import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D $$$ matplotlib inline Find the value of x at which $f(x)$ is minimum: 1. Find x analytically 2. Write the update equation of gradient descent 3. Find x using gradient descent method
Example 1 : $f(x)=x^2+x+2$ Analytical : $\frac{d}{dx}f(x)=2x+1=0$ $\frac{d^2}{dx^2}f(x)=2\ (Minima)$
$x=-rac{1}{2}\ (analytical\ solution)$ Gradient Descent Update equation : $x_{init}=4$ $x_{updt}=x_{old}-\lambda(rac{d}{dx}f(x) x=x_{old})$ $x_{updt}=x_{old}-\lambda(2x_{old}+1)$
Gradient Descent Method : Follow the below steps and write your code in the block below 1. Generate x , 1000 data points from -10 to 10 2. Generate and Plot the function $f(x) = x^2 + x + 2$ 3. Initialize the starting point (x_{init}) and learning rate (λ) 4. Use Gradient descent algorithm to compute value of x at which the function $f(x)$ is minimum 5. Also vary the learning rate and initialisation point and plot your observations
<pre># Generating 1000 points from -10 to 10 x = np.linspace(-10,10,1000) # Genrating the plot for f(x) y = x**2 + x + 2 plt.plot(x,y) plt.xlabel('x') plt.ylabel('f(x)') # Initializing the starting point and learning rate x_init = np.random.choice(x) lr = 0.8 # Gradient descent algorithm iter = 1800</pre>
<pre>def loss(x): return (grad(x)**2) def grad(x): return 2*x + 1 def double_diff(x): return 2 # stationary point is minima def grad_desc(x_init,lr,display = False,iter = 1800): x = x_init num = 0 traversed_data = {} if display:</pre>
<pre>while num < iter:</pre>
<pre>def display_obser(): ls_lr = np.linspace(0,1,10) ls_x = np.random.choice(x,size = ls_lr.shape) ls_x = np.array(ls_x) ls_x,ls_lr = np.meshgrid(ls_x,ls_lr) loss_arr = grad_desc(ls_x,ls_lr,True,100) fig = plt.figure() ax = plt.axes(projection = '3d') ax.scatter3D(ls_x,ls_lr,loss_arr,cmap = 'viridis',c = loss_arr) ax.set_xlabel('starting point',linespacing = 3.3) ax.set_ylabel('learning rates',linespacing = 3.2) ax.set_zlabel('loss', linespacing = 3.0) ax.dist = 11 plt.show()</pre>
<pre>print(f'Start points when loss value is greater than 10\n {ls_x[loss_arr > 10]}\n') print(f'learning rates when loss value is greater than 10\n {ls_lr[loss_arr > 10]}') return traversed_data = grad_desc(x_init,lr) key,value = list(traversed_data.keys()),list(traversed_data.values()) plt.plot(key,value,'black') plt.plot(key[-1],value[-1],'rx') plt.show() print(f'Value of x where f(x) takes it\'s minimum value is close to {key[-1]}')</pre>
80 - 40 - 20 - -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Value of x where f(x) takes it's minimum value is close to -0.5 display_obser() 600 500 400 300 loss 200 100 0
Start points when loss value is greater than 10 [-3.03303303 -7.51751752 4.97497497 8.21821822 3.25325325 0.81081081 3.13313313 -1.85185185 -3.03303303 -7.51751752 4.97497497 8.21821822 3.25325325 0.81081081 3.13313313 -1.85185185] learning rates when loss value is greater than 10 [0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1.] Example 2 : $f(x) = xsinx$
Analytical: Find solution analytically Gradient Descent Update equation: Write Gradient descent update equations Gradient Descent Method: Follow the below steps and write your code in the block below 1. Generate x , 1000 data points from -10 to 10 2. Generate and Plot the function $f(x) = x^2 + x + 2$
