I claim:

1

1

2

1 2

1

2

1

2

3

1

1	1. An apparatus comprising a first resonator, wherein said first resonator
2	comprises:
3	a resonating element, wherein said resonating element has a resonant
4	frequency and nodal points;
5	a first electrode, wherein said first electrode underlies said resonating element
6	and is separated from said resonating element by a first gap;
7	at least one support, wherein:
8	said support has a first end and a second end;
9	said first end of said support and said resonating element are joined
10	at one of said nodal points; and
11	said support has a length that is less than one-quarter wavelength
12	of said resonant frequency.

- **2.** The apparatus of claim 1 wherein said resonating element is a beam.
- **3.** The apparatus of claim 1 comprising four supports, wherein each of said supports and said resonating element are joined at a respective one of said nodal points.
- **4.** The apparatus of claim 1 comprising an anchor that is attached to a ground plane, wherein said second end of said support and said anchor are joined.
- **5.** The apparatus of claim 1 wherein said length of said support is less than one-half of a length of said resonating element.
- **6.** The apparatus of claim 1 wherein said length of said support is less than one-quarter of a length of said resonating element.
- The apparatus of claim 1 wherein said length of said support is not more thanmicrons.
 - **8.** The apparatus of claim 1 wherein said length of said support is not more than 2 microns.

9. The apparatus of claim 8 wherein a width of said support is not more than 2 microns and a thickness of said support is not more than 2 microns.

- **10**. The apparatus of claim 1 wherein said length of said support is not more than 1 micron.
 - 11. The apparatus of claim 1 wherein said length of said support is equal to a width of said support.
 - **12.** The apparatus of claim 1 wherein said first gap has a minimum size when a bias voltage is applied, and wherein said minimum size is determined by an amplitude of said bias voltage.
 - **13.** The apparatus of claim 1 wherein said resonating element comprises a material selected from the group consisting of silicon, diamond and metals.
 - **14.** The apparatus of claim 1 wherein said first electrode is electrically connected to a source of an excitation voltage and wherein said resonating element is electrically connected to a source of a bias signal.
 - **15.** The apparatus of claim 1 comprising a second resonator, wherein said second resonator has a second resonating element, and wherein said second resonating element has a second resonant frequency and is mechanically coupled to said resonating element.
 - **16.** The apparatus of claim 14 wherein said apparatus is a filter.
 - **17.** The apparatus of claim 1 wherein said apparatus is an oscillator.
 - **18.** The apparatus of claim 1 further comprising a second electrode, wherein said second electrode overlies said resonating element and is separated from said resonating element by a second gap.

1	19. An apparatus comprising:
2	a resonating element, wherein said resonating element has:
3	a resonant frequency;
4	a first end and a second end;
5	a first nodal point proximal to said first end; and
6	a second nodal point proximal to said second end;
7	an electrode, wherein said electrode underlies said resonating element
8	between said first nodal point and said second nodal point, and further wherein
9	said electrode is separated from said resonating element by a gap;
10	a first support, wherein:
11	said first support has a first end and a second end; and
12	said first end of said first support and said resonating element are
13	joined at said first nodal point;
14	a second support, wherein:
15	said second support has a first end and a second end; and
16	said first end of said second support and said resonating element
17	are joined at said second nodal point;
18	and wherein said first support and said second support each have a length
19	that is less than one-eighth wavelength of said resonant frequency.
1	20. An apparatus comprising:
2	resonating means, wherein said resonating means is characterized by a
3	resonant frequency and flexural nodal points;
4	support means for supporting said resonating means, wherein said support
5	means is coupled to said resonating means proximal to at least one of
6	said flexural nodal points, wherein said support means has a length
7	that is less than one quarter of said resonant frequency.
1	21. An apparatus comprising a resonator, wherein said resonator comprises:
2	a resonating element having flexural nodal points; and
.3	at least two supports, wherein said two supports and said resonating element
4	are mechanically coupled proximal to two of said flexural nodal points, and
5	wherein said two supports each have a length that is less than one-quarter
6	wavelength of said resonant frequency.

1	22. An apparatus comprising a resonator, wherein said first resonator comprises:
2	a resonating element, wherein said resonating element is characterized by a
3	resonant frequency, and has a first end and a second end;
4	an electrode, wherein said electrode underlies said resonating element, wherein
5	said electrode is separated from said resonating element by a gap;
6	a first support, wherein:
7	said first support has a first end and a second end; and
8	said first end of said first support and said resonating element are joined
9	proximal to said first end of said resonating element;
Ó	a second support, wherein:
1	said second support has a first end and a second end; and
2	said first end of said second support and said resonating element are
3	joined proximal to said second end of said resonating element;
4	and wherein said first support and said second support each have a length that is less
5	than one-eighth wavelength of said resonant frequency.