

${f PHS2223}-{f Introduction}$ à l'optique moderne

Équipe: 04

Expérience 4

Filtrage spatial

Présenté à

Guillaume Sheehy Esmat Zamani

Par:

Émile **Guertin-Picard** (2208363) Laura-Li **Gilbert** (2204234) Tom **Dessauvages** (2133573)

13 novembre 2024 Département de Génie Physique Polytechnique Montréal

Table des matières

1	Introduction]
2	Théorie	1
	2.1 Optique de Fourier]
	2.2 Diffraction	4
	2.2 Diffraction	2
	2.3 Système 4f	2
	2.4 Signaux, images et filtres	2
3	Méthodologie	٩
	3.1 Présentations des montages	•
	3.2 Manipulations	2
4	Hypothèses	4
	4.1 Patron d'échec	4
	4.2 Filtres passe-bas top-hat	(
	4.3 Filtre gaussien	

1 Introduction

Les systèmes optiques peuvent être des parties fondamentales dans le traitement et la transformation des images, permettant d'analyser et de manipuler les composantes optiques de la lumière. Parmi ces systèmes, le système optique à configuration 4f, basé sur le domaine de Fourier, se distingue par son efficacité à isoler, ou supprimer, les fréquences spatiales spécifiques. Dans le cadre de cette expérience, l'objectif est d'utiliser ces systèmes à configuration 4f afin d'appliquer des filtres passe-bas sur une image dans le domaine de Fourier en analysant une série d'images soumises à différents filtres. Pour ce faire, une source lumineuse est envoyée à travers le système optique composé de deux lentilles stratégiquement positionnées, les images sont, ensuite, prises en faisant varier les dimensions des ouvertures et des iris. Ces images permettront d'analyser les résolutions en fonction des dimensions de ces dits paramètres. Le document présent revient sur les étapes importantes de l'expérimentation. Ainsi, les principes physiques et mathématiques sont, d'abord, présentés dans la section *Théorie* suivie par la méthodologie utilisée pour réaliser l'expérience. Ensuite, afin de comparer les résultats expérimentaux qui pourront être obtenus, les hypothèses, développées par un programme Python, sont présentées. Finalement, ces résultats sont illustrés et, par la suite, analysés dans la section *Discussion*.

2 Théorie

Afin de comprendre les différents phénomènes rencontrés lors de cette expérience, cette section présente les principes physiques et mathématiques importants relativement à l'expérimentation.

2.1 Optique de Fourier

L'optique de Fourier, principalement basée sur les idées de convolution, de corrélation spatiale et de transformée de Fourier, est une approche mathématique utilisée pour décrire et analyser la propagation d'ondes lumineuses. Cette méthode considère, contrairement à l'optique géométrique, la nature ondulatoire de la lumière, ainsi la forme de l'onde consiste en une combinaison, ou une superposition, d'ondes planes et, plus précisément, d'ondes sphériques [1]. De cette manière, en plus de la trajectoire de la lumière, l'optique de Fourier permet d'étudier les variations d'amplitude et de phase causées par les phénomènes d'interférence et de diffraction. En appliquant la transformée de Fourier sur les ondes lumineuses, donnée par la formule suivante :

$$\mathcal{F}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx,\tag{1}$$

il est possible de décomposer un champ optique en somme de fréquence spatiales, chacune correspondante à une direction et à une propagation spécifique [2]. L'optique de Fourier est, généralement, utilisée pour la lumière monochromatique, décrite par des amplitudes complexes, et pour un modèle d'onde purement scalaire. Mathématiquement, cette notion se transcrit en commençant avec l'équation d'onde homogène donnée par :

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) u(\mathbf{r}, t) = 0 \tag{2}$$

Où $u(\mathbf{r},t)$ est une fonction d'onde scalaire. En d'autres termes, en considérant une onde lumineuse de fréquence fixe, tel qu'un laser monomode, il est possible d'assumer, à l'aide de la dépendance temporelle des solutions d'onde à la fréquence angulaire, que la fonction d'onde scalaire est donnée par :

$$u(\mathbf{r},t) = \text{Re}\{\psi(\mathbf{r})e^{i\omega t}\}\tag{3}$$

À partir de ces équations ci-dessus et sous certaines conditions, telles que z nul, il est possible d'obtenir une solution générale, pour une fréquence fixe, à l'équation d'ondes homogène, soit une intégrale de la

superposition de l'ensemble des solutions d'ondes planes [3].

$$\psi(x,y,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_0(k_x, k_y) e^{i(k_x x + k_y y)} dk_x dk_y \tag{4}$$

Correspondant simplement à une relation de transformée de Fourier entre le champ et les composantes de l'ondes. Ainsi, la transformation de Fourier permet de passer de la description spatiale d'un champ lumineux à sa description dans le domaine fréquentiel.

