TTK4250 Sensor Fusion Assignment 2

Hand in: Friday 13. September on Blackboard.

Read Python setup guide on BB, it can be found under Course work.

This assignment should be handed in on Blackboard, as a PDF pluss the zip created by running create_handin.py, before the deadline.

You are supposed to show how you got to each answer unless told otherwise.

If you struggle, we encourage you to ask for help from a classmate or come to the exercise class on Friday.

Task 1: Transformation of Gaussian random variables

Let $x \in \mathbb{R}^n$ be $\mathcal{N}(\mu, \Sigma)$. Find the distribution and see if you recognize it:

Hint: they are all given in the book.

(a)
$$z = \sum^{-\frac{1}{2}} (x - \mu)$$
, where $\sum^{\frac{1}{2}} (\sum^{\frac{1}{2}})^T = \sum$

Hint: If you are using theorem 2.4.1, you might need $\det(A^{\frac{1}{2}}) = \det(A)^{\frac{1}{2}}$, $(A^{-1})^T = (A^T)^{-1}$, and $\det(A^T) = \det(A)$ whenever A has full rank.

(b) Use transformation of random variables to find $y_i = z_i^2$, where z_i is the *i*'th variable in the vector z.

(c)
$$y = (x - \mu)^T \Sigma^{-1} (x - \mu) = z^T z = \sum_i z_i^2 = \sum_i y_i$$
.

Hint: The MGF of y_i is given in the book through example 2.8 and 2.10. Example 2.6 might also be handy.

Task 2: Sensor fusion

In this task we want to find out if a boat is above the line $x_2 = x_1 + 5$. In order to do this we will fuse measurements from two sensors with our prior belief: A drone-mounted camera, and a maritime surveillance radar. You have some prior knowledge of the state of the boat. You get 1 measurement from each sensor that are processed so that you know them to be (approximately) Gaussian conditioned on the position.

To be more specific, let us denote the state by x and our prior Gaussian by $\mathcal{N}(x; \bar{x}, P)$. The measurement from the camera is given by $z^c = H^c x + v^c$ and the measurement from the radar by $z^r = H^r x + v^r$, where v^c, v^r denotes the measurement noise and is distributed according to $\mathcal{N}(0, R^c)$ and $\mathcal{N}(0, R^r)$, respectively.

Only insert the numbers when asked to. The needed values are given by

$$\bar{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
, $P = 25I_2$, $H^c = H^r = I_2$, $R^c = \begin{bmatrix} 79 & 36 \\ 36 & 36 \end{bmatrix}$, $R^r = \begin{bmatrix} 28 & 4 \\ 4 & 22 \end{bmatrix}$, $z^c = \begin{bmatrix} 2 & 14 \end{bmatrix}^T$, $z^r = \begin{bmatrix} -4 & 6 \end{bmatrix}^T$

- (a) What is $p(z^c|x)$?
- (b) Show that the joint $p(x, z^c)$ can be written as a Gaussian distribution.

Hint: Use conditional probability and the proof of theorem 3.3.1.

- (c) Find the marginal $p(z^c)$ and the conditional $p(x|z^c)$, using the above and either theorems from the book or calculations.
- (d) Given what you found above, what is the marginal $p(z^r)$ and the conditional $p(x|z^r)$?
- (e) What is the MMSE and MAP estimate of x given z^c ? You do not need to do calculations to find the answer, but briefly state what you would do if you had to.
- (f) Finish the sensor_model.LinearSensorModel2d.get_pred_meas method that can be used to calculate marginal probabilities p(z).
- (g) Finish the conditioning get_cond_state function that can be used to calculate conditional probabilities p(x|z).
- (h) Finish the task2.get_conds function that is used to calculate the conditional probabilities $p(x|z^c)$ and $p(x|z^r)$.
- (i) Finish the task2.get_double_conds function that is used to calculate the conditional probabilities $p(x|z^c, z^r)$, i.e. the posterior of x conditioned on z^c then z^r , and $p(x|z^r, z^c)$, i.e. the posterior of x conditioned on z^r then z^c . Does it matter which order we condition?
- (j) Finish the gaussian.MultiVarGauss2d.get_transformed method that is used to calculate the probability p(Tx), where T is a linear transformation.
- (k) You now want to know the probability that the boat is above the line, $x_2 = x_1 + 5$. Finish task2.get_prob_over_line using the appropriate linear transform and the CDF.

