

ЮГОЗАПАДЕН УНИВЕРСИТЕТ "СВ. НЕОФИТ РИЛСКИ" БЛАГОЕВГРАД XXVII РЕПУБЛИКАНСКА СТУДЕНТСКА ОЛИМПИАДА ПО ПРОГРАМИРАНЕ, 8-10 май, 2015 г.

Задача L. ДЕЛИТЕЛИ

Да се напише програма, която намира:

- броя на простите числа в интервала [a, b];
- за всяко число от същия интервал, което не е просто неговия най-малък прост делител.

Вход: Програмата трябва да може да обработва при едно изпълнение няколко тестови примера, които са зададени в **двоичен (binary) файл**, който ще бъде зададен като **стандартен вход**. Всеки тестов пример се състои от двете 32-битови положителни цели числа, които са краища на интервала – първо във файла е записан левият край, а после – десният.

Изход: За всеки тестов пример програмата трябва да изведе на **стандартния изход,** първо, ред с текста test case # < t >: (спазвайте стриктно форматирането от примера), където < t > е номерът на текущия тестов пример, а след това ред с текста primes in [< a >, < b >]., където < a > и < b > са двата края на интервала, а е броят на простите числа в него. Всеки от следващите редове в изхода за тестовия пример е във вида < q > < k > и означава, че простото число < q > е най-малък прост делител на $< \kappa >$ непрости числа в интервала. Двойките трябва да бъдат сортирани във възходящ ред на < q >. Между резултатите от всеки два поредни тестови примера трябва да има по един празен ред.

Ограничения: $2 \le a \le 10^7$, $2 \le b \le 10^7$.

Пример:

Вход	Изход
2 10	test case #1:
17 17	4 primes in [2, 10].
9 9	2 4
20 200	3 1
	test case #2:
	1 primes in [17, 17].
	test case #3:
	0 primes in [9, 9].
	3 1
	test case #4:
	38 primes in [20, 200].
	2 91
	3 30
	5 12
	7 6
	11 3
	13 1

Забележка: По понятни причини входните данни в примера са показани в текстов, а не в двоичен вид, както ще бъдат подадени на стандартния вход.

SOUTH-WEST UNIVERSITY "ST. NEOFIT RILSKI" BLAGOEVGRAD XXVII BULGARIAN COLLEGIATE PROGRAMMING CONTEST, May 8-10, 2015

Task L. DIVISORS

Write a program to find:

- the number of primes in the interval [a, b];
- the smallest prime divisor for each number from the same interval, which is not prime.

Input: The program must be able to process in one run several test cases that are set in **binary file** which will be given as **standard input**. Each test case consists of two 32-bit positive integers that are the ends of the interval – the left end is saved first in the file, and then – the right end.

Output: For each test case, the program must write to the **standard output**, first, a line with the text test case # < t >: (strictly follow the format of the example), where < t > is the number of the current test case; on the second line – the text primes in [< a >, < b >]., where < a > and < b > are the two ends of the interval, and — the number of prime numbers in it. Each of the following lines in the output for the test case should be in the form < q > < k > and means that the prime number < q > is the smallest prime divisor of < k > not prime numbers in the interval. Couples must be sorted in ascending order of < q >. Between each two consecutive test cases a blank line should be printed.

Restrictions: $2 \le a \le 10^7$, $2 \le b \le 10^7$.

Example:

Input	Output
2 10	test case #1:
17 17	4 primes in [2, 10].
9 9	2 4
20 200	3 1
	test case #2: 1 primes in [17, 17].
	test case #3: 0 primes in [9, 9]. 3 1
	test case #4: 38 primes in [20, 200]. 2 91 3 30 5 12 7 6
	11 3 13 1

Note: For obvious reasons, the input data in the example is shown in text form, not binary, as will be submitted on standard input.