Practical 5:-

Source Code with Explanation-

```
import numpy as np import pandas as pd
from sklearn.datasets import load_boston boston =
load_boston()
data = pd.DataFrame(boston.data)
data.head()
```

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

```
data.columns = boston.feature_names
data['PRICE'] = boston.target
data.head(n=10)
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9

print(data.shape)

data.isnull().sum()

CRIM	0	ZN	0	INDUS	0
CHAS	0	NOX	0	RM	0
AGE	0	DIS	0	RAD	0
TAX	0	PTRATIO	0	В	0
LSTAT	0	PRICE	0	dtype:	int64

data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000

data.info() <class</pre>

RangeIndex: 506 entries, 0 to 505 Data columns

(total 14 columns):

#	Column	Non-Null Co	unt Dtype -
0	CRIM	506 non-nul	l float64
1	ZN	506 non-nul	l float64
2	INDUS	506 non-nul	l float64
3	CHAS	506 non-nul	l float64
4	NOX	506 non-nul	l float64
5	RM	506 non-nul	l float64
6	AGE	506 non-nul	l float64
7	DIS	506 non-nul	l float64
8	RAD	506 non-nul	l float64
9	TAX	506 non-nul	l float64
10	PTRATIO	506 non-nul	l float64

^{&#}x27;pandas.core.frame.DataFrame'>

11	В	506	non-null	float64
12	LSTAT	506	non-null	float64
13	PRICE	506	non-null	float64

dtypes: float64(14) memory usage:

55.5 KB

import seaborn as sns sns.distplot(data.PRICE sns.boxplot(data.PRICE)

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d082c670>

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d077ed60>

correlation = data.corr() correlation.loc['PRICE']

CRIM	-0.388305
ZN	0.360445
INDUS	-0.483725
CHAS	0.175260
NOX	-0.427321
RM	0.695360
AGE	-0.376955
DIS	0.249929

RAD -0.381626 TAX -0.468536 PTRATIO -0.507787 B 0.333461 LSTAT -0.737663 PRICE 1.000000

Name: PRICE, dtype: float64 # plotting the heatmap import

matplotlib.pyplot as plt fig,axes =
plt.subplots(figsize=(15,12))
sns.heatmap(correlation,square = True,annot = True)

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Checking the scatter plot with the most correlated features
plt.figure(figsize = (20,5)) features =
['LSTAT','RM','PTRATIO'] for i, col in
enumerate(features):

plt.subplot(1, len(features) ,
i+1) x = data[col] y =
data.PRICE

```
plt.scatter(x, y, marker='o')
    plt.title("Variation in House prices")
    plt.xlabel(col)
    plt.ylabel('"House prices in $1000"')
           Variation in House prices
                                          Variation in House prices
                                prices in $1000"
# Splitting the dependent feature and independent feature
#X = data[['LSTAT','RM','PTRATIO']] X = data.iloc[:,:-1]
y= data.PRICE
mean = X train.mean(axis=0)
std = X train.std(axis=0)
X train = (X train - mean) / std
X \text{ test} = (X \text{ test - mean}) / \text{std}
#Linear Regression
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
#Fitting the model
regressor.fit(X train,y train)
# Model Evaluation
#Prediction on the test dataset y pred =
regressor.predict(X test) # Predicting RMSE the Test
set results from sklearn.metrics import
```

Variation in House prices

PTRATIO

prices in \$1000

```
mean_squared_error rmse =
  (np.sqrt(mean_squared_error(y_test, y_pred)))
print(rmse)

from sklearn.metrics import r2_score
r2 = r2_score(y_test, y_pred)
```

```
print(r2) # Neural Networks #Scaling
the dataset
from sklearn.preprocessing import StandardScaler
sc = StandardScaler() X train =
sc.fit transform(X train)
X test = sc.transform(X test)
#Creating the neural network model
import keras
from keras.layers import Dense, Activation, Dropout
from keras.models import Sequential
model = Sequential()
model.add(Dense(128, activation
                                                  'relu',input dim
                                                                              =13)
model.add(Dense(64,activation = 'relu')) model.add(Dense(32,activation = 'relu'))
model.add(Dense(16, activation
                                         =
                                                 'relu'))
                                                            model.add(Dense(1))
#model.compile(optimizer='adam', loss='mse', metrics=['mae'])
model.compile(optimizer = 'adam',loss = 'mean squared error',metrics=['mae'])
!pip install ann visualizer
!pip install graphviz
from ann visualizer.visualize import ann viz;
#Build your model here
ann_viz(model, title="DEMO ANN");
history = model.fit(X_train, y train, epochs=100, validation split=0.05)
from plotly.subplots import make subplots import plotly.graph objects as go
fig = go.Figure()
fig.add trace(go.Scattergl(y=history.history['loss'],
                    name='Train'))
fig.add trace(go.Scattergl(y=history.history['val loss'],
                    name='Valid'))
fig.update layout (height=500, width=700,
                  xaxis title='Epoch', yaxis title='Loss')
fig.show()
```



