

Discrete POWER & Signal **Technologies**

FFB2907A

FMB2907A

MMPQ2907A

PNP Multi-Chip General Purpose Amplifier

This device is designed for use as a general purpose amplifier and switch requiring collector currents to 500 mA. Sourced from Process 63.

Absolute Maximum Ratings*

T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	60	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	600	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

Symbol	Characteristic	Max			Units
		FFB2907A	FMB2907A	MMPQ2907A	
P_D	Total Device Dissipation Derate above 25°C	300 2.4	700 5.6	1,000 8.0	mW mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient Effective 4 Die Each Die	415	180	125 240	°C/W °C/W

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

PNP Multi-Chip General Purpose Amplifier (continued)

Electrica	l Chara	cter	istics
-----------	---------	------	--------

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHA	RACTERISTICS					
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 10 \text{ mA}, I_B = 0$	60			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, \ I_E = 0$	60			V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0			V
I _B	Base Cutoff Current	$V_{CB} = 30 \text{ V}, V_{EB} = 0.5 \text{ V}$			50	nA
I _{CEX}	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, V_{BE} = 0.5 \text{ V}$			50	nA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 50 \text{ V}, I_{E} = 0$ $V_{CB} = 50 \text{ V}, I_{E} = 0, T_{A} = 125^{\circ}\text{C}$			0.02 20	μA μA
ON CHAR	ACTERISTICS					
h _{FE}	DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	75			
		$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	100 100			
		$I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V}^*$	100		300	
		$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}^*$	50			
V _{CE(sat)}	Collector-Emitter Saturation Voltage*	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$			0.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 500 mA, I _B = 50 mA I _C = 150 mA, I _B = 15 mA*			1.6 1.3	V
v BE(Sat)	Base Emilier Saturation Voltage	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			2.6	V
SMALL SI	GNAL CHARACTERISTICS					
f _T	Current Gain - Bandwidth Product	$I_C = 50 \text{ mA}, V_{CE} = 20 \text{ V},$		250		MHz
	Outside One and San and	f = 100 MHz $V_{CB} = 10 \text{ V}, I_{E} = 0,$		6.0		nΕ
		I VCB = IU V. IF = U.		0.0		pF
C _{obo}	Output Capacitance					
C _{obo}	Input Capacitance	f = 100 kHz $V_{EB} = 2.0 \text{ V}, I_{C} = 0,$		12		pF
		f = 100 kHz		12		pF
		f = 100 kHz $V_{EB} = 2.0 \text{ V}, I_{C} = 0,$		12		pF
C _{ibo}		$ f = 100 \text{ kHz} $ $V_{EB} = 2.0 \text{ V}, I_{C} = 0, $ $f = 100 \text{ kHz} $		12		pF
C _{ibo}	Input Capacitance	f = 100 kHz $V_{EB} = 2.0 \text{ V}, I_{C} = 0,$		12		pF
C _{ibo}	Input Capacitance NG CHARACTERISTICS	$ f = 100 \text{ kHz} $ $V_{EB} = 2.0 \text{ V}, I_{C} = 0, $ $f = 100 \text{ kHz} $				
C _{ibo} SWITCHII t _{on}	Input Capacitance NG CHARACTERISTICS Turn-on Time	$ f = 100 \text{ kHz} $ $V_{EB} = 2.0 \text{ V, } I_{C} = 0, $ $f = 100 \text{ kHz} $ $V_{CC} = 30 \text{ V, } I_{C} = 150 \text{ mA,} $		30		ns
SWITCHII ton td	Input Capacitance NG CHARACTERISTICS Turn-on Time Delay Time	$ f = 100 \text{ kHz} $ $V_{EB} = 2.0 \text{ V, } I_{C} = 0, $ $f = 100 \text{ kHz} $ $V_{CC} = 30 \text{ V, } I_{C} = 150 \text{ mA,} $		30 8.0		ns ns
Cibo SWITCHII ton td	Input Capacitance NG CHARACTERISTICS Turn-on Time Delay Time Rise Time	$ f = 100 \text{ kHz} $ $V_{EB} = 2.0 \text{ V, } I_{C} = 0, $ $f = 100 \text{ kHz} $ $V_{CC} = 30 \text{ V, } I_{C} = 150 \text{ mA,} $ $I_{B1} = 15 \text{ mA} $		30 8.0 20		ns ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

PNP Multi-Chip General Purpose Amplifier

(continued)

Typical Characteristics

PNP Multi-Chip General Purpose Amplifier

(continued)

Typical Characteristics (continued)

Turn On and Turn Off Times vs Collector Current

Rise Time vs Collector

Power Dissipation vs Ambient Temperature

PNP Multi-Chip General Purpose Amplifier

(continued)

Test Circuits

FIGURE 1: Saturated Turn-On Switching Time Test Circuit

FIGURE 2: Saturated Turn-Off Switching Time Test Circuit