Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal, ya, semangat!

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X 1	X ₂	X ₃	α	Threshold	Y _{d,6}
0.7	0.8	0.9	0.1	-1	0

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ ₄	θ ₅	θ_6
0,5	0,6	0,3	1,1	-1	0,1	-1,1	-0,7	0,2	0,3	0,4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$Y_4 = sigmoid (0.7 \times 0.5 + 0.8 \times 0.3 + 0.9 \times -1.0 - 0.2)$$

$$= 1 / [1 + e^{-(0.35 + 0.24 - 0.9 - 0.2)}]$$

$$= 0,4725276957$$

$$Y_5 = sigmoid (0.7 \times 0.6 + 0.8 \times 1.1 + 0.9 \times 0.1 - 0.3)$$

$$= 1 / [1 + e^{-(0.42 + 0.88 + 0.09 - 0.3)}]$$

$$= 0,8442241599$$

$$Y_6$$
 = sigmoid (0.47 x -1.1 + 0.84 x -0.7 - 0.4)

$$= \frac{1}{[1 + e^{-(-0.517 + 0.588 - 0.4)}]}$$

$$= 0.3294359273$$

$$= y_{d,6} - y_6$$

$$= 0 - 0.3294359273$$

= -0.3267980356

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄ Y ₅		Y ₆	е
0,4863093	0,8463132992	0,326639904	-0,3267980356

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$\begin{array}{lll} \delta_6 & = Y_6 \, (1 - Y_6) \, e \\ & = 0,3294359273 \, x \, (1 - 0,3294359273) \, x \, - 0,3267980356 \\ \\ & = - 0.0721922668 \\ \hline \nabla_{46} & = \alpha \, x \, y4 \, x \, \delta_6 \\ & = 0.1 \, x \, \, 0,4725276957 \, x \, \, - 0.0721922668 \\ \\ & = - 0,003438820207 \\ \hline \nabla_{56} & = \alpha \, x \, y5 \, x \, \delta_6 \\ & = 0.1 \, x \, \, 0,8442241599 \, x \, - 0.0721922668 \\ \\ & = - 0,006143841148 \\ \hline \nabla_{} \theta_{6} & = \alpha \, x \, \theta_{6} \, x \, \delta_{6} \\ \end{array}$$

 $= 0.1 \times 0.4 \times -0.0721922668$

=-0.0028876907 / 0,007277499792

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	∇ 46	▽ 56	∇ θ ₆
-0.0721922668	-0,003438820207	-0,006143841148	-0.0028876907 / 0,007277499792

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

 $\delta_4 = Y_4 (1-Y_4) e$

 $= 0,4725276957 (1-0,4725276957) \times -0,3267980356$

= -0.0814528654

 $\delta_5 = Y_5 (1-Y_5) e$

= 0.8442241599 (1-0.8442241599) x -0.3267980356

= -0.0429771207

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ ₄	δ ₅			
-0.0814528654	-0.0429771207			

Langkah 4: Hitung weight corrections

 $\nabla W_{14} = \alpha \times X1 \times \delta_4$

=0.1 x 0.7 x -0.0814528654

= 0,001396689462

 $\nabla W_{24} = \alpha \times X2 \times \delta_4$

=0.1 x 0.8 x -0.0814528654

=0.001596216529

 $\nabla W_{34} = \alpha \times X3 \times \delta_4$

=0.1 x 0.9 x -0.0814528654

=0,001795743595

$$\nabla \theta_4 = \alpha \times \theta_4 \times \delta_6$$

=0.1 x 0.2 x -0.0721922668

=-0,001995270661

$$\nabla W_{15} = \alpha \times X1 \times \delta_5$$

=0.1 x 0.7 x -0.0429771207

=0,0004689603881

 $\nabla W_{25} = \alpha \times X2 \times \delta_4$

=0.1 x 0.8 x -0.0814528654

=0,0005359547292

 $\nabla W_{35} = \alpha \times X3 \times \delta_5$

=0.1 x 0.9 x -0.0429771207

=0,0006029490704

 $\nabla \theta_5 = \alpha \times \theta_5 \times \delta_6$

 $=0.1 \times 0.3 \times -0.0721922668$

=-0,0006699434115

Lalu isi rangkuman hasilnya di tabel ini ya ...

•	∇ W 14	∇W_{24}	∇w_{34}	∇θ4	∇ w 15	∇ w ₂₅	∇w_{35}	∇ θ ₅
1 ′	001396	0,001596	0,001795	-0,001995	0,000468	0,000535	0,000602	-0,000669
	9462	216529	743595	270661	9603881	9547292	9490704	9434115

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 👌

<u>Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui</u>

$$W_{14} = W_{14} + \nabla W_{14}$$

$$= 0.5 + 0,001396689462$$

=0,5013966895

$$W_{15} = W_{15} + \nabla W_{15}$$

=0.6 + 0,0004689603881

=0,6004689604

$$W_{24} = W_{24} + \nabla W_{24}$$

= 0.3 + 0,001596216529

=0,3015962165

$$W_{25} = W_{25} + \nabla W_{25}$$

=1.1 + 0,0005359547292

=1,100535955

$$W_{34} = W_{34} + \nabla W_{34}$$

= -1 + 0,001795743595

=-0,9982042564

$$W_{35} = W_{35} + \nabla W_{35}$$

=O.1 + 0,0006029490704

=0,1006029491

$$\theta_4 = \theta_4 + \nabla \theta_4$$

= 0.2 + -0,001995270661

=0,1980047293

$$\theta_5$$
 = θ_5 + $\nabla \theta_5$

= 0.3 + -0.0006699434115

=0,2993300566

$$\theta_6$$
 = θ_6 + $\nabla \theta_6$

= 0.4 + 0,007277499792

=0,4072774998

Lalu isi rangkuman hasilnya di tabel ini ya ...

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	θ_3	θ ₄	θ ₅
0,50139	0,60046	0,30159	1,10053	-0,99820	0,10060	N/A	0,19800	0,29933
66895	89604	62165	5955	42564	29491		47293	00566

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-