i\hbar\frac{\partial}{\partial t}U_{(t,t_0)}\left|\alpha,t_0\right\rangle=HU_{(t,t_0)}\left|\alpha,t_0\right\rangle$$

y arribamo a la ecuación de Schrödinger para kets

$$i\hbar\frac{\partial}{\partial t}\left|\alpha,t_{0},t\right\rangle =H\left|\alpha,t_{0},t\right\rangle$$

donde el inconveniente es que H = H(t).

El concepto se ilustra en la figura siguiente

1.1 Dinámica cuántica

1.1.1 Casos de solución de $U(t,t_o)$

• Supongamos $H \neq H(t)$, entonces

$$U(t,t_0) = e^{-i/\hbar H(t-t_0)}$$

• Sea H = H(t), entonces

$$U(t,t_0) = e^{-i/\hbar \int_{t_0}^t H(t')dt'}$$

y la integral puede hacerse una vez conocida la expresión de H(t).

Figura 0.1

• Sea H = H(t) con $[H(t_1), H(t_2)] \neq 0$ entonces

$$\begin{split} U(t,t_0) &= 1 + \sum_{n=1}^{\infty} \left(\frac{-i}{\hbar}\right)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \int_{t_0}^{t_2} dt_3 ... \times \\ & \int_{t_0}^{t_{n-1}} dt_n H(t_1) H(t_2) ... H(t_n) \end{split}$$

y esta es la serie de Dyson (del físico Freeman Dyson().)

El problema que suscita es debido a que si H a diferentes tiempos no conmuta no podemos poner la exponencial en serie de potencias. En realidad $\exp(\Box)$ tiene sentido sólo si la serie

$$\sum_{n=0}^{\infty} \frac{1}{n!} \square^n$$

tiene sentido; es decir, si no surgen ambigüedades al tomar la potencia n-ésima del operador \square .

El operador □ no se deja poner sombreros, quiere andar con la cabeza descubierta

Para el caso 1 es simplemente

a

pero para el caso 3 es

a

puesto que al operar es

a

pues $[H(t'), H(t'')] \neq 0$. En el caso 2 $(\int_{t_0}^t H(t')dt')^n$ no tiene problemas puesto que está provista la conmutatividad.

1.1.2 Soluciones útiles

Primeramente conseguimos un \hat{A} tal que [A,H]=0 y entonces (estoy considerando $H\neq H(t)$)

a,

luego

a

con \hat{H} y \hat{A} conmutan se tiene

a

Entonces operamos con el H para

a

y así

a

de manera que comparando con

a

El coeficiente es el mismo pero le hemos sumado una fase $\exp(-iE_{a'}(t-t_0)/\hbar)$ que no es global.

1.1.3 Evolución de valores de expectación

Recordemos primeramente que los autoestados no evolucionan. Luego

a

La fase es global es considerar una autoestado. La podemos descartar (setear igual a uno)

a

El valor de expectacion de un operador respecto a un autoestado no varía.

a

a

a

El valor de expectación de un operador respecto a un estado general tiene una fase no global que produce términos de interferencia.

1.1.4 Relaciones de conmutación

$$[A + B, C] = [A, C] + [B, C]$$

 $[A, B] = -[B, A]$
 $[A, B \cdot C] = B[A, C] + [A, B]C$

Acá no es baca + caballo puesto que no conmutan.

$$i\hbar[A,B]_{\text{classic}} = [A,B]$$

donde $[,]_{\rm classic}$ es el corchete de Poisson. Las relaciones de conmutación fundamentales son

$$[x_i, x_j] = 0$$
 $[p_i, p_j] = 0$ $[x_i, p_j] = i\hbar \delta_{ij}$

a las que podemos sumar

$$\begin{split} [x,f(p)] &= i\hbar\frac{\partial f}{\partial p} \qquad [p,G(x)] = i\hbar\frac{\partial G}{\partial x} \\ [S_i,S_j] &= i\hbar\varepsilon_{ijk}S_k \end{split}$$

1.1.5 La ecuación de Schrödinger

$$acon \qquad \hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

Puedo meter un bra $\langle x'|$ que no depende del tiempo y entonces

a

a

de manera que resulta la ecuación de Schrödinger

a.

1.1.6 Representación de Heisenberg

Los kets y los operadores no tienen sentido físico, pero sí los valores de expectación : toda física podrá modificar los primeros pero debe conservar los valores de expectación. Así tenemos dos representaciones posibles:

Schrödinger	Heisenberg
$ \alpha\rangle \to U \alpha\rangle$	$ \alpha\rangle \rightarrow \alpha\rangle$
$A \to A$	$A \to U^{\dagger} A U$
	$\left a' \right\rangle \to U^{\dagger} \left a' \right\rangle$

Así vemos que en Schrödinger los kets evolucionan y los operadores permanecen fijos; al igual que los autoestados. En cambio en Heisenberg los kets no evolucionan pero sí lo hacen los operadores y los autoestados.

