TABLE D/3 Properties of Plane Figures

Figure	Centroid	Area Moments of Inertia
Arc Segment $\alpha = C$	$\bar{r} = \frac{r \sin \alpha}{\alpha}$	_
Quarter and Semicircular Arcs $C \bullet \qquad $	$\overline{y} = \frac{2r}{\pi}$	_
Circular Area	_	$I_x = I_y = rac{\pi r^4}{4}$ $I_z = rac{\pi r^4}{2}$
Semicircular Area r $\frac{\downarrow C}{\downarrow \frac{h}{y}}$ $-x$	$\overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{8}$ $\bar{I}_x = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^4$ $I_z = \frac{\pi r^4}{4}$
Quarter-Circular Area r $\overline{\overline{y}}$ \overline{y} $-x$	$\bar{x} = \bar{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{16}$ $\bar{I}_x = \bar{I}_y = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right)r^4$ $I_z = \frac{\pi r^4}{8}$
Area of Circular Sector $x \to 0$ $x \to 0$ $x \to 0$ $x \to 0$	$\bar{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha}$	$I_x = \frac{r^4}{4} \left(\alpha - \frac{1}{2} \sin 2\alpha \right)$ $I_y = \frac{r^4}{4} \left(\alpha + \frac{1}{2} \sin 2\alpha \right)$ $I_z = \frac{1}{2} r^4 \alpha$

TABLE D/3 Properties of Plane Figures Continued

Figure	Centroid	Area Moments of Inertia
Rectangular Area $ \begin{array}{c c} y_0 \\ \hline & C \\ \hline & b \\ \hline & -x \end{array} $	_	$I_x = \frac{bh^3}{3}$ $\bar{I}_x = \frac{bh^3}{12}$ $\bar{I}_z = \frac{bh}{12} (b^2 + h^2)$
Triangular Area $ \begin{array}{c} & & & & \\ & y & & \\ \hline y & \overline{x} & C \\ & & \downarrow \\ \hline & & b \end{array} $	$\bar{x} = \frac{a+b}{3}$ $\bar{y} = \frac{h}{3}$	$I_x = rac{bh^3}{12}$ $ar{I}_x = rac{bh^3}{36}$ $I_{x_1} = rac{bh^3}{4}$
Area of Elliptical Quadrant $b = \overline{x} + C$ $a = -x$	$\bar{x} = \frac{4a}{3\pi}$ $\bar{y} = \frac{4b}{3\pi}$	$I_{x} = \frac{\pi a b^{3}}{16}, \bar{I}_{x} = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a b^{3}$ $I_{y} = \frac{\pi a^{3} b}{16}, \bar{I}_{y} = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a^{3} b$ $I_{z} = \frac{\pi a b}{16} (a^{2} + b^{2})$
Subparabolic Area $y = kx^{2} = \frac{b}{a^{2}}x^{2}$ Area $A = \frac{ab}{3}$ \overline{x} \overline{x} \overline{y} \overline{x} \overline{y} $-x$	$\bar{x} = \frac{3a}{4}$ $\bar{y} = \frac{3b}{10}$	$I_x = \frac{ab^3}{21}$ $I_y = \frac{a^3b}{5}$ $I_z = ab\left(\frac{a^2}{5} + \frac{b^2}{21}\right)$
Parabolic Area $y = kx^2 = \frac{b}{a^2}x^2$ Area $A = \frac{2ab}{3}$ b \overline{x} \overline{y}		$I_x = \frac{2ab^3}{7}$ $I_y = \frac{2a^3b}{15}$ $I_z = 2ab\left(\frac{a^2}{15} + \frac{b^2}{7}\right)$

TABLE D/4 Properties of Homogeneous Solids

(m = mass of body shown)

