Constructing the Bijective BWT

Hideo Bannai (Kyushu University),

Juha Kärkkäinen (Helsinki Institute of Information Technology),

Dominik Köppl (Kyushu University),

Marcin Piątkowski (Nicolaus Copernicus University)

the BBWT is the BWT of the Lyndon factorization of an input text with respect to \leq_{ω}

the BBWT is the BWT of the Lyndon factorization 1 of an input text with respect to \leq_{ω}

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

not Lyndon words:

- abaab (rotation aabab smaller)
- abab (abab not smaller than suffix ab)

Lyndon factorization [Chen+ '58]

- input: text $T = T_1 T_2 \dots T_t$
- output: factorization $T_1...T_t$ with
 - T_x is Lyndon word
 - $-T_x \ge_{\mathsf{lex}} T_{x+1}$
 - factorization uniquely defined
 - linear time [Duval'88]

(Chen-Fox-Lyndon Theorem)

example

T = senescence

Lyndon factorization: s enes cen ce

- s, enes, cen, and ce are Lyndon
- s >_{lex} enes >_{lex} cen ≥_{lex} ce

\prec_{ω} order

• $u <_{\omega} w : \iff uuuuu... <_{lex} wwww...$

- ab <_{lex} aba
- aba ≺_ω ab

\prec_{ω} order

• $u <_{\omega} w : \iff uuuuu ... <_{lex} wwww...$

- ab < aba
- aba ≺_ω ab

ab<mark>ababab...</mark> aba<mark>abaaba...</mark>

s | enes | cen | ce

```
s enes cen ce
nese enc ec
esen nce
sene
```


result: enccsneees

motivation

properties of BBWT:

- no \$ necessary
- BBWT is more compressible than BWT for various inputs

[Scott and Gill '12]

BBWT is indexible (full text index)

[Bannai+ '19]

however, linear time construction was only conjectured!

time

- how much time does it take to sort?
- #conjugates = number of text positions = n
 - \Rightarrow naively: $O(n^2)$ time
- can we use O(n) time suffix sorting?

```
senescence
e
        enescence
S
         nescence
e
n
          escence
e
           scence
S
            cence
    prev.
              ence
    char
e
               nce
n
                ce
C
                 e
```


senescence

output: nsccsneeee (BBWT: enccsneees)

s | enes | cen | ce

s | enes | cen | ce

```
s
enes
nese
esen
sene
cen
enc
nce
ce
```

```
s s enes enes enes esen esen sene cen cen e ce ce c
```


s | enes | cen | ce

output: enccsneees

SA ⇒ BWT

- BWT[i] = T[SA[i]-1]
- SA[i] = starting position of the i the smallest suffix respective to lexicographic order

SAIS:

- famous linear time SA construction algorithm
- O(n) time for integer alphabets

LSA ⇒ BBWT

- BBWT[i] = T[LSA[i]-1]
- LSA[i] = starting position of i th smallest conjucate respective to \prec_{ω} order

[Hon+ '11]

LSAIS:

- LSA construction algorithm
- sorts conjugates instead of suffixes

$$T_1$$
 T_2 T_3 T_4
1 1 2 3 4 1 2 3 1 2
 $T = s e n e s c e n c e$

$$T_1$$
 T_2 T_3 T_4

1 1 2 3 4 1 2 3 1 2

 T_4
 T_5
 T_4
 T_5
 T_5
 T_5
 T_6
 T_7
 T_8
 T_8

•
$$T_2[5] := T_2[1]$$

$$T_1$$
 T_2 T_3 T_4
1 1 2 3 4 1 2 3 1 2
 $T = s e n e s c e n c e$

- $T_2[5] := T_2[1]$
- $T_2[4..] := T_2[4]T_2[1]T_2[2]T_2[3]T_2[4]T_2[1]...$

$$T_1$$
 T_2 T_3 T_4
1 1 2 3 4 1 2 3 1 2
 $T = s e n e s c e n c e$

- $T_2[5] := T_2[1]$
- $T_2[4..] := T_2[4]T_2[1]T_2[2]T_2[3]T_2[4]T_2[1]...$

in general, for any *x* define:

- $-T_{x}[|T_{x}|+j] := T_{x}[(|T_{x}|+j-1) \mod |T_{x}|+1], j \ge 0$
- $T_{x}[0] := T_{x}[|T_{x}|]$
- $-T_{x}[i..] := T_{x}[i] ... T_{x}[|T_{x}|] T_{x}[1] ...$

L/S type T₁ T₂ T₃ T₄ 1 1 2 3 4 1 2 3 1 2 T = s e n e s c e n c e

S L S L S S L

- $T_x[i] <_{\text{lex}} T_x[i+1] \Rightarrow T_x[i] \text{ is } S \text{ type}$
- $T_x[i] >_{lex} T_x[i+1] \Rightarrow T_x[i]$ is L type
- $T_x[i] = T_x[i+1] \Rightarrow T_x[i]$ and $T_x[i+1]$ are same type

L/S type T_{1} T_{2} T_{3} T_{4} 1 1 2 3 4 1 2 3 1 2 T = s e n e s c e n c e

- $T_x[i] <_{\text{lex}} T_x[i+1] \Rightarrow T_x[i]$ is S type
- $T_x[i] >_{lex} T_x[i+1] \Rightarrow T_x[i]$ is L type
- $T_x[i] = T_x[i+1] \Rightarrow T_x[i]$ and $T_x[i+1]$ are same type

thanks to the Lyndon factorization the S / L types are the same as in the original SAIS