Deben notars que:

1. Los productos internos no cambian con el tiempo

a

2. Los valores de expectación son los mismos en ambos esquemas

a

$$\langle A \rangle^{(S} = \langle A \rangle^{(H} \qquad A(t)^H = U(t)^\dagger A^S U(t)$$

El operador \hat{A} en Schrödinger no depende explícitamente del tiempo. La idea es que le "pegamos" a los operadores la evolución temporal de los kets.

a

pero a $t=t_0$ las representaciones coinciden,

a

La ecuación de Heisenberg

a

 \Rightarrow

a

a

a

y llegamos a la ecuación de Heisenberg

$$\frac{\partial A^{(H)}}{\partial t} = \frac{1}{i\hbar}[A^{(H)},H^{(H)}]$$

si $A^{(H)}$ conmuta con el $H^{(H)}$, entonces $A^{(H)}$ es una cantidad conservada (una constante de movimiento). En ese caso el operador no depende del tiempo y entonces $A^{(H)}=A^{(S)}$.

Evolución de autoestados

a

aplico un U^{\dagger} a ambos lados y entonces

a

los a' no dependen de la representación porque tienen significado físico. Entonces los $|a'\rangle$ evolucionan

a

a

a

puesto que recordemos, nota importante,

a

entonces H es el mismo en ambas puesto que $\hat{U}=\hat{U}(\hat{H})$ y [U,H]=0. De esta forma los autoestados evolucionan al revés

a

Podemos ver de otro modo la equivalencia

a

pero

a

a

Coeficientes

Los coeficientes en Schrödinger y en Heisenberg son

a

Entonces en Schrödinger es

a

mientras que en Heisenberg es

a

Los coeficientes en las expresiones son iguales como corresponde a todo magnitud que tiene sentido físico, pues $|c_a(t)|^2$ es la probabilidad.

1.1.7 Teorema de Ehrenfest

Para una partícula libre, donde p(t) = p(0) es constante de movimiento,

$$x^{(H)} = x(0) + \frac{p(0)}{m}t$$

y se tiene

$$\begin{split} [x(t),x(0)] &= -\frac{i\hbar}{m}t \\ H &= \frac{p^2}{2m} + V(x) \\ \frac{dP}{dt} &= \frac{1}{i\hbar}[p,H] = \frac{1}{i\hbar}[p,V(x)] = \frac{1}{i\hbar}\left(-i\hbar\frac{\partial V}{\partial x}\right), \end{split}$$

de modo que

$$\frac{dP}{dt} = -\frac{\partial V}{\partial x} \longrightarrow m\frac{d^2x}{dt^2} = -\frac{\partial V}{\partial x}$$
$$p = m\frac{dx}{dt} \qquad \frac{dp}{dt} = m\frac{d^2x}{dt^2}$$

donde estamos usando

$$\frac{\partial A^H}{\partial t} = \frac{1}{i\hbar} [A^H, H]$$

Es necesario remarcar que relaciones como $[x,p]=i\hbar$ son para operadores en la picture de Schrödinger, donde los operadores no cambian en el tiempo. Estamos en efecto haciendo $[x(0),p(0)]=i\hbar$

$$\left\langle \alpha, t_0 \left| m \frac{d^2 x}{dt^2} \right| \alpha, t_0 \right\rangle = - \left\langle \alpha, t_0 \left| \frac{\partial V}{\partial x} \right| \alpha, t_0 \right\rangle$$

$$m\frac{\partial^{2}}{\partial t^{2}}\left\langle \alpha,t_{0}\left|\,x^{H}\right|\alpha,t_{0}\right\rangle =-\left\langle \alpha,t_{0}\left|\,\frac{\partial V}{\partial x}\right|\alpha,t_{0}\right\rangle$$

y entonces el teorema de Ehrenfest es

$$m\frac{\partial^2}{\partial t^2}\left\langle x^{(s)}\right\rangle = -\left\langle \frac{\partial V^{(s)}}{\partial x}\right\rangle$$

los valores de expectación son iguales en ambas representaciones.

