

Jakub Wierciak

Mikrosilniki prądu przemiennego

iek- najlepsza inwest

Projekt wspołfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Zasady działania siłowników elektrycznych

(Heimann, Gerth, Popp 2001)

Z wykorzystaniem siły Lorenza (elektrodynamiczne)

- silniki prądu stałego
- silniki indukcyjne
- silniki jednofazowe komutatorowe

Z wykorzystaniem siły reluktancji (elektromagnetyczne)

- elektromagnesy
- silniki skokowe
- silniki synchroniczne

Jednofazowe silniki komutatorowe prądu przemiennego

Silnik komutatorowy prądu przemiennego

WAMEL (2009)

Schematy połączeń jednofazowych silników komutatorowych

(Sochocki 1996)

- a) silnik szeregowy, b) silnik repulsyjny, c) silnik bocznikowy,
- d) silnik uniwersalny

Typowe kształty rdzenia i wirnika jednofazowego silnika szeregowego

(Sochocki 1996)

a) konstrukcja starsza, b) konstrukcja nowoczesna

Przebiegi wybranych wielkości w silniku komutatorowym szeregowym

(Sochocki 1996)

i – prąd silnika, m_e – moment elektromagnetyczny, ϕ – strumień magnetyczny

Charakterystyki mechaniczne jednofazowego silnika szeregowego

(Sochocki 1996)

- 1 przy zasilaniu prądem przemiennym, 2 przy zasilaniu prądem stałym,
- 3 przy zasilaniu prądem przemiennym i zmniejszonej liczbie zwojów uzwojenia

Silniki indukcyjne jednofazowe

Budowa silnika indukcyjnego trójfazowego z wirnikiem uzwojonym

Mikrosilniki prądu przemiennego

(Janiszowski 1987)

Schemat połączenia uzwojeń

Przekrój wzdłużny silnika

Silnik indukcyjny trójfazowy z wirnikiem klatkowym

(Janiszowski 1987)

Wirnik zwarty

Klatka wirnika

Zasada działania asynchronicznego silnika indukcyjnego

(Janiszowski 1987)

Wirujące pole magnetyczne stojana

Poślizg

$$s = \frac{n_S - n}{n_S} 100\%$$

n_s – prędkość wirującego pola stojana (prędkość synchroniczna) n – prędkość obrotowa wirnika s – poślizg

Charakterystyka mechaniczna silnika indukcyjnego

(Janiszowski 1987)

Charakterystyka momentu elektromagnet. silnika indukcyjnego z polem kołowym

(Pochanke 1996)

 M_e -moment elektromagnetyczny, M_{el} - początkowy moment rozruchowy, M_b - moment krytyczny, s_b - poślizg krytyczny

Charakterystyki momentu elektromagnetycznego indukcyjnego

(Pochanke 1996)

- a) w zależności od rezystancji uzwojenia twornika,
- b) w zależności od napięcia zasilającego

Pole tętniące silnika indukcyjnego jednofazowego

(Janiszowski 1987)

Powstawanie momentu hamującego od pola oscylującego

(Pochanke 1996)

1 – jarzmo stojana, 2 – biegun, 3 – nabiegunnik, 4 – rdzeń twornika, 5 – komutator, 6 – uzwojenie twornika, 7 – szczotka, 8 – uzwojenie wzbudzenia, 9 – strumień wzbudzenia

Przesuwanie fazy za pomocą kondensatora

(Janiszowski 1987)

Charakterystyka mechaniczna silnika z kondensatorową fazą pomocniczą

(Janiszowski 1987)

1 – charakterystyka momentu pochodzącego od fazy głównej silnika, 2 – charakterystyka momentu wypadkowego, pochodzącego od obydwu faz

Silnik jednofazowy kondensatorowy z uzwojeniem rozruchowym

(Pochanke 1996)

a) schemat połączeń, b) charakterystyka momentu;

1 – uzwojenie główne, 2 – uzwojenie rozruchowe, 3 – wyłącznik uzwojenia rozruchowego:

 n_x – prędkość odłączenia uzwojenia rozruchowego

Silnik indukcyjny jednofazowy z uzwojeniem kondensat. i kondensatorem rozruchowym