S* type T₁ T₂ T₃ T₄ 1 1 2 3 4 1 2 3 1 2 T = s e n e s c e n c e S* S* L S* L S* S L S* L

- If $T_x[i]$ is **S** type and $T_x[i-1]$ is **L** type, then T[i] is **S*** type
- $T_x[1]$ is always S* type $\forall x$

LMS (substrings)

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ S & e & n & e & S & C & e & n & C & e \end{bmatrix}$$

for $1 \le i < j \le |T_x| + 1$:

$T_x[i...j]$ is called LMS if

- $T_x[i]$ and $T_x[j]$ are S* type and
- $T_x[k]$ is S* type $\forall k \in [i+1 ... j-1]$

- 1 ss
- 2 ene
- 4 ese
- 6 cenc
- 9 cec

LSAIS algorithm

- 1) sort all LMS
- 2) place S* types
- 3) induce L types
- 4) induce S types

sort all LMS

```
start pos. LMS
```

- 1 ss
- 2 ene
- 4 ese
- 6 cenc
- 9 cec

sort all LMS

start pos. LMS

1 ss
2 ene
4 ese
6 cenc
6 cenc
9 cec
1 ss

S/L type bucket allocation

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ S & e & n & e & S & c & e & n & c & e \\ S^* & S^* & L & S^* & L & S^* & S & L & S^* & L \end{bmatrix}$$

place S* types

```
pos. LMS
    cec
     cenc
                         2
                                                         10
                             3
                                 4
                                     5
                                         6
                                                 8
                                                     9
  2 ene
                     S
                         e
  4 ese
                     S*
                         S*
                                 S*
                                         S*
                                             S
                                                     S*
  1 ss
         LSA =
                          6
                                                          1
                                     4
                       S
                                                         S
                       \mathsf{C}
                                    e
                                               n
                                                        S
```

induce L types

induce S types

BBWT[i] = T[LSA[i]-1]

time analysis

SAIS

- sorts LMS recursively
- given SAIS needs $\tau(n)$ time, $\tau(n) = O(n) + \tau(n/2) = O(n)$ since the number of LMS $\leq n/2$

LSAIS

- number of LMS can be $\Theta(n)$ in all recursion steps
- still $O(n^2)$ time?

```
T = b...baababaabab...aabab
b|...|b|aabab|aabab|...|aabab
```

```
T = b...baababaabab...aabab
b|...|b|aabab|aabab|...|aabab
LMS: _______ assign ranks according to lexicographic order
<math>-b \rightarrow 3
-aab \rightarrow 1
-ab \rightarrow 2
```

```
T = b...baababaabab...aabab
b | . . . | b | aabab | aabab | . . . | aabab
                        assign ranks according to
LMS: -
                         lexicographic order
-b \rightarrow 3
- aab → 1
- ab \rightarrow 2
3 | . . . . | 3 | 12 | 12 | . . . | 12 (recursion step)
```

```
T = b...baababaabab...aabab
b | ... | b | aabab | aabab | ... | aabab
                       assign ranks according to
LMS:
                       lexicographic order
-b \rightarrow 3
                         > same amount
- aab → 1
- ab → 2
3 | . . . . | 3 | 12 | 12 | . . . | 12 (recursion step)
```

```
T = b \dots baababaabab \dots aabab
b | . . . | b | aabab | aabab | . . . | aabab
                         assign ranks according to
LMS:
                         lexicographic order
-b \rightarrow 3
                            same amount
- aab → 1
- ab \rightarrow 2
3 | . . . . | 3 | 12 | 12 | . . . | 12 (recursion step)
```

same Lyndon factorization

lemma

- the string on the ranked LMS subtring has the same Lyndon factorization
- compared to any character c, all LMS starting with c are larger with respect to \prec_{ω}

lemma

- the string on the ranked LMS subtring has the same Lyndon factorization
- compared to any character c, all LMS starting with c are larger with respect to \prec_{ω}

$$T_{1}$$
 T_{2} T_{3} T_{4}

1 2 3 4 5 6 7 8 9

 $T = \begin{bmatrix} s & e & n & e & s \\ s & s & L & s & L & s \end{bmatrix}$ C

lemma

- the string on the ranked LMS subtring has the same Lyndon factorization
- compared to any character c, all LMS starting with c are larger with respect to \prec_{ω}

$$T_1$$
 T_2 T_3 T_4
1 2 3 4 5 6 7 8 9
 $T = s e n e s c ? ? c$

⇒ can omit LMS of length 1 in the recursion

S* S* L S* L S*

S×

summary

- bijective BWT construction
 - O(n) time on integer alphabets
- methods
 - adapt SAIS
 - sort conjugates in \prec_{ω} instead of suffixes in lex. order
 - skip LMS of length 1 in recursion

summary

- bijective BWT construction
 - O(n) time on integer alphabets
- methods
 - adapt SAIS
 - sort conjugates in \prec_{ω} instead of suffixes in lex. order
 - skip LMS of length 1 in recursion

all questions are welcome!