1.2 El oscilador armónico

Para el oscilador armónico 1D el hamiltoniano y energía eran

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2} \qquad E = \hbar\omega \left(n + \frac{1}{2}\right)$$

pero este problema puede resolverse usando un nuevo operador \hat{a}

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right) \qquad \text{con} \quad \hat{a}^\dagger = \sqrt{\frac{m\omega}{2\hbar}} \left(x - i \frac{p}{m\omega} \right)$$

que es suma de \hat{x}, \hat{p} pero que no es hermítico. Cumple que

$$[a,a^{\dagger}]=1 \qquad aa^{\dagger}=rac{H}{\hbar\omega}-1 \qquad H=\hbar\omega\left(aa^{\dagger}+rac{1}{2}
ight),$$

donde se define el operador número $\hat{N} \equiv a^{\dagger}a$ que al verificar $[\hat{N}, \hat{H}] = 0$ tienen base de autoestados en común $\{|n\rangle\}$. En efecto

$$\hat{N}\left|n\right\rangle = n\left|n\right\rangle \qquad \hat{H}\left|n\right\rangle = \hbar\omega\left(n + \frac{1}{2}\right)\left|n\right\rangle$$

siendo n el número de cuantos de energía. Se cumplen además

$$[N, a] = [a^{\dagger}a, a] = -[a, a^{\dagger}a] = -(a^{\dagger}[a, a] + [a, a^{\dagger}]a) = -a$$
$$[N, a^{\dagger}] = [a^{\dagger}a, a^{\dagger}] = -[a^{\dagger}, a^{\dagger}a] = -(a^{\dagger}[a^{\dagger}, a] + [a^{\dagger}, a]a^{\dagger}) = a^{\dagger}$$

Queremos ver que le hace a^{\dagger} a un autoestado $|n\rangle$ y luego a sobre el mismo.

$$\begin{split} Na^\dagger \mid & n \rangle = ([N,a^\dagger] + a^\dagger N) \mid & n \rangle = a^\dagger \mid & n \rangle + a^\dagger n \mid & n \rangle \\ \\ \hat{N}(a^\dagger \mid & n \rangle) & = (n+1)(a^\dagger \mid & n \rangle) \end{split}$$

Entonces, como no hay degeneración y tenemos $N | n' \rangle = n' | n' \rangle$ entonces

$$a^{\dagger} |n\rangle = c_1 |n+1\rangle$$
,

y procediendo de modo idem para $a | n \rangle$ será

$$a|n\rangle = c_2|n-1\rangle$$

Luego,

$$\begin{split} a^{\dagger} & | n \rangle = c_1 \left| n + 1 \right\rangle \stackrel{DC}{\widehat{\longrightarrow}} \left\langle n + 1 \right| c_1^* = \left\langle n \right| a \\ a & | n \rangle = c_2 \left| n - 1 \right\rangle \stackrel{DC}{\widehat{\longrightarrow}} \left\langle n - 1 \right| c_2^* = \left\langle n \right| a^{\dagger} \end{split}$$

y entonces

$$\begin{split} &\langle n\,|\,N\,|\,n\rangle = n\,\langle n\,|\,n\rangle = n = \langle n\,\big|\,a^\dagger a\,\big|\,n\rangle = \langle n-1\,|\,c_2^*c_2\,|\,n-1\rangle = |c_2|^2\,\langle n-1\,|\,n-1\rangle \\ &n = \langle n\,\big|\,aa^\dagger - 1\,\big|\,n\rangle = -1 + \langle n\,\big|\,aa^\dagger\,\big|\,n\rangle = -1 + \langle n+1\,|\,c_1^*c_1\,|\,n+1\rangle = -1 + |c_1|^2\,\langle n+1\,|\,n+1\rangle \\ &\text{siendo} \end{split}$$

$$\begin{split} |c_2| &= \sqrt{n} \qquad |c_1| = \sqrt{n+1} \\ \hat{a}^\dagger \left. |n\rangle &= \sqrt{n+1} \left. |n+1\rangle \right. \qquad \hat{a} \left. |n\rangle \right. &= \sqrt{n} \left. |n-1\rangle \right. \end{split}$$

y entonces de esta forma \hat{a}^{\dagger} es el operador de creación de cuantos y \hat{a} el de aniquilación.

1.2.1 El estado fundamental $\langle 0 \rangle$

$$a \mid n \rangle \xrightarrow{DC} \langle n \mid a^{\dagger}$$

y desde el postulado para productos internos,

$$(\langle n | a^{\dagger})(a | n \rangle) \ge 0 \quad n \langle n | n \rangle \ge 0 \Rightarrow n \ge 0$$

entonces n cabalga por los naturales. Si hacemos

$$a|n\rangle = \sqrt{n}|n-1\rangle$$
, $a^2|n\rangle = \sqrt{n}\sqrt{n-1}|n-2\rangle$...

en algún momento se llega a $|n=0\rangle$, entonces $E_0=\hbar\omega/2$ y

$$|0\rangle \equiv {\rm El}$$
 fundamental

y no se puede bajar más,

$$\hat{a}|0\rangle = 0.$$

Por otra parte, con el \hat{a}^{\dagger} se puede llegar a cualquier estado

$$a^{\dagger} |0\rangle = \sqrt{1} |1\rangle$$
, $a^{\dagger 2} |0\rangle = \sqrt{1}\sqrt{2} |2\rangle = \sqrt{1}\sqrt{2}\sqrt{3} |3\rangle$
$$\frac{(a^{\dagger})^n}{\sqrt{n}!} |0\rangle = |n\rangle$$

Las matrices de $\hat{a},\hat{a}^{\dagger}$ sólo tienen una diagonal corrida de elementoss

También puede verse que

$$\langle n | x | n \rangle = 0$$
 $\langle n | p | n \rangle = 0$

y por ello

$$\left\langle (\Delta x)^2 \right\rangle_{|0\rangle} \left\langle (\Delta p)^2 \right\rangle_{|0\rangle} = \frac{\hbar^2}{4}$$

el estado fundamental es el de incerteza mínima.

