Lecture 14

Sinc, rectangle, modulation and convolution

Preview of today's lecture

- Practical implications of the sinc and rect functions
 - → Connection between the sinc function and ideal lowpass filters
 - → Application of sinc in communication systems
- ◆ Communication systems
 - → Summarize some key principles of communication systems
 - ★ Explain the role of the modulation property
- Convolution property
 - → Convolution in time is multiplication in frequency
 - → Use this fact to compute convolutions with less work!

Summarizing the Fourier transform and its inverse

Fourier transform (analysis)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse Fourier transform (synthesis)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$x(t) \leftrightarrow X(j\omega)$$

(more pairs in the book)

Basic Fourier transform pairs 1/3

	Time domain $x(t)$	Frequency domain $X(j \ \omega)$
Delta	$\delta(t)$	1
Constant	$\frac{1}{2\pi}$	$\delta(\omega)$
Complex sinusoid	$rac{e^{j\omega_0t}}{2\pi}$	$\delta(\omega-\omega_0)$
Causal exponential	$e^{-at}u(t)$ $\operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$

(more pairs in the book)

Basic Fourier transform pairs 2/3

	Time domain $x(t)$	Frequency domain $X(j \ \omega)$
Cosine	$\cos \omega_0 t$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$
Sine	$\sin \omega_0 t$	$\pi j(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
Periodic signal w/ period T	x(t)	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$

(more pairs in the book)

Basic Fourier transform pairs 3/3

	Time domain $x(t)$	Frequency domain $X(j \omega)$
Rectangle	rect(t)	$\frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}} = \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$
Scaled rectangle	$\operatorname{rect}\left(\frac{t}{2T_1}\right)$	$2\frac{\sin(\omega T_1)}{\omega} = 2T_1 \operatorname{sinc}\left(\frac{\omega T_1}{\pi}\right)$
Sinc	$\operatorname{sinc}(t)$	$\operatorname{rect}\left(\frac{\omega}{2\pi}\right)$
Scaled sinc	$\frac{B}{2\pi}\mathrm{sinc}\left(\frac{Bt}{2\pi}\right)$	$\operatorname{rect}\left(\frac{\omega}{B}\right)$

Fourier transform properties $\mathbf{I} \ x(t) \overset{\mathcal{F}}{\longleftrightarrow} X(j\omega) \ y(t) \overset{\mathcal{F}}{\longleftrightarrow} Y(j\omega)$

	Time domain	Fourier transform
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Differentiation	$\frac{dx}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(j\omega)$

Fourier transform properties 2 $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

	Time domain	Fourier transform
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Frequency scaling	$\frac{1}{ b }x\left(\frac{t}{b}\right)$	$X(jb\omega)$
Frequency shifting	$x(t)e^{j\omega_0t}$	$X(j(\omega-\omega_0))$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2^2}$	$\frac{1}{\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

Fourier transform properties 3

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega) \quad y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(j\omega)$$

 $h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H(j\omega)$

	Time domain	Fourier transform
Convolution in time	y(t) = h(t) * x(t)	$Y(j\omega) = H(j\omega)X(j\omega)$
Multiplication in time	y(t) = h(t)x(t)	$Y(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\theta) X(j(\omega - \theta)) d\theta$

Summarizing symmetry

- Key symmetry equation relates real, imaginary, even, and odd in the time and frequency domains
- ◆ Can determine signal characteristics in one domain by inspecting the other domain

Connections back to ECE 45

Lectures 2 - 3 working with signals

Lectures 4 - 7 LTI systems in the time domain

Lectures 11, 17 LTI systems in the frequency domain

Lectures 8 - 10 Fourier series

Lectures II - 16 Fourier transform

Practical implications of the sinc and rect functions

Key points

- Explain the connection between the sinc function and ideal lowpass filters
- Explain the application of sinc in communication systems