2.2 Diffraction

La diffraction est un phénomène physique correspondant à une interférence, ou une diffusion, des ondes autour des points d'une ouverture [4]. En optique, deux types de diffraction peuvent être observés : la diffraction de Fresnel et la diffraction de Fraunhofer. Dans le cas de Fresnel, ce type de diffraction survient lorsque la source, ou le plan image, est relativement près de le l'ouverture, c'est-à-dire en champ proche. La diffraction de Fraunhofer, pour sa part, se produit lorsque la source de lumière et le plan image sont suffisamment distancés de l'objet afin que les ondes puissent être considérées comme parallèles [5].

2.2.1 Approximation de Fraunhofer

L'approximation de Fraunhofer correspond à une simplification mathématique de la diffraction pour les champs lointains. Cette approximation permet d'analyser les patrons de diffraction produits par les objets diffractants, en décrivant les ondes lumineuses comme planes après le passage de l'objet. Mathématiquement, cette approximation peut se traduire de la manière suivante :

$$U(x,y,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(x',y')e^{-i(f_xx'+f_yy')}dx'dy'$$

$$\tag{5}$$

En optique, cette équation, l'équation de diffraction de Fraunhofer, est utilisée afin d'obtenir directement le motif de diffraction en fonction de sa transformée de Fourier [6].

2.3 Système 4f

Les systèmes optiques à configuration 4f sont des systèmes utilisant l'optique de Fourier. Ces systèmes de deux lentilles sont couramment utilisés pour manipuler les fréquences spatiales d'une image en exploitant la transformée de Fourier des objets des plans focaux. La configuration 4F comprend un plan objet, situé à une distance de la première lentille égale à la focale de cette dite lentille, et un plan image, situé à une distance focale derrière la seconde lentille. Les deux lentilles sont séparées par le plan de Fourier, où l'objet subit une transformée de Fourier [7]. Ce dernier se situe à la distance focale des deux lentilles, soit entre les deux.

Le fonctionnement de ce type de configuration repose sur le principe de la transformée de Fourier. En effet, la première lentille transforme l'objet en une image de Fourier, c'est-à-dire que celle-ci est décomposée en composante de fréquence spatiale. Dans le plan de Fourier, où il est possible d'ajouter des filtres optiques, l'image transmise par la première lentille subit une transformée de Fourier. Cette transformée est, ensuite, transmise à la seconde lentille qui, par la transformée inverse, reconstitue l'image de l'objet. Cette image est, finalement, transmise au plan image afin d'être observée [8].

2.4 Signaux, images et filtres

Tel que mentionné dans la section 2.1, l'optique de Fourier permet de passer au domaine fréquentiel spatial. De cette manière, les signaux, en optique de Fourier, correspondent à des distributions d'intensité

Rapport préliminaire

lumineuses, ou phasiques, en fonction de la fréquence spatiale. Les images, produites par le traitement des signaux, sont alors représentées en termes de ces fréquences spatiales.

Avec cette notion spatiale, les filtres, permettant la sélection de certaines composantes du spectre de fréquence, peuvent être utilisés afin de manipuler l'information fréquentielle contenue dans les images, que ce soit en atténuant le bruit, en choisissant certaines fréquences, ou en accentuant les bords [9]. Les filtres utilisés peuvent être de trois types différents : passe-bas, passe-haut et passe-bande. Par exemple, dans l'expérience réalisée, un filtre passe-bas top-hat (haut-de-forme) est utilisé, c'est-à-dire que les seules fréquences pouvant passer sont les basses fréquences spatiales jusqu'à une certaine coupure. Un autre filtre utilisé est le filtre gaussien qui, dans son cas, permet d'atténuer progressivement les hautes fréquences spatiales suivant une distribution gaussienne. Ces filtres sont généralisables en 2D, où le top-hat est un disque sur l'espace de Fourier 2D qui laisse passer ou non les fréquences. La gaussienne, quant à elle, prend l'apparence d'une cloche.

3 Méthodologie

Cette section présente la procédure générale pour l'expérience.

