Lecture 14
Segment 2
One-way ANOVA

- Example
 - WM training (Jaeggi et al., 2008)
 - IV: # of training sessions (8, 12, 17, 19)
 - DV: gain score (post pre)

WM training (dataframe)

Subject	Condition	Pre	Post	Gain

WM training (raw data)

8	12	17	19
1	0	4	7
1	2	4	5
2	4	3	3
1	2	3	6
0	2	6	4

• F ratio

F = systematic variance / unsystematic variance

F = between-groups variance / within-groups variance

$$F = MS_{Between} / MS_{Within}$$

$$F = MS_A / MS_{S/A}$$

• $F = MS_A / MS_{S/A}$

•
$$MS_A = SS_A / df_A$$

• $MS_{S/A} = SS_{S/A}/ df_{S/A}$

- $SS_A = n \Sigma (Y_j Y_T)^2$
 - Y_i are the treatment means
 - Y_T is the grand mean

- $SS_{S/A} = \Sigma (Y_{ij} Y_j)^2$
 - Y_{ij} are individual scores
 - Y_i are the treatment means

- $df_A = a 1$
- $df_{S/A} = a(n-1)$
- $df_{TOTAL} = N 1$

Summary Table

Source	SS	df	MS	F
A	$n \Sigma (Y_j - Y_T)^2$	a - 1	SS _A /df _A	MS _A /MS _{S/A}
S/A	$\Sigma(Y_{ij} - Y_j)^2$	a(n -1)	SS _{S/A} /df _{S/A}	
Total	$\Sigma(Y_{ij} - Y_T)^2$	N - 1		

SS calculations

$$SS_A = n \Sigma (Y_j - Y_T)^2$$

$$= 5 [(1 - 3)^2 + (2 - 3)^2 + (4 - 3)^2 + (5 - 3)^2]$$

$$= 5 [4 + 1 + 1 + 4]$$

$$= 5 \times 10$$

$$= 50$$

SS calculations

$$SS_{S/A} = \Sigma(Y_{ij} - Y_j)^2$$

$$= [(1 - 1)^2 + (1 - 1)^2 + (2 - 1)^2 + (1 - 1)^2 + (0 - 1)^2] + [(0 - 2)^2 + (2 - 2)^2 + (4 - 2)^2 + (2 - 2)^2 + (2 - 2)^2] + [(4 - 4)^2 + (4 - 4)^2 + (3 - 4)^2 + (3 - 4)^2 + (6 - 4)^2] + [(7 - 5)^2 + (5 - 5)^2 + (3 - 5)^2 + (6 - 5)^2 + (4 - 5)^2]$$

$$= [2 + 8 + 6 + 10] = 26$$

df calculations

$$df_A = a - 1 = 4 - 1 = 3$$

$$df_{S/A} = a(n - 1) = 4(5 - 1) = 16$$

MS calculations

$$MS_A = SS_A / df_A = 50 / 3 = 16.67$$

$$MS_{S/A} = SS_{S/A} / df_{S/A} = 26 / 16 = 1.63$$

F calculation

$$F = MS_A / MS_{S/A} = 16.67 / 1.63 = 10.23$$

$$df_{num} = 3$$

 $df_{denom} = 16$

$$p = .0005$$

 \therefore Reject H_0

Analysis of Variance (ANOVA)

Effect size

- $R^2 = \eta^2$ (eta-sqaured)
- $\eta^2 = SS_A / SS_{Total}$
- So, for our example
 - $\eta^2 = SS_A / SS_{Total} = 50 / 76 = .66$

Assumptions

- DV is continuous
- DV is normally distributed
- Homogeneity of variance
 - Within-groups variance is equivalent for all groups » Levene's test

Homogeneity of variance

- If Levene's test is significant then homogeneity of variance assumption has been violated
 - Conduct comparisons using a restricted error term
 - More on this in Lecture 15