Sinc function

Maximum value of I, i.e. sinc(0) = 1

Zero crossings at +/-1, +/- 2,

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

Be aware, sometimes sinc is defined like this

$$\operatorname{sinc}(t) = \frac{\sin(t)}{t}$$

Rect function

Maximum value of I, i.e.

$$\mathrm{rect}(x) = egin{cases} 1, & |x| < rac{1}{2} \ 0, & |x| > rac{1}{2} \end{cases}$$

Goes to zero at +/- I/2

Rect - Sinc Fourier transform pair

Aside: if using Hertz instead of radians/s

$$\frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}} = \frac{\sin\frac{2\pi f}{2}}{\frac{2\pi f}{2}} = \mathrm{sinc}(f), \quad f \text{ in Hz}$$

Sinc - Rect Fourier transform pair

Zero crossings at +/-1, +/- 2,

$$\operatorname{sinc}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{rect}\left(\frac{\omega}{2\pi}\right)$$

Connection to low pass filter design

◆ Consider an ideal lowpass filter with bandwidth W

$$X(j\omega) = \begin{cases} 1 & |\omega| \le W \\ 0 & |\omega| > W \end{cases}$$

$$\operatorname{sinc}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{rect}\left(\frac{\omega}{2\pi}\right)$$
 pair

$$\frac{1}{|b|}x\left(\frac{t}{b}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jb\omega) \qquad \text{scaling}$$

$$\frac{2W}{2\pi}x\left(t\frac{2W}{2\pi}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(j\omega\frac{2\pi}{2W}\right) \text{ substitute}$$

$$\frac{W}{\pi} \operatorname{sinc}\left(\frac{tW}{\pi}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{rect}\left(\frac{\omega}{2W}\right)$$
 simplify

 $X(j\omega) = \text{rect}(\omega/2W)$

Implications on filter design

◆ The ideal lowpass filter is a sinc function with impulse response

$$h(t) = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wt}{\pi}\right)$$

 RLC type circuits though realize a LCCDE with an impulse response that is a linear combination of terms like

$$\delta(t) \qquad e^{-\lambda t} u(t) \qquad t^k e^{-\lambda t} u(t)$$

Circuits are design to only approximate ideal filters

Working with the sinc function

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

- Everlasting, non-causal time domain signal
- Truncating the sinc function
 - → After 20 crossings, less than 5% of peak value
- Making the sinc causal
 - → Shift to make approximately causal with delay based on truncation

Connection to communications 1/2

• If we used the sinc to send a pulse $\pm 1, \pm 3$ every T seconds

$$\underbrace{\operatorname{sinc}\left(\frac{t}{T}\right)}_{u(t)} \perp \operatorname{sinc}\left(\underbrace{\frac{t \pm kT}{T}}_{v(t)}\right) \quad \forall k$$

carry data because shifted sinc functions are orthogonal

Connection to communications 2/2

• If we used the rect to send a pulse $\pm 1, \pm 3$ every T seconds

Rectangle pulse uses infinite bandwidth!

- $\pm 2\pi/T, \pm 4\pi/T, \dots$
- ◆ Sinc pulses or variations are used extensively in communications (have fixed, minimum bandwidth very efficient)
 - → Spectrum is expensive, more than \$1000/Hz in the US for prime broadband spectrum (so a 10 MHz channel is about \$10b)

It is possible to figure out one set of transforms from the other

Application to communication systems

Key points

- Summarize some key principles of communication systems
- Explain the connection between communication and the frequency domain

Spectrum allocation

Numbers are the frequency given in MHz, multiply by 2 π to get Mrad/s

UHF band

Cellular is called, "Land mobile"

ISM band here is used for cordless phones, sensors

Practical application – Modulation

- Modulation is a concept widely used in communication systems
- ♦ While the "modulation" can mean different things, in communications it usually refers using a sinusoid to carry information
- Many types of modulation
 - → Amplitude modulation (AM)
 - → Frequency modulation (FM)
 - → Phase modulation (PM)
- In this lecture: focus on an example with amplitude modulation

Practical application - Amplitude modulation

◆ One classically type of modulation is AM

What happens in the frequency domain?

$$x_1(t)\cos(\omega_1 t) = x_1(t)\frac{1}{2}e^{j\omega_1 t} + x_1(t)\frac{1}{2}e^{-j\omega_1 t}$$

Practical application - Amplitude modulation (cont.)