1.2.2 Función de onda

Siendo $\Psi_n(x') = \langle x' \, \big| \, n \rangle$ quiero evaluar $\Psi_0(x') = \langle x' \, \big| \, 0 \rangle$ y ver que como

$$\langle x' \mid a \mid 0 \rangle = 0$$

tengo

$$\begin{split} 0 &= \sqrt{\frac{m\omega}{2\hbar}} \left\langle x' \left| \, x + \frac{ip}{m\omega} \right| 0 \right\rangle = \sqrt{\frac{m\omega}{2\hbar}} \left[x' \left\langle x' \right| 0 \right\rangle + \frac{i}{m\omega} \left\langle x' \left| \, p \right| 0 \right\rangle \right] \\ & x' \left\langle x' \left| \, 0 \right\rangle + \frac{i}{m\omega} (-i\hbar) \frac{\partial}{\partial x} \left\langle x' \left| \, 0 \right\rangle = 0 \end{split}$$

entonces

$$x' \left\langle x' \mid 0 \right\rangle = -\frac{\hbar}{m\omega} \frac{\partial}{\partial x'} \left\langle x' \mid 0 \right\rangle$$
$$-\int \frac{m\omega}{\hbar} x' dx' = \int \frac{d \left\langle x' \mid 0 \right\rangle}{\left\langle x' \mid 0 \right\rangle} \Rightarrow \left\langle x' \mid 0 \right\rangle = \kappa e^{-m\omega x'^{2}/(2\hbar)}$$

y entonces

$$1 = \int_{-\infty}^{\infty} \langle 0 | x' \rangle \langle x' | 0 \rangle dx' = \int_{-\infty}^{\infty} |\kappa|^2 e^{-m\omega x'^2/\hbar} dx' = |\kappa|^2 \sqrt{\frac{\pi \hbar}{m\omega}}$$

$$|\kappa| = \left(\frac{m\omega}{\pi\hbar}\right)^{1/2} = \frac{1}{(\pi x_0^2)^{1/4}}$$

donde usamos el conocido resultado $\int_{-\infty}^{\infty} \exp(-ax^2) dx = \sqrt{\pi/a}$, llegamos al llamado pack gaussiano.

$$\langle x' | 0 \rangle = \frac{1}{(\pi x_0^2)^{1/4}} e^{-\frac{1}{2}(x'/x_0)^2}$$

El estado fundamental tiene incerteza mínima y debe corresponder a un paquete gaussiano.

Notemos que \hat{a}^{\dagger} crea sobre ket y aniquila sobre bra, mientras que \hat{a} aniquila sobre ket y crea sobre bra,

$$a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle \Rightarrow \langle n| a = \langle n+1| \sqrt{n+1}$$

 $a |n\rangle = \sqrt{n} |n-1\rangle \Rightarrow \langle n| a^{\dagger} = \langle n-1| \sqrt{n}$

1.2.3 Interferencia en experimento de Young

Consideremos la situación depicted en la figura bajo estas líneas

Figura 2.2

Uso \hat{H} de partículas libres.

$$\frac{1}{2}\left|\alpha\right\rangle = \left|\alpha_1\right\rangle = \left|\alpha_2\right\rangle$$

para t > 0 se tiene

$$\begin{split} |\tilde{\alpha_1}\rangle = \, \mathrm{e}^{-iHt/\hbar}\, |\alpha_1\rangle = \, \mathrm{e}^{-iE_\alpha t/\hbar}\, |\alpha_1\rangle \\ |\tilde{\alpha_2}\rangle = \, \mathrm{e}^{-iE_\alpha t/\hbar}\, |\alpha_2\rangle \end{split}$$

En la pantalla debe verse la interferencia de los dos estados solapados.