```
fig = go.Figure()
fig.add_trace(go.Scattergl(y=history.history['mae'],name='Train'))
fig.add_trace(go.Scattergl(y=history.history['val_mae'],name='Valid'))
fig.update_layout(height=500, width=700,xaxis_title='Epoch', yaxis_title='Mean
Absolute Error')
fig.show()
```


Mean squared error on test data: 10.571733474731445 Mean absolute error on test data: 2.2669904232025146

```
#Comparison with traditional approaches #First let's try with a
simple algorithm, the Linear Regression: from sklearn.metrics
import mean absolute error
lr model = LinearRegression()
lr model.fit(X train, y train)
y pred lr = lr model.predict(X test)
mse lr = mean squared error(y test,
y_pred_lr) mae_lr =
mean absolute error(y test,
y pred lr)
print('Mean squared error on test data: ', mse lr)
print('Mean absolute error on test data: ', mae lr)
from sklearn.metrics import r2 score r2 =
r2 score(y test, y pred) print(r2)
0.8812832788381159
 # Predicting RMSE the Test set results from
 sklearn.metrics import mean squared error rmse =
 (np.sqrt(mean squared error(y test, y pred)))
 print(rmse) 3.320768607496587
 # Make predictions on new data import sklearn new data =
 sklearn.preprocessing.StandardScaler().fit transform(([[0.1, 10.0,
 5.0, 0, 0.4, 6.0, 50, 6.0, 1, 400, 20, 300, 10]]))
 prediction = model.predict(new data)
 print("Predicted house price:", prediction) 1/1
 [======] - 0s 70ms/step
 Predicted house price:
 [[11.104753]]
```

Practical 6:-

Source Code and Output-

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
#loading imdb data with most frequent 10000 words
from keras.datasets import imdb
(X train, y train), (X test, y test) = imdb.load data(num words=10000)
data = np.concatenate((X train, X test), axis=0)
label = np.concatenate((y train, y test), axis=0)
X train.shape
(25000,)
X test.shape
(25000,)
y train.shape
(25000,)
y test.shape
(25000.)
print("Review is ",X train[0]) # series of no converted word to vocabulory associated with index
print("Review is ",y train[0])
Review is [1, 194, 1153, 194, 8255, 78, 228, 5, 6, 1463, 4369, 5012, 134, 26, 4, 715, 8, 118, 1634, 14, 394,
20, 13, 119, 954, 189, 102, 5, 207, 110, 3103, 21, 14, 69, 188, 8, 30, 23, 7, 4, 249, 126, 93, 4, 114,
9, 2300, 1523, 5, 647, 4, 116, 9, 35, 8163, 4, 229, 9, 340, 1322, 4, 118, 9, 4, 130, 4901, 19, 4, 1002, 5,
89, 29, 952, 46, 37, 4, 455, 9, 45, 43, 38, 1543, 1905, 398, 4, 1649, 26, 6853, 5, 163, 11, 3215, 2, 4,
1153, 9, 194, 775, 7, 8255, 2, 349, 2637, 148, 605, 2, 8003, 15, 123, 125, 68, 2, 6853, 15, 349, 165, 4362,
98, 5, 4, 228, 9, 43, 2, 1157, 15, 299, 120, 5, 120, 174, 11, 220, 175, 136, 50, 9, 4373, 228, 8255,
5, 2, 656, 245, 2350, 5, 4, 9837, 131, 152, 491, 18, 2, 32, 7464, 1212, 14, 9, 6, 371, 78, 22, 625, 64,
1382, 9, 8, 168, 145, 23, 4, 1690, 15, 16, 4, 1355, 5, 28, 6, 52, 154, 462, 33, 89, 78, 285, 16, 145, 95]
Review is 0
vocab=imdb.get word index() # Retrieve the word index file mapping words to indices print(vocab)
{'fawn': 34701, 'tsukino': 52006, 'nunnery': 52007, 'sonja': 16816, 'vani': 63951, 'woods': 1408, 'spiders':
16115,
y train
array([1, 0, 0, ..., 0, 1, 0])
y test
array([0, 1, 1, ..., 0, 0, 0])
```

```
def vectorize(sequences, dimension = 10000): # We will vectorize every review and fill it with zeros so
that it contains exactly 10,000 numbers.
 # Create an all-zero matrix of shape (len(sequences),
  dimension) results = np.zeros((len(sequences), dimension))
  for i, sequence in enumerate(sequences):
     results[i, sequence] = 1
  return results
# Now we split our data into a training and a testing set.
# The training set will contain reviews and the testing set
## Set a VALIDATION set
test x = data[:10000]
test y = label[:10000]
train x =
data[10000:] train y
= label[10000:]
test x.shape (10000,)
test y.shape (10000,)
train x.shape
(40000,)
train y.shape
(40000,)
print("Categories:", np.unique(label))
print("Number of unique words:", len(np.unique(np.hstack(data))))
# The hstack() function is used to stack arrays in sequence horizontally (column wise).
Categories: [0 1]
Number of unique words: 9998
length = [len(i) for i in data]
print("Average Review length:", np.mean(length))
print("Standard Deviation:", round(np.std(length)))
Average Review length: 234.75892
Standard Deviation: 173
print("Label:", label[0])
Label: 1
```