3.1 Présentations des montages

La méthodologie de ce laboratoire a pour but d'appliquer un filtre passe-bas à une image dans le domaine de Fourier, grâce à l'utilisation d'un système 4f. La figure 1 présente le montage utilisé pour y parvenir :

Figure 1 : Montage utilisé lors du laboratoire [10].

Ce montage est constitué d'une source de lumière focalisée sur un sténopé à l'aide d'un objectif de microscope afin de produire un profil d'intensité gaussien. Ce profil est ensuite envoyé au travers d'une image acétate à l'aide d'une lentille convergente f_1 permettant d'en ajuster les dimensions. Il ne faut ni que le profil soit trop petit par rapport à l'acétate, ni qu'il soit trop gros. Une fois l'image formée, elle est transmise à la caméra par l'intermédiaire d'un système 4f composé de deux lentilles convergentes, f_2 et f_3 , permettant de passer dans le domaine de Fourier. Les lentilles composants ce système n'ont, à l'inverse d'un système 4F classique, pas les mêmes distances focales. Celle de f_3 , par exemple, permet de modifier le grossissement de l'image vue par la camera exactement comme f_1 vis-à-vis de l'acétate. Les différentes lentilles utilisées lors de ce laboratoire sont :

- 1. $f_1 = 30 \text{ cm}, \phi_1 = 2$ "
- 2. $f_2 = 50 \text{ cm}, \phi_2 = 2$ "
- 3. $f_3 = 10 \text{ cm}, \phi_3 = 1$ "

3.2 Manipulations

Une fois le système monté, les manipulations à effectuer consistent à placer une image (acétate) sur le plan de Fourier et faire varier l'ouverture du sténopé de la façon suivante :

- 1. Ouverture complète
- 2. Ouverture limitée afin de faire disparaître les rayures verticales
- 3. Ouverture minimum

Cela correspond donc à 3 images. La dernière manipulation du laboratoire consiste à prendre 10 images d'une cible de résolution placée à deux positions différentes. Le tableau 1 présente les différents paramètres utilisés pour la prise des 10 images de la cible de résolution.

Paramètres	Position 1	Position 2
Nb bandes visibles	1 à 7	8 à 14
Ouvertures (mm)	1, 2, 4	3, 4, 5, 6, 7, 9, 16, 25

Table 1 – Tableau des paramètres utilisés pour la prise des 10 images

Pour l'entièreté des images, les paramètres à utiliser sur le logiciel Thorcam de la caméra sont :

- 1. Frame rate \rightarrow max
- 2. Gain \rightarrow auto
- 3. Gainboost \rightarrow on
- 4. White balance \rightarrow auto

Une période de temps sera aussi allouée à la prise de conscience de l'application du phénomène de façon concrète.

4 Hypothèses

Afin de mieux comprendre et prédire ce qui sera vu avec les montages présentés précédemment, il est possible d'émettre quelques hypothèses en lien avec l'application de filtres sur des images. Cette section présente donc le filtrage et l'analyse d'images de référence disponible dans le répertoire du cours.

4.1 Patron d'échec

La première image filtrée est un simple patron d'échec. Pour appliquer un filtre, la transformée de Fourier de l'image est prise, telle qu'affichée à la figure 2 :

Figure 2 : Affichage du patron d'échec original et de sa transformée de fourier

Pour enlever les oscillations en \hat{y} , la fonction fenêtre de la figure 3, qui agit comme filtre passe-bande, est appliquée sur la transformée de Fourier :

Figure 3 : Filtre utilisé pour enlever les oscillations en \hat{y} et son applications sur la transformée de Fourier

Enfin, la transformée inverse sur l'application du filtre donne le patron d'échec avec toutes les orcillations en \hat{y} filtrées, tel que montré à la figure 4 :

Figure 4 : Comparaison entre le patron d'échec initial et filtré

4.2 Filtres passe-bas top-hat

La seconde image filtrée est celle du chat Marvin. Il est possible de la voir ainsi que sa transformée de Fourier à la figure 5. Ensuite, des filtres passe-bas top hat sont définis aussi comme des fenêtres, mais circulaires. Il est possible de voir ces filtres et leurs applications aux figures 6, 7 et 8 pour $f_c = 50,75,100$ respectivement.