3. Initialize the starting point (x_{init}) and learning rate (λ) 4. Use Gradient descent algorithm to compute value of x at which the function $f(x)$ is minimum 5. Also vary the learning rate and initialisation point and plot your observations Analytical Solution: $f(x) = x sinx$ $\frac{d}{dx} f(x) = x cosx + sinx = 0$ $\frac{d^2}{dx^2} f(x) = cosx - x sinx + cosx > 0 \; (Minima)$
$f(x)=xsinx=f(-x)$ $f(x)\ is\ symmetric\ and\ has\ infinite\ minima\ and\ For\ x\ in\ the\ range(-10,10)\ we\ have\ 3\ minimas\ at,$ $x=-4.91318\ ,0\ ,4.91318$ Gradient Descent Update Equations: $x_{init}=2$
$x_{updt} = x_{old} - \lambda \left(\frac{d}{dx}f(x) x = x_{old}\right)$ $x_{updt} = x_{old} - \lambda \left(xcosx + sinx\right)$ Gradient Descent Method :
<pre>plt.xlabel('x') plt.ylabel('f(x)') # Initializing the starting point and learning rate x_init = np.random.choice(x) lr = 0.1 # Gradient descent algorithm iter = 1800 def loss(x): return (grad(x) ** 2) * double_diff(x) # double_diff(x) is used to know whether the stationary point def grad(x): return x * np.cos(x) + np.sin(x)</pre>
<pre>def double_diff(x): return 2 * np.cos(x) - x * np.sin(x) # stationary point can be positive or negative def grad_desc(x_init,lr,display = False,iter = 100): x = x_init num = 0 traversed_data = {} if display: while num < iter:</pre>
<pre>while num < iter:</pre>
<pre>fig = plt.figure() ax = plt.axes(projection = '3d') ax.scatter3D(ls_x,ls_lr,loss_arr,cmap = 'viridis',c = loss_arr) ax.set_xlabel('starting point',linespacing = 3.3) ax.set_ylabel('learning rates',linespacing = 3.2) ax.set_zlabel('loss', linespacing = 3.0) ax.dist = 11 plt.show() print(f'Start points when loss value is greater than 200\n {ls_x[loss_arr > 200]}\n') print(f'learning rates when loss value is greater than 200\n {ls_lr[loss_arr > 200]}\n') return traversed_data = grad_desc(x_init,lr) key,value = list(traversed data.keys()),list(traversed data.values())</pre>
plt.plot(key,value,'black') plt.plot(key[-1],value[-1],'rx') plt.show() print(f'One of the local minima\'s to which our Gradient Descent converges is close to {key[-1]}') 8 6 4 2 2 0 1
-2 -4 -6 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 One of the local minima's to which our Gradient Descent converges is close to -4.913180439434884 display_obser()
600 400 200 loss 0 -6 -4 -2 0 starting point 4 6 8 0.0 (2 aming rates)
Start points when loss value is greater than 200 [8.15815816 8.4984985 8.4984985] learning rates when loss value is greater than 200 [0.21052632 0.21052632 0.26315789 0.31578947]
Follow the below steps and write your code in the block below 1. Generate x and y , 1000 data points from -10 to 10 2. Generate and Plot the function $f(x,y) = x^2 + y^2 + 2x + 2y$ 3. Initialize the starting point (x_{init},y_{init}) and learning rate (λ) 4. Use Gradient descent algorithm to compute value of x and y at which the function $f(x,y)$ is minimum 5. Also vary the learning rate and initialisation point and plot your observations #1. Generate x , y 1000 data points from -10 to 10 $x = np$.linspace $(-10, 10, 1000)$