Hint: This is the same as finding $Pr(x_2 - x_1 > 5) = Pr(\begin{bmatrix} -1 & 1 \end{bmatrix} x > 5)$

To get the cdf you can use from scipy.stats import norm, and then use

norm.cdf(value, mean, std). Note that it takes the standard deviation (std) and not the variance as input.

Task 3: Working with the canonical form

In Section 3.3 the fundamental product identity was stuedied using a moment-based parametrization. Clearly, it must also be possible to establish an equivalent result using the canonical representation. In this exercise we shall therefore consider the product

$$\mathcal{N}^{-1}(\mathbf{x}\,;\,\mathbf{a},\mathbf{B})\mathcal{N}^{-1}(\mathbf{y}\,;\,\mathbf{C}\mathbf{x},\mathbf{D}).\tag{6}$$

(a) Show that (6) is identical to the Gaussian

$$\mathcal{N}^{-1} \begin{pmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}; \begin{bmatrix} \mathbf{a} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{B} + \mathbf{C}^\mathsf{T} \mathbf{D}^{-1} \mathbf{C} & -\mathbf{C}^\mathsf{T} \\ -\mathbf{C} & \mathbf{D} \end{bmatrix} \end{pmatrix}$$
 (7)

Hint:

Taking the logarithm of the form (3.17) in the book with (3.20) inserted give a relatively simple way to the goal, after the terms constant in \mathbf{x} and \mathbf{y} are subtracted. Also

$$\mathbf{a}^\mathsf{T}\mathbf{A}\mathbf{a} + \mathbf{b}^\mathsf{T}\mathbf{B}\mathbf{b} + 2\mathbf{a}^\mathsf{T}\mathbf{C}\mathbf{b} = \mathbf{a}^\mathsf{T}\mathbf{A}\mathbf{a} + \mathbf{b}^\mathsf{T}\mathbf{B}\mathbf{b} + \mathbf{a}^\mathsf{T}\mathbf{C}\mathbf{b} + \mathbf{b}^\mathsf{T}\mathbf{C}^\mathsf{T}\mathbf{a} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}^\mathsf{T} \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^\mathsf{T} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix},$$

is handy, and valid for any vectors \mathbf{a} and \mathbf{b} and matrices \mathbf{A} , \mathbf{B} and \mathbf{C} of interest (variable names are not related to the task).

(b) Show that the marginal distribution of **y**, from the joint density (7), is

$$\mathcal{N}^{-1}\left(\mathbf{y}\,;\,\mathbf{C}^{\mathsf{T}}(\mathbf{B}+\mathbf{C}^{\mathsf{T}}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{a},\mathbf{D}-\mathbf{C}(\mathbf{B}+\mathbf{C}^{\mathsf{T}}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{C}^{\mathsf{T}}\right). \tag{8}$$

Hint: Theorem 3.4.1

(c) Show that the conditional distribution of \mathbf{x} given \mathbf{y} is

$$\mathcal{N}^{-1}\left(\mathbf{x};\,\mathbf{a}+\mathbf{C}^{\mathsf{T}}\mathbf{y},\mathbf{B}+\mathbf{C}^{\mathsf{T}}\mathbf{D}^{-1}\mathbf{C}\right).\tag{9}$$

Hint: Theorem 3.4.1

(d) Let us now return to the original formulation of the product identity in Theorem 3.3.1. Use the result from c) to show that

$$\widehat{\mathbf{P}}^{-1} = \mathbf{P}^{-1} + \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{H}. \tag{10}$$

Hint: Match variables in (3.21) with (3.10) in the book.