Metrics in tensorflow

Neural Networks for Health Technology Applications
Spring 2020
Sakari Lukkarinen
Helsinki Metropolia University of Applied Sciences

Contents

- Review of metrics
 - Confusion matrix, sensitivity and specificity, ROC curve
- Metrics in tensorflow
 - Examples: accuracy, false negative, false positives, sensitivity at specificity
- Example phonocardiographic screening
 - Sensitivity and specificity
 - False negatives and false positives
 - How to select the threshold
 - ROC curves

Confusion (error) matrix

		Actual class		
		Cat	Dog	Rabbit
eq	Cat	5	2	0
Predicted class	Dog	3	3	2
	Rabbit	0	1	11

Source: Confusion matrix (Wikipedia)

Accuracy

Total	True (+)	True (-)
Test (+)	TP	FP
Test (-)	FN	TN

Accuracy = (TP + TN) / Total

Source: Accuracy in binary classification (Wikipedia)

Sensitivity and specificity

True condition (diagnosis)

Disease (+) Healthy (-)

Total	True (+)	True (-)
Test (+)	TP	FP
Test (-)	FN	TN

Test says:
"Disease" (+)
"Healthy" (-)

Sensitivity (also called the true positive rate, the recall, or probability of detection) measures the percentage (%) of sick people who are correctly identified by the test having the condition.

Specificity (also called the true negative rate)
measures the percentage
(%) of healthy people who
are correctly identified by the test as not having the condition

Source: Sensitivity and specificity (Wikipedia)

Example

	True (+)	True(-)	Sum
Test (+)	50	10	60
Test (-)	10	30	40
SUM	60	40	100

What are the sensitivity, specificity and accuracy?

Example

	True (+)	True(-)	Sum
Test (+)	50 (TP)	10	60
Test (-)	10	30 (TN)	40
SUM	60 (All disease)	40 (All healthy)	100 (All patients)

Sensitivity = True positives / All disease = 50/60 ~ 0.83

Specificity = True negatives / All healthy = 30/40 = 0.75

Accuracy = (True positives + True negatives) / AII = (50 + 30)/100 = 0.80

Confusion matrix [edit]

Let us consider a group with **P** positive instances and **N** negative instances of some condition. The four outcomes can be formulated in a 2×2 *contingency table* or *confusion matrix*, as follows:

		True condition				
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\text{E Condition positive}}$ $\frac{\Sigma \text{ Condition population}}{\Sigma \text{ Total population}}$	Σ True positive	cy (ACC) = e + Σ True negative population
Predicted	Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	_ Σ Fals	rery rate (FDR) = se positive condition positive
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) =	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		rue positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$ Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$	F ₁ score = 2 1 Recall + 1 Precision

Source: Sensitivity and specificity (Wikipedia)

ROC curve

In statistics, a **receiver operating characteristic curve**, i.e. **ROC curve**, is a <u>graphical plot</u> that illustrates the diagnostic ability of a <u>binary classifier</u> system as its discrimination threshold is varied.

True positive rate (TPR) = sensitivity
False positive rate (FPR) = 1 - specificity

Source: Receiver operating characteristics (Wikipedia)

tf.keras.metrics

METRICS IN TENSORFLOW

https://www.tensorflow.org/api_docs/python/tf/keras/metrics

Example - Accuracy

import tensorflow as tf

```
Usage:
                                                                                               ♠ □
>>> m = tf.keras.metrics.Accuracy()
>>> _ = m.update_state([1, 2, 3, 4], [0, 2, 3, 4])
>>> m.result().numpy()
0.75
>>> m.reset_states()
>>> _ = m.update_state([1, 2, 3, 4], [0, 2, 3, 4], sample_weight=[1, 1, 0, 0])
>>> m.result().numpy()
0.5
Usage with tf.keras API:
                                                                                               ♠ □
model = tf.keras.Model(inputs, outputs)
model.compile('sqd', loss='mse', metrics=[tf.keras.metrics.Accuracy()])
```

https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy

Example - False negatives

import tensorflow as tf

```
Usage:

m = tf.keras.metrics.FalseNegatives()
m.update_state([0, 1, 1, 1], [0, 1, 0, 0])
print('Final result: ', m.result().numpy()) # Final result: 2

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss='mse', metrics=[tf.keras.metrics.FalseNegatives()])
```

https://www.tensorflow.org/api_docs/python/tf/keras/metrics/FalseNegatives

Example - SensitivityAtSpecificity

import tensorflow as tf

```
Usage:
                                                                                               ♠ □
m = tf.keras.metrics.SensitivityAtSpecificity(0.4, num_thresholds=1)
m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
print('Final result: ', m.result().numpy()) # Final result: 0.5
Usage with tf.keras API:
                                                                                               ₽
model = tf.keras.Model(inputs, outputs)
model.compile(
    'sqd',
    loss='mse',
    metrics=[tf.keras.metrics.SensitivityAtSpecificity()])
```

https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SensitivityAtSpecificity

Remember!

TPR + FNR = 1 Sensitivity = 1- FNR

- * TPR = True positive rate = Sensitivity
- * FNR = False negative rate

FPR + TNR = 1Specificity = 1 - FPR

- * TNR = True negative rate = Specificity
- * FPR = False positive rate

	True condition			
Total population	Condition positive	Condition negative		
Predicted condition positive	True positive, Power	False positive, Type I error		
Predicted condition negative	False negative, Type II error	True negative		
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$		
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$		

Example – Phonocardiographic screening

Figure 6.6. Increase in sensitivity and specificity when changing the decision criterion from relative duration of systolic murmur (SM (%)) to high frequency limit and combined criteria (SM(%)) >= 80 % OR High_limit >= 200 Hz).

Figure 6.7. Decrease in number of false negative and false positive cases using relative duration of systolic murmur, high frequency limit or combined criteria for selection criteria. Total number of pathological cases was 50 and total number of physiological cases was 75.

How to select the threshold decision parameter

Figure 6.2. The sensitivity and specificity of the stepwise logistic regression model at different cut-off points in detection cardiac disease in children (Publication VII).

ROC curves

Figure 6.8. Sensitivity and specificity for the combined criteria around the optimal point (closest to 100 % sensitivity and specificity) to differentiate between the pathological and physiological murmurs (top left). The highest frequency limit is fixed to 200 Hz and the relative duration is varied (top right). The ROC vs. the relative duration around the optimal point. The relative duration is fixed to 0.80 and the high frequency limit is varied (bottom left). ROC vs. the highest frequency limit. Area under the curve is 0.95 (bottom right).