

VLSI Circuit Design II– EHB 425E HOMEWORK IV Yiğit Bektaş GÜRSOY 040180063

Class Lecturer: Sıddıka Berna Örs Yalçın

Class Assistant: Yasin Fırat Kula

1- Controller

• State Diagram

The state diagram of the figure whose ASM is given below is as shown in the figure. Controller is written according to the diagram in the figure.

		Status Signals		Control Signals						
State	Start	=	RegB (k-1)	Load A	Load Coun	Load B	Shift B	Load C	S Coun	s C
Step1	0	х	x	0	0	o	0	1	х	0
Step1	1	х	x	1	1	1	0	1	0	00
Step2	х	0	х	0	1	0	0	0	1	01
Step2	х	1	х	0	1	0	0	0	1	х
Step3	х	х	х	0	0	0	0	0	х	х
Step4	х	х	0	0	0	0	1	0	х	х
Step4	х	х	1	0	0	o	1	1	х	10
Step5	х	0	х	0	0	0	0	0	х	х

• GTK Waveform

As you can see, the code designed according to the state diagram works correctly. The simulation above shows this.

2- Datapath

As it was said in the assignment, the datapath was designed based on the k parameter and using the MUL block in HW3. The codes are zipped and put into the assignment file.

• GTK Waveform

3- Top Module

By combining Controller and Datapath, a top module is created.

• MATLAB

Test vectors were obtained using the following MATLAB code.

• GTK Waveform

where A is the value to be powered. B is the power of A. By looking at the power of 2 here, it can be understood whether the circuit is working correctly. The powers of 2 confirm that the circuit is working correctly. After 2^14 is finally received, the done signal 1 appears to be lit. Indicates that the process is finished.

4- Openlane Section

```
[INFO]: Running Magic Spice Export from LEF (log: designs/Top/runs/run001/logs/signoff/31-spice.log)...

[STEP 32]
[INFO]: Writing Powered Verilog (logs: designs/Top/runs/run001/logs/signoff/32-write_powered_def.log, designs/Top/runs/run001/logs/signoff/32-write_powered_verilog.log)...

[STEP 33]
[INFO]: Writing Verilog (log: designs/Top/runs/run001/logs/signoff/32-write_powered_verilog.log)...

[STEP 34]
[INFO]: Running LVS (log: designs/Top/runs/run001/logs/signoff/34-lvs.lef.log)...

[STEP 35]
[INFO]: Running Magic DRC (log: designs/Top/runs/run001/logs/signoff/35-drc.log)...

[INFO]: Converting Magic DRC database to various tool-readable formats...

[INFO]: No DRC violations after GDS streaming out.

[STEP 36]
[INFO]: Running OpenROAD Antenna Rule Checker (log: designs/Top/runs/run001/logs/signoff/36-antenna.log)...

[STEP 37]
[INFO]: Running Circuit Validity Checker ERC (log: designs/Top/runs/run001/logs/signoff/37-erc_screen.log)...

[INFO]: Saving current set of views in 'designs/Top/runs/run001/results/final'...

[INFO]: Saving runtime environment...

[INFO]: Saving runtime environment...

[INFO]: Created manufacturability report at 'designs/Top/runs/run001/reports/manufacturability.rpt'.

[INFO]: Created metrics report at 'designs/Top/runs/run001/reports/metrics.csv'.

[SUCCESS]: Flow complete.

**OpenLane** Container** (#4c6f5f):/openLane***
```

```
report_design_area

Design area 12851 u^2 44% utilization.

report_worst_slack -max (Setup)

worst slack 2.68

report_worst_slack -min (Hold)

worst slack 0.21
```

As can be seen, no errors were encountered while synthesizing. The desired outputs are mentioned above. Max Frequency \rightarrow 1/6.98*10^-9 = 143.266 MHz

data arrival time

All verilog source codes and files with .dot extension are in the archive.

6.98