Body	Mass Center	Mass Moments of Inertia
$z = \frac{l}{2}$ $z = \frac{l}{2}$ $z = \frac{l}{2}$ Circular Cylindrical Shell	_	$I_{xx} = \frac{1}{2}mr^2 + \frac{1}{12}ml^2$ $I_{x_1x_1} = \frac{1}{2}mr^2 + \frac{1}{3}ml^2$ $I_{zz} = mr^2$
$z = \frac{l}{2}$ $z = \frac{l}{2}$ $y_1 = y$ $x_1 = \frac{l}{2}$ Half Cylindrical Shell	$\overline{x} = \frac{2r}{\pi}$	$I_{xx} = I_{yy}$ $= \frac{1}{2}mr^2 + \frac{1}{12}ml^2$ $I_{x_1x_1} = I_{y_1y_1}$ $= \frac{1}{2}mr^2 + \frac{1}{3}ml^2$ $I_{zz} = mr^2$ $\bar{I}_{zz} = \left(1 - \frac{4}{\pi^2}\right)mr^2$
$ \begin{array}{c c} & l \\ \hline & l \\ & l \\ \hline & l \\ \hline & l \\ & l \\ & l \\ \hline & l \\ & l $	_	$I_{xx} = \frac{1}{4}mr^2 + \frac{1}{12}ml^2$ $I_{x_1x_1} = \frac{1}{4}mr^2 + \frac{1}{3}ml^2$ $I_{zz} = \frac{1}{2}mr^2$
$z = \frac{l}{2}$ $z = \frac{l}{2}$ Semicylinder x_1	$\bar{x} = \frac{4r}{3\pi}$	$I_{xx} = I_{yy}$ $= \frac{1}{4}mr^2 + \frac{1}{12}ml^2$ $I_{x_1x_1} = I_{y_1y_1}$ $= \frac{1}{4}mr^2 + \frac{1}{3}ml^2$ $I_{zz} = \frac{1}{2}mr^2$ $\bar{I}_{zz} = \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)mr^2$
$ \begin{array}{c c} & \frac{l}{2} & \frac{l}{2} \\ \hline & Rectangular \\ & Parallelepiped \end{array} $	_	$I_{xx} = \frac{1}{12}m(a^2 + l^2)$ $I_{yy} = \frac{1}{12}m(b^2 + l^2)$ $I_{zz} = \frac{1}{12}m(a^2 + b^2)$ $I_{y_1y_1} = \frac{1}{12}mb^2 + \frac{1}{3}ml^2$ $I_{y_2y_2} = \frac{1}{3}m(b^2 + l^2)$

TABLE D/4 Properties of Homogeneous Solids Continued

(m = mass of body shown)

Dody	Mass Center	Mass Moments of Inertia
Body Spherical Shell	mass Center	$I_{zz} = \frac{2}{3}mr^2$
z — G Hemispherical Shell	$\bar{x} = \frac{r}{2}$	$I_{xx} = I_{yy} = I_{zz} = \frac{2}{3}mr^2$ $\bar{I}_{yy} = \bar{I}_{zz} = \frac{5}{12}mr^2$
sphere Sphere	_	$I_{zz} = \frac{2}{5} mr^2$
z G	$\bar{x} = \frac{3r}{8}$	$I_{xx} = I_{yy} = I_{zz} = \frac{2}{5}mr^2$ $\bar{I}_{yy} = \bar{I}_{zz} = \frac{83}{320}mr^2$
$\frac{l}{2} + \frac{l}{2}$ Uniform Slender Rod	_	$I_{yy} = rac{1}{12} m l^2$ $I_{y_1 y_1} = rac{1}{3} m l^2$

TABLE D/4 Properties of Homogeneous Solids Continued

(m = mass of body shown)

