实验5:贝塞尔曲线 Bézier Curve

华东师范大学计算机科学与技术学院李晨 副研究员 cli@cs.ecnu.edu.cn

Today

- Smooth curves in 2D
 - 2D illustration
 - Fonts
 - 3D modeling
 - Animation: trajectories

• Lets say that I have four control points

• To find the midpoint of the curve corresponding to those control points:

Connect the point between P_1 and P_2 where t = 0.5 with the point between $P_3 \& P_2$ where t = 0.5; Do the same with $P_2 P_3 \& P_3 P_4$

• Now, connect these two lines at their t = 0.5 points:

The t = 0.5 point on the resulting segment is the midpoint of some type of curve which is made up of weighted averages of the control points

• We can extend this idea to any t value.

In this way, you can compute the 3rd-order curve for any value

Bézier Curve-Algebraic Formula

• de Casteljau algorithm gives a pyramid of coefficients

Bézier Curve-Algebraic Formula

• Example: quadratic Bézier curve from three points

$$\mathbf{b}_0^1(t) = (1-t)\mathbf{b}_0 + t\mathbf{b}_1$$

$$\mathbf{b}_1^1(t) = (1-t)\mathbf{b}_1 + t\mathbf{b}_2$$

$$\mathbf{b}_0^2(t) = (1-t)\mathbf{b}_0^1 + t\mathbf{b}_1^1$$

$$\mathbf{b}_0^2(t) = (1-t)^2 \mathbf{b}_0 + 2t(1-t)\mathbf{b}_1 + t^2 \mathbf{b}_2$$

Bézier Curve-General Algebraic Formula

• Bernstein form of a Bézier curve of order n

Bernstein polynomials

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Cubic Bézier Basis Functions

• Bernstein Polynomials

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Properties of Bézier Curves

- Interpolates endpoints
 - For cubic Bézier: $b(0) = b_0$, $b(1) = b_3$
- Tangent to end segments
 - Cubic case: $b'(0) = 3(b_1 b_0), b'(1) = 3(b_3 b_2)$
- Affine transformation property
 - Transform curve by transforming control points
- Convex hull property
 - Curve is within convex hull of control points

Piecewise Bézier Curves

• Higher-order Bézier curves?

Very hard to control!
Uncommon

Piecewise Bézier Curves

• Instead, chain many low-order Bézier curve

Assignment

- 实验编号: 4
- 实验名称: 贝塞尔曲线
- 实验内容
 - 实现贝塞尔曲线绘制

Extra Credit

- Could you clip a Bézier curve?
 - Fat lines
 - Parameter *t*

https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub

Reference

- https://en.wikipedia.org/wiki/B%C3%A9zier_curve
- https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
- https://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html

