CSCI B609: "Foundations of Data Science"

Lecture 5: Dimension Reduction, Separating and Fitting Gaussians

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev

http://grigory.us

Gaussian Annulus Theorem

• Gaussian in d dimensions $(N_d(0^d, 1))$:

$$\Pr[\mathbf{x} = (z_1, \dots, z_d)] = (2\pi)^{-\frac{d}{2}} e^{-\frac{z_1^2 + z_2^2 + \dots + z_d^2}{2}}$$

Nearly all mass in annulus of radius \sqrt{d} and width O(1):

Thm. For any $\beta \leq \sqrt{d}$ all but $3e^{-c\beta^2}$ probability mass satisfies $\sqrt{d} - \beta \leq ||x||_2 \leq \sqrt{d} + \beta$ for constant c

Nearest Neighbors and Random Projections

- Given a database \boldsymbol{A} of n points in \mathbb{R}^d
 - Preprocess A into a small data structure D
 - Should answer following queries fast:

Given $q \in \mathbb{R}^d$ find closest $x \in A$: $argmin_{x \in A} ||q - x||_2$

- Project each $x \in A$ onto f(x), where $f: \mathbb{R}^d \to \mathbb{R}^k$
- Pick ${m k}$ vectors ${m u}_1,\ldots,{m u}_{m k}$ i.i.d: ${m u}_i\sim N_{m d}\big(0^{m d},1\big)$ $f({m v})=(\langle {m u}_1,{m v}\rangle,\ldots,\langle {m u}_{m k},{m v}\rangle)$
- Will show that w.h.p. $||f(v)||_2 \approx \sqrt{k} ||v||_2$

Return: $argmin_{x \in A} ||f(q) - f(x)||_2 = argmin_{x \in A} ||f(q - x)||_2 \approx \sqrt{k} argmin_{x \in A} ||q - x||_2$

Random Projection Theorem

- Pick k vectors $u_1, ..., u_k$ i.i.d: $u_i \sim N_d(0^d, 1)$ $f(v) = (\langle u_1, v \rangle, ..., \langle u_k, v \rangle)$
- Will show that w.h.p. $||f(v)||_2 \approx \sqrt{k} ||v||_2$

Thm. Fix
$$\mathbf{v} \in \mathbb{R}^d$$
 then $\exists c > 0$: for $\epsilon \in (0,1)$:
$$\Pr_{\mathbf{u}_i \sim N_d(0^d,1)} \left[\left| |f(\mathbf{v})| \right|_2 - \sqrt{\mathbf{k}} ||\mathbf{v}||_2 \right] \ge \epsilon \sqrt{\mathbf{k}} ||\mathbf{v}||_2 \right] \le 3 e^{-c\mathbf{k}\epsilon^2}$$

- Scaling: $||v||_2 = 1$
- Key fact: $\langle u_i, v \rangle = \sum_{j=1}^{d} u_{ij} v_j \sim N(0, ||v||_2^2) = N(0,1)$
- Apply "Gaussian Annulus Theorem" with k = d

Nearest Neighbors and Random Projections

Thm. Fix
$$\mathbf{v} \in \mathbb{R}^d$$
 then $\exists c > 0$: for $\epsilon \in (0,1)$:
$$\Pr_{\mathbf{u}_i \sim N_d(0^d,1)} \left[\left| |f(\mathbf{v})| \right|_2 - \sqrt{\mathbf{k}} ||\mathbf{v}||_2 \right] \ge \epsilon \sqrt{\mathbf{k}} ||\mathbf{v}||_2 \right] \le 3 e^{-c\mathbf{k}\epsilon^2}$$

Return:
$$argmin_{x \in A} ||f(q) - f(x)||_2 \approx \sqrt{k} argmin_{x \in A} ||q - x||_2$$

- Fix and let $v = q x_i$ for $x_i \in A$ and let $k = O\left(\frac{\gamma \log n}{\epsilon^2}\right)$ $(1 \pm \epsilon)\sqrt{k} \big| |q x_i| \big|_2 \approx \big| |f(q) f(x)| \big|_2$ (prob. $1 n^{-\gamma}$)
- Union bound:

For fixed q distances to A preserved with prob. $1 - n^{-\gamma+1}$

One-dimensional mixture of Gaussians:

$$p(x) = w_1 p_1(x) + w_2 p_2(x)$$

- E.g. modeling heights of men/women
- Parameter estimation problem:
 - Given samples from a mixture of Gaussians
 - Q: Estimate means and (co)-variances
- Sample origin problem:
 - Given samples from well-separated Gaussians
 - Q: Did they come from the same Gaussian?