print("Label:",

label[1]) Label: 0

print(data[0])

Retrieves a dict mapping words to their index in the IMDB dataset.

index = imdb.get_word_index() # word to index

Create inverted index from a dictionary with document ids as keys and a list of terms as values for each document

reverse index = dict([(value, key) for (key, value) in index.items()]) # id to word

decoded = " ".join([reverse_index.get(i - 3, "#") for i in data[0]])

The indices are offset by 3 because 0, 1 and 2 are reserved indices for "padding", "start of sequence" and "unknown". print(decoded)

this film was just brilliant casting location scenery story direction everyone's really suited the part they played and you could just imagine being there robert # is an amazing actor and now the same being director # father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film

#Adding sequence to data

Vectorization is the process of converting textual data into numerical vectors and is a process that is usually applied once the text is cleaned. data = vectorize(data)

label = np.array(label).astype("float32")

labelDF=pd.DataFrame({'label':label})

sns.countplot(x='label', data=labelDF)

Creating train and test data set

from sklearn.model selection import train test split

X_train, X_test, y_train, y_test = train_test_split(data,label, test_size=0.20, random_state=1)

X train.shape

```
(40000, 10000)
X test.shape
(10000, 10000)
# Let's create sequential model from
keras.utils import to categorical
from keras import models from
keras import layers model =
models.Sequential()
model.add(layers.Dropout(0.3, noise shape=None, seed=None))
model.add(layers.Dense(50, activation = "relu"))
model.add(layers.Dropout(0.2, noise_shape=None, seed=None))
model.add(layers.Dense(50, activation = "relu"))
# Output- Layer
model.add(layers.Dense(1, activation = "sigmoid"))
model.summary()
Model: "sequential"
```

Layer (type)	Output Shape	Param #
===== dense (Dense) 500050	(None, 50)	=====
dropout (Dropout)	(None, 50)	0
dense_1 (Dense)	(None, 50)	2550
dropout_1 (Dropout)	(None, 50)	0
dense_2 (Dense)	(None, 50)	2550
dense_3 (Dense)	(None, 1)	51

Total params: 505,201

Trainable params: 505,201 Non-trainable params: 0

```
import tensorflow as tf callback =
tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
model.compile(
optimizer = "adam", loss
= "binary crossentropy",
metrics = ["accuracy"]
) from sklearn.model selection import
train test split
results = model.fit(
X train, y train, epochs= 2,
batch size = 500,
validation data = (X test,
 y test), callbacks=[callback]
) # Let's check mean accuracy of our model
print(np.mean(results.history["val accuracy"])
) # Evaluate the model score =
model.evaluate(X test, y test, batch size=500)
print('Test loss:', score[0]) print('Test
accuracy:', score[1])
accuracy:
0.8986
Test loss: 0.25108325481414795
Test accuracy: 0.8985999822616577
#Let's plot training history of our
model.
# list all data in history
print(results.history.keys()) #
summarize history for accuracy
plt.plot(results.history['accuracy'])
plt.plot(results.history['val accuracy']
```

```
) plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch') plt.legend(['train',
'test'], loc='upper left') plt.show() #
summarize history for loss
plt.plot(results.history['loss'])
plt.plot(results.history['val loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch') plt.legend(['train',
'test'], loc='upper left') plt.show()
                  dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
                                      model accuracy
                     0.92
                             train
                             test
                     0.90
                   98.0 accuracy
98.0
                     0.84
                         0.0
                                0.2
                                       04
                                              0.6
                                                     8.0
                                                            1.0
                                          epoch
                                         model loss
                     0.400
                              train
                     0.375
                              test
                     0.350
                     0.325
                   S 0.300
                     0.275
                     0.250
                     0.225
                          0.0
                                 0.2
                                               0.6
                                                      0.8
                                                            1.0
                                          epoch
```

