

Prof. Luiz F Ferreira

Aula 2

Sumário

- Curvas de Transferência
- Margens de Ruído
- Chaves Controladas & Inversores

Características Elétricas - Chaves - transistores TJB -

Prof. Luiz F Ferreira

V_{IN} 'alto' (nível '1') Chave 'on' (ligada) Resistência baixa entre V_C e V_E

Liga com V_{IN} "alto" (V_{BE} ≈ 0.7V) (nível '1') V_{IN} 'baixo' (nível '0') Chave 'off' (desligada) Resistência alta entre V_C e V_E

Desliga com V_{IN} "baixo" (nível '0')

Características Elétricas - Chaves - transistores TJB -

Prof. Luiz F Ferreira

V_{IN} 'baixo' (nível '0') Chave 'on' (ligada) Resistência baixa entre V_E e V_C

 $V_{\rm IN}$ 'alto' (nível '1') Chave 'off' (desligada) Resistência alta entre $V_{\rm E}$ e $V_{\rm C}$

(nível '0')

Liga com V_{IN} "baixo" (V_{EB} ≈ 0.7V)

Desliga com V_{IN} "alto" (nível '1')

Características Elétricas - Chaves - transistores TJB -

Prof. Luiz F Ferreira

Chave controlada c/ Transistor NPN

Chave controlada c/ Transistor PNP

- Liga com V_{IN} "alto" (V_{BE} ≈ 0.7V) (nível '1')
- Desliga com V_{IN} "baixo" (nível '0')

- Liga com V_{IN} "baixo" (V_{EB} ≈ 0.7V) (nível '0')
- Desliga com V_{IN} "alto" (nível '1')

Características Elétricas - Inversor c/ TJB - exemplo

Resistências + NPN

Prof. Luiz F Ferreira

Nível 'alto' ('H' ou '1') em V_{OUT}

> Rch >> R → V_{OUT} ≈ +Vcc ('1')

Características Elétricas - Inversor c/ TJB - exemplo

Prof. Luiz | Ferreira

Resistências + NPN

Nível 'baixo' ('L' ou '0') em V_{OUT}

 $ightharpoonup \text{Rch} << \text{R} \rightarrow \text{V}_{\text{OUT}} \approx 0 \text{ (GND) ('0')}$

Características Elétricas - Chaves - transistores MOS -

Prof. Luiz Ferreira

NMOS

PMOS

- Liga com V_G "alto" (V_{GS} > V_T) (nível '1')
- Liga com V_G "baixo" (| V_{GS} | > | V_T |) (nível '0')

Obs: V_B (tensão do substrato) foi omitida por simplicidade

Características Elétricas - Inversores MOS - exemplos

Resistência + NMOS

NMOS + PMOS = CMOS

Prof. Luiz F Ferreira

Obs: V_B (tensão do substrato) foi omitida por simplicidade

Características Elétricas - Inversores MOS - exemplos

Resistência + NMOS

NMOS + PMOS = CMOS

Prof. Luiz F Ferreira

Obs: V_B omitido por simplicidade

Características Elétricas - Inversores MOS - exemplos

Resistência + NMOS

NMOS + PMOS = CMOS

Prof. Luiz F Ferreira

Obs: V_B omitido por simplicidade

Características Elétricas - Chaves - transistores MOS -

Prof. Luiz F Ferreira

Chave NMOS liga 'ON' c/ Vi em Nível alto 'H' Chave PMOS liga 'ON' c/ Vi em Nível baixo 'L'

Símbolo Padrão Símbolo Equivalente

Símbolo Padrão

Símbolo Equivalente

Características Elétricas - Inversores NMOS e PMOS -

Prof. Luiz F Ferreira

Inversores

a) R + chave NMOS

b) R + chave PMOS

Características Elétricas - Inversores NMOS e PMOS -

Prof. Luiz F Ferreira

Inversores

a) R + chave NMOS

b) R + chave PMOS

Características Elétricas - Inversores CMOS -

Prof. Luiz F Ferreira

Inversor CMOS

c) chave NMOS + chave PMOS

Características Elétricas - Inversores CMOS -

Prof. Luiz F Ferreira

Inversor CMOS

c) chave NMOS + chave PMOS

Características Elétricas

Inversor - Curva de Transferência

ENG 04075 - EL. DIGITAL I - AULA 2

Prof. Luiz F Ferreira

Margens de Ruído – "Noise Margins"

Prof. Luiz F Ferreira

- Tecnologia com tensão máxima V_{max} e tensão mínima V_{min}
 - NM_H = V_{OH} V_{IH} => Margem de Ruído de Nível 'alto')
 - NM_L = V_{IL} V_{OL} => Margem de Ruído de Nível 'baixo')

Margens de Ruído

> Tecnologia TTL com tensão máxima 5V e tensão mínima 0V

$$\rightarrow$$
 NM_H = 3.8 - 2 = 1.8V

$$>$$
 NM_L = 0.7 - 0.1 = 0.6V

Margens de Ruído

> Tecnologia CMOS com tensão máxima Vcc e tensão mínima 0V

Prof. Luiz Ferreira

- \triangleright NM_H = Vcc 0.7Vcc = 0.3Vcc
- $> NM_L = 0.3Vcc 0 = 0.3Vcc$

Margens de Ruído

> Tecnologia CMOS com tensão máxima 5V e tensão mínima 0V

Prof. Luiz F Ferreira

$$>$$
 NM_H = 5 - 3.5 = 1.5V

$$\rightarrow$$
 NM_L = 1.5 - 0 = 1.5V

ENG 04075 - EL. DIGITAL I - AULA 3

27/440/20

Prof. Luiz F Ferreira

Características Elétricas

Propagação do Sinal

Prof. Luiz F Ferreira

Definições

t_p => Tempo de propagação

t_f => Tempo de descida ('fall')

t_r => Tempo subida ('rise')

 t_{pHL} => Tempo de prop. 'H' p/ 'L'

 t_{pLH} => Tempo de prop. 'L' p/ 'H'