• Gaussian in **d** dimensions $(N_d(0^d, 1))$:

$$\Pr[\mathbf{x} = (z_1, \dots, z_d)] = (2\pi)^{-\frac{d}{2}} e^{-\frac{z_1^2 + z_2^2 + \dots + z_d^2}{2}}$$

Nearly all mass in annulus of radius \sqrt{d} and width O(1):

- Almost all mass in a slab $\{x \mid -c \le x_1 \le c\}$ for c = O(1)
- Pick $x \sim$ Gaussian and rotate coordinates to make it x_1
- Pick $y \sim$ Gaussian, w.h.p. projection of y on x is $\in [-c, c]$

$$||x - y||_2 \approx \sqrt{||x||_2^2 + ||y||_2^2}$$

In coordinates:

•
$$x = (\sqrt{d} \pm O(1), 0, 0, ..., 0)$$

•
$$y = (\pm O(1), \sqrt{d} \pm O(1), 0, ..., 0)$$

• W.h.p:
$$||x - y||_2^2 = 2d \pm O(\sqrt{d})$$

- Two spherical unit variance Gaussians centered at $oldsymbol{p}$, $oldsymbol{q}$
- $\delta = ||p q||_2$
- $(x \sim N(p, 1), y \sim N(q, 1))$
- $x = (\sqrt{d} \pm O(1), 0, 0, 0, \dots, 0)$
- $\mathbf{y} = (\pm O(1), \delta \pm O(1), \sqrt{\mathbf{d}} \pm O(1), 0, ..., 0)$
- $||x-y||_2^2 = \delta^2 + 2d \pm O(\sqrt{d})$

• Same Gaussian:

$$\left|\left|x-y\right|\right|_{2}^{2}=2d\pm O(\sqrt{d})$$

Different Gaussians:

$$\left|\left|x-y\right|\right|_{2}^{2} = \delta^{2} + 2d \pm O(\sqrt{d})$$

Separation requires:

$$2\mathbf{d} \pm O(\sqrt{\mathbf{d}}) < \delta^{2} + 2\mathbf{d} \pm O(\sqrt{\mathbf{d}})$$

$$O(\sqrt{\mathbf{d}}) < \delta^{2}$$

$$\omega(\mathbf{d}^{1/4}) < \delta$$

Fitting Spherical Gaussian to Data

- Given samples $x_1, x_2, ..., x_n$
- **Q:** What are parameters of best fit $N(\mu, \sigma)$?

$$\Pr[\mathbf{x}_{i} = (z_{1}, ..., z_{d})]$$

$$= (2\pi)^{-\frac{d}{2}} e^{-\frac{(\mu_{1} - z_{1})^{2} + (\mu_{2} - z_{2})^{2} + \cdots + (\mu_{d} - z_{d})^{2}}{2}}$$

$$= (2\pi)^{-\frac{d}{2}} e^{-\frac{||\mu - \mathbf{z}||_{2}^{2}}{2}}$$

$$\Pr[\mathbf{x}_1 = \mathbf{z}_1, \mathbf{x}_2 = \mathbf{z}_2, ..., \mathbf{x}_n = \mathbf{z}_n]$$

$$= (2\pi)^{-\frac{dn}{2}} e^{-\frac{||\mu - \mathbf{z}_1||_2^2 + ||\mu - \mathbf{z}_2||_2^2 + ... + ||\mu - \mathbf{z}_d||_2^2}{2\sigma^2}$$

Maximum Likelihood Estimator

• PDF:
$$(2\pi)^{-\frac{dn}{2}} e^{-\frac{||\mu-z_1||_2^2+||\mu-z_2||_2^2+\cdots+||\mu-z_d||_2^2}{2\sigma^2}$$

- MLE for μ is $\mu = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$
- Take gradient w.r.t μ and make it = 0

•
$$\nabla_{\mu} ||\mu - x||_{2}^{2} = 2(\mu - x)$$

 $2(\mu - x_{1}) + 2(\mu - x_{2}) + \dots + 2(\mu - x_{n}) = 0$

MLE for Variance

•
$$a = ||\mu - x_1||_2^2 + ||\mu - x_2||_2^2 + \dots + ||\mu - x_d||_2^2$$

•
$$v = 1/2\sigma^2$$

• PDF:
$$\frac{e^{-a\nu}}{\left[\int_{x \in R^d} e^{-\nu ||x||_2^2 dx}\right]^n}$$

- Log(PDF): $-a\mathbf{v} n \ln \left[\int_{\mathbf{x} \in R^d} e^{-\mathbf{v} ||\mathbf{x}||_2^2} d\mathbf{x} \right]$
- Differentiate w.r.t. ν and set derivative = 0

MLE for Variance

- Log(PDF): $-a\mathbf{v} n \ln \left[\int_{\mathbf{x} \in R^d} e^{-\mathbf{v} ||\mathbf{x}||_2^2} d\mathbf{x} \right]$
- $\frac{d}{dy}$ Log(PDF):

$$-a + n \frac{\int_{x \in R^d} ||x||_2^2 e^{-\nu ||x||_2^2} dx}{\int_{x \in R^d} e^{-\nu ||x||_2^2} dx}$$

• $y = \left| |\mathbf{v}\mathbf{x}| \right|_2^2$:

$$-a + \frac{n}{\nu} \frac{\int_{x \in R^d} y^2 e^{-y^2} dx}{\int_{x \in R^d} e^{-y^2} dx} = -a + \frac{n}{\nu} \times \frac{d}{2} = 0$$

• $v = \frac{1}{2\sigma^2} \Rightarrow \text{MLE}(\sigma) = \sqrt{\frac{a}{nd}} = \text{sample standard deviation}$