Can an event space be a countably infinite set?

Shanghai Jiaotong University, Spring 2020

郭睿涵

2020年3月29日

Exercise 2. Can an event space be a countably infinite set?

Solution First of all, event space in measure theory based probability, it is required to be a sigma-algebra. Then we need to proof a sigma-algebra that contains infinitely many sets must be uncountable.

Assume we have a set X, and an infinite sigma-algebra S on it. I want to proof that S is uncountable by contradiction.

Assumption $\mathbb{S} = \{A_i\}_{i=1}^{\infty}, B_x = \bigcap_{x \in A_i} A_i$. Due to \mathbb{S} is countable, B_x is made of countable intersection, which means it belongs to \mathbb{S} .

Lemma $c \in B_x \cap B_y \to B_x = B_y$

Proof If $x \notin B_c$, $B_x \setminus B_c \subset S$ with $x \in B_x \setminus B_c$. But B_x is the intersection of all the intervals containing x. Therefore $B_x \setminus B_c = B_x$, which means, $B_x = B_c$.

Analogouly, we have $B_y = B_c$. So we've got $B_x = B_y$ when $c \in B_x \cap B_y$.

If there are finite sets of the form B_x , then: \mathbb{S} is a union of a finite number of disjoint sets, which leads to \mathbb{S} is finite.

If there are countable-infinite sets of the form B_x , then suppose $G = \{B_x\}_{x \in X}$. By taking all the possible disjoint unions from G you can form $\|P(G)\|$ new different sets(P means power set), hense an uncountable number of different sets.(G is countably infinite, then P(G) is uncountable)

Notice that every possible union of sets in G is a set that belongs to S, since $B_x \in S$ and S is a sigma-algebra. This means that S should be uncountable in order to contain this uncountable number of all possible different unions of the sets in the family G.

In conclusion, an event space can't be a countably infinite set.