Figure 5 : Image originale de Marvin et de sa transformée de Fourier

Figure 6 : Filtre passe-bas top-hat à $f_c=50~{\rm pixels^{-1}}$ appliqué sur l'image de Marvin

Figure 7 : Filtre passe-bas top-hat à $f_c=75~{\rm pixels^{-1}}$ appliqué sur l'image de Marvin

Figure 8 : Filtre passe-bas top-hat à $f_c = 100 \text{ pixels}^{-1}$ appliqué sur l'image de Marvin

Pour les trois figures précédentes, un zoom est aussi fait sur l'oreille gauche de Marvin. Il est possible d'y observer une sorte d'onde qui fait le contour de l'oreille et du reste de la tête. Cet effet est plus prononcé pour les filtres de plus basses fréquences. Cela fait en sorte que l'image filtrée la plus claire est celle avec la fréquence de coupure la plus haute, soit $f_c = 100$ pixels⁻¹ à la figure 8. Il est donc possible d'émettre l'hypothèse que, lors des manipulations, la qualité de l'image filtrée augmentera avec l'ouverture de l'iris, qagissant comme le filtre passe-bas top hat ici. L'effet ondulatoire sera discuté plus loin.

4.3 Filtre gaussien

Enfin, la figure 9 montre l'application d'un filtre gaussien, où la fréquence de coupure $f_c = 50$ pixels⁻¹ est définie comme l'écart-type de cette gaussienne :

$$f(x) = e^{\frac{-(x-\mu)^2}{2f_c^2}} \tag{6}$$

où μ est la position au centre de l'image. Cela donne :

Figure 9 : Filtre gaussien à $f_c = 50$ pixels⁻¹ appliqué sur l'image de Marvin

Le résultat est une image très peu floutée, et, en regardant le zoom sur l'oreille, les ondes sont disparues. Le filtre gaussien est donc idéal pour ce cas. Pour expliquer pourquoi le filtre gaussien ne présente pas les ondes, il est bon de se pencher à nouveau sur le filtre top-hat. Ce dernier est essentiellement une fonction rectangle. Sa transformée de fourier est connue comme étant une fonction sinc :

Figure 10 : Représentation de la fonction sinc

Les ondes observées près des contours sont donc un symptôme de la transformée de Fourier inverse de la fonction rectangle, qui est aussi un sinus cardinal. Les changements drastiques d'intensité voient donc les propriétés du sinc apparaître, notamment les oscillations autour de $\frac{\sin(x)}{x} = 0$ pour x éloigné de 0 à la figure 10. C'est l'origine des "ondes" bien visibles près des oreilles de Marvin aux figures 6, 7 et 8. Quant au filtre gaussien, étant donné qu'une fonction gaussienne est lisse et que sa transformée de Fourier est connue comme étant une autre gaussienne, aucun changement "drastique" ni d'apparence ondulatoire n'est perceptible après le filtrage.

Références

- [1] Rüdiger Paschotta. Fourier optics, 2024. URL https://www.rp-photonics.com/fourier_optics. html.
- [2] Fourier Optics an overview, 2024. URL https://www.sciencedirect.com/topics/physics-and-astronomy/fourier-optics.
- [3] Fourier optics, 2024. URL https://en.wikipedia.org/w/index.php?title=Fourier_optics&oldid=1225371475. Page Version ID: 1225371475.
- [4] Mortimer Abramowitz and Michael W. Davidson. Diffraction de la lumière, 2024. URL https://www.olympus-lifescience.com/fr/microscope-resource/primer/lightandcolor/diffraction/.
- [5] Tigran Petrosyan. Fourier Optics, 2024. URL https://www.physik.unibe.ch/e41821/e41822/e140946/e148625/e270487/files473928/FourierOptics_ger.pdf.
- [6] Fresnel and Fraunhofer Approximations, 2022. URL https://phys.libretexts.org/Bookshelves/Optics/BSc_Optics_(Konijnenberg_Adam_and_Urbach)/06%3A_Scalar_diffraction_optics/6. 07%3A_Fresnel_and_Fraunhofer_Approximations.
- [7] Victor Argueta. Deciphering 4f Optical Systems: A Journey into Fourier Optics, 2024. URL https://www.opticsforhire.com/blog/4f-optical-system-fourier-optics/. Section: optics definitions.
- [8] Fourier optics 4f Arrangement Filtering and reconstruction, 2012. URL https://www.nikhef.nl/~h73/kn1c/praktikum/phywe/LEP/Experim/2_6_12.pdf.
- [9] Fourier optics and spatial filtering, 2024. URL https://library.fiveable.me/optical-computing/unit-4/fourier-optics-spatial-filtering/study-guide/cGhLAP7EssS8bwjb.
- [10] Guillaume Sheehy, Fabien Picot, Tien Nguyen, and Esmat Zamani. Expérience 4 : Filtrage spatial, September 2024.