<pre>y = np.linspace(-10,10,1000) #2. Plot the function f(x,y) def f(x,y): return x**2 + y**2 + 2*x + 2*y X,Y = np.meshgrid(x,y) fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_surface(X,Y,f(X,Y)) ax.set_xlabel('x',linespacing = 3.3) ax.set_ylabel('y', linespacing = 3.3) ax.set_zlabel('f(x,y)', linespacing = 3.0) ax.dist = 11 plt.show() #3. Initialize the starting point and learning rate</pre>
<pre>x_init = np.random.choice(x) y_init = np.random.choice(y) lr = 0.1 iter = 1800 #4. Using Gradient Descent def loss(x,y): return (grad_x(x) ** 2) * (grad_y(y) ** 2) def grad_x(x): return 2*x + 2</pre> def grad_y(y): return 2*y + 2
<pre>def double_diff(x,y): return 2,2 # double derivatives w.r.t both x,y are positive. Stationary point can be either saddle def grad_desc_3d(x_init,y_init,lr,display = False,iter = 1800): x = x_init y = y_init num = 0 traversed_data_3d = {} if display: while num < iter:</pre>
<pre>y = y_updt num += 1 return loss(x,y) else: while num < iter: traversed_data_3d[x] = y x_updt = x - (lr * grad_x(x)) y_updt = y - (lr * grad_y(y)) x = x_updt y = y_updt num += 1 return traversed_data_3d</pre> def display obser():
<pre>lr_arr = np.linspace(0,1,20) x_arr = np.random.choice(x,size = lr_arr.shape) y_arr = np.random.choice(y,size = lr_arr.shape) x_arr,y_arr,lr_arr = np.meshgrid(x_arr,y_arr,lr_arr) loss_arr = grad_desc_3d(x_arr,y_arr,lr_arr,True,50) fig = plt.figure() ax = plt.axes(projection = '3d') ax.scatter3D(x_arr,y_arr,loss_arr,cmap = 'viridis',c = lr_arr) ax.set_xlabel('x_coordinate',linespacing = 3.3) ax.set_ylabel('y_coordinate',linespacing = 3.2) ax.set_zlabel('loss', linespacing = 3.0) ax.dist = 11 plt.show()</pre>
<pre>points = np.column_stack((x_arr[loss_arr > 10],y_arr[loss_arr > 10])) print(f'Start points when loss value is greater than 10\n {points}\n') print(f'learning rates when loss value is greater than 10\n {lr_arr[loss_arr > 10]}') return traversed_data_3d = grad_desc_3d(x_init,y_init,lr) fig2 = plt.figure() ax = plt.axes(projection='3d') ax.contour3D(X,Y,f(X,Y),50,cmap = 'viridis') ax.set_xlabel('x',linespacing = 3.3) ax.set_ylabel('y', linespacing = 3.3) ax.set_zlabel('f(x,y)', linespacing = 3.0) ax.dist = 10 plt.show()</pre>
<pre>fig3 = plt.figure() ax = plt.axes() ax.contour(X,Y,f(X,Y),100,cmap = 'viridis') x,y = zip(*traversed_data_3d.items()) ax.plot(x,y,'black') ax.plot(x[-1],y[-1],'rx') plt.show() print(f'\nThe value of x and y at which the function f(x,y) is minimum is close to {x[-1]}, {y[-1]}')</pre>
$ \begin{array}{c} 200 \\ 150 \\ \hline 50 \\ 0 \end{array} $
200 150 5 100 5 50 0 0 100 5 100 6 100 6 1
10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -7.5
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 The value of x and y at which the function f(x,y) is minimum is close to -1.000000000000000, -0.999999999999999999999999999999999999
Start points when loss value is greater than 10 [[-3.42430719 -0.64123796] [-3.42430719 -0.64123796] [-3.42430719 -0.64123796] [-3.42430719 -0.64123796]