Spectrum of the information signal (aka baseband signal)

Spectrum of the modulated signal (aka the passband signal)

Practical application - Demodulation

- ◆ The reverse of modulation is called demodulation
 - ★ Exploit the fact that

$$y(t) = x(t)\cos^2(\omega_1 t) = x(t)\frac{1}{2}(1 + \cos(2\omega_1 t))$$

Can eliminate this with a lowpass filter!

Practical application - Frequency division multiplexing

- ◆ Consider a communication system with two users
- ◆ Suppose that the signal for each user has frequency response

 Objective: Create a communication signal that carries the information contained in each users' signal

Practical application - Frequency division multiplexing (cont.)

◆ One possible solution is AM with different carrier frequencies

Practical application - Frequency division multiplexing (cont.)

- ◆ How to prevent possible overlap in the signals?
 - ★ At the transmitter

★ At the receiver

Practical application - Inphase and quadrature

◆ What if two information signals are sent as follows?

note the sign and sine here, which will make sense shortly

- What happens in the frequency domain?
 - → Inphase term

$$\mathcal{F}\left\{x_I(t)\cos(\omega_1 t)\right\} = \frac{1}{2}X_I(j(\omega - \omega_1)) + \frac{1}{2}X_I(j(\omega + \omega_1))$$

→ Quadrature term

$$\mathcal{F}\left\{-x_Q(t)\sin(\omega_1 t)\right\} = \frac{j}{2}X_Q(j(\omega - \omega_1)) - \frac{j}{2}X_Q(j(\omega + \omega_1))$$

mixture of inphase and quadrature terms but not the same mixture at positive and negative frequencies

- What about demodulation?
 - → Trig identities

$$\sin u \sin v = \frac{1}{2} \left[\cos(u - v) - \cos(u + v) \right]$$

$$\cos u \cos v = \frac{1}{2} \left[\cos(u - v) + \cos(u + v) \right]$$

$$\sin u \cos v = \frac{1}{2} \left[\sin(u - v) + \sin(u + v) \right]$$

Can recover both inphase and quadrature!

→ Applying the identities

filter out

$$x(t)\cos(\omega_1 t) = \frac{1}{2}x_I(t) + \frac{1}{2}x_I(t)\cos(2\omega_1 t) - \frac{1}{2}x_Q(t)\sin(2\omega_1 t)$$
$$x(t)\sin(\omega_1 t) = -\frac{1}{2}x_Q(t) + \frac{1}{2}x_Q(t)\cos(2\omega_1 t) + \frac{1}{2}x_I(t)\sin(2\omega_1 t)$$

♦ IQ demodulator

◆ Why do we use complex signals?

This is called the complex baseband signal

$$x_{bb}(t) = x_I(t) + jx_Q(t)$$

$$\text{Re}\{x_{bb}(t)\}$$

$$\text{Im}\{x_{bb}(t)\}$$

Complex signals become a convenient way to work with inphase and quadrature together, avoiding the need for matrix notation

Convolution property

Key points

- Convolution in time is multiplication in frequency
- Use this fact to compute convolutions

Convolution property

• If
$$h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H(j\omega) \quad x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega) \quad y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(j\omega)$$

◆ Then

$$y(t) = h(t) * x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(j\omega) = H(j\omega)X(j\omega)$$

Convolution in time is multiplication in frequency

Proof of the convolution property

$$Y(j\omega) = \mathcal{F} \left\{ \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \right\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau e^{-j\omega t}dt \quad \text{Apply definition}$$

$$= \int_{-\infty}^{\infty} x(\tau) \int_{-\infty}^{\infty} h(t-\tau)e^{-j\omega t}dtd\tau \quad \text{Exchange order of integration}$$

$$= \int_{-\infty}^{\infty} x(\tau)e^{-j\omega \tau}H(j\omega)d\tau \quad \text{Time shift property}$$

$$= H(j\omega) \int_{-\infty}^{\infty} x(\tau)e^{-j\omega\tau}d\tau = H(j\omega)X(j\omega)$$