$$\begin{split} |\tilde{\alpha}\rangle &= |\tilde{\alpha_1}\rangle + |\tilde{\alpha_2}\rangle = \,\mathrm{e}^{-i\,E_\alpha\frac{d_1}{\vartheta}/\hbar}\,|\alpha_1\rangle + \,\mathrm{e}^{-i\,E_\alpha\frac{d_2}{\vartheta}/\hbar}\,|\alpha_2\rangle \\ |\tilde{\alpha}\rangle &= \frac{1}{2}\,\mathrm{e}^{-i\,E_\alpha\frac{d_1}{\vartheta}/\hbar}|1 + \,\mathrm{e}^{-i\,E_\alpha\frac{d_2-d_1}{\vartheta}/\hbar}|\,|\alpha_1\rangle \end{split}$$

y si definimos

$$\beta = E_{\alpha} \frac{d_2 - d_1}{v} / \hbar,$$

resulta entonces

$$\langle \tilde{\alpha} \, | \, \tilde{\alpha} \rangle = \frac{1}{4} |1 + \mathrm{e}^{-i E_\alpha \frac{d_2 - d_1}{v} / \hbar}|^2 = \frac{1}{4} ((1 + \cos \beta)^2 + \sin^2 \beta) = \frac{1}{2} + \frac{1}{2} \cos \left(\beta\right).$$

Al partir el estado $|\alpha_1\rangle$ y volver a unirlo en $|\alpha_1\rangle+|\alpha_2\rangle$ vemos una intensidad que dependa de la diferencia de camino.

1.2.4 Cambio de cero del potencial

En mecánica clásica la física de un problema no se ve afectada por un cambio de gauge. Si movemos el cero de potencial, la situación física es la misma. Veamos qué sucede en mecánica cuántica.

$$\begin{split} |\alpha,t,t_0\rangle &= \,\mathrm{e}^{-i(p^2/2m+V(x))(t-t_0)/\hbar}\,|\alpha,t_0\rangle \\ |\tilde{\alpha},t,t_0\rangle &= \,\mathrm{e}^{-i(p^2/2m+V(x)+V_0)(t-t_0)/\hbar}\,|\alpha,t_0\rangle \\ |\tilde{\alpha},t,t_0\rangle &= \,\mathrm{e}^{-iV_0(t-t_0)/2}\,|\alpha,t,t_0\rangle \end{split}$$

y entonces vemos que $|\tilde{\alpha},t\rangle$ y $|\alpha,t\rangle$ difieren en una fase, de manera que los valores de expectación no cambian (con V_0 constante).

Figura 2.3

Este es un experimento ideal (pensado). Dentro de los cilindros hay campo nulo. Se varia el V abriendo y cerrando la llave a la entrada y a la salida. Se cambia la fase de las partículas inferiores respecto de las superiores, entonces habrá interferencia en O.

Clásicamente no hay variación,

$$\Delta {\rm fase} = -\frac{i}{\hbar} \; {\rm e} \int_{t_1}^{t_2} V_1(t) - V_2(t) dt = -\frac{i}{\hbar} \; {\rm e} \Delta V$$

Lo que realmente cuenta es la diferencia de potencial ΔV , la cual sí tiene sentido físico porque es independiente de la medida y porque pueden escribirse los campos en función de aquella.

$$\begin{split} E &= - \mathbf{\nabla} \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \\ H &= \frac{1}{2m} \left(\mathbf{p} - \frac{\mathbf{e} \mathbf{A}}{c} \right)^2 + \mathbf{e} \phi \\ \frac{dH}{dt} &= \frac{1}{i\hbar} [x_i, H] = \frac{p_i \, \mathbf{e} A_i}{m} \end{split}$$

1.3 El propagador

Físicamente representa la proababilidad de transición entre autoestados por el paso del tiempo, $|x'\rangle_{t_0} \longrightarrow |x''\rangle_t$

u

b

c

Podemos pensar que el propagador lleva la función de onda desde t_0 a t. Se puede escribir:

0

y metemos un observable \hat{A} donde [A, H] = 0 y $A |a'\rangle = a |a'\rangle$.

El propagador depende del potencial, pero no de la función de onda inicial. Se debe cumplir que:

b

c

d

y entonces el propagador es una función de Green que satisface

d

con $K(x'', t; x', t_0) = 0$ si t < 0 que es la condición de contorno.

1.3.1 El propagador de la partícula libre

a

a

b

También se puede escribir el propagador en la representación de Heisenberg,

$$K(x'',t;x',t_0) = \left\langle x'',t \,\middle|\, x',t_0\right\rangle.$$

El propagador cumple con la propiedad de composición (como el $U(t,t_0)$), es decir:

a

1.4 Integrales de camino de Feynmann

Consideramos una partícula yendo de (x_1,t_1) a (x_N,t_N) . Dividimos el tiempo

a

y queremos ver la amplitud de transición desde el estado 1 al N.

