CS686 – assignment 2

Name: Erlie Shang Student#: 20696176

1. see the code attached

2.

Pr(OC)	
0.8	

Pr(Trav)	
0.05	

Trav	Pr(Fraud Trav)
True	0.01
False	0.004

Trav	Fraud	Pr(FP Trav, Fraud)
False	True	0.1
False	False	0.01
True	True	0.9
True	False	0.9

OC	Fraud	Pr(IP OC, Fraud)
True	False	0.1

True	True	0.15
False	False	0.001
False	True	0.051

OC	Pr(CRP OC)
True	0.1
False	0.01

Pr(Fraud|fp, ~ip, crp, trav)

= aPr(fp, \sim ip, crp, trav, OC|Fraud)Pr(Fraud) = a Σ_{OC} Pr(fp, \sim ip, crp, trav, OC|Fraud)Pr(Fraud)

b) Run the program that I provide, and the results will be calculated automatically and shown on the terminal.

```
Pr(Fraud) = \Sigma_{Trav} Pr(Fraud, Trav)
            = \Sigma_{Trav} Pr(Fraud|Trav) Pr(Trav)
            = \Sigma_{\text{Trav}} f<sub>1</sub>(Fraud, Trav) f<sub>2</sub>(Trav)
            = f_3(Fraud)
            = [0.0043, 0.9957]
Factor:
         f_1(Fraud, Trav) = Pr(Fraud|Trav)
         f_2(Trav) = Pr(Trav)
         f_3(Fraud) = \Sigma_{Trav} f_1(Fraud, Trav) f_2(Trav)
  Pr(Fraud|fp, ~ip, crp)
= aPr(fp, ~ip, crp|Fraud)Pr(Fraud)
= a\Sigma_{Trav, OC} Pr(fp, ~ip, crp, OC, Trav|Fraud)Pr(Fraud)
= a\Sigma_{OC} Pr(\sim ip \mid OC, Fraud) Pr(crp \mid OC) Pr(OC) \Sigma_{Trav} Pr(fp \mid Trav, Fraud) Pr(Trav) Pr(Fraud)
= a\Sigma_{OC} f_1(OC, Fraud) f_2(OC) f_3(OC) \Sigma_{Trav} f_4(Trav, Fraud) f_5(Trav) f_6(Fraud)
= af_7(Fraud) f_8(Fraud)
= [0.01430783, 0.98569217]
Factor:
         f_1(OC, Fraud) = Pr(\sim ip \mid OC, Fraud)
         f_2(OC) = Pr(crp | OC)
         f_3(OC) = Pr(OC)
         f_4(Trav, Fraud) = Pr(fp|Trav, Fraud)
         f_5(Trav) = Pr(Trav)
         f_6(Fraud) = Pr(Fraud)
         f_7(Fraud) = \sum_{OC} f_1(OC, Fraud) f_2(OC) f_3(OC)
         f_8(Fraud) = \sum_{Trav} f_4(Trav, Fraud) f_5(Trav) f_6(Fraud)
         a is the normalizing constant
```

= $a\Sigma_{OC}$ Pr(~ip|OC, Fraud)Pr(crp|OC)Pr(OC)Pr(fp|trav, Fraud)Pr(trav)Pr(Fraud)

```
= a \Sigma_{OC} \, f_1(OC, Fraud) \, f_2(OC) \, f_3(OC) \, f_4(Fraud) \, f_5() \, f_6(Fraud) \\ = a f_7(Fraud) \, f_8(Fraud) \\ = [0.00945117, \, 0.99054883] \\ Factor: \\ f_1(OC, Fraud) = Pr(~ip | OC, Fraud) \\ f_2(OC) = Pr(crp | OC) \\ f_3(OC) = Pr(OC) \\ f_4(Fraud) = Pr(fp | trav, Fraud) \\ f_5() = Pr(trav) = 0.05 \\ f_6(Fraud) = Pr(Fraud) \\ f_7(Fraud) = \Sigma_{OC} \, f_1(OC, Fraud) f_2(OC) f_3(OC) \\ f_8(Fraud) = f_4(Fraud) f_5() f_6(Fraud) \\ a \, is \, the \, normalizing \, constant \\ If I \, were \, the \, thief, I \, would \, prefer \, to \, purchase \, a \, compute \, f_1(CC) \, f_2(CC) \, f_3(CC) \\ f_3(CC) \, f_3
```

d) If I were the thief, I would prefer to purchase a computer before I made the internet purchase. In this way, the probability of rejection would decrease.

Precisely, the calculation is shown as below:

```
\begin{split} &\text{Pr}(\text{Fraud}|\text{ip}) \\ &= a \Sigma_{\text{Oc}} \text{Pr}(\text{ip, OC}|\text{Fraud}) \text{Pr}(\text{Fraud}) \\ &= a \Sigma_{\text{Oc}} \text{Pr}(\text{ip}|\text{OC, Fraud}) \text{Pr}(\text{Fraud}) \\ &= a \Sigma_{\text{Oc}} f_1(\text{OC, Fraud}) f_2(\text{Fraud}) \\ &= [0.00696213, 0.99303787] \\ &\text{Pr}(\text{Fraud}|\text{ip, crp}) \\ &= a \text{Pr}(\text{ip, crp}|\text{Fraud}) \text{Pr}(\text{Fraud}) \\ &= a \Sigma_{\text{Oc}} \text{Pr}(\text{ip}|\text{OC, Fraud}) \text{Pr}(\text{crp}|\text{OC}) \text{Pr}(\text{Fraud}) \\ &= a \Sigma_{\text{Oc}} f_1(\text{OC, Fraud}) f_3(\text{OC}) f_2(\text{Fraud}) \\ &= [0.0064889, 0.9935111] \end{split} Factor: f_1(\text{OC, Fraud}) = \text{Pr}(\text{ip}|\text{OC, Fraud}) \\ f_2(\text{Fraud}) = \text{Pr}(\text{Fraud}) \\ f_3(\text{OC}) = \text{Pr}(\text{crp}|\text{OC}) \\ a \text{ is the normalizing constant} \end{split}
```

Therefore, the probability decreased by about 0.0005

3.

a)

- i. No, D and G are connected
- ii. No, same as above
- iii. Yes, B is not in the evidence so B blocks A and G

- iv. No, there are undirected paths between C and G, and B cannot block the path between A and C because B is in the evidence, hence they are dependent
- v. Yes, C blocks the path between B and G, so B and G are independent, hence A and G are independent
- vi. No, there is an undirected path between C and G (C, E, F, G), and B cannot block the path between A and C because B is in the evidence, hence they are dependent
- vii. No, C and G are dependent because E is in the evidence, and A and C are dependent given B, therefore A and G are dependent
- b) C is in the query so it is relevant. And D, the parent of C, is relevant. A is not a descendent of relevant elements, so A is not relevant. E is a descendent, E and all its parents are relevant. So the relevant elements are {C, D, E, F}