Block diagrams

From a notational perspective, an LTI system may be described by the impulse response in the time or frequency domains

Visualizing the convolution property

$$Y(j\omega) = H(j\omega)X(j\omega)$$

Direct multiplication at each frequency

Contributed by EE 313 student Erte Bablu from http://www.rtings.com/headphones/reviews/apple/wireless-airpods

Using the convolution property to do convolutions

Compute the following convolution

$$y(t) = h(t) * x(t)$$

◆ Convert the two signals into the frequency domain

$$H(j\omega) = \mathcal{F} \{h(t)\}\$$

$$X(j\omega) = \mathcal{F} \{x(t)\}\$$

Compute the product

$$Y(j\omega) = H(j\omega)X(j\omega)$$

Go from frequency domain back into the time domain

$$y(t) = \mathcal{F}^{-1} \left\{ Y(j\omega) \right\}$$

UC San Diego

Double sinc example

• Given where $\omega_i > 0$ and $\omega_c > 0$

$$x(t) = \frac{\sin(\omega_i t)}{\pi t}$$
 $h(t) = \frac{\sin(\omega_c t)}{\pi t}$

◆ Find

$$y(t) = h(t) * x(t)$$

Double sinc example (continued)

- Solve by going into the frequency domain
- ◆ First find

$$Y(j\omega) = H(j\omega)X(j\omega)$$

Need to compute

$$\mathcal{F}\left\{\frac{\sin(\omega_i t)}{\pi t}\right\} \mathcal{F}\left\{\frac{\sin(\omega_c t)}{\pi t}\right\}$$

But note that

$$\operatorname{sinc}\left(\frac{t}{2\pi}\right) = \frac{\sin\left(t/2\right)}{t/2}$$
 and $\operatorname{sinc}\left(\frac{t}{2\pi}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi \operatorname{rect}(\omega)$

Double sinc example (continued)

Using the scaling property

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{j\omega}{a} \right)$$

Write

$$\frac{\sin(\omega_i t)}{\pi t} = \frac{\omega_i}{\pi} \frac{\sin(2\omega_i t/2)}{2\omega_i t/2}$$

◆ It follows that

$$\mathcal{F}\left\{\frac{\omega_i}{\pi} \frac{\sin(2\omega_i t/2)}{2\omega_i t/2}\right\} = 2\pi \frac{\omega_i}{\pi} \frac{1}{|2\omega_i|} \operatorname{rect}(\omega/2\omega_i)$$
$$= \operatorname{rect}(\omega/2\omega_i)$$

Double sinc example (continued)

◆ The convolution is then

$$Y(j\omega) = \text{rect}(\omega/2\omega_i)\text{rect}(\omega/2\omega_c)$$
$$= \text{rect}(\omega/2\min(\omega_c, \omega_i))$$

Back in the time domain

$$y(t) = \frac{\sin(\min(\omega_i, \omega_c)t)}{\pi t}$$

This is a general result that sinc convolved with sinc gives sinc

Double sinc example (concluded) Visualizing the effect in the

frequency domain

$$H(j\omega)$$
 $X(j\omega)$
 W_c
 $Y(j\omega)$

$$Y(j\omega) = H(j\omega)X(j\omega)$$

Example where ω_i is bigger than ω_c

UC San Diego

Summarizing the convolution property

- ◆ Convolution between two signals in time becomes the product of the Fourier transforms of those signals in the frequency domain
- ◆ Convolutions are easy to do in the frequency domain as they involve a simple point-wise multiplication
- ◆ The convolution property explains how the frequency response of a system directly effects the frequencies of the input signal to create the output signal