a

Se puede pensar como que estamos sumando sobre todos los posibles caminos entre (x_1,t_1) y (x_N,t_N) fijos. En mecánica clásica teníamos un solo camino, el que minimizaba la acción S

$$\delta \int_{t_1}^{t_2} \mathcal{L}dt = \delta S = 0$$

pero en cambio en mecánica cuántica todos los caminos aportan. En un libro de Dirac, Feymann lee

a

Definiremos

 \equiv

Luego para considerar la suma sobre todos los segmentillos a lo largo de un camino tendremos

$$\prod_{n=2}^N \, \mathrm{e}^{i/\hbar S(n\,,n-1)} =$$

y hay que considerar TODOS los posibles caminos

$$\propto \sum_{caminos} \mathrm{e}^{i/\hbar S(N,1)}$$

cuando $\hbar\to 0$ las trayectorias contribuyen con una cantidad que oscila loca y violentamente. Tienden a la cancelación para caminos aledaños. Por el $\hbar\sim 0$ la fase es grande y entonces se cancelan. Esto no ocurre cerca del camino (real) que cumple

$$\delta S(N,1) = 0$$

Para trayectorias cercanas la $\Delta fase$ no es grande y hay interferencia constructiva. Para un δt infinitesimal es

a

b

Consideremos, por ejemplo, una partícula libre, entonces ${\cal V}=0$ de modo que resolviendo

a

Esto no es otra cosa que el propagador de una partícula libre. Para un Δt finito será

+

=

siendo esta última la integral de camino de Feynmann.

En base a éstas Feynamn desarrolla una formulación equivalente de la mecánica cuántica que utiliza los conceptos de:

- 1. Superposición
- 2. Composición de la transición
- 3. Límite clásico con $\hbar \to 0$

Estas integrales contienen toda la información del sistema cuántico, aunque no sea sencillo extraerla.

Consideremos un propagador de $(x',0) \rightarrow (x',t)$

$$G(t) =$$

$$G(t) =$$

y tomando Laplace-Fourier

 $\tilde{G}(t)$

La expresión

$$\equiv Integral decamino de Feynmann$$

satisface la ecuación de Schrödinger y es una alternativa a la formulación de la cuántica usual.

1.5 Introducción al momento angular (rotaciones)

El operador \hat{L} será el encargado de realizar las rotaciones. Por el álgebra visto en la mecánica clásica sabemos que, dado un vector ${\bf v}$ y una matriz ortogonal R se tiene

$$\mathbf{v}' = R\mathbf{v}$$
 con $|\mathbf{v}'| = |\mathbf{v}|$

У

$$|\mathbf{v}|^2 = V^t V = (V^t R^t)(RV)$$
 pues $R^t R = RR^t = \mathbb{1}$

puesto que es una matriz ortogonal. Luego se cumplen

el producto de dos matrices ortogonales es otra matriz ortogonal

asociatividad

Eidentidad

Einversa

1.5.1 No conmutatividad de las rotaciones clásicas

Las rotaciones finitas no conmutan. Luego, el grupo de las rotaciones será un grupo abeliano

$$R_z(\varphi)=\big(\big)$$

$$R_x(\varphi) = ()$$

$$R_y(\varphi)=\big(\big)$$

Si reemplazamos $\cos(\epsilon) \approx 1 - \epsilon^2/2$ y $\sin(\epsilon) \approx \epsilon$ hasta orden dos. Se puede ver que las rotaciones, en torno a ejes diferentes, sólo conmutan a orden uno (ϵ) de manera que una rotación infinitesimal φ conmuta pero una rotación finita φ no lo hace.

1.6 Rotaciones cuánticas

Para las rotaciones cuánticas se pedirá

D.

rotación infinitesimal o bien

D.

para rotación finita. Donde \hat{D} es el operador de las rotaciones y \hat{J} es un momento angular general. Se postula de esta forma para que \hat{D} cumpla las mismas propiedades que R y la relación de conmutación

$$R_x R_y - R_y R_x = R_z(\epsilon^2) - \mathbb{1}$$

$$D$$

de modo que la cuenta lleva a

 J_x

la cual generalizando se llega a

$$[J_i, J_j] = i\hbar \epsilon_{ijk} J_k$$

que son las relaciones de conmutación generales para momento angular \hat{J} . Para sistemas de spín 1/2 es

$$D(\hat{n}, \phi) \equiv e^{-i/\hbar \mathbf{S} \cdot \hat{n}}$$

Se puede ver que ante rotaciones cuánticas $D(\hat{n},\phi)$ los valores de expectación transforman como vectores

En general ${f J}=(J_x,J_y,J_z)$ se transforma como vector y entonces $\hat J$ es un operador vectorial. Para spín 1/2 es

 $|alpha\rangle =$

D

D

Si $\phi=2\pi$ (cosa que debiera dejar al ket incólume) se tiene

D

Luego, esto es una muestra del carácter no-clásico del spin; una vuelta completa le cambia el signo al ket pero notemos cuidadosamente que el valor de expectación – que es algo físico – no varía. Esto muestra que el ket no puede tener sentido físico.

1.6.1 Angulos de Euler

Se define una serie de rotaciones

123

lo cual equivale a

$$R() = e$$

Pero desconozco cómo operar en los ejes móviles z', y'

$$R_{y'}(\beta) =$$

$$R_{z'}(\gamma) =$$

$$R() =$$

Rotación equivalente a [1] pero para ejes fijos, puesto que en mecánica cuántica sabemos rotar en torno a ejes fijos.