Practical 7:-

Source Code with Output

import tensorflow as tf import matplotlib.pyplot as plt from tensorflow import keras import numpy as np

(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data() plt.imshow(x_train[1])

<matplotlib.image.AxesImage at 0x7f85874f3a00>

plt.imshow(x_train[0])

<matplotlib.image.AxesImage at 0x7f8584b93d00>

Next, we will preprocess the data by scaling the pixel values to be between 0 and 1, and then reshaping the images to be 28x28 pixels.

```
x_train = x_train.astype('float32') / 255.0 x_test =
x_test.astype('float32') / 255.0
```

```
x_train = x_train.reshape(-1, 28, 28, 1) x_test =
x_test.reshape(-1, 28, 28, 1)
# converting the training_images array to 4 dimensional array with sizes 60000, 28, 28, 1 for 0th to 3rd
dimension. x_train.shape (60000, 28, 28) x_test.shape
(10000, 28, 28, 1)
y_train.shape (60000,)
y_test.shape (10000,)
model = keras.Sequential([ keras.layers.Conv2D(32, (3,3), activation='relu',
input shape=(28,28,1)),
   keras.layers.MaxPooling2D((2,2)),
   # It shown 13 * 13 size image with 32 channel or filter or depth. keras.layers.Dropout(0.25),
   # Reduce Overfitting of Training sample drop out 25% Neuron keras.layers.Conv2D(64, (3,3),
   activation='relu'),
  keras.layers.MaxPooling2D((2,2)),
  # It shown 5 * 5 size image with 64 channel or filter or depth. keras.layers.Dropout(0.25),
   keras.layers.Conv2D(128, (3,3), activation='relu'),
   keras.layers.Flatten(),
   keras.layers.Dense(128, activation='relu'),
   # 128 Size of Node in Dense Layer
   # 1152*128 = 147584
   keras.layers.Dropout(0.25),
   keras.layers.Dense(10, activation='softmax')
   # 10 Size of Node another Dense Layer
   # 128*10+10 bias= 1290
])
model.summary()
Model: "sequential"
```

Layer (type)	Output Shape	Param #
=======================================		=======conv2d (Conv2D)
(None, 26, 26, 3	2) 320	

```
max_pooling2d (MaxPooling2D (None, 13, 13, 32)
                                                        0
)
dropout (Dropout)
                          (None, 13, 13, 32)
                                                0
conv2d 1 (Conv2D)
                            (None, 11, 11, 64)
                                                   18496
max_pooling2d_1 (MaxPooling (None, 5, 5, 64)
                                                      0
2D)
dropout_1 (Dropout)
                           (None, 5, 5, 64)
                                                0
                                                  73856
conv2d 2 (Conv2D)
                            (None, 3, 3, 128)
flatten (Flatten)
                      (None, 1152)
                                            0
dense (Dense)
                        (None, 128)
                                             147584
dropout_2 (Dropout)
                          (None, 128)
                                                0
dense_1 (Dense)
                                             1290
                         (None, 10)
______
Total params: 241,546
Trainable params: 241,546
Non-trainable params: 0
# Compile and Train the Model
# After defining the model, we will compile it and train it on the training data.
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history
= model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) # 1875 is a number of batches.
By default batches contain 32 samles.60000 / 32 = 1875 # Finally, we will evaluate the performance of
the model on the test data.
test_loss, test_acc = model.evaluate(x_test, y_test) print('Test
accuracy:', test_acc)
313/313 [=========================] - 3s 10ms/step - loss: 0.2606 - accuracy: 0.9031
```

Test accuracy: 0.9031000137329102