Body		Mass Center	Mass Moments of Inertia
$y - \frac{\overline{y}}{\overline{x}} \overline{G} $	Quarter- Circular Rod	$\bar{x} = \bar{y}$ $= \frac{2r}{\pi}$	$I_{xx}=I_{yy}=rac{1}{2}mr^2$ $I_{zz}=mr^2$
$ \begin{array}{c c} & \frac{l}{2} & \frac{l}{2} \\ \hline & \frac{l}{2} & \frac{l}{2} \\ \hline & y_1 & y \\ & x & y_1 \end{array} $	Elliptical Cylinder	_	$I_{xx} = \frac{1}{4}ma^2 + \frac{1}{12}ml^2$ $I_{yy} = \frac{1}{4}mb^2 + \frac{1}{12}ml^2$ $I_{zz} = \frac{1}{4}m(a^2 + b^2)$ $I_{y_1y_1} = \frac{1}{4}mb^2 + \frac{1}{3}ml^2$
z y_1	Conical Shell	$\bar{z} = \frac{2h}{3}$	$I_{yy} = \frac{1}{4}mr^2 + \frac{1}{2}mh^2$ $I_{y_1y_1} = \frac{1}{4}mr^2 + \frac{1}{6}mh^2$ $I_{zz} = \frac{1}{2}mr^2$ $\bar{I}_{yy} = \frac{1}{4}mr^2 + \frac{1}{18}mh^2$
z x_1 y_1 y	Half Conical Shell	$\bar{x} = \frac{4r}{3\pi}$ $\bar{z} = \frac{2h}{3}$	$I_{xx} = I_{yy}$ $= \frac{1}{4}mr^2 + \frac{1}{2}mh^2$ $I_{x_1x_1} = I_{y_1y_1}$ $= \frac{1}{4}mr^2 + \frac{1}{6}mh^2$ $I_{zz} = \frac{1}{2}mr^2$ $\bar{I}_{zz} = \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)mr^2$
	Right Circular Cone	$\overline{z} = \frac{3h}{4}$	$I_{yy} = \frac{3}{20}mr^2 + \frac{3}{5}mh^2$ $I_{y_1y_1} = \frac{3}{20}mr^2 + \frac{1}{10}mh^2$ $I_{zz} = \frac{3}{10}mr^2$ $\bar{I}_{yy} = \frac{3}{20}mr^2 + \frac{3}{80}mh^2$

TABLE D/4 Properties of Homogeneous Solids Continued

(m = mass of body shown)

Body	Mass Center	Mass Moments of Inertia
z r y_1 y_1 y Half Cone	$\bar{x} = \frac{r}{\pi}$ $\bar{z} = \frac{3h}{4}$	$\begin{split} I_{xx} &= I_{yy} \\ &= \frac{3}{20} m r^2 + \frac{3}{5} m h^2 \\ I_{x_1 x_1} &= I_{y_1 y_1} \\ &= \frac{3}{20} m r^2 + \frac{1}{10} m h^2 \\ I_{zz} &= \frac{3}{10} m r^2 \\ \bar{I}_{zz} &= \left(\frac{3}{10} - \frac{1}{\pi^2}\right) m r^2 \end{split}$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ g Semiellipso		$\begin{split} I_{xx} &= \frac{1}{5}m(b^2 + c^2) \\ I_{yy} &= \frac{1}{5}m(a^2 + c^2) \\ I_{zz} &= \frac{1}{5}m(a^2 + b^2) \\ \bar{I}_{xx} &= \frac{1}{5}m\bigg(b^2 + \frac{19}{64}c^2\bigg) \\ \bar{I}_{yy} &= \frac{1}{5}m\bigg(a^2 + \frac{19}{64}c^2\bigg) \end{split}$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$ $\frac{b}{a}$ Elliptic Paraboloid	$\bar{z} = \frac{2c}{3}$	$I_{xx} = \frac{1}{6}mb^2 + \frac{1}{2}mc^2$ $I_{yy} = \frac{1}{6}ma^2 + \frac{1}{2}mc^2$ $I_{zz} = \frac{1}{6}m(a^2 + b^2)$ $\bar{I}_{xx} = \frac{1}{6}m\left(b^2 + \frac{1}{3}c^2\right)$ $\bar{I}_{yy} = \frac{1}{6}m\left(a^2 + \frac{1}{3}c^2\right)$
z C Rectangula Tetrahedron		$\begin{split} I_{xx} &= \frac{1}{10} m(b^2 + c^2) \\ I_{yy} &= \frac{1}{10} m(a^2 + c^2) \\ I_{zz} &= \frac{1}{10} m(a^2 + b^2) \\ \bar{I}_{xx} &= \frac{3}{80} m(b^2 + c^2) \\ \bar{I}_{yy} &= \frac{3}{80} m(a^2 + c^2) \\ \bar{I}_{zz} &= \frac{3}{80} m(a^2 + b^2) \end{split}$
Half Torus -R	$\bar{x} = \frac{a^2 + 4R^2}{2\pi R}$	$I_{xx} = I_{yy} = \frac{1}{2}mR^2 + \frac{5}{8}ma^2$ $I_{zz} = mR^2 + \frac{3}{4}ma^2$