Los ángulos de Euler son la caracterización de una rotación general en 3D. Entonces nuestra rotación en 3D cuántica será:

$$D() =$$

1.6.2 Autoestados y autovalores de J

Partimos de

y

$$J^2 = [J^2, J] = 0$$

siendo la última muy importante y probándose por evaluación directa. Lleva a

$$[J^2, J_i^n] = 0 \qquad \text{con } i = x, y, z \ n \in \mathbb{N}$$

Se eligen J^2, J_z como observables que conmutan

$$J^2$$

Definiremos los operadores de subida y de bajada

$$J_{\pm} \equiv J_x \pm J_y$$

que verifican

Entonces se tiene

$$J^2() \longrightarrow (J_z) \longrightarrow$$

$$J_{\pm} \left| a,b \right\rangle = C_{\pm} \left| a,b \pm \hbar \right\rangle$$

$$J_{\pm}$$

sube el J_z en una unidad de \hbar o bien baja el J_z en una unidad de $\hbar.$

$$\begin{split} J_{+}J_{-} &=, \\ J^{2} &=, \\ \left\langle a,b \left| J^{2} - J_{z}^{2} \right| a,b \right\rangle &= \\ \left(a-b^{2}\right) \left\langle a,b \left| a,b \right\rangle =, a \geq b^{2} \end{split}$$

hay cota para b. Como no puede seguir subiendo debe dar el ket nulo

$$=0$$

pero

$$\begin{split} J_-J_+\\ &=0 \qquad a=b_m(b_m-\hbar) \end{split}$$

tiene solución

$$b_M - B_m = -\hbar$$

pero esto es absurdo.

Luego,

$$|a,b_m\rangle \longrightarrow |a,b_M\rangle$$

y como J_+ sube de a un \hbar será

$$b_M = b_m + n\hbar$$

y entonces

$$b_M = \frac{n\hbar}{2} = \frac{n}{2}\hbar = j\hbar$$

y se da que j es entero o semientero.

Definiremos

$$b_M \equiv j\hbar \qquad a \equiv j(j+1)\hbar^2 \qquad -j\hbar \leq b \leq j\hbar$$

pero como $b/\hbar = m$

$$\begin{split} b_M \equiv j\hbar & a \equiv j(j+1)\hbar^2 & -j \leq m \leq j \\ m = (-j, -j+1, -j+2, ..., j-1, j) & 2j+1 \text{valores de } m \\ J^2 \left| j, m \right\rangle = j(j+1)\hbar^2 \left| j, m \right\rangle & J_z \left| j, m \right\rangle = m\hbar \left| j, m \right\rangle \end{split}$$

1.6.3 La normalización de ${\cal J}_+$

$$\begin{split} J_{+} \\ \langle j,m \,|\, J_{-}J_{+} \,|\, j,m \rangle = \\ c_{+} = \\ \langle j,m \,|\, J_{+}J_{-} \,|\, j,m \rangle = \\ c_{-} = \\ J_{\perp} \end{split}$$

1.6.4 Elementos de matriz de J^2, J_z, J_+

Asumiendo normalización de $|j,m\rangle$ se tiene

$$\langle \rangle =$$

=

1.6.5 Elementos de matriz de $\mathcal{D}(R)$

Ahora queremos ver cual es la forma de los elementos de matriz de $\mathcal{D}(R)$

$$\mathcal{D}(R) =$$

siendo que $\mathcal{D}(R)$ tiene por efecto rotar el sistema físico. Lo primero que hay que notar es que

$$\propto \delta_{jj'}$$

porque $[J^2, J_i] = 0$ y entonces $[J^2, J_i^n] = 0$ y

D

y

D

es una matriz para cada jfijo con $\{(2j+1)\times(2j+1)=\text{dimensión}\}$

D

pero las rotaciones no cambian el $j,\,\mathcal{D}(R)$ conecta estados con la misma j y $\mathcal{D}(R)\in(2j+1)\times(2j+1)$

D

La matriz de $\mathcal{D}(R)$ (no caracterizada por un único j) puede ponerse en forma diagonal por bloques:

con cada bloque de $(2j+1) \times (2j+1)$, pero siendo cada bloque irreducible. Las matrices de rotación con j fijo forman un grupo. $\mathcal{D}_{m'm}^{(j)}(R)$ son los elementillos de la matriz.

$$|j,m\rangle \longrightarrow$$

1.6.6 Forma explícita del operador $\mathcal{D}(R)$

Los ángulos de Euler permitieron caracterizar la rotación más general. Entonces

D

D

En los $d_{m'm}^{(j)}$ está la dificultad de la cuenta.