(Sochocki 1996)

a) Schemat połączeń, b) wykres fazorowy prądów i napięć, c) charakterystyki mechaniczne;

Charakterystyki mechaniczne jednofazowych silników indukcyjnych

(Sochocki 1996)

a, b, c) z uzwojeniem rozruchowym rezystancyjnym,

d, e, f) z kondensatorem rozruchowym;

- 1 charakterystyka mechaniczna przy zasileniu obydwu pasm uzwojenia,
- 2 charakterystyka przy włączonym tylko uzwojeniu pasma głównego,
- 3 przebieg momentu przy zadziałaniu włącznika pasma rozruchowego

Silnik indukcyjny jednofazowy z kondensatorem

(--)

Zasada działania pomocniczego uzwojenia zwartego

(Sochocki 1996)

- α przestrzenne przesunięcie strumienia przenikającego obie części bieguna,
- Ω_r kierunek prędkości,
- δ szczelina powietrzna,
- U_i napięcie indukowane w zwoju zwartym,
- Φ' strumień zwoju zwartego

Budowa silnika jednofazowego ze zwartym zwojem

(Janiszowski 1987)

1 – zwarty zwój na biegunie

Zasada działania pomocniczego uzwojenia zwartego

(Mrugalski 1979)

Schemat silnika

Przebiegi strumieni magnetycznych

Silniki indukcyjne jednofazowe z pomocniczym uzwojeniem zwartym

(Sochocki 1996)

- a), b) silniki z rdzeniem niesymetrycznym, c) silnik z rdzeniem symetrycznym, d) fragment strefy przyszczelinowej
- 1 zwój zwarty, 2 bocznik magnetyczny, 3 podcięcie łuku bieguna

Silnik indukcyjny jednofazowy ze zwartym zwojem

(Elettrocasteco-Polonia 2009)

Silnik Ferrarisa z wirnikiem tarczowym

(Mrugalski 1979)

- 1 stojan,
- 2, 4 część bieguna ze zwartym zwojem,
- 3 wirnik,
- 5, 6 części biegunów bez zwartego zwoju

Jednofazowe silniki synchroniczne

Wirniki silników synchronicznych

(Mrugalski 1979)

a) z magnesem trwałym, b) histerezowy, c) reluktancyjny

Zasady konstrukcji wirników permasynów

(Sochocki 1996)

- 1 magnes trwały,
- 2 rdzeń ferromagnetyczny lub histerezowy,
- 3 pręty klatki rozruchowotłumiącej,
- 4 szczeliny ograniczające strumień rozproszony magnesów,
- 5 niemagnetyczna piasta

a), b), c) o rozruchu własnym indukcyjnym, d) o rozruchu własnym histerezowym; o rozruchu częstotliwościowym: e) warstwowy, f) powłokowy, g) gwiazdowy;

Zasady konstrukcji wirników mikrosilników synchronicznych jednofazowych

(Sochocki 1996)

- a) cylindryczny ferrytowy magnesowany impulsowo, b) pazurowy z magnesem magnesowanym osiowo, c) z piastą niemagnetyczną i blokadą niepożądanego kierunku ruchu;
- 1 magnes trwały, 2 pręt klatki magnesującej, 3 kierunek pola magnesującego,
- 4 piasta niemagnetyczna, 5 rolka, 6 sprężyna, 7 biegun pazurowy N,
- 8 biegun pazurowy S

Silnik synchroniczny 16. biegunowy (375 obr/min)

(Mrugalski 1979)

1, 8 – części stojana, 2 – biegun, 3, 7 – miedziane tarcze, 4 – rdzeń twornika, 5 – uzwojenie, 6 – uzwojenie twornika, 7 – szczotka, 8 – uzwojenie wzbudzenia, 9 – strumień wzbudzenia, 10 – magnes trwały wirnika

Odmiany konstrukcyjne czterobiegunowych wirników silników reluktancyjnych

(Sochocki 1996)

- a) klasyczna, b) segmentowa, c) z "barierami strumieniowymi":
- 1 rdzeń ferromagnetyczny, 2 klatka rozruchowo-tłumiąca,
- 3 "bariery strumieniowe"

Charakterystyki silnika histerezowego

(Pochanke 1996)

a) mechaniczna, b) moment w funkcji prędkości i kąta obciążenia;