[-3.42430719 -0.64123796] [-3.42430719 -0.55154745] [-3.42430719 -0.55154745] [-3.42430719 -0.55154745] [-3.42430719 -0.55154745]] learning rates when loss value is greater than 10 [0. 1. 0. 1. 0. 1. 0. 1.] Example 2: $f(x,y) = xsin(x) + ysin(y)$ Gradient Descent Method:
Follow the below steps and write your code in the block below 1. Generate x and y , 1000 data points from -10 to 10 2. Generate and Plot the function $f(x,y) = xsin(x) + ysin(y)$ 3. Initialize the starting point $(x_{init,y_{init}})$ and learning rate (λ) 4. Use Gradient descent algorithm to compute value of x and y at which the function $f(x,y)$ is minimum 5. Also vary the learning rate and initialisation point and plot your observations #1. Generate x , y 1000 data points from -10 to 10 $x = np.linspace(-10,10,1000)$ $y = np.linspace(-10,10,1000)$ #2. Plot the function $f(x,y)$
<pre>def f(x,y): return x * np.sin(x) + y * np.sin(y) X,Y = np.meshgrid(x,y) fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_surface(X,Y,f(X,Y)) ax.set_xlabel('x',linespacing = 3.3) ax.set_ylabel('y', linespacing = 3.3) ax.set_zlabel('f(x,y)', linespacing = 3.0) ax.dist = 11 plt.show() #3. Initialize the starting point and learning rate x init = np.random.choice(x)</pre>
<pre>y_init = np.random.choice(y) lr = 0.1 iter = 1800 #4. Using Gradient Descent def loss(x,y): return grad_x(x) * grad_y(y) * is_max(x) * check_max(y) def grad_x(x): return x * np.cos(x) + np.sin(x) def grad_y(y): return y * np.cos(y) + np.sin(y)</pre>
<pre>def is_max(x): temp = 2 * np.cos(x) - x * np.sin(x) return 1 if np.all(temp > 0) else -1 def check_max(y): temp = 2 * np.cos(y) - y * np.sin(y) return 1 if np.all(temp > 0) else -1 def grad_desc_3d(x_init,y_init,lr,display = False,iter = 1800): x = x_init y = y_init num = 0 traversed_data_3d = {}</pre>
<pre>if display == True: while num < iter: x_updt = x - (lr * grad_x(x)) y_updt = y - (lr * grad_y(y)) x = x_updt y = y_updt num += 1 return loss(x,y) else: while num < iter: traversed_data_3d[x] = y x_updt = x - (lr * grad_x(x)) y_updt = y - (lr * grad_y(y)) x = x_updt</pre>
<pre>def display_obser():</pre>
<pre>ax.set_xlabel('x_coordinate',linespacing = 3.3) ax.set_ylabel('y_coordinate',linespacing = 3.2) ax.set_zlabel('loss', linespacing = 3.0) ax.dist = 11 plt.show() points = np.column_stack((x_arr[loss_arr > 10],y_arr[loss_arr > 10])) print(f'Start points when loss value is greater than 10\n {points}\n') print(f'learning rates when loss value is greater than 10\n {lr_arr[loss_arr > 10]}') return traversed_data_3d = grad_desc_3d(x_init,y_init,lr)</pre>
<pre>ax = plt.axes(projection='3d') ax.contour3D(X,Y,f(X,Y),50,cmap = 'viridis') ax.set_xlabel('x',linespacing = 3.3) ax.set_ylabel('y', linespacing = 3.3) ax.set_zlabel('f(x,y)', linespacing = 3.0) ax.dist = 11 plt.show() fig3 = plt.figure() ax = plt.axes() ax.contour(X,Y,f(X,Y),100,cmap = 'viridis') x,y = zip(*traversed_data_3d.items()) ax.plot(x,y,'black')</pre>
$\begin{array}{c} -5 \\ -10 \\ -10.07 \cdot 55.02 \cdot 50.0 \cdot 2.5 \cdot 5.0 \cdot 7.5 \cdot 10.0 & -10.70 \\ \hline \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2.5 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
display_obser() 30 20 10 loss 0 -10 -20 -4.0 -4.0 -4.4 -4.4 -4.4 -4.4 -4.4 -4.
-8.0_7.5_7.0_6.5_6.0_5.5_5.0