1.7 Formalismo de spinores de Pauli

Apropiado para trabajar con sistemas de spín 1/2. Estos sistemas son casos particulares de momento angular,

$$j = 1/2$$
 $m = -\frac{1}{2}, +\frac{1}{2}$

y se definen los spinores χ_{\pm} como

$$|+\rangle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \equiv \chi_+$$

Para spín 1/2 podemos tomar $\mathbf{J}=\mathbf{S}$ por la analogía de las relaciones de conmutación. A su vez

$$\mathbf{S} = \frac{\hbar}{2}\vec{\sigma}$$
 con

que es una especie de vector

 σ

Luego esta equivalencia provee expresión de los operadores S_i en términos de matrices de $2\times 2,$ así:

$$\frac{i}{2}[J_--J_+]=J_y=S_y=\frac{\hbar}{2}\sigma_y$$

Las matrices de Pauli cumplen las propiedades básicas siguientes

$$\sigma_i^2 = \mathbb{1}$$
 $|+
angle \quad (\sigma \dot{\mathbf{a}})$

1.7.1 Aplicación a las rotaciones

D

pero

$$()^n =$$

е

d

es el operador de rotación para sistemas de spin 1/2. Con esta expresión podemos evaluar $d_{m'm}^{j=1/2}(\beta)$

d

donde hemos usado los resultados

 $\cos \sin$

En el caso general el operador de rotación para sistemas de spin 1/2 lucirá:

$$D =$$

1.7.2 Ejemplo

d

Este resultado es intuitivamente lógico.

1.7.3 Rotaciones en sistemas con j = 1

Ahora tenemos

$$j = 1$$
 $m = -1, 0, 1$

recordando ${\cal J}_y$ en términos de escaleras

 J_u

.

$$\left(\frac{J_y}{\hbar}\right)^n =$$

acá lo vemos como operador (es notación), $d^{j=1}_{m'm}(\beta)$ simboliza la matriz

d

1.8 Momento angular orbital

 $\mathbf{L} =$

verifica el álgebra de J,

Consideremos ahora una rotación en torno a z, en un $\delta \phi$,

() =

() =

esto es una traslación en \hat{x}, \hat{y} ,

$$(1 - i\frac{L_z}{\hbar}\delta\phi) |x', y', z'\rangle = |\rangle$$

Esta traslación es debida a una rotación infinitesimal en $\delta\phi$ torno a z entonces genera las rotaciones clásicas en torno a z.

Ψ

Ψ

Podemos hallar una expresión para ${\cal L}_z$ en esféricas:

$$\langle r, \theta, \varphi \parallel \alpha \rangle$$

identificamos

=

operador L_z en esféricas

Usando

$$L^2 = \langle L^2 \rangle$$

$$L^2 = -\hbar^2 r^2 \nabla^2_{\theta,\varphi}$$

donde $\nabla^2_{\theta,\varphi}$ es la parte angular del laplaciano en coordenadas esféricas. Esto puede obtenerse también partiendo de

$$L^2 = \mathbf{x}^2\mathbf{p}^2 - (\mathbf{x}\cdot\mathbf{p})^2 + i\hbar\mathbf{x}\cdot\mathbf{p}$$

Sea un H de partícula, sin spín, sujeta a potencial simétricamente esférico. Sabemos que la función de onda $\Psi_{\alpha}(\mathbf{r}')$ es separable en coordenadas esféricas, entonces:

$$\langle \, | \, \rangle =$$

$$\langle \, | \, \rangle =$$

Cuando el H es esféricamente simétrico (como en un potencial central) se tiene

$$[] = [] = 0$$

Trabajaremos solamente en la parte angular $|\theta, \varphi\rangle \equiv |\hat{n}\rangle$

$$\langle \hat{n} \, | \, \ell, m \rangle =$$

que es la amplitud de hallar $|\ell,m\rangle$ en la dirección \hat{n} .

Podemos vincular ahora los armónicos esféricos con los autoestados de L_z, L^2

 L_z

 L^2

=

Entonces, con la ortogonalidad

__

y con la completitud

de manera que llegamos a

Podemos hallar una expresión para

=0

 \Rightarrow

Luego usamos L_- para hallar sucesivamente los demás Y_ℓ^m

=

y por este camino se llega a

Y

con

En el caso de momento angular orbital ℓ no puede ser semientero porque entonces m sería semientero y en una vuelta de 2π

$$e^{i\,m\,2\pi} = -1$$

Además,

(no hay signo menos)

1.8.1 Armónicos esféricos como matrices de rotación

Se pueden hallar autoestados de dirección $|\hat{n}\rangle$ rotando el $|\hat{z}\rangle$,

 $\hat{n} =$

Necesitamos aplicar

D

n

l

 ι

Y

pero como $\theta=0$, $Y_\ell^m=0$ con $m\neq 0$ se tiene

lm

 Y^* ,

la matriz de rotación en este caso es un armónico esférico.

La Ψ tiene la misma simetría que el potencial.